Painel / Meus cursos / SC26EL / 14-Projeto de Controladores em Espaço de Estados - Parte 3

/ <u>Questionário sobre Projeto de Controladores em Espaço de Estados - Parte 3</u>

Iniciado em	quarta, 28 abr 2021, 11:07
Estado	Finalizada
Concluída em	sexta, 30 abr 2021, 15:03
Tempo	2 dias 3 horas
empregado	
Notas	2,0/2,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão 1 Correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

Considere o sistema abaixo:
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -200 & -30 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Deseja-se que o sistema siga uma referência do tipo degrau com erro nulo tendo os polos de malha fechada $s_{1,2}=-5\pm j3\sqrt{3}$ e $\mathit{s}_3 = -50$. Adicionalmente, deseja-se que o sistema em malha fechada rejeite perturbações nos estados e/ou variações paramétricas. Para isso, utiliza-se a estrutura de controle abaixo.

Considerando que o 4º polo do sistema seja $s_4 = -50$, o vetor de ganhos é dado por $\bar{K} = \begin{bmatrix} \kappa & \vdots & -k_I \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 & -k_I \end{bmatrix}$. Assim, os ganhos do controlador são:

 $k_1 =$

30200

 \checkmark , $k_2 =$ 3352

 \checkmark , $k_3 =$

 \checkmark , $k_I =$ 130000

Considerando o sistema nominal, a representação do sistema em malha fechada é:

$$\dot{x} = A_{MF}x + B_{MF}r$$
$$y = C_{MF}x$$

A matriz A_{MF} tem a forma $A_{MF} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

 $a_{21} =$ 0

- ✓ , a₂₃ =1
- ✓ , a₂₄ =0
- **~** ,
- *a*₃₁ = −30200
- ✓ , a₃₂ =
 -3552
- ✓ , a₃₃ =-110
- **✓** , **a**₃₄ = 130000
- **~** ,
- $a_{41} =$
- -1 **✓** . a₁₂ =
- 0
- , a₄₃ =
- **✓** , **a**₄₄ =
- **V**

A matriz B_{MF} tem a forma $B_{MF}=egin{bmatrix} b_{11}\b_{21}\b_{31}\b_{41} \end{bmatrix}$. Assim, os elementos da matriz B_{MF} são:

- $b_{11} = 0$
- ~
- $b_{21} = 0$
- **~** ,
- $b_{31} = 0$
- **v** ,
- **b**₄₁ =
- **V**

A matriz C_{MF} tem a forma $C_{MF} = [\begin{array}{ccc} c_{11} & c_{12} & c_{13} & c_{14} \end{array}]$. Assim, os elementos da matriz C_{MF} são:

- $c_{11} =$
- 1
- , $c_{12} = 0$

2021	Questionano sobre Projeto de Controladores em Espaço de Estados - Parte 3. Revisão da tentativa
$c_{13} = 0$ $c_{14} = 0$ $c_{14} = 0$	
O ganho CC do sistema co	ompensado vale
✓ .	
O erro em regime perman	ente para o sistema compensado para uma referência do tipo degrau unitário vale
1	me permanente do sistema compensado para uma referência do tipo degrau unitário vale
compensado para uma ref	ramétrica na matriz C do sistema, isto é, $C=\begin{bmatrix}0,5&0&0\end{bmatrix}$ o erro em regime permanente para o sistema ferência do tipo degrau unitário vale
1	r salad do sistema em regime permanente vale

Questão **2** Correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Deseja-se que o sistema siga uma referência do tipo degrau com erro nulo tendo os polos de malha fechada $s_{1,2}=-2$. Adicionalmente, deseja-se que o sistema em malha fechada rejeite perturbações nos estados e/ou variações paramétricas. Para isso, utiliza-se a estrutura de controle abaixo.

Considerando que o 3º polo do sistema seja $s_3 = -10$, o vetor de ganhos é dado por $\vec{K} = \begin{bmatrix} K & \vdots & -k_I \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & -k_I \end{bmatrix}$. Assim, os ganhos do controlador são:

 $k_1 = \frac{1}{26}$

 $\checkmark , k_2 = 10$

 \checkmark , $k_I = 40$

~

Considerando o sistema nominal, a representação do sistema em malha fechada é:

$$\dot{x} = A_{MF}x + B_{MF}r$$
$$y = C_{MF}x$$

A matriz A_{MF} tem a forma $A_{MF} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

 $a_{11} = 0$

✓ , a₁₂ =

1

✓ , a₁₃ =0

~ ,

a₂₁ = -44

✓ , a₂₂ =-14

✓ , a₂₃ =40✓ ,

~	,	a 32	=
()		,
			_

✓ , a₃₃ =

V

A matriz B_{MF} tem a forma $B_{MF}=egin{bmatrix}b_{11}\b_{21}\b_{31}\end{bmatrix}$. Assim, os elementos da matriz B_{MF} são:

 $b_{11} = 0$

V

 $b_{21} = 0$

~

b₃₁ =

✔ .

A matriz C_{MF} tem a forma $C_{MF} = [\begin{array}{cc} c_{11} & c_{12} \end{array}]$. Assim, os elementos da matriz C_{MF} são:

 $c_{11} = 1$

• , c₁₂ =

 $c_{13} = 0$

~

O ganho CC do sistema compensado vale

1

~

O erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale

✓ . Logo, a saída em regime permanente do sistema compensado para uma referência do tipo degrau unitário vale

~ .

Supondo uma variação paramétrica na matriz B do sistema, isto é, $B = \begin{bmatrix} 0 \\ 1,5 \end{bmatrix}$ o erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale

compensado para uma referência do tipo degrau unitário vale

0

🛩 . Consequentemente, a saída do sistema em regime permanente vale

1

✓ .

→ Diagrama de blocos - Scilab/Xcos - Planta sem integrador

Seguir para...

\$

Aula 15 - Observadores de Estado ►