

Lecture 18: Monte Carlo methods

Monaco

Monte Carlo(MC)

- Have been seeing Monte Carlo methods throughout class
 - Any time we randomly sample thats an MC method
 - Effectively we are just rolling the die

Monte Carlo vs Integration

- Monte Carlo is a form of integrator
 - However non-deterministic and varies over distribution

- Monte Carlo typically used when
 - we can't model things analytically any more
 - Replace a whole distribution with just an event (small region

Brownian Motion Brownian Motion

$$f(v_x, v_y, v_z) = \left[\frac{m}{2\pi kT}\right]^{3/2} e^{-m(v_x^2 + v_y^2 + v_z^2)/2kT}$$

$$= \left[\frac{m}{2\pi kT}\right]^{3/2} e^{-mv^2/2kT}$$
using $v^2 = v_x^2 + v_y^2 + v_z^2$

- At each step
 - We just randomly sample the velocity from a Gaussian
 - We can do this many times to look at overall motion

The motion at each step

Elastic Collision

Just sample particle collisions at each step

The motion at each step

Elastic Collision In COM Frame

The motion at each step

Elastic Collision In COM Frame

Rayleigh Distribution

Rayleigh is a distribution of the radius in a 2D Gaussian

$$f_U(x;\sigma) = f_V(x;\sigma) = rac{e^{-x^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}} \cdot \qquad \qquad f(x;\sigma) = rac{x}{\sigma^2} e^{-x^2/(2\sigma^2)}, \qquad x \geq 0, \ F_X(x;\sigma) = rac{1}{2\pi\sigma^2} \int_0^{2\pi} \int_0^x r e^{-r^2/(2\sigma^2)} \, dr \, d heta = rac{1}{\sigma^2} \int_0^x r e^{-r^2/(2\sigma^2)} \, dr.$$

Proton Therapy

Proton Therapy Center at MGH

Typical Device

Particle Therapy Centre

Mayo Clinic

Radiation Therapy

Fractionation and Enhanced precision

- To fight Cancer
 - Radiation therapy has had a long history of usage
 - Radiation is sent to a tumor to kill it
 - Critical when you can't cut the tumor out

Classical Radiotherapy with X-rays

single beam

Hadron Therapy

- Therapy
 - Hadrons allow you to control deposit
 - Can vary the depth of the hadrons through Bragg scatter

Proton Therapy

Bethe-Bloch Equation

Charged Particles in matter are goverened by this equation

Protons Governed

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

density

$$K = 4\pi N_A r_e^2 m_e c^2 = 0.307 \text{ MeV g}^{-1} \text{ cm}^2$$

$$T_{max} = 2m_ec^2\beta^2\gamma^2/(1 + 2\gamma m_e/M + (m_e/M)^2)$$
[Max. energy transfer in single collision]

z : Charge of incident particle

M : Mass of incident particle

Z : Charge number of medium

A : Atomic mass of medium

I : Mean excitation energy of medium

δ : Density correction [transv. extension of electric field]

$$N_A = 6.022 \cdot 10^{23}$$

[Avogardo's number]

$$r_e = e^2/4\pi\epsilon_0 m_e c^2 = 2.8 \text{ fm}$$

[Classical electron radius]

$$m_e = 511 \text{ keV}$$

[Electron mass]

$$\beta = v/c$$

[Velocity]

$$\gamma = (1-\beta^2)^{-2}$$

[Lorentz factor]

Validity:

 $.05 < \beta \gamma < 500$

 $M > m_{\mu}$

Actual Energy Loss

As we step along we lose energy by the Landau distribution

$$p(x) = rac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} e^{s\log(s)+xs} \, ds,$$

Average of this distribution gives Bethe-Bloch

We can sample this At each step

Sampling a Distribution

Sample from a p-value from 0 to 1 (flat 0 to 1)

Sampling a Distribution

Sample from a p-value from 0 to 1 (flat 0 to 1)

Multiple Scatter Particles

$$heta \simeq rac{\Delta p_{\perp}}{p_{\parallel}} \simeq rac{\Delta p_{\perp}}{p}$$

$$= rac{2Zze^2}{b} rac{1}{pv}$$

after k collisions

$$\langle \theta_k^2 \rangle = \sum_{m=1}^k \theta_m^2 = k \langle \theta^2 \rangle$$

- Single collision (thin absorber): Rutherford scattering $d\sigma/d\Omega \propto \sin^{-4}\theta/2$
- Few collisions: difficult problem
- Many (>20) collisions: statistical treatment "Molière theory"

Multiple Scatter Particles

$$heta \simeq rac{\Delta p_{\perp}}{} \simeq rac{\Delta p_{\perp}}{}$$

Obtain the mean deflection angle in a plane by averaging over many collisions and integrating over b:

$$\sqrt{\langle \theta^2(x) \rangle} = \theta_{\mathsf{rms}}^{\mathsf{plane}} = \frac{13.6 \; \mathsf{MeV}}{\beta pc} z \sqrt{\frac{x}{X_0}} (1 + 0.038 \ln \frac{x}{X_0})$$

- Material constant X₀: radiation length
- $\propto \sqrt{x} \rightarrow \text{use thin detectors}$
- $\propto 1/\sqrt{X_0} \rightarrow \text{use light detectors}$
- $\propto 1/\beta p \rightarrow$ serious problem at low momenta

In 3 dimensions:
$$\theta_{\rm rms}^{\rm space}$$

$$\theta_{\rm rms}^{\rm space} = \sqrt{2} \; \theta_{\rm rms}^{\rm plane}$$

$$13.6 \rightarrow 19.2$$

Image Sources

ima	ge
шшч	b۲

link:

attribution: