

OUTCOME VARIABLE PROBABILITIES

Why

Given an outcome variable $X: \Omega \to V$, and some probabilities on a sample space Ω , there is a natural set of probabilities to associate with outcomes in V.

Result

Suppose $X: \Omega \to V$ is a random variable on a finite sample space Ω . Given $p: \Omega \to \mathbf{R}$ is a probability distribution inducing probability measure $P: \mathcal{P}(\Omega) \to \mathbf{R}$, define the function $q: V \to \mathbf{R}$ by

$$q(x) = P(X = x)$$

It is easy to verify that q is nonnegative and normalized. The latter fact follows from the observation that the sets $\{X^{-1}(x)\}x \in V$ partition the set Ω .

The function q is sometimes called the distribution of X (the induced distribution, induced probability distribution) of the random variable X.

Notation

Given a random variable $X:\Omega\to V$, and some distribution $p:\Omega\to \mathbf{R}$, it is common to denote the induced distribution by p_X . Given a distribution $q:V\to \mathbf{R}$ and a random variable $X:\Omega\to V$ it is common to see the notation $X\sim q$ as an abbreviation of the sentence "The random variable X has distribution q.

Computation

Suppose $X: \Omega \to V$ is a random variable and $f: V \to U$. Define $Y: \Omega \to V$ by $y(\omega) \equiv f(x(\omega))$ for every $\omega \in \Omega$. We frequently denote this by Y = f(X). Y is a random variable with induced distribution $p_Y: \Omega \to \mathbf{R}$ satisfying

$$p_Y(y) = \sum_{\omega \in \Omega | Y(\omega) = y} p(\omega) = \sum_{x \in V | f(x) = b} p_X(x).$$

Consequently, as a matter of practical computation, we can evaluate probabilities having to do with the outcome variable X using p_X instead of p and same with Y.¹

¹Future editions will give an example.

