MAT157 Problem Set 2

Nicolas Coballe

October 1, 2021

1. a) $\forall x \in F, \exists y \in F : \forall z \in F, z \neq x, xy = 1 \implies yz \neq 1$

The negation:

 $\exists x \in F, \ \forall y \in F: \exists z \in F, z \neq x, xy = 1 \text{ and } yz = 1$

Plain English:

There exists an element x that for all y such that there exists z with $z \neq x$, xy = 1 and yz = 1

b) Let a(x) be the angle sum of polygon x and let H be the set of all hyperbolic octagons.

 $\forall x \in H, \ a(x) > \pi$

The negation:

 $\exists x \in H, \ a(x) \le \pi$

Plain English:

There exists a hyperbolic octagon with an angle sum less than or equal to π .

c) Let Q be the set of all flavors of quarks, c(x) be the charge of quark x, and m(x) be the mass of quark x.

$$\forall x, y \in Q, c(x) = c(y) \text{ and } m(x) = m(y)$$

The negation:

 $\exists x, y \in Q, c(x) \neq c(y) \text{ or } m(x) \neq m(y)$

Plain English:

There exists two flavors of quarks that do not have the same charge or the same mass.

d) Let S be the set of students in this class, H be the set of all homework assignments, L be the set of all lectures, h(x,y) be student x does homework y, l(x,y) be student x goes to lecture y, and f(x) be the percentage that student x gets on the final exam.

 $\forall x \in S : h(x,y), \forall y \in H \text{ and } l(x,z), \forall z \in L \implies f(x) \ge 50$

The negation:

 $\exists x \in S : (h(x,y), \forall y \in H \text{ and } l(x,z), \forall z \in L) \text{ and } f(x) < 50$

Plain English:

There exists a student who does all the homework and all the assignments, but scores less than 50 percent on the final exam.

Proof.

If a = b then $|a - b| = |a - a| = 0 < \epsilon$.

 \leftarrow

We will take the contrapositive. If $a \neq b$ then $\exists x \in \mathbb{R} \setminus \{0\}$ such that b = a + x. Thus, $|a - b| = |a - (a + x)| = |x| > \epsilon$

b)

Proof.

Because the distance between a and b is a positive real number, $\forall \epsilon > 0$ we can choose $q \in \mathbb{N}$ arbitrarily large such that $q(b-a) > \epsilon$. Thus we can choose q such that (qb-qa) > 10. Using the ceiling function, $\lceil qa \rceil - qa < 1$. If we take $\lceil qa \rceil + 1$, the distance $(\lceil qa \rceil + 1) - qa < 2$. Note that $\lceil qa \rceil + 1$ is a rational number, greater that qa and less than qb because it's distance from qa is less than 10. Thus, $qa < \lceil qa \rceil + 1 < qb$. If we take $x = \frac{\lceil qa \rceil + 1}{q}$, then a < x < b.

Proof.

 \Rightarrow

We will prove this using the contrapositive: If $\exists a \in F$ such that $a \cdot a + 1 = 0$, then F^c is not a field. For the sake of contradiction, assume that F^c is a field. Then, take product of two non-zero elements, $(a,1) \cdot (-a,1)$. We can rewrite this as $-a^2 - ai + ai + i^2$. But this is simply $-1(a^2 + 1)$, which is 0. This is a contradiction because two non-zero elements cannot have a product of zero.

 \leftarrow

We will show that every non-zero element has a well-defined multiplicative inverse. Consider the arbitrary element in F^c , (a,b). Then, (a,b) has multiplicative inverse, (c,d) where $c=\frac{a}{a^2+b^2}$ and $d=\frac{-b}{a^2+b^2}$ (it is very easy to find c and d by multiplying $\frac{1}{a+bi}$ by its conjugate). This inverse is only well-defined, if $a^2+b^2\neq 0$. Because (a,b) is non-zero, we have 3 cases:

Case 1: a = 0, $b \neq 0$. Thus we have $a^2 + b^2 = 0 + b^2$, and since b^2 is non-zero, $0 + b^2$ is not zero.

Case 2: $a \neq 0$, b = 0. This is the same as case 1 except reversed. Case 3: $a, b \neq 0$, Thus if $a^2 + b^2 = 0$, then $\frac{a^2}{b^2} + 1 = 0$, which contradicts our assumption that there does not exists an element in F such that $a \cdot a + 1 = 0$.

b)

Proof.

 \Rightarrow

We will prove this using the contrapositive: If $\exists a \in F$ such that $a^2 + a + 1 = 0$, then F' is not a field. For the sake of contradiction, assume that F' is a field. Then, take product of two non-zero elements, $(a+1,1)\cdot (-a,1)$. We can rewrite this as $-a^2 + ai - a + i - ai + i^2$. But this is simply $(-a^2 - a) + (i^2 + i) = 1 - 1$, which is 0. This is a contradiction because two non-zero elements cannot have a product of zero.

