幾何学 1 4. 群作用と商多様体

M を可微分多様体,G を群とする.G が M に左から C^∞ 級に作用するとは, $g\in G$ に対して C^∞ 写像 $\varphi_g:M\to M$ があって,

$$\varphi_{qh} = \varphi_q \circ \varphi_h, \quad \varphi_e = id$$

を満たすことである.ここで,e は G の単位元を表す.以降, $\varphi_g(x)=gx$ と表すこともある.M の点 x に対して,

$$G \cdot x = \{ gx \mid g \in G \}$$

とおき,xのG軌道(orbit)とよぶ.また,

$$G_x = \{ q \in G \mid qx = x \}$$

とおき,x の固定部分群 (isotropy subgroup) とよぶ.すべての $x\in M$ に対して, G_x が単位元のみからなるとき,G の作用は自由 (free) であるという.M に同値関係 \sim を,以下のように定義する. $x,y\in M$ に対して, $x\sim y$ とは,ある $g\in G$ があって,y=gx となることとする.この同値関係による同値類の集合に商位相を入れ,M/Gで表す.商空間 M/G は,一般には多様体の構造をもつとは限らないが,いくつかの条件の下で,可微分多様体になる.以下にいくつかの例を挙げよう.

例 1 (実射影空間) n 次元球面 S^n に 2 次の巡回群 \mathbf{Z}_2 が,gx=-x によって作用する.この作用による商空間 S^n/\mathbf{Z}_2 は,可微分多様体の構造を持ち, $\mathbf{R}P^n$ と微分同相である.

例 2 (ユークリッド平面の合同変換群) Γ をユークリッド平面 E の合同変換群の部分群で,自由かつ離散的とする.ここで,離散的 (discrete) とは,ユークリッド平面の任意の点 x に対して,軌道 $\Gamma \cdot x$ が集積点を持たないこととする.このとき,商空間 $M=E/\Gamma$ は 2 次元可微分多様体の構造をもつ. $\pi:E \to M$ を射影とする.M には,

$$d(x_1, x_2) = \min_{g \in \Gamma} \|y_1 - gy_2\|, \quad \pi(y_i) = x_i, \quad i = 1, 2$$

によって,距離空間の構造が入る.このようなMの例として,ユークリッド平面,円柱 $S^1 \times \mathbf{R}$,開メビウスバンド,トーラス,クラインの壷の5通りの場合があることが知られている.これらは,上の距離に関して,局所的にユークリッド平面の開円板と合同であり,局所ユークリッド幾何構造をもつ.