This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

1 (2015) (2015) (2016) (2016) (2016) (2016) (2016) (2016) (2016) (2016) (2016) (2016) (2016) (2016)

(43) International Publication Date 27 December 2001 (27.12.2001)

PCT

(10) International Publication Number WO 01/98330 A2

(51) International Patent Classification7:	C07K 14/00
(21) International Application Number:	PCT/BE01/00104

(22) International Filing Date: 20 June 2001 (20.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/212,913 20 June 2000 (20.06.2000) US
60/217,494 11 July 2000 (11.07.2000) US
01870015.3 26 January 2001 (26.01.2001) EP
01870024.5 12 February 2001 (12.02.2001) EP

(71) Applicant (for all designated States except US): EURO-SCREEN S.A. [BE/BE]; Route de Lennik 802, B-1070 Brussels (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LANNOY, Vincent [BE/BE]; Avenue de la Charmille 18/15, B-1200 Brussels (BE). BREZILLON, Stéphane [BE/BE]; Rue de l'Enseignement 56, B-1070 Brussels (BE). DETHEUX, Michel [BE/BE]; Chemin de l'Oasis 2b, B-7000 Mons (BE). PARMENTIER, Marc [BE/BE]; Route de Lennik 802, B-1070 Brussels (BE). GOVARTS, Cédric [BE/BE]; Rue de la Victoire 191, B-1060 Brussels (BE).

- (74) Agents: VAN MALDEREN, Eric et al.; Office Van Malderen, Place Reine Fabiola 6/1, B-1083 Brussels (BE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: A RECOMBINANT CELL LINE EXPRESSING GPCRx11 AS A FUNCTIONAL RECEPTOR VALIDATED BY ANGIOPEPTIN AND USEFUL FOR SCREENING OF AGONISTS AND ANTAGONISTS

(57) Abstract: The present invention is related to a G-protein coupled receptor or GPCRx11 similar to rat RTA receptor (37.%) and expressed in testis, thymus and uterus. Acquorin cell line expressing GPCRx11 has been used for screening of tissue extracts and reference ligands. GPCRx11 cells gave a specific signal with synthetic angiopeptin and a somatostatin analog allowing to validate this cell line for screening of natural or synthetic agonists and antagonists. In parallel, extended tissue distribution and polyclonal

antibodies have been produced to facilitate GPCRx11 characterisation.

01/98330 A2

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1

5

A RECOMBINANT CELL LINE EXPRESSING GPCR*11 AS A FUNCTIONAL RECEPTOR VALIDATED BY ANGIOPEPTIN AND USEFUL FOR SCREENING OF AGONISTS AND ANTAGONISTS

10

Field of the invention

[0001] The present invention is related to a newly identified member of the superfamily of G-protein-coupled receptors as well as to the various uses that can be made of said receptor.

[0002] The invention is also related to the polynucleic acid sequence (polynucleotide) encoding said receptor.

[0003] The invention is further related to methods
20 using receptor polypeptide and polynucleotide applicable to
diagnostic and treatment in receptor-mediated disorders.

[0004] The invention is further related to drugscreening methods using the receptor polypeptide and polynucleotide, to identify agonists and antagonists 25 applicable to diagnostic, prevention and/or treatment of said various disorders.

[0005] The invention further encompasses unknown agonists and antagonists detected and recovered based on the receptor polypeptide and polynucleotide.

30 [0006] The invention is further related to procedures for producing the receptor polypeptide and polynucleotide according to the invention, preferably by genetic recombinant methods.

Background of the invention

[0007] G-protein coupled receptors (GPCRs) are proteins responsible for transducing a signal within a cell. GPCRs have usually seven transmembrane domains. Upon 5 binding of a ligand to an extra-cellular portion or fragment of a GPCR, a signal is transduced within the cell that results in a change in a biological or physiological property or behaviour of the cell. GPCRs, along with G-proteins and effectors (intracellular enzymes and channels modulated by G-proteins), are the components of a modular signalling system that connects the state of intra-cellular second messengers to extra-cellular inputs.

[0008] GPCR genes and gene products are potential causative agents of disease and these receptors seem to be of critical importance to both the central nervous system and peripheral physiological processes.

[0009] The GPCR protein superfamily is represented in five families: Family I, receptors typified by rhodopsin and the beta2-adrenergic receptor and currently represented by over 200 unique members; Family II, the parathyroid hormone/calcitonin/secretin receptor family; Family III, the metabotropic glutamate receptor family, Family IV, the CAMP receptor family, important in the chemotaxis and development of D. discoideum; and Family V, the fungal mating pheromone receptor such as STE2.

[0010] G proteins represent a family of heterotrimeric proteins composed of α , β and γ subunits, that bind guanine nucleotides. These proteins are usually linked to cell surface receptors (receptors containing seven transmembrane domains).

[0011] Following ligand binding to the GPCR, a conformational change is transmitted to the G protein,

which caused the α -subunit to exchange a bound GDP molecule for a GTP molecule and to dissociate from the $\beta\gamma$ -subunits.

3

[0012] The GTP-bound form of the α , β and γ -subunits typically functions as an effector-modulating moiety, 5 leading to the production of second messengers, such as cAMP (e.g. by activation of adenyl cyclase), diacylglycerol or inositol phosphates.

[0013] Greater than 20 different types of α-subunits are known in humans. These subunits associate with a small pool of β and γ subunits. Examples of mammalian G proteins include Gi, Go, Gq, Gs and Gt. G proteins are described extensively in Lodish et al., Molecular Cell Biology, (Scientific American Books Inc., New York, N.Y., 1995), the contents of which are incorporated herein by reference.

[0014] Known and unknown GPCRs constitute now major targets for drug action and development.

[0015] Therefore, it exists a need for providing new G protein coupled receptors which could be used for the corrections of new agonists and antagonists having advantageous potential prophylactic and therapeutical properties.

[0016] More than 300 GPCRs have been cloned thus far and it is generally assumed that it exists well over 1000 such receptors. Mechanistically, approximately 50-60% of all clinically relevant drugs act by modulating the functions of various GPCRs (Cudermann et al., J. Mol. Med., Vol. 73, pages 51-63, 1995).

Summary of the invention

[0017] The present invention is related to newly identified member of G-protein-coupled receptor, preferably a human receptor, as well as to the polynucleotide sequence encoding said human receptor described hereafter (SEQ ID NO. 1 and 2).

[0018] The present invention is also related to other newly identified members of G-protein-coupled receptors, preferably human receptors, as well as to the polynucleotide sequence encoding said other human receptor described hereafter (SEQ ID NO. 3 to SEQ ID NO. 22).

[0019] The present invention is also related to nucleotidic and/or amino acid sequence homologous to the sequences corresponding to the receptor described 15 hereafter.

[0020] An homologous sequence (which may exist in other mammal species) means a sequence which presents a high sequence identity or homology (which presents an identity higher than 70%, 75%, 80%, 85%, 90% or 95%) with the complete human sequence described hereafter, and preferably characterised by a similar pharmacology, especially a preference for binding angiopeptin and/or somatostatin analogs.

[0021] Another aspect of the present invention is related to a specific active portion of said sequence. Said active portion could be a receptor which comprises a partial deletion upon the complete nucleotide or amino acid sequence and which still maintains the active site(s) necessary for the binding of specific ligands able to interact with said receptor.

[0022] Homologous sequences of the sequence according to the invention may comprise similar receptors which exist in other animal (rat, mouse, dog, etc.) or

specific human populations, but which are involved in the same biochemical pathway.

[0023] Such homologous sequences may comprise addition, deletion or substitution of one or more amino acids or nucleotides, which does not substantially alter the functional characteristics of the receptor according to the invention.

[0024] Thus, the invention encompasses also a receptor and corresponding nucleotide sequence having exactly the same amino acid or nucleotide sequences as shown in the enclosed sequence listing, as well as molecules which differ, but which are retaining the basic qualitative binding properties of the complete receptor according to the invention.

15 [0025] The invention is preferably related to said (human) receptor characterised by the complete nucleotide and amino acid sequences described hereafter, to unknown (and not previously described in the state of the art) agonist, reverse agonist and antagonist compounds or 20 inhibitors of said receptor. Preferably, said inhibitors are antisens RNAs, rybozymes or antibodies (or specific hypervariable (FAB, FAB'2, ...) portions thereof) that bind specifically to said receptor or its encoding nucleotide sequence (i.e. that have at least a 10 fold greater 25 affinity for said receptors than any other naturally occurring antibody). Said specific antibodies preferably obtained by a process involving the injection of a pharmaceutically acceptable preparation of such amino acid sequence into a animal capable of producing antibodies 30 directed against said receptor.

[0026] For instance, a monoclonal antibody directed to the receptor according to the invention is obtained by injecting of an expression plasmid comprising the DNA

encoding said receptor into a mouse and than fusing mouse spleen cells with myeloma cells.

[0027] The present invention is also related to the polynucleotide according to the invention, possibly linked 5 to other expression sequences and incorporated into a vector (plasmids, viruses, liposomes, cationic vesicles,...) and host cells transformed by such vector.

The present invention is also related to the recombinant, preferably human receptor according to the 10 invention, produced by such host cells according to the method well known by the person skilled in the art, as well as a functional assay (diagnostic kit) comprising all the means and media for the identification of the receptor, its nucleotide sequence, as well as agonist, reverse agonist, 15 antagonist and inhibitor of said receptor or its nucleotide sequence. Said diagnostic kit comprises preferably the following elements: the receptor, its encoding nucleotide sequence, antibodies directed against said receptor or its nucleotide sequence, as well as possible agonist, reverse or 20 agonist, antagonist inhibitor compounds of receptor. Said diagnostic kit comprises means and media for performing said diagnostic preferably through a measure of dosage/activity of said receptor, by genetic analysis of the receptor nucleotide sequence, preferably by RT/PCR or by immuno-analysis, preferably by the use of antibodies directed against said receptor.

[0029] The present invention is also related to a transgenic non-human mammal comprising a partial or total deletion of the genetic sequence encoding the receptor according to the invention, preferably a non human mammal comprising an homologous recombination "knock-out" of the nucleotide sequence (polynucleotide) according to the invention or a transgenic non human mammal overexpressing above natural level said polynucleotide sequence.

[0030] Said transgenic non-human mammal can be obtained by methods well known by the person skilled in the art, for instance by the one described in the document W098/20112 using classical techniques based upon the transfection of embryonic stem cells, preferably according to the method described by Carmeliet et al., Nature, Vol. 380, p. 435-439, 1996.

[0031] Preferably, in said transgenic non human mammal overexpressing, the polynucleotide according to the invention or active portions thereof has been previously incorporated in a DNA construct with an inducible promoter allowing its overexpression and possibly with tissues and other specific regulatory elements.

[0032] Another aspect of the present invention is related to a method and kit for performing said method for the screening (detection and possibly recovering) of compounds or a natural extract which are unknown (not yet described in the state of the art) or not known to be agonists, reverse agonists, antagonists or inhibitors of natural compounds to the receptor according to the invention, said method comprising:

- contacting a cell or cell extract from the cell transfected with a vector expressing the polynucleotide encoding the receptor according to the invention or active portion(s) thereof,

25

30

- possibly isolating a membrane fraction from the cell extract or the complete cell with a compound or molecules present in said natural extract under conditions permitting binding of said compound or said mixture of molecules to said receptor, possibly by the activation of a functional response and
- detecting the presence (and possibly the binding) of said compound or said mixture of molecules to said receptor by means of a bioassay, (preferably a

modification in the production of a second messenger or an increase in the receptor activity) in the presence of another compound working as an agonist, reverse agonist, antagonist or inhibitor to the receptor according to the invention and thereby possibly recovering and determining whether said compound ormixture molecules is (are) able to work as agonist, reverse agonist, antagonist, or inhibitor of the compound to its receptor.

5

10 [0033] Preferably, the second messenger assay measurement comprises the of intra-cellular CAMP, intracellular inositol phosphates, intra-cellular diacylglycerol arachinoid concentrations, concentration, MAP kinase(s) or tyrosine kinase(s) pathways 15 activation or intra-cellular calcium mobilisation.

[0034] Preferably, said bioassay is validated by the addition of angiopeptin and any other suitable related peptides to the receptor according to the invention by a method well-known by the person skilled in the art and described hereafter.

[0035] The screening method according to the invention could be performed by well known methods to the person skilled in the art, preferably by high-throughput screening, diagnostic and dosage devices based upon the method described in the International patent application W000/02045 performed upon various solid supports such as micro-titer plates or biochips (microarrays) according to known techniques by the person skilled in the art.

[0036] The present invention is also related to the known or unknown compound or molecules characterised and possibly recovered by said method for its (their) use as a medicament in therapy and is related to the pharmaceutical composition comprising a sufficient amount of said compound or molecule(s) and a pharmaceutically acceptable carrier or

diluent for the preparation of a medicament in the prevention and/or the treatment of various diseases.

9

[0037] In the pharmaceutical composition, the carrier or the adequate pharmaceutical carrier or diluant 5 can be any solid, liquid or gaseous support which is nontoxic and adapted for the administration (in vivo or ex vivo) to the patient, including the human, through various administration roots such as oral administration, intravenous administration, intradermal administration,

10 etc.

[0038] Said pharmaceutical composition may comprise also various vesicles or adjuvants well known by the person skilled in the art, able to modulate the immune response of the patient. The percentage of active compound-molecules/ 15 pharmaceutical carriers can vary, the range being only limited by the tolerance and the efficiency of the active compounds to the patient. Said ranges of administration are also limited by the frequency of administration and the possible side effects of the compound or molecules.

20 [0039] A further aspect of the present invention is related to said unknown compound or molecule(s) identified by said screening method, to the pharmaceutical composition comprising it and to their use in the treatment of viral infections or diseases induced by various viruses or 25 bacteria, the treatment or prevention of disturbances of cell migration, diseases or perturbations of the immune system, including cancer, development of tumours and tumour metastasis, inflammatory and neo-plastic bacterial and fungal infections, for wound and bone healing 30 and dysfunction of regulatory growth functions, pains, diabetes, obesity, anorexia, bulimia, acute heart failure, hypotension, hypertension, urinary retention, osteoporosis, angina pectoris, myocardial infarction, restenosis, atherosclerosis, diseases characterised by excessive smooth

muscle cell proliferation, aneurysms, wound healing, diseases characterised by loss of smooth muscle cells or reduced smooth muscle cell proliferation, stroke, ischemia, ulcers, allergies, benign prostatic hypertrophy, migraine, 5 vomiting, psychotic and neurological disorders, including anxiety, schizophrenia, maniac depression, depression, delirium, dementia and severe mental retardation, degenerative diseases, neurodegenerative diseases such as Alzheimer's disease Parkinson's or disease, 10 dyskinasias, such as Huntington's disease or Gilles de la

10 dyskinasias, such as Huntington's disease or Gilles de la

Tourett's syndrome and other related diseases.

[0040] Among the mentioned diseases the preferred

[0040] Among the mentioned diseases the preferred applications are related to therapeutic agents targeting 7TM receptor that can play a function in preventing, 15 improving or correcting dysfunctions or diseases, including, but not limited to fertility, fœtal development, infections such as bacterial, fungal, protozoan and viral

infections, particularly infections caused by HIV1 and HIV2, pain, cancer, anorexia, bulimia, asthma, Parkinson's disease, acute heart failure, hypertension, urinary retention, osteoporosis, angina pectoris, myocardial

infarction, ulcers, asthma, allergies, benign prostatic hypertrophy, psychotic and neurological disorders including anxiety, depression, migraine, vomiting, stroke,

25 schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Gilles de la Tourette's syndrome.

[0041] This invention relates to the use of a human G protein-coupled receptor as a screening tool to identify agonists or antagonists of the aequorin luminescence resulting from expression of this receptor.

Example 1: Cloning of human GPCRx11 receptor

[0042] In order to identify and clone novel human GPCR (G-protein coupled receptor) the following approach was used. Sequences of the following GPCR: GPR8, ChemR23, HM74 and GPR14 were used as queries to search for homologies in public high-throughput genomic sequence databases (NCBI).

[0043] Using the above strategies, a novel human sequence of GPCR was identified. We called this new GPCR: GPCRx11 (SEQ ID number 1 and 2).

- 10 [0044] In order to clone the GPCRx11 sequence we performed a polymerase chain reaction (PCR) on total human genomic DNA. Primers were synthetized based upon the GPCRx11 human sequence and were as follows:
- 15 SEQ ID 23 GPCRx11 fw: 5'-ccggaattcaccatggatccaaccaccccg-3' SEQ ID 24 GPCRx11 rv: 5'-ctagtctagactctacaccagactgcttctc-3'

[0045] Amplification resulted in a fragments of 0.99
kilobase containing the entire coding sequence of the
20 GPCRx11 gene. This fragment was subcloned into the pCDNA3
(Invitrogen) vector for DNA sequencing analysis.

[0046] Nucleotide and deduced amino acid sequence of human GPCRx11 (SEQ ID NO 1)

- 30 16 N G N D Q A L L L L C G K E T
 30
 46 AAT GGA AAT GAC CAA GCC CTT CTT CTG CTT TGT GGC AAG GAG ACC
- 35 31 L I P V F L I L F I A L V G L
 45
 91 CTG ATC CCG GTC TTC CTG ATC CTT TTC ATT GCC CTG GTC GGG CTG
 135
- 40 46 V G N G F V L W L L G F R M R

	180	136	GTA	GGA	AAC	GGG	TTT	GTG	CTC	TGG	CTC	CTG	GGC	TTC	CGC	ATG	CGC
5	75	61	R	N	A	F	s	v	Y	v	L	s	L	A	G	A	D
	225	181	AGG	AAC	GCC	TTC	TCT	GTC	TAC	GTC	CTC	AGC	CTG	GCC	GGG	GCC	GAC
10	90	76	F	L	F	L	С	F	Q	1	I	N	С	L	v	Y	L
10	270	226	TTC	CTC	TTC	CTC	TGC	TTC	CAG	ATT	ATA	AAT	TGC	CTG	GTG	TAC	CTC
15	7.05	91	s	N	F	F	С	s	I	S	I	N	F	P	s	F	F
13	105 315	271	AGT	AAC	TTC	TTC	TGT	TCC	ATC	TCC	ATC	AAT	TTC	CCT	AGC	TTC	TTC
		106	T	T	v	M	T	С	A	Y	L	A	G	L	s	M	L
20	120 360	316	ACC	ACT	GTG	ATG	ACC	TGT	GCC	TAC	CTT	GCA	GGC	CTG	AGC	ATG	CTG
25	125	121	s	T	V	s	T	E	R	С	L	s	v	L	W	P	I
45	135 405	361	AGC	ACC	GTC	AGC	ACC	GAG	CGC	TGC	CTG	TCC	GTC	CTG	TGG	CCC	ATC
20	750	136	W	Y	R	С	R	R	P	R	н	L	s	A	v	v	С
30	150 450	406	TGG	TAT	CGC	TGC	CGC	CGC	CCC	AGA	CAC	CTG	TCA	GCG	GTC	GTG	TGT
25	7.65	151	v	L	L	W	A	L	s	L	L	L	s	I	L	E	G
35	165 495	451	GTC	CTG	CTC	TGG	GCC	CTG	TCC	CTA	CTG	CTG	AGC	ATC	TTG	GAA	GGG
40	180	166	ĸ	F	С	G	F	L	F	s	D	G	D	s	G	W	С
10	540	496	AAG	TTC	TGT	GGC	TTC	TTA	TTT	AGT	GAT	ggt	GAC	TCT	GGT	TGG	TGT
45	195	181	Q	T	F	D	F	I	T	A	A	W	L	I	F	L	F
	585	541	CAG	ACA	TTT	GAT	TTC	ATC	ACT	GCA	GCG	TGG	CTG	ATT	TTT	TTA	TTC
50	210	196	M	v	L	С	G	s	s	L	A	Ŀ	L	v	R	I	L
50	630	586	ATG	GTT	CTC	TGT	GGG	TCC	AGT	CTG	GCC	CTG	CTG	GTC	AGG	ATC	CTC
55	225 [.]	211	С	G	s	R	G	L	P	L	T	R	L	Y	L	T	I
د د	675	631	TGT	GGC	TCC	AGG	GGT	CTG	CCA	CTG	ACC	AGG	CTG	TAC	CTG	ACC	ATC
60	240	226	L	ь	T	v	L	v	F	ь	L	С	G	L	P	F	G

13

- 676 CTG CTC ACA GTG CTG GTG TTC CTC CTC TGC GGC CTG CCC TTT GGC 720 241 I F L Ι L W I K 5 255 721 ATT CAG TGG TTC CTA ATA TTA TGG ATC TGG AAG GAT TCT GAT GTC 765 256 L С н I Н F P V S v v L S L 10 270 766 TTA TTT TGT CAT ATT CAT CCA GTT TCA GTT GTC CTG TCA TCT CTT 810 271 N S N P I I Y F F v 15 285 811 AAC AGC AGT GCC AAC CCC ATC ATT TAC TTC TTC GTG GGC TCT TTT 855 286 R R K Q W L Q Q P Ι L K 20 300 856 AGG AAG CAG TGG CGG CTG CAG CCG ATC CTC AAG CTG GCT CTC 900 301 Q R Α L Q D I Α B 25 315 901 CAG AGG GCT CTG CAG GAC ATT GCT GAG GTG GAT CAC AGT GAA GGA 945 316 C 0 G B М S R S S 30 330 946 TGC TTC CGT CAG GGC ACC CCG GAG ATG TCG AGA AGC AGT CTG GTG 990 331 * 35 331 991 TAG 993
- 40 [0047] Amino acid sequence of human GPCRx11 (330 amino acids) (SEQ ID NO:2). The seven predicted transmembrane domaines are underlined.
- MDPTTPAWGTESTTVNGNDQALLLLCGKETLIPVFLILFIALVGLVGNGFVLWLLGFRM
 RRNAFSVYVLSLAGADFLFLCFQIINCLVYLSNFFCSISINFPSFFTTVMTCAYLAGLS
 MLSTVSTERCLSVLWPIWYRCRRPRHLSAVVCVLLWALSLLLSILEGKFCGFLFSDGDS
 GWCQTFDFITAAWLIFLFMVLCGSSLALLVRILCGSRGLPLTRLYLTILLTVLVFLLCG
 LPFGIQWFLILWIWKDSDVLFCHIHPVSVVLSSLNSSANPIIYFFVGSFRKQWRLQQPI
 LKLALQRALQDIAEVDHSEGCFRQGTPEMSRSSLV

[0048] At the amino acid sequence level, the human GPCRx11 is 37% identical to the rat RTA receptor. The gene coding GPCRx11 is located on chromosome 11.

Alignment of GPCRx11 (fig.1)

5 [0049] Alignment of the amino acid sequence of GPCRx11 with RTA and other RTA related sequences were performed using ClustalX algorithm. Then, the dendrogram was constucted using TreeView algorithm.

Tissular distribution of GPCRx11

[0050] 20 Reverse transcription-polymerase chain reaction (RT-PCR) experiments were carried out using a panel of polyA+ RNA (Clontech). The primers were as follows: GPCRx11 sense primer (SEQ ID NO 25: TTCTCTGTCTACGTCCTCAG-3') and GPCRx11 antisense primer (SEQ 25 ID NO 26: 5'-GTCCTGTCATCTCTTAACAG-3'). The expected size of the amplified DNA band was 586 bp. Approximately 75 ng of poly A+ RNA was reverse transcribed with superscript II (Life Technologies) and used for PCR. PCR was performed under the following conditions: denaturation at 94°C for 3 30 min, 38 cycles at 94°C for 1 min, 58°C for 2 min and 72°C for 2 min. Aliquots (10 μ 1) of the PCR reaction were analysed by 1% agarose gel electrophoresis.

[0051] GPCRx11 mRNA was assayed by RT-PCR in 16 human tissues. A strong band of expected size (586 bp) was detected in testis, at lower levels in uterus and thymus, while not in pituitary gland, spinal cord, pancreas, small intestine, placenta, stomach, liver, lung, spleen, brain, heart, kidney and skeletal muscle.

Functional assay for GPCRx11

[0052] GPCRx11 expressing clones have been obtained by transfection of CHO-K1 cells coexpressing mitochondrial 10° apoaequorin and Galpha16, limit dilution and selection by northern blotting. Positive clones were used for screening with a reference peptidic library containing 250 peptides and neuropeptides at a concentration of 100 nM. A specific activity was obtained with angiopeptin (D-NaI-Cys-Tyr-D-trp-Lys-Val-Cys-Thr-NH2 with a disulfide bridge between the two cysteines) and confirmed by a dose respone curve (see figure 1). Additional related peptides were tested using the same cells. Amongst the different peptides tested, somatostatin analog (D2-NaI-Cys-Tyr-D-trp-Lys-Val-Cys-D2-20 NaI-NH2) exhibited similar affinity. Somatostatin 14 has no activity on GPCRx11.

Material. All chemicals were obtained from Sigma, unless stated. The cell culture media were from Gibco BRL and the peptides from bachem

25 Aequorin assays. CHO-K1 cell lines expressing GPCRx11 receptors, Galpha₁₆ and mitochondrial apoaequorin were established. A functional assay based on the luminescence of mitochondrial aequorin following intracellular Ca²⁺ release (1) was performed as described (2). Briefly, cells were collected from plates with PBS containing 5 mM EDTA, pelleted and resuspended at 5 X 10⁶ cells/ml in DMEM-F12 medium, incubated with 5 μM Coelenterazine H (Molecular

Probes) for 4 hours at room temperature. Cells were then washed in DMEM-F12 medium and resuspended at a concentration of 0.5 X 10⁶ cells/ml. Cells were then mixed with the peptides and the light emission recorded during 30 sec. using a Microlumat luminometer (Perkin Elmer). Results are expressed as Relative Light Units (RLU).

Antibodies

[0053] Antibodies directed against GPCRx11 have been produced by repeated injections of plasmid encoding GPCRx11 to mice. Serum has been collected following 5 injections and used for flow cytometry analysis with cells transfected with GPCRx11. Several sera were positive and can be used for immunohistochemistry and other related applications

15 Example 2 : Cloning of the other sequences related to G-protein-coupled receptors

[0054] In order to identify and clone novel human DNA sequences related to GPCR, the following approche was used. Sequences of the following GPCR: GPR8, ChemR23, HM74 and 20 GPR14 were used as queries to search for homologies in public high-throughput genomic sequence databases (NCBI). [0055] Using the above strategies, ten novel human sequences of GPCR were identified. None of these clones contain introns:

25

GPCRx2, SEQ ID NO 3 GPCRx5, SEQ ID NO 5

GPCRx7, SEQ ID NO 7

GPCRx9, SEQ ID NO 9

30 GPCRx14, SEQ ID NO 11

GPCRx16, SEQ ID NO 13

GPCRx17, SEQ ID NO 15

GPCRx18, SEQ ID NO 17

. 17

GPCRx19, SEQ ID NO 19 GPCRx20, SEQ ID NO 21

WO 01/98330

[0056] In order to clone these GPCRx sequences, a polymerase chain reaction (PCR) was performed on total human genomic DNA. Primers were synthetized based upon the human sequences described above and were as follows:

PCT/BE01/00104

SEQ ID NO 27 GPCRx2 fw: 5'-ccggaattcaccatggagtcctcacccatc-3'

10 SEQ ID NO 28 GPCRx2 rv: 5'-ctagtctagacatcatgactccagccggg-3'

SEQ ID NO 29 GPCRx5 fw: 5'-ccggaattcaccatggatccaaccatctcaacc-3'
SEQ ID NO 30 GPCRx5 rv: 5'-ctagtctagatcactgctccaatctgcttc-3'

15 SEQ ID NO 31 GPCRx7 fw:

5'-ccggaattcaccatgaaccagactttgaatagcagtgg-3' SEQ ID NO 32 GPCRx7 rv:

5'-ctagtctagatctcaagccccatctcattggtgccc-3'

20 SEQ ID NO 33 GPCRx9 fw: 5'-ccggaattcaccatggaagctgacctgg-3' SEQ ID NO 34 GPCRx9 rv: 5'-ctagtctagactcacgtggggcctgcgcc-3'

SEQ ID NO 35 GPCRx14 fw: 5'-ccggaattcgccatgtacaacgggtcg-3'
SEQ ID NO 36 GPCRx14 rv: 5'-ctagtctagattcagtgccactcaacaatg-3'

25 [0057] Amplification resulted in a fragments of approximately 1 - 1.5 kilobase containing the entire coding sequence of the human genes. These fragments obtained were subcloned into the pCDNA3 (Invitrogen) vector for DNA sequencing analysis.

30

Tissue distribution of identified (GPCRx) receptors
[0058] To determine the tissue distribution of different
GPCRx mRNA, reverse transcriptase-polymerase chaine
reaction (RT-PCR) were performed with 200 ng of mRNA
35 isolated from human tissues (Clontech). The oligo(dT)

primer was used in the reverse transcription step. Then, different GPCRx cDNA were amplified with specifics primers.

18

	GPCRx	GPCRx	GPCRx	GPCRx	GPCRx	GPCRx	GPCRx	GPCRx	GPCRx
	2	7	9	14	16	17	18	19	20
Li	•	-	-	-	-	-	-	-	+
Lu	+/-	_	+	+	-	++	-	-	++
Sp	•	-	++	+	-	-	-	-	+
Te	-	+	-	++	-	++	-	+/-	+
Br	++	-		-	-		++.	-	++
не	-	-	-	-	_	-	-	-	++
Ki	+/-	_	-	+	-	++	-	-	+
Sk.m	-	-	•	-	-	+	-	_	++
Pi.G	-	-	1	-	-	-	++	+/-	+
Sp.C	++	-	-	_	_	++	+/-	+/-	+/-
Th	+/-	1	+	-	-	++	-	-	++
Pa	-	_	-	-	•	++	+/-	-	-
S.In	+/-	-	+	-	•	++	-	-	+
Ut	-	-	1	-	-	++	-	+/-	+
Pl	1	-	-	++	++	-	-	•	+
St	-	+	+	+/-	-	++	-	-	+

5

Table 1: Tissue distribution of GPCRxs: The presence or absence of differents GPCRx was determined by RT-PCR analysis. ++, strong signal; +, signal clearly detected; +/-, weak signal; -, signal not detected. The tissues are the following: Li, liver; Lu, lung; Sp, Spleen; Te, testis; Br, Brain; He, Heart; Ki, Kidney; Sk.M, Skeletal muscle; Pi.G, Pituitary gland; Sp.C, spinal cord; Th, Thymus; Pa, Pancreas; S.In, Small intestine; Ut, Uterus; Pl, Plancenta; St, Stomach.

Reference

5

10

- 1. Stables, J., A. Green, F. Marshall, N. Fraser, E. Knight, M. Sautel, G. Milligan, M. Lee, and S. Rees. 1997. A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal. Biochem. 252:115-126.
- 2. Blanpain, C., I. Migeotte, B. Lee, J. Vakili, B.J.
 Doranz, C. Govaerts, G. Vassart, R.W. Doms, and M.
 Parmentier. 1999 CCR5 binds multiple CC-chemokines: MCP3 acts as a natural antagonist. Blood 94:1899-1905.

Nucleotide and deduced amino acid sequence of human GPCRx2 (SEQ ID NO: 3 and 4 respectively)

	M ATG	E GAG	S TCC	S TCA	P CCC		P CCC			S TCA	G GGG	N AAC	S TCT	s TCC	T ACT	15 45
	L TTG	G GGG	R AGG	V GTC	P CCT	Q CAA			G GGT		S TCT	T T	A GCC	S AGT	G GGG	30 90
31	v	P	E	v	G GGG	L	R	D	v	A	s	Е	s	v	A	45
46	L	F	F	М	L	L	L	D	L	T	A	v	A	G	N	135 60
					CTC											180
	A GCC	A GCT	V GTG	M	A GCC		ATC			T ACG	P	GCC	L CTC	R CGA	K AAA	75 225
76 226	F TTT	gtc	F TTC	V GTC	F TTC	H CAC	L CTC	C TGC	L CTG	V GTG		L CTG	L CTG	A GCT	A GCC	90 270
91 271		T ACC	L CTC	M ATG	P CCC	L CTG	A GCC	M ATG	L CTC	S TCC	S AGC	S TCT	A GCC	L CTC	F TTT	105 315
106 316	D GAC	H CAC	A GCC	L CTC	F TTT	G GGG	E GAG	V G T G	A GCC	C TGC	R CGC	L CTC	Y TAC	L TTG	F TTT	120 360
121 361	L CTG	S AGC	V GTG	C TGC	F TTT	V GTC	s AGC	L CTG	A GCC	I ATC	L CTC	S TCG	V GTG	S TCA	A GCC	135 405
136 406	I ATC	n aat	V GTG	E GAG	R CGC	Y TAC	Y TAT	Y TAC	V GTA	V GTC	H CAC	P CCC	M ATG	R CGC	Y TAC	150 450
151 451	E GAG	V GTG	R CGC	M ATG	T ACG	L CTG	G GGG		V GTG	-	s TCT	V GTG	L CTG	V GTG	g ggt	165 495
166 496	V GTG	W TGG	V GTG	K AAG	A GCC	L TTG	A GCC	M ATG	A GCT	S TCT	V GTG	P CCA	V GTG	L TTG	G GGA	180 540
181 541	R AGG	V GTC	s TCC	W TGG	E GAG	E GAA	G GGA	A GCT	P		V GTC	P CCC	P CCA	G GGC	C TGT	195 585
196 586	-	L CTC	Q CAG	W TGG	S AGC	H CAC	S AGT	A GCC	Y TAC	C TGC	Q CAG	L CTT	F TTT	V GTG	V GTG	210 630
211 631	V GTC	-	A GCT	V GTC	L CTT		F TTT		L TTG	P	L CTG	L CTC	L CTC	I ATA	L CTT	· 225 675
															M ATG	
					L CTG											255 765
					S AGC			s TCC			V GTC		S AGC	S TCG	G GGG	270 810

			_			P CCA						G GGA		K AAA		285 855
286 856	A GCA	V GTG				A GCT				Q CAG	F TTC	L CTG	L CTC	C TGT	W TGG	300 900
301 901	L TTG	P CCC			S TCT	F TTC	H CAC		Y TAT	V GTT	A GCC	L CTG	s agt	A GCT	Q CAG	315 945
316 946	_	_	S TCA			Q CAG	V GTG				V GTC	_	W TGG	I ATT	G GGC	330 990
				F TTC		s TCC	_					_	C TGT		n aac	345 1035
346 1036		-				E GAG				-						360 1080
361 1081		P CCA	A GCT	P CCA	E GAG	E GAG	E GAG	L CTG	R AGG	L CTG	P CCT	S AGC	R CGG	E GAG	G GGC	375 1125
376 1126		I ATT	e gag	E GAG	n aac	F TTC	L CTG	Q CAG	F TTC	L CTT	Q CAG	G GGG	T ACT	G GGC	C TGT	390 1170
391 1171	_	s TCT	E GAG	S TCC	W TGG	V GTT	S TCC	R CGA	D CCC	L CTA	CCC	S AGC	P CCC	K AAG	Q CAG	405 1215
406 _. 1216												Q CAG	I ATA	A GCT	E GAG	420 1260
421 1261			S TCT				E GAG	Q CAG	_	L CTC		S AGC	D GAC	I ATC	I ATC	435 1305
436 1306		S TCA	D GAC	S AGC	Y TAC	L CTC	R CGT	P CCT	A GCC	A GCC	S TCA	P	R CGG	L CTG	E GAG	450 1350
451 1351	S TCA	* TGA														452 1356

Amino acid sequence of human GPCRx2 (451 amino acids) (SEQ ID NO: 4). The seven predicted transmembrane domaines are underlined.

