74LVC2G53

2-channel analog multiplexer/demultiplexer Rev. 9 — 5 April 2013

Product data sheet

General description 1.

The 74LVC2G53 is a low-power, low-voltage, high-speed, Si-gate CMOS device.

The 74LVC2G53 provides one analog multiplexer/demultiplexer with a digital select input (S), two independent inputs/outputs (Y0 and Y1), a common input/output (Z) and an active LOW enable input (E). When pin E is HIGH, the switch is turned off.

Schmitt trigger action at the select and enable inputs makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V.

Features and benefits 2.

- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
 - 7.5 Ω (typical) at V_{CC} = 2.7 V
 - 6.5 Ω (typical) at $V_{CC} = 3.3 \text{ V}$
 - 6 Ω (typical) at $V_{CC} = 5 \text{ V}$
- Switch current capability of 32 mA
- High noise immunity
- CMOS low-power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD 78 Class I
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Control inputs accept voltages up to 5 V
- Multiple package options
- Specified from −40 °C to +85 °C and from −40 °C to +125 °C

2-channel analog multiplexer/demultiplexer

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC2G53DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2
74LVC2G53DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74LVC2G53GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1
74LVC2G53GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1 \times 0.5 mm	SOT1089
74LVC2G53GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 3 \times 2 \times 0.5 mm	SOT996-2
74LVC2G53GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2
74LVC2G53GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 \times 1.0 \times 0.35 mm	SOT1116
74LVC2G53GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203

4. Marking

Table 2. Marking codes

Type number	Marking code ^[1]
74LVC2G53DC	V53
74LVC2G53DP	V53
74LVC2G53GT	V53
74LVC2G53GF	V3
74LVC2G53GD	V53
74LVC2G53GM	V53
74LVC2G53GN	V3
74LVC2G53GS	V3

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

74LVC2G53

All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

6. Pinning information

6.1 Pinning

2-channel analog multiplexer/demultiplexer

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2	
Z	1	7	common output or input
Ē	2	6	enable input (active LOW)
GND	3	5	ground (0 V)
GND	4	4	ground (0 V)
S	5	3	select input
Y1	6	2	independent input or output
Y0	7	1	independent input or output
V _{CC}	8	8	supply voltage

7. Functional description

Table 4. Function table[1]

Input		Channel on
S	E	
L	L	Y0 to Z or Z to Y0
Н	L	Y1 to Z or Z to Y1
X	Н	Z (switch off)

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

2-channel analog multiplexer/demultiplexer

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-50	-	mA
I _{SK}	switch clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±50	mA
V_{SW}	switch voltage	enable and disable mode	<u>[2]</u> –0.5	$V_{CC} + 0.5$	V
I _{SW}	switch current	$V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3] _	250	mW

^[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
V _{SW}	switch voltage	enable and disable mode	<u>[1]</u> 0	V_{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 2.7 \text{ V}$	[2] _	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$	[2] -	10	ns/V

^[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.

^[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.

^[3] For TSSOP8 packages: above 55 $^{\circ}$ C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 packages: above 110 $^{\circ}$ C the value of P_{tot} derates linearly with 8.0 mW/K. For XSON8 and XQFN8 packages: above 118 $^{\circ}$ C the value of P_{tot} derates linearly with 7.8 mW/K.

^[2] Applies to control signal levels.

2-channel analog multiplexer/demultiplexer

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Parameter	Conditions		T _{amb} = -	-40 °C to	o +85 °C	$T_{amb} = -40$ °	C to +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
HIGH-level	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	٧
input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.7	-	-	1.7	-	V
	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		2.0	-	-	2.0	-	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$0.7 \times V_{CC}$	-	-	$0.7 \times V_{CC}$	-	V
LOW-level	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	-	0.7	-	0.7	V
	V_{CC} = 3 V to 3.6 V		-	-	0.8	-	0.8	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	-	$0.3 \times V_{CC}$		$0.3 \times V_{CC}$	V
input leakage current	pin S and pin \overline{E} ; $V_1 = 5.5 \text{ V or GND}$; $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	[2]	-	±0.1	±2	-	±10	μА
OFF-state leakage current	V _{CC} = 5.5 V; see <u>Figure 7</u>	[2]	-	±0.1	±5	-	±20	μА
ON-state leakage current	V _{CC} = 5.5 V; see <u>Figure 8</u>	[2]	-	±0.1	±5	-	±20	μΑ
supply current	V_I = 5.5 V or GND; V_{SW} = GND or V_{CC} ; V_{CC} = 1.65 V to 5.5 V	[2]	-	0.1	10	-	40	μА
additional supply current	pin S and pin \overline{E} ; $V_I = V_{CC} - 0.6 \text{ V}$; $V_{SW} = \text{GND or } V_{CC}$; $V_{CC} = 5.5 \text{ V}$	[2]	-	5	500	-	5000	μΑ
input capacitance			-	2.5	-	-	-	pF
OFF-state capacitance			-	6.0	-	-	-	pF
ON-state capacitance			-	18	-	-	-	pF
	HIGH-level input voltage LOW-level input voltage input leakage current OFF-state leakage current ON-state leakage current supply current additional supply current input capacitance OFF-state capacitance ON-state	$\begin{array}{c} \text{HIGH-level} \\ \text{input voltage} \\ \text{Input voltage} \\ \end{array} \begin{array}{c} V_{\text{CC}} = 1.65 \text{ V to } 1.95 \text{ V} \\ V_{\text{CC}} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{\text{CC}} = 3 \text{ V to } 3.6 \text{ V} \\ V_{\text{CC}} = 4.5 \text{ V to } 5.5 \text{ V} \\ \end{array}$	$\begin{array}{c} \text{HIGH-level} \\ \text{input voltage} \\ \text{input voltage} \\ \end{array} \begin{array}{c} V_{\text{CC}} = 1.65 \text{ V to } 1.95 \text{ V} \\ V_{\text{CC}} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{\text{CC}} = 3 \text{ V to } 3.6 \text{ V} \\ V_{\text{CC}} = 4.5 \text{ V to } 5.5 \text{ V} \\ \end{array}$ $\begin{array}{c} L\text{OW-level} \\ \text{input voltage} \\ \end{array} \begin{array}{c} V_{\text{CC}} = 1.65 \text{ V to } 1.95 \text{ V} \\ \hline V_{\text{CC}} = 2.3 \text{ V to } 2.7 \text{ V} \\ \hline V_{\text{CC}} = 3 \text{ V to } 3.6 \text{ V} \\ \hline V_{\text{CC}} = 3 \text{ V to } 5.5 \text{ V} \\ \end{array}$ $\begin{array}{c} \text{input leakage} \\ \text{current} \\ \end{array} \begin{array}{c} \text{pin S and pin } \overline{\text{E}}; \\ V_{\text{CC}} = 0 \text{ V to } 5.5 \text{ V} \\ \end{array}$ $\begin{array}{c} \text{OFF-state} \\ \text{leakage} \\ \text{current} \\ \end{array} \begin{array}{c} \text{V_{CC}} = 5.5 \text{ V}; \\ \text{see } \overline{\text{Figure } 7} \\ \end{array} \begin{array}{c} \text{[2]} \\ \text{See } \overline{\text{Figure 8}} \\ \text{current} \\ \end{array}$ $\begin{array}{c} \text{ON-state} \\ \text{leakage} \\ \text{current} \\ \end{array} \begin{array}{c} \text{V_{I}} = 5.5 \text{ V or GND}; \\ \text{V_{SW}} = \text{GND or } \text{V_{CC}}; \\ \text{V_{CC}} = 1.65 \text{ V to } 5.5 \text{ V} \\ \end{array}$ $\begin{array}{c} \text{additional} \\ \text{supply current} \\ \end{array} \begin{array}{c} \text{pin S and pin } \overline{\text{E}}; \\ \text{V_{I}} = \text{V_{CC}} - 0.6 \text{ V}; \\ \text{V_{SW}} = \text{GND or } \text{V_{CC}}; \\ \text{V_{CC}} = 5.5 \text{ V} \\ \end{array}$ $\begin{array}{c} \text{input} \\ \text{capacitance} \\ \end{array}$ $\begin{array}{c} \text{OFF-state} \\ \text{capacitance} \\ \end{array}$ $\begin{array}{c} \text{ON-state} \\ \end{array} \begin{array}{c} \text{ON-state} \\ \end{array} \begin{array}{c} \text{ON-state} \\ \end{array}$	$\begin{array}{ c c c c } \begin{tabular}{ c c c c } \hline Min \\ HIGH-level \\ input voltage \\ \hline Input leakage \\ \hline Current \\ \hline OFF-state \\ leakage \\ \hline Current \\ \hline ON-state \\ leakage \\ \hline Current \\ \hline Input voltage \\ \hline Input leakage leakage \\ \hline Input leakage leakag$	HIGH-level input voltage V _{CC} = 1.65 V to 1.95 V	HIGH-level input voltage V _{CC} = 1.65 V to 1.95 V	Min Typ[1] Max Min Min HIGH-level Input voltage V _{CC} = 1.65 V to 1.95 V 0.65 × V _{CC} - 0.65 × V _{CC} 1.7 V _{CC} = 2.3 V to 3.6 V 2.0 - 2.0 0.7 × V _{CC} - 0.8 × - 0.	HIGH-level input voltage VCC = 1.65 V to 1.95 V 0.65 × VCC - - 0.65 × VCC - - 0.65 × VCC -

