

Modern Normalising Flows

Denis Derkach

CS HSE faculty, Generative Models, spring 2020

Contents

Basic Understanding

Masked Autoregressive Flows

GLOW

FFJORD

Basic Understanding

Reminder: Motivation

Quite often we want to sample from some distribution (but we do not know how to do this). What we know is how to sample from a simple pdf: Gaussian, uniform or something.

We want a deterministic map T from source to target density.

Definition

For definition:

$$z_m = f_{\theta}^m \circ f_{\theta}^{m-1} \cdots \circ f_{\theta}^1(z_0) = f_{\theta}^m(f_{\theta}^{m-1}(\dots(f_{\theta}^1(z_0)))) = f_{\theta}(z_0),$$

we have $z_m \to x$:

$$p(\mathbf{x}; \theta) = q(f_{\theta}^{-1}(\mathbf{z})) \prod_{i=1}^{m} \left| \det \frac{\partial (f_{\theta}^{i})^{-1}(\mathbf{z}^{\mathbf{m}})}{\partial \mathbf{z}^{\mathbf{m}}} \right|.$$

Note that we have invertible transformations.

Triangular Jacobian

- There always exists a unique (up to ordering) increasing triangular map that transforms a source density to a target density (see Bogachev et al. for detail).
- > In previous lectures we considered the triangular Jacobian:

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \dots & 0\\ \dots & \dots & \dots\\ \frac{\partial f_1}{\partial z_n} & \dots & \frac{\partial f_n}{\partial z_n} \end{pmatrix}$$

It describes the flow with transformation $x_i = f_i(z)$ that only depends on $z \leq i$.

Developments

More results are produced in 2019. In general, they can be separated into following categories.

Masked Autoregressive

Flows

Reminder: Autoregressive models

> Take Autoregressive Model:

$$p(x) = \prod_{i=1}^{n} p(x_i|x_{i<1}).$$

such that

$$p(x_i|x_{i<1}) = \mathcal{N}(\mu_i(x_1,\ldots,x_{i-1}),\exp{(\alpha_i(x_1,\ldots,x_{i-1}))^2}),$$
 with μ and α are Neural network outputs.

- > We have a direct estimation of likelihood in this model.
- > To sample, we need to go through consecutive steps:
 - $> z_i \sim \mathcal{N}(0;1);$
 - $x_1 = \exp(\alpha_1)z_1 + \mu_1$
 - $x_2 = \exp(\alpha_2(x_1))z_1 + \mu_2(x_1)$
 - > and so on.
- > Might be stacked as Flow from Gaussians to observable space.

Masked and Inverse Autoregressive Flow (MAF/IAF)

- > looks similar to MADE;
- > Forward mapping $z \mapsto x$:
 - $> z_i \sim \mathcal{N}(0;1);$
 - $x_1 = \exp(\alpha_1)z_1 + \mu_1$
 - $x_2 = \exp(\alpha_2(x_1))z_1 + \mu_2(x_1)$
 - > and so on.
- > sampling is sequential and slow.

From Stanford GM lectures by S. Ermano G. Papamakarios et al. Masked Autoregressive Flow for Density Estimation

MAF: Inverse

- > Inverse mapping $x \mapsto z$:
 - \rightarrow Compute all μ_i and α_i

$$z = \exp(-\alpha_1) \odot (x - \mu)$$

- Jacobian is lower diagonal, hence determinant can be computed efficiently.
- Likelihood evaluation is easy and parallelizable.
- > Thus, the training is relatively fast.

MAF:results

Figure 3: Class-conditional generated and real images from MNIST. Rows are different classes. Generated images are sorted by decreasing log likelihood from left to right.

Inverse Autoregressive Flow (IAF)

- \rightarrow Forward mapping $z \mapsto x$:
 - \rightarrow Sample all z_i ;
 - > Compute all μ_i and α_i .
 - $\Rightarrow x = \exp(-\alpha) \odot (z \mu).$
- > Inverse mapping $x \mapsto z$:
 - > Sequential calculation.
 - $z_i = \exp(-\alpha_i(z_{< i}))(x \mu_i(z_{< i})).$
- > Fast to sample from, slow to evaluate likelihoods of data points (train).

IAF:results

Figure 3: Class-conditional generated and real images from MNIST. Rows are different classes. Generated images are sorted by decreasing log likelihood from left to right.

MAF and IAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

- > MAF and IAF use autoregressive transformations based on MADE building block.
- One can see that IAF forward mapping and MAF Inverse mapping are connected up to parameterisation.
- > In fact, they are inverse of each other.

MAF and IAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

- MAF: Fast likelihood evaluation, slow sampling best for training based on MLE, density estimation.
- > IAF: Fast sampling, slow likelihood evaluation best for for real-time generation.

Teacher-Student Model

- > Two part training with a teacher and student model.
- > Teacher (MAF) trained first, than student (IAF) initialised.
- Student model cannot efficiently evaluate density for external datapoints but allows for efficient sampling.

Probability Density Distillation

> Student, s, is trained to match the teachers' distribution t using KL divergence:

$$KL(s,t) = \mathbb{E}_{x \sim s}[\log s(x) \log t(x)]$$

- > Training:
 - > Train teacher via MLE and obtain likelihood.
 - > Train student to minimize KL divergence.
 - > Use student to sample.
- > Improves sampling efficiencies by a factor 100 for Wavenet.

Parallel Wavenet

Gives fast and efficient in training algorithm for sound generation.

GLOW

Generative Flow with Invertible 1x1 Convolutions

- Updates NICE and RealNV and follwing their idea.
- > Uses block with several layers.

 $Blog \ by \ L. \ Weng \\ D. \ Kingma \ et \ al. \ Glow: Generative \ Flow \ with \ Invertible \ 1x1$

Convolutions

GLOW: Layers

- Activation normalization (short for "actnorm"): affine transformation using two trainable parameters (scale and bias).
- Invertible 1x1 conv: generalization of any permutation (like r-NVP) of the channel ordering.
- Affine coupling layer. Similar to rNVP.

Invertible 1x1 conv layer

> We have an invertible 1x1 convolution:

$$f = \operatorname{conv} 2D(h, W).$$

- \rightarrow We need to compute the Jacobian determinant $|\det \partial f/\partial h|$.
- > In fact:

$$\log|\det\frac{\partial \mathsf{conv}2D}{\partial h}| = \log(|\det W|^{h \cdot w}) = h \cdot w \log(|\det W|).$$

The latter operation can be computed using PU decomposition for matrix W of size $c \times c$ as $\mathcal{O}(c)$.

Summary of layers transformation

Description	Function	Reverse Function	Log-determinant
Actnorm. See Section 3.1.	$\forall i, j: \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b}$	$\forall i, j : \mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$	$h \cdot w \cdot \text{sum}(\log \mathbf{s})$
$\label{eq:weighted_energy} \begin{split} &\text{Invertible } 1\times 1 \text{ convolution.} \\ &\mathbf{W}: [c\times c]. \\ &\text{See Section } \boxed{3.2.} \end{split}$	$\forall i, j: \mathbf{y}_{i,j} = \mathbf{W} \mathbf{x}_{i,j}$	$\forall i, j : \mathbf{x}_{i,j} = \mathbf{W}^{-1} \mathbf{y}_{i,j}$	
Affine coupling layer. See Section 3.3 and (Dinh et al., 2014)	$\begin{aligned} &\mathbf{x}_a, \mathbf{x}_b = \mathtt{split}(\mathbf{x}) \\ &(\log \mathbf{s}, \mathbf{t}) = \mathtt{NN}(\mathbf{x}_b) \\ &\mathbf{s} = \exp(\log \mathbf{s}) \\ &\mathbf{y}_a = \mathbf{s} \odot \mathbf{x}_a + \mathbf{t} \\ &\mathbf{y}_b = \mathbf{x}_b \\ &\mathbf{y} = \mathtt{concat}(\mathbf{y}_a, \mathbf{y}_b) \end{aligned}$	$\begin{aligned} &\mathbf{y}_a, \mathbf{y}_b = \mathtt{split}(\mathbf{y}) \\ &(\log \mathbf{s}, \mathbf{t}) = \mathtt{NN}(\mathbf{y}_b) \\ &\mathbf{s} = \exp(\log \mathbf{s}) \\ &\mathbf{x}_a = (\mathbf{y}_a - \mathbf{t})/\mathbf{s} \\ &\mathbf{x}_b = \mathbf{y}_b \\ &\mathbf{x} = \mathtt{concat}(\mathbf{x}_a, \mathbf{x}_b) \end{aligned}$	$sum(log(\mathbf{s}))$

(b) Multi-scale architecture (Dinh et al., 2016)

Each layer is than followed by a subsequent multi-scale procedure (like it was done in NICE and r-NVP).

Additive vs Affine

Figure 3: Comparison of the three variants - a reversing operation as described in the RealNVP, a fixed random permutation, and our proposed invertible 1×1 convolution, with additive (left) versus affine (right) coupling layers. We plot the mean and standard deviation across three runs with different random seeds.

Authors claim that:

- > Affine faster than additive.
- > 1x1 convolution performs like better randomisation.

Unfortunately, to train on celeba, one needs a lot of GPU-days.

Sampling Temperature

- > In order to get more realistic sampling, one can use a reduced-temperature model.
- > In this work:

$$p_{\theta,T}(x) \sim p_{\theta}^{T^2}(x)$$

> Temperature is a free parameter for sampling.

