sheet6

December 5, 2022

1 Sheet 6

Leonard Benkendorff, Dorothea Schwärzel, Sebastian Preuß

```
[1]: import numpy as np
  from matplotlib import pyplot as plt
  import scipy.sparse
  from sklearn.linear_model import Ridge, LinearRegression
```

1.1 1 Regularization and Bias

```
a) hirty loss: L_{R} = VY - P^{T} \times II + RP_{R} = P_{R}

Some try: L_{R} = VY - P^{T} \times II + 2P_{R} = P_{R} + 2P_{R} = P_{R} = P_{R
```

1.2 2 Estimating Parameter Relevance

```
[2]: # load the data
with open('data/vostok.txt', 'r') as f:
    lines = f.readlines()

# remove header and split lines
lines = [l.split() for l in lines[2:]]
```

```
# filter out lines with missing data
lines = [l for l in lines if len(l) == 4]

# convert to float
lines = np.array(lines).astype(np.float32)
print(f'{lines.shape=}')

features = np.concatenate([lines[:, :1], lines[:, 2:]], axis=1).T
feature_names = 'age', 'CO', 'dust'
labels = lines[:, 1]
label_name = 'T'

print(f'{features.shape=}, {labels.shape=}')
```

lines.shape=(3729, 4)
features.shape=(3, 3729), labels.shape=(3729,)

```
[3]: from sklearn.linear_model import LinearRegression

# TODO: fit the linear regressor and compute the sum of square deviations
lr = LinearRegression()
lr.fit(features.T, labels)

print('Sum of squared deviations:', np.sum((lr.predict(features.T)-labels)**2))

plt.plot(labels, label='True data')
plt.plot(lr.predict(features.T), label='Predicted data')
plt.legend(loc='best')
plt.title(r'True and predicted values for $\Delta T$')
plt.show()
```

Sum of squared deviations: 6362.9375

True and predicted values for ΔT


```
[4]: # TODO: for each feature, randomly permute it amongst the samples,
             refit the regressor and compte sum of squared deviations
     for i in range(3):
         new_order = np.arange(features.shape[-1])
         np.random.shuffle(new_order)
         shuffled_features = np.zeros(features.shape)
         for j in range(3):
             if i == j:
                 shuffled_features[i,:] = features[i,new_order]
             else:
                 shuffled_features[j,:] = features[j,:]
         lr = LinearRegression()
         lr.fit(shuffled_features.T, labels)
         print(f'Sum of squared deviations after shuffling {feature_names[i]}:', np.

sum((lr.predict(features.T)-labels)**2))
         plt.plot(lr.predict(shuffled_features.T), label=f'Prediction after_
      →shuffling {feature_names[i]}')
     plt.plot(labels, label='True data', color='#8c564baa') # add some transparency
     plt.legend(loc='best')
```

```
plt.title(r'True and predicted values for $\Delta T$ after shuffling')
plt.show()
```

Sum of squared deviations after shuffling age: 6796.764275972411 Sum of squared deviations after shuffling CO: 18962.56096840998 Sum of squared deviations after shuffling dust: 6565.202563606381

True and predicted values for ΔT after shuffling

Which feature is most important and which is least relevant? The difference to the original sum of squared deviations is as follows:

$$\Delta_{\text{age}} = |6362.9375 - 6824.1124| = 461.2 \tag{1}$$

$$\Delta_{\text{CO}_2} = |6362.9375 - 18944.9081| \\ \hspace{2cm} = 12582.0 \hspace{1.5cm} (2)$$

$$\Delta_{\text{dust}} = |6362.9375 - 6537.4003| = 174.5 \tag{3}$$

(This may differ from the output above if the code is re-run, because np.random.shuffle returns a new, random, result every time).

We conclude: The feature CO_2 is the most important one, the feature dust is the least important one. This conclusion can (at least for CO_2) also be drawn from the visualisation we included.

1.3 3 σ^2 -estimation and Heteroscedastic Noise

Comparison to SSQ: In the lecture we derived the covariance of β from the distribution of the variance of the original data. We did not find an expression for the likeliest variance σ^2 .

