Componente Tare Conexe

Ștefan Trăușan-Matu

Componente ale unui graf

- G'=(N',A') este **subgraf** al grafului G=(N,A), ddacă N' \subset N și A' \subset A
- G'=(N',A') este indus de G=(N,A) ddacă $\forall u,v \in N', (u,v) \in A \Longrightarrow (u,v) \in A'$
- O componentă cu o proprietate P a unui graf G este un subgraf maximal cu proprietatea P, indus de acel graf G

Componente

- **conexe** grafuri *neorientate* între oricare două noduri este o cale
- **tare conexe** grafuri *orientate* între oricare două noduri este o cale, și într-un sens și în celălat
- **biconectate** grafuri *neorientate* între oricare două noduri este două căi

Componente tare conexe – graful inițial

A G В K D

Componentele tare conexe

Parcurgerea în adâncime a grafului inițial

I 17/24

F 11/12

Proprietăți....?

Lema: Oricare cale între 2 noduri ale unei CTC rămâne în acea CTC

Teorema 1: Nodurile din aceeași CTC sunt grupate în același arbore de parcurgere în adâncime

Strămoșul unui nod

- G=(N,A), $u\in N$, $\Phi(u)=$ strămoșul lui u este accesibil din u și este terminat ultimul într-o parcurgere în adâncime a lui G
 - $-\Phi(u)\in R(u)$
 - $Φ(u).finis=max{v.finis|v∈R(u)}$
- Teoremă proprietăți strămoș: Φ(u) satisface urmatoarele proprietati
 - u.finis≤ Φ(u).finis
 - \forall v∈R(u) Φ(v).finis≤Φ(u).finis
 - $-\Phi(\Phi(u))=\Phi(u)$
- Φ(u) este primul nod din CTC descoperit de DFS(G)

A, C, I, F, L sunt strămoși ai nodurilor din componenta conexa din care fac parte

Parcurgerea în adâncime a grafului transpus în ordinea

Componente Tare Conexe (CTC)

Teorema 2: $G=(N,A), \forall u \in N, u \text{ este}$ descendent al lui $\Phi(u)$ in $Arb(\Phi(u))$

Corolar: $u ext{ și } \Phi(u) ext{ sunt în aceeași CTC}$

Teorema 3: G=(N,A), $u,v \in N$;

u și v aparțin aceleiași CTC

$$\Phi(\mathbf{u}) = \Phi(\mathbf{v})$$

Exemplu (III)

7/8

Primul nod dintr-o CTC descoperit la DFS va avea copii in arborele generat de DFS toate elementele componentei conexe!

Componente Tare Conexe (CTC)

- Problemă: trebuie să eliminăm nodurile care nu sunt în componenta conexă
- Vrem ca fiecare arbore construit să conțină o CTC
 - => idee eliminăm nodurile ce nu aparțin CTC
 - Daca aparțin Arb(u) și nu CTC => ∃ u..v și nu
 v..u
 - -=>DFS pe graful transpus

Componente Tare Conexe (CTC)

• Cazuri in DFS(G^T)

v este in CTC descoperita din u=> v
 poate fi descoperit din u si in DFS(G^T)

 $- v \notin CTC dar v \in Arb(u) in DFS(G) => nu^{3/10}$ va fi atins in DFS(G^T) din u

- v∉CTC dar ∃ v..u in G
=>v.finis>u.finis=> v va fi deja colorat
in negru cand se exploreaza u

Graful transpus

Observatii

• Inlocuind componentele tare conexe cu noduri obtinem un graf aciclic

• Prima parcurgere DFS este o sortare topologica (de ce?)

Algoritmul lui Kosaraju

• CTC(G)

Parc-ad(G)

 G^T =Transpune(G)

Parc-ad(G^T) cu modificarea că în bucla principală se tratează nodurile în ordinea descrescătoare a timpilor de finiș de la primul Parc-ad

• Componentele conexe sunt reprezentate de padurea de arbori generati de Parc-ad(G^T)

Algoritmul lui Tarjan (I)

- Bazat tot pe DFS
- Folosește o singură parcurgere în adâncime
- Determină din parcurgere care sunt strămoșii ("rădăcinile") CTC
- O stivă suplimentară în care:
 - nodurile nu sunt automat eliminate la întoarcerea din recursivitate a DFS-rec
 - un nod rămâne ddacă există o cale la un nod anterior din stivă
 - u.min_inapoi este timpul minim de debut al unui nod accesibil din u

Algoritmul lui Tarjan (II)

```
n.debut← -1 // echivalent cu n.culoare ←alb
S←∅; // S este stiva
timp← 0

pentru fiecare n din N repetă
dacă n.debut=-1 atunci Parc-ad-rec Tarjan(n)
```

Algoritmul lui Tarjan (III)

```
Parc-ad-rec Tarjan(n)
    n.debut←timp
                                // si devine nod gri
    n.min inapoi ←timp
    timp← timp+1
    Push(S,n)
    Pentru fiecare v succesor al lui n repetă
      dacă v.debut=-1
                                // nod alb
        atunci
          Parc-ad-rec_Tarjan(v)
          n.min inapoi ←min(n.min inapoi,v.min inapoi)
        altfel dacă v∈S
             atunci n.min inapoi, v.debut)
   dacă n.min inapoi=n.debut
    tipărește "CTC"
    repetă
        u=pop(S)
        tipărește u
    până când u=n
```


