Algorithms Chapter 3 Growth of Functions

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Asymptotic notation
- Standard notations and common functions

The purpose of this chapter $_{1/3}$

- The order of growth of the running time of an algorithm gives us some information about:
 - the algorithm's efficiency
 - the relative performance of alternative algorithms
- ▶ The merge sort, with its $\Theta(n \lg n)$ worst-case running time, beats insertion sort, whose worst-case running time is $\Theta(n^2)$.
- ▶ For large enough inputs, the following are dominated by the effects of the input size itself.
 - multiplicative constants
 - lower-order terms of an exact running time

The purpose of this chapter $_{2/3}$

- ▶ When the input size *n* becomes large enough, we are studying the **asymptotic** efficiency of algorithms.
- That is, we are concerned with
 - how the running time of an algorithm increases with the size of the input in the limit, as the size of the input increases without bound.
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

The purpose of this chapter_{3/3}

- ▶ We will study how to measure and analyze an algorithm's efficiency for large inputs.
- ▶ The next section begins by defining asymptotic notations,
 - Θ-notation
 - ▶ *O*-notation
 - $ightharpoonup \Omega$ -notation

Θ-notation

- For a given function g(n), we denote by $\Theta(g(n))$ the set of functions
 - ▶ $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$
- For $n \ge n_0$, the function f(n) is equal to g(n) to within a constant factor.
- Here, g(n) is an asymptotically tight bound for f(n).
- ▶ Because $\Theta(g(n))$ is a set, we could write " $f(n) \in \Theta(g(n))$ ".
- Usually, we write " $f(n) = \Theta(g(n))$ ".

An example

▶ To show that $n^2/2 - 3n = \Theta(n^2)$, we must determine positive constants c_1 , c_2 , and n_0 such that

$$c_1 n^2 \le n^2/2 - 3n \le c_2 n^2$$
 for all $n \ge n_0$.

 \triangleright Dividing by n^2 yields

$$c_1 \le 1/2 - 3/n \le c_2$$
.

- $c_1 \le 1/2 3/n$ holds for $n \ge 7$ by $c_1 \le 1/14$
- ▶ $1/2 3/n \le c_2$ holds for $n \ge 1$ by $c_2 \ge 1/2$
- ► Thus, choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$, we can verify that $n^2/2 3n = \Theta(n^2)$.
- ► Show that $3n^3 2 = \Theta(n^3)$.

Another example

- ▶ We show that $6n^3 \neq \Theta(n^2)$ by contradiction.
 - ▶ Suppose c_2 and n_0 exist such that $6n^3 \le c_2n^2$ for all $n \ge n_0$.
 - ▶ Then $n \le c_2/6$, a contradiction.
 - \blacktriangleright Since c_2 is constant, it cannot possibly hold for arbitrary large n.

Summary

- The lower-order terms can be ignored
 - because they are insignificant for large n.
- ▶ The coefficient of the highest-order term can likewise be ignored
 - since it only changes c_1 and c_2 by a constant factor equal to the coefficient.
- In general, for any polynomial $p(n) = a_d n^d + ... + a_1 n + a_0$, where a_i are constants and $a_d > 0$, we have $p(n) = \Theta(n^d)$.
- For example, $f(n) = an^2 + bn + c$, where a, b, and c are constants and a > 0. Then, we have $f(n) = \Theta(n^2)$.

O-notation

- For a given function g(n), we denote by O(g(n)) the set of functions
 - ▶ $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$
- We write f(n) = O(g(n)) implies f(n) is a member of the set O(g(n)).
- Note that $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)).
 - ▶ any proof showing that $f(n) = \Theta(g(n))$ also shows that f(n) = O(g(n)).
 - $\Theta(g(n)) \subseteq O(g(n)).$
- Show that $3n^2 2 = O(n^2)$.

The meaning of O-notation_{1/2}

- lacktriangle The Θ -notation asymptotically bounds a function from above and below.
- When we have only an asymptotic upper bound, we use Onotation.
- \blacktriangleright Hence, Θ -notation is a stronger notation than O-notation.

