Assignment Partner - Sumeet Sunil Gadkari

Assignment 1

1. Given is the following dataset (the training data):

x	y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

2. Plot the graph y(x).

$$x = [2.5 \ 0.5 \ 2.2 \ 1.9 \ 3.1 \ 2.3 \ 2 \ 1 \ 1.5 \ 1.1]$$

 $y = [2.4 \ 0.7 \ 2.9 \ 2.2 \ 3.0 \ 2.7 \ 1.6 \ 1.1 \ 1.6 \ 0.9]$
 $plot(x,y)$

3. Find the mean values of the both x, y.

<u>Assignment Partner</u> - Sumeet Sunil Gadkari

4. Calculate the covariance (2x2) matrix.

```
x = [ 2.5 0.5 2.2 1.9 3.1 2.3 2 1 1.5 1.1];
y = [2.4 0.7 2.9 2.2 3.0 2.7 1.6 1.1 1.6 0.9];
x1 = x - mean(X);
y1 = y - mean(Y);
adjustedMatrix = [x1;y1]
covMatrix = cov(x1,y1)
```

% We subtract mean so that the data has zero mean

```
adjustedMatrix =
```

```
covMatrix =
```

```
0.6166 0.6154
0.6154 0.7166
```

5. Find the eigenvalues and eigenvectors of the covariance matrix.

```
x = [ 2.5 0.5 2.2 1.9 3.1 2.3 2 1 1.5 1.1];
y = [2.4 0.7 2.9 2.2 3.0 2.7 1.6 1.1 1.6 0.9];
x1 = x - mean(X);
y1 = y - mean(Y);
adjustedMatrix = [x1;y1]
covMatrix = cov(x1,y1)
[V,D] = eig(covMatrix)
```

% Eigen vectors of covariance matrix gives us most significant dimensions containing maximum variance. We order eigen vectors in the decreasing order of their eigen values.

<u>Assignment Partner</u> – Sumeet Sunil Gadkari

6. Compare the vectors to see if there is a vector that can be identified as the principal component.

Below can identified as the principal component since it has maximum eigen value

```
0.6779 0.7352
```

7. Create a learning (regression) model utilizing the principal component.

```
x = [2.5 \ 0.5 \ 2.2 \ 1.9 \ 3.1 \ 2.3 \ 2 \ 1 \ 1.5 \ 1.1];
 y = [2.4 \ 0.7 \ 2.9 \ 2.2 \ 3.0 \ 2.7 \ 1.6 \ 1.1 \ 1.6 \ 0.9];
 x1 = x - mean(X);
 y1 = y - mean(Y);
 adjustedMatrix = [x1;y1]
 covMatrix = cov(x1,y1)
 [V,D] = eig(covMatrix)
 vec = [V(2:2,:)]
 matrixM=V*adjustedMatrix
 finalX = matrixM(2:2,:)
 finalY = matrixM(1:1,:)
 plot(finalX, finalY)
 originalDataset = V*matrixM
 xOriginal = originalDataset(1:1,:) + mean(X)
 yOriginal = originalDataset(2:2,:) + mean(Y)
 invVec = transpose(vec)
 finalDataset = invVec*finalX
 xNew = finalDataset(1:1,:) + mean(X)
 yNew = finalDataset(2:2,:) + mean(Y)
vec = 0.6779 \quad 0.7352
matrixM =
                           -0.1751 \quad 0.1429 \quad 0.3844 \quad 0.1304 \quad -0.2095 \quad 0.1753 \quad -0.3498 \quad 0.0464 \quad 0.0178 \quad -0.2095 \quad 0.0464 \quad 0.00078 \quad -0.2095 \quad 0.0464 \quad 0.00078 \quad -0.2095 \quad 0.0464 \quad 0.00078 \quad -0.2095 \quad -0.20
 0.1627
                              0.8280 \quad -1.7776 \qquad 0.9922 \qquad 0.2742 \qquad 1.6758 \qquad 0.9129 \quad -0.0991 \quad -1.1446 \quad -0.4380 \quad -0.0991 \quad
 1.2238
 finalX =
                                    0.8280 \quad -1.7776 \quad 0.9922 \quad 0.2742 \quad 1.6758 \quad 0.9129 \quad -0.0991 \quad -1.1446 \quad -0.4380 \quad -0.0991 \quad
 1.2238
 finalY =
```

<u>Assignment Partner</u> – Sumeet Sunil Gadkari

-0.1751 0.1627	0.1429	0.3844	0.1304	-0.2095	0.1753	-0.3498	0.0464	0.0178	-	
originalDataset =										
0.6900 0.7100	-1.3100	0.3900	0.0900	1.2900	0.4900	0.1900	-0.8100	-0.3100	-	
0.4900	-1.2100	0.9900	0.2900	1.0900	0.7900	-0.3100	-0.8100	-0.3100	-	
xOriginal =										
2.5000 1.1000	0.5000	2.2000	1.9000	3.1000	2.3000	2.0000	1.0000	1.5000		
yOriginal =										
2.4000	0.7000	2.9000	2.2000	3.0000	2.7000	1.6000	1.1000	1.6000		
invVec =										
0.6779 0.7352										
finalDataset =										
0.5613 0.8296	-1.2050	0.6726	0.1859	1.1360	0.6189	-0.0672	-0.7759	-0.2969	-	
0.6087 0.8997	-1.3068	0.7294	0.2016	1.2320	0.6712	-0.0729	-0.8415	-0.3220	-	
xNew =										
2.3713 0.9804	0.6050	2.4826	1.9959	2.9460	2.4289	1.7428	1.0341	1.5131		
yNew =										
2.5187 1.0103	0.6032	2.6394	2.1116	3.1420	2.5812	1.8371	1.0685	1.5880		

Linear Regression model Poly1:

$$f(x) = p1*x + p2$$

Coefficients (with 95% confidence bounds):

p1 = 1.085 (1.085, 1.085)

p2 = -0.05301 (-0.05301, -0.05301)

Goodness of fit:

SSE: 7.654e-30 R-square: 1

Adjusted R-square: 1 RMSE: 9.782e-16

% R-square indicates how close our model fits the points. R-square with value 1 is considered as good fit. We also got very small RMSE indicating accurate model.

<u>Assignment Partner</u> - Sumeet Sunil Gadkari

```
xNew yNew

2.3712590 2.5187060

0.6050256 0.6031609

2.4825843 2.6394424

1.9958799 2.1115936

2.9459812 3.1420134

2.4288639 2.5811807

1.7428163 1.8371369

1.0341250 1.0685350

1.5130602 1.5879578

0.9804046 1.0102732
```

8. Plot the graph y = f(x) representing this new model.

<u>Assignment Partner</u> – Sumeet Sunil Gadkari

9. Use the model to test it for the unused, so far, data. What output the trained model will suggest for x = 2.5 and 5?

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 1.085 (1.085, 1.085)

p2 = -0.05301 (-0.05301, -0.05301)

Putting 2.5 and 5 we get below values for f(x) –

2.65949

5.37199

<u>Assignment Partner</u> – Sumeet Sunil Gadkari

Complete MATLAB program to solve this assignment was -

```
x = [ 2.5 \ 0.5 \ 2.2 \ 1.9 \ 3.1 \ 2.3 \ 2 \ 1 \ 1.5 \ 1.1];
y = [2.4 \ 0.7 \ 2.9 \ 2.2 \ 3.0 \ 2.7 \ 1.6 \ 1.1 \ 1.6 \ 0.9];
x1 = x - mean(X);
y1 = y - mean(Y);
adjustedMatrix = [x1;y1]
covMatrix = cov(x1,y1)
[V,D] = eig(covMatrix)
vec = [V(2:2,:)]
matrixM=V*adjustedMatrix
finalX = matrixM(2:2,:)
finalY = matrixM(1:1,:)
plot(finalX,finalY)
originalDataset = V*matrixM
xOriginal = originalDataset(1:1,:) + mean(X)
yOriginal = originalDataset(2:2,:) + mean(Y)
invVec = transpose(vec)
finalDataset = invVec*finalX
xNew = finalDataset(1:1,:) + mean(X)
yNew = finalDataset(2:2,:) + mean(Y)
```