

Predicting Foreign Exchange Rate Movement

Ke Cao

Introductio n + Data

Stepwise Regression

Logistic regression Matrix

Confusion Matrix

Diagnostics

ROC Curve

Agenda

										ine	SAS S	ystem				
Obs	rsi1	rsi2	rsi3	rsi4	rsi5	rsi6	stoch1	stoch2	stoch3	stoch4	stoch5	stoch6	ema20Slope1	ema20Slope2	ema20Slope3	ema20Slope4
1	28.9	31.07	40.01	40.51	39.95	41.98	13.53	29.27	46.8	43.52	41.03	36.07	-0.0005	-0.00045	-0.00015	-0.00015
2	27.39	28.9	31.07	40.01	40.51	39.95	3.93	13.53	29.27	46.8	43.52	41.03	-0.00052	-0.0005	-0.00045	-0.00015
3	28.41	27.39	28.9	31.07	40.01	40.51	4.27	3.93	13.53	29.27	46.8	43.52	-0.00046	-0.00052	-0.0005	-0.00045
4	34.48	28.41	27.39	28.9	31.07	40.01	12.99	4.27	3.93	13.53	29.27	46.8	-0.0003	-0.00046	-0.00052	-0.0005
5	33.35	34.48	28.41	27.39	28.9	31.07	24.48	12.99	4.27	3.93	13.53	29.27	-0.00031	-0.0003	-0.00046	-0.00052
6	31.96	33.35	34.48	28.41	27.39	28.9	36.23	24.48	12.99	4.27	3.93	13.53	-0.00034	-0.00031	-0.0003	-0.00046
7	31.59	31.96	33.35	34.48	28.41	27.39	42.59	36.23	24.48	12.99	4.27	3.93	-0.00032	-0.00034	-0.00031	-0.0003
8	29.34	31.59	31.96	33.35	34.48	28.41	25.31	42.59	36.23	24.48	12.99	4.27	-0.00037	-0.00032	-0.00034	-0.00031
9	30.66	29.34	31.59	31.96	33.35	34.48	21.31	25.31	42.59	36.23	24.48	12.99	-0.00031	-0.00037	-0.00032	-0.00034
10	36.37	28.16	30.66	29.34	31.59	31.96	29.81	12.9	21.31	25.31	42.59	36.23	-0.00021	-0.00037	-0.00031	-0.00037
11	38.37	36.37	28.16	30.66	29.34	31.59	45.11	29.81	12.9	21.31	25.31	42.59	-0.00015	-0.00021	-0.00037	-0.00031
12	40.43	38.37	36.37	28.16	30.66	29.34	71.66	45.11	29.81	12.9	21.31	25.31	-0.0001	-0.00015	-0.00021	-0.00037
13	39.43	40.43	38.37	36.37	28.16	30.66	77.53	71.66	45.11	29.81	12.9	21.31	-0.00012	-0.0001	-0.00015	-0.00021

- The purpose of the project is to predict the foreign exchange movement
- FX (EUD to USD) from Kaggle
- Dataset contains 4479 transactions from 2014 to 2017.
- The dataset includes different technical indicators such as EMAs, RSI, MOM

Introduction + Data

Stepwise regression

	Summary of Stepwise Selection										
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F			
1	close1		1	0.0023	0.0023	10.6340	10.32	0.0013			
2	force3		2	0.0012	0.0035	7.3295	5.30	0.0214			
3	bearsPower4		3	0.0013	0.0048	3.4418	5.89	0.0153			
4	WPR5		4	0.0013	0.0061	-0.2722	5.72	0.016			
5	BB_up_percen5		5	0.0008	0.0069	-1.9221	3.66	0.055			
6	dayOfWeek		6	0.0007	0.0075	-2.8998	2.98	0.084			
7	bullsPower4		7	0.0006	0.0081	-3.3781	2.48	0.1150			
8	mom1		8	0.0006	0.0087	-4.0498	2.68	0.1017			

- is the model by adding or removing variables based on the t-statistics of the estimated coefficient
- In this dataset, the indicators EMAS, BB, and RSI are independent variables
- dependent variable tipo consists of two values, 0 and 1, indicating whether to buy or sell.
- Initially, we intend to perform the feature selection in both directions
- Then we find the best model through 8 steps: close1, force3, bearpower4, WPR5, BB Up Percen5, day of week, bullspower4, and mom1 by adding one by one

