

ME316 Lab 04 – RLC Frequency Response Prelab

OVERVIEW

- No LabVIEW this time!
- Use function generators instead
 - Source voltage $V_s v_{R_s}$
 - Output voltage v_c
 - Phase shift ϕ
- Compare data to frequency response $M(\omega)$ and $\phi(\omega)$ with impedance analysis

RLC circuit diagram

OVERVIEW

- No LabVIEW this time!
- Use function generators instead
 - Source voltage $V_s v_{R_s}$
 - Output voltage $v_c(\omega)$
 - Phase shift $\phi(\omega)$
- Compare data to frequency response $M(\omega)$ and $\phi(\omega)$ with impedance analysis

RLC circuit diagram

Magnitude ratio:
$$M(\omega) = \frac{v_c}{v_s - v_{R_s}}$$

USING FUNCTION GENERATORS/OSCILLOSCOPES

- Function generators will
 attenuate voltage inputs without
 telling you
- In our case, the voltage data is normalized in $M(\omega)$, so our data should be fine

BODE PLOTS

- A way of plotting frequency response for large ranges of ω
- Captures both $M(\omega)$ and $\phi(\omega)$
- You will use this again in system
 dynamics and control systems, but
 in more detail

