智能之门

神经网络和深度学习入门

(基于Python的实现)

STEP 8 卷积神经网络

第 18 章

卷积神经网络应用

- 18.1 经典模型
- 18.2 颜色与几何图形分类
- 18.3 MNIST分类
- 18.4 Fashion-MNIST分类
- 18.5 Cifar-10分类

本部分我们会介绍一些经典的卷积模型,并展示一些分类实例,向大师们学习一些方法论问题。

> LeNet (1998)

- 由卷积神经网络的开创者LeCun在1998年提出,用于解决手写数字识别的视觉任务。自那时起,卷积神经网络的最基本的架构就定下来了:卷积层、池化层、全连接层。
- 如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(5表示具有5个层), 和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLU。

> AlexNet (2012)

• AlexNet网络结构在整体上类似于LeNet,都是先卷积然后在全连接。但在细节上有很大不同。AlexNet有60million个参数和65000个神经元,五层卷积,三层全连接网络,最终的输出层是1000通道的Softmax。AlexNet用两块GPU并行计算,大大提高了训练效率。

> **ZFNet** (2013)

ZFNet首次系统化地对卷积神经网络做了可视化的研究,从而找到了AlexNet的缺点并加以改正,提高了网络的能力。总的来说,通过卷积神经网络学习后,我们学习到的特征,是具有辨别性的特征,比如要我们区分人脸和狗头,那么通过卷积神经网络学习后,背景部位的激活度基本很少,我们通过可视化就可以看到我们提取到的特征忽视了背景,而是把关键的信息给提取出来了。

• ZFNet提取的特征

> VGGNet (2015)

- VGGNet是由牛津大学的视 觉几何组和Google DeepMind公司的研究员一 起研发的深度卷积神经网络。
- VGGNet的卷积层有一个特点:特征图的空间分辨率单调递减,特征图的通道数单调递增,使得输入图像在维度上流畅地转换到分类向量。

➤ GoogleNet (2014)

- GoogLeNet跟AlexNet,VGG-Nets这种单纯依靠加深网络结构进而改进网络性能的思路不一样,它另辟幽径,在加深网络的同时(22层),也在网络结构上做了创新,引入Inception结构代替了单纯的卷积+激活的传统操作。GoogLeNet进一步把对卷积神经网络的研究推上新的高度。
- GoogLeNet网络结构中有3个LOSS单元,这样的网络设计是为了帮助网络的收敛。在中间层加入辅助计算的LOSS单元,目的是计算损失时让低层的特征也有很好的区分能力,从而让网络更好地被训练。
- GoogLeNet还有一个闪光点值得一提,那就是将后面的全连接层全部替换为简单的全局平均pooling,在最后参数会变的更少。使用大网络在宽度和深度允许GoogleNet移除全连接层,但并不会影响到结果的精度,在ImageNet中实现93.3%的精度,而且要比VGG还要快。

> ResNet (2015)

- ResNet称为残差网络。若将输入设为X,将某一有参网络层设为H,那么以X为输入的此层的输出将为H(X)。一般的卷积神经网络网络如Alexnet/VGG等会直接通过训练学习出参数函数H的表达,从而直接学习X→H(X)。
- 而残差学习则是致力于使用多个有参网络层来学习输入、输出之间的参差即H(X) X即学习X → (H(X) X) + X。其中X这一部分为直接的identity mapping,而H(X) X则为有参网络层要学习的输入输出间残差。

> **DenseNet** (2017)

- DenseNet是一种具有密集连接的 卷积神经网络。在该网络中,任 何两层之间都有直接的连接,也 就是说,网络每一层的输入都是 前面所有层输出的并集,而该层 所学习的特征图也会被直接传给 其后面所有层作为输入。
 - ✓ 相比ResNet拥有更少的参数数量
 - ✓ 旁路加强了特征的重用
 - ✓ 网络更易于训练,并具有一定的正则效果
 - ✓ 缓解了gradient vanishing和 model degradation的问题

