Joint Bayesian Gaussian Discriminant Analysis For Speaker Verification

Yiyan Wang

Haotian Xu

Zhijian Ou

wangyiya14@mails.tsinghua.edu.cn

xht13@mails.Tsinghua.edu.cn

ozj@tsinghua.edu.cn

Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing, China

Joint Bayesian (JB) Model for Speaker Verification

The *j*-th i-vector of speaker i, denoted by $x_{ij} \in \mathbb{R}^d$, is decomposed as:

$$x_{ij} = \mu_i + \varepsilon_{ij}$$
 Within-speaker variability

Speaker identity variable

- Two independent Gaussians: $\mu_i \sim N(0, S_\mu)$ $\varepsilon_{ij} \sim N(0, S_\varepsilon)$
- Training (EM algorithm)

$$max_{\Theta} \sum_{i} E_{p(h_i|x_{i};\Theta^t)} [\log p(h_i;\Theta^{t+1})]$$

Testing

$$r(x_1, x_2) = log \frac{p(x_1, x_2|H_I)}{p(x_1, x_2|H_E)}$$

= $log p(x_1, x_2) - log p(x_1) - log p(x_2)$

Efficient testing: Simultaneous Diagonalization (SD)

Testing: do simultaneous diagonalization of S_{μ} and S_{ε}

$$\Phi^T S_\mu \Phi = K$$

$$\Phi^T S_\epsilon \Phi = I$$
Diagonal matrix

• Define $\Psi = \Phi^{-T} \longrightarrow S_{\mu} = \Psi K \Psi^{T}$ $S_{\varepsilon} = \Psi I \Psi^{T}$

$$\Sigma_{x_i} = \begin{bmatrix} S_{\mu} + S_{\varepsilon} & S_{\mu} & \cdots & S_{\mu} \\ S_{\mu} & S_{\mu} + S_{\varepsilon} & \cdots & S_{\mu} \\ \vdots & \vdots & \ddots & \vdots \\ S_{\mu} & S_{\mu} & S_{\mu} & S_{\mu} + S_{\varepsilon} \end{bmatrix} = \Omega \begin{bmatrix} K + I & K & \cdots & K \\ K & K + I & \cdots & K \\ \vdots & \vdots & \ddots & \vdots \\ K & K & K & K + I \end{bmatrix} \Omega^T$$

where $\Omega = diag(\Psi; \dots; \Psi)$

• The calculation of $p(x_i)$ could be accelerated, which only involves inversion of diagonal matrices.

Complexity: $O(d^3) \rightarrow O(d)$

Connection with PLDAs

Method	JB	two-covariance	SPLDA	Kaldi PLDA
Observation	$x_i =$	$\bar{x}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} x_{ij}$		
Model	$x_{ij} = \mu_i$	$+ \varepsilon_{ij}$	$x_{ij} = Fz_i + \varepsilon_{ij}$	$\bar{x}_i = \mu_i + \varepsilon_{i1}$
h_i	$\{\mu_i, \{\varepsilon_{ij}\}\}$	$\{\mu_i\}$	$\{z_i\}$	$\{\mu_i, \varepsilon_{i1}\}$
EM objective function $Q(\Theta_t, \Theta_{t+1})$	$E_{p(h_i x_i)}[logp(h_i)]$	$E_{p(h_i x_i)}[logp(h_i)]$ $E_{p(h_i x_i)}[logp(x_i, h_i)]$		$E_{p(h_i \bar{x}_i)}[logp(h_i)]$
Subspace dimensionality setting	loose		strict	loose
EM convergence	fast	sl	ow	fast

Table 1. The summary of the similarities and difference between JB, SPLDA, Kaldi PLDA and the two-covariance model, x_{ij} denotes the j-th i-vector of speaker i. $\mu_i \sim N(0, S_\mu)$ is the identity variable for speaker I, modeled by the between-class covariance S_μ , $\varepsilon_{ij} \sim N(0, S_\varepsilon)$ is the intersession residual, modeled by the within-class covariance S_ε . For SPLDA, $z_i \sim N(0, I)$ stands for the identity variable.

• EM algorithm for SPLDA:

$$\begin{aligned} \max_{\Theta} & \Sigma_i E_{p(Z_i|X_i;\,\Theta_t)} logp(x_i,z_i;\Theta_{t+1}) & \longleftarrow \min_{\Theta} & \Sigma_i \Sigma_j trace(\Lambda_{t+1}^{-1} E[(x_{ij}-F_{t+1}z_i)(x_{ij}-F_{t+1}z_i)^T]) \\ & E[z_i] = & F_t^T (F_t F_t^T + \Lambda_t)^{-1} x_{ij} & \downarrow \\ & \text{When } \Lambda_t \text{ is small and } F_{t+1} \approx F_t, & x_{ij} - F_{t+1} \cdot E[z_i] \approx x_{ij} - F_{t+1} \cdot F_t^T (F_t F_t^T)^{-1} x_{ij} = 0 \end{aligned}$$

The EM update for SPLDA could easily be **stuck** into non-local minima with small Λ_t .

The EM update for JB does not have such problem.

JB calculates the joint likelihood $p(x_i) = N(0, \Sigma_{x_i})$

Kaldi calculates the likelihood of the single average i-vector $\overline{x_i}$.

$$p(\overline{x_i}) = N\left(0, FF^T + \frac{1}{m_i}\Lambda\right)$$

Experiments

Speaker Verification Performance

Fig. 1. DET curves in SRE10 core condition 5 evaluation.

System	SRE10 MALE			SRE10 FEMALE		
	EER	DCF10	DCF08	EER	DCF10	DCF08
LDA+COS	1.905	0.292	0.091	2.619	0.399	0.126
Kaldi PLDA	1.299	0.284	0.079	1.944	0.345	0.102
SPLDA	1.010	0.217	0.055	1.621	0.287	0.079
JB	0.894	0.188	0.048	1.485	0.245	0.069

Subspace Dimensionality

Fig. 2. The influence of subspace dimensionality on JB and SPLDA using NIST SRE10 core condition male test data.

Convergence Rate

Fig. 3. (a) The negative log-likelihood of JB (EM with exact or approximated statistics) and SPLDA during training. (b) The zoom-in of negative log-likelihood convergence curves for JB with exact and approximated EM statistics.