

# BCS थिलियिनाति





#### **Lecture Content**

🗹 এটমের গঠন

☑ মৌলিক কণা ও সংজ্ঞাসমূহ

☑ পর্যায় সারণী

🗹 এসিড, ক্ষার ও লবণ

☑ জারণ-বিজারণ

🗹 তড়িৎ কোষ

☑ সাবান ও সাবানের কাজ

☑ কার্বনের বহুমুখী ব্যবহার

☑ জৈব যৌগ এবং এদের ব্যবহার





## **Discussion**



শিক্ষক ক্লাসে নিচের গুরুত্বপূর্ণ বিষয়গুলো প্রথমে বুঝিয়ে বলবেন।

## এটমের গঠন

অণু

অণু শব্দের অর্থ ক্ষুদ্র। যৌগিক বা মৌলিক পদার্থের ক্ষুদ্রতম কণা যা ঐ <mark>ব</mark>স্তুর ধর্মাবলি অক্ষুন্ন রেখে স্বাধীনভাবে বিরাজ করতে পারে তাকে সে বস্তুর অণু বলে। অণু রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না। ১৮১১ সালে বিজ্ঞানী অ্যাভোগাড্রো প্রথম অণুর ধারণা দেন। দুই বা ততোধিক পরমাণু একত্র হয়ে অণু গঠন করে।

#### পরমাণু

পরমাণু শব্দের অর্থ 'অত্যন্ত ক্ষুদ্র'। মৌলের ক্ষুদ্রতম অংশ যার মধ্যে মৌলের বৈশিষ্ট্য অক্ষুন্ন থাকে তাকে ঐ মৌলের পরমাণু বলে। পরমাণু মৌলিক পদার্থের ক্ষুদ্রতম কণা যা রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে।

পরমাণু বা এটম নাম দেন ডেমোক্রিটাস। এটম শব্দের অর্থ অখণ্ডনীয় যাকে আর ভাগ করা যায় না। ব্রিটিশ স্কুল শিক্ষক জন ডাল্টন ১৮০৩ সালে এটম এর নতুন ধারণা দেন।

একটি পরমাণু কণার ওজন আছে, আয়তন আছে। পরমাণুতে ৩ ধরনের কনিকা থাকে যথা: ইলেক্ট্রন, প্রোটন এবং নিউট্রন। এর মধ্যে প্রোটন ধনাত্মক চার্জযুক্ত, ইলেক্ট্রন ঋণাত্মক চার্জযুক্ত এবং নিউট্রন চার্জ নিরপেক্ষ। একটি পরমাণুতে স্বাভাবিক অবস্থায় প্রোটন এবং ইলেক্ট্রনের সংখ্যা সমান থাকে ফলে পরমাণুটি চার্জ নিরপেক্ষ হয়। ইলেক্ট্রন আদান প্রদানের ফলে পরমাণু চার্জপ্রাপ্ত হয়ে বিক্রিয়ায় অংশ নেয়।

## মৌলিক কণা ও সংজ্ঞাসমূহ

যে সকল সূক্ষ্ম কণিকা দ্বারা পরমাণু গঠিত হয় তাদের মৌলিক কণা বলে। একটি পরমাণুতে স্থায়ী তিনটি মৌলিক কণিকা থাকে।

এগুলো হলো- ইলেকট্রন, প্রোটন ও নিউট্রন। এছাড়াও অনেক অস্থায়ী কণিকা থাকে।

#### ইলেকট্রন

পরমাণুর ঋণাত্বক আধান বিশিষ্ট কণিকা হলো ইলেকট্রন। ইলেকট্রন হলো অতি ক্ষুদ্র কণিকা। থমসন ১৯৮৭ সালে এটি আবিদ্ধার করেন। এটি পরমাণুর শক্তিস্তরে বা কক্ষপথে অবস্থান করে। পরমাণুর কক্ষপথের ইলেকট্রন বিন্যাস হলো ২, ৮, ১৮, ৩২ ইত্যাদি। পরমাণুর n-তম স্তরে সর্বোচ্চ ইলেকট্রন সংখ্যা  $2n^2$  ঘর্ষণ, তাপ, রাসায়নিক ইত্যাদি প্রক্রিয়ায় পরমাণুর বহি:স্থ কক্ষপথের ইলেকট্রন নির্গত হয়। ইলেকট্রনের সংকেত  $e^-$ , ভর  $m=9.11 \times 10^{-28} g$ ,

চার্জ =  $-1.60 \times 10^{-19}$  Coulomb.







#### প্রোটন

পরমাণুর ধনাত্বক আধানবিশিষ্ট কণিকা প্রোটন। এর পজেটিভ চার্জ আছে। এর ভর হাইড্রোজেনের ভরের প্রায় সমান। রাদারফোর্ড ১৯১৯ সালে এটি আবিষ্কার করেন। হাইড্রোজেন পরমাণুতে একটি প্রোটন ও একটি ইলেকট্রন রয়েছে। এটি সবচেয়ে হালকা মৌল।

প্রোটনের সংকেত =  $P/H^+$ , চার্জ =  $1.60 \times 10^{-19}$ কুলম্ব, ভর =  $1.67 \times 10^{-24}$  g

#### নিউট্রন

পরমাণুর আধানহীন কণিকা হলো নিউট্রন। ১৯৩২ সালে বিজ্ঞানী চ্যাডউইক এ কণিকা আবিষ্কার করেন। এর ভর প্রোটন অপেক্ষা সামান্য বে<mark>শি।</mark> হাইড্রোজেন পরমাণুতে নিউট্রন নেই। পরমাণুর ভর প্রোটন <mark>ও নিউট্রনের</mark> ওজনের সমান। নিউট্রনের ভর =  $1.67 \times 10^{-24}$  g

#### নিউক্লিয়াস

পরমাণুর কেন্দ্র হলো নিউক্লিয়াস। এতে প্রোটন ও <mark>নিউট্রন অ</mark>বস্থান করে। সুতরাং পরমাণুর সকল ধনাতৃক আধান এবং প্রা<mark>য় সম্পূর্ণ ভ</mark>র নিউক্লিয়াসে কেন্দ্রীভূত। ইলেকট্রন নিউক্লিয়াসের বাইরে থা<mark>কে এবং</mark> তার চারদিকে পরিভ্রমণ করে। পরমাণু অত্যন্ত ক্ষুদ্র। নিউক্লিয়া<mark>স পরমাণু</mark>র তুলনায় অনেক ক্ষুদ্র। একটি পরমাণুর ব্যাস ১০<sup>-৮</sup> cm এবং নিউ<mark>ক্লিয়াসের</mark> ব্যাস প্রায় ১০<sup>-১৩</sup> cm, এক লক্ষ ভাগের এক ভাগ।

#### আইসোবারঃ

যে সকল পরমাণুর ভর সংখ্যা সমান কিন্তু প্রে<mark>াটন সংখ্</mark>যা ভিন্ন তাদের আইসোবার বলে। আইসোবার ভিন্ন ভিন্ন মৌলে<mark>র পরমাণুর</mark> ক্ষেত্রে হয়ে থাকে। যেমন-  $_{26}Fe^{58}$  ও  $_{27}N^{58}$ 

#### আইসোটোপ:

যে সকল পরমাণুর প্রোটন সংখ্যা <mark>স</mark>মান কিন্তু নিউট্র<mark>ন সংখ্যা বা ভর সংখ্</mark>যা ভিন্ন তাদের আইসোটোপ বলে। <mark>আইসোটোপ সাধা<mark>র</mark>ণত এক<mark>ই মৌলের</mark></mark> পরমাণুর ক্ষেত্রে হয়ে থাকে। হাইড্রোজেনের তিনটি আ<mark>ই</mark>সোটোপ- প্রোটিয়া<mark>ম</mark>  $_1\mathrm{H}^1$ , ডিউটোরিয়াম  $_1\mathrm{H}^2$  ও ট্রিটিয়াম  $_1\mathrm{H}^3$ । ইউরেনিয়ামের তিনটি আইসোটোপ  $_{92}\mathrm{U}^{234},~_{92}\mathrm{U}^{235}$  <mark>ও</mark>  $_{92}\mathrm{U}^{238}$ । এর মধ্যে বহুল ব্যবহৃত 92U<sup>235</sup> আইসোটোপ যা পা<mark>রমাণবি</mark>ক চুল্লীতে ব্যবহৃত হয়।

#### আইসোটোন:

যে সকল প্রমাণুর নিউট্রন সংখ্যা সমান কিন্তু প্রোটন সংখ্যা ভিন্ন তাদের আইসোটোন বলে। আ<mark>ইসো</mark>টোন <mark>ভিন্ন ভিন্ন মৌলের ক্ষেত্রে হয়ে থাকে</mark>। ভরসংখ্যা = প্রোটন সংখ্যা <del>+</del> নিউট্রন সংখ্যা । যেমন-  ${}_{6}C^{14}$  ও  ${}_{7}N^{15}$ 

#### আইসোমার:

যে সকল পরমাণুর পারমাণবিক সংখ্যা এবং ভর সংখ্যা একই, কিন্তু তাদের অভ্যন্তরীণ গঠন ভিন্ন তাদের পরস্পরের আইসোমার বলে যেমন- ইথানল ও ডাই মিথাইল ইথানল।

#### পারমাণবিক সংখ্যা

নিউক্লিয়াসে অবস্থিত পরমাণুর প্রোটন সংখ্যাকে পারমাণবিক সংখ্যা বা निউक्रिय़न সংখ্যা বলে। এটি যে কোন মৌলের মৌলিক ধর্ম। একটি পরমাণুতে যতটি প্রোটন থাকে ততটি ইলেকট্রন থাকে। পারমাণবিক সংখ্যার আবিষ্কারক হলো মোসলে। ইউরোনিয়ামের পারমাণবিক সংখ্যা ৯২, <mark>আর্সেনিকের পারমাণবিক</mark> সংখ্যা ৩৩, সিলিকনের পারমাণবিক সংখ্যা ১৪। <mark>কার্বনের পারমাণবিক সংখ্</mark>যা ৬ বলতে বুঝায়- কার্বনের পরামাণুতে ৬টি। প্রোটন রয়েছে।

#### ভর সংখ্যা

নিউক্লিয়াসে অবস্থিত প্রোটন ও <mark>নিউট্রনের মো</mark>ট সংখ্যাকে ভর সংখ্যা বলে। ক্লোরিনের ভর সংখ্যা ৩৫ বলতে বুঝায় ক্লোরিন পরমাণুর নিউক্লিয়াসে <mark>অবস্থিত নিউট্রন ও প্রোটনের সংখ্যার <mark>সমষ্টি ৩৫</mark>। ক্লোরিনে ১৭টি প্রোটন ও</mark> <mark>১৮টি নিউট্র</mark>ন রয়েছে। সোডিয়ামের ভর<mark> সংখ্যা ২</mark>৩। এতে ১১টি প্রোটন ও <mark>১২টি নিউট্রন রয়েছে</mark>।

#### পর্যায় সারণী

বিভিন্ন মৌলের মধ্যে ভৌত ও রাসায়নিক ধর্মের মিল এবং এ সকল ধর্মের ক্রম পরিবর্তন দেখানোর <mark>জ</mark>ন্য বিজ্ঞানীগ<mark>ণ সকল</mark> মৌলকে সারি ও কলামের মাধ্যমে একটি বিশেষ সারণীতে সাজি<mark>য়েছেন। এই</mark> সারণীকে পর্যায় সারণী বলা হয়। রুশ বিজ্ঞানী দিমিত্রি মে<mark>ডেলিফ সর্বপ্রথম পর্যায় সারণীর ধারণা</mark> প্রদান করেন। এজন্য তাকে পর্যায়<mark> সারণীর জ</mark>নক বলা হয়। পর্যায় সারণীর আধুনিক সূত্র হলো- মৌল সমূহের ভৌত ও রাসায়নিক ধর্মাবলী তাদের পারমাণবিক সংখ্যানু<mark>যায়ী পরিবর্তিত হ</mark>য় ।

#### নিদ্রিয় গ্যাস সমূহ ও এদের ব্যবহার

He (হিলিয়াম), Ne (নিয়ন), Ar (আর্গন), (Kr) ক্রিপ্টন, Xe (জেনন), Rn (রেডন) এই মৌলগুলোকে নিদ্রিয় গ্যাস বলে। এরা রাসায়নিকভাবে নিষ্ক্রিয় কারণ এদের বহি:স্থ কক্ষ পথে ইলেকট্রন (e<sup>-</sup>) এর অষ্টক পূর্ণ থাকে। সা<mark>ধার</mark>ণ বৈদ্যুতিক <mark>বাতিতে নাইট্রোজেন, আর্গন ইত্</mark>যাদি ব্যবহৃত হয়। রঙিন <mark>আলো</mark> সৃষ্টিতে নিয়ন ব্যবহৃত হয়।

<mark>বাতাসের চেয়ে ঘনত্ব কম বলেই বেলুন ওড়াতে হিলিয়াম এবং হাইড্রোজেন</mark> গ্যাস ব্যবহার করা হয়। ডুবুরিরা হাইড্রোজেন গ্যাসের পরিবর্তে হিলিয়াম মিশ্রিত হাইড্রোজেন গ্যাস ব্যবহার করেন।

#### গুরুত্বপূর্ণ প্রশ্ন

০১. সর্ব প্রথম অণুর ধারণা কে প্রদান করেন?

ক. রাদার ফোর্ড

খ. নিউটন

গ. অ্যাভোগাড্রো

ঘ. চ্যাডউইক

০২. পরমাণু বা এটম এর নামকরণ করেন —?

ক. নিউটন

খ. ডাল্টন

গ. রাদারফোর্ড

০৩. কোনটিতে নিউট্ৰন নেই?

ক. হাইড্রোজেন

গ. হিলিয়াম

ঘ. ডেমোক্রিটাস

খ. নাইট্রোজেন

ঘ. আর্গন

০৫. একটি এটমে কণিকার সংখ্যা কয়টি?

০৪. মৌলের প্রতীক কোনটি নির্দেশ করে না?

ক. মৌলের নামের সংক্ষিপ্ত রূপ

ঘ. মৌলের পারমাণবিক ওজন

খ. মৌলের একটি পরমাণু

গ. মৌলের একটি অণু

ক. তিনটি গ. পাচটি খ. চারটি

ঘ. ছয়টি





#### <u>এসিড,</u> ক্ষার ও লবণ

#### এসিড

যে সকল পদার্থের অণুতে হাইড্রোজেন পরমাণু আছে এবং জলীয় দ্রবণে বিয়োজিত হয়ে হাইড্রোজেন আয়ন  $(H^+)$  প্রদান করে তাকে এসিড বা অম্র বলে।  $P^H$  স্কেল দিয়ে সহজেই এসিডিটি নির্ণয় করা যায়।

$$\mathbf{P}^{\mathrm{H}}=7$$
 (নিরপেক্ষ দ্রবণ)

 $P^{H} < 7 \rightarrow Acid$ 

 $P^{H} > 7 \rightarrow Base/Alkali$ .

#### এসিডের বৈশিষ্ট্য:

- ♦ এসিড টক স্বাদ যুক্ত হয়ে থাকে।
- জলীয় দ্রবণে হাইড্রোজেন আয়ন দেয়।
- ♦ পানিতে দ্রবীভূত অবস্থায় নীল লিটমাসকে লাল করে।
- ♦ ক্ষারের সাথে বিক্রিয়া করে এটি পানি ও লবণ উৎপন্ন করে।

#### জৈব এসিড

অ্যাসিটিক এসিড বা ইথানয়িক এসিডের ৬-১০<mark>% জলীয়</mark> দ্রবণকে ভিনেগার বলে। এটি খাদ্য সংরক্ষক হিসেবে ব্যবহৃত হ<mark>য়। বোল</mark>তা, মৌমাছি, লাল পিঁপড়া প্রভৃতির কামড়ে ফরমিক এসিড (মিথান<mark>য়িক এসি</mark>ড) থাকে।

#### বিভিন্ন ফলের এসিড

| জৈব এসিড      | ফলের নাম | জৈব এসিড                  | ফলের নাম |
|---------------|----------|---------------------------|----------|
| সাইট্রিক এসিড | লেবুর রস | স্যালিক <mark>এসিড</mark> | টমেটো    |
| অ্যাসকরবিক    | আমলকি,   | টারটারিক                  | আঙ্গুর,  |
| এসিড          | কমলালেবু | এসিড                      | তেতুল    |
| ম্যালিক এসিড  | আপেল,    | ল্যাকটিক                  | দুধ      |
|               | আনারস    | এসিড                      |          |

#### ক্ষা<mark>র</mark>/ক্ষারক

যে যৌগের অণুতে অক্সাইড  $(O^2)$  বা হাইড্রোক্সাইড (OH) আয়ন থাকে এবং যা এসিডের সাথে বিক্রিয়া করে কেবল লবণ ও পানি উৎপন্ন করে তাকে ক্ষাবক বলে ।

যেমন: Na<sub>2</sub>O (সোডিয়াম অক্সাইড), CaO (ক্যালসিয়াম অক্সাইড)। যে সব ক্ষারক পানিতে দ্রবীভূত হয় তাকে ক্ষার বলে।

যেমন: NaOH (সোডিয়া<mark>ম</mark> হাইড্রোক্সাইড),

 $Ca(OH)_2$  (ক্যালসিয়াম হাইড্রোক্সাইড)।

ক্ষারক = ধাতু + অক্সাই<mark>ড/হাইড্রো</mark>ক্সইড (OH<sup>-</sup>)

- = NO<sub>2</sub>/NaOH
- $= K_2O/KOH$
- $= CaO/Ca(OH)_2$
- $= MgO/Mg(OH)_2$

#### ক্ষারকের বৈশিষ্ট্যঃ

- ক্ষার ও ক্ষারক কটু স্বাদযুক্ত হয়ে থাকে।
- ক্ষারকের দ্রবণ সাবান পানির ন্যায় পিচ্ছিল।
- এর জলীয় দ্রবণ লাল লিটমাসকে নীল করে।
- ধাতব অক্সাইড ও হাইড্রোক্সাইড সমূহ ক্ষারক।
- ♦ এটা এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে।
  ফারকের জলীয় দ্রবণে বর্ণহীন ফেনফথ্যালিন গোলাপী বর্ণ ধারণ করে।

#### লবণ

সোডিয়াম ক্লোরাইড বা লবণ হলো একটি রাসায়নিক পদার্থ যা সাধারণ লবণ, টেবিল লবণ হিসেবেও পরিচিত যা একটি আয়নিক যৌগ, যা অদ্র ও ক্ষারকের মধ্যে সংঘটিত প্রশমন বিক্রিয়ার মাধ্যমে উৎপন্ন হয়। লবণ সমান সংখ্যক ক্যাটায়ন ও অ্যানায়ন দ্বারা গঠিত হয়। যার ফলে এটি আধান নিরপেক্ষ হয়। এর রাসায়নিক সংকেত হলো NaCl। পানিতে অদ্রবণীয় লবণ আদর্শ তাপমাত্রা ও চাপে কঠিন থাকে।

#### উদাহরণঃ

$$NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$$
 পানি

#### জারণ-বিজ<u>ারণ</u>

#### জারণ

আধুনিক ইলেকট্রনীয় মতবাদ অনুসারে, যে রাসায়নিক বিক্রিয়ায় কোনো প্রমাণু, মূলক বা আয়ন ইলেকট্রন ত্যাগ বা বর্জন করে বা দান করে; ফলে সংশ্লিষ্ট প্রমাণু, আয়ন বা মূলকের ধনাত্মক চার্জ বৃদ্ধি পায়, তাকে জারণ বলে। জারণ বিক্রিয়া যে ঘটায় তাকে বিজারক বলে।

#### বিজারকের উদাহরণ:

সকল ধাতু, কার্বন, হাইড্রোজেন পটাসিয়াম পারম্যাঙ্গানেট KMnO4 পটাসিয়াম ডাইক্রোমেট, K2Cr2O7 কপার সালফেট, CuSO4

#### বিজারণ

যে রাসায়নিক বিক্রিয়ায় কোনো পরমাণু, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে; ফলে সংশ্লিষ্ট পরমাণু, আয়ন বা মূলকের ঋণাত্মক চার্জ বৃদ্ধি বা ধনাত্মক চার্জহ্রাস পায়, তাকে বিজারণ বলে। বিজারণ বিক্রিয়া যে ঘটায় তাকে জারক বলে। জারকের উদাহরণ:

> সকল অধাতু সোডিয়াম <mark>অক্সালেট  $Na_2C_2O_4$ </mark> সোডিয়াম থায়োসালফেট  $Na_2S_2O_3$

পটাসিয়াম <mark>আয়োডাইড KI</mark>

#### তডিৎ কোষ

যে যন্ত্রের সাহায্যে রাসায়নিক শক্তি থেকে নিরবচ্ছিন্ন ভাবে তড়িৎ প্রবাহ পাওয়া যায় তাকে তড়িৎ কোষ বলে। সর্বপ্রথম ১৯৭৪ সালে আলেকসান্দ্রো ভোল্টা তড়িৎ কোষ আবিষ্কার করেন। তড়িৎ কোষে বা ব্যাটারীতে কার্বন দণ্ড ধনাত্মক পাত এবং দস্তার পাত ঋণাত্মক পাত হিসেবে কাজ করে। এ কোষের উপাদানে তরল হিসেবে  $H_2SO_4$  এবং ছেদন নিবারক হিসেবে ম্যাঙ্গানিজ ডাইঅক্সাইড ( $MnO_2$ ) ব্যবহার করা হয়। তড়িৎ কোষের ব্যাটারীর ধনাত্মক প্রাস্তকে অ্যানোড এবং ঋণাতৃক প্রাস্তকে ক্যাথোড বলে।

#### পানির খরতা

যে পানিতে সহজে সাবানের ফেনা উৎপন্ন হয় না, কিন্তু প্রচুর সাবান খরচ করার পর ফেনা উৎপন্ন করে তাকে খর পানি বলে। ঝরনার পানি, গভীর নলকূপের পানি, সমুদ্রের পানি ইত্যাদি খর পানি। বিভিন্ন রকমের ক্ষার পানির খরতার জন্য দায়ী।







#### গুরুত্বপূর্ণ প্রশ্ন

1

**a** 

1

#### ০১. নিচের কোনটি ক্ষারীয় অক্সাইড?

ক. P₄O<sub>10</sub>

খ. MgO

গ. CO

ঘ. ZnO

#### ০২. কোনটি Strong Acid?

क. HNO<sub>3</sub>

খ. H<sub>3</sub>PO<sub>4</sub>

গ. CH3-COOH

ঘ. HCOOH

#### ০৩. গাড়ির ব্যাটারিতে ব্যবহৃত এসিড কোনটি?

क. HNO₃

খ. HC

গ. H2SO4

ঘ. H<sub>3</sub>FO<sub>4</sub>

#### 08. কোনটি বিজারক পদার্থের উদাহরণ?

ক. কার্বন

খ. ফ্লোরিন

গ. ক্লোরিন

ঘ. পটাসিয়াম <mark>ডাইক্রোমে</mark>ট

#### সাবান ও সাবানের কাজ

সাবান হলো সোডিয়াম/পটাশিয়াম স্টিয়ারেট। এ<mark>টি উচ্চত</mark>র ফ্যাটি এসিডের সোডিয়াম বা পটাসিয়াম লবণ। এর রা<mark>সায়নিক</mark> নাম সোডিয়াম স্টিয়ারেট( $C_{17}H_{35}COONa$ )।

এটি এক ধরনের পরিষ্কারক। এর মূল উপাদান হলো চর্বি এবং ক্ষার। ক্ষার হিসেবে ব্যবহৃত হয় কস্টিক সোডা বা কস্টিক প্রটাশ। চর্বি হিসেবে বিভিন্ন পশুর চর্বি, উদ্ভিজ তেল (নারিকেল তেল, পামওয়েল, মহুয়া তেল) এবং প্রাচীন তেল (গ্রিজ, কাস্টার্ড ওয়েল, কডলিভার ওয়েল, অলিভওয়েল) ইত্যাদি ব্যবহৃত হয়। এছাড়া সোডিয়াম সিলিকেট, সোডিয়াম বাই-কার্বনেট, ট্রাই সোডিয়াম ফসফেট, বিভিন্ন প্রকার সুগন্ধি ও রঞ্জক পদার্থ ব্যবহৃত হয়। সাবান তৈরিতে উপজাত হিসেবে গ্রিসারল পাওয়া যায়। সেভিং সাবান একটি স্বল্প ক্ষারযুক্ত সাবান। এটি তৈরির প্রধান উপাদান কস্টিক পটাশ। লন্ত্রি সাবানের উপাদান চর্বি, কস্টিক সোডা ও রঞ্জক। এতে উদ্ভিজ্জ তেল, সুগন্ধি, জীবাণুনাশক থাকে না।

#### কার্বনের বহুমুখী ব্যবহার

#### বহুরূপতা

প্রতিফলন ঘটার কারণে হীর<mark>ক উজ্জ্বল দেখায়। এটি বিদ্যুৎ পরিবহন করে না</mark> কারণ এতে কোনো মুক্ত ইলেকট্রন থাকে না। পৃথিবীর সবচেয়ে বড় হীরক খনি অবস্থিত দক্ষিণ আফ্রিকায়।

#### গ্রাফাইট 💛

গ্রাফাইট হচ্ছে অঙ্গার বা কার্বনের একটি রূপ, যার অর্থ আমি লিখি। এতে কার্বনের পরিমাণ ৯৫-৯৬%। গ্রাফাইট নরম ও পিচ্ছিল হয়ে থাকে। এটা সাধারণত স্তরীভূত, আঁশযুক্ত, দানাদার এবং নিবিড় পিণ্ড আকারে বা মাটির পিণ্ড আকারে পাওয়া যায়। এটি লোহার মতো কালো অথবা গাঢ় ধূসর বর্ণের একটি পদার্থ। গ্রাফাইটে কার্বন-কার্বন ত্রিবন্ধন ব্যবহৃত হওয়ায় এটি বিদ্যুৎ পরিবহন করে।

#### কয়লা

কার্বনের একটি রূপ হলো কয়লা। অপর্যাপ্ত বাতাসে কাঠ পোড়ালে যে কয়লা পাওয়া যায় তার নাম কাঠ কয়লা। বায়ুশূন্য আবদ্ধ পাত্রে প্রাণির হাড় ও রক্ত রেখে তাপ প্রয়োগ করলে বিধ্বংসী পাতনের ফলে এক প্রকার কয়লা উৎপন্ন হয়। একে বলা হয় প্রাণিজ কয়লা।

#### ০৫. শুষ্ক কোষে কে ইলেকট্রন দান করে?

- ক. দস্তার খোল
- খ. কার্বন দণ্ড
- গ. ম্যাঙ্গানিজ ডাই অক্সাইড
- ঘ. কয়লার গুড়া

#### ০৬. ইলেকট্রোপ্লেটিং কাকে বলে?

- <mark>ক. ধাতুর ঔজ্বল্য</mark> বৃদ্ধির জন্য তাকে বার্নিশ দিয়ে আবৃত করা হয়
- <mark>খ. যে কোনো ধাতুর </mark>উপর অন্য ধাতুর প্রলেপ
- গ. এক ধ<mark>রনের রং যার ব্যবহার</mark> মরিচা পড়া বন্ধ হয়
- ঘ. তড়িৎ বিশ্লেষণ <mark>পদ্ধতির সাহা</mark>য্যে একটি ধাতুর উপর অন্য ধাতুর পাতলা প্রলেপ দেয়া

কিছু অধাতব মৌলের রাসায়নিক ধর্ম মোটামুটি অভিন্ন হলেও ভৌত ধর্মের মধ্যে বিভিন্নতা থাকে। এইসব পদার্থ বা মৌলগুলোকে বহুরূপি মৌল বলা হয় এবং মৌলের এই বৈশিষ্ট্যকে বলা হয় বহুরূপতা। যেমন: কার্বন (C), ফসফরাস (P), সিলিকন (Si), সালফার (S), জার্মেনিয়াম (Ge), বোরন (B), টিন (Sn) ইত্যাদি। টিন ধাতুর তিন্টি রূপভেদ রয়েছে। যেমন: ধূসর টিন, সাদা টিন এবং রম্বিক টিন।

#### কার্বন

কার্বন হলো একটি মৌলিক পদার্থ। কার্বনের রাসায়নিক সংকেত C, এবং পারমাণবিক সংখ্যা ৬। এটি পৃথিবীর জীবজগতের প্রধান গাঠনিক উপাদান। কার্বন হলো একটি বহুরূপী অধাতু। এর দুটি দানাদার রূপভেদ হলো- হীরক ও গ্রাফাইট এবং অদানাদার রূপভেদ হলো- কোক কার্বন, চারকোল, কয়লা ও কার্বন ব্ল্যাক।

#### হীরক

কার্বনের একটি বিশেষ রূপভেদ হলো হীরক। এটি পৃথিবীর সবচেয়ে কঠিন পদার্থ। এতে কার্বনের পরিমাণ ১০০%। হীরকে আলোর পূর্ণ অভ্যন্তরীণ প্রতিফলন ঘটে।

#### ক্যাটেনেশন

একই মৌলের পরমাণু সমূহের মধ্যে বন্ধন সৃষ্টির মাধ্যমে বিভিন্ন দৈর্ঘ্যের। শিকল গঠনের ধর্মকে বলা হয় ক্যাটেনেশন।

#### জৈব যৌগ এবং এদের ব্যবহার

#### জৈব যৌগ

জৈব যৌগ বলতে হাইড্রোজেন ও কার্বন দ্বারা গঠিত হাইড্রোকার্বন এবং হাইড্রোকার্বন থেকে উছুত যৌগসমূহকে বোঝায়। এ সব জৈব যৌগে কার্বনের সাথে প্রধানত হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন, সালফার, ফসফরাস, হ্যালোজেন প্রভৃতি মৌল যুক্ত থাকে। আধুনিক জৈব রসায়নের জনক জার্মান বিজ্ঞানী ফ্রেডরিক ভোলার। সর্বপ্রথম অ্যামোনিয়াম সায়ানেটকে উত্তপ্ত করে ইউরিয়া সার প্রস্তুত করেন ফ্রেডরিক ভোলার। ইউরিয়া একটি জৈব যৌগ যার রাসায়নিক সংকেত হলো  $(NH_2)_2CO$ । ইউরিয়া অণুতে দুইটি অ্যামিন মূলক  $(-NH_2)$  অবশেষে একটি কার্বনিল ফাংশনাল গ্রুপে দ্বারা সংযুক্ত হয়েছে। জার্মান রসায়নবিদ ফ্রেডরিক ভোলার ১৮২৮ সালে প্রথম



অজৈব পদার্থ থেকে জৈব পদার্থ ইউরিয়া সংশ্লেষণের পদ্ধতি আবিষ্কার করেন।

১৮০৮ খ্রিস্টাব্দে সুইডিস বিজ্ঞানী বার্জেলিয়াস উদ্ভিদ ও প্রাণি অর্থাৎ সজীব পদার্থ (living organism) থেকে প্রাপ্ত যৌগসমূহকে জৈব যৌগ এবং খনিজ অর্থাৎ নির্জীব পদার্থ থেকে প্রাপ্ত যৌগসমূহকে অজৈব যৌগ নামকরণ করেন। জৈব বস্তুর সম্পূর্ণ দহনে  $CO_2$  এবং অসম্পূর্ণ দহনে CO উৎপন্ন হয়।

**উদাহরণ:** মিথেন-  $CH_4$ , ইথেন-  $C_2H_6$ । জৈব মৌগে কার্বন ও হাইড্রোজেন ছাড়াও  $O_2$ ,  $N_2$ , হ্যালোজেন, সালফার, ফসফরাস ইত্যাদি থাকে।

#### কার্যকরী মূলক

যে পরমাণু বা মূলক কোনো জৈব যৌগের অণুতে উপস্থিত থেকে কার্যত তার ধর্ম ও ক্রিয়া নির্ধারণ করে তাকে কার্যকরী মূলক বলে।

## কিছু যৌগের কার্যকরী মূলক

| অ্যালকোহল → - OH | অ্যালডিহাইড <mark>→ - CHO</mark>         |
|------------------|------------------------------------------|
| কিটোন → - CO     | কার্বক্সিলিক এসি <mark>ড → -</mark> COOH |

#### সাধারণ সংকেত

কতিপয় হাইড্রোকার্বনের সাধারণ সংকেত-

অ্যালকেন  $ightarrow C_n H_{2n+2}$  । যেমন: ইথেন  $(C_2 H_6)$  অ্যালকিন  $ightarrow C_n H_{2n}$  । যেমন: ইথিলিন  $(C_2 H_4)$  অ্যালকাইন  $ightarrow C_n H_{2n-2}$  । যেমন: ইথাইন  $(C_2 H_2)$ 

#### জৈব যৌগের ব্যবহার

#### অ্যালকেনের ব্যবহার

অ্যালকেনের হ্যালোজেন জাতক সমূহ তৈল, চর্বি, গ্রীজ প্রভৃতির উত্তম দ্রাবক। হিমায়ক যন্ত্র বা রেফ্রিজারেটরে তরল রূপে ফ্রেয়ন হিসেবে। মশা, পোকামাকড় ধ্বংসে বিভিন্ন প্রকার কীটনাশক যেমন, এরোসল স্প্রে তৈরিতে। এদেরকে অগ্নিনির্বাপকরূপে ব্যবহার করা হয়। ১৮৩৭ খ্রিস্টাব্দে এডিনবার্গের ড. সিম্প্রসন অস্ত্রোপাচারের জন্য পূর্ণ চেতনানাশকরূপে প্রথম ক্লোরোফরম (CHCl3) ব্যবহার করেন।

#### ইথিলিনের ব্যবহার

প্রচুর পরিমাণ ইথিলিন ইথাইল অ্যালকোহল উৎপাদনে ব্যবহৃত হয়। অক্সি-ইথিলিন শিখা প্রস্তুতিতে ইথিলিনের ব্যবহার আছে। এই শিখা ধাতব পদার্থ কাটা ও জোড়া লাগানোর কাজে ব্যবহৃত হয়। অক্সি-ইথিলিন শিখার তাপমাত্রা থাকে ৩০০০-৩৫০০°C।

ইথিলিন ডাইক্লোরাইড (দ্রাবক), ইথিলিন অক্সাইড, মাস্টার্ড গ্যাস (বিষাক্ত পদার্থ) ফরম্যালডিহাইড, টেফলন (Teflon) নামক কৃত্রিম সুতা ও পলিথিন নামক প্লাস্টিক প্রস্তুতিতে ইথিলিনের প্রয়োগ আছে।

#### অ্যালকাইনের ব্যবহার

ধাতু গলানো ও ধাতু জোড়া দেয়ার কাজে ব্যবহৃত অক্সি-অ্যাসিটিলিন শিখারূপে অ্যাসিটিলিন ব্যবহৃত <mark>হয়।</mark>

কৃত্রিম রাবার ও প্লাস্টি<mark>ক উৎপাদনে অ্যা</mark>সিটিলিনের ব্যবহার আছে। জ্বালানিরূপেও অ্যাসিটিলিনের <mark>ব্যবহার আ</mark>ছে।

#### অ্যালকো<mark>হলের ব্</mark>যবহার

হুইন্ধি, বিয়ার প্রভৃতিতে পানীয় রূপে (3-50%) ইথানল এবং শিল্পক্ষেত্রে দ্রাবকরূপে (95-100%) ইথানল ব্যবহৃত হয় থাকে।

মিথিলেটেড স্পিরিট রং, বার্নিশ প্রস্তুতির <mark>কাজে দ্রা</mark>বক রূপে।

জ্ব<mark>ালানি রূপে স্পিরিট</mark> ল্যাম্পে ব্যবহৃত <mark>হয়।শিল্প</mark>ক্ষেত্রে কাঁচামাল ও দ্রাবক হিসেবে মিথিলেটেড স্পিরিট ব্যবহৃত হয়ে <mark>থাকে।</mark>

মোটর গাড়ির জ্বালানি রূপে (২০-৩০%<mark>) ইথানল</mark> ব্যবহার হয়।

|   | বি          | ভিন্ন বস্তুতে বিদ্যমান বৈ          | জব উপাদান              |            |
|---|-------------|------------------------------------|------------------------|------------|
|   | পদার্থ      | উপাদান                             | পদার্থ                 | উপাদান     |
|   | কচু         | ক্যালসিয়া <mark>ম অক্সালেট</mark> | চা/কফি                 | ক্যাফেইন   |
|   | সাবান       | স্টিয়ারিক এসিড                    | মরিচ                   | ক্যাপসিন   |
|   | মোম         | প্যারাফিন ও স্টিয়ারিক             | পানের রসে              | মিউসিলেজ   |
|   |             | এসিড                               |                        |            |
|   | খেজুরের রসে | মুক্টোজ                            | তামাক                  | নিকোটিন    |
|   | পপি/আফিম    | মরফিন                              | সয়াবিন                | জেনিস্টেইন |
| 1 | ধুতুরা      | ডে <mark>টুরিন</mark>              | <mark>সিক্</mark> ষোনা | কুইনাইন    |



## গুরুত্বপূর্ণ প্রশ্ন

#### ০১. সাবান কোন উচ্চতর ফ্যাটি এসিডের লবণ?

- ক. পটাশিয়াম
- খ. সোডিয়াম
- গ. ক্যালসিয়াম
- ঘ. পটাশিয়াম + সোডিয়াম

#### ০২. সেভিং সাবানের উপাদান কোনটি?

- ক. সিলিকেট
- খ. কস্টিক পটাশ
- গ. কস্টিক সোডা
- ঘ. সোপ মোটান পাউডার

#### ০৩. 'ড্ৰাই আইস' (dry ice) হলো—

- ক. কঠিন অবস্থায় কার্বন ডাইঅক্সাইড
- খ. কঠিন অবস্থায় সালফার ডাইঅক্সাইড
- গ. শূন্য ডিগ্রী সেলসিয়াস তাপমাত্রার নিচে বরফ
- ঘ. হাইড্রোজেন পারঅক্সাইডের কঠিন অবস্থা

#### ০৪. কার্বনের একটি বিশেষ রূপ হলো—

- ক, হীরক
- খ. ইস্পাত
- গ. স্টেইনলেস স্টীল
- ঘ, গন্ধক

#### ০৫. কোনটি জৈব অমু?

- ক. নাইট্রিক এসিড
- খ. হাইড্রোক্লোরিক এসিড
- গ. এসিটিক এসিড ঘ. সালফিউরিক এসিড

#### ০৬. রেক্টিফাইড স্পিরিট হলো—

- ক. ৯০% ইথাইল অ্যালকোহল + ১০% পানি
- খ. ৮০% ইথাইল অ্যালকোহল + ২০% পানি
- গ. ৯৫% ইথাইল অ্যালকোহল + ৫% পানি
- ঘ. ৯৮% ইথাইল অ্যালকোহল + ২% পানি







9



## Teacher's Work

০১. ধারালো যন্ত্রপাতি জীবাণুমুক্ত করার ভাল পদ্ধতি— (৪৪তম বিসিএস)

ক, বয়লিং

খ, বেনজিন ওয়াশ

গ. ফলমালিন ওয়াশ

ঘ. কেমিক্যাল স্টেরিলাইজেশন

০২. সাবানে আয়নিক গ্রুপ হলো—(৪৪তম বিসিএস)

 $\overline{\Phi}$ .  $R_3NH^+$ 

খ. SO<sub>3</sub>–Na<sup>+</sup>

গ. R2NH2+

ঘ. COO-Na+

০৩. জারণ প্রক্রিয়া সম্পন্ন হয়-

(৪৩তম বিসিএস)

ক. অ্যানোডে

খ. ক্যাথোডে

গ. অ্যানোড এবং ক্যাথোড উভয়টিতে

ঘ. বৰ্ণিত কোনটিতেই নয়

০৪. গ্রাফিন (graphene) কার বহুরূপী?

(৪১তম বিসিএস)

ক. কার্বন

খ. কার্বন ও অক্সিজেন

গ. কার্বন ও হাইড্রোজেন

ঘ. কাৰ্বন ও<mark> নাইট্ৰোজে</mark>ন

০৫. নদীর পানির ক্ষেত্রে কোনটি সত্য?

(৪১তম বিসিএস)

क. COD > BOD

খ. COD < BOD

গ. COD = BOD

ঘ, উপরের কোনটিই নয়

০৬. নিচের কোন বাক্যটি সত্য নয়?

(৩৫তম বিসিএস)

ক. পদার্থের নিউক্লিয়াসে প্রোটন ও নিউট্রন থাকে

খ. প্রোটন ধনাত্মক আধানযুক্ত

গ. ইলেকট্ৰন ঋণাত্মক আধানযুক্ত

ঘ. ইলেকট্রন পরমাণুর <mark>নিউক্লিয়া</mark>সের ভিতরে <mark>অব</mark>স্থান করে

০৭. বিচ্ছিন্ন অবস্থায় এ<mark>কটি পরমাণুর শক্তি</mark>–

(৩৫তম বিসিএস)

ক. যুক্ত অবস্থার চাইতে কম

খ. যুক্ত অবস্থার চাইতে অধিক

গ. যুক্ত অবস্থার সমান

ঘ. কোনোটিই সঠিক নয়

০৮. গাড়ির ব্যাটারিতে <mark>ব্যবহৃত এসি</mark>ড- $\bigvee$ 

[৩৪তম বিসিএস]

ক. HNO3

খ. HCI

গ. H<sub>2</sub>SO<sub>4</sub>

ঘ. H<sub>3</sub>PO<sub>4</sub>

০৯. গাড়ির ব্যাটারিতে কোন এসিড ব্যবহৃত হয়?

|৩৪তম বিসিএস|

ক. নাইট্রিক

খ. সালফিউরিক

গ. হাইড্রোক্লোরিক

ঘ. পারক্লোরিক

১০. পরমাণুর নিউক্লিয়াসে কী কী থাকে?

(৩৪ ও ২৩তম বিসিএস)

ক. নিউট্রন ও প্রোটন

খ. ইলেকট্রন ও প্রোটিন

গ. নিউট্রন ও পজিট্রন

ঘ. ইলেক্ট্ৰন ও পজিট্ৰন

১১. স্টেইনলেস স্টীলের অন্যতম উপাদান-

(৩৩তম বিসিএস)

ক, তামা

খ, দস্তা

গ. ক্রোমিয়াম

ঘ. এলুমিনিয়াম

১২. সর্বাপেক্ষা হালকা গ্যাস-

(৩৩তম বিসিএস)

ক. অক্সিজেন

খ. হাইড্রোজেন

গ. র্যাডন

ঘ. নাইট্রোজেন

১৩. দুধে কোন ধরনের এসিড থাকে?

[৩২তম বিসিএস]

ক. সাইট্রক এসিড

খ. ল্যাকটিক এসিড

গ্, সাইট্রিক ও ল্যাকটিক এসিড

<mark>ঘ. কো</mark>নো এসিড নেই

১৪. অ্যালুমিনিয়াম সালফেটকে চলতি বাংলায় কী বলে?

[৩০ ও ২৯তম বিসিএস]

ক. ফিটকিরি

খ. চুন

গ. সেভিং সোপ

ঘ. ক<mark>স্টিক স</mark>োডা

১৫. নিচের কোনটি পানিতে দ্রবীভূত হয় না?

[২৮তম বিসিএস]

ক. ক্যালসিয়াম কার্বনেট

খ<mark>. সোডিয়া</mark>ম ক্লোরাইড

গ, চিনি ঘ্ সালফিউরিক এসিড

১৬. নিচের কোনটি পরমাণুর <mark>নিউক্লিয়াসে থা</mark>কে না? (২৭তম বিসিএস)

ক. meson

খ. electron

গ. proton

ঘ. neutron

১৭. প্রমাণু (Atom) চার্জ নিরপেক্ষ হয়, কারণ প্রমাণুতে-

(২৪তম বিসিএস)

ক. নিউট্রন ও প্রোটনের সংখ্যা সমান

খ. প্রোটন ও <mark>নিউ</mark>ট্রনের ওজন সমান

গ. নিউট্রন ও প্রোটন নিউক্লিয়াসে থাকে

ঘ. ইলেকট্রন ও প্রোটনের সংখ্যা সমান

১৮. নিউট্রন আবিষ্কার করেন-

(২২তম বিসিএস)

(১৭ ও ১১তম বিসিএস)

ক. কিউরি

খ. রাদারফোর্ড

গ. চ্যাডউইক

ঘ, থমসন

১৯. মৌলিক পদার্থের ক্ষুদ্রতম কণা যা রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে

তাকে বলা হয়-ক. ইলেকট্রন

খ. পরমাণু

গ. অণু

ঘ. প্রোটন

| _   | _   | _  |   |
|-----|-----|----|---|
| ডওর | ויב | ଙ୍ | Т |

| c | ۲( | ঘ | ०২ | ঘ | ೦೦ | ক | 08 | ক | 90 | ক | ૦৬ | ঘ | ०१ | খ | op | গ  | ০৯ | খ | 20 | ক |
|---|----|---|----|---|----|---|----|---|----|---|----|---|----|---|----|----|----|---|----|---|
| : | ۲, | গ | ১২ | খ | ১৩ | থ | 78 | ক | 26 | ক | ১৬ | খ | ১৭ | ঘ | ১৮ | গ্ | ১৯ | খ |    |   |









## **Home Work**

Teacher's Class Work অনুযায়ী নিচের প্রশ্নগুলোর উত্তর শিক্ষার্থীরা প্রথমে নিজে নিজে করবে এবং পরে উত্তর মিলিয়ে নিতে হবে।

১. কোনটির আন্তঃআণবিক শক্তি সবচেয়ে বেশি?

