Linear Algebra II Recitation 1

Yasuyuki Kachi & Shunji Moriya

1. Perform each of the following multiplications:

$$(1) \begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 & -2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ -1 & 0 \end{bmatrix}$$

(3)
$$AB$$
, where $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$, $B = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

(4)
$$AB$$
, where $A = B = \begin{bmatrix} \frac{-1+\sqrt{5}}{4} & \frac{-\sqrt{10+2\sqrt{5}}}{4} \\ \frac{\sqrt{10+2\sqrt{5}}}{4} & \frac{-1+\sqrt{5}}{4} \end{bmatrix}$

2. Perform the multiplication in each of (1) and (2). In each of (1) and (2), detect one eigenvalue of A.

(1)
$$A\mathbf{x}$$
, $A = \begin{bmatrix} 1 & 2 \\ -6 & 8 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
(2) $A\mathbf{x}$, $A = \begin{bmatrix} 3 & -1 \\ 4 & -1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

(2)
$$A\boldsymbol{x}$$
, $A = \begin{bmatrix} 3 & -1 \\ 4 & -1 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

3. Let $A = \begin{bmatrix} a & b \\ b & 2a \end{bmatrix}$. Assume that 2 is an eigenvalue of A and that the vector $\boldsymbol{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ is an eigenvector of A, associated with the eigenvalue 2. Determine the two numbers a and b.

4. (a) Perform the following multiplication:

$$AB, \quad \text{where} \quad A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 6 \\ 10 & 9 \end{bmatrix}.$$

- (b) Does the answer for (a) coincide with either A or B? (If 'yes', then indicate which one is.)
- (c) Is A or B in (a) the identity matrix? (If 'yes', then indicate which one is.)

5. (a) Perform the following multiplication:

$$PQ$$
, where $P = \begin{bmatrix} -2 & 3 \\ 3 & -5 \end{bmatrix}$, $Q = \begin{bmatrix} -5 & -3 \\ -3 & -2 \end{bmatrix}$.

- (b) Does the answer for (a) coincide with the identity matrix?
- (c) Knowing the answer for (b), would you say QP is also the identity matrix?
- (d) Find Q^{-1} , as well as P^{-1} .
- 6. Find the inverse P^{-1} of P, if exists:

$$(1) P = \begin{bmatrix} 2 & 5 \\ 4 & -2 \end{bmatrix}$$

$$(2) P = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}$$

7. Let

$$P = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, \qquad A = \begin{bmatrix} -3 & 4 \\ -2 & 3 \end{bmatrix}, \qquad Q = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

- (1a) Perform the matrix multiplication PAQ.
- (1b) Is your answer in (1a) a diagonal matrix?
- (2a) Perform the matrix multiplication PQ.
- (2b) Is your answer in (2a) the identity matrix?
- (3) Can you conclude that PAP^{-1} is a diagonal matrix?
- (4) Can you conclude that A is diagonalizable?
- 8. Write each of the following in the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

$$(1) \ 3 \begin{bmatrix} -4 & 2 \\ 6 & 5 \end{bmatrix}$$

$$(2) \ - \begin{bmatrix} -6 & -8 \\ 3 & 4 \end{bmatrix}$$

- 9. Let $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$. Assume that A has the property that for any 2×2 matrix B, the equation AB = BA holds. Prove that there is a scalar s such that A = sI.
- 10. Calculate:

$$(1) \begin{vmatrix} 1 & 6 \\ 1 & 3 \end{vmatrix} \qquad (2) \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix}$$

- 11. (1a) Calculate the characteristic polynomial of $A = \begin{bmatrix} -3 & -2 \\ 6 & 5 \end{bmatrix}$.
 - (1b) Find the eigenvalues of A in (1a) (if any).
 - (2a) Calculate the characteristic polynomial of $B = \begin{bmatrix} -2 & -4 \\ 1 & -6 \end{bmatrix}$.
 - (2b) Find the eigenvalues of B in (2a) (if any).

Linear Algebra II Recitation 1 Answer

1.
$$(1)$$
 $\begin{bmatrix} 2 & 3 \\ 18 & 15 \end{bmatrix}$

$$(2) \begin{bmatrix} 5 & 7 \\ -20 & -28 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(4) \begin{bmatrix} \frac{-1-\sqrt{5}}{4} & \frac{-\sqrt{10-2\sqrt{5}}}{4} \\ \frac{\sqrt{10-2\sqrt{5}}}{4} & \frac{-1-\sqrt{5}}{4} \end{bmatrix}$$

2. (1)
$$\begin{bmatrix} 8 \\ 12 \end{bmatrix} = 4\boldsymbol{x}$$
. 4 is an eigenvalue of A .

(2)
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1x$$
. 1 is an eigenvalue of A .

3.
$$a = \frac{6}{7}$$
, $b = \frac{-4}{7}$.

4. (a)
$$\begin{bmatrix} 2 & 6 \\ 10 & 9 \end{bmatrix}$$
.

(b) Yes. The answer for (a) coincides with
$$B$$
.

(c) Yes.
$$A = I$$
 is the identity matrix.

5. (a)
$$PQ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b) Yes, the answer for (a) coincides with
$$I$$
.

(c) Yes,
$$QP$$
 also equals I .

(d)
$$Q^{-1} = \begin{bmatrix} -2 & 3 \\ 3 & -5 \end{bmatrix}$$
 $(= P)$, $P^{-1} = \begin{bmatrix} -5 & -3 \\ -3 & -2 \end{bmatrix}$ $(= Q)$.

6.
$$(1) \begin{bmatrix} \frac{1}{12} & \frac{5}{24} \\ \frac{1}{6} & \frac{-1}{12} \end{bmatrix}$$

(2) Does not exist.

7. (1a)
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

(1b) Yes, the answer for (1a) is a diagonal matrix.

$$(2a) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(2b) Yes, the answer for (2a) is the identity matrix.

(3) Yes, PAP^{-1} is a diagonal matrix. (Indeed, by (2a-b), $P^{-1} = Q$.)

(4) Yes, A is diagonalizable.

8.
$$(1) \begin{bmatrix} -12 & 6 \\ 18 & 15 \end{bmatrix}$$
 $(2) \begin{bmatrix} 6 & 8 \\ -3 & -4 \end{bmatrix}$

9. Omitted.

10.
$$(1)$$
 -3

(2) 5

11. (1a)
$$\lambda^2 - 2\lambda - 3$$
. (1b) -1, 3.

$$(1b) -1, 3$$

(2a)
$$\lambda^2 + 8\lambda + 16$$
.

$$(2b)$$
 -4.