$$T(n) = \begin{cases} xt(n/x) + n & n > L \\ 1 & n = L \end{cases}$$

$$T(n) = 2t(n/2) + r$$

 $T(n) = 4T(n/3) + n^2$
 $T(n) = T(\frac{3n}{10}) + r$

Teorema 1. Teorema Mestre

 $Sejam\ a \geq 1\ e\ b > 1\ constantes,\ seja\ f(n)\ uma\ função\ assintoticamente\ positiva\ e\ T(n)\ definida\ para\ inteiros\ nã_{\P} = 1$ negativos a recorrência

$$T(n) = aT(\frac{n}{b}) + f(n)$$

interpretando $\frac{n}{h}$ como $\lfloor \frac{n}{h} \rfloor$ ou $\lceil \frac{n}{h} \rceil$. Então T(n) é limitada assintoticamente por:

- 1. Se $f(n) = O(n^{\log_b(a) \epsilon})$ para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b a})$;
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \lg n)$; ou
- 3. Se $f(n) = \Omega(n^{\log_b(a) + \epsilon})$, para $\epsilon > 0$ constante, e se $af(\frac{n}{b}) \le cf(n)$ para c < 1 constante, e n suficientemente grande, então $T(n) = \Theta(f(n))$.

Resolva a recorrência $T(n) = 9T(\frac{n}{3}) + n$ utilizando o método mestre

$$\alpha = 9$$
; $b = 3$; $f(m) = N$

Resolva a recorrência $T(n) = T(\frac{2n}{3}) + 1$ utilizando o método mestre.

$$\Omega = 1, b = 3/2, f(m) = 1 = n^{\circ}$$

$$\frac{x}{b} = \frac{2x}{3} = \frac{1}{b} = \frac{3}{3} = \frac{1}{b} = \frac{3}{2}$$

- 1. Se $f(n) = O(n^{\log_b(a) \epsilon})$ para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b a})$;
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \lg n)$; ou
- 3. Se $f(n) = \Omega(n^{\log_b(a)+\epsilon})$, para $\epsilon > 0$ constante, e se $af(\frac{n}{b}) \le cf(n)$ para c < 1 constante, e n suficientemente grande, então $T(n) = \Theta(f(n))$.

Resolva a recorrência $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$ utilizando o método mestre. $T(n) = aT(\frac{n}{n}) + f(n)$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

interpretando $\frac{n}{h}$ como $\lfloor \frac{n}{h} \rfloor$ ou $\lceil \frac{n}{h} \rceil$. Então T(n) é limitada assintoticamente por:

- 1. Se $f(n) = O(n^{\log_b(a) \epsilon})$ para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b a})$:
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \lg n)$; ou
- 3. Se $f(n) = \Omega(n^{\log_b(a) + \epsilon})$, para $\epsilon > 0$ constante, e se $af(\frac{n}{b}) \le cf(n)$ para c < 1 constante, e n suficientemente grande, então $T(n) = \Theta(f(n))$.

n=O(n'). (4) Comp f(n) = O(n Pogla) en tro pelo ceso 2 do t.M. $+(n) = \Theta(n^{\log_{1} \alpha}, \log_{1} n) = \Theta(n^{\log_{1} \alpha})$

Resolva a recorrência $T(n) = 3T(\frac{n}{4}) + n \lg n$ utilizando o método mestre.

$$T(n) = aT(\frac{n}{b}) + f(n)$$

interpretando $\frac{n}{h}$ como $\lfloor \frac{n}{h} \rfloor$ ou $\lceil \frac{n}{h} \rceil$. Então T(n) é limitada assintoticamente por:

(logia = logia

- 1. Se $f(n) = O(n^{\log_b(a) \epsilon})$ para $\epsilon > 0$ constante, então $T(n) = \Theta(n^{\log_b a})$;
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \lg n)$; ou
- 3. Se $f(n) = \Omega(n^{\log_b(a) + \epsilon})$, para $\epsilon > 0$ constante, e se $af(\frac{n}{b}) \le cf(n)$ para c < 1 constante, e n suficientemente grande, então $T(n) = \Theta(f(n))$

$$\alpha = 3$$
, $b = 4$, $f(n) = n \, lg n$ \bigcirc $N^{log_0 a} = N^{log_4 3} x N^{0,792}$

3 nlgn=D(nq192+E), vendadeno p/ E=0,L, ygn= D(n)

$$n \lg n = \leq L(n')$$

4) Parece O caso 3 do th. Torus

e verificar SE afMb) < cf(n) p/c<1 e c const

$$3(\frac{\eta}{4}l_g(n) - \frac{\eta}{4}l_g(u)) \leq cn l_g n$$

$$\frac{3\eta}{4}, \frac{2}{1} = \frac{6\eta}{4}, \frac{3\eta}{2}$$

$$\frac{3}{3}$$
 $\frac{1}{3}$ $\frac{3}{3}$ $\frac{1}{3}$ $\frac{1}$

$$n \ln \left(\frac{3}{4} - \frac{3}{a \lg n}\right) \leq c n \lg n$$

$$C > \left(\frac{3}{4} - \frac{3}{3000}\right),$$

$$n_{grande}, \frac{3}{2gn} \rightarrow 0$$

5 Como CEI e constante en a f (7/b) E cf(n) e

f(n) = D (n logba + E) tenus o caso 3 do T.M. Portento, T(n) = O (n lgn)