

CC1110DK CC2510DK Development Kit

User Manual Rev. 1.0

Table of contents

1	INTRODUCTION	3
2	ABOUT THIS MANUAL	3
3	DEFINITIONS	4
4	KIT CONTENT	6
4.1	Hardware	6
5	SMARTRF®04EB	7
5.1	USB MCU	
5.1.1	Bootloader	8
5.1.2	Programming USB controller	
5.2	USB MCU SIGNAL NAMES	
6	HARDWARE DESCRIPTION SMARTRF®04EB	10
6.1	POWERING SMARTRF®04EB	11
6.2	USB INTERFACE	
6.3	RS-232 INTERFACE.	
6.4	User interface	
6.5	AUDIO INTERFACE	12
6.6	SPI interface swap jumpers on SmartRf®04EB	-
6.7	I/O CONNECTORS	
6.8	EM CONNECTORS	
6.9	SIGNAL FLOW	
6.10	EM LCD connection	
7	APPLICATION EXAMPLES AND RF TESTING	17
7.1	Setup	
7.2	Examples	
7.3	RF TESTING	
7.3.1	Output power testing	
7.3.2 8	Sensitivity testingIAR EMBEDDED WORKBENCH	
8.1	DOWNLOAD THE LATEST IAR SOFTWARE	
8.2	INSTALLATION OF DOWNLOADED EVALUATION VERSION FROM WEB	
8.3 8.4	INSTALLATION FROM THE CD	
8.5	IAR Embedded Workbench – KickStart edition	
9.5 9	USING SMARTRF®04EB FOR PROTOTYPING	
	USING SMARTRF 04EB FOR PROTOTIFING	
9.1	USING SMARTRE U4EB AS AN IN-CIRCUIT EMULATOR (ICE) DEBUG INTERFACE	
9.2 9.3	SYSTEM-ON-CHIP DEBUG PLUG-IN BOARD (SOC DEM)	
	` -	
10	PROGRAMMING THE SOC WITH A HEX FILE	
11	SMARTRF®04EB TROUBLESHOOTING	
12	SMARTRF04DK SCHEMATICS	26
13	EVALUATION MODULES	33
14	DOCUMENT HISTORY	33

1 Introduction

Thank you for purchasing a SmartRF®04DK Development Kit.

Please note that Texas Instruments uses the term SmartRF®04DK as a collective term for all development kits on the Chipcon SmartRF®04 platform. This development platform supports evaluation, development and prototyping using the Chipcon SmartRF®04 products from Texas Instruments.

Make sure to subscribe to the Low-Power RF eNewsletter to receive information about updates to documentation, new product releases and more. Sign up on the Texas Instruments RF/IF Components web site.

2 About this manual

This manual contains both tutorial and reference information, and covers both the hardware and software components of the development kit. This manual does not cover the CC2511 USB dongle included in the CC2510-CC2511DK.

The RF USB dongle HW and application examples are covered in a separate document. SmartRF® Studio has its own user manual.

The Chipcon Flash Programmer has its own user manual.

Further background information can be found in the device datasheets.

3 Definitions

SmartRF04EB

Evaluation Board. Main board with LCD, USB interface, LEDs, pot-meter etc. Platform for the Evaluation Modules (EM).

CC1110EM or CC2510EM

CC1110/CC2510 Evaluation Module, a small plug-in module for CC1110DK/CC2510-CC2511DK, should be used as reference design for antenna and RF layout.

RF USB Dongle

Reference design for a CC2511 based USB dongle with RF interface. Should be used as reference design for antenna and RF layout. HW and SW application examples for this USB Dongle is not covered in this document. A separate RF USB Dongle User Manual covers this.

 $SmartRF^{@}04EB$

Evaluation Board. Main board with LCD, USB interface, LEDs, potmeter etc. Platform for the Evaluation Modules (EM, see below).

SmartRF®04DK

A collective term used for all development kits for the SmartRF®04

platform, i.e. SmartRF®04EB + EM.

CC2510EM

CC2510 Evaluation Module, a small plug-in module for SmartRF04DK, should be used as reference design for RF layout.

CC1110EM

CC1110 Evaluation Module, a small plug-in module for SmartRF04DK, should be used as reference design for RF layout.

USB MCU

The Silicon Labs C8051F320 MCU used to provide a USB interface on the SmartRF04DK.

Factory firmware

The firmware that is supplied programmed into the USB MCU from the factory. This firmware supports SmartRF® Studio operation as well as a stand-alone PER tester.

PER Packet Error Rate. Cour

Packet Error Rate. Counts the number of lost and/or faulty packets and displays the ratio: (lost/faulty packets)/number of packets sent.

SWRU134 Page 4 of 33

CC1110/CC2510

System on a Chip. A collective term used to refer to Texas Instruments ICs with on-chip MCU and RF transceiver. Used in this document to reference the CC1110 / CC2510. SoC

ICE In Circuit Emulator.

SWRU134

Page 5 of 33

4 Kit content

4.1 Hardware

The development kit contains the following:

- 2 x SmartRF®04EB
- 2 x evaluation module (CC1110EM or CC2510EM)
- 2 x Antenna for the appropriate frequency range
- 2 x USB cables
- 1 x 10-wire flat cable for using SmartRF[®]04EB as emulator for external target systems
- 2 x SOC_DEM System on Chip debug plug-in board
- 1 x USB dongle (CC2510-CC2511DK only)
- · Quick start guide

SmartRF®04EB with EM

The SmartRF04DK Development Kit includes a number of functions and applications that allows quick testing of the RF interface and peripherals of the chip.

- Evaluate the SmartRF®04 products. Right out of the box, the kit can be used for range testing.
- Use SmartRF[®] Studio to perform RF measurements. The radio can be easily configured to measure sensitivity, output power and other RF parameters.
- Prototype development. The SmartRF04DK includes a USB interface that can be used as emulator interface for the CC1110/CC2510. All CC1110/2510 I/O ports are available on pin connectors on the edge of the board to allow external applications easy access to the CC1110/2510. These connectors are also compatible with logic analyser probes for easy debugging.

5 SmartRF®04EB

This chapter includes overall information that applies to SmartRF®04EB. In the following SoC means Chipcon System on Chip, i.e. CC1110 or CC2510.

Figure 1: Main components

Figure 1 shows the main components on the SmartRF[®]04EB. A USB cable from a PC is connected directly to the USB controller. When a SoC evaluation module is plugged into the SmartRF[®]04EB, the only purpose of the USB controller is to "translate" USB signals to the SoC 2-wire debug interface. This interface includes Debug Clock (DC) and Debug Data (DD). The USB controller also controls the Reset_n line connected to the SoC.

Most of the peripherals on the SmartRF®04EB are connected to both the USB controller and to the SoC. This means that I/O ports on both controllers can drive the same pin. When the USB controller detects that a SoC is connected, it will therefore set all the I/O in three-state (high impedance) mode. The connection to the USB controller may anyhow somewhat influence these I/O lines.

5.1 USB MCU

5.1.1 Bootloader

The USB controller is programmed with a bootloader when it is shipped from the factory. The bootloader allows programming of new code into the USB MCU without the Silicon Labs' serial adapter. The bootloader communicates with SmartRF® Studio or a custom program via USB.

5.1.2 Programming USB controller

If it is required to update the firmware of the USB MCU, this can be done using the SmartRF®04 programming software (Chipcon Flash Programmer or SmartRF® Studio). For use of Chipcon Flash Programmer please refer to Chipcon Flash Programmer user manual for instructions. The USB controller can only be updated via USB when no EM is connected to the SmartRF®04EB.

To download firmware to the USB MCU without using the bootloader or to download the bootloader in the first place, a Silicon Labs' EC2 serial adapter (Figure 2) is required. This adapter should be connected to P301, marked "USB MCU debug", on the SmartRF®04EB.

