August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

xoranges
Turkish (TUR)

XORanges

Janez portakalları sevmektedir! Bu yüzden portakallar için bir tarayıcı yapar. Kamera ve bir Raspberry Pi 3b+ bilgisayar ile portakalların 3B resimlerini oluşturmaya başlar. Resim işleyicisi çok iyi değildir, bu yüzden aldığı tek çıktı, kabuktaki deliklerle ilgili bilgi içeren 32-bit'lik bir tamsayıdır. Bir 32-bit tamsayı D'yi, her biri 1 veya 0 olan 32 rakamdan (bit) oluşan bir seri olarak gösterebiliriz. Eğer 0'dan başlarsak her i-nci bit 1 olduğunda 2^i eklersek, en sonunda D değerine ulaşabiliriz. Daha matematiksel olarak; D sayısı $d_{31}, d_{30}, \ldots d_0$ serisi olarak gösterilebilir ve bu sayıya $D = d_{31} \cdot 2^{31} + d_{30} \cdot 2^{30} + \ldots + d_1 \cdot 2^1 + d_0 \cdot 2^0$ ile ulaşılabilir. Örneğin, 13 sayısı şu şekilde ifade edilebilir $0, \ldots, 0, 1, 1, 0, 1$.

Janez n adet portakalı tarar; bununla birlikte, programınızın çalışması boyunca, bazen portakallardan birini (i'nci portakal) tekrar taramaya karar verir. Yani, taramadan sonra i'nci portakalın güncellenmiş değerini kullanır.

Janes bu portakalları analiz etmek istemektedir. Exclusive-or (XOR) operasyonunu çok ilginç bulur ve bazı hesaplamalar yapmaya karar verir. l'den u'ya kadar ($l \le u$) portakalları seçer ve bu aralıktaki bütün ardışık ikililerin, 3 uzunluğundaki bütün ardışık eleman serilerinin, ... ve u-l+1 uzunluğundaki bütün ardışık eleman serisinin (aralıktaki bütün elemanlar) XOR'unu bulmak ister.

Örnek olarak, eğer l=2 ve u=4 ise ve A isminde taranmış değerleri içeren bir dizimiz varsa, program $a_2\oplus a_3\oplus a_4\oplus (a_2\oplus a_3)\oplus (a_3\oplus a_4)\oplus (a_2\oplus a_3\oplus a_4)$ 'nın değerini dönmelidir. Buradaki \oplus XOR'u, a_i ise A dizisinin i'nci elemanını göstermektedir.

XOR operasyonu aşağıdaki gibi tanımlansın:

İlk değerin i'nci biti, ikinci değerin i'nci biti ile aynıysa, sonucun i'nci biti 0; ilk değerin i'nci biti, ikinci değerin i'nci bitinden farklı ise, sonucun i'nci biti 1'dir.

\boldsymbol{x}	y	$x\oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Örneğin, $13 \oplus 23 = 26$.

13 =	0001101

23 =	0010111
$13 \oplus 23 = 26 =$	0011010

Girdi

Girdi dosyasının ilk satırında 2 pozitif tam sayı n ve q(tekrar tarama ve sorgu işlemlerinin toplam sayısı) olacaktır.

Bir sonraki satırda negatif olmayan ve birer boşlukla ayrılmış n tam sayı olacaktır. Bu değerler portakallar için tarama sonucunu veren A dizisinin değerleridir. a_i değeri i-nci portakalın tarama değerini vermektedir. İndeks gösteren i değeri 1'den başlayacaktır.

İşlemler sonraki q satırda boşlukla ayrılmış üç pozitif tam sayı olarak verilecektir.

Eğer işlem numarası 1 (yeniden tarama) ise, ilk tam sayı 1 olacak ve bunu takip eden i(Janez'in yeniden taramak istediği portakalın adresi) ve j(i)-nci portakalın yeniden tarama sonucunda elde edilen yeni değeri) olacaktır.

Eğer işlem numarası 2(sorgu) ise, ilk tam sayı 2 olacak ve bunu l ve u değerleri takip edecektir.

Çıktı

Her bir sorgu için sonucu veren sadece bir tane tamsayı değeri yazdırmalısınız. Her değeri yeni satırda yazdırmalısınız. Çıktının i-nci satırının i-nci sorgunun cevabı olarak verileceğini gözden kaçırmayın.

Kısıtlar

- $\begin{array}{l} \bullet \ a_i \leq 10^9 \\ \bullet \ 0 < n, q \leq 2 \cdot 10^5 \end{array}$

Altgörevler

- 1. **[12 puan]**: $0 < n, q \le 100$
- 2. **[18 puan]**: $0 < n, q \le 500$ ve yeniden tarama (işlem 1) yok
- 3. **[25 puan]**: $0 < n, q \le 5000$
- 4. **[20 puan]**: $0 < n, q \le 2 \cdot 10^5$ ve yeniden tarama (işlem 1) yok
- 5. [25 puan]: başka ek kısıt yok

Örnekler

Örnek 1

Girdi

```
3 3
1 2 3
2 1 3
1 1 3
2 1 3
```

Çıktı

```
2 0
```

Açıklama

Başlangıçta, A=[1,2,3] olacaktır. İlk sorgulama tüm değerleri kapsamaktadır. Analizin sonucu şöyle olacaktır: $1\oplus 2\oplus 3\oplus (1\oplus 2)\oplus (2\oplus 3)\oplus (1\oplus 2\oplus 3)=2$.

Sonrasında ilk portakalın değeri 3 olarak yenilenmiştir. Bu yenilik aynı sorgu ([1,3] aralığında) üzerinde şu değişikliğe sebep olmuştur : $3\oplus 2\oplus 3\oplus (3\oplus 2)\oplus (2\oplus 3)\oplus (3\oplus 2\oplus 3)=0$.

Örnek 2

Girdi

```
5 6
1 2 3 4 5
2 1 3
1 1 3
2 1 5
2 4 4
1 1 1
2 4 4
```

Çıktı

```
2
5
4
4
```