Mathematics-I B.Tech. Core

Partial Differentiation

1. Determine the following limits if they exist.

(a)
$$\lim_{(x,y)\to(0,0)} (1-x-y)/(x^2+y^2)$$
 (b) $\lim_{(x,y)\to(0,0)} xy/|xy|$ (c) $\lim_{(x,y)\to(0,0)} \cot^{-1}\left(\frac{1}{\sqrt{x^2+y^2}}\right)$

2. Show that the function
$$f(x, y) = \begin{cases} \frac{x^2 + y^2}{|x| + |y|}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is **continuous** at (0,0) but its partial derivatives f_x and f_y **do not exist** at (0,0).

3. Show that the function
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + 5y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is **not continuous** at (0,0) but its partial derivatives f_x and f_y **exist** at (0,0).

4. Compute
$$f_{xy}(0,0)$$
 and $f_{yx}(0,0)$ for the function $f(x,y) =\begin{cases} \frac{x^3y}{x^2 + y}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$...

Also discuss the continuity of f_{xy} and f_{yx} at (0,0).

5. If
$$x^y y^x z^z = c$$
, then find $\partial^2 z / \partial x \partial y$ at $x = y = z$.

6. If
$$u(x, y) = \tan^{-1}\left(xy/\sqrt{1+x^2+y^2}\right)$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{1}{\left(1+x^2+y^2\right)^{3/2}}$.

7. If
$$u = \tan^{-1}\{(x^3 + y^3)/(x - y)\}$$
, prove that

(i)
$$x \partial u/\partial x + y \partial u/\partial y = \sin 2u$$
, (ii) $x^2 \partial^2 u/\partial x^2 + 2xy \partial^2 u/\partial x \partial y + y^2 \partial^2 u/\partial y^2 = (2\cos 2u - 1)\sin 2u$

8. If
$$u = x^2 - y^2 + \sin yz$$
, where $y = e^x$, and $z = \log x$, find $\frac{du}{dx}$.

9. If
$$u = F(x - y, y - z, z - x)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

10. If
$$z = uv$$
, and $u^2 + v^2 - x - y = 0$, $u^2 - v^2 + 3x + y = 0$, find $\frac{\partial z}{\partial x}$.

11. Transform the equation
$$\left(\frac{\partial u}{\partial x}\right)^2 - \left(\frac{\partial u}{\partial y}\right)^2 = 0$$
 into polar coordinates.

12. If
$$u = x^2 - y^2$$
, $v = 2xy$ and $f(x, y) = \phi(u, v)$, show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial v^2} \right)$

Answers: 1. (a) Limit exists and unbounded (b) Limit DNE (c) limit=0. (3) $f_x & f_y = 0$. (4) $f_{xy}(0,0)=1$, $f_{yx}(0,0)=0$. (5) $-3/z(1+\log z)$. (8) $2x+(-2y+z\cos yz)e^x+(y\cos yz)/x$. (10) $(2u^2-v^2)/2uv$.

$$(11) \left(\frac{\partial u}{\partial r} \right)^2 - \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta} \right)^2 = \frac{2 \tan 2\theta}{r} \frac{\partial u}{\partial r} \frac{\partial u}{\partial \theta}.$$