Theory of Automata Context Free Grammars

Week 7

- Languages (concepts/Algorithms/Pseudocode)
 - Regular
 - Non-regular
 - Context Free Languages

Regular vs Context Free

Context Free CFL is a bigger set, and regular RL is a subset.

CFL: bigger set, have more languages, more power, e.g. palindrome, aⁿbⁿ

- CFL cover that RL do not cover and also cover what RL cover.
- Since RL is a subset of CFL, so any language that is part of RL is always part of CFL
- E.g BiggerSet = {1,2,3,4}
- Subset = {3}

- RL:
 - FA/RE/TG/
- CFL:
 - CFG/PDA
 - Context Free Grammar / Pushdown Automata

Contents

- Syntax As a Method for Defining Languages
- Symbolism for Generative Grammars
- Trees
- Lukasiewicz Notation
- Ambiguity
- The Total Language Tree

Context Free Grammars

- Three fundamental areas covered in the book are
 - 1. Theory of Automata
 - 2. Theory of Formal Languages
 - 3. Theory of Turing Machines
- We have completed the first area.
- We begin exploring the second area in this chapter.

Syntax as a Method for Defining Languages

• In Chapter 3 we recursively defined the set of valid arithmetic expressions as follows:

Rule 1: Any number is in the set AE.

Rule 2: If x and y are in AE, then so are

$$(x)$$
, $-(x)$, $(x + y)$, $(x - y)$, $(x * y)$, (x/y) , $(x ** y)$

where ** is our notation for exponentiation

- Note that we use parentheses around every component factor to avoid ambiguity expressions such as 3 + 4 - 5 and 8/4/2.
- There is a different way for defining the set AE: using a set of substitution rules similar to the grammatical rules.

Defining AE by substitution rules

```
• Start \rightarrow AE
```

$$AE \rightarrow (AE + AE)$$

$$AE \rightarrow (AE - AE)$$

$$AE \rightarrow (AE * AE)$$

$$AE \rightarrow (AE/AE)$$

$$AE \rightarrow (AE ** AE)$$

$$AE \rightarrow (AE)$$

$$AE \rightarrow -(AE)$$

$$AE \rightarrow d$$

• We will show that ((3 + 4) * (6 + 7)) is in AE

$$\rightarrow$$
 ((AE + AE) * (AE + AE))

$$\rightarrow$$
 ((3 + 4) * (6 + 7))

Definition of Terms

- A word that cannot be replaced by anything is called terminal.
 - In the above example, the terminals are the phrase AnyNumber, and the symbols + - * / ** ()
- A word that must be replaced by other things is called nonterminal.
 - The non-terminals are Start and AE.
- The sequence of applications of the rules that produces the finished string of terminals from the starting symbol is called a **derivation** or a **generation** of the word.
- The grammatical rules are referred to as productions.

Symbolism for Generative Grammars

Definition:

- A context-free grammar (CFG) is a collection of three things:
 - **1.** An alphabet Σ of letters called **terminals** from which we are going to make strings that will be the words of a language.
 - **2.** A set of symbols called **non-terminals**, one of which is the symbol S, standing for "start here".
 - **3.** A finite set of **productions** of the form:

One non-terminal → finite string of terminals and/or non-terminals

where the strings of terminals and non-terminals can consist of only terminals, or of only non-terminals, or of any mixture of terminals and non-terminals, or even the empty string. We require that at least one production that has the non-terminal S as its left side.

Definition:

- The language generated by a CFG is the set of all strings of terminals that can be produced from the start symbol S using the productions as substitutions.
- A language generated by a CFG is called a **context-free language (CFL)**.

Notes:

- The language generated by a CFG is also called the language defined by the CFG, or the language derived from the CFG, or the language produced by the CFG.
- We insist that non-terminals be designated by capital letters, whereas terminals are designated by lowercase letters and special symbols.

Let the only terminal be a and the productions be

```
Prod1 S \rightarrow aS
Prod2 S \rightarrow \Lambda
```

• If we apply Prod 1 six times and then apply Prod 2, we generate the following:

```
S → aS → aaS → aaaaS
→ aaaaaS → aaaaaaA = aaaaaa
```

- If we apply Prod2 without Prod1, we find that Λ is in the language generated by this CFG.
- Hence, this CFL is exactly a*.
- Note: the symbol "→" means "can be replaced by", whereas the symbol "→" means "can develop to".

• Let the terminals be a and b, the only non-terminal be S, and the productions be

Prod1 S \rightarrow aS

 $Prod2 S \rightarrow bS$

Prod3 S $\rightarrow \Lambda$

The word ab can be generated by the derivation

$$S \rightarrow aS \rightarrow abS \rightarrow ab\Lambda = ab$$

The word baab can be generated by

$$S \rightarrow bS \rightarrow baS \rightarrow baaS \rightarrow baabS \rightarrow baab\Lambda = baab$$

Clearly, the language generated by the above CFG is

 (a + b)*.

 Let the terminals be a and b, the the non-terminal be S and X, and the productions be

```
Prod 1 S \rightarrow XXXaXaXX
```

Prod 2 $X \rightarrow aX$

Prod 3 $X \rightarrow bX$

Prod 4 $X \rightarrow \Lambda$

 We already know from the previous example that the last three productions will generate any possible strings of a's and b's from the non-terminal X. Hence, the words generated from S have the form

anything aa anything

Hence, the language produced by this CFG is
 (a + b)*aa(a + b)*

which is the language of all words with a double a in them somewhere.

- For example, the word baabb can be generated by
 - S → XaaX → bXaaX → baaX → baaX
 - → baabX → baabbX → baabbΛ = baabb

Consider the CFG:

```
S \rightarrow aSb
```

$$S \rightarrow \Lambda$$

- It is easy to verify that the language generated by this CFG is the non-regular language {anbn}.
- For example, the word a⁴b⁴ is derived by
 - S → aSb → aaSbb → aaaSbbb
 - → aaaaSbbbb → aaaa∧bbbb = aaaabbbb

Derivation and some Symbols

If v and w are strings of terminals and non-terminals

$$v \Rightarrow^n w$$
 » denotes the derivation of w from v of length n steps

$$v \Longrightarrow^+ w$$

» derivation of w from v in one or more steps

$$v \Rightarrow_G^* w$$

» derivation of w from v in zero or more steps of application of rules of grammar G.

Sentential Form

• A string w $\varepsilon(n \cup \Sigma)^*$ is a sentential form of G if there is a derivation

$$v \Longrightarrow^* w$$

A string w is a sentence of G if there is a derivation in G

$$v \Longrightarrow^* w$$

The language of G, denoted by L(G) is the set

$$\left\{ w \in \sum^* \mid S^* \Longrightarrow w \right\}$$

It is not difficult to show that the following CFG generates the non-regular language {anban}:

$$S \rightarrow aSa$$

$$S \rightarrow b$$

 Can you show that the CFG below generates the language PALINDROME, another non-regular language?

 $S \rightarrow aSa$

 $S \rightarrow bSb$

 $S \rightarrow a$

 $S \rightarrow b$

 $S \rightarrow \Lambda$

Disjunction Symbol |

- Let us introduce the symbol | to mean disjunction (or).
- We use this symbol to combine all the productions that have the same left side.
- For example, the CFG

Prod 1
$$S \rightarrow XaaX$$

Prod 2
$$X \rightarrow aX$$

Prod 3
$$X \rightarrow bX$$

Prod 4
$$X \rightarrow \Lambda$$

can be written more compactly as

Prod 1
$$S \rightarrow XaaX$$

Prod 2
$$X \rightarrow aX/bX/\Lambda$$

a* terminal – a, b, non-terminal for S, X, A

• S -> aS | Δ

• S -> Sa | Δ

- <mark>aaaa</mark>
- S -> aS
- S-><mark>a</mark>S
- S -> <mark>a</mark>S
- S -> <mark>a</mark>S
- > **\(\)**

- a<mark>a</mark>aa
- S -> Sa
- S->S<mark>a</mark>
- S->S<mark>a</mark>
 - S->S<mark>a</mark>
 - S -> ∆

Language: ab*

- CFG:
 - S -> Sb | a

 - S -> Sb

$$Sb$$

 $S - > Sb$
 $S - > Sb$

S -> a

- b*a
- CFG:
 - S -> bS | a
- abbb

bbba

Language: b*ab*

Plaindrome; not a regular, No FA, no TG, no RE, yes CFG

- Odd Palindrome:
- { a, b, aaa, aba, bab, bbb, aaaaa, aabaa, ababa, abbba, baaab, bbabb, babab, bbbbb,
- aaaaaaa, aaabaaa,...}

S -> aSa | bSb | a | b

aaba a abaa

aabababaa

Even Palindrom

- {Δ, aa, bb, aaaa, abba, baab, bbbb, aaaaaaa, aabbaa, abaaba, ...}
- S -> aSa | bSb | Δ

- abaaba
- aabbaSabbaa

- <mark>a</mark>baab<mark>a</mark>
- abaaba

anbn

- S -> aSb | Δ

- aaaaaabbbbbb
- aaaaSbbbb

$$(a+b)*$$

- S -> aS | bS | Δ
- S -> Sa | Sb | Δ
- S -> Sa | bS | Δ

{Δ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bbb, aaaa, ...}

>

```
S→aSa | aBa
B→bB | b
```

- First production builds equal number of a's on both sides and recursion is terminated by S→aBa
- Recursion of B→bB may add any number of b's and terminates with
 B→b
- $L(G) = \{a^nb^ma^n n>0, m>0\}$

example

$$L(G) = \{a^nb^mc^md^{2n} \mid n>0, m>0\}$$

 Consider relationship between leading a's and trailing d's.

$$S \rightarrow aSdd$$

In the middle equal number of b's and c's

- S→A
- A→bAc
- This middle recursion terminates by A→bc.

Grammar will be

S→aSdd | aAdd

A→bAc | bc

- $a^nb^n c^m d^m e^p f^p g^q h^q \mid n>0, m>0$
- S -> XYZW
- X -> aXb | ab
- Y -> cYd | cd
- Z -> eZf | ef
- W -> gWh |gh

- $a^nb^me^pg^qh^qf^pc^md^n \mid n>0, m>0$
- S -> /aSd | aXd
- X -> bXc | bYc
- Y -> eYf | ef

Consider another CFG

Language defined is

$$L(G) = \{a^nb^m \mid 0 \le n \le m \le 2n\}$$

- A grammar that generates the language consisting of even-length string over {a, b}
 S → aO | bO | Λ
 O → aS | bS
- S and O work as counters i.e. when an S is in a sentential form that marks even number of terminals have been generated
- Presence of O in a sentential form indicates that an odd number of terminals have been generated.
- The strategy can be generalized, say for string of length exactly divisible by 3 we need three counters to mark 0, 1, 2

$$S \rightarrow aP \mid bP \mid \Lambda$$

 $P \rightarrow aQ \mid bQ$
 $Q \rightarrow aS \mid bS$

Even-Even

• $\Sigma = \{a,b\}$

Productions:

- $S \rightarrow SS$
- $S \rightarrow XS$
- $S \rightarrow \Lambda$
- $S \rightarrow YSY$
- $X \rightarrow aa$
- $X \rightarrow bb$
- $Y \rightarrow ab$
- $Y \rightarrow ba$

Devise a grammar that generates strings with even number of a's and even number of b's

Remarks

- We have seen that some regular languages can be generated by CFGs, and some non-regular languages can also be generated by CFGs.
- In Chapter 13, we will show that ALL regular languages can be generated by CFGs.
- In Chapter 16, we will see that there is some non-regular language that cannot be generated by any CFG.
- Thus, the set of languages generated by CFGs is properly larger than the set of regular languages, but properly smaller than the set of all possible languages.

Trees

Consider the following CFG:

$$S \rightarrow AA$$

$$A \rightarrow AAA/bA/Ab/a$$

The derivation of the word bbaaaab is as follows:

We can use a tree diagram to show that derivation process:

We start with the symbol S. Every time we use a production to replace a non-terminal by a string, we draw downward lines from the non-terminal to EACH character in the string.

- Reading from left to right produces the word bbaaaab.
- Tree diagrams are also called syntax trees, parse trees, generation trees, production trees, or derivation trees.

Lukasiewicz Notation - Example

- Also called the polish prefix notation.
- A parenthesis free notation
- Consider the following CFG for a simplified version of arithmetic expressions:

$$S \rightarrow S + S \mid S * S \mid number$$

where the only non-terminal is S, and the terminals are number together with the symbols +,* .

- Obviously, the expression 3 + 4 * 5 is a word in the language defined by this CFG; however, it is ambiguous since it is not clear whether it means (3 + 4) * 5 (which is 35), or 3 + (4 * 5) (which is 23).
- To avoid ambiguity, we often need to use parentheses, or adopt the convention of "hierarchy of operators" (i.e., * is to be executed before +).
- We now present a new notation that is unambiguous but does not rely on operator hierarchy or on the use of parentheses.

Let us define a new CFG in which S, +, and * are nonterminals and <u>number</u> is the only terminal. The productions are

$$\begin{split} S &\to *| + |\underline{\text{number}}| \\ &+ \to + + | + *| + \underline{\text{number}}| * + | * *| * \underline{\text{number}}|\underline{\text{number}} + |\underline{\text{number}}| * |\underline{\text{number}}|\underline{\text{number}}| \\ &* \to + + | + *| + \underline{\text{number}}| * + | * *| * \underline{\text{number}}|\underline{\text{number}} + |\underline{\text{number}}| * |\underline{\text{number}}|\underline{\text{number}}|\underline{\text{number}}| \end{split}$$

Let us draw the derivation tree for the expression 3 + (4 * 5) and (3 + 4) * 5 respectively, using the new CFG above.

New Notation: Lukasiewicz notation

- We can now construct a new notation for arithmetic expressions:
 - We walk around the tree and write down symbols, once each, as we encounter them.
 - We begin on the left side of the start symbol S and head south.
 - As we walk around the tree, we always keep our left hand on the tree.

- Using the algorithm above, the first derivation tree is converted into the notation: + 3 * 4 5.
- The second derivation tree is converted into * + 3 4 5.

Consider the expression: + 3 * 4 5:

Consider the second expression: * + 3 4 5:

String First o-o-o

* + 3 4 5 + 3 4

↓

* 7 5 * 7 5

↓

35

 Convert the following arithmetic expression into operator prefix notation:

$$((1+2)*(3+4)+5)*6.$$

- This normal notation is called operator infix notation, with which we need parentheses to avoid ambiguity.
- Let's us draw the derivation tree:

- Reading around the tree gives the equivalent prefix notation expression:
 - * + * + 1 2 + 3 4 5 6.

Evaluate the String

- This operator prefix notation was invented by Lukasiewicz (1878 -1956) and is often called Polish notation.
- There is a similar **operator postfix notation** (also called Polish notation), in which the operation symbols (+, -, ...) come after the operands. This can be derived by tracing around the tree of the other side, keeping our **right** hand on the tree and then reversing the resultant string.
- Both these methods of notation are useful for computer science: Compilers often convert infix to prefix and then to assembler code.

Ambiguity- example

Consider the language generated by the following CFG:

$$S \rightarrow AB$$

 $A \rightarrow a$
 $B \rightarrow b$

There are two derivations of the word ab:

$$S \rightarrow AB \rightarrow aB \rightarrow ab$$

or
 $S \rightarrow AB \rightarrow Ab \rightarrow ab$

However, These two derivations correspond to the same syntax

tree:

 The word ab is therefore not ambiguous. In general, when all the possible derivation trees are the same for a given word, then the word is unambiguous.

Ambiguity - Definition

A CFG is called **ambiguous** if for at least one word in the language that it generates, there are two possible derivations of the word that correspond to different syntax trees. If a CFG is not ambiguous, it is called **unambiguous**.

- The following CFG defines the language of all non-null strings of a's:
 S → aS | Sa | a
- The word a³ can be generated by 4 different trees:

the CFG, S→aS|a is not ambiguous as neither the word aaa nor any other word can be derived from more than one production trees.

The derivation tree for aaa is as follows:

The Total Language Tree

• It is possible to depict the generation of all the words in the language of a CFG simultaneously in one big (possibly infinite) tree.

Definition:

For a given CFG, we define a tree with the start symbol S as its root and whose nodes are working strings of terminals and non-terminals. The descendants of each node are all the possible results of applying every applicable production to the working string, one at a time. A string of all terminals is a terminal node in the tree. The resultant tree is called the **total language tree** of the CFG.

Consider the CFG:

$$S \rightarrow aa \mid bX \mid aXX$$

 $X \rightarrow ab \mid b$

The total language tree is

- The above total language has only 7 different words.
- Four of its words (abb, aabb, abab, aabab) have two different derivations because they appear as terminal nodes in two different places.
- However, these words are NOT generated by two different derivation trees. Hence, the CFG is unambiguous. For example,

Consider the CFG:

$$S \rightarrow aSb \mid bS \mid a$$

- The language of this CFG is infinite, so is the total language tree:
 The tree may get arbitrary wide as well as infinitely long.
- Can you draw the beginning part of this total language tree?

Semi Word

- For a given CFG, semi-word is a string of terminals (may be none) concatenated with exactly one non-terminal (on the right).
- In general semi-word has the shape

```
(terminal) (terminal)....(terminal) (Non-Terminal)
```

e.g. aaaX abcY bbY

A word is a string of terminals only (zero or more terminals)

Regular Grammar

Given an FA, there is a CFG that generates exactly the language accepted by the FA.

In other words, all regular languages are CFLs

Creating a CFG from an FA

<u>Step-1</u> The Non-terminals in CFG will be all names of the states in the FA with the start state renamed S.

Step-2 For every edge

Create productions $X \rightarrow aY$ or $X \rightarrow aX$

Do the same for b-edges

<u>Step-3</u> For every final-state X, create the production

$$X \rightarrow \Lambda$$

$$S \rightarrow aM$$

$$S \rightarrow bS$$

$$M \rightarrow aF$$

$$M \rightarrow bS$$

$$F \rightarrow aF$$

$$F \rightarrow bF$$

$$F \rightarrow \Lambda$$

Note: It is not necessary that each CFG has a corresponding FA. But each FA has an equivalent CFG.

Regular Grammar

Theorem 22:

If all the productions in a given CFG fit one of the two forms: Non-terminal → semiword

or Non-terminal → word

(Where the word may be a Λ or string of terminal), then the language generated by the CFG is Regular.

Proof:

For a CFG to be regular is by constructing a TG from the given CFG.

Proof contd.

Let us consider a general CFG in this form

Where N's are non-terminal and w's are the string of terminal and part $w_v N_z$ are semiwords.

Let N_1 =S. Draw a small circle for each N and one extra circle labelled +, the circle for S we label (-)

Proof contd.

• For each production of the form $N_x \rightarrow w_y N_{z_z}$ draw a directed edge from state N_x to N_z with label w_y .

- If Nx = Nz, the path is a loop
- For every production of the form $N_p \rightarrow W_q$, draw a directed edge from Np to + and label it with W_q even if $W_q = \Lambda$.

- Any path in TG form to + corresponds to a word in the language of TG (by concatenating symbols) and simultaneously corresponds to sequence of productions on the CFG generating words.
- Conversely every production of the word in the CFG:
- $S \rightarrow WN \rightarrow WWN \rightarrow WWWN \rightarrow \rightarrow WWWWW$ Corresponds to a path in this TG.

Consider the CFG S
 aaS | bbS | Λ

- The regular expression is given by (aa + bb)*.
- Consider the CFG

 $S \rightarrow aaS \mid bbS \mid abX \mid baX \mid \Lambda$

X→ aaX | bbX | abS | baS

Language accepted?

aa,bb

Theory of Automata