Расчётно-графическая работа

Новый стандарт симметричного шифрования AES

Цель работы

Знакомство с новым стандартом симметричного шифрования AES (Rijndael), принятым в 2001 году. Приобретение практических навыков использования данного алгоритма шифрования.

Onucaние алгоритма AES

AES (Rijndael) представляет собой итеративный блочный шифр, имеющий переменную длину блоков и различные длины ключей. Длина ключа и длина блока могут быть независимо друг от друга 128, 192 или 256 бит (стандарт AES использует длину блока только 128 бит) [1, 2]. Алгоритм шифра представлен на рисунке 1:

Рисунок 1 – Процесс шифрования текста алгоритмом AES

Состояние, ключ шифрования и число циклов

Разнообразные преобразования работают с промежуточным результатом шифрования, называемым *состоянием* (State).

Состояние можно представить в виде прямоугольного массива байт. Этот массив имеет 4 строки, а число столбцов обозначено как Nb и равно длине блока, делённой на 32.

Ключ шифрования также представлен в виде прямоугольного массива с четырьмя строками. Число столбцов обозначено как Nk и равно длине ключа, делённой на 32. Это показано на рисунке 2:

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}
a _{3,0}					

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

Рисунок 2 — Пример представления состояния (Nb = 6) и ключа шифрования (Nk = 4)

В некоторых случаях ключ шифрования показан как линейный массив 4-байтных слов. Слова состоят из 4 байт, которые находятся в одном столбце (при представлении в виде прямоугольного массива).

Входные данные для шифра ("открытый текст") обозначаются как байты состояния в порядке $a_{0,0},\ a_{1,0},\ a_{2,0},\ a_{3,0},\ a_{0,1},\ a_{1,1},\ a_{2,1},\ a_{3,1},\ a_{0,2},\dots$ После завершения действия шифра выходные

данные получаются из байт состояния в том же порядке. Число циклов обозначено как Nr и зависит от значений Nb и Nk. Оно приведено в таблице 1.

Tаблица 1- Число циклов (Nr) как функция от длины ключа и длины блока

Nr	Nb = 4	Nb = 6	Nb = 8
Nk = 4	10	12	14
Nk = 6	12	12	14
Nk = 8	14	14	14

Цикловое преобразование

Цикловое преобразование состоит из четырёх различных преобразований. На языке псевдокода это выглядит следующим образом:

В приведённой записи функции **Round ()**, **SubBytes ()** и другие выполняют свои действия над массивами, указатели на которые (т.е. **State**, **RoundKey**) им передаются.

Как можно заметить, последний цикл отличается от простого цикла только отсутствием замешивания столбцов. Каждое из приведённых преобразований разобрано далее.

Замена байт (SubBytes)

Блоки замен в шифре Rijndael играют важную роль. Согласно основополагающим принципам, сформулированным ещё К. Шенноном, преобразования данных, используемые в шифре, должны придавать последнему два основных свойства – рассеивание и перемешивание.

Преобразование **SubBytes** представляет собой нелинейную замену байт, выполняемую независимо с каждым байтом состояния. Таблицы замены (или *S-блоки*) являются инвертируемыми и построены из композиции двух преобразований:

- 1. Получение обратного элемента относительно умножения в поле $GF(2^8)$, при этом '00' переходит сам в себя.
- 2. Применение аффинного преобразования (над $GF(2^8)$), определённого как:

$$\begin{vmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{vmatrix}, \begin{vmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{vmatrix} + \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix}.$$

Применение описанного *S*-блока ко всем байтам состояния обозначено как **Sub-Bytes** (**State**). Рисунок 3 иллюстрирует применение преобразования **SubBytes** к состоянию.

Рисунок 3 – SubBytes действует на каждый байт состояния

Преобразование сдвига строк (ShiftRows)

Последние 3 строки состояния циклически сдвигаются на различное число байт. Строка 1 сдвигается на C_1 байт, строка 2 — на C_2 байт и строка 3 — на C_3 байт. Значения сдвигов C_1 , C_2 и C_3 зависят от длины блока Nb. Их величины приведены в таблице 2.

