Name:	

MASTERY QUIZ DAY 21

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}$

Solution:

- (a) RREF $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Since each column is a pivot column, S is injective. Since there is no zero row, S is surjective.
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -5 & -\frac{5}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are only two pivot columns, T is not surjective.

A4. Let $T: \mathcal{P}^3 \to \mathcal{P}^3$ be the linear transformation given by

$$T(ax^3 + bx^2 + cx + d) = (a + 3b + 3c + 7d)x^3 + (a + 3b - c - d)x^2 + (2a + 6b + 3c + 8d)x + (a + 3b - 2c - 3d)x^2 + (2a + 6b + 3c + 8d)x + (a + 3b - 2c - 3d)x^2 + (a + 3$$

Compute the kernel and image of T.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the kernel is

$$\ker(T) = \left\{ (-3a - b)x^3 + ax^2 + (-2b)x + b \middle| \ a, b \in \mathbb{R} \right\} = \operatorname{span}\left(\left\{ 3x^3 - x^2, x^3 + 2x - 1 \right\} \right)$$

and the image is

$$\operatorname{Im}(T) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right) = \operatorname{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$$

A3: