# Class 8 Mini-Project: Unsupervised Learning Analysis of Human Breast Cancer Cells

Sabrina Wu (A16731683)

#### **Exploratory data analysis**

#### **Importing Data**

```
# Save your input data file into your Project directory
fna.data <- "C:/Users/sabri/OneDrive/Desktop/BIMM 143/class08/WisconsinCancer.csv"
# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)</pre>
```

head(wisc.df)

|          | diagnosis radius | s_mean  | texture_mean   | perimeter_mean   | area_mean   |             |
|----------|------------------|---------|----------------|------------------|-------------|-------------|
| 842302   | M                | 17.99   | 10.38          | 122.80           | 1001.0      |             |
| 842517   | M                | 20.57   | 17.77          | 132.90           | 1326.0      |             |
| 84300903 | M                | 19.69   | 21.25          | 130.00           | 1203.0      |             |
| 84348301 | M                | 11.42   | 20.38          | 77.58            | 386.1       |             |
| 84358402 | M                | 20.29   | 14.34          | 135.10           | 1297.0      |             |
| 843786   | M                | 12.45   | 15.70          | 82.57            | 477.1       |             |
|          | smoothness_mean  | compa   | ctness_mean co | oncavity_mean co | oncave.poir | nts_mean    |
| 842302   | 0.11840          |         | 0.27760        | 0.3001           |             | 0.14710     |
| 842517   | 0.08474          |         | 0.07864        | 0.0869           |             | 0.07017     |
| 84300903 | 0.10960          |         | 0.15990        | 0.1974           |             | 0.12790     |
| 84348301 | 0.14250          |         | 0.28390        | 0.2414           |             | 0.10520     |
| 84358402 | 0.10030          |         | 0.13280        | 0.1980           |             | 0.10430     |
| 843786   | 0.12780          |         | 0.17000        | 0.1578           |             | 0.08089     |
|          | symmetry_mean fr | ractal_ | _dimension_mea | an radius_se te  | kture_se pe | erimeter_se |
| 842302   | 0.2419           |         | 0.0787         | 71 1.0950        | 0.9053      | 8.589       |

| 842517   | 0.1812            |              | 0.05667    | 0.5435         | 0.7339      | 3.398   |
|----------|-------------------|--------------|------------|----------------|-------------|---------|
| 84300903 | 0.2069            | 0.05999      |            | 0.7456         | 0.7869      | 4.585   |
| 84348301 | 0.2597            | 0.09744      |            | 0.4956         | 1.1560      | 3.445   |
| 84358402 | 0.1809            |              | 0.05883    | 0.7572         | 0.7813      | 5.438   |
| 843786   | 0.2087            |              | 0.07613    | 0.3345         | 0.8902      | 2.217   |
|          | area_se smoothne  | ess_se compa | actness_se | concavity_se   | concave.po  | ints_se |
| 842302   | 153.40 0.0        | 006399       | 0.04904    | 0.05373        |             | 0.01587 |
| 842517   | 74.08 0.0         | 005225       | 0.01308    | 0.01860        |             | 0.01340 |
| 84300903 | 94.03 0.0         | 006150       | 0.04006    | 0.03832        |             | 0.02058 |
| 84348301 | 27.23 0.0         | 009110       | 0.07458    | 0.05661        |             | 0.01867 |
| 84358402 | 94.44 0.0         | 011490       | 0.02461    | 0.05688        |             | 0.01885 |
| 843786   | 27.19 0.0         | 007510       | 0.03345    | 0.03672        |             | 0.01137 |
|          | symmetry_se frac  | ctal_dimensi | on_se radi | ius_worst text | ture_worst  |         |
| 842302   | 0.03003           | 0.0          | 006193     | 25.38          | 17.33       |         |
| 842517   | 0.01389           | 0.0          | 03532      | 24.99          | 23.41       |         |
| 84300903 | 0.02250           | 0.0          | 04571      | 23.57          | 25.53       |         |
| 84348301 | 0.05963           | 0.0          | 09208      | 14.91          | 26.50       |         |
| 84358402 | 0.01756           | 0.0          | 05115      | 22.54          | 16.67       |         |
| 843786   | 0.02165           | 0.0          | 05082      | 15.47          | 23.75       |         |
|          | perimeter_worst   | area_worst   | smoothness | s_worst compa  | ctness_wors | t       |
| 842302   | 184.60            | 2019.0       |            | 0.1622         | 0.665       |         |
| 842517   | 158.80            | 1956.0       |            | 0.1238         | 0.186       | 6       |
| 84300903 | 152.50            | 1709.0       |            | 0.1444         | 0.424       | 5       |
| 84348301 | 98.87             | 567.7        |            | 0.2098         | 0.866       | 3       |
| 84358402 | 152.20            | 1575.0       |            | 0.1374         | 0.205       | 0       |
| 843786   | 103.40            | 741.6        |            | 0.1791         | 0.524       | 9       |
|          | concavity_worst   | concave.poi  | nts_worst  | symmetry_wors  | st          |         |
| 842302   | 0.7119            | -            | 0.2654     | 0.460          |             |         |
| 842517   | 0.2416            |              | 0.1860     | 0.27           | 50          |         |
| 84300903 | 0.4504            |              | 0.2430     | 0.36           | 13          |         |
| 84348301 | 0.6869            |              | 0.2575     | 0.663          | 38          |         |
| 84358402 | 0.4000            |              | 0.1625     | 0.236          | 64          |         |
| 843786   | 0.5355            |              | 0.1741     | 0.398          | 35          |         |
|          | fractal_dimension | on_worst     |            |                |             |         |
| 842302   |                   | 0.11890      |            |                |             |         |
| 842517   |                   | 0.08902      |            |                |             |         |
| 84300903 |                   | 0.08758      |            |                |             |         |
| 84348301 |                   | 0.17300      |            |                |             |         |
| 84358402 |                   | 0.07678      |            |                |             |         |
| 843786   |                   | 0.12440      |            |                |             |         |
|          |                   |              |            |                |             |         |

