FYS4411 - COMPUTATIONAL QUANTUM MECHANICS SPRING 2016

Project 1; Variational Monte Carlo Studies of Bosonic systems

TEMPORARY REPORT

Sean Bruce Sangolt Miller s.b.s.miller@fys.uio.no

Filip Henrik Lasren filiphenriklarsen@gmail.com

Date: February 25, 2016

Abstract

Some text that is abstact

Contents

1	Introduction	1			
2	Theory and methods 2.1 Preliminary derivations 2.1.1 Simplified problem 2.1.2 Full problem	1			
3	Results	4			
4	Conclusions	4			
5	Appendix	4			

1 Introduction

2 Theory and methods

Preliminary derivations 2.1

2.1.1Simplified problem

The local energy is defined as:

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} H \Psi_T(\mathbf{R}), \tag{1}$$

As a first approximation, it is assumed there is no interaction term in the Hamiltonian, which means the hard sphere bosons have no physical size (the hard-core diameter is zero). It is also assumed that no magnetic field is applied to the bosonic gas, leaving a perfectly spherically symmetrical harmonic trap. Inserting this new Hamiltonian into the local energy gives:

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} \sum_{i}^{N} \left(\frac{-\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} m \omega_{ho}^2 r_i^2 \right) \Psi_T(\mathbf{R})$$
 (2)

The potential term is trivial since this is a scalar, i.e. the denominator will cancel the wavefunction. A more challenging problem is to find an expression for $\nabla_i^2 \Psi_T(\mathbf{R})$. The trial wavefunction shown in equation (...), with the aforementioned approximations, is:

$$\Psi_T(\mathbf{R}) = \prod_i e^{-\alpha r_i^2} \tag{3}$$

where α is the variational parameter for VCM. The first derivative is:

$$\nabla_{j} \prod_{i} e^{-\alpha r_{i}^{2}} = -2\alpha \mathbf{r}_{j} e^{-\alpha r_{j}^{2}} \prod_{i \neq j} e^{-\alpha r_{i}^{2}}$$

$$= -2\alpha \mathbf{r}_{j} \prod_{i} e^{-\alpha r_{i}^{2}}.$$
(4)

$$= -2\alpha \mathbf{r}_j \prod_i e^{-\alpha r_i^2}.$$
 (5)

The second derivative then follows:

$$\nabla_j^2 \prod_i e^{-\alpha r_i^2} = \nabla_j \left(-2\alpha \mathbf{r}_j \prod_i e^{-\alpha r_i^2} \right)$$
 (6)

$$= \left(4\alpha^2 r_j^2 - 2d\alpha\right) \prod_i e^{-\alpha r_i^2}.$$
 (7)

where d is the number of dimensions. Inserting this into back into the local energy (equation (2)), the final expression can be derived:

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} \sum_{i}^{N} \left(\frac{-\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} m \omega_{ho}^2 r^2 \right) \Psi_T(\mathbf{R})$$
$$= \sum_{i=1}^{N} \left[\frac{-\hbar^2}{2m} \left(4\alpha^2 r_i^2 - 2d\alpha \right) + \frac{1}{2} m \omega_{ho}^2 r_i^2 \right]$$

The drift force (quantum force), still with the approximations above, is defined by:

$$F = \frac{2\nabla \Psi_T}{\Psi_T} \tag{8}$$

The gradient here is defined as

$$\nabla \equiv (\nabla_1, \nabla_2, \dots, \nabla_N)$$

i.e. a vector of dimension Nd. The gradient with respect to a single particle's position is already given in equation 5, so it's not too hard to realise:

$$F = \frac{-4\alpha}{\Psi_T} (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \Psi_T$$
$$= -4\alpha (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

2.1.2 Full problem

The full local energy¹ is a bit more tedious to derive. The first step is to rewrite the trial wavefunction to the following form:

$$\Psi_T(\mathbf{R}) = \prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})}$$
(9)

where, in order for this to fit with the previous wavefunction, $u(r_{ij}) \equiv \ln[f(r_{ij})]$ and $\phi(\mathbf{r}_i) \equiv g(\alpha, \beta, \mathbf{r}_i)$. The gradient with respect to the k-th coordinate set is:

$$\nabla_k \Psi_T = \nabla_k \prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})}$$
(10)

$$= \nabla_k \phi_k \left[\prod_{i \neq k} \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \right] + \left[\prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \nabla_k \left(\sum_{i'' < j''} u_{i''j''} \right) \right]$$
(11)

$$= \nabla_k \phi_k \left[\prod_{i \neq k} \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \right] + \left[\prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \left(\sum_{i'' < j''} \nabla_k u_{i''j''} \right) \right]$$
(12)

