Министерство науки и высшего образования Российской Федерации Московский физико-технический институт (национальный исследовательский университет)

Заочная физико-техническая школа

ФИЗИКА

Работа. Энергия

Решение задания № 5 для 9-х классов

(2020 – 2021 учебный год)

Долгопрудный, 2021

Составитель: А. А. Лукьянов, к. ф.-м. н., доцент, ведущий инженер лаборатории по работе с одарёнными детьми МФТИ.

Физика: решение задания №5 для 9-х классов (2020–2021 учебный год), 2021, 16с.

Составитель:

Лукьянов Андрей Александрович

Подписано 25.02.21. Формат 60×90 1/16. Бумага типографская. Печать офсетная. Усл. печ. л. 1,00. Уч.-изд. л. 0,88.

Московский физико-технический институт (национальный исследовательский университет) Заочная физико-техническая школа

Институтский пер., г. Долгопрудный, 9, Москов. обл., 141700. 3ФТШ, тел. (495) 408-51-45 — **заочное отделение**, тел. (498) 744-63-51 — **очно-заочное отделение**, тел. (498) 744-65-83 — **очное отделение**.

E.mail: zftsh@mail.mipt.ru

Наш сайт: https://zftsh.online/

© МФТИ, ЗФТШ, 2021

Все права защищены. Воспроизведение учебно-методических материалов и материалов сайта ЗФТШ в любом виде, полностью или частично, допускается только с письменного разрешения правообладателей.

Контрольные вопросы (лёгкие задачи)

1. Космический корабль (КК) движется по околоземной орбите. Чему равна работа силы земного тяготения за время половины одного оборота КК вокруг Земли?

Решение. Космический корабль движется по орбите, близкой по форме к окружности в плоскости, проходящей через центр Земли. Сила земного притяжения лежит в этой плоскости и направлена к центру планеты. Во все моменты времени сила перпендикулярна элементарным перемещениям КК. Поэтому в сумме (1.3)

$$A = \sum_{j=1}^{n} \vec{F}_{j} \cdot \Delta \vec{r}_{j} = \sum_{j=1}^{n} \vec{F}_{j} \cdot |\Delta \vec{r}_{j}| \cos 90^{\circ}$$

все слагаемые равны нулю (косинус 90° равен нулю).

2. Какую работу – положительную или отрицательную – мы совершаем, 1) растягивая пружину? 2) сжимая её?

Решение. И при растягивании, и при сжимании пружины наша сила направлена в ту же сторону, что и перемещение – угол между двумя векторами – силы и перемещения – равен нулю, $\cos 0 = 1 > 0$, т. е. работа в обоих случаях положительна.

3. В каком случае автомобиль должен затратить больше энергии – при разгоне с места до скорости 30 км/ч или при увеличении скорости от 40 км/ч до 50 км/ч? Сопротивлением воздуха пренебречь.

Решение. Пусть m- масса автомобиля, $v=10 \, \mathrm{кm/ч}$. Работа на пер-

вом этапе
$$A_1 = \frac{mv^2}{2} \cdot 3^2 = 9\frac{mv^2}{2}$$
, на втором $A_2 = \frac{mv^2}{2} \cdot (5^2 - 4^2) = 9\frac{mv^2}{2}$, т. е. работы равны друг другу.

4. Недеформированную пружину сжали на 1 см, совершив при этом работу 10 Дж. Какую минимальную работу нужно совершить дополнительно, чтобы сжать её ещё на 1 см?

Решение.
$$A_{\partial on} = \frac{k(0,02^2 - 0,01^2)}{2} = \frac{k \cdot 0,0003}{2}$$
 (1), причём

$$A=rac{k\cdot 0,01^2}{2}=rac{k\cdot 0,0001}{2}=10\,\mathrm{Дж}.$$
 Из последнего равенства находим коэффициент жёсткости, подстановка которого в формулу (1) даёт $A_{don}=30\,\mathrm{Дж}.$

5. Две изначально недеформированные пружины, соединённые последовательно, имеют жёсткости $k_1=15\,$ H/м и $k_2=10\,$ H/м. Пружины растянули за свободные концы в разные стороны, совершив работу $A=1\,$ Дж . Каковы потенциальные энергии деформации каждой из пружин по отдельности?

Решение.
$$A=\frac{1}{2}\,F\cdot\Delta l_1+\frac{1}{2}\,F\cdot\Delta l_2=E_1+E_2\,,\;\;E_1:E_2=\Delta l_1:\Delta l_2\,.$$
 Тогда в силу равенства сил $k_1\Delta l_1=k_2\Delta l_2\,,\;\;$ имеем $E_1:E_2=k_2:k_1=2:3\,,\;$ т. е. $E_1=\frac{2}{5}\,A=0,4\;$ Дж, $E_2=\frac{3}{5}\,A=0,6\;$ Дж.

6. Поплавок, имеющий объём $V = 10 \, \mathrm{cm}^3$, всплывая с глубины $h = 1 \, \mathrm{m}$, разгоняется до скорости $v = 1 \, \mathrm{m/c}$. Определите работы сил, действующих на поплавок. Плотность поплавка $\rho = 0, 2 \, \mathrm{r/cm}^3$.

Решение. По закону изменения кинетической энергии имеем

$$\frac{mv^2}{2} - 0 = A_{Apx} + A_{mg} + A_{conp} = A_{Apx} - mgh + A_{conp}$$
(1)
$$A_{Apx} = \rho_e V g h = 0,1 \text{ Дж}, \ A_{mg} = -mgh = -\rho V g h = -0,02 \text{ Дж},$$

$$\frac{mv^2}{2} = \frac{\rho V v^2}{2} = 0,001 \text{ Дж}. \text{ Тогда согласно (1) имеем}$$

$$A_{conp} = \frac{mv^2}{2} - A_{Apx} - A_{mg} = 0,001 - 0,1 - (-0,02) = -0,079 \text{ Дж}.$$

7. (**МФТИ**, **1994**) Мальчик съезжает на санках без начальной скорости с горки высотой H = 5 м по кратчайшему пути и приобретает у подножья горки скорость v = 6 м/с . Какую минимальную работу необходимо затратить, чтобы втащить санки массой m = 7 кг на горку от её подножья, прикладывая силу вдоль поверхности горки?

Решение. Для спуска: $\frac{mv^2}{2} = mgH + A_{\rm rp}$, где $A_{\rm rp} < 0$ – работа сил трения. Для бесконечно медленного подъёма: $mgH = A + A_{\rm rp}$, откуда с учётом первого равенства $A = mgH - A_{\rm rp} = 2mgH - \frac{mv^2}{2} = 560\,{\rm Дж}$.

8. Мяч массой 400 г, брошенный вертикально вверх со скоростью 20 м/с, упал на землю со скоростью 15 м/с. Определите работу силы сопротивления воздуха.

Решение. Изменение кинетической энергии $\frac{mv^2}{2} - \frac{mv_0^2}{2} = A_{mg} + A_{\text{сопр}}$ равно сумме работ двух сил — силы тяжести и силы сопротивления воздуха. Поскольку мяч вернулся на исходную высоту $(h_2 = h_1)$, работа силы тяжести равна нулю в силу формулы $(1.4\ 3$ адания) $A_{mg12} = -mg(h_2 - h_1)$. Отсюда

$$A_{\text{conp}} = \frac{mv^2}{2} - \frac{mv_0^2}{2} = -35 \, \text{Джc}.$$

9. Однородная цепочка длиной L лежит на гладком горизонтальном столе. Небольшая часть её свешивается в отверстие в столе. Лежащую на столе часть цепочки придерживают, но затем отпускают. Определить скорость цепочки в момент, когда длина свешивающейся части станет равна l (l<L).

Решение. В начальный момент времени кинетическая энергия цепочки равна нулю (равна нулю начальная скорость). Высоту в потенциальной энергии будем отсчитывать от уровня стола. Начальная потенциальная энергия цепочки равна нулю. В момент, когда длина свещивающейся части окажется равной l, центр её тяжести будет находиться ниже поверхности стола на величину l/2, а потенциальная энергия этой части (а с ней и всей цепочки) будет равна $\Pi = -\frac{l}{L} mg \frac{l}{2}$ (масса свешивающейся части равна $\frac{l}{L}m$, где m — масса всей цепочки). Далее, по закону сохранения энергии имеем $0 = \frac{mv^2}{2} - \frac{l}{L} mg \frac{l}{2}$. Отсюда находим скорость $v = l\sqrt{\frac{g}{l}}$.

