Forprojekt Quadrocopter-tracking

Rasmus Bækgaard Rasmus Berg Kloster

3. juni 2013

Indhold

Rettelser

Opgavebeskrivelse

Projektet vil bestå i, at få en quadrocopter, af typen AeroQuad Cyclone, til autonomt at flyve imellem 3 waypoints, udstyret med en sender og en FM-trasmitter hver. Quadrocopteren udstyres med en sender, der kan kobles på de 3 objekter, samt 3 FM-modtagere, der kan triangulere hvor ét af de 3 waypoints står. Quadrocopteren skal således flyve til det aktive waypoint og ved ankomst flyve til det næste objekt.

For at quadrocopteren ikke støder ind i objekter på sin vej, udstyres den med 3 sonar sendere, der kan detektere forhindringer foran den, samt en sonar under den, således den ikke rammer jorden.

Udkast til kravspecifikation

2.1 User Stories

2.1.1 Story 1

Som en sikkerhedsvagt, der skal patruljere store områder, ønskes det at en quadrocopter kan sættes til at patruljere et område for at lette sin arbejdsbyrde med områder der skal patruljeres.

2.1.1.1 Use Case 1.1

Use Case 1	Opsætning af waypoint
Mål	Sæt waypoint op
Initiering	Use Case initieres af installatør
Slutbetingelser for suc-	Waypoint er sat op og des indikationslys for aktiv lyser.
ces	
Slutbetingelser ved	Microcontroller kan ikke få fat i radiomodul og indikationslys
undtagelser	lyser for fejl.
Normalforløb	1. Installatør sætter dip switch og tænder for strømmen.
	2. System initierer
	3. System udfører intern systemtest.
	Undtagelse: Fejl i intern systemtest.
	4. System indikerer ved lys i aktiv.

Undtagelser	1. System indikerer fejl i opstart.

2.1.1.2 Use Case 1.2

Use Case 2	Aktivering af drone
Mål	Drone begynder at patruljere.
Initiering	Use Case initieres af brugeren
Slutbetingelser for succes	Drone begynder at patruljere.
Slutbetingelser ved undtagelser	Drone patruljere ikke.
Normalforløb	1. Brugeren tænder drone.
	2. Drone initierer
	Undtagelse: Fejl i initiering
	3. Drone letter
	4. Drone lokaliserer waypoint
	Undtagelse: Ingen waypoints fundet
	5. Drone påbegynder flyvning til waypoint
	Undtagelse: Forhindring på vej til waypoint
	Undtagelse: Mister forbindelse
	Undtagelse: Lavt batteriniveau
	Undtagelse: Drone bliver beskadiget
	6. Drone ankommer til waypoint
	Undtagelse: Kan ikke finde flere waypoints
	7. Drone looper til punkt 4
	Undtagelse: Kun ét waypoint fundet

Undtagelser	Undtagelse: Fejl i initiering
	1. Drone indikerer at opstart ikke er muligt.
	Undtagelse: Ingen waypoints fundet
	1. Drone indikerer at opstart ikke er muligt.
	Undtagelse: Forhindring på vej til waypoint
	1. Drone starter Extended Use Case ??
	Undtagelse: Mister forbindelse
	1. Drone lander og venter på signal.
	Undtagelse: Lavt batteriniveau
	1. Drone lander og indikerer lavt batteriniveau.
	Undtagelse: Drone bliver beskadiget
	1. Drone identificer beskadning.
	2. Drone udfører sikker landing på baggrund af beskadning.
	Undtagelse: Kan ikke finde flere waypoints
	1. Drone flyver til første waypoint.
	Undtagelse: Kun ét waypoint fundet
	1. Drone cirkuler waypointet.

2.1.1.3 Use Case 1.3

Use Case 3	Standsning af drone
Mål	Drone stopper patruljering og slukker.
Initiering	Use Case initieres af brugeren
Slutbetingelser for suc-	Drone er slukket.
ces	
Slutbetingelser ved	Ingen.
undtagelser	
Normalforløb	1. Bruger trykker på stopknap
	2. Drone slukker for sine motorer.

Undtagelser	1. System indikerer fejl i opstart.

2.1.1.4 Extended Use Case 1.4

Use Case 4	Forhindring på vej til waypoint.
Mål	Drone finder alternativ rute.
Initiering	Drone registrerer forhindring.
Slutbetingelser for suc-	Finder vej til waypoint.
ces	
Slutbetingelser ved	Drone lander og tuder¹
undtagelser	
Normalforløb	1. Drone scanner forhindring
	2. Drone validerer bedste rute rundt om forhindring
	3. Drone forsøger at komme uden om.
	Undtagelse: Drone kan ikke finde vej uden om
Undtagelser	Undtagelse: Drone kan ikke finde vej uden om
	1. Drone lander og tuder.

2.1.1.5 Use Case 1.5

Use Case 4	Opladning af drone.
Mål	Drones batteri er opladt.
Initiering	Bruger.
Slutbetingelser for suc-	Opladt batteri til drone.
ces	
Slutbetingelser ved	Batteri ikke opladt.
undtagelser	

¹fixme Note: Måske den skal spille en lyd i stedet?

Normalforløb	1. Bruger fjerner batteri fra drone
	2. Bruger sætter batteri i oplader
	3. Bruger venter til batteri er opladt
	Undtagelse: Batteri lader ikke op
Undtagelser	Undtagelse: Batteri lader ikke op
	1. Bruger aflæser display på oplader om, at batteriet ikke er
	opladt.

2.2 Eksterne grænseflader

2.2.1 Waypoint

Et waypoint er en sender, der kommunikerer med dronen. For at kunne kommunikere kræver det nogle komponenter for hvert waypoint:

- En sender med 433 MHz frekvens
 - Dette vil kunne forstyrre andet udstyr.
- Dip switch er en 4-bit dip switch
- Strømforsyning ²

2.2.2 **Drone**

3

• Tænd/sluk knap

2.3 Krav til ydelse

Følgende er krav til dronen og dennes waypoints:

• Drone kan flyve i minimum 10 minutter.

²FiXme Note: Noget om strømforsyning

³FiXme Note: Mangler her en lille beskrivelse?

- Drone skal kunne 25 $\frac{cm}{s}$.
- Drone skal som minimum kunne registrere waypoint uden forhindringer på 30 meters afstand

2.4 Kvalitetsfaktorer

Kvalitetsfaktorer til systemet⁴

⁴FiXme Note: Vi ved ikke hvad der skal være her

Projektplan

3.1 Undersøgelser af tilsvarende projekter og relevant litteratur

- Sikkerhedsrobot rocketnews24.com
- Lifeguard engadget.com
- Regler og historier ing.dk
- Overvågnings droner bbc.co.uk
- AeroQuad manual aeroquad.com

3.2 Forventet arbejdssted og tid

Konklusion på det indledende arbejde med forprojektet