

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct
 prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayesian Theorem: Basics

- Let X be a data sample class label is unknown
- Let H be a hypothesis that X belongs to class C
- Classification is to determine P(H|X), the probability that the hypothesis holds given the observed data sample X
 - Posterior Probability
- P(H) (prior probability), the initial probability
- P(X): probability that sample data is observed
- P(X|H) (posteriori probability), the probability of observing the sample X, given that the hypothesis holds
- X Round and Red Fruit H Apple

Bayesian Theorem

Given training data **X**, posteriori probability of a hypothesis H, P(H|**X**), follows the Bayes theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

- Informally, this can be viewed as posteriori = likelihood x prior/evidence
- Predicts **X** belongs to C_i if and only if the probability $P(C_i|\mathbf{X})$ is the highest among all the $P(C_K|\mathbf{X})$ for all the k classes
- Practical difficulty: require initial knowledge of many probabilities significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Bayesian Classification

Naïve Bayesian Classifier

- Class Conditional Independence
- Effect of an attribute value on a given class is independent of the values of other attributes
- Simplifies Computations

Bayesian Belief Networks

- Graphical models
- Represent dependencies among subsets of attributes

Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector **X** = (x₁, x₂, ..., xո)
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Naïve Bayesian Classifier

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

- Can assume that all classes are equally likely and maximize P(X|C_i)
- A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

Naive Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <=30, Income = medium, Student = yes

Credit_rating = Fair)

age	income	<mark>studen</mark> t	<mark>redit rating</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

P(C_i):

```
P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14= 0.357
```

age	income	student	redit rating	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Compute P(X|C_i) for each class

P(age = "
$$<=30$$
" | buys_computer = "yes") = $\frac{279}{9}$ = 0.222

Naïve Bayes Classifier: An Example

age	income	<mark>student</mark>	<mark>credit rating</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>
```

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 P(X|buys\_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
```

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

 $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case
 Prob(income = low) = 1/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayesian Classifier

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier