Universidad Industrial de Santander

Introducción a la Física (2013)

• Unidad: casi 02

• Clase: 01

Fecha: 20130725J

Contenido: De la Tierra a la Luna

Web: http://halley.uis.edu.co/fisica_para_todos/

Archivo: 20130725J-HA-campos.pdf

Avisos parroquiales

• Recuerde: Plazo límite de entrega 2^{da} parte:

Lunes 29/Jul/2013 23:59:59

- En el blog está el archivo "problema.dat"
- Si uso:
 - (excentricidad>0.3) → 94 exoplanetas
 - (excentricidad>=0.3) → 99 exoplanetas
- Hoy comienza la 2^{da} unidad:
 - Electrostática y Termodinámica
- Nuevo episodio Cosmos en el blog → Martes 30/Jul

- Resolución numérica de las leyes de Kepler:
 - Tiempo discreto: el tiempo transcurre a intervalos constantes dt, y cuento los intervalos con i=0,1,2,3...

$$t_i = t_0 + i dt \rightarrow t_{i+1} = t_i + dt$$

- Tercera Ley de Kepler → T , luego dt=T/1000, i=0...1000
- Determinar condiciones iniciales: r(t₀) y v(t₀)
- Calcular la aceleración: a(t_i)=F_i/m
- Realizar operaciones con vectores...

- Condiciones iniciales:
 - Posición inicial: conviene en el apoastro AP=a+f=a(1+e)

$$\overline{r} = [-(a+f), 0]$$

- Velocidad inicial:
 - En el apoastro es perpendicular a r
 - Su modulo sale de la conservación de la energía:

$$|\mathbf{v}_{AP}| = \sqrt{\frac{GM}{a} \left(\frac{1 - e}{1 + e} \right)}$$

Y el vector queda:

$$\overline{\boldsymbol{v}} = (0, -|\boldsymbol{v}_{AP}|)$$

$$\Delta t = \frac{T}{1000} = \text{cte}$$

Datos:
$$\mathbf{r}_{i=0}$$
; $\mathbf{v}_{i=0}$

Imprimo r_i

Calculo:
$$r_{i+1} = r_i + \Delta t v_i$$

Calculo:
$$r_{i+1} = r_i + \Delta t v_i$$

Calculo: $a_{i+1} = -\left(\frac{GM}{|r_{i+1}|^2}\right) r_{i+1}$

Calculo: $v_{i+1} = v_i + \Delta t a_{i+1}$

Calculo:
$$v_{i+1} = v_i + \Delta t a_{i+1}$$

Notar:
$$a_{i+1} = -\left(\frac{GM}{|r_{i+1}|^3}\right) r_{i+1}$$

Estrella

Una de las moralejas de esta materia:

Sea físico y conviértase en el alma de las fiestas

Che, vos que sos físico....

"¿Cómo es posible que para llegar a la Luna necesitaron el Saturno V y para volver un motor tan chiquito?"

Poniendo en contexto...

Una buena respuesta...

"Para llegar a la Luna hacen falta 500 años de ciencia y millones de mentes humanas. Para inventarse que no se llegó basta con un gilipollas"

Visto en Microsiervos, http://goo.gl/MB6FI

Earth as viewed by Apollo 17 Photograph courtesy NASA Fly me to the moon

Saturno V, un cohetito: 110.6 m altura, 10 m diám, 2900 Ton

Empuje: 3.34 x 10⁷ N

El módulo lunar (Eagle y Columbia)

25/07/13

Apollo Spacecraft Engines

L. Nuñez - H. Asor

LM descent engine

25/07/13

Trayectoria de ida y vuelta

¿Hasta dónde "sube" un cuerpo lanzado desde La Tierra en dirección a la Luna?

Ó

¿Cuándo ese cuerpo comienza a "caer" en la Luna?

Respuesta: (Aproximada)

Hay un punto de equilibrio, donde las fuerzas de atracción gravitatorias que la Tierra y la Luna ejercen sobre el cuerpo se igualan

"Pozo de Potencial"

"Pozo de Potencial"

Algo más "tangible"

Órbita

25/07/13

L. Nuñez - H. Asorey - A. Estupiñan - Fisica Para Todos

Órbita+posición

25/07/13

Órbita+posición+velocidad

Órbita+posición+velocidad+aceleración

planeta+aceleración

aceleración=Fuerza / masa

masa de prueba

Muevo la masa de prueba en el plano z=0

Muevo la masa de prueba en el plano z=0

g(r) es un campo vectorial.A cada punto r del espacio le asigna el vector g(r)

$$F(r) = \frac{GMm}{|r|^2} \hat{r}$$

$$F(r) = m \left[\left(\frac{GM}{|r|^2} \right) \hat{r} \right]$$

$$F(r) = m g(r)$$

$$g(r) = \left(\frac{GM}{|r|^2} \right) \hat{r}$$

Campo gravitatorio

g(r) representa al campo gravitatorio de la estrella HD171028D

zy la Tierra?

 $M_T = 6x10^{24} \text{ kg}$

Dos Tierras a distancia TL

 $M_{T} = 6x10^{24} \text{ kg}$

Campo gravitatorio "2 Tierras"

$$g(r)=g_T(r)+g_L(r)$$

 $M_T = 6x10^{24} \text{ kg}$ $M_L = 0.012 M_T$

$$g(r) = g_T(r) + g_L(r) g(r) = 0 \rightarrow |r| = 0.91 TL$$

Declaración

- Todos los cálculos fueron realizados utilizando variaciones menores de los ejemplos python realizados en clase
 - cálculo de fuerzas
 - suma de vectores
 - impresión de resultados
- Los gráficos se hicieron usando gnuplot
- Tarea:
 - hacer un código python que determine el campo gravitatorio del sistema Sol-Jupiter