

Flexible Termination System (FT-CAP) X7R Dielectric, 6.3 – 250 VDC (Commercial & Automotive Grade)

Overview

KEMET's Flexible Termination (FT-CAP) multilayer ceramic capacitor in X7R dielectric incorporates a unique, flexible termination system that is integrated with KEMET's standard termination materials. A conductive silver epoxy is utilized between the base metal and nickel barrier layers of KEMET's standard termination system in order to establish pliability while maintaining terminal strength, solderability and electrical performance. This technology was developed in order to address the primary failure mode of MLCCs– flex cracks, which are typically the result of excessive tensile and shear stresses produced during board flexure and thermal cycling. Flexible termination technology inhibits the transfer of board stress to the rigid ceramic body, therefore mitigating flex cracks which can result in low IR or short circuit failures.

Although this technology does not eliminate the potential for mechanical damage that may propagate during extreme

environmental and handling conditions, it does provide superior flex performance over standard termination systems.FT-CAP complements KEMET's Open Mode, Floating Electrode (FE-CAP), Floating Electrode with Flexible Termination (FF-CAP) and KEMET Power Solutions (KPS) product lines by providing a complete portfolio of flex mitigation solutions.

Combined with the stability of an X7R dielectric and designed to accommodate all capacitance requirements, these flex-robust devices are RoHS-compliant, offer up to 5mm of flex-bend capability and exhibit a predictable change in capacitance with respect to time and voltage. Capacitance change with reference to ambient temperature is limited to $\pm 15\%$ from -55° C to $+125^{\circ}$ C.

In addition to commercial grade, automotive grade devices are available which meet the demanding Automotive Electronics Council's AEC–Q200 qualification requirements.

Ordering Information

С	1206	Х	106	K	4	R	Α	С	AUTO
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance	Voltage	Dielectric	Failure Rate/ Design	Termination Finish ¹	Packaging/Grade (C-Spec) ²
	0603 0805 1206 1210 1808 1812 1825 2220 2225	X = Flexible Termination	2 significant digits + number of zeros	J = ±5% K = ±10% M = ±20%	9 = 6.3 V 8 = 10 V 4 = 16 V 3 = 25 V 5 = 50 V 1 = 100 V 2 = 200 V A = 250 V	R = X7R	A = N/A	C = 100% Matte Sn L = SnPb (5% minimum)	Blank = Bulk TU = 7" Reel Unmarked TM = 7" Reel Marked AUTO = Automotive Grade 7" Reel Unmarked

¹ Additional termination finish options may be available. Contact KEMET for details.

^{1,2} SnPb termination finish option is not available on Automotive Grade product.

² Additional reeling or packaging options may be available. Contact KEMET for details.

Dimensions - Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0603	1608	1.60 (.064) ± 0.17 (.007)	0.80 (.032) ± 0.15 (.006)		0.45 (.018) ± 0.15 (.006)	0.58 (.023)	Solder Wave
0805	2012	2.00 (.079) ± 0.20 (.008)	1.25 (.049) ± 0.20 (.008)		$0.50 (0.02) \pm 0.25 (.010)$	0.75 (.030)	or
1206	3216	3.30 (.130) ± 0.40 (.016)	1.60 (.063) ± 0.20 (.008)		0.60 (.024) ± 0.25 (.010)		Solder Reflow
1210	3225	3.30 (.130) ± 0.40 (.016)	2.50 (.098) ± 0.20 (.008)	0 711 01	0.60 (.024) ± 0.25 (.010)		
1808	4520	4.70 (.185) ± 0.50 (.020)	2.00 (.079) ± 0.20 (.008)	See Table 2 for Thickness	0.70 (.028) ± 0.35 (.014)		
1812	4532	4.50 (.178) ± 0.40 (.016)	3.20 (.126) ± 0.30 (.012)	THICKIESS	0.70 (.028) ± 0.35 (.014)	N/A	Solder Reflow
1825	4564	4.60 (.181) ± 0.40 (.016)	6.40 (.252) ± 0.40 (.016)		0.70 (.028) ± 0.35 (.014)		Only
2220	5650	5.90 (.232) ± 0.75 (.030)	5.00 (.197) ± 0.40 (.016)		0.70 (.028) ± 0.35 (.014)		
2225	5664	5.90 (.232) ± 0.75 (.030)	6.40 (.248) ± 0.40 (.016)		0.70 (.028) ± 0.35 (.014)		

Benefits

- -55°C to +125°C operating temperature range
- Superior flex performance (up to 5 mm)
- · High capacitance flex mitigation
- Pb-Free and RoHS Compliant
- EIA 0603, 0805, 1206, 1210, 1808, 1812, 1825, 2220, and 2225 case sizes
- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 50 V, 100 V, 200 V, and 250 V

- Capacitance offerings ranging from 180 pF to 22 μF
- Available capacitance tolerances of ±5%, ±10%, and ±20%
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability
- SnPb termination finish option available upon request (5% min)
- · Commercial and Automotive (AEC-Q200) grades available

Applications

Typical applications include circuits with a direct battery or power source connection, critical and safety relevant circuits without (integrated) current limitation and any application that is subject to high levels of board flexure or temperature cycling. Examples include raw power input side filtering (power plane/bus), high current applications (automobile battery line) and circuits that cannot be fused to open. Markets include consumer, medical, industrial (power supply), automotive, aerospace and telecom.

Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC–Q200, please visit their website at www.aecouncil.com.

Environmental Compliance

Pb-Free and RoHS Compliant (excluding SnPb termination finish option).

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±15%
Aging Rate (Maximum % Capacitance Loss/Decade Hour)	3.0%
Dielectric Withstanding Voltage (DWV)	250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)
Dissipation Factor (DF) Maximum Limit @ 25°C	5% (6.3 and 10 V), 3.5% (16 and 25 V) and 2.5% (50 to 250 V)
Insulation Resistance (IR) Limit @ 25°C	See Insulation Resistance Limit Table (Rated voltage applied for 120 ±5 seconds @ 25°C)

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours. To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz ± 50 Hz and 1.0 ± 0.2 Vrms if capacitance $\leq 10~\mu F$

120 Hz \pm 10 Hz and 0.5 \pm 0.1 Vrms if capacitance > 10 μ F

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

	High Temperatu	ire Life, Biased	Humidity, Mois	ture Resistance	
Dielectric	Rated DC Voltage	Capacitance Value	Dissipation Factor (Maximum %)	Capacitance Shift	Insulation Resistance
	> 25		3.0		
X7R	16/25	All	5.0	±20%	10% of Initial Limit
	< 16		7.5		

Insulation Resistance Limit Table (X7R Dielectric)

EIA Case Size	1,000 Megohm Microfarads or 100 GΩ	500 Megohm Microfarads or 10 GΩ
0201	N/A	ALL
0402	< 0.012 µF	≥ 0.012 µF
0603	< 0.047 µF	≥ 0.047 µF
0805	< 0.047 µF	≥ 0.047 µF
1206	< 0.22 µF	≥ 0.22 µF
1210	< 0.39 µF	≥ 0.39 µF
1808	ALL	N/A
1812	< 2.2 µF	≥ 2.2 µF
1825	ALL	N/A
2220	< 10 µF	≥ 10 µF
2225	ALL	N/A

Table 1A – Capacitance Range/Selection Waterfall (0603 – 1210 Case Sizes)

