	מבחן בקורס: עקרונות שפות תכנות, 202-1-2051
	מועד: א
	23/6/2021 - 2 3/6/2021
רון גונן	שמות המרצים: מני אדלר, בן אייל, מיכאל אלחדד, יו
ב', סמסטר ב'	מיועד לתלמידי: מדעי המחשב והנדסת תוכנה, שנה
	משך המבחן: 3 שעות
	חומר עזר: אסור
	הנחיות כלליות:
	יש לענות על כל השאלות <u>בגיליון התשובות.</u> נ
לא יודע' ולקבל 20% מהניקוד על הסעיף/השאלה.	- אם אינכם יודעים את התשובה, ניתן לכתוב ל
נק 30	 תחביר וסמנטיקה
נק 25	שאלה 2: מערכת טיפוסים
נק 30	 מבני בקרה מבני בקרה
20 נק	שאלה 4: תכנות לוגי
נק 105	סה"כ
	בהצלחה!

שאלה 1: תחביר וסמנטיקה [30 נקודות]

א. השלימו את הכתובות הלקסיקליות של המשתנים בקוד הבא: [6 נק']

(lambda (a b c)	
(if (eq? [b:] [g:])	
((lambda (c)	
(cons [b:] [c:]))	
[a:])	
[b:]))	
א (שראינו בכיתה) מדגים במודל ההחלפה כיצד ללא renaming החישוב שגוי. בדוגמה זו יש שימוש ובלי z, להדגמת הבעיה:	-
(define z 1)	
(((lambda (x) ; 1 (lambda (z) (x z))) ; 2 (lambda (w) z)) ; 3	
2)	
ןוד נוספת המדגימה את הבעיה, שאינה משתמשת במשתנה גלובלי [6 נק']	תנו דוגמת <i>י</i>
לא קוד) כיצד ניתן להשתמש בכתובות לקסיקליות כך שלא יהיה צורך ב-renaming במודל זבחינו בין משתנים גלובליים ו-לא גלובליים בארגומנט שמוחלף ב-body של ה-closure (רמז: מה ללה נדרש renaming, ואיך כתובות לקסיקליות פותרות אותה) [10 נק']	ההחלפה . ר

זודל הסביבות על מנת לבצע גישה ישירה	ד. הסבירו (ללא קוד) כיצד ניתן להשתמש בכתובות לקסיקליות בנ למשתנה בסביבה, ולא לחפש אותו בסביבות העוטפות [8 נק']

שאלה 2: טיפוסים [25 נקודות]

2.1 Typing Statements [4 בק]

עבור ה-type statements הבאים, רשמו האם הם נכונים, ואם לא למה.

2.2 Type Inference

2.2.1 [18 נקודות] כתבו את רשימת משתני טיפוס ורשימת המשוואות הנגזרות כאשר מריצים את האלגוריתם של הסקת טיפוסים על הביטוים הבאים (אין צורך לפתור את המשוואות). עבור כל תת-ביטוי ברשימת משתני הטיפוס רשמו את ה-type של הביטוי לפי הגדרת ה-AST.

:define-exp עבור ביטוי מסוג typing rule-

Typing rule define:

לדוגמא עבור הביטוי:

```
(L5 (define g (lambda (f x) (f x))) (g + 4))
```

Expression	Variable	AST Type
=======================================	======	=======
(L5)	ΤO	Program
(define g (lambda))	Т1	Define-Exp
(lambda (f x) (f x))	Т2	Proc-Exp
(f x)	Т3	App-Exp
f	Tf	VarRef
Х	Tx	VarRef
(g + 4)	Т4	App-Exp
g	Tg	VarRef
+	T+	PrimOp
4	Tnum4	Num-Exp

Construct type equations:

Expression

Equation

```
(L5 ...)

(define g (lambda ...))

T1 = void

Tg = T2

(lambda (f x) (f x))

T2 = [Tf * Tx -> T3]

(f x)

T3 = [Tx -> T3]

T4

T5 = T2

T6 = T2

T7 = T2

T7 = T2

T8 = T2

T8 = T2

T9 = T2

T9 = T2

T1 = Void

T1 = Void

T1 = Void

T2 = T2

T2 = T2

T1 = Tx -> T3]

T2 = Tx -> T3]

T3 = Tx -> T4

T4 = Number -> Number

T1 = Number
```

ציינו את הטיפוסים והגדירו את המשוואות עבור התכנית הבאה:

```
(L5
  (define f (lambda (n) (* n n)))
  (define g (lambda (h) (lambda (p) (h (h p)))))
  ((g f) 2))
```

