Corrección y Teorema del Invariante

Algoritmos y Estructuras de Datos I

Afirmaciones sobre estados

- ► Sea el siguiente programa que se ejecuta con estado inicial { *True* }.
- ► {True}
 int x = 0;
 {x = 0}
 x = x + 3;
 {x = 3}
 x = 2 * x;
 {x = 6}
- ▶ ¿Finaliza siempre el programa? Sí, porque no hay ciclos
- ¿Cuál es el estado final al finalizar su ejecución? $\{x = 6\}$

Transformación de estados

- ► Llamamos estado de un programa a los valores de todas sus variables en un punto de su ejecución:
 - 1. Antes de ejecutar la primera instrucción,
 - 2. entre dos instrucciones, y
 - 3. después de ejecutar la última instrucción.
- ► Podemos considerar la ejecución de un programa como una sucesión de estados.
- ► La asignación es la instrucción que permite pasar de un estado al siguiente en esta sucesión de estados.
- Las estructuras de control se limitan a especificar el flujo de ejecución (es decir, el orden de ejecución de las asignaciones).

Afirmaciones sobre estados

- Sea el siguiente programa que se ejecuta con estado inicial con una variable a ya definida ($\{a = A_0\}$).
- ▶ $\{a = A_0\}$ int b = a + 2; $\{a = A_0 \land b = A_0 + 2\}$ int result = b - 1; $\{a = A_0 \land b = A_0 + 2 \land result = (A_0 + 2) - 1 = A_0 + 1\}$
- ▶ ¿Finaliza siempre el programa? Sí, porque no hay ciclos
- ▶ ¿Cuál es el estado final al finalizar su ejecución? $\{a = A_0 \land b = A_0 + 2 \land result = A_0 + 1\} \Rightarrow \{result = a + 1\}$

Corrección de un programa

- ▶ **Definición.** Decimos que un programa S es correcto respecto de una especificación dada por una precondición P y una postcondición Q, si siempre que el programa comienza en un estado que cumple P, el programa **termina su ejecución**, y en el estado final **se cumple** Q.
- ▶ **Notación.** Cuando *S* es correcto respecto de la especificación (*P*, *Q*), lo denotamos con la siguiente tripla de Hoare:

$$\{P\} S \{Q\}.$$

Ejemplo

- Sea el siguiente programa que se ejecuta con estado inicial con una variable $a = A_0$.
- ▶ $\{a = A_0\}$ int b = a + 2; $\{a = A_0 \land b = A_0 + 2\}$ int result = b - 1; $\{a = A_0 \land b = A_0 + 2 \land result = (A_0 + 2) - 1 = A_0 + 1\}$ Por lo tanto, se deduce que: $\{result = a + 1\}$

Afirmaciones sobre estados

- ► Sea la siguiente especificación para incrementar en una unidad el valor de un entero.
- ▶ proc spec_incrementar(in a : Z, out result : Z){
 Pre {True}
 Post {result = a + 1}
 }
- ► ¿Es el siguiente programa S correcto con respecto a su especificación?

```
int incrementar(int a) { int b = a + 2; int result = b - 1; return result; }
```

Intercambiando los valores de dos variables enteras

► **Ejemplo:** Intercambiamos los valores de dos variables, pero sin una variable auxiliar!

```
▶ \{a = A_0 \land b = B_0\}

a = a + b;

\{a = A_0 + B_0 \land b = B_0\}

b = a - b;

\{a = A_0 + B_0 \land b = (A_0 + B_0) - B_0\}

\equiv \{a = A_0 + B_0 \land b = A_0\}

a = a - b;

\{a = A_0 + B_0 - A_0 \land b = A_0\}

\equiv \{a = B_0 \land b = A_0\}
```

Alternativas

- Sea el siguiente programa con una variable a de entrada cuyo valor no se modifica (i.e. podemos asumir $a=A_0$ como constante)
- ► Cuando tenemos una alternativa, debemos considerar las dos ramas por separado.
- ► Por ejemplo:

```
int modulo(int a) {
   int b =0;
   if( a > 0 ) {
        b = a;
   } else {
        b = -a;
   }
   return b;
   }
}
```

ightharpoonup Verificamos ahora que b = |a| después de la alternativa.

