Unbiasedness of the Sample Variance: A Linear Algebra Perspective

Your Friendly Math Teacher

April 5, 2025

1 Motivation: Why Estimate Variance?

In statistics, we often work with a sample Y_1, Y_2, \ldots, Y_n drawn from a larger population. We assume these are independent draws from a distribution with some unknown mean μ and unknown variance σ^2 . While the sample mean $\bar{Y} = \frac{1}{n} \sum Y_i$ is a natural estimator for μ , estimating the population's spread, σ^2 , requires a bit more thought.

A key measure of spread in our sample is the sample variance, defined as:

Definition 1 (Sample Variance). The sample variance, denoted S_n^2 , is given by

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

You might wonder: why divide by n-1 instead of the seemingly more natural n? This factor is known as Bessel's correction. Our goal today is to prove that this correction makes S_n^2 an unbiased estimator for σ^2 .

Definition 2 (Unbiased Estimator). An estimator $\hat{\theta}$ for a parameter θ is called unbiased if its expected value equals the true value of the parameter, i.e., $\mathbb{E}[\hat{\theta}] = \theta$.

So, we want to rigorously show that $\mathbb{E}[S_n^2] = \sigma^2$. We'll use the power of linear algebra, assuming for this derivation that our observations Y_i are independent and identically distributed (i.i.d.) as $N(\mu, \sigma^2)$.

2 Setting the Stage: Vector Notation

Let's represent our sample as a vector in \mathbb{R}^n :

$$oldsymbol{Y} = egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix}$$

Since $Y_i \sim N(\mu, \sigma^2)$ independently, the random vector \boldsymbol{Y} follows a multivariate normal distribution:

$$m{Y} \sim N(m{\mu_Y}, m{\Sigma_Y})$$

where

• The mean vector is
$$\mu_{Y} = \mathbb{E}[Y] = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} = \mu \mathbf{1}$$
, where $\mathbf{1}$ is the $n \times 1$ vector of ones.

• The covariance matrix is
$$\Sigma_{\mathbf{Y}} = \text{Cov}(\mathbf{Y}) = \begin{bmatrix} \sigma^2 & 0 & \dots & 0 \\ 0 & \sigma^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma^2 \end{bmatrix} = \sigma^2 \mathbf{I}$$
, where \mathbf{I} is the $n \times n$

identity matrix. The off-diagonal zeros reflect the independence of the Y_i

3 The Sum of Squares as a Quadratic Form

The core of S_n^2 is the sum of squared deviations: $\sum_{i=1}^n (Y_i - \bar{Y})^2$. Let's see how this looks in matrix form. This sum measures the squared length of the vector of deviations from the mean. We can express this using a special matrix operation.

Consider the centering matrix M:

$$\mathbf{M} = \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T$$

This matrix has the remarkable property that when it multiplies a vector \mathbf{Y} , it yields a vector whose components are the deviations from the mean, i.e., $Y_i - \bar{Y}$. (Although we won't explicitly show $\mathbf{M}\mathbf{Y}$ gives that exact vector, its quadratic form $\mathbf{Y}^T\mathbf{M}\mathbf{Y}$ achieves the desired sum.)

Let's verify the connection:

$$\mathbf{Y}^{T}\mathbf{M}\mathbf{Y} = \mathbf{Y}^{T} \left(\mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^{T}\right)\mathbf{Y}$$

$$= \mathbf{Y}^{T}\mathbf{I}\mathbf{Y} - \mathbf{Y}^{T} \left(\frac{1}{n}\mathbf{1}\mathbf{1}^{T}\right)\mathbf{Y}$$

$$= \mathbf{Y}^{T}\mathbf{Y} - \frac{1}{n}(\mathbf{Y}^{T}\mathbf{1})(\mathbf{1}^{T}\mathbf{Y})$$

$$= \sum_{i=1}^{n} Y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} Y_{i}\right) \left(\sum_{j=1}^{n} Y_{j}\right)$$

$$= \sum_{i=1}^{n} Y_{i}^{2} - \frac{1}{n}(n\bar{Y})(n\bar{Y})$$

$$= \sum_{i=1}^{n} Y_{i}^{2} - n\bar{Y}^{2}$$

Recall the computational formula for the sum of squares: $\sum (Y_i - \bar{Y})^2 = \sum Y_i^2 - n\bar{Y}^2$. So, we've shown:

Lemma 1. The sum of squared deviations can be expressed as the quadratic form:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \mathbf{Y}^T \mathbf{M} \mathbf{Y}$$

where $\mathbf{M} = \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T$.

Therefore, we can write the quantity related to the sample variance as:

$$(n-1)S_n^2 = \mathbf{Y}^T \mathbf{M} \mathbf{Y}$$

4 The Main Tool: Expectation of a Quadratic Form

To find $\mathbb{E}[(n-1)S_n^2]$, we need the expectation of $\mathbf{Y}^T\mathbf{M}\mathbf{Y}$. There's a beautiful general theorem for this:

Theorem 1 (Expectation of a Quadratic Form). Let **X** be a random vector with mean vector $\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}$ and covariance matrix $\text{Cov}(\mathbf{X}) = \boldsymbol{\Sigma}$. For any constant matrix **A** of appropriate dimensions, the expected value of the quadratic form $\mathbf{X}^T \mathbf{A} \mathbf{X}$ is given by:

$$\mathbb{E}[\mathbf{X}^T \mathbf{A} \mathbf{X}] = \operatorname{tr}(\mathbf{A} \mathbf{\Sigma}) + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu}$$

where $tr(\cdot)$ denotes the trace of a matrix (the sum of its diagonal elements).

Remark 1. This theorem is a cornerstone result in multivariate statistics. It arises from applying the linearity of expectation and properties of the trace operator.

5 Applying the Theorem

Let's apply this theorem to our situation. We have:

• Random vector: $\mathbf{X} = \mathbf{Y}$

• Constant matrix: $\mathbf{A} = \mathbf{M}$

• Mean vector: $\mu = \mu_Y = \mu \mathbf{1}$

• Covariance matrix: $\mathbf{\Sigma} = \mathbf{\Sigma}_{\mathbf{Y}} = \sigma^2 \mathbf{I}$

Plugging these into the formula:

$$\mathbb{E}[\mathbf{Y}^T \mathbf{M} \mathbf{Y}] = \operatorname{tr}(\mathbf{M}(\sigma^2 \mathbf{I})) + (\mu \mathbf{1})^T \mathbf{M}(\mu \mathbf{1})$$
$$= \operatorname{tr}(\sigma^2 \mathbf{M} \mathbf{I}) + \mu^2 (\mathbf{1}^T \mathbf{M} \mathbf{1})$$
$$= \sigma^2 \operatorname{tr}(\mathbf{M}) + \mu^2 (\mathbf{1}^T \mathbf{M} \mathbf{1}) \quad (\text{since } \mathbf{M} \mathbf{I} = \mathbf{M} \text{ and trace is linear})$$

Our task now boils down to calculating two key quantities: $tr(\mathbf{M})$ and $\mathbf{1}^T \mathbf{M} \mathbf{1}$.

6 Calculating the Components

6.1 The Trace of the Centering Matrix: tr(M)

We need the trace of $\mathbf{M} = \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T$.

$$\begin{split} \operatorname{tr}(\mathbf{M}) &= \operatorname{tr}\left(\mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^T\right) \\ &= \operatorname{tr}(\mathbf{I}) - \operatorname{tr}\left(\frac{1}{n}\mathbf{1}\mathbf{1}^T\right) \quad \text{(Linearity of trace)} \\ &= n - \frac{1}{n}\operatorname{tr}(\mathbf{1}\mathbf{1}^T) \end{split}$$

What is $tr(\mathbf{1}\mathbf{1}^T)$? The matrix $\mathbf{1}\mathbf{1}^T$ is an $n \times n$ matrix where every entry is 1.

$$\mathbf{1}\mathbf{1}^T = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

The trace is the sum of the diagonal elements, which are all 1s. There are n diagonal elements, so $\operatorname{tr}(\mathbf{1}\mathbf{1}^T)=n$. Alternatively, note that $\mathbf{P_1}=\frac{1}{n}\mathbf{1}\mathbf{1}^T$ is the projection matrix onto the one-dimensional subspace spanned by 1. For any projection matrix, the trace equals its rank. The rank of $\mathbf{P_1}$ is 1. Thus $\operatorname{tr}(\mathbf{P_1})=1$, which means $\operatorname{tr}(\frac{1}{n}\mathbf{1}\mathbf{1}^T)=1$.

