Identifying cryptic species within Mola Mola

• Working with the COI-5P gene

1. Extracting COI sequences from BOLD:

Seq_Mola <- bold_seqspec(taxon="Mola", marker="COI-5P")
Seq_Mola<-Seq_Mola%>%filter(!is.na(lat))

2. Divide sequences into different regions:

Seq_Mola\$country[5]<-"Northwest Pacific"
Seq_Mola\$country[which(Seq_Mola\$country == "Pacific Ocean")] <- "New Zealand"
Seq_Mola\$country[which(Seq_Mola\$country == "United States")] <- "US West Coast"

3. Making a map:

4. Export sequences data:

>AMS170-08_Australia

>AMS174-08_Australia

>ANGBF29549-19_New_Zealand

5. Align sequences using ClustalW (https://www.genome.jp/tools-bin/clustalw)

```
GBMIN97864-17_Australia
                        -----TTCGGTGCATG
GBMIN97865-17_New_Zealand
                        -----TTCGGTGCATG
GBMIN127327-17_New_Zealand
                        -----TTCGGTGCATG
GBMIN133155-17_New_Zealand
                        -----TTCGGTGCATG
GBMIN127325-17_New_Zealand
                       -----TTCGGTGCATG
GBMIN127326-17_New_Zealand
ANGBF29549-19_New_Zealand
                       -----TTCGGTGCATG
GBMIN97866-17_New_Zealand
                       -----TTCGGTGCATG
GBMIN97867-17_New_Zealand
AMS174-08_Australia
                       -----CCTTTATTTAGTATTCGGTGCATG
F0A02277-20_Australia
                       -----AAGATATCGGCACCCTTTATTTAGTATTCGGTGCATG
                        -----TTCGGTGCATG
ANGBF46642-19_Northwest_Pacifi
ANGBF46643-19_New_Zealand
                        -----TTCGGTGCATG
GBMIN127324-17_New_Zealand
                        -----TTCGGTGCATG
GBMIN122614-17_New_Zealand
                        -----TTCGGTGCATG
FCFPW158-06_Portugal
                        -----CCTTTATTTAGTATTCGGTGCATG
                        -----CCTTTATTTAGTATTCGGTGCATG
FCFPW216-06 Portugal
FMVIC396-08_Australia
                        -----CCTTTATTTAGTATTCGGTGCATG
GBGCA8530-15_Sweden
                       -----TTAGTATTCGGTGCATG
                     TCAACCAACCACAAAGACATTGGCACCCTTTATTTAGTATTCGGTGCATG
ANGBF46640-19_US_West_Coast
ANGBF46644-19_New_Zealand
TCHE024-12_US_West_Coast
                         -----CCTATACCTAATTTTCGGTGCCTG
AMS170-08_Australia
```

6. Make phylogenetic trees:

- Calculate DNA distance: Mola dist <- dist.dna(Mola Aligned)
- Make tip color based on regions:

tipcol_species[grep(Mola_tecta, Mola_UPGMA\$tip.label)] <- "purple"

- Draw UPGMA and NJ trees:

UPGMA

Neighbor Joining

Make trees with maximum likelihood:

7. Identifying cryptic species:

- Group sequences to find their group distances:

- Find the distances between groups of organisms by averaging the pairwise distances:

```
dif_spA_B<-mean(mola_dif$distance[c(intersect(mola_spA_c1,mola_spB_c2), intersect(mola_spA_c2,mola_spB_c1)) dif_spA_C<-mean(mola_dif$distance[c(intersect(mola_spA_c1,mola_spC_c2), intersect(mola_spA_c2,mola_spC_c1)) dif_spA_D<-mean(mola_dif$distance[c(intersect(mola_spA_c1,mola_spD_c2), intersect(mola_spA_c2,mola_spD_c1)) dif_spA_E<-mean(mola_dif$distance[c(intersect(mola_spA_c1,mola_spE_c2), intersect(mola_spA_c2,mola_spE_c1)) dif_spB_C<-mean(mola_dif$distance[c(intersect(mola_spB_c1,mola_spC_c2), intersect(mola_spB_c2,mola_spC_c1)) dif_spB_D<-mean(mola_dif$distance[c(intersect(mola_spB_c1,mola_spD_c2), intersect(mola_spB_c2,mola_spD_c1)) dif_spB_E<-mean(mola_dif$distance[c(intersect(mola_spB_c1,mola_spE_c2), intersect(mola_spB_c2,mola_spD_c1)) dif_spC_D<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spD_c2), intersect(mola_spC_c2,mola_spD_c1)) dif_spC_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spD_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spD_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spD_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c1)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c2)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE_c2)) dif_spD_E<-mean(mola_dif$distance[c(intersect(mola_spC_c1,mola_spE_c2), intersect(mola_spC_c2,mola_spE
```

dif_spA_B 0.04204993 dif_spA_C 0.09747940 dif_spA_D 0.09346111 dif_spA_E 0.05213972 dif_spB_C 0.01634060 dif_spB_D 0.02842873 dif_spB_E 0.03934232 dif_spC_D 0.06226652 dif_spC_E 0.08026428	•	dif_Mola [‡]
dif_spA_D 0.09346111 dif_spA_E 0.05213972 dif_spB_C 0.01634060 dif_spB_D 0.02842873 dif_spB_E 0.03934232 dif_spC_D 0.06226652 dif_spC_E 0.08026428	dif_spA_B	0.04204993
dif_spA_E 0.05213972 dif_spB_C 0.01634060 dif_spB_D 0.02842873 dif_spB_E 0.03934232 dif_spC_D 0.06226652 dif_spC_E 0.08026428	dif_spA_C	0.09747940
dif_spB_C 0.01634060 dif_spB_D 0.02842873 dif_spB_E 0.03934232 dif_spC_D 0.06226652 dif_spC_E 0.08026428	dif_spA_D	0.09346111
dif_spB_D 0.02842873 dif_spB_E 0.03934232 dif_spC_D 0.06226652 dif_spC_E 0.08026428	dif_spA_E	0.05213972
dif_spB_E 0.03934232 dif_spC_D 0.06226652 dif_spC_E 0.08026428	dif_spB_C	0.01634060
dif_spC_D 0.06226652 dif_spC_E 0.08026428	dif_spB_D	0.02842873
dif_spC_E 0.08026428	dif_spB_E	0.03934232
opo	dif_spC_D	0.06226652
dif D F 0.04422205	dif_spC_E	0.08026428
dif_SpD_E 0.04423263	dif_spD_E	0.04423285

• Work with Dloop gene:

1. Get the list of Genbank accession number and location from Yukiko Yoshita et al(2009) (https://link.springer.com/article/10.1007/s10228-008-0089-3)

