En la primera integral del extremo derecho haga la sustitución u = -x. Entonces du = -dx, y cuando x = -a, u = a. Por tanto,

$$-\int_0^{-a} f(x) \, dx = -\int_0^a f(-u) \, (-du) = \int_0^a f(-u) \, du$$

con lo que la ecuación 8 resulta

(a) f par, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

FIGURA 3

$$\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(-u) \, du + \int_{0}^{a} f(x) \, dx$$

(a) Si f es par, entonces f(-u) = f(u), por lo que la ecuación 9 da

$$\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(u) \, du + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$$

(b) Si f es impar, entonces f(-u) = -f(u), por lo que la ecuación 9 da

$$\int_{-a}^{a} f(x) \, dx = -\int_{0}^{a} f(u) \, du + \int_{0}^{a} f(x) \, dx = 0$$

La figura 3 ilustra el teorema 7. Para el caso en que f es positiva y par, el inciso (a) dice que el área bajo y = f(x) desde -a a a es el doble del área de 0 a a, debido a la simetría. Recuerde que una integral $\int_a^b f(x) dx$ se puede expresar como el área arriba del eje x y bajo y = f(x) menos el área bajo el eje x y arriba de la curva. Por esto, en el inciso (b) se evidencia que el área es 0 porque las áreas se eliminan.

EJEMPLO 10 Ya que $f(x) = x^6 + 1$ satisface f(-x) = f(x), es par y, por lo que,

$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2} = 2 \left(\frac{128}{7} + 2 \right) = \frac{284}{7}$$

EJEMPLO 11 Ya que $f(x) = (\tan x)/(1 + x^2 + x^4)$ satisface f(-x) = -f(x), es impary, entonces,

$$\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} dx = 0$$

5.5 EJERCICIOS

1-6 Evalúe cada una de las integrales siguientes efectuando la sustitución dada.

$$\mathbf{1.} \int \cos 2x \, dx, \quad u = 2x$$

2.
$$\int xe^{-x^2} dx$$
, $u = -x^2$

3.
$$\int x^2 \sqrt{x^3 + 1} \, dx, \quad u = x^3 + 1$$

4.
$$\int \sin^2 \theta \cos \theta \, d\theta, \quad u = \sin \theta$$

5.
$$\int \frac{x^3}{x^4 - 5} dx, \quad u = x^4 - 5$$

6.
$$\int \sqrt{2t+1} \ dt$$
, $u=2t+1$

7–48 Evalúe cada una de las integrales indefinidas siguientes.

