1 Revisão da Atividade 1

Durante a execução da Atividade 1, enfrentei um problema significativo que afetou a exatidão dos gráficos gerados. Abaixo, descrevo o erro, sua origem, a correção aplicada e a importância de revisões detalhadas no código.

1.1 Descrição do Erro

Nos gráficos apresentados para os casos 1 e 3 da Atividade 1, foi observado que os valores iniciais de deslocamento (X_0) não correspondiam às condições iniciais especificadas. Por exemplo, no Caso 1, onde a condição inicial de deslocamento deveria ser $X_0 = 0$, o gráfico mostrava um valor diferente. Este erro se repetiu nos Casos 1 e 3, enquanto o Caso 2 foi simulado corretamente.

1.2 Causa do Erro

O erro originou-se de uma confusão na ordem das condições iniciais listadas no código de simulação para os Casos 1 e 3. Inicialmente, as condições iniciais foram inseridas em uma ordem incorreta, afetando somente estes casos:

```
// Definicao das condicoes iniciais para cada caso de simulacao condicoes_iniciais = [
    m/5, m/3; // Caso 3: posicao inicial (m) e velocidade inicial (m
    /s)

4    m/4, 0;    // Caso 2: posicao inicial (m) e velocidade inicial (m
    /s)

5    0, m/2;    // Caso 1: posicao inicial (m) e velocidade inicial (m
    /s)

6 ];
```

Listing 1: Condições iniciais incorretas

1.3 Correção do Erro

A correção foi feita ajustando a ordem das condições iniciais para refletir corretamente as especificações de cada caso:

Listing 2: Condições iniciais corrigidas

1.4 Importância da Revisão e Validação

Este incidente sublinha a importância de uma análise cuidadosa do código e dos resultados. Um erro aparentemente trivial na entrada de dados pode alterar significativamente os resultados de um estudo, destacando a necessidade de revisões e validações rigorosas durante o desenvolvimento de simulações científicas.

1.5 Gráficos Corrigidos

Os gráficos corrigidos agora refletem precisamente as condições iniciais estabelecidas para cada caso. Esses gráficos atualizados já estão incluídos no documento principal.

1.5.1 Caso 1: Velocidade Inicial Elevada

Figura 1: Resposta do sistema para o Caso 1

No Caso 1, o sistema é inicialmente impulsionado com uma alta velocidade (5 m/s), partindo do repouso $(X_0=0)$. Esta condição inicial provoca uma resposta dinâmica vigorosa, onde a massa oscila com uma amplitude inicialmente elevada. O primeiro pico ocorre aproximadamente aos 1.698s, alcançando uma altura de 3.881m. Este pico representa a conversão máxima da energia cinética inicial em energia potencial. A subsequente queda rápida na amplitude das oscilações, como observado nos pontos seguintes, ilustra o efeito do amortecimento significativo $(C=7\,\mathrm{Ns/m})$. Este amortecimento rapidamente reduz a amplitude das oscilações e garante que o sistema estabilize rapidamente, evitando oscilações prolongadas e retornando ao equilíbrio em aproximadamente $17.519\,s$, como indicado pelo deslocamento quase nulo $(-0.017\,m)$.

1.5.2 Caso 2: Deslocamento Inicial Sem Velocidade

Figura 2: Resposta do sistema para o Caso 2

O Caso 2 é caracterizado por um deslocamento inicial de $2.5\,\mathrm{m}$ sem impulso inicial de velocidade $(V_0=0)$. A resposta do sistema é a de um oscilador subamortecido. Iniciando de um ponto de deslocamento máximo, o sistema mostra uma rápida resposta inicial seguida de oscilações que decaem progressivamente em amplitude. O primeiro pico de deslocamento negativo ocorre aproximadamente aos $5.057\,\mathrm{s}$, com um deslocamento de

-0.417 m. Esta condição inicial destaca como a energia potencial armazenada na mola é inicialmente convertida em energia cinética, que é gradualmente dissipada pelo amortecedor. As oscilações subsequentes mostram uma diminuição gradativa na amplitude, com o sistema aproximando-se do equilíbrio em torno de 15.026 s, ilustrando uma transferência de energia mais prolongada e uma estabilização gradual em comparação ao Caso 1.

