Projeto 1: SAT em Z3

João Miguel Faria Rui Breda Perdigoto

5 de novembro de 2021

Índice

Sudoku

Símbolos Proposicionais Condições e restrições Execução do programa Variantes

SUMS

Descrição do problema Observações sobre a Complexidade Símbolos proposicionais e restrições Um exemplo

Símbolos Proposicionais

Símbolos proposicionais

$$p_{i,j,n}$$

$$0 \le i, j \le 8$$

$$1 \le n \le 9$$

Condições e restrições

▶ 1 número por célula

$$\bigwedge_{0 \le i,j \le 9} \bigvee_{1 \le n \le 9} p_{i,j,n} \tag{1}$$

$$\bigwedge_{0 \le i,j < 9} \bigwedge_{1 \le k < m < 9} \neg p_{i,j,k} \vee \neg p_{i,j,m} \tag{2}$$

Condições e restrições

▶ 1 número por célula

$$\bigwedge_{0 < i,j < 9} \bigvee_{1 < n < 9} p_{i,j,n} \tag{1}$$

$$\bigwedge_{0 \le i,j < 9} \bigwedge_{1 \le k < m < 9} \neg p_{i,j,k} \vee \neg p_{i,j,m} \tag{2}$$

Linhas e colunas sem repetições

$$\bigwedge_{0 \le i < 9} \bigwedge_{1 \le k \le 9} \bigwedge_{0 \le j < m < 9} \neg p_{i,j,k} \lor \neg p_{i,m,k} \tag{3}$$

$$\bigwedge_{0 \le i \le 9} \bigwedge_{1 \le k \le 9} \bigwedge_{0 \le i \le m \le 9} \neg p_{j,i,k} \wedge \neg p_{m,i,k} \tag{4}$$

► Regiões sem repetições

$$\bigwedge_{0 \le i < 9} \bigwedge_{1 \le k \le 9} \bigwedge_{0 \le j < 9} \bigwedge_{i+1 \le n < b} \bigwedge_{c \le l < c+3} \neg p_{i,j,k} \lor \neg p_{n,l,k}$$
 (5)

► Regiões sem repetições

$$\bigwedge_{0 \leq i < 9} \bigwedge_{1 \leq k \leq 9} \bigwedge_{0 \leq j < 9} \bigwedge_{i+1 \leq n < b} \bigwedge_{c \leq l < c+3} \neg p_{i,j,k} \vee \neg p_{n,l,k}$$
 (5)

► S com os símbolos do tabuleiro inicial

$$\bigwedge_{p \in S} p \tag{6}$$

► Regiões sem repetições

$$\bigwedge_{0 \le i < 9} \bigwedge_{1 \le k \le 9} \bigwedge_{0 \le j < 9} \bigwedge_{i+1 \le n < b} \bigwedge_{c \le l < c+3} \neg p_{i,j,k} \lor \neg p_{n,l,k}$$
 (5)

► S com os símbolos do tabuleiro inicial

$$\bigwedge_{p \in S} p \tag{6}$$

well_posed(P) tem uma restrição extra, dado um conjunto M com uma solução

$$\bigvee_{p \in M} \neg p \tag{7}$$

Execução do programa

Figura: Tabuleiro inicial

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8			8		റ			1
7				2				6
	6					2	8	
			4	1	9			5
				1 8			7	9

Figura: Puzzle resolvido após sudoku(P)

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Figura: Tabuleiro inicial de well_posed

1						7		
		2						
					9			
				2				
		4	3					
							6	
	9				8			

Variantes

```
Células vizinhas — deltas_dist deltas_vals=[0] — células vizinhas \neq célula atual
```

