(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 103588739 A (43)申请公布日 2014.02.19

(21)申请号 201310617800.3

(22)申请日 2011.03.25

(62)分案原申请数据

201110074175. 3 2011. 03. 25

(71) 申请人 上海长恒生物医药科技有限公司 地址 200433 上海市杨浦区黄兴路 1725 号申请人 上海瑞广生化科技开发有限公司

(72) 发明人 张明刚 李启升 牛春娟

(74) 专利代理机构 上海专利商标事务所有限公司 31100

代理人 陈文青

(51) Int. CI.

CO7D 307/68 (2006.01)

CO7D 405/04 (2006.01)

A61K 31/341 (2006.01)

A61K 31/443 (2006.01)

A61K 31/5377(2006.01)

A61K 31/496 (2006. 01)

A61P 35/00 (2006. 01)

A61P 35/02 (2006.01)

A61P 31/20 (2006.01)

A61P 31/16 (2006.01)

权利要求书6页 说明书35页 附图1页

(54) 发明名称

呋喃类化合物、其制备方法及所述呋喃类化 合物的应用

(57) 摘要

本发明呋喃类化合物、其制备方法及所述呋喃类化合物的应用,涉及下式化合物或其药用盐,所述的化合物具有如下结构,其中各基团的定义详见说明书。本发明也涉及所述化合物的制备方法。本发明进一步提供了含有所述化合物的药物组合物,本发明还涉及所述化合物在制药中的应用。本发明的化合物是一类新颖的抗病毒和抗肿

瘤药剂。

 $\begin{array}{c|cccc}
R_3 & O & R_3 & O \\
R_4 & R_7 & R_4 & R_7 & R_7
\end{array}$ $\begin{array}{c|ccccc}
R_3 & O & R_7 & R_$

CN 103588739 A

1. 一种化合物或其药用盐,所述的化合物具有如下结构:

$$R_4$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1

其中:

 R_2 选 自 H, $C_1 \sim C_{18}$ 烷 基, -X, -CN, -X, -NH $_2$, -NR $_8$ R $_9$, -OR $_{10}$, -COOH, ,

$$R_3$$
, R_4 =H, $-OH$, $=O$, $-CN$, $-X$, $-NH_2$, $-NR_8R_9$, $-OR_{10}$, $-COOH$, , OR_{10} , OR_{11} , OR_{12} ,

$$R$$
 选自 H , $C_1 \sim C_{18}$ 烷基, R_5 , $N-R_{13}$;

n 为整数 0 或 1;

Z为0,N或S;

X为Cl或Br;

Y 为 O, N 或 S;

 R_5 和 R_6 可相同或不同,各自独立地选自 H、 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基、 $C_2 \sim C_{18}$ 炔基、任 选取代的苯基和杂芳基,所述的取代基选自卤素、硝基、羟基、氰基、羟基、羟甲基、巯基、氨基、 $C_1 \sim C_2$ 羧基、磺酸 $C_1 \sim C_6$ 酯、 $-COR_7$ 、 $-CONR_8R_9$ 、 $-NR_8R_9$ 、 $-OR_{10}$ 、-COOH、 OR_{10} OR_{10} OR_{10} OR_{10} OR_{10} OR_{10} OR_{10}

 R_7 选自 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基或 $C_2 \sim C_{18}$ 炔基;

 R_8 和 R_9 可相同或不同,各自独立地选自 H、 $C_1 \sim C_{18}$ 烷基, $C_2 \sim C_{18}$ 烯基, $C_2 \sim C_{18}$ 炔基, $C_1 \sim C_6$ 羧酸或羧酸酯,任选取代的苯基,所述的取代基选自卤素、硝基、羟基、氰基、羟基、羟基、羟基、羟基、

 R_{10} 选自 H、 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基、 $C_2 \sim C_{18}$ 炔基、 $C_1 \sim C_6$ 羧酸或羧酸酯、任选取代的苯基或杂芳基,所述的取代基选自卤素、硝基、羟基、氰基、羟基、羟甲基、巯基、氨基、 $C_1 \sim C_1$

$$C_2$$
 羧基、磺酸 $C_1 \sim C_6$ 酯、 $-COR_7$ 、 $-CONR_8R_9$ 、 $-NR_8R_9$ 、 $-COOH$ 、 $\mathcal{L}_{OR_{11}}$ $\mathcal{L}_{NHR_{12}}$.

 R_{11} 、 R_{12} 、 R_{13} 可相同或不同,各自独立地选自 H、 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烷基 $C_2 \sim C_{18}$ 烷基 $C_3 \sim C_{18}$ 炔基;

所述的杂芳基选自吡啶基、苯并吡啶基,或从吩噁噻、噻吩、噁唑、苯并吡啶中衍生出的 基团。

2. 如权利要求1所述的化合物或其药用盐,其中所述的化合物选自:

CH-10 系列化合物

CH-11 系列化合物

CH-12 系列化合物

CH-13 系列化合物

CH-14 系列化合物

COOH CF₃ H CF₃ H CF₃ H CF₃ (CH-14-3) (CH-14-4) (CH-14-5) (CH-14-6) (CH-14-7)
$$(CH-14-8)$$
 (CH-14-8) $(CH-14-9)$

CH-15 系列化合物

3. 如权利要求 1 或 2 所述的化合物或其药用盐的制备方法,它包括如下反应流程:流程 B

其中,

$$A = CH_2(COOEt)_2$$
, $B = CH_3CCH_2COOEt$, $C = NCCH_2COEt$.

 $D = OH$
 $CH_2C = CCH_2OH$

 R_1 、 R_2 、 R_3 、 R_4 ,R 和 Z 的定义与权利要求 1 中的相同;以及所述的方法还任选地包括成盐反应。

4. 如权利要求 3 所述的方法,其中,在流程 B 中,R₁-CHO 在醋酸和吡啶存在下与丙二酸二乙酯或者乙酰乙酸乙酯或者氰乙酸乙酯在甲苯中回流条件下发生缩合反应,得到中间体2,2 在氢化钠和 Pd 或者 Cu 的金属催化剂存在下,在 THF 中关环后再和皂化剂经皂化反应,得到化合物 CH-10;CH-10 与氯化亚砜或者草酰氯反应制得相应的酰氯,再与取代的胺或者醇反应得到 CH-11,其中添加吡啶为缚酸剂;CH-10 与 NBS 反应制得 5-位溴代产物 CH-12;CH-12 与氯化亚砜或者草酰氯反应制得相应的酰氯,再与被 R 基团取代的胺或者醇反应得到 CH-13,其中添加吡啶为缚酸剂;CH-13 进一步与取代的伯胺、端基双键或者三键化合物进一步通过 HECK 反应或者 Bulkwald 反应制得最终产物 CH-14;CH-14 溶解于干燥的二氯甲烷中,加入过量的氯化亚砜回流反应,反应完全后,真空加热蒸去二氯甲烷和过量的氯化亚砜得浓稠的油状物后;加入干燥的二氯甲烷溶解油状物;然后,加入适量事先配制好的被 R 基团取代的醇、被 R 基团取代的胺、被 R 基团取代的哌嗪或者吗啉的干燥二氯甲烷溶液;加入无水吡啶作为缚酸剂反应,反应完全后,加水停止反应,用二氯甲烷萃取,得 到系列化合物 CH-15。

5. 如权利要求 4 所述的方法,其中,所述的皂化剂选自无机碱, C_{1-4} 醇钠或氨水。无机碱选自氢氧化钠、氢氧化钾、碳酸钠或碳酸钾; C_{1-4} 醇钠选自甲醇钠、乙醇钠或异丙醇钠;所述的皂化反应在溶剂中进行,溶剂选自 C_{1-4} 脂肪醇、水、四氢呋喃或其组合。 C_{1-4} 脂肪醇选自甲醇、乙醇、丙醇或异丙醇;

所述的缩合溶剂选自吡啶、单卤或多卤烷烃、四氢呋喃、二氧六环、苯、乙腈的溶剂中进行,优选的溶剂是吡啶和二氧六环;所述的缚酸剂选自包括氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠的无机碱,或包括吡啶、三乙胺的有机碱,优选缚酸剂选自碳酸钠、碳酸钾或三乙胺。所述的烷氧基钠(钾、锂)选自甲醇钠、乙醇钠、正丙醇钠、异丙醇钠、叔丁醇钠、叔丁醇钾、正丁基锂,优选的缩合剂是氢化钠或叔丁醇钠;

所述的有机溶剂优选四氢呋喃,二氯甲烷、乙醚、二氧六环、吡啶、三乙胺、 C_{1-4} 脂肪醇、乙腈、 C_{1-4} 单卤或多卤烷烃、 C_{1-4} 脂肪醚、DMF、DMSO。

- 6. 一种抗肿瘤药物组合物,它包含权利要求 1-2 任一所述的化合物或其药用盐,以及药学上可接受的载体,它优选地为固体或液体形式。
- 7. 一种抗病毒药物组合物,它包含权利要求 1-2 任一所述的化合物或其药用盐,以及药学上可接受的载体,它优选地为固体或液体形式。
- 8. 如权利要求 1-2 任一所述的化合物或其药用盐在制备抗肿瘤药物中的应用;所述的肿瘤选自食道、胃、肠、口腔、咽、喉、肺、结肠、乳腺、子宫、子宫内膜、卵巢、前列腺、睾丸、膀胱、肾、肝、胰腺、骨、结缔组织、皮肤、盐、脑或中枢神经系统发生的癌症,或者甲状腺癌症、白血病、何杰金氏病、淋巴瘤或骨髓瘤。
- 9. 如权利要求 1-2 任一所述的化合物或其药用盐在制备抗病毒药物中的应用;所述的病毒为乙型肝炎病毒或流感病毒。

呋喃类化合物、其制备方法及所述呋喃类化合物的应用

[0001] 本申请是申请人于 2011 年 3 月 25 日提交的申请号为 201110074175. 3 的发明专利申请的分案申请。

技术领域

[0002] 本发明涉及结构新颖的 2,5-二氢呋喃和呋喃类化合物,其合成方法,包含所述呋喃类化合物的药物组合物,以及其在制备抗肿瘤或抗病毒的药物中的应用。

背景技术

[0003] 乙型肝炎病毒(HBV)感染所导致的急、慢性疾病已经对全世界人民的健康造成了很大的影响。世界卫生组织(WHO)的最新统计数据显示,目前已经有近20亿人被HBV感染,其中3.6亿人为慢性乙肝,每年有50-70万人死于肝硬化、肝癌等严重疾病,给家庭、社会造成沉重经济负担。因此,乙型肝炎病毒治疗药物是国、内外药物研究的重要的领域。

[0004] 慢性乙型肝炎患者抗病毒药物治疗是关键。阻断或持久抑制 HBV-DNA 在体内的复制,从而减轻或终止肝脏炎症、坏死和纤维化病变,阻止病变向肝功能失代偿、肝硬化、肝功能衰竭和肝癌发展,是治疗慢性乙肝的主要手段。目前用于治疗慢性乙肝的药物主要有两类——免疫调节剂和核苷类 HBV-DNA 聚合酶抑制剂。前者包括干扰素一 a 2 b (Intron A®) 和聚乙二醇干扰素一 a 2a (Pegasys®,派罗欣);后者包括拉米 夫定 (Epivir-HBV®,贺普丁®)、阿德福韦酯 (Hepsera®,维普力®),恩替卡韦 (Baraclude®,博路定®)和替比夫定 (Sebivo®,素比伏®)等。 a - 干扰素是和聚乙二醇干扰素是用于治疗乙肝的免疫调节剂,核苷类药物主要通过选择性或竞争性抑制 HBV-DNA 聚合酶的催化作用而达到抑制 HBV-DNA 复制的目的。

[0005] 由于某些药物体内长期效果存在免疫调节成功率较低、价格昂贵以及感冒样症状和失眠等问题,临床应用受到很大限制。包括拉米夫定在内的核苷类药物不能有效地清除细胞核内的 HBVcccDNA,导致停药后反弹,使患者体内 ALT 和 HBV-DNA 水平急剧升高,形成危及生命的暴发式肝炎,其中恩替卡韦(Entecavir)和替比夫定(Telbivudine)等耐药位点与拉米夫定基本相同,存在着交叉耐药。核苷类药物的停药后反弹和长期应用导致的耐药性已成为不容忽视的问题,因此,寻找全新的非核苷类抗 HBV 药物成为研发的热点。近年陆续发现了一些结构新颖的高活性抗 HBV 化合物,为新型抗 HBV 药物的研发提供了丰富的信息。

[0006] 恶性肿瘤是严重危害人类健康的一大类疾病,已逐渐取代心脑血管疾病成为全球头号杀手。据世界卫生组织的报告报道,全球 2010 估计将有 1240 万人确诊罹患某种类型癌症,其中 760 万人将因此死亡。到 2030 年,全球每年可能将有癌症患者 2640 万人,其中 1700 万人将因此死亡。最易导致死亡的癌症包括肺癌、胃癌、肝癌、结肠癌和乳腺癌。癌症严重地危害着人类的健康,因此,对肿瘤的防治已经成为世界传染病控制中的一个极为重要的亟待解决的问题。研发新型抗肿瘤药物是药物研究的重要的领域。

[0007] 在对中药活性部位进行分离提取过程中,发现数个有活性的含有四氢呋喃环类化合物,在对含有四氢呋喃环类化合物结构优化和改造的过程中,新结构四氢呋喃类化合物,显示了良好的抗肿瘤活性。

发明内容

[0008] 本发明的一个目的是提供用于新型的呋喃类化合物。

[0009] 本发明的另一个目的是提供所述呋喃类化合物的制备方法。

[0010] 本发明的再一个目的是提供所述呋喃类化合物在制备抗肿瘤或抗病毒的药物中的应用。

[0011] 本发明的目的是通过下列构思来实现的:

[0012] 一种化合物或其药用盐,所述的化合物具有如下结构:

[0013]

[0014] 其中:

[0016] R₂ 选自 H, C₁ ~ C₁₈ 烷基, -X, -CN, -X, -NH₂, -NR₈R₉, -OR₁₀, -COOH, ,

[0017]

$$\downarrow_{OR_{11}}, \qquad \downarrow_{NHR_{12}}, \qquad \downarrow_{n} \downarrow_{R_{5}}, \qquad \downarrow_{n} \downarrow_{R_{6}}, \qquad \downarrow_{n} \downarrow_{R_{6}}, \qquad \downarrow_{n} \downarrow_{R_{7}}, \qquad \downarrow_{n} \downarrow_{Z}^{R_{7}}, \qquad \downarrow_{n}$$

[0018] $R_3, R_4 = H, -OH, = 0, -CN, -X, -NH_2, -NR_8R_9, -OR_{10}, -COOH, , \downarrow OR_{11}, \downarrow OR_{12};$

[0020] n 为整数 0 或 1;

[0021] Z为0,N或S;

[0022] X为Cl或Br:

[0023] Y为0,N或S;

[0024] R_5 和 R_6 可相同或不同,各自独立地选自 $H_*C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基、 $C_2 \sim C_{18}$ 炔基、任选取代的苯基。所述的取代基选自卤素、硝基、羟基、氰基、羟基、羟甲基、巯基、氨基、

$$C_1 \sim C_2$$
 羧基、磺酸 $C_1 \sim C_6$ 酯、 $-COR_7$ 、 $-CONR_8R_9$ 、 $-NR_8R_9$ 、 $-OR_{10}$ 、 $-COOH$ 、 OR_{11} 、 或 NHR_{12} :

[0025] R_7 选自 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基或 $C_2 \sim C_{18}$ 炔基;

[0026] R_8 和 R_9 可相同或不同,各自独立地选自 $H_{\rm v}$ $C_1 \sim C_{18}$ 烷基, $C_2 \sim C_{18}$ 烯基, $C_2 \sim C_{18}$

炔基, $C_1 \sim C_6$ 羧酸或羧酸酯,任选取代的苯基,所述的取代基选自卤素、硝基、羟基、氰基、羟基、羟甲基或巯基:

