Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

Folha de Dados Primeira Lista Exercícios Circuitos Sequenciais e Projeto RTL

Entrega até sexta-feira 09 de maio de 2019 às 23:50 horas

Instruções:

- 1. Organize o repositório em pastas para cada exercício.
- 2. Entregar todos os arquivos necessários para replicar o experimento.
- 3. Preencha os dados solicitados, imprima este documento em PDF e deixe no repositório.

Nome: **Arthur Faria Campos** matrícula: 16/0024242

Exercício 3. Neurônio GMBH de segunda ordem usando IP-Cores em ponto flutuante

1) Diagrama de blocos proposto.

e-mail: damuz@unb.br

2) Diagrama esquemático (Análise RTL pré-síntese)

3) Erro quadrático médio usando Matlab como estimador estatístico para 100 amostras.

MSE = 0.01068495259616166

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

4) Estimação consumo de recursos lógicos após a síntese lógica:

LUTs	FFs	Pinos de IOs	Blocos DSP	Blocos BRAM
Total:	Total:	Total:	Total:	Total:
733 (3.52 %)	190 (0.46 %)	58 (54.72%)	3 (3.33%)	0 (0 %)

5) Consumo de recursos após implementação (processo *Place and Route -* PAR):

LUTs	FFs	Pinos de IOs	Blocos DSP	Blocos BRAM
Total:	Total:	Total:	Total:	Total:
741 (3.56 %)	217 (0.52 %)	37 (34.91%)	3 (3.33%)	0 (0 %)

6) Análise de timming(input_delay: min=3ns max=4ns output_delay: min=max=2ns)

Worst negative slack (setup): 0.023 ns Worst negative slack (hold): 0.138 ns

Frequência de operação do circuito: 54.644 MHz

Caminho crítico (net de origem): btnD_in Caminho crítico (net de destino): led_out[15]

Maximo path delay: 12.241 ns

e-mail: damuz@unb.br

7) Layout do circuito após a implementação (após processo Place and Route – PAR):

8) Estimação do consumo de energia após a implementação do circuito:

Potência total: 82 (mW) Potência estática: 72 (mW)

Potência dinâmica: 11 (mW) Gráfico de consumo de energia:

