一、 概述

TM1629D是带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集 成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。主要应用于冰箱、 空调 、家庭影院等产品的高段位显示屏驱动。

二、 特性说明

- 采用功率CMOS 工艺
- 显示模式 12 段×8 位
- 键扫描 (8×4bit)
- 辉度调节电路(占空比8 级可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: RC 振荡 (450KHz+5%)
- 内置上电复位电路
- 采用SOP32封装

三、管脚定义:

40		7 7000 10		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	K0 K1 K2 K3 VDD SEG1/KS	SI SI SI SI	GRID5 GRID6 VSS GRID7 GRID8 VDD SEG12 SEG11 SEG10 SEG9 EG8/KS8 EG7/KS7 EG6/KS6 EG5/KS5	32 31 30 29 28 27 26 25 24 23 22 21 20 19 18
15 16	,	SI SI		18 17
	L			J

四、管脚功能说明:

符号	管脚名称	说明
DIO	数据输入/输出	在时钟上升沿输入/输出串行数据,从低位开始。
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB 为高时,CLK 被忽略
CLK	时钟输入	时钟上升沿输入/输出串行数据。
K0~K3	键扫数据输入	输入该脚的数据在显示周期结束后被 锁存
SEG1/KS1~ SEG8/KS8	输出(段)	段输出(也用作键扫描),P管开漏输出
SEG9~SEG12	输出(段)	段输出,P管开漏输出
Grid1∼Grid8	输出(位)	位输出,N管开漏输出
VDD	逻辑电源	5V±10%
VSS	逻辑地	接系统地

▲ 注意: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推 荐10K的上拉电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,你可以参考图(6), 在时钟的上升沿读数才时稳定。

五、 显示寄存器地址和显示模式:

该寄存器存储通过串行接口从外部器件传送到TM1629D 的数据,地址从00H-0FH共16字节单元,

分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	X	X	X	X	
XX	HL(作	氐四位)	xxHU(高四位)	2	xxHL(1	氐四位)		xx	HU(高	四位)	
В0	B1	B2	В3	B4	В5	В6	В7	В0	B1	B2	В3	В4	В5	В6	В7	
00	HL			00)HU			0	1HL			01	HU		GR	ID1
02HL 02		2HU			0	3HL			03	HU		GR	ID2			
04	HL			04	HU		05HL				05	HU		GR	ID3	
06	HL			06	6HU		07HL			07HU				GR	ID4	
08	BHL			08HU		09HL			09НU				GR	ID5		
0A	HL			0.4	AHU			0	BHL			0B	HU		GR	ID6
00	HL			00	CHU			0.	DHL			OD.	HU		GR.	ID7
OE	HL			0E	EHU	•		0	FHL			0F	HU		GR	ID8

图 (2)

写LED显示数据的时候,按照从低位地址到高位地址,从字节的低位到高位操作; 在运用中 没有使用到的SEG输出口,在对应的BIT地址位写0。

六、 键扫描和键扫数据寄存器:

键扫矩阵为8×4bit,如图(3)所示:

图 (3)

键扫数据储存地址如下所示,先发读键命令后,开始读取按键数据BYTE1—BYTE4字节,读数 据从低位开始输出。芯片K和KS引脚对应的按键按下时,相对应的字节内的 BIT位为1。

В0	B1	B2	В3	В4	В5	В6	В7	
KO	K1	K2	К3	КО	K1	K2	К3	
	KS1			KS	BY'	BYTE1		
	KS3			KS	54		BY'	ΓE2
	KS5			KS	56		BY'	ГЕЗ
	KS7			KS	S8		BY'	ГЕ4

图 (4)

▲注意: 1、TM1629D最多可以读4个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE4读取,不可跨字节读。例如:硬件上的K2与KS8 对应按键按下时,此时想要读到此按键数据,必须需要读到第4个字节的第6BIT位,才可读出数据; 3、组合键只能是同一个KS,不同的K引脚才能做组合键;同一个K与不同的KS引脚不可以做成组合 键使用。

七、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以 区别不同的指令。

В7	В6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据 无效(之前传送的指令或数据保持有效)。

7. 1 数据命令设置

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

MSB LSB

В7	В6	B5 B4	В3	B2	B1	ВО	功能	说明
0	1				0	0	数据读写模式	写数据到显示寄存器
0	1				1	0	设置	读键扫数据
0	1	无关项,	400	0			地址增加模式	自动地址增加
0	1	填0		1			设置	固定地址
0	1		0				测试模式设置	普通模式
0	1	*	1				(内部使用)	测试模式

7. 2 地址命令设设置

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02Н
1	1			0	0	1	1	03Н
1	1			0	1	0	0	04H
1	1			0	1	0	1	05Н
1	1	无关		0	1	1	0	06Н
1	1	填	0	0	1	1	1	07Н
1	1			1	0	0	0	08Н
1	1			1	0	0	1	09Н
1	1			1	0	1	0	0AH
1	1			1	0	1	1	0BH
1	1			1	1	0	0	ОСН
1	1			1	1	0	1	ODH
1	1			1	1	1	0	0EH
1	1			1	1	1	1	0FH

该指令用来设置显示寄存器的地址。 如果地址设为10H 或更高,数据被忽略,直到有效地址被设定。 上电时,地址默认设为00H。

7. 4 显示控制

MSB LSB

	700	in.		V000007					
В7	В6	B5	B4	В3	B2	B1	ВО	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0		4		0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关			1	0	0	仍儿奴里以且	设置脉冲宽度为 11/16
1	0	填	0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月入以且	显示开

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

8.1 数据接收(写数据)

8.2 数据读取(读数据)

▲注意: 读取数据时,从串行时钟CLK 的第8 个上升沿开始设置指令到CLK 下降沿读数据之间需要 一个等待时间Twait(最小1µS)。

九、 显示和按键:

(1) 显示:

1、驱动共阴数码管:

图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1为低电平 的时候让SEG1, SEG2, SEG3, SEG4, SEG5, SEG6为高电平, SEG7为低电平, 查看图(2)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	00Н
В7	В6	В5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

图8给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2, GRID3, GRID4, GRID5, GRID6为低电平的时候让SEG1为高电平,在GRID7为低电平的时候让SEG1为 低电平。要向地址单元00H,02H,04H,06H,08H,0AH里面分别写数据01H,其余的地址单元全部 写数据00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	Н00
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	06H
0	0	0	0	0	0	0	1	08H
0	0	0	0	0	0	0	1	OAH
0	0	0	0	0	0	0	0	ОСН
В7	В6	B5	B4	В3	B2	B1	В0	

▲注意: SEG1-12为P管开漏输出,GRID1-8为N管开漏输出,在使用时候,SEG1-12只能接LED的阳极, GRID只能接LED的阴极,不可反接。

(2) 键盘扫描:

你可以按照图(9)用示波器观察观察SEG1/KS1和SEG2/KS2的输出波形,SEGN/KSN 输出的波形见图(10)。

Tdisp和IC工作的振荡频率有关,我司TM1629D经过多次完善,振荡频率不完全一致。500US 仅仅提供参考,以实际测量为准。

一般情况下使用图(11),可以满足按键设计的要求。。

当S1被按下的时候,在第1个字节的B0读到"1"。如果多个按键被按下,将会读到多个"1", 当S2, S3被按下的时候,可以在第1个字节的B1, B3读到"1"。

▲▲注意: 复合键使用注意事项:

SEG1/KS1-SEG10/KS10是显示和按键扫描复用的。以图(12)为例子,显示需要D1亮,D2灭, 需要让SEG1为"1", SEG2为"0"状态,如果S1,S2同时被按下,相当于SEG1,SEG2被短路,这时 D1, D2都被点亮。

解决方案:

1、在硬件上,可以将需要同时按下的键设置在不同的K线上面如图(13)所示,

2、在SEG1—SEG N上面串联电阻如图(14)所示,电阻的阻值应选在510欧姆,太大会造成 按键的失效,太小可能不能解决显示干扰的问题。

3、或者串联二极管如图(15)所示。

十、 应用时串行数据的传输:

10. 1 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令 字发送完毕, "STB"不需要置高紧跟着传数据,最多16BYTE,数据传送完毕才将"STB"置高。

CLK		Т	mmm,	ШШ					
DIO	Command1	Command2	Command3	Datal	Data2	******	Datan	Command4	
STB									

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多14 bytes)

Command4: 显示控制命令

10.2 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完 毕, "STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2 个数据需要存放的地址,最多16BYTE数据传送完毕, "STB"置高。

CLK								
DIO	Command1	Command2	Command3	Datal	Command4	Data2	 Command5	
STB Comp]			

