Interactions in Logistic Regression

Andy Grogan-Kaylor

25 Mar 2020 16:25:27

The Math

$$\ln(\frac{p(y)}{1-p(y)}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$
Set $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots = \text{to } z$.

Then
$$\ln(\frac{p(y)}{1-p(y)}) = z$$

$$\frac{p(y)}{1-p(y)} = e^z$$

$$p(y) = e^z (1-p(y))$$

$$p(y) = e^z - e^z (p(y))$$

$$e^z p(y) + p(y) = e^z$$

$$(1+e^z)p(y) = e^z$$

$$p(y) = \frac{e^z}{1+e^z}$$

$$p(y) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots}}{1+e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots}}$$

Simulate Some Data

```
. clear all // empty data
. set obs 10000 // set observations
number of observations (_N) was 0, now 10,000
. generate x1 = rnormal(0, 2) // normally distributed
. histogram x1, scheme(michigan)
(bin=40, start=-7.6707692, width=.36182002)
. graph export myx1graph.png, width(200) replace
(file myx1graph.png written in PNG format)
```


Figure 1: Histogram of x1

- . generate x2 = rbinomial(1, .5) // categorical variable
- . graph bar, over(x2) scheme(michigan)
- . graph export myx2graph.png, width(200) replace
 (file myx2graph.png written in PNG format)

Figure 2: Bar Graph of x2

. summarize // descriptive statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	10,000	.0209696	1.990662	-7.670769	6.802032
x2	10,000	.4975	.5000188	0	1

Story A: Main Effects Only

Set Up The Data

- . generate zA = x1 + x2 // first z
- . generate $pA = \exp(zA) / (1 + \exp(zA)) // \text{ probabilities}$
- . summarize pA $\/\/$ descriptive statistics

Variable	0bs	Mean	Std. Dev.	Min	Max
pA	10,000	.5765289	.3134137	.000466	.9995913

. generate yA = rbinomial(1, pA) // generate y with probability p

i.e.

$$\ln\left(\frac{p(y)}{1 - p(y)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

. tab yA // descriptive statistics

уA О 1		Freq.	Percent	Cum.
		4,287 5,713	42.87 57.13	42.87 100.00
	Total	10,000	100.00	

Logistic Regression

. logit yA x1 x2 // does it recover the parameters?

Iteration 0: log likelihood = -6829.4506 Iteration 1: log likelihood = -4468.1026log likelihood = -4417.7674Iteration 2: Iteration 3: log likelihood = -4417.0613log likelihood = -4417.0611Iteration 4:

Logistic regression Number of obs 10,000 LR chi2(2) 4824.78 Prob > chi2 0.0000 Pseudo R2 0.3532

Log likelihood = -4417.0611

P>|z| [95% Conf. Interval] уA Coef. Std. Err. x1 1.024776 .0210616 48.66 0.000 .9660266 1.179194 1.072611 .0543806 19.72 0.000 x2 -.0642869 .0366253 -1.76 0.079 -.1360711 .0074974

. predict yhatA // predicted probabilities (option pr assumed; Pr(yA))

Story B: Main Effects + Interactions

Set Up The Data

- . generate zB = x1 + x2 + (.75 * x1 * x2) // second z
- . generate pB = exp(zB) / (1 + exp(zB)) // probabilities
- . summarize pB // descriptive statistics

Variable	Obs	Mean	Std. Dev	. Min	Max
pВ	10,000	.5532364	.3490571	.0000253	.9999975

. generate yB = rbinomial(1, pB) // generate y with probability p

i.e.

$$\ln\left(\frac{p(y)}{1 - p(y)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 * x_2$$

. tab yB // descriptive statistics

уВ		Freq.	Percent	Cum.
	0 1	4,421 5,579	44.21 55.79	44.21 100.00
_	Total	10,000	100.00	

Logistic Regression

```
. logit yB c.x1##i.x2 // does it recover the parameters?
```

Iteration 0: log likelihood = -6864.2729
Iteration 1: log likelihood = -4010.245
Iteration 2: log likelihood = -3918.6259
Iteration 3: log likelihood = -3913.3196
Iteration 4: log likelihood = -3913.308
Iteration 5: log likelihood = -3913.308

iteration of inclined colore

Logistic regression Number of obs = 10,000 LR chi2(3) = 5901.93 Prob > chi2 = 0.0000 Log likelihood = -3913.308 Pseudo R2 = 0.4299

уВ	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x1 1.x2	.9739211 1.0046	.0279227 .0626434	34.88 16.04	0.000	.9191937 .8818216	1.028649 1.127379
x2#c.x1 1	.7762292	.0584557	13.28	0.000	.6616582	.8908003
_cons	.0350799	.0360535	0.97	0.331	0355837	.1057434

```
. predict yhatB // predicted probabilities
(option pr assumed; Pr(yB))
```

Inspect The Situation With A Graph

Think for a moment about what an interaction term $\beta x_1 * x_2$ is *supposed* to capture: the *difference* between slopes.

Notice that at different values of x the difference between the two slopes is different

At x = 0, the **orange** line is steeper than the **green** line.

At x = 2, the **green** line is steeper than the **orange** line.

No single static parameter can capture this changing difference between two slopes.

```
. twoway ///
> (scatter yB x1 if x2 == 0, msize(tiny)) /// points
> (scatter yB x1 if x2 == 1, msize(tiny)) /// points
> (scatter yhatB x1 if x2 == 0, msize(tiny)) ///
> (scatter yhatB x1 if x2 == 1, msize(tiny)), ///
> xline(0 2) ///
> title("Logit Curves for 2 Groups") ///
> sub("Model With Interaction") ///
> scheme(michigan)

. graph export mygraph.png, width(500) replace
(file mygraph.png written in PNG format)
```


Figure 3: Logistic Regression With Interactions