

Submitted to:

113. Usha kizuthiga,

FLAT Teacher,

1 emester-4,

1 CSE-B

PRATUAL SUNDAR

CSE-B

ROLL NO 106121092

 Construct a Mealy Machine which can output E (even) or O (odd), according to the number of 1's in the input stream.

Initially, an empty storing has a no. of 1's , so E is the starting state.

when @ starte E:

on input o, no. of 1's semain even.

on input 1, no. of 1's decome odd.

on input 0, no. of 1's remain odd. when @ state 0:

on in put 1, no. of 1's become even.

nearly machine is successfully constitueted.

Convert the given Mealy Machine into its equivalent Moore Machine.

Analysing in coming transleteons for each state. P1 0/1 P1 , P4 - 1/1 P1 *

both cases output Ps 1.

91 can be associated with output

e, 1/0 ez, es 0/1 ez

both o and I are outputs.

(O)

20 % 1: divided into two states, and (2/1), each being associated with a particular output.

Both o and 1 are outputs.

In both cases output is 1.

So 94 can be associated with output 1.

Moode Machene:

.. Moore machine is successfully constructed

3(a). Construct a minimal DFA for the regular expression (0*10 + 1*0) (01)*.

Delawing an e-NFA for the RE:

constolucting town

rangetton Table

	ECTORE	0	1
→A	A, B, D	ф	4
в	В	В	c
e	c	E	ф
· O	ற	€	Ð
ΦE	E	F	ф
F	F	Þ	E

converting the above E-NFA into a DFA:-

W	0	1		0) 5
COA	85	CD	D	E	θ
PBE	вF	c	8	8	C
0	E	Ð	A CE	EP	×
*F	В	CE	P	× ·	E
c	6	×	REF	F	E
+ 5	P	×	×	×	×

Minimizing the DFA using concept of equivalence

(ABD, CD, BF, C, D, B, F, X) (BE, E, CE, EF)

(ABD, CD, (,D) (BF, ₱) (B)(Y) (BE, E)(CE)

a equivalence

 \mathbf{e}

(ABD, 00,0) (1) (BF) (P) (B)(X) (BE) (E) (CE) (

3 equevalme

(ABD) (CD, D) (C) (BP) (P) (B) (K) (BE) (E) (CE)

4 equivalence

(ABD) (CD, D) (C) (BF) (F) (BD(X) (BF) (E) (CE)

3 equivalence = 4 equivalence obtained clearly CD = D ?; the only reduction position

10 -1 11 states => in minimized

Renaming: $ABD \rightarrow a$, $BE \rightarrow b$, $CD \rightarrow c$, $BF \rightarrow d$, $c \rightarrow e$, $E \rightarrow b$, $CD \rightarrow c$, $CD \rightarrow$

Transition table for reduced OFA =

	0	1	FI	0	1
→a	ь	c	3	9.	e
#b	ol.	e	nh	9	×
c	f	c	1	2	\ f
ol	8	I ch	*j	i	_g
e	ક	×	2	a	2
₽£	i	2			

Reportesenting the DFA granhically:

minimal DFA
with 11 states
way
constructed
esuccessfully.

3(b). Construct a minimal DFA for the regular expression (010)*1 + (1*0)*.

Expansion: (010)*1 + (1*0)*

C- NFA :-

Transition table !-

28	ECLOSE	0	1
A	A, B, E, F	ф	φ
8	В	c	E
0	c	ф	D
D	D.	В	(
E	E, F	ф	d)
F	F	E	F

0	' 1
932	EP
EP	DF
EF	F
BEF	F
EF	P
CEF	EF
	EF EF BEF EF

Myhill repode theo sem, states ABEF = BEF, all others are destin 6 states => 5 states

Renaming

(6)

ABEF -> a, CEP -> b, EF -> c, DF -> d, F ->

Townsitton table:

- 105	0	1
-> 4a	b	c
st b	c	de
	· c	e
d	a	e
e	c	c

Graphical representation of minimal DEF

minimal ! with 5 states constoructed success full

and me proper

1.1

4. Convert the given DFA into its corresponding regular expression (either using Arden's Theorem or State Elimination Method).

	0	1
→ q1	q2	q3
q2	q1	q3
A q3	q2	ql

7

DFA :-

Eaminating

(01) [00]

Elimina try

waiting

(01+1) [(00+1)(01+1)]

simplifying:

(0+E).1[(00+1) (0+E).1]

Minimize the following DFA.

resear.	a	■ b
→q0	q0	q3
q1	q2	q 5
q2	√ q3	¶q4
q3	q0.	q5
1 q4	q0	q6
q5	aq1	q4,
₽ q6 ⁴	ql	q3
San San August	A CHESTORS	SAME THE BY

Myhill thearem

	/\	^	^		
24	×	X	X	Х	
0	V	V	1		-

concept

(96, 91, 8c, 93, 94, 95) (96)

8)

clearly all states are sustinct.

OFA cannot be minimized.

6(a) Prove that o2° is not a regular language using pumping lemma.

Let $L = \{0^n \mid f \mid n > 0\}$ be a regular language \rightarrow (pumping language)

Taking n = 2 as an example to analyse. $0^n = 0^4 \Rightarrow$ strong S = 20002spectors S = 20002spectors S = 20002 10002

6(b) Prove that on2 is **not a regular language** using pumping lemma.

He $L = \begin{cases} 0^{n^2} + n \ge 0 \end{cases}$ be a sugular danguage.

parmy m=3 as an example to analyse.

3 = 0 => Status z = 1060000000

splitting c into 8 = ary >, such that

- 0 1az1 5 p → 3 5 3 0
- @ 191 >0 -> 6 >0
- 1 w = xy 1 z e L => Let i = 2

 w . 0 (6 5) 2 0 2 = 0 5 & L as m = + 15 for any integer n.

condition 3 is veolated

i. Pumping Lemma packed -> L 81 not a oregular language