UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

1 Axioms of Set Theory (ZFC)

1 Lecture03: Mon08 Jan'24

1 Axioms of Set Theory (ZFC)

Definition 1.1 (Set). A set is a well-defined collection of objects, which we call elements. We will write $x \in A$ to say that x is an element of A.

Well-defined means that given any object, we can state without ambiguity whether it is an element of the set or not.

Axiom 1.1. Sets are themselves objects. If A and B are sets, it is meaningful to ask whether A is an element of B.

Axiom 1.2 (Extensionality). Two sets A and B are equal, written A = B, if every element of A is a member of B and vice versa.

Axiom 1.3 (Existence). There exists a set, denoted by \emptyset or $\{\}$, known as the empty set, which does not contain any elements, *i.e.*, $x \notin \emptyset$ for all objects x.

Problem 0.1. \varnothing is unique.

Proof. Suppose \varnothing and \varnothing' are both empty sets. Then $x \in \varnothing \iff x \in \varnothing'$

since both are always false.

Lemma 1.2 (Single choice). Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Proof. If not, then $x \notin A$ for all objects x and so $A = \emptyset$.

Thus, we can choose an element of A to certify its non-emptiness.

Axiom 1.4 (Pairing). If a is an object, there exists a set, denoted $\{a\}$, whose only element is a. Similarly, if a and b are objects, there exists a set, denoted $\{a,b\}$, whose only elements are a and b.

For example, we can now construct \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}\}$, etc, all of which are distinct.

Axiom 1.5 (Pairwise union). Given sets A and B, there exists a set, denoted $A \cup B$, called the union of A and B, which consists of exactly the elements in A, B, or both.

Problem 0.2. $A \cup B = B \cup A$.

Proof. By commutativity of \vee .

Problem 0.3. $(A \cup B) \cup C = A \cup (B \cup C)$.

Proof. By associativity of \vee .

Definition 1.3 (Subset). A is a subset of B if every element of A is alaso an element of B, denoted $A \subseteq B$.

Axiom 1.6 (Specification). (also called Separation). Let A be a set and let P(x) be a property for every $x \in A$. Then there exists a set $S = \{x \in A \mid P(x)\}$ where $x \in S$ iff $x \in A$ and P(x) is true.

We can now define the intersection, $A \cap B$, and difference, $A \setminus B$, of sets A and B.

Definition 1.4. Let A and B be sets. we define the intersection $A \cap B = \{x \in A \mid x \in B\}$ and the difference $A \setminus B = \{x \in A \mid x \notin B\}$. A and B are said to be disjoint if $A \cap B = \emptyset$.

Recall that sets form a Boolean algebra under the operations \cup , \cap , and \setminus . For example, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, de Morgan's laws, etc.

Axiom 1.7 (Replacement). Let A be a set and let P(x, y) be a property for every $x \in A$ and every object y, such that for every $x \in A$ there is at most one y for which P(x, y) is true. Then there exists a set $S = \{y \mid P(x, y) \text{ is true for some } x \in A\}$. That is, $y \in S$ iff P(x, y) is true for some $x \in A$.

Examples.

- Let $A = \{7, 9, 22\}$ and $P(x, y) \equiv y = x_{++}$. Then $S = \{8, 10, 23\}$.
- Let $A = \{7, 9, 22\}$ and $P(x, y) \equiv y = 1$. Then $S = \{1\}$.

Axiom 1.8 (Infinity). There exists a set, denoted \mathbb{N} , whose objects are called natural numbers, *i.e.*, an object $0 \in \mathbb{N}$, and n_{++} for every $n \in \mathbb{N}$, such that the Peano axioms hold.

Axiom 1.9 (Foundation). (also called Regularity). If A is a non-empty set, then there exists at least one $x \in A$ which is either not a set or is disjoint from A.

For example, if $A = \{\{1, 2\}, \{1, 2, \{1, 2\}\}\}\$, then $\{1, 2\}$ is an element of A which is disjoint from A.

