

Tanta University	3rd year, Computers & Control Dept.
Faculty of Engineering	Digital Control

Sheet 6

1. Draw the Bode diagram of the following transfer functions, Determine the phase margin and gain margin:

a) $GH(z) = \frac{0.5(z+0.1)}{(z-0.7)(z-0.9)}$

b) $GH(z) = \frac{0.5(z-1)}{(z-0.1)(z-0.8)}$

c) $GH(z) = \frac{0.5(z+0.76)}{(z-1)(z-0.45)}$

2. For the following systems:

a) $y(k+2) + 6y(k+1) + 5y(k) = 2r(k)$

b) $y(k+2) + 6y(k+1) + 5y(k) = 3r(k+2) + r(k+1) + 2r(k)$

c) $\frac{Y(z)}{R(z)} = \frac{z^2+2}{z^3+3z^2-4z+2}$

d) $\frac{Y(z)}{R(z)} = \frac{z^3+z^2-3z-4}{z^4-2z^3+2z^2+5z+4}$

- i. Obtain the controllable canonical state-space form.
- ii. Obtain the observable canonical state-space form.
- iii. Draw the state diagram for these forms.

3. For the following systems:

a) $y(k+2) + 6y(k+1) + 5y(k) = 2r(k)$

b) $y(k+2) + 6y(k+1) + 5y(k) = 3r(k+2) + r(k+1) + 2r(k)$

c) $\frac{Y(z)}{R(z)} = \frac{z-0.5}{z(z+0.5)(z+0.25)}$

d) $\frac{Y(z)}{R(z)} = \frac{z-0.5}{(z+0.5)^2(z+1)}$

- i. Obtain the diagonal state-space form.
- ii. Draw the state diagram for the obtained form.

Dr. Mohammed Arfa