Statistical Computation

Derek Li

Contents

1	Review				
	1.1	Complex Number			
	1.2	Markov Chain			
2	Bas	Basics			
	2.1	Floating Point			
		2.1.1 Floating Point Representation			
		2.1.2 Round-Off Error			
		2.1.3 Machine Epsilon and Other Constants			
		2.1.4 Overflow and Underflow Error			
		2.1.5 Catastrophic Cancellation			
	2.2	Sparse Matrices			
	2.3	Application: Computation of Probability Distributions			
		2.3.1 Brute Force Approach			
		2.3.2 Probability Generating Function			
		2.3.3 Discrete Fourier Transform (DFT)			
	2.4 Application: Image Processing				
		2.4.1 Transformation			
		2.4.2 Hadamard Matrices and Walsh-Hadamard Transform			
	2.5	Application: Denoising			
		2.5.1 Assumption			
		2.5.2 Thresholding			
		2.5.3 The Fast W-H Transform			
		2.5.4 R code for FWHT			
	2.6	Fast Fourier Transform (FFT)			
		2.6.1 FFT Derivation			
		2.6.1.1 Case I: Even Number and Product of Small Prime Numbers			
		2.6.1.2 Case II: Prime Number with Zero-Padding			
		2.6.2 Analysis of DFT Approach			
3	Generation of Random Variates				
J	3.1	Generation of Random Numbers			
	3.2	Generation of $Unif(0,1)$			
		3.2.1 Linear Congruential RNG			
		3.2.2 Combining Unif $(0,1)$ RNGs			
		3.2.3 Shift Register Method			
	3.3	Testing Unif(0, 1) RNGs			

3.4	RNGs in R			
3.5	Metho	ods for Continuous Distribution		
	3.5.1	Inverse Method		
	3.5.2	Rejection Sampling		
3.6	Sampl	ing from Mixture Densities		
	3.6.1	Application: Walker's Alias Method		
3.7	Genera	ation of Normal Random Variables		
	3.7.1	Inverse Method		
	3.7.2	Box-Muller Method		
	3.7.3	Kinderman-Ramage Method		
	3.7.4	Monty Python Method		
	3.7.5	Sum of Uniforms		
3.8	Marko	v Chain Monte Carlo		
	3.8.1	Construction of Reversible Markov Chain		
	3.8.2	Metropolis-Hastings Algorithm		
		3.8.2.1 Application to Bayesian Inference		
		3.8.2.2 Random Walk (Metropolis) Sampler		
		3.8.2.3 Independence (Hastings) Sampler		
	3.8.3	Practical Issues of MCMC		

1 Review

1.1 Complex Number

Definition 1.1. A complex number z consists of two component, real and imaginary:

$$z = x + \iota y$$

where $\iota = \sqrt{-1}$.

Property 1.1. If $z_1 = x_1 + \iota y_1, z_2 = x_2 + \iota y_2$ then

$$z_1 + z_2 = (x_1 + x_2) + \iota(y_1 + y_2)$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + \iota(x_1 y_2 + x_2 y_1)$$

Property 1.2. $\exp(\iota\theta) = \cos(\theta) + \iota \sin(\theta)$.

Property 1.3. $z = x + \iota y = r \exp(\iota \theta)$ where $r = |z| = \sqrt{x^2 + y^2}, x = r \cos(\theta), y = r \sin(\theta)$.

Property 1.4. $\exp(\iota(\theta_1 + \theta_2)) = \cos(\theta_1 + \theta_2) + \iota \sin(\theta_1 + \theta_2).$

1.2 Markov Chain

Definition 1.2 (Transition Density). Transition density $q(\mathbf{x}, \mathbf{y})$ is the conditional density of \mathbf{X}_i given $\mathbf{X}_{i-1} = \mathbf{x}$, i.e.,

$$q(\mathbf{x}, \mathbf{y}) = q(\mathbf{x} \to \mathbf{y}) = q(\mathbf{y}|\mathbf{x})$$

Definition 1.3 (Stationary). The Markov chain is stationary with stationary (invariant) density $f(\mathbf{x})$ if

$$f(\mathbf{y}) = \int \cdots \int q(\mathbf{x}, \mathbf{y}) f(\mathbf{x}) d\mathbf{x}$$

Definition 1.4 (Reversibility). A transition density $q(\mathbf{x}, \mathbf{y})$ will have $f(\mathbf{x})$ as its stationary density if we have

$$f(\mathbf{x})q(\mathbf{x}, \mathbf{y}) = f(\mathbf{y})q(\mathbf{y}, \mathbf{x})$$
 (Reversibility condition)

2 Basics

2.1 Floating Point

2.1.1 Floating Point Representation

Definition 2.1. A *floating point number* is represented by three components: (S, F, E) where S is the sign of the number (± 1) , F is a fraction (lying between 0 and 1), E is an exponent. S, F, E are all represented as binary digits (bits). The *floating point representation* of x, fl(x) is

$$fl(x) = S \times F \times 2^E$$

Note. x and f(x) need not be the same, since f(x) is a binary approximation to x, and there are only a finite number of floating point numbers.

2.1.2 Round-Off Error

Mathematical operations introduce further approximation errors

$$f(f(x)) = f(x + \varepsilon) \approx f(x) + \varepsilon f'(x)$$

and the goal is to make the round-off error |f(x) - f(f(f(x)))| as small as possible.

2.1.3 Machine Epsilon and Other Constants

For a given real number x, we have

$$|f(x) - x| \le U|x| \text{ or } f(x) = x(1+u), |u| \le U$$

where U is **machine epsilon** or **machine unit**. U is machine dependent but very small. In R, $U = 2^{-52} = 2.220 \times 10^{-16}$.

Other machine dependent constants include:

- 1. The minimum and maximum positive floating point numbers: $x_{\text{min}} = 2^{-1022} = 2.225 \times 10^{-308}$ and $x_{\text{max}} = 2^{1024} 1 = 1.798 \times 10^{308}$.
 - 2. The maximum integer: $2147383647 = 2^{31} 1$.

2.1.4 Overflow and Underflow Error

Definition 2.2. If the result of a floating point operation exceeds x_{max} , then the value returned is Inf.

Note. Inf indicates an overflow error.

Definition 2.3. If the result of a floating point operation is undefined then NaN is returned.

Definition 2.4. An *underflow error* occurs when the result of a floating point calculation is smaller (in absolute value) than x_{\min} .

Note. There are two possible outcomes: an error is reported or an exact 0 is returned. The latter outcome may cause problems in subsequent computations (e.g., division by 0).

Note. There are some ways to avoid overflow and underflow errors:

- 1. Use logarithmic scale: Changes multiplication/division into addition/subtraction, e.g., lgamma, lfactorial, lchoose.
 - 2. Use series expansions (e.g., Taylor series).

Example 2.1. For x close to 0, $\frac{\exp(x)-1}{x} \approx 1$. Naive computation of $\frac{\exp(x)-1}{x}$ is problematic for x close to 0 due to possible round-off and underflow errors:

$$\frac{\mathrm{fl}(\exp(x) - 1)}{\mathrm{fl}(x)} \neq \frac{\exp(x) - 1}{x}$$

We solve the problem by using a series approximation, for $|x| \leq \varepsilon$,

$$\frac{\exp(x) - 1}{x} = \frac{x + x^2/2 + x^3/6 + \dots}{x} = 1 + \frac{x}{2} + \frac{x^2}{6} + \dots$$

2.1.5 Catastrophic Cancellation

Suppose $z_1 = g_1(x_1, \dots, x_n)$ and $z_2 = g_2(x_1, \dots, x_n)$. We want to compute $y = z_1 - z_2$. What we actually compute is

$$y^* = \mathrm{fl}(\mathrm{fl}(z_1) - \mathrm{fl}(z_2))$$

where $f(z_1) = z_1(1 + u_1)$ and $f(z_2) = z_2(1 + u_2)$. We have

$$fl(z_1) - fl(z_2) = \underbrace{z_1 - z_2}_{y} + \underbrace{z_1 u_1 - z_2 u_2}_{error}$$

If z_1 and z_2 are large but $y = z_1 - z_2$ is small then the magnitude of the error may be larger than the magnitude of y - **catastrophic cancellation**.

2.2 Sparse Matrices

Definition 2.5. We say an $n \times n$ matrix is **sparse** if it has $k \times n$ non-zero elements where $k \ll n$.

Note 1. An $n \times n$ matrix needs at least n non-zero elements to be invertible.

Note 2. Sparse matrices are useful because we need only store non-zero elements and their row and column indices; multiplication by and addition to 0 are free operations.

2.3 Application: Computation of Probability Distributions

Question: Suppose X_i are independent discrete r.v.s. taking values $0, \dots, l$ with

$$P(X_i = x) = p(x), x = 0, \cdots, l$$

Define $S = X_1 + \cdots + X_n$ and find the probability distribution of S.

2.3.1 Brute Force Approach

Start with n = 2 and proceed inductively:

$$p_2(x) := P(X_1 + X_2 = x) = \sum_{y=0}^{x} P(X_1 = y, X_2 = x - y)$$

$$p_3(x) := P(X_1 + X_2 + X_3 = x) = \sum_{y=0}^{x} P(X_1 + X_2 = y, X_3 = x - y)$$
.

5

 $p_k(x)$ requires x+1 multiplications and to evaluate $p_k(x)$ for $x=0,\cdots,kl$, we need

$$N(k) = \sum_{x=0}^{kl} (x+1) \approx \frac{(kl)^2}{2}$$
 multiplications

Thus the total number of multiplications is

$$\sum_{k=2}^{n} N(k) \approx \frac{n^3 l^2}{6} = O(n^3 l^2)$$

2.3.2 Probability Generating Function

Definition 2.6. If X is a discrete r.v. taking values $0, 1, \dots$, then its **probability generating** function is

$$\phi(t) = \mathbb{E}[t^X] = \sum_{x=0}^{\infty} P(X = x)t^x$$

Note. If X takes values $0, \dots, l$, then P(X = x) can be recovered from evaluating $\phi(t)$ at l + 1 distinct (non-zero) points t_0, \dots, t_l .

If $\phi(t) = \mathbb{E}[t^{X_i}]$, then the probability generating function of S is

$$\mathbb{E}[t^S] = \mathbb{E}[t^{X_1 + \dots + X_n}] = [\phi(t)]^n$$

Thus we can recover P(S=x) for $x=0,\cdots,nl$ by evaluating $[\phi(t)]^n$ at t_0,\cdots,t_{nl} . We have nl+1 linear equations in nl+1 unknowns, and solving typically requires $O(n^3l^3)$ operations, which is slower than the brute force approach.

2.3.3 Discrete Fourier Transform (DFT)

A choice for t_0, \dots, t_{nl} are complex exponentials

$$t_j = \exp\left(-2\pi\iota\frac{j}{nl+1}\right), j = 0, \dots, nl$$

where $\iota = \sqrt{-1}$. Since p(x) = 0 for $x = l + 1, \dots, nl$, we have

$$\phi(t_j) = \sum_{x=0}^{l} p(x) \exp\left(-2\pi \iota \frac{jx}{nl+1}\right) = \sum_{x=0}^{nl} p(x) \exp\left(-2\pi \iota \frac{jx}{nl+1}\right)$$

 $\phi(t_0), \dots, \phi(t_{nl})$ is the **discrete Fourier transform** (DFT) of $p(0), \dots, p(nl)$, and thus, the DFT of $P(S=0), \dots, P(S=nl)$ is $[\phi(t_0)]^n, \dots, [\phi(t_{nl})]^n$. Hence, given $\phi(t_0), \dots, \phi(t_{nl})$, we can compute the probability distribution of S using the inverse DFT:

$$P(S=x) = \frac{1}{nl+1} \sum_{j=0}^{nl} [\phi(t_j)]^n \exp\left(2\pi \iota \frac{jx}{nl+1}\right), x = 0, \dots, nl$$

Naive computation of P(S = x) using DFT requires $O(n^3 l^2)$ multiplications; but with divide-and-conquer algorithm, we can reduce the number of multiplications by a factor of n.

In R, if x is a vector of length n we can compute its DFT with fft(x) and the inverse DFT with fft(tx, inv=T) / length(x):

```
probs = # The vector for P(X=x)
dft = fft(probs)
dft.s = dtf^n # S=X1+...+Xn
idft.s = fft(dft.s, inv=T) / length(probs)
Re(idft.s) # Real component of idft.s, or P(S=x)
```

Note. fft is the fast Fourier transform, which is an efficient algorithm for computing the DFT when the length of the sequence is a product of small primes.

2.4 Application: Image Processing

Question: We observe an image denoted by $x(i, j).i = 1, \dots, m, j = 1, \dots, n$, where (i, j) denotes a pixel location. We want:

1. Denoising: Think of $\{x(i,j)\}$ as a image corrupted by noise

$$x(i,j) = \underbrace{s(i,j)}_{\text{True}} + \underbrace{\varepsilon(i,j)}_{\text{Noise}}$$

2. Compression: Approximate x(i,j) by $x^*(i,j)$ where

$$x^*(i,j) = \sum_{k=1}^p \beta_k \phi_k(i,j)$$

where $p \ll m \times n$ and ϕ_1, \dots, ϕ_p are known functions.

2.4.1 Transformation

Define X to be the $m \times n$ matrix whose elements are x(i,j). Define orthogonal matrices H_1 ($m \times m$) and H_2 ($n \times n$) and define $\hat{X} = H_1XH_2$, which has the same dimensions as X. Since for orthogonal matrix H, $H^{-1} = H^T$ and so $X = H_1^T \hat{X} H_2^T$. Assume the noisy image model X = S + E, if H_1 and H_2 are chosen appropriately,

$$\hat{X} = \underbrace{H_1 S H_2}_{\text{Sparse}} + \underbrace{H_1 E H_2}_{\approx 0}$$

Therefore,

1. Denoising: Given \hat{X} , find a transformation $\hat{X} \mapsto T(\hat{X})$ and define the denoised image

$$X_{\mathrm{dn}} = H_1^T T(\hat{X}) H_2^T$$

where we assume the smallest elements of \hat{X} are due to noise and set these equal to 0

$$T(\hat{X})(i,j) = 0, |\hat{X}(i,j)| \leq \text{Threshold}$$

2. Compression: The same idea is used for compression: for some T,

$$X_{\rm c} = H_1^T T(\hat{X}) H_2^T$$

Note. T is usually defined more deterministically. The form of T depends on the amount of compression and the type of image.

Hadamard Matrices and Walsh-Hadamard Transform

Definition 2.7. A *Hadamard matrix* is an $n \times n$ matrix whose elements are all ± 1 with orthogonal rows s.t. $HH^T = nI$.

Note 1. $H^{-1} = \frac{H^T}{r}$.

Note 2. Hadamard matrices only exist if n = 1, n = 2, or n is a multiple of 4.

Note 3. We focus on the case where $n=2^k$ since it is simple to construct and we can write the Hadamard matrix as a product of sparse matrices. We start with the trivial 1×1 Hadamard matrix $H_1 = 1$, and then define H_2, H_4, H_8, \cdots recursively:

$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H_{2^k} = \begin{pmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{pmatrix}$$

for $k=2,3,\cdots$.

Note 4. H_2 is symmetric and so H_{2^k} is symmetric and thus $H_{2^k}^{-1} = \frac{H_{2^k}}{2^k}$.

Definition 2.8. Given arbitrary matrices A and B, the **Kronecker product** $A \otimes B$ is

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}$$

for an $m \times n$ matrix A.

Property 2.1. Assume below that any matrix sums, products or inverses are well-defined.

- 1. $A \otimes (B+C) = (A \otimes B) + (A \otimes C)$.
- 2. $(B+C)\otimes A=(B\otimes A)+(C\otimes A)$.
- 3. $A \otimes (B \otimes C) = (A \otimes B) \otimes C$.
- 4. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$.
- 5. $(A \otimes B)^T = A^T \otimes B^T$. 6. $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.

Note. For Hadamard matrices, $H_{2^k} = H_2 \otimes H_{2^{k-1}}$. We rewrite it as $H_{2^k} = (H_2 I_2) \otimes (I_{2^{k-1}} H_{2^{k-1}})$ and using the property, we have

$$H_{2^k} = (H_2 \otimes I_{2^{k-1}})(I_2 \otimes H_{2^{k-1}})$$

Repeating the process with $H_{2^{k-1}}, H_{2^{k-2}}, \cdots$, we get

$$H_{2^{k}} = \underbrace{(H_{2} \otimes I_{2^{k-1}})(I_{2} \otimes H_{2} \otimes I_{2^{k-2}})(I_{4} \otimes H_{2} \otimes I_{2^{k-3}}) \cdots (I_{2^{k-1}} \otimes H_{2})}_{k = \log_{2}(n) \text{ terms}}$$

Definition 2.9. Given an $n \times n$ Hadamard matrix H and a vector \mathbf{x} of length n, we define its *Walsh-Hadamard transform* by $\hat{\mathbf{x}} = H\mathbf{x}$.

Note 1. Given the W-H transform, we can recover \mathbf{x}

$$\mathbf{x} = \frac{1}{n} H^T \hat{\mathbf{x}}$$

Note 2. If $n = 2^k$, since $H = H^T$, then

$$\mathbf{x} = \frac{1}{n}H\hat{\mathbf{x}}$$

8

2.5 Application: Denoising

Question: Suppose we observe $\mathbf{x} = (x_1, \dots, x_n)^T$ where we assume that

$$\mathbf{x} = \mathbf{s} + \mathbf{e} = \text{Signal} + \text{Noise}$$

We want to recover or estimate the signal s.

2.5.1 Assumption

Assume **s** is structured so that its W-H transform $\hat{\mathbf{s}} = H\mathbf{s}$ contains mostly 0s

$$\hat{\mathbf{x}} = H\mathbf{x} = H\mathbf{s} + H\mathbf{e}$$
Sparse Relatively small

2.5.2 Thresholding

We shrink smaller components of $\hat{\mathbf{x}}$ towards 0, and then estimate \mathbf{s} by the inverse W-H transform of the thresholded $\hat{\mathbf{x}}$. Thresholded W-H transform $\hat{\mathbf{x}}_s$ is an estimate of the W-H transform of \mathbf{s} , and thus we can estimate \mathbf{s} by the inverse W-H transform

$$\widetilde{\mathbf{s}} = \frac{1}{n} H^T \widehat{\mathbf{x}}_s$$

Define thresholds $\lambda_1, \dots, \lambda_n \ge 0$. The **hard thresholding** is to modify $\hat{\mathbf{x}}$ as follows:

$$\hat{\mathbf{x}}_s = \begin{pmatrix} \hat{x}_1 I(|\hat{x}_1| \geqslant \lambda_1) \\ \vdots \\ \hat{x}_n I(|\hat{x}_n| \geqslant \lambda_n) \end{pmatrix}$$

The **soft** thresholding is to modify $\hat{\mathbf{x}}$ as follows:

$$\hat{\mathbf{x}}_s = \begin{pmatrix} \operatorname{sgn}(\hat{x}_1)(|\hat{x}_1| - \lambda_1)_+ \\ \vdots \\ \operatorname{sgn}(\hat{x}_n)(|\hat{x}_n| - \lambda_n)_+ \end{pmatrix}$$

where sgn(y) is the sign of y, and y_+ equals y if y > 0 and 0 if $y \le 0$.

Typically we set $\lambda_1 = 0$, and use knowledge of the problem to decide $\lambda_2, \dots, \lambda_n$; or take $\lambda_2 = \dots = \lambda_n$ and choose the common value based on tools such as half normal plots.

2.5.3 The Fast W-H Transform

A Hadamard matrix H consists of ± 1 so computation of $H\mathbf{x}$ involves only additions and subtractions, but naive computation involves $n(n-1) = O(n^2)$ additions and subtractions, which is less than ideal if n is very large. We can write H as a product of sparse matrices to reduce complexity.

Example 2.2 $(n = 2^3 = 8)$. The 8×8 Hadamard matrix is

Naive computation of $H_8\mathbf{x}$ needs 56 additions and subtractions. But if $H_8=A^3$ where

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

Computation of $AAA\mathbf{x}$ needs $3 \times 8 = 24$ additions and subtractions.

2.5.4 R code for FWHT

The function fwht below computes the W-H transform of data in a vector x.

```
fwht = function(x) {
    h=1
    len = length(x)
    while (h < len) {
        for (i in seq(1, len, by=h*2)) {
            for (j in seq(i, i+h-1)) {
                a = x[j]
                b = x[j+h]
                x[j] = a + b
                x[j+h] = a - b
                }
        }
        h = 2 * h
    }
    x
}</pre>
```

We can compute the inverse W-H transform using fwht by dividing the output by the length of the vector.

