1a Avaluació	Tecnologia industrial	2n Batxillerat
Principis de màquines.	Termodinàmica bàsica	Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

- 1. Una cuina portàtil per a càmping funciona amb cartutxos de $m_{cartutx}=230\,g$ de gas butà. El cremador té un rendiment $\eta=0,2$ i el seu consum màxim és $c=155\,g/h$ de butà, de poder calorífic $p_c=45,8\,MJ/kg$. Volem estudiar quina quantitat de gas es consumeix per cuinar arròs per a 5 persones si s'utilitzen $V=2\,L$ d'aigua que inicialment es troben a $T_1=15^{\circ}C$. Sabent que la calor específica de l'aigua és $c_e=4,186\,kJ/(kg^{\circ}C)$, determineu:
 - (a) (1 pt) La quantitat de gas necessària perquè l'aigua comenci a bullir, m_{gas} .
 - (b) (0,5 pts) El temps necessari per a arribar a l'ebullició, t_1 , si el cremador funciona al màxim de consum.
 - (c) (1 pt) Un cop l'aigua ha arribat a ebullició, s'afegeix l'arròs i es deixa coure durant $t_2 = 18$ minuts reduint el cabal de gas a un 30 % del seu consum màxim. En aquestes condicions, trobeu el percentatge, Δ , de gas consumit del cartutx durant tot el procés (bullir l'aigua i cuinar l'arròs).

2.	L'aeri de Montserrat és un telefèric que va ser inaugurat l'any 1930 i que actualment ofereix els seus
	serveis amb les instal·lacions originals. S'estudia el moviment del trajecte de pujada amb passatgers
	des de l'estació de ferrocarrils fins al monestir per a una única cabina. Aquestes són les principals
	característiques tècniques del funicular:

• Longitud, d: 1357 m

• Desnivell, h:544 m

• Velocitat mitjana, $v:5\,m/s$

 \bullet Temps de viatge, t:5 min

• Pendent màxim, i:45%

 $\bullet\,$ Pes de cada cabina buida, $m:2175\,kg$

• Pes de cada cabina a plena càrrega, $M = 4900 \, kg$

• Potència consumida pel motor, $P_{cons}: 115\,kW$

• Temps de funcionament, t_f : 9 hores diàries amb una freqüència de pas de 15 minuts.

• Preu de l'energia utilitzada, $c_e: 0, 21 \in /(kW h)$

Volem determinar el rendiment del telefèric i el cost del consum elèctric del mes de juny. Per això, determineu:

(a) (0,25 pts) El treball mecànic necessari per a pujar una cabina a plena càrrega, W.

(b) (0,25 pts) La potència mitjana que ha de subministrar el motor per a fer aquest treball, P_{subm} .

(c) (1 pt) El rendiment η , del telefèric.

(d) (1 pt) El cost mensual de funcionament del mes de juny, c_{juny} .

3.	. Un cotxe de massa $m=1250kg$ parteix del repòs i arriba a una velocitat final $v=50km/h$ circulant per un circuit horitzontal. El cotxe és propulsat per un motor de combustió interna de rendiment $\eta=0,25$. La benzina té un poder calorífic $p_c=46MJ/kg$ i una densitat $\rho=0,72g/cm^3$. El factor d'emissions de la benzina és $FE=2,157kg$ de CO_2 per litre de combustible. Si es poden negligir totes les resistència pasives, determineu:	
	(a) (1 pt) El treball mecànic W , aportat pel motor.	
	(b) (1 pt) La quantitat de benzina m_{ben} , utilitzada.	

4. Una central de carbó té n=3 grups de turbines de vapor amb una potència $P_{turb}=362\,MW$ cada un i utilitza carbó del tipus lignit amb un poder calorífic $p_c=28\,400\,kJ/kg$ i una densitat $\rho=1050\,kg/m^3$. La central està en funcionament les 24 hores del dia i té un rendiment $\eta_c=0,236$.

(c) (1 pt) S'estima que si la central treballés amb querosé (de poder calorífic $p_c = 43\,400\,kJ/kg$ n'utilitzaria $m_q = 6\,177\cdot 10^3\,kg$ diaris i mantindria constant la potència subministrada per cada

(c) (0,5 pts) La petjada de CO_2 , m_{CO_2} , emesa a l'atmosfera.

(a) (1 pt) L'energia diària consumida E_{cons} que cal aportar a la central.

(b) (0.5 pts) La massa de carbó m_c diària necessària perquè funcioni.

turbina. Determineu, en aquest cas el nou rendiment η_q de la central.

Determineu: