https://ivan-sergeyev.github.io/seymour/https://github.com/Ivan-Sergeyev/seymour https://ivan-sergeyev.github.io/seymour/docs/

Seymour

Ivan S Martin Dvorak

November 28, 2024

Chapter 1

Code

1.1 TU Matrices

Definition 1 (TU matrix). Matrix. TU A real matrix is *totally unimodular* (TU) if its every subdeterminant (i.e., determinant of every square submatrix) is 0 or ± 1 .

Lemma 2 (entries of a TU matrix). $def:code_tu_matrixMatrix.TU.applyIfAisTU$, $theneveryentry ofAis0or\pm 1$.

Proof sketch. $def:code_tu_matrixEveryentry is a square submatrix of size 1$, and therefore has determinant (and value of sketch). $def:code_tu_matrix Matrix.TU.submatrixLetAbear eal matrix the sketch. <math>def:code_tu_matrixAny square submatrix ofBis a submatrix ofA$, $soits determinant is 0 or \pm 1$. Thus, B is TU.

Lemma 4 (transpose of TU is TU). $def:code_tu_matrixMatrix.TU.transposeLetAbeaTU matrix.Then A^T$ is TU.

Proof sketch. $def:code_tu_matrixAsubmatrix TofA^T$ is a transpose of a submatrix of A, so $det T \in \{0, \pm 1\}$. \Box Lemma 5 (appending zero vector to TU). $def:code_tu_matrixMatrix.TU_adjoin_row 0s_iffLetAbeam atrix.Letabeam atrix the state of <math>A$ is a submatrix A at A and A at A and A are A are A and A are A and A are A and A are A and A are A are A and A are A and A are A and A are A are A and A are A and A are A and A are A and A are A and A are A are A and A are A and A are A and A are A and A are A are A and A are A are A and A are A and A are A are A are A and A are A are A and A are A are A and A are A are A are A and

 $= [A/a] \ is \ TU \ exactly \ when \ A \ is.$ $Proof \ sketch. \ def: code_t u_m atrix, lem: code_s ubmatrix_o f_t uLet T be a square submatrix of C, and suppose A is TU. If$

0. Otherwise T is a submatrix of A, so $\det T \in \{0, \pm 1\}$. For the other direction, because A is a submatrix of C, we can apply lemma $\ref{lem:apply:equation:$

Lemma 6 (appending unit vector to TU). $def:code_t u_m at rix Let A beam at rix. Let a be a unit row. Then <math>C = [A/a]$ is TU exactly when A is.

Proof sketch. def:code_t $u_m atrix$, $lem : code_s ubmatrix_o f_t uLet Tbeas quare submatrix of C$, and suppose Ais TU.If entry of the unit row, then det T equals the determinant of some submatrix of A times ± 1 , so det $T \in \{0, \pm 1\}$. If T contains some entries of the unit row except the ± 1 , then det T = 0. Otherwise T is a submatrix of A, so det $T \in \{0, \pm 1\}$. For the other direction, simply note that A is a submatrix of C, and use lemma C??.

Lemma 7 (TUness with adjoint identity matrix). $def:code_t u_m atrix Matrix. TU_a djoin_i d_b elow_i ff, Matrix. TU_a djoin_i d_b elow_i ff, Matrix. TU_a djoin_i d_b elow_i ff$.

 $Proof\ sketch.\ \ def: code_t u_matrix Gaussian elimination. Basis submatrix: its columns for mabasis of all columns, and the contraction of the$

Lemma 8 (block-diagonal matrix with TU blocks is TU). $def: code_t u_m atrix Matrix. from Blocks_TU Let A beam of the state of the s$

and A_2 are both TU. Then A is also TU.

- If T_1 is square, then T_2 is also square, and $\det T = \det T_1 \cdot \det T_2 \in \{0, \pm 1\}$.
- If T_1 has more rows than columns, then the rows of T containing T_1 are linearly dependent, so $\det T = 0$.
- Similar if T_1 has more columns than rows.

Lemma 9 (appending parallel element to TU). $def:code_t u_m atrix Let Abea TU matrix. Let abesome row of A. Then <math>= [A/a]$ is TU.

Proof sketch. def:code_t u_m atrixLetTbeasquaresubmatrixofC.IfTcontainsthesamerowtwice, thentherowsare dependent, sodet T=0. Otherwise T is a submatrix of A, so det $T\in\{0,\pm 1\}$.

Lemma 10 (appending rows to TU). $def:code_t u_m attrix Let Abea TU matrix. Let Bbea matrix whose every row is are <math>= [A/B]$ is TU.

Proof sketch. def:code_t $u_m atrix$, lem: $code_t u_a dd_z ero_r ow$, lem: $code_t u_a dd_u nit_r ow$, lem: $code_t u_a dd_c opy_r ow Either repeatedly apply Lemmas ??, ??$, and ?? or per formasimilar case analysis directly.

Corollary 11 (appending columns to TU). $def:code_t u_m atrix, lem:code_t u_a dd_z ero_row, lem:code_t u_a dd_u nit_row, lem:code_t u_a dd_copy_rowLetAbeaTU matrix.LetBbeamatrixwhoseeverycolumnisacolumno_set [A | B] is TU.$

Proof sketch. def:code $_tu_matrix$, $lem:code_tu_add_zero_row$, $lem:code_tu_add_unit_row$, $lem:code_tu_add_copy_row$, $lem:code_tu_transposeC^T$ is TU by Lemma ?? and construction, so C is TU by Lemma ??.

Definition 12 (\mathcal{F} -pivot). Let A be a matrix over a field \mathcal{F} with row index set X and column index set Y. Let A_{xy} be a nonzero element. The result of a \mathcal{F} -pivot of A on the pivot element A_{xy} is the matrix A' over \mathcal{F} with row index set X' and column index set Y' defined as follows.

- For every $u \in X x$ and $w \in Y y$, let $A'_{uw} = A_{uw} + (A_{uy} \cdot A_{xw})/(-A_{xy})$.
- Let $A'_{xy} = -A_{xy}$, X' = X x + y, and Y' = Y y + x.

Lemma 13 (pivoting preserves TUness). $def:code_tu_matrix, def:code_pivotLetAbeaTUmatrix and let A_{xy}$ be a nonzero element. Let A' be the matrix obtained by performing a real pivot in A on A_{xy} . Then A' is TU.

 $Proof\ sketch.\ def: code_t u_m atrix, def: code_p ivot, lem: code_t u_a djoin_i d$

By Lemma ?? A is TU iff every basis matrix of $[I \mid A]$ has determinant ± 1 . The same holds for A' and $[I \mid A']$.

Determinants of the basis matrices are preserved under elementary row operations in $[I \mid A]$ corresponding to the pivot in A, under scaling by ± 1 factors, and under column exchange, all of which together convert $[I \mid A]$ to $[I \mid A']$.

Lemma 14 (pivoting preserves TUness). $def:code_tu_matrix, def:code_pivotLetAbeamatrix and let A_{xy}$ be a nonzero element. Let A' be the matrix obtained by performing a real pivot in A on A_{xy} . If A' is TU, then A is TU.

 $Proof\ sketch.\ def: code_tu_matrix, def: code_pivot, lem: code_pivot_tuReversetherowoperations, scaling, and column to the code of the$

1.1.1 Minimal Violation Matrices

Definition 15 (minimal violation matrix). def:code_t u_m atrixLetAbeareal{0, ± 1 } matrix that is not TU but all of whose proper submatrices are TU. Then A is called a minimal violation matrix of total unimodularity (minimal violation matrix).

Lemma 16 (simple properties of MVMs). $def:code_mvmLetAbeam inimal violation matrix.$

A is square.

 $\det A \notin \{0, \pm 1\}.$

If A is 2×2 , then A does not contain a 0.

 $Proof\ sketch.\ def: code_mvm$

If A is not square, then since all its proper submatrices are TU, A is TU, contradiction.

If det $A \in \{0, \pm 1\}$, then all subdeterminants of A are 0 or ± 1 , so A is TU, contradiction.

If A is 2×2 and it contains a 0, then det $A \in \{\pm 1\}$, which contradicts the previous item.

Lemma 17 (pivoting in MVMs). $def:code_mvm$, $def:code_pivotLetAbeaminimalviolation matrix. Suppose Ahas 3 rows. Suppose we perform a real pivot in A, then delete the pivot row and column. Then the resulting matrix A' is also a minimal violation matrix.$

 $Proof\ sketch.\ \ def: code_nvm, lem: code_diagonal_with_tu_blocks, lem: code_reverse_pivot_tu, lem: code_pivot_tu, lem: code_submatrix_of_tu$

Let A'' denote matrix A after the pivot, but before the pivot row and column are deleted.

Since A is not TU, Lemma ?? implies that A'' is not TU. Thus A' is not TU by Lemma ??.

Let T' be a proper square submatrix of A'. Let T'' be the submatrix of A'' consisting of T' plus the pivot row and the pivot column, and let T be the corresponding submatrix of A (defined by the same row and column indices as T'').

T is TU as a proper submatrix of A. Then Lemma ?? implies that T'' is TU. Thus T' is TU by Lemma ??.

1.2 Matroid Definitions

Definition 18 (binary matroid). BinaryMatroid Let B be a binary matrix, let $A = [I \mid B]$, and let E denote the column index set of A. Let \mathcal{I} be all index subsets $Z \subseteq E$ such that the columns of A indexed by Z are independent over GF(2). Then $M = (E, \mathcal{I})$ is called a binary matroid and B is called its (standard) representation matrix.

 $\textbf{Definition 19} \ (\text{regular matroid}). \ \text{def:} \\ \text{code}_b inary_m atroid, def:} \\ code_t u_m atrix Binary Matroid. \\ Is Regular Let \\ \text{Matroid}. \\ \text$

A is a signed version of B, i.e., |A| = B,

A is totally unimodular.

Then M is called a regular matroid.

1.3 k-Separation and k-Connectivity

 $\textbf{Definition 20} \ (k\text{-separation}). \ \text{def:} code_binary_matroidLet \\ Mbe a binary matroid generated by a standard representation for the property of the$

 X_2 is a partition of the rows of B and $Y_1 \sqcup Y_2$ is a partition of its columns. Let $k \in \mathbb{Z}_{>1}$ and suppose that

- $|X_1 \cup Y_1| \ge k$ and $|X_2 \cup Y_2| \ge k$,
- GF(2)-rank $D_1 + GF(2)$ -rank $D_2 \le k 1$.

Then $(X_1 \cup Y_1, X_2 \cup Y_2)$ is called a *(Tutte) k-separation* of B and M.

Definition 21 (exact k-separation). def:code $_k$ sepAk-separationiscalledexactiftherankconditionholdswitheq

Definition 22 (k-separability). def:code $_k$ sepW esaythat B and M are (exactly) (Tutte) k-separable if they have an (E) and E are E.

Definition 23 (k-connectivity). def:code_{k s}epFork ≥ 2 , M and B are (Tutte) k-connected if they have no ℓ -separation for $1 \leq \ell < k$. When M and B are 2-connected, they are also called connected.

1.4 Sums

1.4.1 1-Sums

 $\textbf{Definition 24} \ (1\text{-sum of matrices}). \ \text{Matrix} \\ 1sum Composition Let \\ Bbeam atrix that can be represented as } \ X_1$

and B_2 are the two components of a 1-sum decomposition of B.

Conversely, a 1-sum composition with components B_1 and B_2 is the matrix B above.

The expression $B = B_1 \oplus_1 B_2$ means either process.

Definition 25 (matroid 1-sum). def:code_binary_matroid, def: $code_1sum_of_m$ atricesBinaryMatroid.Is1sumO, $zeroblocksB_1$ and B_2 . Then the binary matroids M_1 and M_2 represented by B_1 and B_2 , respectively, are the two *components* of a 1-sum decomposition of M.

Conversely, a 1-sum composition with components M_1 and M_2 is the matroid M defined by the corresponding representation matrix B.

The expression $M = M_1 \oplus_1 M_2$ means either process.

 $\textbf{Lemma 26} \ (1\text{-sum is commutative}). \ def: code_{1s}um_of_binaryBinaryMatroid. Is 1sumOf. commtodo: \\ add$

Lemma 27 (1-sum of regular matroids is regular). BinaryMatroid.Is1sumOf.isRegular def:code_{1s}um_of_binary, def: code_regular_matroidLetM₁ and M₂ be regular matroids. Then $M = M_1 \oplus_1 M_2$ is a regular matroid.

Conversely, if a regular matroid M can be decomposed as a 1-sum $M = M_1 \oplus_1 M_2$, then M_1 and M_2 are both regular.

Proof sketch. def:code_{1s} $um_o f_b inary, def: code_r egular_m at roid to do: extract into lemmas about TU matrices Let and <math>B_2$ be the representation matrices of M, M_1 , and M_2 , respectively.

- Converse direction. Let B' be a TU signing of B. Let B'_1 and B'_2 be signings of B_1 and B_2 , respectively, obtained from B. By Lemma ??, B'_1 and B'_2 are both TU, so M_1 and M_2 are both regular.
- Forward direction. Let B'_1 and B'_2 be TU signings of B_1 and B_2 , respectively. Let B' be the corresponding signing of B. By Lemma $\ref{B'}$, B' is TU, so M is regular.

 $\textbf{Lemma 28} \ (\text{left summand of regular 1-sum is regular}). \ \textit{def:code}_{1s} um_o f_b inary Binary Matroid. Is 1 sum Of. is Recall defined and the summand of regular 1-sum is regular). \\ def:code_{1s} um_o f_b inary Binary Matroid. Is 1 sum Of. is Recall defined and the summand of regular 1-sum is regular). \\ def:code_{1s} um_o f_b inary Binary Matroid. Is 1 sum Of. is Recall defined and the summand of regular 1-sum is regular). \\ def:code_{1s} um_o f_b inary Binary Matroid. \\ def:code_{1s} um_o f_b inary Binary Bi$

 $\textbf{Lemma 29} \text{ (right summand of regular 1-sum is regular). } def: code_{1s}um_{o}f_{b}inaryBinaryMatroid.Is1sumOf.isFadd \\ add \\$

1.4.2 2-Sums

Definition 30 (2-sum of matrices). Matrix₂sumCompositionLetBbeamatrixoftheform X_1 X_2 D A_2 LetB

be a matrix of the form $\begin{array}{c|c} X_1 & Y_1 \\ X_1 & LA & B_2 \end{array}$ be a matrix of the form $\begin{array}{c|c} X_2 & Unit & Y_2 \\ \hline & y & A_2 \end{array}$

Suppose that GF(2)-rank $D=1, x\neq 0, y\neq 0, D=y\cdot x$ (outer product).

Then we say that B_1 and B_2 are the two components of a 2-sum decomposition of B.

Conversely, a 2-sum composition with components B_1 and B_2 is the matrix B above.

The expression $B = B_1 \oplus_2 B_2$ means either process.

Definition 31 (matroid 2-sum). def:code_binary_matroid, def: $code_{2s}um_of_m$ atricesBinaryMatroid.Is2sumO and B_2 satisfy the assumptions of Definition ??. Then the binary matroids M_1 and M_2 represented by B_1 and B_2 , respectively, are the two *components* of a 2-sum decomposition of M.

Conversely, a 2-sum composition with components M_1 and M_2 is the matroid M defined by the corresponding representation matrix B.

The expression $M = M_1 \oplus_2 M_2$ means either process.

Lemma 32 (2-sum of regular matroids is regular). $def:code_2sum_of_binary, def: code_regular_matroidBinaryMatroid.Is2sumOf.isRegularLet <math>M_1$ and M_2 be regular matroids. Then $M = M_1 \oplus_2 M_2$ is a regular matroid.

 $Proof\ sketch.\ def: code_{2s}um_of_binary, def: code_regular_matroid, lem: code_tu_add_ok_rows, cor: code_tu_add_ok_cols$

Let B, B_1 , and B_2 be the representation matrices of M, M_1 , and M_2 , respectively. Let B_1' and B_2' be TU signings of B_1 and B_2 , respectively. In particular, let A_1' , x', A_2' , and y' be the signed versions of A_1 , x, A_2 , and y, respectively. Let B' be the signing of B where the blocks of A_1 and A_2 are signed as A_1' and A_2' , respectively, and the block of D is signed as $D' = y' \cdot x'$ (outer product).

Note that $[A'_1/D']$ is TU by Lemma ??, as every row of D' is either zero or a copy of x'. Similarly, $[D' \mid A'_2]$ is TU by Corollary ??, as every column of D' is either zero or a copy of y'. Additionally, $[A'_1 \mid 0]$ is TU by Corollary ??, and $[0/A'_2]$ is TU by Lemma ??.

todo: prove lemma below, separate into statement about TU matrices Lemma: Let T be a square submatrix of B'. Then det $T \in \{0, \pm 1\}$.

Proof: Induction on the size of T. Base: If T consists of only 1 element, then this element is 0 or ± 1 , so $\det T \in \{0, \pm 1\}$. Step: Let T have size t and suppose all square submatrices of B' of size $\leq t-1$ are TU.

- Suppose T contains no rows of X_1 . Then T is a submatrix of $[D' \mid A'_2]$, so $\det T \in \{0, \pm 1\}$.
- Suppose T contains no rows of X_2 . Then T is a submatrix of $[A'_1 \mid 0]$, so $\det T \in \{0, \pm 1\}$.
- Suppose T contains no columns of Y_1 . Then T is a submatrix of $[0/A_2']$, so $\det T \in \{0, \pm 1\}$.
- Suppose T contains no columns of Y_2 . Then T is a submatrix of $[A'_1/D']$, so det $T \in \{0, \pm 1\}$.
- Remaining case: T contains rows of X_1 and X_2 and columns of Y_1 and Y_2 .
- If T is 2×2 , then T is TU. Indeed, all proper submatrices of T are of size ≤ 1 , which are $\{0, \pm 1\}$ entries of A', and T contains a zero entry (in the row of X_2 and column of Y_2), so it cannot be a minimal violation matrix by Lemma ??. Thus, assume T has size ≥ 3 .
- . todo: complete proof, see last paragraph of Lemma 11.2.1 in Truemper

Lemma 33 (left summand of regular 2-sum is regular). $def:code_{2s}um_of_binaryBinaryMatroid.Is2sumOf.isRe$ add

 $\textbf{Lemma 34} \ (\text{right summand of regular 2-sum is regular}). \ \textit{def:code}_{2s} um_o f_b inary Binary Matroid. Is 2 sum Of. is Fadd \\$

1.4.3 3-Sums

Definition 35 (3-sum of matrices). Matrix₃ sumCompositiontodo: add

Definition 36 (matroid 3-sum). $def: code_b inary_m atroid Binary Matroid. Is 3 sum Of todo: add$

Lemma 37 (3-sum of regular matroids is regular). $def:code_{3s}um_{o}f_{b}inaryBinaryMatroid.Is3sumOf.isRegular$ add

Lemma 38 (left summand of regular 3-sum is regular). $def:code_{3s}um_{o}f_{b}inaryBinaryMatroid.Is3sumOf.isRecolds$

Lemma 39 (right summand of regular 3-sum is regular). $def:code_{3s}um_of_binaryBinaryMatroid.Is3sumOf.isBadd$