

Построение представления группы по машине Тьюринга

Максим Шамрай

JetBrains Research, Programming Languages and Tools Lab Санкт-Петербургский Государственный Университет

14.12.2019

Мотивация

$$R \subset CF \subset Conj \subseteq Bool$$

- Кроме всем известной иерархии Хомского, есть довольно много классов формальных языков
- И не все они имеют свою лемму о накачке
- В последнее время все чаще прибегают к смежным дисциплинам для исследования языков
- Мы предлагаем построить группу по языку, чтобы в дальнейшем можно было применять аппарат теории групп для исследований

Связь с теорией групп

Пусть Σ — конечный алфавит, тогда

- ullet Σ^+ свободная полугруппа
- Σ* свободный моноид
- ullet ($\Sigma \cup \Sigma^{-1}$)* свободная группа

Связь с теорией групп

Пусть Σ — конечный алфавит, тогда

- \bullet Σ^+ свободная полугруппа
- Σ* свободный моноид
- ullet $(\Sigma \cup \Sigma^{-1})^*$ свободная группа

 $G = \langle A \mid R \rangle$ — представление группы

- $G = \langle a, b \mid a^3, b^2, (ab)^2 \rangle = \{\epsilon, a, a^2, b, ab, a^2b\} = S_3$
- $G = \langle a \mid a^5 \rangle = C_5$
- $G = \langle a, b \mid aba^{-1}b^{-1} \rangle$

Проблема слов

$$G = \langle A \mid R \rangle, \ \Sigma = A \cup A^{-1}$$

 $\phi : \Sigma^* \to G$
 $W(G) = \phi^{-1}(1)$

- W(G) регулярна $\iff G$ конечна (Anisimov)
- W(G) контекстно-свободна $\iff \exists H < G$ конечного идекса (Muller–Schupp)

Цель и задачи

Цель: Создать инструмент, с помощью которого можно будет смотреть на формальные языки как на группы

Задачи:

- Реализовать алгоритм построения группы по машине Тьюринга
- 2 Доказать корректность алгоритма

Построение группы (0)

Mark V. Sapir, Jean-Camille Birget and Eliyahu Rips "Isoperimetric and Isodiametric Functions of Groups" (2002)

Теорема 1

Пусть $L\subseteq \Sigma^+$ язык, принимаемый машиной Тьюринга M, тогда существует конечно представленная группа $G(M)=\langle A\mid R\rangle$ и инъективное отображение $K:\Sigma^+\to (A\cup A^{-1})^+$ такое что: $u\in L\iff K(u)=1_G$

Построение группы (1)

Теорема 2

Для любой машины Тьюринга M существует симметричная машина Тьюринга M' со следующими свойствами:

- Распознает тот же язык, что и М
- Каждая команда действует только на одной ленте
- Добавляется лента, алфавитом которой являются команды

Построение группы (1)

Теорема 2

Для любой машины Тьюринга M существует симметричная машина Тьюринга M' со следующими свойствами:

- Распознает тот же язык, что и М
- Каждая команда действует только на одной ленте
- Добавляется лента, алфавитом которой являются команды

Теорема 3

Для любой машины Тьюринга M', удовлетворяющей теореме 2, существует S-машина, которая симулирует M'

Построение группы (1)

Теорема 2

Для любой машины Тьюринга M существует симметричная машина Тьюринга M' со следующими свойствами:

- Распознает тот же язык, что и М
- Каждая команда действует только на одной ленте
- Добавляется лента, алфавитом которой являются команды

Теорема 3

Для любой машины Тьюринга M', удовлетворяющей теореме 2, существует S-машина, которая симулирует M'

Теорема 4

Для любой S-машины, удовлетворяющей теореме 3, существует соответствующая конечно представленная группа

Построение группы (2)

Результаты и дальнейшие действия

- Реализован алгоритм
- Проведен ряд экспериментов
- Найдена более свежая статья
- Рассматривается возможность формальной верификации алгоритма