

EDF SCHEDULER IMPLEMENTATION USING FREERTOS V12

Udacity Embedded Systems advanced nanodegree

ABDELRAHMAN HISHAM LABEEB
FWD/UDACITY
RTOS/Project_2

Table of Contents

Sys	stem verificationstem				
_					
1-	Using analytical methods	. 2			
1	- System hyperperiod	. 2			

System verification

1- Using analytical methods

Task	Period (ms)	Execution time (ms)	Times/100ms
Button 1	50	0.014	2
Button 2	50	0.014	2
Periodic Transmitter	100	0.020	1
UART	20	0.03	5
Load Simulation 1	10	5	10
Load Simulation 2	100	12	1

- 1 System hyper-period = LCM(50,100,20,10) = 100ms
- 2- CPU Load

CPU Load =
$$0.014*4 + 0.02 + 0.03*5 + 10*5 + 12 \approx 10*5 + 12 = 62.2\%$$

Comment: expected results because load 1 and load 2 tasks got much higher execution time than the other Tasks

3- System stimulability Using URM (for rate monatomic schedular)

$$U = \sum_{Pi} \frac{Ci}{Pi} = \frac{0.014}{50} * 2 + \frac{0.02}{100} + \frac{0.03}{20} + \frac{5}{10} + \frac{12}{100} = 0.62$$

$$URM = 6 * (2^{\frac{1}{6}} - 1) = 0.73477228985$$

URM > U → system is schedulable

Comment: the system is schedulable using rate monatomic schedular

2- Using offline simulator simso

3- Using Keil

