3GPP TR 38.717-03-02 V0.1.0 (2020-08)

Technical Report

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network;
Rel-17 NR inter-band Carrier Aggregation/Dual connectivity for
3 bands DL with 2 bands UL

(Release 17)

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2019, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC). All rights reserved.

UMTSTM is a Trade Mark of ETSI registered for the benefit of its members 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTETM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

Contents

Forew	rd	6
1	cope	7
2	References	7
3	Definitions, symbols and abbreviations	8
3.1	Definitions	8
3.2	Symbols	8
3.3	Abbreviations	8
4	ackground	8
4.1	TR Maintenance	9
5	nter-band Carrier Aggregation for 3 bands DL with 2 bands UL: Specific Band Combination Part	9
5.1	inter-band within FR1	9
5.1.1.	Co-existence studies	9
5.1.1.	REFSENS requirements	10
5.1.2	CA_n39-n40-n41	10
5.1.2.1	Operating bands for CA	10
5.1.2.	Channel bandwidths per operating band for CA	10
5.1.2.	Co-existence studies	11
5.1.2.	REFSENS requirements	11
5.1.3	CA_n5-n25-n66	11
5.1.3.	Operating bands for CA	11
5.1.3.	Channel bandwidths per operating band for CA	12
5.1.3.	UE co-existence studies	12
5.1.3.	REFSENS requirements	15
5.1.4	CA_n5-n25-n78	15
5.1.4.1	Operating bands for CA	15
5.1.4.2	Channel bandwidths per operating band for CA	15
5.1.4.3	Co-existence studies	16
5.1.4.4	REFSENS requirements	18
5.2	inter-band within FR2	19
5.2.x	CA_nX-nY-nZ	19

5.2.x.1	Operating bands for CA	19
5.2.x.2	Channel bandwidths per operating band for CA	19
5.2.x.3	UE co-existence studies	19
5.2.x.4	REFSENS requirements	19
5.3	inter-band between FR1 and FR2	19
5.3.1	CA_n1-n77-n257	19
5.3.1.1	Operating bands for CA	19
5.3.1.2	Channel bandwidths per operating band for CA	20
5.3.1.3	UE co-existence studies	22
5.3.1.4	REFSENS requirements	22
5.3.2	CA_n1-n78-n257	22
5.3.2.1	Operating bands for CA	22
5.3.2.2	Channel bandwidths per operating band for CA	23
5.3.2.3	UE co-existence studies	25
5.3.2.4	REFSENS requirements	25
5.3.3	CA_n1-n79-n257	25
5.3.3.1	Operating bands for CA	25
5.3.3.2	Channel bandwidths per operating band for CA	26
5.3.3.3	UE co-existence studies	28
5.3.3.4	REFSENS requirements	28
5.3.4	CA_n77-n79-n257	28
5.3.4.1	Operating bands for CA	28
5.3.4.2	Channel bandwidths per operating band for CA	29
5.3.4.3	UE co-existence studies	30
5.3.4.4	REFSENS requirements	30
5.3.5	CA_n78-n79-n257	30
5.3.5.1	Operating bands for CA	30
5.3.5.2	Channel bandwidths per operating band for CA	31
5.3.5.3	UE co-existence studies	32
5.3.5.4	REFSENS requirements	32
6 I	Dual Connectivity with 3 bands DL: Specific Band Combination Part	32
6.X	DC_nX-nY-nZ	32
5.3.5.4	REFSENS requirements Dual Connectivity with 3 bands DL: Specific Band Combination Part	3

6.x.1 Configurations for DC_nX-nY-nZ	32
Annex A: Change history	33

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do something

shall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.

should indicates a recommendation to do something

should not indicates a recommendation not to do something

may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possible

cannot indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as a result of action taken by an agency the

behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as a result of action taken by an agency

the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as a result of action taken by some agency the

behaviour of which is outside the scope of the present document

might not indicates a likelihood that something will not happen as a result of action taken by some agency the

behaviour of which is outside the scope of the present document

In addition:

is (or any other verb in the indicative mood) indicates a statement of fact

is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

1 Scope

The present document is a technical report for NR inter-band CA and DC for 3 bands DL with 2 bands UL under Rel-17 time frame. The purpose is to gather the relevant background information and studies in order to address NR inter-band CA and DC for 3 bands DL with 2 bands UL for the Rel-17 band combinations.

This TR contains a general part and band specific combination part. The actual requirements are added to the corresponding technical specifications.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release* as the present document.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone".
- [3] 3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone".
- [4] 3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 $\Delta R_{IB,c}$ Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving cell c.

 $\Delta T_{IB,c}$ Allowed maximum configured output power relaxation due to support for inter-band CA

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

BS Base Station

CA Carrier Aggregation DC Dual Connectivity

DL DownLink

FDD Frequency Division Duplex

IMD Inter-modulation

MSD Maximum Sensitivity Deduction

SCS Subcarrier spacing
TDD Time Division Duplex
UE User Equipment

UL UpLink

4 Background

The present document is a technical report for NR inter-band CA and DC for 3 bands DL with 2 bands UL under Rel-17 time frame. The document covers each band combination specific issues (i.e. one sub-clause defined per band combination)

4.1 TR Maintenance

A single company is responsible for introducing all approved TPs in the current TR, i.e. TR editor. However, it is the responsibility of the contact person of each band combination to ensure that the TPs related to the band combination have been implemented.

5 inter-band Carrier Aggregation for 3 bands DL with 2 bands UL: Specific Band Combination Part

5.1 inter-band within FR1

5.1.1 CA n39-n40-n79

5.1.1.1 Operating bands for CA

Table 5.1.1.1-1: CA band combination of band n39+n40+n41

		Uplink	(UL	.) band	Down	link (D	L) band	Duplex			
NR Band	NR Band	BS receive	e/U	E transmit	BS tran	BS transmit / UE receive					
		F _{UL_lov}	w – F	UL_high	FDL	mode					
	n39	1880 MHz -		1920 MHz	1880 MHz	-	1920 MHz	TDD			
CA_n39A-n40A-n79A	n40	2300 MHz -	•	2400 MHz	2300 MHz	-	2400 MHz	TDD			
	n79	4400 MHz -		5000 MHz	4400 MHz	_	5000 MHz	TDD			

5.1.1.2 Channel bandwidths per operating band for CA

Table 5.1.1.2-1: Supported channel bandwidths per CA configuration for band n39+n40+n41

NR CA configuration	Uplink CA configuration	NR Band	SCS (kHz)		10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combinatio n set															
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes																						
	CA n39A-n40A	n39	30		Yes	Yes	Yes	Yes	Yes	Yes																						
			60		Yes	Yes	Yes	Yes	Yes	Yes																						
04 004		9A n40	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes																					
CA_n39A- n40A-n79A	CA_n40A-n79A		30		Yes		Yes			0																						
1110/11/10/1	CA_n39A-n79A		1140	11-10	11-70														60		Yes		Yes									
				15							Yes	Yes																				
		n79	30						·	Yes	Yes	Yes		Yes	·	Yes																
			60							Yes	Yes	Yes		Yes		Yes																

5.1.1.3 Co-existence studies

For 3DL/2UL NR CA, only the IMD issues due to dual uplink operation of two bands falling into the DL of the third band shall be verified.

Actually, the co-existence studies for dual uplink operation of two bands, i.e. CA_n39A-n40A, CA_n39A-n79A and CA_n40A-n79A have been captured in TR38.716-02-00, where:

- IMD4 products produced by Band 39 and Band n40 that impact the reference sensitivity of NR band n79.
- No IMD products produced by Band 39 and Band n79 that impact the reference sensitivity of NR band n40.
- IMD4 and IMD5 products produced by Band 40 and Band n79 that impact the reference sensitivity of NR band n39.

5.1.1.4 REFSENS requirements

According to clause 5.1.1.3, some IM3 produces of dual uplink operation of two bands will falling into the DL of the third band. However, considering the requirements for TDD-TDD NR CA combinations of CA_n39-n40 are defined without simultaneous Rx/Tx capability in TS38.101-1, i.e. synchronous operation. Therefore it is no need to defined MSD requirements for band n39 due to IMD4 and IMD5 products produced by Band 40 and Band n79.

For the MSD for NR band n79 caused by IMD4 products of Band 39 and Band n40, since the CA_n39-n79 and CA_n40-n79 are operated with mandatory simultaneous Rx/Tx capability in TS38.101-1, i.e. asynchronous operation. Therefore it is need to defined MSD requirements for band n79 due to IMD4 products produced by Band 39 and Band n40.

The required MSD is shown in the table 5.1.1.4-1, where the MSD of EN-DC_39A_n40A-n79A are re-used.

Band / Channel bandwidth / NRB / Duplex mode UL/DL Source of NR CA NR UL Fc UL **MSD** Duplex DL Fc BW IMD Configuration band (MHz) CLRB (MHz) (dB) mode (MHz) n39 1917.5 25 1917.5 N/A TDD N/A 5 2302.5 25 N/A TDD N/A CA_n39A-n40A-n79A n40 5 2302.5 TDD n79 4980 40 216 4980 5.8 IMD4

Table 5.1.1.4-1: MSD due to IMD4

5.1.2 CA n39-n40-n41

5.1.2.1 Operating bands for CA

Table 5.1.2.1-1: CA band combination of band n39+n40+n41

		Uplink (U	JL) band	Down	link (D	L) band	Duplex			
NR Band	NR Band	BS receive /	UE transmit	BS tran	BS transmit / UE receive					
		F _{UL_low} -	F _{UL_high}	FDL	mode					
	n39	1880 MHz –	1920 MHz	1880 MHz	-	1920 MHz	TDD			
CA_n39A-n40A-n41A	n40	2300 MHz -	2400 MHz	2300 MHz	-	2400 MHz	TDD			
	n41	2496 MHz –	2690 MHz	2496 MHz	-	2690 MHz	TDD			

5.1.2.2 Channel bandwidths per operating band for CA

Table 5.1.2.2-1: Supported channel bandwidths per CA configuration for band n39+n40+n41

NR CA configuration		NR SCS Band (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combinatio n set
---------------------	--	----------------------	----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------------	----------------------------

			15	Yes													
		n39	30		Yes	Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes	Yes							
04 004	CA_n39A-n40A		15	Yes													
CA_n39A- n40A-n41A	CA_n39A-n41A	n40	30		Yes			0									
1140/4-1141/	CA_n40A-n41A			60		Yes											
			15		Yes	Yes	Yes			Yes	Yes						
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes		
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes		

5.1.2.3 Co-existence studies

For 3DL/2UL NR CA, only the IMD issues due to dual uplink operation of two bands falling into the DL of the third band shall be verified.

Actually, the co-existence studies for dual uplink operation of two bands, i.e. CA_n39A-n40A, CA_n39A-n41A and CA_n40A-n41A have been captured in TR38.716-02-00, where:

- IMD3 products produced by Band n39 and n40 that impact the reference sensitivity of NR band n41.
- No IMD3 products produced by Band n39 and n41 that falling into the band n41 Rx.
- 2nd and 5rd products produced by Band n40 and n41 may falling into the band n39 Rx.

5.1.2.4 REFSENS requirements

According to clause 5.1.2.3, some IM3 produces of dual uplink operation of two bands will falling into the DL of the third band. However, considering the requirements for TDD-TDD NR CA combinations of CA_n39-n40, CA_n39-n41 and CA_n40-n41 are defined without simultaneous Rx/Tx capability in TS38.101-1, i.e. synchronous operation. Therefore it is no need to defined MSD requirements due to IMD3 issues, i.e. no specific REFSENS requirements for this combination in 3DL/2UL NR CA operation.

5.1.3 CA_n5-n25-n66

5.1.3.1 Operating bands for CA

Table 5.1.3.1-1: Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL)	оре	erating band	Downlink (D	perating band	Duplex	
		BS receive	E transmit	BS transi	Mode			
		F _{UL_low}	-	F _{UL_high}	F _{DL_lo}			
CA 25 225	n5	824 MHz	-	849 MHz	869 MHz	-	894 MHz	FDD
CA_n5-n25- n66	n25	1850 MHz	-	1915 MHz	1930 MHz	-	1995 MHz	FDD
1100	n66	1710 MHz	_	1780 MHz	2110 MHz	_	2200 MHz	TDD

5.1.3.2 Channel bandwidths per operating band for CA

Table 5.1.3.2-1: Supported bandwidths per CA band combination of band n5+n25+n66

NR CA Configuration	UL Config	NR Band	SCS [kHz]	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set										
			15	Yes	Yes	Yes	Yes																			
		n5	30		Yes	Yes	Yes																			
			60																							
CA = 5A = 25A	CA_n5A-n25A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0										
CA_n5A-n25A- n66A	CA_n5A-n66A	n25	30		Yes	Yes	Yes	Yes	Yes	Yes						0										
HOOA	CA_n25A-n66A		60		Yes	Yes	Yes	Yes	Yes	Yes						1										
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes																
		n66	30		Yes	Yes	Yes	Yes	Yes	Yes																
			60		Yes	Yes	Yes	Yes	Yes	Yes																
			15	Yes	Yes	Yes	Yes																			
		n5	30		Yes	Yes	Yes																			
04 54	CA_n5A-n25A CA_n5A-n66A CA_n25A-n66A		60																							
CA_n5A- n25(2A)-n66A		n25		See CA_n25(2A) Bandwidth Combination Set 0 in Table 5.5A.2-1										0												
1125(2A)-1100A			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes																
		C/C/			6/1 <u>_</u> 11 <u>_</u> 6/1		5	G/ (_1.26/ \ 1.166/ \					n66	30		Yes	Yes	Yes	Yes	Yes	Yes					
		1100	60		Yes	Yes	Yes	Yes	Yes	Yes						1										
					-		15	Yes	Yes	Yes	Yes															
		n5	30		Yes	Yes	Yes																			
04 54 054	CA n5A-n25A		60																							
CA_n5A-n25A- n66(2A)	CA_n5A-n25A CA_n5A-n66A CA_n25A-n66A n25	_	_	CA_n5A-n66A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0							
1100(ZA)		30		Yes	Yes	Yes	Yes	Yes	Yes						1											
			60		Yes	Yes	Yes	Yes	Yes	Yes																
		n66		•	See C	A_n66(2A) Ban	dwidth C	ombina	tion Set	1 in Tab	le 5.5A.	2-1	•	•											
			15	Yes	Yes	Yes	Yes																			
04 54	CA_n5A-n25A	n5	30		Yes	Yes	Yes																			
CA_n5A- n25(2A)-n66(2A)	CA_n5A-n66A		60													0										
1123(2A)-1100(2A)	CA_n25A-n66A	n25		See CA_n25(2A) Bandwidth Combination Set 0 in Table 5.5A.2-1																						
		n66			See C	A_n66(2A) Ban	dwidth C	Combina	tion Set	1 in Tab	le 5.5A.	2-1													

5.1.3.3 UE co-existence studies

For UE coexistence study of Band n5 + Band n25, Band n5 + Band n66, and Band n25 + band n66, the 2^{nd} , 3^{rd} , 4^{th} and 5^{th} order harmonics are already analyzed in 3DL/1UL WI, where no harmonic issue is identified. The 2^{nd} , 3^{rd} , 4^{th} and 5^{th} order intermodulation products are calculated and presented in Table 5.1.3.3-1, 5.1.3.3-2 and 5.1.3.3-3, respectively.

Table 5.1.3.3-1: Harmonic and IMD analysis for n5+n25

UE UL carriers	f1_low	f1_high	f2_low	f2_high
UL frequencies (MHz)	824	849	1850	1915
2nd harmonic	2* f1_low	2*f1_high	2*f2_low	2*f2_high
harmonic frequency limit (MHz)	1648	1698	3700	3830
3rd harmonic	3* f1_low	3*f1_high	3*f2_low	3*f2_high
harmonic frequency limit (MHz)	2472	2547	5550	5745
2nd order IMD products	f2_low – f1_high	f2_high – f1_low	f2_low + f1_low	f2_high + f1_high
IMD frequency limit (MHz)	1001	1091	2674	2764
3rd order IMD products	2*f1_low – f2_high	2*f1_high – f2_low	2*f2_low – f1_high	2*f2_high – f1_low
IMD frequency limit (MHz)	-267	-152	2851	3006

3rd order IMD products	2*f1_low + f2_low	2*f1_high + f2_high	2*f2_low + f1_low	2*f2_high + f1_high
IMD frequency limit (MHz)	3498	3613	4524	4679
4th order IMD products	3*f1_low – f2_high	3*f1_high – f2_low	3*f2_low - f1_high	3*f2_high - f1_low
IMD frequency limit (MHz)	557	697	4701	4921
4th order IMD products	3*f1_low + f2_low	3*f1_high + f2_high	3*f2_low + f1_low	3*f2_high + f1_high
IMD frequency limit (MHz)	4322	4462	6374	6594
4th order IMD products	2*f1_low – 2*f2_high	2*f1_high – 2*f2_low	2*f1_low + 2*f2_low	2*f1_high + 2*f2_high
IMD frequency limit (MHz)	-2182	-2002	5348	5528
5th order IMD products	f1_low - 4*f2_high	f1_high - 4*f2_low	f2_low - 4*f1_high	f2_high – 4*f1_low
IMD frequency limit (MHz)	-6836	-6551	-1546	-1381
5th order IMD products	f1_low + 4*f2_low	f1_high + 4*f2_high	f2_low + 4*f1_low	f2_high + 4*f1_high
IMD frequency limit (MHz)	8224	8509	5146	5311
5th order IMD products	2*f1_low – 3*f2_high	2*f1_high - 3*f2_low	2*f2_low – 3*f1_high	2*f2_high - 3*f1_low
IMD frequency limit (MHz)	-4097	-3852	1153	1358
5th order IMD products	2*f1_low + 3*f2_low	2*f1_high + 3*f2_high	2*f2_low + 3*f1_low	2*f2_high + 3*f1_high
IMD frequency limit (MHz)	7198	7443	6172	6377

Table 5.1.3.3-2: Harmonic and IMD analysis for n5+n66

UE UL carriers	f1_low	f1_high	f2_low	f2_high
UL frequencies (MHz)	824	849	1710	1780
2nd harmonic	2* f1_low	2*f1_high	2*f2_low	2*f2_high
harmonic frequency limit (MHz)	1648	1698	3420	3560
3rd harmonic	3* f1_low	3*f1_high	3*f2_low	3*f2_high
harmonic frequency limit (MHz)	2472	2547	5130	5340
2nd order IMD products	f2_low - f1_high	f2_high – f1_low	f2_low + f1_low	f2_high + f1_high
IMD frequency limit (MHz)	861	956	2534	2629
3rd order IMD products	2*f1_low - f2_high	2*f1_high – f2_low	2*f2_low – f1_high	2*f2_high – f1_low
IMD frequency limit (MHz)	-132	-12	2571	2736
3rd order IMD products	2*f1_low + f2_low	2*f1_high + f2_high	2*f2_low + f1_low	2*f2_high + f1_high
IMD frequency limit (MHz)	3358	3478	4244	4409
4th order IMD products	3*f1_low – f2_high	3*f1_high – f2_low	3*f2_low – f1_high	3*f2_high – f1_low
IMD frequency limit (MHz)	692	837	4281	4516
4th order IMD products	3*f1_low + f2_low	3*f1_high + f2_high	3*f2_low + f1_low	3*f2_high + f1_high
IMD frequency limit (MHz)	4182	4327	5954	6189
4th order IMD products	2*f1_low - 2*f2_high	2*f1_high - 2*f2_low	2*f1_low + 2*f2_low	2*f1_high + 2*f2_high
IMD frequency limit (MHz)	-1912	-1722	5068	5258
5th order IMD products	f1_low - 4*f2_high	f1_high – 4*f2_low	f2_low - 4*f1_high	f2_high – 4*f1_low
IMD frequency limit (MHz)	-6296	-5991	-1686	-1516
5th order IMD products	f1_low + 4*f2_low	f1_high + 4*f2_high	f2_low + 4*f1_low	f2_high + 4*f1_high
IMD frequency limit (MHz)	7664	7969	5006	5176
5th order IMD products	2*f1_low - 3*f2_high	2*f1_high - 3*f2_low	2*f2_low – 3*f1_high	2*f2_high - 3*f1_low

IMD frequency limit (MHz)	-3692	-3432	873	1088
5th order IMD products	2*f1_low + 3*f2_low	2*f1_high + 3*f2_high	2*f2_low + 3*f1_low	2*f2_high + 3*f1_high
IMD frequency limit (MHz)	6778	7038	5892	6107

Table 5.1.3.3-2: Harmonic and IMD analysis for n25+n66

UE UL carriers	f1_low	f1_high	f2_low	f2_high
UL frequencies (MHz)	1710	1780	1850	1915
2nd order IMD products	f2_low – f1_high	f2_high – f1_low	f2_low + f1_low	f2_high + f1_high
IMD frequency limit (MHz)	70	205	3560	3695
3rd order IMD products	2*f1_low – f2_high	2*f1_high – f2_low	2*f2_low – f1_high	2*f2_high – f1_low
IMD frequency limit (MHz)	1505	1710	1920	2120
3rd order IMD products	2*f1_low + f2_low	2*f1_high + f2_high	2*f2_low + f1_low	2*f2_high + f1_high
IMD frequency limit (MHz)	5270	5475	5410	5610
4th order IMD products	3*f1_low – f2_high	3*f1_high – f2_low	3*f2_low – f1_high	3*f2_high - f1_low
IMD frequency limit (MHz)	3215	3490	3770	4035
4th order IMD products	3*f1_low + f2_low	3*f1_high + f2_high	3*f2_low + f1_low	3*f2_high + f1_high
IMD frequency limit (MHz)	6980	7255	7260	7525
4th order IMD products	2*f1_low - 2*f2_high	2*f1_high – 2*f2_low	2*f1_low + 2*f2_low	2*f1_high + 2*f2_high
IMD frequency limit (MHz)	-410	-140	7120	7390
5th order IMD products	f1_low - 4*f2_high	f1_high – 4*f2_low	f2_low - 4*f1_high	f2_high – 4*f1_low
IMD frequency limit (MHz)	-5950	-5620	-5270	-4925
5th order IMD products	f1_low + 4*f2_low	f1_high + 4*f2_high	f2_low + 4*f1_low	f2_high + 4*f1_high
IMD frequency limit (MHz)	9110	9440	8690	9035
5th order IMD products	2*f1_low – 3*f2_high	2*f1_high - 3*f2_low	2*f2_low – 3*f1_high	2*f2_high - 3*f1_low
IMD frequency limit (MHz)	-2325	-1990	-1640	-1300
5th order IMD products	2*f1_low + 3*f2_low	2*f1_high + 3*f2_high	2*f2_low + 3*f1_low	2*f2_high + 3*f1_high
IMD frequency limit (MHz)	8970	9305	8830	9170

Co-existence studies shows that

- The 4th IMD generated by dual uplink of Band n5 + Band n25 may fall into own Rx of band n66.
- The 2nd IMD generated by dual uplink of Band n5 + Band n66 may fall into own Rx of band n5.
- The 5th IMD generated by dual uplink of Band n5 + Band n66 may fall into own Rx of band n5.
- The 3rd IMD generated by dual uplink of Band n25 + Band n66 may fall into own Rx of band n25.
- The 3rd IMD generated by dual uplink of Band n25 + Band n66 may fall into own Rx of band n66.
- The 5th IMD generated by dual uplink of Band n25 + Band n66 may fall into own Rx of band n66.

5.1.3.4 REFSENS requirements

The IMD issue specific to 3DL/2UL is that the 4^{th} IMD generated by dual uplink of Band n5 + Band n25 may fall into own Rx of band n66. As this IMD4 issue is similar to CA_2A-5A-66A, the same MSD value is reused in Table 5.1.3.4-1.

Table 5.1.3.4-1: MSD for the CA configuration

EN-DC Configuration	EUTRA/NR band	UL F _c (MHz)	UL/DL BW (MHz)	UL L _{CRB}	DL F _c (MHz)	MSD (dB)	Duplex mode	IMD order
CA 254 2254	n5	834	5	25	879	N/A		N/A
CA_n5A-n25A- n66A	n25	1900	5	25	1980	N/A	FDD	N/A
HOOA	n66	1712	5	25	2132	7.2		IMD4

5.1.4 CA_n5-n25-n78

5.1.4.1 Operating bands for CA

Table 5.1.4.1-1: Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL) operating band			Downlink (D	perating band	Duplex	
		BS receive / UE transmit			BS transr	Mode		
		Ful_low - Ful_high			F _{DL_lo}			
CA_n5-n25-	n5	824 MHz	-	849 MHz	869 MHz	-	894 MHz	FDD
n78	n25	1850 MHz	-	1915 MHz	1930 MHz	-	1995 MHz	FDD
1170	n78	3300 MHz	-	3800 MHz	3300 MHz	-	3800 MHz	TDD

5.1.4.2 Channel bandwidths per operating band for CA

Table 5.1.4.2-1: Supported channel bandwidths per CA configuration

NR CA Configuration	UL Config	NR Band	SCS [kHz]	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
			15	Yes	Yes	Yes	Yes										
		n5	30		Yes	Yes	Yes										
			60														
CA_n5A-n25A-	CA_n5A-n25A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							0
n78A	CA_n5A-n78A	n25	30		Yes	Yes	Yes	Yes	Yes	Yes							U
117.67	CA_n25A-n78A		60		Yes	Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n78	30		Yes												
			60		Yes												
			15	Yes	Yes	Yes	Yes										
		n5	30		Yes	Yes	Yes										
CA 25A	CA_n5A-n25A		60														
CA_n5A- n25(2A)-n78A	CA_n5A-n78A	n25			Se	e CA_n	25(2A) I	Bandwid	th Comb	oination	Set 0 in	Table 5	.5A.2-1				0
CA_n25A-n78	CA_n25A-n78A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n78	30		Yes												
			60		Yes												
CA_n5A-n25A-	25A- CA_n5A-n25A n5	n.F.	15	Yes	Yes	Yes	Yes										0
n78(2A)	CA_n5A-n78A	110	30		Yes	Yes	Yes										U

CA_n25A-n78A		60											
		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
	n25	30		Yes	Yes	Yes	Yes	Yes	Yes				
		60		Yes	Yes	Yes	Yes	Yes	Yes				
	n78		See CA_n78(2A) Bandwidth Combination Set 2 in Table 5.5A.2-1										

5.1.4.3 Co-existence studies

For UE coexistence study of Band n5 + Band n25, Band n5 + Band n78, and Band n25 + band n78, the 2nd, 3rd, 4th and 5th order harmonics are already analyzed in 3DL/1UL WI, where no harmonic issue is identified. The 2nd, 3rd, 4th and 5th order intermodulation products are calculated and presented in Table 5.1.4.3-1, 5.1.4.3-2 and 5.1.4.3-3, respectively.

Table 5.1.4.3-1: Harmonic and IMD analysis for n5+n25

	T			
UE UL carriers	f1_low	f1_high	f2_low	f2_high
UL frequencies (MHz)	824	849	1850	1915
2nd harmonic	2* f1_low	2*f1_high	2*f2_low	2*f2_high
harmonic frequency limit (MHz)	1648	1698	3700	3830
3rd harmonic	3* f1_low	3*f1_high	3*f2_low	3*f2_high
harmonic frequency limit (MHz)	2472	2547	5550	5745
2nd order IMD products	f2_low – f1_high	f2_high – f1_low	f2_low + f1_low	f2_high + f1_high
IMD frequency limit (MHz)	1001	1091	2674	2764
3rd order IMD products	2*f1_low – f2_high	2*f1_high – f2_low	2*f2_low – f1_high	2*f2_high – f1_low
IMD frequency limit (MHz)	-267	-152	2851	3006
3rd order IMD products	2*f1_low + f2_low	2*f1_high + f2_high	2*f2_low + f1_low	2*f2_high + f1_high
IMD frequency limit (MHz)	3498	3613	4524	4679
4th order IMD products	3*f1_low – f2_high	3*f1_high – f2_low	3*f2_low - f1_high	3*f2_high - f1_low
IMD frequency limit (MHz)	557	697	4701	4921
4th order IMD products	3*f1_low + f2_low	3*f1_high + f2_high	3*f2_low + f1_low	3*f2_high + f1_high
IMD frequency limit (MHz)	4322	4462	6374	6594
4th order IMD products	2*f1_low – 2*f2_high	2*f1_high – 2*f2_low	2*f1_low + 2*f2_low	2*f1_high + 2*f2_high
IMD frequency limit (MHz)	-2182	-2002	5348	5528
5th order IMD products	f1_low - 4*f2_high	f1_high – 4*f2_low	f2_low - 4*f1_high	f2_high – 4*f1_low
IMD frequency limit (MHz)	-6836	-6551	-1546	-1381
5th order IMD products	f1_low + 4*f2_low	f1_high + 4*f2_high	f2_low + 4*f1_low	f2_high + 4*f1_high
IMD frequency limit (MHz)	8224	8509	5146	5311
5th order IMD products	2*f1_low - 3*f2_high	2*f1_high - 3*f2_low	2*f2_low - 3*f1_high	2*f2_high - 3*f1_low
IMD frequency limit (MHz)	-4097	-3852	1153	1358
5th order IMD products	2*f1_low + 3*f2_low	2*f1_high + 3*f2_high	2*f2_low + 3*f1_low	2*f2_high + 3*f1_high
IMD frequency limit (MHz)	7198	7443	6172	6377

Table 5.1.4.3-2: Harmonic and IMD analysis for n5+n78

UE UL carriers	f1_low	f1_high	f2_low	f2_high
UL frequencies (MHz)	824	849	3300	3800

2nd harmonic	2* f1_low	2*f1_high	2*f2_low	2*f2_high
harmonic frequency limit (MHz)	1648	1698	6600	7600
3rd harmonic	3* f1_low	3*f1_high	3*f2_low	3*f2_high
harmonic frequency limit (MHz)	2472	2547	9900	11400
2nd order IMD products	f2_low – f1_high	f2_high – f1_low	f2_low + f1_low	f2_high + f1_high
IMD frequency limit (MHz)	2451	2976	4124	4649
3rd order IMD products	2*f1_low – f2_high	2*f1_high – f2_low	2*f2_low – f1_high	2*f2_high – f1_low
IMD frequency limit (MHz)	-2152	-1602	5751	6776
3rd order IMD products	2*f1_low + f2_low	2*f1_high + f2_high	2*f2_low + f1_low	2*f2_high + f1_high
IMD frequency limit (MHz)	4948	5498	7424	8449
4th order IMD products	3*f1_low – f2_high	3*f1_high – f2_low	3*f2_low – f1_high	3*f2_high - f1_low
IMD frequency limit (MHz)	-1328	-753	9051	10576
4th order IMD products	3*f1_low + f2_low	3*f1_high + f2_high	3*f2_low + f1_low	3*f2_high + f1_high
IMD frequency limit (MHz)	5772	6347	10724	12249
4th order IMD products	2*f1_low - 2*f2_high	2*f1_high - 2*f2_low	2*f1_low + 2*f2_low	2*f1_high + 2*f2_high
IMD frequency limit (MHz)	-5952	-4902	8248	9298
5th order IMD products	f1_low - 4*f2_high	f1_high – 4*f2_low	f2_low - 4*f1_high	f2_high – 4*f1_low
IMD frequency limit (MHz)	-14376	-12351	-96	504
5th order IMD products	f1_low + 4*f2_low	f1_high + 4*f2_high	f2_low + 4*f1_low	f2_high + 4*f1_high
IMD frequency limit (MHz)	14024	16049	6596	7196
5th order IMD products	2*f1_low - 3*f2_high	2*f1_high - 3*f2_low	2*f2_low – 3*f1_high	2*f2_high - 3*f1_low
IMD frequency limit (MHz)	-9752	-8202	4053	5128
5th order IMD products	2*f1_low + 3*f2_low	2*f1_high + 3*f2_high	2*f2_low + 3*f1_low	2*f2_high + 3*f1_high
IMD frequency limit (MHz)	11548	13098	9072	10147

Table 5.1.4.3-2: Harmonic and IMD analysis for n25+n78

UE UL carriers	f1_low	f1_high	f2_low	f2_high
UL frequencies (MHz)	1850	1915	3300	3800
2nd harmonic	2* f1_low	2*f1_high	2*f2_low	2*f2_high
harmonic frequency limit (MHz)	3700	3830	6600	7600
3rd harmonic	3* f1_low	3*f1_high	3*f2_low	3*f2_high
harmonic frequency limit (MHz)	5550	5745	9900	11400
2nd order IMD products	f2_low – f1_high	f2_high – f1_low	f2_low + f1_low	f2_high + f1_high
IMD frequency limit (MHz)	1385	1950	5150	5715
3rd order IMD products	2*f1_low – f2_high	2*f1_high – f2_low	2*f2_low – f1_high	2*f2_high - f1_low
IMD frequency limit (MHz)	-100	530	4685	5750
3rd order IMD products	2*f1_low + f2_low	2*f1_high + f2_high	2*f2_low + f1_low	2*f2_high + f1_high
IMD frequency limit (MHz)	7000	7630	8450	9515
4th order IMD products	3*f1_low – f2_high	3*f1_high – f2_low	3*f2_low - f1_high	3*f2_high - f1_low
IMD frequency limit (MHz)	1750	2445	7985	9550
4th order IMD products	3*f1_low + f2_low	3*f1_high + f2_high	3*f2_low + f1_low	3*f2_high + f1_high

IMD frequency limit (MHz)	8850	9545	11750	13315
4th order IMD products	2*f1_low - 2*f2_high	2*f1_high – 2*f2_low	2*f1_low + 2*f2_low	2*f1_high + 2*f2_high
IMD frequency limit (MHz)	-3900	-2770	10300	11430
5th order IMD products	f1_low - 4*f2_high	f1_high - 4*f2_low	f2_low - 4*f1_high	f2_high – 4*f1_low
IMD frequency limit (MHz)	-13350	-11285	-4360	-3600
5th order IMD products	f1_low + 4*f2_low	f1_high + 4*f2_high	f2_low + 4*f1_low	f2_high + 4*f1_high
IMD frequency limit (MHz)	15050	17115	10700	11460

Co-existence studies shows that

- The 3rd IMD generated by dual uplink of Band n5 + Band n25 may fall into own Rx of band n78.
- The 4th IMD generated by dual uplink of Band n5 + Band n78 may fall into own Rx of band n5.
- The 2nd IMD generated by dual uplink of Band n25 + Band n78 may fall into own Rx of band n25.
- The 4th IMD generated by dual uplink of Band n25 + Band n78 may fall into own Rx of band n78.
- The 5th IMD generated by dual uplink of Band n25 + Band n78 may fall into own Rx of band n78.

5.1.4.4 REFSENS requirements

The IMD issue specific to 3DL/2UL is that the 3rd IMD generated by dual uplink of Band n5 + Band n25 may fall into own Rx of band n78. As this IMD issue is similar to CA_n3A-n8A-n78A where low and high FDD band IMD3 falls into n78, the same MSD value as 16.1 dB is reused.

Table 5.1.4.4-1: MSD for the CA configuration

EN-DC Configuration	EUTRA/NR band	UL F _c (MHz)	UL/DL BW (MHz)	UL L _{CRB}	DL F _c (MHz)	MSD (dB)	Duplex mode	IMD order
CA 254 2254	n5	830	5	25	875	N/A	FDD	N/A
CA_n5A-n25A- n78A	n25	1900	5	25	1980	N/A	FDD	N/A
III OA	n78	3560	10	50	3560	16.1	TDD	IMD3

5.2 inter-band within FR2

5.2.x CA_nX-nY-nZ

5.2.x.1 Operating bands for CA

Table 5.2.x.1-1: CA band combination of band nX+nY+nZ

	Uplink (UL) band	Downlink (DL) band	Duplex
NR Band	BS receive / UE transmit	BS transmit / UE receive	mode
	Ful_low - Ful_high	$F_{DL_low} - F_{DL_high}$	mode
nX	_	_	
nY	_	_	
nΖ	_	_	

5.2.x.2 Channel bandwidths per operating band for CA

Table 5.2.x.2-1: Supported bandwidths per CA band combination of band nX+nY+nZ

< Edtor's note: Align with the table format in TS38.101-2 later>

5.2.x.3 UE co-existence studies

< Editor's note: Text will be added on whether there are IMD issues due to dual uplink operation falling into the DL of the third band. For example: for CA_nXA-nYA-nZA with 2UL CA_nXA-nYA, intermodulation due to Band nX and Band nY falling into Band nZ shall be verified.>

5.2.x.4 REFSENS requirements

< Editor's note: Text will be added on reference sensitivity exceptions if IMD issue due to dual uplink operation falling into DL of the third band are identified. >

5.3 inter-band between FR1 and FR2

5.3.1 CA_n1-n77-n257

5.3.1.1 Operating bands for CA

Table 5.3.1.1-1: 3DL Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL)	ope	rating band	Downlink (E	L) c	perating band	Duplex				
		BS receive	e/U	E transmit	BS trans	BS transmit / UE receive						
		FUL_low	/ – F	UL_high	FDL_lo	w –	FDL_high					
CA_n1-n77-	n1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD				
n257	n77	3300 MHz	_	4200 MHz	3300 MHz	_	4200 MHz	TDD				
11237	n257	26500 MHz	_	29500 MHz	26500 MHz	_	29500 MHz	TDD				

5.3.1.2 Channel bandwidths per operating band for CA

Table 5.3.1.2-1: Supported channel bandwidths per CA configuration for 3DL inter-band CA

NR CA config	UL config	NR Band	SCS (kHz)	5	10	15	20	25	30	40	50	60	70	80	90	100	200	400	Bandwidth combination set
			15	Yes	Yes	Yes	Yes												
		n1	30		Yes	Yes	Yes												
CA 21A	CA 214 2774		60		Yes	Yes	Yes												
CA_n1A- n77A-	CA_n1A-n77A CA_n1A-n257A		15		Yes	Yes	Yes			Yes	Yes								0
n257A	CA_n77A-n257A	n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			U
112077	O/_\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
		n257	60								Yes					Yes	Yes		
		11207	120								Yes					Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes												
	CA n1A-n77A	n1	30		Yes	Yes	Yes												
CA_n1A-	_ CA_n1A-n257A		60		Yes	Yes	Yes												_
n77A- n257G	G CA_n77A-n257A		15		Yes	Yes	Yes			Yes	Yes								0
	CA_n77A-n257G	n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
		n257						CA_n2	57G in	Table	5.5A.1	-1 in T	S 38.10)1-2					
	CA_n1A-n77A		15	Yes	Yes	Yes	Yes												
	CA_n1A-n257A	n1	30		Yes	Yes	Yes												
CA_n1A-	CA_n1A-n257G		60		Yes	Yes	Yes												
n77A-	CA_n1A-n257H		15		Yes	Yes	Yes			Yes	Yes	.,		.,	.,				0
n257H	CA_n77A-n257A	n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
	CA_n77A-n257G	0.55	60		Yes	Yes	Yes	0.4		Yes	Yes	Yes	20046	Yes	Yes	Yes			
	CA_n77A-n257H	n257	4.5					CA_n2	57H in	lable	5.5A.1	-1 in 18	38.10)1-2	1	1		ı	
	CA_n1A-n77A		15	Yes	Yes	Yes	Yes												
	CA_n1A-n257A	n1	30		Yes	Yes	Yes												
CA_n1A-	CA_n1A-n257G CA_n1A-n257H		60		Yes	Yes	Yes			V	V								
n77A-	CA_ITA-1257H CA_n1A-n257I	77	15		Yes	Yes	Yes			Yes	Yes	Vac		Vac	Vac	Vas			0
n257l	CA_n77A-n257A	n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
112071	CA_n77A-n257G		60		Yes	Yes	Yes	CA ~)E7! : '	Yes	Yes	Yes	20.40	Yes	Yes	Yes			
	CA_n77A-n257H CA_n77A-n257I	n257					See	CA_N2	257I in '	i abie :).OA.1-	1 111 18	30.10	1-2					

5.3.1.3 UE co-existence studies

Co-existence studies can be omitted because harmonic and intermodulation impact between FR1 bands have been already studied for CA_n1-n77, and harmonic and intermodulation impact between FR1 bands and FR2 band are negligible.

5.3.1.4 REFSENS requirements

As mentioned in 5.3.1.3, MSD analysis can be omitted and there is no need to specify additional MSD requirement for the CA combination.

5.3.2 CA_n1-n78-n257

5.3.2.1 Operating bands for CA

Table 5.3.2.1-1: 3DL Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL)	ope	rating band	Downlink (D	L) c	perating band	Duplex
		BS receive	e / U	E transmit	BS transi	mit /	UE receive	Mode
		FUL_low	/ – F	UL_high	FDL_lo	w –	FDL_high	
	n1	1920 MHz	_	1980 MHz	2110 MHz	-	2170 MHz	FDD
CA_n1-n78-n257	n78	3300 MHz	-	3800 MHz	3300 MHz	-	3800 MHz	TDD
	n257	26500 MHz	-	29500 MHz	26500 MHz	-	29500 MHz	TDD

5.3.2.2 Channel bandwidths per operating band for CA

Table 5.3.2.2-1: Supported channel bandwidths per CA configuration for 3DL inter-band CA

NR CA config	UL config	NR Band	SCS (kHz)	5	10	15	20	25	30	40	50	60	70	80	90	100	200	400	Bandwidth combination set
			15	Yes	Yes	Yes	Yes												
		n1	30		Yes	Yes	Yes												
	CA_n1A-n78A		60		Yes	Yes	Yes												
CA_n1A-n78A-	CA_111A-1176A CA_n1A-n257A		15		Yes	Yes	Yes			Yes	Yes								0
n257A	CA_n78A-n257A	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
	0/_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
		n257	60								Yes					Yes	Yes		
		11201	120								Yes					Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes												
	CA n1A-n78A	n1	30		Yes	Yes	Yes												
CA_n1A-n78A-	_ CA_n1A-n257A		60		Yes	Yes	Yes												
n257G	CA_n1A-n257G CA_n78A-n257A	70	15		Yes	Yes	Yes			Yes	Yes								0
	CA_n78A-n257G	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
		n257						CA_n2	57G in	Table	5.5A.1	-1 in T	S 38.10)1-2					
	CA_n1A-n78A		15	Yes	Yes	Yes	Yes												
	CA_n1A-n257A	n1	30		Yes	Yes	Yes												
CA_n1A-n78A-	CA_n1A-n257G		60		Yes	Yes	Yes												_
n257H	CA_n1A-n257H		15		Yes	Yes	Yes			Yes	Yes								0
	CA_n78A-n257A	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			-
	CA_n78A-n257G CA_n78A-n257H	~0F7	60		Yes	Yes	Yes	C A = 2	F711:0	Yes	Yes	Yes	2 20 40	Yes	Yes	Yes			-
	CA_n1A-n78A	n257	15	Yes	Yes	Yes	Yes	CA_NZ	ວ/⊓ IN 	rabie	5.5A.T	-1 in TS	3 30.TC) I-Z			1		
	CA_n1A-n257A	n1	30	162	Yes	Yes	Yes												-
	CA_n1A-n257G	'''	60		Yes	Yes	Yes												1
	CA_n1A-n257H		15		Yes	Yes	Yes			Yes	Yes								1
CA_n1A-n78A-	CA_n1A-n257I	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	-	Yes	Yes	Yes	-		0
n257l	CA_n78A-n257A	'''	60		Yes	Yes	Yes			Yes	Yes	Yes	 	Yes	Yes	Yes	-		1
						CA_n2	257I in			1 in TS	38.10				1				

5.3.2.3 UE co-existence studies

Co-existence studies can be omitted because harmonic and intermodulation impact between FR1 bands have been already studied for CA_n1-n78, and harmonic and intermodulation impact between FR1 bands and FR2 band are negligible.

5.3.2.4 REFSENS requirements

As mentioned in 5.3.2.3, MSD analysis can be omitted and there is no need to specify additional MSD requirement for the CA combination.

5.3.3 CA_n1-n79-n257

5.3.3.1 Operating bands for CA

Table 5.3.3.1-1: 3DL Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL)	оре	erating band	Downlink (E)L) c	perating band	Duplex
		BS receive	BS receive / UE transmit				UE receive	Mode
		FUL_low	/ – F	UL_high	FDL_lo	w –	FDL_high	
CA_n1-n79-	n1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD
n257	n79	4400 MHz	-	5000 MHz	4200 MHz	_	5000 MHz	TDD
11237	n257	26500 MHz	_	29500 MHz	26500 MHz	_	29500 MHz	TDD

5.3.3.2 Channel bandwidths per operating band for CA

Table 5.3.3.2-1: Supported channel bandwidths per CA configuration for 3DL inter-band CA

NR CA config	UL config	NR Band	SCS (kHz)	5	10	15	20	25	30	40	50	60	70	80	90	100	200	400	Bandwidth combination set
			15	Yes	Yes	Yes	Yes												
		n1	30		Yes	Yes	Yes												
CA_n1A-	CA_n1A-n79A		60		Yes	Yes	Yes												
n79A-	CA_n1A-n257A		15							Yes	Yes								0
n257A	CA_n79A-n257A	n79	30							Yes	Yes	Yes		Yes		Yes			U
112077	0/_II/ 3/\ \ \\\23/\\		60							Yes	Yes	Yes		Yes		Yes			
		n257	60								Yes					Yes	Yes		
		11207	120								Yes					Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes												
	CA_n1A-n79A	n1	30		Yes	Yes	Yes												
CA_n1A-	CA_n1A-n257A		60		Yes	Yes	Yes												_
n79A- n257G	CA_n1A-n257G CA_n79A-n257A	9A-n257A Yes Yes				0													
	CA_n79A-n257G	n79	30							Yes	Yes	Yes		Yes		Yes			
			60							Yes	Yes	Yes		Yes		Yes			
		n257						CA_n2	57G in	Table	5.5A.1	-1 in T	S 38.10)1-2					
	CA_n1A-n79A		15	Yes	Yes	Yes	Yes												
	CA_n1A-n257A	n1	30		Yes	Yes	Yes												
CA_n1A-	CA_n1A-n257G		60		Yes	Yes	Yes												
n79A-	CA_n1A-n257H		15							Yes	Yes								0
n257H	CA_n79A-n257A	n79	30							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257G	0.55	60					0.4		Yes	Yes	Yes	2 00 4	Yes		Yes			
	CA_n79A-n257H	n257	4.5					CA_n2	57H in	lable	5.5A.1	-1 in 18	38.10)1-2	1	1	1	ı	
	CA_n1A-n79A	4	15	Yes	Yes	Yes	Yes												
	CA_n1A-n257A CA_n1A-n257G	n1	30		Yes	Yes	Yes												
CA_n1A-	CA_n1A-n257G CA_n1A-n257H		60 15		Yes	Yes	Yes			Voc	Yes								
n79A-	CA_n1A-n257I	n70	30						 	Yes Yes	Yes	Yes	-	Yes	1	Yes			0
n257l	CA_n79A-n257A		60							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257A CA_n79A-n257G CA_n79A-n257H CA_n79A-n257I		00	<u> </u>	<u> </u>	<u> </u>	See	CA_n2	1 2571 in '				38.10		<u> </u>	163	<u> </u>	<u> </u>	

5.3.3.3 UE co-existence studies

Co-existence studies can be omitted because harmonic and intermodulation impact between FR1 bands have been already studied for CA_n1-n79, and harmonic and intermodulation impact between FR1 bands and FR2 band are negligible.

5.3.3.4 REFSENS requirements

As mentioned in 5.3.3.3, MSD analysis can be omitted and there is no need to specify additional MSD requirement for the CA combination.

5.3.4 CA_n77-n79-n257

5.3.4.1 Operating bands for CA

Table 5.3.4.1-1: 3DL Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL)	ope	rating band	Downlink (E)L) c	perating band	Duplex				
		BS receive	e/U	E transmit	BS trans	BS transmit / UE receive						
		FUL_low	/ – F	UL_high	FDL_lo	w –	FDL_high					
CA_n77-n79-	n77	3300 MHz	-	4200 MHz	3300 MHz	-	4200 MHz	TDD				
n257	n79	4400 MHz	-	5000 MHz	4200 MHz	-	5000 MHz	TDD				
11257	n257	26500 MHz	_	29500 MHz	26500 MHz	_	29500 MHz	TDD				

5.3.4.2 Channel bandwidths per operating band for CA

Table 5.3.4.2-1: Supported channel bandwidths per CA configuration for 3DL inter-band CA

