Las derivadas parciales

Guía de Estudio N°3 MATEMÁTICA III - Curso 2019 FCAI-UNCuyo

APROXIMACIÓN A LA DERIVADA ORDINARIA : (de una variable) preliminares

LA DERIVADA ORDINARIA:

(de una variable) definición

SI EL LÍMITE EXISTE (que sea un número finito)

2 Definición La derivada de una función f en un número a, denotada con f'(a), es $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ si este límite existe.

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
en Stewart, J., Obr.cit.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
en Stewart, J, Obr.cit.

LEA e INTERPRETE

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

SI EL LÍMITE EXISTE (que sea un número finito)

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

SI EL LÍMITE EXISTE (que sea un número finito)

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

SI EL LÍMITE EXISTE (que sea un número finito)

en Stewart, J. Obr.cit.

$$f_{y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

SI EL LÍMITE EXISTE (que sea un número finito)

en Stewart, J, Obr.cit.

La FUNCIÓN DERIVADA PARCIAL: definición

Si f es una función de dos variables, sus derivadas parciales son las funciones f_x y f_y definidas por

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
 ¿Cuál es el

¿Cuál es el dominio de estas funciones?

$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

en Stewart, J. Obr.cit.

Notación

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_{y}(x, y) = f_{y} = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y} = f_{2} = D_{2}f = D_{y}f$$

La FUNCIÓN DERIVADA PARCIAL: definición

En general, si u es una función de n variables, $u = f(x_1, x_2, ..., x_n)$, su derivada parcial con respecto a la i-ésima variable x_i es

$$\frac{\partial u}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$

¿Cuántas derivadas parciales puedes obtener de la función u?

¿Puedes expresar esta definición vectorialmente? Considera $\vec{x} = (x_1, ..., x_n)$

¿Cuál es la definición de $\frac{\partial u}{\partial x_1}$?

LA DERIVADA PARCIAL Y LAS RAZONES DE CAMBIO. INTERPRETE:

Humedad relativa (%)

Temperatura real (°F)	T	50	55	60	65	70	75	80	85	90
	90	96	98	100	103	106	109	112	115	119
	92	100	103	105	108	112	115	119	123	128
	94	104	107	111	114	118	122	127	132	137
	96	109	113	116	121	125	130	135	141	146
	98	114	118	123	127	133	138	144	150	157
	100	119	124	129	135	141	147	154	161	168

TABLA 1

Índice calorífico *I* en función de la temperatura y la humedad

en Stewart, J, Obr.cit.

LA DERIVADA PARCIAL: ejemplo $z = 4 - x^2 - 2y^2$ Interpreta el resultado de $z_x(1,1)$ y de $z_y(1,1)$

LA DERIVADA PARCIAL : (de dos variables) ejemplo

Halle la expresión analítica de la función y evalúe sus derivadas parciales

DERIVADAS PARCIALES DE SEGUNDO ORDEN

 \dot{c} Qué significa derivada de segundo orden de una función y = f(x) en (a)?

 \dot{c} Qué significa derivada de segundo orden de una z = f(x,y) en (a,b)?

 \dot{c} Cuántas derivadas de segundo orden admite la función y = f(x) en (a)?

 \dot{c} Cuántas derivadas de segundo orden admite la función z = f(x,y) en (a,b)?

LA DERIVADA PARCIAL de segundo orden: notación

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 z}{\partial y \, \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 z}{\partial x \, \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

TEOREMA DE CLAIRAUT Suponga que f se define en un disco D que contiene el punto (a, b). Si tanto la función f_{xy} como f_{yx} son continuas en D entonces

$$f_{xy}(a,b) = f_{yx}(a,b)$$

2 REGLA DE LA CADENA (CASO I) Suponga que z = f(x, y) es una función de x y y diferenciable, donde x = g(t) y y = h(t) son funciones de t diferenciables. Entonces z es una función de t diferenciable y

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

3 REGLA DE LA CADENA (CASO 2) Suponga que z = f(x, y) es una función diferenciable de x y y, donde x = g(s, t) y y = h(s, t) son funciones diferenciables de s y t. Entonces

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Resuelva:

Gía de Actividades Nº 2

Momento de inercia (I): Un anillo cilíndrico tiene un radio interior r_1 y un radio exterior r_2 , su momento de inercia es:

$$I = \frac{1}{2} m \left(r_1^2 + r_2^2 \right)$$

donde m es la masa. Calcular el ritmo de cambio de I cuando los radios son de 6 y 8cm respectivamente, si ambos están creciendo a razón de 2cm/s.

DERIVACIÓN IMPLÍCITA

El **Teorema de la función implícita** establece condiciones suficientes, bajo las cuales una ecuación de varias variables permite definir a una de ellas de ellas en función de las demás.

Teorema de la función implícita para F(x,y)=0: Si F se define en un disco que contiene al punto (a,b), donde F(a,b)=0; $F_y(a,b)\neq 0$ y F_x y F_x son continuas en el disco, entonces la ecuación F(x,y)=0 define a y como función de x en un entorno de a y la derivada de esta función está dada por:

 $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$

DERIVACIÓN IMPLÍCITA

Teorema de la función implícita para F(x,y,z)=0: $Si\ F$ se define en una esfera que contiene al punto (a,b,c), donde F(a,b,c)=0; $F_z(a,b,c)\neq 0$; F_x , F_y y F_z son continuas dentro de la esfera, entonces la ecuación F(x,y,z)=0 define a z como función de (x,y) cerca de (a,b) y sus derivadas parciales están dadas por:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

Fin de la presentación ...

... gracias por su seguimiento

... gracias por su participación