introduction to inference

- case study: gender discrimination
- Introduction to inference via simulation

Dr. Mine Çetinkaya-Rundel Duke University

gender discrimination

- ▶ 48 male bank supervisors given the same personnel file, asked to judge whether the person should be promoted
- In the files were identical, except for gender of applicant
- random assignment
- ▶ 35 / 48 promoted
- > are females are unfairly discriminated against?

data

		promotion		
		promoted	not promoted	total
gender	male	21	3	24
	female	14	10	24
	total	35	13	48

% of males promoted = $21/24 \approx 88\%$ % of females promoted = $14/24 \approx 58\%$

null hypothesis

"There is nothing going on"

promotion and gender are independent, no gender discrimination, observed difference in proportions is simply due to chance

two competing claims

alternative hypothesis

"There is something going on"

promotion and gender are dependent, there is gender discrimination, observed difference in proportions is not due to chance.

null hypothesis

Ho: Defendant is innocent

alternative hypothesis

HA: Defendant is guilty

present the evidence

collect data

burden of proof

judge the evidence

"Could these data plausibly have happened by chance if the null hypothesis were true?"

no

Reject Ho

yes

Fail to reject H₀

recap: hypothesis testing framework

- start with a null hypothesis (H₀) that represents the status quo
- ▶ set an alternative hypothesis (H_A) that represents the research question, i.e. what we're testing for
- conduct a hypothesis test under the assumption that the null hypothesis is true, either via simulation or theoretical methods
 - If the test results suggest that the data do not provide convincing evidence for the alternative hypothesis, stick with the null hypothesis
 - If they do, then reject the null hypothesis in favor of the alternative

- 1. face card: not promoted, non-face card: promoted
 - > set aside the jokers, consider aces as face cards
 - ▶ take out 3 aces → 13 face cards left in the deck (face cards: A, K, Q, J)
 - ▶ take out a number card \rightarrow 35 number (non-face) cards left in the deck (number cards: 2-10)

35 number (non-face) cards

13 face cards

- 1. face card: not promoted, non-face card: promoted
 - > set aside the jokers, consider aces as face cards
 - ▶ take out 3 aces → exactly 13 face cards left in the deck (face cards: A, K, Q, J)
 - \blacktriangleright take out a number card \rightarrow 35 number (non-face) cards left in the deck (number cards: 2-10)
- 2. shuffle the cards, deal into two groups of size 24, representing males and females

- 1. face card: not promoted, non-face card: promoted
 - > set aside the jokers, consider aces as face cards
 - ▶ take out 3 aces → exactly 13 face cards left in the deck (face cards: A, K, Q, J)
 - ▶ take out a number card \rightarrow 35 number (non-face) cards left in the deck (number cards: 2-10)
- 2. shuffle the cards, deal into two groups of size 24, representing males and females
- 3. count how many number cards are in each group (representing promoted files)
- 4. calculate the proportion of promoted files in each group, take the difference (male female), and record this value

- 1. face card: not promoted, non-face card: promoted
 - > set aside the jokers, consider aces as face cards
 - ▶ take out 3 aces → exactly 13 face cards left in the deck (face cards: A, K, Q, J)
 - \blacktriangleright take out a number card \rightarrow 35 number (non-face) cards left in the deck (number cards: 2-10)
- 2. shuffle the cards, deal into two groups of size 24, representing males and females
- 3. count how many number cards are in each group (representing promoted files)
- 4. calculate the proportion of promoted files in each group, take the difference (male female), and record this value
- 5. repeat steps 2 4 many times

making a decision

- ▶ results from the simulations look like the data → the difference between the proportions of promoted files between males and females was due to chance (promotion and gender are independent)
- results from the simulations do not look like the data
 - → the difference between the proportions of promoted files between males and females was <u>not</u> due to chance, but due to an actual effect of gender (promotion and gender are dependent)

Difference in promotion rates

summary

- > set a null and an alternative hypothesis
- simulate the experiment assuming that the null hypothesis is true
- evaluated the probability of observing an
 outcome at least as extreme as the one observed in the original data
- and if this probability is low, reject the null hypothesis in favor of the alternative