2 | 2020 - 2021 Hoc kỳ/ Năm hoc ÔN TÂP Ngày thi 2021 TRƯỜNG ĐH BÁCH KHOA Môn học Đai số tuyến tính - DHQG-HCM Mã môn học **MT1007** CA KHOA KHUD Thời lương 100 phút | Mã để | 001 Ghi chú: - Không được sử dụng: tài liệu, laptop. - Nôp lai để thi cùng với bài làm.

Câu 1. Hàm nào trong các hàm sau đây không là tích vô hướng trong \mathbb{R}_2 ?

- **A.** $(x, y) = 2x_1y_1 x_1y_2 + x_2y_1 + x_2y_2$.
- **B.** $(x, y) = 2x_1y_1 + x_2y_2$.
- **C.** $(x, y) = x_1y_2 + 5x_2y_1 + x_1y_2 + x_2y_1$.
- **D.** $(x, y) = x_1y_2 + 5x_2y_1 x_1y_2 x_2y_1$.

Câu 2. Trong không gian vecto V cho họ M = x, y, z, x + 2y. Khẳng định nào sau đây luôn đúng?

A. Hang M bằng 4.

B. M độc lập tuyến tính.

C. M phụ thuộc tuyến tính.

D. M sinh ra không gian 3 chiều.

Câu 3. Cho một quốc gia có ba ngành kinh tế: 1, 2 và 3 với ma trận hệ số đầu vào là $A = \begin{pmatrix} 0.4 & 0.2 & 0.4 \\ 0.2 & 0.3 & 0.1 \\ 0.3 & 0.5 & 0.2 \end{pmatrix}$

và ma trận cầu cuối $b = \begin{pmatrix} 50 \\ 80 \\ 60 \end{pmatrix}$. (Giả sử giá trị hàng hóa được tính bằng USD). Tính đầu ra của ngành 2.

- **A.** 324.305...
- **C.** 502.083..
- **D.** 465.972..

Câu 4. Ánh xạ $f: \mathbb{R}_2 \longrightarrow \mathbb{R}_2$ nào sau đây KHÔNG là ánh xạ tuyến tính?

- **A.** $f(x_1; x_2) = (x_2; 0)$. **B.** $f(x_1; x_2) = (x_2; x_1)$. **C.** $f(x_1; x_2) = (0; 0)$.

- **D.** $f(x_1; x_2) = (0; 1)$.

Câu 5. Cho ma trận $A = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$. Tìm tất cả các giá trị riêng của A^{-1} .

- **A.** Ba câu kia sai.
- **B.** {4; 9}.
- **C.** {1; 3}.
- **D.** $\left\{\frac{1}{4}; \frac{1}{9}\right\}$.

Câu 6. Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \to \mathbb{R}_3$, biết $f(x_1; x_2; x_3) = (2x_1 + x_2; -x_1 + x_2 + 2x_3; 2x_1 + x_2 + x_3)$. Tìm ma trận A của f theo cơ sở $E = \{(1; -1; 1), (-1; 0; 1), (2; 1; -3)\}.$

A.
$$\begin{pmatrix} 11 & 17 & 13 \\ 1 & 2 & 1 \\ -8 & -12 & -9 \end{pmatrix}$$
. B. $\begin{pmatrix} 5 & 12 & 6 \\ 1 & 3 & 1 \\ -4 & -9 & -4 \end{pmatrix}$. C. $\begin{pmatrix} 8 & 3 & -9 \\ 17 & 11 & -27 \\ 10 & 6 & -15 \end{pmatrix}$. D. $\begin{pmatrix} 3 & 0 & 0 \\ 8 & 8 & -19 \\ 3 & 3 & -7 \end{pmatrix}$.

B.
$$\begin{pmatrix} 5 & 12 & 6 \\ 1 & 3 & 1 \\ -4 & -9 & -4 \end{pmatrix}$$
.

$$\mathbf{C.} \begin{pmatrix} 8 & 3 & -9 \\ 17 & 11 & -27 \\ 10 & 6 & -15 \end{pmatrix}$$

$$\mathbf{D.} \begin{pmatrix} 3 & 0 & 0 \\ 8 & 8 & -19 \\ 3 & 3 & -7 \end{pmatrix}.$$

Câu 7. Trong không gian vecto V cho họ $M = \{x, y, z, x + 2y\}$. Khẳng định nào sau đây luôn đúng?

A. M độc lập tuyến tính.

B. Hang M bằng 4.

C. M sinh ra không gian 3 chiều.

D. M phụ thuộc tuyến tính.

Câu 8. Cho ánh xạ tuyến tính $f: \mathbb{R}_2 \longrightarrow \mathbb{R}_2$, biết ma trận của f trong cơ sở $E = \{(7,5), (3,2)\}$ là $A = \{(7,5), (3,2)\}$). Tính f(1; 3).

- **A.** (-13; 1).
- **B.** (218; -507).
- C. Ba câu kia sai.
- **D.** (11; 15).

Câu 9. Cho ma trận $A = \begin{pmatrix} -4 & 3 \\ -6 & 5 \end{pmatrix}$ và đa thức $f(x) = 5x^2 + 4x - 3$. Tìm tất cả các trị riêng của f(A).

- **A.** (-2; 25).

- **D.** (-4; 3).

Câu 10. Hàm nào sau đây là tích vô hướng trong \mathbb{R}^2 ?

- **A.** $(x, y) = 2x_1y_1 + x_1y_2 x_2y_1 + 3x_2y_2$.
- **B.** $(x, y) = x_1y_1 x_1y_2 x_2y_1 + x_2y_2$.

 $\mathbf{C.} (x, y) = 3x_1y_1 + 4x_2y_2 - x_1y_2.$

D. $(x, y) = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 6x_2y_2$.

Câu 11. Trong $\mathbb{P}_1[x]$ cho tích vô hướng $\forall p(x), q(x) \in P_1[x], (p,q) = \int_0^1 p(x)q(x)dx$. Tìm độ dài của véctơ f(x) = 3x.

- **A.** $\sqrt{3}$.
- **B.** 3.

C. $\sqrt{2}$.

D. 1.

Câu 39. Trong không gian \mathbb{R}_2 với tích vô hướng chính tắc. Tập nào trong các tập sau là trực chuẩn

A. $\{(1/\sqrt{2}; -1/\sqrt{2}), (1/\sqrt{2}; 1/\sqrt{2})\}.$

B. $\{(1/\sqrt{2}; -1/\sqrt{2}), (1; 0))\}.$

C. $\{(1/\sqrt{2}; -1/\sqrt{2}), (0; 0)\}.$

D. $\{(1;1),(1;-1)\}.$

Câu 40. Cho $\lambda_1 = 2$ là một trị riêng của ma trận A tương ứng với vecto riêng $X_0 = (1; 2; -1)^T$. Tính A^5X_0 .

A. $(32; 64; -32)^T$.

B. $(5; 10; -5)^T$.

C. $(2;4;-2)^T$.

D. $(1:2:-1)^T$.

PHẦN TỰ LUẬN

Câu 1. Giải hệ phương trình $\begin{cases} x_1'(t) = 4x_1 - 3x_2 + t^2 + t \\ x_2'(t) = 2x_1 - x_2 + e^{3t} \end{cases}$ bằng phương pháp chéo hoá.

Câu 2. Trong không gian \mathbb{R}^3 , $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$ với tích vô hướng $\langle x, y \rangle = 4x_1y_1 - x_1y_2 - x_2y_1 + 2x_2y_3 + 2x_3y_2 + 2x_2y_2 + 4x_3y_3$. Tìm một cơ sở trực giao của không gian con $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 - 2x_2 + x_3 = 0.\}$

Câu 3. Trong không gian \mathbb{R}^3 cho hai không gian con V = <(1, 2, 1), (2, 3, -1) > và W = <(1, 0, m), (n, 5, 1) >.

- a. Tìm m, n để $V \equiv W$;
- b. Cho x = (1, 2, 3), tìm $Pr_V(x)$.

----- HÊT-----