MA1101R Cheatsheet 19/20 Semester 1 Mid-term by Howard Liu

Matrices

Theorem 1.2.7. If **augmented matrices** of two systems of linear equations are row equivalent, then the two systems have the same set of solutions. (* Even for two homogeneous linear systems, we still need to say that $(A \mid 0)$ is row equivalent to $(B \mid 0)$, not that A is row equivalent to B.)

Example 1.4.10. Suppose augmented matrix R is in (R)REF:

- 1. LS has no solution
 - \iff Last column of R is pivot.
- 2. LS has one unique solution
 - \iff Only last column of R is non-pivot.
- 3. LS has infinite number of solution
 - \iff At least one column other than the last one is non-pivot
 - \iff Number of variables > Number of non-zero rows in R
 - (* # non-pivot columns in (R)REF -1 = # unique solutions)

Definition 2.3.2, Theorem 2.4.7 & 2.5.19. A is invertible when:

- 1. $\exists \boldsymbol{B} \text{ s.t. } \boldsymbol{A}\boldsymbol{B} = \boldsymbol{I} \vee \boldsymbol{B}\boldsymbol{A} = \boldsymbol{I}$
- 2. Refer to **Theorem 2.4.7.2** below
- 3. $\operatorname{rref}(\boldsymbol{A}) = \boldsymbol{I}$
- 4. $\det(\mathbf{A}) \neq 0$
- 5. \boldsymbol{A} is a product of elementary matrices
- 6. Rows of \mathbf{A} is a basis of \mathbb{R}^n
- 7. Columns of \boldsymbol{A} is a basis of \mathbb{R}^n

Remark 2.3.4 (Cancellation Laws for Matrices). Let A be an invertible $m \times m$ matrix,

- (a) If B_1 and B_2 are $m \times n$ matrices with $AB_1 = AB_2$, then $B_1 = B_2$
- (b) If C_1 and C_2 are $n \times m$ matrices with $C_1A = C_2A$, then $C_1 = C_2$

Theorem 2.4.7.2 (generalised). Relationship between singularity of A and the number of solutions of a linear system Ax = b:

- 1. \pmb{A} is singular $\iff \pmb{A}\pmb{x} = \pmb{b}$: has ∞ solutions (only case for homogeneous LS) or no solutions
- 2. **A** is invertible \iff Ax = b: has one unique solution (trivial solution for homogeneous LS)

Definition 2.5.2. Let $\mathbf{A} = (a_{ij})$ be an $n \times n$ matrix. Let \mathbf{M}_{ij} be an $(n-1) \times (n-1)$ matrix obtained from \mathbf{A} by deleting the *i*th row and the *j*th column. Then the *determinant* of \mathbf{A} is defined as

$$\det(\mathbf{A}) = \begin{cases} a_{11} & \text{if } n = 1\\ a_{11}A_{11} + \dots + a_{1n}A_{1n} & \text{if } n > 1 \end{cases}$$

where

$$A_{ij} = (-1)^{i+j} \det (\boldsymbol{M_{ij}})$$

The number A_{ij} is called the (i, j)-cofactor of \mathbf{A} .

Theorem 2.5.8. The determinant of a triangular matrix is equal to the product of its diagonal entries.

Theorem 2.5.12 (added-on). The determinant of a square matrix is 0 when:

- 1. it has two identical rows, or
- 2. it has two identical columns
- 3. any row/column of its (R)REF is zero

Theorem 2.5.15. Let A be a square matrix. k is a non-zero constant.

- 1. $\mathbf{A} \xrightarrow{k\mathbf{R}_i} \mathbf{B} \Rightarrow \det(\mathbf{B}) = k \det(\mathbf{A})$
- 2. $A \xrightarrow{\mathbf{R}_i \leftrightarrow \mathbf{R}_j} \mathbf{B} \Rightarrow \det(\mathbf{B}) = -\det(\mathbf{A})$
- 3. $A \xrightarrow{\mathbf{R}_i + k\mathbf{R}_j} \mathbf{B} \Rightarrow \det(\mathbf{B}) = \det(\mathbf{A})$

4. Let E be an elementary matrix of the same size as A. Then $\det(EA) = \det(E) \det(A)$.

Remark 2.5.18. Since $\det(\mathbf{A} = \det(A^T)$, theorem 2.5.15 holds if "rows" are changed to "columns".

Theorem 2.5.22. Let \boldsymbol{A} and \boldsymbol{B} are two square matrices of order n and c is a scalar. Then

- 1. $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$
- 2. $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$
- 3. if **A** is invertible, $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$

Definition 2.5.24. Let A be a square matrix of order n. Then the (classical) adjoint of A is the $n \times n$ matrix

$$\mathbf{adj}(\mathbf{A}) = (A_{ij})_{n \times n}^T$$

where A_{ij} is the (i, j)-cofactor of \boldsymbol{A} .

Theorem 2.5.25. If A is invertible, then $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ (or written as: $A[\operatorname{adj}(A)] = \det(A)I$).

Theorem 2.5.27 (Cramer's Rule). Suppose Ax = b is a linear system where A is an $n \times n$ matrix. Let A_i be the matrix obtained from A be replacing the ith column of A by b. If A is invertible, then the system has only one solution

$$oldsymbol{x} = rac{1}{\det(oldsymbol{A})} egin{pmatrix} \det{(oldsymbol{A}_1)} \ dots \ \det{(oldsymbol{A}_n)} \end{pmatrix}$$

Mixed Notes 1. A^{-1} is able to be computed by:

- 1. Find B s.t. $AB = I \vee BA = I$
- 2. Find using **Theorem 2.5.25**
- 3. Find using: $(A \mid I) \xrightarrow{GJE} (I \mid A^{-1})$

Mixed Notes 2. det(A) is able to be computed by:

- 1. Using **Theorem 2.5.2**
- 2. Using cross multiplication (for 2×2 and 3×3 matrices only)
- 3. Doing some ERO (e.g. GE, consider **Theorem 2.5.15**) and making it triangular then using **Theorem 2.5.8** or making it have properties in **Theorem 2.5.12**
- 4. Using **Theorem 2.5.22**

Mixed Notes 3. Some random notes:

- 1. In \mathbb{R}^n where $n \geq 2$, a set with 1 parameter is a line and that with 2 parameters is a space.
- 2. $M^2 + M = I \Rightarrow M(M + I) = I$ (Don't put that I to be scalar 1!)
- 3. Two matrices have same RREF \Leftrightarrow They are row equivalent
- 4. In exam, express a matrix in the form $\mathbf{A} = (a_{ij})_{m \times n}$. **DO NOT** use dots form
- 5. When using ERO $\mathbf{R}_i = \frac{1}{k}\mathbf{R}_j$, discuss whether k is 0 when necessary

Mixed Notes 4. When we are asked to use Gaussian Elimination or Gauss-Jordan Elimination, steps in presentation is important and only these elementary row operations should be used:

- 1. (For GE) $\mathbf{R}_i \leftrightarrow \mathbf{R}_j$, where i > j.
- 2. (For GE) $\mathbf{R}_i + k\mathbf{R}_j$, where $k \in \mathbb{R} \land i > j$.
- 3. (For GJE) $\mathbf{R}_i + k\mathbf{R}_i$, where $k \in \mathbb{R} \wedge i < j$.

Mixed Notes 5. Generally, for (square) matrices A and B,

- 1. $AB \neq BA$
- 2. $(AB)^2 \neq A^2B^2$
- 3. $\mathbf{AB} = 0 \Rightarrow \mathbf{A} = 0 \lor \mathbf{B} = 0$
- 4. $\mathbf{A}^2 = I \Rightarrow \mathbf{A} = \pm \mathbf{I}$ (For example: 2 EMs of 2nd type ERO)

Mixed Notes 5. When expanding a row/column with cofactors of the other row/column, 0 will be yielded:

$$\sum_{m=1}^{n} a_{im} A_{jm} = \sum_{m=1}^{n} a_{mi} A_{mj} = 0, \text{ for some } i \neq j$$

This can be proven by the following steps:

- 1. Consider $X = \sum_{m=1}^{n} a_{im} A_{jm}$, known value of A_{jm} and X does not depend on values of row j.
- 2. Create a new matrix by replacing j-th row of \boldsymbol{A} with its i-th row, named it $\boldsymbol{A'}$. We then have $a'_{im} = a_{im}$ and $a'_{jm} = a'_{im}$. At the same time, by (1), $A'_{jm} = A_{jm}$
- 3. Then $X = \sum_{m=1}^{n} a'_{im}A'_{jm} = \sum_{m=1}^{n} a'_{jm}A'_{jm} = \det(\mathbf{A'}) = 0$ since two of the rows of (A') are the same, by **Theorem 2.5.12.1**.
- 4. Consider $\det(\mathbf{A}) = \det(\mathbf{A}^T)$ and the above steps $\sum_{m=1}^n a_{mi} A_{mj} = 0$.

Euclidean Spaces

Definition 3.2.3. Let $S = \{u_1, \ldots, u_k\}$ be a set of vectors in \mathbb{R}^n . Then the set of all linear combinations of u_1, \ldots, u_k ,

$$\{c_1\boldsymbol{u_1} + \cdots + c_k\boldsymbol{u_k} \mid c_1, \dots, c_k \in \mathbb{R}\}$$

is called the *linear span* of S (or the *linear span* of u_1, \ldots, u_k) and is denoted by $\operatorname{span}(S)$ (or $\operatorname{span}\{u_1, \ldots, u_k\}$).

Discussion 3.2.5. Given $S = \{v_1, v_2, \dots, v_m\} \subseteq \mathbb{R}^n\}$, show span $(S) = \mathbb{R}^n$:

Consider $\mathbf{v_i} = (v_{i1}, \dots, v_{in}),$

$$egin{pmatrix} egin{pmatrix} v_{11} & \dots & v_{m1} \ dots & \ddots & dots \ v_{1n} & \dots & v_{mn} \end{pmatrix} \stackrel{GE}{\longrightarrow} R$$

 $\operatorname{span}(S) = \mathbb{R}^n \iff \mathbf{R} \text{ has no zero rows}$

Theorem 3.2.7. If |S| < n, span $(S) \neq \mathbb{R}^n$.

Theorem 3.2.10. Let $S_1 = \{u_1, \ldots, u_k\}$ and $S_2 = \{v_1, \ldots, v_m\}$ be subsets of \mathbb{R}^n . Then, $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2) \iff \forall i = 1, 2, \ldots, k, u_i \in \operatorname{span}\{v_1, \ldots, v_m\}$.

In other words, consider $u_i = (u_{i1}, \dots, u_{in})$ and $v_i = (v_{i1}, \dots, v_{in})$,

$$egin{pmatrix} v_{11} & \dots & v_{m1} & u_{11} & \dots & u_{k1} \ dots & \ddots & dots & dots & \ddots & dots \ v_{1n} & \dots & v_{mn} & u_{1n} & \dots & u_{kn} \end{pmatrix} \stackrel{GE}{\longrightarrow} R$$

 $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2) \iff \mathbf{R} \text{ has its last } \mathbf{k} \text{ columns non-pivot.}$

Definition 3.3.2. Let V be a subset of \mathbb{R}^n . Then V is called a *subspace* of \mathbb{R}^n if $V = \operatorname{span}(S)$ where $S = \{u_1, \ldots, u_k\}$ for some vectors $u_1, \ldots, u_k \in \mathbb{R}^n$.

More precisely, V is called the *subspace spanned* by S (or the *subspace spanned* by u_1, \ldots, u_k). We also say that S spans (or u_1, \ldots, u_k span) the subspace V.

By contraposition, $V = \operatorname{span}(S) \Rightarrow \mathbf{0} \in V \equiv \mathbf{0} \notin V \Rightarrow V \neq \operatorname{span}(S)$. (* i.e., If $\mathbf{0}$ is not in V, V is not a subspace of \mathbb{R}^n)

Theorem 3.3.6. If $V = \{x | Ax = 0\}$, V is a subspace of \mathbb{R}^n .

Remark 3.3.8. Let V be a non-empty subset of \mathbb{R}^n . Then V is a subspace of \mathbb{R}^n if and only if

for all
$$\mathbf{u}, \mathbf{v} \in V$$
 and $c, d \in \mathbb{R}, c\mathbf{u} + d\mathbf{v} \in V$

(* This checks whether V is **closed** under addition and scalar multiplication)