AMS 572 Data Analysis I Nonparametric Statistical Methods

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Nonparametric inference for two independent samples

Wilcoxon (Mann-Whitney) Rank Sum Test

1. Assume $Y_{1j}, ..., Y_{n_j j}$ iid $F_j(y); j = 1, 2$

$$H_0: F_1(y) = F_2(y)$$

$$H_a: F_1(y) = F_2(y + \Delta)$$

where Δ is a constant

- 2. Pool the two samples
- 3. Rank them from smallest to largest
- 4. Compute the sum of the ranks, W_1 , in group 1

Wilcoxon Rank Sum Test

- ▶ There are $N = n_1 + n_2$ subjects in our study
- ▶ Thus there are $\binom{N}{n_1}$ possible outcomes
- ▶ Under H_0 , each is equally likely
- We compute the distribution of W_1 by enumeration

Wilcoxon Rank Sum Test: Example

- ▶ A new drug is being test in humans for the first time to assess effect on CD4+ T cells in patients with HIV
- ▶ 7 individuals are randomized to 2 groups: control $(n_1 = 3)$ or drug $(n_2 = 4)$
- ▶ Endpoint is percent change in CD4+ count from baseline
- ▶ Null hypothesis is the drug has no effect

$$H_0: \Delta = 0; H_a: \Delta \neq 0$$

Wilcoxon Rank Sum Test: Example

- ▶ Data: control (65, 73, 69); drug (89, 70, 92, 88)
- ▶ There are $\binom{7}{3} = 35$ possible outcomes

10,35 possible vanking for group 1.

Wilcoxon Rank Sum Test: $n_1 = 3, n_2 = 4$

Ranks	W_1	Ranks	W_1	Ranks	W_1
1,2,3	6	1,5,6	12	2,6,7	15
1,2,4	7	$1,\!5,\!7$	13	3,4,5	12
1,2,5	8	$1,\!6,\!7$	14	3,4,6	13
1,2,6	9	$2,\!3,\!4$	9	3,4,7	14
1,2,7	10	$2,\!3,\!5$	10	3,5,6	14
1,3,4	8	2,3,6	11	3,5,7	15
1,3,5	9	2,3,7	12	3,6,7	16
1,3,6	10	$2,\!4,\!5$	11	$4,\!5,\!6$	15
1,3,7	11	2,4,6	12	$4,\!5,\!7$	16
1,4,5	10	$2,\!4,\!7$	13	$4,\!6,\!7$	17
1,4,6	11	2,5,6	13	5,6,7	18
1,4,7	12	$2,\!5,\!7$	14		

Wilcoxon Rank Sum Test: $n_1 = 3, n_2 = 4$

		=	35		
w	Freq	F(w)	\ w	Freq	F(w)
6	1	0.0286	13	5	0.6857
7	1	0.0571	14	4	0.8000
8	2	0.1143	15	3	0.8857
9	3	0.2000	16	2	0.9429
10	4	0.3142	17	1	0.9714
11	4	0.4286	18	1	1
12	4	0.5714			

Wilcoxon Rank Sum Test: $n_1 = 3, n_2 = 4$

- Note it is impossible to reject H_0 for a two-sided alternative when $\alpha = 0.05$.
- ▶ For a two-sided $\alpha = 0.1$ test

$$C_{\alpha} = \{6, 18\}$$

▶ Observed $W_1 = 1 + 2 + 4 = 7$; do not reject H_0

Wilcoxon Rank Sum Test

▶ It can be shown that

$$E(W_1) = \frac{n_1}{N} \frac{N(N+1)}{2} = \frac{n_1(N+1)}{2}$$

Similarly

$$V(W_1) = \frac{n_1 n_2 (N+1)}{12}$$

Wilcoxon Rank Sum Test: Large Sample Approx

▶ If n_1 and n_2 are large

$$Z = \frac{W_1 - E(W_1) - 0.5}{\sqrt{V(W_1)}}$$

will be approx N(0,1).

- ▶ Approximation is good for $n_1, n_2 \ge 12$
- ▶ If there are ties

$$V(W_1) = \frac{n_1 n_2 (N+1)}{12} - \frac{n_1 n_2}{12 N(N-1)} \sum_{i=1}^q t_i (t_i-1)(t_i+1)$$
Correction for ties

@PF.Kuan

Continuity correction

Mann-Whitney Test

▶ Consider all n_1n_2 possible pairs

$$(Y_{1i}, Y_{2j}); i = 1, 2, \dots, n_1; j = 1, 2, \dots, n_2$$

- ▶ Let U_1 equal the number of pairs with $Y_{1i} > Y_{2j}$ and U_2 equal the number of pairs with $Y_{1i} < Y_{2j}$
- ▶ It can be shown that

$$U_1 = W_1 - \frac{n_1(n_1+1)}{2}$$
 $U_2 = W_2 - \frac{n_2(n_2+1)}{2}$

► Mann Whitney test and Wilcoxon rank sum test are equivalent

Wilcoxon Rank Sum Test: Example

					_
M=15	Drug	Rank	Placebo	Rank	N2 =15
	6.9	18	6.4	11	-
	7.6	25.5	6.7	13	
	7.3	23.5	5.4	3	
	7.6	25.5	8.2	28.5	
	6.8	15	5.3	2	
	7.2	22	6.6	12	
	8.0	27	5.8	8.5	
	5.5	4	5.7	6.5	
	5.8	8.5	6.2	10	
	7.3	23.5	7.1	21	
	8.2	28.5	7.0	20	
	6.9	18	6.9	18	
	6.8	15	5.6	5	
	5.7	6.5	4.2	1	
	8.6	30	6.8	15	
			1		

Wilcoxon Rank Sum Test: Example

$$W_1=290.5$$
 $Z = \frac{290.5-2325-05}{\sqrt{579-57}} = 7.5}$

We can the second of the

Var(m/ no tres) = hinz (1841) = 15231 = 581.25

Ties convertion: 9=7, ti=ts=2, ts=t6=t7=2 T3=ta=3 Var (with ties)= 581-25- 78(15)2 = 579=57

SAS Code

var bp;
run;

```
data drug;
input trt $ bp @@;
datalines;
drug 6.9 drug 7.6 drug 7.3 drug 7.6 drug 6.8 drug 7.2 drug 8 dru
;
run;
proc npar1way wilcoxon correct=yes;
class trt;
```

SAS Output

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable bp Classified by Variable trt

trt	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
drug	15	290.50	232.50	24.074239	19.366667
placebo	15	174.50	232.50	24.074239	11.633333

Average scores were used for ties.

Wilcoxon Two-Sample Test

0
4
5
9
R
5

 $\label{eq:Two-Sided Pr > |Z| 0.0237}$ Z includes a continuity correction of 0.5.

R Code and Output

```
> drug <- c(6.9,7.6,7.3,7.6,6.8,7.2,8.0,5.5,5.8,
7.3,8.2,6.9,6.8,5.7,8.6)
> placebo <- c(6.4,6.7,5.4,8.2,5.3,6.6,5.8,5.7,6.2,
7.1, 7.0, 6.9, 5.6, 4.2, 6.8
> wilcox.test(drug,placebo,exact=FALSE,correct=TRUE,
alternative='greater')
Wilcoxon rank sum test with continuity correction
data: drug and placebo
W = 170.5, p-value = 0.00846
alternative hypothesis: true location shift is greater than 0
1 - WI- MICMHI)
```

Summary of nonparametric inference

9. AMOVA. Regression.

- ▶ One sample: Sign test or Wilcoxon Signed Rank test
- ► Two samples: Wilcoxon Rank Sum/Mann-Whitney test
- ► More than two samples: Kruskal Wallis test, in R: kruskal.test()

Test for equality of variances: Levene's test, in R: library(lawsuit), levene.test()

► Correlation: Spearman's rank correlation or Kendall's tau, in R: cor(method="spearman", "kendall")

Cortest ()