p	\boldsymbol{q}	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

$$(\varphi \Leftrightarrow \psi) \Leftrightarrow (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$
$$(\varphi \Rightarrow \psi) \Leftrightarrow \neg \varphi \lor \psi$$
$$\neg (\varphi \land \psi) \Leftrightarrow (\neg \varphi \lor \neg \psi)$$
$$\neg (\varphi \lor \psi) \Leftrightarrow (\neg \varphi \land \neg \psi)$$

$$\varphi \wedge (\psi \vee \chi) \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \chi) \qquad \varphi \vee (\psi \wedge \chi) \Leftrightarrow (\varphi \vee \psi) \wedge (\varphi \vee \chi)$$
$$(\psi \vee \chi) \wedge \varphi \Leftrightarrow (\psi \wedge \varphi) \vee (\chi \wedge \varphi) \qquad (\psi \wedge \chi) \vee \varphi \Leftrightarrow (\psi \vee \varphi) \wedge (\chi \vee \varphi)$$

- dla 0: $x \land 0 = 0, x \lor 0 = x, x \land \neg x = 0$
- dla 1: $x \lor 1 = 1, x \land 1 = x, x \lor \neg x = 1$
- prawa pochłaniania: $x \wedge x = x, x \vee x = x$
- prawa przemienności: $x \wedge y = y \wedge x, x \vee y = y \vee x$
- prawa łączności: $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ $(x \vee y) \vee z = x \vee (y \vee z)$
- prawa rozdzielności: $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$
- prawo podwójnej negacji: $\neg \neg x = x$
- prawa De Morgana: $\neg(x \land y) = \neg x \lor \neg y, \neg(x \lor y) = \neg x \land \neg y$
- prawo transpozycji: $x \Rightarrow y = \neg y \Rightarrow \neg x$

Definicja. Dla dowolnych zbiorów A, B określamy ich sumę $A \cup B$, iloczyn $A \cap B$ i różnicę $A \setminus B$ w następujący sposób:

$$A \cup B = \{x : x \in A \lor x \in B\},\$$

$$A \cap B = \{x : x \in A \land x \in B\},\$$

$$A \backslash B = \{ x : x \in A \land x \notin B \}.$$

Czytamy $A \cup B$: A plus B, $A \cap B$: A razy B, $A \setminus B$: A minus B.

Iloczyn $A\cap B$ nazywamy też przekrojem (cześcią wspólną) zbiorów A i B.

$$(D \cup) x \in A \cup B \Leftrightarrow x \in A \lor x \in B$$

$$(\mathrm{D}\cap)\ x\in A\cap B\Leftrightarrow x\in A\wedge x\in B$$

$$(\mathbf{D}\backslash)\ x\in A\backslash B \Leftrightarrow x\in A \land x\notin B$$

 $A \setminus (B \cup C)$

 $(A \cap B) \setminus C \, \bot$

Dla zbioru
$$A \subset U$$
 (uniwersum) określamy zbiór: $A' = U \setminus A = \{x \in U : x \notin A\}$ zwany dopełnieniem zbioru A (do uniwersum U).

Różnica symetryczna zbiorów A i B:
$$A \div B = \{x : (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}\$$
 $x \in A \div B \Leftrightarrow (x \in A \land x \notin B) \lor (x \notin A \land x \in B)$

Indeksowana rodzina zbiorów: $\{A_i\}_{i\in I}$. Poszczególne zbiory tej rodziny są oznaczone indeksami.

I to ustalony zbiór indeksów.

Inne oznaczenie: $\{A_i : i \in I\}$

Określamy działania sumy i iloczynu indeksowanej rodziny zbiorów $\{A_i\}_{i\in I}$

$$\bigcup_{i \in I} A_i = \{x : \exists_{i \in I} (x \in A_i)\}$$

$$\bigcap_{i \in I} A_i = \{x : \forall_{i \in I} (x \in A_i)\}$$

Uwaga. Dla $I=\emptyset$, $\forall_{i\in I}(x\in A_i)$ jest prawdą dla dowolnego obiektu x, więc $\bigcap_{i\in\emptyset}A_i$ nie istnieje (jako zbiór). Zatem powyższą definicję iloczynu przyjmujemy tylko dla $I\neq\emptyset$. Dla sumy to ograniczenie nie jest potrzebne. Mamy $\bigcup_{i\in\emptyset}A_i=\emptyset$.

