1819-108-W6-C1-01 First Exam

Jānis Konopackis

4 March 2019

7-7	1 1	-	1		-	-	-	-	9.5	1	-	-			1			-	T	T	T	-			-	T		T	-	1	-	1	T	1	1			T	T
-	-	+	-	-	-	-	-	+	+	+	+	-		-	-	-	+	+	+	+	1				1	+	+	+		+		1	+	1				1	1
++-	++	+	-		-	-	+	+	+	+	+		-	-	1	-	+	1	1	+	1												I						
1	1 1	-1	1	1	1	-	-	-	+	+	+			1	1	1	1	1	T	1	1				T	T	T	T	T	1			T		1			-	
																																			4		-	+	_
																																			4	_	-	+	_
											20	8.0	E	XE	RC	CISI	ES																		+	-	-	+	-
														_	_		_							_					_						H	-	-	+	-
	We	als	so n	ote	e tł	nat	of	fte	n tl	ne	sai	ne	e g	ene	era	1 m	et	hod	. 11	sec	i i	n t	he	al	ov	e e	exai	mr	le						-		-	+	-
	for p	rovi	ıng	the	e u	nic	que	ne	ss t	he	ore	em	ı fo	or i	Po	issc	n'	s ec	11112	tio	n	ca	n 1	he	em	nnl	ove	d	to									1	
	prove	the	e un	iiqı	uen	ess	s (o	or o	oth	erv	vise	e)	of	sol	lut	ion	s t	0 0	the	r e	qu	ati	on	s a	nd	bo	oun	da	ry										
	condi	tio	ns.																																				-
																																					1	-	
											,	20	0	F		X.O	10																			-	-	+	-
	20.1		D .													cise	_																		-	-	+	+	
	20.1		Dete and	erm he	nne	wl	het! het!	hei her	the	e fo	ollo	wi	ng	car	ı b	e w	ritt	ten :	as f	uno	ctic	ons	of	p =	= x	2+	-2 <i>y</i>	on	ly,						-	-	+	+	
																	20.8	8):																	-	-	-	+	
			(a) (b)	x^2	$(x^2 \cdot$	- 4	1) +	- 4	$v(x^2)$	-	2)	+	4(y	,2 _	- 1)	;																			-	-	+	+	
			(c)	$\int x^4$	+ 2 4 +	$4x^{-1}$	y + ² v -	- y- + 4	; v ² -	+ 4	17/1	2 v	4 _	· v2	(8)	, ,	1)	1 0	,2 ,	2,	,1														-	-	+	+	-
	20.2																						C		bh	33.	,								-	-	+	1	
	20.2		Find all a	ırbi	itra	rv	ann fun	cti	ons	ai f	equ and	at: 1 a	10n 1ll a	s sa arb	atus itra	snec	or cor	y th ista	e to	ollo a a	wı ınd	ng L <i>h</i> :	iui	ict:	ons	s u	(x, y)	7) 1	01						-		1		-
			(a)									01					•			1181	10/1																		-
			(a) (b)									_ h	,)2.																										
			(c)	,			,		,		()	·	', ,																										
			(d)	u(:	x, y) =	f(.	x -	- ay).																										-	1	-	
	20.3		Solv	ve 1	the	fo	llov	vin	g p	ar	tial	di	iffe	ren	tial	l eq	ua	tion	s fo	or a	u(x	, y)) w	ith	the	e b	oui	nda	ıry							-	+	1	
			con			_																														+	+	+	
			(a) .	$x \frac{\partial f}{\partial x}$	<u>u</u> +	- xı	, =	и.	ı	ı =	= 2 <i>v</i>	0	n t	he	line	e x	on =	1;																		+	+	+	
																																				+	+	-	
			(b)	1+	$-x\frac{c}{c}$	<u> </u>	= >	хи,	ı	ı(x	,0)	=	x.																							+	1		
	20.4		Fine												v)	of t	he	foll	ow:	ing	eq	uat	tior	1S,	con	sis	tent	w	ith										
	20.7		the	bo	und	lar	y co	one	litio	ons	sta	ite	d:																										
				i	ди		∂u		0		((2)		1 1	cit																					1			
			(a)	y-	$\frac{1}{\partial x}$	-x	$\frac{\partial}{\partial y}$, =	0,	и	(x, 0)	U)	=	1 +	SII	12,																				-	-		
				д	u		ди			()		2:)	2.2	on	th	e lit	10	r =	ν.																1	+	-		
			(b)	$i - \overline{\partial}$	$\frac{1}{x} =$	= 3	$\frac{1}{\partial y}$,	u =	(4	+	31)	j.x	OII	tii	C 111	10 .		,																	+	+	-	
			(c)				∂1	и				C 11	ди		0	1/	= 0	cos i	20	on	x +	- v	=	π	2;											+	1	-	
			(c)	SII	nxs	sın .	$y \overline{\partial}$	\bar{x}	- 00	IS A	CO	s y	∂y		0,																					+	1		
			(d)	дı	u .	•	ди		0		_	2 (on	the	na	rab	oola	a v	= x	2.																	1		
			(d)	∂2	- +	2x	$\frac{\partial}{\partial y}$		υ,	и	-	2 '	011	tile	P																					T			
	20.5		Fin	d s	olu	tio	ns (of									1																						
														$\frac{1}{2} \frac{\partial u}{\partial x}$	<u>u</u> +	+ - "	$\frac{\partial u}{\partial v}$	= 1)																	1	-		
														,.		,	1																			+	1		
			for Fin	wh	iich	(a)) u((0,]	v) =	= y	an	d	(b)	u(1)	1, 1) =	the	e fol	lov	ving	g e	qua	atio	ns	cor	nsis	sten	t w	ith							+	1	-	
	20.6		Fin the	d t	he i	no	st g	gen	era. litio	ons	s sta	ate	ed:	u(n	, , ,																					+	1		
																																				1	1		
			(a)	y-	$\frac{\partial u}{\partial x}$.	- x	$c\frac{\partial u}{\partial v}$	$\frac{l}{\cdot} =$	3x	,	<i>u</i> =	= x	c^2	n t	he	line	e y	=);																	H			
					ox		Uy																													I			
														70	07																					I			
																																				1			
														130				-	1		T						H					18	1					100	

We also note that often the same general method, used in the above example for proving the uniqueness theorem for Poisson's equation, can be employ to prove the uniqueness (or otherwise) of solutions to other equations and boundary conditions.

20.8 Exercises

- Determine whether the following can be written as functions of $p = x^2 + 2y$ only, and hence whether they are solutions of (20.8):
 - (a) $x^2(x^2-4)+4y(x^2-2)+4(y^2-1)$;
 - (b) $x^4 + 2x^2y + y^2$;
 - (c) $[x^4 + 4x^2y + 4y^2 + 4]/[2x^4 + x^2(8y+1) + 8y^2 + 2y].$
- Find partial differential equations satisfied by the following functions u(x, y) for all arbitrary functions f and all constants a and b:
 - (a) $u(x,y) = f(x^2 y^2);$
 - (b) $u(x,y) = (x-a)^2 + (y-b)^2$;
 - (c) $u(x,y) = y^n f(y/x)$;
 - (d) u(x,y) = f(x + ay).
- 20.3 Solve the following partial differential equations for u(x, y) with the boundary conditions given:
 - (a) $x \frac{\partial u}{\partial x} + xy = u$, u = 2y on the line x = 1;
 - (b) $1 + x \frac{\partial u}{\partial u} = xu$, u(x,0) = x.
- Find the most general solutions u(x, y) of the following equations, consistent with the boundary conditions started:
 - (a) $y \frac{\partial u}{\partial x} x \frac{\partial u}{\partial y} = 0$, u(x, 0) = 1 + sinx;
 - (b) $i\frac{\partial u}{\partial x} = 3\frac{\partial u}{\partial y}$, $u = (4+3i)x^2$ on the line x = y;
 - (c) $\sin x \sin y \frac{\partial u}{\partial x} + \cos x \cos y \frac{\partial u}{\partial y} = 0$, $u = \cos 2y$ on $x + y = \pi/2$;
 - (d) $\frac{\partial u}{\partial x} + 2x \frac{\partial u}{\partial y} = 0$, u = 2 on the parabola $y = x^2$.
- 20.5 Find solutions of

$$\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} = 0$$

for which (a) u(0, y) = y and (b) u(1, 1) = 1.

- 20.6 Find the most general solutions u(x,y) of the following equations consistent with the boundary conditions stated :
 - (a) $y \frac{\partial u}{\partial x} x \frac{\partial u}{\partial y}$, $u = x^2$ on the line y = 0;

Code:

```
\documentclass[12pt]{report}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage[a4paper, total={7.086in, 10.236in}]{geometry}
\usepackage{setspace}
\usepackage{enumitem}
\usepackage{verbatim}
\title{1819-108-W5-C1-01 \\ First Exam }
\author{Jānis Konopackis }
\date{4 March 2019}
\begin{document}
\maketitle
Example Nr. 691 % Book page photo
\vspace{1cm}
\includegraphics[scale=0.16]{page.jpg}
\newpage
\newgeometry{left=25mm, right=30mm, top=15mm}
\begin{center}
\setcounter{page}{707}
20.8 Exercises
\end{center}
\vspace{0.25cm}
\hline
\vspace{0.7cm}
\par We also note that often the same general method, used in the above example for proving the
uniqueness theorem for Poisson's equation, can be employ to prove the uniqueness (or otherwise) of
solutions to other equations and boundary conditions.
\vspace{1cm}
\begin{center}
\textbf{20.8 Exercises}
\end{center}
\vspace{0.3cm}
\begin{enumerate}[labelsep=1cm]
\begin{bmatrix} 20.1 \end{bmatrix} Determine whether the following can be written as functions of p=x^2 + 2y only, and
hence whether they are solutions of (20.8):
\end{enumerate}
\begin{enumerate}
    \begin{enumerate}
    \item x^2(x^2-4)+4y(x^2-2)+4(y^2-1);
    \item x^4+2x^2y+y^2;
    \item \frac{x^4+4x^2y+4y^2+4}{[2x^4+x^2(8y+1)+8y^2+2y]}.
    \end{enumerate}
\end{enumerate}
\begin{enumerate}[labelsep=1cm]
\begin{bmatrix} 20.2 \end{bmatrix} Find partial differential equations satisfied by the following functions u(x,y) for
all arbitrary functions $f$ and all constants $a$ and $b$:
\end{enumerate}
\begin{enumerate}
    \begin{enumerate}
```

```
\item u(x,y) = f(x^2-y^2);
        \item u(x,y) = (x-a)^2 + (y-b)^2;
        \item u(x,y) = y^nf(y/x);
        \item u(x,y) = f(x+ay).
        \end{enumerate}
\end{enumerate}
\begin{enumerate} [labelsep=1cm]
[20.3] Solve the following partial differential equations for u(x,y) with
the boundary conditions given :
\end{enumerate}
\begin{enumerate}
        \begin{enumerate}
        \t \x \ \x \ u}{\partial x}+xy = u,\quad\quad\quad u = 2y
        \mbox{ on the line } x = 1$;
\setlength{\parskip}{0.6em}
        \item $1+x\frac{\partial u}{\partial y} = xu,\quad\quad\quad u(x,0) = x$.
        \end{enumerate}
\end{enumerate}
\begin{enumerate} [labelsep=1cm]
\begin{bmatrix} 20.4 \end{bmatrix} Find the most general solutions u(x,y) of the following equations, consistent
with the boundary conditions started:
\end{enumerate}
\begin{enumerate}
        \begin{enumerate}
        \int x^{-x} \int x^{-x} dx dx dx = 0, \quad (x,0) = 1+sinx = 1+sinx = 0, \quad (x,0) = 1+sinx = 
\setlength{\parskip}{0.6em}
        \int \frac{\pi}{\pi} x^2 dx
        \mbox{ on the line } x = y$;
\setlength{\parskip}{0.6em}
        \item $\mbox{sin }x\mbox{ sin }y\frac{\partial u}{\partial x}+\mbox{cos }x
        \mbox{ cos }y\frac{\partial u}{\partial y} = 0,\quad u=cos2y \mbox{ on } x+y = \pi/2$;
\setlength{\parskip}{0.6em}
        \item $\frac{\partial u}{\partial x}+2x\frac{\partial u}{\partial y} = 0, \quad u = 2
        \mbox{ on the parabola } y = x^2.
        \end{enumerate}
\end{enumerate}
\begin{enumerate}[labelsep=1cm]
\item[20.5] Find solutions of
\frac{1}{x}\frac{u}{{partial u}{\sigma x}+\frac{1}{y}\frac{u}{{partial y}} = 0$
for which (a) u(0,y) = y and (b) u(1, 1)=1.
\end{enumerate}
\begin{enumerate}[labelsep=1cm]
\item[20.6] Find the most general solutions $u(x, y)$ of the following equations consistent with
the boundary conditions stated :
\end{enumerate}
\begin{enumerate}
        \begin{enumerate}
        \int x^2 \int x^2 dx dx
        \mbox{ on the line } y = 0;
        \end{enumerate}
\end{enumerate}
\restoregeometry
```

\newpage