EE263 Autumn 2015 S. Boyd and S. Lall

Eigenvectors and diagonalization

- ▶ eigenvectors
- ▶ diagonalization

Eigenvectors and eigenvalues

 $\lambda \in \mathbb{C}$ is called an *eigenvalue* of $A \in \mathbb{C}^{n \times n}$ if

$$\mathcal{X}(\lambda) = \det(\lambda I - A) = 0$$

equivalent to:

▶ there exists nonzero $v \in \mathbb{C}^n$ s.t. $(\lambda I - A)v = 0$, *i.e.*,

$$Av = \lambda v$$

any such v is called an *eigenvector* of A (associated with eigenvalue λ)

▶ there exists nonzero $w \in \mathbb{C}^n$ s.t. $w^{\mathsf{T}}(\lambda I - A) = 0$, *i.e.*,

$$w^{\mathsf{T}}A = \lambda w^{\mathsf{T}}$$

any such w is called a *left eigenvector* of A

Complex eigenvalues and eigenvectors

- ▶ if v is an eigenvector of A with eigenvalue λ , then so is αv , for any $\alpha \in \mathbb{C}$, $\alpha \neq 0$
- lacktriangle even when A is real, eigenvalue λ and eigenvector v can be complex
- ▶ when A and λ are real, we can always find a real eigenvector v associated with λ : if $Av = \lambda v$, with $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$, and $v \in \mathbb{C}^n$, then

$$A\Re v = \lambda \Re v, \qquad A\Im v = \lambda \Im v$$

so $\Re v$ and $\Im v$ are real eigenvectors, if they are nonzero (and at least one is)

▶ conjugate symmetry: if A is real and $v \in \mathbb{C}^n$ is an eigenvector associated with $\lambda \in \mathbb{C}$, then \overline{v} is an eigenvector associated with $\overline{\lambda}$:

taking conjugate of $Av = \lambda v$ we get $\overline{Av} = \overline{\lambda v}$, so

$$A\overline{v}=\overline{\lambda}\overline{v}$$

we'll assume A is real from now on ...

Scaling interpretation

(assume $\lambda\in\mathbb{R}$ for now; we'll consider $\lambda\in\mathbb{C}$ later) if v is an eigenvector, effect of A on v is very simple: scaling by λ

Scaling

- lacksquare $\lambda \in \mathbb{R}$, $\lambda > 0$: v and Av point in same direction
- lacktriangledown $\lambda \in \mathbb{R}$, $\lambda < 0$: v and Av point in opposite directions
- lacksquare $\lambda \in \mathbb{R}$, $|\lambda| < 1$: Av smaller than v
- lacksquare $\lambda \in \mathbb{R}$, $|\lambda| > 1$: Av larger than v

(we'll see later how this relates to stability of continuous- and discrete-time systems. . .)

Diagonalization

suppose v_1, \ldots, v_n is a *linearly independent* set of eigenvectors of $A \in \mathbb{R}^{n \times n}$:

$$Av_i = \lambda_i v_i, \quad i = 1, \dots, n$$

express as

$$A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$$

define $T = [v_1 \quad \cdots \quad v_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, so

 $AT = T\Lambda$

Diagonalization

$$T^{-1}AT = \Lambda$$

- ▶ T invertible means v_1, \ldots, v_n linearly independent
- ightharpoonup similarity transformation by T diagonalizes A
- existence of invertible T such that

$$T^{-1}AT = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

is equivalent to existence of a linearly independent set of \boldsymbol{n} eigenvectors

- ightharpoonup we say A is diagonalizable
- ▶ if A is not diagonalizable, it is sometimes called *defective*

Not all matrices are diagonalizable

example:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- ▶ characteristic polynomial is $\mathcal{X}(s) = s^2$, so $\lambda = 0$ is only eigenvalue
- ightharpoonup eigenvectors satisfy Av=0v=0, i.e.

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

- \blacktriangleright so all eigenvectors have form $v=\left[\begin{array}{c} v_1\\0\end{array}\right]$ where $v_1\neq 0$
- ▶ thus, A cannot have two independent eigenvectors

Distinct eigenvalues

if A has distinct eigenvalues then A is diagonalizable

- ▶ distinct eigenvalues means $\lambda_i \neq \lambda_j$ for $i \neq j$
- \blacktriangleright the converse is false A can have repeated eigenvalues but still be diagonalizable

Diagonalization and left eigenvectors

rewrite $T^{-1}AT=\Lambda$ as $T^{-1}A=\Lambda T^{-1}$, or

$$\begin{bmatrix} w_1^\mathsf{T} \\ \vdots \\ w_n^\mathsf{T} \end{bmatrix} A = \Lambda \begin{bmatrix} w_1^\mathsf{T} \\ \vdots \\ w_n^\mathsf{T} \end{bmatrix}$$

where $w_1^\mathsf{T}, \dots, w_n^\mathsf{T}$ are the rows of T^{-1}

thus

$$w_i^{\mathsf{T}} A = \lambda_i w_i^{\mathsf{T}}$$

i.e., the rows of T^{-1} are (lin. indep.) left eigenvectors, normalized so that

$$w_i^\mathsf{T} v_j = \delta_{ij}$$

(i.e., left & right eigenvectors chosen this way are dual bases)