Bài 1. TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ

A. LÝ THUYẾT CẦN NHỚ

1. Tính đơn điệu của hàm số

 $\ \, \bigcirc$ Định nghĩa: Cho hàm số y=f(x) xác định trên K (K là khoảng, đoạn hoặc nửa khoảng).

Trên K, đồ thị là một "đường đi lên" khi xét từ trái sang phải.

Trên K, đồ thị là một "đường đi $\mathbf{xuống}$ " khi xét từ trái sang phải.

- \bigcirc Liên hệ giữa đạo hàm và tính đơn điệu: Cho hàm số y=f(x) có đạo hàm trên khoảng (a;b).
 - Nếu $y' \ge 0$, $\forall x \in (a;b)$ và dấu bằng chỉ xảy ra tại hữu hạn điểm thì hàm số y = f(x) đồng biến trên (a;b).
 - Nếu $y' \leq 0$, $\forall x \in (a;b)$ và dấu bằng chỉ xảy ra tại hữu hạn điểm thì hàm số y = f(x) nghịch biến trên (a;b).

2. Cực trị của hàm số

- **Dịnh nghĩa:** Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (a có thể là $-\infty, b$ có thể là $+\infty$) và điểm $x_0 \in (a; b)$.
 - Nếu tồn tại số h > 0 sao cho $f(x) < f(x_0)$ với mọi $x \in (x_0 h; x_0 + h) \subset (a; b)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt cực đại tại x_0 .
 - Nếu tồn tại số h > 0 sao cho $f(x) > f(x_0)$ với mọi $x \in (x_0 h; x_0 + h) \subset (a; b)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt cực tiểu tại x_0 .
- **Định lý:** Giả sử hàm số y = f(x) liên tục trên khoảng (a; b) chứa điểm x_0 và có đạo hàm trên các khoảng $(a; x_0)$ và $(x_0; b)$. Khi đó:
 - Nếu f'(x) < 0 với mọi $x \in (a; x_0)$ và f'(x) > 0 với mọi $x \in (x_0; b)$ thì x_0 là một điểm cực tiểu của hàm số f(x).
 - Nếu f'(x) > 0 với mọi $x \in (a; x_0)$ và f'(x) < 0 với mọi $x \in (x_0; b)$ thì x_0 là một điểm cực đại của hàm số f(x).
- Các tên gọi:

ĐIỂM:

"It's not how much time you have, it's how you use it."

\mathbf{O}	TTT	CIZ	NIC	TT
Ų	OT	$\cup \mathbf{n}$	INC	OTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

.....

																															•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

| |
 | |
 |
|--|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|------|

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
	•				•		•	•	•	•	•												•	•	•	•	•	٠	٠	٠	٠			•

y = f(x)0

 $(x_1; y_1)$ là điểm cực đại của đồ thị hàm số;

- x₁ là điểm cực đại của hàm số;
- y₁ là giá trị cực đại của hàm số.

 $(x_2; y_2)$ là điểm cực tiểu của đồ thị hàm số;

- x_2 là điểm cực tiểu của hàm số;
 - y₂ là giá trị cực tiểu của hàm số.

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN

🗁 Dạng 1. Bài toán tìm khoảng đơn điệu và cực trị của hàm số cho trước

- ① Tìm tập xác định \mathcal{D} của hàm số y = f(x).
- ② Tính đạo hàm f'(x). Tìm các điểm x_i (i = 1, 2, ..., n) thuộc \mathcal{D} mà tại đó đạo hàm bằng 0 hoặc không xác định.
- ③ Sắp xếp các điểm x_i theo thứ tự tăng dần, xét dấu y' và lập bảng biến thiên. Từ đây, nêu các khoảng đồng biến, nghịch biến và các điểm cực trị.

Ghi nhớ cách xét dấu:

 \bigcirc Khi xét dấu f'(x) thì f'(x) sẽ không đổi dấu khi qua nghiệm kép (nghiệm bội chẵn) và đổi dấu khi qua nghiệm đơn (nghiệm bội lẻ).

BÀI TẬP TƯ LUÂN

VÍ DỤ 1. Tìm các khoảng đơn điệu và các điểm cực trị của hàm số sau

a)
$$y = -x^3 + 3x^2 - 4$$
; b) $y = x^3 - 3x^2 + 1$;

b)
$$y = x^3 - 3x^2 + 1$$
;

c)
$$y = x^3 + 3x^2 + 3x + 2$$
;

d)
$$y = -2x^4 + 4x^2$$
;

e)
$$y = x^4 + 4x^3 - 1$$
;

f)
$$y = -16x^4 + x - 1$$
.

VÍ DỤ 2. Tìm các khoảng đơn điệu và cực trị của các hàm số sau:

a)
$$y = \frac{2x+1}{x+1}$$
;

b)
$$y = \frac{3x+1}{x-1}$$
;

b)
$$y = \frac{3x+1}{x-1}$$
; c) $y = \frac{x^2+2x+2}{x+1}$;

d)
$$y = x + \frac{4}{x}$$
;

e)
$$y = \sqrt{x^2 - 2x}$$
;

f)
$$y = x - 3\sqrt[3]{x^2}$$
.

VÍ DU 3. Thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T (0°C $\leq T \leq 30$ °C) được tính bởi công thức

$$V(T) = 999,87 - 0,06426T + 0,0085043T^2 - 0,0000679T^3$$

Hỏi thể tích V(T), $0^{\circ}C \leq T \leq 30^{\circ}C$, giảm trong khoảng nhiệt độ nào?

BÀI TẬP TRẮC NGHIỆM

PHÂN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

- $(\mathbf{A})(\sqrt{2};+\infty).$
- (B)(-2;2).
- $(-\infty;0).$
- $(0; \sqrt{2}).$

CÂU 2. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là mệnh đề **sai**?

- (\mathbf{A}) Hàm số đạt cực đại tại x = 0.
- \blacksquare Hàm số có giá trị cực tiểu bằng -2.
- **C**) Hàm số đồng biến trên $(-\infty; 2)$.
- \bigcirc Hàm số nghich biến trên (0; 2).

CÂU 3. Hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên. Hàm số y = f(x) đạt cực tiểu tại điểm nào dưới đây?

- \mathbf{A} x=2.
- \mathbf{B} x=0.
- (c)x = -2.
- \mathbf{D} x=4.

CÂU 4. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Mệnh đề nào sau đây là mệnh đề đúng?

- f A Hàm số đồng biến trên khoảng $(-\infty;3)$.
- \blacksquare Hàm số nghịch biến trên khoảng $(-2; +\infty)$.
- \bigcirc Hàm số đạt cực đại tại x=3.
- $lackbox{\textbf{D}}$ Hàm số đạt cực tiểu tại x=2.

x	$-\infty$		-2		2		$+\infty$
f'(x)	-	+	0	_	0	+	
f(x)	$-\infty$	<i>/</i> *	3		0		$+\infty$

CÂU 5. Cho hàm số y = f(x) có bảng biến thiên bên dưới

x	$-\infty$	-2	(0	2		$+\infty$
f'(x)	+	0	_	_	0	+	
f(x)	$-\infty$	-4	$-\infty$	$+\infty$	4		+∞

Khẳng định nào sau đây là khẳng định sai?

- A Hàm số có hai điểm cực trị.
- \blacksquare Tọa độ điểm cực đại của đồ thị hàm số là (-2; -4).
- \bigcirc Hàm số nghịch biến trên khoảng (-2;2).
- $lue{\mathbf{D}}$ Hàm số đồng biến trên khoảng $(3; +\infty)$.

CÂU 6. Cho hàm số $y = -\frac{1}{3}x^3 - x - 3$. Mệnh đề nào dưới đây đúng?

- lack A Hàm số đồng biến trên $(-\infty;1)$ và trên $(1;+\infty)$.
- f B Hàm số nghịch biến trên $\Bbb R$.

QUICK NOTE		g biên trên $(-1;1)$.			
	Hàm số đồng	g biến trên \mathbb{R} .			
	CÂUZ Cei e 1	> 1:2··· 1> :	†:ểa. ↓:ể². 1.	> € - · · · · · · 3 + 9 - · · ·	o
	$x_1 + 2x_2$.	a diem cực dại x_2 la c	nem cực tiêu của r	$ \text{àm số } y = -x^3 + 3x + $	2. 11mn
	A 2.	B 1.	(c)-1.	\bigcirc 0.	
	2.	1.	1.	9 0.	
	CÂU 8. Khoảng	cách giữa hai điểm cực	c trị của đồ thị hàn	số $y = x^3 - 3x^2 + 4$ bằn	ng
	A $2\sqrt{5}$.	\mathbf{B}) $2\sqrt{2}$.	\bigcirc 2.	D 4.	
	, ,	·			
	CÂU 9. Hàm số \mathfrak{g}	$y = x^4 - 2x^2 + 1 \text{ dồng}$	biến trên khoảng r	aào dưới đây?	
	(-1;0).	$\mathbf{B}(-1;+\infty).$	(-3;8).	\bigcirc $(-\infty;-1).$	
		1 1			
	CÂU 10. Cho hà	$m \text{số} y = -\frac{1}{4}x^4 + \frac{1}{2}x^2 - \frac{1}{4}x^4 + \frac{1}{2}x^2 - \frac{1}{4}x^4 + \frac{1}{2}x^4 - \frac{1}{4}x^4 + \frac{1}{4}x^4 - \frac{1}{4}x^4 + \frac{1}{4}x^4 - \frac{1}{4}x^4 -$	−3. Khẳng định nào	sau đây là khẳng định đứ	ing?
		cực tiểu tại $x = -3$.		tạt cực tiểu tại $x = 0$.	
		cực đại tại $x = 0$.	\simeq	tạt cực tiểu tại $x = -1$.	
	James au			qu oqo vica vqi w	
	CÂU 11. Cho hà	m số $y = \frac{3x-1}{x-2}$. Mện	nh đề nào dưới đây	là đúng?	
		-	v		
	A Hàm số nghi		()) (0)	`	
		g biến trên các khoảng			
		ịch biến trên các khoả	ng $(-\infty; 2)$ va $(2; +$	-∞).	
	Ham so dong	g biến trên $\mathbb{R} \setminus \{2\}$.			
	CÂU 12. Cho hà	m số $y = \frac{x-2}{x+3}$. Mệnh	n đề nào dưới đây đ	úng?	
	OAO 12. Ono na	$\frac{1}{x+3}$. We find	i de não duoi day d	ung:	
	1	ịch biến trên khoảng (
		g biến trên khoảng (-			
		ịch biến trên khoảng (
	(D) Hàm số đồng	g biến trên khoảng (–	$(-3) \cup (-3; +\infty)$		
	CÂU 13 Coi va	n vom lån lygt lå gje	ó trị cực đại và ci	á trị cực tiểu của hàm	gố 4 –
	$x^2 + 3x + 3$	y_{CT} ran ruọt ra gra	a trị cặc dặi va gi	a trị các tiên của nam	so <i>y</i> –
	${x+2}$. Gia	trị của biểu thức y_{CD}^2	$-2y_{\rm CT}^2$ bang		
	A 8.	B 7.	© 9.	D 6.	
		2 2 -			
		ểm cực tiểu của hàm s	_		
	$(\mathbf{A})x = 3.$		$(\mathbf{C})x=2.$	$(\mathbf{D})x = 1.$	
	CÂU 15 Cho bà	$m \stackrel{\text{def}}{\approx} u = m^2 + 4 \ln(2)$	m) Tim giá trị gưa	đai y_{CD} của hàm số đã c	.h.o
					110.
		$\mathbf{B}y_{\mathrm{CD}}=4.$	$\mathbf{G}y_{\mathrm{CD}} = 1 +$	$4 \ln 2. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	CÂU 16. Cho hà	am số y = f(x) xác di	nh trên ℝ và có đa	o hàm $y' = f'(x) = 3x^3$	$-3x^2$.
	Mệnh đề nào sau			y (w) (w)	
	A Trên khoảng	$g(1;+\infty)$ hàm số đồng	g biến.		
		g(-1;1) hàm số nghịc			
	©Đồ thị hàm	số có hai điểm cực trị			
	Dô thị hàm	số có một điểm cực ti	ểu.		
			-		. 0
	CAU 17. Cho hà	m số $y = f(x)$ liên tụ hàm số $y = f(x)$ là	c trên \mathbb{R} và có đạo	$ham f'(x) = x(x-1)^2($	$(x-2)^3$.
		ia hàm số $y = f(x)$ là			
	A 1.	B 2.	$(\mathbf{C})0.$	D 3.	

CÂU 18. Cho hàm số bậc bốn y = f(x). Biết f'(x) có đồ thị như hình bên. Khẳng định nào sau đây là khẳng định đúng?

$$lackbox{\bf D}$$
 Hàm số $f(x)$ có đúng một điểm cực đại.

CÂU 19. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} . Biết rằng hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Khi đó nhận xét nào sau đây đúng?

$$ullet$$
 Đồ thị hàm số $f(x)$ có đúng 2 điểm cực tiểu.

$$\bigcirc$$
 Đồ thị hàm số $f(x)$ có đúng một cực đại.

$$(\mathbf{D})$$
Hàm số $f(x)$ có 3 cực trị.

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 20. Cho hàm số y = f(x) liên tục trên $\mathbb R$ và có bảng xét dấu đạo hàm như hình bên.

x	$-\infty$		0		1		2		$+\infty$
y'		+	0	_		+	0	+	

Mệnh đề	Ð	S
a) Hàm số đồng biến trên khoảng $(-\infty;1)$.		
b) Hàm số đồng biến trên khoảng $(1; +\infty)$.		
c) Hàm số đạt cực đại tại $x=2$.		
d) Hàm số có một điểm cực đại và hai điểm cực tiểu.		

CÂU 21. Cho hàm số $y = x^3 - 3x^2 + 4$ có đồ thị (C). Gọi A, B là hai điểm cực trị của (C).

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		
b) Hàm số đồng biến trên khoảng $(0;2)$.		
c) Phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số là $2x + y - 4 = 0$.		
d) Diện tích của tam giác OAB bằng 4, với O là gốc tọa độ.		

CÂU 22. Cho hàm số $y = \frac{x^2 + 2x + 2}{x + 1}$ có đồ thị (C). Gọi A, B lần lượt là điểm cực tiểu và điểm cực đại của (C).

Mệnh đề	Đ	S
a) Tập xác định của hàm số là \mathbb{R} .		

																										•			
																										•			
																										•			
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠									•		•	•	•									٠		٠	•	•	•	٠			٠

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•				•	•	
•			•	•	•	•													•	•	•	•	•							

																•	•													•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		NOTE	
QUI	CKI	NOTE	

b) Hàm số nghịch biến trên khoảng $(-2;0)$.	
c) Tọa độ điểm $A(-2;-2)$, $B(0;2)$.	
d) Khoảng cách giữa hai điểm cực trị là $AB = 2\sqrt{5}$.	

CÂU 23. Xét một chất điểm chuyển động dọc theo trục Ox. Toạ độ của chất điểm tại thời điểm t được xác định bởi hàm số $x(t) = t^3 - 6t^2 + 9t$ với $t \ge 0$. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).

Mệnh đề	Ð	S
a) Phương trình hàm vận tốc là $v(t) = 3t^2 - 6t + 9$.		
b) Phương trình hàm gia tốc là $a(t) = 6t - 12$.		
c) Vận tốc của chất điểm tăng khi $t \in (0;1)$ hoặc $t \in (3;+\infty)$.		
d) Vận tốc của chất điểm giảm khi $t \in (1;3)$.		

Dạng 2. Bài toán tìm m để hàm số đồng biến (nghịch biến) trên khoảng cho trước

- Xét hàm số bậc ba $y = ax^3 + bx^2 + cx + d$ có $y' = 3ax^2 + 2bx + c$.
 - ① Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

$$y' \ge 0, \, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta_{y'} \le 0 \end{cases}.$$

② Hàm số nghịch biến trên $\mathbb R$ khi và chỉ khi

$$y' \le 0, \, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta_{y'} \le 0 \end{cases}$$

Trường hợp hệ số a có chứa tham số, ta kiểm tra thêm trường hợp a = 0.

- Xét hàm phân thức $y = \frac{ax+b}{cx+d}$ có $y' = \frac{ad-cb}{(cx+d)^2}$, với $ad-cb \neq 0$ và $c \neq 0$.
 - ① Hàm số đồng biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' > 0, \forall x \neq -\frac{d}{c} \Leftrightarrow ad - cb > 0.$$

2 Hàm số nghịch biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' < 0, \forall x \neq -\frac{d}{c} \Leftrightarrow ad - cb < 0.$$

- Xét hàm phân thức $y=\frac{ax^2+bx+c}{dx+e}$ có $y'=\frac{adx^2+2aex+be-dc}{(dx+e)^2},$ với $ad\neq 0.$
 - ① Hàm số đồng biến trên tùng khoảng xác định của nó khi và chỉ khi

$$y' \ge 0, \ \forall x \ne -\frac{e}{d} \Leftrightarrow adx^2 + 2aex + be - dc \ge 0, \ \forall x \ne -\frac{e}{d}.$$

2 Hàm số nghịch biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' \leq 0, \, \forall x \neq -\frac{e}{d} \Leftrightarrow adx^2 + 2aex + be - dc \leq 0, \, \forall x \neq -\frac{e}{d}.$$

BÀI TẬP TỰ LUẬN

VÍ DU 1. Tìm tất cả giá trị của tham số m để hàm số

- a) $y = x^3 + mx^2 + 2mx + 2$ đồng biến trên $(-\infty; +\infty)$.
- b) $y = -\frac{1}{3}x^3 mx^2 + (2m 3)x m + 2$ nghịch biến trên \mathbb{R} .
- c) $y = \frac{1}{3}x^3 mx^2 (2m+1)x + 1$ nghịch biến trên khoảng (0; 5).
- d) $y = x^3 3x^2 + (5 m)x$ đồng biến trên khoảng $(2; +\infty)$.

VÍ DU 2. Tìm tất cả giá tri của tham số m để hàm số

- a) $y = \frac{mx+2}{x+1}$ đồng biến trên từng khoảng xác định.
- b) $y = \frac{mx-2}{x+m-3}$ nghịch biến trên các khoảng xác định
- c) $y = \frac{mx 8}{x 2m}$ đồng biến trên $(3; +\infty)$.
- d) $y = \frac{mx+9}{4x+m}$ nghịch biến trên khoảng (0;4).

VÍ DU 3. Tìm tất cả giá trị của tham số m để hàm số

- a) $y = \frac{2x^2 + 3x + m + 1}{x + 1}$ đồng biến trên các khoảng xác định.
- b) $y = \frac{x^2 + (m+1)x 1}{2 r}$ (m là tham số) nghịch biến trên mỗi khoảng xác định.

BÀI TẬP TRẮC NGHIỆM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Học sinh trả lời từ câu 1 đến câu 17. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Tất cả giá trị của m để hàm số $y = \frac{x+m}{x-2}$ nghịch biến trên từng khoảng xác định

- $(\mathbf{A})m > -2.$
- **(B)**m < -2.
- $(\mathbf{C})m \le -2.$ $(\mathbf{D})m \ge -2.$

CÂU 2. Cho hàm số $y=\frac{mx-2}{x+1-m}$. Tìm tất cả giá trị của tham số m để hàm số đồng

CÂU 3. Cho hàm số $y = \frac{x+m}{x+2}$. Tập hợp tất cả các giá trị của m để hàm số đồng biến trên khoảng $(0; +\infty)$ là

- $(\mathbf{A})[2;+\infty).$
- $(\mathbf{B})(2;+\infty).$
- $(\mathbf{C})(-\infty;2].$

CÂU 4. Cho hàm số $f(x) = \frac{mx-4}{x-m}$ (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên khoảng $(0; +\infty)$?

- (A) 5.

CÂU 5. Tìm tất cả các giá trị của m để hàm số $y = \frac{mx+4}{x+m}$ nghịch biến trên $(-\infty;1)$.

CÂU 6. Số giá trị nguyên của tham số m để hàm số $y = \frac{mx+10}{2x+m}$ nghịch biến trên khoảng (0; 2) là

- (A) 6.

CÂU 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^3 - 2mx^2 + (m^2 + 3)x$ đồng biến trên \mathbb{R} ?

- $(\mathbf{A})8.$
- $(\mathbf{B})6.$
- (C)7.

0	П	\sim	М	$\boldsymbol{\smallfrown}$	
			14.1		 Ξ

CÂU 8. Cho hàm số $y = -x^3 - mx^2 + (4m+9)x + 5$. Có bao nhiều giá trị nguyên của m để hàm số nghich biến trên \mathbb{R} ?

(A)7.

 $(\mathbf{C})_{5.}$

 $(\mathbf{D})6.$

CÂU 9. Cho hàm số $y = (m-1)x^3 + (m-1)x^2 - 2x + 5$ với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng $(-\infty; +\infty)$?

CÂU 10. Tìm tất cả các giá trị thực của tham số m để hàm số $y=x^3-3mx^2-9m^2x$ nghịch biến trên khoảng (0; 1).

 \bigcirc $-1 < m < \frac{1}{3}$.

Bm < -1.

 $(c)m > \frac{1}{3}.$

 \bigcirc $m \ge \frac{1}{3}$ hoặc $m \le -1$.

CÂU 11. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-2019; 2020) để hàm $\text{số } y = 2x^3 - 3(2m+1)x^2 + 6m(m+1)x + 2019$ đồng biến trên khoảng $(2; +\infty)$?

(C)2021.

CÂU 12. Tập hợp các giá trị thực của tham số m để hàm số $y = -x^3 - 6x^2 + (4m - 9)x + 4$ nghịch biến trên khoảng $(-\infty; -1)$ là

 $\left[-\frac{3}{4};+\infty\right)$.

 $\mathbf{C}\left(-\infty; -\frac{3}{4}\right].$ $\mathbf{D}[0; +\infty).$

CÂU 13. Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = x^3 - 6x^2 + mx + 1$ đồng biến trên khoảng $(0; +\infty)$.

(A)m < 12.

 $(\mathbf{C})m < 0.$

CÂU 14. Tìm tất cả các giá trị m để hàm số $y = \frac{x^2 - 8x}{x + m}$ đồng biến trên mỗi khoảng xác định.

(-8;0).

(B)(0; 8).

 $(\mathbf{C})[0;8].$

 $(\mathbf{D})[-8;0].$

CÂU 15. Tập hợp các giá trị thực của tham số m để hàm số $y = x + 1 + \frac{m}{r-2}$ đồng biến trên mỗi khoảng xác định của nó là

 $(\mathbf{A})(-\infty;0).$

 $(\mathbf{B})[0;1).$

 $(\mathbf{C})[0;+\infty)\setminus\{1\}.$

CÂU 16. Tìm tất cả các giá tri thực của tham số m để hàm số $f(x) = 2^{x^3 - x^2 + mx + 1}$ đồng biến trên khoảng (1;2).

(A) $m \le -8$.

(B)m > -8.

(c) $m \ge -1$.

CÂU 17. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số $f(x) = (x+1) \ln x +$ (2-m)x đồng biến trên khoảng $(0; e^2)$?

 (\mathbf{A}) 0.

 $(\mathbf{C})_{5}.$

PHẨN II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 18 đến câu 20. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 18. Cho hàm số $y = mx^3 + mx^2 - (m+1)x + 1$, với m là tham số.

Mệnh đề	Ð	S
a) Hàm số là hàm số bậc ba khi $m \neq 0$.		
b) Tập xác định của hàm số là \mathbb{R} .		
c) Hàm số đồng biến trên $\mathbb R$ khi và chỉ khi $m<-\frac{3}{4}$ hoặc $m\geq 0$.		
d) Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi $-\frac{3}{4} \leq m < 0$.		

CÂU 19. Cho hàm số $y = \frac{1}{3}x^3 + (m+1)x^2 + (m^2 + 2m)x - 3$, với m là tham số.

Mệnh đề				
a) Tập xác định của hàm số là \mathbb{R} .				

- b) Phương trình y'=0 có hai nghiệm phân biệt $x_1=-m$ và $x_2=-m-2$.
- c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R} .
- d) Hàm số nghịch biến trên khoảng (-1;1) khi và chỉ khi $m \geq -1$.

CÂU 20. Cho hàm số $y = \frac{x+5}{x+m}$, với m là tham số.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		
b) Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi $m \geq 5$.		
c) Hàm số nghịch biến trên từng khoảng xác định khi và chỉ khi $m < 5$.		
d) Hàm số đồng biến trên khoảng $(-\infty; -8)$ khi và chỉ khi $(5; 8)$.		

Dạng 3. Bài toán tìm m để hàm số có cực trị hoặc đạt cực trị tại điểm cho trước

- \mathfrak{F} Tìm m để hàm số y=f(x) đạt cực trị tại điểm x_0 cho trước (f(x) có đạo hàm tại $x_0)$:
 - ① Giải điều kiện $y'(x_0) = 0$, tìm m.
 - ${\mathfrak D}$ Lập bảng biến thiên với m vừa tìm được và chọn giá trị mnào thỏa yêu cầu.
- - ① $\begin{cases} \Delta_{y'} > 0 \\ a \neq 0 \end{cases}$: Hàm số có hai điểm cực trị
 -

 $\Delta_{y'} \leq 0 \text{ hoặc suy biến } \begin{cases} a=0\\ b=0 \end{cases}$: Hàm số không có cực trị.
 - \bigcirc Gọi $x_1,\ x_2$ là hai nghiệm phân biệt của y'=0 thì $x_1+x_2=-\frac{2b}{3a}$ và $x_1\cdot x_2=\frac{c}{3a}.$
 - $x_1^2 + x_2^2 = (x_1 + x_2)^2 2x_1x_2$
 - $(x_1 x_2)^2 = (x_1 + x_2)^2 4x_1x_2$
 - $x_1^3 + x_2^3 = (x_1 + x_2)^3 3x_1x_2(x_1 + x_2)$.
 - Các công thức tính toán thường gặp:
 - Độ dài $MN = \sqrt{(x_N x_M)^2 + (y_N y_M)^2}$
 - Khoảng cách từ M đến Δ : $d(M,\Delta)=\frac{|Ax_M+By_M+C|}{\sqrt{A^2+B^2}},$ với Δ : Ax+By+C=0.
 - Tam giác ABC vuông tại $A \Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow \operatorname{hoành} \cdot \operatorname{hoành} + \operatorname{tung} \cdot \operatorname{tung} = 0.$
 - Diện tích tam giác ABC là $S = \frac{1}{2}|a_1b_2 a_2b_1|$, với $\overrightarrow{AB} = (a_1; b_1)$, $\overrightarrow{AC} = (a_2; b_2)$.
 - $\ \, \bigcirc$ Phương trình đường thẳng qua hai điểm cực trị là $y=-\frac{2}{9a}(b^2-3ac)x+d-\frac{bc}{9a}.$

BÀI TẬP TỰ LUẬN

VÍ DU 1. Tìm m để hàm số

- a) $y = \frac{x^3}{3} mx^2 + (m^2 m + 1)x + 1$ đạt cực tiểu tại x = 3.
- b) $y = x^3 3mx^2 + 3(m^2 1)x$ đạt cực đại tại $x_0 = 1$.

♥ VNPmath - 0962940819 ♥			(🌃 ỨNG DỤNG ĐẠO HÀM
QUICK NOTE	VÍ DỤ 2. Tìm tất cả :	giá trị của tham số r	n để hàm số (đồ thị $^{\circ}$	hàm số)
	a) $y = x^3 - 3x^2 + 2$	mx + m + 2024 có h	ai điểm cực trị.	
	b) $y = \frac{1}{3}x^3 - mx^2 + \frac{1}{3}x^3 - mx^2 + \frac{1}{3}x^3 - \frac{1}{3}x$	+(m+2) x + 2019 k	hông có cực tri	
	9			11.2
	c) $y = x^3 - 3(m+1)x$ -8.	$x^2 + 12mx + 2019$ có h	nai điểm cực trị $x_1,\ x_2$	thỏa mãn $x_1+x_2+2x_1x_2 =$
	d) $y = -x^3 - 3mx^2$	+m-2 với m là th	am số có hai điểm cụ	ac tri A, B sao cho AB = 2.
		BÀI TẬP	TRẮC NGHIỆM	
			hương án lựa chọi	n. Mỗi câu hỏi học sinh
	chỉ chọn một phươn	ng án.		
	CÂU 1. Tìm tất cả gi	á tri của tham số m	$d\hat{e}$ hàm số $y = \frac{1}{2}r^3 + \frac{1}{2}r^3$	$-(m+1)x^2 + (1-3m)x + 2$
	có cực đại và cực tiểu.	a tri caa thain 50 m	de num so $y = 3^{w-1}$	(110 1) 20 (1 0110) 20 2
		B) $m < -5; m > 0$. $\bigcirc -5 < m < 0$.	$(\mathbf{D}) - 5 < m < 0.$
			_	$-x^3 - 3x^2 + mx + 2$ có cực
	đại và cực tiểu.	ac gia tri cua tilalli s	so m de nam so $y = 1$	-x - 5x + mx + 2 co cực
		\mathbf{B} $m \geq 3$.	$\bigcirc m \geq -3.$	$\bigcirc m > 3.$
	CÂU 3. Cho hàm số \imath	$y = x^3 - 3(m+1)x^2$	+3(7m-3)x. Số giá	á trị nguyên của tham số m
	để hàm số không có cụ			. 0 7
	A 2.	B 1.	C 4.	D 3.
	CÂU 4. Cho hàm số y	$y = x^3 - 3(m+1)x^2 - 3(m+1)$	+3(7m-3)x. Gọi S	là tập hợp tất cả các giá trị
	nguyên của tham số m			
	(A) 2.	B)4.	© 0.	DVô số.
	CÂU 5. Giả sử hàm s	$\hat{0} \ y = \frac{1}{2}x^3 - x^2 - \frac{1}{2}n$	nx có hai điểm cực tr	ị x_1, x_2 thỏa mãn $x_1 + x_2 +$
	$2x_1x_2=0$. Giá trị của	0		
	$\boxed{\mathbf{A}} m = \frac{4}{3}.$		$\bigcirc m = 3.$	$\bigcirc m=2.$
	CÂU 6 Cho hàm số	$f(x) = x^3 - 3x^2 + x$	x = 1 Tìm giá trị ci	ủa tham số m để hàm số có
	hai cực trị x_1, x_2 thỏa	$x_1^2 + x_2^2 = 3.$	ia 1. 1 mi gia di co	ta tham so m de ham so co
			$\bigcirc m = 1.$	$\bigcirc m = \frac{3}{2}.$
				$\sin y = x^3 - 12x + m + 2 \cot x$
	hai cực trị và hai điểm			
	$\bigcirc m = -2.$	_	\mathbf{C} $\forall m \in \mathbb{R}$.	
	CÂU 8. Tập hợp các s	giá trị của <i>m</i> để đồ t	hị hàm số $y = x^3 + r$	$nx^2 - (m^2 - 4)x + 1$ có hai
	điểm cực trị nằm ở hai			(11) 1 1 00 1101
	$(-\infty;2).$	$\blacksquare \mathbb{R} \setminus [-2; 2].$	(-2;2).	\bigcirc $(2; +\infty).$
	CÂU 9. Cho hàm số g	$y = x^3 + 3mx^2 + 3(m^2)$	$(n^2-1)x+m^3$. Tìm m	\imath để hàm số đạt cực tiểu tại
	$\operatorname{di\acute{e}m} x = 0.$			
	(A) m = -1.	\bigcirc $m=1.$	$\bigcirc m = 0.$	$(\mathbf{D})m=2.$
	CÂU 10. Hàm số $y =$			
	($\mathbf{C}m=1.$	$(\mathbf{D})m = -1.$
	CÂU 11. Tìm giá trị	thực của tham số m	để hàm số $y = \frac{1}{2}x^3$	$-mx^2 + (m^2 - 4)x + 3$ đạt
	cực tiểu tại $x = 3$.		ა	
		$\mathbf{B}m=1.$	(c)m = -7.	$\mathbf{D}m=5.$

Khi đó a+b bằng

B)4.

 \bigcirc -4.

= -1. $(m^2 - 4)x + 3$ đạt $(\mathbf{D})m=5.$ **CÂU 12.** Đồ thị hàm số $y = x^3 - 3x^2 + 2ax + b$ (với $a, b \in \mathbb{R}$) có điểm cực tiểu A(2; -2). **C**2. $(\mathbf{D})-2.$ GV.VŨ NGỌC PHÁT 10

CÂU 13. Gọi m_1, m_2 là các giá trị của tham số m để đồ thị hàm số $y = 2x^3 - 3x^2 + m - 1$ có hai điểm cực trị B, C sao cho tam giác OBC có diện tích bằng 2, với O là gốc tọa độ. Tích $m_1 \cdot m_2$ bằng

A 12.

B)6.

(c) -15.

(D) - 20

CÂU 14. Cho hàm số $y=x^3-3mx^2+3m^3$. Biết rằng có hai giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A,B và tam giác OAB có diện tích bằng 48. Khi đó tổng các giá trị của m là

 \bigcirc 0.

B)2.

 $\mathbf{C}\sqrt{2}$

 \bigcirc -2

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 15. Cho hàm số $y = \frac{m}{3}x^3 + 2x^2 + mx + 1$, với m là tham số.

Mệnh đề	Ð	S
a) Hàm số có hai điểm cực trị khi $-2 < m < 2$.		
b) Hàm số có đúng một điểm cực trị khi $m=0$ hoặc $m=2$.		
c) Hàm số không có cực trị khi $m \le -2$ hoặc $m \ge 2$.		
d) Hàm số có 2 điểm cực trị thỏa mãn $x_{\text{CD}} < x_{CT}$ khi $0 < m < 2$.		

CÂU 16. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x - m^3$ với m là tham số.

Mệnh đề	Ð	S
a) Hàm số luôn có hai điểm cực trị với mọi m .		
b) Hàm số đạt cực tiểu tại $x=3$ khi $m=2$.		
c) Khi đồ thị hàm số có hai điểm cực trị thì khoảng cách giữa hai điểm cực trị bằng $2\sqrt{5}$.		
d) Điểm cực tiểu của đồ thị hàm số luôn thuộc đường thẳng cố định với hệ số góc $k=-3$.		

CÂU 17. Cho hàm số $y = \frac{x^2 - 2mx + m + 2}{x - m}$, với m là tham số.

Mệnh đề	Đ	S
a) Tập xác định của hàm số là $\mathbb{R}\setminus\{m\}$.		
b) Có hai giá trị nguyên của tham số m để hàm số có hai điểm cực trị.		
c) Hàm số đạt cực đại tại $x = -1$ khi $m = \frac{1}{2}$.		
d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng qua hai điểm cực trị của đồ thị có phương trình là $y = 2x - 2m$.		

🖶 Dạng 4. Đơn điệu hàm hợp, hàm chứa dấu giá trị tuyệt đối

- Θ Hàm y = f(u).
 - Bước 1: Tính đạo hàm $y' = u' \cdot f'(u)$.
 - **Bước 2:** Lập bảng xét dấu của y'.
 - **Bước 3:** Kết luận.
- \odot Hàm y = f(u) + g(x).
 - Bước 1: Tính đạo hàm y' = u'f'(u) + g'(x).
 - **Bước 2:** Lập bảng xét dấu của y' (dựa vào tương giao giữa hai đồ thị).
 - Bước 3: Kết luận.
- Θ Hàm y = |f(x)|.

\sim 1		I/ D		•
	ш	K I	VII —	

- **Bước 1:** Lập bảng biến thiên hàm y = f(x)
- **Bước 2:** Lập bảng biến thiên hàm y = |f(x)| từ hàm y = f(x) bằng cách lấy đối xứng phần dưới trục Ox qua trục Ox.
- Bước 3: Kết luân.

VÍ DỤ 1. Cho hàm số y = f(x) liên tục trên \mathbb{R} có bảng xét dấu như hình vẽ

x	$-\infty$		-1		0		1		$+\infty$
f'		_	0	+	0	_	0	+	

Tìm các khoảng đơn điệu của hàm số sau

a)
$$y = f(4+3x)$$
.

b)
$$y = f(5-2x) + 3$$
.

c)
$$y = f(2x^2 - x)$$
.

VÍ DU 2.

Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ. Tìm các khoảng đơn điệu của hàm số sau

a)
$$y = f(x) + x$$
.

c) $y = f(x) - x^2$.

b)
$$y = f(2x+1) + 4x - 3$$
.

d)
$$y = f(2x+1)-2x^2+6x+1$$

VÍ DU 3. Cho hàm số y = f(x) liên tục trên \mathbb{R} có đồ thị hàm y = f'(x) như hình vẽ.

- a) Tìm các khoảng nghịch biến của hàm số $g(x) = |f(-x^4 + 2x^3 x^2 + 1)|$, biết f(3) < 0.
- b) Tìm các khoảng đồng biến của hàm số $h(x) = |3f(x) x^3|$, biết f(0) = 0.
- c) Tìm m để hàm số $y=|3f(x)-x^3+m|$ nghịch biến trên (0;2), biết f(2)=1.
- d) Tìm a để hàm số $y=|4f(\sin x)+\cos 2x-a|$ nghịch biến trên $\left(0;\frac{\pi}{2}\right)$, biết f(1)=1.

BÀI TẬP TRẮC NGHIỆM

CÂU 1. Cho hàm số có đạo hàm liên tục trên \mathbb{R} , dấu của đạo hàm được cho bởi bảng dưới đây:

x	$-\infty$		0		2		$+\infty$
f'(x)		+	0	_	0	+	

Hàm số g(x) = f(2x - 2) nghịch biến trong khoảng nào dưới đây?

$$(A)(-1;1).$$

$$(\mathbf{B})(2;+\infty).$$

$$(\mathbf{C})(1;2).$$

$$(\mathbf{D})(-\infty;-1).$$

CÂU 2. Cho hàm số f(x) có bảng xét dấu đạo hàm như hình bên dưới

x	$-\infty$		-1		6		$+\infty$
y'		+	0	_	0	+	

Hàm số y = f(2 - x) đồng biến trên khoảng

- (A)(-3;4).
- (B)(-1;6).
- $(\mathbf{C})(-4;3).$
- $(\mathbf{D})(3;+\infty).$

CÂU 3. Cho hàm số f(x) có bảng xét dấu đạo hàm như hình bên dưới

x	$-\infty$		1		5		$+\infty$
y'		_	0	+	0	_	

Hàm số y = f(1-2x) + 3 nghịch biến trên khoảng

- (A)(1;3).
- $(\mathbf{B})(-2;0).$
- $(\mathbf{C})(-\infty;1).$
- $(\mathbf{D})(5;+\infty).$

CÂU 4. Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Hàm số y = f(2-x) đồng biến trên khoảng nào dưới đây?

- (A)(1;3).
- **(B)** $(2; +\infty)$.
- $(\mathbf{C})(-2;1).$
- $(\mathbf{D})(3;+\infty).$

CÂU 5. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết đồ thị hàm số y=f'(x) chỉ cắt trực hoành tại 3 điểm như hình bên. Hàm số y = f(2x + 5) + 1 đồng biến trên khoảng

- (A)(-3;-2).
- (B)(-2;-1).
- $(\mathbf{C})(-1;1).$

CÂU 6. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết đồ thị hàm số y = f'(x) chỉ cắt trực hoành tại 3 điểm như hình bên dưới. Hàm số y = f(1-3x) - 4 nghịch biến trên khoảng

- $\left(\frac{1}{3};\frac{2}{3}\right)$.
- $(\mathbf{C})(0;2).$

CÂU 7.

Cho hàm số f(x). Hàm số f'(x) có đồ thị bên. Hàm số $y = f(1-2x) + x^2 - x$ nghịch biến trên khoảng nào dưới đây?

CÂU 8.

Cho hàm số y=f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(3x + 5) như hình vẽ. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

- $\left(-\frac{7}{3};+\infty\right)$.

CÂU 9. Cho đồ thị hàm số $y = f'(2 - x^3)$ như hình vẽ. Hàm số y = f(x) - x - 1 nghịch biến trong

- khoảng nào dưới đây? (A)(1;2).
- $(\mathbf{B})(2;+\infty).$
- $(\mathbf{C})(-\infty;1).$
- $(\mathbf{D})(-4;-1).$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

	•																																
	•																																
•		•	٠	•	٠	٠	•	٠	٠	٠	•	•	•	•	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	

CÂU 10.

Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) là một parabol được cho như hình vẽ bên dưới. Hàm số $g(x) = f(2x^4 - 1)$ đồng biến trên khoảng nào dưới đây?

B
$$(-\sqrt[4]{2};0).$$

$$(0; \sqrt[4]{2}).$$

$$(\mathbf{D})(-\sqrt[4]{2};\sqrt[4]{2})$$

CÂU 11. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới.

x	$-\infty$		-1		1		4		$+\infty$
f'(x)		_	0	+	0	_	0	+	

Hàm số $g(x) = f(x^2 + 1)$ nghịch biến trên khoảng nào dưới đây?

$$(\mathbf{A})(-\infty;0).$$

$$(0; +\infty)$$
.

$$(\mathbf{c})(0;\sqrt{3}).$$

$$\bigcirc \left(\sqrt{3};+\infty\right).$$

CÂU 12. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới. Hàm số $y = 3f(x+2) - x^3 + 3x$ đồng biến trên khoảng nào dưới đây?

x	$-\infty$		1		2		3		4		$+\infty$
f'(x)		_	0	+	0	+	0	_	0	+	

$$(1; +\infty).$$

$$\mathbf{B}(-\infty;-1).$$

$$(-1;0).$$

$$\bigcirc$$
 (0; 2).

CÂU 13. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới. Hàm số $y = f\left(x^2\right) + \frac{x^4}{2} + \frac{2x^3}{3} - 6x^2$ đồng biến trên khoảng nào dưới đây?

x	$-\infty$		1		4		$+\infty$
f'(x)		+	0	_	0	+	

$$(-2;-1).$$

$$(\mathbf{C})(-4; -3).$$

$$\bigcirc$$
 $(-6; -5).$

CÂU 14.

Cho hàm số y=f(x) và đồ thị của hàm số y=f'(x) như hình bên dưới. Khi đó hàm số $y=2f(x)+x^2$ đồng biến trên khoảng

$$(-3;1).$$

$$(\mathbf{D})(1;+\infty).$$

CÂU 15.

Cho hàm số y=f(x) và đồ thị của hàm số y=f'(x) như hình bên dưới. Khi đó hàm số $y=3f(x)-x^3$ đồng biến trên khoảng

$$(B)(-2;2).$$
 $(C)(1;2).$

$$\bigcirc$$
 (-2; 1).

CÂU 16. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới. Tìm tất cả các giá trị của tham số m để hàm số $y = f(\sin 2x - m)$ nghịch biến trên khoảng $\left(\frac{3\pi}{4}; \pi\right)$.

x	$-\infty$		0		3		$+\infty$
f'(x)		_	0	+	0	_	

- $(A) 3 \le m \le -1.$ $(B) 2 \le m \le -1.$ $(C) 3 \le m \le 0.$ $(D) 2 \le m \le 0.$

CÂU 17. Cho hàm số $f(x) = |x^2 - 2mx + m + 2|$. Có bao nhiều giá trị nguyên của tham số m thuộc [-9; 9] để hàm số đồng biến trên (0; 2)?

- (A) 3.
- **(B)**2.
- $(\mathbf{D})9.$

CÂU 18.

Cho hàm số y = f(x) có f(0) = 0 và đồ thị của hàm y = f'(x) như hình vẽ. Hàm số y = |4f(x)| x^2 đồng biến trên khoảng nào sau đây?

- (A)(0;4).
- $(\mathbf{B})(-\infty;-2).$
- $(\mathbf{C})(4;+\infty).$
- $(\mathbf{D})(-2;0).$

CÂU 19.

Cho hàm số f(x) có đạo hàm trên \mathbb{R} và f(1) =1. Đồ thị hàm số y = f'(x) như hình bên. Có bao nhiêu số nguyên dương a để hàm số y = $|4f(\sin x) + \cos 2x - a|$ nghịch biến trên $(0; \frac{\pi}{2})$?

- (\mathbf{C}) Vô số. (\mathbf{D}) 5.

CÂU 20.

Cho hàm số bậc năm y = f(x) có đồ thị của đạo hàm như hình vẽ. Biết f(-3) < 0, hàm số $y = |f(-x^4 + 2x^3 - x^2 + 1)|$ đồng biến trên khoảng nào dưới đây

- (A)(1;2).
- $(\mathbf{B})(-1;0).$
- $(\mathbf{C})(0;0,5).$ $(\mathbf{D})(-2;-1).$

Dạng 5. Cực trị hàm hợp, hàm chứa trị tuyệt đối

- ❷ Các phép biến đổi đồ thị
 - Đồ thị hàm y = f(x + a) vẽ bằng cách dời đồ thị y = f(x) sang trái a đơn
 - Đồ thị hàm y = f(x) + b vẽ bằng cách dời đồ thị y = f(x) lên trên b đơn vị.
 - Đồ thị hàm y = f(|x|) vẽ bằng cách "lật qua trái".
 - Đồ thị hàm y = |f(x)| vẽ bằng cách "lật lên".
 - Đồ thị hàm y = |f(|x|)| vẽ bằng cách "lật lên rồi lật qua trái".

lack A Hàm y = f(x) có m điểm cực trị, n nghiệm bội lẻ, p điểm cực trị dương.

- Hàm y = f(ax + b) + c cũng có m điểm cực trị.
- Hàm y = |f(x)| có m + n điểm cực trị.
- Hàm y = f(|x|) có 2p + 1 điểm cực trị.
- \bigcirc Hàm y = f(u).

.....

.....

.....

.....

.....

 Bước 1:	: Tính	đao	hàm	u' =	= u' f'(u).

- **Bước 2:** Lập bảng xét dấu của y' hoặc đếm số nghiệm bội lẻ của y' = 0.
- Bước 3: Kết luận.
- Θ Hàm y = f(u) + g(x).
 - Bước 1: Tính đạo hàm y' = u'f'(u) + g'.
 - **Bước 2:** Lập bảng xét dấu của y' hoặc đếm số nghiệm bội lẻ của y' = 0 (dựa vào tương giao giữa hai đồ thị).
 - Bước 3: Kết luận.

VÍ DỤ 1.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tìm các điểm cực trị, các cực trị của hàm số sau

a)
$$y = f(x+2)$$

b)
$$y = f(x) - 3$$

c)
$$y = f(2x - 3) + 1$$

d)
$$y = f(1 - 2x) + 2025$$

VÍ DU 2.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tìm các điểm cực trị của hàm số sau

a)
$$y = f(x^2)$$

b)
$$y = f(3x^2 - 2x)$$

c)
$$y = f(\sqrt{x^2 + 2x + 2})$$

VÍ DŲ 3.

Cho hàm số y=f(x) có đồ thị y=f'(x) như hình vẽ. Tìm số điểm cực trị của các hàm số sau

a)
$$y = f(x)$$

b)
$$y = 2f(x) - x$$

$$c) y = f(3x) + 2x$$

d)
$$y = f(x) + \frac{x^2}{2} - x$$

e)
$$y = 3f(x) - 2x^3$$

f)
$$y = f(2x+1) - 4x$$

VÍ DU 4.

Cho hàm số y = f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số

a)
$$y = f(|x|)$$

b)
$$y = |f(x)|$$

c)
$$y = |f(|x|)|$$

$$d) y = f(|x| - a)$$

e)
$$y = f(|x + b|)$$

f)
$$y = |f(x+2025)|$$

VÍ DU 5. Tìm m để

- a) Hàm số y=|f(x)| có 5 điểm cực trị, với $f(x)=3x^3+3x^2+mx+m$
- b) Hàm số y = f(|x|) có 5 điểm cực trị, với $f(x) = x^3 (2m-1)x^2 + (2-m)x + 2$.

BÀI TẬP TRẮC NGHIỆM

CÂU 1.

Cho hàm số f(x) có đồ thị f'(x) có đồ thị như hình vẽ bên

Hàm số y = f(1 - 2x) có bao nhiều cực trị ?

CÂU 2.

Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x)như hình vẽ bên. Khi đó hàm số $y = f(x^2)$ có bao nhiều điểm cực

CÂU 3.

Cho hàm số y = f(x) xác định trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số $y = f(1-x^2)$ đạt cực đại tại điểm nào sau đây?

$$\mathbf{B})x = \pm \sqrt{2}.$$

$$(\mathbf{C})x = 3.$$

$$\mathbf{D}x = 0.$$

CÂU 4.

Cho hàm số y = f(x) có đồ thị hàm $f'(x) = ax^2 + bx + c$ như hình bên dưới. Hỏi hàm số $y = f(x - x^2)$ có bao nhiều cực trị?

$$\mathbf{C}$$
2.

CÂU 5.

Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực trị của hàm số $y = f(\sqrt{x^2 + 2x + 2})$

(D)3.

CÂU 6.

Cho hàm số y = f(x) liên tục trên (a, b) và có đồ thị như hình bên. Số điểm cực trị của hàm số $y = [f(x)]^2$ trên (a; b) là

(A) 4.

 $(\mathbf{C})2.$

 $(\mathbf{D})5.$

3

 $+\infty$

CÂU 7.

Cho hàm số y=f(x) có đạo hàm trên $\mathbb R$ và có bảng xét dấu f'(x) như hình bên. Hàm số $y = f(x^2 - 2x)$ có bao nhiều điểm cực tiểu?

,	2 <i>x</i>)	CO	Dao	mincu	uicii
R))		3		14

(**A**) 1.

Cho hàm số f(x) có bảng biến thiên bên dưới. Trên khoảng $(-\sqrt{5}; \sqrt{5})$ thì hàm số $y = f(x^2)$ đạt cực đại tại điểm nào sau đây?

$$(\mathbf{c})_{x} = 0$$

$$\mathbf{D} x = 2$$

1

0 +0

-2

 $+\infty$

QUICK NOTE

CÂU 9.

Cho hàm số f(x) có bảng biến thiên bên dưới. Hàm số $y=f(x^2-2)$ đạt cực đại tại điểm nào sau đây?

		_
$(\mathbf{A})x$	=	-2.

B
$$x = -1$$
.

$$\mathbf{C}$$
 $x=0.$

$$\mathbf{D}$$
 $x=2.$

CÂU 10. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2(x-1)(x-4)^2$. Khi đó hàm số $y = f(x^2)$ có bao nhiêu điểm cực trị?

- **A** 4.
- **B**3.
- **C**5.

 $-\infty$

D2.

0

CÂU 11. Cho hàm f(x) có đạo hàm $f'(x) = x^2 - 2x, \forall x \in \mathbb{R}$. Hàm số $y = f\left(1 - \frac{1}{2}x\right) + 4x$

- có bao nhiêu điểm cực trị?
 - \mathbf{A} 0.
- **B**1
- $\bigcirc 2.$
- **(D)**3

CÂU 12. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)^2(x^2-2x)$, với mọi $x \in \mathbb{R}$. Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = f(x^2 - 8x + m)$ có 5 điểm cực trị?

- (A) 15.
- **B**)16.
- **C**)17.
- **D**18.

CÂU 13.

Cho hàm số y=f(x) có đạo hàm liên tục trên $\mathbb R$. Đồ thị hàm số y=f'(x) như hình vẽ bên. Số điểm cực trị của hàm số y=f(x)-5x là

- **A**2.
- **B**3.
- **C**4.
- \bigcirc 1.

CÂU 14.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Biết hàm số y = f'(x) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng về cực trị của hàm số g(x) = f(x) + x?

- (A) Hàm số có một điểm cực đại và một điểm cực tiểu.
- (B) Hàm số không có điểm cực đại và một điểm cực tiểu.
- (C) Hàm số có một điểm cực đại và hai điểm cực tiểu.
- DHàm số có hai điểm cực đại và một điểm cực tiểu.

CÂU 15.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có đồ thị hàm số f'(x) như hình vẽ. Hàm số $y = 2f(x) + x^2$ đạt cực đại tại điểm nào sau đây ?

$$(A)x = -1.$$

$$(\mathbf{B})x = 0$$

$$\mathbf{C}$$
 $x=1.$

$$\mathbf{D}x = 2.$$

CÂU 16.

Hàm số y=f(x) liên tục trên $\mathbb R$ và có đồ thị hàm số f'(x) như hình vẽ bên dưới. Hàm số $y=f(x)-\frac{1}{3}x^3+x^2-x+2$ đạt cực đại tại điểm nào sau đây ?

$$\mathbf{A}x = 1.$$

(B)
$$x = -1$$
.

$$(\mathbf{C})x = 0.$$

$$\mathbf{D}x = 2.$$

Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị y = f'(x)như hình vẽ dưới đây. Xét trên khoảng $(-\pi; 2\pi)$, số điểm cực tri của hàm số $g(x) = f(2\cos x) + 2\cos 2x$ là

CÂU 18.

Cho hàm số y = f(x) có đồ thị của y = f'(x) có đồ thị như hình vẽ bên dưới. Hàm số $g(x) = f(x^3 - 3x) - x^3 + 3x$ có bao nhiều điểm cực tiểu?

D)5.

CÂU 19.

Cho hàm số y = f(x) có đạo hàm và liên tục trên \mathbb{R} và có đồ thị y=f'(x)như hình vẽ. Hàm $y=f(x^2-2)-\frac{1}{2}x^4+\frac{3}{2}x^2$ có bao nhiêu điểm cực tiểu?

(B)1.

$$(\mathbf{c})_2$$
.

 $(\mathbf{D})3.$

CÂU 20.

Cho hàm số y = f(x) có bảng biến thiên bên dưới. Số điểm cực đại và số điểm cực tiểu của hàm số $y = f^2(2x) - 2f(2x) + 1$ lần lượt là

- (\mathbf{A}) 2 và 3.
- **(B)**3 và 2.
- (**c**)1 và 1.
- (\mathbf{D}) 2 và 2.

x	$-\infty$		-1		2		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	$+\infty$		0		* ³ \		$-\infty$

CÂU 21. Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = |f^2(x) + 2f(x) + m|$ có 9 điểm cực trị?

- (A) 24.
- (B) Vô số.
- $(\mathbf{C})25.$
- (**D**)23.

CÂU 22. Có bao giá trị nguyên của tham số m thoả mãn |m| < 10 sao cho hàm số y = $|x^3 - (m-2)x^2 - mx - m^2|$ có 3 điểm cực tiểu?

- (**A**) 9.
- **(B)**10.
- (**D**)16.

CÂU 23.

Cho hàm số $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, (ae < 0). Đồ thì hàm số y = f'(x) như hình bên dưới. Hàm số $y = |4f(x) - x^2|$ có bao nhiêu điểm cực tiểu?

(**A**) 4.

(C)3.

 $(\mathbf{D})_2$.

CÂU 24.

Cho hàm số bậc bốn f(x) có f(0) = -1. Hàm số y = f'(x)có đồ thị là hình bên. Số điểm cực trị của hàm số y = $|4f(x+1) + x^2 + 2x|$ là

(A) 3.

 $(\mathbf{C})4.$

CÂU 25.

		NOTE	
SI.	HC K	NOIF	

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hàm số y = f(|x|) đạt cực đại tại.

$$\mathbf{\widehat{A}})x = -1. \quad \mathbf{\widehat{B}})x = 0.$$

x	$-\infty$		-1		2		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× ³ \		× 1 /		+∞

CÂU 26.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tổng các giá tri cực đại của hàm số y = |f(x)| là

$$\bigcirc$$
 $-3.$

CÂU 27. Cho hàm số y = f(x) có đạo hàm $y = f'(x) = (x - 1)(x - 2)^4(x^2 - 4)$. Số điểm cực trị của hàm số y = f(|x|) là

- (**A**) 3.

- $(\mathbf{D})5.$

CÂU 28. Cho hàm số y = f(x) có đạo hàm $y = f'(x) = (x^3 - 2x^2)(x^3 - 2x)$ trên \mathbb{R} . Hàm số y = |f(4 - 2021x)| có nhiều nhất bao nhiêu điểm cực trị?

CÂU 29. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = |3x^4 - 4x^3 - 12x^2 + m|$ có 7 điểm cực tri?

- (**A**) 3.
- $(\mathbf{C})6.$

CÂU 30. Tìm các giá trị của m để hàm số $f(x) = |x^3 + 3x^2 + m - 3|$ có ba điểm cực trị.

- (A) m = 3; m = -1. $(B) m \ge 1; m \le -3.$ $(C) 1 \le m \le 3.$

CÂU 31. Cho hàm số $y = f(x) = x^3 - 3mx^2 + 3(m^2 - 4)x + 1$, có bao nhiêu số nguyên $m \in (-10; 10)$ để hàm số y = f(|x|) có đúng 5 điểm cực trị.

CÂU 32. Cho hàm số $f(x) = \frac{1}{3}x^3 - (2m-1)x^2 + (8-m)x + 2020$ với m là tham số. Tập hợp tất cả các giá trị của tham số m để hàm số y = f(|x|) có điểm 5 cực trị là khoảng (a; b). Tích $a \cdot b$ bằng

- (A) 12.
- (**B**)16.
- (**c**)10.
- **(D)**14.

CÂU 33.

Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị hàm số f'(x) như hình vẽ. Hàm số $y = f(x^2 - 2|x|)$ có bao nhiều điểm cực tiểu?

(**A**) 1.

 $(\mathbf{C})5.$

CÂU 34.

Cho hàm bậc bốn y = f(x) có đồ thị như hình vẽ dưới đây. Số điểm cực trị của hàm số $g(x) = f(|x|^3 - 3|x|)$ là

(**A**)5.

(C)7.

(**D**)11.

CÂU 35.

Hình vẽ dưới đây là đồ thị của hàm số y=f(x). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=|f(x+1)+m| có 5 cực trị?

 \bigcirc 0.

B3.

 $\bigcirc 2$.

D1.

\sim		\sim 1	/ 1	T P	\sim	-
			K I	м	- 1	ш
	L T	CI	\	N 10	~	ш

			Ī	Ī											Ī	Ī	Ī													-	
•	ĺ	i	Ì	Ì	ĺ	ĺ	ĺ	ĺ	ĺ	ĺ	١	١	١	١	Ì	Ì	Ì	Ì	Ì	Ì	Ì	Ì	Ì	١	Ì	١	١	١	ĺ		
٠.																															
• •	•	•	٠	٠	٠	٠	•	٠	٠	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
٠.																															
٠.	•		•	•	•	•	•	•	•						•	•	•				•	•	٠		•						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
٠.																															
٠.																															
	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
٠.																															
٠.	•		•	•	•	•	•	•	•						•	•	•				•	•	٠		•						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
•	ĺ	Ì	Ì	Ì	ĺ	ĺ	Ì	ĺ	ĺ	Ì	١	١	١	١	Ì	Ì	Ì				Ì	Ì	Ì		Ì	١	١	١	Ì		
٠.																															
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		
٠.																															
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
٠.																															
	•																														
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		

LỜI GIẢI CHI TIẾI

Bài 1. TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ

A. LÝ THUYẾT CẦN NHỚ

1. Tính đơn điệu của hàm số

 \bigcirc **Định nghĩa:** Cho hàm số y = f(x) xác định trên K (K là khoảng, đoạn hoặc nửa khoảng).

Trên K, đồ thi là một "**đường đi** lên" khi xét từ trái sang phải.

- \bigcirc **Liên hệ giữa đạo hàm và tính đơn điệu:** Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b).
 - Nếu $y' \ge 0$, $\forall x \in (a; b)$ và dấu bằng chỉ xảy ra tại hữu hạn điểm thì hàm số y = f(x) đồng biến trên (a; b).
 - Nếu $y' \leq 0$, $\forall x \in (a;b)$ và dấu bằng chỉ xảy ra tại hữu hạn điểm thì hàm số y = f(x) nghịch biến trên

2. Cực tri của hàm số

- \bigcirc **Dịnh nghĩa:** Cho hàm số y = f(x) xác định và liên tục trên khoảng (a;b) (a có thể là $-\infty,b$ có thể là $+\infty$) và điểm $x_0 \in (a;b).$
 - Nếu tồn tại số h > 0 sao cho $f(x) < f(x_0)$ với mọi $x \in (x_0 h; x_0 + h) \subset (a; b)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt cực đại tại x_0 .
 - Nếu tồn tại số h > 0 sao cho $f(x) > f(x_0)$ với mọi $x \in (x_0 h; x_0 + h) \subset (a; b)$ và $x \neq x_0$ thì ta nói hàm số f(x) đạt cực tiểu tại x_0 .
- \bigcirc **Dịnh lý:** Giả sử hàm số y = f(x) liên tục trên khoảng (a; b) chứa điểm x_0 và có đạo hàm trên các khoảng $(a; x_0)$ và $(x_0;b)$. Khi đó:
 - Nếu f'(x) < 0 với mọi $x \in (a; x_0)$ và f'(x) > 0 với mọi $x \in (x_0; b)$ thì x_0 là một điểm cực tiểu của hàm số
 - Nếu f'(x) > 0 với mọi $x \in (a; x_0)$ và f'(x) < 0 với mọi $x \in (x_0; b)$ thì x_0 là một điểm cực đại của hàm số
- Các tên gọi:

y = f(x)0

 $(x_1; y_1)$ là điểm cực đại của đồ thị hàm số;

- x_1 là điểm cực đại của hàm số;
- y₁ là giá trị cực đại của hàm số.

 $(x_2; y_2)$ là điểm cực tiểu của đồ thị hàm số;

- x_2 là điểm cực tiểu của hàm số;
- y₂ là giá trị cực tiểu của hàm số.

B. PHÂN LOAI VÀ PHƯƠNG PHÁP GIẢI TOÁN

ե Dạng 1. Bài toán tìm khoảng đơn điệu và cực trị của hàm số cho trước

- ① Tìm tập xác định $\mathcal D$ của hàm số y=f(x).
- 2 Tính đạo hàm f'(x). Tìm các điểm x_i (i=1,2,...,n) thuộc $\mathscr D$ mà tại đó đạo hàm bằng 0 hoặc không xác định.
- ③ Sắp xếp các điểm x_i theo thứ tự tăng dần, xét dấu y' và lập bảng biến thiên. Từ đây, nêu các khoảng đồng biến, nghịch biến và các điểm cực trị.

Ghi nhớ cách xét dấu:

A

🗸 Khi xét dấu f'(x) thì f'(x) sẽ không đổi dấu khi qua nghiệm kép (nghiệm bội chẵn) và đổi dấu khi qua nghiệm đơn (nghiệm bội lẻ).

BÀI TẬP TỰ LUẬN

VÍ DU 1. Tìm các khoảng đơn điệu và các điểm cực trị của hàm số sau

a)
$$y = -x^3 + 3x^2 - 4$$
;

b)
$$y = x^3 - 3x^2 + 1$$
:

c)
$$y = x^3 + 3x^2 + 3x + 2$$
;

d)
$$y = -2x^4 + 4x^2$$
;

e)
$$y = x^4 + 4x^3 - 1$$
;

f)
$$y = -16x^4 + x - 1$$
.

Lời giải.

a) Tập xác định: $\mathcal{D} = \mathbb{R}$.

Đạo hàm:
$$y' = -3x^2 + 6x$$
.
Xét $y' = 0 \Leftrightarrow -3x^2 + 6x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$ Bảng biến thiên:

x	$-\infty$		0		2		$+\infty$
y'		_	0	+	0	_	
y	+∞		-4		0		$-\infty$

b) Ta có:
$$y' = 3x^2 - 6x \Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2. \end{bmatrix}$$

Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng $(-\infty; 0)$ và $(2; +\infty)$.

x	$-\infty$		0		2		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		1		-3		+∞

c) Hàm số đã cho xác định trên $\mathcal{D} = \mathbb{R}$. Ta có $y' = 3x^2 + 6x + 3$. Cho $y' = 0 \Leftrightarrow 3x^2 + 6x + 3 = 0 \Leftrightarrow x = -1$. Bảng biến thiên

x	$-\infty$		-1		$+\infty$
y'		+	0	+	
y	$-\infty$				+∞

Vậy hàm số đồng biến trên \mathbb{R} .

d) Tập xác định của hàm số là $\mathcal{D} = \mathbb{R}$.

Ta có
$$y' = -8x^3 + 8x$$
. Cho $y' = 0 \Leftrightarrow -8x^3 + 8x = 0 \Leftrightarrow 8x(-x^2 + 1) = 0$

$$\Leftrightarrow \begin{bmatrix} 8x = 0 \\ -x^2 + 1 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 1.$$

Bảng biến thiên

Vậy hàm số đồng biến trên mỗi khoảng $(-\infty; -1)$ và (0; 1), hàm số nghịch biến trên mỗi khoảng (-1;0) và $(1;+\infty)$.

Ta có
$$y' = 4x^3 + 12x^2 = 0 = 4x^2(x+3)$$

e) Hàm số đã cho xác định trên
$$\mathscr{D}=\mathbb{R}$$
. Ta có $y'=4x^3+12x^2=0=4x^2(x+3)$. Cho $y'=0 \Leftrightarrow 4x^2(x+3)=0 \Leftrightarrow \begin{bmatrix} x=0\\ x=-3. \end{bmatrix}$

Bảng biến thiên

x	$-\infty$		-3		0		$+\infty$
y'		_	0	+	0	+	
y	$+\infty$		-28				+∞

Vậy hàm số nghịch biến trên khoảng $(-\infty; -3)$ và đồng biến trên khoảng $(-3; +\infty)$.

f) Ta có
$$y' = -64x^3 + 1 < 0 \Leftrightarrow x > \frac{1}{4}$$
 nên hàm số nghịch biến trên khoảng $\left(\frac{1}{4}; +\infty\right)$.

VÍ DU 2. Tìm các khoảng đơn điệu và cực tri của các hàm số sau:

a)
$$y = \frac{2x+1}{x+1}$$
;

b)
$$y = \frac{3x+1}{x-1}$$
;

c)
$$y = \frac{x^2 + 2x + 2}{x + 1}$$
;

d)
$$y = x + \frac{4}{x}$$
;

e)
$$y = \sqrt{x^2 - 2x};$$

f)
$$y = x - 3\sqrt[3]{x^2}$$
.

🗩 Lời giải.

a) Ta có
$$y'=\frac{1}{(x+1)^2}>0, \forall x\in\mathbb{R}\backslash\{-1\}.$$

Vậy hàm số đồng biến trên $(-\infty;-1)$ và $(-1;+\infty)$.
Hàm số không có cực trị.

b) Ta có
$$y' = \frac{-4}{(x-1)^2} > 0, \forall x \in \mathbb{R} \setminus \{1\}.$$

Do vậy hàm số nghịch biến trên các khoảng $(-\infty;1)$; $(1;+\infty)$. Hàm số không có cực trị.

c)
$$\mathbf{\Theta}$$
 TXD: $\mathcal{D} = \mathbb{R} \setminus \{-1\}$.

$$y' = \frac{x^2 + 2x}{(x+1)^2}, y' = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = 0. \end{bmatrix}$$

Ta có bảng biến thiên

Hàm số đồng biến trên khoảng $(-\infty; -2)$ và $(0; +\infty)$; nghịch biến trên (-2; -1) và (-1; 0). Hàm số đạt cực đại tại x = -2, giá trị cực đại y = -2Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu y = 2.

d) Tập xác định
$$\mathscr{D}=\mathbb{R}\setminus\{0\}.$$
 Ta có $y'=1-\frac{4}{x^2}=\frac{x^2-4}{x^2},\ y'=0\Leftrightarrow x=\pm 2.$ Bảng biến thiên

x	$-\infty$	-2	0 2		$+\infty$
y'	+	0 -	- 0	+	
y	$-\infty$	-4 -∞	$+\infty$		+∞

Hàm số đồng biến trên khoảng $(-\infty; -4)$ và $(2; +\infty)$; nghịch biến trên các khoảng (-2; 0) và (0; 2). Hàm số đạt cực đại tại x = -2, giá trị cực đại y = -4 Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu y = 4

e) Tập xác định:
$$\mathscr{D}=(-\infty;0]\cup[2;+\infty)$$
. Ta có $y'=\frac{x-1}{\sqrt{x^2-2x}}, \forall x\in(-\infty;0)\cup(2;+\infty)$.
$$y'=0\Leftrightarrow\frac{x-1}{\sqrt{x^2-2x}}=0\Rightarrow x-1=0\Leftrightarrow x=1\notin\mathscr{D}.$$
 Bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng $(-\infty;0)$ và đồng biến trên khoảng $(2;+\infty)$. Hàm số không có cực trị.

f) Tập xác định: $\mathcal{D} = \mathbb{R}$.

Đạo hàm $y'=1-\frac{2}{\sqrt[3]{x}}$, xác định với mọi $x\neq 0$.

$$y' = 0 \Leftrightarrow \sqrt[3]{x} = 2 \Leftrightarrow x = 8.$$

Đạo hàm không xác định tại x = 0.

Bảng biến thiên

x	$-\infty$		0		8		$+\infty$
y'		+		_	0	+	
y	$-\infty$	<i></i> *	0		-4		+∞

VÍ DỤ 3. Thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T (0° C $\leq T \leq 30^{\circ}$ C) được tính bởi công thức

$$V(T) = 999,87 - 0,06426T + 0,0085043T^2 - 0,0000679T^3$$

Hỏi thể tích V(T), 0°C < $T \leq 30$ °C, giảm trong khoảng nhiệt độ nào?

🗭 Lời giải.

Xét hàm số $V(T) = 999.87 - 0.06426T + 0.0085043T^2 - 0.0000679T^3$, với $T \in [0; 30]$.

Ta có $V'(T) = -0.0002037T^2 + 0.0170086T - 0.06426$.

 $V'(T) = 0 \Leftrightarrow T = 3,966514624 = T_1 \text{ hoặc } T = 79,53176716 \not\in [0;30].$

Bảng biến thiên của hàm số V(T) như sau

T	0		T_1		30
V'(T)		_	0	+	
V(T)	V(0)		$V(T_1)$		V(30)

Từ bảng biến thiên suy ra, thể tích V(T), $0^{\circ}\text{C} \leq T \leq 30^{\circ}\text{C}$, giảm trong khoảng nhiệt độ từ 0°C đến 3,966514624°C.

BÀI TẬP TRẮC NGHIỆM

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

 $(\sqrt{2}; +\infty).$

(-2;2).

 $(\mathbf{C})(-\infty;0).$

 $(0;\sqrt{2})$

🗩 Lời giải.

Dựa vào đồ thị, ta thấy trên khoảng $(0; \sqrt{2})$ đồ thị đi xuống nên hàm số y = f(x) nghịch biến trên khoảng đó.

CÂU 2. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là mệnh đề sai?

- (A) Hàm số đạt cực đại tại x = 0.
- (B) Hàm số có giá trị cực tiểu bằng -2.
- (C) Hàm số đồng biến trên $(-\infty; 2)$.
- (**D**) Hàm số nghịch biến trên (0; 2).

🗩 Lời giải.

Chọn đáp án (C).....

CÂU 3. Hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên. Hàm số y = f(x) đạt cực tiểu tại điểm nào dưới đây?

 $(\mathbf{A})x = 2.$

(B)x = 0.

 $(\mathbf{C})x = -2.$

 $\mathbf{D}x = 4.$

Dòi giải.

Dựa vào đồ thị hàm số ta thấy hàm số đạt cực tiểu tại x = 0.

Chọn đáp án (B).....

CÂU 4. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Mênh đề nào sau đây là mệnh đề đúng?

- (A) Hàm số đồng biến trên khoảng $(-\infty; 3)$.
- (B) Hàm số nghịch biến trên khoảng $(-2; +\infty)$.
- (C) Hàm số đạt cực đại tại x = 3.
- (**D**) Hàm số đạt cực tiểu tại x=2.

x	$-\infty$	-2		2		$+\infty$
f'(x)	+	- 0	_	0	+	
f(x)	$-\infty$	3		0		$+\infty$

🗩 Lời giải.

Chọn đáp án (D).....

CÂU 5. Cho hàm số y = f(x) có bảng biến thiên bên dưới

Khẳng đinh nào sau đây là khẳng đinh sai?

- (A) Hàm số có hai điểm cực tri.
- (**C**) Hàm số nghịch biến trên khoảng (-2; 2).
- **B**) Tọa độ điểm cực đại của đồ thị hàm số là (-2; -4).
- (**D**) Hàm số đồng biến trên khoảng $(3; +\infty)$.

🗩 Lời giải.

Chọn đáp án (C).....

CÂU 6. Cho hàm số $y = -\frac{1}{3}x^3 - x - 3$. Mệnh đề nào dưới đây đúng?

- (A) Hàm số đồng biến trên $(-\infty; 1)$ và trên $(1; +\infty)$.
- (**B**) Hàm số nghịch biến trên \mathbb{R} .

(**C**) Hàm số đồng biến trên (-1; 1).

(**D**) Hàm số đồng biến trên \mathbb{R} .

🗩 Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R}$.

 $y' = -x^2 - 1 < 0 \text{ với mọi } x.$

Suy ra hàm số đã cho nghịch biến trên \mathbb{R} .

Chon đáp án (B).....

CÂU 7. Gọi x_1 là điểm cực đại x_2 là điểm cực tiểu của hàm số $y = -x^3 + 3x + 2$. Tính $x_1 + 2x_2$.

(B)1.

 $(\mathbf{c}) - 1.$

🗩 Lời giải.

Ta có $y' = -3x^2 + 3$, $y' = 0 \Leftrightarrow x = \pm 1$.

Vì y' đổi dấu từ âm sang dương khi qua x=-1 và đổi dấu từ dương sang âm khi qua x=1 nên $x_2=-1$ là điểm cực tiểu và $x_1 = 1$ là điểm cực đại của hàm số. Do đó $x_1 + 2x_2 = 1 - 2 = -1$.

Chọn đáp án (C)......

CÂU 8. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số $y = x^3 - 3x^2 + 4$ bằng

(A) $2\sqrt{5}$.

(B) $2\sqrt{2}$.

 $(\mathbf{D})4.$

🗩 Lời giải.

Ta có
$$y' = 3x^2 - 6x$$
, $y' = 0 \Rightarrow \begin{bmatrix} x = 0 \Rightarrow y = 4 \\ x = 2 \Rightarrow y = 0. \end{bmatrix}$

Suy ra hai điểm cực trị của đồ thị hàm số là A(0;4), B(2;0).

Do đó $AB = \sqrt{2^2 + (-4)^2} = 2\sqrt{5}$.

Chọn đáp án (A).....

CÂU 9. Hàm số $y = x^4 - 2x^2 + 1$ đồng biến trên khoảng nào dưới đây?

- (A)(-1;0).

- $(\mathbf{D})(-\infty;-1).$

🗩 Lời giải.

$$y' = 4x^3 - 4x \Rightarrow y' = 0 \Leftrightarrow 4x^3 - 4x = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 0 \\ x = 1 \end{bmatrix}$$

Bảng xét dấu

x	$-\infty$		-1		0		1		$+\infty$
y		_	0	+	0	_	0	+	

Chọn đáp án (A).....

CÂU 10. Cho hàm số $y = -\frac{1}{4}x^4 + \frac{1}{2}x^2 - 3$. Khẳng định nào sau đây là khẳng định đúng?

(A) Hàm số đạt cực tiểu tại x = -3.

(B) Hàm số đạt cực tiểu tại x = 0.

(**C**) Hàm số đạt cực đại tại x = 0.

(**D**) Hàm số đạt cực tiểu tại x = -1.

Dèi giải.

Ta có $y' = -x^3 + x = -x(x^2 - 1)$. Ta có bảng biến thiên như hình bên

x	$-\infty$	-1		0		1		$+\infty$
y'	+	0	_	0	+	0	_	
y	$-\infty$	$\frac{-11}{4}$		-3		$\frac{-11}{4}$		$-\infty$

Chọn đáp án (B).....

CÂU 11. Cho hàm số $y = \frac{3x-1}{x-2}$. Mệnh đề nào dưới đây là đúng?

- (\mathbf{A}) Hàm số nghịch biến trên \mathbb{R} .
- (**B**) Hàm số đồng biến trên các khoảng $(-\infty; 2)$ và $(2; +\infty)$.
- (**C**) Hàm số nghịch biến trên các khoảng $(-\infty; 2)$ và $(2; +\infty)$.

(**D**) Hàm số đồng biến trên $\mathbb{R} \setminus \{2\}$.

Dòi giải.

Tập xác định là $\mathcal{D} = \mathbb{R} \setminus \{2\}.$

Có $y' = \frac{-5}{(x-2)^2} < 0, \forall x \in \mathcal{D}$ nên hàm số nghịch biến trên các khoảng $(-\infty; 2)$ và $(2; +\infty)$.

CÂU 12. Cho hàm số $y = \frac{x-2}{x+3}$. Mệnh đề nào dưới đây đúng?

- (A) Hàm số nghịch biến trên khoảng $(-\infty; -3) \cup (-3; +\infty)$.
- (**B**) Hàm số đồng biến trên khoảng $(-\infty; -3)$ và $(-3; +\infty)$.
- (**C**) Hàm số nghịch biến trên khoảng $(-\infty; -3)$ và $(-3; +\infty)$.
- (**D**) Hàm số đồng biến trên khoảng $(-\infty; -3) \cup (-3; +\infty)$.

🗩 Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R} \setminus \{-3\}$. Ta có $y' = \frac{5}{(x+3)^2} > 0, \forall x \in \mathscr{D}$.

Suy ra hàm số đồng biến trên khoảng $(-\infty; -3)$ và $(-3; +\infty)$.

CÂU 13. Gọi y_{CD} , y_{CT} lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số $y = \frac{x^2 + 3x + 3}{x + 2}$. Giá trị của biểu thức $y_{\text{CD}}^2 - 2y_{\text{CT}}^2$ bằng

(A) 8.

 $(\mathbf{C})9.$

 $(\mathbf{D})6.$

P Lời giải.

Ta có
$$y' = \frac{x^2 + 4x + 3}{(x+2)^2}$$
; $y' = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = -3 \end{bmatrix}$.

Bảng biến thiên

x	$-\infty$ -3 $-$	-2 -1 $+\infty$
y'	+ 0 -	- 0 +
y	$\begin{array}{c c} -3 \\ -\infty \\ \end{array}$	$+\infty$ $+\infty$ 1

Từ bảng biến thiên ta tìm được $y_{\rm CD}=-3; y_{\rm CT}=1 \Rightarrow y_{\rm CD}^2-2y_{\rm CT}^2=9-2=7.$

Chon đáp án B.....

CÂU 14. Tìm điểm cực tiểu của hàm số $f(x) = (x-3)e^x$.

$$\mathbf{B})x = 0.$$

$$(\mathbf{C})x = 2.$$

$$\mathbf{D}x = 1.$$

🗩 Lời giải.

$$\odot$$
 Ta có $f'(x) = e^x(x-2)$, $f''(x) = e^x(x-1)$.

Vậy hàm số đã cho đạt cực tiểu tại x = 2.

CÂU 15. Cho hàm số $y = x^2 + 4 \ln(3 - x)$. Tìm giá trị cực đai $y_{\rm CD}$ của hàm số đã cho.

$$(A) y_{CD} = 2.$$

(B)
$$y_{\text{C}} = 4$$
.

$$(\mathbf{C})y_{\text{CD}} = 1 + 4 \ln 2.$$

$$(\mathbf{D})y_{\text{CD}} = 1.$$

Dòi giải.

Tập xác định $\mathcal{D} = (-\infty; 3)$.

Dạo hàm
$$y' = 2x - \frac{4}{3-r} = \frac{-2x^2 + 6x - 4}{3-r}$$

Tap xac dim
$$\mathscr{D} = (-\infty; 3)$$
.
Dao hàm $y' = 2x - \frac{4}{3-x} = \frac{-2x^2 + 6x - 4}{3-x}$.
 $y' = 0 \Leftrightarrow -2x^2 + 6x - 4 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2 \end{bmatrix}$.

Bảng biến thiên

Hàm số đạt cực đại tại $x=2,\,y_{\mathrm{CD}}=4.$

Chọn đáp án (B)

- **CÂU 16.** Cho hàm số y = f(x) xác định trên $\mathbb R$ và có đạo hàm $y' = f'(x) = 3x^3 3x^2$. Mệnh đề nào sau đây sai?
 - (A) Trên khoảng $(1; +\infty)$ hàm số đồng biến.
- (**B**) Trên khoảng (-1;1) hàm số nghịch biến.

C Đồ thị hàm số có hai điểm cực trị.

Dbò thị hàm số có một điểm cực tiểu.

D Lời giải.

Ta có:
$$y' = 0 \Leftrightarrow 3x^3 - 3x^2 = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1. \end{bmatrix}$$

Bảng biến thiên:

Hàm số đồng biến trên khoảng $(1; +\infty)$.

Hàm số nghịch biến trên khoảng $(-\infty; 1)$.

Hàm số đạt cực tiểu tại x = 1.

Chọn đáp án \bigcirc

CÂU 17. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm $f'(x) = x(x-1)^2(x-2)^3$. Số điểm cực trị của hàm số y = f(x) là

 $(\mathbf{C})_0$.

A1.

🗩 Lời giải.

Ta có bảng xét dấu của f'(x):

x	$-\infty$		0		1		2		$+\infty$
f'(x)		+	0	_	0	_	0	+	

Dựa vào bảng xét dấu ta thấy f(x) có 2 điểm cực trị.

Chọn đáp án B

CÂU 18. Cho hàm số bậc bốn y = f(x). Biết f'(x) có đồ thị như hình bên. Khẳng định nào sau đây là khẳng định đúng?

 $(\mathbf{B})2.$

- (A) Hàm số f(x) đồng biến trên khoảng $(-\infty; 0)$.
- (**B**) Hàm số f(x) nghịch biến trên khoảng (-1;1).
- **C** Hàm số f(x) có đúng một điểm cực tiểu.
- (**D**) Hàm số f(x) có đúng một điểm cực đại.

 $(\mathbf{D})3.$

Dèi giải.

Dựa vào đồ thị, ta có bảng biến thiên như hình vẽ.

Chọn đáp án D....

CÂU 19. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} . Biết rằng hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Khi đó nhận xét nào sau đây đúng?

