Learning on Attribute-Missing Graphs using Structure Attribute Transformer

Presentation on the module Analysing Networks

3044093 Sthitadhee Panthadas

Course: Analysing Networks

Prof. Dr. Ulf Brefeld

Table Of Contents

01

Introduction

Problem introduction

02

Foundations

Autoencoders, KL divergence, Variational Autoencoders, Adversarial Learning 03

Model

Concept, joint probability, loss functions, key methods and assumption

Implementation

Implementational concepts, parameters, summary page

05

Conclusion

Use case and future research, Wrap up by taking questions

Introduction ~ Motivation

Autoencoders

Fig 1: Autoencoder [1]

Encoder:
$$h = f(x) = \sigma(W_e x + b_e)$$

Decoder:
$$\hat{x} = g(h) = \sigma(W_d h + b_d)$$

Loss:
$$\mathcal{L}(x,\hat{x}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x}_i)^2$$

Variational Autoencoder (VAE)

Fig 2: VAE [2]

_

Loss: $\mathcal{L}_{vae} = \mathcal{L}(x, \hat{x}) + \mathcal{L}_{regularization}$

Prior: $\vec{z} \sim \mathcal{N}(\vec{\mu}, \sigma^2 \mathbf{I})$

Latent represent or hidden layer

Fig 3: KL divergence [3]

$$KL_D(P \mid\mid Q) = \sum P \log P/Q$$

Generative Adversarial Learning

$$\mathcal{L}_{adv} = \mathbb{E}_{x_{real}}[\log D(x_{real})] + \mathbb{E}_{z}[1 - \log D(z)]$$

Fig 4: GAN [4]

Model formulation

New graph with completed node attributes

Graph	Description
\mathcal{G}	The graph
ν	the set of nodes of graph $\mathcal G$
Α	the adjacent matrix of graph ${\cal G}$
X	the attribute matrix of graph ${\cal G}$
ν°	the set of attribute-observed nodes $\mathcal G$
$\mathcal{V}^{ \mathit{U}}$	the set of attribute-unobserved nodes $\mathcal G$

Structure Attribute Transformer

Likelihood And Loss Function

Symbol	Description
q	approximate posterior
p	true posterior
Z _x	latent Factor with respect to attribute
z _a	latent Factor with respect to structure
D_{KL}	KL divergence
L	Loss function
E	Expectation with respect to a distribution

Joint Probability

$$\log p_{\theta}(x_i, a_i) = D_{KL}[q_{\phi}(z_x, z_a | x_i, a_i) | | p_{\theta}(z_x, z_a | x_i, a_i)] + \mathcal{L}(\theta, \phi; x_i, a_i)$$

$$\mathcal{L}(\theta, \phi; x_i, a_i) = \mathbb{E}_{q_{\phi}(z_x, z_a | x_i, a_i)}[\log p_{\theta}(x_i, a_i | z_x, z_a)] - D_{KL}[q_{\phi}(z_x, z_a | x_i, a_i) | | p(z_x, z_a)]$$

Reconstruction Loss

Prior regularization loss

Paired Structure-Attribute Matching

Paired Structure-Attribute Matching

Reconstruction Loss

Symbol	Description
q	approximate posterior
p	true posterior
$\boldsymbol{z}_{_{\boldsymbol{X}}}$	latent Factor with respect to attribute
z _a	latent Factor with respect to structure
λ_c	Cross construction hyperparameter
L_r	Joint Construction Loss
E	Expectation with respect to a distribution

$\min_{ heta_x, heta_a, \phi_x, \phi_a} \mathcal{L}_r = - \mathop{\mathbb{E}}_{x_i \sim p_X} [\mathop{\mathbb{E}}_{q_{\phi_x}(z_x x_i)} [\log p_{ heta_x}(x_i z_x)]]$
$-\operatorname{\mathbb{E}}_{a_i \sim p_A}[\operatorname{\mathbb{E}}_{q_{\phi_a}(z_a a_i)}[\log p_{\theta_a}(a_i z_a)]]$
$- \left. \lambda_{\operatorname{c}} \cdot \mathbb{E}_{a_i \sim p_A} [\mathbb{E}_{q_{\phi_a}(z_a a_i)} [\log p_{\theta_x}(x_i z_a)]] \right.$
$- \left. \lambda_{\operatorname{c}} \cdot \mathbb{E}_{x_i \sim p_X} [\mathbb{E}_{q_{\phi_x}(z_x x_i)} [\log p_{\theta_a}(a_i z_x)]]. \right.$