^[1] Typical values are measured at T_{amb} = 25 °C.

^[2] These typical values are measured at V_{CC} = 3.3 V.

2-channel analog multiplexer/demultiplexer

10.1 Test circuits

10.2 ON resistance

Table 8. ON resistance

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = GND$ to V_{CC} ; see Figure 9						
		$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	34.0	130	-	195	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	12.0	30	-	45	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	10.4	25	-	38	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	7.8	20	-	30	Ω
		$I_{SW} = 32 \text{ mA}$; $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	6.2	15	-	23	Ω

2-channel analog multiplexer/demultiplexer

Table 8. ON resistance ...continued

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see <u>Figure 10</u> to <u>Figure 15</u>.

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND; see <u>Figure 9</u>	'	'			'	
		$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	8.2	18	-	27	Ω
		$I_{SW} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	7.1	16	-	24	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	6.9	14	-	21	Ω
		$I_{SW} = 24 \text{ mA}; V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	-	6.5	12	-	18	Ω
		$I_{SW} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	5.8	10	-	15	Ω
		V _I = V _{CC} ; see <u>Figure 9</u>						
		$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	10.4	30	-	45	Ω
		$I_{SW} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	7.6	20	-	30	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	7.0	18	-	27	Ω
		$I_{SW} = 24 \text{ mA}$; $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	-	6.1	15	-	23	Ω
		$I_{SW} = 32 \text{ mA}$; $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	4.9	10	-	15	Ω
$R_{ON(flat)} \\$	ON resistance	$V_I = GND$ to V_{CC}	[2]					
	(flatness)	$I_{SW} = 4 \text{ mA};$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	26.0	-	-	-	Ω
		$I_{SW} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	5.0	-	-	-	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	3.5	-	-	-	Ω
		$I_{SW} = 24 \text{ mA}; V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	-	2.0	-	-	-	Ω
		$I_{SW} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.5	-	-	-	Ω

^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .

10.3 ON resistance test circuit and graphs

74LVC2G53

^[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

2-channel analog multiplexer/demultiplexer

- (1) $V_{CC} = 1.8 \text{ V}.$
- (2) $V_{CC} = 2.5 \text{ V}.$
- (3) $V_{CC} = 2.7 \text{ V}.$
- (4) $V_{CC} = 3.3 \text{ V}.$
- (5) $V_{CC} = 5.0 \text{ V}.$

Fig 10. Typical ON resistance as a function of input voltage; T_{amb} = 25 °C

- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 11. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V}$

(1) $T_{amb} = 125 \, ^{\circ}C$.

(2)
$$T_{amb} = 85 \, ^{\circ}C$$
.

(3)
$$T_{amb} = 25 \, ^{\circ}C$$
.

(4)
$$T_{amb} = -40 \, ^{\circ}C$$
.

Fig 12. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$

2-channel analog multiplexer/demultiplexer

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 13. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 14. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 15. ON resistance as a function of input voltage; $V_{CC} = 5.0 \text{ V}$

2-channel analog multiplexer/demultiplexer

11. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18.

