Statistical Machine Learning

Distributions

Lecture Notes 3: Scale Mixture Distribution

Professor: Zhihua Zhang

Notice: In this lecture note, $X \sim \mathcal{N}(a, b)$ means that $\mu = a, \sigma^2 = b$. Prof.Zhang sometimes means $\mu = a, \sigma = b$ in the class. So the notation or results may be a little different with your notes.

2.4 Scale Mixture Distribution

We will show several distributions can be seen as the scale mixture of distributions, which is defined as follows,

$$X \sim F(\theta)$$
$$\theta \sim G(\lambda)$$

, So, $T(x) = \int_{\theta} F(\theta)G(\lambda)d\theta$ can be seen as a scale mixture of F, where the scale has distribution G.

2.4.1 Student's t-distribution

The Student's t-distribution is a scale mixture of Gaussian distribution, where the scale has a Gamma distribution. Let $X \sim \mathcal{N}(\mu, \frac{\sigma^2}{r})$, $r \sim \text{Gamma}(\frac{\nu}{2}, \frac{\nu}{2})$, then the integral will be:

$$\int_{0}^{\infty} \frac{r^{1/2}}{\sqrt{2\pi}\sigma} e^{-\frac{r(x-\mu)^{2}}{2\sigma^{2}}} \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} r^{\frac{\nu}{2}-1} e^{-\frac{\nu}{2}r} dr$$

$$= \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)\sigma\sqrt{2\pi}} \int_{0}^{\infty} r^{\frac{\nu+1}{2}-1} e^{-\frac{r}{2}\left(\frac{(x-\mu)^{2}}{\sigma^{2}}+\nu\right)} dr$$

$$= \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}\Gamma\left(\frac{\nu+1}{2}\right)}{\sigma\sqrt{2\pi}\Gamma\left(\frac{\nu}{2}\right)} \left[\frac{(x-\mu)^{2}}{2\sigma^{2}} + \frac{\nu}{2}\right]^{-\frac{\nu+1}{2}}$$

$$= \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sigma\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left[\frac{(x-\mu)^{2}}{\nu\sigma^{2}} + 1\right]^{-\frac{\nu+1}{2}}$$

$$= t_{\nu}(\mu, \sigma^{2})$$

Note that during the integral, we use a mathematical trick. Since we have

$$\int_0^\infty \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} dx = 1$$

from Gamma distribution, so we can get $\int_0^\infty x^{\alpha-1}e^{-\beta x}dx = \frac{\Gamma(\alpha)}{\beta^{\alpha}}$. This trick will be often used in the follows.

2.4.2 Laplace Distribution

Laplace distribution is:

$$f(x) = \frac{1}{4\sigma} \exp(-\frac{|x - \mu|}{2\sigma})$$

Let we see 2σ as σ for convenience, that is:

$$f(x) = \frac{1}{2\sigma} \exp(-\frac{|x - \mu|}{\sigma})$$

The Laplace distribution is a scale mixture of Gaussian distribution, where the scale has a exponential distribution. Let $X \sim \mathcal{N}(\mu, r)$, $r \sim \text{Exponential}(\frac{1}{2\sigma^2})$, then we can get the mixture distribution:

$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi r}} e^{-\frac{(x-\mu)^{2}}{2r}} \frac{1}{2\sigma^{2}} e^{-\frac{r}{2\sigma^{2}}} dr$$

$$= \frac{1}{2\sigma^{2}\sqrt{2\pi}} \int_{0}^{\infty} r^{\frac{1}{2}-1} e^{-\frac{1}{2}\left(\frac{(x-\mu)^{2}}{r} + \frac{r}{\sigma^{2}}\right)} dr$$

$$= \frac{1}{2\sigma^{2}\sqrt{2\pi}} \frac{2K_{1/2}\left(\sqrt{\left(\frac{1}{\sigma^{2}}(x-\mu)^{2}\right)}\right)}{\left(\frac{1}{\sigma^{2}(x-\mu)^{2}}\right)^{\frac{1}{4}}}$$

$$= \frac{1}{2\sigma} e^{-\frac{|x-\mu|}{\sigma}}$$

The integral term is a integral of generalized inverse Gaussian distribution, $GIG(\frac{1}{2}, \frac{1}{\sigma^2}, (x - \mu)^2)$.

