

PROBLEM STATEMENT: RETAIL DEMAND FORECASTING

- Retail businesses face challenges in managing inventory efficiently. Overstocking leads to increased holding costs, while understocking results in lost sales and customer dissatisfaction.
- This project aims to:
 - Predict demand for retail products using historical sales data.
 - Optimize inventory levels to balance supply and demand.
 - Incorporate external factors (e.g., weather, seasonality, competitor pricing) for better accuracy.
 - Enhance decision-making in pricing, promotions, and stock replenishment.
- By leveraging predictive analytics, retailers can minimize waste, maximize profits, and improve customer satisfaction.

CHALLENGES IN RETAIL DEMAND FORECASTING

- •Data Quality: Inaccurate or incomplete data hampers forecasting.
- •Seasonality: Demand changes with seasons and holidays.
- •Promotions: Special offers can disrupt forecast accuracy.
- •External Factors: Economic and environmental changes are unpredictable.
- •Granularity: Balancing forecast detail with accuracy.
- •Model Complexity: Selecting and tuning the right forecasting model.
- •Inventory Alignment: Matching demand with inventory levels

FORECASTING IS THE ART OF SAYING WHAT WILL HAPPEN AND THEN **EXPLAINING** WHY IT DIDN'T!

RETAIL STORE INVENTORY DATASET

- The dataset contains **73,100 rows and 15 columns** related to retail inventory, sales, and demand forecasting.
- Key columns include:
 - Date, Store ID, Product ID, Category, Region
 - Inventory Level, Units Sold, Units Ordered, Demand Forecast
 - Price, Discount, Competitor Pricing
 - External Factors: Weather Condition, Holiday/Promotion, and Seasonality

Exploratory Data Analysis (EDA) –

- Basic statistics & missing values check
- ✓ Visualizations (sales trends, correlations, category-wise demand)
- **Outlier** detection

Summary Statistics:

	,				
	Inventory Leve	el Units So	ld Units Ordered	Demand Forecast	\
count	73100.00000	00 73100.0000	00 73100.000000	73100.000000	
mean	274.46987	77 136.4648	70 110.004473	141.494720	
std	129.94951	108.9194	06 52.277448	109.254076	
min	50.00000	0.0000	00 20.000000	-9.990000	
25%	162.00000	99.0000	00 65.000000	53.670000	
50%	273.00000	00 107.0000	00 110.000000	113.015000	
75%	387.00000	00 203.0000	00 155.000000	208.052500	
max	500.00000	99.0000	00 200.000000	518.550000	
	Price	Discount	Holiday/Promotion	Competitor Prici	ng
count	73100.000000	73100.000000	73100.000000	73100.0000	90
mean	55.135108	10.009508	0.497305	55.1460	77
std	26.021945	7.083746	0.499996	26.1914	98
min	10.000000	0.000000	0.000000	5.0300	90
25%	32.650000	5.000000	0.000000	32.6800	90
50%	55.050000	10.000000	0.000000	55.0100	90
75%	77.860000	15.000000	1.000000	77.8200	90
max	100.000000	20.000000	1.000000	104.9400	99

Dataset Overview:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 73100 entries, 0 to 73099
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Date	73100 non-null	object
1	Store ID	73100 non-null	object
2	Product ID	73100 non-null	object
3	Category	73100 non-null	object
4	Region	73100 non-null	object
5	Inventory Level	73100 non-null	int64
6	Units Sold	73100 non-null	int64
7	Units Ordered	73100 non-null	int64
8	Demand Forecast	73100 non-null	float64
9	Price	73100 non-null	float64
10	Discount	73100 non-null	int64
11	Weather Condition	73100 non-null	object
12	Holiday/Promotion	73100 non-null	int64
13	Competitor Pricing	73100 non-null	float64
14	Seasonality	73100 non-null	object
dtyn	es: float64(3) int6	4(5) object(7)	

dtypes: float64(3), int64(5), object(7)

memory usage: 8.4+ MB

Missing Values:

Date 0 Store ID 0 Product ID 0 Category Region Inventory Level Units Sold Units Ordered 0 Demand Forecast 0 Price 0 Discount 0 Weather Condition Holiday/Promotion 0 Competitor Pricing 0 Seasonality 0 dtype: int64

• Training & Evaluation

- Train/Test Split: 80/20 ratio.
- **Performance Metrics:** MAE, RMSE, R^2 Score.
- Cross-Validation: k-Fold validation to improve generalization.

• 6. Deployment Strategy

- Containerization: Deploying the model with Docker.
- **API Development:** Flask/FastAPI for model inference.
- **CI/CD Pipeline:** Automating model updates.

• Data Preprocessing

- Handling Missing Values: Imputation methods.
- Feature Engineering: Creating new features like demand trends.
- Normalization & Encoding: Scaling numerical features, one-hot encoding categorical features.

• 4. Model Selection

- Why Random Forest?
 - Handles non-linearity and feature interactions.
 - Robust against overfitting with ensemble learning.
 - Handles missing values well.
- Hyperparameter Tuning: Grid Search, Random Search.