Expression			AST Type
(L5)		T 0	Program
Expression	Equation		======
(L5) 	T 0 =		
		בתוכנית: g בתוכנית:	2.2.2 [3 נק] כתבו את ה-type הנגזר ענ

שאלה 3: מבני בקרה [30 נקודות]

א. נתונה הפונקציה add-at-end אשר משרשרת איבר לסוף רשימה, ומחזירה את הרשימה החדשה:
;; Signature: add-at-end(lst a)
;; Type: [List(T1) * T1 -> List(T1)]
;; Purpose: append element a at end of list lst
;; Tests: (add-at-end '(1 2 3) 4) => '(1 2 3 4)
(define add-at-end
(lambda (lst a)
(if (empty? lst) (list a)
(cons (car lst)
(add-at-end (cdr lst) a)))))
המירו את הפונקציה לגרסת CPS: [5 נקודות]
· Cignature add at and (lat a a)
;; Signature: add-at-end\$(lst a c)
;; Type: [List(T1) * T1 * [List(T1) -> T2] -> T2]
;; Purpose: append element a at end of list 1st
;; Tests: (add-at-end\$ '(1 2 3) 4 (lambda (x) x)) => '(1 2 3 4)
(define add-at-end\$
(lambda (lst a cont)

הוכיחו כי הפונ' add-at-end ו-\$add-at-end שקולות \$add-at-end [10 נקודות]

ב. כתבו בשפת Scheme את הפונקציה \$tree-reduce המבצעת צינארי בסדר Scheme את הפונקציה לדרפ-reduce המבצעת אובר בינארי בסדר Scheme אריק., ערך התחלתי, (cur ואיבר נוכחי scheme), ערך התחלתי, לפונקציה מקבלת אובר Scheme (פונקציית ציום בינאריים ב-scheme מיוצגים בצורת רשימה בה האיבר הראשון עץ בינארי ו-continuation. בשאלה זו, עצים בינאריים ב-scheme הוא שורש העץ, האיבר השני הוא תת-העץ השמאלי, והאיבר השלישי הוא תת-העץ הימני. לדוגמה, העץ הבינארי:

מיוצג ע"י הרשימה:

```
'(1 (2 (3 () ()) (4 () ())) (5 () (6 () ())))
```

דוגמאות הרצה על העץ הנ"ל:

השתמשו בפונקציות הממשק הבאות לגישה לעץ:

<pre>;; Signature: tree-reduce\$(reducer\$, init, tree, cont) ;; Type:</pre>
(define tree-reduce\$
(lambda (reducer\$ init tree cont)
שאלה 4: תכנות לוגי [20 נקודות]
א. ממשו את הפרדיקט 2 take/3. רשימה List, מספר צ'רץ' N ותת-רשימה Sublist עומדים ביחס אם Sublist היא N האיברים הראשונים של List. אם יש פחות מ-N איברים ב-List, תת-הרשימה Sublist תהיה List כולה.
לדוגמה:
<pre>?- take([1, 2, 3, 4, 5], s(s(s(0))), X). X = [1, 2, 3]; false.</pre>
% Signature: take(List, N, Sublist)/3 % Purpose: Sublist is the first N elements from List

[5 נקודות]

ב. ממשו את הפרדיקט 2/pad. רשימה List, מספר צ'רץ' N ורשימה Padded עומדים ביחס אם Padded היא הרשימה List בתוספת כוכביות (הביטוי *) לפי הצורך, כדי להגיע לאורך N אם N קטן מאורך הרשימה, אין צורך בריפוד

לדוגמה:

[5 נקודות]

ג. בהינתן הפרוצדורות הבאות:

```
% Signature: natural_number(X)/1
% Purpose: X is a natural number in Church encoding
natural_number(0). %1
natural_number(s(X)) :- natural_number(X). %2

% Signature: plus(X, Y, Z)/3
% Purpose: Z = X + Y
plus(X, 0, X) :- natural_number(X). %3
plus(X, s(Y), s(Z)) :- plus(X, Y, Z). %4
```

השלימו את עץ ההוכחה הבא עבור השאילתה:

?- plus(X, Y, s(s(0))).

כתבו ליד כל מספר את ה-substitution/כלל המתאימים. שימו לב לכתוב ליד כל substitution את מספר הכלל הרלוונטי; כפי שמופיע בחלקים המלאים בראש העץ. [10 נקודות]