Lecture 4: The Entropy Methods

Tianpei Xie

Jan. 19th., 2023

Contents

T	Log	garithmic Sobolev Inequality
	1.1	Logarithmic Sobolev Inequality for Bernoulli Distributions
	1.2	Gaussian Logarithmic Sobolev Inequality
	1.3	Logarithmic Sobolev Inequality for Binomial and Poisson Distributions
	1.4	Logarithmic Sobolev Inequality for General Probability Measures
2	The	e Entropy Methods
	2.1	Tensorization Property of Φ -Entropy
	2.2	Herbst's Argument
	2.3	Bounded Difference Inequality
	2.4	Modified Logarithmic Sobolev Inequalities
	2.5	Concentration of Convex Lipschitz Functions
	2.6	Exponential Tail Bounds for Self-Bounding Functions

1 Logarithmic Sobolev Inequality

1.1 Logarithmic Sobolev Inequality for Bernoulli Distributions

• Remark (Setting)

Consider a uniformly distributed binary vector $Z = (Z_1, ..., Z_n)$ on the hypercube $\{-1, +1\}^n$. In other words, the components of X are independent, identically distributed random sign (Rademacher) variables with $\mathbb{P}\{Z_i = -1\} = \mathbb{P}\{Z_i = +1\} = 1/2$ (i.e. symmetric Bernoulli random variables).

Let $f: \{-1,+1\}^n \to \mathbb{R}$ be a real-valued function on **binary hypercube**. X:=f(Z) is an induced real-valued random variable. Define $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},Z_i',Z_{i+1},\ldots,Z_n)$ be the sample Z with i-th component replaced by an independent copy Z_i' . Since $Z,\widetilde{Z}^{(i)}\in\{-1,+1\}^n$, $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},-Z_i,Z_{i+1},\ldots,Z_n)$, i.e. the i-th sign is **flipped**. Also denote the i-th Jackknife sample as $Z_{(i)}=(Z_1,\ldots,Z_{i-1},Z_{i+1},\ldots,Z_n)$ by leaving out the i-th component. $\mathbb{E}_{(-i)}[X]:=\mathbb{E}\left[X|Z_{(i)}\right]$.

Denote the i-th component of **discrete gradient** of f as

$$\nabla_i f(z) := \frac{1}{2} \left(f(z) - f(\widetilde{z}^{(i)}) \right)$$

and
$$\nabla f(z) = (\nabla_1 f(z), \dots, \nabla_n f(z))$$

• Remark (Jackknife Estimate of Variance)
Recall that the Jackknife estimate of variance

$$\mathcal{E}(f) := \mathbb{E}\left[\sum_{i=1}^{n} \left(f(Z) - \mathbb{E}_{(-i)}\left[f(\widetilde{Z}^{(i)})\right]\right)^{2}\right]$$
$$= \frac{1}{2}\mathbb{E}\left[\sum_{i=1}^{n} \left(f(Z) - f(\widetilde{Z}^{(i)})\right)^{2}\right].$$

Using the notation of discrete gradient of f, we see that

$$\mathcal{E}(f) := 2\mathbb{E}\left[\left\|\nabla f(Z)\right\|_{2}^{2}\right]$$

• Remark ($Entropy\ Functional$)
Recall that the entropy functional for f is defined as

$$H_{\Phi}(f(Z)) = \operatorname{Ent}(f) := \mathbb{E}\left[f(Z)\log f(Z)\right] - \mathbb{E}\left[f(Z)\right]\log\left(\mathbb{E}\left[f(Z)\right]\right).$$

• Proposition 1.1 (Logarithmic Sobolev Inequality for Function of Rademacher Random Variables). [Boucheron et al., 2013]

