

에이터 플랫폼 이론-03

엄진영

구글 클라우드의 차별성

• 빅쿼리, 빅데이터 저장 및 분석 플랫폼

- 빅쿼리는 페타바이트급 데이터 저장 및 분석용 클라우드 서비스
- 빅쿼리의 특징
 - ✓ NoOps, 설치/운영이 필요없다.
 - ✓ SQL 언어 사용
 - ✓ 클라우드 규모의 인프라를 통한 대용량 지원과 빠른 성능
 - 빅쿼리의 성능과 스케일은 https://goo.gl/fDN8YE의 예를 보면 짐작할 수 있다.

- 그림 11-1 빅쿼리 분석 예 (출처 : https://goo.gl/fDN8YE)
- 이 예는 위키피디아에서 1,000억 개의 레코드를 스캔해서 정규표현식으로 "G.*o.*o.*g" 문자열을 찾아내고, 그 문서의 뷰 수를 세고 있다. 대략 4TB 용량의 데이터가 처리되고, 약 30초가 소요된다. 30초 동안, 약 3,300개의 CPU와 330개의 하드디스크와 330Gb의 네트워크가 사용된다. (출처: https://goo.gl/ptCDhC) 이 쿼리를 수행하는 데 소요되는 비용은 딱 \$20다. 일반적인 인프라에서 빅데이터 연산을 하는데 3,300개의 CPU를 동시에 사용하기란 말처럼 쉽지 않은 일이고, 이런 대용량 연산을 단은 \$20에 되었다. 사리해주는 것은 대용량 인프라를 공유하는 클라우드 서비스이기에 가능하다.

구글 클라우드의 차별성

- 일반적인 RDBMS : 레코드 단위로 데이터를 저장
- 컬럼 단위로 데이터를 뜯어내어 저장
 - 방대한 양의 데이터를 분석하기 위해 설계

구글 클라우드의 차별성

• 빅쿼리, 빅데이터 저장 및 분석 플랫폼

- 빅쿼리의 특징
 - ✓ 데이터 복제를 통한 안정성
 - 데이터는 3개로 복제하여 서로 다른 3개의 데이터센터에 분산 저장하기 때문에 유실 위험이 적다.
 - ✓ 배치와 스트리밍 모두 지원
 - 한꺼번에 데이터를 로딩하는 일괄 작업(batch) 외에도 REST API 등을 통해서 실시간으로 데이터를 입력할 수 있는 스트리밍 기능을 제공
 - 스트리밍 시에는 데이터를 초당 100,000 행씩 입력할 수 있다
 - ✓ 비용 정책
 - 클라우드 서비스답게 딱 저장되는 데이터 크기와 쿼리 시에 발생하는 트렌젝션 비용만큼만 과금
 - 데이터 저장 요금은 GB당 \$0.02이고, 90일이 지나서 사용하지 않는 데이터는 자동으로 \$0.01로 떨어진다. 일반적으로 가격이 싸다고 알려진 오브젝트 스토리지보다 싸다(구글 클라우드 스토리지는 GB당 \$0.026다).
 - 트렌젝션 비용은 쿼리 수행 시 스캔되는 데이터를 기준으로 TB당 \$5다(월 1TB는 무료). 자세한 가격 정책은 https://cloud.google.com/bigquery/pricing을 참조

기존 빅데이터 플랫폼과 다른점

쉽다.

- 하둡이나 스파크로 분석할 때는 맵리듀스 로직을 사용하거나 Spark SQL을 사용하는데, 이 방식은 일정 수준 이상의 전문성이 필요
- 맵리듀스 로직의 경우 전문성 있는 개발자가 분석 로직을 개발해야 하기 때문에 시간이 상대적으로 오래 걸림
- 빅쿼리는 로그인하고 SQL만 수행하면 되니 상대적으로 빅데이터 분석이 쉽다.

• 운영이 필요 없다.

- 하둡이나 스파크와 같은 빅데이터 솔루션은 설치와 설정, 그리고 클러스터를 유지보수하기가 어려워 별도의 운영 조직이 필요하고 여기에 많은 자원이 소모된다.
- 빅쿼리는 클라우드 서비스기 때문에 개발과 분석에만 집중하면 된다.

• 인프라 투자 없이 막강한 컴퓨팅 자원을 활용한다.

