

Universidad de Buenos Aires

FACULTAD DE CIENCIAS EXACTAS
DEPARTAMENTO DE MATEMÁTICA

Comportamiento asintótico del tiempo de covertura en arboles de Galton-Watson

Joaquin E. Viera

Directora: Inés Armendariz Co-Director: Santiago Saglietti

Fecha: 13 de agosto de 2025

Resumen / Abstract

Aquí va el resumen del trabajo. Puedes incluir objetivos, metodología, resultados y conclusiones más importantes.

Palabras clave: palabra1, palabra2, palabra3.

Agradecimientos

Aquí puedes agradecer a quienes colaboraron en el desarrollo del trabajo: familiares, profesores, instituciones, etc.

Índice general

п	esum	en / Abstract	1
\mathbf{A}_{i}	$\operatorname{grad}_{oldsymbol{\epsilon}}$	ecimientos	2
1.	Intr	roducción	4
	1.1.	Contexto	4
	1.2.	Motivación	4
	1.3.	Objetivos	4
		Estructura del documento	
2.	Pre	sentación del modelo y preliminares	5
	2.1.	Concepto 1	5
	2.2.	Concepto 2	5
3.	Relación del cover timer con el branching process/GFF		6
3.	rter	acion del cover timer con el sidnemia process, el i	U
3.		~ - ,	6
3.	3.1.	Diseño del estudio	
	3.1. 3.2. Res	Diseño del estudio	6 6 7
	3.1. 3.2. Res	Diseño del estudio	6 6 7
	3.1. 3.2. Res	Diseño del estudio	6 6 7 7
	3.1. 3.2. Res	Diseño del estudio	6 6 7 7
	3.1. 3.2. Res 4.1.	Diseño del estudio	6 6 7 7 8
4.	3.1. 3.2. Res 4.1.	Diseño del estudio Procedimientos ultado sobre el branching process Resultado sobre la ultima generación 4.1.1. Cota superior 4.1.2. Cota inferior Resultado sobre todo el arbol	6 6 7 7 8
4.	3.1. 3.2. Res 4.1.	Diseño del estudio Procedimientos ultado sobre el branching process Resultado sobre la ultima generación 4.1.1. Cota superior 4.1.2. Cota inferior Resultado sobre todo el arbol	6 6 7 7 7 8 9

Introducción

1.1. Contexto

Describe el contexto general del tema tratado.

1.2. Motivación

Explica por qué elegiste este tema.

1.3. Objetivos

Menciona los objetivos generales y específicos.

1.4. Estructura del documento

Describe brevemente qué se trata en cada capítulo.

Presentación del modelo y preliminares

2.1. Concepto 1

Explicación y fuentes.

2.2. Concepto 2

Más teoría relacionada.

Relación del cover timer con el branching process/GFF

3.1. Diseño del estudio

Describe el enfoque.

3.2. Procedimientos

Explica cómo se llevó a cabo.

Resultado sobre el branching process

4.1. Resultado sobre la ultima generación

Durante esta sección, para no sobrecargar de notación, dado un arbol de Galton-Watson T que no se extingue vamos a considerar $\mathbb{P}(\cdot|T) = \mathbb{P}(\cdot)$, analogamente con la esperanza.

Teorema 1. Dado un GFF $\eta = (\eta_v)_{v \in T_n}$, construido como antes. Entonces,

$$E[\max_{v \in L_n} \eta_v] = n\sqrt{2\log m} (1 + o(1)). \tag{4.1}$$

4.1.1. Cota superior

Sea $\bar{Z}_n = \sum_{v \in L_n} \mathbf{1}_{S_v > (1+\epsilon)x^*n}$, que cuenta la cantidad de vertices, en la *n*-th generación, se encuentran por arriba de $nx^*(1+\epsilon)$. Aplicando el metodo del primer momento: tenemos, para todo $v \in L_n$,

$$E\bar{Z}_n = |L_n|P(S_v > n(1+\epsilon)x^*) \le CWk^n e^{-nI((1+\epsilon)x^*)},$$

Donde aplicamos la desigualdad de Chebyshev en la ultima desigualdad y la definicion de I. Además, por la monotonia estricta de I, tenemos que $E\bar{Z}_n \leq e^{-nc(\epsilon)}$, para algun $c(\epsilon) > 0$. Por lo tanto,

$$P(M_n > (1+\epsilon)nx^*) \le E[\bar{Z}_n] \le CWe^{-c(\epsilon)n}. \tag{4.2}$$

