期末考试

姓名:陈 稼 霖 学号:SA21038052

成绩:

第 1 题 *得分*: ______. 群 G, 群元 a,b, 定义共轭为: 若 a 与 b 共轭, 则 $\exists g \in G$, s.t. $b = g^{-1}ag$. 证明: 共轭是一个等价关系.

证: 共轭满足

- (1) 反身性: $\forall a \in G$, 取 g = e, $e^{-1}ae = eae = a \Longrightarrow a 与 a 共轭.$
- (2) 对称性: a 与 b 共轭 $\iff \exists g \in G$, s.t. $b = g^{-1}ag \iff \exists g^{-1} \in G$, s.t. $a = gbg^{-1} = (g^{-1})^{-1}bg^{-1} \iff b$ 与 a 共轭.
- (3) **传递性**: 若 a 与 b 共轭, b 与 c 共轭, 则 ∃ $g_1, g_2 \in G$, s.t. $b = g_1^{-1}ag_1, c = g_2^{-1}bg_2$. 取 $g = g_1g_2$, 则 $c = g_2^{-1}bg_2 = g_2^{-1}(g_1^{-1}ag_1)g_2 = (g_2^{-1}g_1^{-1})a(g_1g_2) = (g_1g_2)^{-1}a(g_1g_2) = g^{-1}ag \Longrightarrow a$ 与 c 共轭. 故共轭是一个等价关系.

第2题 得分: _____. 向量空间中四个元素

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (1) 证明 $I, \sigma_x, \sigma_y, \sigma_z$ 是线性无关的.
- (2) 证明对任意自伴随、迹为 1 的矩阵 A, 可以写成 $A = \frac{1}{2}(I + a\sigma_x + b\sigma_y + c\sigma_z)$ 的形式, 其中 a,b,c 为实数, $a^2 + b^2 + c^2 \le 1$. 特别地, 当 A 的秩为 1 时, $a^2 + b^2 + c^2 = 1$.

证: (1) 假设

$$a_1I + a_2\sigma_x + a_3\sigma_y + a_4\sigma_z = 0,$$

则

$$\begin{pmatrix} a_1 + a_4 & a_2 - ia_3 \\ a_2 + ia_3 & a_1 - a_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$\implies a_1 = a_2 = a_3 = a_4 = 0,$$

故 $I, \sigma_x, \sigma_y, \sigma_z$ 是线性无关的.

(2) : A 自伴随, $A^{\dagger} = A$, 即 A 关于对角线对称位置上的矩阵元复共轭, 对角线上的矩阵元为实数. : A 的迹为 A 的对角线上的矩阵元的求和为 A 记 综上, A 可表为

$$A = \frac{1}{2} \begin{pmatrix} 1+c & a-ib \\ a+ib & 1-c \end{pmatrix} = \frac{1}{2} (I + a\sigma_x + b\sigma_y + c\sigma_z).$$

(其余存疑)

第 3 题 得分: _______. V 为向量空间, $\tau \in \mathcal{L}(V)$, $\mathcal{E} = \{e_1, e_2, e_3\}$ 为一组标准基, 且

$$\tau(e_1) = e_1 + e_2$$

 $\tau(e_2) = e_2 + e_3$
 $\tau(e_3) = e_3 + e_1$

(1) 求标准基 \mathcal{E} 下 τ 的矩阵表示 $[\tau]_{\mathcal{E}}$.

- (2) 若另一组基在标准基下表示为 $\mathcal{B} = \{(1,0,0),(1,1,0),(1,1,1)\},$ 求 τ 在 \mathcal{B} 下的表示 $[\tau]_{\mathcal{B}}$.
- (3) 写出 τ 的极小多项式, 并写出其有理标准型. 再写出域为复时的约当标准型.

