Crystal Lattices

"The true test of crystallinity is not the superficial appearance of a large specimen of crystal, but whether on the microscopic scale, the atoms (or ions) are arranged in a periodic array."

References:

- Solid State Physics –
 By N. W. Ashcroft and N. D. Mermin
- 2) Crystallography Applied To Solid State Physics By A. R. Verma and O. N. Srivastava
- 3) The Oxford Solid State Basics By Steven H. Simon

Crystal Lattices

Things to discuss -

- Introduction to Symmetry Operations
- Bravais Lattice & Primitive Vectors
- Coordination number
- Primitive unit-cell & Conventional unit-cell
- Wigner-Seitz cell
- Reciprocal Lattice and Lattice Planes
- X-ray Diffraction and Neutron Diffraction

Symmetry Operations-A Brief Introduction

Patterns and their symmetry

1 And 6.0.6

Patterns and their symmetry Potterns: The motif itself has no symmetry Reflection

Crystals have Translational Periodicity

- Translation is a common operation for patterns from 1 to 3
- Translation has magnitude and direction, but no unique origin
- Crystals have translational periodicity

If we take the entire pattern, move it by \vec{T} in one direction and drop the whole infinite chain back down again, it is mapped in congruence with itself ---- Then the pattern will be said to have translation periodicity \vec{T} .

Rotational Symmetry

There are loci about which one can rotate one motif into its neighbor or flip the entire chain through 180° and it will be mapped into congruence with itself

Reflection Symmetry

 The entire pattern should have the reflection (mirror) symmetry.

Symmetry operation is a global operation and not a local

operation

 If only the motif has reflection symmetry, however, the pattern lacks it, then reflection is not a symmetry operation for the pattern

In 2D - Single-step Symmetry operations

Three possible single-step operations in 2D-

• Translation \overrightarrow{T}

dy > xta, ytb -> xt2a, y+2b

Reflection m

In 2D - Single-step Symmetry operations

Rotation

In two-dimensions (two coordinates) -

- We can change the sense of no coordinates Translation does that
- We can change the sense of one coordinate Reflection does that
- We can change the sense of both coordinates Rotation does that

Non-collinear translations

 $\overrightarrow{T_1}$ and $\overrightarrow{T_2}$ cannot be parallel, while they are unequal (not integral multiple), otherwise there will be no lattice

In 3D - One-step symmetry operations

In 3D - One-step symmetry operations- contd.

Changes the sense of two coordinates

Rotation	$\alpha = \frac{2\pi}{n}$ where	2 n'is pur intéger)
Analytic	Individual	Crometric
symbol	as the word auch	n-gen
The state of the s	abreas & sector	0 400
Jakke Ka	180°	Three-fold four Six bold fine fold fold fold
10Acan	CTwo-	tha aus)

In 3D - One-step symmetry operations- contd.

Changes the sense of all three coordinates

Crystals always exhibit certain symmetries We know cube is a symmetrical solid. How?

• If we <u>rotate</u> the cube about a <u>vertical line parallel to the</u> <u>intersection edges and passing</u> <u>through center of the horizontal face</u>, in one complete rotation of 360°, we get four positions of the cube coincident with its original position.

Crystals always exhibit certain symmetries We know cube is a symmetrical solid. How?

- If we <u>rotate</u> the cube about a <u>vertical line parallel to the</u> <u>intersection edges and passing</u> <u>through center of the horizontal face</u>, in one complete rotation of 360°, we get four positions of the cube coincident with its original position.
- Such rotation axis is called axis of symmetry.

Crystals always exhibit certain symmetries We know cube is a symmetrical solid. How?

- If we <u>rotate</u> the cube about a <u>vertical line parallel to the</u> <u>intersection edges and passing</u> <u>through center of the horizontal face</u>, in one complete rotation of 360°, we get four positions of the cube coincident with its original position.
- Such rotation axis is called axis of symmetry.
 - Since there are four congruent positions in one complete revolution, this is called fourfold axis of symmetry.

