Applied Data Science Capstone

Assignment Report

Kunihiro Takagi July 26, 2023

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Summary of Methodology

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data by filtering the data, handling missing values to prepare for analysis and modeling
- Explore data with SQL and data visualization techniques
- Visualize data using Folium and Ploty Dash
- Build Models to predict landing outcomes using classification models

Results

- Exploratory Data Analysis: Launch success rate has improved since 2013.
- Visual Analysis: KSC LC-39A has the most success outcomes among the launch sites.
- Predictive Analysis: Decision Tree Model slightly outperformed the other models.

INTRODUCTION

- In this capstone, I made a survey to determine if the Falcon 9 first stage would land successfully using data science techniques, because it would enable to estimate the launch cost well.
- SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

METHODOLOGY

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data by transforming it into a desired format and handling missing values to prepare for further analysis and modeling
- Explore data via EDA with SQL and data visualization techniques
- Visualize the data using Folium and Plotly Dash
- Build Models to predict launch outcomes using classification models, and then evaluate models to find the best model and parameters

Data Collection

- **Data collection** is the process of gathering information from which you can create data sets to bring you a helpful insight for your business. In this capstone, the dataset was collected by **REST API** and **Web Scrapping**.
- For REST API, I used the get request to collect the data and then turned it into a pandas dataframe. The dataframe was cleaned and checked for missing values to be replaced with the mean values.
- For Web Scrapping, I used the Python BeautifulSoup library to extract the launch records as HTML table, parse and convert the table into a pandas dataframe for further process like exploratory data analysis.

Data Wrangling

- Data Wrangling is the process of transforming the data into a desired format, making it more useful for further analysis.
- I created a landing outcome label from the outcome column in order to make it easier for further analysis.
- I calculated the number of launches on each site, and then calculated the number and occurrence of mission outcome for each orbit type.

```
# Apply value_counts() on column LaunchSite
df['LaunchSite'].value_counts()
```

```
CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
```

Name: LaunchSite, dtype: int64

Exploratory Data Analysis (EDA)

- Exploratory Data Analysis (EDA) is the process of analyzing data to summarize their main characteristics, creating a database to use SQL and Data Visualization techniques.
- I loaded the dataset into the corresponding table in a Db2 database and executed SQL queries for exploratory analysis.

* sqlite:// Done.	//my_data1	.db							
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcom
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure (parachute
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	No attemp
10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	No attemp
03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	No attemp

EDA with SQL

I performed queries to analyze the data as listed below:

- Displaying the names of the launch sites.
- Displaying 5 records where launch sites begin with the string 'CCA'.
- Displaying the total payload mass carried by booster launched by NASA (CRS).
- Displaying the average payload mass carried by booster version F9 v1.1.
- Listing the date when the first successful landing outcome in ground pad was achieved.
- Listing the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.
- Listing the total number of successful and failure mission outcomes.
- Listing the names of the booster_versions which have carried the maximum payload mass.
- Listing the failed landing_outcomes in drone ship, their booster versions, and launch sites names for in year 2015.
- Rank the count of landing outcomes or success between the date 2010-06-04 and 2017-03-20, in descending order.

Examples of SQL Query

Displaying the names of the launch sites

* sqlite:///my_data1.db
Done.

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Rank the count of landing outcomes or success between the date 2010-06-04 and 2017-03-20, in descending order.

sql SELECT LANDING_OUTCOME, COUNT(*) AS Total FROM SPACEXTBL

WHERE DATE BETWEEN '04/06/2010' AND '20/03/2017' GROUP BY LANDING_OUTCOME ORDER BY Total DESC:

* sqlite:///my_data1.db Done.

Landing Outcome Total

Landing_Outcome	iotai
Success	20
No attempt	9
Success (drone ship)	8
Success (ground pad)	7
Failure (drone ship)	3
Failure	3
Failure (parachute)	2
Controlled (ocean)	2

No attempt

None

EDA with Data Visualization

 Using Data Visualization technique, I illustrated the characteristics of the data set and analyzed it.

 As shown in the right line graph, the landing success rate has improved since 2013. # Plot a line chart with x axis to be the extracted year and y axis to be the success rate
df.groupby('Date')['Class'].mean().plot.line()

<AxesSubplot:xlabel='Date'>

EDA with Data Visualization

• I also visualized and observed the relationship in landing success among the features like Launch site, Flight number(Time) and Payload mass as shown below.

Blue markers(0): Unsuccessful launches, Orange markers(1): Successful Launches

EDA with Data Visualization

- I calculated and visualized the success rate of each orbit as shown below.
- ES-L1, GEO, HEO and SSO has 100% success rate.

Folium Interactive Visual Analysis(IVA) -

 After collecting the coordinates for each launch site, I made a visual analysis on launch outcomes at each site using Folium. Launch Site Lat

Long

-80.577356

-80,576820

-80.646895

-120,610745

IVA-Folium Location of Launch sites

• Identifying the coordinates of the launch sites, I found they were located nearby the equator. It is supposed to make it easier for rockets to launch to equatorial orbit, and save the cost of fuel and boosters.

	Launch Site	Lat	Long
0	CCAFS LC-40	28.562302	-80.577356
1	CCAFS SLC-40	28.563197	-80.576820
2	KSC LC-39A	28.573255	-80.646895
3	VAFB SLC-4E	34.632834	-120.610745

IVA-Folium: Launch outcomes

- At each launch site, I marked launch outcomes.
- Green markers illustrate successful outcomes.
- Red markers illustrate unsuccessful outcomes.
- Launch site, KSC LC-39A
 has a 10/13(76.9%) success rate, as
 shown on the right map, and it is the
 highest success rate among those
 of all launch sites.

IVA-Plotly Dash

 Using Ploty Dash, I created an interactive dashboard for visual analysis.

As shown in the right pie chart,
 KSC LC-39A has the most successful launches among all the launch sites.

SpaceX Launch Records Dashboard

Build Models

- I built models to predict launch outcomes using machine learning algorithms, including SVC, KNN, Logistic Regression and Decision Tree and evaluated them.
- The below evaluation shows the best algorithm is Decision Tree.

```
algorithms = {'KNN':knn_cv.best_score_,'Tree':tree_cv.best_score_,'SVM':svm_cv.best_score_,'LogisticRegression':logr
bestalgorithm = max(algorithms, key=algorithms.get)
print('Best Algorithm is', bestalgorithm, 'with a score of',algorithms[bestalgorithm])
if bestalgorithm == 'Tree':
    print('Best Parameter is :',tree_cv.best_params_)
if bestalgorithm == 'KNN':
    print('Best Parameter is :',knn_cv.best_params_)
if bestalgorithm == 'SVM':
    print('Best Parameter is :',svm_cv.best_params_)
if bestalgorithm == 'LogisticRegression':
    print('Best Parameter is :',logreg_cv.best_params_)

Best Algorithm is Tree with a score of 0.8625
Best Parameter is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_sample es_split': 2, 'splitter': 'random'}
```

Conclusion

Exploratory Data Analysis

- Launch success rate has improved since 2013.
- In terms of orbits, ES-L1, GEO, HEO and SSO has 100% success rate.

Visual Analysis

- Launch sites should be located nearby the equator to save launch cost.
- KSC LC 39A is the most appropriate launch site, because it has the most successful outcomes and the highest success rate among the launch sites.

Predictive Analysis

• **Decision Tree** is the best algorithm for prediction of launch outcomes, because it has shown the best scores in evaluation among all the models.

Appendix A

Distance from Launch site to Proximities

- In terms of safety and transportation, the distance from launch sites to the proximities should be taken into consideration.
- I marked down the coordinates of the proximities like city and railroad, and calculated the distances form the launch site, KSC LC-39A.

City(Titusville): 5.6km Closest Railroad: 0.7km

Appendix B

Confusion Matrix of Decision Tree Algorithm

As shown below, False Positive should be improved.

