s11

March 28, 2022

1 VV4

1.1 C

1.1.1 a)

BYRJUM PETTA * $D_x(x^2 + y)^6 + e^{y-x} * \frac{\delta}{\delta x}(e^{-x+y}) + \frac{\delta}{\delta x}(x^2 + y)^6$

KEĐJUREGLAN * $\frac{\delta}{\delta x}(x^2+y)^6 + (e^{-x+y}(\frac{\delta}{\delta x}(-x+y))$

SKIPTA SAMLAGANINGU NĐUR Í BÚTA * $\frac{\delta}{\delta x}(x^2+y)^6+(-(\frac{\delta}{\delta x}(x))+\frac{\delta}{\delta x}(y))$ * $\frac{\delta}{\delta x}(x^2+y)^6+(-(1)+\frac{\delta}{\delta x}(y))$ * $\frac{\delta}{\delta x}(x^2+y)^6+(-(1)+0)$ * $-e^{-x+y}+\frac{\delta}{\delta x}(x^2+y)^6$

OKOK KEÐJUREGLA AFTUR * $-e^{-x+y}+(6(x^2+y)^5(\frac{\delta}{\delta x}(x^2+y))$

SKIPTA NIĐUR * $-e^{-x+y} + (6(x^2+y)^5(\frac{\delta}{\delta x}(x^2) + \frac{\delta}{\delta x}(y))$ * $-e^{-x+y} + (6(x^2+y)^5(2x + \frac{\delta}{\delta x}(y))$ * $-e^{-x+y} + (6(x^2+y)^5(2x+0)$

EINFALDA * $-e^{y-x} + 12(x^2 + y)^5$

LOKASVAR: $-e^{y-x} + 12(x^2 + y)^5$

1.1.2 b)

finnum fyrst f_x og f_y * $f_x:3x^2+y$ * $f_y:-3y^2+x$

þá er ég með $\nabla f(x,y) = (\binom{3x^2+y}{-3y^2+x})$

1.1.3 c)

þar sem $f=x^3+xy-y^3$ er auðvelt að finna að f(1,2)=1+2+8=11

nú vitum við líka $\nabla f(x,y)=(\binom{3x^2+y}{-3y^2+x})$ þannig $\nabla f(1,2)=(\binom{5}{11})$

setjum inn í margvíðu Taylor-setninguna: $f(1,2) + \nabla f(1,2) *(x-(1,2)) = 11 + {5 \choose 11} *(x_1-1,x_2-2) = 5x_1 + 11x_2$

1.2 D

1.2.1 a)

$$a = (1, 2, 3), b = (4, 2, 0), c = (1, 0, 1)$$

$$c_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- 1. $c_1 + 4c_2 + c_3 = 0$
- 2. $2c_1 + 2c_2 = 0$

3.

1.3 $3c_1 + c_3 = 0$

- 4. hér eru c_1 og c_3 andstæður og c_2 hlýtur þá að vera 0
- 5. þar sem c_2 er 0 þá getur c_1 ekki verið neitt nema 0
- 6. c_1 er 0 þannig c_3 verður að vera0

öll c-in eru 0 þannig vigrarnir eru línulega óháðir

1.3.1 b)

```
[]: import numpy as np
import numpy.linalg as la
from math import acos, degrees

a = np.array([1,2,3])
b = np.array([4,2,0])
theta = degrees(acos(a@b/(la.norm(a)*la.norm(b))))
print(theta)
```

61.43917478218875

hornið á milli vigranna a og b er 61.44 gráður

1.3.2 c)

$$a = (1, 2, 3), b = (4, 2, 0), d = (x_1, x_2, x_3)$$

$$c_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- 1. $c_1 + 4c_2 + x_1c_3 = 0$
- 2. $2c_1 + 2c_2 + x_2c_3 = 0$

3.

1.4
$$3c_1 + x_3c_3 = 0$$

- 4. byrjum á að láta x_1 vera -4, þá vitum við að c_2 og c_3 eru andstæður og $c_1=0$
- 5. nú þar sem $c_1=0$ þá þarft x_2 að vera andstæðan við 2, þ.e. -2

6. núna þarf $0+1*x_3=0$ og þá getur x_3 bara verið 0 þá endum við með vigurinn d=(-4,-2,0)

1.4.1 d)

ef hlutur kostar x og aðilar sem leggja í púkk eru y þá myndu jöfnunar hljóða svona: * x-8y=-3 * x-7y=4

fylki jöfnunnar væri $\begin{pmatrix} 1 & -8 \\ 1 & -7 \end{pmatrix}$ og lausnarfylkið væri $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$

leysti dæmið með numpy fyrir neðan, bara til gamans

```
[]: import numpy as np
import numpy.linalg as la

A = np.array([[1,-8],[1,-7]])
b = np .array([-3,4])
sol = la.solve(A,b)
print(f'Gripurinn kostar {int(sol[0])} og það eru {int(sol[1])} kaupendur')
```

Gripurinn kostar 53 og það eru 7 kaupendur

1.5 E

1.5.1 a)

```
[]: import numpy as np
import numpy.linalg as la

upph = np.array([1000,600,400])
leslie = np.array([
       [0.2,0.6,0.8],
       [0.8,0.0,0.0],
       [0.0,0.5,0.0]
])
```

1.5.2 b)

```
[]: sea = sum(la.matrix_power(leslie,1)@upph) # stofn eftir år print(sea)
```

1980.0

1.5.3 c)

test nr. 1 fyrsta hugmyndin mín var að brute forcea þetta með while-lykkju, á meðan stofninn er stærri en 100, halda áfram. Lykkjan var ennþá að ganga eftir mínútu svo sú lausn gekk ekki upp.

test nr.2 önnur hugmyndin var byggð á útkomuni úr test nr. 1. Svo virðist vera sem stofninn minnki ekki niður fyrir 100 í býsna langann tíma afh er það?

```
[]: years = [sum(la.matrix_power(leslie,i)@upph) for i in range(1,1000,100)]
print(years)
```

```
[1980.0, 1992.452830188685, 1992.4528301886908, 1992.4528301886962, 1992.4528301887021, 1992.4528301887076, 1992.4528301887133, 1992.452830188719, 1992.4528301887246, 1992.4528301887303]
```

Eins og sést, eftir fyrstu 100 árin er stofninn búinn að ná jafnvægi, ~ 1992.45 þá má með fullri vissu segja að stofninn mun ekki deyja út, bara til gamans þá plotta ég fyrstu 100 árin

```
[]: import matplotlib.pyplot as plt

stofn = [sum(la.matrix_power(leslie,i)@upph) for i in range (11)]

years = [j for j in range(11)]

plt.figure(figsize=(20,5))
plt.plot(years,stofn)
plt.xticks(years)
plt.grid(True)
plt.xlabel('Ár')
plt.ylabel('Stofnfjöldi')
plt.show()
```


upprunalega var grafið upp í 100 ár en fjöldinn var orðinn stabíll eftir 10 þannig ég stytti skalann til að gera lesanlegra