6

R

S

https://moodle-sciences.upmc.fr/moodle-2021/

LREC

Représentations sémantiques Graphes conceptuels Graphes de Sowa

P

6

- R
- S

Représentation des connaissances

- 1. Mémoire (externe et interne)
- 2. Représentation
- 3. Réseaux sémantiques, « Frames », ...
- 4. Graphes conceptuels

L I

P

6

N

R

S

Organisation de la mémoire

Sir Frederic Charles Bartlett

(1886-1969)

- Entités
- Propriétés
- Organisation hiérarchique des entités

Inférence sur les représentations emboîtées: héritage et instances Concept Personne Instances Homme **Femme** Françoise S

Inférences sur les représentations emboîtées: héritage et instances P âge Rôles 6 Personne **Attributs** enfant Instances Homme **Femme** R Françoise 26 S Gil, Jean ACASA – Faculté des Lines de Sorbonne Université

Ī

P

6

N

R

S

Structure des réseaux sémantiques

Exemples de réseaux sémantiques L aime Chat Lait P 6 est un aime Chat **Fifi** Lait C N sorte de R S Mammifère

John est secrétaire et travaille pour exemple June John et June sont des êtres humai 2. a généralement place parking **Employé** Compagnie X Sorte de John et June travaillent dans le département de R&D de la a généralement directeur employé compagnie X travaille pour Sorte de voiture s. est un John a 30 ans et des yeux bleus 4. Sorte de 5. June est directeur Compagnie X June est un humair Les directeurs ont généralement une 6. travaille pour est un voiture de service Travaille dans Partie de est un 7. La plupart des employés de la Secrétaire **John** compagnie des wagons-lits disposent d' une place de parking age eux Travaille dans Inférence: couleur Dept. R&D June a (gent) une Bleu voiture de service é des sciences de Sorbonne Université

10

Utilisation d'un réseau sémantique

- La famille Simpson possède un chat
- La famille Simpson vit à Springfield
- La famille Simpson est constituée de Bart, Lisa, Horner et Marge
- · Bart et Lisa sont frères et sœurs
- Bart est le fils de Horner
- Lisa est la fille de Horner

- Bart est le fils de Marge
- Bart possède Médor qui est un chien
- Le père de Horner et Abe
- Horne travaille dans une centrale électrique (power plant)

Relations:

- possède
- vit à
- membre de
- frère ou sœur
- fils de
- fille de
- travaille dans
- est un

racuité des sciences de sorbonne Université

Quelles déductions peut-on faire? L Lisa est la fille de Marge chien chat Marge vit à Springfield P Horner possède un chat possède est un possède 6 **Famille** Médor **Springfield** vit à **Simpson** fille de vit à possède membre de membre de membre de membre de N fille de frère ou sœur **Marge Bart** Horner Lisa fils de R fils de travaille dans fils de S

Abe

Centrale électrique

<u>I</u>

I

P

6

N

R

S

Représentation des connaissances

- 1. Mémoire (externe et interne)
- 2. Représentation
- 3. Réseaux sémantiques, « Frames », ...
- 4. Graphes conceptuels

P

Graphes conceptuels John Sowa 1984

- Défis de la représentation:
 - Adéquation psychologique
 - Traduction du langage naturel
 - Automatisation des inférences
- Représentation sous forme de graphes
 - Visualisation
 - Traduction du langage naturel
 - Manipulables par une machine
 - Equivalence avec la logique
- Origine:
 - **IA**
 - Réseaux sémantiques
 - Graphes « existentiels » de Charles Sanders Peirce (1839 - 1914)

L I P

6

T Cha

Graphes existentiels Charles Sanders Peirce 1839 – 1914

—homme II y a un homme

 $\exists x \text{ homme}(x)$

homme *Un homme mange* un homme mange —homme

 $\exists x \exists y \text{ homme}(x) \land \text{homme}(y) \land \text{mange}(x, y)$

- Faculté des sciences de Sorbonne Université

Ī

I

P

6

N

S

Graphes existentiels C S Peirce (suite)

—homme II y a un homme

Négation: grisé

—homme II est faux qu'il y a un homme

-homme

Il y a quelque chose qui n'est pas un homme

I P

6

R

S

Introduction aux graphes conceptuels « Un chat est sur un tapis »

- Une graphe conceptuel comporte deux types de noeuds:
 - Des concepts, représentés avec des rectangles
 - Des relations, représentées à l'aide d'ovales

Forme linéaire: [Chat] -> (Sur) -> [Tapis]

Traduction logique: $(\exists x: Chat) (\exists y: Tapis) Sur(x, y)$

I

P

6

- C
- N
- R
- S

Les entités: Concepts, Types, Référents

- Concepts génériques:
 - [rectangle], [BUS], [PERSONNE], [VILLE], [CHAT]...
- Concepts individuels:

```
[PERSONNE : Jean], [VILLE : Paris],
```

- <u>Type de concept</u>: [PERSONNE :], [VILLE :],
- Référent: Jean, Paris, ...
- Référent:
 - Nom
 - Quantificateur universel '∀'
 - Liste
 - Question '?'
 - Nombre '@n'
 - Quantité indéfinie '*'

I

P

6

C

Hiérarchie des types - Ontologie

- Les types de concepts peuvent être organisés en « hiérarchies de types » qui sont en fait des treillis
- Relation de généralité entre type

Concepts: Individuels, Génériques, Types, Référents, Hiérarchie des types...

· Concepts génériques:

- [rectangle], [BUS], [PERSONNE],[VILLE], [CHAT]...
- Concepts individuels:

```
[PERSONNE : Jean], [VILLE : Paris],
```

- Type de concept: [PERSONNE :], [VILLE :],
- Référent: Jean, Paris, ...
- Référent:
 - Nom
 - Quantificateur universel '∀'
 - Liste
 - Question '?'
 - Nombre '@n'
 - Quantité indéfinie '*'

Ţ

Ī

P

6

C

N

R

S

Types de relation

- Les relations constituent une hiérarchie (treillis) au sens ou nous avons défini une « hiérarchie de relations »
- Les relations comportent toutes:
 - Une <u>valence</u> (arité): *nombre de flèches*

Exemple: DANS a pour valence 2

[PERSONNE: César] -> (DANS) -> [VILLE: Rome]

– Une <u>signature</u> (type des arguments): *liste ordonnée de types <t1, ...tn>*Exemple: MANGE a pour signature <ETRE-ANIME, OBJET-PHYSIQUE>

CHIEN: Polux

MANGE

OS: { * }

Modalités

« Tous les chats sont sur un tapis »

Forme linéaire

[Chat:
$$\forall$$
] -> (Sur) -> [Tapis]

ou

Traduction logique

$$(\forall x: Chat) (\exists y: Tapis) Sur(x, y)$$

Ī

P

R

Référents (suite)

• Tous les chiens mangent de la viande - quantificateur

```
[chien:\forall]->(mange)->[viande]
```


Castor et Polux mangent des os - énumération

```
[chien:Castor, Polux]->(mange)->[os:{*}]
```

CHIEN: Castor, Polux

• Quel chien mange la côtelette ? - interrogation - index

[chien:?]->(mange)->[côtelette:#]

Ī

P

6

C

N

R

S

Graphes conceptuels - référents

• Elle mange quatre os - cardinalité

[femelle:#]->(mange)->[os: $\{*\}@4$]

```
femelle:# MANGE OS:{*}@4
```

 Le chien nommé Apocalypse - marqueur individuel

[chien:#312]<-(nom)->[mot: « Apocalypse »]

```
CHIEN:#312 NOM MOT: « Apocalypse »
```


I

I

P

C

N

R

S

Prédicat n-aire

Peut-on limiter le nombre de relation?

