1 Обзор конструкции

Чтобы не перегружать рисунок, были добавлены не все соединения АХІ и IRQ.

TimeCard частично работает от генератора SOM с частотой 200 МГц. Ядра NetTimeLogic со всеми высокоточными деталями работают на основе источника тактовой частоты МАС 10 МГц.

1.1 Светодиоды состояния

На данный момент светодиоды состояния не подключены к AXI GPIO Ext и используются напрямую FPGA.

LED1: Горит светодиод внутренней тактовой частоты FPGA (50

МГц). LED2: Горит светодиод тактовой части РСІе (62,5 МГц).

LED3: PPS FPGA (время локальных часов через PPS Master) LED4: PPS MAC

(дифференциальные входы от МАС через дифференциальный буфер)

В зависимости от версии аппаратного обеспечения имеются также светодиоды RGB (SMA1-4 и GNSS). Этими светодиодами можно управлять через I2C.

1.2 Сопоставление адресов AXI

Межсоединение AXI имеет три главных устройства, каждый из которых имеет доступ к подчиненным устройствам. Один из них — это интерфейс AXI PCIe, а другой — UART-AXI, имеющий постоянный доступ. Статическая конфигурация выполняет только базовую настройку после сброса.

Ведомые интерфейсы AXI имеют следующие адреса:

Акси-ведомый интерфейс	Раб	Смещенный адрес	Высокий адрес
S_AXI_CTL	Управление AXI PCIe	0x0001_0000	0x0001_0FFF
axi4l_slave	Версия	0x0002_0000	0x0002_0FFF
S_AXI	AXI GPIO Ext.	0x0010_0000	0x0010_0FFF
S_AXI	Акси GPIO GPS/MAC	0x0011_0000	0x0011_0FFF
S_AXI	ВЫБОР AXI GPIO	0x0013_0000	0x0013_0FFF
S_AXI	AXI GPIO SMA KAPTA1	0x0014_0000	0x0014_0FFF
S_AXI	СТАТУС АХІ GPIO SMA	0x0014_2000	0x0014_2FFF
S_AXI	АСИ І2С	0x0015_0000	0x0015_FFFF
S_AXI	Акси UART 16550 GPS	0x0016_0000	0x0016_FFFF
S_AXI	Акси UART 16550 GPS2	0x0017_0000	0x0017_FFFF
S_AXI	Акси UART 16550 MAC	0x0018_0000	0x0018_FFFF
S_AXI	Акси UART 16550 NMEA	0x0019_0000	0x0019_FFFF
S_AXI	AXI GPIO SMA KAPTA2	0x0022_0000	0x0022_0FFF
S_AXI_LITE	АСИ ХВИКАП	0x0030_0000	0x0030_FFFF
AXI_LITE	Флэш-память AXI Quad SPI	0x0031_0000	0x0031_FFFF
axi4l_slave	НТЛ Прил. Часы	0x0100_0000	0x0100_FFFF
axi4l_slave	Сигнал NTL TS0 (ГНСС)	0x0101_0000	0x0101_FFFF
axi4l_slave	НТЛ-сигнал TS1	0x0102_0000	0x0102_FFFF
axi4l_slave	НТЛ ППС Мастер	0x0103_0000	0x0103_FFFF

axi4l_slave	NTL PPS ведомый	0x0104_0000	0x0104_FFFF
axi4l_slave	NTL TOD Ведомый	0x0105_0000	0x0105_FFFF
axi4l_slave	НТЛ-сигнал TS2	0x0106_0000	0x0106_FFFF
axi4l_slave	NTL IRIG подчиненный	0x0107_0000	0x0107_FFFF
axi4l_slave	НТЛ ИРИГ Мастер	0x0108_0000	0x0108_FFFF
axi4l_slave	NTL DCF-ведомый	0x0109_0000	0x0109_FFFF
axi4l_slave	NTL DCF-мастер	0x010A_0000	0x010A_FFFF
axi4l_slave	НТЛ ТОД Мастер	0x010B_0000	0x010B_FFFF
axi4l_slave	НТЛ Сигнал ТС ППС	0x010C_0000	0x010C_FFFF
axi4l_slave	Генератор сигналов NTL1	0x010D_0000	0x010D_FFFF
axi4l_slave	Генератор сигналов NTL2	0x010E_0000	0x010E_FFFF
axi4l_slave	Генератор сигналов NTL3	0x010F_0000	0x010F_FFFF
axi4l_slave	Генератор сигналов NTL4	0x0110_0000	0x0110_FFFF
axi4l_slave	НТЛ-сигнал TS3	0x0111_0000	0x0111_FFFF
axi4l_slave	НТЛ-сигнал TS4	0x0112_0000	0x0112_FFFF
axi4l_slave	Частотомер 1	0x0120_0000	0x0120_FFFF
axi4l_slave	Частотомер 2	0x0121_0000	0x0121_FFFF
axi4l_slave	Частотомер 3	0x0122_0000	0x0122_FFFF
axi4l_slave	Частотомер 4	0x0123_0000	0x0123_FFFF

примечание:

Ведомая версия имеет один единственный 32-битный регистр. Верхние 16 бит показывают номер версии золотого изображения, а нижние 16 бит — номер версии обычного изображения.

Напримеј

Регистр 0x0200_0000 золотого изображения показывает: 0x0001_0000 Регистр 0x0200_0000 обычного изображения показывает: 0x0000_0003 **Если младшие 16 бит равны 0x0000, золотой образ загрузился.**

1.3 Источники настройки часов

Регулируемые часы поддерживают различные источники настройки:

- PPS (c GNSS) (значение регистра 3)
- IRIG (значение регистра 2)
- DCF (значение регистра 6)

По умолчанию выбран PPS с GNSS. Другие источники времени можно выбрать с помощью NTL Adj. Регистр ClockSelect (смещение: 0x0100_0008).

1.4 Отображение прерываний, сигнализированных сообщением

Прерывания в конструкции подключены к вектору MSI памяти AXI, сопоставленному с ядром PCI Express, через контроллер MSI. PCI Express Core необходимо установить для MSI_enable значение «1». Контроллер MSI отправляет запрос INTX_MSI c MSI_Vector_Num в ядро PCI Express, а с помощью INTX_MSI_Grant прерывание подтверждается. Если имеется несколько ожидающих прерываний, сообщения отправляются по принципу циклического перебора. Прерывания уровня (например, AXI UART 16550) требуют как минимум один раунд для следующего прерывания.

Номер MSI	Источник прерывания
0	НТЛ Сигнал ТС ППС
1	HTЛ-сигнал TS0
2	HTЛ-сигнал TS1
3	Акси UART 16550 GPS
4	Акси UART 16550 GPS2
5	Акси UART 16550 MAC
6	HTЛ-сигнал TS2
7	АСИ І2С
8	АСИ ХВИКАП
9	Флэш-память AXI Quad SPI
10	Акси UART 16550 NMEA
11	Генератор сигналов NTL1
12	Генератор сигналов NTL2
13	Генератор сигналов NTL3
14	Генератор сигналов NTL4
15	HTЛ-сигнал TS3
16	НТЛ-сигнал TS4

1.5 Разъемы (SMA) / Таблица соединений SMA

Разъемы SMA имеют следующее сопоставление по умолчанию:

AHT1:

Тактовый вход 10 МГц

AHT2:

PPS-вход

AHT3:

Выход тактового сигнала 10 МГц (зацикленный тактовый сигнал 10 МГц) ightarrow МАС RF OUT (после буфера синхронизации)

AHT4:

Выход PPS от мастера PPS

Это сопоставление по умолчанию и направление можно изменить с помощью AXI GPIO SMA MAP1 и AXI GPIO SMA MAP2.

GPIO используется для выбора входов, а GPIO2 — для выбора выходов.

AXI GPIO SMA KAPTA1

Преобразование входа 1 (ANT1) с битом 15 GPIO в 0:

- O Тактовый сигнал 10 МГц от разъема SMA(по умолчанию)
- 1 Внешний PPS 1 (переходит к селектору источника PPS 1)
- 2 Внешний PPS 2 (переходит к селектору источника PPS 2) Сигнал
- 4 поступает на TS1
- 8 Сигнал поступает на TS2 Сигнал поступает на
- 16 ведомое устройство IRIG Сигнал поступает на
- 32 ведомое устройство DCF Сигнал поступает на
- 64 TS3
- 128 Сигнал поступает на TS4
- 256 Сигнал поступает на частотомер 1.
- 512 Сигнал поступает на частотомер 2.
- 1024 Сигнал поступает на частотомер 3.
- 2048 Сигнал поступает на частотомер 4.

32768 Включение входа(по умолчанию 1→ANT1 является входом)

Входные данные могут быть сопоставлены с несколькими приемниками. Например, при значении 5 вход отображается как внешний PPS 1 и дополнительно поступает на TS1.

примечание:

Использовать ANT1 в качестве источника системной синхронизации можно только 0.

Сопоставление входа 2 (ANT2) с битом GPIO с 31 по 16:

- 0 нет сопоставления ANT2
- 1 Внешний PPS 1 (переходит к селектору источника PPS 1)(**по**
- 2 **умолчанию)** Внешний PPS 2 (идет к селектору источника PPS 2)
- 4 Сигнал идет к TS1
- 8 Сигнал поступает на TS2 Сигнал поступает на
- 16 ведомое устройство IRIG Сигнал поступает на
- 32 ведомое устройство DCF Сигнал поступает на
- 64 TS3
- 128 Сигнал поступает на TS4
- 256 Сигнал поступает на частотомер 1.
- 512 Сигнал поступает на частотомер 2.
- 1024 Сигнал поступает на частотомер 3.
- 2048 Сигнал поступает на частотомер 4.
- 32768 Включение входа(по умолчанию 1→ANT2 является входом)

Входные данные могут быть сопоставлены с несколькими приемниками. Например, при значении 9 вход отображается как внешний PPS 1 и дополнительно поступает на TS2.

ПРИМЕЧАНИЕ:

Если нижний вход уже имеет сопоставление с приемником, сопоставление Вход2 будет игнорироваться.

Преобразование выхода 3 (ANT3) с битом 15 GPIO2 в 0:

- 0 Тактовый выход 10 МГц от МАС(по
- 1 **умолчанию)** PPS от FPGA (PPS Master) PPS от
- 2 MAC
- 4 ΠΠC ot ΓHCC 1
- 8 ППС из ГНСС 2
- 16 Главный выход IRIG
- 32 Главный выход DCF
- 64 Генератор сигналов 1, выход
- 128 Генератор сигналов 2, выход
- 256 Генератор сигналов 3, выход
- 512 Генератор сигналов 4, выход

8192 Земля

16384 BKK

Любое другое значение отображает тактовый выход 10 МГц от МАС к выходу.

Сопоставление выхода 4 (ANT4) с битом 31 GPIO2 до 16:

- 0 Тактовый выход 10 МГц от MAC PPS от FPGA
- 1 (ведущего PPS)(по умолчанию) PPS от MAC
- 2 PPS ot GNSS 1

4

- 8 ППС из ГНСС 2
- 16 Главный выход IRIG
- 32 Главный выход DCF
- 64 Генератор сигналов 1, выход
- 128 Генератор сигналов 2, выход
- 256 Генератор сигналов 3, выход
- 512 Генератор сигналов 4, выход

8192 Земля

16384 BKK

32768 Включение выхода(по умолчанию 1→ANT4 выводится)

Любое другое значение отображает PPS из FPGA (ведущего PPS) на выход.

AXI GPIO SMA KAPTA2

Преобразование входа 3 (ANT3) с битом 15 GPIO в 0:

- 0 нет сопоставления ANT3
- 1 Внешний PPS 1 (переходит к селектору источника PPS 1)
- 2 Внешний PPS 2 (переходит к селектору источника PPS 2)
- 4 Сигнал поступает на TS1
- 8 Сигнал поступает на TS2 Сигнал поступает на
- 16 ведомое устройство IRIG Сигнал поступает на
- 32 ведомое устройство DCF Сигнал поступает на
- 64 TS3
- 128 Сигнал поступает на TS4
- 256 Сигнал поступает на частотомер 1.
- 512 Сигнал поступает на частотомер 2.
- 1024 Сигнал поступает на частотомер 3.
- 2048 Сигнал поступает на частотомер 4.

Входные данные могут быть сопоставлены с несколькими приемниками. Например, при значении 5 вход отображается как внешний PPS 1 и дополнительно поступает на TS1.

Сопоставление входа 4 (ANT4) с битом GPIO с 31 по 16:

- 0 нет сопоставления ANT2
- 1 Внешний PPS 1 (переходит к селектору источника PPS 1)
- 2 Внешний PPS 2 (переходит к селектору источника PPS 2)
- 4 Сигнал поступает на TS1
- 8 Сигнал поступает на TS2 Сигнал поступает на
- 16 ведомое устройство IRIG Сигнал поступает на
- 32 ведомое устройство DCF Сигнал поступает на
- 64 TS3
- 128 Сигнал поступает на TS4
- 256 Сигнал поступает на частотомер 1.
- 512 Сигнал поступает на частотомер 2.
- 1024 Сигнал поступает на частотомер 3.
- 2048 Сигнал поступает на частотомер 4.
- 32768 Включение входа**(по умолчанию 0→ANT4 выводится)**

Входные данные могут быть сопоставлены с несколькими приемниками. Например, при значении 9 вход отображается как внешний PPS 1 и дополнительно поступает на TS2.

ПРИМЕЧАНИЕ:

Если нижний вход уже имеет сопоставление с приемником, сопоставление Вход4 будет игнорироваться.

Преобразование выхода 1 (ANT1) с битом 15 GPIO2 в 0:

- 0 Тактовый выход 10 МГц от MAC PPS
- 1 от FPGA (ведущего PPS) PPS от MAC
- 2
- 4 ΠΠC ot ΓHCC 1
- 8 ППС из ГНСС 2
- 16 Главный выход IRIG
- 32 Главный выход DCF
- 64 Генератор сигналов 1, выход
- 128 Генератор сигналов 2, выход
- 256 Генератор сигналов 3, выход
- 512 Генератор сигналов 4, выход

8192 Земля

16384 BKK

32768 Включение выхода(по умолчанию 0→АNT1 является входом)

Любое другое значение отображает тактовый выход 10 МГц от МАС к выходу.

Сопоставление выхода 2 (ANT2) с битом 31 GPIO2 до 16:

- 0 Тактовый выход 10 МГц от MAC PPS
- 1 от FPGA (ведущего PPS) PPS от MAC

2

- 4 ΠΠC ot ΓHCC 1
- 8 ППС из ГНСС 2
- 16 Главный выход IRIG
- 32 Главный выход DCF
- 64 Генератор сигналов 1, выход
- 128 Генератор сигналов 2, выход
- 256 Генератор сигналов 3, выход
- 512 Генератор сигналов 4, выход

8192 Земля

16384 BKK

32768 Включение выхода(по умолчанию 0→ANT2 является входом)

Любое другое значение отображает PPS из FPGA (ведущего PPS) на выход.

1.6 Сопоставление GPIO

GPIO (смещение 0x0000)

GPIO2 (смещение 0x0008)

AXI GPIO Ext.

РЕГ	Бит31	Бит30- 8	Бит7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0
GPIO (входной)	-	-	-	-	-	-	-	-	ключ2	ключ1
GPIO2 (выход)	'0' → YAPT '1' → I2C Clk com.	-	-	-	-	ЭСППЗУ WP	светодиод4 (банкомат Северной Каролины)	светодиодЗ (банкомат Северной Каролины)	светодиод2 (банкомат Северной Каролины)	светодиод1 (банкомат Северной Каролины)

Акси GPIO GPS/MAC

РЕГ	Бит7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0
GPIO (входной)	-	-	-	-	-	-	МАК БУТ	MAC
								ТРЕВОГА
GPIO2 (выход)	-	-	-	-	-	-	GPS2 PCT	GPS PCT

ВЫБОР AXI GPIO

РЕГ	Бит7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0
GPIO (входной)	-	-	Часы МАС	Часы СМА	-	ППС ГНСС	ППС МАК	ППС СМА
			выбрано	выбрано		обнаружен	обнаружен	обнаружен
GPIO2 (выход)	-	-	Выбирать	Выбирать	-	-	Выберите источн	ики PPS
			МАС-часы	Часы SMA			(по умолчанию 0)	
			(по умолчанию 0)	(по умолчанию 0)			0:	
							PPS Источник	:
							автоматически выбрано	
							(подробности в	главе 1.9)

				1:
				Принудительное СМА:
				Ведомый PPS и MAC. Источником
				PPS является SMA.
				разъем
				2:
				Принудительный МАС:
				Ведомым источником PPS
				является МАС, а источником
				PPS для MAC является GNSS
				PPS.
				3: Принудительная ГНСС:
				Ведомый PPS и MAC Источником
				PPS является GNSS PPS.
1	ı	ı		

AXI GPIO SMA MAP1 (ANT1/ANT2 в качестве входов, ANT3/ANT4 в качестве выходов)

РЕГ	Бит15	Бит14-	Бит11	Б10	Бит9	Бит8	Бит7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0
		12												
GPIO (выход)	Вход	неиспользованный	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в	ANT1 в
	Давать возможность		Частота Cnt	Частота Cnt	Частота Cnt	Частота Cnt	Вход TS4	вход TS3	DCF	ИРИГ	Вход TS2	вход TS1	ППС 2	ППС 1
			4 входа	3 входа	2 входа	1 вход			Раб	Раб			вход	вход
GPIO2 (выход)	Выход	Биты 14-0 равн	ы 0: от 10 МГц до	ANT3. Бит 0		•	•	•		•	1	•	•	•
	Давать возможность	установлен: от	лен: от FPGA PPS до ANT3. Бит 1 установлен:											
		от MAC PPS до A	ANT3. Бит 2 устано	влен: от GNSS1 P	PS									
		до ANT3. Бит 3 у	установлен: от GN	ISS2 PPS до ANT3.	Бит									
		4 установлен. :	Выход IRIG на AN	Т3, бит 5 установл	ен:									
		Выход DCF на A	ANT3, бит 6 устано	влен: Генератор										
		сигнала 1 на АМ	NT3 Бит 7 установ.	пен: Генератор										
		сигнала 2 на АМ	NT3 Бит 8 установ.	пен: Генератор										
		сигнала 3 на АМ	NT3 Бит 9 установ.	пен: Сигнал										
		Генератор 4 на	ANT3 Бит 13 уста	новлен: GND на A	NT3									
		Бит 14 установл	14 установлен: VCC на ANT3.											

		ПРИМЕЧАНИЕ	РИМЕЧАНИЕ. Одновременно можно установить только один бит (из бита 14-0).														
РЕГ	Бит31	Бит30-	Бит27	Бит26	Бит25	Бит24	Бит23	Бит22	Бит21	Бит20	Бит19	Бит18	Бит17	Бит16			
		28															
GPIO (выход)	Вход	неиспользованный	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в	ANT2 в			
	Давать возможность		Частота Cnt	Частота Cnt	Частота Cnt	Частота Cnt	Вход TS4	вход TS3	DCF	ИРИГ	Bход TS2	вход TS1	ППС 2	ППС 1			
			4 входа	3 входа	2 входа	1 вход			Раб	Раб			вход	вход			
GPIO2 (выход)	Выход	Биты 30–16 ра	авны 0: от 10 МГ	ц до ANT4. Бит 1	5		•	•	•	•			•	•			
	Давать возможность	установлен: о	т FPGA PPS до Al	PPS go ANT4. Бит 17													
		установлен: о	т MAC PPS до AN	IT4. Бит 18													
		установлен: о	от GNSS1 PPS до л	ANT4. Бит 19													
		установлен: о	от GNSS2 PPS до л	ANT4. Бит 20													
		установлен. :	Выход IRIG на А	NT4 Бит 21													
		установлен: В	Выход DCF на AN	Т4 Бит 22 устано	влен:												
		Генератор си	гнала 1 на ANT4	Бит 23 установл	en:												
		Генератор си	гнала 2 на ANT4	Бит 24 установл	ен:												
		Генератор си	гнала 3 на ANT4	Бит 25 установл	ен:												
		Сигнал Генер	атор 4 на ANT4.	Бит 26 установл	eH:												
		GND на ANT4.															
		Бит 27 устано	влен: VCC на AN	T4.													
		Применацие	. Одновременно	MONING VETALISTI	TI TOU VO 05:	514T (143 514TOS 20	16)										
		ПРИМЕЧАНИЕ	. одновременно	можно установи	ть только один	оит (из оитов 30-	-10).										

AXI GPIO SMA MAP2 (ANT1/ANT2 в качестве выходов, ANT3/ANT4 в качестве входов)

РЕГ	Бит15	Бит14-	Бит11	Б10	Бит9	Бит8	Бит7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0
		12												
GPIO (выход)	Вход	неиспользованный	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в	ANT3 в
	Давать возможность		Частота Cnt	Частота Cnt	Частота Cnt	Частота Cnt	Вход TS4	вход TS3	DCF	ИРИГ	Bход TS2	вход TS1	ППС 2	ППС 1
			4 входа	3 входа	2 входа	1 вход			Раб	Раб			вход	вход
GPIO2 (выход)	Выход	Биты 14-0 равн	ы 0: от 10 МГц до	ANT1. Бит 0	•		•	•					•	•
	Давать возможность	установлен: от	FPGA PPS до ANT1	. Бит 1										
		установлен: от	MAC PPS до ANT1.	Бит 2										
		установлен: от	GNSS1 PPS до ANT	Г1. Бит 3										
		установлен: от	GNSS2 PPS до ANT	Г1. Бит 4										
		установлен. : В	влен. : Выход IRIG на ANT1											

		Бит 5 установл	5 установлен: выход DCF на ANT1 Бит 6												
			нератор сигнала 1												
		1													
		1	нератор сигнала 2												
			нератор сигнала 3												
			нератор сигнала 4	1 на бит ANT1 13											
		установлено: О													
		Бит 14 установ	лен: VCC на ANT1.												
		ПРИМЕЧАНИЕ	АНИЕ. Одновременно можно установить только один бит (из бита 14-0).												
РЕГ	Бит31	Бит30-	Бит27	Бит26	Бит25	Бит24	Бит23	Бит22	Бит21	Бит20	Бит19	Бит18	Бит17	Бит16	
		28													
GPIO (выход)	Вход	неиспользованный	ANT4 для												
	Давать возможность		Частота Cnt Частота Cnt Частота Cnt Частота Cnt Частота Cnt Частота Cnt Вход TS4 Вход TS3 DCF ИРИГ Вход TS2 Вход TS1 ППС 2 ППС 1												
			4 входа 3 входа 2 входа 1 вход Раб Раб Вход 134 вход Вход 134 вход Вход 135 Вход Вход Вход Вход Вход Вход Вход Вход												
GPIO2 (выход)	Выход	Биты 30–16 рав	вны 0: от 10 МГц д	о ANT2. Бит 16	1	ı	ı	1	I	1	I		I		
	Давать возможность	установлен: от	FPGA PPS до ANT2	2. Бит 17 установл	ен: от										
		MAC PPS до AN	IT2. Бит 18 установ	влен: от GNSS1 PP	S до										
		ANT2. Бит 19 ус	становлен: от GNS	S2 PPS до ANT2. Б	ит 20										
		установлен. : В	выход IRIG на ANT.	2 Бит 21 установл	ен:										
		Выход DCF на	ANT2 Бит 22 устан	овлен: Генератор											
		сигнала 1 на Al	NT2 Бит 23 устано	влен: Генератор											
		сигнала 2 на А	NT2 Бит 24 устано	влен: Генератор											
		сигнала 3 на А	У NT2 Бит 25 устано	влен: Сигнал											
		Генератор 4 на	а ANT2 Бит 26 уста	новлен: GND на A	NT2										
			,												
		Бит 27 устано	7 установлен: VCC на ANT2.												
		ПРИМЕЧАНИЕ	. Одновременно	можно установи	ть только один	бит (из битов 30-	-16).								

Статус AXI GPIO SMA (все входы):

РЕГ	Бит13	Бит12	Бит11	Б10	Бит9	Бит8	Бит7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0
GPIO (входной)	ANT4	ANT4	-	-	ANT3	ANT3	-	-	AHT2	AHT2	-	-	ANT1	ANT1
,	Вход	Вход			Вход	Вход			Вход	Вход			Вход	Вход
	Ценить	действительный			Ценить	действительный			Ценить	действительный			Ценить	действительный
	'0'→низкий				'0'→низкий				'0'→низкий				'0'→низкий	
	'1'→высокий				'1'→высокий				'1'→высокий				'1'→высокий	

1.7 Описание регистра

Подробные описания регистров ядер NetTimeLogic доступны в справочных руководствах:

../TimeCard/Док/

Документация по ядрам Xilinx доступна в Интернете. **Память**

AXI, сопоставленная с PCI Express:

https://www.xilinx.com/support/documentation/ip_documentation/axi_pcie/v2_8/pg055-axi-bridge-pcie.pdf
Аксиальный GPIO:

https://www.xilinx.com/support/documentation/ip_documentation/axi_gpio/v2_0/pg144-axi-gpio.pdf

Акси I2C:

 $\underline{https://www.xilinx.com/support/documentation/ip_documentation/axi_iic/v2_0/pq090-axi-iic.pdf}$

Акси УАРТ 16550:

https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf

AXI Quad SPI:

 $\underline{https://www.xilinx.com/support/documentation/ip_documentation/axi_quad_spi/v3_2/pq153-axi-quad-spi.pdf}$

Акси ХВИКАП:

https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pq134-axi-hwicap.pdf

1.7.1 Замечания по версии IP

В некоторых обновлениях FPGA были добавлены новые функции. Это означает, что некоторые регистры могут быть доступны только в последней версии.

Чтение из несуществующих регистров вызывает ошибку шины AXI.

1.7.1.1 Карта времени V26

- Добавлена новая информация/регистры о статусе GNSS (все подробности см. в справочном руководстве TOD Slave)
- Добавлена поддержка сообщений TSIPv1 для модулей GNSS (подробности см. в справочном руководстве TOD Slave).

1.7.2 Регистры частотомера

Поскольку полной инструкции к частотомеру нет, то описание регистра находится непосредственно здесь:

Контро	онтрольный регистр																														
Опис	Описание регистра																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ı												Количество секунд								•				Давять возможность
							РО												RW								РО				RW
												Сбр	oc: 0x	0000	00100)															
												Cn	иещен	ие: 0	x0000)															

Имя	Описание	Биты	Доступ
-	Зарезервировано, читать 0	Бит: 31:16	PO
Количество секунд	Количество секунд для измерения частоты	Бит: 15:8	RW
•	Зарезервировано, читать 0	Бит: 7:1	PO
давать возможность	Включить частотомер	Бит: 0	RW

Регулятор	Регулятор частоты																														
Описание регистра																															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Действительный	Ошибка	әинәнгоцебац			•													Частота													
РО	PO	РО			РО													PC)												
	Сброс: 0х00000000																														
Смещение: 0х0004																															

Имя	Описание	Биты	Доступ
Действительный	Измерение действительно	Бит: 31	РО
Ошибка	Погрешность измерения	Бит: 30	PO
переполнение	Измерение превысило 10000000	Бит: 29	PO
-	Зарезервировано, читать 0	Бит: 28:24	PO
Частота	Частота в Гц, мин 0, макс 10000000	Бит: 23:0	РО

1.8 Селектор часов

Проект может работать на разных источниках тактовой частоты. Важно, чтобы хотя бы исходная тактовая частота модуля SOM всегда была доступна. В конструкции FPGA выполняется автоматический выбор источника тактовой частоты. Проект определяет, доступны ли часы, и затем делает выбор на основе следующих приоритетов:

- 1. Внешняя тактовая частота 10 МГц от разъема SMA.
- 2. Часы МАС 10 МГц.

Этот выбор можно перезаписать с помощью AXI GPIO Sel GPIO2. Когда часы выбраны, FPGA проверяет, доступны ли эти часы. Если выбранные часы не обнаружены, применяется автоматический выбор.

С помощью GPIO Sel GPIO можно проверить, какой из них является выбранным тактовым сигналом. Если все значения равны 0, полное проектирование выполняется от тактового сигнала модуля SOM.

1.9 Выбор источника PPS

Селектором источника PPS 1 можно управлять с помощью битов 0 и 1 AXI GPIO Sel GPIO2. Существует три разных источника PPS (GNSS, MAC, разъем SMA), которые могут подключаться к двум приемникам PPS (подчиненный PPS, вход MAC PPS). По умолчанию выбор осуществляется автоматически. Селектор источника проверяет, обнаружен ли PPS.