10. Автомобиль массой m=1,5 т едет но горизонтальному участку дороги со скоростью v=72 км/ч . На какую величину ΔP увеличивается развиваемая двигателем мощность при движении автомобиля с той же скоростью в гору, угол наклона которой составляет $\alpha=0,1$ рад? Силу сопротивления считать в обоих случаях одинаковой.

Решение. Для горизонтального участка сила тяги равна силе сопротивления $f_{\rm тяги}=F_{\rm conp}$; тогда с учётом связи силы тяги с полезной мощностью и скоростью $P=f_{\rm тяги}\cdot v$, имеем $P=F_{\rm conp}\cdot v$. Для подъёма автомобиля в гору сила тяги больше силы сопротивления на величину «скатывающей» силы: $F_{\rm тяги}=F_{\rm conp}+mg\sin\alpha$. Умножая это равенство на скорость, приходим к равенству

$$\hat{F}_{\text{\tiny TMFIU}} \cdot v = P + \Delta P = F_{\text{\tiny comp}} \cdot v + mg \sin \alpha \cdot v ,$$

откуда находим $\Delta P = mg \sin \alpha \cdot v \approx 29.4 \text{ кBT}$.

Задачи

1. Из корзины воздушного шара свешивается легкая веревочная лестница длиной h, на нижней ступеньке которой стоит человек. Система находится в воздухе и неподвижна. Какую минимальную работу должен совершить человек, чтобы подняться в корзину? Масса корзины M, масса человека m.

Решение. Если бы воздушный шар был неподвижен в процессе подъёма человека до корзины, то человеку нужно было совершить минимальную работу, равную приращению потенциальной своей энергии в поле тяжести A = mgh. На самом деле корзина к моменту достижения ее человеком сама опустится на некоторую высоту h_2 , так что человек поднимется лишь на высоту $h_1 < h$, такую, что $h_1 + h_2 = h$. В результате, человек для подъём именно себя совершит работу $A_1 = mgh_1$. Но он же совершит дополнительно работу по опусканию корзины $A_2 = T \cdot h_2$. Суммарная работа, совершённая человеком (мы именно ей интересуемся, а например, не работой силы тяжести или ра-Архимеда) равна $A = mgh_1 + T \cdot h_2$ ботой силы $A = mgh_1 + T \cdot (h - h_1)$. Считая, что человек поднимается по верёвочной лестнице с равным нулю ускорением ($a \cong 0$), получаем выражение верёвочной лестнице $T \cong mg$. для натяжения В итоге $A \cong mgh_1 + mg \cdot (h - h_1)$, или окончательно

$$A \cong mgh$$
.

2. Акробат прыгнул с трапеции на батут, который при этом прогнулся на расстояние $h=1\,\mathrm{M}$. Высота трапеции над батутом $H=4\,\mathrm{M}$. На сколько прогнется батут, если акробат будет стоять на нем?

Решение. В начальный момент и в момент остановки акробата его скорость равна нулю, поэтому равна нулю кинетическая энергия акробата. По закону сохранения энергии одна потенциальная энергия (в поле тяжести) перешла в другую (энергию упругой деформации):

$$mg(H+h) = \frac{kh^2}{2}$$
.

Отсюда находим $k = \frac{2mg(H+h)}{h^2}$. Условие равновесия акробата,

стоящего на батуте,
$$mg = kx$$
 даёт тогда $x = \frac{mg}{k} = \frac{h^2}{2(H+h)} = 10$ см.

3. (**МФТИ**, из старых задач) Сани, движущиеся по очень гладкому горизонтальному льду со скоростью $v=6\,\mathrm{m/c}$, выезжают на асфальт. Длина полозьев саней $L=2\,\mathrm{m}$, коэффициент трения саней об асфальт $\mu=1$. Какой путь пройдут сани до полной остановки?

Решение. В момент, когда санки только-только въедут своей задней частью на асфальт, сопротивление ещё не полностью погасит скорость санок. Пусть u — скорость санок в этот момент (рис. 1в). По теореме об изменении кинетической

энергии:
$$\frac{mu^2}{2} - \frac{mv^2}{2} = -\mu mg \frac{L}{2}$$
 (1)

(см. вычисление работы переменной силы трения в Примере 1.3 настоящего Задания). Подстановка чисел даёт:

$$u^2 = v^2 - \mu g L = 6^2 - 1.9, 8.2 = 16,4$$
, $u \approx 4$ м/с. После того, как санки полностью въедут на асфальт, сила трения скольжения перестанет изменяться и будет равна μmg . Работа силы трения до

v = 6 м/c асфальт u = 1 u =

Рис. 1

полной остановки саней теперь вычисляется стандартным способом. Пусть l — расстояние, на которое продвинутся санки дополнительно (после того, как они полностью въедут на асфальт) до их остановки (рис. 1r).

