Search Algorithms Evaluation

Alex Staravoitau

alex.staravoitau@gmail.com

Air Cargo Problem 1

Evaluation

Search algorithm	Node expansions	Goal tests	New nodes	Elapsed (s)	Solution length
breadth_first_search	43	56	180	0.045	6 (Optimal)
depth_first_graph_search	12	13	48	0.01	12
uniform_cost_search	55	57	224	0.042	6 (Optimal)
A* using h_ignore_preconditions	41	43	170	0.049	6 (Optimal)
A* using h_pg_levelsum	11	13	50	1.363	6 (Optimal)

 Table 1. Air Cargo Problem 1 evaluation.

Optimal solution

Load(C1, P1, SF0)

Fly(P1, SF0, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SF0)

Unload(C2, P2, SF0)

Air Cargo Problem 2

Evaluation

Search algorithm	Node expansions	Goal tests	New nodes	Elapsed (s)	Solution length
breadth_first_search	3346	4612	30534	15.768	9 (Optimal)
depth_first_graph_search	1124	1125	10017	9.53	1085
uniform_cost_search	4853	4855	44041	49.326	9 (Optimal)
A* using h_ignore_preconditions	1506	1508	13820	15.567	9 (Optimal)
A* using h_pg_levelsum	86	88	841	134.144	9 (Optimal)

Table 2. Air Cargo Problem 2 evaluation.

Optimal solution

Load(C3, P3, ATL)

Fly(P3, ATL, SF0)

Unload(C3, P3, SF0)

Load(C2, P2, JFK)

Fly(P2, JFK, SF0)

Unload(C2, P2, SF0)

Load(C1, P1, SF0)

Fly(P1, SF0, JFK)

Unload(C1, P1, JFK)

Air Cargo Problem 3

Evaluation

Search algorithm	Node expansions	Goal tests	New nodes	Elapsed (s)	Solution length
breadth_first_search	14120	17673	124926	113.24	12 (Optimal)
depth_first_graph_search	677	678	5608	3.988	660
uniform_cost_search	18223	18225	159618	432.26	12 (Optimal)
A* using h_ignore_preconditions	5118	5120	45650	102.342	12 (Optimal)
A* using h_pg_levelsum	403	405	3708	969.63	12 (Optimal)

Table 3. Air Cargo Problem 3 evaluation.

Optimal solution

```
Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P2, ORD, SFO)

Unload(C4, P2, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C3, P1, JFK)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)
```

Summary

Having evaluated **5 search algorithms** (3 uninformed and 2 using A* search with different heuristics) on 3 problems of varying complexity we can see emerging patterns of each of the algorithm performance (Tables 1, 2 and 3).

Depth first search is the only one that didn't find an optimal solution, which is not surprising as it simply traverses the tree in the depth-first order, returning the first solution found. This is also why it was the first to return a solution on all three problems. As **depth first search failed to find an optimal solution**, we will not consider it in our further evaluations.

When it comes to **uninformed vs informed search algorithms**, informed ones seem to perform better or at least just as good on all three problems. Informed search algorithms were represented by A* search using two different heuristics, and their performance is either on par or better on all three problems than any uninformed algorithms evaluated here — both when it comes to speed and exploration costs (depending on what you're after).

Although informed search algorithms perform better overall, their performance highly depends on the **choice of heuristic function**, as Stuart Russel and Peter Norvig highlight in their *Artificial Intelligence: A Modern Approach* textbook. We

can see that here as well, as A* search performance varies significantly depending on one of the two heuristics we use: if we use heuristic ignoring preconditions we find an optimal solution about one order of magnitude faster than with the one calculating levels costs. However levelsum heuristic requires roughly an order of magnitude less in terms of exploration costs: number of node expansions, goal tests and nodes additions.

To summarise, informed search algorithms will perform better than uninformed ones with a carefully chosen heuristic. The choice of heuristic however highly depends on the problem domain and required **speed/memory tradeoff**: if graph exploration costs are relatively high, it would make sense to use a levelsum heuristic; and if speed is way more of a factor, then a heuristic which is ignoring preconditions will be a much better fit.