Week of 10/16 Deliverables

Team cobalt

Last week's goals

- Replicate good registration results from daniel
- Survey papers and write pseudocode for 1 of each of the following in cell detection workflow:
 - Preprocessing
 - Thresholding/binarization
 - Edge detection/blob detection
 - Clustering /refinement
 - Comprehensive survey: https://www.ncbi.nlm.nih.gov/pubmed/26742143
- Implement algorithm in this paper Hessian-based DoG for blob detection

Survey of different cell detection methods

- Reviewed
 - Distance transformations
 - Morphological operators
 - HIT/HAT
 - Hough transforms
 - LoG filtering
 - MSER detection
 - Radial symmetry based voting (RST)
 - Supervised learning (i.e. SVM, random forest, CNN)
 - Review paper: https://www.ncbi.nlm.nih.gov/pubmed/26742143
- Findings: http://bit.ly/2z7Jp39
 - (Look at table of performance of algorithms)

- Most promising methods:
 - LoG, MSER, RST
- LoG = fastest and most well suited for big data
- RST and MSER = more accurate and robust but slower

- Papers of interest:
 - Automatic Ki-67 counting using robust cell detection and online dictionary learning.
 - Detecting overlapping instances in microscopy images using extremal region trees
 - Automatic Nuclei Detection Based on Generalized Laplacian of Gaussian Filters
- Supervised learning is also one of the best performing.
 Should be visited if the opportunity with data presents itself

Region-based hierarchical voting in a distance transform map

- 1. Calculate the euclidean distance map $C_{\ell}(x,y)$
- 2. Calculate the cone shaped voting area $A_{\ell}(x,y)$ for each pixel
- 3. For each pixels (x, y) in each layer
 - (a) Count the number of pixels in its neighborhood S with voting areas that include (x, y)
 - (b) Compute the gaussian kernel at this point
 - (c) Set the product of the gaussian kernel, count from (b), and EDT as its confidence map value
- Run mean-shift clustering to calculate the centers.

$$V_{\ell}(x, y) = \sum_{\ell=0}^{L} \sum_{(m,n)\in S} I[(x, y) \in A_{\ell}(m, n)] C_{\ell}(m, n) g(m, n, \mu_x, \mu_y, \sigma)$$
 (2)

- Wrote pseudo code (will implement next week)
- Math description:

 https://github.com/N
 euroDataDesign/clari
 ty-f17s18/blob/maste
 r/docs/jyim6/neuroda
 ta-algorithms.pdf
- Paper: https://www.ncbi.nlm
 .nih.gov/pubmed/245
 57687

Registration - <u>notebook</u>

Evaluation of Thresholding and Binarization Preprocessing Techniques

- 2 scenarios
 - Image histogram is well spread
 - Techniques work well
 - Image only consists of low intensity values
 - Not sure this needs to be equalized because these low intensity values could just be noise, and not many actual cells are in the slice

Adaptive equalization > otsu > erosion > opening

Works well for images with brighter points

Same process, but for a low intensity image.

Binarization picks up a lot of noise

Median of otsu thresholds for each of the slices in the subvolume

Hessian-based DoG - Blob Detection

- 1. Perform scale invariant Difference of Gaussian (DoG) transformation for the given image. For a given voxel (x, y, z) let this be DoG(x, y, z; t) where t is the scale parameter.
- 2. Find the hessian matrix of DoG(x,y,z;t) and call it H(DoG(x,y,z,t))
- At each voxel (x, y, z) find if the hessian matrix at that voxel is a negative definite matrix.
 - a. This can be done by finding out the three leading principal minors D1, D2 and D3 and checking if D1 < 0, D2 > 0 and D3 < 0.
 - b. If a voxel satisfies this condition, then that voxel and the 6-connected candidate is considered as a candidate blob region T
- For each of the candidate region T find the R_T (Regional <u>Blobness</u>), S_T (Regional flatness) and A_T (Average intensity of the region) given by the below formula.

$$R_{T} = \frac{3 \times \left| det(H_{T}) \right|^{\frac{2}{3}}}{pm(H_{T})} \quad S_{T} = \sqrt{\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}}$$

5. Input the above three parameters to a variational Bayesian Gaussian Mixture Model (VBGMM) and segment into blob and non-blob regions using Bayesian (or MCMC approximation) Inference.

- Implemented Code
- The notebook will be implemented next week along with the cell detection package

Hessian-based DoG - Blob Detection

Good things

- Low intensity blobs are identified with good amount of precision
- The post-pruning method to remove false positives is completely unsupervised unlike many blob detection algorithms

Bad things

- Hessian analysis is time consuming and took ~ 8 minutes for a 1000 x 1000 x 100 volume
- How bayesian inference is performed is not clearly explained in the literature

Key takeaway

Though we are yet to quantitatively evaluate H-DoG against different datasets, it looks like a promising algorithm for <u>low intensity blobs</u> and the post-pruning is unsupervised and effective

Next week

- Implement basic python package to perform cell detection (w/ LoG)
 - Input: Single subvolume of data
 - Output: csv of cell centroids, metrics using blob-metrics
 - Delivered on our github repo
- Quantitatively test ensemble method on simulated data
 - DoD: markdown file with results on simulated data (see <u>here</u> for template)
- Compile a list of preprocessing/noise removal methods traditionally used in LSFM
 - DoD: markdown file with current state-of-the-art for LSFM preprocessing and thresholding including links to papers