Таблица 2 – Величина сдвига для разной длины блоков

Nb	C_1	\mathcal{C}_2	C_3
4	1	2	3
6	1	2	3
8	1	3	4

Операция сдвига последних 3 строк состояния на определённую величину обозначена как **ShiftRows (State)**. Рисунок 4 показывает влияние преобразования на состояние:

Pucyнok 4 – ShiftRows действует на строки состояния

Преобразование замешивания столбцов (MixColumns)

В этом преобразовании столбцы состояния рассматриваются как многочлены над $GF(2^8)$ и умножаются по модулю $x^4 + 1$ на многочлен c(x), имеющий следующий вид:

$$c(x) = '03' \cdot x^3 + '01' \cdot x^2 + '01' \cdot x + '02'.$$

Это может быть представлено в виде матричного умножения. Пусть $b(x) = c(x) \cdot a(x)$, тогда

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Применение этой операции ко всем четырём столбцам состояния обозначено как **MixColumns** (State). Рисунок 5 демонстрирует применение **MixColumns** к состоянию:

Рисунок 5 – MixColumns действует на столбцы состояния

Добавление циклового ключа

В данной операции цикловой ключ добавляется к состоянию посредством операции XOR. Цикловой ключ вырабатывается из ключа шифрования посредством алгоритма выработки ключей (Key Schedule). Длина циклового ключа равна длине блока Nb. Преобразование, содержащее добавление посредством XOR циклового ключа к состоянию, обозначено как AddRoundKey (State, RoundKey) и проиллюстрировано на рисунке 6:

Рисунок 6 – Формирование циклового ключа

Алгоритм выработки ключей (Key Schedule)

Цикловые ключи получаются из ключа шифрования посредством алгоритма выработки ключей. Он содержит два компонента: расширение ключа (Key Expansion) и выбор циклового ключа (Round Key Selection). Основополагающие принципы алгоритма выглядят следующим образом:

- 1. Общее число бит цикловых ключей равно длине блока, умноженной на число циклов плюс 1 (например, для длины блока 128 бит и 10 циклов требуется 1408 бит циклового ключа).
- 2. Ключ шифрования расширяется в расширенный ключ (Expanded Key).
- 3. Цикловые ключи берутся из расширенного ключа следующим образом: первый цикловой ключ содержит первые Nb слов, второй следующие Nb слов, и т.д.

Расширение ключа (Key Expansion)

Расширенный ключ представляет собой линейный массив четырёхбайтных слов и обозначен как $W[Nb\cdot(Nr+1)]$. Первые Nk слов содержат ключ шифрования. Все остальные слова определяются рекурсивно из слов с меньшими индексами. Алгоритм выработки ключей зависит от величины Nk: ниже приведена версия для $Nk \le 6$ и версия для Nk > 6.

Для $Nk \le 6$ имеем:

```
KeyExpansion (CipherKey, W)
{
  for (i = 0; i < Nk; i++)
     W[i] = CipherKey[i];
  for (j = Nk; j < Nb * (Nk+1); j += Nk)
     {
     W[j] = W[j-Nk] ^ SubBytes (Rotl (W[j-1])) ^ Rcon[j/Nk];
     for (i = 1; i < Nk && i+j < Nb * (Nr+1); i++)
          W[i+j] = W[i+j-Nk] ^ W[i+j-1];
     }
}</pre>
```

Как можно заметить, первые Nk слов заполняются ключом шифрования. Каждое последующее слово W[i] получается посредством применения операции XOR для предыдущего слова W[i-1] и слова на Nk позиций ранее W[i-Nk]. Для слов, позиция которых кратна Nk, перед операцией XOR применяется преобразование к W[i-1], а затем ещё прибавляется цикловая кон-

станта. Преобразование содержит циклический сдвиг байт в слове, обозначенный как **Rot1**, а затем следует **SubBytes** – применение замены байт.

```
Для Nk > 6 имеем:
```

```
KeyExpansion (CipherKey, W)
{
  for (i = 0; i < Nk; i++)
      W[i] = CipherKey[i];
  for (j = Nk; j < Nb * (Nk+1); j += Nk)
      {
      W[j] = W[j-Nk] ^ SubBytes (Rotl (W[j-1])) ^ Rcon[j/Nk];
      for (i = 1; i < 4; i++)
            W[i+j] = W[i+j-Nk] ^ W[i+j-1];
      W[j+4] = W[j+4-Nk] ^ SubBytes (W[j+3]);
      for (i = 5; i < Nk; i++)
            W[i+j] = W[i+j-Nk] ^ W[i+j-1];
    }
}</pre>
```

Отличие для схемы при Nk > 6 состоит в применении **SubBytes** для каждого 4-го байта из Nk.

Цикловая константа не зависит от Nk и определяется следующим образом:

```
Rcon[i] = (RC[i], '00', '00', '00');
где
RC[0] = '01';
RC[i] = xtime (Rcon[i-1]);
```

Выбор циклового ключа

i-й цикловой ключ получается из слов массива циклового ключа от $W[Nb \cdot i]$ и до $W[Nb \cdot i]$. Это показано на рисунке 7:

Pисунок 7 — Pасширение ключа и выбор циклового ключа для Nb = 6 и Nk = 4.

Замечание: Алгоритм выработки ключей можно осуществлять и без использования массива $W[Nb\cdot(Nr+1)]$. Для реализаций, в которых существенно требование к занимаемой памяти, цикловые ключи могут вычисляться на лету посредством использования буфера из Nk слов.

Общий алгоритм шифрования

Шифр Rijndael состоит из:

- начального добавления циклового ключа;
- Nr 1 циклов;
- заключительного цикла.

На языке псевдокода это выглядит следующим образом:

```
Rijndael (State, CipherKey)
{
    KeyExpansion (CipherKey, ExpandedKey);  // Расширение ключа
    AddRoundKey (State, ExpandedKey);  // Добавление циклового ключа
    for (i = 1; i < Nr; i++)
        Round (State, ExpandedKey + Nb * i);  // циклы
    FinalRound (State, ExpandedKey + Nb * Nr);  // заключительный цикл
}
```

Если предварительно выполнена процедура расширения ключа, то Rijndael будет выглядеть следующим образом:

```
Rijndael (State, CipherKey)
{
  AddRoundKey (State, ExpandedKey);
  for (i = 1; i < Nr; i++)
    Round (State, ExpandedKey + Nb * i);
  FinalRound (State, ExpandedKey + Nb * Nr);
}</pre>
```

<u>Замечание</u>: Расширенный ключ **всегда** должен получаться из ключа шифрования и никогда не указывается напрямую. Нет никаких ограничений на выбор ключа шифрования.

Задание

Для заданных в варианте открытого текста и ключа выполнить первый раунд шифрования по алгоритму AES.

Требования к оформлению отчёта

В отчёте в шестнадцатеричном виде должны быть приведены значения, находящиеся в состоянии (**State**) после:

- сложения открытого текста с раундовым ключом перед первым раундом;
- преобразования SubBytes;
- преобразования ShiftRows;
- преобразования MixColumns;
- сложения текущего состояния с раундовым ключом после первого раунда (это и есть главный результат РГР).

В отчёте должны быть подробно приведены все вычисления.

Критерии оценивания качества работы

- 1. Правильность ответов:
 - 1 все требуемые значения найдены правильно;
 - 0 не более 4 байт главного результата содержат ошибки;
 - **л.р.** не принимается более 4 байт главного результата содержат ошибки.
- 2. Подробность решения:
 - 1 все расчёты приведены подробно;
 - 0 не все расчёты приведены подробно.
- 3. Глубина понимания материала расчётно-графической работы:
 - 1 быстрые и правильные ответы на все вопросы;
 - 0 не на все вопросы ответы правильные и быстрые;
 - **л.р.** не принимается на половину вопросов ответы неправильные.

Варианты

Bap.					(Эті	срь	ІТЬ	ій т	гек	сті	и к.	лю	Ч			
1	P=	5D	3F	3F	7A	2D	3F	06	3F	AC	2C	64	26	2B	1B	60	11
	K=	3F	3F	5A	76	6F	12	2B	38	3F	53	19	5A	5D	3C	Α6	41
2	P=	32	7B	ВВ	08	6A	AB	3F	65	4D	AC	45	75	Α6	4D	6E	27
	K=	5C	47	2B	2B	3F	3F	6F	33	35	69	13	AC	3F	5A	61	31
3	P=	2D	2B	65	65	Α6	2D	Α6	3F	3F	48	74	3F	65	49	55	29
5	K=	3F	04	3F	75	6F	0A	41	4C	09	В7	0C	3F	3F	34	4F	3F
4	P=	48	69	71	5A	12	3F	74	AC	6D	28	11	А6	34	51	2B	6F
4	K=	95	2D	65	69	2D	53	7D	AC	64	Α6	24	6E	0A	28	42	57
5	P=	45	62	3F	35	3D	2F	1C	54	03	61	6E	3F	6B	0B	4E	70
)	K=	4B	04	2D	75	28	3A	A6	3F	6B	0B	1E	61	20	28	74	79

Bap.			Открытый текст и ключ														
6	P=	50	60	0B	17	3F	2B	43	3A	43	3F	79	54	41	2B	65	24
6	K=	2D	54	3F	А6	3F	54	1F	36	43	В1	AC	3F	42	69	2D	65
7	P=	5A	23	0F	55	64	76	79	65	AC	4E	75	3F	49	75	В1	61
	K=	3F	09	35	03	62	45	7D	61	49	2B	4E	2D	6E	5E	2B	10
8	P=	3F	33	61	3F	3F	2B	3F	47	69	4A	31	2D	2B	95	21	3F
0	K=	75	4C	65	69	76	40	2B	Α6	2B	2D	AB	7F	6D	Α6	09	3F
9	P=	Α6	4E	58	В1	2D	69	25	А6	5F	65	5C	3F	2D	65	61	2C
9	K=	09	1E	41	6D	4F	3F	В1	49	15	4E	31	3F	Α6	74	0F	38
10	P=	45	3F	6F	2A	6F	65	05	А6	03	56	3F	AC	3F	04	5C	2E
10	K=	3F	2B	6F	3F	2D	31	2D	72	15	E3	2A	05	3F	69	3D	62

11 K)= (=	3F	A6			Открытый текст и ключ													
12 R	_	_		3F	3F	3F	41	3F	43	75	79	1D	22	42	3F	3C	4C		
12 K	_	20	55	3F	44	75	AC	28	A6	6B	2D	27	3F	76	32	4E	6F		
K	P=	12	3F	33	3F	22	76	74	4E	65	34	64	75	57	75	25	2D		
Ь	(=	3F	45	2D	3F	2D	AB	2B	3D	50	61	4C	30	65	29	2E	4E		
1 - a IF)=	75	75	В1	79	58	4F	1A	3F	3F	A6	53	AC	23	48	5F	7F		
13 K	(=	64	7E	71	AC	51	3F	26	58	6F	10	11	2D	6A	A6	2D	В7		
P)=	3F	2B	3F	56	Α0	2D	A6	69	3F	AC	11	3F	54	4F	5E	79		
14 K	(=	3C	A6	3F	0E	0C	В7	2B	4F	43	4C	63	45	2D	53	3F	75		
4 - P)=	61	30	45	54	3F	29	3F	35	3F	2C	37	3F	55	21	26	AC		
15 K	(=	2D	2B	AB	2B	4E	5A	6F	2C	A6	63	6F	49	2D	25	69	3F		
4.5 P)=	3F	40	18	4E	2D	3F	42	79	65	AC	6F	59	2D	3F	2D	54		
16 K	(=	A6	3F	6A	79	76	ВВ	6E	76	61	0A	6F	09	2F	3F	65	2D		
17 P)=	3F	38	3F	10	66	68	95	10	28	A6	11	64	AC	3D	2D	36		
17 K	(=	75	7F	3F	39	3F	3F	24	6C	41	3F	10	2D	2D	58	62	3F		
10 P)=	37	0F	3F	3F	26	17	37	42	54	3F	3F	2B	3F	3E	3F	01		
18 K	(=	14	41	Α6	6B	59	66	60	69	3C	69	3F	68	0B	2E	3F	13		
10 P)=	3F	7A	3F	E3	A6	3E	2D	32	19	6F	2B	72	2C	В0	6C	2B		
19 K	(=	3F	09	34	4F	20	7F	5F	61	75	3F	7C	52	5C	3F	65	04		
20 P	=	12	75	2D	1B	0C	30	67	0E	14	A6	04	A6	10	54	59	54		
20 K	(=	69	4E	В7	37	29	54	AC	61	3F	4F	14	3F	Α6	2D	28	48		
21 P)=	35	61	60	A6	61	13	Α6	Α6	55	41	3F	3F	69	49	6F	3F		
21 K	(=	31	3F	43	В0	Α6	Α6	69	2D	3F	3F	2D	6F	5A	69	2D	2B		
22 P)=	7E	5C	В7	60	18	4C	4C	62	6E	4F	13	Α6	2D	3F	14	66		
22 K	(=	2D	6B	7C	09	54	02	Α6	45	69	54	23	50	2D	4C	3F	24		
22 P)=	26	0E	3F	2D	6F	2D	65	25	2D	65	ЗА	03	3D	16	75	39		
23 K	(=	2D	Α6	61	2B	3F	0B	Α6	3F	4C	61	27	3F	В1	AC	3F	3F		
24 P	P=	В1	3F	5B	30	75	19	7B	В0	49	3E	56	17	7C	68	3D	45		
24 K	(=	3F	33	ВВ	72	3F	69	3F	3D	3F	14	53	0A	71	3F	10	13		
25 P)=	28	3F	2B	2D	6F	47	4B	05	4E	3F	76	75	54	6F	61	3F		
کے _K	(=	3F	24	2D	AC	2B	79	49	5B	65	6F	3F	3F	2C	4F	25	3F		
26 P)=	25	54	3F	3F	2D	3F	2C	3F	54	63	2B	54	2B	2D	3F	2D		
K	(=	3F	2D	4B	95	4A	5D	2D	07	54	40	4F	16	21	2D	2D	5F		
27 P)=	40	3F	В1	63	61	6B	3A	1B	3F	3F	7C	54	3F	3F	33	Α6		
K	(=	4D	75	61	ВВ	65	72	2D	63	7B	11	4A	63	61	56	08	00		
28 P	P=	44	3F	73	3F	2B	2B	Α6	Α6	0F	48	0A	49	37	78	54	3F		
20 K	(=	33	3F	34	75	2C	50	17	3F	5F	3F	6B	55	6F	45	3F	A6		
29 P	P=	14	3F	31	69	2D	67	6A	61	2D	75	2B	14	2D	3C	5A	3F		
23 K	(=	3F	Α6	3C	12	12	1F	76	67	3F	2D	3F	41	3F	31	Α6	14		
30 P	P=	1C	65	3F	55	AC	2F	4E	5B	75	51	52	37	46	3F	3F	В7		
عد K	(=	AC	55	14	3C	76	6E	61	2B	43	3F	56	A6	AC	54	2D	2B		

Ran						<u></u>	m	ITI	ıŭ a	rat^	ст	U T^	пю				
Bap.		4.5	2.5				_									2.0	40
31	P=	18	3F	77	44	A6	60	3F	42	58	6D	3F	75	74	6B	39	42
	K=	50	2D	02	0E	3F	72	49	49	01	13	3A	65	4F	49	71	72
32	P=	5B	В0	17	41	75	Α6	49	2D	7D	65	75	3F	23	71	2D	04
	K=	21	0F	75	2D	24	19	В7	2D	14	Α6	AC	65	0E	2B	64	3F
33	P=	3C	6F	58	0C	2B	19	1D	79	3F	10	3F	35	75	Α0	79	22
	K=	4C	0C	4C	53	44	3D	19	Α6	07	E3	51	67	4E	04	5E	65
34	P=	65	6F	3F	Α6	4B	2A	22	3F	67	6F	2D	02	6F	4D	2D	51
54	K=	61	3F	4B	3F	61	3F	10	5E	3F	2E	95	69	54	3F	45	71
35	P=	3F	6D	75	27	95	67	71	48	2B	7E	3F	41	AC	3F	03	3F
33	K=	Α6	7B	06	1D	24	1B	60	14	4D	43	2F	2B	2B	2B	44	AB
26	P=	1 C	5A	6F	3F	3B	2D	3F	2D	2D	61	75	45	79	59	06	2A
36	K=	6F	54	2D	3F	10	75	49	01	75	61	6F	3F	2D	2B	4C	3F
27	P=	4C	39	3F	2D	65	Α6	75	2D	32	1A	75	29	Α6	57	23	3F
37	K=	61	2D	02	7B	67	75	20	4C	2E	4F	В0	10	7C	69	65	41
20	P=	56	2A	54	6A	7F	2D	6F	3F	09	43	31	19	4B	3E	44	66
38	K=	Α6	3F	08	A6	3F	2D	2D	25	78	Α6	61	01	07	27	5E	3F
39	P=	41	68	55	3F	7F	64	08	2B	3F	36	2B	3F	0E	2B	45	64
	K=	40	3F	2D	A6	09	1E	01	62	69	4C	4C	30	3E	6F	3B	41
	P=	36	61	AC	2D	37	5E	55	03	3F	5A	61	2B	2D	5C	5C	6C
40	K=	2F	33	41	1E	3F	37	3C	3B	13	5C	AC	25	69	61	2A	3F
	P=	03	A6	A6	76	72	3F	74	65	33	62	50	69	41	10	10	46
41	K=	3F	A6	AC	3F	76	4C	18	1B	3F	A6	10	7E	3F	31	3F	13
	P=	3E	14	22	41	3F	22	41	4C	2D	6E	7F	2D	40	18	48	4C
42	K=	E3	В0	3F	04	ВВ	AC	AC	3F	4E	6F	3F	2D	3F	A6	2B	A6
	P=	50	6E	3F	3F	1B	03	2B	3F	63	65	E3	A6	10	6C	26	45
43	K=	6F	5B	1F	AB	05	54	E3	3F	54	2D	2B	2D	17	74	69	75
	P=	41	41	1A	3F	50	3F	79	3F	3F	E3	6F	3F	56	6F	3F	45
44	K=	55	4C	3F	54	26	64	3F	7D	78	69	2D	5E	Α0	04	3F	3F
	P=	34	20	A6	51	6F	10	19	59	29	38	2D	A6	13	75	A6	21
45	K=	41	14	3F	3F	77	3F	7F	63	61	65	3F	3F	3F	2A	A6	3F
	P=	2D	42	49	7D	69	AC	54	45	A6	36	2C	3F	61	31	4E	2D
46	K=	3F	4A	26	64	6E	1D	31	1D	4C	1E	6E	2B	71	16	A6	3F
	P=	A6	A6	53	3F	76	A6	06	3F	50	42	17	10	08	2D	95	65
47	K=	4B	2D	A6	A6	3F	18	6C	54	61	71	36	69	A6	A6	10	3F
	P=	61	36	33	1E	17	69	3F	75	3F	45	2D	2D	50	10	4D	3F
48	K=	02	AB	55	64	54	60	61	3F	7E	0A	6F	7F	69	40	75	63
	P=	74	3F	1B	62	3F	18	AC	7B	75	7D	76	65	75	3F	73 B7	3B
49	Ρ= K=	74 2D	3F	1E	76	3F	02	3F	<u>7Б</u> В0	66	03	7E	6F	AC	AC	5B	32
	K= P=	+	73	3F		3F 17		3F 41	55	2D	3F	7E 3E		3F			
50	-	78	_	_	A0		3B				_	_	61	_	A6	26	61
	K=	79	3F	58	Α6	3F	Α6	2D	3F	2B	75	4D	3F	6F	14	2F	78

