Quantum resources group

Presentation of the group members and research agenda

Kamil Korzekwa

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Poland

TEAM-NET

Outline

1. Our team

- 2. Quantum technologies and resources
- 3. Research projects

Our team

Post-docs

Roberto Salazar

Oliver Reardon-Smith

Alexssandre de Oliveira

Martin Seltmann

PhD students

Quantum technologies and resources

First Quantum Revolution

- laser systems
- nuclear power
- MRI imagers
- transistors
- semi-conductor electronics

- quantum computing
 Shor's & Grover's algorithm,
 simulating quantum systems
- quantum communication
 Secure BB84 & E91 protocols,
 quantum internet
- quantum thermodynamics

 Increased power of heat engines & efficiency of energy harvesting

New quantum technologies actively create, manipulate and read out quantum states

Quantum Resources Group

Quantum technologies and resources

Harnessing quantum resources

1. Identification

Technology \Leftrightarrow Particular resource

1 teleported qubit = 1 entangled Bell pair

1 secure bit = 1 coherent state

Task: designing quantum protocols

2. Characterisation

Particular resource \Leftrightarrow General resource

x entangled Bell pairs = 5 entangled states $|\psi\rangle$

1 entangled Bell pair = y entangled states $|\psi\rangle$

Task: finding limits on resource manipulation

3. Implementation

General resource \Leftrightarrow Physical system

Task: Experimental proposals

Research projects

Quantum computing <=

Quantum communication

Resources for quantum computation

Classically simulable subtheories + resource states

Short-term goal:

State-of-the-art Clifford+T simulator

Long-term goal:

Unified simulation framework

Dissipation of quantum resources

Reversible processes

Irreversible processes

Dissipation of resources – initial and final states have different resource content

Short-term goal:

Energy dissipation in coherent processes

Long-term goal:

Fluctuation-dissipation theorem for resources

Resource distillation

Quantum resources and communication

System
All degrees of freedom (DOGs)

$$\rho = \bigcirc$$

Resources
Specific DOGs

$$\mathcal{D}(\bigcirc) = \bigcirc$$

Encodings
Encoding only in resource DOGs

$$\mathcal{E}_m(\bigcirc) = \{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}$$

Short-term goal:

Ecoding information into coherence of channels

Long-term goal:

Resource theory for quantum channels

Quantum advantage in thermodynamics

Classical bit flip 1 memory state, 3 time-steps

Quantum Resources Group

Quantum bit flip 0 memory state, 1 time-step

Short-term goal:

Find physical realisation of the advantage

Long-term goal:

Design a thermodynamic cycle employing the advantage

Markovian cooling of a two-level system

