Interpreting Coefficient Estimates in a Linear Model

lan He

Amateur Explorer of \mathcal{E} con ϕ metric\$

August 22, 2023

Table of Contents

- Overview
- Baseline Model
- Only Dependent Variable Is Log Transformed
- 4 Only an Independent Variable Is Log Transformed
- Both Dependent and Independent Variables Are Log Transformed
- 6 Appendix

Overview

Log Transformed or Not		
Dep. var.	Indep. var.	Interpretation
Х	Х	X changes by Δ units $\Rightarrow Y$ changes by $(\beta \times \Delta)$ units
✓	Х	X changes by Δ units $\Rightarrow Y$ changes by $(e^{eta\Delta}-1) imes 100\%$
Х	✓	X changes by $\Delta\%\Rightarrow Y$ changes by $\beta\ln(1+\Delta\%)$ units
		or \Rightarrow Y changes by about $(eta imes \Delta\%)$ units
✓	✓	X changes by $\Delta\%\Rightarrow Y$ changes by $\left[(1+\Delta\%)^{eta}-1 ight] imes 100\%$
		or $\Rightarrow Y$ changes by about $(\beta \times \Delta\%) \times 100\%$

Baseline Model

In the baseline model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + e_i$$

the interpretation of β_1 is:

For a 1-unit increase in X_1 , the expected value of Y increases by β_1 units, holding all other variables at any fixed values.

Similarly, for a 10-unit increase in X_1 , the expected value of Y increases by $10\beta_1$ units, holding all other variables at any fixed values.

Ian He Econometrics August 22, 2023

Only Dependent Variable Is Log Transformed

In the model

$$ln(Y_i) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + e_i$$

the interpretation of β_1 is:

For a 1-unit increase in X_1 , the expected value of Y increases by $(e^{\beta_1}-1)\times 100\%$, holding all other variables at any fixed values.

Similarly, for a 10-unit increase in X_1 , the expected value of Y increases by $\left(e^{10\beta_1}-1\right)\times 100\%$, holding all other variables at any fixed values.

Only an Independent Variable Is Log Transformed I

In the model

$$Y_i = \beta_0 + \beta_1 \ln(X_{1i}) + \cdots + \beta_k X_{ki} + e_i$$

the interpretation of β_1 is:

For a 1% increase in X_1 , the expected value of Y increases by $\beta_1 \ln(1+1\%)$ units, holding all other variables at any fixed values.

Similarly, for a 10% increase in X_1 , the expected value of Y increases by $\beta_1 \ln(1+10\%)$ units, holding all other variables at any fixed values.

Only an Independent Variable Is Log Transformed II

By Taylor expansion, as $\Delta \to 0$, we have

$$\ln(1+\Delta) \approx \Delta$$

Thus, the interpretation of β_1 can also be:

For a 1% increase in X_1 , the expected value of Y increases by approximately $(\beta_1 \times 1\%)$ units, holding all other variables at any fixed values.

Then, could we use this approximation in interpreting the result of a 10% increase in X_1 ? This is equivalent to asking whether 10% is a small value.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○ 7/14

Ian He Econometrics August 22, 2023

Both Dependent and Independent Variables Are Log Transformed I

In the model

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_{1i}) + \cdots + \beta_k X_{ki} + e_i$$

the interpretation of β_1 is:

For a 1% increase in X_1 , the expected value of Y increases by $\left[(1+1\%)^{\beta_1}-1\right]\times 100\%$, holding all other variables at any fixed values.

Similarly, for a 10% increase in X_1 , the expected value of Y increases by $\left[(1+10\%)^{\beta_1}-1\right]\times 100\%$, holding all other variables at any fixed values.

lan He Econometrics August 22, 2023

Both Dependent and Independent Variables Are Log Transformed II

Recall an approximation method:

$$(1+\Delta)^{\beta}\approx 1+\beta\Delta$$

for a small value of $|\beta|\Delta$. Thus, the interpretation of β_1 can also be:

For a 1% increase in X_1 , the expected value of Y increases by approximately $(\beta_1 \times 1\%) \times 100\%$, holding all other variables at any fixed values.

Appendix

Mathematical Proof I

Suppose that our regression is $ln(Y) = \beta_0 + \beta_1 X + e$. Let X change by Δ units (from x_1 to x_2) and Y change from y_1 to y_2 .

$$\ln(y_2) - \ln(y_1) = (\beta_0 + \beta_1 x_2) - (\beta_0 + \beta_1 x_1) = \beta_1 \Delta$$

$$\Rightarrow \ln\left(\frac{y_2}{y_1}\right) = \beta_1 \Delta$$

$$\Rightarrow \frac{y_2}{y_1} = e^{\beta_1 \Delta}$$

$$\Rightarrow \frac{y_2 - y_1}{y_1} = e^{\beta_1 \Delta} - 1$$

August 22, 2023

Mathematical Proof II

Suppose that our regression is $Y = \beta_0 + \beta_1 \ln(X) + e$. Let X by $\Delta\%$ (from x_1 to x_2) and Y change from y_1 to y_2 .

$$y_2 - y_1 = [\beta_0 + \beta_1 \ln(x_2)] - [\beta_0 + \beta_1 \ln(x_1)]$$

$$= \beta_1 [\ln(x_2) - \ln(x_1)]$$

$$= \beta_1 \ln\left(\frac{x_2}{x_1}\right)$$

$$= \beta_1 \ln(1 + \Delta\%)$$

$$\approx \beta_1 \times \Delta\%$$

The approximation in the last line holds when $\Delta\%$ is very small.

August 22, 2023

Mathematical Proof III

Suppose that our regression is $\ln(Y) = \beta_0 + \beta_1 \ln(X) + e$. Let X by $\Delta\%$ (from x_1 to x_2) and Y change from y_1 to y_2 .

$$\begin{aligned} &\ln(y_2) - \ln(y_1) = \beta_1 [\ln(x_2) - \ln(x_1)] \\ \Rightarrow &\ln\left(\frac{y_2}{y_1}\right) = \beta_1 \ln\left(\frac{x_2}{x_1}\right) \\ \Rightarrow &\frac{y_2}{y_1} = \left(\frac{x_2}{x_1}\right)^{\beta_1} = (1 + \Delta\%)^{\beta_1} \\ \Rightarrow &\frac{y_2 - y_1}{y_1} = (1 + \Delta\%)^{\beta_1} - 1 \approx \beta_1 \times \Delta\% \end{aligned}$$

The approximation in the last line holds when $|\beta_1|\Delta\%$ is very small.

◆□▶◆□▶◆≣▶◆≣▶ ■ かな○ 13/1.

August 22, 2023

lan He

Some Good Examples and Guidelines

- How Do I Interpret a regression model when some variables are log transformed? (UCLA: Statistical Consulting Group)
- How can I interpret log transformed variables in terms of percent change in linear regression? (UCLA: Statistical Consulting Group)
- Interpreting Log Transformations in a Linear Model (Clay Ford, 2018)