Desafío STEM: Exploración de las leyes de Lenz y Faraday con Bobina, Imán y Osciloscopio Digital

Objetivos

- Observar la inducción de corriente en una bobina mediante el movimiento de un imán.
- Identificar los factores que afectan el sentido y la magnitud de la corriente inducida.
- Comprender la Ley de Faraday-Lenz a través de observaciones experimentales.
- Relacionar los conceptos de flujo magnético, campo magnético y espiras con aplicaciones tecnológicas e ingenieriles.

Preparación previa del estudiante

Antes de la sesión, cada grupo debe entregar una síntesis (máx. 1 página) que incluya:

- Definición de flujo magnético y su expresión matemática.
- Enunciado de la Ley de Faraday y su forma diferencial.
- Significado del signo negativo en la Ley de Faraday.
- Ejemplos de aplicaciones tecnológicas basadas en la inducción electromagnética.

Materiales

- Osciloscopio digital RIGOL DS1102E
- Bobina de múltiples espiras
- Imán permanente (cilíndrico o de barra)
- Cables BNC o banana con puntas de prueba
- Soporte o tubo de PVC para estabilizar la bobina y guiar el imán

Procedimiento Experimental

Fase 1: Observación con voltímetro

- Conecta los terminales de la bobina al voltímetro (preferiblemente digital en modo autorango).
- Acerca uno de los polos del imán a la bobina, primero lentamente y luego rápidamente. Anota y explica los resultados observados.
- Repite el experimento acercando el otro polo del imán. Compara y explica las diferencias en polaridad e intensidad.

Fase 2: Captura con osciloscopio digital

- Desconecta el voltímetro y conecta los extremos de la bobina al canal CH1 del osciloscopio digital.
- Configura el osciloscopio con los siguientes parámetros:

• Canal: CH1

• Escala vertical: 100–200 mV/div

• Escala horizontal: 1 ms/div o 500 μ s/div

• Tipo de trigger: Edge (borde)

• Pendiente: ascendente o descendente

Nivel de trigger: 50–100 mV
Modo de adquisición: SINGLE

- Activa el modo SINGLE y deja caer el imán por el centro de la bobina, guiado por un tubo de PVC.
- El osciloscopio capturará y congelará la señal inducida.
- Repite el procedimiento variando la inclinación del tubo (ángulo), la velocidad y la polaridad del imán.
- Analiza la forma del pulso: polaridad, amplitud y duración, y cómo cambia con las condiciones experimentales.

Registro de Datos

Ensayo	Dirección del imán	$V_{\rm pico}~({ m mV})$	Duración (ms)	Polaridad
1	Hacia abajo			
2	Hacia arriba			
3	•••			

Preguntas para el análisis

- ¿En qué condiciones se genera mayor voltaje inducido? ¿Cómo influye la rapidez del movimiento y el ángulo de inclinación del tubo sobre la intensidad de la señal observada en el osciloscopio?
- ¿Por qué cambia el signo del voltaje cuando se invierte la orientación del imán? Explica cómo se relaciona este comportamiento con la Ley de Lenz.
- ¿Qué ocurre si el imán se queda estático dentro de la bobina? ¿Cómo se interpreta esto en términos del flujo magnético?
- ¿Cómo varía la forma de la señal inducida (polaridad, amplitud y duración) cuando se cambia el ángulo de inclinación del tubo? ¿Qué relación tiene esto con la variación del flujo magnético en el tiempo según la Ley de Faraday?
- ¿Cómo se verifica experimentalmente la Ley de Faraday al observar la forma de la señal en el osciloscopio?
- ¿Qué aplicaciones prácticas tiene el pulso de voltaje generado en el contexto de la electrónica?
- ¿Qué tipos de dispositivos útiles podrían diseñarse a partir de este principio, como sensores de velocidad, detectores de movimiento o sistemas de generación de energía?

Conexiones STEM

- Ciencia: Comprensión de fenómenos electromagnéticos y sus leyes fundamentales.
- Tecnología: Uso del osciloscopio digital como herramienta para analizar fenómenos transitorios.
- Ingeniería: Aplicación de la inducción electromagnética en sensores, generadores y transformadores.
- Matemáticas: Interpretación de derivadas como tasas de cambio del flujo magnético.

Rúbrica de evaluación del informe escrito (2.5)

Criterio	Puntaje Máximo
Claridad en la descripción del procedimiento experimental	0.5
Presentación organizada de resultados y observaciones	0.5
Análisis correcto con base en la Ley de Faraday	0.75
Conclusiones coherentes y fundamentadas	0.5
Redacción clara y sin errores conceptuales	0.25
Total Informe	2.5

Rúbrica de evaluación de la sustentación oral (2.5)

Criterio	Puntaje Máximo
Comprensión de los conceptos de inducción y Ley de Faraday	1.0
Claridad y precisión en las explicaciones orales	0.5
Participación equilibrada de los integrantes del grupo	0.5
Capacidad para responder preguntas del docente	0.5
Uso adecuado de recursos de apoyo (si aplica)	0.25
Total Sustentación	2.5

Nota final de la práctica = Promedio entre informe y sustentación.