Self construction stream for attributes

Self construction stream for structure

Cross construction stream for attributes

Cross construction stream for structure

Structure Attribute Transformer PSAM

Handle on Prior Regularization Loss

$$\mathcal{L}(\theta,\phi;x_i,a_i) = \mathbb{E}_{q_\phi(z_x,z_a|x_i,a_i)}[\log p_\theta(x_i,a_i|z_x,z_a)] - D_{KL}[q_\phi(z_x,z_a|x_i,a_i)||p(z_x,z_a)]$$
Reconstruction Loss
Prior regularization loss

Paired Structure Attribute Matching

Adversarial Distribution Matching

Adversarial Distribution Matching

$$D_{KL}[q_{\phi}(z_x, z_a|x_i, a_i)||p(z_x, z_a)]$$

Simplifying by $\ p(z_x,z_y)=p(z)p(z)$

$$D_{KL}[q_{\phi_x}(z_x|x_i)||p(z)] + D_{KL}[q_{\phi_a}(z_a|a_i)||p(z)]$$

Adversarial Distribution matching

New Prior regularization loss

Symbol	Description
q	approximate posterior
p	true posterior
$\boldsymbol{z}_{_{\boldsymbol{\chi}}}$	latent Factor with respect to attribute
Z _a	latent Factor with respect to structure
p(z)	prior of the our approximate posterior q
X _i	attribute of node i
a _i	neighbours of node i

Adversarial Distribution Matching

$\min_{\psi} \max_{\phi_x,\phi_a} \mathcal{L}_{adv} =$	$-\operatorname{\mathbb{E}}_{z_p \sim p(z)}[\log \mathcal{D}(z_p)]$
	$-\mathbb{E}_{z_x \sim q_{\phi_x}(z_x x_i)}[\log(1-\mathcal{D}(z_x))]$
	$-\operatorname{\mathbb{E}}_{z_p \sim p(z)}[\log \mathcal{D}(z_p)]$
	$-\mathbb{E}_{z_a \sim q_{\phi_a}(z_a a_i)}[\log(1-\mathcal{D}(z_a))]$

Symbol	Description
q	approximate posterior
p(z)	prior of the our approximate posterior q
$\boldsymbol{z}_{_{\boldsymbol{x}}}$	latent Factor with respect to attribute
z _a	latent Factor with respect to structure
Z_p	prior of the our approximate posterior q
D(.)	Discrimination operation or classification operation
ψ	parameter of shared Discriminator function

MODEL REVISIT

New graph with completed node attributes

Graph	Description
\mathcal{G}	The graph
ν	the set of nodes of graph ${\cal G}$
Α	the adjacent matrix of graph ${\cal G}$
X	the attribute matrix of graph $\mathcal G$
ν°	the set of attribute-observed nodes $\mathcal G$
$\mathcal{V}^{ \mathit{U}}$	the set of attribute-unobserved nodes ${\cal G}$

Final Objective Function And Implementation

Putting it all together

What to take home with you

Things we talked about

- Autoencoders
- Shared **latent space** assumption
- Variational Autoencoders
- KL divergence
- Expectation of probabilities
- Generators and discriminators
- Generative Adversarial Learning
- SAT
- Paired Structure-Attribute Matching
- Attribute missing problem solution
- ...

Things we could not talk about in detail

- Variational Inference
- Mode collapse problem
- KL divergence types
- GAN in detail
- GNN
- Time complexity of SAT
- Experimental results
- GAT graph attention networks

Conclusion

Use cases

- Recommendation systems
- Fraud detection and network security
- Description Generation in networks
- Molecular graph learning
- Community detection

Further research

- Variational Inference
- GNN
- Different Generative modelling techniques and their connections

REFERENCES

- [01] https://de.wikipedia.org/wiki/Autoencoder
- [02] https://www.researchgate.net/figure/Basic-schematic-illustration-of-a-variational-autoencoder-VAE_fig1_346355664
- [03] https://jessicastringham.net/2018/12/27/KL-Divergence/
- [04] https://developers.google.com/machine-learning/gan/gan_structure
- **[05]** Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W. Tsang. Learning on attribute-missing graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2):740–757, February 2022
- [06] https://www.pinterest.com/pin/32088216083886948/

THANK YOU!

Any Questions?

