4. Программный комплекс обучения распознаванию образов.

4.1. Общая характеристика программного комплекса

Предложенные алгоритмы обучению распознаванию образов были реализованы в виде программного комплекса под названием Space 5.3. Комплекс может работать как с тестовыми примерами для отладки предложенных алгоритмов, так и для обработки реальных данных из различных областей знаний, таких как, техника, медицина, социология и т.п. Также, описываемый программный комплекс может быть использован для проведения курса "Методы распознавания образов", читаемого на кафедре автоматики и телемеханики ТулГУ.

Программный комплекс состоит из программной оболочки, позволяющей в диалоговом режиме ввести исходные данные, проверить их корректность, выполнить указанный алгоритм обработки и отобразить результат на экране дисплея, а так же подготовленные заготовки-функции, позволяющие на основе принципа наследования данных ООП легко встраивать новые задачи обработки

Программа-оболочка представляет собой 32-разрядное приложение Windows написанное на языке C++ (компилятор Visual C++ 5.0) в соответствии с принципами объектно-ориентированного подхода (ООП) и принципом свободной последовательности программ, управляемых событиями.

Space 5.3 позволяет:

- ввод и редактирование данных в наглядном текстовом виде
- просмотр многомерных данных в псевдо двумерном (2D) пространстве
- просмотр результатов работы в 2D-пространстве
- возможность работы с данными больших размеров (например, 1000 объектов в 200-мерном признаковом пространстве)
- отсутствие программных ограничений на размер данных
- возможность внедрения новых задач обработки на основе объектноориентированного подхода
- просмотр справки по системе в виде стандартного гипертекста Windows

Программный комплекс состоит из следующих модулей:

SPACE53.EXE SPACE5.HLP SPACE53.LGO Исполнимый файл Файл справки Логотип программы

Входные данные

Стандартизованный файл данных представляет собой ASCII текстовый файл со строками различной длины и расширением .DAT. Этот файл содержит в себе информацию о размерности данных, информацию эксперта и непосредственно матрицу данных.

Технические требования к аппаратному обеспечению:

- процессор 80486 и выше
- O3Y 8 MB
- SVGA адаптер с разрешением 800х600 и 256 цветов
- устройство ввода типа «мышь»
- операционная система Windows '95 или Windows NT
- по крайней мере 2,5 МБ свободного дискового пространства

4.2. Структура файлов данных

Все алгоритмы, работающие в программно алгоритмическом комплексе, обращаются к данным, представленным в стандартизованном формате. Пользователю, при создании файла, содержащего новые данные, необходимо заботится о соответствии этого файла существующему формату.

Стандартизованный файл данных представляет собой ASCII текстовый файл со строками различной длины и расширением .DAT. Этот файл содержит в себе информацию о размерности данных, информацию эксперта и непосредственно матрицу данных. Порядок следования данных изменять нельзя.

Входные последовательности разделены символом ":". В строке возможно наличие не более одного такого символа. Последовательность символов слева от ":" предназначена для комментариев, более наглядного представления, и может быть опущена. Сканируемое значение обычно представляет собой либо единственное число, либо последовательность чисел, разделенных пробелами. В качестве примера приводится часть файла A.DAT с данными, полученными при написании латинской буквы а различными людьми.

```
Number of objects: 6
Number of features: 6
Number of classes: 1
Cluster number: 6
Feature group number: 6
Actual features (>0 - used feature): 1 1 1 1 1 1
```

```
0.000000 0.436457 0.579186
                                                      0.725564
  1 - a2-Seredin(#1):
1.049975 0.887381 1
  2 - a3-Seredin(#1):
                       0.436457 0.000000 0.566639
                                                      0.461734
1.052930 0.975661 1
  3 - a1-Dmitriev(#1): 0.579186 0.566639 0.000000
                                                      0.363853
1.156121 1.232744 1
                       0.725564 0.461734
                                            0.363853
                                                      0.000000
  4 - a2-Dmitriev(#1):
0.897810 1.135118 1
  5 - a1-Dolgova(#1):
                       1.049975
                                 1.052930
                                            1.156121
                                                      0.897810
0.000000 0.542393 1
```

6 - a2-Dolgova(#1): 0.887381 0.975661 1.232744 1.135118 0.542393 0.000000 1

4.3. Загрузка и редактирование данных

Загрузка данных осуществляется в стандартном диалоге Windows посредством выбора соответствующего файла .DAT, для этого пользователю необходимо из главного окна программы (см. рис. 4.3.1) выбрать пункт меню "File|OpenTask".

