

Informe 10: Laboratorio de Máquinas

"Curvas características de una bomba centrífuga"

Nombre: Constanza Puentes Vergara Asignatura: Laboratorio de máquinas ICM557-3 Escuela Ingeniería Mecánica PUCV Profesores: Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz

Ayudante: Ignacio Ramos

Fecha de entrega: 11 de Diciembre del 2020

Índice	
Informe 10: Laboratorio de Máquinas	1
"Curvas características de una bomba centrífuga"	1
Introducción	3
Fórmulas	4
Donde: γ: Peso específico del agua en [N/m3]	5
Datos previos	6
Tabla de valores medidos	7
Tabla de valores calculados	8
Desarrollo	10
Grafique, comente y explique	10
Conclusiones	13
Anexos	14

Introducción

Las bombas, son máquinas importantes dentro del ámbito ingenieril, es importante su comportamiento en cuanto a curvas, como datos que uno obtiene en cada ensayo de estas, en este informe, se analizará principalmente el comportamiento de una bomba centrífuga mediante sus curvas características.

Fórmulas

Las fórmulas a utilizar en el siguiente informe serán las siguientes:

Caudal corregido:

$$Q = Qx * \left(\frac{n}{nx}\right) [m^3/h]$$
 Ecuación (1)

• Presión de aspiración:

$$pax = 0.1 * pax\% - 10 - \left(\frac{cpax}{1000}\right) [m_{ca}]$$
 Ecuación (2)

Donde: cpax=115 [mm].

• Presión de descarga:

$$pdx = 0.4*pdx\% + \left(\frac{cpdx}{1000}\right) [m_{ca}] \qquad \textit{Ecuación (3)}$$

$$cpdx = 165 \ [mm].$$

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$ *Ecuación (4)*

• Altura corregida:

$$H = Hx * \left(\frac{n}{nx}\right)^2 [m_{ca}]$$
 Ecuación (5)

• Potencia en el eje de la bomba:

$$Nex = 0.0007355 * Fx * nx [kW]$$
 Ecuación (6)

Potencia en el eje de la bomba corregida:

Ne = Nex *
$$\left(\frac{n}{nx}\right)^3 [kW]$$
 Ecuación (7)

Potencia hidráulica:

Nh =
$$\gamma * \frac{Q*H}{3600} [kW]$$
 Ecuación (8)

Donde: γ: Peso específico del agua en [N/m³]

• Rendimiento Global:

$$\eta_{gl} = 100 * \frac{Nh}{Ne} [\%]$$
 Ecuación (9)

• Velocidad tangencial del rodete de descarga:

$$U_2 = \frac{\pi}{60} * n * D_2 \left[\frac{m}{s} \right] \quad \textit{Ecuación (10)}$$

• Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600*\pi*D_2*B_2} [m/s]$$
 Ecuación (11)

 $\label{eq:Donde:D2:diámetro} \textbf{Donde:} \ \textbf{D}_2 \text{: diámetro exterior del rodete;} \ \textbf{B}_2 \text{: ancho exterior del rodete.}$

• Phi:

$$\phi = \frac{cm_2}{U_2} [-] \quad Ecuación (12)$$

Psi:

$$\psi = \frac{2*g*H}{U_2^2}$$
 [-] Ecuación (13)

Datos previos

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Gráfico 1: Obtención de Caudal mediante h

Tabla de valores medidos.

				VALC	DRES M	EDIDOS				
					3070 [rp	m]				
n°	n	срах	cpdx	nx	рах	pdx	∆hx	Fx	T	P _{atm}
11	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

Tabla 1: Datos registrados en la medición a 3070[rpm]

				VALC	RES M	EDIDOS			•	
					2900 [rp	m]				
n°	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
П	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7

Tabla 2: Datos registrados en la medición a 2900[rpm]

				VALC	DRES M	EDIDOS				•
					2700 [rp	m]				
n°	n	срах	cpdx	nx	рах	pdx	∆hx	Fx	Т	P _{atm}
- 11	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

Tabla 3: Datos registrados en la medición a 2700[rpm]

Tabla de valores calculados.

