

Traitement de données massives avec

Apache Spark

Master Informatique, 1ère année

© 2021 Mourad Ouziri

Mourad.Ouziri@u-paris.fr

Traitement de données massives avec

Apache Spark Core

Définition

Spark est un framework de développement et d'exécution de programmes de traitement de données sur plusieurs machines d'un

Apache Spark Définition

Spark fournit au programmeur :

- Structure de données (tableau) abstraite pour accéder aux données distribuées sur plusieurs machines du cluster Spark (abstraction de la distribution des données)
- Ensemble d'opérations applicables sur la structure de données abstraite pour y effectuer des traitements de manière distribuée sur plusieurs machines (abstraction de la distribution des traitements)
- Framework permettant de gérer l'infrastructure : lancement des programmes, suivi d'exécution, récupération des résultats, gestion des pannes

Définition

- Il inclut différentes librairies pour le traitement et l'analyse de données en modes batch et en streaming (temps réel)
- Spark unifie la multiplicité et la diversité des frameworks de big data

Définition

Diversité et hétéroénéité de outils de big data...

General Batching	Specialized systems				
	Streaming	Iterative	Ad-hoc / SQL	Graph	
MapReduce	Storm	Mahout	Pig	Giraph	
	S4		Hive		
	Samza		Drill		
			Impala		

Avantages par rapport à Hadoop/MapReduce

- Spark améliore le paradigme MapReduce par :
 - The API de traitement de données plus riche (que map() et reduce())

```
map(func), flatMap(func),
filter(func), grouByKey(),
reduceByKey(func),
mapValues(func), distinct(),
sortByKey(func)
join(other), union(other), ...
```

```
reduce(func), collect(), first(),
take(), foreach(func), count(),
countByKey(),
saveAsTextFile(), etc.
```

- Les données/résultats en sortie de chaque opération sont maintenues en mémoire (RAM) dans machines du cluster pour être traités par les opérations suivantes
- Permet de programmer en Java, Scala, Python, R

Apache Spark vs. MapReduce

Partage de données dans une application

Spark est un framework *in-memory* (contrairement à Hadoop-MapReduce)

Performances

Il peut être jusqu'à 100 fois plus rapide que Hadoop-MapReduce dans certaines situations

Apache Spark vs. MapReduce

API riche et programmation simplifiée

Son API de haut niveau permet de simplifier le code des applications Big Data

```
public class WordCount {
      public static class TokenizerMapper
           extends Mapper<Object, Text, Text, IntWritable>{
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
                                                                                        val f = sc.textFile(inputPath)
        public void map(Object key, Text value, Context context
                                                                                       val w = f.flatMap(l => l.split(" ")).map(word => (word, 1)).cache()
                       ) throws IOException, InterruptedException {
          StringTokenizer itr = new StringTokenizer(value.toString());
11
                                                                                        w.reduceByKey(_ + _).saveAsText(outputPath)
          while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
14
15
16
17
18
       public static class IntSumReducer
19
           extends Reducer<Text, IntWritable, Text, IntWritable> {
20
        private IntWritable result = new IntWritable();
21
        public void reduce(Text key, Iterable<IntWritable> values,
23
                          Context context
24
                          ) throws IOException, InterruptedException {
25
          int sum = 0:
          for (IntWritable val : values) {
27
            sum += val.get();
29
          result.set(sum);
          context.write(key, result);
31
32
33
      public static void main(String[] args) throws Exception {
35
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
37
        if (otherArgs.length < 2) {</pre>
          System.err.println("Usage: wordcount <in> [<in>...] <out>");
          System.exit(2);
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
48
        for (int i = 0; i < otherArgs.length - 1; ++i) {
          FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
        FileOutputFormat.setOutputPath(job,
52
          new Path(otherArgs[otherArgs.length - 1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
54
```

WordCount in 3 lines of Spark

API de programmation de Spark Core

© L'API de programmation de Spark Core:

RDD: structure (collection) de données abstraite distribuée sur les RAM des machines du cluster

© Opérations : traitements applicables (de manières distribuée et parallèle) sur les partitions d'une RDD

API de programmation de Spark Core

- Resilient Distributed Dataset (RDD):
 - * Dataset : collection (tableau) de données, typée, ordonnée et immuable
 - ** Distributed : distribuée sur plusieurs machines avec un niveau de persistance (RAM, cache, disque)
 - ** Resilient (résistante aux pannes machines) : recalculable en cas de défaillance entrainant la perte (totale ou une partie) de la collection

API de programmation

Opérations sur RDD

- Ensemble d'opérations exécutées sur les RDD de manière distribuée
- Elles sont de deux types : transformations et actions

Structure d'un programme

- Schéma de traitement de données en Spark
 - Les données sont chargées sous forme de RDD (collection distribuée)
 - Chaque opération sur RDD est appliquée de manière distribuée sur l'ensemble des partitions du RDD concerné

Principe de distribution des traitements : data locality

Data locality : chaque opération est envoyée et exécutée par les machines qui détiennent les partitions de données concernées

machine driver

machines workers (slaves)

Opérations

P Opérations de transformation de RDD

- Elles appliquent une transformation sur les éléments du RDD traité et génèrent le résultat dans un nouveau RDD de sortie
- Elles sont évaluées de manière passive

map(func), flatMap(func),
filter(func), grouByKey(),
reduceByKey(func),
mapValues(func), distinct(),
sortByKey(func)
join(other), union(other), ...

Les actions

 Elles calculent un résultat qui sera renvoyé au *Driver* (*main* de l'application Spark) ou stocké sur disque reduce(func), collect(), first(),
take(), foreach(func), count(),
countByKey(),
saveAsTextFile(), etc.

16

- Elles déclenchent l'évaluation de toutes les transformations passives en attente

Structure d'un programme

- Structure d'un programme Spark : le programme dit *Driver*
 - 1. Etablir la connexion avec le Spark Master : création d'un objet *SparkContext*
 - 2. Charger les données dans les RAM des machines workers : création de RDD
 - 3. Appliquer des opérations de transformation sur les données des RDD : transformations passives
 - 4. Appliquer les actions terminales sur les données des RDD pour calculer et retourner le résultat final (pour affichage à l'écran ou stockage sur disque)

Connection à Spark

- Un programme Spark utilise un objet *SparkContext* permettant d'envoyer les opérations/traitements aux noeuds du cluster. *SparkContext* a pour rôle de :
 - Mégocier les ressources auprès du cluster (Master Resource Manager, Hadoop-Yarn)
 - Découper le programme en tâches et les envoyer aux *Executors* (processus permettant l'exécution et le suivi de tâches sur les noeuds de calculs et de stockage)

Opérations de transformation

Création de RDD

Par distribution d'une collection/tableau de données (déjà en mémoire)

def parallelize[T](seq: Seq[T], nbPartitions: Int): RDD[T]

Exemple

var
$$c = List (1, 2, 3, 4, 5, 6)$$

val $rddc = sc.parallelize (c, 3)$

Opérations de transformation

Création de RDD

Parallélisation d'une collection en mémoire

def **textFile**(path: String, minPartitions: Int = 2): RDD[String]

Exemple

var fichier = "file:///data/produits.data"
val rddf = sc.textFile (fichier)

Opérations de transformation

- Popération de type transformation de RDD
 - Génère une nouvelle RDD par application d'une fonction de transformation des éléments d'une RDD
 - Exécutée de manière passive : n'est exécutée que si la RDD générée est requise par une action terminale

Opérations de transformations

Filtrage de données : sélectionner seulement les éléments du RDD vérifiant une certaine condition donnée par une fonction utilisateur

Exemple:

1) Avec une lambda expression:

```
rdd2 = rdd1.filter (e => e%2 == 0)
```

2) Avec une fonction nommée:

```
def pair (x:Int) : Boolean = {
    return x % 2 == 0;
}
rdd2 = rdd1.filter (pair)
rdd2 = rdd1.filter (e => pair(e))
```


22

Opérations de transformations

Transformation de données : transforme les éléments du RDD par application d'une fonction sur chacun de ces élémennts

```
def map (f: (T) => U): RDD[U]
```

rdd2 = rdd1.map (multiplier(_, 10))

23

Opérations de transformations

Transformation de données : transforme les éléments du RDD par application d'une fonction sur chacun de ces élémennts

```
def map (f: (T) => U): RDD[U]
```


Opérations de transformations

Flatmap : crée de nouveaux éléments du RDD en appliquant une fonction des éléments du RDD d'entrée

def flatMap[U](f: (T) =>TraversableOnce[U]): RDD[U] RDD[String] RDD[Array[String]] RDD[String] hello world hello world a new line line world hello hello .flatten .map(...) new line _.split("\\s+") the end end .flatMap(line => line.split("\\s+"))

Opérations de transformations

Union de RDD : créer un nouvel RDD par union des RDD en entrée en conservant les doublons

def **union** (other: RDD[T]): RDD[T]

Opérations de transformations

Regroupement de RDD par clé (sorte d'auto jointure) : regrouper les éléments d'une RDD structurées en (clé,valeur) ayant la même clé

```
def groupByKey(): RDD[(K, Iterable[V])] def groupByKey(numPartitions:Int): RDD[(K, Iterable[V])]
```


Opérations de transformations

Agrégation de RDD par clé : agréger les valeurs d'une même clé d'une RDD de type (clé, valeur) avec une fonction d'agrégation associative

```
def reduceByKey (func: (V, V) =>V) : RDD[(K, V)] def reduceByKey (numPartitions:Int, func : (V, V) =>V) : RDD[(K, V)]
```


Opérations de transformations

Jointure de deux RDD : réalise la jointure des éléments de deux RDD de type (clé, valeur) ayant la même clé

```
\label{eq:def_join} \begin{split} \text{def } \textbf{\textit{join}}[W] \text{ (other: RDD[(K, W)]) : RDD[(K, (V, W))]} \\ \text{def } \textbf{\textit{join}}[W] \text{ (other: RDD[(K, W)], numPartitions : Int) : RDD[(K, (V, W))]} \end{split}
```


Types d'opérations de transformations

© Opérations étroites (peu coûteuses) : chaque partition du RDD résultat est calculée à partir d'une seule partition de chaque RDD source

© Opérations étendues (coûteuses) : chaque partition du RDD résultat est calculée à partir de plusieurs (voire de toutes) partitions des RDD sources

Opérations de type action

- © Opération de type action sur les éléments d'une RDD
 - © Calcule un résultat à partir des éléments d'une RDD qui sera soit retourné au programme *Driver* soit stocké sur le disque des workers (ou dans une BD)
 - Exécutée de manière active : elle déclenche l'exécution de toutes les transformations passives nécessaires au calcul de la RDD utilisée par l'action

résultat = rdd.spark_action_funct (user_funct)

Opérations de transformations

© Quelques opérations de type action sur RDD

```
def max()(implicit ord: Ordering[T]): T
def min()(implicit ord: Ordering[T]): T
def isEmpty(): Boolean
def first(): T
def count():Long
def collect(): Array[T]
def take(num: Int): Array[T]
...
```


Opérations de transformations

Collecter les éléments d'une RDD partitionnés sur les machies du cluster en seul tableau puis renvoyé au *Driver*

def collect(): Array[T]

Opérations de transformation

Appliquer une fonction f sur chaque élément d'une RDD sans renvoi de résultat (utilité : affichage, notification, publication web service, etc.)

Agrégation de tous les éléments d'une RDD

def reduce(user_fct: (T, T) =>T): T

user_fct : fonction associative

Opérations de transformations

Sauvegarder une RDD sur disque (fichier distribué)

def saveAsTextFile (path : String): Unit

Résumé de quelques opérations d'action et de transformation

	$map(f:T\Rightarrow U)$:	$RDD[T] \Rightarrow RDD[U]$
	$filter(f: T \Rightarrow Bool)$:	$RDD[T] \Rightarrow RDD[T]$
	$flatMap(f : T \Rightarrow Seq[U])$:	$RDD[T] \Rightarrow RDD[U]$
	<pre>sample(fraction : Float) :</pre>	$RDD[T] \Rightarrow RDD[T]$ (Deterministic sampling)
	groupByKey() :	$RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$
	$reduceByKey(f:(V,V) \Rightarrow V)$:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
Transformations	union() :	$(RDD[T], RDD[T]) \Rightarrow RDD[T]$
	join() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
	cogroup() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
	crossProduct() :	$(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$
	$mapValues(f : V \Rightarrow W)$:	$RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)
	sort(c: Comparator[K]) :	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
	partitionBy(p : Partitioner[K]):	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
	count() :	$RDD[T] \Rightarrow Long$
	$collect()$: $RDD[T] \Rightarrow Seq[T]$	
Actions	$reduce(f:(T,T)\Rightarrow T)$:	$RDD[T] \Rightarrow T$
	lookup(k:K) :	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)
	save(path : String) :	Outputs RDD to a storage system, e.g., HDFS

Apache Spark

Opérations

Exemple de script *WordCount* sur Spark-shell en mode interactif

```
val rdd1 = sc.textFile("file:///data.txt")
val rdd2 = rdd1.flatMap(l => l.split(" "))
val rdd3 = rdd2.map(w => (w, 1))
val rdd4 = rdd3.reduceByKey((v1,v2) => v1+v2)
rdd4.saveAsTextFile("hdfs ://outputs/result.txt")
```

Apache Spark

Programmation

Exemple de programme objet en scala de *WordCount*

```
object Programme {
 def main(args: Array[String]):Unit= {
   val conf = new SparkConf().setAppName("Mon_Programme_Spark");
   val spark = new SparkContext ( conf )
   val textFile = spark.textFile("hdfs://home/data/data.txt")
   val rdd = textFile.flatMap(line => line.split("_"))
                    .map(x => (x, 1))
                    .reduceByKey ((v1, v2) => v1 + v2)
   rdd.saveAsTextFile("hdfs://home/data/outputs/resf1.txt")
} }
```

Apache Spark

Structure interne d'un programme

Cycle de vie d'un programme

Processus d'exécution d'un programme

Représenter le pgme par un DAG (Directed Acyclic Graph) de RDD Découper le DAG en *tâches* parallèles

Demander les ressources de calculs au Master (*Executors*)

Envoyer les tâches aux *Executors* pour exécution

Représentation en DAG : Graphe orienté acyclique

```
val rdd1= sc . textFile ("hdfs : / /data/f1.csv")
val rdd2 = sc.textFile("hdfs: / /data/f2.csv")
val rdd3 = rdd1.union(rdd2);
val rdd4 = rdd3.flatMap(_.split(" "))
val rdd5 = rdd4.map((_,1))
val rdd6 = rdd5.reduceByKey(_+_, 3)
val rdd7 = rdd6.filter(_._2 > 1)
val rdd8 = rdd7.sortBy(_._2, true, 1)
rdd8.saveAsTextFile ("hdfs : / /result/res.csv")
```


Décomposition du DAG en tâches

- Job : suite d'opérations de *transformation* terminées par une *action*
- Tâche:
 - Enchainement continu d'opérations sur une partition indépendamment des autres
 - Permet de paralléliser les opérations sur les cœurs (1 partition = 1 cœur)
- Stage : regroupement de tâches portant sur l'ensemble des partitions (terminé par une opération étendue ou une action)

Soumission des tâches

- Soumission de tâches du programme
 - © Le Driver localise les données sur les nœuds de stockage (datanodes de hadoop)
 - Il demande au Ressource Manager d'allouer des containers sur ces nœuds (data locality)
 - Il lance les *executors* sur les nœuds de calculs et leur envoie les tâches à exécuter

Récupération des résultats

- Finalisation du programme : deux types de tâches terminales
 - Renvoi des résultats au Driver (actions : collect, take, foreach, etc.)
 - Stockage des résultats sur les disques distribués (actions: saveAsTextFile, etc.)

Persistance des RDD Opérations

Les RDD sont retirés dès que l'opération dessus s'est terminée

```
val rdd1 = sc.textFile("data.txt")
val rdd2 = rdd1.flatMap(l => l.split(" "))
val rdd3 = rdd2.map(w => (w, 1))
val rdd4 = rdd2.filter (e => e.equals ("paris"))
...
```

- Persister le RDD utilisé par plus d'une opération (c'est le cas de *rdd2* ci dessus) pour de meilleures performances :
 - En mémoire (cache) : rdd2.cache()
 - Désérialisé en mémoire ou sur disque : rdd2.persist(niveau de persistance)

Persistance des RDD

Niveaux de persistance

- MEMORY_ONLY et MEMORY_ONLY_SER : stockage du RDD en mémoire vive Récupéré rapidement et occupe moins d'espace RAM si sérialisé Risque de stockage sur disque si le RDD ne tient pas en mémoire
- MEMORY_AND_DISK et MEMORY_AND_DISK_SER : stockage du RDD en mémoire vive et sur le disque
 - Temps de stockage et de récupération plus élevé Permet de récupérer les RDD en cas de perte (panne machine)
- DISK_ONLY : stockage du RDD en mémoire vive et sur le disque récupération la moins performante stockage de RDD volumineux possible
- Possibilité de répliquer les partitions sur plusieurs nœuds : MEMORY_ONLY_<N>, MEMORY_AND_DISK_<N>, DISK_ONLY_<N>, etc. 46

Tolérance aux pannes Résilience de RDD

Reconstruire les RDD en cas de perte d'une de ses partitions

- Récupération se fait comme suit :
 - Le recalculer à partir d'un RDD parent précédent gardé en cache ou sur disque
 - Tout recalculer à partir de la source si pas de persistance

Déploiement de programme Spark

Modes de déploiement de programmes (Driver)

- Polyvalence de Spark : exécution sur la machine locale ou sur cluster
- En local sur la machine cliente
 - Le programme s'exécute entièrement sur la machine du *driver* (le programme est parallélisé sur les cœurs du microprocesseur)
- En distribué sur un cluster de machines géré par :
 - Spark Master (*standalone*): le programme s'exécute sur un cluster géré par
 Spark (Spark Ressource Manager)
 - Yarn Master (sur Hadoop) : le programme s'exécute sur un cluster Hadoop géré par Yarn (gestionnaire de ressources)
 - Mesos Master : le programme s'exécute sur un cluster géré par Mesos (gestionnaire de conteneurs)