LA E χ 02

isagila

Собрано 09.06.2023 в 08:15

Содержание

1.	Лин	ейная алгебра	3
	1.1.	Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово	
		пространство	3
	1.2.	Ортонормированный базис, ортогонализация базиса. Матрица Грама	3
	1.3.	Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора	3
	1.4.	Задача о перпендикуляре	3
	1.5.	Линейный оператор: определение, основные свойства.	3
	1.6.	Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.	3
	1.7.	Матрица линейного оператора. Преобразование матрицы при переходе к новому базису	3
	1.8.	Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора	3
	1.9.	Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения,	
		основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.	3
	1.10.	Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора	3
	1.11.	Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное	
		преобразование.	3
		Билинейные формы: определения, свойства. Матрица билинейной формы.	3
		Квадратичная форма: определения, приведение к каноническому виду	3
	1.14.	Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.	3
2 .		оференциальные уравнения	4
	2.1.	Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении	
		тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.	4
	2.2.	Уравнение с разделяющимися переменными	4
	2.3.	Однородное уравнение.	4
	2.4.	Уравнение в полных дифференциалах.	4
	2.5.	Линейное уравнение первого порядка. Метод Лагранжа	5
	2.6.	Теорема существования и единственности решения задачи Коши. Особые решения	5
	2.7.	Уравнения п-ого порядка, допускающие понижение порядка	5
	2.8.	Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с посто-	
		янными коэффициентами для случая различных вещественных корней характеристического уравнения.	5
	2.9.	Решение $\Pi O \Pi Y_2$ с постоянными коэффициентами для случая вещественных кратных корней характери-	٠
		стического уравнения.	5
		Решение ЛОДУ ₂ с постоянными коэффициентами для случая комплексных корней характеристического	٠
		уравнения.	5
		Свойства решений ЛОДУ ₂ : линейная независимость решений, определитель Вронского. Теоремы 1,2	5
		Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель	٠
		Вронского. Теоремы о вронскиане.	5
		Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о	_
		структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение)	5
		Свойства решений ЛНД \mathbb{Y}_2 : теоремы о структуре общего решения и решении Д \mathbb{Y} с суммой правых частей.	Ü
		Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы	_
		решений по корням характеристического уравнения.	5
		Решение ЛНУ $_2$ с постоянными коэффициентами: специальная правая часть, поиск частного решения	-
		методом неопределенных коэффициентов	5
		Решение ЛНУ ₂ : метод вариации произвольных постоянных (Лагранжа)	5
		Системы дифференциальных уравнений: определения, решение методом исключения.	5
		Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел	E
		Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.	5
		Примеры устойчивого и неустойчивого решения	5
		TIDMINICADI ACTON JUDOLO NI UCACTON JUDOLO DEMECUNY CONTRACTOR NO TONO TONO TONO TONO TONO TONO TON	ان

1. Линейная алгебра

- 1.1. Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово пространство.
- 1.2. Ортонормированный базис, ортогонализация базиса. Матрица Грама.
- 1.3. Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора.
- 1.4. Задача о перпендикуляре.
- 1.5. Линейный оператор: определение, основные свойства.
- 1.6. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.
- 1.7. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.
- 1.8. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора.
- 1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.
- 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора.
- 1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование.
- 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы.
- 1.13. Квадратичная форма: определения, приведение к каноническому виду.
- 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.

2. Дифференциальные уравнения

- 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.
- 2.2. Уравнение с разделяющимися переменными.

Def 2.2.1. Уравнение вида

$$m(x)N(y)dx + M(x)n(y)dy = 0$$

называется уравнением с разделяющимися переменными.

Для решения таких уравнений необходимо разделить обе части на M(x)N(y), перенести одно из слагаемых в правую часть, после чего проинтегрировать обе части.

$$m(x)N(y)dx + M(x)n(y)dy = 0$$
$$\frac{m(x)}{M(x)}dx + \frac{n(y)}{N(y)}dy = 0$$
$$\int \frac{m(x)}{M(x)}dx = -\int \frac{n(y)}{N(y)}dy$$

Замечание 2.2.2. В случае, если M(x) = 0 или N(y) = 0, то уравнение решается непосредственным интегрированием.

Замечание 2.2.3. Решения вида x = const, y = const не всегда получаемы из общего решения.

2.3. Однородное уравнение.

Def 2.3.4. Функция f(x,y) называется однородной m-ого измерения $(m \ge 0)$, если $f(\lambda x, \lambda y) = \lambda^m f(x,y)$.

Def 2.3.5. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется *однородным*, если P(x,y) и Q(x,y) однородные функции одного измерения m.

Однородные уравнения решаются заменой $t = \frac{y}{x}$. Покажем, откуда появляется подобная замена. Преобразуем функции P(x,y) и Q(x,y):

$$\begin{split} P(x,y) &= P\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m P\left(1, \frac{y}{x}\right) \\ Q(x,y) &= Q\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m Q\left(1, \frac{y}{x}\right) \end{split}$$

Вернемся к исходному уравнению:

$$P(x,y)dx + Q(x,y)dy = 0 \mid : dx$$

$$y' = -\frac{P(1, \frac{y}{x})}{Q(1, \frac{y}{x})} = f\left(1, \frac{y}{x}\right)$$

$$\frac{y}{x} = t \implies \begin{cases} f(1, \frac{y}{x}) = \tilde{f}(t) \\ y = xt, \ y'_x = t + xt' \end{cases}$$

$$t + xt' = \tilde{f}(t)$$

$$x \cdot \frac{dt}{dx} = \tilde{f}(t) - t$$

$$\frac{dt}{\tilde{f}(t) - t} = \frac{dx}{x}$$

Таким образом исходное однородное уравнение сводится к уравнению с разделяющими переменными. Замечание 2.3.6. Случай $\tilde{f}(t) - t = 0$ нужно рассмотреть отдельно.

2.4. Уравнение в полных дифференциалах.

Def 2.4.7. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если

$$\exists z(x,y) : dz = P(x,y)dx + Q(x,y)dy$$

Критерием того, что данное уравнение является уравнением в полных дифференциалах может служить равенство

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

Решение уравнений в полных дифференциалах сводится к поиску функции z(x,y), удовлетворяющей условиям. Про то, как найти такую функцию можно прочитать в конспекте по матанализу в разделе про интегралы, независящие от пути. После того, как такая функция будет найдена, решить ДУ не составит проблем:

$$P(x, y)dx + Q(x, y)dy = 0$$
$$dz = 0$$
$$z = C$$

TODO: Интегрирующий множитель

- 2.5. Линейное уравнение первого порядка. Метод Лагранжа.
- 2.6. Теорема существования и единственности решения задачи Коши. Особые решения.
- 2.7. Уравнения п-ого порядка, допускающие понижение порядка.
- **2.8.** Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.
- **2.9.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.
- **2.10.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая комплексных корней характеристического уравнения.
- **2.11.** Свойства решений $\Pi O \Pi Y_2$: линейная независимость решений, определитель Вронского. Теоремы 1.2.
- **2.12.** Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане.
- 2.13. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение).
- **2.14.** Свойства решений $\Pi H \Pi Y_2$: теоремы о структуре общего решения и решении ΠY с суммой правых частей.
- 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения.
- **2.16.** Решение ЛНУ $_2$ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов.
- **2.17**. Решение ЛНУ $_2$: метод вариации произвольных постоянных (Лагранжа).
- 2.18. Системы дифференциальных уравнений: определения, решение методом исключения.
- 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел.
- **2.20.** Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. Примеры устойчивого и неустойчивого решения