

Curso: PPGMNE

Disciplina: Programação Inteira e Otimização em Redes

Código: MNUM 7077

Entrega: INDIVIDUAL

Data da entrega: 06/10/2024, até as 23:59.

A cada dia de atraso na entrega desconto de 5% no valor final.

Lista 1

Exercício 1) faça o que se pede:

- 1. Construir a Árvore Completa do B&B dos problemas a seguir (pode usar um solver para resolver cada nó da árvore):
- 2. Resolver 3 (três) nós a sua escolha no B&B em cada problema, nos problemas 1 e 3. Fazer na mão ou no excel (como na aula). Apresentar os quadros SIMPLEX, a inserção das restrições e o passo do SIMPLEX ou DUAL-SIMPLEX necessário.
- 3. Resolver pelo Algoritmo de Corte de Gomory os problemas 2 e 4. Apresentar o desenvolvimento das restrições. Obs: Não há necessidade de escrever as restrições de corte de Gomory em função das variáveis originais do problema.

Problema 1.

Max
$$z = x1 + 5x2 + 9x3 + 5x4$$

s. a: $x1 + 3x2 + 9x3 + 6x4 \le 16$
 $6x1 + 6x2 + 7x4 \le 19$
 $7x1 + 8x2 + 18x3 + 3x4 \le 44$
 $x1, x2, x3, x4 \ge 0$ e inteiras.

Problema 2.

Max
$$z = 7x1 + 9x2 + x3 + 6x4$$

s.a.: $8x1 + 2x2 + 4x3 + 2x4 \le 16$
 $4x1 + 8x2 + 2x3 \le 20$
 $7x1 + 6x3 + 2x4 \le 11$
 $x1, x2, x4 \ge 0$ e inteiras e $x3 \ge 0$.

Problema 3.

Min z = 3x1 + 4x2 + 3x3

s.a: $3x1 + 2x2 + 2x3 \ge 13$

 $2x1 + 5x2 + 3x3 \ge 15$

 $2x1 + x2 + 2x3 \ge 9$

 $x2, x3 \ge 0$ e inteiras e $x1 \ge 0$.

Problema 4.

Min z = 2x1 + 3x2 + 5x3

s.a: $x1 + 2x2 + 3x3 \ge 7$

 $3x1 + 2x2 + 3x3 \ge 11$

 $x1, x3 \ge 0$ e inteiras e $x2 \ge 0$.

Exercício 2) Modelagem em Programação Linear Inteira, Binária e Mista. Faça o modelo e RESOLVA utilizando um software a sua escolha.

Ex 1

Um avião de transporte possui quatro compartimentos para carga a saber: compartimento frontal, compartimento central, compartimento da cauda e porão de granel. Os três primeiros compartimentos só podem receber carga em containeres, enquanto o porão recebe material em granel. A tabela a seguir resume a capacidade do aparelho:

Compartimento	Peso Máximo (ton)	Espaço Máximo (m3)
Compartimento Frontal	5	35
Compartimento Central	7	55
Compartimento da Cauda	6	30
Porão de Granel	7	30

Objetivando o equilíbrio de vôo, é indispensável que a distribuição da carga seja proporcional entre os compartimentos. Para carregar o avião, existem três tipos de containeres e duas cargas em granel. Os dois tipos de carga em granel podem ser facilmente transporta dos conjuntamente, por isso essa carga é aceita em qualquer quantidade.

Carga Tipo	Peso por Container ou por m3 – (ton)	Volume por Container (m3)	Lucro \$/ton
1 (container)	0,7	0,5	200
2 (container)	0,9	1	220
3 (container)	0,2	0, 25	175
4 (granel)	1,2/m3	_	235
5(granel)	1,7/m3	_	180

Elaborar o problema de programação linear que otimize a distribuição da carga de forma a maximizar o lucro do vôo do cargueiro.

Fase 1: Ataque Massivo

Uma reserva florestal está em chamas e o governo planeja uma operação fulminante de combate ao fogo para amanhã. O incêndio é de pequenas proporções e está se propagando lentamente, devendo ser extinto em cerca de três horas de operação logo após o amanhecer. Estão sendo mobilizados aviões e helicópteros especializados nesse tipo de operações. As características dos aparelhos constam da Tabela 36:

Aparelho	Eficiência no Incêndio (m²/hora)	Custo (R\$/hora)	Necessidade em Pessoal
Helicóptero AH-1	15.000	2.000	2 Pilots.
Avião Tanque	40.000	4.000	2 Pilots. + 1 Op.
Avião B67	85.000	10.000	2 Pilots. + 3 Op.

A área de floresta a ser coberta pelo combate ao fogo é de 3.000.000 m2, envolvendo a frente de fogo (para paralisação do avanço do dano), áreas já queimadas que necessitam de rescaldo (para proteção de animais e segurança contra recrudescimento) e áreas de acero (proteção preventiva indispensável). Nas bases de apoio são disponíveis 14 pilotos de avião e 10 de helicóptero, bem como 22 operadores especializados em combate aéreo de fogo. Formular o problema de programação matemática que minimize os custos da operação.

Ex 3

A diretora de pessoal, Elis C. Sempaz, da Companhia Aérea Boa Viagem deve decidir quantas novas aeromoças contratar e treinar nos próximos seis meses. As necessidades, expressas pelo número de aeromoças-horas-de-vôo necessário, são 8.000 em janeiro; 9.000 em fevereiro; 7.000 em março; 10.000 em abril; 9.000 em maio; e 11.000 em junho.

Leva um mês de treinamento antes que uma aeromoça possa ser posta num vôo regular; assim, uma garota deve ser contratada pelo menos um mês antes que ela seja realmente necessária. Cada moça treinada requer 100 horas de supervisão de uma aeromoça experiente durante o mês de treinamento de modo que são disponíveis 100 horas a menos para serviço de vôo por aeromoças regulares.

Cada aeromoça experiente pode trabalhar até 150 horas num mês, e Boa Viagem tem 60 aeromoças regulares disponíveis no começo de janeiro. Se o tempo máximo disponível das aeromoças experientes exceder as necessidades de vôo e treinamento de um mês, as garotas regulares trabalham menos que 150 horas e ninguém é dispensado. No fim de cada mês, aproximadamente 10% das aeromoças experientes deixam seus empregos para se casarem ou por outras razões.

Uma aeromoça experiente custa à companhia \$850 e uma em treinamento \$450 por mês em salário e outros encargos.

- (a) Formule o problema de contratar e treinar como um modelo de programação linear. Seja x, o número de aeromoças que começam o treinamento no Mês t. Defina quaisquer símbolos adicionais que você precise para expressar as variáveis de decisão.
- (b) O enunciado acima do problema supõe um horizonte de planejamento de seis meses. Suponha que você acrescente as condições de julho ao modelo. A solução anterior necessariamente mudaria? Explique.

Formulação do problema

Uma montadora de automóveis está revisando o projeto de um de seus modelos, que é bem aceito pelos compradores mas está ganhando a fama de ser "beberrão" de gasolina. A direção convocou a equipe de engenheiros para propor alterações técnicas no projeto de forma a reduzir o peso do carro em, pelo menos, 180 kg, e, com isso, aumentar sua eficiência de consumo. A equipe identificou 12 alterações prováveis que podem tornar o carro mais leve. A Tabela 1 mostrou o conjunto de alterações, a economia de peso de cada uma e o custo que a fábrica terá para implementá-la.

Tabela 1: Características das mudanças propostas no projeto do carro				
MUDANÇA NO PROJETO	REDUÇÃO NO PESO DO CARRO (KG)	CUSTO DE IMPLEMENTAÇÃO (\$)		
1	30	130.000		
2	20	110.000		
3	25	120.000		
4	40	150.000		
5	15	80.000		
6	10	80.000		
7	60	360.000		
8	80	400.000		
9	40	160.000		
10	30	120.000		
11	50	200.000		
12	35	160.000		

Uma usina siderúrgica, produtora de vergalhões para a construção civil, abastece seis grandes distribuidoras na Região Sudeste. Para melhorar a qualidade de seu serviço logístico de entrega a usina pretende instalar centros de distribuição (CD) que receberão os produtos da usina e farão as entregas para as empresas de comercialização.

Há seis localidades candidatas com condições de receberem os CD, e elas diferem entre si pelos custos fixos anuais e pelos custos variáveis por tonelada de material distribuído e pela capacidade anual de estocagem e manuseio. A Tabela E1.1 mostra as características de cada local.

Tabela E1.1 Características dos locais candidatos a CD				
LOCAL	CAPACIDADE MÁXIMA - em 1.000t (CM _i)	CUSTO FIXO ANUAL (\$) (CF _i)	CUSTO VARIÁVEL (\$/ 1.000t) (CV _i)	
Α	230	1.800	17	
В	200	1.700	18	
C	190	1.300	20	
D	220	2.000	16	
E	220	1.800	21	
F	240	2.300	20	

Os custos de transporte do material de cada local para os seis distribuidores também variam conforme mostra a Tabela E1.2.

Tabela E1.2 Custos de transporte de cada local candidato						
a CD para os distribuidores						
CLIENTE	CUSTO UNITÁRIO DE TRANSPORTE					
	(\$/ 1.000t)					
	(c _{ij})					
LOCAL	1	2	3	4	5	6
Α	12	22	40	14	36	28
В	22	14	30	24	40	8
C	44	32	18	18	28	16
D	15	34	18	30	16	38
E	38	40	28	15	12	20
F	28	22	36	19	45	16
DEMANDA	90	120	100	100	110	130
ANUAL						

Proponha um Enunciado (crie um exercício ou pesquisa algo similar) e um exercício sobre o problema das p-medianas com 30 pontos (com apenas 50% dos pontos sendo candidatos a mediana) e resolva pelos 3 métodos propostos em sala de aula:

- 1) Modelo de programação linear inteira mista (ou binária)
- 2) Algoritmo das k-médias
- 3) Algoritmo de Teitz & Bart
- 4) Compare as 3 soluções e faça um parágrafo de análise sobre as dificuldades e facilidades de cada métodos com, no máximo 200 palavra e com, no mínimo, 100 palavras

Prof. Cassius Tadeu Scarpin cassiusts@gmail.com cassiusts@ufpr.br