Отчет о выполнении лабораторной работы 3.6.1 Спектральный анализ электрических сигналов

Выполнил: Дедков Денис, группа Б01-109 01.10.2022

Цель работы

Изучить спектральный состав периодических электрических сигналов.

Оборудование и приборы

Генератор сигналов специальной формы $AK\Pi\Pi$ -3409/4, Цифровой осциллограф SIGLENT $AK\Pi\Pi$ 4131/1.

Введение

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью анализатора спектра и сравниваются с рассчитанными теоретически.

В последнее время повсеместное распространение получила цифровая обработка сигналов. Спектральный состав оцифрованного сигнала может быть найден численно. Существуют алгоритмы (быстрое преобразование Фурье, FFT), позволяющие проводить вычисления коэффициентов Фурье в реальном времени для сигналов относительно высокой частоты (до 200 МГц). Именно быстрое преобразование Фурье используется в данной работе для вычисления спектра.

Ход работы

Исследование спектра периодической последовательности прямоугольных импульсов

Теоретическое описание спектра периодической последовательности прямоугольных импульсов приведено на рисунке 1.

Рис. 1: Периодическая последовательность импульсов и её спектр.

Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1$ к Γ ц (период T=1мс) и длительностью импульса $\tau=\frac{T}{20}=50$ мкс. Фотографии экрана электронного осциллографа приведены на рисунках и .

Рис. 2: Изменения спектра при увеличении ν

Рис. 3: Изменения спектра при увеличении au

При фиксированных параметрах $\nu_{\text{повт}} = 1$ к Γ ц и $\tau = 100$ мкс измерим высоты (амплитуды) a_n и частоты ν_n несколько первых гармоник спектра и сравним их значения с рассчитанными теоретически по следующей формуле:

$$a_n = \frac{\sin\left(\pi n\tau/T\right)}{\pi n}$$

Графики экспериментально измеренного спектра, а также теоретически рассчитанной огибающей приведен на рисунке .

Рис. 5: Фотография экспериментального спектра

Рис. 4: Спектр и огибающая

Проводим измерения зависимости ширины спектра $\Delta \nu$ от времени импульса τ в диапазоне от 20 до 200 мкс при фиксированной $\nu_{\text{повт}}$ (ширина измеряется от центра спектра до первой нулевой гармоники). Строим график зависимости $\Delta \nu(\frac{1}{\tau})$ (см. рис.).

Δu , к Γ ц	τ , MC	$\frac{1}{ au}$, $1/\mathrm{mc}$
5.2	200	0.0050
5.8	180	0.0056
6.2	160	0.0063
7.2	140	0.0071
8.2	120	0.0083
10.2	100	0.0100
12.8	80	0.0125
17.2	60	0.0167
25.2	40	0.0250
50.0	20	0.0500

Таблица 1: Данные

Рис. 6: График зависимости $\Delta \nu(\frac{1}{ au})$

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
1.46e-02	1.73e-04	$1.48\mathrm{e}{+01}$	1.73 e + 02	1.73e-01	998.99	4.92	0.17	0.10

Таблица 2: Обработка МНК

Погрешность эксперимента коррелирует с погрешностью коэффициента наклона. Следовательно, рассчитаем количественный критерий точности:

$$C \approx \frac{\Delta a}{a} \approx 0.5\%$$

Исследование спектра периодической последовательности цугов

Теоретическое описание спектра периодической последовательности цугов приведено на рисунке 7.

Рис. 7: Периодическая последовательность импульсов и её спектр.

Следуя техническому описанию, устанавливаем на генераторе режим подачи периодических импульсов синусоидальной формы. Частоту несущей устанавливаем $\nu_0=50$ к Γ ц, период повторения T=1мс ($\nu=1$ к Γ ц), число периодов в одном импульсе N=5 (длительность импульса $\tau=N/\nu_0=100$ мкс).

Рис. 8: Изменения спектра при уменьшении au

К сожалению нам не удалось добиться устойчивой картины на экране осциллографа. Скорее всего это связано с генератором импульсов. Из-за этого следующее изучение спектра становится близким к невозможному.

Исследование спектра гармонических сигналов, модулированных по амплитуде

Теоретическое описание гармонического сигнала, модулированного по амплитуде приведено на рисунке 9.

Рис. 9: Спектр гармонических сигналов, модулированных по амплитуде.

Настраиваем генератор на частоту несущей $\nu_0=25$ к Γ ц, частоту модуляции $\nu_{\text{мод}}=1$ к Γ ц и глубину модуляции m=0.5. Фотографии экрана электронного осциллографа приведены на рисунке .

Рис. 10: Изменения спектра при увеличении ν_0

Меняя на генераторе глубину модуляции m в диапазоне от 10% до 100%, измерим отношение $\frac{a_{\rm fok}}{a_{\rm och}}$ амплитуд боковой и основной спектральных линий. Строим график зависимости $\frac{a_{\rm fok}}{a_{\rm och}}(m)$ (см. рис.).

Рис. 11: График зависимости $\frac{a_{6\text{ok}}}{a_{\text{och}}}(m)$

Таблица 3: Данные

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	$a \cdot 10^3$	$\Delta a \cdot 10^3$	b	Δb
$5.50\mathrm{e}{+01}$	$8.25\mathrm{e}{+02}$	2.16e-01	1.36e-02	$3.34\mathrm{e}{+00}$	4.05	0.07	-6.61e-03	4.33e-03

Таблица 4: Обработка МНК

Погрешность эксперимента коррелирует с погрешностью коэффициента наклона. Следовательно, рассчитаем количественный критерий точности:

$$C \approx \frac{\Delta a}{a} \approx 3\%$$

Вывод

В работе было проведено изучение спектрального состава различных периодических электрических сигналов. Примечательно, что эксперимент

получается с очень хорошей точностью (относительная погрешность порядка нескольких процентов).

К сожалению во второй части работы нам так и не удалось добиться устойчивой картины на экране осциллографа. Скорее всего это связано с генератором импульсов.