2021 年度

修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性

―低階数・低次元の場合―

学生証番号 45-196010

フリガナ オクダ タカコ

氏名 奥田 堯子

目次

導	入 .			2
謝	辞 .			3
1	設定	と基え	的な補題	4
	1	.1	記号の設定	4
2	具体	例とヨ	: 定理の証明	4
	2	2.1	具体例: 実階数 1 の古典型単純 Lie 群	4
	2	2.2	G の実階数が 1 の場合 \dots	7
参	考文南	t		7

導入

G を非コンパクトな実半単純 Lie 群,K を G の極大コンパクト部分群で G の Cartan 対合 Θ に対して $K = \Theta K$ なるものとするとき,G/K は $\mathfrak g$ の Killing 形式 B から定まる Riemann 計量 によって Riemann 多様体の構造を持つ。 $\mathfrak g = \mathfrak k \oplus \mathfrak p$ を Θ の微分 $d\Theta$ による $\mathfrak g$ の Cartan 分解とするとき,G/K は $\mathfrak p$ と微分同相であり,G の単位元の G/K での像 eK を通る G/K の極大測地線は B(X,X)=1 なる $X\in \mathfrak p$ によって $e^{tX}K$, $t\in \mathbf R$ と書ける。H を G の非コンパクトな部分 Lie 群で, $H=\Theta H$ を満たすものとし, $\mathfrak p$ での B に対する $\mathfrak h\cap \mathfrak p$ の直交補空間を $\mathfrak h^\perp\cap \mathfrak p$ とする。測地線 $e^{tX}K$ の $\mathfrak h\cap \mathfrak p$ 成分と $\mathfrak h^\perp\cap \mathfrak p$ 成分への分解を与える定理として次の定理が知られている。

定理 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z K \in G/K$ は上への微分同相である.

この定理を用いて $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義すると、任意の $t \in \mathbf{R}$ に対して $e^{tX}K = e^{Y(tX)}e^{Z(tX)}K$ である.

G=SU(1,1), H=SO(1,1) とするとき, $t\in \mathbf{R}$ に対し,Y(tX) は図 1 に図示するような幾何学的な意味を持つ.図 1 は Poincaré 円板における測地線 $e^{tX}K$ (赤色の斜め線) とその上の一点 $e^{tX}K$ から eK の H 軌道 (中央の直線) に下ろした垂線の足 (緑の丸) が $e^{Y(tX)}K$ である.

図 1: Poincaré 円板における Y(tX) の幾何学的意味

本論文では小林俊行氏による次の予想について考察し,G が実階数 1 の場合の肯定的な結果を得た.

予想 $Y(\mathbf{R}\,X)$ は $\mathfrak{h}\cap\mathfrak{p}$ の有界な部分集合である \iff $[X_1,X_2]\neq 0$ であるか $X_1=0$ である. ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に対応する $X\in\mathfrak{p}$ の分解とする.

謝辞

1 設定と基本的な補題

1.1 記号の設定

本論文の基本的な設定は次のとおりであり、この他に必要な条件は都度明示することとする.

記号と定義 1.1

- G を非コンパクト実半単純 Lie 群, H を G の部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- e を G の単位元とし, $o_K := eK \in G/K$ とする.
- B(-,-)を \mathfrak{g} の Killing 形式とし, $\mathfrak{h}^{\perp} \cap \mathfrak{p} := \{W \in \mathfrak{p} \mid \text{任意の } Y \in \mathfrak{h} \cap \mathfrak{p} \text{ に対して } B(Y,W) = 0\}$ とする.

以下の定理 1.2 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する。

定理 1.2 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

ここで、 $Y(\mathbf{R}X)$ の有界性について、次の予想が小林俊行氏によって立てられた。

予想 1.3 (by T. Kobayashi)

ベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^{\perp})$ に対応して $X=X_1+X_2$ と分解すると, $\mathfrak{p}_{H,\mathrm{bdd.}}=\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0 \text{ あるいは } X_1=0\}$ である.

予想 1.3 についての基本的な事項を挙げる.

1. $\mathfrak{p}_{H,\mathrm{bdd.}}=\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0$ あるいは $X_1=0\}$

ここで、 $Z(\mathbf{R} X)$ の有界性については次の定理が知られている.

定理 1.4 [Kob97, Lemmma 5.4]

 $X \in \mathfrak{p}$ に対し、 $\|Z(X)\| \ge \|X\| \sin \varphi(X, \mathfrak{h} \cap \mathfrak{p})$ である.

ここに $\varphi(X,\mathfrak{h}\cap\mathfrak{p})$ は X と $\mathfrak{h}\cap\mathfrak{p}$ の元がなす角度の最小値 $0 \leq \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \leq \frac{\pi}{2}$ であり, $X \in \mathfrak{p} \setminus \mathfrak{h} \iff \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \neq 0$ である.

つまり $X \in \mathfrak{p} \setminus \mathfrak{h}$ ならば $||Z(tX)|| \to \infty$, $|t| \to \infty$ である.

2 具体例と主定理の証明

2.1 具体例: 実階数1の古典型単純 Lie 群

命題 **2.1** G = SO(1,n), SU(1,n), Sp(1,n), H = SO(1,1), $n \ge 2$ に対して予想 1.3 は正しい.

$$G=Sp(1,2),\ \mathfrak{h}=\mathbf{R}egin{pmatrix} 0&1&0\\1&0&0\\0&0&0 \end{pmatrix}$$
 の場合にのみ示す.その他の場合も全く同様の議論である.

命題 **2.2** $G=Sp(1,2),\ H=SO(1,1),\ X\in\mathfrak{p}$ に対し、 $Y(\mathbf{R}\,X)$ が有界 \iff $X\in\mathfrak{p}\setminus\mathfrak{h}$ or X=0 である.

ただし、
$$H$$
 は G の左上に入っている。すなわち、 ${
m Lie}\,H=\mathfrak{h}={f R}\,A,\ A\coloneqq egin{pmatrix} 0&1&0\\1&0&0\\0&0&0 \end{pmatrix}$ とする。

記号と定義 2.3 H を四元数体とする. $Sp(1,2)/Sp(1) \times Sp(2) \simeq \{(z_1,z_2) \mid z_1,z_2 \in \mathbf{H}, \mid z_1\mid^2 + \mid z_2\mid^2 < 1\} =: \mathbf{H} \, \mathbb{H}^2$ である. これは自然表現 $Sp(1,2) \curvearrowright \mathbf{H}^2$ の $^t(1,0,0)$ 軌道を考え,第 2,第 3 成分に第 1 成分の逆数を右からかけた空間が $\mathbf{H} \, \mathbb{H}^2$ と微分同相であるためであり, $Sp(1,2) \curvearrowright \mathbf{H}^3$

の
$$^t(1,0,0)$$
 軌道の点 $\begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix}$ に対応する \mathbf{H} \mathbb{H}^2 の点を $\begin{bmatrix} \begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ z_1 z_0^{-1} \\ z_2 z_0^{-1} \end{pmatrix} \end{bmatrix}$ と書く.

愚直な行列計算により、次が示される.

補題
$$\mathbf{2.4}\ \forall z,w\in\mathbf{H}$$
 に対し, $\exp\begin{pmatrix}0&z&w\\\overline{z}&0&0\\\overline{w}&0&0\end{pmatrix}=\begin{pmatrix}\cosh r&*&*\\\frac{\overline{z}}{r}\sinh r&*&*\\\frac{\overline{w}}{r}\sinh r&*&*\end{pmatrix}$, ただし $r\coloneqq\sqrt{|z|^2+|w|^2}$,

である.

命題 2.2 の証明

 $X=0 \Rightarrow Y(\mathbf{R}\,X)=\{0\}$ と $X\in\mathfrak{h}\backslash\{0\}$ のときに $Y(\mathbf{R}\,X)$ が非有界であることは明ら

かであるから,
$$X \notin \mathfrak{h}$$
 の場合にのみ議論すればよい.つまり $X = \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} \in \mathfrak{p} \backslash \mathfrak{h}$

 $z,w \in \mathbf{H}$ s.t. $|z|^2 + |w|^2 = 1$ を任意に 1 つ固定して議論して一般性を失わない、このとき、 $X \in \mathfrak{p} \setminus \mathfrak{h}$ より $\operatorname{Re} z \neq \pm 1$ であることに注意する (Re: $\mathbf{H} \ni a + bi + cj + dk \mapsto a \in \mathbf{R}$ とする).

