Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- V (New) EXAMINATION - WINTER 2019 Subject Code: 2150703 Date: 25/11/2019				
Subject Code. 2130703 Subject Name: Analysis and Design of Algorithms Time: 10:30 AM TO 01:00 PM Instructions: Total Ma				
mstruc	1. At 2. M	ttempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.		
			MARKS	
Q.1	(a) (b)	Find Omega (Ω) notation of function $f(n)=2n^2+6$ n * lg n + 6n. Define Big-oh and Theta notations with graph.	03 04	
	(c)	Write sequential search algorithm and analyze it for worst case time complexity. Represent its time complexity using Big-oh (O) notation.	07	
Q.2	(a)	Find upper bound of function $f(n) = \lg(n^2) + n^2 \lg n$.	03	
	(b)	If $P(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_m n^m$ then prove that $P(n) = O(n^m)$. Here $a_0, a_1, a_2, \dots, a_m$ are constants and $a_m > 0$.	04	
	(c)	Solve following recurrence relation using suitable method and express your answer using Big-oh (O) notation. $T(n) = T(n/3) + T(2n/3) + \Theta(n)$	07	
		OR		
	(c)	Solve following recurrence relation using suitable method and express your answer using Big-oh (O) notation. $T(n) = 2 \ T(n/2) + \ n^2$	07	
Q.3	(a)	If $T_1(n) = O(f(n))$ & $T_2(n) = O(g(n))$ then prove that $T_1(n) + T_2(n) = \max(O(g(n)), O(f(n)))$.	03	
	(b)	Illustrate the working of the quick sort on input instance: 25, 29, 30, 35, 42, 47, 50, 52, 60. Comment on the nature of input i.e. best case, average case or worst case.	04	
	(c)	Write greedy algorithm for activity selection problem. Give its time complexity. For following intervals, select the activities according to your algorithm. I_1 (1-3), I_2 (0-2), I_3 (3-6), I_4 (2-5), I_5 (5-8), I_6 (3-10), I_7 (7-9).	07	
_		OR		
Q.3	(a)	Arrange following growth rates in increasing order. $O(n^{1/4})$, $O(n^{1.5})$, $O(n^3 \lg n)$, $O(n^{1.02})$, $\Omega(n^6)$, $\Omega(n!)$, $O(\sqrt{n})$, $O(n^{6/2})$, $\Omega(2^n)$	03	
	(b)	Illustrate the working of the merge sort algorithm on input instance:	04	

10, 27, 30, 88, 17, 98, 42, 54, 72, 95. Also write best case time

complexity of merge sort algorithm.

What is a minimum spanning tree? Draw the minimum spanning tree (c) correspond to following graph using Prim's algorithm.

- **Q.4** What is Principle of Optimality? Explain it with example. (a)
- 03 04

07

- Consider the instance of the 0/1 (binary) knapsack problem as below **(b)** with P depicting the value and W depicting the weight of each item whereas M denotes the total weight carrying capacity of the knapsack. Find optimal answer using greedy design technique. Also write the time complexity of greedy approach for solving knapsack problem.
 - $P = [40\ 10\ 50\ 30\ 60]$ $W = [80\ 10\ 40\ 20\ 90]$ M = 110
- Find the optimal way of multiplying following matrices using dynamic (c) programming. Also indicate optimal number of multiplications required.

A:3 x 2, B: 2 x 5, C:5 x 4, D: 4 x 3, E: 3 x 3

- **Q.4** (a) Explain depth first traversal using suitable example.
- 03

07

- Explain Binomial Coefficient algorithm using dynamic programming. **(b)**
 - 04 Find the longest common subsequence for the following two sequences **07**

using dynamic programming. Show the complete process. X = 100101001

Y = 101001

(c)

(b)

- **Q.5** Define P and NP problems. Also give example of each type of problem. 03 (a)
 - Draw the state space tree diagram for 4 Queen problem and also show 04
 - Explain Rabin Karp algorithm with example. What is expected (c) running time of this algorithm?

OR

- Define NP-Complete and NP-Hard problems. Also give examples. **Q.5** (a)
- 03

07

07

Explain the naive string matching algorithm. **(b)**

the tree after applying backtracking.

- 04
- State whether Hamiltonian problem is a NP-Complete problem? (c) Justify your answer.
