Clase 7 Series de Tiempo

Felipe Elorrieta Lopez

Universidad de Santiago de Chile

April 28, 2025

Conceptos Previos

Proceso Lineal General

Conceptos Previos

- ► Proceso Lineal General
- Proceso Causal

Conceptos Previos

- Proceso Lineal General
- Proceso Causal
- Procesos Autoregresivos

▶ Un proceso estocástico $\{Y_t\}$, $t \in T$ se dice de medias móviles de orden q MA(q) si:

$$Y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} \tag{1}$$

donde $q \geq 1$ y $\{\epsilon_t\} \sim RB$.

▶ Un proceso estocástico $\{Y_t\}$, $t \in T$ se dice de medias móviles de orden q MA(q) si:

$$Y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} \tag{1}$$

donde $q \geq 1$ y $\{\epsilon_t\} \sim RB$.

 $ightharpoonup heta_1, \ldots, heta_q$ son coeficientes fijos (a estimar).

Equivalentemente, se puede definir el proceso de medias móviles de orden q MA(q) como:

$$Y_t = \Theta_q(B)\epsilon_t \tag{2}$$

donde $\Theta_q(B) = 1 + \theta_1 B + \ldots + \theta_q B^q$ es el polinomio de medias móviles de orden q.

Equivalentemente, se puede definir el proceso de medias móviles de orden q MA(q) como:

$$Y_t = \Theta_q(B)\epsilon_t \tag{2}$$

donde $\Theta_q(B) = 1 + \theta_1 B + \ldots + \theta_q B^q$ es el polinomio de medias móviles de orden q.

Notación: $Y_t \sim MA(q)$

Ejemplo: Considere $Y_t \sim MA(1)$, es decir

$$Y_{t} = \epsilon_{t} + \theta \epsilon_{t-1}$$

$$Y_{t} = \epsilon_{t} + \theta B \epsilon_{t}$$

$$Y_{t} = (1 + \theta B) \epsilon_{t}$$

$$Y_{t} = \Theta_{1}(B) \epsilon_{t}$$
(3)

donde
$$\Theta_1(B) = 1 + \theta B$$
.

Ejemplo: Considere $Y_t \sim MA(1)$, es decir

$$Y_{t} = \epsilon_{t} + \theta \epsilon_{t-1}$$

$$Y_{t} = \epsilon_{t} + \theta B \epsilon_{t}$$

$$Y_{t} = (1 + \theta B) \epsilon_{t}$$

$$Y_{t} = \Theta_{1}(B) \epsilon_{t}$$
(3)

donde $\Theta_1(B) = 1 + \theta B$.

Es el proceso $Y_t \sim MA(1)$ un proceso estacionario?

Ejemplo: Considere $Y_t \sim MA(1)$, es decir

$$Y_{t} = \epsilon_{t} + \theta \epsilon_{t-1}$$

$$Y_{t} = \epsilon_{t} + \theta B \epsilon_{t}$$

$$Y_{t} = (1 + \theta B) \epsilon_{t}$$

$$Y_{t} = \Theta_{1}(B) \epsilon_{t}$$
(3)

donde $\Theta_1(B) = 1 + \theta B$.

- **E**s el proceso $Y_t \sim MA(1)$ un proceso estacionario?
- Obtengamos su media, varianza, ACVF y ACF.

▶ El proceso $Y_t \sim MA(1)$ es un proceso estacionario, con las siguientes propiedades,

▶ El proceso $Y_t \sim MA(1)$ es un proceso estacionario, con las siguientes propiedades,

1.
$$\mathbb{E}(Y_t) = 0$$

- ▶ El proceso $Y_t \sim MA(1)$ es un proceso estacionario, con las siguientes propiedades,
 - **1.** $\mathbb{E}(Y_t) = 0$
 - **2.** $\mathbb{V}(Y_t) = \sigma^2(1 + \theta^2) = \sigma_y^2$

▶ El proceso $Y_t \sim MA(1)$ es un proceso estacionario, con las siguientes propiedades,

1.
$$\mathbb{E}(Y_t) = 0$$

2. $\mathbb{V}(Y_t) = \sigma^2(1 + \theta^2) = \sigma_y^2$
3. $\mathbb{C}(Y_t, Y_{t-k}) = \begin{cases} \sigma^2(1 + \theta^2), & k = 0 \\ \theta \sigma^2, & k = 1 \\ 0, & \text{eoc} \end{cases}$

▶ El proceso $Y_t \sim MA(1)$ es un proceso estacionario, con las siguientes propiedades,

1.
$$\mathbb{E}(Y_t) = 0$$

2. $\mathbb{V}(Y_t) = \sigma^2(1 + \theta^2) = \sigma_y^2$
3. $\mathbb{C}(Y_t, Y_{t-k}) = \begin{cases} \sigma^2(1 + \theta^2), & k = 0 \\ \theta \sigma^2, & k = 1 \\ 0, & \text{eoc} \end{cases}$
4. $\rho(k) = \begin{cases} 1, & k = 0 \\ \frac{\theta}{1+\theta^2}, & k = 1 \\ 0, & \text{eoc} \end{cases}$

Invertibilidad

► Consideremos el modelo MA(1), es decir,

$$Y_t = (1 + \theta B)\epsilon_t$$

Invertibilidad

Consideremos el modelo MA(1), es decir,

$$Y_t = (1 + \theta B)\epsilon_t$$

lacktriangle Podemos invertir el polinomio $\Theta_1(B)=(1+ heta B)$ para obtener

$$\epsilon_t = (1 + \theta B)^{-1} Y_t$$

donde
$$(1+ heta B)^{-1}=\sum\limits_{j=0}^{\infty}\pi_{j}Y_{t-j}$$
 y $\pi_{j}=(- heta)^{j}$ bajo $| heta|<1$

Invertibilidad

Consideremos el modelo MA(1), es decir,

$$Y_t = (1 + \theta B)\epsilon_t$$

lacktriangle Podemos invertir el polinomio $\Theta_1(B)=(1+ heta B)$ para obtener

$$\epsilon_t = (1 + \theta B)^{-1} Y_t$$

donde
$$(1+ heta B)^{-1}=\sum\limits_{j=0}^{\infty}\pi_{j}Y_{t-j}$$
 y $\pi_{j}=(- heta)^{j}$ bajo $| heta|<1$

Consideremos el polinomio $\Theta_1(z)=(1+\theta z)$, la raíz de $\Theta_1(z)$, está dada por $\Theta_1(z)=0$, es decir $z=\theta^{-1}$, entonces

$$|\theta| < 1 \iff |z| > 1$$

Representación Invertible Proceso MA(q)

► En general, para probar que un proceso MA(q) sea invertible, debemos verificar que las raices del polinomio:

$$\Theta_q(z) = 1 + \theta_1 z + \theta_2 z^2 + \ldots + \theta_q z^q = 0$$

estan todas fueras del circulo unitario. Es decir, $|z_j*|>1 \ \, \forall j=1,\ldots,q$, donde z_j* es la j-ésima raiz del polinomio $\Theta_q(z)$