MODERN PHYSICS

PRACTICE FINAL EXAM

N/	AME:_				<u> </u>				
	•	ur name. Your teaur answer on the		_	•				
1.	1. An elementary particle is moving from the upper atmosphere toward the surface of the Earth at a speed of 0.999978 c. Take that the height of the atmosphere in the reference frame of the Earth is 100 km. Then, the apparent height of the atmosphere in the reference frame of the particle is about								
I	<u>E</u>	A) 6.5 km D) 4.1 km			B) 469 m E) 663m	C) 0.6	660m		
2.		-	-		-	-	ning device that reco		
I	3	Α) 0.20 μs	B) 0.25 μs		C) 0.33 µs	D) 0.52 μs	E) 0.69 μs		
3.	3. A particle of rest mass m ₀ moves at a speed 0.80 c with respect to a rest frame. Its mass, as measured in the rest frame, is								
C	A	(0.80 m_0)	B) m ₀	C) 1	.67 m ₀	D) 0.33 m ₀	E) 0.25 m ₀		
4.	4. How much is the momentum of a proton moving at a speed of $v = 0.76 c$?								
I		A) 3.8×10^{-19} kg·D) 2.6×10^{-27} kg·			(5.8×10^{-19}) kg (7.8×10^{-19}) kg	_	C) $1.7 \times 10^{-10} \text{ kg} \cdot \text{m}$	/ _S	
5. A distant star is radiating heat and light at the rate of 3.9×10 ²⁶ W. At what rate is the star losing mass due to this release of energy?									
(<u>C</u>	,	,		•	_	D) 3.9×10^{26} kg/s speed of the star.		
6.		work function of				netal 2 is Φ_2 =	$2 \cdot \Phi_1$. The ratio of	the	

A) 0.5·h B) 2·h C) 0.5 D) 2 E) Not enough information to solve the problem

7. Wh	en x-rays scatter fro	I) w II) n	avelength is nomentum is	conserved conserved		
	Which of the above		energy is con	iserved.		
E	A) I, II, and III	B) I and II	C) III onl	у Г) II & III	E) none
-	photon in light beam ir momenta is:	A has twice th	e energy of a	photon ir	light beam	B. The ratio p_A/p_B of
D	A) 1/2	B) 1/4	C) 1	D) 2	Е	E) 4
9. Wh	ich of the following	is a <u>correct</u> sta	atement:			
D	velocity is larger th C) $\psi(x) = 5 \sin(kx)$ D) A Bohr atom vi momentum.	k and forth at the have the group and the speed of the large 0 , for $0 \le x \le 0$ olates the Heistel through a position $0 \le x \le 0$	hat waveleng velocity larg light. π/2, cannot be enberg's Unc	eth. er than the ee a solution ertainty R	e speed of ligon of the Schelationship	ght, only if the phase
	otons are scattering to occur is:	from stationary	free electror	ns. The lar	gest change	in wavelength that
<u>B</u>	A) 2.43×10^{-1}	O ⁻¹² m B) 4 O ⁻⁹ m E) d				
ang	ne difference between gular frequency ω (in A) 1.1x10 ¹⁷	rad/s) is about:				
12. The	e longest wavelengtl	n of the Pasche	n series corre	esponds to	the following	ng transition:
<u>D</u>	A) from $n = 3$ to D) from $n = 4$ to		from $n = 3$ to from $n = 3$ to		C) from n	$= \infty$ to $n = 3$
to a		gy of 3.2 eV al	bove the grou	und state	_	state energy. It drops emits a photon in the
<u>B</u>	A) $1.4 \times 10^{-8} \text{ kg} \cdot \text{r}$ D) $1.1 \times 10^{-24} \text{ kg} \cdot \text{r}$		$2.3 \times 10^{-27} \text{ kg}$ Cannot be det			10 ⁻¹⁹ kg⋅m/s ormation given.

