Разбор задач домашнего задания по алгебре на 12.02 для группы БПИ209 3 модуль

Aвтор: vk.com/yourkumir

58.33 б), в), г), е) Пусть
$$B = \{X \in \mathbb{G}l_n(\mathbb{C}) \mid detX \in \mathbb{R}\}$$
 $C = \{X \in \mathbb{G}l_n(\mathbb{C}) \mid |detX| = 1\}$ $D = \{X \in \mathbb{G}l_n(\mathbb{R}) \mid detX > 0\}$ Доказать, что: 6) $\frac{\mathbb{G}l_n(\mathbb{C})}{\mathbb{S}l_n(\mathbb{C})} \approx \mathbb{C}^*$, в) $\frac{\mathbb{G}l_n(\mathbb{R})}{D} \approx \mathbb{Z}_2$, г) $\frac{\mathbb{G}l_n(\mathbb{C})}{B} \approx \mathbb{U}$, е) $\frac{\mathbb{G}l_n(\mathbb{C})}{C} \approx \mathbb{R}_+$

Воспользуемся теоремой о гомоморфизме, а именно предложим такой гомомоморфизм:

6)
$$\frac{\mathbb{G}l_n(\mathbb{C})}{\mathbb{S}l_n(\mathbb{C})} \approx \mathbb{C}^*$$

Пусть $f: \mathbb{G}l_n(\mathbb{C}) \to \mathbb{C}^*$ f(X) = det(X), тогда:

- 1) f это действительно гомоморфизм f(XY) = det(XY) = det(X)det(Y) = f(X)f(Y)
- 2) $Imf=\mathbb{C}^*$, так мы всё отображаем в образ и $\forall c\in\mathbb{C}^*\ \exists X\in\mathbb{G}l_n(\mathbb{C}),\ X=c*E$, где E единичная матрица
- 3) $kerf = \mathbb{S}l_n(\mathbb{C})$ по определению и структуре группы $\mathbb{S}l_n(\mathbb{C})$
- \Rightarrow по теореме о гомоморфизме $\frac{\mathbb{G}l_n(\mathbb{C})}{\mathbb{S}l_n(\mathbb{C})} \approx \mathbb{C}^*$

B)
$$\frac{\mathbb{G}l_n(\mathbb{R})}{D} \approx \mathbb{Z}_2$$

Пусть $f: \mathbb{G}l_n(\mathbb{R}) \to \mathbb{Z}_2$ $f(X) = \overline{sgn}(det(X))$ (0 для положительных и 1 для неположительных), тогда:

- 1) f это действительно гомоморфизм $f(XY) = \overline{sgn}(det(XY)) = \overline{sgn}(det(X)det(Y)) = \overline{sgn}(det(X)) +$ $\overline{sgn}(det(Y)) = f(X) + f(Y)$ (если непонятно, как мы так раскрыли функцию \overline{sgn} для произведения, то просто посмотрите 4 случая для разных комбинаций знаков матриц)
- $2)\ Imf=\mathbb{Z}_2,$ так мы всё отображаем в образ и $\forall z\in\mathbb{Z}_2\ \exists X\in\mathbb{G}l_n(\mathbb{R}),\ X=E,$ если z=0 и X=(-1)*E,иначе
- 3) $kerf = D = \{X \in \mathbb{G}l_n(\mathbb{R}) \mid detX > 0\}$ по определению и по построению гомоморфизма
- \Rightarrow по теореме о гомоморфизме $\frac{\mathbb{G}l_n(\mathbb{R})}{D}pprox \mathbb{Z}_2$

$$\Gamma) \ \frac{\mathbb{G}l_n(\mathbb{C})}{B} \approx \mathbb{U}$$

Пусть $f: \mathbb{G}l_n(\mathbb{C}) \to \mathbb{U}$ $f(X) = \frac{det(X)}{|det(X)|}$, тогда:

$$|det(X)|$$
 1) f - это действительно гомоморфизм $f(XY) = \frac{det(XY)}{|det(XY)|} = \frac{det(X)det(Y)}{|det(X)||det(Y)|} = \frac{det(X)}{|det(X)|} \frac{det(Y)}{|det(Y)|} = f(X)f(Y)$ 2) $Imf = \mathbb{U}$ (комплексные числа с модулем 1), так мы всё отображи

