Throughout this document x and y will be either row or column vectors and A will always be a matrix.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Close all plots
doc function	Open help page for function
% This is a comment	Comments
ctrl-c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places
disp('text')	Print text
doc mean	Open documentation of command mean
help mean	Open help of command mean
edit myFile	Creates/opens myFile

Defining and Changing Variables	
a = 3	Define variable a to be 3
x = [1, 2, 3]	Set x to be the row vector $\left[1,2,3\right]$
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$
A = [1, 2, 3, 4;	Set A to be a 3×4 matrix
5, 6, 7, 8;	
9, 10, 11, 12]	
x(2) = 7	Change x from $\left[1,2,3\right]$ to $\left[1,7,3\right]$
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0

Basic Arithmetic and Functions	
3*4, 7+4, 2-6, 8/3	multiply, add, subtract and divide
3^7	Compute 3^7
sqrt(5)	Compute $\sqrt{5}$
log(3)	Compute $\ln(3)$
log10(100)	Compute $\log_{10}(100)$
abs(-5)	Compute $ -5 $
sin(5*pi/3)	Compute $\sin(5\pi/3)$
floor(3.8)	Compute [3.8]

Constructing Matrices and Vectors	
zeros(12, 5)	Make a 12×5 matrix of zeros
ones(12, 5)	Make a 12×5 matrix of ones
eye(5)	Make a 5×5 identity matrix
eye(12, 5)	Make a 12×5 identity matrix
linspace(1.4, 6.3, 1004)	Make a vector with 1004 elements evenly spaced between 1.4 and 6.3
[X,Y] = meshgrid(x,y)	Creates grid
logspace(1.4, 6.3, 1004)	Make a vector with 1004 elements where the log of the spacing is evenly increasing between 1.4 and 6.3
7:15	Row vector of $7, 8, \ldots, 14, 15$

Saving and loading files		
save myfile.mat	Saves workspace variables in myfile.mat	
load myfile.mat	Loads variables in myfile.mat into the current workspace	

Existance of names	
exist some_name	Returns numeric code, depending on whether this name already exists and if so, also depending on it's category (built-in, user-defined, etc.)

Operation	ns on Matrices and Vectors
Operation	
3 * x	Multiply every element of x by 3
x + 2	Add 2 to every element of x
x + y	Element-wise addition of two vectors \boldsymbol{x} and \boldsymbol{y}
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices
A ^ 3	Square matrix A to the third power
A .^ 3	Every element of A to the third power
cos(A)	Compute the cosine of every element of ${\cal A}$
abs(A)	Compute the absolute values of every element of ${\cal A}$
Α'	Transpose of A
inv(A)	Compute the inverse of A
det(A)	Compute the determinant of A
eig(A)	Compute the eigenvalues of A
size(A)	Get the size of A

Matrix and array commands	
repelem	Repeat copies of array elements
repmat	Repeat copies of array
repmat	Repeat copies of array
length	Length of largest array dimension
sort	sort array elements
flip	flip order of elements
reshape	Reshape array
end	Denotes last element
size(A)	Get the size of A

Entries of Matrices and Vectors	
x(2:12)	The 2^{nd} to the 12^{th} elements of x
x(2:end)	The 2^{nd} to the last elements of x
x(1:3:end)	Every third element of x from the first to last
A(5,:)	Get the 5 $^{ ext{th}}$ row of A
A(:,5)	Get the $5^{ m th}$ column of A
A(5,1:3)	Get the first to third elements in the 5 th row
x(10:2:100)	Contains every 2 nd element of x

Plotting	
plot(x,y)	Plot y versus x (must be the same length)
loglog(x,y)	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx(x, y)	Plot y versus x with x on a log scale
<pre>semilogy(x, y)</pre>	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
xlabel('x label')	Add a label to the x axis
<pre>ylabel('y label')</pre>	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
figure	Start a new plot

Constants	
pi	$\pi = 3.141592653589793$
NaN	Not a number (i.e. $0/0$)
Inf	Infinity
realmax	Largest positive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest positive floating-point number $2.2251 \cdot 10^{-308}$

Linear algebra	
x = A b	Solves $Ax = b$
<pre>x = linsolve(A,B)</pre>	Solves A*X = B
[V,D] = eig(A,B)	Diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that A*V = V*D .
inv	Matrix inverse
realmin	Smallest positive floating-point number $2.2251\cdot 10^{-308}$

MATLAB CHEAT SHEET

For loops for k = 1:5 disp(k); end

```
While loops

k = 0;
while k < 7
    k = k + 1;
end</pre>
```

```
Logicals
a = 10; % Assign a the value of 10
a == 5 % Test if a is equal to 5
  false
a == 10 % Test if a is equal to 10
a >= 5
        % Test if a is greater than or equal to 5
   true
a < 11 % Test if a is less than 11
   true
        % Test if a is not equal to 4
   true
a > 1 \ \&\& a \sim = 10 \ \% Test if a is greater than 1 AND
   false % not equal to 10
a > 1 || a ~= 10 % Test if a is greater than 1 OR
             % not equal to 10
   true
```

```
if a > 10
    disp('Greater than 10');
elseif a == 5
    disp('a is 5');
else
    disp('Neither condition met');
end
```

```
functions

function output = addNumbers(x, y)
    output = x + y;
end

addNumbers(10, -5)
5
```

```
Multiline commands

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 ...
- 1/6 + 1/7 - 1/8 + 1/9;
```

```
function Handles

f = a(x) sin(x.^2)./(5*x);

f(pi/2)
     0.0795
f([-pi/2, 0, pi/2])
     -0.0795 NaN 0.0795
```

Plotting

y1 = sin(x);

x = linspace(-3*pi, 3*pi, 1000);

```
y2 = cos(x);
% Set the axis limits
axis([-3*pi, 3*pi, -1.5, 1.5])
% Add axis labels
xlabel('x');
ylabel('y');
% Add a title
title('A plot of cos(x) and sin(x)');
legend('sin(x)', 'cos(x)');
                  A plot of cos(x) and sin(x)
    1.5
                                            sin(x)
                                            cos(x)
     1
    0.5
     0
    -0.5
     -1
    -1.5
                -5
                            0
                                       5
```