Articulation Points in Multiplex Networks

Student: Artem Vergazov

Research Advisor: Vladimir Palyulin

Introduction. Networks

Simple network

Multiplex network

Introduction. Networks

Social Network

The topology of the Internet

Multiplex network examples

Transport

- Underground layer
- Bus layer

Social

- Twitter layer
- LinkedIn layer

Introduction. Motivation

What defines stability of the network?

Sep 2003: cascade node failure

Power grids layer Computer servers layer

Power grids layer Computer servers layer

Power grids layer Computer servers layer

Power grids layer

Computer servers layer

Power grids layer

Computer servers layer

Power grids layer Computer servers layer

Power grids layer Computer servers layer

Power grids layer Computer servers layer

Introduction. Articulation points

An articulation point (AP) is a node whose removal disconnects the graph

Articulation points (AP)

Step 0

Introduction. Definitions

Giant Connected Component (GCC)

Giant connected component (GCC) is the largest connected component of the graph

Articulation points removal and GCC size in the case of monoplex Erdős–Rényi network ($N = 10^5$)

Aim & Objectives

Study AP removal process in multiplex networks applying cascade failure of nodes

- 1. in Erdős–Rényi multiplex networks
- 2. in scale-free networks

Study the difference in behavior between simple and multiplex cases

Compare different random graph models

Algorithms and methodology

- 1. Generation of a set of networks from a certain distribution
- 2. Application of cascade of failures
- Obtaining AP metrics (fraction)
- 4. Repeating steps 2-3 until no APs emerge

Stack:

vanilla C++ (final simulations on large graphs $(N\sim10^5)$) Python: NetworkX, Matplotlib (prototyping and plotting)

https://github.com/ArtemVergazov/ap_in_multiplex_networks

Results. ER multiplex network

Articulation points removal and GCC size in the case of two-layer multiplex Erdős–Rényi network ($N=10^5$)

Results. ER multiplex and monoplex comparison

Results. Random graph models comparison

Erdős–Rényi: $P(k) = \frac{c^k}{k!}e^{-c}$ Scale-free: $P(k) \sim k^{-\lambda}$

Discussion and conclusions

Critical value of mean degree c is larger for multiplex networks – more connections needed in general to resist multiple node failures

Network's degree distribution is related to the order of the phase transition – avenue for further research

Current status and outlook

- APs removal strategy with cascade failure behavior studied on
 - Erdős–Rényi multiplex networks
 - scale-free multiplex networks
- comparison between different random graph models

Next step:

Preparation of the paper for submission

Acknowledgements

Prof. Vladimir Palyulin

Dr. Saeed Osat

Thank you for attention

Results. Scale-free multiplex network

Articulation points removal and GCC size in scale-free two-layer multiplex network ($N\sim10^5$) with the degree exponent $\lambda=3$. c is the mean degree of the network nodes.

Results. Scale-free and ER comparison

Scale-free network, $\lambda = 3$

ER network

Size of the Giant Connected Component (GCC) that is left after a cascade of node failures in a two-layer Erdős–Rényi network ($N \sim 10^5$). p is the fraction of nodes that are left after the failure

Appendix. Number of AP removal steps

Total number of AP removal steps as a function of mean degree c in multiplex ER and scale-free networks ($N{\sim}10^5$)

Skoltech

Multiplex vs Multilayer Networks

AP Identification Algorithm

Tarjan's algorithm based on DFS

Node u is an AP iff:

1. u is the root of DFS tree and has at least 2 child subgraphs

OR

2. u is not the root of the DFS tree and it has a child v such that no vertex in the subtree rooted with v has a back edge to one of the ancestors in DFS tree of u

Complexity: O(V + E)

