Отчёт по лабораторной работе №7

Дисциплина: Архитектура компьютера

Ищенко Ирина Олеговна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выполнение заданий для самостоятельной работы	14
4	Выводы	16

Список иллюстраций

2.1	Создание каталога и файла
2.2	Первый запуск программы вывода значения регистра еах
2.3	Второй запуск программы
	Первый запуск второй программы
2.5	Второй запуск второй программы
2.6	Третий запуск второй программы
2.7	Запуск программы вычисления выражения (5 * 2 + 3)/3
2.8	Запуск программы вычисления выражения $(4*6+2)/5$
2.9	Программа вычисления вычисления варианта задания по номеру
	студенческого билета
3.1	Программа вычисления выражения f(x)=5*(x+18)-28

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Выполнение лабораторной работы

Создадим каталог для программ лабораторной работы № 7, переходим в него и создаем файл lab7-1.asm (рис. 2.1).

```
[ioithenko@fedora ~]$ mkdir ~/work/arch-pc/lab07
[ioithenko@fedora ~]$ cd ~/work/arch-pc/lab07
[ioithenko@fedora lab07]$ touch lab7-1.asm
```

Рис. 2.1: Создание каталога и файла

Введем в файл lab7-1.asm текст программы из листинга 1, создадим исполняемый файл и запустим его (рис. 2.2). Листинг 1:

```
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
   _start:
   mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

```
[ioithenko@fedora lab07]$ nasm -f elf lab7-1.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-1 lab7-1.o
[ioithenko@fedora lab07]$ ./lab7-1
j
[ioithenko@fedora lab07]$
```

Рис. 2.2: Первый запуск программы вывода значения регистра еах

Далее изменим текст программы и вместо символов запишем в регистры числа. Создадим исполняемый файл и запустим его (рис. 2.3). Согласно таблице ASCII, коду 10 соответствует символ LF. При выходе на экран этот символ не отображается, так как является переносом на новую строку.

```
[ioithenko@fedora lab07]$ mc

[ioithenko@fedora lab07]$ nasm -f elf lab7-1.asm

[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-1 lab7-1.o

[ioithenko@fedora lab07]$ ./lab7-1

[ioithenko@fedora lab07]$ touch ~/work/arch-pc/lab07/lab7-2.asm
```

Рис. 2.3: Второй запуск программы

Создадим файл lab7-2.asm в каталоге ~/work/arch-pc/lab07 и введем в него текст программы из листинга 2. Создадим исполняемый файл и запустим его (рис. 2.4). Листинг 2:

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

```
[ioithenko@fedora lab07]$ touch ~/work/arch-pc/lab07/lab7-2.asm
[ioithenko@fedora lab07]$ mc

[ioithenko@fedora lab07]$ nasm -f elf lab7-2.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-2 lab7-2.o
[ioithenko@fedora lab07]$ ./lab7-2

106
[ioithenko@fedora lab07]$
```

Рис. 2.4: Первый запуск второй программы

Изменим текст программы и вместо символов запишем в регистры числа. Создадим исполняемый файл и запустим его (рис. 2.5). В результате программа выведет 10.

```
[ioithenko@fedora lab07]$ mc

[ioithenko@fedora lab07]$ nasm -f elf lab7-2.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-2 lab7-2.o
[ioithenko@fedora lab07]$ ./lab7-2
10
[ioithenko@fedora lab07]$
```

Рис. 2.5: Второй запуск второй программы

Заменим функцию iprintLF на iprint. Создадим исполняемый файл и запустим его (рис. 2.6). Функция iprintLF выводит значение с переносом на новую строку в отличие от iprint.

```
[ioithenko@fedora lab07]$ mc
[ioithenko@fedora lab07]$ nasm -f elf lab7-2.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-2 lab7-2.o
[ioithenko@fedora lab07]$ ./lab7-2
10[ioithenko@fedora lab07]$
```

Рис. 2.6: Третий запуск второй программы

Создадим файл lab7-3.asm в каталоге ~/work/arch-pc/lab07 и введем текст программы из листинга 3. Создадим исполняемый файл и запустим его (рис. 2.7). Листинг 3:

```
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax, 5; EAX=5
mov ebx,2; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3; EAX=EAX+3
xor edx,edx; обнуляем EDX для корректной работы div
mov ebx,3; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax, div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
mov eax, rem ; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,edx; вызов подпрограммы печати значения
call iprintLF; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
            [ioithenko@fedora lab07]$ nasm -f elf lab7-3.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-3 lab7-3.o
            [ioithenko@fedora lab07]$ ./lab7-3
            Результат: 4
            Остаток от деления: 1
            [ioithenko@fedora lab07]$
```

Рис. 2.7: Запуск программы вычисления выражения (5 * 2 + 3)/3

Изменим текст программы для вычисления выражения (4*6+2)/5, согласно листингу 4. Создадим исполняемый файл и проверим его работу (рис. 2.8). Листинг 4:

