Can a mathematician and an engineer be friends?

Critical points to low-rank Hankel matrix approximation

Leonie Kayser & Sibren Lagauw leokayser.github.io
May 8, 2025

A mathematician and an engineer walk into a bar

Engineer	Mathematician				
Uses calculus	Teaches calculus				
Can build a bridge but doesn't know why it holds	Will count the number of possible bridges				
Likes two columns	Hates two columns				
Has funding from industry					
Likes the smell of whiteboard markers	Crazy for specific chalk from Japan				
Cares about real solutjons	Invents imaginary numbers and points at ∞ just to be right				
Wants solutions quickly	Wants correct solutions				

Realization of linear time-invariant difference equations

$$a_0\hat{y}_i + a_1\hat{y}_{i+1} + \dots + a_r\hat{y}_{i+r} = 0, \qquad i = 0,\dots, N-1-r$$

- \triangleright Discrete-time (physical) system generating signals $y = (y_0, y_1, \dots, y_{N-1})^\mathsf{T} \in \mathbb{R}^N$
- Explain observed data with a mathematical model
- ▷ Impose a model class: autonomous LTI models of finite order
 - autonomous = no input signals, no influence from outside world
 - linear = linear relation between past outputs
 - time-invariant = coefficients $a=(a_0,\ldots,a_r)^\mathsf{T}$ are independent of time
 - finite order r = the relation involves at most r past outputs
- $hd \hat{y}$ "model compliant" data

Roots of $a(z) = \sum_{i=0}^{r} a_i z^i$ determine dynamics of model

 \triangleright Simple roots: Each root λ generates mode $\operatorname{vand}(\lambda) = (1, \lambda, \lambda^2, \dots, \lambda^{N-1})^\mathsf{T}$

$$\hat{y} = \sum_{\lambda} c_{\lambda} \cdot \text{vand}(\lambda) = \left[\sum_{\lambda} c_{\lambda} \cdot \lambda^{k}\right]_{k=0}^{N-1}$$

- ightharpoonup Multiple roots introduce *confluent Vandermonde vectors* $rac{\partial^j}{\partial \lambda^j} \operatorname{vand}(\lambda)$
- ightarrow Magnitude of λ 's determines growth or decay, argument determines phase

Exact realization = Linear Algebra

- \triangleright Model population of rabbits $\hat{y} = (2, 3, 5, 8, 13)^{\mathsf{T}}$
- $\Rightarrow T_{N-r}^a \hat{y} = 0$ is equivalent to $H_r^{\hat{y}} a = 0$

 $=: T_{N-r}^a$ Toeplitz matrix $(N-r) \times N$

ho \hat{y} satisfies LTI difference equation iff $\operatorname{rank} H_r^{\hat{y}} \leq r$, all such \hat{y} form a variety

$$X_r := \left\{ \hat{y} \in \mathbb{C}^N \mid \operatorname{rank} H_r^{\hat{y}} \le r \right\}$$

ightharpoonup Identify model a via kernel of Hankel matrix, $\operatorname{Ker}\left[egin{smallmatrix} 2 & 3 & 5 \ 3 & 5 & 8 \ 5 & 8 & 13 \end{smallmatrix}
ight] = \mathbb{R}\left(egin{smallmatrix} -1 \ -1 \ 1 \end{smallmatrix}
ight)$

$$\begin{bmatrix} a_0 & a_1 & \cdots & a_r & & \\ & a_0 & a_1 & \cdots & a_r & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & & & a_0 & a_1 & \cdots & a_r \end{bmatrix} \begin{pmatrix} \hat{y}_0 \\ \vdots \\ \hat{y}_{N-1} \end{pmatrix} = \begin{bmatrix} \hat{y}_0 & \hat{y}_1 & \cdots & \hat{y}_r \\ \hat{y}_1 & \hat{y}_2 & \cdots & \hat{y}_{r+1} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{y}_{N-r-1} & \hat{y}_{N-r} & \cdots & y_{N-1} \end{bmatrix} \begin{pmatrix} a_0 \\ \vdots \\ a_r \end{pmatrix} \stackrel{!}{=} 0$$

 $=: H_r^{\hat{y}}$ Hankel matrix $(N-r) \times (r+1)$

Least squares realization

- ho Fix a 2-norm on \mathbb{R}^N , $Q(y) = \frac{1}{2} ||y||^2 = \frac{1}{2} y^\mathsf{T} \Lambda y$
- ho Real world scenario: Don't have access to \hat{y} , measure noisy $y = \hat{y} + \varepsilon$
- ightarrow y never satisfies a difference equation exactly, $\operatorname{rank} H^y_r = r+1$ almost surely
 - \triangleright If ε is Gaussian white noise, then closest \hat{y} is maximum likelihood estimator

$$\hat{y} = \underset{\hat{y} \in X_r(\mathbb{R})}{\operatorname{argmin}} \|y - \hat{y}\|^2 = \underset{\hat{y} \in X_r(\mathbb{R})}{\operatorname{argmin}} \mathcal{L}(\hat{y} \mid y = \hat{y} + \varepsilon)$$

> Constraint optimization problem: Impose rank condition on \hat{y}

Heuristic approaches

- ▷ First idea goes back to Prony [PGDB95]
- ightharpoonup Cadzow's method [Cad88] (assume standard norm on \mathbb{R}^N)
 - 1. Compute SVD of $H_r^y = U\Sigma V^\mathsf{T}$, singular values $\sigma_1 \geq \cdots \geq \sigma_{r+1} > 0$
 - 2. Setting $\sigma_{r+1} \leadsto 0$ yields rank-deficient matrix H', but lose Hankel structure
 - 3. Approximate H^\prime by Hankel matrix $H_r^{y^\prime}$, lose rank-deficiency
 - 4. Iterate 1.-3. until convergence to rank-deficient Hankel matrix
- ▷ Eckart–Young theorem: SVD gives optimal low rank approximation of a matrix
- Other heuristic approaches: iterative quadratic maximum likelihood (IQML), Steiglitz–McBride, for a comparison see [LVVHDM01]
- ▶ What if we care about *global* minima?

Let's get FONCy!

- $ho \ \mathbb{P}(X_r)$ is not smooth, $\{(y,a) \in \mathbb{P}^{N-1} \times \mathbb{P}^r \mid H^y_r \cdot a = 0\}$ is desingularization
- Prefer this formulation of the optimization problem

ho Introduce Lagrange multipliers $\ell \in \mathbb{R}^{N-r}$ to make unconstrained problem

$$\mathcal{L}_y(\hat{y}, a, \textcolor{red}{\ell}) = Q(\hat{y} - y) + \textcolor{red}{\ell^{\mathsf{T}}} \cdot H_r^{\hat{y}} \cdot a$$

▷ First order necessary conditions for optimality:

$$0 \stackrel{!}{=} \frac{\partial \mathcal{L}_y}{\partial \hat{y}} = \Lambda(\hat{y} - y) + (T_{N-r}^a)^{\mathsf{T}} \boldsymbol{\ell}$$
$$0 \stackrel{!}{=} \frac{\partial \mathcal{L}_y}{\partial a} = (H_r^{\hat{y}})^{\mathsf{T}} \boldsymbol{\ell} = \underline{T_{N-2r}^{\ell}} \hat{y}, \qquad 0 \stackrel{!}{=} \frac{\partial \mathcal{L}_y}{\partial \boldsymbol{\ell}} = H_r^{\hat{y}} a = T_{N-r}^a \hat{y}$$

Lower-rank solutions are never optimal

Lemma

If (\hat{y}, a, ℓ) is a solution to the FONC with rank $H_r^{\hat{y}} \leq r - 1$, then \hat{y} is **not** a local minimum of $Q(\hat{y} - y)$ on X_r .

Idea: Can use additional degrees of freedom $\hat{y} + c \cdot \text{vand}(\lambda)$ to decrease norm

Theorem (Characterization of rank r solutions)

Consider a solution (\hat{y}, a, ℓ) , interpret $a \in S_{\leq r} := \mathbb{R}[z]_{\leq r}$, $\ell \in \mathbb{R}^{N-r} = S_{\leq N-r-1}$.

- 1. If rank $H^{\hat{y}} = r$, then $\ell = g \cdot a$ (as polynomials) for some $g \in S_{\leq N-2r-1}$
- 2. If y is sufficiently random, then $\ell = g \cdot a$ also implies $\operatorname{rank} H^{\hat{y}} = r$.

Idea: 1. Linear algebra (apolarity) 2. Dimension argument

Putting it all together

$$0 \stackrel{!}{=} \frac{\partial \mathcal{L}_{y}}{\partial \hat{y}} = \Lambda(\hat{y} - y) + (T_{N-r}^{a})^{\mathsf{T}} \boldsymbol{\ell} \qquad \qquad \boldsymbol{\ell} \stackrel{!}{=} g \cdot a$$

$$0 \stackrel{!}{=} \frac{\partial \mathcal{L}_{y}}{\partial a} = T_{N-2r}^{\ell} \hat{y} \qquad \qquad 0 \stackrel{!}{=} \frac{\partial \mathcal{L}_{y}}{\partial \ell} = T_{N-r}^{a} \hat{y}$$

- \triangleright First equation allows to eliminate \hat{y} : $\hat{y} := y \Lambda^{-1}(a \cdot \ell)$
- \triangleright Assuming y is general, we can substitute $\ell \coloneqq g \cdot a$ and simplify

Theorem

For general y, the FONC solutions (\hat{y}, a, ℓ) correspond to solutions (a, g) to

$$T_{N-r}^a y = T_{N-r}^a \Lambda^{-1} (T_{N-r}^a)^\mathsf{T} (T_{N-2r}^a)^\mathsf{T} g = T_{N-r}^a \Lambda^{-1} (a^2 \cdot g).$$

The isomorphism is given by $\ell = a \cdot g$, $\hat{y} = y - \Lambda^{-1}(a^2 \cdot g)$.

The bad locus

ightharpoonup Reduced to system of N-r polynomial equations in $(a,g)\in (\mathbb{C}^{r+1}\setminus 0)\times \mathbb{C}^{N-2r}$

$$T_{N-r}^{a}y = B_{\Lambda}(a)g, \qquad B_{\Lambda}(a) := T_{N-r}^{a}\Lambda^{-1}(T_{N-r}^{a})^{\mathsf{T}}(T_{N-2r}^{a})^{\mathsf{T}}$$

 \triangleright Almost linear in g, homogenize by g_{-1}

$$YAG := \{ (y, a, (g_{-1} : g)) \mid T_{N-r}^a y \cdot g_{-1} = B_{\Lambda}(a)g \} \subseteq \mathbb{C}^N \times \mathcal{G} \times \mathbb{P}^{N-2r}$$

- $\triangleright g_{-1}$ can vanish if and only if $B_{\Lambda}(a)$ becomes rank-deficient for some $a \neq 0$
- ho Good locus $\mathcal{G} \coloneqq \{ a \in \mathbb{C}^{r+1} \mid \operatorname{rank} B_{\Lambda}(a) = N 2r \}$, bad locus $\mathcal{B} \coloneqq \mathbb{C}^{r+1} \setminus \mathcal{G}$

Lemma

YAG is a smooth irreducible global complete intersection of dimension N+1 and codimension N-r in $\mathbb{C}^N \times \mathcal{G} \times \mathbb{P}^{N-2r}$

Assumption: The set $\mathbb{P}(\mathcal{B})$ should be finite. General Λ : $\mathbb{P}(\mathcal{B}) = \emptyset$

The multi-parameter eigenvalue problem

Rearrange polynomial system to reveal MEP structure

$$T_{N-r}^{a}y \cdot g_{-1} = B_{\Lambda}(a) \cdot g \qquad \Longleftrightarrow \qquad \underbrace{\left[T_{N-r}^{a}y \mid B_{\Lambda}(a)\right]}_{=:M(a,y)} \cdot \begin{pmatrix} -g_{-1} \\ g \end{pmatrix} = 0$$

 \triangleright This is almost homogeneous in y, after projecting onto (a,y) we have

$$AY := \{ (a, y) \mid \operatorname{rank} M(a, y) \leq N - 2r \} \subseteq \mathbb{P}(\mathcal{G}) \times \mathbb{P}^{N-1}$$

riangleright AY has the structure of a projective subbundle $\mathbb{P}(\mathcal{F})\subseteq \mathbb{P}(\mathcal{O}^N_{\mathbb{P}(\mathcal{G})})$

Theorem

AY is a smooth irreducible variety of dimension N-1 and codimension r in $\mathbb{P}^{N-1} \times \mathbb{P}\mathcal{G}$.

riangleright Restricting to a (general) $y \in \mathbb{P}^{N-1}$, we obtain a finite reduced set of solutions!

AY is a determinantal variety

Lemma

Let M be a "tall" $m \times (n+1)$ -matrix with polynomial entries over a variety X and

$$\mathcal{K} = \{ (x, [v]) \mid M(x) \cdot v = 0 \} \subseteq X \times \mathbb{P}^n.$$

Let Z be the projection of K onto X. If K is reduced and for all $x \in X$ one has $\operatorname{rank} M(x) \in \{n, n+1\}$, then the ideal of Z is given by the (n+1)-minors of M.

$$AY := \{ (a, y) \mid \operatorname{rank} M(a, y) \leq N - 2r \} \subseteq \mathbb{P}(\mathcal{G}) \times \mathbb{P}^{N-1}$$

Corollary

- 1. The prime ideal of AY is locally given by the (N-2r+1)-minors of M(a,y).
- 2. Restricting to a general $y \in \mathbb{P}^{N-1}$, the system of minors of M(a, y) defines a finite set of reduced points in $\mathbb{P}(\mathcal{G})$, and hence in \mathbb{P}^r (assuming $\mathbb{P}(\mathcal{B})$ finite).

Intersection theory saves the day

$$AY := \{ (a, y) \mid \operatorname{rank} M(a, y) \leq k \} \subseteq \mathbb{P}^r \times \mathbb{P}^{N-1}, \qquad k := N - 2r$$

- \triangleright Assume $\mathcal{B} = \emptyset$, satisfies for general Λ
- $\triangleright AY$ has the expected dimension 0, hence Porteous formula applies
- $\triangleright M(a,y) = [T_{N-r}^a y \mid B_{\Lambda}(a)]$ has entries of degree (1,1) and (3,0) (k columns)

Theorem (A formula for $\mathrm{EDD}_{\mathrm{gen}}(X_r)$)

In the Chow ring $A^{\bullet}(\mathbb{P}^r \times \mathbb{P}^{N-1}) = \mathbb{Z}[\alpha, \beta]/\langle \alpha^{r+1}, \beta^N \rangle$ we have

$$[AY] = \left\{ \frac{1}{(1 - (\alpha + \beta))(1 - 3\alpha)^k} \right\}^r = \sum_{i=0}^r \sum_{j=0}^j \binom{k+r}{j-i} \binom{k-1+i}{i} 2^i \alpha^j \beta^{r-j}.$$

For general y, the number of solutions is $\sum_{i=0}^r \binom{k+r}{r-i} \binom{k-1+i}{i} 2^i = \sum_{j=0}^r \binom{k-1+j}{j} 3^j$.

What if the bad locus is non-empty?

- $\triangleright \mathbb{P}(\mathcal{B}) = \emptyset$ iff $B_{\Lambda}(a) = T_{N-r}^a \Lambda^{-1} (T_{N-r}^a)^{\mathsf{T}} (T_{N-2r}^a)^{\mathsf{T}}$ has full rank for all $a \neq 0$
- \triangleright Recovers formula for $EDD_{gen}(X_r)$ from [OSS14, Theorem 3.7]
- $\,\,\,\,\,\,\,\,\,$ If $\mathbb{P}(\mathcal{B})$ is non-empty but finite, then the determinantal formula still applies:

$$\mathrm{EDD}_{\Lambda}(X_r) = \sum_{j=0}^r \binom{k-1+j}{j} 3^j - (\text{multiplicity of } \mathcal{B} \text{ in ideal of minors of } M(a,y))$$

Theorem

Assume that $\mathbb{P}(\mathcal{B})$ is finite. One has

$$\mathrm{EDD}_{\mathrm{gen}}(X_r) - \deg \mathcal{B}^{\mathsf{red}} \geq \mathrm{EDD}_{\Lambda}(X_r) \geq \mathrm{EDD}_{\mathrm{gen}}(X_r) - \deg(\mathsf{minors\ of\ } B_{\Lambda}(a)).$$

The latter inequality is strict if and only if the multiplicity structure of \mathcal{B} in the ideal of minors of M(a,y) does depend on y. This can be verified explicitly.

Some special weights

$N \setminus r$	1	2	3	$N \setminus r$	1	2	3
3	4			3	2		
4	7			4	3		
5	10	13		5	4	7	
6	13	34		6	5	16	
7	16	64	40	7			
8	19	103	142	8	7	43	134

- ightarrow EDD's for standard norm (left) and Bombieri–Weyl norm (right)
- $\,\,\vartriangleright\,\,$ Bombieri–Weyl & (N,r)=(8,2) is the first case where the inequality is strict
- ▷ Efficient implementation in Macaulay2

The weight discriminant

▷ The weight discriminant is the set of norms giving subgeneric ED degree

$$\nabla_{\mathsf{EDw}}(X_r) = \overline{\{\Lambda \mid \operatorname{rank} \Lambda = N, \ \operatorname{EDD}_{\Lambda}(X_r) < \operatorname{EDD}_{\operatorname{gen}}(X_r)\}} \subseteq \mathbb{P}(\operatorname{Sym}(N))$$

- > This is an irreducible variety, expected to be a hypersurface
- ho Using diagonal weights Λ in the definition gives $\nabla_{\mathsf{EDw},\mathsf{diag}}(X_r) \subseteq \mathbb{P}(\mathrm{Diag}(N))$

Theorem (The case r=1)

For $r = 1, N \ge 3$ the discriminants are irreducible hypersurfaces

$$\deg \nabla_{\mathsf{EDw}}(X_1) = 4N - 6, \qquad \deg \nabla_{\mathsf{EDw},\mathsf{diag}}(X_1) = 2N - 4.$$

 $\nabla_{\mathsf{EDw},\mathsf{diag}}$ is the discriminant of a degree N-1 polynomial, the two are related by

$$\Delta_{\mathsf{EDw}}(X_1)|_{\mathsf{Diag}(N)} = \lambda_0 \cdot \lambda_{N-1} \cdot \Delta_{\mathsf{EDw},\mathsf{diag}}(X_1)^2.$$

The ED discriminant

- hirphi Fixing Λ , our computation still relied on genericity of y
- ightharpoonup The ED discriminant consists of $y \in \mathbb{C}^N$ such that the system has a multiple solution a.

Figure 1: General and special (Bombieri-Weyl) weights

Thank you! Questions?

References i

Singal enhancement: a composite property mapping algorithm.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(2):49–62, 1988.

P. Lemmerling, L. Vanhamme, S. Van Huffel, and B. De Moor.

IQML-like algorithms for solving structured total least squares problems: a unified view.

Signal Processing, 81:1935–1945, 2001.

References i

C. Prony, F. M. Gaspard, and R. De Baron.

Essai experimental et analytique, ect.

Journal de l'Ecole Polytechnique de Paris, 1:24-76, 1795.

Image credit

- ▷ Slide 3: "With permission" from Sibren's lecture on systems theory
- ▷ Slide 17: Thanks to Luca Sodomaco for letting me use his graphics!