REDES NEURONALES ARTIFICIALES

María Jesús de la Fuente

Dpto. Ingeniería de Sistemas y Automática

Universidad de Valladolid

ÍNDICE

- **#** Introducción
- **#** Clasificación de redes neuronales:
 - Estructura
 - Entrenamiento
- # Aplicación de las redes neuronales a la identificación de sistemas
- **X** Las redes neuronales en el control

REDES NEURONALES

- # Neurona: base del funcionamiento del cerebro.
- **Sistema de procesamiento cerebral de la información:**
 - Complejo, No lineal y Paralelo.

Fisiología de una neurona elemental

Elementos de que consta: sinapsis, axón, dentritas y soma o cuerpo

NEURONA ARTIFICIAL

** Neurona artificial: unidad de procesamiento de la información, es un dispositivo simple de cálculo que ante un vector de entradas proporciona una única salida.

Entradas

W1

Elementos:

- Conjunto de entradas, xj
- Pesos sinápticos, wi
- Función de activación: $w_1 \cdot x_1 + w_2 \cdot x_2 + ... + w_n \cdot x_n = a$
- Función de transferencia:

$$y = F(w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n)$$

Neurona Artificial

 Bias o polarización: entrada constate de magnitud 1, y peso b que se introduce en el sumador

NEURONA ARTIFICIAL

Principales funciones de transferencia:

• Lineal: *y=ka*

• Escalón: y = 0 si a < 0; y=1 si a > = 0

Sigmoide

• Gaussiana.

RNA de una capa

- # Una neurona aislada dispone de poca potencia de cálculo.
- # Los nodos se conectan mediante la sinapsis
- # Las neuronas se agrupan formando una estructura llamada capa.
- Los pesos pasan a ser matrices W (n x m)
- \mathbb{H} La salida de la red es un vector: $Y = (y_1, y_2, ..., y_n)^T$
- \mathcal{H} $Y=F(W\cdot X+b)$

RNA Multicapa

- # Redes multicapa: capas en cascada.
- # Tipos de capas:
 - Entrada
 - Salida
 - Oculta
- No hay realimentación => red feedforward
 - Salida depende de entradas y pesos.
- - Efecto memoria
 - Salida depende también de la historia pasada.
- # Una RNA es un aproximador general de funciones no lineales.

Entrenamiento I

- # Entrenamiento: proceso de aprendizaje de la red.
- # Objetivo: tener un comportamiento deseado.
- # Método:
 - Uso de un algoritmo para el ajuste de los parámetros libres de la red: los pesos y las bias.
 - Convergencia: salidas de la red = salidas deseadas.
- # Tipos de entrenamiento:
 - Supervisado.
 - ☑Pares de entrenamiento: entrada salida deseada.
 - Error por cada par que se utiliza para ajustar parámetros
 - No-supervisado.
 - Solamente conjunto de entradas.

 Conju
 - Salidas: la agrupación o clasificación por clases
 - Reforzado.

Perceptrones

- # McCulloch y Pitts, en 1943, publicaron el primer estudio sobre RNA.
- # El elemento central: perceptrón.

Solo permite discriminar entre dos clases linealmente separables: XOR.

Solución: más capas o funciones de transferencia no lineales.

Aprendizaje del Perceptrón.

- **#** Algoritmo supervisado:
 - Aplicar patrón de entrada y calcular salida de la red
 - Si salida correcta, volver a 1
 - Si salida incorrecta
 - ≥0 Sumar a cada peso su entrada
 - ≥ 1 ≥ restar a cada peso su entrada
 - Volver a 1
- # Proceso iterativo, si el problema es linealmente separable este algoritmo converge en un tiempo finito.
- ** Nos da los pesos y las bias de la red que resuelve el problema.

Regla delta

- # Generalización del algoritmo del perceptrón para sistemas con entradas y salidas continuas.
- \aleph Se define: δ =**T**-**A**= $e_k(n)$ (salidas deseadas salidas de la red).
- # Minimiza una función de coste basada en ese vector de error:

$$J = E\left[\frac{1}{2}\sum_{k}e_{k}^{2}(n)\right]$$

- $\Delta_i = \delta I_r X_i$
- $W_i(n+1) = W_i(n) + \Delta_i$
- Razón de aprendizaje l_r
- Si las neuronas son lineales=> un único mínimo

Redes Neuronales Lineales.

- # Función de transferencia lineal.
- # Algoritmo de entrenamiento de Widrow-Hoff o Delta, tiene en cuenta la magnitud del error.
- **#** Entrenamiento:
 - Suma de los cuadrados de los errores sea mínima.
 - Superficie de error con mínimo único.
 - Algoritmo tipo gradiente.

Aproximan funciones lineales.

Backpropagation

- # Clave en el resurgimiento de las redes neuronales.
- # Primera descripción del algoritmo fue dada por Werbos en 1974
- # Generalización del algoritmo de Widrow-Hoff para redes multicapa con funciones de transferencia no-lineales y diferenciables.
- # 1989 Hornik, Stinchcombe y White
 - Una red neuronal con una capa de sigmoides es capaz de aproximar cualquier función con un número finito de discontinuidades
- # Propiedad de la generalización.
- **X** La función de transferencia es no-lineal, la superficie de error tiene varios mínimos locales.

Red Perceptron Multicapa (MLP)

- # Función acotada, monótona creciente y diferenciable.
- # Red de tipo feedforward.
- # Suficiente con dos capas.

Algoritmo backpropagation I

Descripción:

- Tras inicializar los pesos de forma aleatoria y con valores pequeños, seleccionamos el primer par de entrenamiento.
- Calculamos la salida de la red
- Calculamos la diferencia entre la salida real de la red y la salida deseada, con lo que obtenemos el vector de error
- Ajustamos los pesos de la red de forma que se minimice el error
- Repetimos los tres pasos anteriores para cada par de entrenamiento hasta que el error para todos los conjuntos de entrenamiento sea aceptable.
- # Descenso por la superficie del error
- # Cálculo de derivadas del error respecto de los pesos y de las bias.

Atrás

Adelante

Algoritmo backpropagation II

Detalles:

- SSE: $E = \sum E_p = \sum (y_{pk} o_{pk})^2$
- $\Delta W_{ij} = -\eta \partial E / \partial W_{ij}$

Pasos:

- Inicialización:

 - ☑Inicialización aleatoria de pesos y umbrales (-0.5, 0.5)

 - \boxtimes Contador de iteraciones n=0.
- Fase hacia delante:

 - Si la condición de terminación se satisface, parar
- Fase hacia atrás:

Algoritmo backpropagation III

- Fase hacia atrás:
 - \boxtimes Incrementar el contador n=n+1.
 - ≥ Paca cada neurona de salida calcualr: $\delta_k = (o_k y_k)f'(net_k)$ donde $net_j = \Sigma_i w_{ij} x_i + b_j$
 - \boxtimes Para cada unidad oculta, calcular $\delta_j = f'(net_j) \Sigma_k \delta_k w_{jk}$
 - \boxtimes Actualizar pesos: $\Delta w_{ii}(n+1) = \eta \delta_i o_i + \alpha \Delta w_{ii}(n)$
 - ∨Volver a la fase hacia delante.
- # Inconvenientes del algoritmo backpropagation:
 - Tiempo de entrenamiento no acotado.
 - Dependiente de las condiciones iniciales:
 - ☑Parálisis de la red.
 - Mínimos locales.

Algoritmo Backpropagation IV

- Underfitting.
- Memorización o Sobreaprendizaje.
- Caracterización de la red. ¿Cuantas capas, cuantas neuronas en cada capa,...?

Redes Neuronales no supervisadas I

- # Autoorganizativas: durante el proceso de aprendizaje la red debe descubrir por si misma regularidades o categorías => la red debe autoorganizarse en función de las señales procedentes del entorno.
- # Mapa de Rasgos Autoorganizados, SOM (Kohonen, 80)
- **#** Características:
 - Red competitiva
 - Arquitectura unidireccional de dos capas:

 - ☑Todas las neuronas de entrada están conectadas a las neuronas de la segunda capa, a través de los pesos wij

Redes Neuronales No-Supervisadas II

- # Cada neurona (i,j) calcula la similitud entre el vector de entradas y su vector de pesos
- ** Vence la neurona cuyo vector de pesos es más similar al vector de entrada.

$$d(w_g, x) = min_{ij}d(w_{ij}, x)$$

- ** Cada neurona sirva para detectar alguna característica del vector de entrada.
- # Función de vecindad: relación entre neuronas próximas en el mapa.

RNA no supervisadas III

Aprendizaje:

- Inicialización de los pesos wij
- Presentación de las entradas x(t)
- Cada neurona calcula, la similitud entre su vector de pesos wij y el vector de entrada x, usando la distancia Euclídea

$$d^{2}(w_{ij}, x) = \sum_{k=1}^{n} (w_{ijk} - x_{k})^{2}$$

- Determinación de la neurona ganadora: $Ganadora = min_j d_j^2$
- Actualización de los pesos de la neurona ganadora y sus vecinas

$$w_{ijk}(t+1) = w_{ijk}(t)\alpha(t)h(|i-g|,t)(x_k(t) - w_{ijk}(t))$$

- Las demás neuronas no actualizan su peso
- Si se ha alcanzado el número de iteraciones parar, si no volver al paso 2.

VENTAJAS

X Ventajas de las RNA:

- Aprendizaje adaptativo: lo necesario es aplicar un buen algoritmo y disponer de patrones (pares) de entrenamiento.
- Auto-organización => conduce a la generalización
- Tolerancia a fallos: las redes pueden aprender patrones que contienen ruido, distorsión o que están incompletos.
- Operación en tiempo real: procesan gran cantidad de datos en poco tiempo.
- Facilidad de inserción en tecnología ya existente.

APLICACIONES

- # Detección de patrones.
- # Filtrado de señales
- **#** Segmentación de datos
- **#** Control
- **%** Identificación.

Redes Neuronales en identificación de sistemas

Identificación de sistemas

** La identificación consiste en calcular un modelo del sistema en base a datos experimentales.

Pasos:

- Seleccionar una clase de modelos (CARIMA, Box-Jenkis,...)
- Obtener un conjunto de datos experimentales
- Seleccionar un modelo de la clase elegida
- Estimar los parámetros (método de Identificación: LS,RLS,IV,...)
- Validación (exactitud, adecuación de uso)

RNA que representan el tiempo

- # Representación del tiempo.
 - Tratamiento de señales.
 - Identificación de modelos dinámicos
 - Control de sistemas.

Redes dinámicas:

- Respuesta a:
 - ∠Las entradas actuales
 - ∠La historia pasada del sistema.
- Dotar de memoria a la red:
 - ☑Introduciendo directamente en la red tanto la señal actual como los valores pasados.

Red PML con ventana temporal

- # Ventanas de datos pasadas de las entradas y de las salidas.
- **X** Ventajas:
 - Algoritmo simple es suficiente
 - No problemas de realimentación
- **#** Desventajas
 - Información útil debe "caber" en la ventana temporal
 - Muchas entradas \(\bar{\omega} \) Sobreparametrización

Redes neuronales recurrentes

- **Redes** neuronales parcialmente recurrentes:
 - Conexiones recurrentes con valores fijos
 - Algoritmo de aprendizaje "ve" una red perceptrón multicapa
 - Ejemplos:
 - **区 Jordan**
 - **Elman**
- **#** Redes neuronales recurrentes:
 - Todas las neuronas interconectadas
 - Computacionalmente costoso

Estructuras neuronales para la identificación

- # Determinación o elección de la estructura del modelo.
- # ¿Es necesario un modelo neuronal?
- ** Nos basamos en modelos establecidos en el caso lineal
- # Diseño:
 - Variables que forman parte del regresor φ(t)
 - Función no-lineal g(·,·) desde el espacio de regresiones al espacio de salida Ŋ NO en modelos lineales
 - $y(t)=g(\theta,\varphi(t))+e(t)$
- # Estructura de caja negra: modelo de entrada- salida.
- # Elementos del regresor:
 - Entradas pasadas u(t-k)
 - Salidas pasadas medidas: y(t-k)
 - Salidas pasadas calculadas por el modelo: ÿ_u(t-k|θ)
 - Residuos pasados calculados: ε_u(t-k)=y(t-k)-ÿ_u(t-k|θ)

Modelo NARX

****** Ventajas:

- Puede aproximar cualquier sistema no-lineal arbitrariamente bien
- No recurrente.

Desventajas:

- Vector de regresión puede ser grande
- No se modela el ruido

Modelo NOE

- # Corresponde a una red recurrente, ya que parte de las entradas constituye la salida de la propia red.
 - Comprobación difícil para modelo de predicción estable
 - Entrenamiento laborioso por cálculo correcto de gradientes

$$\varphi(t) = [\hat{y}(t-1|\theta)...\hat{y}(t-n|\theta)u(t-k)...u(t-m-k+1)]^{T}$$

$$\hat{y}(t \mid \theta) = g(\varphi(t), \theta)$$

Validación

- Xalidación: es el proceso de comprobación de la utilidad de modelo obtenido:
 - Si el modelo concuerda con los datos observados
 - Si servirá al propósito para el que fue creado
 - Si describe el sistema real
- # Enfoque neuronal:
 - Conjunto de datos de entrenamiento
 - Conjunto de datos de test.
 - Conjunto de datos de validación.
- # Enfoque basado en correlaciones:
 - Test de blancura de los residuos

₩ ...

Ejemplo I

- # Transforma un producto A en otro B
- # Reacción química exotérmica
- Se controla la temperatura mediante una camisa por la que circula un refrigerante
- **#** Salidas:
 - Ca Cb Tl Tr
- **#** Entradas:
 - Manipulables: Fl Fr
 - Perturbaciones medibles:
 Ca0 Tl0 Tr0

Ejemplo II

- # El periodo de muestreo es $\mathcal{T} = 0.2$ horas
- Las entradas han de ser tales que provoquen todas las salidas de interés

Ejemplo III

- # Se normalizan los datos de entrada y salida
- # Se entrenan cuatro redes, cada una modela una salida
- ★ Se usa el algoritmo backpropagation

Ejemplo IV

- **X** Validación del modelo.
 - De forma neuronal: test son saltos en Fr

Ejemplo V

Correlaciones: blancura de los residuos

