In [99]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import scikitplot as skplt from sklearn import neighbors, datasets, tree, linear model, metrics, sym from sklearn.model_selection import cross val score, train test split, KFold import itertools from itertools import permutations from sklearn.metrics import recall score from sklearn.model_selection import GridSearchCV import warnings warnings.filterwarnings('ignore')

Question 4

1. Import Data

radius-

mean

standard

```
In [26]:
         #1. Import Data
         data = pd.read_csv('wdbc.data', sep=",",header=None)
         #2. Fix the column names
         features=['radius','texture','perimeter','area','smoothness','compactness','concavity','concave points'
         ,'symmetry','fractal dimension']
         atr=['mean','standard error','largest']
         column1 = ['ID', 'Diagnosis']
         column2 = list(itertools.product(features,atr))
         for i in range(len(column2)):
             column2[i]='-'.join(column2[i])
         column1.extend(column2)
         data.columns=column1
         data=data.iloc[:,1:]
         data.head(3)
Out[26]:
```

	Diagnosis	radius- mean	radius- standard error	radius- largest	texture- mean	texture- standard error	texture- largest	perimeter- mean	perimeter- standard error	perimeter- largest	 concavity- largest	concave points- mean	points standard erro
0	М	17.99	10.38	122.8	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	 25.38	17.33	184.6
1	М	20.57	17.77	132.9	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	 24.99	23.41	158.8
2	М	19.69	21.25	130.0	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	 23.57	25.53	152.5
3 rows × 31 columns													

perimeter-

mean

perimeter-

largest

standard

concave

COI

area-mean ...

In [20]: | #data.isna().sum() data.describe() Out[20]: radiustextureperimeter-

standard

texture-

mean

radius-

largest

		error	ŭ		error	J		error	· ·			
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		569
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798		16
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060		4
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960		7
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700		13
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540		14
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120		18
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440		36
8 rows × 30 columns												

texture-

largest

2. Performance Metric

In [27]:

0

1

the **F-measure(maligant)** as our performance matric.

scaler = MinMaxScaler()

0.521037

from sklearn.preprocessing import MinMaxScaler

0.022658

0.643144 0.272574 0.615783

0.545989

0.363733

0.501591 0.289880

3. Data Normalization

Given that the consequence of not identifying maligant case is also serious, I want to also take Recall into account and therefore choose

```
data.iloc[:,1:]=scaler.fit_transform(data.iloc[:,1:])
            data.head(10)
Out[27]:
                                                                                                                                                   CO
                                      radius-
                                                                                                  perimeter-
                                                                    texture-
                                                                                                                                         concave
                                                radius-
                                                                                       perimeter-
                                                                                                              perimeter-
                             radius-
                                                                                                                             concavity-
                                                          texture-
                                                                              texture-
                Diagnosis
                                     standard
                                                                   standard
                                                                                                    standard
                                                                                                                                          points-
                              mean
                                                 largest
                                                            mean
                                                                              largest
                                                                                           mean
                                                                                                                 largest
                                                                                                                                largest
                                                                                                                                                  sta
                                                                                                                                           mean
                                         error
                                                                       error
                                                                                                       error
```

0.593753

0.601496 2 0.390260 0.595743 0.449417 0.514309 0.462512 0.635686 0.509596 0.556386 0.360075 0.5 3 M 0.210090 0.360839 0.233501 0.102906 0.811321 0.811361 0.565604 0.522863 0.776263 ... 0.248310 0.385928 0.2 0.629893 0.156578 0.630986 0.489290 0.430351 0.347893 0.463918 0.518390 0.378283 ... 0.519744 0.123934 0.5 5 0.258839 0.202570 0.267984 0.141506 0.678613 0.461996 0.369728 0.402038 0.518687 ... 0.533343 0.347311 0.523875 0.380276 0.379164 0.274891 0.370707 ... 0.531839 0.416844 0.5 6 0.264058 0.367793 7 0.318472 0.376057 0.320710 0.184263 0.598267 0.445126 0.219447 0.297465 0.573737 ... 0.324795 0.429638 0.2 0.284869 0.409537 0.302052 0.159618 0.674099 0.533157 0.435567 0.464861 0.651515 ... 0.268943 0.498667 0.2 8 9 M 0.259312 0.484613 0.277659 0.140997 0.595558 0.675480 0.532568 0.424602 0.489899 ... 0.254714 0.763859 0.2 10 rows × 31 columns 4. Nested CV

0.792037

0.181768

0.703140

0.203608

0.731113

0.348757

0.686364

0.379798

0.620776 0.141525 0.6

0.303571

0.5

0.606901

find the best hyper-parameters for the model. # Split the target variable

In [69]:

y_data=np.where(data['Diagnosis']=='M',1,0) x data=data.iloc[:,1:]

