Prep #17 Final Exam: Algebra

no calculators

1. Perform the operations and simplify the expression.

N.RN.3 Rational numbers

(a)
$$\frac{1}{5} + \frac{2}{5} =$$

(d)
$$\frac{2}{3} - \frac{1}{2} =$$

(b)
$$\frac{1}{6} + \frac{1}{3} =$$

(e)
$$\frac{7}{8} - \frac{3}{4} =$$

(c)
$$\frac{3}{4} + \frac{1}{2} =$$

(f)
$$\frac{1}{3} - \frac{1}{4} =$$

2. Convert between fractions and percentages.

(a)
$$\frac{1}{5}$$
 =

(d)
$$25\% =$$

(b)
$$\frac{3}{4} =$$

(e)
$$66\frac{2}{3}\% =$$

(c)
$$\frac{1}{3}$$
 =

(f)
$$80\% =$$

- 3. Round to the accuracy stated.
 - (a) nearest tenth: 72.75

- (c) nearest tenth: 19.1725
- (b) nearest thousandth: 0.13749
- (d) nearest hundredth: 10.9955

4. Simplify. (assume x > 0)

N.RN.2 Properties of exponents

(a)
$$x^2 \cdot x^3 =$$

(c)
$$\sqrt[3]{x^6} =$$

(b)
$$\frac{x^{\frac{2}{3}}}{x^{\frac{1}{6}}} =$$

(d)
$$\frac{\sqrt{36x^6}}{\sqrt[3]{27x^6}} =$$

5. Write each expression in standard form.

(a)
$$5x - 3x^2 + 8x^2 + 7$$

(b)
$$2(3x+y)(x-4y)$$

6. Simplify each complex expression to the form a + bi, with real numbers a and b.

(a)
$$(3+2i)+(4-3i)=$$

(c)
$$(2i)(3i) =$$

(b)
$$(5-2i)-(3+4i)=$$

(d)
$$(2+3i)(4-2i) =$$

7. Solve for x over the complex numbers using the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(a)
$$x^2 - 3x + 6 = 0$$

(b)
$$2x^2 - 6x + 7 = 0$$

8. Solve for x over the real numbers.

(a)
$$\sqrt{x-2} = 4$$

(b)
$$\sqrt{x^2+9}+4=9$$

Name:

AII-F.BF.2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

For a geometric series:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \ldots + a_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

9. Write a recursive formula for the sequence 16, 8, 4, 2, \dots

10. Write an explicit formula for the sequence $1\frac{1}{2}$, $4\frac{1}{2}$, $13\frac{1}{2}$, $40\frac{1}{2}$, ...

11. Given the sequence beginning -4, 6, -9, $13\frac{1}{2}$, ..., find the sum of the first 9 terms, rounded to the *nearest tenth*.

F.LE.2: Construct a linear or exponential function symbolically given: a graph, a description of the relationship, or two input-output pairs (including from a table).

12. Complete the table for f(x) and write an explicit formula for the exponential function.

x	0	1	2	3	4
f(x)	12	18			

13. The frequency table below shows the barbeque selections at the school field day.

Class	Hot dog	Hamburger	Chicken	
Middle school	25	15	10	
High School	30	40	15	

- (a) Add totals to the table.
- (b) Overall, what was the least favorite selection?
- (c) What percentage of the overall survey are middle school students?
- (d) What percentage of the middle school students prefer chicken?

(e) Complete the missing proportions in the table rounded to the nearest thousandth.

Class	Hot dog	Hamburger	Chicken	Total
Middle school	0.185	0.111	0.074	0.370
High School		0.296	0.111	0.630
Total	0.407	0.185		1.000

14. Determine the average rate of change, in mph, from zero to three hours on the graph.

AII-F.LE.2: Construct a linear or exponential function symbolically given: a graph, a description of the relationship, or two input-output pairs (include reading these from a table).

- 15. Given the cubic function $f(x) = -x^3 + 4x^2 + x 4$, graphed below.
 - (a) How many real solutions are their to the equation f(x) = 0?
 - (b) Write down the real zeros of the function.
 - (c) Over the interval 3 < x < 4, is the function increasing, decreasing, or constant?
 - (d) Find the average rate of change of the function over the interval from point A to point B.

16. Factor the function $f(x) = x^3 + 4x^2 - 4x - 16$ over the set of integers.

17. Given the function $f(x) = x^3 - 2x^2 - 9x + 18$, find the value of f(2).

Now identify the correct statement.

- (a) f(2) = 0 and x 2 is a factor of f(x).
- (b) f(2) = 0 and x 2 is not a factor of f(x).
- (c) $f(2) \neq 0$ and x 2 is a factor of f(x).
- (d) $f(2) \neq 0$ and x 2 is not a factor of f(x).

18. Graph the continuous exponential function $f(x) = 3e^{0.10x}$ on the grid below.

- (a) Graph the line y = 6. Mark the intersection of the line with f and label it as an ordered pair, rounded the nearest whole number.
- (b) The function f(x) models the growth of an investment. Explain what the values of 3 and 0.10 represent in the context of the investment.

(c) How long will the investment take to double?