If a rotation through $\frac{2\pi}{n}$ about an axis brings a figure into congruent position, the axis is called an *n*-fold axis of symmetry.

Planes of Symmetry

Symmetry

The full crystallographic symmetry of a cube is

```
3 tetrads \\
4 triads \\
5 13 axes, \\
6 diads \\
3 planes \\
6 diagonal planes \\
7 Centre of symmetry 1 \\
Total: 13+9+1 = 23 elements of symmetry
```

Labelling Lattice-Planes

- For a given plane, first its intercepts with the axes in units of lattice vectors need to be determined (212)
- Reciprocal of these numbers are to be taken $(\frac{1}{2}, 1, \frac{1}{2})$
- Reduction of numbers to the smallest set of integers having the same ratio. These are called Miller indices (1 2 1)

Symmetry

One can construct a solid model (from glass, wood, clay etc.) where n can have any values 1, 2, 3, 4, 5, 6, 7, 8 ...

A crystal is not just a solid body but is one in which the internal atomic or molecular arrangement is periodic in three dimensions.

The above puts a constraint on n for crystals and we can have only 1, 2, 3, 4 and 6 fold symmetries.

Combination of translation and rotation operations

Start with a translation and add a rotation operation A_{lpha}

$$b = \tau - 2\tau \cos \alpha$$

For the lattice to exist in the horizontal direction -

$$m au = au - 2 au \cos lpha$$
 m is an integer

Permissible periods of crystallographic axes

$$m\tau = \tau - 2\tau\cos\alpha$$

$$2 \cos \alpha = M$$

 $M = 1-m$, is also an integer

\overline{M}	$\cos \alpha$	α	$n = 2\pi/\alpha$	$b = \tau - 2\tau \cos \alpha$
$\overline{-3}$	-1.5	_	_	_
-2	-1	π	2	3τ
-1	-0.5	$2\pi/3$	3	2 au
0	0	$\pi/2$	4	au
1	0.5	$\pi/3$	6	0
2	1	0	∞	- au
3	1.5	_	_	

Permissible periods of crystallographic axes

Because of translational repetition, crystals can only have 1-fold, 2-fold, 3-fold, 4-fold and 6-fold rotation axes

Non-crystallographic symmetry in nature

Periwinkle

Cactus

Cells inside the above things cannot be translationally invariant

Translational Symmetry - Lattice

A lattice is an array of fictitious points which summarizes the translational symmetry of the lattice

Bravais Lattice

- It specifies the periodic array in which the repeated units (single atom, group of atoms, ions etc.) of the crystal are arranged.
- It summarizes the geometry of the underlying periodic structure.

Two equivalent definitions -

- 1) A Bravais lattice is an infinite array of discrete points with an arrangement and orientation that appears exactly the same, from whichever of the points the array is viewed.
- 2) A Bravais lattice consists of all points with position vectors **R** of the form -

$$R = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

Here \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 are any three vectors not all in the same plane. These are called <u>primitive vectors</u> and they span the lattice. n_1 , n_2 and n_3 are any integers (positive as well as negative)

Bravais Lattice

Point C can be reached by $(2a_2 + a_1)$

Similarly any other point on this lattice can be reached with suitable choices for n1 and n2

A general 2D Bravais lattice \mathbf{a}_1 and \mathbf{a}_2 are primitive vectors

Bravais Lattice

Primitive vectors are not unique Several possible choices for \mathbf{a}_1 and \mathbf{a}_2

Coordination Number

- The points in a Bravais lattice that are closest to a given point are called its nearest neighbours.
- Because of periodic nature of Bravais lattice, each point has the same number of nearest neighbours.
- This number is a property of lattice and called coordination number.
- Coordination number for Simple cubic lattice 6, Body-centered cubic lattice 8, Face-centered cubic lattice 12...
- The notion can be extended to a simple array of points, which are not Bravais lattice.