Assignment 1 - Floating Point Arithmetic

COMP 350 - Numerical Computing Prof. Chang Xiao-Wen Fall 2018 LE, Nhat Hung

McGill ID: 260793376 Date: September 14, 2018 Due date: September 20, 2018

1. (2 points) Show that a real number cannot have finite binary representation but infinite (or non terminating) decimal representation.

Proof 1:

Any finite binary number can be represented as:

$$a_n a_{n-1} \dots a_1 a_0 \cdot a_{-1} a_{-2} \dots a_{-(m+1)} a_{-m}$$

n, m positive integers a_i is either 0 or 1

By definition, its decimal presentation is

$$a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_0 \cdot 2^0 + a_{-1} \cdot 2^{-1} + \dots + a_{-m} \cdot 2^{-m}$$

or
$$\sum_{i=-m}^{n} a_i \cdot 2^i$$

Which is fairly obviously finite.

But if this is not enough, then we will go through a more general proof:

Proof 2:

A real number has a finite representation in the binary system if and only if it is of the form:

$$\pm \frac{m}{2^n}$$

where n, m positive integers (distinct from the m & n in the first proof).

A real number has a finite representation in the decimal system if and only if it is of form:

$$\pm \frac{k}{10^n}$$

where k, n are positive integers.

From above,

$$\pm \frac{m}{2^n} = \pm \frac{5^n m}{5^n 2^n}$$

$$= \pm \frac{k}{10^n} \text{ ; with } k = 5^n m, \text{ m \& n positive integers}$$

Therefore and in conclusion, a real number cannot have a finite binary representation but an infinite decimal representation.

- 2. (2 points) Using a 32-bit word, how many different integers can be represented by
- (a) sign and magnitude;

With 32 bits, sign & magnitude can represent

- 2^{31} 1 positive integers
- 2^{31} 1 negative integers
- And zero

Thus, the number of different integers sign & magnitude can represent is

$$2(2^{31} - 1) + 1 = 2^{32} - 2 + 1$$

= $2^{32} - 1$ different integers

(b) 2's complement? Express the answer using powers of 2.

2CR solves sign & magnitude's problem of having 2 representations for zero, and thus can represent one more integer. The answer is

- **3.** Suppose in IEEE single format, the width of the exponent field is 5, not 8, and the width of the fraction field is 5, not 23.
- (a) (.5 point) What should the exponent bias be?

$$2^{\text{exponent field width - 1}} - 1 = 2^{5-1} - 1$$

= $2^4 - 1$
= 15

(b) (.5 point) What is the machine epsilon of this system?

$$\epsilon = 2$$
-fraction field width
= 2^{-5}
= $1/32$

(c) (2 points) What are the smallest and largest positive normal floating point numbers in this system?

The largest positive normal FPN here, N_{max} , is

Sign: 0 | E field: 11110 | m: 11111

Which is

$$\begin{split} N_{max} &= m \times 2^{E \text{ field - exponent bias}} \\ &= 1.11111_2 \times 2^{30 - 15} \\ &= [1 \ (2^0) + 1 \ (2^{-1}) + 1 \ (2^{-2}) + 1 \ (2^{-3}) + 1 \ (2^{-4}) \\ &+ 1 \ (2^{-5})] \times 2^{15} \\ &= (1 + \frac{31}{32}) \times 2^{15} \\ &= 63/32 \times 2^{15} \\ &= 1.96875 \times 2^{15} \end{split}$$

The smallest positive normal FPN here, N_{min}, is

Sign: 0 | E field: 00001 | m: 00000

Which is

$$N_{min} = m \times 2^{E \text{ field - exponent bias}}$$
$$= 1 \times 2^{1-15}$$
$$= 2^{-14}$$

(d) (2 points) Can any integer number between the smallest and largest positive normal floating point numbers be stored exactly in this floating point system? Either prove it or give a counterexample.

