

Information Technology CS编程辅导

# FIT1006 Business mation Analysis

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

Lecture 5

Descriptive Statistics — Introduction to EXCEL and SYS/TUAPEs.com

# Topics covered: 代写代做 CS编程辅导

Calculating descript

tics with EXCEL and SYSTAT.

Comparing groups

Visualising data

WeChat: cstutorcs

Using appropriate statistics

Describing data

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476



# Learning Objectives 做 CS编程辅导

- This lecture is abc to be well we characterise a data set using some summary still to be a set using
- A typical problem that could be answered with the techniques covered to the techniques covered



# Motivating pfoblem... CS编程辅导

- A grocery store war analyse the amount spent by their customers. They altitude you the sales history of 10 randomly sampled customers.
- WeChat: cstutorcs
   Data is from the Kaggle 'Dunnhumby's Shopper Challenge' which recorded the argount appendiant date Helpe transaction at a supermarket in the US over one year.

   Email: tutorcs@163.com
  - See: http://www.kaggle.com/c/dunnhumbychallenge
- I have resampled the original data, using approx 20% of the original observations.://tutorcs.com
- We will use the data for 10 groups of shoppers.



# Motivating P括序作為 CS编程辅导

Working in group: Wusing the data for Customer 3 (showing in group) the data for Customer 3 (showing)

Draw a stem and leaf plot.

Calculate the wartiets using the quick method.

• Calculate Q1 Asingnment Project Exam Help

• Calculate a 10% trimmed means.com

QQ: 749389476

https://tutorcs.com

| 18  |
|-----|
| 13  |
| 37  |
| 14  |
| 74  |
| 70  |
| 62  |
| 75  |
| 16  |
| 21  |
| 33  |
| 11  |
| 101 |
| 114 |
| 5   |
| 94  |
| 2   |
| 33  |
| 10  |
|     |
|     |

22

### Sample Data<sup>程</sup>Stem and 作時期ot

| 22  |
|-----|
| 18  |
| 13  |
| 37  |
| 14  |
| 74  |
| 70  |
| 62  |
| 75  |
| 16  |
| 21  |
| 33  |
| 11  |
| 101 |
| 114 |
| 5   |
| 94  |
| 2   |
| 33  |
| 10  |



# https://flux.ga程序的GCS络线GV)

#### **Question 1**



For Customer 3日達性 the Quick Method, Q1 =

WeChat: cstutorcs A. 13.00 B 13.25 Assignment Project Exam Help (18) 39.13% B. 13.25 C. 13.50 Email: tutorcs@163.com (20) 43.48% D. 13.75 QQ: 749389**4** E. 14.00 https://tutorcs.com 22 33 70 10 11 13 14 16 18 21 33 37 62 74 75 94 101 114  $4 \times 5 = 20 --> n = 5$ **Q1 Q2 Q3** 

A 13.00

# https://flux.qa程序eeacode:多线像CV)

#### **Question 2**

For Customer 3

$$q = (n+1)\frac{Q}{4}$$
, Q1 =

|                                                  |   |   |    |    | / ) |    |             |    |     |     |     |     |    |    |    |    |    |    |     |     |
|--------------------------------------------------|---|---|----|----|-----|----|-------------|----|-----|-----|-----|-----|----|----|----|----|----|----|-----|-----|
|                                                  | 2 | 5 | 10 | 11 | 13  | 14 | <b>-1</b> 6 | 18 | 21  | 22  | 33  | 33  | 37 | 62 | 70 | 74 | 75 | 94 | 101 | 114 |
| <del>-                                    </del> |   |   |    |    |     |    |             | Ch | at: | cst | uto | rcs |    |    |    |    |    |    |     |     |

A. 13.00

B. 13.25

C. 13.50

D. 13.75

E. 14.00

Assignment Project Exam Help q = (n+1) = q

Email: tutorcs@163.com

 $Q = x_q + r(x_{q+1} - x_q)$  When q is non-integer Q: 749389476

https://tutorcs.com  $Q_1 \rightarrow 5^{\text{th}} \text{ value} + 0.25 (6^{\text{th}} \text{ value} - 5^{\text{th}} \text{ value})$  $Q_1 \rightarrow 13 + 0.25 (14 - 13) = 13.25$ 

# https://flux.qa (样唇d \Sode: \$\$6 (\$\$6))

#### **Question 3**

For Customer 3, trimmed mean:



the mean, using the 10%

A. 30.15

B. 37.69

C. 39.39

D. 41.25

WeChat! cstutores

(5) 12.2%

Assignment Project Exam Help

Email: tutorcs@163.com

(7) 17.07%



10% trimmed mean: (10 + 11 + 13 + 14 + 16 + 18 + 21 + 22 + 33 + 33 + 37 + 62 + 70 + 74 + 75 + 94)/16 =37.69

(24) 58.54%

### Analysis Toofs<sup>5</sup>CEXCEL A 464-165





# Data -> Data 格內的學的 CS编程辅导





# Motivating Pfoblem代数等条件



Describe the different types of customers...



### 

```
Stem and Leaf Plot of Variable
                                                         Stem and Leaf Plot of Variable: ID140(5), N = 32
Minimum
           : 2.000
                                                         Minimum
                                                                    : 1.000
Lower Hinge: 13.000
                                                         Lower Hinge: 15.500
Median
          : 17.000
                                                         Median
                                                                    : 54.000
Upper Hinge: 45.000
                                                         Upper Hinge: 77.500
Maximum
          : 63.000
                                                         Maximum
                                                                   : 114.000
                                                         Stem and Leaf Plot of Variable: ID148(6), N = 49
Stem and Leaf Plot of Variable:
Minimum
          : 5.000
                                                         Minimum
                                                                    : 1.000
Lower Hinge: 25.000
                                                         Lower Hinge: 6.000
                           WeChat: cstution : 9.000
Median
          : 57.500
Upper Hinge: 115.000
Maximum
        : 239.000
                                                         Maximum
                                                                   : 96.000
Stem and Leaf Plot of Variable: ID119(2), N = 21
                                                         Stem and Leaf Plot of Variable: ID149(7), N = 11
                           Assignment
Minimum
           : 2.000
Lower Hinge: 6.000
          : 20,000
                                                         Median
                                                                    : 36.000
Median
                                                         Upper Hinge: 54.000
Upper Hinge: 30.000
                                                                    : 77.000
Maximum
          : 55.000
Stem and Leaf Plot of Variable Final 2tutorc
                                                             and \text{Laf} Plot of Variable: ID168(8), N = 29
Minimum
           : 2.000
                                                         Minimum
                                                                    : 2.000
Lower Hinge: 13.500
                                                         Lower Hinge: 14.000
          : 27.500
                                                                    : 20.000
Median
                               Q: 7493894
Upper Hinge: 72.000
                                                         Upper Hinge : 30.000
         : 114.000
                                                                    : 141.000
Maximum
Stem and Leaf Plot of Variable: ID134(4), N = 66
                                                         Stem and Leaf Plot of Variable: ID177(9), N = 10
           : 0.000
Minimum
                          https://tutorcs
                                                                      49.000
Lower Hinge: 13.000
                                                                    : 63.000
          : 21.500
Upper Hinge: 39.000
                                                         Upper Hinge: 96.000
Maximum
          : 121.000
                                                         Maximum
                                                                    : 109.000
```



# Or use Excel程序代写代做 CS编程辅导

Descriptive Statistic

|                    |         |                      |                    | M-19 T               |                            |            |                              |          |          |          |
|--------------------|---------|----------------------|--------------------|----------------------|----------------------------|------------|------------------------------|----------|----------|----------|
|                    | ID40(0) | ID79(1)              |                    | 3(3)                 | ID134(4)                   | ID140(5)   | ID148(6)                     | ID149(7) | ID168(8) | ID177(9) |
| Mean               | 28.85   | 80.9 <del>0</del>    | 20.14              | 41.25                | 27.38                      | 51.94      | 14.18                        | 37.27    | 27.41    | 76.60    |
| Standard Error     | 6.14    | 23.60                | 3.32               | 7.87                 | 2.81                       | 6.16       | 2.21                         | 7.38     | 5.02     | 6.60     |
| Median             | 17.00   | 57.50                | 7 20:10Q           | 27.50                | 21.50                      | 54.00      | 9.00                         | 36.00    | 20.00    | 68.50    |
| Mode               | 14.00   | #N/A                 | 20.60              | al. <sub>33.00</sub> |                            |            | 6.00                         | 54.00    | 16.00    | 63.00    |
| Standard Deviation | 22.12   | 74.63                | 15.19              | 35.18                | 22.82                      | 34.85      | 15.45                        | 24.49    | 27.01    | 20.86    |
| Sample Variance    | 489.47  | 5569.66              | 230,83             | 1237.57              | <b>1</b> 520,76            | 1214.82    | 238.74                       | 599,82   | 729.75   | 435.16   |
| Kurtosis           | -1.55   | 0.80                 | 722183             | 11112                | 5.23                       |            | <b>Xa</b> <sub>16.00</sub>   |          | 10.93    | -1.08    |
| Skewness           | 0.38    | 1.09                 | 0.58               | 0.80                 | 2.03                       | 0.08       | 3.40                         | 0.16     | 2.91     | 0.58     |
| Range              | 61.00   | 234.0 <mark>0</mark> | 53:00              | 112.00               | 121700                     | 1 (11)3.00 | 95.00                        | 73.00    | 139.00   | 60.00    |
| Minimum            | 2.00    | 5.0 <del>0</del>     | 711162 <u>10</u> 6 | . 1412.00            | CS 6.00                    | 1031:00    | <b>U</b> 111 <sub>1.00</sub> | 4.00     | 2.00     | 49.00    |
| Maximum            | 63.00   | 239.00               | 55.00              | 114.00               | 121.00                     | 114.00     | 96.00                        | 77.00    | 141.00   | 109.00   |
| Sum                | 375.00  | 809.00               | 423.80             | 1 (825.00)           | <b>18<del>0</del>7,8</b> 0 | 1662.00    | 695.00                       | 410.00   | 795.00   | 766.00   |
| Count              | 13.00   | 10.00                | 21.00              | ナフ <sub>20.80</sub>  | 66.60                      | 32.00      | 49.00                        | 11.00    | 29.00    | 10.00    |



# Or SYSTAT...程序代写代做 CS编程辅导

Summary Statistics

| ı                  | ID | 40(0)  | ID79(1) | II Tutor CS            | ing in        | 134(4) ID | 0140(5)      | ID148(6)            | ID149(7)              | ID168(8) | ID177(9) |
|--------------------|----|--------|---------|------------------------|---------------|-----------|--------------|---------------------|-----------------------|----------|----------|
|                    |    |        |         |                        |               |           |              |                     |                       |          |          |
| N of Cases         | 1  | 13     | 10      | 21                     | 20            | 66        | 32           | 49                  | 11                    | 29       | 10       |
| Minimum            | 1  | 2.000  | 5.000   | WeCh                   | ať:°cst       | utorcs    | 1.000        | 1.000               | 4.000                 | 2.000    | 49.000   |
| Maximum            | 1  | 63.000 | 239.000 | 55.000                 | 114.000       | 121.000   | 114.000      | 96.000              | 77.000                | 141.000  | 109.000  |
| Median             | 1  | 17.000 | 57.500  | A <sup>20.000</sup> g1 | nment         | Proie     | ct Ex        | am H                | elp <sup>36.000</sup> | 20.000   | 68.500   |
| Arithmetic Mean    | 1  | 28.846 | 80.900  | 20.143                 | 41.250        | 27.379    | 51.938       | 14.184              | 37.273                |          | 76.600   |
| Standard Deviation | n  | 22.124 | 74.630  | Email                  | : tutor       | cs201     | 63.847<br>CC | m <sup>15.451</sup> | 24.491                | 27.014   | 20.860   |
| Method = CLEVELANI | (  |        |         |                        |               |           |              |                     |                       |          |          |
| 1 of 4             | 1  | 11.500 | 25.000  | 00.7                   | <b>493</b> 89 | 476       | 15.500       | 5.750               | 17.500                | 14.000   | 63.000   |
| 2 of 4             | 1  | 17.000 | 57.500  | 20.000                 | 27.500        | 21.500    | 54.000       | 9.000               | 36.000                | 20.000   | 68.500   |
| 3 of 4             | 1  | 47.250 | 115.000 | https:/                | //tutoro      | cs.con    | 77.500       | 20.250              | 54.000                | 31.000   | 96.000   |



