Martingales and Applications

Fredrich Yuan

8 December, 2023

Gambler's Ruin

Lets play a game: You have a 50% chance of gaining \$1 and a 50% chance of losing \$1. Starting with K dollars, what are the odds you hit \$B before hitting 0?

Martingales

Let $X = (X_1, X_2, ..., X_t, ...)$ be a sequence of real-valued random variables.

This history of the sequence X is captured by an ascending family of sigma algebra's $\mathcal{F} = (\mathcal{F}_t)_{t \in I}$ called a filtration. We say that X is adapted to the filtration if \mathcal{F}_t contains the entire history of the process X up to time t.

Definition (Martingale)

Let X be a sequence of random variables and \mathcal{F} a filtration. We say X is a martingale if

- X is adapted to \mathcal{F}
- $E(|X_i|) < \infty$ for (i = 1, 2, ...)
- $E[X_{t+s}|\mathcal{F}_t] = X_t$

Gambler's Ruin is a Martingale

For our coinflip game, let Y_n denote the outcome of the nth coinflip and X_n denote the total amount of money we have at time n. A heads is recorded as a 1 and a tails as a -1.

We can show that this is a martingale.

- X is adapted to \mathcal{F}
- $E[|X_t|] < \infty$ because $E[X_t X_0] \le t$
- $E[X_{t+1}|\mathcal{F}_t] = X_t$

$$= E[X_t + Y_{t+1}|\mathcal{F}_t] = X_t + E[Y_{t+1}|\mathcal{F}_t] = X_t \text{ because } E[Y_{t+1}] = 1 * 1/2 + (-1) * 1/2 = 0$$

Note: This is because our flips are i.i.d

Definition (Stopping time)

A stopping time τ is an almost-surely finite time-valued random variable defined by some condition on the process.

Subsec 1

Lemma

If τ is a stopping time, then $X_{t \wedge \tau}$ is a martingale. $(t \wedge \tau \text{ means } \min(t, \tau)$

Proof.

Intuitively, given that X_t is a martingale, then if $t < \tau$, we then our MTG X_t is still walking. However, if $t \ge \tau$ then that indicates that our stopping time, τ has been reached. If the stopping time has been reached, we know in the next step we are at our present position.

Optional Stopping Theorem

Theorem (Optional Stopping Theorem)

If (X, \mathcal{F}) is a martingale, X is pointwise uniformly bounded, and τ is a stopping time, then

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0] \tag{1}$$

Proof.

 $X_{t \wedge \tau}$ is a martingale. Therefore for any time t

$$\mathbb{E}[X_{t \wedge \tau}] = \mathbb{E}[X_{0 \wedge \tau}] = \mathbb{E}[X_0]. \tag{2}$$

As t goes to infinity $X_{t \wedge \tau}$ converges to X_{τ} . Therefore by boundedness the result holds as t goes to infinity.

Returning to Gambler's Ruin

Returning to our game: You have a 50% chance of gaining \$1 and a 50% chance of losing \$1. Starting with K dollars, what are the odds you hit \$B before hitting 0? Let τ be the time it takes to hit 0 or hit B. Applying the optional stopping theorem, we have

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0] = K \tag{3}$$

 X_{τ} is equal to B or 0 so

$$K = \mathbb{E}[X_{\tau}] = B \cdot \mathbb{P}[X_{\tau} = B] + 0\mathbb{P}[X_{\tau} = 0]. \tag{4}$$

Therefore

$$\mathbb{P}[X_{\tau} = B] = \frac{K}{B}.\tag{5}$$

Brownian Motion

Brownian motion is a continuous time analogue of a simple random walk.

It was discovered when R. Brown observed irregular motion of tiny particles.

Definition (Brownian Motion)

A real-valued stochastic process $W(\cdot)$ is called a Brownian motion if

- W(0) = 0 almost surely
- W(t) W(s) is $\mathcal{N}(0, t s)$ for all $t \ge s \ge 0$
- For all times $0 < t_1 < ... < t_n$, the random variables $W(t_1), W(t_2) W(t_1), ..., W(t_n) W_{t_{n-1}}$ are independent
- W(t) is almost surely continuous in time t

Introduction to the Problem

Let X_t , Y_t be two independent Brownian motions starting at 0. Let T be the first time that (X_t, Y_t) lies on the ellipse $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$.

Solution

Lemma

If W is a Brownian motion, then $W(t)^2 - t$ is a martingale.

Proof.

Let $M(t) = W(t)^2 - t$. Then

$$\mathbb{E}[M(t+s)|\mathcal{F}_t] = \mathbb{E}[(W(t+s) - W_t + W(t))^2 - (t+s)|\mathcal{F}_t]$$
(6)

Expanding the square gives

$$\mathbb{E}[(W(t+s) - W(t))^2 + 2(W(t+s) - W(t))W(t) + W(t)^2 - t - s|\mathcal{F}_t]$$
(7)

As W(t+s)-W(t) is independent to the history of the process up to time t we have

$$\mathbb{E}[(W(t+s) - W(t))^2] + W(t)^2 - t - s = W(t)^2 - t. \tag{8}$$

Solution (2)

Let $M(t) = \frac{X_t^2 - t}{a^2} + \frac{Y_t^2 - t}{b^2}$. Let τ be defined as

$$\inf\{t: \frac{X_t^2}{a^2} + \frac{Y_t^2}{b^2} = 1\}. \tag{9}$$

M(t) is a martingale and τ is a stopping time so $M(t \wedge \tau)$ is a martingale. Applying the optional stopping theorem we get that

$$0 = \mathbb{E}[M(0)] = \mathbb{E}[M(\tau)] = \mathbb{E}\left[\frac{X_{\tau}^2 - \tau}{a^2} + \frac{Y_{\tau}^2 - \tau}{b^2}\right]. \tag{10}$$

Breaking up the right side:

$$\mathbb{E}\left[\frac{X_{\tau}^{2}}{a^{2}} + \frac{Y_{\tau}^{2}}{b^{2}} - \frac{\tau}{a^{2}} - \frac{\tau}{b^{2}}\right] = 1 - \frac{\mathbb{E}[\tau]}{a^{2}} - \frac{\mathbb{E}[\tau]}{b^{2}}$$
(11)

So we're left with

$$E[\tau] = \frac{1}{\frac{1}{a^2 + \frac{1}{a^2}}} = \frac{a^2 b^2}{a^2 + b^2}$$
 (12)

Conclusion

We looked at Martingales, Brownian Motion, and the Optional Stopping Theorem

Definitions (Recap)

- For Martingales: $E[X_{t+s}|\mathcal{F}_t] = X_t$
- For Brownian Motion: W(t) W(s) is $\mathcal{N}(0, t s)$ for all $t \ge s \ge 0$
- For Optional Stopping Theorem: $E[X_0] = E[X_\tau]$

These ideas help us compute and understand recursive events directly, and can be extended to games that are not fair.

Thank You for listening, Any Questions?