 \Leftarrow

We will show that every non-zero element has a well-defined multiplicative inverse. Consider the arbitrary element in F', (a,b). Then, we will do a series of steps to find out what the inverse of (a,b) is:

$$(a+bi)\frac{1}{a+bi} = 1$$

$$(a+bi)\frac{(b+ai)}{(a+bi)(b+ai)} = 1$$

$$(a+bi)\frac{(b+ai)}{ab+a^2i+b^2i+abi^2} = 1$$

$$(a+bi)\frac{(b+ai)}{ab+a^2i+b^2i-ab-abi} = 1$$

$$(a+bi)\frac{(b+ai)}{a^2i+b^2i-abi} = 1$$

$$(a+bi)\frac{(b+ai)}{i(a^2+b^2-ab)} = 1$$

$$(a+bi)\frac{(b+ai)(1+i)}{i(a^2+b^2-ab)(1+i)} = 1$$

$$(a+bi)\frac{(b+bi+ai+ai^2)}{(a^2+b^2-ab)(i+i^2)} = 1$$

$$(a+bi)\frac{(b+bi+ai-a-a)}{(a^2+b^2-ab)(-1)} = 1$$

$$(a+bi)\frac{(b-a)+(b)i}{(-a^2+b^2+ab)} = 1$$

Thus there is an inverse to (a,b), namely, (c,d) where $c=\frac{b-a}{-a^2+-b^2+ab}$ and $d=\frac{b}{-a^2+-b^2+ab}$. This inverse is only well defined, if $-a^2+-b^2+ab\neq 0$. Because (a,b) is non-zero, we have 3 cases:

Case 1: $a=0,\ b\neq 0$. Thus we have $-a^2+-b^2+ab=0+-b^2=0,$ and since b^2 is non-zero, $0-b^2+0$ is not zero.

Case 2: $a \neq 0$, b = 0. This is the same as case 1 except reversed. Case 3: $a, b \neq 0$, Thus if $-a^2 - b^2 + ab = 0$, then $\frac{a^2}{b^2} + \frac{a}{-b} + 1 = 0$, which contradicts our assumption that there does not exists an element in F such that $a^2 + a + 1 = 0$.

c) If $F \in \{\mathbb{Z}_3, \mathbb{Z}_7\}$, then F^c is a field and F' is not a field, and if $F \in \{\mathbb{Z}_2, \mathbb{Z}_5\}$, then F' is a field and F^c is a field.

Proof.

If $F \in \{\mathbb{Z}_3, \mathbb{Z}_7\}$, then $\forall a \in F, \ a \cdot a + 1 \neq 0$; thus, F^c is a field by part a. We can show this exhaustively by making $f : \mathbb{Z}_3 \to \mathbb{Z}_3$ such that $f(x) := x \cdot x + 1$ and $g : \mathbb{Z}_7 \to \mathbb{Z}_7$ such that $g(x) := x \cdot x + 1$.

$$f(0) \neq 0$$

$$f(1) \neq 0$$

$$f(2) \neq 0$$

$$g(0) \neq 0$$

$$g(1) \neq 0$$

$$g(2) \neq 0$$

$$g(3) \neq 0$$

$$g(4) \neq 0$$

$$g(5) \neq 0$$

$$g(6) \neq 0$$

If $F \in \{\mathbb{Z}_3, \mathbb{Z}_7\}$, then $\exists a \in F, \ a^2 + a + 1 = 0$, namely, $a = 1 \in \mathbb{Z}_3$ and $a = 2 \in \mathbb{Z}_7$; thus, F' is not a field.

If $F \in \{\mathbb{Z}_2, \mathbb{Z}_5\}$, then $\forall a \in F, \ a^2 + a + 1 \neq 0$; thus, F' is a field by part b. We can show this exhaustively by making $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ such that $f(x) := x^2 + x + 1$ and $g : \mathbb{Z}_5 \to \mathbb{Z}_5$ such that $g(x) := x^2 + x + 1$.

$$f(0) \neq 0$$

$$f(1) \neq 0$$

$$g(0) \neq 0$$

$$g(1) \neq 0$$

$$g(2) \neq 0$$

$$g(3) \neq 0$$

$$g(4) \neq 0$$

If $F \in \{\mathbb{Z}_2, \mathbb{Z}_5\}$, then $\exists a \in F, \ a \cdot a + 1 = 0$, namely, $a = 1 \in \mathbb{Z}_2$ and $a = 2 \in \mathbb{Z}_5$; thus, F^c is not a field.

Proof.

We will consider every other case to be true and show that they all lead to contradictions:

Case 1: xy = 0. This contradicts the fact that no non-zero elements can have a product of 0.

Case 2: xy = x. This contradicts the fact that the multiplicative identity is unique.

Case 3: xy = y. This also contradicts the fact that the multiplicative identity is unique.

Thus xy = 1 must be true.

b)

Proof.