G の Cartan 対合を $\Theta(g)=(g^*)^{-1}$ $(g^*$ は g の共役転置)とするとき, $\Theta(e^{Y(tX)}e^{Z(tX)})\cdot o_K=e^{-Y(tX)}e^{-Z(tX)}\cdot o_K=\Theta(e^X)\cdot o_K=e^{-X}\cdot o_K$ より,「 $Y(\mathbf{R}\,X)$ が非有界 $\iff Y(\mathbf{R}\,X)\subset\mathbf{R}\,A$ が上に非有界」である.

したがって、 $Y(\mathbf{R}\,X)$ が非有界であるとき、列 $\{t_n\in\mathbf{R}\}_{n\in\mathbf{N}}$ で、 $s_n\to\infty$ 、 $n\to\infty$ 、ただし $Y(t_nX)=s_nA$ 、なるものが存在する.

このとき、 $\{|t_n|\}_{n\in\mathbb{N}}$ が有界 \iff $\{e^{t_nX}\cdot o_K\}_{n\in\mathbb{N}}$ が有界ならば、 $G/K\ni e^X\cdot o_K\mapsto (Y(X),Z(X))\in (\mathfrak{h}\cap\mathfrak{p})\oplus (\mathfrak{h}^\perp\cap\mathfrak{p}),\ X\in\mathfrak{p}$ が微分同相であることから $\{s_n\}_{n\in\mathbb{N}}$ も有界である.

従って対偶より $\lim_{n\to\infty} s_n \to \infty$ ならば $\lim_{n\to\infty} |t_n| \to \infty$ である. 補題 2.4 より,

$$e^{s_n A} e^{Z(t_n X)} \cdot o_K = \begin{pmatrix} \cosh s_n & \sinh s_n & 0 \\ \sinh s_n & \cosh s_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 \\ \pm \overline{z} \tanh |t_n| \\ \pm \overline{w} \tanh |t_n| \end{pmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} \cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n \\ \sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n \\ \pm \overline{w} \tanh |t_n| \end{bmatrix},$$

複号は t_n の符号 ± と同順,である.このとき $\lim_{n \to \infty} anh s_n = 1 = \lim_{n \to \infty} anh |t_n|$ と $\operatorname{Re} z \neq \pm 1$ に注意すると次を得る. 具体的な計算は後述する.

$$\lim_{n \to \infty} (\sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n) (\cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n)^{-1} = 1$$
 (2.1)

である.

したがって、
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ へのベクトルと、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ から $\begin{pmatrix} (\sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n)(\cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n)^{-1} \\ * \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ へのベクトルがなす

Euclidean な内積の値を
$$I_n$$
 とすると、 $\lim_{n\to\infty}I_n=1$ である. しかし、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ へのベクトルと、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ から $e^{W(t_n X)} \cdot o_K \in \mathbf{H} \, \mathbb{H}^2$ へのベクトルがなす Euclidean な内積の値 J_n は、

$$W(t_nX) \in \left\{ egin{array}{c|c} 0 & z_1 & z_2 \ \hline z_1 & 0 & 0 \ \hline z_2 & 0 & 0 \end{array}
ight| egin{array}{c|c} z_1, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_1, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \ \hline z_2, z_2 \in \mathbf{H}, & \operatorname{Re} z_2 \in \mathbf{H}, & \operatorname{Re}$$

以上より $[X \in \mathfrak{p} \setminus \mathfrak{h} \Rightarrow Y(\mathbf{R} X)]$ 有界」, したがって 命題 2.2 を得る.

命題 2.2 の計算:

具体的に計算すると,

$$\lim_{n \to \infty} |(\sinh s_n \pm \overline{z} \tanh|t_n|\cosh s_n)(\cosh s_n \pm \overline{z} \tanh|t_n|\sinh s_n)^{-1} - 1| \qquad (これが = 0 を示せば良い)$$

$$= \lim_{n \to \infty} \left| \frac{(\tanh s_n \pm \overline{z} \tanh|t_n|)(1 \pm z \tanh|t_n|\tanh s_n)}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|^2} - 1 \right|$$

$$= \lim_{n \to \infty} \frac{|(\tanh s_n \pm \overline{z} \tanh|t_n|)z' - (1 \pm \overline{z} \tanh|t_n|\tanh s_n)z'|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|^2}, \qquad z' \coloneqq 1 \pm z \tanh|t_n|\tanh s_n$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh|t_n|)z'|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh|t_n|)z'|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh|t_n|)|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh |t_n|)z'|}{|(1 \pm \overline{z} \tanh |t_n| \tanh s_n)|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh |t_n|)|}{|(1 \pm \overline{z} \tanh |t_n| \tanh s_n)|}$$

であり, $0 < \min |1 \pm \operatorname{Re} z| \le |(1 \pm \overline{z} \tanh |t_n| \tanh s_n)| \le \sqrt{2^2 + 1^2} = \sqrt{5} \ge \min \{|-1 \pm \operatorname{Re} z|\} \le \sqrt{2^2 + 1^2} = \sqrt{5} \ge \min \{|-1 \pm \operatorname{Re} z|\}$

 $|-1 \pm \overline{z} \tanh|t_n|| \leq \sqrt{5}$ であることから,

$$0 = \lim_{n \to \infty} (1 - \tanh s_n) \frac{\min\{|-1 \pm \operatorname{Re} z|\}}{\sqrt{5}} \le \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh |t_n|)|}{|(1 \pm \overline{z} \tanh |t_n| \tanh s_n)|}$$

$$\le \lim_{n \to \infty} (1 - \tanh s_n) \frac{\sqrt{5}}{\min\{|1 \pm \operatorname{Re} z|\}} = 0$$

より, (2.1) が成り立つ.

2.2 Gの実階数が1の場合

定理 2.5 G を実階数 1 の実半単純 Lie 群とするとき, 予想 1.3 が成り立つ.

定義 2.6 [Ebe72a, Definition 1.3]

M が完備かつ非正曲率をもつ 1-連結 Riemann 多様体であるとき,M を Hadamard 多様体といい,Hadamard 多様体 M が visibility manifold であるとは, $\forall p \in M, \forall \varepsilon > 0$ に対し,ある $r(p,\varepsilon)>0$ が存在して,測地線 $\gamma\colon [t_0,t_1]\to X$ が $d_M(p,\gamma(t))\geq r(p,\varepsilon)$, $\forall t\in [t_0,t_1]$ ならば, $\angle_p(\gamma(t_0),\gamma(t_1))\leq \varepsilon$ であることである.

図を入れる

定理 2.7 [BH99, p. 296, 9.33 Theorem], originally [Ebe72b, Theorem 4.1]

 $\exists C \subset M \text{ s.t. } M = \bigcup \{f(C) \mid f \in \text{Isom}(M)\}$ なる Hadamard 多様体 M に対し、次は同値である。

- (i) M は visibility manifold である.
- (ii) 全測地的な部分 Riemann 多様体 $M' \subset M$ で \mathbf{R}^2 と等長同型なものが存在しない.

ここで Riemann 対称空間は Hadamard 多様体であり、定理 2.7 の (ii) は G の実階数が 1 以下であることと同値である。 したがって G の実階数が 1 の場合 G/K は visibility manifold であり、G=SU(1,2)、H=SO(1,1) の場合の証明と全く同様にして背理法により予想 1.3 が示される。

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710
- [BBE85] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), Vol. 122, No. 1, 1985, pp. 171–203
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999
- [Borel–Ji] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, 2006

- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), Vol. 95, pp. 492–510, 1972
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, pp. 151–70, 1972
- [EO73] P. Eberlein and B. O'Neill, *Visibility Manifolds*, Pacific J. Math., Vol. 46, No. 1, 1973, pp. 45–109
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490–1, 1997, pp. 37–54