МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики Факультет прикладной математики и информатики

КОМОДЕЙ

Владислав Геннадьевич

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ СОПРЯЖЕНИЯ УРАВНЕНИЙ ГИПЕРБОЛИЧЕСКОГО И ПАРАБОЛИЧЕСКОГО ТИПОВ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Дипломная работа

Руководитель: Лемешевский С.В. кандидат физ.-мат. наук,

Допусти	ть к защите
с предва	рительной оценкой _
«»	2017 г.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра математического моделирования и управления

У	тверждаю
3	аведующий кафедрой В.И. Белько
«.	» 2017 г.
	ЗАДАНИЕ НА ДИПЛОМНУЮ РАБОТУ
О	Обучающемуся студенту Комодею В.Г.
1.	Тема дипломной работы: Численное решение задачи сопряжения уравнений гиперболического и параболического типов методом конечных элементов
2.	Утверждена приказом ректора БГУ от №
3.	Исходные данные к дипломной работе
	• Теория метода конечных элементов.
	• Размещенные в интернете методические материалы.
	• Технические требования к электронным версиям отчетных доку- ментов.
4.	Перечень вопросов подлежащих разработке или краткое содержание работы
	• Рассмотреть постановку задачи.
	• Разработать приложение для решения.
	• Графически проиллюстрировать процесс решения.
5.	Перечень графического материала
	• Логотип БГУ для включения на слайды презентации.
	• Графики иллюстраций.

• Иллюстрации сравнительного анализа точного и приближенного

вычислений.

6. Дата выдачи задания	
Руководитель работы	С.В.Лемешевский
(Подпись, дата)	
Задание принял к исполнению	Комодей В.Г.
(Подпись, дата)	

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ																		•																	6
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

РЕФЕРАТ

Дипломная работа, 23 стр., 9 рис., 2 источника, 1 приложение

Ключевые слова: ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ, ВАРИА-ЦИОННАЯ ПОСТАНОВКА, КОНЕЧНЫЕ ЭЛЕМЕНТЫ, FENICS, PYTHON.

Объект исследования — задача сопряжения уравнений гиперболического и параболического типов.

Цель работы — численное решение задачи сопряжения уравнений гиперболического и параболического типов

Методы исследования — метод конечных элементов.

Результатами являются: вычислительный алгоритм и программа решениия задачи сопряжения уравнений гиперболического и параболического типов

Область применения — приближенное решение дифференциальных уравнений, математическое моделирование процессов, протекающих в разнородных средах.

РЭФЕРАТ

Дыпломная работа 23 с., 9 мал., 2 крыніцы, 1 дадатак.

Ключавыя словы ДЫФЕРЕНЦЫАЛЬНАЕ РАУНАННЕ, ВАРЫЯЦЫ-ЕННАЯ ПАСТАНОУКА, КАНЧАТКОВЫЯ ЭЛЕМЕНТЫ, FENICS, PYTHON.

Аб'ект даследавання — задача аб спалучэнні гіпербалічнага і парабалічнага раунання.

Мэта работы — выліковае рашэнне задачы аб спалучэнні гіпербалічнага і парабалічнага раунання.

 ${f Metaды}$ даследавання — метад канчатковых элементау.

Вынікамі з'яуляюцца: выліковы алгарытм і праграма рашэння задачы аб спалучэнні гіпербалічнага і парабалічнага раунання.

Вобласць прымяненя — прыблізнае рашэнне дыференцыяльных раунанняу, матэматычнае мадэляванне працэсау якія праходзяць у разнастайных срэдах.

SUMMARY

Graduate work. 23 p., 9 pic., 2 sources, 1 appendix

Key words: DIFFERENCIAL EQUATION, VARIATION SETTING, FINITE ELEMENTS, FENICS, PYTHON.

Research object: problem about hiperbolic and parabolic equation conjugation.

Work goal: numerical solution for problem about hiperbolic and parabolic equation conjugation.

Research methods — finite elements method.

Results — computational algorithm and program for solving problem about hiperbolic and parabolic equation conjugation.

Use area — solution of difference equations, mathematic process work modeling.

ВВЕДЕНИЕ

Необходимость рассмотрения сопряжения, когда на одной части области задано уравнение параболического типа, а на другой – уравнение гиперболического типа, была впервые высказана И.М. Гельфандом в 1959 г[ИСТОЧНИК]. К задаче сопряжения приводит изучение электрических колебаний в проводах.

Такого рода задачи встречаются также при изучении движения жидкости в канале, окруженной пористой средой, в теории рапространения электромагнитных полей и в ряде других областей физики. Так, в канале гидродинамическое давление жидкости удовлетворяет волновому уравнению, а в пористой среде – уравнению фильтрации, которое в данном случае совпадает с уравнением диффузии[ИСТОЧНИК]. При этом на границе канала выполняются некоторые условия сопряжения. Аналогичная ситуация имеет место для магнитной напряженности электромагнитного поля в указанной выше неоднородной среде[3]. Большой интерес представляет изучение влияния вязкоупругих свойств нефти на различные технологические процессы ее добычи. Если рассмотреть совместное движение различных несмешивающихся жидкостей в трещинах и пористых пластах с учетом вязкоупругих характеристик, то движение вязкоупругой и вязкой жидкостей в плоской горизонтальной трещине без учета поверхностных явлений описывается одномерным гиперболическим уравнением и уравнением теплопроводности с интегро-дифференциальными условиями на границе раздела движущихся жидкостей.

В монографии А.Г. Шашкова [ИСТОЧНИК] строится структуная модель теплопроводности в системе, составленной из теплоизолированных с боковой поверхности ограниченного и полуограниченного стержней, имеющих одинаковую температуру. На свободный конец системы поступает изменяющийся во времени тепловой поток. Температурное поле в ограниченном стержне описывается обычным уравнением теплопроводности, а в полуограниченном - гиперболическим уравнением. Теплофизические свойства стержней различны. В месте соприкосновения стержней имеет место идеальный тепловой поток.

Большой интерес представляет изучение математических моделей, описывающих влияние растительного покрова на теплообменные процессы в почве и приземном воздухе, при котором возникает необходимость исследования за-

дачи для двух уравнений: уравнения Аллера переноса влаги, предполагающего бесконечную скорость распространения возмущения, и уравнене Лыкова, учитывающего конечную его скорость.

За последние несколько десятилетий в математической литературе появилось значительное количество публикаций, посвященных задачам сопряжения по временной переменной. Достаточно полная библиография по этой теории содержится в монографиях Т.Д. Джураева[ИСТОЧНИК], М. Мамажанова [ИСТОЧНИК]. В приведенных выше работах задачи сопряжения двух уравнений по пространственной переменной в основном изучались для бесконечных или полубесконечных областей.

В настоящей работе решаются задачи о сопряжении гиперболического и параболического уравнений по пространственной переменной в конечных областях.