Package 'specieshindex'

December 15, 2021

```
Type Package
Title How (scientifically) popular is a given species?
Version 0.4.1
Date 2021-01-19
Author Jessica Tam
Maintainer Jessica Tam <tamtinying@gmail.com>
Description Finds the h-index of a species.
Depends R (i = 3.5.0)
LazyData true
Imports rscopus,
     wosr,
     rbace,
     taxize,
     dplyr,
     tidyr,
     data.table,
     httr,
     XML,
     ggplot2,
     ggpubr
Suggests devtools,
     httptest,
     knitr,
     RefManageR,
     rmarkdown,
     roxygen2,
     testthat (\xi = 3.0.0)
\mathbf{URL} \text{ https://github.com/jessicatytam/specieshindex}
RoxygenNote 7.1.2
VignetteBuilder knitr
```

2 Allindices

Encoding UTF-8

 ${\bf Config/test that/edition} \ \ 3$

R topics documented:

	Allindices	2
	Count	3
	Fetch	4
	getYear	5
	plotAllindices	6
	olotPub	7
	SourceType	8
	SpH5	9
	SpHAfterdate	9
	SpHindex	10
	Spi10	11
	SpMindex	12
	TotalCite	12
	Total Journals	13
	TotalPub	14
	YearsPublishing	14
Index		16

Allindices $Index \ summary$

Description

This function returns a dataframe of the summary of all of the indices.

Usage

```
Allindices(data, genus, species, sourcetype = 0)
```

Arguments

data	The dataframe generated from Fetch.
genus	Genus classification from the binomial name.
species	Species classification from the binomial name.
sourcetype	Source type; default is 0, enter 1 to add SourceType variables.

Value

A datarame of all of the indices in the package.

Count 3

Examples

Count

Search count of literature

Description

This function counts the total number of search results from Scopus, Web of Science, or BASE. A check will be conducted via gnr_resolve to validate the genus and species names.

Usage

```
Count(db, search, level, genus, species, synonyms, additionalkeywords)
```

Arguments

db	Literature database. Scopus ("scopus"), Web of Science ("wos"), or Base ("base").		
search	Search fields. Title only ("t") or title, abstract, and keywords ("tak").		
level	Taxonomic level. Genus ("genus") or species ("species").		
genus	Genus classification from the binomial name.		
species	Species classification from the binomial name.		
synonyms	Alternate species names.		
additionalkeywords			
	Optional search terms.		

Value

Search count of the genus or species with the given genus and/or species.

4 Fetch

Examples

Fetch

 $Fetch\ citation\ records$

Description

This function fetches citation information from Scopus, Web of Science, or BASE. Duplicates are to be removed by the user after fetching the data.

Usage

```
Fetch(
  db,
  search,
  level,
  genus,
  species,
  synonyms,
  additionalkeywords,
  language = 0
)
```

Arguments

db	Literature database. Scopus ("scopus"), Web of Science ("wos"), or Base ("base").
search	Search fields. Title only ("t") or title, abstract, and keywords ("tak").
level	Taxonomic level. Genus ("genus") or species ("species").
genus	Genus classification from the binomial name.
species	Species classification from the binomial name.

get Year 5

synonyms Alternate species names. additionalkeywords

Optional search terms.

 ${\tt language} \qquad \qquad {\tt Language} \ \ {\tt Gefault} \ \ {\tt is} \ \ 0, \ {\tt enter} \ \ 1 \ \ {\tt to} \ \ {\tt retrieve} \ \ {\tt the} \ \ {\tt variable}. \ \ {\tt Scopus}$

only.

Value

A dataframe of the genus' or species' citation records with the given genus and/or species.

Examples

getYear

Extract year

Description

Extracts the year of each publication of the output from any of the Fetch functions and counts the number of publications each year.

Usage

```
getYear(data, genus, species)
```

Arguments

data Output from any of the fetch function.

genus Genus classification from the binomial name.

species Species classification from the binomial name.

6 plotAllindices

Value

A dataframe with the year and frequency of the publications

Examples

plotAllindices

Index plot

Description

Plots the indices of a single species or combined.

Usage

```
plotAllindices(data)
```

Arguments

data

The dataframe generated from Allindices.

Value

ggplot

plot Pub 7

plotPub

Publication plot

Description

Plots the publication by year of a single species or combined.

Usage

```
plotPub(data)
```

Arguments

data

The dataframe generated from getYear.

