

Today's Reading, Pavlo 2009

MR VS. DATABASES

Hadoop vs. RDBMS

- Comparison of 3 systems
 - Hadoop
 - Vertica (a column-oriented database)
 - DBMS-X (a row-oriented database)
 - rhymes with "schmoracle"
- Qualitative
 - Programming model, ease of setup, features, etc.
- Quantitative
 - Data loading, different types of queries

Grep Task

- Find 3-byte pattern in 100-byte record
 - 1 match per 10,000 records
- Data set:
 - 10-byte unique key, 90-byte value
 - 1TB spread across 25, 50, or 100 nodes
 - 10 billion records
- Original MR Paper (Dean et al. 2004)

Grep Task Loading Results

Grep Task Execution Results

Selection Task

SELECT pageURL, pageRank FROM Rankings WHERE pageRank > X

1 GB / node

Analytical Tasks

- Simple web processing schema
- Data set:
 - 600k HTML Documents (6GB/node)
 - 155 million UserVisit records (20GB/node)
 - 18 million Rankings records (1GB/node)

Aggregate Task

Simple query to find adRevenue by IP prefix

```
SELECT SUBSTR(sourceIP, 1, 7),
SUM(adRevenue)
FROM userVistits
GROUP BY SUBSTR(sourceIP, 1, 7)
```


Aggregate Task Results

Join Task

- Find the sourceIP that generated the most adRevenue along with its average pageRank.
- Implementations:
 - DBMSs Complex SQL using temporary table.
 - MapReduce Three separate MR programs.

Join Task

```
SELECT INTO TempsourceIP,
            AVG (pageRank) as avgPageRank,
            SUM (adRevenue) as totalRevenue
FROM RankingsAS R
   , UserVisitsAS UV
WHERE R pageURL = UV destURL
AND UV.visitDate
  BETWEEN '2000-01-15'
  AND '2000-01-22'
GROUP BY UV. sourceIP;
SELECT sourceIP,
       totalRevenue,
       avgPageRank
FROM Temp
QRDER BY totalRevenueDESC
LIMIT 1;
```


Join Task Results

Problems with this analysis?

- Other ways to avoid sequential scans?
- Fault-tolerance in large clusters?
- Tasks that cannot be expressed as queries?

Google's Response: Cluster Size

- Largest known database installations:
 - Greenplum 96 nodes 4.5 PB (eBay) [1]
 - Teradata 72 nodes 2+ PB (eBay) [1]
- Largest known MR installations:
 - Hadoop 3658 nodes 1 PB (Yahoo) [2]
 - Hive 600+ nodes 2.5 PB (Facebook) [3]
- [1] eBay's two enormous data warehouses April 30th, 2009 http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
- [2] Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte in 62 Seconds May 11th, 2009 http://developer.yahoo.net/blogs/hadoop/2009/05/hadoop_sorts_a_petabyte_in_162.html
- [3] Hive A Petabyte Scale Data Warehouse using Hadoop June 10th, 2009 http://www.facebook.com/note.php?note_id=89508453919

Concluding Remarks

- What can MapReduce learn from Databases?
 - Declarative languages are a good thing.
 - Schemas are important.
- What can Databases learn from MapReduce?
 - Query fault-tolerance.
 - Support for in situ data.
 - Embrace open-source.

Other Benchmarked Systems

- HadoopDB (Abadi '09 Yale)
 - Replaced Hadoop filesystem with Postgres.
 - Makes JDBC calls inside of MR functions.
- Hive (Thusoo '09 Facebook)
 - Data warehouse interface on top of Hadoop.
 - Converts SQL-like language to MR programs.