

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7978932017

FURTHER MATHEMATICS

9231/32

Paper 3 Further Mechanics

May/June 2021

1 hour 30 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

Pt., 4	:	- C 4		F.#
an express	ion for <i>v</i> in terms	s of <i>t</i> .		[5]
			••••••	
	•••••	•••••		 •••••
	•••••			
	•••••			

the lowest point of the bowl. The speed of P is $\sqrt{\frac{8}{3}ga}$.							
Find x in te							
•••••		,	, 				,
•••••							
•••••						•••••	
•••••				•••••		••••••	
•••••		, 	»·······		•••••	•••••	· ·····
•••••						••••••	
							,

(a) Show that $k = \frac{4a}{x-a}$. An additional particle, of mass $2m$, is now attached to P and the combined particle is released from at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$. (b) Find x in terms of a .		Aa
at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$.	a)	Show that $k = \frac{4a}{x - a}$.
at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$.		
at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$.		
at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$.		
at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$.		
at the original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$ speed is $\frac{1}{3}\sqrt{ga}$.		
(b) Find x in terms of a.	at the	e original equilibrium position of P. When the combined particle has descended a distance $\frac{1}{3}a$, in
	(b)	Find x in terms of a .

A uniform solid circular cone has vertical height kh and radius r. A uniform solid cylinder has height h and radius r. The base of the cone is joined to one of the circular faces of the cylinder so that the axes of symmetry of the two solids coincide (see diagram, which shows a cross-section). The cone and the cylinder are made of the same material.

is	$\frac{h(k^2+4k+6)}{4(3+k)}.$	

The solid is placed on a plane that is inclined to the horizontal at an angle θ . The base of the cylinder is in contact with the plane. The plane is sufficiently rough to prevent sliding. It is given that 3h = 2r and that the solid is on the point of toppling when $\tan \theta = \frac{4}{3}$.

	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	 	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	 	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
				 •	•••••			
•••••			•••••	 		• • • • • • • • • • • • • • • • • • • •	••••••	
•••••				 				
			•••••	 				
•••••			•••••	 •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••		•••••	•••••	 		•	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••	 				
		•••••		 				

The speed of P when it is at A is u and the speed of P when it is at B is \sqrt{ag} . The tensions in the str at A and B are T_A and T_B respectively. It is given that $T_A = 7T_B$.							
Find the value	of $ heta$ and find an	expression f	For <i>u</i> in terms	of a and g .			

Two uniform smooth spheres A and B of equal radii each have mass m. The two spheres are each moving with speed u on a horizontal surface when they collide. Immediately before the collision, A's direction of motion makes an angle α with the line of centres, and B's direction of motion makes an angle β with the line of centres (see diagram). The coefficient of restitution between the spheres is $\frac{1}{3}$ and $2\cos\beta=\cos\alpha$.

(a)	Show that the direction of motion of A after the collision is perpendicular to the line of centres. [4]

The total kinetic energy of the spheres after the collision is $\frac{3}{4}mu^2$. **(b)** Find the value of α . [4]

VV 111	ch P 's height above the plane is H m differ by 10 s.	
(a)	Find the value of H .	

• • •	
• • •	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.