Department of Mechanical Engineering

Individual Research Project (MENG35000)

Project Plan (2022-23)

Name	Darian <u>Irani</u>
Project title	Measuring the mechanical properties of medicated chewing gum and evaluating chewing efficiency for oral drug delivery.
Aims	 Design and fabricate a set of different shapes of maxillary and mandibular teeth to fit onto the (already-available) fabricated set of adapters. Investigate mechanical properties of medicated chewing gum in vitro using the 'two-bite test'. Investigate chewing efficiency and mechanics of mastication for a fabricated set of different teeth shapes. Compare results and conduct an analysis of data gathered from 'two-bite test' with an available replica of human maxillary and mandibular teeth from 'humanoid chewing robot'. Explore research question: "Could the chewing efficiency and mechanism of mastication sequence, shearing, crushing, and grinding be related to overbite and occlusal contacts, teeth shapes, or optimising the crush/shear ratio?".
Methodology	 Find optimal maxillary and mandibular jaw angle and conduct assembly modelling of teeth to adaptors on Siemens NX. Produce engineering drawings for fabrication via Siemens NX after a finalized design of maxillary and mandibular teeth that attach to the adaptors. Design of Experiments (DOE) for 'two-bite test' using the Instron machine to simulate mastication. Write a MATLAB script to simulate 1 Hz mastication. Data analysis via MATLAB to evaluate chewing efficiency with real life results and experimental results. Conduct literature survey and analyse 'two-bite test' for medicated chewing gums.

Planning

	Week number													
Task		14	15	16	17	18	19	20	21	22	23	24	25	26
Background reading & project planning														
Assembly modelling of teeth and adaptors														
DOE relating to finding optimal jaw angle and appropriate tolerancing														
Production of engineering drawings via Siemens NX														
Write MATLAB code to simulate 1 Hz mastication for Instron machine														
Conduct experiments for 'two-bite' test with MCG and Instron machine														
Plot graphical results via MATLAB and conduct data analysis														
Research and evaluate chewing efficiency with real-life data and experimental data														
Conduct literature survey and analyze 'two-bite test' for MCGs														
Explore proposed research questions and draw appropriate conclusions														
Conduct further reading into topic and explore deeper areas of research														
Report writing														
Presentation planning for vivas														
Project plan and risk register submission					Report submission									
Mid-session review						Viva								