2.6 Fast Fourier Transform (FFT)

Definition 2.10 (Discrete Fourier Transform). Suppose we have data x_0, \dots, x_{n-1} , and define $\widehat{x}_0, \dots, \widehat{x}_{n-1}$ by

$$\hat{x}_j = \sum_{t=0}^{n-1} \exp\left(-2\pi \iota \frac{j}{n}t\right) x_t$$

where $\iota = \sqrt{-1}$.

Property 2.2 (Inverse DFT). Given DFT, recover the original sequence by

$$x_t = \frac{1}{n} \sum_{j=0}^{n-1} \exp\left(2\pi i \frac{j}{n} t\right) \hat{x}_j$$

Proof. For complex numbers z,

$$\sum_{j=0}^{n-1} z^j = \begin{cases} n, & z=1\\ \frac{1-z^n}{1-z}, & \text{otherwise} \end{cases}$$

Thus if $z = \exp\left(\frac{2\pi \iota t}{n}\right)$ for an integer t. we have

$$\sum_{j=0}^{n-1} z^j = \sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{t}{n}j\right) = \frac{1 - \exp(2\pi \iota t)}{1 - \exp(2\pi \iota t/n)} = 0$$

since $\exp(2\pi \iota t) = \cos(2\pi t) + \iota \sin(2\pi t) = 1$. Hence,

$$\frac{1}{n} \sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{j}{n}t\right) \widehat{x}_j = \frac{1}{n} \sum_{j=0}^{n-1} \sum_{s=0}^{n-1} \exp\left(2\pi \iota \frac{t-s}{n}j\right) x_s$$
$$= \frac{1}{n} \sum_{s=0}^{n-1} x_s \sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{t-s}{n}j\right)$$
$$= x_t$$

since

$$\sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{t-s}{n}j\right) = \begin{cases} n, & s=t\\ 0, & s\neq t \end{cases}$$

Definition 2.11 (Matrix Formulation of DFT). Define $\mathbf{x} = (x_0, \dots, x_{n-1})^T$ and $\hat{\mathbf{x}} = (\hat{x}_0, \dots, \hat{x}_{n-1})^T$. Then

$$\hat{\mathbf{x}} = F\mathbf{x}$$

where F is an $n \times n$ matrix whose jth row and kth column is

$$f_{jk} = \exp\left(-2\pi\iota\frac{(j-1)(k-1)}{n}\right)$$

The elements of F^{-1} are

$$\overline{f}_{jk} = \frac{1}{n} \exp\left(2\pi \iota \frac{(j-1)(k-1)}{n}\right)$$

Note 1. Using the matrix form directly, we need $O(n^2)$ additions and multiplications to compute the DFT (and its inverse).

Note 2. We can write F as a product of sparse matrices, but unlike the W-H transform, factorization of the DFT matrix is more complicated.

2.6.1 FFT Derivation

Assume n is a product of prime numbers $n_1, \dots, n_k : n = n_1 \times \dots \times n_k$.

2.6.1.1 Case I: Even Number and Product of Small Prime Numbers

Assume n is even, then

$$\hat{x}_{j} = \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n} 2t\right) x_{2t} + \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n} (2t+1)\right) x_{2t+1}$$

$$= \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n/2} t\right) x_{2t} + \exp\left(-2\pi \iota \frac{j}{n}\right) \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n/2} t\right) x_{2t+1}$$
DFT of x_{0}, x_{2}, \cdots

Hence, the DFT of x_0, \dots, x_{n-1} is a linear combination of the DFT of the even and odd indices. Our rearrangement into DFT of odd and even indices can be written in matrix form as

$$\widehat{\mathbf{x}} = \begin{pmatrix} I & \Omega \\ I & -\Omega \end{pmatrix} \begin{pmatrix} F_{n/2} & 0 \\ 0 & F_{n/2} \end{pmatrix} P \mathbf{x}$$
Sparse Sparser

where Ω is a diagonal matrix (sparse) and P is a permutation matrix (sparse), i.e., if n is even, we can write F as a product of two sparse matrices and a matrix that is sparser than F ($n^2/2$ 0s).

If n/2 is divisible by a prime number n', we can perform a similar decomposition of $F_{n/2}$ and F is now the product of sparser matrices. When n_1, \dots, n_k are small then we need $O(n \ln(n))$ additions and multiplications.

2.6.1.2 Case II: Prime Number with Zero-Padding

Definition 2.12 (Zero Padding). Add 0s to the end of the sequence so that the length of the **zero padded** sequence is a product of small prime numbers:

$$x_0, \cdots, x_{n-1}, \underbrace{0, \cdots, 0}_{m}$$

with $n + m = n_1 \times \cdots \times n_k$ where n_1, \cdots, n_k are small primes.

Note 1. The function nextn is useful for zero-padding.

Note 2. Adding 0s to a sequence changes the nature of the sequence - creating a large discontinuity, which is reflected in the DFT.

2.6.2 Analysis of DFT Approach

For the application in computation of probability distributions with DFT approach, we take $m \ge nl = 1$ where m is a product of small prime numbers, and follow the steps:

- 1. Define $\hat{p}_i(0), \dots, \hat{p}_i(m-1)$ to be the DFT of $p_i(0), \dots, p_i(m-1)$ for $i=1,\dots,n$.
- 2. Define

$$\widehat{p}_s(k) = \prod_{i=1}^n \widehat{p}_i(k), k = 0, \cdots, m-1$$

3. Inverse DFT: $P(S=0), \dots, P(S=m-1)$ is the inverse DFT of $\hat{p}_s(0), \dots, \hat{p}_s(m-1)$.

The number of multiplications at each step is:

- 1. DFT: $n \times O(m \ln(m)) = O(nm \ln(m))$.
- 2. Product of DFTs: O(nm).

3. Inverse DFT: $O(m \ln(m))$.

The total number of multiplications is $O(nm\ln(m))$ and thus if $m \approx nl$, the number of multiplications is $O(n^2l\ln(nl))$ versus $O(n^3l^2)$ for the brute force algorithm.

3 Generation of Random Variates

3.1 Generation of Random Numbers

Example 3.1 (Importance Sampling). Suppose we want to estimate

$$I = \int \cdots \int g(\mathbf{x}) d\mathbf{x}$$

for some integrand $g: \mathbb{R}^p \to \mathbb{R}$. If f is a probability density function on \mathbb{R}^p , then

$$I = \int \cdots \int g(\mathbf{x}) d\mathbf{x} = \int \cdots \int \frac{g(\mathbf{x})}{f(\mathbf{x})} f(\mathbf{x}) d\mathbf{x} = \mathbb{E}_f \left[\frac{g(\mathbf{X})}{f(\mathbf{X})} \right]$$

where **X** has a density f. We can use the law of large numbers to estimate the expected value provided $\operatorname{Var}_f\left[\frac{g(\mathbf{X})}{f(\mathbf{X})}\right] < \infty$. Take $\mathbf{X}_1, \dots, \mathbf{X}_n$ independent from f, LLN gives

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} \frac{g(\mathbf{X}_i)}{f(\mathbf{X}_i)} \approx \int \cdots \int g(\mathbf{x}) d\mathbf{x}$$

Note. We choose f satisfying precision and expediency:

- 1. Precision: Minimize the variance of I.
- 2. Expediency: Be able to sample from f.

Example 3.2 (Monte Carlo Estimation of π). If X and Y are independent Unif(-1,1) r.v.s., then

$$P(X^2 + Y^2 \leqslant 1) = \frac{\pi}{4}$$

We generate independent pairs and have

$$\widehat{\pi} = \frac{4}{n} \sum_{i=1}^{n} I(X_i^2 + Y_i^2 \le 1)$$

3.2 Generation of Unif(0,1)

To generate pseudo-random U_1, U_2, \cdots , we generate integers V_1, V_2, \cdots from a uniform distribution on $\{1, \cdots, N\}$ and define $U_i = \frac{V_i}{N+1}$ for $i=1,2,\cdots$. Note that U_1, U_2, \cdots are uniform on the set $\{1/(N+1), \cdots, N/(N+1)\}$. If N is large enough, U_1, U_2, \cdots are independent Unif(0,1) r.v.s.:

$$\sup_{0 \le x \le 1} |P(U_i \le x) - x| \le \frac{1}{N}$$

3.2.1 Linear Congruential RNG

Define V_1, V_2, \cdots via the recursion:

$$V_{k+1} = (aV_k + b) \mod m$$

for some integers a, b, and m.

Note 1. The initial value V_0 is the **seed** of the RNG.

Note 2. V_1, V_2, \cdots take values in the set $\{0, \cdots, m-1\}$.

Note 3. If b = 0 then we have a multiplicative congruential RNG.

Note 4. We have $V_{k+p} = V_k$ for some $p \leq m$, and p is the **period** of the RNG.

Property 3.1. If b = 0, then the maximum possible period is m - 1. Furthermore, if m is prime, and

$$a^{(m-1)/q} \mod m \neq 1$$

for every prime factor q of m-1 then the RNG has period m-1.

Example 3.3. Take m = 5 and m - 1 = 4 has a single prime factor 2. We need $a^2 \mod 5 \neq 1$ so we can take a = 3 (for example).

Example 3.4. Let m to be the largest possible prime number $m = 2^{31} - 1$. We can take a = 16807 or 48271, or 397204094.

3.2.2 Combining Unif(0,1) RNGs

Combination increases the period of the RNG.

Example 3.5 (Wichmann-Hill RNG). Combine three multiplicative congruential RNGs:

$$\begin{split} V_{k+1}^{(1)} &= 171 V_k^{(1)} \mod 30269 \\ V_{k+1}^{(2)} &= 172 V_k^{(2)} \mod 30307 \\ V_{k+1}^{(3)} &= 170 V_k^{(3)} \mod 30323 \end{split}$$

where the periods are short ($\approx 3 \times 10^4$). Then

$$U_k = \left(\frac{V_k^{(1)}}{30269} + \frac{V_k^{(2)}}{30307} + \frac{V_k^{(3)}}{30323}\right) \mod 1$$

where the period is

$$p = \frac{30268 \times 30306 \times 30322}{4} = 6.9536 \times 10^{12}$$

3.2.3 Shift Register Method

We use the binary representation of Unif(0, 1). Suppose Z_1, Z_2, \cdots are independent binary r.v.s. with

$$P(Z_k = 0) = P(Z_k = 1) = \frac{1}{2}$$

then

$$U = \sum_{k=1}^{\infty} \frac{Z_k}{2^k} \sim \text{Unif}(0,1)$$

In practice, we define U as a finite sum

$$U = \sum_{k=1}^{r} \frac{Z_k}{2^k}$$

where r is the number of bits.

We generate $\{Z_k\}$ via **exclusive-or** operations for binary variables x and y. We construct $\{Z_k\}$ as follows:

$$Z_k = Z_{k-p} \oplus Z_{k-p+q}, 1 < q < p$$

and

$$U_n = \sum_{k=1}^r \frac{Z_{n-s(k)}}{2^k}$$

for some shifts $\{s(k)\}.$

Recall. If Z_1 and Z_2 are independent, and $Z_3 = Z_1 \oplus Z_2$, then Z_3 is independent of Z_1 and Z_2 .

Note 1. For the shifts, we need $s(k) - s(k-1) \gg p$.

Note 2. Initialization of shift register RNGs is much complicated since Z_k is a function of Z_{k-p} and Z_{k-p+q} and U_n depends on r values of $\{Z_k\}$.

Note 3. We need a $p \times r$ matrix of binary seeds.

Example 3.6 (Lewis-Payne RNG). p = 98, q = 27, and s(k) = 100p(k-1) s.t. s(k) - s(k-1) = 100p. The period is $2^{98} - 1$.

Example 3.7 (Mersenne Twister). The period is $2^{19937} - 1$.

3.3 Testing Unif(0,1) RNGs

We need to check:

1. Uniformity on [0,1]: For $0 \le a < b \le 1$,

$$\frac{1}{n} \sum_{i=1}^{n} I(a \le U_i \le b) \approx b - a$$

2. Uniformity of k-tuples on $[0,1]^k$: For $A \subset [0,1]^k$,

$$\binom{n}{k}^{-1} \sum_{(i_1, \dots, i_k)} I[(U_{i_1}, \dots, U_{i_k}) \in A] \approx \text{Volume}(A)$$

3. Independence: U_i independent of U_{i+1}, U_{i+2}, \cdots .

3.4 RNGs in R

The function RNGkind that allows a user to specify the RNG used to generate Unif(0,1) r.v.s. and the method used to generate normal r.v.s..

3.5 Methods for Continuous Distribution

3.5.1 Inverse Method

Suppose F is a univariate distribution and we want to generate $X \sim F$.

Definition 3.1. For a general univariate distribution function F, we define

$$F^{-1}(t) = \inf\{x : F(x) \geqslant t\}, 0 < t < 1$$

Property 3.2. If F is a univariate distribution function with inverse F^{-1} and $U \sim \text{Unif}(0,1)$, then

$$X = F^{-1}(U) \sim F$$

Proof. We need to show $P(F^{-1}(U) \leq x) = F(x)$ or equivalently $[F^{-1}(U) \leq x] = [U \leq F(x)]$. By definition of F^{-1} , $[U \leq F(x)]$ implies $[F^{-1}(U) \leq x]$. If $F^{-1}(U) \leq x$ then $F(x + \varepsilon) \geq U$, $\forall \varepsilon > 0$. F is right continuous so $[F^{-1}(U) \leq x]$ implies $[U \leq f(x)]$.

Example 3.8 (Exponential Distribution). $F(x) = 1 - \exp(-\lambda x)$ for $x \ge 0, \lambda > 0$. Solving $F(F^{-1}(t)) = t$ for $F^{-1}(t)$, we have

$$F^{-1}(t) = -\frac{\ln(1-t)}{\lambda}$$

Thus $X = -\frac{\ln(1-U)}{\lambda}$ has an exponential distribution. Since $1-U \sim \text{Unif}(0,1)$ so we define $X = -\frac{\ln(U)}{\lambda}$.

Example 3.9 (Logistic Distribution). $F(x) = \frac{\exp(x)}{1 + \exp(x)}$. Solving $F(F^{-1}(t)) = t$, we have

$$F^{-1}(t) = \ln\left(\frac{t}{1-t}\right)$$

which is called logit function. Thus $X = \ln\left(\frac{U}{1-U}\right)$ has a Logistic distribution.

Example 3.10 (Approximation of Euler's Constant). The Euler's constant is

$$\gamma = \lim_{m \to \infty} \left[\sum_{k=1}^{m} \frac{1}{k} - \ln(m) \right]$$
$$= \int_{1}^{\infty} \left(\frac{1}{|x|} - \frac{1}{x} \right) dx$$
$$= \int_{1}^{\infty} x^{2} \left(\frac{1}{|x|} - \frac{1}{x} \right) x^{-2} dx$$

where $f(x) = x^{-2}$ is a density function on $[1, \infty)$. If we can sample X_1, \dots, X_n from f(x), we can estimate γ by

$$\widehat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \left(\frac{1}{[X_i]} - \frac{1}{X_i} \right)$$

The distribution function is $F(x) = 1 - x^{-1}$ whose inverse is $F^{-1}(t) = (1 - t)^{-1}$. We can use inverse method to sample from f(x).

```
n = 1000000
u = runif(n)
x = 1 / (1 - u)
gammahat = mean(x^2 * (1 / floor(x) - 1 / x))
```

3.5.2 Rejection Sampling

Assume F is continuous with density function f and $F^{-1}(t)$ is not easily computable. Suppose we want to sample X from a density f. We define a proposal density g s.t. $f(x) \leq Mg(x)$ for all x and some $M < \infty$. We sample Y from g and $U \sim \text{Unif}(0,1)$ where Y and U are independent, and define $T = \frac{f(Y)}{Mg(Y)}$. If $U \leq T$, then set X = Y; if U > T, then reject and repeat until acceptance. The algorithm works: Given independent $Y \sim g$ and $U \sim \text{Unif}(0,1)$,

$$\begin{split} P(X\leqslant x) &= P\left(Y\leqslant x \middle| U\leqslant \frac{f(Y)}{Mg(Y)}\right) \\ &= \frac{P(Y\leqslant x, U\leqslant f(Y)M^{-1}g^{-1}(Y))}{P(U\leqslant f(Y)M^{-1}g^{-1}(Y))} \end{split}$$

Since $Y \perp U$, the joint density of (Y, U) is

$$h(y, u) = \begin{cases} g(y), & 0 \le u \le 1\\ 0, & \text{otherwise} \end{cases}$$

Therefore,

$$\begin{split} P(\text{Accept})P\left(U \leqslant \frac{f(Y)}{Mg(Y)}\right) &= \int_{-\infty}^{\infty} \int_{0}^{f(y)M^{-1}g^{-1}(y)} g(y) \mathrm{d}u \mathrm{d}y \\ &= \frac{1}{M} \int_{-\infty}^{\infty} f(y) \mathrm{d}y \\ &= \frac{1}{M} \end{split}$$

and

$$P\left(Y \leqslant x, U \leqslant \frac{f(Y)}{Mg(Y)}\right) = \int_{-\infty}^{x} \int_{0}^{f(y)M^{-1}g^{-1}(y)} g(y) du dy$$
$$= \frac{1}{M} \int_{-\infty}^{x} f(y) dy$$
$$= \frac{P(X \leqslant x)}{M}$$

Note 1. The probability of acceptance of a given proposal is $\frac{1}{M}$.

Note 2. If f and g are close then M will be close to 1.

Note 3. We can evaluate M by maximizing $\frac{f(x)}{g(x)}$ but we do not need to find the smallest possible M with $f(x) \leq Mg(x)$ since rejection sampling will work with a sub-optimal M with a lower probability of acceptance.

Note 4. f and q can be joint density functions or probability mass functions.

Example 3.11 (Half-Normal Distribution with Exponential Proposal). Suppose we want to sample X from a half-normal distribution whose density is

$$f(x) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), x \geqslant 0$$

i.e., if $X \sim \mathcal{N}(0,1)$, then $|X| \sim f$. Since X takes values on $[0,\infty)$, a natural proposal distribution is exponential

$$g(y) = \exp(-y), y \geqslant 0$$

since the tails of the exponential are heavier than those of the normal distribution so M should be finite.

To fine M, we need to maximize $\frac{f(x)}{g(x)}$ over $x \ge 0$, i.e.,

$$\max \ln[f(x)] - \ln[g(x)]$$

After calculation, we find $\frac{f(x)}{g(x)}$ is maximized at x = 1 and

$$M = \frac{f(1)}{g(1)} = 1.315489$$

and the probability of acceptance of a given proposal is

$$\frac{1}{M} = 0.76$$

The code to generate half-normal r.v.s. is:

```
x = NULL
count = 0
total = 0 # Number of proposals generated
while (count < 100) {
  reject = T
  while (reject) {
     y = rexp(1)
     u = runif(1)
     total = total + 1
     if (u \le 2*dnorm(y)/(1.315489*dexp(y))) {
        x = c(x, y)
        count = count + 1
        reject = F
     }
  }
}
```

Example 3.12 (Cauchy Distribution). Suppose we want to sample X from a Cauchy distribution whose density is

$$f(x) = \frac{1}{\pi(1+x^2)}$$

The distribution function is

$$F(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}(x)$$

and

$$F^{-1}(t) = \tan\left[\pi\left(t - \frac{1}{2}\right)\right], 0 < t < 1$$

We can generate r.v.s. from a Cauchy distribution using the inverse method bug floating point evaluation of tan(x) is not always straightforward.

We can write f(x) as a mixture of two densities

$$f(x) = \frac{1}{2}f_1(x) + \frac{1}{2}f_2(x)$$

where

$$f_1(x) = \frac{2}{\pi(1+x^2)}, |x| \le 1$$
$$f_2(x) = \frac{2}{\pi(1+x^2)}, |x| > 1$$

We know that if $X \sim f_1$, then $X^{-1} \sim f_2$. Therefore, we generate Z from f_1 and $U \sim \text{Unif}(0,1)$ with $Z \perp U$. If $U > \frac{1}{2}, X = Z$; if $U < \frac{1}{2}, X = \frac{1}{Z}$. Hence, we can use rejection sampling to sample from

 f_1 . Taking g to be a uniform distribution on [-1.1] is a reasonable choice, and $\frac{f_1(x)}{g(x)}$ is maximized at x = 0. Thus

$$M = \frac{f_1(0)}{q(0)} = \frac{4}{\pi} = 1.273$$

and

$$P(\text{Accept}) = \frac{\pi}{4} = 0.785$$

3.6 Sampling from Mixture Densities

Suppose we want to sample from a density f(x) which can be written as a mixture of k components:

$$f(x) = \lambda_1 f_1(x) + \dots + \lambda_k f_k(x)$$

where $f_1(x), \dots, f_k(x)$ are densities, $\lambda_1 + \dots + \lambda_k = 1$. We sample a discrete r.v. J from a discrete distribution with $P(J = j) = \lambda_j$ (and we can do with a single Unif(0, 1) r.v.). Given J = j, sample X from $f_j(x)$. The algorithm works best if k is small or if $\lambda_1 = \dots = \lambda_k = \frac{1}{k} : J = \lceil kU \rceil$.