Uwaga. Gdy wszystkie zbiory A_i są podzbiorami ustalonego uniwersum U, często przyjmuje się inną definicję iloczynu:

$$\bigcap_{i \in I} A_i = \{ x \in U : \forall_{i \in I} (x \in A_i) \}$$

Zgodnie z tą defincją $\bigcap_{i\in\emptyset}A_i=U$, czyli iloczyn pustej rodziny zbiorów jest określony. Dalej przyjmujemy poprzednią definicję (bez U).

Słownie: Suma rodziny $\{A_i\}_{i\in I}$ jest zbioren tych wszystkich elementów,

które należą do przynajmniej jednego zbioru A_i . Iloczyn rodziny $\{A_i\}_{i\in I}$ jest zbioren tych wszystkich elementów, które należą do każdego zbioru A_i .

Mamy:

$$\bigcup_{i \in I} A_i = \bigcup \{A_i\}_{i \in I}, \quad \bigcup_{i \in \{1,2\}} A_i = A_1 \cup A_2$$
$$\bigcap_{i \in I} A_i = \bigcap \{A_i\}_{i \in I}, \quad \bigcap_{i \in \{1,2\}} A_i = A_1 \cap A_2$$

Prawa dla działań nieskończonych

Bezpośrednio z definicji działań nieskończonych wynikają równoważności:

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists_{i \in I} (x \in A_i)$$

 $x \in \bigcap_{i \in I} A_i \Leftrightarrow \forall_{i \in I} (x \in A_i)$

Te równoważności stosujemy przy wyprowadzaniu praw dla działań nieskończonych za pomocą (Ext).

Iloczyn kartezjański

Relacja odwrotna i złożenie relacji

$$R^{-1} = \{\langle x, y \rangle : \langle y, x \rangle \in R\}$$
 (relacja odwrotna do R)
 $S \circ R = \{\langle x, y \rangle : \exists_z (\langle x, z \rangle \in R \land \langle z, y \rangle \in S)\}$ (złożenie relacji R i S)

 $A \times B = \{ \langle x, y \rangle : x \in A \land y \in B \}$

$$(D\times)\langle x,y\rangle\in A\times B\Leftrightarrow x\in A\wedge y\in B$$

Relację $R \subset A^2$ nazywamy

- zwrotną na zbiorze A, jeżeli $\forall_{x \in A} (\langle x, x \rangle \in R)$
- przeciwzwrotną na zbiorze A, jeżeli $\forall_{x \in A} (\langle x, x \rangle \notin R)$
- symetrycznq, jeżeli $\forall_{x,y}(\langle x,y\rangle\in R\Rightarrow \langle y,x\rangle\in R)$
- przeciwsymetryczną, jeżeli $\forall_{x,y}(\langle x,y\rangle\in R\Rightarrow \langle y,x\rangle\notin R)$
- antysymetryczną, jeżeli $\forall_{x,y}(\langle x,y\rangle\in R\wedge\langle y,x\rangle\in R\Rightarrow x=y)$
- przechodnią, jeżeli $\forall_{x,y,z} (\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,y \rangle \in R)$
- $sp\acute{o}jnq\ na\ zbiorze\ A$, jeżeli $\forall_{x,y,\in A}(\langle x,y\rangle\in R\vee\langle y,x\rangle\in R)$
- słabospójną na zbiorze A, jeżeli $\forall_{x,y,\in A} (\langle x,y\rangle \in R \lor x = y \lor \langle y,x\rangle \in R)$

Dla relacji binarnych często piszemy xRx zamiast: $\langle x,y\rangle \in R$.

Relacje równoważności

Definicja. Relację $R \subset A^2$ nazywamy relacją równoważności na zbiorze A, eżeli relacja R jest zwrotna (na zbiorze A), symetryczna i przechodnia.

zwrotna na $A: \forall_{x \in A}(xRx)$ symetryczna: $\forall_{x,y}(xRy \Rightarrow yRx)$ przechodnia: $\forall_{x,y,z}(xRy \land yRz \Rightarrow xRz)$

Niech $R = I_A$. Dla $x \in A$ $[x]_R = \{x\}$.

Niech $R\subset\mathbb{R}\times\mathbb{R}$ będzie określona następująco: $xRy\Leftrightarrow |x|=|y|$ dla $x,y\in\mathbb{R}.$

Wtedy $[0]_R = \{0\}$ oraz dla $x \neq 0$ $[x]_R = \{x, -x\}.$

Niech R będzie relacją równoważności na zbiorze wszystkich ludzi określoną tak: xRy wtw, gdy x i y są tej samej płci.

Wtedy dla dowolnej kobiety x, $[x]_R$ jest zbiorem wszystkich kobiet, a dla dowolnego mężczyzny x, $[x]_R$ jest zbiorem wszystkich mężczyzn.

Definicja. Niech f będzie funkcją. Dla $x \in D(f)$ jedyny element y taki, że $\langle x, y \rangle \in f$ nazywamy wartością funkcji <math>f dla argumentu x i oznaczamy f(x). $(Df(x)) \forall_{x \in D(f)} \forall_y (f(x) = y \Leftrightarrow \langle x, y \rangle \in f)$

Zbiór D(f) jest dziedziną funkcji f.

Mamy: $D^*(f) = \{f(x) : x \in D(f)\}$. Zbiór $D^*(f)$, czyli przeciwdziedzinę funkcji f, nazywamy też zbiorem wartości funkcji f.

Definicja. Funkcję f nazywamy różnowartościową (albo: wzajemnie jednoznaczną, jedno-jednoznaczną), jeżeli spełnia warunek:

 $\forall x_1, x_2 \in D(f)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$

Równoważnie: $\forall_{x_1,x_2 \in D(f)} (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)).$

Piszemy $f: X \stackrel{1-1}{\mapsto} Y$, jeżeli funkcja $f: X \mapsto Y$ jest różnowartościowa.

Definicja. Niech $f: X \mapsto Y$. Dla dowolnego $A \subset X$ określamy zbiór:

 $f[A] = \{f(x) : x \in A\} = \{y : \exists_x (x \in A \land y = f(x))\},$ zwany obrazem zbioru A danym przez funkcję f.

Dla dowolnego $B\subset Y$ określamy zbiór:

 $f^{-1}[B] = \{x \in X : f(x) \in B\},\$

zwany przeciwobrazem zbioru B danym przez funkcję f.

Definicja. Niech (A,R) będzie zbiorem uporządkowanym. Zbiór $X \subset A$ nazywamy $tańcuchem \le (A,R)$, jeżeli $(X,R\cap X^2)$ jest zbiorem liniowo uporządkowanym.

Zauważmy, że zbiór $X\subset A$ jest łańcuchem w (A,R) wtedy i tylko wtedy, gdy $\forall_{x,y\in X}(xRy\vee yRx).$

Rozważmy zbiór $\mathcal{P}(\{a,b\})$ uporządkowany przez ograniczenie inkluzji do tego zbioru. Ta relacja nie jest liniowym porządkiem, ponieważ ani $\{a\} \subset \{b\}$, ani $\{b\} \subset \{a\}$ nie zachodzi. Zbiory:

 $\{\emptyset,\{a\},\{a,b\}\}$ i $\{\emptyset,\{b\},\{a,b\}\}$

są łańcuchami w $\mathcal{P}(\{a,b\})$.

Rozważmy zbiór $\{1,2,3,4\}$ z relacją podzielności ograniczoną do tego zbioru. Zbiory $\{1,2,4\},\{1,3\},\{1,4\}$ są łańcuchami.

Definicja. Niech R będzie relacją równoważności na zbiorze A. Dla elementu $x \in A$ określamy zbiór:

 $[x]_R = \{y : xRy\}$ (równoważnie: $[x]_R = \{y \in A : xRy\}$

Zbiór $[x]_R$ nazywamy klasą abstrakcji relacji równoważności R wyznaczoną przez element x, zwany reprezentantem tej klasy.

 $\mathbf{Definicja}$. Funkcją nazywamy relację binarną R, spełniającą warunek prawostronnej jednoznaczności:

Zgodnie z tym warunkiem, dla każdego obiektu xistnieje najwyżej jeden obiektytaki, że $< x,y> \in R.$

Definicja. Niech f będzie funkcją. Mówimy, że funkcja f odwzorowuje zbiór X w zbiór Y, jeżeli D(f)=X i $D^*(f)\subset Y$. Piszemy $f:X\mapsto Y$.

