Contributions to the structure theory of ω -languages

Albert Zeyer

10. Februar 2011

Inhaltsverzeichnis

1 Introduction

...

2 Automat

Ein **Automat** $\mathcal A$ auf dem Alphabet Σ ist gegeben durch eine Menge Q von Zuständen und einer Teilmenge $E\subset Q\times A\times Q$ von Transitionen. Außerdem ist in der Regel eine Teilmenge $I\subset Q$ von Startzuständen und eine Teilmenge $F\subset Q$ von Endzuständen gegeben.

Wir schreiben dafür: $\mathcal{A} = (Q, \Sigma, E, I, F)$.

Der Automat ist endlich genau dann, wenn Q und Σ endlich sind.

Der Automat ist deterministisch, wenn E eine Menge von Funktionen $Q \times A \to \mathcal{Q}$ und wenn |I| = 1 sind.

2.1 Pfad

Zwei Transitionen $(p, a, q), (p', a', q') \in E$ sind aufeinanderfolgend, wenn q = p'.

Ein Pfad in dem Automat \mathcal{A} ist eine Folge von aufeinanderfolgenden Transitionen, geschrieben als: $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \dots$

2.2 Akzeptanz von endlichen Wörtern

Ein Automat $\mathcal{A}=(Q,\Sigma,E,I,F)$ akzeptiert ein endliches Wort $w=(a_0,a_1,...,a_n)\in\Sigma^*$ genau dann, wenn es einen Pfad $q_0\to^{a_0}q_1\to^{a_1}q_2\ldots\to^{a_n}q_{n+1}$ gibt mit $q_0\in I$ und $q_{n+1}\in F$.

Die Sprache $L^*(\mathcal{A})$ ist definiert als die Menge aller Wörter, die von \mathcal{A} akzeptiert werden.

3 *-Sprachklassen

Die *-Sprachklasse ist die Menge aller Sprachen von Wörtern $w \in \Sigma^*$, also die Menge von Sprachen von endlichen Wörtern.

3.1 reguläre Sprachen

Eine Sprache ist genau dann regulär, wenn sie von einem endlichen Automat erkannt wird.

- 3.2 piece-wise testable
- 3.3 k-locally testable
- 3.4 dot-depth-n
- 3.5 starfree
- 3.6 locally modulo testable
- 3.7 R-trivial
- 3.8 endlich / co-endlich
- 3.9 endwise testable

4 ω -Sprachklassen

4.1 Büchi Automat

Ein Automat $\mathcal{A} = (Q, \Sigma, E, I, F)$ Büchi-akzeptiert ein Wort $w = (a_0, a_1, a_2, ...) \in \Sigma^{\omega}$ genau dann, wenn es einen unendlichen Pfad $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \to^{a_2} q_3...$ gibt mit $q_0 \in I$ und $\{q_i | q_i \in F\}$ unendlich, also der unendlich oft einen Zustand F erreicht.

Die Sprache $L^{\omega}(\mathcal{A})$ ist definiert als die Menge aller unendlichen Wörter, die von \mathcal{A} Büchiakzeptiert werden.

Man bezeichnet einen Automaten $\mathcal A$ als Büchi Automat, wenn man von der Büchi-Akzeptanz ausgeht.

4.2 Muller Automat

Ein Muller Automat \mathcal{A} ist ein endlicher, deterministischer Automat mit Muller Akzeptanzbedingung und einer Menge $\mathcal{T} \in 2^Q$, genannt die Tabelle des Automaten (anstatt der Menge F). Dabei wird ein Wort $w \in \Sigma^{\omega}$ akzeptiert genau dann, wenn es einen entsprechenden Pfad p gibt mit $Inf(p) \in \mathcal{T}$, wobei Inf(p) die Menge der unendlich oft besuchten Zustände ist. Wir schreiben $\mathcal{A} = (Q, \Sigma, E, i, \mathcal{T})$.

4.3 Rabin Automat

Ein Rabin Automat ist ein Tuple $\mathcal{A} = (Q, \Sigma, E, i, \mathcal{R})$, wobei (Q, Σ, E) ein deterministischer Automat ist, i ist der Startzustand und $\mathcal{R} = \{(L_j, U_j) | j \in J\}$ ist eine Familie von Paren von Zustandsmengen. Ein Pfad p ist erfolgreich, wenn er in i beginnt und wenn es einen Index j inJ gibt, so dass p unendlich oft U_j besucht und nur endlich oft L_j . Ist der Automat endlich, so ist dies äquivalent mit $Inf(p) \cap L_j = \emptyset$ und $Inf(p) \cap U_j \neq \emptyset$.

4.4 Staiger Wagner Klasse zu K

5 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$

5.1 ...

a) * alle Sprachen $K\dot{\Sigma}^{\omega} = ext(K), K \in \mathcal{K}$

- * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf - s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen $\lim \mathcal{K}$ BC Muller-erkennbare (BC: boolean closure ?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure

alle der Form $\bigcup_{i=1}^n U_i \dot{V}_i^{\omega}, \ U_i, V_i \in \mathcal{K}$ d) \mathcal{K} nicht suffix sensitiv

 $K \in \mathcal{K} \Rightarrow K\dot{\Sigma}^* \in \mathcal{K}$

Hauptfrage: Für welche K ergibt sich eine andere Sprache als bei K = Reg.

6 *-Sprachklassen

- 6.1 regular
- 6.2 piece-wise testable
- 6.3 k-locally testable
- 6.4 dot-depth-n
- 6.5 starfree
- 6.6 locally modulo testable
- 6.7 R-trivial
- 6.8 endlich / co-endlich
- 6.9 endwise testable
- 7 ω -Sprachklassen
- 7.1 Staiger Wagner Klasse zu \mathcal{K}
- 8 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$
- 8.1 ...
- a) * alle Sprachen $K\dot{\Sigma}^{\omega} = ext(K), K \in \mathcal{K}$
 - * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen $\lim \mathcal{K}$ BC Muller-erkennbare (BC: boolean closure?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure
 - alle der Form $\bigcup_{i=1}^n U_i \dot{V}_i^{\omega}, U_i, V_i \in \mathcal{K}$
 - d) \mathcal{K} nicht suffix sensitiv
 - $K \in \mathcal{K} \Rightarrow K\dot{\Sigma}^* \in \mathcal{K}$

9 Lemmas

9.1 piece-wise testable

Theorem 9.1.

$$BCext\mathcal{L}^*(piece-wisetestable) = BC \lim \mathcal{L}^*(piece-wisetestable)$$

Proof. And the proof comes here.

Literatur