JMTS-12: Probability and Random Processes

Fall 2020

M. Bode

Orga

Textbook:

Henry Stark & John W. Woods

Probability and Random Processes with Applications to Signal Processing

Chapters 1-4 ... parts of 5+6 if time permits

Main platform: campusnet ... course page !!!

For the online meetings, use headsets if possible...

Streaming might also help in the lecture halls.

Bayes's Theorem ...

Simply apply the total probability from before:

Chapter 1

1.7 Bayes's Theorem and Applications

- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

$$= \frac{P[B|A_j]P[A_j]}{\sum_{i=1}^n P[B|A_i]P[A_i]}$$

Practice with communication channel example in your textbook!

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Combinatorics ...

Four basic experiments: Draw r balls from a box (urn) with n ... and record the result.

Draw r balls

Record ...

- 1) As they come out ... in drawing order
- 2) Or ... ignore that order

Urn with n balls

Then ...

- a) Replace them ...
- b) Or ... do not replace

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawin	g Order
		Yes	No
Davilana	Yes	?	?
Replace	No	?	?

Combinatorics ...

Four basic experiments: Draw r balls from a box (urn) ... and record the result.

Record ...

- 1) As they come out ... in **drawing order**
- 2) Or ... **ignore** that order

Then ...

- a) Replace them ...
- b) Or ... do not replace ...

How many different results are there ... in each type?

Let's count ... ©

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawin	g Order
		Yes	No
Yes		n^r	?
Replace	No	?	?

Combinatorics ... COUNT

Four basic experiments: Draw r balls from a box (urn) with n ... and record the result.

- 1) Record in drawing order
- a) Replace

How many different results are there ... in this type?

Idea: Draw a ball ... record its name ... replace.

- 1. n options
- 2. n options
- 3. n options

...

Total =
$$n^r$$

Understand: Multiply!

Do not add!

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawing Order	
		Yes	No
	Yes	n^r	?
Replace	No	$\frac{n!}{(n-r)!}$?

Combinatorics ... COUNT

Four basic experiments: Draw r balls from a box (urn) with n ... and record the result.

- 1) Record in drawing order
- b) Do not replace

How many different results are there ... in this type?

<u>Idea:</u> Draw a ball ... record its name ... do not replace.

- 1. n options
- 2. n-1 options
- 3. n-2 options

...

Total =
$$n(n-1)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawing Order	
		Yes	No
Yes Replace No		n^r	?
		$\frac{n!}{(n-r)!}$	$\binom{n}{r}$

Combinatorics ... COUNT

Four basic experiments: Draw r balls from a box (urn) with n ... and record the result.

- 2) Ignore drawing order
- b) Do not replace

How many different results are there ... in this type?

<u>Idea:</u> Draw a ball ... record its name ... do not replace.

- 1. Keep drawing order
- 2. Then re-arrange: identify (3,5,7,9) and (3,7,9,5) etc.

..

Total =
$$\frac{n!}{(n-r)!r!} = \binom{n}{r}$$

"in choose r' ... binomial coefficient

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawin	g Order
		Yes	No
Yes		n^r	?
керіасе	Replace No		$\binom{n}{r}$

Combinatorics ... COUNT

Four basic experiments: Draw r balls from a box (urn) with n ... and record the result.

- 2) Ignore drawing order
- a) Replace

How many different results are there ... in this type?

Idea: Draw a ball ... record its name ... replace. Like

1: |||

2:1

3:

4: IIII

5: II

6:

7: III

7 balls, 13 draws:

How can we count

the different results, here?

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawin	g Order
		Yes	No
Yes		n^r	?
Replace	No	$\frac{n!}{(n-r)!}$	$\binom{n}{r}$

Combinatorics ... COUNT

Start easy ... draw r balls from an urn with **n=1** ball.

- 2) Ignore drawing order
- a) Replace

How many different results are there ... in this type?

1: r times

Just one possible case: ball 1, ball 1, ball 1, ... r times

Now draw r balls from an urn with **n=2** balls.

Ball 1:	0 times	1		r-1	r
Ball 2:	r times	r-1		1	0
Cases:	1	1	1	1	1

Total:

r+1 cases:

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawin	g Order
		Yes	No
Davilaga	Yes	n^r	?
Replace	No	$\frac{n!}{(n-r)!}$	$\binom{n}{r}$

Combinatorics ... COUNT

- 2) Ignore drawing order
- a) Replace

7: ***

This leads to a beautiful induction (over n) based on Pascal's triangle ... TRY! The sums we need appear there ... just a bit lengthy. $\ \ \otimes$

Here is the elegant way ... re-arrange the table:

1: *** (3 times)	
2: *	
3:	
4: ****	
5: **	
6:	

Ball 1:	2	3	4	5	6	7
***	*		***	**		***

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Draw	ing Order
		Yes	No
Doulogo	Yes	n^r	$\binom{r+n-1}{r}$
Replace	No	$\frac{n!}{(n-r)!}$	$\binom{n}{r}$

Combinatorics ... COUNT

- 2) Ignore drawing order
- a) Replace

Ball 1:	2	3	4	5	6	7
***	*		***	**		***

Interprete:

A total of r = 13 balls (stars) to be distributed over n = 7 boxes (rooms)

How? ... Think of a hotel!