Definicja. Niech f będzie funkcją. Mówimy, że funkcja f odwzorowuje zbiór X na zbiór Y, jeżeli D(f)=X i $D^*(f)=Y$. Piszemy $f:X\stackrel{na}{\mapsto}Y$.

Definicja. *Odwzorowaniem* nazywamy trójkę < f, X, Y > taką, że f jest funkcją, X, Y są zbiorami i $f: X \mapsto Y$.

Definicja. Odwzorowanie $f: X \mapsto Y$ nazywamy:

iniekcjq, jeżeli $f: X \stackrel{1-1}{\mapsto} Y$, suriekcjq, jeżeli $f: X \stackrel{1}{\mapsto} Y$,

bijekcją, jeżeli jest iniekcją i suriekcją.

Definicja. Relację $R \subset A^2$ nazywamy relacją porządkującą na zbiorze A, jeżeli jest zwrotna (na A), antysymetryczna i przechodnia. Wtedy parę (A, R) nazywamy zbiorem uporządkowanym.

Definicja. Relację $R\subset A^2$ nazywamy relacją liniowo porządkującą na zbiorze A, jeżeli jest porządkująca i spójna (na A). Wtedy parę (A,R) nazywamy zbiorem liniowo uporządkowanym.

Relacja I_A jest relacja porządkującą. Jest to najmniejsza (w sensie za wierania) relacja porządkująca na zbiorze A, tzn. relacja I_A jest zawarta w każdej relacji porządkującej na A.

Relacja inkluzji na $\mathcal{P}(A),$ tj
, $\{< X,Y> \in \mathcal{P}(A)^2: X\subset Y\},$ jest relacją porządkująca.

Relacja podzielności na zbiorze N określona wzorem:

 $m|n \Leftrightarrow \exists_{k \in \mathbb{N}} (k \cdot m = n) \text{ dla } m, n \in \mathbb{N}$

jest relacją porządkującą.

Relacja \leq na zbiorze $\mathbb N$ jest relacją liniowo porządkującą. Podobnie \leq na $\mathbb Z,\mathbb Q,\mathbb R.$

Diagramy Hassego skończonych zbiorów uporządkowanych

Niech \leq będzie porządkiem na A. Ostry porządek <wyznaczony przez \leq określamy tak:

$$x < y \Leftrightarrow x \le y \land x \ne y$$

Niech (A, \leq) będzie zbiorem uporządkowanym. Element $y \in A$ nazywamy następnikiem elementu $x \in A$, jeżeli x < y, lecz nie istnieje $z \in A$ takie, że x < z i z < y.

W diagramie Hassego przedstawiamy elementy zbioru jako wierzchołki i prowadzimy krawędzie od każdego wierzchołka do wszystkich następników tego wierzchołka, umieszczonych wyżej.

Mamy: $x \leq y$ wtedy i tylko wtedy, gdy w diagramie istnieje droga, idąca w górę, od x do y (dowolnej długości $n \geq 0$).

Droga jest to trasa, która nie przechodzi dwukrotnie przez żaden wierzchołek. Długość drogi: liczba krawędzi, przez które przechodzi ta droga.

Definicja Niech (A, \leq) będzie zbiorem uporządkowanym. Niech $X \subset A$. ment $a \in A$ nazywamy:

- elementem najmniejszym w zbiorze X, jeżeli $a \in X$ i $\forall_{x \in X} (a \le x)$,
- elementem największym w zbiorze X, jeżeli $a \in X$ i $\forall_{x \in X} (x \leq a)$,
- elementem minimalnym w zbiorze X, jeżeli $a \in X$ i $\neg \exists_{x \in X} (x < a)$,
- elementem maksymalnym w zbiorze X, jeżeli $a \in X$ i $\neg \exists_{x \in X} (a < x)$,
- ograniczeniem dolnym zbioru X, jeżeli $\forall_{x \in X} (a \leq x)$,
- ograniczeniem górnym zbioru X, jeżeli $\forall_{x \in X} (x \leq a)$,
- $kresem\ dolnym\ zbioru\ X$, jeżeli a jest największym ograniczeniem dolnym zbioru X,
- kresem górnym zbioru X, jeżeli a jest najmniejszym ograniczeniem górnym zbioru X.