Iván Mauricio Burbano Aldana Perimeter Scholars International Quantum Gravity

Homework 1: Spinors, SU(2) recoupling theory
and intertwiners

a) Given a vector space V with a basis $\{V_1, ..., V_n\}$, then $\otimes^m V = V \otimes^m = V \otimes ... \otimes V$ has a

basis $\{V_{i_1} \otimes ... \otimes V_{i_m} | i_1, ..., i_m \in \{1, ..., n\} \}$. It thus

have dimension n^m . The space $Sym^m V$ is

obtained by identitying $U_1 \otimes ... \otimes U_m \vee U_{\sigma(1)} \otimes ... \otimes U_{\sigma(m)}$

for all $\sigma \in S_m$. A basis is then obtained by identifying the basis vectors of $\otimes^m V$ via this relation S_0 , while the dim $\otimes^m V$ was given

then dim Sym V is given by the number of multisets of size m constructed from 'd_1..., nd. To count this, consider a set of m dots separated by n-1 bars. This represents a multiset where I appears a number equal to the dots before the first between the first and second bar, etc.

Grample: n=6, m=7

= 11, 3, 3, 4, 4, 4, 5}

Thus, a multiset is determined by choosing n-1

of m+n-1 characters to be stars. We conclude

dim Sym $V = {n \choose m} = {m+n-1 \choose n-1} = {(m+n-1)! \choose n-1}$

Reference: Thanks to Wikipedia and Math World entries on multisets.

In our case of interest, let us define $V^{(j)}$ to be the spin-j representation space. Then $\dim V^{(1/2)} = 2$ and $V^{(j)} = Sym V^{(1/2)}$. Thus

 $\dim V^{(j)} = \frac{(2j+2-1)!}{1! \ 2j!} = \frac{(2j+1)!}{2j!} = 2j+1.$

b) Indeed, recall that for a matrix $A = (A^i_j) \in M_n(\mathbb{C})$ we have

$$\det (A) \varepsilon^{i_1 \cdots i_n} = A^{i_1}_{j_1} \cdots A^{i_n}_{j_n} \varepsilon^{j_2 \cdots j_n}$$

where $\varepsilon^{i_2\cdots i_n} = sgn(i_2\cdots i_n)$. We have $\varepsilon^{AB} = sgn(AB)$.

Thus

if UESU(Z).

c) It is clear that

$$\psi^{AB} = \frac{1}{2} \left(\psi^{AD} + \psi^{BA} \right) + \frac{1}{2} \left(\psi^{AB} - \psi^{BA} \right)$$

$$= \psi^{(AB)} + \psi^{(AB)}$$

We thus only have to show
$$\psi^{[AB]} = \psi_{\circ} \varepsilon^{AB}$$
.

Indeed $\psi_{\circ} = \frac{1}{2} \psi^{CD} \varepsilon_{\circ D} = \frac{1}{2} (\psi^{12} - \psi^{21}) = \psi^{[127]}$, so that

 $\psi_{\circ} \varepsilon^{12} = \psi_{\circ} = \psi^{[127]} = \psi^{[217]}$.

d) From the discussion above, we have that

the symmetrization of 2(j_1+j_2-k) indices yields

a representation of dimension

$$2j_3+1=\left(\left(\begin{array}{c}2&2\\\\2(j_1+j_2-\kappa)\end{array}\right)\right)=\left(\begin{array}{c}2(j_1+j_2-\kappa)+2-1\\\\2-1\end{array}\right)$$

$$= \frac{(2(j_1+j_2-K)+2-1)!}{2(j_1+j_2-K)!} = 2(j_1+j_2-K)+1.$$

We conclude that

j3 = j1 + j2 - K.

Now, notice that $j_1,j_2 \in \mathbb{N}/_2$ and the enprocedure only makes sonse if $K \in \{0,1,...,2minlj_1,j_2\}$. Thus $K \subseteq 2j_1$ and $K \subseteq 2j_2$. We conclude

 $j_1 + j_2 + j_3 = 2j_1 + 2j_2 - K \in \mathbb{N}$

On the other hand,

|j_-jz| = j_+ j_z - 2min |j_1, j_2 { \left j_3 \left j_1 + j_2 .

Now let $a:= X = j_1 + j_2 - j_3 \in \mathbb{N}$ $b:= 2j_2 - a \in \mathbb{N}$ $c:= 2j_1 - a \in \mathbb{N}$

so that

 $a+b=2j_{\perp}$, $a+c=2j_{z}$, and

b+c = 2j_1 - a + 2j_2 - a = 2j_1 + 2j_2 - 2a = 2j_3.

We then have the drawings

$$2j_2 = 4$$
 $2j_3 = 5$
 $2j_3 = 6$

Impossible because
$$j_1 + j_2 + j_3 = \frac{15}{2} \notin \mathbb{N}$$

Vi)
$$2jz=5$$
 Impossible because $j_L+jz+j_3=\frac{17}{z}\notin\mathbb{N}$. $2j_2=5$ $2j_3=7$

$$j_L + j_2 + j_3 = \frac{17}{2} \notin \mathbb{N}.$$

e) We have

se that

$$z^{ABO} = \frac{1}{\sqrt{z}} \varepsilon^{AB}.$$