R. Dahl et al. Pixel Recursive Super Resolution

GLOW: Results

Figure 4: Random samples from the model, with temperature $0.7\,$ Denis Derkach, Maksim Artemev, Artem Ryzhikov

Dependence on the Depth

Figure 9: Samples from shallow model on left vs deep model on right. Shallow model has L=4 levels, while deep model has L=6 levels

Discussion

> Adds additional parameters

FFJORD

Motivation

We can relax even more restrictions:

- Do we really care of having discrete steps?
- Can we change the Jacobian to something more stochastic?
- > We than thing of system of continuous-time dynamics.
- This ideas led to a branch called NeuralODE.

Chen et al. Neural Ordinary Differential Equations

Continuous Normalizing Flows

 $o(z(t_0))$ 7

Denis Derkach, Maksim Artemev, Artem Ryzhikov

Model the generative process with continuous dynamics:

$$z_0 \sim p(z_0)$$

$$\frac{\partial z}{\partial t} = f_{\theta}(z_t, t)$$

$$x = z_t = z_0 + \int_{t_0}^{t_1} f_{\theta}(z_t, t) dt$$

To obtain the density we solve the initial value problem (IVP) under mild conditions:

$$\log(p_x) = \log(p_{z_0}) - \int_{t_0}^{t_1} \operatorname{Tr} \frac{\partial f(z(t))}{\partial z(t)} dt$$

What this means

> log-probability of the data under the discrete model:

$$\log p(x) = \log p(z_0) + \sum_{t=0}^{T} \log |\log \partial F^{-1}/\partial z_t|$$

> log-probability of the data under continuous model:

$$\log(p_x) = \log(p_{z_0}) - \int_0^1 \mathsf{T} r \frac{\partial f(z(t))}{\partial z(t)} dt$$

> sum of jacobian log-determinants \longrightarrow integral of jacobian trace. This give $\mathcal{O}(N^3)$ caclulations.

Unbiased Log-Density Estimation

We can use stochastic trace estimation. For any matrix A and a distribution p(e) over vectors where $\mathbb{E}[e]=0$, cov[e]=I, we used Hutchinson's estimator:

$$Tr(A) = \mathbb{E}_{p(e)}[e^T A e]$$

Which brings us to calculable:

$$\log(p_x) = \log(p_{z_0}) - \mathbb{E}_{p(e)} \int_{t_0}^{t_1} e^T \frac{\partial f(z(t))}{\partial z(t)e} dt$$

The existence and uniqueness of solution requires that f and its first derivatives be Lipschitz continuous and can be calculated in $\mathcal{O}(N)$.

Training with adjoint Backprop

- > We need to compute $\partial L/\partial \theta$.
- > Given scalar objective:

$$\mathcal{L}(z_1) = \mathcal{L}\left(\int_0^1 f(z(t), t, \theta)dt\right)$$

> we can obtain $\partial \mathcal{L}/\partial \theta$ for gradient-based optimization by solving another IVP.

We define a new quantity, the adjoint, a_t , which has dynamics $\frac{\partial a_t}{\partial t}$

$$a_t = -\frac{\partial L}{\partial z_t}$$
 $\frac{\partial a_t}{\partial t} = -a_t^T \frac{\partial f(z_t, t, \theta)}{\partial z_t}$

then solving backwards in time gives the desired gradients of the loss with respect to the parameters

$$\frac{\partial L}{\partial \theta} = \int_{t_1}^{t_0} a_t^T \frac{\partial f(z_t, t, \theta)}{\partial \theta} dt$$

This allows us to use a black-box ODE solver to compute z_1 and also $\partial L/\partial \theta$.

FFJORD: results

Figure 2: Comparison of trained FFJORD and Glow models on 2-dimensional distributions including multi-modal and discontinuous densities.

FFJORD: discussion

> Advantages

- Guaranteed inverse by reversing order of integration, regardless of model parameterization
- > Efficient, unbiased log-probability estimation without restricting the Jacobian of the transformation
- > Does not require dimension splitting or ordering choices
- > Reversible generative models can now be defined with standard neural network architectures

> Disadvantages

- Must rely on adaptive numerical ODE solvers for stable training
- > Computation time determined by solver, not user
- Currently 4-5x slower than other reversible generative models (Glow, Real-NVP)

Conclusion

	Method	Train on data	One-pass Sampling	Exact log- likelihood	Free-form Jacobian
	Variational Autoencoders	1	1	X	✓
	Generative Adversarial Nets	1	✓	X	✓
	Likelihood-based Autoregressive	1	×	✓	X
Change of Variables	Normalizing Flows	×	✓	1	Х
	Reverse-NF, MAF, TAN	1	X	✓	X
	NICE, Real NVP, Glow, Planar CNF	1	✓	✓	X
	FFJORD	✓	✓	✓	✓

Table 1: A comparison of the abilities of generative modeling approaches.