作业1

1.
$$\overline{\vec{v}} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = 0$$
, $\overline{\vec{a}} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} = \frac{2v_1 \sin(\theta/2)}{\Delta t} \cdot \frac{\Delta \vec{v}}{\Delta v}$.

2. (1)
$$\vec{v}(t=1 \text{ s}) = 2\vec{i} + 9\vec{j} \text{ (m/s)};$$

(2)
$$\vec{v} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = 2\vec{i} + 39\vec{j}$$
 (m/s), $\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} = 36\vec{j}$ (m/s²).

3. 质点 A 运动的轨道方程为 $y = 18 - \frac{3}{2}x$, 直线;

质点 B 运动的轨道方程为 $y=17-\frac{4}{9}x^2$, 抛物线;

质点 C 运动的轨道方程为 $x^2 + y^2 = 16$, 圆;

质点 D 运动的轨道方程为 $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{6}\right)^2 = 1$,椭圆。

4. (1) 速度函数:
$$v = \frac{dx}{dt} = -u \ln(1 - bt)$$
; 加速度函数: $a = \frac{dv}{dt} = \frac{ub}{1 - bt}$;

(2)
$$v(t = 0s) = 0$$
; $v(t = 100s) = 4.16 \times 10^3 \text{ ms}^{-1}$;
 $a(t = 0s) = 22.5 \text{ ms}^{-2}$ $a(t = 100s) = 90 \text{ ms}^{-2}$.

5.
$$v = \sqrt{5x^2 + 6x + 36}$$
.

6.
$$a_n$$
 增大, a_{τ} 不变, a 增大; $\tan \alpha = \frac{a_n}{a_{\tau}}$,由于 a_n 增大, a_{τ} 不变,所以 α 增大。

作业2

1. 切向加速度量值
$$a_{\tau} = \frac{g^2 t}{\sqrt{{v_0}^2 + (gt)^2}}$$
; 法向加速度 $a_n = \sqrt{g^2 - {a_{\tau}}^2} = \frac{g v_0}{\sqrt{{v_0}^2 + (gt)^2}}$.

2. 切向加速度为
$$a_t = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = 48 \text{ m/s}^2$$
; 法向加速度为 $a_n = \frac{v^2}{R} = 2.304 \times 10^4 \text{ m/s}^2$.

- $\bf 3.~(1)$ 质点上升到轨道最高点法向加速度最大,其值为 $a_{max}=g$,切向加速度量值为零;
 - (2) 因为只考虑 y>0 的区域,所以当质点下落到和抛出点同一高度时,夹角 θ 最大,法向加速度最小, $a_n=g\cos\theta_0$,切向加速度为 $a_\tau=g\sin\theta_0$.

4. (1)
$$t = 1$$
 s; (2) $S = 1.5$ m; $\theta = 0.5$ rad.

5.
$$\vec{v}_{BA} = -2\vec{i} + 2\vec{j} \text{ ms}^{-1}$$
.

6. 地面上测得的风速
$$\vec{v} = 36\vec{i} - 18\vec{j}$$
 km/h.

7. 切向加速度
$$a_t = 0.2 \text{ m/s}^2$$
, 法向加速度 $a_n = 3.6 \text{ m/s}^2$.

作业3

1.
$$\begin{cases} f - mg = 0 \\ f + Mg = Ma \end{cases} \rightarrow a = \frac{m + M}{M} g.$$

2.
$$a + a_0 = (g + 2a_0)/3$$
.

3.
$$\omega \leq \sqrt{\frac{\mu g}{R}}$$
.

4. $F \le \mu_0 (m+M) mg / M$.

5. (1)
$$a_M = g \frac{m \sin \theta \cos \theta}{M + m \sin^2 \theta}$$
; (2) $a_m = g \frac{(M + m) \sin \theta}{M + m \sin^2 \theta}$.

6. (1) 子弹速度随时间变化的函数式为 $v(t) = v_0 e \times p(\frac{k}{m}t)$;

(2)
$$x_{\text{max}} = \frac{m}{k} v_0$$
.

作业4

1. (1)
$$\vec{I} = m(-\vec{i} + 3\vec{j})$$
 (NS).

2.
$$v = 6 \text{ ms}^{-1}$$
.

3.
$$\vec{I} = -m(\sqrt{v_A^2 + 2\pi\alpha R^2} + v_A)\vec{i}$$
 (SI).

4.
$$F = 215.6 \text{ N}$$
.

5.
$$t_1 < t_2$$
.

作业5

1. (1)
$$L_A = L_B$$
; (2) $E_{KA} > E_{KB}$.

2. (1)
$$\omega' = 4\omega_0$$
; (2) $A = \frac{3}{2}mr^2\omega_0^2$.

3,
$$A = 2F_0R^2$$
.

4. (1)
$$A = G \frac{M_e mh}{R_e (R_e + h)}$$
; (2) $v = \sqrt{\frac{2GM_e h}{R_e (R_e + h)}}$

5. (1)
$$A = -\frac{mg\mu}{2L}(L-a)^2$$
; (2) $v = \sqrt{\frac{g}{L}[(L^2 - a^2) - \mu(L-a)^2]}$.

作业6

1. (1)
$$v = \sqrt{2gR/3}$$
; (2) $H = \frac{4}{3}R$.

- 2.A: 错。如果系统不受外力作用,则动量肯定守恒;如果非保守内力做功不为零,则系统的机械能不守恒;
 - B: 错。如果系统所受合外力为零,则动量肯定守恒;但合外力为零的系统,如果合外力做功不为零,即使系统不受非保守内力,系统的机械能也不守恒;
 - C:正确。系统不受外力,合外力为零,动量肯定守恒;不受外力,外力的功肯定为零, 内力都是保守力,非保守内力做功肯定为零,机械能必然守恒;
 - **D**:错。外力对一个系统做的功为零,但如果非保守内力做功不为零,则系统的机械能不守恒,外力对一个系统做的功为零,不能保证系统的动量不变。

3. (1)
$$E_P = G \frac{2mM}{3R}$$
; (2) $E_P = -G \frac{mM}{3R}$.

4.
$$A = 3 J$$
.

$$5. \ \ v = d\sqrt{\frac{k}{2m}} \ .$$

6. (1) 小球对桌面的速度
$$v_1 = \sqrt{\frac{2MgR}{m+M}}$$
, 容器对桌面的速度 $v_2 = -\frac{m}{M}\sqrt{\frac{2gMR}{(m+M)}}$;

(2) 小球受到向上的支持力
$$N = mg[1 + \frac{2(m+M)}{M}]$$
;

(3) 物块相对桌面移动的距离
$$L = \frac{m}{m+M} R$$
.

$$7 \quad v = \sqrt{\frac{M}{M+m} 2gL} \quad .$$

作业 7

- 1. $J_A < J_B$.
- 2. 几个力的矢量和为零,外力矩的矢量和不一定为零。
 - (1) 合力矩为零时,刚体静止或匀速转动;(2) 合力矩不为零时,加速或减速转动。
- 3. (1) $\omega = 15 \text{ rad/s}$, $\theta = 22.5 \text{ rad}$;

(2)
$$v = 6.25$$
 m; $a = \sqrt{a_t^2 + a_n^2} = 156.31$ m/s².

4. (1) h = 2.45 m; (2) T = 39.2 N.

5. (1)
$$\alpha = -\frac{K\omega_0^2}{9J}$$
; (2) $t = \frac{2J}{K\omega_0}$.

6. $\alpha' > \alpha$

作业8

1. (1)
$$J_M > J_H$$
; (2) $E_{kM} > E_{kH}$.

2. C; 因为有内能,是非保守力作功,系统的机械能不守恒; 但合力矩为零,角动量守恒。

3.
$$\omega = \frac{mv'R}{J + mR^2} = 0.095 \text{ rad/s}.$$

4.
$$\cos \theta = 1 - \frac{75}{296} \frac{v^2}{gl}$$

5.
$$v_A = \omega l = \sqrt{3gl}$$
.

6. (1) 对于小球和圆环构成的系统,重力与转轴平行,所以力矩为零,系统的内力不改变 角动量,所以系统的角动量守恒。

当小球在 B 位置时
$$J_0\omega_0 = J_0\omega_B + mR^2\omega_B \rightarrow \omega_B = \frac{J_0\omega_0}{J_0 + mR^2}$$
;

当小球在 C 位置时 $J_0\omega_0=J_0\omega_c+m0^2\omega_c\to\omega_c=\omega_0$.

(2) 以地球、圆环、小球为系统,系统不受外力,做功为零。内力有重力和小球与环壁

之间的压力,重力为保守内力;而小球和环壁的压力为非保守内力,但是小球受的压力(与环壁垂直)与小球相对于环的速度方向(与环壁相切)始终垂直,所以这对力做功为零。 因此系统的机械能守恒: $mg2R+\frac{1}{2}J_0\omega^2_0=\frac{1}{2}mv^2+\frac{1}{2}J_0\omega^2_0 \to v=\sqrt{4gR}$.C 点时环为瞬时惯性系,对地的速度和对环的速度一样。

7. 系统动量守恒,系统受合外力为零;系统角动量守恒,系统受合外力矩为零。