Sucessões e Séries de Funções

Sucessão de Funções - Definição

Definição 4.1

Uma sucessão $f_1(x), f_2(x), \dots, f_n(x), \dots$ em que cada termo é uma função real de variável real definida num domínio D, é designada por **sucessão de funções** e representa-se usualmente por $(f_n)_n$.

Exercício 4.1

Considere as sucessões de funções seguintes e represente graficamente os primeiros termos de cada uma delas:

- (a) $(f_n)_n$ a sucessão onde para cada $n \in \mathbb{N}$ se tem $f_n(x) = x^n$ para $x \in [0,1]$.
- (b) $(g_n)_n$ a sucessão onde para cada $n \in \mathbb{N}$ se tem $g_n(x) = \frac{x}{n}$ para $x \in [0,1]$.

Sucessão de Funções - Convergência

Definição 4.2

Sejam (f_n) uma sucessão de funções definidas em $D \subseteq \mathbb{R}$ e $f: D \to \mathbb{R}$. Diz-se que

 \blacksquare (f_n) converge pontualmente para a função f em D se

$$\forall x \in D, f(x) = \lim_{n \to \infty} f_n(x).$$

À função f chamamos limite pontual de (f_n) em D.

■ (f_n) converge uniformemente para a função f em D se a sucessão numérica de termo geral

$$M_n = \sup_{x \in D} |f_n(x) - f(x)|$$

é um infinitésimo.

Sucessões de Funções - Convergência

Exercício 4.2

Determine os limites pontuais das sucessões definidas por $f_n(x) = x^n$ e $g_n(x) = \frac{x}{n}$, para $x \in [0, 1]$.

Teorema 4.1

Se (f_n) converge uniformemente para f num conjunto D então (f_n) converge pontualmente para f nesse conjunto.

Observação 4.1

A convergência uniforme é mais "forte" que a convergência pontual em dois sentidos: por um lado, é mais difícil uma sucessão de funções convergir uniformemente do que pontualmente; por outro lado, a convergência uniforme traz consigo propriedades que não são possíveis de obter com a convergência pontual. Essas propriedades são apresentadas no Teorema seguinte.

Sucessões de Funções - Convergência Uniforme

Teorema 4.2

Seja (f_n) uma sucessão de funções contínuas em [a, b]. Suponha-se que (f_n) converge uniformemente para f em [a, b]. Então:

- If f é contínua em [a, b];
- 2 f é integrável em [a, b] e tem-se

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \lim_{n \to +\infty} f_{n}(x)dx = \lim_{n \to +\infty} \int_{a}^{b} f_{n}(x)dx$$

3 se as funções f_n têm derivadas contínuas em [a,b] e a sucessão (f'_n) converge uniformemente em [a,b], então f é diferenciável neste intervalo e

$$f'(x) = \lim_{n \to \infty} f'_n(x), \quad \forall x \in [a, b]$$

Sucessões de funções - Convergência uniforme

Observação 4.2

As propriedades anteriores podem ser utilizadas como critérios para mostrar que uma sucessão não é uniformemente convergente. Por exemplo, se f_n é contínua para todo o n mas f não é contínua, então (f_n) não pode ser uniformemente convergente para f.

Teorema 4.3

Sejam $D \subset \mathbb{R}$ um conjunto, $(f_n)_{n \in \mathbb{N}}$ uma sucessão de funções definida em D e $f: D \to \mathbb{R}$ uma função. As condições seguintes são equivalentes:

(a)
$$f_n \stackrel{u}{\to} f$$
 e (b) $\lim_{n \to +\infty} \left[\sup\{|f_n(x) - f(x)|, x \in D\} \right] = 0$

Exercício 4.3

Mostre que a sucessão $(g_n)_{n\in\mathbb{N}}$ onde para cada $n\in\mathbb{N}$ se tem $g_n(x)=\frac{x}{n}$ para $x\in[0,1]$ é uniformemente convergente.

Séries de Funções - Definição

Definição 4.3

Seja (f_n) uma sucessão de funções definida em $D\subseteq\mathbb{R}$ e

$$S_n(x) = \sum_{k=1}^n f_k(x) = f_1(x) + f_2(x) + \cdots + f_n(x), \ n \in \mathbb{N}, x \in D.$$

Diz-se que a série $\sum_{n=1}^{\infty} f_n$ converge pontualmente (resp.

uniformemente) em D se a sucessão de somas parciais (S_n) convergir pontualmente (resp. uniformemente) em D.

