

Modelling Software-based Systems Lecture 3 Checking contracts with Event-B

Telecom Nancy IL

Dominique Méry Telecom Nancy, Université de Lorraine

27 mars 2025(11:39 P.M.) dominique.mery@loria.fr

General Summary

1 Programming by contract

2 Verification

3 Floyd to Hoare

Current Summary

- 1 Programming by contract
- 2 Verification
- S Floyd to Hoare

Verifying program correctness

A program P satisfies a (pre,post) contract :

- P transforms a variable v from initial values v_0 and produces a final value $v_f: v_0 \xrightarrow{P} v_f$
- v_0 satisfies $\mathsf{pre} : \mathsf{pre}(v_0)$ and v_f satisfies $\mathsf{post} : \mathsf{post}(v_0, v_f)$
- $\bullet \ \operatorname{pre}(v_0) \wedge v_0 \stackrel{\mathsf{P}}{\longrightarrow} v_f \Rightarrow \operatorname{post}(v_0, v_f)$
- D est le domaine RTE de V

Verifying program correctness

A program P satisfies a (pre,post) contract :

- P transforms a variable v from initial values v_0 and produces a final value $v_f: v_0 \stackrel{P}{\longrightarrow} v_f$
- v_0 satisfies pre : $\mathsf{pre}(v_0)$ and v_f satisfies post : $\mathsf{post}(v_0, v_f)$
- $\operatorname{pre}(v_0) \wedge v_0 \xrightarrow{\mathsf{P}} v_f \Rightarrow \operatorname{post}(v_0, v_f)$
- D est le domaine RTE de V

```
requires pre(v_0) ensures post(v_0, v_f) variables X
\begin{array}{c} \text{begin} \\ 0: P_0(v_0, v) \\ \text{instruction}_0 \\ \dots \\ i: P_i(v_0, v) \\ \dots \\ \text{instruction}_{f-1} \\ f: P_f(v_0, v) \\ \text{end} \end{array}
```

- $pre(v_0) \wedge v = v_0 \Rightarrow P_0(v_0, v)$
- $pre(v_0) \wedge P_f(v_0, v) \Rightarrow post(v_0, v)$
- For any pair of labels ℓ, ℓ' such that $\ell \longrightarrow \ell'$, one verifies that, pour any values $v, v' \in \operatorname{MEMORY}$ $\left(\begin{array}{c} pre(v_0) \wedge P_\ell(v_0, v) \\ \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \end{array} \right),$ $\Rightarrow P_{\ell'}(v_0, v')$

Contracts - Verification Conditions

```
 \begin{array}{c} \text{contract P} \\ \text{variables v} \\ \text{requires } pre(v_0) \\ \text{ensures } post(v_0,v_f) \\ \\ begin \\ 0: P_0(v_0,v) \\ \\ S_0 \\ \dots \\ i: P_i(v_0,v) \\ \dots \\ S_{f-1} \\ f: P_f(v_0,v) \\ \text{end} \end{array}
```

Contracts - Verification Conditions

 $\begin{array}{c} \text{contract P} \\ \text{variables v} \\ \text{requires } pre(v_0) \\ \text{ensures } post(v_0,v_f) \\ \\ \text{Begin} \\ 0: P_0(v_0,v) \\ \\ S_0 \\ \dots \\ i: P_i(v_0,v) \\ \dots \\ S_{f-1} \\ f: P_f(v_0,v) \\ \text{end} \end{array}$

Verification conditions are listed as follows:

- (initialisation) $pre(v_0) \land v = v_0 \Rightarrow P_0(v_0, v)$
- (finalisation) $pre(v_0) \land P_f(v_0, v) \Rightarrow post(v_0, v)$
- (induction)
 For each labels pair ℓ, ℓ' such that $\ell \longrightarrow \ell'$, one checks that,
 for any value $v, v' \in \text{MEMORY}$ $\left(\begin{array}{c} pre(v_0) \wedge P_{\ell}(v_0, v) \\ \wedge cond, v(v) \wedge v' = f_{\ell}(v) \end{array}\right)$

$$\left(\begin{array}{c} pre(v_0) \wedge P_{\ell}(v_0, v)) \\ \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \end{array}\right),$$

$$\Rightarrow P_{\ell'}(v_0, v')$$

Three kinds of verification conditions should be checked and we justify the method in the full version..

From PAP to Rodin . . .

From PAP to Rodin ...

```
MACHINE M
SEES C0
VARIABLES
  v, pc
INVARIANTS
   \mathsf{typing}: v \in D
   control: pc \in L
  \mathsf{at}\ell: pc = \ell \Rightarrow P_\ell(v0, v)
th1: pre(v_0) \wedge v = v_0 \Rightarrow P_0(v_0, v)
th2: pre(v_0) \wedge P_f(v_0, v)
                    \Rightarrow post(v_0, v)
END
END
```

From PAP to Rodin ...

```
MACHINE M
SEES C0
VARIABLES
  v, pc
INVARIANTS
    typing : v \in D
   control : pc \in L
   . . .
  \mathsf{at}\ell: pc = \ell \Rightarrow P_\ell(v0, v)
th1: pre(v_0) \wedge v = v_0 \Rightarrow P_0(v_0, v)
th2: pre(v_0) \wedge P_f(v_0, v)
                    \Rightarrow post(v_0, v)
END
FND
```

```
MACHINE M
EVENTS
INITIALISATION
BEGIN
(pc, v) : | \begin{pmatrix} pc' = l0 \land v' = v0 \\ \land pre(v0) \end{pmatrix}
END
e(\ell, \ell')
   WHEN
     pc = \ell
     cond_{\ell,\ell'}(v)
  THEN
     pc := \ell'
     v := f_{\ell,\ell'}(v)
   END
END
```

Technical problems for students

(Induction Principle (I))

A property S(z0,z) is a safety for an annotated program P if, and only if, there exists a property I(z0,z) satisfying :

- $2 \ \forall z0,z,z' \in \mathsf{L} \times \mathsf{D}.init(z0) \wedge I(z0,z) \wedge (z \xrightarrow{P} z') \Rightarrow I(z0,z')$
- $3 \ \forall z0,z \in \mathsf{L} \times \mathsf{D}.init(z0) \wedge I(z0,z) \Rightarrow S(z0,z)$

(Induction Principle (II))

A property $S(\ell 0,x0,\ell,x)$ is a safety property for an annotated program P if, and only if, there exists a property $I(\ell 0,x0,\ell,x)$ satisfying :

- $\bullet \forall \ell 0, \in \mathsf{L}, x 0 \in \mathsf{D}.\ell 0 \in \mathsf{L}0 \land pre(x 0) \land x = x 0 \land pc = \ell 0 \Rightarrow J(\ell 0, x 0, \ell, x)$
- $\forall \ell, \ell' \in \mathsf{L}, x, x0 \in \mathsf{D}.\ell0 \in \mathsf{L}0 \land pre(x0) \land J(\ell0, x0, \ell, x) \land BA(e(\ell, \ell'),)(\ell, x, \ell', x') \Rightarrow J(\ell0, x0, \ell', x')$
- 3 $\forall \ell 0, \ell \in \mathsf{L}, x0, x \in \mathsf{D}.pre(x0) \land \ell 0 \in \mathsf{L}0 \land J(\ell 0, x0, \ell, x) \Rightarrow S(\ell 0, x0, \ell, x)$

Technical problems for students

(Induction Principle (II))

A property $S(\ell 0,x0,\ell,x)$ is a safety property for an annotated program P if, and only if, there exists a property $I(\ell 0,x0,\ell,x)$ satisfying :

- $\bullet \forall \ell 0, \in \mathsf{L}, x 0 \in \mathsf{D}.\ell 0 \in \mathsf{L}0 \land pre(x 0) \land x = x 0 \land pc = \ell 0 \Rightarrow J(\ell 0, x 0, \ell, x)$
- $\forall \ell, \ell' \in \mathsf{L}, x, x0 \in \mathsf{D}.\ell0 \in \mathsf{L}0 \land pre(x0) \land J(\ell0, x0, \ell, x) \land BA(e(\ell, \ell'),)(\ell, x, \ell', x') \Rightarrow J(\ell0, x0, \ell', x')$

(Induction Principle (III))

A property $S(x0,\ell,x)$ is a safety for an annotated program P with one entry point if, and only if, there exists a property $I(x0,\ell,x)$ satisfying :

- $\forall x 0 \in \mathsf{D}.pre(x0) \land x = x0 \land \ell = \ell 0 \Rightarrow J(x0, \ell, x)$
- $\forall \ell, \ell' \in \mathsf{L}, x, x0 \in \\ \mathsf{D}.pre(x0) \land J(x0, \ell, x) \land BA(e(\ell, \ell'),)(\ell, x, \ell', x') \Rightarrow J(x0, \ell', x')$
- $\underset{\mathsf{Telecom}}{\bullet} \forall \ell \in \underset{\mathsf{Nancy}}{\longleftarrow} x 0 \underset{\mathsf{Dominioue}}{x} \in \underset{\mathsf{Meth}}{\mathsf{D}} pre(x0) \land J(x0,\ell,x) \Rightarrow S(x0,\ell,x)$

Soundness of the translation

(Soundness of the method)

If the initialisation init, the generalisation gen and the step induction are proved to be correct by the Rodin platform, the property $S(x0,\ell,x)$ is a correct safety property for the program P. In particular, one can handle the partial correctness and the run time error safety properties.

Soundness of the translation

(Soundness of the method)

If the initialisation init, the generalisation gen and the step induction are proved to be correct by the Rodin platform, the property $S(x0,\ell,x)$ is a correct safety property for the program P. In particular, one can handle the partial correctness and the run time error safety properties.

- Contract and verification conditions are translated into Event-B and are discharged by Rodin and its provers.
- Verification conditions are derived from Floyd's method.
- Annotation as assertion

s

```
\begin{array}{l} \text{contract SIMPLE} \\ \text{variables } \times \\ \text{requires } x_0 \in \mathbb{N} \\ \text{ensures } x_f = 0 \\ \text{begin} \\ \ell_0 : \{0 \leq x \leq x_0 \wedge x_0 \in \mathbb{N}\} \\ \text{while } 0 < x \operatorname{\mathbf{do}} \\ \ell_1 : \{0 < x \wedge x \leq x_0 \wedge x_0 \in \mathbb{N}\} \\ \times := x - 1; \\ \text{od} \\ \ell_2 : \{x = 0\} \text{end} \end{array}
```


INVARIANTS

```
\begin{array}{l} inv1:x\in\mathbb{N}\\ inv2:l\in L\\ inv3:l=l0\Rightarrow\\ 0\leq x\wedge x\leq x0\wedge x0\in\mathbb{N}\\ inv4:l=l1\Rightarrow\\ 0< x\wedge x\leq x0\wedge x0\in\mathbb{N}\\ inv5:l=l2\Rightarrow x=0\\ requires:x0\in\mathbb{N}\wedge x=x0\\ \Rightarrow x=x0\wedge x0\in\mathbb{N}\\ ensures:x=0\wedge x=x0\\ \Rightarrow x=0\\ x=0
```

 $\begin{aligned} & \text{Event } el0l2 \\ & \textbf{WHEN} \\ & grd1: l = l0 \\ & grd2: \neg (0 < x) \\ & \textbf{THEN} \\ & act1: l := l2 \end{aligned}$

```
Event el1l0
WHEN
grd1: l = l1
THEN
act1: l := l0
act2: x := x - 1
```

Current Summary

- Programming by contract
- 2 Verification
- 3 Floyd to Hoare

Summary

- Programming by contract
- 2 Verification
- S Floyd to Hoare

Annotation of programs

```
\begin{array}{l} \ell: \{P_{\ell}(v)\} \\ cond_{\ell,\ell'}(v) \longrightarrow v := f_{\ell,\ell'}(v) \\ \ell': \{P_{\ell'}(v)\} \end{array}
```

```
\begin{array}{l} e(\ell,\ell') \\ \textbf{WHEN} \\ c = \ell \\ cond_{\ell,\ell'}(v) \\ \textbf{THEN} \\ c := \ell' \\ v := f_{\ell,\ell'}(v) \\ \textbf{END} \end{array}
```

$$\ell_0^1 : \{x = 0\} \\ x := x + 1; \\ \ell_0^1 : \{x = 1\}$$

- v is the state meory variable or list of memory variables; v includes the local variables and the results variables.
- c is a new variable which is modelling the control flow and its type is LOCATIONS.
- $e(\ell,\ell')$ is simulating the computation flow starting from ℓ and moving to ℓ' ; v is updated.

From annotations to invariants

INVARIANTS

```
\begin{array}{l} inv_i: c \in \text{LOCATIONS} \\ inv_j: v \in Type \\ \cdots \\ inv_k: c = \ell \Rightarrow P_\ell(v) \\ inv_m: c = \ell' \Rightarrow P_{\ell'}(v) \\ \cdots \\ th_n: A(c,v) \end{array}
```

- Type is the type of the variables v and is a set of possible values defined in the context C.
- The annotation is giving us for free the conditions satisfied by v when the control is in \(\ell,\) (resp. in \(\ell')\).
- A(c, v) is a safety property that we are supposed to check and the case of Event-B, it is a theorem.

Partial correctness using Event-B models

For each pair of successive labels ℓ,ℓ' , the three statements are equivalent :

- $P_{\ell}(v) \wedge cond_{\ell,\ell'}(v) \wedge v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v')$
- $I(c,v) \wedge c = \ell \wedge cond_{\ell,\ell'}(v) \wedge c' = \ell' \wedge v' = f_{\ell,\ell'}(v) \Rightarrow (c' = \ell' \Rightarrow P_{\ell'}(v'))$
- $I(c,v) \wedge BA(e(\ell,\ell'))(c,v,c',v') \Rightarrow (c'=\ell' \Rightarrow P_{\ell'}(v'))$

L

et AA an annotated algorithm with precondition $\operatorname{pre}(AA)(v)$ and postcondition $\operatorname{post}(AA)(v_0,v)$. Let the context C and the machine M generated from AA using the construction given previously. We assume that ℓ_0 is the first label and ℓ_e is the last label. We add the following safety properties in the machine M:

- $c = \ell_0 \land \operatorname{pre}(AA)(v) \Rightarrow P_{\ell_0}(v)$
- $c = \ell_e \Rightarrow (P_{\ell_e}(v) \Rightarrow \mathsf{post}(AA)(v_0, v)$

If proof obligations are discharged, then the annotated algorithm AA is partially correct with respect to ist pre/post specification.

Telecom Nancy 2024-2025 (Dominique Méry) 15/1

15/17

Current Summary

- Programming by contract
- 2 Verification
- 3 Floyd to Hoare

 $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$

- $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$

- $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$

- $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow \forall x_f.x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0,x_f)$

- $\forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow \forall x_f.x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0,x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow [P]\mathsf{post}(x_0,x_f)$
- wlp calculus is introduced

- $\forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow \forall x_f.x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0,x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow [P]\mathsf{post}(x_0,x_f)$
- wlp calculus is introduced
- $[x := e]P(x) = P[x \mapsto e]$

- $\bullet \ \forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow \forall x_f.x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0,x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow [P]\mathsf{post}(x_0,x_f)$
- wlp calculus is introduced
- $[x := e]P(x) = P[x \mapsto e]$
- [if b(x) then S1 else S2] $P(x) = b(x) \wedge [S1]P(x) \vee \text{ not } b(x)$ [S2] P(x)

- $\forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow \forall x_f.x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0,x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow [P]\mathsf{post}(x_0,x_f)$
- wlp calculus is introduced
- $[x := e]P(x) = P[x \mapsto e]$
- [if b(x) then S1 else S2] $P(x) = b(x) \wedge [S1]P(x) \vee$ not b(x) [S2]P(x)
- Frama-c uses the HOARE logic for defining the verification conditions as R. Leino in DAFNY.

- $\forall x_f, x_0.\mathsf{pre}(x_0) \land x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_f, x_0.\mathsf{pre}(x_0) \Rightarrow x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow \forall x_f.x_0 \overset{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0,x_f)$
- $\forall x_0.\mathsf{pre}(x_0) \Rightarrow [P]\mathsf{post}(x_0,x_f)$
- wlp calculus is introduced
- $[x := e]P(x) = P[x \mapsto e]$
- [if b(x) then S1 else S2] $P(x) = b(x) \land [S1]P(x) \lor \text{ not } b(x)$ [S2]P(x)
- Frama-c uses the HOARE logic for defining the verification conditions as R. Leino in DAFNY.
- Questions of termination require the wp calculus . . .