ক.  $SO_2$ 

খ. CO<sub>2</sub>

গ. H2S

ঘ. NaCl

২. যে দ্রবণে নিজস্ব  $\mathbf{P}^{\mathrm{H}}$  স্থির রাখার ক্ষমতা রাখে তাকে বলে-

ক. বাফার দ্রবণ

খ. জলীয় দ্রবণ

গ, ক্যাফেইন

ঘ. ক্যাপসিন

৩. সাবান তৈরির পর উপজাত হিসাবে পাওয়া যায়-

ক. গ্লিসারিন

খ. সিলিকন

গ. ইথানল

ঘ. সোডিয়াম

সাবান কোন উচ্চতর ফ্যাটি এসিডের লবণ?

ক. পটাসিয়াম

খ. সোডিয়াম

গ. ক্যালসিয়াম

ঘ. পটাসি<mark>য়াম বা স</mark>োডিয়াম

৫. সাবানের রাসায়নিক নাম কী?

ক. সোডিয়াম এসিটেট

খ. সোডিয়<mark>াম স্টিয়ারে</mark>ট

গ, ইথাইল স্টিয়ারেট

ঘ, গ্লিসারিন স্টিয়ারেট

৬. সেভিং সাবানের উপাদান কোনটি?

ক, সিলিকেট

খ. কস্টিক পটাশ

গ, কস্টিক সোডা

ঘ. সোপ মোটান পাউডার

৭. সাবান তৈরির প্রধান কাঁচামা<mark>ল</mark>-

ক. গ্রিজ

খ. চর্বি

গ, নারিকেল

ঘ, পামতেল

৮. কোনটি সাবানকে শক্ত করে<mark>?</mark>

ক. সোডিয়াম কার্বনেট

খ. সোডিয়াম সিলিকেট

গ. সোডিয়াম ক্লোরাইড

ঘ. সোডিয়াম সালফেট

৯. ব্যাটারী থেকে কোন ধ্রনের বিদ্যুৎ উৎপন্ন হয়?

क. D.C

গ. E.C

घ. T.C

১০. ফলের মিষ্টি গন্ধের জন্য কী দায়ী?

ক. এস্টার

খ. ইথার

গ. অ্যালকোহল

ঘ. গ্লুকোজ

১১. বহুরূপী মৌল কোনটি?

ক. কার্বন

খ. সোডিয়াম

গ, ক্যালসিয়াম

ঘ. অ্যালুমিনিয়াম

১২. কোনটি অজৈব যৌগ?

ক. পানি

খ. কেরোসিন

গ. মোম

ঘ. প্রাকৃতিক গ্যাস

১৩. জারণ বিক্রিয়ায় কী ঘটে?

ক. ইলেকট্রনের বর্জন

খ. ইলেকট্রনের গ্রহণ

গ. ইলেক্ট্রনের আদান-প্রদান

ঘ. কোনটিই নয়

<mark>১৪. সাধারণ ড্রাইসেলে ইলেকট্রোড হিসেবে থা</mark>কে-

<mark>ক. তামার দণ্ড ও দস্তার দণ্ড</mark>

<mark>খ. তামার পাত</mark> ও দস্তার পাত

<mark>গ. কার্বন দণ্ড ও</mark> দস্তার কৌটা

ঘ. তামার দণ্ড ও দস্তার কৌটা

১৫. সাধারণ স্টোরেজ ব্যাটারিতে সী<mark>সার ইলেক্</mark>ট্রোডের সঙ্গে যে তরলটি ব্যবহৃত হয় তা হলো-

ক. নাইট্রিক এসিড

<mark>খ. সালফি</mark>উরিক এসিড

গ, এমোনিয়াম ক্রোরাইড

<mark>ঘ. হাই</mark>ড্রোক্লোরিক এসিড

১৬. রেষ্টিফাইড স্পিরি<mark>ট হলো-</mark>

ক. ৯০% ইথাইল <mark>অ্যালকো</mark>হল + ১০% পানি

খ. ৮০% ইথাইল অ্যালকোহল + ২০% পানি

গ. ৯৫% ইথাইল অ্যালকোহল + ৫% পানি

ঘ. ৯৮% ইথাইল অ্যালকোহল + ২% পানি

১৭. সোডিয়াম এসিটেটের সংকেত-

क. CH₂COONa

খ. (CH3COO)2ca

গ. CH3COONa

ঘ. CHCOONa

১৮. অ্যানোডে কোন বিক্রিয়া সম্পন্ন হয়?

ক, জারণ

খ. বিজারণ

গ, প্রশমন

ঘ. পানি যোজন

১৯.  $^{35}_{17}$  Cl মৌলের নিউট্রন সংখ্যা কত?

ক. 17

খ. 18

গ. 35

ঘ. 70

|    |   |    |   |    |   |            |    |    | উত্তর | মালা |   |    |    |            |   |    |   |    |   |
|----|---|----|---|----|---|------------|----|----|-------|------|---|----|----|------------|---|----|---|----|---|
| 2  | ঘ | ২  | ক | 9  | ক | 8          | ঘ  | œ  | খ     | ૭    | খ | ٩  | খ  | b          | খ | ৯  | ক | 20 | ক |
| 77 | ক | ১২ | ক | 20 | ক | <b>ک</b> 8 | গ্ | 36 | খ     | ১৬   | গ | ۵۹ | গ্ | <b>3</b> b | ক | ১৯ | খ |    |   |







## **Self Study**

০১. একটি এ্যাটমে স্থায়ী কণিকার সংখ্যা কয়টি

ক. তিনটি খ. চারটি গ. পাঁচটি

ঘ. ছয়টি

০২. একটি ইলেক্ট্রনে চার্জের পরিমাণ হল-

ক.  $1.7 \times 10^{-8}$  কুলম্ব

খ. 9 × 10<sup>11</sup> কুলম্ব

গ.  $1.609 \times 10^{-19}$  কুলম ঘ.  $1.609 \times 10^{-9}$  কুলম্ব

০৩. প্রতিটি ইলেকট্রনিক কক্ষে ইলেকট্রনের সংখ্যা সর্বোচ্চ-

ক. n<sup>2</sup>

খ. 2n<sup>2</sup>

গ. 3n<sup>2</sup>

ঘ. 4n<sup>2</sup>

08. ইলেকট্রন হচ্ছে পদার্থের-

ক. অতি ক্ষুদ্ৰ কণা

খ. ক্ষুদ্র কণা

গ. সাধারণ কণা

ঘ. কণা

০৫. প্রোটনের-

ক. পজেটিভ চার্জ আছে

খ. পজেটিভ ও নেগেটিভ এই দুই রকম চা<mark>র্জই আছে</mark>

গ. পজেটিভ চার্জ নেই

ঘ. উপরের কোনোটিই সত্য নয়

০৬. নিচের কোনটি মূল কণিকা?

ক. নিউট্ৰিনো খ. নিউট্ৰন গ. পজিট্ৰন ঘ, ডিউট্রেরন

০৭. হাইড্রোজনের পরমাণুতে কোনটি নেই?

ক. ইলেকট্ৰন

খ. প্রোটন

গ, নিউট্টন

ঘ, কোনটিই নয়

০৮. একটি পারমাণবিক কণার-

ক. আয়তন নেই, ওজন আছে খ. ওজন আছে, আয়<mark>তন আছে</mark>

গ. আয়তন আছে, ওজন নেই ঘ. আয়তন নেই, ওজন নেই

০৯. কংক্রিটের মধ্যে ইস্পাতের র্ড দেওয়া হয় কেন?

