Prediction of Regulatory Networks from Expression and Chromatin Data

Ivan G. Costa, RWTH Aachen University, Germany

Marcel Schulz, Saarland University & Max Planck Institute for Informatics,

Germany

Matthias Heinig, Helmholtz Center Munich, Germany

Overview

Time	Topic	Who
2:30 - 2:45	Introduction / gene regulation / transcription / chromatin	IC
2:45 - 3:00	Introduction ChIP-seq peak calling	MH
3:00 - 3:50	Practical peak calling	MH
4:15 - 4:30	Introduction Footprints	IC
4:30 - 4:45	Introduction Regulatory networks	MS
4:45 - 5:50	Practical Regulatory Networks	IG, MS & FS
5:50 - 6:00	Q & A session	all

Material - https://github.com/SchulzLab/EpigenomicsTutorial-ISMB2017

Team

Ivan Costa (IC)

Matthias Heinig (MH)

Marcel Schulz(MH)

Florian Schmidt (FS)

Introduction - Gene Regulation, Transcription and Chromatin

Ivan G. Costa RWTH Aachen University, Germany

www.costalab.org

Cell Differentiation & Gene Regulation

Hematopoiesis

Cell Differentiation & Gene Regulation

Hematopoiesis

Regulatory Control – Protein-DNA interaction

Regulatory Control – Protein-DNA interaction

Regulatory Control – Protein-DNA interaction

Chromatin and Gene Regulation

Chromatin and Cell Memory/Plasticity

Chromatin and Histones

Chromatin and Histones

Chromatin and Cell Memory/Plasticity

Histone Code

Transcription

H3K79me2, H3k36me3

Active Regions

H3K27ac, H3K9ac

Active Promoters

H3K4me3

Active Enhancers

H3K4me1

Repressed Prom.

H3K27me3

Repressed Regions

H3K9me3

NGS and Chromatin

NGS and Chromatin

- Nucleosome
- ► H3K4me3 (active region)
- ► H3K4me3 antibody
- Transcription factor 1
- Transcription factor 2

Shearing & Immunoprecipitation

| Nucleosome | H3K4me3 (active region) | H3K4me3 antibody | Transmission factor 1

- Transcription factor 1
- Transcription factor 2

Shearing & Immunoprecipitation

Sequencing

Nucleosome

- - Transcription factor 2

Shearing & Immunoprecipitation

Sequencing

Nucleosome

H3K4me3 (active region)

▶ H3K4me3 antibody

Transcription factor 1

Transcription factor 2

Alignment

Aligned Reads

Shearing & immunoprecipitation

Sequencing

Nucleosome

- H3K4me3 (active region)
- H3K4me3 antibody
- Transcription factor 1
 - Transcription factor 2

Alignment

ChIP-Seq

ChIP-Seq S

 detect location of TF and histone modifications with moderate precision (+/- 50-100 bps)

- one experiment per protein of interest
- not possible for all proteins

Reads

Overview

Transcription factors

- main player of gene regulation/transcription

Chromatin/histones

 organization of chromatin conformation and controls cellular memory/plasticity

Histone modifications

- affect interaction of histones with DNA and other histones
- indicate regulatory status of genomic regions

Next generation sequencing

- TF binding and histone modifications (ChIP-seq)
- open chromatin regions (DNase- & ATAC-seq)

Next

Time	Topic	Who
2:30 - 2:45	Introduction / gene regulation / transcription / chromatin	IC
2:45 - 3:00	Introduction ChIP-seq peak calling	MH
3:00 - 3:50	Practical peak calling	MH
4:15 - 4:30	Introduction Footprints	IC
4:30 - 4:45	Introduction Regulatory networks	MS
4:45 - 5:50	Practical Regulatory Networks	IG, MS & FS
5:50 - 6:00	Q & A session	all

Material - https://github.com/SchulzLab/EpigenomicsTutorial-ISMB2017

Team

Ivan Costa (IC)

Matthias Heinig (MH)

Marcel Schulz(MS)

Florian Schmidt (FS)

