用户使用指南

TFG6900A 系列 函数/任意波形发生器

TFG6900A 系列 函数/任意波形发生器 简介

TFG6900A 系列 函数/任意波形发生器采用直接数字合成技术(DDS), 大规模 集成电路(FPGA),软核嵌入式系统(SOPC)。具有优异的技术指标和强大的功能 特性,使您能够快速地完成各种测量工作。大屏幕彩色液晶显示界面可以显示出波 形图和多种工作参数,简单易用的键盘和旋钮更便于仪器的操作。主要特性简介如 下:

- 双通道输出: 具有 A、B 两个独立的输出通道, 两通道特性相同
- 双通道操作:两通道频率、幅度和偏移可联动输入,两通道输出可叠加
- 波形特性:具有5种标准波形,5种用户波形和50种内置任意波形
- 波形编辑: 可使用键盘编辑或计算机波形编辑软件下载用户波形
- **频率特性:** 频率精度 50ppm, 分辨率 1 μ Hz
- 幅度偏移特性: 幅度和偏移精度 1%, 分辨率 0.2mV
- **方波锯齿波:** 可以设置精确的方波占空比和锯齿波对称度
- 脉冲波: 可以设置精确的脉冲宽度
- 相位特性: 可设置两路输出信号的相位和极性
- 调制特性:可输出FM、AM、PM、PWM、FSK、BPSK、SUM 调制信号
- **频率扫描**:可输出线性或对数频率扫描信号,频率列表扫描信号
- **猝发特性:** 可输出设置周期数的猝发信号和门控输出信号
- 存储特性: 可存储和调出5组仪器工作状态参数,5个用户任意波形
- 同步输出: 在各种功能时具有相应的同步信号输出
- 外部调制: 在调制功能时可使用外部调制信号
- **外部触发**:在 FSK、BPSK、扫描和猝发功能时可使用外部触发信号
- **外部时钟**:具有外部时钟输入和内部时钟输出
- **计数器功能:** 可测量外部信号的频率、周期、脉宽、占空比和周期数
- **计算功能:** 可以选用频率值或周期值、幅度峰峰值、有效值或 dBm 值
- 操作方式:全部按键操作、彩色液晶显示屏、键盘设置或旋钮调节
- 通讯接口:配置 RS232 接口、USB 设备接口,U 盘存储器接口

▶ 高可靠性: 大规模集成电路,表面贴装工艺,可靠性高,使用寿命长

TFG6900A 系列 函数/任意波形发生器及附件

● TFG69xxA 函数/任意波形发生器
● 三芯电源线
● BNC 双端测试电缆
● 光盘
1 会
1 条

光盘内含:

USB 驱动程序

程控演示软件

波形编辑软件

用户使用指南

用户编程指南

波形编辑说明

接口使用说明

本书概要

本使用指南适用于 TFG6900A 系列 函数/任意波形发生器的三个型号: TFG6920A、TFG6930A 和 TFG6940A, 三个型号的正弦波最高频率分别为 20MHz、30MHz 和 40MHz。

第一章 快速入门

快速掌握函数/任意波形发生器的基本使用方法。

第二章 原理概述

阐述了函数/任意波形发生器的基本工作原理。

第三章 使用说明

详细叙述了函数/任意波形发生器的功能、操作和应用。

第四章 服务与支持

介绍了函数/任意波形发生器的保修与技术支持。

第五章 技术参数

介绍了函数/任意波形发生器的性能指标和技术规格

告知:本文档所含内容如有修改,恕不另告。本文档中可能包含有技术方面不够准确的地方或印刷错误。本文档只作为仪器使用的指导,石家庄数英仪器有限公司对本文档不做任何形式的保证,包括但不限于为特定目的的适销性和适用性所作的暗示保证。

目 录

TFG6900A系列 函数/任意波形发生器 简介	1
TFG6900A系列 函数/任意波形发生器及附件	2
本书概要	3
第一章 快速入门	6
1.1 使用准备	6
1.2 前后面板	7
1.3 键盘显示	8
1.4 数据输入	9
1.5 基本操作	9
第二章 原理概述	14
2.1 原理框图	14
2.2 工作原理	14
第三章 使用说明	16
3.1 工作模式	16
3.2 连续输出	16
3.3 频率调制	23
3.4 幅度调制	24
3.5 相位调制	25
3.6 脉宽调制	26
3.7 叠加调制	27
3.8 频移键控	27
3.9 相移键控	28
3.10 频率扫描	29
3.11 列表扫描	30
3.12 猝发输出	31
3.13 双通道操作	
3.14 任意波形	
3.15 通用操作	37

TFG6900A 系列 函数/任意波形发生器 用户使用指南

3. 16	系统设置				 	 	• • • • • • • • • • • • • • • • • • • •	39
3. 17	颜色设置	• • • • • •		• • • • •	 	 	• • • • • • • • • • • • • • • • • • • •	40
3. 18	计数器				 	 	• • • • • • • • • • • • • • • • • • • •	41
3. 19	输出端口	• • • • • •			 	 	• • • • • • • • • • • • • • • • • • • •	42
3. 20	输入端口	• • • • • •			 	 	• • • • • • • • • • • • • • • • • • • •	43
3. 21	通讯端口				 	 	• • • • • • • • • • • • • • • • • • • •	44
3. 22	参数校准				 	 	• • • • • • • • • • • • • • • • • • • •	44
3. 23	系统复位	• • • • • •			 	 • • • • • • •	• • • • • • • • • • • • • • • • • • • •	47
3. 25	默认设置				 	 		47
3. 26	功率放力	大器(选	件)		 	 	• • • • • • • • • • • • • • • • • • • •	49
第四章	軍服务与	支持			 	 		51
第五章	重 技术参	数			 	 		52

第一章 快速入门

如果您是初次使用本仪器,或者没有时间仔细阅读全部使用指南,那么您只需 浏览一下本章的内容,就能快速地掌握信号发生器的基本使用方法。如果需要使用 比较复杂的功能,或者使用中遇到某些困难,可阅读第三章"使用说明"。

1.1 使用准备

1.1.1 开箱检查:

仔细检查仪器及附件是否齐备完好,如果发现包装箱严重破损,请先保留,直 至仪器通过性能测试。如有缺损,请与销售部门联系。

1.1.2 接通电源:

仪器在符合以下的使用条件时,才能开机使用。

电压: AC 100~240V 频率: 45~65Hz

功耗: <30VA

温度: 0~40℃ 湿度: <80%

将电源插头插入交流 100~240V 带有接地线的电源插座中,按下后面板上电源 插座下面的电源总开关,仪器前面板上的电源按钮开始缓慢地闪烁,表示已经与电 网连接,但此时仪器仍处于关闭状态。按下前面板上的电源按钮,电源接通,仪器 进行初始化,装入上电设置参数,进入正常工作状态。输出连续的正弦波形,并显 示出信号的各项工作参数。

警告: 为保障操作者人身安全,必须使用带有安全接地线的三孔电源插座。

另外,与仪器连接的其他用户设备,其接地线必须和仪器的接地线可靠连接,否 则可能会造成仪器的损坏。

1.2 前后面板

- 1. 显示屏 2. 功能键

- 3. 数字键 4. 调节旋钮

- 5. 电源按钮

- 6. 菜单软键 7. CHA、CHB 输出 8. 同步输出/计数输入
- 9. U 盘插座
- 10. 方向键

- 5. 排风扇 6. 电源插座 7. RS232 接口 8. USB 接口

9. 电源总开关

1.3 键盘显示

1.3.1 键盘说明:本仪器共有 32 个按键,26 个按键有固定的含义,用符号 【】表示。其中 10 个大按键用作功能选择, 小键盘 12 个键用作数据输入, 2 个箭 头键【<】【>】用于左右移动旋钮调节的光标。2 个箭头键【△】【∨】用作频 率和幅度的步进操作。显示屏的下边还有 6 个空白键, 称为操作软键, 用符号〖〗 表示,其含义随着操作菜单的不同而变化。键盘说明如下:

【0】【1】【2】【3】【4】【5】【6】【7】【8】【9】键:数字输入键。

【.】键:小数点输入键。

【-】键: 负号输入键, 在输入数据允许负值时输入负号, 其他时候无效。

【<】键: 白色光标位左移键, 数字输入过程中的退格删除键。

【>】键: 白色光标位右移键。

【 / 】键:频率和幅度步进增加键。

【 \ 】键: 频率和幅度步进减少键。

【Continuous】键:选择连续模式。

【Modulate】键: 选择调制模式。

【Sweep】键:选择扫描模式。

【Burst】键: 选择猝发模式。

【Dual Channel】键:选择双通道操作模式。

【Counter】键: 选择计数器模式

【CHA/CHB】键: 通道选择键。

【Waveform】键:波形选择键。

【Utility】键:通用设置键。

【Output】键:输出端口开关键。

【】【】【】【】【】【】【】【】【】至白键:操作软键,用于菜单和单位选择。

1.3.2 显示说明: 仪器的显示屏分为四个部分, 左上部为 A 通道的输出波形示 意图和输出模式、波形和负载设置,右上部为 B 通道的输出波形示意图和输出模 式、波形和负载设置。显示屏的中部显示频率、幅度、偏移等工作参数,显示屏的 下部为操作菜单和数据单位显示。

1.4 数据输入

- 1.4.1 键盘输入:如果一项参数被选中,则参数值会变为绿色,使用数字键、 小数点键和负号键可以输入数据。在输入过程中如果有错,在按单位键之前,可以 按【<】键退格删除。数据输入完成以后,必须按单位键作为结束,输入数据才能 生效。如果输入数字后又不想让其生效,可以按单位菜单中的《Cancel》软键,本 次数据输入操作即被取消。
- 1.4.2 旋钮调节: 在实际应用中,有时需要对信号进行连续调节,这时可以使 用数字调节旋钮。当一项参数被选中,除了参数值会变为绿色外,还有一个数字会 变为白色,称作光标位。按移位键【<】或【>】,可以使光标位左右移动,面板 上的旋钮为数字调节旋钮,向右转动旋钮,可使光标位的数字连续加一,并能向高 位进位。向左转动旋钮,可使光标指示位的数字连续减一,并能向高位借位。使用 旋钮输入数据时,数字改变后即刻生效,不用再按单位键。光标位向左移动,可以 对数据进行粗调,向右移动则可以进行细调。
- 1.4.3 步进输入: 如果需要一组等间隔的数据,可以使用步进键输入。在连续 输出模式菜单中,按〖电平限制/步进〗软键,如果选中 Step Freq 参数,可以设 置频率步进值,如果选中 Step Ampl 参数,可以设置幅度步进值。步进值设置之 后, 当选中频率或幅度参数时, 每按一次【 / 】键, 可以使频率或幅度增加一个步 进值,每按一次【∨】键,可使频率或幅度减少一个步进值,而且数据改变后即刻 生效,不用再按单位键。
- 1.4.4 输入方式选择: 对于已知的数据,使用数字键输入最为方便,而且不 管数据变化多大都能一次到位,没有中间过渡性数据产生。对于已经输入的数据进 行局部修改,或者需要输入连续变化的数据进行观测时,使用调节旋钮最为方便。 对于一系列等间隔数据的输入,则使用步进键更加快速准确。操作者可以根据不同 的应用要求灵活选择。

基本操作 1. 5

1.5.1 通道选择:按【CHA/CHB】键可以循环选择两个通道,被选中的通道, 其通道名称、工作模式、输出波形和负载设置的字符变为绿色显示。使用菜单可以 设置该通道的波形和参数,按【Output】键可以循环开通或关闭该通道的输出信 号。

- **1.5.2 波形选择:** 按【Waveform】键,显示出波形菜单,按〖第 x 页〗软键, 可以循环显示出 15 页 60 种波形。按菜单软键选中一种波形,波形名称会随之改 变,在"连续"模式下,可以显示出波形示意图。按〖返回〗软键,恢复到当前菜 单。
- 1.5.3 占空比设置: 如果选择了方波,要将方波占空比设置为 20%,可按下列 步骤操作:
 - (1). 按〖占空比〗软键,占空比参数变为绿色显示。
 - (2). 按数字键【2】【0】输入参数值,按〖%〗软键,绿色参数显示20%。
- (3). 仪器按照新设置的占空比参数输出方波, 您也可以使用旋钮和【<】 【>】键连续调节输出波形的占空比。
 - 1.5.4 频率设置:如果要将频率设置为 2.5kHz,可按下列步骤操作:
 - (1), 按『频率/周期》软键, 频率参数变为绿色显示。
- (2). 按数字键【2】【·】【5】输入参数值,按《kHz》软键,绿色参数显示为 2.500 000kHz.
- (3). 仪器按照设置的频率参数输出波形, 您也可以使用旋钮和【<】【>】键 连续调节输出波形的频率。
 - **1.5.5 幅度设置:** 如果要将幅度设置为 1.6Vrms,可按下列步骤操作:
 - (1)、按『幅度/高电平》软键、幅度参数变为绿色显示。
- (2). 按数字键【1】【·】【6】输入参数值,按〖Vrms〗软键,绿色参数显示为 1.600 OVrms.
- (3). 仪器按照设置的幅度参数输出波形, 您也可以使用旋钮和【<】【>】键 连续调节输出波形的幅度。
 - 1.5.6 偏移设置:如果要将直流偏移设置为-25mVdc,可按下列步骤操作:
 - (1). 按〖偏移/低电平〗软键,偏移参数变为绿色显示。
- (2). 按数字键【-】【2】【5】输入参数值,按〖mVdc〗软键,绿色参数显示为 -25. 0mVdc.
- (3). 仪器按照设置的偏移参数输出波形的直流偏移, 您也可以使用旋钮和 【〈】【〉】键连续调节输出波形的直流偏移。
 - 1.5.7 **幅度调制:** 如果要输出一个幅度调制波形, 载波频率 10kHz, 调制深度

- 80%, 调制频率 10Hz, 调制波形为三角波, 可按下列步骤操作:
- (1). 按【Modulate】键,默认选择频率调制模式,按〖调制类型〗软键,显示 出调制类型菜单,按〖幅度调制〗软键,工作模式显示为 AM Modulation,波形示 意图显示为调幅波形,同时显示出 AM 菜单。
- (2). 按『频率》软键, 频率参数变为绿色显示。按数字键【1】【0】,再按 《kHz》软键,将载波频率设置为 10.000 00kHz。
- (3). 按〖调幅深度〗软键,调制深度参数变为绿色显示。按数字键【8】【0】, 再按〖%〗软键,将调制深度设置为80%。
- (4). 按〖调制频率〗软键,调制频率参数变为绿色显示。按数字键【1】【0】, 再按《Hz》软键,将调制频率设置为10.000 00Hz。
- (5). 按『调制波形』软键,调制波形参数变为绿色显示。按【Waveform】键, 再按〖锯齿波〗软键,将调制波形设置为锯齿波。按〖返回〗软键, 返回到幅度调 制菜单。
- (6). 仪器按照设置的调制参数输出一个调幅波形, 您也可以使用旋钮和【<】 【>】键连续调节各调制参数。
- 1.5.8 叠加调制: 如果要在输出波形上叠加噪声波,叠加幅度为 10%,可按下 列步骤操作:
- (1). 按【Modulate】键,默认选择频率调制模式,按《调制类型》软键,显示 出调制类型菜单,按《叠加调制》软键,工作模式显示为 Sum Modulation,波形示 意图显示为叠加波形,同时显示出叠加调制菜单。
- (2). 按〖叠加幅度〗软键,叠加幅度参数变为绿色显示。按数字键【1】【0】, 再按 『% 》软键,将叠加幅度设置为 10%。
- (3). 按〖调制波形〗软键,调制波形参数变为绿色显示。按【Waveform】键, 再按〖噪声波〗软键,将调制波形设置为噪声波。按〖返回〗软键, 返回到叠加调 制菜单。
- (4). 仪器按照设置的调制参数输出一个叠加波形,您也可以使用旋钮和【<】 【>】键连续调节叠加噪声的幅度。
- 1.5.9 频移键控: 如果要输出一个频移键控波形,跳变频率为 100Hz,键控速 率为 10Hz, 可按下列步骤操作:
 - (1). 按【Modulate】键,默认选择频率调制模式,按《调制类型》软键,显示

出调制类型菜单,按『频移键控》软键,工作模式显示为 FSK Modulation,波形示 意图显示为频移键控波形,同时显示出频移键控菜单。

- (2). 按『跳变频率》软键, 跳变频率变为绿色显示。按数字键【1】【0】 【0】,再按《Hz》软键,将跳变频率设置为100.000 0Hz。
- (3). 按〖键控速率〗软键,键控速率参数变为绿色显示。按数字键【1】【0】, 再按《Hz》软键,将键控速率设置为 10.000 00Hz。
- (4). 仪器按照设置的调制参数输出一个 FSK 波形, 您也可以使用旋钮和【<】 【>】键连续调节跳变频率和键控速率。
- 1.5.10 频率扫描: 如果要输出一个频率扫描波形,扫描周期时间为 5 秒,对 数扫描,可按下列步骤操作:
- (1). 按【Sweep】键进入扫描模式,工作模式显示为 Frequency Sweep,并显 示出频率扫描波形示意图,同时显示出频率扫描菜单。
- (2). 按《扫描时间》软键,扫描时间参数变为绿色显示。按数字键【5】,再按 〖s〗软键,将扫描时间设置为 5.000s。
- (3). 按〖扫描模式〗软键,扫描模式变为绿色显示。将扫描模式选择为对数扫 描。
 - (4). 仪器按照设置的扫描时间参数输出扫描波形。
- 1.5.11 猝发输出: 如果要输出一个猝发波形,猝发周期 10ms,猝发计数 5 个 周期,连续或手动单次触发,可按下列步骤操作:
- (1). 按【Burst】键进入猝发模式,工作模式显示为 Burst,并显示出猝发波形 示意图,同时显示出猝发菜单。
- (2). 按『猝发模式》軟键, 猝发模式参数变为绿色显示。将猝发模式选择为触 发模式 Triggered。
- (3). 按〖猝发周期〗软键,猝发周期参数变为绿色显示。按数字键【1】【0】, 再按〖ms〗软键,将猝发周期设置为 10.000ms。
- (4). 按『猝发计数》软键, 猝发计数参数变为绿色显示。按数字键【5】, 再按 〖0k〗软键,将猝发计数设置为 5。
 - (5). 仪器按照设置的猝发周期和猝发计数参数连续输出猝发波形。
- (6). 按〖触发源〗软键, 触发源参数变为绿色显示。将触发源选择为外部源 External, 猝发输出停止。

- (7). 按〖手动触发〗软键,每按一次,仪器猝发输出5个周期波形。
- 1.5.12 频率耦合:如果要使两个通道的频率相耦合(联动),可按下列步骤 操作:
 - (1). 按【Dual Channel】键选择双通道操作模式,显示出双通道菜单。
- (2). 按『频率耦合』软键, 频率耦合参数变为绿色显示。将频率耦合选择为 $0n_{\circ}$
- (3). 按【Continuous】键选择连续工作模式,改变 A 通道的频率值, B 通道的 频率值也随着变化,两个通道输出信号的频率联动同步变化。
- 1.5.13 存储和调出:如果要将仪器的工作状态存储起来,可按下列步骤操 作:
 - (1). 按【Utility】键,显示出通用操作菜单。
- (2). 按『状态存储》软键,存储参数变为绿色显示。按『用户状态 0》软键, 将当前的工作状态参数存储到相应的存储区,存储完成后显示出Stored。
- (3). 按〖状态调出〗软键,调出参数变为绿色显示。按〖用户状态 0〗软键, 将相应存储区的工作状态参数调出,并按照调出的工作状态参数进行工作。
 - 1.5.14 计数器: 如果要测量一个外部信号的频率,可按下列步骤操作:
- (1). 按【Counter】键,进入计数器工作模式,显示出波形示意图,同时显示 出计数器菜单。
 - (2). 在仪器前面板的《Sync/Counter》端口输入被测信号。
- (3). 按『频率测量》软键, 频率参数变为绿色显示。仪器测量并显示出被测信 号的频率值。
- (4). 如果输入信号为方波,按《占空比》软键,仪器测量并显示出被测信号的 占空比值。

第二章 原理概述

通过本章内容, 您可以了解到信号形成的基本概念和仪器的内部操作, 从而对仪器 的性能指标有更深刻的理解, 便于您更好的使用本仪器。

2.1 原理框图

从数模转换器以后,分成 A、B 两个相同的通道,图中只画出一个通道的框图。

2.2 工作原理

2.2.1 数字合成: 要产生一个电压信号, 传统的模拟信号源是采用电子元器件以各

种不同的方式组成振荡器,其频率精度和稳定度都不高,而且工艺复杂、分辨率低,频 率设置和实现计算机程控也不方便。直接数字合成技术(DDS)是一种数字化的信号产 生方法, 它完全没有振荡器元件, 而是用数字合成方法产生一连串数据流, 再经过数模 转换器产生出一个预先设置的模拟信号。

例如要合成一个正弦波信号,首先将函数 Y=SinX 进行数字量化,然后以 X 为 地址,以Y为量化数据,依次存入波形存储器。DDS使用了相位累加技术来控制波 形存储器的地址,在每一个采样时钟周期中,都把一个相位增量累加到相位累加器 的当前结果上,通过改变相位增量即可以改变 DDS 的输出频率值。根据相位累加器 输出的地址,由波形存储器取出波形量化数据,经过数模转换器和运算放大器转换 成模拟电压。由于波形数据是间断的取样数据,所以 DDS 发生器输出的是一个阶梯 正弦波形,必须经过低通滤波器将波形中所含的高次谐波滤除掉,输出即为连续的正 弦波形。

2.2.2 工作原理: 仪器内部有一个高分辨率的数模转换器, 使用高精度的基准 电压源,为幅度和偏移控制提供可设置的参考电压,因而保证了输出幅度和直流偏 移的精度和稳定性。

经过幅度和偏移控制的信号再经过电压放大、衰减器和功率放大,最后由输出 端口输出。

软核控制器控制键盘和显示部分,当有键按下时,控制器识别出被按键的编 码,然后转去执行该键的命令程序。显示电路将仪器的工作状态和各种参数显示出 来。

面板上的旋钮可以用来改变光标指示位的数字,每旋转一定的角度可以产生一 个触发脉冲,控制器能够判断出旋钮是左转还是右转,如果是左转则使光标指示位 的数字减一,如果是右转则加一,并且连续进位或借位。

第三章 使用说明

本章将详细叙述仪器的功能特性和操作使用的细节,在阅读本章之前,如果您还没有掌握仪器的基本操作,请先阅读第一章"快速入门",并进行实际操作练习。因为在本章中,涉及到基本操作方面的内容将不再重复叙述,而且只有具备实际操作的体验,才能更好地理解本章的内容。

3.1 性能概述

3.1.1 工作模式: 仪器具有六种工作模式: 按【Continuous】键,选择连续输出模式。按【Modulate】键,选择调制输出模式。按【Sweep】键,选择扫描输出模式。按【Burst】键,选择猝发输出模式。按【Dual Channel】键,选择双通道操作模式。按【Counter】键,选择计数器模式。

通道 A 的工作模式有四种:连续输出、调制输出、扫描输出、猝发输出。

其中调制输出模式包含七种调制类型: 频率调制、幅度调制、相位调制、脉宽调制、叠加调制 、频移键控、相移键控。

其中扫描输出模式包含两种扫描类型: 频率扫描、列表扫描。

通道 B 的输出模式有两种: 连续输出、双通道操作。

其中双通道操作模式包含三种类型: 频率耦合、幅度耦合、波形组合。

计数器模式与通道 A 和通道 B 没有关系,只是一种附加的功能,使本机成为一台具有信号源和计数器功能的二合一仪器。

3.1.2 通用特性: 仪器具有四种通用操作特性: 按【Utility】键,显示出通用操作菜单,再按相应的软键,可以选择四种通用操作特性: 系统设置、参数校准、波形编辑、颜色设置。

下面将对仪器的各种性能作详细叙述。

3.2 连续输出

按【Continuous】键,选择连续工作模式,显示出 Continuous,并显示出连续波形示意图和连续模式菜单。

连续输出是指输出信号是稳态连续的,信号的波形、频率和幅度都不随时间变 化,信号的相位是随时间线性变化的。 3.2.1 通道选择:按【CHA/CHB】键,可以循环选择通道 A 和通道 B。

屏幕上方显示通道名称、工作模式、输出波形和负载设置,被选中的通道显示 为绿色字符,未被选中的通道显示为白色字符。如果选择了调制输出、扫描输出、 猝发输出,则仪器自动选择为通道 A。

- 3.2.2 参数选择: 屏幕中间显示工作状态参数,通道 A 和通道 B 用不同的颜色 加以区别。按菜单软键可以选中一项参数,被选中的参数用绿色显示,其中光标位 的数字用白色显示。
- 3.2.3 菜单选择: 屏幕下方显示工作菜单,按菜单软键可以选中一个菜单项, 被选中的菜单项用特殊颜色加以区别。最右边一个菜单软件用来翻页,可以循环显 示多页菜单的内容。
 - **3.2.4 波形选择:** 仪器具有 60 种波形,如下表。

波 形 表

序号	波形	名 称	序号	波形	名 称
00	正弦波	Sine	30	正三角波	Pos Triangle
01	方波	Square	31	正升锯齿波	Pos Rise Ramp
02	锯齿波	Ramp	32	正降锯齿波	Pos Fall Ramp
03	脉冲波	pulse	33	梯形波	Trapezia
04	噪声波	Noise	34	升阶梯波	Rise Stair
05	用户波形 0	User 0	35	降阶梯波	Fall Stair
06	用户波形 1	User 1	36	尖顶塔波	Spiry
07	用户波形 2	User 2	37	正弦全波	All Sine
08	用户波形3	User 3	38	正弦半波	Half Sine
09	用户波形 4	User 4	39	幅度切割	Ampl Cut
10	伪随机码	PRBS	40	相位切割	Phase Cut
11	指数升函数	Exponent Rise	41	附加脉冲	Add Pulse
12	指数降函数	Exponent Fall	42	附加噪声	Add Noise
13	对数升函数	Logarithm Rise	43	二次谐波	BiHarmonic
14	正切函数	Tangent	44	三次谐波	TriHarmonic
15	Sinc 函数	Sin(x)/x	45	频率调制	FM

16	半圆函数	Semicircle	46	幅度调制	AM
17	高斯函数	Gaussian	47	脉宽调制	PWM
18	心电图波	Cardiac	48	频移键控	FSK
19	震动波形	Quake	49	相移键控	BPSK
20	平方函数	Square	50	幅度增加	Ampl Increase
21	立方函数	Cube	51	幅度减少	Ampl Decrease
22	平方根函数	Square Root	52	猝发波形	Burst
23	倒数函数	1/x	53	低通滤波	Low Pass
24	余切函数	Cotangent	54	高通滤波	High Pass
25	$x/(x^2+1)$	$x/(x^2+1)$	55	带通滤波	Band Pass
26	直流波形	DC	56	陷阱滤波	Band Pit
27	正脉冲波	Pos Pulse	57	任意波1	Arb 1
28	负脉冲波	Neg Pulse	58	任意波 2	Arb 2
29	正负脉冲	Pos-Neg Pulse	59	正负半圆	Pos-Neg Circle

表中00~04号为正弦波、方波、锯齿波、脉冲波和噪声波,是最常用的标准波 形。05~09 号是五个用户波形,可以存储用户自己编辑的任意波形。10~59 号是 40 种内置波形,在一些特殊的应用场合可以选择使用。

按【Waveform】键,显示出波形菜单,使用翻页软键,可以循环显示出 60 种 波形。按菜单软键选中一种波形,波形名称和波形示意图也会随之改变。按〖返 回》软键,可以返回到当前菜单。

波形示意图只是一种简单的模拟图形,分辨率很低,失真也较大。仪器输出的 真实波形,需要使用示波器从输出端口进行观察和测试。

在连续输出、调制输出、频率扫描和猝发输出时,都可以进行波形选择,在调 制输出时,如果当前选中了调制波形参数 Shape,则波形选择的是调制波形,否则 波形选择的是载波波形。

3.2.5 占空比设置:占空比表示方波高电平部分所占用的时间与周期的比值。 如果选择了方波,在连续模式的菜单中,按〖占空比〗软键,选中 Duty Cyc 参 数,可以设置方波的占空比值。当方波频率变化时,占空比保持不变。但是当方波 频率较高时,占空比的设置会受到边沿时间的限制,应符合下式规定:

50ns≤(占空比×周期)≤(周期−50ns)

- 3.2.6 对称度设置 锯齿波对称度表示锯齿波的上升部分所占用的时间与周期 的比值。如果选择了锯齿波,在连续模式的菜单中,按〖对称度〗软键,选中 Symmetry 参数,可以设置锯齿波对称度值。当锯齿波频率变化时,对称度保持不 变。当对称度为 100% 时称为升锯齿波, 当对称度为 0% 时称为降锯齿波, 当对称 度为50% 时称为三角波。
- 3.2.7 脉冲宽度设置:脉冲宽度表示脉冲波从上升沿的中点到下降沿的中点所 占用的时间。如果选择了脉冲波,在连续模式的菜单中,按〖脉冲宽度〗软键,选 中 Width 参数,可以设置脉冲宽度值。当脉冲波频率变化时,脉冲宽度保持不变。 但是当脉冲波频率较高时,脉冲宽度的设置会受到边沿时间的限制,应符合下式规定:

50ns≤脉冲宽度≤(周期-50ns)

3.2.8 频率设置:正弦波最高输出频率与仪器型号有关,方波和脉冲波受到边 沿时间的影响,其他波形受到通道带宽的影响,对最高频率都做了限制(见第五章 技术参数)。当波形改变时,如果当前频率超过了波形的最高频率限制,则仪器自动 修改频率值,将频率限制到当前波形允许的最高频率值。除正弦波以外,随着频率 的升高,波形的失真程度也逐渐加大。在实际应用中,用户可根据对波形的失真程 度的要求,对最高频率加以限制。所有波形的最低频率都是1μHz。

在连续模式菜单中,按《频率/周期》软键,如果选中 Frequency 参数,可以 设置频率值。如果选中了 Period 参数,可以设置周期值。仪器可以使用频率设 置,也可以使用周期设置,但是在仪器的内部都使用频率合成的方式,只是在数据 的输入和显示时进行了换算。由于受频率低端分辨率的限制,在周期很长时,只能 输出一些间隔的频率点,所设置的周期值与实际输出的周期值可能有些差异。

3.2.9 幅度设置:幅度设置有两种方式:"幅度设置"和"电平设置"。如果 采用幅度设置,在幅度变化时,信号的高电平和低电平同时变化,而信号的直流偏 移保持不变。如果采用电平设置,在高电平变化时,信号的低电平保持不变。同 样,在低电平变化时,信号的高电平保持不变。无论高电平变化还是低电平变化, 信号的直流偏移都随着变化。信号的幅度值 Vpp、高电平值 High、低电平值 Low、 直流偏移值 Offset, 四者之间有如下关系:

Vpp = High - Low High = 0ffset + Vpp/2 Low = 0ffset - Vpp/2

在连续模式菜单中,按〖幅度/高电平〗软键,如果选中了 Amplitude 参数, 可以设置幅度值,如果选中了 High Levl 参数,可以设置高电平。按〖偏移/低电 平》软键,如果选中了Low Level参数,可以设置低电平。

3.2.10 **幅度限制**:按『电平限制/步进》软键,如果选中了 Limi High 参数, 可以设置幅度高电平的限制值,如果选中了 Limit Low 参数,可以设置幅度低电平 的限制值。电平限制功能是一种安全措施,如果使用中发生了误操作,仪器的输出 电压保证不会超过限制值,从而保护用户设备不会因为过压而损坏。

如果高电平限制设置为+10Vdc,低电平限制设置为-10Vdc,则电平限制功能不 起作用。另外,幅度设置还会受到直流偏移的限制,幅度值 Vpp 应符合下式的规 定:

 $Vpp \le 2 \times (Limi \; High-Offset)$ $Vpp \le 2 \times (Offset-Limit \; Low)$

不仅如此, 当频率较高时, 最大幅度值还会受到频率的限制(见第五章 技术参 数)。如果幅度设置超出了上述的规定, 仪器将修改设置值, 使其限制在允许的最大 幅度值。

由于通道带宽的影响, 当频率较高时输出幅度会减小, 为此进行了幅度平坦度 补偿。但在频率扫描时,为提高扫描速度,没有进行幅度补偿,当扫描到较高频率 时幅度会有所下降。

对于任意波形,在波形显示图中,如果波形曲线的峰峰值没有达到垂直满幅 度,则实际输出幅度与幅度显示值是不符合的。

3.2.11 幅度格式: 幅度值有三种格式: 峰峰值 Vpp、有效值 Vrms、功率电平 值 dBm。对于所有波形都可以使用峰峰值 Vpp。对于正弦波、方波、锯齿波和脉冲 波,还可以使用有效值 Vrms。如果外接负载设置为非高阻状态(非 High Z),还 可以使用功率电平值 dBm。

在连续模式菜单中,按〖幅度单位〗软键,如果当前波形和负载条件是允许 的,则幅度参数可以循环显示三种不同单位的幅度值。

幅度有效值与峰峰值的关系与波形有关,如下表:

幅度有效值对应表

波	形	Vpp	Vrms
正弦波		2.828Vpp	1Vrms

方波、脉冲波	2Vpp	1Vrms
锯齿波	3.464Vpp	1Vrms

幅度电平值与有效值和峰峰值的关系与波形和负载有关,由下式表示:

632.5 mVpp

282.9 mVpp

200.0 mVpp

10.0 mVpp

 $dBm = 10 \times log_{10} (P/0.001)$ 式中 $P = (Vrms)^2/Load$

0.00 dBm

-6.99 dBm

-10.00 dBm

-36.02 dBm

当波形为正弦波,外接负载设置为 50 Ω 时,则 Vpp、Vrms、dBm 三者如下表。

Vpp	Vrms	dBm
10.0000 Vpp	3.5356 Vrms	23.98 dBm
6.3246 Vpp	2.2361 Vrms	20.00 dBm
2.8284 Vpp	1.0000 Vrms	13.01 dBm
2.0000 Vpp	707.1 mVrms	10.00 dBm
1.4142 Vpp	500.0 mVrms	6.99 dBm

223.6 mVrms

100.0 mVrms

70.7 mVrms

3.5 mVrms

幅度电平对应表

3.2.12 偏移设置: 在连续模式菜单中,按《偏移/低电平》软键,如果选中了 Offset 参数,可以设置直流偏移值。直流偏移设置会受到幅度和幅度电平的限制, 应符合下式规定:

Limit Low+Vpp/2≤Offset≤Limi High-Vpp/2

如果偏移设置超出了规定,仪器将修改设置值,使其限制在允许的偏移值。

对输出信号进行直流偏移调整时,使用调节旋钮要比使用数字键方便得多。按 照一般习惯,不管当前直流偏移是正值还是负值,向右转动旋钮直流电平上升,向 左转动旋钮直流电平下降,经过零点时,偏移值的正负号能够自动变化。

如果将幅度设置为 0.2mVpp, 高电平限制设置为+10Vdc, 低电平限制设置为-10Vdc,那么偏移值可在±10V 范围内任意设置,仪器就变成一台直流电压源,可 以输出直流电压信号。

3.2.13 相位设置:在连续模式菜单中,按〖输出相位/对齐〗软键,选中

Phase 参数,可以设置输出相位值。输出相位表示输出端口的信号相对于本通道同 步信号的相位差,输出端口信号的相位超前于同步信号。

按〖输出相位/对齐〗软键,选中 Align 参数,可以使通道 A 与通道 B 的同步 信号相位对齐,此时可以由通道 A 和通道 B 的相位设置值计算出两个通道的相位 差。

3.2.14 极性设置: 在连续模式菜单中, 按《输出极性》软键, 如果选中了 Normal,输出信号的极性为正向。如果选中了 Inverted,输出信号的极性为反向。 对于标准波形,正向极性表示输出波形从0相位起始,电压呈上升状态。反向极性 表示输出波形从0相位起始,电压呈下降状态。对于任意波形,正向极性表示输出 波形与波形显示图相同,反向极性表示输出波形与波形显示图相反。例如波形选择 为正脉冲波,当设置为反向极性时输出为负脉冲波。

波形极性设置对直流偏移电压没有影响,对 Sync 同步输出信号也没有影响。

3.2.15 幅度量程: 仪器配置有 0~50dB 衰减器, 步进 10dB。在连续模式菜单 中,按〖幅度量程〗软键,如果选中了 Auto,则幅度量程使用自动衰减方式。仪器 根据幅度设置值的大小,自动配置衰减器的状态,选择最合适的幅度量程,以便保 持最准确的输出幅度和最高的信噪比。但是在幅度变化时,由于衰减器的切换,会 在某些特定电压处,使输出波形遭到瞬时的破坏并产生毛刺。

按〖幅度量程〗软键,如果选中了 Hold,则幅度量程使用保持方式。仪器将衰 减器固定保持在当前状态,不再随着幅度设置值的大小变化,这样可以防止输出波 形遭到瞬时的破坏,避免产生毛刺。但在幅度设置值超出当前量程范围时,幅度准 确度,波形保真度可能会受到负面的影响。

直流偏移输出也同样会受到幅度量程设置的影响。

3.2.16 **外接负载:** 仪器的输出阻抗固定为 50Ω, 外接负载上的实际电压值为负 载阻抗与 50 Ω的分压比。外接负载越大,则分压比越接近于 1,负载上的实际电压值 与幅度或偏移的显示值误差越小。当外接负载大于 10kΩ时,误差将小于 0.5%。如果 外接负载较小,则负载上的实际电压值与显示值是不符合的。

当外接负载较小时,为了使负载上的实际电压值与显示值相符合,应该进行"外接 负载"设置。在连续模式菜单中,按〖外接负载〗软键,如果选中了 High Z,则仪 器的外接负载必须为"高阻"(>10kΩ),如果选中了 xxΩ,可以设置外接负载 值,外接负载设置范围为 $1\Omega\sim10k\Omega$,当外接负载设置值和实际外接负载值相等

时,则负载上的实际电压值与显示值是相符合的。

必须注意,大多数外接负载并不是纯电阻性的,电感性阻抗和电容性阻抗会随着频 率而变化,当频率较高时这种变化是不可忽略的。如果不能确切地知道外接负载的实际 阻抗,可以逐步改变"Load"的设置值,使负载上的实际电压与设置值相符合,这时 "Load"的设置值也就等于外接负载的实际阻抗。

- 3.2.17 输出保护: 仪器具有 50Ω输出电阻,输出端瞬间短路不会造成损坏, 仪器还具有防倒灌措施,当输出端不慎接入比较大的反灌电压时,保护电路立刻使 输出关闭,同时显示出报警信息《输出端口 x 超载,自动关闭。》,并有声音报 警。操作者必须对端口负载进行检查,在故障排除以后,才能按【0utput】键开启 输出。虽然仪器具有一定程度的保护措施,但保护功能并不是万无一失的。而且如 果反灌电压过高,在保护电路动作之前的瞬间,就可能已经造成了仪器的损坏。所 以,输出端口长时间短路或者反灌电压仍然是必须禁止的。
- 3.2.18 数据超限:前面已经叙述过,频率,幅度等参数都有各自的数据允许 范围,当设置数据超出范围时,仪器会自动修改设置值,或者修改与设置参数相关 的其他参数值。同时显示出报警信息《数据超出范围,限制到允许值。》,并有声 音报警。设置数据超出范围,虽然不会对仪器造成损坏,但是仪器的输出结果可能 与操作者的预期不一致, 也必须报警, 提请操作者注意, 以便重新设置合适的数 据。

3.3 频率调制

按【Modulate】键,选择调制工作模式,默认选择频率调制,工作模式显示为 FM Modulation, 同时显示出频率调制的波形示意图和频率调制菜单。

- 3.3.1 载波设置: 首先设置载波的波形、频率、幅度和偏移。在频率调制中, 载波的频率是随着调制波形的瞬时电压而变化的,载波的波形可以使用波形表中的 大多数波形,但是有些波形可能是不合适的。
- 3.3.2 频率偏差:按〖频率偏差〗软键,选中 Freq Dev 参数,可以设置频率 偏差值。频率偏差表示在频率调制过程中,调制波形达到满幅度时载波频率的变化 量。在调制波的正满度值,输出频率等于载波频率加上频率偏差; 在调制波的负满 度值,输出频率等于载波频率减去频率偏差。因此,频率偏差设置须符合两个条 件:

(载波频率-频率偏差)>0 (载波频率+频率偏差)<仪器频率上限

- 3.3.3 调制频率: 按〖调制频率〗软键,选中 FM Freq 参数,可以设置调制频 率值,调制频率一般远低于载波频率。
- 3.3.4 调制波形:按〖调制波形〗软键,选中 Shape 参数,可以设置调制波 形。按【Waveform】键,显示出波形菜单,按波形菜单软键可以设置调制波形。调 制波形可以使用波形表中的大多数波形,但是有些波形可能是不合适的。波形选择 后返回调制菜单。
- 3.3.5 调制源:按《调制源》软键,如果选中了 Internal,仪器使用内部调制 源,调制频率和调制波形的设置是有效的。如果选中了 External,则使用外部调制 源,调制频率和调制波形的设置被忽略。从仪器后面板《Modulation In》端口输入 调制信号,当外部调制信号满幅度为±5V 时,频率偏差的显示与实际频率偏差相符 合, 否则频率偏差的显示是不正确的。

3.4 幅度调制

按【Modulate】键,默认选择频率调制模式,按〖调制类型〗软键,显示出调 制类型菜单,按〖幅度调制〗软键,工作模式显示为 AM Modulation,同时显示出 幅度调制的波形示意图和幅度调制菜单。

- 3.4.1 载波设置: 首先设置载波的波形、频率、幅度和偏移。在幅度调制中, 载波的幅度是随着调制波形的瞬时电压而变化的,载波波形可以使用波形表中的大 多数波形, 但是有些波形可能是不合适的。
- **3.4.2 调制深度:** 按『调制深度』软键, 选中 AM Depth 参数, 可以设置调制 深度值。调制深度表示在幅度调制过程中,调制波形达到满幅度时载波幅度变化量 相对于幅度设置值的百分比。调制载波包络的最大幅度 Amax、最小幅度 Amin、幅 度设置值 A、调制深度 M, 四者之间的关系由下式表示:

 $Amin = (1-M) \times A/2.2$ $Amax = (1+M) \times A/2.2$

由以上两式可以导出调制深度 M= (Amax-Amin) ×1.1/A

如果调制深度为 120%,则 Amax=A, Amin=-0.09A。如果调制深度为 100%, 则 Amax=0.909A , Amin=0 。 如 果 调 制 深 度 为 50 % , 则 Amax=0.682A , Amin=0.227A。 如果调制深度为 0%,则 Amax=0.455A,Amin=0.455A。也就是

- 说, 当调制深度为0时, 载波幅度大约是幅度设置值的一半。
- 3.4.3 调制频率: 按〖调制频率〗软键,选中 AM Freq 参数,可以设置调制频 率值,调制频率一般远低于载波频率。
- 3.4.4 调制波形:按〖调制波形〗软键,选中 Shape 参数,可以设置调制波 形。按【Waveform】键,显示出波形菜单,按波形菜单软键可以设置调制波形。调 制波形可以使用波形表中的大多数波形,但是有些波形可能是不合适的。波形选择 后返回调制菜单。
- 3.4.5 调制源:按《调制源》软键,如果选中了 Internal,仪器使用内部调制 源,调制频率和调制波形的设置是有效的。如果选中了 External,则使用外部调制 源,调制频率和调制波形的设置被忽略。从仪器后面板《Modulation In》端口输入 调制信号,当外部调制信号满幅度为±5V 时,调制深度的显示与实际调制深度相符 合, 否则调制深度的显示是不正确的。

3.5 相位调制

按【Modulate】键,默认选择频率调制模式,按〖调制类型〗软键,显示出调 制类型菜单,按〖相位调制〗软键,工作模式显示为 PM Modulation,同时显示出 相位调制的波形示意图和相位调制菜单。

- 3.5.1 载波设置: 首先设置载波的波形、频率、幅度和偏移。在相位调制中, 载波的相位是随着调制波形的瞬时电压而变化的,载波波形可以使用波形表中的大 多数波形, 但是有些波形可能是不合适的。
- 3.5.2 相位偏差: 按〖相位偏差〗软键,选中 Phase Dev 参数,可以设置相位 偏差值。相位偏差表示在相位调制过程中,调制波形达到满幅度时载波相位的变化 量。在调制波的正满度值,输出信号的相位增加一个相位偏差,在调制波的负满度 值,输出信号的相位减少一个相位偏差。
- 3.5.3 调制频率: 按〖调制频率〗软键,选中 PM Freq 参数,可以设置调制频 率值,调制频率一般远低于载波频率。
- 3.5.4 调制波形:按〖调制波形〗软键,选中 Shape 参数,可以设置调制波 形。按【Waveform】键,显示出波形菜单,按波形菜单软键可以设置调制波形。调 制波形可以使用波形表中的大多数波形,但是有些波形可能是不合适的。波形选择 后返回调制菜单。

3.5.5 调制源:按〖调制源〗软键,如果选中了 Internal, 仪器使用内部调制源,调制频率和调制波形的设置是有效的。如果选中了 External,则使用外部调制源,调制频率和调制波形的设置被忽略。从仪器后面板《Modulation In》端口输入调制信号,当外部调制信号满幅度为±5V 时,相位偏差的显示与实际相位偏差相符合,否则相位偏差的显示是不正确的。

3.6 脉宽调制

按【Modulate】键,默认选择频率调制模式,按〖调制类型〗软键,显示出调制类型菜单,按〖脉宽调制〗软键,工作模式显示为 PWM Modulation,同时显示出脉宽调制的波形示意图和脉宽调制菜单。

- 3.6.1 **载波设置:** 首先设置载波频率、幅度和偏移。在 PWM 调制中,仪器自动将载波波形设置为脉冲波,载波的脉冲宽度是随着调制波形的瞬时电压而变化的,载波的波形只能使用脉冲波形。
- 3.6.2 脉宽偏差:按〖脉宽偏差〗软键,选中 Width Dev 参数,可以设置脉宽偏差值。脉宽偏差表示在脉宽调制过程中,调制波形达到满幅度时载波脉宽变化量相对于脉宽设置值的百分比。在调制波的正满度值,输出信号的脉宽等于脉宽设置值加上脉宽偏差;在调制波的负满度值,输出信号的脉宽等于脉宽设置值减去脉宽偏差。
- **3.6.3 调制频率:** 按〖调制频率〗软键,选中 PWM Freq 参数,可以设置调制 频率值,调制频率一般远低于载波频率。
- 3.6.4 调制波形:按〖调制波形〗软键,选中 Shape 参数,可以设置调制波形。按〖Waveform〗键,显示出波形菜单,按波形菜单软键可以设置调制波形。调制波形可以使用波形表中的大多数波形,但是有些波形可能是不合适的。波形选择后返回调制菜单。
- 3.6.5 调制源:按〖调制源〗软键,如果选中了 Internal, 仪器使用内部调制源,调制频率和调制波形的设置是有效的。如果选中了 External,则使用外部调制源,调制频率和调制波形的设置被忽略。从仪器后面板《Modulation In》端口输入调制信号,当外部调制信号满幅度为±5V 时,脉宽偏差的显示与实际脉宽偏差相符合,否则脉宽偏差的显示是不正确的。

3.7 叠加调制

按【Modulate】键,默认选择频率调制模式,按《调制类型》软键,显示出调 制类型菜单,按《叠加调制》软键,工作模式显示为 Sum Modulation,同时显示出 叠加调制的波形示意图和叠加调制菜单。

- 3.7.1 载波设置: 首先设置载波的波形、频率、幅度和偏移。在叠加调制中, 输出波形的瞬时电压等于载波波形和调制波形的电压之和。载波波形可以使用波形 表中的大多数波形,但是有些波形可能是不合适的。
- 3.7.2 **叠加幅度**:按〖叠加幅度〗软键,选中 Sum Amp1 参数,可以设置叠加幅 度值。叠加幅度表示在叠加调制过程中,叠加到载波信号上的调制波形的幅度大 小,用载波幅度设置值的百分比来表示。当叠加幅度设置为 100%时,调制波形幅 度等于载波幅度设置值的一半。当叠加幅度设置为0%时,调制波形幅度等于0,此 时的载波幅度也等于载波幅度设置值的一半。
- 3.7.3 调制频率: 按〖调制频率〗软键,选中 Sum Freq 参数,可以设置调制 频率值,和其他调制类型不同,调制频率可以远高于载波频率值。
- 3.7.4 调制波形:按〖调制波形〗软键,选中 Shape 参数,可以设置调制波 形。按【Waveform】键,显示出波形菜单,按波形菜单软键可以设置调制波形。调 制波形可以使用波形表中的大多数波形,但是有些波形可能是不合适的。波形选择 后返回调制菜单。
- 3.7.5 调制源:按《调制源》软键,如果选中了Internal,仪器使用内部调制 源,调制频率和调制波形的设置是有效的。如果选中了 External,则使用外部调制 源,调制频率和调制波形的设置被忽略。从仪器后面板《Modulation In》端口输入 调制信号, 当外部调制信号满幅度为±5V 时, 叠加幅度的显示与实际叠加幅度相符 合, 否则叠加幅度的显示是不正确的。

3.8 频移键控

按【Modulate】键,默认选择频率调制模式,按〖调制类型〗软键,显示出调 制类型菜单,按〖频移键控〗软键,工作模式显示为 FSK Modulation,同时显示出 频移键控的波形示意图和频移键控菜单。

3.8.1 载波设置: 首先设置载波的波形、频率、幅度和偏移。在 FSK 调制中,

输出信号的频率在"载波频率"和"跳变频率"两个频率间交替跳变,跳变的速度 由键控速率确定。载波波形可以使用波形表中的大多数波形,但是有些波形可能是 不合适的。

- 3.8.2 跳变频率: 按〖跳变频率〗软键,选中 Hop Freq 参数,可以设置跳变 频率值。FSK 调制与调制波形为方波的 FM 调制相类似。"跳变频率"类似于"频率 偏差",不同的是 FM 调制的频率偏差是在载波频率基础上加减的一个偏移量,其设 置范围与载波频率有关,而跳变频率可以在全部频率范围内任意设置,和载波频率 没有关系。
- 3.8.3 键控速率: 按〖键控速率〗软键,选中 FSK Rate 参数,可以设置键控 速率值,也就是调制频率,键控速率一般远低于载波频率。
- 3.8.4 调制波形: 在 FSK 调制中,调制波形固定为占空比 50%的方波,不可以 设置。
- 3.8.5 调制源:按《调制源》软键,如果选中了Internal,仪器使用内部调制 源,键控速率的设置是有效的。如果选中了 External,则使用外部调制源,键控速 率的设置被忽略。从仪器后面板《Trig In》端口输入 TTL 电平的调制信号。当调制 信号为逻辑低电平时,输出信号的频率为载波频率; 当调制信号为逻辑高电平时, 输出信号的频率为跳变频率。

3.9 相移键控

按【Modulate】键,默认选择频率调制模式,按〖调制类型〗软键,显示出调 制类型菜单,按〖相移键控〗软键,工作模式显示为 BPSK Modulation,同时显示 出相移键控的波形示意图和相移键控菜单。

- 3.9.1 载波设置: 首先设置载波的波形、频率、幅度和偏移。在 BPSK 调制 中,输出信号的相位在"载波相位"和"跳变相位"两个相位间交替跳变,跳变的 速度由键控速率确定。载波波形可以使用波形表中的大多数波形,但是有些波形可 能是不合适的。
- 3.9.2 跳变相位:按〖跳变相位〗软键,选中 Hop Phase 参数,可以设置跳变 相位值。BPSK 调制与调制波形为方波的 PM 调制相类似。"跳变相位"类似于"相 位偏差"。
 - 3.9.3 键控速率: 按〖键控速率〗软键,选中 BPSK Rate 参数,可以设置键控

速率值,也就是调制频率,键控速率一般远低于载波频率。

- 3.9.4 调制波形: 在 BPSK 调制中,调制波形固定为占空比 50%的方波,不可 以设置。
- 3.9.5 调制源:按〖调制源〗软键,如果选中了 Internal,仪器使用内部调制 源,键控速率的设置是有效的。如果选中了 External,则使用外部调制源,键控速 率的设置被忽略。从仪器后面板《Trig In》端口输入 TTL 电平的调制信号。当调制 信号为逻辑低电平时,输出信号的相位为载波相位; 当调制信号为逻辑高电平时, 输出信号的相位为跳变相位。

3.10 频率扫描

按【Sweep】键,默认进入频率扫描模式,工作模式显示为 Frequency Sweep, 同时显示出频率扫描的波形示意图和频率扫描菜单。

3.10.1 扫描信号设置: 首先设置扫描信号的波形、幅度和偏移。在频率扫描 中,输出频率按照设置的扫描时间从始点频率到终点频率变化。扫描可以在整个频 率范围内进行。扫描过程中,输出信号的相位是连续的。频率扫描可以使用波形表 中的大多数波形,但是有些波形可能是不合适的。

频率线性扫描和锯齿波频率调制相类似,不同的是频率扫描不使用调制波形, 而是按照一定的时间间隔连续输出一系列离散的频率点。

- **3.10.2 始点终点频率:**按 《 始点频率 》 软键, 选中 Stat Freq 参数, 可以设 置始点频率值。按〖终点频率〗软键,选中 Stop Freq 参数,可以设置终点频率 值。如果终点频率值大于始点频率值,则频率从低到高正向扫描,扫描从始点频率 开始逐步增加,直到终点频率值。如果终点频率值小于始点频率值,则频率从高到 低反向扫描,扫描从始点频率开始逐步减少,直到终点频率值。
- 3.10.3 标志频率:按〖标志频率〗软键,选中 Mark Freq 参数,可以设置标 志频率值,当扫描通过标志频率点时,同步输出信号会有一个跳变。标志频率必须 设置在始点频率和终点频率之间。如果超出了范围,仪器自动将标志频率设置为扫 描区间的中点。
- 3.10.4 扫描模式:按〖扫描模式〗软键,如果选中 linear 为线性扫描模式, 如果选中 Logarithm 则为对数扫描模式。

在线性扫描模式时,频率步进量是固定的。当扫描范围较宽时,固定的频率步

进量会带来不利的影响,会导致在频率的高端扫描分辨率较高,频率变化较慢,扫 描很细致。但在频率的低端扫描分辨率较低,频率变化很快,扫描很粗糙。因此, 线性扫描模式适合于扫描频率范围较窄的场合。

在对数扫描模式时,频率步进量不是固定的,而是按对数关系变化。在频率的 高端,频率步进量较大,在频率的低端,频率步进量较小。在较宽的频率扫描范围 内, 频率的变化是相对均匀的。对数扫描模式适合于扫描频率范围较宽的场合。

- 3.10.5 扫描时间: 按〖扫描时间〗软键,选中 Swep Time 参数,可以设置扫 描时间值。扫描时间表示从始点频率扫描到达终点频率时所占用的时间。扫描过程 中每个频率点持续的时间是固定不变的,所以扫描时间越长,扫描频率点数就越 多, 频率步进量就越小, 扫描就越精细。扫描时间越短, 扫描频率点数就越少, 频 率步进量就越大,扫描就越粗糙。
- **3.10.6 保持时间:**按《保持时间》软键,选中 Hold Time 参数,可以设置保 持时间值。保持时间表示扫描到达终点频率以后,保持在终点频率所停留的时间。
- 3.10.7 返回时间:按〖返回时间〗软键,选中 Retn Time 参数,可以设置返 回时间值。返回时间表示从终点频率反向扫描到达始点频率所占用的时间。不管扫 描模式设置为线性还是对数,在返回扫描时,都使用线性扫描模式。
- **3.10.8 触发源:**按〖触发源〗软键,如果选中了Immediate,仪器使用内部 触发源,触发扫描过程连续反复运行。如果选中了 External,仪器使用外部触发 源。一个扫描过程(扫描、保持、返回)完成以后,便停止在始点频率等待触发。 每按一次〖手动触发〗软键,触发扫描过程运行一次。也可以从后面板《Trig In》端口输入 TTL 电平的触发信号。每一个触发信号的上升沿,触发扫描过程运行 一次。当然,触发信号的周期应该大于一个扫描过程的总时间(扫描时间+保持时 间+返回时间)。

3.11 列表扫描

按【Sween】键,默认进入频率扫描模式,按〖列表扫描〗软键,选择列表扫描, 工作模式显示为 List Sweep, 同时显示出列表扫描的波形示意图和列表扫描菜单。

3.11.1 扫描信号设置: 首先设置扫描信号的波形、幅度和偏移, 然后创建一 个频率列表。在列表扫描中,仪器按照设置的停留时间,依次通过列表中的每一个 频率值,扫描过程中,输出信号的相位是连续的。列表扫描可以使用波形表中的大 多数波形, 但是有些波形可能是不合适的。

在频率扫描模式中,频率的变化规律只有线性和对数两种,频率的变化只能逐 步增加或逐步减少,而且扫描过程中在每个频率点所停留的时间是固定不变的。在 有些应用场合,需要输出一个按任意规律变化或毫无规律的频率序列,而且在每个 频率点停留的时间可以设置,这时就可以使用频率列表扫描。

- **3.11.2 频率列表:** 频率列表的长度为 600 个频率值, 列表序号 00~599, 按 〖列表序号〗软键,选中 List Num 参数,可以设置列表序号。列表序号设置以 后,仪器自动选中 List Freq 参数,并显示出该序号的频率值,可以用数字键或旋 钮设置这个频率值。再按〖下一个〗软键,列表序号加一,显示出下一个频率值。 用这种方法,可以创建或修改一个频率列表。频率列表的存储和调出,是和仪器状 态参数的存储和调出同时进行的,将在"通用操作"一节中详述。
- 3.11.3 始点终点序号:按〖始点序号〗软键,选中 Start Num 参数,可以设 置始点序号。按〖终点序号〗软键,选中 Stop Num 参数,可以设置终点序号。扫 描从始点序号开始,依次输出列表中的每一个频率值,直到终点序号结束,完成一 个扫描过程。
- **3.11.4 停留时间:** 按〖停留时间〗软键,选中 Dwel Time 参数,可以设置停 留时间值,停留时间表示在扫描过程中每一个频率点所停留的时间。
- **3.11.5 保持时间:** 按〖保持时间〗软键,选中 Hold Time 参数,可以设置保 持时间值。保持时间表示扫描到达终点序号以后,保持在终点序号的频率所停留的 时间。
- 3.11.6 触发源:按〖触发源〗软键,如果选中了 Immediate, 仪器使用内部 触发源, 触发扫描过程连续反复运行。如果选中了 External, 仪器使用外部触发 源。一个扫描过程(扫描、保持)完成以后,便停止在始点序号的频率点等待触 发。每按一次〖手动触发〗软键,触发扫描过程运行一次。也可以从后面板《Trig In》端口输入 TTL 电平的触发信号。每一个触发信号的上升沿,触发扫描过程运行 一次。当然,触发信号的周期应该大于一个扫描过程的总时间。

总时间=(终点序号-始点序号)×停留时间+保持时间

3.12 猝发输出

按【Burst】键,工作模式显示为 Burst,同时显示出猝发波形示意图和猝发输

出菜单。

- 3.12.1 猝发信号设置: 首先设置猝发信号的波形、频率、幅度和偏移。在猝 发输出中, 仪器按照设置的猝发周期、猝发计数和起始相位, 连续或单次输出猝发 信号,也可以对信号进行门控输出。猝发波形可以使用波形表中的大多数波形,但 是有些波形可能是不合适的。
- 3.12.2 猝发模式: 猝发模式有两种: "触发模式"和"门控模式"。按〖猝 发模式〗软键,如果选中了 Triggered,使用触发模式,根据内部、外部或手动触 发信号,从起始相位开始,每次输出设定数目的周期波形,然后停止在与起始相位 对应的电平点上,等待下一次触发。

如果选中了 Gated, 使用门挖模式, 根据外部或手动触发信号, 门挖开通或者 关闭输出信号,并能保证门控输出信号的周期都是完整的。

3.12.3 猝发周期:按《猝发周期》软键,选中 Burs Perd 参数,可以设置猝 发周期值。猝发周期表示从一次猝发信号开始到下一次猝发信号开始的时间,猝发 周期必须足够大,以便能够容纳所设置的猝发计数,如下式:

猝发周期>(猝发计数/猝发信号频率)

如果设置的猝发周期值过小,仪器将修改设置值,将猝发周期限制在所允许的 最小值。

3.12.4 猝发计数: 按〖猝发计数〗软键,选中 N Cycles 参数, 可以设置猝 发计数值。猝发计数表示在一个猝发周期中所包含的猝发信号周期数,猝发计数必 须足够少,以便在猝发周期中能够容纳得下,如下式:

猝发计数<(猝发周期×猝发信号频率)

如果设置的猝发计数值过大,仪器将修改设置值,将猝发计数限制在所允许的 最大值。

- **3.12.5 起始相位:** 按〖起始相位〗软键,选中 Stat Phas 参数,可以设置起 始相位值。猝发信号的起始时刻和结束时刻总是处在波形的相同相位上,称为起始 相位。
- 3.12.6 触发源:按〖触发源〗软键,如果选中了 Immediate,仪器使用内部 触发源,猝发周期的设置有效。在触发模式时,按照猝发周期的设置,连续触发输 出一系列猝发信号。如果选中了 External, 仪器使用外部触发源, 猝发周期的设置 被忽略。

在触发模式时,一次猝发信号输出以后,便停止在与起始相位对应的电平点 上,等待触发。每按一次〖手动触发〗软键,猝发信号输出一次。也可以从后面板 《Trig In》端口输入 TTL 电平的触发信号。每一个触发信号的上升沿,猝发信号 输出一次。当然, 触发信号的周期应该符合猝发周期值的限定条件。

在门控模式时,只能使用外部触发源,猝发计数的设置被忽略,但是输出周期 数最少为两个。按《手动触发》软键,可以循环开通和关闭输出信号。在手动触发 使输出关闭时,可以从后面板《Trig In》端口输入 TTL 电平的触发信号。当触发 信号为高电平时,输出信号开通,当触发信号为低电平时,等待最后一个周期波形 完成以后,便停止在与起始相位对应的电平点上,等待触发信号变为高电平,再开 通输出信号。

3.13 双通道操作

按【Dual Channel】键,工作模式显示为 Dual Channel Operation,同时显示出 双通道操作的关系式和双通道菜单。

3.13.1 操作模式:双通道操作包含两种模式:参数耦合和波形组合,其中参 数耦合又包含频率耦合和幅度耦合。使用参数耦合的方法,可以生成两个同步变化 的信号,例如差分信号,倍频或差频信号。使用波形组合的方法,可以产生复杂的 特殊波形,能够很好地模拟现实世界中的真实信号。

如果开通了参数耦合或波形组合,通道 B 即进入双通道操作模式,工作模式显 示为 Dual Channel, 否则,两个通道可以独立操作。

3.13.2 频率耦合:按『频率耦合》软键,如果选中了 0n.两个通道的频率耦 合开通,只要设置通道 A 的频率值,则通道 B 的频率值会自动跟随改变,但设置通 道 B 的频率值,通道 A 的频率值不变。

按〖频率比〗软键,选中 FreqRatio 参数,可以设置两个通道的频率比值。按 《频率差》软键,选中 Freq Diff 参数,可以设置两个通道的频率差值。两通道的 频率耦合关系如下式:

通道 B 频率= 通道 A 频率 × 频率比 + 频率差

按《频率耦合》软键,如果选中了 0ff,两个通道的频率耦合断开,两个通道 的频率参数可以独立设置。

3.13.3 幅度耦合:按〖幅度耦合〗软键,如果选中了 0n,两个通道的幅度耦 合开通,只要设置通道 A 的幅度值或偏移值,则通道 B 的幅度值或偏移值会自动跟 随改变,但设置通道 B 的幅度值或偏移值,通道 A 的幅度值或偏移值不变。

按〖幅度差〗软键,选中了 Ampl Diff 参数,可以设置两个通道的幅度差值。 按〖偏移差〗软键,选中了 Offs Diff 参数,可以设置两个通道的偏移差值。两通 道的幅度耦合关系如下式:

> 通道 B 幅度= 通道 A 幅度+ 幅度差 通道 B 偏移= 通道 A 偏移+ 偏移差

按〖幅度耦合〗软键,如果选中了 Off,两个通道的幅度耦合断开,两个通道 的幅度和偏移参数可以独立设置。

3.13.4 波形组合: 在波形组合中,两个通道的波形都可以使用波形表中的大 多数波形, 但是有些波形可能是不合适的。

波形组合与叠加调制(Sum)相类似,不同的是,叠加调制使用调制波形,波形 组合使用通道 A 的波形, 而通道 A 不仅可以使用连续波形, 还可以使用调制波形、 扫描波形或猝发波形,因此,波形组合可以产生更加复杂的波形。

按〖波形组合〗软键,如果选中了 On,两个通道的波形组合开通,通道 A 的波 形可以和通道 B 的波形叠加组合在一起,组合后的波形从通道 B 的端口输出。

按〖组合幅度〗软键,选中了 Comb Ampl 参数,可以设置组合幅度值。组合幅 度表示叠加到通道 B 波形上的通道 A 波形的幅度大小, 用通道 B 幅度设置值的百分 比来表示。当组合幅度设置为 100%时,通道 A 波形的幅度等于通道 B 幅度设置值 的一半。当组合幅度设置为 0%时,通道 A 波形的幅度等于 0,此时通道 B 波形的幅 度等于幅度设置值的一半。两通道的波形组合关系如下式:

组合波形 = 通道 A 波形 × 组合幅度 + 通道 B 波形

按〖波形组合〗软键,如果选中了 0ff,两通道的波形组合断开,两个通道的 波形可以独立设置。

- 3.13.5 波形组合举例:利用波形组合的方法,可以生成一些特殊的波形,例 如要在通道 B 波形的每个周期上叠加两个窄脉冲,可按下列步骤操作:
- (1). 首先将通道 A 选择为连续模式,波形设置为方波,占空比设置为 10%,频 率设置为 10kHz。
 - (2). 再将通道 A 选择为猝发模式, 猝发周期设置为 1ms, 猝发计数设置为 2。

- (3). 按【Dual Channel】键选择双通道操作模式,设置组合幅度为50%。
- (4). 按〖波形组合〗软键,将波形组合选择为 0n。
- (5). 将通道 B 选择为连续模式,波形设置为正弦波,频率设置为 1kHz。
- (6). 此时通道 B 即可以输出一个正弦波形,每个周期上叠加有两个窄脉冲。

3.14 任意波形

按【Utility】键,显示出通用菜单,按〖波形编辑〗软键,选择任意波形编辑 工作模式,显示出波形编辑窗口和波形编辑菜单。

- 3.14.1 波形编辑窗口:可以通过仪器的波形编辑窗口,使用键盘编辑一些简单的波形。波形编辑窗口的水平坐标表示波形的相位,其数值范围是 0~4095,对应实际输出波形相位的 0°~360°。波形编辑窗口的垂直坐标表示波形的幅度,其数值范围是 0~16383,对应实际输出波形电压的一10V~10V。按【Waveform】键,可以从 60 种波形中任选一个波形(例如正弦波),然后返回。所选波形就会在波形编辑窗口中显示出来,然后可以对该波形进行编辑和修改。
- 3.14.2 波形编辑光标:在波形编辑窗口中有一条垂直光标线和一条水平光标线。按〖水平坐标 Hor_x Value〗软键,选中 X Value 参数,设置水平坐标值,可以改变垂直光标线的坐标位置 X。按〖垂直坐标 Ver_y Value〗软键,选中 Y Value 参数,设置垂直坐标值,可以改变水平光标线的坐标位置 Y。两光标线的十字交叉点就指定了当前光标点的 XY 坐标位置。如果改变了水平坐标值,仪器会自动读出当前波形上与之相对应的垂直坐标值,光标的十字交叉点会沿着当前波形的轨迹移动。
- 3.14.3 水平缩放和平移:由于波形编辑窗口水平分辨率的限制,不能显示出波形的细节部分。按〖水平缩放 Hor_x Zoom〗软键,选中 Hor Zoom 参数,可以设置水平缩放比,将波形进行水平放大,水平缩放比越大,对波形细节部分的分辨率就越高。但是由于波形编辑窗口大小的限制,只有当水平缩放比为 1 时,才能在波形编辑窗口中显示出波形的全貌,波形经过水平放大以后,在波形编辑窗口中便只能显示出波形的局部图形。按〖水平移动 Hor_x Shift〗软键,选中 Hor Shift 参数,可以设置水平移动值,水平移动值也就是编辑窗口左边界的水平坐标值。通过合适地设置水平缩放值和水平移动值,便可以对波形的任意部分进行放大和显示,以便对波形的细节部分进行编辑和修改。

- 3.14.4 线段的始点和终点:对波形的编辑和修改采用画矢量线段的方法,当 一个波形点的 XY 坐标位置确定之后,按一次〖矢量始点 Vector Start〗软键,绿 色光标线变为白色,白色光标线的十字交叉点就定义为矢量线段的起始点。然后再 设置下一个波形点的 XY 坐标位置,将绿色光标线十字交叉点定义为矢量线段的终止 点。按一次〖矢量终点 Vector End〗软键,仪器自动在矢量线段的始点和终点之间 画一条直线,然后擦除光标线,一条矢量线段的绘制就完成了。
- 3.14.5 **创建任意波形**:按〖创建波形 Create New〗软键,将波形编辑窗口中 当前的波形删除,然后用上述方法在波形编辑窗口中绘制矢量线段,并将前一条矢 量线段的终点定义为后一条矢量线段的始点,使这些矢量线段首尾相连,就可以组 合成一个任意波形。例如要创建一个三角波形,操作步骤如下:
 - (1). 设置水平坐标为 0, 垂直坐标为 0。按〖矢量始点〗软键。
 - (2). 设置水平坐标为 2048, 垂直坐标为 16383。按《矢量终点》软键。
 - (3)、按《矢量始点》软键。
 - (4). 设置水平坐标为 4095, 垂直坐标为 0。按〖矢量终点〗软键。
- 一个三角波形就编辑完成了,需要注意,一个矢量线段的终点坐标位置必须在 始点坐标位置的右边, 也就是矢量终点的 X 坐标值必须大于始点的 X 坐标值。另 外,如果实际输出波形需要周期连续,水平坐标为0和水平坐标为4095的两个波 形点, 其垂直坐标值应该相等。
- 3.14.6 修改任意波形:如果要对一个波形进行修改,例如要在正弦波上添加 一个很窄的脉冲,操作步骤如下:
 - (1). 按【Waveform】键,选择正弦波,然后返回。
 - (2). 设置水平坐标为 2048, 垂直坐标为 15000。按《矢量始点》软键。
 - (3). 设置水平坐标为 2050, 垂直坐标为 15000。按〖矢量终点〗软键。
- (4). 按『水平缩放》软键,设置缩放比为 18.5。按『水平移动》软键,设置水 平移动值为2000。即可以清楚地看到所添加的窄脉冲的细节。
- 3.14.7 任意波形下载:使用键盘编辑一个任意波形,可以随意修改,即编即 用。但是只适合编辑比较简单的波形,对于比较复杂的波形,使用键盘编辑就要花 费大量的时间。最好通过波形编辑软件,在计算机屏幕上编辑一个任意波形,然后 再将波形数据下载到仪器中。操作步骤如下:
 - (1). 将随机光盘中的波形编辑软件装入到计算机中, 使用 USB 连接电缆将仪器

与计算机连接起来(波形编辑软件的使用方法另有说明)。

- (2). 打开计算机波形编辑软件,编辑一个任意波形。
- (3). 将任意波形数据下载到仪器中, 仪器自动进入到波形编辑工作模式, 在波 形编辑窗口中会显示出计算机下载的任意波形。
- 3.14.8 用户波形存储: 无论是使用键盘创建或编辑修改任意波形,还是使用 波形编辑软件将任意波形下载到仪器中、仪器的编辑窗口中显示的任意波形都暂时 存储在易失性存储器中,关断电源就丢失了。如果想长期保存波形,必须进行存 储。

按〖波形存储〗软键,选中 Arb Store 参数,可以将当前任意波形存储到指定 的非易失性存储区,关断电源也不会丢失。存储一个新的任意波形,会将相同存储 位置的原有波形数据覆盖掉,为了防止无意中的存储操作使原有数据遭到破坏,仪 器在存储之前首先发出询问"存储将会覆盖原有数据,确定?"如果不想存储,可 以按《取消》软键取消存储操作。

按〖波形存储〗软键以后,操作菜单显示出 5 个存储区:从〖用户波形 0 User 0〗, 到〖用户波形 4 User 4〗, 按其中一个菜单软键, 可以将当前的任意 波形数据存储到相应的存储区。存储完成以后,存储参数会显示出 Stored。

- 3.14.9 用户波形调出: 和其他波形完全一样, 按【Waveform】键, 选择波形名 称为用户波形 0~用户波形 4,即可以调出所选择的用户波形。
- 3.14.10 存储器: 如果仪器前面板上的 USB 插座中没有插入 U 盘存储器, Memory 参数显示为 Internal, 存储与调出操作都使用仪器内部的存储器。如果在 仪器前面板的 USB 插座中插入 U 盘存储器,则 Memory 参数显示为 External,仪器 使用 U 盘存储器, 在存储操作时, 仪器自动在U盘中创建一个名为 USER x. ARB 的 文件(x=0~4),然后将当前任意波形数据存储到该文件中。在调出操作时,如果 U 盘中有一个名为 USER x. ARB 的文件(x=0 \sim 4), 则将该文件的数据调出到仪器 中。使用U盘存储器,能够使更多的操作者各自保存和使用自己创建的任意波形。

3.15 通用操作

按【Utility】键,显示出通用操作窗口和通用操作菜单。

3.15.1 状态存储: 仪器在使用中可以设置各种工作参数,例如波形、频率、 幅度等,统称为工作状态参数。仪器内部有 5 个非易失性存储区,可以存储 5 组工 作状态参数。

按〖状态存储〗软键,选中 Store 参数,可以将当前的工作状态参数存储到指 定的非易失性存储区,关断电源也不会丢失。存储一组新的工作状态参数,会将相 同存储区的原有工作状态参数覆盖掉,为了防止无意中的存储操作使原有数据遭到 破坏,仪器在存储之前首先发出询问"存储将会覆盖原有数据,确定?"如果不想 存储,可以按《取消》软键,取消存储操作。

按〖状态存储〗软键以后,操作菜单显示出 5 个存储区:〖默认状态 Default State〗, 〖开机状态 Power On State〗, 〖用户状态 O User O State〗, 〖用 户状态 1 User 1 State]], 〖用户状态 2 User 2 State]], 按其中一个菜单软 键,可以将当前的工作状态参数存储到相应的存储区。存储完成以后,存储参数会 显示出 Stored。

《默认状态》存储区存储了仪器出厂时的默认工作状态参数, 为了保护默认工 作状态参数不被破坏,〖默认状态〗存储区不能进行存储操作。

《开机状态》存储区存储了仪器上电时的工作状态参数,用户可以把自己常用 的工作状态参数存储在〖开机状态〗存储区,开通电源时自动调出。

《用户状态 0》《用户状态 1》《用户状态 2》存储区可以分别存储三组个性 化的工作状态参数,供专门用户自己使用。

- 3.15.2 状态调出:按〖状态调出〗软键,选中了 Recall 参数,可以从非易失 性存储区中调出工作状态参数。按〖状态调出〗软键以后,操作菜单显示出和存储 时相同的 5 个存储区。按其中一个菜单软键,可以从相应的存储区中调出工作状态 参数。工作状态参数调出以后,显示界面转换到连续工作模式,仪器使用新的工作 状态参数进行工作。
- 3.15.3 存储器: 如果仪器前面板的 USB 插座中没有插入 U 盘存储器, Memory 参数显示为 Internal, 存储与调出操作都使用仪器内部的存储器。如果在仪器前面 板上的 USB 插座中插入 U 盘存储器,则 Memory 参数显示为 External,仪器使用 U 盘存储器。在存储操作时,仪器自动在U盘中创建一个名为 STATEx. SET 的文件(x $=1\sim4$),然后将工作状态参数存储到该文件中。在调出操作时,如果U盘中有一个 名为 STATEx. SET 的文件 $(x=1\sim4)$, 则将该文件的数据调出到仪器中。使用 U 盘存 储器,能够使更多的操作者各自保存和使用自己个性化的工作状态参数。
 - 3.15.4 语言选择:按《语言选择》软键,如果选中了Chinese,则使用中文,

如果选中了 English,则使用英文,中文和英文选择只限于操作菜单和提示信息, 其他部分始终使用英文显示。如果选中了一种语言,仪器会一直使用这种语言,系 统复位和关断电源再重新开机都不会改变,除非重新进行语言选择。

3.16 系统设置

按【Utility】键,显示出通用操作窗口和通用操作菜单。按《系统设置》软 键,显示出系统设置窗口和系统设置菜单。

3.16.1 显示模式:按〖显示模式〗软键,如果选中了 Single CH,使用单通 道显示模式。参数显示区只显示一个通道的参数,可以同时显示出该通道的十种参 数。如果要查看两个通道的参数,只能使用通道键轮流查看。

如果选中了 Dual CH,则使用双通道显示模式。参数显示区划分成左右两个部 分,可以同时显示出两个通道的参数,但是每个通道的参数最多只能显示五种。如 果要查看全部参数,只能使用翻页键轮流查看。

3.16.2 光标模式:按〖光标模式〗软键,如果选中了 Auto,光标移位使用自 动模式。当光标位于参数的最左位时,向右转动旋钮使数字产生进位时,光标自动 左移一位。向左转动旋钮使数字产生借位时,光标自动右移一位。使用光标自动模 式,可以使用旋钮在很大的范围内连续调节参数值,不必频繁移动光标,非常方 便。如果光标没有位于参数的最左位,则光标移位和手动模式一样。

如果选中了 Manual,则光标移位使用手动模式,不管光标的位置如何,都需要 手动移位。如果参数允许使用正负数值,使用手动模式比较方便。

3.16.3 开机状态:按〖开机状态〗软键,如果选中了 User Def,开通电源时 仪器自动调出 1#存储区的工作状态参数。用户可以将自己常用的工作状态参数存储 在1#存储区,每次开通电源时的工作状态都是相同的。

如果选中了 Last,每次键盘操作之后3秒,仪器都将当时的工作状态参数存储 到 1#存储区,开通电源时自动调出 1#存储区的工作状态参数,也就是自动恢复到最 后一次操作时的工作状态,每次开通电源时仪器的工作状态都是不同的。

3.16.4 屏幕保护: 按〖屏幕保护 Screen Protect〗软键,选中 Scrn pro 参 数,可以设置屏幕保护时间。屏幕保护时间设置以后,每次面板键盘的操作,都重 新启动屏幕保护定时,如果停止了面板键盘的操作,达到屏幕保护时间之后,屏幕 显示会自动关闭。这样可以减少能源的消耗和屏幕的老化,延长仪器的使用寿命。

在屏幕保护以后, 按任意键都可以恢复屏幕显示。

- 3.16.5 蜂鸣器:按动前面板的任一个按键,蜂鸣器都会有一较短的响声,表 示按键有效。转动旋钮时,也会有一较短的响声。如果需要安静,可以将蜂鸣器响 声关闭。按〖蜂鸣器〗软键,如果选中了 On,则蜂鸣器开通。如果选中了 Off,则 蜂鸣器关闭。操作错误或输入数据超过允许值时,蜂鸣器会有一较长的报警响声, 报警响声不会被关闭。
- 3.16.6 波特率: 按〖波特率〗软键,选中 Baud Rate 参数,可以设置 RS232 通信传输时的波特率。按〖波特率〗软键以后,操作菜单显示出 6 个可选值: 【19200】, 【14400】, 【9600】, 【7200】, 【4800】, 【2400】, 按其中一个 菜单软键,可以选择一种波特率。当波特率选定以后,和本机通信的其他设备也应 该设置为相同的波特率,二者才能实现正常通信。

3.17 颜色设置

按【Utility】键,显示出通用菜单,按〖颜色设置〗软键,选择颜色设置工作 模式,显示出颜色设置的调色板和颜色设置菜单。

- 3.17.1 通道 A 参数:按〖A 路参数〗软键,选中 CHA Font 参数,可以设置通 道 A 参数字体的颜色。
- **3.17.2 通道 B 参数:** 按〖B 路参数〗软键,选中 CHB Font 参数,可以设置通 道 B 参数字体的颜色。
- 3.17.3 菜单背景:按〖菜单背景〗软键,选中 Menu 参数,可以设置操作菜单 的背景颜色。
- 3.17.4 选项背景:按〖选项背景〗软键,选中 Selected 参数,可以设置被选 中菜单项的背景颜色。
- 3.17.5 边框线条:按《边框线条》软键,选中 Border 参数,可以设置边框线 条的颜色。

在设置颜色参数时,可以在调色板中杳看所设置的颜色,调色板中有 255 个颜 色块,左上角颜色块的参数值为0,右下角颜色块的参数值为254,被设置的颜色块 中心变为黑色。通过颜色设置,操作者可以设置自己喜欢的显示界面颜色。

3.18 计数器

按【Counter】键,选择计数器工作模式,显示出 Counter Operation,并显示出 计数器波形示意图和计数器菜单。

将外部被测信号连接到前面板的《Sync/Counter》端口,可以测量出被测信号 的频率、周期、脉冲宽度、占空比和周期数。

3.18.1 连续信号:对于连续信号,可以测量信号的频率、周期、脉冲宽度和 占空比。

按〖频率测量〗软键,选中 Frequency 参数,可以测量信号的频率值。

按《周期测量》软键,选中Period参数,可以测量信号的周期值。

按《脉宽测量》软键,选中 Width 参数,可以测量信号的脉冲宽度值。

按〖占空比〗软键,选中 Duty Cyc 参数,可以测量信号的占空比。

3.18.2 断续信号:对于断续信号,例如猝发信号,不能测量频率、周期、脉 冲宽度和占空比,只能测量信号的周期数。

按〖计数测量〗软键,如果选中了0n,计数闸门打开,首先将计数值清零,然 后开始累加计数。如果选中了 0ff, 计数闸门关闭, 计数停止。为了测量的准确, 应该在信号停止期间打开计数闸门,对于连续信号,计数测量没有意义。

如果选中了计数测量, 闸门时间的设置被忽略。

- 3.18.3 闸门时间:按〖闸门时间〗软键,选中 Gate Time 参数,可以设置闸 门时间值。闸门时间表示对被测信号的采样时间,闸门时间越长,采样数据就越 多,测量结果就越稳定,测量分辨率也越高,但是对信号的快速变化反映也越迟 钝。闸门时间越短,对信号变化的跟踪就越好,但是会降低测量分辨率。一般来 说,闸门时间应该大于被测信号的周期时间。
- 3.18.4 触发电平:按〖触发电平〗软键,选中 Trig levl 参数,可以设置触发 电平值。如果使用交流耦合,触发电平值应该设置为 0。如果使用直流耦合,应该 调整触发电平值。当被测信号的幅度较大时,触发电平的调整影响不大。但是当被 测信号的幅度很小,或者频率很高时,则需要仔细调整触发电平值,才能得到较好 的测量结果。
- **3.18.5 灵敏度:**按 《 灵敏度 》 软键,选中 Sensitive 参数,可以设置触发灵 敏度值,数值越大,灵敏度越高。当被测信号的幅度较大时,灵敏度的调整影响不 大。但是当被测信号的幅度很小,并且信号中含有噪声时,则需要仔细调整灵敏度

值,才能得到较好的测量结果。一般来说,如果频率测量值小于被测信号的标准频 率值,应该适当提高灵敏度。如果频率测量值大于被测信号的标准频率值,应该适 当降低灵敏度。

- **3.18.6 耦合方式:**按〖耦合方式〗软键,如果选中了AC,使用交流耦合。如 果选中了 DC,则使用直流耦合。当被测信号的频率较高,并且信号中含有直流偏移 时,应该使用交流耦合,将触发电平设置为0。如果被测信号的频率小于1Hz,或者 幅度小于 100mVpp 时,应该使用直流耦合,并适当调整触发电平,才能得到较好的 测量结果。
- **3.18.7 低通滤波:**按《低通滤波》软键,如果选中了 0n,低通滤波器开通。 如果选中了 Off,则低通滤波器关闭。当被测信号的频率较低并且信号中含有高频 噪声时,频率测量值会大于被测信号的标准频率值,这时应该开通低通滤波器,将 高频噪声过滤掉,以便得到正确的测量结果。但是当被测信号的频率较高并且幅度 较小时,低通滤波器会衰减高频信号,频率测量值会小于被测信号的标准频率值, 甚至得不到测量结果,这时应该关闭低通滤波器。低通滤波器的上限频率大约为 50kHz。

3.19 输出端口

仪器有四个输出端口,《CHA》、《CHB》、《Sync》、《10MHz Out》,输出 端口严格禁止用作信号输入,否则,可能会导致仪器的损坏。

- 3.19.1 信号输出端口《CHA》: 位于前面板,通道 A 的信号从该端口输出,如 果当前通道选择为 Channel A, 按【Output】键,可以循环开通或关闭《CHA》输 出端口的信号。当输出端口上方的指示灯亮时,输出端口为开通状态;当输出端口 上方的指示灯灭时,输出端口为关闭状态。
- 3.19.2 信号输出端口《CHB》: 位于前面板,通道 B 的信号从该端口输出,端 口特性与《CHA》端口相同。
- 3. 19. 3 同步输出端口《Sync》: 位于前面板, 这是一个双向端口。按 【Utility】键,显示出通用菜单,按《同步输出》软键,如果选中 On,同步输出 端口开通,端口上方的指示灯变为绿色,该端口用作输出端口,输出同步信号。

同步输出信号是一个 TTL 电平的脉冲波信号,高电平大于 3V,低电平小于 0.3V。在不同的工作模式时,同步信号的特性也有所不同,如下所述:

(1). 在连续输出模式时,如果当前通道选择为 CHA,同步信号的频率与《CHA》 端口信号的频率相同,同步信号的相位滞后于《CHA》端口信号的相位,二者的相位 差可由通道 A 的相位参数设置。

如果当前通道选择为 CHB, 同步信号的频率与《CHB》端口信号的频率相同, 同 步信号的相位滞后于《CHB》端口信号的相位,二者的相位差可由通道 B 的相位参数 设置。

- (2). 在 FM、AM、PM、PWM 和 Sum 调制模式时,同步信号的占空比为 50%,同步 信号的频率等于调制波的频率,同步信号的相位以调制波的相位为参考。
- (3). 在 FSK 调制模式时,同步信号的占空比为 50%,同步信号的频率等于跳变 速率,当输出载波频率时,同步信号为低电平。当输出跳变频率时,同步信号为高 电平。
- (4). 在 BPSK 调制模式时, 同步信号的占空比为 50%, 同步信号的频率等于跳 变速率, 当输出载波相位时, 同步信号为低电平。当输出跳变相位时, 同步信号为 高电平。
- (5). 在频率扫描模式时,同步信号的周期等于扫描过程的总时间,同步信号的 上升沿对应在起始频率点,同步信号的下降沿对应在标志频率点。
- (6). 在列表扫描模式时,同步信号的占空比为 50%,同步信号的周期等于扫描 过程的总时间,同步信号的上升沿对应在始点序号。
- (7). 在猝发输出模式时, 同步信号的周期等于猝发周期, 同步信号的上升沿对 应在猝发信号的起始点,同步信号的下降沿对应在猝发信号的结束点。在猝发信号 持续期间,同步信号为高电平;在猝发信号停止期间,同步信号为低电平。
- (8). 在 FSK、BPSK 调制、频率扫描、列表扫描、猝发输出模式时,如果使用外 部触发或手动触发,则同步信号的频率由触发信号确定。
- 3.19.4 时钟输出端口《10MHz Out》: 位于后面板,输出 10MHz 的内部时钟信 号,可用作其它设备的时钟,使其他设备与本仪器同步。

3.20 输入端口

仪器有四个输入端口,《Modulation In》、《Trig In》、《Counter》、 《10MHz In》,输入端口只能用作外部信号的输入,没有信号输出。

3.20.1 调制输入端口《Modulation In》: 位于后面板,在 FM、AM、PM、

PWM、Sum 调制模式时,输入外部调制信号。

- 3. 20. 2 触发输入端口《Trig In》: 位于后面板, 在 FSK、BPSK 调制、频率扫 描、列表扫描、猝发输出模式时,输入外部触发信号。
- 3.20.3 计数输入端口《Counter》: 位于前面板,这是一个双向端口。按 【Utility】键,显示出通用菜单,按〖同步输出〗软键,如果选中 Off,同步输出 端口关闭,端口上方的指示灯变为黄色,该端口用作输入端口,输入计数器的被测 信号。
- 3.20.4 时钟输入端口《10MHz In》: 位于后面板,可输入外部时钟信号,使 本仪器与其它设备同步。也可以使用更高精度的频率基准作为仪器的时钟。

3.21 通讯端口

- **3.21.1 USB 设备端口《USB Device》:** 位于后面板,通过 USB 电缆和计算机 相连,可以对仪器进行编程控制,或者使用波形编辑软件下载用户波形数据,还可 以使用固件更新软件对仪器的固件程序进行更新, USB 设备接口的使用方法在随机 光盘中有详细说明。
- 3.21.2 RS232 端口《RS232》: 位于后面板,通过 RS232 电缆和计算机相连, 可以对仪器进行编程控制,RS232接口的使用方法在随机光盘中有详细说明。
- 3.21.3 USB 主机端口《USB Host》: 位于前面板,可以插入U盘,用于对仪 器的用户波形数据和工作状态数据进行存储和调出。

3.22 参数校准

仪器在出厂时已经进行了校准,但经过长期使用之后,某些技术参数可能会有 较大的变化。为了保证仪器的精度,应该进行定期校准。对于仪器的校准,并不需 要打开机箱,用户只需通过键盘操作,就可以恢复仪器的精度。

仪器开通电源以后,自动调出并使用最后一次存储的校准值。校准处于关闭状 态,不输入校准密码,不能进行校准,这样可以有效地保护校准值,防止被无意中 修改。

3.22.1 校准开通:按【Utility】键,显示出通用菜单,再按〖参数校准〗软 键,显示出校准操作窗口和校准操作菜单。

如果校准没有开通,校准参数显示为 Closed, 仪器处于安全状态, 但是可以进 行模拟校准演示,只不过校准值不能被修改。

按《校准密码 Cal Password》软键,选中 Calibrate 参数,输入校准密码 6900,校准参数显示为 Opened,校准开通,然后可以进行参数校准。

- 3.22.2 通道选择:按〖校准通道 Cal Channel〗软键,可以循环选择校准通 道。如果参数显示为 Channel A, 可以对通道 A 进行校准。如果参数显示为 Channel B, 可以对通道 B 进行校准。
- 3.22.3 触发电平校准:按〖校准序号〗软键,校准序号设置为0#,进行计数器 触发电平校准。用直流电压表测量主电路板上的测试点 TP12 和 TP19。调整校准 值,使测试点 TP12 的电压与测试点 TP19 的电压相等。(注:此项校准需要打开机 箱,如果计数器工作正常,此项校准可以忽略)。
- 3.22.3 直流偏移校准:按《下一个》软键,校准序号变为 1#,进行直流偏移 校准。校准窗口显示出校准条件为 Amplitude=0Vpp, 偏移标称值 Offset=0Vdc, 同 时选中校准值 Cal Value 参数。用直流电压表测量实际输出直流偏移,并用数字键 或旋钮调整校准值,使实际输出直流偏移等于偏移标称值。

再按〖下一个〗软键,校准序号自动加一,并显示出新的偏移标称值。调整校 准值,使实际输出直流偏移等于偏移标称值。如此下去,直到偏移校准完成(1#~ 4#) 。

3.22.4 幅度校准:按〖下一个〗软键,校准序号变为 5#,进行幅度校准。校 准窗口显示出校准条件为 Frequency=1kHz,幅度标称值 Amplitude=7Vrms,同时 选中校准值 Cal Value 参数。用有效值电压表测量实际输出幅度,并用数字键或旋 钮调整校准值, 使实际输出幅度等于幅度标称值。

再按〖下一个〗软键,校准序号自动加一,并显示出新的幅度标称值。调整校 准值, 使实际输出幅度等于幅度标称值。如此下去, 直到幅度校准完成(5#~ 7#) 。

- 3.22.5 平坦度校准: 当频率大于 1MHz 时,输出信号的幅度会随着频率增大而 减小,因此需要对不同频率点的输出幅度进行校准。幅度平坦度校准使用相对比较 法,以频率等于 100kHz 时的幅度作为比较基准。幅度平坦度校准分为两段进行, 标称幅度分别为 14dBm 和 0dBm。
 - (1). 按〖下一个〗软键,校准序号变为 20#,进行第一段幅度平坦度校准。校

准条件为 Frequency=100kHz, 幅度标称值 Amplitude=14dBm。用频谱分析仪测量 出此时的实际输出幅度,作为第一段幅度基准值。

再按〖下一个〗软键,校准序号自动加一,校准条件变为 Frequency=01MHz, 幅度标称值不变。调整校准值,使实际输出幅度等于第一段幅度基准值。如此下 去, 直到第一段幅度平坦度校准完成(20#~60#)。

(2). 按『下一个》软键,校准序号变为 70#,进行第二段幅度平坦度校准。校 准条件为 Frequency=100kHz, 幅度标称值 Amplitude=0dBm。用频谱分析仪测量出 此时的实际输出幅度,作为第二段幅度基准值。

再按〖下一个〗软键,校准序号自动加一,校准条件变为 Frequency=01MHz, 幅度标称值不变。调整校准值,使实际输出幅度等于第二段幅度基准值。如此下 去,直到第二段幅度平坦度校准完成(70#~110#)。

校准过程可以按顺序逐点进行,也可以输入校准序号单独校准某一段。

3.22.6 校准值存储:校准完成以后,必须存储校准值,否则关断电源校准值就 丢失了。按〖校准存储〗软键,选中 Cal Store 参数,可以将当前的校准值存储到 非易失性存储区,关断电源也不会丢失。存储新的校准值,会将原有的校准值覆盖 掉,为了防止无意中的存储操作使原有数据遭到破坏,仪器在存储之前首先发出询 问"存储将会覆盖原有数据,确定?"如果不想存储,可以按〖取消〗软键,取消 存储操作。

按《校准存储》软键以后,操作菜单显示出两个存储区:《默认值》和《用户 值〗。按〖用户值〗软键,可以将当前的校准参数存储到相应的存储区。存储完成 以后,存储参数会显示出 Stored。

〖默认值〗存储区存储了仪器出厂时的默认校准参数,为了保护默认工作状态 参数不被破坏, 〖默认值〗存储区不能进行存储操作。

如果校准没有开通,仪器处于安全状态,不能进行存储操作。

3.22.7 校准值调出:按〖校准调出〗软键,选中了 Cal Recall 参数,可以从 非易失性存储区中调出校准值。按《校准调出》软键以后,操作菜单显示出《默认 值〗和〖用户值〗两个存储区。〖默认值〗存储区存储了仪器出厂时的默认校准 值,如果用户在校准时操作失误,并且将错误的校准数据进行了存储,导致仪器工 作不正常,可以按〖默认值〗软键,调出仪器的默认校准值,再把当前的默认校准 值存储到 〖用户值〗存储区, 使仪器恢复正常工作。

