Elif Tan

Ankara University

Definition (Coordinate)

Let $S = \{v_1, v_2, ..., v_n\}$ be an **ordered basis** for the *n*-dimensional vector space (V, \oplus, \odot) . Then every vector v in V can be uniquely expressed in the form

$$v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus ... \oplus c_n \odot v_n$$

where $c_1, c_2, ..., c_n$ are scalars. The **coordinate vector of** v **with respect to the ordered basis** S is defined by

$$[v]_S := \left[egin{array}{c} c_1 \ c_2 \ dots \ c_n \end{array}
ight].$$

The entries of $[v]_S$ are called the **coordinates** of v with respect to the basis S. Note that there is a one-to-one correspondence between v and

Example: $S = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ is a basis for the vector space \mathbb{R}^2 . Every vector $v = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ can be written uniquely as

$$\left[\begin{array}{c} x \\ y \end{array}\right] = (2y - x) \odot \left[\begin{array}{c} 1 \\ 1 \end{array}\right] \oplus (x - y) \odot \left[\begin{array}{c} 2 \\ 1 \end{array}\right].$$

Thus the coordinates of v with respect to the basis S is

$$[v]_S := \left[\begin{array}{c} 2y - x \\ x - y \end{array} \right].$$

If we change the order of the basis, then the coordinates of v change as

$$\left[\begin{array}{c} x-y\\2y-x\end{array}\right].$$

Definition (Transition Matrix)

Let $S = \{v_1, v_2, ..., v_n\}$ and $T = \{w_1, w_2, ..., w_n\}$ be an ordered basis for the *n*-dimensional vector space (V, \oplus, \odot) . The **transition matrix** from the basis T to S is defined by

$$P_{S \leftarrow T} = [[w_1]_S [w_2]_S \dots [w_n]_S]_{n \times n}$$

and the coordinate vector of v wrt S can be written as

$$[v]_S = P_{S \leftarrow T} [v]_T.$$

Note that the transition matrix is nonsingular matrix and we have

$$P_{S\leftarrow T}^{-1}=P_{T\leftarrow S}.$$

Example

Consider the ordered basis for \mathbb{R}^3

$$S = \left\{ v_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \, v_2 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight], \, v_3 = \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]
ight\}$$

and

$$T = \left\{ w_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, w_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, w_3 = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix} \right\}.$$

Find the transition matrix from the basis T to S.

$$w_{1} = a_{1} \odot v_{1} \oplus a_{2} \odot v_{2} \oplus a_{3} \odot v_{3} \Rightarrow [w_{1}]_{S} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$w_{2} = b_{1} \odot v_{1} \oplus b_{2} \odot v_{2} \oplus b_{3} \odot v_{3} \Rightarrow [w_{2}]_{S} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

$$w_{3} = c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus c_{3} \odot v_{3} \Rightarrow [w_{3}]_{S} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}$$

$$P_{S \leftarrow T} = [[w_{1}]_{S} [w_{2}]_{S} [w_{3}]_{S}] = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix}.$$

Example: Consider the ordered basis for \mathbb{R}^3

$$S=\left\{ egin{aligned} v_1=\left[egin{array}{c}1\0\1 \end{array}
ight],\, v_2=\left[egin{array}{c}1\1\0 \end{array}
ight],\, v_3=\left[egin{array}{c}0\0\1 \end{array}
ight]
ight\} \end{aligned}$$

and

$$T = \{w_1, w_2, w_3\}.$$

If the transition matrix from the basis T to S is

$$P_{S\leftarrow T} = \left[\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{array} \right],$$

then find the basis T.

Since
$$P_{S \leftarrow T} = [[w_1]_S [w_2]_S [w_3]_S] = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$
,

$$w_{1} = a_{1} \odot v_{1} \oplus a_{2} \odot v_{2} \oplus a_{3} \odot v_{3} \Rightarrow \begin{bmatrix} w_{1} \end{bmatrix}_{S} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\Rightarrow w_1 = 1 \odot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \oplus 2 \odot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \oplus -1 \odot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

Similarly
$$w_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
, $w_3 = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$.

Definition (Linear Transformation)

Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be real vector spaces. $L: V \to W$ is called a **linear transformation** if the following conditions holds:

(i)
$$L(u \oplus v) = L(u) \boxplus L(v)$$
 for all $u, v \in V$

(ii)
$$L(c \odot u) = c \boxdot L(u)$$
 for all $u \in V$ and all $c \in \mathbb{R}$.

Definition

A linear transformation $L: V \to W$ is called **one-to-one** if $L(v_1) = L(v_2)$ implies that $v_1 = v_2$ for $v_1, v_2 \in V$.

A linear transformation $L: V \to W$ is called **onto** if for each $w \in W$, $\exists v \in V$ such that L(v) = w.

