EPC2204A — Automotive 80 V (D-S) Enhancement Mode Power Transistor

 $\overline{V_{DS}}$, 80 V $R_{DS(on)}$, 6 m Ω max I_D , 29 A AEC-Q101

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application Notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- · Top of FET is electrically connected to source

GaN	Die
	Dic

Maximum Ratings				
	PARAMETER	VALUE	UNIT	
V _{DS}	Drain-to-Source Voltage (Continuous)	80	V	
	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150 °C)	96	V	
I _D	Continuous (T _A = 25°C)	29	^	
	Pulsed (25°C, T _{PULSE} = 300 μs)	125	A	
V _G s	Gate-to-Source Voltage	6	V	
	Gate-to-Source Voltage	-4	V	
Tر	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150	°C	

Thermal Characteristics				
	PARAMETER	ТҮР	UNIT	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1		
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	2.5	°C/W	
R _{OJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	64]	

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Static Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.2 \text{ mA}$	80			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$		0.04	0.2	
	Gate-to-Source Forward Leakage	$V_{GS} = 6 V$		0.01	1.3	^
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 6 \text{ V}, T_J = 125^{\circ}\text{C}$		0.3	6.7	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.03	0.2	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 4 \text{ mA}$	0.7	1.1	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 16 \text{ A}$		4.4	6	mΩ
V _{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.6		V

Defined by design. Not subject to production test.

Die Size: 2.5 x 1.5 mm

EPC2204A eGaN® FETs are supplied only in passivated die form with solder bars.

Applications

- DC-DC Converters
- Isolated DC-DC Converters
- Automotive Lidar/ToF
- Sync rectification for AC-DC and DC-DC
- · Point of Load Converters
- USB-C
- · Class-D Audio
- LED Lighting
- · eMobility

Benefits

- Ultra High Efficiency
- · No Reverse Recovery
- Ultra Low Q_G
- · Small Footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2204A

	Dynamic Characteristics# (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			644	851	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		2.3		
Coss	Output Capacitance			304	456	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+= F0VV 0V		401		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		501		
R_{G}	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 16 \text{ A}$		5.7	7.4	
Q _{GS}	Gate-to-Source Charge			1.8		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 16 \text{ A}$		0.8		
Q _{G(TH)}	Gate Charge at Threshold	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		1		nC
Qoss	Output Charge			25	38	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 2: Typical Transfer Characteristics

Figure 4: Typical R_{DS(on)} vs. V_{GS} for Various Temperatures

All measurements were done with substrate connected to source.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} . Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Reverse Drain-Source Characteristics

Figure 9: Normalized On-State Resistance vs. Temperature

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 12: Transient Thermal Response Curves

Junction-to-Case Duty Cycle: Z_{BJC}, Normalized Thermal Impedance 0.1 0.1 0.05 0.02 P_{DM} 0.01 0.01 Single Pulse 0.001 Notes: Duty Factor: $D = t_1/t_2$ $Peak\,T_J = P_{DM}\,x\,Z_{\theta JC}\,x\,R_{\theta JC} + T_C$ 0.0001 10-6 10-5 10-4 10-3 10-1 t₁, Rectangular Pulse Duration, seconds

4 mm pitch, 8 mm wide tape on 7" reel

Die orientation dot

ZZZZ
Gate solder bar is under this corner

Die is placed into pocket
solder bars side down
(face side down)

	Dimension (mm)		
EPC2204A (Note 1)	Target	MIN	MAX
a	8.00	7.90	8.30
b	1.75	1.65	1.85
c (Note 2)	3.50	3.45	3.55
d	4.00	3.90	4.10
е	4.00	3.90	4.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60
h	0.50	0.45	0.55

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Devit		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2204A	2A04	YYYY	7777

	Micrometers		
DIM	MIN	Nominal	MAX
A	2470	2500	2530
В	1470	1500	1530
c		1175	
d		1350	
e		500	
f		250	
g		300	
h		825	
j		787.5	
k		225	
m		250	

Pad 1 is Gate;

Pads 2,4,6 are Source;

Pads 3, 5 are Drain

Note: Substrate (top side) connected to source

RECOMMENDED LAND PATTERN

(units in μ m)

Land pattern is solder mask defined

DIM	Nominal
Α	2500
В	1500
c1	1155
d1	1330
e	500
f1	230
g1	280
h1	805
j	787.5
k	225
m	250

Pad 1 is Gate; Pads 2,4,6 are Source; Pads 3,5 are Drain

RECOMMENDED STENCIL DRAWING

(units in µm)

DIM	Nominal
A	2500
В	1500
c1	1155
d1	1330
e	500
f1	230
f2	210
g1	280
h1	805
j	787.5
k	225
m	250

Recommended stencil should be 4 mil (100 μm) thick, must be laser cut, openings per drawing.

The corner has a radius of R60.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Split stencil design can be provided upon request, but EPC has tested this stencil design and not found any scooping issues.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN $^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.
Revised August, 2022