Anwendung zur Objekterkennung

Aufgabe:

Erkenne Vorkommen von

Lösung:

Umschließende Parallelogramme deuten affine Transformation der Referenzobjekte an

Weitere Feature-Detektoren

SIFT-Features hatten großen Erfolg, sind breit anwendbar und waren anfangs patentgeschützt

Daher gibt es inzwischen eine Reihe ähnlicher Ansätze:

- SURF (Speeded-Up Robust Features), Buch 3.2.5
- CenSurE (Center Surround Extrema for Real Time Feature Detection)
- •

3.3 Stereo und Optischer Fluss

- Für Stereobildverarbeitung s. Kapitel 3.3 im Buch; hier aus Zeitgründen gestrichen
- Optischer Fluss s. Kapitel 3.4; hier kurze Darstellung ...

Optischer Fluss

- Feld von Vektoren (Betrag, Richtung in der 2D-Bildebene(!)), die die Bewegung korrespondierender Bildpunkte zwischen zwei konsekutiven Frames darstellt.
- Beispiel: Kamera schwenkt nach links; Auto bewegt sich nach unten rechts.

- Ursache: Bewegung (eigen, fremd) in der Szene
- Abhängigkeiten: Fluss ist stärker, je größer Relativbewegung und je näher Objekt

Annahmen zum Optischen Fluss

Helligkeitskonstanz: Beleuchtung ist konstant zwischen konsekutiven Frames (in etwa)

korrespondierende Bildpunkte können gefunden werden

Kohärenz: Benachbarte Bildpunkte in einer Szene gehören typischerweise zur selben Oberfläche (und bewegen sich entsprechend gemeinsam)

es gibt lokale Bildregionen mit einheitlichem Fluss

Trägheit: Bewegung eines Bildpunktes ändert sich über die Zeit nur allmählich

→ der Fluss untereinander korrespondierender Punkte einer Bildsequenz ist über kurze Zeit nahezu konstant in Richtung und Betrag

Probleme mit optischem Fluss

- Beleuchtungskonstanz ist schwer zu garantieren
- Gemischte Eigen- und Fremdbewegung sind allein aus optischem Fluss schwer zu trennen
- Korrespondenzproblem: Welche Bildpunkte in konsekutiven Frames korrespondieren?

WS 2012/13

Fazit Sensordatenverarbeitung

Als Zusammenfassung die Erinnerung an die Einleitung (S. 82):

- Sensordaten sind i.A. fehlerhaft und (zu) viele
- Verfahren zur direkten Daten- und Fehlerreduktion
- Geringer Rechenaufwand Voraussetzung (online-fähig)
 - Rechenintensive Verfahren auf großen/riesengroßen
 Datensätzen in off-line post-processing (später ab Kap.6)
- im Groben zwei Klassen:
 - Filter (primär Fehlerkorrektur):
 Werfen bewusst Daten weg!
 - Merkmalsdetektoren (primär Datenreduktion):
 Aggregieren Daten
- Verwende später (gefilterte) Originaldaten und/oder aggregierte Merkmale
- Hier: Entfernungsdaten (Laserscans), Bilddaten

Kapitel 4 Fortbewegung

- 1. Zum Einstieg: Worum geht es?
- 2. Sensorik
- 3. Sensordatenverarbeitung
- 4. Fortbewegung
- 5. Lokalisierung in Ka
- 6. Kartierung
- 7. Navigation

- 4.1 Einleitung
- 4.2 Bewegungsschätzung
- 4.3 Bayes- und Kalmanfilter
- 4.4 Fusion von Odometriedaten
- 8. Umgebungsdateninterpretation
- 9. Roboterkontrollarchitekturen Ausblick

4.1 Einleitung

In dieser Vorlesung sind mobile
Roboter Radfahrzeuge mit starrem Körper

Es gibt viele andere Bewegungsformen, sie sind sinnvoll (oft), aber sie kommen hier nicht vor

Freiheitsgrad (Deg. of Freedom, DOF), Holonomie

(Aktiver) Freiheitsgrad

Zahl/Art der Bewegungen, die eine einzelne Komponente (Rad, Gelenk, ...) ausführen kann (translatorische, rotat. DOF; max. 5!); Summe der DOF der Komponenten eines Systems (Roboter).

Effektiver Freiheitsgrad

Dimensionalität der Pose.

Beispiele

- Starres Rad/Kette: 1 a. DOF
- Differentialantrieb (KURT2):2 a. DOF
- KURT2 in der Ebene: 3 e. DOF (s. Folie 39: 3D-Pose (x,z,θ_v))

Holonomie (informell):

Jeder Wert jeder Dimension des e. DOF ist unabhängig von den anderen einstellbar durch Änderungen in den a. DOF. (System kommt "direkt" von jeder möglichen Pose in jede mögliche andere.)

⇒ Ist #e. DOF > #a. DOF, so ist das System nicht-holonom

Räder

Standard-Rad aktiv, 1-2DOF

passiv, 2 DOF

Laufrad (castor wh.) Sphärisches Rad meist passiv, 3 DOF

Mecanum-Rad (Swedish) aktiv, 3 DOF

Mecanum-Räder, Detail

Thomas Bräunl, robotics.ee.uwa.edu.au/braunl.html

Gesamträder und Rollen angetrieben → Holonom in der Ebene

Mecanum-Räder: Bewegungskoordination

Radkinematiken I: Zwei-, Dreirad

Zweirad

statisch stabile Kinematik, falls Schwerpunkt unter der Achse

Dreirad (statisch stabil)

Radkinematiken II: Vierräder

4 Räder, holonom, "Fahrradkinematik"

(= ICC, Inst. Center of Curvature)

Radkinematiken III: 6 Räder ... oder?

KURT2-Kinematik

bzw.

Räder vorn/hinten schleifen!

Joachim Hertzberg Robotik WS 2012/13

4. Fortbewegung4.1 Einleitung

Laufmaschinen mit Beinen

- kommen in dieser Vorlesung nicht weiter vor
- machen für manche Anwendungen Sinn (schwieriger Boden)
- halte ich für unplausibel, wenn ihr Sinn darin besteht,
 "biologisch inspiriert" zu sein
 (aber die Biologie sich dafür nicht interessiert)

4.2 Bewegungsschätzung

Globale Lokalisierung (Absolute L.) → nächstes Kapitel! Ermittle Pose in externem Bezugssystem ("Karte", Koordinatensyst.)

Inkrementelle Lokalisierung (relative L., Lokale L., *tracking*) Ermittle Pose-Änderung bzgl. Startpose bzw. Zwischenpose

Schätze zurückgelegten Weg durch Integration über die (nominale, vorwärtskinematische) Eigenbewegung

Vorteil:

Keine Exterozeption (sondern Vorwärtskinematik)

Nachteil:

- Vorw.-Kinematik <u>approximiert</u> nur tatsächliche Bewegung
- Gesamtfehler durch Integration unbeschränkt

