

UNIVERSITY OF CHITTAGONG

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Program: **B.Sc.** (Engineering) Session: 2022–2023 4th Semester

Lab_task_02

Course Title: DataBase Systems Lab Course Code: CSE-414

Submitted To

Dr. Rudra Pratap Deb Nath Associate Professor Department of Computer Science & Engineering University of Chittagong

Submitted By

Subha Shesgin ID: 23701036 Department of Computer Science & Engineering

Date of Submission: 31 May, 2025

Contents	
CHAPTER 5	2
CHAPTER 6	5
CHAPTER 7	13

Oracle Database 11g: SQL Fundamentals I (SQL Practice Exercises)

CHAPTER 5

1. Group functions work across many rows to produce one result per group. True/False

Answer:

True.

2. Group functions include nulls in calculations.

True/False

Answer:

False.

3. The WHERE clause restricts rows before inclusion in a group calculation. True/False

Answer:

True.

4. Find the highest, lowest, sum, and average salary of all employees. Label the columns as Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole number. Save your SQL statement as lab_05_04.sql. Run the query.

Answer:

Query:

```
SELECT

round (max(salary)) as MAXIMUM,

round(min(salary)) as MINIMUM,

round(sum(salary)) as SUM,

round(avg(salary)) as AVERAGE

from hr.employees;
```

5. Modify the query in lab_05_04.sql to display the minimum, maximum, sum, and average salary for each job type. Resave lab_05_04.sql as lab_05_05.sql. Run the statement in lab_05_05.sql.

Answer:

	JOB_ID	MAXIMUM	MINIMUM	SUM	AVERAGE
1	AD_PRES	24000	24000	24000	24000
2	AD_VP	17000	17000	34000	17000
3	IT_PROG	9000	4200	28800	5760
4	FI_MGR	12008	12008	12008	12008
5	FI_ACCOUNT	9000	6900	39600	7920
6	PU_MAN	11000	11000	11000	11000
7	PU_CLERK	3100	2500	13900	2780
8	ST_MAN	8200	5800	36400	7280

Query:

```
SELECT JOB_ID,
round (max(salary)) as MAXIMUM,
round(min(salary)) as MINIMUM,
round(sum(salary)) as SUM,
round(avg(salary)) as AVERAGE
from hr.employees
group by job_id;
```

6. Write a query to display the number of people with the same job. Generalize the query so that the user in the HR department is prompted for a job title. Save the script to a file named lab_05_06.sql. Run the query. Enter IT_PROG when prompted.

Answer: (Part 1)


```
SELECT job_id, COUNT(*)
FROM hr.employees
GROUP BY job_id;
```

(Part 2)

Query:

```
SELECT job_id , count(*)
from hr.employees
where upper (job_id) = upper ('&job_id')
group by job_id;
```

7. Determine the number of managers without listing them. Label the column as Number of Managers. Hint: Use the MANAGER_ID column to determine the number of managers.

Answer:

Query:

```
SELECT COUNT(distinct manager_id) AS "NUMBER OF MANAGERS"
FROM hr.employees;
```

8. Find the difference between the highest and lowest salaries. Label the column DIFFERENCE

Answer:

Query:

```
SELECT max(salary) - min(salary) as "DIFFERENCE"

from hr.employees;
```

9. Create a report to display the manager number and the salary of the lowest-paid employee for that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is \$6,000 or less. Sort the output in descending order of salary.

Answer:

1 2 3 4 5 6 7	102 205	9000
3 4 5 6	205	
4 5 6		8300
5	145	7000
6	146	7000
	108	6900
7	147	6200
	149	6200
8	147	6100

Query:

```
SELECT manager_id, MIN(salary)
FROM hr.employees
WHERE manager_id IS NOT NULL
GROUP BY manager_id
HAVING MIN(salary) >= 6000
ORDER BY MIN(salary) DESC;
```

10. Create a query to display the total number of employees and, of that total, the number of employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

Answer:


```
SELECT

COUNT(*) AS "TOTAL",

COUNT(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1995' THEN 1

END) AS "1995",

COUNT(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1996' THEN 1

END) AS "1996",

COUNT(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1997' THEN 1

END) AS "1997",

COUNT(CASE WHEN TO_CHAR(hire_date, 'YYYY') = '1998' THEN 1

END) AS "1998"

FROM hr.employees;
```

11. Create a matrix query to display the job, the salary for that job based on department number, and the total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate heading.

Answer:

	JOB	DEPT 20	DEPT 50	DEPT 80	DEPT 90	TOTAL
1	AD_PRES	(null)	(null)	(null)	24000	24000
2	AD_VP	(null)	(null)	(null)	34000	34000
3	MK_MAN	13000	(null)	(null)	(null)	13000
4	MK_REP	6000	(null)	(null)	(null)	6000
5	SA_MAN	(null)	(null)	61000	(null)	61000
6	SA_REP	(null)	(null)	243500	(null)	243500
7	SH_CLERK	(null)	64300	(null)	(null)	64300
8	ST_CLERK	(null)	55700	(null)	(null)	55700

```
SELECT DISTINCT
     ( JOB_ID )
                                    "Job",
2
     SUM(DECODE(DEPARTMENT_ID, 20, SALARY)) "Dept 20",
     SUM(DECODE(DEPARTMENT_ID, 50, SALARY)) "Dept 50",
     SUM(DECODE(DEPARTMENT_ID, 80, SALARY)) "Dept 80",
     SUM(DECODE(DEPARTMENT_ID, 90, SALARY)) "Dept 90",
     SUM (SALARY)
                                    TOTAL
  FROM
     HR.EMPLOYEES
  WHERE
     DEPARTMENT_ID IN ( 20, 50, 80, 90 )
11
  GROUP BY
12
     JOB_ID
  ORDER BY
14
     JOB_ID;
```

CHAPTER 6

1. Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

Answer:

	LOCATION_ID	STREET_ADDRESS	CITY	STATE_PROVINCE	COUNTRY_NAME
1	1000	1297 Via Cola di Rie	Roma	(null)	Italy
2	1100	93091 Calle della Tes	Venice	(null)	Italy
3	1200	2017 Shinjuku-ku	Tokyo	Tokyo Prefecture	Japan
4	1300	9450 Kamiya-cho	Hiroshima	(null)	Japan
5	1400	2014 Jabberwocky R	Southlake	Texas	United States of Ame
6	1500	2011 Interiors Blvd	South San Francisco	California	United States of Ame
7	1600	2007 Zagora St	South Brunswick	New Jersey	United States of Ame
8	1700	2004 Charade Rd	Seattle	Washington	United States of Ame

Query:

```
SELECT location_id,
street_address,
city,
state_province,
country_name
FROM hr.locations
NATURAL JOIN hr.countries;
```

2. The HR department needs a report of all employees. Write a query to display the last name, department number, and department name for all the employees..

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Martinez	20	Marketing
3	Davis	20	Marketing
4	Baida	30	Purchasing
5	Tobias	30	Purchasing
6	Li	30	Purchasing
7	Khoo	30	Purchasing
8	Himuro	30	Purchasing

3. The HR department needs a report of employees in Toronto. Display the last name, job, department number, and the department name for all employees who work in Toronto.

Answer:

	LAST_NAME	JOB_ID	DEPARTMENT_ID	DEPARTMENT_NAME
1	Martinez	MK_MAN	20	Marketing
2	Davis	MK_REP	20	Marketing

Query:

4. Create a report to display employees' last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp, Manager, and Mgr, respectively. Save your SQL statement as lab_06_04.sql. Run the query

1 Ozer 168 Cambrault 2 Bloom 169 Cambrault 3 Fox 170 Cambrault	R#
	148
3 Fox 170 Cambrault	148
	148
4 Smith 171 Cambrault	148
5 Bates 172 Cambrault	148
6 Kumar 173 Cambrault	148
7 Vishney 162 Errazuriz	147
8 Greene 163 Errazuriz	147

5. Modify lab_06_04.sql to display all employees including King, who has no manager. Order the results by the employee number. Save your SQL statement as lab_06_05.sql. Run the query in lab_06_05.sql.

Answer:

	EMPLOYEE	EMP#		MANAGER	MGR#
1	King		100	(null)	(null)
2	Yang		101	King	100
3	Garcia		102	King	100
4	James		103	Garcia	102
5	Miller		104	James	103
6	Williams		105	James	103
7	Jackson		106	James	103
8	Nguyen		107	James	103

Query:

```
SELECT
     e.last_name AS Employee,
     e.employee_id AS "Emp#",
     m.last_name AS Manager,
     m.employee_id AS "Mgr#"
5
  FROM
     hr.employees e
  LEFT JOIN
     hr.employees m
  ON
10
     e.manager_id = m.employee_id
11
  ORDER BY
12
     e.employee_id;
```

6. Create a report for the HR department that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label. Save the script to a file named lab_06_06.sql.