В зависимости от доступности автоматический выбор имеет следующие приоритеты:

- 1. Разъем PPS SMA
- 2. ППС МАК
- 3. ППС ГНСС

Переключение происходит, когда источники PPS становятся логическими 0.

Следующий выбор выполняется, если источник доступен:

1. СМА ППС обнаруживается:

От источника SMA PPS к приемнику MAC PPS От источника SMA PPS к ведомому приемнику PPS

2. MAC PPS обнаружен:

От источника GNSS PPS к приемнику MAC PPS От источника MAC PPS к ведомому приемнику PPS

3. GNSS PPS обнаружен:

От источника GNSS PPS к приемнику MAC PPS От источника GNSS PPS к ведомому приемнику PPS

Селектор источника PPS 2 выбирает только PPS в направлении MAC PPS 2. Управление или контроль через GPIO невозможен. Возможные источники: 2nd ГНСС ППС

и PPS от ANT1/2. Из доступных источников ANT1/2 имеет более высокий приоритет над $2.nd\Gamma$ HCC ППС.

1.10 Требования к ГНСС

Источником GNSS должен быть GPS, Galileo или Beidou. Только ГЛОНАСС работать не будет.

1.11 Статическая конфигурация

FPGA начинается со статической конфигурации со следующими настройками:

- PPS (включая TOD) используется в качестве входа коррекции для часов.
- Обнаружение ведомого импульса PPS по нарастающему фронту
- PPS Задержка ведомого кабеля 0
- Скорость подчиненного устройства UART TOD составляет 115200 бод.
- TOD Ведомый UART полярность по умолчанию
- Ведомое устройство TOD в режиме UBX, все GNSS и сообщения отключены.
- PPS Master полярность, нарастающий фронт
- Задержка главного кабеля PPS 0
- PPS Мастер ширина импульса 100 мс
- Часы, ведомое устройство PPS, ведомое устройство TOD и ведущее устройство PPS включены.
- Все временные метки отключены
- Ведомое/ведущее устройство IRIG отключено.
- DCF Ведомый/Главный отключены
- Macтер TOD/NMEA отключен.

2 программы FPGA и SPI Flash

Для первоначального программирования FPGA и SPI Flash необходим программатор JTAG, который должен быть подключен к USB JTAG.

После успешного программирования FPGA конструкция содержит ядро AXI QUAD SPI, которое позволяет выполнять обновления на местах.

2.1 Битовые потоки с резервной конфигурацией

Конструкция FPGA разделена на два разных битовых потока/bin-файла, чтобы обеспечить отказоустойчивое обновление полей. Конфигурация FPGA всегда начинается с адреса Addr0, где находится золотой образ с начальным адресом образа обновления. Он переходит прямо по этому адресу и пытается загрузить образ обновления. Если эта загрузка не удалась, он возвращается к золотому образу.

Подробности об этом подходе мультизагрузки/резервного режима можно найти в следующих примечаниях по применению:

https://www.xilinx.com/support/documentation/application_notes/xapp1246-multiboot-bpi.pdf

Золотой/резервный образ содержит лишь ограниченную функциональность, обеспечивающую доступ к SPI Flash. Второе изображение используется для нормальной работы и заменяется при обновлении поля.

Factory_TimeCard.bin

Этот образ содержит два битовых потока, и его следует использовать для программирования флэш-памяти SPI в качестве примера в производстве. Первый битовый поток — это золотое/ резервное изображение, а второй — последняя версия обычного изображения.

Это комбинированное изображение имеет следующую структуру:

Информация о памяти конфигурации

 Формат файла
 БИН

 Интерфейс
 спикс4

 Размер
 32M

 Начальный адрес
 0x00000000

 Конечный адрес
 0x01FFFFF

Адрес1 Адрес2 Файл(ы)

0x00000000 0x002856FF Golden_TimeCard.bit

0x00400000 0x0069B5AB TimeCard.bit

TimeCard.bin

Это обновленный/обычный образ, и он должен использоваться для обновления поля через SPI. Для обновления этот битовый поток должен быть помещен в**0х00400000**во флэш-памяти SPI.

2.2 Программирование JTAG (зависимое)

Это загрузит только SRAM FPGA, после выключения и включения питания она будет потеряна.

Перейдите в Диспетчер оборудования в Vivado и выберите «Открыть цель». → «
 Автоподключение». После этого шага доступен следующий вид:

- 2. Щелкните правой кнопкой мыши «xc7a100t_0(1)», появится всплывающее меню.
- 3. Выберите «Программировать устройство» в меню, появится следующее окно.

4. Выберите битовый поток, который вы хотите

запрограммировать: TimeCard.bit

- 5. Нажмите «Программа» и дождитесь завершения.
- 6. Светодиод RUN будет мигать.

