Appendix A

MC 68000 Course Notes

by

Motorola Inc.

Semiconductor Products Sector

MC68000 - RULES FOR ACCESSING MEMORY

- Words and long words must be accessed from an even address.
- Bytes can be accessed from either an odd or even address.
- Op words must be accessed on even addresses.

MIRORE

÷ ž -. ž ż . . Z ž 7654321076543210 BYTE: BCD 6 BCD 1 BCD 2 BCD 3 BCD 4 BCD 5 BCD 6 BCD 7 LONG WORD B(I.) LONG WORD I(II) BYTE! BYTE LONG WORD ORI WORD WORD 2 WORD I MC68000 INTEGER DATA N BITS (7) BYTE 0 (0) MEMORY FORMATS BYTE 2 X + 2 X + 2 ; ¿ 2 + N * * * Z ADDRESS = N ADVINESS = N ADDRESS = N ADURESS = N ADDRESS = N 'N IS AN EVEN NUMBER LONG WORD = 32 BITS 1 BCD DIGIT * 4 BITS 1 WORD = 16 BTFS 1 BYTE = 8 BITS 187

MC68000 - CYCLE TIME DEFINITIONS

CLOCK CYCLE

The input clock period from positive edge to positive edge

BUS CYCLE

The sequence of timing events required to do a byte or a word read cycle, byte or a word write cycle, or a read-modify-write cycle

INSTRUCTION CYCLE

The sequence of timing events required to do an instruction

111

ASSERTION (ASSERT)

A signal (pin) is active or true independent of the actual voltage level.

NEGATION (NEGATE)

A signal (pin) is inactive or false independent of the actual voltage level.

RESCINDABLE (RESCIND)

A signal (pin) is first negated and then three-stated (high impedance).

1.118 ATT. 1

TWO STATES (LEVELS) OF PRIVILEGE:

• S = 1 : SUPERVISOR (HIGHEST)

• S = 0 : USER (LOWEST)

THE PRIVILEGE STATE:

SUPERVISOR (S) BIT

MC68000-INTERRUPT MASK

STATUS REGISTER

10

13

15

▶ IPEND?

COMPARATOR

INTERRUPT REQUEST LEVEL

Appendix A - 4

MT8-019-2 VALID WRITE DATA VALID WRITE DATA VALID READ DATA VALID READ DATA *SAME AS D8-D15 INVALID DATA INVALID DATA **NVALID DATA** D0-D7 * This feature is not part of the 68000 specification, and is not assured in future versions. VALID WRITE DATA VALID WRITE DATA VALID READ DATA VALID READ DATA *SAME AS D0-D7 INVALID DATA INVALID DATA INVALID DATA D8-D15 R∕₩ LOW LOW HIGH TOW LOW LOW LOW HIGH LOW LOW HIGH HIGH HIGH LOW HIGH HIGH HIGH HIGH HIGH LOW LOW HIGH HIGH LOW LDS CODS

MC68000 — BYTE CONTROL

Appendix A

- 7

£,

EPROM CARD (ACCESS TIME = 500nS∞)

S00mSec DELAY

MT8-016-1

PERIPHERAL I/O CARD (ACCESS TIME = 1.5µSec)

1.5µSec

HI-SPEED RAM CARD (ACCESS TIME = 35nScc)

35nSec DELAY

MT8-5144 EXTERNAL SIGNALS: If the external signal does not meet the asynchronous input setup time it may not be sampled as asserted until the next falling edge of the CPU clock. All external asynchronous input signals must be synchronized to the CPU clock before being acted upon. DTACK RESET BGACK BR HALT This causes a clock cycle of delay before an external signal is used internally. VPA MC68000 - EXTERNAL ASYNCHRONOUS INPUTS asynchronous input setup time (\$ Ł signal sampled signal valid. signal acted upon EXTERNAL SIGNAL CLK Motorola

8.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES

 $(VCC=5.0 \text{ Vdc} \pm 5\%; \text{ VSS}=0 \text{ Vdc}; \text{ TA}=\text{TL} \text{ to TH}; \text{ see Figures 8-6 and 8-7})$

			8 N	8 MHz 10 MHz			12.5	Unit					
Num.	Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1	Clock Period	tcvc	250	500	167	500	125	500	100	500	80	250	ns
2	Clock Width Low	tCL	115	250	75	250	55	250	45	250	35	125	ns
3	Clock Width High	¹ CH	115	250	75	250	55	250	45	250	35	125	ns
4	Clock Fall Time	tCf.		10		10	-	10		10		5	ns
5	Clock Rise Time	tCr	_	10	-	10	-	10	_	10	· -	5	ns :
6	Clock Low to Address	tCLAV		90		80		70		60		55	ns
6A	Clock High to FC Valid	^t CHFCV		90.		80		70	-	60		55	nş
7	Clock High to Address Data High Impedance (Maximum)	[†] CHAZ×	_	120	-	100	-	80	-	70	-	60	ns
8	Clock High to Address/FC Invalid (Minimum)	[†] CHAZn	0	_	0	-	0	_	0	_)	_	ns
91	Clock High to AS, DS Low (Maximum)	^t CHSLx	_	80	-	70	-	60	-	55	-	55	ns
10	Clock High to AS, DS Low (Minimum)	^t CHSLn	0	-	0	-	0	_	0	_)	-	ns
112	Address to AS, DS (Read) Low/AS Write	tAVSL	55	-	35	-	30		20	-)	_	ns
11A2,7	FC Valid to AS, DS (Read) Low/AS Write	tFCVSL	80		70	_	60	-	50	_	40	_	ns
121	Clock Low to AS, DS High	tCLSH		90	-	80		70		5 5		50	ns
132	AS, DS High to Address/FC Invalid	tSHAZ	60	_	40	_	30	-	20	-	10	-	ns
142,5	AS, DS Width Low (Read)/AS Write	tsL	535	-	337	-	240	-	195		160	-	ns
14A ²	DS Width Low (Write)	^t DWPW	285		170		115		95	<u> </u>	80	<u> -</u> _	ns
15 ²	AS, DS Width High	^t SH	285		180		150		105	ļ -	65		ns
16	Clock High to AS, DS High impedance	tCHSZ	_	120		100	_	80	-	70	-	60	ns
172	AS, DS High to R/W High	tshrh	60	-	50		40		20	 -	-0		ns
18 ¹	Clock High to R/W High (Maximum)	[†] CHRHx	_	90		80	-	70	_	60	-	60	ns
19	Clock High to R/W High (Minimum)	^t CHRHn	0	_	0	-	0		0)	-	ns
201	Clock High to R/W Low	tCHRL	-	90	_	80		70		60	<u>↓-</u>	60	ns
20A8	AS Low to R/W Valid	†ASRV		20	_	20	<u> </u>	20	-	20	-	20	ns
212	Address Valid to R/W Low	tavrl	45	<u> </u>	25		20	<u> </u>	0	<u> </u>)		ns
21A2,7		†FCVRL	80	-	70	<u> </u>	60		50	-	30		ns
222	R/W Low to DS Low (Write)	†RLSL	200	-	140	-	80	-	50	-	30	_ 55	ns
23	Clock Low to Data Out Valid Clock High to R/W, VMA	tCLDO tCHRZ		90 120		100		70 80		70	-	60	ns ns
	High Impedance	ļ				ļ	20		20	+	-5	 	ns
25 ²	DS High to Data Out Invalid	tshdo	60	<u> </u>	40	-	30	-	20	+	1 5	$+\overline{-}$	113
262	Data Out Valid to DS Low (Write)	tDOSL	55	-	35	-	30		20	-	⁻ 5	-	ns
276	Data In to Clock Low (Setup Time)	†DICL	30		25	-	15	-	10	-	.0	-	ns
282,5	AS, DS High to DTACK High	TSHDAH	0	490	0	325	10	245	0	190	1)	150	ns
29	DS High to Data Invalid (Hold Time)	tshDi	0	_	0	-	0	-	0	_)	-	ns
30	AS, DS High to BERR High	^t SHBEH	0	<u> </u>	0	-	0		0	<u> </u>)	-	ns
312,6	DTACK Low to Data In (Setup Time)	†DALDI	_	180		120	_	90		65		50	ns

Appendix A - 9

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES (CONTINUED)

