Reinforcement Learning: Value and Policy Iteration

Manuela Veloso

Carnegie Mellon University
Computer Science Department

15-381 - Fall 2001

Reinforcement Learning Problem

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

Q Learning for Deterministic Worlds

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- ullet Observe the new state s'
- ullet Update the table entry for $\hat{Q}(s,a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

 \bullet $s \leftarrow s'$

Example - Deterministic

How many possible **policies** are there in this 3-state, 2-action deterministic world?

A robot starts in the state Mild. It moves for 4 steps choosing actions **West, East, East, West**. The initial values of its Q-table are 0 and the discount factor is $\gamma=0.5$.

		Initial State: MILD		Action: West New State: HOT		Action: East New State: MILD		Action: East New State: COLD		Action: We New State: M	
ſ		East	West	East	West	East	West	East	West	East	Wes
ľ	HOT	0	0	0	0	5	0	5	0	5	0
	MILD	0	0	0	10	0	10	0	10	0	10
ſ	COID	\cap	\cap	Ω	\cap	Λ	\cap	Λ	Ω	\cap	-5

Problem - Deterministic

Why is the policy $\pi(s) = \text{West}$, for all states, better than the policy $\pi(s) = \text{East}$, for all states?

 \bullet $\pi_1(s)=$ West, for all states, $\gamma=0.5$

$$V^{\pi_1}(HOT) = 10 + \gamma V^{\pi_1}(HOT) = 20.$$

- $\pi_2(s) = \text{East}$, for all states, $\gamma = 0.5$
 - $V^{\pi_2}(COLD) = -10 + \gamma V^{\pi_2}(COLD) = -20,$
 - $-V^{\pi_2}(MILD) = 0 + \gamma V^{\pi_2}(COLD) = -10,$
 - $V^{\pi_2}(HOT) = 0 + \gamma V^{\pi_2}(MILD) = -5.$

Another Deterministic Example

Q(s,a) values

 $V^*(s)$ values

One optimal policy

Nondeterministic Case

What if reward and next state are non-deterministic? We redefine V,Q by taking expected values

$$V^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$
$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$Q(s,a) \equiv E[r(s,a) + \gamma V^*(\delta(s,a))]$$

Nondeterministic Case

 ${\cal Q}$ learning generalizes to nondeterministic worlds Alter training rule to

$$\hat{Q}_n(s,a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')],$$

where $\alpha_n = \frac{1}{1 + visits_n(s,a)}$, and $s' = \delta(s,a)$.

 \hat{Q} still converges to Q^* (Watkins and Dayan, 1992)

Nondeterministic Example

Nondeterministic Example

```
\overline{\pi^*(s)} = D, for any s = S1, S2, S3, and S4, \gamma = 0.9.
V*(S2) = r(S2,D) + 0.9 (1.0 V*(S2))
V*(S2) = 100 + 0.9 V*(S2)
V*(S2) = 1000.
V*(S1) = r(S1,D) + 0.9 (1.0 V*(S2))
V*(S1) = 0 + 0.9 \times 1000
V*(S1) = 900.
V*(S3) = r(S3,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3))
V*(S3) = 0 + 0.9 (0.9 \times 1000 + 0.1 V*(S3))
V*(S3) = 81000/91.
V*(S4) = r(S4,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S4))
V*(S4) = 40 + 0.9 (0.9 \times 1000 + 0.1 V*(S4))
V*(S4) = 85000/91.
```

Nondeterministic Example

What is the Q-value, Q(S2,R)?

```
Q(S2,R) = r(S2,R) + 0.9 (0.9 V*(S1) + 0.1 V*(S2))
Q(S2,R) = 100 + 0.9 (0.9 x 900 + 0.1 x 1000)
Q(S2,R) = 100 + 0.9 (810 + 100)
Q(S2,R) = 100 + 0.9 x 910
Q(S2,R) = 919.
```

Markov Decision Processes

- Finite set of states, s_1, \ldots, s_n
- ullet Finite set of actions, a_1,\ldots,a_m
- Probabilistic state, action transitions:

```
p_{ij}^k = \text{prob (next} = s_j \mid \text{current} = s_i \text{ and take action } a_k)
```

- Reward for each state and action.
- Process:
 - Start in state s_i
 - Choose action $a_k \in A$
 - Receive immediate reward $r_i(s_i, a_k)$
 - Change to state s_j with probability p_{ij}^k .
 - Discount future rewards

Solving an MDP

- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Policy Iteration

- Start with some policy $\pi_0(s_i)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to current policy.
- Update policy:

$$\pi_1(s_i) = \operatorname{argmax}_a\{r_i + \gamma \sum_j p_{ij}^a V^{\pi_0}(s_j)\}$$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Value Iteration

- $V^*(s_i) = \text{expected discounted future rewards, if we start from } s_i \text{ and we follow the optimal policy.}$
- Compute V^* with value iteration:
 - $V^k(s_i)$ = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_i) = \max_k \{r_i + \gamma \sum_{j=1}^N p_{ij}^k V^n(s_j)\}$$

Dynamic programming

Summary

- Q-learning
- Markov decision processes
- Value, policy iteration