18. Granuláris anyagok

Modern fizika laboratórium

Mérést végezte: Krasznai Zsófia

Lugosi Lilla

Márton Tamás

Mérés időpontja: 2018. 03. 12. 10:15-14:00

Mérés célja

A mérés során granuláris anyagokban nyomás mélységfüggésének, erőeloszlásának vizsgálatát végeztük különböző anyagi minőségű mintákkal. Ezekből az anyagok Janssenegyütthatója meghatározható és q-modell igazolható az erőláncok eloszlásának inhomogenitásával.

Elméleti háttér

A granuláris anyagok, másnéven szemcsés anyagok, olyan rendszerek, amelyek 10⁴-10¹⁵darab makroszkopikus méretű részecskéből állnak. Általános esetben a részecskékre a gravitációs erő, az egymás között fellépő taszítóerő és az érintkezések helyén fellépő súrlódási erő hat. Különlegességük abból fakad, hogy a részecskék átlagos potenciális energiája sokkal nagyobb, mint a hőmozgásból adódó energiájuk, ezért a hőmérséklet átlagoló szerepe megszűnik. Ebből következően bármilyen metastabil állapot zavar nélkül végtelen ideig fennmaradhat, a rendszer leírása tehát sokkal bonyolultabbá válik. Granuláris anyagok leírása még nyugalmi állapotban sem könnyű, mivel bennük véletlenszerűen kialakuló hálózatok alakulnak ki, csak ezek mentén érintkeznek a részecskék egymással. Az érintkezési pontokban fellépő erőt a részecskék alakja, elrendeződése és felületi tulajdonságai mellett a rendszer múltja is befolyásolja. Kialakul egy inhomogén struktúra, melyben a legnagyobb feszültségi láncokat erőláncoknak nevezzük. Ezen erőláncokat vizsgálja a két mérés.

Nyomás mélységfüggése:

A hidrodinamikából ismert

$$P(z) = z * \rho * g \tag{1}$$

képlet helyett granuláris anyagokban mást kell alkalmazni, kísérleti tapasztalat ugyanis, hogy a magasság növelésével a plusz súlyt a tárolóedény fala tartja meg egyre nagyobb részben. A jelenségre magyarázatot ad a Janssen-modell. Feltevései szerint a nyomás csak a függőleges irányú helykomponenstől függ P(z). Egy granuláris anyaggal töltött R sugarú, S alapterületű henger dz vastag részének egyensúlyban kell lennie, melynek feltétele, hogy a rá ható erők eredője nulla legyen:

$$\rho * g * S * dz - \frac{dP(z)}{dz} * S * dz - dF_{\text{súrl}} = 0$$
(2)

A modell a nyomás vízszintes és függőleges irányban mérhető komponense között

$$P_{hor}(z) = K * P(z) \tag{3}$$

arányosságot feltételez, melyben K konstans értékét Janssen-együtthatónak nevezzük.

Feltehető még, hogy a súrlódási erő mindenhol függőlegesirányú és a maximum értékét veszi fel:

$$dF_{\text{súrl}} = \mu * K * P(z) * 2 * \pi * R * dz$$
 (4)

ahol µ a súrlódási együttható.

Ezen összefüggések behelyettesítésével és $\lambda = \frac{R}{2*\mu*K}$ változó bevezetésével a Janssenmodell differenciálegyenlete:

$$\frac{dP(z)}{dz} + \frac{1}{\lambda} * P = \rho * g \tag{5}$$

Ennek megoldása P(0)=0 kezdeti feltétellel:

$$P(z) = \lambda * \rho * g * \left(1 - e^{-\frac{z}{\lambda}}\right)$$
 (6)

Ez az exponenciálisan lecsengő karakteriszitka hasonló eredményt mutat a kísérleti tapasztalattal.

Erőeloszlás vizsgálata:

Az egyes szemcsékre ható erők leírására jó becslést adhat a q-modell. Minden részecske (a külső rétegektől eltekintve) a felette levő rétegből N részecskétől kapott erőt és a saját súlyát továbbítja az alatta levő és vele kapcsolatban levő N részecskének. Az i és j-dik részecske között tehát a továbbított erőt egy q_{ij} véletlen változóval jellemezhetjük. M mélységben az i-dik részecske által megtartott w(M,i) súlynak az alábbi egyenletet ki kell elégítenie:

$$w(M,i) = 1 + \sum_{j=1}^{N} q_{ij} * (M-1) * w(M-1,i) (7)$$

A q_{ii} változókra a feltevés, hogy

$$\sum_{i=1}^{N} q_{ij} = 1 \tag{8}$$

A valóságban azonban az erős térben korreláltak, de a modell ettől eltekint. A modell végeredménye, hogy a redukált súly v=w/M eloszlásfüggvénye:

$$P(v) \sim v^{N-1} * e^{-a*v} \tag{9}$$

ahol a egy konstans.

A mérhető erők lecsengése exponenciális, de mivel lassabb, mint a Gauss, ezért az átlagos erőnél lényegesen nagyobb erők súlya a vártnál nagyobb.

Mérőeszközök

- piros műanyag kocka és köles minták
- vonalzó
- hengeredény dugattyúval
- mérleg
- indigó, papírlapok
- üveggolyós szemcsés anyag
- henger tároló
- kiértékelő program

Mérés menete, mért adatok

Nyomás mélységfüggése:

A laborban két különböző anyag: piros műanyag kocka és köles adagolásával a hengerbe mértük az oszlop látszólagos tömeget, mely a Janssen-modell alapján:

$$m_l(m) = m_{\infty} \left(1 - e^{-\frac{m}{m_{\infty}}} \right) \tag{10}$$

A kísérletet megismételtük a piros műanyaggal egy felfogólap közbeiktatásával is, így a szemcsék alacsonyabbról estek, más várható a Janssen-együtthatónak.

A mért adatokból az illesztett paraméterekkel a Jansen-együttható:

$$K = \frac{R^3 * \pi * \rho}{2 * \mu * m_{\infty}} \tag{11}$$

A súrlódási együtthatók meghatározását a lejtőn való megcsúszásukból számoltuk ki:

$$tan(\alpha) = \mu \tag{12}$$

henger átmérője d=5 cm

dugattyú tömege 47 g

A piros műanyag esetén egy pohárnyi mennyiségű anyag 47,2 g, a köles pedig 30,4 g.

Az alábbi táblázat oszlopai tartalmazzák az adott mintával végzett 3-3 mérés átlagát a mérleg által mutatott tömegértékeket

poharak száma	piros műanyag (g)	köles (g)	piros műanyag csillapítással (g)	poharak száma	piros műanyag (g)	köles (g)	piros műanyag csillapítással (g)
1	92,00	72,67	87,67	12	145,00	185,33	-
2	107,33	96,33	106,33	13	146,00	191,00	-
3	116,67	113,33	113,00	14	-	195,00	-
4	123,00	129,00	121,00	15	-	196,33	-
5	128,00	139,00	122,33	16	-	198,00	-
6	133,33	149,67	125,00	17	-	201,33	-
7	135,33	162,67	126,33	18	-	203,33	-
8	138,33	167,00	128,33	19	-	204,67	-
9	141,00	173,67	129,67	20	-	206,67	-
10	142,67	179,00	131,00	magasság	62,8	49,40	53,50
11	144,00	182,67	132,67	(cm)			

Erőeloszlás vizsgálata:

A mérési összeállításban a mérőhenger aljára indigó alá helyezett papírlapra a granuláris anyag beletöltése és 600-800 N erő hatására a golyók lenyomatot hagytak a rájuk ható erők nagyságával arányosan erősebbet. Ezt a lenyomatot elemeztük a kiértékelő program segítségével.

<u>Kiértékelés</u>

nyomás mélységfüggése:

Két anyagra a megcsúszási magasság és az ebből számolt lejtő szöge, súrlódási együttható:

	piros műanyag	köles
h (cm)	10,4 ± 0,05	8,2 ± 0,05
α (°)	24,70	19,24
μ	0,4597 ± 0,05	0,3488 ± 0,05

A hosszmérés hibája leolvasási hiba: $\Delta l=0.05$ cm. A súrlódási együttható esetén a hiba a hosszmérésből és a számolásnál a hibaterjedésből adódott. A számolásnál a hibaterjedésből adódó hiba: $\Delta \mu=0.05$ a piros műanyagra és $\Delta \mu=0.06$ a kölesre.

Az anyag magasságából és az üveghenger átmérőjéből kiszámolható a térfogat, amiből a mért tömegértékkel a sűrűség is.

	piros műanyag	köles	piros műanyag csillapítással
h (cm)	62,8 ± 0,05	49,4 ± 0,05	53,5 ± 0,05
V (cm ³)	1233,075 ± 0,04	969,97 ± 0,04	1050,47 ± 0,04
m _{valódi} (g)	659,6 ± 1,28	654,0 ± 0,64	565,2 ± 1,28
ρ (g/cm³)	1,87 ± 0,04	0,67 ± 0,03	0,54 ± 0,04
m∞ (g)	147,97 ± 0,85	222,1 ± 2,8	138,6 ± 4,4
K	0,67 ± 0,13	0,21 ± 0,18	0,21 ± 0,15

A sűrűség számolásánál fellépő hibák a hosszmérés leolvasási hibája, ami a henger átmérője esetén Δl =0,05 cm, az anyag magasságánál azonban az egyenetlen felszín miatt a hibát Δl =0,1 cm-nek becsültük. Az anyag valódi tömegének hibája az egyes pohártömegek szórásából Δm =1,28 g értéknek adódott a piros műanyag esetén és Δm =0,64 g-nak a kölesnél.

Látszólagos tömeg a valódi tömeg függvényében piros műanyag esetén

Látszólagos tömeg a valódi tömeg függvényében köles esetén

Látszólagos tömeg a valódi tömeg függvényében piros műanyag esetén csillapítással

erőeloszlás vizsgálata:

A program által kiértékelt adatokra Gauss-görbét

$$c * e^{\frac{-x^2}{2*z}}$$

és a q-modellnek megfelelően

$$a*x*e^{-b*x}$$

alakú függvény illesztése után a kapott paraméterek az egyes esetekre:

	1.mérés	2.mérés	3.mérés	4.mérés
а	30,7102 ± 1,197	30,7126 ± 19,16	49,4675 ± 33,35	49,0625 ± 2,61
b	0,0615 ± 0,002	0,05961 ± 0,024	0,0835 ± 0,0321	0,0605 ± 0,0280
С	189,539 ± 4,342	283,146 ± 26,08	324,527 ± 21,64	480,655 ± 57,6
Z	1382,68 ± 67,4	847,398 ± 197	452,168 ± 80,84	649,673 ± 158,7

Az egyes szemcséken mérhető erők eloszlásának grafikonja szemilogaritmikus skálán

Gauss-, és a q-modell alapján származtatott illesztések azösszesített mérési adatra

homogenitás vizsgálata:

A négy mintán a foltméretek gyakorisági eloszlásának ábrázolása két részre osztva

Az ábra alapján látható, hogy az azonos színnel jelölt minták két térrészre osztott mintavételezése között nincs jelentős különbség, az eloszlás tehát homogénnek tekinthető.