Chapitre 13

Dérivation

Sommaire

I	Dérivée première	
	1) Définition	
	2) Théorème généraux	
	3) Dérivabilité à gauche et à droite	
	4) Dérivée d'une bijection réciproque	
II	Applications de la dérivation	
	1) Théorème de Rolle	
	2) Les accroissements finis	
	3) Sens de variation	
III	Dérivées successives	
	1) Classe d'une application	
	2) Formule de Leibniz	
	3) Classe d'une composée	
	4) Classe d'une réciproque	
IV	Extension aux fonctions à valeurs complexes	
	1) Définition	
	2) Propriétés	
	3) Classe d'une fonction	
V	Solution des exercices	

I DÉRIVÉE PREMIÈRE

1) Définition

Origine géométrique:

La droite qui joint les points $\mathrm{M}(t,f(t))$ et $\mathrm{M}_0(t_0,f(t_0))$ (sécante) a pour équation :

$$y = \frac{f(t) - f(t_0)}{t - t_0}(x - t_0) + f(t_0)$$

Lorsque l'on rapproche t de t_0 , cette droite pivote autour du point M_0 et, lorsque la courbe est régulière, semble se rapprocher d'une position « limite » qui nous définirons comme la tangente au point M_0 . Le coefficient directeur de cette droite « limite » doit être la limite lorsque t tend vers t_0 du coefficient directeur de la sécante, c'est dire $\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$.

 \Box

Définition 13.1

Soit $f: I \to \mathbb{R}$ une fonction et soit $t_0 \in I$, on dit que f est **dérivable en** t_0 lorsque la fonction : $t \mapsto$ $\frac{f(t)-f(t_0)}{t-t_0}$ admet une limite **finie** en t_0 . Si c'est le cas, cette limite est notée $f'(t_0)$ et appelée **nombre dérivé de** f **en** t_0 . Lorsque f est dérivable en tout point de I on dit que f est dérivable sur I et la fonction de I vers \mathbb{R} qui à t associe f'(t) est appelée **dérivée de** f **sur** I, on la note f' ou bien $\frac{df}{dt}$. L'ensemble des fonctions dérivables sur I est noté $\mathcal{D}(I,\mathbb{R})$. Si le plan est muni d'un repère orthonormé et si f est dérivable en t_0 , la droite d'équation $y = f'(t_0)(x - t_0) + f(t_0)$ est appelée tangente à la courbe au point d'abscisse t_0 . Si le taux d'accroissement de f en t_0 a une limite infinie et si f est continue en t_0 , alors on dit que la courbe admet une tangente verticale au point d'abscisse t_0 , d'équation $x = t_0$.

Remarque 13.1 – Les fonctions trigonométriques, logarithme, exponentielle, polynomiales et rationnelles sont dérivables sur leur ensemble de définition. Mais :

La fonction valeur absolue et la fonction $x \mapsto x^{\alpha}$ avec $0 < \alpha < 1$, ne sont pas dérivables en 0. La fonction partie entière n'est pas dérivable aux points entiers relatifs (pas continue).

Théorème 13.1 (définition équivalente)

f est dérivable en t_0 et $f'(t_0) = a$ si et seulement si $f(t) = f(t_0) + a(t - t_0) + (t - t_0)o(1)$. On dit alors que f admet un développement limité d'ordre 1 en t_0 .

Preuve : Celle-ci est simple et laissée en exercice.

Théorème généraux 2)

Théorème 13.2 (Dérivabilité et continuité)

Si f est dérivable en t_0 , alors f est continue en t_0 mais la réciproque est fausse.

Preuve : Il suffit d'appliquer la définition équivalente ci-dessus pour voir que $\lim_{t \to 0} f = f(t_0)$. Pour la réciproque, on a par exemple la fonction $t \mapsto |t|$ qui est continue en 0 mais non dérivable.

Théorème 13.3 (Théorèmes généraux)

- Si f et g sont dérivables sur I et si $\alpha \in \mathbb{R}$ alors les fonctions f + g, $f \times g$ et αf sont dérivables sur I avec les formules:
- -(f+g)'=f'+g'.
- $-(f \times g)' = f' \times g + f \times g'.$ -(\alpha f)' = \alpha f'.

- Si f est dérivable sur I et **ne s'annule pas** alors $\frac{1}{f}$ est dérivable sur et $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$. Si f est dérivable sur I et si g est dérivable sur J avec $\operatorname{Im}(f) \subset J$, alors $g \circ f$ est dérivable sur I et $(g \circ f)' = f' \times [g' \circ f].$

Preuve: Les deux premiers points ne posent pas de difficultés, passons au troisième: soit $x_0 = f(t_0)$, posons:

$$h(x) = \begin{cases} \frac{g(x) - g(x_0)}{x - x_0} & \text{si } x \neq x_0\\ g'(x_0) & \text{si } x = x_0 \end{cases}$$

alors h est continue en x_0 et pour $t \neq t_0$ on a $\frac{g(f(t)) - g(f(t_0))}{t - t_0} = h[f(t)] \times \frac{f(t) - f(t_0)}{t - t_0}$, même si $f(t) = f(t_0)$, comme f est continue en t_0 , on a $\lim_{t \to t_0} \frac{g(f(t)) - g(f(t_0))}{t - t_0} = h(x_0) \times f'(t_0) = f'(t_0) \times g'(f(t_0))$.