Doit-il y avoir autant de relations que de verbes

• Elle mange quatre os - cardinalité

[femelle:#]->(mange)->[os: $\{*\}@4$]

Idée:

- transformer les verbes en concepts
- Introduction de « primitives sémantiques »

S

Polux mange quelques os - générique pluriel
 [chien:Polux]<-(Agent)<-[mange]->(Patient)->[os: {*}]

N

S

Primitives sémantiques Représentation des actions:

un verre casse!

- Un verre casse
- La pierre casse le verre
- Jean casse le verre
- Jean casse le verre avec une pierre

Langues flexionnelles

Nominatif singulier	Rosa	la <i>ou</i> une rose
Vocatif singulier	Rosa	rose, ô rose!
Génitif singulier	Rosae	de la rose
Accusatif singulier	Rosam	la <i>ou</i> une rose
Datif singulier	Rosae	à la rose
Ablatif singulier	Rosa	de <i>ou</i> par la rose
Nominatif pluriel	Rosae	les ou des roses
Vocatif pluriel	Rosae	roses, ô roses!
Génitif pluriel	Rosarum	des roses
Accusatif pluriel	Ros <mark>as</mark>	les ou des roses
Datif pluriel	Rosis	aux roses
Ablatif pluriel	Rosis	des ou par les roses

Langues flexionnelles (ou casuelles):

- Latin
- Russe
- Allemand

— ...

- Les rapports grammaticaux sont indiqués
 - par des flexions (c'est-à-dire par des changements morphologiques) et
 - Ni par l'ordre des mots, ni par des prépositions

Grammaires de « cas » (Fillmore 1971)

- Les rapports sémantiques sont indiqués
 - par des cas sémantiques (Fillmore en dénombre 8)

OBJET: ce sur quoi porte l'action (ce qui est modifié, bougé...)

INSTRUMENT: par quel intermédiaire l'action est accomplie

AGENT: l'instigateur de l'action

CONTRE-AGENT: la force contre laquelle l'action s'oppose

RESULTAT: ce qui est créé par l'action

SOURCE: lieu de départ

BUT: lieu d'arrivé

PATIENT: l'entité qui reçoit ou subit les effets de l'action

- Chaque verbe correspond à une action
- Il commande un certain nombre de cas

Grammaires de « cas » (Fillmore 1971)

- Ī
- **Exemple:** le verbe Casser commande trois cas:
- P
- OBJET
- INSTRUMENT
- AGENT

Un verre casse

[OBJET: le verre]

C

La pierre casse le verre

[OBJET: le verre; INSTRUMENT: la pierre]

N

Jean casse le verre

[OBJET: le verre; AGENT: Jean]

S

· Jean casse le verre avec une pierre

[OBJET: le verre; AGENT: Jean; INSTRUMENT: la pierre]

Représentation des actions dans les réseaux sémantiques

- L'action « vendre » commande quatre cas:
 - AGENT celui qui vend
 - PATIENT celui qui reçoit
 - OBJET ce qui est vendu
 - INSTRUMENT le paiement
- Exemple: une vente particulière

```
(Vente-3218
  (ACTION Vente)
  (AGENT Eléonore)
  (PATIENT Madame Gilberte Dupuis)
  (OBJET appareil photo numérique)
  (INSTRUMENT 200))
```


L I

P

Graphes de Sowa John Sowa 1984

Graphe conceptuels

+

Primitives sémantiques

OBJET: ce sur quoi porte l'action (ce qui est modifié, bougé...)

INSTRUMENT: par quel intermédiaire l'action est accomplie

AGENT: l'instigateur de l'action

CONTRE-AGENT: la force contre laquelle l'action s'oppose

RESULTAT: ce qui est créé par l'action

SOURCE: lieu de départ

BUT: lieu d'arrivé

PATIENT: l'entité qui reçoit ou subit les

effets de l'action

Un exemple de graphe de Sowa

Traduction logique

```
(\exists x: Go) (\exists y: Person) (\exists z: City) (\exists w: Bus)
(name(y, 'John') \land name(z, 'Boston') \land agnt(x, y) \land dest(x, z) \land inst(x, w))
```

I

P

Référents (sur les graphes de Sowa)

• Tous les chiens mangent de la viande - quantificateur

[chien: ∀]<-(Agent)<-[mange]->(Patient)->[viande]

Castor et Polux mangent - énumération

[chien:Castor, Polux]<-(Agent)<-[mange]</pre>

```
CHIEN: Castor, Polux ← AGENT ← MANGE
```

Quel chien mange la côtelette ? - interrogation - index

[chien:?]<-(Agent)<-[mange]->(Patient)->[côtelette:#]

Référents (graphes de Sowa) P Polux mange quelques os - générique pluriel 6 [chien:Polux] <- (Agent) <- [mange] -> (Patient) -> [os: {*}] CHIEN: Polux AGENT MANGE PATIENT OS: { * } Elle mange quatre os - cardinalité

[femelle:#]<-(Agent)<-[mange]->(Patient)->[os:{*}@4]

Croyances et situation: intentionalité

Tom believes that Mary wants to marry a sailor

Relations: Expr (experiencer celui qui éprouve), Thme (ce que l'on éprouve)

```
[Person: Tom]<-(Expr)<-[Believe]->(Thme)-
[Proposition: [Person: Mary *x]<-(Expr)<-[Want]->(Thme)-
[Situation: [?x]<-(Agnt)<-[Marry]->(Thme)->[Sailor]]]
```


P 6

N

R

S

Pyramides

Existe-t-il une pyramide qui est soutenue par un bloc?

Ī

P

6

N

R

S

Pyramides: représentation logique

pyramide(E) ∧ bloc(D) ∧
pyramide(A) ∧ pyramide(B) ∧
pyramide(C) ∧ oranger(E) ∧
bleu(D) ∧ rouge(A) ∧ vert(B) ∧
vert(C) ∧ supporte(A, D) ∧
supporte(B, D) ∧ supporte(C, D) ∧
supporte(D, E)

P

6

N

R

Représentation & raisonnement sémantiques

Patient

Instrument INST

→ Caractéristique CHRC

Raisonnement: appariement de sous-graphe

Exemples1: Quelle pyramide est soutenue par un bloc?

[PYRAMID: $(?) \leftarrow (PTNT) \leftarrow [SUPPORT] \rightarrow (INST) \rightarrow [BLOCK]$

6

C

R

S

Raisonnement: appariement de sous-graphe

Exemples2: Quel objet coloré est soutenu par quelque chose de vert?

```
[COLOR: (?) \leftarrow (CHRC) \leftarrow [OBJECT] \leftarrow (PTNT) \leftarrow [SUPPORT] \rightarrow (INST) \leftarrow [ENTITY] \leftarrow (CHRC) \leftarrow [COLOR: green] \rightarrow
```

Utilisation du treillis des types:

- Un bloc est un objet
- Une <u>pyramide</u> est une <u>entité</u>

Raisonnement: référents complexes

Exemples3: Quel bloc est soutenu par trois pyramides?

[BLOCK: $(?) \leftarrow (PTNT) \leftarrow [SUPPORT] \rightarrow (INST) \rightarrow [PYRAMID: {*}@3]$

Ī

P

6

S

Postérité des graphes conceptuels

- Couplage SQL (stockage et requête)
- Couplage PROLOG (raisonnement) PROLOG+CG*
- Complétude des graphes conceptuel:
 - On démontre que tout ce qui est représentable en logique des prédicats du premier ordre l'est dans les graphes conceptuels
- Indexation base multimédia
- Notion de schémas RDF en XML
- Autres formalismes de représentation:
 - Logique terminologique*
 - Logique de description
 - ...