[0027] R_{10} 选自 H、 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基、 $C_2 \sim C_{18}$ 炔基、 $C_1 \sim C_6$ 羧酸或羧酸酯、任选取代的苯基或杂芳基,所述的取代基选自卤素、硝基、羟基、氰基、羟基、羟甲基、巯基、氨基、

$$C_1 \sim C_2$$
 羧基、磺酸 $C_1 \sim C_6$ 酯、 $-COR_7$ 、 $-CONR_8R_9$ 、 $-NR_8R_9$ 、 $-COOH$ 、 $\mathcal{O}_{OR_{11}}$ 、 $\mathcal{O}_{NHR_{12}}$

[0028] R_{11} 、 R_{12} 、 R_{13} 可相同或不同,各自独立地选自 H、 $C_1 \sim C_{18}$ 烷基、 $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 炔基。

[0029] 本文中,术语"任选取代的苯基"表示邻、间、对位任选取代的苯基,2,3位双取代的任选取代的苯基,3,4位双取代的苯基,2,5位双取代的苯基,3,5位双取代的苯基,3,4,5位三取代的苯基;

[0030] 术语"杂芳基"是从含有 1 个或 2 个选自 N、0 或 S 的杂原子的五或六元杂环或稠合杂环中衍生出的基团,选自但不限于吡啶基、苯并吡啶基,或从吩噁噻、噻吩、噁唑、苯并吡啶中衍生出的基团。

[0031] 术语 " $C_1 \sim C_{18}$ 烷基、 $C_2 \sim C_{18}$ 烯基、 $C_2 \sim C_{18}$ 炔基"表示直链或支链饱和烷烃或不饱和烷烃残基。

[0032] 本发明化合物优选的化合物为具有如下结构式的化合物:

[0033] CH-3 系列化合物:

[0034]

[0035] CH-4 系列化合物

[0036]

[0037] CH-5 系列化合物

[0038]

[0039] CH-6 系列化合物

[0040]

[0041] CH-7 系列化合物

[0042]

[0043] CH-8 系列化合物

[0044]

[0045] CH-9 系列化合物

[0046]

[0047]

[0048] CH-10 系列化合物

[0049]

CH-11 系列化合物 [0050]

[0051]

[0052] CH-12 系列化合物

[0053]

CH-13 系列化合物 [0054]

[0055]

[0056] CH-14 系列化合物

[0057]

[0058] CH-15 系列化合物

[0059]

[0061] 本发明化合物的合成途径如下所示:

[0062] 流程 A

[0063]

[0064] 流程 B

[0065]

$$R_1$$
 CHO
 A -C R_1 COOEt R_1 COOEt R_1 COOEt R_1 R_1 R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_1 R_6 R_1 R_1 R_1 R_2 R_3 R_4 R_6 R_1 R_1 R_2 R_3 R_4 R_6 R_1 R_1 R_1 R_2 R_3 R_4 R_1 R_1 R_1 R_1 R_2 R_3 R_4 R_1 R_1 R_1 R_1 R_1 R_1 R_1 R_2 R_3 R_4 R_1 R_1 R_1 R_1 R_2 R_3 R_4 R_1 R_1 R_1 R_2 R_3 R_4 R_1 R_1 R_1 R_2 R_3 R_4 R_1 R_1 R_1 R_2 R_3 R_1 R_2 R_1 R_2 R_1 R_2 R_3 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_3 R_1 R_2 R_2 R_3 R_1 R_2 R_3 R_2 R_3 R_1 R_2 R_2 R_3 R_3 R_2 R_3 R_3 R_3 R_4 R_1 R_1 R_2 R_3 R_3 R_3 R_4 R_4 R_4 R_4 R_5 R_4 R_5 R_5

[0066] 流程A和B中:

[0067] $A=CH_2(COOEt)_2$, $B=CH_3CCH_2COOEt$, $C=NCCH_2COEt$, et al.

[0068] $D = \bigcirc_{OH}$, $E = HO - CH_2C \equiv CCH_2OH$, et⁻¹

[0069] R₁、R₂、R₃、R₄, R 和 Z 的定义同上。

[0070] 具体来说,制备本发明化合物的方法包括如下步骤:

[0071] 流程 $A:R_1$ -CHO (芳香醛或者脂肪醛)在醋酸和吡啶存在下与 $A \sim C$ 中任选之一(丙二酸二乙酯或者乙酰乙酸乙酯或者氰乙酸乙酯) 在甲苯中回流条件下发生缩合反应得到中间体 2,2 和 D 或 E 在氢化钠 (钾、钙) 或烷氧基钠 (钾、锂) 和 Pd 或者 Cu 等金属催化剂的存在下在 THF 中关环后再和皂化剂经皂化反应得到系列化合物 CH-3。CH-3与氯化亚砜或者草酰氯作用制得相应的酰氯,不经过分离直接与 $R-OH/R-NH_2/R-SH$ 在缩合溶剂中反应得到 CH-4 系列化合物,其中添加缚酸剂;CH-4 与 NBS 反应分别制得 CH-5 系列化合物和 CH-7 系列化合物;CH-5 与 $R-OH/R-NH_2/R-SH$ 在缩合溶剂中反应得到 CH-6 系列化合物,或者 CH-5 先与叠氮化钠反应,再经过 Click 化学制得三氮唑取代的 CH-6 系列化合物;而 CH-7 与卤代物反应制得相应的 CH-8 系列化合物,CH-8 与 $R-OH/R-NH_2/R-SH$ 在缩合溶剂中反应得到 CH-9 系列化合物,或者 CH-5 先与叠氮化钠反应,再经过 Click 化学制得三氮唑取代的 CH-9 系列化合物,或者 CH-5 先与叠氮化钠反应,再经过 Click 化学制得三氮唑取代的 CH-9 系列化合物,或者 CH-5 先与叠氮化钠反应,再经过 Click 化学制得三氮唑取代的 CH-9 系列化合物;或者

[0072] 流程 B:R,-CHO (芳香醛或者脂肪醛)在醋酸和吡啶存在下与 A~C中的任一(丙二

酸二乙酯或者乙酰乙酸乙酯或者氰乙酸乙酯)在甲苯中回流条件下发生缩合反应得到中间体 2,2 在氢化钠和 Pd 或者 Cu 等金属催化剂的存在下在 THF 中关环后再和皂化剂经皂化反应得到化合物 CH-10。CH-10 与氯化亚砜或者草酰氯作用制得相应的酰氯,不经过分离直接与取代的胺或者醇反应得到 CH-11,其中添加吡啶为缚酸剂;CH-10 与 NBS 反应制得 5-位溴代产物 CH-12。CH-12 与氯化亚砜或者草酰氯作用制得相应的酰氯,不经过分离直接与取代的 胺或者醇反应得到 CH-13,其中添加吡啶为缚酸剂;CH-13 进一步与取代的伯胺、端基双键或者三键化合物进一步通过 HECK 反应或者 Bulkwald 反应制得最终产物 CH-14。CH-14溶解于干燥的二氯甲烷中,加入过量的氯化亚砜回流反应,反应完全后,真空加热蒸去二氯甲烷和过量的氯化亚砜得浓稠的油状物后;加入适量的干燥的二氯甲烷溶解油状物;然后,加入适量事先配制好的取代的醇、取代的胺、取代的哌嗪或者吗啉的干燥二氯甲烷溶液;加入适量的无水吡啶作为缚酸剂,反应过夜。反应完全后,加适量的水停止反应,用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到系列化合物 CH-15。

[0073] 所述的皂化剂选自无机碱, C_{1-4} 醇钠或氨水。无机碱选自氢氧化钠、氢氧化钾、碳酸钠或碳酸钾; C_{1-4} 醇钠选自甲醇钠、乙醇钠或异丙醇钠;所述的皂化反应在溶剂中进行,溶剂选自 C_{1-4} 脂肪醇、水、四氢呋喃或其组合。 C_{1-4} 脂肪醇选自甲醇、乙醇、丙醇或异丙醇。

[0074] 所述的缩合溶剂选自吡啶、单卤或多卤烷烃、四氢呋喃、二氧六环、苯、乙腈的溶剂中进行,优选的溶剂是吡啶和二氧六环;所述的缚酸剂选自包括氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠的无机碱,或包括吡啶、三乙胺的有机碱,优选缚酸剂选自碳酸钠、碳酸钾或三乙胺。所述的烷氧基钠(钾、锂)选自甲醇钠、乙醇钠、正丙醇钠、异丙醇钠、叔丁醇钠、叔丁醇钾、正丁基钾,优选的缩合剂是氢化钠或叔丁醇钠。

[0075] 所述的有机溶剂优选四氢呋喃,二氯甲烷、乙醚、二氧六环、吡啶、三乙胺、 C_{1-4} 脂肪醇、乙腈、 C_{1-4} 单卤或多卤烷烃、 C_{1-4} 脂肪醚、DMF、DMSO。

[0076] 本发明的化合物可按照常规方法制备为药用盐的形式。因此,在一个实施方案中,制备本发明化合物的方法还包括成盐反应,所述的成盐反应在溶剂中进行,所述的溶剂选自 C₁₋₄ 脂肪醇、乙腈、四氢呋喃、C₁₋₄ 脂肪醚,优选溶剂甲醇、乙醇、乙腈。

[0077] 本发明化合物的药用盐包括其无机酸盐和有机酸盐;所述的无机酸盐选自盐酸盐、硫酸盐、磷酸盐、二磷酸盐、氢溴酸盐、硝酸盐;所述的有机酸盐选自乙酸盐、马来酸盐、富马酸盐、酒石酸盐、琥珀酸盐、乳酸盐、对甲苯磺酸盐、水杨酸盐、草酸盐。

[0078] 本发明另一方面涉及一种抗肿瘤组合物,它包含本发明化合物以及药学上可接受的载体。

[0079] 本发明的再一方面涉及一种抗病毒组合物,它包含本发明化合物以及药学上可接受的载体。

[0080] 本发明的另一方面涉及本发明化合物在制备抗肿瘤药物中的应用。

[0081] 本发明的再一方面涉及本发明化合物在制备抗病毒药物中的应用。

[0082] 本文中,术语"肿瘤"指选自食道、胃、肠、口腔、咽、喉、肺、结肠、 乳腺、子宫、子宫内膜、卵巢、前列腺、睾丸、膀胱、肾、肝、胰腺、骨、结缔组织、皮肤、盐、脑或中枢神经系统发生的癌症;或是甲状腺癌症、白血病、何杰金氏病、淋巴瘤或骨髓瘤。

[0083] 所述的病毒指乙型肝炎病毒和流感病毒。

[0084] 所述的药学上可接受的载体可根据所属技术领域的实践进行选取。所述的药物组

合物优选的是固体形式或液体形式。

附图说明

[0085] 图 1 是呈晶体形式的 CH-3-10 化合物的 X- 射线衍射图。

具体实施方式

[0086] 下面结合实施例对本发明做详细描述,但下列实施例不应看作是对本发明范围的限制。

[0087] 实施例 1

[0088] CH-3 系列化合物:

[0089] 1,4-丁炔二醇加入无水 THF中,加入适量的 NaH,反应适当的时间后,加入一定量的化合物 2后,加入金属 Pd 或者 Cu 催化剂;待反应完全后,加水将反应停止,调 pH 呈弱酸性,减压回收 THF后;加水稀释,用二氯甲烷萃取,浓缩后,快速柱层析得到 CH-3 系列化合物,收率 50-87%。

[0090] CH-3-1, 白色固体,熔点:165.7 \sim 166.2 °C; ¹H NMR (DMSO, 300MHz): δ 12.76 (b, 1 H), 7.19-7.58 (m, 6H), 5.86 (dd, 1H), 5.60 (d, 1H), 5.50 (d, 1H), 5.13 (dd, 1H), 4.95 (dd, 1H) ppm; ESIMS: m/s (%):215.53 [M-H] $\bar{}$ 。

[0091] CH-3-2, 白色固体,熔点:154.7 \sim 154.9 °C; ¹H NMR(DMSO, 300MHz): δ 12.81(s, 1H), 7.12-7.39(m, 5H), 6.12(dd, 1H), 5.61(d, J=10.8, 1H), 5.52(d, 1H), 5.09(dd, 1H), 4.96(dd, 1H)ppm; ESIMS:m/s(%):233.53[M-H] $^{-}$ 。

[0092] CH-3-3, 白色固体,熔点:155.1 \sim 155.7 °C; ¹H NMR(DMSO, 300MHz): δ 12.83 (b, 1H), 7.24-7.34 (m, 3H), 7.11-7.18 (m, 2H), 5.87 (dd, 1H), 5.60 (d, 1H), 5.50 (d, 1H), 5.13 (dd, 1 H), 4.95 (dd, 1H) ppm; ESIMS:m/s (%):233.42 [M-H] $^{-}$ 。

[0093] CH-3-4,白色固体,熔点:158.4~158.7℃; H NMR(DMSO, 300MHz): δ 12.90 (b, 1H), 7.31 (m, 5H), 5.88 (dd, 1H), 5.60 (d, J=11.1Hz, 1H), 5.50 (d, J=18.0Hz, 1H), 5.16 (dd 1h), 4.95 (dd, 3.0Hz, 1H) ppm ;ESIMS:m/s (%):249.65 [M-H] .

[0094] CH-3-5, 白色固体, 熔点: 102.6-103.0 °C 1H NMR (DMSO/TMS, 300MHz): δ 12. 94(s, 1 H), 7. 53-7. 60 (m, 2H), 7. 24-7. 34 (m, 2H), 5. 89 (dd, 1H), 5. 61 (d, 1H), 5. 51 (d, J=18.0 Hz, 1H), 5. 21 (dd, 1H), 4. 95 (dd, 1H) ppm; ESIMS: m/s (%): 283. 69 [M-H] -。

[0095] CH-3-6,白色固体,熔点:144.7~145.2℃; H NMR(DMSO, 300MHz): δ 12.84 (b, 1H), 7.47-7.51 (m, 2H), 7.19-7.31 (m, 3H), 5.83 (s, 1H), 5.58 (d, J=10.8Hz, 1H), 5.48 (d, J=18.0Hz, 1H), 5.14 (dd, J=14.4, 5.4Hz, 1H), 4.95 (dd, J=14.4, 2.1Hz, 1H) ppm; ESIMS: m/s(%):293.61 [M-H] 。

[0096] CH-3-7, 白色固体, 熔点: 146.7 \sim 147.1 $^{\circ}$ C; 1 H NMR(DMSO/TMS, 300MHz): δ 12.73(s, 1H), 7.25(m, 5H), 5.82(dd, J=5.1, 3.0Hz, 1H), 5.58(d, J=11.1, 1H), 5.48(d, 18.3, 1H), 5.06(dd, J=14.4, 5.1Hz, 1H), 4.90(dd, J=14.4, 3.0Hz, 1H), 1.24(s, 9H); ESIMS: m/s(%): 271.59[M-H] $^{-}$ 。

[0097] CH-3-8, 白色固体,熔点:160.1 \sim 160.4 $^{\circ}$ C; H NMR(DMSO, 300MHz): δ 12.71(s, 1 H), 7.29(dd, J=18.0, 11.1Hz, 1H), 7.14-7.19(m, 2H), 6.84-6.89(m, 2H), 5.82(dd, 1H), 5.58

(d, 1H), 5. 48 (d, 1H), 5. 07 (dd, 5. 4Hz, 1H), 4. 89 (dd, 3. 0Hz, 1H), 3. 72 (s, 3H) ppm; ESIMS:m/s(%):245.7 [M-1]⁻。

[0098] CH-3-9,白色固体,熔点:180.3~180.9℃; H NMR(DMSO, 300MHz): δ 12.76 (s, 1H), 7.30 (dd, 1.1Hz, 1H), 6.76-6.91 (m, 3H), 5.82 (dd, 1H), 5.60 (d, 1H), 5.50 (d, 1H), 5.09 (dd, J=14.4, 5.4Hz, 1H), 4.90 (dd, 1H), 3.72 (s, 3H), 3.71 (s, 3H) ppm ; ESIMS: m/s(%):275.7 [M-1] 。

[0099] CH-3-10. 白色固体,熔点:140.5~140.7℃; H NMR(DMSO, 300MHz): δ 12.78 (b 1H), 7.40 (dd, 1H), 6.40-6.42 (m, 3H), 5.79 (dd, 1H), 5.60 (d, 1H), 5.48 (d, 1H), 5.11 (dd, 1H), 5.91 (dd, 1H), 3.70 (s, 6H) ppm; ESIMS: m/s (%):275.65 [M-H] 。

