# **VİTMO**

## Основы электротехники

Отчёт по лабораторной работе №3

Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока

Группа *Р3331* Вариант *29* 

Выполнил: Нодири Хисравхон

Дата сдачи отчёта: 06.11.2024 / см. 07.11.2024г

Дата защиты: 08.11.2024

Контрольный срок защиты: 23.10.2024

Количество баллов:

## Содержание

| Цель р | работы | I .                                |  |  |  |  |  | 2  |
|--------|--------|------------------------------------|--|--|--|--|--|----|
| Часть  | 1      |                                    |  |  |  |  |  | 2  |
| 1.1    |        | ние                                |  |  |  |  |  | 2  |
| 1.2    |        | етры элементов исследуемых схем    |  |  |  |  |  | 2  |
| 1.3    |        | е расчёты                          |  |  |  |  |  | 2  |
| 1.4    |        | олюсник 1                          |  |  |  |  |  | 3  |
|        | 1.4.1  | Схема исследуемой цепи             |  |  |  |  |  | 9  |
|        | 1.4.2  | Расчётные формулы и расчёты        |  |  |  |  |  | 9  |
|        | 1.4.3  | Вектора входного напряжения и тока |  |  |  |  |  | 4  |
| 1.5    |        | олюсник 2                          |  |  |  |  |  | 4  |
|        | 1.5.1  | Схема исследуемой цепи             |  |  |  |  |  | 4  |
|        | 1.5.2  | Расчётные формулы и расчёты        |  |  |  |  |  |    |
|        | 1.5.3  | Вектора входного напряжения и тока |  |  |  |  |  |    |
| 1.6    |        | олюсник 3                          |  |  |  |  |  | -  |
|        | 1.6.1  | Схема исследуемой цепи             |  |  |  |  |  | ŀ  |
|        | 1.6.2  | Расчётные формулы и расчёты        |  |  |  |  |  | 6  |
|        | 1.6.3  | Вектора входного напряжения и тока |  |  |  |  |  | 6  |
| 1.7    |        | олюсник 4                          |  |  |  |  |  | 7  |
| 1.,    | 1.7.1  | Схема исследуемой цепи             |  |  |  |  |  | 7  |
|        | 1.7.2  | Расчётные формулы и расчёты        |  |  |  |  |  | 7  |
|        | 1.7.3  | Вектора входного напряжения и тока |  |  |  |  |  | 8  |
| 1.8    |        | олюсник 5                          |  |  |  |  |  | Ĝ  |
| 1.0    | 1.8.1  | Схема исследуемой цепи             |  |  |  |  |  | Ĉ  |
|        | 1.8.2  | Расчётные формулы и расчёты        |  |  |  |  |  | Ć  |
|        | 1.8.3  | Вектора входного напряжения и тока |  |  |  |  |  | 10 |
| 1.9    |        | олюсник 6                          |  |  |  |  |  | 11 |
|        | 1.9.1  | Схема исследуемой цепи             |  |  |  |  |  | 11 |
|        | 1.9.2  | Расчётные формулы и расчёты        |  |  |  |  |  | 11 |
|        | 1.9.3  | Вектора входного напряжения и тока |  |  |  |  |  | 12 |
| 1.10   | Лвухп  | олюсник 7                          |  |  |  |  |  | 13 |
|        |        | Схема исследуемой цепи             |  |  |  |  |  | 13 |
|        |        | Расчётные формулы и расчёты        |  |  |  |  |  | 13 |
|        |        | Вектора входного напряжения и тока |  |  |  |  |  | 13 |
| 1.11   |        | олюсник 8                          |  |  |  |  |  | 15 |
|        |        | Схема исследуемой цепи             |  |  |  |  |  | 15 |
|        |        | Расчётные формулы и расчёты        |  |  |  |  |  | 15 |
|        |        | Вектора входного напряжения и тока |  |  |  |  |  | 15 |
| 1.12   |        | олюсник 9                          |  |  |  |  |  | 17 |
|        |        | Схема исследуемой цепи             |  |  |  |  |  | 17 |
|        |        | Расчётные формулы и расчёты        |  |  |  |  |  | 17 |
|        |        | Вектора входного напряжения и тока |  |  |  |  |  | 18 |
| 1.13   |        | ненная таблица 2.2                 |  |  |  |  |  | 18 |
|        |        | [Ы                                 |  |  |  |  |  | 19 |
|        | r      | •                                  |  |  |  |  |  |    |

## Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

## Часть 1

#### 1.1 Введение

В данной части лабораторной работы произведены измерения действующих значений входного напряжения, тока и фазового сдвига между ними для девяти различных двухполюсников, а также произведены сравнения результатов с расчётными значениями.

## 1.2 Параметры элементов исследуемых схем

1. Расчёт амплитуды синусоидального напряжения:

$$U_{max} = U_{\pi} \cdot \sqrt{2} = 14 \cdot \sqrt{2} = 19.799 \,\mathrm{B}$$

2. Известные значения:

$$U_{\rm д}=14\,{\rm B},\quad \psi_{\rm H}=0^\circ,\quad f=397.887\,\Gamma$$
ц,  $R_1=25\,{\rm Om},\quad R_k=15\,{\rm Om}$   $L_k=2.798\,{\rm m}\Gamma$ н,  $C=27.713\,{\rm mk}\Phi$ 

## 1.3 Общие расчёты

1. Угловая частота:

$$\omega = 2\pi f = 2 \cdot 3.1416 \cdot 397.887 \approx 2500 \, \mathrm{pag/c}$$

2. Реактивная составляющая сопротивления ёмкостного элемента:

$$X_c = \frac{1}{\omega C} = \frac{1}{2500 \cdot 27.713 \cdot 10^{-6}} \approx 14.4 \,\mathrm{Om}$$

3. Реактивная составляющая сопротивления индуктивного элемента:

$$X_L = \omega L = 2500 \cdot 2.798 \cdot 10^{-3} \approx 6.995 \,\mathrm{Om}$$

4. Реактивная проводимость ёмкостного элемента:

$$B_c = \omega C = 2500 \cdot 27.713 \cdot 10^{-6} = 0.0693 \,\mathrm{Cm}$$

5. Реактивная проводимость индуктивного элемента:

$$B_k = \frac{X_L}{R_k^2 + X_L^2} = \frac{6.995}{15^2 + (6.995)^2} \approx 0.0267 \,\mathrm{Cm}$$

## 1.4 Двухполюсник 1

#### 1.4.1 Схема исследуемой цепи



Рис. 1: Схема замещения Двухполюсника 1 в LTspice.

#### 1.4.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$
 
$$X = 0, R = R_1 \implies I = \frac{U}{R_1} = \frac{14}{25} = 0.56 \,\text{A}$$

$$\phi = \arctan\left(\frac{0}{R_1}\right) = 0^{\circ}$$

#### 1.4.3 Вектора входного напряжения и тока



## 1.5 Двухполюсник 2

#### 1.5.1 Схема исследуемой цепи



Рис. 2: Схема замещения Двухполюсника 2 в LTspice.

#### 1.5.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$
 
$$X = -X_C, R = 0 \implies I = \frac{U}{X_C} = \frac{14}{14.4} \approx 0.972 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(-\infty\right) = -90^{\circ}$$

#### 1.5.3 Вектора входного напряжения и тока



## 1.6 Двухполюсник 3

#### 1.6.1 Схема исследуемой цепи



Рис. 3: Схема замещения Двухполюсника 3 в LTspice.

#### 1.6.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = -X_C, R = R_1 \implies I = \frac{U}{\sqrt{R_1^2 + X_C^2}} = \frac{14}{\sqrt{25^2 + 14.4^2}} \approx 0.448 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{-X_C}{R_1}\right) = \arctan\left(\frac{-14.4}{25}\right) \approx -30^{\circ}$$

#### 1.6.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
 
$$I_x = 0.448 \cdot \cos(30^\circ) \approx 0.388 \,\text{A}, \quad I_y = 0.448 \cdot \sin(30^\circ) \approx -0.224 \,\text{A}$$



## 1.7 Двухполюсник 4

#### 1.7.1 Схема исследуемой цепи



Рис. 4: Схема замещения Двухполюсника 4 в LTspice.

## 1.7.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$
 
$$X = X_L, R = R_k \implies I = \frac{U}{\sqrt{R_k^2 + X_L^2}} = \frac{14}{\sqrt{15^2 + 6.995^2}} \approx 0.817 \,\text{A}$$

$$\phi = \arctan\left(\frac{X_L}{R_k}\right) = \arctan\left(\frac{6.995}{15}\right) \approx 25.1^{\circ}$$

## 1.7.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
  $I_x = 0.817 \cdot \cos(25.1^\circ) \approx 0.74 \,\text{A}, \quad I_y = 0.817 \cdot \sin(25.1^\circ) \approx 0.345 \,\text{A}$ 



## 1.8 Двухполюсник 5

#### 1.8.1 Схема исследуемой цепи



Рис. 5: Схема замещения Двухполюсника 5 в LTspice.