Removing the first column/diagnosis column and saving in new dataset

```
wisc.data <- wisc.df[,-1]</pre>
```

Saving the diagnosis column as a vector. factor() converts vector of values into a variable by assigning levels.

```
# Create diagnosis vector for later
diagnosis <- factor(wisc.df$diagnosis)</pre>
```

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

There are 569 observations in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
sum(diagnosis == "M")
```

[1] 212

212 of the observations have a malignant diagnosis.

Q3. How many variables/features in the data are suffixed with \_mean?

grep() search for matches to a pattern

```
length(grep("_mean",names(wisc.data)))
```

[1] 10

There are 10 variables with the suffix "\_mean".

#### **Principal Component Analysis (PCA)**

#### **Performing PCA**

Check standard deviation to see if need to be scaled

# # Check column means and standard deviations colMeans(wisc.data)

| perimeter_mean                    | texture_mean                   | radius_mean               |
|-----------------------------------|--------------------------------|---------------------------|
| 9.196903e+01                      | 1.928965e+01                   | 1.412729e+01              |
| compactness_mean                  | ${\tt smoothness\_mean}$       | area_mean                 |
| 1.043410e-01                      | 9.636028e-02                   | 6.548891e+02              |
| symmetry_mean                     | concave.points_mean            | concavity_mean            |
| 1.811619e-01                      | 4.891915e-02                   | 8.879932e-02              |
| texture_se                        | radius_se                      | fractal_dimension_mean    |
| 1.216853e+00                      | 4.051721e-01                   | 6.279761e-02              |
| smoothness_se                     | area_se                        | perimeter_se              |
| 7.040979e-03                      | 4.033708e+01                   | 2.866059e+00              |
| concave.points_se                 | concavity_se                   | compactness_se            |
| 1.179614e-02                      | 3.189372e-02                   | 2.547814e-02              |
| radius_worst                      | ${\tt fractal\_dimension\_se}$ | symmetry_se               |
| 1.626919e+01                      | 3.794904e-03                   | 2.054230e-02              |
| area_worst                        | perimeter_worst                | texture_worst             |
| 8.805831e+02                      | 1.072612e+02                   | 2.567722e+01              |
| concavity_worst                   | compactness_worst              | ${\tt smoothness\_worst}$ |
| 2.721885e-01                      | 2.542650e-01                   | 1.323686e-01              |
| ${\tt fractal\_dimension\_worst}$ | symmetry_worst                 | concave.points_worst      |
| 8.394582e-02                      | 2.900756e-01                   | 1.146062e-01              |

#### apply(wisc.data,2,sd)

| perimeter_mean    | texture_mean             | radius_mean            |
|-------------------|--------------------------|------------------------|
| 2.429898e+01      | 4.301036e+00             | 3.524049e+00           |
| compactness_mean  | ${\tt smoothness\_mean}$ | area_mean              |
| 5.281276e-02      | 1.406413e-02             | 3.519141e+02           |
| symmetry_mean     | concave.points_mean      | concavity_mean         |
| 2.741428e-02      | 3.880284e-02             | 7.971981e-02           |
| texture_se        | radius_se                | fractal_dimension_mean |
| 5.516484e-01      | 2.773127e-01             | 7.060363e-03           |
| smoothness_se     | area_se                  | perimeter_se           |
| 3.002518e-03      | 4.549101e+01             | 2.021855e+00           |
| concave.points_se | concavity_se             | compactness_se         |
| 6.170285e-03      | 3.018606e-02             | 1.790818e-02           |
| radius_worst      | fractal_dimension_se     | symmetry_se            |
| 4.833242e+00      | 2.646071e-03             | 8.266372e-03           |
| area_worst        | perimeter_worst          | texture_worst          |

| 5.693570e+02                       | 3.360254e+01      | 6.146258e+00         |
|------------------------------------|-------------------|----------------------|
| ${\tt concavity\_worst}$           | compactness_worst | smoothness_worst     |
| 2.086243e-01                       | 1.573365e-01      | 2.283243e-02         |
| <pre>fractal_dimension_worst</pre> | symmetry_worst    | concave.points_worst |
| 1.806127e-02                       | 6.186747e-02      | 6.573234e-02         |

Data should be scale since the mean and standard deviation varies a lot among the different variables from a few hundreds to hundredths.

Performing PCA on scaled data.

