

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Musterlösung zu Übungsblatt 10

25.01.21

Aufgabe 1 (\mathbb{R} als unendlichdimensionaler \mathbb{Q} -Vektorraum)

(10 Punkte)

 \mathbb{R} ist eine Körpererweiterung von \mathbb{Q} und somit ein \mathbb{Q} -Vektorraum. Für $n \in \mathbb{N}$ seien p_1, \ldots, p_n paarweise verschiedene Primzahlen. Wir betrachten die Menge

$$M := \{ \log(p_i) \mid i \in \{1, \dots, n\} \} \subseteq \mathbb{R}.$$

a) Beweisen Sie, dass die Menge M über \mathbb{Z} linear unabhängig ist, also, dass Folgendes gilt:

$$\forall z_1, \dots z_n \in \mathbb{Z} : \left(\sum_{i=1}^n z_i \log(p_i) = 0 \implies z_1 = \dots = z_n = 0\right)$$

Hinweis: Diese Aussage ist unabhängig von der Basis des Logarithmus. Sie dürfen ohne Beweis die Logarithmengesetze und die Eindeutigkeit der Primfaktorzerlegung (Satz 3.4.17) verwenden.

- b) Folgern Sie aus Teilaufgabe a), dass M auch über \mathbb{Q} linear unabhängig ist.
- c) Wie ändert sich Ihre Antwort, wenn stattdessen \mathbb{R} als \mathbb{R} -Vektorraum betrachtet wird?
- d) Folgern Sie, dass \mathbb{R} als \mathbb{Q} -Vektorraum unendlichdimensional ist.

Hinweis: Teilaufgabe a) ist der schwierigste Teil. Wenn Sie Teilaufgabe a) nicht gelöst haben, dürfen Sie das Ergebnis natürlich trotzdem in b)-d) weiterverwenden.

Lösung zu Aufgabe 1

a) Zu Abkürzung schreiben wir $I = \{1, \dots n\}$.

Da die Vektoren reelle Zahlen sind und die Skalarmultiplikation auch von \mathbb{R} ererbt ist, können wir mit den Logarithmengesetzen folgern:

$$0 = \sum_{i \in I} z_i \log(p_i) = \sum_{i \in I} \log(p_i^{z_i}) = \log\left(\prod_{i \in I} p_i^{z_i}\right)$$

$$\Rightarrow 1 = \prod_{i \in I} p_i^{z_i} = \prod_{\substack{i \in I \\ z_i \neq 0}} p_i^{z_i}$$

Im letzten Schritt haben wir alle Faktoren $p_i^0 = 1$ weggelassen. Per Konvention hat ein Produkt ohne Faktoren immer noch den Wert 1.

Falls $z_i \geq 0$ für alle $i \in I$ gilt, ist die rechte Seite eine Primfaktorzerlegung der 1. Da es keine Primfaktoren gibt, die 1 teilen, muss also $z_i = 0$ und damit auch $\lambda_i = 0$ für alle $i \in I$ gelten und die Linearkombination, mit der wir begonnen haben, ist die triviale.

Falls es $i \in I$ mit $z_i < 0$ gibt, dividieren wir durch die entsprechenden Faktoren und erhalten

$$\prod_{\substack{j \in I \\ z_i < 0}} p_j^{-z_j} = \prod_{\substack{i \in I \\ z_i > 0}} p_i^{z_i}.$$

Nun stehen links und rechts des Gleichheitszeichens zwei Primfaktorzerlegungen derselben Zahl. Wenn nun $z_i \neq 0$ für ein $i \in I$ gälte, kommt der zugehörige Primfaktor p_i in einer der beiden Zerlegungen vor und in der anderen nicht, im Widerspruch zur Eindeutigkeit der Primfaktorzerlegung (Satz 3.4.17). Also muss $z_i = 0$ für alle $i \in I$ gelten und die Linearkombination, mit der wir begonnen haben, ist die triviale.

Damit ist gezeigt, dass M über \mathbb{Z} linear unabhängig ist.

b) Angenommen, wir haben eine Q-Linearkombination

$$\sum_{i \in I} \lambda_i \log(p_i) = 0 \quad \text{mit} \quad \lambda_1, \dots, \lambda_n \in \mathbb{Q}.$$

Die rationalen Zahlen λ_i können durch Brüche $\lambda_i = \frac{x_i}{y_i}$ mit $x_i \in \mathbb{Z}, y_i \in \mathbb{N}$ dargestellt werden. Wir "bringen die Brüche auf den Hauptnenner", indem wir die Gleichung mit $z \coloneqq \prod_{i \in I} y_i$ multiplizieren, dann gilt

$$\sum_{i \in I} \underbrace{z\lambda_i}_{\in \mathbb{Z}} \log(p_i) = 0.$$

Nach Aufgabenteil a) gilt also $z\lambda_i = 0$ und somit auch $\lambda_i = 0$ für alle $i \in I$. Damit ist gezeigt, dass die Menge M auch über \mathbb{Q} linear unabhängig ist.

- c) \mathbb{R} als \mathbb{R} -Vektorraum ist eindimensional. Damit ist M nur für n=1 linear unabängig und sonst linear abhängig.
- d) Angenommen, die Dimension von \mathbb{R} als \mathbb{Q} -Vektorraum wäre $n \in \mathbb{N}$. Da es unendlich viele Primzahlen gibt, gibt es nach Teilaufgabe b) aber auch eine linear unabhängige Menge mit n+1 Elementen, die nach dem Basisergänzungssatz Teilmenge einer Basis mit mindestens n+1 Elementen ist, im Widerspruch zur Annahme.

Aufgabe 2 (Dualbasen in
$$\mathbb{K}^n$$
) (10 Punkte)

Es sei \mathbb{K} ein Körper, $n \in \mathbb{N}$ und $A \in \mathbb{K}^{n \times n}$ eine invertierbare Matrix, deren Spalten wir mit $a_1, \ldots, a_n \in \mathbb{K}^n$ bezeichnen. Die Zeilen von A^{-1} bezeichnen wir mit $\tilde{a}_1, \ldots, \tilde{a}_n \in \mathbb{K}^{1 \times n}$. Außerdem definieren wir die Abbildungen

$$b_i \colon \mathbb{K}^n \to \mathbb{K}$$

$$v \mapsto \tilde{a}_i \cdot v$$

für alle $i = 1, \dots n$. Beweisen Sie:

- a) Die Vektoren a_1, \ldots, a_n bilden eine Basis von \mathbb{K}^n .
- b) Es gilt $b_i \in (\mathbb{K}^n)^*$ und (b_1, \ldots, b_n) ist die duale Basis zu $(a_1, \ldots a_n)$.

Lösung zu Aufgabe 2

a) Angenommen, wir haben $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ mit

$$0 = \lambda_1 a_1 + \dots + \lambda_n a_n = A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Dann gilt aber auch

$$0 = A^{-1}0 = A^{-1}A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

also muss $\lambda_1, \ldots, \lambda_n = 0$ gelten, und a_1, \ldots, a_n sind somit linear unabhängig. Als n linear unabhängige Vektoren in einem n-dimensionalen Vektorraum bilden sie somit eine Basis.

b) Da die Matrix-Vektor-Multiplikation linear ist, ist b_i eine lineare Abbildung von \mathbb{K}^n in den Körper \mathbb{K} und somit ein Element von $(\mathbb{K}^n)^*$.

Es gilt $b_i(a_j) = \tilde{a}_i \cdot a_j$ für $i, j \in \{1, \dots n\}$. Dies ist also das Produkt der *i*-ten Zeile von A^{-1} und der *j*-ten Spalte von A. Nach Definition der Matrixmultiplikation ist dies der (i, j)-te Eintrag von $A^{-1}A = \mathbb{1}_n$, also gilt

$$b_i(a_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

was zeigt, dass es sich um die duale Basis handelt.

Aufgabe 3 (Lineare Unabhängigkeit von Linearformen)

Es seien \mathbb{K} ein Körper, V ein n-dimensionaler \mathbb{K} -Vektorraum. Für $d \leq n$ seien $\ell_1, \ldots, \ell_d \in V^*$ nicht-triviale Linearformen auf V. Weiter bezeichne U_i den Kern von ℓ_i und es sei $U = \bigcap_{i=1}^d U_i$. Beweisen Sie:

- a) Für alle $i \in \{1, ..., d\}$ ist $1 + \dim U_i = n$ und es ist $d + \dim U \ge n$.
- b) Sind die ℓ_1, \ldots, ℓ_d linear unabhängig, dann gilt dim(U) = n d. Hinweis: Betrachten Sie den Rang der Abbildung

$$\ell: V \to \mathbb{K}^d$$
$$x \mapsto \begin{pmatrix} \ell_1(x) \\ \vdots \\ \ell_d(x) \end{pmatrix}.$$

c) Gilt in Teilaufgabe b) auch die umgekehrte Implikation?

Lösung zu Aufgabe 3

a) Da ℓ_i nicht-trivial ist, gilt $\operatorname{rg}(\ell_i) = 1$. Nach der Rang-Defekt-Formel gilt

$$\dim(U_i) = \dim(\ker \ell_i) = \dim V - \operatorname{rg} \ell_i = \dim V - 1.$$

Die zweite Aussage zeigen wir induktiv über die Anzahl der Linearformen d. Den Induktionsanfang haben wir eben gezeigt. Nun folgt der Induktionsschluss $d-1 \to d$:

$$\dim(U_1 \cap \dots \cap U_d) = \dim(U_1 \cap \dots \cap U_{d-1}) + \dim(U_d) - \dim(U_1 \cap \dots \cap U_{d-1} + U_d)$$

$$\geq \dim(V) - (d-1) + \dim(V) - 1 - \dim(V)$$

$$= \dim(V) - d.$$

b) Es sei $n := \dim(V)$. Wähle eine Basis b_1, \ldots, b_n von V. Dann hat

$$M_{E,B}(\ell) = \begin{pmatrix} \ell_1(b_1) & \cdots & \ell_1(b_n) \\ \vdots & \ddots & \vdots \\ \ell_d(b_1) & \cdots & \ell_d(b_n) \end{pmatrix}$$

Rang d genau dann, wenn ℓ_1, \ldots, ℓ_d linear unabhängig sind. Dann gilt

$$\dim(V) = \operatorname{rg} \ell + \dim(\ker \ell) = \operatorname{rg} \ell + \dim(\ker \ell_1 \cap \cdots \cap \ker \ell_d) = d + \dim(U)$$

Damit haben wir auch die umgekehrte Richtung also Teilaufgabe c) gezeigt.

Aufgabe 4 (Bilinearformen und Linearformen) (10 Punkte)

Es sei V ein Vektorraum über einem Körper \mathbb{K} . Eine Abbildung $\beta: V \times V \to \mathbb{K}$ wird Bilinearform auf V genannt, wenn für alle $x \in V$ die Abbildungen

$$\beta(x,\cdot): V \to \mathbb{K}$$
 und $\beta(\cdot,x): V \to \mathbb{K}$ $y \mapsto \beta(x,y)$

linear sind. Beweisen Sie folgende Aussagen:

a) Ist β eine Bilinearform auf V, dann ist für alle $x \in V$ die Abbildung

$$\Phi_{\beta}: V \to V^*$$
$$x \mapsto \beta(x, \cdot)$$

linear.

- b) Ist umgekehrt $\varphi: V \to V^*$ eine lineare Abbildung, dann gibt es eine Bilinearform β auf V mit $\Phi_{\beta} = \varphi$.
- c) Nun wählen wir $V = \mathbb{R}^4$ und $\beta(x,y) = -x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$. Bestimmen Sie die Darstellungsmatrix $M_{B^*,B}(\Phi_\beta)$ von Φ_β bezüglich einer von Ihnen gewählten geordneten Basis B von V und der dazugehörigen dualen geordneten Basis B^* von V^* .

Lösung zu Aufgabe 4

a) Es seien $x, y, z \in V$. Dann ist

$$\Phi_{\beta}(x+y)(z) = \beta(x+y,z) = \beta(x,z) + \beta(y,z) = \Phi_{\beta}(x)(z) + \Phi_{\beta}(y)(z) = (\Phi_{\beta}(x) + \Phi_{\beta}(y))(z).$$

Ist weiterhin $\lambda \in \mathbb{K}$ dann ist

$$\Phi_{\beta}(\lambda x)(z) = \beta(\lambda x, z) = \lambda \beta(x, z) = \lambda \Phi(x)(z) = (\lambda \Phi_{\beta}(x))(z).$$

Damit haben wir gezeigt, dass Φ_{β} linear ist.

- b) Definiere $\beta(x,y) = \varphi(x)(y)$. Da φ linear ist, ist β linear in der ersten Komponente. Da $\varphi(x)$ für jedes $x \in V$ linear ist, ist β linear in der zweiten Komponente.
- c) Wir wählen B=E. Die duale Basis ist gegeben durch $B^*=(e_1^*,\ldots,e_4^*)$ mit $e_i^*(e_j)=\delta_{ij}$. Dann ist

$$M_{B^*,B}(\Phi_{\beta}) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$