Installing the working environment -<u>Jupyter Notebook and Anaconda | Programming in Python (dmitrymakarov.ru)</u>

You can also work online jupyterlite

1. Predicting Apartment Prices Using Linear Regression

Task: Determine the cost of an apartment depending on the area

Source code below in the assignment Excel files in my GitHub repository

Регрессия – задача предсказать величину конкретного признака объекта в числовом выражении используя имеющиеся данные по другим признакам объекта.

Зна	аем
Площадь (кв.м.)	Цена (млн. руб.)
28	2,4
42	3,7
45	3,9
56	4,5
68	5,7
75	6,4
90	7,8
Находим	формулу
f(x)	Y = aX + b
Предска	зываем
34	?
49	?

Зна	зем
Рост (см)	Вес (кг)
158	49
160	53
160	58
173	67
175	77
182	80
184	91
Находим	формулу
f(x)	Y = aX + b
Предска	зываем
176	?
186	?

Знаем	
Площадь торг.зала (квм)	Продажи (млн)
250	35
160	18
320	38
203	22
545	67
482	60
195	21
Находим фор	мулу
f (x)	Y = aX + b
Предсказыв	заем
230	?
420	?

J.L. Stermany

Задача регрессии: Определить стоимость квартиры в зависимости от площади

Зна	аем
Площадь (кв.м.)	Цена (млн. руб.)
28	3,1
42	3,8
45	3,9
52	4,4
56	4,5
68	5,9
70	5,6
75	6,4
90	7,3
	улу зависимости (x)
Предска	зываем
34	?
49	?

Linney

Задача регрессии: Определить стоимость квартиры в зависимости от плошали

В линейной зависимости используется формула прямой:

Наша задача – найти коэффициенты а, b

Aleman

Задача регрессии:
Определить стоимость квартиры в
зависимости от плошади

В линейной зависимости используется формула прямой:

Наша задача – найти коэффициенты a, b

J. Lanning


```
#!/usr/bin/env python
# coding: utf-8

# In[1]:

# импортируем библиотеки и модули

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

# In[2]:

# загружаем и визуализируем данные

# In[3]:

df = pd.read_excel('pricel.xlsx')

# In[4]:

df

# In[12]:

get_ipython().run_line_magic('matplotlib', 'inline')
```

```
plt.scatter(df.area, df.price, color='red', marker='^')
plt.xlabel('площадь (кв.м.)')
plt.ylabel('стоимость (млн.руб)')
reg = linear model.LinearRegression() #создали модель
reg.fit(df[['area']],df.price) #обучаем модель на наших данных
reg.predict([[120]])
reg.predict(df[['area']])
```

```
get ipython().run line magic('matplotlib', 'inline')
plt.scatter(df.area, df.price, color='red', marker='^')
plt.xlabel('площадь (кв.м.)')
plt.ylabel('стоимость (млн.руб)')
plt.plot(df.area, reg.predict(df[['area']]))
pred = pd.read excel('prediction price.xlsx')
pred
pred.head(3)
p = reg.predict(pred) # предсказываем цены для новых квартир из нового файла
р
pred['predicted prices'] = p
```

```
pred
# In[40]:
pred.to_excel('new.xlsx', index=False) # сохраняем файл в Excel без первой
колонки
```

Self task:

- 1) Find the dependence of Russia's GDP on oil prices based on historical data
- 2) Upload the gdprussia.xlsx file to your Jupyter notebook
- 3) Display data as a graph
- 4) Train the model with a linear regression algorithm
- 5) Predict GDP depending on different oil prices

2. Predicting GDP from Oil Prices Using Linear Regression

We use the data from the gdprussia.xlsx file (you can download it in the repository)

```
<mark>import pandas as</mark> pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read excel('gdprussia.xlsx')
plt.scatter(df.oilprice, df.gdp)
plt.xlabel('oil price (US$)')
plt.ylabel('GDP, Russia (bln US$)')
```

```
reg = linear model.LinearRegression()
reg.fit(df[['oilprice']], df.gdp)
reg.predict(df[['oilprice']])
get ipython().run line magic('matplotlib', 'inline')
plt.scatter(df.oilprice, df.gdp)
plt.xlabel('oil price (US$)')
plt.ylabel('GDP, Russia (bln US$)')
plt.plot(df.oilprice, reg.predict(df[['oilprice']]))
reg.predict([[150]])
reg = linear model.LinearRegression()
reg.predict(df[['year','oilprice']])
```

```
# In[23]:
reg.predict([[2025,100]])
# In[]:
```