

ความสัมพันธ์ระหว่างคลาส (Class Relationships)

Matinee Kiewkanya Computer Science, CMU

ความสัมพันธ์ระหว่างคลาส

Class Relationships คือความสัมพันธ์ระหว่างคลาส ที่มีการทำงานร่วมกัน โดยมีประเภทของ ความสัมพันธ์หลายประเภทดังนี้

- Generalization
- Association
- Aggregation
- **©** Composition
- Dependency
- **Realization**

ความสัมพันธ์ระหว่างคลาส

ความสัมพันธ์	สัญลักษณ์
Generalization	
Association	→
Aggregation	─
Composition	
Dependency	>
Realization	

Generalization

- ⊛ เป็นความสัมพันธ์แบบสืบทอดคุณสมบัติ (Inheritance)
- ฐามีการสร้างคลาสใหม่ขึ้นมาจากคลาสพื้นฐาน คลาสใหม่นี้จะมีลักษณะพื้นฐานเหมือนกับคลาส เดิม แต่จะมีลักษณะพิเศษที่เพิ่มเติมขึ้นมา ซึ่ง จะมีความเฉพาะเจาะจงมากยิ่งขึ้น เป็น ความสัมพันธ์แบบ "is a"

Association

- ⊛ เป็นความสัมพันธ์แบบเกี่ยวข้องต่อกัน หรือ "is related to"
- ๑าามสัมพันธ์แบบนี้อาจสร้างขึ้นได้โดยการกำหนด แอททริบิวต์ของคลาสให้มีชนิดเป็นคลาสอีกคลาส หนึ่ง และสามารถเรียกใช้เมท็อดจากคลาสนั้นได้ ในกรณีที่ต้องการ
- ⊗ Association จะมีทั้งแบบทิศทางเดียว และ สองทิศทาง โดยพิจารณาจากทิศทางของหัวลูกศร

ตัวอย่าง Association

ตัวอย่าง Association

ตัวอย่าง Association

Aggregation

- 🛞 เป็นความสัมพันธ์แบบ Association แบบหนึ่ง
- ⊛ อาจเรียกว่า whole-part relationship โดยจะมี ความสัมพันธ์แบบ "is part of" หรือ "has a"
- ® เป็นกระบวนการที่นำเอาคลาสย่อย มาประกอบ (aggregate) กัน เพื่อให้ได้คลาสที่ใหญ่ขึ้น หรือ ขับข้อนเพิ่มขึ้น
- ผลาสย่อย เรียกว่า Part class ส่วนคลาสที่ ประกอบขึ้นจากคลาสย่อย เรียกว่า Whole class
- ⊛ การประกอบกันของคลาสย่อย จะต้องทำให้เกิด คลาสใหม่ ซึ่งมี Concept ใหม่เสมอ

Aggregation

ี่ เมื่อ Whole class ถูกลบทิ้ง Part class จะยังคง อยู่ใด้ <u>โดยใม่ต้องพึ่งพา</u> Whole class

 ⊕ คลาส 1 คลาส สามารถนำไปเป็นคลาสย่อยของ คลาสอื่น ได้มากกว่า 1 คลาส เรียกว่า Advanced Aggregation

ตัวอย่าง Aggregation : รถยนต์

ตัวอย่าง Aggregation : ห้องเรียน

ตัวอย่าง Aggregation

ตัวอย่าง Advanced Aggregation

Cardinality, Required Components and Optional Components

- - เช่น รถเก๋ง ประกอบด้วยล้อ 4 ล้อ
 - ประกอบด้วยประตูอย่างน้อย 2 ประตู
- Required Component หรือ Mandatory Components คือส่วนประกอบที่จำเป็นต้องมี เช่น รถเก๋ง จำเป็นต้องมี เครื่องยนต์ เสมอ
- ⊕ Optional Component คือส่วนประกอบที่ไม่ จำเป็นต้องมี เป็นส่วนประกอบที่มีหรือไม่มีก็ได้นั่นเอง เช่น รถเก๋ง อาจมี หลังคาเปิดประทุน หรือไม่มีก็ได้

Cardinality, Required Components and Optional Components

- Maximum Cardinality คือจำนวนที่มากที่สุดที่สามารถ
 มีได้
- Minimum Cardinality คือจำนวนที่น้อยที่สุดที่สามารถ
 มีได้
 - เช่น รถเก๋ง สามารถมีประตูได้น้อยที่สุด 2 ประตู และมี ประตูได้มากที่สุด 4 ประตู
- Required Component จะมี Minimum Cardinality >=1

ตัวอย่าง Cardinality : รถเก๋ง

ตัวอย่าง Cardinality : หนังสือ

Composition

- 🛞 เป็นความสัมพันธ์แบบ Aggregation แบบหนึ่ง
- 🛞 เป็นความสัมพันธ์ที่เป็น "องค์ประกอบ" ต่อกัน
- เป็นกระบวนการที่นำเอาคลาสย่อย มาประกอบ (aggregate) กัน เพื่อให้ได้คลาสที่ใหญ่ขึ้น หรือ ซับซ้อนเพิ่มขึ้น เช่นเดียวกับ Aggregation
- แต่ความแตกต่างคือ ส่วนประกอบย่อยนี้จะไม่ สามารถถูกนำออกจากส่วนประกอบหลักได้ เพราะ ถ้านำส่วนประกอบย่อยออกไปแล้วส่วนประกอบหลัก ก็จะสูญเสียคุณสมบัติของความเป็นคลาสนั้น ๆ จัดเป็นองค์ประกอบที่ไม่อาจขาดได้
- ี เมื่อ Whole class ถูกลบทิ้ง Part class จะต้องถูก ลบทิ้งไปด้วย

Association, Aggregation, Composition

ตัวอย่าง Composition

ตัวอย่าง Composition

ตัวอย่าง Composition

ตัวอย่าง : จงสร้าง Class Diagram จาก Problem Domain ที่กำหนดให้ต่อไปนี้

- ชาวิทยาศาสตร์ของสถาบันแห่งหนึ่งมี บุคลากรหลายประเภทด้วยกัน ได้แก่ อาจารย์ นักศึกษา และเจ้าหน้าที่

- ※ เจ้าหน้าที่ของภาควิชา คือเจ้าหน้าที่ที่ประจำ
 ห้องทดลองต่างๆ โดยกำหนดว่าใน 1 ห้องทดลอง
 จะต้องมีเจ้าหน้าที่ประจำ 1 คนเสมอ

Use Case Diagram

Use Case	Object หรือ Class ที่เกี่ยวข้อง
การเรียนการสอน	นักเรียน อาจารย์
	ห้องเรียน วิชาเรียน ชั่งโมงเรียน
การใช้ห้องทดลอง	นักเรียน อาจารย์
	ห้องทดลอง
การดูแลห้องทดลอง	เจ้าหน้าที่
	ห้องทดลอง

Class ที่มีทั้งหมดของระบบได้แก่ อาจารย์ นักศึกษา เจ้าหน้าที่ ห้องเรียน วิชาเรียน ชั่วโมงเรียน และห้องทดลอง

[หนังสือ UML-การวิเคราะห์และออกแบบระบบเชิงวัตถุ-กิตติ&กิตติพงษ์]