OMIS 115 Final Project

Drug Consumption

By Lola Lewis

Table of Contents

01

Background

03

Models

02

Data

04

Empirical Results

Drug Use in the United States

- Over 101,000 Americans died from drug-involved overdoses in 2024
- Approximately 95,000 alcohol-related deaths in the United states annually (drunk driving, health failure)
- In 2023 among 134.7M people aged 12 or older who used alcohol in 2023, 61.4M had engaged in binge drinking in the past month

How can predicting drug use be helpful?

Targeted Intervention

Creating targeted intervention plans for those suffering from drug abuse

Resource Allocation

Distributing healthcare and treatment resources where they are most needed

Improving Education

Promoting awareness and education on the risks of drug use

Further Research

Finding potential solutions to drug abuse and its risks

Drug Consumption Dataset

https://www.kaggle.com/datasets/mexwell/drug-consumption-classification/data

- Data from Kaggle last updated April 2024
- Total number of respondents: 1885
- For each respondent, 12 attributes are known
 - Personality type and demographics
 - NEO-FFI-R (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness), BIS-11 (impulsivity), and ImpSS (sensation seeking)
- Measures usage of 18 different legal and illegal substances
 - i.e. Alcohol, cannabis, ketamine, nicotine, * chocolate, * caffeine
 - Recency of usage levels (CLO-CL6)

^{*} The U.S. Food and Drug Administration (FDA) classifies caffeine as both a food additive and a drug due to its psychoactive properties. Chocolate, while not classified as a drug, contains theobromine and caffeine, which are stimulants that produce mild psychoactive effects, as noted by the National Institutes of Health (NIH).

Data Cleaning

 Converted column values for easier legibility and clearer relevance using attribute information given in data card (i.e. age, gender, education level, country of origin, ethnicity, usage)

```
usage_col = {
    'CL0': 'Never Used',
    'CL1': 'Used over a Decade Ago',
    'CL2': 'Used in Last Decade',
    'CL3': 'Used in Last Year',
    'CL4': 'Used in Last Month',
    'CL5': 'Used in Last Week'.
    'CL6': 'Used in Last Day',
data['Alcohol'] = data['Alcohol'].replace(usage_col)
data['Amphet'] = data['Amphet'].replace(usage col)
data['Amyl'] = data['Amyl'].replace(usage col)
data['Benzos'] = data['Benzos'].replace(usage_col)
data['Caff'] = data['Caff'].replace(usage col)
data['Cannabis'] = data['Cannabis'].replace(usage_col)
data['Choc'] = data['Choc'].replace(usage_col)
data['Coke'] = data['Coke'].replace(usage_col)
data['Crack'] = data['Crack'].replace(usage_col)
data['Ecstasy'] = data['Ecstasy'].replace(usage col)
data['Heroin'] = data['Heroin'].replace(usage col)
data['Ketamine'] = data['Ketamine'].replace(usage col)
data['Legalh'] = data['Legalh'].replace(usage col)
data['LSD'] = data['LSD'].replace(usage_col)
data['Meth'] = data['Meth'].replace(usage_col)
data['Mushrooms'] = data['Mushrooms'].replace(usage_col)
data['Nicotine'] = data['Nicotine'].replace(usage_col)
data['Semer'] = data['Semer'].replace(usage col)
data['VSA'] = data['VSA'].replace(usage_col)
```

Feature Description

Value	Age ranges
-0.9517	18 - 24
-0.07854	25 - 34
0.49788	35 - 44
1.09449	45 - 54
1.82213	55 - 64
2.59171	65+

Value	Country
-0.09765	UK
-0.57009	USA
-0.28519	Other
0.24923	Canada
-0.09765	Australia
0.21128	Republic of Ireland
-0.46841	New Zealand

Feature Description

Value	Ethnicity
-0.31685	White
0.11440	Other
-1.10702	Black
-0.50212	Asian
0.12600	Mixed-
	White/Asian
-0.22166	Mixed-
	White/Black
1.90725	Mixed-
	Black/Asian

Drug Usage	
CLO	'Never Used'
CL1	'Used over a Decade Ago'
CL2	'Used in Last Decade'
CL3	'Used in Last Year'
CL4	'Used in Last Month'
CL5	'Used in Last Week'
CL6	'Used in Last Day'

Alcohol

Caffeine

Cannabis

Chocolate

Mushrooms

Nicotine

Predicting Drug Usage Levels: Random Forest & Logistic Regression

Preprocessing - Multiclass Random Forest

Preprocessing - Multiclass Random Forest

```
X_preprocessed = preprocessor.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_preprocessed, y, test_size=0.3, random_state=42)

rf_classifier = RandomForestClassifier(
    bootstrap=True,
    max_depth=10,
    min_samples_leaf=1,
    min_samples_split=2,
    n_estimators=100,
    random_state=42

}

Best hyperparameters from
Grid Search for Alcohol
    where cv = 10

}
```

Problem 1 - Multiclass Results

Alcohol Usage Random Forest Accuracy: 39.22% Alcohol Usage Logistic Regression Accuracy: 38.87%

Caffeine Usage Random Forest Accuracy: 73.50% Caffeine Usage Logistic Regression Accuracy: 73.32%

Cannabis Usage Random Forest Accuracy: 41.70% Cannabis Usage Logistic Regression Accuracy: 38.69% Chocolate Usage Random Forest Accuracy: 38.87% Chocolate Usage Logistic Regression Accuracy: 40.81%

Mushroom Usage Random Forest Accuracy: 53.36% Mushroom Usage Logistic Regression Accuracy: 54.59%

Nicotine Usage Random Forest Accuracy: 40.28% Nicotine Usage Logistic Regression Accuracy: 39.40%

Problem 1 - Binary Results

Alcohol:

Random Forest Accuracy (Train): 84.84% Random Forest Accuracy (Test): 81.63% Random Forest Precision: 82.67% Random Forest Recall: 98.28%

Logistic Regression Accuracy (Train): 82.71% Logistic Regression Accuracy (Test): 81.45% Logistic Regression Precision: 82.64% Logistic Regression Recall: 98.07%

Chocolate:

Random Forest Accuracy (Train): 95.07% Random Forest Accuracy (Test): 94.70% Random Forest Precision: 94.70% Random Forest Recall: 100.00%

Logistic Regression Accuracy (Train): 94.77% Logistic Regression Accuracy (Test): 94.70% Logistic Regression Precision: 94.70% Logistic Regression Recall: 100.00%

Caffeine:

Random Forest Accuracy (Train): 93.78% Random Forest Accuracy (Test): 93.64% Random Forest Precision: 93.64% Random Forest Recall: 100.00%

Logistic Regression Accuracy (Train): 93.56% Logistic Regression Accuracy (Test): 93.64% Logistic Regression Precision: 93.64% Logistic Regression Recall: 100.00%

Mushrooms:

Random Forest Accuracy (Train): 93.63% Random Forest Accuracy (Test): 91.52% Random Forest Precision: 0.00% Random Forest Recall: 0.00%

Logistic Regression Accuracy (Train): 91.58% Logistic Regression Accuracy (Test): 91.52% Logistic Regression Precision: 0.00% Logistic Regression Recall: 0.00%

Cannabis:

Random Forest Accuracy (Train): 93.10% Random Forest Accuracy (Test): 77.56% Random Forest Precision: 74.55% Random Forest Recall: 70.46%

Logistic Regression Accuracy (Train): 81.88% Logistic Regression Accuracy (Test): 77.21% Logistic Regression Precision: 74.55% Logistic Regression Recall: 69.20%

Nicotine:

Random Forest Accuracy (Train): 91.58% Random Forest Accuracy (Test): 66.25% Random Forest Precision: 64.17% Random Forest Recall: 61.98%

Logistic Regression Accuracy (Train): 68.31% Logistic Regression Accuracy (Test): 65.19% Logistic Regression Precision: 63.10% Logistic Regression Recall: 60.46%

Problem 1 – Alcohol

Top 5 Features

- Extraversion
- Neuroticism
- Openness
- Agreeableness
- Conscientiousness

Most Positive Coefficients

- Age_18-24
- Education_Doctorate Degree
- Education_Masters Degree

Most Negative Coefficients

- Ethnicity Asian
- Country_Republic of Ireland
- Education_Left School Before 16 years

Problem 1 - Caffeine

Top 5 Features

- Neuroticism
- Conscientiousness
- Openness
- Extraversion
- Agreeableness

Most Positive Coefficients

- Education_Masters Degree
- Age_18-24
- Ethnicity_White

Most Negative Coefficients

- Education Left School at 16 years
- Age_55-64
- Ethnicity_Black

Problem 1 - Cannabis

Top 5 Features

- Openness
- Conscientiousness
- Sensation Seeking
- Neuroticism
- Extraversion

Most Positive Coefficients

- Age_18-24
- Openness
- Country_Australia

Most Negative Coefficients

- Country_UK
- Age 65+
- Ethnicity_Asian

Average Coefficient Value

Problem 1 - Chocolate

Top 5 Features

- Agreeableness
- Neuroticism
- Extraversion
- Conscientiousness
- Openness

Most Positive Coefficients

- Country_UK
- Ethnicity_White
- Ethnicity_Mixed-White/Black

Most Negative Coefficients

- Ethnicity_Black
- Country USA
- Gender Male

Problem 1 - Mushrooms

Top 5 Features

- Openness
- Sensation
- Country_UK
- Conscientiousness
- Agreeableness

Most Positive Coefficients

- Country_Australia
- Age_18-24
- Country_Canada

Most Negative Coefficients

- Country_UK
- Ethnicity_Mixed-White/Black
- Education_Left School at 17 years

Problem 1 - Nicotine

Top 5 Features

- Conscientiousness
- Openness
- Neuroticism
- Extraversion
- Sensation Seeking

Most Positive Coefficients

- Age_18-24
- Country_Republic of Ireland
- Education_Left School Before 16 years

Most Negative Coefficients

- Country New Zealand
- Age_45-54
- Education_Doctorate Degree

Average Coefficient Value

Problem 1 – Key Findings

Random Classifier

- Higher feature importance corresponds to a feature being a stronger determinant of drug usage
- Personality types were the strongest determinants across drug types

Logistic Regression

- Positive coefficients indicate higher likelihood of being a frequent user of a drug
- · Negative coefficients indicate lower likelihood of being a frequent user of a drug
- Categorical (binary) features: represent shifts in the log-odds of the outcome when moving from one category to another
 - Ex. Being female increases the log-odds of being a frequent drug user by 0.8 compared to being a male
- Numerical (continuous) features: represent the change in the log-odds of the outcome for every one-unit increase in the feature
 - Ex. For everyone one-unit increase in Neuroticism, the log-odds of being a frequent drugs user increases by 0.2

Problem 1 – Key Findings

Alcohol

- Multiclass Random Forest: Personality traits are strongest indicators of drug usage
- Logistic Regression: Age 18-24 most likely to be a frequent user, Ethnicity Asian least likely to be a frequent user

Caffeine

- Multiclass Random Forest: Personality traits are strongest indicators of drug usage
- Logistic Regression: Education Masters Degree most likely to be a frequent user, Education Left School at 16 years least likely to be a frequent user

Cannabis

- Multiclass Random Forest: Personality traits are strongest indicators of drug usage
- Logistic Regression: Age 18-24 most likely to be a frequent user, From UK least likely to be a frequent user

Chocolate

- Multiclass Random Forest: Personality traits are strongest indicators of drug usage
- Logistic Regression: From UK most likely to be a frequent user, Ethnicity Black least likely to be a frequent user

Mushrooms

- Multiclass Random Forest: Living in the UK is a strong indicator of drug usage
- Logistic Regression: From Australia most likely to be a frequent user, From UK least likely to be a frequent user

Nicotine

- Multiclass Random Forest: Personality traits are strongest indicators of drug usage
- Logistic Regression: Age 18-24 most likely to be a frequent user, From New Zealand least likely to be a frequent user

Future Use of Findings

- Targeting sensation seeking behaviors in solutions- providing constructive alternatives to risky behaviors
- Target ages 18-24 improving education around drug usage & abuse
- Create age-specific risk assessment tools incorporating personality trait measurements for early intervention programs and preventive healthcare strategies
- Develop studies that track personality trait evolution and drug use patterns across age groups to identify critical transitionary moments
- Shifting focus of targeted intervention programs to women

