1. (1 point)

(1) Find a particular solution to the nonhomogeneous differential equation $y'' + 4y' + 4y = 8x^2 + 4x + 8$. (Note: it might be better to first do part (b) before part (a).)

 $y_p =$ ______ help (formulas)

(2) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y = ______help (formulas)

Correct Answers:

- 2*x^2+-3*x+4
- $c1*e^(-2*x)+c2*x*e^(-2*x)$
- $2*x^2+-3*x+4+c1*e^(-2*x)+c2*x*e^(-2*x)$

2. (1 point)

(1) Find a particular solution to the nonhomogeneous differential equation y'' - y' = -5. (Note: it might be better to first do part (b) before part (a).)

 $y_p =$ _____ help (formulas)

(2) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y = _____ help (formulas)

Correct Answers:

- 5*x
- c1+c2*e^x
- 5*x+c1+c2*e^x

3. (1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals.

$$y'' + 9y = \sec(3x).$$

(1) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ ______ help (formulas)

(2) Find a particular solution to the nonhomogeneous differential equation $y'' + 9y = \sec(3x)$.

 $y_p =$ ______ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y =

help (formulas)

Correct Answers:

- c1*cos(3*x)+c2*sin(3*x)
- $a*\cos(3*x)+b*\sin(3*x)+1/3*x*\sin(3*x)+1/9*\cos(3*x)*ln(|\cos(3*x)|)$
- c1*cos(3*x)+c2*sin(3*x)+1/3*x*sin(3*x)+1/9*cos(3*x)*ln(|co
- **4.** (1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals.

$$y'' - 4y = xe^{2x}.$$

(1) Find the most general solution to the associated homogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants, and enter them as c_1 and c_2 .

 $y_c =$ ______ help (formulas)

(2) Find a particular solution to the nonhomogeneous differential equation $y'' - 4y = xe^{2x}$.

 $y_p =$ _____ help (formulas)

(3) Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.

y =	
	help (formulas)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Correct Answers:

- c1*e^(2*x)+c2*e^(-2*x)
- $a*e^(2*x)+b*e^(-2*x)+1/8*x^2*e^(2*x)-1/16*x*e^(2*x)$
- c1*e^(2*x)+c2*e^(-2*x)+1/8*x^2*e^(2*x)-1/16*x*e^(2*x)