Definition

Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be real vector spaces. L is called an **isomorphism** if $L: V \to W$ is a linear transformation that is one-to-one and onto. In this case the vector spaces V and W are called isomorphic and denoted by $V \cong W$.

Definition

Let $L: V \to W$ be a linear transformation.

• The kernel of *L* is defined by

$$KerL = \{v \in V \mid L(v) = 0_W\}.$$

• The range of L is defined by

$$RangeL = L(V) = \{ w \in W \mid \exists v \in V; L(v) = w \}.$$

Theorem

Let $L: V \to W$ be a linear transformation. Then we have the following results:

- $L(0_V) = 0_W$
- \bigcirc KerL < V
- **1** L is one-to-one \Leftrightarrow KerL = $\{0_V\}$
- RangeL < W</p>
- **1** L is onto $\Leftrightarrow L(V) = W$.

Theorem (Rank-Nullity Theorem)

Let $L: V \to W$ be a linear transformation with dimV = n, then

$$\dim V = \underbrace{\dim KerL}_{\text{"nullity" of } L} + \underbrace{\dim RangeL}_{\text{"rank" of } L}.$$

Example

Let
$$L: \mathbb{R}^3 \to \mathbb{R}^2$$
, $L\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 + 3x_3 \\ 2x_1 + x_2 - 3x_3 \end{bmatrix}$ be a linear transformation. Find the rank of L .

Solution:

$$KerL = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid L \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = 0_W \right\}$$

$$= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid \begin{bmatrix} x_1 + 2x_2 + 3x_3 \\ 2x_1 + x_2 - 3x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} 3x_3 \\ -3x_3 \\ x_3 \end{bmatrix} \mid x_3 \in \mathbb{R} \right\}.$$

Thus
$$\left\{\left[\begin{array}{c} 3\\ -3\\ 1\end{array}\right]\right\}$$
 is a basis for *KerL* and dim *KerL* = 1. Since

 $\dim V = \dim KerL + \dim RangeL$,

then we have

$$3 = 1 + rankL$$
.

Therefore rankL = 2.

Theorem

- **1** Let V be an n-dimensional vector space. Then $V \cong \mathbb{R}^n$.
- ② Let V and W be finite dimensional vector spaces. $V \cong W \Leftrightarrow \dim V = \dim W$.

Example:
$$L: M_{22} \to \mathbb{R}^4$$
, $L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ is an isomorphism. So

$$M_{22}\cong \mathbb{R}^4$$
.

LINEAR TRANSFORMATIONS and MATRICES

Definition (Matrix representation of a linear transformation)

Let $L: V \to W$ be a linear transformation and consider the ordered basis $S = \{v_1, v_2, ..., v_n\}$ and $T = \{w_1, w_2, ..., w_m\}$ for the vector spaces V and W, respectively. The matrix representation of the linear transformation L with respect to the basis S and T is defined by

$$A = [[L(v_1)]_T [L(v_2)]_T \dots [L(v_n)]_T]_{m \times n}.$$

Also for $v \in V$, we have

$$[L(v)]_T = A[v]_S.$$

Theorem

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and consider the standard basis $\{e_1, e_2, ..., e_n\}$ for \mathbb{R}^n . Let $A = [L(e_1) L(e_2) ... L(e_n)]_{m \times n}$. The matrix A is the only matrix satisfying the property;

$$L(x) = Ax$$
, for $x \in \mathbb{R}^n$.

It is called the standard matrix representation of the linear transformation L.

Remark: Linear transformation $L \leftrightarrow A$

- If A is $m \times n$ matrix, then there is a corresponding linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ such that L(x) = Ax, for $x \in \mathbb{R}^n$.
- If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then there is a corresponding $m \times n$ matrix A which is defined by $A = [L(e_1) L(e_2) \dots L(e_n)]_{m \times n}$.

Example

Let
$$L: \mathbb{R}^3 \to \mathbb{R}^2$$
, $L\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1 + 2x_2 + 3x_3 \\ 2x_1 + x_2 - 3x_3 \end{array}\right]$ be a linear

transformation and consider the standard basis

$$S=\left\{ egin{aligned} v_1=\left[egin{array}{c}1\0\0 \end{array}
ight],\, v_2=\left[egin{array}{c}0\1\0 \end{array}
ight],\, v_3=\left[egin{array}{c}0\0\1 \end{array}
ight]
ight\} \end{aligned}$$

and

$$\mathcal{T}=\left\{w_1=\left[egin{array}{c}1\0\end{array}
ight]$$
 , $w_2=\left[egin{array}{c}0\1\end{array}
ight]
ight\}$

for the vector spaces \mathbb{R}^3 and \mathbb{R}^2 , respectively.

Find the matrix representation of the linear transformation L with respect to the basis S and T.

Solution:

$$L(v_1) = a_1 \odot w_1 \oplus a_2 \odot w_2 \Rightarrow [L(v_1)]_T = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$L(v_2) = b_1 \odot w_1 \oplus b_2 \odot w_2 \Rightarrow [L(v_2)]_T = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$L(v_3) = c_1 \odot w_1 \oplus c_2 \odot w_2 \Rightarrow [L(v_3)]_T = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

$$A = [[L(v_1)]_T [L(v_2)]_T [L(v_3)]_T]_{2 \times 3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \end{bmatrix}.$$

Example

Find the linear transformation which corresponds to the matrix

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & -3 \end{array} \right]_{2 \times 3}.$$

Solution: The corresponding linear transformation is defined by $L: \mathbb{R}^3 \to \mathbb{R}^2$.

$$L\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 + 2x_2 + 3x_3 \\ 2x_1 + x_2 - 3x_3 \end{bmatrix}.$$

• To find the rank of the linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$, it is enough to check the rank of the matrix A. The rank of an $m \times n$ matrix A is the number of nonzero rows in the reduced row echelon form of the matrix A.

$$\dim \mathbb{R}^n = \dim KerL + \dim L(\mathbb{R}^n)$$

 $n = nullity A + rank A$

• To find the rank of the linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$, it is enough to check the rank of the matrix A. The rank of an $m \times n$ matrix A is the number of nonzero rows in the reduced row echelon form of the matrix A.

$$\dim \mathbb{R}^n = \dim KerL + \dim L(\mathbb{R}^n)$$

 $n = nullity A + rank A$

• If A is an $n \times n$ matrix, then we have

rank
$$A = n \Leftrightarrow nullity \ A = 0 \Leftrightarrow \det A \neq 0 \Leftrightarrow A^{-1}$$
 exists.

Example

Find the rank and the nullity of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \end{bmatrix}$.

Solution: If we transform the matrix A to the reduced row echelon form, we have

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & -3 \end{array} \right] \approx \cdots \approx \left[\begin{array}{ccc} 1 & 0 & -3 \\ 0 & 1 & 3 \end{array} \right]$$

rankA = number of nonzero rows of the matrix A in the reduced ref.= 2

$$nullityA = n - rankA = 3 - 2 = 1.$$

Theorem

Let $L: V \to W$ be a linear transformation and consider the ordered basis $S = \{v_1, v_2, ..., v_n\}$ and $S' = \{v'_1, v'_2, ..., v'_n\}$ for the vector space V, and $T = \{w_1, w_2, ..., w_m\}$ and $T' = \{w'_1, w'_2, ..., w'_m\}$ for the vector space W. Let the transition matrix from basis S' to S be P, and the transition matrix from basis T' to T be Q. If A is the matrix representation for the linear transformation L with respect to the basis S and T, then $Q^{-1}AP$ is the matrix representation for the linear transformation L with respect to the basis S' and T'.

Definition

Let A and B are $n \times n$ matrices, if there exist nonsingular matrix P such that $B = P^{-1}AP$, then it is called B is **similar** to A.

Theorem

If A and B are similar $n \times n$ matrices, then rankA = rankB.

Remark

For $n \times n$ matrix A, the followings are equivalent:

- **1** A is nonsingular, that is, A^{-1} exists.
- 2 A is row equivalent to I_n .
- **1** The linear system Ax = b has a unique solution.
- lacktriangledown The homogenous linear system Ax=0 has only zero (trivial) solution.
- A is a product of elementary matrices.
- **1** $\det(A) \neq 0$.
- The rank of A is n.
- ullet The nullity of A is zero.(Then the corresponding linear transformation is 1-1)
- **1** The columns of A form a linearly independent set of vectors in \mathbb{R}^n .

Exercises

1. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Then $L : \mathbb{R}^3 \to \mathbb{R}^2$, L(x) = Ax is a linear transformation.

Since

$$A = \left[egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \end{array}
ight] pprox \cdots pprox \left[egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & 1 \end{array}
ight],$$

The columns of A are not linearly independent. So L is not 1-1.

2. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Then $L : \mathbb{R}^2 \to \mathbb{R}^3$, $L(x) = Ax$ is a linear

transformation.

Since

$$A=\left[egin{array}{ccc} 1 & 0 \ 0 & 1 \ 1 & 0 \end{array}
ight]pprox \cdots pprox \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \ 0 & 0 \end{array}
ight],$$

The columns of A are linearly independent. So L is 1 - 1.

Exercises

3. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Then $L : \mathbb{R}^3 \to \mathbb{R}^3$, $L(x) = Ax$ is a linear

transformation.

Since A is in reduced row echelon form, it can easily be seen that The columns of A are linearly dependent. So L is not 1-1.