По теореме об изменении кинетической энергии: $0-\frac{mu^2}{2}=-\mu mgl~(2).~\text{Тогда c учётом (1), получаем }\frac{1}{2}(v^2-\mu gL)=\mu gl~,$ откуда $l=\frac{1}{2}(\frac{v^2}{\mu g}-L)$ и $L+l=\frac{1}{2}(\frac{v^2}{\mu g}+L)\approx 2.8\,\mathrm{M}$.

4*. (**МФТИ**, из старых задач) Какую работу нужно совершить, что бы длинную доску, лежащую на земле, повернуть в горизонтальной плоскости вокруг одного из концов на угол α ? Длина доски L, масса M, коэффициент трения между доской и землёй μ .

Рис. 2

Решение. Доска однородна, поэтому сила трения, действующая на кусочек длиной Δx , есть $\Delta F_{\rm rp} = \mu \cdot \Delta M \cdot g = \mu \frac{\Delta x}{L} Mg$. Работа против сил трения для кусочка доски Δx (см рис 2), удалённого на расстояние x от неподвижного конца равна $\Delta A_{\rm rp} = \mu \frac{\Delta x}{L} Mg \cdot s(x)$, где $s(x) = x \cdot \alpha$ — путь, пройденный этим кусочком доски. Так как зависимость $s(x) = \alpha x$ линейная, то средний путь для всех кусочков доски $s_{\rm средн} = \frac{1}{2} L \alpha$ (см. Пример 1.3 настоящего Задания), поэтому $A_{\rm rp} = \mu Mg \cdot \frac{1}{2} L \alpha$.

 5^* . Брусок массой 0,5 кг лежит на наклонной плоскости, образующей с горизонтом угол α ($\sin \alpha = 0,6$). Брусок соединен с вершиной наклонной плоскости недеформированной пружиной жёсткостью 64 Н/м. Какую скорость v_0 надо сообщить бруску вверх вдоль наклонной плоскости, чтобы он вернулся и остановился в начальной точке? Коэффициент трения между бруском и плоскостью 0,8. $g = 10 \text{ м/c}^2$.

Решение. Направим ось Ox вдоль наклонной плоскости вверх, совместив нуль оси с начальным положением бруска. Пусть x — максимальное удлинение пружины. По теореме о приращении кинетической энергии для перехода бруска из начального состояния в состояние, когда он остановился в верхней точке:

$$0 - \frac{mv_0^2}{2} = -mg\sin\alpha \cdot x - \frac{kx^2}{2} - \mu mg\cos\alpha \cdot x; \tag{1}$$

для обратного перехода:

$$0 - 0 = mg \sin \alpha \cdot x + \frac{kx^2}{2} - \mu mg \cos \alpha \cdot x.$$
 (2)

Из последнего уравнения находим

$$x = 2mg(\mu\cos\alpha - \sin\alpha)/k = 0.00625 \text{ M} = 6.25 \text{ MM}.$$

Тогда по уравнению (1) окончательно получаем

$$v_0 = 2\sqrt{\mu g \cos \alpha \cdot x} = 0.4 \,\text{m/c} \,. \tag{3}$$

6. На гладком горизонтальном полу лежит доска массой M=3 кг, а на ней — брусок массой m=1 кг . Коэффициент трения между бруском и доской $\mu=0,6$. В начальный момент брусок и доска покоятся относительно пола. К бруску прикладывают горизонтальную силу F=7 H . Определить количество тепла Q, которое выделится за время t=1 с движения бруска и доски вследствие трения между ними. Найти также $K\Pi \mathcal{I}$ силы F, считая полезной работу, затраченную на разгон бруска.

