Parallel Programming Patterns

Dmitri Nesteruk @dnesteruk

Rules of the Game

Different types of memory

- Shared vs. private
- Access speeds

Data is in arrays

- No parallel data structures
- No other data structures
- No auto-parallelization/vectorization compiler support
- No CPU-type SIMD equivalent

Compiler constraint

□ No C++11 support

Overview

- Data Access
- Map
- Gather
- Reduce
- Scan

Data Access

- A real problem!
- Thread space can be up to 6D
 - 3D grid of 3D thread blocks
- Input space typically 1D
 - 2D arrays are possible
- Need to map threads to inputs
- Some examples
 - □ 1 block, N threads → threadIdx.x
 - □ 1 block, MxN threads \rightarrow threadIdx.y * blockDim.x + threadIdx.x
 - □ N blocks, M threads \rightarrow blockldx.x * gridDim.x + threadldx.x
 - ... and so on

Map

 Applying a function to an array and replicating that function over every element in the array

$$x_i = f(x_i)$$

Gather

Applying a function to an arbitrary selection of input values to get an output value

$$y_i = f(a_m, b_n, c_p, \dots)$$

Black Scholes Formula

- An option is a right to buy (call) or sell (put) an asset at a specific price and date
- The theoretical price of an option depends on
 - □ K the price at which an asset can be bought or sold (a.k.a. *strike*)
 - □ S the price of the underlying asset
 - □ t the time, in years, until the option expires
 - □ r the risk-free rate; rate at which money can be borrowed
 - σ the *volatility* of the option (a measure of how much the price jumps)

Black-Scholes formula:

$$C = N(d_1)S - N(d_2)Ke^{-rt}$$
 and $P = Ke^{-rt} - S + C$

$$d_1 = \frac{\ln(S/K) + \left(r + \frac{\sigma^2}{2}\right)t}{\sigma\sqrt{t}}$$

$$d_2 = d_1 - \sigma \sqrt{t}$$

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right]$$

Reduce

- Consider a calculation of $\sum_{i=1}^{n} x_i$
- Can be expressed as $((x_1 + x_2) + x_3) + \cdots$

Since + is associative, we can subdivide problem space:

Reduce in Practice

Adding up N data elements

- Adding up N data elements
- Use 1 block of N/2 threads
- Each thread does
 x[i] += x[j];
- At each step
 - # of threads halved
 - Distance (j-i) doubled
- x[0] is the result

Scan

• Each output value y_n is calculated as a function involving inputs from 1 to n, i.e.

$$y_n = f(x_1, x_2, ..., x_n)$$

E.g. a running sum of elements

4	2	5	3	6
4	6	11	14	20

Looks sequential (just like Reduce)

Scan in Practice

Similar to reduce

- Require N-1 threads
- Step size keeps doubling
- Number of threads reduced by step size
- Each thread n does x[n+step] += x[n];