BÁO CÁO — PHƯƠNG PHÁP POST-TRAINING

1. Tổng quan Post-training

Sau giai đoạn *pre-training* (mô hình học thống kê ngẫu nhiên từ kho dữ liệu cực lớn), **post-training** hay *alignment* là bước **đưa mô hình "về phía con người"**: bảo đảm trả lời đúng định dạng, hữu ích, an toàn, phù hợp với sở thích và giá trị của người dùng.

Mục tiêu chung: Tinh chỉnh **chính sách sinh ngôn ngữ** để vừa tối đa hoá chất lượng (độ chính xác, tính logic) vừa tối thiểu rủi ro (nội dung độc hại, vi phạm chính sách).

Ba kỹ thuật phổ biến nhất hiện nay lần lượt xếp tầng như sau:

Thứ tự	Kỹ thuật	Vai trò chủ đạo
1	SFT - Supervised Fine-Tuning	Dạy mô hình <i>tuân thủ chỉ dẫn</i> (instruction)
2	RLHF – Reinforcement Learning from Human Feedback	Tối ưu độ hài lòng (preference) của người dùng
3	DPO – Direct Preference Optimization	Đơn giản hoá RLHF với hàm mất mát trực tiếp

2. Supervised Fine-Tuning (SFT)

2.1 Khái niệm & Mục đích

- Khái niệm: Fine-tune trên cặp dữ liệu (prompt, response lý tưởng) do chuyên gia biên soạn.
- Muc đích:

- o Buộc mô hình trả lời theo định dạng chuẩn (markdown, đoạn, gạch đầu dòng...).
- o Giảm "nói lạc đề", tránh tiết lộ dữ liệu nhạy cảm.

2.2 Nguyên lý hoạt động

- Loss: Cross-entropy giữa chuỗi token sinh ra và nhãn vàng.
- Regularization: Weight decay, gradient clipping, dropout để giữ ổn định.
- Kỹ thuật bổ trợ:
 - LoRA / QLoRA cho phép fine-tune rẻ bằng adapters.
 - o **R-Drop** giảm over-fit.

2.3 Quy trình triển khai

- 1. Thu thập & làm sạch tập chỉ dẫn (~10k 100k cặp).
- 2. Chia train/valid; gán conversation template.
- 3. Fine-tune 1-3 epoch, batch size nhỏ, learning rate $1e^{(-5)} 5^{(e-5)}$.
- 4. Đánh giá bằng instruction test set.

2.4 Ứng dụng tiêu biểu

• Chatbot CSKH, trợ lý viết email, tóm tắt cuộc họp, dịch máy đa ngôn ngữ.

2.5 Hạn chế & Cải tiến

Vấn đề	Cải tiến phổ biến
Exposure bias (mô hình chỉ nhìn reference)	Data augmentation (Self-Instruct, Alpaca), Re-ranking sample quality
Bao phủ hướng dẫn hạn chế	Kết hợp crawled instructions , dùng LLM tự sinh prompt
Chi phí GPU	LoRA, PEFT, bits-and-bytes quan trọng hoá thấp

3. Reinforcement Learning from Human Feedback (RLHF)

3.1 Khái niệm & Mục đích

Khái niệm: Sử dụng phản hồi ưu-khuyết từ con người ⇒ huấn luyện Reward Model
 (RM) ⇒ dùng RL (thường PPO) để tối đa hoá điểm thưởng.

Muc đích:

- Khiến mô hình hữu ích, lễ độ, an toàn.
- Điều chỉnh phong cách: ngắn gọn, hài hước, trang trọng...

3.2 Nguyên lý hoạt động

Thành phần Vai trò

Prompt Trạng thái s trong RL

Output token Hành động a

Reward Điểm từ RM dự đoán (preference score)

Chính sách tham

chiếu

Checkpoint SFT – giữ khoảng cách KL nhỏ

Thuât toán Proximal Policy Optimization (PPO) thường dùng β để phat

lệch

3.3 Quy trình triển khai

1. **Dataset Pairs**: Thu thập ~50k cặp <answer_good, answer_bad>.

2. **Train RM**: MLP + LLM embeddings, fine-tune vài epoch.

3. **PPO Loop**:

- Rollout n mẫu/thế hê.
- o Tính reward & advantage.
- Cập nhật policy, ràng buộc KL.
- 4. Kiểm thử safety eval (toxicity, bias, jailbreak).

3.4 Ứng dụng tiêu biểu

• ChatGPT, Claude, Copilot, trợ lý tư vấn y khoa, ghép đôi giáo dục.

3.5 Hạn chế & Cải tiến

Vấn đề Kỹ thuật cải tiến

Tốn công gán nhãn con RLAIF (Al Feedback), Constitutional Al (luật đạo đức)

người

Unstable training (collapse) Adaptive KL Penalty, Reward normalization, P30

Bias của RM Active Sampling – ưu tiên prompt gây tranh cãi

4. Direct Preference Optimization (DPO)

4.1 Khái niệm & Mục đích

- Khái niệm: Bỏ vòng RL; tối ưu hàm mất mát log-sigmoid trực tiếp trên cặp (good, bad) với ràng buộc KL (β).
- Mục đích:
 - o Giảm 2-3× GPU / thời gian so với RLHF.
 - Giữ chất lượng cạnh tranh.

4.2 Nguyên lý hoạt động

$$\mathcal{L}(heta) = -\log\sigma\Big(eta\left[\log p_{ heta}(y^+|x) - \log p_{ heta}(y^-|x)
ight]\Big)$$

• Cập nhật gradient **giống SFT**, dễ song song & tích hợp LoRA.

4.3 Quy trình triển khai

- 1. Sử dụng cùng tập cặp ưu-khuyết như RLHF.
- 2. Không cần train RM; trực tiếp fine-tune vài epoch trên loss DPO.
- 3. Đánh giá: HELM, MT-Bench, Alpaca-Eval.

4.4 Ứng dụng tiêu biểu

Model mã nguồn mở: Zephyr-β-7B-DPO, Open-Hermes-2.5-DPO, Qwen-1.8B-DPO.

4.5 Hạn chế & Cải tiến

Vấn đề	Biến thể / Giải pháp
Chưa tận dụng trajectory dài	IPO, KTO thêm term nhiệt độ κ
Cần nhiều cặp ưu-khuyết	Rank-debiased DPO, Sparsity-aware loss
Độ kiểm soát style hạn chế	Kết hợp DPO + RLHF (2-stage)

5. So sánh & Lộ trình tiếp nối

Thuộc tính	SFT	RLHF	DPO
Phụ thuộc gán nhãn con	Thấp (chỉ cần	Rất cao (so sánh	Cao (như
người	prompt-response)	cặp)	RLHF)

Độ phức tạp triển khai Dễ Khó (RM + PPO) Trung bình

Chi phí GPU Thấp Cao Thấp-Trung

Kiểm soát an toàn Trung bình Cao Cao-trung

Ön định huấn luyện Cao Dễ collapse Cao

Xu hướng 2025-2026:

- Al Feedback + Constitutional Al ⇒ giảm chi phí human label.
- Retrieval-Augmented RLHF/DPO ⇒ mô hình "thưởng" dựa knowledge hiện thời.
- Multi-agent RL ⇒ LLM tự chia nhiệm vụ & đánh giá lẫn nhau.