Semantic Technologies for Expert Search

The OWLsome Team

Ines Bannour
Alexandra Roatis
Jon Lazaro
Jean-Philippe Fauconnier
Johann Wanja Schaible

Motivation

The Matching Model

$$score(CV, Job) = \sum_{p} \alpha_{p} * sim_{p}(CV, Job)$$

$$\alpha_p = P(x|c_1 \wedge c_2 \wedge \dots c_n)$$

 $\alpha_p = P(x_1 > x_2|c)$

Conditions c_i :

- Inferred from personal CV
- Based on knowledge base
- Provided by person

Preferences x_i:

- Provided by job offer
- Provided by the user

```
sim_p(CV, Job) = \begin{cases} \text{scale of academic level} & \text{if } p \text{ is occupation} \\ 1/\text{geographical distance} & \text{if } p \text{ is location} \\ \text{graph similarity measure} & \text{if } p \text{ is skills} \\ \vdots & \vdots & \vdots \end{cases}
```

The calculation method for the similarity depends on the feature p.

- Graph based calculations
 - Taxonomies
 - Scales
 - Ontologies
 - LOD

Occupation

ENRICO

$$sim_{occ}(CV, Job) = \begin{cases} 1 & \text{if } CV_{occ} < Job_{occ} \\ 0.5 & \text{if } CV_{occ} = Job_{occ} \\ 0 & \text{if } CV_{occ} > Job_{occ} \end{cases}$$

$$\alpha_{occ} = P(x_{Job} > x_{CV} | c = \text{higher salary})$$

Location

MATHIEU

$$sim_{loc}(CV, Job) = \frac{1}{distance(CV_{loc}, Job_{loc})}$$

Distance between locations is calculated by geo coordinates taken from DBPedia.

Information on local facilities is also taken from DBPedia

$$\alpha_{loc} = P(x_{Job} > x_{CV} | c = \text{very very good hair salon})$$

Skills

 $sim_{skill}(CV, Job) = GSM(CV_{skill}, Job_{skill})$

 $\alpha_{skill} = P(x_{Job} > x_{CV} | c = I \text{ want to expand my skills})$

Architecture

Evaluation

Live Performance