$$7. \int x\sqrt{1-x^2}\,dx$$

$$8. \int x^2 e^{x^3} dx$$

9.
$$\int (3x-2)^{20} dx$$

$$\mathbf{10.} \int \operatorname{sen} t \sqrt{1 + \cos t} \ dt$$

11.
$$\int \cos(\pi t/2) dt$$

12.
$$\int \sec^2 2\theta \ d\theta$$

13.
$$\int \operatorname{sen} \pi t \, dt$$

14.
$$\int y^2 (4 - y^3)^{2/3} dy$$

15.
$$\int \cos^3 \theta \sin \theta \, d\theta$$

16.
$$\int e^{-5r} dr$$

$$17. \int \frac{e^u}{(1-e^u)^2} du$$

$$18. \int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$

$$19. \int \frac{a+bx^2}{\sqrt{3ax+bx^3}} \, dx$$

$$20. \int \frac{z^2}{z^3+1} dz$$

$$21. \int \frac{(\ln x)^2}{x} dx$$

22.
$$\int \operatorname{sen} x \operatorname{sen}(\cos x) \, dx$$

23.
$$\int \cos^4 \theta \sin \theta \ d\theta$$

$$24. \int x\sqrt{x+2} \ dx$$

$$25. \int e^x \sqrt{1 + e^x} \, dx$$

26.
$$\int \frac{dx}{ax+b} \ (a \neq 0)$$

27.
$$\int (x^2 + 1)(x^3 + 3x)^4 dx$$

28.
$$\int e^{\cos t} \sin t \, dt$$

29.
$$\int 5^t \sin(5^t) dt$$

30.
$$\int \frac{\sec^2 x}{\tan^2 x} dx$$

31.
$$\int \frac{(\arctan x)^2}{x^2 + 1} dx$$

$$32. \int \frac{x}{x^2 + 4} dx$$

$$33. \int \cos(1+5t) dt$$

$$34. \int \frac{\cos(\pi/x)}{x^2} dx$$

$$35. \int \sqrt{\cot x} \csc^2 x \, dx$$

36.
$$\int \frac{2^t}{2^t + 3} dt$$

$$37. \int \operatorname{senh}^2 x \cosh x \, dx$$

$$38. \int \frac{dt}{\cos^2 t \sqrt{1 + \tan t}}$$

$$39. \int \frac{\sin 2x}{1 + \cos^2 x} \, dx$$

40.
$$\int \operatorname{sen} t \operatorname{sec}^2(\cos t) dt$$

41.
$$\int \cot x \, dx$$

42.
$$\int \frac{\cos(\ln t)}{t} dt$$

43.
$$\int \frac{dx}{\sqrt{1-x^2} \, \text{sen}^{-1} x}$$

$$44. \int \frac{x}{1+x^4} dx$$

45.
$$\int \frac{1+x}{1+x^2} \, dx$$

$$46. \int x^2 \sqrt{2+x} \ dx$$

47.
$$\int x(2x+5)^8 dx$$

48.
$$\int x^3 \sqrt{x^2 + 1} \, dx$$

 $\stackrel{\text{PP}}{\text{PP}}$ Evalúe cada una de las integrales indefinidas siguientes. Ilustre y compruebe que su respuesta sea razonable, dibujando la función y su antiderivada (tome C=0).

49.
$$\int x(x^2-1)^3 dx$$

50.
$$\int \tan^2 \theta \, \sec^2 \theta \, d\theta$$

51.
$$\int e^{\cos x} \sin x \, dx$$

52.
$$\int \operatorname{sen} x \cos^4 x \, dx$$

53–73 Evalúe cada una de las integrales definidas siguientes.

53.
$$\int_{0}^{1} \cos(\pi t/2) dt$$

54.
$$\int_0^1 (3t-1)^{50} dt$$

55.
$$\int_0^1 \sqrt[3]{1 + 7x} dx$$

56.
$$\int_0^3 \frac{dx}{5x+1}$$

57.
$$\int_0^{\pi/6} \frac{\sin t}{\cos^2 t} dt$$

58.
$$\int_{\pi/3}^{2\pi/3} \csc^2\left(\frac{1}{2}t\right) dt$$

59.
$$\int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx$$

60.
$$\int_0^1 x e^{-x^2} \, dx$$

61.
$$\int_{-\pi/4}^{\pi/4} (x^3 + x^4 \tan x) \, dx$$

62.
$$\int_0^{\pi/2} \cos x \, \sin(\sin x) \, dx$$

63.
$$\int_0^{13} \frac{dx}{\sqrt[3]{(1+2x)^2}}$$

64.
$$\int_{0}^{a} x \sqrt{a^{2} - x^{2}} dx$$

65.
$$\int_0^a x \sqrt{x^2 + a^2} \, dx \quad (a > 0)$$

66.
$$\int_{-\pi/3}^{\pi/3} x^4 \sin x \, dx$$

67.
$$\int_{1}^{2} x \sqrt{x-1} \, dx$$

68.
$$\int_0^{1/2} \frac{\sin^{-1} x}{\sqrt{1-x^2}} \, dx$$

69.
$$\int_{e}^{e^4} \frac{dx}{x \sqrt{\ln x}}$$

70.
$$\int_0^2 (x-1)e^{(x-1)^2} dx$$

71.
$$\int_0^1 \frac{e^z + 1}{e^z + z} dz$$

72.
$$\int_0^{T/2} \sin(2\pi t/T - \alpha) dt$$

73.
$$\int_0^1 \frac{dx}{(1+\sqrt{x})^4}$$

74. Verifique que $f(x) = \text{sen } \sqrt[3]{x}$ es una función impar y utilice este hecho para demostrar que

$$0 \leqslant \int_{-2}^{3} \operatorname{sen} \sqrt[3]{x} \, dx \leqslant 1$$

75-76 Utilice una gráfica para dar una estimación aproximada del área de la región que se encuentra bajo la curva dada. Luego encuentre el área exacta.

75.
$$y = \sqrt{2x + 1}, \ 0 \le x \le 1$$

76.
$$y = 2 \sin x - \sin 2x$$
, $0 \le x \le \pi$

77. Evalúe $\int_{-2}^{2} (x+3)\sqrt{4-x^2} dx$ expresándola como una suma de dos integrales e interprete una de ellas en términos de un área.

78. Evalúe $\int_0^1 x \sqrt{1 - x^4} dx$ haciendo una sustitución e interprete la integral resultante en términos de un área.

79. ¿Cuáles de las áreas siguientes son iguales? ¿Por qué?