MESSPIPQSSGNSSTLGRVPQTPGPSTASGVPEVGLRDVASESVALFFMLLLDLTAVAGNAAVMAVIAKTPALRKFVFVF
HLCLVDLLAALTLMPLAMLSSSALFDHALFGEVACRLYLFLSVCFVSLAILSVSAINVERYYYVVHPMRYEVRMTLGLVA
SVLVGVWVKALAMASVPVLGRVSWEEGAPSVPPGCSLQWSHSAYCQLFVVVFAVLYFLLPLLLILVVYCSMFRVARVAAM
QHGPLPTWMETPRQRSESLSSRSTMVTSSGAPQTTPHRTFGGGKAAVVLLAVGGQFLLCWLPYFSFHLYVALSAQPISTG
QVESVVTWIGYFCFTSNPFFYGCLNRQIRGBLSKQFVCFFKPAPEEELRLPSREGSIEENFLQFLQGTGCPSESWVSRPL
PSPKQBPPAVDFRIPGQIAEETSEFLEQQLTSDIIMSDSYLRPAASPRLES

At the amino acid sequence level, the human GPCRx2 is 23% identical to the human histamine H2 receptor.

Nucleotide and deduced amino acid sequence of human GPCRx5 (SEQ ID NO: 5 and 6 respectively)

	M ATG	D GAT	P CCA	T ACC	I ATC	S TCA	T ACC		D GAC	T ACA	e gaa	L CTG	T ACA	P CCA	-	15 45
	n aac		T ACT		_	T ACT		-	_		Q CAG	T ACC	L TTG	S AGC	L CTC	30 90
			L CTG							V GTC		L CTG	T ACA	G GGA	N AAC	45 135
46 136		V GTT	V GTG	L CTC	W TGG	L CTC	L CTG	G GGC	C TGC	R CGC	M ATG	R CGC	R AGG	n aac	A GCC	60 180
61 181	F TTC	S TCC	I ATC	Y TAC	I ATC	CTC	n aac	L TTG	A GCC	A GCA	A GCA	D GAC	F TTC	L	F TTC	75 225
76 226	L CTC	S AGC	G GGC	R CGC	L CTT	I ATA	Y TAT	S TCC	L CTG	L TTA	S AGC	F TTC	I ATC	s agt	I DTA	90 270
91 271	P	H CAT	T ACC	I ATC	S TCT	K AAA	I	L CTC	Y TAT	P CCT	V GTG	M ATG	M ATG	P TTT	s TCC	105 315
106 316		F TTT	A GCA	G GGC	L CTG	S AGC	F TTT	L CTG	S AGT	A GCC	V GTG	S AGC	T ACC	E GAG	R CGC	120 360
121 361	C TGC	L CTG	S TCC	V GTC	L CTG	W TGG	P CCC	I ATC	W TGG	Y TAC	R CGC	C TGC	H CAC	R CGC	P	135 405
136 406		H CAC	L CTG	s TCA		V GTG			V GTC		L CTC	W TGG	A GCC	L CTG	S TCC	150 450
151 451		L CTG	R CGG	S AGC	I ATC	L CTG	E GAG	W TGG	M ATG	L TTA	C TGT	G GGC	F TTC	L CTG	F TTC	165 495
166 496		g ggt	A GCT	D GAT		A GCT		-	_		S TCA	D GAT	F TTC	I ATC	T ACA	180 540
181 541		A GCG	W TGG	L CTG		F TTT	-	C TGT	V GTG	V GTT	L CTC	C TGT	G GGG	S TCC	S AGC	195 585
196 586		V GTC	L CTG	L CTG	I ATC	R AGG	I ATT	L CTC	C TGT	G GGA	S TCC	R CGG	K AAG	I ATA	P CCG	210 630
211 631	L CTG	T ACC	R AGG	L CTG	Y TAC	V GTG		I ATC	L CTG	L CTC	T ACA	V GTA	L CTG	V GTC	F TTC	225 675
															L TTA	
			H CAC								C TGT		V GTT		L CTA	255 765
			I ATT												I ATC	270 810

271	I	Y	F	F	V	G	s	F	R	Q	R	Q	N	R	Q	285
811	ATT	TAC	TTC	TTC	GTG	GGC	TCC	TTT	AGG	CAG	CGT	CAA	AAT	AGG	CAG	855
286	N	L	K	L	v	L	Q	R	A	L	Q	D	A	s	E	300
856	AAC	CTG	AAG	CTG	GTT	CTC	CAG	AGG	GCT	CTG	CAG	GAC	GCG	TCT	GAG	900
301	v	D	E	G	G	G	Q	L	P	E	E	I	ь	E	Ŀ	315
901	GTG	GAT	GAA	GGT	GGA	GGG	CAG	CTT	CCT	GAG	GAA	ATC	CTG	GAG	CTG	945
316	s	G	s	R	L	E	Q	*								323
946	TCG	GGA	AGC	AGA	TTG	GAG	CAG	TGA								969

Amino acid sequence of human GPCRx5 (322 amino acids) (SEQ ID NO:6). The seven predicted transmembrane domaines are underlined.

MDPTISTLDTELTPINGTEETLCYKQTLSLTVLTCIVSLVGLTGNAVVLWLLGCRMRRNAFSIYILNLAAADFLFLSGRL
IYSLLSFISIPHTISKILYPVMMFSYFAGLSFLSAVSTERCLSVLWPIWYRCHRPTHLSAVVCVLLWALSLLRSILEWML
CGFLFSGADSAWCQTSDFITVAWLIFLCVVLCGSSLVLLIRILCGSRKIPLTRLYVTILLTVLVFLLCGLPFGIQFFLFL
WIHVDREVLFCHVHLVSIFLSALNSSANPIIYFFVGSFRQRQNRQNLKLVLQRALQDASEVDEGGGQLPEBILELSGSRL
EO

At the amino acid sequence level, the human GPCRx5 is 31% identical to the human mas receptor.

Nucleotide and deduced amino acid sequence of human GPCRx7 (SEQ ID NO: 7 and 8 respectively)

	M ATG	N AAC	Q CAG	T ACT	L TTG	N AAT		S AGT	G GGG	T ACC	V GTG	e gag	S TCA	A GCC	L CTA	15 45
	N AAC	Y TAT	S TCC	R AGA	G GGG	S AGC	T ACA	V GTG	H CAC	T ACG	A GCC	Y TAC	L CTG	V GTG	L CTG	30 90
31 91	S AGC	s TCC	L CTG	A GCC	M ATG	F TTC	T ACC	C TGC	L CTG	C TGC	G GGG	M ATG	A GCA	G GGC	n aac	45 135
	S AGC	M ATG	V GTG		W TGG		L CTG	G GGC	F TTT	R CGA	M ATG	H CAC	R AGG	n aac	P CCC	60 [.] 180
	F TTC		I ATC		I			CTG		A GCA	A GCC	D GAC	L CTC	L CTC	F TTC	75 2 25
	L CTC		S AGC		A GCT	S TCC		L CTC	S AGC	L CTG	e gaa	T ACC	Q CAG	P	L CTG	90 270
	V GTC		T ACC				V GTC		E GAG	L CTG	M	K AAG	R AGA	L CTG	M ATG	105 315
	Y TAC	•	A GCC						S AGC	L CTG	L CTG	T ACG	A GCC	I ATC	S AGC	120 360
121 361		Q CAG	R CGC	C TGT			V GTC		F TTC	P CCT	I ATC	w TGG	F TTC	K AAG	C TGT	135 405
136 406		R CGG	P CCC		H CAC	L CTG	S TCA	A GCC	W TGG	V GTG	C TGT	G GGC	L CTG	L CTG	W TGG	150 450
406 151	CAC T	CGG L		AGG L	CAC L	CTG M	TCA N	GCC G	TGG L	gtg t	TGT S	GGC S	CTG F	CTG C	TGG S	
406 151 451 166	T ACA K	CGG L CTC	ccc	AGG L CTC K	CAC L CTG	CTG M ATG N	TCA N AAC E	GCC G GGG D	TGG L TTG R	GTG T ACC C	TGT S TCT F	GGC S TCC R	F TTC V	CTG C TGC	TGG S AGC M	450 165
406 151 451 166 496 181	T ACA K AAG V	CGG L CTC F TTC	CCC TGT L	AGG L CTC K AAA	CAC L CTG F TTC	CTG M ATG N AAT	TCA NAAC EGAA M	GCC G GGG D GAT G	TGG L TTG R CGG	T ACC C TGC	TGT S TCT F TTC	GGC S TCC R AGG	F TTC V GTG V	CTG C TGC D GAC	TGG S AGC M ATG	450 165 495
406 151 451 166 496 181 541	T ACA K AAG V GTC	CGG L CTC F TTC Q CAG	CCC C TGT L TTG	AGG L CTC K AAA A GCC	CAC L CTG F TTC L CTC	M ATG N AAT I ATC	TCA N AAC E GAA M ATG	GCC GGG DGAT GGGG	TGG L TTG R CGG V GTC	T ACC C TGC L TTA	S TCT F TTC T ACC	GGC S TCC R AGG P CCA	F TTC V GTG V GTG	CTG CTGC DGAC MATG	TGG S AGC M ATG T ACT	450 165 495 180 540
406 151 451 166 496 181 541 196 586	T ACA K AAG V GTC L CTG	CGG L CTC F TTC Q CAG S TCC	CCC C TGT L TTG A GCC	L CTC K AAA GCC L CTG	L CTG F TTC L CTC Q	M ATG N AAT I ATC L CTC	TCA N AAC E GAA M ATG F TTT	GCC GGGG DGAT GGGG VGTC	TGG L TTG R CGG V GTC W TGG	T ACC C TGC L TTA V GTG	S TCT F TTC T ACC R CGG	GGC S TCC R AGG P CCA R AGG	F TTC V GTG V GTG SAGC	CTG CTGC DGAC MATG STCC	TGG S AGC M ATG T ACT Q CAG	450 165 495 180 540 195 585
406 151 451 166 496 181 541 196 586 211 631	T ACA K AAG V GTC L CTG Q CAG S	CGG L CTC F TTC Q CAG S TCC W TGG	CCC CTGT L TTG A GCC S AGC CGG	L CTC K AAA GCC L CTG R CGG	CAC L CTG F TTC L CTC Q CAG	M ATG N AAT I ATC L CTC P CCC	TCA N AAC E GAA M ATG F TTT T ACA	GCC GGGG DGAT GGGG VGTC R CGG	TGG L TTG R CGG V GTC W TGG L CTG	T ACC C TGC TTTA V GTG F TTC L	S TCT F TTC ACC R CGG V GTG	S TCC R AGG P CCA R AGG V GTG	FTTC VGTG VGTG SAGC VGTC S	CTG C TGC D GAC M ATG S TCC L CTG	TGG S AGC M ATG T ACT Q CAG	450 165 495 180 540 195 585 210 630 225 675
406 151 451 166 496 181 541 196 586 211 631 226 676 241	T ACA K AAG V GTC CTG Q CAG S TCT W	CGG L CTC F TTC Q CAG S TCC W TGG V GTC	CCC CTGT L TTG A GCC S AGC CGG CTG V	L CTC K AAA A GCC CTG R CGG V GTG	CAC L CTG F TTC L CTC T ACC Q CAG F TTC	CTG M ATG N AAT I ATC CTC P CCC L CTC	N AAC E GAA M ATG TTT T ACA I ATC	GCC GGGG DGAT GGGG GGGC VGTC RCGG CTGT	TGG L TTG R CGG V GTC W TGG L CTG S TCC	T ACC C TGC L TTA V GTG F TTC L CTG	S TCT F TTC ACC R CGG V GTG P CCT	S TCC R AGG P CCA R AGG CCTG E	FTTC VGTG VGTG SAGC VGTC SAGC	CTG C TGC D GAC M ATG S TCC L CTG I ATC	TGG S AGC M ATG T ACT Q CAG GCC	450 165 495 180 540 195 585 210 630 225 675 240 720

25

271	A	N	P	v	I	Y	F	L	V	G	s	R	R	s	H	285
811	GCC	AAC	CCC	GTC	ATC	TAC	TTC	CTG	GTG	GGC	AGC	CGG	AGG	AGC	CAC	855
206	ъ	т	P	TT.	ъ		τ.	~	m	17		^	^		-	200
200	м	'n	P	T	ж	3	Τī	G	1	V	נו	Q	Q	A	יו	300
856	AGG	CTG	CCC	ACC	AGG	TCC	CTG	GGG	ACT	GTG	CTC	CAA	CAG	GCG	CTT	900
201	ъ		13	_			_	~	~	_	-	_			_	
20T	R	Ľ	E	P	-	ם	E	G	G	E	T	₽	T	v	G	315
901	CGC	GAG	GAG	CCC	GAG	CTG	GAA	GGT	GGG	GAG	ACG	CCC	ACC	GTG	GGC	945
316	œ	N	קו	М	G	A										200
270	7	1/4	E	Pl	G	A	-									322
946	ACC	AAT	GAG	ATG	GGG	GCT	TGA									966

Amino acid sequence of human GPCRx7 (321 amino acids) (SEQ ID NO:8). The seven predicted transmembrane domaines are underlined.

MNQTLNSSGTVESALNYSRGSTVHTAYLVLSSLAMFTCLCGMAGNSMVIWLLGFRMHRNPFCIYILNLAAADLLFLFSMA STLSLETQPLVNTTDKVHELMKRLMYFAYTVGLSLLTAISTQRCLSVLFPIWFKCHRPRHLSAWVCGLLWTLCLLMNGLT SSFCSKFLKFNEDRCFRVDMVQAALIMGVLTPVMTLSSLTLFVWVRRSSQQWRRQPTRLFVVVVLASVLVFLICSLPLSIY WFVLYWLSLPPEMQVLCFSLSRLSSSVSSSANPVIYFLVGSRRSHRLPTRSLGTVLQQALREEPELEGGETPTVGTNEMG

At the amino acid sequence level, the human GPCRx7 is 29% identical to the rat RTA receptor.

1	M ATG	E GAA	A GCT	D GAC	L CTG	g ggt	A GCC	T ACT	G GGC	H CAC	R AGG	P	R CGC	T ACA	B GAG	15 45
16 46		D GAT	D GAT	E GAG	D GAC	S TCC	Y TAC	P CCC	Q CAA	g ggt	G GGC	W TGG	D GAC	T ACG	V GTC	30 90
31 91	F TTC	L CTG	V GTG	A GCC		· L CTG	L CTC	L CTT	G GGG	L CTG	P CCA	A GCC	n aat	G GGG	TTG	45 135
46 136		A GCG	W TGG	L CTG	A GCC	g GGC		Q CAG	A GCC	R CGG	H CAT		A GCT	G GGC	T ACG	60 180
61 181		L CTG	A GCG	L CTG	L CTC	L CTG	L CTC	S AGC	L	A GCC	L CTC	S TCT	D GAC	F TTC	L TTG	75 225
	F TTC		A GCA	A GCA	A GCG	A GCC	F TTC	Q CAG	I ATC	L CTA	e gag	I ATC	R CGG	H CAT	G GGG	90 270
91 271	-	H CAC	W TGG	P CCG	L CTG	G GGG	T ACA	A GCT	A GCC	C TGC	R CGC	F TTC	Y	Y TAC	F	105 315
106 316	L CTA	w TGG	G GGC	V G T G	S TCC	Y TAC	S TCC	S TCC	G GGC	L CTC	F TTC	L CTG	L CTG	A GCC	A GCC	120 360
121 361	L CTC	S AGC	L CTC	D GAC	R CGC	C TGC	L CTG	L CTG	A GCG	L CTG	C TGC	P CCA	H CAC	W TGG	Y TAC	135 405
136 406	P CCT	g GGG	H CAC	R CGC	P CCA	V GTC	R CGC	L CTG	P	L CTC	W TGG	V GTC	C TGC	A GCC	G GGT	150 450
151 451	V GTC	w TGG	V GTG	L CTG	A GCC	T ACA	L CTC	F TTC	S AGC	V GTG	P	W TGG	L CTG	V GTC	F TTC	165 495
166 496	CCC	E GAG	A GCT	A GCC	V GTC	W TGG	W TGG	Y TAC	D GAC	L CTG	V GTC	I ATC	C TGC	L CTG	D GAC	180 540
181 541	F TTC	W TGG	D GAC	S AGC	B GAG	e gag	L CTG	S TCG	L CTG	r Agg	M ATG	L CTG	e Gag	V GTC	L CTG	195 585
196 586	GGG		F TTC	L CTG	P CCT	F TTC	L CTC	L CTG	L CTG	L CTC	V GTC	C TGC	H CAC	V GTG	L CTC	210 630
211 631	T ACC	Q CAG	A GCC	T ACA	A GCC	C TGT	R CGC	T ACC	C TGC	H CAC	R CGC	Q CAA	Q CAG	Q CAG	CCC	225 675
															S TCA	
			V GTG													255 765
			A GCC											L CTC	W TGG	270 810

271 811	E GAG	A GCC	L CTG	V GTC	Y TAC	S TCC	D GAC	_		_	L CTA	L CTC	N AAC	S AGC	C TGC	285 855
286 856	L CTC	S AGC	P CCC	F TTC	L	C TGC	L CTC	M ATG	A GCC	S AGT	A GCC	D GAC	L CTC	R CGG	T ACC	300 900
301 901	L CTG	L CTG	R CGC	S TCC	V GTG	L CTC	S TCG	S TCC	F TTC	A GCG	A GCA	A GCT	L CTC	C TGC	E GAG	315 945
316 946	E GAG	R CGG	P CCG	G GGC	S AGC	F TTC	T ACG	P CCC	T ACT	E GAG	P CCA	Q CAG	T ACC	Q CAG	L CTA	330 990
331 991	D GAT	s TCT	E GAG	g GGT	P CCA	T ACT	L CTG	P CCA	E GAG	P CCG	M ATG	A GCA	E GAG	A GCC	Q CAG	345 1035
346 1036	_	Q CAG	M ATG	D GAT	P CCT	V GTG	A GCC	Q CAG		Q CAG			P CCC		L CTC	360 1080
361 1081	Q CAG	P CCA	R CGA	s TCG	D GAT	P CCC	T ACA	A GCT	Q CAG	P CCA	Q CAG	L CTG	N AAC	P CCT	T ACG	375 1125
376 1126	A GCC	Q CAG	P CCA	Q CAG	S TCG	D GAT	P CCC	T ACA	A GCC	Q CAG	P CCA	Q CAG	L CTG	N AAC	L	390 1170
	GCC M	CAG A	CCA Q	CĀG P	TCG Q	GAT S	CCC	ACA S	gcc V	CAG A	CCA Q	CAG P	CTG Q	AAC A	CTC	
1126 391	GCC M ATG	A GCC N	Q CAG V	P CCA CCA	TCG Q CAG T	GAT S TCA P	D GAT	ACA S TCT	GCC V GTG	A GCC A	CCA Q CAG S	P CCA S	Q CAG V	AAC A GCA P	CTC D GAC	1170 405
391 1171 406	GCC M ATG T ACT	A GCC N AAC C	Q CAG V GTC	P CCA Q CAG	Q CAG T ACC	S TCA P CCT S	D GAT A GCA	S TCT P CCT	GCC V GTG A GCT	A GCC A GCC	Q CAG S AGT	P CCA S TCT	Q CAG V GTG	AAC A GCA P CCC T	D GAC S AGT	1170 405 1215 420
391 1171 406 1216 421	GCC M ATG T ACT P CCC	A GCC N AAC C TGT	Q CAG V GTC D GAT	P CCA Q CAG E GAA	Q CAG T ACC A GCT	GAT S TCA P CCT S TCC	D GAT A GCA P CCA	S TCT P CCT T ACC	GCC V GTG A GCT P CCA	A GCC A GCC S TCC	Q CAG S AGT S TCG	P CCA S TCT H CAT S	Q CAG V GTG P CCT	AAC A GCA P CCC T ACC	CTC DGAC SAGT PCCA	405 1215 420 1260 435
391 1171 406 1216 421 1261	M ATG T ACT P CCC G GGG	A GCC N AAC C TGT A GCC	CCA Q CAG V GTC D GAT L CTT	P CCA Q CAG E GAA E GAG S	Q CAG T ACC A GCT D GAC	GAT S TCA P CCT S TCC P CCA	D GAT A GCA P CCA A GCC	S TCT P CCT T ACC	GCC V GTG A GCT P CCA P CCT A	A GCC S TCC P CCT A	CCA Q CAG S AGT S TCG A GCC	P CCA S TCT H CAT S TCT	Q CAG V GTG P CCT E GAA	AAC A GCA P CCC T ACC GGA GGA	CTC D GAC S AGT P CCA E GAA	405 1215 420 1260 435 1305

Amino acid sequence of human GPCRx9 (466 amino acids) (SEQ ID NO:10). The six predicted transmembrane domaines are underlined.

MEADLGATGHRPRTELDDEDSYPQGGWDTVFLVALLLLGLPANGLMAWLAGSQARHGAGTRLALLLLSLALSDPLFLAAA
AFQILEIRHGGHWPLGTAACRFYYFLWGVSYSSGLFLLAALSLDRCLLALCPHWYPGHRPVRLPLWVCAGVWVLATLFSV
PWLVFPEAAVWWYDLVICLDFWDSEELSLRMLEVLGGFLPFLLLLVCHVLTQATACRTCHRQQQPAACRGFARVARTILS
AYVVLRLPYQLAQLLYLAFLWDVYSGYLLWEALVYSDYLILLNSCLSPFLCLMASADLRTLLRSVLSSFAAALCEERPGS
FTPTEPQTQLDSEGPTLPEPMAEAQSQMDPVAQPQVNPTLQPRSDPTAQPQLNPTAQPQSDPTAQPQLNLMAQPQSDSVA
QPQADTNVQTPAPAASSVPSPCDEASPTPSSHPTPGALEDPATPPASEGESPSSTPPEAAPGAGFT

At the amino acid sequence level, the human GPCRx9 is 33% identical to the human ChemR23 receptor.

Nucleotide and deduced amino acid sequence of human GPCRx14 (SEQ ID NO: 11 and 12 respectively)

28

1	M	Y	n	G	S	C	C	R	I	E	G	D	T	I	S	15
	ATG	TAC	aac	GGG	TCG	TGC	TGC	CGC	ATC	GAG	GGG	GAC	ACC	ATC	TCC	45
	Q	V	M	P	P	L	L	I	V	A	F	V	L	G	A	30
	CAG	GTG	ATG	CCG	CCG	CTG	CTC	ATT	GTG	GCC	TTT	GTG	CTG	GGC	GCA	90
31	L	G	n	G	V	A	L	C	g	F	C	F	H	M	K	45
91	CTA	GGC	AAT	GGG	GTC	GCC	CTG	TGT	GGT	TTC	TGC	TTC	CAC	ATG	AAG	135
46 136		W TGG	K AAG	P	S AGC	T ACT	V GTT	Y TAC	L CTT	F TTC	N AAT	L TTG	A GCC	gtg	A GCT	60 180
61	D	P	L	L	M	I	C		P	F	R	T	D	Y	Y	75
181	GAT	TTC	CTC	CTT	ATG	ATC	TGC		CCT	TTT	CGG	ACA	GAC	TAT	TAC	225
	L	R	R	R	H	W	A	F	G	D	I	P	C	R	V	90
	CTC	AGA	CGT	AGA	CAC	TGG	GCT	TTT	GGG	GAC	ATT	CCC	TGC	CGA	GTG	270
91 271		L	F TTC	T ACG	L TTG	A GCC	M ATG	n aac	R AGG	A GCC	G GGG	S AGC	I ATC	V GTG	F TTC	105 315
10 <i>6</i> 316	L CTT	T ACG	-	-	A GCT	A GCG	D GAC	R AGG	Y TAT	F TTC	K AAA	V GTG	V GTC	H CAC	P CCC	120 360
121		H	A	V	n	T	I	S	T	R	V	A	A	G	I	135
361		CAC	GCG	GTG	aac	ACT	ATC	TCC	ACC	CGG	GTG	GCG	GCT	GGC	ATC	405
136	V	C	T	L	W	A	L	V	I	L	G	T	V	Y	L	150
406	GTC	TGC	ACC	CTG	TGG	GCC	CTG	GTC	ATC	CTG	GGA	ACA	GTG	TAT	CTT	450
151	L	L	E	n	H	L	C	V	Q	e	T	A	V	S	C	165
451	TTG	CTG	GAG	aac	CAT	CTC	TGC	GTG	CAA	gag	ACG	GCC	GTC	TCC	TGT	495
166	E	S	F	I	M	E	S	A	N	G	W	H	D	I	m	180
496	GAG	AGC	TTC	ATC	ATG	GAG	TCG	GCC	AAT	GGC	TGG	CAT	GAC	ATC	atg	540
181	F	Q	L	E	F	F	M	P	L	G	I	I	L	F	C	195
541	TTC	CAG	CTG	GAG	TTC	TTT	ATG	CCC	CTC	GGC	ATC	ATC	TTA	TTT	TGC	585
196	s	F	K	I	V	W	S	L	R	R	R	Q	Q	L	A	210
586	TCC	TTC	AAG	ATT	GTT	TGG	AGC	CTG	AGG	CGG	AGG	CAG	CAG	CTG	GCC	630
211	R	Q	A	R	M	K	K	A	T	R	F	I	M	V	V	225
631	AGA	CAG	GCT	CGG	ATG	AAG	AAG	GCG	ACC	CGG	TTC	ATC	ATG	GTG	GTG	675
						T ACA									R AGA	240 720
				-		T ACG									s TCT	255 765
						H CAC										270 810

271	s	M	L	D	P	L	V	Y	Y	F	s	s	P	s	F	285
811	AGC	ATG	CTG	GAT	CCC	CTG	GTG	TAT	TAT	TTT	TCA	AGC	CCC	TCC	TTT	855
286	P	ĸ	F	Y	N	ĸ	L	K	I	C	s	L	K	P	K	300
856	CCC	AAA	TTC	TAC	AAC	AAG	CTC	AAA	ATC	TGC	AGT	CIG	AAA	CCC	AAG	900
301	Q	P	G	H	S	K	T	Q	R	P	E	E	M	P	I	315
901	CAG	CCA	GGA	CAC	TCA	AAA	ACA	CAA	AGG	CCG	GAA	GAG	ATG	CCA	ATT	945
316	S	N	L	G	R	R	S	С	I	S	V	A	N	S	F	330
946	TCG	AAC	CTC	GGT	CGC	AGG	AGT	TGC	ATC	AGT	GTG	GCA	AAT	AGT	TTC	990
331	`Q	s	Q	S	D	G	Q	W	D	P	H	I	v	E	W	345
991	CAA	AGC	CAG	TCT	GAT	GGG	CAA	TGG	GAT	CCC	CAC	ATT	GTT	GAG	TGG	1035
346	H	*														347
1036	CAC	TGA														1041

Amino acid sequence of human GPCRx14 (346 amino acids) (SEQ ID NO:12). The seven predicted transmembrane domaines are underlined.

MYNGSCCRIEGDTISQVMPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTDYYLRRRH WAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQE TAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSAR LYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPBEMPISNLGR RSCISVANSFQSQSDGQWDPHIVEWH

At the amino acid sequence level, the human GPCRx14 is 50% identical to the human HM74 receptor.

Nucleotide and deduced amino acid sequence of human GPCRx16 (SEQ ID NO: 13 and 14 respectively). This nucleotide sequence is located on the chromosome 4.

	M ATG	G GGC	_	G GGC	E GAG			L CTG	A GCG	g ggt	L CTC		V GTG	M ATG	V GTA	15 45
	L CTG		V GTG	A GCG	L CTG	L CTA	s TCC	N AAC	A GCA	L CTG	V GTG	L CTG	L CTT	C TGT	C TGC	30 90
31		y	S	A	E	L	R	T	R	A	S	G	V	L	L	45
91		TAC	AGC	GCT	GAG	CTC	CGC	ACT	CGA	GCC	TCA	GGC	GTC	CTC	CTG	135
46	V	n	L	s	L	G	H	L	L	L	A	A	L	D	M	60
136	GTG	aat	CTG	TCT	CTG	GGC	CAC	CTG	CTG	CTG	GCG	GCG	CTG	GAC	ATG	180
61	P	F	T	L	L	g	V	M	R	G	R	T	P	s	A	75
181		TTC	ACG	CTG	CTC	ggt	GTG	ATG	CGC	GGG	CGG	ACA	CCG	TCG	GCG	225
76	P	G	A	C	Q	V	I	G	F	L	D	T	F	L	A	90
226		GGC	GCA	TGC	CAA	GTC	ATT	GGC	TTC	CTG	GAC	ACC	TTC	CTG	GCG	270
91	S	N	A	A	L	S	V	A	A	L	S	A	D	Q	W	105
271	TCC	AAC	GCG	GCG	CTG	AGC	GTG	GCG	GCG	CTG	AGC	GCA	GAC	CAG		315
106	L	A	V	G	F	P	L	R	Y	A	G	R	L	R	P	120
316	CTG	GCA	GTG	GGC	TTC	CCA	CTG	CGC	TAC	GCC	GGA	CGC	CTG	CGA	CCG	360
121		Y	A	G	L	L	L	G	C	A	W	G	Q	s	L	135
361		TAT	GCC	GGC	CTG	CTG	CTG	GGC	TGT	GCC	TGG	GGA	CAG	TCG	CTG	405
136		F	S	G	A	A	L	G	C	S	w	L	G	Y	S	150
406		TTC	TCA	GGC	GCT	GCA	CTT	GGC	TGC	TCG	TGG	CTT	GGC	TAC	AGC	450
151 451	S AGC	A GCC	F TTC	A GCG		C TGT		L CTG	R CGC	L CTG	P CCG	P CCC	e gag	P	E GAG	165 495
166		P	R	F	A	A	F	T	A	T	L	H	A	V	G	180
496		CCG	CGC	TTC	GCA	GCC	TTC	ACC	GCC	ACG	CTC	CAT	GCC	GTG	GGC	540
181 541		V G T G		P CCG	L CTG	A GCG	V GTG	L CTC	C TGC	L CTC	T ACC	S TCG	L CTC	Q CAG	V GTG	195 585
196	H	R	V	A	R	R	H	C	Q	R	M	D	T	V	T	210
586	CAC	CGG	GTG	GCA	CGC	AGA	CAC	TGC	CAG	CGC	ATG	GAC	ACC	GTC	ACC	630
211	M	K	A	L	A	L	L	A	D	L	H	CCC	R	Y	W	225
631	ATG	Aag	GCG	CTC	GCG	CTG	CTC	GCC	GAC	CTG	CAC		AGG	TAT	TGG	675
				Ċ TGC											P	240 720
				G GGC											L CTC	255 765

271	Q	G	F	P	v	G	S	L	V	Q	T	L	R	G	P	285
811	CAG	GGG	TTT	CCT	GTT	GGT	TCA	TTG	GTG	CAG	ACA	CTG	CGG	GGG	CCT	855
											Q					300
856	CTG	CCT	CCT	GGG	ATA	TGT	GCT	CAC	AGT	GCA	CAG	GGA	GCT	TTG	CGC	900
301	R	A	v	G	С	A	s	P	G	G	v	P	R	A	L	315
901	AGA	GCT	GTG	GGG	TGT	GÇT	TCT	CCG	GGA	GGG	GTT	CCG	CGG	GCT	CTG	945
316	L	W	A	A	R	H	т	P	P	v	н	G	С	G	s	330
946	CTG	TGG	GCG	GCC	AGA	CAC	ACC	CCT	CCT	GTG	CAT	GGC	TGT	GGG	TCT	990
331	E	A	s	A	С	F	С	P	L	L	т	0	С	P	С	345
											ACC					1035
346	М	D	L	G	F	ĸ	s	*								352
			TTG				_									1059

Amino acid sequence of human GPCRx16 (352 amino acids) (SEQ ID NO: 14). The six predicted transmembrane domaines are underlined.

MGPGEALLAGLLVMVLAVALLSNALVLLCCAYSAELRTRASGVLLVNLSLGHLLLAALDMPFTLLGVMRGRTPSAPGACO VIGFLDTFLASNAALSVAALSADQWLAVGFPLRYAGRLRPRYAGLLLGCAWGQSLAFSGAALGCSWLGYSSAFASCSLRL PPEPERPRFAAFTATLHAVGFVLPLAVLCLTSLQVHRVARRHCQRMDTVTMKALALLADLHPRYWPSACRQAQARDLGAP WAVGLRSLWASPPLLCPEFTSHSTAPARCSQGFPVGSLVQTLRGPLPPGICAHSAQGALRRAVGCASPGGVPRALLWAAR HTPPVHGCGSEASACFCPLLTQCPCMDLGFKS

At the amino acid sequence level, the human GPCRx16 is 50% identical to the rat GPR 26 receptor.

Nucleotide and deduced amino acid sequence of human GPCRx17 (SEQ ID NO: 15 and 16 respectively). This nucleotide sequence is located on the chromosome 2.

			CCC Þ		_		G GGC		V GTG		_	P CCC		P CCC	K AAG	15 4 5
16 46	G GGG	A GCT	L TTG				L CTG	A GCC	L CTG	A GCA	S AGC	L CTC	I ATC	I ATC	T ACC	30 90
31 91	-	N AAC	L CTG	CTC L	L CTA	A GCC	L CTG	G GGC	I ATC	A GCT	G GGG	T ACC	A GCC	A GCC	C TGC	45 135
46 136		A GCC	T ACC	C TGC	W TGG	L CTG	L CTT	L CTT	P CCT	e gag	P CCT	T ACT	A .GCT	G GGC	W TGG	60 180
61 181		A GCT	H CAC	G GGG	S TCT	G GGC	I ATT	A GCC	T ACA	L TTG	P CCA	G GGG	L CTG	W TGG	N AAC	75 · 225
76 226	Q CAG	s agt	R CGC	R CGG	g Ggt	Y TAC	W TGG	S TCC	C TGC	L CTC	L CTC	V GTC	Y TAC	L TTG	A GCT	90 270
91 271		N AAC	F TTC	S TCC	F TTC	L CTC	s TCC	L CTG	L CTT	A GCC	N AAC	L CTC	L TTG	L CTG	V GTG	105 315
106 316		G GGG	E GAG	R CGC	Y TAC	M ATG	A GCA	V GTC	L CTG	R AGG	P CCA	L CTC	Q CAG	P	P CCT	120 360
121 361	G GGG	S AGC	I ATT	R CGG	L CTG	A GCC		_	L CTC	T ACC	W TGG	A GCT	G GGT	P	L CTG	135 405
136 406		P TTT	A GCC	s agt	L CTG	P CCC	A GCT	L CTG	G GGG	W TGG	n aac	H CAC	W TGG	T ACC	P CCT	150 450
151 451	G GGT	A GCC	n aac	C TGC	s Agc	s TCC	Q CAG	A GCT	I ATC	F TTC	P CCA	A GCC	P	Y TAC	L CTG	165 495
451 166	ggt Y	GCC L		tgc v	AGC Y	TCC G	CAG	GCT L	ATC L	TTC P	CCA A	gcc v	GCC	TAC A	CTG A	
451 166 496 181	GGT Y TAC A	GCC L CTC F	AAC E	TGC V GTC S	AGC Y TAT V	TCC G GGG R	CAG L CTC V	GCT L CTG L	L CTG	P CCC T	CCA A GCC A	GCC V GTG H	CCC G GGT R	TAC A GCT Q	CTG A GCT L	495 180
451 166 496 181 541 196	GGT Y TAC A GCC	GCC L CTC F TTC	AAC E GAA L	V GTC S TCT C	AGC Y TAT V GTC	TCC G GGG R CGC	CAG L CTC V GTG	GCT L CTG L CTG	L CTG A GCC	P CCC T ACT	A GCC A GCC	GCC V GTG H CAC	GGT R CGC	TAC A GCT Q CAG	CTG A GCT L CTG	495 180 540 195
451 166 496 181 541 196 586	GGT Y TAC A GCC Q CAG	GCC L CTC F TTC D GAC	E GAA L CTC I ATC	V GTC S TCT C TGC	AGC Y TAT V GTC R CGG	G GGG R CGC L CTG	CAG L CTC V GTG E GAG	GCT L CTG L CTG R CGG	L CTG A GCC A GCA	P CCC T ACT V GTG R	A GCC A GCC C TGC	GCC V GTG H CAC R CGC	GGT R CGC D GAT R	A GCT Q CAG E GAG	CTG A GCT L CTG	495 180 540 195 585 210 630
451 166 496 181 541 196 586 211 631	Y TAC A GCC CAG S TCC	GCC L CTC F TTC D GAC A GCC	E GAA L CTC I ATC L CTG	V GTC S TCT C TGC A GCC	Y TAT V GTC R CGG	G GGG R CGC L CTG	CAG L CTC V GTG E GAG L CTT	L CTG CTG R CGG T ACC	L CTG A GCC A GCA W TGG	P CCC T ACT V GTG R AGG	A GCC A GCC C TGC Q CAG	GCC V GTG H CAC R CGC A GCA	GGT R CGC D GAT R AGG	A GCT CAG GAG A GCA	A GCT L CTG P CCC	495 180 540 195 585 210 630 225 675
451 166 496 181 541 196 586 211 631 226 676	Y TAC A GCC CAG S TCC A GCT A	GCC L CTC F TTC D GAC A GCC G GGA	E GAA L CTC I ATC L CTG	V GTC S TCT C TGC A GCC M ATG	Y TAT V GTC R CGG CTG L	G GGG R CGC L CTC S	CAG L CTC V GTG E GAG L CTT F TTC	L CTG L CTG R CGG GGG L	L CTG A GCC A GCA W TGG L CTG	P CCCC T ACT V GTG R AGG C TGC	CCA A GCC C TGC C CAG W TGG E	GCC V GTG H CAC R GGC GGC Q	GGGT RCGCC DGAT RAGG	A GCT Q CAG GAG A GCA Y TAC P	CTG A GCT L CTG P CCC Q CAG V GTG	495 180 540 195 585 210 630 225 675

e e santa - A

271	S	A	A	A	V	P	V	A	M	G	L	G	D	Q	R	285
811	AGT	GCA	GCG	GCA	GTG	CCC	GTA	GCC	ATG	GGG	CTG	GGC	GAT	CAG	CGC	855
286	Y	T	A.	P	W	R	Q	P	P	K	G	A	С	R	G	300
856	TAC	ACA	GCC	CCC	TGG	AGG	CAG	CCG	CCC	AAA	GGT	GCC	TGC	AGG	GGC	900
301	С	G	E	E	P	P	G	T	٧	P	A	P	A	L	P	315
901	TGT	GGG	GAA	GAG	CCT	CCC	GGG	ACA	GTC	CCG	GCC	CCA	GCA	TTG	CCT	945
316	T	T	Q	A	A	K	A	V	s	T	W	T	*			327
946	ACC	ACC	CAA	GCA	GCC	AAA	GCA	GTG	TCG	ACC	TGG	ACT	TGA			984

Amino acid sequence of human GPCRx17 (327 amino acids) (SEQ ID NO:16). The seven predicted transmembrane domaines are underlined.

MTPNSTGEVPSPIPKGALGLSLALASLIITANLLLALGIAGTAACAATCWLLLPEPTAGWAAHGSGIATLPGLWNQSRRG
YWSCLLVYLAPNFSFLSLLANLLLVHGERYMAVLRPLQPPGSIRLALLLTWAGPLLFASLPALGWNHWTPGANCSSQAIF
PAPYLYLEVYGLLLPAVGAAAFLSVRVLATAHRQLQDICRLERAVCRDEPSALARALTWRQARAQAGAMLLFGLCWGPYV
ATLLLSVLAYEQRPPLGPGTLLSLLSLGSASAAAVPVAMGLGDQRYTAPWRQPPKGACRGCGEEPPGTVPAPALPTTQAA
KAVSTWT

At the amino acid sequence level, the human GPCRx17 is 28% identical to the human EDG6 receptor

Nucleotide and deduced amino acid sequence of human GPCRx18 (SEQ ID NO: 17 and 18 respectively). This nucleotide sequence is located on the chromosome 2.

1	m atg	G GGG	D GAT	E GAG	L CTG		P CCT			V GTG	G GGC	T ACT	T ACA	A GCT	W TGG	15 45
	P CCG	A GCC	L CTG		Q CAG				K AAG	T ACA	CCC	C TGC	M ATG	P CCC	Q CAA	30 90
	A GCA	A GCC	S AGC	n aac	T ACT	S TCC	L TTG		L CTG	G GGG	D GAC	L CTC	r agg	V GTG	CCC	45 135
46 136		S TCC	M ATG	L CTG	Y TAC			F TTC	L CTT	P CCC	S TCA	S AGC	L CTG	L CTG	A GCT	60 180
	A GCA	A GCC	T ACA			V GTC	S AGC			L CTĢ	L CTG	V GTG	T ACC	I ATC	L CTG	75 225
76 226				R CGG			Q CAG				Y TAC		L CTC	P CCG	A GCT	90 270
91 271		I ATC	L CTG					A GCC			L CTC	L CTC	H CAC	M ATG	L CTC	105 315
106 316		S TCC	S TCC		S AGC			G GGC			CIG	G GGC		M ATG	A GCC	120 360
121 361	_	G GGC	I ATT	L CTC		D GAT					A GCC	C TGC	T ACC	S AGC	T ACC	135 405
136 406		L CTG		P TTC				V GTG			T ACC	Y TAC	L CTG	A GCA	V GTC	150 450
151 451		H CAT	P CCA	L CTG		Y TAC				M ATG	S TCC	H CAT	G GGG	A GCT	A GCC	165 495
	W TGG	K Aag		V GTG				W TGG		V GTG	A GCC	C TGC	C TGC	F TTC	P	180 540
181 541		F TTC	L CTT	I ATT	W TGG	L CTC	S AGC	K Aag	W TGG	Q CAG	D GAT	A GCC	Q CAG	L CTG	E GAG	195 585
196 586	E GAG	Q CAA	G GGA	A GCT	S TCA					P CCA	S AGC	M ATG	G GGC	T ACC	Q CAG	210 630
211 631	P CCG	G GGA	C TGT	G GGC	L CTC		V GTC		V GTT		Y TAC	T ACC	S TCC	I ATT	L CTG	225 675
											A GCC				w TGG	240 720
											I ATC			-		255 765
															I ATC	

271	T	L	Y	V	S	T	G	v	v	F	S	L	D	M	v	285
811	ACA	TTG	TAC	GTG	AGC	ACA	GGG	GTG	GTG	TTC	TCC	CTG	GAC	ATG	GTG	855
286	L	T	R	Y	H	H	I	D	s	G	T	H	T	W	L	300
856	CTG	ACC	AGG	TAC	CAC	CAC	ATT	GAC	TCT	GGG			ACA	TGG	CIC	900
301	L	Α	A	N	s	E	v	L	M	M	L	P	R	Α	M	315
901	CTG	GCA	GCT	AAC	AGT	GAG	GTA	CTC	ATG	ATG	CTT	CCC	CGT	GCC	ATG	945
316	L	T	Y	L	Y	L	L	R	Y	R	Q	L	L	G	M	330
946	CTC	ACA	TAC	CTG	TAC	CTG	CTC	CGC	TAC	CGG			TTG	GGC	ATG	990
331	v	R	G	H	L	P	s	R	R	H	Q	A	I	F	T	345
991	GTC	CGG	GGC	CAC	CTC	CCA	TCC	AGG	AGG	CAC	CAG	GCC	ATC	TTT	ACC	1035
346	I	S	*					•								347
1036	ATT	TCC	TAG				•									1044

Amino acid sequence of human GPCRx18 (347 amino acids) (SEQ ID NO:18). The seven predicted transmembrane domaines are underlined.

MGDELAPCPVGTTAWPALIQLISKTPCMPQAASNTSLGLGDLRVPSSMLYWLFLPSSLLAAATLAVSPLLLVTILRNQRL RQEPHYLLPANILLSDLAYILLHMLISSSSLGGWELGRMACGILTDAVFAACTSTILSFTAIVLHTYLAVIHPLRYLSFM SHGAAWKAVALIWLVACCFPTFLIWLSKWQDAQLEEQGASYILPPSMGTQPGCGLLVIVTYTSILCVLFLCTALIANCFW RIYAEAKTSGIWGQGYSRARGTLLIHSVLITLYVSTGVVFSLDMVLTRYHHIDSGTHTWLLAANSEVLMMLPRAMLTYLY LLRYRQLLGMVRGHLPSRRHQAIFTIS

At the amino acid sequence level, the human GPCRx18 is 25% identical to the rabbit $5HT1D-\beta$ receptor.

Nucleotide and deduced amino acid sequence (partial sequence) of human GPCRx19 (SEQ ID NO: 19 and 20 respectively). This nucleotide sequence is located on the chromosome 16.

1		CCC	H CAT	R AGG	S AGC	-				L CTT		F TTC	R AGA	A GCT	K AAA	15 45
	P CCA		F TTT	L CTT	L CTC	S TCC	T ACA	A GCA	n Aat	I ATC	L TTG	T ACA	V G T G	I ATC	I ATC	30 90
	L CTC	s TCC	Q CAG	L CTG	V GTG		R AGA	R AGA	Q CAG		S TCC	s TCC	Y TAC	n aac	Y TAT	45 135
	L CTC	L TTG	A GCA	L CTC	A GCT	A GCT	A GCC	D GAC	I ATC	L TTG	V GTC		F TTT	F TTC	I ATA	60 180
	V GTG	F TTT	V GTG	D GAC	F TTC	L CTG	L TTG	e gaa	D GAT	F TTC	I ATC	L TTG	n aac	M ATG	Q CAG	75 225
	M ATG	P CCT	Q CAG	V GTC	p CCC	D GAC	K AAG	I ATC	I ATA	e gaa	V GTG		e gaa	F TTC	S TCA	90 270
91 271	S TCC	I ATC	H CAC	T ACC	S TCC	I ATA	W TGG	I TTA	T ACT	V GTA	P CCG	L TTA	T ACC	I ATT	D GAC	105 315
106 316		Y TAT	I ATC	A GCT		C TGC	H CAC	P CCG	L CTC	K AAG	Y TAC				_	120 360
	Y TAC	P CCA	A GCC	R CGC	T ACC	R CGG	K AAA	V GTC	I ATT	V GTA	S AGT	V GTT	Y TAC	I ATC	T ACC	135 405
	C TGC		L CTG	T ACC	S AGC				Y TAC		W TGG			I ATC	W TGG	150 450
151 451		e gaa	D GAC	Y TAC	I ATC	S AGC	T ACC	s TCT	V GTG	H CAT	H CAC	V GTC	L CTC	I ATC	w Tgg	165 495
	I ATC		C TGC					_					I ATC	F TTC	F TTC	180 540
181 541		L TTG	N AAC	_	I ATC	I ATT	V GTG	Y TAC	K AAG	L CTC	r agg	R AGG	K AAG	S AGC	N AAT	195 585
	F TTT		L CTC	R CGT	G GGC	Y TAC	s TCC	T ACG	G GGG	K AAG	T ACC	T ACC	A GCC	I ATC	L TTG	210 630
211 631		T ACC	I ATT	T ACC	S TCC	I ATC	F TTT	A GCC	T ACA	L CTT	W TGG	A GCC	P CCC	R CGC	I ATC	225 675
			I ATT												R CGC	240 720
			V GTA									M ATG	L CTA		L CTT	255 765
			T ACA												K AAG	270 810

271	R	F	R	T	M	A	A	A	T	L	K	Α	F	F	K	285
811	CGG	TTC	CGC	ACC	ATG	GCA	GCC	GCC	ACG	CTC	AAG	GCT	TTC	TTC	AAG	855
286	С	Q	K	Q	P	V	Q	F	Y	T	N	H	N	F	S	300
856	TGC	CAG	AAG	CAA	CCT	GTA	CAG	TTC	TAC	ACC	AAT	CAT	AAC	TTT	TCC	900
301	I	T	s	S	P	W	I	S	P	A	N	S	H	С	I	315
901	ATA	ACA	AGT	AGC	CCC	TGG	ATC	TCG	CCG	GCA	AAC	TCA	CAC	TGC	ATC	945
316	K	M	L	V	Y	Q	Y	D	K	N	G	K	P	I	K	330
946	AAG	ATG	CTG	GTG	TAC	CAG	TAT	GAC	AAA	AAT	GGA	AAA	CCT	ATA	AAA	990
331	V	S	P	*												333
991	GTA	TCC	CCG	TGA												1002

Partial amino acid sequence of human GPCRx19 (333 amino acids) (SEQ ID NO:20). The seven predicted transmembrane domaines are underlined.

GPHRSQRSHLCFRAKPVFLLSTANILTVIILSQLVARRQKSSYNYLLALAAADILVLFFIVFVDFLLEDFILMMQMPQVPDKIIEVLEFSSIHTSIWITVPLTIDRYIAVCHPLKYHTVSYPARTRKVIVSVYITCFLTSIPYYWWPNIWTRDYISTSVHHVLIWIHCFTVYLVPCSIFFILMSIIVYKLRRKSNFRLRGYSTGKTTAILFTITSIFATLWAPRIIMILYHLYGAPIQMRWLVHIMSDIAMMLALLNTAINFFLYCFISKRFRTMAAATLKAFFKCQKQPVQFYTNHNFSITSSPWISPANSHCIKMLVYQYDKNGKPIKVSP

At the amino acid sequence level, the human GPCRx19 is 25% identical to the C. Elegans F21C10.9 G-protein coupled receptor.

Nucleotide and deduced amino acid sequence of human GPCRx20 (SEQ ID NO: 21 and respectively). This nucleotide sequence is located on the chromosome 5.

	M ATG	L CTG	A GCA	A GCT	A GCC		A GCA		S TCT		-	S AGC	S AGC	M ATG	n TAA	15 45
	V GTG		F TTT		H CAC	L CTC				G GGA	G GGG	Y TAC	L CTG	P	S TCT	30 90
31 91		s TCC	Q CAG	D GAC	W TGG	R AGA	T ACC				A GCT	L CTC	L TTG	V GTG	A GCT	45 135
	V GTC	C TGC	L CTG	V GTG	G GGC	F TTC	V GTG		n aac	L CTG	C TGT	V GTG	I ATT	G GGC	I ATC	60 180
61 181	L CTC	L CTT	H CAC	N AAT	A GCT	W TGG	K Aaa	G GGA	K AAG	P CCA	s TCC	M ATG	I ATC	H CAC	S TCC	75 225
76 226		I ATT	L CTG	n aat	L CTC	S AGC	L CTG		D GAT	L CTC	S TCC	L CTC	L CTG	L CTG	F TTT	90 270
91 271	S TCT	A GCA	P CCT	I ATC	R CGA	A GCT	T ACG	A GCG	Y TAC	S TCC	K AAA	S AGT	V GTT	W TGG	D GAT	105 315
106 316		G GGC	W TGG	F TTT		C TGC		s TCC	S TCT		W TGG	F TTT	I ATC	H CAC	T ACA	120 360
121 361		M ATG	A GCA	A GCC	K AAG	S AGC	L CTG	T ACA		V GTT			A GCC	K AAA	V GTA	135 405
	C TGC	_	M ATG					P CCA				V GTG	s agt	I ATC	H CAC	150 450
151 451		Y TAC	T ACC	I ATC	W TGG	S TCA		L CTG	V GTG	A GCC	I ATC	W TGG	T ACT	V GTG	A GCT	165 495
166 496		L CTG	L TTA	CCC	L CTG	P CCG	e gaa	W TGG	F TTC		S AGC	T ACC	I ATC	R AGG	H CAT	180 540
181 541		e gaa	G GGT	V GTG	E GAA	M ATG	C TGC	L CTC	V GTG	D GAT	V GTA	P CCA	A GCT	V GTG	A GCT	195 585
196 586	E GAA	e Gag	F TTT	M ATG	s TCG	M ATG	F TTT	g ggt	K Aag	L CTC	Y TAC	P CCA	L CTC	L CTG	A GCA	210 630
211 631	F TTT	g GGC	L CTT	P CCA	L TTA	F TTT	F TTT	A GCC	S AGC	F TTT	Y TAT	F TTC	W TGG	R AGA	A GCT	225 675.
226 676	Y TAT	D GAC	Q CAA	C TGT	K AAA	K AAA	R CGA	g gga	T ACT	K AAG	T ACT	Q CAA	N TAA	CTT L	R AGA	240 720
241 721	N AAC	Q CAG	I ATA	R CGC	S TCA	K AAG	Q CAA	V GTC	T ACA	V GTG	M ATG	L CTG	L CTG	S AGC	I ATT	255 765
256 766	A GCC	I ATC	I ATC	S TCT	A GCT	L CTC	L TTG	W TGG	L CTC	P CCC	e gaa	W TGG	V GTA	A GCT	W TGG	270 810

														P CCA	Q CAA	285 855
														S TCT	S TCA	300 900
301	A	N	P	L	I	P	Г	v	M	s	В	E	F		E	315 945
316	G	L	ĸ	G	v	W	ĸ	W	M	I	T	ĸ	K	P	p	330
331	T	V	s	E	s	Q	E	T	P	A	G	N	s	CCT	G	990 345
991 346													TCA S		GGT P	1035 360
1036 361																1080 375
1081	GAA	AAA	GAG	AAA	CCC	AGC	TCT	CCC	TCC	TCT	GGC	AAA	GGG	AAA	ACT	1125
376 1126	GAG	AAG	GCA	GAG	ATT	CCC	ATC	CTT	CCT	GAC	GTA	GAG	CAG	TTT		
391 1171																405 1215
406																

Amino acid sequence of human GPCRx20 (419 amino acids) (SEQ ID NO:22). The seven predicted transmembrane domaines are underlined.

MLAAAFADSNSSSMNVSFAHLHFAGGYLPSDSQDWRTIIPALLVAVCLVGFVGNLCVIGILLHNAWKGKPSMIHS1ILNL SLADLSLLLPSAPIRATAYSKSVWDLGWFVCKSSDWFIHTCMAAKSLTIVVVAKVCFMYASDPAKQVSIHNYTIWSVLVA IWTVASLLPLPEWFFSTIRHHEGVEMCLVDVPAVAEEFMSMFGKLYPLLAFGLPLFFASFYFWRAYDQCKKRGTKTQNLR NQIRSKQVTVMLLSIAIISALLWLPEWVAWLWVWHLKAAGPAPPQGFIALSQVLMFSISSANPLIFLVMSEEFREGLKGV WKWMITKKPPTVSESQETPAGNSEGLPDKVPSPESPASIPEKEKPSSPSSGKGKTEKAEIPILPDVEQFWHERDTVPSVQ DNDPIPWEHEDQETGEGVK

At the amino acid sequence level, the human GPCRx20 is 20% identical to the mouse galanin 2 receptor.

CLAIMS

- 1. A G-protein coupled receptor having an amino acid sequence which presents more than 75% sequence identity with the sequence SEQ ID NO. 1.
- 2. The G-protein coupled receptor according to claim 1, having an amino acid sequence which presents more than 80% sequence identity with the sequence SEQ ID NO. 1.
- 3. The G-protein coupled receptor according 10 to claim 1, having an amino acid sequence which presents more than 85% sequence identity with the sequence SEQ ID NO. 1.
- 4. The G-protein coupled receptor according to claim 1, having an amino acid sequence which presents more than 90% sequence identity with the sequence SEQ ID NO. 1.
- 5. The G-protein coupled receptor according to claim 1, having an amino acid sequence which presents more than 95% sequence identity with the sequence 20 SEQ ID NO. 1.
 - 6. The G-protein coupled receptor having the amino acid sequence SEQ ID NO. 1 or a specific active portion thereof.
- 7. A polynucleotide encoding any of the 25 amino acid sequences of the G-protein coupled receptor according to any of the preceding claims 1 to 6.
 - 8. An agonist, reverse agonist, antagonist or inhibitor of the receptor or the polynucleotide according to any of the preceding claims 1 to 7.
- 9. A vector comprising the polynucleotide according to the claim 7.
 - 10. A cell transformed by the vector according to the claim 9.

11. A non-human mammal comprising a partial or total deletion of the polynucleotide according to the claim 8 encoding the receptor according to any of the preceding claims 1 to 6, preferably an non-human mammal comprising an homologous recombination "knock-out" of said polynucleotide or a transgenic non-human mammal overexpressing above natural level said polynucleotide.

- 12. A method for the screening (detection and possibly recovering) of compounds or natural extract which 10 are known or not known to be agonists, antagonists or inhibitors to the receptor according to any of the preceding claims 1 to 6, said method comprising:
 - contacting a cell or cell extract from the cell transfected with a vector according to the claim 9,
- 15 possibly isolating a membrane fraction from the cell extract or the complete cell with a compound binding to said receptor under conditions permitting binding of said compound or molecules present in said natural extract to said receptor, possibly by the activation of a functional response, and
 - a functional response, anddetecting the presence of a

25

- detecting the presence of any such compound or molecules by means of a bioassay (preferably a modification in the production of a second messenger or an increase in the receptor activity) in the presence of the other known compound working as an agonist, reverse agonist, antagonist or inhibitor to the receptor and thereby recovering and determining whether said unknown compound or molecule(s) is (are) able to work as an agonist, antagonist or inhibitor of the compound to its receptor.
- 30 13. An unknown compound or molecule(s), identified by the screening method according to the claim 12.
 - 14. A pharmaceutical composition comprising an adequate pharmaceutical carrier and a sufficient amount

of the compound or molecules according to the claim 8 or 13.

15. Use of the pharmaceutical composition according to the claim 14, for the manufacture of a 5 medicament in the prevention and/or the treatment of a disease selected from the group consisting of viral infections or diseases induced by various viruses or bacteria, the treatment of disturbances of cell migration, diseases or perturbations of the immune system, including 10 cancer, development of tumours and tumour metastasis, inflammatory and neo-plastic processes, bacterial and bone fungal infections, for wound healing and dysfunction of regulatory growth functions, diabetes, obesity, anorexia, bulimia, acute heart failure, 15 hypotension, hypertension, urinary retention, osteoporosis, pectoris, angina myocardial infarction, restenosis, atherosclerosis, diseases characterised by excessive smooth muscle cell proliferation, aneurysms, wound healing, diseases characterised by loss of smooth muscle cells or 20 reduced smooth muscle cell proliferation, stroke, ischemia, ulcers, allergies, benign prostatic hypertrophy, migraine, vomiting, psychotic and neurological disorders, including anxiety, schizophrenia, maniac depression, depression, delirium, dementia and severe mental retardation, 25 degenerative diseases, neurodegenerative diseases such as Alzheimer's disease Parkinson's ordisease. and dyskinasias, such as Huntington's disease or Gilles de la Tourett's syndrome and other related diseases.

16. Use of the pharmaceutical composition
30 according to the claim 14, for the manufacture of a medicament in the prevention and/or the treatment of blood circulating affections, including acute heart failure, hypotension, hypertension or myocardial infarction.

17. Diagnostic kit comprising all the media and means for detecting the receptor and nucleotide sequence encoding it or an activity of said receptor and nucleotide sequence encoding it according to any of the preceding claims 1 to 8.

1/1

Figure 1 : Dose response curve with angiopeptin