Problemi con Corpi Rigidi (3)

1. Il sistema in figura è composto di due dischi orizzontali: il disco inferiore A è libero di ruotare senza attrito attorno al perno verticale fisso in O; il disco B ruota attorno al perno verticale O' che è fisso rispetto al disco A. La massa del disco A è $m_A=20$ kg e il suo raggio è $R_A=1$ m; il disco B ha massa $m_B=m_A/4$ e raggio $R_B=R_A/2$. La distanza tra i due perni è OO'=1

 R_B . Il sistema è inizialmente fermo, poi viene azionato un motorino interno al sistema fissato al disco A che esercita sul disco B un momento costante $M_{O'}=10\,$ Nm rispetto all'asse O'. Determinare:

- a) la velocità angolare ω_B del disco B quando il disco A ruota con velocità angolare $\omega_A = 5$ rad/s;
- b) l'accelerazione angolare α_A del disco A;
- c) la velocità angolare del sistema se il motorino si arresta nell'istante in cui il disco A ruota con velocità angolare ω_A , bloccando la rotazione del disco B attorno all'asse O'.
- 2. Un'asta omogenea di lunghezza $\ell=3$ m e massa M=1.5 kg può ruotare in un piano verticale attorno ad un asse orizzontale passante per il suo estremo O che oppone un

momento di attrito costante di modulo $M_{att}=9/(2\pi)$ Nm alle rotazioni. L'asta è inizialmente ferma orizzontale, poi la si lascia cadere. Quando l'asta raggiunge la posizione verticale, il suo estremo libero urta un corpo di dimensioni trascurabili e massa m=0.5 kg inizialmente fermo che rimane incollato all'asta stessa. Determinare:

- a) la velocità angolare ω_0 prima dell'urto;
- b) la velocità angolare ω_1 del sistema subito dopo l'urto;
- c) il modulo *J* dell'impulso fornito dalla reazione vincolare sull'asse di rotazione durante l'urto;
- d) l'energia E_{diss} dissipata nell'urto.