

ONE DIMENSIONAL MODEL WITH DELTA-TYPE INTERACTIONS:

DIRAC'S EQUATION WITH QED INTERACTIONS

<u>Timothée AUDINET</u>, Julien TOULOUSE

Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France

Introduction: Relativity

- Relativity has explained some physical properties
 - 1. vellow color of gold ¹
 - 2. liquid state of mercury at room temperature ²
- Encounters some heavy problems when facing the quantum electrodynamics (QED) interactions in 3D

	IP	Error
DC-HF	7.6892	-1.5363
DC-CCSD	9.1164	-0.1092
DC-CCSD(T)	9.2938	0.0683
DC-CCSDTQP	9.2701	0.0446
+Breit	9.2546	0.0290
+QED	9.2288	0.0032
Experiment [31,32]	9.2256	

Figure 1: IP of gold with different levels of approximation³

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

 $^{^{2}}$ K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)

 $^{^{3}}$ P. Schwerdtfeger et al., Phys. Rev. Let. 118, 023002 (2017)

- Relativity has explained some physical properties
 - 1. vellow color of gold 1
 - liquid state of mercury at room temperature ²
- Encounters some heavy problems when facing the quantum electrodynamics (QED) interactions in 3D

	IP	Error
DC-HF	7.6892	-1.5363
DC-CCSD	9.1164	-0.1092
DC-CCSD(T)	9.2938	0.0683
DC-CCSDTQP	9.2701	0.0446
+Breit	9.2546	0.0290
+QED	9.2288	0.0032
Experiment [31,32]	9.2256	

Figure 1: IP of gold with different levels of approximation³

Why don't we look at a 1D model to have a better understanding?

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

 $^{^{2}}$ K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)

³P. Schwerdtfeger *et al.*, Phys. Rev. Let. 118, 023002 (2017)

Introduction: 1D Model

- 1D model have been shown pretty efficient in understanding a non-relativistic problem (Diata's talk)
- Most of the actual calculation are done with the "no-pair" approximation
- Develop a no-photon effective QED framework⁴

Purposes

Introduction

- \square To develop an analytical solution of the 1D problem
- ☐ To have a better understanding of the physical issues of QED interactions
- ☐ To develop this problem in a finite basis set

⁴P. Chaix and D. Iracane, J. Phys. B 22, 3791 (1989)

Dirac operator

$$\mathcal{D} = c \left(\vec{\alpha} \cdot \vec{p} \right) + \beta \ mc^2 + V, \tag{1}$$

•
$$\vec{\boldsymbol{\alpha}} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$$
 where $\vec{\sigma} = \{ \sigma_x, \ \sigma_y, \ \sigma_z \}$ are the Pauli matrices

•
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac operator

$$\mathcal{D} = c \left(\vec{\boldsymbol{\alpha}} \cdot \vec{\boldsymbol{p}} \right) + \boldsymbol{\beta} \ mc^2 + V, \tag{1}$$

• $\vec{\pmb{\alpha}} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$ where $\vec{\sigma} = \{\sigma_{\mathsf{x}}, \ \sigma_{\mathsf{y}}, \ \sigma_{\mathsf{z}}\}$ are the Pauli matrices

•
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac equation

$$\mathcal{D}\psi = \mathcal{E}\psi \tag{2}$$

$$m{\psi} = egin{pmatrix} \psi^{\mathsf{L}} \ \psi^{\mathsf{S}} \end{pmatrix}$$
 where $\psi^{\mathsf{L}/\mathsf{S}} = egin{pmatrix} \psi^{\mathsf{L}/\mathsf{S}} \ \psi^{\mathsf{L}/\mathsf{S}} \ \end{pmatrix}$

ullet is the energy of the state $oldsymbol{\psi}$

Properties of the relativistic Hamiltonian

Non-relativistic spectrum

$$\mathcal{H} = -\frac{\Delta}{2m} + V \tag{3}$$

Spectrum:

Introduction

- If $\mathcal{E} > 0$: continuum
- If $\mathcal{E} < 0$: bound states

Relativistic spectrum

$$\mathcal{D} = c \left(\vec{\alpha} \cdot \vec{p} \right) + \beta mc^2 + V \tag{4}$$

Spectrum:

- If $\mathcal{E} \in (-\infty, -mc^2] \cup [mc^2, +\infty)$: continuum
- If $\mathcal{E} \in (0, mc^2)$: bound states
 - ⇒ Negative continuum spectrum

0

 mc^2

How to deal with the negative continuum

No-pair approximation

Solving the Dirac equation

Introduction

Projecting it on the positive energy part

How to deal with the negative continuum

No-pair approximation

Solving the Dirac equation

Introduction

Projecting it on the positive energy part

QED treatment of negative energy electrons

- Solving the Dirac equation
- Filling the negative part with electrons
- QED description of the system

Free Dirac operator

1D Model

0000

$$\mathcal{D}_{0,x} = c \, \boldsymbol{\alpha}_x \, p_x + \boldsymbol{\beta} \, mc^2, \tag{5}$$

• From this 1D operator we can make an unitary transformation

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- Define a new operator $\mathcal{D}'_{0,x} = U \mathcal{D}_{0,x} U^{-1} = \begin{pmatrix} \mathbf{D}_0 & \mathbf{0}_2 \\ \mathbf{n}_0 & \mathbf{D}_0 \end{pmatrix}$
- Where

$$\mathbf{D}_0 = c \; \boldsymbol{\sigma}_x \; \boldsymbol{p}_x + \boldsymbol{\sigma}_z \; \boldsymbol{m} c^2$$

is a 2×2 operator!

⁵T. Audinet, J. Toulouse, J. Chem. Phys. 158, 244108 (2023)

1D Dirac's equation

Introduction

1D Free Dirac operator

$$\mathbf{D}_0 = c \, \boldsymbol{\sigma}_x \, \boldsymbol{p}_x + \boldsymbol{\sigma}_z \, mc^2, \tag{6}$$

- with domain: $\mathsf{Dom}(\mathbf{D}_0) = H^1(\mathbb{R}, \mathbb{C}) \otimes \mathbb{C}^2$
- where: $H^1(\mathbb{R},\mathbb{C}) = \{ \psi \in L^2(\mathbb{R},\mathbb{C}) | d\psi/dx \in L^2(\mathbb{R},\mathbb{C}) \}$ is the first-order Sobolev space

1D Free Dirac equation

$$\mathbf{D}_0 \boldsymbol{\psi} = \mathcal{E} \boldsymbol{\psi},\tag{7}$$

•
$$\mathcal{E}_k = \sqrt{k^2c^2 + m^2c^4}$$

•
$$\mathcal{E}_{k} = -\sqrt{k^{2}c^{2} + m^{2}c^{4}}$$

$$\boldsymbol{\psi}_{+,k}^{g}(x) = A_{k} \begin{pmatrix} \cos(kx) \\ is_{k} \sin(kx) \end{pmatrix}$$

$$\psi_{-,k}^{g}(x) = A_k \begin{pmatrix} is_k \cos(kx) \\ \sin(kx) \end{pmatrix}$$

• where s_k goes to zero when $c \to \infty$

Hydrogen-like Dirac operator

$$\mathbf{D} = \mathbf{D}_0 - Z\delta(x)\mathbb{I}_2,\tag{8}$$

- Ambiguity on the action of a delta distribution on discontinuous functions
- The action of **D** is defined such that $\mathbf{D}\psi = \mathbf{D}_0\psi$, $\forall x \neq 0$
- with domain

Introduction

$$\mathsf{Dom}(\mathbf{D}) = \{\tilde{\pmb{\psi}} \in H^1(\mathbb{R} \backslash \{0\}, \mathbb{C}) \otimes \mathbb{C}^2 | \; \tilde{\pmb{\psi}}(0^+) = \mathcal{M}\tilde{\pmb{\psi}}(0^-) \}$$

• where ${\cal M}$ enforces the continuity of the density $\tilde{\pmb{\psi}}^\dagger \tilde{\pmb{\psi}}$ at x=0

$$\mathcal{M} = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} \; ; \; \text{with} \; \; \theta = 2 \arctan(Z/2c) \tag{9}$$

1D Model

00000

Hydrogen-like Dirac equation

Introduction

$$\mathbf{D}\tilde{\boldsymbol{\psi}} = \tilde{\mathcal{E}}\tilde{\boldsymbol{\psi}},\tag{10}$$

This Hamiltonian has a single bound state

$$\tilde{\boldsymbol{\psi}}_1(x) = A \begin{pmatrix} 1 \\ i\lambda \operatorname{sgn}(x) \end{pmatrix} e^{-\kappa|x|} \tag{11}$$

- with energy $\tilde{\mathcal{E}}_1 = mc^2 \frac{1-\lambda^2}{1+\lambda^2}$, with $\lambda = \frac{Z}{2c}$
- Non-relativistic limit of the bound-state eigenfunction

$$\lim_{c \to \infty} \tilde{\boldsymbol{\psi}}_1(x) = \sqrt{mZ} \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-mZ|x|}$$
 (12)

 \mathbf{E}

 \mathbf{D}_0

Free Dirac equation

$$\mathbf{D}_0 \boldsymbol{\psi}_{\rho} = \mathcal{E}_{\rho} \boldsymbol{\psi}_{\rho} \tag{13}$$

Spectrum:

Introduction

• Continuum: $\mathcal{E}_k = \pm \sqrt{m^2 c^4 + k^2 c^2}$

Hydrogen-like Dirac equation

$$\mathbf{D}\tilde{\boldsymbol{\psi}}_{p} = (\mathbf{D}_{0} - Z\delta(x))\,\tilde{\boldsymbol{\psi}}_{p}$$
$$= \tilde{\mathcal{E}}_{p}\tilde{\boldsymbol{\psi}}_{p} \tag{14}$$

Spectrum:

- Bound State: $\tilde{\mathcal{E}}_b = mc^2 \frac{1-\lambda^2}{1-\lambda^2}$ with $\lambda = Z/2c$
- Continuum: $\tilde{\mathcal{E}}_k = \pm \sqrt{m^2c^4 + k^2c^2}$

QED Effects

Introduction

- Need to describe an infinite number of particles
- Need to take into account the two-electron interaction

Conclusion

QED Effects

Introduction

- Need to describe an infinite number of particles
- Need to take into account the two-electron interaction
- How to compute the energy of an infinite amount of particles? It diverges
- Define a reference \rightarrow the free vacuum

Conclusion

Vacuum Polarization

Introduction

- Spontaneous creation of electron positron pairs due to the external potential
- Creates a charge density that will interact through the two-electron interaction

$$\mathbf{n}_1^{\mathsf{vp}}(x,x') = \sum_{\tilde{\mathcal{E}}_p < 0} \tilde{\psi}_p(x) \tilde{\psi}_p^{\dagger}(x') - \sum_{\mathcal{E}_p < 0} \psi_p(x) \psi_p^{\dagger}(x')$$

- In 3D this quantity diverges, needs to be renormalized
- We want to have a better understanding of this quantity and its influence on the energy spectrum

Vacuum Polarization Density – Analytical form

Analytical expression

$$\begin{split} n^{\mathsf{vp}}(x) &= & \operatorname{tr}\left[\mathbf{n}_{1}^{\mathsf{vp}}(x,x)\right] = \sum_{\tilde{\mathcal{E}}_{p}<0} \tilde{\psi}_{p}^{\dagger}(x)\tilde{\psi}_{p}(x) - \sum_{\mathcal{E}_{p}<0} \psi_{p}^{\dagger}(x)\psi_{p}(x) \\ &= & -\int_{0}^{\infty} \frac{\mathrm{d}k}{\pi} \frac{\kappa}{k^{2} + \kappa^{2}} \left(\kappa \cos(2k|x|) - \frac{\tilde{\mathcal{E}}_{b}}{\mathcal{E}_{k}} \sin(2k|x|)\right) \end{split}$$

Hermite-Gaussian functions

$$\forall x \in \mathbb{R}, \ f_n^{\alpha}(x) = N_n^{\alpha} H_n(\sqrt{2\alpha}x) e^{-\alpha x^2}$$
 (15)

QED Effects

• Orthonormal basis set of $L^2(\mathbb{R},\mathbb{C})$ in the limit $n \to \infty$

Figure 2: Vacuum polarization density $n^{vp}(x)$ as a function of x for c=1 and $n_{max}=800$.

First-order vacuum polarization density in Z

$$n^{\text{vp},(1)}(x) = -\frac{Zm}{\pi} \int_{1}^{\infty} dt \frac{e^{-2mc|x|t}}{t\sqrt{t^{2}-1}}$$
 (16)

QED Effects

00000000

One-body density matrix for any system

$$\mathbf{n}_1(x, x') = \mathbf{n}_1^{\mathsf{el}}(x, x') + \mathbf{n}_1^{\mathsf{vp}}(x, x') \tag{17}$$

- $\mathbf{n}_{1}^{\text{el}}(x, x') = \sum_{i=1}^{N} \tilde{\psi}_{i}(x) \tilde{\psi}_{i}^{\dagger}(x')$
- $\mathbf{n}_1^{\mathsf{vp}}(x,x') = \sum_{\tilde{\varepsilon}_n < 0} \tilde{\psi}_p(x) \tilde{\psi}_p^{\dagger}(x') \sum_{\tilde{\varepsilon}_n < 0} \psi_p(x) \psi_p^{\dagger}(x')$
- Through the two-electron interaction \rightarrow interaction between the electronic density and the vacuum-polarization density
- Direct contribution: $\mathcal{E}_N^{(1),D} = \int n^{\text{el}}(x) n^{\text{vp}}(x) dx$
- Exchange contribution: $\mathcal{E}_{M}^{(1),X} = -\int \operatorname{tr} \left[\mathbf{n}_{1}^{\text{el}}(x) \mathbf{n}_{1}^{\text{vp}}(x) \right] dx$

QED Effects

00000000

Introduction

Lamb shift

Correction to the 1s orbital energy of the hydrogen spectrum due to the interaction between the electrons and the vacuum polarization density

$$\mathcal{E}_{\mathsf{Lamb}}^{\mathsf{D}} = \int n_{\mathsf{1s}}(x) n^{\mathsf{vp}}(x) \mathsf{d}x$$
$$\mathcal{E}_{\mathsf{Lamb}}^{\mathsf{X}} = -\int \mathsf{tr} \left[\mathbf{n}_{\mathsf{1s}}(x) \mathbf{n}^{\mathsf{vp}}(x) \right] \mathsf{d}x$$

Summary: QED effects

- Developed a nice QED model
- Developed and found an analytical expression of the vacuum polarization density
- Found a reasonable approximation to compare it to 3D
- We have been able to compute its interaction with the electrons of the system

Purposes

Introduction

- ✓ To develop an analytical solution of the 1D problem
- √ To have a better understanding of the physical issues of QED interactions
- X To develop this problem in a finite basis set

Conclusion

Introduction

QED effects are the next challenge of relativistic quantum chemistry

1D Model

- Nowadays some codes offer such calculations but only for atoms and with some approximations
- This 1D model help us to understand this problem
- Develop a code to reproduce the analytic results and overcome most of the difficulties

Conclusion

Introduction

QED effects are the next challenge of relativistic quantum chemistry

1D Model

- Nowadays some codes offer such calculations but only for atoms and with some approximations
- This 1D model help us to understand this problem
- Develop a code to reproduce the analytic results and overcome most of the difficulties

Perspectives

- Add correlation to the code
- Generalize the problem to molecules
- Develop relativistic functional beyond the no-pair approximation for molecules

Fermionic Fock space

• Fock space:

$$\mathcal{F} = \bigoplus_{(n,m)=(0,0)}^{(M_{PS},M_{NS})} \mathcal{H}^{(n,m)} = \bigoplus_{q=-M_{NS}}^{M_{PS}} \mathcal{F}_q$$
 (18)

- with: $\mathcal{F}_q = \mathcal{H}^{(q,0)} \oplus \mathcal{H}^{(q+1,1)} \oplus \cdots \oplus \mathcal{H}^{(M_{PS},M_{NS}-q)}$
- Fermionic

$$orall p,q\in extsf{PS},\{\hat{b}_p,\hat{b}_q^\dagger\}=\delta_{pq} ext{ and } orall p,q\in extsf{NS},\{\hat{d}_p,\hat{d}_q^\dagger\}=\delta_{pq}$$

Dirac field operator⁶

$$\hat{\boldsymbol{\psi}}(x) = \sum_{p \in \mathsf{PS}} \psi_p(x) \hat{b}_p + \sum_{p \in \mathsf{NS}} \psi_p(x) \hat{d}_p^{\dagger} \tag{19}$$

⁶P. Chaix and D. Iracane, J. Phys. B 22, 3791 (1989)

Second Quantization⁷

Normal ordered density operator

$$\hat{\mathbf{n}}_1(x,x') = \hat{\boldsymbol{\psi}}^{\dagger}(x') \otimes \hat{\boldsymbol{\psi}}(x) - \langle 0 | \hat{\boldsymbol{\psi}}^{\dagger}(x') \otimes \hat{\boldsymbol{\psi}}(x) | 0 \rangle$$
 (20)

Normal-ordered second quantized full Hamiltonian

$$\hat{H} = \int \text{tr} \big[\mathbf{D}(x) \hat{\mathbf{n}}_1(x, x') \big]_{x'=x} dx + \frac{1}{2} \iint \text{Tr} \big[\mathbf{w}(x_1, x_2) \hat{\mathbf{n}}_2(x_1, x_2) \big] dx_1 dx_2$$

- $\mathbf{w}(x_1, x_2) = \delta(x_1 x_2) (\mathbb{I}_2 \otimes \mathbb{I}_2 \sigma_1 \otimes \sigma_1)$
- Normal-ordered pair density-matrix operator: $\hat{\mathbf{n}}_2(x,x')$
- tr and Tr designate the trace for 2×2 and 4×4 matrices

⁷P. Chaix and D. Iracane, J. Phys. B 22, 3791 (1989)

Vacuum polarization origin

Vacuum Polarization

The vacuum polarization is the expectation value of the normal ordered density on the polarized vacuum $\left|\tilde{0}\right>$

$$\mathbf{n}_{1}^{\mathsf{vp}}(x,x') = \langle \tilde{0} | \hat{\mathbf{n}}_{1}(x,x') | \tilde{0} \rangle \qquad (21)$$

$$= \langle \tilde{0} | \hat{\boldsymbol{\psi}}^{\dagger}(x') \otimes \hat{\boldsymbol{\psi}}(x) | \tilde{0} \rangle$$

$$- \langle 0 | \hat{\boldsymbol{\psi}}^{\dagger}(x') \otimes \hat{\boldsymbol{\psi}}(x) | 0 \rangle$$

$$= \sum_{\tilde{\varepsilon}_{\rho} < 0} \tilde{\psi}_{\rho}(x) \tilde{\psi}_{\rho}^{\dagger}(x')$$

$$- \sum_{x \in \rho} \psi_{\rho}(x) \psi_{\rho}^{\dagger}(x')$$

