16 A hydroelectric power station uses the gravitational potential energy of water to generate electrical energy.

In one particular power station, the mass of water flowing per unit time is $1.5 \times 10^5 \, \text{kg s}^{-1}$. The water falls through a vertical height of 120 m.

The electrical power generated is 100 MW.

What is the efficiency of the power station?

- **A** 5.6%
- **B** 43%
- 57%
- **D** 77%

- **17** Which amount of energy is **not** 2400 J?
 - the decrease in gravitational potential energy of a mass of 60 kg when it moves vertically downwards through 40 m near the Earth's surface
 - the energy transferred in 15 s by a machine of power 160 W В
 - the kinetic energy of a mass of 12 kg moving at a speed of 20 m s⁻¹
 - the work done by a gas expanding against a constant external pressure of 120 kPa when its D volume increases by 0.020 m³
- 18 A train of mass 300 000 kg is accelerating at 0.80 m s⁻². At one instant, the speed of the train is 5.0 m s⁻¹ and the resistive force to its motion is 15 kN.

At this instant, what is the rate of increase of kinetic energy of the train?

- **A** 0.075 MW
- **B** 1.2 MW
- **C** 1.3 MW
- 3.8 MW
- 19 A wire of circular cross-section, which obeys Hooke's law, is used to suspend a basket as shown.

The Young modulus for the material of the wire is 2.5×10^{11} Pa.

When a weight of 34 N is added to the basket, the strain in the wire increases by 6.0×10^{-5} .

What is the radius of the wire?

- **A** 7.2×10^{-7} m
- **B** 2.3×10^{-6} m **C** 8.5×10^{-4} m **D** 1.7×10^{-3} m