#### **SYSTAT**

#### 程序代写代做 CS编程辅导

SYSTAT is a Windc
 download a free ver



https://systatsoftware.com/at: cstutorcs

#### Assignment Project Exam Help

 https://systatsoftware.com/products/systat/mystat-statistical-analysis-product-for-student-use/ Email: tutorcs@163.com

QQ: 749389476



### Screenshot ffom SYSTA 编辑等



### Making sense of the data...

How do we make see information?

What can we infer f

Descriptive statistics of the data

WeChat: cstutorcs

- The distribution from stem and leaf plot

- The box plot, etc...gnment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476



# https://flux.qa程序的是多级的(SS是是一个)

**Question 4** 

From the boxploid state as the greater media:

we Chat: cstubers

A. ID79

B. ID123

C. ID140

D. ID177

E. None of the above.



300 r



QQ: 749389476

https://tutorcs.com



Customer



### https://flux.qa (棒色的气态像: 多角像)

#### **Question 5**

From the boxplot the most "inconsistent" customer? WeChat:

/ ID70

B. ID123

C. ID140

D. ID177

E. None of the above.



Customer

300 \_

# https://flux.qa程序的是多数的(SS)

**Question 6** 

From the boxploid the best customer?

WeChat: cstuggercs

A. ID79

Assignment Project Exam Help

300 \_

B. ID123

Email: tutorcs @ 163.com QQ: 749389476

C. ID140

D. ID177

https://tutorcs.com

E. None of the above.

Duolo Dialination di Characte

Customer

# Measures of 琴序性写代做 CS编程辅导

- The <u>variance</u> we will verage of the squared deviations ad the squared of the mean.
- The standard deviation is the most well known. It is the square forther ariance.
- The range is largestnens Prairies Forms Hation.
- The interquartile riangers 253.com it contains the middle 50% of observations.

https://tutorcs.com

Let's have a look at the 'shape' of distribution...



# https://flux.qa程序的是多级的(\$5%的)

#### **Question 7**

The histogram set:



ដ្ត corresponds to which data



B. 2

C. 3

**D**. 4

E. 5



FIT1006 Business Information Analysis

### https://flux.qa样序的多份的69.给好像

**Question 8** 

The histogram







# https://flux.qa样唇色看它的e:多好像

#### **Question 9**

The histogram

Tode: Stokes lecture

I this in tomorrow's lecture

this in tomorrow to which data set:





# Distribution 等的有力是在的 Box的 ot

Here's 5 distribiteboxplots







#### **Full Set**

#### 程序代写代做 CS编程辅导



#### **Key Ideas**

#### 程序代写代做 CS编程辅导

- You should be at
- Calculate the basis stive statistics using Excel and SYSTAT;
- Plot histograms and boxplots of data, including several groups of data on a single plottering SYSTAT

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476



# Reading/Questions代做 CS编程辅导

- Reading: Graph merical Descriptive Methods
  - 7<sup>th</sup> Ed. Se**e!: 1.24**, 3.1, 4.1, 4.4, 5.1 5.3.

WeChat: cstutorcs

- Questions: Graphical humprical Pescriptive Methods
  - 7th Ed. 5.17.541, 545.54651673.570

QQ: 749389476

Tutorial 3 Questions

