

Intro to Plotting with ggplot2

Revolution Analytics

- 1 Introduction to ggplot2
- 2 Creating simple plots with qplot
- 3 Taking full control with ggplot
- 4 Final considerations...

Overview

In this session we cover plotting with the very popular add-on package ggplot2

Objectives:

- Introduce basic applications of the ggplot2 package
- Introduce other plotting resources

Outline

- 1 Introduction to ggplot2
- Creating simple plots with qplot
- Taking full control with ggplot
- Final considerations...

Introduction to ggplot2

The package ggplot2 is a flexible, colorful, and dynamic graphics package.

In this session we introduce ggplot2, covering some of the fundamentals and then create two relatively complex examples:

- Dot plots with different facets (cars)
- Line Graphs with different groups (Google Finance)

In a separate session we will create maps of airport locations with ggplot2.

Introduction to ggplot2

The package ggplot:

- Provides an elegant way of developing high quality graphics for reports and publication
- Written by Hadley Wickham
- Based on "Grammar of Graphics" by Wilkinson, 2005

You can find many useful examples and source codes at Hadley's website

Benefits of ggplot2

Flexible

 Composed of independent "components" that can be put together in a variety of ways

Iterative

Works with "layers". Starts with the raw data then add statistical transformations, annotations, etc.

Basic components of a statistical plot

data The data that you are looking to visualize

mapping The aesthetic *mapping* that explain a set of mappings that describe the relationship between the variables and visual attributes (lines, dots, bars, etc)

geom The *geometric* objects (geoms) i.e. lines, points, polygons, etc.

stat The *statistical* transformations (stats) i.e. counts/bins for a histogram, log, etc.

Other components of a ggplot

- scale The scales describe the relationship between data values and values in the aesthetic space via colors, size, shape. Scales draw a legend or axes making it possible to interpret the chart
- coord The coordinate system (coord) controls how spatially-referenced data is mapped – normally a Cartesian coordinate system but also can be polar coordinates, map projections, etc.
- **facet** The *faceting* specifications subset the data, if necessary, for lattice (also called trellis plots)

Plot definition

The formal definition of a ggplot looks like this:

```
ggplot(data, mapping) +
  layer(
    stat = "",
    geom = "",
    position = "",
    geom_parms = list(),
    stat_params = list(),
)
```

But don't be overwhelmed - there is a set of easy shortcuts

Layers

Usually use a shortcut to refer to a layer instead of writing out the full specification.

- + geom_smooth() instead of + layer(geom="smooth")
- + stat_summary()
- ... etc.: http://docs.ggplot2.org/current/

Every geom has a default stat, every stat a default geom (but can override)

A simplified and full control function

The package ggplot2 has two plotting functions:

- qplot() A quick way of producing a plot that is of a single class of plots (called geoms). It can be a bar chart, line, error bar, density, etc.
- ggplot() Provides full functionality to produce hybrid plots(e.g. maps with population plotted in color)

Outline

- Introduction to ggplot2
- 2 Creating simple plots with qplot
- Taking full control with ggplot
- Final considerations...

qplot histogram

Here are a couple examples of qplot() based on the mtcars dataset.

```
library("ggplot2")
theme_set(theme_bw())
qplot(mpg, data = mtcars)
```


qplot scatter plot

```
qplot(x = hp, y = mpg, data = mtcars)
```


qplot scatter plot with color

```
qplot(x = hp, y = mpg, data = mtcars, color = cyl, size = mpg)
```


qplot scatter plot with color and size

```
qplot(x = hp, y = mpg, data = mtcars, color = cyl, size = mpg, facets = . ~
gear)
```


qplot with facets

```
qplot(x = hp, y = mpg, data = mtcars, color = cyl, facets = . ~ gear,
    label = rownames(mtcars), geom = c("text", "point"), size = 0.1,
    hjust = -0.25)
```


Outline

- Introduction to ggplot2
- Creating simple plots with qplot
- 3 Taking full control with ggplot
- Final considerations...

Printing ggplot() objects

Note that p, in the example below, is a ggplot object. You need to print the object if you want to view your graph. If you are running a function or a loop, you will need to use print(p)

```
p <- ggplot(data = mtcars, aes(hp, mpg, label = rownames(mtcars))) +
  geom_point(aes(colour = cyl))</pre>
```


Printing ggplot() objects

print(p)

Adding labels and titles

```
p <- p + facet_grid(. ~ gear) + geom_text(aes(colour = cyl), size = 3,
    hjust = -0.25) + ggtitle("ggplot2 example")
print(p)</pre>
```


Downloading financial data

Now let's use an example of Microsoft, Google, and Apple stock data. First we import the data and clean it up.

```
msft.url <- "http://www.google.com/finance/historical?q=NASDAQ:MSFT&output=csv"
goog.url <- "http://www.google.com/finance/historical?q=NASDAQ:GOOG&output=csv"
aapl.url <- "http://www.google.com/finance/historical?q=NASDAQ:AAPL&output=csv"
msft.data <- read.table(msft.url, header = TRUE, sep = ",")
msft.data$name <- "MSFT"
goog.data <- read.table(goog.url, header = TRUE, sep = ",")
goog.data$name <- "GOOG"
aapl.data <- read.table(aapl.url, header = TRUE, sep = ",")
aapl.data$name <- "AAPL"
stock.data <- rbind(msft.data, goog.data, aapl.data)</pre>
```


Read the data from local copy

We have previously stored a copy of this data on a local drive. Use read.csv() to import the data:

```
## Date Open High Low Close Volume name
## 1 2012-03-13 32.24 32.69 32.15 32.67 48347339 MSFT
## 2 2012-03-12 31.97 32.20 31.82 32.04 34076755 MSFT
## 3 2012-03-09 32.10 32.16 31.92 31.99 34628398 MSFT
## 4 2012-03-08 32.04 32.21 31.90 32.01 36752011 MSFT
## 5 2012-03-07 31.67 31.92 31.53 31.84 34340619 MSFT
## 6 2012-03-06 31.54 31.98 31.49 31.56 51938950 MSFT

## stock.data$Date <- as.Date(stock.data$Date , '%d-%b-%u')
```

stock.data <- read.csv("../data/stock data.csv")</pre>

stock.data\$Date <- as.Date(stock.data\$Date)</pre>

Plotting financial data

Plot the time series:

```
ggplot(stock.data, aes(x = Date, y = Close, group = name)) + geom_line(aes(color = name))
```


Plotting a quick correlogram

- Checks for the leading and lagging relationship between two or more time series objects
- Note that this is not the same as the "corrgram" function

```
bacf = acf(x = stock.data$Date, plot = F)
bacfdf <- with(bacf, data.frame(lag, acf))
ggplot(data = bacfdf, mapping = aes(x = lag, y = acf)) + geom_bar(stat = "identity",
    position = "identity", width = 0.1)</pre>
```


Plot a Correlogram

Create an index and normalise

MSFT is way down there: let's normalize by the day 1 value.

```
stock.data.norm <- stock.data[, c("Date", "Close", "Volume", "name")]
stock.data.norm <- do.call("rbind", by(stock.data.norm, stock.data$name,
function(STOCK) {
   STOCK$Close <- STOCK$Close/STOCK$Close[nrow(STOCK)]
   return(STOCK)
}))</pre>
```


Plot the normalised data

```
ggplot(stock.data.norm, aes(x = Date, y = Close, group = name)) +
  geom_line(aes(color = name))
```


Add trading volume data

```
stock.data.norm$Volume <- stock.data.norm$Volume/max(stock.data.norm$Volume)
ggplot(stock.data.norm, aes(x = Date, y = Close, group = name)) +
   geom_line(aes(color = name, size = Volume))</pre>
```


Exercise: Play with ggplot2

Your turn:

- Think of an interesting, informative graphic that you would like to generate based on the performance dataset.
- Start with some a basic qplot() or two, then move on to working with ggplot().

You have 15 minutes.

Outline

- Introduction to ggplot2
- Creating simple plots with qplot
- Taking full control with ggplot
- 4 Final considerations...

Other plotting resources

A great intro to ggplot2

This is just the very beginning. R's graphics capabilities go way beyond what we've shown so far.

Following are a few examples from from https://www.facebook.com/pages/R-Graph-Gallery/169231589826661 & http://gallery.r-enthusiasts.com/

Module review questions

- What are advantages of base graphics compared to ggplot2?
- How can a user set an R graphics window to have multiple panes?

Questions?

Thank you

Revolution Analytics is the leading commercial provider of software and support for the popular open source R statistics language.

www.revolutionanalytics.com 1.855.GET.REVO

Twitter: @RevolutionR

