SHEAR STRESS-RESPONSE DNA

Patent Number: F EP1225224

Publication

date:

2002-07-24

Inventor(s):

SAKURADA KAZUHIRO (JP); SEKINE SUSUMU (JP); KAWABATA AYAKO (JP); KUGA TETSURO (JP), NAKAMURA YUSUKE (JP); NOJIMA HIROSHI (JP); OBAYASHI MASAYA (JP); OTA TOSHIO (JP); SUGANO SUMIO (JP); YOSHISUE HAJIME (JP)

Applicant(s):

NOJIMA HIROSHI (JP); KYOWA HAKKO KOGYO KK (JP)

Requested

Patent:

WO0125427

Application

Number

EP20000963041 20001002

Priority Number

(s):

WO2000JP06840 20001002; JP19990280976 19991001

IPC

C12N15/12; C07K14/435; C07K16/18; C12P21/02; C12Q1/68; A61K38/00; A61K39/395;

Classification:

A61K48/00; A61P9/10; G01N33/50; G01N33/53

EC

Classification:

C07K14/435

Equivalents:

AU7452300

Cited

Documents:

Abstract

This invention relates to a novel shear stress-responsive DNA, a protein encoded by the DNA, an antibody against the protein, a method for detecting a shear stress-responsive DNA or protein, a therapeutic agent and a diagnostic agent for vascular diseases caused by arteriosclerosis and a method for screening the therapeutic agent and the diagnostic agent.

Data supplied from the esp@cenet database - I2

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年4 月12 日 (12.04,2001)

PCT

(10) 国際公開番号 WO 01/25427 A1

(51) 国際特許分類": C12N 15/12, C07K 14/435, 16/18, C12P 21/02, C12Q 1/68, A61K 38/00, 39/395, 48/00, A61P 9/10, G01N 33/50, 33/53

(21) 国際出願番号:

PCT/JP00/06840

(22) 国際出願日:

2000年10月2日(02.10.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/280976 1999年10月1日(01.10.1999) JP

- (71) 出願人 (米国を除く全ての指定国について): 協和醗酵 工業株式会社 (KYOWA HAKKO KOGYO CO., LTD.) [JP/JP]; 〒100-8185 東京都千代田区大手町一丁目6番 1号 Tokyo (JP).
- (71) 出願人 および
- (72) 発明者: 野島 博 (NOJIMA, Hiroshi) [JP/JP]: 〒562-0031 大阪府箕面市小野原東六丁目35-24 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 吉末 元 (YOSHISUE, Hajime) [JP/JP]. 大林正也 (OBAYASHI, Masaya) [JP/JP]. 太田紀夫 (OTA, Toshio) [JP/JP]. 川端彩子 (KAWABATA, Ayako) [JP/JP]. 桜田一洋 (SAKURADA, Kazuhiro) [JP/JP]. 関根 進 (SEKINE, Susumu) [JP/JP]: 〒194-8533 東京都町田市旭町三

丁目6番6号 協和醗酵工業株式会社 東京研究所内 Tokyo (JP). 久我哲郎 (KUGA, Tetsuro) [JP/JP]; 〒747-8522 山口県防府市協和町1番1号 協和醗酵工業株式会社 技術研究所内 Yamaguchi (JP). 中村祐輔(NAKAMURA, Yusuke) [JP/JP]; 〒225-0011 神奈川県横浜市青葉区あざみ野一丁目17-33 Kanagawa (JP). 菅野純夫 (SUGANO, Sumio) [JP/JP]; 〒167-0052 東京都杉並区南荻窪四丁目8-13 Tokyo (JP).

- (74) 代理人: 平木祐輔, 外(HIRAKI, Yusuke et al.); 〒 105-0001 東京都港区虎ノ門一丁目17番1号 虎ノ門 5森ビル3階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

/続葉有/

(54) Title: SHEAR STRESS-RESPONSE DNA

(54) 発明の名称: ずり応力応答性DNA

(57) Abstract: A novel shear stress-response DNA; a protein encoded by this DNA; an antibody against this protein; a method of detecting a shear stress-response DNA or protein; remedies and diagnostics for vascular diseases caused by arteriosclerosis; and a method of screening a drug for treating or diagnosing these diseases.

(57) 要約:

この発明は、新規のずり応力応答性DNA、そのDNAによってコードされる蛋白質、その蛋白質に対する抗体、ずり応力応答性DNAまたは蛋白質を検出する方法、ならびに、動脈硬化を原因とする血管病の治療薬および診断薬、およびそのような治療または診断のための薬剤のスクリーニング法に関する。

WO 01/25427 A1

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

ずり応力応答性DNA

発明の分野

本発明は、血管内皮細胞においてずり応力依存的に発現が上昇するmRNAに注目し、サブトラクション法を用いて取得した新規DNAおよび該DNAがコードする蛋白質に関する。また、該蛋白質に対する抗体、該蛋白質および該DNAの検出方法、ならびに動脈硬化を原因とする種々の血管病、例えば心不全、PTCA(経皮的経管的冠動脈形成術)後の再狭窄、高血圧などの疾患の診断および治療、およびそのような治療または診断のための薬剤のスクリーニング法に関する。

発明の背景

血管の内面を一層に覆う血管内皮細胞は、従来、血管内腔を流れる血液と組織とを隔てる単なる内張りと考えられてきた。しかし、近年の血管内皮に関する研究が進展した結果、内皮には生体にとって非常に重要な多彩な機能が備わっていることがわかってきた。それらの機能とは例えば、血液と組織間の物質透過性の調節、血管の緊張度の調節、抗血栓活性の維持、平滑筋増殖制御、組織修復、炎症反応、血管のリモデリングなどである。血流が血管壁に与える物理力のことをずり応力と呼び、血流速度と血液の粘性、および血管の径や形態によって規定される。ずり応力は血管壁の内面を覆っている内皮に働き、血管内皮細胞を血流の方向に歪ませる。この物理的刺激が、ホルモン、サイトカインなどの化学的刺激と同様、血管内皮細胞の形態や、上述したような様々な機能の調節に深く関与していることが、ここ約10年の研究で明らかになってきた〔細胞工学、16、950(1997)〕。

粥状動脈硬化症は日本を含む先進工業国において、成人死因の主要な

原因の一つである。高コレステロール血症、高ホモシステイン血症、糖 尿病などの原因で起こる血管の機能不全は粥状動脈硬化の発症ならび病 態の悪化と深く関係していることが知られている〔Molecular Cardiovascular Medicine, 49-61 (1995)]。一方、動脈硬化巣は血管全 体に均一に分布するのではなく、例えば血管の分岐部の曲がりの外側な ど特定の部位に局在することが知られている。このような局所性の発症 は、血中コレステロールを遺伝的に増加させた実験動物でも観察される ことから、血管内皮へのコレステロールの取り込みが血管内皮細胞の局 所的な変化ならびにコレステロールの具体的な取り込みの2段階で起こ ると考えられている [Arterioscler. Thromb., 14, 133-140 (1994)]。 このような局所的な発症の原因はほとんど明らかにされていない。しか し、初期病変がずり応力の強さや方向が非定常となっている場所即ち、 ずり応力が低く、かつ流れの剥離や停滞あるいは渦などの乱流が起きや すい場所で多発することから、ずり応力などの血行力学的応力が粥状動 脈硬化症の発症に深く関係すると考えられている。現在、ずり応力がど のような分子機構で動脈硬化を局所的に惹起させるかは明らかではない。 しかし、現在までに試験管内で培養した血管内皮細胞に機械的にずり応 力を与えることで変動する遺伝子が探索され、ずり応力がAP (activator protein) - 1、NF (nuclear factor)-κBなど種々の転写因 子を活性化することにより、それらの転写因子の制御下にある遺伝子の 発現が変化することが見い出されている。現在までにずり応力刺激に応 答して発現が変動する遺伝子のコードする蛋白質として、 PDGF(platelet-derived growth factor), TGF(transforming growth factor)-βなどの増殖因子、VCAM(vascular cell adhesion molecule)-1、 ICAM(intercellular adhesion molecule)-1 などの接着因子、 ET(endothelin)-1 などの緊張度調節因子、t-PA(tissue-type plasminogen activator) などの血液栓溶因子、NOS(nitric oxide synthase)3,COX(cyclooxygenase)2、SOD(superoxide dismutase)などの

酵素などが報告されている〔Molecular Medicine Today, 40 (1999)〕。このように、試験管内の再構成系において、ずり応力で応答 する遺伝子には、少なくとも血管内の低ずり応力部位でずり応力の変化 に伴い発現してくると考えられる動脈硬化誘導因子、ならびに血管内の 構成的にずり応力の高い場所で動脈硬化の発症を抑制している分子の大 きく二つの特性を持った分子が含まれると考えられる。しかし、ずり応 力で発現が変動すると推定された遺伝子のなかで、具体的な遺伝子が同 定されたものは一部にしかすぎない。動脈硬化の成因を理解し、予防法 ならびに治療法を開発するにはずり応力で応答する未知の遺伝子を明ら かにすることが必要である。近年、デファレンシャルディスプレー法な どを利用して、ずり応力で変動する未知の遺伝子の探索が行われたが、 数倍程度の変動では遺伝子の取得が難しいこと、偽陽性のクローンの割 合が多い等の問題点がある [Nucleic Acids Res., 23, 4520-4523 (1995)]。 そのためデファレンシャルディスプレー法により明らかにされたずり応 力で変動する遺伝子の数は多くなかった [Proc. Natl. Acad. Sci. USA, 93, 10417-10422 (1996); Proc. Natl. Acad. Sci. USA, 94, 9314-9319 (1997); Biochem. Biophys. Res. Comm., 225, 347-351 (1996); Biochem. Biophys. Res. Comm., 246, 881-887 (1998); US patent 5,834,248. (1998); US patent 5, 849, 578, (1998); US patent 5, 882, 925, (1999)) 以上のように、血管内皮細胞に負荷されるずり応力の変化が粥状動脈 硬化の局所性発症に関与することが認知されている一方で、その分子機 構はほとんどわかっていないのが実状である。しかしながら、ずり応力 は in vivo において内皮細胞のターンオーバーを減少させる、即ち内皮 の細胞死を抑制する方向に働くことが古くから報告されている (Atherosclerosis, 17, 401-417, (1973), Circ. Res., 69, 1557-1565, (1991)]。また、in vi tro において、T N F - α 刺激、過酸化水素刺激、 増殖因子枯渇等により誘導された内皮細胞のアポトーシスが、ずり応力

負荷により顕著に抑制されることを示す多くの報告がある[J. Exp. Med.,

185, 601-607, (1997)、 FEBS Lett., 399, 71-74, (1997)、Arterioscler. Thromb. Vas. Biol., 17, 3588-3592, (1997)、Biochem. Biophys. Res. Commun., 231, 586-590, (1997)〕。即ち、ずり応力の低い動脈の分岐部、湾曲部においては、アポトーシスが誘導される方向に内皮細胞の形質が変化し、このことが動脈硬化初期病変の局所性を規定する一因であると考えられている。しかしながら現在、内皮細胞のアポトーシスがずり応力負荷により抑制される分子機構、即ちシグナル伝達機構に関与する遺伝子についてはほとんどわかっていない。

血管内皮細胞がずり応力に応答する分子メカニズムを理解することは、動脈硬化を原因とする種々の血管病の発症機構ならびに治療のターゲットを知ることに繋がる。そのシグナル伝達機構を知るためには、血管内皮細胞においてずり応力刺激依存的に発現が変動するような遺伝子群を取得することが必要である。

また、血管内皮細胞においてずり応力刺激によりアポトーシスが抑制される分子メカニズムを理解することは、動脈硬化初期病変の局所的形成機構を明らかにし、動脈硬化を原因とする種々の血管病の治療薬を見出すことに繋がる。その分子メカニズムを知るためには、血管内皮細胞においてずり応力刺激依存的に発現が上昇し、アポトーシス抑制活性を有する遺伝子を取得することが必要である。

発明の概要

本発明者らは上記問題点を解決すべく鋭意研究し以下の結果を得た。即ち、ずり応力を負荷した培養血管内皮細胞由来のmRNAを鋳型として作製したcDNAライブラリーを、ずり応力を負荷しない内皮細胞より抽出したmRNAで差し引くことにより、ずり応力負荷条件下で発現が上昇する遺伝子が濃縮されたサブトラクションライブラリーを構築した。該サブトラクションライブラリーは、発現量の低い遺伝子が均一化する現象ならび挿入断片のない空のベクターが増加することから、新た

にリバースサブトラクション法を開発し、サブトラクションライブラリーからずり応力で変動する遺伝子を濃縮した第2世代のサブトラクションライブラリーを構築した。該第2世代のサブトラクションライブラリー中に存在するクローンについてランダムにノーザンハイブリダイゼーションを行い、ずり応力負荷により発現が上昇するクローンを多数取得した。該クローンの中にはすでにずり応力で変動することが知られている遺伝子に加えて、動脈硬化の調節に働くと推定される遺伝子、動脈硬化との関係が今まで知られていなかった遺伝子、および新規遺伝子を見い出した。さらに該遺伝子がコードするペプチドを見出すことにより、本発明を完成させるに至った。

即ち、本発明は以下の(1)~(76)を提供するものである。

- (1)配列番号143、145、147、149、151、153、1 55、157、168、170および172で表される塩基配列から選 ばれる塩基配列を有するDNA。
- (2)配列番号143、145、149、151、153、155、157、168、170および172で表される塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするずり応力応答性DNA。
- (3)配列番号147で表される塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズしかつ該DNAと90%以上の相同性を有するずり応力応答性DNA。
- (4)配列番号143、145、149、153、155、157、168、170および172で表わされる塩基配列から選ばれる塩基配列中の連続した5~60塩基と同じ配列を有するDNAまたは該DNAと相補的な配列を有するDNA。
- (5) (1) ~ (4) のいずれかに記載のDNAを用いてずり応力応答性遺伝子のmRNAを検出する方法。
 - (6) (1) ~ (4) のいずれかに記載のDNAを含有する、動脈硬化

を原因とする血管病の診断薬。

(7) (1) ~ (4) のいずれかに記載のDNAを用いて動脈硬化の原 因遺伝子を検出する方法。

- (8) (1) \sim (4) のいずれかに記載のDNAを用いてずり応力応答 性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。
- (9) (1) ~ (4) のいずれかに記載のDNAを用いて動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- (10) (1) ~ (4) のいずれかに記載のDNAを含有する、動脈硬化を原因とする血管病の治療薬。
- (11) (1) \sim (4) のいずれかに記載のDNAを含む組換えウイルスベクター。
- (12) (1) ~ (4) のいずれかに記載のDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクター。
- (13)配列番号111、113、115、116、117、119、121、123、125、127、129、130、131、132、133、134、135、137、139および141で表される塩基配列から選ばれる塩基配列を有するDNA。
- (14) (13) に記載のDNAとストリンジェントな条件下でハイブ リダイズするずり応力応答性DNA。
- (15)配列番号111、113、115、116、117、119、121、123、125、127、129、130、131、132、133、134、135、137、139および141で表わされる塩基配列から選ばれる塩基配列中の連続した5~60塩基と同じ配列を有するDNAまたは該DNAと相補的な配列を有するDNA。
- (16) (13) ~ (15) のいずれかに記載のDNAを含有する、動脈硬化を原因とする血管病の診断薬。
- (17) (13) ~ (15) のいずれかに記載のDNAを用いる、動脈 硬化の原因遺伝子を検出する方法。

(18) (13) ~ (15) のいずれかに記載のDNAを用いてずり応力応答性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。

- (19) (13) ~ (15) のいずれかに記載のDNAを用いて動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- (20)配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する DNAを用いて、ずり応力応答性遺伝子のmRNAを検出する方法。
- (21)配列番号7で表される塩基配列を有するDNA、または配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAを用いて、配列番号7で表される塩基配列を有するDNAの内在性の転写量を検出することにより細胞のアポトーシス感受性を同定する方法。
- (22) 配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した $5\sim6$ 0塩基と同じ配列を有するDNA、あるいはこれらの各DNAの塩基配列に相補的な塩基配列を有するTンチセンスDNAを用いて、配列番号Tで表される塩基配列を有するDNAの内在性の転写もしくは翻訳を調節することにより細胞のTポトーシスを抑制または促進する方法。
- (23)配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,

107および109で表される塩基配列から選ばれる塩基配列を有する DNAを含有する、動脈硬化を原因とする血管病の診断薬。

(24)配列番号7で表される塩基配列を有するDNA、または配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAを含有する、細胞のアポトーシス感受性を同定する薬剤。

(25)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107および109で表される塩基配列から選ばれる塩基配列を有するDNAを用いて、ずり応力応答性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。

(26)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107および109で表される塩基配列から選ばれる塩基配列を有するDNAを用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。

(27)配列番号7で表される塩基配列を有するDNAの内在性の転写もしくは翻訳を調節することにより細胞のアポトーシスを抑制または促進する薬剤を、配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAを用いてスクリーニングする方法。

(28)配列番号1、3、5、7、9、11、13、15、17、19、 21、23、25、27、29、31、33、35、37、39、41、

43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107および109で表される塩基配列から選ばれる塩基配列を有するDNAを含有する、動脈硬化を原因とする血管病の治療薬。

- (29)配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNA、あるいはこれらの各DNAの塩基配列に相補的な塩基配列を有するアンチセンスDNAを含有する、細胞のアポトーシスを抑制または促進する薬剤。
- (30)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107および109で表される塩基配列から選ばれる塩基配列を有するDNAを含む組換えウイルスベクター。
- (31)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107および109で表される塩基配列から選ばれる塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクター。
- (32) (30) または(31) に記載の組換えウイルスベクターを含有する、動脈硬化を原因とする血管病の治療薬。
- (33)配列番号7で表される塩基配列を有するDNAを含む組換えウ

イルスベクターまたは配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクターを用いて細胞のアポトーシスを抑制する方法。

- (34)配列番号7で表される塩基配列を有するDNAを含む組換えウイルスベクターまたは配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクターを用いて細胞のアポトーシスを抑制または促進する薬剤をスクリーニングする方法。
- (35)配列番号144、146、148、150、152、154、 156、158、169、171および173で表されるアミノ酸配列 から選ばれるアミノ酸配列を有する蛋白質。
- (36) (35) に記載の蛋白質の有するアミノ酸配列とは1以上のアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ動脈硬化病変の形成に関与する活性を有する蛋白質。
- (37) (35) または (36) に記載の蛋白質をコードする DNA。
- (38) (1) \sim (4) および (37) のいずれかに記載のDNAをベクターに組み込んで得られる組換え体DNA。
- (39) (38) に記載の組換え体 DNA を宿主細胞に導入して得られる形質転換体。
- (40) (39) に記載の形質転換体を培地に培養し、培養液中に(35) または(36) に記載の蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする蛋白質の製造方法。
- (41) (39) に記載の形質転換体を培地に培養し、該培養物を用いて動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- (42) (35) または (36) に記載の蛋白質を用いて、動脈硬化を 原因とする血管病の治療薬をスクリーニングする方法。
- (43) (35) または (36) に記載の蛋白質を生産する組換えウイルスベクター。

(44) (43) に記載の組換えウイルスベクターを含有する、動脈硬化を原因とする血管病の治療薬。

- (45) (35) または(36) に記載の蛋白質を認識する抗体。
- (46) (45) に記載の抗体を用いる(35) または(36) に記載の蛋白質の免疫学的検出方法。
- (47) (45) に記載の抗体を用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- (48) (45) に記載の抗体を用いて、ずり応力応答性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。
- (49) (45) に記載の抗体を含有する、動脈硬化を原因とする血管 病の診断薬。
- (50) (45) に記載の抗体を含有する、動脈硬化を原因とする血管 病の治療薬。
- (51) (45) に記載の抗体と放射性同位元素、蛋白質または低分子の薬剤とを結合させた融合抗体を動脈硬化巣へ誘導するドラッグデリバリー法。
- (52) 配列番号112、114、118、120、122、124、126、128、136、138、140または142で表されるアミノ酸配列を有する蛋白質を認識する抗体。
- (53) (52) に記載の抗体を用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- (54) (52) に記載の抗体を用いて、ずり応力応答性遺伝子の転写もしくは翻訳を抑制する薬剤をスクリーニングする方法。
- (55) (52) に記載の抗体を含有する、動脈硬化を原因とする血管病の診断薬。
- (56) (52) に記載の抗体を含有する、動脈硬化を原因とする血管 病の治療薬。
- (57) (52) に記載の抗体と放射性同位元素、蛋白質または低分子

の薬剤とを結合させた融合抗体を動脈硬化巣へ誘導するドラッグデリバ リー法。

- (58)配列番号8で表されるアミノ酸配列を有する蛋白質と特異的に 結合し細胞のアポトーシスを抑制または促進する薬剤を、配列番号8で 表されるアミノ酸配列を有する蛋白質を用いてスクリーニングする方法。
- (59)配列番号7で表される塩基配列を有するDNA、または配列番号8で表されるアミノ酸配列を有する蛋白質をコードするDNAをベクターに組み込んで得られる組換え体DNAを、宿主細胞に導入して得られる形質転換体を培地に培養し、該培養物を用いて細胞のアポトーシスを抑制または促進する薬剤をスクリーニングする方法。
- (60)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100、102、104、106、108および110で表されるアミノ酸配列からなる群から選ばれるアミノ酸配列を有する蛋白を生産する組換えウイルスベクター。(61)(60)に記載の組換えウイルスベクターを含有する、動脈硬化を原因とする血管病の治療薬。
- (62)配列番号8で表されるアミノ酸配列を有する蛋白質を生産する 組換えウイルスベクターを用いて、細胞のアポトーシスを抑制する方法。
- (63)配列番号8で表されるアミノ酸配列を有する蛋白質を生産する 組換えウイルスベクターを含有する、細胞のアポトーシスを抑制する薬 剤。
- (64)配列番号2、4、6、8、10、12、14、16、18、2
 0、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、

86、88、90、92、94、96、98、100、102、104、106、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体を用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。

- (65)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100、102、104、106、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体を用いて、ずり応力応答性遺伝子の転写もしくは翻訳を抑制または促進する薬剤をスクリーニングする方法。
- (66)配列番号8で表されるアミノ酸配列を有する蛋白質を認識する 抗体を用いて、細胞のアポトーシスを調節する方法。
- (67)配列番号8で表されるアミノ酸配列を有する蛋白質を認識する 抗体を用いて、細胞のアポトーシスを調節する薬剤をスクリーニングす る方法。
- (68)配列番号8で表されるアミノ酸配列を有する蛋白質を認識する 抗体用いて、配列番号8で表されるアミノ酸配列を有する蛋白質の発現 量を検出することにより細胞のアポトーシス感受性を同定する方法。
- (69)細胞が血管内皮細胞である(21)、(22)、(27)、(33)、(34)、(58)、(59)、(62)、(66)、(67)、または(68)のいずれかに記載の方法。
- (70)配列番号2、4、6、8、10、12、14、16、18、2

 0、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100、102、104、

106、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体を含有する、動脈硬化を原因とする血管病の診断薬。

(71)配列番号8で表されるアミノ酸配列を有する蛋白質を認識する 抗体を含有する、細胞のアポトーシス感受性を同定する薬剤。

(72)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100、102、104、106、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体を含有する、動脈硬化を原因とする血管病の治療薬。

(73)配列番号8で表されるアミノ酸配列を有する蛋白質を認識する 抗体を含有する、細胞のアポトーシスを調節する薬剤。

(74) (27)、(34)、(58)、(59) または(67) のいずれかに記載の方法により得られる、細胞のアポトーシスを抑制または促進する薬剤。

(75)細胞が血管内皮細胞である(24)、(29)、(63)、(71)、(73)、または(74)のいずれかに記載の薬剤。

(76)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100、102、104、106、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体と放射性同位元素、蛋白質または低分子の薬剤とを結合させた融合抗体を動脈硬化巣へ誘導するドラッグデリバリー法。

本明細書中で使用する「調節する」という用語は、抑制または促進のいずれかの作用を意味する。また「薬剤」とは、蛋白質、核酸を含む任

意の分子量のすべての物質を指す。

本発明のDNAは動脈硬化に関連するずり応力応答性DNAであり、例えば、配列番号143、145、147、149、151、153、155、157、168、170および172で表される塩基配列から選ばれる塩基配列を有するDNA、および該DNAとストリンジェントな条件下でハイブリダイズし、かつずり応力の負荷に対して発現量が変化するDNAをあげることができる。

上記の配列番号143、145、147、149、151、153、 155、157、168、170および172で表される塩基配列から 選ばれる塩基配列とストリンジェントな条件下でハイブリダイズするD NAとは、配列番号143、145、147、149、151、153、 155、157、168、170および172で表される塩基配列から 選ばれる塩基配列を有するDNAをプローブとして、コロニー・ハイブ リダイゼーション法、プラーク・ハイブリダイゼーション法あるいはサ ザンブロットハイブリダイゼーション法等を用いることにより得られる DNAを意味し、具体的には、コロニーあるいはプラーク由来のDNA を固定化したフィルターを用いて、0.7~1.0MのNaC1存在下、 65℃でハイブリダイゼーションを行った後、0.1倍~2倍濃度のS SC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、 15mMクエン酸ナトリウムよりなる)を用い、65℃条件下でフィル ターを洗浄することにより同定できるDNAをあげることができる。

ハイブリダイゼーションは、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) (以下、モレキュラー・クローニング 第2版と略記する)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997) (以下、カレント・プロトコールズ・イン・モレキュラー・バイオロジーと略記する)、DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995)等に記載されている方法に準じて行うことが

できる。ハイブリダイズ可能なDNAとして具体的には、配列番号 14 3、145、147、149、151、153、155、157、16 8、170 および 172 で表される塩基配列から選ばれる塩基配列と少なくとも 60% 以上の相同性を有する DNA、好ましくは 80% 以上の相同性を有する DNA、 更に好ましくは 90% 以上、最も好ましくは 95% 以上の相同性を有する DNAをあげることができる。

更に、本発明のDNAとして、本発明のDNAの一部の配列を有するオリゴヌクレオチドおよびアンチセンス・オリゴヌクレオチドも含まれる。該オリゴヌクレオチドとして、例えば、配列番号143、145、147、149、151、153、155、157、168、170および172で表される塩基配列から選ばれる塩基配列中の連続した5~60残基、好ましくは10~40残基の塩基配列と同じ配列を有するオリゴヌクレオチドをあげることができ、アンチセンス・オリゴヌクレオチドとして、例えば、該オリゴヌクレオチドのアンチセンス・オリゴヌクレオチドをあげることができる。

本発明の蛋白質として、動脈硬化に関連する活性を有する蛋白質をあげることができ、具体的には、配列番号144、146、148、150、152、154、156、158、169、171および173で表されるアミノ酸配列から選ばれるアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列とは1以上のアミノ酸が欠失、置換若しくは付加したアミノ酸配列からなり、かつ動脈硬化病変の形成に関与する活性を有する蛋白質をあげることができる。

配列番号144、146、148、150、152、154、156、158、169、171および173で表されるアミノ酸配列から選ばれるアミノ酸配列を有する蛋白質のアミノ酸配列とは1以上のアミノ酸が欠失、置換若しくは付加したアミノ酸配列からなり、かつ動脈硬化病変の形成に関与する活性を有する蛋白質は、モレキュラー・クローニング 第2版、カレント・プロトコールズ・イン・モレキュラー・バイオ

ロジー、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci., USA, 79, 6409(1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci USA, 82, 488 (1985) 等に記載の方法に準じて調製することができる。

また、本発明者らは、取得した血管内皮細胞においてずり応力負荷に より発現上昇する多数の遺伝子の中から、Fasを介したアポトーシス を抑制することが報告されている脳特異的な遺伝子、 LFG (Lif e g u a r d) [Proc. Natl. Acad. Sci. USA, 22, 12673-12678, (1999)] と相同性を有する、A4RS-041を見出した。本発明者らは、まず A4RS-041の塩基配列の解析から、A4RS-041は、LFG と約50%の同一性を有するものの、アミノ末端側の約3分の1はほと んど相同性が見られず、全く別の遺伝子であることを見出した。さらに、 A4RS-041が血管内皮細胞をはじめとする種々の組織で広く発現 しているのに対し、LFGは脳で高発現しているが血管内皮細胞での発 現が見られず、組織での発現プロファイルが両者で大きく異なることを 見出した。さらに、A4RS-041を安定に高発現する形質転換細胞 を作製することで、A4RS-04lがFasを介したアポトーシスを 抑制することを見出し、A4RS-041がずり応力による血管内皮細 胞のアポトーシスを抑制する鍵となる分子であることを突き止め、本発 明を完成させるに至った。

図面の簡単な説明

図1は、ずり応力刺激により発現上昇を示す遺伝子のノーザン解析の結果である。レーン1~41はそれぞれ、A4RS-016、-026、-040、-041、-063、-096、-116、-126、-131、-148、-154、-174、-175、-194、-197、-260、-271、-307、-355、-389、-391、-423、-431、-453、-492、-507、-514、-523、

-544、-547、-557、-577、-588、-602、-608、-612、-625、-666、-668、-674、-682 についてのずり応力依存的発現上昇を示す。それぞれのブロットにおいて、左側のレーンにはずり応力を負荷していない(刺激時間 0 時間) H U V E C 由来の全 R N A を 4μ g、右側のレーンにはずり応力を負荷した H U V E C 由来の全 R N A (刺激時間 0.5、1、1.5、2、3、4、6、10、20 時間の全 R N A を等量ずつ混合したもの)を 4μ g 泳動した。

図 2 は、ずり応力刺激により発現上昇を示す遺伝子のノーザン解析の結果である。レーン4 2 ~ 8 3 はそれぞれ、A 4 R S - 7 5 1、- 7 8 1、- 7 8 4、- 8 1 7、- 8 1 8、- 9 1 4、- 9 2 9、- 9 3 5、- 9 3 8、- 9 3 9、- 9 4 5、- 9 4 7、- 9 4 8、- 9 4 9、- 0 1 1、- 1 1 5、- 1 4 3、- 1 7 1、- 1 9 3、- 2 8 0、- 4 0 2、- 5 3 3、- 6 0 4、- 6 1 5、- 6 1 9、- 6 2 6、- 6 7 6、- 6 7 9、- 7 3 7、- 7 8 0、- 8 2 6、- 9 1 6、- 9 3 3、- 9 4 3、- 0 0 2、- 0 4 9、- 2 3 0、- 2 3 9、- 2 4 2、- 4 9 1、- 5 7 8、- 8 2 9 についてのずり応力依存的発現上昇を示す。それぞれのプロットにおいて、左側のレーンにはずり応力を負荷していない(刺激時間 0 時間)H U V E C 由来の全R N A を 4 μ g、右側のレーンにはずり応力を負荷したH U V E C 由来の全R N A 6、10、20 時間の全R N A を 9量ずつ混合したもの)を 4 μ g 泳動した。

図3は、ずり応力刺激により発現する遺伝子の発現の経時的変化を示すノーザンブロッティングによる解析結果である。レーン1~17はそれぞれA4RS-016、-041、-063、-096、-116、-260、-271、-307、-389、-391、-602、-784、-115、-143、-193、-280、-402についてのずり応力依存的発現上昇を示す。それぞれのブロットにおいて左から、ずり応力負荷時間0、0.5、1、1.5、2、3、4、6、10、20時間のH

UVEC由来の全RNAを4μg泳動した。

図 4 は、ずり応力刺激により発現する遺伝子の発現の経時的変化を示すノーザンブロッティングによる解析結果である。レーン $18\sim28$ はそれぞれA 4 R S -604、-626、-916、-002、-049、-230、-239、-242、-491、-578、-829についてのずり応力依存的発現上昇を示す。それぞれのブロットにおいて左から、ずり応力負荷時間0、0.5、1、1.5、2、3、4、6、10、20 時間のHUVEC由来の全RNAを 4μ g泳動した。

図5は、動物細胞発現用プラスミドpAMo-002の構築を示す。

図7Aおよび図7BはA4RS-041の発現分布を示した図である。図7Aは、ヒト正常組織におけるA4RS-041の発現をノーザンブロットにより解析した結果を示した図である。図7Bは、ヒト血管内皮細胞、およびヒト脳におけるA4RS-041、LFGの発現をRT-PCR法により解析した結果を示した図である。

図8は、A4RS-041とLFGのアミノ酸配列の相同性を示した図である。

発明の詳細な説明

以下に本発明を詳細に説明する。本発明のDNAを調製するに際して 用いられる細胞としては、ずり応力の負荷に対して応答性を示すもので あれば特に限定されないが、接着系の細胞が好ましく、例えば血管内皮 細胞があげられ、特に好ましくはヒト血管内皮細胞が例示される。さら

に好ましくは、ヒトさい帯静脈血管内皮細胞(HUVEC)があげられる。この血管内皮細胞はヒトさい帯より、細胞、20、329(1988)またはHuman Cell、1、188(1988)に記載の方法に従って容易に分離できる。また、分離済みの2次培養細胞を入手し、利用することも可能である。血管内皮細胞の継代数は血管内皮細胞としての性質を保持するものであれば良く、好ましくは20継代以内のものがあげられる。

細胞の培養に用いる培養液は、通常の公知の組成に従えばよく、例えば、血管内皮細胞の場合には、ウシなどの動物の血清を $0 \sim 20\%$ 添加した細胞培養用培地を用いることが好ましく、さらに好ましくはE-G M培地(2%ウシ胎児血清含有、倉敷紡績社製)あるいはM199培地にウシ胎児血清を20%添加したものが例示される。細胞の増殖を良くするために培養液中に $ECGS(Endothelial\ cell\ growth\ supplement)、<math>EGF(Epidermal\ growth\ factor)$ 、あるいは basic $FGF(Fibroblast\ growth\ factor)$ 等の細胞増殖因子を添加してもよい。培地にデキストラン等を添加し、培養液の粘性を上昇させることにより、培養細胞に高いずり応力を負荷することもできる。

ずり応力を負荷することができる培養装置としては、マイクロキャリア型 [Am. J. Physiol., <u>259</u>, H804 (1990)]、回転円盤型 [Biorheology, <u>25</u>, 461 (1988)]、平行平板型 [Biotechnol., Bioeng., 27, 1021 (1985)]等が利用できる。

ずり応力負荷において、血管内皮細胞の培養方法は特に限定されるものではないが、例えば、以下に示す方法が例示される。マイクロキャリアに血管内皮細胞を接着させ、スピナーフラスコ内で培地に懸濁する。培養温度は細胞が培養可能な温度であればいずれの温度でもよいが、37℃が好ましい。培養は、5%の二酸化炭素ガスを満たしたふ卵器内にて行なうことが好ましい。取得する細胞数は特に限定されないが、RNA抽出が可能な数であればよく、通常の培養で取得できる程度の数が例示され、好ましくは1×106個以上である。培養時間は特定されるも

のではないが、ずり応力を負荷していない培養時に比較して明らかに遺 伝子発現が変化している培養時間が好ましい。特に細胞の生存状態が良 い培養時間が好ましく、具体的には4時間以上24時間以内があげられ る。

ずり応力を負荷された血管内皮細胞からの全RNAの調製方法としては、チオシアン酸グアニジンートリフルオロ酢酸セシウム法 [Methods in Enzymol., 154, 3(1987)] 等をあげることができる。

全RNAからポリ(A) + RNAを調製する方法としては、オリゴ(dT)固定化セルロースカラム法(モレキュラー・クローニング 第2版)等をあげることができる。

更に、ファースト・トラック・mRNA・アイソレーション・キット (Fast Track mRNA Isolation Kit; Invitrogen 社製)、クイック・プレップ・mRNA・ピュリフィケーション・キット (Quick Prep mRNA Purification Kit; Amersham Pharmacia Biotech 社製)等のキットを用いてmRNAを調製することもできる。

以下にcDNAライブラリーの作製方法について述べる。cDNAライブラリー作製法としては、モレキュラー・クローニング 第2版やカレント・プロトコールズ・イン・モレキュラー・バイオロジー、DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法、あるいは市販のキット、例えばスーパースクリプト・プラスミド・システム・フォー・cDNA・シンセシス・アンド・プラスミド・クローニング (SuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning; Life Technologies 社製) やザップー cDNA・シンセシス・キット (ZAP-cDNA Synthesis Kit; Stratagene 社製) を用いる方法などがあげられる。

c D N A ライブラリーを作製するためのクローニングベクターとしては、大腸菌 K 1 2 株中で自立複製できるものであれば、ファージベクター、プラスミドベクター等いずれでも使用できる。具体的には、ZAP

Express [Stratagene 社製、Strategies, <u>5</u>, 58 (1992)] 、pBluescript II SK(+) [Nucleic Acids Res., <u>17</u>, 9494 (1989)] 、 λ zap II(Stratagene 社製) 、 λgt10、 λgt11 [DNA Cloning, A Practical Approach, <u>1</u>, 49 (1985)] 、 λ BlueMid (Clontech 社製) 、 λ ExCell (Amersham Pharmacia Biotech 社製) 、 pT7T318U (Amersham Pharmacia Biotech 社製) 、 pcD2 [Mol. Cell. Biol., <u>3</u>, 280 (1983)] 、 pUC18 [Gene, <u>33</u>, 103 (1985)] 等をあげることができる。

c D N A を組み込んだベクターを導入する大腸菌としては、大腸菌に属する微生物であればいずれでも用いることができる。具体的には、Escherichia coli XL1-Blue MRF' [Stratagene 社製、Strategies, 5, 81 (1992)]、Escherichia coli C600[Genetics, 39, 440 (1954)]、Escherichia coli Y1088[Science, 222, 778 (1983)]、Escherichia coli Y1090[Science, 222, 778 (1983)]、Escherichia coli NM522 [J. Mol. Biol., 166, 1 (1983)]、Escherichia coli K802 [J. Mol. Biol., 16, 118 (1966)]、Escherichia coli JM105 [Gene, 38, 275 (1985)] 等を用いることができる。

このcDNAライブラリーはずり応力を負荷した血管内皮細胞の特徴を有していることから、生体内血管のずり応力変動部位に起こる病変、具体的には動脈硬化巣の形成等に関与する遺伝子のクローニング、該遺伝子の発現をコントロールすることによる医薬品開発等に有用である。また、このcDNAライブラリーは他の種の細胞、具体的にはずり応力の負荷していない静置培養した血管内皮細胞由来のmRNAを鋳型として作製したcDNAライブラリー等とは、その含有する遺伝子の種類や含有量が異なるため、その差を指標として前述の動脈硬化巣の形成に関与する遺伝子あるいはそれがコードする蛋白質を単離することが可能である。

作製した c D N A ライブラリーから、ずり応力負荷により発現が上昇する遺伝子を濃縮する方法として、サブトラクション法 [Proc. Natl.

Acad. Sci. USA, 88, 2825(1991)] やデファレンシャル・ハイブリダイゼーション法 [J. Biol. Chem., 265, 2973(1990)] 等の方法を利用することができる。

上記方法により遺伝子が濃縮されたサブトラクションライブラリーから、発現特異性、即ちずり応力負荷により発現が上昇するクローンを選択する方法として、ノーザンハイブリダイゼーション法〔モレキュラー・クローニング 第2版〕、RT (reverse-transcribed) — PCR法〔カレント・プロトコールズ・イン・モレキュラー・バイオロジー〕などがあげられる。

上記の方法で選択された、ずり応力応答性クローンに関して、通常用いられる塩基配列解析方法、例えばサンガー(Sanger)らのジデオキシ法 [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] あるいは373A・DNAシークエンサー (Perkin Elmer 社製) 等の塩基配列分離装置を用いて分析することにより、該DNAの塩基配列を決定する。

上記方法で決定された塩基配列の新規性は、blast等の相同性検索プログラムを用いて、GenBank、EMBLおよびDDBJなどの塩基配列データベースを検索することにより、データベース中の塩基配列と一致すると考えられるような明らかな同一性を示す塩基配列がないことにより確認できる。

上述の方法で得られたDNAが、ずり応力関連mRNAに対応する CDNAの部分DNAであった場合には、上述の方法で得られたDNAをプローブとして、 cDNAライブラリーから完全長 cDNAを含むクローンを選択し直すことができる。

cDNAライブラリーからのcDNAクローンの選択としては、アイソトープあるいはジゴキシゲニン (digoxigenin) 標識したプローブを用いたコロニー・ハイブリダイゼーション法あるいはプラーク・ハイブリダイゼーション法 (サンブルックら、モレキュラー・クローニング 第2版(1989年)) により選択することができる。

上記のようにして取得される、新規な塩基配列を有するずり応力応答性遺伝子の完全長 c D N A として、例えば、配列番号 1 4 3、 1 4 5、 1 4 7、 1 4 9、 1 5 1、 1 5 3、 1 5 5、 1 5 7、 1 6 8、 1 7 0 および 1 7 2 で表される塩基配列を有する D N A 等をあげることができる。以上のようにして、一旦ずり応力関連遺伝子の完全長 c D N A が取得されその塩基配列が決定された後は、塩基配列に基づいたプライマーをである。

されその塩基配列が決定された後は、塩基配列に基づいたプライマーを調製し、mRNAから合成したcDNAあるいはcDNAライブラリーを鋳型として、PCR法 [PCR Protocols, Academic Press (1990)]により目的とするDNAを取得することができる。また、決定されたDNAの塩基配列に基づいて、DNA合成機で化学合成することにより目的とするDNAを調製することもできる。DNA合成機としては、フォスフォアミダイト法を利用したPerkin Elmer 社製のDNA合成機モデル392等をあげることができる。

上記DNAおよびDNA断片の塩基配列情報により、常法あるいはDNA合成機により、本発明のDNAの一部の配列を有するオリゴヌクレオチドおよびアンチセンス・オリゴヌクレオチドを調製することができる。

該オリゴヌクレオチドまたはアンチセンス・オリゴヌクレオチドとして、例えば、検出したいmRNAの一部の塩基配列において、5、末端側の塩基配列に相当するセンスプライマー、3、末端側の塩基配列に相当するアンチセンスプライマー等をあげることができる。ただし、mRNAにおいてウラシルに相当する塩基は、オリゴヌクレオチドプライマーにおいてはチミジンとなる。センスプライマーおよびアンチセンスプライマーとしては、両者の融解温度(Tm)および塩基数が極端に変わることのないオリゴヌクレオチドで、10~40塩基数のものが好ましい。

また、本発明においては、該ヌクレオチドの誘導体も用いることができ、例えば、該ヌクレオチドのメチル体やフォスフォチオエート体をあ

げることができる。

以下に、動脈硬化病変の形成に関与する活性を有する蛋白質の製造法 について述べる。

上述の方法により取得したずり応力応答性遺伝子の c D N A は、動脈 硬化病変の形成に関与する活性を有する蛋白質をコードしている。

動脈硬化の病変に関与する活性とは、動脈硬化の発症を調節する活性、 好ましくは動脈硬化の発症を予防する活性、を意味し、例えば、限定す るものではないが、つぎのようなものをあげることができる。

低密度リポ蛋白(LDL)の血管内皮への取り込みの調節、酸化LDLの血管内皮への取り込みの調節、血管内皮細胞でのLDL受容体の発現調節、血管内皮細胞での酸化LDLの産生の調節、血管内皮でのスカベンジャー受容体の発現調節、血管へのリンパ球の浸潤の調節、血管内皮細胞においてリンパ球の血管への浸潤を促進する細胞表面接着分子の発現調節、血管内皮細胞で生産される血管平滑筋の増殖の調節、血管内皮細胞のアポトーシスの調節、等の活性をあげることができる。

本発明のDNAおよび蛋白質は、血管内皮細胞においてずり応力依存的に発現が上昇するものとして見出されたが、発明の背景の項で記載したとおり、一般に動脈硬化症はずり応力が低く、流れの剥離や停滞または渦などの乱流が起き易い場所で多発することが知られていることから、本発明のDNAおよび蛋白質は特に、動脈硬化またはそれを原因とする種々の血管病、例えば非限定的な例としての心不全、PTCA後の再狭窄、高血圧など、を治療または予防するために有用である。

完全長 c D N A をもとに、必要に応じて、該蛋白質をコードする部分を含む適当な長さの D N A 断片を調製する。

該DNA断片、あるいは完全長 c DNAを発現ベクター内のプロモーターの下流に挿入することにより、該蛋白質の発現プラスミドを造成する。

該発現プラスミドを、該発現ベクターに適合した宿主細胞内に導入す

る。

宿主細胞としては、目的とするDNAを発現できるものは全て用いることができ、例えば、エシェリヒア(Escherichia)属、セラチア(Serratia)属、コリネバクテリウム (Corynebacterium)属、ブレビバクテリウム (Brevibacterium)属、シュードモナス (Pseudomonas)属、バチルス (Bacillus)属、ミクロバクテリウム (Microbacterium)属等に属する細菌、クルイベロミセス (Kluyveromyces)属、サッカロマイセス (Saccharomyces)属、シゾサッカロマイセス (Shizosaccharomyces)属、トリコスポロン (Trichosporon)属、シワニオミセス (Schawnniomyces)属等に属する酵母や動物細胞、昆虫細胞等を用いることができる。

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは 染色体中への組込みが可能で、ずり応力応答性DNAを転写できる位置 にプロモーターを含有しているものが用いられる。

細菌等を宿主細胞として用いる場合は、ずり応力応答性DNA発現ベクターは該細菌中で自立複製可能であると同時に、プロモーター、リボソーム結合配列、ずり応力応答性DNAおよび転写終結配列より構成された組換えベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。

発現ベクターとしては、例えば、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社より市販)、pKK233-2(Amersham Pharmacia Biotech 社製)、pSE280(Invitrogen 社製)、pGEMEX-1(Promega 社製)、pQE-8(QIAGEN 社製)、pKYP10 [特開昭 58-110600)、pKYP200 [Agricultural Biological Chemistry, 48, 669 (1984)]、pLSA1 [Agric. Biol. Chem., 53, 277 (1989)]、pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)]、pBluescript II SK(-)(Stratagene 社製)、pGEX(Amersham Pharmacia Biotech 社製)、pET-3(Novagen 社製)、pTerm2(USP4686191、USP4939094、USP5160735)、pSupex、pUB110、pTP5、pC194、pEG400 [J. Bacteriol., 172, 2392 (1990)〕等を例示することができる。

プロモーターとしては、宿主細胞中で発現できるものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター(Plac)、 P_L プロモーター、 P_R プロモーター、 P_R プロモーター、 P_R プロモーター、 P_R アロモーター、 P_R アロモーターのように入為的に設計改変されたプロモーター等も用いることができる。

リボソーム結合配列としては、宿主細胞中で発現できるものであればいかなるものでもよいが、シャインーダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。

本発明のずり応力応答性DNAの蛋白質をコードする部分の塩基配列を、宿主の発現に最適なコドンとなるように、塩基を置換することにより、目的とする蛋白質の生産率を向上させることができる。

本発明のずり応力応答性DNAの発現には転写終結配列は必ずしも必要ではないが、好適には構造遺伝子直下に転写終結配列を配置することが望ましい。

宿主細胞としては、エシェリヒア属、セラチア属、コリネバクテリウム属、ブレビバクテリウム属、シュードモナス属、バチルス属等に属する微生物、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium ammoniagenes、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum glutamicum

ATCC14067、Corynebacterium glutamicum ATCC13869、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、Pseudomonas sp. D-0110 等をあげることができる。

組換えベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法 [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]、プロトプラスト法 [特開昭 63-248394、または Gene, 17, 107 (1982)や Molecular & General Genetics, 168, 111 (1979)] に記載の方法等をあげることができる。

酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、 YEp13 (ATCC37115)、YEp24 (ATCC37051)、YCp50 (ATCC37419)、pHS19、pHS15等を例示することができる。

プロモーターとしては、酵母中で発現できるものであればいかなるものでもよく、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、Ball 1 プロモーター、Ball 1 Ball 2 Ball 3 Ball 3 Ball 4 Ball 3 Ball 4 Ball 4 Ball 5 B

