# Root

## **Table of Contents**

| example.ecl                                                           |
|-----------------------------------------------------------------------|
| Basic Example with:                                                   |
| example_10.ecl                                                        |
| example_11.ecl                                                        |
| example_2.ecl                                                         |
| Basic Inheritance documentation : mod_3 inherits both mod_1 and mod_2 |
| example_3.ecl                                                         |
| Documentation Testing Multiline Title                                 |
| example_4.ecl                                                         |
| Example: Inheritance across files                                     |
| example_5.ecl                                                         |
| example_7.ecl                                                         |
| Basic Type Example                                                    |
| example_9.ecl                                                         |
| Math.ecl                                                              |
| test.ecl                                                              |
| test module                                                           |
| Inintest                                                              |
| intest                                                                |

# example

| TN | ſР | $\mathbf{O}$ | $\mathbf{R}$ | $\Gamma S$                  |
|----|----|--------------|--------------|-----------------------------|
|    |    | $\sim$       | T 0 1        | ${}^{\scriptscriptstyle L}$ |

## **DESCRIPTIONS**

MODULE: example

example

Up

Basic Example with : records, interface, function, modules, transform, embed, macros and function macro rec\_1 | rec\_2 | interface\_ex | func\_1 | func\_2 | mod\_1 | mod\_2 | cpp\_1 | func macro\_1 | macro\_1 | macro\_2 |

 $RECORD : rec_1$ 

 $m rec\_1$ 

Up

 $RECORD: rec\_2$ 

 $m rec\_2$ 

| U |  |
|---|--|
|   |  |

| INTERFACE | : | interface | ex |
|-----------|---|-----------|----|
| INTELLACE | • | mieriace  | C2 |

interface\_ex

Up

iface\_v3 |

### $ATTRIBUTE: if ace\_v3$

STRING25 iface\_v3

Up

## $FUNCTION: func\_1$

func\_1
(REAL8 x, STRING25 y)

Up

### $FUNCTION: func\_2$

DATASET(rec\_2) func\_2
(DATASET(rec\_1) d)

| ТΤ     |    |
|--------|----|
| U      | D  |
| $\sim$ | М. |

| MODULE | : | $\operatorname{mod}_{-}$ | _1 |
|--------|---|--------------------------|----|
|--------|---|--------------------------|----|

mod\_1
(REAL8 a)

Up

pi\_w |

## ATTRIBUTE : pi\_w

pi\_w

Up

## $MODULE : mod\_2$

 $\mod\_2$ 

Up

pi\_wo |

## ATTRIBUTE: pi\_wo

pi\_wo

|                  | T١ |
|------------------|----|
| $\mathbf{\circ}$ | ν  |
|                  |    |

| EMBED | : | $\operatorname{cpp}_{-}$ | _1 |
|-------|---|--------------------------|----|
|-------|---|--------------------------|----|

| DATA   | cpp_1      |  |
|--------|------------|--|
| (REAL8 | L8 varcpp) |  |

Up

## ${\bf MACRO:funcmacro\_1}$

```
funcmacro_1
(num)
```

Up

### $MACRO: macro\_1$

```
macro_1
(num_1, num_2)
```

Up

## $MACRO: macro\_2$

macro\_2

# $example\_10$

## **IMPORTS**

 $\bullet$  intest

## **DESCRIPTIONS**

 ${\bf MODULE: example\_10}$ 

```
example_10
```

Up

 $mod\_1$ 

 $MODULE: mod\_1$ 

 $\mod\_1$ 

Up

INHERITED True

# example\_11

## **IMPORTS**

- $\bullet$  Inintest
- Example\_3
- $\bullet$  intest.Example\_3
- $\bullet \ intest.inintest.Example\_3$
- $\bullet$  Inintest.Example\_3

## **DESCRIPTIONS**

 $MODULE: example\_11$ 

example\_11

Up

Example\_3 |

 ${\bf MODULE: Example\_3}$ 

 $Example_3$ 

Up

**OVERRIDE** True

|     | 1   |
|-----|-----|
| mad | 1 1 |
| шоа | 1 1 |
|     |     |

## $MODULE : mod\_1$

 $mod\_1$ 

Up

 $v2\_m1\_ex3 \mid$ 

## $ATTRIBUTE: v2\_m1\_ex3$

v2\_m1\_ex3

# example\_2

## **IMPORTS**

## **DESCRIPTIONS**

 $MODULE : example\_2$ 

example\_2

#### Up

Basic Inheritance documentation :  $mod_3$  inherits both  $mod_1$  and  $mod_2$  . Inherits  $v2_m1$ ,  $v2_m2$ , Overrides  $v1_m1$ , new locals  $v2_m3$  . Interface Inheritance :  $mod_4$  inherits interface iface\_1, overrides  $v1_i1$ 

 ${\tt rec\_1 \mid rec\_2 \mid rec\_3 \mid mod\_1 \mid mod\_2 \mid mod\_3 \mid iface\_1 \mid mod\_4 \mid}$ 

#### $RECORD : rec_1$

 $rec_1$ 

| $rec\_2$                                      |
|-----------------------------------------------|
|                                               |
| $_{ m Up}$                                    |
|                                               |
|                                               |
|                                               |
| $\operatorname{RECORD}: \operatorname{rec}_3$ |
|                                               |
| $ m rec\_3$                                   |
|                                               |
| $\mathrm{Up}$                                 |
|                                               |
|                                               |
|                                               |
| $f MODULE: mod\_1$                            |
|                                               |
| $\mod\_1$                                     |
|                                               |
| $\mathrm{Up}$                                 |
| v1_m1   v2_m1                                 |
| VI_MI   V2_MI                                 |
|                                               |
|                                               |
| ${ m ATTRIBUTE: v1\_m1}$                      |
|                                               |
| real8 v1_m1                                   |
|                                               |
| $\mathrm{Up}$                                 |
| ~r                                            |

 $RECORD : rec\_2$ 

| v2m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathrm{Up}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $f MODULE: mod\_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mod\_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ${ m Up}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| v1_m1   v2_m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ATTRIBUTE: v1_m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| v1_m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ${ m Up}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ${ m ATTRIBUTE: v2\_m2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| v2m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| \ \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\fir{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac |
| $\mathrm{Up}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

ATTRIBUTE : v2\_m1

| $f MODULE: mod\_3$            |
|-------------------------------|
| $\mod\_3$                     |
| $\mathrm{Up}$                 |
| v2_m1   v2_m2   v1_m1   v2_m3 |
|                               |
| ATTRIBUTE : v2_m1             |
| v2_m1                         |
| ${ m Up}$                     |
| INHERITED True                |
|                               |
| ATTRIBUTE : v2_m2             |
| v2_m2                         |
| ${ m Up}$                     |
| INHERITED True                |
|                               |
| ${ m ATTRIBUTE: v1\_m1}$      |

Up

 $v1\_m1$ 

| ~ -          |                      |     |                                  | _             |      |
|--------------|----------------------|-----|----------------------------------|---------------|------|
| <i>(</i> ) ) | / L                  | DΙ  | ) I I                            | $\mathbf{DE}$ | Then |
| いい           | <i>י</i> יי <i>י</i> | TTT | $\mathbf{L}\mathbf{L}\mathbf{J}$ | ינוכ          | True |

| ATTRIBUT | $\Gamma \mathrm{E}:$ | $\mathbf{v2}$ | m3 |
|----------|----------------------|---------------|----|
|          |                      |               |    |

v2\_m3

Up

## ${\bf INTERFACE: if ace\_1}$

 $iface\_1$ 

Up

v1\_i1 |

## ATTRIBUTE: v1\_i1

real8 v1\_i1

Up

## $MODULE : mod\_4$

 $mod\_4$ 

Up

v1\_i1 | v2\_m4 |

| ATTRIBUTE: | $\mathbf{v1}$ | i1 |
|------------|---------------|----|
|------------|---------------|----|

v1\_i1

Up

OVERRIDE True

## ATTRIBUTE: v2\_m4

STRING20 v2\_m4

# example\_3

## **IMPORTS**

## **DESCRIPTIONS**

 ${\bf MODULE: Example\_3}$ 

 $Example\_3$ 

#### Up

Documentation Testing Multiline Title. link@myspace.com

Sentence 1 blablalbla bbblaaaa

Sentence 2

blablalbla

bbbblaaaaa

bblaaaaaaaaa

Parameter first ||| okay\_1

Parameter second || okay\_2

Parameter third || okay\_3

Field f1 ||| oka\_f1

Field f2 ||| oka\_f2

 $\mathbf{Return} \ \operatorname{rec}\_1$ 

See example\_1.mod\_1 mod\_1 |  $MODULE : mod_1$  $mod_1$ Up  $v1_m1 \mid v2_m1_ex3 \mid long_name \mid$ ATTRIBUTE: v1\_m1  $v1_m1$ Up Doc test 2. Title end by period not newline ABCD |||| CDEF ||||  $ATTRIBUTE: v2\_m1\_ex3$  $v2_m1_ex3$ 

Up

DOC Test 3 No Period title

### FUNCTION: long\_name

 $long\_name$ 

(DATASET({REAL8 u}) X, DATASET({REAL8 u}) IntW, DATASET({REAL8 u}) Intb, REAL8 BETA=0.1, REAL8 sparsityParam=0.1 , REAL8 LAMBDA=0.001, REAL8 ALPHA=0.1, UNSIGNED2 MaxIter=100)

# example\_4

## $\underline{\mathbf{IMPORTS}}$

 $\bullet \ \ In intest. Example\_3.mod\_1$ 

## **DESCRIPTIONS**

 ${\bf MODULE: example\_4}$ 

```
example_4
```

Up

Example : Inheritance across files mod\_1 in Example\_4 inherits mod\_1 in Example\_3

mod\_1 |

### $MODULE: mod\_1$

```
mod_1
```

Up

v2\_m1\_ex3 | v2\_m1\_ex4 |

| m1 | $\mathbf{ex3}$ |
|----|----------------|
|    | m1             |

| $v2_m1_ex3$ |  |  |
|-------------|--|--|
|             |  |  |

Up

INHERITED True

## $ATTRIBUTE: v2\_m1\_ex4$

 $v2\_m1\_ex4$ 

 $example\_5$ 

**IMPORTS** 

**DESCRIPTIONS** 

| exam | $\mathbf{ple}_{-}$ | _7 |
|------|--------------------|----|
|      |                    |    |

## **IMPORTS**

## **DESCRIPTIONS**

| MODULE | : | $example_{-}$ | _7 |
|--------|---|---------------|----|
|--------|---|---------------|----|

example\_7

Up

Basic Type Example Source Code copied from ECL Documentation

 $R \mid$ 

### RECORD : R

R

# $example\_9$

## $\underline{\mathbf{IMPORTS}}$

- $\bullet$  example\_8
- $\bullet \ example\_8.mod\_1$

## **DESCRIPTIONS**

# Math

| IM             | ſΡ | $\mathbf{O}$ | R $1$ | $\Gamma S$ |
|----------------|----|--------------|-------|------------|
| <b>T</b> T V - |    | $\smile$     | 101   | ${}^{L}$   |

## **DESCRIPTIONS**

MODULE: Math

Math

Up

Infinity | NaN | isInfinite | isNaN | isFinite | FMod | FMatch |

### ATTRIBUTE: Infinity

REAL8 Infinity

Up

Return a real "infinity" value.

#### ATTRIBUTE: NaN

REAL8 NaN

#### Up

Return a non-signalling NaN (Not a Number) value.

#### **FUNCTION**: isInfinite

| BOOLEAN     | isInfinite |
|-------------|------------|
| (REAL8 val) |            |

#### Up

Return whether a real value is infinite (positive or negative).

Parameter val ||| The value to test.

#### **FUNCTION**: isNaN

| BOOLEAN     | isNaN |
|-------------|-------|
| (REAL8 val) |       |

#### Up

Return whether a real value is a NaN (not a number) value.

Parameter val ||| The value to test.

#### **FUNCTION**: isFinite

| BOOLEAN     | isFinite |
|-------------|----------|
| (REAL8 val) |          |

#### Up

Return whether a real value is a valid value (neither infinite not NaN).

Parameter val || The value to test.

#### **FUNCTION: FMod**

| REAL8                      | FMod |
|----------------------------|------|
| (REAL8 numer, REAL8 denom) |      |

#### Up

Returns the floating-point remainder of numer/denom (rounded towards zero). If denom is zero, the result depends on the -fdivideByZero flag: 'zero' or unset: return zero. 'nan': return a non-signalling NaN value 'fail': throw an exception

Parameter numer || The numerator.

**Parameter** denom ||| The numerator.

#### **FUNCTION**: FMatch

| BOOLEAN                               | FMatch |
|---------------------------------------|--------|
| (REAL8 a, REAL8 b, REAL8 epsilon=0.0) |        |

#### Up

Returns whether two floating point values are the same, within margin of error epsilon.

Parameter a || The first value.

Parameter b || The second value.

Parameter epsilon || The allowable margin of error.

# test

## $\underline{\mathbf{IMPORTS}}$

## **DESCRIPTIONS**

MODULE: test

test

### Up

test module

# Inintest

## **Table of Contents**

 $Example\_3.ecl$ 

# Inintest.Example\_3

## **IMPORTS**

## **DESCRIPTIONS**

 ${\bf MODULE: Example\_3}$ 

Example\_3

Up

 $\bmod\_1 \mid$ 

### $MODULE:mod\_1$

mod\_1

Up

v2\_m1\_ex3 |

### $ATTRIBUTE: v2\_m1\_ex3$

 $v2_m1_ex3$ 

# intest

## **Table of Contents**

| example_11.ecl                                                        |  |  |
|-----------------------------------------------------------------------|--|--|
| example_2.ecl                                                         |  |  |
| Basic Inheritance documentation : mod_3 inherits both mod_1 and mod_2 |  |  |
| example_3.ecl                                                         |  |  |
| Example: Inheritance across files                                     |  |  |
| example_4.ecl                                                         |  |  |
| Example: Inheritance across files                                     |  |  |
| example_5.ecl                                                         |  |  |
| example_7.ecl                                                         |  |  |
| Basic Type Example                                                    |  |  |
| example_9.ecl                                                         |  |  |
| in1intest                                                             |  |  |
| inintest                                                              |  |  |

# $intest.example\_11$

## **IMPORTS**

- std
- $\bullet$  intest
- $\bullet$  Example\_3
- $\bullet$  intest.Example\_3
- intest.inintest
- $\bullet$  intest.inintest.Example\_3
- test
- $\bullet$  Inintest
- $\bullet$  Inintest.Example\_3

## **DESCRIPTIONS**

 $MODULE: example\_11$ 

 $example\_11$ 

# $intest.example\_2$

## **IMPORTS**

## **DESCRIPTIONS**

 ${\bf MODULE: example\_2}$ 

example\_2

Up

Basic Inheritance documentation :  $mod_3$  inherits both  $mod_1$  and  $mod_2$  . Inherits  $v2_m1$ ,  $v2_m2$ , Overrides  $v1_m1$ , new locals  $v2_m3$  . Interface Inheritance :  $mod_4$  inherits interface iface\_1, overrides  $v1_i1$ 

 ${\tt rec\_1 \mid rec\_2 \mid rec\_3 \mid mod\_1 \mid mod\_2 \mid mod\_3 \mid iface\_1 \mid mod\_4 \mid}$ 

 $RECORD : rec_1$ 

 $rec_1$ 

| ${ m RECORD: rec\_2}$ |
|-----------------------|
| rec2                  |
| ${ m Up}$             |
| ${ m RECORD: rec\_3}$ |
| $ m rec\_3$           |
| ${ m Up}$             |
| $f MODULE: mod\_1$    |
|                       |
| ${ m Up}$             |
| v1_m1   v2_m1         |
| ATTRIBUTE: v1_m1      |
|                       |
| real8 v1_m1           |
| ${ m Up}$             |

| v2_m1                    |   |
|--------------------------|---|
|                          |   |
| ${ m Up}$                |   |
|                          |   |
|                          |   |
| $f MODULE: mod\_2$       |   |
| $\mod\_2$                |   |
|                          |   |
| ${ m Up}$                |   |
| v1_m1   v2_m2            |   |
|                          |   |
|                          |   |
| ${ m ATTRIBUTE: v1\_m1}$ |   |
|                          |   |
| v1_m1                    |   |
|                          |   |
| ${ m Up}$                |   |
|                          |   |
|                          |   |
| ${ m ATTRIBUTE: v2\_m2}$ |   |
|                          |   |
| v2m2                     |   |
|                          |   |
| ${ m Up}$                |   |
|                          | _ |

ATTRIBUTE : v2\_m1

| MODULE: mod_3                 |
|-------------------------------|
| $\mod\_3$                     |
|                               |
| $\operatorname{Up}$           |
| v2_m1   v2_m2   v1_m1   v2_m3 |
|                               |
|                               |
| ${ m ATTRIBUTE: v2\_m1}$      |
|                               |
| v2_m1                         |
| $\mathrm{Up}$                 |
|                               |
| INHERITED True                |
|                               |
|                               |
| AMMPHINITE O O                |
| ${ m ATTRIBUTE: v2\_m2}$      |
| $v2\_m2$                      |
|                               |
| $\mathrm{Up}$                 |
|                               |
| INHERITED True                |
|                               |
|                               |

v1\_m1

ATTRIBUTE: v1\_m1

| $\sim$ T | 700                     |    | <b>D D</b> | -    |
|----------|-------------------------|----|------------|------|
| ()       | $I\mathbf{E}\mathbf{R}$ | КI | 1 ) H;     | True |
|          |                         |    |            |      |

| ATTR | IBU            | $^{\mathrm{T}}\mathbf{E}$ | : | v2                     | m3 |
|------|----------------|---------------------------|---|------------------------|----|
| ALIK | $\mathbf{1RC}$ | TE                        | : | $\mathbf{V}\mathbf{Z}$ | m  |

v2\_m3

Up

# ${\bf INTERFACE: if ace\_1}$

 $iface\_1$ 

Up

v1\_i1 |

# ATTRIBUTE: v1\_i1

real8 v1\_i1

Up

# $MODULE : mod\_4$

 $mod\_4$ 

Up

v1\_i1 | v2\_m4 |

| ATTRIBUTE: | $\mathbf{v1}$ | i1 |
|------------|---------------|----|
|------------|---------------|----|

v1\_i1

Up

OVERRIDE True

# ATTRIBUTE: v2\_m4

STRING20 v2\_m4

# **IMPORTS**

# **DESCRIPTIONS**

 ${\bf MODULE: Example\_3}$ 

Example\_3

Up

 $Example: Inheritance\ across\ files\ mod\_1\ in\ Example\_4\ inherits\ mod\_1\ in\ Example\_3$ 

 $mod\_1$ 

 $MODULE : mod_1$ 

 $mod_1$ 

Up

v1\_m1 | v2\_m1\_ex3 |

# ATTRIBUTE: v1\_m1

v1\_m1

Up

 $ATTRIBUTE: v2\_m1\_ex3$ 

v2\_m1\_ex3

# **IMPORTS**

 $\bullet$  Example\_3.mod\_1

# **DESCRIPTIONS**

 ${\bf MODULE: example\_4}$ 

```
example_4
```

Up

Example : Inheritance across files mod\_1 in Example\_4 inherits mod\_1 in Example\_3

mod\_1 |

#### $MODULE: mod\_1$

```
mod\_1
```

Up

v2\_m1\_ex4 | v1\_m1 | v2\_m1\_ex3 | long\_name |

| ATTRIBUTE | : | $\mathbf{v2}$ | m1 | $\mathbf{ex4}$ |
|-----------|---|---------------|----|----------------|
|           |   |               |    |                |

| v2 ml $ev4$ |
|-------------|
| V2_III1_CX1 |
|             |

Up

#### $ATTRIBUTE: v1\_m1$

```
v1_m1
```

Up

Doc test 2. Title end by period not newline

ABCD ||||
CDEF ||||

**INHERITED** True

#### $ATTRIBUTE: v2\_m1\_ex3$

Up

DOC Test 3 No Period title

INHERITED True

#### FUNCTION: long\_name

 $long\_name$ 

(DATASET({REAL8 u}) X, DATASET({REAL8 u}) IntW, DATASET({REAL8 u}) Intb, REAL8 BETA=0.1, REAL8 sparsityParam=0.1 , REAL8 LAMBDA=0.001, REAL8 ALPHA=0.1, UNSIGNED2 MaxIter=100)

Up

**INHERITED** True

**IMPORTS** 

**DESCRIPTIONS** 

| <b>IMPO</b> | RTS |
|-------------|-----|
|-------------|-----|

# **DESCRIPTIONS**

| MC | $ODULE: example\_7$ |  |  |
|----|---------------------|--|--|
|    |                     |  |  |
| e  | example_7           |  |  |

Up

Basic Type Example Source Code copied from ECL Documentation

 $R \mid$ 

#### RECORD : R

R

# $\underline{\mathbf{IMPORTS}}$

- $\bullet$  example\_8
- $\bullet \ example\_8.mod\_1$

# **DESCRIPTIONS**

# in1intest

# **Table of Contents**

example\_2.ecl
Basic Inheritance documentation: mod\_3 inherits both mod\_1 and mod\_2

example\_3.ecl
Example: Inheritance across files

example\_4.ecl
Example: Inheritance across files

example\_5.ecl

example\_7.ecl
Basic Type Example

example\_9.ecl

# **IMPORTS**

# **DESCRIPTIONS**

 ${\bf MODULE: example\_2}$ 

example\_2

Up

Basic Inheritance documentation :  $mod_3$  inherits both  $mod_1$  and  $mod_2$  . Inherits  $v2_m1$ ,  $v2_m2$ , Overrides  $v1_m1$ , new locals  $v2_m3$  . Interface Inheritance :  $mod_4$  inherits interface iface\_1, overrides  $v1_i1$ 

 ${\tt rec\_1 \mid rec\_2 \mid rec\_3 \mid mod\_1 \mid mod\_2 \mid mod\_3 \mid iface\_1 \mid mod\_4 \mid}$ 

 $RECORD : rec_1$ 

rec\_1

| ${ m RECORD: rec\_2}$ |
|-----------------------|
| $ m rec\_2$           |
| $\mathrm{Up}$         |
|                       |
| ${ m RECORD: rec\_3}$ |
| rec_3                 |
| ${ m Up}$             |
| $f MODULE: mod\_1$    |
| mod_1                 |
| $\mathrm{Up}$         |
| v1_m1   v2_m1         |
|                       |
| ATTRIBUTE: v1_m1      |
| real8 v1_m1           |
| $\mathrm{Up}$         |

| v2_m1                    |
|--------------------------|
|                          |
| ${ m Up}$                |
|                          |
|                          |
| $f MODULE: mod\_2$       |
| $\mod\_2$                |
|                          |
| ${ m Up}$                |
| v1_m1   v2_m2            |
|                          |
|                          |
| ATTRIBUTE: v1_m1         |
|                          |
| v1_m1                    |
| $\mathrm{Up}$            |
|                          |
|                          |
| ${ m ATTRIBUTE: v2\_m2}$ |
| 111 1101B 0 1B 1         |
| v2_m2                    |
|                          |
| ${ m Up}$                |
|                          |

ATTRIBUTE: v2\_m1

| $f MODULE: mod\_3$            |
|-------------------------------|
| $\mod\_3$                     |
| ${ m Up}$                     |
| v2_m1   v2_m2   v1_m1   v2_m3 |
|                               |
| ${ m ATTRIBUTE: v2\_m1}$      |
| v2_m1                         |
| $\mathrm{Up}$                 |
| INHERITED True                |
|                               |
|                               |
| ${ m ATTRIBUTE: v2\_m2}$      |
| v2_m2                         |
| ${ m Up}$                     |
| INHERITED True                |
|                               |
|                               |
| ${ m ATTRIBUTE: v1\_m1}$      |

Up

 $v1\_m1$ 

| $\alpha$ | 7    | <b>D</b>               | $\mathbf{r}$ | <b>T</b> |
|----------|------|------------------------|--------------|----------|
| OΝ       | / EH | $\mathbf{K}\mathbf{K}$ | [DE]         | True     |

| ATTR | IBU            | $^{\mathrm{T}}\mathbf{E}$ | : | v2                     | m3 |
|------|----------------|---------------------------|---|------------------------|----|
| ALIK | $\mathbf{1RC}$ | TE                        | : | $\mathbf{V}\mathbf{Z}$ | m  |

v2\_m3

Up

# ${\bf INTERFACE: if ace\_1}$

 $iface\_1$ 

Up

v1\_i1 |

# ATTRIBUTE: v1\_i1

real8 v1\_i1

Up

# $MODULE : mod\_4$

 $mod\_4$ 

Up

v1\_i1 | v2\_m4 |

# ATTRIBUTE: v1\_i1

v1\_i1

Up

OVERRIDE True

# ATTRIBUTE: v2\_m4

STRING20 v2\_m4

# **IMPORTS**

# **DESCRIPTIONS**

 ${\bf MODULE: Example\_3}$ 

Example\_3

Up

Example : Inheritance across files mod\_1 in Example\_4 inherits mod\_1 in Example\_3

 $\bmod\_1 \mid$ 

 $MODULE : mod_1$ 

 $mod_1$ 

Up

v1\_m1 | v2\_m1\_ex3 |

# ATTRIBUTE: v1\_m1

v1\_m1

Up

 $ATTRIBUTE: v2\_m1\_ex3$ 

v2\_m1\_ex3

# **IMPORTS**

 $\bullet \ Example\_3.mod\_1$ 

# **DESCRIPTIONS**

 ${\bf MODULE: example\_4}$ 

```
example_4
```

Up

Example : Inheritance across files mod\_1 in Example\_4 inherits mod\_1 in Example\_3

mod\_1 |

 $MODULE: mod\_1$ 

```
mod\_1
```

Up

v2\_m1\_ex4 | v1\_m1 | v2\_m1\_ex3 | long\_name |

| ATTRIBUTE: v | $^{2}$ m1 | $\mathbf{ex4}$ |
|--------------|-----------|----------------|
|--------------|-----------|----------------|



Up

#### $ATTRIBUTE: v1\_m1$

```
v1_m1
```

Up

Doc test 2. Title end by period not newline

ABCD ||||
CDEF ||||

**INHERITED** True

#### $ATTRIBUTE: v2\_m1\_ex3$

Up

DOC Test 3 No Period title

INHERITED True

#### FUNCTION: long\_name

 $long\_name$ 

(DATASET({REAL8 u}) X, DATASET({REAL8 u}) IntW, DATASET({REAL8 u}) Intb, REAL8 BETA=0.1, REAL8 sparsityParam=0.1 , REAL8 LAMBDA=0.001, REAL8 ALPHA=0.1, UNSIGNED2 MaxIter=100)

Up

**INHERITED** True

**IMPORTS** 

**DESCRIPTIONS** 

| IMPORTS                                                      |
|--------------------------------------------------------------|
| DESCRIPTIONS                                                 |
| MODULE : example_7                                           |
| example_7                                                    |
| ${ m Up}$                                                    |
| Basic Type Example Source Code copied from ECL Documentation |
| R $\mid$                                                     |
| $\operatorname{RECORD}: \mathbf{R}$                          |
| R                                                            |
| m Up                                                         |

# $\underline{\mathbf{IMPORTS}}$

- $\bullet$  example\_8
- $\bullet \ example\_8.mod\_1$

# **DESCRIPTIONS**

# inintest

# **Table of Contents**

example\_2.ecl
Basic Inheritance documentation: mod\_3 inherits both mod\_1 and mod\_2

example\_3.ecl
Example: Inheritance across files

example\_4.ecl
Example: Inheritance across files

example\_5.ecl

example\_7.ecl
Basic Type Example

example\_9.ecl

# **IMPORTS**

# **DESCRIPTIONS**

 $MODULE : example\_2$ 

example\_2

#### Up

Basic Inheritance documentation :  $mod_3$  inherits both  $mod_1$  and  $mod_2$  . Inherits  $v2_m1$ ,  $v2_m2$ , Overrides  $v1_m1$ , new locals  $v2_m3$  . Interface Inheritance :  $mod_4$  inherits interface iface\_1, overrides  $v1_i1$ 

 ${\tt rec\_1 \mid rec\_2 \mid rec\_3 \mid mod\_1 \mid mod\_2 \mid mod\_3 \mid iface\_1 \mid mod\_4 \mid}$ 

#### $RECORD : rec_1$

 $m rec\_1$ 

| ${ m RECORD: rec\_2}$ |
|-----------------------|
| rec2                  |
| ${ m Up}$             |
| ${ m RECORD: rec\_3}$ |
| $ m rec\_3$           |
| ${ m Up}$             |
| $f MODULE: mod\_1$    |
|                       |
| ${ m Up}$             |
| v1_m1   v2_m1         |
| ATTRIBUTE: v1_m1      |
|                       |
| real8 v1_m1           |
| ${ m Up}$             |

| v2_m1                    |   |
|--------------------------|---|
|                          |   |
| ${ m Up}$                |   |
|                          |   |
|                          |   |
| $f MODULE: mod\_2$       |   |
| $\mod\_2$                |   |
|                          |   |
| ${ m Up}$                |   |
| v1_m1   v2_m2            |   |
|                          |   |
|                          |   |
| ${ m ATTRIBUTE: v1\_m1}$ |   |
|                          |   |
| v1_m1                    |   |
|                          |   |
| ${ m Up}$                |   |
|                          | _ |
|                          |   |
| ${ m ATTRIBUTE: v2\_m2}$ |   |
|                          |   |
| v2m2                     |   |
|                          |   |
| ${ m Up}$                |   |
|                          | _ |

