Chapter 4 Notes

4.0.最小上界定理

4.1. Cauchy convergence and completeness
Cauchy sequence and convergence
Cauchy convergence and completeness

4.2. Completeness of \mathbb{R}^N

4.3. The contraction mapping theorem (CMT)

4.4. Compactness

Compactness Definition
Compactness Properties

Compactness for subsets of \mathbb{R}^N

Compactness and completeness

Chapter 4 Notes

Overview

Cauchy sequence
Completeness
CMT
Comapact metric space
Compactness properties
Compact subsets
Compact implies complete

4.0.最小上界定理

Theorem 4.0.1. — LUB定理

实数非空子集有上界,则它有最小上界 ⇒ 实数完备性

这个定理对于度量空间的推广并不可行,所以用柯西收敛来定义完备.

4.1. Cauchy convergence and completeness

Cauchy sequence and convergence

为了用不依赖极限值 $l\in X$ 的表示法来定义收敛性,遂引入柯西收敛这一只依赖于 (x_n) 序列中元素的表示法.

Definition 4.1.1.

Let (X,d) be a metric space and let (x_n) be a sequence of X. We say that it is *Cauchy convergent* (or just *Cauchy*) if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $d(x_n, x_m) < \epsilon \ \forall n, m > N$

Lemma 4.1.2.

 (x_n) converges \implies (x_n) is Cauchy

然而, 反之却不一定成立.

Tips: 前面提到,收敛值 l 必须满足 $l \in X$ (<u>收敛值要在集内</u>). 所以柯西收敛有时不一定收敛. 但是,若收敛,则无论收敛值是否在X内,一定柯西收敛.

Cauchy convergence and completeness

Definition 4.1.4. — 完备性的定义

A metric space (X, d) is *complete* if <u>every Cauchy sequence</u> *converges*.

Tips: 提到收敛,收敛值必须在X中.

Theorem 4.1.6 — Completeness and closed

Let (X,d) be a metric space, and $A\subseteq X$ be a subset, and let d_A be the distance induced by d on the subset A.

- 1. If (A, d_A) is complete, then A is closed in (X, d_X)
- 2. If (X, d) is complete and A is closed in (X, d_X) , then (A, d_A) is also complete.

 (X,d_X) is complete and $Y\subset X$, then (Y,d_X) is complete $\iff Y\subset X$ is closed

Remark 4.1.7.

同胚的两个度量空间,其中一个是完备的不一定意味着另一个也是完备的.

例如: $((-\pi/2,\pi/2),d_1)$ 与 (\mathbb{R},d_1) 同胚,但后者完备,前者不完备.

4.2. Completeness of \mathbb{R}^N

In order to prove (\mathbb{R}^N,d_p) is a complete metric space $(p=\infty$ is accepted).

4.3. The contraction mapping theorem (CMT)

Definition 4.3.1. — 不动点

Let X be a set, $f: X \to X$ a function and let $p \in X$. We say that p is a fixed point if f(p) = p.

Definition 4.3.3. — <mark>压缩映射</mark>

Let (X,d) be a metric space. Then $f: X \to X$ is a contraction when \exists $constant \ L \in [0,1)$ s.t. $d(f(x),f(y)) \leq L \cdot d(x,y) \ \forall x,y \in X.$

Theorem 4.3.4. — CMT

Suppose (X,d) is a complete metric space. If $f:(X,d)\to (X,d)$ is a contraction, then f has a unique fixed point.

Lemma 4.3.7.

压缩映射 f 是连续的.

Tips: CMT证明过程大致是:

- 1. 用反证法来证明不动点的唯一性.
- 2. 为了证明不动点的存在,任取 $x_0 \in X$, 递归定义 $x_{n+1} = f(x_n)$, $n = 0, 1, 2, \cdots$. 后证 $d(x_{n+1}, x_n) \leq L^n d(x_1, x_0)$, 并推导出 $(x_n)_{n=0}^{\infty}$ 是柯西列,且该柯西列极限为 f 的不动点.

