Part II – Galois Theory

Based on lectures by Dr C. Brookes Notes taken by Bhavik Mehta

Michaelmas 2017

- 0 Introduction
- 0.1 Course overview

1 Field Extensions

Definition 1.1 (Field extension). A field extension $K \leq L$ is the inclusion of a field K into another field L with the same 0, 1, and where the restriction of + and \cdot (in L) to K gives the + and \cdot of K.

Definition 1.2 (Degree). The **degree** of L over K is $\dim_K L$, the K-vector space dimension of L. This may not be finite. We typically denote this by |L:K|. If $|L:K| < \infty$, then the extension is **finite**, otherwise the extension is **infinite**.

1.1 Motivatory Example

1.2 Review of GRM

Definition 1.3 (Algebraic). Suppose $K \leq L$ is a field extension. Take $\alpha \in L$ and define

$$I_{\alpha} = \{ f \in K[t] \mid f(\alpha) = 0 \}$$

We say α is **algebraic** over K if $I_{\alpha} \neq 0$. Otherwise α is **transcendental**. We say L is algebraic over K if α is algebraic over K for all $\alpha \in L$.

Definition 1.4 (Minimal polynomial). The non-zero ideal I_{α} (where α is algebraic over K) is principal since K[t] is a principal ideal domain. In particular, we can say $I_{\alpha} = (f_{\alpha}(t))$ where $f_{\alpha}(t)$ can be assumed to be monic. Such a monic $f_{\alpha}(t)$ is the **minimal polynomial** of α over K.

Definition 1.5 (Simple extension). Suppose $K \leq L$ is a field extension and $\alpha \in L$. $K(\alpha)$ is defined to be the smallest subfield of L containing K and α . It's called the field **generated** by K and α . We say that L is a **simple extension** if $L = K(\beta)$ for some $\beta \in L$.

Given $\alpha_1, \ldots, \alpha_n \in L$, $K \leq L$. $K(\alpha_1, \ldots, \alpha_n)$ is the smallest field containing $\alpha_1, \ldots, \alpha_n$. It is the field generated by K and $\alpha_1, \ldots, \alpha_n$.

On the other hand $K[\alpha]$ is the ring generated by K and α , in particular the image of K[t] under the map $f(t) \mapsto f(\alpha)$.

1.3 Digression on (Non-)Constructibility

Definition 1.6 (Constructible). The points of intersection of any two distinct lines or circles drawn using these operations are **constructible in one step** from P_0 . More generally, a point $\mathbf{r} \in \mathbb{R}^2$ is **constructible** from P_0 if there is a finite sequence $\mathbf{r_1}, \mathbf{r_2}, \dots, \mathbf{r_n} = \mathbf{r}$ such that $\mathbf{r_i}$ is constructible in one step from $P_0 \cup \{\mathbf{r_1}, \dots, \mathbf{r_{i-1}}\}$.

1.4 Return to theory development

Definition 1.7 (Homomorphism over a field). Suppose $K \leq L$, $K \leq L'$ are field extensions. A K-homomorphism $\phi: L \to L'$ is a ring homomorphism such that $\phi|_K = \mathrm{id}$.

A K-homomorphism is a K-isomorphism if it is a ring isomorphism.

Definition 1.8 (Splitting). Let $K \leq L$ be a field extension and $f(t) \in K[t]$. We say f splits over L if

$$f(t) = a(t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_n)$$

where $a \in K$ and $\alpha_1, \ldots, \alpha_n \in L$.

We say L is a splitting field for f over K if $L = K(\alpha_1, ..., \alpha_n)$.

2 Separable, normal and Galois extensions

Definition 2.1 (Separable polynomial). Let K be a field and $f(t) \in K[t]$. Suppose f(t) is irreducible in K[t] and L is a splitting field for f(t) over K. Then f(t) is **separable** over K if f(t) has no repeated roots in L.

For general f(t) we say f(t) is separable over K if every irreducible factor in K[t] is separable over K.

All constant polynomials are separable.

Definition 2.2 (Formal differentiation). If K is a field then formal differentiation

$$D: K[t] \to K[t]$$
$$t^n \mapsto nt^{n-1}$$

is a K-linear map. We denote this by D(f(t)) = f'(t).

Definition 2.3 (Separable extension). We say $\alpha \in L$ is separable over K if its minimal polynomial is separable over K.

L is separable over K if all $\alpha \in L$ are separable over K.

If $f_{\alpha}(t) = (t - \alpha)^n = t^n - \alpha^n$ where n is a power of $p(= \operatorname{char} K)$, we say that α is **purely** inseparable over K.

Definition 2.4 (Separably generated). We say $M = K(\alpha_1, ..., \alpha_r)$ is separably generated by $\alpha_1, ..., \alpha_r$ over K if each α_i is separable over K.

2.1 Trace and Norm

Definition 2.5 (Trace and norm). Let $K \leq M$ be a finite field extension, and $\alpha \in M$. Multiplication by α gives a K-linear map $\theta_{\alpha} : M \to M$.

Then we define

Trace of α **over** K is given by $\text{Tr}_{M/K}(\alpha) = \text{trace of } \theta_{\alpha} \in K$.

Norm of α **over** K is given by $N_{M/K}(\alpha) = \text{determinant of } \theta_{\alpha} \in K$.

Note these are dependent on the field extension.

2.2 Normal extensions

Definition 2.6 (Automorphism group). Let $K \leq M$ be a finite field extension. Its K-automorphism group is $\operatorname{Aut}_K(M) = \{ \phi \mid \phi \text{ a } K\text{-homomorphism } M \to M \}$.

Definition 2.7 (Galois extension). A finite field extension that is normal and separable is a **Galois extension**.

Definition 2.8 (Galois group). Let $K \leq M$ be a Galois extension. Then, the K-automorphism group of M is the **Galois group** of M over K. Write this as Gal(M/K).

3 Fundamental Theorem of Galois Theory

3.1 Artin's Theorem

Definition 3.1 (Fixed field). Let $K \leq L$ be a field extension and $H \leq \operatorname{Aut}_K(L)$. The fixed field of H is,

$$L^{H} := \{ \alpha \in L \mid \sigma(\alpha) = \alpha \text{ for all } \sigma \in H \}$$

3.2 Galois groups of polynomials

Definition 3.2 (Galois group of polynomial). Let f(t) be a separable polynomial $\in K[t]$ and let $K \leq L$ with L a splitting field for f(t). Then the **Galois group of** f(t) over K is

$$Gal(f) := Gal(L/K).$$

Definition 3.3 (Discriminant). Let $f(t) \in K[t]$ with distinct roots $\alpha_1, \ldots, \alpha_n$ in a splitting field (with f(t) not necessarily irreducible). Let

$$\Delta = \prod_{i < j} (\alpha_i - \alpha_j).$$

Then the **discriminant** D = D(f) of f is

$$D = \Delta^2 = \prod_{i < j} (\alpha_i - \alpha_j)^2$$
$$= (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j} (\alpha_i - \alpha_j).$$

3.3 Galois Theory of Finite Fields

Definition 3.4 (Frobenius automorphism). Let \mathbb{F} be a finite field of characteristic p. Then the **Frobenius automorphism** of \mathbb{F} is

$$\phi: \mathbb{F} \longrightarrow \mathbb{F}$$
$$\alpha \longmapsto \alpha^p.$$

4 Cyclotomic and Kummer extensions

4.1 Cyclotomic extensions

Definition 4.1 (Cyclotomic extension). Suppose char K = 0 or p prime where $p \nmid m$. The mth cyclotomic extension of K is the splitting field L of $t^m - 1$.

Definition 4.2 (Primitive *m*th root of unity). An element $\xi \in \mu_m$ is a **primitive** *m*th root of unity if $\mu_m = \langle \xi \rangle$.

