Nam	ne Kei
	ctice Exam: Paper 2
Top	ic 4: Bonding /48
SL	
1.	Explain why:
	(i) calcium has a higher melting point than potassium. Calcium is a smaller ion with twice the charge of potassium (Cazt, Xt) and therefore has a stronger attraction for its delocalized electrons.
	(2)
	Sodium oxide (Nazo) is bonded by strong electrostatic attractions between the Nat and D2- ions. Sulfur trioxide (SO3) is a nonpolar molecular compound and has only the weak vander Wals' forces between its molecules.
2.	Describe and compare three features of the structure and bonding in the three allotropes of carbon: diamond, graphite and C ₆₀ fullerene. *Diamond: Tetrahedral Covalent bonding. *Nonconductor of electricity.
	Macromolecular network solid.
	Hardest Known natural substance.
	· Oraphite: Trigonal planar covalent bonding. Conducts electricity.
	Parallel layers are theld only by weak vander wasts forces. used a inbricant and in pencils
	Fullerene: Each carbon is civilently bonded (6) to 3 other carbons in a sphere of 1

0=0=0	Linear	180	
Describe the structure and bonding	ng in SiO ₂ .	or and pour	ent net
Full oil	-ciovalest	of Giant coval	solid
	/ /3 200-7	100000	
to four oxygen	atoms and	each oxygen	,
tom Covalenty	bonded to	two silicon	atory,
•			
Explain why silicon dioxide is a		gas at room temperature.	_
		network solic	T
		weak vander	Waars
forces betw	leen its mo	lecules.	
	. C. I. II.	11	
Explain the electrical conductivity			
due to fre	0-movina in	ac decourg	
DAC 20 5776	2 70,007,09 70	<i>7</i> 3,	
Ethene, C ₂ H ₄ , and hydrazine, N ₂	H ₄ , are hydrides of adjacent	elements in the periodic table.	
a) (i) Draw Lewis (electro	on dot) structures for C ₂ H ₄ ar	nd N ₂ H ₄ showing all valence elec	etrons.
c = c'	<i>H</i> — <i>I</i>	ジー <i>Ňー</i> ナ	
#'	\boldsymbol{n}		
(ii) State and explain th	te H–C–H bond angle in ether	ne and the H–N–H bond angle in	hydrazine.
Etnene:	100 neartive	Hydrazine: 10 And to the for charge centers a nitrogen atom. The to the 10	r negativ
due to the	Long around	who was centers as	round ex

1			i	4
1	co	m	t	
•	\sim	т,	ı	

- (b) The polarity of a molecule can be explained in terms of electronegativity.
 - Define the term electronegativity.

The measure of attraction for shared electrons in a covalent bond.

(ii) Compare the relative polarities of the C-H bond in ethene and the N-H bond in hydrazine.

Nitrogen is more electronegative than

Carbon, therefore the N-H band is more polar than C-H

(iii) Hydrazine is a polar molecule and ethene is non-polar. Explain why ethene is non-polar. Ethene is a symmetrical molecule with an even charge distribution.

8. Draw the Lewis structures for carbon monoxide, CO, carbon dioxide, CO₂ and methanol, CH₃OH.

: C=0:

(ii) List, with an explanation, the three compounds in order of increasing carbon to oxygen bond (shortest first).

COL COZ L CH3OH Triple bonds are shorter than double bonds, which are shorter than single bonds.

9. Predict the shape and bond angles for the following species:

Linear 180°

(ii) CO32- Trigonal planar, 120b

(iii) BF4- Tetrahedral, 109.50

(2) (2)

(2) 3

(2)

(1)

(1)

10. The graph below shows the boiling points of the hydrides of group 5. Discuss the variation in the boiling points.

ohosphorus in molecular

11. Using Table 7 of the Data Booklet, predict and explain which of the bonds O-H, O-N or N-H would be most polar.

erence in electronegativit

NaCl BF3 All contain only nonmetals. (4)