Рис. 4.3.1. Главное окно программного комплекса Space 5.3

В программном комплексе возможно редактирование данных с помощью встроенного многофункционального редактора. Для этого необходимо выбрать пункт меню "File|Open". Необходимо помнить, что изменения, вносимые в файл данных .DAT, реально загружаются в динамические массивы памяти лишь после выбора задачи из меню и создания проблемного окна. Следовательно, после редактирования данных, они должны быть сохранены и проблемное окно открыто вновь. Алгоритмы обучения распознаванию образов имеют некоторые рабочие параметры. Начальные значения параметров хранятся в файле с тем же именем что и файл данных, но имеют расширение .DS5.

4.4. Отображение данных и решающего правила распознавания

4.4.1. Построение плоскости проецирования в многомерном пространстве

В процессе создания программного комплекса, реализующего алгоритм обучения распознаванию образов, реально встала проблема отображения результатов работы на дисплее ЭВМ. Если размерность признакового пространства

равна трем, уже приходится проводить визуализацию объектов распознавания с помощью громоздких изометрических построений. В случае же когда эта размерность больше трех, то вообще трудно себе представить геометрические аналогии. Реально же вектор состояния может включать в себя десятки, и даже сотни компонент. Вопрос: как отобразить многомерное признаковое пространство на плоскость экрана вычислительной машины? Разумеется, в прикладных задачах вряд ли возникнет такая необходимость, в них основой является непосредственно алгоритм распознавания, а способ интерпретации и показа результатов будет зависеть от конкретной решаемой задачи. В нашем случае программный комплекс выполняет демонстрационные функции, и было бы крайне полезно отобразить каким либо образом непосредственно объекты в многомерном пространстве.

Предлагается следующий способ визуализации. Пусть в признаковом пространстве существует разделяющая два класса гиперплоскость. Расположим плоскость экрана так, чтобы она была перпендикулярна гиперплоскости, и проекции объектов на нее располагались наименее плотно. В этом случае гиперплоскость будет отображаться на плоскость экрана в виде вертикальной линии, и основная задача будет заключаться в расчете проекций, которые будут отбрасывать объекты на плоскость экрана.

Пусть в пространстве \mathbb{R}^n найдена граничная гиперплоскость, например, как предложено в разделе 2, определяющая границу области ненулевого совместного распределения двух классов. Такая гиперплоскость задается ее направляющим вектором (вектор-нормаль к ней единичной длины) $\mathbf{c} = (c_1, ... c_n)^T$ и смещением c_0 , где $\|\mathbf{c}\| = 1$.

Будем полагать, что все векторы-строки \mathbf{x}^T матрицы данных $\mathbf{X}(N \times n)$, где N - число объектов, центрированы, то есть начало координат пространства \mathbf{R}^n перенесено в точку центра тяжести всей совокупности данных $\overline{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i$. Тогда каждый объект будет представлен своим вектором $\mathbf{x} - \overline{\mathbf{x}}$. В дальнейшем будем полагать, что векторы $\mathbf{x} \in \mathbf{R}^n$ всегда центрированы, если это специально не оговорено.

