# OPTIMAL LEVEL OF DEBT

FISCAL AND MONETARY POLICY 2023

Piotr Żoch

November 6, 2023

#### **PLAN**

- We investigate what simple models can say about the optimal level of debt.
- Previously we either had results that say that the long run level of debt should be equal to the initial condition, or there should be time 0 default.



- There is a representative household that maximizes utility from consumption.
- There is no risk everything is deterministic.
- The household supplies 1 unit of labor inelastically.
- The household can trade assets that pay return  $1 + r_{t+1}$  next period. These assets are capital and government debt.
- The household pays taxes / receives transfers  $T_t$ . These are lump sum.
- There is a borrowing constraint:  $a_{t+1} \ge -\bar{A}_t$ , but  $\bar{A}_t$  is very large.
- Ā<sub>t</sub> is such that is equals the present discounted value of all future labor income.
- We call it the natural debt limit.

- The government purchases goods  $G_t$ , finances them with lump sum taxes  $T_t$  and issues debt  $B_{t+1}$ .
- The law of motion for debt is

$$B_{t+1} = (1 + r_{t+1})B_t + G_t - T_t.$$

- The production function is F(K<sub>t</sub>, L<sub>t</sub>). It is increasing, concave and homogeneous of degree 1 in inputs.
- There is a competitive labor market with the wage rate  $w_t$ .
- There is a competitive capital market with the rental rate r<sub>t</sub>.
- Capital depreciates at rate  $\delta$ .

The household utility maximization problem is

$$\max_{\{c_t, a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$\mathrm{s.t.} c_t + a_{t+1} = (1 + r_t) \, a_t + w_t \cdot 1 - T_t$$

$$a_{t+1} \ge -\bar{\mathcal{A}}_t$$
and  $a_0$  given.

• The firm maximization problem is

$$\max_{L_t,K_t} F(K_t,L_t) - w_t L_t - (r_t + \delta) K_t \quad \text{for all } t \ge 0.$$

• The government is fully characterized by sequences  $\{G_t, T_t, B_{t+1}\}_{t=0}^{\infty}$  that satisfy

$$B_{t+1} = (1 + r_{t+1})B_t + G_t - T_t$$
 for all  $t \ge 0$ .

given  $B_0$ .

• All markets must clear for all  $t \ge 0$ :

$$\begin{aligned} L_t &= 1, \\ a_t &= K_t + B_t, \\ c_t + G_t + K_{t+1} &= F(K_t, L_t) + + (1 - \delta) \, K_t. \end{aligned}$$

# COMPETITIVE EQUILIBRIUM

- A **competitive equilibrium** given government policies  $\{G_t, T_t, B_{t+1}\}_{t=0}^{\infty}$  is sequences of prices  $(w_t, r_t)_{t=0}^{\infty}$  (that satisfy the government budget constraint) and allocations  $\{c_t, K_t, L_t, a_{t+1}\}_{t=0}^{\infty}$  such that
  - 1. Given  $\{w_t, r_t\}_{t=0}^{\infty}$  and  $\{T_t\}_{t=0}^{\infty}$ ,  $\{c_t, a_{t+1}\}_{t=0}^{\infty}$  solves the household problem.
  - 2. Given  $\{w_t, r_t\}_{t=0}^{\infty}$ ,  $\{K_t, L_t\}_{t=0}^{\infty}$  solves the firm problem.
  - 3. Markets clear.
- Implicit in this definition is that the government budget constraint is satisfied.

# **EQUILIBRIUM CHARACTERIZATION**

 First order conditions for the household problem give us the Euler equation:

$$u'(c_t) = \beta (1 + r_{t+1}) u'(c_{t+1})$$

Note: the constraint is not binding.

First order conditions for the firm problem give us:

$$w_t = F_L(K_t, 1)$$
  
$$r_t = F_K(K_t, 1) - \delta$$

• Homogeneity of degree 1 implies that  $F(K_t, 1) = r_t K_t + w_t \cdot 1$ .

# **EQUILIBRIUM CHARACTERIZATION**

 Use the asset market clearing condition and the budget constraint of the government in the budget constraint of the household:

$$c_t + (K_{t+1} + B_{t+1}) = (1 + r_t) \left( K_t + B_t \right) + w_t \cdot 1 - \left( G_t + (1 + r_t) \, B_t - B_{t+1} \right).$$

and reorganize to get

$$c_t + K_{t+1} = (1 + r_t) K_t + w_t \cdot 1 - G_t.$$

Finally, use the FOCs of the firm problem to get

$$c_t + K_{t+1} = F(K_t, 1) + (1 - \delta) K_t - G_t.$$

This is the resource constraint.

# **EQUILIBRIUM CHARACTERIZATION**

 Equilibrium is characterized by the Euler equation and the resource constraint:

$$u'(c_t) = \beta (1 + F_K(K_{t+1}, 1) - \delta) u'(c_{t+1})$$

$$c_t + K_{t+1} = F(K_t, 1) + (1 - \delta) K_t - G_t \text{ for all } t \ge 0.$$

- In other words, if we know  $K_0 = a_0 B_0$  and  $\{G_t\}_{t=0}^{\infty}$ , we can solve for  $\{c_t, K_{t+1}\}_{t=0}^{\infty}$ .
- If we know  $\{c_t, K_{t+1}\}_{t=0}^{\infty}$ , we can solve for  $\{w_t, r_t\}_{t=0}^{\infty}$ .

