Proyecto # 1: La Pelota

Laura Victoria Riera Pérez Marié del Valle Reyes

Cuarto año. Ciencias de la Computación. Facultad de Matemática y Computación, Universidad de La Habana, Cuba

3 de abril de 2023

I. Repositorio del proyecto

https://github.com/computer-science-crows/algorithms-design-and-analysis

II. DEFINICIÓN INICIAL DEL PROBLEMA

Para un campeonato de pelota, el manager debe elegir de un conjunto de n personas, a su equipo de p jugadores, y a k espectadores especiales para que suban la moral del equipo. De cada persona i, el manager conoce el valor que aporta a la moral del equipo a_i y el valor que aporta siendo situado en la posición j, $s_{i,j}$. Determine una alineación entre jugadores en el campo y espectadores de forma que el equipo tenga la mayor cantidad de valor acumulado posible.

III. DEFINICIÓN EN TÉRMINOS MATEMÁTICO - COMPUTACIONALES

Preliminares

Definición 1. Sea G = (V, E) un grafo. Se dice que G es bipartito si V(G) es la unión de dos conjuntos independientes disjuntos. Si entre todo par de nodos de diferentes particiones existe una arista, se dice que es un grafo bipartito completo.

Definición 2. Un emparejamiento M es un conjunto de aristas en un grafo que son independientes, o sea, que no comparten vértices.

Definición 3. Dado un emparejamiento M se dice que:

- Si la arista $e = (v, w) \in M$, se dice que v y w son saturados por M.
- *Un conjunto de vértices es saturado por M cuando M satura a todos los vértices del conjunto.*
- *Se dice que* M *es perfecto si satura a* V(G).
- M es máximo cuando no existe M_1 tal que $|M_1| > |M|$.

Definición 4. Sea G un grafo y M un emparejamiento del mismo. Un camino simple en G es M-alternativo si sus aristas alternan entre pertenecer y no pertenecer a M.

Definición 5. Sea G un grafo y M un emparejamiento del mismo. Un camino simple en G es M-aumentativo si es M-alternativo y sus extremos no son saturados por M.

Teorema 1. Sea G un grafo y M un emparejamiento del mismo. M es maximal si y solo si no existen caminos M-aumentativos.

Proof

II. Problema de asignación

IV. LÍNEA DE PENSAMIENTO

Como primera solución al problema de asignación fue implementado un *backtrack*. Esta es una solución correcta, ya que prueba todas las combinaciones y se queda con la que más valor aporte, pero muy ineficiente, O(n!). En una computadora de 32GB de RAM, intel core i7-11na generación, se puede resolver para una cantidad máxima de personas y/o posiciones de n = 11.

Se intentó resolver mediante un algoritmo *greedy* pero la forma de garantizar el óptimo en la solución pensada, era en el caso peor tan mala como backtrack.

El próximo pensamiento fue resolverlo con *programación dinámica*, pero luego de graficar el backtrack y aplicar memorización para varios casos se observó que ninguno presentaba subproblemas solapados. Además se cree que este problema no tiene subestructura óptima.

Este problema puede ser modelado como un problema de optimización lineal, y por tanto se le dió solución con el algoritmo *Simplex*, el cual es exponencial.

Modelación

Investigando el estado del arte y siguiendo la idea de modelarlo mediante grafos se decidió implementar para su solución el algoritmo Húngaro [1], el cual corre en tiempo polinomial.

V. Hungarian algorithm

Dado un grafo bipartito completo ponderado G = (V, E), donde $V = L \cup R$. Se asume que los vértices de los conjuntos L y R contienen n vértice cada uno, por tanto el grafo contiene n^2 aristas. Para $l \in L$ y $r \in R$, se denota el peso de la arista (l, r) como w(l, r), lo cual representa ganancia de emparejar el vértice l con el vértice r.

El objetivo es encontrar el emparejamiento perfecto M* cuyas aristas tengan el peso máximo total de todos los emparejamientos perfectos posibles.

Sea $w(M) = \sum_{(l,r) \in M} w(l,r)$ el peso total de las aristas en el emparejamiento M, se quiere encontrar el emparejamiento perfecto M^* tal que,

 $w(M*) = \max\{w(M) : M \text{ es un emparejamiento perfecto}\}$

.

A encontrar un emparejamiento perfecto de peso máximo se le llama **problema de asignación**. Una solución del problema de asignación es un emparejamiento perfecto que máximice el costo total.

Aunque se pueden enumerar los n! emparejamientos perfectos pra resolver este problema, existe un algoritmo llamado **algoritmo Húngaro** que lo resuelve más rápido. En vez de trabajar con un grafo bipartito completo G, el algoritmo Húngaro trabaja con un subgrafo de G llamado **subgrafo de igualdad**. El subgrafo de igualdad cambia en el tiempo y tiene la propiedad que cualquier emparejamiento perfecto en el subgrafo de igualdad es también una solución óptima del problema de asignación.

El subgrafo de igualdad depende de asignar un atributo h a cada vértice. El atributo h se llama **etiqueta** del vértice.

Se dice que h es un **etiquetado de vértice factible** de G si $l.h + r.h \ge w(l,r)$ para todo $l \in L$ y $r \in R$.

Un etiquetado de vértice factible siempre existe, como el **etiquetado de vértice por defecto** dado por

$$l.h = \max\{w(l,r) : r \in R\}$$
 para todo $l \in R$, (1)

$$r.h = 0$$
 para todo $r \in R$ (2)

Dado un eqiquetado de vértice factible h, el **subgrafo de igualdad** $G_h = (V, E_h)$ de G consiste de los mismos vértice de G y el subconjunto de aristas $E_h = \{(l, r) \in E : l.h + r.h = w(l, r)\}.$

Teorema 2. Sea G = (V, E), donde $V = L \cup R$, un grafo bipartito completo donde cada arista $(l, r) \in E$ tiene peso w(l, r). Sea h un etiquetado de vértice factible de G y G_h el subgrafo de igualdad de G. Si G_h contiene un emparejamiento perfecto M^* , entonce M^* es una solución óptima del problema de asignación G.

Demostración. Si G_h tiene un emparejamiento perfecto M^* , entonces debido a que G_h y G tienen el mismo conjunto de vértices, M^* es también un emparejamiento perfecto en G. Debido a que cada arista de M^* pertenece a G_h y cada vértice tiene exactamente una arista incidente del emparejamiento perfecto, entonces se tiene

$$w(M*) = \sum_{(l,r)\in M*} w(l,r) \tag{3}$$

$$= \sum_{(l,r)\in M^*} (l.h + r.h)$$
 (porque todas las aristas de M^* pertenecen a G_h) (4)

$$= \sum_{l \in I} l.h + \sum_{r \in R} r.h$$
 (porque M^* es un emparejamiento perfecto) (5)

(6)

Sea M un emparejamiento perfecto cualquiera de G, se tiene

$$w(M) = \sum_{(l,r)\in M} w(l,r) \tag{7}$$

$$\leq \sum_{(l,r)\in M} (l.h+r.h)$$
 (porque h es un etiquetado de vértice factible) (8)

$$= \sum_{l \in I} l.h + \sum_{r \in R} r.h$$
 (porque *M* es un emparejamiento perfecto) (9)

Entonces se tiene

$$w(M) \le \sum_{l \in L} l.h + \sum_{r \in R} r.h = w(M^*),$$
 (10)

por tanto M^* es un emparejamiento perfecto de máximo costo en G.

- Correctitud
- II. Complejidad Temporal
- III. Complejidad Espacial

VI. GENERADOR DE CASOS DE PRUEBA

Se generaron 3000 casos de prueba utilizando backtrack los cuales pueden ser encontrados en *json/test_cases.json*.

VII. TESTER

Las soluciones implementadas fueron testeadas para todos los casos de prueba generados y pueden encontrarse en *json/tests/simplex_solution.json* y *json/tests/hungarian_solution.json*

VIII. Comparación de soluciones implementadas

REFERENCIAS

[1] Cormen, Thomas H. y otros. *Introduction to Algorithms*. The MIT Press. 4ta Edición. Cambridge, Massachusetts. 2022.