High-Accuracy Fake News Detection With AI Algortihms

Muhammed Akif Kaya 040220249 Istanbul Technical University Electronics & Communication Eng. kayamu22@itu.edu.tr Yavuz Selim Öztorun
040210121
Istanbul Technical University
Electronics & Communication Eng.
oztorun21@itu.edu.tr

Arda Boran Özcan
040200103
Istanbul Technical University
Electronics & Communication Eng.
ozcanard20@itu.edu.tr

Abstract—This work tackles the automatic detection of fake news using a lightweight yet highly accurate pipeline. The publicly available Fake and Real News Dataset ($\sim45\,\mathrm{k}$ articles) is cleansed and vectorised with TF–IDF ($5\,000$ features). We benchmark four classical/ensemble classifiers—Logistic Regression, Multinomial Naïve Bayes, Support Vector Machine, and Random Forest. After systematic evaluation, the ensemble model achieves a 99.75 % test accuracy, outperforming comparable classical approaches. The best model also yields macro-F1 = 0.98 with balanced precision and recall. Our results demonstrate that, for English fake-news detection, well-tuned traditional models remain competitive with deep architectures while offering superior interpretability and lower computational cost.

Index Terms—fake news detection, TF-IDF, logistic regression, support vector machine, random forest

I. INTRODUCTION

The rampant dissemination of misinformation poses significant social and political risks. Detecting fake news is challenging because deceptive content often mimics legitimate reporting and evolves quickly [?]. Although deep-learning approaches attract much attention, recent literature shows that classical machine-learning models—when paired with appropriate text representations and hyper-parameter tuning—can yield competitive performance at a fraction of the computational cost [?].

A. Contributions

- We curate and clean the *Fake and Real News Dataset* into a balanced corpus of 44 266 articles.
- A TF-IDF pipeline with 5 000 features is implemented for feature extraction.
- Four classifiers are compared; the Random Forest ensemble delivers the highest accuracy (99.75 %).
- We provide a confusion-matrix visualisation and release the full reproducible code.

II. RELATED WORK

Early fake-news studies relied on surface features and classical classifiers such as SVM or Naïve Bayes [?]. Deeplearning models (CNN, Bi-LSTM, transformers) have pushed accuracy above 97 % on benchmark datasets [?]. However, small footprint models remain attractive for on-device or resource-limited deployment [?]. Our work revisits classical

models, showing that ensemble techniques produce near-stateof-the-art accuracy without heavy compute.

III. DATASET

We use the **Fake and Real News Dataset**¹ (Kaggle). The corpus contains 23 481 fake and 21 417 real news articles (total 44 898). After removing incomplete entries, 44 266 samples remain. An 80/20 stratified split yields 35 412 training and 8 854 test articles.

IV. METHODOLOGY

A. Pre-processing

Text is lower-cased; URLs, digits, and punctuation are stripped (\sim 14 % token reduction). English stop-words are removed, and Porter stemming is applied. The corpus is then vectorised using TF–IDF with uni- and bi-grams, limited to the top 5 000 terms.

B. Models Evaluated

- Logistic Regression (LR) with L_2 regularisation.
- Multinomial Naïve Bayes (MNB) baseline.
- Support Vector Machine (SVM) with linear kernel, calibrated probabilities.
- Random Forest (RF) ensemble with n = 100 trees.

C. Training Details

All models are trained on TF-IDF features. Hyper-parameters (regularisation C, tree depth, etc.) are tuned via five-fold cross-validation on the training set. Evaluation metrics include Accuracy, Precision, Recall, and macro-F1.

V. RESULTS

The Random Forest classifier achieves the highest accuracy (99.75 %), surpassing all baselines by a clear margin. LR performs competitively (98.26 %) with minimal training cost. Figure 1 depicts the confusion matrix of the RF model.

¹https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset

TABLE I
TEST-SET PERFORMANCE AFTER HYPER-PARAMETER TUNING

Model	Accuracy	Precision	Recall	F1
Logistic Regression	0.9826	0.983	0.983	0.983
Naïve Bayes	0.9224	0.925	0.922	0.923
SVM (Linear)	0.9918	0.992	0.992	0.992
Random Forest	0.9975	0.998	0.998	0.998

Fig. 1. Confusion matrix for the Random Forest model.

VI. DISCUSSION

A. Why Does RF Win?

Random Forest benefits from bagging and feature-subspace sampling, reducing variance while capturing non-linear term interactions that LR or MNB miss. Despite the sparsity of TF–IDF vectors, tree ensembles handle high-dimensional sparse data effectively, explaining the superior accuracy.

B. Cost and Accuracy

Training the RF model on a standard laptop CPU (~ 10 s) is far cheaper than fine-tuning a transformer (~ 20 min GPU). This finding suggests that traditional ensembles remain a strong baseline, especially when compute is limited.

C. Limitations

- Dataset is English-only and may contain topic drift over time.
- TF-IDF ignores word order beyond bi-grams; contextual embeddings could further boost recall.

VII. CONCLUSION

We demonstrate that carefully tuned classical/ensemble models combined with TF-IDF representations can reach ≈ 99.8 % accuracy on a widely used fake-news dataset. Future work will test multilingual extensions and hybrid approaches (e.g. RF on BERT embeddings) to balance interpretability and accuracy.

FUTURE WORK

- Incorporate the LIAR dataset for out-of-domain robustness testing.
- Evaluate explainability techniques (SHAP) to identify influential terms.
- Deploy a lightweight serverless API for real-time news filtering.

REPRODUCIBILITY

Source code, dataset split, and instructions are available at https://github.com/akifitu/fake-news-detector.

ACKNOWLEDGMENT

We thank Dr. Behçet Uğur Töreyin for course guidance.