The meaning of O-notation_{2/2}

- Any linear function an + b is in $O(n^2)$, which is easily verified by taking c = a + |b| and $n_0 = 1$.
 - ▶ $an + b \le (a + |b|) n^2$ for $n \ge 1$
- f(n) = O(g(n)) merely claims that
 - ightharpoonup g(n) is an asymptotic **upper** bound on f(n)
 - does not claim about how tight an upper bound it is
- In practical, O-notation is used to describe the worst-case running time of an algorithm.
- "an algorithm is O(g(n))" means that
 - \blacktriangleright the running time is at most constant times g(n), for sufficiently large n
 - no matter what particular input of size n is chosen for each value of n

Ω -notation

- For a given function g(n), we denote by $\Omega(g(n))$ the set of functions
 - ▶ $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$
- We write $f(n) = \Omega(g(n))$ implies f(n) is a member of the set $\Omega(g(n))$.
- \triangleright Ω -notation provides **asymptotic** lower bound.

The relationship between Θ , O, and Ω

- Theorem 3.1 For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- For example:
 - ▶ $n^2/2 3n = \Theta(n^2)$ → $n^2/2 3n = O(n^2)$ and $n^2/2 3n = \Omega(n^2)$
 - ► $n^2/2 3n = O(n^2)$ and $n^2/2 3n = \Omega(n^2)$ $\rightarrow n^2/2 3n = \Theta(n^2)$

The meaning of Ω -notation

- The Ω -notation is used to bound the **best-case** running time of an algorithm.
- "an algorithm is $\Omega(g(n))$ " means that
 - the running time is at least constant times g(n), for sufficiently large n
 - no matter what particular input of size n is chosen for each value of n

o-notation

- For a given function g(n), we denote by o(g(n)) the set of functions
 - ▶ $o(g(n)) = \{f(n): \text{ for any positive constant } c>0, \text{ there exists a }$ constant $n_0>0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}.$
- We use o-notation to denote an upper bound that is not asymptotically tight.
- For example, $2n=o(n^2)$, but $2n^2\neq o(n^2)$.
- Intuitively, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

ω-notation

- For a given function g(n), we denote by $\omega(g(n))$ the set of functions
 - $\omega(g(n))=\{f(n): \text{ for any positive constant } c>0, \text{ there exists a constant } n_0>0 \text{ such that } 0\leq cg(n)< f(n) \text{ for all } n\geq n_0\}.$
- We use ω -notation to denote a lower bound that is **not** asymptotically tight.
- For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$.
- The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty.$$

if the limit exists.

Comparison of functions_{1/4}

Transitivity:

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$,
- f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$,
- f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
- $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Comparison of functions_{2/4}

Reflexivity:

- $f(n) = \Theta(f(n)),$
- f(n) = O(f(n)),
- $f(n) = \Omega(f(n))$.

Symmetry:

• $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

- f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$,
- f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.

Comparison of functions_{3/4}

- Analogy between the asymptotic comparison and the real number comparison:
 - $f(n) = \Theta(g(n)) \approx a = b.$
 - $f(n) = O(g(n)) \approx a \leq b.$
 - $f(n) = \Omega(g(n)) \approx a \geq b$.
 - $f(n) = o(g(n)) \approx a < b.$
 - $f(n) = \omega(g(n)) \approx a > b.$

Comparison of functions_{4/4}

- Trichotomy property of real numbers does not carry over to asymptotic notation:
 - ▶ **Trichotomy:** For any two real numbers a and b, exactly one of the following must hold: a < b, a = b, or a > b.
- Not all functions are asymptotically comparable.
 - For two functions f(n) and g(n), it may be the case that neither f(n) = O(g(n)) nor $f(n) = \Omega(g(n))$.
 - For example, the function n and $n^{1+\sin n}$ cannot be compared, since the value of $n^{1+\sin n}$ oscillates between 0 and 2.