Tutorial 3

EC31003: Digital Electronic Circuits

Time limit (25 min.)

- 1. Identify the type of hazard and show the corresponding hazard free implementation for the following Boolean expression F(A,B,C,D) = (A+C)(A'+D')(B'+C'+D).
- a. Represent the following expression using two-input NAND gate: Y = AB+B'C+CD'E+DEF'
 - b. Find the total cost of the following expression? Y = ((P+Q)'+(((R+S)')'+T)')'
 - c. Find the value of Gate input cost G and GN from the following POS function: $F(A,B,C,D) = \prod M(0, 1, 4, 7).D(6, 11, 14, 15)$
- 3. a. Draw the KMap for the function $F(A,B,C,D) = \Pi M(2, 3, 6, 8, 9, 12, 13, 14)$
 - b. Determine the minimized function in product of sums form.
 - c. Are there any static-0 hazards in the minimized function? If yes, find them and eliminate them.

Time limit (20 min.)

- 4. Write the truth table for the following Boolean expression, and realize it using only an 8:1 multiplexer. $F(A,B,C,D)=\overline{AB}+BD+AB\overline{C}$.
- 5. a. In the following circuit X is given by -

b. Find the logic function F implemented by the below multiplexer.

c. Find the canonical POS form solution of the below diagram.

Solution 1

Static 0 hazard.

The K-map implementation for the expression is shown below. It has four pairs of adjacent 0's that are not covered by a common loop. The arrows indicate each 0 which is not being looped which causes a 0 hazard. If A=0, B=1, D=0 and C changes from 0 to 1, there is a chance that spike can appear at the output for any combination of gate delays.

Solution 1 (cont.)

Elimination of this hazard can be done using three additional loops in the K Map which includes the redundant terms and this will eliminate the 0-hazards, F = (A + C)(A' + D')(B' + C' + D)(C + D')(A + B' + D)(A' + B' + C')

The final K Map

Solution 2 (a)

a. Y = ((AB)'. (B'C)'. (((CD')')'E)'. (((DE)')'F')')'

Solution 2 (b)

b. Total Cost(TC) = Number of gates +Number of gate Inputs

$$= 5 + 10 = 15$$

Note: Here, we have considered 2-input NOR gate implementation. If we consider two-level with no restriction in fan-in of logic gates then the expression will be (P+Q)(R+S+T) and number of gate inputs will be 5+2=7. As, here we used two-input NOR gate implementation so the no. of gate inputs $=5 \times 2 = 10$

2. b.
$$Y = ((P+Q)' + ((R+S)')' + T)')' (2-input NOR gate)$$

Total cost = Number of gates + Number of gate 2 inputs

No. of gates = 5

No. of gate inputs = $(2 \times 5) = 10$

((R+S)')' (O)

((R+S)')' + T)'

No. of gate inputs = $((R+S)')' + ((R+S)')' + ((R+S)')' + T)'$

No. of gate inputs = $((R+S)')' + ((R+S)')' + T)'$

No. of gate inputs = $((R+S)')' + ((R+S)')' + T)'$

Solution 2 (c)

2c. G (Gate input cost without counting NOT gates)

GN (Gate input cost counting NOT gates)

 $F = \prod M(0, 1, 4, 7).D(6, 11, 14, 15)$

= (A+B+C)(A+C+D)(B'+C')

L = 8, T = 3, N = 2,

G = L+T = 11 and GN = L+T+N=13

2.C

FCA,B,C,D) = 7TM(0,1,4,7).D(6,11,14,15

$$F(A,B,4D) = (A+B+c)(A+C+D)$$

$$(B+C)$$

Solution 3

Given function is

Solution 4

f =	AB+BD+ABC
=	$\overline{A} + (\overline{B} + B)(\overline{B} + D) + AB\overline{C}$
=	A+B+D+ABC

Truth table for the given function f is

					3. FOLL IGHOURT 18
Α	В	C	$D \mid$	f	
0	0	0	0	1	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	1	k-map
0	1	0	0	1	CD
0	1	0	1	1	
0	1	1	0	1	00 1 1 1 3 1 2
0	1	1	1	1	01 1 1 1 1 1
1	0	0	0	1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	0	0	1	1	
1	0	1	0	1	$10 1_{8} 1_{9} 1_{11} 1_{10}$
1	0	1	1	1	
1	1	0	0	1	<i>€</i> ′ ∞
1	1	0	1	1	See .
1	1	1	0	0	
1	1	1	1	1	
	ı			<u></u>	

realization of given function using $8 \times 1 \text{ MUX}$

		BCD					7	I.	I,
100	Α	I_0	I_1	I_2	I_3	<u> 1</u> 4	$\frac{I_5}{\bigcirc}$	16	<u>-</u>
	0	0	1	(2)	3	4	(5)	(6)	7
				<u> </u>	11)	(12)	(13)		(16)
	1	(8)	9	(10)	(11)	(12)		-4	$-\frac{\smile}{1}$
		1	1	1	1	1	1	Ŷ	,
			7. .					Ä	

Solution 5 (a)

MUX 1

Y=A'B'.0+A'B.1+AB'.1+AB.0

Y=A'B+AB'

MUX 2

X=Y'C'.0+Y'C.1+YC'.1+YC.0

X=Y'C+YC'

X=(A'B'+AB)C+(A'B+AB')C'

X=A'B'C+ABC+A'BC'+AB'C'

Solution 5 (b) & (c)

Sol. 5 (b) - Output is 1 only when the select lines are PQ' or P'Q. Hence, F=P'Q+PQ'-→XOR(P,Q)

Sol. 5 (c) -