Notação

$$i, j, n \in \mathbb{N} \cap [1, 9] \tag{8}$$

$$(c_{i,j}=k):=p_{i,j,k} \tag{9}$$

não induz em erro porque há restrições usuais, temos por exemplo:

$$c_{i,j} = k \wedge c_{i,j} = k' \implies k = k' \tag{10}$$

Definição

$$\mathsf{diferentes}(\Delta, V) := \bigwedge_{\substack{i,j,n}} \bigwedge_{\substack{c' \in \Delta + 'c_{i,j} \\ \nu \in V}} (c_{i,j} = n \implies c' \neq n + \nu)$$

$$\tag{11}$$

Definição

$$diferentes(\Delta, V) := \bigwedge_{\substack{i,j,n}} \bigwedge_{\substack{c' \in \Delta + 'c_{i,j} \\ \nu \in V}} (c_{i,j} = n \implies c' \neq n + \nu)$$

$$\tag{11}$$

onde

$$\delta = (\delta_1, \delta_2) \in \Delta \tag{12}$$

$$\Delta +' c = \{c_{(i,j)+\delta} : \delta \in \Delta\} \cap \{1, \cdots, 9\}^2$$
 (13)

para garantir que não saímos do tabuleiro.

Descrição do problema

Dados:

$$R \subseteq \mathbb{N}$$
 $t \in \mathbb{N}$

Descrição do problema

Dados:

$$R \subseteq \mathbb{N}$$
 $t \in \mathbb{N}$

Queremos
$$\exists S \subseteq R$$
 tal que $\sum S = t$.

Observações sobre a Complexidade

▶ p_r para cada $r \in R$ — exponencial ao criar restrições (sums_red_exp)

Observações sobre a Complexidade

- ▶ p_r para cada $r \in R$ exponencial ao criar restrições (sums_red_exp)
- ▶ p_S para cada $S \subseteq R$ exponencial no número de proposições

Observações sobre a Complexidade

- ▶ p_r para cada $r \in R$ exponencial ao criar restrições (sums_red_exp)
- ▶ p_S para cada $S \subseteq R$ exponencial no número de proposições

Queremos uma redução polinomial!

Símbolos proposicionais e restrições

Notação

Nesta secção tomamos sempre

$$u, w \in R$$
 (14)

$$r, s \in \mathbb{N} \cap [0, t] \tag{15}$$

Ideia:

$$p_{u,r} \tag{16}$$

u — último dígito lido r — resto até t #R imes (t+1) símbolos proposicionais

 $^{^{1}}r
eq 0$ porque $\bigvee \varnothing = \bot$, não queremos $p_{u,0} \implies \bot \bigvee u!$

Ideia:

$$p_{u,r} \tag{16}$$

u — último dígito lido r — resto até t # $R \times (t+1)$ símbolos proposicionais

$$\bigwedge_{r\neq 0} \bigwedge_{u} \left(p_{u,r} \implies \bigvee_{w} p_{w,r-w} \right) \tag{17}$$

Podemos ler w e ficar w unidades mais perto de t. ¹

 $^{^1}r
eq 0$ porque $\bigvee \varnothing = \bot$, não queremos $p_{u,0} \implies \bot \biguplus u!$

Figura: Exemplo de uma árvore a partir de $R = \{1, 2, 4\}$ e t = 7.

Não temos $p_{\varnothing,r}$; começamos em:

$$\bigvee_{u} p_{u,t} \tag{18}$$

Não temos $p_{\varnothing,r}$; começamos em:

$$\bigvee_{u} p_{u,t} \tag{18}$$

Queremos chegar a:

$$\bigvee_{u} p_{u,0} \tag{19}$$

Não é preciso $\bigwedge_{u\neq w} p_{u,0} \to \neg p_{w,0}$, temos:

$$\bigwedge_{u,r} \left(p_{u,r} \implies \bigwedge_{w \neq u} \neg p_{w,r} \land \bigwedge_{s \neq r} \neg p_{u,s} \right) \tag{20}$$

que já deita extras (expl. permutações, vários fins) fora.

Podemos dizer (mas não é preciso):

$$\bigwedge_{u+r} \neg p_{u,r} \tag{21}$$

Um exemplo

Para o caso

$$R = \{0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 500\}$$
$$t = 74$$

sums(R,t) resulta em: