

Sandra Kiefer, Pascal Schweitzer

SS 16

Exercises for Computational Complexity Theory

Assignment 5 Deadline: Thursday, June 2nd, 2016

Exercise 17 (Universal exploration sequences)

A graph with cyclically ordered adjacency lists is a graph such that for each vertex v there is a cyclic ordering (u_1, \ldots, u_t) of the neighborhood N(v). Given an infinite sequence of natural numbers $n_3, n_4, n_5 \ldots \in \mathbb{N}$ and a starting edge (v_1, v_2) of G we explore G using the sequence by defining iteratively v_{i+1} to be the (n_{i+1}) -st successor of v_{i-1} in the cyclic ordering of $N(v_i)$ (i.e., if $v_{i-1} = u_j$ then $v_{i+1} = u_{j+n_{i+1}}$ where the index is taken modulo t).

Show that there exists a universal exploration sequence, that is, a fixed sequence of natural numbers $n_3, n_4, n_5 \dots$ such that for every finite connected graph G and every starting edge (v_1, v_2) , when exploring the graph G using the sequence, we will visit every vertex of G.

Exercise 18 (NL-completeness of 2SAT)

Show that 2SAT is NL-complete.

Exercise 19 (The class polyL) [Exercise 4.12 in AB, modified]

Define polyL to be $\bigcup_{c>0}$ SPACE($\log^c n$). Steve's Class SC (named in honor of Steve Cook) is defined to be the set of languages that can be decided by deterministic machines that run in polynomial time and $\log^c n$ space for some c>0.

- a) It is an open problem whether PATH \in SC. Why does Savitch's Theorem not resolve this question?
- b) Is $SC = polyL \cap P$?
- c) A language $L \subseteq \{0,1\}^*$ is called polyL-complete if both $L \in \text{polyL}$ and $L' \leq_l L$ for every $L' \in \text{polyL}$ hold. Show that there is no polyL-complete problem.

Exercise 20 (Zermelo's theorem) [Exercise 4.10 in AB]

Show that in every deterministic finite two-person game with perfect information where there are no draws, one of the two players has a winning strategy.