

|Fundamentos Físicos y Tecnológicos (G.I.I.)

Curso 2010/2011

Relación de problemas 6

1. Una fuente v_f sin conexión a tierra se llama fuente flotante. Este tipo de señal puede amplificarse a través del circuito de la Figura 1, determinar la ganancia de dicho proceso de amplificación. $(Sol:R_2/R_1)$

Figura 1:

2. Encontrar v_o en función de v_1 y v_2 en el circuito de la Figura 2. $(Sol:v_o = \frac{R_4(R_1+R_2)}{R_1(R_3+R_4)}v_2 - \frac{R_2}{R_1}v_1)$

Figura 2:

3. Encontrar los valores de v_1 y v_2 en el circuito de la Figura 3. (Sol: $v_1 = 1.8V$ $v_2 = -2.8V$)

Figura 3:

4. En el circuito de la Figura 4, $R_s=1k\Omega,$ encontrar $v_1,\,v_2,\,v_o,\,i_s,\,i_1$ e i_f como función de v_s para

- $R_f = \infty.$
- $R_f = 40k\Omega$.

 $(Sol1:v_1 = 5/6v_s, v_2 = -1.5v_s, v_o = 7.5v_s, i_s = i_1 = 0.166v_s(mA), i_f = 0, Sol2:v_1 = v_s, v_2 = -1.8v_s, v_o = 9v_s, i_s = 0, i_f = i_1 = 0.2v_s(mA))$

Figura 4:

5. En el circuito de la Figura 5, $R_1k\Omega$, $C=1\mu F$ y $v_1(t)=\sin 2000t$. Asumiendo que $v_2(0)=0$, encontrar la expresión de $v_2(t)$ para t>0. $(Sol:v_2(t)=0.5(\cos 2000t-1))$

Figura 5:

- 6. El circuito de la Figura 6 es un comparador, su función es comparar el voltaje v_1 con un voltaje de referencia v_o .
 - a) Explicar detalladamente el comportamiento de dicho circuito.
 - b) Si $V_{cc}=5V$, $v_o=0$, y $v_1=\sin\omega t$. Calcular el valor de v_2 $R_1k\Omega$, $C=1\mu F$ y $v_1(t)=\sin 2000t$. Asumiendo que $v_2(0)=0$, encontrar la expresión de $v_2(t)$ para t>0.

$$(Sol: v_2 = 5V \ si \ 0 < t < \pi/\omega \ y \ v_2 = -5V \ si \ \pi/\omega < t < 2\pi/\omega)$$

Figura 6:

7. En el circuito de la Figura 7 $v_s=\sin 100t$. Encontrar v_1 y v_2 . (Sol: $v_1=0.6\sin 100t(V)$ y $v_2=-2\sin 100t(V)$)

Figura 7:

Figura 8:

- 8. Encontrar en el circuito de la Figura 8 v_C , i_1 , v_2 y R_{in} , la resistencia de dentrada vista por la fuente de la figura. (Sol: $v_2 = -10V$, $v_C = 6V$, $i_1 = 5mA$ y $R_{in} = 4.2k\Omega$)
- 9. Encontrar v_o en función de v_1 y v_2 en el circuito de la Figura 9. $(Sol:v_o=v_2+(R_2/R_1)(v_2-v_1))$

Figura 9:

- 10. Encontrar v_o en función de v_1 y v_2 en el circuito de la Figura 10. $(Sol:v_o=(1+R_2/R_1)(v_2-v_1))$
- 11. Pintar el diagrama de Bode de cada uno de los circuitos de la Figura 11. $(Sol:v_o = (1 + R_2/R_1)(v_2 v_1))$

Figura 10:

Figura 11: