Feedback — Information Retrieval

Help

You submitted this quiz on **Sun 29 Apr 2012 1:23 AM PDT**. You got a score of **4.00** out of **4.00**.

Question 1

Given the two documents:

- We all live in that yellow submarine.
- The yellow mustard in that submarine sandwich was not yellow!

What is the Jaccard similarity between them (ignoring punctuation)?

Your Answer	Score	Explanation
$\bigcirc \frac{4}{17}$		
\[\frac{1}{3} \]	✓ 1.00	Correct. Exactly 4 distinct words (\emph{in} , \emph{that} , \emph{yellow} , and $\emph{submarine}$) occur in both documents, and there are 12 distinct word types, so we get the Jaccard coefficient is $4/12=1/3$.
$\bigcirc \frac{9}{17}$		
$\bigcirc \frac{8}{17}$		
Total	1.00 / 1.00	

Question Explanation

The Jaccard coefficient between two documents is given by $\frac{|D_1\cap D_1|}{|D_1\cup D_2|}$, where D_1 is the set of words occurring in document 1 and D_2 is the set of words occurring in document 2 - i.e. it is the number of distinct word types occurring in both documents divided by the number of distinct word types occurring in either of the documents.

Question 2

In a set of 806,791 documents, we get the following data on a few terms and a few documents:

term document frequency Doc 1 Doc 2 Doc 3

car	18,165	27	4	24
auto	6723	3	33	0
insurance	= 19,241	0	39	29
best	25,235	14	0	17

What is the tf-idf value for the term *insurance* in Document 2?

(Please answer to 3 decimal places - e.g. $5.18254 \rightarrow 5.183$ or $1.128333 \rightarrow 1.128$).

Note: Be sure to use \log_{10} (log base 10) in your calculations.

You entered:

4.204

Your Answer		Score	Explanation
4.204	~	1.00	Correct. The TF-IDF is given by $(1+\log_{10}39)\times\log_{10}(806,791/19,241) \\ \approx 2.591\times1.623$
Total		1.00 / 1.00	

Question Explanation

TF-IDF for a term t in a document d is given by $w_{t,d} = (1 + \log_{10} \operatorname{tf}_{t,d}) imes \log_{10} (N/\operatorname{df}_t)$

Question 3

Given the following term frequencies (counts) for a few words in a collection of 4 documents,

term Dawn Beatrice She Regeneration

happiness 37 30 0 3
surprise 40 10 6 0
family 31 0 12 17
adventure 0 5 13 0

What is the cosine similarity between *Beatrice* and *She*? Use tf-idf weighting and assume that these are the only documents and words in the collection.

Your Answer		Score	Explanation
0.49			
0.57			
0.81	~	1.00	Correct!
0.72			
Гotal		1.00 / 1.00	

Question 4

What is the average precision for the following sequence of retrieved documents, where **R** denotes a relevant document and **N** denotes an irrelevant document?

RNRRNNRRNNR

Your Answer		Score	Explanation
0.497			
0.580			
0.500			
0.662	~	1.00	Correct!
Total		1.00 / 1.00	

Question Explanation

Recall that average precision is calculated by scanning through the list of retrieved documents (in the order that they are reported) and computing the precision at every point that we retrieve a relevant document. We then get the Average Precision by averaging over those precisions. Also recall that precision in this context is the number of relevant documents retrieved so far divided by the number of documents retrieved so far.