Artificial Intelligence Project: Hierarchy Deep Q-Learning

Yiheng Lin, Zhihao Jiang

Introduction

Meta Controller:

(Higher Hierarchy)
Interact with External Environment (extrinsic reward), set goals for Controller;

Controller:

(Lower Hierarchy)

Try to achieve goals, receive intrinsic reward from Meta Controller.

Problem Setting

Reward: if s6 is visited, reward = 1; else, reward = 0.01

Actions: 1: move to left with probability 1;

2: move to right with probability 0.5; otherwise, move to left;

Difficulties

Hidden State: What if we have an additional state to indicate whether s6 is visited?

Search Efficiency: Can epsilon greedy agent keep taking action 2 for enough times?

```
3: for i = 1, num\_episodes do
         Initialize game and get start state description s
 4:
         g \leftarrow \text{EPSGREEDY}(s, \mathcal{G}, \epsilon_2, Q_2) Meta Controller chooses a goal
 5:
        while s is not terminal do
 6:
             F \leftarrow 0
 8:
             s_0 \leftarrow s
             while not (s is terminal or goal g reached) do
 9:
                                                                                Controller chooses an action
                 a \leftarrow \text{EPSGREEDY}(\{s, g\}, \mathcal{A}, \epsilon_{1,g}, Q_1)
10:
                 Execute a and obtain next state s' and extrinsic reward f from environment
11:
                 Obtain intrinsic reward r(s, a, s') from internal critic
12:
                                                                                                         Controller's reward
                 Store transition (\{s,g\},a,r,\{s',g\}) in \mathcal{D}_1
13:
                 UPDATEPARAMS(\mathcal{L}_1(\theta_{1,i}), \mathcal{D}_1)
14:
                 UPDATEPARAMS(\mathcal{L}_2(\theta_{2,i}), \mathcal{D}_2)
15:
                 F \leftarrow F + f
16:
                 s \leftarrow s'
17:
             end while
18:
             Store transition (s_0, g, F, s') in \mathcal{D}_2
19:
             if s is not terminal then
20:
                 g \leftarrow \text{EPSGREEDY}(s, \mathcal{G}, \epsilon_2, Q_2)
21:
             end if
22:
         end while
23:
```


Authors' Result:

Ref: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Our result:

epoch	s1	s2	s3	s 4	s5	s6
1	1	1.596	0.903	0.421	0.172	0.058
2	1	1.571	0.859	0.435	0.21	0.063
3	1	1.654	0.928	0.415	0.211	0.07
4	1	1.661	0.978	0.484	0.237	0.07
5	1	1.592	0.9	0.499	0.298	0.107
6	1	1.635	1.003	0.601	0.36	0.127
7	1	1.576	0.942	0.574	0.306	0.098

Ref: https://github.com/EthanMacdonald/h-DQN

• Interesting Phenomena:

When goal is sited to s2, the controller often takes action 2...

Then it can visit s6...

Meta-Controller receives a big reward...

Meta-Controller tends to set s2 as the goal...

But, is this stable?

Maybe the experience of Controller is too volatile to train Meta Controller?

Quality input guarantees quality output...

Our Attempt

Key idea: Explore efficiently

The effect of subgoal in the previous example

Other thinking

Random subgoal

"most unknown" subgoal

Implementation Details

Set the subgoal

• Transmit the reward information

Performance

• Discovery: the line raises abruptly some time

Some Ideas

Initial parameters in DQN using this method

Combine this method with deep learning

Plan of Further Work

Why the performance line raises abruptly

How to implement our idea in more general model

Is the ideas useful for DQN

Thanks