



# **DATA C9004: Machine Learning**

| Module Details                   |                                                                                                                                                                                                                                                                                                              |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Code:                     | DATA C9004                                                                                                                                                                                                                                                                                                   |  |  |  |
| Full Title:                      | Machine Learning APPROVED                                                                                                                                                                                                                                                                                    |  |  |  |
| Valid From::                     | Semester 1 - 2019/20 ( June 2019 )                                                                                                                                                                                                                                                                           |  |  |  |
| Language of Instruction: English |                                                                                                                                                                                                                                                                                                              |  |  |  |
| Duration:                        | 1 Semester                                                                                                                                                                                                                                                                                                   |  |  |  |
| Credits::                        | 10                                                                                                                                                                                                                                                                                                           |  |  |  |
| Module Owner::                   | Rajesh Jaiswal                                                                                                                                                                                                                                                                                               |  |  |  |
| Departments:                     | Unknown                                                                                                                                                                                                                                                                                                      |  |  |  |
| Module Description:              | This module covers methods involved in designing and developing computer based programs that learn and improve with experience to make meaningful predictions based on test data. This module will focus on the concepts based on probability, statistics and optimization to train machine learning models. |  |  |  |

| Module Learning Outcome                                              |                                                                                                                       |  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| On successful completion of this module the learner will be able to: |                                                                                                                       |  |  |  |
| #                                                                    | Module Learning Outcome Description                                                                                   |  |  |  |
| MLO1                                                                 | Segregate and discuss a variety of machine learning algorithms                                                        |  |  |  |
| MLO2                                                                 | Outline the critical features of supervised and un-supervised learning                                                |  |  |  |
| MLO3                                                                 | Research the types of problems that machine learning algorithms can solve                                             |  |  |  |
| MLO4                                                                 | Compare various methods of training and optimization of computer programs that is obtained through learning from data |  |  |  |
| MLO5                                                                 | Design and train machine learning algorithms for independent and identically distributed data                         |  |  |  |
| MLO6                                                                 | Establish the data analyst role in constructing the machine learning solutions.                                       |  |  |  |
| MLO7                                                                 | Evaluate and Analyse the performance of a selected of machine learning model and its solution.                        |  |  |  |

## Pre-requisite learning

Module Recommendations

This is prior learning (or a practical skill) that is strongly recommended before enrolment in this module. You may enrol in this module if you have not acquired the recommended learning but you will have considerable difficulty in passing (i.e. achieving the learning outcomes of) the module. While the prior learning is expressed as named DkIT module(s) it also allows for learning (in another module or modules) which is equivalent to the learning specified in the named module(s).

No recommendations listed

### **Module Indicative Content**

Introduction

Al background, what is machine learning?, the five tribes

## Categories of Machine Learning Algorithms

Supervised Learning- Classification and Regression, Unsupervised Learning - Clustering

Supervised Learning - Classification
Discriminant Analysis, Support Vector Machines, Naive Bayes, Random Forest, Nearest Neighbor

Supervised Learning - Regression
Linear Regression, GLM, Ensemble Methods, Decision trees, Neural Network - MLP, Back Propagation, RNN and CNN. Intro to deep learning

Unsupervised Learning - Clustering
K-means, Fuzzy C -means, Hierarchical - clustering basis functions, Gaussian Mixture, HMM, Neural Network - Self Organizing Maps (2D)

# **Module Assessment**

| Assessment Breakdown | %      |  |
|----------------------|--------|--|
| Course Work          | 50.00% |  |
| Project              | 50.00% |  |

**Module Special Regulation** 

### **Assessments**

## **Full-time**

Course Work Assessment Type Continuous Assessment Marks Out Of 40 100 Pass Mark S1 Week 2 **Learning Outcome** 1,2 Timing

**Duration in minutes** 

Assessment Description
CA1 - Assignment to identify and analyse the features of machine learning algorithms

0

% of Total Mark 40 Assessment Type Continuous Assessment Marks Out Of 100 Pass Mark 40 Timing n/a **Learning Outcome** 3,4,5,7

**Duration in minutes** 

Assessment Description
CA2- Two assignments (20% each) to identify, design, and evaluate performance of the chosen machine learning algorithms to solve a given data analytics problem

## Project

% of Total Mark Assessment Type Group Project 50 Marks Out Of 100 Pass Mark 40 End-of-Semester Learning Outcome 3,4,5,6,7

**Duration in minutes** 0

Assessment Description
Group Project will consist of the following deliverable - Project proposal, Progress report and Project presentation. - Students will given a data related problem and will be asked to propose a solution based on machine learning model. Students will design and train and further analyse the performance of machine learning model and its solution

No Practical

No Final Examination

## Part-time

| Course Work     |                       |                  |     |  |  |
|-----------------|-----------------------|------------------|-----|--|--|
| Assessment Type | Continuous Assessment | % of Total Mark  | 10  |  |  |
| Marks Out Of    | 100                   | Pass Mark        | 40  |  |  |
| Timing          | S1 Week 2             | Learning Outcome | 1.2 |  |  |

0 **Duration in minutes** 

Assessment Description
CA1- Assignment to identify and analyse the features of machine learning algorithms

Assessment Type Continuous Assessment % of Total Mark 40 Marks Out Of 100 Pass Mark 40 Timing n/a **Learning Outcome** 3,4,5,7

**Duration in minutes** 

Assessment Description

CA2- Two assignments (20% each) to identify, design, and evaluate performance of the chosen machine learning algorithms to solve a given data analytics problem

## Project

Assessment Type Group Project % of Total Mark Marks Out Of 100 Pass Mark 40 End-of-Semester Learning Outcome 3,4,5,6,7

**Duration in minutes** 

Assessment Description
Group Project will consist of the following deliverable - Project proposal, Progress report and Project presentation. - Students will given a data related problem and will be asked to propose a solution based on machine learning model. Students will design and train and further analyse the performance of machine learning model and its solution

No Practical

No Final Examination

## Reassessment Requirement

No repeat examination
Reassessment of this module will be offered solely on the basis of coursework and a repeat examination will not be offered.

# **Module Workload**

| Workload: Full-time           |              |                                                                            |            |                                    |       |
|-------------------------------|--------------|----------------------------------------------------------------------------|------------|------------------------------------|-------|
| Workload Type                 | Contact Type | Workload Description                                                       | Frequency  | Average Weekly Learner<br>Workload | Hours |
| Lecture                       | Contact      | 1 hour lecture to cover the theory of machine learning                     | Every Week | 1.00                               | 1     |
| Practical                     | Contact      | Two 2-hour lab per week to cover the tutorial and practicals of the module | Every Week | 4.00                               | 4     |
| Directed Reading              | Non Contact  | Lecture notes, books and web resources                                     | Every Week | 2.00                               | 2     |
| Independent Study             | Non Contact  | Lecture notes, books and web resources                                     | Every Week | 9.00                               | 9     |
| Total Weekly Learner Workload |              |                                                                            |            | 16.00                              |       |
| Total Weekly Contact Hours    |              |                                                                            |            | 5.00                               |       |

| Workload: Part-time           |              |                                                                            |            |                                    |       |
|-------------------------------|--------------|----------------------------------------------------------------------------|------------|------------------------------------|-------|
| Workload Type                 | Contact Type | Workload Description                                                       | Frequency  | Average Weekly Learner<br>Workload | Hours |
| Lecture                       | Contact      | 1 hour lecture to cover the theory of machine learning                     | Every Week | 1.00                               | 1     |
| Practical                     | Contact      | Two 2-hour lab per week to cover the tutorial and practicals of the module | Every Week | 4.00                               | 4     |
| Directed Reading              | Non Contact  | Lecture notes, books and web resources                                     | Every Week | 2.00                               | 2     |
| Independent Study             | Non Contact  | Lecture notes, books and web resources                                     | Every Week | 9.00                               | 9     |
| Total Weekly Learner Workload |              |                                                                            |            |                                    | 16.00 |
| Total Weekly Contact Hours    |              |                                                                            |            | 5.00                               |       |

## **Module Resources**

Recommended Book Resources

Sarah Guido, Andreas Müller. (2016), Introduction to Machine Learning with Python, O'Reilly Media.

Supplementary Book Resources

Aurelien Geron. (2019), Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media.

This module does not have any article/paper resources

Other Resources

website, GITHUB link, https://github.com/amueller/introduction\_to\_ml\_with\_python