Ciclos (repaso)

► Recordemos la sintaxis de un ciclo:

```
while (B) {
    cuerpo del ciclo
}
```

- ► Se repite el cuerpo del ciclo mientras la guarda B se cumpla, cero o más veces. Cada repetición se llama una iteración.
- ► La ejecución del ciclo termina si no se cumple la guarda al comienzo de su ejecución o bien luego de ejecutar una iteración.
- ► Si/cuando el ciclo termina, el estado resultante es el estado posterior a la última instrucción del cuerpo del ciclo.

Alternativas

► Rama positiva:

```
Se cumple la condición \{a = A_0 \land b = 0 \land B\} \equiv \{a = A_0 \land b = 0 \land A_0 > 0\} b = a; \{a = A_0 \land b = A_0 \land A_0 > 0\} \Rightarrow \{b = |a|\}
```

► Rama negativa:

```
No se cumple la condición \{a = A_0 \land b = 0 \land \neg B\} \equiv \{a = A_0 \land b = 0 \land A_0 \le 0\} b = -a; \{a = A_0 \land b = -A_0 \land A_0 \le 0\} \Rightarrow \{b = |a|\}
```

- ▶ En ambos casos vale b = |a|
- ▶ Por lo tanto, esta condición vale al salir de la instrucción alternativa.

Ejemplo

```
    proc sumar(in n : ℤ, out result : ℤ) {
        Pre {n ≥ 0}
        Post {result = ∑<sub>i=1</sub><sup>n</sup> i}
    }

    int sumar(int n) {
        int i = 1;
        int s = 0;
        while(i <= n) {
            s = s + i;
            i = i + 1;
            }
            return s;
    }
}
</pre>
```

Ejemplo

Estados al finalizar cada iteración del ciclo, para n = 6:

	Iteración	i	S
>	0	1	0 = 0
	1	2	1 = 0 + 1
	2	3	3 = 0 + 1 + 2
	3	4	6 = 0 + 1 + 2 + 3
	4	5	10 = 0 + 1 + 2 + 3 + 4
	5	6	15 = 0 + 1 + 2 + 3 + 4 + 5
	6	7	21 = 0 + 1 + 2 + 3 + 4 + 5 + 6
•	1 2 3 4 5 6	2 3 4 5 6 7	1 = 0 + 1 $3 = 0 + 1 + 2$ $6 = 0 + 1 + 2 + 3$ $10 = 0 + 1 + 2 + 3 + 4$ $15 = 0 + 1 + 2 + 3 + 4 + 5$ $21 = 0 + 1 + 2 + 3 + 4 + 5 + 6$

▶ Observación: Luego de cada iteración vale que:

$$s = \sum_{k=1}^{i-1} k$$

▶ A este tipo de afirmación se denomina un invariante del ciclo.

Ejemplo

- ▶ ¿La ejecución del cuerpo del ciclo preserva $l \equiv s = \sum_{k=1}^{i-1} k$?
- ▶ Para chequear esto, asumimos que vale $I \land B$ ya que se cumplió la condición para ejecutar el cuerpo del ciclo.
- ▶ Agregamos metavariables para las variables que cambian.

