Optimizing Gaussian Processes

Honours Research Project

Michael Ciccotosto-Camp - 44302913

Problem Setting and Motivation

The idea of studying time series prediction came from a research group from the Gatton campus, lead by Andries Potgieter, analysing crop growth from previous seasons to forecast when certain phenological stages will take place in the current harvest.

Introduction to Gaussian Processes

• A Gaussian Process (GP) is a collection of random variables with index set I, such that every finite subset of random variables has a joint Gaussian distribution and are completely characterized by a mean function $m: X \to \mathbb{R}$ and a kernel $k: X \times X \to \mathbb{R}$ (in this context, think of the kernel as a function that provides some notion of similarity between points).

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))].$$

Michael Ciccotosto-Camp Optimizing Gaussian Processes 3 / 11

Predictions

Using the assumption that our data can be modelled as a Gaussian process, we can
write out the new distribution of the observed noisy values along the points at which
we wish to test the underlying function as

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathbb{N} \begin{pmatrix} \mathbf{0}, & \begin{bmatrix} \mathbf{K}_{\mathbf{X}\mathbf{X}} + \sigma_n^2 \mathbb{I}_{n \times n} & \mathbf{K}_{\mathbf{X}_{\star}\mathbf{X}}^{\intercal} \\ \mathbf{K}_{\mathbf{X}_{\star}\mathbf{X}} & \mathbf{K}_{\mathbf{X}_{\star}\mathbf{X}_{\star}} \end{bmatrix} \end{pmatrix}.$$

Predictions

Using the assumption that our data can be modelled as a Gaussian process, we can
write out the new distribution of the observed noisy values along the points at which
we wish to test the underlying function as

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathbb{N} \begin{pmatrix} \mathbf{0}, & \begin{bmatrix} \mathbf{K}_{\mathbf{X}\mathbf{X}} + \sigma_{n}^{2} \mathbb{I}_{n \times n} & \mathbf{K}_{\mathbf{X}_{\star}}^{\mathsf{T}} \\ \mathbf{K}_{\mathbf{X}_{\star}}\mathbf{X} & \mathbf{K}_{\mathbf{X}_{\star}}\mathbf{X}_{\star} \end{bmatrix} \end{pmatrix}.$$

• The mean and covariance can then be computed as

$$\begin{aligned} \overline{\boldsymbol{f}_{\star}} &= \boldsymbol{K}_{\boldsymbol{X}_{\star} \boldsymbol{X}} \left[\boldsymbol{K}_{\boldsymbol{X} \boldsymbol{X}} + \sigma_{n}^{2} \mathbb{I}_{n \times n} \right]^{-1} \boldsymbol{y} \\ \operatorname{cov}(\boldsymbol{f}_{\star}) &= \boldsymbol{K}_{\boldsymbol{X}_{\star} \boldsymbol{X}_{\star}} - \boldsymbol{K}_{\boldsymbol{X}_{\star} \boldsymbol{X}} \left[\boldsymbol{K}_{\boldsymbol{X} \boldsymbol{X}} + \sigma_{n}^{2} \mathbb{I}_{n \times n} \right]^{-1} \boldsymbol{K}_{\boldsymbol{X}_{\star} \boldsymbol{X}}^{\mathsf{T}}. \end{aligned}$$

Unoptimized GPR

Algorithm 1: Unoptimized GPR

input: Observations X, y and a test input x_* . **output**: A prediction $\overline{f_*}$ with its corresponding variance $\mathbb{V}[f_*]$.

1
$$\boldsymbol{L} = \text{cholesky}\left(\boldsymbol{K}_{\boldsymbol{X}\boldsymbol{X}} + \sigma_n^2 \mathbb{I}_{n \times n}\right)$$

²
$$\alpha = \mathsf{lin} ext{-solve}(\hat{\textit{\textbf{L}}}^\intercal, \mathsf{lin} ext{-solve}(\hat{\textit{\textbf{L}}}, \textit{\textbf{y}}))$$

з
$$\overline{f_\star} = K_{X_\star X} \alpha$$

4
$$\mathbf{v} = \text{lin-solve}(\mathbf{L}, \mathbf{K}_{\mathbf{X}_{\star} \mathbf{X}})$$

5
$$\mathbb{V}[f_{\star}] = K_{X_{\star}X_{\star}} - \mathbf{v}^{\mathsf{T}}\mathbf{v}$$

6 return $\overline{f_{\star}}, \mathbb{V}[f_{\star}]$

Problems with Unoptimized GPR

Algorithm 2: Unoptimized GPR

input: Observations X, y and a prediction inputs X_{\star} . **output**: A prediction $\overline{f_{\star}}$ with its corresponding variance $\mathbb{V}[f_{\star}]$.

- 1 $L = \text{cholesky} \left(K_{XX} + \sigma_n^2 \mathbb{I}_{n \times n} \right)$ 2 $\alpha = \text{lin-solve} \left(L^{\mathsf{T}}, \text{lin-solve} \left(L, \mathbf{y} \right) \right)$
- $\overline{f_{\star}} = K_{X_{\star}X}\alpha$
- 4 $\mathbf{v} = \text{lin-solve}(\mathbf{L}, \mathbf{K}_{X+X})$
- $5 \ \mathbb{V}[f_{\star}] = K_{X_{\star}X_{\star}} \mathbf{v}^{\mathsf{T}}\mathbf{v}$
- 6 return $\overline{f_{\star}}$, $\mathbb{V}[f_{\star}]$
- Lines 1,2 and 4 can be incredibly slow as computing K_{XX} doing a Cholesky decomposition and performing linear solves scale poorly as the number of inputs, n, grows.

Michael Ciccotosto-Camp Optimizing Gaussian Processes 6 / 11

• The Nystrom method we seek a matrix $\mathbf{Q} \in \mathbb{R}^{n \times k}$ that satisfies $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^*\mathbf{A}\|_F \leq \varepsilon$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semi definite matrix, to form the rank-k approximation

• The Nystrom method we seek a matrix $\mathbf{Q} \in \mathbb{R}^{n \times k}$ that satisfies $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^*\mathbf{A}\|_F \leq \varepsilon$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semi definite matrix, to form the rank-k approximation

 $A \simeq QQ^*A$

• The Nystrom method we seek a matrix $Q \in \mathbb{R}^{n \times k}$ that satisfies $\|A - QQ^*A\|_F \leq \varepsilon$, where $A \in \mathbb{R}^{n \times n}$ is positive semi definite matrix, to form the rank-k approximation

$$A \simeq QQ^*A$$

 $\simeq Q(Q^*AQ)Q^*$

• The Nystrom method we seek a matrix $Q \in \mathbb{R}^{n \times k}$ that satisfies $\|A - QQ^*A\|_F \le \varepsilon$, where $A \in \mathbb{R}^{n \times n}$ is positive semi definite matrix, to form the rank-k approximation

$$egin{aligned} A &\simeq Q Q^* A \ &\simeq Q \left(Q^* A Q \right) Q^* \ &= Q \left(Q^* A Q \right) \left(Q^* A Q \right)^\dagger \left(Q^* A Q \right) Q^* \end{aligned}$$

• The Nystrom method we seek a matrix $Q \in \mathbb{R}^{n \times k}$ that satisfies $\|A - QQ^*A\|_F \le \varepsilon$, where $A \in \mathbb{R}^{n \times n}$ is positive semi definite matrix, to form the rank-k approximation

$$A \simeq QQ^*A$$

$$\simeq Q(Q^*AQ)Q^*$$

$$= Q(Q^*AQ)(Q^*AQ)^{\dagger}(Q^*AQ)Q^*$$

$$\simeq (AQ)(Q^*AQ)^{\dagger}(Q^*A).$$

 The RFF technique hinges on Bochners theorem which characterises positive definite functions (namely kernels) and states that any positive definite functions can be represented as

$$k(\mathbf{x} - \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu_k(d\omega)$$

where μ_k is a positive finite measure on the frequencies of ω .

Michael Ciccotosto-Camp

 The RFF technique hinges on Bochners theorem which characterises positive definite functions (namely kernels) and states that any positive definite functions can be represented as

$$k(\mathbf{x} - \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu_k(d\omega)$$

where μ_k is a positive finite measure on the frequencies of ω .

• This integral can then be approximated via the following Monte Carlo estimate

$$k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) p(\omega) d\omega$$

Michael Ciccotosto-Camp Optimizing Gaussian Processes 8

 The RFF technique hinges on Bochners theorem which characterises positive definite functions (namely kernels) and states that any positive definite functions can be represented as

$$k(\mathbf{x} - \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu_k(d\omega)$$

where μ_k is a positive finite measure on the frequencies of ω .

