Unterlagen zur Vorlesung

Hardware und Systemgrundlagen

Prof. Dr. Jürgen Neuschwander

Zahlensysteme in der Informatik

Leibniz-Traktat bezüglich Dualzahlen von 1679

Zahlensysteme in der Informatik

Menschen: rechnen gewöhnlich im Dezimalzahlensystem

Rechner: rechnen gewöhnlich im Dualzahlensystem

eine Konvertierung ist erforderlich

Daneben werden weitere Zahlensysteme wie Oktalzahlensystem oder Hexadezimalzahlensystem zur kompakteren Darstellung der sehr langen Dualzahlen verwendet.

> es ist notwendig, die Zusammenhänge und mathematischen Grundlagen dieser Zahlensysteme zu verstehen

Zahlensysteme in der Informatik

b	Zahlensystem	Zahlenbezeichnung
2	Dualsystem	Dualzahl
8	Oktalsystem	Oktalzahl
10	Dezimalsystem	Dezimalzahl
16	Hexadezimalsystem	Hexadezimalzahl

Die Basis für die Zahlendarstellung aller aufgeführten Zahlensysteme bildet das Stellenwertsystem.

Stellenwertsysteme

Zahlendarstellung in Form einer Reihe von Ziffern z_i, wobei der Dezimalpunkt rechts von z₀ platziert sei:

$$\mathbf{Z}_n \ \mathbf{Z}_{n\text{-}1} \ \ \mathbf{Z}_1 \ \mathbf{Z}_0 \ . \ \mathbf{Z}_{\text{-}1} \ \mathbf{Z}_{\text{-}2} \ ... \mathbf{Z}_{\text{-}m}$$

Jeder Position **i** der Ziffernreihe ist ein Stellenwert zugeordnet, der eine Poterz **b**ⁱ der Basis **b** des Zahlensystems ist.

Der Wert X_b der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen $z_i b^i$:

$$\mathbf{X}_{b} = \mathbf{z}_{n} \ \mathbf{b}^{n} + \mathbf{z}_{n-1} \ \mathbf{b}^{n-1} + \dots + \mathbf{z}_{1} \ \mathbf{b} + \mathbf{z}_{0} + \mathbf{z}_{-1} \ \mathbf{b}^{-1} + \dots + \mathbf{z}_{-m} \ \mathbf{b}^{-m} = \sum_{i=-m}^{n} Z_{i} b^{i}$$

Weiteres Beispiel

$$= \sum_{i=-m}^{n} 2i * 10^{i}$$

Also hier in Bospiel:

$$2 = \sum_{i=-2}^{2} 2i * 10^{i} = 1.10^{2} + 2.10^{4} + 3.10^{0}$$

$$+ 4.10^{4} + 5.10^{2}$$

$$= 100 + 20 + 3 + \frac{4}{10} + \frac{5}{100}$$

$$= (123, 45)$$

$$7_{8asis}$$

Die Stellen geben die Position einer Ziffer innerhalb der Stellenwertdarstellung an. Von 0 an nach links vom Komma und von (-1) an nach rechts vom Komma.

Der Stellenwert beschreibt die Wertigkeit einer Stelle: 1, 10, 100,...oder nach dem Komma 01, 0,01,...(Basis hoch Stelle).

Beispiel: Zahlenwerte im Dezimal- und Dualsystem

Beispiel: Dezimalsystem

$$z = \sum_{i = -m}^{n} z_i b^i = \sum_{i = -m}^{n} z_i 10^i$$
 mit $z_i \in \{0, 1, 2, ... 9\}$

z.B.:

$$1234,56 = 1*10^3 + 2*10^2 + 3*10^1 + 4*10^0 + 5*10^{-1} + 6*10^{-2}$$

Als Alphabet bezeichnet man dabei den Zeichenvorrat, den man in diesem System benutzen darf. Beim Dezimalsystem sind es also die Ziffern 0 bis 9.

Beispiel: Dualsystem

$$z = \sum_{i = -m}^{n} z_i \, 2^i \qquad \qquad \text{mit } z_i \in \{0, 1\}; \, m, \, n \, \text{ganze Zahlen}$$

z.B.*:*

$$(1011,01)_2 = 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} = (11,25)_{10}$$

veiteres Beispiel dur Umwandleung einer gegebenen Ziffernfolge in einem Zahlensystem dur Basis X in eine Derimalrahl:

geg: (142,5) 7 i Ziffenfolge vade dem Stellenges: (...) 10 2.

 $\frac{2}{10} = 1 \cdot 7^{2} + 4 \cdot 7^{1} + 2 \cdot 7^{0} + 5 \cdot 7^{1}$ $\frac{2}{10} = 49 + 28 + 2 + \frac{5}{7} = (79\frac{5}{7})_{10}$ Basis 10

Dies it des <u>derimale</u> Zahlenwest des Zahl (142,5)₇.

2,0 = (79,714285....)10 mendlider Bruch (\$\frac{5}{7})

Oktal- und Hexadezimal-Code

- Auch Oktal- und Hexadezimal-Code sind Stellenwertsysteme
- Die Basis beim Oktalsystem ist { b=8 } und beim Hexadezimalsystem ist { b=16 }.
- Der Ziffernvorrat beim Oktalsystem ist { 0,1,2,3,4,5,6,7 } und beim Hexadezimalsystem {0,1,2,3,4,5,6,7,8,9, A, B,C,D,E,F }.

	1
Dualcode	Oktalziffer
0 0 0	0
0 0 1	1
010	2
0 1 1	3
100	4
1 0 1	5
1 1 0	6
1 1 1	7

Dualcode	Hexadezimalziffe
0 0 0 0	0
0001	1
0010	2
0 0 1 1	3
0100	4
0101	5
0 1 1 0	6
0 1 1 1	7
1000	8
1001	9
1010	A
1011	В
1 1 0 0	C
1 1 0 1	D
1 1 1 0	Е
1 1 1 1	F

Wieso Zahlen und Buchstaben??

Beispiele: Umrechnung in das Dezimalsystem

Dual

$$n = (11001)_2 = 1*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0
 = 1*16 + 1*8 + 0*4 + 0*2 + 1*1
 = 16 + 8 + 0 + 0 + 1 = (25)_{10}$$

Oktal

$$n = (315)_8$$
 = $3*8^2$ + $1*8^1$ + $5*8^0$
= $3*64$ + $1*8$ + $5*1$
= 192 + 8 + 5 = $(205)_{10}$

Hexadezimal

$$n = (A34F)_{16} = 10*16^{3} + 3*16^{2} + 4*16^{1} + 15*16^{0}$$

$$= 10*4096 + 3*256 + 4*16 + 15*1$$

$$= 40960 + 768 + 64 + 15 = (41807)_{10}$$

Dualsystem oder Dualcode

 Die Stellen einer Dualzahl nennt man Binärstellen. Die Anzahl der Binärstellen wird in Bit (binary digit) angegeben.

Maßeinheit		Anzahl von Bytes	KBytes	MBytes
Byte		1		
Kilobyte (KByte)	2 ¹⁰	1024	1	
Megabyte (MByte)	2 ²⁰	1.048.576	1024	1
Gigabyte (GByte)	2 ³⁰	1.073.741.824	1.048.576	1024
Terabyte (TByte)	2 ⁴⁰	1.099.511.627.776	1.073.741.824	1.048.576
Petabyte (PByte)	2 ⁵⁰	1.125.899.906.842.624	1.099.511.627.776	1.073.741.824
Exabyte (EByte)	2 ⁶⁰	1.152.921.504.606.846.976	1.125.899.906.842.624	1.099.511.627.776

- Bei Dualzahlen fester Länge verwendet man oft die Begriffe:
 - Most significant bit (MSB)
 - Least significant Bit (LSB)

Code als Zuordungsvorschrift

- Codierung ist die ein-eindeutige Abbildung eines endlichen Alphabets A1 in ein anderes endliches Alphabet A2.
- Beispiel: Morse-Code ternärer Code
 - Alphabet A1 = englische Schrift
 - Alphabet A2 =Punkt, Strich, Pause (ternär)

```
S O S = ---
```


Dualcode

 Unter einem Code versteht man allgemein die eindeutige Zuordnung von einem Zeichenvorrat zu einem anderen. So ordnet der Dualcode der "5" im Dezimalsystem die "101" im Dualsystem zu.