	EMPLOYEE	DEPT#		COLLEAGUE
1	Davis		20	Martinez
2	Martinez		20	Davis
3	Baida		30	Colmenares
4	Baida		30	Himuro
5	Baida		30	Khoo
6	Baida		30	Li
7	Baida		30	Tobias
8	Colmenares		30	Baida

```
SELECT
     e1.last_name AS "Employee",
     e1.department_id AS "Dept#",
     e2.last_name AS "Colleague"
  FROM
5
     hr.employees e1
  JOIN
     hr.employees e2
  ON
9
     e1.department_id = e2.department_id
10
  AND
11
     e1.employee_id != e2.employee_id
  ORDER BY
13
     e1.department_id, e1.last_name, e2.last_name;
```

7. The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

Answer:

(Part 1)

```
Name Null? Type

JOB_ID NOT NULL VARCHAR2(10)
JOB_TITLE NOT NULL VARCHAR2(35)
MIN_SALARY NUMBER(6)
MAX_SALARY NUMBER(6)
```

```
DESCRIBE hr.JOBS;
```

(Part 2)

	LAST_NAME	JOB_ID	DEPARTMENT_NAM SA	LARY GRADE_LEVEL
1	Olson	ST_CLERK	Shipping	2100 A
2	Markle	ST_CLERK	Shipping	2200 A
3	Philtanker	ST_CLERK	Shipping	2200 A
4	Gee	ST_CLERK	Shipping	2400 A
5	Landry	ST_CLERK	Shipping	2400 A
6	Vargas	ST_CLERK	Shipping	2500 A
7	Perkins	SH_CLERK	Shipping	2500 A
8	Patel	ST_CLERK	Shipping	2500 A

Query:

```
SELECT e.last_name,
       e.job_id,
2
       d.department_name,
        e.salary,
        CASE
           WHEN e.salary BETWEEN 0 AND 3000 THEN 'A'
           WHEN e.salary BETWEEN 3001 AND 6000 THEN 'B'
           WHEN e.salary BETWEEN 6001 AND 9000 THEN 'C'
           WHEN e.salary BETWEEN 9001 AND 12000 THEN 'D'
           ELSE 'E'
10
       END AS grade_level
11
  FROM HR.EMPLOYEES e
12
  JOIN HR.DEPARTMENTS d ON e.department_id = d.department_id
13
  ORDER BY e.salary;
```

8. The HR department wants to determine the names of all the employees who were hired after Davies. Create a query to display the name and hire date of any employee hired after employee Davies.

	LAST_NAME	HIRE_DATE
1	Yang	9/21/2015, 12:00:00
2	James	1/3/2016, 12:00:00
3	Miller	5/21/2017, 12:00:00
4	Williams	6/25/2015, 12:00:00
5	Jackson	2/5/2016, 12:00:00
6	Nguyen	2/7/2017, 12:00:00
7	Chen	9/28/2015, 12:00:00
8	Sciarra	9/30/2015, 12:00:00

```
SELECT last_name, hire_date
FROM hr.employees
WHERE hire_date > (
SELECT hire_date
FROM hr.employees
WHERE last_name = 'Davies'
);
```

9. The HR department needs to find the names and hire dates of all the employees who were hired before their managers, along with their managers' names and hire dates. Save the script to a file named lab_06_09.sql..

1 Garcia 1/13/2011, 12:00:00 2 Jacobs 6/7/2012, 12:00:00 3 Higgins 6/7/2012, 12:00:00 4 Brown 6/7/2012, 12:00:00 5 Faviet 8/16/2012, 12:00:0 6 Gruenberg 8/17/2012, 12:00:0	Yang	9/21/2015, 12:00:00
3 Higgins 6/7/2012, 12:00:00 4 Brown 6/7/2012, 12:00:00 5 Faviet 8/16/2012, 12:00:00	Yang	9/21/2015, 12:00:00 9/21/2015, 12:00:00
4 Brown 6/7/2012, 12:00:00 5 Faviet 8/16/2012, 12:00:0	_	
5 Faviet 8/16/2012, 12:00:0	Vana	
-, -, -, -, -, -, -, -, -, -, -, -, -, -	Tallg	9/21/2015, 12:00:00
6 Gruenberg 8/17/2012, 12:00:0	(Gruenberg	8/17/2012, 12:00:00
	(Yang	9/21/2015, 12:00:00
7 Li 12/7/2012, 12:00:0	(King	6/17/2013, 12:00:00
8 Kaufling 5/1/2013, 12:00:00		6/17/2013, 12:00:00

```
SELECT
     e.last_name AS "Employee",
     e.hire_date AS "Employee Hire Date",
     m.last_name AS "Manager",
     m.hire_date AS "Manager Hire Date"
  FROM
     hr.employees e
  JOIN
8
     hr.employees m
  ON
10
     e.manager_id = m.employee_id
11
  WHERE
12
     e.hire_date < m.hire_date
13
  ORDER BY
     e.hire_date;
```

CHAPTER 7

1. The HR department needs a query that prompts the user for an employee last name. The query then displays the last name and hire date of any employee in the same department as the employee whose name they supply (excluding that employee). For example, if the user enters Zlotkey, find all employees who work with Zlotkey (excluding Zlotkey).