解: (1) 标准基 \mathcal{E} 下 τ 的矩阵表示为

$$[\tau]_{\mathcal{E}} = \begin{pmatrix} [\tau(e_1)]_{\mathcal{E}} & [\tau(e_2)]_{\mathcal{E}} & [\tau(e_3)]_{\mathcal{E}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

(2) 标准基 $\mathcal{B} = \{e_1, e_1 + e_2, e_1 + e_2 + e_3\}$, 则 τ 在 \mathcal{B} 下的表示为

$$[\tau]_{\mathcal{B}} = \left([\tau(e_1)]_{\mathcal{B}} \quad [\tau(e_1 + e_2)]_{\mathcal{B}} \quad [\tau(e_1 + e_2 + e_3)] \right) = \left([e_1 + e_2]_{\mathcal{B}} \quad [e_1 + 2e_2 + e_3]_{\mathcal{B}} \quad [2e_1 + 2e_2 + 2e_3]_{\mathcal{B}} \right)$$

$$= \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

(3) τ 的特征多项式为

$$|[\tau]_{\mathcal{E}} - xI| = \begin{vmatrix} x - 1 & 0 & -1 \\ -1 & x - 1 & 0 \\ 0 & -1 & x - 1 \end{vmatrix} = (x - 1)^3 - 1 = (x - 2)(x^2 - x + 1) = 0, \tag{1}$$

τ 的最小多项式为

$$m_{\tau}(x) = (x-2)(x^2 - x + 1).$$
 (2)

(x-2) 和 (x^2-x+1) 的伴阵为

$$C[(x-2)] = (2), \quad C[(x^2 - x + 1)] = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$
 (3)

故 τ 的有理标准型为

$$[\tau] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}. \tag{4}$$

在复数域上, τ 的特征多项式为

$$|\det([\tau]_{\mathcal{E}} - xI)| = (x - 2)\left(x - \frac{1 + i\sqrt{3}}{2}\right)\left(x - \frac{1 - i\sqrt{3}}{2}\right). \tag{5}$$

对特征值 2,

$$r_1 = \operatorname{rk}(2I - [\tau]_{\mathcal{E}}) = \operatorname{rk} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = 2,$$

$$r_2 = \operatorname{rk}(2I - [\tau]_{\mathcal{E}})^2 = \operatorname{rk} \begin{pmatrix} 1 & 1 & -2 \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{pmatrix} = 2,$$

故以 2 为特征值阶为 1 的约当块的个数为

$$w_1([\tau]_{\mathcal{E}}, 2) - w_2([\tau]_{\mathcal{E}}, 2) = [3 - r_1] - [r_1 - r_2] = 1,$$

以 2 为特征值阶为 2 的约当块的个数为

$$w_2([\tau]_{\mathcal{E}}, 2) - w_3([\tau]_{\mathcal{E}}, 2) = [r_1 - r_2] - (r_2 - r_3) = 0.$$

(实际上, 特征值 2 的阶数为 1, 故只需求到阶 1 的约当块的个数即可.) (x-2), $\left(x-\frac{1+i\sqrt{3}}{2}\right)$ 和 $\left(x-\frac{1-i\sqrt{3}}{2}\right)$ 的阶为 1 的约当块分别为

$$g(2,1) = \left(1\right), \quad g\left(\frac{1+i\sqrt{3}}{2},1\right) = \left(\frac{1+i\sqrt{3}}{2}\right), \quad g\left(\frac{1-i\sqrt{3}}{2},1\right) = \left(\frac{1-i\sqrt{3}}{2}\right). \tag{6}$$

故 τ 的约当标准型为

$$[\tau] = \begin{pmatrix} 2 & 0 & 0\\ 0 & \frac{1+i\sqrt{3}}{2} & 0\\ 0 & 0 & \frac{1-i\sqrt{3}}{2} \end{pmatrix}. \tag{7}$$

(实际上, $[\tau]$ 可对角化, 即几何重数 = 代数重数, 故约当标准型为对角阵, 即得.)

第 4 题 得分: _____. 映射 $f: M_1 \to M_2$

- (1) 证明 f 是连续的当且仅当闭集的原像集也是闭的.
- (2) 若 f 等距, (x_n) 是 M_1 中的柯西列, 证明 $(f(x_n))$ 也是柯西列.
- 解: (a) " \Longrightarrow ": 假设 $S_2 \subseteq M_2$ 为闭集.

 S_2 的原像集 $f^{-1}(N_2) \equiv \{x \in M_1 \mid f(x) \in S_2\}$, 记为 S_1 .

