

Target Business Case

1 Objective:

The objective of this case study to drive meaningful insights on target business situation and to identify and analyse potential solutions for any problem area identified during case study.

By using data and insights provided in this case study, decision-makers can make more informed and strategic decisions in their own business operations.

2 Exploratory Analysis:

2.1 Data type of columns in a table:

I have explored data base schema of each table, Screenshot attached below for table "Order_items" from Target SQL Dataset.

Query:

SELECT column_name,data_type
FROM target.INFORMATION_SCHEMA.COLUMNS
WHERE table_name='order_items'

Result:

Query results

JOB IN	FORMATION RE	SULTS JSON	EXECUTION DETAILS
ow /	column_name	data_type	//
1	order_id	STRING	
2	order_item_id	INT64	
3	product_id	STRING	
4	seller_id	STRING	
5	shipping_limit_date	TIMESTAME	P
6	price	FLOAT64	
7	freight_value	FLOAT64	

Above query can be performed on all table to understand the schema of table.

2.2 Time period for which the data is given:

Based on query performed on orders dataset, Time period of data analysis is starting from 2016 to 2018.

Query:

SELECT EXTRACT(YEAR FROM order_purchase_timestamp) AS yrs, COUNT(order_id) AS No_of_orders, FROM `target.orders`
GROUP BY yrs

JOB IN	NFORMATION	RESULTS
Row	yrs //	No_of_orders
1	2017	45101
2	2018	54011
3	2016	329

2.3 Cities and States of customers ordered during the given period

Query:

SELECT DISTINCT customer_city,
customer_state
FROM `target.customer` as c
JOIN `target.orders` AS o
ON c.customer_id = o.customer_id
WHERE EXTRACT(YEAR FROM order_purchase_timestamp) BETWEEN 2016 AND 2018
LIMIT 10

Result:

3 In-depth Exploration:

3.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:

SELECT EXTRACT(YEAR FROM order_purchase_timestamp) AS purchase_year, EXTRACT(MONTH FROM order_purchase_timestamp) AS purchase_month, COUNT(order_id) AS no_of_orders FROM `target.orders` GROUP BY purchase_year, purchase_month ORDER BY purchase_year, purchase_month

Complete Scenario and seasonal peak:

- Looking at the data, it seems that the company's order volume increased from April 2017 to November 2017, with the highest number of orders in November 2017. Then, the order volume decreased from November 2017 to March 2018, with the lowest number of orders in October and November 2018.
- Overall, the trend seems to show a cyclical pattern with peaks and valleys in order volume. However, it is worth noting that the table only includes data for the first 10 months of 2018, so it is difficult to draw any conclusions about the company's performance for the entire year.
- ¥ Yes, there is a seasonal pattern in the data, with peaks occurring in the months of November and December for both 2017 and 2018. This could potentially be due to holiday shopping or end-of-year sales.
- Additionally, there is a peak in July 2017, which could potentially be due to mid-year sales or promotions.
- Overall, there is a general trend of higher order volumes in the second half of the year compared to the first half, which could be due to a variety of factors such as seasonality, consumer behaviour, or marketing efforts or repeat customers.

- As mentioned earlier, there seems to be a clear seasonal pattern in the data, with peaks in November and December. If the company hasn't already done so, they can develop strategies to capitalize on them by conducting in-depth analysis on what's driving it.
- ↓ Identify the causes of the low-order months: The data also shows some months with lower order volumes, such as October and November 2018. The company should analyze the causes of these lower-order months and develop strategies to address them, such as marketing campaigns, sales promotions or getting more reviews by previous customers.
- Focus on customer experience: The customer experience is very critical in business in driving repeat business and positive reviews. The company should focus on providing excellent customer service, ensuring timely delivery, and creating a seamless checkout process to enhance the overall customer experience.

