Domain Adaptation for Regression under Monotonic Causal Shift

2024. 01. 11.

Dohyun Bu

InfoSci

INDEX

1. Domain Adaptation under monotonic causal shift via Surrogate Domain Estimation (DASDE)

1-1. Introduction

1-2. Related Works

1-3. Proposed Method

1-4. Experiments

2. Domain Adaptation under monotonic causal shift via Causal Distribution Transformation (DACDT)

2-1. Introduction

2-2. Proposed Method

2-3. Experiments

3. Conclusion

3-1. Conclusion

3-2. Future Works

Domain Adaptation under monotonic causal shift via Surrogate Domain Estimation (DASDE)

[Keywords]

Monotonic Causal Shift, Data Augmentation, Multi-Domain Adaptation, Regression for Tabular Dataset

INTRODUCTION

- 1. Monotonic Covariate Shift
- 2. Data Augmentation

Monotonic Causal Shift

Traditional Domain Shift

- Covariate Shift

$$P(Y_S|X_S) = P(Y_T|X_T)$$
 and $P(X_S) \neq P(X_T)$

"Unseen/Biased Data Problem"

- Concept Shift

$$P(Y_S|X_S) \neq P(Y_T|X_T)$$
 and $P(X_S) = P(X_T)$ $[X \rightarrow Y]$
 $P(X_S|Y_S) \neq P(X_T|Y_T)$ and $P(Y_S) = P(Y_T)$ $[Y \rightarrow X]$

"Fixed Input & Shift Output"

 $\{X_S, Y_S\}$: Source Domain, $\{X_T, Y_T\}$: Target Domain

Monotonic Causal Shift

	Sensor A	Sensor B
CJ	190	183
DH	180	?
YJ	170	177
	100% CI : (177, 183)	

 $P(X_T) = P(\Phi(X_S))$ and $P(X_T|Y_T) = P(\Phi(X_S)|Y_S)$ and if $X_i > X_k$ then $\Phi(X_i) > \Phi(X_k)$ $\Phi(.) : Shift Function$

"Sensor: Replacement Effect"

"Image: Light Reflection/Shadow Effect"

Data Augmentation

Traditional Data Augmentation

- Image Data Bi-Direction Graph

Mirroring / Random Cropping

Rotation / Local Wrapping

Shearing / Color Shifting

- Noise Injection Robustness

Random Masking

- Generative Model

Monotonic Transformation

"Monotonic Causal Shift Characteristic"

1

"Monotonic Feature Augmentation"

1

- 1. Robust to Shift Situation
- 2. Fast Adaptation to Shifted Domain

RELATED WORKS

- 1. Monotonic Neural Network
- 2. Multi-Domain Adaptation

Monotonic Neural Networks

Monotonic NN Structure

[Paper Info]

- Constrained Monotonic Neural Networks, 2023, ICML

[MAIN IDEA]

- Weight Transformation Function : Embedding to $[0, \infty)$
- Concave Activation Function : -f(-x) (f(x)) : activation function)
- Saturate Activation Function :

$$\begin{cases} f(x+1) - f(1) & (if \ x < 0) \\ -f(-x+1) + f(1) & (otherwise) \end{cases}$$

- Monotonic NN Architecture

Monotonic Function

[Paper Info]

- Fast And Accurate Deep Network Learning by Exponential Linear Units (ELUs), 2016, ICLR

[MAIN IDEA]

- No Dead Neuron : $\forall x \ f'(x) > 0$
- Smooth and Strong Monotonic Increasing Function
- Fast Convergence

$$ELU(x) = \begin{cases} x & (if \ x > 0) \\ e^x - 1 & (otherwise) \end{cases}$$

Multi-Domain Adaptation

DARC

[Paper Info]

- Multi-domain adaptation for regression under conditional distribution shift, 2023, Expert Systems With Applications

[MAIN IDEA]

- **Domain Labeling** : One-Hot Encoding
- Shame Network : Feature & Domain → Shared Feature
- Conditional Distribution Matching:

minimize
$$||f_i - f_k| - |y_i - y_k||$$
 $f:$ shared feature

- DARC Architecture

MAML

[Paper Info]

- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, 2017, ICML
- Online Meta-Learning, 2019, ICML

[MAIN IDEA]

- Meta-Parent Model : Shared Feature
- Domain-Specific Child Model : Domain Specific Feature
- Fast Few-Shot Learning :
 - 1. Child Model : Initial weight = Parent Model
 - 2. Child Model update weight using their Domain
 - 3. Parent Model update weight
 - \rightarrow minimize $\sum_{n_D} Child_Error_k$ $n_D: \# of Domain$ Loop (1 ~ 3)
 - 4. Use Parent Model as Initial Weight

PROPOSED METHOD

- 1. Full Architecture
- 2. Surrogate Domain Estimation

Full Architecture

Surrogate Domain Estimation (SDE)

Modified Exponential Linear Units (MELU)

$$MELU(x) = \begin{cases} e^x & (if \ x < 0) \\ x + 1 & (otherwise) \end{cases}$$

- Fast Convergence : ELU Characteristic
- Computation Cost

: high when x<0, but low when x>0

Surrogate Domain Estimation (SDE)

"Estimate Monotonic Causal Shift Function"

 X_S : Source Domain Input $X_{\widehat{T}}$: Known Target Domain Input

- MELU Weight & ELU based Activation Function
- **Shift Function** : Source Domain → Target Domain
- Strong Monotonicity : $\forall x \ f'(x) > 0$
- Available to Explain Convex/Concave Function

EXPERIMENTS

- 1. Monotonic Structure Experiment
- 2. DA Experiment Setting
- 3. Result & Conclusion

Monotonic Structure Experiment - Setting

[Dataset]

- 4 kinds of Function Setting(4 Shot Learning)

: Convex, Concave, Concave-Convex, Convex-Concave

- Learning Rate: 0.01, NN Structure: 1-10-10-1

[Comparison]

Weight Transformation Function

- **MELU** $min(1, e^w) + max(1, w + 1)$
- **SOFTPLUS** $log(1 + e^w)$
- ABS |w|
- **SQUARE** w^2
- SQRT $\sqrt{|w|}$

Activation Function

- ELU & Concaved ELU(-ELU(-x))
- ReLU & Concaved ReLU(-ReLU(-x))
- Saturated ReLU

$$\begin{cases} ReLU(x+1) - 1 & (if \ x < 0) \\ -ReLU(-x+1) + 1 & (otherwise) \end{cases}$$

Monotonic Structure Experiment - Result

[Result] 4 Experiments (4 dataset x 1)

[Conclusion]

1. Fast & Stable Train Structure

: MELU with ELU & Concave ELU

: ABS with ReLU & Concave ReLU

2. Strong Monotonicity

: MELU with ELU & Concave ELU <A>

3. Smooth Estimation

: MELU with ELU & Concave ELU

DA Experiment - Setting

[Dataset]

<Source Dataset>

$$P(X_S) \sim Unif(0, 4\pi)$$

$$P(Y_S|X_S) \sim N(sin(X_S), 0.1)$$

$$n_S = 400$$

<Target Dataset>

$$P(X_T) = P(\Phi(X_S))$$

$$P(Y_T) = P(Y_T)$$

$$P(X_T|Y_T) = P(\Phi(X_S)|Y_S)$$

$$n_T=400, \qquad n_{\widehat{T}}=8$$

 n_S : # of Source Domain Data, $\{X_S, Y_S\}$: Source Domain

 n_T : # of Target Domain Data, $\{X_T, Y_T\}$: Target Domain

DA Experiment – Surrogate Domain Estimation

[Surrogate Domain Estimator]

Architecture

- Input : $X \sim P(X_S)$ [Random Sampling & Sorting]

- Output : $X_{\widehat{T}}$ [Known Target Domain Input & Sorting]

- Structure

weight: MELU

activation function: ELU & Concave ELU

DA Experiment – Multi-Domain Adaptation

MAML-SDE

Meta-Learning Architecture

- Input : $\{X_S, X_{T_{S1}}, X_{T_{S2}}, X_{T_{S3}}, X_{T_{S4}}\}$ [X_{T_S} : Surrogate Domain]
- Output : $\{Y_S, Y_S, Y_S, Y_S, Y_S\}$
- Structure iterative update Child & Meta-Model

