PERTEMUAN 1

RING DAN SIFAT-SIFATNYA

Pada bagian ini, akan dikaji suatu himpunan tak-kosong yang dilengkapi dengan

dua buah operasi biner. Sebagai contoh adalah $(2\mathbb{Z}, +, .)$, $(\mathbb{Z}, +, .)$, $(\mathbb{Q}, +, .)$, $(\mathbb{Z}_5, +, .)$, $(\mathbb{Z}_6, +, .)$. Jika contoh di atas dituliskan sebagai (R, +, .) maka sifat yang dimiliki oleh (R, +, .) adalah sebagai berikut.

- I. (R, +) merupakan grup komutatif.
- II. Perkalian pada R bersifat asosiatif.
- III. Berlaku sifat distributif kiri dan kanan perkalian terhadap penjumlahan pada R.

Definisi 1.1

Misalkan *R* himpunan tak-kosong yang dilengkapi dengan operasi penjumlahan (+) dan perkalian (.). Himpunan *R* disebut *ring* jika memenuhi

- I. (R, +) merupakan grup komutatif.
- II. Perkalian di R bersifat asosiatif.
- III. Berlaku sifat distributif kiri dan kanan perkalian terhadap penjumlahan.

Contoh.

- 1. $(2\mathbb{Z}, +,.), (\mathbb{Z}, +,.), (\mathbb{Q}, +,.), (M_{2x2}(\mathbb{R}), +,.), (\mathbb{Z}_5, +,.), (\mathbb{Z}_6, +,.), (\mathbb{R}, +,.), (\mathbb{C}, +,.)$ merupakan ring terhadap penjumlahan dan perkalian bilangan
- 2. $(\mathbb{Z}_{10}, +, .)$, $\{\overline{0}, \overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{8}\}$ merupakan ring terhadap penjumlahan dan perkalian modulo 10
- 3. $\left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}, \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}, \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}, \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}, \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\},$ merupakan ring terhadap penjumlahan dan perkalian matriks.
- 4. $Q(\mathbb{R}) = \{a_0 + a_1i + a_2j + a_3k | a_0, a_1, a_2, a_3 \in \mathbb{R}\}$ dengan $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j

Penjumlahan dan perkalian di $Q(\mathbb{R})$ didefinisikan sebagai berikut.

$$(a_0 + a_1i + a_2j + a_3k) + (b_0 + b_1i + b_2j + b_3k) =$$

$$(a_0 + b_0) + (a_1 + b_1)i + (a_2 + b_2)j + (a_3 + b_3)k$$

$$(a_0 + a_1i + a_2j + a_3k)(b_0 + b_1i + b_2j + b_3k)$$

$$= (a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3) + (a_0b_1 + a_1b_0 + a_2b_3 - a_3b_2)i +$$

$$(a_0b_2 + a_2b_0 + a_3b_1 - a_1b_3)j + (a_3b_0 + a_0b_3 + a_1b_2 - a_2b_1)k$$

Himpunan $Q(\mathbb{R})$) merupakan ring terhadap penjumlahan dan perkalian yang didefinisikan di atas.

Macam-macam ring

1. Jika *R* ring mempunyai elemen identitas terhadap perkalian maka *R* disebut *ring dengan elemen satuan*.

Contoh.

- a. $(\mathbb{Z}, +, .)$, $(\mathbb{Q}, +, .)$, $(M_{2x2}(\mathbb{R}), +, .)$, $(\mathbb{Z}_5, +, .)$, $(\mathbb{Z}_6, +, .)$ merupakan ring dengan elemen satuan.
- b. $(\mathbb{Z}_{10}, +, .)$, $\{\overline{0}, \overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{8}\}$ dengan penjumlahan dan perkalian modulo 10 merupakan ring dengan elemen satuan.
- c. $\left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \operatorname{dan} \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$ merupakan ring dengan elemen satuan.
- 2. Jika perkalian pada ring *R* memenuhi sifat komutatif maka *R* disebut *ring komutatif*. Contoh
 - a. $(\mathbb{Z},+,.), (\mathbb{Q},+,.), (\mathbb{Z}_5,+,.), ((\mathbb{Z}_6,+,.), (\mathbb{R},+,.), (\mathbb{C},+,.)$ merupakan ring komutatif.
 - b. $((\mathbb{Z}_n, +, .), \{\overline{0}, \overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{8}\}$ dengan penjumlahan dan perkalian modulo 10 merupakan ring komutatif.
 - c. $\left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \operatorname{dan} \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$ merupakan ring komutatif.
- 3. Jika *R* ring dengan elemen satuan dan setiap elemen tak-nol mempunyai invers terhadap perkalian maka *R* disebut *division ring*.

Contoh.

$$(\mathbb{Q}, +, ...), (\mathbb{Z}_5, +, ...), (\mathbb{R}, +, ...), (\mathbb{C}, +, ...), Q(\mathbb{R}), \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \operatorname{dan} \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$
 merupakan division ring.

4. Jika *R* division ring yang komutatif maka *R* disebut *field* (*lapangan*). Contoh.

$$(\mathbb{Q},+,.), (\mathbb{Z}_5,+,.), (\mathbb{R},+,.), (\mathbb{C},+,.), \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \operatorname{dan} \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$

merupakan field (lapangan)

5. Jika *R* division ring yang tidak komutatif maka *R* disebut *skew field*. Contoh.

 $Q(\mathbb{R})$ merupakan skew field.

- 6. Misalkan R ring. Jika a, b elemen tak-nol di R dengan ab = 0 maka a dan b disebut pembagi nol.
- 7. Jika *R* ring komutatif dengan elemen satuan dan tidak mempunyai pembagi nol maka *R* disebut *daerah integral*.

Contoh.

$$(\mathbb{Z},+,.), (\mathbb{Q},+,.), (\mathbb{Z}_5,+,.), (\mathbb{R},+,.), (\mathbb{C},+,.), \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \operatorname{dan} \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$
 merupakan daerah integral.

Berikut ini dikemukakan sifat-sifat dasar ring.

Teorema 1.1

Misalkan R suatu ring dan $a, b \in R$.

- 1. a.0 = 0.a = 0
- 2. a.(-b) = (-a).b = -(ab)
- 3. (-a)(-b) = ab

Bukti.

- 1. Jelas a.0 = a(0+0) = a.0 + a.0. Karena (R, +) suatu grup maka berlaku hukum kanselasi sehingga 0 = a.0. Dengan cara serupa diperoleh a.0 = 0.
- 2. Dengan sifat distributif dan sifat 1 di atas, diperoleh

$$a.(-b) + ab = a((-b) + b) = a.0 = 0.$$

Karena (R, +) suatu grup maka diperoleh a. (-b) = -(ab).

Dengan cara serupa diperoleh (-a). b = -(ab).

3. Menggunakan sifat 2 di atas, diperoleh (-a). (-b) = (-(-a)b) = ab.

Teorema 1.2

Misalkan D suatu daerah integral dengan $a, b, c \in D$ dan $a \neq 0$.

- 1. Jika ab = ac maka b = c (hukum kanselasi kiri).
- 2. Jika ba = ca maka b = c (hukum kanselasi kanan).

Bukti.

1. Misalkan ab = ac.

Jelas ab - ac = 0 sehingga dengan sifat distributif diperoleh a(b - c) = 0.

Karena D daerah integral dan $a \neq 0$ maka b - c = 0, sehingga b = c.

2. Bukti 2 serupa dengan bukti 1.

Teorema selanjutnya dibicarakan hubungan antara daerah integral dan field.

Latihan

- 1. Jika *R* suatu ring dan untuk setiap $x \in R$ berlaku $x^2 = x$, buktikan *R* ring komutatif.
- 2. Jika R suatu ring, buktikan bahwa R ring komutatif jika dan hanya jika untuk setiap $a, b \in R$ berlaku $(a + b)^2 = a^2 + 2ab + b^2$.
- 3. Buktikan elemen-elemen di daerah integral R yang bersifat $x^2 = x$ hanyalah elemen nol dan elemen satuan saja.
- 4. Tunjukkan bahwa $\mathbb{Z}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$ terhadap operasi penjumlahan dan perkalian bilangan real merupakan suatu daerah integral.
- 5. Misalkan F himpunan semua pemetaan dari \mathbb{R} ke \mathbb{R} .

Untuk setiap $f, g \in F$ didefinisikan (f + g)(x) = f(x) + g(x) untuk setiap $x \in \mathbb{R}$ dan (f g)(x) = f(x)g(x) untuk setiap $x \in \mathbb{R}$.

Tunjukkan bahwa F merupakan ring terhadap operasi penjumlahan dan perkalian yang didefinisikan di atas.