		S	erie	S			C	060	3X					(C08	305)	(C12	06)	(C12	10)	(
Cap	Cap	Volt	age C	ode	9	8	4	3	5	1	2	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	А	9	8	4	3	5	1	2	Α
Сар	Code	Vol	tage I	DC	6.3	9	16	25	20	9	200	6.3	10	16	25	20	100	200	250	6.3	10	16	25	20	100	200	250	6.3	9	16	25	20	100	200	250
		Cap	Tolera	ance			P	rodu	uct A	Ava		ility	and	d Cł	nip '	Thic				es ·	- Se	e Ta	able	2 f	or C			ckn	ess	Dir	nen	sior	าร		
180 pF	181	J	K	М	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	DC	DC	DC		DC	DC																	
220 pF 270 pF	221 271	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	DC DC																							
330 pF	331	J	K	M	СВ	CB	CB	CB	CB	CB	CB	DC	i																						
390 pF	391	J	K	М	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC																							
470 pF 560 pF	471 561	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	DC DC	EB	EB	EB	EB	EB																		
680 pF	681	J	K	M	СВ	СВ	CB	СВ	СВ	СВ	СВ	DC	İ															ı							
820 pF	821	J	K	M	СВ	СВ	СВ	СВ	CB	СВ	CB	DC																							
1,000 pF 1,200 pF	102 122	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	DC DC	EB EB	EB EB	EB EB	EB EB	EB	EB EB	EB EB	EB															
1,500 pF	152	J	K	M	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	EB																						
1,800 pF	182	J	K	M	СВ	CB	CB	CB	CB	CB	CB	DC	EB				-D	ED																	
2,200 pF 2,700 pF	222 272	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	DC DC	EB EB	FB FB																					
3,300 pF	332	J	K	М	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	EB	FB																					
3,900 pF	392	J	K	M	CB	CB	CB	CB	CB	CB	CB	DC	DC	DC	DC	DC	DC	DC DC	DC	EB	FB	FB FB													
4,700 pF 5,600 pF	472 562	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	DC DC	DC DC	DC DC	DC DC	DC DC	DC DC	DC	DC DC	EB EB	FB FB	FB													
6,800 pF	682	J	K	М	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	EΒ	EB	FB																				
8,200 pF	822	J	K	M	CB	CB	CB	CB	CB	CB	CB CB	DC	EB	FB																					
10,000 pF 12,000 pF	103 123	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB CB	CB	DC DC	EB EB	FB FB																					
15,000 pF	153	J	K	М	СВ	СВ	СВ	СВ	СВ	СВ		DC	DC	DC	DC	DC	DD	DC	DC	EB	FB														
18,000 pF	183	J	K	M	CB	CB	CB	CB	CB	CB		DC	DC	DC	DC	DC	DD	DC	DC DC	EB	FB														
22,000 pF 27,000 pF	223 273	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB	CB		DC DC	DC DC	DC DC	DC DC	DC DC	DD DD	DC DE	DC	EB EB	FB FB														
33,000 pF	333	J	K	М	СВ	СВ	СВ	СВ	СВ	СВ		DC	DC	DC	DC	DC	DD	DE		EΒ	EB	FB													
39,000 pF	393	J	K	M	СВ	CB	СВ	CB	CB	CB		DC	DC	DC	DC	DC	DD	DE		EB	EB	EB	EB	EB	EC	EB	EB	FB							
47,000 pF 56,000 pF	473 563	J	K	M	CB CB	CB CB	CB CB	CB CB	CB CB	СВ		DC DD	DC DD	DC DD	DC DD	DC DD	DE	DG DG		EB EB	EB EB	EB EB	EB EB	EB	EC EB	ED ED	ED ED	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FC FC	FC FC
68,000 pF	683	J	K	М	СВ	СВ	СВ	СВ	СВ			DD	DD	DD	DD	DD	DE			EB	EB	EB	EB	EB	EB	ED	ED	FB	FB	FB	FB	FB	FB	FC	FC
82,000 pF	823	J	K	M	СВ	CB	CB	CB	CB			DD	DD	DD	DD	DD	DE			EB	EB	EB	EB	EB	EB	ED	ED	FB	FB	FB	FB	FB	FC	FF	FF FG
0.10 µF 0.12 µF	104 124	J	K K	M	CB CB	CB CB	CB CB	CB CB	CB CB			DD DC	DD DC	DD DC	DD DC	DD DD	DE			EB EC	EB EC	EB EC	EB EC	EB EC	EB EC	EM EG	EM	FB FB	FB FB	FB FB	FB FB	FB FB	FD FD	FG	FG
0.15 µF	154	J	K	М	СВ	СВ	СВ	СВ	CD			DC	DC	DC	DC	DD	DG			EC	EC	EC	EC	EC	EC	EG		FC	FC	FC	FC	FC	FD		
0.18 µF	184	J	K	M M	CB CB	CB CB	CB	CB				DC DC	DC DC	DC DC	DC DC	DG DG	DG DG			EC EC	EC EC	EC EC	EC EC	EC EC	EC EC			FC FC	FC FC	FC FC	FC FC	FC FC	FD FD		
0.22 µF 0.27 µF	224 274	J	K K	M	СВ	СВ	CB CB	CD				DD	DD	DD	DD	DD	טט			EB	EB	EB	EB	EC	EM			FC	FC	FC	FC	FC	FD		
0.33 µF	334	J	K	М	СВ	СВ	СВ					DG	DG	DG	DG	DD				EΒ	EB	EB	EB	EC	EG			FD	FD	FD	FD	FD	FD		
0.39 µF 0.47 µF	394 474	J	K K	M M	CB CB	CB CB	CB CB					DG DD	DG DD	DG DD	DG	DE DE				EB EC	EB EC	EB EC	EB EC	EC EC	EG EG			FD FD	FD FD	FD FD	FD FD	FD FD	FD FD		
0.47 μF 0.56 μF	564	J	K	M		OB	OB					DD		DD		DH				ED	ED	ED	ED	EC	LG			FD	FD	FD	FD	FD	FF		
0.68 µF	684	J	K	М								DD	DD	DD	DG					EE	EE	EE	EE	ED				FD	FD	FD	FD	FD	FG		
0.82 μF 1.0 μF	824 105	J	K K	M								DD DD		DD DD						EF EF	EF EF	EF EF	EF EG	ED ED				FF	FF FH	FF FH	FF FH	FF FH	FL FM		
1.0 µF	125	J	K	M									DE		20					ED	ED	ED	EG	EH				FH	FH		FH	FG	i ivi		
1.5 µF	155	J	K	М									DG							EF	EF	EF	EG	EH				FH	FH		FH	FG			
1.8 μF 2.2 μF	185 225	J	K K	M									DG DG							ED ED	ED ED	ED ED	EF EF	EH				FH FJ	FH FJ	FH FJ	FH FJ	FG FG			
2.7 µF	275	J	K	M																EN	EN	EN	EH					FE	FE	FE		FH			
3.3 µF	335	J	K	M																ED		ED	EH					FF	FF	FF		FM			
3.9 μF 4.7 μF	395 475	J	K K	M																EF EF	EF EF	EF EF	EH					FG FC	FG FC	FG FC		FK FS			
5.6 µF	565	J	K	M																EΗ	EH	EH						FF	FF	FF	FH				
6.8 µF	685	J	K	M																EH		EH						FG		FG					
8.2 μF	825	J	K tage	M	6.3	0	9	25	20	9	0	6.3	9	16	25	0	9	9	00	EH E-9	EH 2	91 EH	2	0	0	9	lo O	FH 9:9	FH 2	19 HH	FK S2	20	9	00	0.0
0.5	Сар		tage I		 	9	19		_	90	200			-		- 50	100	200	$\overline{}$		-		25	20	100	200	250	-	_				100	200	> 250
Сар	Code		age C		9	8	4	3	5	1	2	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α
		S	erie	s			C	0603	3X						C08	05X							C12	06X							C12	10X			

