Assignment 18

K.A. Raja Babu

Download all python codes from

https://github.com/ka-raja-babu/Matrix-Theory/tree/main/Assignment18

and latex-tikz codes from

https://github.com/ka-raja-babu/Matrix-Theory/ tree/main/Assignment18

1 Question No. 14.8(Markov Chain)

Consider a simple symmetric random walk on integers, where from every state i you move to i-1 and i+1 with the probability half each. Then which of the following are true?

- 1) The random walk is aperiodic
- 2) The random walk is irreducible
- 3) The random walk is null recurrent
- 4) The random walk is positive recurrent

2 Solution

Let us define a Markov Chain for the given simple symmetric random walk with states $\{i-1, i, i+1\}$.

Markov chain diagram

State transition matrix *P* can be defined as:

$$P = \begin{bmatrix} i - 1 & i & i + 1 \\ i - 1 & 0 & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ i + 1 & \frac{1}{4} & \frac{1}{2} & 0 \end{bmatrix}$$
(2.0.1)

1) From State Transition Matrix P,

$$p_{mn} = 0 (2.0.2)$$

where

$$m, n = \{i - 1, i, i + 1\}$$
 & $m = n$ (2.0.3)

- : There is no self-transition in the chain.
- :. Random Walk is not aperiodic.
- 2) From State Transition Matrix P,

$$p_{mn} > 0$$
 (2.0.4)

where

$$m, n = \{i - 1, i, i + 1\}$$
 & $m \neq n$ (2.0.5)

- : All states communicate with each other.
- :. Random Walk is irreducible.
- 3) Let $p = \frac{1}{2}$ be the probability to move from state i to state i + 1 and $q = \frac{1}{2}$ be the probability to move from state i to state i 1.

Then, the excepted time of getting back to $i \forall i$ is given by

$$E(\tau_{ii}) = \frac{1}{|p - q|}$$
 (2.0.6)
= $\frac{1}{0}$ (2.0.7)

$$= \infty \tag{2.0.8}$$

: Random Walk is null recurrent.

Hence, Options (2), (3) are true.

Fig. 2.1: Random Walk on Integers