情報統計第5回

2023年8月2日 神奈川工科大学

櫻井 望

公益財団法人かずさDNA研究所 先端研究開発部 シーズ開拓研究室 藻類代謝エンジニアリングチーム

昨日

- 図で見える化
- 数値で見える化(統計の基礎)
 平均、分散、標準偏差
 母平均、母分散…

- アンケートでデータを作る
- Excelの基本操作
- Pythonやってみる

今日

見える化した数値や、そこから感じ取れる仮説が、どれだけ正しそうかを、客観的に評価する方法

の考え方を学びます

有意水準5%で 帰無仮説は棄却されました。 従って、**です。

検定

●区間推定

・分布とその使い方

学習目標

区間推定を通じて、検定などの基本となる分布と、その使い方を身につけます

- ✓ 正規分布
- ✓ 標準正規分布
- ✓ t分布

統計的推定

母集団が大きい、あるいは無限した。 観測できないとき、標本を観測すること で、母集団の性質を調べる。

母平均ル

◆ 標本平均 x

一致が期待できる

母分散 σ^2 標本分散 s^2

実は一致が期待できない!!

一致が期待できるのは、母集団の全標本を観測で きる場合(全数検査)だけ

一致が期待できる

不偏(標本)分散 v2

真の値から外れていないことを、 不偏性があると言うので

点推定

「母平均 μ はこの値」、「母分散 σ^2 はこの値」のように、一つの代表値を決める方法

区間推定

標準正規分布

復習

分布

データの散らばり具合 を表したもの

観測結果を表したもの

事象の起こる確率 を表したもの

正規分布(ガウス分布)

- ●平均値が中心で、
- ●平均値に近いものが多く、
- ●左右に均等な釣り鐘状の分布

均等な確率で生じたばらつきの場合にとる分布

- ✓ 身長の分布
- ✓ 測定誤差の分布
- ✓ 自然界で起こるゆらぎ

など

サンプリングして標本平均xを算出して、を繰り返すと…。

標本平均 \bar{x} のヒストグラム

標本平均家の分布

- 正規分布に従う
- ◆ 分散は、標本数 n が大きいほど、小さくなる
 n=母集団数N なら、全数検査なので、母平均μとのずれはゼロになる。
 n=1 なら、母集団のうち一つずつを測定するのと同じなので、分散も同じ。
- 分散は、母分散 σ²の1/nになる

中心極限定理

標準誤差

母平均μの推定値のばらつきを表したもの

= 標本平均*x*の分布の標準偏差

中心極限定理から

= 母分散 σ^2 の1/n、の平方根

$$= \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$$

$$= \frac{1}{\sqrt{n}} \times \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

不偏標本標準偏差

正規分布

標準正規分布

平均と分散で決まる $N(\mu, \sigma^2)$ と表記

N(0, 1)

標準化(Z変換)

 $N(\mu, \sigma^2)$ の正規分布に従う変数Xについて、

$$Z = \frac{X - \mu}{\sigma}$$

と変換すると、標準正規分布になる。

中央をμずらして、幅を1に合わせているだけ!

標準正規分布

- 形が一定なので、ある値より外側の面積が計算できる
 例)1.96以上なら2.5%
- 逆に言えば、外側がある面積(事象がおこる確率)となる境界値を求めることができる
- 左右対称。上側(下側)の面積を上側(下側)確率という

標準正規分布表

上側確率をあらかじめ 計算したもの

Excelでは、 NORM.S.DIST関数 NORM.S.INV関数 で求められる

u	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0.14007	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551
1.7	0.04457	0.04363	0.04272	0.04182	0.04093	0.04006	0.03920	0.03836	0.03754	0.03673
1.8	0.03593	0.03515	0.03438	0.03362	0.03288	0.03216	0.03144	0.03074	0.03005	0.02938
1.9	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0.02442	0.02385	0.02330
2.0	0.02275	0.02222	0.02169	0.02118	0.02068	0.02018	0.01970	0.01923	0.01876	0.01831
2.1	0.01786	0.01743	0.01700	0.01659	0.01618	0.01578	0.01539	0.01500	0.01463	0.01426
2.2	0.01390	0.01355	0.01321	0.01287	0.01255	0.01222	0.01191	0.01160	0.01130	0.01101
2.3	0.01072	0.01044	0.01017	0.00990	0.00964	0.00939	0.00914	0.00889	0.00866	0.00842
2.4	0.00820	0.00798	0.00776	0.00755	0.00734	0.00714	0.00695	0.00676	0.00657	0.00639
nal-distribution/table/							0.00523	0.00508	0.00494	0.00480

出典

https://to-kei.net/distribution/normal-distribution/table/

区間推定の考え方

- ある事象が正規分布に従っていることが分かっており、
- 平均μ、分散σ²が分かっているなら、
- ●標準正規分布におけるa%のときの境界値を用いて、もとの 正規分布の境界値を計算する

(この境界値の間の区間を、a%信頼区間という)

標準化

標準化の逆

$$Z = \frac{X - \mu}{\sigma}$$

$$X = \mu + Z\sigma$$

例)Z = 1.96なら、
$$X = \mu + 1.96 \sigma$$

母集団の平均値を推定する問題の場合

 μ 推定值: \bar{x}

標準偏差: $\frac{\sigma}{\sqrt{n}}$

を当てはめてみると…

区間推定のまとめ

母平均 μ の推定値:標本平均 \bar{x}

推定値の標準偏差:標本平均の標準偏差 $\frac{\sigma}{\sqrt{n}}$

この場合、95%信頼区間は、以下で求められる

$$\bar{x} - 1.96 * \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + 1.96 * \frac{\sigma}{\sqrt{n}}$$

意味:

「母集団から標本を取り出して95%信頼区間を求めるという作業を100回やったとき、母平均がその区間内に含まれる場合が95回おこる」

イメージ

一般化すると

区間推定(分散既知の場合)

母平均 μ 、母分散 σ^2 の正規分布する母集団から抽出したn個の標本から求められる、a%信頼区間は以下となる。

$$\bar{x} - \mathbf{A} * \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + \mathbf{A} * \frac{\sigma}{\sqrt{n}}$$

ここでAは、標準正規分布表から、

 α (信頼係数) = (100-a)/2/100

で求められる境界値

ただし・・・

$$\overline{x}$$
 - 1.96 * $\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x}$ + 1.96 * $\frac{\sigma}{\sqrt{n}}$

母分散 σ^2 は不明な場合がほとんど

母平均 μ が不明(推定したい)のに母分散 σ^2 だけ分かっているって、 どういうこと? そんな状況はほとんどない!

母分散が不明な場合は、正規分布ではなく、t分布を用いて同様に考える

ナ 分布

標準正規分布の、 標本数が少ない場合の 実用化バージョン

t分布 スチューデントの t 分布

正規分布する母集団から標本をとり、母平均μを求めようとするとき、標本数が少ないと、標本側で起こる確率を、標準正規分布ではうまく表現しきれない。実際の実験などでは、標本数が少ないことがほとんど。そこで考え出された、

標準正規分布の、標本数を考慮した、実用化バージョン。

考えた人

ウィリアム・シーリー・ゴセット William Sealy Gosset イギリスの統計学者

出典:Wikipedia

出典:ギネス社HP

ギネスビール社で醸造とオオムギの品種改良の研究をするなかで t 分布を発見したが、ギネス社は社員の論文発表を禁じていたため、スチューデントというペンネームで論文発表した(1908年)。

t 分布

自由度(標本-1)が小さいほど裾野 が広がっており、自由度が高くなる と標準正規分布に近づく

Excelでは、T.DIST、T.INV関数で計算できる

t 分布表

□自由度ν	lpha=0.1	lpha=0.05	$\alpha=0.025$	lpha=0.01	lpha=0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819

出典

https://to-kei.net/distribution/tdistribution/t-table/

t 分布

性質:母平均ル、不偏分散v²の正規分布に従う母集団から抽出したn個の標本を使って求めた次の統計量tは、自由度(n-1)のt分布に従う。

$$t = \frac{\overline{x} - \mu}{\frac{v}{\sqrt{n}}}$$

$$z = \frac{X - \mu}{\sigma}$$
標準化(z変換)

「標本平均家の分布を標準化した」と言える。

これまでと同様の考え方

区間推定(母分散が不明な場合)

母平均ル、不偏分散v²の母集団から抽出したn個の標本から求められる、a%信頼区間は以下となる。

$$\overline{x} - A * \frac{v}{\sqrt{n}} \le \mu \le \overline{x} + A * \frac{v}{\sqrt{n}}$$

ここでAは、t分布表から、

- ✓自由度=n-1
- $✓ \alpha$ (信頼計数) = (100-a)/2/100

で求められる境界値。

まとめ

分布(確率密度関数)

事象が起きる確率を推定できる!

描いてみよう

- 標準正規分布
- t分布
- 裾野の面積と境界値を計算

標準化してみよう

【参考】覚える必要はありません

正規分布の確率密度関数

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

標準正規分布の確率密度関数

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

【参考】覚える必要はありません

t 分布の確率密度関数

$$f(t) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \Gamma\left(\frac{v}{2}\right)} (1 + \frac{t^2}{v})^{-(\frac{v+1}{2})}$$

v: 自由度