Table 1A - Capacitance Range/Selection Waterfall (0603 - 1210 Case Sizes) cont'd

		S	erie	S			CO	060	3X					(C08	05>	((C12	06)	(C12	10X	(
Cap	Cap	Volt	age C	ode	9	8	4	3	5	1	2	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α
Сар	Code	Vo	Itage	DC	6.3	10	16	25	20	100	200	6.3	10	16	25	20	100	200	250	6.3	9	16	25	20	100	200	250	6.3	10	16	25	20	100	200	250
		Cap	Toler	ance			Pı	odı	ıct .	Ava	ilab	ility	and	d Ch	nip '	Thic	kne	ss (Cod	es-	- Se	е Та	able	2 f	or C	hip	Thi	ckn	ess	Din	nen	sior	าร		
10 μF	106	J	K	М																EH	EH	EH						FH	FH	FH	FS				
12 µF	126	J	K	M																															
15 µF	156	J	K	M																															
18 µF	186	J	K	M																															
22 µF	226	J	K	M																								FS	FS						
		Vo	Itage	DC	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250
Сар	Cap	Volt	age C	ode	9	8	4	3	5	1	2	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α
	Code Voltage Cod Series		s			C	0603	3X						C08	05X							C12	06X							C12	10X				

Table 1B – Capacitance Range/Selection Waterfall (1808 – 2225 Case Sizes)

		S	eries	S		C18	08X			С	1812	Χ			C18	25X			С	2220	X			C22	25X	
Cap	Cap	Volt	age Co	ode	5	1	2	Α	3	5	1	2	Α	5	1	2	Α	3	5	1	2	Α	5	1	2	Α
Cap	Code	Vo	Itage D	C	20	100	200	250	25	20	001	200	250	20	9	200	250	25	20	92	200	250	20	92	200	250
		Cap	Tolera	nce			roduc			litv a				ess (ble 2	for C				L Dime			
4,700 pF	472	J	К	М	LD	LD	LD			,					700.0		10.									
5,600 pF	562	J	K	M	LD	LD	LD																			
6,800 pF	682	J	K	М	LD	LD	LD		GB	GB	GB	GB	GB										İ			
8,200 pF	822	J	K	М	LD	LD	LD		GB	GB	GB	GB	GB													
10,000 pF	103	J	K	М	LD	LD	LD		GB	GB	GB	GB	GB													
12,000 pF	123	J	K	М	LD	LD	LD		GB	GB	GB	GB	GB													
15,000 pF	153	J	K	М	LD	LD	LD		GB	GB	GB	GB	GB													
18,000 pF	183	J	K	М	LD	LD	LD		GB	GB	GB	GB	GB													
22,000 pF	223	J	K	M	LD	LD			GB	GB	GB	GB	GB	HB	HB	HB	HB									
27,000 pF 33.000 pF	273 333	J	K	M	LD LD	LD LD			GB GB	GB GB	GB GB	GB GB	GB GB	HB HB	HB HB	HB HB	HB HB									
39,000 pF	393	J	K K	M M	LD	LD			GB	GB	GB	GB	GB	нв НВ	нв НВ	нв НВ	НВ									
47.000 pF	473	J	K	M	LD	LD			GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ						KC	KC	KC	KC
56,000 pF	563	J	K	M	LD	LD			GB	GB	GB	GB	GB	HB	HB	HB	HB						KC	KC	KC	KC
68,000 pF	683	J	K	M	LD				GB	GB	GB	GB	GB	НВ	НВ	HB	HB						KC	KC	KC	KC
82,000 pF	823	J	K	M	LD				GB	GB	GB	GB	GB	HB	HB	НВ	НВ	JC	JC	JC	JC	JC	KC	KC	KC	KC
0.10 µF	104	J	K	М	LD				GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JC	JC	JC	JC	JC	KC	KC	KC	KC
0.12 µF	124	J	K	M	LD				GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JC	JC	JC	JC	JC	KC	KC	KC	KC
0.15 µF	154	J	K	M	LD				GB	GB	GB	GE	GE	НВ	HB	НВ	НВ	JC	JC	JC	JC	JC	KC	KC	KC	KC
0.18 µF	184	J	K	M	LD				GB	GB	GB	GF	GG	HB	HB	HB	HB	JC	JC	JC	JC	JC	KC	KC	KC	KC
0.22 µF	224	J	K	M					GB	GB	GB	GG	GG	НВ	HB	HB	HB	JC	JC	JC	JC	JC	KC	KC	KC	KC
0.27 µF	274	J	K	М					GB	GB	GG	GG	GG	HB	HB	HB	HB	JC	JC	JC	JC	JC	KB	KC	KC	KC
0.33 µF	334	J	K	M					GB	GB	GG	GG	GG	НВ	HB	HB	HB	JC	JC	JC	JC	JC	KB	KC	KC	KC
0.39 µF	394	J	K	M					GB	GB	GG	GG	GG	HB	HB	HD	HD	JC	JC JC	JC	JC	JC	KB	KC KC	KC	KC
0.47 µF 0.56 µF	474 564	J	K	M M					GB GC	GB GC	GG GG	GJ	GJ	HB HB	HB HD	HD	HD	JC JC	JC JC	JC	JD	JD	KB KB	KC	KD KD	KD KD
0.56 µF	684	J J	K	M					GC	GC	GG			нв НВ	HD	HD	HD	1C	JC JC	JD	JD	JD	KB	KC	KD	KD KD
0.82 µF	824	J	K	M					GE	GE	GG			HB	HF	HF	HF	JC	JC	JF	JF	JF	KB	KC	KE	KE
1.0 µF	105	J	K	M					GE	GE	GG			НВ	HF	HF	HF	JC	JC	JF	JF	JF	KB	KD	KE	KE
1.2 µF	125	Ĵ	K	М					-	-				НВ			"	JC	JC				KB	KE	KE	KE
1.5 µF	155	J	K	M										HC				JC	JC				KC			
1.8 µF	185	J	K	M										HD				JD	JD				KD			
2.2 µF	225	J	K	М										HF				JF	JF				KD			
		Vo	Itage D	С	50	100	200	250	25	50	100	200	250	50	100	200	250	25	20	100	200	250	50	100	200	250
Сар	Cap Code	Volt	age Co	ode	5	1	2	Α	3	5	1	2	Α	5	1	2	Α	3	5	1	2	Α	5	1	2	Α
		s	eries	S		C18	X80			C	1812	X			C18	25X			С	2220	Χ			C22	25X	