Counterexample:

Consider a, b two FPNs between N_{min} and N_{max} . Let the exponent field of a be 6. Then the gap between a and the next smallest FPN, b, after a is

gap =
$$\epsilon \times 2^6$$

= $2^{-5} \times 2^6$
= 2

Then, between a and b is at least 1 integer which cannot be stored exactly in this floating point system, as seen in the figure below:

a = i and b = i + 2: i+1 cannot be represented i < a < i+1 and b > i+2: i+1 and i+2 cannot be represented

Therefore, not all integers between N_{min} and N_{max} that cannot be stored exactly in this floating point system.

(e) (2 points) What are the largest and smallest nonnegative subnormal floating point numbers in this system?

Largest subnormal: $0.11111_2 \times 2^{-14} = 31/32 \times 2^{-14}$

Smallest subnormal: $2^{-5} \times 2^{-14} = 2^{-19}$

(f) (1 point) What is the largest floating point number smaller than 2?

$$2 = 1.0 \times 2^1$$
 Sign: 0 | E field: 10000 | m field: 00000

Largest FPN smaller than 2 = Sign:
$$0 \mid E$$
 field: $01111 \mid m$ field: $11111 = 1.11111_2 \times 2^0 = 63/32$

(g) (2 points) Given number –(10.110101)₂. Round it using the four rounding modes.

$$-(10.110101)_2 = -(1.0110101)_2 \times 2^1$$

Rounding now gives:

Round up: $-(1.01101)_2 \times 2^1$ Round down: $-(1.01110)_2 \times 2^1$

Round to zero: $-(1.01101)_2 \times 2^1$ (same as round up)

Let
$$x = -(10.110101)_2$$
. Then from above: $x_+ = -(10.1101)_2$ and $x_- = -(10.1110)_2$.

$$|\mathbf{x} - \mathbf{x}_+| = 0.000001$$

 $|\mathbf{x} - \mathbf{x}_-| = 0.000011$

Thus x_{+} is nearer to x.

Therefore:

Round to nearest: $-(1.01101)_2 \times 2^1$ (same as round up)

- **4.** Are the following statements true or false? If a statement is true, give a proof and if it's false, give a counterexample. We assume no overflow occurs in the calculations and the rounding mode used can be any of the four rounding modes.
- (a) (2 points) If x is a nonzero finite floating point number, then $x \oplus x = 2x$.

$$x \oplus x = round(x + x)$$

= $round(2x)$

Let $x = m + 2^E$

There is no overflow, so

$$2x = m + 2^{E+1}$$

which is a representable FPN.

Thus

$$round(2x) = 2x$$

And

$$x \oplus x = round(2x) = 2x$$
.

In conclusion, if x is a nonzero finite floating point number, then $x \oplus x = 2x$.

(b) (2 points) If x and y are two finite floating point number, then $x \ominus y = -(y \ominus x)$.

Counterexample:

We will use the same IEEE format as in question 3: width of exponent and fraction fields = 5. We will be **rounding up**.

The idea is to make a non FPN from the difference of x and y.

Take the following x, y (x is an FPN, y a subnormal number):

$$x = 1.00000_2 \times 2^1$$

 $y = 2^{-15}$

We will now calculate $x \ominus y$ and $-(y \ominus x)$:

$$x \ominus y = \text{round}(x - y)$$

= round(1.00000₂ × 2¹ - 2⁻¹⁵)
= round(10₂ - 0.00000000000001₂)
= round(1.11111111111111₂)
= 1.11111₂ + 0.00001₂
= 10₂
= 1.00000₂ × 2¹

$$\begin{aligned} -(y \ominus x) &= -round(y - x) \\ &= -round(0.000000000000001_2 - 10_2) \\ &= -round(-1.111111111111111_2) \\ &= -(-1.11111_2) \\ &= 1.11111_2 \end{aligned}$$

Thus,

$$x\ominus y\neq -(y\ominus x)$$

In conclusion, there exists x, y finite FPNs such that $x \ominus y \neq -(y \ominus x)$.

5. (2 points) What are the values of the expressions $\infty/0$, $\infty/(-\infty)$, NaN-NaN, and -0/NaN?

$$\infty/0 = \infty$$

 $\infty/(-\infty) = \text{NaN}$
 $\text{NaN-NaN} = \text{NaN}$
 $-0/\text{NaN} = \text{NaN}$