Fuzzy membership functions

Fuzzy membership functions

A fuzzy set is completely characterized by its membership function (sometimes abbreviated as MF and denoted as μ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

Note: A membership function can be on

a) a discrete universe of discourse and

b) a continuous universe of discourse.

A = Fuzzy set of "Happy family"

B = "Young age"

Fuzzy membership functions

So, membership function on a discrete universe of course is trivial. However, a membership function on a continuous universe of discourse needs a special attention.

Following figures shows typical examples of membership functions.

Fuzzy MFs: Formulation and parameterization

In the following, we try to parameterize the different MFs on a continuous universe of discourse.

Triangular MFs: A triangular MF is specified by three parameters $\{a, b, c\}$ and can be formulated as follows.

Fuzzy MFs: Trapezoidal

A trapezoidal MF is specified by four parameters $\{a, b, c, d\}$ and can be defined as follows:

Fuzzy MFs: Gaussian

A **Gaussian MF** is specified by two parameters $\{c, \sigma\}$ and can be defined as below:

gaussian
$$(x; c, \sigma) = e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$$

Fuzzy MFs: Generalized bell

It is also called Cauchy MF. A generalized bell MF is specified by three parameters $\{a, b, c\}$ and is defined as:

$$bell(x; a, b, c) = \frac{1}{1 + \left|\frac{x - c}{a}\right|^{2b}}$$

Example: Generalized bell MFs

Example:
$$\mu(x) = \frac{1}{1 + |x|^2}$$
;

$$a = b = 1$$
 and $c = 0$;

Fuzzy MFs: Sigmoidal MFs

Parameters: $\{a, c\}$; where c = crossover point and a = slope at c;

Generation of MFs

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of Concentration and Dilation.

- 1. Concentration: $A^k = [\mu_A(x)]^k$; k > 1
- **2. Dilation:** $A^k = [\mu_A(x)]^k$; k < 1

Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have: Not young, Very young, Not very young and so on.

Similarly, with Old we can have: Not old, Very old, Very very old, Extremely old, etc.

Thus,
$$\mu_{Extremely\ old}(x) = (((\mu_{Old}(x))^2)^2)^2$$
 and so on Or, $\mu_{More\ or\ less\ old}(x) = A^{0.5} = (\mu_{Old}(x))^{0.5}$

Linguistic variables and values

$$\mu_{young}(x) = \text{bell(x,20,2,0)} = \frac{1}{1 + (\frac{x}{20})^4}$$

$$\mu_{old}(x) = bell(x,30,3,100) = \frac{1}{1 + (\frac{x-100}{30})^6}$$

$$\mu_{middle-aged}(x) = bell(x,30,60,50)$$

Not young=
$$\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$$

Young but not too young = $\mu_{young}(x) \cap \overline{\mu_{young}(x)}$

A	fuzzy membership function - Example				
	consider the sourowing example				
70	x = {5, 15, 20, 25, 35, 45, 55, 65, 75, 85,90}				
	Fuzzy sets = insant, young, adult, senios				
	Age	infrmt	young	adult	seniox -
	5	0	0	0	0
	15	0	0.2	0	0
	20	0	0.8	0.9	0
	25	0	1 11-1	1	0
	35	0	0.6	1	0
	45	0	0.5	1	0
	55	O	0.1	es whomas	0.5
	65	0	0	1	1
tol	75	0	0	100 11005	1 1
	85	0	D	dust 1	1
	90	0	0		1
	1 (1 xx - 1 xx x) = -81				
A	fuzzy membership function - Example 2				
-	let the value of tempsature in o				
	T={0,5,10,15,20,25,30,35,40}				
	then the term HOT can be desined by furry set as follows.				

 $HOT = \{(0,0), (5,0.1), (10,0.3), (15,0.5), (20,0.6), (25,0.7), (30,0.8), (35,0.9), (40,1.0)3$

This suzzy set Restects the point of view that o'c is not hot at all, 5,10, 15°C are somewhat hot.

And 40°c is indeed hot

Another person could have desined the set disserently.