CUDA

Due:2014-11-24 23:59

Problems

1. Convolution

References:

http://en.wikipedia.org/wiki/Convolution

http://en.wikipedia.org/wiki/Gaussian blur

Requirements:

Read the wiki pages above and implement Gaussian Blur Algorithm using CUDA. You should test your algorithm on real 2D images and write a report about your thoughts and results.

2. PrefixSum

References:

http://en.wikipedia.org/wiki/Prefix sum

Requirements:

Read the wiki pages above and implement PrefixSum Algorithm using CUDA. You should compare your algorithm with other methods and write a report about your thoughts and results.

3. Sparse Matrix Vector Multiplication

References:

http://en.wikipedia.org/wiki/Sparse matrix

http://en.wikipedia.org/wiki/Sparse matrix-vector multiplication

Requirements:

Read the wiki pages above and implement Sparse Matrix Vector Multiplication using CUDA. Try your best to optimize your cache and memory and write a report about your thoughts and results.

4. Fast Fourier Transform

References:

http://en.wikipedia.org/wiki/Fast_Fourier_transform

Requirements:

Read the wiki pages above and implement 2D-FFT Algorithm using CUDA. You should apply your algorithm on real 2D images and write a report about your thoughts and results.

5. Discrete Cosine Transform

References:

http://en.wikipedia.org/wiki/Discrete cosine transform

Requirements:

Read the wiki pages above and implement DCT Algorithm using CUDA. You should apply your algorithm on image compression and write a report about your thoughts and results.

6. K-Means

References:

http://en.wikipedia.org/wiki/K-means clustering

Requirements:

Read the wiki pages above and implement K-Means Algorithm using CUDA. You should apply your algorithm on text clustering and write a report about your thoughts and results.

7. Bilateral Filter

References:

http://en.wikipedia.org/wiki/Bilateral filter

Requirements:

Read the wiki pages above and implement bilateral filter using CUDA. You should test your algorithm on real 2D images and write a report about your thoughts and results.

8. Non-local Means

References:

http://en.wikipedia.org/wiki/Non-local means

Requirements:

Read the wiki pages above and implement Non-local Means Algorithm using CUDA. You should apply your algorithm on image denoising and write a report about your thoughts and results.

Task Assignment

There are 8 problems above and you can get which problem your group should complete.

Group ID	Group Member	Problem ID
1	刘涛 陈宇翔	1
2	赵申剑 陈蕾宇 徐文康	2
3	黄一峰 高脊 乐俊伟	3
4	刘天元 张阳	4
5	邱宇贤 马子泰 周浩	5
6	谢梦竹 蒋仕龙	6
7	袁野 钮敏哲	7
8	程尧 王欣 徐涵	8
9	黎俊 庞浦 MARCELO ANDRADE	4

> NOTICE

- 1. Marking Criterion: We will evaluate your program from several aspects.
 - Optimize Technology(40%)
 - Execution Efficiency(30%)
 - Correctness(20%)
 - Code Style(10%)
- 2. The group leader should send the final version to TA before due date. You should archive your source code and report with name GroupX_Assinment3.rar(or any archive file types)(For Example:Group1_Assignment3.rar).
- 3. If you have any questions, please feel free to contact TA.
- 4. CUDA Tutorials: http://docs.nvidia.com/cuda/index.html
- 5. If you don't have CUDA devices, you can login into our server using the account allocated for your group. Please modify your password in case of data leakage.

Account Information:[UserName/ Password:groupX/groupX,For Example:group1/group1] Login Command Using SSH:[ssh groupX@202.120.38.28]

Server Configuration		
CUDA DEVICE	Tesla C2075@6GB	
	GeForce GTS 450@1GB	

CUDA VERSION	5.5.0	
CPU	Intel(R) Xeon(R) CPU E5645@2.40GHz	
MEMORY	24GB	
OS	Arch Linux	
GCC VERSION	4.8.1	
IP	202.120.38.28	

Warning:

No cheating, please refer to 《上海交通大学学生学业诚信守则》, it is your responsibility to take the consequences if you violate the rule.