⑪	<u>(i)</u>	Download ▼ Ex	ecution time: 0.001 seconds
		LAST_NAME	HIRE_DATE
1		Singh	01-OCT-14
2		Partners	05-JAN-15
3		Errazuriz	10-MAR-15
4		Cambrault	15-OCT-17
5		Tucker	30-JAN-15
6		Bernstein	24-MAR-15
7		Hall	20-AUG-15

```
SELECT last_name, to_char (hire_date, 'DD-MON-YY') hire_date
FROM HR.EMPLOYEES
WHERE department_id = ( SELECT department_id
FROM hr.employees
WHERE last_name = initcap ('&&last_name'))
AND last_name <> initcap ('&last_name');
```

2. Create a report that displays the employee number, last name, and salary of all employees who earn more than the average salary. Sort the results in order of ascending salary.

	EMPLOYEE_ID	LAST_NAME	SALARY
1	203	Jacobs	6500
2	123	Vollman	6500
3	165	Lee	6800
4	113	Popp	6900
5	155	Tuvault	7000
6	161	Sewall	7000
7	178	Grant	7000
8	164	Marvins	7200

```
SELECT employee_id, last_name, salary
FROM hr.employees
WHERE salary > (
SELECT AVG(salary)
FROM hr.employees
)
ORDER BY salary ASC;
```

3. Write a query that displays the employee number and last name of all employees who work in a department with any employee whose last name contains the letter "u." Save your SQL statement as lab_07_03.sql. Run your query.

Answer:

	EMPLOYEE_ID	LAST_NAME
1	120	Weiss
2	121	Fripp
3	122	Kaufling
4	123	Vollman
5	124	Mourgos
6	125	Nayer
7	126	Mikkilineni
8	127	Landry

Query:

```
SELECT employee_id, last_name
FROM hr.employees
WHERE department_id IN (
SELECT department_id
FROM hr.employees
WHERE LOWER(last_name) LIKE '%u%'
);
```

4. The HR department needs a report that displays the last name, department number, and job ID of all employees whose department location ID is 1700.

	LAST_NAME	DEPARTMENT_ID	JOB_ID
1	Whalen	10	AD_ASST
2	Himuro	30	PU_CLERK
3	Tobias	30	PU_CLERK
4	Baida	30	PU_CLERK
5	Li	30	PU_MAN
6	Colmenares	30	PU_CLERK

```
SELECT last_name, department_id, job_id
FROM HR.EMPLOYEES
WHERE department_id IN (SELECT department_id
FROM HR.DEPARTMENTS
WHERE location_id = 1700)
ORDER BY department_id;
```

5. Create a report for HR that displays the last name and salary of every employee who reports to King.

Answer:

	EMPLOYEE	SALARY
1	Yang	17000
2	Garcia	17000
3	Li	11000
4	Weiss	8000
5	Fripp	8200
6	Kaufling	7900
7	Vollman	6500
8	Mourgos	5800

```
SELECT last_name, salary
FROM HR.EMPLOYEES
WHERE manager_id IN (SELECT employee_id
FROM HR.EMPLOYEES
WHERE last_name = 'King');
```

6. Create a report for HR that displays the department number, last name, and job ID for every employee in the Executive department.

Answer:

	DEPARTMENT_ID	LAST_NAME	JOB_ID
1	90	King	AD_PRES
2	90	Yang	AD_VP
3	90	Garcia	AD_VP

Query:

7. Modify the query in lab_07_03.sql to display the employee number, last name, and salary of all employees who earn more than the average salary, and who work in a department with any employee whose last name contains a "u." Resave lab_07_03.sql as lab_07_07.sql. Run the statement in lab_07_07.sql.

Answer:

	EMPLOYEE_ID	LAST_NAME	SALARY
1	120	Weiss	8000
2	121	Fripp	8200
3	122	Kaufling	7900
4	123	Vollman	6500
5	145	Singh	14000
6	146	Partners	13500
7	147	Errazuriz	12000
8	148	Cambrault	11000

```
SELECT department_id, last_name, job_id
FROM HR.EMPLOYEES
WHERE department_id in (SELECT department_id
FROM HR.DEPARTMENTS
WHERE department_name = 'Executive');
```