Figure 2: EC2 serial adapter

5.2 USB MCU signal names

The USB MCU is a C8051F320 from Silicon Labs. Please see the Silicon Labs web site for detailed information about this MCU.

The following table shows the usage of I/O pins on the USB MCU.

Pin no.	Pin name (USB MCU)	Signal name SmartRF [®] 04EB	0-ohm resistor	Function
1	P0.1	P1.7/SO/GDO1/MISO	R117	SPI MISO signal,
				transceiver/transmitter SO/GDO2
2	P0.0	P1.5/SCLK	R115	SPI Serial clock
10	P3.0/C2D			USB MCU Debug pin
11	P2.7	P1.3/LED3	R113	LED3 (yellow), active low
12	P2.6	P0.4/RTS	R100	
13	P2.5	RS232_POWER		Turns RS-232 level converter on/off
14	P2.4	P2.0/LED_4	R120	LED4 (Blue), active low
15	P2.3	RESET_N		LCD Power on reset signal, SoC RESET
16	P2.2	SOC_PRESENT		Tells USB MCU whether a SoC is present. 0 = transmitter/transceiver 1 = SoC
17	P2.1	P0.6/JOY	R106	Joystick input (analogue coded voltage)
18	P2.0	P1.2/LED2	R111	LED2 (Red), active low
19	P1.7	P1.0/LED1	R110	LED1, (Green), active low
20	P1.6	P0.7/POT	R107	Potentiometer input
21	P1.5	P0.5/JOY_PUSH	R112	Joystick pushed
22	P1.4	P1.1/PWM_OUTPUT	R105	PWM audio output
23	P1.3	P0.1/BUTTON_PUSH	R101	Button pushed
24	P1.2	P0.0/MIC_INPUT	R104	Audio input
25	P1.1	P2.4/SCL	R124	I2S clock (for LCD)
26	P1.0	P2.3/SDA	R123	I2S data (for LCD)
27	P0.7	P2.2/GDO2/DC	R122	Transceiver/transmitter GDO3, SoC debug signal
28	P0.6/CNVSTR	P2.1/GDO1/DD	R121	Transceiver/transmitter GDO1, SoC debug signal
29	P0.5	P0.2/UART_RD	R102	UARŤ RĎ
30	P0.4	P0.3/UART_TD	R103	UART TD
31	P0.3/XTAL2	P1.4/CSn/SS	R114	SPI slave select signal
32	P0.2/XTAL1	P1.6/MOSI	R116	SPI MOSI signal, Transceiver/Transmitter SI

Table 1: USB MCU pin-out

As mentioned in the table, the joystick output is coded as an analogue voltage. This has been done in order to save the number of pins required on the MCU to interface with the joystick. The SoC software libraries contain functions to decode the ADC values and indicate in what direction the joystick is moved. The push function of the joystick is treated as a separate digital signal.

SWRU134

6 Hardware description SmartRF®04EB

Figure 3: SmartRF04DK overview

The figure above shows the major parts of the SmartRF®04EB. The SmartRF®04EB serves as main platform in the development kit.

6.1 Powering SmartRF[®]04EB

If several power sources are connected to SmartRF®04EB, the board will be powered from the supply that supplies the highest voltage.

Figure 4: Power switch setting

The Power Switch S3 must be set according to what power source is used. If 3.3V is applied using the power terminal block, the switch should be set to the left position. In all other cases, the switch should be set to the right position for power to be applied to the SmartRF®04EB. This switch can be used to turn off the SmartRF®04EB by switching it to the opposite position of that used to turn it on.

Figure 5: Power connector

The SmartRF®04EB can be powered in several different ways:

- **DC jack** connector with standard DC jack power connectors with a 2.5mm centre pin. The centre pin is used for the positive voltage. A 4-10V DC power supply should be used. The onboard voltage regulator supplies 3.3V to the board.
- Laboratory power supply. Ground should be connected to the 0V terminal on the power connector (see Figure 5). A 4-10V supply can be connected to the "4-10V" terminal, or a 3.3V supply can be connected to the "3.3V" terminal. The on-board voltage regulators will be bypassed when using the "3.3V" terminal. Therefore it is important that the voltage level is within these limits:
 - o 2.7V-3.6V when the USB interface is not active.
 - o 3.0V-3.6V when the USB interface is active.
- **USB power**. If the SmartRF®04EB is connected to a USB socket on a PC, it will draw power from the USB bus. The onboard voltage regulator supplies 3.3V to the board.
- **Battery power**. The evaluation board includes a 9V-type battery connector on the bottom side of the PCB. A 9V battery or a battery pack that uses a 9V-type connector can be connected to this battery connector. The onboard voltage regulator supplies 3.3V to the board.

Please note that while the SmartRF $^{@}$ 04 devices have a wide supply range, the components on the SmartRF $^{@}$ 04EB limit the total voltage supply range to 2.7V - 3.6V (3.0V - 3.6V while the USB is active). The SmartRF $^{@}$ 04EB has been designed for a temperature range of -40°C to +85°C (excluding the LCD display). The EM is designed for a temperature range of -40°C to +85°C.

6.2 USB Interface

The USB interface is used to interface to a PC to run SmartRF[®] Studio and for programming and debugging using the PC debugging tools and programmers. If SmartRF[®] Studio connects to the SmartRF[®]04EB and detects an old version of the USB MCU firmware, the USB MCU will be upgraded via this interface. The SmartRF[®]04EB can be bus-powered from the USB interface.

6.3 RS-232 interface

The RS-232 can be used by custom applications for communication with other devices. The RS-232 interface utilises a voltage translation device so that the RS-232 port is compatible with bipolar RS-232 levels.

Note that this RS-232 level converter contains a charge-pump power supply that generates electrical noise. The RS-232 voltage converter can be disabled by driving pin P2.5 on the USB MCU low (the same pin is used to disable the headphone amplifier).

6.4 User interface

The SmartRF®04EB includes a joystick and a push button as user input devices, and four LEDs and a 2x16 character LCD display as user output devices. The display and user interface is by default controlled by the factory firmware in the SoC.

6.5 Audio interface

The SmartRF®04EB includes a microphone input and headphone output.

The audio output section consists of a volume control, followed by a 4th order Chebychev filter. This filter serves to attenuate frequencies above 6 kHz, and so converts the PWM signal to an analogue audio signal. A headphone amplifier IC (TPA4411 from Texas Instruments) is used to drive the headphones.

Note that the headphone amplifier IC uses switch-mode power supply techniques to generate negative voltages, and this may cause electrical noise. The headphone amplifier can be disabled by driving pin P2.5 on the USB MCU low (the same pin is used to disable the RS-232 voltage converter).

The audio input section consists of a microphone amplifier that also includes a low-pass antialiasing filter. In order to use the audio/microphone input, a resistor (preferably 0 Ohm) has to be mounted at position R104 on the backside of the SmartRF®04EB. The R104 resistor connects the audio/microphone input (an analogue signal) to an associated EM pin. When a SoC EM is used together with a SmartRF®04EB, the audio/microphone input may generate interrupts and e.g. wake the SoC up from Power Mode 2. Therefore the R104 resistor is not mounted on SmartRF®04EB rev. 2.0.1 (and newer revisions). Note that the SmartRF®04EB revision is stated on a stick-on label located on the backside of the board.

A standard PC-type headset with separate microphone and headphone mini-jacks can be connected directly to the audio interface.

6.6 SPI interface swap jumpers on SmartRF®04EB

The SPI swap jumpers at P3 shall be set according to Figure 6.

Figure 6: SPI jumper setting

6.7 I/O connectors

The I/O connectors bring out all the signals from the EM connectors. These connectors are compatible with Agilent logic analyser probes. The connectors allow easy access to I/O signals and to connect prototyping boards.

Pin	Function
1	N/C
2	N/C
3	P0_0/MIC_IN
4	VDD
5	VDD
6	N/C
7	P0_1/BUTTON_PUSH
8	N/C
9	P0_2/UART_RD
10	N/C
11	P0_3/UART_TD
12	N/C
13	P0_4/RTS
14	N/C
15	P0_5/JOY_PUSH
16	N/C
17	P0_6/JOY
18	N/C
19	P0_7/POT
20	GND

Table 2: I/O connector A (P10) pin-out

Pin	Function
1	N/C
2	N/C
3	VDD
4	P2_0*/LED4
5	P1_0/LED1
6	P2_1/DD
7	P1_1/PWM_OUTPUT
8	P2_2/DC
9	P1_2*/LED2
10	P2_3*/SDA
11	P1_3/LED3
12	P2_4*/SCL
13	P1_4/CSn
14	N/C
15	P1_5/SCLK
16	RESET_N
17	P1_6/MOSI
18	Debug Data Direction(DD_DIR)
19	P1_7/MISO
20	GND

Table 3: I/O connector B (P11) pin-out, * see chapter 6.10.

6.8 EM connectors

The EM connectors are used for connecting the EM to the SmartRF®04EB. The connectors P1 and P2 are used as the main interface.

The EM should be used as an RF reference design with the Chipcon SoC, decoupling, and all required RF circuitry. It is recommended to copy this reference design when designing applications with Chipcon RF devices in order to achieve best RF performance.

Note that while it is physically possible to plug an EM not belonging to the SmartRF®04 product range into the SmartRF®04EB, the factory firmware and SmartRF® Studio do not support the use of older devices. The SmartRF®04EB can be used with custom firmware for prototyping using older Chipcon RF devices.

6.9 Signal flow

Figure 7: Evaluation Board Signal flow

The signal lines from the EM connectors run via 0-ohm resistors to the USB MCU and the various peripherals on the SmartRF®04EB. This allows connecting an EM module to other applications. The USB MCU can be disconnected from the signal pins by removing the 0-ohm resistors. The I/O connectors are located on the "outside" of the 0-ohm resistors, so they are still connected to the EM connectors even if the 0-ohm resistors are removed. Please refer to Table 1 on page 9 for a list of 0-ohm resistors and corresponding signals.

The SmartRF®04EB may not work with In-Circuit Emulator (ICE), SmartRF® Studio or the SW examples when the 0-ohm resistors are removed.

6.10 EM LCD connection

Please note that the I/O pins P2_3 and 2_4 on the SoC are connected to a 32 kHz X-oscillator on the CC1110EM and CC2510EM boards. The LCD display is therefore internally, on the EM, swapped from P1_2 to P2_3 and P2_0 to P2_4 as shown in Figure 8. Therefore there is no access to LED2 (red) and LED4 (blue) from the SoC.

Figure 8: EM LCD connection

7 Application examples and RF testing

This section identifies what example software comes with the CC1110/CC2510 development kit and also describes how to use the kit for fundamental RF testing.

7.1 Setup

- 1. Plug two Evaluation Modules into the two Evaluation Boards.
- 2. Connect antennas to both EM boards
- 3. Apply power to the Development Kits. See chapter 6.1 for more information about various ways of powering the Development Kit.
- 4. Turn on power by setting the power switch correctly.

For a more detailed explanation, see the "Quick Start Instructions" for the development kit.

7.2 Examples

The CC1110/CC2510 development kit is accompanied by a Packet Error Rate (PER) software example. This together with a corresponding document can be downloaded from the Texas Instruments web site.

The software example is provided as source code. It is written for the IAR Embedded Workbench for 8051. It is necessary to have the Embedded Workbench installed to be able to compile or debug the source code or build binary files for download to the CC1110 or CC2510. Please see chapter 8 for installation and licensing details.

The Packet Error Rate (PER) is one way of describing the quality of a radio channel. A high PER indicates many lost or damaged packets, in other words bad transmission conditions. This example makes it possible to test the CC2510 and the CC1110 against the specifications in the data sheet in different transmission conditions and with various radio frequencies chosen from a menu.

When starting the example the Chipcon-logo, chip used and revision will be shown on the LCD. The application will start when button S1 is pushed.

7.3 RF testing

RF testing is best performed by using SmartRF® Studio together with the Development Kit. Connect the SmartRF04DK to a PC using the USB interface. Start SmartRF® Studio and select the SmartRF®04 tab. Select the correct Development Kit (several Development Kits can be connected to a PC at once), it should be listed as "CC2510 – new device" or "CC1110 – new device", and click the Start button. In the main SmartRF® Studio window settings can be changed, tests performed and registers adjusted. RF measurement equipment may be connected to the SMA connector on the EM.

Please see the SmartRF[®] Studio documentation for more information about the operation of SmartRF[®] Studio.

7.3.1 Output power testing

Figure 9: Output power measurement set up

Plug an EM into the SmartRF04DK, and connect the Development Kit to a PC using USB. Start SmartRF® Studio. Connect the antenna port of the EM board to a spectrum analyser using a 50-ohm RF coaxial cable. Use the simple TX function in SmartRF® Studio to set up the RF chip to emit a carrier at the desired frequency. An accurate measure of the output power can now be made. It is recommended to use a resolution bandwidth (RBW) of 3 MHz to ensure that all the RF energy is included in the measurement. Using good-quality RF cabling, the loss in the cabling should be negligible. However make sure that the spectrum analyser is calibrated. If possible, check it against a calibrated instrument such as an RF signal generator. Uncalibrated spectrum analysers can display errors of several dB.

7.3.2 Sensitivity testing

Figure 10: Sensitivity measurement set up

For proper sensitivity testing, a bit-error rate tester is needed. The exact setup will depend on the specific make of tester you are using, but in general the setup is as follows:

- The BER tester generates a pseudo-random baseband signal. This is used to modulate an RF signal generator (in some cases this is integrated in the BER tester). The modulated RF signal is then fed into the antenna connector of the EM.
- The RF chip should be configured to operate in non-buffered mode, outputting the received bit stream on the general I/O pins that are routed to the DTEST1 and DTEST2 SMA connectors on the Evaluation Board.
- The demodulated signal and clock are then fed back to the BER tester. The BER tester compares this signal with the original pseudo-random baseband signal.

The BER tester will display the number of errors measured in a scientific (e.g. 5E-6) format. Usually sensitivity is measured for a BER of 1E-3, but it is possible to use other criteria as well. Normally the RF power from the RF generator is decreased until the BER equals 1E-3. The RF power delivered by the RF signal generator at this point is the sensitivity figure.

See also design note DN002, document number SWRA097.

8 IAR Embedded Workbench

An evaluation version of IAR Embedded Workbench is included in the CC1110/CC2510 development kit. This chapter describes how to obtain an IAR license number, how to install the IAR evaluation version and how to obtain a license for 60 days additional evaluation.

The 60 days additional evaluation time is provided to all TI Low Power Wireless development kit customers.

8.1 Download the latest IAR software

The latest evaluation version of IAR Embedded Workbench for 8051 can be downloaded from: http://supp.iar.com/Download/SW/?item=EW8051-EVAL

8.2 Installation of downloaded evaluation version from web

Run the downloaded installation program and follow the instructions. You will have to register with IAR to get an e-mail with a link to a "Registration confirmed" web site. This is the web site that contains your license number and license key. An example is shown in Figure 11.

Figure 11: IAR registration confirmed web site example

SWRU134 Page 20 of 33

The license number and license key from the "Registration confirmed" web page are required during the installation.

Please note that you shall use the license number from the "Registration confirmed" web site even though the installation program states that the license number can be found on the CD cover.

Figure 12: IAR installation screen shot

8.3 Installation from the CD

It's recommended to install the latest version as described above. But if you anyhow prefere to install from the IAR CD delivered with the kit, please follow the procedure below.

- 1. Insert the CD
- 2. Click "Install the IAR Embedded Workbench"

Figure 13: IAR installation from CD, step 1

SWRU134

Page 21 of 33

3. Click "IAR online registration"

Figure 14: IAR installation from CD, step 2

4. Follow the instructions given on screen. The registration and licensing procedure is equal to the procedure explained in chapter 8.2.

8.4 Obtaining 60 days additional license

To obtain a license for additional 60 days evaluation, please contact your local IAR sales representative. For a list of sales offices and distributors in your country, please see this site: http://www.iar.com/contact

8.5 IAR Embedded Workbench - KickStart edition

As an alternative to the time limited evaluation version, IAR also offers a code size limited version that you can use as long as you want. This is called the IAR Embedded Workbench – KickStart edition. The code size limitation for the KickStart edition for 8051 is currently 4 kB.

The kickstart edition of IAR Embedded Workbench is a code size limited but fully functional integrated development environment, ideal for creating small applications or for getting started fast on a new project. The kickstart eidition is completely free of charge and you may use it for as long as you want. The only requirement is that you register to get a license key.

The kickstart edition of IAR Embedded Workbench includes project manager, editor, C/C++ compiler, assembler, linker, librarian and debugger tools. A complete set of user guides is included in PDF format.

More information is found on this web site: http://www.iar.com/p89661/p89661_eng.php#ks. Please choose the version for the **8051 processor family / core**, not the version for the Texas Instruments MSP430 processor family / core.

9 Using SmartRF®04EB for prototyping

SmartRF®04EB includes a debug and programming interface. The debug interface is controlled by 2 communication pins. On the SmartRF®04EB the interface is controlled by the USB MCU. This allows both programming and an emulator interface using the USB port.

Table 1 on page 9 shows which pins on the MCU that are used for various peripheral functions. P10 and P11 pin-row connectors can be used to connect the SmartRF®04EB to another PCB or prototyping board.

9.1 Using SmartRF®04EB as an In-Circuit Emulator (ICE)

The SmartRF®04EB can be used as ICE both for devices connected to the EM socket and for external systems with custom applications. Figure 15 shows the main components on SmartRF®04EB when it's used as ICE. Please notice that if the SmartRF®04EB is used to debug an external system, the EM *shall be removed*, and vice versa. It is strongly recommended to use the SOC_DEM in the EM connector slot when the SmartRF®04EB is used to debug an external system, please see section 9.3.

Figure 15: SmartRF®04EB used as ICE

If several SmartRF®04EB boards are connected to the PC USB ports simultaneously a selection window will display the connected SmartRF®04EBs, and the user can select which device to load. This is valid for all Chipcon PC software.

9.2 Debug interface

When designing PCBs with Chipcon SoC's it is recommended to include a pin header or test points to allow in-circuit emulation or programming using SmartRF®04EB or other programming tools.

The pin-out used on the SmartRF®04EB is explained in Table 4. The connector includes 4 SPI control signals. These are currently not used, but they are included for flexibility.

The SmartRF®04EB includes a voltage converter to support programming and debugging of external systems with different operating voltage than the SmartRF®04EB. The debug connector (P14, "SoC debug/ flash") includes two VDD connections on pin 2 and pin 9. The function is different for these connections.

Pin 2 VDD supplies voltage to the voltage converter. This pin should be connected to VDD, on the external board to assure that the correct supply voltage is used for the voltage converter. *This pin must always be connected.* The voltage on the target system must be above 2.7 V when debugged from SmartRF[®]04EB.

Pin 9 VDD supplies VDD (3.3 V) from the SmartRF®04EB. If the target application is powered from the SmartRF®04EB supply during programming and debugging this pin should be connected. If the target voltage differs from 3.3V, this pin should not be connected.

The pin out used on the SmartRF[®]04EB is explained in Table 4 and Figure 16. All signals in bold in the table are required. Figure 16 shows the required signals for a minimum connector layout.

Pin	Function	Note
1	GND	
2	VDD	Used to set correct voltage for the
		voltage level converter
3	Debug Clock (DC)	
4	Debug Data (DD)	
5	CSn	
6	SCLK	
7	Reset_N	
8	MOSI	
9	3.3V VDD, alt. NC	Delivers VDD from SmartRF®04EB
10	MISO	

Table 4: P14 SoC debug connector pin-out

Figure 16: Recommended debug connector layout (Top view)

9.3 System-on-Chip Debug Plug-In board (SOC_DEM)

The CC1110/2510 DK is equipped with two System on Chip Debug Plug-in boards (SOC_DEM) as shown in Figure 17.

The SOC_DEM provides an additional physical SoC debug/programming interface for the SmartRF®04EB. These boards are included because the original debug interface on the SmartRF04®EB P14 is known to be unreliable in certain situations.

When programming and/or debugging a target board using the SmartRF®04EB as In Circuit Emulator (ICE) it is recommended to always use the SOC_DEM board in stead of the SmartRF®04EB P14 SoC debug/flash connector.

Figure 17: SOC DEM board

Please note that the SmartRF®04EB P14 SoC debug/flash connector provides an SPI interface in addition to the Chipcon debug interface. This SPI interface is NOT provided by the SOC_DEM. However, it is neither needed for programming nor debugging of Chipcon System-on-Chip products.

10 Programming the SoC with a HEX file

The SoC can be programmed from the USB interface using the Chipcon programming software. Figure 18 shows the user interface of the Chipcon Flash Programmer. For additional information regarding the Chipcon Flash Programmer please refer to the Chipcon Flash Programmer User Manual.

Figure 18: Chipcon Flash programmer software

11 SmartRF®04EB Troubleshooting

Please refer to Texas Instruments Design Note, DN300 for SmartRF®04EB troubleshooting:

DN300 - SmartRF04EB Troubleshooting

12 SmartRF04DK Schematics

Figure 19: SmartRF®04EB schematic, page 1

Figure 20: SmartRF®04EB schematic, page 2

Figure 21: SmartRF®04EB schematic, page 3

Figure 22: SmartRF®04EB schematic, page 4

Figure 23: SmartRF®04EB schematic, page 5

Figure 24: SmartRF®04EB schematic, page 6

Figure 25: SmartRF®04EB schematic, page 7

Revision	Description/Changes	
2.0.1 (PCB 1.9)	R104 not mounted by default, see section 6.5	
2.0 (PCB 1.9)	Changes to production test, no physical changes to product.	
1.9 (PCB 1.9)	Initial public release	

Table 5: SmartRF®04EB change list

SWRU134 Page 32 of 33

13 Evaluation Modules

Gerber files and full documentation for the released evaluation modules can be downloaded from the Texas Instruments web site.

Figure 26: Evaluation Module

14 Document history

Revision	Date	Description/Changes		
1.0	2007-09-14	Initial release. This user manual previously covered CC1110, CC2510 and CC243x. It has now been separated into two documents; one for CC1110/2510 and another for CC243x. The main technical update in this document revision concerns the debug interface, audio interface and software examples.		

Related/old document (SWRU039) history				
Revision	Revision Date Description/Changes			
1.7	2006-10-12	Major updates in many part of the document including Table 1: typo, R101 changed to 117, Table 3 P2_0/DC changed to P2_2/DC, removed all EM schematics since the most recent versions are available on web.		
1.6	2006-06-01	Minor changes		
1.5	2006-02-16	Changed layout, changed P0_4/CTS to P0_4/RTS in table "USB MCU pin-out"		
1.4	2006-02-06	Updated to include CC1110		
1.3	2006-01-25	Added temperature sensor to examples		
1.2.1	2006-01-19	Minor corrections		
1.2	2006-01-10	Updated schematics and minor corrections		
1.1	2005-12-28	Updated to include CC2510		
1.0	2005-12-16	Initial release		

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti-rfid.com	Telephony	www.ti.com/telephony
www.ti.com/lpw	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti-com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated