

Unit 12

—Design Sequential Circuits with Flip Flops

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

利用触发器设计时序逻辑

- ■模8可逆计数器
- ■自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 码制转换器
- 序列信号发生器

例3: 利用JK触发器设计一个时序锁

- □ 输入: X₁X₂,输出: Z
- □该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11,时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00,都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态,输入00

B—输入00后,再输入01

C-输入00、01后,再输入11,且Z=1

E—错误状态

尔型
, , I. J.

现态	次态 <i>S</i> _{n+1}					
S _n	$X_1 X_2 = 00$ $X_1 X_2 = 01$ $X_1 X_2 = 11$ $X_1 X_2 = 10$					
R	R	В	E	E	0	
В	R	E	С	E	0	
С	R	E	E	E	1	
E	R	E	E	E	0	

现态	次态 <i>S</i> _{n+1}						
S _n	$X_1X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1X_2 = 10$	Z		
R	R	В	E	E	0		
В	R	E	С	E	0		
С	R	E	E	E	1		
E	R	E	E	E	0		

2. 状态化简

3. 状态分配 需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

箱	入	玖]态	次	态		输	入		输出
X_1	X_2	Q_2^n	$\mathbf{Q_1}^{\mathbf{n}}$	Q_2^{n+1}	$\mathbf{Q_1}^{n+1}$	J ₂	K ₂	J₁	K ₁	Z
0	0	0	0	0	0	0	Х	0	Х	0
0	0	0	1	0	0	0	Х	Х	1	0
0	0	1	0	0	0	X	1	0	Х	0
0	0	1	1	0	0	X	1	Х	1	1
0	1	0	0	0	1	0	Х	1	Х	0
0	1	0	1	1	0	1	Х	Х	1	0
0	1	1	0	1	0	X	0	0	Х	0
0	1	1	1	1	0	X	0	Х	1	1
1	0	0	0	1	0	1	Х	0	Х	0
1	0	0	1	1	0	1	Х	Х	1	0
1	0	1	0	1	0	X	0	0	Х	0
1	0	1	1	1	0	X	0	Х	1	1
1	1	0	0	1	0	1	Х	0	Х	0
1	1	0	1	1	1	1	Х	Х	0	0
1	1	1	0	1	0	X	0	0	Х	0
1	1	1	1	1	0	X	0	X	1	1

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

Q_2	nQ₁n			
X_1Q_2	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$Z = Q_2^n Q_1^n$$

$X_1X_2^{Q_2}$	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	X	X	0
01	٦	X	X	0
11	0	X	X	0
10	0	X	X	0
'				

$$\mathbf{J}_1 = \overline{\mathbf{X}}_1 \mathbf{X}_2 \overline{\mathbf{Q}}_2^{\mathbf{n}}$$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

例4: 利用JK触发器设计一个同步二进制串行加法器

- 1. 原始状态图及状态表
 - ① 设加法器内部状态

a—— 无进位

b---- 有进位

② Mealy 状态图

③ Mealy 状态表

现态		Q ⁿ -	¹ / Z	
Qn	$X_1X_2 = 00$	$X_1X_2 = 01$	$X_1X_2=10$	$X_1X_2=11$
а	a/ <mark>0</mark>	a/1	a/1	b/0
b	a/1	b/0	b/0	b/1

- 2. 状态化简 3. 状态分配 a=0, b=1
- 4. 状态转换真值表

输入 现态			次态	输	入	输出
X ₁	X ₂	Qn	Qn+1	J	K	Z
0	0	0	0	0	X	0
0	0	1	0	X	1	1
0	1	0	0	0	X	1
0	1	1	1	X	0	0
1	0	0	0	0	X	1
1	0	1	1	X	0	0
1	1	0	1	1	X	0
1	1	1	1	X	0	1

5. 卡诺图化简

6. 电路实现

方案2: 如何用一位全加器实现?

