Cycle GAN for Image-to-Image Translation

NICOLA GUGOLE

ID: 619625

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION

UNIVERSITA' DI PISA

Image to Image translation? PIX2PIX!

- Task where input image is mapped to a differently styled output image
- PIX2PIX as Conditional GAN
- Needs paired data, which we always have, right? RIGHT??

PIX2PIX (2016): https://arxiv.org/abs/1611.07004

The problem to solve

NEURAL STYLE

TRANSFER

(& ideas to solve it!)

GANs UNDERLYING RELATIONSHIP BETWEEN **GENERAL-PURPOSE** I/O DOMAINS **UNPAIRED CYCLE GAN (2017) IMAGE TO IMAGE TRANSLATION** CYCLE CONSISTENCY

CycleGAN: double generator/discriminator

(or how to constrain an under-constrained model optimization)

Model architecture

Generator has an encoder-decoder structure inspired by previous works on NST

Residual blocks for a better gradient flow, different number of blocks depending on image size

Resnet Block

Conv Layer 1

Conv Layer 2

Conv Layer 2

Conv Layer 2

Conv Layer 3

Decoding

Transformation

Decoding

Discriminator is implemented as a 70x70 PatchGAN, classifying as real/fake not the whole image, but overlapping patches

A winning approach, fewer parameters, no dependency on image size!

Qualitative results

Various applications:

- STYLE TRANSFER
- PHOTO ENHANCEMENT
- SEASON TRANSFER
- GAME STYLE TRANSFER
- FACE TO RAMEN (yes, it really exists, and I cannot sleep anymore)

Quantitative results

Perceptual test using Amazon Mechanical Turk, showing supremacy over other concurrents with less general-purpose implementations

Both directions $\mathbf{Map} \to \mathbf{Photo}$ Photo \rightarrow Map % Turkers labeled real % Turkers labeled *real* Loss CoGAN [32] $0.6\% \pm 0.5\%$ $0.9\% \pm 0.5\%$ BiGAN/ALI [9, 7] $2.1\% \pm 1.0\%$ $1.9\% \pm 0.9\%$ $2.6\% \pm 1.1\%$ $0.7\% \pm 0.5\%$ SimGAN [46] Feature loss + GAN $1.2\% \pm 0.6\%$ $0.3\% \pm 0.2\%$ $26.8\% \pm 2.8\%$ $23.2\% \pm 3.4\%$ CycleGAN (ours)

Table 1: AMT "real vs fake" test on maps \leftrightarrow aerial photos at 256×256 resolution.

FCN score evaluating how interpretable results are according to a semantic segmentation algorithm.

Comparisons with ablations to show how important it is to have such a structured loss

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.22	0.07	0.02
GAN alone	0.51	0.11	0.08
GAN + forward cycle	0.55	0.18	0.12
GAN + backward cycle	0.39	0.14	0.06
CycleGAN (ours)	0.52	0.17	0.11

Table 4: Ablation study: FCN-scores for different variants of our method, evaluated on Cityscapes labels→photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.10	0.05	0.02
GAN alone	0.53	0.11	0.07
GAN + forward cycle	0.49	0.11	0.07
GAN + backward cycle	0.01	0.06	0.01
CycleGAN (ours)	0.58	0.22	0.16

Table 5: Ablation study: classification performance of photo→labels for different losses, evaluated on Cityscapes.

Not everything always works out...

(and Putin would not be happy)

Results depend on the needed mapping:

- Color/texture change: all good!
- Geometric changes: not as fortunate...

All the model has seen is a bunch of zebras and wild horses, not a single photo of horse-riding, no wonder Putin is now a zebra!

Conclusions

- Better use of unpaired data is key to Artificial Intelligence future.
- CycleGAN shows how to close the gap with supervised approaches using more structured learning
- Integration of weak/semi-supervised data may lead to extremely better results, still keeping the annotation cost at a minimum

Thank you for your attention!