Matemática Discreta | Clase 15 - Factorización en primos 2 / Congruencia

FAMAF / UNC

6 de mayo de 2021

Existen infinitos números primos.

Existen infinitos números primos.

Demostración. Ror el absurdo.

Supporgumes open existen finites primer

$$Q_1, \dots, Q_m$$
. Sea $Q_1 = 1 + Q_1 \dots Q_m$.

 Q_1, \dots, Q_m (m) $Q_2 = Q_1 + Q_2 \dots Q_m$.

 Q_1, \dots, Q_m (m) $Q_2 = Q_1 + Q_2 \dots Q_m$.

 Q_1, \dots, Q_m (m) $Q_1 = Q_1 + Q_2 \dots Q_m$.

 Q_1, \dots, Q_m (m) $Q_1 = Q_1 + Q_2 \dots Q_m = Q_n$.

 $Q_1, \dots, Q_m = Q_n$ (m) $Q_1, \dots, Q_m = Q_n$.

 $Q_1, \dots, Q_m = Q_n$ $Q_1, \dots, Q_m = Q_n$.

Existen infinitos números primos.

Demostración

Haremos la demostración por el absurdo.

Sean p_1, p_2, \ldots, p_r todos los números primos.

Sea $n = p_1 p_2 \dots p_r + 1$.

Sea p primo tal que $p|n \Rightarrow$ existe i tal que $p = p_i$.

Ahora bien $p_i|n$ y $p_i|p_1p_2...p_r$, luego $p_i|n-p_1p_2...p_r=1$. Absurdo.

Probemos que si m y n son enteros tales que $m \ge 2$ y $n \ge 2$, entonces

 $m^2 \neq 2n^2$ ons Golo implica que 52 ms en Tacional que en de la forme ma (m in eZ)

(2 record =) (2 = om =) (2) = (m) $(=) 2 = \frac{m^2}{m!} (=) 2m^2 = \frac{m^2}{m!}$

Sup 12 mr or 1 a and (=) 4 mm 52

m4=2m

Probemos que si m y n son enteros tales que $m \ge 2$ y $n \ge 2$, entonces $m^2 \ne 2n^2$.

Demostración

Probemos que si m y n son enteros tales que $m \ge 2$ y $n \ge 2$, entonces

$$m^2 \neq 2n^2$$
.

Demostración

$$n = 2^{\times} p_2^{e_2} \dots p_r^{e_r}$$
 (p_i todos primos diferentes a 2.) (04×)

$$n^2 = 2^{2x} p_2^{2e_2} \dots p_r^{2e_r}$$
 21 2 = 21x4

$$2n^2 = 2^{2x+1}p_2^{2e_2}\dots p_r^{2e_r}.$$

$$m=2^yq_2^{f_2}\dots q_s^{f_s}$$
 (q_i todos primos diferentes a 2.) (**)
$$m^2=2^{2y}q_2^{2f_2}\dots q_s^{2f_s}$$

Por unicidad de la descomposición,
$$(*) \neq (**)$$
, es decir $m^2 \neq 2n^2$.

Observación

El ejemplo anterior nos dice que

$$m^2 \neq 2n^2 \quad \Rightarrow \quad \frac{m^2}{n^2} \neq 2 \quad \Rightarrow \quad \left(\frac{m}{n}\right)^2 \neq 2 \quad \Rightarrow \quad \frac{m}{n} \neq \sqrt{2}.$$

Es decir $\sqrt{2}$ no es un número racional.

Notación

Sean m y n dos enteros positivos, a veces es conveniente escribir la factorización prima de ambos números usando los mismos primos. Los primos que usamos son los que se encuentran en la factorización prima de ambos:

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

con $e_i, f_i \geq 0$ para $i = 1, \ldots, r$ y e_i o f_i distinto de cero.

Example
$$m = 2^3, 7^2, 49$$
 $m = 3^2, 5, 7^4, 13$
 $m = 2^3, 3^3, 5^5, 7^4, 13^5$
 $m = 2^0, 3^2, 5^5, 7^4, 19^5, 13^5$

Notación

Sean *m* y *n* dos enteros positivos, a veces es conveniente escribir la factorización prima de ambos números usando los mismos primos. Los primos que usamos son los que se encuentran en la factorización prima de ambos:

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

con $e_i, f_i \geq 0$ para $i = 1, \ldots, r$ y e_i o f_i distinto de cero.