假设 (x_n) 为 S_1 中收敛序列且 $(x_n) \to x_0$, 记 S_2 中序列 $(y_n) = (f(x_n)), y_0 = f(x_0)$.

f 连续, $\forall \epsilon > 0$, $\exists \delta > 0$, s.t. $f(B(x_0, \delta)) \subseteq B(f(x_0), \epsilon) = B(y_0, \epsilon)$.

 $X : (x_n) \to x_0, \therefore \exists N > 0, \text{ s.t. } \stackrel{\text{def}}{=} n > N \text{ Bl}, x_n \in B(x_0, \delta) \Longrightarrow y_n = f(x_n) \in B(y_0, \epsilon) \Longrightarrow (y_n) \to y_0.$

又:S₂为闭集,:y₀ \in S₂,即 $f(x_0) \in$ S₂

 $\Longrightarrow x_0 \in S_1 \Longrightarrow S_1$ 为闭集.

" \longleftarrow "(存疑): 设闭集 $S_2 \subseteq M_2$, $S_1 = f^{-1}(S_2)$.

 $:: S_1$ 是闭的, $:: S_1$ 是闭的.

假设 f 不连续, 则 $\exists \epsilon > 0$, $\forall \delta > 0$, s.t. $f(B(x_0, \delta)) \not\subseteq B(f(x_0), \epsilon)$, 即 $\exists x' \in B(x_0, \delta)$, s.t. $B(f(x'), \epsilon)$.

特别地, 取 δ_1 , s.t. $B(x_0, \delta_1) \subseteq S_1$, 此时, $\exists x_1 \in B(x_0, \delta_1)$, s.t. $f(x_1) \notin B(f(x_0), \epsilon)$,

...,

 $\mathbb{R} \delta_n = \frac{\delta_1}{n}, \exists x_n \in B(x_0, \delta_n), \text{ s.t. } f(x_n) \notin B(f(x_0), \epsilon),$

 \cdots , 从而得到序列 $(x_n) \to x_0$, 序列 $(f(x_n))$ 不收敛至 $f(x_0)$, 与 S_2 是闭的矛盾, 故假设错误, f 是连续的.

综上, 得证.

(b) (x_n) 为 M_1 中的柯西列, $\forall \epsilon, \exists N > 0$, s.t. 当 n, m > N 时, $||x_n - x_m|| < \epsilon$.

f 等距, $\|f(x_n) - f(x_m)\| = \|f(x_n - x_m)\| = \|x_n - x_m\| \Longrightarrow (f_n)$ 为 M_2 中的柯西列.

第 5 题 得分: . V 是有限维内积向量空间, $\tau \in \mathcal{L}(V)$

- (a) 若 A 是非空子集, 证明 A^{\perp} 是完备的.
- (b) 设 $\tau = \lambda_1 \rho_1 + \lambda_2 \rho_2 + \cdots + \lambda_k \rho_k$, 其中 $\rho_1 + \rho_2 + \cdots + \rho_k = I$ 是单位分解. 证明:

$$f(\tau) = f(\lambda_1)\rho_1 + f(\lambda_2)\rho_2 + \cdots + f(\lambda_k)\rho_k$$
.

- (c) 证明 V 的线性算子都是有界的.
- (d) 求酉算子的范数.
- (e) 证明 τ 是半正定的当且仅当 $\exists \sigma \in \mathcal{L}(V)$, s.t. $\tau = \sigma^* \sigma$, 并说明 σ 不是唯一的.
- 解: (a) 首先证明 A^{\perp} 为一子空间: $\forall u, v \in A^{\perp}$, $\forall r, t \in F$, $\forall a \in A$, $\langle ru+tv, a \rangle = r\langle u, a \rangle + t\langle v, a \rangle = 0 \Longrightarrow (ru+tv) \perp a \Longrightarrow (ru+tv) \perp A \Longrightarrow ru+tv \in A^{\perp}$, 故 A^{\perp} 为子空间. 又:V 有限维、 A^{\perp} 为有限维.

再利用课本定理 13.7 (3) 即得证.