3.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query:

SELECT

CASE

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6

THEN 'Dawn'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12

THEN 'Morning'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18

THEN 'Afternoon'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 24

THEN 'Night'

END

AS Buying_time,

COUNT(DISTINCT order_id) AS No_of_Orders

FROM `target.orders`

GROUP BY Buying_time

Result:

Query results							
JOB IN	NFORMATION	RESULTS	JSON	EXECU			
Row	Buying_time	//	No_of_Orders				
1	Morning		27733				
2	Dawn		5242				
3	Afternoon		38135				
4	Night		28331				

Actionable Insights:

- ♣ Looking at the data, it seems that the largest number of orders were made in the
 afternoon, with 38,135 orders, followed by the morning with 27,733 orders, and the
 night with 28,331 orders. The lowest number of orders were made during the dawn
 period, with 5,242 orders.
- One possible reason for this could be that people are more active during the day and have more time to shop or browse products.
- ♣ To better understand this trend, the company could conduct further analysis to determine whether there are any particular products or customer segments that are driving the higher order volumes during specific times of the day. This analysis could help the company to optimize its marketing efforts and potentially increase sales by targeting customers during peak order times.

Recommendations:

→ Optimize marketing and social media campaigns: The company should analyse their marketing strategies and identify ways to promote its products during the times of the day when customers tend to place more orders. This could include targeted social media advertising campaigns or email marketing promotions during peak order times.

- → Offer promotions during low-order times: The company could consider offering promotions or discounts during the dawn or night periods to encourage more orders during these times. This could help to balance out the order volumes across different times of the day.
- ♣ Optimize website and checkout process: The company should ensure that its website and checkout process are optimized for ease of use and efficiency. This could help to increase the likelihood of customers completing their orders, particularly during peak order times.

4 Evolution of E-commerce orders in the Brazil region:

4.1 Get month on month orders by states

Query:

SELECT customer_state,

EXTRACT(MONTH FROM order_purchase_timestamp) AS purchase_month,

COUNT(order_id) AS no_of_orders

FROM `target.orders` AS o

JOIN `target.customer` AS c

ON c.customer_id = o.customer_id

GROUP BY customer_state, purchase_month

ORDER BY no_of_orders DESC

Result:

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	//	purchase_month	no_of_orders
1	SP		8	4982
2	SP		5	4632
3	SP		7	4381
4	SP		6	4104
5	SP		3	4047
6	SP		4	3967
7	SP		2	3357
8	SP		1	3351
9	SP		11	3012
10	SP		12	2357

4.2 Distribution of customers across the states in Brazil

Query:

SELECT customer_state,
COUNT(customer_id) AS No_of_customers
FROM `target.customer`
GROUP BY customer_state
ORDER BY No_of_customers DESC

JOB IN	IFORMATION	RESULTS	JSON	E)
Row	customer_state	//	No_of_customer	
1	SP		41746	
2	RJ		12852	
3	MG		11635	
4	RS		5466	
5	PR		5045	
6	SC		3637	
7	BA		3380	
8	DF		2140	
9	ES		2033	
10	GO		2020	

Insights:

- The query result shows the number of customers for each state, with the highest number of customers in SP (41746) and the lowest number in RR (46).
- It's worth noting that without additional information about the business, the product or service being sold, it's difficult to draw any meaningful insights or conclusions from this data alone. However, this data could be useful for identifying which states have a higher concentration of customers and may be more profitable markets for the business to target in the future.

- ↓ Identify top-performing states: By analysing the state- wise sales data, businesses can identify which states have a higher concentration of customers or higher sales revenue. These states may represent more profitable markets or may indicate a greater demand for the product or service.
- ↓ Identify trends: By analysing sales data over time, businesses can identify market trends and adjust their strategies accordingly. For example, if sales are declining in a particular state, the business may need to adjust its pricing, marketing, or product offerings to remain competitive in that area/state.
- ← Conduct competitor analysis: By analysing sales data for competitors in the market, businesses can identify gaps in the market and potential areas for growth. This information can help businesses refine their marketing and product strategies and better target their audience.
- ♣ Performance against goals: By setting specific state wise sales goals and tracking progress against that, businesses can identify areas of improvement and adjust their strategies to achieve better results and thrive in low sales states.

