Sample-efficient Reinforcement Learning with Implicitly Quantized Representations

Aidan Scannell, Mohammadreza Nakhaei, Kalle Kujanpää, Yi Zhao, Kevin Luck, Arno Solin, Joni Pajarinen

Aidan Scannell

Finnish Center for Artificial Intelligence (FCAI)
Aalto University

Motivation: Robotic Manipulation

Reinforcement Learning (RL)

Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Discount factor $\gamma \in [0,1]$

In model-based RL these are the "model"

 $a_t = \pi(s_t)$ Actions

$$s_{t+1} \sim P(\cdot \mid s_t, a_t)$$

Transition function

Goal:

$$\max_{\pi} \mathbb{E}_{\pi,P} \left[\sum_{t \neq 0}^{\infty} \gamma^{t} r(s(sa_{t}) \mid s_{0}s_{0} \Rightarrow s_{0}) \right]$$

World Models

FCAI

DCWM: Discrete Codebook World Model

Discrete Codebook

DCWM: World Model Training

Results: Overview

Strong Performance in DMControl and MetaWorld Manipulation Tasks

Why Does DCWM Work So Well?

Combination of Discrete Representation and Cross Entropy Loss

Made latent space continuous, stochastic and multimodal

Email: aidan.scannell@aalto.fi

Website: www.aidanscannell.com

Main Takeaway:

Learning discrete codebook encodings with a selfsupervised cross-entropy loss improves sample efficiency in continuous control tasks

FCAI fcai.fi

Results: DeepMind Control Suite

Strong Performance in Hard DMControl Tasks

FCAI

Results: MetaWorld

Competitive Performance in Robotic Manipulation

FCAI fcai.fi

11

Comparison of Different Discrete Encodings

Results: Latent Space Size

DCWM is Fairly Robust to its Latent Space Size

DCWM: Discrete Codebook World Model

DCWM: Components

Encoder

$$\mathbf{x}_t = e_{\theta}(\mathbf{s}_t) \in \mathbb{R}^{d \times b}$$

Latent quantization $\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$

$$\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$$

Dynamics

$$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, ..., p_{|\mathcal{C}|})$$
 with $p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} \mid \mathbf{c}_t, \mathbf{a}_t)$

Reward

$$\hat{r}_{t+1} = R_{\xi}(\mathbf{c}_t, \mathbf{a}_t)$$

World model loss

$$\mathcal{L}(\theta, \phi, \xi; \mathcal{D}) = \mathbb{E}_{(\mathbf{o}, \mathbf{a}, \mathbf{o}', r)_{0:H} \sim \mathcal{D}} \left[\sum_{h=0}^{H-1} \gamma^h \left(\text{CE}(p_{\phi}(\hat{\mathbf{c}}_{h+1} \mid \hat{\mathbf{c}}_h, \mathbf{a}_h), \mathbf{c}_{h+1}) + \|R_{\xi}(\mathbf{c}_h, \mathbf{a}_h) - r_h\|_2^2 \right) \right]$$

FCAI

DCWM: Components

$$\mathbf{x}_t = e_{\theta}(\mathbf{s}_t)$$

Latent quantization $\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$

$$\mathbf{c}_t = f(\mathbf{x}_t) \in \mathscr{C}$$

$$\hat{\mathbf{c}}_{t+1} \sim \text{Categorical}(p_1, ..., p_{|\mathcal{C}|}) \quad \text{with } p_i = P_{\phi}(\mathbf{c}_{t+1} = \mathbf{c}^{(i)} \mid \mathbf{c}_t, \mathbf{a}_t)$$

$$\hat{r}_{t+1} = R_{\xi}(\mathbf{c}_t, \mathbf{a}_t)$$

$$q_t = Q_{\psi}(\mathbf{c}_t, \mathbf{a}_t)$$

$$\mathbf{a}_t \sim \pi_{\eta}(\mathbf{a}_t \mid \mathbf{c}_t)$$

Model-based Reinforcement Learning

DCWM

Algorithm

- i. For i in number of episodes
 - i. Collect trajectory $\tau_i = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, r_t\}_{t=0}^T$
 - ii. Add trajectory to replay buffer $\mathscr{D} \leftarrow \mathscr{D} \cup \tau_i$
 - iii. Perform T updates to world model
 - i. Sample batch from replay buffer \mathscr{D}
 - ii. Update encoder, dynamics and reward
 - iii. Update actor and critic

Decision-time Planning

Model Predictive Control (MPC)

For each environment step

Observe state *s*

Model Predictive Path Integral Control (MPPI)

Plan
$$a_{0:H}$$
 to maximise return
$$\sum_{t=0}^{H-1} \gamma^t r(s_t, a_t) + \gamma^H Q_{\theta}(s_H, a_H)$$

Execute a_0 and discard $a_1, ..., a_H$

Diverged from planned trajectory...

And so on...

Discard a_1, \ldots, a_H

So let's replan.

FCAI

Model Predictive Path Integral Control (MPPI)

Iteration 1

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0:H}^i, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Model Predictive Path Integral Control (MPPI)

Iteration 2

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0:H}^i, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$

Model Predictive Path Integral Control (MPPI)

Iteration 3

Initialise action sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$

Evaluate objective $J(\mathbf{a}_{0:H}^i, \mathbf{s})$ for each sample

Select top K performing samples

Update action distribution parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$