

验证 Verification

麦哲思科技(北京)有限公司

内容

- 过程域概述
- 特定实践解析
 - 模型原文与参考译文
 - 理解与实施要点
 - 实施案例
- 案例解析
 - 体系大纲
 - 过程定义概要

包含的活动

- 验证准备
- 验证执行
- 识别纠正措施

验证的目的

• 验证目的: 确保被选择的工作产品满足它们的特定需求

基本概念:验证与确认

	验证Verification	确认Validation
定义	Verification confirms that work products properly reflect the requirements specified for them.	Validation confirms that the product, as provided, will fulfill its intended use.
重点	做法是否正确,强调过程的 正确性 verification ensures that "you built it right;"	结果是否正确,强调结果的正确性 validation ensures that "you built the right thing."
CMMI中 的目的	确保所选择的 <mark>工作产品</mark> 满足 指定的需求	当 <mark>产品或者产品组件</mark> 被置于其要 求环境中时,产品或者产品组 件能够完成其所期望的功能。
参照物	上一阶段的输入	原始需求
可采用的 方法	代码走查、审查、测试和正 确性证明	审查、测试和正确性证明

讨论:

组织或项目中有哪些活动属于验证

- 需求评审
- 设计评审
- 代码走查
- 单元测试
- 系统测试
- 验收测试
- 演示操作

• • • •

验证与确认活动示例

验证活动示例

确认活动示例

特定实践解析

SP1.1选择待验证的工作产品

- 模型原文
 - Select the work products to be verified and the verification methods that will be used for each.
- 参考译文
 - 选择待验证的工作产品及其验证方法
- 原文释义与实施要点
 - 根据工作产品的重要性级别选择应对哪些工作产品执行何种验证
 - 验证的方法有多种:同行评审、单元测试、集成测试、边界测试、持续集成等等
 - 应该在验证计划或其他计划中列出:
 - 对哪些工作产品做哪些同行评审
 - 对哪些需求或代码做哪些测试
 - 当工作产品进行了返工后也需要重新验证
 - 可以只对工作产品的某一部分执行验证

评审计划案例

阶段	文档	评审方式	评审时间	评审的参与人 员
立面队 机	用户需求说明书 (CRS)	技术复审		
立项阶段	可行性分析报告	审查		
	软件需求规格说明书(SRS)	审查		
	WBS分解结果	技术复审		
需求与策划阶	软件估算记录	技术复审		
段	软件开发计划	技术复审		
	软件测试计划或大纲	技术复审		
	系统测试用例	走查		
	软件架构设计	技术复审		
ンルン1.7人 Fル	软件详细设计	技术复审		
设计阶段	系统测试用例	技术复审		
	集成测试用例	技术复审		
	源代码	走查		
实现阶段	单元测试用例	走查		
	用户手册	走查		
测试阶段	测试报告	走查		
其他	变更申请	技术复审		

SP1. 2建立验证环境

- 模型原文
 - Establish and maintain the environment needed to support verification.
- 参考译文
 - 建立并维护支持验证需要的环境
- 原文释义与实施要点
 - 验证环境和验证方法密切相关。对于同行评审而言需要的环境 比较简单,而对于测试、模拟等其他验证手段需要的环境要复 杂一些。
 - 有可能验证环境在组织内没有现成的,需要开发、购买或借用
 - 验证的环境包括了软件环境、硬件环境以及其他外部的工作环 境等
 - 应建立对环境的需求定义并确保实际的环境满足了需求

测试环境案例

• 硬件环境:

- 上位机硬件: 联想T400 G9、DELL T105、DELL T5500或相同配置机型
- 下位机硬件:
 - 环境1: ECS-100系统硬件: FW247(9.6.4)、FW243X(9.6.4)、FW356(CC)、FW351H(V1.1及以上)、FW372H(V1.1及以上)、FW351(B)、FW372(B)
 - 环境1: ECS-700系统硬件: FCU711-S(V1.1.7及以上)、AI711-H(V1.0及以上)、A0711-H(V1.0及以上)、AI713-H(V1.0)、A0713-H(V1.0)
- 其他硬件: P+F模块、RS-485模块、HART仪表等

• 软件环境:

- 操作系统: Windows XP + SP02中文版、Windows XP + SP02英文版、Windows 2000 + SP04中文版、Windows 2000 + SP04英文版、Windows Server 2003 + SP01中文标准版、Windows Server 2003 + SP01英文标准版

• 辅助设备:

- 手操器、OmniPeek、研发提供的模拟卡件、windows性能计数器、Surveillant、iisdiag等。
- 其中Surveillant为测试部自主开发的长期运行记录软件。
- 本次主要测试环境为: Windows XP SP02 + ECS-700系统环境。

SP1.3 建立验证规程和准则

- 模型原文
 - Establish and maintain verification procedures and criteria for the selected work products.
- 参考译文
 - 建立和维护验证工作产品的规程和准则
- 原文释义与实施要点
 - 验证的准则是指被验证的工作产品应该满足的需求,如:
 - 同行评审的检查单
 - 测试通过的准则
 - 测试用例
 - 组织级的质量目标要求
 - 验证规程是指执行验证的具体步骤,如:

评审的具体活动定义

测试执行的具体步骤

测试用例的设计案例1

测试项	测试方法	预计结果	实际结果	结论
SDC仪表组态功能稳定性	在企业管理平台的全局客户端中对单个操作站打开 SDC模块界面的数量限制为10个			
	SDC模块打开进	可正常操		
	行各种操作	作		

测试用例的设计案例2

用例编号		测试用例名称	
测试 环境			
功能 描述			
	测试步骤	期望结果	实际结果
1			
2			
3			
备注			

SP2.1准备同行评审-1

- 模型原文
 - Prepare for peer reviews of selected work products.
- 参考译文
 - 准备对工作产品的同行评审
- 原文释义与实施要点
 - 1) 同行评审的准备工作包括了:

确定同行评审的类型

确定参与同行评审的专家

确定同行评审使用的检查单、问题记录表单

确定需要采集的度量数据

确定同行评审的进入与退出准则

确定同行评审的时间

对工作产品进行QA或初步检查,确保工作产品是满足评审的进入准则 为每位同行评审的专家分配角色

准备评审的场所与设施

SP2. 1准备同行评审-2

- 原文释义与实施要点
 - 2)一次评审注意不要评审太多的文档,如果评审的页数比较多,可以分片评审、分批多次评审
 - 3) 评审的会期不要太长,否则效率与质量都比较低
 - 4) 一定要给各专家分配角色以提高整体的评审效率
 - 5) 同行评审的检查单是经验教训的总结,应该注意整理归纳, 不断充实优化

SP2.2 进行同行评审

- 模型原文
 - Conduct peer reviews on selected work products and identify issues resulting from the peer review.
- 参考译文
 - 对选择的工作产品进行同行评审并识别同行评审中发现的问题
- 原文释义与实施要点
 - 1) 进行同行评审的目的之一是在早期发现并消除缺陷
 - 2) 同行评审随着工作产品的开发而增量式地进行
 - 3) 同行评审不是管理评审
 - 4) 同行评审的目的是发现缺陷而不是评价人的业绩,因此要注意对事不对人
 - 5) 每位专家应该按其角色执行同行评审
 - 6) 同行评审的问题要记录、沟通跟踪关闭
 - 7) 记录同行评审的度量数据
 - 8) 根据同行评审的退出准则判断是否需要重新评审
 - 9) 要记录缺陷的类型、严重性、位置等

SP2. 3分析同行评审数据-1

- 模型原文
 - Analyze data about preparation, conduct, and results of the peer reviews.
- 参考译文
 - 分析同行评审的准备、执行和结果数据
- 原文释义与实施要点
 - (1) 最基本的同行评审的度量数据包括:

效率:每小时发现多少个缺陷

速率:每小时评审多少页或多少行

缺陷密度:每页或每千行有多少个BUG

缺陷个数:包括个人评审阶段与会议阶段发现的缺陷个

数及其比例

SP2. 3分析同行评审数据-2

- 原文释义与实施要点
 - (2) 对度量数据的分析包括了:

本次评审的准备是否充分?

缺陷的个数是否有异常?是否太多或太少,是否达到了事先确定的目标?

哪些类型的缺陷比较多?

- (3) 注意不要用发现的缺陷个数或密度评价作者的业绩

Infosys公司评审能力基准

评审项	准备期间的评审速度 (如果不同于小组评 审期间的评审速度)	小组评审期间的评 审速度	装饰性缺陷/次要缺陷的缺陷密度	紧急缺陷/主要缺陷 的缺陷密度
需求		5-7页/小时	0.5-1.5个缺陷/页	0.1-1.3个缺陷/页
概要设计		4-5页/小时	0.5-1.5个缺陷/页	0.1-0.3个缺陷/页
详细设计		3-4页/小时	0.5-1.5个缺陷/页	0.2-0.6个缺陷/页
编码	160-200LOC/小时	110-150L0C/小时	10-60个缺陷/KLOC	10-60个缺陷/KLOC
集成测试计划		5-7页/小时	0.5-1.5个缺陷/页	0.1-0.3个缺陷/页
集成测试用例		3-4页/小时		
系统测试计划		5-7页/小时	0.5-1.5个缺陷/页	0.1-0.3个缺陷/页
系统测试用例		3-4页/小时		
项目管理和配置 管理计划	4-6页/小时	2-4页/小时	0.6-1.8个缺陷/页	0.1-0.3个缺陷/页 21

分析同行评审数据的案例

可能的原因	考虑采取的措施
产品质量很低	检查作者是否需要培训
	重做产品
	重新考虑分配将来的任务
产品非常复杂	确保在后续阶段有良好的评审或测试
	为系统测试增加估计
	将产品分成更小的组件
有太多的小错误(以及很少 的大错误)	确定小错误的原因;通过适当增强检查表和使作者意识到常见错误原因,使错误在以后得到改正
	评审者也许对工作产品没有充分的理解. 召开一个简短会议或者用不同评审专家另外评审
评审时所使用的参考文档 不够详细和清楚	使参考文档得到评审并获批准
评审过的模块是项目中的 第一批模块	分析缺陷,更新评审检查表并通知开发者安排培训

代码走查

某企业2009年12月份代码走查与系统测试效率的比较

	代码走查	系统测试	比值
发现的BUGS	3687	4556	0.81
发现的严重与致命BUGS	464	1511	0.31
工作量	3086.1	16062.4	0.19
检出效率(BUGS/人时)	1.19	0.28	4.25
严重与致命BUGS的检出效率 (BUGS/人时)	0.15	0.09	1.67

讨论:如何推广代码走查

类型	措施
	建立每日走读一小时的制度
制度	建立每日走读的流程
	定义每日走读的检查单
	代码走读检查单学习考试
	SQA对代码走读的质量进行抽检识别必须复检的走读
	定义代码走读发现的缺陷类型
度量	度量代码走读的效率、速率、工作量
	制定代码走读的宣传标语
宣传	代码走读的度量数据定期大幅度公布,代码走读的典型人物公开宣传
	根据每个人的度量数据识别出代码走读的榜样
人员培	代码走读的典型案例采集
八贝坦 养	典型代码的走读教育
25	代码走读的内部培训讲师的识别
	分析pclint的报警数与系统测试的bugs、客户反馈的Bugs之间的相关性
	建立pclint的告警数在转系统测试时的阈值
工具	函数复杂度分析工具的使用SourceMonitor
	一 代码行数的统计工具
	程序流程自动分析工具的收集与研究
	定义Pclint查出的哪些告警必须修改
	代码走读的IT系统

练习: 讨论如何应用评审的度量数据

- 时间: 20分钟
- 分组规模: 不超过7人
- 任务: 讨论在项目中如何使用关于评审的度量数据?
- 基本度量元
 - 审查的规模
 - 页数
 - 行数
 - 审查的时间
 - 个人评审的时间
 - 会议的时间

- 审查的工作量
 - 个人评审的工作量
 - 会议的工作量
- 发现的缺陷个数
 - 个人评审发现的缺陷个数
 - 会议发现的缺陷个数
- 派生度量元
 - 审查速率
 - 规模/时间
 - 审查效率
 - 缺陷个数/工作量
 - 缺陷密度
 - 缺陷个数/规模

SP3.1 进行验证

- 模型原文
 - Perform verification on the selected work products .
- 参考译文
 - 对选定的工作产品进行验证
- 原文释义与实施要点
 - 基于验证的规程与准则执行验证
 - 发现的问题应记录并跟踪问题的关闭
- 常用技术、工具、方法
 - TDD测试驱动开发
 - 持续集成
- 业界案例
 - Daily build, night build
 - 单元测试的语句覆盖率100%

SP3. 2分析验证结果

- 模型原文
 - Analyze the results of all verification activities .
- 参考译文
 - 分析所有验证活动的结果
- 原文释义与实施要点
 - 1)可以从效率、速率、密度、有效性、人员、阶段、起因、 严重性等多个刻面进行分析
 - 2) 最常用的手段是PARATO图、控制图
 - 3) 应该从现象到本质进行分析
- 常用技术、工具、方法
 - 控制图
 - 80-20原则

缺陷类型分布案例

讨论: 如何推广单元测试

- 单元测试的投入与产出是一种平衡
- 策略
 - 加大静态检查的力度
 - 通过测试策略的选择减少测试程序的工作量
 - 基于Pareto定律选择最该测试的 模块
- 技术
 - XUnit系列
 - 静态检查工具
 - 生成测试用例时可以采用如下的方法:
 - i) 单元功能分析
 - ii) 入口参数等价类分析
 - iii) 入口参数边界分析
 - iv) 全程变量、共享数据的等价类与边界分析
 - v) 调用函数返回值的等价类与 边界分析
 - vi) 覆盖率分析

- 过程
 - 单元测试由开发人员自己来进行
 - 过程检查的关键点:
 - (1) 是否写了测试用例?
 - (2)测试用例是否达到了组织级要求的个数?
 - (3)测试的缺陷是否记录了?
 - (4) 是否分析了缺陷的原因 、类型及分布情况?
 - 测试驱动的开发方法提倡在编码之前写测试用例,这种实践可以很好的预防错误,值得尝试
- 人
 - 负责人
 - 榜样
 - 培训
 - 考核

Measures

案例解析

体系建立总体思路

- 1 定义同行评审的流程,可以区分不同的评审方式定义不同的流程
- 2 集成测试可以合并到集成流程中
- 3 单元测试可以合并到编码流程中

评审工作流程

策划评审

1. 制定项目评审计划

评审组长依据项目计划、项目已定义过程(PDP)制定项目评审计划,明确需要评审的工作产品、使用的评审类型、评审的参与人员、执行的时间等。

2. 协调评审资源

评审组长依据项目评审计划协调组织内评审资源。 评审资源包括:

- 评审场地及设备(会议室、电脑、投影仪等)
- 评审组长(评审主持人/负责人)
- 评审人员及时间(确保参与评审的技术或领域专家 有足够的时间参与评审)

执行评审-1

1. 评审准备

评审组长准备评审,包括:

- 待评审工作产品和相关参考资料
- 评审检查单
- 评审人员分工及职责
- 2. 个人评审

评审人员依据评审检查单进行同行评审,并提交个人评审记录。

个人评审记录包括:

- 评审花费时间
- 评审规模
- 发现问题数
- 问题描述
- 建议解决措施

执行评审-2

3. 组织会议评审

评审组长组织召开评审会议。

评审组确认个人评审发现的问题。

评审组记录会议发现的问题。

评审组记录评审的数据,包括规模、评审人数、个人评审时数、会议时间、个人评审发现缺陷、会议发现缺陷、总缺陷等。

评审组长给出评审结论,判定本次评审是否通过,提交评审报告。

4. 跟踪缺陷

评审组长跟踪评审缺陷,直至关闭。

培训小结

- 验证与确认的区别
- 选择待验证的工作产品
- 建立验证环境、规程及准则
- 进行验证
- 分析验证结果
- 准备同行评审
- 执行同行评审
- 分析同行评审数据

Q&A 谢谢!