Varianta 1 m

Problema 1. Este dat un reper ortonormat $R=\{O,\bar{i},\bar{j}\}$ și două puncte $A=(-2,7),\,B=(1,1).$

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=30^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = 3x + 8y + 5,y' = 8x - 3y - 6.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul kal asemănării $\psi.$
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 2 m

Problema 1. Este dat un reper ortonormat $R=\{O,\bar{i},\bar{j}\}$ și două puncte $A=(-1,1),\,B=(4,0).$

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=60^o$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 7x + 8y + 5,$$

 $y' = 8x + 7y + 7.$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F)=(12,-5)$.

Varianta 3 m

Problema 1. Este dat un reper ortonormat $R=\{O,\bar{i},\bar{j}\}$ și două puncte $A=(1,-5),\,B=(2,3).$

- 1.1. Scrieți expresiile analitice ale rotației R^{α}_A cu centrul A și unghiul de rotație $\alpha=45^o.$
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = -9x + 2y + 1,$$

$$y' = -2x + 9y - 2.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 1 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (2, -4), B = (2, 3).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=240^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = 5x + 6y + 3,y' = 6x - 5y - 3.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul kal asemănării $\psi.$
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 2 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (5, -5), B = (4, -4).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=210^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 7x - 2y + 4,$$

 $y' = 2x + 7y - 3.$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l:3x-2y-11=0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 3 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \overline{i}, \overline{j}\}$ și punctele A = (4, -1), B = (2, 5).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=30^o$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = 8x - 2y - 7,$$

$$y' = -2x - 8y + 1.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 4 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (-1,7), B = (-2,1).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=60^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 9x + 2y - 3,$$

$$y' = -2x + 9y + 3.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l:3x-2y-11=0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 5 mi

Problema 1. Este dat un reper ortonormat $R=\{O,\bar{i},\bar{j}\}$ și punctele $A=(4,-3),\,B=(3,-4).$

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=45^o$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = -6x + 4y + 4,$$

$$y' = 4x + 6y - 1.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F)=(12,-5)$. .

Varianta 6 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (5, -2), B = (2, -5).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=-30^{\circ}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = -5x + 4y - 6,$$

$$y' = -4x - 5y - 7.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 7mi

Problema 1. Este dat un reper ortonormat $R=\{O,\bar{i},\bar{j}\}$ și punctele $A=(3,-2),\,B=(2,5).$

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=-60^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = x + 11y - 2,$$

 $y' = 11x - y + 1.$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F)=(12,-5)$.

Varianta 8 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (6, -1), B = (1, -6).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=-45^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = 3x + 8y + 1,$$

$$y' = -8x + 3y + 2.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 9 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (4, -1), B = (1, -5).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=120^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 6x - 3y + *,y' = -3x - 6y - 2.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 10 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \overline{i}, \overline{j}\}$ și punctele A = (1,1), B = (7,2).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=150^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = -10x - y - 7,$$

 $y' = x + 10y - 2.$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul kal asemănării $\psi.$
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 11 mi

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (3, 2), B = (-5, 1).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=-150^{\circ}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 2x - 9y + 1,$$

$$y' = -9x - 2y - 1.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 12 mi

Problema 1. Este dat un reper ortonormat $R=\{O,\bar{i},\bar{j}\}$ și punctele $A=(3,3),\,B=(-5,1).$

- 1.1. Scrieți expresiile analitice ale rotației R^{α}_A cu centrul A și unghiul de rotație $\alpha=-120^0.$
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 7x + 8y - 3,$$

 $y' = -8x + 7y + 1.$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l:3x-2y-11=0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 1 im

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (4,1), B = (-3,-1).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=30^{0}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = 6x + 5y - 2,$$

 $y' = 5x - 6y + 3.$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 2 im

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (4,4), B = (5,5).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=240^{\circ}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 7x + 6y + 2,$$

$$y' = -6x + 7y + 2.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l:3x-2y-11=0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 3 im

Problema 1. Este dat un reper ortonormat $R = \{O, \overline{i}, \overline{j}\}$ și punctele A = (-5, 2), B = (1, 6).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=60^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = -2x + 8y - 3,$$

$$y' = 8x + 2y + 5.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 4 im

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (1, 2), B = (7, 1).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=210^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = -9x + 2y - 5,$$

$$y' = -2x - 9y - 3.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 5 im

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (4,3), B = (3,6).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=45^0$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = -10x + 2y - 1,$$

$$y' = 2x + 10y + 1.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 6 im

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (5, 2), B = (2, 6).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha = -30^{\circ}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = 8x + 5y - 1,y' = -5x - 8y + 5$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 7 im

Problema 1. Este dat un reper ortonormat $R = \{O, \overline{i}, \overline{j}\}$ și punctele A = (5, -2), B = (2, 3).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=-60^{\circ}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

Problema 2. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$. Transformarea planului φ este dată prin expresiile analitice

$$x' = 9x + 3y - 7,y' = 3x - 9y + 5.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul kal asemănării $\psi.$
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l: 3x 2y 11 = 0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.

Varianta 8 im

Problema 1. Este dat un reper ortonormat $R = \{O, \bar{i}, \bar{j}\}$ și punctele A = (6, 1), B = (1, 5).

- 1.1. Scrieți expresiile analitice ale rotației R_A^{α} cu centrul A și unghiul de rotație $\alpha=120^{o}$.
 - 1.2. Determinați simetria alunecătoare cu axa (AB) și vectorul \overrightarrow{AB} .
 - 1.3. Determinați translația paralelă $T_{\bar{a}}$ cu vectorul $\vec{a} = \vec{AB}$.
 - 1.4. Scrieți expresiile analitice ale simetriei centrale S_B .

$$x' = -5x + 7y - 2,$$

$$y' = -7x - 9y + 8.$$

- 2.1. Demonstrați că φ este o asemănare.
- 2.2. Calculați coeficientul k al asemănării ψ .
- 2.3. Determinați genul transformării φ .
- 2. 4. Calculați punctul fix C al transformării ψ .
- 2.5. Calculați imaginea dreptei l:3x-2y-11=0.
- 2.6. Determinați punctul F pentru care $\varphi(F) = (12, -5)$.