			TABLA	A DE VA	LORES C	ALCULA	DOS, PA	RA N=30	70[rpm]				
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Φ	Ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
115,20	115,01	-1,17	2,77	3,93	3,62	3,48	3,08	1,16	37,58	21,74	3,10	0,14	0,15
108,72	108,51	-0,91	5,61	6,52	6,00	3,80	3,35	1,81	53,91	21,74	2,92	0,13	0,25
102,60	102,40	-0,64	7,93	8,56	7,87	4,05	3,57	2,24	62,69	21,74	2,76	0,13	0,33
95,40	95,21	-0,41	9,97	10,38	9,55	4,19	3,69	2,53	68,39	21,74	2,57	0,12	0,40
88,20	88,00	-0,17	11,81	11,98	11,01	4,28	3,77	2,69	71,41	21,75	2,37	0,11	0,46
82,80	82,58	0,06	13,93	13,87	12,74	4,32	3,81	2,92	76,78	21,76	2,23	0,10	0,53
71,28	71,09	0,41	16,69	16,28	14,95	4,35	3,83	2,95	77,18	21,76	1,92	0,09	0,62
61,20	61,04	0,65	18,65	18,00	16,53	4,28	3,77	2,80	74,43	21,76	1,65	0,08	0,69
50,40	50,27	0,89	19,85	18,96	17,42	4,14	3,65	2,43	66,68	21,76	1,35	0,06	0,72
35,28	35,20	1,14	21,93	20,79	19,11	3,82	3,37	1,87	55,44	21,75	0,95	0,04	0,79
26,28	26,21	1,32	22,93	21,61	19,85	3,51	3,09	1,45	46,79	21,76	0,71	0,03	0,82
0,00	0,00	1,94	25,01	23,07	21,19	2,56	2,25	0,00	0,00	21,76	0,00	0,00	0,88

Tabla 4: Valores calculados para n=3070[rpm]

			TABL	DE VA	LORES C	ALCULA	DOS, PA	RA N=29	00[rpm]				
\mathbf{Q}_{x}	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Φ	Ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
109,08	108,97	-0,97	2,65	3,61	3,73	2,93	3,07	1,13	36,76	20,52	2,94	0,14	0,17
104,76	104,65	-0,72	5,25	5,97	6,16	3,14	3,29	1,79	54,41	20,52	2,82	0,14	0,29
98,28	98,18	-0,48	6,73	7,21	7,45	3,31	3,47	2,03	58,47	20,52	2,65	0,13	0,35
92,16	92,06	-0,24	8,73	8,97	9,26	3,46	3,63	2,37	65,26	20,52	2,48	0,12	0,43
84,60	84,51	-0,06	10,61	10,67	11,02	3,52	3,70	2,59	69,97	20,52	2,28	0,11	0,51
78,48	78,43	0,23	12,37	12,14	12,54	3,59	3,77	2,73	72,55	20,51	2,11	0,10	0,58
70,20	70,10	0,45	14,37	13,92	14,36	3,61	3,78	2,80	73,92	20,53	1,89	0,09	0,67
61,20	61,16	0,70	16,25	15,55	16,07	3,59	3,77	2,73	72,47	20,51	1,65	0,08	0,75
50,40	50,35	0,89	17,89	17,00	17,55	3,42	3,58	2,46	68,49	20,52	1,36	0,07	0,82
37,80	37,76	1,12	19,41	18,29	18,89	3,18	3,34	1,98	59,34	20,52	1,02	0,05	0,88
24,12	24,09	1,35	20,65	19,30	19,92	2,93	3,07	1,33	43,44	20,53	0,65	0,03	0,93
0,00	0,00	1,84	22,61	20,77	21,43	2,01	2,10	0,00	0,00	20,53	0,00	0,00	1,00

Tabla 5: Valores calculados para n=2900[rpm]

