Politecnico di Milano - Facoltà di Ingegneria dei Sistemi - A. A. 2010/2011 Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica I Appello, Metodi Analitici (22-2-11) - Prof. I. FRAGALÀ

COGNOME E NOME:	N. MAT	TRICOLA:

I. ANALISI COMPLESSA

Sia $C_2(0)$ la circonferenza di centro l'origine e raggio 2 percorsa una volta in senso antiorario, e per $n \geq 1$ sia

$$a_n = \frac{1}{2\pi i} \int_{C_2(0)} \exp\left(\frac{n}{nz - 1}\right) dz .$$

- (i) Enunciare il teorema dei residui.
- (ii) Calcolare a_n per ogni $n \in \mathbb{N}$.
- (iii) Stabilire per quali $p \in [1, +\infty]$ si ha $\{a_n\} \in l^p(\mathbb{N})$.

Soluzione.

- (i) Si veda uno dei testi consigliati.
- (ii) Per ogni $n \in \mathbb{N}$ si ha

$$a_n = \operatorname{Res}\left(\exp\left(\frac{n}{nz-1}\right), \frac{1}{n}\right) = 1$$
,

dove la prima uguaglianza segue dal teorema dei residui e la seconda dallo sviluppo in serie

$$\exp\left(\frac{n}{nz-1}\right) = \sum_{k\geq 0} \frac{1}{k!} \frac{1}{\left(z-\frac{1}{n}\right)^k} .$$

(iii) Trattandosi della successione costante uguale a 1, si ha $\{a_n\} \in l^p(\mathbb{N})$ se e solo se $p = +\infty$.

II. ANALISI FUNZIONALE

Sia a un parametro reale strettamente positivo, e sia

$$u(t) := \frac{1}{\sqrt{a^2 - t^2}} \chi_{(-a,a)}(t) \ .$$

- a. Stabilire per quali $p \in [1, +\infty]$ $u \in L^p(\mathbb{R})$. b. Sia \hat{u} la trasformata di Fourier di u. Stabilire se $\hat{u} \in L^2(\mathbb{R})$.
- c. Stabilire per quali $k \in \mathbb{N}$ $\hat{u} \in C^k(\mathbb{R})$.

Soluzione.

- a. Si ha $u \in L^p(\mathbb{R})$ se e solo se p < 2.
- b. No, perché $u \notin L^2(\mathbb{R})$.
- c. Si ha $\hat{u} \in C^k(\mathbb{R})$ per ogni $k \in \mathbb{N}$, perché $t^k u(t) \in L^1(\mathbb{R})$ per ogni $k \in \mathbb{N}$.

III. SERIE/TRASFORMATA DI FOURIER

Sia $\tilde{g}(t)$ la ripetizione 2π -periodica su \mathbb{R} di una assegnata funzione g continua sull'intervallo $[-\pi,\pi]$, e sia a un parametro reale.

- (i) Stabilire per quali a e quali g l'equazione differenziale $u'' a^2u = \tilde{g}$ ammette una e una sola soluzione in $L^2_{2\pi}$.
- (ii) Nei casi affermativi determinarla (in funzione di a e di g).
- (iii) Sfruttando l'analisi effettuata nei punti (i) e (ii), discutere l'esistenza di soluzioni in $L_{2\pi}^2$ dell'equazione assegnata quando a=-2 e $g(x)=\sin^2 x$. Se possibile, determinare la o le soluzioni.

Soluzione.

- (i) Il polinomio caratteristico dell'equazione é $P(\lambda) = \lambda^2 a^2$. L'equazione ammette una e una sola soluzione se e solo se $P(ik) \neq 0$ per ogni k, ovvero $-k^2 a^2 \neq 0$ per ogni k. Pertanto l'equazione ammette una e una sola soluzione se e solo se $a \neq 0$.
- (ii) Indicando con \hat{g}_k , al variare di $k \in \mathbb{Z}$, i coefficienti di Fourier di \tilde{g} , la soluzione é univocamente determinata imponendo che i suoi coefficienti di Fourier \hat{u}_k siano dati da

$$\hat{u}_k = \frac{\hat{g}_k}{-k^2 - a^2} \qquad \forall k \in \mathbb{Z} .$$

(iii) Essendo $g(x) = \sin^2(x)$ una funzione 2π -periodica, si ha $\tilde{g} \equiv g$. Inoltre,

$$g(x) = \sin^2(x) = \frac{1}{2} - \frac{1}{2}\cos(2x) = \frac{1}{2} - \frac{1}{4}(e^{i2x} + e^{-i2x}).$$

Da cui, $\hat{g}_0 = \frac{1}{2}$, $\hat{g}_2 = -\frac{1}{4} = \hat{g}_{-2}$ e $\hat{g}_k = 0$ per ogni $k \neq 0, -2, 2$. In base all'analisi effettuata ai punti (i) e (ii), si conclude facilmente che l'equazione assegnata per a = -2 e $g(x) = \sin^2(x)$, ammette una e una sola soluzione in $L^2_{2\pi}$:

$$u(x) = -\frac{1}{8} + \frac{1}{32}(e^{i2x} + e^{-i2x}) = -\frac{1}{8} + \frac{1}{16}\cos(2x).$$