1.5.3 Caso 3: Velocidade e Deslocamento Iniciais

Figura 3: Resposta do sistema para o Caso 3

No Caso 3, o sistema inicia com condições iniciais moderadas tanto de velocidade $(3.33\,\text{m/s})$ quanto de deslocamento $(2\,\text{m})$. Esta configuração produz uma resposta dinâmica complexa, onde a interação entre energia cinética e potencial é claramente visível. O primeiro pico de amplitude ocorre em $t\approx 1.241\,\text{s}$ com um deslocamento de $3.873\,\text{m}$, ilustrando a conversão da energia cinética inicial em potencial. Posteriormente, as oscilações decrescem rapidamente em amplitude devido ao amortecimento significativo, estabilizando-se próximo de zero em $t\approx 16.645\,\text{s}$. As oscilações são mais persistentes e menos intensas do que nos outros casos, refletindo um equilíbrio dinâmico entre as energias cinética e potencial ao longo da simulação.

2 Revisão da Atividade 7

A Atividade 7 exigiu a refatoração do código Scilab utilizado para simular o Lugar Geométrico das Raízes (LGR) do sistema massa-mola-amortecedor. O objetivo era corrigir a formulação da função de transferência e aprimorar a visualização dos resultados.

2.1 Código Original

O código original apresentava uma formulação simplificada da função de transferência, que estava incompleta e impactava a precisão dos cálculos:

```
// Definicao dos parametros
M = 10;
C = 7;
K = 5;

// Funcao de transferencia
num = 1;
den = [M, C, K];

// Sistema
sys = syslin('c', num, den);
// Configuracao da cor para o plot do LGR
clf();
```

```
sgrid();
evans(sys, 3000, 'red');
```

Listing 3: Código Scilab para simular o Lugar geométrico das raízes original

2.2 Código Refatorado

O código foi completamente revisado para incluir uma definição detalhada da função de transferência e melhorias significativas na visualização gráfica:

```
// Definicao dos parametros
   M = 10;
   C = 7;
   K = 5;
   // Funcao de transferencia
   num = 1; // Numerador e um polinomio constante
   den = [M, C, K]; // Coeficientes do denominador como vetor
   den_poly = poly(den, 's', 'coeff'); // Criacao do polinomio do
       denominador com os coeficientes
10
11
   sys = syslin('c', num, den_poly); // Cria o sistema com a funcao
12
       de transferencia correta
   // Configuração da figura para grafico
14
   scf(); // Cria uma nova figura grafica
16
           // Limpa a figura
   sgrid(); // Adiciona uma grade ao grafico
18
   // Configuracoes de visualizacao de linha
19
   xset("line style", 4); // Define o estilo da linha (ex: 4 -
       pontilhada)
   xset("thickness", 3); // Define a espessura da linha
   xset("foreground", 5); // Define a cor da linha (ex: 5 - vermelho
23
   // Plotando o LGR com ajustes de visualizacao
24
25
   evans(sys, 50); // Plota o LGR com 50 pontos de discretizacao
26
   // Ajustes no grafico
27
   xtitle("Lugar Geometrico das Raizes (LGR)", "Re(s)", "Im(s)"); //
28
        Adiciona titulo e rotulos aos eixos
   // Anotacoes para polos
30
   polos = roots(den_poly);
                             // Calcula os polos do sistema
31
   for i = 1:size(polos, "r")
       // Adiciona anotacoes para cada polo no grafico
       xstring(real(polos(i)), imag(polos(i)), "Polo: "+string(polos())
34
           i)));
   end
35
37
   // Ajuste da visualizacao
   zoom_rect([-1.8, -2.5, 0.2, 2.5]); // Ajusta a visualizacao para
       incluir os polos com zoom
```

Listing 4: Código Scilab para simular o Lugar geométrico das raízes refatorado

Estas alterações garantiram que a função de transferência fosse formulada corretamente, possibilitando cálculos precisos do LGR. Além disso, as melhorias visuais, como etiquetas dos polos e ajuste na escala do gráfico, permitiram uma interpretação mais clara e detalhada dos resultados, facilitando a análise da estabilidade do sistema.

Correlação com a Atividade 3

Após a implementação das correções e melhorias descritas, o novo gráfico gerado pelo código refatorado agora faz mais sentido e está em consonância com os dados observados na Atividade 3. Esta consistência reforça a precisão das modificações feitas e valida a eficácia do modelo ajustado para simular o comportamento do sistema massa-mola-amortecedor. A correção do erro na formulação da função de transferência e as melhorias visuais

implementadas aprimoraram a clareza dos resultados e também garantem que análises futuras sejam baseadas em dados e representações gráficas confiáveis e precisas.

A figura a seguir foi gerada após as modificações recentes no código e já foi incorporada ao relatório oficial, ilustrando o Lugar Geométrico das Raízes (LGR) do sistema massa-mola-amortecedor. Esta imagem reflete as melhorias implementadas e a precisão aprimorada na visualização dos dados.

Figura 4: Lugar Geométrico das Raízes do sistema massa-mola-amortecedor.