Ejemplo

168 y 495.

Notación

Sean *m* y *n* dos enteros positivos, a veces es conveniente escribir la factorización prima de ambos números usando los mismos primos. Los primos que usamos son los que se encuentran en la factorización prima de ambos:

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

con $e_i, f_i \geq 0$ para $i = 1, \ldots, r$ y e_i o f_i distinto de cero.

Ejemplo

168 y 495. Tenemos que

$$168 = 2^{3} \cdot 3^{1} \cdot 7^{1}, 495 = 3^{2} \cdot 5^{1} \cdot 11^{1}$$

$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 10^{1}$$

$$168 = 2^{3} \cdot 3^{1} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0},$$

Luego

4 D P 4 B P 4 B P B 9 9 0

 $495 = 2^{0} \cdot 3^{2} \cdot 5^{1} \cdot 7^{0} \cdot 11^{1}$

Proposición

Sean $m, n \geq 2$ con

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

donde p_i primo $y e_i, f_i \ge 0$ para i = 1, ..., r.

Entonces m|n si y sólo si $e_i \leq f_i$ para todo i.

Proposición

Sean $m, n \ge 2$ con

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

donde p_i primo y $e_i, f_i \ge 0$ para i = 1, ..., r. Entonces $m \mid n$ si y sólo si $e_i \le f_i$ para todo i.

Demostración

Proposición

Sean $m, n \ge 2$ con

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

donde p_i primo y e_i , $f_i \ge 0$ para i = 1, ..., r. Entonces $m \mid n$ si y sólo si $e_i \le f_i$ para todo i.

Demostración

 (\Rightarrow) Por la descomposición de m es claro que $p_i^{e_i}|m$. Como m|n entonces $p^{e_i}|n$. Es decir $n=p^{e_i}u$. Es claro por TFA entonces que $e_i \leq f_i$.

 (\Leftarrow) Como $e_i \leq f_i$, tenemos que $p^{e_i}|p^{f_i}$, para $1 \leq i \leq r$. Luego

$$p_1^{e_1}p_2^{e_2}\ldots p_r^{e_r}|p_1^{f_1}p_2^{f_2}\ldots p_r^{f_r}.$$

Es decir $m \mid n$.

Ahora veremos que es posible calcular el mcd y el mcm de un par de números sabiendo sus descomposiciones primas.

Proposición

Sean m y n enteros positivos cuyas factorizaciones primas son

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

- a) El mcd de m y n es $d = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ donde, para cada i en el rango $1 \le i \le r$, k_i es el mínimo entre e_i y f_i .
- b) El mcm de m y n es $u = p_1^{h_1} p_2^{h_2} \dots p_r^{h_r}$ donde, para cada i en el rango 1 < i < r, h_i es el máximo entre e_i y f_i .

Demostración

(a) Es claro que $d=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$ divide a m y n.

Sea c tal que c|n y c|m, entonces los primos que intervienen en la factorización de c son p_1, \ldots, p_r y por lo tanto

$$c=p_1^{t_1}p_2^{t_2}\ldots p_r^{t_r}.$$

Además, como c|n y c|m tenemos que $t_i \le e_i, f_i$ y por lo tanto $t_i \le k_i = \min(e_i, f_i)$.

De esto se deduce que $c|p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}=d$.

(b) Se deja como ejercicio.

Encontremos el mcd y el mcm de 168 y 495.

Ya habíamos visto que

Luego

- mcd(168, 495) = $2^0 \cdot 3^1 \cdot 5^0 \cdot 7^0 \cdot 11^0 = 3$.
- $mcm(168, 495) = 2^3 \cdot 3^2 \cdot 5^1 \cdot 7^1 \cdot 11^1$.

Congruencia - Definiciones y propiedades básicas

Definición

Sean a y b enteros y m un entero positivo. Diremos que a es congruente a b módulo m, y escribimos

$$a \equiv b \pmod{m}$$
 $a \equiv b \pmod{m}$

si a-b es divisible or m. (a = m / a - b)

Observar que

$$a \equiv 0 \pmod{m} \Leftrightarrow m|a$$

y que

$$a \equiv b \pmod{m} \Leftrightarrow a - b \equiv 0 \pmod{m}$$
.

a=b(m) (=) m(a-b (=) m(b-b)-0 @ a-b=0(m)

Sean a y b enteros y m un entero positivo. Entonces $a \equiv b \pmod{m}$ si y sólo si a y b tienen el mismo resto en la división por m.

Demostración

Si a = mh + r y b = mk + s, con $0 \le r, s < m$, podemos suponer, sin perdida de generalidad, que $r \leq s$, luego

$$b-a = m(k-h) + (s-r)$$
 con $0 \le s-r < m$.

Se sigue que s-r es el resto de dividir b-a por m.

Luego si $a \equiv b \pmod{m}$, el resto de dividir b - a por m es 0, y por lo tanto s-r=0 y s=r.

Si a y b tienen el mismo resto en la división por m, entonces a = mh + r y b = mk + r, luego a - b = m(h - k) que es divisible por m.

Así como separamos $\mathbb Z$ en los números pares e impares, la propiedad anterior nos permite expresar $\mathbb Z$ como una unión disjunta de m subconjuntos.

Es decir si m < Z

$$\mathbb{Z}_{[r]} = \{x \in \mathbb{Z} : \text{el resto de dividir } x \text{ por } m \text{ es } r\},$$

entonces dado $m \in \mathbb{N}$,

$$\mathbb{Z} = \mathbb{Z}_{[0]} \cup \mathbb{Z}_{[1]} \cup \cdots \cup \mathbb{Z}_{[m-1]}.$$

$$\mathbb{Z}_{0} = \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

$$\mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0} \cup \mathbb{Z}_{0}$$

Es fácil verificar que la congruencia módulo *m* verifica las siguientes propiedades

- a) Es reflexiva es decir $x \equiv x \pmod{m}$.
- b) Es simétrica, es decir si $x \equiv y \pmod{m}$, entonces $y \equiv x \pmod{m}$.
- c) Es transitiva, es decir si $x \equiv y \pmod{m}$ e $y \equiv z \pmod{m}$, entonces $x \equiv z \pmod{m}$. 5-1/m 1 6-x/m

Demostración

$$= \sqrt{m} \left(\frac{1}{x} - \frac{1}{y} + \frac{1}{y} - \frac{1}{z} \right) = \frac{1}{x} - \frac{1}{z}$$
visible por m

$$= \sqrt{x} + \frac{1}{z} + \frac{1}{z$$

- a) x x = 0 y por lo tanto divisible por m.
- b) x y = km, entonces y x = (-k)m.
- c) $x y = km \ y \ y z = lm$, $\Rightarrow x z = (x y) + (y z) = (k + l)m$.

La utilidad de las congruencias reside principalmente en el hecho de que son compatibles con las operaciones aritméticas. Específicamente, tenemos el siguiente teorema.

Teorema

Sea m un entero positivo y sean x_1 , x_2 , y_1 , y_2 enteros tales que

$$x_1 \equiv x_2 \pmod{m}, \qquad y_1 \equiv y_2 \pmod{m}.$$

Entonces

- a) $x_1 + y_1 \equiv x_2 + y_2 \pmod{m}$,
- b) $x_1y_1 \equiv x_2y_2 \pmod{m}$,
- c) $Si \times \equiv y \pmod{m}$ $y \in \mathbb{N}$, entonces $x^j \equiv y^j \pmod{m}$.

Demostración

(a) Por hipótesis $\exists x, y \text{ tq } x_1 - x_2 = mx \text{ e } y_1 - y_2 = my$. Luego,

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2)$$

= $mx + my$
= $m(x + y)$,

y por consiguiente el lado izquierdo es divisible por m.

(b) Aquí tenemos

$$x_1y_1 - x_2y_2 = x_1y_1 - x_2y_1 + x_2y_1 - x_2y_2$$

$$= (x_1 - x_2)y_1 + x_2(y_1 - y_2)$$

$$= mxy_1 + x_2my$$

$$= m(xy_1 + x_2y),$$

y de nuevo el lado izquierdo es divisible por m.

(c) Lo haremos por inducción sobre j.

Es claro que si j = 1 el resultado es verdadero.

Supongamos ahora que el resultado vale para j-1, es decir

$$x^{j-1} \equiv y^{j-1} \pmod{m}.$$

Como $x \equiv y \pmod{m}$, por (b) tenemos que

$$x^{j-1}x \equiv y^{j-1}y \pmod{m},$$

es decir

$$x^j \equiv y^j \pmod{m}$$
.