# Integration of microwave and mechanical stress measurements:

NEW POSSIBILITIES FOR EXPERIMENTALISTS AND MANUFACTURERS



Yujie Zhao, Yunfei Wang, Huan Wang, Xuefei Zheng, Faxiang Qin, Dmitriy Makhnovskiy and Huaxin Peng



### Content

- What
- ✓ Wire-filled composites
- Why
- ✓ Remote microwave non-destructive testing
- How
- Broadband stress-impedance measurements
- Beyond
- ✓ Mapping out new test solutions



### What — composites with wire inclusions



**External stimuli:** magnetic field, mechanical stress, and temperature



## Why—non-destructive evaluation technique

Antenna equation:

$$\frac{d^2}{dz^2}(G*j) + k^2(G*j) = \frac{i\omega\varepsilon}{4\pi}\overline{e}_z(z) - \frac{i\omega\varepsilon\zeta_{zz}}{2\pi ac}(G_{\phi}*j)$$

Current density induced by microwave radiation

Surface impedance



Surface impedance: material parameter which includes both conductive and magnetic properties of the wire inclusion, changing with external stimuli.

To investigate how microwave responses to external stress stimuli

Why—non-destructive evaluation technique

### Modelling vs Measuring

### **Modelling**

**?** ?

- Complicated magnetic domain structure
- Existing models are not sufficiently accurate for microwave scattering properties of composite structures

### Measuring

VV

- Broad frequency range calibration and measurement technique
- Recalculation into surface impedance by

$$\zeta_{zz}(\omega, H, \sigma) = 10^9 aZ(\omega, H, \sigma) / (2cl)$$
  
  $\sigma$  – stress,  $H$  – magnetic field

 Develop scattering theory based on the antenna equation

### How—measurement system



Dog-bone sample cell

Broadband impedance measurements in the presence of tensile stress



### How— RF calibration technique

#### 1. SOLT calibration technique



SOLT calibration kit

SOLT calibration can extend the reference plane to the front of microwire, eliminating phase and amplitude distortions caused by the cables and microstrips.



### How— RF calibration technique

#### 2. Phase compensation

$$S_{21M}(\omega, H) = A(\omega, H) \exp(i(\gamma(\omega, H) - \omega\Delta t))$$



Phase distortion caused by the delay time  $\Delta t$  due to the wire waveguide properties

$$S_{\text{21refined}}(\omega, H, \sigma) = \frac{S_{\text{21measured}}(\omega, H, \sigma)}{\exp(-i\omega\Delta t)}$$
 – free of any distortions

$$Z(\omega, H, \sigma) = \frac{100 \times (1 - S_{21\text{refined}}(\omega, H, \sigma))}{S_{21\text{refined}}(\omega, H, \sigma)} - \text{impedance free of any distortions}$$

$$\zeta_{zz}(\omega,H,\sigma)$$

$$\frac{d^2}{dz^2}(G*j) + k^2(G*j) = \frac{i\omega\varepsilon}{4\pi}\overline{e}_z - \frac{i\omega\varepsilon\zeta_{zz}}{2\pi ac}(G_\phi*j)$$



microwave-stress correlation !!!

### How—automatic measurement system



### Broadband magneto- and stress-impedance measurements



For 640 MHz (ferromagnetic resonance) and bias field 5.5 Oe, microwire impedance shows the largest strain sensitivity (  $\approx$  40 %).

 $\Delta Z \approx 450 \ \Omega$  for bias field 5.5 Oe





# Beyond—Integration of microwave measurements with multi-stimuli





### Industry and academia cooperation



# Thank you

With best wishes from Hangzhou



