Institutt for datateknologi og informatikk, NTNU

TDT4295 DATAMASKINER PROSJEKT

Kretskortutlegg

2021-09-14

Typisk fremgangsmåte

- 1. Bestem funksjonalitet
 - Overordnet skisse over hovedkomponenter
- 2. Bestem hovedkomponenter
- **3.** Tegn skjema for systemet
 - Bestem resten av komponentene
- 4. Tegn kretskort

Funksjonalitet

- Identifiser de viktige først
 - Mikrokontroller
 - ► EFM32GG
 - Hva trengs av I/O?
 - FPGA
 - Xilinx Artix 7
 - Andre viktige komponenter
- Disse vil påvirke hvordan detaljdesignet (og valg av småkomponenter) blir

Velg komponenter som er lette å bruke:

- Noen komponenter krever kompliserte støttekretser og / eller komplisert PCB-utlegg
- Noen komponenter kan være vanskelige å skrive programvare for
 - Finnes driver som kan brukes?
- Pass på at komponentene faktisk er kompatible med andre komponenter de skal kommunisere med
 - Spenningsnivåer: Prøv å holde dere til 3.3V for alle signaler
 - Kommunikasjonsstandarder (SPI/I2C/...)
- Les og forstå datablader

Velg komponenter som er lette å lodde:

- Samme komponent kan komme i forskjellige pakker
- Lette å lodde:
 - ▶ QFP
 - ► SOIC / *SOP etc
 - SOT
- Vanskelige å lodde:
 - BGA
 - QFN
- Velg stor pitch (avstand mellom pinner/ben)
 - Helst 0.5mm eller mer (gjerne 1mm på BGA)
- For motstander/kondensatorer etc:
 - Følg databladenes anbefalinger hvis det er angitt
 - Velg gjerne 0805 eller 1206 som standard
 - Unngå mindre enn 0603

Velg komponenter som er lette å få tak i:

- Sjekk tilgjengelighet på farnell.no og digikey.no
- Dere har ikke tid til å vente månedsvis på ukurante komponenter

Skjemategning

- KiCAD Eeschema
- Symbolsk sammenkobling av komponenter
 - Spesifiserer hvordan komponenter kobles sammen
 - Sier ingenting om fysisk plassering, banebredde etc.
- Den viktigste designjobben gjøres her
- Nettlista (informasjon om sammenkobling av komponenter) kan senere overføres til PCB-verktøyet hvor fysisk design gjøres

Skjemategning

- Følg eksempelskjema i datablader
 - Det finnes nesten alltid et eksempel som kan kopieres
- Bruk hierarkiske bokser/underskjema:
 - Mikrokontroller
 - FPGA
 - Strømforsyning
 - **...**
- Kjør ERC (Electrical Rules Checker) før dere overfører nettlista til PCB-verktøyet

Symboler

- Symboler representerer en PCB-komponent i skjemaverktøyet
- KiCAD har symboler for mange komponenter
- Må du tegne nytt symbol:
 - Pass på at pinnenummerering blir korrekt

Avkoblingskondensatorer

- Generelt trenger alle brikker en eller flere avkoblingskondensatorer
- Disse skal helst plasseres så nært VCC-pinnene som mulig (på PCB, i skjemategningen spiller det ingen rolle)
- Sørger for å holde VCC konstant selv ved kortvarig høyt strømtrekk
- Dette er spesifisert i databladene; kopier eksempelet fra databladet

Ta høyde for feil

- Legg til noen testpunkter for måleutstyr
 - Men ikke på raske busser, kan ødelegge signalintegritet
- ▶ Rut noen ledige GPIO-pinner ut på pin-headere
 - Gir fleksibilitet
 - Både fra FPGA og mikrokontroller

Koble symbol til footprint

- Når skjemaet er ferdig må alle symboler tilordnes et footprint
- ► Footprints er den fysiske representasjonen av komponenten
 - Inneholder loddpunkter, hull og tekst/grafikk som trykkes på kretskortet
 - Hvert symbol i skjemategningen må tilknyttes et footprint som skal brukes i PCB-verkstøyet
- Må du tegne nytt footprint:
 - Vær nøyaktig
 - Pass på å ikke speilvende pinner
 - Følg datablad
 - Skriv ut og sjekk at komponenten passer fysisk og at dere har store nok loddepunkter til håndlodding

Kretskortutlegg

- KiCAD: Pcbnew
- Fysisk utlegg av kretskortet
- Plassere komponenter
- Ruting (tegne ledere mellom komponenter)
- Bruker informasjon fra skjemaet slik at man er sikret mot feilkoblinger

PCB: Oppsett av kort

Sett opp antall lag: Bruk 4-8 lag

- Ett internt jordingslag
- Minst ett internt VCC-lag
- Minst to signallag (topp og bunn)
- Antall lag:
 - Få lag: Billig.
 - Mange lag: Lettere å rute
 - FPGA er vanskelig å rute med bare 4 lags kort

PCB: Oppsett av kort

Sett opp design rules i KiCAD. Hent info fra fabrikk (https://www.elprint.no/Kapabilitet) eller bruk følgende:

Clearance: 0,125 mm

► Track width: 0,125 mm

Via dia: 0,6 mm

En via er en sammenkobling av baner på ett lag til et annet lag

Via drill: 0,3 mm

Det meste kan lages, men husk at smått er dyrt.

