AP Calculus Homework 23

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

1. Determine whether the series is convergent or divergent. If it's convergent, find its

a)
$$\sum_{n=1}^{\infty} \frac{n+1}{2n-3}$$

b)
$$\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$$

c)
$$\sum_{n=1}^{\infty} \sqrt[n]{2}$$

a)
$$\sum_{n=1}^{\infty} \frac{n+1}{2n-3}$$
 b) $\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$ c) $\sum_{n=1}^{\infty} \sqrt[n]{2}$ d) $\sum_{n=1}^{\infty} \ln\left(\frac{n^2+1}{2n^2+1}\right)$

$$e) \sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$$

e)
$$\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$$
 f) $\sum_{n=1}^{\infty} \left(\cos \frac{1}{n^2} - \cos \frac{1}{(n+1)^2} \right)$

2. Find the value of x for which the series converges. Find the sum of the series for those values of x.

$$\sum_{n=1}^{\infty} \frac{\cos^n x}{2^n}$$

3. Use the Integral Test to determine whether the series is convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$$
 b) $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$ c) $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \cdots$

d)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 e) $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$

$$e) \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

4. Determine whether the series converges or diverges.

$$a) \sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$$

$$b) \sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1}$$

a)
$$\sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$$
 b) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1}$ c) $\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n\sqrt{n}}$

d)
$$\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n}$$

d)
$$\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n}$$
 e) $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^2 e^{-n}$ f) $\sum_{n=1}^{\infty} \frac{1}{n!}$

f)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

5. Which of the following series diverge?

I.
$$\sum_{k=3}^{\infty} \frac{2}{k^2 + 1}$$

II.
$$\sum_{k=1}^{\infty} \left(\frac{6}{7}\right)^k$$

I.
$$\sum_{k=3}^{\infty} \frac{2}{k^2 + 1}$$
 II. $\sum_{k=1}^{\infty} \left(\frac{6}{7}\right)^k$ III. $\sum_{k=2}^{\infty} \frac{(-1)^k}{k}$

1