

#### **Analog Integrated Systems Design**

# Lecture 02 Sampling

#### Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

# Sampling

- ☐ Sampling is time discretization
  - Converts a continuous time (CT) signal to a discrete time (DT) signal
  - The result is a sequence of samples
- $\Box$  The sampling instants are defined by a clock signal ( $T_s = 1/f_s$ )
  - The clock signal controls an electronic switch (e.g., MOS transistor)
- ☐ The sampled signal is stored as a voltage on a capacitor
- ☐ The circuit is called sample-and-hold (S/H) circuit



$$t = \frac{n}{f_s} = nT_s, \quad n = -\infty, \dots, -3, -2, -1, 0, 1, 2, 3, \dots, \infty.$$

# Time and Frequency Domains

$$TD \ step = \Delta t = \frac{1}{f_s} = \frac{1}{FD \ period}$$
 $FD \ step = \Delta f = \frac{1}{T_o} = \frac{1}{TD \ period}$ 

| Time domain |          | Technique                      | Frequency domain |          | Where         |
|-------------|----------|--------------------------------|------------------|----------|---------------|
| CT/DT       | Periodic | $\leftrightarrow$              | C/D              | Periodic | in the chain? |
| СТ          | Yes      | CT Fourier series (CTFS)       | Discrete         | No       | -             |
| СТ          | No       | CT Fourier transform (CTFT)    | Continuous       | No       | Before<br>S/H |
| DT          | Yes      | DT Fourier series (DTFS) → FFT | Discrete         | Yes      | After<br>ADC  |
| DT          | No       | DT Fourier transform (DTFT)    | Continuous       | Yes      | After<br>S/H  |

#### Discrete ↔ Periodic

- ☐ Sampling causes "images" in the frequency domain
  - The sampled signal is folded around  $f_s$  and its multiples
  - The part from 0 to  $f_s/2$  is the only part that has physical meaning



#### Discrete ↔ Periodic

- ☐ Sampling causes "images" in the frequency domain
  - The sampled signal is folded around  $f_s$  and its multiples
  - The part from 0 to  $f_s/2$  is the only part that has physical meaning



# What about Bandpass Signals?

- ☐ Sampling causes "images" in the frequency domain
  - The sampled signal is folded around  $f_s$  and its multiples
  - The part from 0 to  $f_s/2$  is the only part that has physical meaning



# Aliasing and Nyquist Criterion

- Aliasing is an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled.
- Nyquist Criterion:

$$f_{S} > f_{Nyq} = 2 \times BW$$

NOT

 $f_{S} > 2 \times f_{max}$ 







# Aliasing/Subsampling in Frequency Domain

- ☐ The sampled signal does not have to be a baseband signal
  - Images appear at  $|\pm kf_s \pm f_a|$ , where k=0,1,2,...
- A.k.a. Under-sampling, Harmonic Sampling, Bandpass Sampling, IF Sampling, Direct IF-to-Digital Conversion



# Aliasing/Subsampling in Time Domain



02: Sampling [W. Kester, 2005]

# Subsampling

- ☐ The sampled signal does not have to be a baseband signal
- ☐ Subsampling can be used to demodulate (down-convert) an RF signal
- A.k.a. Under-sampling, Harmonic Sampling, Bandpass Sampling, IF Sampling, Direct IF-to-Digital Conversion
- ☐ Example: FM signal of 100kHz bandwidth at 10.7MHz
  - The signal is down-converted by a ? MHz sampling clock



# Subsampling

- Subsampling can be used to demodulate (down-convert) an RF signal
- A.k.a. Under-sampling, Harmonic Sampling, Bandpass Sampling, IF Sampling, Direct IF-to-**Digital Conversion**
- Example: FM signal of 100kHz bandwidth at 10.7MHz
  - The signal is down-converted by a 5.35MHz sampling clock



02: Sampling

# Anti-Aliasing Filter (AAF)

- ☐ Anti-aliasing filters are active or passive (CT or DT?) filters.
  - The signal must be filtered before sampling (time discretization).



**02: Sampling** [M. Pelgrom, 2017]

### Baseband vs Passband Signals

- ☐ Sampling of baseband signal: AAF is a (LPF,BPF,HPF)?
- ☐ Subsampling of RF (passband) signal: AAF is a (LPF,BPF,HPF)?



**02: Sampling** [M. Pelgrom, 2017]

# Subsampling Example

- ☐ Signal band: 33 MHz to 39MHz
- Which sampling rate to choose?
  - 78 MS/s
  - 39 MS/s
  - 19.5 MS/s
  - 13 MS/s



# Subsampling Example

- ☐ Signal band: 33 MHz to 39MHz
- Which sampling rate to choose?
  - 78 MS/s
  - 39 MS/s
  - 19.5 MS/s
  - 13 MS/s
- What is the advantage/disadvantage of higher sampling frequency?



# **Alias Band Suppression**

- ☐ Working at the limit of Nyquist criterion requires an ideal filter that does not exist.
- $\Box$  Signals in the alias band  $(f_S BW \ to \ f_S)$  will alias in the desired signal band after sampling.
  - Must be suppressed by AAF.
- ☐ Each pole gives a roll-off slope of 20 dB/decade = 6 dB/octave
- $\Box$  How much suppression @  $(f_s BW)$  if  $f_s/BW = 2$  for 4<sup>th</sup> order filter?



### Oversampling

Oversampling relaxes requirements on baseband antialiasing filter.



STOPBAND ATTENUATION = DR TRANSITION BAND:  $f_a$  to  $f_s$  -  $f_a$  CORNER FREQUENCY:  $f_a$ 



STOPBAND ATTENUATION = DR TRANSITION BAND:  $f_a$  to  $Kf_s$  -  $f_a$ CORNER FREQUENCY:  $f_a$ 

#### Decimation

- ☐ Decimation is the process of reducing the sample rate of a signal.
- Unless the signal is already filtered and oversampled, digital filtering is necessary.



#### Reconstruction Filter

- ☐ ADC needs an anti-aliasing filter.
- DAC needs a reconstruction (smoothing) filter.
  - TD: The reconstruction filter "interpolates/restores/reconstructs" the signal.
  - FD: The reconstruction filter suppresses the "images".



# Zero-Order Hold (ZOH)

- ☐ Zero-order hold (ZOH) keeps the value of the signal at the sample moment.
- $\Box$  The Fourier transform of ZOH is a sinc function: sinc(x) = sin(x)/x
  - Nulls of sinc(x) at the inverse of hold time (pulse width)
- $\Box$  The zero-order hold (ZOH) performs inherent reconstruction (filtering out images).



# Zero-Order Hold (ZOH)

- $\Box$  The zero-order hold (ZOH) performs inherent reconstruction (filtering out images).
  - Succeeding reconstruction filter performs further interpolation (image suppression).



**02: Sampling** Time Frequency [Johns & Martin, 2012]

# Zero-Order Hold (ZOH)

- $\Box$  The zero-order hold (ZOH) performs inherent reconstruction (filtering out images).
  - Succeeding reconstruction filter performs further interpolation (image suppression).



**02: Sampling** Time Frequency [Johns & Martin, 2012]

### Passband Droop

- ☐ ZOH suppresses images but introduces amplitude distortion.
  - The passband distortion may be compensated by inverse-sinc response in the digital or analog domains.





#### Noise in RC Circuit

- Resistors generate white thermal noise.
  - But the BW is always limited by a cap.

$$S_{nout}(f) = S_{v}(f) \left| \frac{V_{nout}(j\omega)}{V_{n}(j\omega)} \right|^{2}$$

$$\overline{V_{nout}^{2}} = V_{noutrms}^{2} = \int_{-\infty}^{\infty} S_{nout}(f) df$$



$$\overline{V_{nout}^2} = \frac{kT}{C}$$



#### Noise in RC Circuit

$$\overline{V_{nout}^2} = \frac{kT}{C}$$

- $\blacksquare$  RMS noise is independent of R! (why?)

$$V_{nrms} \approx \sqrt{\frac{1 p}{C}} \times 64 \,\mu Vrms$$



### **Equivalent Noise Bandwidth**

- Define an equivalent noise BW  $(B_N)$  such that the area under a brick-wall response is the same area under the actual spectral density curve
- ☐ For a first order system

$$V_{nrms}^{2} = \int_{-\infty}^{\infty} S_{n}(f) df = 4kTR \times B_{N} = \frac{kT}{C}$$

$$B_{N} = \frac{1}{4RC} = \frac{\pi}{2} f_{p}$$



### Sampling Noise

 $\square$  The sampling capacitor determines noise power  $\rightarrow$  SNR  $\rightarrow$  No. of ADC bits.

| C <sub>hold</sub> | $V_{nrms} = \sqrt{\frac{kT}{c}}$ at $T$ $= 300 K$ | SNR (assume $V_{sigrms}$ = 1 $Vrms$ ) | No. of bits (see next lecture) |
|-------------------|---------------------------------------------------|---------------------------------------|--------------------------------|
| 100 fF            | 203 $\mu$ Vrms                                    | 74 dB                                 | 12-bit                         |
| 1 pF              | 64 μVrms                                          | 84 dB                                 | 13.7-bit                       |
| 10 pF             | 20.3 $\mu$ Vrms                                   | 94 dB                                 | 15.4-bit                       |



# Noise Folding

- $\square$  Before sampling:  $P_n = kT/C = S_n(f) \times B_N$
- After sampling  $P_n$  is unchanged:  $P_n = kT/C = S_{n,sampled}(f) \cdot \frac{f_s}{2}$   $S_{n,sampled}(f) = \frac{kT}{C} \times \frac{2}{f_s} = S_n(f) \times B_N \times \frac{2}{f_s}$   $S_{n,sampled}(f) = S_n(f) \times \frac{2B_N}{f_s} = S_n(f) \times \frac{\pi BW}{f_s}$
- ☐ Noise power is unchanged, but noise density increases (noise folding).



#### References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3<sup>rd</sup> ed., 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.

# Thank you!

# Sampling vs Modulation

- ☐ Two important dualities between TD and FD
  - Discrete <-> Periodic & Multiplication <-> Convolution
- $\blacksquare$  A stream of impulses with period  $T_S$  in TD is a stream of impulses with period  $f_S$  in FD
  - Sampling can be viewed as a summation of modulations



**02: Sampling** [M. Pelgrom, 2017]

# Chopping

- ☐ Chopping is a technique used for improving accuracy.
  - Sensitive signals are modulated to frequency bands where the signal processing is free of errors.
  - Mitigates the effect of DC offsets, flicker noise, etc.
- ☐ In differential circuits, chopping is implemented easily by alternating between the differential branches.



# Subsampling Anti-Aliasing Filter



BANDPASS FILTER SPECIFICATIONS:

STOPBAND ATTENUATION = DR TRANSITION BAND:  $f_2$  TO  $2f_8$  -  $f_2$   $f_1$  TO  $f_8$  -  $f_1$ 

**33** 

CORNER FREQUENCIES: f<sub>1</sub>, f<sub>2</sub>

02: Sampling [W. Kester, 2005]