Solving ordinary differential equations in C++

Karsten Ahnert^{1,2} and Mario Mulansky²

¹ Ambrosys GmbH, Potsdam
² Institut für Physik und Astronomie, Universität Potsdam

May 14, 2012

Outline

- Introduction
- 2 Tutorial
- Technical details
- Conclusion and Discussion

Newtons equations

Newtons equations

Reaction and relaxation equations (i.e. blood alcohol content, chemical reaction rates)

Newtons equations

Reaction and relaxation equations (i.e. blood alcohol content, chemical reaction rates)

Granular systems

Newtons equations

Reaction and relaxation equations (i.e. blood alcohol content, chemical reaction rates)

Granular systems

Interacting neurons

Newtons equations

Reaction and relaxation equations (i.e. blood alcohol content, chemical reaction rates)

Granular systems

Interacting neurons

- Many examples in physics, biology, chemistry, social sciences
- Fundamental in mathematical modelling

What is an ODE?

$$rac{\mathrm{d}x(t)}{\mathrm{d}t} = fig(x(t),tig)$$
 short form $\dot{x} = f(x,t)$

- x(t) − dependent variable
- *t* indenpendent variable (time)
- f(x, t) defines the ODE

Initial Value Problem (IVP):

$$\dot{x}=f(x,t), \qquad x(t=0)=x_0$$

Numerical integration of ODEs

Find a numerical solution of an ODE and its IVP

$$\dot{x}=f(x,t), \qquad x(t=0)=x_0$$

Example: Explicit Euler

$$x(t + \Delta t) = x(t) + \Delta t \cdot f(x(t), t) + \mathcal{O}(\Delta t^2)$$

General scheme of order s

$$x(t) \mapsto x(t+\Delta t)$$
 , or $x(t+\Delta t) = \mathcal{F}_t x(t) + \mathcal{O}(\Delta t^{s+1})$

Solving ordinary differential equations in C++

Open source

Boost license – do whatever you want do to with it

Solving ordinary differential equations in C++

Open source

Boost license – do whatever you want do to with it

Download

www.odeint.com

Solving ordinary differential equations in C++

Open source

Boost license – do whatever you want do to with it

Download

www.odeint.com

Modern C++

- Generic programming, functional programming, template-meta programming
- Fast, easy-to-use and extendable.
- Container independent
- Portable

Motivation

We want to solve ODEs $\dot{x} = f(x, t)$

- using double, std::vector, std::array, ... as state types.
- with complex numbers,
- on one, two, three-dimensional lattices, and or on graphs.
- on graphic cards.
- with arbitrary precision types.

Existing libraries support only one state type!

Container independent and portable algorithms are needed!

Let's step into odeint

- Introduction
- 2 Tutorial
- Technical details
- Conclusion and Discussion

Newtons law: ma = F

Acceleration: $a = I\ddot{\varphi} = \frac{d^2\varphi}{dt^2}$

Force: $F = F_N = -mg \sin \varphi$

$$\Longrightarrow \mathsf{ODE} \; \mathsf{for} \; \varphi$$

$$\ddot{\varphi} = -g/I\sin\varphi = -\omega_0^2\sin\varphi$$

$$\ddot{\varphi} = -\omega_0^2 \sin \varphi$$

Small angle: $\sin \varphi \approx \varphi$

Harmonic oscillator $\ddot{\varphi} = -\omega_0^2 \varphi$

Analytic solution:

$$\varphi = A\cos\omega_0 t + B\sin\omega_0 t$$

Determine A and B from initial condition

Full equation: $\ddot{\varphi} = -\omega_0^2 \sin \varphi$

Pendulum with friction and external driving:

$$\ddot{\varphi} = -\omega_0^2 \sin \varphi - \mu \dot{\varphi} + \varepsilon \sin \omega_E t$$

No analytic solution is known

 \Longrightarrow Solve this equation numerically.

$$\ddot{\varphi} = -\omega_0^2 \sin \varphi - \mu \dot{\varphi} + \varepsilon \sin \omega_E t$$

Create a first order ODE

$$x_1 = \varphi$$
 , $x_2 = \dot{\varphi}$

$$\dot{X_1} = X_2$$

$$\dot{x_2} = -\omega_0 \sin x_1 - \mu x_2 + \varepsilon \sin \omega_E t$$

 x_1 and x_2 are the state space variables

```
#include <boost/numeric/odeint.hpp>
namespace odeint = boost::numeric::odeint;
```

$$\dot{x_1} = x_2$$
, $\dot{x_2} = -\omega_0 \sin x_1 - \mu x_2 + \varepsilon \sin \omega_E t$

typedef std::array<double,2> state_type;

$$\dot{x_1} = x_2, \, \dot{x_2} = -\omega_0^2 \sin x_1 - \mu x_2 + \varepsilon \sin \omega_E t$$
 $\omega_0^2 = 1$

```
struct pendulum
 double m_mu, m_omega, m_eps;
 pendulum (double mu, double omega, double eps)
  : m mu(mu), m_omega(omega), m_eps(eps) { }
 void operator()(const state_type &x,
     state type &dxdt, double t) const
    dxdt[0] = x[1];
    dxdt[1] = -\sin(x[0]) - m mu * x[1] +
        m eps * sin(m omega*t);
```

$$\varphi(0) = x_1(0) = 1$$
, $\dot{\varphi}(0) = x_2(0) = 0$

```
odeint::runge_kutta4< state_type > rk4;
pendulum p( 0.1 , 1.05 , 1.5 );

state_type x = {{ 1.0 , 0.0 }};
double t = 0.0;

const double dt = 0.01;
rk4.do_step( p , x , t , dt );
t += dt;
```

$$x(0) \mapsto x(\Delta t)$$

```
std::cout<<t<" "<< x[0]<<" "<<x[1]<<"\n";
for( size_t i=0 ; i<10 ; ++i )
{
   rk4.do_step( p , x , t , dt );
   t += dt;
   std::cout<<t<<" "<< x[0]<<" "<<x[1]<<"\n";
}</pre>
```

$$x(0) \mapsto x(\Delta t) \mapsto x(2\Delta t) \mapsto x(3\Delta t) \mapsto \dots$$

Simulation

Oscillator

$$\mu=0$$
 , $\omega_{\it E}=0$, $arepsilon=0$

Damped oscillator:

$$\mu = 0.1$$
 , $\omega_F = 0$, $\varepsilon = 0$

Damped, driven oscillator:

$$\mu = 0.1$$
 , $\omega_F = 1.05$, $\varepsilon = 1.5$

Simulation

Oscillator

$$\mu={\bf 0}$$
 , $\omega_{\it E}={\bf 0}$, $\varepsilon={\bf 0}$

Damped oscillator:

$$\mu=$$
 0.1 , $\omega_{\it E}=$ 0 , $\varepsilon=$ 0

Damped, driven oscillator:

$$\mu = 0.1$$
 , $\omega_{\it E} = 1.05$, $\varepsilon = 1.5$

Controlled steppers – Step size control

Controlled steppers – Step size control

Controlled steppers

```
auto s = make_controlled( 1.0e-6 , 1.0e6,
   runge_kutta_fehlberg78<state_type>() );

controlled_step_result res =
   s.try_step(ode,x,t,dt);
```

Tries to perform the step and updates x, t, and dt!

It works because Runge-Kutta-Fehlberg has error estimation:

```
runge_kutta_fehlberg78<state_type> s;
s.do_step(ode,x,t,dt,xerr);
```

Controlled steppers

```
auto s = make controlled(1.0e-6, 1.0e6,
  runge_kutta_fehlberg78<state_type>() );
while ( t < t end )
  controlled_step_result res;
  do
    res = s.try_step(ode, x, t, dt);
  while( res != success )
```

Non-trivial time-stepping logic

Use integrate functions!

Observer: Callable object obs(x,t)

Example (using Boost.Phoenix):

```
integrate_adaptive(s,ode,x,t_start,t_end,dt,
  cout << arg1[0] << " " << arg1[1] << "\n" );</pre>
```

More integrate versions:

```
integrate_const, integrate_times,...
```

Adaptive step size vs. constant step size

```
integrate_const(s,ode,x,t,dt,obs);
```

```
integrate_adaptive(s,ode,x,t,dt,obs);
```


Problem: Equidistant observation with adaptive step size integration?

Dense output stepper

```
auto s = make_dense_output( 1.0e-6 , 1.0e-6 ,
    runge_kutta_dopri5< state_type >() );
integrate_const( s , p , x , t , dt );
```

Interpolation within integration interval with the same precision as the stepper!

More steppers

Stepper Concepts: Stepper, ErrorStepper, ControlledStepper, DenseOutputStepper

Stepper types:

- Implicit implicit_euler, rosenbrock4
- Symplectic symplectic_rkn_sb3a_mclachlan
- Predictor-Corrector adams_bashforth_moulton
- Extrapolation bulirsch_stoer
- Multistep methods adams_bashforth_moulton

Some of them have step-size control and dense-output!

For details see the odeint documentation!

Small summary

- Very easy example nonlinear driven pendulum
- Basic features of odeint
- Different steppers steppers, error steppers, controlled steppers, dense output steppers
- Integrate functions

Small summary

- Very easy example nonlinear driven pendulum
- Basic features of odeint
- Different steppers steppers, error steppers, controlled steppers, dense output steppers
- Integrate functions

Now, let's look at some advanced features!

Large systems

Lattice systems

Large systems

Lattice systems

Discretiztations of PDEs

Large systems

Lattice systems

ODEs on graphs

Discretiztations of PDEs

Large systems

Lattice systems

ODEs on graphs

Discretiztations of PDEs

Parameter studies

Phase compacton lattice

$$\dot{\varphi}_k = \cos\varphi_{k+1} - \cos\varphi_{k-1}$$

State space contains *N* variables

```
typedef std::vector<double> state_type;
```

Simulation

Phase compacton lattice – Space-time plots

Solving ODEs with CUDA using Thrust

"Thrust is a parallel algorithms library which resembles the C++ Standard Template Library (STL). Thrust's high-level interface greatly enhances developer productivity while enabling performance portability between GPUs and multicore CPUs. Interoperability with established technologies (such as CUDA, TBB and OpenMP) facilitates integration with existing software. Develop high-performance applications rapidly with Thrust!"

Solving ODEs with CUDA using thrust

Applications and use cases for GPUs:

- Large systems, discretizations of PDEs, lattice systems, granular systems, etc.
- Parameter studies, solve many ODEs in parallel with different parameters
- Initial value studies, solve the same ODE with many different initial conditions in parallel

Lorenz system – Deterministic chaos

$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = Rx - y - xz$ $\dot{z} = -bz + xy$
Standard parameters $\sigma = 10$, $R = 28$, $b = 8/3$

Perturbations grow exponentially fast – Butterfly effect

Lorenz system – Parameter study

$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = Rx - y - xz$ $\dot{z} = -bz + xy$

Does one observe chaos over the whole parameter range?

Lyapunov exponents:

- Measure of chaos
- Growth rate of perturbations

Vary *R* from 0 to 50 and calculate the Lyapunov exponents!

Use CUDA and Thrust!

Intermezzo: Algebras and operations

Euler method

for all i :
$$x_i(t + \Delta t) = x_i(t) + \Delta t \cdot f_i(x)$$

```
typedef euler< state_type ,
  value_type , deriv_type , time_type,
  algebra , operations , resizer > stepper;
```

- Algebras perform the iteration over i.
- Operations perform the elementary addition.

Intermezzo: Algebras and operations

```
typedef euler< state_type ,
  value_type , deriv_type , time_type,
  algebra , operations , resizer > stepper;
```

Default template parameters:

- range_algebra Boost.Ranges
- default_operations

For Thrust:

- thrust_algebra
- thrust_operations

Calculate an ensemble of Lorenz systems

```
typedef thrust::device_vector<double> state_type;
typedef runge_kutta4<state_type, double, state_type, double,
    thrust_algebra, thrust_operations> stepper;

state_type x( 3*N );
// initialize x
integrate_const( stepper() , lorenz_ensemble() ,
    x , 0.0 , 1000.0 , dt );
```

Memory layout:

Everything seems easy!

But how does lorenz_ensemble look like?

Ensemble of Lorenz systems

```
struct lorenz ensemble {
  size t N;
  state_type beta;
 template < class State , class Deriv >
 void operator()(
    const State &x , Deriv &dxdt , value_type t ) const {
    thrust::for_each(
      thrust::make zip iterator (thrust::make tuple (
        x.begin() , x.begin()+N , x.begin()+2*N ,
        beta.begin() ,
        dxdt.begin(), dxdt.begin()+N, dxdt.begin()+2*N
      ) ) .
      thrust::make_zip_iterator( thrust::make_tuple(
        x.begin()+N , x.begin()+2*N , x.begin()+3*N ,
        beta.end() .
        dxdt.begin()+N, dxdt.begin()+2*N, dxdt.begin()+3*N
      ) ) ,
      lorenz functor() );
```

Ensemble of Lorenz systems

```
struct lorenz ensemble
 // ...
  struct lorenz_functor
    template < class T > __host__ __device__
    void operator() ( T t ) const
     value_type R = thrust::get< 3 >( t );
     value_type x = thrust::get< 0 >( t );
     value_type y = thrust::get< 1 >( t );
     value_type z = thrust::get< 2 >( t );
      thrust::qet < 4 > (t) = sigma * (y - x);
      thrust::qet < 5 > (t) = R * x - y - x * z;
      thrust::qet < 6 > (t) = -b * z + x * y ;
```

Lorenz system parameter study – Results

Advanced features - continued

Reference wrapper std::ref, boost::ref

The ODE and the observers are always passed by value

```
integrate_const(s,ode,x,0.0,1.0,dt,obs);
s.do_step(ode,x,t,dt);
```

Reference wrapper std::ref, boost::ref

The ODE and the observers are always passed by value

```
integrate_const{s,ode,x,0.0,1.0,dt,obs);
s.do_step(ode,x,t,dt);
```

Use std::ref or boost::ref to pass by reference

```
integrate_const{s,std::ref(ode),x,0.0,1.0,dt,
    std::ref(obs));
```

Using Boost.Range

Use Boost.Range to integrate separate parts of the overall state

Example: Lyapunov exponents for the Lorenz system

Complete ODE = Lorenz system + Perturbation

- Calculate transients by solving only the Lorenz system (initialize x, y, z)
- Solve whole system (state + perturbations)

```
std::vector<double> x(6,0.0);
integrate(s,lorenz,
  make_pair(x.begin(),x.begin()+3),
  0.0,10.0,dt);
integrate(s,lorenz_pert,x,10.0,1000.0,dt);
```

ODEs with complex numbers

Discrete Nonlinear Schrödinger equation

$$\mathrm{i}\dot{\Psi}_k = arepsilon_k \Psi_k + V(\Psi_{k+1} + \Psi_{k-1}) - \gamma |\Psi_k|^2 \Psi_k \qquad , \quad \Psi_k \in \mathbb{C}$$

Matrices as state types

Example:

Two-dimensional phase lattice

$$\dot{\varphi}_{i,j} = q(\varphi_{i+1,j}, \varphi_{i,j}) + q(\varphi_{i-1,j}, \varphi_{i,j})
+ q(\varphi_{i,j+1}, \varphi_{i,j}) + q(\varphi_{i,j-1}, \varphi_{i,j})$$

```
typedef ublas::matrix<double> state_type1;
typedef mtl::dense2D<double> state_type2;

runge_kutta_fehlberg78< state_type1 , double ,
    state_type1 , double , vector_space_algebra > stepper1;
```

Matrices as state types

Example:

Two-dimensional phase lattice

$$\dot{\varphi}_{i,j} = q(\varphi_{i+1,j}, \varphi_{i,j}) + q(\varphi_{i-1,j}, \varphi_{i,j})
+ q(\varphi_{i,j+1}, \varphi_{i,j}) + q(\varphi_{i,j-1}, \varphi_{i,j})$$

```
typedef ublas::matrix<double> state_type1;
typedef mtl::dense2D<double> state_type2;

runge_kutta_fehlberg78< state_type1 , double ,
    state_type1 , double , vector_space_algebra > stepper1;
```


Compile-time sequences and Boost.Units

$$\left(\begin{array}{c} \dot{x} \\ \dot{v} \end{array}\right) = \left(\begin{array}{c} v \\ f(x,v) \end{array}\right)$$

- x − length, dimension m
- v − velocity, dimension ms⁻¹
- a − acceleration, dimension ms⁻²

What else

ODEs on graphs

What else

ODEs on graphs

 Automatic memory management

Enlarge the lattice when waves hit the boundaries

What else

ODEs on graphs

 Automatic memory management

Enlarge the lattice when waves hit the boundaries

Arbitrary precision types, GMPXX

Introduction

2 Tutorial

Technical details

Conclusion and Discussion

Independent Algorithms

Goal

Container- and computation-independent implementation of the numerical algorithms.

Benefit

High flexibility and applicability, odeint can be used for virtually any formulation of an ODE.

Approach

Detatch the algorithm from memory management and computation details and make each part interchangeable.

Mathematical Algorithm

Typical mathematical computation performed to calculate the solution of an ODE ($\vec{x} = \vec{f}(\vec{x}, t)$):

$$\vec{F}_{1} = \vec{f}(\vec{x}_{0}, t_{0})$$

$$\vec{x}' = \vec{x}_{0} + a_{21} \cdot \Delta t \cdot \vec{F}_{1}$$

$$\vec{F}_{2} = \vec{f}(\vec{x}', t_{0} + c_{1} \cdot \Delta t)$$

$$\vec{x}' = \vec{x}_{0} + a_{31} \cdot \Delta t \cdot \vec{F}_{1} + a_{32} \cdot \Delta t \cdot \vec{F}_{2}$$

$$\vdots$$

$$\vec{x}_{1} = \vec{x}_{0} + b_{1} \cdot \Delta t \cdot \vec{F}_{1} + \dots + b_{n} \cdot \Delta t \cdot \vec{F}_{n}$$

Strucutural Requirements

$$\vec{F}_1 = \vec{f}(\vec{x}_0, t_0)$$
 $\vec{x}' = \vec{x}_0 + a_{21} \cdot \Delta t \cdot \vec{F}_1$

Types:

- vector type, mostly, but not neccessarily, some container like vector<double> (actually we have state_type and deriv_type)
- time type, usually double
- value type, fundamental arithmetic type

Strucutural Requirements

$$\vec{F}_1 = \vec{f}(\vec{x}_0, t_0)$$
 $\vec{x}' = \vec{x}_0 + a_{21} \cdot \Delta t \cdot \vec{F}_1$

Types:

- vector type, mostly, but not neccessarily, some container like vector<double> (actually we have state_type and deriv_type)
- time type, usually double
- value type, fundamental arithmetic type

Function Call:

```
void rhs( const vector_type &x , vector_type &
    dxdt , const time_type t )
{ /* user defined */ }
rhs( x0 , F1 , t ); //memory allocation for F1?
```

Memory allocation for temporary results (F1, x')

Computational Requirements

$$\vec{x}_1 = \vec{x}_0 + b_1 \cdot \Delta t \cdot \vec{F}_1 + \dots + b_s \cdot \Delta t \cdot \vec{F}_s$$

- vector-vector addition
- scalar-scalar multiplication
- scalar-vector multiplication

