22.MISCELLANEOUS

AI24BTECH11006 - Bugada Roopansha

Section-B JEE Main /AIEEE

- 16) With two forces acting at point, the maximum affect is obtained when their resultant is 4N ·If they act at right angles, then their resultant is 3N·Then the forces are [2004]
 - a) $2 + \frac{1}{2}\sqrt{3}N$ and $2 \frac{1}{2}\sqrt{3}N$
 - b) $2 + \sqrt{3}N and 2 \sqrt{3}N$
 - c) $2 + \frac{1}{2}\sqrt{2}N$ and $2 \frac{1}{2}\sqrt{2}N$
 - d) $2 + \sqrt{2}N$ and $2 \sqrt{2}N$
- 17) In a right angle $\triangle ABC$, $\angle A=90^{\circ}$ and sides a,b,c are respectively 5cm, 4cm and 3cm. If a force \vec{F} has moments 0,9 and 16 in N cm units respectively about vertices A,B and C, then magnitude of \vec{F} is [2004]
 - a) 9
 - b) 4
 - c) 5
 - d) 3
- 18) Three forces \vec{P} , \vec{Q} and \vec{R} acting along IA,IB and IC, where I is the incentre of $\triangle ABC$ are in equilibrium. Then \vec{P} : \vec{Q} : \vec{R} is [2004]

 - a) $\frac{A}{2}$: $\frac{B}{2}$: $\frac{C}{2}$ b) $\sin \frac{A}{2}$: $\sin \frac{B}{2}$: $\sin \frac{C}{2}$ c) $\sec \frac{A}{2}$: $\sec \frac{B}{2}$: $\sec \frac{C}{2}$ d) $\cos \frac{A}{2}$: $\cos \frac{B}{2}$: $\cos \frac{C}{2}$
- 19) A particle moves towards east from point A to a point B at the rate of 4 kmph and then towards north from B to C at the rate of 5 kmph.If AB =12km and BC=5km, then its average speed for its journey from A to C are respectively [2004]

 - a) $\frac{13}{9}kmph$ and $\frac{17}{9}kmph$ b) $\frac{13}{4}kmph$ and $\frac{17}{4}kmph$ c) $\frac{17}{9}kmph$ and $\frac{13}{9}kmph$

 - d) $\frac{17}{9}kmph$ and $\frac{13}{9}kmph$
- 20) A velocity $\frac{1}{4}$ m/s is resolved into two components along OA and OB making angles 30° and 45° respectively with the given velocity. Then the component along OB is [2004]
 - a) $\frac{1}{8}\sqrt{6} \sqrt{2}m/s$
 - b) $\frac{1}{4}\sqrt{3} 1m/s$

- c) $\frac{1}{4}m/s$ d) $\frac{1}{8}m/s$
- 21) If t_1 and t_2 are the times of flight of two particles having the same initial velocity u and range R on the horizontal. Then $t_1^2 + t_2^2$ is equal to

1

- a) 1
- b) $\frac{4u^2}{g^2}$ c) $\frac{u^2}{2g}$ d) $\frac{u^2}{g}$

- 22) Let R=3,3,6,6,9,9,12,12,6,12,3,9,3,123,6 be a relation set A=3,6,9,12. The relation is [2005]
 - a) reflexive and transitive only
 - b) reflexive only
 - c) an equivalence relation
 - d) reflexive and symmetric only
- 23) ABC is a triangle. Forces \vec{P} , \vec{Q} , \vec{R} acting along IA,IB,IC respectively are in equilibrium, where I is the incentre of $\triangle ABC$. Then P: Q: R is [2005]
 - a) $\sin A$: $\sin B$: $\sin C$
 - b) $\sin \frac{A}{2}$: $\sin \frac{B}{2}$: $\sin \frac{C}{2}$:
 - c) $\cos \frac{A}{2}$: $\cos \frac{B}{2}$: $\cos \frac{C}{2}$
 - d) $\cos \bar{A}$: $\cos \bar{B}$: $\cos \bar{C}$
- 24) If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately [2005]
 - a) 22.0
 - b) 20.5
 - c) 25.5
 - d) 24.0
- 25) A lizard at an initial distance of 21cm behind an insect, moves from rest with an acceleration of $2cm/s^2$ and pursues the insect uniformly along a straight line at a speed of 20cm/s. Then the lizard will catch the insect after
 - a) 20s
 - b) 1s
 - c) 21s
 - d) 24s

- 26) Two points A and B move from rest along a straight line with constant acceleration f and f'respectively. If A takes m sec more than B and describes 'n' units more than B in acquiring the same speed then [2005]
 - a) $f f m^2 = f f n$
 - b) $f + f m^2 = f f m$
 - c) $\frac{1}{2}f + f m = f f n^2$
 - d) $f' fn = ff'm^2$
- 27) A and B are two like parallel forces. A couple of moment H lies in the plane of A and B and is contained with them. The resultant of A and B after combining is displaced through a distance [2005]
 - a) $\frac{2H}{A-B}$

 - b) $\frac{A-B}{A+B}$ c) $\frac{H}{2A+B}$ d) $\frac{H}{A-B}$
- 28) Let $x_1, x_2 \dots x_n$ be n observations such that $\sum x_i^2 = 400$ and $\sum x_i = 80$. Then the possible value of n among the following is
 - a) 15
 - b) 18
 - c) 9
 - d) 12
- 29) A particle is projected from a point O with na velocity u at an angle 60° with the horizontal. When it is moving in a direction at right angles to its direction at O, its velocity the is given by [2005]

 - a) $\frac{u}{3}$ b) $\frac{u}{2}$ c) $\frac{2u}{3}$ d) $\frac{u}{\sqrt{3}}$
- 30) The resultant R of two forces acting on a particle is at right angles to one of them and its magnitude is one third of the other force. Then the ratio of larger force to the smaller one is [2005]
 - a) 2:1
 - b) 3: $\sqrt{2}$
 - c) 3:2
 - d) 3: $2\sqrt{2}$