aduni.edu.pe

REPASO SAN MARCOS ACADEMIA

ADUNI

ADUNI

ACADEMIA

ADUNI

aduni.edu.pe

ADUNI

FÍSICA

Tema: Electrodinámica y electromagnetismo

INSTRUMENTOS DE MEDICIONES ELÉCTRICAS

LEYES DE KIRCHHOFF

REGLA DE NODOS Nodo $\Sigma I_{ingresan} = \Sigma I_{salen}$

 $I_1 + I_2 = I_3 + I_4$

Importante:

$$\begin{array}{cccc}
I & & I \\
\downarrow & & \downarrow & \\
V & & V \\
+V & & -V
\end{array}$$

Amperimetro

Mide la **Intensidad de corriente** que circula por la rama conectada a dicho instrumento. Presenta resistencia interna muy pequeña y en un caso ideal, es nula.

Voltímetro

Mide el Voltaje entre los puntos a los cuales se conecta dicho instrumento. Presenta una resistencia interna muy grande y en un caso ideal, se considera infinita.

$$V_{M} = 0 \quad V_{N} < > V_{M} \quad V_{N}$$

$$R_{interna} = \infty$$

POTENCIA ELÉCTRICA

Es la rapidez con la que se transfiere energía debido eléctrica trabajo realizado por el campo eléctrico.

$$P = I^2 R = \frac{V_{AB}^2}{R} = V_{AB}.I$$

INDUCCIÓN MAGNÉTICA

Campo magnético alrededor de un conductor rectilíneo

Vista superior Vista Inferior

Para un conductor rectilíneo de gran longitud.

 μ_0 : Permeabilidad magnética del aire o vacío.

$$\mu_0 = 4\pi \times 10^{-7} \; \frac{T.m}{A}$$

Para puntos colineales con el conductor:

Para una espira circunferencial

Conductor en forma de arco de circunferencia

FUERZA MAGNÉTICA

Si la partícula se mueve en un campo magnético homogéneo perpendicular a su velocidad y solo actúa la fuerza magnética experimentará un MCU. En este caso la fuerza magnética actúa como fuerza centrípeta.

FLUJO MAGNÉTICO (ϕ)

magnitud escalar proporcional al numero de líneas de campo magnético que atraviesa una superficie.

Si las líneas de campo magnético son entrantes sobre la cara, el flujo es negativo.

Si las líneas de campo magnético son salientes sobre la cara, el flujo es positivo.

INDUCCIÓN ELECTROMAGNÉTICA

LEY DE FARADAY

La fem inducida (ε)
es directamente
proporcional a la
rapidez de
variación del flujo
magnético.

LEY DE LENZ

la corriente
inducida genera
un campo
magnético que se
opone a la
variación del flujo
que la produce.

Para una bobina de N espiras:

 $\varepsilon_{\text{media}} = N \left| \frac{\Delta \phi}{\Delta t} \right|$

Si el número de líneas inductoras aumenta, la corriente genera líneas inducidas en contra.

Si el número de líneas inductoras disminuye, la corriente genera líneas inducidas a favor.

Fem INDUCIDA EN UNA BARRA CONDUCTORA

Debido al movimiento de la barra en el campo magnético, se induce una diferencia de potencial (fem) entre los extremos de la barra.

$$\varepsilon_{media} = BLv$$
 Volt (V)

TRANSFORMADORES

Dispositivos que permiten elevar o reducir el Voltaje de una corriente alterna y su funcionamiento se basa en la inducción electromagnética

Número de espiras del espiras del primario (N_P) secundario (N_S)

$$\frac{V_P}{V_S} = \frac{N_P}{N_S} = \frac{I_S}{I_P}$$

aduni.edu.pe