The function u_{ij} is symmetric under permutation $i \leftrightarrow j$, as one can see from the definitions of u_{ij} and $f(r_{ij})$. Therefore, the last sum above can have a different indexing: All terms without an index k, will give zero when taking the derivative ∇_k , so only i = k or j = k remains (remember $i \neq j$). Due to the symmetry of u_{ij} , one can simply always say i = k and let j be the summation index:

$$\nabla_k \Psi_T = \nabla_k \phi_k \left[\prod_{i \neq k} \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \right] + \left[\prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right]$$
(13)

The second derivative now becomes (where ∇_k only acts on the first parenthesis to its right):

$$\begin{split} \nabla_k^2 \Psi_T &= (\nabla_k^2 \phi_k) \left[\prod_{i \neq k} \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \right] + (\nabla_k \phi_k) \left[\prod_{i \neq k} \phi(\mathbf{r}_i) \nabla_k e^{\sum_{i' < j'} u(r_{i'j'})} \right] \\ &+ \left[\nabla_k \left(\prod_i \left(\phi(\mathbf{r}_i) \right) e^{\sum_{i' < j'} u(r_{i'j'})} \right) \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right] \\ &+ \left[\prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \left(\sum_{j'' \neq k} \nabla_k^2 u_{kj''} \right) \right] \end{split}$$

While a bit of a nuisance to read, the expression above is simply the product rule for $\nabla_k(\nabla_k\Psi_T)$. Written in terms of Ψ_T , the above can be a bit simplified²:

$$\begin{split} \nabla_k^2 \Psi_T &= (\nabla_k^2 \phi_k) \frac{\Psi_T}{\phi(\mathbf{r}_k)} + (\nabla_k \phi_k) \left[\prod_{i \neq k} \phi(\mathbf{r}_i) \nabla_k e^{\sum_{i' < j'} u(r_{i'j'})} \right] \\ &+ \left[(\nabla_k \Psi_T) \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right] \\ &+ \left[\Psi_T \left(\sum_{j'' \neq k} \nabla_k^2 u_{kj''} \right) \right] \end{split}$$

 $^{^{1}\}mathrm{The}$ "full local energy" means not making any assumptions on the particle interactions or the potential.

²For the more mathematically concerned nitpicker, the product symbol only runs over the functions $\phi(\mathbf{r}_i)$, not the following exponential. This is easy to realise by recalling how Ψ_T was defined, and is important to know when inserting Ψ_T as done now.

The second term above is equal to the second term in equation 13, divided by $\phi(\mathbf{r}_k)$. Furthermore, the gradient $\nabla_k \Psi_T$ is already calculated above, and in terms of Ψ_T is:

$$\nabla_k \Psi_T = \frac{\Psi_T}{\phi(\mathbf{r}_k)} \nabla_k \phi_k + \Psi_T \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right)$$
(14)

Inserting all this back into the second derivative yields:

$$\begin{split} \nabla_k^2 \Psi_T &= (\nabla_k^2 \phi_k) \frac{\Psi_T}{\phi(\mathbf{r}_k)} + (\nabla_k \phi_k) \left[\frac{\Psi_T}{\phi(\mathbf{r}_k)} \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right] \\ &+ \left[\frac{\Psi_T}{\phi(\mathbf{r}_k)} \nabla_k \phi_k + \Psi_T \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right] \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \\ &+ \left[\Psi_T \left(\sum_{j'' \neq k} \nabla_k^2 u_{kj''} \right) \right] \end{split}$$

Giving:

$$\frac{1}{\Psi_T} \nabla_k^2 \Psi_T = (\nabla_k^2 \phi_k) \frac{1}{\phi(\mathbf{r}_k)} + (\nabla_k \phi_k) \left[\frac{1}{\phi(\mathbf{r}_k)} \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right] + \left[\frac{1}{\phi(\mathbf{r}_k)} \nabla_k \phi_k + \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) \right] \left(\sum_{j'' \neq k} \nabla_k u_{kj''} \right) + \sum_{j'' \neq k} \nabla_k^2 u_{kj''}$$

Which can be rewritten to:

$$\frac{1}{\Psi_T} \nabla_k^2 \Psi_T = \frac{\nabla_k^2 \phi_k}{\phi(\mathbf{r}_k)} + \frac{2\nabla_k \phi_k}{\phi(\mathbf{r}_k)} \left(\sum_{i \neq k} \nabla_k u_{ki} \right) + \left(\sum_{j \neq k} \nabla_k u_{kj} \right)^2 + \sum_{l \neq k} \nabla_k^2 u_{kl}$$
(15)

