

Key Terms

Review important pharmacological terms

04

Predictive Models

Predicting drug price using current data

02

Problem Statement

Introduce the reason for this project

05

Drug Price Exploration

Interactive visual representation

03

Data

Discuss collection, cleaning, and exploration

06

CONCLUSIONS

Review presentation, answer questions

Key Terms and Abbreviations

- Pharmaceutical product/ drug substance with physiological effect
- National Drug Code (NDC) unique 10 digit number assigned to a drug
- Over the Counter (OTC) non-prescription
- Prescription (Rx) requires written prescription from a doctor
- Dose the defined amount of a drug to take at a given time
- Route how the drug is taken
- Generic name not a specific brand
- Trade name specific brand name

Problem Statement

The price of many drugs, both prescription (Rx) and over the counter (OTC) can often be very expensive. Having a way to predict price can help pharmaceutical companies determine price for newly approved drugs. It can also help companies compare their current price to similar drugs to determine if they are priced competitively. I will use the National Average Drug Acquisition cost data to build a regression model that predicts drug price values. I will also create an interactive graphic to help customers explore drug price factors.

Data

- NADAC Center for Medicare and Medicaid Services
 - Updated weekly
 - o November 2013 present
- Orange Book -US Food and Drug Administration (FDA)
 - Approved drug products with therapeutic equivalences

- Outlier
- Removing repeat entries
 - Different "as of" dates
- Match both data frames
 - Fuzzywuzzy library
 - Levenshtein Distance minimum number of single-character edits (insertions, deletions or substitutions)

- Price distribution -
 - \$1.53 average
 - o \$12.13 standard deviation
 - \$0.0007 \$346.90 per unit
- Average price/ route
- Ingredient

Average OTC Drug Price by Route Route		Average RX Drug Price by Route Route	
IRRIGATION	0.0		
ORAL	0.1610	NASAL	118.3
		OPHTHALMIC	22.7
		ORAL	1.6
RECTAL	0.0137	RECTAL	0.1
		SPINAL	0.1
TOPICAL	0.0988	TOPICAL	0.8
		VAGINAL	11.6

Predictive Modeling

Model	Test R2	Variation	RMSE
K Nearest Neighbor*	89.3%	3%	\$4.25
Random Forest	79.8%	8%	\$6.09
AdaBoost	64.6%	3%	\$8.07
Support Vector Regressor*	89.3%	2%	\$4.25

- Many data points per date entered
- With averaged price only 8 dates with information

Interactive Data Visualization

Conclusion and Next Steps

- Predict with ~89% R2
 - o RMSEs still high

Immediate Actions:

- More drug prices
 - Updated prices
- Reduce variation and RMSE

Near Future:

- Refine data even more timeseries
- Predicting ingredient cluster categorical predictions

Other Fun Projects:

• Fuzzywuzzy and DNA matching

Sources

- https://data.medicaid.gov/Drug-Pricing-and-Payment/NADAC-National-Average-Drug-Acquisition-Cost-/a4y5-998d
- https://www.fda.gov/drugs/drug-approvals-and-databases/orange-book-data-files
- https://github.com/seatgeek/fuzzywuzzy
- https://github.com/alofgran/Drug-Price-Prediction
- General Assembly DSI Lessons
- Tableau Public

Thank you!

Feel free to contact: hackel.dana@gmail.com

Github: https://github.com/DanaHackel

Twitter: https://twitter.com/Dana_Hackel

Medium: https://medium.com/@hackel.dana

Linkedin: https://linkedin,com/dana-hackel

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution.