

6. (2022) AUTOMATIC CHAIN OF THOUGHT PROMPTING IN LARGE LANGUAGE MODELS

Created by	a 哲睿 張
Oreated time	@February 22, 2024 6:45 PM
: Tags	
https://www.youtube.com/watch?v=I1woW9_vR1c	https://zhuanlan.zhihu.com/p/618904090
https://www.youtube.com/watch?v=I1woW9_vR1c (1)	https://cloud.tencent.com/developer/article/2321413

https://prod-files-secure.s3.us-west-2.amazonaws.com/0b0c1a86-b713-4c99-9c3 5-4c26e958a80d/b420a3d9-e32f-4c22-98c5-56c8fde6b95f/AutoCoT.pdf

1. Abstract

利用GPT-3進行自動化生成CoT,效果希望超越手動CoT。

Let's not just think step by step, but also one by one.

發現多樣性的CoT可以減少錯誤CoT帶來的效果影響。

Auto-CoT步驟

- 1. 將給定數據集的問題劃分為幾個群組。
- 2. 從每個群組中選擇一個代表性問題,並使用簡單的啟發式方法使用零射 CoT 生成其推理鏈。

2. Related work

(兩種範式: Zero-shot-CoT; Manual-CoT)

作者回顧2種相關任務:

- 1. CoT prompting (又分成zeroshot和manial CoT)
- 2. In context learning (ICL)
 - a. 有學者質疑(2022) ICL的正確與否並不會影響表現太多,是因為任務往往是標準分類 <Input, Output>映射
 - b. 對於較複雜的映射(<input, rationale, output>)出現錯誤時,效能急遽下降

3. Challenge of AutoCoT

不同標記者(annotator)寫出不同的demo,在符號推理任務上差距甚至達到28% → 怎麼寫範例 很重要。

3.1 挑出MultiArith資料集來了解為什麼Retrieval-Q-CoT比Random-Q-CoT差

Method	MultiArith	GSM8K	AQuA
Zero-Shot-CoT	78.7	40.7	33.5
Manual-CoT	91.7	46.9	35.8†
Random-Q-CoT		47.6†	36.2†
Retrieval-Q-CoT		48.0 †	39.7 †

Figure 2: Unresolving Rate.

zero-shot-CoT中(只有"Let;s think strep by step"這個咒語),錯誤率21.3% (128/600),而當額外加入Retrieval-Q-CoT和Random-Q-CoT後,

依然失敗的占比在Figure.2。Retrieval-Q-CoT比Random-Q-CoT更差的原因是因為Retrieval-Q-CoT使用相似度方法,造成"一步錯步步錯"的概念。

Retrieval-Q-CoT

Q: A chef needs to cook 9 potatoes. He has already cooked 7. If each potato takes 3 minutes to cook, how long will it take him to cook **the rest**?

A: Let's think step by step. The chef has already cooked 7 potatoes. That means it has taken him 7 * 3 minutes to cook those 7 potatoes. That means it will take him 3 more minutes to cook each of the remaining 2 potatoes. That means it will take him a total of 7 * 3 + 2 * 3 = 21 minutes to cook all 9 potatoes. The answer is 21. \times

Q: A chef needs to cook 13 potatoes. He has already cooked 5. If each potato takes 6 minutes to cook, how long will it take him to cook **the rest**?

A: Let's think step by step. The chef has already cooked 5 potatoes. That means it has taken him 30 minutes so far. There are 13 potatoes in total. 5 have been cooked so far. That means there are 8 left to cook. Each potato takes 6 minutes to cook. That means it will take the chef 48 minutes to cook the 8 remaining potatoes. In total, it will take the chef 78 minutes to cook all 13 potatoes. The answer is 78.

Q: A chef needs to cook 15 potatoes. He has already cooked 8. If each potato takes 9 minutes to cook, how long will it take him to cook **the rest**?

A: Let's think step by step. The chef has already cooked 8 potatoes. That means it has taken him 8*9 minutes to cook those 8 potatoes. That means it will take him 9 minutes to cook each of the remaining 7 potatoes. That means it will take him a total of 8*9+7*9=135 minutes to cook all 15 potatoes. The answer is 135. \times

Random-Q-CoT

Q: Wendy uploaded 79 pictures to Facebook. She put 44 pics into one album and put the rest into 5 different albums. How many pictures were in each album?

A: Let's think step by step. Wendy uploaded 79 pictures to Facebook. She put 44 pictures into one album. That means she put the rest of the pictures into 5 different albums. That means each album would have (79-44)/5 = 15 pictures in each album. The answer is $15.\sqrt{}$

Q: At a restaurant each adult meal costs \$5 and kids eat free. If a group of 15 people came in and 8 were kids, how much would it cost for the group to eat?

A: Let's think step by step. There are 8 kids, so that means there are 7 adults. Each adult meal costs \$5, so that means that the 7 adults will cost \$5*7=\$35. Now we just need to add the two numbers together. \$35+8=43\$. So it would cost \$43 for the group to eat. The answer is 43.

Q: A chef needs to cook 15 potatoes. He has already cooked 8. If each potato takes 9 minutes to cook, how long will it take him to cook **the rest**?

A: Let's think step by step. The chef needs to cook 15 potatoes. He has already cooked 8. That means he has to cook 15-8=7 more potatoes. Each potato takes 9 minutes to cook. That means it will take him 9*7=63 minutes to cook the rest of the potatoes. The answer is 63. ✓

3.2證明Retrieval-Q-CoT失敗的原因是因為有"頻繁錯誤群集"

Figure 3: Clusters of similar questions.

Cluster.2可能是因為缺乏問題解決的常用面相,所以才會解決不了問題

4. AutoCoT map(示意圖)

4.1 Question Clustering問題分群

- 先用Sentence-BERT計算每個question的向量長度,並且統一所有問題的vector大小。
- K-means將questions分群

4.2 Demonstration Sampling

- 假設現在Question set中有k個cluster,產生出[Q: q(i)j. A: [P]]
- 丢入LLM產生出rationale,形成[Q: q(i)j, A: r(i)j。a(i)j] →一個完整demonstration(限制:60tokens內,rationale在5個步驟以內)

```
    Algorithm 1 Cluster

    Require: A set of questions \mathcal{Q} and the number of demonstrations k

    Ensure: Sorted questions \mathbf{q}^{(i)} = [q_1^{(i)}, q_2^{(i)}, \ldots] for each cluster i \ (i = 1, \ldots, k)

    1: procedure CLUSTER(\mathcal{Q}, k)

    2: for each question q in \mathcal{Q} do

    3: Encode q by Sentence-BERT

    4: Cluster all the encoded question representations into k clusters

    5: for each cluster i = 1, \ldots, k do

    6: Sort questions \mathbf{q}^{(i)} = [q_1^{(i)}, q_2^{(i)}, \ldots] in the ascending order of the distance to the cluster center
```

```
Algorithm 2 Construct
Require: Sorted questions \mathbf{q}^{(i)} = [q_1^{(i)}, q_2^{(i)}, \ldots] for each cluster i
      (i = 1, \dots, k), empty demonstration list d
Ensure: Demonstration list \mathbf{d} = [d^{(1)}, \dots, d^{(k)}]
1: procedure Construct(\mathbf{q}^{(i)}, \dots, \mathbf{q}^{(k)})
           for each cluster i=1,\ldots,k do for each question q_j^{(i)} in \mathbf{q}^{(i)} do
 3:
                       Generate rationale r_j^{(i)} and answer a_j^{(i)} for q_j^{(i)} using
      Zero-Shot-CoT
                       if q_i^{(i)}, r_i^{(i)} satisfy selection criteria then
 5:
                             Add d^{(i)} = [Q: q_i^{(i)}, A: r_i^{(i)} \circ a_i^{(i)}] to d
 6:
                             break
 7:
 8:
           return d
```

5. Experiments

return $q^{(i)}$ (i = 1, ..., k)

任務類型:

(i) 算術推理 (ii) 符號推理 (iii) 常識推理

模型: GPT-3 (text-davinci-002 version 175B)

Model	Arithmetic				Commonsense		Symbolic			
	MultiArith	GSM8K	AddSub	AQuA	SingleEq	SVAMP	CSQA	Strategy	Letter	Coin
Zero-Shot Zero-Shot-CoT	22.7 78.7	12.5 40.7	77.0 74.7	22.4 33.5	78.7 78.7	58.8 63.7	72.6 64.6	54.3 54.8	0.2 57.6	53.8 91.4
Few-Shot Manual-CoT	33.8 91.7	15.6 46.9	83.3 81.3	24.8 35.8	82.7 86.6	65.7 68.9	79.5 73.5	65.9 65.4	0.2 59.0	57.2 97.2
Auto-CoT	92.0	47.9	84.8	36.5	87.0	69.5	74.4	65.4	59.7	99.9

Auto-CoT全面性優於manual-CoT,原因是手動的成本很高,設計者在設計dataset的CoT時不會一個個demo(在算數dataset中5/6的demo都是同一個)。

比較起來,Auto-CoT比manual-CoT更具彈性和任務的適應性。

錯誤的Demo造成的影響

(In-Cluster Sampling: 在同一集群中隨機抽樣問題)

更具挑戰的任務

說明: 當Dtaset不是一次完整丟進來,而是批次陸續丟入。

6. Conclusion

LLMs已經展示了在CoT提示下的推理能力。Manual-CoT的卓越性能取決於示範的手工設計。為 了消除這種手工設計,我們提出了Auto-CoT來自動構建示範。

它通過多樣性抽樣問題並生成推理鏈來構建示範。對於十個公共基準推理數據集的實驗結果表明,使用GPT-3,Auto-CoT始終與需要手工設計示範的CoT範式的性能相匹配或超越。