- 2) $Imf = \mathbb{U}$ (комплексные числа с модулем 1), так мы всё отображаем в образ и $\forall c \in \mathbb{U} \ \exists X \in \mathbb{G}l_n(\mathbb{C}),$
- X = c * E, где E единичная матрица
- 3) $kerf = B = \{X \in \mathbb{G}l_n(\mathbb{C}) \mid detX \in \mathbb{R}\}$ по определению и по построению гомоморфизма
- \Rightarrow по теореме о гомоморфизме $\frac{\mathbb{G}l_n(\mathbb{C})}{R} \approx \mathbb{U}$

e)
$$\frac{\mathbb{G}l_n(\mathbb{C})}{C} \approx \mathbb{R}_+$$

Пусть $f: \mathbb{G}l_n(\mathbb{C}) \to \mathbb{R}_+$ f(X) = |det(X)|, тогда:

- 1) f это действительно гомоморфизм f(XY) = |det(XY)| = |det(X)det(Y)| = |det(X)||det(Y)| = f(X)f(Y)
- 2) $Imf = \mathbb{R}_+$ (положительные действительные числа с операцией умножения), так мы всё отображаем в образ и $\forall r \in \mathbb{R}_+ \exists X \in \mathbb{G}l_n(\mathbb{C}), X = r * E$, где E - единичная матрица
- 3) $kerf = C = \{X \in \mathbb{G}l_n(\mathbb{C}) \mid |detX| = 1\}$ по определению и по построению гомоморфизма
- \Rightarrow по теореме о гомоморфизме $\frac{\mathbb{G}l_n(\mathbb{C})}{C} \approx \mathbb{R}_+$

60.4 Доказать, что прямая сумма циклических групп $Z_m \oplus Z_n$ является циклической группой тогда и только тогда, когда наибольший общий делитель m и n равен 1.

Необходимость. Пусть
$$G=Z_m\oplus Z_n$$
, тогда $|G|=mn,\ ord(g)=\mathrm{HOK}(m,n)$ (по 60.8). G - циклическая $\Leftrightarrow |G|=ord(g)$, то есть $mn=\mathrm{HOK}(m,n)\Rightarrow \mathrm{HOД}(m,n)=\frac{mn}{\mathrm{HOK}(m,n)}=1$ Достаточность. Пусть $G=Z_m\oplus Z_n$, тогда $|G|=mn,\ ord(g)=\mathrm{HOK}(m,n)$ (по 60.8), но нам дано, что $\mathrm{HOД}(m,n)=1\Rightarrow \mathrm{HOK}(m,n)=\frac{mn}{\mathrm{HOД}(m,n)}=mn$, то есть $|G|=ord(g)\Leftrightarrow G$ - циклическая.

60.5 Разложить в прямую сумму группы: а) Z_6 , б) Z_{12} , в) Z_{60}

Подсказка: раскладывайте n в произведение степеней простых.

- a) $Z_6 = Z_2 \oplus Z_3$
- б) $Z_{12} = Z_3 \oplus Z_4$ в) $Z_{60} = Z_3 \oplus Z_4 \oplus Z_5$

60.6 Доказать, что мультипликативная группа комплексных чисел является прямым произведением группы положительных вещественных чисел и группы всех комплексных чисел, по модулю равных 1.

Если вы ничего не поняли, когда прочитали задачу, то это нормально. Перепишем условие с помощью обозначений: $(\mathbb{R}^+,\cdot) \times (\mathbb{U},\cdot) = (\mathbb{C},\cdot)$, где $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$

Осталось только вспомнить про тригонометрическую форму комлексного числа:

$$a+ib=
ho(\cos\phi+i\sin\phi),$$
 где $ho=\sqrt{a^2+b^2},$ $\phi=\{\arctan\frac{b}{a}+2\pi k,k\in\mathbb{Z}\}$

Тогда любое комплексное число $(z \in \mathbb{C})$ мы можем представить парой $(\rho, \frac{c}{|c|})$,

где $\rho \in \mathbb{R}^+$ и $c \in \mathbb{U}$ ($\phi = arg(z) = arg(c)$), и любая такая пара представляет комплексное число. Иначе говоря, перебирая все пары расстояний и все аргументы, мы получим множество комплексных чисел.

60.42 б) Изоморфны ли группы $\mathbb{Z}_6 \oplus \mathbb{Z}_{36}$ и $\mathbb{Z}_{12} \oplus \mathbb{Z}_{18}$?

$$\mathbb{Z}_6 \oplus \mathbb{Z}_{36} = (\mathbb{Z}_2 \oplus \mathbb{Z}_3) \oplus (\mathbb{Z}_4 \oplus \mathbb{Z}_9) = \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_9$$

 $\mathbb{Z}_{12} \oplus \mathbb{Z}_{18} = (\mathbb{Z}_3 \oplus \mathbb{Z}_4) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_9) = \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_9$
 $\Rightarrow \mathbb{Z}_6 \oplus \mathbb{Z}_{36}$ и $\mathbb{Z}_{12} \oplus \mathbb{Z}_{18}$ изоморфны.

60.45 а) Сколько элементов: порядка 2, 4 и 6 в группе $\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3$?

Есть прекрасное утверждение 60.8 о том, что

- 1) прямой порядок произведения конечных групп равен произведению порядков сомножителей
- 2) порядок элемента прямого произведения конечных групп равен НОК порядков компонент.

```
ord(0,0,0) = HOK(1,1,1) = 1
                               ord(1,0,0) = HOK(2,1,1) = 2
ord(0,0,1) = HOK(1,1,3) = 3
                               ord(1,0,1) = HOK(2,1,3) = 6
                               ord(1,0,2) = HOK(2,1,3) = 6
ord(0,0,2) = HOK(1,1,3) = 3
ord(0,1,0) = HOK(1,4,1) = 4
                               ord(1,1,0) = HOK(2,4,1) = 4
ord(0,1,1) = HOK(1,4,3) = 12
                               ord(1,1,1) = HOK(2,4,3) = 12
ord(0,1,2) = HOK(1,4,3) = 12
                               ord(1,1,2) = HOK(2,4,3) = 12
ord(0,2,0) = HOK(1,2,1) = 2
                               ord(1,2,0) = HOK(2,2,1) = 2
ord(0,2,1) = HOK(1,2,3) = 6
                               ord(1,2,1) = HOK(2,2,3) = 6
ord(0,2,2) = HOK(1,2,3) = 6
                               ord(1,2,2) = HOK(2,2,3) = 6
ord(0,3,0) = HOK(1,4,1) = 4
                               ord(1,3,0) = HOK(2,4,1) = 4
ord(0,3,1) = HOK(1,4,3) = 12
                               ord(1,3,1) = HOK(2,4,3) = 12
                               ord(1,3,2) = HOK(2,4,3) = 12
ord(0,3,2) = HOK(1,4,3) = 12
```

57.39 а), б) Найти группу автоморфизмов: а) группы \mathbb{Z}_5 ; б) группы \mathbb{Z}_6 .

Подсказка: образующими элементами (степенями $k: a \to ak$) будут элементы, взаимнопростые с n, а их количество соотвественно $\varphi(n)$ - функция Эйлера.

а) $\varphi(5) = 4$, покажем эти автоморфизмы перестановками:

$$k=1: \ \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}, \ k=2: \ \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 1 & 3 \end{pmatrix}, \ k=3: \ \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 3 & 1 & 4 & 2 \end{pmatrix}, \ k=4: \ \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 4 & 3 & 2 & 1 \end{pmatrix}$$

б) $\varphi(6)=2$, покажем эти автоморфизмы (тождественный и обратный) перестановками:

$$k = 1: \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}, k = 5: \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$