开通电源时, 仪器自动调出并使用 〖用户值〗存储区的校准值。

- 3.22.8 校准关闭:有两种方法可以关闭校准,使校准参数显示为 Closed, 仪 器进入安全工作状态。
 - (1). 存储校准值,校准值存储以后,校准状态自动关闭。
- (2). 如果不想存储校准值,可以按《校准密码》软键,选中 Calibrate 参数, 输入一个错误密码(非6900),也可以关闭校准。
- 3.22.9 校准退出: 在校准过程中, 仪器自动设置校准条件, 如果此时转换到 其他工作模式,仪器将继续保持校准条件所设置的工作状态,可能并非操作者所 愿。按〖校准退出〗软键,可以恢复到开通电源时的工作状态。

3.23 系统复位

按【Utility】键,显示出通用菜单,按〖系统复位〗软键,可以调出仪器出厂 时的默认工作状态参数。

3.24 版本号序列号

在开机界面中,可以显示出仪器的固件版本号和出厂序列号,供仪器维修时使 用,版本号和序列号不能设置和修改。

3.25 默认设置

3.25.1 连续输出(开机后默认连续输出模式)

波形	Sine	方波占空比	50%
频率	1kHz	锯齿波对称度	50%
幅度	1Vpp	脉冲宽度	200 μ s
直流偏移	0Vdc	高电平限制	10Vdc
输出相位	0 °	低电平限制	-10Vdc
输出极性	Norma1	频率步进	25Hz
幅度量程	Auto	幅度步进	25mVpp
外接负载	High Z	输出端口	Off

3.25.2 调制输出 (FM、AM、PM、PWM、SUM)

频率偏差	100Hz	叠加频率	20kHz
调幅深度	100%	调制频率	10Hz
相位偏差	90°	调制波形	Sine
脉宽偏差	50%	调制源	Internal
叠加幅度	20%	调制状态	Off

3.25.3 调制输出(FSK、BPSK)

跳变频率	100Hz	调制源	Internal
跳变相位	180°	调制状态	Off
跳变速率	10Hz		

3.25.4 频率扫描

始点频率	100Hz	扫描时间	3s
终点频率	1kHz	保持时间	0s
标志频率	450Hz	返回时间	0s
扫描模式	Linear	触发源	Immediate
		扫描状态	Off

3.25.5 列表扫描

始点序号	0#	保持时间	0ms
终点序号	20#	触发源	Immediate
停留时间	200ms	扫描状态	Off

3.25.6 猝发输出

猝发模式	Triggered	触发源	Immediate
猝发周期	10ms	猝发状态	Off
猝发计数	3	门控状态	Off
起始相位	0°		

3.25.7 双通道操作

频率耦合	Off	频率比	1
幅度耦合	Off	频率差	OHz
波形组合	Off	幅度差	OVpp
组合幅度	50%	偏移差	0Vdc

3.25.8 系统设置

语言选择	Chinese	开机状态	Default
蜂鸣器	0n	屏幕保护	3600s
光标模式	Manual	校准状态	Closed
显示模式	Single CH	错误队列	Clear

3.26 功率放大器(选件)

功率放大器是一个选购件,如果用户选购了功率放大器,则机箱内会安装一块功率放大器板,这是一个与仪器无关的独立部件,后面板上的《Amplifer In"》端口为功放输入端口,后面板上的《Amplifer Out》端口为功放输出端口。

将输入信号连接到功放输入端口,在功放输出端口即可以得到经过功率放大的输出信号,输入信号可以是本机的输出信号,也可以是其他仪器的输出信号。

- 3.26.1 输入波形: 正弦波,对于其他波形,失真度可能较大。
- 3.26.2 输入电压: 功率放大器的电压放大倍数为两倍,最大输出幅度为10Vrms,所以最大输入幅度应限制在5Vrms,超过限制时,输出信号会产生失真。
- **3.26.3 频率范围:** 功率放大器在 $1Hz\sim150kHz$ 频率范围内的正弦波失真度优于 1% ,最高频率可以达到 200kHz 。
 - 3.26.4 输出功率: 功率放大器的输出功率表达式为

$$P = V^2 / R$$

式中: P 为输出功率(单位为 W)

V 为输出幅度有效值(单位为 Vrms)

R 为负载电阻(单位为Ω)

最大输出幅度可以达到 10Vrms,最小负载电阻可以小到 2Ω,但是工作环境温 度越高,输出信号的频率越高,输出信号的失真会越大。一般情况下最大输出功率 可以达到 $8W(8\Omega)$ 或 $2W(50\Omega)$ 。

3.26.5 输出保护: 功率放大器具有输出短路保护和过热保护,一般不会损 坏,但应尽量避免长时间输出短路。频率、幅度和负载尽量不要用到极限值,特别 是两种参数不能同时用到极限值,以免对功率放大器的性能造成伤害。

第四章 服务与支持

4.1 保修概要

石家庄数英仪器有限公司对生产及销售产品的工艺和材料缺陷, 自发货之日起 给予一年的保修期。保修期内,对经证实是有缺陷的产品,本公司将根据保修的详 细规定给于修理或更换。

除本概要和保修单所提供的保证以外,本公司对本产品没有其他任何形式的明 示和暗示的保证。在任何情况下,本公司对直接、间接的或其他继发的任何损失不 承担任何责任。

4.2 联系我们

在使用产品的过程中,若您感到有不便之处,可和石家庄数英仪器有限公司直 接联系:

周一至周五 北京时间 8:00-17:00

电话: 0311-86032327 (售后服务) 传真: 0311-86978321

0311-86014314 (技术支持)

或通过电子信箱与我们联系

E-mail: market@suintest.com

网址: http://www.suintest.com

第五章 技术参数

5. 1 连续输出(CHA、CHB)

5.1.1 输出波形:

标准波形: 正弦波、方波、锯齿波、脉冲波、噪声波 内置任意波形: 指数函数、对数函数、正切函数、高斯函数、 伪随机码、心电图波、震动波等 50 种波形

用户定义波形: 可编辑存储任意波形 5 个

5.1.2 正弦波频谱纯度:

谐波失真(0dBm): ≤-60dBc 频率<5MHz ≤-50dBc 频率≥5MHz 总失真度(20Hz~20kHz, 20Vpp): ≤0.1%

5.1.3 方波、脉冲波、锯齿波:

方波脉冲波边沿时间(1Vpp): ≤20ns

讨冲(典型值): ≤ 10%

方波占空比: 0.1%~99.9%(方波正脉宽、负脉宽最小为 50ns)

脉冲波宽度: 50ns~2000s

锯齿波对称度: 0.0%~100.0%

5.1.4 任意波: 波形长度: 4096 点

采样速率: 120 MSa/s

幅度分辨率: 14 bits (CHA) 10 bits (CHB)

滤波器带宽: 50MHz

非易失性存储区: 5个

5.1.5 频率: 频率范围: 正弦波: 1 μ Hz~40MHz (注 2)

方波、脉冲波: 1μHz~10MHz

其它波形: 1μHz~5MHz

频率分辩率: 1μHz

频率准确度: ± (50ppm+1 μ Hz)

5.1.6 幅度(自动量程,偏移 0Vdc):

幅度范围: 0.1mVpp~10Vpp(50Ω负载)

- 0.2mVpp~20Vpp(开路) 频率≤20MHz
- 0. 1mVpp~7. 5Vpp (50 Ω 负载)
- 0.2mVpp~15Vpp(开路) 频率>20MHz

幅度分辩率: 1mVpp (幅度≥1Vpp, 50 Ω 负载)

0.1mVpp (幅度<1Vpp, 50Ω负载)

2mVpp (幅度≥2Vpp, 开路)

0.2mVpp (幅度<2Vpp, 开路)

幅度准确度(1kHz 正弦波, 0V 偏移, 自动量程):

± (设置值×1%+1mVpp)

幅度平坦度(相对于 100kHz 正弦波):

±0.2dBm 频率<5MHz

±0.3dBm 频率<20MHz

±0.5dBm 频率≥20MHz

幅度单位(正弦波): Vpp、Vrms、dBm

5.1.7 偏移(幅度 0.2mVpp):

偏移范围: ±5Vdc (50 Ω 负载) ±10Vdc (开路)

偏移分辨率: 1mVdc (偏移≥0.5Vdc,50Ω负载)

0.1mVdc (偏移<0.5Vdc,50Ω负载)

2mVdc (偏移≥1Vdc,开路)

0.2mVdc (偏移<1Vdc, 开路)

偏移准确度: ±(设置值×1%+1mVdc)

5.1.8 极性和相位:输出极性:正向、反向(相对于显示波形)

输出相位: (相对于同步信号) 0°~360°

- **5.1.9 状态存储:** 非易失性存储区: 5 个
- **5.1.10 输出端口:** 输出阻抗: 50 Ω 典型值

输出保护: 过载自动断开输出

- 5.2 调制输出(CHA)
- 5.2.1 FM、AM、PM、PWM、Sum 调制:

载波波形: 正弦波、方波、锯齿波等 (PWM 仅脉冲波)

调制波形: 正弦波、方波、锯齿波等

调制频率: 1 μ Hz~100kHz

频率偏差: 1 μ Hz~20MHz(注 3)

调幅深度: 0%~120%

相位偏差: 0°~360°

脉宽偏差: 0%~99%

叠加幅度: 0%~100%

叠加频率: 1μHz~1MHz

调制源:内部、外部

5.2.2 FSK、BPSK 调制:

载波波形: 正弦波、方波、锯齿波等

跳变频率: 1 μ Hz~40MHz(注 2)

跳变相位: 0°~360°

跳变速率: 1 μ Hz~100kHz

触发源:内部、外部

5.3 扫描输出 (CHA)

5.3.1 频率扫描: 扫描时间: 5ms~500s

保持时间: 0s~500s

返回时间: 0s~500s

扫描模式:线性、对数

5.3.2 列表扫描: 列表长度: 600 个

停留时间: 5ms~500s

保持时间: 0s~500s

- 5.3.3 扫描波形:正弦波、方波、锯齿波等
- **5.3.4** 扫描范围: 全频率范围
- **5.3.5 触发源:** 内部、外部、手动

5.4 猝发输出 (CHA)

- 5.4.1 猝发波形: 正弦波、方波、锯齿波等
- 5.4.2 猝发模式: 触发、门控
- **5.4.3** 猝发周期: 1 μ s~500s
- 5.4.4 猝发计数: 1~1000000 个
- **5.4.5 门控输出:** 周期完整
- **5.4.6** 起始停止相位: 0°~360°
- **5.4.7 触发源:**内部、外部、手动

双通道操作(CHB) 5. 5

- **5.5.1 频率耦合:** 频率比、频率差
- **5.5.2 幅度偏移耦合:** 幅度差、偏移差
- **5.5.3 波形组合:**组合幅度:0%~100%

5.6 同步输出(Sync)

- 5.6.1 波形特性: 方波,边沿时间≤10nS
- 5.6.2 频率和脉宽: 随工作模式变化
- **5.6.3 输出电平:** 5V (开路) 2.5V (50 Ω 负载)
- **5.6.4 输出阻抗**: 50 Ω 典型值

5.7 调制和触发输入

5.7.1 调制输入: 输入电压: ±5Vpp (满度值)

输入阻抗: 10kΩ

5.7.2 **触发输入:**输入电平: TTL

输入阻抗: $10k\Omega$

5.8 计数器

5.8.1 灵敏度: 20mVrms~5Vrms 10mHz~100MHz

40mVrms~5Vrms $100 \mathrm{MHz} \sim 200 \mathrm{MHz}$

50mVrms~5Vrms $200 MHz \sim 350 MHz$ **5.8.2** 频率测量: 10mHz~350MHz

分辨率: 6 位/秒

- **5.8.3** 周期,脉冲宽度测量: 100ns~20s
- 5.8.4 占空比测量: 1%~99%
- **5.8.5** 闸门时间: 1ms~500s
- **5.8.6 触发电平:** -3V~3V
- 5.8.7 耦合方式:交流、直流
- **5.8.8 低通滤波:** 开通、关闭

5.9 通讯接口

USB 设备接口、USB 主机接口、RS232 接口

5.10 系统时钟

5.10.1 外时钟输入: 频率: 10MHz±100kHz

幅度: 1Vpp-5Vpp

输入阻抗: $5k\Omega$, 交流耦合

5.10.2 内时钟输出: 频率: 10MHz

幅度: >1Vpp

输出阻抗: 50Ω 交流耦合

5.11 通用特性

5.11.1 电源条件: 电压: AC 100~240V 频率: 45~65Hz 功耗: <30VA

5.11.2 环境条件: 温度: 0~40℃ 湿度: <80%

5.11.3 操作特性:全部按键操作,旋钮连续调节,中、英文菜单

5.11.4 显示方式: 4.3" 彩色 TFT 液晶屏 像素: 480×272,

5.11.5 物理特性: 尺寸: 334 mm×256 mm×106 mm 重量: 3.0kg

5.11.6 制造工艺:表面贴装工艺,大规模集成电路,可靠性高,使用寿命长。

5.12 功率放大器(选件)

5.12.1 输入信号: 电压 0Vrms~5Vrms 频率 1Hz~200kHz

5.12.3 电压放大: 2倍

5.12.4 输出功率: 8W(负载 8 Ω) 2W(负载 50 Ω) 频率≤100kHz

3W(负载 8Ω) 1W(负载 50Ω) 频率≤200kHz

5.13 温补晶振(选件)

频率稳定度: ±2ppm (0℃~40℃)

注 1: 技术指标的测试,应该在 18℃~28℃环境温度下,开机 30 分钟后进行。

注 2: TFG6920A 正弦波频率范围: 1 μ Hz~20MHz

TFG6930A 正弦波频率范围: 1 µ Hz~30MHz

TFG6940A 正弦波频率范围: 1 µ Hz~40MHz

注 3: TFG6920A 频率偏差范围: 1 μ Hz~10MHz

TFG6930A 频率偏差范围: 1 μ Hz~15MHz

TFG6940A 频率偏差范围: 1 µ Hz~20MHz