北京航空航天大学

2015-2016 学年 期中考试

Modern Control Engineering

Examination Paper

班	级	_学号
		•
姓	名	成 绩

2015年11月15日

Class_____ Student number____ Name____ Score____

Examination Questions

1. (15 points) A system consists of the following equations:

$$x_{1} = r - \varphi$$

$$x_{2} = \tau \dot{x}_{1} + K_{1}x_{1},$$

$$x_{3} = K_{2}x_{2},$$

$$x_{4} = x_{3} - x_{5} - K_{5}c,$$

$$\dot{x}_{5} = K_{3}x_{4},$$

$$K_{4}x_{5} = T\dot{c} + c,$$

where τ , K_1 , K_2 , K_3 , K_4 , K_5 and T are positive constants, r(t) is the input signal and c(t) is the output signal. Draw its block diagram and obtain the transfer function C(s)/R(s).

2. (15 points) A block diagram of a system is shown in Figure 2. Obtain the transfer function C(s)/R(s).

Figure 2

3. (20 points) The block diagram of a system is given by Figure 3. Determine the positive parameter τ such that the damping ratio is $1/\sqrt{2}$. Then, obtain the unit-step response c(t), $t_{\rm p}$, M_p and t_s (5%), respectively.

Figure 3

4. (15 points) The block diagram of a system is shown in Figure 4. Determine the system stability. If the system is stable, determine the steady-state errors e_{ssr} and e_{ssn} .

Figure4

5. (15 points) The open loop transfer function of a unity feedback system is

$$G(s) = \frac{3s+2}{s^2(Ts+1)}$$

Sketch, according to the rules, the root loci when T varies from 0 to $+\infty$. Further, determine the range of T for which the system is stable.

6. (20 points) The open loop transfer function of a unity feedback system is

$$G(s) = \frac{K}{s(s+6)(s+8)}$$

Sketch, according to the rules, the root loci when K varies from 0 to $+\infty$. Determine the value of K such that the two closed loop dominant poles have damping ratio $1/\sqrt{2}$. What are the locations of the three closed loop poles for such a damping ratio?