Example 6.33 Remove the \in production from the following grammar.

$$S \to aS/A$$

 $A \to aA/\in$

Solution: In the previous grammar, there is a null production $A\to\in$. But in the language set generated by the grammar, there is a null string which can be generated by the following way $S\to A\to\in$. As null string is in the language set, and so the null production cannot be removed from the grammar.

Example 6.34 Convert the following linear grammar into Regular Grammar.

$$S \rightarrow baS/aA$$

 $A \rightarrow bbA/bb$

Solution: Consider two non-terminals B and C with production $B\to aS$ and $C\to bA.$ The grammar becomes

$$S \rightarrow bB/aA$$

 $A \rightarrow bC/bb$
 $B \rightarrow aS$
 $C \rightarrow bA$

Still the production $A\to bb$ is not a regular grammar. Replace b by a non-terminal D with production $D\to b$. The grammar becomes

$$S \rightarrow bB/aA$$

$$A \rightarrow bC/bD$$

$$B \rightarrow aS$$

$$C \rightarrow bA$$

$$D \rightarrow b$$

Now the grammar is regular. For a left linear grammar, there exists a right linear grammar and vice versa. Grammar in one form can be converted into another form. The following section describes the process of conversion.