3.6.1 Application: Walker's Alias Method

Suppose we want to sample X from a discrete distribution

$$f(x_i) = P(X = x_i) = p_i, j = 1, \dots, k$$

where $p_1 + \cdots + p_k = 1$. We can write f as a mixture of k components each with weight k^{-1} :

$$f(x) = P(X = x) = \frac{1}{k}f_1(x) + \dots + \frac{1}{k}f_k(x), x = x_1, \dots, x_k$$

 f_1, \dots, f_k are discrete distribution putting mass at two points:

$$f_j(x) = \begin{cases} \tau_j, & x = x_j \\ 1 - \tau_j, & x = a_j \end{cases}$$

where $a_j \in \{x_1, \dots, x_k\}$ is called an alias.

Given τ_1, \dots, τ_k and a_1, \dots, a_k , we sample X from f as follows: Generate $U_1 \sim \text{Unif}(0, 1)$ and set $J = [kU_1]$; generate $U_2 \sim \text{Unif}(0, 1)$ and define $X = x_J$ if $U_2 \leqslant \tau_J$ and $X = a_J$ if $U_2 > t_J$.

Note 1. We require a separate algorithm to construct τ_1, \dots, τ_k and a_1, \dots, a_k .

Note 2. Walker's alias method is used by the R function sample when the option replace=T is given.

Example 3.13 (Binomial Distribution). Take $X \sim \text{Binom}(3, 0.4)$:

$$f(x) = P(X = x) = {3 \choose x} 0.4^{x} 0.6^{3-x}, x = 0, 1, 2, 3$$

where f(0) = 0.216, f(1) = 0.432, f(2) = 0.288, f(3) = 0.064. We need to write

$$f(x) = \frac{1}{4} \sum_{i=0}^{3} f_i(x)$$

with $f_i(x) = \tau_i$ is x = i and $f_i(x) = 1 - \tau_i$ if $x = a_i$ where $a_i \in \{0, 1, 2, 3\}$. We let $\tau_0 = 0.272$ $a_0 = 1$ $\tau_1 = 1$ No alias $\tau_2 = 0.408$ $a_2 = 0$ $\tau_3 = 0.256$ $a_3 = 2$

3.7 Generation of Normal Random Variables

3.7.1 Inverse Method

Define the $\mathcal{N}(0,1)$ distribution function

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{t^2}{2}\right) dt$$

 $\Phi(x)$ is strictly increasing so we can define its inverse by $\Phi(\Phi^{-1}(t)) = t$ for $0 \le t \le 1$. Thus given $U \sim \text{Unif}(0,1), X = \Phi^{-1}(U) \sim \mathcal{N}(0,1)$.

Note 1. It is the default method in R.

Note 2. Though $\Phi^{-1}(t)$ is not a nice function, it is very well approximated.

3.7.2 Box-Muller Method

If X_1 and X_2 are independent $\mathcal{N}(0,1)$, then their joint density is

$$f(x_1, x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right)$$

Convert to polar coordinates: $X_1 = R\cos(\Theta)$ and $X_2 = R\sin(\Theta)$, and (R,Θ) has joint density

$$g(r,\theta) = \frac{1}{2\pi} \exp\left(-\frac{r^2}{2}\right) r, r > 0, 0 \leqslant \theta < 2\pi$$

where $g(r,\theta) = g_1(r)g_2(\theta)$ and so $R \perp \Theta$. $\Theta \sim \text{Unif}(0,2\pi)$ and $R = \sqrt{V}$ where V is exponential with mean 2. We generate R from $g_1(r)$ and Θ from $g_2(\theta)$, and

$$X_1 = R\cos(\Theta), X_2 = R\sin(\Theta)$$

If U_1 and U_2 are independent Unif(0,1), then we can define

$$\Theta = 2\pi U_1, R = \sqrt{-2\ln(U_2)}$$

3.7.3 Kinderman-Ramage Method

Consider half-normal distribution

$$f(x) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

and we write f(x) as a mixture of two distributions

$$f(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x)$$

$$= 0.884 \times \underbrace{\text{Triangular density}}_{0.90-0.41x} + 0.116 f_2(x)$$

Note 1. It is easy to generate from the triangular density $f_1(x): U_1$ and U_2 are independent Unif(-1,1), then $V=\frac{2.216|U_1+U_2|}{2}$ has density $f_1(x)$.

Note 2. It is not easy to generate from $f_2(x)$.

3.7.4 Monty Python Method

We generate independent r.v.s. U_1 and U_2 s.t. (U_1, U_2) have a uniform distribution on

$$\mathcal{B} = \left[0, \sqrt{2\pi}\right] \times \left[0, \frac{1}{\sqrt{2\pi}}\right]$$

and divide \mathcal{B} into 4 regions - depending on which region (U_1, U_2) , we can define a r.v. X with a half-normal distribution.

Define

$$f(x) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Define g(x) to be f(x) rotated and rescaled into \mathcal{B} for x s.t.

$$f(x) > \frac{1}{\sqrt{2\pi}} = \frac{1}{b} \text{ or } x < \sqrt{\ln(4)} = a$$

i.e.,

$$g(x) = \frac{1}{b} - \frac{a}{b-a} \left[f\left(\frac{a(b-x)}{b-a}\right) - \frac{1}{b} \right]$$

for $\sqrt{\ln(4)} = a \leqslant x \leqslant b = \sqrt{2\pi}$. We can refine regions I, II, and III in terms of f(x) and g(x).

We generate (U_1,U_2) on $\mathcal{B}:U_1\sim \mathrm{Unif}(0,\sqrt{2\pi})$ and $U_2\sim \mathrm{Unif}(0,1/\sqrt{2\pi})$. If $(U_1,U_2)\in I$, then $X=U_1$; if $(U_1,U_2)\in II$, then $X=\frac{a(b-U_1)}{b-a}$; otherwise, we need to generate X from the tail $(x>\sqrt{2\pi})$ of the half-normal distribution (by rejection sampling with a shifted exponential proposal).

3.7.5 Sum of Uniforms

We sum k independent Unif(0,1) r.v.s. U_1, \dots, U_k and define

$$X = \frac{U_1 + \dots + U_k - k/2}{\sqrt{k/12}}$$

where the normalization guarantees $\mathbb{E}[X] = 0$ and Var[X] = 1. **Note.** k = 12 works well.

3.8 Markov Chain Monte Carlo

3.8.1 Construction of Reversible Markov Chain

We first assume that $f(\mathbf{x})q(\mathbf{x},\mathbf{y}) > f(\mathbf{y})q(\mathbf{y},\mathbf{x})$. Define $q^*(\mathbf{x},\mathbf{y}) = \alpha(\mathbf{x},\mathbf{y})q(\mathbf{x},\mathbf{y})$ s.t.

$$f(\mathbf{x})q^*(\mathbf{x}, \mathbf{y}) = f(\mathbf{y})q^*(\mathbf{y}, \mathbf{x})$$

The solution is

$$\alpha(\mathbf{x}, \mathbf{y}) = \frac{f(\mathbf{y})q(\mathbf{y}, \mathbf{x})}{f(\mathbf{x})q(\mathbf{x}, \mathbf{y})}$$
$$\alpha(\mathbf{y}, \mathbf{x}) = 1$$

We can do the similar thing if $f(\mathbf{x})q(\mathbf{x},\mathbf{y}) < f(\mathbf{y})q(\mathbf{y},\mathbf{x})$. In general,

$$\alpha(\mathbf{x}, \mathbf{y}) = \min \left\{ \frac{f(\mathbf{y})q(\mathbf{y}, \mathbf{x})}{f(\mathbf{x})q(\mathbf{x}, \mathbf{y})}, 1 \right\}$$

Note. $q^*(\mathbf{x}, \mathbf{y})$ may not be a transition density (unless $\alpha(\mathbf{x}, \mathbf{y}) = 1$ for all \mathbf{x}, \mathbf{y}). Given $\mathbf{X}_{i-1} = \mathbf{x}$, we can fix by allowing $\mathbf{X}_i = \mathbf{x}$ w.p.

$$\alpha(\mathbf{x}, \mathbf{x}) = 1 - \int \cdots \int q^*(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

which ideally should be small.

3.8.2 Metropolis-Hastings Algorithm

Suppose we want to generate \mathbf{X}_i from $f(\mathbf{x})$ and we have a proposal transition density $q(\mathbf{x}, \mathbf{y})$. Given $\mathbf{X}_{i-1} = \mathbf{x}$, we generate \mathbf{Y} from $q(\mathbf{x}, \mathbf{y})$ (density in \mathbf{y} for each \mathbf{x}) and $U \sim \text{Unif}(0, 1)$ independent of \mathbf{Y} . If $U \leq \alpha(\mathbf{X}_{i-1}, \mathbf{Y})$, then $\mathbf{X}_i = \mathbf{Y}$; if $U > \alpha(\mathbf{X}_{i-1}, \mathbf{Y})$, then $\mathbf{X}_i = \mathbf{X}_{i-1}$.

We want to sample X_i s.t.

$$\frac{1}{n}\sum_{i=1}^{n}h(\mathbf{X}_{i})$$
 converges to $\int \cdots \int h(\mathbf{x})f(\mathbf{x})d\mathbf{x}$

as fast as possible for any function h, and the convergence speed is determined largely by

$$\operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}h(\mathbf{X}_{i})\right] \approx \frac{1}{n}\left\{\operatorname{Var}[h(\mathbf{X}_{i})] + 2\sum_{s=1}^{\infty}\operatorname{Cov}[h(\mathbf{X}_{i}), h(\mathbf{X}_{i+s})]\right\}$$

The choice of $q(\mathbf{x}, \mathbf{y})$ is important – it determines $\alpha(\mathbf{x}, \mathbf{y})$, i.e., how often $\mathbf{X}_{i-1} = \mathbf{X}_i$, and how quickly \mathbf{X}_i move around the space – we want to make the autocovariance terms small.

Example 3.14. Suppose we want to generate X_i from

$$P(X_i = x) = {2 \choose x} 0.3^2 0.7^{2-x}, x = 0, 1, 2$$

Using simple transition matrix

$$Q = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

s.t. $q(x,y) = \frac{1}{3}$ for x,y = 0,1,2. Our acceptance probability is

$$\alpha(x,y) = \min\left\{\frac{f(y)q(y,x)}{f(x)q(x,y)}, 1\right\} = \min\left\{\frac{\binom{2}{y}}{\binom{2}{x}}0.3^{y-x}0.7^{x-y}, 1\right\}$$

3.8.2.1 Application to Bayesian Inference

 $\alpha(\mathbf{x}, \mathbf{y})$ depends on f only via the ratio $\frac{f(\mathbf{y})}{f(\mathbf{x})}$ and we only need to know $f(\mathbf{x})$ up to a multiplicative constant. Hence, we do not need to know the constant to sample from the posterior density.

3.8.2.2 Random Walk (Metropolis) Sampler

 $q(\mathbf{x}, \mathbf{y}) = g(\mathbf{y} - \mathbf{x})$ for some density g:

$$\alpha(\mathbf{x}, \mathbf{y}) = \min \left\{ \frac{f(\mathbf{y})g(\mathbf{x} - \mathbf{y})}{f(\mathbf{x})g(\mathbf{y} - \mathbf{x})}, 1 \right\}$$

Given $\mathbf{X}_{i-1} = \mathbf{x}$, we would generate the proposal \mathbf{Y} by

$$Y = x + Z$$

where the density of \mathbf{Z} is g.

Note. If q is symmetric around 0, then

$$\alpha(\mathbf{x}, \mathbf{y}) = \min \left\{ \frac{f(\mathbf{y})}{f(\mathbf{x})}, 1 \right\}$$

3.8.2.3 Independence (Hastings) Sampler

 $q(\mathbf{x}, \mathbf{y}) = g(\mathbf{y})$: For each i, the distribution of the proposal Y is independent of \mathbf{X}_{i-1}

$$\alpha(\mathbf{x}, \mathbf{y}) = \min \left\{ \frac{f(\mathbf{y})g(\mathbf{x})}{f(\mathbf{x})g(\mathbf{y})}, 1 \right\}$$

Note. The independence sampler somewhat resembles rejection sampling (but without the rejection).

Example 3.15 (Poisson Distribution). Suppose we want to sample X_i from a Poisson distribution with mean $\lambda > 0$. We use independence sampler with a geometric proposal

$$g(x) = (1 - \theta)\theta^x, x = 0, 1, \cdots$$

whose expected value is $\frac{\theta}{1-\theta}$. We choose θ s.t. $\frac{\theta}{1-\theta}=\lambda$, i.e., $\theta=\frac{\lambda}{1+\lambda}$. We can sample from a geometric distribution by $\lfloor V \rfloor$ where V as an exponential distribution with mean $-\frac{1}{\ln(\theta)}$.

The code for $\lambda = 5$ is:

```
lambda = 5
x = 5
samp = NULL
theta = lambda / (1 + lambda)
for (i in 1:10000) {
    v = -rexp(1) / log(theta)
    y = floor(v)
    u = runif(1)
    if (u <= dpois(y, lambda) * theta^(x-y) / dpois(x, lambda)) x = y
    samp = c(samp, x)
}
eprob = NULL
for (i in 0: 10) eprob = c(eprob, sum(samp==i) / 10000)</pre>
```

3.8.3 Practical Issues of MCMC

MCMC is often very sensitive to initial conditions. We can discard the first m iterations of the MCMC algorithm.

Note. This is important when sampling high dimensional random vectors.

It is useful to treat the output of an MCMC algorithm as a time series, and we can look at time series plots to see when the output has achieved stationarity, and autocorrelation $\hat{\rho}(1), \cdots$.

The effective sample size is

$$n_{\text{eff}} = \left[1 + 2\sum_{s=1}^{\infty} \rho(s)\right]^{-1} n$$