FIG. 1A

	GGATAAGCCT CCTATTCGGA	CCCCGGTCGT	TGAGCC <u>A</u> GAG ACTCGG <u>T</u> CTC	CCTCCCTTCA	CTGGAAGACC GACCTTCTGG L E D H
1		М	S Q R	E G S	
51	ACCAGACTGA TGGTCTGACT	GAGGAGTTAG	TCATTCCTAC AGTAAGGATG	GGGTAAACCT	CCGGTTCTAG
12	Q T D	S S I	S F L P	H L E	AKI
101	CGCCAGACAC GCGGTCTGTG	TGTTGGAACG	CCGCCTCCTG GGCGGAGGAC	TGGTTTATAC	GTCTTGTTGA
28	R Q T H				~
151	AGACCTCCTT	ATGCACGTCG	AACAGGGAGA TTGTCCCTCT	CGGGAAACCC	GACGGCCCGA
45			Q G E		
201	TCTCACCACC AGAGTGGTGG	GCGGCTGCCG CGCCGACGGC	CTGGCCGGCC GACCGGCCGG	TGAGTGGCCC ACTCACCGGG	GGCTCCGAGC CCGAGGCTCG
62	S P P	R L P	L A G L	S G P	A P S
251	CATGCAGGGC GTACGTCCCG	TACCGGTGTC ATGGCCACAG	CGAGCGGCTG GCTCGCCGAC	CGGCAGGATG GCCGTCCTAC	CAGCCGCCCT GTCGGCGGGA
78	H A G L	P V S	E R L	R Q D A	A A L
301	GAGTGTGCTG CTCACACGAC	CCCGCGCTGT GGGCGCGACA	TGGATGCCGT ACCTACGGCA	CCGCCGCCGC GGCGGCGGCG	CAGGCGGAGC GTCCGCCTCG
95			D A V		Q A E L
351	TGAACCCGCG ACTTGGGCGC	CGCCCCGCGC GCGGGGGCGCG	CTGCTGCGGA GACGACGCCT	GCCTGGAGGA CGGACCTCCT	CGCAGCCCGC GCGTCGGGCG
	N P R	A P R	L L R S	LED	A A R
401	CAGGTTCGGG GTCCAAGCCC	CCCTGGGCGC GGGACCCGCG	CGCGGTGGAG GCGCCACCTC	ACAGTGCTGG TGTCACGACC	CCGCGCTGGG GGCGCGACCC
	Q V R A	L G A	A V E	T V L A	A L G
	GCGACGTCGG	GCGCCCGGGC	GGCCAGAGCC CCGGTCTCGG	GCAGTGGCAG	CGGTGGGAGA
145	A A A	R G P G	PEP	V T V	A T L F
501	TCACGGCCAA AGTGCCGGTT	CAGCACTGCA GTCGTGACGT	GGCATCTTCT CCGTAGAAGA	CAGCCAAGGT GTCGGTTCCA	GCTGGGGTTC CGACCCCAAG
162			G I F S		
551	CACGTGTGCG GTGCACACGC	GCCTCTATGG CGGAGATACC	CGAGTGGGTG GCTCACCCAC	AGCCGCACAG TCGGCGTGTC	AGGGCGACCT TCCCGCTGGA
178			E W V		
601					CTTTTTCTTG GAAAAAGAAC
195	G Q L				

FIG. 1B

651	TAAGCTCGCT	CTGTCTCGCC	TCTTTGGCTT	CAAATTTTCT	GTCTCTCCAT
	ATTCGAGCGA	GACAGAGCGG	AGAAACCGAA	GTTTAAAAGA	CAGAGAGGTA
701	CTGTGTCCTG	TGTGTTCTTG	GGCTGTCCCT	ATCTTTCTGC	ATTTGTGTGG
	GACACAGGAC	ACACAAGAAC	CCGACAGGGA	TAGAAAGACG	TAAACACACC
751	TCTCTCTCTT	CTGCTCTCCT	CTCTGCAGGG	AGCTTCTTTT	TTCCAACAGT
	AGAGAGAGAA	GACGAGAGGA	GAGACGTCCC	TCGAAGAAAA	AAGGTTGTCA
801	TTCTCGTTTT	GTCTCTCTCC	AGTCTTGAAC	ACTTTTGTCT	CCGAGAGGTC
	AAGAGCAAAA	CAGAGAGAGG	TCAGAACTTG	TGAAAACAGA	GGCTCTCCAG
851	TCTTTTTGTT	TCCTTGTCTC	TTGGTTCTTT	CTTTGCTTGC	TTGCTTGCTT
	AGAAAAACAA	AGGAACAGAG	AACCAAGAAA	GAAACGAACG	AACGAACGAA
901	GCTTGCTTGT	TGTTGAGACA	GGGTCTCACC	ATATAGCTCT	GGATGGCCTG
	CGAACGAACA	ACAACTCTGT	CCCAGAGTGG	TATATCGAGA	CCTACCGGAC
951	GAACTTGCTA	TGTAGGCCAG	GCTGGCCTCC	AGCTCATAGA	GATCCACTTG
	CTTGAACGAT	ACATCCGGTC	CGACCGGAGG	TCGAGTATCT	CTAGGTGAAC
1001	CCTCCGACTC	CCAATTTCCC	CATCTGTCTC	CCTGTGATCC	ATATGGGTAT
	GGAGGCTGAG	GGTTAAAGGG	GTAGACAGAG	GGACACTAGG	TATACCCATA
1051			CATGGAGGTG GTACCTCCAC	ACAATTTTTC TGTTAAAAAG	TCCCTTCAGT AGGGAAGTCA
1101		TTTACTGACC AAATGACTGG		CTACTTGTCC GATGAACAGG	CCTGGTGGCA GGACCACCGT
1151	AGGCCATTCA TCCGGTAAGT	CCTTAGGACC GGAATCCTGG		TTCCTTTGTA AAGGAAACAT	
1201	TCCCCCTTTG	AGGTCCTTCC	CTTTCATACC	GCCCTAGGCT	GGTCAATGGA
	AGGGGGAAAC	TCCAGGAAGG	GAAAGTATGG	CGGGATCCGA	CCAGTTACCT
1251	GAGAGAAAGG	CAGAAAAACA	TCTTTAAAGA	GTTTTATTTG	AGAATAAATT
	CTCTCTTTCC	GTCTTTTGT	AGAAATTTCT	CAAAATAAAC	TCTTATTTAA
1301	AATTTTTGTA	AATAAAATGT	TTAACAATAA	AACTAAACTT	TTATGAAAAA
	TTAAAAACAT	TTATTTTACA	AATTGTTATT	TTGATTTGAA	AATACTTTTT
1351	AA (polyA) TT				

FIG. 2

		10		_	30		50
chf.781	MSQREGS1	LEDHQTDS		HLEAKIRÇ			LEEYVQ
humcntf		MAFTE			RSIWLARK		
					20		40
					30		
chf.781	QQGEPFGI		LPLAGLS	GPAPSHA			SVLPAL. *
humcntf				-STDOWS			
	~				70		
		110	120	1	.30	140	
chf.781	LD-AVRRI				VRALGAAV	VETVLAAL	
humcntf			EGDFHOA				
					120		
15	50	160	170	1	.80	190	
chf.781	PGPEPVTV	/ATLFTAN	STAGIFS	SAKVLGFH * *	VCGLYGEV		LGQLVP
humcntf	NEADGMP	TNV					• •
-10	140		150)		
20	00						
chf.781	GGVAO						
humcntf	SHOTGIPA	ARGSHYTA	NNKKM				
 		L90	200				

FIG. 3

PHENYLEPHRINE (uM) STANDARD CURVE 293 TRANSFECTION

FIG. 4

CNTF STANDARD (ng/ml) OR
TRANSFECTED 293 CONDITIONED MEDIUM
(FRACTION OF ASSAY VOL)

FIG. 5A

1	GTGAAGGGAG CACTTCCCTC	CCGGGATCAG GGCCCTAGTC	CCAGGGGCCA GGTCCCCGGT	GCATGAGCCG CGTACTCGGC M S R	GAGGGAGGGA CTCCCTCCCT R E G
51	TCAGACCTTC	TGGGGGTCTG	ACTAAGGAGT	GTCTCACTTC CAGAGTGAAG	AAGGGGTGAA
7	SLED	P Q T	D S S	V S L L	P H L
101	GGAGGCCAAG CCTCCGGTTC	ATCCGTCAGA TAGGCAGTCT	CACACAGCCT GTGTGTCGGA	TGCGCACCTC ACGCGTGGAG	CTCACCAAAT GAGTGGTTTA
24	E A K	I R Q T			L T K Y
151	ACGCTGAGCA TGCGACTCGT	GCTGCTCCAG CGACGAGGTC	GAATATGTGC CTTATACACG	AGCTCCAGGG TCGAGGTCCC	AGACCCCTTC TCTGGGGAAG
41	A E Q			L Q G	
201	GGGCTGCCCA CCCGACGGGT	GCTTCTCGCC CGAAGAGCGG	GCCGCGGCTG CGGCGCCGAC	CCGGTGGCCG GGCCACCGGC	GCCTGAGCGC CGGACTCGCG
57	G L P S		P R L		
251				GCACGAGCGG CGTGCTCGCC	
74	P A P		L P V		L R L D
301				TGCTGGACGC ACGACCTGCG	
91	A A A	L A A	LPPL	L D A	V C R
351	CGCCAGGCCG GCGGTCCGGC	AGCTGAACCC TCGACTTGGG	GCGCGCGCCG CGCGCGCGC	CGCCTGCTGC GCGGACGACG	GCCGCCTGGA CGGCGGACCT
107	R Q A E	L N P			
401				CGCCGCCGTG GCGGCGGCAC	GAGGCCTTGC CTCCGGAACG
124	D A A	R Q A R	A L G	A A V	E A L L
451				CCCGGGCCGA GGGCCCGGCT	
141				R A E	

