Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ▶ How to evaluate the performance of a model?
- ▶ Methods for Performance Evaluation
 - ▶ How to obtain reliable estimates?
- ▶ Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ▶ How to evaluate the performance of a model?
- ▶ Methods for Performance Evaluation
 - How to obtain reliable estimates?
- ▶ Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

•

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- ▶ Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a:TP (true positive) b: FN (false negative) c: FP (false positive) d:TN (true negative)

Metrics for Performance Evaluation...

	DDEDIOTED OLAGO		
	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

▶ Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- ▶ Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class I examples = 10
- ▶ If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class I example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	•
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	•	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Accuracy is proportional to cost if I. C(Yes|No)=C(No|Yes)=q 2. C(Yes|Yes)=C(No|No)=p

N = a + b + c + d

Accuracy = (a + d)/N

Cost	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	р	q
	Class=No	q	р

Cost = $p (a + d) + q (b + c)$
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N $[q - (q-p) \times Accuracy]$

4

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ▶ How to evaluate the performance of a model?
- ▶ Methods for Performance Evaluation
 - ▶ How to obtain reliable estimates?
- Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

Methods for Performance Evaluation

- ▶ How to obtain a reliable estimate of performance?
- ▶ Performance of a model may depend on other factors besides the learning algorithm:
 - ▶ Class distribution
 - ▶ Cost of misclassification
 - Size of training and test sets

Methods of Estimation

- ▶ Holdout
 - ▶ Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- ▶ Cross validation
 - ▶ Partition data into k disjoint subsets
 - ▶ k-fold: train on k-1 partitions, test on the remaining one
 - ▶ Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ▶ How to evaluate the performance of a model?
- ▶ Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

•

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ▶ ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- ullet Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve 0.25 0.43 0.53 0.85 0.85 0.85 0.87 0.93 1.00 Threshold 0.95 5 3 4 5 2 0 0 2 3 5 5 1 5 0.8 0 **ROC Curve:** 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9