UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika - 1. stopnja

Mabel Najdovski **OBRNLJIVE FUNKCIJE SO SFERE V SVETU**

Delo diplomskega seminarja

Mentorica: izr. prof. dr. Ime Priimek

Somentor: doc. dr. Ime Priimek

Kazalo

1	Osnovne definicije homotopske teorije tipov		
	1.1	Odvisne vsote in odvisni produkti	4
	1.2	Enakost in homotopija	4
2	Ekvivalence in obrnljive funkcije		
		Definicije	4
	2.2	Osnovne lastnosti	1
	2.3	Podtipi	6
3	Kar	rakterizacija obrnljivosti	6

Obrnljive funkcije so sfere v svetu

Povzetek

V povzetku na kratko opišemo vsebinske rezultate dela. Sem ne sodi razlaga organizacije dela – v katerem poglavju/razdelku je kaj, pač pa le opis vsebine.

Invertible maps are spheres in the universe

Abstract

Prevod slovenskega povzetka v angleščino.

Math. Subj. Class. (2020): 74B05, 65N99

Ključne besede: naravni logaritem, nenaravni algoritem

Keywords: natural logarithm, unnatural algorithm

1 Osnovne definicije homotopske teorije tipov

1.1 Odvisne vsote in odvisni produkti

Definicija 1.1. Naj bo A tip in B družina tipov nad A. Definiramo tip

$$\sum (x:A) Bx,$$

imenovan *odvisna vsota tipov A in B*. Elementi $\sum (x : A) Bx$ so pari (x, y), kjer je x : A in y : Bx.

Trditev 1.2. TODO karakterizacija enakosti v odvisnih vsotah

Definicija 1.3. Naj bo A tip in B družina tipov nad A. Definiramo tip

$$\prod (x:A) Bx$$
,

imenovan odvisni produkt tipov A in B. Elementi $\prod (x:A)Bx$ so predpisi f, ki vsakemu elementu x:A priredijo element f(x):Bx, imenujemo pa jih odvisne funkcije med A in B.

1.2 Enakost in homotopija

Definicija 1.4. Naj bo A tip in x, y : A. Definiramo tip x = y, imenovan tip identifikacij med <math>x in y, elemente katerega imenujemo identifikacije med x in y. Za vsak x : A obstaja identifikacija $refl_x : x = x$.

2 Ekvivalence in obrnljive funkcije

2.1 Definicije

Definicija 2.1. Za funkcijo f pravimo, da ima prerez, če obstaja element tipa

$$\mathrm{section}\,(f) := \sum \left(g: B \to A\right) f \circ g \sim id,$$

imenovanega tip prerezov funkcije f.

Funkcije, pripadajoče elementom tipa section f imenujemo prerezi funkcije f. Za funkcijo f pravimo, da $ima\ retrakcijo$, če obstaja element tipa

$$\mathsf{retraction}\,(f) := \sum \left(g: B \to A\right) g \circ f \sim id,$$

imenovanega tip retrakcij funkcije f.

Funkcije, pripadajoče elementom tipa retraction f imenujemo retrakcije funkcije f.

Definicija 2.2. Pravimo, da je funkcija f ekvivalenca, če ima tako prerez kot retrakcijo, torej, če obstaja element tipa

is-equiv
$$(f) := section (f) \times retraction (f)$$
.

Pravimo, da je tip A ekvivalenten tipu B, če obstaja ekvivalenca med njima, torej element tipa $A \simeq B := \sum (f : A \to B)$ is-equiv (f). Funkcijo, pripadajočo elementu $e : A \simeq B$, označimo z map e.

Definicija 2.3. Za funkcijo f pravimo, da je obrnljiva oziroma, da $ima\ inverz$, če obstaja element tipa

$$\text{is-invertible}\,(f) := \sum \left(g: B \to A\right) \left(f \circ g \sim id\right) \times \left(g \circ f \sim id\right),$$

imenovanega tip inverzov funkcije f.

