Example

- P, Q, and R are midpoints of the sides of $\triangle DEF$.
- a. What kind of figure is DPQR?
- b. What is the perimeter of DPQR?

Solution

- **a.** Since $\overline{RQ} \parallel \overline{DE}$ and $\overline{PQ} \parallel \overline{DF}$, quad. DPQR is a parallelogram.
- **b.** $RQ = \frac{1}{2}DE = DP = 6$ and $PQ = \frac{1}{2}DF = DR = 4$. Thus the perimeter of *DPQR* is 6 + 4 + 6 + 4, or 20.

Classroom Exercises

1. You can use a sheet of lined notebook paper to divide a segment into a number of congruent parts. Here a piece of cardboard with edge \overline{AB} is placed so that \overline{AB} is separated into five congruent parts. Explain why this works.

M, N, and T are the midpoints of the sides of $\triangle XYZ$.

2. If
$$XZ = 10$$
, then $MN = \frac{?}{}$.

3. If
$$TN = 7$$
, then $XY = \frac{?}{}$

4. If
$$ZN = 8$$
, then $TM = \frac{?}{}$.

5. If
$$XY = k$$
, then $TN = \frac{?}{}$.

6. Suppose XY = 10, YZ = 14, and XZ = 8. What are the lengths of the three sides of

a. $\triangle TNZ$?

b. $\triangle MYN$?

c. $\triangle XMT$?

d. $\triangle NTM$?

- 7. State a theorem suggested by Exercise 6.
- 8. How many parallelograms are in the diagram?
- 9. What result of this section do the railings suggest?