Будем полагать, что плоскость проецирования (плоскость экрана) проходит через начало координат так, что вектор \mathbf{c} лежит в ней. Пусть вектор \mathbf{b} некоторый вектор единичной длины $\|\mathbf{b}\| = 1$, проведенный из начала координат, лежащий в плоскости экрана и ортогональный вектору \mathbf{c} . Тогда векторы \mathbf{c} и \mathbf{b} образуют в плоскости экрана прямоугольную систему координат $y_1 0 y_2$, где ось y_1 образована вектором \mathbf{c} , а ось y_2 образована вектором \mathbf{b} . Тогда в плоскости

экрана некоторый вектор \mathbf{X} будет представлен вектором $\mathbf{y} = (y_1, y_2)^T$, координаты которого определены как $y_1 = \mathbf{c}^T \mathbf{x} + a_0$, $y_2 = \mathbf{b}^T \mathbf{x}$.

Очевидно, что в плоскости экрана гиперплоскость вида $\mathbf{c}^T\mathbf{x}+a_0=0$ будет представлена вертикальной линией параллельной оси \mathcal{Y}_2 , пересекающей ось \mathcal{Y}_1 в точке $-c_0$.

Так как вектор \mathbf{c} уже найден, и представляет собой направляющий вектор разделяющей гиперплоскости, то найдем вектор \mathbf{b} . Еще раз заметим, что ориентация в пространстве вектора \mathbf{b} , который ортогонален вектору \mathbf{c} и лежит в плоскости экрана, определяет ориентацию плоскости экрана. Пусть вектор \mathbf{b} ориентирован так, что все проекции объектов на него располагаются наименее плотно. Другими словами, пусть координаты y_2 объектов в плоскости экрана занимают как можно больший диапазон, то есть различаются между собой как можно сильнее. Назовем такой вектор \mathbf{b} оптимальным в указанном здесь смысле.

Наше интуитивное представление об оптимальном векторе **b** следует уточнить, то есть формализовать. Это можно сделать различными способами.

Пусть, например, среди всей совокупности объектов в исходном пространстве найдены два самых далеких объекта, то есть найден соединяющий их вектор \mathbf{z} , координатами которого являются разности координат данных объектов. Тогда оптимальный вектор \mathbf{b} ориентирован так, проекция вектора \mathbf{z} на него имеет наибольшую длину.

Следовательно, найдем вектор **b** из условия $\mathbf{z}^T \mathbf{b} \to \max$ при ограничениях $\mathbf{c}^T \mathbf{b} = 0$, $\mathbf{b}^T \mathbf{b} = 1$, где первое из них означает ортогональность, а второе означает $\|\mathbf{b}\| = 1$.

Составим функцию Лагранжа $L(\mathbf{b}, \lambda_1, \lambda_2) = \mathbf{z}^T \mathbf{b} + \lambda_1 \mathbf{c}^T \mathbf{b} + \lambda_2 (\mathbf{b}^T \mathbf{b} - 1)$, и найдем ее минимум из условия равенства нулю ее производных по неизвестным координатам вектора \mathbf{b} :

$$\nabla_{\mathbf{b}} L(\mathbf{b}, \lambda_1, \lambda_2) = \mathbf{z} + \lambda_1 \mathbf{c} + 2\lambda_2 \mathbf{b} = 0$$

Отсюда

$$\mathbf{b} = -\frac{\lambda_1}{2\lambda_2} \mathbf{c} - \frac{1}{2\lambda_2} \mathbf{z} .$$

Пусть $\lambda_1' = -\frac{\lambda_1}{2\lambda_2}$, $\lambda_2' = -\frac{1}{2\lambda_2}$. Подставив эти значения и переобозначив $\lambda_1' = \lambda_1$, $\lambda_2' = \lambda_2$, окончательно получим

$$\mathbf{b} = \lambda_1 \mathbf{c} + \lambda_2 \mathbf{z} .$$

Используем первое ограничение и найдем λ_1 :

$$\mathbf{c}^T \mathbf{b} = \mathbf{c}^T (\lambda_1 \mathbf{c} + \lambda_2 \mathbf{z}) = \lambda_1 \mathbf{c}^T \mathbf{c} + \lambda_2 \mathbf{c}^T \mathbf{z} = \lambda_1 + \lambda_2 \mathbf{c}^T \mathbf{z} = 0, \ \lambda_1 = -\lambda_2 \mathbf{c}^T \mathbf{z}.$$