2.4.3 Negative Binomial Distribution

Negative Binomial Distribution is a scale of Poisson distribution, where the scale has a Gamma distribution. Let $K \sim \text{Poisson}(\lambda)$, $\lambda \sim \text{Gamma}(r, \frac{1-p}{p})$, then we can get the mixture distribution:

$$\int_0^\infty \frac{\lambda^k}{k!} e^{-\lambda} \frac{\lambda^{r-1} e^{-\frac{1-p}{p}\lambda}}{\Gamma(r)(\frac{p}{1-p})^r} d\lambda$$

$$= \frac{1}{k!\Gamma(r)(\frac{p}{1-p})^r} \int_0^\infty \lambda^{k+r-1} e^{-\frac{\lambda}{p}} d\lambda$$

$$= \frac{\Gamma(r+k)p^k(1-p)^r}{\Gamma(r)k!}$$

$$= \binom{k+r-1}{k} p^k (1-p)^r$$

Homework 1: $\sum_{k=0}^{\infty} \text{Gamma}(x|k+\rho+1,\beta) \text{Poisson}(k|\lambda), \rho \text{ is a constant}, \rho > -1.$

3 Statistical Inference (I)

Statistical inference is the process of deducing properties of an underlying distribution by analysis of data. Maximum-likelihood estimation(MLE) and Maximum a posteriori probability(MAP) estimate are two improtant methods.

Assume that we want to estimate an unobserved population parameter θ on the basis of observations x. Let f be the sampling distribution of x, so that $f(x|\theta)$ is the probability of x when the underlying population parameter is θ . And the MLE of θ is

$$\hat{\theta}_{ML}(x) = \underset{\theta}{\operatorname{argmax}} f(x|\theta)$$

Now assume that a prior distribution g over θ exists. This allows us to treat θ as a random variable as in Bayesian statistics. Then the posterior distribution of θ is $f(\theta|x) = \frac{f(x|\theta)g(\theta)}{f(x)}$. And the MAP of θ is

$$\hat{\theta}_{MAP}(x) = \underset{\theta}{\operatorname{argmax}} f(x|\theta)g(\theta)$$

Example 3.1. In Logistic regression, $y \sim Bernoulli(\frac{1}{1 + \exp(-a^T x)})$

Example 3.2. In Least square Estimation, $y \sim \mathcal{N}(a^T x, \sigma^2)$, $p(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y - a^T x)^2}{2\sigma^2})$.

$$\max \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y-a^Tx)^2}{2\sigma^2}) \Leftrightarrow \max -\frac{(y-a^Tx)^2}{2\sigma^2} - \log(\sigma) \Leftrightarrow \min \frac{(y-a^Tx)^2}{2\sigma^2} + \log(\sigma)$$

Example 3.3. In **Ridge regression**, $p(y|a) \sim \mathcal{N}$, $p(a) \sim \mathcal{N}(0, \tau^2)$, then

$$\min - \log(p(y|a)) - \log(p(a)) \Leftrightarrow \min \frac{1}{2} [(y - a^T x)^2 + \lambda ||a||_2^2]$$

3.1 Jeffreys Prior

In order to show Jeffrey prior, we first introduce **Fisher information**. In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ upon which the probability of X depends.

The probability function for X, which is also the likelihood function for θ , is a function $f(X;\theta)$; it is the probability mass (or probability density) of the random variable X conditional on the value of θ . Then we define Fisher information:

Definition 3.1. Fisher Information:

$$I(\theta) = \mathbb{E}((\frac{\partial \log f(x;\theta)}{\partial \theta})^2) = \int (\frac{\partial \log f(x;\theta)}{\partial \theta})^2 f(x;\theta) dx$$

Lemma 3.1. If $\log f(x;\theta)$ is twice differentiable with respect to θ and under certain regularity conditions, then

$$I(\theta) = -\mathbb{E}(\frac{\partial^2 \log f}{\partial \theta^2})$$

Proof. first

$$\begin{split} \frac{\partial^2 \log f}{\partial \theta^2} &= \frac{\partial}{\partial \theta} \left(\frac{\partial \log(f)}{\partial \theta} \right) \\ &= \frac{\partial}{\partial \theta} \left(\frac{\frac{\partial f}{\partial \theta}}{f} \right) \\ &= \frac{\frac{\partial^2 f}{\partial \theta^2}}{f} - \frac{\left(\frac{\partial f}{\partial \theta} \right)^2}{f^2} \\ &= \frac{\frac{\partial^2 f}{\partial \theta^2}}{f} - \left(\frac{\partial \log f}{\partial \theta} \right)^2 \end{split} \tag{1}$$

then

$$\mathbb{E}(\frac{\partial^2 \log f}{\partial \theta^2}) = \int \frac{\partial^2 \log f}{\partial \theta^2} f dx$$
$$= \int \frac{\partial^2 f}{\partial \theta^2} dx - I(\theta)$$

if $\int \frac{\partial^2 f}{\partial \theta^2} dx = \frac{\partial^2}{\partial \theta^2} \int f dx = \frac{\partial^2}{\partial \theta} 1 = 0$ (the certain condition), then we had proved the lemma. \Box

Definition 3.2. Jeffreys prior is defined in terms of Fisher information

$$p(\theta) \propto \sqrt{I(\theta)}$$

Remark: It has the key feature that it is invariant under reparametrization of parameter θ . For an alternate parametrization φ we can derive

$$p(\varphi) \propto \sqrt{I(\varphi)}$$

from

$$p(\theta) \propto \sqrt{I(\theta)}$$

where θ and φ exist a one-to-one mapping.

Proof.

$$\begin{split} p(\varphi) &= p(\theta) |\frac{d\theta}{d\varphi}| \propto \sqrt{I(\theta) (\frac{d\theta}{d\varphi})^2} \propto \sqrt{\mathbb{E}((\frac{d\log f}{d\theta})^2) (\frac{d\theta}{d\varphi})^2} \\ &\propto \sqrt{\mathbb{E}((\frac{d\log f}{d\theta} \frac{d\theta}{d\varphi})^2)} = \sqrt{\mathbb{E}((\frac{d\log f}{d\varphi})^2)} \propto \sqrt{I(\varphi)} \end{split}$$

Example 3.4. $X \sim \mathcal{N}(\mu, \sigma^2)$.

Case 1: Fix σ , the only parameter is μ . The likelihood is:

$$f(X|\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$$

SO

$$\log f = -\frac{(x-\mu)^2}{2\sigma^2} + \ln(\frac{1}{\sqrt{2\pi}\sigma})$$

So we can get:

$$\begin{split} I(\mu) &= \mathbb{E}\left[\left(\frac{\partial \log f}{\partial \mu}\right)^2\right] \\ &= \mathbb{E}\left[\left(\frac{x-\mu}{\sigma^2}\right)^2\right] \\ &= \frac{\mathbb{E}(x-\mu)^2}{\sigma^4} \\ &= \frac{1}{\sigma^2} \end{split}$$

Thus the Jeffreys prior $p(\mu) \propto \sqrt{I(\mu)} = \frac{1}{\sigma}$. As σ is fixed, so $p(\mu) \propto 1$.

Remark: Although $p(\mu) = 1$ is a improper prior, as $\int_{-\infty}^{\infty} 1 dx = \infty$, the posterior is proper. The prior is also called **uninformative prior**.

Case 2: Fix μ , the only parameter is σ . For convenience, let $\tau = \frac{1}{\sigma^2}$. So $f(x) = \frac{\tau^{\frac{1}{2}}}{\sqrt{2\pi}}e^{-\frac{\tau(x-\mu)^2}{2}}$. The likelihood is denoted by $f(\tau)$:

$$f(\tau) = \frac{\tau^{\frac{1}{2}}}{\sqrt{2\pi}} \exp(-\frac{\tau(x-\mu)^2}{2})$$

$$\implies \log f \propto \frac{1}{2} \log \tau - \frac{\tau}{2} (x-\mu)^2 + C$$

$$\implies \frac{\partial \log f}{\partial \tau} \propto \frac{1}{2\tau} - \frac{(x-\mu)^2}{2}$$

Hence,

$$I(\tau) = \mathbb{E}\left[\left(\frac{\partial \log f}{\partial \tau}\right)^2\right]$$

$$= \mathbb{E}\left[\frac{1}{4}\left(\frac{1}{\tau} - (x - \mu)^2\right)^2\right]$$

$$= \mathbb{E}\left[\frac{1}{4\tau^2} - \frac{(x - \mu)^2}{2\tau} + \frac{(x - \mu)^4}{4}\right]$$

$$= \frac{1}{4\tau^2} - \frac{1}{2\tau^2} + \frac{1}{4}\mathbb{E}(x - \mu)^4$$

$$= \frac{1}{4\tau^2} - \frac{1}{2\tau^2} + \int_{-\infty}^{\infty} \frac{1}{4}(x - \mu)^4 \mathcal{N}(x|\mu, \tau^{-1}) dx$$

$$= \frac{1}{2\tau^2}$$

where the integral can be computed from variance :

$$\int (x-\mu)^2 \frac{\tau^{\frac{1}{2}}}{\sqrt{2\pi}} \exp(-\frac{\tau(x-\mu)^2}{2}) dx = \tau^{-1}$$

$$\Longrightarrow \int (x-\mu)^2 \frac{1}{\sqrt{2\pi}} \exp(-\frac{\tau(x-\mu)^2}{2}) dx = \tau^{-\frac{3}{2}}$$
(taking the derivate of both side)
$$\Longrightarrow \int (x-\mu)^4 \frac{1}{\sqrt{2\pi}} \exp(-\frac{\tau(x-\mu)^2}{2}) dx = 3\tau^{-\frac{5}{2}}$$

$$\Longrightarrow \int (x-\mu)^4 \frac{\tau^{\frac{1}{2}}}{\sqrt{2\pi}} \exp(-\frac{\tau(x-\mu)^2}{2}) dx = 3\tau^{-2}$$

$$\Longrightarrow \mathbb{E}\left((x-\mu)^4\right) = \frac{3}{\tau^2}$$

So Jeffreys prior is $\pi(\tau) \propto \frac{1}{\tau}$. Note that $p(\sigma) = \pi(\tau)|d\tau/d\theta|$, hence,

$$p(\sigma) \propto \frac{1}{\tau} |-2\sigma^{-3}|$$

$$\propto \sigma^2 |-2\sigma^{-3}|$$

$$\propto \frac{1}{\sigma}$$

Homework 2: Compute the following integrals:

1.
$$u_0 = \int_{-\infty}^{\infty} \Phi(x) \mathcal{N}(x|\mu, \sigma^2) dx$$

2.
$$u_1 = \int_{-\infty}^{\infty} \Phi(x) \mathcal{N}(x|\mu, \sigma^2) x dx$$

3.
$$u_2 = \int_{-\infty}^{\infty} \Phi(x) \mathcal{N}(x|\mu, \sigma^2) (x - m_1)^2 dx$$

where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

Example 3.5. $X \sim Poisson(n; \lambda)$

$$\log f = -\lambda + n \log \lambda$$

Fisher information is:

$$I(\lambda) = \mathbb{E}\left[\left(\frac{n}{\lambda} - 1\right)^2\right]$$
$$= 1 + \frac{\mathbb{E}(n^2)}{\lambda^2} - 2$$
$$= \frac{\lambda + 1}{\lambda} - 1$$
$$= \frac{1}{\lambda}$$

So Jeffreys prior is:

$$p(\lambda) \propto \sqrt{\frac{1}{\lambda}}.$$

Homework 3: $f(x;\theta) = \theta^{x}(1-\theta)^{1-x}, \ 0 < \theta < 1.$

- 1. Compute Jeffreys prior about θ .
- 2. If $\theta = \sin^2 \alpha$, compute Jeffreys prior about α .

