Equivalencias e implicaciones lógicas

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Estas no son notas como tal, la intensión es tener a la mano algunas equivalencias e implicaciones lógicas.

1. Equivalencias

1.1. Estructurales

La conjunción y la disyunción son conmutativas:

La conjunción y la disyunción son asociativas:

La conjunción y la disyunción son idempotentes:

$$\alpha \wedge \alpha \equiv \alpha$$

$$\alpha \lor \alpha \equiv \alpha.$$

La conjunción y la disyunción son absorbentes:

La conjunción y la disyunción son distributivas:

Denotemos con T a una tautología y con \bot a una contradicción. Así, T es neutro para la conjunción y \bot es neutro para la disyunción:

$$\alpha \wedge T \equiv \alpha$$

$$\alpha \lor \bot \equiv \alpha.$$

Álgebra Superior I Intersemestral 2025-4

1.2. Lógica clásica

Leyes de De Morgan:

$$\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta.$$

Doble negación:

$$\neg \neg \alpha \equiv \alpha.$$

Complementos:

• (tercero excluido)
$$T \equiv \alpha \vee \neg \alpha$$

$$\bot \equiv \alpha \land \neg \alpha.$$

Conjuntos mínimos de conectivos 1.3.

Con las siguientes equivalencias es posible expresar cualquier proposición lógica con sólo conectivos \vee y \neg (nota que para definir \bot es necesario usar \neg):

$$\bullet \quad \alpha \to \beta \equiv \neg \alpha \lor \beta \qquad \bullet \quad \alpha \land \beta \equiv \neg (\neg \alpha \lor \neg \beta)$$

$$\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$$

¿Puedes escribir las equivalencias necesarias para escribir toda proposición con sólo \wedge y \neg (o con sólo $\vee y \neg$)?

1.4. Métodos de demostración

- Contrapuesta: $\alpha \to \beta \equiv \neg \beta \to \neg \alpha$.
- Contradicción: $\alpha \to \beta \equiv (\alpha \land \neg \beta) \to \bot$.
- Dem de una negación: $\neg \alpha \equiv \alpha \rightarrow \bot$.
- Dem de una conjunción: $\alpha \to (\beta \land \gamma) \equiv (\alpha \to \beta) \land (\alpha \to \gamma)$.
- Dem de una disyunción: $\alpha \to (\beta \lor \gamma) \equiv (\alpha \land \neg \beta \to \gamma)$.
- Dem de un condicional: $(\alpha \to (\beta \to \gamma)) \equiv (\alpha \land \beta) \to \gamma$.
- Dem de una bicondicional: $(\alpha \leftrightarrow \beta) \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$.
- Dem por casos: $(\alpha \lor \beta) \to \gamma \equiv (\alpha \to \gamma) \land (\beta \to \gamma)$.