XVI. ПРЕОБРАЗОВАНИЕ ЛАПЛАСА

< ... одностороннее ... >

1. Некоторые свойства преобразования Фурье

s2

Формальные выражения:

$$\mathcal{F}[\varphi(t)](y) \equiv \mathcal{F}[\varphi](y) :=$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-iyt} \varphi(t) dt \quad (16.1)$$

$$\mathcal{F}^{-1}\left[\Phi(t)\right](y) \equiv \mathcal{F}^{-1}\left[\Phi\right](y) :=$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iyt} \Phi(t) dy \quad (16.2)$$

 $<\ldots$ $\varphi(t)$ — в.г., комплекснозначная $\ldots>$

s3

Теорема 16.1. Пусть $\varphi(t)$ —

- (1) кусочно-гладкая < ... > ;
- (2) абсолютно интегрируемая на \mathbb{R} .

Тогда интеграл $\mathcal{F}\left[\Phi\right](t)$ сходится в смысле главного значения к $\dfrac{\varphi(t+0)+\varphi(t-0)}{2}.$ $<\dots$ V.p. $\dots>$ $(\implies$ в \forall точках, где $\varphi(t)$ непрерывна -

В этом смысле

 $\kappa \varphi(t)$).

$$\mathcal{F}^{-1}\left[\mathcal{F}\left[\varphi\right]\right](t) = \varphi(t). \tag{16.3}$$

s4

Замечание. Если $\Phi(y)$ удовлетворяет условиям (1) и (2), то утверждение Теоремы 16.1 будет верно с заменой $\mathcal{F} \rightleftarrows \mathcal{F}^{-1} < \ldots >$

$$\mathcal{F}\left[\mathcal{F}^{-1}\left[\Phi\right]\right](y) = \Phi(y). \tag{16.4}$$

s5

- Определение преобразования Лапласа. Существование и аналитичность изображения
- А. Класс функций (= «класс оригиналов»)

$$f(t) \equiv 0 \text{ при } t < 0;$$
 (16.5)

$$f(t)$$
 кус.-непр. при $t \ge 0$; (16.6)

$$\exists x, M < \infty : |f(t)| \leqslant Me^{xt}. \tag{16.7}$$

 $<\dots f(t)$ — в.г., комплекснозначная $\dots>$ $<\dots (16.7)$: f(t) — «функция с ограниченной степенью роста»; обобщение см. Св.—Т., гл. 8, \S 1, п. 1, \sim Лемма $\dots>$

Замечание. < ... >

$$f(t) \in A(a), \ x > a \implies$$
 $\Longrightarrow e^{-xt} f(t)$ абс. инт. на $\mathbb R$ (16.8)

s7

Пусть \mathcal{X} — множество всех x, для каждого из которых (16.7) выполнено с каким-нибудь M=M(x).

Число $a' := \inf \mathcal{X}$ будем называть показателем степени роста f(t).

Пусть задано некоторое $a \in \mathbb{R}$. Множество всех функций, удовлетворяющих (16.5) – (16.7) и имеющих показатель степени роста $a' \leq a$, будем обозначать через A(a).

s8

Примеры (ф., \in или $\not\in$ классу оригиналов)

$$h(t); = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

$$t^{\nu}h(t) \quad (\nu \in \mathbb{R});$$

$$\frac{1}{1+t^{\nu}}h(t) \quad (\nu \in \mathbb{R});$$

$$e^{t^{2}}h(t); \quad e^{-t^{2}}h(t).$$

s9

В. Формальное выражение для преобразования Лапласа

$$F(p) := \int_{0}^{\infty} e^{-pt} f(t) dt \qquad (*)$$

Эквивалентное определение:

$$F(p) := \sqrt{2\pi} \mathcal{F}\left[e^{-xt}f(t)\right](y) \quad (p = x + iy)$$
(16.9)

Обозначение: f(t) = F(p)

 $< \dots$ также $\mathcal{L}[f(t)](p)$... >

s10

С. Сходимость и аналитичность интеграла

Теорема 16.2. Пусть $f(t) \in A(a)$. Тогда для любого a' > a

в полуплоскости $\operatorname{Re} p \geqslant a'$ интеграл F(p)

(*) сходится абсолютно и равномерно.

Замечание. Если $f(t) \in A(a)$, то интеграл

(*) может расходиться при p = a + iy.

(Д.З. — привести пример).

