Université de Skikda 20 août 1955

Faculté de Technologie - Département de technologie

2 eme année LMD Sciences et Techniques, 2013/2014

SOLUTION DU RATTRAPAGE : LANGAGE

Durée:

01:30

La note: Nom:/20 Prénom: Groupe:

Exercice 01 (05pts)

Répondez par (vrai) ou (faux) :

	L'énoncé	La réponse	
		Vrai	Faux
1)	Le symbole % est utilisé en Matlab pour calculer le modulo.		✓
2)	La commande clear efface la fenêtre des commandes sans supprimer les variables.		✓
3)	L'instruction switch permet la réalisation des boucles iteratives.		✓
4)	Pour toute matrice A de dimension n x m l'expression (A == A) donne toujours la matrice ones(n,m) .	✓	
5)	Pour toutes matrices A et B de dimension nxm l'expression (A>B + B>A) donne toujours la matrice ones (n,m).		✓

1pt **1**pt

1pt

1pt

Exercice 02 (08pts)

 $\mathbf{A} = \begin{pmatrix} 7 & 0 \\ -3 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 5 & 4 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 2 & -3 \end{pmatrix},$ Considérant les trois matrices :

Calculez les expressions suivantes :

>> B*A						
ans =	13	-4				
	7	0				
(1pt)	23	8				
>> [[A(:,2) B(2:3,1)] ; C]						
ans =	0	1				
(1 _{pt})	2	5				
_	2	-3				
>> C*A						
1pt ans =	23	-6				
>> [eye(3)*B , zeros(3,1)]						
ans =	1	-2	0			
1 pt	1	0	0			
	5	4	0			

Est-ce que les expressions suivantes sont envisageables (répondez par oui ou non uniquement)?

Oui

Oui

3) $C.^B(3, :)$

4) C*eye(2)

Exercice 03 (07 pts)

Voici un programme Matlab qui calcule la $\begin{vmatrix} Somme = 0 \\ For k = 0 \end{vmatrix}$

$$\sum_{k=0}^{n} \frac{(-1^{k})k}{k+1} = 0 - \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \dots + \frac{(-1^{n})n}{n+1}$$

```
n = input('Entrez un nombre naturel: ');
Somme = 0;
for k = 0:n
    Somme = Somme + (-1)^k * k/(k+1);
end
disp(Somme)
```

1) Remplacez l'instruction for par while en préservant la fonctionnalité.

2) Transformez ce programme en une fonction nommée sommeFct.

3) Ecrire un programme qui calcule la somme suivante :

$$\sum_{k=0}^{n} \frac{n}{2^k} = n + \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{2^n}$$

n = input('Entrez un nombre naturel: ');

Somme =
$$0$$
;

for
$$k = 0:n$$

Somme = Somme +
$$n/2^k$$
;

end