- 1. binärer Code (O, I)
- 2. Blockcode (gleichlange Codeworte)
- 3. keine Redundanz (alle Kombinationen ausgeschöpft)
- 4. keine Fehlersicherheit

5.
$$\mathbf{N} = \sup \inf [\log_2(\mathbf{n})]$$

$$n = 2^N$$

Beispiel: Inalcode mit 3 Stellen:

derimal	dual			
0	000			
2	010			
3	011			
4	100			
72	101			
Ç	110	d	uri table	uwst
7	1111	⇒ ∧	· 22+1.21.	+1.2°
	111	_	4 2	1
" Stellen genid	_ ' '			-1
gluid	~ 2) 21)	2-7	=(7),0	
(A	22 21) = (25 OF	©)		
Dualcode:			alternies	4
5/0/2000000	mit 2ª	ч		
A	(2.B. die	Selle	i=2 altern	rest
\	mit 22	=4=>	tx B ud	(rx+
Aufban -	?	,	4 5 - 11 to b	
Schema)	()	1. Spalte b	~
	(links go	chen)
des Codes	(•	
\				

Aufbauschema des Dualcodes

Beispiel

- Oktal- und Hexadezimal-Code werden häufig dazu benutzt "lange Binärmuster" kompakt darzustellen.
 - Oktalcode (Hexadezimal-Code): jeweils 3 (4) Binärstellen werden zu einer Oktalstelle (Hexadezimalstelle) zusammen gefasst.

Wandlung von 0110100,1101012 ins Hexadezimalsystem

$$2^4 = 16 \implies$$
 4 Dualstellen \rightarrow 1 Hexadezimalstelle

dual

0110100,110101

00110100,110101

Ergänzen von Nullen zur
Auffüllung auf Vierergruppen

hexadezimal

3 4 D 4

Beispiel: Umwandlung binär nach oktal/hexadezimal

Wandling von 101101001, 10101
ins Oktal-und ins Hexaderimalsystem

(2)

$$\frac{101101001,101010}{5551}$$

$$= (551,52)_{8}$$

= (169, 48) 16

Wichtig: Immer beim komma beginnen? Nach links und nach recht

Umwandlung zwischen Zahlensystemen - Horner Schema

Umwandlung vom Dezimalsystem in ein Zahlensystem zur Basis b

Methode: Abwandlung des Horner Schemas

Hierbei müssen der ganzzahlige und der gebrochene Anteil getrennt betrachtet werden.

Umwandlung des ganzzahligen Anteils:

Eine ganze Zahl $X_b = \sum_{i=0}^n z_i b^i$ kann durch fortgesetztes

Ausklammern auch in folgender Form geschrieben werden:

$$X_b = ((...((y_n b + y_{n-1}) b + y_{n-2}) b + y_{n-3}) b ...) b + y_1) b + y_0$$

Horner Schema – ganzzahliger Anteil

Verfahren: Die gegebene Dezimalzahl wird sukzessive durch die Basis **b** dividiert.

Die jeweiligen ganzzahligen Reste ergeben die Ziffern der Zahl X_b in der Reihenfolge von der niedrigstwertigen zur höchstwertigen Stelle.

Beispiel:

$$1472 = 1x10^{3} + 4x10^{2} + 7x10^{1} + 2x10^{0}$$
$$= ((1 x 10 + 4) x 10 + 7) x 10 + 2 \text{ Horner Darstellung}$$

Die Basis 10 kommt nur in linearer Form vor. Durch Abspalten der Ziffern und danach Division durch die Basis 10 können alle Ziffern "abgespalten" werden.