Доказательство. Выберем $b \in (a,a')$. Для любого $x = \operatorname{Re} p \geqslant a'$

$$\begin{split} |e^{-pt}f(t)| &= e^{-xt}|f(t)| \leqslant \\ &\leqslant e^{-xt}M(b)e^{bt} \leqslant e^{-a't}M(b)e^{bt}; \end{split}$$

Т.к. $\int\limits_0^\infty e^{-(a'-b)t}\,dt$ сходится, то интеграл

F(p) сходится абсолютно и равномерно в полуплоскости ${\rm Re}\, p\geqslant a'$ (\Longleftarrow мажорантный признак).

s12

Следствие Теоремы 16.2. Пусть выполнены условия Теоремы 16.2. Тогда для любого a'>a ряд

$$\sum_{m=0}^{\infty} \int_{m}^{m+1} e^{-pt} f(t) dt$$

сходится равномерно в полуплоскости $\operatorname{Re} p \geqslant a'.$

s13

Доказательство. $< \dots$ простейшее: использовать для ряда и для интеграла (*) критерий Коши равномерной сходимости ряда и интеграла + Т. $16.2 - \text{Д.3} \dots >$

s14

Лемма 16.3. Пусть $-\infty < c < d < \infty$, и g(t) — кусочно-непрерывная (возможно, комплекснозначная) функция на [c,d]. Тогда функция

$$G(p) := \int_{-\infty}^{d} e^{-pt} g(t) dt$$

является целой.

Доказательство. < ... >

s15

Теорема 16.4. Пусть $f(t) \in A(a)$ и f(t) = F(p). Тогда F(p) аналитична в полуплоскости $\operatorname{Re} p > a$.

Доказательство.

$$F(p) = \sum_{m=0}^{\infty} \int_{m}^{m+1} e^{-pt} f(t) dt$$

< ... Т. Вейерштрасса ... >

3. Основные свойства

преобразования Лапласа

(подробнее — Св. – Т., гл. 8, § 1, п. 3)

- а. Линейность
- **b.** «Формула сдвига»

$$f_{\tau}(t) := \left\{ \begin{array}{ll} 0, & t < \tau, \\ f(t - \tau), & t \geqslant \tau. \end{array} \right.$$

- c. $e^{-\lambda t} f(t)$
- **d.** $f(\alpha t)$

s17

е. Если $f(t), f'(t), ..., f^{(n)}(t)$ принадлежат классу оригиналов (см. (16.5) - (16.7)), то

$$f^{(n)}(t) \stackrel{?}{=} p^n F(p) - p^{n-1} f(0) -$$

$$- p^{n-2} f'(0) - \dots - f^{(n-1)}(0) \equiv$$

$$\equiv p^n F(p) - \sum_{k=0}^{n-1} p^{n-k-1} f^{(k)}(0)$$

s18

Доказательство.

$$n=1: \int\limits_0^d e^{-pt}f'(t)\,dt=$$

$$=e^{-pt}f(t)|_{t=0}^d-p\int\limits_0^d e^{-pt}f(t)\,dt\ ;$$

$$|e^{-pt}f(t)|=e^{-xt}|f(t)|\quad \text{— оцениваем сверху}$$
 (аналогично доказательству Т. 16.2), затем
$$d\to\infty \quad \dots ; \text{ получим} \quad f'(t) = p\,F(p)-f(0).$$

$$n>1 \quad \text{— по индукции}.$$

s19

f.
$$t^n f(t)$$
; $f \in A(a) \implies t^n f(t) \in A(a)$ (Π .3.)
 $\frac{d}{dp} F(p) = -tF(p)$ (Π .3.)
 $\implies \frac{d^n}{dp^n} F(p) = (-1)^n t^n F(p)$

д. Свертка и ее изображение

Пусть $f_1(t) \in A(a_1)$, $f_2(t) \in A(a_2)$, $f_{1,2}(t) \stackrel{.}{=} F_{1,2}(p)$ и

$$(f_1*f_2)(t) := \int\limits_0^t f_1(t- au) f_2(au) \, d au$$
 . Тогда

- (1) $(f_1 * f_2)(t) \in A(a)$, где $a := \max[a_1, a_2]$;
- (2) $(f_1 * f_2)(t) = F_1(p)F_2(p)$.

s20

< ... коммутативность ... >

< ... доказательство; Б. – Ф., Т. 10.9,

T. 10.9' ... >

< ... общее понятие свертки ... >

h. Изображение произведения

Пусть $f_{1,2}(t) \in A(a_{1,2}), \quad F_{1,2}(p)$ — их изображения. Тогда для любого $x>a_1+a_2$

$$f_1(t) f_2(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} F_1(p-q) F_2(q) dq.$$

s22

4. Обращение преобразования Лапласа

 $<\dots$ изображение $\stackrel{???}{\longmapsto}$ оригинал ... MIN: Re p>a

Обозначение:

$$\int\limits_{x-i\infty}^{x+i\infty}G(p)\,dp:=i\lim_{R\to\infty}\int\limits_{-R}^{R}G(x+iy)\,dy \ \ (16.10)$$
 < ... V.p. ... >

s23

А. Если известно, что оригинал F(p) \exists Теорема 16.5. Пусть

- (1) в полуплоскости $\operatorname{Re} p > a$ задана аналитическая функция F(p);
- (2) известно, что F(p) является изображением некоторой

кусочно-гладкой функции

 $f(t)\in A(a),\;\;$ причем в точках разрыва $f(t)=\frac{f(t+0)+f(t-0)}{2}.$

s24

Тогда для любого $\ x>a$ и любого $\ t\in\mathbb{R}$

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) dp$$
 (16.11)

< ... (16.11) — ф. Меллина ... >

s25

Доказательство.
$$(16.9) \Longrightarrow \frac{1}{\sqrt{2\pi}} F(x+iy) = \mathcal{F}\left[e^{-xt}f(t)\right](y).$$
 Из условий теоремы и (16.8) следует, что $\varphi(t) := e^{-xt}f(t)$ удовлетворяет всем условиям, при которых $\mathcal{F}^{-1}\left[\mathcal{F}\left[\varphi\right]\right](t) = \varphi(t)$ (см. (16.3)).