[0100] CH-3-11. 白色固体,熔点: $168.6 \sim 170.1 \, ^{\circ} C; ^{1} H NMR (DMSO, 300MHz): \delta 12.83 (b, 1 H), 7.31 (dd, 1H), 6.55 (s, 2H), 5.85 (dd, 1H), 5.59 (d, 1H), 5.49 (d, 1H), 5.13 (dd, 1H), 4.92 (dd, 3.0 Hz, 1H), 3.79 (s, 6H), 3.73 (s, 3H) ppm; ESIMS: m/s (%): <math>305.69 \, [M-H]^-$ 。

[0101] CH-3-12. 黄色固体,熔点:169.7~169.9℃; H NMR(DMSO, 300MHz): δ 12.87(b, 1 H), 8.18(d, 2H), 7.58(d, 2H), 7.32(dd, 1H), 6.02(dd, 1H), 5.64(d, 1H), 5.54(d, 1H), 5.21(dd, 1H), 5.01(dd, 1H)ppm; ESIMS:m/s(%):260.09[M-H]⁻。

[0102] CH-3-13. 白色固体,熔点:158.5 \sim 159.1 °C; ¹H NMR (DMSO, 300MHz): δ 12.85 (s, 1 H), 7.58 (dd, 1H), 7.33 (dd, 1H), 6.39 (dd, 1H), 6.32 (dd, 1H), 5.89 (dd, 1H), 5.60 (d, 1H), 5.5 0 (d, 1H), 4.87 (dd, 1H) ppm; ESIMS: m/s (%): 205.77 [M-H] $^{-}$ 。

[0103] CH-3-14. 棕色固体,熔点:151.6~151.8℃; ¹H NMR(DMSO/TMS, 300MHz): δ 12.95(s, 1H), 7.44-7.46(m, 1H), 7.33(dd, 1H), 7.04-7.05(m, 1H), 6.97(dd, 1H), 6.16(dd, J=4.5, 2.7Hz, 1H), 5.61(d, 1H), 5.51(d, 1H), 5.01(dd, 1H), 4.91(dd, 1H); ESIMS:m/s(%):221.56[M-H] -。

[0104] CH-3-15. 绿色固体,熔点:138.8 \sim 139.5 °C; I¹H NMR(DMSO, 300MHz): δ 12.80 (b, 1H), 8.50 (d, 1H), 7.74-7.80 (m, 1H), 7.28-7.39 (m, 3H), 5.91 (dd, 1H), 5.60 (d, J=11.1Hz, 1H), 5.50 (d, 1H), 5.05 (dd, 1H), 4.95 (dd, 1H) ppm; ESIMS: m/s (%): 218.30 [M+H] $^{+}$; ESIMS: m/s (%): 218.30 [M+H] $^{-}$ 。

[0105] CH-3-16. 无色油状物。¹H NMR (DMSO, 300MHz): δ 12. 68-12. 79 (b, 1H), 7. 24 (q, 1 H), 5. 50 (d, 1H), 5. 55 (d, 1H), 4. 87 (dd, J=9. 9, 0. 9Hz, 1H), 4. 11 (dd, 1H), 1. 40-1. 46 (m, 2H), 1. 42-1. 51 (m, 1H), 1. 65-1. 75 (m, 1H), 1. 18-1. 22 (m, 14H), 0. 79-0. 88 (m, 3H) ppm; ESIMS:m/s (%): 205. 58 [M-H]⁻; ESIMS:m/s (%): 279. 52 [M-H]⁻。

[0106] 图 1 显示的 CH-3-10 晶体 X- 射线衍射图的相关数据如下: [0107]

识别码 F91215c 经验式 $C_{14}H_{14}O_{4}$ 分子量 246.25 温度 293(2) K 波长 0.71073A 晶体系统, 间隔基团 单斜晶系, P2(1)/n 单元尺寸 $\alpha = 90^{\circ}$ a=7.240(3) Ab=8.635(4) A $\beta = 97.352(6)^{\circ}$ $y = 90^{0}$ c=19.544(8) A $1212.0(9)A^3$ 体积 1.350mg/m^3 计算密度

[0108] 实施例 2

[0109] CH-4 系列化合物:

[0110] CH-3 溶解于干燥的二氯甲烷中,加入过量的氯化亚砜回流反应,反应完全后,真空加热蒸去二氯甲烷和过量的氯化亚砜得浓稠的油状物后;加入适量的干燥的二氯甲烷溶解油状物;然后,加入适量事先配制好的取代的醇或者取代的胺的干燥二氯甲烷溶液;加入适量的无水吡啶作为缚酸剂,反应过夜。反应完全后,加适量的水停止反应,用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到系列化合物 CH-4,收率 85-97%。

[0111] 各个化合物的谱图数据如下:

[0112] CH-4-1, 棕色固体, 熔点:153.3 \sim 153.8 °C; ¹H NMR(CDC1₃, 300MHz): δ 7.37 (q, 1H), 6.58 (s, 2H), 5.87 (m, 1H), 5.53 (d, 1H), 5.37 (d, 1H), 5.15 (m, 2H), 4.95 (m, 1H), 3.88 (m, 9H), 3.17 (m, 2H), 1.25 (m, 2H), 1.06 (m, 2H), 0.82 (t, 3) ppm; ESIMS: m/s (%):361.13 [M-H] $^{-}$ 。

[0113] CH-4-2, 棕色固体, 熔点:145.6 \sim 154.9°C; H NMR(CDC1₃, 300MHz): δ 7. 37 (q, 1H), 6. 58 (s, 2H), 5. 87 (m, 1H), 5. 53 (d, 1H), 5. 37 (d, 1H), 5. 15 (m, 2H), 4. 95 (m, 1H), 3. 88 (m, 9H), ppm ;ESIMS: m/s (%):360.98 [M-H] $\bar{}$ 。

[0114] CH-4-3, 棕色固体, 熔点:143.1 \sim 143.7 °C; ¹H NMR(CDC1₃, 300MHz): δ 7. 37 (q, 1H), 6. 58 (s, 2H), 5. 87 (m, 1H), 5. 53 (d, 1H), 5. 37 (d, 1H), 5. 15 (m, 2H), 4. 95 (m, 1H), 3. 88 (m, 9H), ppm; ESIMS: m/s (%): 360. 09 [M-H] $^-$ 。

[0115] CH-4-4, 棕色固体, 熔点:158.7.7 \sim 159.2 °C; ¹H NMR (CDC1₃, 300MHz): δ 7.37 (q, 1 H), 6.58 (s, 2H), 5.87 (m, 1H), 5.53 (d, 1H), 5.37 (d, 1H), 5.15 (m, 1H), 4.95 (m, 1H), 3.80 (m, 1 0H), 1.38 (m, 5H), 1.01 (m, 3H) ppm ;ESIMS: m/s (%):386.72 [M-H] $^{-}$ 。

[0116] CH-4-5, 棕色固体, 熔点:165.1 \sim 165.6 °C; ¹H NMR(CDC1₃, 300MHz): δ 7.40 (q, 1H), 7.05 (d, 2H), 6.83 (d, 2H), 6.50 (s, 2H), 5.90 (m, 1H), 5.52 (m, 2H), 5.49 (d, 1H), 5.15 (m, 1H), 4.95 (m, 1H), 3.85 (m, 9H), 2.30 (s, 3H) ppm ;ESIMS:m/s (%):408.97 [M-H] - 。

[0117] CH-4-6, 棕色固体,熔点:153.4 \sim 153.9 °C; ¹H NMR(CDC1₃, 300MHz): δ 7.49 (q, 1H), 6.73 (d, 1H), 6.63 (d, 1H), 6.50 (s, 2H), 6.45 (m, 1H), 5.87 (m, 1H), 5.53 (m, 2H), 5.37 (d, 1H), 5.15 (m, 1H), 4.95 (m, 1H), 4.39 (m, 2H), 3.80 (m, 15H) ppm; ESIMS: m/s (%): 455.17 [M-H] $^-$ 。
[0118] CH-4-7, 棕色固体,熔点:168.5 \sim 169.1 °C; ¹H NMR(CDC1₃, 300MHz): δ 7.50 (q, 1H)

(118) (118)

, 5. 05 (m, 1H), 3. 90 (m, 9H) ppm ;ESIMS:m/s (%):381. 62 [M-H]⁻.

[0119] CH-4-8, 棕色固体, 熔点: $172.3 \sim 172.6 \,^{\circ}$ C; H NMR(CDC1₃, 300MHz): δ 7. 37 (q, 1H), 6. 58 (s, 2H), 5. 87 (m, 1H), 5. 53 (d, 1H), 5. 37 (d, 1H), 5. 15 (m, 1H), 4. 95 (m, 1H), 3. 88 (m, 9H) ppm; ESIMS: m/s (%): 398. 95 [M-H] $^{-}$ 。

[0120] CH-4-9, 棕色固体, 熔点:125.7 \sim 126.2 °C; ¹H NMR (CDC1₃, 300MHz): δ 7.35 (m, 4H), 6.99 (m, 2H), 6.50 (s, 2H), 5.82 (m, 1H), 5.49 (d, 1H), 5.29 (m, 2H), 5.15 (m, 1H), 4.95 (m, 1H), 3.85 (m, 9H), 3.50 (m, 2H), 2.67 (m, 2H) ppm ;ESIMS:m/s (%):409.17 [M-H] - 。

[0121] CH-4-10, 棕色固体, 熔点:111.9 \sim 112.4 $^{\circ}$ C; 1 H NMR(CDC1 $_{3}$, 300MHz): δ 7.40 (q, 1H), 7.25 (m, 3H), 7.05 (m, 2H), 6.60 (m, 2H), 5.89 (m, 1H), 5.53 (d, 1H), 5.35 (d, 1H), 5.25 (m, 1H), 5.15 (m, 1H), 4.95 (m, 1H), 3.88 (m, 9H), 3.30 (m, 2H), 2.41 (m, 2H), 1.79 (m, 2H) ppm; ESIMS:m/s (%):423.29 [M-H] $^{-}$ 。

[0122] CH-4-11, 棕色固体, 熔点: 147. $1 \sim 147.9^{\circ}$ C; H NMR(CDC1₃, 300MHz): δ 7. 37 (q, 1H), 6. 58 (s, 2H), 5. 87 (m, 1H), 5. 53 (d, 1H), 5. 37 (d, 1H), 5. 15 (m, 1H), 4. 95 (m, 1H), 3. 96 (m, 2H), 3. 88 (m, 9H), 3. 38 (m, 2H), 3. 19 (m, 2H), 2. 87 (m, 2H) ppm ;ESIMS: m/s (%): 375. 12 [M-H] $^{-}$ 。

[0123] CH-4-12, 棕色固体, 熔点: $165.7 \sim 166.2^{\circ}\text{C}$; H NMR(CDC1₃, 300MHz): δ 7. 37(q, 1 H), δ . 58(s, 2H), δ . 87(m, 1H), δ . 53(d, 1H), δ . 37(d, 1H), δ . 15(m, 1H), 4. 95(m, 1H), 4. 00(m, 2 H), 3. 88(m, 9H), 3. 49(m, 2H), 3. 29(m, 2H), 2. 89(m, 2H) ppm; ESIMS: m/s (%): 467.89 [M-H] $^{-}$

[0124] CH-4-13, 棕色固体, 熔点: 175.8 \sim 176.5 °C; ¹H NMR (CDC1₃, 300MHz): δ 7.37 (q, 1H), 6.58 (s, 2H), 5.87 (m, 1H), 5.53 (d, 1H), 5.37 (d, 1H), 5.15 (m, 1H), 4.95 (m, 1H), 4.00 (m, 2H), 3.88 (m, 9H), 3.49 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H) ppm; ESIMS: m/s (%): 483.89 [M-H] $^{-}$ 。

[0125] 实施例3

[0126] CH-5 系列化合物:

[0127] 一定量的 CH-4 溶解于干燥的 DMSO 中,分批次加入过量的 N- 溴代琥珀酰亚胺 (NBS),在室温下反应数小时,待原料反应完全后,加入稍微过量的亚硫酸氢钠出去过量的 NBS,然后将混合液缓慢的滴加到不断搅拌的碎冰中。过滤得粗品,经重结晶得 CH-5 的系列产物;收率 70-92%。

[0128] CH-5 系列化合物的谱图数据如下:

[0129] CH-5-1, 棕色固体, 熔点:65.7 \sim 66.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 2H), 7.05 (m, 2H), 6.41 (m, 1H), 4.18 (m, 2H), 3.78 (m, 3H), 3.55 (m, 1H), 1.67 (m, 2H), 1.33 (m, 2H), 0.92 (m, 3H) ppm; ESIMS: m/s (%):383.25 [M-H] $^{-}$ 。

[0130] CH-5-2, 棕色固体, 熔点:54.7 \sim 54.9 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 2H), 7.05 (m, 2H), 6.41 (m, 1H), 4.18 (m, 2H), 3.78 (m, 1H), 3.55 (m, 1H), 2.86 (m, 2H), 1.97 (m, 1H), 0.92 (m, 6H), ppm; ESIMS: m/s (%):383.53 [M-H] $^{-}$ 。

[0131] CH-5-3, 棕色固体, 熔点:53.1 \sim 53.7 $^{\circ}$ C; H NMR(DMSO, 300MHz): δ 8.27 (m, 1H), 7.38 (m, 2H), 7.01 (d, 2H), 6.41 (m, 1H), 4.18 (m, 2H), 3.78 (m, 1H), 3.55 (m, 1H), 1.15 (m, 9H) ppm; ESIMS: m/s (%):383.22 [M-H] $^{\circ}$ 。

[0132] CH-5-4, 棕色固体, 熔点:65.7 \sim 66.2 $^{\circ}$ C; H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.38 (m, 2H), 7.01 (d, 2H), 6.41 (m, 1H), \4.18 (m, 2H), 3.78 (m, 2H), 3.55 (m, 1H), 1.65 (m, 2H), 1.38 (m, 5H), 1.01 (m, 3H) ppm ;ESIMS:m/s (%):409.12 [M-H] $^{\circ}$ 。

[0133] CH-5-5, 白色固体, 熔点: 77.7 \sim 78.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 4H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 4.85 (m, 2H), 4.18 (m, 2H), 3.78 (m, 1H), 3.55 (m, 1H), 2.22 (m, 3H) ppm; ESIMS: m/s (%): 431.18 [M-H] $^{-}$ 。

[0134] CH-5-6, 棕色固体, 熔点: $70.5 \sim 71.2 \,^{\circ}\mathrm{C}$; H NMR (DMSO, 300MHz): $8.27 \,^{\circ}\mathrm{m}$, 1H), $7.40 \,^{\circ}\mathrm{m}$; $7.05 \,^{\circ}\mathrm{m}$; $11.2 \,^{\circ}\mathrm{m}$; 11.2

[0135] CH-5-7, 棕色固体, 熔点: $101.5 \sim 102.1 \,^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ 8. 52 (m, 1H), 7. 62 (m, 2H), 7. 40 (m, 4H), 7. 05 (m, 3H), 6. 41 (m, 1H), 4. 18 (m, 2H), 3. 78 (m, 1H), 3. 55 (m, 1H) ppm ; ESIMS: m/s (%): $403.21 \,^{\circ}$ [M-H] · 。

[0136] CH-5-8, 棕色固体, 熔点: $108.7 \sim 109.3 \,^{\circ}$ C; H NMR (DMSO, $300 \,^{\circ}$ MHz): $88.52 \,^{\circ}$ m, 1H), $7.82 \,^{\circ}$ m, 2H), $7.42 \,^{\circ}$ m, 2H), $7.16 \,^{\circ}$ m, 2H), $7.08 \,^{\circ}$ m, 2H), $8.52 \,^{\circ}$ m, 1H) ppm; ESIMS: m/s (%): $421.22 \,^{\circ}$ m-H] $^{\circ}$.