Du troisième point découlent les formules de dérivation usuelles :

Fonction	Dérivée
$\sin(u)$	$u'\cos(u)$
cos(u)	$-u'\sin(u)$
tan(u)	$u'(1 + \tan(u)^2) = \frac{u'}{\cos(u)^2}$
sh(u)	$u'\operatorname{ch}(u)$
ch(u)	$u' \operatorname{sh}(u)$
th(u)	$u'(1-\text{th}(u)^2) = \frac{u'}{\text{ch}(u)^2}$
e^u	$u'e^u$
ln(u)	$\frac{u'}{u}$
u^{α}	$\alpha u' u^{\alpha-1}$

Remarque 13.2 – *Il découle des théorèmes généraux que pour les opérations usuelles sur les fonctions* $\mathcal{D}(I,\mathbb{R})$ *est un anneau et un* \mathbb{R} *-espace vectoriel.*

★Exercice 13.1 Soit
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

1/ Montrer que f est dérivable sur \mathbb{R} .

2/ Montrer que f' n'est pas continue en 0.

3) Dérivabilité à gauche et à droite

d Définition 13.2

Soit f : I → \mathbb{R} *une fonction, et soit t*₀ ∈ I :

• Si $t_0 \neq \inf(I)$: on dit que f est dérivable à gauche en t_0 lorsque le taux d'accroissement de f a une limite finie à gauche en t_0 . Si c'est le cas, cette limite est notée $f'_g(t_0)$ et la demi-droite d'équation

$$\begin{cases} y = f_g'(t_0)(x - t_0) + f(t_0) \\ x \le t_0 \end{cases}$$
, est appelée demi-tangente à la courbe au point d'abscisse t_0 .

• Si $t_0 \neq \sup(I)$: on dit que f est dérivable à droite en t_0 lorsque le taux d'accroissement de f a une limite finie à droite en t_0 . Si c'est le cas, cette limite est notée $f'_d(t_0)$ et la demi-droite d'équation

$$\begin{cases} y = f_d'(t_0)(x - t_0) + f(t_0) \\ x \geqslant t_0 \end{cases}$$
, est appelée demi-tangente à la courbe au point d'abscisse t_0 .

Exemples:

- La fonction valeur absolue est dérivable à gauche en 0, et $f'_g(0) = -1$, elle est dérivable à droite en 0 et $f'_d(0) = 1$, mais elle n'est pas dérivable en 0 car −1 ≠ 1, on dit que le point de la courbe d'abscisse 0 est **un point anguleux**.
- La fonction $f(t) = \sqrt{|t|}$ n'est pas dérivable en 0, le taux d'accroissement tend vers +∞ en 0⁺ et vers -∞ en 0⁻, on dit que le point de la courbe d'abscisse 0 est un point **de rebroussement de première espèce**.

Théorème 13.4

Soit t_0 un point intérieur à I, f est dérivable en t_0 ssi f est dérivable à gauche et à droite en t_0 avec $f'_g(t_0) = f'_d(t_0)$.

Preuve : Cela découle des propriétés des limites.

4) Dérivée d'une bijection réciproque

Mara Parème 13.5

Si $f: I \to \mathbb{R}$ est une fonction continue strictement monotone, alors f induit une bijection de I sur J = Im(f). Soit $y_0 = f(t_0) \in J$ ($t_0 \in I$), si f est dérivable en t_0 et si $f'(t_0) \neq 0$, alors la bijection réciproque, ϕ , est dérivable en y_0 et $\phi'(y_0) = \frac{1}{f'(t_0)} = \frac{1}{f'\circ\phi(y_0)}$. Si f est dérivable en t_0 et $f'(t_0) = 0$, alors ϕ n'est pas

dérivable en y_0 mais la courbe représentative de ϕ admet une tangente verticale au point d'abscisse y_0 .

Preuve: Soit $t_0 \in I$ et $y_0 = f(t_0)$, pour $y \in J \setminus \{y_0\}$, on a $\frac{\phi(y) - \phi(y_0)}{y - y_0} = \frac{t - t_0}{f(t) - f(t_0)}$ en posant $t = \phi(y)$, ϕ étant continue, lorsque $y \to y_0$, on a $t \to t_0$ et donc $\frac{t - t_0}{f(t) - f(t_0)} \to \frac{1}{f'(t_0)}$ car $f'(t_0) \neq 0$. Ce qui prouve le premier résultat.

Si $f'(t_0) = 0$, comme f est monotone la fraction $\frac{t - t_0}{f(t) - f(t_0)}$ garde un signe constant, donc sa limite lorsque $y \to y_0$ est infinie, ce qui prouve le second résultat.

Remarque 13.3 -

– Si $f: I \to J$ est bijective, continue, dérivable et si f' ne s'annule pas sur I, alors d'après le théorème précédent, f^{-1} est dérivable sur J et on a la formule :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}.$$

- Si f n'est pas dérivable en t_0 mais si sa courbe a une tangente verticale en ce point, alors f^{-1} est dérivable en $y_0 = f(t_0)$ et $(f^{-1})'(y_0) = 0$ (car le taux d'accroissement de f en t_0 a une limite infinie en t_0).

Exemples:

– La fonction ln:]0;+∞[→ \mathbb{R} est une fonction continue, strictement croissante, dérivable et sa dérivée ne s'annule pas. Sa bijection réciproque, la fonction exponentielle, est donc dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \exp(x)' = \frac{1}{\ln' \circ \exp(x)} = \exp(x).$$

- La fonction $f: [-\frac{\pi}{2}; \frac{\pi}{2}] \rightarrow [-1; 1]$ définie par $f(x) = \sin(x)$ est bijective, continue, dérivable et sa dérivée $(f'(x) = \cos(x))$ ne s'annule pas sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$, donc la bijection réciproque arcsin, est dérivable sur]-1; 1[et :

$$\arcsin'(x) = \frac{1}{f'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - x^2}}.$$

Par contre la fonction arcsin n'est pas dérivable en ± 1 (une tangente verticale en ces points).

