Question	Scheme	Marks
3(a)	$\left(y = \int \left(mx^2 - 10x - 37\right) dx = \right) \frac{mx^3}{3} - \frac{10x^2}{2} - 37x(+c)$	M1
	\[\lambda t (1, 20) \rangle \]	
	$20 = \frac{m \times 1^{3}}{3} - \frac{10 \times 1^{2}}{2} - 37 \times 1 + c \left(\Rightarrow 62 = \frac{m}{3} + c \right) \text{oe}$	dM1
	Factor of $(x-5)$	
	$0 = \frac{m \times 5^3}{3} - \frac{10 \times 5^2}{2} - 37 \times 5 + c \left(\Rightarrow 310 = \frac{125m}{3} + c \right) \Rightarrow m = 6 \qquad c = 60$	M1 M1
	$\Rightarrow (g(x))=2x^3-5x^2-37x+60$ *	A1cso [5]
ALT	3 rd and 4 th method marks	3.61.3.61
	$\left(x-5\right)\left(\frac{m}{3}x^2 + bx \mp \frac{c}{5}\right) = \frac{m}{3}x^3 - 5x^2 - 37x \pm c \Rightarrow m = 6 \qquad c = 60 \qquad (b = 5)$	M1 M1
Special	Differentiates the given expression for $g(x)$ correctly to give	SC1
case up to SC3	$2(3x^2) - 5(2x) - 37 \left(= 6x^2 - 10x - 37 \right)$	
– mark as	and concludes $m = 6$	
M1dM1M1	Correctly substitutes $x = 5$ into the given function and shows $g(x) = 0$	0.01
M0A0 in Epen	$(g(5) =)2 \times 5^3 - 5 \times 5^2 - 37 \times 5 + 60 = 0$	SC1
Epen		
	Correctly substitutes $x = 1$ into the given function and shows and $g(x) = 20$	SC1
<i>a</i>)	$(g(1) =) 2 \times 1^3 - 5 \times 1^2 - 37 \times 1 + 60 = 20$	SCI
(b)	$ \frac{2x^2 + 5x - 12}{x - 5)2x^3 - 5x^2 - 37x + 60} $	M1
	$2x^2 + 5x - 12 = (2x - 3)(x + 4)$	M1
	g(x) = (x-5)(2x-3)(x+4) = [0]	
	$\Rightarrow x = 5, \frac{3}{2}, -4$	A1
	<u></u>	[3]
Total 8 marks		

Part	Mark	Notes
(a)	M1	For a minimally acceptable attempt to integrate the given expression (see general
		guidance). No power of x to decrease.
		+c is not required for this mark
	dM1	Correctly substitutes $x = 1$ and $y = 20$ to form an equation – simplification is not
		required
		Dependent on 1 st method mark.
		A fully correct equation with no incorrect working can imply this mark.
		We will be lenient on not seeing the substitution of $x = 1$ as this is trivial, so long as
		the resulting equation is correct from their $g(1) = 20$.
	3.71	+c is not required for this mark
	M1	Uses the information correctly that $(x - 5)$ is a factor of g (x) by correct substitution
		of $x = 5$ and $g(x) = 0$ into their $g(x)$.
		Their g (x) must be a 4 term cubic expression. A fully correct equation with no incorrect working can imply this mark – but if the
		equation is incorrect we must see substitution of $x = 5$ such that $g(5) = 0$.
	M1	Uses a valid and complete method to solve their resulting simultaneous equations
	1011	which must be in two variables. Allow up to 2 errors.
	A1	For the correct function as shown or the correct expression.
	cso	This is a show question. There must be no errors for the award of this mark.
ALT	3 rd M1	Uses the information correctly that $(x-5)$ is a factor of g (x) by writing a correct
		statement like the one shown for their $g(x)$.
		Their g (x) must be a 4 term cubic expression.
	4 th M1	Uses a valid and complete method to solve their resulting simultaneous equations in
		three variables. Allow up to 2 errors. It is not necessary to see the value for "b".
(b)	M1	For an attempt at polynomial division or equate coefficients to reach a 3 term
		quotient.
		The minimally acceptable quotient is $2x^2 \pm 5x \pm k$ $k \neq 0$ where k is a constant.
		In the absence of any other working, $2x^2 \pm 5x \pm k$ $k \ne 0$ may be accepted as evidence
		of working.
	M1	For attempting to factorise their quotient which must be of the form
		$2x^2 \pm 5x \pm k$ $k \neq 0$ - we must at least see a quadratic factor to factorise.
		See General Guidance for the definition of an attempt. It would also be possible to
		see a minimal attempt to use the quadratic formula or completing the square to solve
		(see general guidance) if their quadratic, of the form $2x^2 + 5x \pm k$ $k \ne 0$ does not
		factorise. If using the formula the substitution of their a , b and c must be completely
		correct.
	A1	For the correct values of <i>x</i>
Candida		clearly been directed to use algebra in the question and therefore 0 marks can be scored

Candidates have clearly been directed to use algebra in the question and therefore 0 marks can be scored without seeing M1 M1