Started on Thursday, 9 November 2023, 7:20 AM

State Finished

Completed on Thursday, 9 November 2023, 7:49 AM

Time taken 29 mins 5 secs

Marks 12.67/15.00

Grade 8.44 out of 10.00 (**84**%)

Feedback Great work! 5

Question **1**

Complete

Mark 1.00 out of 1.00

Given two graphs. Are they isomorphic?

Select one:

True

False

Question **2**

Complete

Mark 1.00 out of 1.00

Which graphs are bipartite?

$$G=(\{a,b,c,d,e\},\ \{(a,b),(b,c),(c,d),(d,a),(a,e),(e,c)\})$$

Yes

$$G = (\{a,b,c,d,e,f\},\; \{(a,c),(a,f),(b,f),(b,c),(c,d),(f,d),(f,e),(c,e)\})$$
 Yes

Question ${\bf 3}$

Complete

Mark 1.00 out of 1.00

Given the rooted tree root a.

How many descendants of the vertex b?

Select one:

- a. 3
- o b. 4
- O c. 1
- Od. 2
- e. 5

Question **4**

Complete

Mark 0.67 out of 1.00

Consider the directed graph G with the adjacency matrix (in the order of vertices A,B,C,D)

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Determine if the statement is True.

The out-degree of ${\it D}$ is ${\it 3}$

No

The in-degree of ${\it C}$ is ${\it 3}$

No

There are loops at ${\cal D}$

True

Question 5	
Complete Mark 1.00 out of 1.00	
Consider the directed graph G with the a	adjacency matrix (in the order of vertices A,B,C,D)
consider the directed graph of with the t	rajucency matrix (in the order of vertices 11, D, O, D)
	$\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 1 & 3 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
How many paths of length 3 from B to $\mathcal C$	C?
Select one:	
○ a. 5	
O b. 6	
O d. 12	
e. None of the other choices is correct	ct
Question 6	
Complete	
Mark 1.00 out of 1.00	
Find the length of the bit string when en	coding the message $abcbcdcdd$ by a Huffman coding.
Select one:	
a. 15	
b. 18	
○ c. 19	
O d. 16	
e. 17	
Question 7	
Complete Mark 0.00 out of 1.00	
17101K 0.00 Out 01 1.00	
Find the least number of leaves in a b	alanced full 4 -ary tree of height 3 .
Answer: 11	
Allower.	

Question ${\bf 8}$

Complete

Mark 1.00 out of 1.00

Find the strongly connected components of the following graphs.

Select one:

- a. 2
- b. 3
- O c. 1
- Od. 4

Question **9**

Complete

Mark 1.00 out of 1.00

Find the length of a shortest path between \boldsymbol{a} and \boldsymbol{z} in the given weighted graph.

Answer: 13

Question **10**

Complete

Mark 1.00 out of 1.00

What is the total weight of the minimum spanning tree produced by the graph below:

Answer: 22

Question 11

Complete

Mark 1.00 out of 1.00

How many edges do you have to remove from the n_Cube graph Q_3 to destroy all Hamilton cycles?

Select one:

- a. 4
- b. None of the other choices is correct.
- c. 2
- Od. 3

Question 12		
Complete		
Mark 1.00 out of 1.00		
Given the graph. Choose correct state	ement.	
a		

Select one:

_	The graph	hac Eular	nathe but no	Eulor	circuito
a.	rne graph	nas Euler	paths but no	Luier	circuits

 \bigcirc b. The graph does not have Euler paths

oc. The graph has Euler circuits

d. None of the other choices is correct

Question	13				
Complete					

Mark 1.00 out of 1.00

Find the value of the postfix expression

2 2 4 + 3 2 1 + 5 3 + * -

Answer: -118

Question 14

Complete

Mark 0.00 out of 1.00

Does there exist a simple graph with 5 vertices whose degrees are

4, 4, 3, 2, 1?

Select one:

True

False

Find the number of colors needed to color the map so that no two adjacent regions have the same color.

Select one:

- a. 3
- O b. 4
- O c. 2
- Od. 5