## RICARDIAN EQUIVALENCE

- The quantity of government debt does not matter!
- The only thing related to the government that matters is the sequence of government purchases  $\{G_t\}_{t=0}^{\infty}$ .
- It does not matter how the government finances it: whether by taxes or debt.
- This is called Ricardian equivalence (see Barro (1974)).
- Note: you might think  $B_0$  matters but it is only because it is part of the initial condition  $K_0 = a_0 B_0$ . If we pinned down  $K_0$  directly,  $B_0$  would not matter.

# RICARDIAN EQUIVALENCE

- We have a very stark answer to the question of how much debt should the government issue: does not matter.
- This is because taxes were lump-sum: they did not distort the household's decision.
- The household does not care whether taxes are high or low now it
  only cares about the present discounted value of taxes, determined by
  the sequence of government purchases.
- If the government issues debt, it will have to raise taxes in the future to pay it off.

## STEADY STATE

- We will now focus on the steady state of this economy.
- We set  $G_t = G$ ,  $c_t = c$ ,  $K_t = K$  and  $r_t = r$  for all  $t \ge 0$ .

$$1 = \beta (1 + F_K(K, 1) - \delta)$$
$$c + \delta K = F(K, 1) - G.$$

- The first equation pins down K.
- Given K and G, the second equation pins down c.

#### STEADY STATE

- Government policy does not affect the steady state level of capital.
- No crowding out in the steady state of this economy!
- Government policy (specifically, government purchases) does affect the steady state level of consumption.

#### STEADY STATE

- It sometimes helps to think of the Euler equation as a demand for assets.
- What is the elasticity of demand for assets with respect to the interest rate?
- In the long run (steady state) it is infinity!
- The household is willing to absorb any amount of assets at the interest rate  $\beta^{-1}$  1.
- If the rate is lower, it wants to hold zero assets, if it is higher, it wants to hold infinite assets.

#### **ENDOGENOUS LABOR SUPPLY**

- What if the household can choose how much to work, but it causes some disutility?
- The steady state Euler equation is now

$$1 = \beta \left(1 + F_K(K, L) - \delta\right).$$

- If the production function is homogeneous of degree 1 (constant returns to scale)  $F_K(K, L) = F(K/L, 1)$ .
- In this case the Euler equation pins down the ratio of capital to labor.

  This determines the wage rate and the rate of return on capital.
- The level of capital and labor are determined by the labor supply decision. It can only work through wealth effect.
- Crowding out (or in!) is possible.

# AIYAGARI AND MCGRATTAN (1998)

#### FROM THEIR INTRODUCTION...

- Aiyagari and McGrattan (1998) model has a different role for government debt.
- Government debt enhances the liquidity of households by providing an additional means of smoothing consumption (in addition to claims to capital) and by effectively loosening borrowing constraints
- When the interest rate is raised, government debt makes assets both less costly to hold and more effective in smoothing consumption.
- The implied taxes have adverse wealth distribution and incentive effects.
- Government debt crowds out capital via higher interest rates, and it lowers per capita consumption.

- We modify the household side of the model (Bewley-Imrohoroglu-Huggett-Aiyagari).
- There is now a continuum of households indexed by  $i \in [0,1]$ .
- Agents receive idiosyncratic shocks to their labor income  $e_{i,t}$ .  $e_{i,t}$  is i.i.d. across agents and follows a Markov process.  $\mathbb{E}(e_{i,t}) = 1$ .
- Assets are risk-free (not state-contingent!) incomplete markets.
- There are borrowing constraints:  $a_{i,t+1} \ge -\bar{\mathcal{A}}_t$ . For simplicity set  $\bar{\mathcal{A}}_t = 0$ .
- We will focus on the stationary equilibrium of this economy.
- This is an equilibrium where all prices and the distribution of agents are constant over time.
- We allow for individual allocations of agent *i* to vary over time.

• The household utility maximization problem is

$$\max_{\{c_{i,t},a_{i,t+1}\}_{t=0}^{\infty}} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} u(c_{i,t})$$
s.t.  $c_{i,t} + a_{i,t+1} = (1+r) a_{i,t} + we_{i,t} - T$ 

$$a_{i,t+1} \ge 0$$
and  $a_{i,0}, e_{i,0}$  given.

All markets must clear:

$$L = \int_0^1 e_i di,$$
 
$$\int_0^1 a_i di = K + B$$
 
$$\int_0^1 c_i di + G + K = F(K, L) + + (1 - \delta) K.$$

From the budget constraint of the government we get

$$T = rB + G$$
.

From the firm problem we get

$$K = \kappa(r),$$
  
 $w = \omega(r).$ 

 The solution to the household problem gives a decision rule for asset accumulation:

$$a_{i,t+1} = \alpha(a_{i,t}, e_{i,t}; r, B, G).$$

From the budget constraint of the government we get

$$T = rB + G$$
.

From the firm problem we get

$$K = \kappa(r),$$
  
 $w = \omega(r).$ 

 The solution to the household problem gives a decision rule for asset accumulation:

$$a_{i,t+1} = \alpha(a_{i,t}, e_{i,t}; r, B, G).$$

- The policy function  $\alpha(a, e; r, B, G)$  togerther with the Markov process for e allows to calculate the stationary distribution  $\mu(a, e; r, B, G)$ .
- Intuitively: find the joint distribution of assets and shocks that reporoduces itself.
- The aggregate demand for assets is

$$\bar{\alpha}(r,B,G) = \int \int \alpha(a,e;r,B,G)\mu(a,e;r,B,G)dade.$$

• To find the equilibrium interest rate we need to solve

$$\bar{\alpha}(r, B, G) = \kappa(r) + B.$$

- Then we can back out all other prices and allocations.
- In principle this is not different from what we saw earlier. We had  $\bar{\alpha}(r, B, G)$  that was special.
- The point is that idiosyncratic income risk together with borrowing constraints affects the shape of  $\bar{\alpha}(r, B, G)$ .

#### **DEMAND FOR ASSETS**

Look at the Euler equation (notice the constraint can be binding)

$$u'\left(c_{i,t}\right) \geq \beta\left(1+r\right) \mathbb{E}_t \, u'\left(c_{i,t+1}\right).$$

- Suppose that  $r = \beta^{-1} 1$  as we had in NGM (or we would have in a model without risk).
- The agent would like to have a smooth profile of marginal utility of consumption. Utility is concave: lower consumption hurts more than higher consumption helps.
- It is possible that there is a very long sequence of bad income shocks.
- The only way to insure against this is to accumulate assets.

#### **DEMAND FOR ASSETS**

- How much to accumulate? Infinity! So we know that  $r = \beta^{-1} 1$  is not an equilibrium. It must be lower!
- We have precautionary savings. For any r the demand for assets is larger than in the NGM / complete markets.

# **EQUILIBRIUM**



Source: Aiyagari and McGrattan (1998)

# **EQUILIBRIUM**

- Aiyagari and McGrattan (1998) argue that savings are too high in this economy (relative to the complete markets benchmark).
- Hence the policy recommendation is to reduce savings.
- This can be done by reducing the need for precautionary savings.
- How can debt help with that?

#### **DEBT LEVEL**

- Aiyagari and McGrattan (1998) approach: define  $a_{i,t}^* := a_{i,t} B$ .
- Rewrite the budget constraint of the household as

$$c_{i,t} + a_{i,t+1}^* + B = (1+r)\left(a_{i,t}^* + B\right) + we_{i,t} - T$$

and use T = rB + G to get

$$c_{i,t} + a_{i,t+1}^* = (1+r) a_{i,t}^* + we_{i,t} - G.$$

• The borrowing constraint  $a_{i,t+1}^* \ge 0$  is now

$$a_{i,t+1}^* \ge -B$$
.

#### **DEBT LEVEL**

- In this formulation government debt *B* only enters the con-sumer's borrowing constraint.
- Higher levels of B in effect loosen the borrowing constraint and reduce the average asset holdings (net of government debt).
- Intuition: no need to save as much when the borrowing constraint is looser.
- The solution  $a_{i,t+1}^* = \alpha^* \left( a_{i,t}^*, e_{i,t}; r, B, G \right)$  is decreasing in B.
- The amount saved in capital is decreasing in B crowding out.

#### WELFARE

How does it all affect welfare?

$$\Omega = \int \int V(a,e)\mu(a,e)dade$$

- An increase in debt increases the return on assets, thus making them less costly for the consumer to hold. Assets are cheaper in enabling the consumer to smooth consumption.
- Lump-sum taxes levied to pay interest on government debt:
  - 1. more onerous for individuals with low assets and low earnings than for individuals with high assets and high earnings;
  - 2. exacerbate the percentage variability in after-tax earnings.
- Crowding out of capital and the consequent reduction in per capita consumption.

## QUANTITATIVE RESULTS

- Aiyagari and McGrattan (1998) extend and calibrate their model to the US economy.
- They allow for elastic labor supply, distrtionary income taxes and a more general borrowing constraint.
- They find that the optimal level of debt to GDP is around 2/3.
- This is close to the average level of debt to GDP in the US economy after WWII (until the 2000s).
- At this level the positive (liquidity) role of debt is balancing the negative (crowding out and distortionary taxes) role.

# **QUANTITATIVE RESULTS**



Fig. 2. Welfare gain, interest rates, tax rate, and aggregate hours versus debt/GDP ratio (x-axis) for the benchmark economy.

Source: Aiyagari and McGrattan (1998)

#### **NEXT TIME**

- Is Aiyagari and McGrattan (1998) intuition about pushing the interest rate closer to the complete markets case really valid?
- What can we say about the optimal level of borrowing constraints?