انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

vii																																	چ	ديبا.
ix																													چ	کاد یبا	ب	لي كتا	یریا کی جوا	ميرأ
1																											وات	مسا	تفر ق	ساده	وِل	رجدا	,	1
2																													کشی	نموز		1.	1	
14										يولر	_	کیر	ر ر تر	ي او	سمت	لی سه	ز ن	يداا	_م	ب	مطل	يائی.	يىش	جيو					<i>x</i> ,			1	2	
23																													، علیحد			1	3	
39																													اساده			1.4	4	
51																												_	, ماره ساده			1.:	•	
68																													ور ی خط			1.0		
																٠	ئىيە	يكتا	اور	بت	بوري	ن وج	س	 د: ح	وات	یں مسا	ی فرقی	رط ر ت تا	ں ئی قیمہ	رر ابتدا		1.		
- 0																													T					_
79																													تفرقی نن			رجه و	•	2
79																									-				ں خط	•		2.	1	
95																																2.	2	
110																																2	3	
114																																2.4	4	
130																																2.:	5	
138	3.																						سكى	وروت	ئى؛	يكتا	<u>ت</u> اور	دين	کی وجو	حل		2.	5	
147	٠.																							إت	مساو	ر قی	ه تفر	ساد)	تجانس	غير.		2.	7	
159	١.																									_	_ گمک	اش.	اار تع	جر ک		2.	8	
165	,																		_	المك	عملي	سرب	احيط	ىل ك	ال	ارحا	برقر		2.8	3.1				
169																			. :										ر اد وار			2.9	_	
180) .									عل	26	ت	ماوا) مر	زق	ا ته	باد	ی س	خط)	انس	متجا	،غیر	سے	يق	، طر	_	لنے	مبد	رمعلو	مقدا	2	2.1	0	

iv

نظى ساده تفر قى مساوات		3
متجانس خطی ساده تفرقی مسادات	3.1	
مستقلّ عدد کی سروا کے متجانس خطی سادہ تفرقی مساوات	3.2	
غير متجانس خطی ساده تفرقی مساوات	3.3	
غیر متجانس خطی سادہ تفر قی مساوات	3.4	
	7	4
قالب اور سمتىيە كے بنیادی حقائق		
سادہ تفر تی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادە تفرقى مساوات اور ورونسكى	4.3	
4.3.1 نظی نظام		
ستقل عددی سروالے نظام۔ سطح مرحلہ کی ترکیب	4.4	
نقطہ فاصل کے جانچ کڑتال کامسلمہ معیار۔استحکام		
ي في تراكيب برائے غير خطي نظام		
ع د میب ایک در جی مساوات میں تباد کہ		
۱۰۰۲ مارون کو حتایت کا متاس تعطی نظام	4.7	
نادو کرن عرف کے بیر ہو جی من کا من کا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	1.,	
2)1		
ں ہے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل	طاقق تسلسا	5
ى كى مادى مادى مادى ئارى ئارى ئارى ئارى ئارى ئارى ئارى ئار		,
رىي ب ن ى داردى		
مْبْسُوط طاقتى تىلىل ئەرىپ نُورىنىوس		
	5.3	
5.3.1 على استعال	5.3	
مبسوط هاقتى تسلىل ـ تركيب فروبنيوس	5.4	
ساوات بىيل اور بىيل تفاعل	5.4 5.5	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات ببیل اور ببیل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 لاپل <i>ان</i> تباہ 6.1	6
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پارس جاد 6.1 6.2	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پارس جاد 6.1 6.2 6.3	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تباه 6.1 6.2 6.3 6.4	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تباه 6.1 6.2 6.3 6.4	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 الپاس الباد 6.1 6.2 6.3 6.4 6.5 6.6	6

عـــنوان V

لایلاس بدل کے عمومی کلیے	6.8	
مرا: سمتيات	خطيالجه	7
برر. غير سمتيات اور سمتيات	7.1	•
سر سیال از اور سایال ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۶ میل	7.2	
سمتيات كالمجموعه، غير سمتى كے ساتھ ضرب	7.3	
ي مناه و خطح تابعيت اور غير تابعيت	7.4	
ل صلاح کا بنیت اور میر مابیت اندر ونی ضرب (ضرب نقط)	7.5	
الدروني شرب فضا	7.6	
ستي ضرب	7.7	
ن رب	7.8	
غير سمق سه ضرب اورديگر متعدد ضرب	7.9	
ير ن شه سرب اورو ير مسرو سرب	1.9	
برا: قالب، سمتىي، مقطع يه خطى نظام	خطىالج	8
قالب اور سمتیات به مجموعه اور غیر سمق ضرب	8.1	
قالبی ضرب "	8.2	
8.2.1 تېدىلىمى كى		
خطی مساوات کے نظام۔ گاو تی اسقاط	8.3	
8.3.1 صف زيند دار صورت		
خطى غير تالعيت در حبه قالب ـ سمتي فضا	8.4	
خطی نظام کے حل: وجو دیت، کیتائی	8.5	
	8.6	
مقطع۔ قاعدہ کریم	8.7	
معكوس قالب_گاوُس جار دُن اسقاط	8.8	
سمتی فضا،اندرونی ضرب، خطی تبادله	8.9	
برا:امتيازي قدر مسائل قالب	خطىالج	9
بردانسیادی خدر مسائل قالب امتیازی اقدار اورامتیازی سمتیات کا حصول	9.1	
امتیازی مسائل کے چنداستعال 🐪 👢 🗓 👢 🗓 👢 🗓 دیں دیا ہے۔ دیا ہے جنداستعال 👚 دیا ہے 672	9.2	
تشاكلي، منحرف تشاكلي اور قائمه الزاويه قالب	9.3	
امتیازی اساس، وتری بناناه دودرجی صورت	9.4	
مخلوط قالب اور خلوط صورتیں	9.5	
ر قی علم الاحصاء ـ سمتی تفاعل 711	سمتی تفر	10
	10.1	
	10.2	
منحتي		
· · · · · · · · · · · · · · · · · · ·	10.4	
•••••••••••••••••••••••••••••••••••••••	10.5	
ستتحار فآراوراسراط	10.6	

	10.7 زنجیری ترکیب اور متعدد متغیرات کے نفاعل کااوسط قیت مئلہ	اور متعدد متغیرات کے تفاعل کااوسط قیمت مسکلہ		745										
	10.8 سمتی تفرق، غیر سمتی میدان کی ڈھلوان	بر مشمق میدان کی ڈھلوان		⁷ 51										
	10.9 تبادل محدد ي نظام اور تبادل ار كان سمتيات	ظام اور تبادل ار کان سمتیات		764										
	10.10 سمتی مبیدان کی پھیلاو	ي ي ياو		769										
	10.11 سمتى نفا على كا گردش	گروش		177										
11	ستتی تکملی علم الاحصاء یخکمل کے مسئلے			781										
	11.1 مخلي ممل			782										
	11.2 خطی حمل کا کا کل			'87										
	11.3 ووبراتكمل			⁷ 96										
	11.3 دوبراتکمل	لى تكمل مين تبادله		809										
	11.5 سطين			319										
	11.6 مما تي مسطح بنيادي صورت اول ـ رقبه	دى صورت اول ـ ر قبر 		324										
	11.7 سطحي کمل			336										
	11.8 تېراتىمل-گاوس كامئلە كىيلاو	س کامئله پهيلاو		344										
	11.9 مسَلَد کھیلاوک نتائج اور استعال	، نتائج اوراستعال		349										
	11.10مئلدسٹوکس			860										
ı	اضافی ثبوت			361										
ب	مفيرمعلوبات			365										
٠	یر سرات 1 یہ اعلیٰ تفاعل کے مساولہ پی	مداهارين		365										

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائے ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

جارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔ یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

11.8 تهراتکمل-گاوس کامسئله پھیلاو

دہرا تکمل (حصہ 11.3) کی تصور کو وسعت دیتے ہوئے تہرا تکمل حاصل کیا جا سکتا ہے۔ فرض کریں کہ فضا کے کسی بند محدود 45 خطہ T میں تفاعل f(x,y,z) معین ہے۔ ہم تینوں محور کے متوازی سطحوں سے T کو کلڑوں میں تقسیم کرتے ہیں۔ ہم T کے متوازی السطوح کلڑوں کو ہم T تا n سے ظاہر کرتے ہیں۔ ایسے ہر کلڑے کے اندر ہم بے قاعد گی سے کوئی نقطہ منتخب کرتے ہیں، مثلاً کلڑا T میں نقطہ T کے میں مثلاً کلڑا T میں نقطہ T کے موجہ حاصل کرتے ہیں۔ درج ذیل مجموعہ حاصل کرتے ہیں

$$J_n = \sum_{k=1}^n f(x_k, y_k, z_k) \Delta H$$

جہاں گلڑا k کی حجم AH_k ہے۔ ہم شبت عدد صحیح n کی قیمت بتدر تئ بڑھاتے ہوئے بالکل آزادانہ طریقے سے اس طرح کے مجموعے حاصل کرتے ہیں پس اتنا خیال رکھا جاتا ہے کہ جیسے جیسے n کی قیمت لامتناہی کے قریب y ہمین مقیقی اعداد y اس y و ترکی زیادہ سے زیادہ لمبائی صفر تک y پنچتی ہو۔ یوں ہمیں حقیقی اعداد y و ترکی زیادہ سے زیادہ لمبائی صفر تک y بنچتی ہو۔ یوں ہمیں حقیقی اعداد y و آر y و آر

$$\iiint_T f(x,y,z) \, dx \, dy \, dz \quad \ \ \bigsqcup_T f(x,y,z) \, dH$$

ہم اب ثاب کرتے ہیں کہ ایبااستمراری سمتی تفاعل u جس کے استمراری ایک درجی جزوی تفرق پائے جاتے ہوں کی پھیلاو کا فضا میں خطہ T پر تہرا تکمل کا تبادلہ T کی سطح پر u کے عمودی جزو کی سطحی تکمل میں کیا جا سکتا ہے۔ایبا مسئلہ پھیلاو کی مدد سے کیا جاتا ہے جو دو بعدی مسئلہ گرین کا تین بعدی مماثل ہے۔ مسئلہ پھیلاو کئی نظریاتی اور عملی مسائل میں بنیادی اہمیت رکھتی ہے۔

⁴⁵" بند "ے مرادے کہ وقفے کی سرحد بھی وقفے کا حصہ ہے اور "محدود" ہے مرادے کہ بعرے وقفے کو معقول وسعت کی کرو میں گھیر اجاسکتا ہے۔ triple integral⁴⁶

مسکلہ 11.2: گاوس کا مسکلہ پھیلاو (حجمی تکمل سے سطحی تکمل اور سطحی تکمل سے حجمی تکمل کا حصول) فرض کریں کہ فضا میں بند محدود خطہ T کی سرحد S گلڑوں میں ہموار (حصہ 11.5) اور قابل سمت بند ہے۔مزید فرض کریں کہ خطہ T میں u(x,y,z) ایک استمراری سمتی تفاعل ہے جس کے T میں استمراری ایک درجی جزوی تفرق یائے جاتے ہیں۔ تب درج ذیل ہو گا

(11.75)
$$\iiint_{T} \nabla \cdot \boldsymbol{u} \, dH = \iint_{S} u_{n} \, dA$$

جہاں T کی لحاظ سے سطح S پر u کا باہر رخ عمودی جزو

$$(11.76) u_n = \boldsymbol{u} \cdot \boldsymbol{n}$$

- اور n $\stackrel{md}{=}$ S کا باہر رخ اکائی عمودی سمتیہ ہے۔ n ور n اور n کو ارکان کی صورت میں کھتے ہیں

 $u = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ $n = \cos \alpha \mathbf{i} + \cos \beta \mathbf{j} + \cos \gamma \mathbf{k}$

11.75 جہاں n اور مثبت z ، y ، x محور کے مابین زاویے بالترتیب γ ، β ، α ہیں۔یوں مساوات درج ذیل لکھی جا سمتی ہے

(11.77)
$$\iiint_{T} \left(\frac{\partial u_{1}}{\partial x} + \frac{\partial u_{2}}{\partial y} + \frac{\partial u_{3}}{\partial z} \right) dx dy dz = \iint_{S} (u_{1} \cos \alpha + u_{2} \cos \beta + u_{3} \cos \gamma) dA$$

جے مساوات 11.70 کی مدد سے درج ذیل لکھی جا سکتی ہے۔

(11.78)
$$\iiint_{T} \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z} \right) dx dy dz = \iint_{S} (u_1 dy dz + u_2 dx dz + u_3 dx dy)$$

اب ظاہر ہے کہ اگر درج ذیل تین تعلقات یک وقت درست ہول تب مساوات 11.77 درست ہو گا۔

(11.79)
$$\iiint_T \frac{\partial u_1}{\partial x} \, dx \, dy \, dz = \iint_S u_1 \cos \alpha \, dA$$

(11.80)
$$\iiint_T \frac{\partial u_2}{\partial y} \, dx \, dy \, dz = \iint_S u_2 \cos \beta \, d$$

(11.81)
$$\iiint_{T} \frac{\partial u_3}{\partial z} dx dy dz = \iint_{S} u_3 \cos \gamma dA$$

شكل 11.27: مخصوص خطه

ہم مساوات 11.81 کو ایک خصوصی خطہ T کے لئے ثابت کرتے ہیں جس کی سرحد کلڑوں میں ہموار قابل سمت بند سطح S ہے۔اس مخصوص T کی خاصیت ہے کہ y ، x یا y محور کے متوازی کوئی بھی خط جو T کو قطع کرتی ہو، کا زیادہ سے زیادہ صرف ایک حصہ (یا صرف ایک نقطہ) T کے ساتھ مشترک ہو گا۔ اس خاصیت کا مطلب ہے کہ T کو درج ذیل روپ میں کھا جا سکتا ہے

$$(11.82) g(x,y) \le z \le h(x,y)$$

g(x,y) جہاں xy مستوی پر T کے قائمہ الزاویہ سائے \overline{R} میں نقطہ (x,y) ہوگا۔ ظاہر ہے کہ g(x,y) سطح S_2 کی بخلی سطح S_2 کو ظاہر کرتی ہے جبکہ g(x,y) سطح g(x,y) سطح g(x,y) کی بخل سطح g(x,y) کی خوا سطح g(x,y) سطح g(x,y) کی بالائی سطح g(x,y) کی خوا سطح g(x,y) کی بالائی سطح g(x,y) کی خوا سطح g(x,y) کی خوا سطح g(x,y) سطح کی بایا جاتا ہو۔ g(x,y) کی انحطاطی شکل ایک منحنی ہو گا۔ g(x,y) کی صورت میں g(x,y) کی سکتی ہے مثلاً کروی g(x,y) کی صورت میں g(x,y) ایک گول دائرہ ہو گا۔ g(x,y)

u مساوات 11.81 کو مساوات 11.82 کی مدر سے ثابت کرتے ہیں۔چونکہ کسی خطہ جس کا T حصہ ہے میں u استمراری قابل تفرق ہے لہذا درج ذیل ہو گا۔

(11.83)
$$\iiint_{T} \frac{\partial u_{3}}{\partial z} dx dy dz = \iint_{\overline{R}} \left[\int_{g(x,y)}^{h(x,y)} \frac{\partial u_{3}}{\partial z} dz \right] dx dy$$

اس میں اندرونی تکمل لیتے ہیں۔

$$\int_{g}^{h} \frac{\partial u_3}{\partial z} dz = u_3(x, y, h) - u_3(x, y, g)$$

یوں مساوات 11.83 کا بایاں ہاتھ درج ذیل کے برابر ہو گا۔

(11.84)
$$\iint_{\overline{R}} u_3[x,y,h(x,y)] dx dy - \iint_{\overline{R}} u_3[x,y,g(x,y)] dx dy$$

آئیں اب ثابت کرتے ہیں کہ مساوات 11.81 کا دایاں ہاتھ بھی اس کے برابر ہے۔ چونکہ S_3 پر $\frac{\pi}{2}$ ہو $\gamma = \frac{\pi}{2}$ لہذا $\gamma = \frac{\pi}{2}$ ہوگا اور یوں مساوات 11.83 کے دائیں ہاتھ $\gamma = \frac{\pi}{2}$ پر سطی تکمل صفر کے برابر ہو گا۔ یوں درج نامی رہ جاتا ہے۔ فریل رہ جاتا ہے۔

$$\iint\limits_{S} u_3 \cos \gamma \, dA = \iint\limits_{S_1} u_3 \cos \gamma \, dA + \iint\limits_{S_2} u_3 \cos \gamma \, dA$$

ماتا $dA = \sec \gamma \, dx \, dy$ ناویہ حادہ ہے لنذا $\sigma = \gamma$ لیتے ہوئے مساوات 11.61 سے γ کا ماتا γ کی جادہ ہوگ میں کے برابر ہے لیذا یوں کے برابر ہے لیذا یوں کے برابر ہے لیدا یوں کے برابر ہے براب

$$\iint\limits_{S_1} u_3 \cos \gamma \, \mathrm{d}A = \iint\limits_{\overline{R}} u_3[x, y, h(x, y)] \, \mathrm{d}x \, \mathrm{d}y$$

 γ ہو گا جو مساوات 11.84 میں پہلی دوہرا تکمل کے برابر ہے۔ای طرح γ پر γ زاویہ منفرجہ ہے للذا $\pi-\gamma$ مساوات 11.61 میں زاویہ حادہ σ کے مترادف ہو گا۔یوں

$$dA = \sec(\pi - \gamma) dx dy = -\sec \gamma dx dy$$

لکھتے ہوئے

(11.85)
$$\iint\limits_{S_2} u_3 \cos \gamma \, dA = -\iint\limits_{\overline{R}} u_3[x, y, g(x, y)] \, dx \, dy$$

ہو گا جو عین 11.61 میں دوسرے دوہرا تکمل کے برابر ہے۔ یوں مساوات 11.81 ثابت ہوا۔

مساوات 11.79 اور مساوات 11.80 کو بالکل اسی طرح ثابت کیا جا سکتا ہے جہاں مساوات 11.82 کی طرح T کو درج ذیل سے ظاہر کیا جائے گا۔

$$ilde{g}(y,z) \leq x \leq ilde{h}(y,z)$$
 let $g^*(x,z) \leq y \leq h^*(x,z)$

اس طرح مسله بھیلاو کا مخصوص خطے میں ثبوت مکمل ہوتا ہے۔

الیا خطہ T جس کو اضافی سطحوں کی مدد سے محدود تعداد کی مخصوص گلڑوں میں تقسیم کرنا ممکن ہو کے ہر گلڑے پر مسئلہ پچیلاو لا گو کرتے ہوئے تمام جوابات کو مجموعہ لینے سے پوری خطے پر مسئلہ ثابت ہو گا۔اس ترکیب بالکل مسئلہ گرین میں استعال کی گئی ترکیب کی طرح ہے۔ہر اضافی سطح پر دو مرتبہ حاصل سطحی تکمل کے جوابات کا مجموعہ صفر کے برابر ہو گا جبکہ باقی سطحوں پر سطحی تکمل T کی پوری سطح S پر سطحی تکمل ہی ہو گا۔ T کے تمام گلڑوں کے حجمی تکمل سے کو کار ہو گا۔

یوں کسی بھی عملی استعال کے محدود خطہ T کے لئے مسئلہ پھیلاو کا ثبوت مکمل ہوتا ہے۔

مسکد گرین خطی تکمل کے حل میں کار آمد ثابت ہوتا ہے۔اسی طرح مسکد کھیلاو سطحی تکمل کے حل میں کار آمد ثابت ہوتا ہے۔

مثال 11.21: سطحی تکمل کا حصول بذریعہ مسئلہ بھیلاو درج ذیل کو تہرا تکمل میں تبدیل کرتے ہوئے حل کریں جہاں S بیلن $x^2+y^2=a^2~(0\leq z\leq b)$ بیلن کرتے ہوئے حل کریں جہاں S بیلن کر قصنوں کی سطح ہے۔ اور اس کے دونوں اطراف کی ڈھکنوں کی سطح ہے۔

$$I = \iint\limits_{S} (x^3 \, \mathrm{d}y \, \mathrm{d}z + x^2 y \, \mathrm{d}x \, \mathrm{d}z + x^2 z \, \mathrm{d}x \, \mathrm{d}y)$$

عل: يهال مساوات 11.77 اور مساوات 11.78 ميں $u_1=x^2y$ ، $u_1=x^3$ ميں $u_3=x^2z$ ، $u_2=x^2y$ ، $u_3=x^3$ عيل مساوات $u_3=x^2z$ ، $u_3=x^2z$ ، $u_1=x^2y$ ، $u_2=x^2y$ ، $u_3=x^2z$ ، $u_3=x^2z$ ، $u_3=x^2y$ ، $u_$

$$\iiint_T (3x^2 + x^2 + x^2) \, dx \, dy \, dz = 4 \cdot 5 \int_0^b \int_0^a \int_0^{\sqrt{a^2 - y^2}} x^2 \, dx \, dy \, dz$$

 $y = a \cos t$ اندرونی تکمل $\frac{1}{3}(a^2 - y^2)^{\frac{3}{2}}$ پینتے ہوئے $dy = -a \sin t \, dt$, $(a^2 - y^2)^{\frac{3}{2}} = a^3 \sin^3 t$

کھا جا سکتا ہے۔اب ہ پر تکمل

$$\frac{1}{3} \int_0^a (a^2 - y^2)^{\frac{3}{2}} \, \mathrm{d}y = -\frac{1}{3} a^4 \int_{\frac{\pi}{2}}^0 \sin^4 t \, \mathrm{d}t = \frac{\pi a^4}{16}$$

ہو گا اور آخر میں z پر تکمل جزو b دیتا ہے للذا جواب درج ذیل ہو گا۔

$$I = 4 \cdot 5 \frac{\pi a^4}{16} b = \frac{5}{4} \pi a^4 b$$

 \neg

11.9 مسئلہ پھیلاوکے نتائج اوراستعال

مسئلہ پھیلاو کی عملی استعال اور اس کے چند اہم نتائج کی مثالیں اس جھے میں پیش کی جائیں گی۔ان مثالوں میں فرض کیا جاتا ہے کی تفاعل اور خطہ مسئلہ پھیلاو کے شرائط پر پورا اترتے ہیں۔ مزید کہ سطح S پر خطہ T کا باہر رخ اکائی عمودی سمتیہ n ہے۔

مثال 11.22: محدد سے آزاد کھیلاو

مسئلہ کھیلاو کی (مساوات 11.75) کے دونوں اطراف کو خطہ T کی حجم H(T) سے تقسیم کرتے ہوئے

(11.86)
$$\frac{1}{H(T)} \iiint_{T} \nabla \cdot \boldsymbol{u} \, dH = \frac{1}{H(T)} \iint_{S(T)} u_{n} \, dA$$

ماتا ہے جہاں T کی سرحدی سطح S(T) ہے۔دوہرا تکمل کی خصوصیات کو حصہ 11.3 میں بیان کیا گیا۔ تہرا تکمل کی خصوصیات رکھتا ہے۔ بالخصوص تہرا تکمل کا مسئلہ اوسط قیمت کہتا ہے کہ خطہ T میں کسی بھی استمراری تفاعل $Q:(x_0,y_0,z_0)$ کے لئے T میں ایسا نقطہ $Q:(x_0,y_0,z_0)$ بیا جائے گا کہ درج ذیل درست ہو گا۔

$$\iiint_T f(x,y,z) dH = f(x_0,y_0,z_0)H(T)$$

یوں $f=
abla\cdot u$ پر کرتے ہوئے مساوات 11.86 سے درج ذیل ملتا ہے۔

(11.87)
$$\frac{1}{H(T)} \iiint_{T} \nabla \cdot \boldsymbol{u} \, dH = \nabla \cdot \boldsymbol{u}(x_{0}, y_{0}, z_{0})$$

فرض کریں کہ T میں $N:(x_1,y_1,z_1)$ کوئی مقررہ نقطہ ہے اور T نقطہ N کے گردیوں سکڑتا ہے کہ N ہے دور ترین نقطے کا فاصل d(T) صفر کے قریب پنچے۔اس طرح نقطہ D نقطہ D نقطہ D کو گردیوں سکڑتا ہو قریب پنچے گا اور مساوات 11.86 اور مساوات 11.87 سے ظاہر کہ کہ نقطہ D پر D کی پھیلاو درج ذیل ہو گی۔

(11.88)
$$\nabla \cdot \boldsymbol{u}(x_1, y_1, z_1) = \lim_{d(T) \to 0} \frac{1}{V(T)} \iint_{S(T)} u_n \, \mathrm{d}A$$

y ، x سن کلیہ کو بعض او قات کھیلاو کی تعریف تصور کیا جاتا ہے۔جہاں حصہ 10.10 میں کھیلاو کی تعریف میں z ، z ، حمد دیائے جاتے ہیں مساوات 11.88 میں دی گئی کھیلاو کی تعریف محد دسے پاک ہے۔اس سے یک دم اخذ کیا جا سکتا ہے کہ کھیلاو کی قیمت پر محد دی نظام کی انتخاب کا کوئی اثر نہیں پایا جاتا ہے۔

مثال 11.23: کیمیلاو کا طبعی مفہوم

مسکلہ پھیلاو سے سمتیہ کی پھیلاو کا مفہوم سمجھا جا سکتا ہے۔اییا ہی کرنے کی خاطر ہم اکائی کمیتی کثافت $\rho=1$ کی داب نا پذیر سیال کی برقرار حال (وقت کے ساتھ نہ تبدیل ہوتا) بہاو پر غور کرتے ہیں (مثال 10.24 بھی دیکھیں)۔ کسی بھی نقطہ v(N) سے کیا جاتا ہے۔

i فرض کریں کہ فضا میں خطہ i کی سرحدی سطح i کے جوادر i باہر رخ i کا اکائی عمودی سمتیہ ہے۔اس سطح i جس کا رقبہ i کی سرحدی سطح i ہے۔ اندرون i ہیں کہت کی i جس کا رقبہ i کی جس کا رقبہ i کہ جس کا رقبہ i کہ جس کا رقبہ i ہوگی جہال i ہوگی جہال i سمتیہ i سمتیہ i کا i کا عمودی جزو ہے i اور i کو i کے کسی موزوں نقطے پر لیا گیا ہے۔ یول i سے کل اخراج جو i سطح مکمل اور i کا حکم کے کسی موزوں نقطے پر لیا گیا ہے۔ یول i سے کل اخراج جو i ہے گزرتا ہے سطح مکمل

$$\iint\limits_{S}v_{n}\,\mathrm{d}A$$

منفی ہو سکتاہے لہذاایے نقطے پر سیال S میں داخل ہوگا۔ σ_n

سے حاصل ہو گا۔ یہ تکمل T کا کل اخراج دیتا ہے۔ یوں T کی اوسط اخراج

$$\frac{1}{H} \iint_{S} v_n \, \mathrm{d}A$$

ہو گی جہاں T کا مجم H ہے۔چو تکہ بہاو بر قرار حال ہے اور سیال داب نا پذیر ہے للذا T سے اخراج برابر کمیت T کو مہیا کی جاتی ہو گی۔ یوں اگر مساوات 11.89 کے تکمل کی قیمت غیر صفر ہو تب T میں منبع T کمیت منبع یا منبع بیا جاتا ہو گا جہاں سیال پیدا یا غائب ہوتا ہے۔

11.88 اگر ہم T کو ایک نقطہ N مانند کر دیں تب مساوات 11.89 ہمیں N پر شدت منبع 96 دیگا (مساوات 11 اس تے ظاہر ہے کہ داب نا پذیر سیال کی برقرار حال سمتی کا دائیں ہاتھ جہاں v_n کی جگہ u_n کھا گیا ہے)۔ اس سے ظاہر ہے کہ داب نا پذیر سیال کی برقرار حال سمتی رفتار سمتی v کا نقطہ v پر پھیلاو سے مراد v پر شدت منبع ہے۔ صرف اور صورت v میں کو کوئی منبغ نہ ہو گا جب v ہو اور الی صورت میں میں کسی بھی بند سطح v کے لئے درج ذیل درست ہو گا۔

$$\iint\limits_{S^*} v_n \, \mathrm{d}A = 0$$

آپ نے دیکھا کہ کسی نقطہ سے سیال کی اخراج کو اس نقطہ پر v کی پھیلاو ظاہر کرتی ہے۔ ہم کہتے ہیں سیال اس نقطہ سے نکل کر پھیلتا ہے۔ اس سے اس عمل کو پھیلاو کہتے ہیں۔

مثال 11.24: مساوات حرارت حراری بہاو ہم جانتے ہیں کہ کسی بھی جسم میں حراری توانائی کا بہاو گرم سے سرد مقام کے رخ ہو گا۔اس کا مطلب ہے کہ حراری بہاو کی سمتی رفتار ہ درج طرز کی ہوگی

$$(11.90) v = -K\nabla U$$

جہاں U(x,y,z,t) کمے t پر نقطہ (x,y,z) کا درجہ حرارت ہے اور K جہم کی حواری موصلیت K جہاں K ایک مستقل ہو گا۔

source⁴⁸ source intensity⁴⁹

thermal conductivity $^{50}\,$

فرض کریں کہ جہم میں R کوئی خطہ ہے جس کی سرحدی سطح S ہے۔یوں اکائی وقت میں R سے کل حراری توانائی کا اخراج

$$\iint\limits_{S} v_n \, \mathrm{d}A$$

ہو گا جہاں $v\cdot n=v\cdot n$ سرحد S پر باہر رخ اکائی عمودی سمتیہ n کی رخ v کا جزو ہے۔ یہ تعلق گزشتہ مثال کی حاصل کیا گیا ہے۔ مساوات 11.90 اور مسئلہ پھیلاو سے درج ذیل کھا جا سکتا ہے (مساوات 10.114)۔

(11.91)
$$\iint\limits_{S} v_n \, dA = -K \iiint\limits_{R} \nabla \cdot (\nabla U) \, dx \, dy \, dz = -K \iiint\limits_{R} \nabla^2 U \, dx \, dy \, dz$$

R میں کل حراری توانائی W درج ذیل ہے

$$W = \iiint\limits_{R} \sigma \rho U \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

جہاں σ جہم کے مواد کی خصوصی حراری استعداد 51 ہے جبکہ ρ جہم کی کمیتی کثافت (کمیت فی اکائی حجم) ہے۔ یوں جہم میں حراری توانائی کی وقت کے ساتھ گھٹاو

$$-\frac{\partial W}{\partial t} = -\iiint\limits_{R} \sigma \rho \frac{\partial U}{\partial t} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

ہو گی جو میں R سے توانائی کی اخراج کے برابر ہو گا لیتی $-\iiint \sigma \rho \frac{\partial U}{\partial t} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = -K \iiint \nabla^2 U \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$

يا:

$$\iiint\limits_{p} \left(\sigma \rho \frac{\partial U}{\partial t} - K \nabla^{2} U \right) dx dy dz = 0$$

چونکہ یہ مساوات کسی بھی خطہ R کے لئے درست ہے للذا متکمل (اگر استمراری ہو تب) تمام R میں صفر کے برابر ہو گا یعنی:

(11.92)
$$\frac{\partial U}{\partial t} = c^2 \nabla^2 U \qquad (c^2 = \frac{K}{\sigma \rho})$$

یہ حواری مساوات⁵² کہلاتی ہے جو حراری بہاو کی بنیادی مساوات ہے۔

specific heat capacity 51 heat equation 52

مثال 11.25: لا پلاسی مساوات کے حل کی بنیادی خصوصیت مسئلہ کھیلاو کی مساوات

(11.93)
$$\iiint_{T} \nabla \boldsymbol{u} \, \mathrm{d}H = \iint_{S} u_{n} \, \mathrm{d}A$$

یر غور کریں۔ فرض کریں کہ u=
abla f کی غیر سمتی تفاعل کی ڈھلوان u=
abla f ہے۔ یوں $abla \cdot u=
abla \cdot (
abla f)=
abla \cdot u=
abla \cdot u=$

ہو گا (مساوات 10.114)۔مزید

$$u_n = \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{n} \cdot \nabla f$$

کھا جائے گا جو مساوات 10.81 کے تحت S کے باہر رخ f کا سمتی تفرق ہے جس کو $\frac{\partial f}{\partial n}$ سے ظاہر کرتے ہوئے مساوات 11.93 کو درج زیل لکھا جا سکتا ہے۔

(11.94)
$$\iiint_{T} \nabla^{2} f \, dH = \iint_{S} \frac{\partial f}{\partial n} \, dA$$

ظاہر ہے کہ یہ مساوات 11.33 کی تین بعدی مماثل ہے۔

مسئلہ پھیلاو کے لئے درکار شرائط کو مد نظر رکھتے ہوئے مساوات 11.94 سے درج ذیل اخذ کیا جا سکتا ہے۔

مسکاہ 11.3: (لاپلاسی مساوات کے حل کی خصوصیت) فرض کریں کہ کسی خطہ D میں تفاعل f(x,y,z) لاپلاسی مساوات

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

کا حل ہے اور D میں f کے دو در جی جزوی تفرق استمراری ہیں۔تب D میں کسی بھی گلزوں میں ہموار بند اور قابل سمت بند سطح S پر f کے عمودی (سمتی) تفرق کا تکمل صفر ہو گا۔

مثال 11.26: مسئله گرین

فرض کریں کہ f اور g ایسے غیر سمتی تفاعل ہیں کہ کسی خطہ T میں u=f
abla g مسئلہ پھیلاو کی شرائط u=f
abla g مسئلہ پھیلاو کی شرائط پر پورا اترتا ہو۔ تب درج ذیل ہو گا (سوال 10.179)۔

$$\nabla \cdot \boldsymbol{u} = \nabla \cdot (f \nabla g) = f \nabla^2 g + \nabla f \cdot \nabla g$$

مزيد

$$\boldsymbol{u}\cdot\boldsymbol{n}=\boldsymbol{n}\cdot(f\nabla g)=f(\boldsymbol{n}\cdot\nabla g)$$

ہو گا جہاں ∇g سے مراد مسکلہ کھیلاو کی سطح S پر باہر رخ اکائی عمودی سمتیہ $n\cdot \nabla g$ ست میں g کا سمتی تفرق ہے۔ اس سمتی تفرق کو $\frac{\partial g}{\partial n}$ کصفے سے مسکلہ کھیلاو کی مساوات درج ذیل صورت اختیار کرتی ہے

(11.95)
$$\iiint_T (f\nabla^2 g + \nabla f \cdot \nabla g) \, dH = \iint_S f \frac{\partial g}{\partial n} \, dA$$

جس کو گرین کلیہ اول 53 یا (لا گو شرائط کو شامل کرتے ہوئے) مسئلہ گرین کی پہلی صورت کہتے ہیں۔

f اور g کو آپس میں بدلنے سے اسی طرح کی دوسری مساوات حاصل ہوتی ہے جس کو مساوات 11.95 سے منفی کرتے ہوئے درج ذیل ملتا ہے

(11.96)
$$\iiint_T (f\nabla^2 g - g\nabla^2 f) dH = \iint_S \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) dA$$

جس کو گرین کلیہ دوم 54 یا (لا گو شرائط کو شامل کرتے ہوئے) مسئلہ گرین کی دوسری صورت کہتے ہیں۔

مثال 11.27: لایلاس مساوات کی حل کی یکنائی

$$\iiint\limits_T \nabla f \cdot \nabla f \, dH = \iiint\limits_T |\nabla f|^2 \, dH = 0$$

Green's first formula⁵³ Green's second formula⁵⁴ ملتا ہے جہاں مسئلہ 11.3 میں دیے شرط کے مطابق $\nabla^2 f = 0$ لیا گیا ہے اور مساوات 11.95 کے دائیں ہاتھ چونکہ سطح S پر S ہے لہذا اس سطح کمل کو صفر لیا گیا ہے۔اب چونکہ ہمارے مفروضہ کے تحت T کے اندر اور S پر $|\nabla f|$ استمراری اور غیر منفی ہے لہذا یہ ضرور پورے T میں ہر جگہ صفر کے برابر ہو گا۔ یوں اندر اور S پر S ہوگا لہذا S میں ایک مستقل ہوگا اور چونکہ S استمراری ہے لہذا S کے اندر اس کی قیت وہی ہوگا جو S بر ہے لیعنی S والے ہوگا۔

اس سے درج ذیل ثابت ہوتا ہے۔

مسئله 11.4

اگر تفاعل f(x,y,z) مسکلہ 11.3 کے شرائط پر پورا اترتا ہے اور D میں گلڑوں میں ہموار بند اور قابل سمت بند سطح S پر ہر جگہ صفر کے برابر ہے۔ تب S کے اصاطہ خطہ T میں S ہو گا۔

اس مسکلہ کے اہم نتائے پائے جاتے ہیں۔ فرض کریں کہ تفاعل f_1 اور f_2 مسکلہ کے اہم نتائے پائے جاتے ہیں۔ فرض کریں کہ تفاعل f_1 اور f_2 مسکلہ کے اہم نتائے پائے جاتے ہیں۔ ان کا فرق f_1-f_2 بھی ان شرائط پر پورا اثرتا ہے اور پوری S پر اس کی قیت صفر کے برابر ہے۔ یوں مسکلہ 11.4 کے تحت پوری T میں $f_1-f_2=0$ ہو گا جس سے درج ذیل نتیجہ حاصل ہوتا ہے۔

مسئله 11.5: (لايلاس مساوات كي حل كي يكتائي)

فرض کریں کہ f لاپلاس مساوات کا حل ہے اور خطہ D میں اس کے ایک درجی اور دو درجی جزوی تفرق پائے جاتے ہیں۔ مزید فرض کریں کہ D میں خطہ T مسئلہ پھیلاو کی شرائط پر پورا اترتا ہے۔ تب T میں f کی قیمت کے برابر ہو گی۔

سوالات

سوال 11.128 تا سوال 11.131 میں حجم بذریعہ تہرا تکمل دریافت کریں۔

C:(0,2,0) ، B:(3,0,0) ، A:(0,0,0) ،

جواب: یہ چو سطح ربع اول میں جس سطح کے نیچے پایا جاتا ہے پہلے اس (بالائی) سطح کی مساوات حاصل کرتے ہیں۔ $r_1 = -3i + 2j$ دونوں جو سطح کی اس بالائی $r_2 = -3i + k$ تا $r_3 = -3i + 2j$ دونوں جو سطح کی اس بالائی سطح پر پائے جاتے ہیں لہذا دونوں سطح کے ممالی سمتیات ہیں۔ان سے بالائی سطح کی اکائی عمودی سمتیہ $r_3 = -3i + 2j$ حاصل کرتے ہیں۔

$$oldsymbol{n} = rac{oldsymbol{r}_1 imes oldsymbol{r}_2}{|oldsymbol{r}_1 imes oldsymbol{r}_2|} = rac{2oldsymbol{i} + 3oldsymbol{j} + 6oldsymbol{k}}{7}$$

یوں بالائی سطح کی مساوات $[(x-3)i+yj+zk]\cdot n=0$ سے 2x+3y+6z=6

عاصل ہوتی ہے۔اس طرح چو سطح کا تجم درج ذیل ہو گا (سوال 11.27 دیکھیں)۔

 $H = \int_0^3 \int_0^{2 - \frac{2}{3}x} \int_0^{1 - \frac{x}{3} - \frac{y}{2}} dz dy dx = \int_0^3 \int_0^{2 - \frac{2}{3}x} \left(1 - \frac{x}{3} - \frac{y}{2}\right) dy dx$ $= \int_0^3 \left(\frac{1}{9}x^2 - \frac{2}{3}x + 1\right) dx = 1$

z=3-2x اور $y=x^2$ ، y=x بیں۔ z=3-2x اور z=3-2x بیں۔ $y=x^2$ ، y=x بیں۔ بواب: $\frac{1}{3}$

 $z=1-x^2-y^2$ اور xy مستوی کے مابین خطہ۔ $z=1-x^2-y^2$ عابین خطہ۔ جواب: $\frac{\pi}{2}$

سوال 11.131 بیلن $x^2+y^2=1$ اور $x^2+z^2=1$ کا مشتر که حصه جواب: $\frac{16}{3}$

سوال 11.132 تا سوال 11.135 میں سمیتی کثافت σ دیا گیا ہے۔خطہ T میں کل کمیت دریافت کریں۔

 $\sigma = xy$, $T: 0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ عبوال $0 \le x \le 1$ عبوال $0 \le x$

یں اور (0,0,1) ، (0,2,0) ، (3,0,0) ، (0,0,0) یی اور $\sigma = x + y + z$ ہواب: $\frac{3}{2}$

یں اور (0,0,1) ، (0,2,0) ، (3,0,0) ، (0,0) ، (0,0) ، (0,0) ، (0,0) ، (0,0) ، (0,0) ، (0,0) ،

 $\sigma=xy$ اور z=x اور z=x اور $y=1-x^2$ جہاں $y=1-x^2$ ہواب: $\frac{4}{105}$

سوال 11.136 تا سوال 11.140 میں خطہ T میں کمیتی کثافت $\sigma=1$ لیتے ہوئے z محور کے لحاظ سے جمود کی معیار اثر $I_z=\int\int\limits_T \int\limits_T (x^2+y^2)\sigma\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$ جمود کی معیار اثر

 $0 \le x \le c$, $0 \le y \le c$, $0 \le z \le c$ نسوال 11.136 عبوال $\frac{2}{3}c^5$ جواب:

 $x^2 + y^2 \le c^2$, $0 \le z \le h$ بيلن 11.137 بيلن يواب $\frac{1}{2}\pi c^4 h$

 $x^2+y^2 \leq z^2$, $0 \leq z \leq h$ خوط :11.139 موال :3واب جواب جواب :

 $x^2+y^2+z^2=c^2$ موال 11.140 انگررون کره $\frac{4}{15}\pi c^5$ جواب:

سوال 11.141: مسئلہ پھیلاو استعال کرتے ہوئے ثابت کریں کہ خطہ T جس کی سرحد سطح S ہو کا تجم H درج ذیل ہے۔

 $H = \iint\limits_{S} x \, dy \, dz = \iint\limits_{S} y \, dx \, dz = \iint\limits_{S} z \, dx \, dy = \frac{1}{3} \iint\limits_{S} (x \, dy \, dz + y \, dx \, dz + z \, dx \, dy)$

سوال 11.142: مكعب كالمجم سوال 11.141 كے كليات كى مدد سے حاصل كريں۔

سوال 11.143: بیلن $z \leq 1$, $0 \leq z \leq h$ کا تجم سوال 11.141 کے کلیات کی مدو سے حاصل کریں۔

T سوال 11.144 کی مدو سے ثابت کریں کہ خطہ u=xi+yj+zk ترمی کہ خطہ u=xi+yj+zk جس کی سرحدی سطح S ہو کا حجم درج ذیل ہے

$$H = \frac{1}{3} \iint_{S} r \cos \theta \, \mathrm{d}A$$

N اور N تک سمتی خط اور N امبرا N امبرا N امبرا N امبرا کے باہر رخ عمودی سمتی کے مابین زاویہ θ ہے۔

سوال 11.145: رداس a کی کرہ کا مجم سوال 11.144 کے کلیے کی مدد سے دریافت کریں۔

سوال 11.146 تا سوال 11.152 میں S مسئلہ پھیلاو کی شرط کے مطابق سمت بند ہے۔ سطحی تکمل کو مسئلہ پھیلاو کی مدد سے حل کریں۔

سوال 11.146:

$$\iint_{S} [(x+z) \, dy \, dz + (y+z) \, dx \, dz + (x+y) \, dx \, dy], \quad S: x^{2} + y^{2} + z^{2} = a^{2}$$

 $\frac{8\pi a^3}{3}$:واب

 $\iint_{S} (x \, dy \, dz + y \, dx \, dz + z \, dx \, dy) \quad 11.132 \quad \text{and} \quad 211.147 \quad \text{and} \quad 3 \quad \text{a$

 $\iint_{S} (x^2 \, dy \, dz + y^2 \, dx \, dz + z^2 \, dx \, dy)$ 11.137 سط بیلن سوال 11.137 عواب : $\pi c^2 h^2$ برواب:

 $\iint_{S} (yz^{2} dy dz + xz dx dz + x^{2}y^{2} dx dy) \quad 11.146 \quad 2dz = 11.149$ g = 0 g = 0

 $\iint\limits_{S} x(y+z) \, \mathrm{d}y \, \mathrm{d}z, \, S: 0 \leq x \leq 3, 0 \leq y \leq 2, 0 \leq z \leq 4 \quad \text{all indep} \qquad :11.150$ بواب: 72

 $\iint_{S} [x \cos y \, dy \, dz + (y - \sin y) \, dx \, dz] \quad 11.150 \quad 24 \quad :24$

سوال 11.153 تا سوال 11.157 تا سوال 11.157 میں T بند محدود خطہ ہے جس کی سرحدی سطح S ہے۔ مسئلہ پھیلاو استعال کرتے ہوئے دیے گئے فقرے ثابت کریں جہال ہار مونی S سے مراد لاپلاس مساوات کا حل ہے جس کے T میں استراری دو درجی جزوی تفرق یائے جاتے ہوں۔

سوال 11.153: اگر کسی خطه جس کا T حصه ہو میں g ہارمونی ہو تب درج ذیل ہو گا۔

$$\iint\limits_{S} \frac{\partial g}{\partial n} \, \mathrm{d}A = 0$$

جواب: مساوات 11.95 میں f = 1 پر کریں۔

سوال 11.154: اگر کسی خطه جس کا T حصه ہو میں g ہارمونی ہو تب درج ذیل ہو گا۔

$$\iint\limits_{S} g \frac{\partial g}{\partial n} \, \mathrm{d}A = \iiint\limits_{T} |\nabla g|^2 \, \mathrm{d}H$$

