# Report of Digital Recognizer

# XiaoLong Luo

Useful Methods & Interesting Models

Update: December 16, 2020



# **Contents**

| 1 | Basic Introduction |                                   |   |  |
|---|--------------------|-----------------------------------|---|--|
|   | 1.1                | Discription of Dataset:           | 4 |  |
|   | 1.2                | Challenges based on CNN           | 5 |  |
| 2 | My                 | Contribution                      | 6 |  |
|   | 2.1                | Rank and Code                     | 6 |  |
|   | 2.2                | More Complicated Models           | 7 |  |
|   | 2.3                | Train test split and Multi-Models | 8 |  |
|   | 2.4                | Data augmentation                 | 9 |  |

|   | 2.5  | Other methods:                | 10 |
|---|------|-------------------------------|----|
| 3 | Inte | rest Models                   | 11 |
|   | 3.1  | Variational Auto-Encoder(VAE) | 11 |
|   | 3.2  | Random Forest                 | 15 |
| 4 | Futl | ner Discussion                | 16 |
|   | 4.1  | Interesting Stuff             | 17 |

### 1 Basic Introduction

# 1.1 Discription of Dataset:

- Training set: 42000 pic, stored in train.csv
- 28\*28 pixels per pic, range from (0,255)
  - Thus we need to normalize them first.
- each pic has a label range from 0 to 9
- csv file, use pandas to load them
- I know this is the third time you here them...

# 1.2 Challenges based on CNN

### **Basic Steps of ML problems:**

- 1. Pre-process of the data
- 2. Choose the right models, appropriate loss function, optimization algorithm. etc.
- 3. Training process, evaluation and optimization

### **Challenges:**

- 1. Balance the model complication and the overfitting problems of Neural networks
- 2. Long Training time. Always combine with the first problem.
- 3. Compare with test set (28000), the training set is roughly small. **Want** more data.

# 2 My Contribution

### 2.1 Rank and Code



Code<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>The code is posted on:https://github.com/lxl213

# **2.2** More Complicated Models

### **Initial one:**



**Final one:** Too long to be listed here...

- 7 Conv2d layer, 7 BatchNormalization layer,
- 3 Dropout layer, 2 FC layer for prediction

# 2.3 Train test split and Multi-Models

#### **Idea:**

- 1. Multi-Models to "Vote" for a prediction Useful skills in many models
- 2. We randomly split up the Training set to make a validation set(8:2).
  - (why not cross-validation?)
- 3. For the kaggle competition, we set a certain validation accuracy level, if the model's performance surpass it, we stop train and save the model.
  - Compare with a fixed epoch, can help to save a lot time.



# 2.4 Data augmentation

#### Idea:

- 1. From the training set: such as rotation, flip, width- shift and Gauss noise etc.
- 2. Generate more data!
- 3. A basic datagen by keras:

```
datagen = ImageDataGenerator(
    featurewise_center=True,
    featurewise_std_normalization=True,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True)
```



# 2.5 Other methods:

- Dropout
- . Tuning skills: LR, Batch-size, Epoch, etc.
- . CNN's structure..



# 3 Interest Models

# 3.1 Variational Auto-Encoder(VAE)

### What it is?



How it works?

### Implementation:

```
VAE(
 (conv1): Sequential(
    (0): Conv2d(1, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
   (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
 (conv2): Sequential(
   (0): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
   (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
 (conv3): Sequential(
   (0): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (2): ReLU(inplace=True)
 (fc_encode1)    Linear(in_features=784, out_features=10, bias=True)
 (fc_encode2): Linear(in_features=784, out_features=10, bias=True)
 (fc_decode);
Linear(in_features=10, out_features=784, bias=True)
 (deconv1): Sequential(
   (0): ConvTranspose2d(16, 16, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
   (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ReLU()
 (deconv2): Sequential(
   (0): ConvTranspose2d(16, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
   (1): Sigmoid()
```

### **Key of this method:**

$$\begin{split} \log p_{\theta}\left(x^{(i)}\right) &= \mathbf{E}_{z \sim q_{\phi}\left(z \mid x^{(i)}\right)} \left[\log p_{\theta}\left(x^{(i)}\right)\right] \quad \left(p_{\theta}\left(x^{(i)}\right) \text{ Does not depend on } z\right) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)} \mid z\right) p_{\theta}(z)}{p_{\theta}\left(z \mid x^{(i)}\right)}\right] \quad (\text{ Bayes' Rule }) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}\left(x^{(i)} \mid z\right) p_{\theta}(z) q_{\phi}\left(z \mid x^{(i)}\right)}{p_{\theta}\left(z \mid x^{(i)}\right)}\right] \quad (\text{ Multiply by constant }) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}\left(x^{(i)} \mid z\right)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}\left(z \mid x^{(i)}\right)}{p_{\theta}(z)}\right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}\left(z \mid x^{(i)}\right)}{p_{\theta}\left(z \mid x^{(i)}\right)}\right] \\ &= \mathbf{E}_{z} \left[\log p_{\theta}\left(x^{(i)} \mid z\right)\right] - D_{KL} \left(q_{\phi}\left(z \mid x^{(i)}\right) \|p_{\theta}(z)\right) + \\ D_{KL} \left(q_{\phi}\left(z \mid x^{(i)}\right) \|p_{\theta}\left(z \mid x^{(i)}\right)\right) \end{split}$$

### **Performance: Train process and reconstruction**



**Remark** The right plot is generated by module: visdom.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>See:https://www.cnblogs.com/fanghao/p/10256287.html

### 3.2 Random Forest

# A easy Implemented model with short training time



```
1rawData=pd.read_csv(trainPath).values
2trainData=rawData[:,1:]
3trainLabel=rawData[:,0]
4testData= pd.read_csv(testPath).values
5X=trainData
6Y=trainLabel
7
8clf=RandomForestClassifier(n_estimators=100)
9clf=clf.fit(X,Y)
10testLabel=clf.predict(testData)
11
12#训练结果保存
13df=pd.DataFrame(testLabel,columns=['label'])
14df.to_csv('testLabel.csv',header=True,index=False)
executed in 25.2s, finished 23:26:33 2020-12-16
```

# 4 Futher Discussion

- 1. The choice of loss(cross-) and can we pose some penalty in this case?
- 2. The explanation theory of the VAE, to help us identify the latent variable

  —Disentangled Variational Auto-Encoder<sup>3</sup>
- 3. GAN and DCGAN(Deep Convolutional Generative Adversarial Networks)<sup>4</sup> can achieve a higher performance than VAE in some cases. What about in MNIST?
- 4. Other Dataset.

<sup>&</sup>lt;sup>3</sup>Disentangled Variational Auto-Encoder for semi-supervised learning,2018

<sup>&</sup>lt;sup>4</sup>Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016

# 4.1 Interesting Stuff

### A Playground for CNN<sup>5</sup>



<sup>&</sup>lt;sup>5</sup>See And Try! http://playground.tensorflow.org