#### 1.8.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = X_L, R = R_1 + R_k \implies I = \frac{U}{\sqrt{(R_1 + R_k)^2 + X_L^2}} = \frac{14}{\sqrt{(25 + 15)^2 + 6.995^2}}$$

$$\approx 0.359 \,\text{A}$$

$$\phi = \arctan\left(\frac{X_L}{R_1 + R_k}\right) = \arctan\left(\frac{6.995}{25 + 15}\right) \approx 10.0^{\circ}$$

## 1.8.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
 
$$I_x = 0.359 \cdot \cos(10.0^\circ) \approx 0.354 \,\text{A}, \quad I_y = 0.359 \cdot \sin(10.0^\circ) \approx 0.062 \,\text{A}$$



## 1.9 Двухполюсник 6

#### 1.9.1 Схема исследуемой цепи



Рис. 6: Схема замещения Двухполюсника 6 в LTspice.

#### 1.9.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = X_L - X_C, R = R_1 + R_k \implies I = \frac{U}{\sqrt{(R_1 + R_k)^2 + (X_L - X_C)^2}} = \frac{14}{\sqrt{(25 + 15)^2 + (6.995 - 14.4)^2}} \approx 0.378 \,\text{A}$$

$$\phi = \arctan\left(\frac{X_L - X_C}{R_1 + R_k}\right) = \arctan\left(\frac{6.995 - 14.4}{25 + 15}\right) \approx -10.6^{\circ}$$

## 1.9.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
 
$$I_x = 0.378 \cdot \cos(-10.6^\circ) \approx 0.371 \,\text{A}, \quad I_y = 0.378 \cdot \sin(-10.6^\circ) \approx -0.07 \,\text{A}$$



## 1.10 Двухполюсник 7

#### 1.10.1 Схема исследуемой цепи



Рис. 7: Схема замещения Двухполюсника 7 в LTspice.

#### 1.10.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = U \cdot Y = U \cdot \sqrt{G^2 + B^2}$$
 
$$G = \frac{1}{R_1}, B = -B_C \implies I = U \cdot \sqrt{\frac{1}{R_1^2} + B_C^2} = 14 \cdot \sqrt{\frac{1}{25^2} + 0.0693^2} \approx 0.978 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{-B_C}{\frac{1}{B_1}}\right) = \arctan\left(\frac{-0.0693}{0.04}\right) \approx -60.9^{\circ}$$

#### 1.10.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
  
 $I_x = 0.978 \cdot \cos(-60.9^\circ) \approx 0.476 \,\text{A}, \quad I_y = 0.978 \cdot \sin(-60.9^\circ) \approx -0.843 \,\text{A}$ 



#### 1.11 Двухполюсник 8

#### 1.11.1 Схема исследуемой цепи



Рис. 8: Схема замещения Двухполюсника 8 в LTspice.

#### 1.11.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = U \cdot Y = U \cdot \sqrt{G^2 + B^2}$$

$$G = G_1 + G_k, B = B_k - B_1 \implies I = U \cdot \sqrt{(G_1 + G_k)^2 + (B_k - B_1)^2} =$$

$$= U \cdot \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2} - 0\right)^2} =$$

$$= 14 \cdot \sqrt{\left(\frac{1}{25} + \frac{15}{15^2 + 6.995^2}\right)^2 + \left(\frac{6.995}{15^2 + 6.995^2}\right)^2} \approx 1.384 \text{ A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{B_k - B_1}{G_1 + G_k}\right) = \arctan\left(\frac{0.0267}{0.096}\right) \approx 15.6^{\circ}$$

#### 1.11.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
  
 $I_x = 1.384 \cdot \cos(15.6^\circ) \approx 1.334 \,\text{A}, \quad I_y = 1.384 \cdot \sin(15.6^\circ) \approx 0.373 \,\text{A}$ 



#### 1.12 Двухполюсник 9

#### 1.12.1 Схема исследуемой цепи



Рис. 9: Схема замещения Двухполюсника 9 в LTspice.

#### 1.12.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$\begin{split} I &= U \cdot Y = U \cdot \sqrt{G^2 + B^2} \\ G &= G_1 + G_k, B = B_k - B_1 \implies I = U \cdot \sqrt{(G_1 + G_k)^2 + (B_k - B_1)^2} = \\ &= U \cdot \sqrt{\left(\frac{R_1}{R_1^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}\right)^2} = \\ &= 14 \cdot \sqrt{\left(\frac{25}{25^2 + 14.4^2} + \frac{15}{15^2 + 6.995^2}\right)^2 + \left(\frac{6.995}{15^2 + 6.995^2} - \frac{14.4}{25^2 + 14.4^2}\right)^2} \approx \\ &\approx 1.112 \, \text{A} \quad 1.193 \end{split}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{B_k - B_1}{G_1 + G_k}\right) = \arctan\left(\frac{0.0267 - 0.0576}{0.04 + 0.021}\right) \approx 23.8^{\circ}$$
0.03
0.055

0.0255

#### 1.12.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), \quad I_y = I\sin(\phi)$$
  $I_x = 1.112 \cdot \cos(23.8^\circ) \approx 1.017 \,\text{A}, \quad I_y = 1.112 \cdot \sin(23.8^\circ) \approx 0.448 \,\text{A}$ 



## 1.13 Заполненная таблица 2.2

Для каждого двухполюсника 1-9, представленного выше, были не только произведены теоретические расчёты действующего тока и фазового сдвига, но и произведено построение временных диаграмм, из которых величины действующего напряжения, тока и фазового сдвига определены эксперементально. Для напряжения и тока были измерены амплитудные значения и вычислены по формуле:

$$U_{\mathrm{A}} = \frac{U_{max}}{\sqrt{2}}$$
$$I_{\mathrm{A}} = \frac{I_{max}}{\sqrt{2}}$$

А фазовый сдвиг рассчитан следующим образом:

$$\phi = 180^{\circ} \cdot \frac{\delta h}{h}$$

, где  $\delta h$  - расстояние между моментами перехода синусоид напряжения и тока от отрицательных значений к положительным, а h - половина периода синусоиды, измеренная в секундах.

Таблица 1: Итоговая таблица 2.2

| Hoven evenu | Параметр                | оы двухполюсников | Резулн              | таты изме        | Результаты вычислений |       |       |       |       |  |  |
|-------------|-------------------------|-------------------|---------------------|------------------|-----------------------|-------|-------|-------|-------|--|--|
| Номер схемы | $R_1$ (O <sub>M</sub> ) | $R_k$ (Om)        | $L(\Gamma_{\rm H})$ | $C$ (MK $\Phi$ ) | U(B)                  | I(A)  | φ (°) | I(A)  | φ (°) |  |  |
| 1           | 25                      | -                 | -                   | -                | 14                    | 0.56  | 0     | 0.56  | 0     |  |  |
| 2           | -                       | -                 | -                   | 14.4             | 14                    | 0.972 | -90   | 0.972 | -90   |  |  |
| 3           | 25                      | -                 | -                   | 14.4             | 14                    | 0.448 | -30   | 0.448 | -30   |  |  |
| 4           | -                       | 15                | 6.995               | -                | 14                    | 0.817 | 25.1  | 0.817 | 25.1  |  |  |
| 5           | 25                      | 15                | 6.995               | -                | 14                    | 0.359 | 10.0  | 0.359 | 10.0  |  |  |
| 6           | 25                      | 15                | 6.995               | 14.4             | 14                    | 0.378 | -10.6 | 0.378 | -10.6 |  |  |
| 7           | 25                      | -                 | _                   | 14.4             | 14                    | 0.978 | -60.9 | 0.978 | -60.9 |  |  |
| 8           | 25                      | 15                | 6.995               | -                | 14                    | 1.384 | 15.6  | 1.384 | 15.6  |  |  |
| 9           | 25                      | 15                | 6.995               | 14.4             | 14                    | 1.112 | 23.8  | 1.112 | 23.8  |  |  |

#### 1.14 Выводы

В ходе выполнения работы были исследованы параметры девяти двухполюсников, включая значения действующего тока, напряжения и фазового сдвига. Теоретические расчёты подтвердились экспериментальными данными, что указывает на корректность проведённых опытов.

В цепях с резисторами (двухполюсник 1) фазовый сдвиг отсутствует, так как ток и напряжение меняются синхронно. В цепях с конденсаторами (двухполюсники 2, 3 и 7) ток опережает напряжение, что объясняется особенностями ёмкостных элементов. В цепях с индуктивностью (двухполюсники 4, 5 и 8) ток, наоборот, запаздывает относительно напряжения, так как индуктивность сопротивляется изменению тока.

Наиболее интересные эффекты наблюдаются в цепях с комбинированными элементами (двухполюсники 6 и 9), где взаимодействие индуктивности и ёмкости приводит к изменению фазового сдвига в зависимости от соотношения их реактивностей. Эти цепи демонстрируют, как баланс ёмкости и индуктивности может либо сближать, либо отдалять фазы тока и напряжения.

Небольшие расхождения между теоретическими и эмпирическими значениями можно объяснить погрешностями измерений и округления.

## Добавляйте "Часть 2"