```
;-----
; Программа вычисления выражения
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax, 4; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx; обнуляем EDX для корректной работы div
mov ebx, 5; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax, div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
mov eax, rem ; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
```

```
mov eax,edx; вызов подпрограммы печати значения

call iprintLF; из 'edx' (остаток) в виде символов

call quit; вызов подпрограммы завершения
```

```
[ioithenko@fedora lab07]$ nasm -f elf lab7-3.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-3 lab7-3.o
[ioithenko@fedora lab07]$ ./lab7-3
Результат: 5
Остаток от деления: 1
[ioithenko@fedora lab07]$
```

Рис. 2.8: Запуск программы вычисления выражения (4 * 6 + 2)/5

Создадим файл variant.asm в каталоге ~/work/arch-pc/lab07 и введем в файл variant.asm текст из листинга 5. Создадим исполняемый файл и запустим его (рис. 2.9). Листинг 5:

```
:-----
; Программа вычисления варианта
:-----
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
```

```
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`

xor edx,edx

mov ebx,20

div ebx

inc edx

mov eax,rem

call sprint

mov eax,edx

call iprintLF

call quit
```

```
[ioithenko@fedora lab07]$ touch ~/work/arch-pc/lab07/variant.asm
[ioithenko@fedora lab07]$ mc
[ioithenko@fedora lab07]$ nasm -f elf variant.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o variant variant.o
[ioithenko@fedora lab07]$ ./variant
Введите № студенческого билета:
1132226529
Ваш вариант: 10
[ioithenko@fedora lab07]$
```

Рис. 2.9: Программа вычисления вычисления варианта задания по номеру студенческого билета

Ответы на вопросы: 1. За вывод сообщения "Ваш вариант:" отвечают строки кода:

```
mov eax,rem
call sprint
```

- 2. Инструкция mov ecx, х используется, чтобы положить адрес вводимой строки x в регистр ecx. Инструкция mov edx, 80 запись в регистр edx длины вводимой строки. call sread вызов подпрограммы ввода сообщения с клавиатуры из внешнего файла.
- 3. call atoi используется для вызова подпрограммы, которая преобразует ASCIIкод символа в целое число и записывает результат в регистр eax.

4. За вычисления варианта отвечают строки:

```
xor edx,edx ; обнуление edx для корректной работы div
mov ebx,20 ; ebx = 20
div ebx ; eax = eax/20, edx - остаток от деления
inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx.
- 6. Инструкция inc edx увеличивает значение регистра edx на 1.
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

3 Выполнение заданий для самостоятельной работы

В соответствие с предыдущим заданием, мой номер варианта - 10ый. Напишем программу вычисления выражения f(x)=5*(x+18)-28, код программы приведен в листинге 6. Создадим исполняемый файл и проверим его работу для значений x1 и x2 (рис. 3.1). Листинг 6:

```
; Программа вычисления выражения
;------
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
msg: DB 'Введите значение х: ',0
rem: DB 'Результат: ',0
div: DB 'f(x)=5*(x+18)-28',0
SECTION .bss
x: RESB 80 ; задание переменной
SECTION .text
GLOBAL _start
_start:
; — Вычисление выражения
mov eax,div ; вызов подпрограммы печати
call sprint
```

```
mov eax, msg
call sprint
mov ecx, x
mov edx, 80
call sread
mov eax, x
call atoi
add eax, 18 ; eax = x + 18
mov ebx,5
mul ebx ; eax = 5*(x + 18)
add eax, -28; eax = 5*(x + 18) - 28
mov edi,eax ; запись результата вычисления в 'edi'
; — Вывод результата на экран
mov eax, rem ; вызов подпрограммы печати
call sprint.
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
call quit ; вызов подпрограммы завершения
```

```
[ioithenko@fedora lab07]$ mc

[ioithenko@fedora lab07]$ nasm -f elf lab7-task.asm
[ioithenko@fedora lab07]$ ld -m elf_i386 -o lab7-task lab7-task.o
[ioithenko@fedora lab07]$ ./lab7-task

f(x)=5*(x+18)-28

Введите значение x: 2

Результат: 72
[ioithenko@fedora lab07]$ ./lab7-task

f(x)=5*(x+18)-28

Введите значение x: 3

Результат: 77
[ioithenko@fedora lab07]$
```

Рис. 3.1: Программа вычисления выражения f(x)=5*(x+18)-28

4 Выводы

В ходе выполнения лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.