2021 - PHY 981 - Homework set 6 (due Feb 28)

- 1. Discussion session on Fridays 2-3 link to zoom link to lecture notes link to nushellx.zip link to toi.zip
- 2. Read Chapters 15-17.
- 3. 132 Sn is a good doubly-magic nucleus. What are the (n,ℓ,j) values associated with the ground state J^{π} of 131 Sn, 133 Sn, 131 In and 133 Sb. Use binding energies to find the single-particle (hole) energies associated with these states. What is the single-particle energy of the proton $0h_{11/2}$ state?
- 4. Use the harmonic-oscillator model with $\hbar\omega=14$ MeV to find the rms proton radius for 20 Ne. What is the total kinetic energy for 20 Ne?
- 5. Derive Eq. 16.45.
- 6. Derive Eq. 16.59.
- 7. Use the harmonic-oscillator model with $\hbar\omega=14$ MeV to find the center-of-mass correction to the energy of 20 Ne.
- 8. Use wspot with the default Bohr-Mottelson set of Woods-Saxon parameters. Assume that ¹⁶O is a doubly closed shell nucleus. What are the single-particle energies for the bound states? How do they compare with experiment? What is the rms charge radius? How does it compare to experiment?