Faculdade de Engenharia da Universidade do Porto Mestrado Integrado em Engenharia Electrotécnica e Computadores

Disciplir	na de PGRE	Exame exemplo, duração: 2h00min
Nome:		
Apres		1 0
rupo I –	delas se a considera verdadeira ou fal	oes abaixo apresentadas e indique para cada um lsa. <u>Reescreva completamente</u> as afirmações qu ões necessárias para as tornar verdadeiras (2 do apenas à negação desta não é cotada).
1.	IP.	dereço Ethernet no interface que a liga a uma re
2.	A agregação do bloco de endereços 200.11.159.0 com a máscara 255.255.248 100.11.156.0 - 2	
3.	-	estações em redes diferentes, o endereço IP ção de destino é o do router responsável po Liv de Orige
4.	Sempre que é gerado um trap SNMP só [F] Managen []	é possível enviá-lo para um agente.
5.	Uma trama pode ser fragmentada na ce é reconstruído pelo último router que s	omunicação entre duas estações apenas uma ve erve a estação de destino.

Usando um router o administrador da rede pode fazer o encaminhamento selectivo das tramas, entre os vários troços de rede a interligar.
F do pacts
A grande vantagem do serviço de DHCP é permitir a gestão administrativa centralizada das configurações (por exemplo: endereços IP, default gateways, nome do domínio) das estações de uma rede.
Um domínio Internet pode ter configurado nos mapas do DNS do seu servidor primário mais do que um registo do tipo MX.
Uma das grandes vantagens do SNMPv2 é permitir fazer a gestão remota de equipamento de uma rede, garantindo a segurança das comunicações entre o sistema de gestão e os agentes residentes nos equipamentos. SUMPUS
O serviço IMAP implementa o protocolo de comunicação para o envio de ficheiro para a uma caixa de correio remotamente localizada. [

Grupo II – Responda objectiva e sucintamente às seguintes questões:

- 1. Apresente o modelo TCP/IP de gestão de redes e descreva cada uma das componentes.
- **2.** Apresente o serviço FTP e explique os passos do processo de estabelecimento de uma ligação e transferência de um ficheiro, como por exemplo a resultante da sequência de comandos indicados abaixo

\$ftp teste.fe.up.pt

Connected to teste.fe.up.pt.

220 FTPD Server (Servidor de teste FTP da FEUP) [teste.fe.up.pt]

Name (teste.fe.up.pt:test): test

331 Anonymous login ok, send your complete email address as your password.

Password:

230 Login successful.

ftp> put teste.tgz

- **3.** Considerando a topologia de rede abaixo apresentada e assumindo que há uma interface do router B que não está activa porque não tem configurado um endereço IP, responda a cada alínea justificando a resposta:
 - a) É possível a estação C comunicar com a estação A? Descreva o processo da descoberta dos endereços, prévio ao envio efectivo dos pacotes IP de dados.
 - b) A estação C consegue comunicar com a estação B?
 - c) Atribua um endereço IP à interface que falta configurar no router B, de modo a que todas as estações possam comunicar entre si.
 - d) Considerando o endereço que atribuiu na alínea anterior, indique os endereços IP e MAC intervenientes no envio de um pacote de IP de B para C
 - e) O que é que acontecia se substituisse os dois routers por duas bridges Ethernet? Era possível algumas estações comunicarem entre si?
 - f) Neste cenário com bridges o que necessitava de alterar para que todas as estações possam comunicar entre si?

- **Grupo III –** Considere o seguinte problema de interligação das redes da empresa BEREASY Lda. As características principais da infra-estrutura de rede da empresa são as seguintes:
 - Todos os serviços da rede são suportados na pilha de protocolos TCP/IP;
 - A interface do SW-B de acesso ao ISP (*Internet Service Provider*) tem o endereço 62.190.1.184/30;
 - O router/switch SW-B tem ligações em Ethernet, a 100 Mb/s, com o router GW2 e os router/switches SW1 e SW3;
 - Os router/switches SW-B, SW1 e SW3 partilham todos o mesmo domínio de VLANs, sendo a gestão do domínio efectuada no SW-B. Estes têm configurado 3 VLANs (para além da VLAN1 da gestão e que se pretende acessível), a VLAN10 para servidores de serviços básicos e aplicações, a VLAN30 para os utilizadores do departamento administrativo e a VLAN40 para os restantes utilizadores;
 - O router/switch SW-B é a default gateway para toda a rede da empresa;
 - Ao router/switch SW1 estão ligados em Gigabit Ethernet dois switches Ethernet, SW11 e SW12, com auto-detecção 10/100/1000 Mb/s, ambos com 48 portas disponíveis para ligar estações, e estão inseridos no mesmo domínio de VLANs de SW1. Estes dão acesso na VLAN10 a 10 estações, a 21 estações na VLAN30 e a 50 estações na VLAN40;
 - O router GW2 dá conectividade a duas redes locais em Ethernet com máximo de 200 e 32 estações, respectivamente, e troca informação de routing em OSPF com o router/switch SW-B;
 - Ao router/switch SW3 estão ligados em Gigabit Ethernet dois switches Ethernet, SW31 e SW32, com auto- detecção 10/100/1000 Mb/s, ambos com 96 portas disponíveis para ligar estações, e estão inseridos no mesmo domínio de VLANs de SW3. Estes dão acesso na VLAN10 a 16 estações, a 28 estações na VLAN30 e a 120 estações na VLAN40.

Para resolver o problema de endereçamento desta empresa está disponível o conjunto de endereços 81.17.160/22.

- 1. Diga qual o número mínimo de redes, do bloco acima, que utilizava para resolver o endereçamento da empresa e qual o respectivo tamanho. Explique porquê.
- 2. Faça a atribuição dos vários endereços, identificação da rede e *broadcast*, e as respectivas máscaras para cada uma das redes.
- 3. Apresente uma possível tabela de *routing* do *router/switch* SW-B que lhe garanta a conectividade à Internet e a todas as estações da rede da empresa BEREASY Lda
- 4. Como requisitos para o serviço de E-mail da empresa BEREASY Lda foram especificados o acesso às caixas do correio dos utilizadores em dialup, em roaming e local em cada edifício.
- a) Apresente a solução que implementaria para resolver este problema, indicando os servidores e os protocolos escolhidos para cada um dos requisitos.
- b) Indique os requisitos e as configurações necessárias no serviço de DNS para permitir os requisitos do serviço de e-mail.

FIM