Math 215B — Smooth Manifolds — William Guss Lecture Notes

Let's start by expressing some familiar objects as topological manifolds.

Example 1. The *n*-dimensional sphere S^n is a topological manifold.

Proof. First off let's deal with the topological assumptions. The space S^n can be embedded as a subset of \mathbb{R}^n as a bounded compact, so clearly it is paracompact, inheriting the subspace topology we also get that S^n is second countable and Hausdorff.

We now need to equip the sphere with differentiable structure, namely we need to give it a series of atlas's and charts. In the spirit of our paper metaphore, we will construct the sphere by overlapping hemispheres in each coordinate direction.

More formally let U_i^+ and U_i^- be the positive and negative hemisphere of S^n in the *i*-th coordinate; that is,

$$U_i^+ = \{(x_1, \dots, x_{n+1}) \in \mathbf{S}^n \mid x_i > 0\}$$

 $U_i^- = \{(x_1, \dots, x_{n+1}) \in \mathbf{S}^n \mid x_i < 0\}$

Now we'll consider the projection of U_i^{\pm} onto \mathbb{R}^n without the *i*-th coordinate. In particular, let $\phi_i^{\pm}: U_i^{\pm} \to \mathbb{R}^n$ such that

$$\phi(x_1, \dots, x_i, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1n}).$$

To show that these maps are charts for our manifold \mathbb{S}^n , they must be homeomorphisms. Clearly they give a bijection as in each x_i we can identify the x_i coordinate directly using the coordinates; that is, we can describe the inverse of ϕ as follows

$$(\phi^{\pm})^{-1}(u_1,\dots,u_n) = (u_1,\dots,u_{i-1},\pm\sqrt{1-\|u\|^2},u_i,\dots,u_n).$$

Both ϕ_i^{\pm} and its inverse are compositions of elementary continuous functions on valid domains, and so ϕ_i^{\pm} is continuous. Therefore ϕ_i^{\pm} is a homeomorphism.

Now for the fun part! Let's check that the change of coordinates between two overlappings charts is actually C^{∞} . We namely need to compose π_i^{\pm} with $(\phi_j^{\mp})^{-1}$ for all i,j such that $U_i^{\pm} \cap U_j^{\mp}$. This overlap happens when $i \neq j$ or $\mp = \pm$ and i = j.

Calculation yields that the change of coordinates is

$$\phi_i^{\pm} \circ \left(\phi_j^{\mp}\right)^{-1} = \phi_i^{\pm} \circ \left(u_1, \dots, u_{i-1}, \pm \sqrt{1 - \|u\|^2}, u_i, \dots, u_n\right),$$
$$= \left(u_1, \dots, u_{i-1}, u_{i+1}, \dots u_{j-1}, \pm \sqrt{1 - \|u\|^2}, u_j, \dots, u_n\right)$$

The above change is clearly smooth recalling basic calculus.

Therefore we have shown that S^n satisfies the technical conditions of a topological manifold and is equipped with a differentiable structure.

As aforementioned we can also construct interesting manifolds by using this definition and so one might naturally want to consider the product of manifolds. A motivating example is the torus $\mathbb{T} = \mathbf{S}^1 \times \mathbf{S}^1$

Proposition 1. If $(\mathcal{X}, A_{\mathcal{X}}), (\mathcal{Y}, A_{\mathcal{Y}})$ are smooth manifolds then $(\mathcal{X} \times \mathcal{Y}, A_{\mathcal{X}} \otimes A_{\mathcal{Y}})$ is a smooth manifold.

Proof. First let us consider the product topology of $\mathcal{X} \times \mathcal{Y}$. We know that the product of Hausdorff is hausdorff, the product of second countable is obviously second countable¹, and finally the product of paracompact is paracompact.

Next we'll verify that the product atlas covers $\mathcal{X} \times \mathcal{Y}$ and maintains differentiable structure. First let us consider set of functions

$$A_{\mathcal{X}} \times A_{\mathcal{Y}} = \{(x, y) \mapsto (f(x), g(y)) \mid f \in A_{\mathcal{X}}, g \in A_{\mathcal{Y}}\}.$$

For any point $p \in \mathcal{X} \times \mathcal{Y}$ we have that $\pi_1(p) = x \in \mathcal{X}$ and $\pi_2(p) = y \in \mathcal{Y}$. Therefore there are neighborhoods U_x^p, U_y^p containing x in \mathcal{X} and y in \mathcal{Y} respectively such that $A_{\mathcal{X}} \ni f : U_x^p \to \mathbb{R}^n$ and $A_{\mathcal{Y}} \ni g : U_y^p \to \mathbb{R}^m$. As the product of finitely many opens is open in the product topology $U_x^p \times U_y^p := U^p \subset \mathcal{X} \times \mathcal{Y}$ is open and there is a map $H : U^p \to \mathbb{R}^n \times \mathbb{R}^m \in A_{\mathcal{X}} \times A_{\mathcal{Y}}$ with $\pi_1 \circ H = f, \pi_2 \circ H = g$. All this is to say, we can cover the manifold $\mathcal{X} \times \mathcal{Y}$ with maps and neighborhood merely composed from the original charts of both \mathcal{X} and \mathcal{Y} .

Next we'll verify properties of H. From real analysis we know that the cartesian product of two bijections is again a bijection. As for continuity we turn to the procut topology. Take an open set $V \in \mathbb{R}^n \times \mathbb{R}^m$ and then

$$H^{-1}(V) = (f^{-1}(\pi_1(V)), g^{-1}(\pi_2(V))) = W \times Z; \quad W \subset \mathcal{X}, Z \subset \mathcal{Y}.$$

Then the finite product of opens is open so H is continuous. Continuity in the opposite direction is easily verified using the Hausdorff hypothesis on $\mathcal{X} \times \mathcal{Y}$.

Putting everything together we have that $\mathcal{X} \times \mathcal{Y}$ is locally homeomorphic to $\mathbb{R}^n \times \mathbb{R}^m$. Next we need to verify that the change of coordinates between to charts is actually smooth. Suppose we have to charts H_1, H_2 that have overlapping domains. Without loss of generality consider $G = H_2 \circ H_1^{-1}$. This is just

$$G = H_2 \circ f_1^{-1} \times g_1^{-1} = f_2 \circ f_1^{-1} \times g_2 \circ g_1^{-1},$$

which is the product of two C^{∞} maps by the smoothness of both \mathcal{X} and \mathcal{Y} . Since neither coordinate depends on the other, the Frechet derivatives of G occupy only the diagonals of the tensors produced through differentiation and each minor (subcollection of partial-derivatives) is smooth and continuous. Therefore G is smooth.

This verifies that $\mathcal{X} \times \mathcal{Y}$ is a smooth manifold.

Example 2. The torus is a smooth manifold given by $S^1 \times S^1 = \mathbb{T}$.

We'll now turn to the space of lines in *n*-dimnensional vector spaces over a field (or division ring) \mathbb{K} . Let $V = \mathbb{K}^n \setminus \{0\}$. If $v, w \in V$ then we say that $v \sim w$ if there is a $\lambda \in \mathbb{K}$ so that $v = \lambda w$; that is v and w are co-linear².

Example 3 (Projective Space). If V and \sim are given as above, we say that V/\sim is the \mathbb{K} -projective space for V denoted by \mathbb{KP}^n and if \mathbb{K} admits a calculus, \mathbb{KP}^n is a smooth manifold.

Before we show in generality how \mathbb{KP}^n is a manifold, we will consider what the space is geometrically. Let us start with the real projective line \mathbb{RP}^1 . We will identify every point in \mathbb{R}^2 with the line from the origin on which it lies. In particular $(x,y) \sim (s,t)$ if there is a $\lambda \in \mathbb{R}$ so that $(x,y) = (\lambda s, \lambda t)$. Some authors often use $[x:y] \in \mathbb{KP}^2$ to denote points as the following exposition realizes that the ration between each component of a vector in V colinear to (x,y) maintains the same ratio. We will utilize these ratios to build an atlas for \mathbb{KP}^n .

¹This is true in the same sense that $\mathbb{N} \sim \mathbb{N}^2 \sim \mathbb{Q}$.

²For non commutative fields, we prefer left multiplication by a scalar in producing the equivalence relation.

Now that we've seen an example of what this real projective line looks like, we'll prove in generality that \mathbb{KP}^n is a smooth manifold.

Proof. Let's first start by verifying the technical conditions on the topology of \mathbb{KP}^n .

Examples Lecture

Smooth Manifold Requirements:

- Second countable
- Hausdorff
- Maximal atlas with C^{∞} compatible charts.

Definition 4. Let $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ be the *n*-sphere.

Prop. S^n is a smooth manifold.

- Hausdorff + Second Countable: $\mathbf{S}^n \subset \mathbb{R}^{n+1}$
- Open cover:

$$U_i^+ = \{(x_1, \dots, x_{n+1}) \in \mathbf{S}^n \mid x_i > 0\}$$

 $U_i^- = \{" " " x_i < 0\}$

• C^{∞} charts: $\phi_i^{\pm}:U_i^{\pm}\to\mathbb{R}^n$ and

$$\phi(x_1, \dots, x_i, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}).$$

- $-\ \phi_i^\pm$ bijective considering \pmb{S}^n as n-surface. $-\ C^\infty$ coordinate change:

$$\phi_i^{\pm} \circ \left(\phi_j^{\mp}\right)^{-1} = \phi_i^{\pm} \circ \left(u_1, \dots, u_{i-1}, \pm \sqrt{1 - \|u\|^2}, u_i, \dots, u_n\right),$$
$$= \left(u_1, \dots, u_{i-1}, u_{i+1}, \dots u_{j-1}, \pm \sqrt{1 - \|u\|^2}, u_j, \dots, u_n\right)$$

Definition 5. If K is a field. Let $x,y \in \mathbb{K}^{n+1} \setminus \{0\}$ and $x \sim y$ iff x = ty for $\mathbb{K} \ni t \neq 0$. Then $\mathbb{KP}^n = \mathbb{K}^{n+1}/\sim$ is called the projective space over \mathbb{K} .

Consider \mathbb{RP}^n . If $x \in \mathbb{RP}^n$ then $x = [x_1 : x_2 : \cdots : x_{n+1}]$ described by the ratio of the components of each line.

Prop. \mathbb{RP}^n is a manifold.

- X second countable $\implies X/\sim$ is s.c.; $(U\subset X/\sim$ open iff $\pi^{-1}(U)$ open.)
- Chart Idea: $[x_1:x_2] \sim [x_1/x_2:1]$ described by n values.
- Let $\phi_i: \mathbb{KR}^n \to \mathbb{R}^n$ s.t. $x \mapsto [x_1/x_i: x_2/x_i: \dots: x_{i-1}/x_i: x_{i+1}/x_i: \dots: x_{n+1}/x_i]$.
- Let $\phi_i^{-1}: \mathbb{R}^n \to \mathbb{K}\mathbb{R}^n$ s.t. $u \mapsto [u_1: \dots : u_{i-1}: 1: u_i: \dots : u_n]$
- Check the rest.

Remark.

- $\mathbb{RP}^1 \simeq S^1$
- $\mathbb{CP}^1 \simeq S^2$
- $\mathbb{HP}^1 \simeq S^4$

Prop. If $(\mathcal{X}, A_{\mathcal{X}}), (\mathcal{Y}, A_{\mathcal{Y}})$ are smooth manifolds then $(\mathcal{X} \times \mathcal{Y}, A_{\mathcal{X}} \otimes A_{\mathcal{Y}})$ is a smooth manifold.

Proof. Consider the following:

- Product of Hausdorff is Hausdorff.
- Product of topological base G(B_X × B_Y) ~ N × N ~ N is second countable.
 Atlas A_X ⊗ A_Y ks product of C[∞] diffeomorphisms so is a maximal smooth atlas.

Remark. $\mathbb{T} = \boldsymbol{S}^1 \times \boldsymbol{S}^1$ is a smooth manifold!

Remark. Quotients aren't as easy: Quotient Manifold Theorem.