Mini Project - 1

Rohith D, Jay Shah, Sayan Mitra, Aravint Annamalai March 1, 2021

1 Abstract

In this mini-project, we apply least squares model to estimate \mathbf{h} according to the following equation:

$$y = XFh + n \tag{1}$$

given \mathbf{y} , \mathbf{X} , \mathbf{F} and \mathbf{n} . Here, a set of random bits are generated and modulated as QPSK symbols to generate \mathbf{X} . \mathbf{h} is a multipath Rayleigh fading channel vector with an exponentially decaying power-delay profile \mathbf{p} of length \mathbf{L} and \mathbf{F} is a 512 \times L matrix performing IDFT. The various scenarios of least squares are being simulated in this mini-project.

2 Least squares with no constraints/conditions

Here, we estimate \mathbf{h} using ordinary least squares, with no constraints/restrictions on the variables other than those mentioned earlier. \mathbf{X} and \mathbf{F} are generated as above. \mathbf{n} is a complex Gaussian noise with variance = 0.1. The true value of \mathbf{h} is generated and is compared with the value of \mathbf{h} estimated by using Least Squares.

Figure 1: True value and estimated value of h

Now we perform the above computations for 10000 random trials. The plot obtained is as follows:

Figure 2: True value and estimated value of h over 10000 trials

3 Least squares with sparse h

Now, we consider the case where \mathbf{h} is a sparse variable, with just 6 non-zero values (taps). The non-zero locations are generated at random, and the true value of \mathbf{h} is made 0 at those locations. Estimating \mathbf{h} is now just a constrained least squares problem, with the constraint that the estimated value of \mathbf{h} should be 0 at all those locations where the true value of \mathbf{h} is 0. The constrained least squares problem is solved using the method of Lagrangian multipliers and the true and estimated value of \mathbf{h} is plotted.

Figure 3: True value and estimated value of h, with 6 non-zero taps

Now we perform the above computations for 10000 random trials. The plot obtained is as follows:

Figure 4: True value and estimated value of h, with 6 non-zero taps, over 10000 trials

4 Introduction of guard band of 180 symbols

Here, we include a 'guard band' of 180 symbols (i.e.) we make the first 180 and last 180 symbols of \mathbf{X} as 0. This will basically make the \mathbf{X} matrix "sparse". Now, with this constraint, we apply least squares to estimate \mathbf{h} . When the estimated and true value of \mathbf{h} is plotted, we noticed a large error between them. This is because, least squares has an inversion operation, and the \mathbf{X} , which is already diagonal, is sparse as well. So, there is hardly any non-zero element in \mathbf{X} , and thus, it becomes nearly singular. This leads to a large error in estimating \mathbf{h} .

Figure 5: True value and estimated value of h, after introducing a guard band on X

Figure 6: True value (6 non-zero taps) and estimated value of h, after introducing a guard band on X

Now to reduce the error, we use a technique called regularisation. Here, along with the objective of minimizing the squared error, we also have another objective of reducing the magnitude of the predicted ${\bf h}$ vector. Here, we tune a parameter α such that the MSE of the estimation is minimised. The following plots are obtained for the two scenarios.

Figure 7: True and estimated value of h, after regularization

Figure 8: True and estimated value of h, after regularization , where ${\bf h}$ has 6 non-zero taps

Optimum value of $\alpha = 0.4$ for normal **h** and 5.5 for sparse values of **h**.

5 Constrained Least Squares

Now we introduce some contraints on the values of h, which are as follows:

$$h[1] = h[2]$$

 $h[3] = h[4]$ (2)
 $h[5] = h[6]$

If there are no other constraints, then the plot is obtained as follows:

Figure 9: True value and estimated value of h, after introducing constraints

6 Algorithm to compute the non-zero locations of h

The algorithm to compute the non-zero values of ${\bf h}$ is explained in the code snippet below:

k0=6; //number of non zero taps S=[]; //for position of non zero taps

```
A=X*F;
        //residual
r=y;
t=0;
for k=1:k0
                      // {\tt used \ to \ compute \ argmax}
    temp=-Inf;
    for j=1:32
        val=norm((A(:,j))'*r); //argmax over j
        if val>temp
             t=j;
             temp=val;
        end
    end
    S(k)=t;
                //appending tk to S
    B=A(:,S);
    P=B*pinv(B);
    r=(eye(512)-P)*y;
```

Now, having known the non-zero locations of \mathbf{h} , we can use normal Least Squares to estimate the values of \mathbf{h} .