Topology Qualifying Exam Solutions

D. Zack Garza

Tuesday 26^{th} May, 2020

Contents

1	Definitions	1
2	Theorems	2
3	General Topology 3.1 2 <	2 3 5 5 5
4	10	6
5	12	7
6	14	7
7	16 7.1 18	7

1 Definitions

- Closed (several characterizations)
- Closure in a subspace: $Y \subset X \implies \operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.
- Bounded
- Compact
- Connectedness: There does not exist a disconnecting set $X = A \coprod B$ such that $\emptyset \neq A, B \subsetneq$, i.e. X is the union of two proper disjoint nonempty sets. Equivalently, X contains no proper nonempty clopen sets.
- Subspace topology
- Retract: A subspace $A \subset X$ is a retract of X iff there exists a continuous map $f: X \longrightarrow A$ such that $f \mid_A = \mathrm{id}_A$. Equivalently it is a left inverse to the inclusion.

• Uniform Continuity: For $f:(X,d_x)\longrightarrow (Y,d_Y)$ metric spaces,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \varepsilon.$$

2 Theorems

- Closed subsets of Hausdorff spaces are compact? (check)
- Cantor's intersection theorem?
- Tube lemma
- Properties pushed forward through continuous maps:
 - Compactness?
 - Connectedness (when surjective)
 - Separability
 - Density **only when** f is surjective
 - Not openness
 - Not closedness
- Results that only work for metric spaces
- A retract of a Hausdroff/connected/compact space is closed/connected/compact respectively.

3 General Topology

3.1 2

Statement: state the definition of compactness, determine if the sets $\{0\} \bigcup \left\{\frac{1}{n}\right\}$, (0,1] are compact.

i. A topological space (X,τ) is **compact** if every open cover has a *finite* subcover. That is, if $\{U_j \mid j \in J\} \subset \tau$ is a collection of open sets such that $X \subseteq \bigcup U_j$, then there exists a finite

subset
$$J' \subset J$$
 such that $X \subseteq \bigcup_{j \in J'} U_j$.

- ii. Use Heine-Borel theorem: a set $U \subset \mathbb{R}^n$ is compact $\iff U$ is closed and bounded.
 - X is closed in \mathbb{R} , since we can write its complement as an arbitrary union of open intervals:

$$X^c = (-\infty, 0) \bigcup \left(\bigcup_{n \in \mathbb{Z}^+} \left(\frac{1}{n}, \frac{1}{n+1} \right) \right) \bigcup (1, \infty)$$

- X is bounded, since we can pick r=1, then $x,y\in X\implies d(x,y)\leq r=1$.
- iii. Use Heine-Borel again: X is not closed because it does not contain all of its limit points. e.g. the sequence $\left\{ x_n := \frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1} \right\} \subset X$ but $x_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0 \in X^c$. Thus is is **not** compact.

3.1.1 Alternate Proof of (ii)

See Munkres p.164

- Let $\{U_i \mid j \in J\} \Rightarrow X$; then $0 \in U_j$ for some $j \in J$.
- In the subspace topology, U_i is given by some $V \in \tau(\mathbb{R})$ such that $V \cap X = U_i$
 - A basis for the subspace topology on $\mathbb R$ is open intervals, so write V as a union of open intervals $V = \bigcup I_k$.
 - Since $0 \in U_j$, $0 \in I_k$ for some k.
- Since I_k is an interval, it contains infinitely many points of the form $x_n = \frac{1}{n} \in X$
- Then $I_k \cap X \subset U_i$ contains infinitely many such points.
- So there are only finitely many points in $X \setminus U_j$, each of which is in $U_{j(n)}$ for some $j(n) \in J$ depending on n.
- So U_j and the *finitely* many $U_{j(n)}$ form a finite subcover of X.

3.2 4

Statement: show that the *Lebesgue number* is well-defined for compact metric spaces.

Note: this is a question about the Lebesgue Number. See Wikipedia for detailed proof.

- Write $U = \{U_i \mid i \in I\}$, then $X \subseteq \bigcup U_i$. Need to construct a $\delta > 0$.
- By compactness of X, choose a finite subcover U_1, \dots, U_n . Define the distance between a point x and a set $Y \subset X$: $d(x, Y) = \inf_{y \in Y} d(x, y)$.
 - Claim: the function $d(\cdot, Y): X \longrightarrow \mathbb{R}$ is continuous for a fixed set.
 - Proof: Todo, not obvious.

• Define a function

$$f: X \longrightarrow \mathbb{R}$$

 $x \mapsto \frac{1}{n} \sum_{i=1}^{n} d(x, X \setminus U_i).$

- Note this is a sum of continuous functions and thus continuous.

• Claim:

$$\delta \coloneqq \inf_{x \in X} f(x) = \min_{x \in X} f(x) = f(x_{\min}) > 0$$

suffices.

- That the infimum is a minimum: f is a continuous function on a compact set, apply the extreme value theorem: it attains its minimum.
- That $\delta > 0$: otherwise, $\delta = 0 \implies \exists x_0 \text{ such that } d(x_0, X \setminus U_i) = 0 \text{ for all } i$.
 - * Forces $x_0 \in X \setminus U_i$ for all i, but $X \setminus \bigcup U_i = \emptyset$ since the U_i cover X.
- That it satisfies the Lebesgue condition:

$$\forall x \in X, \exists i \text{ such that } B_{\delta}(x) \subset U_i$$

- * Let $B_{\delta}(x) \ni x$; then by minimality $f(x) \ge \delta$.
- * Thus it can not be the case that $d(x, X \setminus U_i) < \delta$ for every i, otherwise

$$f(x) \le \frac{1}{n}(\delta + \dots + \delta) = \frac{n\delta}{n} = \delta$$

- * So there is some particular i such that $d(x, X \setminus U_i) \geq \delta$.
- * But then $B_{\delta} \subseteq U_i$ as desired.

3.3 6

Statement: prove that $[0,1] \subset \mathbb{R}$ is compact.

3.3.1 Proof 1 (DZG)

Todo: find a direct proof.

3.4 8

Topic: proof of the tube lemma.

Statement: show $X, Y \in \text{Top}_{\text{compact}} \iff X \times Y \in \text{Top}_{\text{compact}}$

3.4.1 Proof 1 (DZG)

 \iff

- By universal properties, the product $X \times Y$ is equipped with continuous projections
- The continuous image of a compact set is compact, and $\pi_1(X \times Y) = X, p_2(X \times Y) = Y$
- So X, Y are compact.

 \Longrightarrow :

Proof of Tube Lemma:

- Let $\{U_j \times V_j \mid j \in J\} \rightrightarrows X \times Y$.
- Fix a point $x_0 \in X$, then $\{x_0\} \times Y \subset N$ for some open set N.
- By the tube lemma, there is a $U^x \subset X$ such that the tube $U^x \times Y \subset N$.
- Since $\{x_0\} \times Y \cong Y$ which is compact, there is a finite subcover $\{U_j \times V_j \mid j \leq n\} \rightrightarrows \{x_0\} \times Y$.
- "Integrate the X": write

$$W = \bigcap_{j=1}^{n} U_j,$$

then $x_0 \in W$ and W is a finite intersection of open sets and thus open.

- Claim: $\{U_j \times V_j \mid j \leq n\} \rightrightarrows W \times Y$
 - Let $(x, y) \in W \times Y$; want to show $(x, y) \in U_j \times V_j$ for some $j \leq n$.
 - Then $(x_0, y) \in \{x_0\} \times Y$ is on the same horizontal line
 - $-(x_0,y) \in U_j \times V_j$ for some j by construction
 - So $y \in V_j$ for this j
 - Since $x \in W$, $x \in U_j$ for every j, thus $x \in U_j$.
 - So $(x,y) \in U_j \times V_j$

Actual Proof:

• Let $\{U_j \mid j \in J\} \rightrightarrows X \times Y$.

- Fix $x_0 \in X$, the slice $\{x_0\} \times Y$ is compact and can be covered by finitely many elements $\{U_j \mid j \leq m\} \rightrightarrows \{x_0\} \times Y$.
 - Sum: write $N = \bigcup_{j=1}^{m} U_j$; then $\{x_0\} \times Y \subset N$.
 - Apply the tube lemma to N: produce $\{x_0\} \times Y \in W \times Y \subset N$; then $\{U_j \mid j \leq m\} \Rightarrow W \times Y$.
- Now let $x \in X$ vary: for each $x \in X$, produce $W_x \times Y$ as above, then $\{W_x \times Y \mid x \in X\} \rightrightarrows X$.

 By above argument, every tube $W_x \times Y$ can be covered by *finitely* many U_j .
- Since $\{W_x \mid x \in X\} \rightrightarrows X$ and X is compact, produce a finite subset $\{W_k \mid k \leq m'\} \rightrightarrows X$.
- Then $\{W_k \times Y \mid k \leq m'\} \rightrightarrows X \times Y$; the claim is that it is a finite cover.
 - Finitely many k
 - For each k, the tube $W_k \times Y$ is covered by finitely by U_i
 - And finite \times finite = finite.

Shorter mnemonic:

19. U It is sufficient to consider a cover consisting of elementary sets. Since Y is compact, each fiber $x \times Y$ has a finite subcovering $\{U_i^x \times V_i^x\}$. Put $W^x = \cap U_i^x$. Since X is compact, the cover $\{W^x\}_{x \in X}$ has a finite subcovering W^{x_j} . Then $\{U_i^{x_j} \times V_i^{x_j}\}$ is the required finite subcovering.

4 10

X is connected:

- Write $X = L \coprod G$ where $L = \{0\} \times [-1, 1]$ and $G = \{\Gamma(\sin(x)) \mid x \in (0, 1]\}$ is the graph of $\sin(x)$.
- $L \cong [0,1]$ which is connected
 - Claim: Every interval is connected (todo)
- Claim: G is connected
 - The function

$$f: (0,1] \longrightarrow [-1,1]$$

 $x \mapsto \sin(x)$

- is continuous (how to prove?)
- Claim: The diagonal map $\Delta: Y \longrightarrow Y \times Y$ where $\Delta(t) = (t, t)$ is continuous for any Y since $\Delta = (\mathrm{id}, \mathrm{id})$
- The composition of continuous function is continuous
- So the composition is continuous:

$$F: (0,1] \xrightarrow{\Delta} (0,1]^2 \xrightarrow{(\mathrm{id},f)} (0,1] \times [-1,1]$$

$$t \mapsto (t,t) \mapsto (t,f(t))$$

- Then G = F((0,1]) is the continuous image of a connected set and thus connected.

- Claim: X is connected
 - Suppose there is a disconnecting cover $X = A \coprod B$ such that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ and $A, B \neq \emptyset$.
 - WLOG suppose $(x, \sin(x)) \in B$ for x > 0.
 - Claim: B = G
 - * It can't be the case that A intersects G: otherwise $X = A \coprod B \implies G = (A \bigcap G) \coprod (B \bigcap V)$ disconnects G. So $A \bigcap G = \emptyset$, forcing $A \subseteq L$
 - * Similarly L can not be disconnected, so $B\bigcap L=\emptyset$ forcing $B\subset G$
 - * So $A \subset L$ and $B \subset G$, and since $X = A \coprod B$, this forces A = L and B = G.
 - But any open set U in the subspace topology $\overline{L} \subset \mathbb{R}^2$ (generated by open balls) containing $(0,0) \in L$ is the restriction of a ball $V \subset \mathbb{R}^2$ of positive radius r > 0, i.e. $U = V \cap X$.
 - * But any such ball contains points of G: namely take n large enough such that $\frac{1}{n\pi} < r$.
 - * So $U \cap L \cap G \neq \emptyset$, contradicting $L \cap G = \emptyset$.

5 12

- Using the fact that $[0, \infty) \subset \mathbb{R}$ is Hausdorff, any retract must be closed, so any closed interval $[\varepsilon, N]$ for $0 \le \varepsilon \le N \le \infty$.
 - Note that $\varepsilon = N$ yields all one point sets $\{x_0\}$ for $x_0 \ge 0$.
- No finite discrete sets occur, since the retract of a connected set is connected.
- ?

6 14

- Take two connected sets X, Y; then there exists $p \in X \cap Y$.
- Write $X \bigcup Y = A \prod B$ with both $A, B \subset A \prod B$ open.
- Since $p \in X \bigcup Y = A \coprod B$, WLOG $p \in A$. We will show B must be empty.
- Claim: $A \cap X$ is clopen in X.
 - $-A\bigcap X$ is open in X:?
 - $-A\bigcap X$ is closed in X:?
- The only clopen sets of a connected set are empty or the entire thing, and since $p \in A$, we must have $A \cap X = X$.
- By the same argument, $A \cap Y = Y$.
- So $A \cap (X \cup Y) = (A \cap X) \cup (A \cap Y) = X \cup Y$
- Since $A \subset X \bigcup Y$, $A \cap (X \bigcup Y) = A$
- Thus $A = X \bigcup Y$, forcing $B = \emptyset$.

7 16

Topic: closure and connectedness in the subspace topology. See Munkres p.148

7 16 7

- $S \subset X$ is **not** connected if S with the subspace topology is not connected.
 - I.e. there exist $A, B \subset S$ such that
 - * $A, B \neq \emptyset$,
 - * $A \cap B = \emptyset$,
 - $* A \prod B = S.$
- Or equivalently, there exists a nontrivial $A \subset S$ that is clopen in S.

Show stronger statement: this is an iff.

\Longrightarrow :

- Suppose S is not connected; we then have sets $A \bigcup B = S$ from above and it suffices to show $\operatorname{cl}_Y(A) \cap B = A \cap \operatorname{cl}_X(B) = \emptyset$.
- A is open by assumption and $Y \setminus A = B$ is closed in Y, so A is clopen.
- Write $\operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.
- Since A is closed in Y, $A = \operatorname{cl}_Y(A)$ by definition, so $A = \operatorname{cl}_Y(A) = \operatorname{cl}_X(A) \cap Y$.
- Since $A \cap B = \emptyset$, we then have $\operatorname{cl}_Y(A) \cap B = \emptyset$.
- The same argument applies to B, so $cl_Y(B) \cap A = \emptyset$.

⇐=:

- Suppose displayed condition holds; given such A, B we will show they are clopen in Y.
- Since $\operatorname{cl}_Y(A) \cap B = \emptyset$, (claim) we have $\operatorname{cl}_Y(A) = A$ and thus A is closed in Y. Why?

$$\operatorname{cl}_{Y}(A) \coloneqq \operatorname{cl}_{X}(A) \bigcap Y$$

$$= \operatorname{cl}_{X}(A) \bigcap \left(A \coprod B\right)$$

$$= \left(\operatorname{cl}_{X}(A) \bigcap A\right) \coprod \left(\operatorname{cl}_{X}(A) \bigcap B\right)$$

$$= A \coprod \left(\operatorname{cl}_{X}(A) \bigcap B\right) \quad \text{since } A \subset \operatorname{cl}_{Y}(A)$$

$$= A \coprod \left(\operatorname{cl}_{Y}(A) \bigcap B\right) \quad \text{since } B \subset Y$$

$$= A \coprod \emptyset \quad \text{using the assumption}$$

$$= A.$$

• But $A = Y \setminus B$ where B is closed, so A is open and thus a nontrivial clopen subset.

7 16 8

7.1 18

• Define a new function

$$g: X \longrightarrow \mathbb{R}$$
 $x \mapsto d_X(x, f(x)).$

- ullet Attempt to minimize. Claim: g is a continuous function.
- Given claim, a continuous function on a compact space attains its infimum, so set

$$m \coloneqq \inf_{x \in X} g(x)$$

and produce $x_0 \in X$ such that g(x) = m.

• Then

$$m > 0 \iff d(x_0, f(x_0)) > 0 \iff x_0 \neq f(x_0).$$

• Now apply f and use the assumption that f is a contraction to contradict minimality of m:

$$d(f(f(x_0)), f(x_0)) \le C \cdot d(f(x_0), x_0)$$

$$< d(f(x_0), x_0) \quad \text{since } C < 1$$

$$\le m$$

• Proof that g is (continuous:

7 16 9