System Architecture:

Project Title: EcoCrank - Exercise Hand Crank Power Bank

Project Start Date	11/16/24
Project End Date	01/18/25
Project Manager	Denille Rylie C. Galas
Team Members	Josiah R. Bucas, Jade D. Penales, Anthony Lee Aleister Ortiz

System Architecture Diagram

This system converts mechanical energy into electrical energy using a hand-crank generator, which is then processed through various components to provide a stable power source for charging electronic devices. The electrical output first passes through a diode (1N4007) to prevent backflow and a capacitor (100µF) to smooth out voltage fluctuations. A voltage divider reduces the voltage to a safe level for measurement by an Arduino UNO R3, which monitors the system and displays real-time information, such as voltage and charging status, on a 16x2 LCD.

The energy is managed by a TP4056 charging module, ensuring safe and efficient charging of a 5V lithium-ion rechargeable battery. The stored energy is then stepped up to a usable level by a boost converter (MT3608) for output through a USB port. This setup enables the system to function as a power bank, delivering stored energy to charge smartphones or other USB-powered devices

PART BY PART & STEP BY STEP OF COMPONENTS & THEIR USES:

1. Energy Input (Hand-Crank Generator)

The process begins with manual energy input by operating the hand-crank generator. This
converts mechanical energy into electrical energy.

2. Diode (1N4007)

• The electrical output from the generator passes through a diode. The diode ensures that current flows in only one direction, preventing backflow of electricity to the generator.

3. Capacitor (100uF)

• The capacitor temporarily stores the electrical energy and smooths out fluctuations in the generator's output, providing a more stable voltage.

4. Voltage Divider (30k Ω and 10k Ω Resistors)

• A voltage divider circuit, consisting of a $30k\Omega$ resistor and a $10k\Omega$ resistor, reduces the voltage to a level that can be safely measured or processed by the Arduino UNO R3.

5. Arduino UNO R3

• The Arduino UNO R3 microcontroller processes the voltage data from the voltage divider. It might monitor the voltage levels and control other components in the system.

6. LCD Display (16x2 Display)

• The LCD display connected to the Arduino shows relevant information, such as the voltage level, charging status, or any other real-time data.

7. Charging Module (TP4056)

• The charging module is connected to the rechargeable battery. It manages the charging process, ensuring the battery is charged safely and efficiently.

8. Rechargeable Battery (5V Lithium Ion)

• A rechargeable battery stores the electrical energy for later use. It is charged by the output of the charging module.

9. Boost Converter (MT3608)

• The boost converter steps up the voltage from the rechargeable battery to a level suitable for USB output (e.g., 5V).

10. USB Output

 The USB output is where the stored energy is supplied to charge devices like smartphones or other USB-powered gadgets.

11. Electronic Device

 Finally, the connected device (e.g., a phone charger or other small electronic device) receives the stored energy via the USB output, completing the system's functionality as a power bank.