Stat 435 Lecture Notes 3

Xiongzhi Chen Washington State University

Contents

Linear regression with a qualitative predictor	
Motivation	
Motivation	
Model 1: 2 levels	
Model 1: 2 levels	
Fitting the Model 1	
Testing the Model 1	
Model 2: 3 levels	
Model 2: 3 levels	
Fitting the Model 2	
Testing the Model 2	
Testing the Model 2	
Diagnostics	
Multiple linear regression	
Motivation	
Model	
Fitting model	
Testing on all coefficients	
Testing on all coefficients	
Testing on some coefficients	
Testing on some coefficients	
Testing on model fit	
Interaction terms	
Interaction terms: I	
Interaction terms: I	
Interaction terms: I	
Interaction terms: I	
Interaction terms: II	
Interaction terms: II	
Interaction terms: II	 . 1
Diagnostics	1
Diagnostics	
Collinearity	
Collinearity	
Collinearity	
Collinearity	
Commeanty	 . 1
Non-linear models	1
Non-linear relationship	 . 1
License and session Information	 . 1

Linear regression with a qualitative predictor

Motivation

- How is Balance of a credit card related to a user's Gender?
- How is Balance of a credit card related to a user's Ethnicity?

Motivation

Model 1: 2 levels

- Coding: Gender has 2 levels, Male and Female
- dummy variable: $x_i = 0$ if ith person is Female and $x_i = 1$ if ith person is Male
- Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, which induces 2 submodels:
- $y_i = \beta_0 + \beta_1 + \varepsilon_i$ if ith person is Male
- $y_i = \beta_0 + \varepsilon_i$ if ith person is Female

Note: dummy variable follows coding by R, for which the first level Female is the baseline

Model 1: 2 levels

Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- $x_i = 0$ if ith person is Female, and $x_i = 1$ if ith person is Male
- β_0 : average Balance for females
- β_1 : average difference in balance between males and females

Remark: coding of a dummy variable is arbitrary and should be easily interpretable

Fitting the Model 1

- Females have an average balance of \$529.54; Female baseline
- Males have an average balance of (529.54-19.73) = 509.80

Note: in R, by default the first level Female is the baseline

Testing the Model 1

```
Call:
lm(formula = Balance ~ Gender, data = creditData)
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-529.54 -455.35 -60.17 334.71 1489.20
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              529.54
                          31.99 16.554
                                          <2e-16 ***
                                           0.669
GenderMale
              -19.73
                          46.05 -0.429
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 460.2 on 398 degrees of freedom
Multiple R-squared: 0.0004611, Adjusted R-squared: -0.00205
F-statistic: 0.1836 on 1 and 398 DF, p-value: 0.6685
```

• If model assumptions are met, Gender is not significant on affecting average balance at type I error level 0.05 based on F-statistic (or the p-value of GenderMale)

Model 2: 3 levels

Ethnicity has 3 levels African American (1st level and baseline in R), Asian, and Caucasian. 2 dummy variables are needed:

- $x_{i1} = 0$ if ith person is not Asian, and $x_{i1} = 1$ if ith person is Asian
- $x_{i2} = 0$ if ith person is not Caucasian, and $x_{i2} = 1$ if ith person is Caucasian

• Model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Model 2: 3 levels

Model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

- Codings on previous slide
- β_0 : average balance for African American
- β_1 : average difference in balance between Asian and African American
- β_2 : average difference in balance between Caucasian and African American

Fitting the Model 2

Call:

lm(formula = Balance ~ Ethnicity, data = creditData)

Coefficients:

(Intercept) EthnicityAsian EthnicityCaucasian 531.00 -18.69 -12.50

- African Americans have an average balance of \$531
- Asians have an average balance of (531-18.69) = 512.31
- Caucasians have an average balance of (531-12.50) = 518.5

Testing the Model 2

Call:

lm(formula = Balance ~ Ethnicity, data = creditData)

Residuals:

Min 1Q Median 3Q Max -531.00 -457.08 -63.25 339.25 1480.50

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 531.00 46.32 11.464 <2e-16 ***
EthnicityAsian -18.69 65.02 -0.287 0.774
EthnicityCaucasian -12.50 56.68 -0.221 0.826

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 460.9 on 397 degrees of freedom Multiple R-squared: 0.0002188, Adjusted R-squared: -0.004818

F-statistic: 0.04344 on 2 and 397 DF, p-value: 0.9575

If model assumptions are met, at type I error level 0.05, Ethnicity does not significantly affect average balance based on the F-statistic

Testing the Model 2

A tibble: 3 x 5

	term	${\tt estimate}$	${\tt std.error}$	${\tt statistic}$	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	531.	46.3	11.5	1.77e-26
2	EthnicityAsian	-18.7	65.0	-0.287	7.74e- 1
3	EthnicityCaucasian	-12.5	56.7	-0.221	8.26e- 1

If model assumptions are met and Ethnicity does not significantly affect average balance, there is no need to check

• whether there is significant difference in average balance between Asians and African Americans or between Caucasians and African Americans

Diagnostics

Diagnostics are the same as those for simple linear regression with a quantitative predictor.

Multiple linear regression

Motivation

- How is sales (in thousands of units) for a particular product related to advertising budgets (in thousands of dollars) for TV, radio and newspaper?
- Model: sales = $\beta_0 + \beta_1 \times \text{TV} + \beta_2 \times \text{radio} + \beta_3 \times \text{newspaper} + \varepsilon$

We want to examine the relationship between sales and budgets for TV, radio and newspaper jointly, instead of marginally.

Model

Response Y and p predictors X_1, X_2, \ldots, X_p , bound by model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

- β_i : change in units in E(Y) for a unit change in X_i while holding all other predictors fixed
- ε : random error term with $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$
- Estimate coefficient vector $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)$ by the least squares method; estimate $\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$ as LSE (least squares estimate)

Fitting model

Joint model vs marginal model:

```
# A tibble: 4 x 5
  term
              estimate std.error statistic
                                              p.value
  <chr>
                  <dbl>
                            <dbl>
                                      <dbl>
                                                <dbl>
1 (Intercept) 2.94
                          0.312
                                      9.42 1.27e-17
2 TV
               0.0458
                          0.00139
                                     32.8
                                             1.51e-81
3 radio
               0.189
                          0.00861
                                             1.51e-54
                                     21.9
              -0.00104
                          0.00587
                                     -0.177 8.60e- 1
4 newspaper
# A tibble: 2 x 5
              estimate std.error statistic
  term
                                              p.value
  <chr>
                            <dbl>
                                       <dbl>
                  <dbl>
                                                <dbl>
1 (Intercept) 12.4
                           0.621
                                       19.9 4.71e-49
2 newspaper
                0.0547
                           0.0166
                                       3.30 1.15e- 3
# A tibble: 2 x 5
  term
              estimate std.error statistic
                  <dbl>
                            <dbl>
                                       <dbl>
                                                <dbl>
  <chr>
1 (Intercept)
                7.03
                          0.458
                                       15.4 1.41e-35
                0.0475
                          0.00269
                                       17.7 1.47e-42
2 TV
```

Testing on all coefficients

• Is there a relationship between the response and any of the predictors? Namely, is $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$ true?

• Test statistic: F-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)},$$

where $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ with $\bar{y} = n^{-1} \sum_{i=1}^{n} y_i$ and $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ If H_0 is true and the linear model assumptions are correct, F-statistic should be close to 1 on average; under suitable conditions, F-statistic approximately follows an F-distribution

Testing on all coefficients

Testing $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$:

value numdf dendf 570.2707 3.0000 196.0000 value

1.575227e-96

F-statistic: 570.3 with numerator degrees of freedom 3 and denominator degrees of freedom 196; p-value: < 2.2e-16

• Conclusion: reject H_0 , meaning that at least one of the predictors has a relationship with the response.

Testing on some coefficients

Is there no relationship between the response and some predictors? Namely, for some $1 \le q \le p$, test

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \ldots = \beta_p = 0$$

- Fit $M_0: Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_{p-q} X_{p-q} + \varepsilon$, and obtain its residual sum of squares RSS_0
- Fit $M_1: Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_{p-q} X_{p-q} + \ldots + \beta_p X_p + \varepsilon$, and obtain its residual sum of squares RSS
- Use test statistic

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p-1)}$$

Testing on some coefficients

When H_0 and model assumptions are true, test statistic

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p-1)}$$

approximately follows an F-distribution with numerator degrees of freedom q and denominator degrees of freedom n-p-1

Testing on model fit

- R^2 measures the proportion of variance that is explained by the postulated model
- With three predictors:
- > FitL3c = lm(sales~TV+radio+newspaper,data=adData)
- > summary(FitL3c)\$r.squared
- [1] 0.8972106

• With one predictor:

```
> FitL3d = lm(sales~newspaper,data=adData)
> summary(FitL3d)$r.squared
[1] 0.05212045
```

Interaction terms

Interaction terms: I

Consider predicting the average sales (in thousands of dollars) via budgets in advertisement through TV and Radio.

- Model 1: $E(\mathtt{sales}) = \beta_0 + \beta_1 \times \mathtt{TV} + \beta_2 \times \mathtt{Radio}$
- Model 1: how is the change (in unit) in E(sales) relates to a unit change in TV and/or Radio?
- Is model 1 sensible when changes (in unit) in E(sales) are different for a unit change in TV when Radio takes different values?

Interaction terms: I

• If change (in unit) in $E(\mathtt{sales})$ can be different for a unit change in TV at different values of Radio or for a unit change in Radio at different values of TV, then the model

$$E(\mathsf{sales}) = \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{Radio}$$

is no longer suitable

• One way to account for this is to introduce an interaction term and use model

$$E(\mathsf{sales}) = \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{Radio} + \beta_3 \times \mathsf{TV} \times \mathsf{Radio}$$

• Does the following model do the job?

$$E(\mathsf{sales}) = \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{Radio} + \beta_3 \times \mathsf{TV}^2 + \beta_4 \times \mathsf{Radio}^2$$

Interaction terms: I

The model

$$E(\mathsf{sales}) = \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{Radio} + \beta_3 \times \mathsf{TV} \times \mathsf{Radio}$$

can be written as

$$E(\mathsf{sales}) = \beta_0 + \beta_1 \times \mathsf{TV} + (\beta_2 + \beta_3 \times \mathsf{TV}) \times \mathsf{Radio}$$

or as

$$E(\mathsf{sales}) = \beta_0 + (\beta_1 + \beta_3 \times \mathsf{Radio}) \times \mathsf{TV} + \beta_2 \times \mathsf{Radio}$$

Interaction terms: I

Fit the model with interaction:

```
Call:
lm(formula = sales ~ TV * radio, data = adData)
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-6.3366 -0.4028 0.1831 0.5948 1.5246
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.750e+00 2.479e-01 27.233
                                          <2e-16 ***
           1.910e-02 1.504e-03 12.699
                                          <2e-16 ***
radio
            2.886e-02 8.905e-03
                                 3.241
                                          0.0014 **
TV:radio
           1.086e-03 5.242e-05 20.727
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9435 on 196 degrees of freedom
Multiple R-squared: 0.9678,
                             Adjusted R-squared: 0.9673
F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
```

Interaction terms: II

Consider predicting the average Balance (of a credit card) using information on if a user is a Student ("Yes" or "No") and his/her Income

- Model 0: $E(Balance) = \beta_0 + \beta_1 \times Income$
- Model 1: $E(\mathtt{Balance}) = \beta_0 + \beta_1 \times \mathtt{Student} + \beta_2 \times \mathtt{Income}$
- Model 2: $E(\texttt{Balance}) = \beta_0 + \beta_1 \times \texttt{Student} + \beta_2 \times \texttt{Income} + \beta_3 \times \texttt{Student} \times \texttt{Income}$

Coding in R: Student="No" is coded as 0 and the baseline, and Student="Yes" as 1

Interaction terms: II

Interaction terms: II

Fit the model with interaction:

Call.

lm(formula = Balance ~ Student * Income, data = creditData)

${\tt Residuals:}$

Min 1Q Median 3Q Max -773.39 -325.70 -41.13 321.65 814.04

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 200.6232 33.6984 5.953 5.79e-09 ***
StudentYes 476.6758 104.3512 4.568 6.59e-06 ***
Income 6.2182 0.5921 10.502 < 2e-16 ***
StudentYes:Income -1.9992 1.7313 -1.155 0.249

```
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 391.6 on 396 degrees of freedom Multiple R-squared: 0.2799, Adjusted R-squared: 0.2744 F-statistic: 51.3 on 3 and 396 DF, p-value: < 2.2e-16

Diagnostics

Diagnostics

- Diagnostics for multiple linear regression are very similar to those for simple linear regression with a quantitative predictor.
- Additional task: check on collinearity and variance inflaction factor (VIF)

Collinearity

Collinearity

- refers to the situation in which two or more predictor variables are closely related to each other
- often inflates the variances of estimated coefficients and makes the model unstable
- can be measured by the variance inflaction factor (VIF)

A VIF value that exceeds 5 or 10 indicates a problematic amount of collinearity

Note: VIF(
$$\hat{\beta}_j$$
) = $\frac{1}{1-R_{X_j|X_{-j}}^2}$; collinearity implies $R_{X_j|X_{-j}}^2 \approx 1$

Collinearity

Collinearity among Limit and Rating:

Colllinearity

Model Balance~Age+Limit:

```
# A tibble: 3 x 5
                                              p.value
  term
              estimate std.error statistic
  <chr>
                 <dbl>
                           <dbl>
                                     <dbl>
                                                <dbl>
                                     -3.96 9.01e- 5
1 (Intercept) -173.
                        43.8
2 Age
                -2.29
                         0.672
                                     -3.41 7.23e- 4
3 Limit
                 0.173
                         0.00503
                                     34.5 1.63e-121
```

 $Model \ {\tt Balance{\sim}Rating{+}Limit:}$

```
# A tibble: 3 x 5
  term
               estimate std.error statistic p.value
                             <dbl>
  <chr>
                                       <dbl>
                  <dbl>
                                                <dbl>
                                      -8.34 1.21e-15
1 (Intercept) -378.
                          45.3
                           0.952
2 Rating
                 2.20
                                       2.31 2.13e- 2
3 Limit
                 0.0245
                           0.0638
                                       0.384 7.01e- 1
```

Note: compare standard errors of $\hat{\beta}_{\mathsf{Limit}}$ in both models

Colllinearity

```
> FitL3f = lm(Balance~Age+Rating+Limit,data=creditData)
> library(car)
> vif(FitL3f)
```

```
Age Rating Limit
1.011385 160.668301 160.592880
```

• VIFs indicate considerable collinearity in the data

In case of collinearity, either drop one of the problematic variables or combine some closely related variables

Non-linear models

Non-linear relationship

If there is evidence on a non-linear relationship between response and predictors, we can

• add high-order terms into the model (or employ more advanced non-linear methods); e.g.,

$$E(Y) = \beta_0 + \beta_1 X + \beta_2 X^2$$

• transform predictors (and/or response); e.g., e.g., $E(Y) = \beta_0 + \beta_1 \times f(X)$, where f can be $\log(X)$ or \sqrt{X}

License and session Information

License

```
> sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19041)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
[7] base
other attached packages:
[1] car_3.0-2 carData_3.0-2 broom_0.5.1
                                               gridExtra_2.3
[5] ggplot2_3.1.0 knitr_1.21
loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 xfun_0.4
                                          purrr_0.2.5
 [4] haven_2.0.0 lattice_0.20-35
[7] generics_0.0.2 htmltools_0.3.6
                                          colorspace_1.3-2
                                          yaml_2.2.0
[10] utf8_1.1.4
                  rlang_0.4.4
                                          pillar_1.3.1
[13] foreign_0.8-70
                                          withr_2.1.2
                       glue_1.3.0
```

```
[16] readxl_1.2.0
                       plyr_1.8.4
                                         stringr_1.3.1
[19] cellranger_1.1.0
                                         gtable_0.2.0
                       munsell_0.5.0
[22] zip_1.0.0
                       evaluate_0.12
                                         labeling_0.3
[25] rio_0.5.16
                       forcats_0.3.0
                                         curl_3.2
[28] fansi_0.4.0
                       Rcpp_1.0.3
                                         scales_1.0.0
[31] backports_1.1.3
                       abind_1.4-5
                                         hms_0.4.2
[34] digest_0.6.18
                       openxlsx_4.1.0
                                         stringi_1.2.4
[37] dplyr_0.8.4
                       grid_3.5.0
                                         cli_1.0.1
[40] tools_3.5.0
                                         lazyeval_0.2.1
                       magrittr_1.5
[43] tibble_2.1.3
                       crayon_1.3.4
                                         tidyr_0.8.2
[46] pkgconfig_2.0.2
                       data.table_1.11.8 assertthat_0.2.0
[49] rmarkdown_1.11
                                         R6_2.3.0
                       rstudioapi_0.8
[52] nlme_3.1-137
                       compiler_3.5.0
```