				4 MHz		6 MHz							Unit
Num	. Characteristic	Symbol				+		8 MHz		10 MHz		5 MHz	
32	HALT and RESET Input Transition Time	tRHr f	Min 3	Max 200	Min	200	Min	200	Min	200		1	
33	Clock High to BG Low		+	90	 				-		0	200	ns
34	Clock High to BG High	CHGL	-	90	-	80	ļ- <u>-</u> -	70	-	60	<u> </u>	50	ns
35	BR Low to BG Low	¹ CHGH ¹ BRLGL	1.5	3.5	1.5	3.5	1.5	70	ļ <u>-</u>	60	<u> </u>	50	ns
36	BR High to BG High	TBRHGH	+	3.5	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	Clk. Per
37	BGACK Low to BG High	tGALGH	4	3.0	1.5	3.0	1.5	3.5	1.5	3.5	1.5	3.5	Clk Per
37A	BGACK Low to BR High (to Prevent Rearbitration)	†BGKBR	30	-	25	3.0	20	3 0	15	3.0	1.5	3.0	Clk. Per
38	BG Low to Bus High Impedance (with AS High)	tGLZ	-	120	_	100	_	80	-	70	-	60	ns
39	BG Width High	tGH	1.5	_	1.5	_	1.5		1.5		1.5		C
40	Clock Low to VMA Low	tCLVML		90		80	~	70		70	1.3	70	Clk. Per.
41	Clock Low to E Transition	tCLC	-	100		85		71		55		45	ns
42	E Output Rise and Fall Time	tEr, f	_	25		25		25		25		25	ns
43	VMA Low to E High	tVMLEH	325		240		200	2.0	150	20	90	20	ns
44	AS, DS High to VPA High	^t SHVPH	0	240	3	160	0	12)	0	90	90	70	ns
45	E Low to Address/VMA/FC Invalid	[†] ELAI	55	_	35	-	30	-	10	-	10		ns ns
46	BGACK Width	^t BGL	7.5	_	1.5		1.5		1.5		1 -		
476	Asynchronous Input Setup Time	tASI	30		25		20		20		1.5		Clk. Per.
483	BERR Low to DTACK Low	†BELDAL	30		25		20		20		20		ns
49	E Low to AS, DS Invalid	ELSI	- 80		- 80		- 80	-	- 80	-	20	~	ns
50	E Width High	t _{EH}	900		600		450		350	-	-80		ns
51	E Width Low	tFl	1400	_	900	_	700		550		280		ns
52	E Extended Rise Time	[†] CIEHX	_	80		80		80		80	440		ns
53	Data Hold from Clock High	tCHDO	0		0	-	0	-	-		-	80	ns
54	Data Hold from E Low (Write)	†ELDOZ	60	-	40	_	30		20	-	0		ns
55	R/W to Data Bus Impedance Change	¹RLDO	55	-	35	_	30	_	20	-	15	_	ns
564	HALT/RESET Pulse Width	^t HRPW	10		10	-	10	+	10		10		Clk. Per.

- 1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the value given in these columns.
- 2. Actual value depends on clock period.
- 3. If #47 is satisifed for both DTACK and BERR, #48 may be 0 nanoseconds.
- 4. For power up, the MPU must be held in RESET state for 100 ms to all stabilization of on-chip circuitry. After the system is powered up, #56 refers to the minimum pulse width required to reset the system.
- 5 #14, #14A, and #28 are one clock period less than the given number for T6E, BF4, and R9M mask sets
- 6. If the asynchronous setup time (#47) requirements are satisfied, the DTACK low-to-data setup time (#31) requirement can be ignored. The data must only satisfy the data-in clock-low setup time (#27) for the following cycle.
- 7 For T6E, BF4, and R9M mask set 11A timing equals 11, and 21A equals 21, 20A may be 0 for T6E, BF4, and R9M mask sets.
- 8. When \overline{AS} and R/\overline{W} are equally loaded (\pm 20%), subtract 10 nanoseconds from the values given in these columns.

Timing diagrams (Figures 8-6 and 8-7) are located on a fold-out page at the end of this document.

Appendix A - 10 Motorola

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not intended as a functional description of the input and output signals. Refer to other functional descriptions and their related diagrams for device operation.

Figure 8-6. Read Cycle Timing Diagram

11

Foldout 1

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not intended as a functional description of the input and output signals. Refer to other functional descriptions and their related diagrams for device operation.

Imming measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.
 Because of loading variations. R/W may be valid after AS even though both are initiated by the rising edge of S2 (Specification 20A).

Figure 8-7. Write Cycle Timing Diagram

SUPERVISOR SUPERVISOR SUPERVISOR MT8-025-1 SUPERVISOR INTERRUPT ACKNOWLEDGE

MT8-024-1 MC68000 - FUNCTION CONTROL D0-D15 ► R\W ► LDS ► UDS ► AS - DTACK A1-A23 PIN DIAGRAM MC68000 VCC (2) – GND (2) – CLOCK -\$5.5 ↑ ↑ ↑ FUNCTION CONTROL

- PROGRAM vs. DATA MC68000

MT8-023-2

INSTRUCTION WORD

D0-D15

THE FUNCTION CONTROL OUTPUTS INDICATE PROGRAM WHEN:

PC IS THE ADDRESS SOURCE RESET VECTORS ARE FETCHED

THE FUNCTION CONTROL OUTPUTS INDICATE DATA WHEN:

MOST OPERANDS ARE READ (PC IS NOT ADDRESS SOURCE) ALL OPERANDS ARE WRITTEN VECTORS OTHER THAN RESET ARE FETCHED

MT3-026

CLOCK

A1-A23

R

18

UDS LDS

DTACK

MC68000 - READ/MODIFY/WRITE INSTRUCTION

(WORD)

SO | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S0 | S1 | S2 | S4 | Sw | Sw | S5 | S6 | S7

MC68000 - SIMPLE MEMORY PROTECTION (USER PROHIBITED FROM ACCESSING SUPERVISOR MEMORY)

MC68000 - USING FUNCTION CONTROL **OUTPUTS TO PARTITION AND** MANAGE MEMORY SUPERVISOR SPACE PROGRAM PROGRAM \$000,000 RESET VECTOR RESET VECTOR VECTOR TABLE DATA FC=101 OTHER VECTORS Ю SUPERVISOR SPACE USER SPACE PROGRAM PROGRAM FC₇110 M \$7FFFFE \$800000 FC=110 PROGRAM FC_T010 FC=101 USER SPACE DATA FC=001 FC=010 Ю SFFFFFE ĪØ. FC=001 SINGLE 16 MBYTE MAP MT8-028-1

MC68000-BERR CHARACTERISTICS

- USED TO SIGNAL CPU THAT AN ERROR EXISTS DURING A BUS CYCLE
- WHEN BERR IS ASSERTED:
 CPU ABORTS BUS CYCLE
 DATA IS IGNORED
 ADDRESS AND DATA 3-STATED
 BUS CONTROL PINS ARE NEGATED
- AFTER BERR NEGATES, BUS ERROR EXCEPTION PROCESSING OCCURS (TYPICALLY).
- TYPICAL USES OF BUS ERROR: BUS TIMEOUT NON-CORRECTABLE (HARD) PARITY ERRORS
- USED WITH HALT FOR RERUN

MT8-203-2

CHARACTERISTICS MC68000 - RESET

- EXTERNAL RESET INPUT
- POWER-ON
- RESET AND HALT ASSERTED FOR > 100 MILLISEC
 - 2. PUSH-BUTTON

AFTER RESET NEGATES _ RESET EXCEPTION RESET AND HALT ASSERTED FOR > 10 CLOCKS PROCESSING OCCURS. • INTERNAL RESET OUTPUT (DUE TO RESET INSTRUCTION) RESET ASSERTS FOR 124 CLOCKS

HALT ASSERTED DURING RESET CAUSES RESET

EXCEPTION PROCESSING

AFTER COMPLETION OF THE RESET INSTRUCTION. THE 68000 GOES TO THE NEXT INSTRUCTION, NO EXCEPTION PROCESSING OCCURS.

MTB-060-1

- HALT CHARACTERISTICS MC68000

. WHEN $\overline{\text{HALT}}$ INPUT IS ASSERTED DURING EXECUTION OF AN INSTRUCTION:

THE PROCESSOR STOPS EXECUTION UPON COMPLETION OF THE CURRENT BUS CYCLE ADDRESS AND DATA BUS ARE 3-STATED BUS CONTROL PINS ARE NEGATED; DMA CONTROL PINS ARE AVAILABLE

- WHEN HALT INPUT AND BERR ARE ASSERTED, A RERUN CYCLE CAN BE INITIATED (EXCEPT FOR TAS).
- WHEN HALT INPUT AND RESET ARE ASSERTED, A POWER-ON RESET, OR A PUSH BUTTON RESET HAS OCCURRED.
 - WHEN HALT OUTPUT ASSERTS, A DOUBLE BUS FAULT HAS OCCURRED.

MT8-061-2

MT8-062-1 PARITY DETECTION HALT DURING ASYNCHRONOUS DATA TRANSFER (ACCESS TIME = 500nSec) HI-SPEED RAM CARD (ACCESS TIME = 35nSec) PERPHERAL DO CARD (ACCESS TIMB = 1.5µSec) 500mSec DELAY 35nSec DELAY 1.5µSec DELAY SLAVE DEVICE RESPONDS) WITH DATA & ASSERTS DTACK MPU ASSERTS ADDRESS STROBES & CONTROL SIGNALS SLAVE DEVICE REMOVES DATA & NEGATES DIACK STROBES (AS,UDS,LDS) BUS TIME OUT CIRCUITRY IIII MPU LATCHES DATA &NEGATES STROBES 1111 3 3 3 BERR (AS, UDS, LDS) DTACK BERR HALT 68K MPU

MC680(00 - BU	MC68000 - BUS ERROR AND HALT
BERR	HALT	RESULTING OPERATION
row	MOT	BUS ERROR - RERUN CURRENT CYCLE
MOTI	HIGH	BUS ERROR - EXCEPTION PROCESSING
нсн	TOW	SINGLE BUS CYCLE OPERATION
нон	нон	NORMAL OPERATION
		MTROM

MC68000 - PROCESSING STATES

NORMAL	INSTRUCTION EXECUTION (INCLUDING STOP)
EXCEPTION	INTERRUPTS TRAPS TRACING
HALTED	HARDWARE HALT DOUBLE BUS ERROR DOUBLE ILLEGAL ADDRESS ERROR

MT8-073-1

MC68000—EXCEPTION DEFINITION

EXCEPTION – A DEVIATION FROM NORMAL PROCESSING SEQUENCE DUE TO AN INTERNAL INSTRUCTION OR ERROR CONDITION, OR AN EXTERNAL REQUEST OR ERROR CONDITION.

MT8-074-1

---- AUTO VECTOR #4 --

8-85 9-58 2 8 8 5 5 4 8 5 8-8 8-5 8-5 8-5

---- AUTO VECTOR # 6 ---- AUTO VECTOR # 7 --

TRAP
INSTRUCTIONS
UNASSIGNED
RESERVED
USER
INTERRUPTS

SPURIOUS INTERRUPT
----AUTO VECTOR #1.-- AUTO VECTOR # 2 --- AUTO VECTOR # 3 ----

MC68000 - EXCEPTION VECTORS (2 of 2)

VECTOR ADDRESS HEX UNASSIGNED RESERVED UNINITIALIZED INTERRUPT

UNASSIGNED RESERVED

VECTOR NO. HEX

0

-----RESET----

VECTOR ADDRESS

---- RESET (CONT).---

MC68000 - EXCEPTION VECTORS (1 of 2)

MT8-080-2

NOTE: 68000 ASSEMBLER WILL FLAG THIS EXAMPLE INSTRUCTION AS AN ERROR

MTB-OB!

MT8 079.1

-- LINE 1111 EMULATOR --

-- LINE 1010 EMULATOR --

28 2C

----- TRACE----

- PRIVILEGE INSTRUCTION -

1C 20 24

Appendix A

--- TRAPV INSTRUCTION -

--- DIVIDE BY ZERO---

-- ILLEGAL INSTRUCTION-

14 18

---ILLEGAL ADDRESS ---

-- BUS ERROR ---

MC68000 - INTERRUPTS, DESKEWING LOGIC

- Interrupts are internally deskewed when the interrupt request remains at the same level for two
 consecutive falling edges of the input clock.
- · Interrupts are continuously deskewed on every falling edge of the clock (they are not latched).

MC68000 - INTERRUPT PRIORITY

MASK LEVEL REQUIRED FOR	RECOGNITION	N/A	0	1 OR LOWER	2 OR LOWER	3 OR LOWER	4 OR LOWER	5 OR LOWER	NOT MASKED
INS	IPL0	Ē	ol	2	္	Æ	9	æ	<u> </u>
STATE OF PINS	IPLI	Æ	æ	ા	೨	æ	2	<u>e</u>	9
STA	IPLZ	Æ	涅	Z	涅	ા	೨	이	ol
REQUESTED INTERRUPT	LEVEL	NO. INT.	-	2	3	4	5	9	7

- Interrupts allowed only above mask level.
- Level 7 may not be masked out becomes NMI.
- Levels applied to the pins are inverted with respect to corresponding interrupt mask level.

MT8-205.1-2

MC68000 INTERRUPT RECOGNITION • IPEND sampling is instruction dependent. • To ensure an interrupt request is recognized, the request must be held until acknowledge.

MTR-530-1

MC68000 - USER INTERRUPTS

INTERRUPTING DEVICE RETURNS AN 8-BIT VECTOR NUMBER WHICH IS USED TO CALCULATE THE VECTOR ADDRESS

VECTOR NUMBERS \$40-\$FF VECTOR ADDRESSES \$100-\$3FC NOTE: USER INTERRUPTING DEVICE IS NOT LIMITED TO ACCESSING ONLY USER INTERRUPT VECTORS

CALCULATION OF EXCEPTION VECTOR ADDRESS

M 13 093

VECTOR NUMBER X 4 = VECTOR ADDRESS

\$0F X 4 = \$3C

WHEN THE ABOVE VECTOR NUMBER HAS BEEN OBTAINED FROM AN INTERRUPTING DEVICE, WHAT TYPE OF SERVICE HAS BEEN REQUESTED?

MT8-094

or **≜**

MOKS

DTACK

12

ځ -₩

▼IACK

IACKS 120

5 <u>5</u> 5

741.5138

741.3138

ACCTORED. INTERRUPT

岸岸

돌돌물

741.502

Bus Time Out circustry

\A V

° 21 • 120 • 120

MT8-095-2

AUTO-VECTORED INTERRUPT

MC68000 - BUS ERROR EXAMPLES

MC68000 - SPURIOUS INTERRUPT

SPURIOUS INTERRUPT VECTOR IS USED

WHEN A BUS ERROR OCCURS DURING

INTERRUPT ACKNOWLEDGE.

ERROR DETECTION

- MPU ADDRESS REFERENCES NONRESIDENT MEMORY OR INPUT/OUTPUT DEVICE-BUS TIMEOUT
 PARITY ERRORS RERUN CURRENT BUS CYCLE
 SPURIOUS INTERRUPTS-BERR DURING IACK

MEMORY MANAGEMENT:

- MPU ADDRESS TRANSLATION FAULTS
 ADDRESS SPACE VIOLATIONS-USER ACCESSING SUPERVISOR SPACES
 SECURITY VIOLATIONS OF READ OR WRITE PROTECTED MEMORY

MT8-097-1

MT8-096

I.E., AS THOUGH THE INTERRUPT VECTOR PC AND SR ARE STACKED NORMALLY,

FETCH HAD OCCURRED PROPERLY.

Appendix A 24 _

Motorola

A1 - A23

VECTORED AND AUTO-VECTORED

INTERRUPT LOGIC

MC68000 -

9.

MC68000

MC68000 - ILLEGAL ADDRESS EXAMPLES

- MOVE.W D0,\$2001
- MOVE.W D0,\$06(A0) WHERE A0 HAS ODD NUMBER
- MOVE.L D0,\$05(A0)
 WHERE A0 HAS EVEN NUMBER
- WHERE A0 HAS EVEN NUMBER AND D7 HAS ODD NUMBER • MOVE.L D0,\$48(A0,D7.W)

MT8-098:1

MC68000 - ILLEGAL ADDRESS AND BUS ERROR STACKING

 $R/\overline{W} = 0$, WRITE $R/\overline{W} = 1$, READ

IN = 0, NORMAL INSTRUCTION OR GROUP 2 EXCEPTION PROCESSING

I/N = 1, GROUP 0 AND GROUP 1 EXCEPTION PROCESSING

MT8-099-2

MT8-100-2

MC68000 - EXCEPTION PRIORITIES

ADDRESS ERROR

· RESET

GROUP 0

• BUS ERROR

• INTERRUPT · TRACE

GROUP 1

ILLEGAL INSTRUCTIONS

UNIMPLEMENTED INSTRUCTIONS

PRIVILEGED INSTRUCTIONS

· TRAP **GROUP 2** · TRAPV

·CHK

ZERO DIVIDE

Appendix A - 25

EXCEPTIONS EXCEPTIONS

• END OF A CLOCK CYCLE ADDRESS ERROR **BUS ERROR** RESET

UNIMPLEMENTED INSTRUCTION ILLEGAL INSTRUCTION PRIVILEGE VIOLATION • END OF A BUS CYCLE

• END OF AN INSTRUCTION CYCLE INTERRUPT EXCEPTION TRACE EXCEPTION

WITHIN AN INSTRUCTION CYCLE

TRAP

TRAPV

CHK

ZERO DIVIDE

MT8-101-3

MC68000-EXCEPTION PROCESSING SEQUENCE (NOT RESET)

MC68000 - 6800 PERIPHERALS

 MC6821 	PIA	PERIPHERAL INTERFACE ADAPTER
 MC6840 	PTM	PROGRAMMABLE TIMER MODULE
 MC6845 	CRTC	CRT CONTROLLER
 MC6847 	VDG	VIDEO DISPLAY GENERATOR
 MC6850 	ACIA	ASYNCHRONOUS COMMUNICATION
		INTERFACE ADAPTER
 MC6852 	SSDA	SERIAL SYNCHRONOUS DATA
		ADAPTER
 MC6854 	ADLC	ADVANCED DATA LINK
		CONTROLLER
 MC68488 	GPIA	IEEE-488 BUS INTERFACE ADAPTER

MT8-160-2

MT8-166-1

6

8

ದಿ

D15

RWI F

PAW E

4 & &

SSO

RS0 RS1

6.1 DATA TRANSFER OPERATION

Three signals on the processor provide the M6800 interface. They are: enable (E) valid memory address (\overline{VMA}), and valid peripheral address (\overline{VPA}). Enable corresponds to the E or phase 2 signal in existing M6800 systems. The bus frequency is one tenth of the incoming MC68000 clock frequency. The timing of E allows 1 megahertz peripherals to be used with 8 megahertz MC68000s. Enable has a 60/40 duty cycle; that is, it is low for six input clocks and high for four input clocks. This duty cycle allows the processor to do successive \overline{VPA} accesses on successive E pulses.

M6800 cycle timing is given in Figures 6-2, 6-3, 8-7, and 8-8. At state zero (S0) in the cycle, the address bus is in the high-impedence state. A function code is asserted on the function code output lines. One-half clock later, in state 1, the address bus is released from the high-impedence state.

