

DIGITAL COMMUNICATION

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

POWER SPECTRUM OF A DISCRETE PAM SIGNAL

Unipolar NRZ Spectrum

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

Finding S_A(f) for different schemes

We will find $S_X(f)$ for each of the following three cases:

- i NRZ Unipolar
- ii NRZ Polar
- lii NRZ Bipolar.
- Iv Manchester Coding

Note: To obtain $S_{\times}(f)$, we first find $S_{\triangle}(f)$ from $R_{A}(n)$ and substitute in

$$S_X(f) = \frac{|V(f)|^2}{T_b} S_A(f)$$

Finding S_A(f): Unipolar NRZ

i NRZ Unipolar

Let b_k indicate the k^{th} bit. We assume that 0 and 1 occur with equal probability.

To find $R_A(0)$:

$$b_k A_k P_r$$

0 0 1/2

1 a 1/2

The above table has been obtained from equation (2)

$$\therefore R_A(0) = E[A_k^2] = 0^2 \cdot \frac{1}{2} + a^2 \cdot \frac{1}{2} = \frac{a^2}{2}$$

Finding S_A(f): Unipolar NRZ

To find $R_A(1)$:

$$\therefore R_A(1) = E[A_k.A_{k-1}] = 0.\frac{1}{4} + 0.\frac{1}{4} + 0.\frac{1}{4} + a^2.\frac{1}{4} = \frac{a^2}{4}$$

We can see that $R_A(n) = a^2/4$ for any $n \neq 0$ as it behaves identical to how it does for n = 1.

$$\therefore R_A(n) = \begin{cases} \frac{a^2}{2} & n = 0\\ \frac{a^2}{4} & n \neq 0 \end{cases}$$

$$\therefore R_A(n) = \frac{a^2}{4} + \frac{a^2}{4}\delta(n) \tag{13}$$

Finding S_A(f): Unipolar NRZ

Substituting $S_A(f)$ using (12) and $|V(f)|^2$ using (8) in (5), we get:

$$S_X(f) = \frac{T_b^2 \operatorname{sinc}^2(fT_b)}{T_b} \sum_{n = -\infty}^{\infty} R_A(n) e^{-j2\pi f n T_b}$$
(14)

$$= T_b sinc^2(fT_b) \sum_{n=-\infty}^{\infty} \left\{ \frac{a^2}{4} + \frac{a^2}{4} \delta(n) \right\} e^{-j2\pi f n T_b}$$

$$\therefore S_X(f) = \frac{a^2 T_b}{4} sinc^2(fT_b) + \frac{a^2 T_b}{4} sinc^2(fT_b) \sum_{n = -\infty}^{\infty} e^{-j2\pi f n T_b}$$
 (15)

Finding S_A(f): Unipolar NRZ

We can show that

$$\sum_{n=-\infty}^{\infty} e^{-j2\pi f n T_b} = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_b})$$
 (16)

Hence,

$$S_X(f) = \frac{a^2 T_b}{4} sinc^2(fT_b) + \frac{a^2 T_b}{4} sinc^2(fT_b) \frac{1}{T_b} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_b})$$
 (17)

Finding S_A(f): Unipolar NRZ

Figure:Illustration of multiplication of $sinc^2(fT_b)$ with dirac delta function. The multiplication in the second term in eqn (17) is as illustrated in Fig. As it is seen here, the multiplication will yield a non-zero value only for f=0. Everywhere else, the dirac delta coincides with the null of the $sinc^2$ function.

Finding S_A(f): Unipolar NRZ

Figure: Power Spectral Density for Unipolar NRZ function

- ▶ By Considering the rst non DC null as the Bandwidth, we find that the Unipolar NRZ has a BW of R_b Hz.
- ► The impulse as f=0, indicates that unipolar NRZ has a DC component that accounts for half the signal power.

THANK YOU

Bharathi V Kalghatgi

Department of Electronics and Communication Engineering

BharathiV.Kalghatgi@pes.edu