 (Child-Model) initial weight : Meta-Model

 (Meta-Model) Val_Error_child → update

Inference Architecture

- Input : $X_{\widehat{T}}$

- Output : $Y_{\widehat{T}}$

- Structure

initial weight : Meta-Model

DARC-SDE

Latent Transformation Architecture

- Input : $\{X_S, X_{T_{S1}}, X_{T_{S2}}, X_{T_{S3}}, X_{T_{S4}}, X_{\widehat{T}}\}$ + Domain Label
- Output : $\{F_S, F_{T_{S1}}, F_{T_{S2}}, F_{T_{S3}}, F_{T_{S4}}, F_{\widehat{T}}\}$ [F: Shared Feature]
- Structure

Siamese Neural Network

Inference Architecture

- Input : $\{F_S, F_{T_{S1}}, F_{T_{S2}}, F_{T_{S3}}, F_{T_{S4}}, F_{\widehat{T}}\}$
- Output : $\{Y_S, Y_S, Y_S, Y_S, Y_S, Y_{\hat{T}}\}$
- Structure

MLP Structure

DA Experiment – Comparison Method

DEFAULT SETTING

Few-Shot Learning Architecture

- Input : $X_{\hat{T}}$ - Output : $Y_{\hat{T}}$

- Structure

initial weight : MLP Training on $\{X_S, Y_S\}$

Only Target Domain Architecture

- Input : $X_{\hat{T}}$ - Output : $Y_{\hat{T}}$

- Structure

MLP Structure

DARC

Latent Transformation Architecture

- Input : $\{X_S, X_{\widehat{T}}\}$ + Domain Label

- Output : $\{F_S, F_{\widehat{T}}\}$ [F: Shared Feature]

- Structure

Siamese Neural Networks

Inference Architecture

- Input : $\{F_S, F_{\widehat{T}}\}$

- Output : $\{Y_S, Y_{\widehat{T}}\}$

- Structure

MLP Structure

Result & Conclusion

[Result] 20 Experiments (4 dataset x 5)

ONLY : Only Target Domain,

SHOT : Few-Shot Learning

* : applying SDE method,

(d): denoised MSE

[Conclusion]

1. MAML-SDE show high Performance

: Median Performance (MSE 0.066, MSE(d) 0.054)

2. DARC → DARC-SDE

: Lower Variance (Std(d) $0.186 \rightarrow 0.098$)

: Lower Median Performance (MSE(d) $0.063 \rightarrow 0.067$)

3. MAML/DARC is not suitable under Monotonic Causal Shift

[vs Only Target Domain Performance]

: Low Performance & Stable (DARC, DARC-SDE)

: High Performance & Unstable (MAML-SDE)

: DARC & MAML : Concept Shift(+Covariate Shift)

Domain Adaptation under monotonic causal shift via Causal Distribution Transformation (DACDT)

[Keywords]

Monotonic Causal Shift, Restore Function, Domain Transformation, Regression for Tabular Dataset

INTRODUCTION

- 1. Monotonic Causal Shift Function
- 2. Restore Function

Monotonic Causal Shift Function

Restore Function

PROPOSED METHOD

- 1. Full Architecture
- 2. Causal Distribution Transformation

Full Architecture

Causal Distribution Transformation

Maximum Mean Discrepancy (MMD)

"Marginal Distribution"

$$||P(X_S) - P(\Phi^{-1}(X_{\widehat{T}}))||$$

Neighborhood Similarity (NS)

"Causal Distribution"

$$||P(X_S|Y_S) - P(\Phi^{-1}(X_{\widehat{T}})|Y_{\widehat{T}})||$$

$$L_{MMD} = \max_{m} \left(\left\| \frac{1}{n^{s}} \sum_{j=1}^{n^{s}} \varphi_{m}(x_{i}^{s}) - \frac{1}{n^{\widehat{T}}} \sum_{j=1}^{n^{\widehat{T}}} \varphi_{m}\left(x_{j}^{\widehat{T}}\right) \right\|^{2} \right)$$

 $n^S: \# \ of \ Source \ Domain \ Data,$ $n^{\hat{T}}: \# \ of \ Known \ Target \ Domain \ Data,$ $\varphi(.): RKHS \ embedding \ function,$

 x^{S} : Source Domain Input $x^{\hat{T}}$: Known Target Domain Input $\Phi^{-1}(.)$: Restore Function

$$\begin{split} L_{ns} &= \frac{1}{n^{\widehat{T}}} \sum_{i=1}^{n^{\widehat{T}}} \left| x_{j}^{S} - \Phi^{-1} \left(x_{i}^{\widehat{T}} \right) \right|_{2} \\ & (\hat{j} = \underset{j}{arg\,min} \left| x_{(j)}^{S} - \Phi^{-1} \left(x_{i}^{\widehat{T}} \right) \right|_{2} + \left| y_{(j)}^{S} - y_{i}^{\widehat{T}} \right|) \\ & \left\{ x_{(1)}^{S}, x_{(2)}^{S}, \cdots, x_{(k)}^{S} \mid \left| y_{(1)}^{S} - y_{i}^{\widehat{T}} \right| < \cdots < \left| y_{(k)}^{S} - y_{i}^{\widehat{T}} \right| \right\} \end{split}$$

 $n^S: \# \ of \ Source \ Domain \ Data,$ $n^{\hat{T}}: \# \ of \ Known \ Target \ Domain \ Data,$ $k: \# \ of \ neighbor \ candidates,$

 $\{x^S, y^S\}$: Source Domain $\{x^S, y^S\}$: Known Target Domain $\Phi^{-1}(.)$: Restore Function

EXPERIMENTS

- 1. DA Experiment Setting
- 2. Result

DA Experiment - Setting

[Dataset]

<Source Dataset>

$$P(X_S) \sim Unif(0, 4\pi)$$

 $P(Y_S|X_S) \sim N(sin(X_S), 0.1)$
 $n_S = 400$

<Target Dataset>

$$P(X_T) = P(\Phi(X_T))$$
 $P(Y_T) = P(Y_T)$
 $P(X_T|Y_T) = P(\Phi(X_S)|Y_S)$
 $n_T = 400, \qquad n_{\widehat{T}} = 8$

 $n_S: \# \ of \ Source \ Domain \ Data, \ \{X_S,Y_S\}: Source \ Domain$ $n_T: \# \ of \ Target \ Domain \ Data, \ \{X_T,Y_T\}: Target \ Domain$ $n_{\widehat{T}}: \# \ of \ Known \ Target \ Domain \ Data,$ $\Phi(.): Shift \ Function$

DA Experiment – DA Method

Proposed Method (DACDT)	Comparison Method
Restore Model Architecture	
- Input : $X_{\widehat{T}}$ - Output : X_S	- Only Target Domain
- Structure weight : MELU	- Few-Shot Learning
activation function : ELU & Concave ELU Loss function : $L_{MMD} + L_{NS}$	- DARC
Inference Model Architecture	- DARC-SDE
- Input : X_S - Output : Y_S	- MAML-SDE
- Structure MLP Structure	- DACDT with MLP Restore Model

Result

[Result] 20 Experiments (4 dataset x 5)

ONLY: Only Target Domain, SHOT: Few-Shot Learning, *: applying SDE method, (d): denoised MSE, DACDTw: DACDTw: DACDTw ith MLP Restore Model

CONCLUSION

Conclusion

[Contribution]

- Novel Problem Definition
 - : Monotonic Causal Shift
- Tabular Data Augmentation
 - : Surrogate Domain Estimation
- Efficient Monotonic Unit
 - : MELU
- Achieve High Performance
 - : DACDT

[Future Works]

- More Complex Experiments
 - : n-dim Toy Data Experiments with non-shift and shift feature
 - : Real Dataset Experiments
- Meta-Restore Model
 - : SDE + MAML → Estimate Initial Weight
- Explainable Causal Shift Detection
 - : Identity Function Similarity

Thank You

2024. 01. 11.Dohyun Bu