[0137] CH-5-9, 棕色固体, 熔点: $61.5 \sim 62.3 \,^{\circ}$ C; H NMR (DMSO, 300MHz): $88.27 \,^{\circ}$ m, 1H), 7.40 (m, 5H), 7.16 (m, 2H), 7.05 (m, 2H), 6.41 (m, 1H), 4.18 (m, 2H), 3.78 (m, 1H), 3.55 (m, 3H), 2.82 (m, 2H) ppm; ESIMS: m/s (%): $431.28 \,^{\circ}$ m/s.

[0138] CH-5-10, 棕色固体,熔点:55.3 \sim 55.9 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 5H), 7.16 (m, 2H), 7.05 (m, 2H), 6.41 (m, 1H), 4.18 (m, 2H), 3.78 (m, 1H), 3.55 (m, 3H), 2.62 (m, 2H), 2.05 (m, 2H) ppm; ESIMS: m/s (%):445.31 [M-H] - 。

[0139] CH-5-11, 棕色固体, 熔点:95.1~95.7°C; H NMR(DMSO, 300MHz): δ 7.40(m, 2H), 7.05(m, 2H), 6.41(m, 1H), 4.18(m, 2H), 3.78(m, 5H), 3.55(m, 5H) ppm; ESIMS:m/s(%):397.12[M-H]-。

[0140] CH-5-12, 棕色固体, 熔点:117.7 \sim 118.3 °C; ¹H NMR (DMSO, 300MHz): δ 7.62 (m, 2H), 7.40 (m, 4H), 7.05 (m, 3H), 6.41 (m, 1H), 4.18 (m, 2H), 4.00 (m, 2H), 3.78 (m, 1H), 3.55 (m, 3H), 3.15 (m, 2H), 2.83 (m, 2H) ppm; ESIMS: m/s (%):490.33 [M-H] - 。

[0141] CH-5-13, 棕色固体, 熔点: $126.5.7 \sim 127.1 \,^{\circ}\mathrm{C}$; H NMR (CDC13, 300MHz): $87.62 \,^{\circ}\mathrm{m}$, 7.40 (m, 4H), 7.05 (m, 3H), 6.41 (m, 1H), 4.18 (m, 2H), 4.00 (m, 2H), 3.78 (m, 1H), 3.55 (m, 3H), 3.29 (m, 2H), 2.85 (m, 2H) ppm ; ESIMS: m/s (%): $407.92 \,^{\circ}\mathrm{M}$ -H] $^{\circ}$.

[0142] 实施例 4

[0143] A. 直接取代的 CH-6 系列化合物:

[0144] 一定量的 CH-5,稍微过量的取代的醇、胺、哌嗪或者吗啉,碳酸钾混溶于 DMSO/水的混合溶液中,加热反应数个小时;待反应完全后,将混合物缓慢的滴加到碎冰中,带碎冰融化,过滤出固体得粗品。经重结晶得 CH-6 系列化合物。

[0145] 直接取代的 CH-6 系列化合物的谱图数据如下:

[0146] CH-6-1, 棕色固体, 熔点:137.7 \sim 138.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.52 (m, 2H), 7.40 (m, 6H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 4.95 (m, 6H), 4.18 (m, 2H), 2.22 (m, 3H) ppm; ESIMS: m/s (%):458.88 [M-H] $^{-}$ 。

[0147] CH-6-2, 棕色固体, 熔点:143.6 \sim 144.1 °C; ¹H NMR (DMSO, 300MHz): δ 9.50 (s, 1H), 8.27 (m, 1H), 7.40 (m, 4H), 7.02 (m, 4H), 6.80 (m, 4H), 6.41 (m, 1H), 5.56 (m, 2H), 4.95 (m, 2H), 4.18 (m, 2H), 2.22 (m, 3H) ppm ;ESIMS: m/s (%): 460.98 [M-H] ⁻

[0148] CH-6-3, 棕色固体, 熔点:125.8 \sim 126.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.52 (m, 2H), 7.40 (m, 4H), 7.28 (m, 3H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 5.02 (m, 4H), 4.18 (m, 2H), 3.52 (m, 2H), 2.73 (m, 2H), 2.22 (m, 3H) ppm ;ESIMS:m/s (%):472.56 [M-H] $^{-}$ 。

[0149] CH-6-4, 棕色固体, 熔点:139.5 \sim 140.1 °C; ¹H NMR (DMSO, 300MHz): δ 8. 27 (m, 1H), 7. 52 (m, 2H), 7. 40 (m, 6H), 7. 05 (m, 2H), 6. 79 (m, 2H), 6. 41 (m, 1H), 4. 95 (m, 2H), 4. 22 (m, 6H), 3. 58 (s, 1H), 2. 22 (m, 3H) ppm ; ESIMS: m/s (%): 457. 65 [M-H] $^{-}$ 。

[0150] CH-6-5, 棕色固体, 熔点:149.7 \sim 150.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 4H), 7.26 (m, 2H), 7.05 (m, 2H), 6.79 (m, 5H), 6.41 (m, 1H), 4.95 (m, 2H), 4.43 (m, 2H) 4.18 (m, 2H), 2.22 (m, 3H) ppm ;ESIMS: m/s (%):443.18 [M-H] - 。

[0151] CH-6-6, 棕色固体, 熔点: 136.8 \sim 137.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 4H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 4.95 (m, 2H), 4.18 (m, 2H), 4.02 (m, 2H3.68 (m, 4H), 3.55 (m, 5H), 2.22 (m, 3H) ppm; ESIMS: m/s (%): 437.49 [M-H] $^-$ 。

[0152] CH-6-7, 棕色固体, 熔点:151.3 \sim 151.9 $^{\circ}$ C; H NMR (DMSO, 300MHz): $^{\delta}$ 8.27 (m, 1H), 7.40 (m, 6H), 7.26 (m, 3H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 4.95 (m, 2H), 4.18 (m, 2H), 4.02 (m, 2H), 3.76 (m, 2H), 2.22 (m, 3H) ppm ;ESIMS:m/s (%):526.83 [M-H] $^{-}$

[0153] B. Click 化学反应 CH-6 化合物的合成方法:

[0154] 一定量的 CH-5,稍微过量的叠氮化钠在四氢呋喃与水的混合溶液中,回流反应,待反应完全后;加入过量的端基炔衍生物;然后加入硫酸铜和维生素 C的钠盐,室温下反应,待反应完全后;加大量的水稀释,调 PH 值弱酸性,真空蒸去四氢呋喃后,冷却至室温。用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到三氮唑取代的化合物 CH-6,收率85-97%。

[0155] CH-6 化合物的谱图数据:

[0156] CH-6-8, 棕色固体, 熔点:137.7 \sim 138.3 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.63 (s, 1H), 7.40 (m, 4H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 5.33 (m, 2H), 4.95 (m, 2H), 4.18 (m, 4H), 2.22 (m, 3H), 1.25 (t, 3H) ppm ;ESIMS:m/s (%):491.96 [M-H] $^{-}$ 。

[0157] CH-6-9, 棕色固体,熔点:113.6 \sim 114.1 °C; ¹H NMR(DMSO, 300MHz): δ 8.27 (m, 1H), 7.58 (s, 1H), 7.40 (m, 4H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 5.33 (m, 3H), 4.95 (m, 2H), 4.71 (m, 2H), 4.18 (m, 2H), 2.22 (m, 3H) ppm ;ESIMS:m/s (%):449.46 [M-H] $^-$ 。

[0158] CH-6-10, 棕色固体, 熔点: $130.6 \sim 131.1 \,^{\circ}\mathrm{C}$; H NMR (DMSO, 300MHz): δ 8. 27 (m, 1H), 7. 58 (s, 1H), 7. 40 (m, 4H), 7. 05 (m, 2H), 6. 79 (m, 2H), 6. 41 (m, 1H), 5. 32 (m, 3H), 4. 95 (m, 2H), 4. 18 (m, 4H), 3. 50 (m, 2H), 2. 22 (m, 3H), 1. 13 (t, 3H) ppm ;ESIMS: m/s (%): 477. 77 [M-H] $^{-}$ 。

[0159] CH-6-11, 棕色固体, 熔点:151.1 \sim 151.8 °C; ¹H NMR (DMSO, 300MHz): δ 8.27 (m, 1H), 7.40 (m, 4H), 7.05 (m, 2H), 6.79 (m, 2H), 6.41 (m, 1H), 4.90 (m, 4H), 4.20 (m, 4H), 3.85 (m, 4H), 2.32 (m, 3H), 1.25 (t, 3H) ppm; ESIMS: m/s (%):507.98 [M-H] ¯。

[0160] CH-6-12, 棕色固体, 熔点: $169.5 \sim 170.0 \,^{\circ}\text{C}$; H NMR (DMSO, 300MHz): $88.27 \,^{\circ}\text{m}$, 1H), $7.58 \,^{\circ}\text{m}$; $82 \,^$

[0161] 实施例 6

[0162] CH-7 系列化合物的制备:

[0163] 一定量的 CH-6 溶解于 DMSO 和水的混合溶剂中,分批次加入过量的 N-溴代琥珀酰亚胺 (NBS),在室温下反应数小时,待原料反应完全后,加入稍微过量的亚硫酸氢钠出去过量的 NBS,然后将混合液缓慢的滴加到不断搅拌的碎冰中。过滤得粗品,经重结晶得 CH-7 系列化合物:收率 65-87%。

[0164] CH-7 化合物的谱图数据如下:

[0165] CH-7-1, 棕色固体, 熔点: $60.7 \sim 60.2 \,^{\circ}$ C; ¹H NMR (DMSO, 300MHz): $88.49 \,^{\circ}$ m, 1H), 7.39 (m, 4H), $6.50 \,^{\circ}$ m, 1H), $5.76 \,^{\circ}$ m, 1H), $4.89 \,^{\circ}$ m, 2H), $4.38 \,^{\circ}$ m, 1H), $3.95 \,^{\circ}$ m, 1H), $3.68 \,^{\circ}$ m, 3H), 1.67 (m, 2H), 1.33 (m, 2H), 0.92 (m, 3H) ppm; ESIMS: m/s (%): $385.25 \,^{\circ}$ m-H]⁻。

[0166] CH-7-2, 棕色固体, 熔点:53.7 \sim 53.9 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.95 (m, 1H), 3.68 (m, 1H), 2.86 (m, 2H), 1.97 (m, 1H), 0.92 (m, 6H), ppm; ESIMS: m/s (%):385.53 [M-H] - 。

[0167] CH-7-3, 棕色固体, 熔点:51.1 \sim 51.7 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.95 (m, 1H), 3.68 (m, 1H), 1.15 (m, 9H) ppm; ESIMS: m/s (%):385.22 [M-H] $^{-}$ 。

[0168] CH-7-4, 棕色固体, 熔点: 63.7 \sim 63.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.95 (m, 1H), 3.68 (m, 2H), 1.65 (m, 2H), 1.38 (m, 5H), 1.01 (m, 3H) ppm; ESIMS: m/s (%): 411.12 [M-H] ;

[0169] CH-7-5, 白色固体, 熔点: 79.7 \sim 80.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm ;ESIMS: m/s (%): 435.27 [M-H] - 。

[0170] CH-7-6, 棕色固体, 熔点: $70.5 \sim 71.2 ^{\circ} \text{C}$; H NMR (DMSO, 300MHz): 88.49 (m, 1H), 7.39 (m, 4H), 6.79 (m, 2H), 6.41 (m, 1H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.92 (m, 9H), 3.68 (m, 1H), 3.55 (m, 1H) ppm ;ESIMS: m/s (%): 479.31 [M-H] $^{-}$ 。

[0171] CH-7-7, 棕色固体, 熔点:95.5 ~ 96.1 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.62 (m, 2H), 7.39 (m, 7H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.95 (m, 1H), 3.68 (m, 1H) ppm ; ESIMS: m/s (%):405.21 [M-H] - 。

[0172] CH-7-8, 棕色固体, 熔点: $102.7 \sim 103.3 \,^{\circ}$ C; H NMR (DMSO, $300 \,^{\circ}$ MHz): δ 8. 49 (m, 1H), 7. 82 (m, 2H), 7. 39 (m, 6H), 6. 50 (m, 1H), 5. 76 (m, 1H), 4. 89 (m, 2H), 4. 38 (m, 1H), 3. 95 (m, 1H), 3. 68 (m, 1H) ppm, ESIMS: m/s (%): $423.22 \,^{\circ}$ [M-H] $^{\circ}$ 。

[0173] CH-7-9, 棕色固体, 熔点: $60.5 \sim 61.3 \,^{\circ}\mathrm{C}$; H NMR (DMSO, 300MHz): $88.49 \,^{\circ}\mathrm{m}$, 1H), 7.39 (m, 6H), 7.16 (m, 2H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.95 (m, 1H), 3.53 (m, 2H), 2.82 (m, 2H) ppm; ESIMS: m/s (%): $433.28 \,^{\circ}\mathrm{M}$ -H].

[0174] CH-7-10, 棕色固体,熔点: $51.3 \sim 51.9 \,^{\circ}\mathrm{C}$; H NMR (DMSO, 300MHz): $88.49 \,^{\circ}\mathrm{m}$, 1H), 7. 39 (m, 6H), 7. 16 (m, 2H), 6. 50 (m, 1H), 5. 76 (m, 1H), 4. 89 (m, 2H), 4. 38 (m, 1H), 3. 95 (m, 1H), 3. 68 (m, 1H), 3. 18 (m, 2H), 2. 62 (m, 2H), 2. 05 (m, 2H) ppm. ESIMS: m/s (%): 447. 31 [M-H] $^{\circ}$.

[0175] CH-7-11, 棕色固体, 熔点: 92.1 \sim 93.7 °C; ¹H NMR (DMSO, 300MHz): δ 7.39 (m, 4H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.95 (m, 1H), 3.73 (m, 5H), 3.55 (m, 4H) ppm, ESIMS: m/s (%): 399.12 [M-H] $^-$ 。

[0176] CH-7-12, 棕色固体, 熔点:111.7 ~ 112.3℃; H NMR (DMSO, 300MHz): δ7.39 (m, 4H

), 6. 50 (m, 1H), 5. 76 (m, 1H), 4. 89 (m, 2H), 4. 38 (m, 1H), 3. 95 (m, 3H), 3. 68 (m, 1H), 3. 53 (m, 2H), 3. 15 (m, 2H), 2. 83 (m, 2H) ppm. ESIMS: m/s (%): 492. 33 [M-H] -

[0177] CH-7-13, 棕色固体, 熔点:118.5.7 \sim 119.1 °C; ¹H NMR (CDC1₃, 300MHz): δ 7.39 (m, 4H), 6.50 (m, 1H), 5.76 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 3.98 (m, 3H), 3.68 (m, 1H), 3.53 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H) ppm. ESIMS: m/s (%): 409.92 [M-H] - 。

[0178] 实施例 7

[0179] CH-8 系列化合物的制备:

[0180] 一定量的 CH-7,稍微过量的取代的溴苄或者氯苄和碳酸钾混溶于 DMSO 和水的混合溶剂中,加热反应数个小时;待反应完全后,将混合物缓慢的滴加到碎冰中,带碎冰融化,过滤出固体得粗品。经重结晶得 CH-8 系列化合物。

[0181] CH-8 系列化合物的谱图数据如下:

[0182] CH-8-1, 白色固体, 熔点:99.7 \sim 100.2 $^{\circ}$ C; H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.51 (m, 2H), 7.39 (m, 7H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 4.89 (m, 2H), 4.59 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 2.22 (m, 3H) ppm. ESIMS: m/s (%):523.33 [M-H] $^{\circ}$ 。

[0183] CH-8-2, 白色固体,熔点: $106.5 \sim 107.1 ^{\circ}$ C; H NMR (DMSO, 300 MHz): 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 4H), 6.78 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.58 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 2.22 (m, 4H) ppm. ESIMS: m/s (%): 537.55 [M-H]^- 。

[0184] CH-8-3, 白色固体,熔点:118.8 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS: m/s (%):553.26 [M-H] $^{-}$ 。

[0185] CH-8-4, 白色固体,熔点:86.8 \sim 87.3 $^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ ¹HNMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 4.89 (m, 2H), 4.3 8 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 3.39 (m, 2H), 2.12 (m, 3H), 1.47 (m, 2H), 1.41 (m, 2H), 0.9 2 (t, 3H) ppm. ESIMS: m/s (%):489.33 [M-H] $^{\circ}$ 。

[0186] CH-8-5, 白色固体,熔点:80.7 \sim 81.1 $^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ ¹HNMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 4.89 (m, 2H), 4.3 8 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 3.46 (m, 1H), 2.12 (m, 3H), 1.72 (m, 1H), 0.92 (m, 6H) ppm. ESIMS: m/s (%): 489.19 [M-H] $^{\circ}$ 。

[0187] CH-8-6,白色固体,熔点:90.6~91.1℃; H NMR(DMSO, 300MHz): δ δ HNMR(DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 2.12 (m, 3H), 1.21 (m, 9H) ppm. ESIMS: m/s (%):489.27 [M-H] δ .

[0188] CH-8-7, 白色固体,熔点: 79.7 \sim 80.2 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.68 (m, 1H), 3.39 (m, 2H), 2.22 (m, 3H), 1.82 (m, 1H), 1.53 (m, 2H), 1.48 (m, 2H), 1.42 (m, 2H), 1.25 (m, 2H) ppm. ESIMS: m/s (%):529.38 [M-H] $^-$ 。

[0189] CH-8-8,白色固体,熔点: $79.7 \sim 80.2$ °C; ¹H NMR (DMSO, 300MHz): 88.49 (m, 1 H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 6.10 (m, 1H), 5.43 (m, 1H), 5.30 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 4.03 (m, 5H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS: m/

 $s(\%):473.20[M-H]^{-}$

[0190] CH-8-9, 白色固体, 熔点:82.3 \sim 82.9 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.78 (m, 2H), 6.50 (m, 1H), 4.89 (m, 2H), 4.38 (m, 1H), 4.07 (m, 5H), 3.68 (m, 1H), 3.32 (s, 1H), 2.12 (m, 3H) ppm. ESIMS: m/s (%):472.16 [M-H] $^{-}$ 。

[0191] 实施例 8

[0192] A. 直接取代的 CH-9 系列化合物的制备:

[0193] 一定量的 CH-8,稍微过量的取代的醇、胺、哌嗪或者吗啉,碳酸钾混溶于 DMSO/水的混合溶液中,加热反应数个小时;待反应完全后,将混合物缓慢的滴加到碎冰中,带碎冰融化,过滤出固体得粗品。经重结晶得 CH-9 系列化合物。

[0194] 部分 CH-9 化合物的谱图数据如下:

[0195] CH-9-1,白色固体,熔点:118.8~119.4℃; ¹H NMR(DMSO, 300MHz): δ 8.49 (m, 1H), 7.52 (m, 2H), 7.39 (m, 7H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.5 7 (m, 4H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS:m/s(%):553.26 [M-H] -。

[0196] CH-9-2,白色固体,熔点:118.8~119.4℃; H NMR(DMSO, 300MHz): 89.51 (s , 1H), 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 4H), 6.82 (m, 6H), 6.50 (m, 1H), 4.89 (m, 2H), 4.5 7 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS:m/s(%):553.26 [M-H] $\overline{}$ 。

[0197] CH-9-3, 白色固体, 熔点:118.8 \sim 119.4 $^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 6H), 7.29 (m, 3H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 3H), 2.75 (m, 2H), 2.19 (m, 3H) ppm. ESIMS: m/s (%):553.26 [M-H] $^{\circ}$ 。

[0198] CH-9-4, 白色固体, 熔点:118.8 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 6H), 7.25 (m, H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 5H), 3.68 (m, 1H), 3.43 (s, 1H), 2.19 (m, 3H) ppm. ESIMS:m/s (%):553.26 [M-H] $\bar{}$ 。

[0199] CH-9-5, 白色固体,熔点:118.8 \sim 119.4 $^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 8.03 (s, 1H), 7.39 (m, 4H), 7.23 (m, 2H), 6.96 (m, 2H), 6.82 (m, 4H), 6.67 (m, 3H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS: m/s (%):553.26 [M-H] - 。

[0200] CH-9-6, 白色固体,熔点:118.8 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 3H), 3.58 (m, 2H), 2.68 (m, 2H), 2.59 (m, 2H), 2.19 (m, 3H) ppm. ESIMS: m/s (%):553.26 [M-H] $\bar{}$ 。

[0201] CH-9-7, 白色固体,熔点:118.8 \sim 119.4 $^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 6H), 7.23 (m, 3H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 3H), 3.55 (m, 2H), 2.68 (m, 2H), 2.56 (m, 2H), 2.19 (m, 3H) ppm. ESIMS: m/s (%):553.26 [M-H] $^{\circ}$ 。

[0202] B. Click 化学反应 CH-9 化合物的合成方法:

[0203] 一定量的 CH-8,稍微过量的叠氮化钠在四氢呋喃与水的混合溶液中,回流反应,待反应完全后;加入过量的端基炔衍生物;然后加入硫酸铜和维生素 C的钠盐,室温下反应,待反应完全后;加大量的水稀释,调 PH 值弱酸性,真空蒸去四氢呋喃后,冷却至室温。用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到三氮唑取代的化合物 CH-9,收率85-97%。

[0204] 部分 CH-9 化合物的谱图数据如下:

[0205] CH-9-8, 白色固体, 熔点:118.8 \sim 119.4 $^{\circ}$ C; H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.63 (s, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 3H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H), 1.25 (t, 3H) ppm. ESIMS:m/s (%):553.26 [M-H] $^{\circ}$ 。

[0206] CH-9-9, 白色固体, 熔点:118.8 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.58 (s, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 5.38 (s, 1H), 4.85 (m, 4H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS:m/s(%):553.26 [M-H] $^{-}$ 。

[0207] CH-9-10, 白色固体,熔点:118.8 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.58 (s, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.06 (m, 5H), 3.82 (s, 3H), 3.68 (m, 1H), 3.52 (m, 2H), 2.19 (m, 3H), 1.03 (m, 1H) ppm. ESIMS: m/s (%):553.26 [M-H] $\bar{}$ 。

[0208] CH-9-11, 白色固体, 熔点:118.8 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.19 (m, 2H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H), 1.31 (t, 3H) ppm. ESIMS: m/s (%):553.26 [M-H] $\bar{}$ 。

[0209] CH-9-12, 白色固体, 熔点: 118.8 \sim 119.4 $^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ 8.49 (m, 1H), 7.81 (m, 2H), 7.58 (s, 1H), 7.47 (m, 3H), 7.39 (m, 4H), 6.96 (m, 2H), 6.82 (m, 4H), 6.50 (m, 1H), 4.89 (m, 2H), 4.57 (m, 2H), 4.38 (m, 1H), 4.03 (m, 3H), 3.82 (s, 3H), 3.68 (m, 1H), 2.19 (m, 3H) ppm. ESIMS: m/s (%): 553.26 [M-H] $^{-}$ 。

[0210] 实施例 9

[0211] CH-10 系列化合物的制备:

[0212] 1,4-丁炔二醇加入无水 THF 中,加入适量的 NaH,反应适当的时间后,加入一定量的化合物 2 后,加入金属 Pd 或者 Cu 催化剂;待反应完全后,加水将反应停止,调 Ph 呈弱酸性,减压回收 THF 后;加水稀释后,用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到 CH-10 系列化合物,收率 50-87%。

[0213] CH-10 系列化合物的谱图数据如下:

[0214] CH-10-1,白色固体,熔点:102.7~103.1 °C; ¹H NMR(DMSO, 300MHz): δ 12.7 8 (b, 1H), 7.38-7.73 (m, 6H), 2.57 (q, J=7.5Hz, 2H), 1.15 (t, J=7.5Hz, 3H) ppm; ESIMS:m/s(%):215.37 [M-H] -。

[0215] CH-10-2, 白色固体, 熔点: $105.6 \sim 106.1 \,^{\circ}$ C; H NMR (DMSO, 300MHz): δ 12. 56 (s, 1 H), 7. 66 (s, 1H), 7. 48-7. 57 (m, 2H), 7. 25-7. 32 (m, 2H), 2. 59 (q, J=7. 5, 2H), 1. 16 (t, J=7. 5Hz, 3H) ppm。

[0216] CH-10-3, 白色固体, 熔点:114.6 \sim 116.7 °C; ¹H NMR (DMSO, 300MHz): δ 12.51 (s, 1 H), 7.36-7.63 (m, 5H), 2.59-2.67 (m, 2H), 1.18 (t, J=7.5Hz, 3H) ppm。

[0217] CH-10-4, 白色固体, 熔点: $132.3 \sim 133.0 \,^{\circ}\text{C}$; H NMR (DMSO, 300MHz): δ 12. 92 (s, 1 H), 7. 79 (s, 1H), 7. 65-. 7. 69 (m, 1H), 7. 62 (s, 1H), 7. 42-7. 48 (m, 2H), 2. 58 (q, J=7. 5Hz, 2H), 1. 13 (t, J=7. 5Hz, 3H) ppm. ESIMS: m/s (%): 249. 7 [M-H] - 。

[0218] CH-10-5,白色固体,熔点:139.7~141.2℃; H NMR(DMSO, 300MHz): δ 13.98(s, 1H), 8.03(m, J=3H), , 2.56(q, J=7.5Hz, 2H), 1.14(t, J=7.5Hz, 3H)ppm. ESIMS:m/s(%):307.43[M-H]⁻。

[0219] CH-10-6, 白色固体, 熔点:139.7 \sim 141.2 °C; 1H NMR (DMSO, 300MHz): δ 12.84(s, 1 H), 7.38-7.73 (m, 5H), 2.56m, 2H), 1.14(t, J=7.5Hz, 3H)ppm; ESIMS: m/s (%):293.18 [M-H] $^{-}$.

[0220] CH-10-7, 白色固体,熔点:142.3-142.9℃; H NMR(DMSO, 300MHz): δ 12.88(s, 1H), 7.66(d, J=6.9Hz, 2H), 7.58(s, 1H), 7.52(d, J=6.9Hz, 2H), 2.54(q, J=7.5Hz, 2H), 1.14(t, J=7.5Hz, 3H) ppm; ESIMS: m/s(%):285.5[M] + 。

[0221] CH-10-8, 白色固体, 熔点:112.7-113.1℃; H NMR(DMSO, 300MHz):12.77(b, 1H), 7.53(s, 1H), 7.38(d, J=2.1Hz, 1H), 7.32(dd, J=18.3, 2.1Hz, 1H), 6.92(d, J=18.3 Hz, 1H), 3.70-3.79(m, 6H), 2.57(q, J=7.5Hz, 2H), 1.14(t, J=7.5Hz, 3H) ppm; ESIMS:m/s(%):275.7[M-1]⁻。

[0222] CH-10-9, 白色固体, 熔点: $105.3 \sim 105.6 \,^{\circ}\text{C}$; H NMR (DMSO, $300 \,^{\circ}\text{MHz}$): $\delta 12.86 \,^{\circ}\text{(s, 1 H)}$, $7.56 \,^{\circ}\text{(t, J=2.1, 1.2Hz, 1H)}$, $6.91 \,^{\circ}\text{(d, J=2.4Hz, 1H)}$, $6.54 \,^{\circ}\text{(t, J=2.4, 2.1Hz, 1H)}$, $3.76 \,^{\circ}\text{(s, 6H)}$), $2.54-2.59 \,^{\circ}\text{(m, 2H)}$, $1.11-1.16 \,^{\circ}\text{(m, 3H)}$ ppm; ESIMS: $m/s \,^{\circ}\text{(%)}$: $275.68 \,^{\circ}\text{[M-H]}^{-}$.

[0223] CH-10-10, 白色固体,熔点: $142.6 \sim 143.1 \,^{\circ}$ C; ¹H NMR (DMSO, 300MHz): δ 12. 80 (s, 1H), 7. 55 (s, 1H), 7. 11 (s, 2H), 3. 79 (s, 6H), 3. 71 (s, 3H), 2. 55 (q, J=7. 5Hz, 2H), 1. 15 (t, 3H) ppm。

[0224] CH-10-11, 白色固体, 熔点: $136.8 \sim 137.1 \,^{\circ}\mathrm{C}$; H NMR (DMSO, 300MHz): δ 12. 88(s, 1H), 7. 82(q, J=1.8; 0.6Hz, 1H), 7. 58(s, 1H), 7. 26(t, J=0.6, 1H), 6. 32(q, J=1.8Hz, 1H), 2. 57(q, J=7.5Hz, 2H), 1. 16(q, J=7.5Hz, 3H) ppm; ESIMS: m/s (%): 205. 29 [M-H] - 。

[0225] CH-10-12, 白色固体,熔点:119.0 \sim 119.4 °C; ¹H NMR (DMSO, 300MHz): δ 8.69 (d, J = 4.8Hz, 1H), 8.16 (t, J=7.8Hz, 1H), 7.99 (d, J=9.1Hz, 3H), 7.78 (s, 1H), 7.59 (t, J=6.0Hz, 1H), 2.68 (q, J=7.5Hz, 2H), 1.14 (t, J=7.5Hz, 3H) ppm; ESIMS:m/s (%):216.19 [M-H] $^{-}$ 。

[0226] 实施例 10

[0227] CH-11 系列化合物的制备:

[0228] CH-10 溶解于干燥的二氯甲烷中,加入过量的氯化亚砜回流反应,反应完全后,真空加热蒸去二氯甲烷和过量的氯化亚砜得浓稠的油状物后;加入适量的干燥的二氯甲烷溶解油状物;然后,加入适量事先配制好的取代的醇、取代的胺、取代的哌嗪或者吗啉的干燥二氯甲烷溶液;加入适量的无水吡啶作为缚酸剂,反应过夜。反应完全后,加适量的水停止反应,用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到系列化合物 CH-11。收率85-97%。

[0229] CH-11 化合物的谱图数据如下:

[0230] CH-11-1, 棕色固体,熔点:127.7~128.3℃; H NMR(CDC13, 300MHz): δ 7.79(d,

2H), 7. 62 (d, 2H), 7. 28 (S, 1H), 5. 79 (s, 1H), 3. 40 (q, 2H), 2. 55 (q, 2H), 1. 63 (m, 2H), 1. 25 (m, 3H), 0. 90 (t, 3H) ppm, ESIMS:m/s (%):338.66 [M-1] -.

[0231] CH-11-2,棕色固体,熔点:122.3 \sim 122.9 $^{\circ}$ C; H NMR(CDC13, 300MHz): δ 7.81 (d, 2H), 7.62 (d, 2H), 7.28 (S, 1H), 5.83 (s, 1H), 3.23 (q, 2H), 2.55 (q, 2H), 1.81 (m, 1H), 1.25 (m, 3H), 0.91 (t, 3H), 0.89 (t, 3H) ppm, ESIMS: m/s (%):338.52 [M-1] $^{-}$ 。

[0232] CH-11-3,棕色固体,熔点:111.6~112.1℃; H NMR(CDC1₃,300MHz): δ 7.82(d,2H),7.78(d,2H),7.28(S,1H),5.55(s,1H),2.55(q,2H),1.81(m,1H),1.25(m,9H),0..85(t,3H)ppm,ESIMS:m/s(%):338.16[M-1]⁻。

[0233] CH-11-4,棕色固体,熔点:130.1 \sim 130.7 $^{\circ}$ C; H NMR(CDC1₃, 300MHz): δ 7.82(d, 2H), 7.78(d, 2H), 7.28(S, 1H), 5.55(s, 1H), 2.55(q, 2H), 1.81(m, 1H), 1.25(m, 9H), 0.85(t, 3H) ppm, ESIMS: m/s(%):263.96[M-1] $^{\circ}$ 。

[0234] CH-11-5,棕色固体,熔点:136.3 \sim 136.8 °C; ¹H NMR (CDC13, 300MHz): δ 7.60 (m, 4 H), 7.19 (m, 5H), 4.50 (m, 2H), 2.42 (m, 4H), 1.22 (m, 3H) ppm, ESIMS: m/s (%):386.88 [M-1] $\bar{}$ 。

[0235] CH-11-6,棕色固体,熔点:141.2 \sim 141.8 $^{\circ}$ C; 1 H NMR(CDC1 $_{3}$, 300MHz): δ 7.69 (m, 2H), 7.53 (m, 2H), 7.27 (m, 1H), 7.81 (m, 3H), 4.50 (m, 2H), 3.86 (m, 6H), 2.55 (m, 4H), 1.22 (m, 3H) ppm, ESIMS: m/s (%):432.19 [M-1] $^{-}$ 。

[0236] CH-11-7,棕色固体,熔点:156.8 \sim 157.1 $^{\circ}$ C; H NMR(CDC1₃, 300MHz): δ 8.5 2(s, 1H), 7.81(d, 2H), 7.49(m, 5H), 7.26(m, 3H), 2.55(q, 2H), 1.23(t, 3H) ppm. ESIMS: m/s(%):358.21[M-1] $^{-}$ 。

[0237] CH-11-8 棕色固体,熔点:165.6 \sim 166.3 °C; ¹H NMR(CDC1₃, 300MHz): δ 8.52 (s, 1H), 7.85 (d, 2H), 7.64 (m, 2H), 7.33 (m, 5H), 2.55 (q, 2H), 1.23 (t, 3H) ppm. ESIMS:m/s(%):376.63 [M-1] ¯。

[0238] CH-11-9 棕色固体,熔点:106.5 \sim 107.1 °C; ¹H NMR (CDC1₃, 300MHz): δ 8.52 (s, 1 H), 7.83 (d, 2H), 7.63 (m, 2H), 7.19 (m, 3H), 7.06 (m, 3H), 5.95 (s, 1H), 3.72 (q, 2H), 2.95 (q, 2 H), 2.49 (q, 2H), 1.23 (t, 3H) ppm. ESIMS:m/s (%):386.13 [M-1] ⁻。

[0239] CH-11-10 棕色固体,熔点:93.6 \sim 94.3 °C; ¹H NMR (CDC1₃, 300MHz): δ 8.52 (s, 1H), 7.83 (d, 2H), 7.63 (m, 2H), 7.19 (m, 5H), 5.80 (s, 1H), 3.45 (m, 2H), 2.65 (m, 2H), 2.49 (q, 2H), 1.86 (m, 2H), 1.23 (t, 3H) ppm. ESIMS: m/s (%): 399.93 [M-1] ⁻。

[0240] CH-11-11 棕色固体,熔点:133.5 \sim 134.1 °C; ¹H NMR(CDC1₃, 300MHz):7.68 (m, 5H), 3.75 (m, 4H), 3.30 (m, 4H), 2.45 (m, 2H), 1.23 (m, 3H) ppm. ESIMS: m/s (%):352.09 [M-1] ⁻。

[0241] CH-11-12 棕色固体,熔点:118.6 \sim 119.3 $^{\circ}$ C; H NMR(CDC1₃, 300MHz):7.75 (d, 2H), 7.63 (m, 2H), 7.44 (s, 1H), 6.99 (m, 3H), 6.99 (m, 3H), 6.85 (m, 2H), 4.00 (m, 2H), 3.49 (m, 2H), 3.29 (m, 2H), 2.83 (m, 2H), 2.50 (m, 2H), 1.23 (t, 3H) ppm. ESIMS: m/s (%):445.79 [M-1] $^{-}$ 。

[0242] CH-11-13 棕色固体,熔点:127.6~128.1 °C; ¹H NMR(CDC13, 300MHz):7.75 (d, 2H), 7.63 (m, 2H), 7.40 (s, 1H), 7.22 (m, 2H), 6.79 (m, 3H), 6.85 (m, 2H), 4.00 (m, 2H), 3.49 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H), 2.50 (m, 2H), 3.29 (m, 2H), 1.23 (t, 3H) ppm. ESIMS:m/s (%):461.87 [M-1] ¯。

[0243] 实施例 11

[0244] CH-12 系列化合物的制备方法:

[0245] 过量的 N-溴代琥珀酰亚胺(NBS)溶解于干燥的四氢呋喃中,滴加 CH-10 溶液,在室温下反应数小时,待原料反应完全后,加入稍微过量的亚硫酸氢钠除去过量的 NBS,然后将混合液蒸去四氢呋喃后,缓慢的滴加到不断搅拌的碎冰中。过滤得粗品,经重结晶得 CH-12系列化合物;收率 85-96%。

[0246] CH-12 系列化合物的谱图数据如下:

[0247] CH-12-1, 白色固体, 熔点:132.7 ~ 133.1℃; H NMR(DMSO, 300MHz): δ 12.78(b, 1 H), 7.38-7.73(m, 5H), 2.57(q, 2H), 1.15(t, 3H) ppm; ESIMS: m/s(%):293.37 [M-H] - 。

[0248] CH-12-2, 白色固体,熔点:125.6 \sim 126.1 °C; ¹H NMR (DMSO, 300MHz): δ 12.56 (s, 1H), 7.48-7.57 (m, 2H), 7.25-7.32 (m, 2H), 2.59 (q, 2H), 1.16 (t, J=7.5Hz, 3H) ppm; ESIMS:m/s(%):311.66 [M-H] $\bar{}$ 。

[0249] CH-12-3, 白色固体,熔点:134.6 ~ 136.7℃; H NMR(DMSO, 300MHz): δ 12.51(s, 1 H), 7.36-7.63(m, 4H), 2.59-2.67(m, 2H), 1.18(t, 3H) ppm; ESIMS: m/s(%):311.59 [M-H] .

[0250] CH-12-4, 白色固体, 熔点:152.3 \sim 153.0 °C; ¹H NMR(DMSO, 300MHz): δ 12.92(s, 1H), 7.79(s, 1H), 7.65-7.69(m, 1H), 7.42-7.48(m, 2H), 2.58(q, J=7.5Hz, 2H), 1.13(t, 3H) ppm. ESIMS: m/s(%):327.71[M-H] - 。

[0251] CH-12-5, 白色固体, 熔点:159.7 \sim 160..2 $^{\circ}$ C; H NMR(DMSO, 300MHz): δ 13.98(s, 1H), 8.03 (m, 3H), 2.56 (q, 2H), 1.14 (t, 3H) ppm. ESIMS: m/s (%):361.43 [M-H] $^{\circ}$.

[0252] CH-12-6, 白色固体, 熔点:159.7 \sim 151.2 °C; ¹H NMR (DMSO, 300MHz): δ 12.84(s, 1 H), 7.38-7.73 (m, 4H), 2.56m, 2H), 1.14(t, J=7.5Hz, 3H)ppm; ESIMS: m/s (%):271.18 [M-H] $^{-}$ 。

[0253] CH-12-7, 白色固体, 熔点:122.3-122.9℃; H NMR(DMSO, 300MHz): δ 12.88(s, 1H), 7.66(d, 2H), 7.52(d, 2H), 2.54(q, 2H), 1.14(t, 3H) ppm; ESIMS: m/s(%):325.5 [M] + 。

[0254] CH-12-8, 白色固体,熔点:132.7-133.1℃; H NMR(DMSO, 300MHz):12.77(b, 1H), 7.53(s, 1H), 7.32(dd, 1H), 6.92(d, 1H), 3.70-3.79(m, 6H), 2.57(q, J=7.5Hz, 2H), 1.14(t, J=7.5Hz, 3H) ppm; ESIMS:m/s(%):355.02[M-1]⁻。

[0255] CH-12-9,白色固体,熔点:155.3~155.6℃; H NMR(DMSO, 300MHz): δ 12.8 δ (s, 1H), δ . 91 (d, 2H), δ . 54 (t, 1H), δ . 76 (s, 6H), 2.54-2.59 (m, 2H), 1.11-1.16 (m, 3H) ppm; ESIMS: m/s (%):355.68 [M-H] $\bar{}$ 。

[0256] CH-12-10, 白色固体,熔点: 142.6 \sim 143.1 °C; ¹H NMR (DMSO, 300MHz): δ 12.80 (s, 1 H), 7.11 (s, 2H), 3.79 (s, 6H), 3.71 (s, 3H), 2.55 (q, J=7.5Hz, 2H), 1.15 (t, 3H) ppm; ESIMS:m/s(%): 385.08 [M-H] $^{-}$ 。

[0257] CH-12-11, 白色固体,熔点:146.8 \sim 147.1 $^{\circ}$ C; H NMR(DMSO, 300MHz): δ 12.88(s, 1 H), 7.82(q, 1H), 7.26(t, 1H), 6.32(q, 1H), 2.57(q, J=7.5Hz, 2H), 1.16(q, 3H) ppm; ESIMS:m/s(%):283.99 [M-H] $^{\circ}$ 。

[0258] CH-12-12, 白色固体,熔点:179.0 \sim 179.4 $^\circ$ C; H NMR(DMSO, 300MHz): δ 8.69 (d, 1H), 8.16 (t, 1H), 7.99 (d, 3H), 7.59 (t, 1H), 2.68 (q, 2H), 1.14 (t, 3H) ppm; ESIMS: m/s(%):294.79 [M-H] $^\circ$ 。

[0259] 实施例 12

[0260] CH-13 系列化合物的制备:

[0261] CH-12 溶解于干燥的二氯甲烷中,加入过量的氯化亚砜回流反应,反应完全后,真

空加热蒸去二氯甲烷和过量的氯化亚砜得浓稠的油状物后;加入适量的干燥的二氯甲烷溶解油状物;然后,加入适量事先配制好的取代的醇、取代的胺、取代的哌嗪或者吗啉的干燥二氯甲烷溶液;加入适量的无水吡啶作为缚酸剂,反应过夜。反应完全后,加适量的水停止反应,用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到 CH-13 系列化合物。收率85-96%。

[0262] CH-13 系列化合物的谱图数据如下:

[0263] CH-13-1, 棕色固体,熔点:147.7~148.3°C; H NMR(CDC1₃, 300MHz): δ 7.79(d, 2H), 7.62(d, 2H), 5.79(s, 1H), 3.40(q, 2H), 2.55(q, 2H), 1.63(m, 2H), 1.25(m, 3H), 0.90(t, 3H) ppm, ESIMS:m/s(%):417.66[M-1]⁻。

[0264] CH-13-2,棕色固体,熔点:138.3 \sim 138.9 °C; ¹H NMR(CDC1₃, 300MHz): δ 7.81(d, 2H), 7.62(d, 2H), 5.83(s, 1H), 3.23(q, 2H), 2.55(q, 2H), 1.81(m, 1H), 1.25(m, 3H), 0.91(t, 3H), 0.89(t, 3H)ppm, ESIMS:m/s(%):417.52[M-1] - 。

[0265] CH-13-3,棕色固体,熔点:131.6~132.1°C; H NMR(CDC1₃, 300MHz): δ 7.8 2 (d, 2H), 7.78 (d, 2H), 5.55 (s, 1H), 2.55 (q, 2H), 1.81 (m, 1H), 1.25 (m, 9H), 0..85 (t, 3H) ppm, ESIMS: m/s (%):417.16 [M-1] 。

[0266] CH-13-4, 棕色固体,熔点:150.1 \sim 150.7 °C; ¹H NMR(CDC1₃, 300MHz): δ 7.8 2(d, 2H), 7.78(d, 2H), 5.55(s, 1H), 2.55(q, 2H), 1.81(m, 1H), 1.25(m, 9H), 0.85(t, 3H) ppm, ESIMS:m/s(%):443.96[M-1] $^{-}$ 。

[0267] CH-13-5,棕色固体,熔点:156.3~156.8℃; H NMR(CDC1₃,300MHz): δ 7.60 (m,4H),7.19 (m,4H),4.50 (m,2H),2.42 (m,4H),1.22 (m,3H) ppm,ESIMS:m/s (%):465.88 [M-1] 。 [0268] CH-13-6,棕色固体,熔点:161.2~161.8℃; H NMR(CDC1₃,300MHz): δ 7.69 (m,2H),7.53 (m,2H),7.21 (m,3H),4.50 (m,2H),3.86 (m,6H),2.55 (m,4H),1.22 (m,3H) ppm,ESIMS:m/s (%):511.19 [M-1] 。

[0269] CH-13-7,棕色固体,熔点:166.8 \sim 167.1 °C; ¹H NMR(CDC1₃, 300MHz): δ 8.5 2(s, 1H), 7.81(d, 2H), 7.49(m, 5H), 7.26(m, 2H), 2.55(q, 2H), 1.23(t, 3H) ppm. ESIMS:m/s(%):437.21[M-1] -。

[0270] CH-13-8 棕色固体,熔点:175.6~176.3℃; H NMR(CDC1₃, 300MHz): δ 8.52 (s, 1H), 7.85 (d, 2H), 7.64 (m, 2H), 7.33 (m, 4H), 2.55 (q, 2H), 1.23 (t, 3H) ppm. ESIMS:m/s(%):455.63 [M-1] 。

[0271] CH-13-9 棕色固体,熔点:126.5~127.1℃; H NMR(CDC1₃, 300MHz): δ 8.52(s, 1 H), 7.83(d, 2H), 7.63(m, 2H), 7.19(m, 2H), 7.06(m, 3H), 5.95(s, 1H), 3.72(q, 2H), 2.95(q, 2 H), 2.49(q, 2H), 1.23(t, 3H)ppm. ESIMS:m/s(%):465.13[M-1]⁻。

[0272] CH-13-10 棕色固体,熔点:113.6 \sim 114.3 °C; ¹H NMR(CDC1₃, 300MHz): δ 8.52(s, 1H), 7.83(d, 2H), 7.63(m, 2H), 7.19(m, 4H), 5.80(s, 1H), 3.45(m, 2H), 2.65(m, 2H), 2.49(q, 2H), 1.86(m, 2H), 1.23(t, 3H)ppm. ESIMS: m/s(%):479.93[M-1] - 。

[0273] CH-13-11 棕色固体,熔点:153.5 \sim 154.1 °C; ¹H NMR (CDC1₃, 300MHz):7.68 (m, 4H), 3.75 (m, 4H), 3.30 (m, 4H), 2.45 (m, 2H), 1.23 (m, 3H) ppm. ESIMS: m/s (%):431.09 [M-1] $^{-}$ 。

[0274] CH-13-12 棕色固体,熔点:138.6 \sim 139.3 $^{\circ}$ C; H NMR (CDC1₃, 300MHz):7.75 (d, 2H), 7.63 (m, 2H), 6.99 (m, 3H), 6.85 (m, 2H), 4.00 (m, 2H), 3.49 (m, 2H), 3.15 (m, 2H)

), 2. 83 (m, 2H), 2. 50 (m, 2H), 3. 29 (m, 2H), 1. 23 (t, 3H) ppm. ESIMS: m/s (%):525. 79 [M-1] -.

