VLSI Devices Lecture 22

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

GIST Lecture

Coverage

- Two YouTube lectures reserved for advanced topics
 - -L14: Substrate bias, channel mobility
 - -L15: 3.2.1
 - -L16: 3.2.1 (Continued)
 - -L17: Velocity saturation (3.2.2)
 - -L18: Channel length modulation and so on (3.2.3, 3.2.4, 3.2.5)
 - -L19: MOSFET scaling
 - L20: MOSFET scaling (Continued)
 - -L21: Quantum effect (4.2.4)
- L22: Double-gate MOSFETs (10.3)
 - -L23: FinFETs
 - -L24: CFETs

MOSFET scaling

- First of all, we must understand the history. (~ 2011)
 - Comtemporary MOSFETs are not planar.

IMEC roadmap

Basic assumptions

- High-resolution lithographic techniques (Minimum L)
- Technological advancement in ion implantation (Shallow junction)

An architect and a construction worker (Image generated by ChatGPT)

Constant-field scaling (Dennard scaling)

Keep short-channel effects under control,

By scaling down the vertical dimensions along with the horizontal

dimensions.

- Decrease the applied voltage.

- Increase the substrate doping concentration.

Gate n^+ source t_{ox} W_D p-substrate, doping N_a

Original device

Doping κN_a

R. H. Dennard (Inventor of DRAM)

MOSFET constant-electric-field scaling (Taur, Fig. 4.1)

Rules for constant-field scaling (1)

- Scaling assumption ($\kappa > 1$)
 - Device dimensions (t_{ox} , L, W, and x_i): $1/\kappa$
 - Doping concentration (N_a and N_d): κ
 - -Voltage (V): $1/\kappa$
- Maximum drain depletion width

$$W_D = \sqrt{\frac{2\epsilon_{si}(\phi_{bi} + V_{dd})}{qN_a}} \rightarrow \sqrt{\frac{2\epsilon_{si}\left(\phi_{bi} + \frac{1}{\kappa}V_{dd}\right)}{q\kappa N_a}} \quad \text{Taur, Eq. (4.1)}$$

$$\approx \frac{1}{\kappa} \sqrt{\frac{2\epsilon_{si}(\phi_{bi} + V_{dd})}{qN_a}} = \frac{1}{\kappa} W_D$$

GIST Lecture

6

Rules for constant-field scaling (2)

- Capacitances
 - They scale down by κ .
- Charge per device ($\sim C \times V$)
 - It scaled down by κ^2 .
- Drain current
 - -The original one

$$I_{d} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{gs} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right]$$

$$\mu_{n} \kappa C_{ox} \frac{\frac{1}{\kappa} W}{\frac{1}{\kappa} L} \left[\left(\frac{1}{\kappa} V_{gs} - V_{t,scaled} \right) \frac{1}{\kappa} V_{ds} - \frac{1}{2} \frac{1}{\kappa^{2}} V_{ds}^{2} \right] \approx \frac{1}{\kappa} I_{d}$$

GIST Lecture

Effect of scaling on circuit parameters

- Important colcusion of constant-field scaling:
 - Once the device dimensions and the power-supply voltage are scaled down, the circuit speeds up by the same factor.

– Moreover, power dissipation per circuit, which is proportional to VI, is reduced by κ^2 .

GIST Lecture

Chronicles

- Intel and TSMC. IEDM and VLSI papers
 - 130nm: 2000 (Intel, IEDM)
 - 90nm: 2003 (Intel, IEDM)
 - 65nm: 2004 (Intel, IEDM)
 - 45nm: 2007 (Intel, IEDM)
 - 32nm: 2008 (Intel, IEDM)
 - 22nm: 2012 (Intel, VLSI)
 - 16nm: 2013 (TSMC, IEDM), 14nm: 2014 (Intel, IEDM)
 - 10nm: 2016 (TSMC, IEDM)
 - 7nm: 2016 (TSMC, IEDM)
 - 5nm: 2019 (TSMC, IEDM)
 - 3nm: 2022 (TSMC, IEDM)
 - 2nm: 2024 (TSMC, IEDM)

Prehistoric(?) MOSFET

- 130-nm MOSFET
 - Major issue: Cu interconnection (Previously, AI)
 - -Operation voltage: 1.3 V
 - -Oxide thickness: 1.5 nm
 - Poly-silicon gate

SUMMARY OF TRANSISTOR CHARACTERISTICS

Parameter		180 nm	This Work
	Generation [1]		
V_{DD}	[V]	1.5	1.3
L_{GATE}	[nm]	130	70
Tox	[nm]	2.0	1.5
I _{OFF}	$[nA/\mu m]$	3	10
$I_{DSAT}(n)$	[mA/µm]	1.04	1.02
$I_{DSAT}(p)$	[mA/ _µ m]	0.46	0.5
Low Vt IOFF	[nA/ _{LL} m]	-	100
Low Vt $I_{DSAT}(n)$ [mA/ μ m]		-	1.17
Low Vt $I_{DSAT}(p)$ [mA/ μ m]		-	0.6

Running out of steam

- In the early 2000s. Why?
 - Due to leakage limitations!
 - -The SiO₂ gate oxide had scaled to \sim 1.2 nm at the 90 nm generation.
 - → The gate oxide leakage was increasing exponentially and had become a noticeable percentage of total chip power.
 - Deceasing supply voltage → decreasing threshold voltage → everhigher subthreshold leakage current
- Increasing transistor leakage
 - Was against the market preferences.
 - -The 1980s and 1990s were the era of the home PC.
 - -The 2000s was the "mobile" era.

90-nm node

- Oxide thickness: 1.2nm (\times 0.8 scaling, not \times 0.7)
 - -SiGe was selectively deposited in PMOS source-drain regions to provide compressive channel strain.
 - A tensile SiN cap layer was deposited over NMOS transistors to provide tensile channel strain.

90nm uniaxial strained silicon transistors

Its impact

- Mobility enhancement
 - For electrons, tensile strain. For holes, compressive strain

Mobility characteristics under <110> uniaxial strain (K. Uchida, IEDM 2004)

"High-k + metal" gate

- We need to scale the "effective" oxide thickness.
 - Keeping the physical thickness & increasing the oxide capacitance
- Poly depletion effect is now removed.

65nm

45nm (high-k metal gate)

Performance

- Drive current improvement
 - -Strain engineering
 - High-k + metal gate

and leakage options

FinFET

- FinFET
 - Following its shape
 - Initially proposed as a SOI FinFET
 - Later, a bulk FinFET

Fins (Google images)

Planar transistor structure (left) and FinFET structure (right)

SEM image

- FinFET
 - Improved electrostatic control of the channel region

32nm planar transistors (left) and 22nm FinFETs (right)

Performance

- Steeper sub-threshold slope
 - $\times 10$ off-state leakage reduction

Thank you!