MECH 427 - AIRCRAFT DESIGN

WITH DR. GOUSHCHA

HOMEWORK #6

Date Due: 2020 December 2nd at 11:00am

You will need to **short report and attach your MATLAB code**. The word document should include comprehensive explanation of your calculation steps, including all formulas, constants, and conversion factors you used.

Consider the following propeller:

- 1) Blades are constructed from an airfoil whose C_l and C_d values can be found in the reference uploaded with this homework in Figure 3. You may want to digitize each plot to automate the process.
- 2) Airfoils are placed at 45° angle of attack ($\theta = 45^{\circ}$)
- 3) The shaft rotational speed is 6,000 rpm (convert to rad/s)
- 4) Chord of the airfoils is 2cm
- 5) Free stream speed of the airplane is 7m/s

Choose a 1 cm wide (dr = 1cm) section of the propeller which is located 3cm (r = 3cm) from the hub.

Perform **BY HAND** first **THREE** iterations to find a and b using the procedure outlined in the video recording from 11/22/2020.

Once you have the three iterations by hand, code the rest of the iterations in MATLAB to converge a and b.

- 1) Guess b
 - a. Guess α
 - b. Use these a and b values to calculate:

$$V_{disc} = V_{\infty} + V_{\infty}a$$

$$V_2 = \omega r - \omega rb$$

$$V_1 = \sqrt{V_{disc}^2 + V_2^2}$$

$$\alpha = \theta - \tan^{-1} \frac{V_{disc}}{V_2}$$

 $\alpha=\theta-\tan^{-1}\frac{V_{disc}}{V_2}$ c. Knowing V_1 , b, and α calculate dT_a and dQ_a using aerodynamics equations

$$dT_a = \frac{1}{2}V_1^2 \rho c \left(C_L \cos \phi - C_D \sin \phi\right) dr$$

$$dQ_a = \frac{1}{2}V_1^2 \rho c(C_L \sin \phi + C_D \cos \phi) dr r$$

d. Use the linear and angular momentum equations to calculate dT_m and $d\,Q_m$

$$dT_m = 4\pi r dr \rho V_{\infty}^2 a (1+a)$$

$$dQ_m = \rho 4 \pi r^3 V_{\infty} (1+a) b \omega dr$$

- e. Change a until dT_a is within 5% of dT_m .
- 2) Change b until dQ_a is within 10% of $\mathrm{d}Q_m$