Question Number	Answer		Mark
15(a)	• Construction of correct vector diagram (parallelogram or triangle) with all 3 directions and 0.096 (kg m s ⁻¹) and 0.14(kg m s ⁻¹) labelled	(1)	
	• Momenta correctly scaled (ratio of lengths 0.14 to 0.096 rounds to between 1.40 and 1.50)	(1)	
	Horizontal resultant (to within a slope of 1 small square)	(1)	
	• Total momentum = 0.22 to 0.24 (kg m s ⁻¹)	(1)	4
	(Do not award MP4 if this value has been obtained by calculation or from an incorrect diagram)		
	$0.096 \text{ kg m s}^{-1}$ 0.14 kg m s^{-1}		
15(b)	The sum/total momentum before a collision is equal to the sum/total momentum after a collision	(1)	
	 Provided no external forces act (on the system) Or in a closed system 	(1)	2
15(c)	• Use of $p = mv$	(1)	
	• $v = 1.9 \text{ m s}^{-1}$	(1)	2
	$(v = 1.7 \text{ m s}^{-1} \text{ using show that value and allow ecf from (a)},$ $v = 2.0 \text{ m s}^{-1} \text{ if } 0.236 \text{ kg m s}^{-1} \text{ used)}$		
	Example of calculation $0.23 \text{ kg m s}^{-1} = 0.12 \text{ kg} \times v$ $v = 1.92 \text{ m s}^{-1}$		
	Total for question 15		8