Analyzing COVID-19 Time-Series Data & Government Policy Responses for Forecasting Deaths

IACIS Annual International Conference - 2021

- Joshua Hammond, University of St. Thomas (MN) hamm9537@stthomas.edu
- Melinda Caouette, University of St. Thomas (MN) caou1088@stthomas.edu
- Dr. Manjeet Rege, University of St. Thomas (MN) rege@stthomas.edu

https://doi.org/10.48009/2_iis_2021_122-135

Introduction & Background

- Governments around the world implemented various **public health** and **policy countermeasures** intended to slow the continued outbreak of COVID-19 disease in 2020 and 2021
- How effective are these countermeasures, and is there a predictive relationship between government policy response, confirmed case counts, and deaths that would allow for better forecasting?

Réséarch Hypothesis

 ${
m H_{1}}$: More stringent government public health policy measures have some predictive power – not necessarily causal – which can improve forecast accuracy of COVID-19 deaths.

H₂: COVID-19 deaths can be forecast accurately using vector auto-regression and vector error correction models.

Data Source: https://github.com/OxCGRT/covid-policy-tracker (Hale et al., 2020)

University of Oxford - Blavatnik School of Government - Project Page:

https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker Cleansed data is available here:

https://github.com/joshhammond/IIS_COVID19_Data.
Data was sourced in March 2021.

"ETS" – Econometric & Time Series analysis "VARMAX" – Vector AutoRegressive Moving-Average processes with eXogenous regressor models (SAS Institute Inc., 2018).

Technical details on how SAS implements vector autoregression, vector error correction, Granger causality, the Dickey-Fuller test for stationarity, and Akaike's information corrected criteria (AICC) are provided in the online documentation for the VARMAX procedure located here:

https://support.sas.com/documentation/onlinedoc/ets/151/varmax.pdf (SAS Institute Inc., 2018).

SASPy interface is documented here:

https://sassoftware.github.io/saspy/

https://support.sas.com/ondemand/saspy.html#one

Data Source: https://github.com/OxCGRT/covid-policy-tracker (Hale et al., 2020)

Cleansed data is available here:

https://github.com/joshhammond/IIS_COVID19_Data.

Image source – Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

Image source – Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

5 Granger Causality

- fiven two time-series, a **policy stringency index** and **confirmed deaths**, you can state that the stringency index *granger-causes* confirmed deaths if including the past values of the stringency index improves the predictive accuracy of confirmed deaths in a model *more* than considering confirmed deaths alone
- This fits well with VAR models as there can be multiple time-series influencing each other
- The test states a *null-hypothesis* that stringency index does not granger-cause confirmed deaths, with a significantly small p-value indicating that the null-hypothesis can be rejected
 Our threshold for p-value cut off was 0.05
- Time-series that were above the threshold were excluded from the forecast models
- The SAS code is shown in the appendix

- ✓ Mødels were trained on one year of data running from 1/1/2020 to 12/31/2020
- Four models were used for each country:
 - 1. Multivariate Vector Auto Regression (VAR)
 - 2. Univariate Auto Regression (AR)
 - 3. Multivariate Vector Error Correction (VEC)
 - 4. Univariate Vector Error Correction (VEC)

Models were evaluated by calculating the root mean square error (RMSE) for 52 days of forecasted deaths running from 1/1/2021 to 2/21/2021

 $RMSE = \sqrt{\frac{\sum_{i=1}^{N} (\hat{y_i} - y_i)^2}{N}}$

- Multivariate models consist of at least confirmed cases and confirmed deaths, and including other time-series if granger-causation can be confirmed
- Univariate models use only confirmed deaths time-series

