

Выпуклость множеств и функций

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ 4

Даня Меркулов Пётр Остроухов

Выпуклость. Сильная выпуклость.

Семинар

Оптимизация для всех! ЦУ

Напоминание с лекции

Выпуклые множества

Отрезок

Пусть x_1, x_2 два вектора в \mathbb{R}^n . Тогда отрезок, проходящий через них, определяется следующим образом:

$$x=\theta x_1+(1-\theta)x_2,\;\theta\in[0,1]$$

Рисунок 1. Иллюстрация отрезка между точками x_1 , x_2

Выпуклое множество

Множество S называется **выпуклым**, если для любых x_1, x_2 из S отрезок между ними также лежит в S, т.е.

$$\forall \theta \in [0,1], \ \forall x_1, x_2 \in S : \theta x_1 + (1-\theta)x_2 \in S$$

i Example

Любое аффинное множество, луч, отрезок - все они являются выпуклыми множествами.

Рисунок 2. Верх: примеры выпуклых множеств. Низ: примеры невыпуклых множеств.

1 Question

Докажите, что шар в \mathbb{R}^n (т.е. множество $\{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\| \leq r\}$) - является выпуклым.

1 Question

Является ли полоса $\{x \in \mathbb{R}^n \mid \alpha \leq a^{\top}x \leq \beta\}$ выпуклой?

Задача З

1 Question

Пусть S такое, что $\forall x,y \in S o rac{1}{2}(x+y) \in S$. Является ли это множество выпуклым?

1 Question

Является ли множество $S=\{x\mid x+S_2\subseteq S_1\}$, где $S_1,S_2\subseteq \mathbb{R}^n$ с выпуклым S_1 , выпуклым?

Функции

Выпуклая функция

Функция f(x), определенная на выпуклом множестве $S \subseteq \mathbb{R}^n$, называется выпуклой на S, если:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

для любых $x_1, x_2 \in S$ и $0 \le \lambda \le 1$.

Если вышеуказанное неравенство выполняется как строгое неравенство $x_1 \neq x_2$ и $0 < \lambda < 1$, то функция называется **строго выпуклой** на S.

Рисунок 3. Разница между выпуклой и невыпуклой функцией

Сильная выпуклость

f(x), определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$, называется μ -сильно выпуклой (сильно выпуклой) на S, если:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) - \frac{\mu}{2}\lambda(1-\lambda)\|x_1 - x_2\|^2$$

для любых $x_1, x_2 \in S$ и $0 \le \lambda \le 1$ для некоторого $\mu > 0$.

Рисунок 4. Сильно выпуклая функция больше или равна квадратичной аппроксимации Тейлора в любой точке

Критерии выпуклости

Дифференциальный критерий выпуклости первого порядка

Дифференцируемая функция f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ является выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \geq f(x) + \nabla f^T(x)(y-x)$$

Пусть $y = x + \Delta x$, тогда критерий станет более удобным:

$$f(x + \Delta x) \geq f(x) + \nabla f^T(x) \Delta x$$

Рисунок 5. Выпуклая функция больше или равна линейной аппроксимации Тейлора в любой точке

Дифференциальный критерий выпуклости второго порядка

Дважды дифференцируемая функция f(x) определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$ является μ -сильно выпуклой тогда и только тогда, когда $\forall x\in \mathrm{int}(S)\neq\emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

Другими словами:

$$\langle y, \nabla^2 f(x)y \rangle \geq \mu \|y\|^2$$

Эксперимент с ЈАХ

Почему выпуклость и сильная выпуклость важны? Проверьте простой скод.

1 Question

Докажите, что $f(x) = \|x\|$ является выпуклой на \mathbb{R}^n .

1 Question

Докажите, что $f(x) = x^{\top} A x$, где $A \succeq 0$ - является выпуклой на \mathbb{R}^n .

1 Question

Докажите, что если f(x) является выпуклой на \mathbb{R}^n , то $\exp(f(x))$ является выпуклой на \mathbb{R}^n .

1 Question

Докажите, что если f(x) является выпуклой неотрицательной функцией и $p \geq 1$, то $g(x) = f(x)^p$ является выпуклой.

i Question

Докажите, что если f(x) является вогнутой положительной функцией над выпуклым S, то $g(x) = \frac{1}{f(x)}$ является выпуклой.

i Question

Докажите, что следующая функция является выпуклой на множестве всех положительных знаменателей

$$f(x) = \frac{1}{x_1 - \cfrac{1}{x_2 - \cfrac{1}{x_3 - \cfrac{1}{\dots}}}}, x \in \mathbb{R}^n$$

1 Question

Пусть
$$S=\{x\in\mathbb{R}^n\mid x\succ 0, \|x\|_\infty\leq M\}$$
. Докажите, что $f(x)=\sum_{i=1}^n x_i\log x_i$ является $\frac{1}{M}$ -сильно выпуклой.

Условие Поляка - Лоясиевича

Условие Поляка - Лоясиевича

Условие Поляка - Лоясиевича выполняется, если выполняется следующее условие для некоторого $\mu>0$,

$$\|\nabla f(x)\|^2 \geq \mu(f(x) - f^*) \forall x$$

Пример функции, которая удовлетворяет условию Поляка - Лоясиевича, но не является выпуклой.

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Пример невыпуклой функции, удовлетворяющей условию Поляка - Лоясиевича 🕏 Open in Colab.

Практические примеры

і Дано

 $X \in \mathbb{R}^{m \times n}, y \in \{0,1\}^n.$

і Дано

 $X \in \mathbb{R}^{m \times n}, y \in \{0,1\}^n.$

! Найти

Найти функцию, которая переводит объект x в вероятность p(y=1|x): $p:\mathbb{R}^m o (0,1)$, $p(x)\equiv \sigma(x^Tw)=\frac{1}{1+\exp(-x^Tw)}$

і Дано

 $X \in \mathbb{R}^{m \times n}, y \in \{0,1\}^n.$

! Найти

Найти функцию, которая переводит объект x в вероятность p(y=1|x): $p:\mathbb{R}^m o (0,1)$, $p(x)\equiv \sigma(x^Tw)=\frac{1}{1+\exp(-x^Tw)}$

🥊 Критерий

Двоичная кросс-энтропия (лог-потери): $L(p,X,y)=-\sum_{i=1}^ny_i\log p\left(X_i\right)+(1-y_i)\log\left(1-p\left(X_i\right)\right),$ которая минимизируется относительно w.

і Дано

 $X \in \mathbb{R}^{m \times n}, y \in \{0, 1\}^n.$

! Найти

Найти функцию, которая переводит объект x в вероятность p(y=1|x): $p:\mathbb{R}^m o (0,1)$, $p(x)\equiv \sigma(x^Tw)=\frac{1}{1+\exp(-x^Tw)}$

Уритерий

Двоичная кросс-энтропия (лог-потери): $L(p,X,y)=-\sum_{i=1}^n y_i \log p\left(X_i\right) + (1-y_i) \log \left(1-p\left(X_i\right)\right),$ которая минимизируется относительно w.

Рассотрите 🕏 эксперименты по логистической регрессии.

Мы можем сделать эту задачу μ -сильно выпуклой, если рассмотрим регуляризованную логистическую потерю как критерий: $L(p,X,y)+\frac{\mu}{2}\|w\|_2^2.$


```
oldsymbol{i} Дано X \in \mathbb{R}^{m 	imes n}, y \in \{-1,1\}^n.
```


і Дано

$$X \in \mathbb{R}^{m \times n}, y \in \{-1,1\}^n.$$

! Найти

Найти гиперплоскость, которая максимизирует маржу между двумя классами:

$$f:\mathbb{R}^m \to \{-1,1\}, \ f(x) = \mathrm{sign}(w^Tx+b).$$

і Дано

 $X \in \mathbb{R}^{m \times n}, y \in \{-1,1\}^n.$

! Найти

Найти гиперплоскость, которая максимизирует маржу между двумя классами:

$$f:\mathbb{R}^m \to \{-1,1\}, \ f(x) = \mathrm{sign}(w^Tx + b).$$

Критерий

Шарнирная функция потерь:

$$L(w,X,y) = \frac{1}{2}\|w\|_2^2 + C\sum_{i=1}^n \max(0,1-y_i(X_i^Tw+b)),$$
 которая минимизируется относительно w и b .

Эта задача является сильно выпуклой из-за квадратичной евклидовой нормы. Рассмотрите 🗬 эксперименты по SVM в том же ноутбуке.

і Дано

 $X \in \mathbb{R}^{m \times n}, y \in \{-1,1\}^n.$

! Найти

Найти гиперплоскость, которая максимизирует маржу между двумя классами:

$$f:\mathbb{R}^m \to \{-1,1\}, \ f(x) = \mathrm{sign}(w^Tx + b).$$

🥊 Критерий

Шарнирная функция потерь:

$$L(w,X,y) = \frac{1}{2}\|w\|_2^2 + C\sum_{i=1}^n \max(0,1-y_i(X_i^Tw+b)),$$
 которая минимизируется относительно w и b .

Эта задача является сильно выпуклой из-за квадратичной евклидовой нормы. Рассмотрите 🗬 эксперименты по SVM в том же ноутбуке.

Рисунок 6. Метод опорных векторов

Рисунок 7. L_2 -регуляризованная шарнирная потеря в пространстве параметров для x=(1,1), y=1

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

1 Question

Является ли это выпуклым?

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

i Question

Является ли это выпуклым?

По теореме Эккарта-Янга это можно решить с помощью SVD: $X^* = U_k \Sigma_k V_k^T$, где $A = U \Sigma V^T$.

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

i Question

Является ли это выпуклым?

По теореме Эккарта-Янга это можно решить с помощью SVD: $X^* = U_k \Sigma_k V_k^T$, где $A = U \Sigma V^T$.

• Выпуклая релаксация через ядерную норму

$$\min_{X} rank(X), \text{ s.t. } X_{ij} = M_{ij}, \ (i,j) \in I.$$

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

i Question

Является ли это выпуклым?

По теореме Эккарта-Янга это можно решить с помощью SVD: $X^* = U_k \Sigma_k V_k^T$, где $A = U \Sigma V^T$.

• Выпуклая релаксация через ядерную норму

$$\min_{X} rank(X), \text{ s.t. } X_{ij} = M_{ij}, \ (i,j) \in I.$$

• Приближение низкоранговой матрицы

$$\min_X \|A - X\|_F^2 \text{ s.t. } rank(X) \leq k.$$

1 Question

Является ли это выпуклым?

По теореме Эккарта-Янга это можно решить с помощью SVD: $X^* = U_k \Sigma_k V_k^T$, где $A = U \Sigma V^T$.

• Выпуклая релаксация через ядерную норму

$$\min_{X} rank(X), \text{ s.t. } X_{ij} = M_{ij}, \ (i,j) \in I.$$

NP-сложная задача, но $\|A\|_* = trace(\sqrt{A^TA}) = \sum_{i=1}^{rank(A)} \sigma_i(A)$ является выпуклой оболочкой ранга матрицы.