Отчет по лабораторной работе <u>Ползучесть</u>

Теоретические сведения

Ползучесть — способность материала деформироваться во времени при действии постоянных напряжений.

В начальный момент времени t_0 полная деформация: $\varepsilon^y(t_0)$ = упругая деформация. Полная деформация образца в момент времени t' :

$$\varepsilon(t') = \varepsilon^{y}(t_0) + \varepsilon^{\Pi}(t') = \frac{\sigma}{E} + \Pi(\sigma, t_0, t'),$$

(упругая деформация + деформация ползучести), где Π — функция ползучести, E — модуль Юнга.

Если увеличение деформаций пропорционально увеличению напряжений, то ползучесть линейная. Тогда:

$$\varepsilon(t) = \frac{\sigma}{E} + \Pi(t, t_0)\sigma.$$

Ползучесть нестареющих материалов зависит только от уровня напряжения σ , продолжительности его действия и не зависит от момента приложения нагрузки:

$$\varepsilon(t) = \frac{\sigma}{E} + \Pi(t - t_0)\sigma$$

Принцип суперпозиции Больцмана: суммарная деформация ползучести при переменном напряжении может быть найдена как сумма деформаций ползучести, вызванных соответствующими приращениями напряжений. Если в моменты времени t_0, t_1, \ldots, t_i происходят скачкообразные изменения напряжения $\Delta\sigma_1, \Delta\sigma_2, \ldots, \Delta\sigma_i$ (ступенчатый режим нагружения).

$$\varepsilon(t_i) = \frac{\sigma(t_i)}{E} + \Pi(t_i - t_0)\Delta\sigma_1 + \Pi(t_i - t_1)\Delta\sigma_2 + \dots + \Pi(t_i - t_{i-1})\Delta\sigma_i.$$
 (1)

Если изменение напряжения протекает его непрерывной кривой:

$$\varepsilon(t) = \frac{\sigma(t)}{E} + \int_0^t \Pi(t - \tau) d\sigma(\tau) .$$

Преобразуем подынтегральное выражение:

$$\int_0^t \Pi(t-\tau)d\sigma(t) = \Pi(t-\tau)\sigma(\tau) \bigg|_0^t - \int_0^t \sigma(\tau) \frac{\partial \Pi(t-\tau)}{\partial \tau} d\tau$$

[при
$$\tau=0$$
: $\sigma(0)=0$, при $\tau=t$: $\Pi(t-\tau)=0$] \Rightarrow

$$\Rightarrow arepsilon(t) = rac{\sigma(t)}{E} + \int_0^t k(t- au)\sigma(au)d au$$
, где $k(t- au) = rac{\partial\Pi(t- au)}{\partial au}$ — ядро

ползучести.

Функция ползучести представила в виде:

$$\Pi(t - \tau) = A - Ae^{-\alpha(t - \tau)}$$

Характерный вид функций П и к

Уравнение (1) можно переписать в виде (ступенчатый режим):

$$arepsilon(t_i) = rac{\sigma(t_i)}{E} + k(t_i - t_0)\sigma_1\Delta t_1 + k(t_i - t_1)\sigma_2\Delta t_2 + \ldots + k(t_i - k_{i-1})\sigma_i\Delta t_4,$$
 где $\Delta t_i = t_i - t_{i-1}, \ j = 1,2,...,i$.

Экспериментальные данные

 F_1 = 73.6 H

<i>t</i> , c	$arepsilon, *10^{-4}\mathrm{m}$	<i>t</i> , c	$arepsilon, *10^{-4}\mathrm{m}$
0	100	306	9974
6	6167	336	10071
36	7800	366	10202
66	8335	396	10300
96	8713	426	10397
126	8903	456	10494
156	9184	486	10559
186	9302	516	10657
216	9548	546	10721
246	9712	576	10810
276	9843	606	10882

 F_2 = 41.2 H

<i>t</i> , c	$arepsilon,*10^{-4}\mathrm{m}$
607	3901
617	4040
627	4106
637	4138
667	4201
707	4232
907	4263
1207	4263

Обработка экспериментальных данных

Вычтем из столбца значений начальное удлинение. Таким образом избавляемся от упругой деформации. В дальнейшем работаем с составляющей, которая характеризует ползучесть.

 $F_1 = 73.6 \text{ H}$

<i>t</i> , c	arepsilon, M	<i>t</i> , c	ε, M
0	-0,6067	306	0,3807
6	0	336	0,3904
36	0,1633	366	0,4035
66	0,2168	396	0,4133
96	0,2546	426	0,423
126	0,2736	456	0,4327
156	0,3017	486	0,4392
186	0,3135	516	0,449
216	0,3381	546	0,4554
246	0,3545	576	0,4643
276	0,3676	606	0,4715

 F_2 = 41.2 H

arepsilon, M
-0,01
0,0039
0,0105
0,0137
0,02
0,0231
0,0262
0,0262

Для данных, соответствующих времени действия силы F_1 , подберем зависимость $\Pi(t- au)$:

$$\Pi(t - \tau) = 0.3901 - 0.9938^{t - \tau}$$

Воспользуемся принципом суперпозиции Больцано для расчета теоретической зависимости $\varepsilon(t)$ для данных, соответствующих времени действия силы F_2 . Из формулы (1) получаем:

$$\varepsilon(t) = \Pi(t - t_1) \frac{F_2 - F_1}{F_1} + \Pi(t - t_0),$$

где $t_0=0,\,t_1=606$ с — момент начала действия силы $F_2.$

Сравним рассчитанную теоретическую зависимость с экспериментальной:

Среднее отклонение экспериментального значения от теоретического составило 0.07 мм, т.е. относительная погрешность составила 15%.