- **80.** Un modelo de rapidez del metabolismo basal, en kcal/h de un hombre joven es $R(t) = 85 0.18 \cos{(\pi t/12)}$, donde t es el tiempo en horas a partir de las 5:00 AM. ¿Cuál es el metabolismo basal total de este hombre, $\int_0^{24} R(t) dt$, en un período de 24 horas?
- **81.** Un tanque de almacenamiento de petróleo se rompe en t = 0, y el petróleo se fuga del tanque con una rapidez de $r(t) = 100e^{-0.01t}$ litros por minuto. ¿Cuánto petróleo se escapa durante la primera hora?
- **82.** Una población de bacterias inicia con 400 y crece con una rapidez de $r(t) = (450.268)e^{1.12567t}$ bacterias por hora. ¿Cuántas habrá después de tres horas?
- **83.** La respiración es cíclica y un ciclo respiratorio completo, desde el principio de la inhalación hasta el final de la exhalación, requiere alrededor de 5 s. El gasto máximo de aire que entra en los pulmones es de más o menos 0.5 L/s. Esto explica en parte por qué a menudo se ha usado la función $f(t) = \frac{1}{2} \operatorname{sen}(2\pi t/5)$ para modelar el gasto de aire hacia los pulmones. Úsela para determinar el volumen de aire inhalado en los pulmones en el tiempo t.
- **84.** La tasa de crecimiento de una población de peces fue modelada por la ecuación

$$G(t) = \frac{60\ 000e^{-0.6t}}{(1+5e^{-0.6t})^2}$$

donde *t* se mide en años y *G* en kilogramos por año. Si la biomasa era de 25 000 kg en el año 2000, ¿cuál es la biomasa prevista para el año 2020?

85. El tratamiento de diálisis elimina urea y otros productos de desecho de la sangre de un paciente desviando el flujo de sangre desde el exterior a través de una máquina llamada dializador. La tasa a la que se elimina urea de la sangre (en mg/min) está con frecuencia bien descrita por la ecuación

$$u(t) = \frac{r}{V} C_0 e^{-rt/V}$$

donde r es la tasa de flujo de sangre a través del dializador (en mL/min), V es el volumen de sangre (en mL) del paciente y C_0 es la cantidad de urea en la sangre (en mg) al tiempo t=0. Evalúe la integral $\int_0^{30} u(t) \, dt$ e interprétela.

86. Alabama Instruments Company ha montado una línea de producción para fabricar una calculadora nueva. El índice de producción de estas calculadoras después de *t* semanas es

$$\frac{dx}{dt} = 5000 \left(1 - \frac{100}{(t+10)^2} \right)$$
calculadoras/semana

(Observe que la producción se aproxima a 5000 por semana a medida que avanza el tiempo, pero que la producción inicial es más baja debido a que los trabajadores no están familiarizados con las nuevas técnicas.) Encuentre la cantidad de calculadoras producidas desde el principio de la tercera semana hasta el final de la cuarta.

- **87.** Si f es continua y $\int_0^4 f(x) dx = 10$, encuentre $\int_0^2 f(2x) dx$.
- **88.** Si f es continua y $\int_0^9 f(x) dx = 4$, encuentre $\int_0^3 x f(x^2) dx$.
- **89.** Si f es continua en \mathbb{R} , demuestre que

$$\int_{a}^{b} f(-x) \, dx = \int_{-b}^{-a} f(x) \, dx$$

Para el caso donde $f(x) \ge 0$ y 0 < a < b, dibuje un diagrama para interpretar geométricamente esta ecuación como una igualdad de áreas.

90. Si f es continua en \mathbb{R} , demuestre que

$$\int_a^b f(x+c) \, dx = \int_{a+c}^{b+c} f(x) \, dx$$

Para el caso donde $f(x) \ge 0$, dibuje un diagrama para interpretar geométricamente esta ecuación como una igualdad de áreas.

91. Si a y b son números positivos, demuestre que

$$\int_0^1 x^a (1-x)^b dx = \int_0^1 x^b (1-x)^a dx$$

92. Si f es continua sobre $[0, \pi]$, utilice la sustitución $u = \pi - x$ para demostrar que

$$\int_0^{\pi} x f(\operatorname{sen} x) \, dx = \frac{\pi}{2} \int_0^{\pi} f(\operatorname{sen} x) \, dx$$

93. Mediante el ejercicio 92, calcule la integral

$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

94. (a) Si f es continua, demuestre que

$$\int_0^{\pi/2} f(\cos x) \, dx = \int_0^{\pi/2} f(\sin x) \, dx$$

(b) Utilice el inciso (a) para evaluar $\int_0^{\pi/2} \cos^2 x \, dx$ y $\int_0^{\pi/2} \sin^2 x \, dx$.