- 빅쿼리를 이용하면 수천 개의 CPU와 수백/수천 개의 컴퓨팅 자원을 사용할 수 있다.
- 기존 빅데이터 플랫폼도 클라우드 환경에 올리면 가능한 일이지만, 그설정 노력과 비용 측면에서 차이가 크다.

- 1. 가입하기
 - -구글 클라우드 서비스에 가입하고 로그인
- 2. Cloud 프로젝트를 선택하거나 만든다

3. 빅쿼리 콘솔로 이동하기

- 공개 데이터세트 쿼리(usa names)
 - -미국 이름 데이터 공개 데이터세트를 쿼리해 1910년부터 2013년까지 미국에서 가장 흔한 이름을 확인

<u> 빅쿼리 맛보기</u>

BigQuery − DataPlatform-01 − ⑤ X

×

• 데이터 다운로드

- https://data.kma.go.kr/cmmn/main.do
- 기후통계분석 → 통계분석 → 기온분석
- 기간: 1904년 1월1일부터 2020년 7월 6일까지로 설정
- 지역: 서울
- -검색 후 csv 다운로드

데이터 전처리

기온분석 [검색조건 자료구분 자료형태 지역/지점 기간: 190	: 일 : 기본	00705			
날짜	지점	평균기온(°	최저기온(°	최고기온(°	C)
#######	108	13.5	7.9	20.7	
#######	108	16.2	7.9	22	
#######	108	16.2	13.1	21.3	
#######	108	16.5	11.2	22	
#######	108	17.6	10.9	25.4	
#######	108	13	11.2	21.3	
#######	108	11.3	6.3	16.1	
#######	108	8.9	3.9	14.9	
#######	108	11.6	3.8	21.1	
#######	108	14.2	6.4	24.1	
#######	108	15.4	10.1	20.4	
#######	108	13.9	11.1	17.4	
#######	108	13.8	8.3	21.3	
#######	108	13	6.1	20.6	
#######	108	13.1	5.7	20.9	
#######	108	14 1	8.2	20.2	

date	state	avg	min	max
1907-10-01	108	13.5	7.9	20.7
1907-10-02	108	16.2	7.9	22
1907-10-03	108	16.2	13.1	21.3
1907-10-04	108	16.5	11.2	22
1907-10-05	108	17.6	10.9	25.4
1907-10-06	108	13	11.2	21.3
1907-10-07	108	11.3	6.3	16.1
1907-10-08	108	8.9	3.9	14.9
1907-10-09	108	11.6	3.8	21.1
1907-10-10	108	14.2	6.4	24.1
1907-10-11	108	15.4	10.1	20.4
1907-10-12	108	13.9	11.1	17.4
1907-10-13	108	13.8	8.3	21.3
1907-10-14	108	13	6.1	20.6
1907-10-15	108	13.1	5.7	20.9
1907-10-16	108	14.1	8.2	20.2
1907-10-17	108	16.4	10.3	21.6
1907-10-18	108	14.3	9.8	20.9
1907-10-19	108	13.9	6.7	21.3
1907-10-20	108	18.3	12.4	22.7
1907-10-21	108	15.2	10.7	19.9
1907-10-22	108	15.4	12.1	19.6
1907-10-23	108	13.1	8.1	163

- 데이터세트ID : weather
- 데이터 위치 : 서울

- Cloud consol의 프로젝트 선택 페이지에서 cloud 프로젝트를 선택하거나 만든다.
- 데이터 세트 만들기

- 데이터세트 ID : bqml_tutorial
- 데이터 위치 : 미국(US)
 - 현재 공개 데이터세트는 US 멀티 리전 위치에 저장됩니다.

모델 만들기

-BigQuery용 출생률 샘플 테이블을 사용하여 선형 회귀 모형을 만든다.

```
#standardSQL
CREATE MODEL `bgml_tutorial.natality_model`
OPTIONS
 (model_type='linear_reg',
  input label cols=['weight pounds']) AS
SELECT
 weight_pounds,
 is male,
 gestation_weeks,
 mother age,
 CAST(mother_race AS string) AS mother_race
FROM
 `bigquery-public-data.samples.natality`
WHERE
 weight pounds IS NOT NULL
 AND RAND() < 0.001
```


- 실행 클릭 후 모델 생성
 - -CREATE MODEL 문을 사용하여 테이블을 만들므로 쿼리 결과가 표시되지 않는다

쿼리 결과

쿼리 완료(24.5초 경과, 4.1GB(ML) 처리됨)

작업 정보 결과 JSON 실행 세부정보

● 이 구문으로 이름이 dataplatform-01:bqml_tutorial.natality_model인 새 모델이 생성되었습니다.

