К лабораторной работе 1.4.5

- 1. В ряде учебников присутствуют разделы, озаглавленные «Колебания и волны». Чем волна отличается от колебания? Как математически описать скалярную величину, совершающую одномерное волновое движение? Какая именно величина изменяется («волнуется») в задаче о движении натянутой струны?
- 2. Есть натянутая струна с погонной плотностью ρ_l . Сила натяжения струны равняется T. Струна двигается лишь в одной, вертикальной плоскости. Запишите волновое уравнение, описывающее движение струны. Как запомнить волновое уравнение из соображений размерности?
- 3. Бегущей гармонической волной называется волновое движение, описываемое формулой $f(x,t) = A\cos(\omega t kx + \varphi_0)$ или формулой $f(x,t) = A\cos(\omega t + kx + \varphi_0)$. Здесь ω называется круговой частотой волны, а k ее волновым числом (частный случай волнового вектора \mathbf{k}). Будем считать, что $\omega > 0$, k > 0. Покажите, что бегущая гармоническая волна является решением волнового уравнения при определенном соотношении между ω и k (это соотношение называется законом дисперсии данных волн). Изобразите графически зависимость $\omega(k)$.
- 4. Изобразите «моментальную фотографию» бегущей волны (т.е. постройте график $f(x,t)|_{t=\text{const}}$). Что называется волновым числом k и длиной волны λ ? Как связаны друг с другом k и λ , в каких единицах они измеряются? Почему k называют еще «пространственной частотой»?
- 5. а) Вопрос из школьного курса математики. Изобразите график произвольной функции f(x). Как по нему построить график функции $g(x) = f(x+a) \ (a>0)$? А если a<0?
 - б) Чем «моментальная фотография» бегущей волны $f(x,t) = A\cos(\omega t kx + \varphi_0)$ в момент времени $t = t_0 + \tau$ отличается от «фотографии» в момент $t = t_0$? На сколько сдвинулась «фотография» за время τ ? Каков физический смысл фазовой скорости u? Как представить себе эволюцию бегущей волны во времени?
 - в) Чем отличаются бегущие волны $f_1(x,t) = A\cos(\omega t kx + \varphi_0)$ и $f_2(x,t) = A\cos(\omega t + kx + \varphi_0)$? ω и k в $f_1(x,t)$ и $f_2(x,t)$ одинаковые.
- 6. Какое изменение величины f зафиксирует неподвижный наблюдатель, регистрирующий бегущую волну в точке с координатой x? Постройте график функции $f(x,t)|_{x={\rm const}}$. Что называется периодом T, частотой ν и круговой частотой ω ? Как связаны между собой T, f и ω ? В каких единицах измеряются T, f и ω ?
- 7. Какое соотношение между λ , ν и u существует для бегущих гармонических волн, распространяющихся по «бесконечной» натянутой струне? В чем физический смысл этого соотношения?
- 8. Какое число параметров необходимо для полного задания бегущей гармонической волны? А для полного задания гармонической волны, «бегущей» по струне?
- 9. Покажите в одномерном случае, что для волнового уравнения справедлив принцип суперпозиции: если f(x,t) и g(x,t) решения волнового уравнения, то и h(x,t) = af(x,t) + bg(x,t) тоже решение волнового уравнения.
- 10. Какое математическое выражение получится, если сложить две бегущие гармонические волны с одинаковыми A и ω , распространяющиеся навстречу друг другу? Получившаяся в результате волна называется стоячей.
 - Указание. Используйте математическую формулу для суммы косинусов, известную из школьного курса математики.
- 11. a) Что представляет из себя «моментальная фотография» стоячей волны?
 - б) Как представить себе эволюцию стоячей волны во времени?

- в) Как стоячая волна будет выглядеть для неподвижного наблюдателя? Как связаны между собой длина волны и частота стоячей волны?
- 12. Концы натянутой струны длины L закреплены. Сила натяжения струны T и ее погонная плотность ρ_l известны. В такой струне могут существовать гармонические стоячие волны лишь с определенными длинами волн λ_n . Каковы эти длины волн λ_n ? Какие частоты ν_n им соответствуют? Чему равны наибольшие λ_1 и λ_2 ?
 - 1. Распространение звука в одномерном случае описывается волновым уравнением, имеющим такой же вид, как и для натянутой струны. Изменение какой величины в звуковой волне описывается волновым уравнением?
- 2. (Эффект Доплера) Неподвижный (относительно воздуха) источник излучает плоскую звуковую волну с частотой ν_0 . Какую частоту звука зарегистрирует приемник, движущийся навстречу звуковой волне со скоростью v? Скорость звука в воздухе равна u.
- 3. В экзаменационном билете говорится о «продольном эффекте Доплера». А что, существуют какието еще эффекты Доплера?
- 4. Источник звука движется относительно воздуха со скоростью v. Мембрана источника колеблется с частотой ν₀. Какую частоту звука зарегистрирует неподвижный (относительно воздуха) приемник? Расстояние между источником и приемником уменьшается. Скорость звука в воздухе равна u. Где в Долгопрудном можно регулярно наблюдать (т.е. слышать) это явление?
- 5. Найдите величину относительного доплеровского сдвига частоты $\Delta \nu / \nu_0$ в условиях задач 2 и 4. Считать, что $v \ll u$.
- 6. («Собака лает, ветер носит») Мальчик слышит лай собаки, находящейся на некотором расстоянии от него. Мальчик и собака неподвижны относительно земли. Основная частота, присутствующая в лае собаки, равна ν_0 . Ветер дует от собаки к мальчику со скоростью v относительно земли. Звук какой частоты услышит мальчик? Скорость звука в воздухе равна u.

- 1. Выведите волновое уравнение, описывающее движение натянутой струны. Сила натяжения струны T, ее погонная плотность ρ_l . При рассмотрении считать, что натяжение равно T вне зависимости от текущего профиля f(x,t). Волновое уравнение удобно вывести, последовательно ответив на следующие вопросы:
 - а) Выразите ускорение элемента струны через функцию f(x,t) (то есть через саму функцию или через ее частные производные).
 - б) Элемент длины dx входит в участок струны, для которого в данный момент времени t: f(x,t) = const(x). Какая сила dF при этом действует на элемент со стороны соседних элементов?
 - в) Элемент длины dx входит в участок струны, для которого в данный момент времени t: $\frac{\partial f}{\partial x}(x,t) = \text{const}(x)$. Какая сила dF действует на элемент?
 - г) Элемент длины dx входит в участок струны, для которого в данный момент времени t: $\frac{\partial f}{\partial x}(x,t) \neq \text{const}(x)$. Какая сила dF действует на элемент в этом случае?
 - д) Используя результат пункта Γ), запишите второй закон Ньютона для элемента длиной dx.
- 2. Чему равна скорость упругих поперечных волн, распространяющихся по натянутой струне? Почему рассматриваемые волны называются поперечными?
- 3. Упругий стержень может быть сжат или растянут в продольном направлении. Что называется модулем Юнга E, напряжением σ и относительным удлинением ε ? Закон Гука гласит, что эти величины связаны определенным образом; каким именно?

- 4. В упругом стержне могут распространяться продольные звуковые волны. Они описываются одномерным волновым уравнением. Изменение какой именно величины описывается волновым уравнением? Почему рассматриваемые волны называются продольными?
- 5. Выведите волновое уравнение, описывающее продольные звуковые волны в упругом стержне. Модуль Юнга стержня равняется E, а его объемная плотность ρ . При выводе волнового уравнения удобно пользоваться рассуждениями, аналогичными рассуждениям для струны (см. выше). Чему равна продольная скорость звука в таком стержне?
- 6. Почему в экзаменационном билете говорится об упругих возмущениях именно в стержне, а не просто в упругом материале?
- 7. Можно ли переделать вывод, произведенный выше для определения скорости звука в упругом стержне, в вывод для определения скорости звука в воздухе? Что будет исполнять роль E, σ и ε при рассмотрении для воздуха? Какое выражение будет тогда получено для скорости звука в воздухе?