1

11.9.3.25

EE23BTECH11003 - pranav

question: if a, b, c and d are in GP then show that

 $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$

Solution: let a, b, c and d are a part of GP x(n)

Variable	Description	Value
x(0)	First term of the GP	а
r	Common ratio of the GP	r
b	second term of GP	ar
c	third term of GP	ar^2
d	fourth term of the GP	ar ³

TABLE 1: Variables Used

$$(a^2 + b^2 + c^2)(b^2 + c^2 + d^2)$$
 (1)

$$(a^{2} + (ar)^{2} + (ar^{2})^{2})((ar)^{2} + (ar^{2})^{2} + (ar^{3})^{3})$$
 (2)

$$\implies a^4 r^2 (1 + r^2 + r^4)^2$$
 (3)

$$\implies (ab)^2(1+(\frac{c}{a})^2+(\frac{cd}{ab})^2) \quad (4)$$

$$\implies (ab + bc + cd)^2$$
 (5)