Алгоритми та структури даних. Основи алгоритмізації

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант 13

Виконав студент	<u>III-15 Конденко Іван Ігорович</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив(-ла)	
1 1 ,	(прізвище, ім'я, по батькові)

Лабораторна робота 2

Дослідження алгоритмів розгалуження

Мета — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок в їх використання під час складання програмних специфікацій.

Індивідуальне завдання Варіант 13 Постановка задачі

Визначити чи належить точка з координатами (x,y) заштрихованій частині площини. Результатом є належність чи неналежність точки.

Математична модель

Змінна	Тип	Ім'я	Призначення
Радіус півкола	Дійсний	R	Вхідні дані
Координата Х	Дійсний	X	Вхідні дані
Координата Ү	Дійсний	y	Вхідні дані
Перевірка верхньої межі	Дійсний	Up	Проміжні дані
Перевірка нижньої межі	Дійсний	Down	Проміжні дані

Перевірку верхньої межі обчислюємо за формулою sqrt(4-((x-1)*(x-1))).

Перевірку нижньої межі обчислюємо за формулою -sqrt(4-((x-1)*(x-1)))

Розв'язання

Крок 1. Визначаємо основні дії

Крок 2. Деталізуємо крок перевірки площини в межах х ϵ (-1;1)

Крок 3. Деталізуємо крок перевірки площини в межах х ε [1;3)

Псевдокод

Крок 1

Початок

Введення х, у

Перевірка належності точки до площини в межах х ϵ (-1;1)

Перевірка належності точки до площини в межах х ϵ [1;3)

Кінець

```
Крок 2
Початок
      Введення х, у
      якщо x < 1 \&\& x > -1 то
            Up: = sqrt(4-((x-1)*(x-1)))
            Down: = -sqrt(4-((x-1)*(x-1)))
            якщо у < up \&\& у > down то точка належить площині
            інакше точка не належить площині
      інакше:
      Перевірка належності точки до площини в межах х \varepsilon [1;3)
Кінець
Крок 3
Початок
      Введення х, у
      якщо x < 1 \&\& x > -1 то
            Up: = sqrt(4-((x-1)*(x-1)))
            Down: = -sqrt(4-((x-1)*(x-1)))
            якщо y < up && y > down то точка належить площині
            інакше точка не належить площині
      інакше:
      якщо x >= 1 & x < 3 то
            \underline{Up: = 3 - x}
            \underline{\text{Down:}} = x - 3
            Якщо y < up && y > down то точка належить площині
            інакше точка не належить площині
      інакше точка не належить площині
```

Кінець Блок схема

Крок 3

Випробування

Блок	Дія
	Початок
1	x = 1, y = 1
2	$x \Rightarrow 1$
3	Up = 3 - 1, $Down = 1 - 3$
4	y < Up, y > Down
5	точка належить площині
	Кінець

Висновки

Ми дослідили подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок в їх використання під час складання програмних специфікацій. Підставивши значення x=1 та y=1, ми визначили те, що x=>1, тому використали перевірку належності точки до площини в межах $x \in [1;3)$ в результаті якої отримали up =2 та down =-2, y < up та y > down, тому точка належить заштрихованій площині.