Homework 5

Wenye Xiong 2023533141

April 10, 2024

1 Problem 1

First, we will find the number of T-Routes from A(0,0) to B(7,5)

This number is $\frac{(b-a)!}{(\frac{b-a}{2}+\frac{\beta-\alpha}{2})!(\frac{b-a}{2}-\frac{\beta-\alpha}{2})!}$, where a=0, b=7, α =0, β =5. And we can get 7 is the number of T-Routes.

Then, we will list all the T-Routes.

To show that if A, B satisfy the T-condition, then there is a T-route from A to B, we can simply offer a possible T-Route.

Consider b-a steps, for the first $|\beta - \alpha|$ steps, we move in the direction of β - α . That is if β - α is positive, we move in the direction of upper right, otherwise we move in the direction of lower right.

After the first $|\beta - \alpha|$ steps, we are now at $(a+|\beta - \alpha|, \beta)$.

Because A, B satisfy the T-condition, $a+|\beta-\alpha|$ is smaller than b. For the next b- $(a+|\beta-\alpha|)$ steps, we take two steps as a unit: For each unit, we move in the direction of upper right for the first step, and move in the direction of lower right for the second step.

Because $2|(b-a+\beta-\alpha)$, we also have $2|(b-a-\beta+\alpha)$. So $2|b-(a+|\beta-\alpha|)$, and we can take the next b-(a+|\beta-\alpha|) steps as $\frac{b-(a+|\beta-\alpha|)}{2}$ units.

For each units, we are actually moving in the direction of right for two steps. So after b- $(a+|\beta-\alpha|)$ steps, we are now at (b, β) , which is B.

This is a T-route. So we have shown that if A, B satisfy the T-condition, then there is a T-route from A to B.

We are very clear that x_1 can only be 0. So we can take every x_i as x_{i-1} and throw away the stupid x_1 . After that the system is reduced to:

$$\begin{cases} \mathbf{x}_1 + x_2 + x_3 + \dots + x_{2n} = n \\ \mathbf{x}_1 + x_2 + x_3 + \dots + x_{i-1} < \frac{i}{2} \\ \mathbf{x}_i \in \{0, 1\} \end{cases}$$

Further more, for the second case, $<\frac{i}{2}$ is just equal to $\le\frac{i-1}{2}$, since the sum of x_i can only be an integer.

So we can rewrite the system as:

$$\begin{cases} \mathbf{x}_1 + x_2 + x_3 + \dots + x_{2n} = n \\ \mathbf{x}_1 + x_2 + x_3 + \dots + x_i \le \frac{i}{2} \\ \mathbf{x}_i \in \{0, 1\} \end{cases}$$

That is just the typical case of Catalan number. So the number of solutions is C_{2n} , which is $\frac{(2n)!}{(n+1)!n!}$.

Consider $y_i = x_i - 1$, then we have $y_1 + y_2 + y_3 + \dots + y_n = r - n$, where $y_i \ge 0$ and is an integer.

This corresponds to a choice of where to place n-1 addition signs in a row of r-n ones.

For example, let n=3 and r=6, then we have 111, (1,1,1) is 1+1+1, and (0,2,1) is +11+1

So totally we have r-1 signs(1 and +), and we need to choose n-1 places of signs to be +. This is just a set with r-1 elements $A = \{(n-1) \cdot +, (r-n) \cdot 1\}$, so the number of solutions is $\binom{r-1}{n-1}$

Let $U = \{u_1, u_2, u_3, ..., u_n\}, V = \{v_1, v_2, v_3, ..., v_n\}$ be two sets of n elements each.

Consider the set X = {(A, B, C) : A \subseteq U, |A| = 1, B \subseteq U \cup V, |B| = n - 1, C \subseteq U \cup V, |C| = n.|A \cap B| = 0, |A \cap C| = 0, |B \cap C| = 0.}

If we choose A, then choose B, the rest are C, then: $|X| = n \cdot {2n-1 \choose n-1}$

Or, we assume that $|A \cup B \cap U| = r$, where r can be any integer from 1 to n. Then of course $|C \cap V| = r$, that means there are r elements in U that are in A or B, and there are r elements in V that are in C. We first choose $A \cup B$ from U, then we choose A from $A \cup B$. Lastly, we choose C from V. Then we have $|X| = \sum_{1}^{n} r \binom{n}{r} \cdot \binom{n}{r}$

So in conclusion, $\sum_{1}^{n} r \cdot \binom{n}{r} \cdot \binom{n}{r} = n \cdot \binom{2n-1}{n-1}$

$$a_n = \sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} b_k$$

Then we have:
$$\sum_{k=s}^n \binom{n}{k} a_k = \sum_{k=s}^n \binom{n}{k} \sum_{i=s}^k (-1)^{k-i} \binom{k}{i} b_i = \sum_{i=s}^n \sum_{k=i}^n (-1)^{k-i} \binom{n}{k} \binom{k}{i} b_i$$

$$\begin{aligned} & \text{Because } \sum_{k=i}^{n} (-1)^{k-i} \binom{n}{k} \binom{k}{i} = \sum_{k=i}^{n} (-1)^{k-i} \binom{n}{i} \binom{n-i}{k-i} = \binom{n}{i} \sum_{k=i}^{n} (-1)^{k-i} \binom{n}{i} = \binom{n}{i} \sum_{k=i}^{n} (-1)^{k-i} \binom{n}{i} = \binom{n}{i}$$

So we have
$$\sum_{k=s}^{n} \binom{n}{k} a_k = \sum_{i=s}^{n} \sum_{k=i}^{n} (-1)^{k-i} \binom{n}{k} \binom{k}{i} b_i = b_n$$