1 Graph

G_9 Formal Description

Below, provide a formal description of the directed graph G_9 below.

Solution:

Because G_9 is a directed graph, its vertex edges and node in-degree and out-degree must be described. Its formal description is then

$$G_9 = (V_9, E_9)$$

$$V_9 = \{1, 2, 3, 4, 5, 6\}$$

$$E_9 = \{(1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)\}.$$

with the following in-degree and out-degree for each node $v \in V_9$.

$\mid v \mid$	In-degree	Out-degree
1	2	1
2	1	2
3	1	0
4	2	0
5	1	2
6	1	2

2 Charlie Milaya

G_{10} Formal Description

Below, provide a formal description of the directed graph G_{10} below.

Solution:

Because G_{10} is a directed graph, its vertex edges and node in-degree and out-degree must be described. Its formal description is then

$$G_{10} = (V_{10}, E_{10})$$

$$V_{10} = \{1, 2, 3, 4, 5\}$$

$$E_{10} = \{(1, 4), (2, 1), (2, 5), (3, 1), (3, 4), (4, 1), (4, 3), (4, 5), (5, 2)\}.$$

with the following in-degree and out-degree for each node $v \in V_{10}$.

v	In-degree	Out-degree
1	1	3
2	2	1
3	2	1
4	3	2
5	1	2

G_{29} Minimum Spanning Tree

Find the minimum spanning tree of the graph G_{29} below using (a) Kruskal's Algorithm and (b) Prim's Algorithm.

Solution:

1. Kruskal's Algorithm $\left(\sum_{e \in E_{29}} w(e) = 197\right)$

4 Charlie Milaya

2. Prim's Algorithm
$$\left(\sum_{e \in E_{20}} w(e) = 197\right)$$

$$\frac{w(A, B)}{w(B, C)} = 11, \qquad \frac{w(M, O)}{w(C, F)} = 21, \\ \frac{w(C, M)}{w(C, M)} = 8, \qquad \frac{w(F, I)}{w(I, G)} = 9, \\ \frac{w(M, N)}{w(M, N)} = 1, \qquad \frac{w(I, G)}{w(I, G)} = 5, \\ \frac{w(D, L)}{w(D, L)} = 6, \qquad \frac{w(E, N)}{w(M, P)} = 35, \\ \frac{w(D, K)}{w(M, P)} = 13, \qquad \frac{w(M, O)}{w(I, G)} = 17, \\ \frac{w(C, F)}{w(I, G)} = 21, \\ \frac{w(F, I)}{w(M, P)} = 9, \\ \frac{w(F, I)}{w(M, P)} = 16, \\ \frac{w(E, N)}{w(M, P)} = 35, \\ \frac{w(M, P)}{w(M, P)} = 40.$$

2 **Trees**

Short Quiz on Trees

- 1. Name the three properties of a tree.
 - A tree have its weight, depth, and degree.
- 2. Is a tree a forest?

Yes.

- 3. What do you call the special designated node in a tree?
 - A root node.
- 4. What is the minimum number of nodes in a tree?
 - 0. Specifically, the null or empty tree.
- 5. Can a tree have no subtrees at all?

Yes. An empty or null tree or a node tree doesn't have children and therefore, have no subtree. Given the tree T_1 below, identify the following.

6.	Children of node 16:	13, 6, 60
7.	Parent of node 1:	7
8.	Siblings of node 23:	None
9.	Ancestors of node 9:	4, 12, 7, 22
10.	Descendants of node 16:	$13,6,60,\ 23,\ 21$
11.	Leaves:	23, 6, 21, 20, 9, 1
12.	Non-leaves:	22, 16, 7, 13, 60, 12, 4
13.	Depth of node 4:	$dep\{4\} = 3$
14.	Degree of the tree:	$deg\{T_1\} = 3$
15.	Height of the tree:	$h\{T_1\} = 4$
16.	Weight of the tree:	$w\{T_1\} = 6$
17.	Is the tree a binary tree?	No. Since $deg\{16\} = 3 > 2$.

- 17. Is the tree a binary tree? 18. Removing 6, is the tree a full binary tree?
 - No, since $deg\{13\} = 1 \notin \{0,2\}$ which is required for a node in a full binary tree.
- 19. Removing 6, is the tree a complete binary tree?
 - No, since $dep\{9\} \neq dep\{20\}$ for leaf node 9 and 20. All leaf nodes in a complete tree must have the same depth.
- 20. Is a full binary tree complete? No. Since for two leaf nodes v_1 and v_2 of a full binary tree, it is possible for $dep\{v_1\} \neq dep\{v_2\}$, making it not complete.

- 21. Is a complete binary tree full?
 - Yes, since a complete binary tree have all internal nodes have degree of 2, making a full tree.
- 22. How many leaves does a complete n-ary tree of height h have? Since the number of leaves for a complete n-ary tree with height 1 is n, n^2 for tree with height 2, and n^3 with height 3, it is safe to assume that the number of leaves for a complete n-ary tree is n^h .
- 23. What is the height of a complete n-ary tree with m leaves? It is known from the previous problem that a complete n-ary tree of height h have n^h . With m leaves for a complete n-ary tree, $n^h = m$ and $h = \log_n m$.
- 24. What is the number of internal nodes of a complete n-ary tree of height h?

 The number of internal nodes of a complete n-ary tree with height h is equal to the sum of the number of leaves of complete n-ary trees with height 0 to h-1. With n^h from question 22, $\sum_{i=0}^{h-1} n^i = \boxed{\frac{n^h 1}{n-1}}.$
- 25. What is the total number of nodes a complete n-ary tree of height h have? From question 22 and 24, the total number of nodes of a complete n-ary tree of height h is $\frac{n^h 1}{n 1} + n^h = \boxed{\frac{n^{h+1} 1}{n 1}}.$