FIG. 5B

501 157	GCCACCGCCT CGGTGGCGGA A T A S	CAGCCGCCTC GTCGGCGGAG A A S	CGCCACCGGG GCGGTGGCCC A T G	GTCTTCCCCG CAGAAGGGGC V F P A	CCAAGGTGCT GGTTCCACGA K V L
551 174	GGGGCTCCGC CCCCGAGGCG G L R	GTTTGCGGCC CAAACGCCGG V C G L	TCTACCGCGA AGATGGCGCT Y R E	GTGGCTGAGC CACCGACTCG W L S	CGCACCGAGG GCGTGGCTCC R T E G
601 191	GCGACCTGGG CGCTGGACCC D L G	CCAGCTGCTG GGTCGACGAC Q L L	CCCGGGGGCT GGGCCCCCGA P G G S	CGGCCTGAGC GCCGGACTCG A O	GCCGCGGGGC CGGCGCCCCG
651	AGCTCGCCCC	GCCTCCTCCC	GCTGGGTTCC	GTCTCTCCTT	CCGCTTCTTT
	TCGAGCGGGG	CGGAGGAGGG	CGACCCAAGG	CAGAGAGGAA	GGCGAAGAAA
701	GTCTTTCTCT	GCCGCTGTCG	GTGTCTGTCT	GTCTGCTCTT	AGCTGTCTCC
	CAGAAAGAGA	CGGCGACAGC	CACAGACAGA	CAGACGAGAA	TCGACAGAGG
751	ATTGCCTCGG	CCTTCTTTGC	TTTTTGTGGG	GGAGAGGGGA	GGGGACGGGC
	TAACGGAGCC	GGAAGAAACG	AAAAACACCC	CCTCTCCCCT	CCCCTGCCCG
801	AGGGTCTCTG	TCGCCCAGGC	TGGGGTGCAG	TGGCGCGATC	CCAGCACTGC
	TCCCAGAGAC	AGCGGGTCCG	ACCCCACGTC	ACCGCGCTAG	GGTCGTGACG
851	AGCCTCAACC	TCCTGGGCTC	AAGCCATCCT	TCCGCCTCAG	CTTCCCCAGC
	TCGGAGTTGG	AGGACCCGAG	TTCGGTAGGA	AGGCGGAGTC	GAAGGGGTCG
901	AGCTGGGACT	ACAGGCACGC	GCCACCACAG	CCGGCTAATT	TTTTATTTAA
	TCGACCCTGA	TGTCCGTGCG	CGGTGGTGTC	GGCCGATTAA	AAAATAAAAT
951	TTTTTTGTAG	AGACGAGGTT	TCGCCATGTT	GCCCAGGCTG	GTCTTGAACT
	AAAAAACATC	TCTGCTCCAA	AGCGGTACAA	CGGGTCCGAC	CAGAACTTGA
1001	CCGGGGCTCA GGCCCCGAGT				

FIG. 6

humct1	1	MSRREGSLEDPQTDSSVSLLPHLEAKIRQTHSLAHLLTKYAEQLLQEYVQLQG
chf.781	1	MSQREGSLEDHQTDSSISFLPHLEAKIRQTHNLARLLTKYAEQLLEEYVQQQG
humct1		DPFGLPSFSPPRLPVAGLSAPAPSHAGLPVHERLRLDAAALAALPPLLDAVCR
chf.781	54	EPFGLPGFSPPRLPLAGLSGPAPSHAGLPVSERLRQDAAALSVLPALLDAVRR
humct1	107	**********
chf.781	107	RQAELNPRAPRLLRSLEDAARQVRALGAAVETVLAALGAAARGPGPEPVTVAT
humct1		SAASATGVFPAKVLGLRVCGLYREWLSRTEGDLGQLLPGGSA * * * * **** **** ** ***** ** **
chf.781	160	LFTANSTAGIFSAKVLGFHVCGLYGEWVSRTEGDLGQLVPGGVA