

Versuchsziele

- Bestimmung der Lebensdauer von Positronen in Polyethylen und Aluminium
- Bestimmung des relativen Anteils an Bildung von Positronium in Polyethylen

Methode:

Aufbau eines Kurzzeitspektrometers (ns-Bereich)

Start: 1,28 MeV γ aus ²²Na (β⁺ Strahler)

Stop: 511 keV Annihilationsquant (Zerfall des Positroniums im Festkörper)

Detektor 1 Detektor 2

²²Na Quelle

Abbremsen von Positronen

e⁺ werden in Materie zunächst weitestgehend abgebremst bevor sie mit e⁻ zerstrahlen:

Abbremszeit pro Energieverlust im Prinzip aus Bethe-Bloch ableitbar (Stöße mit Hüll-Elektronen):

$$\frac{dt}{dE} = \frac{\frac{dt}{dx}}{\frac{dE}{dx}} = \frac{1}{v \cdot \frac{dE}{dx}}$$

Theorie liefert Ausdruck für Abbremsung bis runter zu E_{kin} ≈ 10 keV [Kohonen, 1961]

$$\frac{dt}{dE} = \frac{m_e (4\pi \epsilon_0)^2}{2\pi e^4 N Z} \frac{v(E)}{\ln(\frac{E^2}{I^2} \frac{\gamma+1}{2}) + f(\gamma)}$$

mit:

E totale Energie des Positrons

v(E) Geschwindigkeit des Positrons

 m_e Masse des Elektrons

N Atomare Dichte des Mediums

Z Kernladungszahl des Mediums

I mittlere Anregungsenergie des Mediums ($I \approx 13.4 \cdot Z [eV]$ für leichte Elemente)

$$\gamma$$
 Lorentzfaktor $(\gamma = 1/\sqrt{1-\beta^2}, \beta = \frac{v}{c})$

$$f(\gamma) = 2 \ln 2 - \frac{\beta^2}{12} \cdot \left(23 + \frac{14}{\gamma + 1} + \frac{10}{(\gamma + 1)^2} + \frac{4}{(\gamma + 1)^3}\right)$$

Abbremsen von Positronen

differentielle Abbremszeit

für e⁺ aus ²²Na mit E_{kin}(mittel) 180 keV

Medium	τ_s [ps]
H_2O	0,24
Polyethylen	0,22
Aluminium	0,11
Blei	0,048

Abbremszeit

kin. Energie der Positronen

Abbremsen von Positronen

Näherung für 100 eV .. 10 keV E: kin. Endenergie

$$\tau_s = \sqrt{E} \cdot 10^{-16} \frac{\text{S}}{\sqrt{\text{eV}}}$$

⇒ zusätzliche 10⁻¹⁵ s Abbremszeit

Unterschied Metalle / Isolatoren:

In Metallen (Aluminium) weiteres Abbremsen auf thermische Energien (1/40 eV) in 3 ps In Metallen damit insgesamt lediglich einige ps.

⇒ Annihilation in Metallen erst bei thermischen Energien.

Thermalisierung in **Isolatoren** (keine freien Elektron-Energiezustände zur Aufnahme von Energieüberträgen) → geht über Anregung von Gitterschwingungen

Theorie: 300 ps bis auf thermische Energien (liegt ≈ in O(TParapositronium))

⇒ Positronen in Isolatorkristallen können annihilieren bevor sie thermalisieren

Zerfallsmöglichkeiten

Abbildung 1.2: Feynmangraphen für die e^+e^- Annihilation in ein bis drei γ -Quanten.

Theorie

an der Tafel ...

Versuch

Start: ein Detektor registriert 1,28 MeV Photon vom ²²Ne

Stop: 511 keV Photon aus dem e⁺e⁻ Zerfall

Zeitstabile Signale

Problem: Zeit jitter (time walk)

Lösung:

Contant Fraction Diskriminator oder Signale differenzieren (ableiten) →

Zeitspektrometer

Spektrum ²²Na mit Plastik-Sz.

