

Exercice 1 6 points

Commun à tous les candidats.

Partie A

On considère la fonction g définie sur l'intervalle $]0; +\infty[$ par :

$$g(x) = 2x^3 - 1 + 2\ln x$$

- **1.** Étudier les variations de la fonction g sur l'intervalle $]0; +\infty[$.
- **2.** Justifier qu'il existe un unique réel α tel que $g(\alpha) = 0$. Donner une valeur approchée de α , arrondie au centième.
- **3.** En déduire le signe de la fonction g sur l'intervalle $]0; +\infty[$.

Partie B

On considère la fonction f définie sur l'intervalle $]0; +\infty[$ par :

$$f(x) = 2x - \frac{\ln x}{x^2}$$

On note $\mathscr C$ la courbe représentative de la fonction f dans le plan, muni d'un repère orthogonal $(O;\vec{\imath};\vec{\jmath})$.

- **1.** Déterminer les limites de la fonction f en 0 et en $+\infty$.
- **2.** Démontrer que la courbe $\mathscr C$ admet pour asymptote oblique la droite Δ d'équation y = 2x.

Étudier la position relative de la courbe \mathscr{C} et de la droite Δ .

- **3.** Justifier que f'(x) a même signe que g(x).
- **4.** En déduire le tableau de variations de la fonction f.
- **5.** Tracer la courbe \mathscr{C} dans le repère $(0, \overrightarrow{i}, \overrightarrow{j})$. On prendra comme unités : 2 cm sur l'axe des abscisses, 1 cm sur l'axe des ordonnées.

Partie C

Soit n un entier naturel non nul. On considère l'aire du domaine \mathcal{D} du plan compris entre la courbe \mathcal{C} , la droite Δ et les droites d'équations respectives x=1 et x=n.

1. Justifier que cette aire, exprimée en cm², est donnée par :

$$I_n = 2 \int_1^n \frac{\ln x}{x^2} \, \mathrm{d}x.$$

- **2.** a. Calculer l'intégrale $\int_1^n \frac{\ln x}{x^2} dx$ à l'aide d'une intégration par parties.
 - **b.** En déduire l'expression de I_n en fonction de n.
- **3.** Calculer la limite de l'aire I_n du domaine \mathcal{D} quand n tend vers $+\infty$.

Exercice 2 4 points

Commun à tous les candidats.

Les quatre questions sont indépendantes.

Dans cet exercice, pour chaque question, une affirmation est proposée. On demande d'indiquer sur la copie si elle est vraie ou fausse, en justifiant la réponse. Une réponse non justifiée ne sera pas prise en compte, mais toute trace de recherche sera valorisée.

1. Dans l'espace rapporté à un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$, on considère les droites \mathcal{D}_1 et \mathcal{D}_2 de représentations paramétriques respectives :

$$\begin{cases} x = 4+t \\ y = 6+2t \\ z = 4-t \end{cases} \text{ et } \begin{cases} x = 8+5t' \\ y = 2-2t' \\ z = 6+t' \end{cases}$$

Affirmation: les droites \mathcal{D}_1 et \mathcal{D}_2 sont coplanaires.

2. Dans l'espace rapporté à un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$, on considère les points A(12; 7; -13) et B(3; 1; 2) ainsi que le plan \mathscr{P} d'équation 3x + 2y - 5z = 1.

Affirmation : le point B est le projeté orthogonal du point A sur le plan \mathcal{P} .

3. On considère les suites u et v définies, pour tout entier naturel n, par :

$$u_n = \frac{n+1}{n+2}$$
 et $v_n = 2 + \frac{1}{n+2}$

Affirmation: ces deux suites sont adjacentes.

4. On considère la suite u définie par son premier terme $u_0=1$ et la relation de récurrence :

$$u_{n+1} = \frac{1}{3}u_{n+2}$$
, pour tout entier naturel n .

Affirmation : cette suite est majorée par 3.

Exercice 3 5 points

Commun à tous les candidats.

On dispose de deux urnes U_1 et U_2 .

L'une U_1 contient 4 jetons numérotés de 1 à 4.

L'urne U_2 contient 4 boules blanches et 6 boules noires.

Un jeu consiste à tirer un jeton de l'urne U_1 , à noter son numéro, puis à tirer simultanément de l'urne U_2 le nombre de boules indiqué par le jeton.

On considère les évènements suivants :

 J_1 « le jeton tiré de l'urne U_1 porte le numéro 1 »

 J_2 « le jeton tiré de l'urne U_1 porte le numéro 2 »

 J_3 « le jeton tiré de l'urne U_1 porte le numéro 3 »

 J_4 « le jeton tiré de l'urne U_1 porte le numéro 4 »

B « toutes les boules tirées de l'urne U_2 sont blanches »

On donnera tous les résultats sous la forme d'une fraction irréductible sauf dans la question **4.b**) où une valeur arrondie à 10^{-2} suffit.

1. Calculer $P_{J_1}(B)$, probabilité de l'évènement B sachant que l'évènement J_1 est réalisé.

Calculer de même la probabilité $P_{J_2}(B)$.

On admet dans la suite les résultats suivants :

$$P_{J_3}(B) = \frac{1}{30}$$
 et $P_{J_4}(B) = \frac{1}{210}$

- **2.** Montrer que P(B), probabilité de l'évènement B, vaut $\frac{1}{7}$. On pourra s'aider d'un arbre de probabilités.
- **3.** On dit à un joueur que toutes les boules qu'il a tirées sont blanches. Quelle est la probabilité que le jeton tiré porte le numéro 3?
- **4.** On joue 10 fois de suite à ce jeu. Chacune des parties est indépendante des précédentes. On note N la variable aléatoire prenant comme valeur le nombre de partie où toutes les boules tirées sont blanches.
 - **a.** Quelle est la loi suivie par la variable aléatoire N?
 - **b.** Calculer la probabilité de l'évènement (N = 3).

Exercice 4 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité.

On se place dans le plan complexe muni d'un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

1. Un triangle

a. On considère les points *A*, *B* et *C* d'affixes respectives a = 2, $b = 3 + i\sqrt{3}$ et $c = 2i\sqrt{3}$.

Déterminer une mesure de l'angle \widehat{ABC} .

b. En déduire que l'affixe ω du centre Ω du cercle circonscrit au triangle ABC est $1+i\sqrt{3}$.

2. Une transformation du plan

On note (z_n) la suite de nombres complexes, de terme initiale $z_0=0$, et telle que :

$$z_{n+1} = \frac{1 + i\sqrt{3}}{2}z_n + 2$$
, pour tout entier naturel n .

Pour tout entier naturel n, on note A_n le point d'affixe z_n .

a. Montrer que les points A_2 , A_3 et A_4 ont pour affixes respectives :

$$3 + i\sqrt{3}$$
, $2 + 2i\sqrt{3}$ et $2i\sqrt{3}$

On remarquera que : $A_1 = 1$, $A_2 = B$ et $A_4 = C$.

- **b.** Comparer les longueurs des segments $[A_1 A_2]$, $[A_2 A_3]$ et $[A_3 A_4]$.
- **c.** Établir que pour tout entier naturel *n*, on a :

$$z_{n+1} - \omega = \frac{1 + i\sqrt{3}}{2}(z_n - \omega),$$

où ω désigne le nombre complexe défini à la question 1. b.

- **d.** En déduire que le point A_{n+1} est l'image du point A_n par une transformation dont on précisera les éléments caractéristiques.
- **e.** Justifier que, pour tout entier naturel n, on a : $A_{n+6} = A_n$. Déterminer l'affixe du point A_{2012} .
- **3.** Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Déterminer, pour tout entier naturel n, la longueur du segment $[A_n A_{n+1}]$.

Exercice 4 5 points

Candidats ayant suivi l'enseignement de spécialité.

On se place dans le plan complexe muni d'un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$. On note z_n la suite de nombres complexes, de terme initiale $z_0 = 0$, et telle que :

$$z_{n+1} = \frac{1+i}{2}z_n + 1$$
, pour tout entier naturel n .

Pour tout entier naturel n, on note A_n le point d'affixe z_n .

- 1. Calculer les affixes des points A_1 , A_2 et A_3 . Placer ces points dans le plan muni du repère $(O; \vec{u}; \vec{v})$.
- **2. a.** Montrer que le point A_{n+1} est l'image du point A_n par une similitude directe s, dont on définira le rapport, l'angle et le centre Ω , d'affixe ω .

- **b.** Démontrer que le triangle $\Omega A_n A_{n+1}$ est isocèle rectangle.
- **3. a.** établir que, pour tout entier naturel n, on a : $\Omega A_n = \left(\frac{\sqrt{2}}{2}\right)^{n-1}$.
 - **b.** À partir de quelle valeur de n les points A_n sont-ils situés à l'intérieur du disque de centre Ω et de rayon 0,001 ?
- **4.** Pour tout entier naturel n, on note a_n la longueur $A_n A_{n+1}$ et L_n la somme $\sum_{k=0}^{n} a_k$.

 L_n est ainsi la longueur de la ligne polygonale $A_0A_1\cdots A_nA_{n+1}$. Déterminer la limite de L_n quand n tend vers $+\infty$.

5. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation. Démontrer que, pour tout entier naturel n, les points A_n , Ω et A_{n+4} sont alignés.