Digital Transformation of Healthcare

Evaluating Predictions

Michoel Snow, MD PhD, Glen Ferguson, PhD

Center for Health Data Innovations

Objectives

After this lecture students will be able to

- Distinguish between classification and regression metrics
- Compare and contrast the use of different metrics to evaluate predictions

Metrics for Evaluation of Classification Models

Confusion Matrix

actual outcome p n TP FP PPV = $\frac{TP}{TP + FP}$ Sens = $\frac{TP}{TP + FN}$ Spec = $\frac{TN}{FP + TN}$ Acc = $\frac{TP + TN}{TP + TN + FP + FN}$

Confusion Matrix

actual outcome

	р	n	
predicted outcome u d	TP	FP	$PPV = p(\mathbf{p} \mid \mathbf{p}')$
pred outc	FN	TN	$NPV = p(n \mid n')$
	$Sens = p(\mathbf{p}' \mid \mathbf{p})$	$Spec = p\left(n' \mid n\right)$	Acc = p(TP + TN)

Condition	Stats	Example
High Sensitivity, Low Specificity	p' >> n'	test is always positive
Low Sensitivity, High Specificity	n'>>p'	test is always negative
High PPV, Low NPV	p >> n	high disease prevalence
Low PPV, High NPV	n >> p	low disease prevalence
High PPV, Low Sensitivity	FN >> FP	say they are negative most of the time for a high preva
High Sensitivity, Low NPV		
High Specificity, Low NPV		
High PPV, Low Specificity		

Mean rates (events per 1000 patient days) of incidents in Phase 1 and Phase 2. Paired comparisons were made using t-tests

Confusion Matrix

- Sensitivity and 1 Specificity
- PPV and 1 NPV
- Sensitivity and PPV
- Sensitivity and 1 NPV
- Specificity and 1 PPV
- Specificity and NPV

- Sensitivity = TP:FN (say everyone is positive)
- Specificity = TN:FP (say everyone is negative)
- PPV = TP:FP (high prevalence disease)
- NPV = TN:FN (low prevalence disease)
- Accuracy = (TP + TN):(FP + FN)