Representation of Curves and Surfaces

Graphics Systems /
Computer Graphics and Interfaces

Representation of Curves and Surfaces

Representation of surfaces: Allow describing objects through their surface. The three most common representations are:

- Polygonal mesh
- Bicubic parametric surfaces
- Quadratic surfaces

Parametric representation of curves: Important in 2D computer graphics because and because parametric surfaces are a generalization of these curves.

"Tea-pot" modeled by smooth curved surfaces (bicubic).

Reference model in computer graphics, especially for new techniques of realism texture and surface testing.

Created by Martin Newell (1975)

Polygonal Mesh: Is a collection of edges, vertices and polygons interconnected so that each edge is connected only by one or two polygons.

3D object represented by polygon mesh.

Curve ← → polyline Section of a curved object.

The approximation error can be reduced by increasing the number of polygons, but...

Characteristics of polygonal mesh:

- An edge connects two vertices.
- A polygon is defined by a closed sequence of edges.
- An edge is connected to one or two (adjacent) polygons.
- A vertex is shared by at least two edges.
- All edges are part of a polygon.

The data structure to **represent the polygonal mesh** can have multiple configurations, which are evaluated by **memory space** and processing time needed to get a response, for example:

- Get all the edges that join a given vertex.
- Determine the polygons that share an edge or a vertex.
- Determine the vertices that are attached to an edge.
- Determine the edges of a polygon.
- Plot the mesh.
- Identify errors in the representation, as the lack of an edge, vertex or polygon.

1. Explicit Representation: each polygon is represented as a list of coordinates of its vertices.

An edge is defined by two consecutive vertices, closing the polygon.

$$P = ((x1,y1,z1),(x2,y2,z2), ..., (xn,yn,zn))$$
(X2, y2, z2) (X3, y3, z3)

Evaluation of the data structure: (X1, y1, z1) (X4, y4, z4)

- Large Memory consumption (repeated vertices).
- There is no explicit representation of edges and shared vertices.
- In the graphical representation, the same edge is used (drawn) more than once.
- When you drag a vertex is necessary to know all the edges that share that vertex.

2. Representation by Pointers to a List of Vertices: each polygon is represented by a list of indices (or pointers) for a list of vertices.

$$V=((x1,y1,z1),(x2,y2,z2),\ldots,(xn,yn,zn))$$

Advantages:

- Each vertex of the polygonal mesh is stored only once in memory.
- A coordinate of a vertex is easily changed.

Disadvantages:

- Hard to get the polygons that share a given edge.
- The edges remain being used (drawn) more than once.

3. Representation by Pointers to a List of Edges: each polygon is represented by a list of pointers to a list of edges, wherein each edge appears only once. In turn, each edge points to two vertices that define it and also stores the polygons which it belongs.

A polygon is represented by P = (E1, E2, ..., En) and an edge is represented as E = (V1, V2, P1, P2). If the edge belongs to only one polygon then P2 is *null*.

Advantages:

- The graphic design is easily obtained by scrolling through the list of edges. No repetition occurs in using (drawing) edges.
- The fill (color) of the polygons works is based on the list of polygons. It is easy to perform *clipping* on the polygons.

Disadvantages:

Still not easy to determine the edges that share the same vertex.

Baumgart Solution

- Each vertex has a pointer to one of the edges (random) which share this vertex.
- Each edge has pointers to the "next" edge that share that vertex.

Cubic Curves

Motivation: Smooth curves to represent the real world.

- Representation by polygonal mesh is a first order approximation:
 - The curve is approximated by a sequence of linear segments.
 - Needs a large amount of data (vertices) to obtain a precise curve.
 - Difficult to change the shape of the curve, ie several points need to be repositioned accurately.
- Usally: polynomials of degree 3 (Cubic Curves); the complete curve is formed by a set of smaller cubic curves.
 - degree <3 offer little flexibility in controlling the shape of the curves and do not permit the
 interpolation between two points using the definition of the derivative at the end points. A
 polynomial of degree 2 is specified by three points that define the plane where the curve takes
 place.
 - degree > 3 may introduce unwanted oscillations and requires more computational calculation.

Cubic Curves

The representation of the curves is in the PARAMETRIC form:

$$x = f_x(t), y = f_y(t)$$

ex:
$$x=3t^3 + t^2$$
 $y=2t^3+t$

The explicit form:

$$y=f(x)$$
 ex: $y=x^3+2x^2$

- 1. We cannot have multiple values **y** for the same **x**
- 2. Not possible to describe curves with vertical tangents

The implicit form:

$$f(x,y)=0$$
 ex: $x^2+y^2-r^2=0$

- 1. Restrictions are need to be able to model only one part of the curve
- 2. Difficult to smoothly join two curves

The figure shows a curve formed by two parametric cubic curves in 2D.

General representation of the curve:

x (t) =
$$a_x t^3 + B_x t^2 + C_x t + d_x$$

y (t) = $a_y t^3 + B_y t^2 + C_y t + d_y$
z (t) = $a_z t^3 + B_z t^2 + C_z t + d_z 0 \le t \le 1$

Being:
$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$$

$$Q(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = T.C$$

The above representation is used to represent a single curve. **How to bring together the various segments of the curve?**

We intend joining a point → geometric continuity and

That have the same slope at the junction \rightarrow smoothness (continuity of the derivative).

Ensuring continuity and smoothness at the junction is ensured by matching the derivatives (tangent) curves at the junction point. To this end we calculate:

$$\frac{\partial Q(t)}{\partial t} = \begin{pmatrix} \frac{\partial x(t)}{\partial t} & \frac{\partial y(t)}{\partial t} & \frac{\partial z(t)}{\partial t} \end{pmatrix} = \frac{\partial (CT)}{\partial t} = C \frac{\partial T}{\partial t}$$

With:
$$\frac{\partial T}{\partial t} = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}$$

Types of Continuity:

- G⁰ geometric continuity, degree Zero → curves just join at a point.
- G¹ Geometric continuity, degree One → the direction of the tangent vectors is equal.
- C¹ Parametric continuity, degree One → the tangent at the point of junction have the same direction and amplitude (the first derivative equal).
- Cⁿ Parametric continuity, degree N → curves have, at the junction point, all the same derivatives up to order n.

If we consider t as time, the continuity C^1 means that the speed of an object moving along the curve remains continuous

The continuity C^2 imply that the acceleration would also be continuous.

At the junction point of the curve S the curves C_0 , C_1 and C_2 present different continuities

Parametric continuity is more restrictive than the geometric continuity:

For example: C¹ implies G¹

At the junction point P_2 we have:

Q₂ and Q₃ are G¹ with Q₁

Only Q_2 is C^1 with Q_1 ($TV_1 = TV_2$)

Parametric Cubic Curves- Types of Curves

1. Hermite curves

- Continuity G¹ at junction points
- Geometric vectors:
 - 2 endpoints and
 - The tangent vectors at those points

2. Bezier curves

- Continuity G¹ at junction points
- Geometric vectors:
 - 2 endpoints and
 - 2 points that control the tangent vectors such extremes

3. Curves Splines

- Very extended family of curves
- Greater control continuity at junction points (C Continuity¹ and C²)

Common notation

$$Q(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = T.C$$

$$Q(t) = T.M.G$$

$$\begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix}$$

$$egin{bmatrix} G_1 \ G_2 \ G_3 \ G_4 \end{bmatrix}$$

Matrix T

Base Matrix

Geometric Vector

Base Matrix: Characterizes the type of curve (Hermite, Bezier, etc)

Geometric Vector: Characterizes the geometry of a particular curve.

Common notation

$$Q(t) = T.M.G$$

$$Q(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \end{bmatrix}$$

$$Q(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41}).G_{1} + (t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{2}).G_{2} + (t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43}).G_{3} + (t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44}).G_{4}$$

Conclusion 1: Q (t) is a weighted sum of the elements of the geometric vector

Conclusion 2: Weights are cubic polynomials in t → BLENDING FUNCTIONS

(Blending functions)
$$Q(t) = T.C = T.M.G = B.G$$

Hermite curves

$$Q(t) = T.M_H.G_H = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} M_H.G_H = B_H.G_H$$

$$Q'(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} M_H.G_H$$

Geometric vectors:
$$G_H = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix}$$

$$Q(Q)$$
 $Q(Q)$
 Q'
 Q'

$$Q(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} M_H . G_H = P_1$$

$$Q(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} M_H . G_H = P_4$$

$$Q'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} M_H . G_H = R_1$$

$$Q'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} M_H . G_H = R_4$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} M_H \cdot G_H = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} = G_H$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} M_{H}.G_{H} = \begin{bmatrix} P_{1} \\ P_{4} \\ R_{1} \\ R_{4} \end{bmatrix} = G_{H}$$

$$M_{H} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Hermite curves Blending functions

$$Q(t) = T.M_H.G_H = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} M_H.G_H = B_H.G_H$$

$$M_{H} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad G_{H} = \begin{bmatrix} P_{1} \\ P_{4} \\ R_{1} \\ R_{4} \end{bmatrix}$$

$$G_H = egin{bmatrix} P_1 \ P_4 \ R_1 \ R_4 \end{bmatrix}$$

$$Q(t) = (2t^{3}-3t^{2}+1) P_{1} + (-2t^{3}+3t^{2}) P_{4} + (t^{3}-2t^{2}+t) R_{1} + (t^{3}-t^{2}) R_{4}$$

Blending functions of Hermite curves, referenced by the element of the geometric vector that multiplies, respectively.

Hermite curves - Example

Left: Blending Functions

Center: Y (t) = sum of the four functions of the left

Right: Hermite curve

Hermite curves - Examples

- P₁ and P₄ fixed
- R₄ fixed
- R₁ changing in amplitude

- P₁ and P₄ fixed
- R₄ fixed
- R₁ changing in direction

Hermite curves Example of Interactive Design

- The extreme points can be repositioned
- The tangent vectors can be changed by pulling the arrows
- The tangent vectors are forced to be collinear (continuity G¹) and R₄ is displayed in the opposite direction (higher visibility)
- It is common to have commands to force continuity G⁰, G¹ or C¹

Continuity at the junction:

$$\begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} \longrightarrow \begin{bmatrix} P_4 \\ P_7 \\ K.R_4 \\ R_7 \end{bmatrix}$$

- $K>0 \rightarrow G^1$
- $K = 1 \rightarrow C^1$

Hermite curves

3. Seja a sucessão C1,C2,C3,C4 de curvas de Hermite representadas pelos vectores geométricos juntos. Complete estes com os valores em falta, de forma a obter continuidade do tipo C^1 em todos os pontos de junção e justifique os casos em que isso não seja possível, de acordo com os dados fornecidos.

$$C1 = \begin{bmatrix} 0,0 \\ 3,3 \\ 0,2 \\ ?,? \end{bmatrix}; \quad C2 = \begin{bmatrix} ?,? \\ ?,? \\ 2,0 \\ 0,2 \end{bmatrix}; \quad C3 = \begin{bmatrix} 6,6 \\ 3,6 \\ 0,1 \\ 0,-1 \end{bmatrix}; \quad C4 = \begin{bmatrix} 3,3 \\ 6,3 \\ ?,? \\ 2,0 \end{bmatrix}$$

Geometric Vector:

$$G_{\scriptscriptstyle B} = egin{bmatrix} P_1 \ P_2 \ P_3 \ P_4 \end{bmatrix}$$

For a given curve we can demonstrate that, compared with G_H :

$$R_1 = Q'(0) = 3. (P_2 - P_1)$$

$$R_4 = Q'(1) = 3. (P_4 - P_3)$$

$$G_{H} = \begin{bmatrix} P_{1} \\ P_{4} \\ R_{1} \\ R_{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \end{bmatrix}$$

$$G_H = M_{HB} \cdot G_B$$

$$Q(t) = T.M_H.G_H = T.M_H.(M_{HB}.G_B) = T.(M_H.M_{HB}).G_B$$

• The same Bezier curve representation: $Q(t) = T \cdot M_B \cdot G_B$

$$M_B = M_H.M_{HB} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Q(t) =
$$(1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4$$

Q(t) =
$$(1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4$$

Additional information about the blending functions:

- For t=0 Q(t)= P_1 ; For t=1 Q(t)= P_4 \rightarrow The curve goes through P_1 and P_4
- The sum at any point is 1.

- We can see that Q(t) is a **weighted average of the four control points**; then the **curve is contained within the convex polygon** defined by these points, called the "convex hull".

Continuity of Bezier curves

Continuity G¹:

$$P_4 - P_3 = K.(P_5 - P_4)$$
 with $K > 0$

i.e. P_3P_4 and P_5 must be collinear

Continuity C¹:

$$P_4 - P_3 = K.(P_5 - P_4)$$
 making $K = 1$

Drawing Cubic curves

Two algorithms:

- 1. Evaluation x(t), y(t) and z(t) incremental values of t between 0 and 1.
- 2. Subdivision of the curve: Casteljau Algorithm
- 1. Evaluation of x(t), y(t) and z(t)

It is possible to decrease the number of operations, from 11 multiplications and 10 additions to 9 and 10, respectively.

$$f(t) = at^3 + bt^2 + ct + d = ((at + b).t + c).t + d$$

2. Casteljau algorithm

Perform the recursive subdivision of the curve, stopping only when the curve in question is sufficiently "flat" and "small" to be able to be approximated by a line segment.

