Прізвище: Долінський

Ім'я: Олег

Група: КН-406

Варіант: 8

Кафедра: САПР

Дисципліна: Теорія прийняття рішень

Перевірив: Кривий Р.З.

3BIT

до лабораторної роботи №5 на тему "Теорія ігор. Матричні ігри"

Мета роботи: визначити основні поняття теорії ігор, властивості змішаних стратегій. Вивчити метод вирішення матричних ігор у змішаних стратегіях за допомогою введення до подвійних завдань лінійного програмування.

Індивідуальне завдання:

У грі беруть участь два гравці: А і В. У розпорядженні кожного гравця є кінцеве безліч варіантів вибору - стратегій. Нехай - безліч стратегій гравця А, - безліч стратегій гравця В. З кожною парою стратегій пов'язаний платіж, який один з гравців виплачує іншому. Тобто, коли гравець А вибирає стратегію (свою і-ю стратегію), а гравець В - стратегію, то результатом такого вибору стає платіж. Оскільки стратегій кінцеве число, то платежі утворюють матрицю розмірності п х m, звану матрицею платежів (або матрицею гри). Рядки цієї матриці відповідають стратегіям гравця A, а стовпці - стратегіям гравця В.

8.						
	15	8	15	16	4	
	11	13	15	10	8	
	14	16	10	12	14	
	13	15	9	16	15	
	11	14	16	10	6	

Результати виконання індивідуального завдання:

1. Пошук сідлової точки.

		Ст	ратегі			
Стратегія А	B_1	B_2	\mathbf{B}_3	B_4	B_5	Мінімум
A_1	15	8	15	16	4	4
A_2	11	13	15	10	8	8
A_3	14	16	10	12	14	10
A_4	13	15	9	16	15	9
A_5	11	14	16	10	6	6

		Ст	ратегі			
Стратегія А	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	B_4	\mathbf{B}_{5}	Мінімум
A_1	15	8	15	16	4	4
A_2	11	13	15	10	8	8
A ₃	14	16	10	12	14	10
A_4	13	15	9	16	15	9
A_5	11	14	16	10	6	6
Максимум	15	16	16	16	15	

Порівняємо нижню і верхню ціни гри, в даній задачі вони розрізняються, тобто $\alpha \neq \beta$, платіжна матриця не містить сідлової точки. Це означає, що гра не має рішення в чистих мінімаксний стратегіях, але вона завжди має рішення в змішаних стратегіях.

2. Спрощення платіжної матриці.

	Стратегія В						
Стратегія А	B ₁	B_2	B ₃	B ₄			
A_1	15	15	16	4			
A_2	11	15	10	8			
A_3	14	10	12	14			
A_4	13	9	16	15			
A_5	11	16	10	10			

3. Змішана стратегія.

Змішана стратегія гравця А:

$$15y_1 + 15y_2 + 16y_3 + 4y_4 \le 1$$

$$11y_1 + 15y_2 + 10y_3 + 8y_4 \le 1$$

$$14y_1 + 10y_2 + 12y_3 + 14y_4 \le 1$$

$$13y_1 + 9y_2 + 16y_3 + 15y_4 \le 1$$

$$11y_1 + 16y_2 + 10y_3 + 6y_4 \le 1$$

$$F(x) = y_1 + y_2 + y_3 + y_4 \rightarrow max$$

Змішана стратегія гравця В:

$$15x_1 + 11x_2 + 14x_3 + 13x_4 + 11x_5 \ge 1$$

$$15x_1 + 15x_2 + 10x_3 + 9x_4 + 16x_5 \ge 1$$

$$16x_1 + 10x_2 + 12x_3 + 16x_4 + 10x_5 \ge 1$$

$$4x_1 + 8x_2 + 14x_3 + 15x_4 + 6x_5 \ge 1$$

$$F(x) = x_1 + x_2 + x_3 + x_4 + x_5 \Rightarrow \min$$

4. Пошук оптимального плану.

За допомогою онлайн-калькулятора симплекс-таблиця була зведена до:

Базис	В (вільний член)	y 1	y 2	y 3	y 4	y 5	У 6	у 7	У8	y 9
y 5	3/22	114/11	0	0	0	1	-19/11	69/22	-25/11	0
у3	1/484	-47/121	0	1	0	0	6/121	-153/484	65/242	0
y 2	1/22	5/11	1	0	0	0	1/11	1/22	-1/11	0
y 4	9/242	122/121	0	0	1	0	-13/121	75/242	-20/121	0
y 9	7/242	189/121	0	0	0	0	-158/121	139/242	-29/121	1
Z(Y4)	41/484	9/121	0	0	0	0	4/121	19/484	3/242	0

Оптимальний план можна записати так:

```
x_1 = 0, x_2 = 4/121, x_3 = 19/484, x_4 = 3/242, x_5 = 0

y_1 = 0, y_2 = 1/22, y_3 = 1/484, y_4 = 9/242

Z(Y) = 41/484
```

 $\mathbf{P} = (0; 16/41; 19/41; 6/41)$ — оптимальна стратегія гравця А

 $\mathbf{Q} = (1,\,0,\,22/41;\,1/41)$ — оптимальна стратегія гравця В

Код програми:

```
return Math.min(...max);
const matrixSimplification = matrix => {
   let newMatrix = matrix;
   for (let i = 0; i < newMatrix.length; i++) {</pre>
       let iRowToDelete = true;
       let jRowToDelete = true;
       let jIndex = -1;
           jRowToDelete = true;
            iIndex = -1;
                    if (jRowToDelete) jIndex = j;
                    iRowToDelete = false;
                } else if (matrix[i][col] < matrix[j][col]) {</pre>
                    if (iRowToDelete) iIndex = i;
       if (iRowToDelete) {
            newMatrix = deleteRow(matrix, iIndex);
       if (jRowToDelete) {
            let iColToDelete = true;
            let iIndex = -1;
            let jIndex = -1;
                iColToDelete = true;
                jColToDelete = true;
                jIndex = -1;
                for (let col = 0; col < newMatrix.length; col++) {</pre>
                        if (jColToDelete) jIndex = j;
                        iColToDelete = false;
```

```
jColToDelete = false;
           if (iColToDelete) {
              newMatrix = deleteCol(matrix, iIndex);
          if (jColToDelete) {
              newMatrix = deleteCol(matrix, jIndex);
   return newMatrix;
const simplexMethod = matrix => {
      row.forEach((col, index) => {
              limitation += '<= 1';
      acc.push(limitation);
   const constraintsB = matrix.reduce((acc, row, i) => {
      limitation += '>= 1';
      acc.push(limitation);
   const playerA = {
      constraints : constraintsA,
   const playerB = {
```

```
type: "minimize",
    objective : "x1 + x2 + x3 + x4",
    constraints : constraintsB,
};

return [
    YASMIJ.solve(playerA),
    YASMIJ.solve(playerB),
];
}

const getOptimalStrategy = (data, label) => {
    const { x1, x2, x3, x4, z} = data.result;

    return {
        [`${label}1`]: 1 / z * x1,
        [`${label}2`]: 1 / z * x2,
        [`${label}3`]: 1 / z * x3,
        [`${label}4`]: 1 / z * x4,
    }
}
```

Результати виконання програми:

Puc. 1. Файл data5.txt

```
{
  p1: 0,
  p2: 0.5365853658536586,
  p3: 0.024390243902439067,
  p4: 0.439024390222
}
{ q1: 1, q2: 0, q3: 0, q4: 0 }
```

Висновок:

Виконуючи дану лабораторну роботу, я визначив основні поняття теорії ігор, властивості змішаних стратегій, вивчив метод вирішення матричних ігор у змішаних стратегіях за допомогою введення до подвійних завдань лінійного програмування.