```
In [1]: import pandas as pd
In [2]: file_path =r"C:\Users\krupa\OneDrive\Documents\Superstore.csv"
In [3]: df=pd.read_csv(file_path, encoding='latin1')
In [4]: df
```

Out[4]:		Rowځ«ï Dl	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country
	0	1	CA- 2016- 152156	08- 11- 2016	11- 11- 2016	Second Class	CG-12520	Claire Gute	Consumer	United States
	1	2	CA- 2016- 152156	08- 11- 2016	11- 11- 2016	Second Class	CG-12520	Claire Gute	Consumer	United States
	2	3	CA- 2016- 138688	12- 06- 2016	16- 06- 2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States
	3	4	US- 2015- 108966	11- 10- 2015	18- 10- 2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States
	4	5	US- 2015- 108966	11- 10- 2015	18- 10- 2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States
	•••	•••								
	94	95	CA- 2015- 149587	31- 01- 2015	05- 02- 2015	Second Class	KB-16315	Karl Braun	Consumer	United States
	95	96	US- 2017- 109484	06- 11- 2017	12- 11- 2017	Standard Class	RB-19705	Roger Barcio	Home Office	United States
	96	97	CA- 2017- 161018	09- 11- 2017	11- 11- 2017	Second Class	PN-18775	Parhena Norris	Home Office	United States
	97	98	CA- 2017- 157833	17- 06- 2017	20- 06- 2017	First Class	KD-16345	Katherine Ducich	Consumer	United States
	98	99	CA- 2016- 149223	06- 09- 2016	11- 09- 2016	Standard Class	ER-13855	Elpida Rittenbach	Corporate	United States

99 rows × 21 columns

```
In [5]: print("Columns:", df.columns.tolist())
        Columns: ['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode', 'Custo
        mer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State', 'Postal Code',
        'Region', 'Product ID', 'Category', 'Sub-Category', 'Product Name', 'Sales', 'Qua
        ntity', 'Discount', 'Profit']
 In [6]: df.columns = df.columns.str.strip()
 In [7]: # Convert dates
         df['Order Date'] = pd.to_datetime(df['Order Date'], errors='coerce')
         df['Ship Date'] = pd.to_datetime(df['Ship Date'], errors='coerce')
 In [8]: # Add Month for time-based grouping
         df['Month'] = df['Order Date'].dt.to_period('M')
 In [9]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         # 1 Monthly Sales Trend
         monthly_sales = df.groupby('Month')['Sales'].sum()
         plt.figure(figsize=(12, 5))
         monthly_sales.plot()
         plt.title("Monthly Sales Trend")
         plt.ylabel("Sales")
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
                                              Monthly Sales Trend
         3500
         3000
         2500
       s 2000
         1000
          500
                          18075
                                                  18070
In [12]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Total Profit by Category
         plt.figure(figsize=(8, 5))
         sns.barplot(x='Category', y='Profit', data=df, estimator=sum, errorbar=None)
         plt.title("Total Profit by Category")
         plt.ylabel("Total Profit")
         plt.tight_layout()
         plt.show()
```


Office Supplies

Category

Technology

```
In [12]: # 3 Sales Distribution by Category - Boxplot
plt.figure(figsize=(8, 5))
sns.boxplot(x='Category', y='Sales', data=df)
plt.title("Sales Distribution by Category")
plt.yscale('log') # Optional: Use log scale if values vary widely
plt.tight_layout()
plt.show()
```

Furniture


```
In [13]: # Profit by Region - BarPlot
plt.figure(figsize=(8, 5))
sns.barplot(x='Region', y='Profit', data=df, estimator=sum, errorbar=None)
plt.title("Total Profit by Region")
plt.tight_layout()
plt.show()
```



```
In [14]: # 5 Sales vs Profit - Scatter Plot
    plt.figure(figsize=(8, 5))
    sns.scatterplot(x='Sales', y='Profit', hue='Category', data=df)
    plt.title("Sales vs Profit by Category")
    plt.tight_layout()
    plt.show()
```



```
In [15]: # 6 Correlation Heatmap
    plt.figure(figsize=(6, 4))
    numeric_df = df[['Sales', 'Quantity', 'Discount', 'Profit']]
    corr = numeric_df.corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm', fmt='.2f')
    plt.title("Correlation Heatmap")
    plt.tight_layout()
    plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# Get a safe sample size (max 500 or actual number of rows)
sample_size = min(len(df), 500)
df_sample = df.sample(n=sample_size, random_state=1)

plt.figure(figsize=(9, 5))
sns.swarmplot(x='Category', y='Profit', data=df_sample, hue='Segment', dodge=Tru
plt.title("Beeswarm Plot: Profit by Category and Segment")
plt.xlabel("Category")
plt.ylabel("Profit")
plt.legend(title="Segment")
plt.tight_layout()
plt.show()
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn\categorical.py:3399: UserWarning: 8.3% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Beeswarm Plot: Profit by Category and Segment

In []: