Задание 7. Синтаксис языка бескванторных формул первого порядка

Для получения языка бескванторных формул язык атомарных формул обогащается новыми символами, так называемыми *пропозициональными* символами¹. Они позволяют строить более сложные формулы.

Учебные задачи

- 1. Выучить термины и их значения: пропозициональные символы: контонкция, дизтонкция, импликация, отрицание, бескванторная формула сигнатуры S.
- 2. НАУЧИТЬСЯ ВЫПОЛНЯТЬ: строить доказательство бескванторной формулы, узнавать бескванторные формулы среди других символьных цепочек.

Теоретические сведения

Алфавит языка бескванторных формул первого порядка. Рассмотрим два новых множества символов:

$$Pro := \{ \neg, \&, \lor, \to \}$$

 $Bra := \{ (,) \}$

Символы из Pro называются пропозициональными связками. Пропозициональные связки называются соответственно отрицанием, контонкцией, дизтонкцией и импликацией.

Символы из Вга называются *скобками*: (— *левая*, или *открываю- щая*, скобка,) — *правая*, или *закрывающая*, скобка.

Определение. *Алфавитом стандартного языка бескванторных* формул первого порядка будем называть объединение множеств Con, Fun, Rel, Var, Pro, Bra.

Определения сигнатуры, терма и определение атомарной формулы языка бескванторных формул первого порядка такие же, как определения терма языка термов и определение атомарной формулы языка атомарных формул соответственно.

Бескванторные формулы языка первого порядка. Введем понятие *формул* языка бескванторных формул первого порядка, которые будем называть также *бескванторными формулами первого порядка*, или

 $\mathit{бескванторными}\ \mathit{формулами}.$ Будем использовать буквы $A,\ B,\ \dots$ в качестве переменных языка иссследователя для обозначения $\mathit{формул}.$

Определение.

(Ф1) Всякая атомарная формула есть бескванторная формула.

 $(\Phi 2\text{-}\Phi 5)~$ Если $\textbf{\emph{A}}$ и $\textbf{\emph{B}}$ есть бескванторные формулы, а $\textbf{\emph{x}}-$ предметная переменная, то слова

$$\neg A \ (A \& B), \ (A \lor B), \ (A \to B)$$

также есть бескванторные формулы.

С помощью введенных символьные переменных языка исследователя, мы можем записать это определение в виде правил *исчисления формул* следующим образом:

$$rac{P^n t_1 \dots t_n}{(\Phi_1)} \stackrel{(\Phi_1)}{=} rac{A}{\neg A} \stackrel{(\Phi_2)}{=} ;$$
 $rac{A \quad B}{(A \otimes B)} \stackrel{(\Phi_3)}{=} ; rac{A \quad B}{(A \vee B)} \stackrel{(\Phi_4)}{=} ; rac{A \quad B}{(A \rightarrow B)} \stackrel{(\Phi_5)}{=} .$

Определение. Всякую формулу и всякий терм языка бескванторных формул будем называть *правильным выражением* этого языка.

Определение. *Логическим рангом* правильного выражения языка называется общее число вхождений в это выражение символов из ${\bf Pro.}$ Логический ранг формулы ${\bf A}$ обозначается ${\bf rank}({\bf A}).$

Определение. $\Pi od\phi oрмулой$ формулы A называется подслово формулы A, которое само является формулой.

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Составьте формулу стандартного языка бескванторных формул, в которую имеет вхождения каждый из следующих символов (но, возможно, еще и другие символы):

(a)
$$\vee$$
, $\hat{}$, f_1^1 , c_0 ; (6) \neg , (, P_1^2 , f_2^2 .

- **2.** Какова наименьшая из длин формул стандартного языка, содержащих вхождения каждого из символов \vee , \neg ?
- **3.** Докажите, что следующее слово есть формула некоторого стандартного языка бескванторных формул первого порядка:

 $^{^{1}}$ от латинского $\mathit{propozitio}$ — суждение, предложение.

- (a) $(P_1^2 f_2^2 x_0 c_0 x_1 \rightarrow \cong f_2^2 f_1^1 x_0 c_0 x_1);$ (b) $((P_1^1 x_0 \& P_1^1 x_1) \rightarrow \cong x_0 x_1);$
- (B) $((\neg \Rightarrow f_1^1 x_0 c_0 \lor \neg P_1^1 x_0) \to P_1^1 f_1^1 x_1).$
- 4. Какие из следующих слов являются формулами стандартного языка бескванторных формул первого порядка:

- 5. Рассматривается стандартный язык бескванторных формул, алфавит которого содержит символы P_1^2 , P_2^3 , P_3^1 , f_1^1 , f_2^2 , f_3^3 , c_1 , c_2 , c_3 . Определите, является ли слово α правильным выражением языка или нет:
 - (a) $\alpha \stackrel{\circ}{=} (P_1^2 x_1 f_2^3 x_1 x_2 x_3 \vee P_2^3 x_1 x_2 x_3) \& \neg P_2^1 x_1)$;
 - (6) $\alpha = f_1^1 f_2^2 f_2^3 x_1 x_0 x_2 x_0$;
 - (B) $\alpha = (\neg x_1 P_1^2 f_1^1 x_1 x_2 \rightarrow P_2^3 x_1 x_2 c_2)$:
 - (r) $\alpha = (f_2^3 x_1 x_2 \& P_2^1 x_1)$:
 - (π) $\alpha = (P_1^2 x_1 x_2 \& \neg P_2^1 x_2 \lor \neg P_1^2 x_1 c_1);$
 - (e) $\alpha \stackrel{\circ}{=} ((\neg P_1^2 x_1 x_2) \& (P_2^1 x_1 \to P_2^1 c_1)).$
- 6. Устраните опечатки (замените, вставьте или удалите минимальное число знаков) так, чтобы полученные слова стали формулами языка бескванторных формул первого порядка:
 - (a) $((= x_1 x_2 = x_2 x_3) \rightarrow = x_1 x_3);$ (b) $((P_1^2 x_1 \& P_1^1 x_2 \rightarrow = x_1 x_2);$
 - (B) $P_1^2 x_0 x_1 \to (P_1^1 x_1 \vee P_1^1 x_0);$ (C) $((P_1^2 x_1 x_2 \to \neg x_1) \vee P_2^1 x_0).$
 - 7. Какой логический ранг имеет следующая формула:
 - (a) $(\neg P_1^2 x_1 x_2 \lor (x_1 f_1^1 x_2 \rightarrow f_1^1 x_1 x_2))$:
 - (6) $\neg (\neg (P_2^2 x_1 x_2 \lor \neg P_1^1 x_0) \to ((\neg P_1^1 x_1 \& \neg P_1^1 x_2) \to \neg = x_1 x_2)).$
- 8. Какова наименьшая длина формулы, логический ранг которой равен 2?
- 9^* . Установите, какие из значений может принимать $\operatorname{rank}(A)$ логический ранг формулы A, если известно, что длина формулы A равна n $(n \in \mathbb{N}).$
 - 10. Сколько подформул имеет формула:
 - (a) $= f_1^2 f_2^1 x_0 f_3^2 x_1 x_2 f_4^1 x_2$;
 - (6) $(P_1^2 f_1^1 x_1 x_2 \vee \neg (P_1^2 x_1 f_1^1 x_2 \& \neg P_2^1 f_1^1 x_1));$
 - (B) $((\neg P_1^2 f_1^1 x_0 x_1 \& P_2^1 x_1) \to (P_1^2 f_1^1 x_0 x_1 \lor \neg P_2^1 x_1));$
 - (r) $((P_1^1x_1 \to \neg P_1^1x_1) \to \neg (P_1^1x_1 \to \neg P_1^1x_1))$.

 11^* . Для каких натуральных n существует формула, имеющая точно n подформул?

Задание 8. Семантика языка бескванторных формул первого порядка

Правила семантики языка бескванторных формул расшифровывают смысл каждой из пропозициональных связок.

Учебные задачи

- 1. Выучить термины и их значения: значение бескванторной формулы в данной интерпретации при данных значениях переменных.
- 2. НАУЧИТЬСЯ ВЫПОЛНЯТЬ: находить значение бескванторной формулы; находить значения переменных, при которых данная бескванторная формула имеет данное значение.

Теоретические сведения

Общая часть семантики языков атомарных формул и бескванторных формул. Заметим, что в синтаксисах языков атомарных формул и изучаемых нами сейчас языков бескванторных формул первого порядка имеется много общего:

- у этих языков одни и те же сигнатуры,
- у этих языков одни и те же термы,
- каждая атомарная формула является также и формулой языка первого порядка (обратное, конечно, неверно).

Много общего и в семантиках этих языков. А именно:

- интерпретация сигнатуры языка в непустом множестве М,
- значение переменной в этом множестве,
- значение терма при данных значениях предметных переменных,
- значение атомарной формулы при данных значениях предметных переменных

для языка первого порядка определяются точно также, как и для языка атомарных формул.

Значение неатомарной бескванторной формулы. Определим теперь значение неатомарной формилы A в выбранной интерпретации и при заданных значениях свободных переменных этой формулы. Как известно, всякая неатомарная формула строится из более коротких частей с помощью логических символов.