000

P525/3
Chemistry
Paper 3
July - August 2022
3 1/4 hours

UGANDA MUSLIM TEACHERS' ASSOCIATION

Name	UMTA JOINT MOCK EXAMINATIONS 2022

Centra/Inda	Signature
centre/index No	
	Signature

UGANDA ADVANCED CERTIFICATE OF EDUCATION

Chemistry
Paper 3
3 hours 15 Minutes

INSTRUCTIONS TO CANDIDATES:

- This paper consists of three compulsory questions.
- All questions must be answered in the spaces provided.
- Mathematical tables (3 figure tables) and silent non-programmable scientific electronic calculators may be used.
- Candidates are advised to read through the paper and cross check with the apparatus and chemicals provided in the first fifteen minutes.

	For Examin	ers' use only	. With
Q. 1	Q. 2	Q. 3	Total
All I		Her Lor	
		11/1/2	and I

 You are provided with the following; FA1 which is 1M hydrochloric acid solution FA2 which is approximately 1M sodium hydroxide solution FA3 which is a 0.1Msulphuric acid Solid T, which is impure tribasic acid H₃X You are required to; Standardize solution FA2 using FA1 Determine the percentage purity of solid T using FA2 and FA3. Theory Sodium hydroxide reacts with the acids according to the equations below: $NaOH_{(aq)} + HCl_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(1)}$ $3NaOH_{(aq)} + H_3X_{(aq)} - Na_3X_{(aq)} + 3H_2O_{(1)}$ Procedure A: a) Pipette 10cm³ of FA2 into a clean conical flask followed by 2drops of phenolphthalein indicator and then titrate with FA1 from the burette until the end point. Repeat the titration until you obtain consistent readings. Enter your results in the table I below: Table I Volume of pipette used =10,0 v (½ marks) values frial values. Experiment I П III Final burette reading /cm³ 9.90 19.90 29.90 Initial burette reading /cm³ 0.00 10.00 20.00 Volume of FA 1 used /cm³ (41/2 marks) Titre values used to calculate average volume of FA1 (1/2 marks) 9.90 and 9.90 1 Therefore Average volume of FA1 = 9.90 + 9.90 = 9.90 cm³. (2 ½ marks)± 0.2**Ouestions** Calculate the molar concentration of in FA2. 1000cm3 of FAI Contains Imple of 9.900m3 of FAY Contains (1x9.90) moles of HCl = 9.9xio moles Imole of HC reacted 9.9xiosmole of HCl reacted (9.9xio3x1) Knote of NaOH = 9 10.0 cm3 of FAZ contours 9.9x103 moles of NaOH 1000 cm3 of FAZ Contans A. 9xi03 x1000 miles of NAOH © UMTA Joint Mocks 2022 0.99M

- b) Weigh accurately 3.4g of T and add about 50cm³ of water in a beaker. Stir to dissolve and transfer the contents of the beaker into a 250cm3 volumetric flask. Make up to the mark with distilled water. Label the resultant solution FA4.
- c) Pipette 10cm³ of FA4 into a conical flask. Add 10cm³ of FA2 using a measuring cylinder. Titrate the mixture with solution FA3 from the burette until the end point. Repeat the titration until you obtain consistent readings. Enter your results in table II

Table II

Mass of empty bottle + T = 23.40 / g

Mass of empty bottle alone = 20.0 / g

Mass of T alone = 3.40 / g

Volume of pipette used = 10.0 cm³

			(Zilidillo)
Experiment	I	II	ш
Final burette reading /cm ³	39,10	49.00	44,00
Initial burette reading /cm ³	0.00	10.00	5.00
Volume of FA3 used /cm3	39.10/	39.00	39.00

Titre values used to calculate average volume of FA1 used are

9 39.00 and 39.00 cm³

Therefore average volume of **FA1** used = .39.00+39.00

Questions

d) Calculate the number of moles of;

i) sulphuric acid that reacted with the excess sodium hydroxide in FA4.

1000cm3 of FAz Confans O. Imole of H2SO4
39.00cm3 of FAz Contans (0.1 x 3900) Hules of H2SQ

39.00 cm

(ii) Sodium hydroxide in 10cm³ of FA2 added to FA4

2 NaOHast H2504 ans) -> Na2504 (ans) + 24200 Insle of Hasoy reached with amole of North 3.9xio3moles of H2SOy reacted with 2x 3.9xio3moles of 1

Allow wile will water the substant calculations

d with radium hydroxide (1marks)
ii) tribasic acid in 10cm ³ of FA4 that reacted with sodium hydroxide (1marks)
10 U - 170x 17:49 V. 40C - 11 1840)
1000 A 1 =10 - (9.9 xin - 7.8 xin)=
moles added = (1000 moles = (9.9 x 103 - 7.8 x 103) =
3 moles of NaOH reacted with Imple of T
= 1 = 3 & & NOM - A O = 10 (311x = 3x 1X) dos
2.1 X w3 msles of NaOH reacted with (2.1 X w3x) msles
= 7.0xio moler
The state of the s
e) Determine the percentage purity of T (H=1 X= 189) (2½ marks)
100m3 of Thy contains 7. oxio truster of T
250cm3 of Fry Contains (7.0xistx 250) maker 4 T = 0.0175moles
Pfm of T= (1x3)+(189) = 1920+
Inste of T weight 1929
0.0175 moles of T weigh (192x0.0175) 9 = 3:369
ologo punty = macs of pure Tx look
mace of sample
= 3.36 x wol = 98.8 /
3,4

2. You are provided with substance Y which contains three cations and one anion. You are required to carry out the following tests on Y to identify the cations and anion in it.

Identify any gases evolved. Record your observations and deductions in the table below.

Tests	Observations	Deductions
a). Heat a spatula end-ful of Y in a dry test tube until there is no cither the	Yearnixture of white did brown	Zn, Al3+ Fe3+
further change.	Corporals. Colomberges that turned to though paper	NH3 NH4
bery without of	fines with Her Colonless gos fract truns the little set and	SO2, SO4
b) Shake two spatula end-ful of Y	- Brown Stlution	Fe ³⁺ /
of water. Add dilute sodium hydroxide solution to the mixture	in excees solin hydrox	Fe ^{3f}
drop wise until in excess. Warm and filter keep both the filtrate and	turner blue and for dense white furnes	NH3: NH4
the residue.	- Colonlers filtale	Fe3+ Zn2+A13+ or Pl2+

		X
c) To the filtrate, add dilute nitric acid drop wise until the solution is just acidic. Divide the acidic solution into six parts.	while preupitate Schuble forming acalonless solution solution or dissolve.	Znat Alastor Pb2t Alastor
solution, add dilute sodium hydroxide solution drop wise until in excess.	White pecupitate Soluble forming Colombos solution	Zn2+ A(3+ or. Pb2+ +
ii) To the second part of the acidic solution, add dilute ammonia solution drop-wise until in excess.	White precipitate	A13+ 0 P13-1
iii) To the third part of the acidic solution, add 2-3 drops of potassium iodide solution.	No observable to	Photossent. Als+ present
iv) To the fourth part of the acidic solution, add 2-3 drops of litmus solution followed by ammonia solution drop-wise until in excess.	Blue lake to Solution eng precipitate.	AL3+ confined Present.
v) To the fifth part of the acidic solution, add 2-3 drops of lead (II) nitrate solution and heat.	White precipitate insoluble on heating	SO ₄ -1
vi) Use the sixth part to carry out a test of your own choice to confirm the anion in Y Add Ba(NO ₂) ₂ followed by HNO ₃	While precipitate insoluble in the acid.	SO4 Confined
d) Wash the residue with water and dissolve it in dilute hydrochloric acid and divide the solution into three parts.	Brown Solution	Fe ^{3t}

i) To the first part of the acidic solution, add dilute sodium hydroxide solution drop-wise until in excess.	Browned precipitate	Fe ³⁺
ii) To the second part of the acidic solution, add dilute ammonia solution drop wise until in excess.	Brown precipitale	Fe ^{3t}
iii) To the third part of the acidic solution add 3-4 drops of potassium thiocyanate solution.	blood-redy Colomation	Fe3+ Confin -el

Allow prepitate

he cations in Y	1.	.24 /	1	7-7-	X
re NHT	Y	13+ /	and	re	<u> </u>
The anion in Y is.	(1	727	See		

3. You are provided with an organic compound Q. You are required to identify the nature of compound Q. Carry out the following tests on the compound and record your observations and deductions in the table below.

	Tests	Observations	Deductions
	Burn a spatula end- ful of Q on a porcelain	O buns with	Organic Compound of
	dish or at the end of a spatula.	Flame	low carbon taitent.
3	• Shake 1cm³ of Q with about 2cm³ of water and test with litmus.	Has no affect on the litmus paper	below organize compand by tour redetular moss Newton organize compand probably cetsolow or cubi
a	• To 0.5cm³ of Q add 2-3 drops of sodium carbonate solution.	No effect escention	absent acid
24	To 0.5cm³ of Q, add 2-3 drops of acidified potassium dichromate solution and heat.	The orange flow two eyes now	Reducing agent Probably Printary alcohol Secretary alcohol or aldeby

2	To 0.5cm³ of Q, add 2-3 drops of Brady's reagent. To about 1cm³ of Q, add acidified potassium dichromate solution and heat. Then add ethanol followed by 4-5 drops of concentrated sulphuric acid. Pour the mixture into a small beaker of cold water To about 0.5cm³ of Q, add about 4cm³ of iodine solution followed by sodium hydroxide solution drop-wise until the brown color of iodine is just discharged.	No yellow precipitale or No closervable change Sweety fruity Smell. Tellowprecipitate	ESTAND LOCAL
2	Warm the mixture and allow to stand. To about 1cm³ of Q, add about 5 drops of tollen reagent and heat gently	No Silver	Atdelydle abient
1 kg	omment on the nature of Q is a saturated annuelly group or Qic etho	on the same cat	son es the hydrox