Use vertical **bars** to represent the walls between the rooms:

Fixed wall *** | * | | **** | ** | | *** | fixed wall

Each such sequence of r stars and (n-1) bars represents exactly one result ... 1-to-1

Count:

Draw r star positions from an urn with r+n-1 numbers: Total = $\binom{r+n-1}{r}$

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Experiment		Drawing Order		
		Yes	No	
Replace	Yes	n^r	$\binom{r+n-1}{r}$	
	No	$\frac{n!}{(n-r)!}$	$\binom{n}{r}$	

Combinatorics ... COUNT

- 2) Ignore drawing order
- a) Replace

Ball 1:	2	3	4	5	6	7
***	*		***	**		***

Example (old exam):

A total of r = 15 butterflies comes to a meadow with 6 flowers. Each butterfly lands on one of the flowers.

You count the number of butterflies on flowers 1,2,...,6 Possible result: (2,4,5,1,0,3) ... this is one result (pattern) How many different patterns are there?

Total =
$$\binom{15+6-1}{15}$$
 = $\binom{20}{15}$ = 15504

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Bernoulli Trials - Binomial Law ...

Basic experiment: Toss a coin ... an unfair one!

$$P[\{H\}] = p, P[\{T\}] = q = 1 - p$$

$$\Omega = \{H, T\}, \mathcal{F} = \{\emptyset, \Omega, \{H\}, \{T\}\}$$

Now, repeat that experiment:

$$\Omega_2 = \Omega \times \Omega = \{HH, HT, TH, TT\}$$

Repeat n times (toss the coin n times):

$$\Omega_n = \Omega \times \Omega \times \cdots \times \Omega$$

Cardinality: $|\Omega_n| = 2^n$

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Bernoulli Trials - Binomial Law ...

Toss a coin three times! $P[{HHT}] = ?$

Suppose, the tosses are independent.

$$ightharpoonup P[\{HHT\}] = P[\{H\}]P[\{H\}]P[\{T\}] = ppq = p^2q$$

So far ... so easy! ☺

Now, what if we care about the number of heads (H) in an outcome, only ... not their positions?

That is, we identify HHT, HTH, THH, and just say 'heads come 2 times'.

$$P[``we get k = 2 heads''] = ?$$

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Bernoulli Trials - Binomial Law ...

All the three cases, HHT, HTH, and THH, are equally likely: p^2q ... and disjoint.

$$\rightarrow$$
P[``we get k = 2 heads''] = 3 p^2q

For n Bernoulli trials, we obtain:

$$P[k \ heads] = ? p^k q^{n-k}$$

How many of those cases with k heads are there?

$$\rightarrow$$
Choose k out of n positions for the H: $\binom{n}{k}$ cases.

Binomial probability law (n trials):

$$P[k \ heads] = \binom{n}{k} p^k q^{n-k} =: b(k; n, p)$$

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Extension: Multinomial Probability Law

Example: Roll a 6-faced (unfair) die with probabilities $p_1, p_2, ..., p_6$ for the six possible outcomes.

Like
$$P[\{4\}] = p_4$$
 etc.

As above, for n trials, $n = r_1 + r_2 + \cdots r_6$:

$$P[``r_1 \ Ones, r_2 \ Twos, ..., r_6 \ Sixes''] = ?$$

Choose r_1 out of n positions for the Ones: $\binom{n}{r_1}$ cases.

Then, r_2 out of $(n-r_1)$ positions for the Twos: $\binom{n-r_1}{r_2}$ cases, ...

$$P[r_1, r_2, ..., r_6] = \binom{n}{r_1} \binom{n-r_1}{r_2} ... \binom{r_6}{r_6} p_1^{r_1} p_2^{r_2} ... p_6^{r_6}$$

$$= \frac{n!}{r_1! \, r_2! \dots r_6!} p_1^{r_1} p_2^{r_2} \dots p_6^{r_6}$$

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Asymptotics of the Binomial Law ... The Poisson Law

Example:

Jacobs has about 1500 students.

The years has 365 days (simplified ©)

P[k birthdays, today] = ?

$$b\left(k; n = 1500, p = \frac{1}{365}\right) = {1500 \choose k} \left(\frac{1}{365}\right)^k \left(\frac{364}{365}\right)^{n-k} \dots \otimes$$

Poisson's approximation for $p \ll 1$, $n \gg 1$, np = a:

$$b(k; n, p) \approx \frac{a^k}{k!} e^{-a}$$
, here, $a = 1500/365$

k	0	1	2	3	4	5	6
P[k]	0.016	0.068	0.139	0.190	0.195	0.160	0.110

Chapter 1

- 1.7 Bayes's Theorem and Applications
- 1.8 Combinatorics
- 1.9 Bernoulli Trials Binomial Law ...
- 1.10 Asymptotic ... Poisson Law

Asymptotics of the Binomial Law ...

Poisson's approximation for $p \ll 1$, $n \gg 1$, np = a:

$$b(k; n, p) \approx \frac{a^k}{k!} e^{-a}$$

Why?

Consider $p \to 0$, $q \to 1$, $n \to \infty$, np = a, k fixed:

$$\binom{n}{k} p^k q^{n-k} = \frac{n!}{k! (n-k)!} p^k q^{n-k}$$

$$= \frac{1}{k!}n(n-1)\cdots(n-k+1)p^{k}q^{n}q^{-k} \approx \frac{n^{k}p^{k}}{k!}(1-p)^{n}$$

$$= \frac{n^k p^k}{k!} \left(1 - \frac{a}{n}\right)^n \to \frac{a^k}{k!} e^{-a} \blacksquare$$

The End

Next time: cont. chp. 1