- 5 <u>Impact on Economy: Analyze the money movement by e-commerce by looking at order</u> prices, freight and others.
 - 5.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

Query:

```
SELECT
Order_value_for_2017,
Order_value_for_2018,
(((Order_value_for_2018 - Order_value_for_2017)/ Order_value_for_2017)* 100) As percentage_incre
ase_in_cost_of_orders
FROM (SELECT
SUM(IF(EXTRACT(year FROM o.order_purchase_timestamp) = 2017, p.payment_value,0)) AS Ord
er_value_for_2017,
SUM(IF(EXTRACT(year FROM o.order_purchase_timestamp) = 2018, p.payment_value,0)) AS Ord
er_value_for_2018
FROM `target.orders` AS o
JOIN `target.payments` AS p
```

Result:

Query results

ON o.order_id = p.order_id

JOB IN	IFORMATION	RESI	JLTS	JSON	EXECUTION DETAILS	EXECUTION
Row	Order_value_for_	2017	Order_v	alue_for_2018	percentage_increase_in_cost	_of_orders
1	3669022.11999	99228	869473	3.83999986	136.976871	64666226

WHERE EXTRACT(month FROM o.order_purchase_timestamp) BETWEEN 1 AND 8)

5.2 Mean & Sum of price and freight value by customer state

Query:

```
c.customer_state AS cust_state,
SUM(oit.price) AS Sum_all_price,
AVG(oit.price) AS Mean_of_price,
SUM(oit.freight_value) AS Sum_all_freight,
AVG(oit.freight_value) AS Mean_of_freight
FROM `target.orders` AS o
JOIN `target.order_items` AS oit
ON o.order_id = oit.order_id
JOIN `target.customer` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
```

ORDER BY c.customer_state

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH
Row	cust_state	//	Sum_all_price	Mean_of_price	Sum_all_freight	Mean_of_freight
1	AC		15982.95	173.73	3686.75	40.07
2	AL		80314.81	180.89	15914.59	35.84
3	AM		22356.84	135.5	5478.89	33.21
4	AP		13474.3	164.32	2788.5	34.01
5	BA		511349.99	134.6	100156.68	26.36
6	CE		227254.71	153.76	48351.59	32.71
7	DF		302603.94	125.77	50625.5	21.04
8	ES		275037.31	121.91	49764.6	22.06
9	GO		294591.95	126.27	53114.98	22.77
10	MA		119648.22	145.2	31523.77	38.26

Insights:

- ♣ Based on 1st query results, it appears the order value for a business in 2017 and 2018, as well as the percentage increase in the cost of orders between those two years.
- → The percentage increase in the cost of orders is shown as 136.98%, indicating that the cost of orders increased by over 100% between 2017 and 2018. Overall, this table suggests that the business has experienced substantial growth in order value between 2017 and 2018, which could be a positive indicator of business success.
- Base on 2nd query results, The state with the highest total price is SP with a value of 5,202,955.05, while the state with the lowest total price is Roraima RR with a value of 7,829.43.
- ♣ The state with the highest average freight cost per order is PB with a value of 42.72, while the state with the lowest average freight cost per order is SP with a value of 15.15.

- Review pricing strategy: With such a large increase in the cost of orders, it may be worth for the business to review its pricing strategy to ensure that it remains competitive while still generating a profit.
- Analyse spending patterns: Businesses can use the average spending data to analyse spending patterns within each state. For example, states with higher average spending may indicate that customers are willing to pay more for certain products or services, and businesses could adjust their offerings or marketing strategies accordingly.
- ♣ Evaluate freight costs: The data also includes information on total freight costs and average freight costs for each state. Businesses could evaluate these costs to identify potential opportunities for cost savings or process improvements, such as optimizing shipping routes or negotiating better rates with carriers.

