对点练 ▶ 先练透基础

类型1 已知单调区间求参数

例1 已知函数 $f(x)=x^3-ax-1$.

- (1) 若 f(x)在区间 $(1, +\infty)$ 上为增函数,求 a 的取值范围;
- (2) 若 f(x)的单调减区间为(-1, 1),求 a 的值.

【解析】(1) 因为 $f(x)=3x^2-a$,且 f(x)在区间(1, +∞)上为增函数,所以 $f(x) \ge 0$ 在(1, +∞)上恒成立,即 $3x^2-a \ge 0$ 在(1, +∞)上恒成立,所以 $a \le 3x^2$ 在(1, +∞)上恒成立,所以 $a \le 3$,即 a 的取值范围是(-∞, 3].

(2) 因为 $f(x) = x^3 - ax - 1$,

所以 $f(x)=3x^2-a$, 由题意知 a>0.

由
$$f(x)<0$$
,得 $-\sqrt{\frac{a}{3}} < x < \sqrt{\frac{a}{3}}$,

所以 f(x)的单调减区间为 $\left(-\sqrt{\frac{a}{3}}, \sqrt{\frac{a}{3}}\right)$.

又因为f(x)的单调减区间为(-1, 1),

所以
$$\sqrt{\frac{a}{3}} = 1$$
,即 $a=3$.

规律总结: 若 f(x)的单调增(减)区间为 D,①当区间 D 的端点值是 f(x)=0 的两根; ② 当 f(x)在区间 I 上单调递增(减),则可得 I 偃 D 或 $f'(x) \ge 0$ ($f'(x) \le 0$)且 f'(x)不恒为零.

类型 2 利用单调性比较大小

囫2 (多选)下列判断正确的是(

A.
$$\frac{2\ln 3}{3} > \ln 2$$
 B. $\frac{5}{4} \ln 2 < \ln \frac{5}{2}$ C. $\ln 2 < \frac{2}{e}$ D. $2\sqrt{5} > 5$

【答案】 ABC

【解析】 构造函数 $f(x) = \frac{\ln x}{x}$,所以 $f'(x) = \frac{1 - \ln x}{x^2}$,当 $x \in (0, e)$ 时,f'(x) > 0,函数 f(x)是增函数,当 x > e 时,f'(x) < 0,函数 f(x)是减函数.因为 9 > 8,所以 $\ln 9 > \ln 8$,即 $2 \ln 3 > 3 \ln 9 > 8$

2, 所以
$$\frac{2\ln 3}{3}$$
 >ln 2, 所以 A 正确; 因为 e> $\frac{5}{2}$ >2, 所以 $f(\frac{5}{2})$ > $f(2)$, 所以 $\frac{\ln \frac{5}{2}}{\frac{5}{2}}$ > $\frac{\ln 2}{2}$, 所以 $\frac{5}{4}$

ln 2<

 $\ln \frac{5}{2}$.所以B正确; 因为 $f(2) < f(e) = \frac{1}{e}$,所以 $\ln 2 < \frac{1}{e}$,所以 $\ln 2 < \frac{2}{e}$,所以C正确; 因为 $e > \sqrt{5} > 2$,所以 $f(\sqrt{5}) > f(2)$,所以 $\frac{\ln \sqrt{5}}{\sqrt{5}} > \frac{\ln 2}{2}$,所以 $\int \ln 2$,可以 $\int \ln 2$,可以 $\int \ln 2$,可以 $\int \ln$

规律总结:一般利用函数单调性比较大小,需要根据所给式子结构匹配或构造到相应函数,求得单调性之后比较.

类型 3 利用单调性解不等式

圆3 已知函数的定义域为 R, f(2) = -1, 对任意 $x \in \mathbb{R}$, f'(x) < -1, 则 f(x) > 1 - x 的解集为()

A.
$$(-\infty, 2)$$
 B. $(2, +\infty)$ C. $(-1, 1)$ D. $(1, +\infty)$

【答案】 A

【解析】令 g(x)=f(x)+x,因为对任意 $x \in \mathbb{R}$,f'(x)<-1,所以 g'(x)=f(x)+1<0,即 g(x) 在 \mathbb{R} 上单调递减. 又因为 f(2)=-1,所以 g(2)=f(2)+2=1.由 f(x)>1-x,可得 f(x)+x>1,即 g(x)>g(2),所以 x<2,即不等式 f(x)>1-x 的解集为($-\infty$, 2).

囫4 设函数 f(x)是奇函数 f(x)的导函数,f(-1)=0,当 x>0 时,xf'(x)-f(x)<0,则使得 f(x)>0 成立的 x 的取值范围是()

A.
$$(-1, 0) \cup (1, +\infty)$$
 B. $(-\infty, -1) \cup (0, 1)$

C.
$$(-\infty, -1) \cup (-1, 0)$$
 D. $(0, 1) \cup (1, +\infty)$

【答案】B

【解析】设
$$g(x) = \frac{f(x)}{x}$$
,则 $g'(x) = \frac{xf'(x) - f(x)}{x^2}$.因为当 $x > 0$ 时, $xf'(x) - f(x) < 0$,

所以当 x>0 时,g'(x)<0,此时函数 g(x)为减函数. 因为 f(x)是奇函数,所以 $g(x)=\frac{f(x)}{x}$ 是偶函数,即当 x<0 时,g(x)为增函数. 因为 f(-1)=0,所以 g(-1)=g(1)=0.当 x>0 时,f(x)>0 等价于 $g(x)=\frac{f(x)}{x}>0$,即 g(x)>g(1),此时 0< x<1.当 x<0 时,f(x)>0 等价于 $g(x)=\frac{f(x)}{x}<0$,即 g(x)<g(-1),此时 x<-1.综上,原不等式的解集为 $(-\infty,-1)\cup(0,-1)$.

规律总结:与导函数 f(x)相关的不等关系,往往需要根据求导法则的结构特点构造新函数 g(x),将条件中的不等式转化为 g'(x)的正负情况,进而借助 g(x)单调性解决相关问题.

综合练 ▶ 再融会贯通

一、 单项选择题

1. 已知定义域为 R 的函数 f(x)的导函数的图象如图所示,则以下函数值的大小关系一定正确的是()

A. f(a)>f(b)>f(0) B. f(0)<f(c)<f(d)

C. f(b) < f(0) < f(c) D. f(c) < f(d) < f(e)

【答案】 D

【解析】 由函数 f(x)的导函数图象可知,函数 f(x)在(a, b), $(c, +\infty)$ 上单调递增,在(b, c)上单调递减,所以 f(a)<f(b),故 A 错误; f(b)>f(0)>f(c),故 B 和 C 错误; f(c)<f(d)<f(e),故 D 正确.

2. 已知函数 $y=\frac{1}{2}x^2-a \ln x-2x$ 在 $\left[\frac{1}{2},+\infty\right)$ 上单调递增,则实数 a 的取值范围为 ()

A.
$$\left(-\infty, -\frac{3}{4}\right]$$
 B. $(-\infty, -1]$ C. $[1, +\infty)$ D. $[0, 1)$

【解析】 $y'=x-\frac{a}{x}-2$,若函数 $y=\frac{1}{2}x^2-a$ $\ln x-2x$ 在 $\left[\frac{1}{2},+\infty\right)$ 上单调递增,则 x $-\frac{a}{x}$ $-2 \ge 0$ 在 $\left[\frac{1}{2}$, $+\infty\right)$ 上恒成立,即 $x-2 \ge \frac{a}{x}$,即 $a \le x^2 - 2x$ 在 $\left[\frac{1}{2}$, $+\infty\right)$ 上恒成立. 令 $f(x)=x(x-2)=(x-1)^2-1$, $x\in \left[\frac{1}{2}, +\infty\right)$,其图象的对称轴是 x=1,故 f(x)在 $\left(\frac{1}{2}, 1\right)$ 上单 调递减,在 $(1, +\infty)$ 上单调递增,故 $f(x)_{min} = f(1) = -1$,故 a ≤ -1 .

3. 若函数 $y = \frac{1}{3} x^3 + x^2 + mx + 2$ 是 R 上的单调函数,则 *m* 的取值范围是(

$$A.(-\infty, 1)$$

B.
$$(-\infty, 1]$$

$$C.(1, +\infty)$$

A.
$$(-\infty, 1)$$
 B. $(-\infty, 1]$ C. $(1, +\infty)$ D. $[1, +\infty)$

【答案】 D

【解析】 函数 $y = \frac{1}{3} x^3 + x^2 + mx + 2$ 是 R 上的单调函数,即 $y' = x^2 + 2x + m \ge 0$ 或 $y' = x^2$ $+2x+m \le 0$ (舍去)在 R 上恒成立,所以 $\Delta = 4-4m \le 0$,解得 $m \ge 1$.

4. 已知定义在 R 上的函数 y = f(x)满足 f(-1) = 2020,且对任意的 $x \in \mathbb{R}$,都有 $f'(x) - 3x^2 > 0$ 成立,则不等式 $f(x) < x^3 + 2021$ 的解集为()

A.
$$(-\infty, -1)$$

B.
$$(-1, 1)$$
 C. $(1, +\infty)$ D. $(-\infty, 1)$

$$D.(-\infty, 1)$$

【答案】 A

【解析】 设 $g(x)=f(x)-x^3$, 则 $g'(x)=f'(x)-3x^2>0$, 所以 g(x)在 R 上为增函数. 因为 f(-x)1)=2 020, 所以 $g(-1)=f(-1)-(-1)^3=2$ 021, 所以不等式 $f(x)< x^3+2$ 021 等价于 f(x) $x^3 < g(-1)$, 即 g(x) < g(-1), 所以 x < -1, 即不等式的解集为 $(-\infty, -1)$.

- 二、多项选择题
- 5. 已知函数 y=f(x)的导函数 y=f(x)的图象如图所示,则下列结论正确的是(

(第5题)

A. 函数 y=f(x)在($-\infty$, 0)上是增函数 B. 在(3, 5)上函数 f'(x)<0

$$C. f(3) = f(5)$$

$$D. f(-1) < f(3)$$

【答案】 BD

- 6. 设 f(x), g(x)都是单调函数, 其导函数分别为 f'(x), g'(x), h(x)=f(x)-g(x), 下列 判断正确的是()
 - A. 若 f'(x)>0,g'(x)>0,则 h(x)单调递增
 - B. 若 f'(x)>0, g'(x)<0,则 h(x)单调递增
 - C. 若 f'(x) < 0,g'(x) > 0,则 h(x)单调递减
 - D. 若 f'(x) < 0, g'(x) < 0, 则 h(x) 单调递减

【答案】 BC

【解析】 f'(x)>0 时,函数 f(x)为增函数,f'(x)<0 时,函数 f(x)为减函数,同理 g'(x)>0 时,函数 g(x)为增函数,g'(x)<0 时,函数 g(x)为减函数。不妨取 $f(x)=2^x$, $g(x)=2^{x+1}$,则满足 f'(x)>0,g'(x)>0, $h(x)=f(x)-g(x)=2^x(1-2)=-2^x$,显然 h(x)是减函数,排除 A 选项;取 f(x)=-x,g(x)=-2x,满足 f'(x)<0,g'(x)<0,则 h(x)=f(x)-g(x)=x,故 h(x)是增函数,排除选项 D; 当 f'(x)>0,g'(x)<0 时,函数 f(x)为增函数,g(x)为减函数,则-g(x)为增函数,所以 h(x)=f(x)-g(x)为增函数,故 B 正确;当 f'(x)<0,g'(x)>0 时,f(x)为减函数,成 G(x)为减函数,前以 G(x)为减函数,前以 G(x)0,为减函数,前以 G(x)0,前以 G(x)0,前以 G(x)0,以 G(x)0,前以 G(x)0

