Logistic Regression + ROC Curves (all figures from StatQuest)

Nazerfard, Ehsan nazerfard@aut.ac.ir

Logistic Distribution

Parameters	μ , location (real)
	s>0, scale (real)
Support	$x\in (-\infty,\infty)$
PDF	$e^{-(x-\mu/)s}$
	$\overline{sig(1+e^{-(x-\mu)/s}ig)^2}$
CDF	1
	$\overline{1+e^{-(x-\mu)/s}}$
Mean	μ
Median	μ
Mode	μ
Variance	$s^2\pi^2$
	3

Logistic Function

Logistic Function (cont.)

$$\frac{dg(z)}{dz} = g(z)[1 - g(z)]$$

Idea

Let's use the non-linear regression algorithm for a classification task.

Consider the Tumor Prognosis problem.

Sample Tumor Data

Figure © statQuest

Sample Data

Fitting a Logistic Function

The Y-axis

Tumor Size

Logistic Regression

□ If $Probability(x) \ge 0.5 \rightarrow$ The Tumor is malignant

o x is a tumor size

$$p(Y = 1|X = x) = \frac{1}{1 + \exp(-x)}$$

o x is a tumor size

o x is a tumor size

$$p(Y = 1|X = x) = \frac{1}{1 + \exp(-x)} \to p(Y = 0|X = x) = \frac{\exp(-x)}{1 + \exp(-x)}$$

- The precise form of a Gaussian naïve Bayes is obtained!
- As the # of training examples grow toward infinity, Gaussian naïve Bayes and Logistic Regression converge toward identical classifiers.

$$p(Y = 1|X = x) = \frac{1}{1 + \exp(-x)} \to p(Y = 0|X = x) = \frac{\exp(-x)}{1 + \exp(-x)}$$

- The precise form of a Gaussian naïve Bayes is obtained!
- As the # of training examples grow toward infinity, Gaussian naïve Bayes and Logistic Regression converge toward identical classifiers.
- * Logistic regression directly estimates the parameters of P(Y|X), whereas naïve Bayes directly estimates parameters for P(Y) and P(X|Y).
- The former is called a discriminative classifier, and the latter a generative classifier.

Further Reading

Andrew Ng., Michael Jordan, On Discriminative vs.
Generative classifiers: A comparison of logistic regression and naïve Bayes, NIPS 2001.

Further Reading (cont.)

- Generative Adversarial Networks (GANs)
- □ I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, Advances in neural information processing systems 27, 2672-2680.

Evaluation: False Predictions

Confusion Matrix

Confusions corresponding the Threshold = 0.5

Threshold is set to 0.1

Corresponding Confusion Matrix

Threshold is set to 0.9

Corresponding Confusion Matrix

ROC Curves

- Receiver operator characteristic curves (ROC curves) provide a way to summarize all confusion matrices correspond to different thresholds.
- Starting with the threshold that classifies all samples as malignant.

ROC Curves (cont.)

Corresponding point to threshold zero.

ROC Curves (cont.)

ROC Curves (cont.)

■ How to determine which threshold is the best?

Area Under Curve (AUC)

Comparing Different Classifiers

Summary

- An ROC curve (receiver operator characteristic curve) is a graph showing the performance of a classification model at all classification thresholds.
- It is worth noting that even though the example in this lecture was based on logistic regression (LR), ROC curves are not limited to LR and apply to all types of classifiers.

Further Reading

The Precision-Recall Curve is more informative than ROC curve when dataset is imbalanced. Why?

References

- Logistic Regression and ROC lectures on StatQuest
- Tom Mitchell, Generative and Discriminative Classifiers: Naïve Bayes and Logistic Regression, Machine Learning (2nd ed.), Chapter 3, McGraw Hill, 2015 (last visit!!).