AEG: Automatic Exploit Generation

Thanassis Avgerinos,
Sang Kil Cha,
Brent Lim Tze Hao,
David Brumley

The iwconfig vulnerability

iwconfig: setuid wireless config

```
int get_info(int skfd, char * ifname
                                 Inputs triggering bug:
    if(iw_get_ext(skfd, i
                           length(argv[1]) > sizeof(ifr_name)
4
5
      struct ifreq ifr;
                                          struct ifreq {
6
      strcpy(ifr.ifr_name,
                           ifname);
                                             char ifr name[32]
8 print_info(int skfd, char *ifname,...)
9
10 get_info(skfd, ifname, ...);
11 }
                                           Can you spot
12 main(int argc, char *argv[]){
                                              the bug?
13
14 print_info(skfd, argv[1], NULL, 0);
15 }
```

Is it exploitable?

(Fundamental question in our work)

```
int get_info(int skfd, char * ifname
    if(iw_get_ext(skfd, ifname, SIOCGI
4
5
      struct ifreq ifr;
6
      strcpy(ifr.ifr_name, ifname);
                                          68
                                        bytes
8 print_info(int skfd, char *ifname,...)
9
10 get_info(skfd, ifname, ...);
11 }
12 main(int argc, char *argv[]){
13
14 print_info(skfd, argv[1], NULL, 0)
15 }
```



```
int get_info(int skfd, char * ifname
    if(iw_get_ext(skfd, ifname, SIOCGI
4
5
      struct ifreq ifr;
6
      strcpy(ifr.ifr_name, ifname);
8 print_info(int skfd, char *ifname,...)
9
10 get_info(skfd, ifname, ...);
11 }
12 main(int argc, char *argv[]){
13
14 print_info(skfd, argv[1], NULL, 0)
15 }
```



```
get info stack frame
 int get_info(int skfd, char * ifname
                                                  Return address
    if(iw_get_ext(skfd, ifname, SIOCGI
4
5
      struct ifreq ifr;
                                                    < locals >
6
      strcpy(ifr.ifr_name, ifname);
                                         68
                                        bytes
                                                      User
8 print_info(int skfd, char *ifname,...)
9
                                                     Input
10 get_info(skfd, ifname, ...);
                                    ifr.ifr_name
11 }
12 main(int argc, char *argv[]){
13
14 print_info(skfd, argv[1], NULL, 0)
                                                Memory Layout
15 }
```

```
get info stack frame
 int get_info(int skfd, char * ifname
                                                 Return address
    if(iw_get_ext(skfd, ifname, SIOCGI
4
5
      struct ifreq ifr;
6
      strcpy(ifr.ifr_name, ifname);
                                                      User
                                         68
                                                     Input
                                        bytes
8 print_info(int skfd, char *ifname,...)
9
10 get_info(skfd, ifname, ...);
                                    ifr.ifr_name
11 }
12 main(int argc, char *argv[]){
13
14 print_info(skfd, argv[1], NULL, 0)
                                                Memory Layout
15 }
```

```
get_info stack frame
 int get_info(int skfd, char * ifname
    if(iw_get_ext(skfd, ifname, SIOCGI
4
5
      struct ifreq ifr;
                                                     User
6
      strcpy(ifr.ifr_name, ifname);
                                                     Input
                                         68
                                        bytes
8 print_info(int skfd, char *ifname,...)
9
10 get_info(skfd, ifname, ...);
                                    ifr.ifr_name
11 }
12 main(int argc, char *argv[]){
13
14 print_info(skfd, argv[1], NULL, 0)
                                               Memory Layout
15 }
```

Automatic Exploit Generation

Given program, find bugs and demonstrate exploitability

DEMO

Automatic Exploit Generation

Given program, find bugs and demonstrate exploitability

Rest of the talk

- Our problem definition and scope
- Techniques and challenges
- Results and discussion

Problem Domain

The goal

Our Approach

Vulnerability
Discovery

Technique: Symbolic Execution on source code

Goal: Discover the "buggy" predicate

Symbolic Execution: How it works

Traditional symbolic execution: cover all paths (Slow to find exploitable bugs)

Traditional Symbolic Execution

strcpy(ifr_name, ifname);

for (i = 0; ifname[i] != 0; i++)
 ifr_name[i] = ifname[i];
ifr_name[i] = 0;

Traditional Symbolic Execution

Traditional symbolic execution: cover all paths (Slow to find exploitable bugs)

Our Intuition for Exploit
Generation:
only explore buggy paths (Fast)

Insight: **Precondition Symbolic Execution** to only (likely) exploitable paths

AEG: Preconditioned Symbolic Execution

How to select the length?

 Lightweight static analysis: use the size of the largest statically allocated buffer

Allowed AEG to fully automatically detect 10 of the 16 exploits

Second Insight

Not all paths are equally likely to be exploitable

Faster Still: Path Prioritization

Buggy-path first

Paths containing bugs are more likely to be exploitable

Buggy Path First: Example

```
char buffer[1024];
                      /* bug */
          memset(buffer, 0, strlen(input));
                               /* exploitable bug */
                               strcpy(buffer, input);
```

Given the bug, how to create an exploit?

Exploit Generation

Technique: Dynamic Binary Analysis

Goal: Test exploitability of buggy path

Control Hijack for bug found:

length(input) > sizeof(ifr_name)

Λ

length(input) > 68 bytes

Λ

input[0-63] == <shellcode>

Λ

input[64-67] == <shellcode addr>

Exploits

Inputs that satisfy the predicate:

Control Hijack for bug found:

length(input) > sizeof(ifr_name)

\(\Lambda\) length(input) > 68 bytes

Example:

Generating Exploits

Control Hijack for bug found:

SMT Solver

Example:

More Challenges Addressed

 Other preconditions and path prioritization heuristics

- Other attacks (format string, return-to-libc)
 - Reliability: e.g., nopsled etc
- Handling the "environment" problem
 - modelling system calls, library calls etc.

Results

User Study: Humans vs AEG

Setting: Students in software security class with exploit generation experience.

Finding: Given iwconfig, needed 4 hours on average to generate the iwconfig exploit

AEG vs Real-world applications

Analyzed **14** applications for 3 hours and generated **16** working control-hijack exploits

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Name	Advisory ID	Time	Exploit Type	Exploit Class
Iwconfig	CVE-2003-0947	1.5s	Local	Buffer Overflow
Htget	CVE-2004-0852	< 1min	Local	Buffer Overflow
Htget	-	1.2s	Local	Buffer Overflow
Ncompress	CVE-2001-1413	12. 3s	Local	Buffer Overflow
Aeon	CVE-2005-1019	3.8s	Local	Buffer Overflow
Tipxd	OSVDB-ID#12346	1.5s	Local	Format String
Glftpd	OSVDB-ID#16373	2.3s	Local	Buffer Overflow
Xserver	CVE-2007-3957	31.9s	Remote	Buffer Overflow
Aspell	CVE-2004-0548	15.2s	Local	Buffer Overflow
Corehttp	CVE-2007-4060	< 1min	Remote	Buffer Overflow
Exim	EDB-ID#796	< 1min	Local	Buffer Overflow
Socat	CVE-2004-1484	3.2s	Local	Format String
Xmail	CVE-2005-2943	< 20min	Local	Buffer Overflow
Expect	OSVDB-ID#60979	< 4min	Local	Buffer Overflow
Expect	-	19.7s	Local	Buffer Overflow
Rsync	CVE-2004-2093	< 5min	Local	Buffer Overflow

Anecdotal Success

We used AEG in smpCTF, a hacking competition and solved one of the problems in < 10min

What AEG is NOT

Not Complete

- We do not claim to find all exploitable bugs
- Given an exploitable bug, we do not guarantee we will always find an exploit

But AEG is sound: if AEG outputs an exploit, the bug is guaranteed to be exploitable

Not A Weapon

We do not consider defenses, which may defend against otherwise exploitable bugs.

But a typical conservative security posture should still consider the bug "exploited".

Future Directions

- Better search techniques
- Reduce false negatives (demonstrate real exploitable bug is exploitable)
 - Although it worked in our examples, there are cases where it may fail
- Multi-threaded programs
- Other attacks, e.g., heap overflows
 - If modeled as safety property, similar techniques are good starting point.

Related Work

- Cadar et al. KLEE [OSDI '08]
 - Goal: Generate inputs achieving high code coverage
 - Different Scope: AEG focuses on exploitable paths
- Hand-made tools [Medeiros et al, Toorcon'07]
 - Their Goal: Automated Exploit Development
 - Different Scope: Description of tool, no experiments or code
- Brumley et al. [Oakland'08]
 - Automatic Patched-Based Exploit Generation
 - Different scope: Requires patch to point out bug and problem
- Heelan et al. [MS Thesis'09]
 - Automatic Generation of Control-Flow Hijacking Exploits
 - Different scope: Requires input that triggers exploitable bug, 1 real example

Conclusion

Presented the first end-to-end system for Automatic Exploit Generation where we both find bugs and generate working exploits

Preconditioned symbolic execution made it practical

Thank you!

thanassis@cmu.edu

http://www.ece.cmu.edu/~aavgerin

http://security.ece.cmu.edu/aeg