Data Representation

Types of Data:

Name	Base	Digits Used		
Decimal	10	0 - 9		
Binary	2	0, 1		
Octal	8	0 - 7		
Hexadecimal	16	0 - 9, A - F		

- Convert Decimal to another base:
 - 1. Divide number by base and find the remainders until 0 is reached
 - 2. Reverse remainder
 - O E.g. convert 19 to binary

Divisor: Base 2	Dividend & Quotient	Remainder
2	19	-
2	9	1
2	4	1
2	2	0
2	1	0
_	0	1

- \circ 19 in base 2 = 1 0 0 1 1 (Go up the table of remainders)
- Convert from another base to Decimal:
 - 1. Find position of each digit
 - 2. Sum all (digit x base^position)
 - o E.g. convert binary (1 1 0 1) to decimal

Binary Digit	1	1	0	1
Position	3	2	1	0
Value	1 x 2^3 = 8	1 x 2^2 = 4	0 x 2^1 = 0	1 x 2^0 = 1

- O Binary(1 1 0 1) = 8 + 4 + 1 = 13 in decimal
- Convert from Binary to Octal:
 - 1. Form groups of 3 digits from the back
 - 2. Add 0s to the front if not enough digits

- 3. Convert to base 8
- E.g. convert Binary(1 0 1 1 0 = 0 1 0 1 1 0) to Octal

Group into 3s	010	110
Octal Value	$0 + 1 \times 2^1 + 0 = 2$	1 x 2^2 + 1 x 2^1 + 0 = 6

- \circ Binary(1 0 1 1 0) = Octal(2 6)
- Convert from Binary to other bases:
 - Octal: group into 3s
 - O Hexadecimal: group into 4s

ASCII

- American Standard Code for Information Interchange
- 7 or 8 bit code that defined 128 or 256 character set
- 8 bits used for each character (1 byte)
- One of the bits used for check bit (parity bit)
- 2⁷ = 128 different characters available
- Mirrors available characters on the keyboard
- ord() and chr() converts characters to and from ASCII

Unicode

- Code for universal language and usage
- 16 or 32 bit code
- 2¹⁶ = 65536 characters
- Includes ASCII codes
- Used for characters not found in ASCII