Lec2 Note of Complex Analysis

Xuxuayame

日期: 2023年3月9日

定义 0.1. $E \subset \mathbb{C}$ 称为**连通的**,如果 E 可以表示为两个非空不相交集合 E_1, E_2 的并,则 $\overline{E_1} \cap E_2 \neq \emptyset$ 或 $E_1 \cap \overline{E_2} \neq \emptyset$ 。

定理 0.1. 开集 E 连通 $\Leftrightarrow E$ 不能表示为两个非空不相交开集的并。

证明. "⇒" : 若存在非空不相交开集 E_1, E_2 使得 $E = E_1 \cup E_2 \Rightarrow E_1 \subset E_2^C$ (闭集) $\Rightarrow \overline{E_1} \subset E_2^C \Rightarrow \overline{E_1} \cap E_2 = \emptyset$, 同理 $E_1 \cap \overline{E_2} = \emptyset$, 矛盾。

" \Leftarrow ":假设 E 不连通,则存在非空不交集合 E_1, E_2 使得 $E = E_1 \cup E_2$ 且 $\overline{E_1} \cap E_2 = \varnothing$, $E_1 \cap \overline{E_2} = \varnothing$ 。 $\forall z \in E_1 \subset E \Rightarrow \exists \varepsilon_1 > 0 \text{ s.t. } B(z, \varepsilon_1) \subset E$ 。因为 z 不是 E_2 的聚点, $\exists \varepsilon_2 > 0 \text{ s.t. } B(z, \varepsilon_2) \cap E_2 = \varnothing$ 。取 $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}, \ B(z, \varepsilon) \subset E_1 \Rightarrow E_1$ 开集,同理 E_2 为开集。矛盾。

定义 0.2. 设 $E \subset \mathbb{C}$, 如果对 $\forall z_1, z_2 \in E$, 存在连续映射 $\gamma: [0,1] \to E$ s.t. $\gamma(0) = z_1, \gamma(1) = z_2$, 则称 E 为**道路连通的**。

定理 0.2. 设 $E \subset \mathbb{C}$ 为开集,则 E 道路连通 $\Leftrightarrow E$ 连通。

证明. " \leftarrow ": 设 E 连通,取定 $a \in E$,定义 $E_1 = \{z \in E \mid F$ 存在连接a和z的道路 $\}$, $E_2 = \{z \in E \mid F$ 不存在连接a和z的道路 $\}$ 。则 $E = E_1 \cup E_2$, E_1, E_2 都是开集,由前一定 理 $E_1 = \emptyset$ 或 $E_2 = \emptyset$,显然 $E_1 \neq \emptyset$,故 $E_2 = \emptyset$ 。

"⇒":假设 E 不连通,则存在非空不交开集 E_1, E_2 s.t. $E = E_1 \cup E_2$,任取 $z_1 \in E_1, z_2 \in E_2$,则存在道路 γ : $[0,1] \to E$, $\gamma(0) = z_1, \gamma(1) = z_2$ 。令 $A = \{t \in [0,1] \mid \gamma(s) \in E_1, 0 \le s < t\}$,则 $A \ne \emptyset$,令 $t^* = \sup A$, $\gamma(t^*) \in E_1 \cup E_2$,若 $\gamma(t^*) \in E_1$,由于 E_1 为开集, $\exists \delta > 0$,s.t. $t^* + \delta \in A$,矛盾。若 $\gamma(t^*) \in E_2$,类似。

但一般而言,道路连通必然连通,但连通未必道路连通,下面是一个经典的例子, 称为**拓扑学家的正弦曲线 (Topologist's sine curve)**。

例 0.1. 考虑 $E = \{(x, \sin \frac{1}{x}) \mid 0 < x < 1\} \cup \{(0, y) \mid -1 \le y \le 1\}$,则 E 是连通的,但不道路连通。

评论. 一般地,如果 E 连通,则 \overline{E} 也连通。(习题)

图 1: 拓扑学家的正弦曲线

我们称 γ 为**可求长曲线**,若设 π 是 [0,1] 的分割,则 $\sup_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})| < +\infty$ 。设 $\gamma(t) = x(t) + iy(t)$,则 $\gamma'(t) = x'(t) + iy'(t)$ 。那么 γ 为可求长曲线 $\Leftrightarrow x(t), y(t)$ 为有界变差函数。

如果 x(t), y(t) 为 C^1 函数且 $\gamma'(t) \neq 0$,则称 γ 为**光滑曲线**,此时 γ 的长度 $|\gamma| = \int_0^1 |\gamma'(t)| \, \mathrm{d}\, t = \int_0^1 \sqrt{x'(t)^2 + y'(t)^2} \, \mathrm{d}\, t$ 。

定义 0.3. 非空的连通开集称为区域。

定理 0.3. (*Jordan 分*割定理): 一条简单闭曲线 γ 把复平面分成两个区域,一个是有界的,称为 γ 的内部,另一个是无界的,称为 γ 的外部。

评论. 该定理的证明较为复杂, 我们这里不加证明地承认它。

定义 0.4. 区域 D 称为**单连通**,如果 D 中的任意简单闭曲线的内部仍在 D 中。

图 2: 连通的情形

Part II

全纯函数

设 $D \subset \mathbb{C}$ 为区域, $f: D \to \mathbb{C}$ 为映射,f 的表示:

$$f(z) = f(x+iy) = U(x,y) + iV(x,y).$$

1 复变函数的导数

定义 1.1. 设 $f: D \to \mathbb{C}, z_0 \in D$, 如果

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

存在,则称f在 z_0 处**可导**。

如果 $\exists A \in \mathbb{C}, \ f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(|\Delta z|), \ |\Delta z| \to 0, \ 则称 f 在 z_0 处$ **可**微。

定理 1.1. f 在 z_0 处可导 \Leftrightarrow f 在 z_0 处可微,且 $A = f'(z_0)$ 。

评论. $f \in z_0$ 处可微 \Rightarrow $f \in z_0$ 处连续。

反之不然,例如 $f(z) = \overline{z}$,则 $f'(z_0) = \lim_{\Delta z \to 0} \frac{\overline{z_0 + \Delta z} - \overline{z_0}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$,极限不存在。

定义 1.2. 若 f 在区域 D 中每点处都可导,则称 f 在 D 上**全纯 (Holomorphic)** 或解析 (Analytic)。

评论. 称 f 在 z_0 处全纯,如果 f 在 z_0 的某个邻域中全纯。

2 Cauchy-Riemann 方程

定义 2.1. 设 f(z) = U(x,y) + iV(x,y), $z_0 = x_0 + iy_0 \in D$, 若 U(x,y), V(x,y) 在 (x_0,y_0) 处可微,则称 f 在 z_0 处**实可微**。

进一步分析函数的结构,

$$\begin{split} f(z_0 + \Delta z) - f(z_0) &= (U(x_0 + \Delta x, y_0 + \Delta y) - U(x_0, y_0)) + i \left(V(x_0 + \Delta x, y_0 + \Delta y) - V(x_0, y_0) \right) \\ &= \left(\frac{\partial U}{\partial x} \Delta x + \frac{\partial U}{\partial y} \Delta y \right) + i \left(\frac{\partial V}{\partial x} \Delta x + \frac{\partial V}{\partial y} \Delta y \right) + o(|\Delta z|) \\ &= \left(\frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x} \right) \Delta x + \left(\frac{\partial U}{\partial y} + i \frac{\partial V}{\partial y} \right) \Delta y + o(|\Delta z|) \\ &= : \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + o(|\Delta z|) \\ &= \frac{1}{2} \frac{\partial f}{\partial x} \left(\Delta z + \overline{\Delta z} \right) + \frac{1}{2i} \frac{\partial f}{\partial y} \left(\Delta z - \overline{\Delta z} \right) + o(|\Delta z|) \\ &= \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f \cdot \Delta z + \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f \cdot \overline{\Delta z} + o(|\Delta z|) \\ &= : \frac{\partial f}{\partial z} \Delta z + \frac{\partial f}{\partial \overline{z}} \overline{\Delta z} + o(|z|). \end{split}$$

评论. 我们解释一下为什么会出现 2。

f(z)=f(x+iy) 可以看成 x,y 及 z,\overline{z} 的函数。 $f(x,y)=f(rac{z+\overline{z}}{2},rac{z-\overline{z}}{2i}), rac{\partial f}{\partial z}=rac{\partial f}{\partial x}\cdotrac{1}{2}+rac{\partial f}{\partial y}\cdotrac{1}{2i}=rac{1}{2}(rac{\partial}{\partial x}-irac{\partial}{\partial y})f,$ 对 $rac{\partial f}{\partial \overline{z}}$ 也有类似的结果。

要使 f 可微、则

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial (U + iV)}{\partial x} + i \frac{\partial (U + iV)}{\partial v} \right) = \frac{1}{2} \left[\left(\frac{\partial U}{\partial x} - \frac{\partial V}{\partial y} \right) + i \left(\frac{\partial V}{\partial x} + \frac{\partial U}{\partial y} \right) \right] = 0$$

$$\Leftrightarrow \begin{cases} U_x = V_y, \\ U_y = -V_x. \end{cases}$$

称为 Cauchy-Riemann 方程。进而

$$f'(z_0) = \frac{\partial f}{\partial z}(z_0) = \frac{1}{2} \left(\frac{\partial (U + iV)}{\partial x} - i \frac{\partial (U + iV)}{\partial y} \right) = U_x + iV_x.$$