If $f: \{-1,+1\}^n \to \mathbb{R}$ be an arbitrary real-valued function defined on the n-dimensional binary hypercube and assume that Z is uniformly distributed over $\{-1,+1\}^n$. Then

$$Ent(f^2) \le \mathcal{E}(f)$$
 (1)

$$\Leftrightarrow \operatorname{Ent}(f^2(Z)) \le 2\mathbb{E}\left[\left\|\nabla f(Z)\right\|_2^2\right] \tag{2}$$

Proof: The key is to apply the tensorization property of Φ -entropy. Let X = f(Z). By tensorization property,

$$\operatorname{Ent}(X^2) \le \sum_{i=1}^n \mathbb{E}\left[\operatorname{Ent}_{(-i)}(X^2)\right]$$

where $\text{Ent}_{(-i)}(X^2) := \mathbb{E}_{(-i)} [X^2 \log X^2] - \mathbb{E}_{(-i)} [X^2] \log (\mathbb{E}_{(-i)} [X^2]).$

It thus suffice to show that for all i = 1, ..., n,

$$\operatorname{Ent}_{(-i)}(X^2) \le \frac{1}{2} \mathbb{E}_{(-i)} \left[\left(f(Z) - f(\widetilde{Z}^{(i)}) \right)^2 \right].$$

Given any fixed realization of $Z_{(-i)}$, $X = f(Z) = \widetilde{f}(Z_i)$ can only takes two different values with equal probability. Call these two values a and b. See that

$$\operatorname{Ent}_{(-i)}(X^2) = \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{1}{2}(a^2 + b^2) \log \left(\frac{a^2 + b^2}{2}\right)$$
$$\frac{1}{2}\mathbb{E}_{(-i)}\left[\left(f(Z) - f(\widetilde{Z}^{(i)})\right)^2\right] = \frac{1}{2}(a - b)^2.$$

Thus we need to show

$$\frac{1}{2}a^2\log a^2 + \frac{1}{2}b^2\log b^2 - \frac{1}{2}(a^2 + b^2)\log\left(\frac{a^2 + b^2}{2}\right) \le \frac{1}{2}(a - b)^2.$$

By symmetry, we may assume that $a \ge b$. Since $(|a| - |b|)^2 \le (a - b)^2$, without loss of generality, we may further assume that $a, b \ge 0$.

Define

$$h(a) := \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{1}{2}(a^2 + b^2) \log \left(\frac{a^2 + b^2}{2}\right) - \frac{1}{2}(a - b)^2$$

for $a \in [b, \infty)$. h(b) = 0. It suffice to check that h'(b) = 0 and that h is concave on $[b, \infty)$. Note that

$$h'(a) = a \log a^2 + 1 - a \log \left(\frac{a^2 + b^2}{2}\right) - 1 - (a - b)$$
$$= a \log \frac{2a^2}{(a^2 + b^2)} - (a - b).$$

So h'(b) = 0. Moreover,

$$h''(a) = \log \frac{2a^2}{(a^2 + b^2)} + 1 - \frac{2a^2}{(a^2 + b^2)} \le 0$$

due to inequality $\log(x) + 1 \le x$.

• Remark (Logarithmic Sobolev Inequality Stronger than Efron-Stein Inequality). [Boucheron et al., 2013]

Note that for f non-negative,

$$Var(f(Z)) \le Ent(f^2(Z)).$$

Thus logarithmic Sobolev inequality (1) implies

$$Var(f(Z)) \le \mathcal{E}(f)$$

which is the Efron-Stein inequality.

• Corollary 1.2 (Logarithmic Sobolev Inequality for Function of Asymmetric Bernoulli Random Variables). [Boucheron et al., 2013] If $f: \{-1, +1\}^n \to \mathbb{R}$ be an arbitrary real-valued function and $Z = (Z_1, \ldots, Z_n) \in \{-1, +1\}^n$ with $p = \mathbb{P}\{Z_i = +1\}$. Then

$$Ent(f^2) \le \frac{1}{2}c(p)\mathcal{E}(f)$$
 (3)

where

$$c(p) = \frac{1}{1 - 2p} \log \frac{1 - p}{p}$$

Note that $\lim_{p \to 1/2} c(p) = 2$.

