

PROJECT AI CARE 技術白皮書

Al Box Hands-on Lab Guide

Building Your Own Device for Al Care with Azure Al & IoT Services

Tommy Wu IoT Solution Architect Microsoft

目錄

1	В	ackground and Challenge	. 2
2	S	olution Overview	. 2
3	Α	I CARE Device Hardware Architecture	. 2
4	A	I CARE System Architecture	. 4
5	Н	ands-On Guide Tutorial	6
	5.1	M5StackCore	. 6
	5.2	ESP32 CAM	. 7
	5.3	Battery	8
	5.4	Mask Training with Azure Custom Vision	. 9
	5.5	Edge Computing with Azure IoT Edge	10
	5.6	Power BI Dashboard	12
	5.7	IoT Device Control and Monitoring on IoT Central	13
	5.8	(To-Do) Azure BOT service integration	15
6	D	emo Video Reference –	16
6.	.1	Al Care Edge Demo	16
6.	.2	Al Care Device hands-on	16
6.	.3	Mask Training by Custom Vision	16
6.	.4	Mask Inference Demo with Custom Vision on IoT Edge	16
7	E	padhack	16

1 Background and Challenge -

- Increased chance of people contact for 1st line security guards
- Increased labor time and cost: 8~10 hours per day standing there
- Efficiency on peak hours will be challenging

2 Solution Overview –

Idea - An easy-to-adopt AIoT Technology to help real estate building management companies save labor and decrease chance of contact for 1st line security guard in difficult time

- Client Device Azure Certified Device and Sensors (Thermal/Camera)
- Backend Azure AI and IoT Services
 - Azure Custom Vision
 - Azure IoT Central
 - Azure IoT Edge
 - Azure Event Hub
 - Power BI
 - Cosmos DB (Optional)
 - Azure Stream Analytics (Optional)

3 AI CARE Device Hardware Architecture –

Hardware Architecture

- Main Controller M5Stack Core
 - Azure Certified Device
 - Wifi built-in
 - Azure IoT SDK
 - Thermal Data Collection
 - Arduino compatible
 - Real-time thermal display
 - 150 mah Battery
- Sensors
 - Thermal Camera (AMG 8833)
 - ◆ I2C m5stack connected.
 - ◆ 8x8 array of IR thermal sensors.
 - Up to 7 meters (23) feet.
 - Maximum frame rate of 10Hz
 - Camera (ESP 32 Cam)−
 - ♦ WIFI built-in
 - ◆ MPEG Video Streaming
 - ◆ Al Detection
 - Leverage Azure Custom vision AI.
- Battery Extra 3.7v 2000 mah
- Card Box Layout –

Internal Wired -

4 AI CARE System Architecture –

System Overview

1 Mask Training –

- 1. Leverage Azure Custom Vision for mask training in 5 minutes!
- 2. Re-train your own dataset to improve your enterprise accuracy.
- 3. Deploy AI model as IoT Edge module for quick deployment & distribution.

2 IoT Edge -

- 1. Al on Edge for inference performance and data consolidation.
- 2. Edge dashboard module for real-time result display.
- 3. Large Scale AI Module deployment efficiency.

3 IoT Central -

- 1. Overall Coronavirus Epidemic prevention dashboard
- 2. Create Your Cross multi-region Summary in 5 mins
- 3. Control Sensor device settings and monitoring easily
- 4. Notification built-in and quick customization.

4 BoT Service -

- 1. Connect to social media notification (Line/Facebook/SMS..etc)
- 2. Create your own logic for notification dispatching

- 5 Power BI + CosmosDB -
 - Enterprise Dashboard for your deep customization UI requirement.
 - Develop your enterprise level dashboard based on IoT Central dataset
 - 3. Quick widgets and drag&drop mode to mash up your complex UI and reporting.

5 Hands-On Guide Tutorial -

- Device Side –
- 5.1 M5StackCore -
 - 5.1.1 Development & Pinout Reference –

 https://docs.m5stack.com/#/en/quick start/m5core/m5stack core g
 et started Arduino Windows
 - 5.1.2 Git clone from https://github.com/tommywu052/project-AICARE.git

5.1.3 Go to project-AICARE/device/**M5Stack_Thermal**/, modify the code as below for your own wifi ssid / password and Azure IoT Central device connection string.

```
| 155 |// Please input the SSID and password of WiFi. |
| 156 const char* ssid = "YourWiFISSID"; |
| 157 const char* password = "YourWiFIPassword"; |
| 158 |
| 159 |// Please input connection string of the form "HostName=<host_name>; DeviceId=<device_id>; SharedAccessKey=<device_key>" from IoT Central |
| 160 |
| 160 |
| 161 |
| 162 |
| 163 |
| 164 |
| 165 |
| 165 |
| 166 |
| 166 |
| 167 |
| 168 |
| 168 |
| 169 |
| 169 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160 |
| 160
```

5.1.4 Flash the modified .ino file into your m5stack core . make sure you have import the related library as m5stack core reference document as step 1.

5.1.5 Port Connection map

5.2 ESP32 CAM -

- Development & Pinout Reference –
 https://www.instructables.com/id/ESP-32-Camera-Streaming-Video-O

 ver-WiFi-Getting-St/
- ESP32 CAM connect M5stack map –

5.3 Battery –

5.3.1 External Battery Pinout map –

Backend Side –

5.4 Mask Training with Azure Custom Vision -

- 5.4.1 Download Kiosk App: http://aka.ms/kioskapp
- 5.4.2 Setting your training & prediction key in kiosk app from https://www.customvision.ai/ website.

