Lecture 6: Least Squares and RLS

Zach Neveu

October 10, 2019

Course Structure Notes

- DO ALL EXERCISES
- Exercises are primary material for exam this is why no solns given
- Pset 2: due 27/10 supposed to be pretty easy
- Mini Project max 3 pages, 1-3 people, presented at oral exam
 - Focus on using a different dataset, and adding some extra analysis
 - 15-20 hours per person
 - One week at the end with no lecture for focusing on this
- Exam sometime after 12/10

Review

- Orthogonality principle: \hat{y} vector should be orthogonal to the plane of the data points
- In other words, $e * \hat{y} = 0$ because \hat{y} is orthogonal to e
- NLMS algorithm. Theories around valid, stable and optimal step sizes μ
 - Step size: between $0 < \mu < \frac{1}{\lambda_{max}}$, λ is max eigval of Σ_x
 - Stable step size: $\mu < \frac{2}{tr(\Sigma_x)}$ (trace is sum of eigvals)
 - Total error: $J_{total} = J_{min} + J_{excess} + J_{lag}$
 - Excess error: error resulting from the fact that SGD never fully stabilizes (variance of converged algorithm)
 - Min error: error once algorithm is stable. (bias in optimal point)
 - Lag error: In time-varying environment, filter always lags behind reality, causing error.
 Basically, the optimal point keeps changing.
 - Big step size adds to excess error, subtracts from lag

RLS

- Converges in less iterations than NLMS
- Has better error rate than NLMS

- How does it get this free lunch??
- Loses time tracking ability, not as good in real life sometimes.
- Possible to diverge if large changes occur
- RLS quite sensitive to fixed point errors big problem in hardware
- Cost function exponentially weights
- Params:
 - β forgetting factor. Small β forget fast
 - λ regularization multiplier when few n, don't overfit

 \rightarrow