Por otro lado,

$$EM_n \le EM_n \mathbf{1}_{M_n \ge 0} = \int_0^\infty P(M_n > t) dt$$
$$= \int_0^{(1+\epsilon)nx^*} P(M_n > t) dt + \int_{(1+\epsilon)nx^*}^\infty P(M_n > t) dt.$$

Luego, usando la cota de 4.2 en el segundo integrando de 4.3 e integrando, llegamos a que,

$$EM_n \le nx^*(1+\epsilon) + nx^* \frac{CWe^{-2nI(x^*)\epsilon}}{2nI(x^*)}.$$
 (4.3)

Para todo $\epsilon > 0$. Haciendo $\epsilon \to 0$ obtenemos la cota superior.

4.1.2. Cota inferior

En esta primer parte vamos a resaltar la dependecia de las constantes en el arbol. Sea y > 0 independiente de n y sea

$$a_n = a_n(y) = x^*n - \frac{3}{2I'(x^*)}\log n + y.$$

Dado $v \in L_n$, definimos el evento

$$A_v = \{S_v \in [a_n - 1, a_n], S_v(t) \le a_n t/n + y, t = 1, \dots, n\},\$$

y sea

$$Z_n = \sum_{v \in L_n} \mathbf{1}_{A_v}.$$

Para derivar una cota inferior de EM_n , primero necesitamos una cota inferior en la cola derecha de la distribucion de M_n , la cual vamos a obtener utilizando el metodo del segundo momento. Para esto, primero calculamos $P(A_v)$. Recordemos que $I(x^*) = \log k$, con $\lambda^* = I'(x^*)$. Introducimos un nuevo parametro λ_n^* tal que

$$\lambda_n^* \frac{a_n}{n} - \Lambda(\lambda_n^*) = I(a_n/n).$$

Como $I'(a_n/n) = \lambda_n^*$, es facil chequear que $\lambda_n^* = \lambda^* - 3I''(x^*)\log n/(2nI'(x^*)) + O(1/n)$. (En el caso Gaussiano, $\lambda_n^* = a_n/n$)

Definimos una nueva medida de probabilidad Q en \mathbb{R} por

$$\frac{d\mu}{dQ}(x) = e^{-\lambda_n^* x + \Lambda(\lambda_n^*)},$$

y con un abuso de notacion continuamos usan Q cuando hablemos sobre un paseo aleatorio cuyos incrementos sean i.i.d. y distribuidos de acuerdo a Q. Notar que en el caso Gaussiano, Q solamente modifica la media de P.

Ahora podemos escribir

$$P(A_{v}) = E_{Q}(e^{-\lambda_{n}^{*}S_{v} + n\Lambda(\lambda_{n}^{*})} \mathbf{1}_{A_{v}})$$

$$\geq e^{-n[\lambda_{n}^{*}a_{n}/n - \Lambda(\lambda_{n}^{*})]} E_{Q}(A_{v})$$

$$= e^{-nI(a_{n}/n)} P_{Q}(\tilde{S}_{v} \in [0, 1], \tilde{S}_{v}(t) \geq 0, t = 1, \dots, n).$$
(4.4)

donde $\tilde{S}_v(t) = a_n t/n - S_v(t)$ es un paseo aleatorio con incrementos i.i.d los cuales tienen media 0 bajo Q. Ademas, en el caso Gaussiano, los incrementos son Gaussianos y no dependen de n.

Aplicando el Teorema de la votacion, obtenemos que

$$P(A_v) \ge C \frac{y+1}{n^{3/2}} e^{-nI(a_n/n)}. (4.5)$$

(agregar detalles sobre esto) Como

$$I(a_n/n) = I(x^*) - I'(x^*) \left(\frac{3}{2I'(x^*)} \cdot \frac{\log n}{n} - \frac{y}{n}\right) + O\left(\left(\frac{\log n}{n}\right)^2\right)$$

podemos concluir que

$$P(A_v) \ge C(y+1)k^{-n}e^{-I'(x^*)y},$$

y por lo tanto

$$EZ_n = |L_n|P(A_v) \ge \frac{W_T}{C_T}c_1(y+1)e^{-I'(x^*)y}.$$
 (4.6)

4.2. Resultado sobre todo el arbol

Comparación con literatura o hipótesis.

Conclusiones

5.1. Conclusiones generales

Resumen de hallazgos.

5.2. Trabajo futuro

Ideas para desarrollos posteriores.