```
#Rescaling wisc.data
wisc.data.scaled <- scale(wisc.data)

# Perform PCA
wisc.pr <- prcomp(wisc.data.scaled)</pre>
```

```
#Look at summary of results
summary(wisc.pr)
```

#### Importance of components:

```
PC2
                          PC1
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- 44.27% of the original variance is captured by PC1.
  - Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

#### cumsum(summary(wisc.pr)\$importance[2,])>=0.7

```
PC1
        PC2
               PC3
                      PC4
                             PC5
                                    PC6
                                          PC7
                                                 PC8
                                                        PC9
                                                              PC10
                                                                    PC11
                                                                           PC12
                                                                                  PC13
FALSE FALSE
              TRUE
                     TRUE
                            TRUE
                                   TRUE
                                         TRUE
                                                TRUE
                                                       TRUE
                                                              TRUE
                                                                    TRUE
                                                                           TRUE
                                                                                  TRUE
PC14
       PC15
                                                       PC22
                                                              PC23
                                                                    PC24
                                                                           PC25
              PC16
                     PC17
                            PC18
                                   PC19
                                         PC20
                                                PC21
                                                                                  PC26
TRUE
       TRUE
              TRUE
                     TRUE
                            TRUE
                                   TRUE
                                         TRUE
                                                TRUE
                                                       TRUE
                                                              TRUE
                                                                    TRUE
                                                                           TRUE
                                                                                  TRUE
PC27
       PC28
              PC29
                     PC30
TRUE
       TRUE
              TRUE
                     TRUE
```

Three PCs are needed to describe at least 70% of the original variance in the data.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

```
cumsum(summary(wisc.pr)$importance[2,])>=0.9
```

```
PC1
        PC2
               PC3
                     PC4
                            PC5
                                  PC6
                                         PC7
                                               PC8
                                                      PC9
                                                           PC10
                                                                  PC11
                                                                        PC12
                                                                               PC13
FALSE FALSE FALSE FALSE FALSE
                                        TRUE
                                              TRUE
                                                     TRUE
                                                           TRUE
                                                                  TRUE
                                                                        TRUE
                                                                               TRUE
                                                           PC23
                                                                  PC24
PC14
       PC15
             PC16
                    PC17
                           PC18
                                 PC19
                                       PC20
                                              PC21
                                                     PC22
                                                                        PC25
                                                                               PC26
TRUE
       TRUE
             TRUE
                    TRUE
                           TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                     TRUE
                                                           TRUE
                                                                 TRUE
                                                                        TRUE
                                                                               TRUE
PC27
       PC28
             PC29
                    PC30
TRUE
       TRUE
             TRUE
                    TRUE
```

Seven PCs are needed to describe at least 90% of the original variance in the data.

#### **Interpreting PCA Results**

Creating biplot

biplot(wisc.pr)



Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

What stands out the most is that all the variables/pink vectors seems to be all pointing left/into the negative of PC1. This plot is difficult to understand as all the names are overlapping each other.

