Problem 1B. Find all triples of positive rational numbers (m, n, p) such that the numbers

$$m + \frac{1}{np}$$
, $n + \frac{1}{pm}$, $p + \frac{1}{mn}$ are integers.

Problem 2B. Find all pairs of positive integers (a, b) such that $a^{b^2} = b^a$.

Problem 3B. Prove that the function $f: \mathbb{N} \to \mathbb{Z}$ defined with

$$f(n) = n^{2021} - n!$$

is injective.

Problem 4B. Let $S = \{a_1, a_2, \dots, a_r\}$ be a set of positive integers, and \mathcal{P}_k the set of all subsets of S with k elements. For a set A we denote $\gcd(A) = \gcd(\{a : a \in A\})$. Prove that

$$lcm(a_1, a_2, ..., a_r) = \prod_{i=1}^r \prod_{A \in \mathcal{P}_i} \gcd(A)^{(-1)^{i-1}}.$$

Problem 5B. Let $n \ge 2018$ be a positive integer and let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be pairwise distinct positive integers not greater than 5n. Suppose that the sequence

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}$$

forms an arithmetic progression. Prove that the terms of this sequence are equal.

Problem 6B. Let $f \in \mathbb{Q}[X]$ be such that $\deg(f) \geq 2$. We define the sequence $f^0(\mathbb{Q}) = \mathbb{Q}$, $f^1(\mathbb{Q}) = f(\mathbb{Q})$ and $f^{n+1}(\mathbb{Q}) = f(f^n(\mathbb{Q}))$ for $n \geq 1$. Prove that the set

$$F = \bigcap_{n \ge 0} f^n(\mathbb{Q})$$
 is finite.