Substituting back:

$$\operatorname{tr}(\mathbf{M}) = n - \frac{1}{n}(n) = n - 1$$

So, the trace of the centering matrix is n-1. This number might look familiar – it's exactly the divisor in our sample variance formula! It represents the degrees of freedom associated with the variance estimation after accounting for estimating the mean.

6.2 The Mean Term: 1^TM1

Now let's figure out the second part, $\mathbf{1}^T \mathbf{M} \mathbf{1}$. The key is to first calculate $\mathbf{M} \mathbf{1}$:

$$\mathbf{M1} = \left(\mathbf{I} - \frac{1}{n}\mathbf{11}^{T}\right)\mathbf{1}$$

$$= \mathbf{I1} - \frac{1}{n}\mathbf{1}(\mathbf{1}^{T}\mathbf{1}) \quad \text{(Matrix multiplication associativity)}$$

$$= \mathbf{1} - \frac{1}{n}\mathbf{1}(n) \quad \text{(since } \mathbf{I1} = \mathbf{1} \text{ and } \mathbf{1}^{T}\mathbf{1} = \sum 1^{2} = n)$$

$$= \mathbf{1} - \mathbf{1}$$

$$= \mathbf{0} \quad \text{(the } n \times 1 \text{ zero vector)}$$

This is a crucial property: the centering matrix \mathbf{M} annihilates the vector $\mathbf{1}$ (and any vector proportional to it). This makes intuitive sense: if all data points were the same $(Y_i = c)$, their mean would be c, and all deviations $(Y_i - \bar{Y})$ would be zero. \mathbf{M} effectively removes the 'average level' component represented by $\mathbf{1}$.

Now, we can easily compute the quadratic form involving the mean:

$$\mathbf{1}^T \mathbf{M} \mathbf{1} = \mathbf{1}^T (\mathbf{M} \mathbf{1}) = \mathbf{1}^T \mathbf{0} = 0$$

7 Putting It All Together: The Expected Sum of Squares

Let's substitute our findings for tr(M) and 1^TM1 back into the expectation formula:

$$\mathbb{E}[\mathbf{Y}^T \mathbf{M} \mathbf{Y}] = \sigma^2 \operatorname{tr}(\mathbf{M}) + \mu^2 (\mathbf{1}^T \mathbf{M} \mathbf{1})$$
$$= \sigma^2 (n-1) + \mu^2 (0)$$
$$= \sigma^2 (n-1)$$

So, we have found the expected value of the sum of squared deviations:

$$\mathbb{E}\left[\sum_{i=1}^{n}(Y_i - \bar{Y})^2\right] = \sigma^2(n-1)$$

8 Conclusion: S_n^2 is Unbiased!

We are just one step away. Recall that $(n-1)S_n^2 = \sum (Y_i - \bar{Y})^2 = \mathbf{Y}^T \mathbf{M} \mathbf{Y}$. Taking the expectation:

$$\mathbb{E}[(n-1)S_n^2] = \mathbb{E}[\boldsymbol{Y}^T \mathbf{M} \boldsymbol{Y}]$$

Using our result from the previous section:

$$\mathbb{E}[(n-1)S_n^2] = \sigma^2(n-1)$$

By the linearity property of expectation, we can pull the constant (n-1) out:

$$(n-1)\mathbb{E}[S_n^2] = \sigma^2(n-1)$$

Assuming n > 1 (we need at least two data points to estimate variance), we can divide both sides by (n-1):

$$\boxed{\mathbb{E}[S_n^2] = \sigma^2}$$

Corollary 1. The sample variance $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$ is an unbiased estimator for the population variance σ^2 .

This elegant result confirms that the inclusion of Bessel's correction (n-1) in the denominator is precisely what's needed to ensure that, on average, our sample variance correctly estimates the true population variance. Without it, dividing by n would lead to an estimator that systematically underestimates σ^2 .

Remark 2. While we used the normality assumption $(Y \sim N(\mu 1, \sigma^2 I))$ to cleanly apply the standard theorem for the expectation of a quadratic form of a multivariate normal vector, the result that S_n^2 is an unbiased estimator for σ^2 holds more generally. It only requires that the Y_i are i.i.d. with finite mean μ and finite variance σ^2 . The proof in that general case typically uses algebraic manipulation of the sums directly, rather than matrix forms.