Learning Disentangled Joint Continuous and Discrete Representations

Emilien Dupont NeurIPS 2018

What is this about?

A proposal of Unsupervised Disentangled Representation(UDR) method that can learn both continuous and discrete representations. To do this, they use a relaxed discrete distribution for prior and also control the amount of information encoded in each latent variable.

• What's better than previous works?

While β -VAE (and other works of UDR) can only learn continuous variables, this work can learn both discrete and continuous variables.

What's the key technique?

In the proposed method, they split the latent variables in to two parts: continuous variables ${\bf z}$ and discrete variables ${\bf c}$ and use loss function (similar to β -VAE with capacity)

$$\mathcal{L}(\theta, \phi) = \mathbb{E}_{q_{\phi}(\mathbf{z}, \mathbf{c} | \mathbf{x})}[\log p_{\theta}(\mathbf{x} | \mathbf{z}, \mathbf{c})] - \gamma |D_{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}) || p(\mathbf{z})) - C_z| - \gamma |D_{KL}(q_{\phi}(\mathbf{c} | \mathbf{x}) || p(\mathbf{c})) - C_c|$$

For discrete variables, they use a product of independent Gumbel Softmax distributions to parameterize $q(\mathbf{c}|\mathbf{x})$ and used Gumbel Max trick to sample from it. In the equation below, \mathbf{y} is continuous approximation of \mathbf{c} :

$$y_k = rac{\exp((\log lpha_k + g_k)/ au)}{\sum_i \exp((\log lpha_i + g_i)/ au)} \;\; g_k \sim ext{Gumbel}(0,1) \;\; au: ext{temperature}$$

How did they evaluate that?

Qualititative evaluation with MNIST, FashionMNIST, CelebA, Chairs using latent traversal + Quantitative evaluation with dSprites using β -VAE score.

Any discussions & insights?

The proposed method outperforms previous works when a discrete generative factor is prominent.

Which paper to read next?

Esmaeili, Babak, et al. "Structured disentangled representations." *The 22nd International Conference on Artificial Intelligence and Statistics*. PMLR, 2019.

