UTHealth Houston School of Dentistry

Digital Quantification of Cluster Features for Salivary Tissue Engineering

Cara Y. Zou¹
Alen Trubelja^{1,2}
Daniel A. Harrington^{1,2}

¹Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA; ² Department of BioEngineering, Rice University, Houston, TX, USA

INTRODUCTION

- As a result of head and neck cancer radiation, individuals may suffer from xerostomia (dry mouth), resulting in a reduced quality of life
- There are no permanent and durable treatment options to restore salivary gland function currently
- At present, one approach is tissue engineering where salivary gland cells are encapsulated in hydrogels
- Pre-clustering may provide 3-D building blocks with greater survival potential and adaptation toward the development of larger tissues.
- Digital imaging tools with supervised machine learning (ML) software were used to quantitatively evaluate cell clustering methods, toward a goal of automated cluster optimization.

METHOD

Human salivary stem/progenitor cells (hS/PCs) were seeded onto low-adhesion clustering plates

- Derived from 6 patient samples under IRB approval
- Imaged over time across hundreds of clustering wells

llastik (machine learning software for image segmentation and classification)

Pixel classification: Differentiation between cells and the wells in which they were contained

 Positive and negative control images were identified subjectively

 User annotations used to train model (random forest classifier)

Object classification: identification of cluster regions to quantify features

- Used prediction maps from pixel classification
- Various cluster features were quantified
- Batch processing to analyze all images

RESULTS

- For each feature, averages were calculated for a single well, and for 6 replicates in each plate.
- Cluster perimeters were identified by ML algorithms, and separated from loosely-adherent neighboring cells, and poor clustering specimens were identified by deviations in multiple parameters.
- High cluster quality could not be correlated readily between single quantitative measures and standard subjective assessments.

CONCLUSION

- ML-based image analysis with llastik was useful in excluding patient samples with poor clustering potential, based on multiple individual measures.
- However, positive clustering behavior was more complex to confirm, and may require layered decision strategies to match subjective assessments.

ACKNOWLEDGMENTS

This study was supported by the UTSD Student Research Program, and NIH/NIDCR grant R03DE028988.