7. 以下四组不等式中错误的是(

A. $log_{2.8}e > ln \ 2.8$

$$B.~0.4^{0.2} < 0.3^{0.2}$$

$$C. e^{\pi} > \pi^e$$

D.
$$\sqrt{\pi} \ln 3 > \sqrt{3} \ln \pi$$

【答案】 ABD

【解析】 因为 $log_{2.8}e<1$,而 ln 2.8>1,故 A 错误;因为函数 $y=x^{0.2}$ 在 $(0, +\infty)$ 上是增函数,0.4>0.3,所以 $0.4^{0.2}>0.3^{0.2}$,故 B 错误;设函数 $y=\frac{ln\ x}{x}$,则 $y'=\frac{1-ln\ x}{x^2}$,当 x>e 时,y'<0,所以 y 在 $(e, +\infty)$ 上是减函数,所以 $\frac{ln\ e}{e}>\frac{ln\ \pi}{\pi}$,即 $\pi ln\ e>e ln\ \pi$,所以 $e^\pi>\pi^e$,故 C 正确;设函数 $y=\frac{ln\ x}{x}$,则 $y'=\frac{1-ln\ x}{x^2}$,当 0< x<e 时,y'>0,故 y 在(0, e)上是增函数,因为 $0<\sqrt{3}<\sqrt{\pi}<e$,所以 $\frac{ln\sqrt{3}}{\sqrt{3}}<\frac{ln\sqrt{\pi}}{\sqrt{\pi}}$,即 $\sqrt{\pi}$ $ln\sqrt{3}<\sqrt{3}$ $ln\sqrt{\pi}$,所以 $\sqrt{\pi}$ $ln\sqrt{\pi}$ $ln\sqrt{3}$ 0.40 错误,故选 $ln\sqrt{\pi}$,故 $ln\sqrt{\pi}$,就 $ln\sqrt{\pi}$ 。

三、填空题

8. 若函数 $f(x)=ax^3-12x+a$ 的单调减区间为(-2, 2),则 a=_____.

【答案】 1

【解析】 由 $f(x)=ax^3-12x+a$,得 $f'(x)=3ax^2-12$,因为 $f(x)=ax^3-12x+a$ 的单调减区间为(-2, 2),所以-2 和 2 为方程 f'(x)=0 的两个实根,所以 12a-12=0,所以 a=1.

9. 已知函数 $f(x) = e^{2x+1} - e^{-2x} - mx$ 在 R 上为增函数,则 *m* 的取值范围为______.

【答案】 $(-\infty, 4\sqrt{e})$

【解析】 因为函数 $f(x)=e^{2x+1}-e^{-2x}-mx$ 在 R 上为增函数,所以 $f(x)=2e^{2x+1}+2e^{-2x}-m\ge 0$ 在 R 上恒成立,即 $m\le 2e^{2x+1}+2e^{-2x}$ 对 $x\in R$ 恒成立.因为 $2e^{2x+1}+2e^{-2x}\ge 2\sqrt{2e^{2x+1}\times 2e^{-2x}}=4\sqrt{e}$,当且仅当 $x=-\frac{1}{4}$ 时取等号,所以 $m\le 4\sqrt{e}$.

10. 已知 f(x)是定义在 $\left(0, \frac{\pi}{2}\right)$ 上的函数,其导函数为 f(x), $f\left(\frac{\pi}{3}\right) = 2\sqrt{3}$,且 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $f'(x)\sin x + f(x)\cos x > 0$,则不等式 $f(x)\sin x < 3$ 的解集为______.

【答案】
$$\left\{x \mid 0 < x < \frac{\pi}{3}\right\}$$

【解析】 因为 $f'(x)\sin x + f(x)\cos x > 0$,所以[$f(x)\cdot\sin x$]'>0.令 $g(x)=f(x)\sin x$,则当 $x \in$

 $\left(0, \frac{\pi}{2}\right)$ 时,g'(x)>0,所以 g(x)在 $\left(0, \frac{\pi}{2}\right)$ 上单调递增,因为 $f\left(\frac{\pi}{3}\right)=2\sqrt{3}$,所以 $g\left(\frac{\pi}{3}\right)=f\left(\frac{\pi}{3}\right)$ sin $\frac{\pi}{3}=3$,不等式 f(x)sin x<3,即 $g(x)< g\left(\frac{\pi}{3}\right)$.因为 g(x)在 $\left(0, \frac{\pi}{2}\right)$ 上单调递增,所以原不等式的解集为 $\left\{x|0< x<\frac{\pi}{3}\right\}$.

