Information Security and Cryptography (CS302) B.Tech. III (CSE) - Semester 6 Academic year 2023-24 Lecture Plan

Course Outcomes:

After successful completion of this course, student will be able to

- 1. Understand the concepts related to Information Security and Cryptography
- 2. Apply the concept of security services and mechanisms from the application developers and network administrator's perspective.
- 3. Analyze the security schemes for their use in different application scenarios.
- 4. Evaluate and asses the computer and network systems for associated risks.
- 5. Design the security schemes depending on the organization requirements.

Lecture Plan

WEEK NUMBER	TOPIC	FACULTY MEMBER
Week 1	Introduction to the course, scheme and syllabus	S J Patel
	Security Goals, CIA Traid, Security Attacks, Active and Passive Attacks	
	Security Services, Security Mechanisms, Model of Network Security	
	 Information Security in current context, attack vectors, threat landscape 	D R Patel
Week 2	Number theory: Modular arithmetic, congruence, divisibility, Euclidean algorithm, Inverses	S J Patel
	 Algebraic structures, Groups – Properties, subgroups, Lagrange's theorem 	
	Substitution Techniques, Ceaser and Monoalphabetic Ciphers	D R Patel
Week 3	 Number theory (cont.), permutation group, cyclic groups, Rings, Finite Fields- GF(p) and GF(2ⁿ) 	S J Patel
	Shannon's theory	
	Polyalphabetic Ciphers, One-time pad	D R Patel
Week 4	Euler's phi function, Euler's theorem, Fermat's little theorem,	S J Patel
	Chinese remainder theorem	
	Integer factorization, Discrete logarithm and related hard problems	
	Transposition techniques and related ciphers	D R Patel
Week 5	 Principles of Public Key Cryptography (PKC), RSA 	S J Patel
	Security analysis and attacks on RSA	
	Digital Watermarking and Steganography	D R Patel
Week 6	Diffie-Hellman Key Exchange	S J Patel
	El-gamal Cryptosystem	
	 Modern symmetric cipher building blocks, block cipher design principles 	D R Patel
Week 7	Elliptic Curves, prime and binary curves, Point addition and scaler multiplication,	S J Patel
	Properties of elliptic curve points	

	Fiestel cipher, Diffusion and Confusion, Avalanche effect	D R Patel	
Week 8	Elliptic curve discrete logarithm problem	S J Patel	
	Elliptic curve based encryption algorithms		
	Data Encryption Standard (DES), Cryptanalysis of DES	D R Patel	
MID SEMESTER EXAMINATION			
Week 9	Hash Functions and Data Integrity, Properties of cryptographic hash	S J Patel	
	functions,		
	 Security of Hash Functions-The Random Oracle Model 		
	 Advanced Encryption Standard (AES) and cryptanalysis 	D R Patel	
Week 10	 Iterated Hash Functions- Merkel Damgard Construction 	S J Patel	
	 Secure Hash Algorithm (SHA). 		
	Block cipher modes of operation	D R Patel	
Week 11	Message authentication requirements, security	S J Patel	
	 Message authentication codes (MAC) based on hash functions-HMAC 		
	MACs based on block ciphers- CMAC		
	Random Bit Generation and Stream Ciphers	D R Patel	
Week 12	Authenticated Encryption	S J Patel	
	 Digital Signatures: Security requirements, RSA Digital Signatures, 		
	Advanced topics: Tweakable ciphers	D R Patel	
Week 13	NIST Digital Signature Algorithm (DSA), Elliptic Curve Digital Signature	S J Patel	
	Algorithm (ECDSA), RSA-PSS Digital Signature Algorithm		
	 Advanced topics: Format preserving ciphers 	D R Patel	
Week 14	Entity Authentication: Challenge-response protocol	S J Patel	
	 Password based authentications, Zero-knowledge Proofs 		
	Advanced topics	D R Patel	
END SEMESTER EXAMINATION			

Sankita Patel, Course Co-ordinator