

MU-Beispiel 3

Autor: BEV

Kalibrierung eines Gaszählers. Normal ist der Gaskubizierer des BEV

Skize des Messprinzips

Modellgleichung:

{Die tatsächlich über den Prüfling abgegebene Luftmenge wird über die ideale Gasgleichung modelliert}

$$V_{Pr} = V_N * (p_N + p_{Umg})/(p_{Pr} + p_{Umg}) * (T_{Pr} + T_0)/(T_N + T_0);$$

{Die Lesung des Prüflings ist ein zweistufiger Prozess}

$$V_{PrA} = V_{PrStop} - V_{PrStart};$$

{Das Messergebnis wird als relative Messabwechung modelliert}

$$y = (V_{PrA} - V_{Pr}) / V_{Pr} * S;$$

Datum: 29.01.2020

Ver.: 0.92

Datei: MU_Beispiel3.smu

Seite 1 von 4

MU-Beispiel 3

Liste der Größen:

Kurs FK

Größe	Einheit	Definition
у	%	Relative Anzeigenabweichung des Prüflings bezogen auf das durchgeflossene Volumen
p _N	hPa	Überdruck im Normal
p _{Pr}	hPa	Überdruck im Prüfling
p _{Umg}	hPa	Barometrischer Luftdruck
T _N	°C	Lufttemperatur im Normal
V _N	m^3	Volumen des Normals (Kubizierer)
V _{PrStart}	m^3	Angezeigter Wert zu Beginn der Kalibrierung
V _{PrStop}	m^3	Angezeigter Wert am Ende der Kalibrierung
T _{Pr}	°C	Lufttemperatur im Prüfling
V _{Pr}	m^3	Durchgeflossenes Volumen
V _{PrA}	m^3	Angezeigtes Volumen
S	%	Skalenfaktor zur Umrechnung in Prozent
T ₀	°C	Celsius/Kelvin-Ursprung

p_N: Typ B Normalverteilung

Wert: 19.8 hPa

Erweiterte Messunsicherheit: 0.6 hPa

Erweiterungsfaktor: 1

Flüssigkeitsmanometer, MM003893, Kalibrierschein E17-0572 ACHTUNG: sollte über mindestens zwei Eingangsgrößen modelliert werden!

p_{Pr}: Typ B Normalverteilung

Wert: 19.75 hPa

Erweiterte Messunsicherheit: 0.08 hPa

Erweiterungsfaktor: 1

Digtalmanometer, MM002078, Kalibrierschein E19-1503/2 ACHTUNG: sollte über mindestens zwei Eingangsgrößen modelliert werden!

p_{Umg}: Typ B Normalverteilung

Wert: 990.2 hPa

Erweiterte Messunsicherheit: 0.8 hPa

Erweiterungsfaktor: 1

Päzisionsaneroid-Barometer MM002062, Kalibrierschein E18-0186/1 ACHTUNG: sollte über mindestens zwei Eingangsgrößen modelliert werden!

T_N: Typ B Normalverteilung

Wert: 22.1 °C

Erweiterte Messunsicherheit: 0.06 °C

Erweiterungsfaktor: 2

Aus Kalibrierschein bla bla Hier fehlt die UNsicherheit der eigentlichen Temperaturmessung! ACHTUNG: sollte über mindestens zwei Eingangsgrößen modelliert werden!

Datum: 29.01.2020

Ver.: 0.92

Datei: MU_Beispiel3.smu

Seite 2 von 4

Kurs FK MU-Beispiel 3

V_N: Typ B Normalverteilung

Wert: 0.503 m³

Erweiterte Messunsicherheit: 0.00005 m³

Erweiterungsfaktor: 2

Hier ist lediglich der Wert aus einen (gedachten) Kalibrierschein angegeben! ACHTUNG: sollte über mindestens zwei Eingangsgrößen modelliert werden!

V_{PrStart}: Typ B Normalverteilung

Wert: 321.0 m³

Erweiterte Messunsicherheit: 0.0001 m³

Erweiterungsfaktor: 1

Zählwertanzeige, Teilungswert 0,2 L, Ein erfahrener Benutzer kann eine Unsicherheit von 0,1 L erreichen.

V_{PrStop}: Typ B Normalverteilung

Wert: 321.500 m³

Erweiterte Messunsicherheit: 0.0001 m³

Erweiterungsfaktor: 1

Zählwertanzeige, Teilungswert 0,2 L, Ein erfahrener Benutzer kann eine Unsicherheit von 0,1 L erreichen.

T_{Pr}: Typ B Rechteckverteilung

Wert: 22.2 °C

Halbbreite der Grenzen: 0.1 °C

Quick and dirty aus einen (gedachten) Prüfungsschein Auch hier fehlt die Unsicherheit der eigentlichen Temperaturmessung! ACHTUNG: sollte über mindestens zwei Eingangsgrößen modelliert werden!

V_{PrA}: Zwischenergebnis

Differenz aus Start- und Stopp-Wert

S: Konstante

Wert: 100 %

Dies ist die Methode mit diesen Programm eine Anzeige in % zu erhalten. Das Zeichen muss aus Dimensionsgründen sowohl bei dieser Konstante als auch beim Ergebnis als Einheit angegeben werden.

 T_0 : Konstante

Wert: 273.15 °C

Zur Umrechnung von Celsius in Kelvin-Temperaturwerten

Zwischenergebnisse:

Größe	Wert	StdMess- unsicherheit	
V _{Pr}	0.503195 m ³	322·10 ⁻⁶ m ³	
V _{PrA}	0.500000 m ³	141·10 ⁻⁶ m ³	

Datum: 29.01.2020

Ver.: 0.92

Datei: MU_Beispiel3.smu

Seite 3 von 4

Kurs FK MU-Beispiel 3

Messunsicherheits-Budgets:

y: Relative Anzeigenabweichung des Prüflings bezogen auf das durchgeflossene Volumen

Größe	Wert	StdMess- unsicherheit	Verteilung	Sensitivitäts- koeffizient	Unsicher- heitsbeitrag	Index
p_N	19.800 hPa	0.600 hPa	Normal	-0.098	-0.059 %	72.0 %
p _{Pr}	19.7500 hPa	0.0800 hPa	Normal	0.098	7.9·10 ⁻³ %	1.3 %
p _{Umg}	990.200 hPa	0.800 hPa	Normal	4.9·10 ⁻⁶	3.9·10 ⁻⁶ %	0.0 %
T _N	22.1000 °C	0.0300 °C	Normal	0.34	0.010 %	2.1 %
V _N	0.5030000 m ³	25.0·10 ⁻⁶ m ³	Normal	-200	-4.9·10 ⁻³ %	0.5 %
V _{PrStart}	321.000000 m ³	100·10 ⁻⁶ m ³	Normal	-200	-0.020 %	8.2 %
V_{PrStop}	321.500000 m ³	100·10 ⁻⁶ m ³	Normal	200	0.020 %	8.2 %
T _{Pr}	22.2000 °C	0.0577 °C	Rechteck	-0.34	-0.019 %	7.8 %
V _{Pr}	0.503195 m ³	322·10 ⁻⁶ m ³				
V_{PrA}	0.500000 m ³	141·10 ⁻⁶ m ³				
S	100.0 %					
T ₀	273.15 °C					
у	-0.6350 %	0.0696 %				-

Der Messwert im Sinne des GUM.

Ergebnisse:

Größe	Wert	ErwMess- unsicherheit	Erweiter- ungsfaktor	Überdeckungs- wahrscheinlichkeit
у	-0.63 %	0.14 %	2.00	95% (Normal)

Datum: 29.01.2020

Ver.: 0.92

Datei: MU_Beispiel3.smu

Seite 4 von 4