Chapitre 17

Arithmétique des polynômes

Sommaire

	I	Divisibilité
		1) La division euclidienne
		2) Congruences
		3) Diviseurs communs
	II	Éléments premiers entre eux
		1) Théorème de Bézout
		2) Conséquences
-	Ш	Le plus grand diviseur commun
		1) Définition
		2) Propriétés
		3) Généralisation
	IV	Le plus petit multiple commun
		1) Définition
		2) Propriétés
,	V	Polynômes irréductibles, décomposition
		1) Définition
		2) Décomposition en facteurs irréductibles
		3) Notion de P-valuation
		4) Applications
,	VI	Solution des exercices

I DIVISIBILITÉ

1) La division euclidienne

Maria Propieda Propieda Maria Propieda Propieda

 $Soient \ A \in \mathbb{K}[X] \ et \ B \in \mathbb{K}[X] \ \textbf{non nul}, \ il \ existe \ un \ unique \ couple \ de \ polynômes \ (Q,R) \ tel \ que \ A = BQ + R \ avec \ deg(B), \ Q \ est \ appelé \ le \ quotient, \ et \ R \ le \ reste.$

Soient $A, B \in \mathbb{K}[X]$, on dit que B divise A lorsqu'il existe un polynôme Q tel que $A = Q \times B$, notation B|A.

Remarque 17.1 – On définit ainsi une relation dans $\mathbb{K}[X]$, on peut vérifier que celle - ci est réflexive, transitive, mais elle n'est ni symétrique, ni antisymétrique. Plus précisément, B|A et A|B ssi il existe $\lambda \in \mathbb{K}^*$ tel que $A = \lambda B$ (on dit que A et B sont **associés**).

🚧 Théorème 17.2

- Si B \neq 0, alors B|A si et seulement si le reste de la division euclidienne de A par B est nul.
- Si A ≠ 0 et B|A, alors deg(B) \leq deg(A).
- Si B|A et B|C, alors \forall U, V ∈ $\mathbb{K}[X]$, B|A × U + C × V.

Preuve : Celle-ci est simple et laissée en exercice.

Remarque 17.2 – Il découle du dernier point que si B|A - C et B|D - E, alors B|(A + D) - (C + E) et B|AD - EC, en particulier, si B|A - C alors $\forall n \in \mathbb{N}, B|A^n - C^n$.

Notation: Soit $P \in \mathbb{K}[X]$, on note $P \mathbb{K}[X]$ l'ensemble des multiples de $P : P \mathbb{K}[X] = \{P \times Q / Q \in \mathbb{K}[X]\}$.

On vérifie facilement la propriété suivante :

(PK[X], +) est un groupe commutatif et $\forall B \in K[X], \forall U \in PK[X], BU \in PK[X]$.

2) Congruences

Définition 17.2 (congruences)

Soient A, B, P \in K[X], on dit que A est congru à B modulo P lorsque P | A – B. *Notation* : $A \equiv B \pmod{P}$.

- La relation de congruence modulo P est une relation d'équivalence.
- Soient A, B, C, D, P \in K[X], si A \equiv B (mod P) et C \equiv D (mod P) alors:

 $AC \equiv BD \pmod{P}$ et $A + C \equiv B + D \pmod{P}$.

On dit que la relation de congruence est compatible avec les opérations.

3) **Diviseurs communs**

Définition 17.3 (polynôme normalisé)

Soit A un polynôme non nul, on appelle A normalisé le polynôme noté A obtenu en divisant A par son coefficient dominant, ce polynôme est donc unitaire et associé à A. C'est l'unique polynôme unitaire associé à A.

Définition 17.4 (diviseurs communs)

Pour $A \in \mathbb{K}[X]$, on note D_A l'ensemble des diviseurs de A. Cet ensemble contient toujours \mathbb{K}^* . On notera $D_{A,B} = D_A \cap D_B$ l'ensemble des diviseurs communs à A et B.

Remarque 17.3 -

- $Si A \neq 0$, alors D_A est un ensemble infini, mais $\{deg(P) / P \in D_A\}$ est fini car inclus dans [0; deg(A)].
- D₀ = \mathbb{K} [X], si λ ∈ \mathbb{K} *, D_λ = \mathbb{K} *.
- $Si A est non nul, D_A = D_{\widetilde{A}}$.

🌉 Théorème 17.4

Soient A, B, Q, R \in K[X], si A = BQ + R, alors D_A \cap D_B = D_B \cap D_R.

Application - Le théorème ci-dessus fournit un algorithme pour la recherche des diviseurs communs à A et B basé sur la division euclidienne : c'est l'algorithme d'Euclide, rappelons son principe :

On remarque que si B = 0 alors $D_{A,B} = D_A$. On peut supposer désormais que B \neq 0 et on cherche à calculer $D = D_{A,B}$:

Étape 1: on effectue la division euclidienne de A par B: $A = BQ_1 + R_1$ avec $deg(R_1) < deg(B)$. On a $D = D_{B,R_1}$, donc si $R_1 = 0$ alors $D = D_B$, sinon on passe à l'étape 2 :

Étape 2: on effectue la division euclidienne de B par $R_1: B = R_1Q_2 + R_2$ avec $deg(R_2) < deg(B)$. On a $D = D_{R_1,R_2}$, donc si $R_2 = 0$ alors $D = D_{R_1}$, sinon on passe à l'étape 3 ...

La suite des degrés des restes obtenus est une suite strictement décroissante d'entiers positifs, elle est donc nécessairement finie, i.e. il existe nécessairement un entier $n \ge 1$ tel que $R_n = 0$, l'ensemble cherché est donc D = $D_{R_{n-1}}$ (avec la convention $R_0 = B$).

ÉLÉMENTS PREMIERS ENTRE EUX

Théorème de Bézout

Définition 17.5

Soient A, B \in K[X], on dit que a et b sont premiers entre eux (ou A est premier avec B) lorsque le seul diviseur commun unitaire est 1, i.e. $D_{A,B} = \mathbb{K}^*$.

Remarque 17.4 -

- Dire que A est premier avec B revient à dire que le dernier reste non nul dans l'algorithme d'Euclide est égal à 1 une fois normalisé.
- Si A est premier avec B, alors au moins un des deux est non nul (sinon l'ensemble des diviseurs communs $est \mathbb{K}[X]$).
- A est premier avec A si et seulement si A ∈ \mathbb{K}^* .

🔁 Théorème 17.5 (théorème de Bézout)

Soient $A, B \in \mathbb{K}[X]$, alors A et B sont premiers entre eux si et seulement si il existe $U, V \in \mathbb{K}[X]$ tels que AU + BV = 1. Les polynômes U et V sont appelés coefficients de Bézout (non uniques en général).

Preuve : C'est l'algorithme d'Euclide étendu, comme dans \mathbb{Z} .

Exercice 17.1 Soient $A = X^3 + 1$ et $B = X^2 + 1$. Montrer que A et B sont premiers entre eux, et déterminer une relation de Bézout.

2) Conséquences

🙀 Théorème 17.6

- Si A est premier avec B et si A est premier avec C, alors A est premier avec le produit BC. On en déduit que si A est premier avec C_1, \ldots, C_n , alors A est premier avec le produit $C_1 \times \ldots \times C_n$.
- Si A est premier avec C, si A | B et si C | B, alors AC | B.
- Si A | BC et si A est premier avec C, alors A | B.

Preuve : Identique à celle dans \mathbb{Z} .

LE PLUS GRAND DIVISEUR COMMUN

1) Définition

Soient A, B $\in \mathbb{K}[X]$ non tous deux nuls, on sait que $D_{A,B} = D_R$ où R est le dernier reste non nul dans l'algorithme d'Euclide, on voit que les diviseurs communs à A et B ont un degré inférieur ou égal à celui de R. Soit D un diviseur commun de même degré que R, alors comme D | R on a R = λQ avec $\lambda \in \mathbb{K}^*$, on en déduit que les polynômes R et D **normalisés** sont égaux.

Æ Définition 17.6

Soient A, B \in K[X] non tous deux nuls, le pgcd de A et de B le plus grand diviseur commun **unitaire**. Notation : pgcd(A, B) ou $A \wedge B$, c'est le dernier reste non nul dans l'algorithme d'Euclide, **une fois** normalisé.

Remarque 17.5 – Il en découle que deux éléments A et B de $\mathbb{K}[X]$, non tous deux nuls, sont premiers entre eux si et seulement si pgcd(A, B) = 1. On remarquera au passage qu'un pgcd entre deux polynômes est unitaire.

🙀 Théorème 17.7

Soient $A, B \in \mathbb{K}[X]$ non tous deux nuls, et D un polynôme unitaire, alors D = pgcd(A, B) si et seulement $si D \mid A, D \mid B$ et il existe deux polynômes U et V tels que D = AU + BV.

Preuve : Si D = pgcd(A, B) cela découle de l'algorithme d'Euclide étendu.

Si D est diviseur commun et si on a la relation, alors tout diviseur commun de A et B divise D et a donc un degré inférieur ou égal à celui de D, comme D est unitaire, c'est le pgcd de A et B.

Théorème 17.8 (Calcul pratique d'un pgcd)

 $Si A, B \in \mathbb{K}[X]$ sont non tous deux nuls alors $\forall Q \in \mathbb{K}[X]$, pgcd(A, B) = pgcd(A - BQ, B).

\bigstarExercice 17.2 Calculer le pgcd entre $X^4 - 1$ et $X^{10} - 1$.

2) Propriétés

🔁 Théorème 17.9 (caractérisations du pgcd)

Soient A, B \in K[X] non tous deux nuls, et soit D \in K[X] non nul et unitaire. On a alors :

 $D = pgcd(A, B) \iff \exists U, V \in \mathbb{K}[X]$ premiers entre eux tels que A = DU et B = DV.

Preuve: Si D = pgcd(A, B) alors il existe U, $V \in \mathbb{K}[X]$ tels que A = DU et B = DV, de plus il existe des polynômes U₁ et V₁ tels que $D = AU_1 + BV_1$, i.e. $D = DUU_1 + DVV_1$, D étant non nul et $\mathbb{K}[X]$ intègre, on en déduit que $1 = UU_1 + VV_1$ et donc U et V sont premiers entre eux.

Si A = DU, B = DV avec U ∧ V = 1, alors D est un diviseur commun à A et B, d'après le théorème de Bézout, il existe $\alpha, \beta \in \mathbb{K}[X]$ tels que $\alpha U + \beta V = 1$, d'où $D = \alpha A + \beta B$, comme D est unitaire, on a $D = A \wedge B$.

Théorème 17.10 (quelques propriétés du pgcd)

Soient A, B \in K[X] non tous deux nuls :

- a) $\forall P \in \mathbb{K}[X]$, $si P \mid A et P \mid B$, $alors P \mid pgcd(A, B)$.
- b) $\operatorname{pgcd}(A, B) = \operatorname{pgcd}(\widetilde{A}, \widetilde{B}).$
- c) $\forall K \in \mathbb{K}[X]$, unitaire, pgcd(KA, KB) = Kpgcd(A, B).
- d) $\forall n \in \mathbb{N}$, $pgcd(A^n, B^n) = pgcd(A, B)^n$.
- e) Si A et C sont premiers entre eux, alors pgcd(A, BC) = pgcd(A, B).

Preuve: Pour le premier point : soit D = pgcd(A, B), alors $D_{A,B} = D_D$ donc tout diviseur commun à A et B est un diviseur de D.

Pour le deuxième point : soit D = pgcd(A, B), alors il existe $U, V \in \mathbb{K}[X]$ premiers entre eux tels que A = DU et B = DV, d'où KA = KAU et KB = KDV, donc KD = pgcd(KA, KB) (KD est unitaire).

Pour le reste la preuve est identique à celle dans \mathbb{Z} .

Théorème 17.11

Soient A et B deux polynômes non tous deux nuls :

- les racines communes à A et B dans \mathbb{K} , sont exactement les racines dans \mathbb{K} de pgcd(A, B).
- A et B sont premiers entre eux si et seulement si ils n'ont pas de racine commune dans C.

Preuve: Soit $a \in \mathbb{K}$, alors $A(a) = B(a) = 0 \iff X - a \mid A \text{ et } X - a \mid B \iff X - a \mid pgcd(A, B)$. Si A et B sont premiers entre eux, alors pgcd(A, B) = 1 qui est sans racine dans \mathbb{C} , donc A et B n'ont pas de racine commune dans \mathbb{C} .

Si A et B n'ont pas de racine commune dans ℂ, alors leur pgcd n'a pas de racine dans ℂ, or ℂ est algébriquement clos (théorème de D'Alembert Gauss), donc D est nécessairement constant, comme il est unitaire, D = 1.

3) Généralisation

Soient A, B, C trois polynômes non tous nuls, l'ensemble des diviseurs communs à A, B et C est :

$$D_{A,B,D} = D_A \cap D_B \cap D_C = (D_A \cap D_B) \cap D_C = D_A \cap (D_B \cap D_C)$$

or on sait que $D_A \cap D_B = D_{A \wedge B}$, donc $D_{A,B,C} = D_{(A \wedge B) \wedge C} = D_{A \wedge (B \wedge C)}$. Ces deux polynômes étant unitaires, on a $(A \land B) \land C = A \land (B \land C)$ et ce polynôme est le plus grand (en degré) diviseur unitaire commun à A, B et C. Par définition ce nombre est le pgcd de A, B et C, on le note : pgcd(A, B, C) |

Théorème 17.12 (associativité du pgcd)

Soient A, B, C trois polynômes avec B non nul, alors $pgcd(A, B, C) = (A \land B) \land C = A \land (B \land C)$.

L'associativité du pgcd permet de ramener le calcul au cas de deux polynômes.

Notons $D_1 = A \wedge B$ et R = pgcd(A, B, C), alors $R = D_1 \wedge C$, donc il existe deux polynômes U_1 et W tels que $R = D_1U_1 + CW$, de même, il existe deux polynômes U_2 et V_1 tels que $D_1 = AU_2 + BV_1$, d'où en remplaçant, $R = AU_2U_1 + BV_1U_1 + cW = AU + BV + CW \text{ avec } U, V, W \in \mathbb{K}[X].$

Réciproquement, si R est un diviseur commun unitaire, et si R = AU + BV + CW, alors il est facile de voir que tout diviseur commun à A, B et C est un diviseur de R et donc R = pgcd(A, B, C), d'où le théorème :

Théorème 17.13

Soient A, B, C trois polynômes non tous nuls et R unitaire, alors :

 $R = pgcd(A, B, C) \iff R \in D_{A,B,C} \ et \ \exists U, V, W \in \mathbb{K}[X], R = AU + BV + CW.$

d Définition 17.7

Soient A, B, C trois polynômes non tous nuls, on dira que ces trois polynômes sont :

- premiers entre eux dans leur ensemble lorsque pgcd(A, B, C) = 1.
- premiers entre eux deux à deux lorsque pgcd(A, B) = pgcd(B, C) = pgcd(A, C) = 1.

Attention!

Les deux notions ne sont pas équivalentes, la deuxième entraîne la première mais la réciproque est fausse comme le montre l'exemple suivant :

pgcd((X+1)X,(X+1)(X+2),X(X+2)) = 1 mais pgcd(X(X+1),(X+1)(X+2)) = X+1, pgcd(X(X+1),X(X+2)) = X et pgcd((X+1)(X+2),X(X+2)) = X+2.

Il découle du théorème précédent :

Théorème 17.14 (de Bézout)

Soient A, B, C trois polynômes non tous nuls, alors A, B et C sont premiers entre eux dans leur ensemble si et seulement si:

 $\exists U, V, W \in \mathbb{K}[X], AU + BV + CW = 1.$

🄁 Théorème 17.15 (caractérisation)

Soient A, B, C trois polynômes non tous nuls et R unitaire, alors :

 $R = pgcd(A, B, C) \iff \exists U, V, W \in \mathbb{K}[X], A = RU, B = RV \ et \ C = RW \ avec \ pgcd(U, V, W) = 1.$

Preuve: Si R = pgcd(A, B, C) alors il existe $\exists U, V, W \in \mathbb{K}[X]$, A = RU, B = RV et C = RW. Il existe également des polynômes U_1, V_1 et W_1 tels que $R = AU_1 + BV_1 + CW_1$ d'où $1 = UU_1 + VV_1 + WW_1$ et donc pgcd(U, V, W) = 1.

Réciproquement, si A = RU, B = RV et C = RW avec pgcd(U, V, W) = 1. Il existe des polynômes U_1, V_1 et W_1 tels $1 = UU_1 + VV_1 + WW_1$, en multipliant par R il vient alors que $R = RUU_1 + RVV_1 + RWW_1 = AU_1 + BV_1 + CW_1$, ce qui entraîne que R = pgcd(A, B, C) (car R est unitaire et diviseur commun à A, B et C).

Remarque 17.6 – La notion de pgcd s'étend de la même manière à n polynômes.

LE PLUS PETIT MULTIPLE COMMUN

Définition 1)

🙀 Théorème 17.16

Si A et B sont non nuls, il existe un unique polynôme M unitaire dans $\mathbb{K}[X]$ tel que :

 $A\mathbb{K}[X] \cap B\mathbb{K}[X] = M\mathbb{K}[X].$

Preuve: $\{deg(P) / P \in A\mathbb{K}[X] \cap B\mathbb{K}[X], P \neq 0\}$ contient deg(AB), il existe donc un multiple commun non nul de degréminimal, quitte à le normaliser, on peut le supposer unitaire, et on le note M. Il est facile de voir que $M \mathbb{K}[X] \subset$ $A\mathbb{K}[X] \cap B\mathbb{K}[X]$. Si $P \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$, on effectue la division de P par M, P = MQ + R avec deg(R) < deg(M), d'où R = P - MQ, on vérifie alors que R est aussi dans $A\mathbb{K}[X] \cap B\mathbb{K}[X]$. Si $R \neq 0$ alors $deg(R) \geqslant deg(M)$ car M est de degré minial, ceci est absurde, donc R = 0 et P = MQ, d'où $A \mathbb{K}[X] \cap B \mathbb{K}[X] \subset M \mathbb{K}[X]$, et finalement on a bien l'inégalité.

Si $M' \mathbb{K}[X] = M \mathbb{K}[X]$ avec M' unitaire, alors M et M' se divisent mutuellement, ils sont donc associés et unitaires d'où M = M'.

Il découle de ce théorème que C est un multiple commun à A et B si et seulement si $C \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$, ce qui équivaut à $C \in M \mathbb{K}[X]$, c'est à dire $M \mid C$. Ceci entraîne en particulier : $deg(M) \leq deg(C)$.

Définition 17.8

Soit $A, B \in \mathbb{K}[X]$, non nuls, et soit $M \in \mathbb{K}[X]$ unitaire, on dit que M est le ppcm de A et B lorsque $AK[X] \cap BK[X] = MK[X]$. Notation: M = ppcm(A, B) ou encore $M = A \vee B$.

Théorème 17.17 (caractérisation du ppcm)

Soient A, B \in K[X], non nuls, et soit M \in K[X] unitaire alors :

 $M = ppcm(A, B) \iff \exists U, V \in \mathbb{K}[X]$ premiers entre eux tels que M = AU = BV.

Preuve : On suppose A, B \in K[X], non nuls.

Si M = ppcm(A, B): alors $A \mid M$ et $B \mid M$. Donc il existe $U, V \in \mathbb{K}[X]$ tels que M = AU = BV, soit D = pgcd(U, V) alors il existe $\alpha, \beta \in \mathbb{K}[X]$ premiers entre eux tels que $U = D\alpha$ et $V = D\beta$, d'où $M = AD\alpha = BD\beta$, mais alors $M_0 = A\alpha = B\beta$ est un multiple commun à A et B donc $deg(M) \le deg(M_0)$ ce qui entraîne D = 1 (car D est unitaire et $M = M_0D$).

Si $\exists U, V \in \mathbb{K}[X]$ premiers entre eux tels que M = AU = BV, alors $A \mid M$ et $B \mid M$, il existe $\alpha, \beta \in \mathbb{K}[X]$ tels que $U\alpha + V\beta = 1$, soit M_0 un multiple commun non nul, alors $M_0 = M_0 U \alpha + M_0 V \beta$, on en déduit que M | M_0 et donc deg(M) \leq deg(M₀), ce qui prouve que M = ppcm(A, B).

2) **Propriétés**

🔛 Théorème 17.18

Soient A, B \in K[X], non nuls:

- a) $\forall P \in \mathbb{K}[X]$, $si A \mid P et B \mid P alors ppcm(A, B) \mid P$.
- b) Si A et B sont premiers entre eux, alors $ppcm(A, B) = \widetilde{AB}$.
- c) $\forall K \in \mathbb{K}[X]$, unitaire, ppcm(KA, KB) = Kppcm(A, B).
- d) $ppcm(A, B) \times pgcd(A, B) = \widetilde{AB}$.
- e) $\forall n \in \mathbb{N}, ppcm(A^n, B^n) = ppcm(A, B)^n$.

Preuve: Analogue au cas des entiers.

POLYNÔMES IRRÉDUCTIBLES, DÉCOMPOSITION

1) **Définition**

Définition 17.9

Un polynôme $P \in K[X]$ est dit **irréductible** sur K lorsque P est non constant et que ses seuls diviseurs unitaires sont 1 et \widetilde{P} . L'ensemble des éléments irréductibles normalisés de $\mathbb{K}[X]$ est noté $\mathscr{I}_{\mathbb{K}[X]}$.

Exemples:

- − Tout polynôme de degré 1 est irréductible, donc $\forall \lambda \in \mathbb{K}, X + \lambda \in \mathcal{I}_{\mathbb{K}[X]}$.
- Tout polynôme de degré 2 sans racine dans K est irréductible dans K[X]. Cependant cette propriété ne se généralise pas au delà du degré 2, par exemple : $X^4 + 1$ est sans racine dans \mathbb{R} , mais ce polynôme est réductible car $X^4 + 1 = (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1)$.
- La notion de polynôme irréductible dépend du corps \mathbb{K} , par exemple, X^2+1 est irréductible dans $\mathbb{R}[X]$, mais pas dans $\mathbb{C}[X]$. De même, le polynôme $X^2 - 2$ est irréductible dans $\mathbb{Q}[X]$, mais pas dans $\mathbb{R}[X]$.

阿 Théorème 17.19

Dans $\mathbb{C}[X]$, les polynômes irréductibles unitaires sont les polynômes unitaires de degré 1, c'est à dire : $\mathcal{I}_{\mathbb{C}[X]} = \{X + a \mid a \in \mathbb{C}\}.$

Dans $\mathbb{R}[X]$, les polynômes irréductibles sont les polynômes unitaires de degré 1, plus les polynômes unitaires de degré 2 sans racines réelles. C'est à dire :

$$\mathcal{I}_{\mathbb{R}[\mathrm{X}]} = \{ \mathrm{X} + a \; / \; a \in \mathbb{R} \} \cup \left\{ \mathrm{X}^2 + p \mathrm{X} + q \; / \; p, q \in \mathbb{R}, p^2 - 4q < 0 \right\}.$$

Preuve : Pour $\mathbb{C}[X]$ cela découle du théorème de *D'Alembert*.

Dans $\mathbb{R}[X]$: les polynômes annoncés sont bien irréductibles unitaires. Soit $P \in \mathscr{I}_{\mathbb{K}[X]}$, avec $deg(P) \geqslant 2$ alors P admet des racines complexes, et celles-ci sont non réelles (P est irréductible de degré supérieur à 1), soit α l'une d'elles, alors $\overline{\alpha}$ est également racine de P (et distincte de α), donc dans $\mathbb{C}[X]$ le polynôme P est divisible par $(X - \alpha)(X - \overline{\alpha}) = X^2 + pX + q \in \mathbb{C}[X]$ $\mathbb{R}[X]$ avec $p^2 - 4q < 0$. Mais alors P est divisible dans $\mathbb{R}[X]$ par $X^2 + pX + q$ (unicité du quotient et du reste), or $P \in \mathcal{I}_{\mathbb{K}[X]}$, donc nécessairement $P = X^2 + pX + q$.

Propriétés élémentaires :

- a) Si P est irréductible, alors pour tout polynôme Q, soit $P \mid Q$ soit pgcd(P,Q) = 1. **Preuve**: Soit D = pgcd(P,Q), D | P donc D = 1 ou D = \widetilde{P} .
- b) Si $P \in \mathbb{K}[X]$ est non constant, alors P possède au moins un diviseur irréductible.

Preuve: Soit B = $\{\deg(d) / d \mid P \text{ et } d \notin \mathbb{K}^* \}$, alors B est une partie de \mathbb{N} non vide $(\deg(P) \in B)$, soit Q un diviseur de P avec deg(P) \in B **minimal**, si D | Q avec D normalisé et D \notin K*, alors D | P et donc deg(D) \in B, d'où deg(D) \geqslant $\deg(Q)$, or $D \mid Q$, donc $\deg(D) \leqslant \deg(Q)$ et finalement $\deg(D) = \deg(Q)$, d'où $D = \widetilde{Q}$ et donc Q est irréductible. \square

- c) L'ensemble $\mathscr{I}_{\mathbb{K}[X]}$ est infini, puisque tout polynôme X + a où $a \in \mathbb{K}$ est irréductible unitaire.
- d) Si P est irréductible et si P | AB, alors P | A ou P | B.

Preuve: Supposons que P ne divise pas A, alors pgcd(P,A) = 1 et par conséquent P | B (d'après le théorème de Gauss).

2) Décomposition en facteurs irréductibles

Théorème 17.20 (décomposition en produit de facteurs irréductibles)

Tout élément $Q \in \mathbb{K}[X]$ non constant, est un produit d'éléments irréductibles. Plus précisément, il existe $r \geqslant 1$, il existe $P_1, \dots, P_r \in \mathcal{I}_{\mathbb{K}[X]}$, il existe des entiers $\alpha_1, \dots, \alpha_r \in \mathbb{N}^*$, il existe $\lambda \in \mathbb{K}^*$ tels que : $Q = \lambda \times P_1^{\alpha_1} \times P_2^{\alpha_2} \times \dots \times P_r^{\alpha_r}.$

Preuve: On a $Q = \lambda \times \widetilde{Q}$ avec λ le coefficient dominant de Q. On se ramène ainsi au cas où Q est unitaire.

Par récurrence sur deg(Q): pour deg(Q) = 1 il n'y a rien à montrer. Supposons le théorème démontré jusqu'au rang k, si deg(Q) = k + 1 alors Q admet au moins un diviseur irréductible unitaire P, donc Q = PR, si R = 1 alors Q est irréductible, sinon R est un produit de facteurs irréductibles (HR), donc Q aussi.

Théorème 17.21 (unicité de la décomposition)

 $Si Q \in \mathbb{K}[X]$ s'écrit sous la forme : $Q = \lambda \times P_1^{\alpha_1} \times ... \times P_r^{\alpha_r} = \mu \times Q_1^{\beta_1} \times ... \times Q_s^{\beta_s}$, $avec\ P_1,...,P_r\in \mathscr{I}_{\mathbb{K}[X]},\alpha_1,...,\alpha_r\in \mathbb{N}^*,Q_1,...,Q_s\in \mathscr{I}_{\mathbb{K}[X]},\beta_1,...,\beta_s\in \mathbb{N}^*,\ et\ \lambda,\mu\in \mathbb{K}^*,\ alors\ r=s,\ \lambda=\mu$ et il existe une permutation σ de [1; r] telle que pour $i \in [1; r]$, $P_i = Q_{\sigma(i)}$, $\alpha_i = \beta_{\sigma(i)}$. La décomposition est unique [à l'ordre près].

Preuve : Identique à celle des entiers.

3) **Notion de P-valuation**

Si Q est un polynôme non nul et P un polynôme irréductible, alors l'ensemble $\{k \in \mathbb{N} \mid P^k \mid Q\}$ est non vide (contient 0) et majoré par deg(Q), cet ensemble admet donc un maximum :

Définition 17.10

Soit $P \in \mathcal{I}_{\mathbb{K}[X]}$ et Q polynôme non nul, on appelle P-valuation de Q, notée $v_P(Q)$, le plus grand entier k tel que $P^k \mid Q$. La définition s'étend au polynôme nul en posant $\nu_P(0) = +\infty$.

Remarque 17.7:

- $-\nu_{P}(Q) = k \iff P^{k} \mid Q \text{ et } P^{k+1} \nmid Q \iff \exists T \in \mathbb{K}[X], Q = P^{k}T \text{ avec } P \nmid Q$
- $-v_{P}(Q) \geqslant 1 \iff P \mid Q$, auquel cas $v_{P}(Q)$ est la puissance de P dans la décomposition de Q en facteurs irréductible.
- $\left\{ k \in \mathbb{N} \ / \ \mathbf{P}^k \mid \mathbf{Q} \right\} = \llbracket \mathbf{0} \, ; v_{\mathbf{P}}(\mathbf{Q}) \rrbracket.$

Si Q est non constant, la décomposition de Q en produit de facteurs irréductibles s'écrit :

$$Q = \lambda_Q \prod_{P \in \mathscr{I}_{\mathbb{K}[X]}} P^{\nu_P(Q)}.$$

En effet, seul un nombre fini de valuations sont non nulles (les autres donnent un facteur égal à 1).

Théorème 17.22 (Propriétés)

Soient Q, R deux polynômes, on a:

- a) $\forall P \in \mathcal{I}_{\mathbb{K}[X]}$, $v_P(QR) = v_P(Q) + v_P(R)$.
- b) $\forall P \in \mathcal{I}_{\mathbb{K}[X]}$, $v_P(Q+R) \geqslant \min(v_P(Q); v_P(R))$.
- c) $Q \mid R \iff \forall P \in \mathcal{I}_{K[X]}, \ \nu_P(Q) \leq \nu_P(R)$.
- *d*) Si Q et R sont non nuls alors $\forall P \in \mathcal{I}_{\mathbb{K}[X]}$:

$$\nu_{P}(Q \wedge R) = \min(\nu_{P}(Q); \nu_{P}(R)) \ et \ \nu_{P}(Q \vee R) = \max(\nu_{P}(Q); \nu_{P}(R)).$$

Preuve: Analogue au cas des entiers.

À retenir: formules du pgcd et du ppcm

Il découle du théorème ci-dessus que :

$$\begin{aligned} &\text{th\'eor\`eme ci-dessus que:} \\ &pgcd(Q,R) = \prod_{P \in \mathscr{I}_{\mathbb{K}[X]}} P^{min(\nu_P(Q);\nu_P(R))} \text{ et } ppcm(Q,R) = \prod_{P \in \mathscr{I}_{\mathbb{K}[X]}} P^{max(\nu_P(Q);\nu_P(R))}. \end{aligned}$$

Applications

Comme dans \mathbb{Z} :

- Si P est non constant, alors la décomposition de P en produit de facteurs irréductibles permet de trouver tous les diviseurs de P.
- Si P, Q sont non constants, alors à partir de leur décomposition en produit de facteurs irréductibles, on peut calculer pgcd(P,Q) et ppcm(P,Q).

Exercice 17.3 Dans $\mathbb{C}[X]$, montrer que pour $n, m \in \mathbb{N}^*$, on a $\operatorname{pgcd}(X^n - 1, X^m - 1) = X^d - 1$ où $d = \operatorname{pgcd}(n, m)$.

SOLUTION DES EXERCICES

Solution 17.1 L'algorithme d'Euclide étendu donne un dernier reste non nul égal à 2 avec la relation : $2 = (X + 1)A - (X^2 + 1)A -$ X-1)B, il suffit de tout diviser par 2.

Solution 17.2 En appliquent l'algorithme d'Euclide, le dernier reste non nul normalisé est $D = X^2 - 1$ qui est donc le pgcd.

Solution 17.3 Il existe $u, v \in \mathbb{Z}$ tels que nu + mv = d, on en déduit que $z^n = z^m = 1$ si et seulement si $z^d = 1$, les racines du pgcd sont donc les racines de l'unité, comme les racines de $X^n - 1$ sont simples, celles du pgcd le sont aussi, ce qui donne le résultat.