```
In [ ]:
                                     DL Expt-4
        import pandas as pd
In [1]:
        import numpy as np
        import tensorflow as tf
         import matplotlib.pyplot as plt
         import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import confusion_matrix, recall_score, accuracy_score, precisi
        RANDOM\_SEED = 2021
        TEST PCT = 0.3
        LABELS = ["Normal", "Fraud"]
In [2]: dataset = pd.read_csv("creditcard.csv")
In [3]: #check for any null values
        print("Any nulls in the dataset",dataset.isnull().values.any())
        print('----')
        print("No. of unique labels",len(dataset['Class'].unique()))
        print("Label values",dataset.Class.unique())
        #0 is for normal credit card transcation
        #1 is for fraudulent credit card transcation
        print('----')
        print("Break down of Normal and Fraud Transcations")
        print(pd.value_counts(dataset['Class'], sort=True))
        Any nulls in the dataset False
        No. of unique labels 2
        Label values [0 1]
        Break down of Normal and Fraud Transcations
             284315
                492
        Name: Class, dtype: int64
In [4]: #visualizing the imbalanced dataset
        count_classes = pd.value_counts(dataset['Class'],sort=True)
        count_classes.plot(kind='bar',rot=0)
        plt.xticks(range(len(dataset['Class'].unique())),dataset.Class.unique())
        plt.title("Frequency by observation number")
        plt.xlabel("Class")
        plt.ylabel("Number of Observations")
        Text(0, 0.5, 'Number of Observations')
Out[4]:
```

Frequency by observation number


```
In [5]: #Save the normal and fradulent transcations in seperate dataframe
    normal_dataset = dataset[dataset.Class == 0]
    fraud_dataset = dataset[dataset.Class == 1]

#Visualize transcation amounts for normal and fraudulent transcations
    bins = np.linspace(200,2500,100)
    plt.hist(normal_dataset.Amount,bins=bins,alpha=1,density=True,label='Normal')
    plt.hist(fraud_dataset.Amount,bins=bins,alpha=0.5,density=True,label='Fraud')
    plt.legend(loc='upper right')
    plt.title("Transcation Amount vs Percentage of Transcations")
    plt.xlabel("Transcation Amount (USD)")
    plt.ylabel("Percentage of Transcations")
    plt.show()
```

Transcation Amount vs Percentage of Transcations

[6]:	dataset	:								
[6]:		Time	V1	V2	V3	V4	V5	V6	V7	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.0
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.0
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.2
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.3
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.2
	•••									
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.3
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.2
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.7
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.6
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.4

```
In [7]: sc = StandardScaler()
   dataset['Time'] = sc.fit_transform(dataset['Time'].values.reshape(-1,1))
   dataset['Amount'] = sc.fit_transform(dataset['Amount'].values.reshape(-1,1))

In [8]: raw_data = dataset.values
   #The Last element contains if the transcation is normal which is represented by 0 a
   labels = raw_data[:,-1]
```

284807 rows × 31 columns

```
#The other data points are the electrocadriogram data
         data = raw data[:,0:-1]
         train_data,test_data,train_labels,test_labels = train_test_split(data,labels,test_s
In [9]:
         min_val = tf.reduce_min(train_data)
         max_val = tf.reduce_max(train_data)
         train_data = (train_data - min_val) / (max_val - min_val)
         test_data = (test_data - min_val) / (max_val - min_val)
         train_data = tf.cast(train_data,tf.float32)
         test_data = tf.cast(test_data,tf.float32)
In [10]: train_labels = train_labels.astype(bool)
         test_labels = test_labels.astype(bool)
         #Creating normal and fraud datasets
         normal_train_data = train_data[~train_labels]
         normal_test_data = test_data[~test_labels]
         fraud_train_data = train_data[train_labels]
         fraud_test_data = test_data[test_labels]
         print("No. of records in Fraud Train Data=",len(fraud_train_data))
         print("No. of records in Normal Train Data=",len(normal_train_data))
         print("No. of records in Fraud Test Data=",len(fraud_test_data))
         print("No. of records in Normal Test Data=",len(normal_test_data))
         No. of records in Fraud Train Data= 389
         No. of records in Normal Train Data= 227456
         No. of records in Fraud Test Data= 103
         No. of records in Normal Test Data= 56859
In [11]: nb_epoch = 50
         batch_size = 64
         input_dim = normal_train_data.shape[1]
         #num of columns,30
         encoding dim = 14
         hidden_dim1 = int(encoding_dim / 2)
         hidden_dim2 = 4
         learning_rate = 1e-7
In [12]: #input layer
         input_layer = tf.keras.layers.Input(shape=(input_dim,))
         #Encoder
         encoder = tf.keras.layers.Dense(encoding_dim,activation="tanh",activity_regularizer
         encoder = tf.keras.layers.Dropout(0.2)(encoder)
         encoder = tf.keras.layers.Dense(hidden dim1,activation='relu')(encoder)
         encoder = tf.keras.layers.Dense(hidden_dim2,activation=tf.nn.leaky_relu)(encoder)
         #Decoder
         decoder = tf.keras.layers.Dense(hidden_dim1,activation='relu')(encoder)
         decoder = tf.keras.layers.Dropout(0.2)(decoder)
         decoder = tf.keras.layers.Dense(encoding_dim,activation='relu')(decoder)
         decoder = tf.keras.layers.Dense(input_dim,activation='tanh')(decoder)
         #Autoencoder
         autoencoder = tf.keras.Model(inputs = input layer,outputs = decoder)
         autoencoder.summary()
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 30)]	0
dense (Dense)	(None, 14)	434
dropout (Dropout)	(None, 14)	0
dense_1 (Dense)	(None, 7)	105
dense_2 (Dense)	(None, 4)	32
dense_3 (Dense)	(None, 7)	35
dropout_1 (Dropout)	(None, 7)	0
dense_4 (Dense)	(None, 14)	112
dense_5 (Dense)	(None, 30)	450
Total params: 1,168		

Total params: 1,168
Trainable params: 1,168
Non-trainable params: 0

