Digital Design

RTL Design

A. Sahu
Dept of Comp. Sc. & Engg.
Indian Institute of Technology Guwahati
http://jatinga.iitg.ac.in/~asahu/cs221/

Announcement

- Quiz on Friday: 8AM to 9AM
- Syllabus: topic covered upto 22nd Oct Lecture
 - Basic latch, FF, reg, ctr, mem
 - FSM based design and Implementation, FSM completeness and Correctness
 - FSM Optimization: RM and Partitioning method
- Venue: 4201, 4202, 4204, 4205

Outline

- Simple ASM Examples
- Data Path: R2, R2 and R3
- CP+DP: Mod 14 counter
- Classic Example : Sequential Multiplier
- Verilog Code for Multiplier
- FPGA: Introduction

ASM charts: 3 Elements used

(c) Conditional output box

Another Example: Ex 9

ASM Design Example

- Find the ASM chart corresponding to the following description
 - There are two states A, B
 - If in state A and input X is `0' then the next state is A
 - If in state A and input X is `1' then the next state is B
 - If in state B and input Y is `1' then the next state is B
 - If in state B and input Y is `O' then the next state is A
 - Output Z is equal to `1' while the circuit is in state B
- Solution:
 - Total States \rightarrow 2
 - Two Inputs \rightarrow X, Y
 - One Output \rightarrow Z

ASM Design Example

Another Example: Ex 10

Another Example: From FSM to ASM

Similar to the ASM of : Sum of First N odd numbers

Another Example: From FSM to ASM

If S =1, Start the Sum Process, initialize N
Sum Process: S= S+I, N=N-1
If N=0 Stop //Flag Z

ASM Block

ASM Blocks

One ASM block execute in one cycle

ASM Timing

- Outputs appear while in the state
- Register transfers occur at the clock while exiting the state - New value occur in the next state!

Another Example : Ex 11

- Find the Data Path and ASM for the following problem:
 - We first need to load two registers (R1, R2) with some value.
 - We will then need to add the two Registers (R1, R2)
 and save the result in Register R3.
 - All these operations should occur if a "start" Signal is activated.

- Translation to Hardware:
 - We need to <u>clear</u> the registers first.
 - If the "start" signal is set to 0, I do nothing
 - Else If the "**start**" signal is set to 1, I will <u>load</u> R1, R2 with values
 - Next, enable R3 to be loaded (<u>load-2</u>)by the results of R1+R2

- Inputs/Outputs:
 - start is an input signal (Use a switch)
 - <u>clear</u> is an output signal generated and connected to R1, R2, R3
 - <u>load-1</u> is an output signal generated and connected to R1, R2
 - <u>load-2</u> is an output signal generated and connected to R3

Data Path

ASM: DP+CP Example Controller

PS		S	NS		
0	0	0	0	0	
0	0	1	0	1	
0	1	X	1	0	
1	0	Х	0	0	
1	1	Х	0	0	

PS		CLR	L1	L2	
0	0	1	0	0	
0	1	0	1	0	
1	0	0	0	1	
1	1	х	Х	Х	

D1=Q1'.Q0 D2=S.Q1'.Q0' CLR=Q1'.Q0' L1=Q0'.Q1 L2=Q1.Q0'

Data Path

ASM Charts: An Complete Example Ref: Mano Book

Ex 12: The Dozenth One

ASM Charts: An Example

Mod 14 counter:

- There is a 4 bit counter (A)
- E specify: less than 12₁₀ or less than 4₁₀
- EF=11 specify : value =12₁₀,
 - It time to reset after next counting
- E depends of A₂, F depends on A₃ and A₂

If
$$A_2=1 \rightarrow E=1$$
, else $E=0$
 $A_3A_2=1$, $\rightarrow F=1$, counter reset

AMS DP+CP: to be High Level

ASM Charts: An Example

- A is a register;
- A_i stands for ith bit of the A register.

$$A = A_3 A_2 A_1 A_0$$

 E and F are single-bit flipflops.

- Operations of ASM can be illustrated through a timing diagram.
- Two factors which must be considered are
 - Operations in an ASM block occur at the same time in one clock cycle
 - Decision boxes are dependent on the status of the *previous clock cycle* (that is, they do not depend on operations of current block)

- Operations of ASM can be illustrated through a timing diagram.
- Two factors which must be considered are
 - Operations in an ASM block occur at the same time in one clock cycle
 - Decision boxes are dependent on the status of the previous clock cycle (that is, they do not depend on operations of current block)

CTR	E, F	Conditions	State	
0000	1,0	A ₂ =0,A ₃ =0	T1	
0001	0,0			
0010	0,0			
0011	0,0			
0100	0,0	A ₂ =1,A ₃ =0		
0101	1,0			
0110	1,0			
0111	1,0			
1000	1,0	A ₂ =0,A ₃ =1		
1001	0,0			
1010	0,0			
1011	0,0			
1100	0,0	A ₂ =1,A ₃ =1		
1101	1,0		T2	
1101	1,1		то	

ASM Chart => Digital System

- ASM chart describes a digital system. From ASM chart, we may obtain:
 - Controller logic (via State Table/Diagram)
 - Architecture/Data Processor

1. Design of controller is determined

 from the decision boxes and the required state transitions.

2. Design requirements of data processor

— can be obtained from the operations specified with the state and conditional boxes.

ASM Chart to Controller

- Procedure:
 - Step 1: Identify all states and assign suitable codes.
 - Step 2: Formulate state table using

State from state boxes

Inputs from decision boxes

Outputs from operations of state/conditional boxes.

Step 3: Obtain state/output equations and draw circuit

ASM Chart to Controller

$$T_0$$
 Assign codes to states:
 $T_0 = 00$
 $T_1 = 01$
 $T_2 = 11$

Present state		inputs		Next state		outputs			
G ₁	G_0	S	A ₂	A ₃	G₁⁺	G_0^+	To	T ₁	T ₂
0	0	0	X	X	0	0	1	0	0
0	0	1	X	X	0	1	1	0	0
0	1	X	0	X	0	1	0	1	0
0	1	X	1	0	0	1	0	1	0
0	1	X	1	1	1	1	0	1	0
1	1	X	X	X	0	0	0	0	1

Inputs from conditions in decision boxes.

Outputs = present state of controller.

ASM Chart to Architecture/Data Processor

- Architecture is more difficult to design than controller.
- Nevertheless, it can be deduced from the ASM chart. In particular, the OPS from the ASM chart determine:
 - What registers to use?
 - How they can be connected?
 - What operations to support?
 - How these operations are activated?
- Guidelines:
 - Always use high-level units
 - Simplest architecture possible

ASM Chart to Architecture/Data Processor

Various OPS are:

- Counter incremented (A \leftarrow A + 1) when state = T_1 .
- Counter cleared (A \leftarrow 0) when state = T₀ and S = 1.
- E is set (E \leftarrow 1) when state = T₁ and A₂ = 1.
- E is cleared (E \leftarrow 0) when state = T₁ and A₂ = 0.
- F is set (F \leftarrow 0) when state = T_2 .
- F is cleared (F ← 0) when state = T_0 and S = 1.

Deduce Data Path:

- One 4-bit register A (e.g.: 4-bit synchronous counter with clear/increment).
- Two flip-flops needed for E and F (e.g.: JK/D flip-flops).

ASM Chart => Architecture/Data Processor

Thanks