Figure 6-2. MC68000 to M6800 Peripheral Timing — Best Case

Figure 6-3. MC68000 to M6800 Peripheral Timing — Worst Case

MC68000 - BUS ARBITRATION CONTROL CHARACTERISTICS BGACK SHOULD NOT BE ASSERTED UNTIL: CERTIFIES THAT: 1.BG IS ASSERTED 2.AS IS NEG. (RESCINDED)

1.BG IS ASSERTED

2.AS IS NEG. (RESCINDED)

3.DTACK IS NEGATED

4.BGACK IS NEGATED

IF BR IS ASSERTED PRIOR TO THE NEGATION

IF BR IS ASSERTED PRIOR TO THE NEGATION OF BGACK, THEN THE MC68000 ISSUES ANOTHER BG. NO EXTERNAL BUS CYCLES ARE PERFORMED IN BETWEEN.

• IF $\overline{\text{BGACK}}$ IS NOT ASSERTED AND $\overline{\text{BR}}$ IS NEGATED, THE MC68000 CONTINUES PROCESSING

MT8-072-2

MC68000 - USING THE TAS INSTRUCTION

N	<u>z</u>	LOCATION CONTENTS
_	_	

0 0 (NON-ZERO) \longrightarrow 1 (NON-ZERO)

0 1 00000000 --- 10000000

1 0 $1XXXXXXX \longrightarrow 1XXXXXXX$

1 1 NOT POSSIBLE

MT8-158-1

	I	MC68000 FAMILY PERIPHERALS
MC68451	MMU	Ideal MMU for non-demand paged MC68000, MC68010 systems.
MC68851	PMMU	32-bit demand virtual paged MMU for MC68020 based systems. Feautres variable page sizes and 45 ns translations.
MC68440	DDMA	Dual channel, high speed Direct Memory Access Controller. Capable of 5 MB/s data rates, and bandwidth controlled auto requesting (LRAR).
MC68450	DMAC	Four channel Direct Memory Access Controller. Capable of very complex "chained" data transfers.
MC68442	DDMA	32-bit version of DDMA. Support for 4 gigabyte range of MC68020. Pin compatible with MC68440/MC68450.
MC68605	XPC	Implements 1984 CCITT X.25 LAPB. Independently generates link level commands and responses using two 22 byte FIFOs and on-chip DMA. Or intelligent HDLC controller.
MC68652	MPCC	Single channel byte control and bit oriented. CRC (error correction) circuitry.
MC68661	EPCI	Universal sync/async. Double buffered reciever/transmitter. Internal baud rate clock.
MC68681	DUART	Dual channel. Quad buffered rcvr. Double buffered xmtr. Independent baud rate selection.
MC68824	TBC	Implements IEEE 802.4 Token Bus Media Access Control which GM MAP specifies as layer 2
MC68184	BIC	Macrocell implementation of digital portion of IEEE 802.4 Broadband Physical Layer.
MC68194	СВМ	Bipolar implementation of IEEE 802.4 Carrierband Physical layer.
68HC463	HDC	Hard disk controller, 4 ST506 or 8 SMD drives. (Motorola evaluating)
MC68230	PI/T	Uni/bidirectional, 8/16 bit, double buffered parallel interface. 24-bit timer w/ prescalar.
MC68901	MFP	Single channel USART. 8 source interrupt controller. 8 parallel I/O lines. Four 8-bit timers.
68HC484	ACRTC	8/16-bit CPU interface. 500ns/pixel. 2k x 2k pixels for 16 colors, 4k x 4k for monochrome. (Motorola evaluating)
MC68153	BIM	Routes interrupts from 4 independent sources to any of 7 M68000 MPU interrupt levels.
MC68452	BAM	Arbitrates access of an M68000 system bus between up to 8 local masters.

MT8-685-1

EFFECTIVE ADDRESS

MOST INSTRUCTIONS OPERATE ON AN EFFECTIVE ADDRESS <ea> .

THE <ea> IS SUPPLIED AS A PART OF THE INSTRUCTION, BY THE PROGRAMMER.

THE <ea> IS SPECIFIED BY THE ADDRESSING MODE, ENCODED IN THE OPERATION WORD.

MT8-030

MT8-720-1

- 73E0354

ADDRESS REGISTER INDIRECT WITH PREDECREMENT

USED TO PROCESS SEQUENTIAL DATA, STRINGS, MULTIPLE PRECISION DATA; PERFORM STACKING OPERATIONS

ABSOLUTE LONG

MT8-034-3

USED TO SPECIFY A PERMANENT OR PREASSIGNED ADDRESS WHICH CAN REFERENCE ANY LOCATION WITHIN ENTIRE MAP

- EA = XXXXXXX where $0 \le XXXXXXX \le \$FFFFFF$
 - · AN EXAMPLE

ABSOLUTE SHORT

THE LOCATION MAY BE ONE REQUIRING FREQUENT REFERENCES DEFINES A PERMANENT ADDRESS WITHIN A 64 KBYTE RANGE:

• EA - XXXX where 0 < XXXXX < STFFF OR SFFFFFF

AN EXAMPLE

ABSOLUTE SHORT WORD

• ABSOLUTE SHORT ADDRESS IS SIGN EXTENDED TO A LONG WORD.

MTB-0422

IMMEDIATE

USED TO SPECIFY CONSTANT VALUES; INITIALIZE MPU REGISTERS, EXTERNAL MEMORY LOCATIONS AND IO DEVICES

- EA = #XXXX
- AN EXAMPLE

OW. ADD.W #\$0064,D2 XXXX 03E8 24 P MPU 2

memory

program space owl+2

opword extension

OPWORD DECODE

XXXX

IMMEDIATE - EA MODE WORD SIZE 001 DATA REG 8 8 GIVEN 1101

MTSONT

MT8-041-3

Appendix A

PROGRAM COUNTER RELATIVE FOR BRANCHES

displacement is added.

The displacement is SIGNED and is EXTENDED to a long word before it is added to the PC.

MT8-044-2

INSTRUCTIONS WITH TWO EFFECTIVE ADDRESSES

- GENERAL FORM INST SOURCE EA, DESTINATION EA
- GENERAL OPWORD

GIVEN	DEST	EA	SOURC	E EA
INST	REG	MODE	MODE	REG

• EXAMPLES

MOVE.W (A3), D1

0011	001	000	010	011

MOVE.L A5, -(A1)

0010		

DATA

MOVE.s Source, Destination

(Source) → Destination

EXG.L Rx, Ry

 $(Rx) \leftrightarrow (Ry)$

SWAP.W Dn

Dnlow ← Dnhigh

EXT.s Dn

Sign Extend Dn Byte to Word

Sign Extend Dn Word to Long Word

MT8-050-1

MOVE INSTRUCTION

• WHERE 's' SPECIFIES LENGTH OF DATA BEING TRANSFERRED

B - BYTE

W - WORD (DEFAULT)

L - LONG WORD

MT8-051-1

- 43

EXAMPLE RESULTS OF MULTIPLY OPERATION x 0002 0001FFFC FFFE MULU #2,D0 FFFE x 0002 FFFFFFC MULS #2,D0

MC68000 - DIVIDE INSTRUCTION DIVU, DIVS

- DIVIDEND IS A 32 BIT DATA REGISTER
- DIVISOR IS A 16 BIT EFFECTIVE ADDRESS (DATA)
- THE RESULT IS IN THE SPECIFIED DATA REGISTER

15 0	QUOTIENT
31 16	REMAINDER

- IF THE DIVISOR IS ZERO, AN EXCEPTION OCCURS
- · IF OVERFLOW IS DETECTED,

AND OPERANDS ARE UNAFFECTED

MT8-049-1

		N N
	Quotient 16	
Dn	Remainder 16	

MT18-680

1234 оb

D1,(A0)

D1,(A0)

D1,(A0)

(A0),D1

ADD.W ADD.W ADD.B SUB.W SUB.W SUB.W

do

D1,\$1234

TST.B

CMP.B

#0,D0

ARITHMETIC

MULU.W SOURCE, Dn MULS.W SOURCE, Dn (Dn)₁₆ * (SOURCE)₁₆ → Dn₃₂ DIVU.W SOURCE, Dn DIVS.W SOURCE, Dn

ADD/SUB INSTRUCTION EXAMPLES

 $(Dn) / (SOURCE)_{\delta} \rightarrow Dn$

MTB-053-1 Then d + Owl + 2 → PC -32768 ≤ d ≤ + 32766 Else Next Instruction d + Owl + 2 → PC d + Owl + 2 → PC CONTROL No Operation (A7) + → PC PC → -(A7) IF cc is true <Label> <Label> <Label> NOP RTS Всс BRA BSR

MT8-681-1 **EXAMPLE RESULTS OF DIVIDE OPERATION** Q 7FFFFFF R 0 FFFF FFFE FFFF FFFE 0002 J FFFFFFE DIVU #2,D3 V = 1 D3 before D3 Q FFFF R 0000 FFFF FFFE 0002) FFFFFFE 0000 FFFF DIVS #2,D3 D3 before D3

ADDRESS REGISTER INDIRECT WITH DISPLACEMENT

USED TO REFERENCE ELEMENTS WITHIN AN ARRAY; ACCESS INDIVIDUAL I/O LOCATIONS WITHIN A BLOCK OF I/O DEVICES

- EA = (An) + displacement (word)
- An Example

CLR.W \$12(A2)

memory

MPU
A2
00013000

 owl
 426A

 owl + 2
 0012

 extension

 013012
 data space

 0000
 0000

• OP WORD DECODE

CODE		EA—		
GIVEN	SIZE	MODE	REG	
01000010	01	101	010	
	word	ADD. REG.	A2	

EXTENSION

0000 0000 0001 0010

Displacement is always a word sign Extended to a long word.

