

O.W.S.E.M Initiative Group
3419 Irwin Ave., Suite 909, Bronx, NY 10463
(718) 514-1265
OWSEM_JG@yahoo.com

Facsimile Cover Page

**RECEIVED
CENTRAL FAX CENTER**

Date: 10/18/07

OCT 17 2007

To: USPTO
Basil Katcheves
Fax No.: 571-273-8300

From: OWSEM Initiative Group
Aleksandr Kamenomostskiy

No. of Pages: **12**
(including this cover)

These materials relate to Patent Application No. 10/613,618, currently named "Thin-Webbed Profile Member and Panel Based on It", Publication No. US 2006/00161171, filed by the inventor Alexandre Kamenomostski.

We are sending additional charts and grafts to better prove the criticality of dimension ratios of TWPMs' widths and thicknesses, claimed in application (a_1 from 0.05 to 0.3 and a_2 from 1 to 3).

The page 2 of this fax is a spreadsheet giving the value of Σ (Efficiency Factor) for the specific values of a_1 , a_2 , and a_3 .

Page 3 is a two-dimensional chart for four values of a_2 which shows the critical ratios of a_1 and a_2 .

Page 5 is a two-dimensional chart for load values of α_1 which shows the critical drop of values of α_2 outside of claimed ranges.
 Page 4 is a 3D-chart for all scope of data from the spreadsheet on page 2.
 Pages 5 to 9 are the comparison scope data that display how the Alcoa's double-T profiles (I-Beams) compare to TWPMs of the same shape for loads typical to aerospace applications. Inventor's calculations show that using the relationship $\Sigma = f(\alpha_1, \alpha_2)$, defined in the datasheet on page 2, a

Pages 10 to 12 are the letter that we recently sent to the office of SBDC NYS. Not having much time to edit it, we are including it as is. Please read chapters "An Introduction to the Application of OWSEM and its Benefits" and "Examples of Successful Implementations" to get better understanding of what this technology is about.

~~As we agreed on Tuesday, we will call you at 10:00 a.m. on Thursday October 18.~~

Look forward to speaking to you.

2

I		II													
		a ₁				a ₂									
		0	0.05	0.1	0.15	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	0.5	0.48	0.49	0.5	0.5	0.48	0.46	0.42	0.37	0.34	0.3	0.28	0.23	0.21	
	0.55	0.48	0.5	0.51	0.51	0.5	0.49	0.47	0.42	0.38	0.35	0.32	0.29	0.25	0.24
	0.63	0.48	0.5	0.51	0.51	0.51	0.49	0.47	0.43	0.39	0.36	0.32	0.29	0.27	0.24
	0.71	0.48	0.5	0.51	0.52	0.51	0.49	0.47	0.43	0.39	0.36	0.32	0.29	0.28	0.26
	0.83	0.48	0.5	0.51	0.52	0.51	0.5	0.47	0.43	0.4	0.36	0.33	0.3	0.29	0.27
	1	0.48	0.51	0.52	0.52	0.51	0.5	0.48	0.44	0.4	0.37	0.33	0.31	0.28	0.27
	1.11	0.48	0.51	0.52	0.52	0.51	0.5	0.48	0.45	0.4	0.37	0.34	0.31	0.29	0.27
	1.28	0.48	0.52	0.52	0.52	0.51	0.5	0.48	0.45	0.41	0.37	0.34	0.31	0.29	0.27
	1.43	0.48	0.52	0.52	0.52	0.51	0.5	0.49	0.45	0.41	0.37	0.34	0.31	0.29	0.27
	1.67	0.48	0.52	0.52	0.52	0.51	0.49	0.46	0.45	0.42	0.37	0.34	0.31	0.29	0.27
2	0.48	•	0.54	0.54	0.52	0.5	0.48	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.27
2.5	0.48	0.56	0.53	0.51	0.48	0.46	0.44	0.41	0.39	0.37	0.35	0.31	0.29	0.27	
3.33	0.48	0.55	0.52	0.48	0.46	0.43	0.41	0.38	0.35	0.33	0.32	0.3	0.28	0.25	