Command2: 设置数据命令 Command3: 设置显示地址1

Datal: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5: 显示控制命令

10. 3 读按键时序

CLK							
DIO	Comma	and1	Data1	Data2	Data3	Data4	
CTD							

Command1: 设置显示模式 Data1~4:读取按键数据

10. 4 程序设计流程图 采用地址自动加一程序设计流程图:

采用固定地址的程序设计流程图:

www.titanmec.com

十一. 应用电路:

11. 1 TM1629D驱动共阴数码屏硬件电路,如图(17):

11. 2 TM1629D驱动共阳数码屏硬件电路,如图(18):

▲注意:

- 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1629D芯片放置,加强滤波效果。
- 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V,因此TM1629D供电应选用5V。

十二、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED Seg 驱动输出电流	I01	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ~ +80	$^{\circ}$ C
储存温度	Tstg	-65 ~+150	$^{\circ}$ C

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		V	_
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	I	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	-20	-25	-40	mA	Seg1~Seg11, Vo = vdd-2V
荷电半制出电流	Ioh2	-20	-30	-50	mA	Seg1~Seg11, Vo = vdd-3V

低电平输出电流	IOL1	80	140	-	mA	Grid1~Grid6 Vo=0.3V
低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容 许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1∼Seg11
输出下拉电阻	RL		10		КΩ	K1~K3
输入电流	II	-	-	±1	μА	VI = VDD / VSS
高电平输入电压	VIH	0. 7 VDD	-		V	CLK, DIN, STB
低电平输入电压	VIL	-	-	0. 3 VDD	v	CLK, DIN, STB
滞后电压	VH	-	0. 35	2	V	CLK, DIN, STB
动态电流损耗	IDDdyn	_		5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件		
振荡频率	fosc	-	500	7	KHz	R = 16.5 KΩ		
	tPLZ	I		300	ns	CLK → DOUT		
传输延迟时间	tPZL	-	-	100	ns	CL = 15pF, RL = 10K Ω		
	TTZH 1	-	_	2	μs		Seg1~Seg11	
上升时间	TTZH 2	1	-	0. 5	μs	CL = 300p F	Grid1∼Grid4 Seg12/Grid7∼ Seg14/Grid5	
下降时间	TTHZ	-	_	120	μς	CL = 300pF, Segn, Gridn		
最大时钟频率	Fmax	1	_	_	MHz	占空比50%		

输入电容 CI		15 pF	-
---------	--	-------	---

时序特性(Ta = -20 \sim +70℃, VDD = 4.5 \sim 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	l	I	ns	-
选通脉冲宽度	PWSTB	1	ı	1	μs	-
数据建立时间	tSETUP	100	ı	ı	ns	
数据保持时间	tHOLD	100	-	1	ns	-
CLK →STB 时间	tCLK STB	1	İ	-	μς	CLK↑→STB↑
等待时间	tWAIT	1	_	70	μs	CLK↑→CLK↓

时序波形图:

十三、 封装尺寸

最 小 (mm)	最 大 (mm)	尺寸标注	最小(mm)	最 大 (mm)
20.88	21.08	C4	0.9	9TYP
0.3	0.5	D1	0.55	0.95
1. 27TYP		D2	1.	45
0.77	7TYP	R1		
10. 2	10.6	R2		
7.42	7.62	θ 1	8°TYP	
8. 9	TYP	θ 2	15°TYP	
2.14	2.34	θ3	4°?	ГҮР
0.2	0.32	θ 4	14°	TYP
0.10	0.25			
	20. 88 0. 3 1. 2' 0. 7' 10. 2 7. 42 8. 9 2. 14 0. 2	20.88 21.08 0.3 0.5 1.27TYP 0.77TYP 10.2 10.6 7.42 7.62 8.9TYP 2.14 2.34 0.2 0.32	最小(mm) 最大(mm) 标注 20.88 21.08 C4 0.3 0.5 D1 1.27TYP D2 0.77TYP R1 10.2 10.6 R2 7.42 7.62 01 8.9TYP 02 2.14 2.34 03 0.2 0.32 04	最小(mm) 最大(mm) 标注 最小(mm) 20.88 21.08 C4 0.9 0.3 0.5 D1 0.55 1.27TYP D2 1. 0.77TYP R1 10.2 10.6 R2 7.42 7.62 θ1 8° 8.9TYP θ2 15° 2.14 2.34 θ3 4° 0.2 0.32 θ4 14°

DETAIL "X"

• All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

本应用文档最后更新日期为: 2008-8-4