Тема 3

Работа с камерами — получение данных. Цифровые фильтры.

Фильтры: классификация

- Линейные фильтры (свертка с базисной функцией)
- Фильтры на основе скользящего окна
- Нелинейные фильтры

Матрица свертки

Матрица свертки- матрица, которая умножается на окно исходного изображения, чтобы получить значение результирующего пиксела умноженное на коэф. нормирования (Сумма элементов матрицы нормирования).

div = 6

Размытие по Гауссу

• Фильтр размытия по Гауссу имеет сложность O(hi * wi * n *n), где hi, wi – размеры изображения, n – размер матрицы (ядра фильтра).

Матрица размытия по гауссу

0,000789	0,006581	0,013347	0,006581	0,000789
0,006581	0,054901	0,111345	0,054901	0,006581
0,013347	0,111345	0,225821	0,111345	0,013347
0,006581	0,054901	0,111345	0,054901	0,006581
0,000789	0,006581	0,013347	0,006581	0,000789

Фильтр Гаусса оптимизированный

- Два прохода: вертикальный и горизонтальный с матрицей одномерного распределения.
- Сложность данного алгоритма будет O(hi * wi * n) + O(hi * wi * n) = 2 * O(hi * wi * n),

0,028087	0,23431	0,475207	0,23431	0,028087

$$P(n) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(n-n)^{2/2\sigma^2}}$$

Стандартное откл. В формуле: 1

Матрица резкость (sharpein)

-1	-1	-1
-1	9	-1
-1	-1	-1

Простые операции

NEGATIVE

0 0 0 0 -1 0 0 0 0

div = 1 offset = 256

BLUR

div = 9 offset = 0

SHARPEN

div = 1 offset = 0

EMBOSS

div = 1 offset = 0

LIGHT-BLUR

div = 4 offset = 0

LIGHT-SHARPEN

div = 1 offset = 0

LIGHT-EMBOSS

div = 1 offset = 0

Реализация в GIMP и PS

- Все современные редакторы изображений предоставляют инструмент работы с матрицами сверток.
- Gimp->

Общая проблема всех алгоритмов со скользящим

- Что делать с границами?
 - a) ничего не делать- размер (n-k/2;n-k/2)
 - б) заполнить крайними элементами (выход из положения)

Медианный фильтр

- Уникальный по своим характеристикам фильтр, сохраняющий положение фронтов.
- Значения отсчётов внутри окна фильтра сортируются в порядке возрастания (убывания); и значение, находящееся в середине упорядоченного списка, поступает на выход фильтра. В случае четного числа отсчетов в окне выходное значение фильтра равно среднему значению двух отсчетов в середине упорядоченного списка. Окно перемещается вдоль фильтруемого сигнала и вычисления повторяются.

Медианный фильтр

- Не изменяет фазу и амплитуду фронтов сигнала
- Может работать в индексированных цветовых пространствах
- Классическая формула работает быстро
- Может работать в многомерных векторных пространствах

Медианный фильтр: математическое описание

$$y_{m,n} = \left\{ x_k : \sum_{j=1}^N |x_j - x_j| \ge \sum_{j=1}^N |x_j - x_k| \text{ для всех } i \in [1,...,N] \right\}.$$

Векторная фильтрация

• В данном случае цветовые компоненты рассматриваются как векторы и работают законы векторной арифметики.

Нелинейные фильтры

- Нелинейные фильтры невозможно описать ни матрицей ни оператором свертки.
- Нелинейные фильтры обычно предполагают некий алгоритмический подход, который можно описать в терминах условных операторов.

$$B(x,y) = \begin{cases} 1, & \text{если } A(x,y) \\ 0, & \text{иначе} \end{cases}$$

Нелинейные фильтры

• Минимальное, максимальное значение окна

$$B_{\min}(x,y) = \min \{N(x,y)\}\$$

$$B_{max}(x,y) = \max\{N(x,y)\}\$$

Яркостные преобразования, преобразования гистограммы

 Яркостными преобразованиями изображения называются преобразования двумерных функций яркости, описываемые простой формулой:

$$I'(x,y)=f(I(x,y))$$

причем данная формула никак не зависит от положения пиксела.

Гистограмма

• Строим гистограмму изображения (look-Up-table)

$$\operatorname{Im}[i,j] = \operatorname{LUT}[\operatorname{Im}[i,j]],$$

• Работаем с гистограммой

Популярные операции

• Гамма коррекция

$$\mathrm{LUT}[i] = r(i)^{\gamma},$$

• Нормализация яркости

$$ext{LUT}[i] = 255 \cdot rac{i - I_{ ext{min}}}{I_{ ext{max}} - I_{ ext{min}}}$$

•

• Эквализация

$$egin{aligned} ext{LUT}[i] &= 255 \cdot rac{\sum\limits_{j=1}^{i} ext{Hist}[j]}{\sum\limits_{j=1}^{255} ext{Hist}[j]} \end{aligned}$$

Линейные фильтры,

Дискретное преобразование Фурье Wavelet-transform

- 1. Нет проблемы границы
- 2. Есть проблема эффекта Гиббса

Идея преобразования Фурье

Вещественную функцию f(x) можно разложить по ортогональной системе тригонометрических функций, то есть представить в виде

$$f(x) = \int\limits_0^\infty A(\omega) \cos(2\pi\omega x) d\omega - \int\limits_0^\infty B(\omega) \sin(2\pi\omega x) d\omega,$$

где $A(\omega)$ и $B(\omega)$ называются интегральными косинус- и синус-преобразованиями:

$$A(\omega) = 2\int\limits_{-\infty}^{+\infty} f(x)\cos(2\pi\omega x)dx; \quad B(\omega) = 2\int\limits_{-\infty}^{+\infty} f(x)\sin(2\pi\omega x)dx.$$

ДПФ

Дискретное преобразование Фурье переводит конечную последовательность вещественных чисел в конечную последовательность коэффициентов Фурье.

Пусть $\{x_i\}, i=0,\ldots,N-1$ - последовательность вещественных чисел - например, отсчеты яркости пикселов по строко изображения. Эту последовательность можно представить в виде комбинации конечных сумм вида

$$x_i = a_0 + \sum_{n=1}^{N/2} a_n \cosigg(rac{2\pi ni}{N}igg) + \sum_{n=1}^{N/2} b_n \sinigg(rac{2\pi ni}{N}igg),$$

где

$$a_0 = rac{1}{N} \sum_{i=0}^{N-1} x_i, \quad a_{N/2} = rac{1}{N} \sum_{i=0}^{N-1} x_i (-1)^i, \quad a_k = rac{2}{N} \sum_{i=0}^{N-1} x_i \cos \left(rac{2\pi i k}{N}
ight), \ b_k = rac{2}{N} \sum_{i=0}^{N-1} x_i \sin \left(rac{2\pi i k}{N}
ight), \quad i \leq k < N/2.$$

Вейвлет преобразование

 Логично было бы поговорить про него тут, но мы оставим его к теме «распознавание лиц» через преобразование Хаара

Оценка качества изображений

- Субъективные критерии (анализ человеком)
- СКО (нужно знать эталонное изображение)
- Обеспечение одинаковых условий проведения экспертиз в разных лабораториях рекомендация союза электросвязи ITU-R BT.500-11.

DSIS (Double-stimulus impairment scale – метод двойного воздействия со шкалой искажений

Метод предложен Мерцем Фаулером и Кристофером

n- к-во категорий,

Шкала погрешностей:

- 1. Незаметные
- 2. Еле заметные
- 3. Вполне заметные, но слабо ухудшающие изображение
- 4. Ухудшающие изображение, но допустимые
- 5. Несколько нежелательные
- 6. Определенно нежелательные
- 7. Крайне нежелательные

Результаты экспертных оценок обычно выражают с помощью среднего балла, определяемого как

$$\overline{C} = \frac{\sum_{k=1}^{K} n_k C_k}{\sum_{k=1}^{K} n_k},$$

где K — количество категорий, n_k — число изображений, отнесенных к k -й категории, а C_k — соответствующий ей балл. Считается, что для получения надежной оценки качества изображения необходимо опросить не менее двадцати наблюдателей. Одной из трудностей, связанных с оценками в баллах, является возможная нелинейность шкалы.