We will consider every other case to be true and show that they will lead to contradictions:

Case 1: xx = 0 and yy = 0. This contradicts the fact that no non-zero elements can have a product of 0.

Case 2: xx = 1 and yy = 1. This contradicts the fact that we already know that x and y are multiplicative inverses of each other, and multiplicative inverses are unique.

Case 3: xx = x and yy = y. This contradicts the fact that the multiplicative identity is unique.

Thus xx = y and yy = x must be true.

c)

Proof.

We will consider every other case to be true and show that they will lead to contradictions:

Case 1: x + y = 0. Multiplying both side by x gives us the equation xx + xy = 0, and thus, y + 1 = 0. If instead we multiply the original equation by y gives us the equation xy + yy = 0, and thus,

x + 1 = 0. Using the transitive property of the equality relation, we can say that x + 1 = y + 1. Hence, x = y which is a contradiction because x and y are distinct.

Case 2: x + y = x. This contradicts the fact that the additive identity is unique.

Case 3: x + y = y. This contradicts the fact that the additive identity is unique.

Thus x + y = 1 must be true.

d)

Proof.

We will consider every other case to be true and show that they will lead to contradictions:

Case 1: x + x = 1. By the transitive property, we can say that x + x = x + y, and if we apply the additive inverse of x to both sides, we get x = y, a contradiction.

Case 2: x + x = x. This contradicts the fact that additive identities are unique.

Case 3: x + x = y. If we multiply x on both sides, we get xx + xx = xy. That leaves us with y + y = 1. This allows us to use the transitive property to say y + y = x + y, and by applying the additive inverse of y we get y = x, a contradiction.

Thus x + x = 0 must be true, and in a similar fashion, we can show that y + y = 1 must be true.

Because x and y are their own additive inverses, x + 1 = y and y + 1 = x is trivially true through rearrangement. 1 + 1 = 0 because 1 needs an additive inverse, and we have already shown it cannot be y or x; thus, it has to be 1.

Proof.

Consider the sequence $(a_n)_{n\in\mathbb{N}}$ of real numbers and notice that for $I_{n+1} \subseteq I_n, a_n \le a_{n+1}$. Because (a_n) is bounded above by at most b_1 , then by definition the set of all a_n has a supremum. Consider $x := Sup(\{a_n\}), \text{ if } \exists n \in \mathbb{N} \text{ such that } a_n > x \text{ then it contradicts } x$ being an upper bound. If $\exists \epsilon > 0, \ \forall n > N \in \mathbb{N} : \ |x - a_n| \geq \epsilon$, then it contradicts that x is the lowest upper bound of $\{a_n\}$. Thus $\forall \epsilon > 0, \ \exists n > N \in \mathbb{N} : |x - a_n| < \epsilon. \ \text{Because } (a_n) \text{ is non-decreasing}$ then $\forall n > N \in \mathbb{N}, |x - a_n| \leq |x - a_N| < \epsilon$. Thus we can say that (a_n) converges to $Sup(\{a_n\})$. Similarly, it is easy to prove that $(b_n)_{n\in\mathbb{N}}$ converges to $Inf(\{b_n\})$. Because (a_n) and (b_n) converge, then $\bigcap_{n\in\mathbb{N}} I_n$ is a defined interval. We know that $Sup(\{a_n\}) \in \bigcap_{n \in \mathbb{N}} I_n$ and $Inf(\{b_n\}) \in \bigcap_{n \in \mathbb{N}} I_n$ due to the least upper bound property of \mathbb{R} ; thus, $\bigcap_{n\in\mathbb{N}} I_n$ contains all of its boundaries and has at least 1 element, making it closed and non-empty. (This makes heavy use of the monotone convergence theorem).

b)

Proof.

Consider $I_n = [a_n, b_n]$, where $a_1 = -10$ and $b_1 = 10$ $a_{n+1} \in \{x | x \in \mathbb{Q} \text{ and } \pi - \frac{1}{n+1} < x < \pi \text{ and } x > a_n\}$ and $b_{n+1} \in \{x | x \in \mathbb{Q} \text{ and } \pi < x < \pi + \frac{1}{n+1} \text{ and } x < b_n\}$ (These sets are non-empty because of 2b; thus, we can invoke the Axiom of Choice). As n becomes arbitrarily large, the distance $|\pi - x| < \epsilon$, $\forall x \in I_n$. If we choose any object $x \in I_n$, then either $x > \pi$ or $x < \pi$. If we consider the case where $x > \pi$ then $\exists \epsilon > 0$ such that $x = \pi + \epsilon$. Therefore, we can find some m > n such that $\pi < b_m < x$; thus, x cannot be in $\bigcap_{n \in \mathbb{N}} I_n$. We can make a similar argument if $x < \pi$. Because $\pi \notin \mathbb{Q}$, $\bigcap_{n \in \mathbb{N}} I_n = \emptyset$. Thus, we have provided a counterexample.