- **a.** Write a balanced equation for the burning of magnesium in oxygen.
- **b.** If enough magnesium burns in air to produce 2.04 g of magnesium oxide but only 1.79 g is obtained, what is the percentage yield?
- c. Magnesium will react with pure nitrogen to form the nitride, Mg₃N₂. Write a balanced equation for this reaction.
- d. If 0.097 mol of Mg react with nitrogen and 0.027 mol of Mg₃N₂ is produced, what is the percentage yield of the reaction?
- **231.** Some alcohols can be converted to organic acids by using sodium dichromate and sulfuric acid. The following equation shows the reaction of 1-propanol to propanoic acid:

$$3CH_3CH_2CH_2OH + 2Na_2Cr_2O_7 + 8H_2SO_4 \rightarrow 3CH_3CH_2COOH + 2Cr_2(SO_4)_3 + 2Na_2SO_4 + 11H_2O$$

- **a.** If 0.89 g of 1-propanol reacts and 0.88 g of propanoic acid is produced, what is the percentage yield?
- b. A chemist uses this reaction to obtain 1.50 mol of propanoic acid. The reaction consumes 136 g of propanol. Calculate the percentage yield.
- c. Some 1-propanol of uncertain purity is used in the reaction. If 116 g of Na₂Cr₂O₇ are consumed in the reaction and 28.1 g of propanoic acid are produced, what is the percentage yield?
- **232.** Acrylonitrile, $C_3H_3N(g)$, is an important ingredient in the production of various fibers and plastics. Acrylonitrile is produced from the following reaction: $C_3H_6(g) + NH_3(g) + O_2(g) \rightarrow C_3H_3N(g) + H_2O(g)$

If 850. g of C_3H_6 is mixed with 300. g of NH_3 and unlimited O_2 , to produce 850. g of acrylonitrile, what is the percentage yield? You must first balance the equation.

- **233.** Methanol, CH₃OH, is frequently used in race cars as fuel. It is produced as the sole product of the combination of carbon monoxide gas and hydrogen gas.
 - **a.** If 430. kg of hydrogen react, what mass of methanol could be produced?
 - **b.** If 3.12×10^3 kg of methanol are actually produced, what is the percentage yield?
- **234.** The compound, $C_6H_{16}N_2$, is one of the starting materials in the production of nylon. It can be prepared from the following reaction involving adipic acid, $C_6H_{10}O_4$:

the following reaction involving adipic acid,
$$C_6H_{10}O_4$$
:
 $C_6H_{10}O_4(l) + 2NH_3(g) + 4H_2(g) \rightarrow C_6H_{16}N_2(l) + 4H_2O$

What is the percentage yield if 750. g of adipic acid results in the production of 578 g of $C_6H_{16}N_2$?

235. Plants convert carbon dioxide to oxygen during photosynthesis according to the following equation:

$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$

Balance this equation, and calculate how much oxygen would be produced if 1.37×10^4 g of carbon dioxide reacts with a percentage yield of 63.4%.

236. Lime, CaO, is frequently added to streams and lakes which have been polluted by acid rain. The calcium

oxide reacts with the water to form a base that can neutralize the acid as shown in the following reaction:

$$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$$

If 2.67×10^2 mol of base are needed to neutralize the acid in a lake, and the above reaction has a percentage yield of 54.3%, what is the mass, in kilograms, of lime that must be added to the lake?

Gas Laws: Chap. 11, Sec. 2

Boyle's Law

In each of the following problems, assume that the temperature and molar quantity of gas do not change.

237. Calculate the unknown quantity in each of the following measurements of gases.

P_{I}	V_{I}	P_2	V_2
a. 3.0 atm	25 mL	6.0 atm	? mL
b. 99.97 kPa	550. mL	? kPa	275 mL
c. 0.89 atm	? L	3.56 atm	20.0 L
d. ? kPa	800. mL	500. kPa	160. mL
e. 0.040 atm	? L	250 atm	$1.0 \times 10^{-2} \mathrm{L}$

- **238.** A sample of neon gas occupies a volume of 2.8 L at 1.8 atm. What will its volume be at 1.2 atm?
- **239.** To what pressure would you have to compress 48.0 L of oxygen gas at 99.3 kPa in order to reduce its volume to 16.0 L?
- **240.** A chemist collects 59.0 mL of sulfur dioxide gas on a day when the atmospheric pressure is 0.989 atm. On the next day, the pressure has changed to 0.967 atm. What will the volume of the SO₂ gas be on the second day?
- **241.** 2.2 L of hydrogen at 6.5 atm pressure is used to fill a balloon at a final pressure of 1.15 atm. What is its final volume?

Charles's Law

In each of the following problems, assume that the pressure and molar quantity of gas do not change.

242. Calculate the unknown quantity in each of the following measurements of gases:

V_I	T_{I}	V_2	T_2
a. 40.0 mL	280. K	? mL	350. K
b. 0.606 L	300. K	0.404 L	? K
c. ? mL	292 K	250. mL	365 K
d. 100. mL	? K	125 mL	305 K
e. 0.0024 L	22°C	? L	−14°C