Efficient Algorithm: it requires only 6 shifts and 6 additions in each division.

Drawing of Cubic curves - Casteljau Algorithm

Possible stop criteria:

- The curve in question is sufficiently "flat" to be able to be approximated by a line segment.
- The four control points are in the same pixel.

$$L_2 = (P_1 + P_2)/2$$
, $H = (P_2 + P_3)/2$, $L_3 = (L_2 + H)/2$, $R_3 = (P_3 + P_4)/2$

$$R_2 = (H+R_3)/2$$
, $L_4 = R_1 = (L_3 + R_2)/2$

Drawing of Cubic curves

Calteljau Algorithm

```
void DrawCurveRecSub(curve, ε)
{
   if (Straight(curve, ε))
        DrawLine(curve);
   else {
        SubdivideCurve(curve, leftCurve, rightCurve);
        DrawCurveRecSub(leftCurve, ε);
        DrawCurveRecSub(rightCurve, ε);
}
```

Exercise

6. Determine as posições dos quatro pontos de controlo de uma curva de Bézier equivalente à elipse da figura junta:

- a)- Analiticamente.
- b)- Usando métodos baseados no algoritmo de Casteljou.

Cubic Surfaces

Cubic surfaces are a generalization of cubic curves. The equation of the surface is obtained from the equation of the curve:

$$Q(t) = T. M. G$$
, being G constant.

Switch to the variable s: Q(s) = S. M. G

By varying the points of the vector G3D eométrico along a path parameterized by *t* are obtained:

$$Q(s,t) = S.M.G(t) = S.M.\begin{bmatrix} G_1(t) \\ G_2(t) \\ G_3(t) \\ G_4(t) \end{bmatrix}$$

The geometrical matrix is composed of 16 points.

Surface Hermite

For the x coordinate:

$$x(s,t) = S.M_H.G_{Hx}(t) = S.M_H.\begin{bmatrix} P_1(t) \\ P_4(t) \\ R_1(t) \\ R_4(t) \end{bmatrix}_x$$

$$P_{1x}(t) = T.M_{H}.\begin{bmatrix} g_{11} \\ g_{12} \\ g_{13} \\ g_{14} \end{bmatrix}_{x} P_{4x}(t) = T.M_{H}.\begin{bmatrix} g_{21} \\ g_{22} \\ g_{23} \\ g_{24} \end{bmatrix}_{x} R_{1x}(t) = T.M_{H}.\begin{bmatrix} g_{31} \\ g_{32} \\ g_{33} \\ g_{34} \end{bmatrix}_{x} R_{4x}(t) = T.M_{H}.\begin{bmatrix} g_{41} \\ g_{42} \\ g_{43} \\ g_{44} \end{bmatrix}_{x}$$

$$\begin{bmatrix} P_1(t) \\ P_4(t) \\ R_1(t) \\ R_4(t) \end{bmatrix}_x = \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{24} \\ g_{41} & g_{42} & g_{43} & g_{24} \end{bmatrix} M_H^T T^T = G_{Hx} M_H^T T^T$$

It is concluded $x(s,t) = S.M_{H}.G_{Hy}.M_{H}^{T}.T^{T}$

Surface Hermite

Bezier Surface

The equations for the Bezier surface can be obtained in the same way that the Hermite, resulting in:

$$x(s,t) = S.M_B.G_{Bx}.M_B^T.T^T$$

$$y(s,t) = S.M_B.G_{By}.M_B^T.T^T$$

$$z(s,t) = S.M_B.G_{Bz}.M_B^T.T^T$$

The geometric matrix has 16 control points.

Bezier Surface

Continuity C^0 and G^0 is obtained by matching the four points of border control: $P_{14}P_{24}P_{34}P_{44}$

For *G*¹ should be collinear:

 $P_{13}P_{14}$ and P_{15}

 $P_{23}P_{24}$ and P_{25}

 $P_{33}P_{34}$ and P_{35}

 $P_{43}P_{44}$ and P_{45}

and

$$(P_{14}-P_{13}) / (P_{15}-P_{14}) = K$$

$$(P_{24}-P_{23}) / (P_{25}-P_{24}) = K$$

$$(P_{34}-P_{33}) / (P_{35}-P_{34}) = K$$

$$(P_{44}-P_{43}) / (P_{45}-P_{44}) = K$$