1.4 4 Visualize Regularization Contours

```
[5]: # load the data
data = np.load('data/linreg.npz')
x = data['X']
y = data['Y']
print(f'{x.shape} {y.shape}')

(2, 100) (1, 100)

[6]: # TODO: create a grid of points in the parameter space
beta1 = np.linspace(-1,3,150)
beta2 = np.linspace(-1,3,150)
beta1,beta2 = np.meshgrid(beta1, beta2)

(a)

[7]: # TODO: make coutour plots for ridge and lasso regularization terms
def regulariz_ridge(beta1, beta2): # essentially the 2-norm
    return beta1*beta1 + beta2*beta2

def regulariz_lasso(beta1, beta2): # essentially the 1-norm
```

```
return np.abs(beta1)+np.abs(beta2)

plt.title('Regularization term for ridge regression')
plt.xlabel(r'$\beta_1$')
plt.ylabel(r'$\beta_2$')
plt.contourf(beta1, beta2, regulariz_ridge(beta1,beta2))
plt.show()

plt.title('Regularization term for LASSO regression')
plt.xlabel(r'$\beta_1$')
plt.ylabel(r'$\beta_2$')
plt.contourf(beta1, beta2, regulariz_lasso(beta1,beta2))
```


[7]: <matplotlib.contour.QuadContourSet at 0x7f2116bd3a00>


```
[8]: # TODO: for each combination of parameters, compute the sum of squared
      \rightarrow deviations.
            do not use loops, but numpy broadcasting!
     # TODO: make a coutour plot for sum of squared deviations
     # the stuff below uses loops, can't figure out how to do it with broadcasting :/
     def SSQ(beta1,beta2,features, labels):
         z = np.zeros((beta1.shape[0], beta2.shape[0]))
         for i,b1 in enumerate(beta1):
             for j,b2 in enumerate(beta2):
                 beta = [b1, b2]
                 z[i,j] = np.sum((beta @ features - labels)**2)
         return z
     \#print(np.outer(beta1,x[0,:]).shape, beta1.shape, x[0,:].shape)
     #print(beta1)
     #print(beta1.shape, beta2.shape, z.shape)
     beta1 = np.linspace(-1,3,150)
     beta2 = np.linspace(-1,3,150)
     z = SSQ(beta1, beta2, x, y)
```

```
plt.contourf(beta1,beta2,z)
plt.title('SSQ for given dataset')
plt.xlabel(r'$\beta_1$')
plt.ylabel(r'$\beta_2$')
plt.show()
```


(c)

```
[9]: # TODO: for each lambda, plot both ridge regression and lasso loss functions
def loss(beta1, beta2, lam, features, labels, method='ridge'):
    mbeta1, mbeta2 = np.meshgrid(beta1, beta2) # use meshgrid-functions for_
    regulariz.terms
    regulariz = np.zeros((beta1.shape[0], beta2.shape[0]))
    if method=='ridge':
        regulariz = regulariz_ridge(mbeta1, mbeta2)
    elif method=='lasso':
        regulariz = regulariz_lasso(mbeta1, mbeta2)
    else:
```

```
raise NameError(f'Name {method} is not a specified regularization
method :(')
return SSQ(beta1, beta2, features, labels) + lam*regulariz

for meth in ['ridge', 'lasso']: # lets _speed_ this up with some _meth_s
for lam in [0, 10, 50, 100, 200, 300]:
    lss = loss(beta1, beta2, lam, x, y, method=meth)
    plt.contourf(beta1, beta2, lss)
    plt.colorbar()
    plt.title(f'{meth} loss for given dataset, $\lambda={lam}$')
    plt.xlabel(r'$\beta_1$')
    plt.ylabel(r'$\beta_2$')
    plt.show()
```


Discussion: We observe the following:

- For higher values of λ , we see that the overall magnitude of losses increases (obviously), hence the gradient of the loss surfaces is increased as well.
- For higher values of λ , the shape of the loss surface stays roughly the same for ridge regression: It is transformed from a elliptical shape to a more circular shape, i.e. the eccentricity of the contour lines shrinks.
- For ridge regression, higher values of λ distort the contour lines towards a rhombus: The loss surfaces are just a superposition of the (elliptical) SSQ and the (rhomboidal) lasso loss.

1.5 5 CT reconstruction

set up design matrix (run this once to save to disk)

```
[10]: # create design matrix
# don't change any of this, just run it once to create and save the design
→matrix
import os

if not os.path.exists('data/design_matrix.npy'):
```

```
res = (99, 117)
  xs = np.arange(0, res[1]+1) - res[1]/2 # np.linspace(-1, 1, res[1] + 1)
  ys = np.arange(0, res[0]+1) - res[0]/2 #np.linspace(-1, 1, res[0] + 1)
  # rays are defined by origin and direction
  n_parallel_rays = 70
  ray_offset_range = [-res[1]/1.5, res[1]/1.5]
  n_{\text{ray}} = 30
  n_rays = n_parallel_rays * n_ray_angles
  ray_angles = np.linspace(0, np.pi, n_ray_angles, endpoint=False) + np.pi/
\negn_ray_angles
  # offsets for ray_angle = 0, i.e. parallel to x-axis
  ray_0_offsets = np.stack([np.zeros(n_parallel_rays), np.
→linspace(*ray_offset_range, n_parallel_rays)], axis=-1)
  ray_0_directions = np.stack([np.ones(n_parallel_rays), np.
⇔zeros(n_parallel_rays)], axis=-1)
  def rot_mat(angle):
      c, s = np.cos(angle), np.sin(angle)
      return np.stack([np.stack([c, s], axis=-1), np.stack([-s, c],__
\Rightarrowaxis=-1)], axis=-1)
  ray_rot_mats = rot_mat(ray_angles)
  ray_offsets = np.einsum('oi,aij->aoj', ray_0_offsets, ray_rot_mats).
\rightarrowreshape(-1, 2)
  ray_directions = np.einsum('oi,aij->aoj', ray_0_directions, ray_rot_mats).
\hookrightarrowreshape(-1, 2)
  sigma = 1
  kernel = lambda x: np.exp(-x**2/sigma**2/2)
  xsc = (xs[1:] + xs[:-1]) / 2
  ysc = (ys[1:] + ys[:-1]) / 2
  b = np.stack(np.meshgrid(xsc, ysc), axis=-1).reshape(-1, 2)
  a = ray_offsets
  v = ray directions
  v = v / np.linalg.norm(v, axis=-1, keepdims=True)
  p = ((b[None] - a[:, None]) * v[:, None]).sum(-1, keepdims=True) * v[:, u]
→None] + a[:, None]
  d = np.linalg.norm(b - p, axis=-1)
  d = kernel(d)
  design_matrix = d.T
```

```
np.save('data/design_matrix.npy', design_matrix)
print(f'created and saved design matrix of shape {design_matrix.shape} atudata/design_matrix.npy')
```

(a)

```
design_matrix = np.load('data/design_matrix.npy')
res = (99, 117)

# TODO: visualize four random columns as images, using an image shape of (99, 117)
img_shape = (99, 117)

fig, axs = plt.subplots(1, 4, figsize=(16, 4))
for i, ax in zip(np.random.choice(np.arange(design_matrix.shape[1]), 4), axs):
    ax.imshow(design_matrix[:, i].reshape(*res));
    ax.set_title(f'column {i}')
```


Interpretation of a column of X: Every column of X describes the axis along which the detectors are positioned relative to the object to be reconstructed. Weighing the original object with a column of X gives the part of the object which can be projected onto the detector, the integral over this then gives the detector signal strength.

```
[12]: sino = np.load('data/sino.npy')

# visualize sinogram as image
n_parallel_rays = 70
n_angles = 30
plt.imshow(sino.reshape(n_angles, n_parallel_rays), origin='lower')
plt.show();
```


(b)

```
[13]: # TODO: solve the reconstruction with linear regression and visualize the result X = design_matrix beta = np.linalg.inv(X @ X.T) @ X @ sino.T
```

```
[14]: reconst = beta.T @ X
    plt.imshow(reconst.reshape(n_angles, n_parallel_rays), origin='lower')
    plt.colorbar(shrink=.44)
    plt.title('Reconstruction with linear regression')
    plt.show()
```


[15]: # TODO: solve the reconstruction with ridge regression and visualize the result # Optional: try out different regularization strengths and oberve the influence X = design_matrix

$\#beta_r = np.linalg.inv(X @ X.T + lam*np.identity(X.shape[0])) @ X @ sino.T$

```
[16]: for lam in [10, 50, 100, 200, 300]:
          beta_r = np.linalg.inv(X @ X.T + lam*np.identity(X.shape[0])) @ X @ sino.T
          reconst = beta_r.T @ X
          plt.subplot(1,2,1)
          plt.title('Reconstructed image')
          plt.imshow(reconst.reshape(n_angles, n_parallel_rays), origin='lower')
          plt.colorbar(shrink=0.22)
          #plt.show()
          plt.subplot(1,2,2)
          plt.title('Difference to original')
          plt.imshow((reconst-sino).reshape(n_angles, n_parallel_rays),__
       →origin='lower')
          plt.colorbar(shrink=0.22)
          plt.suptitle(f"Results of Ridge regression with $\lambda={lam}$", y=0.7,_

fontsize=14)
          plt.show()
```

Results of Ridge regression with $\lambda = 10$

Results of Ridge regression with $\lambda = 50$

Results of Ridge regression with $\lambda = 100$

Results of Ridge regression with $\lambda = 200$

Results of Ridge regression with $\lambda = 300$

We observe that:

- The plain Linear regression fails phenomenally at the task of reconstruction the image, because of the very inaccurate matrix inversion
- For all values of $\lambda \in \{10, 50, 100, 200, 300\}$, the ridge regression give optically fine results, for the smallest value of $\lambda = 10$, we get the least deviation from the original image.
- The shape of the difference does not vary by a lot, only its magnitude changes meaningfully with λ