```
Epoch 1/50
 1/3554 [.....] - ETA: 0s - loss: 0.2476 - accuracy: 0.
0312WARNING:tensorflow:Callbacks method `on train batch end` is slow compared to t
he batch time (batch time: 0.0000s vs `on_train_batch_end` time: 0.0010s). Check y
our callbacks.
0561
Epoch 00001: val_loss improved from inf to 0.00053, saving model to autoencoder_fr
aud.h5
cy: 0.0562 - val_loss: 5.2896e-04 - val_accuracy: 0.0236
Epoch 2/50
y: 0.0736
Epoch 00002: val loss improved from 0.00053 to 0.00046, saving model to autoencode
r fraud.h5
curacy: 0.0737 - val_loss: 4.5975e-04 - val_accuracy: 0.0236
Epoch 3/50
Epoch 00003: val_loss improved from 0.00046 to 0.00043, saving model to autoencode
r fraud.h5
curacy: 0.0636 - val_loss: 4.3223e-04 - val_accuracy: 0.0236
Epoch 4/50
y: 0.0640
Epoch 00004: val_loss improved from 0.00043 to 0.00038, saving model to autoencode
r_fraud.h5
curacy: 0.0641 - val_loss: 3.8281e-04 - val_accuracy: 0.0236
Epoch 5/50
y: 0.0620
Epoch 00005: val_loss improved from 0.00038 to 0.00033, saving model to autoencode
r_fraud.h5
curacy: 0.0621 - val_loss: 3.3468e-04 - val_accuracy: 0.1279
Epoch 6/50
y: 0.0663
Epoch 00006: val_loss improved from 0.00033 to 0.00027, saving model to autoencode
r fraud.h5
curacy: 0.0664 - val_loss: 2.7270e-04 - val_accuracy: 0.1279
Epoch 7/50
y: 0.0638
Epoch 00007: val loss improved from 0.00027 to 0.00024, saving model to autoencode
r fraud.h5
curacy: 0.0643 - val_loss: 2.3810e-04 - val_accuracy: 0.0251
Epoch 8/50
Epoch 00008: val_loss improved from 0.00024 to 0.00019, saving model to autoencode
r_fraud.h5
curacy: 0.0708 - val_loss: 1.9277e-04 - val_accuracy: 0.0251
Epoch 9/50
y: 0.0710
```

Epoch 00009: val_loss improved from 0.00019 to 0.00016, saving model to autoencode

```
r fraud.h5
curacy: 0.0711 - val loss: 1.6159e-04 - val accuracy: 0.0251
Epoch 10/50
v: 0.0754
Epoch 00010: val_loss improved from 0.00016 to 0.00011, saving model to autoencode
r_fraud.h5
curacy: 0.0758 - val_loss: 1.0516e-04 - val_accuracy: 0.0251
Epoch 11/50
y: 0.0844
Epoch 00011: val_loss improved from 0.00011 to 0.00009, saving model to autoencode
r fraud.h5
curacy: 0.0843 - val_loss: 9.0067e-05 - val_accuracy: 0.0252
Epoch 12/50
y: 0.0838
Epoch 00012: val_loss improved from 0.00009 to 0.00007, saving model to autoencode
r_fraud.h5
curacy: 0.0845 - val_loss: 6.6048e-05 - val_accuracy: 0.0252
Epoch 13/50
y: 0.0849
Epoch 00013: val_loss improved from 0.00007 to 0.00005, saving model to autoencode
r_fraud.h5
curacy: 0.0855 - val_loss: 5.4927e-05 - val_accuracy: 0.0253
Epoch 14/50
y: 0.0892
Epoch 00014: val_loss improved from 0.00005 to 0.00003, saving model to autoencode
r fraud.h5
curacy: 0.0892 - val_loss: 3.3855e-05 - val_accuracy: 0.0253
Epoch 15/50
y: 0.0925
Epoch 00015: val loss did not improve from 0.00003
curacy: 0.0924 - val_loss: 4.0921e-05 - val_accuracy: 0.0253
Epoch 16/50
y: 0.1055
Epoch 00016: val loss did not improve from 0.00003
curacy: 0.1056 - val loss: 3.6986e-05 - val accuracy: 0.0252
Epoch 17/50
Epoch 00017: val loss did not improve from 0.00003
curacy: 0.1214 - val_loss: 3.6741e-05 - val_accuracy: 0.0252
Epoch 18/50
v: 0.1364
Epoch 00018: val loss improved from 0.00003 to 0.00003, saving model to autoencode
r fraud.h5
curacy: 0.1367 - val_loss: 3.0728e-05 - val_accuracy: 0.0253
```

Epoch 19/50

```
y: 0.1513
     Epoch 00019: val loss improved from 0.00003 to 0.00003, saving model to autoencode
     r fraud.h5
     curacy: 0.1514 - val loss: 2.7787e-05 - val accuracy: 0.0253
     Epoch 20/50
     y: 0.1674
     Epoch 00020: val_loss improved from 0.00003 to 0.00003, saving model to autoencode
     r_fraud.h5
     curacy: 0.1674 - val_loss: 2.5756e-05 - val_accuracy: 0.0253
     Epoch 21/50
     y: 0.1872
     Epoch 00021: val_loss did not improve from 0.00003
     curacy: 0.1871 - val_loss: 2.6697e-05 - val_accuracy: 0.0252
     Epoch 22/50
     y: 0.2023
     Epoch 00022: val loss did not improve from 0.00003
     curacy: 0.2026 - val_loss: 2.8282e-05 - val_accuracy: 0.0251
     Epoch 23/50
     y: 0.2238
     Epoch 00023: val_loss improved from 0.00003 to 0.00002, saving model to autoencode
     r_fraud.h5
     Restoring model weights from the end of the best epoch.
     curacy: 0.2240 - val loss: 2.4854e-05 - val accuracy: 0.0251
     Epoch 00023: early stopping
In [16]: plt.plot(history['loss'],linewidth = 2,label = 'Train')
     plt.plot(history['val_loss'],linewidth = 2,label = 'Test')
     plt.legend(loc='upper right')
     plt.title('Model Loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     #plt.ylim(ymin=0.70,ymax=1)
     plt.show()
```

Model Loss


```
In [17]: test_x_predictions = autoencoder.predict(test_data)
         mse = np.mean(np.power(test_data - test_x_predictions, 2),axis = 1)
         error_df = pd.DataFrame({'Reconstruction_error':mse,
                                   'True_class':test_labels})
In [18]:
         threshold_fixed = 50
         groups = error_df.groupby('True_class')
         fig,ax = plt.subplots()
         for name, group in groups:
                 ax.plot(group.index,group.Reconstruction_error,marker='o',ms = 3.5,linestyl
                         label = "Fraud" if name==1 else "Normal")
         ax.hlines(threshold_fixed,ax.get_xlim()[0],ax.get_xlim()[1],colors="r",zorder=100,l
         ax.legend()
         plt.title("Reconstructions error for normal and fraud data")
         plt.ylabel("Reconstruction error")
         plt.xlabel("Data point index")
         plt.show()
```

Reconstructions error for normal and fraud data


```
threshold_fixed = 52
In [19]:
         pred_y = [1 if e > threshold_fixed else 0
                    for e in
                 error_df.Reconstruction_error.values]
         error_df['pred'] = pred_y
         conf_matrix = confusion_matrix(error_df.True_class,pred_y)
         plt.figure(figsize = (4,4))
         sns.heatmap(conf_matrix,xticklabels = LABELS,yticklabels = LABELS,annot = True,fmt=
         plt.title("Confusion matrix")
         plt.ylabel("True class")
         plt.xlabel("Predicted class")
         plt.show()
         #Print Accuracy, Precision and Recall
         print("Accuracy :",accuracy_score(error_df['True_class'],error_df['pred']))
         print("Recall :",recall_score(error_df['True_class'],error_df['pred']))
         print("Precision :",precision_score(error_df['True_class'],error_df['pred']))
```


Accuracy : 0.9981917769741231

Recall: 0.0 Precision: 0.0

C:\Users\Manish\.conda\envs\tensorflow\lib\site-packages\sklearn\metrics_classifi cation.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this beh avior.

_warn_prf(average, modifier, msg_start, len(result))