Объективный критерий (нет абсолютного значения)

$$\Pi OCIII = 20 \log_{10} \frac{255}{\sqrt{CKO}},$$

$$CKO = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2,$$

где N- число пикселей в изображении, x_i и y_i- значения пикселей исходного и восстановленного изображений соответственно, а СКО – среднеквадратичная ошибка. Высокое значение ПОСШ означает определенную схожесть восстановленного и исходного изображений, но оно не дает гарантию того, что зрителю понравится восстановленный образ.

www.imagemagick.org

- ImageMagick мощный инструментари обработки изображений.
- The current release is ImageMagick 6.8.7-0 available from http://www.imagemagick.org/download. It runs on Linux, Windows, Mac Os X, iOS, Android OS, and others.
- The official ImageMagick web site is http://www.imagemagick.org.

Инструментарий получения изображений из камеры (Linux, без OpenCV)

- FireWire камера: libdc1394
- Ethernet камера: нет стандартного способа,вероятно будет либо библиотека,либо встроенный WEB сервер, либо ffmpeg
- USB камера: подсистема fideo4linux

Прием работы с камерой через устройство /dev/video

- rm ./*.mp4
- rm ./*.avi
- ffmpeg -t 10 -f video4linux2 -s 1280x1024 -r 5 -i /dev/video0 webcam.mp4
- ffmpeg -f video4linux2 -s 1280x1024 -i /dev/video0 -f image2 snapshot.jpg 2>/dev/null
- ffmpeg -f video4linux2 -s 1280x1024 -i /dev/video0 -f image2 snapshot.jpg 2>/dev/null
- ffmpeg -f video4linux2 -s 1280x1024 -i /dev/video0 -f image2 snapshot.jpg 2>/dev/null
- ffmpeg -f video4linux2 -s 1280x1024 -i /dev/video0 -f image2 snapshot.jpg
 2>/dev/nul

Особенности

- Сдернуть snapshot нормального качества с первого кадра в условиях плохого освещения не получится
- Будет работать совершенно с любыми камерами,которые взаимодействуют с V4L
- Можно работать через стандартное устройство Linux.

Заставить фотокамеру сделать снимок

- Gphoto2 библиотека(+консольная утилита, позволяющая через libusb libp2pcam управлять фотокамерами). Поддерживается около 500 моделей (модель должна поддерживать протокол P2P).
- Sony, Kodak, Fuji не поддерживаются совсем, остальные камеры нужно смотреть лист совместимости
- Ничто не заставить камеру саму перейти в положение ON
- Вполне неплохой способ для научных стендов и установок там, где нужна хорошая камера, но все готовы мириться с неудобствами

Доступ к v4I

Video4Linux (v4I) — интерфейс прикладного программирования (API) захвата видео для Linux. Video4Linux тесно интегрируется с ядром Linux. Поддержка v4I появилась в конце цикла развития ядра Linux 2.1.X. Поддерживается большое количество веб-камер и видео устройств — плат видеозахвата, ТВ-тюнеров, плат приема DVB.

- V4L был назван по аналогии с Video For Windows (который иногда сокращенно «V4W»), но технически не связан с ним.
- http://linuxtv.org/downloads/v4l-dvb-apis/

Практическое задание(2014)

- Создать средствами ImageMagick «прозрачный» куб, на гранях которого была бы нанесена ваша фотография, причем три из них разложить как RGB, а «дно» - Gray
- Создать анимацию, чтобы «грани» менялись местами

Практическое задание 2015

Что почитать

- http://habrahabr.ru/post/142818/
- http://scholar.google.com/scholar_host?q=info:wh
 (Воскобойников Колкер 2002 Автометрия)
- http://www.gphoto.org/doc/remote/
- http://habrahabr.ru/post/168517/