6 Analysis on sales, freight and delivery time

6.1 Calculate days between purchasing, delivering and estimated delivery

Query:

SELECT order_id,

TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) AS Estimated_del ivery_time,

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS Actual_delive rv_time.

ABS(TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date, day)) AS Esti mated_Vs_Actual_days

FROM 'target.orders'

WHERE order_status='delivered'

Result:

Query results

JOB IN	FORMATION	RESULTS	JSON EXECU	TION DETAILS E	XECUTION GRAPH PREVIEW
Row	order_id	Į,	Estimated_delivery_time	Actual_delivery_time	Estimated_Vs_Actual_days
1	635c894d068ac3	7e6e03dc54e	32	30	1
2	3b97562c3aee8b	dedcb5c2e45	33	32	0
3	68f47f50f04c4cb	6774570cfde	31	29	1
4	276e9ec344d3bf0	029ff83a161c	39	43	4
5	54e1a3c2b97fb0	809da548a59	36	40	4
6	fd04fa4105ee804	15f6a0139ca5	35	37	1
7	302bb8109d097a	9fc6e9cefc5	28	33	5
8	66057d37308e78	7052a32828	32	38	6
9	19135c945c554e	ebfd7576c73	33	36	2
10	4493e45e7ca108	4efcd38ddeb	33	34	0

6.2 Find time_to_delivery & diff_estimated_delivery.

(Formula for the same given below:

time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date)

Query:

SELECT order_id,

ABS(TIMESTAMP_DIFF(order_purchase_timestamp,order_delivered_customer_date,day)) AS Time_to _delivery,

ABS(TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date,day)) AS Diff_estimated_delivery

FROM `target.orders`

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET
Row	order_id	//	Time_to_delivery	Diff_estimated_c
1	770d331c84e5b2	214bd9dc70a	7	45
2	dabf2b0e35b423	f94618bf965f	7	44
3	8beb59392e21af	f5eb9547ae1a	10	41
4	1a0b31f08d0d7e	87935b819ed	6	29
5	cec8f5f7a13e5al	b934a486ec9e	20	40
6	58527ee4726911	1bee84a0f42c	10	48
7	10ed5499d1623	638ee810eff1	28	29
8	818996ea247803	3ddc123789f2	9	35
9	d195cac9ccaa13	394ede717d38	10	41
10	64eeb35d3ade7f	fcdff9fbb1ca5	6	41

6.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Query:

SELECT

c.customer_state AS cust_state,

ROUND(AVG(oit.freight_value),2) AS Mean_of_freight,

ROUND(AVG(ABS(TIMESTAMP_DIFF(order_purchase_timestamp,order_delivered_customer_date,d ay))),2) AS Time_to_delivery,

ROUND(AVG(ABS(TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date,day))),2) AS Diff_estimated_delivery

FROM `target.orders` AS o

JOIN `target.order_items` AS oit

ON o.order_id = oit.order_id

JOIN `target.customer` AS c

ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY c.customer_state

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRA
Row	cust_state	//	Mean_of_freight	Time_to_delivery	Diff_estimated_delivery
1	AC		40.07	20.33	21.24
2	AL		35.84	23.99	12.06
3	AM		33.21	25.96	20.47
4	AP		34.01	27.75	24.58
5	BA		26.36	18.77	12.92
6	CE		32.71	20.54	14.26
7	DF		21.04	12.5	12.22
8	ES		22.06	15.19	12.09
9	GO		22.77	14.95	12.9
10	MA		38.26	21.2	12.66

6.4 Sort the data to get the following:

6.4.1 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

A) Top 5 States with highest average freight value

Query:

SELECT

c.customer_state AS cust_state,
ROUND(AVG(oit.freight_value),2) AS Mean_of_freight
FROM `target.orders` AS o
JOIN `target.order_items` AS oit
ON o.order_id = oit.order_id
JOIN `target.customer` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY Mean_of_freight DESC
LIMIT 5