• 쿼리의 세부정보

- CREATE MODEL → bqml_tutorial.natality_model이라는 모델을 만들고 학습
- OPTIONS(model_type='linear_reg', input_label_cols=['weight_pounds']) → 선형 회귀 모델을 만든다
- 선형 회귀는 입력 특성의 선형 조합에서 연속 값을 생성하는 회귀 모델의 한 유형, weight_pounds 열은 입력 라벨 열
- 선형 회귀 모델에서 라벨 열은 실수여야 함
- SELECT 문은 다음 열을 사용하여 아이의 출생 시 체중을 예측
 - ✓ weight_pounds: 아기 체중이며 단위는 파운드 (FLOAT64).
 - ✓ is_male 남아이면 TRUE, 여아이면 FALSE (BOOL).
 - ✓ gestation_weeks 임신 주 (INT64).
 - ✓ mother_age 출산 산모의 나이 (INT64).
 - ✓ mother_race 산모의 인종에 해당하는 정수 값 (INT64 테이블 스키마의 child_race와 같음).
 - 각 고유 값이 서로 다른 카테고리를 나타내며 BigQuery ML에서 mother_race를 숫자가 아닌 특성으로 강제 처리하기 위해 쿼리는 mother_race를 STRING으로 변환
 - 인종은 순서와 척도가 있는 정수보다 카테고리로서 더 많은 의미를 가질 수 있음
- FROM 절인 bigquery-public-data.samples.natality는 샘플 데이터세트에서 출생률 샘플 테이블을 쿼리한다는 것을 나타낸다. 이 데이터세트는 bigquery-public-data 프로젝트에 있다.
- WHERE 절인 WHERE weight_pounds IS NOT NULL AND RAND() < 0.001은 체중이 NULL인 행을 제외하고 RAND 함수를 사용하여 데이터의 **물작위학교** 생품을 추출합니다.

• 학습 통계 가져오기

• 모델 평가

- ML.EVALUATE 함수를 사용하여 분류 기준의 성능을 평가
- -ML.EVALUATE 함수는 실제 데이터를 기준으로 예측 값을 평가

```
#standardSQL
SELECT
FROM
 ML.EVALUATE(MODEL `bqml_tutorial.natality_model`,
  SELECT
   weight_pounds,
   is male.
   gestation weeks,
   mother_age,
   CAST(mother_race AS STRING) AS mother_race
  FROM
   `bigguery-public-data.samples.natality`
  WHFRF
   weight_pounds IS NOT NULL))
```


• 쿼리의 세부정보

- 맨 위에 있는 SELECT 문은 모델에서 열을 검색
- -FROM 절은 bqml_tutorial.natality_model 모델에 ML.EVALUATE 함수를 사용
- 중첩된 SELECT 문과 FROM 절은 CREATE MODEL 쿼리와 동일
- -WHERE 절인 WHERE weight_pounds IS NOT NULL은 체중이 NULL인 행을 제외

• 모델을 사용하여 결과 예측

- -모델을 평가했으므로 다음 단계는 이 모델을 사용하여 결과를 예측
- -모델을 사용하여 와이오밍(WY)에서 출생한 모든 아기의 출생 시 체중을 예측

• 쿼리 세부정보

- -최상위 SELECT 문은 predicted_weight_pounds 열을 검색
 - ✓ 이 열은 ML.PREDICT 함수에서 생성
 - ✓ ML.PREDICT 함수를 사용할 때 모델의 출력 열 이름은 predicted_<label_column_name>
 - ✓ 선형 회귀 모델에서 predicted_label은 label의 예상 값
 - ✓ 로지스틱 회귀 모델에서 predicted_label은 두 입력 라벨 중 하나이며 예측 확률이 더 높은 라벨을 따름
- -ML.PREDICT 함수는 bqml_tutorial.natality_model 모델을 사용하여 결과를 예측할 때 사용
 - ✓ 이 쿼리의 중첩된 SELECT 문과 FROM 절은 CREATE MODEL 쿼리와 동일
- -WHERE 절인 WHERE state = "WY"는 예측이 와이오밍 주에 한정되어 있음을 나타냅니다.

	행	predicted_weight_pounds					
	1	7.206666513688106					
	2	8.17438199854223					
	3	7.531909933137285					
/	4	7.578702417031309					
	5	7.628818374902039					
	6	7.423698978287575					