Funkcije, pripadajoče elementom is-invertible (f), imenujemo inverzi funkcije f.

2.2 Osnovne lastnosti

V definiciji obrnljivosti smo zahtevali, da ima funkcija obojestranski inverz, v definiciji ekvivalence pa smo zahtevali le, da ima ločen levi in desni inverz. To bi nas lahko napeljalo k prepričanju, da je pojem obrnljivosti močnejši od pojma ekvivalence, vendar spodnja trditev pokaže da sta pravzaprav logično ekvivalentna. Pokazali bomo, da lahko prerez (ali simetrično, retrakcijo) ekvivalence f vedno izboljšamo do inverza, kar pokaže, da je f tudi obrnljiva.

Trditev 2.4. Funkcija je ekvivalenca natanko tedaj, ko je obrnljiva.

Dokaz. Denimo, da je funkcija f obrnljiva. Tedaj lahko njen inverz podamo tako kot njen prerez, kot njeno retrakcijo, kar pokaže, da je ekvivalenca.

Obratno denimo, da je funkcija f ekvivalenca. Podan imamo njen prerez s s homotopijo $H: f \circ s \sim id$ in njeno retrakcijo r s homotopijo $K: r \circ f \sim id$, s katerimi lahko konstruiramo homotopijo tipa $s \circ f \sim id$ po sledečem izračunu:

$$sf \stackrel{K^{-1}sf}{\sim} rfsf \stackrel{rHf}{\sim} rf \stackrel{K}{\sim} id.$$

Definicija 2.5. Naj bo $f: \prod (x:A) (Bx \to Cx)$ družina funkcij. Definiramo funkcijo tot $(f): \sum (x:A) Bx \to \sum (x:A) Cx$ s predpisom tot (f)(x,y) = (x,f(x)(y)).

Trditev 2.6. Naj bo $f : \prod (x : A) (Bx \to Cx)$ družina funkcij in denimo, da je f(x) ekvivalenca za vsak x : A. Tedaj je ekvivalenca tudi funkcija $\mathsf{tot}(f)$.

Dokaz. Ker je funkcija f(x) ekvivalenca za vsak x:A, lahko tvorimo družino funkcij $s: \prod (x:A) (Cx \to Bx)$, kjer je s(x) prerez funkcije f(x). Trdimo, da je tedaj tot (s) prerez funkcije tot (f), saj za vsak $(x,y): \sum (x:A) Cx$ velja enakost

$$tot(f)(tot(s)(x,y)) = tot(f)(x,s(x)(y)) = (x,f(x)(s(x)(y))) = (x,y).$$

Analogno lahko konstruiramo retrakcijo funkcije tot (f), kar zaključi dokaz.

Zgornja trditev je pomembna, saj nam omogoči, da konstrukcijo ekvivalence med odvisnima vsotama z istim baznim tipom poenostavimo na konstrukcijo družine ekvivalenc, kar je pogosto veliko lažje. Uporabljali ga bomo v obliki sledeče posledice:

Posledica 2.7. Naj bo A tip, B in C družini tipov nad A in denimo, da velja $Bx \simeq Cx$ za vsak x : A. Tedaj velja $\sum (x : A) Bx \simeq \sum (x : A) Cx$.

2.3 Podtipi

Definicija 2.8. Naj bo A tip in P družina tipov nad A. Pravimo, da je P predikat, če velja is-prop (Px) za vsak x:A.

Trditev 2.9. Naj bo A tip, P predikat na A, B pa družina tipov nad A. Denimo, da obstaja družina funkcij $s: \prod (x:A) (Bx \to Px)$. Tedaj velja ekvivalenca

$$\sum (x:A) Bx \simeq \sum (t:\sum (x:A) Px) B(pr_1t).$$

Dokaz. Po asociativnosti odvisne vsote je desna stran ekvivalence ekvivalentna tipu $\sum (x:A) \sum (p:Px) Bx = \sum (x:A) (Px \times Bx)$. Po posledici 2.7 torej zadošča pokazati, da za vsak x:A obstaja ekvivalenca $Bx \simeq Px \times Bx$.