Mola_Dloop

Location	Sample code (collection number)	Sampling date	TL (cm)	Accession number	Group	lon	lat
Pacific_northeastern_Japan	MA-1	25 Oct 2002	52	AB191719	В	141.23	41.07
Pacific_northeastern_Japan	MA-2	25 Oct 2002	58	AB191718	В	141.23	41.07
Pacific_northeastern_Japan	MA-4	26 Oct 2002	53	AB191717	В	141.23	41.07
Pacific_northeastern_Japan	MA-5	27 Oct 2002	38	AB191716	В	141.23	41.07
Pacific_northeastern_Japan	YI-1a	17 Jun 2005	230	AB439011	В	142.04	39.29
Pacific_northeastern_Japan	YI-5a	19 July 2005	227	AB439012	В	142.04	39.29
Pacific_northeastern_Japan	YI-6	20 July 2005	>220	AB439013	Α	142.04	39.29
Pacific_northeastern_Japan	YI-7	21 July 2005	ND	AB439014	Α	142.04	39.29
Pacific_northeastern_Japan	YI-8a	23 July 2005	256	AB439015	В	142.04	39.29
Pacific_northeastern_Japan	YI-9a	25 July 2005	269	AB439016	Α	142.04	39.29
Pacific_northeastern_Japan	YI-11	4 Aug 2005	94	AB439017	В	142.04	39.29
Pacific_northeastern_Japan	YI-12	4 Aug 2005	155	AB439018	В	142.04	39.29
Pacific_northeastern_Japan	YI-13	21 Sep 2005	38	AB439019	В	142.04	39.29
Pacific_northeastern_Japan	YI-14	27 Sep 2005	36	AB439020	В	142.04	39.29
Pacific_northeastern_Japan	YI-15	27 Sep 2005	38	AB439021	В	142.04	
Pacific_northeastern_Japan	YI-16a	21 Jun 2006	277	AB439022	В	142.04	39.29
Pacific_northeastern_Japan	YI-17a	24 Jun 2006	242	AB439023	В	142.04	39.29
Pacific_northeastern_Japan	YI-18a	26 Jun 2006	194	AB439024	В	142.04	39.29
Pacific_northeastern_Japan	YI-19a	29 Jun 2006	224	AB439025	В	142.04	39.29
Pacific_northeastern_Japan	YI-20a	30 Jun 2006	226	AB439026	В	142.04	39.29
Pacific_northeastern_Japan	YI-21a	22 July 2006	219	AB439027	В	142.04	39.29

2. Extracted dna sequences from genBank with ape:

seq_Mola_Dloop<-read.GenBank(Mola_Dloop\$`Accession number`)
write.fasta(sequences = as.character.DNAbin(seq_Mola_Dloop), names =
as.list(paste(Mola_Dloop\$`Accession number`,Mola_Dloop\$Location,sep = "_")),file.out =
"Seq_Mola_Dloop.fasta")</pre>

3. Align sequences using ClustalW (https://www.genome.jp/tools-bin/clustalw)

```
AB191719_Pacific_northeastern_
AB439023_Pacific_northeastern_
AB439027_Pacific_northeastern_
AB439029_Pacific_northeastern_
AB439018 Pacific northeastern
AB439101_North_Pacific
AB439043_Pacific_northeastern_
AB439091_North_Pacific
AB439082 Pacific southern Japa
AB439090_North_Pacific
AB191702 Pacific southern Japa
AB439070 Pacific southern Japa
AB439038_Pacific_northeastern_
AB439098_North_Pacific
AB439072 Pacific southern Japa
AB439100_North_Pacific
AB439011_Pacific_northeastern_
AB439096_North_Pacific
AB191715 Pacific southern Japa
AB439064 Pacific southern Japa
AB439089_Sea_of_Japan_
AB439080 Pacific southern Japa
AB439017_Pacific_northeastern_
AB439049_Pacific_northeastern_
AB439035_Pacific_northeastern_
AB439063 Pacific southern Japa
AB439069 Pacific southern Japa
AB191690 Pacific southern Japa
```

CACCATATATATATGCACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCCAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCCAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGCACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAACAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATACTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATACTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA CACCATATATATATGTACCATTAATGAATATTATCTCTAGGACAATAA

4. Make phylogenetic trees:

- Calculate DNA distance: Mola Dloop dist <- dist.dna(Mola Dloop Aligned)
- Make tip color based on regions:

- Make tip color based on groups:

```
#Color tip based on groups
tipcol_group <- rep('black', length(Mola_Dloop_UPGMA$tip.label))
groupA<-Mola_Dloop$`Accession number`[which(Mola_Dloop$Group == "A")]
for (i in 1:20){
   tipcol_group[grep(groupA[i], Mola_Dloop_UPGMA$tip.label)] <- "red"
}
groupB<-Mola_Dloop$`Accession number`[which(Mola_Dloop$Group == "B")]
for (i in 1:101){
   tipcol_group[grep(groupB[i], Mola_Dloop_UPGMA$tip.label)] <- "blue"
}</pre>
```

Neighbor Joining

Red: group A, Blue: Group B