Подставим найденное в выражение для **b**. Заметим, что в соответствии с правилом согласования размерностей в матричных уравнениях, следует записать $\mathbf{b} = \mathbf{c}\lambda_1 + \mathbf{z}\lambda_2$, считая коэффициенты матрицами размера (1×1) . Тогда получим

$$\mathbf{b} = -\mathbf{c}\mathbf{c}^T\mathbf{z}\lambda_2 + \mathbf{z}\lambda_2 = (\mathbf{I} - \mathbf{c}\mathbf{c}^T)\mathbf{z}\lambda_2,$$

где $\mathbf{I}(n \times n)$ - единичная матрица. Обозначим $\mathbf{C} = \mathbf{I} - \mathbf{c}\mathbf{c}^T$ и получим $\mathbf{b} = \mathbf{C}\mathbf{z}\lambda_2$. Найдем λ_2 из второго ограничения

$$(\mathbf{C}\mathbf{z}\lambda_2)^T \mathbf{C}\mathbf{z}\lambda_2 = \mathbf{z}^T \mathbf{C}^T \mathbf{C}\mathbf{z}\lambda_2^2 = 1, \ \lambda_2 = 1/\sqrt{\mathbf{z}^T \mathbf{C}^T \mathbf{C}\mathbf{z}},$$

взяв положительное значение. Окончательно получим

$$\mathbf{b} = \mathbf{C}\mathbf{z}/\sqrt{\mathbf{z}^T\mathbf{C}^T\mathbf{C}\mathbf{z}}$$
, где $\mathbf{C} = \mathbf{I} - \mathbf{c}\mathbf{c}^T$.

4.4.2. Оптимальное проецирование данных на плоскость экрана

При проецировании возможны три случая. В первом случае исходное признаковое пространство является двухмерным. Тогда плоскость экрана $y_1 0 y_2$ является просто исходным двухмерным пространством $x_1 0 x_2$, в котором при пошаговом отображении работы алгоритма изменяется положение (наклон и смещения) трех параллельных границ (края и середина области совместного распределения данной пары классов), а объекты не изменяют своего положения. Положение границ определяется направляющим вектором \tilde{a} неединичной длины и соответствующими смещениями вдоль него от начала координат: $-a_0$, $0.5-a_0$ и $1-a_0$.

Во втором случае исходное признаковое пространство также является двухмерным, но плоскость экрана $y_1 0 y_2$ образована вектором \mathbf{c} , где $\mathbf{c} = \widetilde{\mathbf{a}} / \|\widetilde{\mathbf{a}}\|$, $c_0 = a_0 / \|\widetilde{\mathbf{a}}\|$, $\|\mathbf{c}\| = 1$, и ортогональным вектором \mathbf{b} , где $\mathbf{b} = (-c_2, c_1)^T$, $\|\mathbf{b}\| = 1$. Тогда при пошаговом отображении работы алгоритма три границы изменяют только смещения, оставаясь взаимно параллельными и параллельными вертикальной оси $0y_2$. Объекты в плоскости экрана могут изменять свое положение, так как сам экран поворачивается в исходном пространстве соответственно поворотам вектора $\widetilde{\mathbf{a}}$. Положение границ на оси $0y_1$ определяется смещениями $-a_0 / \|\widetilde{\mathbf{a}}\|$, $(0.5 - a_0) / \|\widetilde{\mathbf{a}}\|$, $(1 - a_0) / \|\widetilde{\mathbf{a}}\|$.

В третьем случае пространство является многомерным. Плоскость экрана находится как описано выше для многомерного пространства. Поэтому, все остается также как и во втором случае, за исключением того, что вектор **b** находится специальным образом.

В случае, когда число классов обучения больше двух пользователь может наблюдать проекцию данных лишь относительно одной из пар классов. Выбор соответствующей пары осуществляется посредством диалога "Mapping Style" из окна задачи, нажав кнопку

4.5. Обучение и распознавание

Для запуска алгоритма обучения распознаванию образов пользователю необходимо из меню главного окна программы (рис. 4.3.1) выбрать пункт меню "File|OpenTask". После этого на экран будет выведено окно задачи (рис. 4.5.1) и произойдет загрузка динамических массивов памяти из файлов данных.

Рис. 4.5.1. Рабочее окно программы при выборе задачи обучения

Меню "Run" позволяет производить запуск итерационного алгоритма по шагам, до останова и возврат на начальное приближение. Кроме того, эти же функции можно выбрать посредством кнопок ускорителей:

2- выполнение алгоритма до останова,

- возврат к начальному приближению.

Алгоритм, выполняемый в режиме "до останова", может быть остановлен нажатием кнопки "возврат".

Графическое соответствие реализуемого процесса выводится в виде двумерной проекции многомерного признакового пространства. Принцип

построения такой проекции описан в разделе 4.4. Направляющий вектор разделяющей гиперплоскости коллинеарен оси X экрана, и пользователь наблюдает след разделяющей гиперплоскости как вертикальную линию.

Одновременно с изменением графического представления решающих правил и данных на этапе обучения возможно отображение результатов в текстовом виде. Информация подобного рода содержится В текстовом буфере. который отображается в окне "Problem Status", и периодически обновляется (см. рис.4.5.1). Для просмотра более детальных сведений о решающем правиле пользователь может вывести подобную информацию в текстовое окно нажатием правой кнопки мыши желтый квадрат внизу линии, отображающей разделяющую гиперплоскость (см. рис. 4.5.2).

Рисунок 4.5.2 Информация о решающем правиле распознавания

Изменение параметров алгоритма осуществляется в диалоговом окне, выпадающем при нажатии кнопки . Начальные значения параметров загружаются из файла с тем же именем что и файл данных, и имеющего расширение .DS5. После изменения параметров в окне "Parameters of Algorithm" и завершения работы программы изменения не сохраняются. Для изменения начальных параметров в файле .DS4, пользователю необходимо воспользоваться каким либо внешним редактором, например NotePad.

Изменение вида отображения осуществляется нажатием кнопок 🌅. и 🚺

После завершения процесса обучения пользователь может провести конотроль качества рашающего правила с помощью процедуры «скользящий контроль» (см. п.5.1.4., нажав кнопку Результы процедуры скользящий контроль выводятся кратко в окне "Problem Status", и, полностью, в файле с расширением .loc. (см. рис. 4.5.3).

Рис. 4.5.3. Результат процедуры «скользящий контроль»

4.6. Сохранение и загрузка решающего правила

В программном комплексе Space 4.5 реализованы следующие функции:

- возможность сохранения текущего состояния задачи без выхода из программы,
- возможность загрузки предварительно сохраненных результатов и параметров,
- возможность применения полученного решающего правила к другим данным такой же природы.

Для обеспечения выполнения перечисленных функций в программный комплекс введено такое понятие как файл состояния задачи .STA. Пользователь

имеет возможность сохранить в этот файл полученное решающее правило, размерность данных, которым оно соответствует и параметры алгоритма. Для этого необходимо нажать кнопку из окна задачи. Пользователю ни в коем случае не стоит редактировать этот файл, он является служебным. Кроме файла .STA на диске создается файл отчета с расширением .TXT. Именно этот файл, пользователь может использовать по своему усмотрению - редактировать, переименовывать, удалить.

Для вызова ранее сохраненного файла состояния для данных, по которым он был получен, либо для других данных такой же природы, пользователю необходимо выбрать кнопку . После этого будут загружены решающее правило и рабочие параметры алгоритма, и обновлено графическое отображение. В случае, если загружаемое решающее правило не соответствует размерности данных, будет выведено сообщение об ошибке.