Revision Problems

1.

X1	3	4	2	6	8	2	5
X2	5	5.5	4	7	10	5	7.5

Calculate the sample means, sample variances and sample covariances

2.

Verify the following properties of the transpose when

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 4 & 2 \\ 5 & 0 & 3 \end{bmatrix}, \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

(a)
$$(A')' = A$$

(a)
$$(A')' = A$$

(b) $(C')^{-1} = (C^{-1})'$

(c)
$$(AB)' = B'A'$$

3.

Calculate the generalised sample variance for

$$\mathbf{X} = \begin{bmatrix} 9 & 1 \\ 5 & 3 \\ 1 & 2 \end{bmatrix}$$

Let X be distributed as $N_3(\mu, \Sigma)$, where $\mu' = [1, -1, 2]$ and

$$\Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Which of the following random variables are independent? Explain.

- (a) X_1 and X_2
- (b) X_1 and X_3
- (c) X_2 and X_3
- (d) (X_1, X_3) and X_2
- (e) X_1 and $X_1 + 3X_2 2X_3$

5

(a) Evaluate T^2 , for testing H_0 : $\mu' = [7, 11]$, using the data

$$\mathbf{X} = \begin{bmatrix} 2 & 12 \\ 8 & 9 \\ 6 & 9 \\ 8 & 10 \end{bmatrix}$$

- (b) Specify the distribution of T^2 for the situation in (a).
- (c) Using (a) and (b), test H_0 at the $\alpha = .05$ level. What conclusion do you reach?

6

Determine the population principal components Y_1 and Y_2 for the covariance matrix

$$\mathbf{\Sigma} = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}$$

Also, calculate the proportion of the total population variance explained by the first principal component.

$$\boldsymbol{\rho} = \begin{bmatrix} 1.0 & .63 & .45 \\ .63 & 1.0 & .35 \\ .45 & .35 & 1.0 \end{bmatrix}$$

for the p = 3 standardized random variables Z_1, Z_2 , and Z_3 can be generated by the m = 1 factor model

$$Z_1 = .9F_1 + \varepsilon_1$$

$$Z_2 = .7F_1 + \varepsilon_2$$

$$Z_3 = .5F_1 + \varepsilon_3$$

where $Var(F_1) = 1$, $Cov(\varepsilon, F_1) = \theta$, and

$$\Psi = \text{Cov}(\varepsilon) = \begin{bmatrix} .19 & 0 & 0 \\ 0 & .51 & 0 \\ 0 & 0 & .75 \end{bmatrix}$$

- (a) Calculate communalities h_i^2 , i = 1, 2, 3, and interpret these quantities.
- (b) Calculate $Corr(Z_i, F_1)$ for i = 1, 2, 3. Which variable might carry the greatest weight in "naming" the common factor? Why?

8

Consider the matrix of distances

$$\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 \\
1 & 0 & & & \\
2 & 1 & 0 & & \\
3 & 11 & 2 & 0 & \\
4 & 5 & 3 & 4 & 0
\end{array}$$

Cluster the four items using each of the following procedures.

- (a) Single linkage hierarchical procedure.
- (b) Complete linkage hierarchical procedure.
- (c) Average linkage hierarchical procedure.

Draw the dendrograms and compare the results in (a), (b), and (c).