3. Remark 4.3.9.

证明过程中,有,

$$d(x_n,x_m) \leq d(x_1,x_0) \cdot \frac{L^m}{1-L}$$

So, take $n \to \infty$,

$$d(l,x_m) \leq d(x_1,x_0) \cdot \frac{L^m}{1-L}$$

 $\forall x \in X$, 总有充分大的m, s.t. $\forall \varepsilon > 0$,

$$d(f(x),x)\cdot rac{L^m}{1-L}$$

这阐述了 $f^m(x)$ 序列向极限值不动点 l 逼近的性质.

Tips: 4.3.3. 中,是不能有 L=1 的 (有些教材就 L=1 的情况称 f 为压缩映射,就 $L\in [0,1)$ 的情况 称 f 为严格压缩映射).

Lemma 4.3.6. — 单变量实值函数是压缩映射的准则

Let $f: [a,b] \to [a,b]$ be differentiable with $|f'(x)| \le L < 1 \ \forall x \in [a,b]$. Then f is a contraction when [a,b] is endowed with the distance d_1 .

证明由中值定理所得.

4.4. Compactness

Definition 4.4.1. — subsequence 子列的概念

Let (X_n) be a sequence in X. Let $(n_k)_{k\in\mathbb{N}}$ be a strictly increasing sequence of natural numbers. We say that $(x_{n_k})_{k\in\mathbb{N}}$ is a *subsequence* of $(x_n)_{n\in\mathbb{N}}$.

如果(X,d)中的序列 (x_n) 收敛于l,那么其子列也同样收敛于l.

Compactness Definition

Definition 4.4.2. — 紧致性的定义

We say that a metric space (X,d) is <u>compact</u> if every sequence admits a convergent subsequence. (当且仅当(X,d)中的每一个序列都至少有一个收敛子列.)

Compactness Properties

Proposition 4.4.5.

If $X \subseteq (\mathbb{R}, d_1)$ is s.t. (X, d_1) is compact, then X has a maximum and a minimum.

Tips:

- 1. 先证有界.
- 2. 再利用紧致性证明上确界在 X 中.

Corollary 4.4.8.

Suppose (X,d_X) is *compact*, and that $f:X\to\mathbb{R}$ is *continuous* (with the distance d_1 on \mathbb{R}). Then f has a *minimum* and a maximum.

Theorem 4.4.6. Key Result — 连续映射保持紧致性

If $f:(X,d_X) o (Y,d_Y)$ is a *continuous* function, if (X,d_X) is *compact*, then so is $(f(X),d_Y)$.

证明: $f(x_{n_k}) \to f(l)$, 再用紧致性定义叙述即可.

Corollary 4.4.7. <mark>紧致性是一种拓扑性质</mark>

If (X, d_X) is homeomorphic to (Y, d_Y) then,

$$(X, d_X)$$
 is compact \iff (Y, d_Y) is compact

如果这里的"紧致"换成"完备",则不成立.

Compactness for subsets of \mathbb{R}^N

Question: 什么样的(\mathbb{R} , d_1) 的度量子空间是紧致的?

Lemma 4.4.10

Let (X,d) be a metric space. Suppose that $C\subseteq X$ and (C,d) is *compact*. Then C is a *closed subset* of (X,d).

证明: 若不是闭子集,则存在序列不收敛于C(序列收敛于L,则其每一子列也收敛于L),则其不紧致,与紧致前提矛盾.

Theorem 4.4.11 — Bolzano-Weierstrass Theorem

Let $X\subseteq (\mathbb{R},d_1)$. Then,

 (X, d_1) is compact \iff X is closed and bounded

Proof: 同名定理:每一有界序列都有收敛子列.

Theorem 4.4.12. 上述定理的多维推广

 (\mathbb{R}^N,d_p) 的紧致子集是有界闭子集. (if and only if)

Definition 4.4.13. \mathbb{R}^N 上有界的定义

 $X\subseteq\mathbb{R}^N$ is bounded if there exists an R>0 s.t. $X\subseteq B_R(0)$.

Compactness and completeness

Lemma 4.4.17.

Let (X,d) be a metric space. Suppose (x_n) is a Cauchy sequence and a subsequence (x_{n_k}) converges to l. Then (x_n) converges to l.

Corollary 4.4.18.

A compact metric space is complete.

相反叙述是错误的.