 \longrightarrow vector space

Type Declarations

Tell odeint which types your are working with:

Reasonable standard values for the template parameters allows for:

```
typedef runge_kutta4<state_type> stepper_type;
```

Memory Allocation / Resizing

Two possible situations: dynamic size / fixed size vector_type

dynamic size - memory allocation required

- e.g. vector<double>
- declare type as resizeable
- specialize resize template
- USe initially_resizer, always_resizer, Or never resizer in stepper

fixed size - memory allocation not required

- e.g. array<double, N>
- declare type as not resizeable
- that's it

Declare Resizeability

```
/* by default any type is not resizable */
template< class Container >
struct is resizeable
   typedef boost::false type type;
   const static bool value = type::value;
};
/* specialization for std::vector */
template < class T, class A >
struct is_resizeable< std::vector< T , A >>
   typedef boost::true_type type;
   const static bool value = type::value;
};
```

To use a new dynamic sized type, this has to be specialized by the user.

Tell odeint how to resize

Again: only required if

```
is_resizeable<state_type>::type == boost::true_type.
```

Class Template responsible for resizing:

```
template< class StateOut , class StateIn >
struct resize_impl
{
    /* standard implementation */
    static void resize( StateOut &x1 , const
        StateIn &x2 )
    {
        x1.resize( boost::size( x2 ) );
    }
};
```

For anything that does not support boost::size and/or resize the user must provide a specialization.

Tell odeint when to resize

```
typedef initially_resizer resizer; //default
```

Resizing only at first step (memory allocation)

```
typedef always_resizer resizer;
```

Resizing at every step (expanding lattice)

```
typedef never_resizer resizer;
```

Resizing manually by the user (stepper.adjust_size)

```
typedef runge_kutta4< state_type , value_type ,
    deriv_type , time_type , algebra ,
    operations , resizer > stepper_type;
```

$$\vec{x}_1 = \vec{x}_0 + b_1 \cdot \Delta t \cdot \vec{F}_1 + \dots + b_s \cdot \Delta t \cdot \vec{F}_s$$

Split into two parts:

- 1. Algebra: responsible for iteration over vector elements
- 2. Operations: does the mathematical computation on the elements

Similar to std::for each

```
Algebra algebra;

algebra.for_each3( x1 , x0 , F1 ,

Operations::scale_sum2( 1.0, b1*dt );
```

$$\vec{x}_1 = \vec{x}_0 + b_1 \cdot \Delta t \cdot \vec{F}_1 + \dots + b_s \cdot \Delta t \cdot \vec{F}_s$$

Split into two parts:

- 1. Algebra: responsible for iteration over vector elements
- 2. Operations: does the mathematical computation on the elements

Similar to std::for_each

The types Algebra and Operations are template parameters of the steppers, hence exchangeable.

```
state_type x1, x2, ... algebra_type algebra;
```

Algebra has to have defined the following member functions:

```
algebra.for_each1( x1 , unary_operation );
algebra.for_each2( x1, x2, binary_operation );
algebra.for_each3( ... );
:
algebra.for_each15( ... , fifteen_ary_op );
```

```
state_type x1, x2, ...
algebra_type algebra;
```

Algebra has to have defined the following member functions:

```
algebra.for_each1( x1 , unary_operation );
algebra.for_each2( x1, x2, binary_operation );
algebra.for_each3( ... );
:
algebra.for_each15( ... , fifteen_ary_op );
```

odeint takes the operations from the class Operations.

Operations

Operations is a class with the following member classes:

- scale
- scale_sum1
- scale_sum2

÷

• scale_sum14

These classes need a constructor and ()-operator that works together with the algebra:

This computes: $\vec{x}_1 = 1.0 \cdot \vec{x}_0 + b_1 \Delta t \cdot \vec{F}_1$.

