

TEST REPORT

Date: 2015-03-24

Report No.: 60.870.14.022.03F

Hong Kong RFID Ltd. Applicant:

Unit 11, 9/F, Wah Wai Centre, 38-40 Au Pui Wan Street,

Fotan, Shatin, N.T., Hong Kong

EMPRESS 2.4GHz WIRELESS ACTIVE Description of Samples: Model name:

RFID READER

HKRAR-EM02-SP, HKRAR-EM02-ETH, Model no.:

HKRAR-EM02-POE.

FCCID: XNO-HKRAR-EM02

Date Samples Received: 2015-03-02

Date Tested: 2015-03-03 to 2015-03-23

Investigation Requested: FCC Part 15 Subpart B

Conclusions: The submitted COMPLIED product

> requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described

> > Amsti

above and on Section 2.2 in this Test Report.

Remarks:

Checked by: Approved by:-

John Zhi Ray Cheung

Project Engineer Project Manager Wireless & Telecom department Wireless & Telecom department

CONTENT:

	Cover Content	Page 1 of 13 Page 2 of 13
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 3 of 13
1.2	Applicant Details	Page 3 of 13
1.3	Equipment Under Test [EUT]	Page 4 of 13
1.4	Equipment Modification	Page 4 of 13
1.5	Related Submittal(s) Grants	Page 4 of 13
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 5 of 13
2.2	Test Standards and Results Summary	Page 5 of 13
<u>3.0</u>	Test Methodology	
3.1	Radiated Emission	Page 6 of 13
3.2	Field Strength Calculation	Page 6 of 13
3.3	Conducted Emission	Page 6 of 13
<u>4.0</u>	Test Result	
4.1	Spurious Radiated Emission	Page 7-9 of 13
4.2	Conducted Emission	Page 10-12 of 13
<u>5.0</u>	List of Equipment	Page 13 of 13

Appendix A

Photos of Test Setup

Appendix B

External EUT Photos

Appendix C

Internal EUT Photos

1.0 General Details

1.1 Test Laboratory

TUV SUD Certification and Testing (China) Co., Ltd Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen, 518052 Registration Number: 502708

Tested by:

Ray Cheung

1.2 Applicant Details

Applicant

Hong Kong RFID Ltd.

Unit 11, 9/F, Wah Wai Centre, 38-40 Au Pui Wan Street, Fotan, Shatin, N.T., Hong Kong

Manufacturer

Hong Kong RFID Ltd.

Unit 11, 9/F, Wah Wai Centre, 38-40 Au Pui Wan Street, Fotan, Shatin, N.T., Hong Kong

1.3 Equipment Under Test [EUT]

Description of Sample

Product Description: EMPRESS 2.4GHz WIRELESS ACTIVE RFID READER

Model No: HKRAR-EM02 FCCID: XNO-HKRAR-EM02

Rating: AC/DC Adaptor

Model: KSAS0120500200HK Input: 100-240VAC, 50/60Hz

Output: 5.0 VDC, 2A

Accessories and Auxiliary

Equipment:

AC/DC power adaptor, ThinkPad Notebook

EUT Exercising Software: None

Description of EUT

The Equipment Under Test (EUT) is a RFID Reader.

As per Client Declaration, the circuit design, PCB Layout, shielding and interfaces of HKRAR-EM02-SP are identical for HKRAR-EM02-ETH, HKRAR-EM02-POE, only the Power Source Connection and grouping are different. So we use the HKRAR-EM02-SP as a representative model.

1.4 Equipment Modification

No modification was conducted on the tested sample by TUV SUD Hong Kong Ltd.

1.5 Related Submittal(s) Grants

This is a signal application subject to Certificate Authorization.

2.0 <u>Technical Details</u>

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.4: 2009.

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary							
Test Condition	Test Condition FCC Test Class / Test Result						
Requirement Severity Pass Failed				Failed	N/A		
Radiated Emissions, 30MHz to 4.5GHz	Part 15.109	Class B	\boxtimes				
Conducted Emissions on AC, 0.15MHz to 30MHz	Part 15.107	Class B	\boxtimes				

Note: N/A - Not Applicable

3.0 Test Methodology

3.1 Radiated Emission

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

3.2 Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + System Factor System Factor = AF + CF + FA – PA

Where FS = Net Field Strength in dBuV/m at 3 meters.

R = Reading of Spectrum Analyzer / Test Receiver in dBuV.

AF = Antenna Factor in dB.

CF = Cable Attenuation Factor in dB.

FA = Filter Attenuation Factor in dB.

PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.

3.3 Conducted Emissions

The EUT was placed on a non-metallic table 0.8m above the horizontal metal reference place and 0.4m from a vertical ground plane which is connected to the horizontal metal ground plane. Meanwhile, the AC main of EUT was connected to the distance of 0.8m line impedance stabilization network (LISN) during measurement.

Initial measurements were performed in quasi-peak and average detection modes by the test receiver, any emissions recorded within 30dB of the relevant limit lines were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

<u>4.0</u> **Test Results**

4.1 Spurious Radiated Emissions (30MHz to 10GHz)

FCC Part 15 section 15.109 Class B Test Requirement:

Test Method: ANSI C63.4:2009 Test Date: 2015-03-18

Mode of Operation: PC Communication mode

Quasi-peak (Below 1000 MHz) **Detector Function:**

Average (Above 1000 MHz)

120 kHz (Below 1000 MHz) Measurement BW:

1 MHz (Above 1000 MHz)

Test Setup:

Results: PASS

	Spurious Radiated Emissions							
Frequency Polarity Reading Factor Measurem Limit Margin Detect							Detector	
MHz		dBuV	dB/m	dBuV/m	dBmV/m	dB		
34.619	V	24.15	12.7	36.85	40.0	-3.15	QP	
47.804	V	23.80	15.4	39.2	40.0	-0.8	QP	
86.060	V	18.6	10.8	38.2	40.0	-1.8	QP	
86.047	Н	26.7	10.8	37.5	40.0	-2.5	QP	

Note:

- No further spurious emissions found between 30 MHz and lowest internal used/generated frequency.
- No significant emissions noise floors were detected above 1 GHz.

Remark:

- Calculated measurement uncertainty: ±3.2 dB.

Limits for Radiated Emissions [Section 15.109 Class B] :

Frequency Range	Quasi-Peak Limits	
[MHz]	[μV/m]	
30-88	100	
88-216	150	
216-960	200	
Above960	500	

The emission limits shown in the above table are based on measurement employing a CISPR quasipeak detector and above 1000MHz are based on measurements employing an average detector.

Vertical

Horizontal

4.2 Conducted Emissions (0.15MHz to 30MHz)

Test Requirement: FCC part 15 Section 15.107 Class B

Test Method: ANSI C63.4:2009 Test Date: 2015-03-18

Mode of Operation: PC Communication mode Detector Function Quasi-peak, average Measurement BW 9kHz (150kHz to 30MHz)

Test Setup:

Result: PASS

- Refer Figures and tables for the result.

Limits for Conducted Emission [Section 15.107]:

Frequency Range	Quasi-Peak Limit	Average Limit
[MHz]	[dBµV]	[dBµV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

^{*} Decreases with the logarithm of the frequency.

Remarks:

Calculated measurement uncertainty: ±2.8dB

Result data graph shows the conducted emission (Live).

Refer to the following table for the result details:

Conducted Emission							
Frequency	Detector	Phase	Result	Limit	Margin		
(MHz)	(QP/AV)		(dBµV)	(dBµV)			
0.466	QP	L	42.30	56.58	-14.28		
0.698	QP	L	42.22	56.00	-13.78		
0.930	QP	L	44.42	56.00	-11.58		

Result data graph shows the conducted emission (Neutral).

Refer to the following table for the result details:

Conducted Emission							
Frequency (MHz)	Detector (QP/AV)	Phase	Result (dBµV)	Limit (dBµV)	Margin		
0.466	QP QP	NI	\	\	-14.79		
0.466	QP	N N	41.80 45.20	56.59 56.00	-14.79		
19.710	QP	N	44.79	60.00	-15.21		

<u>5.0</u> **List of Measurement Equipment**

Radiated Emission Test

Description	Manufacturer	Model no.	Serial no.	CAL due
Spectrum Analyzer	R&S	FSV40	101031	17 Aug 2015
Trilog Super Broadband Test Antenna	Scwarzbeck	VULB 9163	708	17 Aug 2015
Horn Antenna	R&S	HF907	102295	17 Aug 2015
Signal Generator	R&S	SML01	67	Jul. 16 2015
Signal Generator	HP	8920B	13215S1	Jul. 16 2015
3m Semi- Anechoic Chamber	TDK	8X4X4		29 Aug 2015
Temperature and Humidity Chamber	XingBao	XB1212	N/A	Jan. 20 2015
Pre-amplifier	R&S	SCU 18	102230	17 Aug 2015
Pre-amplifier	R&S	SCU 40A	100432	17 Aug 2015

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	CAL due
EMI Test Receiver	R&S	ESR 3	101782	2015-08-17
LISN	R&S	ENV4200	100249	2015-08-17
LISN	R&S	ENV216	100326	2015-08-17
ISN	R&S	ENY81	100177	2015-08-17
High Voltage Probe	R&S	TK9420(VT9420)	9420-58	2015-08-17
RF Current Probe	R&S	EZ-17	100816	2015-08-17

Remarks:

CM Corrective Maintenance Not Applicable or Not Available N/A

TBD To Be Determined