MMF1941H: Stochastic Analysis - Assignment # 2

21 Nov 2022

1 Instructions

- 1. Assignments are due on Wednesday Nov 30th, 7:30pm EST. Submissions are accepted late for 1 day with a 10% penalty, submissions after Dec 2nd will not be accepted.
- 2. Please have your final report typeset using LATEX and submit your report individually. Provide code separate in a Python script file that you attach with your submission.
- 3. You may discuss these questions with your fellow students, however the write-up must be yours and yours alone, sharing of the write-up before the deadline is not allowed.

2 Problem: Portfolio Loss Modelling and Correlation Risk

For $N \in \mathbb{N}$ let $X_1, ..., X_N$ and Z be independent, identically, standard normally distributed random variables. Define a portfolio loss fraction L as

$$L := \frac{1}{N} \sum_{i=1}^{N} 1_{D_i} \tag{1}$$

where the set D_i is defined as

$$D_i = \{ \sqrt{\rho} Z + \sqrt{1 - \rho} X_i \le \Phi^{-1}(p) \}$$
 (2)

for i = 1, ..., N where $\rho \in [0, 1]$ is a correlation parameter, $p \in (0, 1)$ denotes a default probability and Φ denotes the cumulative distribution function of the standard normal distribution.

- 1. (2 pts) Calculate $\mathbb{P}(D_i)$ for i = 1, ..., N and $\mathbb{E}(L)$.
- 2. (5 pts) Calculate $p(Z) := \mathbb{E} (1_{D_i} | Z)$ for i = 1, ..., N.
- 3. (5 pts) Using the explicit form of p(Z) and the results from Question 2 in Revision Question Set 5, calculate $\mathbb{E}(p(Z))$.
- 4. (5 pts) Calculate the partial derivative $\frac{\partial}{\partial \rho} p(Z)$ explictly.

- 5. (5 pts) For k = 0, ..., N calculate $\mathbb{E}\left(1_{\{L=\frac{k}{N}\}} \mid Z\right)$. (Hint: Conditionally on Z the events D_i are independent, meaning that the distribution of $L \cdot N$ is known analytically as a Binomial distribution with suitable parameters).
- 6. (5 pts) For k = 0, ..., N calculate

$$\frac{\partial}{\partial \rho} \mathbb{E} \left(1_{\{L = \frac{k}{N}\}} \mid Z \right). \tag{3}$$

7. (5 pts) We are now interested in calculating the so-called *first-loss* amount, defined as

$$\ell(K;\rho) = \mathbb{E}\left(\min(L,K)\right)$$

for some percentage $K \in [0,1]$ where we consider it a function of ρ for all other parameters fixed. Show first that for a random variable Y taking values in \mathbb{N}_0

$$\mathbb{E}\left(\min(Y,k)\right) = k + \sum_{j=0}^{k-1} (j-k) \mathbb{P}\left(Y=j\right) \tag{4}$$

holds for fixed $k \in \mathbb{N}$.

8. (8 pts) Through the tower property of conditional expectation it is clear that

$$\ell(K; \rho) = \mathbb{E}\left(\mathbb{E}\left(\min(L, K) \mid Z\right)\right)$$

holds. Fixing the parameters p=0.05, K=0.08 and N=100, write Python code to calculate $\ell(K;\rho)$ by simulating 5000 outcomes of Z, leveraging formula (4). Provide the code and plot $\ell(K;\rho)$ for $\rho\in[0,1]$. For $\rho=0$ the result can be calculated exactly, provide this exact result.

9. (5 pts) Extend the previous simulation result to also include the *correlation risk* $\frac{\partial}{\partial \rho} \ell(K; \rho)$ in the simulation, utilising

$$\frac{\partial}{\partial \rho} \ell(K; \rho) = \mathbb{E} \left(\frac{\partial}{\partial \rho} \mathbb{E} \left(\min(L, K) \mid Z \right) \right)$$

and using the explicit form established in (3). Plot the correlation risk for $\rho \in [0,1]$.

10. (5 pts) Finally, we are aiming to validate the prior result for the correlation risk against recalculating the value under a small perturbation of ρ , ie $\frac{\partial}{\partial \rho} \ell(K; \rho) \approx \frac{1}{\epsilon} (\ell(K; \rho + \epsilon) - \ell(K; \rho))$ for small values of ϵ . Extend your Monte Carlo simulation to include this "bump-and-reval" correlation risk and include this result in the plot as a comparison against the previously calculated risk.