LISTING OF THE CLAIMS

1. (Previously Presented) A backup power supply for supplying electric power to fan rotor circuitry that controls rotation of a fan rotor, the backup power supply comprising:

an input for receiving an input voltage, the input being coupled to the rotor circuitry, the rotor circuitry being energizable by the input voltage;

and

a charge-current limited energy storage circuit coupled to the input and comprising a current limiting element coupled in series with capacitive storage, the current limiting element at least in part controlling an amount of current flow from the input to the capacitive storage, the series combination of the current limiting element and the capacitive storage being coupled in parallel with the rotor circuitry.

- 2. (Previously Presented) The backup power supply as defined by claim 1 wherein the current limiting element is configured to control current flow from the input to the capacitive storage at least in part as a function of the amount of current required to be drawn by the rotor circuitry.
- 3. (Previously Presented) The backup power supply as defined by claim 1 wherein the current limiting element is a PTC.
- 4. (Previously Presented) The backup power supply as defined by claim 1 wherein the current limiting element is an adjustable linear voltage/current regulator.
- 5. (Previously Presented) The backup power supply as defined by claim 1 wherein the capacitive storage includes a plurality of series capacitors.
- 6. (Previously Presented) The backup power supply as defined by claim 1 wherein the current limiting element is configured to ensure that the rotor circuitry has sufficient current to rotate the rotor when the storage element is charging.

7. (Previously Presented) A backup power supply for supplying electric power to fan rotor circuitry that controls rotation of a fan rotor, the backup power supply comprising:

means for receiving an input voltage, the input means being coupled to the rotor circuitry, the rotor circuitry being energizable by the input voltage;

and

energy storage means coupled to the input means and comprising means for storing charge as a result of receiving current from the input means, coupled in series with means for at least in part controlling an amount of current flow from the input means to the storing means, the energy storage means being coupled in parallel with the rotor circuitry.

- 8. (Previously Presented) The backup power supply as defined by claim 7 wherein the controlling means includes means for controlling current flow from the input means to the storing means at least in part as a function of the amount of current required to be drawn by the rotor circuitry.
- 9. (Previously Presented) The backup power supply as defined by claim 7 wherein the controlling means is a PTC.
- 10. (Previously Presented) The backup power supply as defined by claim 7 wherein the controlling means comprises an adjustable linear voltage/current regulator.
- 11. (Previously Presented) The backup power supply as defined by claim 7 wherein the storing means includes a plurality of series capacitors.
- 12. (Previously Presented) The backup power supply as defined by claim 7 wherein the controlling means includes means for ensuring that the rotor circuitry has sufficient current to rotate the rotor when the storing means is charging.
- 13. (Previously Presented) A circuit for controlling rotation of a rotor, the rotor having associated rotor control circuitry for rotating the rotor, the circuit comprising: an input,

the rotor control circuitry capable of rotating the rotor in response to receipt of current drawn from the input;

a charge-current limited energy storage circuit coupled to the input and comprising a current limiting element coupled in series with a storage element capable of storing charge by drawing current from the input, the current limiting element being configured to control an amount of current drawn by the storage element at least in part as a function of the current required to be drawn by the rotor control circuitry, the series combination of the current limiting element and the storage element being coupled in parallel with the rotor circuitry.

- 14. (Previously Presented) The circuit as defined by claim 13 wherein the current limiting element is configured to ensure that the rotor circuitry receives enough current to rotate the rotor when the storage element is charging.
- 15. (Original) The circuit as defined by claim 13 wherein the current limiting element is configured to ensure that the motor begins operating substantially immediately after start-up.
- 16. (Original) The circuit as defined by claim 15 wherein the current limiting element is configured to ensure that the motor begins operating within one second after start-up.
- 17. (Original) The circuit as defined by claim 13 wherein the current limiting element is one of a PTC and a constant current device.
- 18. (Original) The circuit as defined by claim 13 wherein the storage element includes a plurality of series capacitors.
- 19. (Original) The circuit as defined by claim 13 wherein the storage element is in electrical communication with both the input and the rotor control circuitry.
- 20. (Original) The circuit as defined by claim 13 wherein the current limiting element is not coupled between the input and the rotor control circuitry.

Application 10/616,499 Filed 7/9/2003 Response C to Office Action of May 1, 2007

- 21. (Original) The circuit as defined by claim 13 wherein the current limiting element isolates the rotor control circuitry from the storage element.
- 22. (Previously Presented) The backup power supply as defined by claim 1, wherein the current limiting element is not connected in series between the input and the rotor circuitry.
- 23. (Previously Presented) The backup power supply defined by claim 7, wherein the controlling means is not coupled in series between the input means and the rotor circuitry.
- 24. (Previously Presented) The circuit defined by claim 13, wherein the current limiting element is not connected in series between the input and the rotor control circuitry.
- 25. (Previously Presented) The backup power supply as defined by claim 1, wherein the capacitive storage comprises a capacitor having a value of at least one farad.
- 26. (Previously Presented) The backup power supply as defined by claim 7, wherein the storing means comprises a capacitor having a value of at least one farad.
- 27. (Previously Presented) The backup power supply as defined by claim 13, wherein the storage element comprises a capacitor having a value of at least one farad.