NTRU+

Jonghyun Kim *

Jong Hwan Park[†]

July 8, 2022

Abstract

In this section, ..

Keywords: Post Quantum Signature, Pseudorandom Generator

Introduction 1

Definition 1.1 (RLWE problem). Let n, q, p be positive integers such that q > p. Let \mathcal{R}_q and \mathcal{R}_p be polynomial rings constructed by $\Phi_{3n}(x)$, and \mathcal{D}_s be a distribution over \mathcal{R}_q . A decisional RLWR *problem* RLWR_{n,1,q,p} (Φ_{3n}) is to distinguish uniformly random $(a, u) \in \mathcal{R}_q \times \mathcal{R}_p$ and

$$(a,b = \frac{p}{a}a \cdot s) \in \mathcal{R}_q$$

 $(a,b = \frac{p}{q}a \cdot s) \in \mathcal{R}_q$ $\times \mathcal{R}_p$ where s is sampled from \mathcal{D}_s . Then, the advantage of an adversary \mathcal{A} in solving the decisional RLWR problem RLWR_{n,1,q,p}(\mathcal{D}_s) is defined as follows:

$$\Pr_{n,1,q,p}(\mathcal{A}) = \Pr[\mathcal{A}(a,b) = 1] - \Pr[\mathcal{A}(a,u) = 1].$$

Base Encryption Scheme

KeyGen:

- $f' \leftarrow \mathcal{R}$
- f = 3f' + 1
- if f is not invertible in R_q , restart
- $g \leftarrow \mathcal{R}$
- h = 3g/f
- return(sk = f, pk = h)

Encrypt:

• c = hr + m

Decrypt:

• $m = (cf \mod^{\pm} q) \mod^{\pm} 3$

^{*}Korea University, Seoul, Korea. Email:yoswuk@korea.ac.kr.

[†]Institution2. Email: abc@abc.abc.