

The 8051 Microcontroller

Comparison of the 8051 Family Members

- ROM type
 - 8031 no ROM
 - 80xx mask ROM
 - 87xx EPROM
 - 89xx Flash EEPROM
- 89xx
 - 8951
 - -8952
 - 8953
 - 8955
 - 898252
 - 891051
 - -892051
- Example (AT89C51,AT89LV51,AT89S51)
 - AT= ATMEL(Manufacture)
 - C = CMOS technology
 - LV= Low Power(3.0v)

8051 Schematic Pin out

Foot Print

- **Pins 1 to 8** These pins are known as **Port 1.** This port doesn't serve any other functions. It is internally pulled up, bi-directional I/O port.
- Pin 9 It is a RESET pin, which is used to reset the microcontroller to its initial values.
- **Pins 10 to 17** These pins are known as **Port 3**. This port serves some functions like interrupts, timer input, control signals, serial communication signals RxD and TxD, etc.
- **Pins 18 & 19** These pins are used for interfacing an external crystal to get the system clock.
- **Pin 20** This pin provides the power supply to the circuit.
- **Pins 21 to 28** These pins are known as **Port 2**. It serves as I/O port. Higher order address bus signals are also multiplexed using this port.
- **Pin 29** This is PSEN pin which stands for **Program Store Enable**. It is used to read a signal from the external program memory.
- Pin 30 This is EA pin which stands for External Access input. It is used to enable/disable the
 external memory interfacing.
- **Pin 31** This is ALE pin which stands for **Address Latch Enable**. It is used to demultiplex the address-data signal of port.
- Pins 32 to 39 These pins are known as Port 0. It serves as I/O port. Lower order address and data bus signals are multiplexed using this port.
- **Pin 40** This pin is used to provide power supply to the circuit.

IMPORTANT PINS (IO Ports)

- One of the most useful features of the 8051 is that it contains four I/O ports (P0 - P3)
- Port 0 (pins 32-39) : P0 ($P0.0 \sim P0.7$)
 - 8-bit R/W General Purpose I/O
 - Or acts as a multiplexed low byte address and data bus for external memory design
- Port 1 (pins 1-8) : P1 (P1.0~P1.7)
 - Only 8-bit R/W General Purpose I/O
- Port 2 (pins 21-28) : P2 (P2.0~P2.7)
 - 8-bit R/W General Purpose I/O
 - Or high byte of the address bus for external memory design
- Port 3 (pins 10-17) : P3 ($P3.0 \sim P3.7$)
 - General Purpose I/O
 - if not using any of the internal peripherals (timers) or external interrupts.
- Each port can be used as input or output (bi-direction)

8051 Port 3 Bit Latches and I/O Buffers

On-Chip Memory Internal RAM

Register Banks

- □ Active bank selected by PSW [RS1,RS0] bit
- □ Permits fast "context switching" in interrupt service routines (ISR).

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

CY	AC	F0	RS1	RS0	ov	_	Р
CY I	PSW.7	Carry Fla	g.				
C I	PSW.6	Auxiliary	Carry Flag				
) I	PSW.5	Flag 0 av	ailable to th	e user for g	eneral purp	ose.	
.S1 I	PSW.4	Register I	Bank selecto	or bit 1 (SEI	E NOTE 1)		
SO I	PSW.3	Register 1	Bank selecto	or bit 0 (SEI	E NOTE 1)		
·	PSW.2	Overflow	Flag.				
	PSW.1	User defin	nable flag.				
1	PSW.0		g. Set/cleare the accum	ed by hardw ılator.	are each in	struction c	ycle to in

The 8051 Assembly Language

Overview

- Data transfer instructions
- Addressing modes
- Data processing (arithmetic and logic)
- Program flow instructions

Data Transfer Instructions

MOV dest, source

dest ← source

Stack instructions

Exchange instructions

Stacks

Arithmetic Instructions

- Add
- Subtract
- Increment
- Decrement
- Multiply
- Divide
- Decimal adjust

Arithmetic Instructions

Mnemonic	Description				
ADD A, byte	add A to byte, put result in A				
ADDC A, byte	add with carry				
SUBB A, byte	subtract with borrow				
INC A	increment A				
INC byte	increment byte in memory				
INC DPTR	increment data pointer				
DEC A	decrement accumulator				
DEC byte	decrement byte				
MUL AB	multiply accumulator by b register				
DIV AB	divide accumulator by b register				
DA A	decimal adjust the accumulator				

Logic Instructions (Bitwise)

Examples:

ANL	7	AND		00001111
ORL	→	OR	ANL	10101100
XRL	→	XOR		00001100
CPL	→	Complement	ORL	00001111 10101100 10101111
			XRL	00001111 10101100 10100011

7/ 1/17

10101100

CPL

Other Logic Instructions

```
CLR - clear
RL - rotate left
RLC - rotate left through Carry
RR - rotate right
RRC - rotate right through
 Carry
SWAP - swap accumulator nibbles
```

Module 6

Module -6 Syllabus

Measuring Instruments:

Classification of instruments, Working principle of PMMC, MI, Digital & Smart Meters, Ammeter, Voltmeter & wattmeter.

Sensors:

Transducers classification& selections, Resistive, Inductive and capacitive sensors, Optical and Digital sensors.

Acknowledgements

- 1. https://www.tutorialspoint.com/microprocessor/microcontrollers 8051 architecture.htm
- 2. https://circuitglobe.com/classification-of-measuring-instruments.html