Chapter 1

Mapeo de Schwarz

1.1 1

Dadas dos soluciones linealmente independientes u_1, u_2 de la ecuación lineal hipergeometrica, definimos un mapeo multivaluado:

$$s: \mathbb{C} - \{0, 1\} \ni x \longmapsto u_1(x) : u_2(x) \in \mathbb{P}^1 := \mathbb{C} \cup \{\infty\}$$

Conocido como el mapeo de Schwarz (o mapeo-s de Schwarz). (Las dos soluciones no se anulan al mismo tiempo). Dadas las caracteristicas de nuestro estudio, nos interesa este mapeo cuando los exponentes son puramente imaginarios (es decir de la forma $i\theta, \theta \in \mathbb{R}$), lo que sucede con este mapeo cuando los exponentes son reales ya ha sido estudiado y se puede encontrar en [Yoshida 1997]. El objetivo al introducir este mapeo es, primero; hallar dominios fundamentales para que el mapeo sea 1-1. Y segundo; a través de estos dominios fundamentales y el principio de reflexión de Schwarz aplicado a sus lados podemos obtener una descripción especial del grupo de monodromia que será útil para nuestros propósitos.

Encontraremos un dominio F_x en el plano-x y un dominio F_s en el plano-s tal que el mapeo

$$s|_{F_x}:F_x\to F_s$$

sea biholomorfo y el mapeo s pueda ser recuperado totalmente de $s|_{F_x}$ a través de la aplicación del principio de reflexión de Schwarz a los lados de F_x .