• This integral can then be approximated via the following Monte Carlo estimate

$$egin{aligned} k\left(\mathbf{x}-\mathbf{y}
ight) &= \int_{\mathbb{C}^d} \exp\left(i\langle \omega, \mathbf{x}-\mathbf{y}
angle
ight) p(\omega) \; d\omega \ &= \mathbb{E}_{\omega \sim p(\cdot)}\left(\exp\left(i\langle \omega, \mathbf{x}-\mathbf{y}
angle
ight)
ight) \end{aligned}$$

 The RFF technique hinges on Bochners theorem which characterises positive definite functions (namely kernels) and states that any positive definite functions can be represented as

$$k(\mathbf{x} - \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu_k(d\omega)$$

where μ_k is a positive finite measure on the frequencies of ω .

• This integral can then be approximated via the following Monte Carlo estimate

$$egin{aligned} k\left(\mathbf{x}-\mathbf{y}
ight) &= \int_{\mathbb{C}^d} \exp\left(i\langle \omega, \mathbf{x}-\mathbf{y}
angle
ight) p(\omega) \; d\omega \ &= \mathbb{E}_{\omega \sim p(\cdot)} \left(\exp\left(i\langle \omega, \mathbf{x}-\mathbf{y}
angle
ight)
ight) \ &\simeq rac{1}{D} \sum_{i=1}^D \exp\left(i\langle \omega_i, \mathbf{x}-\mathbf{y}
angle
ight) \end{aligned}$$

Michael Ciccotosto-Camp Optimizing Gaussian Processes 8

 The RFF technique hinges on Bochners theorem which characterises positive definite functions (namely kernels) and states that any positive definite functions can be represented as

$$k(\mathbf{x} - \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu_k(d\omega)$$

where μ_k is a positive finite measure on the frequencies of ω .

• This integral can then be approximated via the following Monte Carlo estimate

$$k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) p(\omega) d\omega$$

$$= \mathbb{E}_{\omega \sim p(\cdot)} (\exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle))$$

$$\simeq \frac{1}{D} \sum_{j=1}^D \exp(i\langle \omega_j, \mathbf{x} - \mathbf{y} \rangle)$$

$$= \sum_{i=1}^D \left(\frac{1}{\sqrt{D}} \exp(i\langle \omega_j, \mathbf{x} \rangle) \right) \overline{\left(\frac{1}{\sqrt{D}} \exp(i\langle \omega_j, \mathbf{y} \rangle) \right)}$$

Michael Ciccotosto-Camp Optimizing Gaussian Processes 8

 The RFF technique hinges on Bochners theorem which characterises positive definite functions (namely kernels) and states that any positive definite functions can be represented as

$$k(\mathbf{x} - \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu_k(d\omega)$$

where μ_k is a positive finite measure on the frequencies of ω .

• This integral can then be approximated via the following Monte Carlo estimate

$$k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{C}^d} \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) p(\omega) d\omega$$

$$= \mathbb{E}_{\omega \sim p(\cdot)} (\exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle))$$

$$\simeq \frac{1}{D} \sum_{j=1}^D \exp(i\langle \omega_j, \mathbf{x} - \mathbf{y} \rangle)$$

$$= \sum_{j=1}^D \left(\frac{1}{\sqrt{D}} \exp(i\langle \omega_j, \mathbf{x} \rangle) \right) \overline{\left(\frac{1}{\sqrt{D}} \exp(i\langle \omega_j, \mathbf{y} \rangle) \right)}$$

$$= \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle_{\mathbb{C}^D}$$

Michael Ciccotosto-Camp Optimizing Gaussian Processes 8 /

Figure: Comparison of Nystrom methods for various datasets.

Figure: Comparison of RFF methods for various datasets.

Figure: Comparison between Nystrom and RFF approximations for the 3D-Spatial network data.

Moving Forward

- We saw that the Nystrom technique is better at producing approximations of the Gram matrix, K_{XX} , with smaller relative Frobenius errors while the RFF technique is better at producing approximations with smaller relative absolute errors. Which is better for GP prediction?
- Recall, the other bottle neck in the GPR algorithm was the Cholesky decomposition.
 We can employ faster linear system solvers, namely the Conjugate Gradient (CG) and Minimum Residual (MINRES) method.