Em caso de convergência, a função $S = \lim_{n \to \infty} S_n$ designa-se por

soma da série e escreve-se $\sum_{n=1}^{\infty} f_n = S$. Nesse caso, também se diz

que a série $\sum_{n=1}^{\infty} f_n$ converge (pontualmente ou uniformemente) para

Séries de Euncões

Séries de Funções - Observações

Observação 4.4

- **1** a convergência pontual de $\sum_{n=1}^{\infty} f_n$ corresponde à convergência da série numérica $\sum_{n=1}^{\infty} f_n(x)$ para cada x
- 2 o domínio de convergência de $\sum_{n=1}^{\infty} f_n$ é o conjunto dos
 - pontos x para os quais a série numérica $\sum_{n=1}^{\infty} f_n(x)$ é convergente
- 3 também aqui a convergência uniforme é mais "forte" que a convergência pontual; em particular, a convergência uniforme traz consigo propriedades que não são possíveis de obter com a convergência pontual, enunciadas no Teorema seguinte.

Séries de Funcões

Séries de Funções - Propriedades

Teorema 4.4

Seja $\sum_{n=1}^{\infty} f_n$ uma série de funções contínuas em [a, b] e

uniformemente convergente em [a,b] para uma função S. Então:

- **I** S é contínua em [a, b];
- S é integrável em [a, b] e tem-se

$$\int_{a}^{b} S(x)dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} f_{n}(x)\right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} f_{n}(x)dx\right)$$

3 se cada f_n é de classe C^1 em [a,b] e $\sum_{n=1}^{\infty} f'_n$ converge uniformemente em [a,b], então S é diferenciável neste intervalo e

$$S'(x) = \left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x), \ x \in [a, b]$$

Séries de Funções

Séries de Funções - Critério de Weierstrass

Teorema 4.5

Sejam (f_n) uma sucessão de funções definidas em D e $\sum_{n=1}^{\infty} a_n$ uma série numérica convergente de termos não negativos, tais que $|f_n(x)| \leq a_n, \quad \forall n \in \mathbb{N}, \ \forall x \in D.$

 $|f_n(x)| \le a_n, \quad \forall n \in \mathbb{N}, \ \forall x \in D.$ Então a série $\sum_{n=1}^{\infty} f_n$ converge uniformemente em D.

Exercício 4.4

Mostre, usando o Critério de Weierstrass, que as séries de funções seguintes são uniformemente convergentes no intervalo indicado:

(a)
$$\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$$
 em [0,1]

(c)
$$\sum_{n=1}^{+\infty} \frac{1}{4n^2 + x^4} \text{ em } \mathbb{R}$$

(b)
$$\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^3}$$
 em $[0, 2\pi]$

(d)
$$\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n(x+2)^n}$$
 em $[0,+\infty[$

Séries de Funções - Exercícios

Exercício 4.5

- Considere a função S definida por $S(x) = \sum_{n=0}^{+\infty} \frac{\sin(nx)}{n^4}$
 - (a) Mostre que S é uma função contínua em \mathbb{R} .
 - (b) Mostre que S é diferenciável em $\mathbb R$ e que S' é uma função contínua em \mathbb{R} .
- $oldsymbol{\mathbb{Z}}$ Considere a série $\sum e^{-nx}$ de funções definidas em $\mathbb{R}.$
 - (a) Mostre que a serie é uniformemente convergente em $[1, +\infty[$.
 - (b) Determine, em $[1, +\infty[$, a derivada da função soma da série considerada.
- \blacksquare Considere a série $\sum ne^{-nx}$ de funções definidas em \mathbb{R} .
 - (a) Mostre que a função soma da série é contínua em $[1, +\infty[$.
 - (b) Justifique que a função soma da série é integrável em

$$[\ln(3), \ln(4)] \text{ e calcule } \int_{\ln(3)}^{\ln(4)} \left(\sum_{n=1}^{+\infty} ne^{-nx}\right) dx$$

103

Séries de Potências - Definição

Definição 4.4

Uma série de potências centrada em $c \in \mathbb{R}$ é uma série da forma

$$\sum_{n=0}^{\infty} a_n(x-c)^n = a_0 + a_1(x-c) + a_2(x-c)^2 + \cdots + a_n(x-c)^n + \cdots$$

onde $a_n \in \mathbb{R}, \ \forall n \in \mathbb{N}_0$. Os números a_n são os **coeficientes da série**.

Exercício 4.6

Discuta para que valores de $x \in \mathbb{R}$ a série

$$\sum_{n=0}^{\infty} x^n$$

é convergente e, nesses casos, determine a sua soma.

Séries de Potências

Séries de Potências - Domínio de convergência

Definição 4.5

O conjunto de pontos para os quais uma série de potências é convergente chama-se **domínio de convergência**.

Observação 4.5

O domínio de convergência de uma série de potências pode ser determinado utilizando os critérios de D'Alembert ou da Raiz.

Exercício 4.7

Determine o domínio de convergência das séries seguintes, indicando os pontos onde a convergência é simples ou absoluta:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{3^n \sqrt{n+1}} x^n$$
 (c) $\sum_{n=0}^{\infty} \frac{n-1}{n^{2n}} x^n$

(b)
$$\sum_{n=1}^{\infty} \frac{2}{9^{n+1}n^2} (x-3)^n$$
 (d) $\sum_{n=0}^{\infty} \frac{(2n)!}{n!} x^n$

Séries de Potências - Domínio de convergência

Observação 4.6

Como observámos nos exemplos anteriores, o domínio de convergência aparenta tomar uma de três formas: um conjunto singular (x = c); um intervalo limitado; o conjunto \mathbb{R} .

Teorema 4.6

Dada uma série de potências $\sum_{n=0}^{\infty} a_n(x-c)^n$, verifica-se uma e uma só das condições seguintes:

- (a) a série converge absolutamente apenas em x=c e diverge para $x \neq c$;
- (b) a série converge absolutamente para todo o $x \in \mathbb{R}$;
- (c) existe um único R > 0 tal que a série converge absolutamente para todo o $x \in]c R, c + R[$ e diverge para todo o $x \in]-\infty, c R[\cup]c + R, +\infty[$.

Séries de Potências

Séries de Potências - Raio de convergência

Definição 4.6

Ao número R do Teorema 1.6(c) chamamos raio de convergência da série de potências.

Dizemos que R=0 (raio de convergência nulo) no caso do Teorema 1.6(a) e que $R=+\infty$ (raio de convergência infinito) no caso do Teorema 1.6(b).

Quando $R \neq 0$, o intervalo]c - R, c + R[(\mathbb{R} no caso de $R = +\infty$) designa-se por **intervalo de convergência**.

Teorema 4.7

Seja $\sum_{n=0}^{\infty} a_n (x-c)^n$ uma série de potências tal que $a_n \neq 0$, $\forall n \in \mathbb{N}$.

Então, o raio de convergência R da série pode ser obtido de duas formas (sempre que os limites existam):

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 ou $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$

Séries de Potências - Intervalo e domínio de convergência

Observação 4.7

■ o intervalo de convergência (IC) é centrado em c, podendo ser apenas o conjunto singular $\{c\}$ ou ser \mathbb{R} como ilustra a figura

- o domínio de convergência (DC) poderá diferir apenas no caso R > 0; note-se que nada é dito quanto à natureza da série em x = c R e x = c + R, o estudo tem de ser feito caso a caso
- Podemos ter DC = IC =]c R, c + R[, DC =]c R, c + R],DC = [c - R, c + R] ou DC = [c - R, c + R].

Séries de Potências

Séries de Potências - Exercícios

Exercício 4.8

Determine o raio e o domínio de convergência das séries seguintes (distinga os pontos onde a convergência é simples ou absoluta):

(a)
$$\sum_{n=0}^{\infty} 3^n (x+5)^n$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{\log n} x^{3n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{n-1}{n^{2n}} x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n6^n} (3x-2)^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!} x^n$$

(f)
$$\sum_{n=1}^{\infty} \frac{3^n}{n2^{n+2}} (x-1)^n$$

Séries de Potências - Convergência uniforme

Teorema 4.8

Seja $\sum_{n=0}^{\infty} a_n(x-c)^n$ uma série de potências com raio de convergência $R \neq 0$ e correspondente intervalo do convergência I =]c - R, c + R[. Então a série converge uniformemente em qualquer subintervalo fechado e limitado de I.

