2022 MOAI Challenge

Body morphometry Al Segmentation

Team. Accelers

Members. 김상호 / 김유진

01 Introduction

1. Framework

- PyTorch

2. IDE

- 작업 수행 및 리팩토링: Visual Studio Code
- 디버거 : Jupyter Notebook

3. Used Model

- U-Net (MICCAI 2015)

4. Skills

- Data Augmentation
- Learning Rate Scheduler
- Customize Loss Functions
- Various Optimizers and hyperparameters

Data 전처리와 분할 방법

Data preprocessing

·mritopng module을 활용해 dcm format을 png format으로 변환

Dataset split

- ·Overfitting 여부 확인 목적으로 분할
- ·총 100개의 데이터 중 Train-set은 80개, Valid-set은 20개를 사용하였음
- ·하이퍼파라미터마다 정확하고 객관적인 성능 비교를 위해 Valid-set은 고정하였음

적은 수의 train-set만으로 robust한 성능을 가지는 모델을 구축하려면 augmentation이 필요

<Include Classes>

- Random HorizontalFlip
- Random Rotation
- Random Scaling
- Random Crop

```
class RandomHorizontalFlip(object):
    Option:
    probability of 0.5
class RandomRotate(object):
    Option:
    probability of 0.5
class RandomScale(object):
    Option:
    range of (0.5, 0.75, 1., 1.25, 1.5)
class RandomCrop(object):
    Option:
    size of (512, 512)
```

Model

The architecture of U-Net

- 1. Biomedical 분할에 적합한 모델
- 2. Contracting(수축) Path
- 3. Expanding(확장) Path
- 4. Bottle Neck

Customize Model

- 1. 논문 상 기본적으로 padding을 사용하지 않지만 모델의 성능 향상을 위해 padding을 사용해서 모델이 구조적으로 완벽한 대칭을 이루도록 설계하였음
- 2. 4개의 Encoding layer, 1개의 BottleNeck layer 그리고 4개의 Decoding layer를 구축
- 3. 마지막 layer의 output channel 수를 4로 fine-tuning

Loss functions

- Dice Loss
 - 이번 대회의 평가 기준인 Dice metric을 따라 loss function은 1-dice로 설정
- · Ohem CE Loss
 - 일정 threshold를 설정
 - 그 이상의 loss 값을 가지는 index에 대해서만 backpropagation을 수행
 - 그 이후의 연산은 일반적인 Cross Entropy Loss의 계산과 동일
- · Weighted loss functions with above losses
 - $\lambda_1 * (1 dice loss) + \lambda_2 * ohem ce loss$
 - 여러 방법으로 학습하면서 최적의 하이퍼파라미터 λ_1 , λ_2 를 탐색

Learning Rate Scheduler

- ·높은 값의 학습률(LR)로 시작해 점점 값을 감소시키면서 좋은 솔루션을 빠르게 발견하기 위한 전략 사용
- · Polynomial LR Decay Scheduler

$$(1 - \frac{iter}{max_iter})^{power}$$

- where iter is training epoch, max_iter is total epochs and power is 0.9
- figure

- · optimizer = RAdam
- · initial lr = 5e-3 and end lr: 1e-5
- epochs = **1000**
- \cdot batch size = 4
- · weight decay = 5e-4
- · special note
 - loss function은 다음과 같이 구성
 - Loss = 2 * (1 dice) + 0.5 * ohem
- \cdot performance = 0.95071

- · optimizer= RAdam
- · initial lr= 5e-3 and end lr= 1e-5
- epochs= **1000**
- batch size= 4
- · weight decay= 5e-4
- · special note
 - weighted value of loss 사용
 - Loss= 3 * (1 dice) + 0. * ohem
- \cdot performance = 0.95023

- · optimizer= NAdam
- · initial lr= 1e-3 and end lr= 1e-5
- epochs= **1000**
- batch size= 4
- · weight decay= 5e-4
- · special note
 - NAdam optimizer 사용
 - 학습률을 낮추고 dice loss만 사용
 - Loss= 1. * (1 dice) + 0. * ohem
- · performance = 0.95867(2nd best score)

- · optimizer= NAdam
- · initial lr= 1e-3 and end lr= 1e-7
- epochs= **1000**
- batch size= 4
- · weight decay= 1e-6
- · special note
 - 필터 개수를 32에서 64로 증가
- \cdot performance = 0.95528

- · optimizer= NAdam
- · initial lr= 1e-3 and end lr= 1e-7
- epochs= **1000**
- batch size= 4
- · weight decay= 1e-6
- · special note
 - 필터 개수를 64에서 16으로 감소
 - 나머지 하이퍼파라미터는 experiment 4와 동일
- \cdot performance = 0.95231

- · optimizer= AdamW
- · initial lr= 1e-3 and end lr= 1e-12
- epochs= 3000
- batch size= 4
- · weight decay= 1e-2
- · special note
 - end lr 대폭 감소
 - weight decay 증가
 - AdamW optimizer 사용
 - epochs 3000으로 대폭 증가
- · performance = 0.95978(1st best score)