Horner Schema – Beispiel 1

Beispiele dazu:

- Gegeben sei die Zahl Z = (630)₁₀
- Gesucht ist die Zahlendarstellung im Dualsystem (...)₂

Horner Schema – Beispiel 2

Wandle 15741₁₀ ins Hexadezimalsystem

$$15741_{10}: 16 = 983$$
 Rest 13 (D₁₆)

$$983_{10}$$
: $16 = 61$ Rest 7 (7_{16})

$$61_{10}: 16 = 3$$
 Rest 13 (D_{16})

$$3_{10}: 16 = 0$$
 Rest 3 (3_{16})

$$\Rightarrow$$
 15741₁₀ = 3D7D₁₆

Horner Schema - Umwandlung des Nachkommateils

Auch der gebrochene Anteil $\sum\limits_{i=-m}^{-1}z_ib^i$ einer Zahl lässt sich entsprechend schreiben:

$$Y_b = ((...((y_{-m}b^{-1} + y_{m+1})b^{-1} + y_{-m+2})b^{-1} + ... + y_{-2})b^{-1} + y_{-1})b^{-1}$$

Verfahren:

Eine sukzessive Multiplikation des Nachkommateils der Dezimalzahl mit der Basis b des Zielsystems ergibt nacheinander die $y_{\cdot i}$ in der Reihenfolge der höchstwertigsten zur niederwertigsten Nachkommaziffer.

Horner Schema - Umwandlung des Nachkommateils

Beispiel:

$$0,1472 = 1x10^{-1} + 4x10^{-2} + 7x10^{-3} + 2x10^{-4}$$

= $((2 \times 10^{-1} + 7) \times 10^{-1} + 4) \times 10^{-1} + 1)10^{-1}$ Horner Darstellung

Die Basis 10⁻¹ kommt nur in dieser Form vor. Durch Multiplikation mit der Basis 10 können alle Ziffern dann "abgespalten" werden.

Horner Schema – Beispiel 3

Beispiel dazu:

- Gegeben sei die Zahl Z = (0,630)₁₀
- Gesucht ist auch die Zahlendarstellung im Dualsystem (...)₂

	MS	SB
$0,630 \times 2 = 1,260$ Überlauf 1	_	ı
0,260 x 2 = 0,520 Überlauf 0		
$0,520 \times 2 = 1,040$ Überlauf 1		
$0,040 \times 2 = 0,080$ Überlauf 0		
0,080 x 2 = 0,160 Überlauf 0		
$0,160 \times 2 = 0,320$ Überlauf 0		
$0,320 \times 2 = 0,640$ Überlauf 0		
$0,640 \times 2 = 1,280$ Überlauf 1		
0,280 x 2 = 0,560 Überlauf 0		
etc.	,	,
	LS	В

; Überlauf streichen

; Überlauf streichen

; Überlauf streichen

Aus einem endlichen
Dezimalbruch entsteht
ein unendlicher Dualbruch???

→ Dualcodezahl = 0,101000010......

Horner Schema – Beispiel 4

Umwandlung von 0,233₁₀ ins Hexadezimalsystem:

$$z_{-1} = 3$$
 $z_{-1} = 3$
 $0,233 * 16 = 3,728$
 $0,728 * 16 = 11,648$
 $z_{-2} = B$
 $0,648 * 16 = 10,368$
 $z_{-3} = A$
 $0,368 * 16 = 5,888$
 $z_{-4} = 5$

Abbruch bei genügend hoher Genauigkeit

 $\Rightarrow 0,233_{10} \approx 0,38A5_{16}$

 \Rightarrow 0,233₁₀ \approx 0,3BA5₁₆

Umwandlung: Basis b in das Dezimalsystem

Die Werte der einzelnen Stellen der umzuwandelnden Zahl werden in dem Zahlensystem, in das umgewandelt werden soll, dargestellt und nach der Stellenwertgleichung aufsummiert.

Der Wert X_b der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen $z_i b^i$:

$$X_b = z_n b^n + z_{n-1} b^{n-1} + ... + z_1 b + z_0 + z_{-1} b^{-1} + ... + z_{-m} b^{-m} = \sum_{i=-m}^n z_i b^i$$

Beispiel

Konvertiere 101101,11012 ins Dezimalsystem

