

División y conquista: Multiplicación - Karatsuba

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Multiplicación de números enteros

Sean

Un problema histórico

Hace milenios la humanidad construyó algoritmos para multiplicar

Método egipcio

Método babilonio

Método japones (o chino)

Método hindú (o de celdillas)

Método "tradicional"

Sean X y Y de n bits (dígitos)

Por cada bit (dígito) lo multiplicamos por cada uno de los bits (dígitos) del otro numero

Encolumnamos los resultados y sumamos

Realizamos

Orden de n² multiplicaciones básicas

Mas un conjunto de sumas elementales

14488668

Complejidad O(n2)

Conjetura n²

Andrey Nikolaevich Kolmogorov

Sostuvo que no era posible una complejidad mejor (No era el único)

Conjetura: Afirmación que se supone cierta

pero que no ha podido ser ni probada ni refutada.

"Si existiese mejor método, ya tendría que haber sido encontrado"

El piso se rompe

Anatoly Karatsuba

estudiante de 23 años en 1960

seminario de problemas matemáticos en cibernética,

Facultad de mecánica y matemáticas de la universidad de Moscú

Le bastó una semana para refutar la conjetura n²

Paper "Multiplication of Many-Digital Numbers by Automatic Computers"

Idea

Representamos

$$X = X_1 * 2n/2 + X_0$$

$$Y = y_1 * 2n/2 + y_0$$

Operamos

$$X^*Y = (x_1 * 2^{n/2} + x_0) * (y_1 * 2^{n/2} + y_0)$$

$$X^*Y = x_1 y_1 * 2n + (x_0 y_1 + x_1 y_0) * 2n/2 + x_0 y_0$$

En vez de 1 multiplicación de n bits tenemos 4 multiplicaciones de n/2 bits

Idea (cont)

Realizamos recursivamente la multiplicación

Hasta la multiplicación de 1 a 1 bits (o dígito)

Relación de recurrencia:

$$T(n) = 4 T(n/2) + cn$$

Por teorema maestro O(n²)

... por el momento no mejore nada

El aporte de Karatsuba

Partimos de

Multiplicación de n/2 bits

Pseudocodigo

Calculamos:

$$X*Y = X_1 y_1 * 2^{n/2} +$$

$$[(x_0 + x_1) * (y_0 + y_1) - x_1 y_1 - x_0 y_0] * 2^{n/2} +$$

$$x_0 y_0$$

Son 3 multiplicaciones de n/2 bits Mas sumas elementales

Cada recursión trabaja con n/2 bits

```
Karatsuba(x,y)
      x = x_1 * 2^{n/2} + x_0
      y = y_1 * 2^{n/2} + y_0
      Calcular x_1 + x_2
      Calcular y_1 + y_0
      P = Karatsuba (x_1 + x_0, y_1 + y_0)
      x_1y_1 = Karatsuba (x_1, y_1)
      x_{0}y_{0} = Karatsuba (x_{0}, y_{0})
      Retornar x_1y_1^{2^n} + (P - x_1y_1 - x_0y_0)2^{n/2} +
                  X_0 Y_0
```


Complejidad

Relación de recurrencia

$$T(n) = 3T(n/2) + cn$$

$$T(1) = a$$

Por teorema maestro

$$O(n^{\log_2 3}) = O(n^{1,59})$$

Que es más "eficiente" que el algoritmo tradicional

Este método tiene mas sumas básicas, por lo que la ventaja se ve para n grandes

Desenrrollando la recursión

Relación de recurrencia

$$T(n) = 3T(n/2) + cn$$

$$T(1) = a$$

$$T(n/2) = 3T(n/4) + n/2$$

$$T(n/4) = 3T(n/8) + n/4$$

. .

$$T(n) = 3[3(3{T(n/16) + n/8} + n/4) + n/2] + n$$

$$T(n)=3^k*1+\sum_{i=0}^k\frac{3^i*n}{2^i}$$

Continuemos

vemos que k= logn

$$T(n)=3^{k}*1+\sum_{i=0}^{k}\frac{3^{i}*n}{2^{i}}$$

$$T(n)=3^{\log(n)}+n*\sum_{i=0}^{\log(n)}(\frac{3}{2})^{i}$$

$$T(n) = 3^{\log(n)} + \frac{n*(1-(3/2)^{\log(n)+1})}{(1-3/2)}$$

$$T(n) = 3^{\log(n)} + 2n * ((3/2)^{\log(n)+1} - 1)$$

$$T(n)=3^{\log(n)}+3n*(3/2)^{\log(n)}-2n$$

$$\sum_{i=0}^{x} r^{i} = \frac{1 - r^{(x+1)}}{1 - r}$$

Y continuamos...

$$T(n) = 3^{\log(n)} + 3n \frac{3^{\log(n)}}{2^{\log(n)}} - 2n$$

$$T(n) = 3^{\log(n)} + 3 * 3^{\log(n)} - 2n$$

$$T(n) = 4 * 3^{\log(n)} - 2n$$

$$T(n) = 4 * n^{\log 3} - 2n$$

Sin→∞

$$O(n^{\log_2 3}) = O(n^{1,59})$$

Evolución de la multiplicación

Se puede hacer mejor?

Nueva conjetura de Shönhage-Strassen (1971) → O(nlogn)

Avances en los métodos de multiplicación.

Año	M(n)	autor
-2000?	$O(n^2)$	desconocido
1960	$O(n^{\log_2 3})$	Karatsuba
1966	$O(n\log n \ e^{\sqrt{2\log_2 n}})$	Toom-Cook
1971	$O(n \log n \log \log n)$	Schönhage-Strassen
2007	$O(n\log n \ K^{\log^* n})$	Fürer
2018	$O(n\log n \ 4^{\log^* n})$	Harvey-van der Hoeven

Se ha llegado al máximo?

David Harvey y Joris van der Hoeven presentan en 2019

Paper: "Integer multiplication in time O(n log n)"

https://hal.archives-ouvertes.fr/hal-02070778/document

Se apoyan en la FFT pero la llevan a 1729 dimensiones

FFT: Fast Fourier transform

Técnica utilizada por primera vez por Schönhage y Strassen

Presentación realizada en Abril de 2020