Results

- The Granger causality p-values for most of the OxCGRT composite indexes (government response index, containment and health index, economic support index, and stringency index) were very high (>> 0.05) indicating that we cannot reject the null hypothesis that these indexes do not granger-cause confirmed deaths
 - In a handful of countries, we did find that the stringency index granger-caused confirmed deaths and we included it in the model
- The OxCGRT Stringency Index was found to granger-cause confirmed deaths in the models for Brazil, Italy and Japan
 - The RMSE was improved for Italy and Brazil while the error rate was improved for all three countries
- The forecasts for 52 days out have less than 5% error for 11 out of 14 countries

Result	s: Sumr	mary (of 52	-Day	Fore	cast			
RMSE: Lower is better	Country	Multivariate VAR's RMSE	Univariate AR's RMSE	Multivariate VEC's RMSE	Univariate VEC's RMSE	Forecast on 02/21/2021	Cumulative Deaths on 02/21/2021	Error Rate	
	China	1.7	1.5	81.6	146.4	4,634	4,636	-0.04%	
	United States	6494.7	5985.6	9833.9	11733.3	500028	499009	0.20%	
	Australia	10.0	2.4	19.2	21.5	913	909	0.44%	
	Brazil	2149.5	7368.5	3793.4	7957.4	244955	246504	-0.63%	
	Japan	1036.7	988.9	266.7	718.4	7,421	7,485	-0.86%	/
	Israel	117.6	605.2	191.3	634.6	5643	5577	1.18%	
	Sweden	670.3	840.8	606.6	952.1	12415	12649	-1.85%	/
	India	6358.7	1300.8	2304.7	7262.0	159,386	156,385	1.92%	1/2
	Italy	4245.2	3304.5	1183.4	3270.0	98,521	95,718	2.93%	11
	New Zealand	2.3	0.4	2.6	0.5	25	26	-3.85%	11/1
	South Africa	1768.3	2284.1	7695.7	2178.3	51,013	49,053	4.00%	7 /
	United Kingdom	5977.5	5644.1	7092.9	8593.3	128803	120580	6.82%	11
	Spain	2930.8	3788.8	3750.5	2956.9	61,260	67,101	-8.70%	< //
	South Korea	206.6	259.2	169.6	680.8	1,901	1,562	21.70%	7/1
St.Thomas									

Image source – Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege The "Error Rate" is calculated by comparing the forecasted cumulative deaths to the actual cumulative deaths on 2/21/2021.

Image source – Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

Image source – Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

Image source – Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

Conclusions

- In this study we attempted to identify relationships between various indexes of government policy, confirmed case count, and confirmed deaths and quantify their predictive power using Vector Auto Regression (VAR) methods
- \bullet H_1 : More stringent government public health policy measures have some predictive power not necessarily causal which can improve forecast accuracy of COVID-19 deaths
 - In a handful of countries (3) including the stringency index also improved the forecast, however most of the other policy indexes did not improve the forecast accuracy.
- H₂: COVID-19 deaths can be forecast accurately using vector auto-regression and vector error correction models
 - We found that the multivariate VAC and VEC models outperformed the univariate models in eight out of fourteen countries studied
 - We interpret this to mean that for most countries the multivariate models outperform simple univariate
 AR/VEC models.

Special thanks to Dr. Rege for his guidance and feedback on this project as well as my co-author Melinda Caouette!

Special thanks to Dr. Rege for his guidance and feedback on this project as well as my co-author Melinda Caouette!

Code by:

Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

VARMAX Code Example -Test granger causality proc varmax data=work.covid_region_sds; id Date interval=day; model ConfirmedDeaths ConfirmedCases StringencyIndex / noint p=11 dif=(ConfirmedDeaths(1,1) StringencyIndex(1) GovernmentResponseIndex(1) ContainmentHealthIndex(1) ConfirmedCases(1,1)); causal group1=(ConfirmedDeaths) group2=(StringencyIndex); causal group1=(ConfirmedDeaths) group2=(ConfirmedCases);

Code by:

Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege

Code by:

Joshua Hammond, Melinda Caouette, and Dr. Manjeet Rege