3.2 Compute Posterior Probability

Assume we have a model $x = \theta + \epsilon$, where x is data which we observed or predict, θ is the parameters, $\epsilon \sim \mathcal{N}(0,\tau)$ is the error term. So given θ , $X \sim \mathcal{N}(\theta,\tau)$. When we use MAP(maximum a posteriori) to estimate parameter θ , we will get $p(\theta|x) \propto p(x|\theta)p(\theta)$. We will discuss this problem under several different conditions in the following.

Case 1 Fix τ . The only parameter is θ . And we set the prior about θ is $\mathcal{N}(\theta|0,\lambda)$. So

$$\begin{split} p(\theta|x) &\propto p(x|\theta)p(\theta) \\ &\propto \frac{1}{\sqrt{2\pi\tau}}e^{-\frac{(x-\theta)^2}{2\tau}}\frac{1}{\sqrt{2\pi\lambda}}e^{-\frac{\theta^2}{2\lambda}} \\ &\propto \frac{1}{2\pi\sqrt{\tau\lambda}}e^{-\frac{1}{2}[(\frac{1}{\tau}+\frac{1}{\lambda})(\theta-\frac{\lambda x}{\tau+\lambda})^2+\frac{x^2}{\tau+\lambda}]} \\ &\propto \mathcal{N}(\frac{\lambda x}{\lambda+\tau},\frac{\lambda\tau}{\lambda+\tau}) \end{split}$$

Then we can get the estimation about θ from MAP, $\hat{\theta} = \frac{\lambda x}{\lambda + \tau}$.

Case 2 Let θ and τ both be parameters. In order to get MAP, we may make three solutions.

Solution 1 Assume that τ , λ are independent. $p(\theta,\tau) = p(\theta)p(\tau)$ and we use a new τ , λ here, $\tau = \tau_{old}^{-1}$, $\lambda = \lambda_{old}^{-1}$ for convenience of computing(It is different with the τ , λ used in case 1). Suppose $\tau \sim \text{Gamma}(\alpha/2, \beta/2)$

$$p(\theta,\tau|x) \propto p(x|\theta,\tau)p(\theta,\tau) = p(x|\theta,\tau)p(\theta)p(\tau)$$

$$\propto \frac{1}{\sqrt{2\pi}}\tau^{\frac{1}{2}}\exp(-\frac{\tau(x-\theta)^2}{2})\frac{\lambda^{\frac{1}{2}}}{\sqrt{2\pi}}\exp(-\frac{\lambda\theta^2}{2})(\frac{\beta}{2})^{\frac{\alpha}{2}}\exp(-\frac{\beta\tau}{2})\frac{\tau^{\frac{\alpha}{2}-1}}{\Gamma(\alpha/2)}$$

To get maximum posterior, let

$$L = \tau^{\frac{\alpha+1}{2}-1} \exp(-\frac{\tau}{2}((x-\theta)^2 + \beta) - \frac{\lambda \theta^2}{2})$$

then

$$\ln L = (\frac{\alpha + 1}{2} - 1) \ln \tau - \frac{\tau}{2} ((x - \theta)^2 + \beta) - \frac{\lambda \theta^2}{2}$$

Let

$$Q = -2 \ln L = -(\alpha - 1) \ln \tau + \tau ((x - \theta)^2 + \beta) + \lambda \theta^2$$

We need to solve equations:

$$\begin{cases} \frac{\partial Q}{\partial \theta} &= -2\tau(x-\theta) + 2\lambda\theta = 0\\ \frac{\partial Q}{\partial \tau} &= \frac{1-\alpha}{\tau} + (x-\theta)^2 + \beta = 0 \end{cases}$$

It is a difficult problem to solve, especially when θ is a vector.

Remark : One way to solve the problem above is to compute one parameter, for example θ , while fixing the other parameter, i.e. τ . Then fix θ , compute θ . Hold on until they get convergent. Well, then we need to think about the convergence problem.

Solution 2 Assume $p(\theta, \tau) = p(\theta|\tau)p(\tau)$, and $p(\theta|\tau) \sim \mathcal{N}(0, (\lambda \tau)^{-1})$, suppose $\tau \sim \text{Gamma}(\alpha/2, \beta/2)$, follow the same steps in solution 1, we get:

$$\begin{split} p(\theta,\tau|x) &\propto p(x|\theta,\tau)p(\theta|\tau)p(\tau) \\ &\propto \frac{\tau^{\frac{1}{2}}}{\sqrt{2\pi}}e^{-\frac{\tau(x-\theta)^2}{2}}\frac{(\lambda\tau)^{\frac{1}{2}}}{\sqrt{2\pi}}e^{-\frac{\lambda\tau\theta^2}{2}}(\frac{\beta}{2})^{\frac{\alpha}{2}}e^{(-\frac{\beta\tau}{2})}\frac{\tau^{\frac{\alpha}{2}-1}}{\Gamma(\alpha/2)} \end{split}$$

Then the corresponding L is given by:

$$L = \tau^{\frac{\alpha+1}{2} - 1} (\lambda \tau)^{\frac{1}{2}} \exp(-\frac{\tau}{2} ((x - \theta)^2 + \beta) - \frac{\lambda \tau \theta^2}{2}).$$

Then the Q is

$$Q = -2\ln L = -(\alpha - 1)\ln \tau + \tau((x - \theta)^2 + \beta) - \ln(\lambda \tau) + \lambda \tau \theta^2$$

To get the estimation of θ and τ , we need to solve:

$$\begin{cases} \frac{\partial Q}{\partial \theta} = 0\\ \frac{\partial Q}{\partial \tau} = 0 \end{cases}$$

Then we will get:

$$\begin{cases} -\tau(x-\theta) + \tau\lambda = 0\\ \beta - \frac{\alpha-1}{\tau} - \frac{1}{\tau} + (x-\theta)^2 + \lambda\theta^2 = 0 \end{cases}$$

We can easily solve θ and τ . It is called **decouple**.

Solution 3 From the two sub-cases above, we can find the major problem is computing complexity. Another problem will occurs if there are too many hyperparameters. As we need to search the best hyper-parameters by grid search. So if there are 2 hyper-parameters, the search space is 2-dimensional. If there are 3 hyper-parameters, the search space is 3-dimensional... It will cost too much time when the search space is high dimensional.

Simply, we can give an uninformative prior to τ , $p(\tau) \propto 1$. Or we can consider Jeffreys prior for τ . According to Example 3.1, case 2,we get $p(\tau) \propto \frac{1}{\tau}$. So we will have:

$$p(\theta, \tau | x) \propto p(x | \theta, \tau) p(\theta | \tau) p(\tau)$$

$$\propto \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(x-\theta)^2}{2\tau}} \frac{1}{\sqrt{2\pi\lambda\tau}} e^{-\frac{\theta^2}{2\lambda\tau}} \frac{1}{\tau} = L$$

Removing constants, we will get:

$$Q = -2\ln L = 3\ln \tau + \ln(\lambda \tau) + \frac{(x-\theta)^2}{\tau} + \frac{\theta^2}{\lambda \tau}$$

Then according to $\frac{\partial Q}{\partial \theta} = 0$ and $\frac{\partial Q}{\partial \tau} = 0$, we will get the followings:

$$\begin{cases} -2(x-\theta) + \frac{2\theta}{\lambda} = 0\\ \frac{3}{\tau} + \frac{1}{\tau} - \frac{1}{\tau^2} \left(\frac{(x-\theta)^2}{2} + \frac{\theta^2}{\lambda} \right) = 0 \end{cases}$$

We can see it is easy to solve and there is no extra parameter. (Solution 2 has two new parameters, α and β)