1.2 Gaussian Logarithmic Sobolev Inequality

• Proposition 1.3 (Gaussian Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous differentiable function and let $Z = (Z_1, \ldots, Z_n)$ be a vector of n independent standard Gaussian random variables. Then

$$Ent(f^{2}(Z)) \leq 2\mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right]. \tag{4}$$

• Remark (Gaussian Logarithmic Sobolev Inequality Stronger than Gaussian Poincaré Inequality). [Boucheron et al., 2013]
Recall that the Gaussian Poincaré inequality

$$\operatorname{Var}(f(Z)) \le \mathbb{E}\left[\|\nabla f(Z)\|_2^2\right]$$

We can show that for Gaussian random vectors Z,

$$2\operatorname{Var}(f(Z)) \le \operatorname{Ent}(f^2(Z)).$$

Thus the Gaussian logarithmic Sobolev inequality implies the Gaussian Poincaré inequality.

1.3 Logarithmic Sobolev Inequality for Binomial and Poisson Distributions

- 1.4 Logarithmic Sobolev Inequality for General Probability Measures
 - Definition (Logarithmic Sobolev Inequality for General Probability Measure). A probability measure μ on \mathbb{R}^n is said to satisfy the <u>logarithmic Sobolev inequality</u> for some constant C > 0 if

$$\operatorname{Ent}_{\mu}(f^{2}) \leq C \operatorname{\mathbb{E}}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] \tag{5}$$

holds for any *continuous differentiable* function $f : \mathbb{R}^n \to \mathbb{R}$. The left-hand side is called *the entropy functional*, which is defined as

$$\operatorname{Ent}(f^2) := \mathbb{E}_{\mu} \left[f^2 \log f^2 \right] - \mathbb{E}_{\mu} \left[f^2 \right] \log \mathbb{E}_{\mu} \left[f^2 \right]$$
$$= \int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu.$$

The right-hand side is defined as

$$\mathbb{E}_{\mu}\left[\|\nabla f\|_{2}^{2}\right] = \int \|\nabla f\|_{2}^{2} d\mu.$$

Thus we can rewrite the logarithmic Sobolev inequality in functional form

$$\int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu \le C \int \|\nabla f\|_2^2 d\mu \tag{6}$$

 $\bullet \ {\bf Remark} \ ({\it Logarithmic Sobolev Inequality})$

We can replace $f \to \sqrt{f}$, so that the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) \le \frac{1}{2} \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{7}$$

• Remark (Modified Logarithmic Sobolev Inequality via Convex Cost and Duality) For some convex non-negative cost $c : \mathbb{R}^n \to \mathbb{R}_+$, the convex conjugate of c (Legendre transform of c) is defined as

$$c^*(x) := \sup_{y} \left\{ \langle x, y \rangle - c(y) \right\}$$

Then we can obtain the modified logarithmic Sobolev inequality

$$\operatorname{Ent}_{\mu}(f) \le \int f^2 c^* \left(\frac{\nabla f}{f}\right) d\mu$$
 (8)

2 The Entropy Methods

- 2.1 Tensorization Property of Φ-Entropy
 - Remark Recall that the Φ -entropy for $\Phi(x) = x \log(x)$ as

$$H_{\Phi}(X) = \operatorname{Ent}(X) := \mathbb{E}[X \log X] - \mathbb{E}[X] \log(\mathbb{E}[X]).$$

The variational formulation of $H_{\Phi}(X)$ is

$$\operatorname{Ent}(X) = \sup_{T} \left\{ X \left(\log(T) - \log(\mathbb{E}[T]) \right) \right\}$$

- 2.2 Herbst's Argument
- 2.3 Bounded Difference Inequality
- 2.4 Modified Logarithmic Sobolev Inequalities
- 2.5 Concentration of Convex Lipschitz Functions
- 2.6 Exponential Tail Bounds for Self-Bounding Functions

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.