PCB: Komponentplassering

- Plasser ut alle footprints manuelt
- Tegn omrisset av kortet når komponentene er plasserte
 - Ikke lag for lite kort, vanskelig å lodde og debugge
- Tenk nøye gjennom plassering og rotasjon
 - Har mye å si for hvor lett ruting blir senere
 - Ikke plasser for tett
 - Det gir vanskelig ruting og vanskelig lodding
- Grupper komponenter i forhold til skjemategningene
- Følg databladenes retningslinjer

PCB: Ruting

- Anbefaler manuell ruting
 - Autoruteren gir neppe godt resultat
- Helst ikke bruk minimum banebredde hvis det ikke er nødvendig
 - Sett opp en standardbredde for signaler, og noen tykkere baner for strømforsyning
- ▶ Ikke bruk "buried" eller "blind" via. Bare bruk vanlig through-hole via.
- Ikke ha via i en pad

PCB: Signalintegritet

- Plasser krystaller og oscillatorer nær brikkene som bruker de
- Hold "høyhastighets"-busser korte og uten hindringer
 - Ikke rut disse via en konnektor eller pinheader
 - Eksempel: SPI-buss mellom mikrokontroller og FPGA

PCB: Analog og digital

- For minimalt med støy bør eventuell analogdel separeres fra støyende digitale deler
- Legg analogdelen ut mot en kant av PCB
 - Ikke mellom strømforsyning og digitaldel
- Vanlig å ha egen VCC for analogdel (se EFM32 AN0002 for eksempel på isolering av analog VCC)
- Stort og komplisert tema
 - Ikke noe vi ønsker dere skal bruke mye tid på
 - For f.eks audio vil alt fungere (muligens med dårligere lydkvalitet) selv om dere ignorerer alle analog-råd

PCB: Ferdigstillelse

- Fyll alle plan
 - De interne jord- og VCC-lagene er såkalte "plan", store fylte områder med kobber
 - Sjekk at ikke via har ødelagt noen av planene
- Kjør DRC (Design Rules Checker)
- Skriv ut på papir og sjekk at:
 - komponenter passer fysisk
 - det er plass til å lodde

EFM32GG

- Generelt lett å bruke
- Strømforsyning: 3.3V
- Klokke: Kan bruke intern oscillator, eller ekstern krystall
 - Anbefaler 48MHz ekstern krystall
- Velg den som har de egenskapene dere trenger
 - I/O
 - Flash (men ingen grunn til å være gjerrig på flash)
- Husk JTAG-konnektor
- Relevante dokumenter:
 - SiLabs EFM32 AN0002 (Hardware Design Considerations)
- ► Bruk helst pakke QFP64

EFM32GG

Xilinx Artix 7 FPGA

- Kompleks chip
- Krever mye støtte på kretskortet
 - Kompleks strømforsyning
 - Mange avkoblinskondensatorer
 - Egen Flash-brikke til å lagre konfigurasjonen
 - ► JTAG-konnektor
- Bruk helst pakke FTG256 (også kjent som 256-LBGA)

Artix 7 - Relevante dokumenter

- UG483: 7 Series FPGAs PCB Design Guide
 - Her finner dere bl.a. info om avkoblingskondensatorer
- ➤ XAPP586: Using SPI Flash with 7 Series FPGAs
 - Hvordan koble opp Flash-brikken og JTAG-konnektor
- ▶ UG908: Vivado Design Suite User Guide
 - Appendix C har liste over støttede Flash-brikker
- Mindre relevante dokumenter:
 - UG470: 7 Series FPGAs Configuration
 - Mer om JTAG og konfigurering

Artix 7 – Strømforsyning

- Krever 3 spenninger: 1.0V, 1.8V, 3.3V
- Disse må dere skru på i korrekt rekkefølge
- Switching converter (buck converter) eller lineær?
 - Switching er mer energieffektiv
 - Lineær er enklere å bruke
 - Lineær støyer mindre

Artix 7 - Eksempel på strømforsyning

TPS54294 utlegg

Artix 7 – Avkoblingskondensatorer

- Krever mange avkoblingskondensatorer
- Størrelser, antall og maks avstand fra brikken spesifisert i UG483
 - ► En mulighet er å plassere disse på undersiden av kortet, for å oppfylle distansekrav

Artix 7 - Flash

- ► FPGA trenger en separat Flash-brikke for å lagre konfigurasjonen
- ▶ Velg en SPI Flash som er kompatibel:
 - Velg fra appendix C i UG908
- Kopier skjema fra XAPP586

Artix 7 – JTAG og Reset

- ► Koble opp som i XAPP586
- Legg til 10k pullup-motstand på TMS og TCK for å hindre problemer når JTAG-kabel ikke er plugget i
 - Pullup-motstand er en motstand koblet opp mot VCC. Sørger for at linja er høy hvis ikke noe annet driver den lav.

Artix 7

Norwegian University of Science and Technology