Instituto Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación

 \mathcal{T} iempo: 2 horas 20 minutos \mathcal{P} untaje \mathcal{T} otal: 36 puntos \mathcal{O} ctubre de 2 008

II Examen Parcial

Instrucciones: Esta es una prueba de desarrollo; por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

Notación: En el estudio de grupos, $x' = x^{-1}$

- 1. Considere el grupo abeliano $(\mathbb{Z}_6,+)$ y conteste lo que se pide en cada caso.
 - (a) Enuncie la tabla de operación binaria para dicho grupo. (1 pto)
 - (b) Determine el elemento neutro y el elemento simétrico (inverso) de cada uno de los elementos de $(\mathbb{Z}_6, +)$ (1 pto)
 - (c) Enuncie todos los elementos involutivos y todos los elementos idempotentes de este grupo. (1 pto)
 - (d) Halle todos los subgrupos de $(\mathbb{Z}_6, +)$ (2 pts)
- 2. Demuestre que si $(\mathcal{G}, *)$ es grupo con elemento neutro e, entonces \mathcal{G} es abeliano si, y sólo si, (a * b)' = a' * b', $\forall a, b \in \mathcal{G}$ (4 pts)
- 3. Si se sabe que $(\mathbb{R}^* \times \mathbb{R}, \circ)$ es grupo abeliano, con $(a, b) \circ (c, d) = (2ac, b + d 3)$, pruebe que $\mathcal{H} = \{(t, 3) / t \in \mathbb{R}^*\}$ es subgrupo de $(\mathbb{R}^* \times \mathbb{R}, \circ)$ (5 pts)
- 4. Considere el conjunto $\mathcal{A} = \{0, 2, 4, 6, 8\}$. Si se sabe que $(\mathcal{A}, +, \cdot)$ es un anillo módulo 10, conteste lo que se pide en cada caso.
 - (a) Realice la tabla de operación binaria para cada una de las dos operaciones definidas en el anillo \mathcal{A} (1 pto)
 - (b) ¿Por qué \mathcal{A} es un anillo conmutativo? (1 pto)
 - (c) ξ Es \mathcal{A} un anillo unitario o no lo es? Justifique. (2 pts)

5. Demuestre que
$$W = \left\{ (a, b, c, d) \in \mathbb{R}^4 \middle/ b + c + d = 0 \right\}$$
 es subespacio de \mathbb{R}^4 (3 pts)

- 6. Considere los subconjuntos de $\mathcal{M}_n(\mathbb{R})$ que se enuncian y, según sea el caso, demuestre que \mathcal{H} es subespacio de $\mathcal{M}_n(\mathbb{R})$ o justifique por qué no se cumple que \mathcal{H} sea subespacio de $\mathcal{M}_n(\mathbb{R})$ (3 pts)
 - (a) $\mathcal{H} = \left\{ A \in \mathcal{M}_n(\mathbb{R}) \middle/ A \cdot A = A \right\}$

(b)
$$\mathcal{H} = \left\{ A \in \mathcal{M}_n \left(\mathbb{R} \right) \middle/ A^t = A \right\}$$

- 7. En $\mathcal{P}_3(\mathbb{R})$ considere los vectores siguientes: $p(x) = 2 5x + 3x^2 + x^3$, $q(x) = 1 + x^2 + x^3$, $r(x) = 3 x 2x^2 + 2x^3$ y $s(x) = -1 + 3x + x^2$. Escriba, en caso de ser posible, el vector p(x) como una combinación lineal de los vetores q(x), r(x) y s(x) (4 pts)
- 8. Determine si el conjunto $S = \left\{ \begin{pmatrix} 1 & 2 & -3 \\ 4 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 & -4 \\ 6 & 5 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 8 & -11 \\ 16 & 10 & 9 \end{pmatrix} \right\}$ es linealmente dependiente o linealmente independiente en $\mathcal{M}_{2\times3}(\mathbb{R})$ (4 pts)
- 9. Sean \mathcal{V} algún espacio vectorial real y $\mathcal{S} = \{u_1, u_2, \dots, u_n\}$ un subconjunto de \mathcal{V} , tal que \mathcal{S} es linealmente independiente. Si $x \in \mathcal{V}$, tal que $x \notin \mathcal{G}en(\mathcal{S})$, demuestre que el conjunto $\mathcal{H} = \{x, u_1, u_2, \dots, u_n\}$ es, también, linealmente independiente. (4 pts)