In Custom Vision Website Keys -

In Kiosk App Settings -

- 5.4.3 Mask Training Steps with Custom Vision AI -
- Leverage Azure Custom Vision for mask training in 5 minutes!
- Add Common Images by Bing Search Engine.
- Add Your own mask training images with camera or local images to improve accuracy.
- One-click training and export AI model for real-time testing
- Deploy as IoT Edge module for scale deployment.

5.5 Edge Computing with Azure IoT Edge -

- Web service over HTTP running locally that takes in images and classifies them based on a custom model built via the Custom Vision
- Can be deployed and configured via Cloud
- Can leverage Edge device like GPU/VPU/FPGA to improve the inference
- Adapt to different acceleration framework like OpenVINO, CUDA, DeepStream, ONNXRT and etc.

5.5.1 Refer the document

https://github.com/Azure-Samples/Custom-vision-service-iot-edge-raspberry-pi/tree/master/ for IoT Edge setup, remember to choose amd64 for x64 platform.

- 5.5.2 Install the node-red IoT Edge module as https://github.com/iotblackbelt/noderededgemodule
- 5.5.3 Import the code from https://github.com/tommywu052/project-AICARE/blob/master/backe

nd/IoTEdge/AICare-nodered-flows.json into your node-red edge.

Review Your UI widget as http://localhost:yourport/ui

5.5.4 Export Custom vision model as IoT Edge and copy model.pb and labels.txt from the zip file into docker images via docker cp.

docker images

REPOSITORY TAG

IMAGE ID CREATED SIZE

a9publicregistry.azurecr.io/imageclassification 0.3.8-maskai

0be0b6d56941 2 days ago 1.57GB

docker cp model.pb 0be0b6d56941:/app/model/model.pb docker cp labels.txt 0be0b6d56941:/app/model/labels.txt

5.5.5 Get the inference code from -

https://github.com/tommywu052/project-AICARE/blob/master/backend/IoTEdge/yolocv-public.py

Modify the code - line 22-24 as your device key on IoT Central:

#iot central initalize
deviceId = "your device id on iot central"
scopeId = "iot central scope id"

mkey = "SAS Key on IoT Central"

Modify the code – line 63 as your image inference host at 5.5.1 step

IMAGE_PROCESSING_ENDPOINT = 'http://localhost:8081/classify/helmets'

Modify the code – line 261 as your ESP32 CAM streaming IP (ex:192.168.43.138, port 81 is default MJPEG streaming)

261 url="http://192.168.43.138:81/stream"

- 5.6 Power BI Dashboard -
- In few clicks, you can set up an end-to-end solution that pulls exported
 Edge measurements, devices, and device templates data from IoT Central
- Power BI Solution for creates the data pipeline in your IoT Central that brings data from your Azure Event Hub

- 5.6.1 Refer the document for Real-Time Streaming –

 https://docs.microsoft.com/zh-tw/power-bi/service-real-time-streaming
 ng
- 5.6.2 Add Real-Time widget with Web Content and Streaming data set https://docs.microsoft.com/zh-tw/power-bi/service-dashboard-add-w
 idget

5.6.3 Note – Data on real-time dashboard is coming from IoT Central export as Azure Event Hubs-

- 5.7 IoT Device Control and Monitoring on IoT Central -
 - Summary Dashboard Data from Thermal/Camera Sensors and Alert Notification Triggered
 - Device Control & Monitoring through command/settings pages

5.7.1 Refer the document to Create Your IoT Central Dashboard Application

https://docs.microsoft.com/zh-tw/azure/iot-central/core/quick-deplo y-iot-central

5.7.2 Device Configuration -

Configure your device telemetry/settings/command/triggers on the device template (mapping the code on the device side Arduino and python code)

5.7.3 Enable Alert Notification -

https://docs.microsoft.com/zh-tw/azure/iot-central/core/quick-configure-rules

5.7.4 If you just want to copy my existing application template quickly,

Please create your application based my share template, click the
below -

https://apps.azureiotcentral.com/build/new/7490af0a-4e9c-4b54-b7a6-bd0c6092e522

5.8 (To-Do) Azure BOT service integration –

- Real-time notification for multiple social media channels (LINE/FB/..).
- Integrate speech service for interactive notification.
- No-Code for channels integration.
- Flexible and Extensible

Check this for more detail notification -

https://docs.microsoft.com/zh-tw/azure/bot-service/bot-builder-tutorial-basic-deploy?view=azure-bot-service-4.0&tabs=csharp

LINE Integration -

https://docs.microsoft.com/zh-tw/azure/bot-service/bot-service-channel-connect-line?view=azure-bot-service-4.0

6 Demo Video Reference -

- 6.1 Al Care Edge Demo https://youtu.be/Wh 21go4Thg
- 6.2 Al Care Device hands-on https://youtu.be/d4HqonLCNmM
- 6.3 Mask Training by Custom Vision https://youtu.be/eEb9vfvgW0g
- 6.4 Mask Inference Demo with Custom Vision on IoT Edge https://youtu.be/dXDriffeE6Q

7 Feedback -

Welcome and Improve the code based on your advanced requirement .Please contact towu@microsoft.com or submit request on the github. Thanks !