- La fonction $f: [0;\pi] \to [-1;1]$ définie par $f(x) = \cos(x)$ est bijective, continue, dérivable et sa dérivée $(f'(x) = -\sin(x))$ ne s'annule pas sur]0; π [, donc la bijection réciproque arccos, est dérivable sur]−1;1[et :

$$\arccos'(x) = \frac{1}{f'(\arccos(x))} = \frac{-1}{\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}}.$$

Par contre la fonction arccos n'est pas dérivable en ± 1 (une tangente verticale en ces points).

- La fonction f:]-π/2;π/2[→ \mathbb{R} définie par $f(x) = \tan(x)$ est bijective, continue, dérivable et sa dérivée $(f'(x) = 1 + \tan(x)^2)$ ne s'annule pas, donc la bijection réciproque arctan, est dérivable sur \mathbb{R} et :

$$\arctan'(x) = \frac{1}{f'(\arctan(x))} = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}.$$

II APPLICATIONS DE LA DÉRIVATION

1) Théorème de Rolle

Théorème 13.6

Soit $f: [a;b] \to \mathbb{R}$ dérivable sur]a;b[et soit $t_0 \in]a;b[$. Si f admet un extremum local en t_0 , alors $f'(t_0) = 0$, mais la réciproque est fausse.

Preuve: Supposons que f présente un maximum local en t_0 , alors à gauche en t_0 on a $\frac{f(t)-f(t_0)}{t-t_0} \ge 0$, d'où par passage à la limite en t_0 : $f'(t_0) \ge 0$. À droite en t_0 on a : $\frac{f(t)-f(t_0)}{t-t_0} \le 0$, d'où par passage à la limite en t_0 : $f'(t_0) \le 0$, par conséquent $f'(t_0) = 0$. Pour la réciproque il suffit de considérer la fonction $x \mapsto x^3$ en 0.

Remarque 13.4 – Dans le théorème ci-dessus, il est essentiel que t_0 ne soit pas une borne de l'intervalle. Par exemple la fonction f(t) = 1 + t admet un maximum sur [0;1] en $t_0 = 1$ mais $f'(t_0) \neq 0$.

Théorème 13.7 (de Rolle 1)

Si $f: [a;b] \to \mathbb{R}$ est continue sur [a;b], dérivable sur [a;b] et si f(a) = f(b), alors : il existe $c \in a; b[, f'(c) = 0.$

Preuve: Si f est constante alors il n'y a rien à montrer. Si f n'est pas constante, Im(f) = [m; M] (f est continue sur le segment [a;b]) avec m < M. Supposons $f(a) \neq M$, alors $f(b) \neq M$ or il existe $c \in [a;b]$ tel que f(c) = M donc $c \in [a;b]$, d'après la proposition précédente (maximum global en c) on a f'(c) = 0. Si f(a) = M alors $f(a) \neq m$ et le même raisonnement s'applique avec le minimum.

Remarque 13.5 -

- Ce théorème est faux si f n'est pas continue en a ou en b (prendre f(x) = x sur [0;1] et f(1) = 0).
- Ce théorème est faux si f est à valeurs complexes, par exemple $f(t) = e^{it}$, on $a f(0) = f(2\pi)$ mais $f'(t) = ie^{it}$ ne s'annule jamais.
- **\bigstar Exercice 13.2** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable qui admet n racines distinctes, alors f' admet au moins n-1 racines distinctes.

2) Les accroissements finis

Théorème 13.8 (égalité de accroissements finis)

Si $f: [a;b] \to \mathbb{R}$ est continue sur [a;b] et dérivable sur [a;b] alors :

$$\exists c \in]a; b[, f(b) - f(a) = (b - a)f'(c).$$

Preuve: Soit $\phi(t) = t(f(b) - f(a)) - (b - a) f(t)$, la fonction ϕ est continue sur [a;b] et dérivable sur [a;b], de plus $\phi(a) = af(b) - bf(a) = \phi(b)$, d'après le théorème de Rolle, il existe $c \in a$; $b \in a$; b

Remarque 13.6 -

– De même, si f et g sont continues sur [a;b] et dérivables sur]a;b[, il existe c ∈]a;b[tel que :

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

- L'égalité s'écrit aussi : $f'(c) = \frac{f(b) f(a)}{b a}$, ce qui signifie géométriquement qu'il existe un point de la courbe (d'abscisse c) où la tangente est parallèle à la corde définie par le point d'abscisse a et le point d'abscisse
- Autre preuve : soit g la fonction affine prenant la même valeur que f en a et b, $g(x) = \frac{f(b) f(a)}{b a}(x a) + f(a)$. On a f(a) g(a) = f(b) g(b), d'après le théorème de Rolle il existe $c \in a$; b[tel que f'(c) = g'(c) ce qui donne $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Théorème 13.9 (inégalité des accroissements finis)

Si $f: [a;b] \to \mathbb{R}$ est continue sur [a;b], dérivable sur [a;b] et s'il existe deux réels m et M tels que $\forall x \in]a; b[, m \leq f'(x) \leq M, alors :$

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$
.

Preuve : Celle-ci découle directement de l'égalité des accroissement finis.

^{1.} ROLLE Michel (1652 - 1719): mathématicien français.

Si $\forall t \in]a; b[, |f'(t)| \leq M$, alors $|f(b) - f(a)| \leq M(b - a)$, et plus généralement :

 $\forall x, y \in [a; b], |f(x) - f(y)| \leq M|x - y|, \text{ la fonction } f \text{ est M-lipschitzienne.}$

Réciproquement, si f est M-lipschitzienne sur un intervalle I, alors tous les taux d'accroissements sont majorés en valeur absolue par M, et donc par passage à la limite, $|f'| \leq M$.