四、解答题

- 11. 已知函数 $f(x) = e^x ax 1$.
- (1) 当 a=2 时,讨论 f(x)的单调区间;
- (2) 若 f(x)在定义域 R 内单调递增,求 a 的取值范围.

【解析】 (1) 当 a=2 时, $f(x)=e^x-2x-1$,

则 $f'(x) = e^x - 2$.

所以 f(x)的单调增区间为 $(\ln 2, +\infty)$, 单调减区间为 $(-\infty, \ln 2)$.

- (2) 由题可知,f(x)在定义域 R 内单调递增等价于 $f'(x) = e^x a \ge 0$.由 $f'(x) = e^x a$ 在 R 上单调递增,又 $e^x > 0$,则 $0 a \ge 0$,解得 $a \le 0$.
 - 12. 己知函数 $f(x) = \frac{1}{2^x} 2^x$.
 - (1) 求证:函数 f(x)在($-\infty$, $+\infty$)上为减函数;
 - (2) 当 m>0 时,解关于 x 的不等式 $f(mx^2-m^2x)+f(m-x)>f(0)$.

【解析】 (1) 函数 $f(x) = \frac{1}{2^x} - 2^x$ 的定义域为 R,

$$f'(x) = \frac{1}{2^x} \ln \frac{1}{2} - 2^x \ln 2 = -\left(\frac{1}{2^x} + 2^x\right) \ln 2.$$

因为 $\frac{1}{2^x}$ +2 x >0,ln 2>0,所以f(x)<0 恒成立,

所以函数 f(x)在($-\infty$, $+\infty$)上为减函数.

(2) 因为 $f(-x) = \frac{1}{2^{-x}} - 2^{-x} = 2^x - \frac{1}{2^x} = -f(x)$,且f(x)的定义域为R,

所以 f(x)为奇函数,且 f(0)=0,

所以不等式 $f(mx^2-m^2x)+f(m-x)>f(0)$,

即为 $f(mx^2-m^2x) > -f(m-x) = f(x-m)$,

因为 f(x)为减函数,所以 $mx^2 - m^2x < x - m$,

即(mx-1)(x-m)<0.

当 0 < m < 1 时,原不等式的解集为 $\left(m, \frac{1}{m}\right)$;

当m=1时,原不等式的解集为毗;

当 m>1 时,原不等式的解集为 $\left(\frac{1}{m}, m\right)$.

拓展练 ▶后提升素养

1. (多选)函数 $f(x) = \frac{1}{2} ax^2 - (a+2)x + 2\ln x$ 单调递增的必要不充分条件有()

A. $a \ge 2$ B. a = 2 C. $a \ge 1$ D. a > 2

【答案】 AC

【解析】由题意知函数 $f(x) = \frac{1}{2} ax^2 - (a+2)x + 2\ln x$ 在区间 $(0, +\infty)$ 上单调递增,则 f(x) $= ax - (a+2) + \frac{2}{x} = \frac{ax^2 - (a+2) x + 2}{x} \ge 0$ 在区间 $(0, +\infty)$ 上恒成立,即 $ax^2 - (a+2)x + 2 \ge 0$ 在区间 $(0, +\infty)$ 上恒成立。①当 a = 0 时, $-2x + 2 \ge 0$ 泳 $x \le 1$,不满足题意;②当 a < 0 时, $ax^2 - (a+2)x + 2 = a\left(x - \frac{2}{a}\right)(x-1) \ge 0$,又 $\frac{2}{a} < 0$,即 $\left(x - \frac{2}{a}\right)(x-1) \le 0$ 泳 $x \le 1$,不满足题意;③当 a > 0 时, $ax^2 - (a+2)x + 2 = a\left(x - \frac{2}{a}\right)(x-1) \ge 0$,又 $\frac{2}{a} > 0$, $ax^2 - (a+2)x + 2 \ge 0$ 在区间 $(0, +\infty)$ 上恒成立,则 $\Delta = (a+2)^2 - 8a = (a-2)^2 \le 0$ 泳 a = 2.综上,函数 $f(x) = \frac{1}{2} ax^2 - (a+2)x + 2\ln x$ 单调递增的充要条件为 a = 2.结合选项知 AC 符合题意.