Create the Classifier

Via NestedCV, I want to first find out which method has the best performance. After finding the best method, I will conduct grid search to

```
t=tree.DecisionTreeClassifier(random state=9)
         knn=neighbors.KNeighborsClassifier()
         log=linear model.LogisticRegression(penalty='elasticnet',11 ratio=0.5, solver='saga')
         s=svm.SVC(kernel='rbf', random state=9)
         # Create the grid search
         tree grid={'criterion':['gini','entropy'],
                     'max depth':list(range(30))}
         knn grid={'weights':['uniform','distance'],
                    'n_neighbors':list(range(5,31))}
         log grid={'C':[0.1,1,5,10,50,100,500,1000]}
         svm_grid={'C':[0.1,1,5,10,50,100],
                    'gamma':[1,5,10,15,20,25,30,50,100]}
         # Create the CV
         inner cv = KFold(n splits=5, shuffle=True, random state=9)
         outer cv = KFold(n splits=5, shuffle=True, random state=9)
         #Nested CV for SVM
         clf = GridSearchCV(estimator=s, param grid=svm grid, cv=inner cv,scoring='f1')
         nested_score = cross_val_score(clf, X=x_data, y=y_data, cv=outer_cv,scoring='f1')
         svm result=nested score.mean()
         #Nested CV for Decision Tree
         clf = GridSearchCV(estimator=t, param_grid=tree_grid, cv=inner_cv,scoring='f1')
         nested_score = cross_val_score(clf, X=x_data, y=y_data, cv=outer_cv,scoring='f1')
         tree result=nested score.mean()
         #Nested CV for Logistic Regression
         clf = GridSearchCV(estimator=log, param_grid=log_grid, cv=inner_cv,scoring='f1')
         nested score = cross val score(clf, X=x data, y=y data, cv=outer cv,scoring='f1')
         log result=nested score.mean()
         #Nested CV for KNN
         clf = GridSearchCV(estimator=knn, param grid=knn grid, cv=inner cv,scoring='f1')
         nested_score = cross_val_score(clf, X=x_data, y=y_data, cv=outer_cv,scoring='f1')
         knn result=nested score.mean()
In [80]: print('Average Performance of SVM Classifier: {}%'.format(round(svm result*100,2)))
         print('Average Performance of Decision Tree Classifier: {}%'.format(round(tree result*100,2)))
         print('Average Performance of Logistic Regression Classifier: {}%'.format(round(log_result*100,2)))
         print('Average Performance of KNN Classifier: {}%'.format(round(knn result*100,2)))
         print ("According to NestedCV's result, the SVM Classifier has the best performance.")
         Average Performance of SVM Classifier: 97.52%
         Average Performance of Decision Tree Classifier: 92.16%
         Average Performance of Logistic Regression Classifier: 96.32%
```

According to NestedCV's result, the SVM Classifier has the best performance. 5. Grid Search CV on SVM Model to find the best hyper-parameters In [88]: y data=np.where(data['Diagnosis']=='M',1,0)

x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=0.2,random_state=9)

Average Performance of KNN Classifier: 95.77%

'gamma': [1,5,10,15,20,25,30,50,100]} s=svm.SVC(kernel='rbf', random state=9, probability=True)

model = GridSearchCV(estimator=s, param grid=svm grid, cv=5,scoring='f1')

x data=data.iloc[:,1:]

model.fit(x train,y train)

 $svm grid={ 'C':[0.1,1,5,10,50,100], }$

plt.xlabel('False Positive Rate')

plt.title('ROC Curve')

#create Lift curve

plt.show()

1.0

2.75

print ("With CV grid search, I found the best hyperparameter is C={} and gamma={}.".format(model.best_p arams_['C'], model.best_params_['gamma']))

```
print("Prediction F1-Positive Score on Test Data: {}%".format(round(metrics.f1 score(y test, model.pred
         ict(x test))*100,2)))
         With CV grid search, I found the best hyperparameter is C=10 and gamma=1.
         Prediction F1-Positive Score on Test Data: 97.44%
         6. Plot the ROC Curve & Lift Curve
In [112]: prob=model.predict_proba(x_test)[:,1]
          #create ROC curve
          fpr, tpr, _ = metrics.roc_curve(y_test, prob)
          plt.plot(fpr,tpr)
          plt.ylabel('True Positive Rate')
```

0.8 True Positive Rate 0.6 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate Out[112]: <matplotlib.axes. subplots.AxesSubplot at 0x7fe73744ec90> Lift Curve

skplt.metrics.plot lift curve(y test,model.predict proba(x test))

ROC Curve

2.00 1.75

```
2.50
2.25
1.50
                                                               Class 0
1.25
                                                               Class 1
                                                               Baseline
1.00
       0.0
                   0.2
                                0.4
                                            0.6
                                                         0.8
                                                                     1.0
                             Percentage of sample
```

ROC Curve: Given that the line is really close to the top left corner, the model is really accurate.

Lift Curve: The two lines for Class 0 and Class 1 are all much higher than the baseline which is the line for random guess. Hence, the model is much better at predicting both class 1 and 0 than random guess.