- lack A Hàm số f(x) không có cực trị.
- \blacksquare Đồ thị hàm số f(x) có đúng 2 điểm cực tiểu.
- \bigcirc Đồ thị hàm số f(x) có đúng một cực đại.
- (**D**) Hàm số f(x) có 3 cực trị.

🗩 Lời giải.

Dựa vào đồ thị ta thấy $f'(x) \ge 0$, với mọi $x \in \mathbb{R}$.

Suy ra, hàm số f(x) không có cực trị.

Chọn đáp án A.....

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 20. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu đạo hàm như hình bên.

x	$-\infty$	0	1	-	2	$+\infty$
y'	+	0	_	+	0	+

Mệnh đề	Đ	S
a) Hàm số đồng biến trên khoảng $(-\infty;1)$.		X
b) Hàm số đồng biến trên khoảng $(1; +\infty)$.	X	
c) Hàm số đạt cực đại tại $x=2$.		X
d) Hàm số có một điểm cực đại và hai điểm cực tiểu.		X

Lời giải.

Ta có bảng biến thiên như sau:

x	$-\infty$	0		1	2	$+\infty$
y'	+	0	_	+	0	+
y						$+\infty$

Từ đây, suy ra:

- a) Hàm số đồng biến trên khoảng $(-\infty; 1)$ là khẳng định sai.
- b) Hàm số đồng biến trên khoảng $(1; +\infty)$ là khẳng định đúng.
- c) Hàm số đạt cực đại tại x = 2 là khẳng định sai.
- d) Hàm số có một điểm cực đại và hai điểm cực tiểu là khẳng định sai.

CÂU 21. Cho hàm số $y = x^3 - 3x^2 + 4$ có đồ thị (C). Gọi A, B là hai điểm cực trị của (C).

Chọn đáp án a sai b đúng c sai d sai

f b) Hàm số đồng biến trên khoảng $(0;2)$.		X
c) Phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số là $2x + y - 4 = 0$.	X	
d) Diện tích của tam giác OAB bằng 4, với O là gốc tọa độ.	X	

🗩 Lời giải.

- a) Hàm số đa thức nên có tập xác định là $D = \mathbb{R}$.
- b) Ta có

•
$$y' = 3x^2 - 6x$$
 và $y' = 0 \Leftrightarrow x = 0$ hoặc $x = 2$.

Bảng biến thiên:

Suy ra hàm nghịch biến trên (0;2).

c) Tọa độ A(0;4), B(2;0). Phương trình đường thẳng AB là

$$\frac{x-0}{2-0} = \frac{y-4}{0-4} \Leftrightarrow 2x+y-4 = 0$$

d) Diện tích tam giác vuông OAB là $S_{OAB} = \frac{1}{2}OA \cdot OB = 4$.

Chọn đáp án ađúng bsai cđúng dđúng ...

CÂU 22. Cho hàm số $y = \frac{x^2 + 2x + 2}{x + 1}$ có đồ thị (C). Gọi A, B lần lượt là điểm cực tiểu và điểm cực đại của (C).

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		X
b) Hàm số nghịch biến trên khoảng $(-2;0)$.		X
c) Tọa độ điểm $A(-2;-2)$, $B(0;2)$.		X
d) Khoảng cách giữa hai điểm cực trị là $AB=2\sqrt{5}$.		X

🗩 Lời giải.

a) Đặt điều kiện mẫu số khác 0, ta được $x+1\neq 0 \Leftrightarrow x\neq -1$. Suy ra $\mathscr{D}=\mathbb{R}\setminus\{-1\}.$

b)
$$y' = \frac{x^2 + 2x}{(x+1)^2} \Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = 0. \end{bmatrix}$$

Ta có bảng xét dấu của hàm f'(x) như sau

x	$-\infty$ -2 $-$	-1 0 $+\infty$
y'	+ 0 -	- 0 +
y	$-\infty$ $-\infty$	$+\infty$ $+\infty$ 2

Dựa vào bảng xét dấu ta thấy rằng hàm số y = f'(x) nghịch biến trên (-2, -1) và (-1, 0).

- c) Tọa độ điểm A(0;2), B(-2;-2)
- d) Độ dài $AB = \sqrt{(-2-0)^2 + (-2-2)^2} = 2\sqrt{5}$.

Chọn đáp án a sai b sai c sai d sai

CÂU 23. Xét một chất điểm chuyển động dọc theo trục Ox. Toạ độ của chất điểm tại thời điểm t được xác định bởi hàm số $x(t) = t^3 - 6t^2 + 9t$ với $t \ge 0$. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).

Mệnh đề	Đ	S
a) Phương trình hàm vận tốc là $v(t) = 3t^2 - 6t + 9$.		X
b) Phương trình hàm gia tốc là $a(t) = 6t - 12$.	X	
c) Vận tốc của chất điểm tăng khi $t \in (0;1)$ hoặc $t \in (3;+\infty)$.		X
d) Vận tốc của chất điểm giảm khi $t \in (1;3)$.		X

Dài giải.

- a) $v(t) = x'(t) = 3t^2 12t + 9$
- b) a(t) = v'(t) = 6t 12.
- c) Xét v'(t) = 6t 12, $v'(t) = 0 \Leftrightarrow t = 2$ Bảng xét dấu

t	0		2		$+\infty$
v'(t)		_	0	+	

Suy ra vận tốc của chất điểm tăng khi $t \in (2; +\infty)$, giảm khi $t \in (0; 2)$.

Chọn đáp án a sai b đúng c sai d sai

Dạng 2. Bài toán tìm m để hàm số đồng biến (nghịch biến) trên khoảng cho trước

- \aleph Xét hàm số bậc ba $y = ax^3 + bx^2 + cx + d$ có $y' = 3ax^2 + 2bx + c$.
 - ① Hàm số đồng biến trên $\mathbb R$ khi và chỉ khi

$$y' \ge 0, \, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta_{y'} \le 0 \end{cases}.$$

② Hàm số nghịch biến trên $\mathbb R$ khi và chỉ khi

$$y' \le 0, \, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta_{y'} \le 0 \end{cases}.$$

Trường hợp hệ số a có chứa tham số, ta kiểm tra thêm trường hợp a = 0.

- \Re Xét hàm phân thức $y = \frac{ax+b}{cx+d}$ có $y' = \frac{ad-cb}{(cx+d)^2}$, với $ad-cb \neq 0$ và $c \neq 0$.
 - ① Hàm số đồng biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' > 0, \forall x \neq -\frac{d}{c} \Leftrightarrow ad - cb > 0.$$

2 Hàm số nghịch biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' < 0, \forall x \neq -\frac{d}{c} \Leftrightarrow ad - cb < 0.$$

Xét hàm phân thức $y = \frac{ax^2 + bx + c}{dx + e}$ có $y' = \frac{adx^2 + 2aex + be - dc}{(dx + e)^2}$, với $ad \neq 0$.

① Hàm số đồng biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' \geq 0, \, \forall x \neq -\frac{e}{d} \Leftrightarrow adx^2 + 2aex + be - dc \geq 0, \, \forall x \neq -\frac{e}{d}.$$

2 Hàm số nghịch biến trên từng khoảng xác định của nó khi và chỉ khi

$$y' \le 0, \forall x \ne -\frac{e}{d} \Leftrightarrow adx^2 + 2aex + be - dc \le 0, \forall x \ne -\frac{e}{d}.$$

BÀI TẬP TƯ LUÂN

 \mathbf{V} Í $\mathbf{D}\mathbf{U}$ 1. Tìm tất cả giá trị của tham số m để hàm số

a)
$$y = x^3 + mx^2 + 2mx + 2$$
 đồng biến trên $(-\infty; +\infty)$.

b)
$$y = -\frac{1}{3}x^3 - mx^2 + (2m-3)x - m + 2$$
nghịch biến trên \mathbb{R} .

c)
$$y = \frac{1}{3}x^3 - mx^2 - (2m+1)x + 1$$
 nghịch biến trên khoảng $(0;5)$.

d)
$$y = x^3 - 3x^2 + (5 - m)x$$
 đồng biến trên khoảng $(2; +\infty)$.

🗩 Lời giải.

 \mathcal{C} Hàm số đã cho có tập xác định $\mathcal{D} = \mathbb{R}$ và $y' = 3x^2 + 2mx + 2m$. Hàm số đã cho đồng biến trên ℝ khi và chỉ khi

$$y' > 0, \ \forall x \in \mathbb{R} \Leftrightarrow m^2 - 6m < 0 \Leftrightarrow 0 < m < 6.$$

Tập xác định: $D = \mathbb{R}$. Ta có $y' = -x^2 - 2mx + 2m - 3$.

Để hàm số nghịch biến trên
$$\mathbb R$$
 thì:
$$y' \leq 0, \forall x \in \mathbb R \Leftrightarrow \begin{cases} a_{y'} < 0 \\ \Delta' \leq 0 \end{cases} \Leftrightarrow \begin{cases} -1 < 0 \\ m^2 + 2m - 3 \leq 0 \end{cases} \Leftrightarrow -3 \leq m \leq 1.$$

 $oldsymbol{Z}$ Tập xác định $\mathscr{D}=\mathbb{R}.$

Ta có
$$y' = x^2 - 2mx - (2m+1), y' = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2m+1. \end{bmatrix}$$

Nếu $2m+1 \le -1 \Leftrightarrow m \le -1$ thì $y' \le 0 \Leftrightarrow x \in [2m+1;-1]$.

Suy ra hàm số không nghịch biến trên khoảng (0; 5).

 $\Rightarrow m \le -1$ không thỏa mãn.

Nếu $2m+1 > -1 \Leftrightarrow m > -1$ thì $y' \le 0 \Leftrightarrow x \in [-1; 2m+1]$.

Để hàm số nghịch biến trên khoảng (0; 5) thì ta có $2m + 1 \ge 5 \Leftrightarrow m \ge 2$.

Ta có
$$y' = 3x^2 - 6x + 5 - m$$
.

Ta có $y'=3x^2-6x+5-m$. Hàm số $y=x^3-3x^2+(5-m)x$ đồng biến trên khoảng $(2;+\infty)$ khi và chỉ khi

$$y' \ge 0, \forall x \in (2; +\infty)$$

$$\Leftrightarrow 3x^2 - 6x + 5 - m \ge 0, \forall x \in (2; +\infty)$$

$$\Leftrightarrow m < 3x^2 - 6x + 5, \forall x \in (2; +\infty)$$

Xét hàm $g(x) = 3x^2 - 6x + 5$ trên $(2; +\infty)$ có g'(x) = 6x - 6 và $g'(x) = 0 \Leftrightarrow x = 1$. Bảng biến thiên của g(x)

x	2	$+\infty$
g'(x)		+
g(x)	5	+∞

Dựa vào bảng biến thiên của g(x), ta được

$$m \le 3x^2 - 6x + 5, \forall x \in (2; +\infty) \Leftrightarrow m \le 5.$$

VÍ DU 2. Tìm tất cả giá tri của tham số m để hàm số

- a) $y = \frac{mx+2}{x+1}$ đồng biến trên từng khoảng xác định.
- b) $y=\frac{mx-2}{x+m-3}$ nghịch biến trên các khoảng xác định
- c) $y = \frac{mx 8}{x 2m}$ đồng biến trên $(3; +\infty)$.
- d) $y = \frac{mx+9}{4x+m}$ nghịch biến trên khoảng (0;4).

Dèi giải.

- a) Từ yêu cầu bài toán, $\forall x \neq -1$ ta xét $y' > 0 \Leftrightarrow m 2 > 0 \Leftrightarrow m > 2$.
- b) Tập xác định $\mathbb{R} \setminus \{3 m\}$. $y' = \frac{m(m-3) + 2}{(x+m-3)^2} = \frac{m^2 3m + 2}{(x+m-3)^2}.$

o nghịch biến trên các khoảng xác định của nó là $y' < 0, \forall x \neq 3-m$ hay $m^2-3m+2 < 0 \Leftrightarrow m \in (1;2)$.

c) Tập xác định: $\mathcal{D} = \mathbb{R} \setminus \{2m\}.$ $y' = \frac{-2m^2 + 8}{(x - 2m)^2}$

Hàm số luôn đơn điệu trên từng khoảng xác định $(-\infty; 2m)$ và $(2m; +\infty)$ khi $-2m^2 + 8 \neq 0$. Vậy hàm số đồng biến trên $(3; +\infty)$ khi và chỉ khi $-2m^2 + 8 > 0$ và $(3; +\infty) \subset (2m; +\infty)$.

Điều này tương đương $\begin{cases} -2 < m < 2 \\ 2m < 3 \end{cases}$, hay $-2 < m \le \frac{3}{2}$.

d) Tập xác định $\mathscr{D} = \mathbb{R} \setminus \left\{ -\frac{m}{4} \right\}.$

Ta có $y = \frac{mx + 9}{4x + m} \Rightarrow y' = \frac{m^2 - 36}{(4x + m)^2}$

Để hàm số nghịch biến trên khoảng (0;4) thì

$$\begin{cases} y' < 0, \forall x \in (0;4) \\ -\frac{m}{4} \notin (0;4) \end{cases} \Leftrightarrow \begin{cases} m^2 - 36 < 0 \\ -\frac{m}{4} \ge 4 \\ -\frac{m}{4} \le 0 \end{cases} \Leftrightarrow \begin{cases} -6 < m < 6 \\ m \le -16 \\ m \ge 0 \end{cases} \Leftrightarrow 0 \le m < 6.$$

VÍ DU 3. Tìm tất cả giá trị của tham số m để hàm số

- a) $y = \frac{2x^2 + 3x + m + 1}{x + 1}$ đồng biến trên các khoảng xác định.
- b) $y = \frac{x^2 + (m+1)x 1}{2 x}$ (m là tham số) nghịch biến trên mỗi khoảng xác định.

Dèi giải.

a) Tập xác định: $\mathbb{R}\setminus\{-1\}$. Ta có $y'=\frac{2x^2+4x+2-m}{(x+1)^2}$. Hàm số đồng biến trên các khoảng xác định khi

$$2x^2 + 4x + 2 - m \ge 0, \forall x \in \mathbb{R} \Leftrightarrow m \le 0.$$

b) Tập xác định $\mathscr{D} = \mathbb{R} \setminus 2$.

 Đạo hàm: $y' = \frac{-x^2 + 4x + 2m + 1}{(2-x)^2} = \frac{g(x)}{(2-x)^2}$. Hàm số nghịch biến trên mỗi khoảng xác định của nó khi và chỉ khi $y' \le 0, \forall x \in \mathscr{D}$ (Dấu ' =' chỉ xảy ra tại hữu hạn điểm thuộc \mathcal{D}).

 $\Leftrightarrow g(x) = -x^2 + 4x + 2m + 1 \le 0, \forall x \in \mathbb{R}$

Điều kiện: $\Delta' \le 0$ (vì a = -1 < 0) $\Leftrightarrow 4 - (-1) \cdot (2m+1) \le 0 \Leftrightarrow 2m+5 \le 0 \Leftrightarrow m \le -\frac{5}{2}$.

BÀI TẬP TRẮC NGHIỆM

PHÂN I. Câu trắc nghiệm nhiều phương án lựa chọn. Học sinh trả lời từ câu 1 đến câu 17. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Tất cả giá trị của m để hàm số $y = \frac{x+m}{x-2}$ nghịch biến trên từng khoảng xác định là

$$\bigcirc$$
 $M > -2$

$$(\mathbf{B})m < -2$$

$$(\mathbf{c})m \leq -2$$

$$\bigcirc m \geq -2$$

🗩 Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R} \setminus \{2\}$ và $y' = \frac{-2 - m}{(x - 2)^2}$

Hàm số nghịch biến trên các khoảng $(-\infty; 2)$ và $(2; +\infty)$ khi và chỉ khi

$$y' < 0, \forall x \neq 2 \Leftrightarrow -2 - m < 0 \Leftrightarrow m > -2$$

Chọn đáp án (A).....

CÂU 2. Cho hàm số $y = \frac{mx-2}{x+1-m}$. Tìm tất cả giá trị của tham số m để hàm số đồng biến trên từng khoảng xác định.

B
$$-1 < m < 2$$
.

B
$$-1 < m < 2$$
. **C** $-1 \le m \le 2$.

Yêu cầu bài toán $\Leftrightarrow ad - bc > 0 \Leftrightarrow m(1 - m) + 2 > 0 \Leftrightarrow -1 < m < 2$.

Chon đáp án (B).....

CÂU 3. Cho hàm số $y = \frac{x+m}{x+2}$. Tập hợp tất cả các giá trị của m để hàm số đồng biến trên khoảng $(0; +\infty)$ là

$$(\mathbf{A})[2;+\infty).$$

$$(\mathbf{B})(2;+\infty).$$

$$(\mathbf{C})(-\infty;2].$$

$$(\mathbf{D})(-\infty;2).$$

Dòi giải.

Hàm số xác định khi $x \neq -2$.

Có
$$y' = \frac{2 - m}{(x+2)^2}, x \neq -2.$$

Hàm số đồng biến trên $(0; +\infty)$ khi và chỉ khi $2-m>0 \Leftrightarrow m<2$.

Chon đáp án (D).....

CÂU 4. Cho hàm số $f(x) = \frac{mx-4}{x-m}$ (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên khoảng $(0; +\infty)$?

🗩 Lời giải.

Ta có
$$f'(x) = \frac{-m^2 + 4}{(x - m)^2}$$

Hàm số đồng biến trên khoảng $(0; +\infty) \Leftrightarrow \frac{-m^2 + 4}{(x-m)^2} > 0, \ \forall x \in (0; +\infty)$

$$\Rightarrow \begin{cases} -m^2 + 4 > 0 \\ x \neq m \quad \forall x \in (0; +\infty) \end{cases} \Leftrightarrow \begin{cases} m \in (-2; 2) \\ m \in (-\infty; 0] \end{cases} \Leftrightarrow m \in (-2; 0]$$

Vậy có hai giá trị nguyên của m là

Chọn đáp án \bigcirc D.....

CÂU 5. Tìm tất cả các giá trị của m để hàm số $y = \frac{mx+4}{x+m}$ nghịch biến trên $(-\infty; 1)$. **(a)** -2 < m < 2. **(b)** -2 < m < -1. **(c)** $-2 \le m < -1$. **(d)** $-2 < m \le -1$.

$$\bigcirc$$
 -2 < m < 2.

B
$$-2 < m < -1$$

(B)5.

$$\bigcirc$$
 $-2 \le m < -1.$

$$\bigcirc$$
 $-2 < m \le -1$.

 $(\mathbf{D})9.$

Dòi giải.

 $\text{DKXD: } x \neq -m.$

Hàm số $y = \frac{mx+4}{x+m}$ nghịch biến trên $(-\infty; 1)$

$$\Leftrightarrow y' = \frac{m^2 - 4}{(x+m)^2} < 0, \ \forall x \in (-\infty; 1) \Leftrightarrow \begin{cases} m^2 - 4 < 0 \\ -m \ge 1 \end{cases} \Leftrightarrow \begin{cases} -2 < m < 2 \\ m \le -1 \end{cases} \Leftrightarrow -2 < m \le -1.$$

Chon đáp án (D)

CÂU 6. Số giá trị nguyên của tham số m để hàm số $y = \frac{mx+10}{2x+m}$ nghịch biến trên khoảng (0;2) là

Ta có
$$y' = \frac{m^2 - 20}{(2x+m)^2}$$
.

Do đó hàm số $y = \frac{mx+10}{2x+m}$ nghịch biến trên (0;2) khi và chỉ khi

$$\begin{cases} m^2 - 20 < 0 \\ -\frac{m}{2} \notin (0;2) \end{cases} \Leftrightarrow \begin{cases} -2\sqrt{5} < m < 2\sqrt{5} \\ -\frac{m}{2} \le 0 \\ -\frac{m}{2} \ge 2 \end{cases} \Leftrightarrow \begin{bmatrix} 0 \le m < 2\sqrt{5} \\ -2\sqrt{5} < m \le -4. \end{cases}$$

Vì $m \in \mathbb{Z}$ nên $m \in \{-4, 0, 1, 2, 3, 4\}$.

Vậy có tất cả 6 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Chọn đáp án (A).....

CÂU 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^3 - 2mx^2 + (m^2 + 3)x$ đồng biến trên \mathbb{R} ? (A) 8.

🗩 Lời giải.

Hàm số $y = x^3 - 2mx^2 + (m^2 + 3) x$ đồng biến trên \mathbb{R}

$$\Leftrightarrow y' = 3x^2 - 4mx + m^2 + 3 \ge 0, \forall x \in \mathbb{R}$$

$$\Leftrightarrow \Delta' = 4m^2 - 3(m^2 + 3) \le 0$$

$$\Leftrightarrow m^2 - 9 \le 0 \Leftrightarrow -3 \le m \le 3.$$

Do m là số nguyên nên $m \in \{-3, -2, -1, 0, 1, 2, 3\}$.

Vậy có 7 giá trị nguyên của tham số m.

Chọn đáp án (C)..... **CÂU 8.** Cho hàm số $y = -x^3 - mx^2 + (4m+9)x + 5$. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên \mathbb{R} ?

🗩 Lời giải.

Ta có $y' = -3x^2 - 2mx + (4m + 9)$. Hàm số đã cho nghịch biến trên $\mathbb R$ khi và chỉ khi

$$\Delta' < 0 \Leftrightarrow m^2 + 12m + 27 < 0 \Leftrightarrow -9 < m < -3.$$

Vậy có tất cả 7 giá trị nguyên của m thỏa mãn bài toán.

Chọn đáp án (A).....

CÂU 9. Cho hàm số $y = (m-1)x^3 + (m-1)x^2 - 2x + 5$ với m là tham số. Có bao nhiều giá trị nguyên của m để hàm số nghịch biến trên khoảng $(-\infty; +\infty)$?

 $(\mathbf{D})6.$

(A) 5. Dòi giải.

Trường hợp 1: $m-1=0 \Leftrightarrow m=1$ khi đó y=-2x+5 nghịch biến trên \mathbb{R} . Do đó nhận m=1.

Trường hợp 2: $m-1 \neq 0 \Leftrightarrow m \neq 1$.

Ta có $y' = 3(m-1)x^2 + 2(m-1)x - 2$.

Hàm số nghịch biến trên $(-\infty; +\infty) \Leftrightarrow y' \leq 0, \forall x \in (-\infty; +\infty)$

$$\Leftrightarrow \begin{cases} 3(m-1) < 0 \\ (m-1)^2 - 3(m-1) \cdot (-2) \le 0 \end{cases} \Leftrightarrow \begin{cases} m < 1 \\ -5 \le m \le 1 \end{cases} \Leftrightarrow -5 \le m < 1.$$

Do $m \in \mathbb{Z} \Rightarrow m \in \{-5, -4, -3, -2, -1, 0\}.$

Vậy cả 2 trường hợp thì ta có tất cả 7 giá trị m thỏa yêu cầu bài toán là $\{-5; -4; -3; -2; -1; 0; 1\}$.

Chọn đáp án (B).....

🗩 Lời giải.

Đặt $f(x) = y' = 3x^2 - 6mx - 9m^2$.

Vì y' là hàm số bậc hai với hệ số a=3>0 nên để hàm số nghịch biến trên (0;1) thì phương trình y'=0 có hai nghiệm phân biệt x_1, x_2 thỏa mãn $x_1 \le 0 < 1 \le x_2$

$$\Leftrightarrow \begin{cases} af(0) \le 0 \\ af(1) \le 0 \end{cases} \Leftrightarrow \begin{cases} -9m^2 \le 0 \\ 3 - 6m - 9m^2 \le 0 \end{cases} \Leftrightarrow \begin{bmatrix} x \le -1 \\ x \ge \frac{1}{3}. \end{cases}$$

CÂU 11. Có bao nhiều giá trị nguyên của tham số m thuộc khoảng (-2019;2020) để hàm số $y=2x^3-3(2m+1)x^2+$ 6m(m+1)x + 2019 đồng biến trên khoảng $(2; +\infty)$?

(A) 2020.

(**B**)2018.

(C)2021.

(**D**)2019.

🗩 Lời giải.

Ta có $y' = 6x^2 - 6(2m+1)x + 6m^2 + 6m$.

Xét $y' = 0 \Leftrightarrow x^2 - (2m+1)x + m^2 + m = 0$, có $\Delta = (2m+1)^2 - 4(m^2 + m) = 1 > 0$, $\forall m \in \mathbb{R}$. Suy ra phương trình y' = 0luôn có hai nghiệm phân biệt: $x_1 = m$; $x_2 = m + 1$. Dễ thấy $x_1 < x_2$. Bảng biến thiên

Dưa vào bảng biến thiên ta thấy hàm số đồng biến trên mỗi khoảng $(-\infty; m)$; $(m+1; +\infty)$. Vì thế, hàm số đồng biến trên $(2:+\infty)$ khi $m+1 \le 2 \Leftrightarrow m \le 1$.

Suy ra có 2020 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Chọn đáp án (A)......

CÂU 12. Tập hợp các giá trị thực của tham số m để hàm số $y = -x^3 - 6x^2 + (4m - 9)x + 4$ nghịch biến trên khoảng $(-\infty; -1)$ là

$$(-\infty;0].$$

$$\bigcirc$$
 $\left(-\infty; -\frac{3}{4}\right].$

$$\bigcirc$$
 $[0;+\infty).$

🗭 Lời giải.

Ta có $y' = -3x^2 - 12x + 4m - 9$.

Hàm số đã cho nghịch biến trên khoảng $(-\infty; -1)$ khi và chỉ khi $y' \le 0, \forall x \in (-\infty; -1)$

$$\Leftrightarrow -3x^2 - 12x + 4m - 9 \le 0 \Leftrightarrow 4m \le 3x^2 + 12x + 9, \ \forall x \in (-\infty; -1).$$

Đặt $g(x) = 3x^2 + 12x + 9 \Rightarrow g'(x) = 6x + 12$. Giải $g'(x) = 0 \Leftrightarrow x = -2$.

Bảng biến thiên của hàm số g(x) trên $(-\infty; -1)$.

x	$-\infty$		-2		-1
g'(x)		_	0	+	
g(x)	$+\infty$		-3		0

Dựa vào bảng biến thiên suy ra $4m \le g(x), \forall x \in (-\infty; -1) \Leftrightarrow 4m \le -3 \Leftrightarrow m \le -\frac{3}{4}$.

CÂU 13. Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y = x^3 - 6x^2 + mx + 1$ đồng biến trên khoảng $(0; +\infty)$.

(A)m < 12.

$$(\mathbf{B})m \geq 12.$$

Chon đáp án \bigcirc

$$(\mathbf{C})m \leq 0.$$

Dòi giải.

Tập xác định $\mathcal{D} = \mathbb{R}$.

$$y' = 3x^2 - 12x + m.$$

Hàm số đồng biến trên khoảng $(0; +\infty)$ khi và chỉ khi

$$f'(x) \ge 0, \forall x \in (0; +\infty)$$

$$\Leftrightarrow 3x^2 - 12x + m \ge 0, \forall x \in (0; +\infty)$$

$$\Leftrightarrow m \ge -3x^2 + 12x, \forall x \in (0; +\infty).$$

Xét hàm số $g(x) = -3x^2 + 12x$ trên $(0; +\infty)$. Ta có $g'(x) = -6x + 12 \Leftrightarrow x = 2$. Bảng biến thiên của hàm số g(x)

Suy ra hàm số đồng biến trên khoảng $(0; +\infty)$ khi $m \ge 12$.

Chọn đáp án B....

CÂU 14. Tìm tất cả các giá trị m để hàm số $y=\frac{x^2-8x}{x+m}$ đồng biến trên mỗi khoảng xác định.

$$(-8;0).$$

$$(\mathbf{c})[0;8].$$

$$(D)[-8;0].$$

🗩 Lời giải.

Ta có
$$y' = \frac{x^2 + 2mx - 8m}{(x+m)^2}$$
. Khi đó

YCBT
$$\Leftrightarrow x^2 + 2mx - 8m \ge 0, \forall x \Leftrightarrow \Delta' \le 0$$

 $\Leftrightarrow m^2 + 8m \le 0 \Leftrightarrow -8 \le m \le 0.$

Chọn đáp án $\boxed{\mathbb{D}}$

CÂU 15. Tập hợp các giá trị thực của tham số m để hàm số $y=x+1+\frac{m}{x-2}$ đồng biến trên mỗi khoảng xác định của

nó là
$$(-\infty; 0)$$
.

$$\mathbf{B}[0;1).$$

$$\bigcirc$$
 $[0; +\infty) \setminus \{1\}.$

$$(\mathbf{D})(-\infty;0].$$

D Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R} \setminus \{2\}$. Ta có $y' = 1 - \frac{m}{(x-2)^2}$.

Hàm số đồng biến trên mỗi khoảng các định của nó khi và chỉ khi

$$y' \ge 0, \ \forall x \in \mathbb{R} \setminus \{2\} \Leftrightarrow 1 - \frac{m}{(x-2)^2} \ge 0, \ \forall x \in \mathbb{R} \setminus \{2\}$$
$$\Leftrightarrow m \le (x-2)^2, \ \forall x \in \mathbb{R} \setminus \{2\} \Leftrightarrow m \le 0.$$

Chọn đáp án D

CÂU 16. Tìm tất cả các giá trị thực của tham số m để hàm số $f(x) = 2^{x^3 - x^2 + mx + 1}$ đồng biến trên khoảng (1; 2).

$$(\mathbf{C})m \geq -1.$$

🗩 Lời giải.

Ta có
$$f'(x) = (3x^2 - 2x + m) \cdot 2^{x^3 - x^2 + mx + 1} \cdot \ln 2$$
. Ta thấy

$$f(x)$$
 đồng biến trên $(1;2)$

$$\Leftrightarrow (3x^2 - 2x + m) \cdot 2^{x^3 - x^2 + mx + 1} \cdot \ln 2 \ge 0, \forall x \in (1, 2)$$

$$\Leftrightarrow (3x^2 - 2x + m) \ge 0, \forall x \in (1; 2)$$

$$\Leftrightarrow m \ge (-3x^2 + 2x), \forall x \in (1; 2)$$

$$\Leftrightarrow m \ge \max_{[1;2]} (-3x^2 + 2x)$$

$$\Leftrightarrow$$
 $m \ge -1$

Chọn đáp án \bigcirc

CÂU 17. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số $f(x) = (x+1) \ln x + (2-m)x$ đồng biến trên khoảng $(0; e^2)$?

 \mathbf{A} 0.

B)3.

C5.

D4.

🗩 Lời giải.

- a) Hàm số đã cho xác định khi x > 0 hay $D = (0; +\infty)$
- b,

c)

d) Với x > 0, ta có $f'(x) = \ln x + \frac{x+1}{x} + 2 - m$.

Hàm số đã cho đồng biến trên khoảng $(0; e^2)$ khi

$$f'(x) \ge 0, \forall x \in (0; e^2) \Leftrightarrow \ln x + \frac{x+1}{x} + 2 - m \ge 0, \forall x \in (0; e^2)$$
$$\Leftrightarrow m \le \ln x + \frac{x+1}{x} + 2, \forall x \in (0; e^2). \tag{*}$$

Xét hàm số $g(x)=\ln x+\frac{x+1}{x}+2, \forall x\in(0;\mathrm{e}^2).$ Ta có $g'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{x-1}{x^2}.$ Khi đó g'(x)=0 có nghiệm $x=1\in(0;\mathrm{e}^2).$

x	0		1		e^2
g'(x)		_	0	+	
g(x)	$+\infty$		4		$g(e^2)$

Từ bảng biến thiên trên, bất phương trình (*) thỏa mãn khi $m \leq 4$.

Chon đáp án \bigcirc

PHẨN II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 18 đến câu 20. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 18. Cho hàm số $y = mx^3 + mx^2 - (m+1)x + 1$, với m là tham số.

Mệnh đề	Ð	S
a) Hàm số là hàm số bậc ba khi $m \neq 0$.	X	
b) Tập xác định của hàm số là \mathbb{R} .	X	
c) Hàm số đồng biến trên $\mathbb R$ khi và chỉ khi $m<-\frac{3}{4}$ hoặc $m\geq 0.$		X
d) Hàm số nghịch biến trên $\mathbb R$ khi và chỉ khi $-\frac{3}{4} \leq m < 0$.		X

Lời giải.

- a) Với $m \neq 0$ thì hàm số đã cho là một hàm số bậc ba.
- b) Hàm số là hàm đa thức nên có tập xác định là $\mathbb{R}.$
- c) Ta có $y' = 3mx^2 + 2mx (m+1)$.
 - Với m=0 thì y'=-1<0 (không thỏa)
 - Với $m \neq 0$, yêu cầu bài toán tương đương với $\begin{cases} m > 0 \\ \Delta < 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ 4m^2 + 3m < 0 \end{cases}$ (không tồn tại m)
- Với m=0 thì y'=-1<0 (thỏa) d)
 - Với $m \neq 0$, yêu cầu bài toán tương đương với

$$\begin{cases} m < 0 \\ \Delta \leq 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ 4m^2 + 3m \leq 0 \end{cases} \Leftrightarrow -\frac{3}{4} \leq m < 0$$

Suy ra $-\frac{3}{4} \le m \le 0$.

Chọn đáp án a đúng b đúng c sai d sai

CÂU 19. Cho hàm số $y = \frac{1}{3}x^3 + (m+1)x^2 + (m^2 + 2m)x - 3$, với m là tham số.

Mệnh đề	Đ	S
a) Tập xác định của hàm số là \mathbb{R} .		X
b) Phương trình $y'=0$ có hai nghiệm phân biệt $x_1=-m$ và $x_2=-m-2$.	X	
c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R} .	X	
d) Hàm số nghịch biến trên khoảng $(-1;1)$ khi và chỉ khi $m \geq -1$.		X

🗩 Lời giải.

- a) Hàm số là hàm đa thức nên có tập xác định là $\mathbb R$
- b) Ta có $y' = x^2 + 2(m+1)x + m^2 + 2m$. Do $\Delta' = b'^2 ac = (m+1)^2 (m^2 + 2m) = 1 > 0$ nên phương trình có hai nghiệm phân biệt $x_1 = \frac{-b' + \sqrt{\Delta'}}{a} = -m$ và $x_2 = \frac{-b' \sqrt{\Delta'}}{a} = -m 2$.
- c) Bảng biến thiên

Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số m để hàm số đồng biến trên $\mathbb R$

d) Bảng biến thiên

Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng (-1;1) khi và chỉ khi

$$\begin{cases} -m-2 \le -1 \\ -m \ge 1 \end{cases} \Leftrightarrow m = -1.$$

Chọn đáp án a sai b đúng c đúng d sai

CÂU 20. Cho hàm số $y = \frac{x+5}{x+m}$, với m là tham số.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		X
b) Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi $m \geq 5$.		X
c) Hàm số nghịch biến trên từng khoảng xác định khi và chỉ khi $m < 5$.	X	
d) Hàm số đồng biến trên khoảng $(-\infty; -8)$ khi và chỉ khi $(5; 8)$.		X

Lời giải.

- a) Điều kiện $x + m \neq 0 \Leftrightarrow x \neq -m$. Tập xác định là $D = \mathbb{R} \setminus \{-m\}$.
- b) Ta có $y' = \frac{m-5}{\left(x+m\right)^2}, \forall x \in \mathbb{R} \backslash \left\{-m\right\}.$

Hàm số đồng biến trên từng khoảng xác định $\Leftrightarrow m-5>0 \Leftrightarrow m>5$.

c) Ta có $y' = \frac{m-5}{(x+m)^2}, \forall x \in \mathbb{R} \setminus \{-m\}.$

Hàm số nghịch biến trên từng khoảng xác định $\Leftrightarrow m-5 < 0 \Leftrightarrow m < 5$.

d) Hàm số $y = \frac{x+5}{x+m}$ đồng biến trên khoảng $(-\infty; -8)$ khi và chỉ khi

$$\begin{cases} \frac{m-5}{\left(x+m\right)^2} > 0\\ -m \notin (-\infty; -8) \end{cases} \Leftrightarrow \begin{cases} m > 5\\ -m \ge -8 \end{cases} \Leftrightarrow 5 < m \le 8.$$

Chọn đáp án a sai b sai c đúng d sai

🖶 Dạng 3. Bài toán tìm m để hàm số có cực trị hoặc đạt cực trị tại điểm cho trước

- \Re Tìm m để hàm số y = f(x) đạt cực trị tại điểm x_0 cho trước (f(x) có đạo hàm tại x_0):
 - ① Giải điều kiện $y'(x_0) = 0$, tìm m.
 - ② Lập bảng biến thiên với m vừa tìm được và chọn giá trị m nào thỏa yêu cầu.
- \Re Biện luận cực trị hàm số $y = ax^3 + bx^2 + cx + d$. Tính $y' = 3ax^2 + 2bx + c$ với $\Delta_{y'} = b^2 - 3ac$
 - ① $\begin{cases} \Delta_{y'} > 0 \\ a \neq 0 \end{cases}$: Hàm số có hai điểm cực trị
 - ② $\Delta_{y'} \leq 0$ hoặc suy biến $\begin{cases} a = 0 \\ b = 0 \end{cases}$: Hàm số không có cực trị.
 - \bigcirc Gọi x_1, x_2 là hai nghiệm phân biệt của y' = 0 thì $x_1 + x_2 = -\frac{2b}{3a}$ và $x_1 \cdot x_2 = \frac{c}{3a}$
 - $x_1^2 + x_2^2 = (x_1 + x_2)^2 2x_1x_2$
 - $(x_1 x_2)^2 = (x_1 + x_2)^2 4x_1x_2$
 - $x_1^3 + x_2^3 = (x_1 + x_2)^3 3x_1x_2(x_1 + x_2)$.
 - Các công thức tính toán thường gặp:
 - Độ dài $MN = \sqrt{(x_N x_M)^2 + (y_N y_M)^2}$
 - Khoảng cách từ M đến Δ : $d(M,\Delta) = \frac{|Ax_M + By_M + C|}{\sqrt{A^2 + B^2}}$, với Δ : Ax + By + C = 0. Tam giác ABC vuông tại $A \Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow \operatorname{hoành} \cdot \operatorname{hoành} + \operatorname{tung} \cdot \operatorname{tung} = 0$.

 - Diện tích tam giác ABC là $S = \frac{1}{2}|a_1b_2 a_2b_1|$, với $\overrightarrow{AB} = (a_1; b_1)$, $\overrightarrow{AC} = (a_2; b_2)$.
 - \bigcirc Phương trình đường thẳng qua hai điểm cực trị là $y = -\frac{2}{9a}(b^2 3ac)x + d \frac{bc}{9a}$

BÀI TẬP TỰ LUÂN

VÍ DU 1. Tìm m để hàm số

a)
$$y = \frac{x^3}{3} - mx^2 + (m^2 - m + 1)x + 1$$
 đạt cực tiểu tại $x = 3$.

b)
$$y=x^3-3mx^2+3(m^2-1)x$$
 đạt cực đại tại $x_0=1.$

Dèi giải.

a) Ta có $y' = x^2 - 2mx + m^2 - m + 1$. Hàm số đạt cực tiểu tại x = 3 thì

$$y'(3) = 0 \Leftrightarrow 9 - 6m + m^2 - m + 1 = 0 \Leftrightarrow \begin{bmatrix} m = 2 \\ m = 5 \end{bmatrix}.$$

Lập bảng biến thiên của hàm số với lần lượt hai giá trị m vừa tìm được, ta thấy m=2 thỏa. Vây m=2.

b) Ta có $y' = 3x^2 - 6mx + 3(m^2 - 1)$ Điều kiện cần và đủ để thỏa điều kiện bài toán là

$$\begin{cases} y'(1) = 0 \\ y''(1) < 0 \end{cases} \Leftrightarrow \begin{cases} 3m^2 - 6m = 0 \\ 6 - 6m < 0 \end{cases} \Leftrightarrow \begin{cases} m = 0 \lor m = 2 \\ m > 1 \end{cases} \Leftrightarrow m = 2.$$

Vậy m=2 thì thỏa bài toán.

VÍ DU 2. Tìm tất cả giá trị của tham số m để hàm số (đồ thị hàm số)

- a) $y = x^3 3x^2 + 2mx + m + 2024$ có hai điểm cực trị.
- b) $y = \frac{1}{3}x^3 mx^2 + (m+2)x + 2019$ không có cực trị.
- c) $y = x^3 3(m+1)x^2 + 12mx + 2019$ có hai điểm cực trị x_1 , x_2 thỏa mãn $x_1 + x_2 + 2x_1x_2 = -8$.
- d) $y = -x^3 3mx^2 + m 2$ với m là tham số có hai điểm cực trị A, B sao cho AB = 2.

🗩 Lời giải.

- a) Ta có $y' = 3x^2 6x + 2m$. Hàm số có cực đại, cực tiểu khi và chỉ khi phương trình y'=0 có hai nghiệm phân biệt $\Leftrightarrow \Delta'_{y'}>0 \Leftrightarrow 9-6m>0$ $\Leftrightarrow m < \frac{3}{2}$
- b) Ta có $y' = x^2 2mx + m + 2$ Hàm số đã cho không có cực trị \Leftrightarrow phương trình y'=0 vô nghiệm hoặc có nghiệm kép hay $\Delta'_{y'} \leq 0 \Leftrightarrow m^2-(m+2) \leq 0$
- c) Ta có $y' = 3x^2 6(m+1)x + 12m$, $y' = 0 \Leftrightarrow 3x^2 6(m+1)x + 12m = 0$. Hàm số có hai điểm cực trị $\Leftrightarrow \Delta' = 9m^2 - 18m + 9 > 0 \Leftrightarrow m \neq 1$. (1)Giả sử x_1, x_2 là hai nghiệm của phương trình y' = 0, theo định lí Vi-ét ta có

$$\begin{cases} x_1 + x_2 = -\frac{b}{a} = 2(m+1) \\ x_1 \cdot x_2 = \frac{c}{a} = 4m. \end{cases}$$

$$\begin{cases} x_1 \cdot x_2 = \frac{c}{a} = 4m. \end{cases}$$

Do đó $x_1 + x_2 + 2x_1 \cdot x_2 = -8 \Leftrightarrow 2(m+1) + 8m = -8 \Leftrightarrow 10m = -10 \Leftrightarrow m = -1$ thỏa mãn (1). Vậy m = -1 là giá trị cần tìm của m.

d) Ta có
$$y' = -3x^2 - 6mx$$
; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -2m. \end{bmatrix}$

Hàm số có hai điểm cực tri khi và chỉ khi $m \neq 0$.

Goi hai điểm cực trị của đồ thị hàm số là A, B.

Ta có A(0; m-2), $B(-2m; -4m^3 + m - 2)$.

Do đó

$$AB^2 = 4m^2 + 16m^6 = 4 \Leftrightarrow 4m^6 + m^2 - 1 = 0$$

$$\Leftrightarrow m^2 = \frac{1}{2} \Leftrightarrow m = \pm \frac{1}{\sqrt{2}}.$$

BÀI TẬP TRẮC NGHIÊM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Tìm tất cả giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 + (m+1)x^2 + (1-3m)x + 2$ có cực đại và cực tiểu. (A) $m \le -5; m \ge 0$. (D) $-5 \le m \le 0$.

B
$$m < -5; m > 0$$

$$-5 < m < 0$$

$$\bigcirc$$
 $-5 \le m \le 0$

Dòi giải.

Tập xác định $\mathscr{D} = \mathbb{R}$.

Ta có $y' = x^2 + 2(m+1)x + 1 - 3m$.

Hàm số có cực đại và cực tiểu khi phương trình y'=0 có hai nghiệm phân biệt và đổi dấu qua các nghiệm đó.

Khi đó
$$\Delta'_{y'} = (m+1)^2 - (1-3m) > 0 \Leftrightarrow m^2 + 5m > 0 \Leftrightarrow \begin{bmatrix} m < -5 \\ m > 0. \end{bmatrix}$$

Chọn đáp án (B).....

(A) m > -3.

(B)m > 3.

 $(\mathbf{C})m > -3.$

 $(\mathbf{D})m > 3.$

🗩 Lời giải.

Ta có $y' = -3x^2 - 6x + m$. Hàm số đã cho có cực đại và cực tiểu khi và chỉ khi phương trình y' = 0 có 2 nghiệm phân biệt $\Leftrightarrow \Delta' > 0 \Leftrightarrow 9 + 3m > 0 \Leftrightarrow m > -3.$

Chọn đáp án (A).....

CÂU 3. Cho hàm số $y = x^3 - 3(m+1)x^2 + 3(7m-3)x$. Số giá trị nguyên của tham số m để hàm số không có cực trị là

Dòi giải.

Hàm số bậc 3 không có cực trị khi và chỉ khi phương trình $y' = 0 \Leftrightarrow 3x^2 - 6(m+1)x + 3(7m-3) = 0$ có nghiệm kép hoặc vô nghiệm hay

$$\Delta' \le 0 \Leftrightarrow 9(m+1)^2 - 9(7m-3) \le 0 \Leftrightarrow m^2 - 5m + 4 \le 0 \Leftrightarrow 1 \le m \le 4.$$

Mà $m \in \mathbb{Z}$ nên $m \in \{1; 2; 3; 4\}$.

Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

CÂU 4. Cho hàm số $y = x^3 - 3(m+1)x^2 + 3(7m-3)x$. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của Slà

 $(\mathbf{C})_0.$

(D) Vô số.

🗩 Lời giải.

Tập xác định là $\mathscr{D} = \mathbb{R}$.

 $y' = 3x^2 - 6(m+1)x + 3(7m-3).$

Hàm số không có cực trị khi và chỉ khi $\Delta' = 9(m+1)^2 - 9(7m-3) \le 0 \Leftrightarrow m^2 - 5m + 4 < 0 \Leftrightarrow 1 < m < 4$.

Vậy có $m \in \{1, 2, 3, 4\}$.

Chọn đáp án \bigcirc B.....

CÂU 5. Giả sử hàm số $y=\frac{1}{3}x^3-x^2-\frac{1}{3}mx$ có hai điểm cực trị x_1,x_2 thỏa mãn $x_1+x_2+2x_1x_2=0$. Giá trị của m là

(B) m = -3.

 $(\mathbf{D})m = 2.$

🗩 Lời giải.

Ta có $y' = x^2 - 2x - \frac{1}{3}m$.

 $y' = 0 \Leftrightarrow 3x^2 - 6x - m = 0.$

Hàm số có hai cực trị $\Leftrightarrow y'=0$ có hai nghiệm phân biệt $\Leftrightarrow 9+3m>0 \Leftrightarrow m>-3$.

Khi đó $x_1 + x_2 + 2x_1x_2 = 0 \Leftrightarrow 2 - \frac{2m}{3} = 0 \Leftrightarrow m = 3 \text{ (TM)}.$

CÂU 6. Cho hàm số $f(x) = x^3 - 3x^2 + mx - 1$. Tìm giá trị của tham số m để hàm số có hai cực trị x_1, x_2 thỏa $x_1^2 + x_2^2 = 3$.

🗩 Lời giải.

TXĐ $D = \mathbb{R}$.

 $f'(x) = 3x^2 - 6x + m.$

Hàm số có hai điểm cực trị $x_1, x_2 \Leftrightarrow f'(x) = 0$ có hai nghiệm phân biệt $\Leftrightarrow 9 - 3m > 0 \Leftrightarrow m < 3$.

Theo hệ thức Vi-et: $x_1 + x_2 = 2$; $x_1.x_2 = \frac{m}{3}$.

Khi đó: $x_1^2 + x_2^2 = 3 \Leftrightarrow (x_1 + x_2)^2 - 2x_1x_2 = 3 \Leftrightarrow 2^2 - \frac{2m}{3} = 3 \Leftrightarrow m = \frac{3}{2}$.

Chọn đáp án (D).....

CÂU 7. Tìm tất cả các giá trị của tham số m để đồ thị hàm số $y = x^3 - 12x + m + 2$ có hai cực trị và hai điểm cực trị này nằm về hai phía trục hoành?

 $(\mathbf{A})m = -2.$

 $(\mathbf{B}) - 18 < m < 14. \qquad (\mathbf{C}) \forall m \in \mathbb{R}.$

 $(\mathbf{D})m \neq 1.$

🗩 Lời giải.

Ta có $y'=3x^2-12$. Suy ra $y'=0\Leftrightarrow \begin{bmatrix} x=2\Rightarrow y=m-14\\ x=-2\Rightarrow y=m+18. \end{bmatrix}$

Đồ thị hàm số có hai điểm cực trị nằm về hai phía trục hoành khi và chỉ khi

 $(m-14)(m+18) < 0 \Leftrightarrow -18 < m < 14.$

CÂU 8. Tập hợp các giá trị của m để đồ thị hàm số $y = x^3 + mx^2 - (m^2 - 4)x + 1$ có hai điểm cực trị nằm ở hai phía của trục Oy là

$$(-\infty; 2).$$

$$(\mathbf{B})\mathbb{R}\setminus[-2;2].$$

$$(\mathbf{C})(-2;2).$$

$$(\mathbf{D})(2;+\infty).$$

🗩 Lời giải.

Ta có $y' = 3x^2 + 2mx + 4 - m^2$.

Đồ thị hàm số có hai cực trị nằm hai phía đối với trục Oy khi và chỉ khi y'=0 có hai nghiệm trái dấu $\Leftrightarrow P=\frac{4-m^2}{3}$

$$0 \Leftrightarrow \begin{bmatrix} m > 2 \\ m < -2. \end{bmatrix}$$

Chon đáp án (B)...

CÂU 9. Cho hàm số $y = x^3 + 3mx^2 + 3(m^2 - 1)x + m^3$. Tìm m để hàm số đạt cực tiểu tại điểm x = 0.

$$(\mathbf{A})m = -1.$$

$$\mathbf{B}$$
 $m=1.$

$$\bigcirc m = 0.$$

$$(\mathbf{D})m=2.$$

Lời giải.

Ta có $y' = 3x^2 + 6mx + 3(m^2 - 1)$ và $y'' = 6x + 6m \Rightarrow y''(0) = 6m$.

Hàm số đạt cực tiểu tại $x = 0 \Rightarrow y'(0) = 0 \Leftrightarrow 3(m^2 - 1) = 0 \Leftrightarrow m = \pm 1$.

Với $m=1 \Rightarrow y''(0)=6>0 \Rightarrow$ hàm số đạt cực tiểu tại x=0.

Với $m = -1 \Rightarrow y''(0) = -6 < 0 \Rightarrow \text{hàm số đạt cực đại tại } x = 0.$

Vậy m = 1 thỏa mãn bài.

Chọn đáp án (B).....

CÂU 10. Hàm số $y = x^3 - 2mx^2 + m^2x - 2$ đạt cực tiểu tại x = 1 khi

$$(\mathbf{A})m=3.$$

B
$$m = -3$$
.

$$\bigcirc m = 1.$$

$$(\mathbf{D})m = -1.$$

Dòi giải.

Ta có: $y' = 3x^2 - 4mx + m^2$, y'' = 6x - 4m.

Hàm số đạt cực tiểu tại x=1, suy ra $y'(1)=0 \Leftrightarrow m^2-4m+3=0 \Leftrightarrow \begin{bmatrix} m=1\\ m=3 \end{bmatrix}$

 \odot Với m=1 ta có y'(1)=0, y''(1)=2>0 nên hàm số đạt cực tiểu tại x=1.

 \bigcirc Với m=3 ta có y'(1)=0, y''(1)=-6<0 nên hàm số đạt cực đại tại x=1.

Chọn đáp án \bigcirc **CÂU 11.** Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực tiểu tại x = 3.

$$(\mathbf{A})m = -1.$$

$$\bigcirc m = 1.$$

$$(c)m = -7.$$

$$\bigcirc m = 5$$

Dòi giải.

Ta có $y' = x^2 - 2mx + m^2 - 4$ và y'' = 2x - 2m.

Hàm số đạt cực tiểu tại x=3 nên $y'(3)=0 \Leftrightarrow 9-6m+m^2-4=0 \Leftrightarrow \begin{bmatrix} m=5\\ m=1 \end{bmatrix}$

Với m = 5 thì y''(3) = -4 < 0, loại.

Với m = 1 thì y''(3) = 4 > 0, thỏa mãn.

Chon đáp án (B).....

CÂU 12. Đồ thị hàm số $y = x^3 - 3x^2 + 2ax + b$ (với $a, b \in \mathbb{R}$) có điểm cực tiểu A(2; -2). Khi đó a + b bằng

 $(\mathbf{A})-4.$

Dòi giải.

Ta có: $y' = 3x^2 - 6x + 2a$; y'' = 6x - 6.

Đồ thị hàm số có điểm cực tiểu A(2;-2) nên ta có: $\begin{cases} y'(2) = 0 \\ y(2) = -2 \end{cases} \Leftrightarrow \begin{cases} 2a = 0 \\ 4a + b = 2 \end{cases} \Leftrightarrow \begin{cases} a = 0 \\ b = 2. \end{cases}$

Với a=2,b=0 ta thấy y''(2)=6.2-6=6>0 nên hàm số đạt cực tiểu tại x=2, thỏa yêu cầu bài toán. Suy ra a+b=2.

Chọn đáp án (C).....

CÂU 13. Goi m_1, m_2 là các giá tri của tham số m để đồ thi hàm số $y = 2x^3 - 3x^2 + m - 1$ có hai điểm cực tri B, C sao cho tam giác OBC có diện tích bằng 2, với O là gốc tọa độ. Tích $m_1 \cdot m_2$ bằng

(A) 12.

 $(\mathbf{B})6.$

 $(\mathbf{C})-15.$

 $(\mathbf{D}) - 20.$

🗭 Lời giải.

Tập xác định: $\mathscr{D} = \mathbb{R}$.

Ta có

$$y' = 6x^{2} - 6x = 0 \quad \Leftrightarrow \quad \begin{bmatrix} x = 0 \Rightarrow y = m - 1 \Rightarrow B(0; m - 1) \\ x = 1 \Rightarrow y = m - 2 \Rightarrow C(1; m - 2) \end{bmatrix}$$
$$\Rightarrow \quad S_{\triangle OBC} = \frac{1}{2}d(C; OB) \cdot OB = \frac{1}{2} \cdot 1 \cdot |m - 1| = 2$$
$$\Leftrightarrow \quad |m - 1| = 4 \Leftrightarrow \begin{bmatrix} m_{1} = 5 \\ m_{2} = -3. \end{bmatrix}$$

Vậy $m_1 \cdot m_2 = -15$.

Chọn đáp án C

CÂU 14. Cho hàm số $y = x^3 - 3mx^2 + 3m^3$. Biết rằng có hai giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A, B và tam giác OAB có diện tích bằng 48. Khi đó tổng các giá trị của m là

∞ Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R}$.

Đạo hàm $y' = 3x^2 - 6mx$, xác định với mọi $x \in \mathbb{R}$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2m. \end{bmatrix}$$

Do đó hàm số có hai cực trị khi và chỉ khi $m \neq 0$.

Khi đó $A(0;3m^3)$, $B(2m;-m^3)$.

Suy ra $\overrightarrow{OA} = (0; 3m^3), \overrightarrow{OB} = (2m; -m^3).$

$$S_{\triangle OAB} = 48 \Leftrightarrow \frac{1}{2} \left| \left[\overrightarrow{OA}, \overrightarrow{OB} \right] \right| = 48 \Leftrightarrow \left| -6m^4 \right| = 96 \Leftrightarrow m = \pm 2.$$

Vậy tổng các giá trị của m là 0.

Chọn đáp án (A).....

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 15. Cho hàm số $y = \frac{m}{3}x^3 + 2x^2 + mx + 1$, với m là tham số.

Mệnh đề	Ð	S
a) Hàm số có hai điểm cực trị khi $-2 < m < 2$.		X
b) Hàm số có đúng một điểm cực trị khi $m=0$ hoặc $m=2$.		X
c) Hàm số không có cực trị khi $m \leq -2$ hoặc $m \geq 2$.	X	
d) Hàm số có 2 điểm cực trị thỏa mãn $x_{\rm CD} < x_{CT}$ khi $0 < m < 2$.	X	

🗩 Lời giải.

a) Ta có $y' = mx^2 + 4x + m$.

Hàm số có 2 điểm cực trị $\Leftrightarrow y' = 0$ có 2 nghiệm phân biệt $\Leftrightarrow \begin{cases} m \neq 0 \\ 4 - m^2 > 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 0 \\ -2 < m < 2 \end{cases}$ (1).

b) Hàm số có đúng 1 cực trị khi hàm số này bị suy biến về hàm bậc hai, nghĩa là $\frac{m}{3} = 0 \Leftrightarrow m = 0$.

c) Với m=0 thì hàm số trở thành $y=2x^2+1$. Hàm số này có 1 điểm cực tiểu. Điều này không thỏa yêu cầu bài toán Với $m\neq 0$: Hàm số không có cực trị $\Leftrightarrow y'=0$ có vô nghiệm hoặc nghiệm kép. $\Leftrightarrow \begin{cases} m\neq 0\\ 4-m^2\leq 0 \end{cases} \Leftrightarrow \begin{cases} m\neq 0\\ m\leq -2,\ m\geq 2 \end{cases}$.

d) Dựa vào dạng đồ thị hàm số bậc 3, hàm số có 2 điểm cực trị thỏa mãn $x_{\rm CD} < x_{CT}$ khi m > 0 (2) Từ (1) và (2) suy ra giá trị m cần tìm là 0 < m < 2.

Chọn đáp án a sai b sai c đúng d đúng

CÂU 16. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x - m^3$ với m là tham số.

Mệnh đề	Ð	S	

a) Hàm số luôn có hai điểm cực trị với mọi m .	X	
b) Hàm số đạt cực tiểu tại $x=3$ khi $m=2$.	X	
c) Khi đồ thị hàm số có hai điểm cực trị thì khoảng cách giữa hai điểm cực trị bằng $2\sqrt{5}$.	X	
d) Điểm cực tiểu của đồ thị hàm số luôn thuộc đường thẳng cố định với hệ số góc $k=-3$.	X	

🗩 Lời giải.

a) Ta có $y' = 3x^2 - 6mx + 3(m^2 - 1).y' = 0 \Leftrightarrow \begin{bmatrix} x_1 = m - 1 \\ x_2 = m + 1 \end{bmatrix}$.

Do $x_1 \neq x_2$, $\forall m$ nên hàm số luôn có hai điểm cực trị.

- b) Dễ thấy x=m+1 là điểm cực tiểu. Suy ra, hàm số đạt cực tiểu tại x=3 khi $m+1=3 \Leftrightarrow m=2$.
- c) Với mọi m, tọa độ hai điểm cực trị là A(m+1;-3m-2) và B(m-1;-3m+2). Khoảng cách giữa hai điểm cực trị là $AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}=2\sqrt{5}$.
- d) Ta có $y' = 3x^2 6mx + 3(m^2 1).y' = 0 \Leftrightarrow \begin{bmatrix} x = m 1 \\ x = m + 1 \end{bmatrix}$

Vì là hàm số bậc ba với hệ số a=1>0 nên điểm cực tiểu của hàm số là $A\left(m+1;-3m-2\right)$. Lại có $-3m-2=-3\left(m+1\right)+1$ nên điểm cực tiểu của hàm số luôn thuộc đường thẳng d:y=-3x+1, hệ số góc k=-3.

Chọn đáp án a đúng b đúng c đúng d đúng

CÂU 17. Cho hàm số $y = \frac{x^2 - 2mx + m + 2}{x - m}$, với m là tham số.

Mệnh đề	Đ	\mathbf{S}
a) Tập xác định của hàm số là $\mathbb{R}\setminus\{m\}$.	X	
b) Có hai giá trị nguyên của tham số m để hàm số có hai điểm cực trị.	X	
c) Hàm số đạt cực đại tại $x=-1$ khi $m=\frac{1}{2}$.	X	
d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng qua hai điểm cực trị của đồ thị có phương trình là $y = 2x - 2m$.		X

Dèi giải.

a) Hàm số xác định khi $x-m\neq 0 \Leftrightarrow x\neq m$. Suy ra $\mathscr{D}=\mathbb{R}\backslash\{m\}$.

b)
$$y' = \frac{x^2 - 2mx + 2m^2 - m - 2}{(x - m)^2}$$
.

Để hàm số có hai điểm cực trị thì y'=0 có hai nghiệm phân biệt khác m hay $g(x)=x^2-2mx+2m^2-m-2$ có hai nghiệm phân biệt khác m.

$$\Leftrightarrow \begin{cases} \Delta' > 0 \\ g(m) \neq 0 \end{cases} \Leftrightarrow \begin{cases} -m^2 + m + 2 > 0 \\ m^2 - m - 2 \neq 0 \end{cases} \Leftrightarrow m \in (-1; 2).$$

Vì m nguyên nên $m \in \{0, 1\}$.

c) Hàm số đạt cực trị tại x=-1 thì $y'(-1)=0 \Leftrightarrow 2m^2+m-1=0 \Leftrightarrow m=-1$ hoặc $m=\frac{1}{2}$. Thử lại với $m=\frac{1}{2}$, ta có $y'=\frac{x^2-x-2}{x-\frac{1}{2}}$.

Bảng biến thiên

x	$-\infty$	-1	0	.5		2		$+\infty$
y'	+	0	_		_	0	+	
y	$-\infty$	<i>y</i> ₁ \	$-\infty$	$+\infty$		\ y ₂ /		+∞

Suy ra $m=\frac{1}{2}$ thỏa yêu cầu bài toán.

d) Cho hàm số $y = \frac{u(x)}{v(x)}$. Nếu đồ thị hàm số có hai điểm cực trị thì đường thẳng qua hai điểm cực trị có dạng $y = \frac{u'(x)}{v'(x)}$. Áp dụng, ta được $y = \frac{(x^2 - 2mx + m + 2)'}{(x - m)'} = 2x - 2m$

Chọn đáp án a đúng b đúng c đúng d sai

🖶 Dạng 4. Đơn điệu hàm hợp, hàm chứa dấu giá trị tuyệt đối

- Θ Hàm y = f(u).
 - **Bước 1:** Tính đạo hàm $y' = u' \cdot f'(u)$.
 - **Bước 2:** Lập bảng xét dấu của y'.
 - **Bước 3:** Kết luận.
- Θ Hàm y = f(u) + g(x).
 - Bước 1: Tính đạo hàm y' = u'f'(u) + g'(x).
 - **Bước 2:** Lập bảng xét dấu của y' (dựa vào tương giao giữa hai đồ thị).
 - **Bước 3:** Kết luân.
- \odot Hàm y = |f(x)|.
 - **Bước 1:** Lập bảng biến thiên hàm y = f(x)
 - **Bước 2:** Lập bảng biến thiên hàm y = |f(x)| từ hàm y = f(x) bằng cách lấy đối xứng phần dưới trục Ox qua trục Ox.
 - Bước 3: Kết luận.

VÍ DỤ 1. Cho hàm số y = f(x) liên tục trên $\mathbb R$ có bảng xét dấu như hình vẽ

x	$-\infty$		-1		0		1		$+\infty$
f'		_	0	+	0	_	0	+	

Tìm các khoảng đơn điệu của hàm số sau

a)
$$y = f(4+3x)$$
.

b)
$$y = f(5-2x) + 3$$
.

c)
$$y = f(2x^2 - x)$$
.

🗩 Lời giải.

|
 | |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|
 | |

VÍ DU 2.

Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ. Tìm các khoảng đơn điệu của hàm số sau

a)
$$y = f(x) + x$$
.

b)
$$y = f(2x+1) + 4x - 3$$
.

c)
$$y = f(x) - x^2$$
.

d)
$$y = f(2x+1) - 2x^2 + 6x + 1$$

Lời giải.

VÍ DỤ 3. Cho hàm số y = f(x) liên tục trên \mathbb{R} có đồ thị hàm y = f'(x) như hình vẽ.

- a) Tìm các khoảng nghịch biến của hàm số $g(x) = |f(-x^4 + 2x^3 x^2 + 1)|$, biết f(3) < 0.
- b) Tìm các khoảng đồng biến của hàm số $h(x) = |3f(x) x^3|$, biết f(0) = 0.
- c) Tìm m để hàm số $y=|3f(x)-x^3+m|$ nghịch biến trên (0;2), biết f(2)=1.

d) Tìm a để hàm số $y = 4f(\sin x) + \cos 2x - a $ nghịch biến trên $(0; \frac{\pi}{2})$, biết $f(1) = 1$	d)	Tìm a để hàm	$\hat{\text{so}} \ y = 4f(\sin x) $	$+\cos 2x - a$ nghịch	biến trên ($0; \frac{\pi}{2}$), biết $f(1)$ =	= 1
---	----	----------------	--------------------------------------	-------------------------	-------------	-------------------------------------	-----

9	Li	ďi	gi	åi	•																																			
						 	• •	 	• •	 	•	 	•	 	 	 	 •	 	 	 	 	 	 • •	 	 • •															

CÂU 1. Cho hàm số có đạo hàm liên tục trên \mathbb{R} , dấu của đạo hàm được cho bởi bảng dưới đây:

x	$-\infty$		0		2		$+\infty$
f'(x)		+	0	_	0	+	

BÀI TẬP TRẮC NGHIỆM

Hàm số g(x) = f(2x - 2) nghịch biến trong khoảng nào dưới đây?

$$(-1;1).$$

$$\mathbf{B}(2;+\infty).$$

$$\bigcirc$$
 $(-\infty;-1).$

🗩 Lời giải.

Ta có
$$g(x) = f(2x - 2) \Rightarrow g'(x) = 2f'(2x - 2)$$
.

Theo bảng xét dấu của đạo hàm ta có $f'(x) < 0 \Leftrightarrow 0 < x < 2$.

Nên $f'(2x-2) < 0 \Leftrightarrow 0 < 2x-2 < 2 \Leftrightarrow 1 < x < 2$.

Vậy hàm số g(x) = f(2x - 2) nghịch biến trên khoảng (1; 2).

Chọn đáp án (C).....

CÂU 2. Cho hàm số f(x) có bảng xét dấu đạo hàm như hình bên dưới

x	$-\infty$		-1		6		$+\infty$
y'		+	0	_	0	+	

Hàm số y = f(2 - x) đồng biến trên khoảng

$$(-3;4).$$

$$(B)(-1;6)$$

$$(\mathbf{C})(-4;3).$$

$$\bigcirc$$
 $(3; +\infty).$

Lời giải.

Ta có
$$y' = -f'(2-x), y' = 0 \Leftrightarrow \begin{bmatrix} 2-x = -1 \\ 2-x = 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 \\ x = -4. \end{bmatrix}$$

Ta có bảng xét dấu

x	$-\infty$		-4		3		$+\infty$
y'		_	0	+	0	_	

Vậy hàm số nghịch biến trên khoảng (-4;3).

Chọn đáp án (C)......

CÂU 3. Cho hàm số f(x) có bảng xét dấu đạo hàm như hình bên dưới

x	$-\infty$		1		5		$+\infty$
y'		-	0	+	0	_	

Hàm số y = f(1-2x) + 3 nghịch biến trên khoảng

$$(-2;0).$$

$$(\mathbf{c})(-\infty;1).$$

$$(\mathbf{D})(5;+\infty).$$

🗩 Lời giải.

Ta có
$$y' = -2f'(1-2x), y' = 0 \Leftrightarrow \begin{bmatrix} 1-2x = 1 \\ 1-2x = 5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -2. \end{bmatrix}$$

Ta có bảng xét dấu

x	$-\infty$		-2		0		$+\infty$
y'		+	0	_	0	+	

Vậy hàm số nghịch biến trên khoảng (-2;0).

Chọn đáp án (B).....

CÂU 4. Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Hàm số y = f(2-x) đồng biến trên khoảng nào dưới đây?

$$\mathbf{B}(2;+\infty).$$

$$(-2;1).$$

$$\bigcirc$$
 $(3; +\infty).$

Dèi giải.

Ta có
$$y = f(2 - x) \Rightarrow y' = -2f(2 - x)$$
.

Hàm số
$$y = f(2-x)$$
 đồng biến ta cần có $y' > 0$

Hàm số
$$y = f(2-x)$$
 đồng biến ta cần có $y' > 0$

$$\Leftrightarrow f'(2-x) < 0 \Leftrightarrow \begin{bmatrix} 2-x < -1 \\ 1 < 2 - x < 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > 3 \\ -2 < x < 1.$$

CẦU 5. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết đồ thị hàm số y = f'(x) chỉ cắt trục hoành tại 3 điểm như hình bên. Hàm số y=f(2x+5)+1 đồng biến trên khoảng

$$(-2;-1)$$

$$(\mathbf{C})(-1;1)$$

$$(\mathbf{B})(-2;-1).$$
 $(\mathbf{C})(-1;1).$ $(\mathbf{D})(-3;+\infty).$

Lời giải.

Ta có bảng xét dấu của f'(x)

x	$-\infty$		-1		1		3		$+\infty$
f'(x)		+	0	_	0	+	0	_	

Ta có
$$y' = 2f'(2x+5)$$
, $y' = 0 \Leftrightarrow \begin{bmatrix} 2x+5=-1 \\ 2x+5=1 \\ 2x+5=3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=-3 \\ x=-2 \\ x=-1. \end{bmatrix}$

Ta có bảng xét dấu

x	$-\infty$		-3		-2		-1		$+\infty$
y' = 2f'(2x+5)		+	0	_	0	+	0	_	

Vậy hàm số đồng biến trên khoảng $(-\infty; -3)$ và (-2; -1).

Chon đáp án (B).....

CÂU 6. Cho hàm số y = f(x) có đao hàm liên tục trên \mathbb{R} . Biết đồ thi hàm số y = f'(x)chỉ cắt trục hoành tại 3 điểm như hình bên dưới. Hàm số y = f(1-3x) - 4 nghịch biến trên khoảng

$$\left(\frac{1}{3};\frac{2}{3}\right)$$

$$\bigcirc$$
 $(-\infty;0).$

Dòi giải.

Ta có y' = -3f'(1-3x). Khi đó $y' < 0 \Leftrightarrow -3f'(1-3x) < 0 \Leftrightarrow f'(1-3x) > 0$. Dựa vào đồ thị hàm số ta có

$$f'(1-3x) > 0 \Leftrightarrow \begin{bmatrix} -1 < 1 - 3x < 0 \\ 1 - 3x > 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{1}{3} < x < \frac{2}{3} \\ x < -\frac{1}{2} \end{bmatrix}$$

Vậy hàm số nghịch biến $\left(\frac{1}{3}; \frac{2}{3}\right)$.

Chọn đáp án (B).....

CÂU 7.

Cho hàm số f(x). Hàm số f'(x) có đồ thị bên. Hàm số $y = f(1-2x) + x^2 - x$ nghịch biến trên khoảng nào dưới đây?

$$\left(\mathbf{A}\right)\left(1;\frac{3}{2}\right)$$

$$(0; \frac{1}{2}).$$

A
$$\left(1; \frac{3}{2}\right)$$
. **B** $\left(0; \frac{1}{2}\right)$. **C** $(-2; -1)$. **D** $(2; 3)$.

$$\bigcirc$$
 (2; 3).

🗩 Lời giải.

Ta có
$$y = f(1-2x) + x^2 - x \Rightarrow y' = -2f'(1-2x) + 2x - 1$$
. Để hàm số nghịch biến ta cần có $y' < 0$ $\Leftrightarrow -2f'(1-2x) + 2x - 1 < 0 \Leftrightarrow f'(1-2x) > -\frac{1-2x}{2}$.

Đặt t=1-2x ta có đồ thị của hàm số y=f(t) và $y=-\frac{t}{2}$

Trên đoạn [-2;4] thì $f(t) > \frac{t}{2} \Leftrightarrow -2 < t < 0 \Leftrightarrow -2 < 1 - 2x < 0 \Leftrightarrow \frac{1}{2} < x < \frac{3}{2}$.

Vậy hàm số đồng biến trên khoảng $\left(1; \frac{3}{2}\right) \subset \left(\frac{1}{2}; \frac{3}{2}\right)$.

Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(3x+5)như hình vẽ. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

$$igapha\left(-\frac{7}{3};+\infty\right)$$
. $igapha\left(-\infty;10\right)$. $igoplus\left(\frac{4}{3};+\infty\right)$. $igoplus\left(-\infty;8\right)$.

$$\bigcirc$$
 $(-\infty;10)$

$$\mathbf{C}\left(\frac{4}{3};+\infty\right)$$

$$\bigcirc$$
 $(-\infty;8)$.

Dòi giải.

Đặt x = 3t + 5 ta có $g(t) = f(3t + 5) \Rightarrow g'(t) = 3f'(3t + 5)$. $g'(t) < 0 \Leftrightarrow f'(3t+5) < 0 \Leftrightarrow t < 1.$

Khi đó $f'(x) < 0 \Leftrightarrow \frac{x-5}{3} < 1 \Leftrightarrow x < 8.$

Chọn đáp án \bigcirc

CÂU 9. Cho đồ thị hàm số $y = f'(2 - x^3)$ như hình vẽ.

Hàm số y = f(x) - x - 1 nghịch biến trong khoảng nào dưới đây?

$$(\mathbf{C})(-\infty;1).$$

$$(D)(-4:-1)$$

Dài giải.

 $\text{Dăt } x = 2 - t^3 \Rightarrow t = \sqrt[3]{2 - x}.$

Ta được $y = f(x) - x + 1 = f(2 - t^3) - (2 - t^3) + 1 \Rightarrow y' = -3t^2f'(2 - t^3) + 3t^2$.

y = f(x) - x + 1 nghịch biến thì $f(2 - t^3) - (2 - t^3) + 1$ đồng biến.

Ta cần có $-3t^2f'(2-t^3) + 3t^2 > 0 \Leftrightarrow f'(2-t^3) < 1$

$$\Leftrightarrow \begin{bmatrix} -2 < t < 0 \\ 1 < t < 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -2 < \sqrt[3]{2-x} < 0 \\ 1 < \sqrt[3]{2-x} < 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 < x < 10 \\ -6 < x < 1. \end{bmatrix}$$

Đối chiếu phương án, ta chọn $(-4; -1) \subset (-6; 1)$.

Chọn đáp án (D).....

CÂU 10.

Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) là một parabol được cho như hình vẽ bên dưới. Hàm số $g(x) = f(2x^4 - 1)$ đồng biến trên khoảng nào dưới đây?

$$(0; \sqrt[4]{2}).$$

$$(\mathbf{D})(-\sqrt[4]{2};\sqrt[4]{2}).$$

Dòi giải.

Ta có $g'(x) = 8x^3f'(2x^4 - 1)$.

Vì f'(x) là một parabol có đồ thị như hình vẽ nên ta xét f'(x) = a(x+1)(x-3) với a < 0.

Khi đó
$$g'(x) = 8ax^3(2x^4 - 1 + 1)(2x^4 - 1 - 3) = 16ax^7(2x^4 - 4) < 0 \Leftrightarrow \begin{bmatrix} x < -\sqrt[4]{2} \\ 0 < x < \sqrt[4]{2}. \end{bmatrix}$$

Vậy hàm số $g(x) = f(2x^4 - 1)$ đồng biến trên khoảng $(0; \sqrt[4]{2})$.

Chọn đáp án C.....

CÂU 11. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới.

x	$-\infty$		-1		1		4		$+\infty$
f'(x)		_	0	+	0	_	0	+	

Hàm số $g(x) = f(x^2 + 1)$ nghịch biến trên khoảng nào dưới đây?

$$(-\infty;0).$$

$$(\mathbf{B})(0;+\infty).$$

$$(0;\sqrt{3}).$$

$$\bigcirc (\sqrt{3}; +\infty).$$

Dòi giải.

Ta có $g'(x) = 2xf'(x^2 + 1)$. Suy ra

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2 + 1) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 + 1 = -1 \\ x^2 + 1 = 1 \\ x^2 + 1 = 4 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm\sqrt{3}.$$

Ta có $g'(2) = 4f'(2^2 + 1) > 0$, suy ra bảng xét dấu g'(x)

x	$-\infty$		$-\sqrt{3}$		0		$\sqrt{3}$		$+\infty$
g'(x)		-	0	+	0	-	0	+	

Vậy hàm số $g(x) = f(x^2 + 1)$ nghịch biến trên khoảng $(0; \sqrt{3})$.

Chọn đáp án \bigcirc

CÂU 12. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới. Hàm số $y = 3f(x+2) - x^3 + 3x$ đồng biến trên khoảng nào dưới đây?

x	$-\infty$		1		2		3		4		$+\infty$
f'(x)		_	0	+	0	+	0	_	0	+	

 $(\mathbf{A})(1;+\infty).$

B
$$(-\infty; -1)$$
. **C** $(-1; 0)$.

$$(\mathbf{C})(-1;0)$$

🗭 Lời giải.

Dựa vào bảng xét dấu ta giả sử f'(x) = (x-1)(x-2)(x-3)(x-4) (do $\lim_{x \to +\infty} f'(x) > 0$).

Ta có

$$y' = 3f'(x+2) - 3x^2 + 3 = 3x(x-1)(x+1)(x-2) - 3(x^2-1) = 3(x^2-1)(x^2-2x-1)$$

Suy ra
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = \pm 1 \\ x = 1 - \sqrt{2} \\ x = 1 + \sqrt{2}. \end{bmatrix}$$

Bảng xét dấu y'

x	$-\infty$		-1	1	_ √	$\overline{2}$	1	1	. + √	2	$+\infty$
y'		+	0	-	0	+	0	-	0	+	

Dưa vào bảng xét dấu y' ta thấy $y' > 0 \Leftrightarrow x < -1$.

Chọn đáp án (B).....

CÂU 13. Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như hình bên dưới. Hàm số $y = f\left(x^2\right) + \frac{x^4}{2} + \frac{2x^3}{3} - 6x^2$ đồng biến trên khoảng nào dưới đây?

x	$-\infty$		1		4		$+\infty$
f'(x)		+	0	_	0	+	

(A)(-2;-1).

$$\mathbf{B}(1;2).$$

$$\bigcirc$$
 (-4; -3).

$$\bigcirc$$
 $(-6; -5).$

Dòi giải.

Dựa vào bảng xét dấu đạo hàm ta có thể giả sử f'(x) = k(x-1)(x-4), vì $\lim_{x \to +\infty} f'(x) > 0$ nên chọn k > 0.

Ta có

$$g'(x) = 2xf'(x^2) + 2x^3 + 2x^2 - 12x = 2x \cdot k(x^2 - 1)(x^2 - 4) + 2x^3 + 2x^2 - 12x = 12kx(x^2 - 1)(x^2 - 4) + 2x^3 + 2x^2 - 12x.$$

 \odot Xét dấu $A = 12kx(x^2 - 1)(x^2 - 4)$. Bảng xét dấu

x	$-\infty$		-2		-1		0		1		2		$+\infty$
A		-	0	+	0	-	0	+	0	-	0	+	

 \odot Xét dấu $B = 2x^3 + 2x^2 - 12x$. Bảng xét dấu

x	$-\infty$		-3		0		2		$+\infty$
В		-	0	+	0	-	0	+	

Dựa vào hai bảng xét dấu ở trên ta có

- $\bigcirc x \in (-2; -1) \text{ thì } q'(x) > 0.$
- $\odot x \in (1; 2) \text{ thì } g'(x) < 0.$
- $\odot x \in (-4; -3) \text{ thì } g'(x) < 0.$

Hàm số g(x) đồng biến khi và chỉ khi $g'(x) > 0 \Leftrightarrow x \in (-2, -1)$.

CÂU 14.

Cho hàm số y=f(x) và đồ thị của hàm số y=f'(x) như hình bên dưới. Khi đó hàm số $y = 2f(x) + x^2$ đồng biến trên khoảng

(A)(1;3).

(B)(0; 1).

 $(\mathbf{C})(-3;1).$

 $(\mathbf{D})(1;+\infty).$

🗩 Lời giải.

 $\text{Dăt } g(x) = 2f(x) + x^2.$

Ta có $g'(x) = 2f'(x) + 2x = 0 \Leftrightarrow f'(x) = -x$.

Từ hình bên suy ra g'(x) = 0 tại x = -3, x = 1 hoặc x = 3.

Hơn nữa, trong khoảng (-3;1) đồ thị y=f'(x) nằm dưới đồ thị y=-x nên g'(x)âm trong khoảng (-3;1).

Xét tương tự trong khoảng (1;3), ta được bảng biến thiên của g(x) như sau.

x	$-\infty$	-3		1		3		$+\infty$
y'	_	0	+	0	_	0	+	
y		\ /		*		` /		1

Vậy hàm số đồng biến trên khoảng (-3; 1) và $(3; +\infty)$.

Chọn đáp án (D).....

CÂU 15.

Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình bên dưới. Khi đó hàm số $y = 3f(x) - x^3$ đồng biến trên khoảng

(A)(0;2).

 $(\mathbf{B})(-2;2).$

 $(\mathbf{C})(1;2).$

 $(\mathbf{D})(-2;1).$

Dòi giải.

Dặt $g(x) = 3f(x) - x^3$.

Ta có $g'(x) = 3f'(x) - 3x^2 = 0 \Leftrightarrow f'(x) = x^2$.

Từ hình bên suy ra g'(x) = 0 tại x = -2, x = 1 hoặc x = 2.

Hơn nữa, trong khoảng (-2;1) đồ thị y=f'(x) nằm trên đồ thị $y=x^2$ nên g'(x)>0trong khoảng (-3;1).

Xét tương tự trong khoảng (1,2), ta được bảng biến thiên của g(x) như sau.

Vậy hàm số đồng biến trên khoảng (-2; 1) và $(2; +\infty)$.

Chon đáp án (D).....

CÂU 16. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới. Tìm tất cả các giá trị của tham số m để hàm số $y = f(\sin 2x - m)$ nghịch biến trên khoảng $\left(\frac{3\pi}{4}; \pi\right)$.

x	$-\infty$		0		3		$+\infty$
f'(x)		-	0	+	0	_	

 $(A) -3 \le m \le -1.$

B
$$-2 \le m \le -1$$
. **C** $-3 \le m \le 0$.

$$(\mathbf{C})-3 < m < 0$$

$$(D)-2 \le m \le 0.$$

D Lời giải.

Đặt $t=\sin 2x-m, x\in \left(\frac{3\pi}{4};\pi\right) \Rightarrow t\in (-1-m;-m)$ và $t'=2\cos 2x>0, \forall x\in \left(\frac{3\pi}{4};\pi\right)$.

 $f(\sin 2x + m)$ nghịch biến trên khoảng $\left(\frac{3\pi}{4}; \pi\right)$

$$\Leftrightarrow f(t) \text{ nghịch biến trên khoảng } (-1-m;-m)$$

$$\Leftrightarrow f'(t) \leq 0 \Leftrightarrow \begin{cases} -1-m \geq 0 \\ -m \leq 3 \end{cases} \Leftrightarrow -3 \leq m \leq -1.$$

CÂU 17. Cho hàm số $f(x) = |x^2 - 2mx + m + 2|$. Có bao nhiêu giá trị nguyên của tham số m thuộc [-9; 9] để hàm số đồng biến trên (0;2)?

(**A**) 3.

(C)16.

 $(\mathbf{D})9.$

🗩 Lời giải.

 $f(x) = |x^2 - 2mx + m + 2| \Rightarrow f'(x) = \frac{(2x - 2m)(x^2 - 2mx + m + 2)}{|x^2 - 2mx + m + 2|}.$

f'(x) đồng biến trên khoảng (0,2) khi $f'(x) \geq 0, \forall x \in (0,2)$

 $\Leftrightarrow (2x - 2m)(x^2 - 2mx + m + 2) \ge 0, \forall x \in (0; 2).$

Ta có bảng xét dấu

x	m	$-\sqrt{m^2-n^2}$	n-2	m	m +	$\sqrt{m^2-m^2}$	$\overline{i-2}$	
f'(x)	_	0	+	0	_	0	+	

TH1: $m + \sqrt{m^2 - m - 2} < 0 \Leftrightarrow \begin{cases} m \ge -2 \\ m \le 0 \end{cases} \Rightarrow m = -2; -1; 0.$

TH2: $\begin{cases} m - \sqrt{m^2 - m - 2} \le 0 \\ m > 2 \end{cases} \Leftrightarrow \begin{cases} m \le -2 \\ m \ge 2 \end{cases}$ (vô lí).

Vậy có 3 giá trị của m thỏa yêu cầu đề bài.

Chọn đáp án (A).....

CÂU 18.

Cho hàm số y = f(x) có f(0) = 0 và đồ thi của hàm y = f'(x) như hình vẽ. Hàm số $y = |4f(x) + x^2|$ đồng biến trên khoảng nào sau đây?

 $(\mathbf{B})(-\infty;-2).$

(**C**) $(4; +\infty)$.

 $(\mathbf{D})(-2;0).$

CÂU 19.

Cho hàm số f(x) có đạo hàm trên \mathbb{R} và f(1) = 1. Đồ thị hàm số y = f'(x) như hình bên. Có bao nhiều số nguyên dương a để hàm số $y = |4f(\sin x) + \cos 2x - a|$ nghịch biến trên $\left(0; \frac{\pi}{2}\right)$?

 $(\mathbf{A})2.$

(B)3.

(C) Vô số.

🗩 Lời giải.

 $\text{Dặt } u = 4f(\sin x) + \cos 2x - a.$ $u' = 4\cos x \left[f'(\sin x) - \sin x \right] \Rightarrow u' < 0 \text{ khi } x \in \left(0; \frac{\pi}{2} \right).$

	`
x	$0 \qquad \frac{\pi}{2}$
y'	_
4f((0) + 1 - a
y	
	3-a

Bảng biến thiên $\lfloor \frac{3-a}{2} \rfloor |u|$ nghịch biến trên $\left(0; \frac{\pi}{2}\right) \Leftrightarrow 3-a \geq 0 \Leftrightarrow a \leq 3.$

CÂU 20.

Cho hàm số bậc năm y = f(x) có đồ thị của đạo hàm như hình vẽ. Biết f(-3) < 0, hàm số $y = |f(-x^4 + 2x^3 - x^2 + 1)|$ đồng biến trên khoảng nào dưới đây

(A)(1;2).

(B)(-1;0).

 $(\mathbf{C})(0;0,5).$

 $(\mathbf{D})(-2;-1).$

ե Dạng 5. Cực trị hàm hợp, hàm chứa trị tuyệt đối

- ❷ Các phép biến đổi đồ thị
 - Đồ thị hàm y = f(x + a) vẽ bằng cách dời đồ thị y = f(x) sang trái a đơn vị.
 - Đồ thị hàm y = f(x) + b vẽ bằng cách dời đồ thị y = f(x) lên trên b đơn vị.
 - Đồ thị hàm y = f(|x|) vẽ bằng cách "lật qua trái".
 - Đồ thị hàm y = |f(x)| vẽ bằng cách "lật lên".
 - Đồ thị hàm y = |f(|x|)| vẽ bằng cách "lật lên rồi lật qua trái".

Hàm y = f(x) có m điểm cực trị, n nghiệm bội lẻ, p điểm cực trị dương. Khi đó

- Hàm y = f(ax + b) + c cũng có m điểm cực trị.
- Hàm y = |f(x)| có m + n điểm cực trị.
- Hàm y = f(|x|) có 2p + 1 điểm cực trị.
- Θ Hàm y = f(u).
 - **Bước 1:** Tính đạo hàm y' = u'f'(u).
 - **Bước 2:** Lập bảng xét dấu của y' hoặc đếm số nghiệm bội lẻ của y' = 0.
 - Bước 3: Kết luân.
- Θ Hàm y = f(u) + g(x).
 - **Bước 1:** Tính đạo hàm y' = u'f'(u) + g'.
 - **Bước 2:** Lập bảng xét dấu của y' hoặc đếm số nghiệm bội lẻ của y'=0 (dựa vào tương giao giữa hai đồ
 - Bước 3: Kết luận.

VÍ DU 1.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tìm các điểm cực trị, các cực trị của hàm số sau

a)
$$y = f(x+2)$$

b)
$$y = f(x) - 3$$

c)
$$y = f(2x - 3) + 1$$

d)
$$y = f(1-2x) + 2025$$

VÍ DU 2.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tìm các điểm cực trị của hàm số sau

a)
$$y = f(x^2)$$

b)
$$y = f(3x^2 - 2x)$$

c)
$$y = f(\sqrt{x^2 + 2x + 2})$$

🗩 Lời giải.

VÍ DU 3.

Cho hàm số y = f(x) có đồ thị y = f'(x) như hình vẽ. Tìm số điểm cực trị của các hàm số sau

b)
$$y = 2f(x) - x$$

$$c) y = f(3x) + 2x$$

d)
$$y = f(x) + \frac{x^2}{2} - x$$

e)
$$y = 3f(x) - 2x^3$$

f)
$$y = f(2x+1) - 4x$$

🗭 Lời giải.

VÍ DU 4.

Cho hàm số y = f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số

a)
$$y = f(|x|)$$

b)
$$y = |f(x)|$$

c)
$$y = |f(|x|)|$$

d)
$$y = f(|x| - a)$$

e)
$$y = f(|x + b|)$$

f)
$$y = |f(x + 2025)|$$

Lời giải.

VÍ DU 5. Tìm m để

- a) Hàm số y = |f(x)| có 5 điểm cực trị, với $f(x) = 3x^3 + 3x^2 + mx + m$
- b) Hàm số y = f(|x|) có 5 điểm cực trị, với $f(x) = x^3 (2m-1)x^2 + (2-m)x + 2$.

🗩 Lời giải.

a) Đặt $f(x) = 3x^3 + 3x^2 + mx + m = 3x^2(x+1) + m(x+1) = (x+1)(3x^2 + m)$. Suy ra $f'(x) = 9x^2 + 6x + m$.

Phương trình f'(x)=0 có 2 nghiệm phân biệt x_1, x_2 khi và chỉ khi $\Delta'=9-9m>0 \Leftrightarrow m<1$. Khi đó ta có $x_1 + x_2 = -\frac{2}{3}, x_1 x_2 = \frac{m}{9}.$

Hàm số y = |f(x)| có 5 điểm cực trị khi và chỉ khi $\begin{cases} \Delta' > 0 \\ y(x_1) \cdot y(x_2) < 0. \end{cases}$

Thực hiện biến đổi

$$y(x_1) \cdot y(x_2) = (x_1 + 1)(3x_1^2 + m) \cdot (x_2 + 1)(3x_2^2 + m)$$

$$= \left[9(x_1x_2)^2 + 3m(x_1^2 + x_2^2) + m^2\right](x_1x_2 + x_1 + x_2 + 1)$$

$$= \left[\frac{m^2}{9} + 3m\left[\left(-\frac{2}{3}\right)^2 - \frac{2m}{9}\right] + m^2\right]\left(\frac{m}{9} - \frac{2}{3} + 1\right)$$

$$= \frac{1}{9}(4m^2 + 12m)(m + 3).$$

Suy ra $y(x_1) \cdot y(x_2) < 0 \Leftrightarrow (4m^2 + 12m)(m+3) < 0 \Leftrightarrow -3 \neq m < 0$. Kết hợp với điều kiện m là số nguyên thỏa |m| < 10 ta được $m \in \{-1; -2; -4; -5; -6; -7; -8; -9\}$. Vậy có 8 giá trị nguyên của tham số m.

b) Tập xác định $\mathcal{D} = \mathbb{R}$.

Ta có $f(|-x|) = f(|x|), \forall x \in \mathbb{R}$ nên y = f(|x|) là hàm số chẵn.

Do đó, đồ thị hàm số y = f(|x|) đối xứng qua trực tung.

Suy ra hàm số y = f(|x|) luôn có một điểm cực trị là x = 0.

Do đó, y = f(|x|) có 5 điểm cực trị \Leftrightarrow hàm số y = f(x) có 2 điểm cực trị dương.

 $\Leftrightarrow f'(x) = 0$ có hai nghiệm dương phân biệt.

Yêu cầu bài toán
$$\Leftrightarrow \begin{cases} \Delta' > 0 \\ S > 0 \\ P > 0 \end{cases} \Leftrightarrow \begin{cases} 4m^2 - m - 5 > 0 \\ 2m - 1 > 0 \\ 2 - m > 0 \end{cases} \Leftrightarrow \begin{cases} m < -1 \text{ hoặc } m > \frac{5}{4} \\ m > \frac{1}{2} \\ m < 3 \end{cases} \Leftrightarrow \frac{5}{4} < m < 2.$$

BÀI TẬP TRẮC NGHIỆM

CÂU 1.

Cho hàm số f(x) có đồ thị f'(x) có đồ thị như hình vẽ bên dưới. Hàm số y = f(1 - 2x) có bao nhiều cực trị?

Dặt g(x) = f(1-2x)

Dựa vào đồ thị, ta thấy f'(x) = 0 có nghiệm $x_1 = -1, x_2 = 1, x_3 = 2$ và $x_4 = 4$ nên f'(x) có dạng

$$f'(x) = k(x+1)(x-1)(x-2)(x-4)$$

Khi đó $g'(x) = -2f'(1-2x) = -2k(2-2x)(-2x)(-1-2x)(-3-2x)^2$

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 0 \\ x = -\frac{1}{2} \\ x = -\frac{3}{2} \text{ (kép)} \end{bmatrix}$$

Bảng xét dấu g'(x)

x	$-\infty$		$-\frac{3}{2}$		$-\frac{1}{2}$		0		1		+∞
g'(x)		_	0	_	0	+	0	_	0	+	

Dựa vào bảng xét dấu, ta thấy g'(x) đổi dấu 3 lần nên y = f(1-2x) có 3 cực trị.

Chọn đáp án $\overline{(C)}$

CÂU 2.

Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x) như hình vẽ bên. Khi đó hàm số $y = f(x^2)$ có bao nhiều điểm cực trị?

(A) 2.

(C)3.

 $(\mathbf{D})5.$

🗩 Lời giải.

$$y' = 2xf'(x^2). \text{ Cho } y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 0 \Leftrightarrow \\ x^2 = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 0 \text{ (nghiệm kép)}. \\ x = \pm\sqrt{2} \end{bmatrix}$$

y'=0 có 3 nghiệm bội bậc lẻ nên hàm số có 3 điểm cực trị.

Cho hàm số y = f(x) xác định trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số $y = f(1-x^2)$ đạt cực đại tại điểm nào sau đây?

$$\mathbf{B})x = \pm \sqrt{2}.$$

 $(\mathbf{C})x = 3.$

D Lời giải.

$$\text{Dăt } g(x) = f(1 - x^2)$$

Khi đó
$$g'(x) = -2x \cdot f'(1-x^2)$$

Khi đó
$$g'(x) = -2x \cdot f'(1-x^2)$$

Cho $g'(x) = 0 \Leftrightarrow -2x \cdot f'(1-x^2) = 0$

$$\Leftrightarrow \begin{bmatrix} x = 0 \\ f'(1 - x^2) = 0 \Leftrightarrow \begin{bmatrix} 1 - x^2 = -1 \Leftrightarrow x^2 = 2 \Leftrightarrow x = \pm\sqrt{2} \\ 1 - x^2 = 3 \end{bmatrix}$$

Bảng xét dấu

x	$-\infty$		$-\sqrt{2}$		0		$\sqrt{2}$		$+\infty$
-x		+	I	+	0	_		-	
$f'(1-x^2)$		+	0	_		_	0	+	
g'(x)		+	0	_	0	+	0	_	

Dựa vào bảng xét dấu ta xác định được hàm số đạt cực đại tại $x = \pm \sqrt{2}$.

Chọn đáp án (B).....

CÂU 4.

Cho hàm số y = f(x) có đồ thị hàm $f'(x) = ax^2 + bx + c$ như hình bên dưới. Hỏi hàm số $y = f(x - x^2)$ có bao nhiêu cực trị?

Dòi giải.

Đặt
$$g(x) = f(x - x^2)$$

Dựa vào đồ thị ta thấy f'(x) = 0 có hai nghiệm $x_1 = 1, x_2 = 2$ nên f'(x) có dạng

$$f'(x) = k(x-1)(x-2)$$

Khi đó
$$g'(x) = (1 - 2x)f'(x - x^2) = 0$$

$$\Leftrightarrow \begin{bmatrix} 1 - 2x = 0 \\ f'(x - x^2) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{1}{2} \\ x - x^2 = 1 \\ x - x^2 = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{1}{2} \\ \text{vô nghiệm} \\ \text{vô nghiệm}. \end{bmatrix}$$

Bảng xét dấu

x	$-\infty$		$\frac{1}{2}$		$+\infty$
g'(x)		+	0	_	

Dựa vào bảng xét dấu, ta thấy g(x) có 1 cực đại.

Chọn đáp án (B).....

CÂU 5.

Cho hàm số bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực trị của hàm số $y = f\left(\sqrt{x^2 + 2x + 2}\right)$ là

🗩 Lời giải.

$$y' = \frac{x+1}{\sqrt{x^2+2x+2}}f'(\sqrt{x^2+2x+2}).$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ f'(\sqrt{x^2 + 2x + 2}) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -1 \\ \sqrt{x^2 + 2x + 2} = -1 \\ \sqrt{x^2 + 2x + 2} = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -1 \\ x^2 + 2x + 1 = 0 \Leftrightarrow \\ x^2 + 2x - 7 = 0 \end{bmatrix} \begin{cases} x = -1 \\ x = -1 \text{ (nghiệm kép)} \\ x = -1 \pm 2\sqrt{2} \end{cases}$$

y'=0 có 3 nghiệm bôi bậc lẻ nên hàm số có 3 điểm cực tri.

Chọn đáp án (D).....

CÂU 6.

Cho hàm số y = f(x) liên tục trên (a, b) và có đồ thị như hình bên. Số điểm cực trị của hàm số $y = [f(x)]^2 \operatorname{trên}(a; b)$ là

(A)4.

 $(\mathbf{C})2.$

 $(\mathbf{D})5.$

Lời giải.

 $y = (f(x))^2$ nên y' = 2f(x)f'(x). $y' = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f'(x) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = x_1, \ x = x_2, \ x = x_3 \\ x = c, \ x = d \end{bmatrix}.$ y' = 0 có 5 nghiệm bội bậc lẻ thuộc (a, b) nên Số điểm cực trị của hàm số

 $y = (f(x))^2$ trên (a; b) là 5.

Chọn đáp án (D).....

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có bảng xét dấu f'(x) như hình bên. Hàm số $y = f(x^2 - 2x)$ có bao nhiều điểm cực tiểu?

$$\bigcirc$$
 4

🗩 Lời giải.

 $y' = (2x - 2)f'(x^2 - 2x).$

$$y'=0 \Leftrightarrow \begin{bmatrix} x=1\\ f'(x^2-2x)=0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x=1\\ x^2-2x=-2 \text{ (vô nghiệm)}\\ x^2-2x=1 \text{ (nghiệm bội bậc chẵn)}\\ x^2-2x=3 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x=1\\ x=1-\sqrt{2} \text{ (nghiệm bội bậc chẵn)}\\ x=1+\sqrt{2} \text{ (nghiệm bội bậc chẵn)}\\ x=3,\ x=-1. \end{bmatrix}$$

y' = 0 có 3 nghiệm bội bậc lẻ, khi đó y' đổi dấu qua các nghiệm này. y'=0 có 2 nghiệm bội bậc chẵn và y' sẽ không đổi dấu qua các nghiệm này. Tại x = 4 thì $y'(4) = (2 \cdot 4 - 2)f'(4^2 - 2 \cdot 4) = 6f'(8) < 0$. Bảng xét dấu

x	$-\infty$	-1	1	- v	<u>7</u> 1	+ v	<u>/2</u>	3	$+\infty$
y'	_	0	+	0	+	0	+	0	_

Vây hàm số có 1 điểm cực tiểu.

Chọn đáp án (A).....

CÂU 8.

Cho hàm số f(x) có bảng biến thiên bên dưới. Trên khoảng $(-\sqrt{5}; \sqrt{5})$ thì hàm số $y = f(x^2)$ đạt cực đại tại điểm nào sau đây?

$$\mathbf{A}$$
 $x = \sqrt{2}$.

(B)
$$x = -\sqrt{2}$$
. **(C)** $x = 0$. **(D)** $x = 2$.

$$\mathbf{C}$$
 $x=0.$

x	$-\infty$		0		2		$+\infty$
f		+	0	_	0	+	

Dòi giải.

 $\text{Dặt } g(x) = f(x^2).$

Đặt
$$g(x) = f(x^2)$$
.
Khi đó $g'(x) = 2x \cdot f'(x^2)$.
Cho $g'(x) = 0 \Leftrightarrow 2x \cdot f'(x^2) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2) = 0 \Leftrightarrow \begin{bmatrix} x^2 = 0 \\ x^2 = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm \sqrt{2} \end{bmatrix}$

Bảng xét dấu

x	$-\sqrt{5}$		$-\sqrt{2}$		0		$\sqrt{2}$		$\sqrt{5}$
x		_		-	0	+		+	
$f'(x^2)$		+	0	_	0	_	0	+	
g'(x)		_	0	+	0	_	0	+	

Dựa vào bảng xét dấu ta xác định được hàm số đạt cực đại tại x = 0.

Chọn đáp án (C).....

CÂU 9.

Cho hàm số f(x) có bảng biến thiên bên dưới. Hàm số $y = f(x^2 - 2)$ đạt cực đại tại điểm nào sau đây?

$$\mathbf{A}x = -2.$$

B)
$$x = -1$$
.

$$\mathbf{C}$$
 $x=0$.

$$\mathbf{D}$$
 $x=2.$

x	$-\infty$		-1		2		$+\infty$
f		_	0	_	0	+	

Dòi giải.

Đặt
$$g(x) = f(x^2 - 2)$$

Khi đó
$$g'(x) = 2x \cdot f'(x^2 - 2)$$

Cho
$$g'(x) = 0 \Leftrightarrow 2x \cdot f'(x^2 - 2) = 0$$

$$\Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2 - 2) = 0 \Leftrightarrow \begin{bmatrix} x^2 - 2 = -1 \\ x^2 - 2 = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 = 1 \\ x^2 = 4 \end{cases} \Leftrightarrow \begin{bmatrix} x = \pm 1 \\ x = \pm 2 \end{bmatrix}$$

Bảng xét dấu

x	$-\infty$		-2		-1		0		1		2		+∞
x		_		_	I	_	0	+		+		+	
$f'\left(x^2-2\right)$		+	0	_	0	_		_	0	_	0	+	
g'(x)		_	0	+	0	+	0	_	0	_	0	+	

Dựa vào bảng xét dấu ta xác định được hàm số đạt cực đại tại x = 0.

Chọn đáp án (C).....

CÂU 10. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2(x-1)(x-4)^2$. Khi đó hàm số $y = f(x^2)$ có bao nhiêu điểm cực tri?

$$\bigcirc$$
2

Lời giải.

 $f'(x) = 0 \Leftrightarrow x = 1$ (nghiệm đơn), x = 0 (nghiệm kép), x = 4 (nghiệm kép). $y = f(x^2)$ thì $y' = 2xf'(x^2)$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 1 \\ x^2 = 0 \text{ (nghiệm kép)} \\ x^2 = 4 \text{ (nghiệm kép)} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 1 \\ x = 0 \text{ (nghiệm bội chẵn)} \\ x = \pm 2 \text{ (nghiệm bội chẵn)} \end{bmatrix}$$

Vậy hàm số có 3 điểm cực trị.

Chọn đáp án (B)

CÂU 11. Cho hàm f(x) có đạo hàm $f'(x) = x^2 - 2x, \forall x \in \mathbb{R}$. Hàm số $y = f\left(1 - \frac{1}{2}x\right) + 4x$ có bao nhiêu điểm cực trị?

🗩 Lời giải.

Ta có $y' = -\frac{1}{2}f'\left(1 - \frac{1}{2}x\right) + 4$

$$y' = 0 \Leftrightarrow f'\left(1 - \frac{1}{2}x\right) = 8 \Leftrightarrow \left(1 - \frac{1}{2}x\right)^2 - 2\left(1 - \frac{1}{2}x\right) = 8 \Leftrightarrow \frac{1}{4}x^2 - 9 = 0 \Leftrightarrow \begin{bmatrix} x = -6 \\ x = 6 \end{bmatrix}$$

Bảng xét dấu

x	$-\infty$		-6		6		+∞
y'		+	0	_	0	+	

Vậy hàm số $y = f\left(1 - \frac{1}{2}x\right) + 4x$ có 2 điểm cực trị.

Chọn đáp án (C).....

CÂU 12. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)^2(x^2-2x)$, với mọi $x \in \mathbb{R}$. Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = f(x^2-8x+m)$ có 5 điểm cực trị?

(**A**) 15.

(**C**)17.

(**D**)18.

🗩 Lời giải.

 $f'(x) = 0 \Leftrightarrow x = 1$ (nghiệm kép), x = 0 (nghiệm đơn), x = 2 (nghiệm đơn). $y = f(x^2 - 8x + m)$ thì $y' = (2x - 8)f'(x^2 - 8x + m)$.

$$y = f(x^{2} - 8x + m) \text{ thì } y' = (2x - 8)f'(x^{2} + m)$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 4 \\ x^{2} - 8x + m = 1 \text{ (nghiệm kép)} \\ x^{2} - 8x + m = 0 \text{ (1)} \\ x^{2} - 8x + m = 2 \text{ (2)} \end{bmatrix}$$

Hàm số có 5 điểm cực trị \Leftrightarrow (1) có 2 nghiệm phân biệt khác 4 và (2) có 2 nghiệm phân biệt khác 4.

(1) có 2 nghiệm phân biệt khác $4 \Leftrightarrow \begin{cases} 16 - 32 + m \neq 0 \\ \Delta' = 16 - m > 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 16 \\ m < 16 \end{cases}$ (2) có 2 nghiệm phân biệt khác $4 \Leftrightarrow \begin{cases} 16 - 32 + m \neq 2 \\ \Delta' = 16 - m + 2 > 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 18 \\ m < 18 \end{cases} \Leftrightarrow m < 18.$

Vậy ta có m<16 mà m nguyên dương nên $m\in\{1,2,\cdots,15\}$ (15 số m thỏa mãn).

Chon đáp án (A).

CÂU 13.

Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(x) như hình vẽ bên. Số điểm cực trị của hàm số y = f(x) - 5x là

(**A**) 2.

Dèi giải.

Gọi g(x) = f(x) - 5x. Ta có đạo hàm g'(x) = f'(x) - 5. Bảng biến thiên của g'(x) như hình dưới.

x	$-\infty$	-1	1	+∞
f'(x)	$-\infty$	4		+∞
g'(x)	$-\infty$	-1	-5	+∞

Ta thấy g'(x) chỉ đổi dấu một lần từ âm sang dương.

Vì vậy hàm số y = f(x) - 5x có một điểm cực trị.

Chọn đáp án (D).....

CÂU 14.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Biết hàm số y = f'(x) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng về cực tri của hàm số q(x) = f(x) + x?

- (A) Hàm số có một điểm cực đại và một điểm cực tiểu.
- (B) Hàm số không có điểm cực đại và một điểm cực tiểu.
- (C) Hàm số có một điểm cực đại và hai điểm cực tiểu.
- (D) Hàm số có hai điểm cực đại và một điểm cực tiểu.

P Lời giải.

Ta có g'(x) = f'(x) + 1. Bảng biến thiên của g'(x) như hình dưới.

Dựa vào bảng biến thiên của q'(x), ta thấy đạo hàm đổi dấu từ dương sang âm hai lần, từ âm sang dương một lần. Do đó hàm số g(x) có hai điểm cực đại và một điểm cực tiểu.

Chọn đáp án (D)......

CÂU 15.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có đồ thị hàm số f'(x) như hình vẽ. Hàm số $y = 2f(x) + x^2$ đạt cực đại tại điểm nào sau đây ?

$$\mathbf{A}x = -1.$$

$$\mathbf{B}$$
 $x=0.$

$$\mathbf{C}x = 1.$$

$$\mathbf{D}$$
 $x=2.$

🗩 Lời giải.

Đặt
$$g(x) = 2f(x) + x^2$$

Khi đó
$$g'(x) = 2f'(x) + 2x = 0 \Leftrightarrow 2(f'(x) + x) = 0 \Leftrightarrow f'(x) = -x$$
 (*)

Số nghiệm của phương trình (*) là số giao điểm của đồ thị hàm số y = f'(x) và y = -x

Dựa vào hình bên ta thấy có 4 giao điểm lần lượt có tọa độ là (-1;1), (0;0), (1;-1) và (2;-2)

$$\Rightarrow (*) \Leftrightarrow \begin{bmatrix} x = -1 & (\text{don}) \\ x = 0 & (\text{don}) \\ x = 1 & (\text{kép}) \\ x = 2 & (\text{kép}). \end{bmatrix}$$

Bảng xét dấu

x	$-\infty$		-1		0		1		2		$+\infty$
g'(x)		+	0	_	0	+	0	+	0	+	

Dựa vào bảng xét dấu, ta thấy g(x) đạt cực đại tại x = -1.

Chọn đáp án $\stackrel{\frown}{A}$

CÂU 16.

Hàm số y = f(x) liên tục trên $\mathbb R$ và có đồ thị hàm số f'(x) như hình vẽ bên dưới. Hàm số $y=f(x)-\frac{1}{3}x^3+x^2-x+2$ đạt cực đại tại điểm nào sau đây ?

$$\mathbf{C}$$
 $x=0$.

$$\mathbf{D}x=2.$$

Dòi giải.

$$\text{Dăt } g(x) = f(x) - \frac{1}{3}x^3 + x^2 - x + 2$$

Khi đó
$$g'(x) = f'(x) - x^2 + 2x - 1$$
.

Đặt
$$g(x) = f(x) - \frac{1}{3}x^3 + x^2 - x + 2$$

Khi đó $g'(x) = f'(x) - x^2 + 2x - 1$.
 $g'(x) = 0 \Leftrightarrow f'(x) = x^2 - 2x + 1 \quad (*)$

Số nghiệm của (*) cũng chính là số giao điểm của đồ thị hàm số y = f'(x) với $y = x^2 - 2x + 1$ Dựa vào hình vẽ bên, ta thấy có 3 giao điểm lần lượt có tọa độ là (1;0),(2;1),(0;1). Khi đó, $(*) \Leftrightarrow$

$$\int x = 1$$

$$x = 0$$

$$x=2.$$

Bảng xét dấu

x	$-\infty$		0		1		2		+∞
g'(x)		_	0	+	0	_	0	+	

Hàm số đạt cực đại tại x = 1.

Chọn đáp án (A).....

CÂU 17.

Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị y = f'(x) như hình vẽ dưới đây. Xét trên khoảng $(-\pi; 2\pi)$, số điểm cực trị của hàm số $g(x) = f(2\cos x) + 2\cos 2x$ là

$$(\mathbf{D})9.$$

Dèi giải.

Ta có $g'(x) = f'(2\cos x) \cdot (-2\sin x) - 2\sin 2x \cdot 2 = -2\sin x \left[f'(2\cos x) + 4\cos x\right].$ Suy ra $g'(x) = 0 \Leftrightarrow \begin{bmatrix} \sin x = 0 \\ f'(2\cos x) = -4\cos x. \end{bmatrix}$

- \odot sin $x = 0 \Leftrightarrow x \in \{0; \pi\}$ vì $x \in (-\pi; 2\pi)$.
- $\Theta f'(2\cos x) = -4\cos x.$ Đặt $t = 2\cos x$, vì $x \in (-\pi; 2\pi)$ nên $t \in (-1; 1)$. Phương trình trở thành f'(t) = -2t. Nghiệm của phương trình này là hoành độ giao điểm của đồ thị hàm số y = f'(t)và đường thẳng y = -2t.

Suy ra
$$f'(t) = -2t \Leftrightarrow \begin{bmatrix} t = -1 \\ t = 0 \\ t = 1. \end{bmatrix}$$

$$-- \text{ Với } t = -1 \Rightarrow 2\cos x = -1 \Leftrightarrow \cos x = -\frac{1}{2} \Leftrightarrow x \in \left\{-\frac{2\pi}{3}; \frac{2\pi}{3}; \frac{4\pi}{3}\right\} \text{ vì } x \in (-\pi; 2\pi).$$

— Với
$$t=0\Rightarrow \cos x=0 \Leftrightarrow x\in\left\{-\frac{\pi}{2};\frac{\pi}{2};\frac{3\pi}{2}\right\}$$
 vì $x\in(-\pi;2\pi).$

- Với
$$t = 1 \Rightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow x \in \left\{-\frac{\pi}{3}; \frac{\pi}{3}; \frac{5\pi}{3}\right\} \text{ vì } x \in (-\pi; 2\pi).$$

Và

Bảng biến thiên hàm số y = g(x)

x	$-\pi -\frac{2\pi}{3} -\frac{\pi}{2} -\frac{\pi}{3} 0 \frac{\pi}{3} \frac{\pi}{2} \frac{2\pi}{3} \pi \frac{4\pi}{3} \frac{3\pi}{2} \frac{5\pi}{3} 2\pi$
$-2\sin x$	+ + + + 0 - - - 0 + + + +
$f'(2\cos x) + 4\cos x$	- 0 + 0 - 0 + + 0 - 0 + 0 - - 0 + 0 - 0 +
g'(x)	- 0 + 0 - 0 + - 0 + 0 - 0 + - 0 + 0 - 0 +
g(x)	

Từ bảng biến thiên ta suy ra hàm số y = g(x) có 11 điểm cực trị trên khoảng $(-\pi; 2\pi)$.

CÂU 18.

Cho hàm số y=f(x) có đồ thị của y=f'(x) có đồ thị như hình vẽ bên dưới. Hàm số g(x)= $f(x^3-3x)-x^3+3x$ có bao nhiệu điểm cực tiểu?

 $(\mathbf{D})5.$

Dòi giải.

$$g'(x) = f'(x^3 - 3x) \cdot (3x^2 - 3) - 3x^2 + 3 = 3(x^2 - 1) \left[f'(x^3 - 3x) - 1 \right].$$

- \odot Phương trình $x^3 3x = a$ có 3 nghiệm x_1, x_2, x_3 với $x_1 < x_2 < x_3$.
- \odot Phương trình $x^3 3x = b$ có 3 nghiệm x_4, x_5, x_6 với $x_4 < x_5 < x_6$.
- \odot Phương trình $x^3 3x = c$ có 1 nghiệm $x_7 \quad (x_7 > x_6)$.

x	$-\infty$ x_1 x_4 -1 x_5 x_2 1 x_3 x_6 x_7 $+$	$-\infty$
$x^2 - 1$	+ + + 0 - - - 0 + + + +	
$f'(x^3 - 3x)$	- 0 + 0 - - 0 + 0 - - 0 + 0 - 0 +	
g'(x)	$-\ 0\ +\ 0\ -\ 0\ +\ 0\ -\ 0\ +\ 0\ -\ 0\ +\ 0\ -\ 0\ +$	
g(x)		

Dựa vào bảng xét dấu ta kết luận hàm số y = g(x) có 5 điểm cực tiểu.

Chon đáp án (D).....

CÂU 19.

Cho hàm số y=f(x) có đạo hàm và liên tục trên $\mathbb R$ và có đồ thị y=f'(x) như hình vẽ. Hàm $y = f(x^2 - 2) - \frac{1}{2}x^4 + \frac{3}{2}x^2$ có bao nhiều điểm cực tiểu?

$$\bigcirc$$
2.

Lời giải.

Ta có
$$y' = 2xf'(x^2 - 2) - 2x^3 + 3x = 2x\left(f'(x^2 - 2) - x^2 + \frac{3}{2}\right).$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2 - 2) - x^2 + \frac{3}{2} = 0. \end{cases}$$
 (*)

Đặt
$$t = x^2 - 2$$
 ta có $(*) \Leftrightarrow f'(t) - t - \frac{1}{2} = 0 \Leftrightarrow f'(t) = t + \frac{1}{2}$.

Dựa vào đồ thị hàm số bên ta có

Bảng xét dấu

Suy ra hàm số có 3 điểm cực tiểu.

Chọn đáp án (D).....

CÂU 20.

Cho hàm số y = f(x) có bảng biến thiên bên dưới. Số điểm cực đại và số điểm cực tiểu của hàm số $y = f^2(2x) - 2f(2x) + 1$ lần lượt là

(A) 2 và 3.

(B) 3 và 2. **(C)** 1 và 1. **(D)** 2 và 2.

x	$-\infty$		-1		2		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	+∞		` 0		<i>*</i> 3 \		√ -∞

🗩 Lời giải.

Dặt
$$g(x) = f^2(2x) - 2f(2x) + 1 = [f(2x) - 1]^2$$
.
 $\Rightarrow g'(x) = 2 \cdot [f(2x) - 1] \cdot f'(2x)$.
 $\Rightarrow g'(x) = 0 \Leftrightarrow \begin{cases} f(2x) = 1 \\ f'(2x) = 0. \end{cases}$

Bảng biến thiên hàm số y = q(x)

x	$-\infty$		$\frac{a}{2}$		$-\frac{1}{2}$		$\frac{b}{2}$		1		$\frac{c}{2}$		$+\infty$
f'(2x)		_		_	0	+		+	0	_		_	
f(2x)-1		+	0	_		_	0	+		+	0	_	
g'(x)		_	0	+	0	_	0	+	0	_	0	+	
g(x)			` /		<i>*</i>		` /		<i>y</i> \		` /		1

Dựa vào bảng biến thiên ta thấy hàm số y = g(x) có 2 điểm cực đại và 3 điểm cực tiểu.

Chọn đáp án (A).....

CÂU 21. Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = |f^2(x) + 2f(x) + m|$ có 9 điểm cực trị?

🗩 Lời giải.

Dặt
$$y = g(x) = f^2(x) + 2f(x) + m = [f(x) + 1]^2 + m - 1$$
.
 $\Rightarrow g'(x) = 2[f(x) + 1] \cdot f'(x)$.

$$\Rightarrow g'(x) = 0 \Leftrightarrow \begin{bmatrix} f'(x) = 0 \\ f(x) = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 3 \\ x = a \quad (0 < a < 1) \\ x = b \quad (1 < b < 3) \\ x = c \quad (3 < c). \end{bmatrix}$$

Từ đồ thi ta suy ra

$$(x) f'(x) + 1 > 0 \Leftrightarrow f'(x) > -1 \Leftrightarrow a < x < b \text{ hoăc } x > c.$$

$$\bigcirc f'(x) + 1 < 0 \Leftrightarrow f'(x) < -1 \Leftrightarrow x < a \text{ hoặc } b < x < c.$$

Bảng biến thiên hàm số y = g(x)

x	$-\infty$ ()	a		1		b		3		c		$+\infty$
f'(x)	+	+		+	0	_		_	0	+		+	
f(x) + 1	_	_	0	+		+	0	_		_	0	+	
g'(x)	_	_	0	+	0	_	0	+	0	_	0	+	
g(x)			m-1	/	$n+2^{2}$		m-1		m		m-1		1

Đồ thị hàm số y = |g(x)| gồm có 2 phần như sau:

- Θ Phần 1: Trùng với đồ thị hàm số y = g(x) với $g(x) \ge 0$.
- Θ Phần 2: Là phần đối xứng với phần đồ thị của hàm số y = g(x) với g(x) < 0 qua trục Ox.

Kết hợp với bảng biến thiên hàm số y = g(x) ta suy ra hàm số y = |g(x)| có 9 điểm cực trị khi và chỉ khi $m \le 0 < m + 24 \Leftrightarrow$ $-24 < m \le 0$. Mà m là số nguyên nên ta được 24 giá trị của m.

Chọn đáp án (A).....

CÂU 22. Có bao giá trị nguyên của tham số m thoả mãn |m| < 10 sao cho hàm số $y = |x^3 - (m-2)x^2 - mx - m^2|$ có 3 điểm cực tiểu?

🗩 Lời giải.

Đặt hàm số $y = f(x) = x^3 - (m-2)x^2 - mx - m^2 = (x-m)(x^2 + 2x + m) = (x-m)[x(x+2) + m]$. Suy ra $f'(x) = x^3 - (m-2)x^2 - mx - m^2 = (x-m)(x^2 + 2x + m) = (x-m)[x(x+2) + m]$. $3x^2 - 2(m-2)x - m = 0$ có $\Delta' = (m-2)^2 + 3m = m^2 - m + 4 > 0$ với mọi m.

Theo định lí Vi-ét ta có $\begin{cases} x_1+x_2=\frac{2(m-2)}{3}\\ x_1x_2=-\frac{m}{3} \end{cases}.$ Hàm số y=|f(x)| có 3 điểm and 13

Hàm số y = |f(x)| có 3 điểm cực tiểu khi và chỉ khi $y(x_1) \cdot y(x_2) < 0$.

Thực hiện biến đổi

 $y(x_1) \cdot y(x_2) = (x_1 - m)(x_2 - m)[x_1(x_1 + 2) + m][x_2(x_2 + 2) + m]$ $\begin{aligned} &g(x_1) \cdot g(x_2) = (x_1 - m)(x_2 - m) \left[x_1 x_2 (x_1 + 2) + m_1 \left[x_2 (x_2 + 2) + m_1 \right] \right. \\ &= \left. \left(x_1 - m \right) (x_2 - m) \left[x_1 x_2 (x_1 + 2) (x_2 + 2) + m (x_1^2 + x_2^2) + 2m (x_1 + x_2) + m^2 \right] \right. \\ &= \left. \left[x_1 x_2 - m (x_1 + x_2) + m^2 \right] \left[x_1 x_2 (x_1 x_2 + 2 (x_1 + x_2) + 4) + m (x_1^2 + x_2^2) + 2m (x_1 + x_2) + m^2 \right] \\ &= \left. \left(\frac{m^2}{3} + m \right) \left[-\frac{m}{3} \left(m + \frac{4}{3} \right) + m \left(\frac{4m^2}{9} - \frac{10m}{9} + \frac{16}{9} \right) + \frac{4m^2}{3} - \frac{8m}{3} + m^2 \right] \end{aligned}$ $= \frac{2}{27}m^2(m+3)(2m^2+4m-5).$

Suy ra $y(x_1) \cdot y(x_2) < 0 \Leftrightarrow m^2(m+3)(2m^2+4m-5) < 0 \Leftrightarrow \begin{bmatrix} \frac{-2-\sqrt{14}}{2} < m < 0 \\ 0 < m < \frac{-2+\sqrt{14}}{2} \end{bmatrix}$

Kết hợp với điều kiện m là số nguyên thỏa |m| < 10 ta được $m \in \{-9, -8\}$

Vây có 8 giá trị nguyên của tham số m.

Chọn đáp án (C).....

Cho hàm số $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, (ae < 0). Đồ thì hàm số y = f'(x) như hình bên dưới. Hàm số $y = |4f(x) - x^2|$ có bao nhiều điểm cực tiểu?

(A)4.

 $(\mathbf{C})3.$

Dòi giải.

Ta có $f'(x) = 4ax^3 + 3bx^2 + 2cx + d$. Từ đồ thị hàm số f'(x) suy ra a < 0, do đó e > 0. Dặt $y = g(x) = 4f(x) - x^2 \Rightarrow g'(x) = 4f'(x) - 2x = 4\left[f'(x) - \frac{x}{2}\right].$

Suy ra
$$g'(x) = 0 \Leftrightarrow f'(x) - \frac{x}{2} = 0 \Leftrightarrow f'(x) = \frac{x}{2} \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 0 \\ x = 2 \end{bmatrix}$$
.

Bảng biến thiên

x	$-\infty$		-1		0		2		$+\infty$
g'(x)		+	0	_	0	+	0	_	
g(x)			/ \		$\frac{1}{4e}$		<i>y</i> \		`

Vì 4e > 0 nên từ bảng biến thiên hàm số g(x) ta suy ra hàm số y = |g(x)| có 3 điểm cực tiểu.

Chọn đáp án $\overline{\mathbb{C}}$.

CÂU 24.

Cho hàm số bậc bốn f(x) có f(0) = -1. Hàm số y = f'(x) có đồ thị là hình bên. Số điểm cực trị của hàm số $y = |4f(x+1) + x^2 + 2x|$ là

 $(\mathbf{C})_{4.}$

 $\bigcirc 6$.

Dòi giải.

$$\text{Dặt } y = g(x) = 4f(x+1) + x^2 + 2x \Rightarrow g'(x) = 4f'(x+1) + 2x + 2 = 4\left[f'(x+1) + \frac{x+1}{2}\right].$$

Suy ra $g'(x) = 0 \Leftrightarrow f'(x+1) = -\frac{x+1}{2}$.

Đặt t = x + 1 thì phương trình trở thành $f'(t) = -\frac{t}{2}$. Nghiệm của phương trình này là hoành độ giao điểm của đồ thị hàm số y = f'(t) và $y = -\frac{t}{2}$.

Do đó

$$f'(t) = -\frac{t}{2} \Leftrightarrow \begin{bmatrix} t = -2 \\ t = 0 \\ t = 4 \end{bmatrix} \Rightarrow \begin{bmatrix} x+1 = -2 \\ x+1 = 0 \\ x+1 = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -3 \\ x = -1 \\ x = 3.$$

Bảng biến thiên

x	$-\infty$	-3		-1		3		$+\infty$
g'(x)	_	0	+	0	_	0	+	
g(x)		\ /		−5 ~		` /		<i>/</i>

Từ bảng biến thiên suy ra hàm số y = g(x) có 3 cực trị âm, do đó hàm số y = |g(x)| có 5 điểm cực trị.

Chọn đáp án (B).....

CÂU 25.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hàm số y = f(|x|) đạt cực đại tại.

$$\mathbf{A}x = -1.$$

$$\mathbf{B}$$
 $x=0.$

$$(\mathbf{c})x = 2.$$

$$\bigcirc x = -2.$$

Dèi giải.

Từ bảng biến thiên của hàm số y = f(x) ta có bảng biến thiên của hàm số y = f(|x|) như sau

x	$-\infty$		-2		0		2		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		* 1/		f(0)		` <u>1</u>		$+\infty$

Từ bảng biến thiên ta thấy hàm số y = f(|x|) đạt cực đại tại x = 0.

Chọn đáp án (B).....

CÂU 26.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Tổng các giá trị cực đại của hàm số y = |f(x)| là

B
$$)-3.$$

🗩 Lời giải.

Từ bảng biến thiên của hàm số y = f(x) ta có bảng biến thiên của hàm số y = |f(x)| như sau

x	$-\infty$	x_1	-1	x_2	0	x_3	1	x_4	$+\infty$
y'	-	-	+ 0	-	+ 0	-	+ 0	-	+
y	+∞	0==	→ ² <	0 = 1	, 3 \	0 =	4	0	+∞

Từ bảng biến thiên ta thấy hàm số y = |f(x)| có 3 giá trị cực đại lần lượt là 2, 3, 4.

Tổng các giá tri cực đại là 9. Chọn đáp án (A)......

CÂU 27. Cho hàm số y = f(x) có đạo hàm $y = f'(x) = (x-1)(x-2)^4(x^2-4)$. Số điểm cực trị của hàm số y = f(|x|)

 $(\mathbf{A})3.$

CÂU 28. Cho hàm số y = f(x) có đạo hàm $y = f'(x) = (x^3 - 2x^2)(x^3 - 2x)$ trên \mathbb{R} . Hàm số y = |f(4 - 2021x)| có nhiều nhất bao nhiêu điểm cực trị?

(A) 9.

(B)11.

(c)2021.

CÂU 29. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = |3x^4 - 4x^3 - 12x^2 + m|$ có 7 điểm cực trị? (A) 3.

Dòi giải.

Dặt $f(x) = 3x^4 - 4x^3 - 12x^2 + m \Rightarrow f'(x) = 12x^3 - 12x^2 - 24x = 0 \Rightarrow x = 0; x = -1; x = 2.$

Qua BBT của y = f(x) ta suy ra y = |f(x)| có 7 điểm cực trị $\Rightarrow \begin{cases} m > 0 \\ m - 5 < 0 \end{cases} \Rightarrow 0 < m < 5$. Vậy có 4 giá trị nguyên m thỏa yêu cầu bài toán.

Chon đáp án (D).....

CÂU 30. Tìm các giá tri của m để hàm số $f(x) = |x^3 + 3x^2 + m - 3|$ có ba điểm cực tri.

$$(A)m = 3; m = -1.$$

(B)
$$m \ge 1; m \le -3.$$
 (C) $1 \le m \le 3.$

$$\bigcirc 1 \le m \le 3$$

$$(D)m \ge 3; m \le -1.$$

CÂU 31. Cho hàm số $y = f(x) = x^3 - 3mx^2 + 3(m^2 - 4)x + 1$, có bao nhiều số nguyên $m \in (-10; 10)$ để hàm số y = f(|x|)có đúng 5 điểm cực trị.

Dòi giải.

y = f(|x|) có đúng 5 điểm cực trị $\Rightarrow y = f(x)$ có hai điểm cực trị dương. $f'(x) = 3x^2 - 6mx + 3(m^2 - 4) = 0 \Rightarrow x = m - 2; x = m + 2$ có hai nghiệm dương $\Leftrightarrow m - 2 > 0 \Leftrightarrow m > 2$. Vậy có 7 giá trị m thỏa yêu cầu bài toán.

Chọn đáp án $\overline{(D)}$

CÂU 32. Cho hàm số $f(x) = \frac{1}{3}x^3 - (2m-1)x^2 + (8-m)x + 2020$ với m là tham số. Tập hợp tất cả các giá trị của tham số m để hàm số y = f(|x|) có điểm 5 cực trị là khoảng (a; b). Tích $a \cdot b$ bằng

Dòi giải.

Tập xác định $\mathcal{D} = \mathbb{R}$.

Ta có $f(|-x|) = f(|x|), \forall x \in \mathbb{R}$ nên y = f(|x|) là hàm số chẵn.

Do đó, đồ thị hàm số y = f(|x|) đối xúng qua trực tung.

Suy ra hàm số y = f(|x|) luôn có một điểm cực trị là x = 0.

Do đó, y = f(|x|) có 5 điểm cực trị \Leftrightarrow hàm số y = f(x) có 2 điểm cực trị dương.

 $\Leftrightarrow f'(x) = 0$ có hai nghiệm dương phân biệt.

Ta có $f'(x) = x^2 - 2(m-1)x + 8 - m$.

Yêu cầu bài toán
$$\Leftrightarrow \begin{cases} \Delta' > 0 \\ S > 0 \\ P > 0 \end{cases} \Leftrightarrow \begin{cases} 4m^2 - 3m - 7 > 0 \\ 2m - 1 > 0 \\ 8 - m > 0 \end{cases} \Leftrightarrow \begin{cases} m < -1 \text{ hoặc } m > \frac{7}{4} \\ m > \frac{1}{2} \\ m < 8 \end{cases} \Leftrightarrow \frac{7}{4} < m < 8. \text{ Suy ra } a \cdot b = 14.$$

CÂU 33.

Cho hàm số f(x) có đạo hàm liên tục trên $\mathbb R$ và đồ thị hàm số f'(x) như hình vẽ. Hàm số $y = f(x^2 - 2|x|)$ có bao nhiều điểm cực tiểu?

$$(\mathbf{A})$$
1.

Dèi giải.

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ f'(x^2 - 2x) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x^2 - 2x = -1 \\ x^2 - 2x = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \text{ (b$\^{o}$i 3)} \\ x = 1 - \sqrt{2} \\ x = 1 + \sqrt{2}. \end{bmatrix}$$

Ta có

$$$$ $$$ $$$ $f'(x) < 0 \Leftrightarrow x < -1$ nên $f'(x^2 - 2x) < 0 \Leftrightarrow x^2 - 2x < -1$ (Vô nghiệm).$$$$

Bảng biến thiên hàm số y = g(x)

x	$-\infty$		$1-\sqrt{2}$		0		1		$1+\sqrt{2}$	-	$+\infty$
x-1		_		_		_	0	+		+	
$f'(x^2 - 2x)$		+	0	+		+	0	+	0	+	
g'(x)		_	0	_		_	0	+	0	+	
g(x)							~ /				A

Do hàm số $y = f(x^2 - 2|x|)$ là hàm số chẵn nên từ bảng biến thiên trên ta suy ra đồ thị hàm số $y = f(x^2 - 2|x|)$ gồm hai nhánh như sau

- \odot Nhánh thứ nhất là phần đồ thị hàm số y = g(x) với $x \ge 0$.
- Nhánh thứ hai là phần đối xứng với nhánh thức nhất qua trục Oy

Do đó hàm số $y = f(x^2 - 2|x|)$ có 2 điểm cực tiểu.

CÂU 34.

Cho hàm bậc bốn y=f(x) có đồ thị như hình vẽ dưới đây. Số điểm cực trị của hàm số g(x)= $f(|x|^3 - 3|x|)$ là

 $(\mathbf{A})5.$

(B)3.

 $(\mathbf{C})7.$

(**D**)11.

🗩 Lời giải.

Dặt
$$g(x) = f(x^3 - 3x) \Rightarrow g'(x) = 3(x^2 - 1)f'(x^3 - 3x)$$

Ta có

$$\bigcirc x^3 - 3x = b \Leftrightarrow x = n \text{ (v\'oi } n > 2).$$

Từ đồ thị hàm số
$$f'(x)$$
 ta có $f'(x) > 0 \Leftrightarrow \begin{bmatrix} x < a \\ -2 < x < 2 \\ x > b. \end{bmatrix}$
Suy ra $h'(x) > 0 \Leftrightarrow \begin{bmatrix} x^3 - 3x < a \\ -2 < x^3 - 3x < 2 \Leftrightarrow \begin{bmatrix} x < m \\ -2 < x < -1 \\ -1 < x < 2 \\ x > n. \end{bmatrix}$

Bảng biến thiên hàm số y = g(x)

x	$-\infty$		m		-2		-1		0		1		2		n		$+\infty$
$x^2 - 1$		+		+		+	0	_		_	0	+		+		+	
$f'(x^3 - 3x)$		+		_		+	0	+		+	0	+		_		+	
g'(x)		+		_		+	0	_		_	0	+		_		+	
g(x)	/		1 \		` /		1				× /		<i>*</i> \		` /		1

Từ bảng biến thiên suy ra hàm số y = g(x) có 3 điểm cực trị ứng với x > 0 nên hàm số $y = f(|x|^3 - 3|x|)$ có 7 điểm cực trị.

Chọn đáp án $\overline{ ext{C}}$

CÂU 35.

Hình vẽ dưới đây là đồ thị của hàm số y = f(x). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = |f(x+1) + m| có 5 cực trị?

 (\mathbf{A}) 0.

(B)3.

Lời giải.

Nhận xét

- Θ Hàm số $y = |f(x) \alpha|$ có số điểm cực trị bằng số cực trị của hàm y = f(x) và số giao điểm của đồ thị hàm y = f(x)với đường thẳng $y = \alpha$ (không tính giao điểm là các điểm cực trị).
- \odot Số điểm cực trị của hàm y = f(x) bằng số điểm cực trị của hàm y = f(x + a).

Từ nhận xét trên ta có: Hàm số y = f(x+1) có 3 cực trị.

Vậy ta cần đường thẳng y=-m cắt đồ thị hàm số y=f(x+1) tại 2 điểm khác cực trị.

Từ đồ thị ta suy ra: $\begin{bmatrix} -6 < -m \le -3 \\ -m \ge 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3 \le m < 6 \\ m \le -2. \end{bmatrix}$

Do $m \in \mathbb{N}^*$ nên $m \in \{3, 4, 5\}$.

Bài 1.	TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ	1
A	LÝ THUYẾT CẦN NHỚ	1
B	PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN	2
	Dạng 1.Bài toán tìm khoảng đơn điệu và cực trị của hàm số cho trước	2
	Dạng 2.Bài toán tìm m để hàm số đồng biến (nghịch biến) trên khoảng cho trước	6
	Dạng 3.Bài toán tìm m để hàm số có cực trị hoặc đạt cực trị tại điểm cho trước	<u>C</u>
	Dạng 4.Đơn điệu hàm hợp, hàm chứa dấu giá trị tuyệt đối	11
	Dạng 5.Cực trị hàm hợp, hàm chứa trị tuyệt đối	15
LỜI GIẢI CHI TIẾT		22
Bài 1.	TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ	22
A	LÝ THUYẾT CẦN NHỚ	22
B	PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN	23
0	Dạng 1.Bài toán tìm khoảng đơn điệu và cực trị của hàm số cho trước	23
	Dạng 2.Bài toán tìm m để hàm số đồng biến (nghịch biến) trên khoảng cho trước	33
	Dạng 3.Bài toán tìm m để hàm số có cực trị hoặc đạt cực trị tại điểm cho trước	42
	ե Dạng 4.Đơn điệu hàm hợp, hàm chứa dấu giá trị tuyệt đối	48
	🟲 Dang 5 Cực trị hàm hợp, hàm chứa trị tuyệt đối	57