ক. ঘনতু বাড়াবার জন্য

খ. সামগ্রিক খরচ কমাবার জন্য

গ. মজবুত করার জন্য

ঘ. পানির শোষণ কমাবার জন্য

১০. সবচেয়ে হালকা গ্যাস কোনটি?

ক. হাইড্রোজেন

খ. হিলিয়াম

গ. নাইট্রোজেন

ঘ. আর্গন

১১. হাইড্রোজেন মৌ<mark>লে</mark>র <mark>অ</mark>ণুতে <mark>প</mark>রমাণুর সংখ্যা-খ. দুই

ক, এক

গ, তিন

ঘ. চার

১২. কোন মৌলিক গ্যাস স্বচেয়ে ভারী?

ক. রেডন

গ. নিয়ন যে. আর্গন

১৩. কোন নিষ্ক্রিয় গ্যা<mark>সে</mark> (Inert gas) আটটি ইলেকট্রন নেই?

খ. জেনন

ক, হিলিয়াম

খ, নিয়ন

গ, আর্গন

ঘ. জেনন

১৪. কোন মৌলটি সবচেয়ে বেশি নিষ্ক্রিয় (Inert)?

ক. H

খ. He

গ. N

১৫. নিচের কোনটি অনু গঠন করবে না?

ক. নিয়ন

খ. আর্গন

গ. ফ্লোরিন

ঘ. ক ও খ উভয়ই

১৬. কোন মৌলটি হ্যালোজেনের অন্তর্ভুক্ত?

ক. নাইট্রোজেন

খ, সালফার

গ. আয়োডিন

ঘ, অক্সিজেন

১৭. কোনটি অ্যালকালি মেটাল?

ক, ম্যাগনেশিয়াম

খ. অ্যালুমিনিয়াম

গ. ক্যালসিয়াম

ঘ, সোডিয়াম

১৮. যে পদার্থটির জারণ ঘটে তাকে কী বলে?

ক. বিজারক খ. সংযোজিত <mark>গ. জারক</mark> ঘ. বিচ্যুতি

১৯. কোন বাক্যটি সঠিক?

<mark>ক. বিজারক</mark> পদার্থ ইলেকট্রন দান <mark>করে বিজা</mark>রিত হয়

<mark>খ. বিজারক প</mark>দার্থ ইলেকট্রন দান ক<mark>রে জারি</mark>ত হয়

<mark>গ. জারক পদার্থ ইলেকট্রন গ্রহণ ক<del>রে জারিত</del> হয়</mark>

ঘ. জারক পদার্থ <mark>ইলে</mark>কট্রন দান ক<u>রে বিজারি</u>ত হয়

২০. নিচের কোনটি জারক পদার্থ নয়?

ক. সকল ধাতু খ. ক্লোরিন গ. ব্রোমিন

ঘ. আয়োডিন

ঘ. 8.6

২১. ইলেকট্রনীয় ধারণা মতে ইলে<mark>কট্রন গ্রহণ</mark>কে বলা হয়-

খ. বিজা<mark>রণ গ. প্র</mark>তিস্থাপন ক, জারণ ঘ, সংযোজন

২২. জারক পদার্থ কোনটি?

ক লোহা

খ. হাইড্রোজেন

গ, কার্বন

ঘ. ব্ৰোমিন

২৩. তেঁতুলে কোন ধরনের এসিড থাকে?

ক. সাইট্রিক এসিড

খ. টারটারিক এসিড

গ. এসকরবিক এসিড

ঘ, ফসফরিক এসিড

২৪. নিচের কোনটি প্রস্তুতিতে স্টিয়ারিক এসিড লাগে?

ক. স্লো

খ. কোল্ড ক্রিম ঘ. লিপস্টিক

গ. ট্যালকম পাউডার

২৫. এসিড বৃষ্টিতে P<sup>H</sup>এর মান-

क. 6.6 ० ७ ४. 5.6 ७

২৬. রজের  $\mathbf{P}^{ ext{H}}$  কত?

ক. 7.35 - 7.45

খ. 5.55 - 5.65

গ. 6.50 - 6.70

ঘ. 4.79 - 5.00

|    | উত্তরমালা |    |   |    |   |    |   |            |   |    |   |            |   |    |   |    |   |    |   |
|----|-----------|----|---|----|---|----|---|------------|---|----|---|------------|---|----|---|----|---|----|---|
| ٥٥ | ক         | ০২ | গ | 00 | খ | 08 | ক | 90         | ক | ০৬ | খ | ०१         | ক | op | খ | ০৯ | গ | 20 | ক |
| 77 | খ         | ১২ | ক | 20 | ক | 78 | খ | <b>3</b> ¢ | ঘ | ১৬ | গ | <b>١</b> ٩ | ঘ | 76 | ক | ১৯ | খ | ২০ | ক |
| ২১ | খ         | ২২ | ঘ | ২৩ | খ | ২৪ | ক | ২৫         | খ | ২৬ | ক |            |   |    |   |    |   |    |   |





## Class

- ০১. 🖁 O আইসোটোপের নিউট্রন সংখ্যা কত?
  - ক. ৮

খ. ১৭

গ. ৯

ঘ. ২৫

- ০২. কোনটি জারক পদার্থ নয়?
  - ক. হাইড্রোজেন
- খ. অক্সিজেন
- গ. ক্লোরিন
- ঘ. ব্ৰোমিন
- ০৩. P<sup>H</sup> হলো-
  - ক. এসিড নির্দেশক
- খ. এডিস ও ক্ষার নির্দেশক
- গ্ৰহ্মার নির্দেশক
- ঘ. এসিড, ক্ষার <mark>ও নিরপেক্ষ</mark>তা নির্দেশক
- ০৪. নিচের কোনটি ক্ষারকীয় অক্সাইড?
  - **季**. P<sub>4</sub>O<sub>10</sub>
- খ. MgO
- গ. CO
- ঘ. ZnO
- ০৫. ম্যালিক এসিড পাওয়া যায়-
  - ক, আমলকিতে
- খ. আপেল
- গ. টমেটোতে
- ঘ. কমলালেবুতে
- ০৬. কোনটি মৌলিক কণিকা নয়?
  - ক. প্রোটন
- খ. নিউট্ৰন
- গ. ইলেকট্রন
- ঘ. হাইড্রোজেন পরমাণু

- ০৭. ফটোগ্রাফিক ফ্লাস লাইটে প্রধানত কোন গ্যাস ব্যবহৃত হয়?
  - क. He

খ. Ne

গ. Xe

ঘ. Ar

- ০৮. জারণ বিক্রিয়ায় কী ঘটে?
  - ক. ইলেকট্রন গ্রহণ
  - খ. ইলেকট্রন আদান-প্রদান
  - গ. ইলেকট্রন বর্জন
  - ঘ. শুধু তাপ উৎপন্ন হয়
- ০৯. এসিড বৃষ্টি হয় বাতাসে-
  - ক. কার্বন-ডাই অক্সাইডের আধিক্যে
  - <mark>খ. সাল</mark>ফার-ডাই অক্সাইডের আধি<mark>ক্যে</mark>
  - <mark>গ. নাইট্রাস অ</mark>ক্সাইডের আধিক্যে
  - <mark>ঘ. ক ও খ উভয়ই</mark> ঠিক
- ১০. শুষ্ক কোষে ঋণাত্মক পাত হিসেবে <mark>কাজ করে</mark>-
  - ক. কার্বন দণ্ড
  - খ. গ্রাফাইট চুর্ণ
  - গ. দস্তার চোঙ
  - ঘ. কার্বন মিশ্রণ





