Прогнозирование продаж в розничной сети: анализ временных рядов

Джаводов Санджар

Требования к датасету и описание задачи

Требования к датасету:

 Наличие временной составляющей: ежедневные данные о продажах

Описание задачи:

- Прогнозирование продаж для тысяч семейств продуктов в магазинах Favorita в Эквадоре
- Горизонт прогнозирования: 15 дней после последней даты в обучающем наборе

Бизнес-цели проекта

- 1. Оптимизация управления запасами
- 2. Улучшение планирования поставок
- 3. Повышение эффективности ценообразования
- 4. Адаптация к сезонным колебаниям и праздникам
- 5. Учет влияния экономических факторов (например, цен на нефть) на продажи

Описание данных

Основные файлы:

- train.csv: Обучающие данные
- test.csv: Тестовые данные
- stores.csv: Метаданные магазинов
- oil.csv: Ежедневные цены на нефть
- holidays_events.csv:
 Праздники и события

Ключевые признаки:

- store_nbr: идентификатор магазина
- family: тип продукта
- sales: целевая переменная (объем продаж)
- onpromotion: количество товаров по акции
- Дополнительные метаданные: город, штат, тип магазина, кластер

Схема данных в реальной жизни

Архитектура хранения данных в ClickHouse:

- Колоночное хранение для эффективной работы с временными рядами
- Оптимизированное сжатие данных
- Распределенная архитектура с возможностью масштабирования

Основные таблицы и их структура:

- sales: основная таблица продаж (date, store_nbr, item_nbr, unit_sales, onpromotion)
- products: справочник продуктов (item_nbr, family, class, perishable)
- stores: информация о магазинах (store_nbr, city, state, type, cluster)
- transactions: данные о транзакциях (date, store_nbr, transactions)
- holidays: календарь праздников и событий
- oil_prices: данные о ценах на нефть

Схема данных в реальной жизни

Ключевые особенности реализации:

- Использование первичных и вторичных индексов для ускорения запросов
- Оптимизация для аналитических запросов
- Эффективное хранение временных рядов
- Поддержка интеграции с ML-инструментами

Связи между таблицами:

- store_nbr как ключ связи между sales, stores и transactions
- item_nbr связывает sales и products
- date как временной идентификатор для всех таблиц

Схема данных в реальной жизни

ML Систем Дизайн(Реализованные компоненты)

Сбор и хранение данных

- Источники данных:
 - Продажи и информация о продуктах (sales, products)
 - Данные о магазинах (stores)
 - Цены на нефть (oil_prices)
 - Календарь праздников (holidays)
- Хранение: ClickHouse (как показано на схеме БД)

Подготовка данных

- Преобразование временных рядов
- Обработка статических ковариат
- Создание признаков на основе календаря и промо-акций

Метрики и валидация:

- Основная метрика: RMSLE
- Бэктестинг на исторических данных
- Валидация на отложенной выборке (16 дней)

Обучение моделей

- Базовые модели:
 - Наивная сезонная модель
 - Экспоненциальное сглаживание
 - Facebook Prophet
- Продвинутые модели:
 - LSTM
 - N-HiTS
 - TFT
 - Бустинг (LightGBM, CatBoost)

ML Систем Дизайн(Планируемые улучшения)

Мониторинг и обновление

- Система отслеживания дрейфа данных
- Автоматическое переобучение моделей
- А/В тестирование

Интерпретация

- Внедрение SHAP для объяснения прогнозов
- Создание интерактивных дашбордов

Инфраструктура

- Внедрение Kafka для потоковой обработки
- Контейнеризация с Docker
- Оркестрация через Kubernetes

Анализ и предобработка данных

Предварительная обработка

Создание объектов TimeSeries в Darts Формирование статических ковариат:

- Номер магазина
- Семейство продуктов
- Город
- Регион
- Тип и кластер магазина

Период данных: 2013-2017 годы

Временные признаки

- День недели
- Месяц
- Год
- Праздничные дни

Трансформация данных

- Масштабирование всех рядов в диапазон [0,1]
- Логарифмическая трансформация
- Объединение всех ковариат в единый набор

Promotion Data

Transactions

Oil Price

Time Dummies and Covariates

EDA Анализ

Базовые модели (Бейзлайн)

Реализованные модели:

- Наивная сезонная модель (К=7 дней)
 - Простое повторение последних 7 дней
 - Используется как базовый уровень сравнения
 - Реализация через NaiveSeasonal из Darts
- Экспоненциальное сглаживание
 - Показала лучшие результаты среди базовых моделей
 - Реализация через ExponentialSmoothing из Darts
 - Более устойчива к колебаниям в данных
- Facebook Prophet
 - Автоматическое определение сезонности
 - Учет праздничных дней
 - Реализация через Prophet из Darts

Базовые модели (Бейзлайн)

Методология тестирования:

- Бэктестинг на исторических данных
- Начальная точка: 1 ноября 2016
- Горизонт прогнозирования: 16 дней
- Метрика оценки: RMSLE

Особенности реализации:

- Использование трансформации данных
- Обратное преобразование для оценки
- Визуализация результатов для последних 365 дней

Результаты:

- Тестирование на категории BREAD/BAKERY (стабильный ряд)
- Сравнение прогнозов с реальными данными
- Экспоненциальное сглаживание показало наилучшие результаты

Сравнение базовых моделей на разных типах данных

Анализ BREAD/BAKERY (стабильный паттерн):

- Стабильный недельный паттерн продаж
- Единственная аномалия: нулевые продажи в период Рождества/Нового года 2017
- Все три модели хорошо прогнозируют регулярный паттерн
- Наивная сезонная модель плохо восстанавливается после резкого спада

Анализ CELEBRATION (сложный паттерн):

- Нерегулярные всплески продаж, связанные с особыми событиями
- Результаты моделей:
 - Наивная сезонная: генерирует ложные пики пропускает реальные
 - Экспоненциальное сглаживание и Prophet: улавливают базовые сезонные паттерны, но пропускают пики

Сравнение базовых моделей на разных типах данных

Бизнес-последствия:

- Риск недостаточных запасов праздничных товаров в периоды пикового спроса
- Потенциальная потеря прибыли из-за неточных прогнозов

Выводы для улучшения моделей:

- Необходимость учета общей сезонности и трендов
- Важность прогнозирования предсказуемых пиков

Возможность использования данных о праздниках

для улучшения прогнозов

Оценка производительности моделей

Методология разделения данных:

- Простое разделение на обучающую и тестовую выборки
- Горизонт прогнозирования: 16 дней
- Причина выбора: оптимизация вычислительных ресурсов для нейронных сетей

Реализация экспоненциального сглаживания:

- Обучение 1782 отдельных моделей (для каждой комбинации магазинсемейство)
- Особенность: нулевые прогнозы для серий без продаж в последние 2 недели
- Время обучения и прогнозирования: ~653 секунд

Результаты:

• Средний RMSLE по всем сериям: 0.37411

От базовых к глобальным моделям

Ограничения простых моделей:

- Эффективны для небольших наборов данных
- Хорошо работают с базовыми паттернами
- Имеют фиксированную структуру

Особенности датасета:

- 1782 временных ряда
- Значительная длина рядов
- Наличие ковариат (праздники, промоакции)
- Схожие паттерны продаж между рядами

Глобальные модели глубокого обучения

LSTM (1995):

- Рекуррентная нейронная сеть
- Требует future_covariates
- Обучается на последних 60 образцах

N-HiTS (2022):

- Использует только past_covariates
- Обучается на последних 180 образцах
- Наиболее быстрая в обучении

TFT (2019):

- Поддерживает все типы ковариат
- Обучается на последних 7 образцах
- Наиболее ресурсоемкая модель

Технические особенности реализации

Ограничения вычислений:

- Использование подмножеств временных рядов
- Разное количество образцов для разных моделей

Оптимизация:

- Настройка гиперпараметров через Optuna
- Балансировка времени обучения моделей

Сравнение моделей:

- CatBoost: 365 образцов
- N-HiTS: 180 образцов
- LSTM: 60 образцов
- TFT: 7 образцов

Модель N-HiTS (Neural Hierarchical Interpolation for Time Series)

Особенности работы с ковариатами:

- Поддерживает только past_covariates
- Сдвиг future-known информации на 16 дней назад
- Объединение информации о промоакциях, праздниках и временных признаках

Архитектура и гиперпараметры:

- Лучшие параметры после оптимизации:
 - input_chunk_length: 266
 - num_stacks: 3
 - num_blocks: 3
 - num_layers: 2
 - layer_width: 2^8
 - dropout: 0.01
 - learning_rate: ~0.003

Технические детали реализации:

- Использование PyTorch Lightning
- Ранняя остановка обучения
- Максимум 50 эпох
- Размер батча: 128
- Максимум 180 сэмплов на временной ряд

Результаты:

- RMSLE: 0.43265
- Время обучения и прогнозирования:
 ~1103 секунды
- Хуже базовой модели экспоненциального сглаживания (0.37411)

Сравнение моделей прогнозирования

Базовая модель:

- Экспоненциальное сглаживание
 - RMSLE: 0.37411
 - Время обучения: 653 секунд
 - Лучший результат среди всех моделей

Глобальные модели:

- N-HiTS:
 - RMSLE: 0.43265
 - Время обучения: 1103 секунды
 - Работает только с past_covariates
- LSTM:
 - RMSLE: 0.55443
 - Время обучения: 1438 секунд
 - Tpeбyet future_covariates
 - Худший результат среди всех моделей
- TFT:
 - RMSLE: 0.43226
 - Время обучения: 1091 секунда
 - Поддерживает все типы ковариат
 - Единственная модель с информацией о конкретных сериях

Особенности реализации

Ограничения:

- Неполное использование данных
- Ограниченная настройка гиперпараметров
- Проблемы с памятью для бустинговых моделей

Важные наблюдения:

- Только ТҒТ различает серии между собой
- Остальные модели считают все серии однородными
- Возможный компромисс между объемом данных и схожестью серий

Рекомендации по улучшению:

- Обучение отдельных моделей для каждого семейства продуктов
- Использование более мощного оборудования
- Полная оптимизация гиперпараметров

Спасибо за внимание!