14. Of the following sets of quantum numbers for an electron in a hydrogen atom, which is possible?								
	A) $n = 5, 1 = 3, m_l$	= -3 B) $n = 3, 1 =$	$= 3, m_l = -2$ C) $n = 5, 1 = -3, m_l = 2$					
<u>A</u>	D) $n = 3, 1 = 2, m_l$							
abo	ut 1.5×10^{-8} s to emit rgy uncertainty of suc A) 1.4×10^{-7} J	a photon and complete an excited state?	m is about 1.5×10^{-8} s, i.e., the electron takes the transition to a lower state. What is the C) 3.5×10^{-27} J					
C	D) 2.2×10 ⁻⁸ J	E) $2.2 \times 10^{-26} \text{ J}$						
	16. An electron is confined within a length of 10 ⁻¹⁰ m. The uncertainty in the electron's speed is about:							
	A) zero	B) 10^{10} m/s	C) 6.6×10^{-29} m/s					
<u>E</u>	D) 7.3×10^6 m/s	E) 5.5×10^5 n	n/s					
	group velocity of the ends on the wave num	_	ociated with a body whose angular frequency					
	is equal to	$\omega - 3\kappa$						
	1							
<u>C</u>	A) 1/λ	B) 3k C) 6k	D) ω/k E) $3k^2$					
18. A hydrogen atom is in its second excited state, i.e., two states above the ground state. Its energy in this state is -1.51 eV. What is the longest wavelength which will be able to ionize this excited								
in th	nis state is -1.51 eV. W							
	nis state is -1.51 eV. W							
in th	nis state is -1.51 eV. W n? A) 1.41 nm	hat is the longest wavel	ength which will be able to ionize this excited C) 4.1×10^2 nm					
in the ator D 19. X-ra	nis state is -1.51 eV. W n? A) 1.41 nm D) 8.21×10 ² nm	(hat is the longest wavel B) 31.4 nm E) 7.4×10 ⁴ nm	ength which will be able to ionize this excited C) 4.1×10^2 nm					
in the ator D 19. X-ra	nis state is -1.51 eV. Wn? A) 1.41 nm D) 8.21×10 ² nm ays with an initial way	(hat is the longest wavel B) 31.4 nm E) 7.4×10 ⁴ nm	ength which will be able to ionize this excited C) 4.1×10^2 nm					
in the ator D 19. X-ra	nis state is -1.51 eV. Wn? A) 1.41 nm D) 8.21×10 ² nm ays with an initial ways new wavelength is	B) 31.4 nm E) 7.4×10 ⁴ nm velength of 0.0824 nm	ength which will be able to ionize this excited C) 4.1×10^2 nm scatter from free electrons at an angle of 90^0 .					
in the ator D 19. X-ra The C 20. An	A) 1.41 nm D) 8.21×10 ² nm ays with an initial way new wavelength is A) 0.0800 nm D) 0.0024 nm electron moves in the the following about the A) The electron's B) The electron's C) The electron's	B) 31.4 nm E) 7.4×10 ⁴ nm velength of 0.0824 nm B) 0.0824 nm E) 0.0776 nm x direction. We can make electron's motion in the electron of the	c) 4.1×10 ² nm scatter from free electrons at an angle of 90 ⁰ . C) 0.0848 nm easure its speed to a precision of 1%. We can he y direction: o a precision of 1%. is known to a precision of 1%.					
in the ator D 19. X-ra The C 20. An say D 21. The	A) 1.41 nm D) 8.21×10 ² nm ays with an initial way new wavelength is A) 0.0800 nm D) 0.0024 nm electron moves in the the following about the A) The electron's B) The electron's C) The electron's ground state energy of	B) 31.4 nm E) 7.4×10 ⁴ nm velength of 0.0824 nm B) 0.0824 nm E) 0.0776 nm x direction. We can make electron's motion in the electron of the coordinate is known the velocity component vy coordinate is known the velocity component vy	ength which will be able to ionize this excited C) 4.1×10^2 nm scatter from free electrons at an angle of 90^0 . C) 0.0848 nm easure its speed to a precision of 1%. We can he y direction: o a precision of 1%. is known to a precision of 1%. is known to a precision of 1%. is known to a precision of 100%.					

<u>B</u>	de Broglie wavel A) 3.0×10 ⁻¹⁰ m D) 7.1×10 ⁻²¹ m		$\times 10^{-11}$ m				
23. How many different states exist in the hydrogen atom for an electron in the shell specified by the quantum numbers $n = 2$ and $l = 1$?							
<u>B</u>	A) 4	B) 6	C) 2 D)	8			
24. A collection of hydrogen atoms in the first excited state is illuminated with ultraviolet light of wavelength 59.0 nm. The kinetic energy of the emitted electrons is about:							
D	A) 7.40 eV	B) 21.0 eV	C) 13.6 eV	D) 17.6 eV	E) 3.37 eV		
25. At o	one instant of time	the wavefunction	of a particle is				
		$\psi(\mathbf{x}) = \mathbf{A} \cdot \mathbf{e}^{-1}$	$b x $, for $-\infty$	< x < +∞			
Con	stant A is given b	y:					
<u>B</u>	A) 0	B) \sqrt{b}	C) $\frac{1}{\sqrt{b}}$ D)	$\frac{1}{b}$ E) b			
26. Which of the following processes can occur in an atom in its ground state? I) emission II) absorption							
	I) emission	n II) abs	sorption				
<u>B</u>	,	n II) abs B) II only	-	D) neither I ne	or II		
27. A sy	A) I only	B) II only wo particles with m	-	,			
27. A sy	A) I only system consists of to reduced mass of the	B) II only wo particles with m	C) I & II asses 2m _e and 4m _e ,	,			
27. A sy The B	A) I only vistem consists of the reduced mass of the A) 6me	B) II only wo particles with m he system is: B) 4m _e /3	C) I & II asses 2m _e and 4m _e ,	where m_e is the mass $D) 3m_e/4$			
27. A sy The B	A) I only vistem consists of the reduced mass of the A) 6me	B) II only wo particles with m he system is: B) 4m _e /3	C) I & II asses 2m _e and 4m _e , C) 2m _e	where m_e is the mass D) $3m_e/4$ n (4t - 5x) is about	ss of an electron.		
27. A sy The B 28. The A 29. A pr	A) I only vistem consists of the reduced mass of the A) 6me frequency of a w A) 0.64 roton is trapped in	B) II only wo particles with m he system is: B) 4m _e /3 ave described with B) 5	C) I & II asses 2m _e and 4m _e , C) 2m _e a formula y = 3·sin C) 25 D) mensional well of w	where m_e is the mass D) $3m_e/4$ n $(4t - 5x)$ is about 4 E) 1.3	ss of an electron.		
27. A sy The B 28. The A 29. A pr	A) I only vistem consists of the reduced mass of the A) 6me frequency of a w A) 0.64 roton is trapped in	B) II only wo particles with m he system is: B) 4m _e /3 ave described with B) 5	C) I & II asses 2m _e and 4m _e , C) 2m _e a formula y = 3·sin C) 25 D) mensional well of w	where m_e is the mass D) $3m_e/4$ n $(4t - 5x)$ is about 4 E) 1.3 width 0.132 nm. The	ss of an electron.		
27. A sy The B 28. The A 29. A pr n = B 30. The	A) I only vestem consists of to reduced mass of the A) 6me frequency of a w A) 0.64 roton is trapped in 10 state. The ener A) 46.5 eV ground state ener	B) II only wo particles with me he system is: B) 4me/3 ave described with B) 5 an infinite one-directly of the proton is B) 1.18 eV gy of a harmonical	C) I & II asses 2m _e and 4m _e , C) 2m _e a formula y = 3·sin C) 25 D) mensional well of we about:	where m_e is the mass D) $3m_e/4$ In $(4t - 5x)$ is about D) 4 E) 1.3 width 0.132 nm. The D) 85.2 keV For is 1.24 eV. The	e proton is in the E) 2160 eV		