[0275] CH-13-13 棕色固体,熔点:167.6~168.1 °C; ¹H NMR(CDC1₃, 300MHz):7.75 (d, 2H), 7.63 (m, 2H), 7.40 (s, 1H), 7.22 (m, 1H), 6.79 (m, 3H), 6.85 (m, 2H), 4.00 (m, 2H), 3.49 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H), 2.50 (m, 2H), 3.29 (m, 2H), 1.23 (t, 3H) ppm. ESIMS:m/s (%):540.87 [M-1] ¯。

[0276] 实施例 13

[0277] CH-14 系列化合物的制备方法:

[0278] CH-12,取代芳香碘化物,醋酸钯(10%),三乙胺混溶于 DMF/THF/ 水溶液中;氮气保护下,微波条件下反应;待反应完全后,加入适量蒸馏水将反应停止,然后用二氯甲烷萃取数次后,合并二氯甲烷相,减压浓缩,快速柱层析得到 CH-14 系列化合物。收率 70-83%。

[0279] CH-14 系列化合物的谱图数据如下:

[0280] CH-14-1,棕色固体,熔点:157.9~158.5℃; H NMR(DMSO, 300MHz): δ 12.02(s, 1H), 7.95(d, 2H), 7.75(d, 2H), 7.63(s, 3H), 7.32(m, 3H), 6.99(m, 1H), 2.91(m, 1H), 2.57(q, 2H), 1.15(t, 3H) ppm. ESIMS:m/s(%):385.16 [M-H] -。

[0281] CH-14-2 棕色固体,熔点:153.3~153.9℃; H NMR(DMSO, 300MHz): δ 12.02(s, 1 H), 8.49(m, 1H), 7.95(d, 2H), 7.75(d, 2H), 7.63(s, 1H), 7.51(m, 1H), 6.88(m1H), 3.22(m, 2H), 0.99(t, 3H), 2.57(q, 2H), 1.15(t, 3H)ppm. ESIMS: m/s(%):380.85[M-H] -。

[0282] CH-14-3 棕色固体,熔点:171.2~171.8℃; H NMR(DMSO, 300MHz): δ 12.02(s, 1 H), 8.49(m, 1H), 7.95(d, 2H), 7.75(d, 2H), 7.61(m, 2H), 7.13(m, 4H), 6.88(m, 1H), 4.16(m, 2H), 3.82(s, 3H), 2.57(q, 2H), 1.15(t, 3H) ppm. ESIMS: m/s(%):473.11[M-H]⁻。

[0283] CH-14-4 棕色固体,熔点:164.3 \sim 165.0 °C; ¹H NMR (DMSO, 300MHz): δ 12.02 (s, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 5H), 7.46 (m, 4H), 6.88 (m, 1H), 2.57 (q, 2 H), 1.15 (t, 3H) ppm. ESIMS:m/s (%):429.19 [M-H] $^{-}$ 。

[0284] CH-14-5 棕色固体,熔点:153.5 \sim 154.0 °C; H NMR(DMSO, 300MHz): δ 12.02(s, 1H), 7.95(d, 、2H), 7.75(d, 2H), 7.63(s, 3H), 7.43(M, 3H), 2.57(q, 2H), 1.15(t, 3H) ppm. ESIMS:m/s(%):384.15[M-H]⁻。

[0285] CH-14-6 棕色固体,熔点:157.8~158.3℃; H NMR(DMSO, 300MHz): δ 12.02(s, 1 H), 8.49(m, 1H), 7.95(d, 2H), 7.75(d, 2H), 7.63(s, 1H), 3.07(m, 2H), 2.57(q, 2H), 1.13(m, 6 H) ppm. ESIMS:m/s(%):279.13[M-H]-。

[0286] CH-14-7 棕色固体,熔点:172.6~173.1℃; H NMR(DMSO, 300MHz): δ 12.02(s, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 2H), 6.85 (d, 2H), 3.82 (m, 3 H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):471.13 [M-H] $\bar{}$ 。

[0287] CH-14-8 棕色固体,熔点:169.1 \sim 169.7 $^{\circ}$ C; H NMR(DMSO, 300MHz): δ 12.02 (s, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 3H), 7.36 (m, 3H), 2.57 (q, 2H), 1.15 (t, 3 H) ppm. ESIMS: m/s (%):427.17 [M-H] $^{-}$ 。

[0288] CH-14-9 棕色固体,熔点:179.3 \sim 180.1 °C; ¹H NMR(DMSO, 300MHz): δ 12.02(s, 1 H), 7.95(d, 2H), 7.75(d, 2H), 7.63(s, 1H), 7.51(d, 2H), 6.99(d, 2H), 3.82(s, 3H), 2.57(q, 2 H), 1.15(t, 3H) ppm. ESIMS: m/s(%):405.17 [M-H] $^{-}$ 。

[0289] 实施例 14

[0290] CH-15 系列化合物的制备:

[0291] CH-14 溶解于干燥的二氯甲烷中,加入过量的氯化亚砜回流反应,反应完全后,真空加热蒸去二氯甲烷和过量的氯化亚砜得浓稠的油状物后;加入适量的干燥的二氯甲烷溶解油状物;然后,加入适量事先配制好的取代的醇、取代的胺、取代的哌嗪或者吗啉的干燥二氯甲烷溶液;加入适量的无水吡啶作为缚酸剂,反应过夜。反应完全后,加适量的水停止反应,用二氯甲烷萃取,加压浓缩二氯甲烷相,快速柱层析得到 CH-15 系列化合物,收率85-96%。

[0292] CH-15 系列化合物的谱图数据如下:

[0293] CH-15-1 棕色固体,熔点:147.4~147.9℃; ¹H NMR(DMSO, 300MHz): δ 9.41 (m, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2 H), 3.82 (s, 3H), 3.16 (m, 1H), 2.57 (q, 2H), 1.47 (m, 2H), 1.28 (m, 2H), 1.15 (t, 3H), 0.92 (m, 3 H) ppm. ESIMS: m/s (%):528.27 [M-H] -。

[0294] CH-15-2 棕色固体,熔点:139.3 \sim 139.8 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 3.82 (s, 3H), 2.92 (m, 2H), 2.07 (m, 1H), 2.57 (q, 2H), 1.15 (t, 3H), 0.90 (m, 6H) ppm. ESIMS: m/s (%):527.51 [M-H] $^-$ 。

[0295] CH-15-3 棕色固体,熔点:131.8~132.3℃; H NMR (DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 3.82 (s, 3H), 2.57 (q, 2H), 1.51 (s, 9H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):527.19 [M-H] .

[0296] CH-15-4 棕色固体,熔点:143.5 \sim 144.0 °C; ¹H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 3.82 (s, 3H), 3.52 (m, 1H), 2.57 (q, 2H), 1.69 (m, 2H), 1.49 (m, 5H), 1.12 (m, 6H) ppm. ESIMS: m/s (%):553.27 [M-H] ¯。

[0297] CH-15-5 棕色固体,熔点:153.3~153.9℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.26 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 3H), 4.16 (m, 2H), 3.82 (s, 3H), 2.57 (q, 2H), 2.22 (s, 3H), 1.15 (t, 3H) ppm. ESIMS:m/s(%):575.62 [M-H] 。

[0298] CH-15-6 棕色固体,熔点:158.7~159.1℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 1H), 6.5 1 (m, 2H), 6.44 (m, 1H), 4.20 (m, 4H), 3.82 (s, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS:m/s(%):621.23 [M-H] -。

[0299] CH-15-7 棕色固体,熔点:167.2 \sim 168.8 $^\circ$ C; H NMR (DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.26 (m, 4H), 7.15 (m, 5H), 6.88 (m, 1H), 4.16 (m, 2H), 3.82 (s, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):575.33 [M-H] $^\circ$.

[0300] CH-15-8 棕色固体,熔点:146.9~147.5℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.61 (m, 2H), 7.15 (m, 6H), 6.95 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 3.82 (s, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):565.58 [M-H] .

[0301] CH-15-9 棕色固体,熔点:136.3 \sim 136.9 $^{\circ}$ C; H NMR(DMSO, 300MHz): $^{\circ}$ 8 9.41 (m, 1H), 7.95 (d, 2H), 7.77 (d, 2H), 7.61 (m, 2H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 3.82 (

s, 3H), 3. 96 (m, 2H), 3. 36 (m, 2H), 3. 16 (m, 2H), 2. 86 (m, 2H), 2. 57 (q, 2H), 1. 15 (t, 3H) ppm. ESIMS:m/s (%):541. 25 [M-H]⁻。

[0302] CH-15-10 棕色固体,熔点:149.2 \sim 150.0 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1H), 7.95 (d, 2H), 7.78 (d, 4H), 7.64 (m, 4H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 4.00 (m, 2H), 3.82 (s, 3H), 3.49 (m, 2H), 3.29 (m, 2H), 2.89 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%): 634.71 [M-H] -。

[0303] CH-15-11 棕色固体,熔点:155.7~156.3℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 7.95 (d, 2H), 7.78 (d, 4H), 7.64 (m, 4H), 7.13 (m, 4H), 6.88 (m, 1H), 4.16 (m, 2H), 4.00 (m, 2H), 3.82 (s, 3H), 3.49 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):651.08 [M-H] -。

[0304] CH-15-12 棕色固体,熔点:138.2 \sim 138.7 °C; ¹H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 2H), 6.85 (d, 2H), 3.82 (m, 3H), 3.16 (m, 1H), 2.57 (q, 2H), 1.47 (m, 2H), 1.28 (m, 2H), 1.15 (t, 3H), 0.92 (m, 3H) ppm. ESIMS: m/s (%):527.26 [M-H] -。

[0305] CH-15-13 棕色固体,熔点:129.6~130.1 °C; ¹H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 2H), 6.85 (d, 2H), 3.82 (m, 3H), 2.92 (m, 2H), 2.07 (m, 1H), 2.57 (q, 2H), 1.15 (t, 3H), 0.90 (m, 6H) ppm. ESIMS: m/s (%):527.35 [M-H] - 。

[0306] CH-15-14 棕色固体,熔点:113.6~114.1℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 2H), 6.85 (d, 2H), 3.82 (m, 3 H), 2.57 (q, 2H), 1.51 (s, 9H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):527.29 [M-H] .

[0307] CH-15-15 棕色固体,熔点:141.1 \sim 141.7 $^{\circ}$ C; ¹H NMR(DMSO, 300MHz): $^{\circ}$ 8 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 2H), 6.85 (d, 2H), 3.82 (m, 3H), 3.52 (m, 1H), 2.57 (q, 2H), 1.69 (m, 2H), 1.49 (m, 5H), 1.12 (m, 6H) ppm. ESIMS: m/s (%):553.64 [M-H] $^{-}$ 。

[0308] CH-15-16 棕色固体,熔点:135.5 \sim 136.1 °C; ¹H NMR(DMSO, 300MHz): δ 9.41 (m, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 4H), 6.85 (d, 5H), 3.82 (m, 3 H), 2.57 (q, 2H), 2.22 (s, 3H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):575.62 [M-H] $^-$ 。

[0309] CH-15-17 棕色固体,熔点:126.1 \sim 126.8 $^{\circ}$ C; H NMR(DMSO, 300MHz): $^{\circ}$ 8 9.41 (m, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 2H), 6.85 (d, 2H), 6.5 1 (m, 2H), 6.44 (m, 1H), 4.20 (m, 4H), 3.82 (m, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):622.36 [M-H] $^{\circ}$ 。

[0310] CH-15-18 棕色固体,熔点:153.3 \sim 153.9 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.26 (d, 4H), 26 (m, 4H), 7.15 (m, 3H), 6.85 (d, 3H), 3.82 (m, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):547.59 [M-H] $^{-}$ 。

[0311] CH-15-19 棕色固体,熔点:157.1 \sim 157.7 $^{\circ}$ C; 1 H NMR (DMSO, 300MHz): $^{\circ}$ 8 9.41 (m, 1 H), 8.49 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.20 (d, 4H), 7.09 (m, 2H), 6.85 (d, 2 H), 3.82 (m, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):555.58 [M-H] $^{-}$ 。

[0312] CH-15-20 棕色固体,熔点:132.5~132.9℃; H NMR(DMSO, 300MHz): 8 9.41 (m

, 1H), 8. 49 (m, 1H), 7. 95 (d, 2H), 7. 75 (d, 2H), 7. 63 (s, 1H), 7. 26 (d, 2H), 6. 85 (d, 2H), 3. 96 (m, 2H), 3. 82 (m, 3H), 3. 36 (m, 2H), 3. 16 (m, 2H), 2. 86 (m, 2H), 2. 57 (q, 2H), 1. 15 (t, 3H) ppm. ESIMS: m/s (%): 541. 50 [M-H] $^-$.

[0313] CH-15-21 棕色固体,熔点:143.4~143.9℃; ¹H NMR(DMSO, 300MHz): δ 12.02(s, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.78 (d, 4H), 7.64 (s, 4H), 7.26 (d, 2H), 6.85 (d, 2H), 4.00 (m, 2H), 3.82 (s, 3H), 3.49 (m, 2H), 3.29 (m, 2H), 2.89 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%): δ 34.64 [M-H] - 。

[0314] CH-15-22 棕色固体,熔点:152.8~153.6℃; H NMR(DMSO, 300MHz): δ 12.02(s, 1H), 8.49 (m, 1H), 7.95 (d, 2H), 7.78 (d, 4H), 7.63 (s, 4H), 7.26 (d, 2H), 6.85 (d, 2H), 4.00 (m, 2H), 3.82 (s, 3H), 3.49 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%): δ 1.11 [M-H] .

[0315] CH-15-23 棕色固体,熔点:146.9~146.6℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H),, 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 3.82 (s, 3H), 3.16 (m, 1H), 2.57 (q, 2H), 1.47 (m, 2H), 1.28 (m, 2H), 1.15 (t, 3H), 0.92 (m, 3H) ppm. ESIMS:m/s(%):461.29 [M-H] 。

[0316] CH-15-24 棕色固体,熔点:141.1 \sim 141.7 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1 H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 3.82 (s, 3H), 2.92 (m, 2 H), 2.07 (m, 1H), 2.57 (q, 2H), 1.15 (t, 3H), 0.90 (m, 6H) ppm. ESIMS: m/s (%):461.37 [M-H] $^{-}$ 。

[0317] CH-15-25 棕色固体,熔点:151.3~151.8℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1 H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 3.82 (s, 3H), 2.57 (q, 2 H), 1.51 (s, 9H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):461.29 [M-H] $\bar{}$ 。

[0318] CH-15-26 棕色固体,熔点:137.5 ~ 138.1 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1 H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 3.82 (s, 3H), 3.52 (m, 1 H), 2.57 (q, 2H), 1.69 (m, 2H), 1.49 (m, 5H), 1.12 (m, 6H) ppm. ESIMS: m/s (%):485.23 [M-H] $\bar{}$ 。

[0319] CH-15-27 棕色固体,熔点:166.2 \sim 167.7 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1 H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 7.26 (d, 2H), 6.93 (d, 5H), 3.82 (s, 3 H), 2.57 (q, 2H), 2.22 (s, 3H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):507.52 [M-H] ¯。

[0320] CH-15-28 棕色固体,熔点:173.3 \sim 173.9 °C; ¹H NMR (DMSO, 300MHz): δ 9.41 (m, 1 H),, 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 6.51 (m, 2H), 6.44 (m, 1H), 4.20 (m, 4H), 3.82 (s, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS:m/s (%):553.96 [M-H] $^{-}$ 。

[0321] CH-15-29 棕色固体,熔点:188.2 \sim 188.8 $^\circ$ C; H NMR(DMSO, 300MHz): $^\circ$ 8 9.41 (m, 1 H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 7.26 (m, 2H), 7.15 (m, 3H), 6.99 (d, 2 H), 3.82 (s, 3H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%): 480.11 [M-H] $^-$ 。

[0322] CH-15-30 棕色固体,熔点:163.2 \sim 163.9 $^\circ$ C; ¹H NMR(DMSO, 300MHz): δ 9.41 (m, 1 H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 3.82 (s, 3H), 2.57 (q, 2 H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):497.97 [M-H] $^-$ 。

[0323] CH-15-31 棕色固体,熔点:155.6~156.2℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 7.26 (d, 2H), 6.85 (d, 2H), 3.96 (m, 2H), 3.82 (s, 3H), 3.36 (m, 2H), 3.16 (m, 2H), 2.86 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm.

ESIMS:m/s (%):473.78 [M-H]⁻.