Решение. Предположим, как и в Примере 3.4, что возникнет проскальзывание бруска относительно доски. Запишем уравнения 2-го закона Ньютона для бруска и доски и решим их (рис. 3):

$$\begin{cases} ma_m = F - \mu mg & (1) \\ Ma_M = + \mu mg & (2) \end{cases} \Rightarrow \begin{cases} a_m = F/m - \mu g = 1 \text{ M/c}^2 \\ a_M = \mu mg/M = 2 \text{ M/c}^2. \end{cases}$$

Рис. 3

Получился абсурдный результат: мы тянем брусок, он за счёт трения между ним и доской тянет её за собой, но она его обгоняет ($a_{\scriptscriptstyle M}>a_{\scriptscriptstyle m}$). В чём мы делаем ошибку? - Мы предположили, что имеет место проскальзывание между бруском и доской. Это - совсем не обязательное предположение: брусок и доска могут двигаться, как единое целое (рис. 3): $a_{\scriptscriptstyle M}=a_{\scriptscriptstyle m}\equiv a$.При этом сила трения между бруском и доской будет силой трения покоя, и для неё не будет иметь место формула $F_{\rm TD} = \mu N = \mu mg$. Вместо системы уравнений (1-2) будем иметь другую;

с учётом того, что $\vec{F}_{\text{тр},m} = -\vec{F}_{\text{тр},M}$:

$$\begin{cases} ma = F - F_{\text{rp}} & (3) \\ Ma = +F_{\text{rp}} & (4) \end{cases} \Rightarrow \begin{cases} a = \frac{F}{M+m} = 1,75 \text{ m/c}^2 & (5) \\ F_{\text{rp}} = Ma = 5,25 \text{ H} & (6) \end{cases}$$

Далее – как в Примере 3.4: $v = v_m(t) = v_M(t) = at = 1,75 \text{ м/c}$ (t = 1 c);

$$s_m(t) = s_M(t) = \frac{at^2}{2} = 0,875$$
 м, работа силы F за время $t = 1$ с

$$A_F(t) = F \cdot s_m(t) = 6,125 \, \text{Дж}$$
,

$$\Delta K = \Delta K_m + \Delta K_M = \frac{m v_m^2}{2} + \frac{M v_M^2}{2} = \frac{(m+M) v^2}{2} = 6,125 \ \mathrm{Дж} = A_F(t) \ ,$$

т. е. вся совершённая силой F работа расходуется на увеличение кинетической энергии бруска и доски; никакая её часть не тратится на нагрев, Q = 0.

Это легко понять. Тепло при трении выделяется, лишь если есть смещение одних трущихся тел относительно других. В нашем случае этого нет (брусок и доска движутся, как одно целое).

Наконец,

$$K\Pi\Pi = \frac{mv_m^2}{2}/A_F = 0.25$$
 (T. e. 25%)

Несмотря на то, что никакая часть энергии не переходит в тепло, $K\Pi \mathcal{I}$ меньше единицы, – лишь $\frac{1}{4}$ часть работы силы F идёт на увели-

чение кинетической энергии бруска, $\frac{3}{4}$ тратится на увеличение кинетической энергии доски (её масса в 3 раза больше, чем у бруска).

7*. На пути тележки массой m, скользящей по гладкому горизонтальному столу со скоростью V, находится незакрепленная горка высотой H и массой M(см. рис. 4). Тележка по горке, а также горка по столу скользят без трения. Скорость тележки V

недостаточна, чтобы преодолеть горку. На какую максимальную высоту h поднимется тележка? Какие скорость v и u приобретут тележка и горка, когда тележка съедет с горки, не добравшись до вершины?

Решение. В момент достижения тележкой максимально возможной высоты h её скорость относительно горки будет равна нулю (в этот момент скорости горки и тележки сравняются друг с другом). Обозначим эту скорость буквой U. По закону сохранения импульса

$$mV = (m+M)U, (1)$$

а по закону сохранения энергии

$$\frac{mV^2}{2} = \frac{(m+M)U^2}{2} + mgh.$$
 (2)

Решение системы уравнений (1 – 2) даёт

$$h = \frac{M}{m+M} \cdot \frac{V^2}{2g}.$$

Пусть v – скорость тележки в момент, когда она съедет с горки, u – искомая скорость горки. Запишем законы сохранения импульса и энергии:

$$mV = Mu + mv, (3)$$

$$\frac{mV^2}{2} = \frac{Mu^2}{2} + \frac{mv^2}{2}. (4)$$

Перепишем эту систему уравнений в виде

$$m(V-v) = Mu, (3')$$

$$m(V^2 - v^2) = Mu^2. (4')$$

Учитывая формулу для разности квадратов $V^2 - v^2 = (V - v)(V + v)$ и деля (4') на (3'), получаем

$$u = V + v. (5)$$

Подставляя соотношение (5) в первое из уравнений системы (3'-4')(линейное!), находим

$$m(V-v) = M(V+v),$$

откуда получаем для окончательной скорости тележки

$$v = \frac{m - M}{m + M}V\tag{6}$$

и после подстановки (6) в (5) – формулу для скорости горки в момент, когда с неё съедет тележка,

$$u = \frac{2m}{m+M}V. (5)$$

В зависимости от того, какая из масс больше — тележки или горки, — тележка покатится назад или вперёд: при m < M имеем v < 0 (тележка покатится назад), но если масса тележки больше массы горки, m > M, тележка будет следовать за горкой v > 0, хотя и с меньшей скоростью, v < u.

8. Начиная движение из состояния покоя, кабина лифта поднимается на высоту $H=30\,\mathrm{m}$ и останавливается. Найти, какая работа A была совершена при этом двигателем лифта, если максимальная мощность, развиваемая им при подъёме, составила $N=2\,\mathrm{kBt}$. Полное время подъёма кабины $\tau=8\,\mathrm{c}$, разгон и замедление происходили с постоянным по модулю ускорением в течение одинакового времени $\tau_1=2\,\mathrm{c}$, остальное время кабина двигалась равномерно. Коэффициент полезного действия двигателя считать равным 100%, ускорение свободного падения принять $g=10\,\mathrm{m/c}^2$.

Решение. Обозначения к формулам см. на рисунке 5.

Рис. 5

$$\begin{split} H &= \frac{v_m}{2} \tau_1 + v_m \cdot 2\tau_1 + \frac{v_m}{2} \tau_1 = 3v_m \tau_1 \implies v_m = \frac{H}{3\tau_1} = 5 \,\mathrm{M/c} \; ; \\ \Delta h_1 &= \Delta h_3 = \frac{v_m}{2} \tau_1 = 5 \,\mathrm{M} \; ; \quad \Delta h_2 = H - \Delta h_1 - \Delta h_3 = 20 \,\mathrm{M} ; \\ a &= \frac{v_m}{\tau_1} = 2.5 \,\mathrm{M/c^2} \; ; \quad g + a = 12.5 \,\mathrm{M/c^2} ; \quad g - a = 7.5 \,\mathrm{M/c^2} . \\ F_2 &= mg \; ; \\ ma &= F_1 - mg \implies F_1 = m(g + a) \\ -ma &= F_3 - mg \implies F_3 = m(g - a) \; ; \end{split}$$

$$N_{\max} = F_1 v_m = m(g+a) v_m \implies m = \frac{N_{\max}}{(g+a)v_m} = 32 \,\mathrm{kr}$$
 (стандартные лифты в

домах как минимум раз в 10 тяжелее; хотя на стройках бывают сравнительно легкие подъёмные устройства; вероятно, составители задачи имели в виду такое подъёмное устройство).

Подстановка полученных значений ускорения и массы даёт числовые значения для сил $F_1=400\,\mathrm{H}$; $F_2=320\,\mathrm{H}$; $F_3=240\,\mathrm{H}$. В итоге, получаем

$$A = F_1 \cdot \Delta h_1 + F_2 \cdot \Delta h_2 + F_3 \cdot \Delta h_3 = 2000 + 6400 + 1200$$
 Дж = 9,6 кДж.

 9^* . (Олимпиады МФТИ до 1977 г.) Два автомобиля имеют одинаковую полезную мощность. Максимальная скорость, развиваемая первым автомобилем v_1 , вторым $v_2 < v_1$. Какую максимальную скорость смогут развить автомобили, если первый возьмет на буксир второй? Считать неизменными мощности автомобилей (т. е. второй автомобиль не выключает двигатель), а также неизменными остаются силы сопротивлений, действующие на автомобили. Как изменится результат, если буксируемая машина, будет двигаться с выключенным двигателем (но без торможения)?