Funkcijo $f: Bx \to Px \times Bx$ definiramo kot $\lambda y. (s(x,y), y)$, za funkcijo $g: Px \times Bx \to Bx$ pa lahko vzamemo drugo projekcijo. Očitno velja enakost g(f(y)) = y, ker pa je P predikat, velja tudi enakost f(g(p,y)) = (s(x,y),y) = (p,y).

3 Karakterizacija obrnljivosti

Definicija 3.1. Prosta zanka na tipu A je sestavljena iz točke a:A in identifikacije a=a. Tip vseh prostih zank na tipu A označimo s

$$\mathsf{free-loop}\left(A\right) := \sum \left(x:A\right) x = x.$$

Izrek 3.2. Tip obrnljivih funkcij med A in B je ekvivalenten tipu prostih zank na tipu $A \simeq B$.

Dokaz. Želimo konstruirati ekvivalenco tipa

$$\sum (f:A \to B)$$
 is-invertible $(f) \simeq \sum (e:A \simeq B)$ $(e=e)$.

Ker je is-equiv predikat in ker po trditvi 2.4 za vsako funkcijo f obstaja funkcija is-invertible $(f) \rightarrow$ is-equiv (f), najprej opazimo, da po trditvi 2.9 velja ekvivalenca

$$\sum \left(f:A\to B\right) \text{ is-invertible } (f)\simeq \sum \left(e:A\simeq B\right) \text{ is-invertible } (\operatorname{map} e).$$

Po posledici 2.7 torej zadošča pokazati, da za vsak element $e:A\simeq B$ obstaja ekvivalenca

is-invertible (map
$$e$$
) $\simeq (e = e)$.

Oglejmo si tip

$$\text{is-invertible} \, (\mathsf{map} \, e) = \sum \left(g: B \to A\right) (\mathsf{map} \, e \circ g \sim id) \times (g \circ \mathsf{map} \, e \sim id).$$

Po asociativnosti odvisne vsote ta ekvivalenten tipu

$$\sum \left(H: \sum \left(g: B \to A \right) \operatorname{map} e \circ g \sim id \right) \left(\operatorname{map} H \circ \operatorname{map} e \sim id \right) = \\ \sum \left(H: \operatorname{section} \left(\operatorname{map} e \right) \right) \left(\operatorname{map} H \circ \operatorname{map} e \sim id \right),$$

ker pa imajo po trditvi TODO ekvivalence kontraktibilen tip prerezov, po trditvi (TODO kontraktibilen bazni prostor) velja še ekvivalenca

$$\sum \left(H : \mathsf{section} \left(\mathsf{map} \, e \right) \right) \left(\mathsf{map} \, H \circ \mathsf{map} \, e \sim id \right) \simeq \left(\mathsf{sec} \, e \circ \mathsf{map} \, e \sim id \right).$$

Sledi, da velja is-invertible (map e) \simeq (sec $e \circ \text{map } e \sim id$), dokaz pa zaključimo še z zaporedjem ekvivalenc, ki jih argumentiramo spodaj.

```
\begin{split} (\sec e \circ \mathsf{map}\, e \sim id) &\simeq \\ (\mathsf{map}\, e \circ \sec e \circ \mathsf{map}\, e \sim \mathsf{map}\, e) &\simeq \\ (\mathsf{map}\, e \sim \mathsf{map}\, e) &\simeq \\ (\mathsf{map}\, e = \mathsf{map}\, e) &\simeq \\ (e = e) \end{split}
```

- Ker je e ekvivalenca, je po trditvi TODO ekvivalenca tudi delovanje $\mathsf{map}\,e$ na homotopije.
- Funkcija $\sec e$ je prerez funkcije map e.
- TODO funext
- Po trditvi $\ref{eq:continuous}$ lahko zanko na funkciji $\mathsf{map}\,e$ dvignemo do zanke na pripadajoči ekvivalenci e.

Slovar strokovnih izrazov

universe svet