- Solution of an equation
- Limits
- Differentiation
- Optimization
- Integration

1. Solution of Equations

In some cases, the command **solve** may fail to produce all the solutions of an equation. In those cases, you can try to find solutions using **fzero** (short for "find zero") command. Just as for **solve**, you need to write equation in the form f(x)=0.

Find a solution near the x-value x=a, you can use

fzero('left side of the equation', a)

Example 1

solve the equation $e^{x^2} - 2 = x + 4$,

first graph the functions on the left and right side of the equation using

syms x ezplot(exp(x^2)-2) hold on ezplot(x+4) hold off

From the graph, we can see that the two functions intersect at a value near -1 and at a value near 1. To use **fzero**, we need to represent the equation in the form

$$e^{x^2}-2-(x+4)=0$$

or simplified form e^{x^2} - x - 6 = 0.

Then, find the positive solution by using **fzero** to find a zero near 1 and then to find the negative solution near -1 using commands

also that the command $solve(exp(x^2)-2-(x+4))$

It returns just the positive solution.

2. Limit of a Function

Example 2

Evaluate the limit when $x \to 2$ of the function $\frac{x^2 - 4}{x - 2}$ we have

>> syms x
>>
$$\lim_{x\to 2^{-4}}(x^2-4)/(x-2)$$
, x, 2) ans = 4

You can also evaluate left and right limits. For example:

>>
$$limit(abs(x)/x, x, 0, 'left')$$
 ans = -1
>> $limit(abs(x)/x, x, 0, 'right')$ ans = 1

Limits at infinity:

$$>> limit(exp(-x^2-5)+3, x, lnf) ans = 3$$

3. Differentiation

Example 3

Differentiate $x^3 - 2x + 5$

>> syms x
>> diff(
$$x^3-2*x+5$$
)
ans = $3*x^2-2$

Second derivation of $x^3 - 2x + 5$

Similarly, the 23rd derivative of sin(x) is obtained as follows.

Example 4 Slope the tangent at a point

Find the slope of a tangent line to x^2+3x-2 at point 2, we need to find the derivative and to evaluate it at x=2.

>>
$$diff(x^2+3*x-2)$$
 % (first we find the derivative)
ans = $2*x+3$ % (then we representative the derivative as a function)
>> $f(2)$ % (and, finally, we evaluate the derivative at 2) Obtain
ans = 7

Alternatively, using matlabFunction command using the following format.

$$f = matlabFunction(diff(x^2+3*x-2))$$

followed by

$$f(2) ans = 7$$

4. Optimization

In order to find minimum or maximum values of a given function (using second derivative test)

- Find first derivative
- Solve it for zeros. The x-values you obtain are called critical
- Find second derivative

- Plug critical points in second derivative. If your answer is negative, the function has a maximum value at a critical point used. If your answer is positive, the function has a minimum value at a critical point used.
- Plug critical points in your function. The y-values you obtain are your maximum or minimum values.

Example 5 Find extreme values of x^3 -2x+5, start by finding first derivative.

Solution

```
>> diff(x^3-2*x+5)
   ans = 3*x^2-2
Then find critical point(s):
>> solve(3*x^2-2)
   ans = 6^{(1/2)/3}, -6^{(1/2)/3}
vpa(ans, 3)
   ans = .816, -.816
Find second derivative
>> diff(x^3-2*x+5, 2)
   ans = 6*x
Evaluate this at critical points.
>> g=@(x) 6*x g(.816)
   ans = 4.896
Positive answer means that the function has minimum at x=.816
>> g(-.816)
   ans = -4.896
Negative answer means that the function has maximum at x=.816
Finding y-values of maximum and minimum:
>> f=@(x) x^3-2*x+5
>> f(.816)
   ans = 3.911 This is the local minimum value.
>> f(.816)
           ans = 6.088 This is the local maximum value.
```

6. Integration

We can use Matlab for computing both definite and indefinite integrals using the command int. For the indefinite integrals, start with syms x followed by the command int(function). Definite integrals with the command:

int (function, lower bound, upper bound)

Example 6

>> int (x^2) ans =
$$1/3*x^3$$

>> int (x^2,0,1) ans = $1/3$
>> int (sin (x)/x, 1, 3) ans = sin int (3) – sin int (1)
By using command **vpa**, we obtain the answer in numerical form
>> vpa(ans, 4) ans = 0.9026

Practice problems

- Factor x³+3x²y+3xy²+y³.
- 2. Simplify $\frac{x^3-8}{x-2}$.
- 3. Evaluate the following expressions.
- (a) $\sin(\pi/6)$ (b) $\frac{\sqrt{5}+3}{\sqrt{3}-1}$ (c) $\log_2(5)$
- 4. Solve the following equations and express the answers as decimal numbers.
 - (a) $x^3-2x+5=0$ (b) $\log_2(x^2-9)=4$.
- 5. Let $f(x) = \frac{x^3 + x + 1}{x^3 + x + 1}$ (a) Represent f(x) as a function in Matlab and evaluate it at 3 and -2.
- (b) Find x-value(s) that corresponds to y-value y=2. (c) Graph f(x) on domain [-4 4].
- 6. Graph $\ln(x+1)$ and $1-x^2$ on the same plot for x in $[-2\ 6]$ and y in $[-4\ 4]$. 7. Find the limits of the following functions at indicated values.

- (a) $f(x) = \frac{x^{12} 1}{x^3 1}$, $x \to 1$ (b) $f(x) = 3 + e^{-2x}$, $x \to \infty$ (c) $f(x) = \frac{6x^3 4x + 5}{2x^3 1}$, $x \to \infty$
- 8. Let $f(x) = \frac{x^3 + x + 1}{x}$ Find the first derivative of f(x) and evaluate it at x = 1.
- 9. Let $f(x)=e^{\frac{x}{3x^2+1}}$. (a) Find the first derivative of f(x). (b) Find the slope of the tangent line to f(x) at x=1. (c) Find the critical points of f(x).
- 10. Find the 12th derivative of the function $(\frac{x}{2}+1)^{65}$.
- 11. Find the extreme values of

- 12. Evaluate the following integrals.
- (a) x^3 -4x+8 (b) xe^{-3x} (a) $\int xe^{-3x} dx$ (b) $\int_0^1 xe^{-3x} dx$