- Specify an Alpha-to-Enter significance level. This will typically be greater than the usual 0.05 level -set this significance level by default to $\alpha_F = 0.15$.
- All variables are significant at the 0.15 level

Logistic Regression

- we will perform the logistic regression. Here, is the assumption of logistic regression
- Logistic regression is a predictive analysis, which conducts when the dependent variable is binary (like tipo 0, 1) and explain the relationship between on tipo 0,1 and more independent variables (emas, rsi...)
- The assumptions of logistic regression are: 1. The model should be fitted correctly. It is only for meaningful variables, so no important variables are omitted, no extraneous variables are included, independent variables are measured without error. 2. The error terms need to be independent and each observations to be independent. 3. The independent variables are not linear combination of each other. Perfect multicollinearity makes estimation inaccurate.

Correlation Matrix

The CORR Procedure

	Simple Statistics										
Varia	able	N	Mean	Mean Std Dev		Minimum	Maximum				
mon	1	4479	99.97845	0.90014	447803	96.31000	104.10000				
BB_u	ip_percen5	4479	0.49022	0.33902	2196	-0.52000	1.51000				
force	3	4479	0.09733	18.77816	435.95000	-169.04000	213.44000				
bear	sPower4	4479	-0.00198	0.00431	-8.84723	-0.03596	0.01966				
bulls	Power4	4479	0.00177	0.00446	7.90682	-0.01702	0.04071				
WPR	15	4479	-52.21570	29.22139	-233874	-100.00000	(
close	e1	4479	1.12441	0.05751	5036	1.03690	1.31490				
day	OfWeek	4479	2.99353	1.41380	13408	0	5.00000				
tipo		4479	0.49297	0.50001	2208	0	1.00000				

Based on the chart, we can state it exists strong linear Relationship between variables, which implies that some Assumption of logistic regression cannot be satisfied.

We can check how such multilinearity impacts our logistic regression

Data

Using the equal-scale stratified sampling, we divided our data into two parts, training data and test data.

All evaluation indicators are calculated in the test data. The dependent variable that we are interested in is tipo, which is 0 for buy, 1 for sell.

The training data account for 80% of the total data, while the test data take up 20%.

Train Data			
tipo	Frequency	Percent	Total
O(Buy)	1817	0.506975	3584
1(Sell)	1767	0.493025	
Test Data			
tipo	Frequency	Percent	Total
O(Buy)	450	0.502793	895
1(Sell)	445	0.497207	

Logistic Regression Model

				7-720 10 5000	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-6.2040	6.7821	0.8368	0.3603
mom1	1	0.0717	0.0673	1.1362	0.2865
BB_up_percen5	1	0.6915	0.2783	6.1752	0.0130
force3	1	-0.00642	0.00276	5.3956	0.0202
bearsPower4	1	24.8352	15.2461	2.6535	0.1033
bullsPower4	1	-18.8840	14.7430	1.6407	0.2002
WPR5	1	-0.00815	0.00289	7.9756	0.0047
close1	1	-1.3145	0.5844	5.0600	0.0245
dayOfWeek	1	-0.0467	0.0239	3.8209	0.0506

Regression Function:

logit_sell=-3.2803+mom1*0.0460+BB_up_percen5*0.3875+force3*(-0.00548)+bearsPower4*31.8045+bullsPower4 *(-14.0762)

+WPR5*(-0.00633)+close1*(-1.4405)+dayOfWeek*(-0.0351)

Here is the summary of trained logistic regression. We can say some intercepts are not statistically significant.

Prediction

```
p=exp(logit_sell)/(exp(logit_sell)+1);
if p<0.5 then sell_buy_predicted='buy';
else sell_buy_predicted='sell';</pre>
```

The formula is to calculate the probability value. How to classify each operation according to the probability value? We need a threshold value. Here we provide that when the probability exceeds 0.5, it is classified as sell and the rest is buy.

Results of Prediction

Put the previous formula into the test data. We get the results.

From the local data test_p, we can see that some value for tipo which are actually 0(buy), according to our model (threshold p takes 0.5), predict it as sell (Type I Error). While for some value which were originally 1(sell), but it is predicted to buy (Type II Error).

Confusion Matrix

A perfect classification model is that if a operation actually belongs to 0(buy), it is also predicted to be buy, while in the 1(sell), it is predicted to be sell. However, from the above we have seen that some operation, which are actually buy, based on our model, predicted that they are sell. For some of the operations which were originally sell, they are expected to buy. We need to know that this model predicts exactly how many the predictions are correct and how many the prediction are wrong. The confusion matrix puts all this information into a single table:

		sell_buy_predicted							
tipo	buy		sell		Total				
0	d	158	С	296	d+c	454			
1	b	196	a	245	a+l	441			
Total	b+	354	ан	_c 541		895			

- 1. a is the number of negative cases correctly predicted, True Negative(TN,0->0)
- 2. b is the number of negative cases predicted to be positive, False Positive(FP, 0->1)
- 3. c is the number of positive cases predicted to be negative, False Negative(FN, 1->0)
- 4. d is the number of correctly predicted positive examples, True Positive (TP, 1->1)
- 5. a+b is the actual number of negative cases, Actual Negative 6. c+d is the actual number of
- positive examples, Actual

 Positive
- 7. a+c is the number of negative cases predicted, Predicted Negative
- 8. b+d is the number of positive cases predicted, Predicted Positive

Evaluation

According to the table, there are several commonly used evaluation indicators:

Accuracy=true positive and true negative/total cases= a+d/a+b+c+d=17.65%+27.37%=45.02%

Error rate=false positive and false negative/total cases=b+c/a+b+c+d=1-Accuracy=54.98%

Recall=true positive/total actual positive=d/c+d=34.80%

Precision=true positive/ total predicted positive=d/b+d=44.63%

Frequency	Table of	tipo by se	ell_buy_p	redicted			
Percent Row Pct		sell_buy_predicted					
Col Pct	tipo	buy	sell	Total			
	0	158	296	454			
		17.65	33.07	50.73			
		34.80	65.20				
		44.63	54.71				
	1	196	245	441			
	A1 1	21.90	27.37	49.27			
		44.44	55.56				
		55.37	45.29				
	Total	354	541	895			
		39.55	60.45	100.00			

Logistic Regression Diagnostics

- Residuals are certainly less informative for Logistic regression then Linear Regression.
- Normality is not required.
- Outliers exist in our data.

ROC Curve

The area under the curve is 0.5507 and the cut probability we might choose is around 0.5. Since, the true positive (max = 0.5) and false positive (min = 0.3).

In this, there might be a case of multicollinearity. So, we can use PCA.

PCA

- PCA stands for Principal Component Analysis
- Principal Component Analysis is a variable reduction procedure. It
 is useful when you have obtained data on a number of variables
 (possibly a large number of variables), and believe that there is
 some correlation among those variables.
- We can apply PCA in our analysis as in Logistic Regression we have found the multicollinearity in variables.

PCA

- According to Kaiser criterion, Eigenvalues should be greater than 1. Hence, we can observe that the top 3 variables have high Eigenvalues implies these are good.
- Approximately 82% of the data is explained by the top 3 principal component variables.

	Eigenvalues of the Correlation Matrix								
	Eigenvalue	Difference	Proportion	Cumulative					
1	4.59668414	3.55845812	0.5746	0.5746					
2	1.03822602	0.07183728	0.1298	0.7044					
3	0.96638874	0.38748470	0.1208	0.8252					
4	0.57890405	0.30274849	0.0724	0.8975					
5	0.27615555	0.04112457	0.0345	0.9320					
6	0.23503098	0.01279843	0.0294	0.9614					
7	0.22223255	0.13585458	0.0278	0.9892					
8	0.08637797		0.0108	1.0000					

PCA

- The eigenvectors indicate the relative importance of each variable within the individual.
- First three principal component variables indicates the majority of the variability among these eight variables (as Eigenvalues for these variables were good).
- We will select all the variables which have principal component greater than 0.4

	Eigenvectors										
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8			
mom1	0.397152	0.005869	045199	0.459634	337079	622941	354586	0.038984			
BB_up_percen5	0.424787	039216	0.045747	412820	0.232455	122882	0.012538	0.759086			
force3	0.372078	0.004622	093106	0.648964	0.520360	0.281790	0.283726	0.032145			
bearsPower4	0.416017	014888	011603	117427	567028	0.088794	0.684815	120032			
bullsPower4	0.418897	018047	0.017714	077244	240198	0.655973	567405	089307			
WPR5	0.417160	002104	0.052777	402194	0.427009	281225	042118	631054			
close1	0.013841	0.723031	682453	103186	000730	0.001808	020073	0.015468			
dayOfWeek	0.025000	0.689261	0.719875	0.070702	003862	0.012763	0.022694	0.019558			

We can notice from the ROC curves for the model and the test dataset. The area under the curve is almost the same. Hence the PCA result does not satisfy our demand.

Thank You!