▶ {
$$i = I_0 \land s = S_0 \land S_0 = \sum_{k=1}^{I_0-1} k \land (I_0 \le n)$$
}

 $s = s + i;$
{ $i = I_0 \land s = S_0 + I_0 \land S_0 = \sum_{k=1}^{I_0-1} k \land (I_0 \le n)$ }

 $\Rightarrow \{s = \sum_{k=1}^{I_0-1} k + I_0\}$
 $\Rightarrow \{s = \sum_{k=1}^{I_0-1} k\}$
¿Qué pasa si $i_0 = -1, -2, etc..?$
Sólo vale la implicación si $I_0 \ge 0$
 $i = i + 1;$

Invariante de un ciclo

- ▶ **Definición.** Un predicado *I* es un invariante de un ciclo si:
 - 1. I vale antes de comenzar el ciclo, y
 - 2. si vale $I \wedge B$ al comenzar una iteración arbitraria, entonces sigue valiendo I al finalizar la ejecución del cuerpo del ciclo.
- ▶ Un invariante describe un estado que se satisface cada vez que comienza la ejecución del cuerpo de un ciclo y también se cumple cuando la ejecución del cuerpo del ciclo concluye.
- ▶ Por ejemplo, otros invariantes para este ciclo son:
 - $I' \equiv i \neq 0$
 - ▶ $I'' \equiv s \geq 0$
 - \rightarrow i > 1
 - ...etc

Ejemplo

► El predicado $l \equiv s = \sum_{k=1}^{i-1} k$ (por sí solo) no es un invariante de ciclo ya que la ejecución del ciclo no lo preserva.

Iteración	i	S
0	1	0 = 0
1	2	1 = 0 + 1
2	3	3 = 0 + 1 + 2
3	4	6 = 0 + 1 + 2 + 3
4	5	10 = 0 + 1 + 2 + 3 + 4
5	6	15 = 0 + 1 + 2 + 3 + 4 + 5
6	7	21 = 0 + 1 + 2 + 3 + 4 + 5 + 6

- ¿Cómo podemos reforzar / para obtener un auténtico invariante para el ciclo?
- ► Nueva propuesta de invariante *l*:

$$i \ge 1 \land \mathsf{s} = \sum_{k=1}^{i-1} k$$

Ejemplo

▶ ¿Vale $I \equiv i \geq 1 \land s = \sum_{k=1}^{i-1} k$ al principio del ciclo (i.e., antes de la instrucción while)?

```
int i = 1;
int s = 0;

while(i <= n) {
    s = s + i;
    i = i + 1;
}</pre>
```

- Antes de ejecutar el ciclo el estado de la ejecución cumple que $n \ge 0 \land i = 1 \land s = 0$.
- ► Esto implica que $I \equiv i \ge 1 \land s = \sum_{k=1}^{i-1} k$.
- ▶ Por lo tanto, se cumple / al principio del ciclo.

Ejemplo

- Tenemos entonces:
 - 1. I vale justo antes de comenzar el ciclo.
 - 2. Si valía la condición *B* e *I*, *I* sigue valiendo luego de la ejecución del cuerpo del ciclo.
- ► Esto implica que / también vale cuando el ciclo termina.
- ▶ Si se salió del ciclo fue porque no se cumplió $i \le n$, y entonces estamos en un estado que satisface:

$$n \ge 0 \land I \land i > n \equiv n \ge 0 \land i \ge 1 \land s = \sum_{k=1}^{i-1} k \land i > n$$

Ejemplo

- ▶ ¿La ejecución del cuerpo del ciclo preserva $I \equiv i \geq 1 \land s = \sum_{k=1}^{i-1} k$?
- ▶ Para chequear esto, asumimos que vale $I \land B$ ya que se cumplió la condición para ejecutar el cuerpo del ciclo.
- Agregamos metavariables para las variables que cambian.

▶ {
$$i = I_0 \land s = S_0 \land I_0 \ge 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$$
}

 $s = s + i;$
{ $i = I_0 \land s = S_0 + I_0 \land I_0 \ge 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$ }

 $\Rightarrow \{s = \sum_{k=1}^{I_0 - 1} k + I_0\}$
 $\Rightarrow \{s = \sum_{k=1}^{I_0} k\}$ Este paso se puede aplicar ya que $I_0 \ge 0$

{ $i = I_0 \land s = \sum_{k=1}^{I_0} k \land I_0 \ge 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$ }

 $i = i + 1;$

{ $i = I_0 + 1 \land s = \sum_{k=1}^{I_0} k \land I_0 \ge 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$ }

 $\Rightarrow \{i \ge 1 \land s = \sum_{k=1}^{I_0 - 1} k\} \equiv \{I\}$

Invariante de un ciclo

- Los invariantes de un ciclo permiten razonar sobre su corrección. Llamamos ...
 - 1. P_C: Precondición del ciclo,
 - 2. Q_C: Postcondición del ciclo,
 - 3. B: Guarda del ciclo,
 - 4. I: Un invariante del ciclo.
- ► Si se cumplen estas condiciones ...
 - 1. $P_C \Rightarrow I$
 - 2. $\{I \wedge B\}$ cuerpo del ciclo $\{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$
- ... entonces el ciclo es parcialmente correcto respecto de su especificación (si termina, termina en Q_C).

Teorema del invariante

▶ **Teorema del invariante**. Si existe un predicado / tal que ...

```
1. P_C \Rightarrow I,
2. \{I \land B\} S \{I\},
3. I \land \neg B \Rightarrow Q_C,
```

entonces el ciclo **while(B) S** es parcialmente correcto respecto de la especificación (P_C, Q_C) .

- ► Este teorema es la herramienta principal para argumentar la corrección de ciclos.
- ► El teorema del invariante se puede demostrar formalmente (más detalle en las próximas teóricas!).

Ejemplo

 \blacktriangleright ¿Es cierto que $\{I \land B\}S\{I\}$?

$$I \wedge B : \{i \leq n \wedge i \geq 1 \wedge s = \sum_{k=1}^{i-1} k\}$$

 $s = s + i;$
 $i = i + 1;$
 $I : \{i \geq 1 \wedge s = \sum_{k=1}^{i-1} k\}$

► Esto también lo probamos cuando demostramos que *I* era un invariante para el ciclo.

Ejemplo

- Verifiquemos estas tres condiciones con el ejemplo anterior, y con ...
 - 1. $P_C \equiv n \geq 0 \land i = 1 \land s = 0$
 - 2. $Q_C \equiv n \geq 0 \land s = \sum_{k=1}^{n} k$
 - 3. $B_C \equiv i \leq n$
 - 4. $I \equiv i \ge 1 \land s = \sum_{k=1}^{i-1} k$
- ▶ En primer lugar, debemos verificar que $P_C \Rightarrow I$:
- ► Ya probamos anteriormente que:

$$(n \ge 0 \land i = 1 \land s = 0) \Rightarrow i \ge 1 \land s = \sum_{k=1}^{i-1} k.$$

▶ Por lo tanto, podemos concluir que se cumple la condición $P_C \Rightarrow I$

Ejemplo

▶ Finalmente, ¿es cierto que $I \land \neg B \Rightarrow Q_C$?

$$i \ge 1 \land \mathsf{s} = \sum_{k=1}^{i-1} k \land i > n \implies \mathsf{s} = \sum_{k=1}^{n} k ?$$

- ▶ **No!** Contraejemplo: Si i = n + 2, entonces la implicación no vale!
- ▶ Sin embargo, sabemos que esto no puede pasar, puesto que $i \le n+1$ a lo largo del ciclo.
- ▶ ¿Qué hacemos?
- ⇒ Reforzamos el invariante!

Ejemplo

► Proponemos el nuevo invariante de ciclo reforzado (i.e. mas restrictivo):

$$I \equiv 1 \le i \le n+1 \land \mathsf{s} = \sum_{k=1}^{i-1} k$$

▶ ¿Vale ahora que tenemos que $I \land \neg B \Rightarrow Q_C$?

$$1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k \land i > n$$

$$\Rightarrow i = n + 1 \land s = \sum_{k=1}^{i-1} k$$

$$\Rightarrow s = \sum_{k=1}^{n} k \equiv Q_C$$

Para concluir...

$$\triangleright iP_C \Rightarrow 1?$$

$$P_C \equiv (n \ge 0 \land i = 1 \land s = 0) \Rightarrow 1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k$$

▶ Por lo tanto, se cumple que $P_C \Rightarrow I$

Ejemplo

- ▶ ¿Qué pasa con los dos primeros puntos del teorema del invariante?
 - $P_C \Rightarrow I$
 - ▶ $\{I \land B\}$ cuerpo del ciclo $\{I\}$
- ¿Se siguen verificando estas condiciones con el nuevo invariante?
- ▶ Hay que demostrarlo nuevamente! Si $I' \Rightarrow I$ no podemos concluir que $P_C \Rightarrow I'$.

Para concluir...

```
▶ ¿La ejecución del cuerpo del ciclo preserva I \equiv 1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k?
```

▶ {
$$i = I_0 \land s = S_0 \land 1 \le I_0 \le n + 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$$
}

 $s = s + i;$
{ $i = I_0 \land s = S_0 + I_0 \land 1 \le I_0 \le n + 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$ }

 $\Rightarrow \{s = \sum_{k=1}^{I_0 - 1} k + I_0\}$
 $\Rightarrow \{s = \sum_{k=1}^{I_0} k\}$ Este paso sólo se puede aplicar si $I_0 \ge 0$

{ $i = I_0 \land s = \sum_{k=1}^{I_0} k \land 1 \le I_0 \le n + 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$ }
 $i = i + 1;$

{ $i = I_0 + 1 \land s = \sum_{k=1}^{I_0} k \land 1 \le I_0 \le n + 1 \land S_0 = \sum_{k=1}^{I_0 - 1} k \land (I_0 \le n)$ }
 $\Rightarrow \{1 \le i \le n + 1 \land s = \sum_{k=1}^{i - 1} k\} \equiv \{I\}$ Esto lo podemos hacer ya que $I_0 \le n$

Resultado final

- ► Finalmente, Sean:
 - 1. $P_C \equiv n \geq 0 \land i = 1 \land s = 0$
 - 2. $Q_C \equiv n \ge 0 \land s = \sum_{k=1}^{n} k$
 - 3. $B_C \equiv i \leq n$
 - 4. $I \equiv i \ge 1 \land s = \sum_{k=1}^{i-1} k$
- ➤ Ya que demostramos que se cumplen las siguientes condiciones:
 - 1. $P_C \Rightarrow I$
 - 2. $\{I \wedge B\}$ cuerpo del ciclo $\{I\}$
 - 3. $I \wedge \neg B \Rightarrow Q_C$
- ▶ Entonces, por el Teorema del Invariante podemos concluir que el ciclo while(B) S es parcialmente correcto respecto de la especificación P_C , Q_C .

Bibliografía

- ► David Gries The Science of Programming
 - ► Chapter 6 Using Assertions to Document Programs
 - ► Chapter 6.1 Program Specifications
 - ► Chapter 6.2 Representing Initial and Final Values of Variables
 - ► Chapter 6.3 Proof Outlines (transformación de estados, alternativas)

Algunas observaciones

- $I \equiv 1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k.$
 - 1. El invariante refleja la hipótesis inductiva del ciclo.
 - 2. En general, un buen invariante debe incluir el rango de la(s) variable(s) de control del ciclo.
 - 3. Además, debe incluir alguna afirmación sobre el acumulador del ciclo.
- ► Cuando tenemos un invariante / que permite demostrar la corrección parcial del ciclo, nos referimos a / como el invariante del ciclo.
 - 1. El invariante de un ciclo caracteriza las acciones del ciclo, y representa al las asunciones y propiedades que hace nuestro algoritmo durante el ciclo.
- ► En general, es sencillo argumentar informalmente la terminación del ciclo (más detalles en las próximas teóricas).