Problem 1

Who are your group members?

Solution. Nicholas Rees

Problem 2

Familarize yourself with basic MATLAB syntax, and make sure you understand what each line in the file start_here.txt is doing, and what the commands in exponential_of_a_matrix.txt are doing. Answer the following questions with MATLAB (but just write down the answer).

(a). Let

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

What is the largest interger n such that each entry of $e^A - \sum_{i=0}^{15} A^i/i!$ is of absolute value at most 10^{-n} ?

(b). Same question for

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- (a). Solution. n = 13.
- (b). Solution. n = 13.

Problem 3

Create the files apple.m, apple_bad.m, apple_worse.m, apple_quiet.m and see how they are implementing Euler's method to solve y' = 2y subject to y(1) = 3, in order to find y(2). (The files apple_bad.m, apple_worse.m will produce error messages; they are just there as a cautionary note.) You might also have a look at chaotic_sqrt.m.

- (a). Use Euler's method to solve $y' = |y|^{1/2}$ subject to $y(t_0) = y_0$ to find the value of $y(t_{end})$, where $t_0 = -2$, $y_0 = -1$, and $t_{end} = 2$. Use step size $h = (t_{end} t_0)/N$, where N = 1000 and N = 100000. What values do you get?
- (b). Same question, but with $y_0 = 0$, $t_0 = 0$, and $t_{end} = 2$. Use N = 10000.
- (c). Same question, but with $y_0 = 10^{-20}$.
- (d). Same question, but with $y_0 = 10^{-40}$.
- (e). How do you explain the difference between parts (c,d) and part (b)?
- (a). Solution. When N = 1000, we get $y(t_{\text{end}}) = 1.0036$. When N = 100000, we get $y(t_{\text{end}}) = 1.0000$.
- (b). Solution. We get $y(t_{end}) = 0$.
- (c). Solution. We get $y(t_{end}) = 0.9985$.
- (d). Solution. We get $y(t_{end}) = 0.9982$.
- (e). Solution. From an algorithmic point of view, when $y_0 = 0$, Euler's formula, no matter how many iterations, will always give y(t+ih) = 0, since it computes $y_{i+1}(t_0 + (i+1)h) = y_i + h|y_i|^{1/2}$ so $y_i = 0 \implies y_{i+1}$, and $y_0 = 0$, so by induction, $y(t_{end}) = y(t_N) = 0$. If, instead, we had a nonzero value, $y(t_N)$ will at least sum to a positive value.

From a theory point of view, it is because y = 0 is a solution to the differential equation, and the unique solution to the initial value problem $y_0 = t_0 = 0$ is y(t) = 0. On the other hand, we get a nontrivial solution when $y_0 > 0$, so it approaches a similar value to what we had before in part (a).

Problem 4

If $y: \mathbb{R} \to \mathbb{R}$ is a function and $T \in \mathbb{R}$, then the translation of y by T, denoted $\operatorname{Trans}_T(y)$, refers to the function z given by

$$\forall t \in \mathbb{R}, \quad z(t) = y(t - T)$$

(or, equivalently, z(t+T) = y(t)) (hence z(T) = y(0), z(T+1) = y(1), etc.). Similarly, the time reversal of y at time T, denoted Reverse_T(y) refers to the function z given by

$$\forall t \in \mathbb{R}, \quad z(t) = y(2T - t)$$

(hence z(T) = y(T), and z(T + a) = y(T - a)).

(a). If $T_1, T_2 \in \mathbb{R}$ and y is any function, what is

$$\operatorname{Trans}_{T_1}(\operatorname{Trans}_{T_2}(y))$$

in simpler terms?

(b). If $T \in \mathbb{R}$ and y is any function, what is

$$Reverse_T(Reverse_T(y))$$

in simpler terms?

(c). If $T_1, T_2 \in \mathbb{R}$ and y is any function, what is

$$Reverse_{T_1}(Reverse_{T_2}(y))$$

in simpler terms?

- (d). Show that if for some function $f: \mathbb{R} \to \mathbb{R}$, y satisfies the ODE y' = f(y) globally (meaning y'(t) = f(y(t)) for all $t \in \mathbb{R}$), then $z = \text{Trans}_T(y)$ satisfies the same ODE, i.e., z' = f(z) (globally).
- (e). Show directly that if $y(t) = e^{At}$ for some $A \in \mathbb{R}$, and if z satisfies the ODE z' = Az with z(t) > 0 for some $t \in \mathbb{R}$, then z is a translation of y, **PROVIDED THAT** $A \neq 0$.
- (f). If similarly y' = f(y) globally, then $z = \text{Reverse}_T(y)$ satisfies the ODE z' = -f(z).
- (g). If similarly y'' = f(y) globally, then $z = \text{Reverse}_T(y)$ satisfies the ODE z'' = f(z).
- (a). Solution. We can compute:

$$\operatorname{Trans}_{T_1}(\operatorname{Trans}_{T_2}(y)) = \operatorname{Trans}_{T_1}(y(t - T_2))$$

= $y((t - T_1) - T_2)$
= $y(t - T_1 - T_2)$

(b). Solution. We can compute:

Reverse_T(Reverse_T(y)) = Reverse_T(y(2T - t))
=
$$y(2T - (2T - t))$$

= $y(t)$

(c). Solution. We can compute:

- (d). Solution. Assume that y'(t) = f(y(t)) for all $t \in \mathbb{R}$. Note $z(t) = \operatorname{Trans}_T(y) = y(t-T)$. Hence, $z'(t) = y'(t-T) \cdot 1 = f(y(t-T)) = f(z(t))$ for all $t \in \mathbb{R}$. So we have shown z' = f(z) globally.
- (e). Solution. Let $A \in \mathbb{R}$, and z' = Az. Since $A \neq 0$ and z(t) > 0 for some $t \in \mathbb{R}$ so z is not the zero function, we can divide by Az to get

$$\frac{dz}{dt} = Az \implies \frac{1}{Az}dz = dt$$

$$\implies \int \frac{1}{Az}dz = \int dt$$

$$\implies \frac{1}{A}\ln z = t + C$$

$$\implies z = e^{A(t+C)}$$

Hence, z = y(t + C) and so z is a translation of y by -C, i.e. $z = \text{Trans}_{-C}(y)$.

- (f). Solution. Assume that y'(t) = f(y(t)) for all $t \in \mathbb{R}$. Note $z(t) = \text{Reverse}_T(y) = y(2T t)$. Hence $z'(t) = y'(2T t) \cdot (-1) = -y'(2T t) = -f(y(2T t)) = -f(z(t))$ for all $t \in \mathbb{R}$. So we have shown z' = -f(z).
- (g). Solution. Assume that y''(t) = f(y(t)) for all $t \in \mathbb{R}$. Note $z(t) = \operatorname{Reverse}_T(y) = y(2T t)$. Hence $z'(t) = y'(2T t) \cdot (-1) = -y'(2T t)$ for all $t \in \mathbb{R}$. We take another derivative to get $z''(t) = -y''(2T t) \cdot (-1) = y''(2T t) = f(y(2T t)) = f(z(t))$ for all $t \in \mathbb{R}$. So we have shown z'' = f(z).