Teorema 4.9 Teorema de Abel

Seja $\sum_{n=0}^{\infty} a_n(x-c)^n$ uma série de potências de raio de convergência

 $R \neq 0$. Se a série converge em

(a) x = c + R, então converge uniformemente em [c, c + R] e tem-se que

$$\lim_{x \to (c+R)^{-}} \left(\sum_{n=0}^{+\infty} a_n (x-c)^n \right) = \sum_{n=0}^{+\infty} a_n (c+R-c)^n = \sum_{n=0}^{+\infty} a_n R^n$$

Séries de Potências

Séries de Potências - Convergência uniforme

Teorema 4.9(cont.) **Teorema de Abel**

(b) x = c - R, então converge uniformemente em [c - R, c] e tem-se que

$$\lim_{x \to (c-R)^+} \left(\sum_{n=0}^{+\infty} a_n (x-c)^n \right) = \sum_{n=0}^{+\infty} a_n (c-R-c)^n = \sum_{n=0}^{+\infty} a_n (-R)^n$$

Teorema 4.10

Seja $\sum_{n=0}^{\infty} a_n(x-c)^n$ uma série de potências de raio de convergência

 $R \neq 0$. Então as séries de potências $\sum_{n=1}^{+\infty} na_n(x-c)^{n-1}$ e

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}$$
 têm raio de convergência R .

éries de Potências 111

Propriedades das séries de potências

Teorema 4.11

Sejam $\sum_{n=0}^{\infty} a_n(x-c)^n$ uma série de potências com raio de convergência $R \neq 0$, $I = clinic convergência e <math>f(x) = \sum_{n=0}^{\infty} a_n(x-c)^n$. Então:

- (a) f é contínua em todo o domínio de convergência da série;
- (b) f é diferenciável e $f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}$, $\forall x \in I$;
- (c) a função F, definida por $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}$ é a primitiva de f em I tal que F(c) = 0;

Séries de Potências

Propriedades das séries de potências

Teorema 4.11(cont.)

(d) f é integrável em qualquer subintervalo [a,b] do domínio de convergência e

$$\int_a^b f(x)dx = \int_a^b \left(\sum_{n=0}^\infty a_n(x-c)^n\right)dx = \sum_{n=0}^\infty \left(\int_a^b a_n(x-c)^n dx\right)$$

Exercício 4.9

Sabendo que $\forall x \in]-1,1[$ se tem $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n$, obtenha a

representação em série de potências das funções seguintes, indicando o maior intervalo aberto onde a representação é válida:

(a)
$$f(x) = -\ln(1-x)$$
 (c) $f(x) = \frac{1}{(1+2x)}$ (e) $f(x) = \frac{2}{(1-x)^3}$ (b) $f(x) = \frac{1}{(1-x)^2}$ (d) $f(x) = \ln(1+2x)$

Polinómio de Taylor

Definição 4.7

A um polinómio na forma

$$T_c^n f(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x - c)^k$$
$$= f(c) + f'(c)(x - c) + \dots + \frac{f^{(n)}(c)}{n!} (x - c)^n$$

chamamos **polinómio de Taylor** de ordem n de f no ponto c. Se c=0, então a $T_0^n f(x)$ chamamos **polinómio de MacLaurin** de ordem n de f.

Observação 4.8

De acordo com a definição anterior temos que

$$T_c^n f(c) = f(c), \frac{d}{dx} T_c^n f(c) = f'(c), \dots, \frac{d^n}{dx^n} T_c^n f(c) = f^{(n)}(c)$$

Fórmula de Taylor

Teorema 4.12

Sejam $n \in \mathbb{N}_0$, f uma função com derivadas contínuas até à ordem (n+1) num intervalo aberto I e $c \in I$. Então, $\forall x \in I \setminus \{c\}$, existe θ entre c e x tal que

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k}}_{\text{Polinómio de Taylor}} + \underbrace{\frac{f^{(n+1)}(\theta)}{(n+1)!} (x - c)^{n+1}}_{\text{Resto de Lagrange}}$$
$$= T_{c}^{n} f(x) + R_{c}^{n} f(x)$$

À igualdade anterior chamamos **fórmula de Taylor** de ordem n (no caso em que c=0 também é chamada **fórmula de MacLaurin**). Note-se que $\theta \in]c,x[$ se c< x ou $\theta \in]x,c[$ se c> x.

Fórmula de Taylor

Observação 4.9

■ no caso n = 0 a fórmula de Taylor é equivalente ao Teorema de Lagrange pois

$$f(x) = f(c) + f'(\theta)(x - c) \Leftrightarrow f'(\theta) = \frac{f(x) - f(c)}{x - c}, \text{ com } x \neq 0$$

• o erro absoluto cometido ao utilizar $T_c^n f(x)$ para aproximar f(x) pode ser estimado (majorado) por

$$|R_c^n f(x)| = |f(x) - T_c^n f(x)| \le \frac{M}{(n+1)!} |x - c|^{n+1}$$

onde $M = \sup |f^{(n+1)}(y)|$ para y entre x e c, desde que $f^{(n+1)}$ seja contínua em I. A este propósito veja-se http://calculusapplets.com/taylor.html

Polinómio de Taylor - Exercícios

Exercício 4.10

- Determine os polinómios de Taylor seguintes
 - (a) $T_0^3(x^3+2x+1)$
 - (b) $T_0^5(sen(x))$
 - (c) $T_1^n\left(\frac{1}{x}\right)$, $(n \in \mathbb{N})$
- **2** Considere $f(x) = e^x$.
 - (a) Escreva a fórmula de MacLaurin de ordem n da função f.
 - (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo $]-1,\ 0[$, com erro inferior a $\frac{1}{(n+1)!}$.
 - (c) Escolha um dos polinómios de MacLaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando um majorante para o erro absoluto cometido nessa aproximação.

Série de Taylor: definição

Definição 4.8

Seja f uma função que admite derivadas contínuas de qualquer ordem e tal que $\lim_{n\to\infty}R_c^nf(x)=0$. Então f admite um desenvolvimento em série de potências da forma

$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!} (x-c)^2 + \cdots$$

à qual chamamos **série de Taylor** de f no ponto c. Se c=0, então chamamos **série de MacLaurin** de f.

Exercício 4.11

Obtenha a série de MacLaurin das funções:

(a)
$$f(x) = e^x$$

(b)
$$g(x) = \frac{1}{1-x}$$

Série de Taylor: convergência

Observação 4.10

Em que condições se pode escrever $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$?

Teorema 4.13

Sejam I um intervalo, $f:I\to\mathbb{R}$ uma função que admite derivadas finitas de qualquer ordem em I e $c\in I$. Então

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n, \quad \forall x \in I \iff \lim_{n \to \infty} R_c^n f(x) = 0$$

Teorema 4.14

Sejam I um intervalo, $f:I\to\mathbb{R}$ uma função que admite derivadas finitas de qualquer ordem em I e $c\in I$.

Se existe M > 0 tal que

$$|f^{(n)}(x)| \leq M, \ \forall x \in I, \ \forall n \in \mathbb{N}_0 \Longrightarrow f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n, \ \forall x \in I.$$

Série de Taylor - Exercícios

Exercício 4.12

Use os Teoremas anteriores, para mostrar que:

(a)
$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}, \ \forall x \in \mathbb{R};$$

(b)
$$sen(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \ \forall x \in \mathbb{R};$$

Definição 4.9

Seja f uma função definida num intervalo aberto I. Se existir um real r > 0 tal que para todo o $x \in]c - r, c + r \subseteq I$ se tem

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$$
, então dizemos que f é **analítica** em c .

Unicidade da representação em série de potências

Teorema 4.15

Se

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n, \ \ x \in I =]c - R, c + R[\ (R \neq 0),$$

então f possui derivadas finitas de qualquer ordem em I e

$$a_n = \frac{f^{(n)}(c)}{n!}, \ \forall n \in \mathbb{N}_0.$$

Observação 4.11

O Teorema anterior afirma que se f admite uma representação em série de potências centrada em c, então essa é a série de Taylor de f em c.