> 颜色分类

• 前馈神经网络的训练曲线

- 前馈神经网络运行结果:对两类形状上的颜色判断不准:很细的线和很大的色块。
 - ✓ 针对细直线,由于带颜色的像素点的数量非常少,被拆成向量后,这些像素点就会在 1×784 的矢量中彼此相距很远,特征不明显, 很容易被判别成噪音。
 - ✓ 针对大色块,由于带颜色的像素点的数量非常 多,即使被拆成向量,也会占据很大的部分, 这样特征点与背景点的比例失衡,导致无法判 断出到底哪个是特征点。

• 卷积神经网络模型

ID	类型	参数	輸入尺寸	位为出命
1	卷积	2x1x1,S=1	3x28x28	2x28x28
2	激活	Relu	2x28x28	2x28x28
3	池化	2x2,S=2,Max	2x14x14	2x14x14
4	卷积	3x3x3,S=1	2x14x14	3x12x12
5	激活	Relu	3x12x12	3x12x12
6	池化	2x2,S=2,Max	3x12x12	3x6x6
7	全连接	32	108	32
8	归一化		32	32
9	激活	Relu	32	32
10	全连接	6	32	6
11	分类	Softmax	6	6

- 卷积神经网络训练曲线和运行结果
 - ✓ 在测试集上得到了 96.3% 的准确度,比前馈 神经网络模型要高出很多,这也证明了卷积神 经网络在图像识别上的能力。

- 1×1卷积核
 - ✓ 跨通道信息整合。
 - ✓ 降维以减少学习参数。
 - ✓ 关注的是不同通道的相同位置的像素之间的相 关性,而不是同一通道内的像素的相关性。

• 可视化

- ✓ 第一行是原始彩色图片,三通道28×28, 特意挑出来都是矩形的6种颜色。
- ✓ 第二行是第一卷积组合梯队的第1个1 × 1的卷积核在原始图片上的卷积结果。
- ✓ 第三行是第一卷积组合梯队的第2个1× 1的卷积核在原始图片上的卷积结果。
- ✓ 第四行是第二卷积组合梯队的三个卷积 核的卷积结果图,把三个特征图当作 RGB通道后所生成的彩色图。
- ✓ 第五行是第二卷积组合梯队的激活函数 结果,和原始图片相差很大。

> 几何形状分类

- 前馈神经网络的训练曲线
 - ✓ 在测试集上得到的的准确度是89.8%。

• 卷积神经网络模型

ID	类型	参数	位列人倫	输出尺寸
1	卷积	8×3×3,S=1,P=1	1 × 28 × 28	8×28×28
2	激活	Relu	8×28×28	8×28×28
3	池化	2×2,S=2,Max	8×28×28	8×14×14
4	卷积	16×3×3,S=1	8×14×14	16×12×12
5	激活	Relu	16×12×12	16×12×12
6	池化	2×2,S=2,Max	16×6×6	16×6×6
7	全连接	32	576	32
8	归一化		32	32
9	激活	ReLU	32	32
10	全连接	5	32	5
11	分类	Softmax	5	5

- 卷积神经网络训练曲线和运行结果
 - ✓ 在测试集上得到了 96% 的准确度,比前馈神经网络模型要高出很多,这也证明了卷积神经网络在图像识别上的能力。

• 可视化

• 卷积核的作用

卷积核序号	作用	直线	三角形	菱形	矩形	圆形
1	左侧边缘	0	1	0	1	1
2	大色块区域	0	1	1	1	1
3	左上侧边缘	0	1	1	0	1
4	45度短边	1	1	1	0	1
5	右侧边缘、上横边	0	0	0	1	1
6	左上、右上、右下	0	1	1	0	1
7	左边框和右下角	0	0	0	1	1
8	左上和右下,及背景	0	0	1	0	1

• 当然,神经网络可能不是按照我们分析的顺序来判定形状的,可以有很多其他种路径的组合,但最终总能够把5种形状分开来。

> 同时分类

- 前馈神经网络的训练曲线
 - ✓ 在测试集上得到的的准 确度是 89%。

	红色	蓝色	绿色
圆形	600:100	600:100	600:100
矩形	600:100	600:100	600:100
三角形	600:100	600:100	600:100

- 前馈神经网络运行结果
 - ✓ 绝大部分样本预测是正确的,但是第3行第2 列的样本,应该是green-rect,被预测成 green-circle;最后两行的两个green-tri也被预 测错了形状,颜色并没有错。

- 卷积神经网络训练曲线和运行结果
 - ✓ 在测试集上得到了97%的准确度,比DNN模型要高出很多,这也证明了卷积神经网络在图像识别上的能力。
 - ✓ 绝大部分样本预测是正确的,只有最后一行第4个样本,本来是green-triangle,被预测成green-circle。

18.3 MNIST分类

- ➤ MNIST分类
 - 搭建模型
 - 模型各层参数

Layer	参数	輸入	輸出	参数个数
卷积层	8×5×5,s=1	1×28×28	8×24×24	200+8
激活层	2 × 2,s=2,max	8×24×24	8×24×24	
池化层	Relu	8×24×24	8×12×12	
卷积层	16 × 5 × 5,s=1	8×12×12	16×8×8	400+16
激活层	Relu	16×8×8	16×8×8	
池化层	2 × 2,s=2,max	16×8×8	16×4×4	
全连接层	256×32	256	32	8192+32
批归一化层		32	32	
激活层	Relu	32	32	
全连接层	32×10	32	10	320+10
分类层	softmax,10	10	10	

18.3 MNIST分类

- 运行结果
 - ✓ 最后可以得到 98.44% 的准确率,比全连接网络要高 1 个百分点。如果想进一步提高准确率,可以尝试增加卷积层的能力,比如使用更多的卷积核来提取更多的特征。

18.3 MNIST分类

- 卷积核可视化
 - ✓ 第一组卷积核

✓ 第二组卷积核

18.4 Fashion-MNIST分类

➢ Fashion-MNIST分类

- 每3行是一类样本,按样本类别分行显示:
 - ✓ T-Shirt, T恤衫 (1-3行)
 - ✓ Trouser, 裤子 (4-6行)
 - ✓ Pullover, 套头衫 (7-9行)
 - ✓ Dress, 连衣裙 (10-12行)
 - ✓ Coat, 外套 (13-15行)
 - ✓ Sandal, 凉鞋 (16-18行)
 - ✓ Shirt, 衬衫 (19-21行)
 - ✓ Sneaker, 运动鞋 (22-24行)
 - ✓ Bag, 包 (25-27行)
 - ✓ Ankle Boot, 短靴 (28-30行)

18.4 Fashion-MNIST分类

• 前馈神经网络运行结果

18.4 Fashion-MNIST分类

• 卷积神经网络运行结果

➤ Cifar-10分类

- Cifar-10由60000张32*32的 RGB 彩色图片构成,共10个 分类。50000张训练,10000 张测试。分为6个文件,5个 训练数据文件,每个文件中 包含10000张图片,随机打乱 顺序,1个测试数据文件,也 是10000张图片。
- 面对彩色数据集,用CPU做训练所花费的时间实在是太长了, 所以本节将使用GPU来训练神经网络。

• 环境搭建

- ✓ 安装Python 3.6 (本书中所有案例在Python 3.6上开发测试)
- ✓ 安装CUDA (没有GPU的读者请跳过)
- ✓ 安装cuDNN (没有GPU的读者请跳过)
- ✓ 安装TensorFlow,有GPU硬件的一定要按照 GPU版,没有的只能安装CPU版
- ✓ 安装Keras

Package	Version
Keras	2.2.5
Keras-Applications	1.0.8
Keras-Preprocessing	1.1.0
matplotlib	3.1.1
numpy	1.17.0
tensorboard	1.13.1
tensorflow-estimator	1.13.0
tensorflow-gpu	1.13.1

- 在这个模型中:
 - ✓ 先用卷积->激活->卷积->激活->池化->丢弃层, 做为第一梯队, 卷积核32个;
 - ✓ 然后再用卷积->激活->卷积->激活->池化->丟弃层做为第二梯队,卷积核64个;
 - ✓ Flatten和Dense相当于把池化的结果转成Nx512的全连接层,N是池化输出的尺寸,被Flatten扁 平化了;
 - ✓ 再接丟弃层,避免过拟合;
 - ✓ 最后接10个神经元的全连接层加Softmax输出。

• 训练结果

✓ GPU

✓ CPU

THE END

谢谢!