The gradients $\nabla_k u_{ki}$ can be rewritten using partial differentiation (where $r_{k,i}$ is coordinate i of \mathbf{r}_k):

$$\nabla_{k} u_{ki} = \left(\frac{\partial}{\partial r_{k,1}}, \frac{\partial}{\partial r_{k,2}}, \dots\right) u_{ki}$$

$$= \frac{\partial u_{ki}}{\partial r_{ki}} \left(\frac{\partial r_{ki}}{\partial r_{k,1}}, \frac{\partial r_{ki}}{\partial r_{k,2}}, \dots\right)$$

$$= \frac{\partial u_{ki}}{\partial r_{ki}} \left(\frac{\partial}{\partial r_{k,1}} \left(\sqrt{\left[(r_{k,1} - r_{i,1})\hat{e}_{1} + \dots\right]^{2}\right)}, \dots\right)$$

$$= \frac{\partial u_{ki}}{\partial r_{ki}} \left(\frac{r_{k,1} - r_{i,1}}{r_{ki}}, \dots\right)$$

$$= \frac{\partial u_{ki}}{\partial r_{ki}} \frac{\mathbf{r}_{k} - \mathbf{r}_{i}}{r_{ki}}$$

$$= \frac{\mathbf{r}_{k} - \mathbf{r}_{i}}{r_{ki}} u'_{ki}, u'_{ki} \equiv \frac{\partial u_{ki}}{\partial r_{ki}}$$

While the second derivative of u_{ki} is:

$$\nabla_k^2 u_{ki} = \nabla_k (\nabla_k u_{ki})$$

$$= u'_{ki} \nabla_k \left(\frac{\mathbf{r}_k - \mathbf{r}_i}{r_{ki}}\right) + \frac{\mathbf{r}_k - \mathbf{r}_i}{r_{ki}} \nabla_k u'_{ki}$$

$$= u'_{ki} \left(\frac{d}{r_{ki}} - \frac{r_{k,1} - r_{i,1}}{r_{ki}^3} - \frac{r_{k,2} - r_{i,2}}{r_{ki}^3} - \dots\right) + \frac{\mathbf{r}_k - \mathbf{r}_i}{r_{ki}} \cdot \frac{\mathbf{r}_k - \mathbf{r}_i}{r_{ki}} u''_{ki}$$

$$= \frac{u'_{ki}}{r_{ki}} \left(d - \frac{r_{k,1} - r_{i,1}}{r_{ki}^2} - \frac{r_{k,2} - r_{i,2}}{r_{ki}^2} - \dots\right) + u_{ki}$$

$$= \frac{u'_{ki}}{r_{ki}} (d - 1) + u_{ki}$$

where d, as earlier, is the number of dimensions present, which in our world is usually d = 3. Finally, this gives:

$$\frac{1}{\Psi_T} \nabla_k^2 \Psi_T = \frac{\nabla_k^2 \phi_k}{\phi(\mathbf{r}_k)} + \frac{2\nabla_k \phi_k}{\phi(\mathbf{r}_k)} \left(\sum_{i \neq k} \frac{\mathbf{r}_k - \mathbf{r}_i}{r_{ki}} u'_{ki} \right) + \sum_{i,j \neq k} \frac{(\mathbf{r}_k - \mathbf{r}_i)(\mathbf{r}_k - \mathbf{r}_j)}{r_{ki} r_{kj}} u'_{ki} u'_{kj} + \sum_{l \neq k} u_{ki} + \frac{u'_{ki}}{r_{ki}} (d - 1)$$
(16)

As the exact forms of ϕ_k and u_{ki} are known, this can be written to a more recognisable, and calculable, expression. However, this expression will be quite long, so only the necessary variables will be derived. Inserting them into equation 16 is trivial. The u_{ki} derivatives are:

$$\frac{\partial u_{ki}}{\partial r_{ki}} = \frac{\partial}{\partial r_{ki}} \left(\ln \left[1 - \frac{a}{r_{ki}} \right] \right) = \frac{a}{r_{ij}^2 - ar_{ij}} \tag{17}$$

$$\frac{\partial^2 u_{ki}}{\partial r_{ki}^2} = \frac{\partial}{\partial r_{ki}} u'_{ki} = -a \frac{2r_{ki} - a}{r_{ki}^2 - ar_{ki}} \tag{18}$$

and the ϕ_k derivatives are:

$$\nabla_k \phi_k = \nabla_k e^{-\alpha(x_k^2 + y_k^2 + \beta z_k^2)} = -2\alpha(x_k, y_k, \beta z_k) \phi_k \tag{19}$$

$$\nabla_k^2 \phi_k = \nabla_k (\nabla_k \phi_k) = \left[-2\alpha(2+\beta) + 4\alpha^2 (x_k^2 + y_k^2 + \beta^2 z_k^2) \right] \phi_k$$
 (20)

3 Results

N	D	Analytical	Numerical	Variance	Time
1	1	0			
1	2	0			
1	3	0.88			
10	1				
10	2	10	10	7.4e-13	1.35
10	3	15	15	3.7e-13	1.41
100	1				
100	2				
100	3	150	150	8.5e-9	119.38
500	1				
500	2				
500	3	250	250	4.1e-8	316.19

Table 1: some caption

4 Conclusions

5 Appendix