جواب: مساوات 11.95 میں f = g پر کریں۔

T سوال 11.155: اگر کسی خطه جس کا T حصه ہو میں g ہار مونی ہو اور S پر $0=\frac{\partial g}{\partial n}$ ہو تب g میں g ایک مستقل ہو گا۔ جواب: سوال 11.154 کو استعال کریں۔

harmonic⁵⁵

 $\frac{\partial f}{\partial n}=\frac{\partial g}{\partial n}$ پر S اور f ہار مونی ہوں اور S پر S خطہ جس کا S حصہ ہو میں S اور S ہوت ہوں اور S پر S خطہ جس کا S مستقل قیمت ہے۔ S مستقل قیمت ہے۔

سوال 11.157: اگر کسی خطه جس کا T حصه ہو میں g اور f بار مونی ہوں تب درج ذیل ہو گا۔ $\iint \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n}\right) \mathrm{d}A = 0$

سوال 11.158: ثابت کریں کہ لایلاسی کو محدد سے پاک صورت میں درج ذیل لکھا جا سکتا ہے

$$\nabla^2 f = \lim_{d(T) \to 0} \frac{1}{H(T)} \iint_{S(T)} \frac{\partial f}{\partial n} \, \mathrm{d}A$$

جہاں جس نقطے پر لاپلاسی در کار ہو، اس نقطے سے T میں دور ترین نقطے کا فاصلہ d(T) ہے اور H(T) خطہ T کا حجم ہے جس کی سرحدی سطح S(T) ہے۔ S(T) ہے۔ S(T) ہوئے T کا حجم ہے جس کی سرحدی سطح T کا جم ہے جس کی سرحدی سطح T کا جہاں T سطح T کا باہر رخ اکائی عمودی سمتیہ ہے۔) T کی جہاں T سطح T کا باہر رخ اکائی عمودی سمتیہ ہے۔)

11.10 مسكله سٹوكس

غميميرا

اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

ثبوت: كيتاكي (مسئله 2.2) تصور كرين كه كھلے وقفے I ير ابتدائي قيت مسئله

$$(1.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ پائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔یوں $y_2(x)\equiv y_2(x)$ ہو گا جو یکتائی کا ثبوت ہے۔

چونکہ مساوات 1. انتظی اور متجانس ہے للذا y(x) پر y(x) بھی اس کا حل ہو گا اور چونکہ y_1 اور y_2 دونوں کیسال ابتدائی معلومات پر پورا اتر ہے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

862 ميميدا.اضاني ثبوت

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو z' میں پر کرتے ہیں۔

$$(1.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه y اور y حقیقی تفاعل بین للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 1.1 کا استعال کیا گیا ہے۔مساوات 1.7-ب کو z-z' کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z=z' کھا جا سکتا ہے۔یوں مساوات 1.5 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = |q| \left| 2yy' \right| \le |q| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ ساتھ $p \leq |p|$ استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 1.5 کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ کے جزو میں استعال کرتے ہوئے

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا اس سے

$$z' \leq (1+\big|p\big|+\big|q\big|)z$$

ملتا ہے۔ اس میں 1 + |q| + |p| = h کھتے ہوئے

$$(1.8) z' \le hz x \checkmark$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 1.7 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy' \\ \leq z + 2|p|z + |q|z = hz$$

مساوات 8. ا اور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) dx}, \qquad F_2 = e^{\int h(x) dx}$

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہاتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پر $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ ایک مطلب

П

864 صمير المنافى ثبوت

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(ب.2)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$- \ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{in } x = x \quad \text{in } x = x \quad \text{in } x = x$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل

شكل2.ب:سائن نما تفاعل

 $10^{-\log x} = 10^{\log \frac{1}{x}} = \frac{1}{x}$ اور $10^{\log x} = 10^{\log x} = 10^{10}$ ہیں۔ 10^x

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احصائے کملات میں زاویہ کو ریڈئی میں ناپا جاتا ہے۔ یوں $\sin x$ اور $\cos x$ کا وورکی عرصہ $\sin x$ ہوگا۔ $\sin x$ طاق ہے لیخی $\sin x$ $\sin x$ کو $\cos x$ کا دورک عرصہ $\cos x$ ہوگا۔ $\cos x$ کا جکہ جنگ ہوگا۔ $\cos x$ ہوگا۔

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ $\sin^2 x + \cos^2 x = 1$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

(-.9)
$$\sin(\pi - x) = \sin x, \quad \cos(\pi - x) = -\cos x$$

(-.10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(ب.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

ٹینجنٹ، کو ٹینجنٹ، سیکنٹ، کو سیکنٹ (شکل 3.ب-الف، ب)

$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc = \frac{1}{\sin x}$$

$$(-.16) \quad \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \quad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹىنجنٹ اور كو ٹىنجنٹ

بذلولي تفاعل (بذلولي سائن sin hx وغيره - شكل 4.ب-الف، ب)

(-.17)
$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

(-.18)
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$(-.19) \qquad \cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.21)
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(23)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما تفاعل (شکل 5.ب) کی تعریف درج ذیل محمل ہے
$$\Gamma(\alpha)$$

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

(ب) تفوس خط x tanh ع جبكه نقطه دار خط coth x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب یہ α کی ان قیبتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 24.ب سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات 25.ب استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہوگا جسے دوبارہ مساوات 25.ب میں استعال کرتے ہوئے $\Gamma(3)=2\times 1$ ملتا ہے۔ای طرح بار بار مساوات 25.ب استعال کرتے ہوئے κ کی کئی بھی عدد صحیح مثبت قیت κ کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات 25.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.27) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات 24. ب اور مساوات 27. ب مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے گیما تفاعل دیتے ہیں۔

شكل 5.ب: سيما تفاعل

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے لینی

(.28)
$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 27.ب اور مساوات 28.ب سے ظاہر ہے کہ مخلوط α کی صورت میں $\alpha=0,-1,-2,\cdots$ پر علی انقاعل کے قطب یائے جاتے ہیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

(
$$\downarrow$$
.29)
$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیمت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.31) \qquad P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, \quad Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

(...32)
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.33) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x > 0, y > 0)$$

بیٹا تفاعل کو سمیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

(ب.34)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل(شكل 6.ب)

(-.35)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 35.ب کے تفرق $x=rac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تکمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

$$(-.36) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $erf\infty=1$

(ب.37)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنا تكملات (شكل 7. ب)

(.38)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 6. ب: تفاعل خلل ـ

$$1$$
اور $\frac{\pi}{8}$ اور $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(-.40) s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل 8.ب)

برابر ہے۔ تکملہ تفاعل Si $\infty = \frac{\pi}{2}$

$$\sin(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} dt$$

complementary functions 1

تكمل كوسائن

$$(5.43) si(x) = \int_{x}^{\infty} \frac{\cos t}{t} dt (x > 0)$$

تكمل قوت نمائي

تكمل لوگارتممي

$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$