[0324] CH-15-32 棕色固体,熔点:161.1 \sim 161.8 $^{\circ}$ C; ¹H NMR(DMSO, 300MHz): $^{\circ}$ 8 9.41 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 4.00 (m, 2H), 3.8 2 (s, 3H), 3.49 (m, 2H), 3.29 (m, 2H), 2.89 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS: m/s (%):567.34 [M-H] $^{-}$ 。

[0325] CH-15-33 棕色固体,熔点:171.4~172.1℃; H NMR(DMSO, 300MHz): δ 9.41 (m, 1H), 7.95 (d, 2H), 7.75 (d, 2H), 7.63 (s, 1H), 7.51 (d, 2H), 6.99 (d, 2H), 4.00 (m, 2H), 3.8 2 (s, 3H), 3.49 (m, 2H), 3.29 (m, 2H), 2.85 (m, 2H), 2.57 (q, 2H), 1.15 (t, 3H) ppm. ESIMS:m/s(%):582.88 [M-H] -。

[0326] 实施例 15

[0327] 1、体外抗乙肝病毒(HBV)作用检测

[0328] 材料与方法

[0329] 1. 体外细胞模型:HepG2. 215 细胞

[0330] 2. MTT 法检测试验化合物对细胞的毒性

[0331] 3. 酶联免疫法 (ELISA) 检测试验化合物对 HBsAg、HBeAg 以及 HBV-DNA 抑制作用

[0332] 4. 阳性药物对照:阿德福韦(adefovir)

[0333] 试验过程

[0334] 1. 药液配制

[0335] 试验化合物先用 DMSO 溶解为 20 mg/mL 的母液,临用前将母液稀释为 $100 \times 50 \times 25$ 和 $12.5 \mu \text{ g/mL}$ 四个工作浓度。

[0336] 2. 试验化合物的细胞毒性检测

[0337] HepG2 2.2.15 细胞在 96 孔细胞培养板中培养 48 小时后,加入上述所配不同浓度含有试验化合物的培养液,继续培养 9 天 (每 3 天换液一次),用 MTT 法检测细胞存活率,确定试验化合物对 HepG2 2.2.15 细胞的毒性。

[0338] 3. 药物对 HBV 病毒抗原抑制作用检测

[0339] HepG2 2. 2. 15 细胞在 24 孔细胞培养板中培养 48 小时后,加入所配不同浓度的含试验化合物的培养液,继续培养 9 天 (每 3 天换液一次),收集上清液,用 HBsAg 和 HBeAg 诊断试剂盒 (ELISA) 检测 HBsAg 和 HBeAg ;PCR 免疫荧光法测定其 HBV-DNA 抑制活性。

[0340] 表 1 化合物体外抗 HBV 实验数据

[0341]

试验化合物	CC ₅₀ (µM)	HBsA	Ag	НВел	Ag	DNA	复制
		IC ₅₀ (μM)	SI	IC ₅₀ (μM)	SI	IC ₅₀ (μM)	SI
CH-3-1	179	176	1.02	76	2.36	20	8.95
CH-3-3	346	>113.9	₹	222	1.56	5.2	66.54
CH-3-8	>109.6	>109.6	÷	55	>1.99	0.206	>532
CH-3-9	>113.9	>113.9	·-	49	>2.3	76	>1.5
CH-3-11	>119.4	>119.4	-	2	>59.7	5	>23.9
CH-3-12	159	29	5.48	0.3	530	0.8	198.75
CH-4-2	>119.4	18	>6.63	0.1	>1194	11	>10.85
CH0-4-4	0.5	13	0.04	38	0.01	0.5	1.0
CH-4-5	164	61	2.69	1.6	102,5	6.2	26.45
CH-4-13	>117.9	>117.9	₩	>117.9	÷	98.3	>1.2
CH-5-1	177	>109.3	<1.07	>109.3	<1.07	NA	-
CH-5-7	133	>110.2	<1.21	774	0.17	11.2	11.88
CH-5-8	15	99	0.15	0.73	20.55	99.6	0.15
CH-5-10	56	111	0.50	56	1.0	0.12	466.67
CH-6-3	67	>132.7	< 0.5	>132.7	< 0.5	28.6	2.34
CH-6-12	79	46	1.72	39	2.03	20	3.95
CH-7-2	696.1	846.2	0.82	>846.2	< 0.82	170.3	4.09
CH-7-7	232	276	0.84	58	4.0	100.8	2.3
CH-8-3	244	77	3.17	>97	< 2.5	>363.7	< 0.67
CH-9-1	102	40	2.55	4.4	23.18	31.5	3.24
CH-9-3	5 1	72	0.71	30	1.70	92,6	0.55
CH-10-10	8	13	0.62	0.5	16.0	2.1	3.81
CH-10-12	10	>86.9	< 0.12	>86.9	< 0.12	64.5	0.15
CH-11-5	10	13	0.77	40	0.25	3	3.33
CH-11-6	201.4	496.5	0.41	>402.8	< 0.5	97.5	2.07
CH-12-6	32	36	0.89	2	16.0	1	32
CH-12-10	20	>117.8	< 0.17	>117.8	< 0.17	21.7	0.92
CH-13-1	387	20 1	1.93	71	5.45	4	96.75
CH-13-4	164	123	1.33	10	16.4	>462.4	< 0.35
CH-13-9	120	>121.9	<1	>121.9	<1	33.8	3.55
CH-14-10	131	>139.3	-	46.3	2.83	33.3	3.93
CH-14-13	98	29	3.38	5	19.6	30	3.27
CH-15-8	>121.9	>121.9	e=.	54	>2.26	>121.9	=
CH-15-27	20	98	0.20	40	0.5	12	1.67
阿德福韦	540	305	1.77	286	1.89	0.517	1044.5

[0342] 2、鸭体内抗乙肝病毒活性实验:

[0343] 病毒:鸭乙型肝炎病毒鸭乙型肝炎病毒 DNA (DHBV-DNA) 强阳性血清, 采自 上海麻鸭, -70℃保存。

[0344] 动物:1日龄北京鸭。

[0345] 试剂: α-32P-dCTP购,缺口翻译药盒, Sephadex G-50, Ficoll PVP, SDS, 鱼精 DNA, 牛血清白蛋白,硝酸纤维素膜 0.45um。

[0346] 实验方法:

[0347] (1) 鸭乙型肝炎病毒感染:

[0348] 1日龄北京鸭,经腿胫静脉注射上海麻鸭 DHBV-DNA 阳性鸭血清,每只 0. 2m1,在感染后7天取血,分离血清,-70℃保存待检。

[0349] (2) 药物治疗试验:

[0350] DHBV 感染雏鸭 7 天后随机分组进行药物治疗试验,每组 6 只,给药组剂量 50 mg/kg,口服,1 天 2 次,10 天。设病毒对照组 (DHBV),以生理盐水代替药物。阳性药用拉米夫定,口服给药 50 mg/kg,1 天 2 次,10 天。在感染后第 7 天即用药前 (T0),用药第 5 天 (T5),用药第 10 天 (T10) 和停药后第 3 天 (P3),自鸭腿胫静脉取血,分离血清,-70 C保存待检。 [0351] (3) 检测方法:

[0352] 取上述待检鸭血清,每批同时点膜,测定鸭血清中 DHBV-DNA 水平的动态。按缺口翻译试剂盒说明书方法,用 32P 标记 DHBV-DNA 探针,并作鸭血清斑点杂交,放射自显影膜片斑点,在酶标检测仪测定 0D 值(滤光片为 490cm),计算血清 DHBV-DNA 密度,以杂交斑点 0D 值作为标本 DHBV-DNA 水平值。

[0353] (4)药效计算:

[0354] a. 计算每组鸭不同时间血清 DNA OD 值的平均值 (X±SD),并将每组鸭用药后不同时间 (T5、T10) 和停药后第 3 天 (P3) 血清 DHBV-DNA 水平与同组给药前 (T0) OD 值比较,采用配对 t 检验,计算 t1、P1 值。分析差异的显著性,判断药物对病毒感染的抑制效果。

[0355] b. 计算每组鸭用药后不同时间 (T5、T10) 和停药第 3 天 (P3) 血清 DHBV-DNA 的抑制 %,并作图,比较各组鸭血清 DHBV-DNA 抑制率的动态。

[0356]

[0357] c. 将给药治疗组不同时间 DHBV-DNA 抑制率分别与病毒对照组相同时间 DHBV-DNA 抑制率比较,采用成组 t 检验,作统计学处理,计算 t 2、P 2 值,分析差异的显著性,判断药效。

[0358] 经口给药 SG-10 (50mg/kg),每天 1 次,连续 10 天。体内抗鸭肝炎病毒 初步试验结果。

[0359] 表 2 CH-5-10 药物治疗组与病毒感染对照组鸭血清 DHBV-DNA 水平抑制率 [0360]

药物		鸭数	抑制率(%)		
1	ng/kg Qdx10	(只)	T5	T10	P3
病毒对照		6	24.17	18.93	22.90
CH-5-10	50mg	6	70.20	74.8 8*	60.58*
拉米夫定	50mg	6	72.95	74.40**	62.76**

[0361] 统计处理:t2, p2:给药组不同时间(T5、T10, P3) 鸭血清 DHBV-DNA 水平与感染前(T0)

[0362] 比较的抑制%与病毒对照组抑制%比较(成组 t 检验)。

[0363] *p2<0.01, **p2<0.01.

[0364] 实施例 16

[0365] 1、体外抗肿瘤活性实验

[0366] 瘤株及试剂:肺癌细胞(A549),肝癌细胞(QGY),宫颈癌细胞(hela);MTT(购于Sigma 公司);DMEM、胰蛋白酶、小牛血清(购于GIBCO公司)。

[0367] 仪器:Multiskan MK3 型酶标仪(Labsystems Dragon 公司)

[0368] MTT 法测细胞增殖抑制率:分别收集对数生长期的肺癌细胞(A549),肝癌细胞(QGY),宫颈癌细胞(hela)($2\times10^4/m1$),种入96孔培养板,每孔100 μ 1,培养24小时后细胞贴壁,分别按设计加入药液,阴性对照用相应培养液代之,置5%CO₂、37℃的培养箱中继续培养24小时。处理后的细胞,移去DMEM培养基,D-Hank's液洗2次,每孔加入100 μ 1DMEM培养基和10 μ 1MTT(5mg/m1),37℃孵育4h。弃去液体,每孔加入100 μ 1DMSO,放置数分钟,使MTT结晶溶解,在酶标仪上540nm处测吸收值。

[0369] 阳性对照药:5-氟尿嘧啶(5-Fu)。

[0370] 药理实验操作

[0371] 细胞培养:受试细胞在 5% CO_2 , 37 C 条件下, 用含 10% 牛血清的 DMEM 溶液传代培养, 实验所用细胞均处于对数生长期。

[0372] 药液制备:受试药物分别用 DMSO 配成 10g/L 溶液,-20 ℃保存,实验前,将药液取 出置室温融化,并用 10% 小牛血清的 DMEM 培养液溶解分别成 $80 \mu g/m1 \sqrt{40 \mu g/m1} \sqrt{20 \mu g/m1}$ ml $\sqrt{10 \mu g/m1}$ 的药液样品,4 ℃冰箱保存。

[0373] MTT 法测各样品抗肿瘤活性:

[0374] a. 取对数生长期细胞,用含 10% 小牛血清的 DMEM 培养液,制成单细胞悬液 1×10^5 个 / m1,将该悬液加到 96 孔板中,每孔加入 $100\,\mu$ L;

[0375] b. 于 37℃培养箱中培养 24 小时后,吸取上清液,分别加入各浓度的受试药物,设 双复孔,继续培养 24 小时;

[0376] c. 吸取上清液,加入 20μ L MTT 溶液 $(5 \mu g/m1)$,继续培养 4h 后,吸取上清液,加 100μ L 的 DMSO,充分溶解后在 570nm 处测定吸光值 (OD 值),并按下列公式计算其抑制率。

[0377] d. 抑制率(%)=(对照孔 OD 值 - 实验孔 OD 值)/ 对照孔 OD 值 ×100%

[0378] e. IC₅₀ 值由 SPSS 软件算出。

[0379] 表 3 体外抗肿瘤活性数据

[0380]

TO A DE AL	the physical process of the control			
受试药物	抗肿瘤活性 (IC50, μM)			
-	HeLa	A549	QGY	
CH-3-1	12. 8	42	53	
CH-3-2	22. 1	24	9.5	
CH-3-3	2.9	5.3	1.3	
CH-3-4	$>10^{3}$	28.4	$>10^3$	
CH-3-5	117. 5	5.2	0.132	
CH-3-6	72.4	4.6	5.0	
CH-3-7	48. 7	1	21.7	
CH-3-8	25.4	5.0	7.1	
CH-3-9	18. 3	9.3	23.0	
CH-3-10	10.0	$>10^{3}$	31.7	
CH-3-11	16.0	$>10^{3}$	$>10^{3}$	
CH-3-12	5, 4	13.3		
CH-3-13	23.4	89.6	6.3	
CH-3-14	53.4	36.8	1	
CH-3-15	28.3	$>10^{3}$	8.3	
CH-3-16	30. 4	$>10^{3}$	13.6	
CH-3-17	20, 7	$>10^{3}$	$>10^{3}$	
CH-3-18	16, 1	5.6	14. 1	
CH-3-19	16.4	9.5	17.1	
CH-3-20	7.22	15.4	4.1	
CH-4-1	3.8	>400	0.196	
CH-4-2	19.5	17.3	>400	
CH-4-3	>400	>400	1	
CH-4-4	0.074	54.4	33.6	
CH-4-5	0.064	90.5	17.1	
CH-4-6	0.22	51.4	41.0	
CH-5-1	11.7	25.7	60.7	
CH-5-2	0.23.3	18.4	19.7	
CH-5-3	.40	8.7	12.3	
CH-5-4	.46	20.7	4.4	
CH-5-5	1	1	4.6	
CH-5-6	1	24.8	>400	

[0381]

	i	0.2	57 1
CH-5-7	1	9.3	57.1
CH-5-8	16.1	21.0	11.1
CH-5-9	10.0	19.5	23.1
CH-5-10	40.0	1	21.9
CH-5-11	0.136	52	132
CH-5-12	0.063	46	50
CH-7-1	2.12	4.84	6.79
CH-7-2	0.95	1.02	0,77
CH-7-3	0.198	0.280	0.533
CH-7-4	0.076	0.028	0.028
CH-7-5	0.037	0.027	0.033
CH-7-6	0.016	0.008	0.034
5-Fu	16.1	5.6	14.1

[0382] 2、体内抗肿瘤活性测试试验

[0383] 通过本试验观察灌胃化合物 CH-7-6 对人结肠癌裸鼠移植性肿瘤的影响。

[0384] 动物来源,品属,种系 :5 \sim 6 周龄雄性 BALB / c nu / nu 裸小鼠,SPF 级,由上海西普尔 – 必凯实验动物有限公司提供。性别 :雄性。体重 :20 \sim 22g。

[0385] 试验方法:

[0386] 结肠癌皮下种植瘤动物模型的建立

[0387] 1. 动物选择: $5\sim 6$ 周龄雄性 BALB / c nu / nu 裸小鼠,体重 $20\sim 22$ g, SPF 级。

[0388] 2. 细胞选择:人结肠癌细胞系 HCT116

[0389] 3. 动物分组:阴性对照组,阳性药物卡培他滨组(350 mg/kg),实验药物化合物 CH-7-6组(高剂量组 700 mg/kg、低剂量组 350 mg/kg)

[0390] 4. 结肠癌皮下种植瘤小鼠模型:将含 2×10⁶ 肿瘤细胞的悬液 100 μ 1 注射裸鼠近前肢腋下,成瘤后,分离瘤体内细胞,接种到新的裸鼠,进行体内传代培养。选择第 3 代成瘤小鼠,进行药物影响的研究。

[0391] 5. 给药方法及瘤重测定:荷瘤鼠按瘤体大小均匀分配于模型组(阴性对照组,给予蒸馏水),阳性对照组(给予卡培他滨)、化合物 CH-7-6 剂量组(350mg/kg),连续灌胃给药,5天为1疗程,停药2天,连续2个疗程。末次给药后第16小时,裸鼠称重后,剥取肿瘤,称重。抑瘤率%=(1-治疗组瘤重/阴性对照组瘤重)×100%

[0392] 表 4 实验分组及剂量表

[0393]

组 别	给药途径	剂量	动物数(只)
阴性对照蒸馏水组	灌胃	10ml/kg	9
阳性对照卡培他滨组	灌胃	350mg/kg	8
化合物 CH-7-6 组	灌胃	350mg/kg	8

[0394] 给药次数:连续灌胃给药,5天为1疗程,停药2天,连续2个疗程,共计10次

[0395] 观察指标及观察时间:称取裸鼠体重、瘤重

[0396] 数据及统计学分析:实验数据以 \bar{x} + SD表示,用 SPSS 10.0 软件进行方差分析,

作显著性检验。

[0397] 试验结果:

[0398] 阴性对照蒸馏水组裸鼠肿瘤重为 1.138 ± 0.631 g,CH-7-6 剂量组 350mg/kg 对肿瘤抑制率为 60.8%,阳性对照药卡培他滨(350mg/kg) 对肿瘤抑制率为 76.9%,瘤重仅为 0.263 ± 0.125 g,与阴性对照比较,差异具有显著性意义(P<0.01),见表 5。

[0399] 表 5 对移植人结肠癌(HCT116)荷瘤裸鼠肿瘤重量的影响(x±SD) [0400]

组 别	剂 量	裸鼠数	抑瘤率 (%)
阴性对照组	22	9	=
卡培他滨组	350mg/kg	8	76.9
CH-7-6 剂量组	350mg/kg	8	60.8

[0401] 与阴性对照组比较,*P<0.01

图 1