13 mai 2020

Question 1. Quand le nombre d'observations tend vers l'infini,
□ le risque empirique d'un modèle converge vers le risque de ce modèle ;
\Box le risque empirique minimal converge vers le risque minimal;
$\hfill \square$ le minimiseur du risque empirique converge vers le minimiseur du risque.
Question 2. Supposons un problème de classification en 2 dimensions, avec n observations. Nous considérons comme espace des hypothèses l'ensemble des unions de K cercles ($K>0$ est fixé) : les points intérieurs à ces cercles sont étiquetés positifs, les autres négatifs. Alors
□ Il ne s'agit pas d'un modèle paramétrique.
\square Il s'agit d'un modèle paramétrique à K paramètres.
\square Il s'agit d'un modèle paramétrique à $2K$ paramètres.
$\hfill \square$ Il s'agit d'un modèle paramétrique à $3K$ paramètres.
Question 3. Quel algorithme préférer pour entraı̂ner une régression linéaire sur un jeu de données contenant n observations et p variables :
- Si $n = 10^5$ et $p = 5$?
\square Une inversion de matrice.
\square Un algorithme du gradient.
$- { m Si} n = 10^5 { m et} p = 10^5 ?$
\square Une inversion de matrice.
\square Un algorithme du gradient.

Solution

Question 1. Seule la première proposition est vraie.

Question 2. Il s'agit d'un modèle paramétrique et nous avons besoin de 3K paramètres pour déterminer les coordonnées de K cercles (coordonnées du centre + rayon).

Question 3. Lorsque la matrice $X^{\top}X$ (de dimensions $p \times p$) est de petite taille (peu de variables), on pourra utiliser un algorithme d'inversion de matrice. Sinon, un algorithme du gradient sera plus approprié.