

# Grandezas, Unidades e Prefixos do Sistema Internacional de Unidades (SI)

### Grandezas e Unidades SI

| Grandeza                                             | Unidade |                 |                                    |
|------------------------------------------------------|---------|-----------------|------------------------------------|
| Nome                                                 | Símbolo | Nome            | Símbolo                            |
| potencial eléctrico                                  | U       | volt            | V                                  |
| tensão, diferença de potencial ou queda de potencial | U, E    | volt            | V                                  |
| corrente eléctrica                                   | I       | ampere          | A                                  |
| energia                                              | W       | joule           | J                                  |
| potência                                             | P       | watt            | W                                  |
| resistência eléctrica                                | R       | ohm             | Ω                                  |
| resistividade                                        | ρ       | ohm metro       | $\Omega \cdot m$                   |
| capacidade eléctrica                                 | C       | farad           | F                                  |
| permitividade                                        | ε       | farad por metro | $\mathbf{F} \cdot \mathbf{m}^{-1}$ |
| coeficiente de auto-indução                          | L       | henry           | Н                                  |
| permeabilidade                                       | μ       | henry por metro | $H \cdot m^{-1}$                   |

# **Prefixos SI**

# **Múltiplos**

| Nome  | Símbolo | Factor multiplicador                              |
|-------|---------|---------------------------------------------------|
| yotta | Y       | $10^{24} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000\$ |
| zetta | Z       | $10^{21} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000$  |
| exa   | E       | $10^{18} = 1\ 000\ 000\ 000\ 000\ 000\ 000$       |
| peta  | P       | $10^{15} = 1\ 000\ 000\ 000\ 000\ 000$            |
| tera  | T       | $10^{12} = 1\ 000\ 000\ 000\ 000$                 |
| giga  | G       | $10^9 = 1\ 000\ 000\ 000$                         |
| mega  | M       | $10^6 = 1\ 000\ 000$                              |
| quilo | k       | $10^3 = 1000$                                     |
| hecto | h       | $10^2 = 100$                                      |
| deca  | da      | $10^1 = 10$                                       |

João Sena Esteves

Universidade do Minho

# Submúltiplos

| Nome  | Símbolo | Factor multiplicador                               |
|-------|---------|----------------------------------------------------|
| deci  | d       | $10^{-1} = 0.1$                                    |
| centi | c       | $10^{-2} = 0.01$                                   |
| mili  | m       | $10^{-3} = 0,001$                                  |
| micro | μ       | $10^{-6} = 0,000\ 001$                             |
| nano  | n       | $10^{-9} = 0,000\ 000\ 001$                        |
| pico  | p       | $10^{-12} = 0,000\ 000\ 000\ 001$                  |
| fento | f       | $10^{-15} = 0,000\ 000\ 000\ 000\ 001$             |
| ato   | a       | $10^{-18} = 0,000\ 000\ 000\ 000\ 000\ 001$        |
| zepto | Z       | $10^{-21} = 0,000\ 000\ 000\ 000\ 000\ 000\ 001$   |
| yocto | y       | $10^{-24} = 0,000\ 000\ 000\ 000\ 000\ 000\ 000\ $ |

Universidade do Minho João Sena Esteves

# 1. Corrente Eléctrica, Potencial Eléctrico e Tensão

A corrente eléctrica (I) tem como unidade o ampere (A).

O potencial eléctrico que existe num ponto A (U<sub>A</sub>) tem como unidade o volt (V).

A tensão, diferença de potencial ou queda de potencial que existe entre um ponto A e um ponto B (U<sub>AB</sub>) tem como unidade o volt (V) e é dada por

$$\mathbf{U}_{\mathrm{AB}} = \mathbf{U}_{\mathrm{A}} - \mathbf{U}_{\mathrm{B}}$$

Um **componente de um circuito eléctrico** tem sempre **dois ou mais terminais**. Num componente de dois terminais, a corrente que entra por um terminal é a mesma que sai pelo outro.



Diz-se (porque é verdade) que...

- uma corrente eléctrica passa num componente de um circuito.
- um potencial eléctrico <u>existe num</u> ponto.
- uma tensão existe entre dois pontos.

#### Notações:

- Usam-se setas rectas para indicar os sentidos de correntes eléctricas.
- Usam-se setas curvas para indicar os sentidos de tensões (quedas de potencial).

O sentido verdadeiro da corrente eléctrica que passa num componente de um circuito eléctrico é o oposto ao do movimento dos electrões que constituem essa corrente.

Em Física, o sentido real da corrente eléctrica que passa num componente de um circuito eléctrico é o do movimento dos electrões que constituem essa corrente; o sentido convencional da corrente eléctrica é o oposto ao desse movimento. Assim, o sentido verdadeiro da corrente eléctrica, usado em Electrotecnia e em Electrónica, coincide com o sentido convencional da corrente eléctrica usado em Física.

O sentido positivo da corrente eléctrica que passa num componente é convencionado, podendo coincidir ou não com o sentido verdadeiro da corrente.

O **potencial eléctrico que existe num ponto** só fica determinado se estiver definida uma referência para os potenciais eléctricos. Por definição, o valor do potencial eléctrico de referência é zero.

João Sena Esteves

Universidade do Minho

Pode escolher-se, arbitrariamente, o potencial de qualquer ponto de um circuito eléctrico como referência para os potenciais eléctricos. Em geral, a escolha da referência faz-se por forma a simplificar a análise do circuito.

É frequente usar o potencial da **terra** ou o potencial da **massa** (*chassis*) dos aparelhos eléctricos como referência para os potenciais eléctricos.



O **potencial eléctrico que existe num ponto** tem o valor da tensão existente entre esse ponto e o ponto cujo potencial é usado como referência para os potenciais eléctricos.



O **potencial eléctrico que existe num ponto** depende da referência escolhida para os potenciais eléctricos e pode assumir qualquer valor.

A **tensão** existente entre dois pontos tem um valor que não depende da referência escolhida para os potenciais eléctricos.



O sentido verdadeiro da tensão existente entre dois pontos é do ponto de potencial superior para o ponto de potencial inferior.

O sentido positivo da tensão existente entre dois pontos é convencionado, podendo coincidir ou não com o sentido verdadeiro da queda de potencial.

Universidade do Minho João Sena Esteves

### Para correntes e tensões **constantes**...

|                                                                                                                         | - A seta indica o sentido verdadeiro da corrente que atravessa o componente.                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A B                                                                                                                     | - Dentro do componente, a corrente vai do terminal A para o terminal B.                                                                                                             |
|                                                                                                                         | - A corrente que atravessa o componente tem um valor de 10A.                                                                                                                        |
| A -10A B                                                                                                                | - A seta indica o sentido positivo da corrente que atravessa o componente.                                                                                                          |
|                                                                                                                         | - Dentro do componente, a corrente vai do terminal B para o terminal A.                                                                                                             |
|                                                                                                                         | - A corrente que atravessa o componente tem um valor de 10A.                                                                                                                        |
| $\begin{array}{c} \mathbf{I}_{\mathrm{AB}} \\ \bullet \\ \end{array} \qquad \begin{array}{c} \mathbf{B} \\ \end{array}$ | - A seta indica o sentido positivo da corrente que atravessa o componente.                                                                                                          |
|                                                                                                                         | - Se, dentro do componente, a corrente for do terminal A para o terminal B, então o sentio positivo da corrente coincide com o sentido verdadeiro da corrente e I <sub>AB</sub> >0. |
| A B                                                                                                                     | - A seta indica o <b>sentido verdadeiro da tensão</b> existente entre os terminais A e B o componente.                                                                              |
|                                                                                                                         | - O potencial no terminal A é superior ao potencial no terminal B.                                                                                                                  |
|                                                                                                                         | - Entre os terminais existe uma diferença de potencial de 10V.                                                                                                                      |
| 1087                                                                                                                    | - A seta indica o <b>sentido positivo da tensão</b> existente entre os terminais A e B o componente.                                                                                |
| A B                                                                                                                     | - O potencial no terminal B é superior ao potencial no terminal A.                                                                                                                  |
|                                                                                                                         | - Entre os terminais existe uma diferença de potencial de 10V.                                                                                                                      |
| $\mathbf{U}_{\mathtt{AB}}$                                                                                              | - A seta indica o <b>sentido positivo da tensão</b> existente entre os terminais A e B o componente.                                                                                |
| A B                                                                                                                     | - Se o potencial no terminal A for superior ao potencial no terminal B, então o sentio positivo da tensão coincide com o sentido verdadeiro da tensão e $U_{AB}>0$ .                |
|                                                                                                                         |                                                                                                                                                                                     |

<u>Nota</u>: Para manter os desenhos simples, **não se representa o resto do circuito, que está ligado aos terminais A e B**. Sem esse circuito não poderiam existir as correntes representadas.

João Sena Esteves

Universidade do Minho







Universidade do Minho João Sena Esteves