Faktoryzacja iloczynu kartezjańskiego grafów

Andrzej Kawula Promotor: dr Monika Pilśniak

30.06.2018

Spis treści

1	Wp	rowadzenie	2
2	Wst	Vstęp	
	2.1	Informacje wstępne	2
	2.2	Kolorowanie produktu iloczynu kartezjańskiego grafów	2
3	Algorytm Faktoryzacji		3
	3.1	Faktoryzacja z dodatkowymi informacjami	3
	3.2	Nadawanie współrzędnych wierzchołkom	3
	3.3	Etykietowanie produktu kartezjańskiego	3
	3.4	Etykietowanie produktu w czasie liniowym	3
	3.5	Sprawdzanie spójnosci kolorowanie właciwego produktu iloczynu	
		kartezjańskiego	3
	3.6	Opis algorytm faktoryzacji	3
	3.7	Wprowadzenie	3
4	Implementacja Algorytmu		3
	4.1	Wprowadzenie	3
	4.2	Dane wejsciowe	3
	4.3	Opis pakietów i ważniejszych klas	3
	4.4	Opis algorytm faktoryzacji	3

1 Wprowadzenie

2 Wstęp

2.1 Informacje wstępne

Produktem kartezjańskim $G_1 \square G_2$ grafów $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ nazwyamy graf G = (V, E), którrego zbiorem wierzchołków jest iloczyn kartezjański wierzchołków grafów G_1 i G_2 ($V = V_1 \times V_2$), natomiast wierzchołki (x_1, y_1) oraz (x_2, y_2) są połączone w grafie G jeżeli $x_1 = x_2$ oraz $y_1 y_2 \in E_2$ lub $x_1 x_2 \in E_1$ oraz $y_1 = y_2$. Iloczyn kartezjański grafów jest działaniem łącznym, przemiennym, z dokładnością do izomorfizu, elementem neutralym działania jest graf K_1 .

Z łączności działania możemy zapisać $G_1 \square G_2 \square ... \square G_k = G$ gdzie G jest produktem kartezjańskim grafów $G_1, G_2, ..., G_k$, a nastepnie poetykietować wierzchołki grafu G k-elementową listą $(v_1, v_2, ... v_k)$ gdzie $v_i \in V(G_i)$ dla $1 \le i \le k$. Jeżeli v etykietowny jest przez listę $(v_1, v_2, ... v_k)$ możemy zdefiniować rzutowanie $p_i : V \to V_i$ dla $1 \le i \le k$, które dane jest wzorem $p_i(v) = v_i$, gdzie v_i jest i-tym elemetem listy etykietującej wierzchołek v. Wierzchołek v_i będziemy nazywać i-tą współrzędną wierzchołka v.

Jeżeli w grafie G mamy wierzchołek v i rozważymy wierzchołki, które różnią się od wierzchołka v tylko na i-tej pozycji, to podgraf indukownay przez te wierzchołki utowrzy graf izomorficzny z grafem G_i . Podgraf ten będziemy nazywać i-tą warsttwą G_i przechodzącą przez wierzchołek v i oznaczać G_i^v .

Niech v_0 będzie wyróżnionym wierzchołkiem w grafie G. Warstwy przechodzące przez v_0 będziemy nazywać warstwami jednostkowymi. Wierzchołek v_0 należy do każej warstwy jednostkowej, natomiast zbiory $V(G_i^{v_0})$ są parami rozłączne dla $1 \le i \le k$.

Tutaj będzie przykład

2.2 Kolorowanie produktu iloczynu kartezjańskiego grafów

Rozważmy dwa połączone wierzchołki u oraz v w grafie G. Jeżeli przenanalizujemy współrzędne tych wierzchołków to stwierdzimy że różnią się one dokładne na jednej pozycji. Niech i oznacza tę pozycję. Wtedy krawędź uv należy do G_i^v . Nadajemy krawędzi uv kolor i i będziemy to oznaczać c(uv) = i. Podsumowując: funkcję c: $E(G) \rightarrow 1, 2, ..., k$ będzimy nazywać kolorowaniem własciwym produktu iloczynu kartezjańskiego jeżeli c(uv) = i wtedy i tylko wtedy gdy współrzędne wierzchołków u oraz v różnią się na i-tej pozycji.

Każda krawędź należy dokładnie do jednej warstwy. Jeżeli rozważymy podgraf grafu G skaładający się z krawędzi koloru i to każda spójna składowa tego podgrafu będzie oddzielną i-tą warstwą grafu G.

3 Algorytm Faktoryzacji

- 3.1 Faktoryzacja z dodatkowymi informacjami
- 3.2 Nadawanie współrzędnych wierzchołkom
- 3.3 Etykietowanie produktu kartezjańskiego
- 3.4 Etykietowanie produktu w czasie liniowym
- 3.5 Sprawdzanie spójnosci kolorowanie właciwego produktu iloczynu kartezjańskiego
- 3.6 Opis algorytm faktoryzacji
- 3.7 Wprowadzenie
- 4 Implementacja Algorytmu
- 4.1 Wprowadzenie
- 4.2 Dane wejsciowe
- 4.3 Opis pakietów i ważniejszych klas
- 4.4 Opis algorytm faktoryzacji