Formula:

The formula we have used to calculate the bias and variance components are:

$$egin{aligned} ext{bias} &= E_x (ar{g}(x) - f(x))^2 \ ext{var} &= E_x [E_{\mathcal{D}}(g^{(\mathcal{D})}(x) - ar{g}(x))]^2 \end{aligned}$$

where
$$\bar{g}(x) = \frac{1}{N} \sum_{k=1}^{N} g_k(x)$$
.

Observation:

Hypothesis class	Bias	Variance	Bias+Variance	Expected out of sample error
${\cal H}_0$	1353	473	1827	1830
\mathcal{H}_1	1206	2083	3290	3274

NB: Due to randomness of the data and limited number of data points the bias and variance components may change a bit when you recompile the code. I have recorded above the last simulated results.

Explanation:

We see that, for hypothesis class \mathcal{H}_1 , the sum of bias+var is higher than the hypothesis class \mathcal{H}_0 . So, the expected out of sample error is also higher for \mathcal{H}_1 . So, our hypothesis class \mathcal{H}_1 will not perform well on the unseen data i.e. the generalization capability of \mathcal{H}_1 will be small compared to \mathcal{H}_0 . So, \mathcal{H}_0 will be more appropriate class for prediction.

Since the number of data points in our dataset is very less (in our case it is 3), for a more complicated hypothesis class there will be a lot of possible hypothesis that will try to fit our data. So, may be the bias component will be less but since there are a lot of hypothesis the instability of our learning model will be high.