Lay 6.3 Math 2210Q

Question 1 How do you verify that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal set?

Multiple Choice:

(a) Show that $\vec{u}_1 \cdot \vec{u}_2 \cdot \vec{u}_3 = \vec{0}$

(b) Show that $\vec{u}_1 \cdot \vec{u}_2 \cdot \vec{u}_3 = 0$

(c) Show that $\vec{u}_1 \cdot \vec{u}_2 = 0$, $\vec{u}_1 \cdot \vec{u}_3 = 0$ and $\vec{u}_2 \cdot \vec{u}_3 = 0$

(d) Show that $\vec{u}_1 \cdot \vec{u}_2 = \vec{0}, \vec{u}_1 \cdot \vec{u}_3 = \vec{0}$ and $\vec{u}_2 \cdot \vec{u}_3 = \vec{0}$

Question 2 Use the vectors below to compute the following.

$$\vec{y} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \qquad \vec{u}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

 $\frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \boxed{-1}$ Simplify.

 $\frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} = \boxed{1}$ Simplify.

Compute the othogonal projection of \vec{y} onto Span $\{\vec{u}_1, \vec{u}_2\}$.

$$\hat{\mathbf{y}} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

Compute \vec{z} such that $\vec{y} = \hat{\mathbf{y}} + \vec{z}$ and $\vec{z} \in (\operatorname{Span}\{\vec{u}_1, \vec{u}_2\})^{\perp}$.

$$\vec{z} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Question 3 In the previous question, we find that $\vec{y} = \hat{\mathbf{y}}$. That is that the vector is its own orthogonal projection onto $\mathrm{Span}\{\vec{u}_1,\vec{u}_2\}$. Which of the following statements must be true?

1

Multiple Choice:

(a) \vec{y} is in Span $\{\vec{u}_1, \vec{u}_2\}$. \checkmark

Lay 6.3

 $Math\ 2210Q$

(b) \vec{y} is **not** in Span $\{\vec{u}_1, \vec{u}_2\}$.

Question 4 Use the vectors below to compute the following.

$$\vec{y} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}, \qquad \vec{u}_1 = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix}$$

$$\frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{\boxed{2}}{\boxed{13}} \text{ Simplify.}$$

$$\frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} = \boxed{\frac{3}{5}}$$
 Simplify.

Compute the othogonal projection of \vec{y} onto $\mathrm{Span}\{\vec{u}_1, \vec{u}_2\}$.

$$\hat{\mathbf{y}} = \frac{1}{65} \begin{bmatrix} -9\\118\\-190 \end{bmatrix}$$

Compute \vec{z} such that $\vec{y} = \hat{\mathbf{y}} + \vec{z}$ and $\vec{z} \in (\operatorname{Span}{\{\vec{u}_1, \vec{u}_2\}})^{\perp}$.

$$\vec{z} = \begin{bmatrix} 204\\12\\515 \end{bmatrix}$$

What vector represents the closest point to \vec{y} in Span $\{\vec{u}_1, \vec{u}_2\}$?

Multiple Choice:

- (a) **ŷ** ✓
- (b) \vec{z}
- (c) \vec{y}