Introduction to dataframes

QB Bootcamp, Day 2 Thursday, 30 September 2022 2:00pm - 2:15pm

Fisher's "Iris" dataset is a famous example dataset in statistics and dataviz

150 rows (50 per species)

		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

:

Dataframes greatly facilitate data visualization

"aesthetics"

			\mathcal{X}	У	color
	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa
10	5.4	3.7	1.5	0.2	setosa
11	4.8	3.4	1.6	0.2	setosa
12	4.8	3.0	1.4	0.1	setosa
13	4.3	3.0	1.1	0.1	setosa
14	5.8	4.0	1.2	0.2	setosa

Dataframes facilitate important data-organizational transformations

	sepal_length	sepal_width	petal_length	petal_width	species		species	variable	value
0	5.1	3.5	1.4	0.2	setosa	0	setosa	sepal_length	5.1
1	4.9	3.0	1.4	0.2	setosa	melt ₁	setosa	sepal_length	4.9
2	4.7	3.2	1.3	0.2	setosa	2	setosa	sepal_length	4.7
3	4.6	3.1	1.5	0.2	setosa	3	setosa	sepal_length	4.6
4	5.0	3.6	1.4	0.2	setosa	4	setosa	sepal_length	5.0

individual = 1 flower

individual = 1 measurement

FULL DISCLOSURE:

Classical statistics is closely entwined with eugenics.

The Iris dataset comes from:

R. A. Fisher (1936).

"The use of multiple measurements in taxonomic problems".

Annals of Eugenics. 7 (2): 179–188. (data collected by Edgar Anderson)

https://en.wikipedia.org/wiki/Ronald Fisher

We will start by working with a dataframe listing transcription factor binding sites in the database RegulonDB

	tf	site
0	AcrR	gcgttagattTACATACATTTGTGAATGTATGTAccatagcacg
1	AcrR	cgtgctatggTACATACATTCACAAATGTATGTAaatctaacgc
2	AcrR	catcggtcaaTTCATTCATTtgacttatac
3	AcrR	tcactacacgCACATACAACggaggggggc
4	AcrR	atttattaccGTCATTCATTTCTGAATGTCTGTTtacccctatt
5	AcrR	gctttacctcAAGTTAACTTgaggaattat
6	AcrR	ataattcctcAAGTTAACTTgaggtaaagc
7	Ada	ttcagacgctGCGCTTTGCTTTCATATTCCGGTTgtcgcgacgg
8	Ada	ggtcaccatcACGCAAAAACCAACAATCTTGCGCtttaattttt
9	Ada	caacaatcttGCGCTTTAATTTTTTCGCTGACAaggaagcttt
10	Ada	cgcattacatTGCTGGATAAGAATGTTTTAGCAAtctctttctg
11	AgaR	ttcgtaaaacTTTCGTTTCATTTCGTTTTGcctattaacg
12	AgaR	ttgcctattaACGCCTTTCTATTAAGCAAAtgcaagccca
13	AgaR	tttcagtgacTTTCATTATGTTTCTTTTGTgaatcagatc
14	AgaR	aaccattatcTTTCGTTTTATTTTTATCTCaccatgacgc

- Load TF binding site database a Pandas dataframe
- 2. Filter for TF of choice
- 3. Filter for binding sites of the most common length
- 4. Make a sequence logo

CRP logo (from 358 sites)

We will then parse our computed replication profiles in the form of a data frame

	chromosome	start	stop	reads
0	chrl	1	31	2
1	chrl	32	62	0
2	chrl	63	93	1
3	chrl	94	124	0
4	chrl	125	155	3
5	chrl	156	186	0
6	chrl	187	217	0
7	chrl	218	248	0
8	chrl	249	279	0
9	chrl	280	310	0
10	chrl	311	341	0
11	chrl	342	372	0
12	chrl	373	403	0
13	chrl	404	434	0
14	chrl	435	465	1

- 1. Load a .bed file as a Pandas dataframe
- 2. Filter for the chromosome of choice
- 3. Smooth # reads as a function of position
- 4. Plot replication profile