Symbol	Parameter	Conditions	-40	°C to +8	o °C	–40 °C to	-40 °C to +125 °C	
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	Z to Yn or Yn to Z; see Figure 16 [2][3]						
		V _{CC} = 1.65 V to 1.95 V	-	-	2	-	2.5	ns
		V_{CC} = 2.3 V to 2.7 V	-	-	1.2	-	1.5	ns
		V _{CC} = 2.7 V	-	-	1.0	-	1.25	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	8.0	-	1.0	ns
		V _{CC} = 4.5 V to 5.5 V	-	-	0.6	-	0.8	ns
t _{en}	enable time	S to Z or Yn; see Figure 17 [4]						
		V _{CC} = 1.65 V to 1.95 V	2.6	6.7	10.3	2.6	12.9	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.9	4.1	6.4	1.9	8.0	ns
		V _{CC} = 2.7 V	1.9	4.0	5.5	1.8	7.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.8	3.4	5.0	1.8	6.3	ns
		V _{CC} = 4.5 V to 5.5 V	1.3	2.6	3.8	1.3	4.8	ns
		E to Z or Yn; see Figure 17 [4]						
		V _{CC} = 1.65 V to 1.95 V	1.9	4.0	7.3	1.9	9.2	ns
		V_{CC} = 2.3 V to 2.7 V	1.4	2.5	4.4	1.4	5.5	ns
		V _{CC} = 2.7 V	1.1	2.6	3.9	1.1	4.9	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.2	2.2	3.8	1.2	4.8	ns
		V _{CC} = 4.5 V to 5.5 V	1.0	1.7	2.6	1.0	3.3	ns
t _{dis}	disable time	S to Z or Yn; see Figure 17 [5]						
		V _{CC} = 1.65 V to 1.95 V	2.1	6.8	10.0	2.1	12.5	ns
		V _{CC} = 2.3 V to 2.7 V	1.4	3.7	6.1	1.4	7.7	ns
		V _{CC} = 2.7 V	1.4	4.9	6.2	1.4	7.8	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.1	4.0	5.4	1.1	6.8	ns
		V _{CC} = 4.5 V to 5.5 V	1.0	2.9	3.8	1.0	4.8	ns
		E to Z or Yn; see Figure 17						
		V _{CC} = 1.65 V to 1.95 V	2.3	5.6	8.6	2.3	11.0	ns
		V_{CC} = 2.3 V to 2.7 V	1.2	3.2	4.8	1.2	6.0	ns
		V _{CC} = 2.7 V	1.4	4.0	5.2	1.4	6.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.0	3.7	5.0	2.0	6.3	ns
		V _{CC} = 4.5 V to 5.5 V	1.3	2.9	3.8	1.3	4.8	ns

^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).

^[4] t_{en} is the same as t_{PZH} and t_{PZL} .

^[5] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

2-channel analog multiplexer/demultiplexer

11.1 Waveforms and test circuits

Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 16. Input (Yn or Z) to output (Z or Yn) propagation delays

Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 17. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output			
V _{CC}	V _M	V _M	V _X	V _Y	
1.65 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} – 0.15 V	
2.7 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V	

2-channel analog multiplexer/demultiplexer

Test data is given in Table 11.

Definitions for test circuit:

 R_L = Load resistor.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

V_{EXT} = Test voltage for switching times.

Fig 18. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load	Load V _{EXT}			
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ}
1.65 V to 1.95 V	V_{CC}	\leq 2.0 ns	30 pF	1 kΩ	open	GND	2V _{CC}
2.3 V to 2.7 V	V_{CC}	≤ 2.0 ns	30 pF	500Ω	open	GND	2V _{CC}
2.7 V	V_{CC}	≤ 2.5 ns	50 pF	500Ω	open	GND	2V _{CC}
3 V to 3.6 V	V_{CC}	≤ 2.5 ns	50 pF	500Ω	open	GND	2V _{CC}
4.5 V to 5.5 V	V_{CC}	≤ 2.5 ns	50 pF	500Ω	open	GND	2V _{CC}

2-channel analog multiplexer/demultiplexer

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	$\begin{aligned} f_i &= 600 \text{ Hz to } 20 \text{ kHz; } R_L = 600 \ \Omega; \\ C_L &= 50 \text{ pF; } V_I = 0.5 \text{ V (p-p); see } \underline{\text{Figure } 19} \end{aligned}$				
		V _{CC} = 1.65 V	-	0.260	-	%
		$V_{CC} = 2.3 \text{ V}$	-	0.078	-	%
		$V_{CC} = 3.0 \text{ V}$	-	0.078	-	%
		$V_{CC} = 4.5 \text{ V}$	-	0.078	-	%
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; $C_L = 5 pF$; see <u>Figure 20</u>				
		V _{CC} = 1.65 V	-	200	-	MHz
		$V_{CC} = 2.3 \text{ V}$	-	300	-	MHz
		V _{CC} = 3.0 V	-	300	-	MHz
		$V_{CC} = 4.5 \text{ V}$	-	300	-	MHz
$lpha_{iso}$	isolation (OFF-state)	$R_L = 50 \Omega$; $C_L = 5 pF$; $f_i = 10 MHz$; see Figure 21				
		V _{CC} = 1.65 V	-	-42	-	dB
		V _{CC} = 2.3 V	-	-42	-	dB
		V _{CC} = 3.0 V	-	-40	-	dB
		V _{CC} = 4.5 V	-	-40	-	dB
Q _{inj}	charge injection	C_L = 0.1 nF; V_{gen} = 0 V; R_{gen} = 0 Ω ; f_i = 1 MHz; R_L = 1 M Ω ; see <u>Figure 22</u>				
		V _{CC} = 1.8 V	-	3.3	-	рС
		V _{CC} = 2.5 V	-	4.1	-	рС
		$V_{CC} = 3.3 \text{ V}$	-	5.0	-	рС
		V _{CC} = 4.5 V	-	6.4	-	рС
		V _{CC} = 5.5 V	-	7.5	-	рС

11.3 Test circuits

2-channel analog multiplexer/demultiplexer

Fig 20. Test circuit for measuring the frequency response when switch is in ON-state

2-channel analog multiplexer/demultiplexer

a. Test circuit

b. Input and output pulse definitions

 $Q_{inj} = \Delta V_O \times C_L.$

 ΔV_{O} = output voltage variation.

R_{gen} = generator resistance.

 V_{gen} = generator voltage.

Fig 22. Test circuit for measuring charge injection

2-channel analog multiplexer/demultiplexer

12. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

Fig 23. Package outline SOT505-2 (TSSOP8)

74LVC2G53 All information provided in this document is subject to legal disclaimers.

74LVC2G53 **NXP Semiconductors**

2-channel analog multiplexer/demultiplexer

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT765-1		MO-187				02-06-07

Fig 24. Package outline SOT765-1 (VSSOP8)

74LVC2G53

All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

Fig 25. Package outline SOT833-1 (XSON8)

74LVC2G53 All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

Fig 26. Package outline SOT1089 (XSON8)

74LVC2G53 All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

Fig 27. Package outline SOT996-2 (XSON8)

74LVC2G53 All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

Fig 28. Package outline SOT902-2 (XQFN8)

74LVC2G53 All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

Fig 29. Package outline SOT1116 (XSON8)

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

74LVC2G53

2-channel analog multiplexer/demultiplexer

Fig 30. Package outline SOT1203 (XSON8)

74LVC2G53 All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
TTL	Transistor-Transistor Logic
НВМ	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
CDM	Charged Device Model
DUT	Device Under Test

14. Revision history

Table 14. Revision history

Document IDRelease dateData sheet statusChange noticeSupersedes74LVC2G53 v.920130405Product data sheet-74LVC2G53 v.Modifications:• For type number 74LVC2G53GD XSON8U has changed to XSON8.	8
	8
Modifications: • For type number 74LVC2G53GD XSON8U has changed to XSON8.	•
74LVC2G53 v.8 20120622 Product data sheet - 74LVC2G53 v.	7
Modifications: • For type number 74LVC2G53GM the SOT code has changed to SOT902-2.	
74LVC2G53 v.7 20111125 Product data sheet - 74LVC2G53 v.	6
Modifications: • Legal pages updated.	
74LVC2G53 v.6 20100927 Product data sheet - 74LVC2G53 v.	5
74LVC2G53 v.5 20080618 Product data sheet - 74LVC2G53 v.	4
74LVC2G53 v.4 20080228 Product data sheet - 74LVC2G53 v.	3
74LVC2G53 v.3 20070828 Product data sheet - 74LVC2G53 v.	2
74LVC2G53 v.2 20060331 Product data sheet - 74LVC2G53 v.	1
74LVC2G53 v.1 20060110 Product data sheet	

2-channel analog multiplexer/demultiplexer

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74LVC2G53

All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors 74LVC2G53

2-channel analog multiplexer/demultiplexer

17. Contents

1	General description
2	Features and benefits
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description 4
7	Functional description 4
8	Limiting values 5
9	Recommended operating conditions 5
10	Static characteristics 6
10.1	Test circuits
10.2	ON resistance 7
10.3	ON resistance test circuit and graphs 8
11	Dynamic characteristics
11.1	Waveforms and test circuits 12
11.2	Additional dynamic characteristics 14
11.3	Test circuits
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status 26
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks27
16	Contact information
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.