NR CA config	UL config	NR Band	SCS (kHz)	5	10	15	20	25	30	40	50	60	70	80	90	100	200	400	Bandwidth combination set
			15		Yes	Yes	Yes			Yes	Yes								_
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA ::77	CA =77A =70A		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n77 A-n79A-	CA_n77A-n79A CA_n77A-n257A		15							Yes	Yes								0
n257A	CA_II77A-II257A CA_n79A-n257A	n79	30							Yes	Yes	Yes		Yes		Yes] "
1123774	CA_11/9A-1125/A		60							Yes	Yes	Yes		Yes	Yes	Yes			
		n257	60								Yes					Yes	Yes		1
		11237	120								Yes					Yes	Yes	Yes	
			15		Yes	Yes	Yes			Yes	Yes								0
	CA_n77A-n79A	n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n77	CA_III7A-III79A CA_n77A-n257A CA_n77A-n257G CA_n79A-n257A CA_n79A-n257G		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
A-n79A-		70	15							Yes	Yes								
n257G		n79	30							Yes	Yes	Yes		Yes		Yes			
			60							Yes	Yes	Yes		Yes		Yes			
		n257		See CA_n257G in Table 5.5A.1-1 in TS 38.101-2															
	CA_n77A-n79A	n77	15		Yes	Yes	Yes			Yes	Yes								0
	CA_n77A-n257A		30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n77	CA_n77A-n257G		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
A-n79A-	CA_n77A-n257H		15							Yes	Yes								
n257H	CA_n79A-n257A	n79	30							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257G		60							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257H	n257						CA_n2	57H in			-1 in TS	38.10)1-2					
	CA_n77A-n79A		15		Yes	Yes	Yes			Yes	Yes								
	CA_n77A-n257A	n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
	CA_n77A-n257G		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n77	CA_n77A-n257H		15							Yes	Yes								_
A-n79A-	CA_n77A-n257I	n79	30							Yes	Yes	Yes		Yes		Yes			0
n257l	CA_n79A-n257A		60							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257G CA_n79A-n257H CA_n79A-n257I	n257					See	CA_n2	257I in	Table 5	5.5A.1-	1 in TS	38.10	1-2					

5.3.4.3 UE co-existence studies

Co-existence studies can be omitted because harmonic and intermodulation impact between FR1 bands have been already studied for CA_n77-n79, and harmonic and intermodulation impact between FR1 bands and FR2 band are negligible.

5.3.4.4 REFSENS requirements

As mentioned in 5.3.4.3, MSD analysis can be omitted and there is no need to specify additional MSD requirement for the CA combination.

5.3.5 CA_n78-n79-n257

5.3.5.1 Operating bands for CA

Table 5.3.5.1-1: 3DL Inter-band CA operating bands

NR CA Band	NR Band	Uplink (UL)	оре	erating band	Downlink (E	Duplex		
		BS receive	e/U	E transmit	BS trans	Mode		
		FUL_low	/ – F	UL_high	FDL_lo			
CA p70 p70	n78	3300 MHz	-	3800 MHz	3300 MHz	-	3800 MHz	TDD
CA_n78-n79- n257	n79	4400 MHz	-	5000 MHz	4200 MHz	_	5000 MHz	TDD
11257	n257	26500 MHz	_	29500 MHz	26500 MHz	_	29500 MHz	TDD

5.3.5.2 Channel bandwidths per operating band for CA

Table 5.3.5.2-1: Supported channel bandwidths per CA configuration for 3DL inter-band CA

NR CA config	UL config	NR Band	SCS (kHz)	5	10	15	20	25	30	40	50	60	70	80	90	100	200	400	Bandwidth combination set
			15		Yes	Yes	Yes			Yes	Yes								-
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
04 70	04 704 704		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n78	CA_n78A-n79A		15							Yes	Yes								
A-n79A- n257A	CA_n78A-n257A	n79	30							Yes	Yes	Yes		Yes		Yes			0
nz5/A	CA_n79A-n257A		60							Yes	Yes	Yes		Yes		Yes			
		0.5.7	60								Yes					Yes	Yes		
		n257	120								Yes					Yes	Yes	Yes	
			15		Yes	Yes	Yes			Yes	Yes							100	
	CA_n78A-n79A	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n78	CA_n78A-n257A CA_n78A-n257G CA_n79A-n257A CA_n79A-n257G		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			0
A-n79A-			15							Yes	Yes								
n257G		n79	30							Yes	Yes	Yes		Yes		Yes			
			60							Yes	Yes	Yes		Yes		Yes			
		n257		See CA_n257G in Table 5.5A.1-1 in TS 38.101-2															
	CA_n78A-n79A	n78	15		Yes	Yes	Yes			Yes	Yes								0
	CA_n78A-n257A		30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
CA_n78	CA_n78A-n257G CA_n78A-n257H		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
A-n79A-		n79	15							Yes	Yes								
n257H	CA_n79A-n257A		30							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257G		60							Yes	Yes	Yes		Yes		Yes			
	CA_n79A-n257H	n257	,	See CA_n257H in Table 5.5A.1-1 in TS 38.101-2											I				
	CA_n78A-n79A		15		Yes	Yes	Yes			Yes	Yes								
	CA_n78A-n257A	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			
	CA_n78A-n257G		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes			1
CA_n78	CA_n78A-n257H		15							Yes	Yes								1
A-n79A-	CA_n78A-n257I	n79	30							Yes	Yes	Yes		Yes		Yes			0
n257l	CA_n79A-n257A		60							Yes	Yes	Yes		Yes		Yes			1 '
	CA_n79A-n257G CA_n79A-n257H CA_n79A-n257I	n257			•		See	CA_n2	257I in	Table 5	5.5A.1-		38.10	1-2	•	•	•		

5.3.5.3 UE co-existence studies

Co-existence studies can be omitted because harmonic and intermodulation impact between FR1 bands have been already studied for CA_n78-n79, and harmonic and intermodulation impact between FR1 bands and FR2 band are negligible.

5.3.5.4 REFSENS requirements

As mentioned in 5.3.5.3, MSD analysis can be omitted and there is no need to specify additional MSD requirement for the CA combination.

6 Dual Connectivity with 3 bands DL: Specific Band Combination Part

6.X DC_nX-nY-nZ

< Editor's note: The texts for NR DC can only be added associated with the texts for the corresponding inter-band 2 bands UL CA above, which means contribution only to add pure NR DC texts is not allowned.>

6.x.1 Configurations for DC_nX-nY-nZ

Table 6.x.2-1: Inter-band NR DC configurations

NR DC	Uplink NR DC
configuration	configuration
	DC_nXA-nYA
DC_nXA-nYA-nZA	DC_nXA-nZA

Annex A: Change history

Change history									
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New version		
2020-08	RAN4#96-e	R4-2010791				TR skeleton	0.0.1		
2020-08	RAN4#96-e	R4-2010793				 The following approved TPs in RAN4 96-e meeting are included: R4-2011677 TP to TR 38.717-03-02: CA_n5-n25-n66, Nokia, Bell Mobility R4-2010531 TP to TR 38.717-03-02: CA_n5-n25-n78, Nokia, Bell Mobility R4-2010644 TP for TR38.717-03-02_CA_n39A-n40A-n79A, ZTE Corporation R4-2010645 TP for TR38.717-03-02_CA_n39A-n40A-n41A, ZTE Corporation R4-2009690 TP for CA_n1-n77-n257 3UL/2DL for TR38.717-03-02, NTT DOCOMO, INC. R4-2009691 TP for CA_n1-n78-n257 3UL/2DL for TR38.717-03-02, NTT DOCOMO, INC. R4-2009692 TP for CA_n1-n79-n257 3UL/2DL for TR38.717-03-02, NTT DOCOMO, INC. R4-2009693 TP for CA_n77-n79-n257 3UL/2DL for TR38.717-03-02, NTT DOCOMO, INC. R4-2009694 TP for CA_n78-n79-n257 3UL/2DL for TR38.717-03-02, NTT DOCOMO, INC. 	0.1.0		