,

Some symbolic tools for the Fox H-function

Le Chen

Department of Maathematics and Statistics Auburn University

le.chen@auburn.edu, chenle02@gmail.com

November 8, 2023

In this note, we explain the code for checking the conditions of the Fox H-function [Fox61]. Here we follow the notation from Kilbas and Saigo [KS].

Let m, n, p, q be configure integers such that

$$0 \le m \le q$$
 and $0 \le n \le p$.

Let $a_i, b_j \in \mathbb{C}$ and $\alpha_i, \beta_j \in \mathbb{R}_+$ be the parameters given below:

	$\in (\mathbb{C},\mathbb{R}_+)$	Front list	Rear list	
ĺ	p	$(a_1,\alpha_1),\cdots,(a_n,\alpha_n)$	$(a_{n+1},\alpha_{n+1}),\cdots,(a_p,\alpha_p)$	Upper list
	q	$(b_1,\beta_1),\cdots,(b_m,\beta_m)$	$(b_{m+1},\beta_{m+1}),\cdots,(b_q,\beta_q)$	Lower list

and denote

$$H_{p,q}^{m,n}(s) := \frac{\prod_{i=1}^{n} \Gamma\left(1 - a_i - \alpha_i s\right)}{\prod_{i=n+1}^{p} \Gamma\left(a_j + \alpha_i s\right)} \times \frac{\prod_{j=1}^{m} \Gamma\left(b_j + \beta_j s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1 - b_j - \alpha_j s\right)}.$$

Then the Fox H-function $H_{2,3}^{2,1}\left(z\mid \overset{\cdots}{\ldots}\right)$ is defined by a Mellin-Barnes type integral of the form

$$H_{m,n}^{p,q}\left(z \mid {}_{(b_1,\beta_1),\cdots,(b_q,\beta_q)}^{(a_1,\alpha_1),\cdots,(a_p,\alpha_p)}\right) := \frac{1}{2\pi i} \int_{\mathcal{L}} H_{p,q}^{m,n}(s) z^{-s} s.$$

References

- [Fox61] Charles Fox. The G and H functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98:395–429, 1961.
- [KS] Anatoly A. Kilbas and Megumi Saigo. *H-transforms*, volume 9 of *Analytical Methods and Special Functions*. Chapman & Hall/CRC, Boca Raton, FL. Theory and applications.