Séries d'exercices 4ème info Suives Reelles

maths A.U lycee ali

Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

$$Soit \ \big(u_n\big)_{n\in N}\ la\ suite\ r\'eelle\ d\'efinie\ par:\ \mathbf{u}\ : \begin{cases} u_0=2\\ u_{n+1}=\frac{2}{5}u_n+3 \end{cases}$$

Partie A

- 1°) Calculer u_1 et u_2 . u est-elle une suite géométrique ? u est-elle une suite arithmétique ?
- 2°)Montrer que : pour tout n de N : $2 \le u_n \le 5$.
- 3°)Montrer que (u) est croissante sur N.
- 4°)En déduire que (u) est convergente et calculer sa limite.

Partie B

- On pose, pour tout entier naturel $n: v_n = u_n 5$.
- 1°)Montrer que (v) soit une suite géométrique
- 2°) Exprimer v_n puis u_n en fonction de n.
- 3°)Calculer $\lim_{n\to +\infty} v_n$ et $\lim_{n\to +\infty} u_n$.

- a- $Exprimer s_n$ puis s'_n en fonction de n
- b- Calculer alors $\lim_{n\to +\infty} s_n$ et $\lim_{n\to +\infty} s'_n$

EXERCICE Nº 2

$$Soit \ \big(u_n\big)_{n\in N} \ la \ suite \ r\'eelle \ d\'efinie \ par : \ \mathbf{u} \ : \begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{2u_n}{1+u_{n-1}} \end{cases}$$

Partie A

- 1°) Montrer que : pour tout n de N : $0 < u_n \le 1$.
- 2°)Montrer que (u) est croissante sur N.
- 3°)En déduire que (u) est convergente et calculer sa limite.

$Partie\ B$

On pose, pour tout entier naturel $n: v_n$

- 1°)Montrer que (v) soit une suite géométrique
- 2°) Exprimer v_n puis u_n en fonction de n.
- 3°)Calculer $\lim_{n\to +\infty} v_n$ et $\lim_{n\to +\infty} u_n$.

EXERCICE Nº 3

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite réelle définie par : \mathbf{u} :
$$\begin{cases} u_0 = 3 \\ u_{n+1} = \sqrt{\frac{1+u_n^2}{2}} \end{cases}$$

Partie A

- Partie A
 1°)Montrer que pour tout $n \text{ de } N: u_n \ge 1.$
- 2°) Montrev que pour tout $n \ de \ N : u_{n+1} u_n = \frac{1 u_n^2}{2(u_{n+1} + u_n^2)}$
- 3°)En déduire le sens de variations de (u).
- 4°)En déduire que (u) est convergente et calculer sa limite.

Partie B

- On pose, pour tout entier naturel $n: v_n = u_n^2 1$.
- 1°)Montrer que (v) soit une suite géométrique
- 2°) Exprimer v_n puis u_n en fonction de n.
- 3°)Calculer $\lim_{n\to +\infty} v_n$ et $\lim_{n\to +\infty} u_n$.

EXERCICE N°4

Soient a et b deux réels tels que $0 < a \le b$ et (u_n) la suite définie par :

$$u_1 = a + b$$
 et $\forall n \in N * : u_{n+1} = a + b - \frac{ab}{u_n}$.

- 1°) On suppose que a < b.
 - (a) Montrer que (u_n) est minorée par b.
 - (b) Etudier la monotonie de la suite (u_n) en déduire qu'elle est convergente.
- 2°) Soit v la suite définie par : $\forall n \in N * : v_n = \frac{u_n b}{u_n a}$
 - (a) Montrer que v est une suite géométrique.
 - (b) En déduire u_n en fonction de n, a et b
 - (c) Calculer alors $\lim_{n\to+\infty} u_n$
- 3°) On suppose que a=b.
 - (a) Calculer u_1, u_2, u_3, u_4 en fonction de a.
 - (b) Exprimer alors u_n en fonction de n et a puis $\lim_{n\to +\infty} u_n$.

EXERCICE N°5

On considère la suite réelle (u_n) définie par : $u_0 = 3$ et $\forall n \in \mathbb{N}$: $u_{n+1} = 3 - \frac{2}{u_n}$

- 1°) Montrer que (u_n) est minorée par 2.
- 2°)Etudier la monotonie de la suite (u_n)
- 3°)En déduire que (u_n) est convergente et calculer sa limite.
- 4°) Montrer par récurrence que : pour tout n de N : $u_n = 2 + \frac{n}{2^{n+1}}$
- 5°)Calculer alors $\lim_{n\to +\infty} u_n$

EXERCICE N°6

Soit la fonction $f:R_+ \to R$, $x \mapsto f(x) = \sqrt{4+3x}$.

On considère la suite réelle u définie par $u_0 = 0$ et $v_0 \in \mathbb{N}$: $u_{n+1} = f(u_n)$

- 1°)(a) Montrer que : $\forall n \in \mathbb{N} : 0 \le u_n \le 4$
 - (b) $Etudier\ la\ monotonie\ de\ u$.
 - (c) En déduire que u est convergente.
- 2°)(a) Montrer que : $\forall n \in \mathbb{N}$, $|u_{n+1} 4|$
 - (b) En déduire : $\forall n \in \mathbb{N}$, $|u_n 4| \leq 4 \left(\frac{3}{4}\right)^n$. En déduire alors $\lim_{n \to +\infty} u_n$.

EXERCICE N°7

 $Soient \ (u_n)_{n \in \mathbb{N}} \ et \ (v_n)_{n \in \mathbb{N}} \ deux \ suites \ r\'eelles \ d\'efinie \ par \ : \begin{cases} u_0 = 2 \\ u_{n+1} = \frac{3u_n + v_n}{4} \end{cases} \ et \ \begin{cases} v_0 = 3 \\ v_{n+1} = \frac{3v_n + u_n}{4} \end{cases}$

- 1°) Calculer u_1 et v_0 , u_2 et v_2 .
- u est-elle une suite géométrique ? u est-elle une suite arithmétique ?
- v est-elle une suite) géométrique ? v est-elle une suite arithmétique ?
- 2°) On pose pour tout entier naturel $n: x_n = u_n v_n$.
- Montrer que (x) soit une suite géométrique
- Exprimer x_n en fonction de n.
- 3°)Montrer que pour tout n de $N: u_n \leq v_n$
- 4°) Montrer que (u) est croissante sur N et (v) est décroissante sur N
- 5°)En déduire que pour tout n de $N: u_n \leq 3$ et $v_n \geq 2$
- 6°)En déduire que (u) et (v) convergent vres le même limite.

