Логическое программирование высшего порядка

Екатерина Вербицкая

Лаборатория языков инструментов JetBrains

14 сентября 2020

Логическое программирование

Декларативное программирование, основанное на формальной логике

Логическое программирование: пример

$$\forall x.human(x) \rightarrow mortal(x)$$

human(Socrates)

Смертен ли Сократ?

Логическое программирование: пример

$$\forall xz.\exists y.child(x,y) \land child(y,z) \rightarrow grandchild(x,z)$$

Логическое программирование: пример

 $\forall hxyz. (append \ x \ y \ x \lor (append \ x \ y \ z \rightarrow append \ (h :: x) \ y \ (h :: z)))$

Как это работает: дизъюнкты Хорна

$$G ::= \top \mid A \mid G \land G \mid G \lor G \mid \exists_{\tau} x.G$$
$$D ::= A \mid G \rightarrow D \mid D \land D \mid \forall_{\tau} x.D$$

- Т истина
- A атом
- *G* цель
- D- дизъюнкт Хорна (правило логического вывода)

Kak это работает: логический вывод (backchaining)

$$\overline{\Sigma; \mathcal{P} \longrightarrow \top}$$

$$\frac{\Sigma; \mathcal{P} \longrightarrow B_1}{\Sigma; \mathcal{P} \longrightarrow B_1 \vee B_2}$$

$$\frac{\Sigma; \mathcal{P} \longrightarrow B_1}{\Sigma; \mathcal{P} \longrightarrow B_1 \vee B_2} \qquad \frac{\Sigma; \mathcal{P} \longrightarrow B_2}{\Sigma; \mathcal{P} \longrightarrow B_1 \vee B_2}$$

$$\frac{\Sigma; \mathcal{P} \longrightarrow B_1 \quad \Sigma; \mathcal{P} \longrightarrow B_2}{\Sigma; \mathcal{P} \longrightarrow B_1 \land B_2}$$

$$\frac{\Sigma; \mathcal{P}, B_1 \longrightarrow B_2}{\Sigma; \mathcal{P} \longrightarrow B_1 \to B_2}$$

$$\frac{\Sigma; \mathcal{P} \longrightarrow B[t/x] \quad \Sigma; \varnothing \vdash t : \tau}{\Sigma; \mathcal{P} \longrightarrow \exists_{\tau} x. B}$$

$$\frac{c:\tau,\Sigma;\mathcal{P}\longrightarrow B[c/x]}{\Sigma;\mathcal{P}\longrightarrow \forall_{\tau}x.B}$$

Как это работает: логический вывод (backchaining)

$$\frac{\Sigma; \mathcal{P} \xrightarrow{D} A}{\Sigma; \mathcal{P} \longrightarrow A}$$

$$\Sigma; \mathcal{P} \xrightarrow{A} A$$

$$\frac{\Sigma; \mathcal{P} \xrightarrow{D} A \qquad \Sigma; \mathcal{P} \longrightarrow G}{\Sigma; \mathcal{P} \xrightarrow{G \to D} A}$$

$$\frac{\Sigma; \mathcal{P} \xrightarrow{D_1} A}{\Sigma; \mathcal{P} \xrightarrow{D_1 \wedge D_2} A}$$

$$\frac{\Sigma; \mathcal{P} \xrightarrow{D_2} A}{\Sigma; \mathcal{P} \xrightarrow{D_1 \wedge D_2} A}$$

$$\frac{\Sigma; \mathcal{P} \xrightarrow{D[t/x]} A \qquad \Sigma; \varnothing \vdash t : \tau}{\Sigma; \mathcal{P} \xrightarrow{\forall_{\tau} x \cdot D} A}$$

Или если D имеет вид $\forall_{ au_1}x_1,\ldots, \forall_{ au_m}x_m.\ A_1\wedge\cdots\wedge A_n o A_0$:

$$\frac{\Sigma; \mathcal{P} \longrightarrow A_1 \theta \qquad \dots \qquad \Sigma; \mathcal{P} \longrightarrow A_n \theta}{\Sigma; \mathcal{P} \stackrel{D}{\longrightarrow} A} \ , A = A_0 \theta$$

Унификация

Даны два терма t,s

Задача: найти подстановку на свободных переменных термов (унификатор) θ , такую что

$$t\theta = s\theta$$

Алгоритм унификации

Будем искать подстановку как множество уравнений $\mathcal{E} = \{t_i = s_i\}$

- Упрощение термов: $(f\ t_1 \dots t_n = g\ s_1 \dots s_m) \in \mathcal{E}$
 - ▶ Если f,g различные константы, то $\mathcal{E} = \bot$
 - lacktriangle Иначе заменяем уравнение в ${\cal E}$ на множество $t_1=s_1,\ldots,t_n=s_n$
- Переориентация: $(t=x) \in \mathcal{E}$
 - lacktriangle Если t терм, x переменная, заменяем в ${\cal E}$ уравнение на x=t
- Элиминация переменных: $(x=t) \in \mathcal{E}$, x входит в какое-то уравнение
 - lacktriangle Если x входит в t, $t\equiv x$, то удаляем уравнение из ${\mathcal E}$
 - ▶ Иначе, если x входит в t, то $\mathcal{E} = \bot$
 - lacktriangle Иначе, подставляем t вместо x во всех уравнениях в ${\mathcal E}$

Унификация: пример

$$\{ node\ El\ T\ T=node\ 1\ (node\ 2\ emp\ emp)\ (node\ 2\ emp\ emp) \}$$
 $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=node\ 2\ emp\ emp \}$ $\{El=1,T=node\ 2\ emp\ emp,2=2,emp=emp,emp=emp\}$ $\{El=1,T=node\ 2\ emp\ emp\}$

Унификация: пример

$$\{ node\ El\ T\ T=node\ 1\ (node\ 2\ emp\ emp)\ (node\ 3\ emp\ emp) \}$$
 $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=node\ 3\ emp\ emp\}$ $\{El=1,T=node\ 2\ emp\ emp,2=3,emp=emp,emp=emp\}$

Логическое программирование над абстрактным синтаксом

$$\frac{\langle x,\tau\rangle\in\Gamma}{\Gamma\vdash x:\tau}$$

$$\frac{\langle x, \tau_1 \rangle, \Gamma \vdash B : \tau}{\Gamma \vdash \lambda x.B : \tau_1 \to \tau}$$

$$\frac{\langle x, \tau_1 \rangle, \Gamma \vdash B : \tau}{\Gamma \vdash \lambda x.B : \tau_1 \to \tau} \qquad \frac{\Gamma \vdash m : \tau_1 \to \tau \qquad \Gamma \vdash n : \tau_1}{\Gamma \vdash m \; n : \tau}$$

FOAS vs HOAS

- First-order abstract syntax
 - Структурное представление термов
 - Переменные представляются конкретными значениями (строками, числами, ...)
 - ▶ Необходимо реализовывать capture-avoiding substitution
 - ★ $\lambda x.y[x/y] \rightarrow \lambda x.x$ неправильно
 - ★ $\lambda x.y[x/y] \rightarrow \lambda z.x$ сложно
 - ▶ Не очень сложно реализовать сравнение термов на равенство
- Higher-order abstract syntax
 - Структурное представление термов
 - Переменные и связывания представляются силами метаязыка
 - ► Нет необходимости в capture-avoiding substitution: об этом позаботится метаязык
 - Проверка термов на равенство затруднена

HOAS в логическом программировании

- Использование предикатов высшего порядка
- Использование функций высшего порядка

Миграция связываний

```
type app tm -> (tm -> tm)
type abs (tm -> tm) -> tm
             \forall M. term(M) \rightarrow \forall N. term(N) \rightarrow term(app(M, N))
             \forall B.(\forall x.term(x) \rightarrow term(B x)) \rightarrow term(abs(B))
?- term (abs y\ app y y).
?- pi x \cdot term x \Rightarrow term ((y \cdot app y y) x).
?- pi x \ term x => term (app x x)
?- term (app c c).
```

Идиома миграции связываний

Чтобы продолжить анализировать под связыванием:

- Примени связывание к новой переменной под квантором всеобщности
- Используй импликацию, в которой посылка использует эту новую переменную, чтобы сделать выводы о терме

Higher-order hereditary Harrop formulas

$$G ::= \top \mid A \mid G \land G \mid G \lor G \mid \exists_{\tau} x.G \mid D \rightarrow G \mid \forall_{\tau} x.G$$
$$D ::= A_r \mid G \rightarrow D \mid D \land D \mid \forall_{\tau} x.D$$

- Т истина
- A атом
- A_r жесткий (rigid) атом
 - ightharpoonup Rigid atom: $h\ t_1 \dots t_n$, где h- (не логическая) константа
 - ▶ Flexible atom: $h \ t_1 \dots t_n$, где h переменная
- *G* цель
- D- дизъюнкт Хорна (правило логического вывода)

$$\forall a \exists F [F a = g a a]$$

$$F \in \{\lambda x.g \ a \ a, \ \lambda x.g \ a \ x, \ \lambda x.g \ x \ a, \ \lambda x.g \ x \ x\}$$

$$\forall a \exists F [F a = g a a]$$

$$F \in \{\lambda x.g \ a \ a, \ \lambda x.g \ a \ x, \ \lambda x.g \ x \ a, \ \lambda x.g \ x \ x\}$$

$$\exists F \ \forall a \ [F \ a = g \ a \ a]$$

$$F \in \{\lambda a.g \ a \ a\}$$

Предположим, в мире есть только $u:i\to i,\ v:i\to i$ $\lambda w.w$ соответствует пустой строке, $\lambda w.u(v(u\ w))$ — строке "uvu"

$$\exists F \ \exists G[\lambda w.F(Gw) = \lambda w.u(v(u\ w))]$$

$$F = \lambda w.u(v(u \ w)), \ G = \lambda w.w$$

$$F = \lambda w.u(v \ w), \ G = \lambda w.u \ w$$

$$F = \lambda w.u \ w, \ G = \lambda w.v(u \ w)$$

$$F = \lambda w.w, \ G = u(v(u \ w))$$

Предположим, в мире есть только $u:i\to i,\ v:i\to i$ $\lambda w.w$ соответствует пустой строке, $\lambda w.u(v(u\ w))$ — строке "uvu"

$$\exists F[\lambda w.u(F(uw)) = \lambda w.u(v(v(u\ w)))]$$

$$F = \lambda w. v(v w)$$

Предположим, в мире есть только $u:i\to i,\ v:i\to i$ $\lambda w.w$ соответствует пустой строке, $\lambda w.u(v(u\ w))$ — строке "uvu"

$$\exists F[\lambda w. u(F\ w) = \lambda w. F(u\ w)]$$

$$F \in \{\lambda w.w, \lambda w.u \ w, \lambda w.u(u \ w), \dots\}$$

У следующих задач унификаторов нет c, d — константы, F, G — переменные

$$\lambda x.d(c(F x)) = \lambda x.c(d(G x))$$
$$\lambda x.x(F x) = \lambda x.(c(G x))$$
$$\lambda x.\lambda y.x(F x y) = \lambda x.\lambda y.y(G x y)$$
$$\lambda x.\lambda y.x(F x y) = \lambda x.\lambda y.G y y$$

Унификация высшего порядка: неразрешимость

Унификация высшего порядка неразрешима в общем случае: задача соответствия Поста может быть сведена к унификации

Унификация высшего порядка: rigid-rigid уравнения

Rigid терм — $\lambda x_1 \dots \lambda x_n.h$ $t_1 \dots t_m$, где $h=x_i$ или h находится под квантором всеобщности

- ullet Если c $t_1 \dots t_m = d$ $s_1 \dots s_n$, где c
 eq d, то унификация невозможна
- Если c=c, то заменяем это выражение на \top
- Если c $t_1 \dots t_n = c$ $s_1 \dots s_n$, то заменяем уравнение на $t_1 = s_1 \wedge \dots \wedge t_n = s_n$

Унификация высшего порядка: flexible-rigid уравнения

Flexible терм — $\lambda x_1 \dots \lambda x_n$. F $t_1 \dots t_m$, где F находится под квантором существования

$$F t_1 \dots t_n = c s_1 \dots s_m$$

- Подстановка-имитация
 - ightharpoonup F связан в скоупе, где связан c
 - $F = \lambda x_1 \dots \lambda x_n \cdot c \ (H_1 \ x_1 \dots x_n) \dots (H_m \ x_1 \dots x_n)$
 - lacktriangle Добавляем кванторы для $H_1 \dots H_m$ на место квантора для F
- Подстановка-проекция
 - $F = \lambda x_1 \dots \lambda x_n \cdot x_i \ (H_1 \ x_1 \dots x_n) \dots (H_m \ x_1 \dots x_n)$

$$\forall a. \forall g. \exists F[F \ a = g \ a \ a]$$

$$F \in \{\lambda x. g \ (H_1 \ x) \ (H_2 \ x), \ \lambda x. x\}$$

Подставляем второй вариант, нормализуем, получается неунифицирующееся уравнение

$$\forall a. \forall g. [a = g \ a \ a]$$

$$orall a. orall g. \exists F[F\ a=g\ a\ a]$$
 $F \in \{\lambda x. g\ (H_1\ x)\ (H_2\ x),\ \lambda x. x\}$
Подставляем первый вариант
 $orall a. orall g. \exists H_1. \exists H_2. [g\ (H_1\ a)\ (H_2\ a)=g\ a\ a]$
Упрощаем
 $orall a. orall g. \exists H_1. \exists H_2. [H_1\ a=a \wedge H_2\ a=a]$

$$\forall a. \forall g. \exists F[F \ a = g \ a \ a]$$

$$\forall a. \forall g. \exists H_1. \exists H_2. [H_1 \ a = a \land H_2 \ a = a]$$

$$H_1 \in \{\lambda x.x, \lambda x.a\}$$

Подставляем любой из двух вариантов, получаем

$$\forall a. \forall g. \exists H_2. [\top \wedge H_2 \ a = a]$$

Собираем все вместе, получаем

$$F \in \{ \lambda x.g \ a \ a, \ \lambda x.g \ a \ x, \ \lambda x.g \ x \ a, \ \lambda x.g \ x \ x \}$$

Унификация высшего порядка: flexible-flexible

$$\forall a. \forall g. \exists X. \exists Y. [X \ a = g \ (F \ a)]$$
$$X = \lambda x. g \ (H \ x)$$
$$\forall a. \forall g. \exists H. \exists Y. [H \ a = Y \ a]$$

- ullet Для примитивного типа au создать уникальную переменную $H^ au$
- Для каждого типа $au_1 o \cdots o au_n o \sigma$ назовем каноническим термом $\lambda x_1 \dots \lambda x_n. H^\sigma$
- Используем канонический терм подходящего типа для flexible термов

Унификация высшего порядка: нетерминируемость

$$\forall g. \exists F. \forall x. [F (g x) = g (F x)]$$

$$\forall g. \exists H. \forall x. [H (g x) = g (H x)]$$

 $F \in \{\lambda x.x, \ \lambda x.g \ x, \ \lambda x.g \ (g \ x), \dots\}$

Язык L_{λ} : кошмарные определения

Вхождение подформулы C в формулу B называется *положительным*, если оно находится слева от четного количества импликаций в B. Иначе — *негативным*

- Вхождение связанной переменной в цель G называется essentially universal, если оно связано позитивным квантором всеобщности, негативным квантором существования или λ -абстракцией
- Вхождение связанной переменной в цель *G* называется *essentially existential*, если оно не является essentially universal
- Вхождение связанной переменной в D называется essentially universal, если оно связано негативным квантором всеобщности, позитивным квантором существования или λ -абстракцией
- Вхождение связанной переменной в D называется essentially existential, если оно не является essentially universal

Язык L_{λ} : основная характеристика

Запрещена квантификация над предикатами, а также: в каждом подтерме x $t_1 \dots t_n$, $n \ge 0$, в котором x является essentially existential, все t_i должны быть различными existential universal переменными, связанными внутри скоупа x

Это означает, что если x будет инстанциировано термом t, то результирующие β -редексы будут иметь вид t $y_1 \dots y_n$, где все y_i будут связанными, а значит $t = \lambda y_1 \dots y_n.t'$, и $(\lambda y_1 \dots y_n.t')$ $y_1 \dots y_n = t'$

Higher-order pattern unification

Отслеживаем выполнение основной характеристики L_{λ} в процессе выполнения унификации

Работа с rigid-rigid уравнениями не изменяется

В случае flexible-rigid уравнений все, кроме одной, подстановки сразу же ломаются

Higher-order pattern unification: flexible-rigid

$$F c_1 \ldots c_n = c t_1 \ldots t_m$$

- Если F связано в скоупе квантора, который связывает c, то c не совпадает ни с одним из c_1, \ldots, c_n : ни одна подстановка-проекция не завершится успехом
- Если связано в скоупе квантора, который связывает F, тогда подстановка-имитация не завершится успехом, и только i-ая подстановка-проекция может выжить: когда $c=c_i$

Higher-order pattern unification: flexible-flexible

$$F c_1 \ldots c_n = G d_1 \ldots d_m$$

- c_i, d_i , все связаны в скоупе F, G
- Если F и G разные переменные, то $F = \lambda c_1 \dots \lambda c_n$.H $e_1 \dots e_l$, $G = \lambda d_1 \dots \lambda d_n$.H $e_1 \dots e_l$, где e_1, \dots, e_l общие переменные
- Если F и G одинаковые переменные, то n=m, $F=\lambda c_1\dots \lambda c_n.H$ $e_1\dots e_l$, $G=\lambda d_1\dots \lambda d_n.H$ $e_1\dots e_l$, где e_1,\dots,e_l такие переменные, что $c_i=d_i=e_i$

В результате получится mgu.

Higher-order pattern unification: терминируемость

$$\forall f. \exists X[X = f \ X]$$
$$\forall f. \exists H[H = f \ H]$$

В этом случае спасет occurs-check

Higher-order pattern unification: примеры

$$\forall f. \forall g. \exists U. \exists V. \forall w. \forall x. \forall y. [f (U \times y) = f (g(V y w))]$$
$$\forall g. \exists U. \exists V. \forall w. \forall x. \forall y. [U \times y = g(V y w)]$$
$$U = \lambda x. \lambda y. g (V' y), V = \lambda y. \lambda w. V' y$$

Следующая задача не имеет унификатора, потому что срабатывает occurs-check

$$\forall g. \exists U. \forall w. \forall x. \forall y. [U \times y = g(U \times w)]$$

Следующая задача не имеет унификатора, потому что w не встречается слева, а g — под квантором всеобщности

$$\forall g. \exists U. \forall w. \forall x. \forall y. [U \times y = g \ w]$$