MT8-036-2

ADDRESS REGISTER INDIRECT with INDEX (and DISPLACEMENT)

USED TO REFERENCE DATA WITHIN COMPLEX STRUCTURES; Eg: ACCESSING SINGLE OR MULTIPLE FIELDS WITHIN MULTIPLE RECORD ARRAYS

• EA = (An) + (Rx) + displacement (byte)

MPU
A2
00012000
D1
XXXX 0100

An Example

- EA -

• OPWORD DECODE

		_			
	GIVEN	SIZE	MODE	REG	
	01000010	01	110	010	
•		WORD	ADD. REG.	A2	

• EXTENSION WORD DECODE

D/A	REG#	SIZE	FIXED	DISPLACEMENT
0	001	0	000	0000 0100

• Reference Programmer's Manual

MT8-038-3

extension

ADDRESS REGISTER INDIRECT WITH INDEX (AND DISPLACEMENT)

Motorola

• EA CALCULATION

A2.L = 0001 2000 (sign extended) D1.W = 0000 0100 (sign extended) d.B = 0000 0004 EA = 0001 2104

- The Index Register (Rx) can be a word or a long word (2's Complement Notation).
 - The displacement is always a byte (2's Complement Notation).

MC68000 - USING ARI with INDEX and DISPLACEMENT

ACCESSING DATA WITHIN A MULTIPLE RECORD ARRAY

DISPL VALUES TO REFERENCE INDIVIDUAL FIELD \$ \$ \$ \$ \$ \$ \$ \$ TO ACCESS SALARY OF EMP 2: \$60(A0,D0.W) 4B= 00000060 EA= 00004128 AO.L. 00004000 DOW - 000000C8 RECORD SEZE OF \$64 BYTES STRT ABL N.564 TO ACCESS INDIVIDUAL FIELD OF EMP N'S RECORD USE: DISP (An, RX.W) N.564 BA = EMP N. RECORD ARRAY CONTAINS N NI MBER OF EMILOYEE RECORDS BASB POINTER AN L. INDEX (uga ext) RX.W = [DLSP (sign ext) dB = EMP N-1 EMP3 EMP 7 STRIABL -Appendix A -48

MT8-040-2

DATA MOVEMENT INSTRUCTIONS

INSTRUCTION	OPERAND SIZE	OPERATION	NOTATION	ALLOWABLE EFFECTIVE ADDRESS MODES
MOVE	8,16,32	(SOURCE) — DESTINATION	MOVE.s <ea>,<ea></ea></ea>	SOURCE-ALL DEST - DATA ALTERABLE
MOVEA	16,32	(SOURCE) → DESTINATION	MOVEA.s <ea>, An</ea>	ALL
MOVE from SR	16	SR DESTINATION	MOVE.W SR, <ea>></ea>	DATA ALTERABLE
MOVE to CCR	16	(SOURCE) → CCR	MOVE.W <ea>, CCR</ea>	DATA
*MOVE to SR	16	(SOURCE) → SR	MOVE.W <ea>, SR</ea>	DATA
*MOVE USP	32	USP → An or An → USP	MOVEL USP, An MOVEL An , USP	
MOVEQ	32	IMMEDIATE DATA→ DESTINATION	MOVEQL # data, Dn	
EXG	32	Rx ←→ Ry	EXGL Rx,Ry	
SWAP	16	Dnlw ←→ Dnhw	SWAP Dn	

*PRIVILEGED s = size of data B=8 bits W= 16 bits L= 32 bits

MT8-104-3

MC68000 - EFFECTIVE ADDRESSING MODE CATEGORIES

EFFECTIVE ADDRESS MODES	DATA	MEMORY	CONTROL	ALTERABLE
Dn	X			X
An				X
(An)	X	X	X	X
(An)+	X	X		X
-(An)	X	X		X
$d_{16}(An)$	X	X	X	X
$d_8(An,Rx)$	X	X	X	X
XXXX	X	X	X	X
XXXXXX	X	X	X	X
#XXXX	X	X		

MT8-105-1

INTEGER ARITHMETIC INSTRUCTIONS

ALLOWABLE EFFECTIVE ADDRESS MODES	ALTERABLE MEMORY ALL	ALL	DATA ALTERABLE	RABLE
	-		1	ADDQ:s # <data>,cea> ALTERABLE</data>
NOTATION	ADD.s Da, cea>	ADDA.# <ets., an<="" td=""><td>ADDI.s #<data>,<ca></ca></data></td><td>ADDQ.8 #<dat< td=""></dat<></td></ets.,>	ADDI.s # <data>,<ca></ca></data>	ADDQ.8 # <dat< td=""></dat<>
OPERATION	(DESTINATION) + (SOURCE) — DESTINATION	(DESTINATION) + (SOURCE) — DESTINATION	(DESTINATION) + IMMEDIATE DATA —— DESTINATION	(DESTINATION) + IMMEDIATE DATA DESTINATION
OPERAND SIZE	8,16,32	16,32	8,16,32	8,16,32
INSTRUCTION	Q Q	ADDA	ADDI	ADDQ

s- size of data

B - 8 bits W - 16 bits L - 32 bits

MT8-106-2

INTEGER ARITHMETIC INSTRUCTIONS

SUB 8,16,32 (DESTINATION) - (SOURCE) — SUB. 1 Dn. cets. Dn. cets. Destination SUB 8,16,32 (DESTINATION) - (SOURCE) — SUB. 1 Dn. cets. Destination SUBA (cets.) Destination SUBA (cets.) An SUBA (cets.) An Chestination (DESTINATION) - Inmediate Data (SUBL. 16, 20 — DESTINATION) - EACH (SUBC) 1 & (Chestination) - Chestination (Chestina					
8,16,32 (DESTINATION) - (SOURCE) — SUB. a Da.ce. Da DESTINATION (SOURCE) — SUB. a ce., Da DESTINATION - (SOURCE) — SUB. a ce., Da DESTINATION - (SOURCE) — SUB. a ce. An B.16,32 — DESTINATION - DAMEDATE DATA SUB. a calas, ce. A DESTINATION - DAMEDATE DATA SUB. a calas, c	INSTRUCTION			NOTATION	ALLOWABLE EFFECTIVE ADDRESS MODES
16,32 (DESTINATION) - (SOURCE) — SUBAs ceas, An B,16,32 (DESTINATION) - DAMEDIATE DATA SUBList claus, ceas (DESTINATION) - IMMEDIATE DATA SUBList claus, ceas B,16,32 — DESTINATION - IMMEDIATE DATA SUBList claus, ceas	SUB	8,16,32	(DESTINATION) - (SOURCE) — DESTINATION	SUB a Da, cea>	ALTERABLE MEMORY
8,16,32 (DESTINATION) - DAMEDIATE DATA SUBLida (data), cas) 8,16,32 (DESTINATION) - DAMEDIATE DATA SUBLida (data), cas)	SUBA	16,32	(DESTINATION) - (SOURCE) — DESTINATION	SUBA.s <ca>, An</ca>	A ^L L
8,16,32 CESTINATION - IMMEDIATE DATA SUBQ: #cdata>,cea>	sUBI	8,16,32	(DESTINATION) - IMMEDIATE DATA	SUBL:# <data>,cea></data>	DATA
	SUBQ	8,16,32	(DESTINATION) - INMEDIATE DATA	SUBQ.s # cdata>, cea>	ALTERABLE

s - size of data
B - 8 bits
W - 16 bits
L - 32 bits

MT8-107-1

INTEGER ARITHMETIC INSTRUCTIONS

1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		s = size of data B = 8 bits W = 16 bits L = 32 bits	11 S	l
DATA ALTERABLE	TST.s cars	(DESTINATION) · 0 (DESTINATION) TESTED → CC	8,16,32	œ́
	CMPM.s (Ay) +,(Ax) +	(OPERANDZ) - (OPERANDI)	8,16,32	& ·
DATA ALTERABLE	CMPI.s # <data>,<ca></ca></data>	(OPERAND) - IMMEDIATE DATA	8,16,32	80
ALL	СМРА 3 сево, Ап	(OFERANDZ) - (OFERANDI)	16,32	-
ALL	CMP.s <ca>, Dn</ca>	(OFFRANDZ) - (OFFRANDI)	8,16,32	∞
ALLOWABLE EFFECTIVE ADDRESS MODES	NOTATION	OPERATION	OPERAND SIZE	OPF INSTRUCTION S

MT8-108-1

STRING COMPARISONS

no - IF source = destanation CMPM.L (A0)+,(A1)+ Done? LP

- MSLW - MDLW

LSLW

THEN go to LP

ELSE return

yes - return

LSLW WJSJ-MDLW - MDLW - MSLW MSLW

- MDLW

A1 + MSLW

MSLW - Most Significant LongWord MDLW - Middle LongWord LSLW - Least Significant LongWord

INTEGER ARITHMETIC INSTRUCTIONS

_									
	ALLOWABLE EFFECTIVE ADDRESS MODES		DATA	DATA	DATA	DATA	DATA	DATA	
	NOTATION	EXT.s Dn	MULS.W ced, Dr	MULU.W cad, Da	NEG.4 <ea>></ea>	CLR sea	DIVS.W <a.>. Dr.</a.>	DIVU.W <=>, Dn	
	OPERATION	(DESTINATION) Sign-extended — DESTINATION	(SOURCE) • (DESTINATION) —— DESTINATION	(SOURCE) • (DESTINATION) —— DESTINATION	0 - (DESTINATION)	0 — DESTINATION	(DESTINATION) + (SOURCE) DESTINATION	(DESTINATION) + (SOURCE) DESTINATION	
	OPERAND SIZE	16,32	91	91	8,16,32	8,16,32	91	91	
	INSTRUCTION	EXT	MULS	MULU	NEG	ST.	SAJIC	DIXIO	

s = size (B, W, or L)

MT8-110-1

MC68000 - DIVIDE INSTRUCTION DIVU, DIVS

- DIVIDEND IS A 32 BIT DATA REGISTER
- DIVISOR IS A 16 BIT EFFECTIVE ADDRESS (DATA)
- THE RESULT IS IN THE SPECIFIED DATA REGISTER

15	OUOTIENT
16	_
31	REMAINDER

- IF THE DIVISOR IS ZERO, AN EXCEPTION OCCURS
 - IF OVERFLOW IS DETECTED,

AND OPERANDS ARE UNAFFECTED

ALLOWABLE EFFECTIVE ADDRESS MODES MEMORY ALTERABLE ASd s #<data>,Dy LSds #<data>,Dy ASd.s Dx, Dy NOTATION LSd.s Dx. Dy ASd.W ceas C OPERAND OF OPERAND C OPERAND OF OPERATION

ĄSĮ.

8,16,32

ASL ASR

OPERAND SIZE

NSTRUCTION

ASR

91

널

8,16,32

LSL

SHIFT AND ROTATE INSTRUCTIONS

ROds Dx, Dy
ROds #<daus, Dy ROAW COL LSd.W cens O POPERAND C OPERAND PC C + OPERAND **80** ROL LSR 8,16,32 9 9

ROL ROR

MEMORY ALTERABLE

s = size(B, W, or L)d = direction (L or R) MC68000 - MULTIPLE SHIFTS

ROL.W (A0) 13 (5 CLOCK CYCLE WRITE) ROL.W (A0) 13

*MULTIPLE SHIFT IN MEMORY

N TIMES TOTAL # CLOCK CYCLES = 13N

*BRING MEMORY TO Dn FOR A MULTIPLE SHIFT 8 6+2N 9 MOVE.W (A0), D1 ROL.W #N,D1 MOVE.W D1, (A0)

TOTAL # CLOCK CYCLES = 23 + 2N 23 + 2N < 13N 23 < 11N *REFER TO APPENDIX D IN USER'S MANUAL

MT8-115

MT8-049

Motorola

Appendix A - 51

LOGIC INSTRUCTIONS

_				
				ALLOWABLE
INSTRUCTION OFFERAND	SIZE	OPERATION	NOTATION	ADDRESS
AND	8,16,32	(SOURCE) A (DESTINATION)	AND.s Da,ces	ALTERABLE MEMORY
			AND.s ceap, Dri	DATA
ANDI	8,16,32	IMMEDIATE DATA ∧ (DESTINATION) —— DESTINATION	ANDI:s # <data>,<ca>></ca></data>	DATA ALTERABLE OR CCR OR •STATUS REG.
EOR	8,16,32	(SOURCE) ⊕ (DESTINATION) DESTINATION	EOR.s Da,cea>	DATA ALTERABLE
EORI	8,16,32	[MMEDATE DATA⊕ (DESTINATION) DESTINATION	EORU.s #cdata>,cea>	DATA ALTERABLE OR CCR OR •STATUS REG.
NOT	8,16,32	(DESTINATION)—◆ DESTINATION	NOT.1 ceu>	DATA ALTERABLE
ŧ	8,16,32	(SOURCE) V (DESTINATION)	OR. I Dr., ceas	ALTERABLE MEMORY
		DESTINATION	OR.s <ea>>, Dm</ea>	DATA
ORI	8,16,32	IMMEDIATE DATA V (DESTINATION) DESTINATION	ORLs #cdata>,cea>	DATA ALTERABLE OR CCR OR •STATUS REG
 PRIVILEGED – REF. USERS MANUAL 	REF. USER	S MANUAL		

s = size(B, W, or L)

PROGRAM CONTROL INSTRUCTION (1 of 2)

LING	JKAIN	FRUGRAIM CONTROL INSTRUCTION (1 of 2)	CTION	1 of 2)
INSTRUCTION	OPERAND SIZE	OPERATION	NOTATION	ALLOWABLE EFFECTIVE ADDRESS MODES
Box	8,16	If co then PC + d	Bcc <abb></abb> bc/s	PCREL
BRA	8,16	24 ← P+24	BRA dabeb	PC REL
BSR	8,16	PC → -(SP);PC+d → PC	BSR dabets	PCREL
JMP		DESTINATION PC	JMP <eu>></eu>	CONTROL
JSR		PC → (SP); DESTINATION → PC	JSR ceas	CONTROL
NOP	1	R+2 → R	NOP	
•RESSET	!	RESET EXTERNAL DEVICES	RESET	
•RTE		(SP) + → SR:(SP) + → PC	RTIB	
KTR	1	(SP) + → CC; (SP) + → PC	RTR	
RTS		(SP) + → PC	RTS	
•STOP	16	IMMEDIATE DATA SR: STOP PROGRAM EXECUTION	STOP # <data></data>	

Example: STOP #\$2500 SR before Example: STOP #\$2500 SR before Output signals same as HALTed state Ways to exit STOP Interrupt > MASK alter RESET T=1 in SR before S=0 in SR alter S=0 in SR alter S=0 in SR alter

PROGRAM CONTROL INSTRUCTIONS (2 of 2)

NOTATION	TRAP # <data></data>	TRAPV
OPERATION	PC → -(SSP); SR → -(SSP); (VECTOR) → PC	If V≖1 then TRAP; else proceed
OPERAND SIZE	1	
INSTRUCTION OPERAND SIZE	TRAP	TRAPV

MT8-119

•PRIVILEGED

POSITION INDEPENDENT CONCEPT

- Position Independent programs should execute from any load address.
- This is a relocatable program at the machine code level.
- To make a program Position Independent, the MC68000 instruction set must be able to use the Program Counter as an effective address register.
- The program counter relative addressing mode meets this requirement.

Motorola

POSITION INDEPENDENT CODE

WHY?:

must select program load addresses based on available memory at run Operating systems that have no address translation hardware (MMU)

The programmer cannot select or determine what RAM area will be

complete freedom to choose where that program will reside in a A customer that has purchased a software product should have computer system.

HOW?:

containing code and data that accomplishes a unit of work, A PROGRAM is defined as a contiguous set of addresses

THEN: Any addresses used by the PROGRAM to access code or data within the PROGRAM, must be generated with a programcounter-relative addressing mode.

Appendix A

_ 55

fixed addresses in memory, must be generated without using a Any addresses used by the PROGRAM to access devices with program-counter-relative addressing mode. ALSO:

MC68000 - MULTIPLE TABLE LOOKUP PROGRAM EXAMPLE

MULTIPLE TABLE LOOKUP (NOT POSITION INDEPENDENT)

"USING LOOKUP TABLES, THE ASCII, DECIMAL, "AND GRAY CODE VALUES OF HEX DIGITS IN DO ARE STORED AT LOCATION TO WHICH "AI IS POINTING AO POINTS TO THE SET "OF LOOKUP TABLES."

"AO POINTS TO ASC "ASCII VALUE GOES "BCD VALUE GOES "GRAY VALUE GOES RTS
DC.B \$30,\$31,\$32,\$33,\$34,\$35,\$36,\$31,\$38,\$39
DC.B \$41,\$42,\$43,\$44,\$45,\$46
DC.B \$41,23,45,6,78,9,\$10,\$11,\$12,\$13,\$14,\$15
DC.B 0,1,3,2,6,7,5,4,\$C,\$D,\$F,\$E,\$A,\$B,9,8
END ORG \$1000 MOVE W #ASCTABLE.A0 ... MOVE B 0(A0,D0),(A1) + ... MOVE B \$20(A0,D0),(A1) + ... BCDTABLE GRCTABLE ASCTABLE 4E75 303132333435 414243444546 000102030405 000103020607 12F00000 12F00010 307C1012 12F00020 00001000 00001000 00001004 00001006 00001010 00001012 00001012

PROGRAM COUNTER WITH DISPLACEMENT

• EA = (PC) + displacement

· An Example

HERE(PC)

JMP

MPU PC

HERE owl + 2 + 100 ow! + 2

owl + 2

extension

тетопу 4E FA 0108

<u>₩</u>0

— EA -

NEW OP WORD

• OP WORD DECODE

ow! + 2 + 100

REG 010 MODE Ξ 0100 1110 GIVEN

DISPLACEMENT EXTENSION

Displacement is always a word SIGN EXTENDED to a long word.

1-129-2

PROGRAM COUNTER RELATIVE ABSOLUTE CODE

PC WITH INDEX AND DISPLACEMENT

JMP CAT(PC) 4E71 CAT NOP 4EFA 001E 1020 1000

• The Index Register (Rx) can be a word or a long word. It is in 2's complement notation.

• The displacement is always a byte. It is in 2's complement notation.

 $\begin{array}{c} owl + 2 \\ 0000 \ 0008 \\ \hline 0000 \ 0010 \\ owl + 2 + 8 + 10 \end{array}$

PC.L = A3.W = d.B = EA =

• EA Calculation

MTB-679

PROGRAM COUNTER WITH INDEX (and displacement)

- EA = (PC) + (Rx) + displacement
 - · An Example

JMP THERE(PC,A3.W) PC OWL + 2 +8 + 10 FFFF 0008 MPU PC owl + 2 A3

THERE + 8 OWL + 2 + 8 + 10 owl + 2

extension

memory 4EFB B010

owl

NEW OP WORD

• OP WORD DECODE

REG

MODE

GIVEN

— EA —

011

Ξ

0100 1110 11 • EXTENSION DECODE

D/A REG# SIZE GIVEN ←-displacement -0001 0000 99 0 = =

MT8-130-2

M 18: 131

MC68000 - EFFECTIVE ADDRESSING MODE CATEGORIES

DATA MEMORY CONTROL ALTERABLE × $\times \times \times$ \times \times \times $\times \times \times \times \times \times$ × \times \times \times × × × \times \times \times \times \times \times \times × EFFECTIVE ADDRESS MODES d, (An,Rx) XXX.W d 16 (An) XXX.L (An) + -(An) (An) An Ω

× d, (PC,Rx) #XXXX d 16 (PC)

MTB-132-2

POSITION INDEPENDENT PROGRAMS USEFUL INSTRUCTIONS FOR

	Operand Size	Operation	Notation	Allowable Address Category
LEA	32	<ca> → An</ca>	<ca> → An LEA < ca>, An</ca>	Control
	Operand Size	Operation	Notation	Allowable Address Category

MT8-133

MC68000 - LEA INSTRUCTION

A0 111111111 A1 22222222 A2 XXXXXXXXX	LEA -\$6F (A0,A1.L), A2	11111111 2222222 FFFFF91 1333332C4	A0 111111111 A1 22222222 A2 333332C4
A0 01020304 D0 0000A123 A1 XXXXXXXX	LEA \$10 (A0,D0), A1	01020304 FFFFA123 00000010 10101A437	A0 01020304 D0 0000A123 A1 0101A437
A0 01234567 A1 xxxxxxxxx	LEA (A0), A1	01234567 D	A0 01234567 A1 01234567
REGISTER CONTENTS PRIOR TO EXECUTION	INSTRUCTION LEA (A0), A1	EXECUTION	REGISTER CONTENTS AFTER EXECUTION

MC68000 - MULTIPLE TABLE LOOKUP PROGRAM EXAMPLE

MULTIPLE TABLE LOOKUP

"USING LCOKUP TABLES, THE ASCII, DECIMAL, "AND GRAY CODE VALUES OF A HEX DIGIT TIM DO ARE STORED IN LOCATIONS TO WHICH "AI IS POINTING, AO POINTS TO THE SET "OF LOOKUP TABLES.

ORG \$1000

12F00000 12F00010 12F00020

00001000 4 00001004 1 00001008 1 00001010 4 00001012 3 00001018 3 00001032 0 00001032 0

Control

PEA < ca>

(SP) ★ < SP)

32

PEA

000010000 11FA0010

394142434445 000102030405 BCDTABLE 303132333435 ASCTABLE

000103020607 GRCTABLE 080908

MT8 136-1

MC68000 - WRITING PC RELATIVE

PC,D0.W) MOVE.B D1,TAE MOVE.B D1,TA You can't:

LEA TABLE(PC),A0 MOVE.B D1,(A0) But you can:

LEA TABLE(PC,D0.W),A0 MOVE.B D1,(A0)

DATA SPACE 11 (A0) PROGRAM SPACE PROGRAM SPACE u TABLE(PC,D0.W) TABLE(PC)

program space NOTE

IF CS = ADDR • FC1 • FC0

THEN NO WRITES ALLOWED

MT8-134

CONTROL ADDRESSING MODES ARE ALLOWED

MT8-516-1

EXTENDED PRECISION INSTRUCTIONS

INSTRUCTION	OPERAND SIZE	OPERATION	NOTATION	ALLOWABLE EFFECTIVE ADDRESS MODES
ADDX	8,16,32	(DESTINATION) + (SOURCE) +X DESTINATION	ADDX.s Dy, Dx ADDX.s -(Ay), -(Ax)	
SUBX	8,16,32	(DESTINATION) - (SOURCE) -X → DESTINATION	SUBX.s Dy, Dx SUBX -(Ay), -(Ax)	
NEGX	8,16,32	0 - (DESTINATION) - X	NEGX.s <ea>></ea>	DATA ALTERABLE
ROXL	8,16,32	ROXL X OPERAND	ROXd.s Dx, Dy	
ROXR	16	ROXR OPERAND C	ROXd.s # <data>,Dy</data>	
			ROXd.W <ea></ea>	MEMORY ALTERABLE

d = direction (L or R) s = size (B, W, or L)

MT8-703-1

EXTENDED PRECISION ARITHMETIC

Clear "X" bit in CCR
Set "Z" bit in CCR
LP ADDX.L -(A0),-(A1)
Done?
no - go to LP
yes - return

MSLW - Most Significant LongWord MDLW - Middle LongWord LSLW - Least Significant LongWord

Should loop control instruction(s) affect X or Z?_

BCD OPERATIONS

OPERAN SIZE SIZE	OPERAND SIZE	OPERATION	NOTATION	ALLOWABLE RFFECTIVE ADDRESS MODES
ABCD	во	(SOURCE), o+ (DESTINATION)10+ X DESTINATION	ABCD.B Dy.Dr ABCD.B -(Ay), -(Ax)	
NBCD	80	0 - (DESTINATION) ₁₀ - X	NBCD.B <ea>></ea>	DATA ALTERABLE
SBCD	**	(DESTINATION), - (SOURCE), - X DESTINATION	SBCD.B Dy, Dx SBCD.B -(Ay), -(Ax)	

MT8-113-1

BIT MANIPULATION INSTRUCTIONS

TO THOMAS OF THE STATE OF THE S	o			ALLOWABLE RFFECTIVE ADDRESS
INSTRUCTION	SIZE	OPERATION	NOTATION	MODES
		 (bit number OF Destination) — ► Z (bit number OF Destination) 	BCHG Da, ceas	Ē
ВСНО	8,32	bit number OF Destination	BCHG # <data>,<ea>></ea></data>	ALTERABLE
a t	1,1	~ (bit number OF Destination) — Z	BCLR Du, ceas	DATA
4	100	0 — ▶ bit number OF Destination	BCLR # <data>,cea></data>	ALTERABLE
BSET	8,32	- (bit number OF Destination) Z	BSET Du, cea>	DATA
		i — Dit number OF Destination	BSET # <data>, cea></data>	ALIEKABLE
REST	8,32	· (bit number OF Destination) — • Z	BTST Da, ceas	DATA FXC1 IDING
			BTST # <data>,<ea></ea></data>	IMMEDIATE)

•1. FOR MEMORY OPERATION, THE DATA SIZE IS BYTE. 2 FOR DATA REG. OPERATION, THE DATA SIZE IS LONG WORD.

MC68000 - BIT INSTRUCTION EXERCISE

Write a sequence of instructions that determine the value of the shaded bit. They should branch to label READY if the bit is

clear.

\$1000 \$1002

SPECIAL INSTRUCTIONS

MT8: 505-1

				ALLOWARIE
 INSTRUCTION	OPERAND SIZE	OPERATION	NOTATION	ADD. CATEGORY
		REGISTERS — DESTINATION	MOVEM REGILIST,	ALTERABLE CONTROL AND
 MOVEM	16,32	(SOURCE) REGISTERS	MOVEM < CL.	CONTROL AND POST INCREMENT
 LINK	1	An - (SP); SP - An; SP+d - SP	LINK An,# (disp.)	
 UNILK		An → SP; (SP) + → An	UNLK An	
 Sc	œ	IF ∞ THEN 1's → DEST. ELSE 0's → DESTINATION	Scc <68>	DATA ALTERABLE
 DBcc	16	IF 72 THEN Da.I → Da; IF Da.≠.1 THEN PC+4 → PC	DB & Daw, LABEL	
 CHK	16	IF Da IS LESS THAN 0 OR GREATER THAN (cas) THEN EXCEPTION	CHK <ca>, Dn.W</ca>	DATA
 MOVEP	16,32	(SOURCE) — DESTINATION	MOVEP Dx, d(Ay) MOVEP d(Ay), Dx	1

*DBF - DBRA

MT8-117-1

MT8-138-1

SPACE
WORK
LOCAL
PASSING /
TER

disadvantages	MPU registers used up limited number	slower access	slower access non-reentrant	slower access at static return address must be adjusted
advantages	fast access dynamic recutrant	MPU registers not used up dynamic reentrant	MPU registers not used up dynamic	RAM/MPU register resources not used position independent
description	calling routine loads registers/ subroutine uses registers	calling routine pushes parameters onto stack/ subroutine allocates storage on stack	pre-defined memory area(s)	parameters in instruction stream following the call. subroutine must compute location of parameters
location	registers	stack	таівох	*in line

Appendix A

· parameter passing only

Parameters may be passed by value or by address.

MTB- 515-2

MC68000 - THE PROBLEM OF REENTRANCY

Reentrant - a program which may be exited by means of an interrupt or subroutine call and be re-entered and operate properly.

Example: not reentrant (using fixed address)

MT8-507-3

Motorola

Appendix A - 65

EFFECTIVE ADDRESSING MODES AND CATEGORIES

EFFECTIVE ADDRESS			ADDRESSING CATEGORIES			
MODES	MODE	REGISTER	DATA	MEMORY	CONTROL	ALTERABLE
Dn An (An)	000 001 010	REGISTER NUMBER REGISTER NUMBER	X	v	x	X X X
(An) +		REGISTER NUMBER	X	X	Α	
(An) -(An) d ₁₆ (An)	011 100 101	REGISTER NUMBER REGISTER NUMBER REGISTER NUMBER	X X X	X X X	x	X X X
dg (An,Rx) xxx.W xxx.L	110 111 111	REGISTER NUMBER 000 001	X X X	X X X	X X X	X X X
d ₁₆ (PC) d ₈ (PC,Rx) #xxx	111 111 111	010 011 100	X X X	X X X	X X	

MC68000 - EA MODE CATEGORY **DESCRIPTION**

DATA

If an effective address mode may be used to refer

to data operands, it is considered a data addressing effective address mode.

MEMORY

If an effective address mode may be used to refer to memory operands, it is considered a memory

addressing effective address mode.

ALTERABLE

If an effective address mode may be used to refer to alterable (writable) operands, it is considered an alterable addressing effective address mode.

CONTROL

If an effective address mode may be used to refer to memory operands without an associated size, it

is considered a control addressing effective

address mode.

BINARY CODED DECIMAL MT8-527-1 Sc TRAPV RTE RTR RTS TRAP SBCD CONDITIONAL CONTROL ABCD NBCD Вс ОВс BSR BSR IMP ISR NOP MC68000 INSTRUCTION SET LINK UNLK STOP MOVEM MULTIPLE PRECISION BIT MANIPULATION SHIFTS & ROTATES ROXR BSET BTST LSR ROL ROR SPECIAL LEA PEA RESET MOVEP ADDX NEGX ROXL BCHG BCLR ASL LSL ILLEGAL CHK TAS ARITHMETIC MOVE SWAP LOGICAL MUL NEG SUB NOT OR S DATA AND EOR ADD CMP DIV TST EXE Motorola

MC68000 - PRIVILEGE STATES

STATE	SBIT	0	OPERATIONAL RESTRICTIONS
USER	•	PR	PRIVILEGED INSTRUCTIONS WHICH ARE NOT ALLOWED:
		INSTRUCTION	OPERATION
		RESET	RESET EXTERNAL DEVICES
		RTE	RETURN FROM EXCEPTION
		STOP	STOP PROGRAM EXECUTION
		ORI TO SR	LOGICAL OR TO STATUS REGISTER
		MOVE USP	MOVE USER STACK POINTER
		ANDI TO SR	LOGICAL AND TO STATUS REGISTER
		EORI TO SR	LOGICAL EOR TO STATUS REGISTER
		MOVE EA TO SR	LOAD NEW STATUS REGISTER
SUPERVISOR	-	NO RESTRICTION EXECUTED	NO RESTRICTIONS - ALL INSTRUCTIONS MAY BE EXECUTED
		The second secon	

Appendix A

ADDRESSING MODES THAT SIGN EXTEND THE ADDRESS OR THE DATA

1. ABSOLUTE SHORT WORD ADDRESS EXTENDED TO LONG WORD ADDRESS

2. ADDRESS REGISTER DIRECT (AS A DESTINATION) WORD DATA EXTENDED TO LONG WORD DATA

3. ADDRESS REGISTER INDIRECT WITH DISPLACEMENT WORD DISPLACEMENT EXTENDED TO LONG WORD DISPLACEMENT

ADDRESS REGISTER INDIRECT WITH INDEX
A. WORD INDEX EXTENDED TO LONG WORD INDEX
B. BYTE DISPLACEMENT EXTENDED TO LONG WORD
DISPLACEMENT

5. PROGRAM COUNTER WITH DISPLACEMENT SAME AS 3 ABOVE

6. PROGRAM COUNTER WITH INDEX SAME AS 4 ABOVE

MT8: 192

INSTRUCTIONS THAT SIGN **EXTEND THE DATA**

SOURCE DATA SIGN EXTENDED TO LONG WORD 1. ADDA.W (ADDQ.W TO An = ADDQ L.)

2. CMPA.W

SOURCE DATA SIGN EXTENDED TO LONG WORD

SIGN EXTENDS BYTE TO WORD OR WORD TO LONG WORD 3. EXT.W OR EXT.L

SOURCE DATA SIGN EXTENDED TO LONG WORD

4. SUBA.W (SUBQ.W TO An = SUBQ.L)

5. MOVEA.W

DESTINATION IS AN ADDRESS REGISTER 6. MOVEM.W MEMORY TO REGISTERS

SOURCE DATA SIGN EXTENDED TO LONG WORD

7. MOVEQ.L IMMEDIATE BYTE SIGN EXTENDED TO LONG WORD DESTINATION IS ANY REGISTER

DESTINATION IS A DATA REGISTER

MT8-084-1

INSTRUCTION PREFETCH

DEFINITION: The execution of an instruction begins when the microroutine for that instruction is entered.

- When the execution of an instruction begins, the operation word and the word following have already been fetched. The operation word is in the instruction decoder.
- 2. In the case of multiword instructions, as each additional word of the instruction is used internally, a fetch is made to the instruction stream to replace it.
- 3. The last fetch for an instruction from the instruction stream is made when the operation word is discarded and decoding is started on the next instruction.
- 4. If the instruction is a single-word instruction causing a branch, the second word is not used. But because this word is fetched by the preceding instruction, it is impossible to avoid this superfluous fetch.
 - 5. In the case of an interrupt or trace exception, both words are not used.
- 6. The program counter usually points to the last word fetched from the instruction stream.

INSTRUCTION PREFETCH EXAMPLE:	ETCH EXAMPLE:	MICROROUTINE	«EA»	ODEBAND
ORG 0	RESET VECTOR		Ş	מוסוח מוסט
DC:L	INISSP		~~~	SSPLOW
DC.L	RESTART	RESET	\$	PC HIGH
			\$6	PC LOW
OHO DHO	INTVECTOR		<u>ව</u>	\forall
DC.L	INTHANDLER		+(PC)	BRA.S
(NOP	+(PC)	ADD
DHO THATA		BBA C	(PC+d)	SUB
HEVIAHI:		0.2.0	+(PC)	displ
L C	i	<interrupt occurs=""></interrupt>	+(PC)	CMP
BRA.S	LABEL	SUB d(A0),A1	d(A0)	<src></src>
ADD.W	00,01		+(PC)	SGE
LABEL:			(SSP)	PC LOW
SUB.W	disp(A0),A1		IACK	VECTOR#
CMP.W	D2,D3		-(SSP)	PC HIGH
SGE.B	70		-(SSP)	SB
••		INTERRUPT	S (S	PC HIGH
			+(VR)	PC LOW
IN HANDLEH:			(PC)	MOVE
MOVE.W	/ LADH1,LADR2		+(PC)	XXX HIGH
a CON			+(PC)	MO] XXX
SWAP.W	04		+(PC)	YYY HIGH
			×	<src></src>
NOTE: The order of operations described	pediane declered	MOVE XXX.L, YYY.L	(PC)	YYYLOW
within each microroutine is not exact. but	ne is not exect, but		+(PC)	MON
is intended for illustral	for illustrative purposes only.		₹	<dest></dest>
			+(PC)	SWAP
		NOP	+(PC)	OPWORD

MT8-699-1

MC68000 - SIGNAL SUMMARY

			ACTIVE	H	- Z
SIGNAL NAME	MNEM	INPUT/OUTPUT	STATE	ON HALT	ON BGACK
ADDRESS BUS	A1-A23	OUTPUT	HIGH	YES	YES
DATA BUS	D0-D15	INPUT/OUTPUT	HIGH	YES	YES
ADDRESS STROBE	AS	OUTPUT	LOW	NO	YES
READ/WRITE	R/W	OUTPUT	READ-HIGH WRITE-LOW	NO	YES
UPPER & LOWER DATA STROBES	UDSLIDS	OUTPUT	LOW	NO	YES
DATA TRANSFER ACKNOWLEDGE	DTACK	INPUT	LOW	NO	NO
BUS REOUEST	BR	INPUT	LOW	NO	NO
BUS GRANT	BG	OUTPUT	LOW	NO	NO
BUS GRANT ACKNOWLEDGE	BGACK	INPUT	LOW	NO	NO
INTERRUPT PRIORITY LEVEL	IPL0,IPL1 IPL2	INPUT	LOW	NO	NO
BUS ERROR	BERR	INPUT	LOW	NO	NO
RESET	RESET	INPUT/OUTPUT	LOW	NO1	NO ¹
HALT	HALT	INPUT/OUTPUT	LOW	NO1	NO1
ENABLE	E	OUTPUT	HIGH	NO	NO
VALID MEMORY ADDRESS	VMA	OUTPUT	LOW	NO	YES
VALID PERIPHERAL ADDRESS	VPA	INPUT	LOW	NO	NO
FUNCTION CODE OUTPUT	FC0,FC1, FC2	OUTPUT	нісн	NO	YES
CLOCK	CLK	INPUT	HIGH	NO	NO
POWER INPUT (2)	Vœ	INPUT			
GROUND (2)	GND	INPUT			

NOTES: 1. OPEN DRAIN

