Group 19: Cryptocurrency Price Forecasting

Shriyan, Hugo, Marcus

01

Background

About Cryptocurrencies

04

Insights

Our Findings

02

Methodology

Our Approach

05

Limitations

Project Shortcomings and Future Work

03

Baseline Models

Implemented Other Models for Comparison

06

Conclusion

Summary of Our Work

A Digital Currency in Which Transactions Are Verified and Records Maintained By a Decentralized System Using Cryptography.

Machine Learning Problem Statement

Objective 1

Develop a Graph-Based Model to accurately predict the future prices of various cryptocurrencies

Objective 2

Use multiple features in the Graph-based model and add meaningful features to enhance performance

Objective 3

Implement baseline Graph models to compare our Model with.

Methodology Overview

Data Collection

Graph Construction

Feature Engineering

Model Implementation

Training and Evaluation

Data Processing

Binance API

fetch_data.py

Item Example

data_loader.py

main.py

Select Parameters

Add New Features

Feature Engineering

Features Added:

- Volume Quote Ratio
- Buy Sell Volume Ratio
- Buy Sell Quote Ratio
- Log Returns
- Stochastic Oscillator indicating momentum.
- Volume-Weighted Average Price
- Parkinson's volatility
- Garman-Klass volatility
- Average size of Trades
- Average Trade Quote Size

$$GKHV = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(ln \frac{h_i}{l_i} \right)^2 - \frac{1}{N} \sum_{i=1}^{N} (2ln2 - 1) \left(ln \frac{c_i}{o_i} \right)^2}$$

$$ParkinsonHV = \sqrt{\frac{1}{4Nln2} \sum_{i=1}^{N} \left(ln \frac{h_i}{l_i} \right)^2}$$

These features include liquidity metrics, price movement indicators, momentum indicators, volatility estimates, and trade behavior insights – all factors that can influence future price of a currency

What is MTGNN?

General Framework

Graph Convolution

Temporal Convolution

Model Architecture – Adapted from Paper

Our Contributions

Noise Removal

Resolve Data Leakage

Multiple Versions With Multiple Features

Baseline Models

Experiment Setup

Learning Rate: 0.001

• Epochs: 16

Optimizer: AdamW

Batch Size: 16

Ablation Study: Multiple features, Attention layer, Noise removal

Date Range: 2021/10/01 - 2024/10/01

Timeframe of Training Set: 1 Hour (27019 Samples per Currency) and 1 Day (1108 Samples per Currency)

Train-Test Split: First 60% of the dataset for training, Next 20% for validation, last 20% for testing

For Baseline Models, we initialized a Graph and Adjacency Matrix based on the correlation of currencies in 2024

Baseline Models

DCRNN (Diffusion Convolutional Recurrent Neural Network)

T-GCN (Temporal Graph Convolutional Network)

A3T-GCN (Attention 3 T-GCN)

Results – Baseline Models

Run details	Test Error	Test RMSE	Test RAE	Test CORR
T-CGN_1d	1458.4494	0.5929	0.6219	0.7289
A3T-GCN_1d	884.310	0.3931	0.5392	0.8241
DCRNN_1d	2472.27	0.8964	0.8674	0.3595
T-CGN 1h	7871.092	0.2928	0.1772	0.9360
A3T-GCN_1h	8497.078	0.3042	0.2328	0.9417
DCRNN_1h	51904.086	0.7519	0.8107	0.5655

Results - Baseline Models Visualization

Results - MTGNN

Run details	Test Error	Test RMSE	Test RAE	Test CORR
old_all_features_1h	686.432431	0.00242951	0.00021545	0.9950386
new_all_features_1h_attention	872.8712	0.00273965	0.00024256	0.99425787
new_all_features_1h	1293.12702	0.00333457	0.00029693	0.9919641
old_one_feature_1h	5966.82006	0.00716503	0.00288709	0.9979799
new_one_feature_1h	18007.9753	0.0124474	0.00514457	0.9946672
new_one_feature_1h_attention	20948.873	0.01342145	0.00552297	0.99392205
new_one_feature_1h_ma_attention	69975.6649	0.02452973	0.00665949	0.9873395
old_one_feature_1h_ma	73606.7123	0.02515811	0.00682768	0.9869195
new_one_feature_1h_ma	76468.436	0.0256425	0.00692622	0.9862451
old_one_feature_1d	1322001.6	0.10677032	0.04745535	0.7394306
new_one_feature_1d	1344669.62	0.10768181	0.05016395	0.667452

old = Original implementation, new = pytorch_geometric implementation, one_feature = Include close prices only

Results – Best MTGNN Visualization

Insights - Compare

- MTGNN has comparable performance on daily dataset without Adjacency Matrix to baseline models, meaning it was able to learn the correlation and dependencies between cryptocurrencies on its own.
- Performance is consistent across various features when using hourly data. Dataset size and shorter timeframe is the most important factor in determining prediction accuracy.
- MTGNN performed better than baseline models in every aspect, several reasons could be that the adjacency matrix it learnt captures interdependencies better than initializing a matrix. Additionally, the modules such as the mix-hop propagation contributes to overall performance

Limitations, Future Scope and Conclusion

- Even though difference is low, the value of Bitcoin is so high that difference is 500. This can lead to inaccuracy.
- While we used moving averages to train our hourly models to capture long-term dependencies, in the future, we plan on using more sophisticated ensemble methods such as training a meta-model using the prediction results of models in varying timeframes.
- Therefore, our MTGNN model performs better on various metrics.