

Ayudantía 6

12 de septiembre de 2025 Caetano Borges, Manuel Villablanca, Elías Ayaach

Resumen

Conceptos importantes:

- Conjunto: es una colección bien definida de objetos, estos objetos se llaman elementos del conjunto y diremos que pertenecen a él.
- Subconjunto: Sean A y B conjuntos. Diremos que A es subconjunto de B ($A \subseteq B$) si $\forall x(x \in A \to x \in B)$ (esto es si cada elemento de A está en B)
- Diremos que dos conjuntos A y B son iguales si y solo si $A \subseteq B$ y $B \subseteq A$.
- Conjunto potencia: Dado un conjunto A, el conjunto de todos los subconjuntos de A corresponde a su conjunto potencia, $\mathcal{P}(A) := \{X | X \subseteq A\}$

Axioma de extensión: $\forall A \forall B, \ A = B \iff \forall x (x \in A \iff x \in B)$. Observación: $\{x,x\} = \{x\}$

Axioma del conjunto vacío: $\exists X$ tal que $\forall x, x \notin X$. $X = \emptyset$.

Axioma de emparejamiento: sean A, B dos conjuntos entonces existe un conjut
no C cuyos elementos son exactamente A y B.

Axioma de regularidad o fundación: cada conjunto $A \neq \emptyset$ tiene un elemento que no tiene elementos en común con A

Teoremas importantes:

• Para todo conjunto A se tiene que $\varnothing \subseteq A$.

• Existe un único conjunto vacío.

Operaciones:

• Unión: dados dos conjuntos A y B, el conjunto de los elementos que están en A o en B corresponde a la unión de A y B ($A \cup B$),

$$A \cup B = \{x | x \in A \lor x \in B\}$$

Dado un conjunto de conjuntos S se define la **unión generalizada** como

$$\bigcup S = \{x | \exists A \in S \text{ tal que } x \in A\}$$

■ Intersección: dados dos conjuntos A y B, el conjunto de los elementos que están en A y en B corresponde a la intersección de A y B ($A \cap B$),

$$A \cap B = \{x | x \in A \land x \in B\}$$

Dado un conjunto de conjuntos S se define la **intersección generalizada** como

$$\bigcap S = \{x | \forall A \in S \text{ se cumple que } x \in A\}$$

■ Diferencia: dados dos conjuntos A y B, el conjunto de los elementos que están en A pero no en B corresponde a la diferencia de A y B ($A \setminus B$),

$$A \backslash B = \{ x | x \in A \land x \notin B \}$$

Leyes Si $A, B \subseteq U$ con U un conjunto bien definido

1. Absorción:
$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

4. Associatividad:
$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

7. Leyes de De Morgan:
$$U \setminus (A \cup B) = (U \setminus A) \cap (U \setminus B)$$

2. Elemento neutro:
$$A \cup \varnothing = A \\ A \cap U = A$$

5. Conmutatividad:
$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$U\backslash (A \cap B) = (U\backslash A) \cup (U\backslash B)$$

3. Distributividad:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

6. Idempotencia:
$$A \cup A = A$$

$$A \cap A = A$$

8. Elemento inverso:
$$A \cup (U \backslash A) = U$$
$$A \cap (U \backslash A) = \emptyset$$
9. Dominación:
$$A \cup U = U$$
$$A \cap \emptyset = \emptyset$$

1. Propiedades

1. Sean $A, B \subseteq U$ con U un conjunto arbitrario. Demustre que se cumple o de un contra ejemplo

$$B = (A \cap (U \backslash B)) \cup ((U \backslash A) \cap B) \iff A = \emptyset.$$

2. Sean $A, B, C \subseteq U$ con U un conjunto arbitrario. Pruebe que:

b.1)
$$[A \setminus (B \setminus A)] \cup [(B \setminus A) \setminus A] = A \cup B$$

b.2)
$$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$$

b.3)
$$[(A \cap B) \setminus (A \cap C)] = (A \cap B) \setminus ((U \setminus A) \cup C)$$

2. Diferencia simétrica

Definimos la diferencia simétrica entre dos conjuntos A y B como:

$$A\Delta B = A \setminus B \cup B \setminus A$$

Demuestre que si A, B y C son no vacíos, se cumple que.

Si
$$A\Delta C = B\Delta C$$
 entonces $A = B$

3. Axioma de Regularidad

1. Un conjunto y se llama un elemento épsilon-mínimo de un conjunto x si $y \in x$, pero no existe $z \in x$ tal que $z \in y$, o equivalentemente $x \cap y = \emptyset$. El Axioma de Fundación (también llamado Axioma de Regularidad) afirma que todo conjunto no vacío tiene un elemento épsilon-mínimo.

Muestra que este axioma implica lo siguiente:

- a) No existe un conjunto x tal que $x \in x$.
- b) No existen conjuntos $x \in y$ tales que $x \in y$ y $y \in x$.
- c) No existen conjuntos x, y, z tales que $x \in y, y \in z$ y $z \in x$.
- 2. Para cualquier conjunto x, el sucesor de x se define como

$$x' = x \cup \{x\}.$$

Muestra cómo usar el Axioma de Fundación para dar una prueba sencilla de que si x' = y', entonces x = y.