16 Chapter

Definition 16.1. Ring of Polynomials over R

Let R be a commutative ring. The set of formal symbols

 $R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 | a_i \in R, n \text{ is a nonnegative integer}\}$

is called the ring of polynomials over R in the indeterminate x. Two elements

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 and

$$b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

of R[x] are considered equal if and only if $a_i = b_i$ for all nonnegative integers i. (Define $a_i = 0$ when i > n and $b_i = 0$ when i > m.)

Definition 16.2. Addition and Multiplication in R[x]

Let R be a commutative ring and let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 and

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$
 belong to $R[x]$. Then

$$f(x) + g(x) = (a_s + b_s)x^s + (a_{s-1} + b_{s-1})x^{s-1} + \dots + (a_1 + b_1)x + a_0 + b_0,$$

where s is the maximum of m and n, $a_i = 0$ for i > n, and $b_i = 0$ for i > m. Also,

$$f(x)g(x) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1} + \dots + c_1x + c_0$$
, where $c_k = a_kb_0 + a_{k-1}b_1 + \dots + a_1b_{k-1} + a_0b_k$ for $k = 0, \dots, m+n$.

Theorem 16.1. D an Integral Domain Implies D[x] an Integral Domain

If D is an integral domain, then D[x] is an integral domain.

Theorem 16.2. Division Algorithm for F[x]

Let F be a field and let $f(x), g(x) \in F[x]$ with g(x) at 0. Then there exist unique polynomials q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x) and either r(x) = 0 or deg(x) < deg(x).

Corollary 16.3. Remainder Theorem

Let F be a field, $a \in F$, and $f(x) \in F[x]$. Then f(a) is the remainder in the division of f(x) by x - a.

Corollary 16.4. Factor Theorem

Let F be a field, $a \in F$, and $f(x) \in F[x]$. Then a is a zero of f(x) if and only if x - a is a factor of f(x).

Theorem 16.5. Polynomials of Degree n Have at Most n Zeros

A polynomial of degree n over a field has at most n zeros, counting multiplicity.

Definition 16.3. Principal Ideal Domain (PID)

A principal ideal domain is an integral domain R in which every ideal has the form $\langle a \rangle = \{ra | r \in R\}$ for some a in R.

Theorem 16.6. F[x] Is a PID

Let F be a field. Then F[x] is a principal ideal domain.

Theorem 16.7. Criterion for $I = \langle g(x) \rangle$

Let F be a field, I a nonzero ideal in F[x], and g(x) an element of F[x]. Then, $I = \langle g(x) \rangle$ if and only if g(x) is a nonzero polynomial of minimum degree in I.