Definition 26 (Harris recurrence) A set A is called Harris recurrent if

$$Q(x, A) = P_x(\eta_A = \infty) = 1, \quad x \in A.$$

A chain Φ is called Harris (recurrent) if it is ψ -irreducible and every set $A \in \mathcal{B}^+(\mathcal{X})$ is Harris recurrent.

A standard alternative definition of an Harris recurrence set is that L(x, A) = 1 for $x \in A$, however they are equivalent. Nevertheless, using Q(x, A) = 1 highlights the strengthening of recurrence to Harris recurrence from an expected infinite number of visits to a set to an almost surely infinite number of visits.

Proposition 17 Suppose for some one set $A \in \mathcal{B}(\mathcal{X})$ we have $L(x, A) \equiv 1$ for $x \in A$. Then Q(x, A) = L(x, A) for all $x \in \mathcal{X}$ and A is Harris recurrent.

Proof:

The most difficult proof of this section is the following.

Theorem 11 (i) Suppose that $D \rightsquigarrow A$ for any D, $A \in \mathcal{B}(\mathcal{X})$. Let μ be any initial distribution of the chain Φ . Then

$$\{\Phi \in D \ i.o.\} \subseteq \{\Phi \in A \ i.o.\}$$
 a.s. $[P_{\mu}]$

and $Q(y, D) \leq Q(y, A)$ for all $y \in \mathcal{X}$.

(ii) If $\mathcal{X} \leadsto A$, then A is Harris recurrent and $Q(x,A) \equiv 1$ for all $x \in \mathcal{X}$.

Proof: See Meyn & Tweedie, p. 202. The proof involves Martingales and would take too much time to give the necessary background to show/prove the Martingale Convergence Theorem.

This leads us to the following strengthening of Harris recurrence...

Theorem 12 If Φ is Harris recurrent, then Q(x, B) = 1 for every $x \in \mathcal{X}$ and every $B \in \mathcal{B}^+(\mathcal{X})$.

Proof:

Let D be any Harris recurrent set. Let $D^{\infty}=\{y:L(y,D)=1\}$. Then $D\subseteq D^{\infty}$ and D^{∞} is absorbing. We call D a maximal absorbing set if $D=D^{\infty}$.

Definition 27 (Maximal Harris sets) A set H is called maximal Harris if H is a maximal absorbing set such that Φ restricted to H is Harris recurrent.

Recall the following definitions

Definition 28 (Full and Absorbing Sets) A set $A \in \mathcal{B}(\mathcal{X})$ is said to be

- (i) full if $\psi(A^c) = 0$.
- (ii) absorbing if P(x, A) = 1 for $x \in A$.

In order to prove Theorem 13 we need the following three lemmas:

Lemma 5 Suppose that Φ is ψ -irreducible. Then

- (i) every absorbing set is full.
- (ii) every full set contains a non-empty absorbing set.

Proof:

Lemma 6 If Φ is a Markov chain and if $A \in \mathcal{B}(\mathcal{X})$ satisfies $L(x, A) \leq \epsilon < 1$ for $x \in A$, then $U(x, A) \leq (1 - \epsilon)^{-1}$ for all $x \in \mathcal{X}$.

Proof:

Lemma 7 If Φ is ψ -irreducible and $A \in \mathcal{B}(\mathcal{X})$ with $\psi(A) = 0$, then A is transient.

Proof: See Meyn & Tweedie, p. 186.

Theorem 13 If Φ is recurrent, then

$$\mathcal{X} = H \cup N$$

where H is a non-empty maximal Harris set and N is transient. Furthermore, $\psi(N) = 0$.

Proof:

