2011 年全国普通高等学校招生统一考试 (上海卷)

数学 (理科)

(本试卷满分 150 分, 考试时间 120 分钟)

一. 填空	题: 本大题共 14 题,	满分 56 分.	请在横线上方填写最终的、	最准确的、	最完整
的结果.	每题填写正确得 4 分	,否则一律得	릙 0 分.		

- 1. 已知 a = (k, -9)、b = (-1, k), a 与 b 为平行向量, 则 k =
- 2. 若函数 $f(x) = x^{6m^2 5m 4}$ $(m \in \mathbb{Z})$ 的图像关于 y 轴对称, 且 f(2) < f(6), 则 f(x) 的解析式为______.
- 3. 若 $f(x+1) = x^2 (x \leq 0)$, 则 $f^{-1}(1) =$ _____.
- 4. 在 bg 糖水中含糖 ag(b > a > 0), 若再添加 mg 糖 (m > 0),
- 6. 自然数 1,2,3,...,10 的方差记为 σ^2 , 其中的偶数 2,4,6,8,10 的方差记为 σ^2_1 , 则 σ^2 与 σ^2_1 的大小关系为 σ^2_1 .
- 7. 若 θ 为三角形的一个内角,且 $\sin \theta + \cos \theta = \frac{2}{3}$,则方程 $x^2 \csc \theta y^2 \sec \theta = 1$ 表示的 曲线的焦点坐标是______.
- 8. 高为 h 的棱锥被平行于棱锥底面的截得棱台侧面积是原棱锥的侧面积的 $\frac{5}{9}$, 则截得的 棱台的体积与原棱锥的体积之比是______.
- 9. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心,且与双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 的渐近线相切的圆方程是______.
- 11. 马路上有编号 1 到 10 的 10 盏路灯,为节约用电又不影响照明,可以关掉其中的 3 盏,但又不能同时关掉相邻的两盏,也不能关掉两端的路灯,满足条件的关灯方法有______种.
- 12. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心,且与双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 的渐近线相切的圆方程是_______.

- 14. 马路上有编号 1 到 10 的 10 盏路灯,为节约用电又不影响照明,可以关掉其中的 3 盏,但又不能同时关掉相邻的两盏,也不能关掉两端的路灯,满足条件的关灯方法有 种.
- 15. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心,且与双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 的渐近线相切的圆方程是

<u>=</u> .	选择题:本大题共 4 题,满分 16 分.请选择你认为最正确的	答案(每小题有且只有					
一个) 写在括号内. 每题填写正确得 4 分, 否则得 0 分.							
16.	已知集合 $A = \{x \mid x-1 < 3\}$, 集合 $B = \{y y = x^2 + 2x + 1, x \in \mathbb{R}\}$, 则 $A \cap$						
	$C_U B$ 为 (A) $[0,4)$	(B) $(-\infty, -2] \cup [4, +\infty)$					
	(C) $(-2,0)$	(D) $(0,4)$					
17.	若 a 、 b 是直线, α 、 β 是平面, 则以下命题中真命题是						
	(A) 若 a 、 b 异面, $a \subset \alpha, b \subset \beta$, 且 $a \perp b$, 则 $\alpha \perp \beta$						
	(B) 若 $a \parallel b$, $a \subset \alpha$, $b \subset \beta$, 则 $\alpha \parallel \beta$						
	(C) 若 $a \parallel \alpha, b \subset \beta$, 则 a 、 b 异面						
	(D) 若 $a \perp b$, $a \perp \alpha, b \perp \beta$, 则 $\alpha \perp \beta$						
18.	已知集合 $A=\{x\mid x-1 <3\},$ 集合 $B=\{y y=x^2+2x+1,x\in\mathbb{R}\},$ 则 $A\cap$						
	$C_U B$ 为 (A) $[0,4)$	(B) $(-\infty, -2] \cup [4, +\infty)$					
	(C) $(-2,0)$	(D) $(0,4)$					
19.	若 a 、 b 是直线, α 、 β 是平面, 则以下命题中真命题是						
	(A) 若 a 、 b 异面, $a \subset \alpha, b \subset \beta$, 且 $a \perp b$, 则 $\alpha \perp \beta$						
	(B) 若 $a \parallel b, a \subset \alpha, b \subset \beta$, 则 $\alpha \parallel \beta$						
	(C) 若 $a \parallel \alpha, b \subset \beta$, 则 a 、 b 异面						
	(D) 若 $a \perp b$, $a \perp \alpha, b \perp \beta$, 则 $\alpha \perp \beta$						

三. 简答题: 本大题共 5 题, 满分 78 分. 请在题后空处写出必要的推理计算过程.

- 20. 已知复数 z 满足: $|z| z^* = \frac{10}{1 w\mathbf{i}}$ (其中 z^* 是 z 的共轭复数).
 - (1) (7 分) 求复数 z;
 - (2) (7 分) 若复数 $w = \cos \theta + \mathbf{i} \sin \theta \, (\theta \in \mathbb{R})$, 求 |z 2| 的取值范围.

22. (16 分) 函数 $f(x) = 4\sin\frac{\pi}{12}x \cdot \sin\left(\frac{\pi}{2} + \frac{\pi}{12}x\right), x \in [a, a+1],$ 其中常数 $a \in [0, 5],$ 求 函数 f(x) 的最大值 g(a).

- 23. 己知复数 z 满足: $|z| z^* = \frac{10}{1 w\mathbf{i}}$ (其中 z^* 是 z 的共轭复数).
 - (1) (8 分) 求复数 z;
 - (2) (8 分) 若复数 $w=\cos\theta+\mathbf{i}\sin\theta\,(\theta\in\mathbb{R}),$ 求 |z-2| 的取值范围.

24. (18 分) 函数 $f(x) = 4\sin\frac{\pi}{12}x \cdot \sin\left(\frac{\pi}{2} + \frac{\pi}{12}x\right), x \in [a, a+1],$ 其中常数 $a \in [0, 5],$ 求 函数 f(x) 的最大值 g(a).