Modeling and Optimization with OPL 6 Simple techniques of stochastic

6 Simple techniques of stochastic optimization

Andreas Popp

These slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

6 Simple techniques of stochastic optimization

> CC-BY-SA A. Popp

method

b.2 Chance constrainend programming

CC-BY-SA A. Popp

6.1 Scenario method

6.2 Chance constrainend programming

6.1 Scenario method

6.2 Chance constrainend programming

CC-BY-SA A. Popp

6.1 Scenario method

6.2 Chance constrainend programming

6.1 Scenario method

method

Long term warehouse capacity: 8 houses

Warehouse demand:

Resource	Scenario I (30%)	Scenario II (30%)	Scenario III (25%)	Scenario IV (15%)
Food	4	2	3	4
Dringking water	3	5	3	5
Medication	3	3	1	4

Short term warehouse costs

- ▶ 3500\$ for a food warehouse
- ▶ 1600\$ for a drinking water warehouse
- ▶ 5200\$ for a medication warehouse

Two stage stochastic optimization

6 Simple techniques of stochastic optimization

CC-BY-SA A. Popp

6.1 Scenario method

6.2 Chance constrainend programming

Scenario method

- Special case of two stage stochastic optimization
- Random event = occurance of one out of a finite number of scenarios
- Stochastic objective function often replaced by expected value

6.1 Scenario method

6.2 Chance constrainend programming

- Index set I of scenarios
- ▶ Parameter p_i : probability of scenario $i \in I$
- Scenario independent parameters and here-and-now-decision-variables have no scenario index
- Scenario dependent parameters and wait-and-see-decision-variables have a scenario index
- With a finite number of scenarios, the expected value becomes a convex combination and is therefore linear

Index sets:

I set of scenarios

R set of resources

Parameters:

 p_i probability of scenario $i \in I$

 c_r cost for additional short term capacity of resource $r \in R$

 d_{ri} demand of resource $r \in R$ in scenario $i \in I$

k capacity for long term resource allocation

Decision variables:

 x_r long term capacity allocated to resource $r \in R$

 y_{ri} short term capacity bought for resource $r \in R$ in scenario $i \in I$

Model description:

min
$$\sum_{i \in I} p_i \cdot \left(\sum_{r \in R} c_r \cdot y_{ri} \right)$$
s.t.
$$\sum_{r \in R} x_r \le k$$
 (I)
$$x_r + y_{ri} \ge d_{ri} \quad \forall r \in R, i \in I \quad \text{(II)}$$

$$x_r, y_{ri} \in \mathbb{Z}^+ \quad \forall r \in R, i \in I$$

programming

6 Simple techniques of stochastic optimization

CC-BY-SA A. Popp

6.1 Scenario method

6.2 Chance constrainend programming

Sales prices and capacity

	I_1	<i>I</i> ₂	<i>I</i> ₃	capacity
R_1	3.2	2.4	2.6	600
R_2	6.5	8.3	7.8	800
SP	1.4	1.6	1.5	

Demand estimator

$$\left. egin{array}{l} D_{I_1} \sim \textit{N}(25,10) \\ D_{I_2} \sim \textit{N}(10,5) \\ D_{I_3} \sim \textit{N}(18,7) \end{array}
ight.
ight.
ight.
box{Probability of a stock out shall be} \ < 5\% \end{array}$$

Index sets:

- set of products
- R set of resources

Parameters:

- sales price of product $i \in I$
- capacity of resource $r \in R$
- capacity consumption of product $i \in I$ on resource $r \in R$ a_{ri}
- D_i demand of product $i \in I$ (random variable)
- α service level

Decision variables:

production quantity of product $i \in I$ Χi

Model description:

$$\min \quad \sum_{i \in I} v_i \cdot x_i$$

s.t.
$$\sum_{\substack{r \in R \\ P(D_i \le x_i) \ge \alpha}} a_{ri} x_i \le c_r \qquad \forall r \in R \quad \text{(I)}$$

$$i > 0$$
 $\forall i \in I$

$$\forall i \geq 0$$
 $\forall i \in I$

6.2 Chance constrainend programming

with the example of the stochastic production problem:

- $ightharpoonup P(D_i \le x_i) = F_{D_i}(x_i)$ (distribution function)
- ▶ $P(D_i \le x_i) \ge \alpha \iff x_i \ge F_{D_i}^{-1}(\alpha)$ (constant)

Precalculated constants for the example

i	<i>I</i> ₁	<i>I</i> ₂	<i>I</i> ₃
$F_{D_i}^{-1}(0.95)$	41,4	18,2	29,5

Index sets:

I set of productsR set of resources

Parameters:

 v_i sales price of product $i \in I$ c_r capacity of resource $r \in R$

 a_{ri} capacity consumption of product $i \in I$ on resource $r \in R$

 $F_{D_i}^{-1}(\alpha)$ α quantile of demand for product $i \in I$

Decision variables:

 x_i production quantity of product $i \in I$

Model description:

min
$$\sum_{i \in I} v_i \cdot x_i$$
s.t.
$$\sum_{r \in R} a_{ri} x_i \le c_r \qquad \forall r \in R \qquad \text{(I)}$$

$$x_i \ge F_{D_i}^{-1}(\alpha) \qquad \forall i \in I \qquad \text{(II)}$$

$$x_i \ge 0 \qquad \forall i \in I$$