Lecture 04: Wed 10 Jan '24

Definition 1.5 (Cartesian product). Let A and B be sets. Then $A \times B = \{(a,b) \mid a \in A, b \in B\}$ is called the *Cartesian product* of A and B.

This exists by virtue of the axiom of powers (1.10).

Definition 1.6 (Relation). Let A and B be sets. Then a subset R of $A \times B$ is called a (binary) relation from A to B. If B = A, we say that R is a relation on A.

We define some properties of relations.

Definition 1.7. Let R be a relation on a set A. We say that R is

- (i) **reflexive** if $(a, a) \in R$ for all $a \in A$,
- (ii) symmetric if $(a, b) \in R \implies (b, a) \in R$,
- (iii) **antisymmetric** if $(a, b) \in R \land (b, a) \in R \implies a = b$,
- (iv) transitive if $(a, b) \in R \land (b, c) \in R \implies (a, c) \in R$.

If R satisfies (i), (ii) and (iv), it is said to be an equivalence relation. We write $a \sim_R b$ for $(a, b) \in R$.

If R satisfies (i), (iii) and (iv), it is a partial order. We write $a \leq_R b$ or $a \geq_R b$ for $(a, b) \in R$.

Definition 1.8 (Equivalence class). Let X be a set and \sim_R an equivalence relation on X. The equivalence class associated with $x \in X$ is

$$[x] = \{ y \in X \mid y \sim_R x \}.$$

Definition 1.9 (Partition). A (set) *partition* of a set X is a family $\{X_{\alpha} \mid \alpha \in I\}$, where I is some indexing set, such that,

- (i) $X_{\alpha} \cap X_{\beta} = \emptyset$ for all $\alpha \neq \beta \in I$,
- (ii) $\bigcup_{\alpha \in I} X_{\alpha} = X$.

This is also written as simply

$$\bigsqcup_{\alpha \in I} X_{\alpha} = X.$$

Proposition 1.10 (Fundamental theorem of equivalence relations). Let X be a set and \sim_R an equivalence relation on X. Then the family of equivalence classes $\{[x] \mid x \in X\}$ forms a partition of X. Conversely, every partition arises from an equivalence relation.

Proof. Exercise.

Definition 1.11. Let X be a set and \sim_R an equivalence relation on X. Then the set $X/\sim_R=\{[x]\mid x\in X\}$ is called the *quotient set* of X by R.

Examples.

- Consider \mathbb{N} with the relation $a \sim_R b \iff a \equiv b \pmod{3}$. The quotient set \mathbb{N}/R is $\{[0], [1], [2]\}$, which is morally the same as $\{0, 1, 2\}$.
- For any set A with the equality relation =, the quotient set A/= is the (morally) the same as A.
- Consider \mathbb{R}^2 with $(x,y) \sim (z,w)$ if $x^2 + y^2 = z^2 + w^2$. Then $\mathbb{R}^2/\sim = \{[(r,0)] \mid r \in \mathbb{R}\}$ which is morally just the set of non-negative reals.

Definition 1.12 (Function). Let A and B be sets. A relation f from A to B is said to be a function if for all $a \in A$, there exists a unique $b \in B$ such that $(a, b) \in f$.

A is said to be the *domain*, B is said to be the *range* or *codomain* of f. For a subset $C \subseteq A$, the image of C under f is $f(C) = \{f(a) \mid a \in C\}$.

For a subset $D \subseteq B$, the preimage or inverse image of D under f is $f^{-1}(D) = \{a \in A \mid f(a) \in D\}.$

Note that f(C) exists by the axiom of replacement.

Examples.

• $A = B = \mathbb{N}, f(a) = a_{++}$. Then $f(\mathbb{N}) = \mathbb{N} \setminus \{0\}$

$$f^{-1}(\{a\}) = \begin{cases} \{a-1\} & \text{if } a > 0\\ \emptyset & \text{if } a = 0 \end{cases}$$

Definition 1.13. Two functions f and g with the same domain X and range Y are equal if f(x) = g(x) for all $x \in X$.

Definition 1.14 (Composition). If $f: X \to Y$ and $g: Y \to Z$, then the *composition* $g \circ f$ is a function $g \circ f: X \to Z$ given by

$$(g \circ f)(x) = g(f(x)).$$

Definition 1.15. A function $f: A \to B$ is said to be

- injective, if f(x) = f(y) implies x = y,
- surjective, if f(A) = B,
- bijective, if it is both injective and surjective.
- an involution, if f(f(x)) = x for all $x \in A$.

Lecture 05: Fri 12 Jan '24

Exercise 1.16. Let $f: A \to B$ be an involution. Show that f is bijective.

Solution. f is surjective since everything is in the range. Injective since $f(x) = f(y) \implies f(f(x)) = f(f(y)) \implies x = y$.

A function is bijective iff for any $b \in B$ there is a unique $a \in A$ such that f(a) = b.

Definition 1.17. Let $f: A \to B$ be bijective. The *inverse* of f is the function $f^{-1}: B \to A$ where $f^{-1}(b)$ is the unique $a \in A$ such that f(a) = b.

Axiom 1.10 (Powers). Let X and Y be sets. Then there exists a set, denoted Y^X , consisting of all functions from $X \to Y$.

Exercise 1.18. Let X be a set. Then $\{Y \mid Y \subseteq X\}$ is also a set.

Solution. The property $P(F, X_F)$ given by

$$P(F, X_F) \iff F \in 2^X \land X_F = \{x \in X \mid F(x) = 1\}$$

is satisfied by at most one X_F for any F. Thus applying the axiom of replacement on 2^S gives the desired set.

Axiom 1.11 (Unions). Let A be a set whose elements are also sets. Then there exists a set, denoted $\bigcup A$, whose elements are the elements of the elements of A. Thus $x \in \bigcup A \iff x \in S$ for some $S \in A$.

Remarks. This axiom implies axiom 1.5.

Let I be a set such that A_{α} is a set for all $\alpha \in I$. Then $\{A_{\alpha} \mid \alpha \in I\}$ is a set by the axiom of replacement. Thus $\bigcup_{\alpha \in I} A_{\alpha}$ is a set.

Definition 1.19. Two sets X and Y are said to have the same cardinality if there exists a bijection $f: X \to Y$.

Let $n \in \mathbb{N}$. If a set X has the same cardinality as $\{0, 1, \dots, n-1\}$, then X is said to be *finite* and have cardinality n.

Definition 1.20. A set X is countably infinite or countable if it has the same cardinality as \mathbb{N} , is at most countable if it is finite or countable, and is uncountable otherwise.

Exercise 1.21. Let m < n be naturals. Show that there is

- (i) no surjection from [m] to $[n]^1$.
- (ii) no injection from [n] to [m].
- (iii) a bijection from [a] to [b] iff a = b.

Exercise 1.22 (Properties of countable sets).

- (i) If X and Y are countable, then so is $X \cup Y$.
- (ii) The set $\{(n,m) \in \mathbb{N} \times \mathbb{N} \mid 0 \le m \le n\}$ is countable.
- (iii) $\mathbb{N} \times \mathbb{N}$ is countable.

Theorem 1.23. Let X be an arbitrary set. Then X and 2^X cannot have the same cardinality.

Proof. Let $f: X \to 2^X$. Consider $A = \{x \in X \mid x \notin f(x)\} \subseteq X$. So $A \in 2^X$. Since for any $x \in X$, $x \in A \iff x \notin f(x)$, we have $f(x) \neq A$ for all $x \in X$. Thus f is not surjective.

 $^{^{1}[}n] = \{1, \dots, n\}$