Series 7

Sylvain Julmy

1

$$q_0' = \{q_0\} = \{q_0, q_1, q_2\}$$

	a	b	c
q_0,q_1,q_2	$\{q_0\}$	$\{q_1,q_2\}$	$\{q_0, q_1, q_2\}$
$\{q_0\}$	Ø	$\{q_1\}$	$\{q_2\}$
$\{q_1,q_2\}$	$\{q_0\}$	$\{q_2\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0\}$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_1\}$	$\{q_0\}$	$\{q_2\}$	$\{q_0,q_1\}$
$\{q_2\}$	Ø	Ø	Ø
Ø	Ø	Ø	Ø

2

No answer.

3

We denote by Σ^* any possible symbol from the alphabet.

DFA:

ϵ -NFA :

4

(a)
$$(0+1)^*11(0+1)^*$$

(b)

$$(0+1)^*0(0+1)^*0(0+1)^*$$

(c)

1*01*01*

(d)

(1*01*01*)*

5

(a)

Any number (represented by the length of a word in a unary alphabet) which can be represented by bill of 17 and 31. For example, $17 = 1 \cdot 17 + 0 \cdot 31$ or $175 = 3 \cdot 17 + 4 \cdot 31$.

(b)

Any binary word of 0 and 1, including the empty word.

(c)

The words of alternating sequence of 0 and 1 which ends by a 1.