A List of Hypothesis Tests

Jean-Baka Domelevo Entfellner

February 2015

Test name	Purpose, validity and procedure	Null hypothesis (H_0)	Test statistic	Probability distribution of test statistic under H_0	Parametric? (and if yes, assumption)	R command
Testing the mea	n(s) of the distribution(s)					
one-sample Z -test	Test the equality of the true mean to a given value μ_0 . Variance σ^2 is known.	$\mu = \mu_0$	$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	$Z \sim \mathcal{N}(0,1)$	$_{ m (normality)}$	asbio:: one.sample.z(x sigma=s, null.mu=mu0)
one-sample t -test	Test the equality of the true mean to a given value μ_0 . Variance σ^2 is unknown.	$\mu = \mu_0$	$T = \frac{\bar{x} - \mu}{s_{\mathbf{x}} / \sqrt{n}}$	$T \sim t_{(n-1)}$	$_{ m (normality)}$	t.test(x, mu=mu0)
two-sample Z -test for $unpaired$ samples	Test the equality of the true means. Variances are known but not necessarily equal.	$\mu_1 = \mu_2$	$Z = \frac{\overline{x_1} - \overline{x_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z \sim \mathcal{N}(0,1)$	$_{ m (normality)}$	<pre>— (use qnorm())</pre>

Test name	Purpose, validity and	Null hypothesis (H_0)	Test statistic	Probability	Parametric?	R command
1000 Halilo	procedure	Ivan ny pouncons (III)	Test statistic	distribution of test statistic under H_0	(and if yes, assumption)	T(tollillalla
two-sample exact t -test for $unpaired$ samples	Test the equality of the true means. Variances are unknown but supposed equal $(\sigma_1^2 = \sigma_2^2 = \sigma^2)$ and estimated through pooled estimator $s_p^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} s_{\mathbf{x}_1}^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} s_{\mathbf{x}_2}^2$.	$\mu_1 = \mu_2$	$T = \frac{\overline{x_1} - \overline{x_2}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$T \sim t_{(n_1+n_2-2)}$	yes (normality)	t.test(x1, x2, var.equal=T)
two-sample Welch's t -test for $unpaired$ samples	Test the equality of the true means. Variances are unknown and not supposed equal. $\nu \in \mathbb{R}_+$ is approximated using the Welch-Satterthwaite equation.	$\mu_1 = \mu_2$	$T = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_{\mathbf{x}_1}^2}{n_1} + \frac{s_{\mathbf{x}_2}^2}{n_2}}}$	$T \sim t_{\nu} \ (\nu \in \mathbb{R}_{+})$	yes (normality)	<pre>t.test(x1, x2, var.equal=F)</pre>
$\begin{array}{c} \textbf{paired-sample} \\ t\text{-test} \end{array}$	Test the equality of the true means . The $2n$ sample values are paired: dependency be- tween x_i and y_i . d is the vector of all the $d_i = x_i - y_i$, \bar{d} its mean and $s_{\mathbf{d}}^2 = \frac{1}{n-1} \sum_i (d_i - \bar{d})$.	$\mu_x = \mu_y$	$T = \frac{\bar{d}}{s_{\mathbf{d}}/\sqrt{n}}$	$T \sim t_{(n-1)}$	yes (normality)	<pre>t.test(x, y, paired=T)</pre>

Test name	Purpose, validity and procedure	Null hypothesis (H_0)	Test statistic	Probability distribution of test statistic under H_0	Parametric? (and if yes, assumption)	R command
Testing the med	lians of two distributions (a.k.a. non-parametric te	sts on the mean)			
Mann-Whitney U test for unpaired samples (a.k.a. Wilcoxon rank-sum test or Mann-Whitney-Wilcoxon test)	Test the equality of the medians. Rank all the values from $\mathbf{x_1}$ and $\mathbf{x_2}$ in one batch, and retain the vectors of ranks (values from 1 to $n_1 + n_2$). Let R_1 be the sum of the ranks from $\mathbf{x_1}$.	$\operatorname{med}(\mathbf{x_1}) = \operatorname{med}(\mathbf{x_2})$	$Z = \frac{U - \frac{n_1 n_2}{2}}{\sigma_U}$ where $U = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$ and $\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$	$Z \underset{\text{approx.}}{\sim} \mathcal{N}(0,1)$	no	<pre>wilcox.test(x1, x2, paired=F)</pre>
paired-sample sign test	Test the equality of the medians . From \mathbf{x} and \mathbf{y} we build the vector of the signs of the differences: $w_i = \operatorname{sgn}(x_i - y_i)$. W is the number of pairs for which $x_i > y_i$. $m \le n$ is the number of pairs with a non-zero difference.	$med(\mathbf{x}) = med(\mathbf{y})$	$W = \{w_i, w_i = +1\} $	$W \sim \mathcal{B}(m, p = 0.5)$	no	<pre>binom.test(W, m)</pre>

Test name	Purpose, validity and procedure	Null hypothesis (H_0)	Test statistic	Probability distribution of test statistic under H_0	Parametric? (and if yes, assumption)	R command
Wilcoxon signed- rank test for paired samples	Test the equality of the medians. From \mathbf{x} and \mathbf{y} we build the vector of the signs of the differences: $w_i = \operatorname{sgn}(x_i - y_i)$. Order (by ascending absolute values) all m non-zero differences to calculate their ranks r_i . W is the absolute value of the sum of signed ranks.	$\operatorname{med}(\mathbf{x}) = \operatorname{med}(\mathbf{y})$	$Z = \frac{W - 0.5}{\sigma_W}$ where $W = \sum_{i=1}^m w_i r_i $ and $\sigma_W = \sqrt{\frac{m(m+1)(2m+1)}{6}}$	$Z \sim_{ m approx.} \mathcal{N}(0,1)$	no. Only assumption: the distribution of the differences in each independent sample is assumed to be symmetric around the median.	wilcox.test(x y, paired=T)
Testing the variation one-sample χ^2 -test for the variance	ance(s) of the distribution $Test$ the equality of the true variance to a given value σ_0^2 .	$\sigma = \sigma_0$	$X = \frac{(n-1)s_{\mathbf{x}}^2}{\sigma^2}$	$X \sim \chi^2_{(n-1)}$	$_{ m yes}$ (normality)	- (use qchisq())
two-sample Fisher-Snedecor F -test for homeo- scedasticity	Test the equality of the true variances. Samples are supposed independent.	$\sigma_1=\sigma_2$	$F = \frac{s_{\mathbf{x}_1}^2}{s_{\mathbf{x}_2}^2}$	$F \sim F(n_1 - 1, n_2 - 1)$	$_{ m yes}$ (normality)	var.test(x1,x
Testing the norm	nality of a sample					
Shapiro-Wilk test	Test whether a sample originates from a normal distribution	\mathbf{x} comes from $X \sim \mathcal{N}(\ldots)$			no	shapiro.test(

Test name	Purpose, validity and procedure	Null hypothesis (H_0)	Test statistic	Probability distribution of test statistic under H_0	Parametric? (and if yes, assumption)	R command
Kolmogorov- Smirnov test	Test whether two samples originate from the same distribution. One can give a formal distribution instead of the second sample.	$\exists \mathcal{D}, \ X \sim \mathcal{D} \ \mathrm{and} \ Y \sim \mathcal{D}$			no	<pre>ks.test(x, "pnorm", mean=mean(x), sd=sd(x))</pre>