

Generalized Linear Models (GLM)

General linear models = typical linear regression

- Generalized Linear Models = distribution + link function
 - Poisson regression
 - Negative binomial regression
 - Gamma regression
 - Zero-inflated regression
 - Logistic regression (sometimes referred to as binomial)

Why use a GLM?

 The response variable is not normally distributed, or the range is restricted

2) The variance of the response variable depends on the mean

3) GLMs can fit to particular distributions without transformations. The benefits of this include i) the homogeneity of variance does NOT need to be satisfied and ii) the response variable does not need to be changed.

$$E(log(Y)) \neq log(E(Y))$$

Logistic regression

Used frequently to **test** and **predict**

Parallels with linear regression

Both logistic and linear regression can:

- Test for significance of a predictor
- Calculate an effect size
- Use continuous or categorical predictors
- Can predict values for new values

Differences with linear regression

Logistic regression differs from linear regression in that:

- Binary outcome
- There is no "true" R2 or residuals
- Uses Maximum Likelihood instead of Sum of Squares

Understanding logistic regression

1) Fitting a line

- 2) The outputs
- 3) Calculating fit
- 4) Prediction

1) Fitting a line: linear regression

1) Fitting a line: logistic regression

1) Fitting a line: logistic regression

Question

1) Fitting the model

2) The outputs - Logistic regression in R

3) Calculating a measure of fit

Typical linear regression uses R2

No R2 in logistic regression because no residuals

- Instead use Psuedo R2
 - McFadden's among the simpler compares to null

3) Calculating a measure of fit

3) Calculating a measure of fit

PsuedoR² = 1
$$-\frac{\log(Model)}{\log(Null)}$$

```
m3<- glm(icefree~temperature, family="binomial", data=iceData)
m3null<- glm(icefree~1, family="binomial", data=iceData)
1-logLik(m3)/logLik(m3null)</pre>
```

Models probability

..but the outcome is binary

Need to identify a threshold

Question

When is an example where you would like to reduce false negative rate at the expensive of false positive?

- a) Predicting infection of a disease
- b) Understanding climate effects on lake ice
- c) Predicting the probability of a species occurring
- d) A and C
- e) All the above

	Actual Positive	Actual Negative
Predicted Positive	True positive	False positive
Predicted Negative	False negative	True negative

	OTHESIS TESTING	Reality	
001	COMES	The Null Hypothesis Is True	The Alternative Hypothesis is True
Research	The Null Hypothesis Is True	Accurate 1 - α	Type II Error β
	The Alternative Hypothesis is True	Type I Error α	Accurate 1 - β

4) Optimizing the threshold

Many different methods

Receiver operator characteristic (ROC) often used to pick threshold

Area under the curve (AUC) of ROC used to compare models

4) Optimizing the threshold - ROC

(Sensitivity)

False Positive Rate (1 – specificity)

4) Optimizing the threshold - ROC

	Actual Positive	Actual Negative
Predicted Positive	True positive	False positive
Predicted Negative	False negative	True negative

Sensitivity

	Actual Positive	Actual Negative
Predicted Positive	True positive	False positive
Predicted Negative	False negative	True negative

Specificity

4) Sensitivity vs. specificity

4) Comparing models - AUC

True Positive Rate

(Sensitivity)

False Positive Rate (1 – specificity)

A note about overdispersion

Over dispersion when the variance exceeds the mean model fit

Frequent in ecology data

A note about overdispersion

A note about overdispersion

How do logistic regressions relate to GLMs?

Use a link function to connect to a linear function

Use Maximum Likelihood rather than sum of squares

Allows for the flexibility in GLMs for many distributions

GLM using a normal distribution

Probability vs. Likelihood

GLM using a normal distribution

Probability vs. Likelihood

GLM using a normal distribution

Probability vs. Likelihood

Maximum likelihood = L(1) * L(2) * ... L(i)

A simple workflow for GLMs

Case Study: Logistic regression to identify extreme events

Lake ice is threatened by climate change

Extreme events on lake ice

- Selected 122 lakes in the Northern Hemisphere
- Tested the frequency of ice-free years over time
- Examined the role of extreme temperatures

A large increase in ice-free coverage

Data of ice-free events

Lake	Year	IceFree	Winter air temperature
Sebago Lake	1995	1	-1
Sebago Lake	1996	0	-2.5
Sebago Lake	1997	0	-2.9
Sebago Lake	1998	0	-3.1
George Lake	1995	0	-2.1
George Lake	1996	1	-1.6
George Lake	1997	1	-0.5

Extremes in temperature cause extremes in ice coverage

The future loss of ice coverage

Thank you!

https://www.filazzola.info/

https://github.com/afilazzola/CUELogisticRegression