ATTRIBUTE: v2\_m1

| $f MODULE: mod\_3$            |  |
|-------------------------------|--|
| $\mod\_3$                     |  |
| $\mathrm{Up}$                 |  |
| v2_m1   v2_m2   v1_m1   v2_m3 |  |
|                               |  |
| ATTRIBUTE: v2_m1              |  |
| v2_m1                         |  |
| $\mathrm{Up}$                 |  |
| INHERITED True                |  |
|                               |  |
|                               |  |
| ${ m ATTRIBUTE: v2\_m2}$      |  |
| v2m2                          |  |
| ${ m Up}$                     |  |
| INHERITED True                |  |
|                               |  |
|                               |  |

v1\_m1

ATTRIBUTE: v1\_m1

| ZO  | 710 | $\mathbf{D}$ | $\mathbf{D}$ | T   | T | Tours |
|-----|-----|--------------|--------------|-----|---|-------|
| しょい | / P | H.           | H.           | 11, | ľ | True  |

| ATTRIBUT | $\Gamma E:$ | $\mathbf{v2}$ | m3 |
|----------|-------------|---------------|----|
|          |             |               |    |

v2\_m3

Up

# ${\bf INTERFACE: if ace\_1}$

 $iface\_1$ 

Up

v1\_i1 |

# ATTRIBUTE: v1\_i1

real8 v1\_i1

Up

# $MODULE : mod\_4$

 $mod\_4$ 

Up

v1\_i1 | v2\_m4 |

| ATTRIBUTE: | $\mathbf{v1}$ | i1 |
|------------|---------------|----|
|------------|---------------|----|

v1\_i1

Up

OVERRIDE True

# ATTRIBUTE: v2\_m4

STRING20 v2\_m4

# **IMPORTS**

 $\bullet$  std.Str

# **DESCRIPTIONS**

 ${\bf MODULE: Example\_3}$ 

Example\_3

Up

Example : Inheritance across files mod\_1 in Example\_4 inherits mod\_1 in Example\_3

mod\_1 |

 $MODULE: mod\_1$ 

 $mod\_1$ 

Up

v1\_m1 | v2\_m1\_ex3 |

# ATTRIBUTE: v1\_m1

v1\_m1

Up

 $ATTRIBUTE: v2\_m1\_ex3$ 

v2\_m1\_ex3

# **IMPORTS**

 $\bullet$  Example\_3.mod\_1

# **DESCRIPTIONS**

 ${\bf MODULE: example\_4}$ 

```
example_4
```

Up

Example : Inheritance across files mod\_1 in Example\_4 inherits mod\_1 in Example\_3

mod\_1 |

#### $MODULE: mod\_1$

```
mod\_1
```

Up

v2\_m1\_ex4 | v1\_m1 | v2\_m1\_ex3 | long\_name |

| ATTRIBUTE: | $\mathbf{v2}$ | m1 | ex4 |
|------------|---------------|----|-----|
|------------|---------------|----|-----|

| $v2\_m1\_ex4$ |
|---------------|
|               |

Up

#### $ATTRIBUTE: v1\_m1$

```
v1_m1
```

Up

Doc test 2. Title end by period not newline

ABCD ||||
CDEF ||||

**INHERITED** True

#### $ATTRIBUTE: v2\_m1\_ex3$

Up

DOC Test 3 No Period title

INHERITED True

#### FUNCTION: long\_name

 $long\_name$ 

(DATASET({REAL8 u}) X, DATASET({REAL8 u}) IntW, DATASET({REAL8 u}) Intb, REAL8 BETA=0.1, REAL8 sparsityParam=0.1 , REAL8 LAMBDA=0.001, REAL8 ALPHA=0.1, UNSIGNED2 MaxIter=100)

Up

**INHERITED** True

**IMPORTS** 

**DESCRIPTIONS** 

| <u>IMPORTS</u>                                               |
|--------------------------------------------------------------|
| DESCRIPTIONS                                                 |
| $egin{array}{c} 	ext{MODULE}: 	ext{example\_7} \end{array}$  |
| example_7                                                    |
| ${ m Up}$                                                    |
| Basic Type Example Source Code copied from ECL Documentation |
| R                                                            |
| $\operatorname{RECORD}: \operatorname{R}$                    |
| R                                                            |
| ${ m Up}$                                                    |

# $\underline{\mathbf{IMPORTS}}$

- $\bullet$  example\_8
- $\bullet \ example\_8.mod\_1$

# **DESCRIPTIONS**