			TABLA	DE VAL	ORES CA	LCULA	OOS, PAR	A N = 27	/00 [rpm]			
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Φ	Ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
101,16	101,09	-0,69	2,49	3,17	3,17	2,31	2,30	0,89	38,64	19,10	2,72	0,14	0,17
98,64	98,53	-0,44	4,37	4,80	4,79	2,47	2,46	1,31	53,35	19,11	2,66	0,14	0,26
91,08	90,98	-0,26	5,97	6,23	6,22	2,58	2,58	1,57	60,99	19,11	2,45	0,13	0,33
84,60	84,51	-0,12	7,41	7,52	7,50	2,66	2,66	1,76	66,34	19,11	2,28	0,12	0,40
79,20	79,14	0,13	9,21	9,08	9,07	2,74	2,74	1,99	72,84	19,10	2,13	0,11	0,49
72,72	72,64	0,37	10,93	10,56	10,54	2,78	2,77	2,13	76,64	19,11	1,96	0,10	0,57
65,88	65,81	0,60	13,01	12,41	12,38	2,78	2,77	2,26	81,60	19,11	1,77	0,09	0,67
59,76	59,72	0,80	14,61	13,81	13,79	2,74	2,74	2,29	83,59	19,10	1,61	0,08	0,74
52,92	52,88	1,02	16,13	15,11	15,09	2,58	2,58	2,22	85,97	19,10	1,43	0,07	0,81
46,08	46,03	1,25	17,57	16,32	16,28	2,35	2,34	2,08	89,05	19,11	1,24	0,06	0,87
34,20	34,16	1,38	18,29	16,91	16,87	2,09	2,08	1,60	76,96	19,11	0,92	0,05	0,91
0,00	0,00	1,85	19,81	17,96	17,92	1,55	1,55	0,00	0,00	19,11	0,00	0,00	0,96

Tabla 6: Valores calculados para 2700[rpm]

Desarrollo

Grafique, comente y explique

Gráfico de isorendimiento y potencia vs caudal.

Gráfico 2: Potencia vs. caudal

- ¿Cuáles son las condiciones óptimas de operación de esta bomba? Serían las condiciones cuando llega a su punto máximo en las curvas, es decir, entre los 60-80 $[m^3/h]$, para cualquier velocidad rotacional [rpm].
- ¿Las curvas tiene la forma esperada?

Si, puesto que no existen desviaciones anómalas entre ellas, o sea solo pequeñas variaciones por efectos de cálculos y de las propias consideraciones y aproximaciones realizadas del gráfico 1, pero en general son similares, y además son similares a las que vimos en clases con el profesor para las curvas de bombas.

• ¿Cuál es la potencia máxima consumida?

Son 3,87[kW], para la curva de 3070[rpm]

¿Qué tipo de curvas son?

Curvas tipo semejante a una parábola, dependiendo de los intervalos que se tomen y las medidas, es decir, las tradicionales para este tipo de bombas y parámetros.

Gráfico Ψ vs Φ.

Gráfico 3: Ψ vs Φ .

• ¿La nube de puntos que conforman esta curva son muy dispersos?

No tanto según la apreciación propia, puesto que la diferencia entre curvas es muy mínima, lo que podríamos inferir que sus comportamientos son similares, que es lo que corresponde, puesto que se trabaja con la misma bomba para las mediciones con diferentes [rpm].

• Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es?

Podríamos decir que es una bomba centrífuga, que trabaja con velocidad media, por el tipo de curva y relación que podemos deducir del gráfico 1 y de las tablas calculadas anteriormente, es decir, a medida que aumenta el caudal, también tiende a aumentar la potencia.

Conclusiones

En el presente informe, pudimos apreciar el comportamiento general de una bomba, a diferentes velocidades rotacionales, algunas de sus curvas más importantes y tener un acercamiento a lo que ocurre en algunos parámetros de ellos.

Anexos

MARCA - MODELO	DN/DA	DN/D D	D_1	D_2	D _C	B_1	B_2	b ₁	b ₂	Z
	in	in	mm	mm	mm	mm	mm	0	0	-
Leader - M18	4	4	71	135	30	37	24.3	16	20	5
Leader - M19	5	5	100	165	47		24			7

Tabla 4: Características de bombas