CBFT Mecánica clásica

Mecánica lagrangiana

3 de noviembre de 2015

Contenidos

§1. Principio de los trabajos virtuales									
§2. Construcción del lagrangiano			 						

§1. Principio de los trabajos virtuales

Escribimos las ecuaciones de Newton para un sistema de partículas,

$$m_i \mathbf{a}_i = \mathbf{F}_i = \mathbf{F}_i^a + \mathbf{F}_i^v$$

pero sabiendo que el momento viene de las fuerzas aplicadas,

$$m_i \mathbf{a}_i = \dot{\mathbf{P}}_i$$

de manera que

$$\dot{\mathbf{F}}_i - \mathbf{F}_i^a - \mathbf{F}_i^v = 0,$$

y entonces, sumando en las N partículas del sistema

$$\sum_{i}^{N}\left(\dot{\mathbf{P}}_{i}-\mathbf{F}_{i}^{a}-\mathbf{F}_{i}^{v}\right)\cdot\delta\mathbf{r}_{i}=0$$

donde $\delta {\bf r}_i$ son desplazamientos virtuales. Si hacemos estos desplazamientos compatibles con los vínculos

$$\sum_{i}^{N}\left(\dot{\mathbf{P}}_{i}-\mathbf{F}_{i}^{a}\right)\cdot\delta\mathbf{r}_{i}-\sum_{i}^{N}\mathbf{F}_{i}^{v}\cdot\delta\mathbf{r}_{i}=0$$

donde el último término es nulo debido a que la fuerza de vínculos son perpendiculares a los desplazamientos virtuales, es decir

$$\mathbf{F}_{i}^{v} \perp \delta \mathbf{r}_{i}$$

Esto es sumamente sketchi, debemos leer la carpeta de la cursada y luego la teoría.

1

2

si es que, por supuesto, los $\delta \mathbf{r}_i$ son compatibles con los vínculos.

Esto nos deja entonces, el Principio de los Trabajos Virtuales,

$$\sum_{i}^{N}\left(\dot{\mathbf{P}}_{i}-\mathbf{F}_{i}^{a}\right)\cdot\delta\mathbf{r}_{i}=0$$

donde como son independientes entonces se sigue que

$$\dot{\mathbf{P}}_i - \mathbf{F}_i^a = 0 \quad \forall i$$

Relación vínculos y desplazamientos: El hecho de que la fuerza de vínculo sea perpendicular a los desplazamientos puede verse a partir de que la ecuación de vínculo en un sistema toma la forma

¿Y esta magia? Hay que aclarar realmente que sea así como se dice que es.

$$f(\mathbf{r}_i) - K = 0$$

luego, derivando implícitamante cada ecuación y sumando (si se nos permite un pequeño abuso de notación)

$$\sum_{i}^{N} \frac{\partial f}{\partial \mathbf{r}_{i}} d\mathbf{r}_{i} = 0$$

pero esto no es otra cosa que

$$\nabla f \cdot \delta \mathbf{r} = 0$$

donde debemos entender al gradiente y al vector $\delta \mathbf{r}$ como N dimensionales.

§2. Construcción del lagrangiano

Consideremos un sistema de N partículas, k ecuaciones de vínculo y por ende 3N-k grados de libertad (estamos en 3 dimensiones).

Tenemos N relaciones

$$\mathbf{r}_i = \mathbf{r}_i(q_1,q_2,...,q_{3N-k},t)$$

entonces una variación serán

$$\delta \mathbf{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j}\right) \delta q_j + \frac{\partial \mathbf{r}_i}{\partial t} \delta t$$

donde el último δt es nulo por ser un desplazamiento virtual de manera que

$$\delta \mathbf{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j}\right) \delta q_j.$$

Por otro lado

$$\sum_{i}^{N}\dot{\mathbf{P}}_{i}\cdot\delta\mathbf{r}_{i}-\sum_{i}^{N}\mathbf{F}_{i}^{a}\cdot\delta\mathbf{r}_{i}=0$$

y se puede reescribir el primer término como

$$\dot{\mathbf{P}}_i \cdot \delta \mathbf{r}_i = m_i \frac{d\mathbf{v}_i}{dt} \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j} \right) \delta q_j$$

resultando

$$\sum_{i}^{N}m_{i}\frac{d\mathbf{v}_{i}}{dt}\cdot\sum_{i=1}^{3N-k}\left(\frac{\partial\mathbf{r}_{i}}{\partial q_{j}}\right)\delta q_{j}-\sum_{i}^{N}\mathbf{F}_{i}^{a}\cdot\delta\mathbf{r}_{i}=0$$

La idea ahora es reescribir todo en términos más convenientes, para que aparezca un término multiplicado a una variación arbitraria. De esta manera quedará una sumatoria de un sumando multiplicado por una variación igualada a cero. No cabe otra posibilidad que el sumando sea nulo para cada índice de la suma.

Escrito muy mal este texto. La idea es clara, no obstante: hay que purificarla

Consideremos la derivada total de

$$\frac{d}{dt}\left(m_i\mathbf{v}_i\frac{\partial\mathbf{r}_i}{\partial q_j}\right) = m_i\frac{d\mathbf{v}_i}{dt}\frac{\partial\mathbf{r}_i}{\partial q_j} + m_i\mathbf{v}_i\frac{d}{dt}\left(\frac{\partial\mathbf{r}_i}{\partial q_j}\right).$$

Pero la diferencial del vector \mathbf{r}_i es (notemos que no es una variación)

$$d\mathbf{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j}\right) dq_j + \frac{\partial \mathbf{r}_i}{\partial t} dt$$

y entonces

$$\dot{\mathbf{r}}_i = \mathbf{v}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j}\right) \dot{q}_j + \frac{\partial \mathbf{r}_i}{\partial t}.$$

La derivada de la velocidad de la partícula i-ésima respecto a la coordenada l-ésima es

$$\frac{\partial \mathbf{v}_i}{\partial \dot{q}_l} = \frac{\partial \mathbf{r}_i}{\partial q_l} = \frac{\partial \mathbf{r}_i/\partial t}{\partial q_l/\partial t}$$

Referencias