Genetische Statistik

Präsenzübung 7: Probeklausur

Dr. Janne Pott (janne.pott@uni-leipzig.de)

December 14, 2021

Fragen

Gibt es Fragen zu

- Vorlesung?
- Übung?
- Seminar?

Plan heute

Besprechung der Probeklausur

- HWE
- LD
- Coverage
- GWAS
- Stratifikationsbias
- RA-Plot

Abschnitt 1

HWE

Aufgabe

Mat.NR	AA	AB	ВВ	Missing
Regel 321 456 7		Ziffern 4-6 456		Quersumme (1+2+3+4+5+6+7=) 28

- SNP-Messmethode und Missings (1 BE)
- Angabe verwendeten Genotyphäufigkeiten und Fallzahl; Bestimmung Callrate und Allelfrequenz für A (1 BE)
- Erwartete Genotypverteilung unter HWE (2 BE)
- HWE-Test (Nullhypothese, Teststatistik, Interpretation) (3 BE).

Lösung (1)

SNP-Array Workflow:

- Vorbereitung: DNA-Amplifizierung und Fragmentierung
- Hybridisierung: DNA bindet an Platte, Labels werden hinzugefügt (A, T rot, C, G blau)
- Ligation: Labels binden an die hybridisierten Fragmente, je nach Allel andere Farbe
- Signal-Amplifizierung: Verstärkung des Signals + Messung, ob rot, blau, oder beides

Lösung (2)

Calling:

- Calling 1: Genotypisierung von ~20.000 SNPs für alle Samples
- Sample Filter 1: Dish-QC, Sample Call Rate
- ② Calling 2: Genotypisierung von ~550.000 SNPs
- SNP Filter 1: SNP Call Rate, HWE, MAF, Plattenassoziation, Clusterkriterien (FLD, HetSO, HomRO)
- Sample Filter 2: Geschlechtsfehler, PCA, Verwandtschaft
- SNP Filter 2: s.o.
- => Missings entstehen durch Genotypisierungsfehler!
- => Call Rate = Anteil an Samples, die pro SNP gecalled wurde = 1 Anteil missings

Lösung (3)

$$N_0 = 321 + 456 + 56 + 28 = 861$$

 $N_1 = 321 + 456 + 56 = 833$
 $CR = N_1/N_0 = 0.967$

Nur die Samples mit bestimmten Genotyp werden weiter berücksichtigt!

$$\hat{p} = \frac{(2 \cdot \#AA + \#AB)}{2 \cdot N_1} = 0.659, \hat{q} = 1 - \hat{p} = 0.341$$

Lösung (4)

Im HWE gilt:

$$1 = p + q = (p + q)^{2} = p^{2} + 2pq + q^{2} = p_{exp}(AA) + p_{exp}(AB) + p_{exp}(BB)$$
$$p_{exp}(AA) = \hat{p}^{2} = 0.659^{2} = 0.434$$
$$p_{exp}(AB) = 2 \cdot \hat{p} \cdot \hat{q} = 2 \cdot 0.659 \cdot 0.341 = 0.449$$
$$p_{exp}(BB) = \hat{q}^{2} = 0.341^{2} = 0.116$$

Lösung (5)

 H_0 : Die beobachtete Genotypverteilung liegt im Hardy-Weinberg-Gleichgewicht.

$$\chi^2 = N_1 \sum_{i \in AA, AB, BB} \frac{(p_o - p_e)^2}{p_e} = 833(0.005 + 0.022 + 0.021) = 39.984$$

$$df = \frac{m(m-1)}{2} = \frac{2 \cdot 1}{2} = 1 \rightarrow \chi_1^2 = 3.841$$

$$\chi^2 = 39.984 > 3.841 = \chi_1^2$$

- Die Nullhypothese muss abgelehnt werden.
- Hinweis auf Genotypisierungsfehler (passt zur niedrigen Callrate unter dem Threshold von 97%)

Abschnitt 2

LD

Aufgabe

- Def. & Entstehung Kopplungsungleichgewicht (LD) (1 BE)
- Zusammenhang stochastischer Unabhängigkeit und LD-Maßen (2 BE)
- Zwei LD-Maße und Anwendungsbeispiele! (je 0.5 BE)

Lösung (1)

- LD = linkage disequilibrium
- Allele werden überzufällig gemeinsam vererbt (keine Rekombination zwischen zwei Markern; sie liegen im gleichen Haploblock) und sind daher nicht mehr (stochastisch) unabhängig voneinander.
- Beeinflusst durch Selektion, Rekombinationsrate, Mutationsrate, gen. Drift, Populationsstruktur, ...

Lösung (2)

Abbildung 1: Rekombination zwischen ungekoppelten Loki (= nicht in LD)

Lösung (3)

Abbildung 2: Rekombination zwischen gekoppelten Loki (= in LD)

Lösung (4)

Stochastische Unabhängigkeit:

$$P(A \cap B) = P(A) \cdot P(B) \Leftrightarrow p_{00} = p_0 \cdot p_{00}$$

	SNP 1 Allel A	SNP 1 Allel a	Gesamt
SNP 2 Allel B	<i>p</i> ₀₀	<i>p</i> ₀₁	<i>p</i> _{0.}
SNP 2 Allel b	p_{10}	p_{11}	$p_{1.}$
Gesamt	<i>p</i> .0	$p_{.1}$	1

 $\Rightarrow D = p_{00} - p_{0.}p_{.0} = 0$, falls SNP 1 & 2 unabhängig voneinander

Lösung (5)

- Lewontin's D': $D' = \frac{D}{D_{max}}$
- $D \ge 0$: $D_{max} = min(p_0, p_{.1}, p_{.0}p_{1.})$
- $D < 0 : D_{max} = min(p_0, p_{.0}, p_{.1}p_{1.})$
- Standardisierung auf [-1,1]
- Abhängig von Allelfrequenzen
- Maß für stattgefundene Rekombinationen zwischen zwei Markern

Lösung (6)

- Korrelationskoeffizient r: $r=\frac{D}{\sqrt{p_0.p_{.0}p_{.1}p_{1.}}}$ Erklärte Varianz r^2 : $r=\frac{D^2}{p_0.p_{.0}p_{.1}p_{1.}}$ Standardisierung auf [-1,1] bzw. [0,1]

- Abhängig von Allelfrequenzen
- Maß der Übereinstimmung von markerbasierten Teststatistiken

Abschnitt 3

Coverage

Aufgabe

Angabe: "80% Coverage in HapMap CEU mit r2=0.9"

- Um welchen Arraytyp handelt es sich? Erklären Sie die Angabe! (1 BE)
- Zwei Faktoren, die die Coverage beeinflussen. (2 BE)

Lösung (1)

- Genomweiter SNP Array
- Coverage := "Qualität des Arrays", wie viel Prozent der Referenz-SNPs sind in hinreichend hohem LD mit den Array-SNPs.
- ullet 80% der HapMap SNPs sind in hinreichend hohen LD (r^2 =0.9) mit den Array-SNPs
- HapMap: alte Referenz (2002 2009) mit Fokus auf Haplotypen (hohe Qualität für Europäer)
- LD $r^2 = 0.9$: ein SNP muss mind. mit 0.9 getaggt sein um abgedeckt zu werden
- Faktoren, die die Coverage beeinflussen:
 - Referenz / Ethnizität
 - SNP Dichte bzw. Cut off für seltene Varianten
 - r^2 Threshold

Lösung (2)

Abbildung 3: Schema Coverage.

Abschnitt 4

GWAS

Aufgabe

- Wesentlichen Merkmale und Ziele GWAS. (2 BE)
- Kombinationsmöglichkeiten (1 BE)

Lösung (1)

- Ziel: Identifizierung von genetischen Varianten (SNPs, CNVs) die systematisch zwischen Individuen mit unterschiedlichen Merkmalswerten variieren
- Alternativ: Suche nach Unterschieden in Allelfrequenzen zwischen Fällen & Kontrollen
- Merkmale:
 - Im Vgl. zu Linkage Analyse von unverwandten Individuen (eigentlich unbekannt und vermutlich entfernt verwandt, falls Verwandtschaft bekannt Adjustierung nötig)
 - Hypothesenfrei: keine Vorselektion von möglichen krankheits-/phänotypverursachenden Genen sondern Analyse des gesamten Genoms (kein a-priori Wissen); geeignet für häufige komplexe Erkrankungen, bei denen die physiologischen Mechanismen und zugrunde liegenden genetischen Faktoren oft nicht gut abgegrenzt sind.

Lösung (2)

Ablauf:

- Jeder "gute" SNP wird getestet (typischerweise MAF und Imputationsquali-Filter, MAF > 1%, info $> 0.8 \rightarrow \sim 10$ Mio. Tests [HWE & CR wurden bereits VOR Imputation angewandt])
- Betrachtung der genomweiten Verteilung der Teststatistik (Stratifikationsbias führt zu höheren Teststatistiken -> evtl. Korrektur)
- Wir interessieren uns für die beiden Enden dieser Verteilung
- False-positives sind darunter, daher muss der p-Wert adjustiert werden (typischerweise Bonferroni, $\alpha = 5 \cdot 10^{-8}$)
- Es werden nicht notwendigerweise die kausalen / funktionellen Varianten entdeckt sondern SNPs in LD mit diesen (typischerweise $r^2 < 0.1$ als Schranke für Unabhängigkeit von SNPs)
- Annotation mittels Online-Datenbanken (Gene, Pathways, eQTLs, GWAS traits, ...)

Lösung (3)

Nachteile von GWAS:

- Große Datenmenge zu verwalten / analysieren
- Auswirkungen seltener Varianten kaum nachweisbar
- Erfordern sehr große Stichprobengrößen
- Sehr empfindlich für falsch positive Ergebnisse

Lösung (4)

Kombinationsmöglichkeiten:

- Mehrstufendesign:
 - Stufe 1: Alle SNPs, kleine Stichprobengröße, liberaler p-Wert $(p < 1 \cdot 10^{-6})$
 - Stufe 2: sig. SNPs aus Stufe 1, größere Stichprobengröße, stringentere p-Wert ($p < 5 \cdot 10^{-8}$)
 - Vorteil: Trennung der wenigen true-positives von den vielen false-positives der ersten Stufe
 - Nachteil: Auswahl der SNPs abhängig von Modell, LD, wenig Power in der ersten Stufe
- Metaanalyse:
 - Gemeinsame Analyse mehrerer GWAS
 - Kombination via p-Wert oder Effektschätzer (FEM, REM je nach Heterogenität)
 - Vorteil: hohe Power durch hohe Fallzahlen
 - Nachteil: Zeit (Daten einsammeln), Heterogenität (trotz Analyseplan unterschiedliche Imputationsreferenzen, Adjustierungsmodelle, Kodierung der Allele, ...)

Abschnitt 5

Stratifikationsbias

Aufgabe

- Def. Stratifikationsbias bei genetischen Studien? (2 BE)
- Zwei Maßnahmen zur Analyse / Reduktion (je 1 BE)

Lösung

Durch die gemeinsame Analyse von Personen unterschiedlicher genetischer Herkunft bei gleichzeitigem Vorliegen nichtgenetisch bedingter Unterschiede zwischen den Personengruppen können sich falsche Schätzer genetischer Effekte ergeben.

Mögliche Maßnahmen:

- Analyse der Populationsstruktur mittels Clusterverfahren ("Structure"), Hauptkomponentenanalyse (PCA) oder Multidimensionaler Skalierung (MDS)
- Korrektur auf Hauptkomponenten
- Berücksichtigung der Verwandtschaftsstruktur in genetischen Daten
- Genomic Control
- Genetische Outlier weglassen

Abschnitt 6

RA-Plot

Aufgabe (1)

- Welche Art Plot? (1 BE)
- Benennen Sie die Elemente des Plots (siehe A-F im Plot) (3 BE)
- Interpretieren Sie den Plot (mind. zwei Fakten)! (1 BE)

Aufgabe (2)

Lösung (1)

Regional Association Plot:

- chromosomale Position & P-Werte aus GWAS
- LD-Tool / Referenz zur Bestimmung des paarweisen LD mit dem Lead-SNP
- Referenz für die Rekombinationsrate in dieser Region
- Referenz für die Gene der Region

Lösung (2)

- A: −log₁₀(p − Wert)
- B: r^2 bzgl. des Lead-SNPs
- C: Lead-SNP
- D: Rekombinationsrate
- E: Gene
- F: Position auf dem Chr.

Genomweit siginifikater Hit, der durch weitere gekoppelte SNPs unterstützt wird

Mehrere Kandidatengene, RA Plot entspricht den theoretischen Erwartungen hinsichtlich r^2 und Effekt