- (b) 展开 f 得 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ $\implies f(\tau) = \sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} \tau^n$, 其中 $\tau^n = (\lambda_1 \rho_1 + \dots + \lambda_k \rho_k)^n = \lambda_1^n \rho_1 + \dots + \lambda_k^n \rho_k$, 故 $f(\tau) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (\lambda_1^n \rho_1 + \dots + \lambda_k^n \rho_k) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \lambda_1^n \rho_1 + \dots + \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \lambda_k^n \rho_k = f(\lambda_1) \rho_1 + \dots + f(\lambda_k) \rho_k$.
- (c) $\forall x_0 \in V, \forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in B(x_0, \epsilon),$ 即 $\|x x_0\| < \delta,$ 有 $\|f(x) f(x_0)\| = \|f(x x_0)\| \le \epsilon,$ 即
- (d) 设 $\tau \in \mathcal{L}(V)$ 为酉算子, 则 τ 等距. $\|\tau\| = \sup_{\|x\|=1} \|\tau(x)\| = \sup_{\|x\|=1} \|x\| = 1.$
- (e) "⇒": τ 是半正定的, τ 可设 τ 的正交谱分解 $\tau = \lambda_1 \rho_1 + \lambda_k \rho_k$ (其中 $0 \le \lambda_i \in \mathbb{R} \forall i$), 并取 $\sigma = \sqrt{\tau} = \sqrt{\lambda_1} \rho_1 + \dots + \sqrt{\lambda_k} \rho_k$.

" \longleftarrow ": $\because \tau = \sigma^* \sigma$, $\therefore \forall v \in V$, $\langle \tau(v), v \rangle = \langle \sigma^* \sigma(v), v \rangle = \langle \tau(v), \tau(v) \rangle = ||\tau(v)|| \ge 0$, 故 τ 是半正定的.

显然, σ 并非唯一的, 例如可取 $\sigma = -\sqrt{\lambda_1}\rho_1 + \cdots + \sqrt{\lambda_k}\rho_k$.

第 6 题 得分: . H 是希尔伯特空间, B 是其有界算子的集合, 证明

- (a) 若 $\tau \in B$, 则 ker τ 是完备的.
- (b) 若 $\tau, \sigma \in B$, 则它们的复合 $\sigma \circ \tau$ 也是有界的.
- 证: (a) 若 $\|\tau\| = 0$, 即 $\tau = 0$, 则显然 $\ker \tau = H$ 是完备的, 故下面只讨论 $\|\tau\| \neq 0$ 的情况. 首先证 $\ker \tau$ 是 H 的子空间: $\forall u, v \in \ker \tau, \tau(ru + tv) = r\tau(u) + t\tau(v) = 0 \Longrightarrow ru + tv \in \ker \tau$, 故 $\ker \tau$ 为 H 的子空间.

再证 $\ker \tau$ 是闭的: 假设 $\ker \tau$ 中收敛序列 (x_n) 收敛至 x_0 ,

即 $\forall \epsilon > 0$, $\exists N > 0$, s.t. 当 n > N 时, $||x_n - x_0|| \le \epsilon$.

假设 $\|\tau(x_0)\| \neq 0$, 则取 $\epsilon = \frac{\|\tau(x_0)\|}{2\|\tau\|}$, $\forall N > 0$, 当 n > N 时, $\|x_n - x_0\| \geq \frac{\|\tau(y)\|}{\|\tau\|} > \epsilon$, 与 $(x_n) \to x_0$ 矛盾, 故假设错误, $\|\tau(x_0)\| = 0$

- $\Longrightarrow \tau(x_0) = 0 \Longrightarrow x_0 \in \ker \tau$, $\text{th} \ker \tau \in \mathbb{R}$.
- :H 为希尔伯特空间, $\ker \tau$ 为 H 的子空间且 $\ker \tau$ 是闭的, :S 完备.
- (b) :: $\|\sigma \circ \tau(x)\| = \|\sigma(\tau(x))\| \le \|\sigma\| \|\tau(x)\| \le \|\sigma\| \|\tau\| \|x\|$, :: $\|\sigma \circ \tau\| = \sup_{x \ne 0} \frac{\|\sigma \circ \tau(x)\|}{\|x\|} \le \sup_{x \ne 0} \|\sigma\| \|\tau\| = \|\sigma\| \|\tau\|$, 故 $\sigma \circ \tau$ 也是有界的.