# 18 Пассивные электрические цепи

## Александр Романов Б01-107

## 1 Задание 1

## 1.1 low-pass filter

Соберём интегрирующую цепь (low-pass filter) и проведём измерения.



Рис. 1: low-pass filter

$$C=1 \; \mu F, \; R=100 \; \Omega, \; f_0=1.6 \; kHz$$

| $\log_2\left(\frac{f}{f_0}\right)$ | $20\ln(K)$ |
|------------------------------------|------------|
| -2                                 | -0.76      |
| -1                                 | -1.57      |
| 0                                  | -6.20      |
| 1                                  | -13.26     |
| 2                                  | -22.63     |
| 3                                  | -35.84     |



Рис. 2: Frequency response of low-pass filter

Подключим генератор прямоугольных импульсов и по осциллограмме переходной характеристики оценим постоянную времени  $\tau$ :

$$\tau = 78 \; \mu s$$
 
$$f_0 = \frac{1}{2\pi\tau} \simeq 2 \; kHz$$

Что близко к  $f_0$  полученному в начале.

### 1.2 hight-pass filter

Превратим интегрирующую цепь в дифференцирующую и проведём аналогичные измерения.

$$C = 1 \ \mu F, \ R = 100 \ \Omega, \ f_0 = 1.6 \ kHz$$

| $\log_2\left(\frac{f}{f_0}\right)$ | $20\ln(K)$ |
|------------------------------------|------------|
| -2                                 | -30.84     |
| -1                                 | -17.75     |
| 0                                  | -9.35      |
| 1                                  | -3.34      |
| 2                                  | -1.33      |
| 3                                  | -0.34      |



Рис. 3: Frequency response of hight-pass filter

Подключим генератор прямоугольных импульсов и по осциллограмме переходной характеристики оценим постоянную времени  $\tau$ :

$$\tau = 144 \ \mu s$$
 
$$f_0 = \frac{1}{2\pi\tau} \simeq 1 \ kHz$$

#### 1.3 rcint.cir

Откроем в MicroCap модель **rcint.cir**. Изучим графики частотной и фазовой характеристики.





По графику видно, что передаточная функция цепи принимает вид:

$$H(p) = \frac{K_0}{1 + p\tau}; \quad K_0 = \frac{R_L}{R + R_L}, \tau = (R || R_L)C.$$

По графику оценим верхнюю частоту:

$$R_L = 10 \, k\Omega, \quad f_0 \simeq 10 \, kHz$$
 
$$R_L = 10 \, M\Omega, \quad f_0 \simeq 19, 9 \, kHz$$

Изучим переходную характеристику. По графику оценим постоянную времени:



$$R_L = 10 \, k\Omega, \quad \tau \simeq 9.7 \, \mu s$$
 
$$R_L = 10 \, M\Omega, \quad \tau \simeq 19.6 \, \mu s$$

## 1.4 rcdiff.cir

Откроем модель **rcdiff.cir**. Изучим ее частотную и фазовую характеристики.





По графику видно, что передаточная функция цепи при  $R_S \neq 0$  принимает вид:

$$H(p) = \frac{K_0 p \tau}{1 + p \tau}; \quad K_0 = \frac{R}{R + R_S}, \tau = (R + R_S)C.$$

По графику оценим верхнюю частоту:

$$R_S = 0 \quad f_0 \simeq 9,75 \, kHz$$
 
$$R_S = 10 \, kHz, \quad f_0 \simeq 4,88 \, kHz$$

Изучим переходную характеристику. По графику оценим постоянную времени:



$$R_S = 0, \quad \tau \simeq 16,7 \, \mu s$$
 
$$R_S = 10 \, k\Omega, \quad \tau \simeq 31,8 \, \mu s$$

## 1.5 rcpower.cir

Откроем модель **rcpower.cir**. Изучим графики частотной зависимости потребляемых интегрирующей цепью активных и реактивных мощностей и графики мощностей на её комопонентах.





Видно, что у реактивной компоненты потребление становится максимальным при частоте  $f_0 = 10 \ kHz$ , и стремится к нулю при частоте f = 0 и  $f = \infty$ . При  $f = f_0$  выполняется закон сложения мощностей.

Подключая и отключая резитор  $R_L$  варьированием  $[1k, 1Meg|1Meg](1Meg = \infty)$ , изучим его влияние на распределение мощностей в схеме при  $f = f_0$ .



При уменьшении значения сопротивления резистора  $R_L$ , его мощность возрастает до 0,2 mW, мощность на резисторе R падает до 0,4 mW, а реактивная мощность конденсатора . Скорость увеличения мощности на резисторе  $R_L$  становится равной -0,2 mW.

## 2 Задание 2

Откроем модель rc2pole.cir.





По графикам определим затухание на частоте  $f_0\simeq 10~kHz$ , оно равно -9,6 dB и скорость его нарастания в полосах задержания -40,4 + 9,6 = -30,8 dB/decade. По графикам ФЧХ измерим значения фазовых сдвигов ФВЧ, ПФ и ФНЧ на частотах 0,  $f_0$ ,  $\infty$ .

|          | ФВЧ | ПΦ  | ФНЧ  |
|----------|-----|-----|------|
| 0        | 180 | 90  | 0    |
| $f_0$    | 90  | 0   | -90  |
| $\infty$ | 0   | -90 | -180 |

Двухсторонняя полоса  $\triangle f$  пропускания  $\Pi\Phi\approx 30$  kHz, что в три раза больше  $f_0$ . Это сходится с теорией.

#### 2.2

Откроем графики преходных характеристик.

Оценим время спада  $\tau_-$  первого выброса переходной характеристик ФВЧ до уровня  $1/e \simeq 0,37$ :

$$\tau_{-} = 5 \,\mu s$$

Оценим время нарастания  $t_+$  фронта переходной характеристики ФНЧ до уровня  $1-1/e \simeq 0,63$ :

$$\tau_+ = 61 \, \mu s$$

Найдем их отношение:

$$\frac{\tau_+}{\tau_-}=12,2$$

## 3 Задание 3

#### 3.1

Откроем модель phshift.cir.





Наибольший диапазон перестройки реализуется на частоте f=20kHz. Границы этого диапазона [-143,4;-22,7].

#### 3.2

Откроем модель двойного Т-моста **2tbridge.cir**.





Измерим полосу режекции  $\triangle f=39~kHz.~f_0=10~kHz,$  следовательно выполняется  $\triangle f=f_0.$ 





При росте  $R,\ f_0$  падает. При  $R=5\ k\Omega$  наблюдается скачок на ФЧХ.

Подключив ко входу источник прямоугольного импульса, проанализиурем переходную характеристику.  $\tau_+ = 4~\mu s,~\tau_- = 58~\mu s.$  Это сходится с теоретическими значениями.



Варьирование приводит к усреднению функции.

### 3.4

Откроем модель 2tdelay.cir.





Оценим  $Q = f_0/\triangle f$ .

| $R, k\Omega$       | 4,9   | 5                    | 5,1  |
|--------------------|-------|----------------------|------|
| $f_0, kHz$         | 10,05 | 10                   | 9,95 |
| $\triangle f, kHz$ | 0,05  | $10^{-4} \cdot 2, 5$ | 0,05 |
| Q                  | 100,5 | 40000                | 99,5 |

В режиме  $\mathit{Transient}$  измерим групповые задержки  $\tau_g$ :

$$\tau_g = 3 \, ms,$$

значение для обоих случаев ( $R=4,9~k\Omega,f=10,05~kHz$  и  $R=5,1~k\Omega,f=9,95~k\Omega$ ).



## 4 Задание 4

### 4.1

На макетной плате соберем схему полосового фильтра (его схема, как и схема  $\Phi$ HЧ и  $\Phi$ BЧ представлены на рисунке).



$$L=220~\mu H$$

$$C = 1 \,\mu F$$

$$r=92\:\Omega$$

Измерим резонансную частоту и коэффициент передачи:

$$f_0 = 366 \, kHz$$

$$\triangle f = 75 \: kHz$$

$$Q = \frac{f_0}{\triangle f} = 4,8$$

Из тех же компонент соберем схемы ФВЧ и ФНЧ. Измерим для них резонансную частоту и отношения  $K(f_0)/K(0)$  для ФНЧ и  $K(f_0)/K(\infty)$  для ФВЧ.

$$Q = \frac{K(f_0)}{K(0)} = 5,18$$

$$Q = \frac{K(f_0)}{K(\infty)} = 4, 1$$

#### 4.3

Подключим генератор прямоугольных импульсов. Изучим переходные характеристики ФВЧ, ФНЧ и ПФ. Прикинем по осцилограммам период колебаний и время их затухания до уровня 1/e=0,37 и дадим оценку резонансной частоты и добротности.

Для ФВЧ:

$$T=2,8~\mu s$$

$$\tau = 0,45 \,\mu s$$

$$f_0 = 365 \, kHz$$

$$Q = 6, 2$$

Для ФНЧ:

$$T = 2,83 \ \mu s$$

$$\tau = 0,49 \, \mu s$$

$$f_0 = 352 \, kHz$$

$$Q = 5, 7$$

Для ФВЧ:

$$T = 2,84 \,\mu s$$

$$\tau = 0.51 \, \mu s$$

$$f_0 = 351 \, kHz$$

$$Q = 5, 6$$

Откроем в MicroCap модель  $\mathbf{rlc2pole.cir}$ , изучим частотные фазовые и переходные характеристики фильтров.



Рис. 4: Частотные и фазовые характеристики



Рис. 5: Переходные характеристики

#### 4.5

Откроем модель **groupdel.cir** полосового фильтра. Наблюдая в режиме Transient отклик на двухчастотный сигнал изучим зависимость групповой задержки  $\tau_g$  от R=10,20,40,100.

| $R, \Omega$     | 10   | 20   | 40    | 100   |
|-----------------|------|------|-------|-------|
| $\tau_g, ms$    | 0,5  | 0,29 | 0,152 | 0,064 |
| $\tau_{th}, ms$ | 0,62 | 0,31 | 0,155 | 0,06  |
| Q               | 195  | 98   | 49    | 19    |

Откроем модель lcpower.cir.



На частоте резонанса  $f_0 = 250 \, kHz$ .

$$P_L = 176,066 \, m$$
  $P_C = -177,477 \, m$   $P_R = 15,89 \, m \Rightarrow \sum P = 14,47$ 

$$P_{\sum th} = 16, 18 m$$

На одной из границ полосы пропускания  $f_1=238\,kHz$ :

$$P_L = 116,577 \, m$$
  $P_C = -122,51 \, m$   $P_R = 11,14 \, m \Rightarrow \sum P = 5,147$ 

$$P_{\sum th} = 11,367 \, m$$

Закон суммирования выполняется.

## 5 Задание 5

#### 5.1

Откроем в МістоСар модель **parallel.cir** параллельного контура с  $f_0 = 100~kHz,~\varrho = 570.$  По схеме оценим параметры:

$$\alpha = \frac{\rho}{R_0}$$

$$\beta = \frac{R}{\rho}$$

$$Q = \frac{1}{\alpha + \beta}$$



$$\rho = \sqrt{\frac{L}{C}} = 568$$
 
$$\alpha = 0,0568 \quad \beta = 0,0563$$
 
$$Q = 8,84$$

Найдем резонансную частоту  $f_0=100~kHz$ , полосу пропускания  $\Delta f=11,6~kHz$ . Измерим сопротивление контура  $R_0=5~k\Omega$ . Оценим добротность как:

$$Q = \frac{R_0}{\rho} = 8,8$$

$$Q = \frac{f_0}{\triangle f} = 8, 6$$

#### 5.3

Изучим влияние на добротность последовательных потерь R, установив варьирование R = [0, 32 || 32].



Добротность при R=0:

$$Q = \frac{f_0}{\triangle f} = 17, 3$$

Изучим влияние параллельных потерь  $R_0$ , установив варьирование  $R_0 = [10k, 1000k]1000k]$ . Измерим добротность при  $R_0 = 1000 \ k\Omega$ :

$$Q = \frac{f_0}{\triangle f} = 17, 2$$

При увеличении R от 0  $\Omega 32\Omega 1/\mathrm{Q0},0580,116.\mathrm{R}_{-}010\Omega 1000\Omega 1/\mathrm{Q0},1160,058.$ 

#### 5.4

Изучим зависимость частоты параллельного резонанса от R = [0, 150||50].



| $R, \Omega$        | 0   | 50    | 100   | 150   |
|--------------------|-----|-------|-------|-------|
| $f_{\rm exp}, kHz$ | 100 | 99,6  | 98,42 | 96,4  |
| β                  | 0   | 0,088 | 0,176 | 0,264 |
| $f_{\rm exp}$      | 100 | 99,6  | 98,43 | 96,45 |

#### 5.5

Исследуем влияние последовательных потерь в области низких частот. Установим частотный диапазон от  $1 \ kHz$  до  $130 \ kHz$  и будем варьировать  $R = [0, 20 \| 2]$ .



Получаем, что при  $R=12~\Omega$  фазовый сдвиг на частоте f=2~kHz составляет  $\pi/4$ .

# 6 Задание 6

#### 6.1

Откроем модель **combined.cir** с  $f_0=100~kHz,~\rho=15,9~kHz,~q\simeq 10,~\alpha=1.$ 



Изучим графики частотной и фазовой характеристик, а также графики частотных зависимостей вещественной и мнимой частей мпеданса.



Измерим частоты  $f_p, f_0$  последовательного и параллельного резонансов по точкам пересечения нуля фазовой характеристикой:

$$f_p = 100, 5 \, kHz$$
  $f_0 = 140, 6 \, kHz$ 

Измерим полосы  $\triangle f_p, \triangle f_0$ , в которых фазовая характеристика изменяется в диапазоне  $\pm 45\deg$  в окрестностях резонансов.

$$\triangle f_p = 10,6 \, kHz$$

$$\triangle f_0 = 10,8 \, kHz$$

Оценим добротности  $Q_p, Q_0$  и проверим, что  $f_0 = f_p \sqrt{2}, \, Q_0 = Q_p \sqrt{2}$ :

$$Q_p = \frac{f_p}{\triangle f_p} = 9,5$$

$$Q_0 = \frac{f_0}{\triangle f_0} = 13$$

$$Q_0 = 13 \simeq 13, 43 = Q_p \sqrt{2}$$

$$f_0 = 140, 6 \simeq 142, 1 = f_p \sqrt{2}$$

#### 6.3

Измерим сопротивление контура на частотах последовательного и параллельного резонансов, сравним результаты с теоретическими значениями  $(r, k^2 \rho_p, Q_p)$ :

$$r_{exp} = 1,565 \, k\Omega \simeq 1,59 \, k\Omega = r_{th}$$

$$(k^2 \rho_p, Q_p)_{mes} = 78,1 \ k\Omega \simeq 79,1 \ k\Omega = \left(\frac{\alpha}{1+\alpha}\right)^2 \sqrt{\frac{L}{c}} (1+\alpha) \frac{r}{\rho} = (k^2 \rho_p, Q_p)_{th}$$

Снимем зависимость сопротивления на частоте параллельного резонанса от  $R=[500,2000\|500]$  и емкости  $C_0=[100p,300p\|100p]$ . Сопоставим их с теорией. Осмыслим характер изменения графиков при варьировании R и  $C_0$ .



Получаем зависимость:

$$Z\sim\frac{1}{R}$$



Получаем зависимость:

$$Z \sim \frac{1}{C_0^2}$$

Обнулим последовательности потери r и варьированием  $R_0 = [10k, 100k || 10k]$  подберем сопротивления параллельных потерь так, чтобы достичь того же резонансного сопротивления, что и при  $r = 1590 \, \Omega$ .



Получим  $R_0 = 80 \ k\Omega$ . Проверим закон пересчета:

$$R_0 r = k^2 \rho_p^2$$

$$80000 \cdot 1590 \simeq \left(\frac{1}{2}\right)^2 \cdot 2 \cdot 15900^2.$$

Соотношение выше выполняется.

#### 6.5

Варьируя  $R_0 = [80k, 10Meg || 10Meg]$  при  $r = 1590 \, \Omega$ , изучим влияние  $R_0$  на поведения частотной и фазовой характеристик на низких частотах - в диапазоне 1k, 180k.



При увеличении  $R_0$  частотная характеристика увеличивается, а фазовая уменьшается.