Result:

Query results

JOB INFORMATION		RESULTS	JSON
Row	cust_state	//	Mean_of_freight
1	RR		42.98
2	PB		42.72
3	RO		41.07
4	AC		40.07
5	PI		39.15

B) Top 5 States with Lowest average freight value

Query:

SELECT

c.customer_state AS cust_state,
ROUND(AVG(oit.freight_value),2) AS Mean_of_freight
FROM `target.orders` AS o
JOIN `target.order_items` AS oit
ON o.order_id = oit.order_id
JOIN `target.customer` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY Mean_of_freight ASC
LIMIT 5

Result:

Query results

JOB INFORMATION		RESULTS	JSON	ΕX
Row	cust_state	11	Mean_of_freig	ght
1	SP		15	.15
2	PR		20	.53
3	MG		20	.63
4	RJ		20	.96
5	DF		21	.04

6.4.2 Top 5 states with highest/lowest average time to delivery

A) Top 5 States with Highest Average time to delivery

Query:

SELECT

c.customer_state AS cust_state,
ROUND(AVG(ABS(TIMESTAMP_DIFF(order_purchase_timestamp,order_delivered_custome
r_date,day))),2) AS Time_to_delivery
FROM `target.orders` AS o
JOIN `target.order_items` AS oit
ON o.order_id = oit.order_id
JOIN `target.customer` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY Time_to_delivery DESC
LIMIT 5

JOB IN	IFORMATION	RESULTS	JSON
Row	cust_state	11	Time_to_delivery
1	RR		27.83
2	AP		27.75
3	AM		25.96
4	AL		23.99
5	PA		23.3

B) Top 5 States with lowest Average time to delivery

Query:

SELECT

c.customer_state AS cust_state,

ROUND(AVG(ABS(TIMESTAMP_DIFF(order_purchase_timestamp,order_delivered_custome

r_date,day))),2) AS Time_to_delivery FROM `target.orders` AS o

JOIN `target.order_items` AS oit

ON o.order_id = oit.order_id

JOIN `target.customer` AS c

ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY Time_to_delivery ASC

LIMIT 5

Result:

Query results

JOB IN	IFORMATION	RESULTS	JSON	E)
Row	cust_state	//	Time_to_delivery	/
1	SP		8.26	
2	PR		11.48	
3	MG		11.52	
4	DF		12.5	
5	SC		14.52	

6.4.3 Top 5 states where delivery is really fast/ not so fast compared to estimated date

A) Top 5 states where delivery is really fast compared to estimated date

Query:

SELECT c.customer_state AS cust_state,

ROUND(AVG(TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_custom
er_date,day)),2) AS Estimated_vs_actual_delivery_days

FROM `target.orders` AS o

JOIN `target.order_items` AS oit
ON o.order_id = oit.order_id
JOIN `target.customer` AS c
ON o.customer_id = c.customer_id
WHERE order_status='delivered'
GROUP BY c.customer_state
ORDER BY Estimated_vs_actual_delivery_days DESC
LIMIT 5

Result:

Query results

JOB IN	IFORMATION	RE	SULTS	JSON	EXECUTION
Row	cust_state	//	Estimate	d_vs_actual_de	elivery_days
1	AC				20.01
2	RO				19.08
3	AM				18.98
4	AP				17.44
5	RR				17.43

B) Top 5 states where delivery is not so fast compared to estimated date

Query:

SELECT c.customer_state AS cust_state,

ROUND(AVG(TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_custom
er_date,day)),2) AS Estimated_vs_actual_delivery_days

FROM `target.orders` AS o

JOIN `target.order_items` AS oit

ON o.order_id = oit.order_id

JOIN `target.customer` AS c

ON o.customer_id = c.customer_id

WHERE order_status='delivered'