Решение. До соединения машин: силы тяги уравновешиваются силами сопротивления

$$F_1 = F_{\text{comp1}} = \frac{N}{v_1}$$
 и $F_2 = F_{\text{comp2}} = \frac{N}{v_2}$. (1-2)

Вторая сила сопротивления больше первой (например, в силу худшей «аэродинамики»), поэтому для неё меньше максимальная развиваемая 2-й машиной скорость. После соединения машин тросом, изменятся силы тяги: у 1-й (буксирующей) машины она возрастёт на величину силы натяжения троса T

$$F'_{1} = F_{\text{comp1}} + T = \frac{N}{v_{1}} + T;$$
 (3)

на эту же величину уменьшится сила тяги 2-й (буксируемой) машины

$$F'_2 + T = F_{\text{comp2}} \Rightarrow F'_2 = \frac{N}{v_2} - T. \tag{4}$$

В силу условия задачи, что мощности машин остаются неизменными, а соединены машины нерастяжимым тросом, т. е. движутся с одинаковой скоростью v, новые силы тяги окажутся равны друг другу:

$$F'_{1} = \frac{N}{7} = F'_{2}. \tag{5-6}$$

В результате имеем:

$$\frac{N}{v} = \frac{N}{v_1} + T$$
 и $\frac{N}{v} = \frac{N}{v_2} - T$. (3') и (4')

Складывая эти два равенства, получаем $\frac{2N}{v} = \frac{N}{v_1} + \frac{N}{v_2}$, откуда нахо-

дим искомую скорость:

$$v = \frac{2v_1v_2}{v_1 + v_2} \,. \tag{7}$$

В частном случае равенства двух скоростей $v_2 = v_1$ получаем естественный результат $v = v_1 = v_2$.

В том случае, когда буксируемая машина движется с выключенным двигателем, вместо (4) имеем $T\!=\!F_{\text{conp2}}\!\Rightarrow\!0\!=\!\frac{N}{v_2}\!-\!T$; тогда вместо (3')

и (4') имеем

$$\frac{N}{v'} = \frac{N}{v_1} + T$$
 и $0 = \frac{N}{v_2} - T$.

Снова складывая равенства, находим

$$v' = \frac{v_1 v_2}{v_1 + v_2} \,. \tag{7'}$$

 10^* . (Из старых задач 3Φ ТШ) Найти коэффициент полезного действия водометного двигателя реактивного катера, движущегося с постоянной скоростью, считая известными площадь входного отверстия S_1 и выходного $S_2 < S_1$.

Указание. Считать, что в водометный двигатель вода поступает через входное отверстие в носовой части катера благодаря его движению навстречу покоящейся относительно берега воде (поэтому входит вода в катер со скоростью v_1 , равной скорости катера относительно берега); затем вода выбрасывается назад через выходное отверстие с большей скоростью v_2 (это скорость относительно катера). Пренебречь 3-мерностью движения воды. Для нахождения силы тяги F, входящей в выражение для полезной мощности двигателя $P_{\text{полезн}} = F \cdot v_1$ рассмотреть ежесекундное изменение импульса массы воды, поступающей в двигатель в единицу времени. Полную мощность $P_{\text{полн}}$ считать равной приращению кинетической энергии воды, проходящей через двигатель ежесекундно. Учесть соотношение $S_1v_1 = S_2v_2$, считая течение воды в двигателе неразрывным.

Решение. (Коренев Г.В., Колесов Ю.И., Пиголкина Т.С. Механика. /Под ред. Г.В. Коренева. – М.: Просвещение, 1972. – 223 с. (стр. 217-218)) Коэффициент полезного действия двигателя η равен отношению полезной мощности $P_{\text{полезн}}$ к полной мощности двигателя $P_{\text{полн}}$

$$\eta = \frac{P_{\text{полезн}}}{P_{\text{полен}}}.$$

Пусть через двигатель ежесекундно проходит масса воды, равная μ , причём попадает она в двигатель со скоростью v_1 (это скорость движения катера), а выходит со скоростью v_2 . При этом импульс жидкости изменяется на величину $\mu(v_2-v_1)$, и, следовательно, сила тяги двигателя равна

$$F = \mu(v_2 - v_1).$$

Это – сила со стороны катера на ускоряемую двигателем воду. По 3-му закону Ньютона такая же по модулю сила действует со стороны ускоряемой воды на катер.

Полезная мощность двигателя равна

$$P_{\text{полезн}} = \mu(v_2 - v_1)v_1$$
.

Полная мощность двигателя равна изменению кинетической энергии воды, прошедшей через двигатель в единицу времени

$$P_{\text{полн}} = \frac{\mu}{2} (v_2^2 - v_1^2).$$

Поэтому

$$\eta = \frac{2v_1}{v_2 + v_1}.$$

Но из условия неразрывности струи воды следует, что

$$S_1v_1 = S_2v_2$$
.

Следовательно

$$\eta = \frac{2S_2}{S_1 + S_2} \,.$$