Descending information flow in motor systems			
Afferent (sensory) systems		Efferent (motor output) systems	
High-level cortex	Objects, places, etc.	Premotor cortex	Planning
Primary sensory cortex	Local features	Primary motor cortex (M1)	Motor commands for limbs
Sensory thalamus	Relay and gating	Spinal cord motor circuits	Motor commands for muscle groups
Retina, olf. bulb, brainstem, etc.	Initial processing	Alpha motor neurons (sp. cord)	Motor commands for single muscles
Primary afferent	Transduction	Muscle	Movement

Each α motor neuron spike drives muscle contraction

If you don't know this, read Kandel Chap 34.

Synaptic transmission at neuromuscular junction (NMJ)

Spike in α motor neuron axon \rightarrow ACh release at NMJ \rightarrow nicotinic AChR channel opens \rightarrow muscle fiber depolarizes

Spike and calcium rise in muscle fiber

 Na_v channels open \rightarrow action potential in muscle fiber \rightarrow Ca release from sarcoplasmic reticulum

Calcium drives contraction via actin-myosin motor

Ca binds to troponin \rightarrow displaces troponin/tropomyosin complex \rightarrow enables movement of myosin along actin filament \rightarrow muscle contraction (twitch)

Muscle innervation and motor pools Each motor neuron innervates one muscle. All motor neurons for that muscle are located together in the spinal cord, and are called a motor neuron pool. Motor dorsal motor neuron neuron loog pool ventral Distal Proximal muscles muscles (Limbs; fingers) (TRUNK-Posture) Distal Topography of motor neuron pools muscles roximal (mediolateral dimension) muscles

Control of muscle force

Each muscle fiber is innervated by a **single** motor neuron, but each motor neuron innervates many muscle fibers (a few to hundreds). One motor neuron plus all the fibers it innervates is called a **motor unit**.

Small motor units innervate few slow fibers (red) that generate small forces but don't fatigue. **Large motor units** innervate many "fast fatiguable" fibers (pale) that generate large forces, but fatigue quickly. **Intermediate motor units** innervate "fast, fatigue-resistant" fibers with intermediate properties.

The brain controls muscle force in two ways

 By sending progressively stronger synaptic input to the motor neuron pool, the brain first recruits small motor units (slow, low force), then intermediate motor units (fast, fatigue-resistant, medium force), then large motor units (fast-fatiguable, high force).

This is called the size principle of recruitment of motor units.

Example:

Standing (S, low-force) → walking (FR) → jumping (FF, high-force)

What do you think is the mechanism for the size principle?

11

The brain controls muscle force in two ways

2. More force is also generated by increasing α motor neuron firing rate within each group.

Muscle tone is a low level of average baseline contraction in each muscle, due to spontaneous firing of α motor neurons.

12

Other low-level spinal reflexes. The flexion and crossed-extensor reflexes

Circuit involves A-delta pain receptors in skin, local spinal interneurons, and α motor neurons.

Pain causes limb flexion on ipsilateral side and limb extension on contralateral side.

Both excitatory and inhibitory interneurons are involved. Flexors are activated on one side, and extensors on the other side.

Sherrington & Adrian, 1920s (Nobel Prize)