Changing to scatterplots

```
# Scatter plot observations by components 1 and 2
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis, xlab = "PC1", ylab = "PC2")
```



Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
# Repeat for components 1 and 3
plot(wisc.pr$x[,1],wisc.pr$x[,3], col = diagnosis, xlab = "PC1", ylab = "PC3")
```



Both graphs seem to show that the red dots signifying malignant ones are more left than the benign ones on the axis of PC1.

#### ggplot

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=df$diagnosis) +
   geom_point()</pre>
```

Warning: Use of `df\$diagnosis` is discouraged. i Use `diagnosis` instead.



#### Variance Explained

```
# Calculate variance of each component by squaring standard deviation
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Calculating the variance explained by each principal component over total



Can also make a scree plot + other plots



```
## ggplot based graph
#install.packages("factoextra")
library(factoextra)
```

 ${\tt Welcome!\ Want\ to\ learn\ more?\ See\ two\ factoextra-related\ books\ at\ https://goo.gl/ve3WBa}$ 

```
fviz_eig(wisc.pr, addlabels = TRUE)
```



#### **Communicating PCA results**

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points\_mean?

wisc.pr\$rotation["concave.points\_mean", 1]

#### [1] -0.2608538

wisc.pr\$rotaion[,1] represents how strongly this influences PC1. Since the loading is -0.26, it means that it has a negative contribution to PC1. In context of breast cancer, it signifies that cells with more concave points will have lower PC1 scores.

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
cumsum(pve) >= 0.8
```

TRUE [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [13] TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE

Five principal components are required to explain 80% of the variance of the data.

#### Hierarchical clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)</pre>
```

data.scale is the same as wisc.df.scale done earlier

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset

```
data.dist <- dist(data.scaled)</pre>
```

Create a hierarchical clustering model

```
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

#### Results of hierarchical clustering

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

### **Cluster Dendrogram**



data.dist hclust (\*, "complete")

The height with four cluster is between 15 and 20.

#### Selecting number of clusters

Cutting the tree so there are only 4 clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust,k=4)</pre>
```

Use table to compare the cluster to actual diagnosis

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

#### table(cutree(wisc.hclust,k=4), diagnosis)

From clusters 2 and 10, 4 is the best with the most amount of separation between benign and malignant ane little fragmentation.

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
wisc.single <- hclust(data.dist, method="single")
wisc.complete <- hclust(data.dist, method="complete")
wisc.average <- hclust(data.dist, method="average")
wisc.ward <- hclust(data.dist, method="ward.D2")
single.clusters <- cutree(wisc.single,k=4)
table(single.clusters, diagnosis)</pre>
```

```
diagnosis
single.clusters B M
1 356 209
2 1 0
3 0 2
4 0 1
```

```
complete.clusters <- cutree(wisc.complete,k=4)
table(complete.clusters, diagnosis)</pre>
```

```
diagnosis
complete.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

```
average.clusters <- cutree(wisc.average, k=4)
table(average.clusters, diagnosis)</pre>
```

```
diagnosis
average.clusters B M
1 355 209
2 2 0
3 0 1
4 0 2
```

```
ward.clusters <- cutree(wisc.ward,k=4)
table(ward.clusters, diagnosis)</pre>
```

```
diagnosis
ward.clusters B M
1 0 115
2 6 48
3 337 48
4 14 1
```

The ward.D2 method worked the best. It created the clearest separation between malignant and benign cells as cluster 1 had all malignant and cluster 3 is mostly benign. The single and average created one big mixed cluster and complete had more mixing than the ward.

#### **Optional: K-menas clustering**

Using kmeans

```
wisc.km <- kmeans(wisc.data.scaled, centers=2, nstart=20)</pre>
```

Comparing kmeans to actual diagnoses

```
table(wisc.km$cluster, diagnosis)
```

```
diagnosis

B M
1 343 37
2 14 175
```

Q14. How well does k-means separate the two diagnoses? How does it compare to your helust results?

It was able to separate the two diagnoses fairly well using the k-mean. It is slightly better than the helust with four clusters but a lot better if only using two clusters in helust. There are a little less mixing within each cluster.

```
table(wisc.hclust.clusters, wisc.km$cluster)
```

```
wisc.hclust.clusters 1 2
1 17 160
2 0 7
3 363 20
4 0 2
```

Clusters 1,2,4 from hierarchical are equivalents to cluster 2 from kmeans, and cluster 3 is equivalent to kmeans cluster 1.

##Combining methods

#### Clustering on PCA results

```
n <- which(cumsum(pve) >= 0.9)
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:n]), method="ward.D2")</pre>
```

Warning in 1:n: numerical expression has 24 elements: only the first used

```
plot(wisc.pr.hclust)
```

## **Cluster Dendrogram**



dist(wisc.pr\$x[, 1:n])
hclust (\*, "ward.D2")

Two distinct clusters seen.

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

grps
1 2</pre>
```

```
table(grps, diagnosis)
```

```
diagnosis
grps B M
1 28 188
2 329 24
```

216 353

```
plot(wisc.pr$x[,1:2], col=grps)
```



plot(wisc.pr\$x[,1:2], col=diagnosis)



Switching color so it match each other by releveling

```
g <- as.factor(grps)
levels(g)</pre>
```

[1] "1" "2"

```
g <- relevel(g,2)
levels(g)</pre>
```

[1] "2" "1"

```
# Plot using our re-ordered factor
plot(wisc.pr$x[,1:2], col=g)
```



Note: can make 3D plots using rgl and ploty packages (not included here for pdf submission)

```
#library(rgl)
#plot3d(wisc.pr$x[,1:3], xlab="PC 1", ylab="PC 2", zlab="PC 3", cex=1.5, size=1, type="s", cex=1.5)
```

```
## Use the distance along the first 7 PCs for clustering i.e. wisc.pr$x[, 1:7]
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")</pre>
```

Model into 2 clusters

```
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

```
# Compare to actual diagnoses
table(wisc.pr.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

This is even better than before. It is cleaner with less mixing.

Q16. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

```
table(wisc.km$cluster, diagnosis)
```

```
diagnosis

B M
1 343 37
2 14 175
```

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

These two methods separate them fairly decently as there are clear clusters of where there are majority of one diagnosis over the other.

#### Sensitivity/Specificity

Q17. Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity?

```
table(wisc.pr.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

#### table(wisc.km\$cluster, diagnosis)

```
diagnosis
B M
1 343 37
2 14 175
```

#### table(wisc.hclust.clusters, diagnosis)

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

For ward heluster: Sensitivity = 188/(188+24) = 0.887 Specificity = 329/(329+28) = 0.922 For kmeans: Sensitivity = 175/(175+37) = 0.825 Specificity = 343/(343+14) = 0.961 For complete heluster: Sensitivity = 165/(165+40+5+2) = 0.778 Specificity = 343/(343+12+2) = 0.961

For specificity, kmeans and the complete heluster performs the best, while for sensitivity, ward heluster is the best.

#### Prediction

```
#url <- "new_samples.csv"</pre>
url <- "C:/Users/sabri/Downloads/new_samples.csv"</pre>
new <- read.csv(url)</pre>
npc <- predict(wisc.pr, newdata=new)</pre>
                                  PC3
           PC1
                      PC2
                                            PC4
                                                      PC5
                                                                PC6
                                                                           PC7
[1,] -10.76452 -10.093978 -0.5897994 -4.164748 10.61922 -1.630738 0.03566861
[2,] -18.09606 -9.967098 -2.1549431 -4.006848 6.69687 -2.034714 1.25088149
           PC8
                     PC9
                              PC10
                                         PC11
                                                   PC12
                                                              PC13
                                                                        PC14
[1,] 0.7308658 -1.580861 3.166451 -0.7167150 3.850569 -0.8259764 1.0195729
[2,] 0.6308585 -1.155629 3.608207 -0.3405375 2.288732 -0.3976672 0.1347203
         PC15
                   PC16
                              PC17
                                        PC18
                                                 PC19
                                                            PC20
[1,] 3.735687 -4.068783 1.0877034 0.9985959 1.022760 -2.430215 -1.295749
[2,] 3.543905 -3.749616 0.7613603 1.1763217 1.366702 -2.609643 -1.541050
          PC22
                     PC23
                                PC24
                                           PC25
                                                      PC26
                                                                PC27
                                                                           PC28
[1,] -1.348026 -0.7388274 -1.083000 -0.4220831 -1.892993 -1.176056 0.05527974
[2,] -1.424290 -0.7591376 -1.439202 -0.6508838 -1.981711 -1.397390 0.18112357
          PC29
                     PC30
[1,] 0.2658028 0.05162840
[2,] 0.2842191 0.02734355
```

```
plot(wisc.pr$x[,1:2], col=g)
points(npc[,14], npc[,4], col="blue", pch=16, cex=3)
text(npc[,14], npc[,4], c(1,2), col="white")
```



Q18. Which of these new patients should we prioritize for follow up based on your results?

Patient 2 should be prioritize as it is more likely that he/she has a malignant one based on the prediction.