Table 1B - Capacitance Range/Selection Waterfall (1808 - 2225 Case Sizes) cont'd

		S	erie	S		C18	08X			С	1812	Χ			C18	25X			С	2220	X			C22	25X	
Cap	Cap	Volt	age C	ode	5	1	2	Α	3	5	1	2	Α	5	1	2	Α	3	5	1	2	Α	5	1	2	Α
Сар	Code	Vo	Itage I	DC	50	100	200	250	25	20	100	200	250	20	100	200	250	25	20	100	200	250	20	100	200	250
		Сар	Tolera	ance		Р	roduc	t Ava	ailabi	lity a	nd Cl	nip T	hickn	ess (Code	s – Se	ee Tal	ble 2	for C	hip T	hickı	ness	Dime	nsio	าร	
2.7 µF	275	J	K	М																						
3.3 µF	335	J	Κ	M																						
3.9 µF	395	J	K	M																						
4.7 µF	475	J	K	M					GK	GK																
5.6 µF	565	J	K	M																						
6.8 µF	685	J	K	M																						
8.2 µF	825	J	Κ	M																						
10 μF	106	J	K	M					GK									JF	JO							
12 µF	126	J	K	M																						
15 µF	156	J	K	M														JO								
18 µF	186	J	K	M																						
22 µF	226	J	K	M														JO								
		Vo	Itage I	DC	50	100	200	250	25	20	100	200	250	20	100	200	250	25	20	100	200	250	50	100	200	250
Сар	Cap Code	Volt	age C	ode	5	1	2	Α	3	5	1	2	Α	5	1	2	Α	3	5	1	2	Α	5	1	2	Α
	Code	S	erie	s		C18	08X			C	1812	x			C18	25X			C	2220	х			C22	25X	

Table 2 – Chip Thickness/Packaging Quantities

Thickness	Case	Thickness ±	Paper C	Quantity	Plastic (Quantity
Code	Size	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel
СВ	0603	0.80 ± 0.07	4,000	10,000	0	0
CD	0603	0.80 ± 0.15	4,000	10,000	0	0
DC DD	0805 0805	0.78 ± 0.10 0.90 ± 0.10	0	0	4,000	10,000
DE	0805	0.90 ± 0.10 1.00 ± 0.10	0	0	4,000 2,500	10,000 10,000
DG	0805	1.25 ± 0.15	0	0	2,500	10,000
DH	0805	1.25 ± 0.20	0	0	2.500	10,000
EB	1206	0.78 ± 0.10	4,000	10,000	4,000	10,000
EC	1206	0.90 ± 0.10	0	Ô	4,000	10,000
EN	1206	0.95 ± 0.10	0	0	4,000	10,000
ED	1206	1.00 ± 0.10	0	0	2,500	10,000
EE	1206	1.10 ± 0.10	0	0	2,500	10,000
EF	1206	1.20 ± 0.15	0	0	2,500	10,000
EM	1206	1.25 ± 0.15	0	0	2,500	10,000
EG EH	1206 1206	1.60 ± 0.15 1.60 ± 0.20	0	0	2,000	8,000 8.000
FB	1210	0.78 ± 0.20	0	0	2,000 4,000	10,000
FC	1210	0.70 ± 0.10 0.90 ± 0.10	0	0	4,000	10,000
FD	1210	0.95 ± 0.10	0	0	4,000	10,000
FE	1210	1.00 ± 0.10	Ö	Ö	2,500	10,000
FF	1210	1.10 ± 0.10	0	0	2,500	10,000
FG	1210	1.25 ± 0.15	0	0	2,500	10,000
FL	1210	1.40 ± 0.15	0	0	2,000	8,000
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel
Code	Size	Range (mm)	Paper G	Quantity	Plastic (Quantity

Package quantity based on finished chip thickness specifications.

Table 2 – Chip Thickness/Packaging Quantities cont'd

Thickness	Case	Thickness ±	Paper C	Quantity	Plastic (Quantity
Code	Size	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel
FH	1210	1.55 ± 0.15	0	0	2,000	8,000
FM	1210	1.70 ± 0.20	0	0	2,000	8,000
FJ	1210	1.85 ± 0.20	0	0	2,000	8,000
FK	1210	2.10 ± 0.20	0	0	2,000	8,000
FS	1210	2.50 ± 0.20	0	0	1,000	4,000
LD	1808	0.90 ± 0.10	0	0	2,500	10,000
GB	1812	1.00 ± 0.10	0	0	1,000	4,000
GC	1812	1.10 ± 0.10	0	0	1,000	4,000
GE	1812	1.30 ± 0.10	0	0	1,000	4,000
GF	1812	1.50 ± 0.10	0	0	1,000	4,000
GG	1812	1.55 ± 0.10	0	0	1,000	4,000
GK	1812	1.60 ± 0.20	0	0	1,000	4,000
GJ	1812	1.70 ± 0.15	0	0	1,000	4,000
HB	1825	1.10 ± 0.15	0	0	1,000	4,000
HC	1825	1.15 ± 0.15	0	0	1,000	4,000
HD	1825	1.30 ± 0.15	0	0	1,000	4,000
HF	1825	1.50 ± 0.15	0	0	1,000	4,000
JC	2220	1.10 ± 0.15	0	0	1,000	4,000
JD	2220	1.30 ± 0.15	0	0	1,000	4,000
JF	2220	1.50 ± 0.15	0	0	1,000	4,000
JO	2220	2.40 ± 0.15	0	0	500	2,000
KB	2225	1.00 ± 0.15	0	0	1,000	4,000
KC	2225	1.10 ± 0.15	0	0	1,000	4,000
KD	2225	1.30 ± 0.15	0	0	1,000	4,000
KE	2225	1.40 ± 0.15	0	0	1,000	4,000
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel
Code	Size	Range (mm)	Paper G	Quantity	Plastic (Quantity

Package quantity based on finished chip thickness specifications.

Table 3 - Chip Capacitor Land Pattern Design Recommendations per IPC-7351

EIA Size Code	Metric Size Code	ı		sity Lev mum (M rotrusio	Most))		Media	sity Lev an (Nor rotrusio)		Minii	sity Lev mum (L rotrusio	east))
Couc	Oodc	С	Υ	Х	V1	V2	С	Υ	Х	V1	V2	С	Υ	Х	V1	V2
0603	1608	0.85	1.25	1.10	4.00	2.10	0.75	1.05	1.00	3.10	1.50	0.65	0.85	0.90	2.40	1.20
0805	2012	1.00	1.35	1.55	4.40	2.60	0.90	1.15	1.45	3.50	2.00	0.80	0.95	1.35	2.80	1.70
1206	3216	1.60	1.65	1.90	5.90	2.90	1.50	1.45	1.80	5.00	2.30	1.40	1.25	1.70	4.30	2.00
1210	3225	1.60	1.65	2.80	5.90	3.80	1.50	1.45	2.70	5.00	3.20	1.40	1.25	2.60	4.30	2.90
1808	4520	2.25	1.85	2.30	7.40	3.30	2.15	1.65	2.20	6.50	2.70	2.05	1.45	2.10	5.80	2.40
1812	4532	2.10	1.80	3.60	7.00	4.60	2.00	1.60	3.50	6.10	4.00	1.90	1.40	3.40	5.40	3.70
1825	4564	2.15	1.80	6.90	7.10	7.90	2.05	1.60	6.80	6.20	7.30	1.95	1.40	6.70	5.50	7.00
2220	5650	2.85	2.10	5.50	8.80	6.50	2.75	1.90	5.40	7.90	5.90	2.65	1.70	5.30	7.20	5.60
2225	5664	2.85	2.10	6.90	8.80	7.90	2.75	1.90	6.80	7.90	7.30	2.65	1.70	6.70	7.20	7.00

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes.

Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).

Soldering Process

Recommended Soldering Technique:

- Solder wave or solder reflow for EIA case sizes 0603, 0805, and 1206
- All other EIA case sizes are limited to solder reflow only

Recommended Soldering Profile:

KEMET recommends following the guidelines outlined in IPC/JEDEC J-STD-020

Table 4 - Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
Terminal Strength	JIS-C-6429	Appendix 1, Note: Force of 1.8 kg for 60 seconds.
Board Flex	JIS-C-6429	Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for C0G. Flexible termination system – 3.0 mm (minimum).
		Magnification 50 X. Conditions:
Caldanahilitu	L CTD 000	a) Method B, 4 hours @ 155°C, dry heat @ 235°C
Solderability	J-STD-002	b) Method B @ 215°C category 3
		c) Method D, category 3 @ 260°C
Temperature Cycling	JESD22 Method JA-104	1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/- 2 hours after test conclusion.
<u>-</u>		Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion.
Biased Humidity	MIL-STD-202 Method 103	Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion.
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered. Measurement at 24 hours +/- 2 hours after test conclusion.
Thermal Shock	MIL-STD-202 Method 107	-55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell time – 15 minutes. Air – Air.
High Temperature Life	MIL-STD-202 Method 108 /EIA-198	1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.
Storage Life	MIL-STD-202 Method 108	150°C, 0 VDC for 1,000 hours.
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition F.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical, OKEM Clean or equivalent.

Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature—reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction

Reference	Item		Material		
Α		Finish	100% Matte Sn	SnPb (5% min)	
В	Termination	Barrier Layer	1	Ni	
С	System	Epoxy Layer	Ag		
D		Base Metal	Cu		
E	Inner Electrode		Ni		
F	Dielectri	c Material	BaTiO ₃		

Note: Image is exaggerated in order to clearly identify all components of construction.

Capacitor Marking (Optional):

These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA-198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100 µF. Orientation of marking is vendor optional.

Laser marking option is not available on:

- · C0G and Y5V dielectric devices
- EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.

	Capacitance (pF) For Various Alpha / Numeral Identifiers										
01.1		Numeral									
Alpha	9	0	1	2	3	4	5	6	7	8	
Character					Capa	acitance	e (pF)				
А	0.1	10	10	100	1,000	10,000	100,000	1,000,000	10,000,000	100,000,000	
В	0.11	1.1	11	110	1,100	11,000	110,000	1,100,000	11,000,000	110,000,000	
С	0.12	12	12	120	1,200	12,000	120,000	1,200,000	12,000,000	120,000,000	
D	0.13	13	13	130	1,300	13,000	130,000	1,300,000	13,000,000	130,000,000	
E	0.15	15	15	150	1,500	15,000	150,000	1,500,000	15,000,000	150,000,000	
F	0.16	16	16	160	1,600	16,000	160,000	1,600,000	16,000,000	160,000,000	
G	0.18	18	18	180	1,800	18,000	180,000	1,800,000	18,000,000	180,000,000	
Н	0.2	20	20	200	2,000	20,000	200,000	2,000,000	20,000,000	200,000,000	
J	0.22	22	22	220	2,200	22,000	220,000	2,200,000	22,000,000	220,000,000	
K	0.24	2.4	24	240	2,400	24,000	240,000	2,400,000	24,000,000	240,000,000	
L	0.27	2.7	27	270	2,700	27,000	270,000	2,700,000	27,000,000	270,000,000	
М	0.3	3 0	30	300	3,000	30,000	300,000	3,000,000	30,000,000	300,000,000	
N	0.33	33	33	330	3,300	33,000	330,000	3,300,000	33,000,000	330,000,000	
Р	0.36	3 6	36	360	3,600	36,000	360,000	3,600,000	36,000,000	360,000,000	
Q	0.39	3 9	39	390	3,900	39,000	390,000	3,900,000	39,000,000	390,000,000	
R	0.43	4 3	43	430	4,300	43,000	430,000	4,300,000	43,000,000	430,000,000	
S	0.47	4.7	47	470	4,700	47,000	470,000	4,700,000	47,000,000	470,000,000	
Т	0.51	5.1	51	510	5,100	51,000	510,000	5,100,000	51,000,000	510,000,000	
U	0.56	56	56	560	5,600	56,000	560,000	5,600,000	56,000,000	560,000,000	
V	0.62	62	62	620	6,200	62,000	620,000	6,200,000	62,000,000	620,000,000	
W	0.68	6.8	68	680	6,800	68,000	680,000	6,800,000	68,000,000	680,000,000	
Х	0.75	7 5	75	750	7,500	75,000	750,000	7,500,000	75,000,000	750,000,000	
Υ	0.82	82	82	820	8,200	82,000	820,000	8,200,000	82,000,000	820,000,000	
Z	0.91	9.1	91	910	9,100	91,000	910,000	9,100,000	91,000,000	910,000,000	
а	0.25	25	25	250	2,500	25,000	250,000	2,500,000	25,000,000	250,000,000	
b	0.35	3 5	35	350	3,500	35,000	350,000	3,500,000	35,000,000	350,000,000	
d	0.4	4 0	40	400	4,000	40,000	400,000	4,000,000	40,000,000	400,000,000	
е	0.45	4 5	45	450	4,500	45,000	450,000	4,500,000	45,000,000	450,000,000	
f	0.5	5 0	50	500	5,000	50,000	500,000	5,000,000	50,000,000	500,000,000	
m	0.6	6 0	60	600	6,000	60,000	600,000	6,000,000	60,000,000	600,000,000	
n	0.7	7 0	70	700	7,000	70,000	700,000	7,000,000	70,000,000	700,000,000	
t	0.8	8 0	80	800	8,000	80,000	800,000	8,000,000	80,000,000	800,000,000	
У	0.9	90	90	900	9,000	90,000	900,000	9,000,000	90,000,000	900,000,000	

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

Table 5 – Carrier Tape Configuration – Embossed Plastic & Punched Paper (mm)

EIA Case Size	Tape Size (W)*	Lead Space (P ₁)*
01005 – 0402	8	2
0603 – 1210	8	4
1805 – 1808	12	4
≥ 1812	12	8
KPS 1210	12	8
KPS 1812 & 2220	16	12
Array 0508 & 0612	8	4

^{*}Refer to Figures 1 & 2 for W and P, carrier tape reference locations.

