ASD1 Dr. Sakka Rouis Taoufik

TD N°4

Les sous-programmes

Exercice 1

Écrire un algorithme d'une fonction Triangle qui permet de vérifier si les 3 nombres a, b et c peuvent être les mesures des côtés d'un triangle rectangle.

Remarque:

D'après le théorème de Pythagore, si a, b et c sont les mesures des côtés d'un rectangle, alors $a^2 = b^2 + c2$ ou $b^2 = a^2 + c^2$ ou $c^2 = a^2 + b^2$

Exercice 2

Écrire une fonction qui étant donné un entier n, renvoie $\sum_{i=1}^{n} \sum_{j=1}^{i} (i+j)$

Exercice 3

Écrire un algorithme qui donne le volume d'un cylindre en faisant appel à la fonction aireCercle. Cette dernière prend en paramètre un réel R, et fournie comme résultat l'aire d'un cercle de rayon R.

Exercice 4

Soit la suite numérique U_n suivante :

Si
$$n = 0$$
, $U_0 = 4$
Si $n > 0$, $U_n = 5 U_{n-1} + 9$

Écrire un algorithme qui calcul le terme U_n en utilisant une fonction.

Exercice 5

Ecrire une fonction PGCD_Euc qui retourne le PGCD de 2 entiers a et b en utilisant l'algorithme d'Euclide :

L'algorithme d'Euclide consiste à répéter plusieurs fois le traitement :

PGCD(a,b) = PGCD(b,a Mod b)

jusqu'à obtenir PGCD(x,0). Le PGCD est alors x.

Exemple: PGCD(36,16) = PGCD(16,4) = PGCD(4,0) = 4.

Exercice 6

Réaliser un algorithme d'une fonction qui recherche le premier nombre entier naturel dont le carré se termine par n fois le même chiffre.

Exemple : pour n = 2, le résultat est 10 car 100 se termine par 2 fois le même chiffre.