УДК 539.1

НЕЙТРОННАЯ БИБЛИОТЕКА АКТИВАЦИОННЫХ ФАЙЛОВ «IEAF-2005» В ЭНЕРГЕТИЧЕСКОМ ДИАПАЗОНЕ ОТ 150 МэВ ДО 1 ГэВ

А.Ю. Конобеев*, Ю.А.Коровин*, А.А. Наталенко*, С.А.Осыкин*, Г.Б. Пильнов*, А.Ю.Станковский*, А.В. Тихоненко*, У. Фишер**

- * Обнинский государственный технический университет атомной энергетики, г. Обнинск
- **Institut fur Reaktorsicherheit, Forschungszentrum Karlsruhe, Germany

В рамках расширения энергетического диапазона существующей библиотеки нейтронных активационных данных IEAF-2001 (The Intermediate Energy Activation File) авторами был создан набор файлов нейтронных активационных данных для 682 нуклидов от ¹Н до ²¹⁰Ро для энергий первичных нейтронов от 150 МэВ до 1 ГэВ. Для расчета использовались ядерные модели, реализованные в программах МСNРХ и CASCADE/INPE. Авторами проведен статистический анализ, а также корреляционные и МНК сравнения, с целью выбора оптимальных моделей для расчета активационных данных. Анализ проведен с использованием имеющихся в открытом доступе экспериментальных данных (библиотека EXFOR).

ВВЕДЕНИЕ

Проводимые в настоящее время исследования в области трансмутации отходов ядерного топливного цикла в электро- и термоядерных установках под действием частиц промежуточных и высоких энергий, требуют знания сечений накопления различных изотопов для большого числа стабильных и нестабильных ядер. Активационные данные необходимы как для изучения возможностей самого процесса трансмутации, так и для изучения поведения конструкционных материалов при их длительном облучении в установках с жестким нейтронным и протонным спектром. Кроме того, такие данные необходимы в ядерной астрофизике; для оценки скоростей производства тяжелых химических элементов в процессах нуклесинтеза, протекающих в звездах на различных стадиях их эволюции, развития моделей динамических процессов обмена веществом между звездами и межзвездной средой, галактиками и межгалактической средой. Большинство имеющихся в настоящий момент библиотек нейтронных активационных ядерных данных ограничены энергиями 150 МэВ, поэтому, исходя из необходимости расширения энергетического диапазона, было принято решение о создании новой библиотеки ІЕАГ-2005, содержащей данные для энергий первичных нейтронов до 1 ГэВ (предыдущая версия библиотеки, IEAF-2001 [1], содержит нейтронные активационные данные до 150 МэВ). Расширение библиотеки в область более высоких энергий, в

[©] А.Ю. Конобеев, Ю.А.Коровин, А.А. Наталенко, С.А.Осыкин, Г.Б. Пильнов, А.Ю.Станковский, А.В. Тихоненко, У. Фишер, 2007

первую очередь, влечет за собой значительное увеличение времени, затрачиваемого на расчет, т.к. число открытых каналов ядерных реакций быстро возрастает. В данной статье изложены методы расчета и оценки сечений в области энергий 150 МэВ

СТРУКТУРА БИБЛИОТЕКИ АКТИВАЦИОННЫХ ФАЙЛОВ IEAF-2005

Библиотека IEAF-2005 (Intermediate Energy Activation File) является библиотекой нейтронных ядерных данных, используемых для активационного анализа материалов нейтронами с энергиями до 1 ГэВ. Библиотека включает в себя набор отдельных файлов для 682 нуклидов. Каждый файл содержит данные по сечениям нейтронных реакций с ядрами мишеней от Z=1 до Z=84 в энергетическом диапазоне от 150 МэВ до 1 ГэВ

ВЫБОР МОДЕЛЕЙ ДЛЯ ПРОВЕДЕНИЯ РАССЧЕТОВ СЕЧЕНИЙ

В настоящее время одной из наиболее популярных многоцелевых программ для расчета переноса частиц с энергиями до нескольких ГэВ в веществе является программа МСNPX [2]. Для описания ядро-ядерных взаимодействий в обсуждаемом энергетическом диапазоне в программе используются различные модели. Быстрая (каскадная) стадия реакции описывается моделями внутриядерного каскада — Bertini [3, 4], ISABEL [5, 6] и INCL4 [7]. Для расчета предравновесной стадии ядерной реакции включена предравновесная модель — MPM [8], испарительная стадия ядерной реакции представляется моделями Dresner [9] и ABLA [10], а для описания процесса деления ядер включены две модели — ORNL [11] и RAL [12]. Кроме того, в МСNPX интегрирована каскадно-испарительная модель СЕМ2k [13], описывающая всех стадии ядерной реакции.

В ИАТЭ на основе модифицированной дубненской каскадно-испарительной модели [14] создана программа CASCADE/INPE [15], последовательно описывающаяей все стадии протекания ядерной реакции.

Для создания нейтронной библиотеки активационных данных IEAF-2005 использовались программы MCNPX и CASCADE/INPE. Был проведен статистический анализ с целью выбора оптимальных моделей для расчета сечений образования остаточных ядер в зависимости от массового числа ядра-мишени. Анализ проводился на основе сопоставления факторов согласия рассчитанных сечений с экспериментальными данными для реакций под действием протонов.

Выбор экспериментальных данных и факторов согласия

Для проведения сравнительного анализа авторами были выбраны 3 999 экспериментальных точек (измерений) для более чем 1 000 реакций (р,хпурга) на различных ядрах с Z = 6-84 в энергетическом диапазоне E = 150-1 000 МэВ из библиотеки EXFOR [16].

Распределение выбранных экспериментальных значений сечений взаимодействия протонов с ядрами мишени в зависимости от энергии налетающего протона и массового числа ядра-мишени приведены на рис. 1. При этом наиболее информативным энергетическим диапазоном является диапазон $E=150-450~{\rm M}{\rm 9B}$ (60% от общего числа выбранных экспериментальных данных), а также отдельные энергетические точки — 500 МэВ, 600 МэВ, 660 МэВ, 800 МэВ и 1 ГэВ. Для изотопов 27 Al и 209 Pb в библиотеке EXFOR представлено наибольшее количество экспериментальных значений (368 и 444 соответственно).

В качестве оценочного параметра выступала линейная комбинация факторов согласия [17]

Рис.1. Распределения экспериментальных значений в зависимости от энергии налетающего протона (a) и массового числа ядра-мишени (б)

$$F = 10^{\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\lg \sigma_i^{\exp} - \lg \sigma_i^{colc} \right)^2}}$$

где N — общее число экспериментальных точек, σ_i^{exp} — экспериментальное значение сечения, σ_i^{calc} — вычисленное значение сечения.

$$H = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\sigma_i^{\text{exp}} - \sigma_i^{\text{cacl}}}{\Delta \sigma_i^{\text{exp}}} \right)^2} ,$$

где $\Delta \sigma_i^{\text{exp}}$ – погрешность экспериментального значения сечения.

В данном случае фактор F позволяет наиболее адекватно и надежно оценить взаимосвязь между рассчитанными и экспериментальными данными, а фактор H позволяет учитывать погрешность экспериментальных данных.

Результаты факторного сравнения

Для выбора оптимальных моделей в зависимости от массового числа ядра-мишени, весь диапазон экспериментальных точек был разбит на примерно равные поддиапазоны по массовому числу ядра-мишени. Каждый поддиапазон включил порядка 400 экспериментальных точек, для которых были вычислены значения сечений выхода остаточных ядер для реакций типа (р, хпурга) по всем восьми расчетным моделям: Bertini/ABLA, Bertini/Dresner, CEM2K, INCL4/ABLA, INCL4/Dresner, ISABEL/ABLA, ISABEL/Dresner и CASCADE /INPE. На следующем этапе были проведены вычисления значений факторов для каждой реакции и линейной комбинации факторов с весом, равным суммарному значению каждого фактора для всех моделей в выбранном диапазоне массовых чисел ядра-мишени. Также были вычислены произведения факторов согласия F и H с такими весами. При расчете фактора согласия H исключалась из рассмотрения экспериментальная точка, если экспериментальная погрешность сечения не была указана авторами.

Результаты вычислений приведены в табл. 1 и 2.

На основе результатов, приведенных в табл.1–2, для каждого поддиапазона массовых чисел изотопов были отобраны оптимальные расчетные модели, рассчитанные значения сечений по которым наиболее точно согласуются с существующими на сегодняшний день экспериментальными данными. В табл. 3 представлены выбранные модели для каждого поддиапазона. На их основе производился расчет сечений для библиотеки IEAF-2005.

Таблица 1 Значения линейной комбинации нормированных факторов согласия *H* и *F* в зависимости от поддиапазона массового числа ядер-мишени

Поддиапазон А ядра-мишени	Bertini/ ABLA	Bertini/ Dresner	CEM2K	INCL4/ ABLA	INCL4/ Dresner	ISABEL/ ABLA	ISABEL/ Dresner	CASCADE
12–19	0.297	0.283	0.241	0.352	0.337	0.252	0.237	
23–27	0.280	0.185	0.220	0.314	0.174	0.325	0.234	0.269
28-55	0.262	0.273	0.286	0.239	0.242	0.255	0.268	0.175
56–59	0.240	0.208	0.241	0.292	0.221	0.280	0.240	0.277
60–89	0.294	0.306	0.189	0.290	0.301	0.242	0.234	0.143
90–124	0.381	0.220	0.210	0.270	0.196	0.291	0.230	0.202
125–181	0.266	0.280	0.215	0.266	0.274	0.247	0.241	0.212
182–197	0.284	0.302	0.202	0.280	0.321	0.206	0.248	0.156
206–209	0.260	0.290	0.297	0.242	0.278	0.204	0.247	0.182

Таблица 2 Значения произведения нормированных факторов согласия *H* и *F* в зависимости от поддиапазона массового числа ядер-мишени

Поддиапазон А ядра-мишени	Bertini/ ABLA	Bertini/ Dresner	CEM2K	INCL4/ ABLA	INCL4/ Dresner	ISABEL/ ABLA	ISABEL/ Dresner	CASCADE
12–19	0.022	0.020	0.0143	0.030	0.028	0.016	0.014	
23–27	0.019	0.007	0.012	0.021	0.006	0.026	0.009	0.018
28–55	0.017	0.019	0.020	0.014	0.015	0.016	0.018	0.008
56–59	0.014	0.010	0.014	0.021	0.012	0.020	0.013	0.017
60–89	0.022	0.023	0.007	0.020	0.021	0.014	0.014	0.005
90–124	0.032	0.012	0.010	0.018	0.009	0.021	0.013	0.010
125–181	0.018	0.019	0.011	0.018	0.018	0.015	0.014	0.010
182–197	0.019	0.023	0.009	0.018	0.026	0.011	0.015	0.005
206–209	0.017	0.021	0.020	0.013	0.019	0.010	0.015	0.008

Таблица 3 Модели, рекомендованные на основе статистического анализа

Поддиапазон	Рекомендованная модель для расчета
1-H-1 – 2-He-4	MCNPX interpolation tables
3-Li-6 – 10-Ne-22	ISABEL/ Dresner
11-Na-23 – 13-Al-27	INCL4/Dresner
12-Mg-28 – 27-Co-55	CASCADE
29-Cu-56 – 28-Ni-59	Bertini/ Dresner
26-Fe-60 – 40-Zr-89	CASCADE
38-Sr-90 - 54-Xe-124	INCL4/ Dresner + CASCADE
50-Sn-125 – 75-Re-181	CEM2K
72-Hf-182 – 84-Po-210	CASCADE

Результаты корреляционного и МНК сравнений

В дополнение к статистическому анализу был проведен выбор наиболее оптимальных моделей, включенных в программы MCNPX и CASCADE/INPE, на основе корреляционного анализа и анализа на основе метода наименьших квадратов (МНК).

Сравнивались отобранные экспериментальные данные протонных реакций на нуклидах-мишенях с Z = 6-84 в энергетическом диапазоне E = 150-1 000 МэВ и расчетные данные, полученные с использованием представленных выше моделей. Ввиду большого числа существенно разнородных экспериментальных данных (как по количеству данных для разных реакций, так и степени их однородности внутри каждого диапазона) был произведен дополнительный их анализ и отбор с использованием фактора согласия, представленного в виде

$$D_i = \left| \frac{\sigma_i^{calc} - \sigma_i^{exp}}{\sigma_i^{exp}} \right|,$$

где σ_i^{exp} и σ_i^{calc} – экспериментальное и расчетное сечение для i-ой экспериментальной точки.

В качестве отбраковочного значения фактора D были выбраны максимальные оценки, равные 0.8 и 0.4. Оценки выбирались путем сопоставления наборов экспериментальных и рассчитанных для них теоретических данных. Выбранные оценки позволили не рассматривать теоретические данные, которые дают существенные расхождения с экспериментальными. В результате были получены два набора данных (файлов) со следующими характеристиками: при $D \le 0.4$ общее количество экспериментальных измерений составило 1 624, количество рассматриваемых реакций (файлов) — 191, при $D \le 0.8$ количество экспериментальных измерений — 2 124, количество рассматриваемых реакций (файлов) — 249. Каждый файл представлял собой массив экспериментальных точек (измерений) и расчетных модельных значений для определенного типа реакции.

Для анализа данных использовался прикладной пакет MATHCAD. Данные представлялись в виде векторов экспериментальных Y_0 и расчетных Y сечений (каждой j-ой ($j=1,2,\ldots 8$) модели соответствовал свой вектор Y). Для каждой модели вычислялись стандартные отклонения и ковариации с использованием операторов MATHCAD $stdev(Y_i)$ и $cvar(Y_0, Y_i)$ соответственно:

а) MMQ_j — векторы обратных значений сумм квадратов разностей экспериментальных и расчетных данных для i-ой реакции (максимальность компоненты вектора MMQ_i характеризует «наилучшее» согласие):

$$MMQ_{j} = \left(\sum_{i=1}^{i_{max}} (Y_{0_{i}} - Y_{j_{i}})^{2}\right)^{-1};$$

6) COR_j – векторы корреляций экспериментальных и расчетных данных для i-ой реакции (максимальность компоненты вектора COR_j характеризует «наилучшую» корреляцию экспериментальных и расчетных сечений):

$$COR_{j} = \frac{cvar(Y_{0}, Y_{j})}{stdev(Y_{0}) \cdot stdev(Y_{j})};$$

в) MMQ_COR_j — вектор, компоненты которого являются произведениями компонент MMQ_j и COR_j (максимальность компоненты вектора MMQ_COR_i характеризует «наилучшее» согласие экспериментальных и расчетных сечений с учетом их корреляции).

Поскольку не для всех моделей и реакций имелись расчетные данные, при вычислении векторов MMQ_j , COR_j и MMQ_COR_j использовались специальные регуляризующие процедуры, учитывающие этот факт. Для анализа, основанного на частотном подходе, вычислялись нормированные на единицу значения этих векторов для каждой j-ой реакции. В результате обработанные данные получились в виде двух наборов трех $j \times i_{\text{max}}$ матриц MMQ_{ij} , COR_{ij} и MMQ_COR_{ij} для двух максимальных значений фактора D, равных 0.4 и 0.8.

Полученные данные в виде матриц дают возможность определить суммы частот вкладов всех реакций для каждой из рассматриваемых моделей (см. рис. 2):

$$MMQ_{j} = \sum_{i=1}^{l_{max}} MMQ_{ij}, \ COR_{j} = \sum_{i=1}^{l_{max}} COR_{ij}, \ MMQ_COR_{j} = \sum_{i=1}^{l_{max}} MMQ_COR_{ij}.$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,2$$

$$0,0$$

$$0,4$$

$$0,$$

Рис. 2. Суммы частот вкладов всех реакций в зависимости от модели для $D \le 0.4$ и $D \le 0.8$: $= -MMQ_COR^{j}; = -MMQ^{j}; = --COR^{j}$

На основе проведенного анализа были сделаны выводы по корреляционному согласию расчетных моделей с экспериментальными данными в зависимости от поддиапазона массового числа ядер-мишеней. При этом анализ показал, что результаты выбора «наилучшей» модели одинаковы для массивов данных при значе-

Таблица 4 Модели, рекомендованные на основе МНК и корреляционных сравнений

Поддиапазон	Модель		
6-C-12 – 10-Ne-22	INCL4/Dresner		
11-Na-23 – 13-Al-27	CEM2K		
12-Mg-28 – 27-Co-55	CASCADE		
29-Cu-56 – 28-Ni-59	ISABEL/Dresner		
26-Fe-60 – 40-Zr-89	CASCADE		
38-Sr-90 – 54-Xe-124	CASCADE		
50-Sn-125 – 75-Re-181	ISABEL/Abla		
72-Hf-182 – 84-Po-210	CASCADE		

нии фактора $D \le 0.4$ и $D \le 0.8$. Анализ проведен на основе МНК и корреляционных сравнений.

Основным критерием для представленных выше рекомендаций является метод МНК; корреляционные же данные лишь уточняют выводы, когда МНК дает близкие для моделей результаты. Необходимо отметить, что анализ, основанный на частотном подходе, устойчив к исходным данным, поскольку несет в себе интегральную характеристику входных данных.

ФОРМАТ ПРЕДСТАВЛЕНИЯ ДАННЫХ

Нейтронные активационные данные представлены с шагом 5 МэВ в энергетическом диапазоне от 150 до 250 МэВ, 25 и 50 МэВ в энергетических диапазонах от 250 до 600 МэВ и от 600 МэВ до 1 ГэВ соответственно. Все файлы записаны в формате ENDF-6 с использованием стандартных секций МF = 3, МТ = 5 и МF = 6, МТ = 5. В секции МF = 3, МТ = 5 представлены суммы неупругих сечений реакций в зависимости от энергии налетающего нейтрона. В секции МF = 6, МТ = 5 — коэффициенты выходов остаточных ядер в зависимости от энергии налетающего нейтрона (ключ LAW =0). В начале секции записаны выходы р, d, t, He-3, He-4, а затем всех остаточных ядер. В секции МF = 6, МТ = 5 данные приведены с учетом пороговых реакций. При этом первой энергетической точкой является точка, равная порогу реакции.

ЗАКЛЮЧЕНИЕ

Расчет нейтронных сечений в области энергий 150-1000 МэВ проводился с использованием моделей, выбранных на основе проведенного статистического анализа и представленных в табл. 3. Корреляционные и МНК сравнения подтвердили корректность выбора расчетной модели программы CASCADE /INPE для соответствующих поддиапазонов массовых чисел ядер-мишеней. Результаты МНК и корреляционного анализа для всех остальных поддиапазонов отличаюется от факторного анализа. Это позволяет проводить дальнейшие исследования в соответствующих поддиапазонах и продолжать работы по корректировке моделей с учетом современных экспериментальных данных. Кроме того, и первый, и второй анализ показали, что практически на всем диапазоне массовых чисел, за исключением легких ядер, наиболее целесообразным является использование программы CASCADE/INPE.

Библиотека нейтронных активационных данных IEAF-2005, выход которой предполагается в 2007 г., может в будущем найти широкое применение в исследованиях в области трансмутации радиоактивных отходов, активации материалов и оборудования космических установок.

Литература

- 1. Fischer U., Konobeyev A., Korovin Yu. et al. Intermediate energy activation file 2001 (IEAF 2001) // Interner Bericht IRS-Nr. 10/01 FUSION-Nr. 179. August, 2001.
- 2. Hendricks J. S. et al. MCNPX Extensions Version 2.5.0 / LA-UR-05-2675. 2005.
- 3. Bertini H.W. Low-Energy Intranuclear Cascade Calculation-// Phys. Rev. 131. 1963. 1801.
- 4. Bertini H.W. Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparison with Experiments. // Phys. Rev. 188. 1969. 1711.
- 5. Yariv Y., Fraenkel Z. Intranuclear Cascade Calculation of High-Energies Heavy-Ion Interactions // Phys. Rev. C 20. 1979. 2227.
- 6. Yariv Y., Fraenkel Z. Intranuclear Cascade Calculation of High-Energies Heavy-Ion Collisions: Effects of Interactions Between Cascade Particles // Phys. Rev. C 24. 1981. 488.
- 7. Boudard A., Cugnon J., Volant C. Intranuclear Cascade Model for a Comprehensive Description of Spallation Reaction data. // Phys. Rev. C 66. 2002. 044615.
- 8. *Prael R.E. et al.* Adaptation of the Multistage Preequilibrium Model for the Monte Carlo Method (I). // LA-UR-88-3238. 1988.
- 9. *Dresner L*. EVAP, A Fortran Program for Calculation the Evaporation of Various Particles from Excited Compound Nuclei // ORNL TM –196. 1962.
- 10. *Junghans A.R. et al.* Projectile-Fragment Yields as a Probe for the Collective Enhancement in the Nuclear Level Density. // Nuclear Physics A. 629. 1998. P. 635-655.

- 11. Alsmiller F.S. et al. // Nucl. Sci. Eng. 79. 1981. P.147.
- 12. Atchison F. Spallation and Fission in Heavy Metal Nuclei under Medium Energy Proton Bombardment in Targets for Neutron Beam Spallation Sources // Jul-Conf-34. Kernforschungsanlage Julich GmbH. –—1980.
- 13. Mashnik S.G., Sierk A.J. Recent Developments of the Cascade-Exciton Model of Nuclear Reactions // LA-UR-01-5390. 2001.
- 14. Барашенков В.С., Тонеев В.Д. Взаимодействия высокоэнегетических частиц и атомных ядер с ядрами. М.: Атомиздат, 1972.
- 15. *Барашенков В.С., Конобеев А.Ю., Коровин Ю.А., Соснин В.Н.* Компьютерная программа CASCADE/INPE// Атомная энергия. -87.-1999.-C.283.
- 16. McLane V. EXFOR Basis. A Short Guide to the Nuclear Reaction Data Exchange Format // BNL-NCS-63380-2000/05-Rev., 2000.
- 17. International Codes and Model Intercomparison for Intermediate Energy Activation Yields // NSCDOC (97). 1 January 1997.
- 18. Booth T.E. et al. MCNP A General Monte Carlo N-Particle Transport Code, Version 5 // Volume I: Overview and Theory, LA-UR-03-1987. 2003. P. 2-109.

Поступила в редакцию 23.01.2007