Definition 4.3 (Group of roots of unity).

$$\theta: G \longrightarrow (\mathbb{Z}/m\mathbb{Z})^{\times}$$

This is a group homomorphism: If $\sigma(\xi) = \xi^c$, $\phi(\xi) = \xi^j$ then $(\sigma\phi)(\xi) = \sigma(\xi^j) = \xi^{ij}$. Hence G is abelian.

Thus we regard G as a subgroup of $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

Definition 4.4 (Cyclotomic polynomial). The *m*th cyclotomic polynomial is

$$\Phi_m(t) = \prod_{i \in (\mathbb{Z}/m\mathbb{Z})^{\times}} (t - \xi^i),$$

the product of the linear factors of t^m-1 corresponding to the primitive mth roots of unity.

Definition 4.5 (Cyclic, abelian extension). An extension $K \leq L$ is **cyclic** if the extension is Galois and Gal(L/K) is cyclic. Similarly, it is called **abelian** if Gal(L/K) is abelian.

4.2 Kummer Theory

Definition 4.6 (Kummer extension). A cyclic extension $K \leq L$ with |L:K| = m, where char $K \nmid m$ and K contains a primitive mth root of unity is a **Kummer extension**.

Definition 4.7 (Extension by radicals). A field extension $K \leq L$ is an **extension by radicals** if $\exists K = L_0 \leq L_1 \leq \cdots \leq L_n = L$ such that each $L_i \leq L_{i+1}$ is either cyclotomic or Kummer extension. A polynomial $f(t) \in K[t]$ is **soluble by radicals** if its splitting field lies in an extension by radicals.

4.3 Cubics

4.4 Quartics

4.5 Solubility by radicals

Definition 4.8 (Soluble group). A group is **soluble** if there is a chain of subgroups

$$\{e\} = G_m \triangleleft G_{m-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$

with G_i/G_{i+1} abelian.

Definition 4.9 (Derived subgroup). The **derived subgroup** G' of a group G is the subgroup generated by all the commutators $g_1g_2g_1^{-1}g_2^{-1}$ for $g_1, g_2 \in G$.

Definition 4.10 (Derived series). The **derived series** $\{G^{(m)}\}$ of G is defined inductively:

$$G^{(0)} = G$$

$$G^{(1)} = G'$$

$$G^{(2)} = (G')'$$

$$G^{(j+1)} = (G^{(j)})'$$

Thus $G = G^{(0)} \rhd G^{(1)} \rhd G^{(2)} \rhd \cdots$ with $G^{(j)}/G^{(j+1)}$ abelian.

5 Final Thoughts

5.1 Algebraic closure

Definition 5.1 (Algebraically closed). A field L is algebraically closed if any $f(t) \in L[t]$ splits into a product of linear factors in L[t].

Definition 5.2 (Algebraic closure). An extension $K \leq L$ is an algebraic closure of K if $K \leq L$ is algebraic and L is algebraically closed.

Definition 5.3 (Partial order). (S, \leq) is a partial order on S if

- (i) $\forall x \in \mathcal{S} \ x \leq x$
- (ii) $x \le y$ and $y \le z \implies x \le z$.
- (iii) if $x \leq y$ and $y \leq x$ then x = y.

 \mathcal{S} is **totally ordered** if for any $x, y \in S$ either $x \leq y$ or $y \leq x$. A **chain** is a partially ordered set (\mathcal{S}, \leq) that is a totally ordered subset.

5.2 Symmetric polynomials and invariant theory

Definition 5.4 (Elementary symmetric polynomials). These s_i are the elementary symmetric polynomials.

Definition 5.5. $\alpha_1, \ldots, \alpha_n$ are **algebraically independent** over K if the ring homomorphism $K[Y_1, \ldots, Y_n] \to K[\alpha_1, \ldots, \alpha_n] \leq L$ is an isomorphism where $K[Y_1, \ldots, Y_n]$ is the polynomial ring in Y_1, \ldots, Y_n .