Вопросы для защиты

- І. Первая часть защиты (обязательная):
 - 1. В чём заключается преобразование **SubBytes**?
 - 2. В чём заключается преобразование ShiftRows?
 - 3. В чём заключается преобразование MixColumns?
 - 4. В чём заключается преобразование AddRoundKey?
 - 5. В чём заключается расширение ключей (Key Expansion)?
- II. Вторая часть защиты: Найти, чему равно $(a \cdot b)_{16}$ по модулю многочлена

$$m(x) = x^8 + x^4 + x^3 + x + 1$$
, если:

1.
$$a = F9_{16}$$
, $b = 9C_{16}$.5. $a = D9_{16}$, $b = 91_{16}$.2. $a = 63_{16}$, $b = BD_{16}$.6. $a = ED_{16}$, $b = FB_{16}$.3. $a = 3E_{16}$, $b = EB_{16}$.7. $a = 96_{16}$, $b = B1_{16}$.4. $a = 84_{16}$, $b = 6E_{16}$.8. $a = 5D_{16}$, $b = 21_{16}$.

Список литературы

- 1. Мао, В. Современная криптография: теория и практика : Пер. с англ. / В. Мао. М. : Издательский дом "Вильямс", 2005. 768 с.
- 2. Advanced Encryption Standard (AES): FIPS Publication 197. Springfield: National Technical Information Service, 2001. 47 p.