GROUP BY c.customer_state

ORDER BY Estimated_vs_actual_delivery_days ASC

LIMIT 5

Result:

Query results

JOB IN	IFORMATION	R	ESULTS	JSON	EXECU
Row	cust_state	1	Estimated	_vs_actual_deliv	ery_days
1	AL				7.98
2	MA				9.11
3	SE				9.17
4	ES				9.77
5	BA				10.12

Insights:

- ➡ The mean freight cost ranges from as low as 15.15 in SP to as high as 42.98 in RR, suggesting that freight costs can vary significantly depending on the location of the customer.
- → Time to delivery varies across customer states: The time to delivery ranges from 8.26 days in SP to 27.83 days in RR, which is more than 3 times longer. This indicates that delivery times can vary widely depending on the customer's location, and factors such as distance, transportation infrastructure, etc.
- Estimated delivery times are not always accurate: The difference between estimated and actual delivery times ranges from as low as 10.99 in SP to as high as 25.35 in RR. This suggests that estimated delivery times may not always be reliable and that customers may experience delays in receiving their shipments.

Recommendations:

- Analyse the factors that are driving the variations in freight costs and delivery times across different customer states. This could involve looking at factors such as transportation infrastructure, and distance, and identifying ways to optimize these to reduce costs and improve delivery times.
- Improve the accuracy of estimated delivery times to enhance customer satisfaction. This could involve using more online/accurate tracking and delivery systems, improving communication with customers, and implementing processes to better predict delivery times.
- ♣ By analysing historical data and identifying patterns and trends, these methods can help identify potential bottlenecks or inefficiencies in the logistics process and suggest ways to optimize them.

7 Payment type analysis:

7.1 Month over Month count of orders for different payment types

Query:

SELECT EXTRACT(MONTH FROM o.order_purchase_timestamp) AS purchase_month, p.payment_type,
COUNT(DISTINCT o.order_id) AS No_of_orders
FROM `target.orders` AS o
JOIN `target.payments` AS p
ON o.order_id =p.order_id
GROUP BY purchase_month, payment_type
ORDER BY purchase_month

JOB IN	FORMATION	RESULTS	JSON	EXECUTION
Row	purchase_month	payment_type	//	No_of_orders
1	1	credit_card		6093
2	1	UPI		1715
3	1	voucher		337
4	1	debit_card		118
5	2	UPI		1723
6	2	credit_card		6582
7	2	voucher		288
8	2	debit_card		82
9	3	credit_card		7682
10	3	UPI		1942
11	3	debit_card		109
12	3	voucher		395
13	4	voucher		353
14	4	credit_card		7276
15	4	UPI		1783
16	4	debit_card		124
17	5	credit_card		8308
18	5	UPI		2035
19	5	debit_card		81
20	5	voucher		374

7.2 Count of orders based on the no. of payment installments

Query:

SELECT p.payment_installments, COUNT(o.order_id) AS No_of_orders FROM `target.orders` AS o JOIN `target.payments` AS p ON o.order_id =p.order_id GROUP BY payment_installments ORDER BY payment_installments

JOB IN	NFORMATION R	ESULTS JS
Row	payment_installments	No_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16
15	14	15

Insights:

- Credit card and UPI are the most popular payment types for online orders. During the months of October and November, the highest number of orders were placed using these payment methods.
- Vouchers are a popular payment method during the months of November and December, indicating that customers may be more inclined to use discounts or promotions during the holiday season.
- → Debit card usage is relatively low throughout the year, with the exception of the month of December. This may suggest that customers prefer to use credit cards or other payment methods for online orders.

- Offer a wider range of payment options to cater to different customer preferences. This could include popular payment methods like credit cards and UPI, as well as less popular options like debit cards or online wallets.
- ← Companies should consider offering more flexible payment options, such as the ability to pay in installments over a longer period of time or the ability to delay payments until a later date. This may help to attract more customers and improve the overall customer experience by offering more flexibility in the payment process.

