Bank Markups and Monetary Policy

Jordan Pandolfo

Federal Deposit Insurance Corporation¹

DC Juniors Finance Conference

¹Views and opinions expressed in this presentation reflect those of the author and do not necessarily reflect those of the FDIC or the United States.

Introduction

- This paper: examine empirical relationship between bank markups (loan + deposit) and monetary policy
- Markups μ^j act as wedge between price r^j and marginal cost mc^j

$$\mu^j = \frac{r^j}{mc^j}$$

Markups provide information about pricing power

$$\mu^j > 1 \Rightarrow r^j > mc^j$$

Importantly, econometrician doesn't observe mc^j

Why Does This Matter?

- Empirical evidence on bank markups and monetary policy is limited
 - Literature largely focuses on spreads: $(r^L r)$ and $(r r^D)$
- Results are informative for
 - 1. Monetary policy transmission
 - Drechsler, Savov and Schnabl (2017), Scharfstein and Sunderam (2017), Wang, Whited, Wu and Xiao (2021)
 - 2. Merger/competition policy
 - ► Vives (2016)
 - 3. Macro- and micro-prudential bank regulation
 - Corbae and D'Erasmo (2021), Whited, Wu, and Xiao (2021), Dell'Ariccia, Laeven and Suarez (2017)

- (1) Estimate bank markups via production approach
 - (a) US banks: 1985-2021
 - (b) Markups via cost minimization of multi-product firm
 - (c) Estimate production function to obtain output elasticities
- (2) Estimate relationship between markups and policy rate
 - (a) Fixed effects panel regression $\Delta \mu^j \sim \Delta r + \Delta r^j$
 - (b) Instrument for price endogeneity
- (3) Simple model of imperfect bank competition
 - (a) Rationalize movements in spreads, markups and policy rate?
- (4) Implications for monetary policy transmission

- (1) Estimate bank markups via production approach
 - (a) US banks: 1985-2021
 - (b) Markups via cost minimization of multi-product firm
 - (c) Estimate production function to obtain output elasticities
- (2) Estimate relationship between markups and policy rate
 - (a) Fixed effects panel regression $\Delta \mu^j \sim \Delta r + \Delta r^j$
 - (b) Instrument for price endogeneity
- (3) Simple model of imperfect bank competition
 - (a) Rationalize movements in spreads, markups and policy rate?
- (4) Implications for monetary policy transmission

- (1) Estimate bank markups via production approach
 - (a) US banks: 1985-2021
 - (b) Markups via cost minimization of multi-product firm
 - (c) Estimate production function to obtain output elasticities
- (2) Estimate relationship between markups and policy rate
 - (a) Fixed effects panel regression $\Delta \mu^j \sim \Delta r + \Delta r^j$
 - (b) Instrument for price endogeneity
- (3) Simple model of imperfect bank competition
 - (a) Rationalize movements in spreads, markups and policy rate?
- (4) Implications for monetary policy transmission

- (1) Estimate bank markups via production approach
 - (a) US banks: 1985-2021
 - (b) Markups via cost minimization of multi-product firm
 - (c) Estimate production function to obtain output elasticities
- (2) Estimate relationship between markups and policy rate
 - (a) Fixed effects panel regression $\Delta \mu^j \sim \Delta r + \Delta r^j$
 - (b) Instrument for price endogeneity
- (3) Simple model of imperfect bank competition
 - (a) Rationalize movements in spreads, markups and policy rate?
- (4) Implications for monetary policy transmission

Bank Markup Behavior

- Exhibit incomplete pass-through (i.e. variable)
- Loan markups decrease over time
- Deposit markups increase over time

Markups and Monetary Policy

- Loan markups increase in policy rate
- Deposit markups decrease in policy rate
- Opposite of movements in spreads!

Bank Markup Behavior

- Exhibit incomplete pass-through (i.e. variable)
- Loan markups decrease over time
- Deposit markups increase over time

Markups and Monetary Policy

- Loan markups increase in policy rate
- ▶ Deposit markups decrease in policy rate
- ▶ Opposite of movements in spreads!

 $(r^L - r)$ and μ^L both measure pricing power

Imperfect Competition Model

- Bank with constant mc cannot rationalize movement of spreads, markups with monetary policy
- Introduce model ingredients to rationalize the data
 - increasing returns to scale, capital requirements, default risk

Implications for Monetary Policy

- Established view: market power affects monetary transmission
- This paper: monetary policy affects market power

$$r \longrightarrow \mu \longrightarrow \mathsf{lending}, \mathsf{rates}$$

Implication: series of rate hikes/cuts can attenuate, or strengthen, transmission

Imperfect Competition Model

- Bank with constant mc <u>cannot</u> rationalize movement of spreads, markups with monetary policy
- Introduce model ingredients to rationalize the data
 - increasing returns to scale, capital requirements, default risk

Implications for Monetary Policy

- Established view: market power affects monetary transmission
- This paper: monetary policy affects market power

$$r \longrightarrow \chi(\mathbf{r}) \longrightarrow \text{lending, rates}$$

Implication: series of rate hikes/cuts can attenuate, or strengthen, transmission

- Use production approach of De Loecker and Warzynski (2012)
- ▶ Cost minimization: choose labor ℓ , capital k to minimize

$$r^D F_D(\ell_D, k_D) + r^E E + w(\ell_D + \ell_L) + r^k (k_D + k_L)$$

subject to constraints

$$F_L(\ell_L, k_L) \ge \overline{L}$$

$$F_L(\ell_L, k_L) = F_D(\ell_D, k_D) + E$$

For **loan-specific labor**, implies equilibrium condition

$$\underbrace{\frac{r^L}{\lambda}}_{\text{markup }\mu_L} = \underbrace{\frac{\partial F_L}{\partial \ell_L} \frac{\ell_L}{L}}_{\text{output elasticity }\theta_L} \times \underbrace{\left[\frac{w\ell_L}{r^L L}\right]^{-1}}_{\text{inverse cost share}}$$

- ► Use production approach of De Loecker and Warzynski (2012)
- ▶ Cost minimization: choose labor ℓ , capital k to minimize

$$r^D F_D(\ell_D,k_D) + r^E E + w(\ell_D + \ell_L) + r^k (k_D + k_L)$$
 subject to constraints

Interest expense
$$F_L(\ell_L, k_L) \ge \overline{L}$$
 $F_L(\ell_L, k_L) = F_D(\ell_D, k_D) + E$

For **loan-specific labor**, implies equilibrium condition

$$\underbrace{\frac{r^L}{\lambda}}_{\text{markup }\mu_L} = \underbrace{\frac{\partial F_L}{\partial \ell_L} \frac{\ell_L}{L}}_{\text{output elasticity }\theta_L} \times \underbrace{\left[\frac{w\ell_L}{r^L L}\right]^{-1}}_{\text{inverse cost share}}$$

- Use production approach of De Loecker and Warzynski (2012)
- ▶ Cost minimization: choose labor ℓ , capital k to minimize

$$r^{D}F_{D}(\ell_{D}, k_{D}) + r^{E}E + w(\ell_{D} + \ell_{L}) + r^{k}(k_{D} + k_{L})$$

subject to constraints

Multi-product firm with budget constraint

$$F_L(\ell_L, k_L) \ge \overline{L}$$
 $F_L(\ell_L, k_L) = F_D(\ell_D, k_D) + E$

For **loan-specific labor**, implies equilibrium condition

$$\underbrace{\frac{r^L}{\lambda}}_{\text{markup }\mu_L} = \underbrace{\frac{\partial F_L}{\partial \ell_L} \frac{\ell_L}{L}}_{\text{output elasticity }\theta_L} \times \underbrace{\left[\frac{w\ell_L}{r^L L}\right]^{-1}}_{\text{inverse cost share}}$$

- ► Use production approach of De Loecker and Warzynski (2012)
- ▶ Cost minimization: choose labor ℓ , capital k to minimize

$$r^{D}F_{D}(\ell_{D}, k_{D}) + r^{E}E + w(\ell_{D} + \ell_{L}) + r^{k}(k_{D} + k_{L})$$

subject to constraints

$$F_L(\ell_L, k_L) \ge \overline{L}$$

$$F_L(\ell_L, k_L) = F_D(\ell_D, k_D) + E$$

For deposit-specific labor, implies equilibrium condition

$$\underbrace{1 - \frac{r^D}{\lambda}}_{\text{markup }\mu_D} = 1 - \underbrace{\frac{\partial F_D}{\partial \ell_D} \frac{\ell_D}{D}}_{\text{elasticity }\theta_D} \times \Big[\underbrace{\frac{\partial F_D}{\partial \ell_D} \frac{\ell_D}{D}}_{\text{elasticity}\theta_D} + \underbrace{\frac{w \ell_D}{r^D D}}_{\text{cost share}}\Big]^{-1}$$

Historical Markup Results

- (1) Bank markups exhibit incomplete pass-through
- (2) Over time,
 - Loan markups have decreased
 - Deposit markups have increased

Loan Markups

Deposit Markups

(3) Significant cross-section markup variation

Pass-Through Cross-Section Percentiles Output Elasticities Relative to Literature Bank HHIs

Relationship to Monetary Policy

Markups move in the opposite direction of spreads!

Fixed Effects Regression

► For each product, run regression

$$\Delta \mu_{it}^{j} = \alpha_{t}^{j} + \beta \Delta r_{t} + \gamma \Delta r_{it}^{j} + \mathbf{x}_{it}' \mathbf{\delta} + \epsilon_{it}^{j}$$

- Identification issues
 - Endogenous rates: instrument with cost shocks
 - ► Xiao (2020), Wang et al. (2021)
 - ▶ Drechsler et al. (2017): OVB works in other direction
- ightharpoonup eta identifies markup relationship to policy rate, holding bank channel fixed