^{*}Refer to Tables 6 & 7 for tolerance specifications.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)								
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)				25.0 (0.984)			
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm		(0.059)				(1.181)			
			Variable Dime	ensions — Mil	limeters (Inch	es)			
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) & Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Not	e 5
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).
- 3. If S, < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
- 4. B, dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_0 , B_0 and K_0 shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
 - (e) for KPS Series product, A_a and B_a are measured on a plane 0.3 mm above the bottom of the pocket.
 - (f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 – Punched (Paper) Carrier Tape Dimensions

Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)								
Tape Size	D ₀	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2		
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) Maximum	0.75 (0.030)	25 (0.984)		
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A_0B_0		
8 mm	Half (2 mm)	6.25	3.5 ±0.05	2.0 ±0.05 (0.079 ±0.002)	1.1	8.3 (0.327)	Note 1		
8 mm	Single (4 mm)	(0.246)	(0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	(0.098)	8.3 (0.327)	Note 1		

- 1. The cavity defined by A_{o} , B_{o} and T shall surround the component with sufficient clearance that:
 - a) the component does not protrude beyond either surface of the carrier tape.
 - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - c) rotation of the component is limited to 20° maximum (see Figure 3).
 - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).
- e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).

Packaging Information Performance Notes

- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength
8 mm	0.1 to 1.0 Newton (10 to 100 gf)
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624.*

Figure 3 – Maximum Component Rotation

Figure 4 - Maximum Lateral Movement

Figure 5 – Bending Radius

Figure 6 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 8 - Reel Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)							
Tape Size	A	B Minimum	С	D Minimum				
8 mm	178 ±0.20							
12 mm	(7.008 ±0.008) or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)				
16 mm	330 ±0.20 (13.000 ±0.008)	,	,					
	Variable	Dimensions — Millimeter	s (Inches)					
Tape Size	N Minimum	W ₁	W ₂ Maximum	W_3				
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)					
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference				
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)					

Figure 7 - Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

Bulk Cassette Packaging (Ceramic Chips Only)

Meets Dimensional Requirements IEC–286 and EIAJ 7201 *Unit mm *Reference*

Capacitor Dimensions for Bulk Cassette

Cassette Packaging - Millimeters

EIA Size Code	Metric Size Code	L Length	W Width	B Bandwidth	S Separation Minimum	T Thickness	Number of Pieces/Cassette
0402	1005	1.0 ±0.05	0.5 ±0.05	0.2 to 0.4	0.3	0.5 ±0.05	50,000
0603	1608	1.6 ±0.07	0.8 ±0.07	0.2 to 0.5	0.7	0.8 ±0.07	15,000

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices
Fort Lauderdale, FL

Tel: 954-766-2800

North America

Southeast Lake Mary, FL Tel: 407-855-8886

Northeast Wilmington, MA Tel: 978-658-1663

West Chester, PA Tel: 610-692-4642

Central Novi, MI

Tel: 248-994-1030

Carmel, IN Tel: 317-706-6742

West Milpitas, CA Tel: 408-433-9950

Mexico Zapopan, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe Geneva, Switzerland Tel: 41-22-715-0100

Paris, France Tel: 33-1-4646-1009

Sasso Marconi, Italy Tel: 39-051-939111

Milan, Italy

Tel: 39-02-57518176

Rome, Italy

Tel: 39-06-23231718

Madrid, Spain Tel: 34-91-804-4303

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Dortmund, Germany Tel: 49-2307-3619672

Kwidzyn, Poland Tel: 48-55-279-7025

Northern Europe

Bishop's Stortford, United Kingdom

Tel: 44-1279-757201

Weymouth, United Kingdom Tel: 44-1305-830747

Coatbridge, Scotland Tel: 44-1236-434455

Färjestaden, Sweden Tel: 46-485-563934

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia Singapore Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Other KEMET Resources

Tools				
Resource	Location			
Configure A Part: CapEdge	http://capacitoredge.kemet.com			
SPICE & FIT Software	http://www.kemet.com/spice			
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask			

Product Information				
Resource	Location			
Products	http://www.kemet.com/products			
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers			
RoHS Statement	http://www.kemet.com/rohs			
Quality Documents	http://www.kemet.com/qualitydocuments			

Product Request				
Resource	Location			
Sample Request	http://www.kemet.com/sample			
Engineering Kit Request	http://www.kemet.com/kits			

Contact	
Resource	Location
Website	www.kemet.com
Contact Us	http://www.kemet.com/contact
Investor Relations	http://www.kemet.com/ir
Call Us	1-877-MyKEMET
Twitter	http://twitter.com/kemetcapacitors

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") are subject to change without notice.

All Information given herein is believed to be accurate and reliable, but is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute - and we specifically disclaim - any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Although we design and manufacture our products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

