Лабораторная работа №3

5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Петрушенко Валерия, 5111 гр.

Выполнено 03.10.2017

С помощью сцинцтиляционного счётчика измеряются линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их величине определяется энергия γ -квантов.

1 Теория

Гамма-лучи возникаютпри переходе возбуждённых ядер в более низкое энергетическое состояние. Энергия γ -квантов обычно порядка $10 \div 1000$ кэВ. Заряд и масса γ -кванта равны нулю. Проходячерез вещество, пучок γ -квантов ослабляется по закону:

$$I = I_0 e^{-\mu l} \tag{1}$$

или

$$I = I_0 e^{-\mu' m_1}, (2)$$

где I, I_0 - интенствности прошедшего и падающего излучений, l - длина пути, пройденного пучком γ -лучей , m_1 - масса пройденного вещества на еденицу площади, μ и μ' - константы, зависящие от среды ($[\mu] = \text{cm}^{-1}, [\mu'] = \text{cm}^2/\Gamma$). μ' , в отличие от μ , не зависит от плотности среды. Ослабление потока γ -лучей в веществе связано с тремя эффектами: фотоэлектрическим поглощением, комптоновским рассеянием и генерацией электрон-позитронных пар.

Фотоэлектричекое поглощение

При столкновении γ -квантов с электронами внутренних атомных оболочек может происходить поглощение квантов. Свободные (наружные) электроны не могут поглощать кванты. Вероятность dP_{Φ} фотоэлектрического поглощения γ -квантов:

$$dP_{\Phi} = \sigma_{\Phi} n_1 dl, \tag{3}$$

где dl - длина пути, n_1 - плотность внутрениних электронов, σ_{Φ} - поперечное сечение отоэлектрического поглощения.

$$\mu_{\Phi} = \sigma_{\Phi} n_1, \tag{4}$$

 μ_{Φ} - коэффициент поглощения для фотоэффекта μ из уравнения (1).

Фотоэффект является доминирующим механизмом поглощения γ -квантов при не очень высоких энергиях. Его вероятность зависит от энергии лучей и заряда ядер.

Рис. 1: Зависимость сечения фотоэффекта от энергии γ -квантов.

Комптоновское рассеяние

Комптоновское рассеяние - упругое столкновение γ -кванта с электроном. Оно может происходить на свободных/слабосвязанных электронах. Эффект Комптона становится существенным, когда энергия квантов становится много больше энергии связи электронов в атоме. В этом случае сечение комптон-эффекта:

$$\sigma_K = \pi r^2 \frac{mc^2}{\hbar\omega} \left(ln \frac{2\hbar\omega}{mc^2} + \frac{1}{2} \right), \tag{5}$$

где $r \simeq 2.8 \cdot 10^{-13} \ {\rm cm}$ - классический радиус электрона, m - его масса.

Эффект комптона приводит не к поглощению, а к рассеянию γ -квантов и уменьшению их энергии.

Образование пар

При энергиях γ -лучей больше 1,02 МэВ становится возможным поглощение лучей, связанное с образованием электрон-позитронных пар. Оно возникает в электрическом поле ядер. Вероятность этого процесса приблизительно пропорциональна Z^2 .

Полный коэффициент ослабления потока γ -лучей

Полный коэффициент ослабления потока лучей равен сумме коэффициентов для трёх рассмотренных процессов.

Полный коэффициент ослабления:

$$\mu = \frac{1}{l} ln \frac{N_0}{N} \tag{6}$$

В работе определяются толщина образца l, число падающих частиц N_0 и число прошедших частиц N.

2 Экспериментальная установка

Рис. 2: Полные коэффициенты ослабления потока у-лучей в алюминии, железе и свинце.

Рис. 3: Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей; Рb - свинцовый контейнер с коллиматорным каналом; Π - набор поглотителей, $\Pi\Pi$ - пересчётный прибор; C - сцинтиллятор - кристалл NaI(Tl); BB - высоковольтный выпрямитель, Φ - формирователь-выпрямитель; Π - источник γ -лучей

Рис. 4: Схема рассеяния γ -квантов в поглотителе

3 Ход работы

1. Исследовали поглощение γ -лучей в свинце, железе и алюминии. Для этого измерили число частиц, попадающих в счётчик за фиксированное время при различной толщине образцов (точность измерения 0.3%):

Таблица 1: Результаты измерений для свинца:

l, mm	4	8	12	16	20
N, iiit.	136746	102354	105008	104325	97589
t_{Σ}, c	30	40	70	120	190

Таблица 2: Результаты измерений для железа:

l, mm	9	18	27	36	45		
N, iiit.	136393	100156	112720	103385	98267		
t_{Σ}, c	30	40	80	130	220		

Таблица 3: Результаты измерений для алюминия:

l, mm	20	40	60	80	100
N, iiit.	105329	102030	110819	100716	105235
t_{Σ}, c	20	30	50	70	110

Абсолютная погрешность измерения толщины образца $\varepsilon_l = 1$ мм.

2. Измерили число частиц, попадающих в счётчик за фиксированное время в отсутствие поглотителя: $N_0 = 166505$ частиц за 20 секунд (точность измерения 0,3%). Чтобы учесть фон, обусловленный шумом ФЭУ и посторонними частицами, измерили количество частиц, попадающих на счётчик за фиксированное время при закрытии коллиматора свицовой заглушкой: $N_{\text{фон.}} = 9986$ частиц за 400 секунд (точность измерения 0,3%). Фон вычитается из всех результатов измерений.

4 Обработка данных

- 1. Построили графики зависимости $ln(N-N_{\text{фон.}})=f(l)$ для всех исследуемых веществ:
- Рис. 5: График зависимости логарифма числа прошедших частиц от толщины образца для свинца

Рис. 6: График зависимости логарифма числа прошедших частиц от толщины образца для железа

Рис. 7: График зависимости логарифма числа прошедших частиц от толщины образца для алюминия

2. С помощью графиков определили линейные коэффициенты ослабления для всех трёх веществ:

$$\mu_{Pb} \approx 1.388 \text{ cm}^{-1}$$
 (7)

$$\mu_{Fe} \approx 0.657 \text{ cm}^{-1}$$
 (8)

$$\mu_{Al} \approx 0.216 \text{ cm}^{-1}$$
 (9)

3. По линейгым коэффициентам ослаблния нашли коэффициенты μ' по формулам (1) и (2):

Из (1) и (2)
$$\Rightarrow \mu l = \mu' m_1$$
 (10)

Отсюда:

$$\mu_{Pb}' \approx 0.122 \frac{\text{cm}^2}{\Gamma} \tag{11}$$

$$\mu_{Fe}' \approx 0.084 \frac{\text{cm}^2}{\Gamma} \tag{12}$$

$$\mu'_{Al} \approx 0.079 \frac{\text{cm}^2}{\Gamma} \tag{13}$$

4. Используя найденные коэффициенты ослабления и табличные данные, определили среднюю энергию *γ*-лучей, испускаемых источником:

$$E_{\gamma} \sim 0.5 \div 0.6 \text{ M} \Rightarrow \text{B}$$
 (14)

- 5. Рассчитали погрешности измерений:
 - (a) Погрешность построенных графиков, рассчитанная методом наименьших квадратов (y = ax + b):

$$\frac{da_1}{a_1} \approx 0,005 = 0,5\%$$

$$\frac{da_2}{a_2} \approx 0,004 = 0,4\%$$

$$\frac{da_3}{a_3} \approx 0,003 = 0,3\%$$

(b) С учётом погрешностей:

$$\mu_{Pb} = 1{,}388 \pm 0{,}007 \text{ cm}^{-1}$$

$$\mu_{Fe} = 0.657 \pm 0.003 \text{ cm}^{-1}$$

$$\mu_{Al} = 0.216 \pm 0.001 \text{ cm}^{-1}$$

5 Вывод

Исследовали поглощение γ -лучей в свинце, алюминии и железе. Получили линейные зависимости логарифма прошедших частиц от толщины образцов и по ним определили линейные коэффициенты ослабления μ и μ' , а также среднюю энергию γ -лучей, испускаемых источником. Полученное значение составило $E_{\gamma} \sim 0.5 \div 0.6$ МэВ. Погрешности измерений не превысили 1%.