2.3 Программирование SPI (энергонезависимое)

Если перед выполнением шага 1 не была настроена память конфигурации, в противном случае начните с шага 7.

1. Зайдите в меню «Диспетчер оборудования»:

- 2. Щелкните правой кнопкой мыши «xc7a100t_0(1)», появится всплывающее меню.
- 3. Выберите в меню «Добавить устройство памяти конфигурации...», появится следующее окно.

- 4. Выберите «mt25ql128-spi-x1_x2_x4» в качестве типа флэш-памяти SPI.
- 5. Нажмите Ок, появится новое окно:

6. Нажмите «Отмена».

7. Перейдите в меню «Диспетчер оборудования», к которому будет подключена флэш-память:

- 8. Щелкните правой кнопкой мыши «mt25ql128-spi-x1_x2_x4», появится всплывающее меню.
- 9. Выберите в меню «Устройство памяти конфигурации программы...», появится следующее окно.

7. Выберите битовый поток, который хотите

запрограммировать: Factory_TimeCard.bin

ВАЖНАЯ ЗАМЕТКА:

Если на этом этапе загружен TimeCard.bin, обновление поля, как описано выше, работать не будет!

- 8. Нажмите «ОК» и дождитесь завершения.
- 9. Отключите интерфейс JTAG от платы.
- 10. Выключите и включите питание или перезагрузите плату/холодный запуск ПК.
- 11. Светодиод РАБОТА будет мигать.

2.4 Подключите диспетчер конфигурации NetTimeLogic к FPGA

- 1. Подключите USB/UART к хост-компьютеру под управлением Windows.
- 2. Запустите инструмент UniversalConfigurationManager от NetTimeLogic.
- 3. Выберите СОМ-порт, к которому подключена плата, и нажмите «Открыть». Затем отображается карта адресов созданных ядер и появляются 111 новых вкладок (CLK Clock, PPS Master, PPS подчиненный, TOD подчиненный, IRIG подчиненный, IRIG Главный, Ведомый DCF, Главный DCF, Главный TOD, Генератор сигналов Clk и Временная метка Clk):

4. Измените конфигурацию по мере необходимости и нажмите «Записать». Например
На вкладке «Дополнительно» можно загрузить файлы конфигурации, выбрав файл
конфигурации и нажав «Загрузить конфигурацию». Кроме того, возможно ручное
чтение или запись регистров с адресом и значением поля.

ПРИМЕЧАНИЕ

Универсальный менеджер конфигурации обменивается данными через команды UART, а внутреннее IP-ядро преобразует их в обращения к регистрам, отображенным в памяти АХІ. Подробную информацию о протоколе, который можно использовать на любом последовательном терминале, можно найти здесь:

https://www.nettimelogic.com/resources/Ucm_UniversalConfigurationManager_R eferenceManual.pdf

3 Тестовое приложение

TestApp используется для базового тестирования оборудования. По сути, он использует mmap для адресного пространства отображаемого адреса PCIe.

Прежде чем станет возможен доступ к двум конечным устройствам PCIe, необходимо выполнить два шага. Сначала устройство PCIe должно быть обнаружено системой, это можно проверить с помощью следующей команды:

Ispci -v

01:00.0 Контроллер памяти: Устройство Xilinx Corporation 7011

Подсистема: Xilinx Corporation Устройство 0007

Флаги: быстрая разработка

Память 90000000 (32-битная, без предварительной выборки) [отключено] [размер=32М]

Возможности: <доступ запрещен>

Устройство PCIe обнаружено по адресу 0х9000_0000, но отключено. На втором этапе устройство должно быть включено:

sudo setpci -s "01:00.0" КОМАНДА=0x02

Теперь TestApp готов к запуску. TestApp требует базовый адрес PCIe в качестве аргумента:

sudo ./TestApp 0x90000000

Приложение считывает версию IP-ядер NetTimeLogic и устанавливает системное время на регулируемые часы. После этого каждую секунду возвращается время от регулируемых часов:

Базовый адрес PCIe установлен на 0х90000000 Версия тактового IP-ядра = 0х1020000 Версия IP-ядра Signal TS = 0х1020001 Версия IP-ядра Signal TS = 0х1020001 Версия IP-ядра PPS = 0х1020000 Версия IP-ядра подчиненного PPS = 0х1020000 Версия IP-ядра подчиненного TOD = 0х2000001 Выбранный Clk Источник: PPS.

Выбранный источник Clk: REGS.

Установите текущее местное время и дату: Пт, 23 октября, 14:00:35 2020 г.

Время: 14:00:35 и 3240 нс.

Время: 14:00:36 и 305900 нс Время: 14:00:37 и 490780 нс Время: 14:00:38 и 671200 нс Время: 14:00:39 и 1031680 нс Время составляет: 14:00:40 и 1359140 нс. Время: 14:00:41 и 1542180 нс. Время: 14:00:42 и 1671980 нс.

Время: 14:00:43 и 1799580 нс.