Поэтому

$$\mathcal{F}^{-1}\left[\frac{1}{\sqrt{2\pi}}F(x+iy)\right](t) = e^{-xt}f(t)$$

Кроме того, из (16.2) и $(16.10) \Longrightarrow$

$$\frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) dp = \frac{e^{xt}}{\sqrt{2\pi}} \mathcal{F}^{-1} \left[F(x+iy) \right] (t)$$

(16.12)

Из двух последних равенств следует формула Меллина (16.11).

s27

В. Если о существовании оригинала F(p) заранее ничего не известно

< ... >

s28

Теорема 16.6. Пусть

- (1) F(p) аналитическая в полуплоскости $\text{Re}\,p>a;$
- (2) $F(p) \to 0$ при $|p| \to \infty$ в полуплоскости $\operatorname{Re} p > a$ равномерно относительно $\operatorname{arg} p;$
- (3) $\int\limits_{-\infty}^{\infty} |F(x+iy)| \, dy \ \text{ сходится для}$

любого x > a.

Тогда $\exists f(t) \in A(a) \cap C(\mathbb{R})$, являющаяся оригиналом F(p).

s29

Замечание 1. $(2) \iff$

$$\sup_{\substack{\text{Re }p>a\\|p|>R}}|F(p)|\to 0\quad\text{при }R\to\infty$$

Замечание 2. (3): $\int_{x-i\infty}^{x+i\infty} |F(p)| dy.$

Замечание 3. Гладкости (даже кусочной) f(t) нам не обещают.

s30

Доказательство.

Идея: Попытаться задать f(t) с помощью формулы Меллина, а затем установить у f(t) все свойства оригинала.

Реализация идеи

1. Для любого фиксированного x > a

интеграл
$$\int\limits_{x-i\infty}^{x+i\infty}e^{pt}F(p)\,dp$$
 сходится

абсолютно и равномерно на любом конечном отрезке $[t_1,t_2]$ (\iff ...) и, следовательно, задает некоторую ф. $\widetilde{f}(t,x)\in C(\mathbb{R})$. При этом

$$|\widetilde{f}(t,x)| \leqslant \frac{e^{xt}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |F(x+iy)| \, dy \qquad (16.13)$$

s32

2.
$$< ... \widetilde{f}(t, x_1) = \widetilde{f}(t, x_2) ... > f(t).$$

3. Итак, для $f(t) \in A(a)$: $f(t) \in C(\mathbb{R}) \Longrightarrow (16.6);$ $(16.13) \Longrightarrow |f(t)| \leqslant M(x) \, e^{xt} \quad \text{(т.е. (16.7))}.$ Осталось доказать $f(t)|_{t<0} \equiv 0.$

$$\begin{array}{ll} \text{s } 33 \\ \theta:=-t>0; & f(t)=\int\limits_{x-i\infty}^{x+i\infty}e^{-p\,\theta}F(p)\,dp \\ z:=i(p-x) & (\iff p=-i\,z+x\); \text{ при этом} \end{array}$$

 $\operatorname{Re} p > x \iff \operatorname{Im} z > 0$

$$J_R := \int_{C_R^-} e^{-p\theta} F(p) dp =$$

$$= -ie^{-x\theta} \int_{\gamma_R^-} e^{iz\theta} F(-iz + x) dz$$

s34

Оценка |F(-iz+x)|:

$$|z| \geqslant R \implies |p| = |-iz + x| \geqslant ||z| - |x|| \geqslant |R - |x||.$$

Поэтому из (b) следует (см. Замечание 1) выполнение условий леммы Жордана для J_R \Longrightarrow $J_R \to 0$ при $R \to \infty$. < ... >

s35

4.
$$< \dots f(t) = F(p) - ??? \dots >$$

По определению (см. (16.9))

$$f(t) = \sqrt{2\pi} \mathcal{F} \left[e^{-xt} f(t) \right] (p).$$
 (16.14)

Кроме того, построенная с помощью формулы Меллина f(t) задается равенством (см. (16.12))

$$f(t) = \frac{1}{\sqrt{2\pi}} e^{xt} \mathcal{F}^{-1} [F(x+iy)] (t).$$
 (16.15)

Поскольку $\Phi(y):=F(x+iy)$ — бесконечно дифференцируемая (аналитичность F(p) в полуплоскости $\operatorname{Re} p>0$) и абсолютно интегрируема на $\mathbb R$, то

$$\mathcal{F}\left[\mathcal{F}^{-1}\left[\Phi\right]\right](y) = \Phi(y)$$

(см. (16.4)). Отсюда и из (16.14), (16.15) следует $f(t) \rightleftharpoons F(p).$