Regression Results

Regression Analysis for Determinants of Bank Markups

	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^D$	$\Delta \log \mu^D$	$\Delta \log \mu^D$
Loan rate $\Delta \log \hat{r}_{it}^L$		-0.53***	-1.44***			
Policy rate $\Delta \log r_t$	0.043***	0.072***	0.208***	-0.070***	-0.125***	-0.23***
Deposit rate $\Delta \log \hat{r}_{it}^D$					0.238***	0.48***
Assets (\$b)			0.0***			-0.0***
Equity Ratio			0.36***			-0.092**
Biz Cycle			-0.012***			0.02***
Biz Cycle × Rate r_t			0.017***			-0.01***
Avg. Markup Elasticity	0.04	0.07	0.21	-0.07	-0.13	-0.23
Observations	190,906	190,906	190,906	192,088	192,088	192,088
Time Periods	138	138	138	138	138	138
Banks	2,568	2,568	2,568	2,564	2,564	2,564
R-squared	0.005	0.022	0.060	0.030	0.177	0.194
Fixed Effects	✓	✓	✓	✓	✓	✓
Other Controls	X	X	✓	X	X	✓

Regression Results

Regression A	MATVOTO	EOP D	ETEDMINANTE	OF BANK	MADIZIDE
REGRESSION A	NALYSIS	FOR D	ETERMINANTS	OF BANK	MARKUPS

	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^D$	$\Delta \log \mu^D$	$\Delta \log \mu^D$
Loan rate $\Delta \log \hat{r}_{it}^L$		-0.53***	-1.44***			
Policy rate $\Delta \log r_t$	0.043***	0.072***	0.208***	-0.070***	-0.125***	-0.23***
Deposit rate $\Delta \log \hat{r}_{it}^D$		٨			0.238***	0.48***
Assets (\$b)		Ţ	0.0***			-0.0***
Equity Ratio		1	0.36***			-0.092***
Biz Cycle		1	-0.012***			0.02***
Biz Cycle × Rate r_t			0.017***			-0.01***
Avg. Markup Elasticity	0.04	0.07	0.21	-0.07	-0.13	-0.23
Observations	190,906	190,906	190,906	192,088	192,088	192,088
Time Periods	138	138	138	138	138	138
Banks	2,568	2,568	2,568	2,564	2,564	2,564
R-squared	0.005	0.022	0.060	0.030	0.177	0.194
Fixed Effects	✓	✓ \	✓	✓	✓	✓
Other Controls	X	X	✓	X	X	✓

Loan markups increase in policy rate, holding bank channel fixed

1st Stage Regressions Time Fixed Effects Why increasing loan markups?

Why decreasing deposit markups? Robustness Interactions Levels

Regression Results

REGRESSION ANALYSIS FOR DETERMINANTS OF BANK MARKUPS						
	$\Delta \log \mu^L$	$\Delta \log \mu^L$ (2)	$\Delta \log \mu^L$ (3)	$\Delta \log \mu^D$ (4)	$\Delta \log \mu^D$	$\Delta \log \mu^D$
Loan rate $\Delta \log \hat{r}_{it}^L$		-0.53***	-1.44***	- 0 /	- 0,	
Policy rate $\Delta \log r_t$	0.043***	0.072***	0.208***	-0.070***	-0.125***	-0.23***
Deposit rate $\Delta \log \hat{r}_{it}^D$					0.238***	0.48***
Assets (\$b)			0.0***		1	-0.0***
Equity Ratio			0.36***			-0.092**
Biz Cycle			-0.012***			0.02***
Biz Cycle × Rate r_t			0.017***	/	/	-0.01***
Avg. Markup Elasticity	0.04	0.07	0.21	-0.07	-0.13	-0.23
Observations	190,906	190,906	190,906	192,088	192,088	192,088
Time Periods	138	138	138	/138	138	138
Banks	2,568	2,568	2,568	2,564	2,564	2,564
R-squared	0.005	0.022	0.060	0.030	0.177	0.194
Fixed Effects	✓	✓	✓ /	✓	✓	✓
Other Controls	X	X	</td <td>X</td> <td>X</td> <td>✓</td>	X	X	✓

Deposit markups decrease in policy rate, holding bank channel fixed

 (1st Stage Regressions)
 Time Fixed Effects
 Why increasing loan markups?

 (Why decreasing deposit markups?
 Robustness
 Interactions
 Levels

Key Discussion

- Spreads move opposite direction of markups
 - e.g. As monetary policy tightens, loan markups increase, loan spreads decrease
- ► Confusing, given both are used as measures of pricing power
- Approach
 - (i) Develop simple theory model
 - (ii) Derive conditions to test if markups, spreads are consistent
 - (iii) Plug in markup estimates to evaluate conditions

Theory

- Question: Can theory rationalize the co-movements in spreads, markups and policy rate?
- Monopolistic bank facing
 - ▶ Loan demand $L(r^L; \mathbf{x_1})$
 - ▶ Deposit supply $D(r^D; \mathbf{x_2})$
 - Government bonds at rate r
 - Non-interest expense $C(L(r^L; \mathbf{x_1}), D(r^D; \mathbf{x_2}); \mathbf{y})$
- Equilibrium

$$[r^L]: \quad r^L = \mu^L \left[r + \frac{\partial C}{\partial L} \right]$$

 $[r^D]: \quad r^D = (1 - \mu^D) \left[r - \frac{\partial C}{\partial D} \right]$

Theory Model

- Markup elasticities: to policy rate $\Gamma^j = \frac{\partial \mu^j}{\partial r} \frac{r}{\mu^j}$ and bank rate $\tilde{\Gamma}^j = \frac{\partial \mu^j}{\partial r^j} \frac{r^j}{\mu^j}$
- ightharpoonup Spreads $s^L = r^L r$ and $s^D = r r^D$

Proposition

In an environment with constant marginal costs,

$$\frac{\partial s^L}{\partial r} < 0 \iff \mu^L + \Gamma^L \frac{r^L}{r} + \tilde{\Gamma}^L < 1$$

Similarly, for deposits,

$$\frac{\partial s^D}{\partial r} > 0 \quad \Longleftrightarrow \quad \mu^D + \frac{\mu^D}{1 - \mu^D} \left(\Gamma^D \frac{r^D}{r} + \tilde{\Gamma}^D \right) > 0.$$

Plotting The Inequality Conditions

Plotting The Inequality Conditions

Loan condition violated: loan rates r^L rise too quickly in r

Main Idea: Need additional cost variation with policy rate r!

Model Ingredients to Rationalize Spread, Markup Variation

(1) Scale economies

IRS

- ► Increasing returns to scale can dampen $\frac{\partial r^{L}}{\partial r}$
- ▶ Wheelock and Wilson (2012), Hughes and Mester (2013)
- (2) Regulatory constraints

Capital Requirement

- ▶ Binding capital requirements with increase in r can dampen $\frac{\partial r^L}{\partial r}$
- ► Godl-Hanisch (2021)
- (3) Default risk

- ► Yanelle (1997), Dermine (1986)
- (4) Bank supply shocks
 - ► Direct supply shocks to reduce *mc*

(no evidence)

Implications for Monetary Policy

Conclusion

- Estimate markups (loan + deposit) for U.S. banks 1985-2021
- Results are informative for structural modeling and policy analysis
- In relation to monetary policy,
 - Loan markups increase in the policy rate
 - Deposit markups decrease in the policy rate
- Require significant mc variation on supply side to rationalize co-movement of spreads, markups and policy rate
- Variable markup behavior can affect magnitude of monetary transmission

Thank You!

Literature Review

Bank Markups and Monetary Policy

- Scharfstein and Sunderam (2017), Wang, Whited, Wu and Xiao (2021), Dreschler, Savov and Schnabl (2017), Corbae and D'Erasmo (2021)
- Contribution: Markups via production function estimation; pass-through analysis

Markups via Production Function Estimation

- De Loecker and Warzynski (2012), Olley and Pakes (1996), Levinsohn and Petrin (2003), Pasqualini (2021)
- ► Contribution: Bank multi-product production function

Inferring Loan/Deposit Origination, Spot Rates

Posit loan stock L_{t+1} law of motion

$$L_{t+1} = I_{t+1,t+1} + (1-\delta)(1-\gamma_{t+1})L_t$$

with amortization δ , default rate γ_{t+1} and origination $I_{t+1,t+1}$

Gross loan revenues

$$R_t = \sum_{j=0}^{\infty} r_{t-j} l_{t-j,t}$$

such that the difference $R_{t+1} - R_t$ implies

$$r_{t+1} = \frac{R_{t+1} - R_t [(1 - \delta)(1 - \gamma_{t+1})]}{I_{t+1,t+1}}$$

lacktriangle Use $\delta=0.1$ and bank-time-specific net charge-off rates for γ_t

Data

- ▶ US bank call reports from 1985-2021
 - Balance sheet and income statements
 - Quarterly, bank-level
- Loan/deposit rates computed as total interest revenue/expense divided by total stock
 - Loans: all loans & leases
 - Deposits: savings accounts
- Issue: old rates and originations in current quarter
 - Solution: Method to determine spot rates, originations

Data

Summary Statistics for Bank Sample: 1985-2021

Object	Units	N	Mean	10p	50p	90p	99p
Assets	\$b	261,862	6.0	0.0	1.0	6.0	82.0
Net Interest Margin	%	259,702	3.6	2.2	3.5	4.8	9.4
Return on Equity	%	259,697	10.4	0.8	11.2	21.6	60.0
Return on Assets	%	259,702	0.2	0.0	0.2	0.5	1.4
Loan/Deposit NIM	%	203,541	7.0	4.1	7.1	9.9	14.4
Net Profit Margin	%	259,666	11.5	0.8	13.3	26.0	48.7
Loan Rate	%	216,512	8.9	4.2	7.6	10.9	14.9
Deposit Rate	%	200,090	2.5	0.2	2.3	5.4	7.2
Leverage	_	259,702	12.1	7.2	11.3	16.9	44.8
Non-Int Revenue Share	%	259,662	14.6	3.2	10.9	28.3	85.4
Exp-Asset Ratio	-	259,702	1.1	0.4	0.7	1.2	4.5
Exp-Revenue Ratio	_	259,664	44.6	22.2	39.5	65.2	113.9

Derivation of Markup Expression

- Assume bank has production technology $Q_{it} = F(x_{it})exp(\omega_{it})$ where $x_{it} = \{x_{it}^1, ..., x_{it}^k\}$
- Split inputs into variable inputs x_{it} and inputs subject to adjustment costs x_{it}^F
- ► The Lagrangean is written

$$\mathcal{L} = P_{it}^{v} x_{it}^{v} + P_{it}^{F} x_{it}^{F} + \lambda_{it} (\bar{Q} - Q_{it})$$

which yields FOC

$$\underbrace{\frac{\partial Q_{it}}{\partial x_{it}^{v}} \frac{x_{it}^{v}}{Q_{it}}}_{\text{output elasticity } \theta_{it}} = \underbrace{\frac{P_{it}}{\lambda_{it}}}_{\text{markup } \mu_{it} \text{ revenue share}} \underbrace{\frac{P_{it}^{v} Q_{it}^{v}}{P_{it} Q_{i}}}_{\text{markup } \mu_{it} \text{ revenue share}}$$

Derivation of Markup Expression

- Assume bank has production technology $Q_{it} = F(x_{it})exp(\omega_{it})$ where $x_{it} = \{x_{it}^1, ..., x_{it}^k\}$
- Split inputs into variable inputs x_{it} and inputs subject to adjustment costs x_{it}^F
- ► The Lagrangean is written

$$\mathcal{L} = P_{it}^{v} x_{it}^{v} + P_{it}^{F} x_{it}^{F} + \lambda_{it} (\bar{Q} - Q_{it})$$

which yields FOC

$$\underbrace{\frac{\partial Q_{it}}{\partial x_{it}^{v}} \frac{x_{it}^{v}}{Q_{it}}}_{\text{output elasticity } \theta_{it}} = \underbrace{\frac{P_{it}}{\lambda_{it}}}_{\text{markup } \mu_{it} \text{ revenue share}} \underbrace{\frac{P_{it}^{v} Q_{it}^{v}}{P_{it} Q_{i}}}_{\text{markup } \mu_{it} \text{ revenue share}}$$

Production Function Estimation

- Need output elasticities θ_D and θ_L
- Approach: estimate production function a la Ackerberg, Caves and Frazer (2015) and Levinsohn and Petrin (2003)

$$q_{ijt} = f(\ell_{ijt}, k_{ijt}; \beta_j) + \omega_{ijt} + \epsilon_{ijt}$$

where ω_{ijt} is unobserved productivity

Identifying Assumption

- (1) ω_{ijt} can be proxied by an intermediate input (e.g. materials)
 - Use non-interest expenses related to IT, marketing, consulting
- (2) Lagged variable inputs (i.e. labor) not correlated with current productivity shocks

Production Function Estimation Steps

1. Use value-added translog production function

$$q_{ijt} = \beta_{j0} + \beta_{j\ell} \ell_{ijt} + \beta_{jk} k_{ijt} + \beta_{j\ell\ell} \ell_{ijt}^2 + \beta_{jkk} k_{ijt}^2 + \beta_{j\ell k} \ell_{ijt} k_{ijt} + \omega_{ijt} + \epsilon_{ijt}$$

- 2. Assume $\omega_{ijt} = g(m_{ijt}, \ell_{ijt}, k_{ijt})$ where g() is increasing in m_{ijt}
- 3. First stage: Non-parametrically regress

$$q_{ijt} = f(_{ijt}, k_{ijt}; \beta_j) + g^{-1}(m_{ijt}, \ell_{ijt}, k_{ijt}) + \epsilon_{ijt}$$
 to obtain $q_{iit} = \hat{q}_{iit} + e_{iit}$

4. Assume productivity law of motion

$$\omega_{ijt} = \rho_j \omega_{ijt-1} + \xi_{ijt}$$

s.t.
$$\hat{\rho_j} = (\omega_{ijt-1}\omega_{ijt-1})^{-1}\omega_{ijt-1}\omega_{ijt}$$
 and $\omega_{ijt}(\beta_j) = \hat{q}_{ijt} - x_j'\beta_j$

Production Function Estimation Steps

5. Then, productivity shocks are a function of production coefficients

$$\xi_{ijt}(\beta) = \omega_{ijt}(\beta_j) - \hat{\rho}_j(\beta_j)\omega_{ijt-1}(\beta_j)$$

6. Second stage: Use GMM to estimate moment conditions

$$E\left[\xi_{ijt}(\beta_j)\left(\begin{array}{c}\ell_{ijt-1}\\k_{ijt}\end{array}\right)\right]=0$$

where the identification assumption for lagged variable inputs shows up

Business Model/Income Structure Matters!

- ▶ Differences in business model according to fee v rate pricing
 - non-traditional: above average fee revenue share
 - traditional: below average fee revenue share

Markups and the Policy Rate, by Business Model

Concentration

Markups and Product Concentration

Bank Pass-Through

- ▶ From markup identities, recover marginal cost mc_{ijt} for bank i, product j, time t
- Regress

$$\Delta log(r_{ijt}) = \alpha_{ij} + \sum_{k=0}^{6} \beta_{jk} \Delta log(mc_{ij,t-k}) + \epsilon_{ijt}$$

 $ightharpoonup \sum_{k=0}^{6} \beta_{jk}$: long-run pass-through for product j

Bank Pass-Through

Long-Run Cost Pass-Through Regression Analysis

	(1)	(2)	(3)	(4)
	$\Delta \log r^L$	$\Delta \log r^L$	$\Delta \log r^D$	$\Delta \log r^D$
$\Delta \log mc_t$	0.157***	0.163***	-0.011***	-0.0
$\Delta \log mc_{t-1}$	0.004	0.012	-0.047***	-0.035*
$\Delta \log mc_{t-2}$	0.001	0.006	-0.042***	-0.032*
$\Delta \log mc_{t-3}$	0.007	0.012	-0.039***	-0.027*
$\Delta \log mc_{t-4}$	-0.021**	-0.013	-0.038***	-0.024*
$\Delta \log mc_{t-5}$	0.0	0.006	-0.027***	$-0.014*^{\circ}$
$\Delta \log mc_{t-6}$	0.005	0.006	-0.014***	-0.007*
$\sum_{j} \hat{\beta}_{t-j}$	0.15	0.19	-0.22	-0.14
Observations	175,560	175,560	131,295	131,295
Time Periods	132	132	132	132
Banks	2,474	2,474	2,446	2,446
R-squared	0.124	0.143	0.658	0.737
Fixed Effects	X	✓	X	✓

Note: This table displays the results from regressing price on current (and lagged) marginal cost for each product: loans and deposits. Marginal costs are computed through dividing price by the respective markup. The sum of the cost coefficients is defined as the estimated long-run pass through effect of costs on prices. Robust standard errors were used and the statistical significance of each estimate is illustrated with stars (*p<0.1, **p<0.05, ***p<0.01).

Historical Loan Markups

Historical Deposit Markups

Markups Cross-Section Over Time

Markups Percentiles Over Time

1st Stage IV Regressions

1st Stage Regression on Instruments

	$\Delta \log r^L$	$\Delta \log r^D$
Fixed Asset Expense Δz_1	70.977***	58.542***
Non-Interest Expense Δz_2	1.826*	6.250***
Labor Expense Δz_3	0.011***	0.008***
Observations	190,963	192,150
Time Periods	138	138
Banks	2,569	2,564
R-squared	0.052	0.172
Fixed Effects	✓	✓
Robust F-Statistic	178	936

Why Increasing Loan Markups?

- (1) Diminished outside competition with high rates
 - Shadow bank market funding
 - ► Jiang, Matvos, Piskorski, and Seru (2020)
- (2) Firm financing costs vary with policy rate
 - Business cycle literature (Jermann and Quadrini (2012), Begenau and Salomao (2022))
- (3) Composition of borrowers changes with policy rate

Why Decreasing Deposit Markups?

- Two channels: liquidity preference and asset return
 - ▶ Drecshler et al. (2012)
 - ► Liquidity preference for cash + deposits
 - ► Return preference bonds > deposits > cash
- Liquidity preference
 - $ightharpoonup \uparrow r \Rightarrow \uparrow r^D \Rightarrow$ higher demand for deposits over cash
 - **Result**: $\uparrow \mu^D$
- Asset return
 - ▶ $\uparrow r \Rightarrow \uparrow r^B$ quicker than $\uparrow r^D \Rightarrow$ higher demand for bonds over deposits
 - ► Result: $\downarrow \mu^D$

Relevant Interactions?

- ▶ Do other bank characteristics affect the magnitude of relationship between markups and monetary policy?
- ightharpoonup Consider interactions between policy rates Δr_t and
 - (1) Level of price power via instrumented markups $\hat{\mu}^j$
 - (2) Bank size via total assets (\$b)
 - (3) Business model proxy via fee share of revenue

Relevant Interactions?

Monetary Interactions with Pricing Power, Size and Business Model

	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^D$	$\Delta \log \mu^D$
			$\Delta \log \mu^{-}$	$\Delta \log \mu^{-}$
Loan rate $\Delta \log \hat{r}_{it}^L$	-1.40***	-1.40***		
Policy rate $\Delta \log r_t$	0.157***	0.159***	-0.615***	-0.678***
Deposit rate $\Delta \log \hat{r}_{it}^D$			0.473***	0.472***
$\Delta \log r_t \times \hat{\mu}^L$	0.017***	0.017***		
$\Delta \log r_t \times \hat{\mu}^D$			0.569***	0.698***
$\Delta \log r_t \times \text{Size}$		0.0		-0.0002***
$\Delta {\rm log} \ r_t \times {\rm Business} \ {\rm Model}$		-0.003		0.039***
Observations	190,906	190,906	192,088	192,088
Time Periods	138	138	138	138
Banks	2,568	2,568	2,564	2,564
R-squared	0.062	0.062	0.204	0.207
Bank FE	✓	✓	✓	✓
Other Controls	✓	✓	✓	✓

Relevant Interactions?

Monetary Interactions with Pricing Power, Size and Business Model

	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^D$	$\Delta \log \mu^D$
Loan rate $\Delta \log \hat{r}_{it}^L$	-1.40***	-1.40***		
Policy rate $\Delta \log r_t$	0.157***	0.159***	-0.615***	-0.678***
Deposit rate $\Delta \log \hat{r}_{it}^D$			0.473***	0.472***
$\Delta \log r_t \times \hat{\mu}^L$	0.017***	0.017***)
$\Delta \log r_t \times \hat{\mu}^D$			0.569***	0.698***
$\Delta \log r_t \times \text{Size}$	^	0.0		-0.0002***
$\Delta \log r_t \times \text{Business Model}$		-0.003		0.039***
Observations	190,906	190,906	192,088	192,088
Time Periods	138	138	138	138
Banks	2,568	2,568	2,564	2,564
R-squared	0.062	0.062	0.204	0.207
Bank FE	✓	✓	✓	✓
Other Controls	✓	✓	✓	✓

Level of pricing power enhances (attenuates) markup relationship for loans (deposits)

Other Explanatory Variables

- ► Two sets of additional explanatory variables
 - (1) Micro (bank-level)
 - size (assets)
 - net interest margin
 - business model (via interest revenue share)
 - capital ratio
 - (2) Macro (aggregate)
 - real business cycle
 - ▶ liquidity premium (ff rate minus 3 month treasury)
 - credit risk premium (Baa corporate bond yield minus 10 year treasury)

Adding Time Fixed Effects

- ► Time effects on 12-quarter periods
 - ► Some discretion around recessions/changes in monetary policy
- ► Tighter identification: controls for changes in market structure or monetary regimes

Regression Analysis for Determinants of Bank Markups
--

	(1)	(2)	(3)	(4)	(5)	(6)
	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^L$	$\Delta \log \mu^D$	$\Delta \log \mu^D$	$\Delta \log \mu^D$
Loan rate $\Delta \log \hat{r}_{it}^L$		-0.58***	-1.46***			
Policy rate $\Delta \log r_t$	0.028***	0.056***	0.191***	-0.058***	-0.116***	-0.21***
Deposit rate $\Delta \log \hat{r}_{it}^D$					0.266***	0.48***
Assets (\$b)			0.0***			-0.0***
Equity Ratio			0.28***			-0.054**
Biz Cycle			-0.015***			0.02***
Biz Cycle × Rate r_t			0.015***			-0.01***
Avg. Markup Elasticity	0.03	0.06	0.19	-0.06	-0.12	-0.21
Observations	190,906	190,906	190,906	192,088	192,088	192,088
Time Periods	138	138	138	138	138	138
Banks	2,568	2,568	2,568	2,564	2,564	2,564
R-squared	0.008	0.026	0.063	0.040	0.189	0.203
Bank FE	✓	✓	✓	✓	✓	✓
Time FE	✓	✓	✓	✓	✓	✓
Other Controls	X	X	✓	X	X	✓

Markup Levels Relative to Literature

- lacktriangle Corbae and D'Erasmo (2021) find avg $\mu^L pprox 1.5$
 - ► Loan markups of 3 in 95th percentile
- Pasqualini (2021) finds avg μ^L between 1.25 and 2.5
- Output elasticities relatively close with De Loecker, Eeckhout and Unger (2020)
- Why are loan markups so high?
 - Carry certain risk/term premia not present in typical IO applications
 - Main analysis is about markup variation, not levels

Markup Levels Relative to Literature

- lacktriangle Corbae and D'Erasmo (2021) find avg $\mu^L pprox 1.5$
 - ► Loan markups of 3 in 95th percentile
- Pasqualini (2021) finds avg μ^L between 1.25 and 2.5
- Output elasticities relatively close with De Loecker, Eeckhout and Unger (2020)
- Why are loan markups so high?
 - Carry certain risk/term premia not present in typical IO applications
 - Main analysis is about markup variation, not levels

Robustness Exercises

- (1) Convert data to annual frequency
 - ► Helps treat variable labor assumption
- (2) Cost function estimation
 - Estimate $C = f(\ell, k, \mathbf{x}) + \epsilon$ which provides $mc_{\ell} = \frac{\partial C}{\partial \ell}$ and thus markups μ
 - ► Berger and Humphrey (1997)
- (3) Infer loan originations and spot rates
 - Use balance sheet changes, charge-off rates and asset maturity to infer new originations

Robustness Exercises

Increasing Returns to Scale

Loan inequality condition

$$\frac{\partial s^{L}}{\partial r} < 0 \quad \Longleftrightarrow \quad \mu^{L} + \Gamma^{L} \frac{r^{L}}{r} + \tilde{\Gamma}^{L} + \mu^{L} \frac{\partial^{2} C}{\partial L^{2}} \frac{L}{r^{L}} \left[\epsilon^{r} \frac{r^{L}}{r} - \epsilon^{r^{L}} \right] < 1$$

- ▶ Increasing returns $\Rightarrow \frac{\partial^2 C}{\partial L^2} < 0$
- ▶ Mechanism: less incentive to raise r^L , shrink demand, and increase marginal cost
 - Result: if strong enough, generates decreasing loan spread in *r*

Capital Requirements

lackbox Capital requirement $\frac{L-D}{L} \geq \phi$ generates FOC

$$r^{L} = \mu^{L} [r - \lambda (1 - \phi)]$$

► Loan inequality condition

$$\frac{\partial s^L}{\partial r} < 0 \quad \Longleftrightarrow \quad \mu^L + \Gamma^L \frac{r^L}{r} + \tilde{\Gamma}^L - \mu^L (1 - \phi) \frac{\partial \lambda}{\partial r} < 1$$

- ► Condition relaxed if $\frac{\partial \lambda}{\partial r} > 0$
- Evidence that bank leverage increases with r
 - ightharpoonup Increases by ${\sim}100\%$ from low- to high-rate environment
 - lacktriangle Implies more binding capital requirements, higher λ

Capital Requirements

lackbox Capital requirement $\frac{L-D}{L} \geq \phi$ generates FOC

$$r^L = \mu^L [r - \lambda (1 - \phi)]$$

► Loan inequality condition Shadow value from relaxing CR

$$\frac{\partial s^L}{\partial r} < 0 \quad \Longleftrightarrow \quad \mu^L + \Gamma^L \frac{r^L}{r} + \tilde{\Gamma}^L - \mu^L (1 - \phi) \frac{\partial \lambda}{\partial r} < 1$$

- ► Condition relaxed if $\frac{\partial \lambda}{\partial r} > 0$
- Evidence that bank leverage increases with r
 - ▶ Increases by \sim 100% from low- to high-rate environment
 - lacktriangle Implies more binding capital requirements, higher λ

Bank Default Risk

▶ Default risk p(L) generates FOC

$$r^{L} = \mu^{L} [r + \frac{\partial p}{\partial L} \bar{V}]$$

Loan inequality condition

$$\frac{\partial s^{L}}{\partial r} < 0 \quad \Longleftrightarrow \quad \mu^{L} + \Gamma^{L} \frac{r^{L}}{r} + \tilde{\Gamma}^{L} + \mu^{L} \bar{V} \frac{\partial^{2} p}{\partial L^{2}} (\epsilon^{r} \frac{r^{L}}{r} - \epsilon^{r^{L}}) < 1$$

- ▶ Condition relaxed if p(L) concave
- ► <u>Mechanism</u>: less incentive to raise r^L, shrink demand, and shift quantity onto more sensitive/elastic part of default function

Estimated Output Elasticities: $\theta_j = \frac{\partial F_j}{\partial \ell_j} \frac{\ell_j}{F_j}$

DSS [2017] Deposit Flow Betas

Monetary Transmission Regression

Monetary Transmission via Deposit Pricing Power

	$\begin{array}{c} (1) \\ \Delta {\rm log \; deposit}_{it} \end{array}$	$\Delta \log \operatorname{deposit}_{it}$
Policy rate Δr_t	-0.009***	-0.041***
Interaction $\Delta r_t \times r_t$		0.008***
Observations	192,088	192,088
Time Periods	138	138
Banks	2,564	2,564
R-squared	0.204	0.207
Bank FE	✓	✓
Other Controls	X	X

 Market power is affected by monetary policy (this paper), thus affects transmission

$$r \longrightarrow \chi(\mu(\mathbf{r}) \longrightarrow \text{lending, rates}$$

For example, Drechsler, Savov, Schnabl (2017) find monetary transmission via

$$\Delta$$
deposits $\sim \beta \Delta r \times \text{Concentration}$

- This paper: market power changes quickly with monetary policy
- ▶ Punchline: repeat cycles of rate hikes/cuts affect magnitude of transmission

 Market power is affected by monetary policy (this paper), thus affects transmission

$$r \longrightarrow \chi \mu(\mathbf{r}) \longrightarrow \text{lending, rates}$$

For example, Drechsler, Savov, Schnabl (2017) find monetary transmission via

$$\Delta$$
deposits $\sim \beta \Delta r \times \text{Concentration}$

- This paper: market power changes quickly with monetary policy
- ► **Punchline**: repeat cycles of rate hikes/cuts affect magnitude of transmission

 Their proxy for market/price power.

Relatively fixed at short- or medium-horizons

- ► Can replicate some of Drechsler, Savov, Schnabl [2017] using markups instead of concentration as market power proxy
 - ► Transmission magnitudes are smaller

DSS Flow Betas

► Test for attenuation effects through simple regression

$$\Delta log \ deposit_{it} = \alpha_i + \beta \Delta r_t + \gamma \Delta r_t \times r_t + \epsilon_{it}$$

Find $\hat{\beta} < 0$ (standard transmission effect)

Regression Results

- Find $\hat{\gamma} > 0$ (attenuation effect)
- Loss of deposit market power consistent with the attenuation effect

Regression Results

- Previous results are for markup elasticities
 - For loans, $\frac{\Delta \mu^{\iota}/\mu^{\iota}}{\Delta r/r} \approx 0.21$
 - For deposits, $\frac{\Delta \mu^D/\mu^D}{\Delta r/r} \approx -0.23$
- Useful for theory (up next) but goofy when thinking about low-rate environment
- Also do analysis in level differences: increase r by 100 bp
 - ► Increase loan markups by 12%
 - Decrease deposit markups by 8%