Value

ggplot

8 SourceType

```
level = "species",
                   genus = "Ornithorhynchus", species = "anatinus")
Koala <- Fetch(db = "scopus",</pre>
               search = "tak",
               level = "species",
                genus = "Phascolarctos", species = "cinereus")
## End(Not run)
extract_year_W <- getYear(data = Woylie,</pre>
                           genus = "Bettongia", species = "penicillata")
extract_year_Q <- getYear(data = Quokka,</pre>
                            genus = "Setonix", species = "brachyurus")
extract_year_P <- getYear(data = Platypus,</pre>
                            genus = "Ornithorhynchus", species = "anatinus")
extract_year_K <- getYear(data = Koala,</pre>
                           genus = "Phascolarctos", species = "cinereus")
Combine_pub <- rbind(extract_year_W, extract_year_Q, extract_year_P, extract_year_K)</pre>
plotPub(Combine_pub)
```

SourceType

Source type

Description

This function calculates the total number of items for each document type.

Usage

```
SourceType(data)
```

Arguments

data

The dataframe generated from Fetch.

Value

A dataframe with each document and their counts.

SpH5

SpH5

Species h5 index

Description

This function calculates the h-index of a species in the past 5 years.

Usage

```
SpH5(data)
```

Arguments

data

The dataframe generated from Fetch.

Value

H5 index.

References

Suzuki, H. (2012). *Google Scholar Metrics for Publications*. Retrieved from https://scholar.googleblog.com/2012/04/google-scholar-metrics-for-publications.html.

Examples

 ${\tt SpHAfterdate}$

Species h-index with a given time frame

Description

This function calculates the h-index using a given date up till the newest record.

Usage

```
SpHAfterdate(data, date)
```

SpHindex

Arguments

data The dataframe generated from Fetch.

date The lower limit of the timeframe.

Value

H-index of the given time period.

Examples

SpHindex

 $Species\ h ext{-}index$

Description

This function calculates the h-index of a species.

Usage

SpHindex(data)

Arguments

data

The dataframe generated from Fetch.

Value

H-index.

References

Bertoli-Barsotti, L. & Lando, T. (2015). On a formula for the h-index. *Journal of Informetrics*, 9(4), 762-776.

Hirsch, J. (2005). An index to quantify an individual's scientific research output. *Proceedings of the National Academy of Sciences of the United States of America*, 102(46), 16569-16572.

Spi10 11

Examples

Spi10

Species i10 index

Description

This function calculates the i10 index of a species. i10 index counts all of the publications with 10 or more citations.

Usage

```
Spi10(data)
```

Arguments

data

The dataframe generated from Fetch.

Value

i10 index.

References

```
Cornell University (2019). i10-index. Retrieved from https://guides.library.cornell.edu/c.php?g=32272&p=203393.
```

12 TotalCite

SpMindex

Species m-index

Description

This function calculates the m-index of species. M-index uses the h-index and divides it by the number of years of activity.

Usage

```
SpMindex(data)
```

Arguments

data

The dataframe generated from Fetch.

Value

M-index.

References

University of Pittsburgh (2019). Research Impact and Metrics: Author metrics. Retrieved from https://pitt.libguides.com/bibliometricIndicators/AuthorMetrics.

Examples

TotalCite

Total citations

Description

This function calculates the total number of citations.

Usage

```
TotalCite(data)
```

Total Journals 13

Arguments

data

The dataframe generated from Fetch.

Value

A numerical value of the total number of citations.

Examples

TotalJournals

Total journals

Description

This function calculates the total number of journals.

Usage

```
TotalJournals(data)
```

Arguments

data

The dataframe generated from Fetch.

Value

An integer of the total number of journals.

14 YearsPublishing

TotalPub

 $Total\ publications$

Description

This function calculates the total number of publications.

Usage

```
TotalPub(data)
```

Arguments

data

The dataframe generated from Fetch.

Value

An integer of the total number of publications.

Examples

YearsPublishing

 $Years\ since\ first\ publication$

Description

The number of years since the first publication in relation to the species.

Usage

```
YearsPublishing(data)
```

Arguments

data

The dataframe generated from Fetch.

YearsPublishing 15

Value

Number of years.

Index

```
Allindices, 2, 6
\mathsf{Count},\, \textcolor{red}{3}
Fetch, 2, 4, 8-14
getYear, 5, 7
gnr\_resolve, 3
\verb|plotAllindices|, 6
plotPub,\, \color{red}{7}
{\tt SourceType},\, {\color{red} 8}
SpH5, 9
{\tt SpHAfterdate},\, 9
SpHindex, 10
Spi10, 11
{\tt SpMindex},\, {\color{red} 12}
TotalCite, 12
{\tt TotalJournals},\, {\tt 13}
TotalPub, 14
{\it YearsPublishing},\, {\it 14}
```