ĆWICZENIE 44

POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

Instrukcja wykonawcza

1. Wykaz przyrządów

- 1. Komora pomiarowa zawierająca badane próbki: metalową o oporze R_m i półprzewodnikową o oporze R_s , grzejnik G i wentylator W
- 2. Mierniki oporu MR
- 3. Miernik temperatury MT wraz z termoparą
- 4. Zasilacz grzejnika z możliwością regulacji napięcia wyjściowego do 20 V, wydajność prądowa 1,5 A

2. Cel ćwiczenia

Pomiar oporu elektrycznego metalu i półprzewodnika w funkcji temperatury oraz wyznaczenie temperaturowego współczynnika oporu (rezystancji) metalu i szerokości pasma wzbronionego półprzewodnika (tzw. przerwy wzbronionej).

3. Schemat układu pomiarowego

MR - mierniki oporu (rezystancji)

MT - miernik temperatury z termoparą

K - komora pomiarowa R_m - opornik metalowy

R_s - opornik półprzewodnikowy

G - grzejnik

Z_G - zasilacz grzejnika

W - wentylator

Z_w - zasilacz wentylatora

Rys. 1. Schemat układu pomiarowego.

Rys.2. Stanowisko pomiarowe.

4. Przebieg pomiarów

- 1. Pomiar oporu przeprowadza się za pomocą mierników MR, które należy podłączyć do badanych oporników R_m i R_s .
- 2. Po sprawdzeniu układu pomiarowego przez opiekuna dydaktycznego, w temperaturze pokojowej odczytać wartości oporu metalu i półprzewodnika.
- 3. Następnie włączyć zasilacz grzejnika i podwyższać temperaturę próbek do 90°C stopniowo zwiększając napięcie zasilające grzejnik. Wartości oporu odczytywać co ok. 5°C. Optymalną szybkość grzania uzyskuje się przy następujących ustawieniach wartości napięcia wyjściowego zasilacza:

10 Vdla temperatur z zakresu $20 \,^{\circ}\text{C} - 40 \,^{\circ}\text{C}$ 15 Vdla temperatur $40 \,^{\circ}\text{C} - 65 \,^{\circ}\text{C}$ 20 Vdla temperatur $70 \,^{\circ}\text{C} - 90 \,^{\circ}\text{C}$

4. Po osiągnięciu temperatury 90 °C należy przerwać proces grzania przez zmniejszenie napięcia zasilania do zera i wyłączenie zasilacza.

Proces schładzania próbek można przyspieszyć włączając wentylator. Przed opuszczeniem stanowiska pomiarowego wyłączyć wentylator.

5. Opracowanie wyników

- 1. Na podstawie pomiarów narysować wykres zależności: $R_m = f(t)$ dla metalu oraz $lnR_s = f(1000/T)$ dla półprzewodnika. T oraz t oznaczają temperaturę wyrażoną odpowiednio w Kelwinach i stopniach Celsjusza.
- 2. Na wykresach dla wybranych punktów pomiarowych zaznaczyć graficznie niepewności pomiarowe wynikające z dokładności użytych przyrządów.
- 3.a) Metodą regresji liniowej wyznaczyć wraz z niepewnościami współczynniki a i b prostej najlepiej dopasowanej do punktów pomiarowych zależności $R_m = f(t)$ dla metalu. Nanieść tę prostą na wykres.

Porównując równanie wyznaczonej prostej

$$y = a \cdot x + b$$

z równaniem na opór metalu w funkcji temperatury

$$R_m(t) = R_o \cdot \alpha \cdot t + R_o$$

wyznaczyć temperaturowy współczynnik oporu α występujący w równaniu.

Zauważając, że zmienna x odpowiada temperaturze t, z porównania wynika, że

$$a = R_o \cdot \alpha$$
 oraz $b = R_o$.

Stad otrzymujemy:

$$\alpha = \frac{a}{R_0}$$
, czyli: $\alpha = \frac{a}{b}$. (1)

Mając uzyskane metodą regresji liniowej współczynniki prostej a i b oraz ich niepewności u(a) i u(b), na podstawie ostatniego równania (1) obliczyć niepewność złożoną $u_c(\alpha)$ temperaturowego współczynnika oporu.

b) Wiemy, że w zakresie wyższych temperatur w półprzewodniku dominuje przewodnictwo samoistne, a więc opór półprzewodnika opisany jest równaniem:

$$R_S = R_{S,o} \exp \frac{E_g}{2kT}$$
.

Po zlogarytmowaniu tego równania otrzymujemy $lnR_{s}=rac{E_{g}}{2kT}+lnR_{s,o}$,

co można zapisać w postaci:

$$lnR_s = 10^{-3} \frac{E_g}{2k} \cdot \frac{1000}{T} + lnR_{s,o}.$$
 (2)

Widzimy, że jest to zależność liniowa lnR_s od 1000/T.

Metodą regresji liniowej wyznaczyć wraz z niepewnościami współczynniki A i B prostej najlepiej dopasowanej do punktów pomiarowych zależności $\ln R_s = f(1000/T)$ dla półprzewodnika. Nanieść tę prostą na wykres.

Porównując równanie wyznaczonej prostej

$$y = A \cdot x + B$$

z równaniem (2) i zauważając, że 1000/T odpowiada zmiennej x wyznaczyć szerokość pasma wzbronionego E_q . Z tego porównania wynika, że:

$$10^{-3} \frac{E_g}{2k} = A$$

$$E_g = 2000 \cdot k \cdot A,$$
(3)

Zatem:

gdzie: $k = 1,3806 ext{ } 10^{-23} ext{ J/K} - stała ext{ Boltzmanna.}$

Mając uzyskany metodą regresji liniowej współczynnik kierunkowy prostej A i jego niepewność u(A), na podstawie równania (3) obliczyć niepewność $u_c(E_g)$ przerwy wzbronionej (niepewność stałej Boltzmana pomijamy).

4. Wyniki pomiarów i obliczeń wpisać do odpowiednich tabel.

6. Informacje dodatkowe

Szerokość przerwy energetycznej E_g w półprzewodniku wyrazić w dżulach [J] i elektronowoltach [eV].

7. Proponowane tabele (do zatwierdzenia u prowadzącego)

Tabela 1. Wyniki pomiarów temperatury i oporu metalu oraz obliczeń współczynników linii prostej i temperaturowego współczynnika oporu oraz ich niepewności.

l. p.	t	R _m	а	b	α
	°	Ω	$\frac{\Omega}{^{\circ}C}$	Ω	°C ⁻¹
1					
2					
3					
:					
n					
ΔΧ	(1)	(1)			
$u(X)$ $u_c(X)$	(1)	(1)	(2)	(2)	
$u_c(X)$					

Obliczenia Δt , u(t), ΔR_m , $u(R_m)$ przeprowadzić dla jednaj wybranej liczby porządkowej l.p.

Tabela 2. Wyniki pomiarów temperatury i oporu półprzewodnika oraz obliczeń współczynnika kierunkowego prostej i szerokości przerwy wzbronionej oraz ich niepewności.

l. p.	t	1000/T	Rs	InRs	Α	E_g	E_g
	°C	$\frac{1}{K}$	Ω		K	J	eV
1							
2							
3							
:							
n							
ΔΧ	(3)		(3)				
u(X)	(3)		(3)		(5)		
$u_c(X)$		(3)		(3) (4)			

Obliczenia Δt , u(t), $u_c(1000/T)$, ΔR_S , $u(R_S)$, $u_c(lnR_S)$ przeprowadzić dla jednej wybranej liczby porządkowej l.p.

Niepewności u(a) i u(b) otrzymane metodą regresji liniowej.

⁽⁴⁾ $u_c(InR_S) = u(R_S)/R_{S}$.

Niepewność u(A) otrzymana metodą regresji liniowej.