

Introduction to Simulation

Rosaldo Rossetti

rossetti@fe.up.pt

http://www.fe.up.pt/~rossetti

Associate Professor at FEUP – Faculty of Engineering of the University of Porto Research Affiliate at LIACC – Artificial Intelligence and Computer Science Lab

Simulation

 Simulation is the imitation of some real thing, state of affairs, or process, over time, representing certain key characteristics or behaviours of the selected physical or abstract system

Simulation:

- Modeling of natural systems or human systems in order to gain insight into their functioning through artificial systems
- Simulation of technology for performance optimization, safety engineering, testing, training and education
- Widely used tool for decision making and what-if analysis

What is simulation?

- The imitation of the operation of a real-world process or system over time...
 - Most widely used tool (along LP) for decision making
 - Usually on a computer with appropriate software
 - An analysis (descriptive) tool can answer what-if questions
 - A synthesis (prescriptive) tool if complemented by other tools
- Applied to complex systems that are impossible to solve mathematically

A Few Examples of Applications

- Games
- Film Industry
- Manufacturing
- Bank operations
- Airport and Airlines
- Flight Simulation
- Military Operations
- Transportation
- Satellite Navigation
- Robotics
- Biomechanics
- Molecular Dynamics

- Logistics, supply chain, distribution
- Hospitals: Emergency, operation, admissions...
- Computer networks
- Business processes
- Chemical plants
- Fast-food restaurants
- Supermarkets
- Stock Exchange
- Theme parks
- Emergency-response systems
- Sports

A Few Examples of Applications

War (strategy) Games

Flight Simulators

Manufacture/Robotics

Transportation systems

Games & Sports

Aerodynamics: Wind Tunnel

System

- A set of interacting components or entities operating together to achieve common goals or objectives
- Examples
 - A manufacturing system with its machine centres, inventories, conveyor belts, production schedule, items produced.
 - A telecommunication system with its messages, communication network and infrastructure, servers.
 - A theme park with rides, workers, ...

Metrics & Performance Indicators

- Metrics are measurable quantities that precisely capture what we want to measure (e.g. response time, throughput, delay, etc.)
- For example, in computer systems, we might evaluate
 - The response time of a processor to execute a given task
 - The execution time of two programs in a multi-processor machine
- In Network systems, we might evaluate
 - The (maximum/average) delay experienced by a voice packet to reach the destination
 - The throughput of the network
 - The required bandwidth to avoid congestion
- Indicators are calculated measures of performance consisting of a set of different metrics, a.k.a Key Performance Indicators (KPIs).
 - KPIs can provide a more accurate view of the status of a system and its historical evolution
 - E.g. Body mass index (BMI); Estimated road traffic death rate (/100K population; COVID-19 hospital admissions (/100K population /week)

Metrics & Performance Measures

- The performance of a system is dramatically affected by the Workload
- The Workload characterises the quantity and the nature of the system inputs
 - For Web Servers, system inputs are http requests (GET or POST);
 The workload characterises:
 - the intensity of the requests: how many requests are received by the web server. High intensities deteriorate the system performance.
 - The nature of the requests: the request can be simple GET requests or a request that requires the access of a remote database. The performance will be different for different request types.
 - Benchmarks: used to generate loads that are intended to mimic a typical user behaviour.

Why & How to study a system?

Measure/estimate performance, improve operation/training, be prepared

- An abstract and simplified representation of a system
- Specifies
 - Important components
 - Assumptions/approximations about how the system works
- Not an exact re-creation of the original system!
- If model is simple enough, study it with Queuing Theory, Linear Programming, Differential Equations...
- If model is complex, Simulation is the only way!

11

Real System (Motherboard)

Variables of a Model

Output parameters: endogenous

Input parameters:

Getting answers from models

ACTUAL SYSTEM

Operating Policies

Single queue, parallel servers

(X)

•FIFO

Input Parameters

- Nº of servers
- •Inter-arrival Time Distribution
- Service Time Distributions

MODEL

(Y) Output Parameters

- Waiting Times
- System Size
- Utilizations

$$Y = f(X)$$

Stochastic Models

- Uncertainty (randomness) is an inherent characteristic
- Example: bank with costumers and tellers

Actual System

Queuing Model

Classification of simulation models

1. Static vs. Dynamic Models:

2. Deterministic vs. Stochastic Models:

Classification of simulation models

3. Continuous vs. Discrete Models:

Simulation Approaches

- Types of discrete models
 - Event-oriented
 - Process-oriented
 - Activity-oriented
 - Object-oriented
 - Agent-based

How to simulate

- By hand
 - Buffon's needles and cross experiments
 http://www.ms.uky.edu/~mai/java/stat/buff.html
- Spreadsheets
- Programming in a general purpose language
 - C++, Java, C#
- Simulation languages
 - SIMAN, Simscript, and SIMULA (first OO language)
- Simulation packages
 - Arena, Simulink, SeSam (agent-based), NetLogo, etc.

Issue: modelling flexibility vs. ease of use

Simulation Advantages

Advantages of Simulation:

- When mathematical analysis methods are not available, simulation may be the only investigation tool
- When mathematical analysis methods are available, but are so complex that simulation may provide a simpler solution
- Provides practical feedback when designing real-world systems
- Time compression or expansion
- Higher Control
- Lower costs
- Comparison of alternative designs or alternative operating policies
- Sensitivity Analysis
- Training tool
- It doesn't disturb the real system

Simulation is not Appropriate if?

- Problem can be solved by:
 - Common sense
 - simple calculations
 - Analytical methods
 - Direct experiments
- Simulation costs exceed savings
- Resources & time are not available
- Data is not available
- Verification & validation are not practical due to limited resources
- System behavior is too complex (essential model is not easy to capture)