Lecture10-Homework

16. 将 10.1 节计算 GCD 的算法应用于 15 和 46, 然后用这个结果去确定 15 在 Z_{46} 中的乘法逆元。

Answer:

Α	В	
15	46	46=15*3+1
15	1	15=15*1+0
0	1	d=1

1=46-15*3

Therefore ,15⁻¹=-3=43

21. 确定有 10.2 节中给出的参数 b=v=7, k=r=3, $\lambda=1$ 的 BIBD 的补设计。

Answer:

Suppose B is a BIBD with parameters b=v=7, k=r=3, λ =1 , B^c is a block design with parameters

 $b'=v'=7, k'=4, r'=4, \lambda'=2$. Suppose the starter block is B={2,4,5,6},

-	2	4	5	6
2	0	5	4	3
4	2	0	6	5
5	3	1	0	6
6	4	2	1	0

Examining this table we see that each of the non-zero integers 1, 2, 3, 4, 5, 6 in Z_7 occurs exactly twice in the off-diagonal positions and hence exactly twice as a difference. Hence, B is a difference set mod 7.

Then the blocks developed from B as a starter block, we have:

 $B+0=\{2,4,5,6\}, \quad B+1=\{3,5,6,0\}, \quad B+2=\{4,6,0,1\}, \quad B+3=\{5,0,1,2\}, \quad B+4=\{6,1,2,3\}, \quad B+5=\{0,2,3,4\}, \\ B+6=\{1,3,4,5\}$

28. 证明 . $B=\{0,1,3,9\}$ 是 Z_{13} 中的差分集,并用该差分集作为初始区组构造一个 SBIBD。确定这个区 组设计的各参数。

Answer:

-	0	1	3	9
0	0	12	10	4
1	1	0	11	5
3	3	2	0	7
9	9	8	6	0

Examining this table we see that each of the non-zero integers 1, 2, 3, 4, 5, 6,7,8,9,10,11,12 in Z_{13} occurs exactly once in the off-diagonal positions and hence exactly once as a difference. Hence, B is a difference set mod 13.

Using B as a starter block we obtain the following blocks for a SBIBD with parameters b = v =

13, k = r = 4 and $\lambda = 1$. Then we have:

```
B+0=\{0,1,3,9\}; \ B+1=\{1,2,4,10\}; \ B+2=\{2,3,5,11\}; \ B+3=\{3,4,6,12\}; \ B+4=\{4,5,7,0\}; \ B+5=\{5,6,8,1\}; \\ B+6=\{6,7,9,2\}; \ B+7=\{7,8,10,3\}; \ B+8=\{8,9,11,4\}; \ B+9=\{9,10,12,5\}; \ B+10=\{10,11,0,6\}; \\ B+11=\{11,12,1,7\}; \ B+12=\{12,0,2,8\}
```

32. 用定理 10.3.2 构造一个指数为 1 且有 21 个样品的 Steiner 三元系。

Answer:

Let $X=\{a0,a1,a2\}$, $Y=\{b0,b1,b2,b3,b4,b5,b6\}$ are the sets of varieties. Let $B1=\{(a0,a1,a2)\}$, $B2=\{(b0,b1,b3),(b1,b2,b4),(b2,b3,b5),(b3,b4,b6),(b4,b5,b0),(b5,b6,b1),(b6,b0,b2)\}$

If we choose (Cir,Cjs,Ckt) as a triple of,then:

- (1) r=s=t, we have 7 different triples in every column,hence there are 21 triples.Including: (0,5,3),(5,9,12),(9,3,15),(3,12,18),(12,15,0),(15,18,5),(18,0,9) (1,6,8),(6,10,13),(10,8,16),(8,13,19),(13,16,1),(16,19,6),(19,1,10). (2,7,4),(7,11,14),(11,4,17),(4,14,20),(14,17,2),(17,20,7),(20,2,11)
- (2) i=j=k, we have 7 different triples in every row, hence there are 7 triples.Including: (0,1,2),(5,6,7),(9,10,11),(3,8,4),(12,13,14),(15,15,17),(18,19,20)
- (3) i,j,k is differnt from each other, r,s,t is different from each other,hence there are 42 triples. Including:

```
(0,6,4),(0,7,8),(1,5,4),(1,7,3),(2,5,8),(2,6,3)...
So there are 70 triples in this system.
```

52. 构造 3 行 6 列拉丁矩形

0 1 2 3 4 5 4 3 1 5 2 0 5 4 3 0 1 2

的一个完备化。

Answer:

(1)Let L be an 3-by-6 Latin rectangle based on Z6.Define a bigraph $G = (X, \triangle, Y), X = \{x0, x1, \cdots, x5\}$ corresponds to columns 0, 1, \cdots , 5 of the rectangle L, Y = $\{0, 1, \cdots, 5\}$ is the elements on which L is based. $\triangle = \{(xi, j): j \text{ does not occur in column i of L}\}$. G has a perfect matching. Suppose the edges of a perfect matching are $\{(x0, i0), (x1, i1), \cdots, (x5, i5)\}$. Then 4-by-6 array obtained by adjoining i0, i1, \cdots ,i5 as a new row is a Latin rectangle. Continue the process until the 6-by-6 Latin square is completed.

0	1	2	3	4	5
4	3	1	5	2	0
5	4	3	0	1	2
1	2	0	4	5	3

(2))Let L be an 4-by-6 Latin rectangle based on Z6.

0	1	2	3	4	5
4	3	1	5	2	0
5	4	3	0	1	2
1	2	0	4	5	3
2	0	5	1	3	4

(3) Finally fill in the last line.

0	1	2	3	4	5
4	3	1	5	2	0
5	4	3	0	1	2
1	2	0	4	5	3
2	0	5	1	3	4
3	5	4	2	0	1

6. 构造半拉丁方							
	Γo	2	1				3 7
	2	0		1		3	
	3		0	2	1		
	22	3	2	0		1	
			3		0	2	1
	1				3	0	2
	Ĺ	1		3	2		0 _
的一个完备化。							

Answer:

(1)Let L be a semi-Latin square of order 7 and index 4.

Define a bigraph $G = (X, \triangle, Y)$, $X = \{x0, x1, ..., x6\}$ correspond to rows 0, 1, ..., 6 of the rectangle L, $Y = \{y0, y1, ..., y6\}$ correspond to columns of L. $\triangle = \{(xi, yj):$ the position at row i column j is unoccupied. Then G is 3-regular and has a perfect matching. This matching identifies the desired position for number 4. Continue to place other numbers 5, 6.... until L is completed.

0	2	1	4			3
2	0	4	1		3	
3		0	2	1		4
	3	2	0	4	1	
4		3		0	2	1
1	4			3	0	2
8	1		3	0	4	0

(2)Remove the red edge, find the new perfect matching. Let L be a semi-Latin square of order 7 and index 5.

0	2	1	4	5	ris.	3
2	0	4	1		3	5
3		0	2	1	5	4
5	3	2	0	4	1	
4	5	3		0	2	1
1	4		5	3	0	2
	1	5	3	0	4	0

(3) Finally place 6 on the empty position.

0	2	1	4	5	6	3
2	0	4	1	6	3	5
3	6	0	2	1	5	4
5	3	2	0	4	1	6
4	5	3	6	0	2	1
1	4	6	5	3	0	2
6	1	5	3	0	4	0