Example Implementation: range_algebra

```
struct range algebra {
template < class S1 , class S2 , class S3 , class Op >
static void for_each2( S1 &s1, S2 &s2, S3 &s3, Op op )
   detail::for each2( boost::begin(s1), boost::end(s1),
                      boost::begin(s2), boost::begin(s3),
                      ( go
};
namespace detail {
template < class Iter1, class Iter2, Iter3, class Op >
void for each2 ( Iter1 first1, Iter1 last1,
                 Iter2 first2, Iter3 first3, Op op )
     for(; first1 != last1;)
         op( *first1++ , *first2++ , *first3++ );
. . .
};
```

Example Implementation: default_operations

```
template < class Fac1 , class Fac2 >
struct scale sum2
  const Fac1 m alpha1;
  const Fac2 m alpha2;
  scale_sum2( Fac1 alpha1 , Fac2 alpha2 )
    : m alpha1 ( alpha1 ) , m alpha2 ( alpha2 )
 template< class T1 , class T2 , class T3 >
 void operator() ( T1 &t1 , const T2 &t2 ,
    const T3 &t3 )
  { t1 = m_alpha1 * t2 + m_alpha2 * t3; }
 typedef void result_type;
};
```

For example vector< double >:

As these are also the default values, this can be shortened:

```
typedef runge_kutta4<state_type> stepper_type;
```

range_algebra & default_operations work also with

- vector< complex<double> >
- list< double >
- array< double , N >

range_algebra & default_operations work also with

- vector< complex<double> >
- list< double >
- array< double , N >

What about

- Ublas vector
- trivial state type like double
- generally: state_type that support operators +, *

→ vector_space_algebra!

vector_space_algebra

```
struct vector_space_algebra {
template< class S1 , class S2 , class S3 ,
    class Op >
static void for_each3( S1 &s1 , S2 &s2 ,
                       S3 &s3 , Op op )
  op(s1,s2,s3);
```

- delegates state_type directly to the operations
- no iteration
- works together with default_operations with any state_type that supports operators +, *

Other Examples

fusion_algebra: works with compile-time sequences like fusion::vector of Boost.Units

thrust_algebra & thrust_operations: Use thrust library to perform computation on CUDA graphic cards

mkl_operations: Use Intel's Math Kernel Library

See tutorial and documentation on www.odeint.com for more.

Other Examples

fusion_algebra: works with compile-time sequences like
 fusion::vector of Boost.Units

thrust_algebra & thrust_operations: Use thrust library to perform computation on CUDA graphic cards

mkl_operations: Use Intel's Math Kernel Library

See tutorial and documentation on www.odeint.com for more.

Important

Division into Algebra and Operations gives us great flexibility. However, state type, algebra and operations must coorporate to make odeint work!

More details

- State wrapper for construction/destruction of state types
- More requirements on Algebras when using controlled steppers (algebra.reduce)
- Implicit routines using Ublas
- Generation functions to create controlled / dense output steppers
- TMP Runge-Kutta implementation (see my talk on Thursday afternoon!)

Introduction

2 Tutorial

Technical details

4 Conclusion and Discussion

Conclusion

odeint is a modern C++ library for solving ODEs that is

- easy-to-use
- highly-flexible
 - data types (topology of the ODE, complex numbers, precision, ...)
 - computations (CPU, CUDA, OpenMP, ...)
- fast

Where can odeint be used?

- Science
- Game engine and physics engines
- Simulations
- Modelling
- Data analysis
- High performance computing

Who uses odeint

NetEvo – Simulation dynamical networks

OMPL – Open Motion Planning Library

icicle - cloud/precipitation model

Score – Commercial Smooth Particle Hydrodynamics Simulation

VLE – Virtual Environment Laboratory (planned to use odeint)

Several research groups

. . .

Roadmap

Near future:

- Current release documentation, bug fixing
- Boost Review process
- Implicit steppers

Further plans

- Dormand-Prince 853 steppers
- More algebras: MPI, cublas, TBB, John Maddock's arbitrary precision library, Boost SIMD library

Persepective

- C++11 version
- sdeint methods for stochastic differential equations
- ddeint methods for delay differential equations