

SFT: Imitating Example Responses

Any LLM

User: Who are you?

Assistant: Who are you?

 $p_{\theta}(\text{Response} \mid \text{Prompt})$

SFT

$$\mathcal{L}_{ ext{SFT}} = -\sum_{i=1}^{N} \log ig(p_{ heta}(ext{Response}(i) \mid ext{Prompt}(i)) ig)$$

Fine-tuned LLM

User: Hi

Assistant: Hi there!

Labeled Data

User: Tell me your identity

Assistant: I'm Llama ...
User: How are you?

Assistant: I'm doing great!

SFT: Imitating Example Responses

SFT minimizes negative log likelihood for the responses (maximizes likelihood) with cross entropy loss:

$$\mathcal{L}_{ ext{SFT}} = -\sum_{i=1}^{N} \log ig(p_{ heta}(ext{Response}(i) \mid ext{Prompt}(i)) ig)$$

Best Use Cases for SFT

- Jumpstarting new model behavior
 - Pre-trained models -> Instruct models
 - Non-reasoning models -> reasoning models
 - Let the model uses certain tools without providing tool descriptions in the prompt

- Improving model capabilities
 - Distilling capabilities for small models by training on high-quality synthetic data generated from larger models

Principles of SFT Data Curation

- Common methods for high-quality SFT data curation:
 - Distillation: Generate responses from a stronger and larger instruct model
 - Best of K / rejection sampling: Generate multiple responses from the original model, select the best among them
 - Filtering: start from larger scale SFT dataset, filter according to the quality of responses and diversity of the prompts

- Quality > quantity for improving capabilities:
 - 1,000 high-quality, diverse data > 1,000,000 mixed-quality data

Full Fine-tuning vs Parameter Efficient Fine-tuning (PEFT)

Both full-finetuning and PEFT can be used in any of the post-training methods. PEFT like Lora saves memory, learns less while forgets less [1]