\bigstarExercice 13.3 Soit $f: [a;b] \rightarrow [a;b]$ continue sur [a;b], dérivable sur [a;b] telle que $|f'| \le k < 1$, on considère la suite *définie par* $u_0 \in [a;b]$ *et* $u_{n+1} = f(u_n)$.

1/ Montrer que f admet au moins un point fixe ℓ et que celui-ci est unique.

2/ Montrer la suite u converge vers ℓ .

Exemples:

- Pour tout réel x, $\sin'(x) = \cos(x)$ et donc $|\sin'(x)| \le 1$, on en déduit (IAF) que pour tous réels x et y on a $|\sin(x) - \sin(y)| \le |x - y|$. De la même façon, on montre que $|\cos(x) - \cos(y)| \le |x - y|$.
- Pour tout x, y de $[1; +\infty[$, on a $|\sqrt{x} \sqrt{y}| \le \frac{1}{2}|x y|$.
- $\forall x > 0, \frac{1}{x+1} \leqslant \ln(x+1) \ln(x) \leqslant \frac{1}{x}.$

🔁 Théorème 13.10 (limite de la dérivée)

Soit $f: [a;b] \to \mathbb{R}$ continue sur [a;b] et dérivable sur [a;b]. Si f' admet une limite ℓ en b, alors :

- Si $\ell \in \mathbb{R}$ alors f est dérivable en b et $f'(b) = \ell$.
- Si $\ell = \pm \infty$ alors f n'est pas dérivable en b, mais il y a une tangente verticale pour la courbe réprésentative.

Preuve: D'après l'égalité des accroissements finis, pour $t \in [a; b[$, il existe $c_t \in]t; b[$ tel que $f(b) - f(t) = (b - t)f'(c_t) = (b$ $t)f'(c_t)$, d'où $\frac{f(t)-f(b)}{t-b}=f'(c_t)$, mais si t tend vers b, alors c_t tend vers b et donc $f'(c_t)$ tend vers ℓ , d'où : $\lim_{t\to b}\frac{f(t)-f(b)}{t-b}=\ell$, ce qui termine la preuve.

Remarque 13.7 – Si f' n'a pas de limite en b, on ne peut rien dire en général.

On a un résultat analogue pour $f: [a;b] \to \mathbb{R}$ continue sur [a;b], dérivable sur [a;b], avec $\lim_{t \to \infty} f'(t) = \ell$.

Exemple: La fonction arcsin est dérivable sur] – 1;1[et $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$, cette dérivée a pour limite $+\infty$ quand $x \to 1$. On retrouve ainsi que arcsin n'est pas dérivable en 1 et qu'il y a une tangente verticale en ce point pour la courbe.

3) Sens de variation

🙀 Théorème 13.11

Soit $f: I \to \mathbb{R}$ une fonction continue sur l'intervalle I, et dérivable sur I privé des ses bornes (noté I, intérieur de I), on a les résultats suivants :

- f est croissante si et seulement si $\forall t \in I$, $f'(t) \ge 0$.
- f est décroissante si et seulement si $\forall t \in I, f'(t) \leq 0$.
- f est constante si et seulement si $\forall t \in I$, f'(t) = 0.
- f est strictement croissante si et seulement si $\forall t \in I$, $f'(t) \ge 0$ et il n'existe aucun intervalle ouvert non vide inclus dans I sur lequel f' est constamment nulle.
- f est strictement décroissante si et seulement si $\forall t \in I$, $f'(t) \leq 0$ et il n'existe aucun intervalle ouvert non vide inclus dans I sur lequel f' est constamment nulle.

Preuve: Si f est croissante sur I, soit $t_0 \in I$, le taux d'accroissement de f en t_0 est toujours positif, donc par passage à la limite, on a $f'(t_0) \ge 0$. Réciproquement, si $f' \ge 0$ sur I, soit t < t' deux éléments de I, d'après l'égalité des accroissements finis, il existe c compris entre t et t' (strictement) tel que $f(t) - f(t') = f'(c)(t - t') \le 0$, donc $f(t) \le f(t')$ i.e. f est croissante. Pour f décroissante on applique ce qui précède à -f. Pour f constante, il suffit de dire que f est à la fois croissante et décroissante.

Si f est strictement croissante, alors on sait que $f' \ge 0$ sur $\stackrel{\circ}{I}$. Si f' est nulle sur un intervalle $J \subset I$, alors f est constante sur J, ce qui est absurde. Réciproquement, si $\forall t \in I$, $f'(t) \ge 0$ et il n'existe aucun intervalle ouvert non vide inclus dans I sur lequel f' est constamment nulle, soit t < t' deux éléments de I, on sait que $f(t) \le f(t')$, si on avait

f(t) = f(t') alors $\forall c \in [t; t'], f(t) = f(c) = f(t'),$ donc f est constante sur [t; t'], ce qui entraı̂ne que f' est nulle sur] t; t'[: absurde, donc f(t) < f(t') *i.e.* f est strictement croissante.

Remarque 13.8 – Ce théorème est faux si I n'est pas intervalle, par exemple la fonction $f(t) = \frac{1}{t}$ est dérivable $sur \mathbb{R}^*$ avec f' < 0, mais f n'est pas monotone $sur \mathbb{R}^*$.

DÉRIVÉES SUCCESSIVES

1) Classe d'une application

Définition 13.3

Soit $f: I \to \mathbb{R}$ une fonction et soit $n \in \mathbb{N}^*$. On dit que f est de classe \mathscr{C}^n sur I lorsque f est n fois dérivable sur I et que la dérivée n^e de f est continue sur I. L'ensemble des fonctions de classe \mathscr{C}^n sur I est noté $\mathscr{C}^n(I,\mathbb{R})$. La dérivée n^e de f est notée $f^{(n)}$ où $\frac{d^n f}{dt^n}$. Par convention, on pose $f^{(0)} = f$, on a alors $\forall n \in \mathbb{N}, f^{(n+1)} = (f^{(n)})'.$

Remarque 13.9 -

- $\mathcal{C}^{n+1}(\mathbf{I},\mathbb{R}) \subset \mathcal{C}^n(\mathbf{I},\mathbb{R}).$
- $Si\ f \in \mathcal{C}^n(I,\mathbb{R})$ avec $n \ge 1$, alors $\forall k \in [0;n]$, $f^{(k)} \in \mathcal{C}^{n-k}(I,\mathbb{R})$.

Exemples:

- $\forall n \in \mathbb{N}, f: t \mapsto e^t$ est de classe \mathscr{C}^n sur \mathbb{R} , et $f^{(n)}(t) = e^t$.
- Soit $n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $f: t \mapsto t^n$ est de classe \mathscr{C}^p sur \mathbb{R} , et $f^{(p)}(t) = \begin{cases} 0 & \text{si } p > n \\ \frac{n!}{(n-p)!} x^{n-p} & \text{sinon} \end{cases}$.
- $\forall n \in \mathbb{N}, f: t \mapsto \frac{1}{t} \text{ est de classe } \mathscr{C}^n \text{ sur } \mathbb{R}^*, \text{ et } f^{(n)}(t) = \frac{(-1)^n n!}{t^{n+1}}.$
- ∀ *n* ∈ N, *f* : *t* → ln(*t*) est de classe \mathscr{C}^n sur]0; +∞[, et pour $n \ge 1$, $f^{(n)}(t) = \frac{(-1)^{n-1}(n-1)!}{t^n}$. ∀ *n* ∈ N, cos et sin sont de classe \mathscr{C}^n sur \mathbb{R} et $\cos^{(n)}(t) = \cos(t + n\frac{\pi}{2})$, $\sin^{(n)}(t) = \sin(t + n\frac{\pi}{2})$.

★Exercice 13.4

1/ Soit $a \in \mathbb{R}$, et $f: x \mapsto \frac{1}{x-a}$, montrer que f est de classe \mathscr{C}^n sur $\mathbb{R} \setminus \{a\}$ pour tout $n \in \mathbb{N}$, et calculer $f^{(n)}(x)$. **2/** Soit $f: x \mapsto \frac{1}{x^2-1}$, montrer que f est de classe \mathscr{C}^n sur $\mathbb{R} \setminus \{\pm 1\}$ pour tout n, et calculer $f^{(n)}(x)$.

Définition 13.4

Lorsque f est de classe \mathscr{C}^n pour tout entier n, on dit que f est de classe \mathscr{C}^{∞} , l'ensemble des ces $fonctions \ est \ not \acute{e} \mathscr{C}^{\infty}(I,\mathbb{R}), \ et \ on \ a \ donc \ \mathscr{C}^{\infty}(I,\mathbb{R}) = \ \bigcap_{n} \mathscr{C}^{n}(I,\mathbb{R}).$

Remarque 13.10 -

- $\forall n \in \mathbb{N}, \mathscr{C}^{\infty}(I, \mathbb{R}) \subset \mathscr{C}^{n}(I, \mathbb{R}).$
- Dire que f est \mathscr{C}^{∞} sur I revient à dire que f est dérivable autant de fois que l'on veut (infiniment $\textit{d\'erivable}), \textit{autrement dit } \mathcal{C}^{\infty}(I,\mathbb{R}) = \ \bigcap \ \mathcal{D}^n(I,\mathbb{R}).$

Exemples:

- Toute fonction polynomiale est \mathscr{C}^{∞} sur \mathbb{R} (car la dérivée d'un polynôme est un polynôme).
- Toute fonction rationnelle est \mathscr{C}^{∞} sur son ensemble de définition (car la dérivée d'une fonction rationnelle est une fonction rationnelle).
- Les fonctions ln, exp, cos, sin et tan sont \mathscr{C}^{∞} sur leur ensemble de définition.
- **★Exercice 13.5** Étudier la classe sur \mathbb{R} de la fonction $f: x \mapsto x^2|x|$.

Théorème 13.12 (prolongement de classe \mathscr{C}^n)

Soit $f: [a; b] \to \mathbb{R}$ une fonction de classe \mathscr{C}^n sur [a; b] telle que toutes ses dérivées k^e ont une limite finie en $b: \forall k \in [0; n]$, $\exists \ell_k \in \mathbb{R}$, $\lim_{x \to b} f^{(k)}(x) = \ell_k$. Alors le prolongement de f obtenu en posant $f(b) = \ell_0$, est un prolongement de classe \mathscr{C}^n sur [a;b], et on $a \ \forall k \in [0;n]$, $f^{(k)}(b) = \ell_k$.

Preuve : Par récurrence sur n. Pour n = 0, c'est un prolongement par continuité de f en b. Supposons le théorème établi au rang n et que f vérifie les hypothèses au rang n+1, en appliquant (HR), le prolongement de f obtenu en posant $f(b) = \ell_0$, est un prolongement de classe \mathscr{C}^n sur [a;b], et on a $\forall k \in [0;n]$, $f^{(k)}(b) = \ell_k$. Soit $g = f^{(n)}$, alors g est continue sur [a;b], de classe \mathscr{C}^1 sur [a;b[et $\lim_{n \to \infty} g'(x) = \ell_{n+1} \in \mathbb{R}$, on en déduit que g est dérivable en b (théorème sur la limite de la dérivée) et que $g'(b) = \ell_{n+1}$, ce qui entraı̂ne que g' est continue en b. Finalement le prolongement de f est bien de classe \mathscr{C}^{n+1} sur [a;b], et $f^{(k)}(b) = \ell_k$ pour $k \in [0;n+1]$.

Formule de Leibniz

🙀 Théorème 13.13 (généraux)

Si f et g sont de classe \mathscr{C}^n sur I alors :

- f + g est de classe \mathscr{C}^n sur I et $(f + g)^{(n)} = f^{(n)} + g^{(n)}$.
- $\forall \lambda \in \mathbb{R}$, $\lambda . f$ est de classe \mathscr{C}^n sur I et $(\lambda . f)^{(n)} = \lambda . f^{(n)}$.
- $f \times g$ est de classe \mathscr{C}^n sur I et on a la formule (de Leibniz) : $(f \times g)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} \times g^{(n-k)}$.

Preuve : Pour le dernier point : pour n = 0 le résultat est vrai. Supposons le dernier point démontré au rang $n \ge 0$ avec la formule de Leibniz, et supposons que f et g sont de classe \mathscr{C}^{n+1} . En particulier f et g sont \mathscr{C}^n , donc $f \times g$ aussi et $(f \times g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} \times g^{(n-k)}$, on en déduit donc que $(f \times g)^{(n)}$ est dérivable sur I (somme de produits de fonctions dérivables) et sa dérivée est $(f \times g)^{(n+1)} = \sum_{k=0}^{n} {n \choose k} f^{(k+1)} \times g^{(n-k)} + \sum_{k=0}^{n} {n \choose k} f^{(k)} \times g^{(n+1-k)}$, ce qui donne $f^{(n+1)} \times g + f \times g^{(n+1)} + \sum_{k=1}^{n} \left(\binom{n}{k} + \binom{n}{k-1} \right) f^{(k)} \times g^{(n+1-k)}, \text{ c'est à dire } \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} \times g^{(n+1-k)}, \text{ ce qui donne la formule au } f^{(n+1)} \times g^{(n+1)} + \sum_{k=1}^{n} \binom{n+1}{k} f^{(k)} \times g^{(n+1-k)}, \text{ c'est à dire } \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} \times g^{(n+1-k)}, \text{ ce qui donne la formule au } f^{(n+1)} \times g^{(n+1)} + \sum_{k=1}^{n} \binom{n+1}{k} f^{(k)} \times g^{(n+1-k)}, \text{ c'est à dire } \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} \times g^{(n+1-k)}, \text{ c'est à dire } f^{(n+1)} \times g^{(n+1-k)}, \text{ c'est à dire } f^{(n+1-k)} \times g^{(n+1-k)}, \text{ c$ rang n+1, de plus cette somme est une somme de fonctions continues, ce qui prouve que $f \times g$ est bien de classe \mathcal{C}^{n+1} sur I.

🛂 Théorème 13.14

 $\forall n \in \mathbb{N} \cup \{+\infty\}, \mathscr{C}^n(I,\mathbb{R}) \text{ est un } \mathbb{R}\text{-espace vectoriel et un anneau.}$

Preuve : Cela découle du théorème précédent (s.e.v et sous-anneau de $\mathcal{F}(I,\mathbb{R})$).

★Exercice 13.6 Calculer de deux façons la dérivée n^e en 0 de la fonction $x \mapsto (1-x^2)^n$. Quelle relation obtient-on?

3) Classe d'une composée

🎦 Théorème 13.15

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions de classe \mathscr{C}^n avec $\mathrm{Im}(f) \subset J$, alors $g \circ f$ est de classe \mathscr{C}^n sur I. En particulier, si f et g sont \mathscr{C}^{∞} alors $g \circ f$ aussi.

Preuve : Le théorème est vrai pour n=0 (composée de deux fonctions continues), supposons le vrai au rang $n\geqslant 0$ et supposons f et g de classe \mathscr{C}^{n+1} , comme $n+1 \ge 1$, f et g sont dérivables, donc $g \circ f$ est dérivable avec la formule $(g \circ f)' = f' \times g' \circ f$, d'après l'hypothèse de récurrence, $g' \circ f$ est de classe \mathscr{C}^n (car g' et f sont de classe \mathscr{C}^n), or f' est également de classe \mathscr{C}^n , par conséquent $f' \times g' \circ f$ est de classe \mathscr{C}^n , ce qui signifie que $g \circ f$ est de classe \mathscr{C}^{n+1} .

Remarque 13.11 -

- Il existe une formule qui exprime $(g \circ f)'$ en fonction des dérivées de f et de g, mais ce n'est pas une formule simple.
- La fonction inverse $g: x \mapsto \frac{1}{x} \operatorname{est} \mathscr{C}^{\infty} \operatorname{sur} \mathbb{R}^{*}$, si $f: I \to \mathbb{R}$ est une fonction de classe \mathscr{C}^{n} qui ne s'annule, alors la composée, i.e. la fonction $\frac{1}{f}$, est de classe \mathscr{C}^n (même si $n = \infty$).
- On retrouve donc les mêmes théorèmes généraux que pour la continuité et la dérivabilité.

Classe d'une réciproque 4)

👺 Théorème 13.16

Soit $f: I \to J$ une bijection de I sur J = Im(f), de classe \mathscr{C}^n avec $n \in \mathbb{N}^* \cup \{\infty\}$. Si f' ne s'annule pas sur I, alors la bijection réciproque f^{-1} est de classe \mathscr{C}^n sur J (i.e. de même classe que f).

Preuve : On sait déjà que f^{-1} est dérivable sur J et que $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$, on voit alors que f^{-1} est de classe \mathscr{C}^1 sur J, le théorème est donc vrai pour n = 1, supposons le vrai au rang $n \geqslant 1$ et supposons que f est \mathscr{C}^{n+1} , par hypothèse de récurrence f^{-1} est de classe \mathscr{C}^n , mais alors $f' \circ f^{-1}$ est une fonction de classe \mathscr{C}^n qui ne s'annule pas, donc son inverse est de classe \mathscr{C}^n , i.e. $(f^{-1})'$ est \mathscr{C}^n , ce qui signifie que f^{-1} est de classe \mathscr{C}^{n+1} sur J.

Exemples:

- Les fonctions arcsin et arccos sont de classe \mathscr{C}^{∞} sur] 1; 1[.
- La fonction arctan est de classe \mathscr{C}^{∞} sur \mathbb{R} .

EXTENSION AUX FONCTIONS À VALEURS COMPLEXES

1) Définition

On adopte la même définition que dans le cas réel :

d Définition 13.5 🐙

On dira que $f: I \to \mathbb{C}$ est dérivable en $t_0 \in I$ si et seulement si la fonction $t \mapsto \frac{f(t) - f(t_0)}{t - t_0}$ définie sur $I \setminus \{t_0\}$, admet une limite finie (dans \mathbb{C}) en t_0 . Si celle-ci existe, elle est notée $f'(t_0)$. L'ensemble des fonctions dérivables sur I est noté $\mathcal{D}(I,\mathbb{C})$.

Propriétés

🎮 Théorème 13.17 (caractérisation)

Soit $f: I \to \mathbb{C}$ une fonction, soit u = Re(f) et v = Im(f), alors f est dérivable en $t_0 \in I$ si et seulement si u et v sont dérivables en t_0 . Si tel est le cas, alors $f'(t_0) = u'(t_0) + i v'(t_0)$.

Preuve : Il suffit d'écrire que :

$$\frac{f(t) - f(t_0)}{t - t_0} = \frac{u(t) - u(t_0)}{t - t_0} + i \frac{v(t) - v(t_0)}{t - t_0}$$

avec u = Re(f) et v = Im(f).

À retenir

Il découle de ce théorème, que lorsque f est dérivable sur I, on a : Re(f') = Re(f)' et Im(f') = Im(f)'.

Comme la caractérisation nous ramène aux fonctions à valeurs réelles, on peut déduire les propriétés des fonctions dérivables à valeurs complexes :

- On retrouve les mêmes théorèmes généraux, à savoir :
 - Toute fonction $f: I \to \mathbb{C}$ dérivable est continue (réciproque fausse).
 - Si $f,g:I\to\mathbb{C}$ sont dérivables, alors $f+g,\,f\times g$ et λf $(\lambda\in\mathbb{C})$ sont dérivables avec les formules : $(f+g)' = f' + g', (f \times g)' = f' \times g + f \times g', (\lambda f)' = \lambda f'.$
 - Si $g: I \to \mathbb{C}$ est dérivable et ne s'annule pas, alors $\frac{1}{g}$ est dérivable sur I et $(\frac{1}{g})' = -\frac{g'}{g^2}$. On en déduit que si f est également dérivable sur I alors $\left(\frac{f}{g}\right)' = \frac{f' \times g - f \times g'}{g^2}$.
 - Si $f: I \to \mathbb{R}$ et $g: J \to \mathbb{C}$ sont dérivables avec $Im(f) \subset J$, alors $g \circ f$ est dérivable sur I et $(g \circ f)' = I$ $f' \times g' \circ f$.
 - Si $f: I \to \mathbb{C}$ est dérivable alors $\exp(f)$ est dérivable sur I et $[\exp(f)]' = f' \times \exp(f)$.
- Cependant, le théorème de Rolle n'est plus valable, par exemple la fonction $f(t) = \exp(it)$ est dérivable sur \mathbb{R} et $f'(t) = i \exp(it)$, on a $f(0) = f(2\pi)$ mais f' ne s'annule pas. Par conséquent l'égalité des accroissements finis n'est plus valable non plus, mais on conserve les inégalités.

Théorème 13.18 (inégalité des accroissements finis généralisée)

 $Si\ f: I \to \mathbb{C}$ est une fonction \mathscr{C}^1 sur I, et $si\ \forall\ t \in I, |f'(t)| \leq g'(t)$ où $g: I \to \mathbb{R}$ est une fonction \mathscr{C}^1 sur I, alors:

$$\forall a, b \in I, |f(b) - f(a)| \leq |g(b) - g(a)|.$$

Remarque 13.12 -

- Si \forall t ∈ I, $|f'(t)| \leq M$, alors en prenant la fonction g(t) = Mt, et en appliquant le théorème ci-dessus, on obtient $\forall a, b \in I$, $|f(b) - f(a)| \leq M|b - a|$.

Exemple: Avec $f(t) = \exp(\alpha t)$ où $\alpha = a + ib \in \mathbb{C}$ avec $a \neq 0$, on a $|f'(t)| = |\alpha| \exp(at) = g'(t)$, par conséquent:

$$\forall \ t,t' \in \mathbb{R}, |\exp(\alpha t) - \exp(\alpha t')| \leqslant \frac{|\alpha|}{|a|} |\exp(at) - \exp(at')|.$$

3) Classe d'une fonction

On donne la même définition avec les mêmes notations que pour les fonctions à valeurs réelles, à savoir : $f\colon I\to\mathbb{C}$ est de classe \mathscr{C}^n ssi f est n fois dérivable et $f^{(n)}$ est continue sur I, ce qui revient à dire que les parties réelle et imaginaire de f sont de classe \mathscr{C}^n . L'ensemble des fonctions de classe \mathscr{C}^n sur I est noté $\mathscr{C}^n(I,\mathbb{C})$, et on pose $\mathscr{C}^\infty(I,\mathbb{C})=\bigcap_{n\in\mathbb{N}}\mathscr{C}^n(I,\mathbb{C})$: ensemble des fonctions de classe \mathscr{C}^∞ .

On retrouve les mêmes théorèmes généraux : $\mathscr{C}^n(I,\mathbb{C})$ est une \mathbb{C} -algèbre $(n \in \mathbb{N} \cup \{\infty\})$. La formule de Leibniz reste valable, et la composée de deux fonctions de classe \mathscr{C}^n est également de classe \mathscr{C}^n .

★Exercice 13.7 *Soit* $f(t) = \cos(t) \exp(t\sqrt{3})$, *calculer* $f^{(n)}(t)$.

V SOLUTION DES EXERCICES

Solution 13.1

1/ Les théorèmes généraux s'appliquent sur \mathbb{R}^* . Le taux d'accroissement en 0 s'écrit $x \sin(\frac{1}{x})$ qui tend vers 0 en 0, donc f est dérivable en 0 et f'(0) = 0.

2/ Pour $x \neq 0$, $f'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$, or si on pose $u_n = \frac{1}{n\pi}$, alors $u_n \to 0$ et $\cos(\frac{1}{u_n}) = (-1)^n$ n'a pas de limite. Donc la fonction $x \mapsto \cos(\frac{1}{x})$ n'a pas de limite en 0, et comme la fonction $x \mapsto 2x \sin(\frac{1}{x})$ tend vers 0 en 0, cela entraîne que f'(x) ne peut pas avoir de limite en 0.

Solution 13.2 Il suffit d'appliquer le théorème de Rolle à la fonction f entre deux racines consécutives. On montre ainsi qu'entre deux racines de f il y a toujours une racine de f'.

Solution 13.3

1/ On montre que la fonction $g: x \mapsto f(x) - x$ s'annule en un point ℓ car elle est continue et change de signe puisque $g(a) = f(a) - a \geqslant 0$ et $g(b) = f(b) - b \leqslant 0$. Si ℓ et ℓ' sont deux points de f dans [a;b], alors en appliquant l'inégalité des AF, on $|\ell - \ell'| = |f(\ell) - f(\ell')| \leqslant k|\ell - \ell'|$, or k < 1, ce qui entraîne $|\ell - \ell'| = 0$ et donc $\ell = \ell'$.

2/ Par récurrence tous les termes u_n existent dans [a;b]. On a alors (IAF) $|u_{n+1} - \ell| = |f(u_n) - f(\ell)| \le k|u_n - \ell|$, on en déduit par récurrence que $|u_n - \ell| \le k^n|u_0 - \ell|$, or $k^n \to 0$ car |k| < 1, et donc $u_n \to \ell$ (c'est le théorème du point fixe).

Solution 13.4

Solution 13.5 On vérifie que f est dérivable $sur \mathbb{R}$, avec $f'(x) = 3x^2 si \ x > 0$, $f'(x) = -3x^2 si \ x < 0$ et f'(0) = 0. On peut écrire f'(x) = 3x|x| pour tout x, et donc f' est continue $sur \mathbb{R}$, f est donc au moins de classe \mathscr{C}^1 $sur \mathbb{R}$.

De même, on vérifie que f' est dérivable sur \mathbb{R} , avec f''(x) = 6x si x > 0, f'(x) = -6x si x < 0 et f''(0) = 0. On peut écrire f''(x) = 6|x| pour tout x, et donc f'' est continue sur \mathbb{R} , f' est donc au moins de classe \mathscr{C}^1 sur \mathbb{R} , c'est à dire f est au moins de classe \mathscr{C}^2 sur \mathbb{R} .

Par contre, on peut vérifier que f'' n'est pas dérivable en 0, et donc f n'est pas de classe \mathscr{C}^3 sur \mathbb{R} .

Solution 13.6 On $a f(x) = \sum_{k=0}^{n} \binom{n}{k} (-1)^k x^{2k}$ (Newton) et donc $f^{(n)}(x) = \sum_{\frac{n}{2} \leqslant k \leqslant n} n \binom{n}{k} (-1)^k \frac{(2k)!}{(2k-n)!} x^{2k-n}$ et donc $f^{(n)}(0) = 0$ si n est impair, et $f^{(n)}(0) = (-1)^{\frac{n}{2}} \binom{n}{\frac{n}{2}} n!$.

On $a f(x) = (1-x)^n \times (1+x)^n$, et donc $f^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} (-1)^k \frac{n!}{(n-k)!} (1-x)^{n-k} \frac{n!}{k!} (1+x)^k$ (Leibniz), d'où $f^{(n)}(x) = n! \sum_{k=0}^n \binom{n}{k}^2 (-1)^k (1-x)^{n-k} (1+x)^k$ et donc $f^{(n)}(0) = n! \sum_{k=0}^n \binom{n}{k}^2 (-1)^k$. En égalant les deux résultats, on en déduit que : $\sum_{k=0}^n \binom{n}{k}^2 (-1)^k = (-1)^{\frac{n}{2}} \binom{n}{\frac{n}{2}}$ si n est pair, et 0 sinon.

Solution 13.7 On a f(t) = Re(g(t)) avec $g(t) = \exp(t(i+\sqrt{3})) = \exp(\alpha t)$ en posant $\alpha = \sqrt{3} + i = 2\exp(i\frac{\pi}{6})$. On a donc $g^{(n)}(t) = \alpha^n \exp(\alpha t)$ et $f(t) = \text{Re}(\alpha^n \exp(\alpha t)) = 2^n \cos(t + n\frac{\pi}{6}) \exp(t\sqrt{3})$.