宿主細胞としては、サッカロミセス・セレビシエ(<u>Saccharomyces cerevisae</u>)、シゾサッカロミセス・ポンベ(<u>Schizosaccharomyces pombe</u>)、クリュイベロミセス・ラクチス(<u>Kluyveromyces lactis</u>)、トリコスポロン・プルランス(<u>Trichosporon pullulans</u>)、シュワニオミセス・アルビウス(<u>Schwanniomyces alluvius</u>)等をあげることができる。

組換えベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Methods. Enzymol., 194, 182 (1990)、スフェロプラスト法 [Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)]、酢酸リチウム法 [J. Bacteriol., 153, 163 (1983)]、 Proc. Natl. Acad. Sci. USA, 75, 1929 (1978) に記載の方法等をあげることができる。

動物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、pc DNAI、pc DM8 (フナコシ社製)、pAGE107 [特開平3-22979; Cytotechnology, 3, 133 (1990)]、pAS3-3 (特開平2-227075)、pC DM8 [Nature, 329, 840 (1987)]、pc DNAI/Amp (Invitrogen社製)、pREP4 (Invitrogen社製)、pAGE103 [J. Biochem., 101, 1307 (1987)]、pAGE210等を例示することができる。

プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス(ヒトCMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショック蛋白質プロモーター、SRaプロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。

宿主細胞としては、ヒトの細胞であるナマルバ (Namalwa) 細胞、サルの細胞であるCOS細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、HBT5637 [特開昭63-299] 等をあげることができる。

動物細胞への組換えベクターの導入法としては、動物細胞にDNAを導入できるいかなる方法も用いることができ、例えば、エレクトロポーレーション法 [Cytotechnology, $\underline{3}$, 133 (1990)]、リン酸カルシウム法(特開平 2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci., USA, $\underline{84}$, 7413 (1987)]、Virology, $\underline{52}$, 456 (1973)に記載の方法等を用いることができる。形質転換体の取得および培養は、特開平 2-227 0 7 5 号公報あるいは特開平 2-257 8 9 1 号公報に記載されている方法に準じて行なうことができる。

昆虫細胞を宿主として用いる場合には、例えばバキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル (Baculovirus Expression Vectors, A Laboratory Manual)、カレント・

プロトコールズ・イン・モレキュラー・バイオロジー サプルメント 1-3 8 (1987-1997)、Bio/Technology, $\underline{6}$, 47 (1988)等に記載された方法によって、蛋白質を発現することができる。

即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、p V L 1 3 9 2 、 p V L 1 3 9 3 、 p B l u e B a c III (ともに Invitrogen 社製) 等をあげることができる。

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus) 等を用いることができる。

昆虫細胞としては、<u>Spodoptera frugiperda</u>の卵巣細胞であるSf9、Sf21 [Baculovirus Expression Vectors, A Laboratory Manual、W.H.Freeman and Company, New York, (1992)]、<u>Trichoplusia ni</u>の卵巣細胞であるHigh 5 (Invitrogen 社製)等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 [特開平 2-227075]、リポフェクション法 [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] 等をあげることができる。

遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング 第2版に記載されている方法等に準じて、分泌生産、融合蛋白質発現等を行うことができる。

酵母、動物細胞または昆虫細胞により発現させた場合には、糖あるいは糖鎖が付加された蛋白質を得ることができる。

ずり応力応答性DNAを組み込んだ組換え体DNAを保有する形質転換体を培地に培養し、培養物中にずり応力応答性蛋白質を生成蓄積させ、

該培養物より該蛋白質を採取することにより、ずり応力応答性蛋白質を 製造することができる。

本発明のずり応力応答性蛋白質製造用の形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。

本発明の形質転換体が大腸菌等の原核生物、酵母等の真核生物である場合、これら微生物を培養する培地は、該微生物が資化し得る炭素源、 窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地 であれば天然培地、合成培地のいずれでもよい。

炭素源としては、それぞれの微生物が資化し得るものであればよく、 グルコース、フラクトース、スクロース、これらを含有する糖蜜、デン プンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等 の有機酸、エタノール、プロパノールなどのアルコール類を用いること ができる。

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、 酢酸アンモニウム、リン酸アンモニウム等の各種無機酸若しくは有機酸 のアンモニウム塩、その他含窒素化合物、並びに、ペプトン、肉エキス、 酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕およ び大豆粕加水分解物、各種発酵菌体およびその消化物等が用いられる。

無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。

培養は、振盪培養または深部通気攪拌培養などの好気的条件下で行う。 培養温度は $15\sim40$ ℃がよく、培養時間は、通常16 時間 ~7 日間である。培養中p H は、 $3.0\sim9.0$ に保持する。p H の調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

また培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生 物質を培地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lac プロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピルーβーDーチオガラクトピラノシド(IPTG)等を、trp プロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸(IAA)等を培地に添加してもよい。

動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地 [The Journal of the American Medical Association, 199, 519 (1967)]、 EagleのMEM培地 [Science, 122, 501 (1952)]、 ダルベッコ改変MEM培地 [Virology, 8, 396 (1959)]、 199培地 [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] またはこれら培地に牛胎児血清等を添加した培地等を用いることができる。

培養は、通常pH6~8、30~40℃、5%CO₂存在下等の条件下で1~7日間行う。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地(Pharmingen 社製)、Sf-900 II SFM 培地(Life Technologies 社製)、ExCell400、ExCell405(いずれもJRH Biosciences 社製)、Grace's Insect Medium [Nature, 195, 788 (1962)] 等を用いることができる。

培養は、通常pH6~7、25~30℃等の条件下で、1~5日間行う。

また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。

本発明の形質転換体の培養物から、本発明の動脈硬化に関連する活性

を有する蛋白質を単離精製するには、通常の酵素の単離、精製法を用いればよい。

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)ーセファロース、DIAION HPA-75(三菱化学社製)等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Amersham Pharmacia Biotech 社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

また、該蛋白質が細胞内に不溶体を形成して発現した場合は、細胞を 回収後破砕し、遠心分離することにより、沈殿画分として蛋白質の不溶 体を回収する。

回収した該蛋白質の不溶体を蛋白質変性剤で可溶化する。

該可溶化液を、希釈あるいは透析により、該可溶化液中の蛋白質変性 剤の濃度を下げることにより、該蛋白質の構造を正常な立体構造に戻し た後、上記と同様の単離精製法により該蛋白質の精製標品を得る。

本発明の蛋白質あるいはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清から、該蛋白質あるいはその糖鎖付加体等の誘導体を回収することができる。即ち、培養物から遠心分離等の手法により培養上清を回収し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

このようにして取得される蛋白質として、例えば、配列番号 1 4 4、1 4 6、1 4 8、1 5 0、1 5 2、1 5 4、1 5 6、1 5 8、1 6 9、1 7 1 および 1 7 3 で表されるアミノ酸配列を有する蛋白質等をあげることができる。

また、上記方法により発現させた蛋白質を、Fmoc法(フルオレニルメチルオキシカルボニル法)、t B o c 法(t-ブチルオキシカルボニル法)等の化学合成法によっても製造することができる。また、桑和貿易(米国 Advanced ChemTech)社製、Perkin-Elmer 社製、Amersham Pharmacia Biotech社製、アロカ(米国 Protein Technology Instrument)社製、クラボウ(米国 Synthecell-Vega)社製、日本パーセプティブ・リミテッド(米国 PerSeptive)社製、島津製作所等のペプチド合成機を利用し合成することもできる。

以下に、本発明の蛋白質を認識する抗体の調製法について述べる。

(i) ポリクローナル抗体の作製

上記の方法により取得した蛋白質の全長または部分断片精製標品、あるいは本発明の蛋白質の一部のアミノ酸配列を有するペプチドを抗原として用い、動物に投与することによりポリクローナル抗体を作製することができる。

投与する動物として、ウサギ、ヤギ、ラット、マウス、ハムスター等を用いることができる。該抗原の投与量は動物 1 匹当たり 5 $0 \sim 1$ 0 0 μ g が好ましい。ペプチドを用いる場合は、ペプチドをスカシガイへモシアニン(keyhole limpet haemocyanin)や牛チログロブリンなどのキャリア蛋白に共有結合させたものを抗原とするのが望ましい。抗原とするペプチドは、ペプチド合成機で合成することができる。

該抗原の投与は、1回目の投与の後1~2週間おきに3~10回行う。 各投与後、3~7日目に眼底静脈叢より採血し、該血清が免疫に用いた 抗原と反応することを酵素免疫測定法〔酵素免疫測定法(ELISA法):医学書院刊1976年、Antibodies-A Laboratory Manual, Cold Spring

Harbor Lavoratory (1988)] 等で確認する。

免疫に用いた抗原に対し、その血清が充分な抗体価を示した非ヒトほ 乳動物より血清を取得し、該血清を分離、精製することによりポリクロ ーナル抗体を取得することができる。

分離、精製する方法としては、遠心分離、40~50%飽和硫酸アンモニウムによる塩析、カプリル酸沈殿〔Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, (1988)〕、またはDEAE-セファロースカラム、陰イオン交換カラム、プロテインAまたはG-カラムあるいはゲル濾過カラム等を用いるクロマトグラフィー等を、単独または組み合わせて処理する方法が挙げられる。

(ii) モノクローナル抗体の作製

(a)抗体産生細胞の調製

免疫に用いた本発明の蛋白質の部分断片ポリペプチドに対し、その血 清が十分な抗体価を示したラットを抗体産生細胞の供給源として供する。

該抗体価を示したラットに抗原物質を最終投与した後3~7日目に、 脾臓を摘出する。該脾臓をMEM培地(日水製薬社製)中で細断し、ピ ンセットでほぐし、1,200rpmで5分間遠心分離した後、上清を 捨てる。得られた沈殿画分の脾細胞をトリスー塩化アンモニウム緩衝液 (pH7.65)で1~2分間処理し赤血球を除去した後、MEM培地 で3回洗浄し、得られた脾細胞を抗体産生細胞として用いる。

(b)骨髄腫細胞の調製

骨髄腫細胞としては、マウスまたはラットから取得した株化細胞を使用する。

例えば、8-アザグアニン耐性マウス(BALB/c由来)骨髄腫細胞株 P3-X63Ag8-U1(以下、P3-U1と略す)[Curr. Topics. Microbiol. Immunol., 81, 1 (1978)、Europ. J. Immunol., 6, 511 (1976)]、SP2/0-Ag14(SP-2) [Nature, 276, 269 (1978)]、P3-X63-Ag8653(653)[J. Immunol., 123, 1548 (1979)]、P3-X63-Ag8(X63)[Nature, 256, 495 (1975)] 等を用い

ることができる。

これらの細胞株は、8-アザグアニン培地 [RPMI-1640培地にグルタミン(1.5mmol/1)、2-メルカプトエタノール(5×10^{-5} M)、ジェンタマイシン(10μ g/ml)および牛胎児血清 (FCS) (CSL社製、10%) を加えた培地(以下、正常培地という)に、さらに8-アザグアニン(15μ g/ml)を加えた培地〕で継代するが、細胞融合の $3\sim4$ 日前に正常培地で培養し、融合には該細胞を 2×10^{7} 個以上用いる。

(c)ハイブリドーマの作製

(a)で取得した抗体産生細胞と(b)で取得した骨髄腫細胞をMEM培地またはPBS(リン酸ニナトリウム 1.83g、リン酸ーカリウム 0.21g、食塩 7.65g、蒸留水 1リットル、pH7.2)でよく洗浄し、細胞数が、抗体産生細胞:骨髄腫細胞= $5\sim10:1$ になるよう混合し、1,200rpmで5分間遠心分離した後、上清を捨てる。

得られた沈澱画分の細胞群をよくほぐし、該細胞群に、攪拌しながら、37%で、10%抗体産生細胞あたり、ポリエチレングライコールー1000 (PEG-1000) 2g、MEM 2m1およびジメチルスルホキシド (DMSO) 0.7m1を混合した溶液を $0.2\sim1m1$ 添加し、更に $1\sim2$ 分間毎にMEM培地 $1\sim2m1$ を数回添加する。添加後、MEM培地を加えて全量が50m1になるように調製する。

該調製液を900 r p mで5 分間遠心分離後、上清を捨てる。得られた沈殿画分の細胞を、ゆるやかにほぐした後、メスピペットによる吸込み、吹出しでゆるやかにHAT培地〔正常培地にヒポキサンチン(10^{-4} M)、チミジン(1.5×10^{-5} M)およびアミノプテリン(4×10^{-7} M)を加えた培地〕100 m l 中に懸濁する。

該懸濁液を96 穴培養用プレートに 100μ 1 / 穴ずつ分注し、5% C O $_2$ インキュベーター中、37% で $7\sim14$ 日間培養する。培養後、培養上清の一部をとりアンチボディイズ [Antibodies, A Laboratory

manual, Cold Spring Harbor Laboratory, Chapter 14 (1988)] 等に述べられている 酵素免疫測定法により、本発明の蛋白質の部分断片ポリペプチドに特異的に反応するハイブリドーマを選択する。

酵素免疫測定法の具体的例として、以下の方法を挙げることができる。 免疫の際、抗原に用いた本発明の蛋白質の部分断片ポリペプチドを適 当なプレートにコートし、ハイブリドーマ培養上清もしくは後述の(d) で得られる精製抗体を第一抗体として反応させ、さらに第二抗体として ビオチン、酵素、化学発光物質あるいは放射線化合物等で標識した抗ラ ットまたは抗マウスイムノグロブリン抗体を反応させた後に標識物質に 応じた反応を行ない、本発明の蛋白質に特異的に反応するものを本発明 の蛋白質モノクローナル抗体を生産するハイブリドーマとして選択する。

該ハイブリドーマを用いて、限界希釈法によりクローニングを2回繰り返し〔1回目は、HT培地(HAT培地からアミノプテリンを除いた培地)、2回目は、正常培地を使用する〕、安定して強い抗体価の認められたものを本発明の蛋白質の抗ポリペプチド抗体産生ハイブリドーマ株として選択する。

(d)モノクローナル抗体の調製

プリスタン処理〔2,6,10,14ーテトラメチルペンタデカン(Pristane)0.5 m l を腹腔内投与し、2週間飼育する〕した8~10週令のマウスまたはヌードマウスに、(c)で取得した本発明の蛋白質モノクローナル抗体産生ハイブリドーマ細胞5~20×10⁶細胞/匹を腹腔内に注射する。10~21日間でハイブリドーマは腹水癌化する。該腹水癌化したマウスから腹水を採取し、3,000 r p mで5分間遠心分離して固形分を除去する。得られた上清より、ポリクローナルで用いた方法と同様の方法でモノクローナル抗体を精製、取得することができる。

抗体のサブクラスの決定は、マウスモノクローナル抗体タイピングキットまたはラットモノクローナル抗体タイピングキットを用いて行う。

蛋白質量は、ローリー法あるいは280nmでの吸光度より算出する。

以下に、本発明の蛋白質を特定のヒト組織内で生産するための組換え ウイルスベクターの調製法について述べる。

上述の方法により取得したずり応力応答性遺伝子の c D N A は、動脈 硬化病変の形成に関与する活性を有する蛋白質をコードしている。

完全長cDNAをもとに、必要に応じて、該蛋白質をコードする部分を含む適当な長さのDNA断片を調製する。

該DNA断片、あるいは完全長 c DNAをウイルスベクター内のプロモーターの下流に挿入することにより、組換えウイルスベクターを造成する。

該組換えウイルスベクターを、該ベクターに適合したパッケージング 細胞に導入する。

パッケージング細胞はウイルスのパッケジーングに必要な蛋白質をコードする遺伝子のいずれかを欠損している組換えウイルスベクターの該欠損する蛋白質を補給できる細胞は全て用いることができ、例えばヒト腎臓由来のHEK293細胞、マウス繊維芽細胞NIH3T3などを用いることができる。パッケージング細胞で補給する蛋白質としては、レトロウイルスベクターの場合はマウスレトロウイルス由来のgag,pol,envなどの蛋白質が、レンチウイルスベクターの場合はHIVウイルス由来のgag,pol,env,vpr,vpu,vif,tat,rev,nefなどの蛋白質、アデノウイルスベクターの場合はアデノウイルス由来のE1A・E1Bなどの蛋白質が、アデノ随伴ウイルスの場合はRep(p5,p19,p40),Vp(Cap)などの蛋白質を用いることができる。

ウイルスベクターとしては上記パッケージング細胞において組換えウイルスが生産でき、標的細胞でずり応力応答性DNAを転写できる位置にプロモーターを含有しているものが用いられる。プラスミドベクターとしてはMFG[Proc. Natl. Acad. Sci. USA, 92, 6733-6737 (1995)]、

p B a b c P u r o [Nucleic Acids Res., 18, 3587-3596 (1990)]、 L L -CG、 CL-CG、 CS-CG、 CLG [Journal of Virology, 72, 8150-8157(1998)]、 p A d e x 1 [Nucleic Acids Res., 23, 3816-3821(1995)]、プロモーターとしては、ヒト組織中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス(ヒトCMV)の I E (immediate early) 遺伝子のプロモーター、 SV 4 0 の初期プロモーター、 V トロウイルスのプロモーター、 V タロチオネインプロモーター、 V トロウイルスのプロモーター、 V の V の V の V の V の V に V の V の V の V の V に V の V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V に V の V の V の V に V の

上記パッケージング細胞への上記組換えウイルスベクターの導入法としては、例えば、リン酸カルシウム法 [特開平 2-227075 号公報]、リポフェクション法 [Proc. Natl. Acad. Sci. USA, <u>84</u>, 7413 (1987)] 等をあげることができる。

以下に本発明のずり応力応答性DNAを用いて、ずり応力応答性mR NAを検出する方法について述べる。

当該方法に用いられるDNAとしては、例えば配列番号1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,116,117,119,121,123,125,127,129,130,131,132,133,134,135,137,139,141,143,145,147,149,151,153,155,157,168,170および172で表される塩基配列を有するDNA、該DNAの連続した5~60塩基の塩基配列を有するオリ

ゴヌクレオチドDNA、好ましくは連続した10~40塩基の塩基配列を有するオリゴヌクレオチドDNAがあげられる。さらにまた、該DNAまたはその断片とストリンジェントな条件下でハイブリダイズするずり応力応答性DNAがあげられる。

ヒト生体試料ならびにヒト初代培養細胞での、ずり応力応答性mRNAの発現量の変化ならびに発現しているmRNAの構造の変化を同定することは、将来動脈硬化を発症する危険性や、すでに発症した血管病の原因を知る上で有用である。

ずり応力応答性mRNAの発現量や構造変化を検出する方法としては、例えば(1)ノーザンブロット法(2) in situ ハイブリダイゼイション法、(3)定量的PCR法、(4)デファレンシャル・ハイブリダイゼイション法、(5)DNAチップ法、(6)RNase保護アッセイ法などの方法等があげられる。

上記方法により分析する材料としては、動脈硬化患者ならび健常者より取得した血管内皮、血清、唾液等の生体試料、あるいは該生体試料から細胞を取得して試験管内の適当な培地中で培養した初代培養細胞試料から取得したmRNAあるいは全RNAが用いられる(以後、該mRNAおよび全RNAを検体由来RNAと称する)。また、生体試料から取得した組織を、パラフィンあるいはクリオスタット切片として単離したものを用いることもできる。

ノーザンブロット法とは、該検体由来RNAをゲル電気泳動で分離後、ナイロンフィルター等の支持体に転写し、本発明のDNAより調製した標識プローブを用いて、ハイブリダイゼイションならびに洗浄を行うことで、ずり応力応答性mRNAに特異的に結合したバンドを検出する方法のことであり、ずり応力応答性mRNAの発現量ならびに構造の変化を検出することができる。ハイブリダイゼイションを行う際には、プローブと該検体由来RNA中のずり応力応答性mRNAが安定なハイブリッドを形成する条件でインキュベーションする。誤った陽性を防ぐため

には、ハイブリダイゼイションならびに洗浄工程は高ストリンジェントな条件で行うことが望ましい。これは、温度、イオン強度、塩基組成、プローブの長さ、およびホルムアミド濃度等の多数の因子により決定される。これらの因子は、例えば、モレキュラー・クローニング 第2版(上記)に記載されている。

ノーザンブロット法に用いる標識プローブは、例えば、公知の方法(ニック・トランスレーション、ランダム・プライミングまたはキナージング)により放射線同位体、ビオチン、蛍光基、化学発光基等を、本発明のDNAあるいは該DNAの配列から設計したオリゴヌクレオチドに取り込ませることで調製できる。標識プローブの結合量はずり応力応答性mRNAの発現量を反映することから、結合した標識プローブの量を定量することでずり応力応答性mRNAの発現量を定量することができる。また、標識プローブ結合部位を分析することで、ずり応力応答性mRNAの構造変化を知ることができる。

上記標識プローブおよび、生体から取得した組織をパラフィンあるいはクリオスタット切片として単離したものを用いてハイブリダイゼイションならびに洗浄の工程を行う in situ ハイブリダイゼイション法によって、ずり応力応答性mRNAの発現量を検出することができる。 in situ ハイブリダイゼイション法で、誤った陽性を防ぐためには、ハイブリダイゼイションならびに洗浄工程は高ストリンジェントな条件で行うことが望ましい。これは、温度、イオン強度、塩基組成、プローブの長さ、およびホルムアミド濃度等の多数の因子により決定される。これらの因子は、例えばカレント・プロトコールズ・イン・モレキュラー・バイオロジーに記載されている。

定量的PCR法やデファレンシャル・ハイブリダイゼイション法あるいはDNAチップ等のずり応力応答性mRNAの検出法は、検体由来RNA、オリゴdTプライマーまたはランダムプライマーおよび逆転写酵素を用いてcDNAを合成することに基づいた方法で行うことができる

(以後、該 c D N A を検体由来 c D N A と称する)。検体由来 R N A が m R N A の場合は、上記いずれのプライマーも用いることができるが、 該検体由来 R N A が全 R N A である場合は、オリゴ d T プライマーを用いることが必要である。

定量的PCR法では、検体由来 c D N A をテンプレートとし本発明の DNAが有する塩基配列に基づき設計したプライマーを用いてPCRを 行うことで、ずり応力応答性mRNA由来のDNA断片が増幅される。 該増幅DNA断片の量はずり応力応答性mRNAの発現量を反映するこ とから、ずり応力に応答しないアクチンや G3PDH(glyceraldehyde 3-phosphate dehydrogenase)等をコードするDNAを内部コントロール として置くことでずり応力応答性mRNAの量を定量することが可能で ある。また、該増幅DNA断片をゲル電気泳動により分離することで、 ずり応力応答性mRNAの構造の変化を知ることもできる。本検出法は、 標的配列を特異的にかつ効率的に増幅する適当なプライマーを用いるこ とが望ましい。適当なプライマーは、プライマー間の結合やプライマー 内の結合を起こさず、アニーリング温度で標的cDNAと特異的に結合 して、変性条件で標的からはずれる等の条件に基づき設計することがで きる。該増幅DNA断片の定量は増幅産物が指数関数的に増加している PCR回数の内に行うことが必要である。このようなPCR回数は、各 回数ごとに生産される該増幅DNA断片を回収してゲル電気泳動で分析 することで知ることができる。

検体由来RNAから、標識 dNTPを用いて合成した検体由来 cDNAをプローブとして、本発明のDNAを固定化させたフィルターあるいはスライドガラスやシリコンなどの基盤に対してハイブリダイゼイションならびに洗浄を行うことで、ずり応力応答性mRNAの発現量の変動を検出することができる。このような原理に基づく方法には、デファレンシャル・ハイブリダイゼイション法 [Trends in Genetics, 7,314-317(1991)] や DNAチップ法 [Genome

Research, 6,639-645(1996)] と呼ばれる方法がある。いずれの方法もフィルターあるいは基盤上にアクチンやG3PDHなどの内部コントロールを固定化することで、対照検体と標的検体の間でのずり応力応答性mRNAの発現の違いを正確に検出することができる。また対照検体と検体由来のRNAをそれぞれ異なる標識 dNTPを用いてcDNA合成を行い、1枚のフィルターあるいは1枚の基盤に二つの標識cDNAプローブを同時にハイブリダイズさせることで正確なずり応力応答性mRNAの発現量の定量を行うことができる。

RNase保護アツセイでは、まず本発明のDNAの3、端にT7プロモーター、SP6プロモーターなどのプロモーター配列を結合し、RNAポリメラーゼを用いたinvitroの転写系により標識したrNTPを用いて、標識したアンチセンスRNAを合成する。該標識アンチセンスRNAは、検体由来RNAと結合させて、RNA-RNAハイブリッドを形成させた後、RNaseで消化し、消化から保護されたバンドをゲル電気泳動で検出する。保護されたバンドを定量することで、ずり応力応答性mRNAの発現量を定量することができる。

以下に本発明のずり応力応答性DNAを用いて動脈硬化の原因遺伝子 を検出する方法について述べる。

当該方法に用いられるDNAとしては、例えば配列番号1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,51,53,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,111,13,115,115,116,117,119,121,123,125,137,139,141,143,145,147,149,151,153,155,157,168,170および172で表される塩基

配列を有するDNA等があげられる。また、該DNAの一部の配列を有するDNA、該DNAの連続した5~60塩基の塩基配列を有するオリゴヌクレオチドDNA、好ましくは連続した10~40塩基の塩基配列を有するオリゴヌクレオチドDNAがあげられる。さらにまた、該DNAまたはその断片とストリンジェントな条件下でハイブリダイズするずり応力応答性DNAがあげられる。

ずり応力応答性遺伝子座中に存在する動脈硬化の原因となる変異の存在の有無を評価するための最も明確な試験は、対照集団からの遺伝子と動脈硬化患者からの遺伝子とを直接比較することである。

具体的には10~100人の動脈硬化患者ならび健常者から、血管内皮、血清、唾液等のヒト生体試料あるいは、該生体試料から樹立した初代培養細胞由来の試料を集め、該生体試料ならびに該初代培養細胞由来試料中からDNAを抽出する(以後、該DNAを検体由来DNAと称する)。該検体由来DNAは直接あるいは、本発明のDNAが有する塩基配列に基づき設計したプライマーを用いてずり応力応答性DNAを増幅して用いることができる。別法として、該検体由来cDNAをテンプレートとして、本発明のDNAが有する塩基配列に基づき設計したプライマーによりPCRを行うことでずり応力応答性DNA配列を含むDNA断片を増幅して用いることができる。

本発明のDNAに動脈硬化の原因となる変異があるかどうかを選別する方法として、野生型対立遺伝子を有するDNA鎖と変異対立遺伝子を有するDNA鎖と変異対立遺伝子を有するDNA鎖とのハイブリダイズにより形成されるヘテロ二本鎖を検出する方法を用いることができる。

ヘテロニ本鎖を検出する方法には、(1)ポリアクリルアミド電気泳動によるヘテロニ本鎖検出法 [Trends Genet., 7,5(1991)]、(2)一本鎖コンフォメーション多型解析法[Genomics, 16,325-332(1993)]、(3)ミスマッチの化学的切断法(CCM, chemical cleavage of mismatches)、(4)ミスマッチの酵素的切断法[Nature Genetics, 9,103-104(1996)]、

(5) 変性ゲル電気泳動法 [Mutat. Res., <u>288</u>, 103-112(1993)] 等の方 法があげられる。

検体由来DNAあるいは検体由来cDNAをテンプレートに、ずり応力応答性DNAを本発明のDNAが有する配列に基づき設計したプライマーにより、200bpよりも小さい断片として増幅し、ポリアクリルアミド電気泳動を行うことにより、ずり応力応答性DNAの変異によりへテロ二本鎖が形成された場合は、変異を持たないホモ二本鎖よりも移動度が遅く、それらは余分なバンドとして検出することができる。特製のゲル(Hydro-link,MDEなど)を用いたほうが分離度はよい。200bpよりも小さい断片の検索ならば、挿入、欠失、ほとんどの1塩基置換を検出可能である。ヘテロ二本鎖解析は、次に述べる一本鎖コンフォメーション解析と組み合わせた1枚のゲルで行うことが望ましい。

一本鎖コンフォメーション多型解析(SSCP解析;single strand conformation polymorphism analysis)では、検体由来DNAあるいは 検体由来CDNAをテンプレートに、本発明のDNAが有する配列に基づき設計したプライマーにより、200bpよりも小さい断片として増幅したずり応力応答性DNAを変性後、未変性ポリアクリルアミドゲル中で泳動する。DNA増幅を行う際にプライマーを同位体あるいは蛍光色素で標識するか、または未標識の増幅産物を銀染色することにより、増幅したずり応力応答性DNAをバンドとして検出することができる。野生型のパターンとの相違を明らかにするために、コントロールの検体も同時に泳動すると、変異を持った断片を移動度の違いから検出できる。

ミスマッチ化学的切断法(CCM法)では、検体由来DNAあるいは 検体由来cDNAをテンプレートに、ずり応力応答性DNAを本発明の DNAが有する配列に基づき設計したプライマーで増幅したDNA断片 を、本発明のDNAに同位体あるいは蛍光標識をとり込ませた標識DN Aとハイブリダイズさせ、四酸化オスミウムで処理することでミスマッ チしている場所のDNAの一方の鎖を切断させ変異を検出することがで

きる。CCMは最も感度の高い検出法の1つであり、キロベースの長さの検体にも適応できる。

上記、四酸化オスミウムの代わりにT4ファージリゾルベースとエンドヌクレアーゼVIIのような細胞内でミスマッチの修復に関与する酵素とRNaseAと組み合わせることで、酵素的にミスマッチを切断することもできる。

変性ゲル電気泳動法(denaturing gradient gel electrophoresis: DGE法)では、検体由来DNAあるいは検体由来CDNAをテンプレートに、ずり応力応答性DNAを本発明のDNAが有する配列に基づき設計したプライマーで増幅したDNA断片を化学的変性剤の濃度勾配や温度勾配を有するゲルを用いて電気泳動する。増幅したDNA断片はゲル内を一本鎖に変性する位置まで移動し、変性後は移動しなくなる。ずり応力応答性DNAに変異がある場合とない場合では増幅したDNAのゲル内での移動が異なることから、変異の存在を検出することが可能である。検出感度を上げるにはそれぞれのプライマーにポリ(G:C)端末を付けるとよい。

本発明のDNAに動脈硬化の原因となる変異があるかどうかを選別する別の方法として、蛋白質短縮試験(protein truncation test: PTT法) [Genomics, 20,1-4(1994)] がある。該試験により蛋白質の欠損を生み出すフレームシフト突然変異、スプライス部位突然変異、ナンセンス突然変異を特異的に検出することができる。PTT法では、本発明のDNAの5'末端にT7プロモーター配列と真核生物翻訳開始配列をつないだ特殊なプライマーを設計し、該プライマーを用いて検体由来RNAより逆転写PCR(RT-PCR)法でcDNAを作製する。該cDNAを用い、in vitro 転写、翻訳系で反応させると、T7プロモーターによりmRNAに転写され、翻訳開始配列により翻訳され、蛋白質が生産される。該蛋白質をゲルに泳動して、該蛋白質の泳動位置が完全長蛋白質に相当する位置にあれば欠損を生み出す変異は存在せず、該蛋白質

に欠損がある場合は、完全長蛋白質より短い位置に該蛋白質は泳動され、 該位置より欠損の程度を知ることができる。

検体由来DNAならびに検体由来cDNAの塩基配列を決定するために本発明のDNAが有する塩基配列に基づいて設計したプライマーを用いることが可能である。決定された塩基配列を解析することにより、検体由来DNAあるいは検体由来cDNAに動脈硬化の原因となる変異があるか否かを判別できる。

ずり応力応答性遺伝子のコード領域以外の突然変異は、該遺伝子の付近またはその中のイントロンおよび調節配列のような、非コード領域を検査することによって検出し得る。非コード領域中の突然変異に起因する動脈硬化疾患は、上記に記載した方法に従い対照検体と比較した場合の、動脈硬化患者における異常なサイズの、または異常な生産量のmRNAを検出することで確認することができる。

このようにして非コード領域における変異の存在が示唆された該遺伝子については、本発明のDNAをハイブリダイゼイションのプローブとして用いることにより、非コード領域のDNAをクローン化することができる。非コード領域における変異は上述のいずれかの方法に準じて探索することができる。

見い出された突然変異は、Handbook of Human Genetics Linkage. The John Hopkins University Press, Baltimore(1994)に記載された方法に従い統計処理を行うことで、動脈硬化との連鎖があるSNPs(シングル・ヌクレオチド・ポリモルフィズム)として同定することができる。また、動脈硬化の病歴を持つ家族から、先に示した方法に従いDNAを取得し、変異を検出することで、動脈硬化の原因遺伝子を同定することができる。

以下に本発明のずり応力応答性DNAを用い動脈硬化を原因とする血 管病を診断する方法について述べる。

当該方法に用いられるDNAとしては、例えば配列番号1,3,5,

7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107、109、111、113、115、116、117、119、121、123、125、127、129、130、131、132、133、134、135、137、139、141、143、145、147、149、151、153、155、157、168、170および172で表される塩基配列を有するDNA、該DNAの連続した5~60塩基の塩基配列を有するオリゴヌクレオチドDNA、好ましくは連続した10~40塩基配列を有するオリゴヌクレオチドDNA、があげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのトルスがあげられる。さらにまた、該DNAのよれてアイブリダイズするずり応力応答性DNAがあげられる。

動脈硬化の原因は、ヒトのいずれかの組織における遺伝子の突然変異を検出することによって確認し得る。例えば、生殖細胞系に突然変異がある場合、当該変異を遺伝した個人は、動脈硬化を発症し易い傾向である可能性がある。当該突然変異は、該個人の体のいずれかの組織からのDNAを試験することによって決定し得る。例えば、採血しその血液の細胞からDNAを抽出し、このDNAを用い、遺伝子の突然変異を試験することにより、動脈硬化を診断することができる。また、胎児細胞、胎盤細胞または羊膜細胞を用い、遺伝子の突然変異を試験することにより、出生前診断を行うことができる。

また血管病を発症した患者から、病巣部位の生体組織を取得してDNAを試験することにより、血管病の種類を診断し、投与する薬物の選択などに利用することができる。組織中の遺伝子の変化を検出するためには、周囲の正常組織から遊離した病巣部位の組織を単離することが有用

である。動脈硬化巣は、動脈硬化の発症部位を健常な血管と取替えるバイパス手術等により取得することができる。このようにして取得した組織をトリプシンなどで処理し、得られた細胞を適当な培地で培養する。培養した細胞からは染色体 DNA ならびに mRNA を抽出することができる。

以後、診断を目的としてヒト検体から上記いずれかの方法で取得した DNAを診断検体由来DNAと称する。また、診断を目的としてヒト検 体から上記いずれかの方法で取得したRNAより合成したcDNAを診 断検体由来cDNAと称する。

本発明のずり応力応答性DNAおよび診断検体由来DNAあるいは診断検体由来 c DNAを用い、上記動脈硬化の原因遺伝子を検出する方法に準じた方法により、動脈硬化の診断を行うことができる。

また、本発明のずり応力DNAおよび診断検体由来DNAあるいは診断検体由来 c DNAを利用した動脈硬化の診断には(1)制限酵素部位の検出、(2)対立遺伝子特異的なオリゴヌクレオチドプローブの利用(ASO: allele specific oligonucleotide hybridization)、(3)対立遺伝子特異的なオリゴヌクレオチドを用いたPCR(ARMS:amplification refractory mutation system)、(4)オリゴヌクレオチドライゲーションアッセイ(OLA:oligonucleotide ligation assay)、(5)PCR-PHFA法(PCR-preferential homoduplex formation assay)、(6)オリゴDNAアレイ〔蛋白質核酸酵素、43,2004-2011(1998)〕等の方法も用いることができる。

単一塩基変化により制限酵素部位が消失あるいは発生する場合は、診断検体由来DNAあるいは診断検体由来 cDNAを、本発明のDNAが有する配列に基づき設計したプライマーで増幅し、該制限酵素で消化し、得られた制限酵素切断DNA断片を正常人の場合と比較することで簡便に変異を検出することができる。しかしこのような変化が起こることはまれであり、診断目的には、本発明のDNAが有する配列に基づき設計

したPCRプライマーにアニーリングに影響を与えないミスマッチを導入することで、制限酵素部位の消失や発生を伴わない変異に対して、人工的に制限酵素部位を導入することが行われる。

短い合成DNAプローブは、完全に対合する配列とだけハイブリダイズする。この特徴を利用して、対立遺伝子特異的なオリゴヌクレオチドプローブ(ASO)を作製することで、1塩基の変異を容易に検出することができる。診断目的には、本発明のDNAが有する配列と同定された変異に基づき設計したオリゴヌクレオチドをフィルターに結合させ、診断検体由来DNAあるいは診断検体由来cDNAから本発明のDNAが有する配列を用いて設計したプライマーと標識したdNTPを用いたPCRで作製したプローブを用いてハイブリダイズを行うリバースドットプロットが用いられることが多い。スライドガラスやシリコンなどの基盤に直接、本発明のDNAが有する配列と該変異に基づき設計したオリゴヌクレオチドを合成して、高密度のアレイをつくったDNAチップ法は、少量の診断検体由来DNAあるいは診断検体由来cDNAを利用して多様な変異をより簡便に検出できるため大規模な診断目的に適した変異検出法である。

塩基変異は、以下のオリゴヌクレオチドライゲーションアッセイ(O LA)法によっても検出できる。

突然変異部位を挟んで両側にハイブリダイズする本発明のDNAが有する配列より設計した20塩基程度のオリゴヌクレオチドを2本作製する。診断検体由来DNAあるいは診断検体由来CDNAをテンプレートとして用い、本発明のDNAが有する配列から設計したプライマーを用い、PCRによりずり応力応答性DNA断片を増幅する。該増幅断片と上記ポリヌクレオチドとをハイブリダイズさせる。ハイブリダイズ後に、DNAリガーゼで2本のオリゴヌクレオチドを連結させる。例えば、一方のオリゴヌクレオチドにはビオチンを、他方のオリゴヌクレオチドにジゴケシゲニンのような異なる標識をつけると、連結反応が起こったか

どうかを速やかに検出することが可能である。OLAは電気泳動や遠心 分離操作が不要なために、大規模な診断目的として適した変異検出法で ある。

また、以下のPCR-PHFA法により微量な変異遺伝子を定量的かつ容易に検出することができる。

PCR-PHFA法は、遺伝子増幅法(PCR)、非常に高い特異性 を示す液相でのハイブリダイゼイション、ELISAと同様の操作でP CR産物を検出するED-PCR(enzymatic detection of PCR product) の3つを組み合わせたものである。dinitrophenyl(DNP)標識および ビオチン標識したプライマーセットを用いて、本発明のDNAをテンプ レートにPCR増幅を行い、両末端標識増幅物を調製する。これに対し て、標識を持たない同じ配列を有するプライマーセットと診断検体由来 DNAあるいは診断検体由来CDNAをテンプレートに増幅して得た非 標識増幅物を20~100倍の大過剰量混合する。そして熱変性後、1℃ / 5 分~1 0 分程度の緩やかな温度勾配で冷却し、完全な相補鎖を優先 的に形成させる。こうして再形成された標識DNAはビオチンを介して ストレプトアビジン固定化ウエルに捕獲吸着し、他方のDNPを介して 酵素標識抗DNP抗体を結合させて酵素による発色反応により検出する。 検体中に標識DNAと同じ配列の遺伝子が存在しない場合は、元の2本 鎖の標識DNAが優先的に再形成されて発色を示す。これに対し、同じ 配列の遺伝子が存在する場合は、相補鎖の置換がランダムに生じるため 再形成される標識DNAは減少するので、発色は著しく低下する。これ により、既知の変異・多型遺伝子の検出・定量が可能となる。

以下に、本発明の抗体を用いて、本発明のずり応力応答性蛋白質を免疫学的に検出および定量する方法について述べる。

本発明の抗体(ポリクローナル抗体、あるいはモノクローナル抗体)を用いて、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織を、

免疫学的に検出および定量する方法としては、蛍光抗体法、酵素免疫測定法(ELISA法)、放射性物質標識免疫抗体法(RIA)、免疫組織染色法、免疫細胞染色法などの免疫組織化学染色法(ABC法、CSA法等)、ウェスタンブロッティング法、ドットブロッティング法、免疫沈降法、サンドイッチELISA法〔単クローン抗体実験マニュアル(講談社サイエンティフィック)(1987)、続生化学実験講座5免疫生化学研究法(東京化学同人)(1986)〕などがあげられる。

蛍光抗体法とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織に、本発明の抗体を反応させ、さらにフルオレシン・イソチオシアネート(FITC)などの蛍光物質でラベルした抗マウスIgG抗体あるいはその断片を反応させた後、蛍光色素をフローサイトメーターで測定する方法である。

酵素免疫測定法(ELISA法)とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞に、本発明の抗体を反応させ、さらにペルオキシダーゼ、ビオチンなどの酵素標識などを施した抗マウスIgG抗体あるいは結合断片を反応させた後、発色色素を吸光光度計で測定する方法である。

放射性物質標識免疫抗体法(RIA)とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織に、本発明の抗体を反応させ、さらに放射線標識を施した抗マウスIgG抗体あるいはその断片を反応させた後、シンチレーションカウンターなどで測定する方法である。

免疫細胞染色法、免疫組織染色法とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織に、本発明の抗体を反応させ、さらにFITCなどの蛍光物質、ペルオキシダーゼ、ビオチンなどの酵素標識を施した抗マウスIgG抗体あるいはその断片を反応させた後、顕微鏡を用いて観察す

る方法である。

ウェスタンブロッティング法とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織の抽出液をSDS-ポリアクリルアミドゲル電気泳動(Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, (1988))で分画した後、該ゲルをPVDF膜あるいはニトロセルロース膜にブロッティングし、該膜に本発明の抗体を反応させ、さらにFITCなどの蛍光物質、ペルオキシダーゼ、ビオチンなどの酵素標識を施した抗マウスIg G抗体あるいはその断片を反応させた後、確認する方法である。

ドットブロッティング法とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織の抽出液をニトロセルロース膜にブロッティングし、該膜に本発明の抗体を反応させ、さらにFITCなどの蛍光物質、ペルオキシダーゼ、ビオチンなどの酵素標識を施した抗マウスIgG抗体あるいは結合断片を反応させた後、確認する方法である。

免疫沈降法とは、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織の抽出液を本発明の抗体と反応させた後、プロテインGーセファロース等イムノグロブリンに特異的な結合能を有する担体を加えて抗原抗体複合体を沈降させる方法である。

サンドイッチELISA法とは、本発明の抗体で、抗原認識部位の異なる2種類の抗体のうち、あらかじめ一方の抗体をプレートに吸着させ、もう一方の抗体をFITCなどの蛍光物質、ペルオキシダーゼ、ビオチンなどの酵素で標識しておき、抗体吸着プレートに、本発明の蛋白質を細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞または組織の抽出液を反応させた後、標識した抗体を反応させ、標識物質に応じた反応を行う方法である。

以下に本発明の抗体を用いて動脈硬化を原因とする血管病を診断する 方法について述べる。

ヒト生体試料ならびヒト初代培養細胞での、ずり応力応答性蛋白質の 発現量の変化ならびに発現している蛋白質の構造変化を同定することは、 将来動脈硬化を発症する危険性やすでに発症した血管病の原因を知る上 で有用である。

ずり応力応答性蛋白質の発現量や構造変化を検出して診断する方法としては、上記した、蛍光抗体法、酵素免疫測定法(ELISA法)、放射性物質標識免疫抗体法(RIA)、免疫組織染色法、免疫細胞染色法などの免疫組織化学染色法(ABC法、CSA法等)、ウェスタンブロッティング法、ドットブロッティング法、免疫沈降法、サンドイッチELISA法などがあげられる。

上記方法により診断する材料としては、ヒト検体より取得した病巣部位の血管、血液、血清、尿、便、唾液などの生体試料そのものあるいは、該生体試料から取得した細胞ならびに細胞抽出液が用いられる。また、生体試料から取得した組織を、パラフィンあるいはクリオスタット切片として単離したものを用いることもできる。

以下に本発明のずり応力応答性DNA、該DNAがコードする蛋白質 または該蛋白質を認識する抗体を用いて動脈硬化を原因とする血管病の 治療薬をスクリーニングする方法について述べる。

当該スクリーニング方法において用いられるDNAとしては、例えば配列番号1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,113,115,116,117,119,12

3、134、135、137、139、141、143、145、147、149、151、153、155、157、168、170および172で表される塩基配列を有するDNA、または、該DNAもしくはその断片とストリンジェントな条件下でハイブリダイズするずり応力応答性DNAがあげられ、蛋白質としては、該DNAによってコードされる蛋白質(例えば配列番号144、146、148、150、152、154、156、158、169、171および173で表されるアミノ酸配列から選ばれるアミノ酸配列を有する蛋白質など)、あるいは、該蛋白質の有するアミノ酸とは1以上のアミノ酸が欠失、置換または付加したアミノ酸からなり、かつ動脈硬化病変の形成に関与する活性を有する蛋白質があげられ、抗体としては、該蛋白質を認識する抗体があげられる。

本発明のDNAを導入して本発明の蛋白質あるいは該蛋白質の一部を構成するポリペプチドを生産するように形質転換した微生物、動物細胞、または昆虫細胞ならびに、精製した該蛋白質あるいは該ポリペプチドは、ずり応力応答性蛋白質に特異的に作用する薬剤をスクリーニングするために有用である。スクリーニングにより得られた薬剤は、動脈硬化を原因とする血管病の治療に有用である。

上記スクリーニングの1つの方法は、本発明の蛋白質あるいは該蛋白質の一部を構成するポリペプチドを生産するように形質転換した微生物、動物細胞、または昆虫細胞(以後探索用形質転換体と称する)に特異的に結合する標識化合物を選択することである。形質転換していない微生物、動物細胞、または昆虫細胞を対照群として比較することで、特異的な標識化合物の結合を検出することができる。また、該探索用形質転換体に特異的に結合する化合物あるいは蛋白質の該探索用形質転換体に対する結合を阻害することを指標に、非標識化合物を競合スクリーニングすることができる。

精製した本発明の蛋白質または該蛋白質の一部を構成するポリペプチ

ドは、ずり応力応答性蛋白質に特異的に結合する標識化合物を選択するのに用いることができる。標識化合物の結合を定量するには、本発明の抗体を用いて上記の免疫学的方法により行うことができる。また、該蛋白質あるいは該ポリペプチドに結合する標識化合物の該蛋白質あるいは該ポリペプチドに対する結合を阻害することを指標に、非標識化合物を競合スクリーニングすることができる。

上記スクリーニングのもう1つの方法としては、該蛋白質の一部を構成するペプチドを多数、プラスチックピンまたはある種の固体支持体上で高密度に合成し、該ペプチドに選択的に結合する化合物あるいは蛋白質を効率的にスクリーニングする方法がある(WO84/03564)。

血管内皮細胞で、ずり応力応答性mRNAあるいは蛋白質の発現を調節する発現調節用薬剤も、動脈硬化を原因とする血管病の治療に有効である。

血管内皮細胞系統に種々の化合物を添加し、本発明のDNAを用いて、ずり応力応答性mRNAの発現の増減を検定することでずり応力応答性 遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングすることができる。ずり応力応答性mRNAの発現の増減は、上記したPCR法、ノーザンブロット法、RNase保護法により検出できる。

血管内皮細胞系統に種々の化合物を添加し、本発明の抗体を用いて、ずり応力応答性蛋白質の発現の増減を検定することでずり応力応答性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングすることができる。ずり応力応答性蛋白の発現の増減は、上記した蛍光抗体法、酵素免疫測定法(ELISA法)、放射性物質標識免疫抗体法(RIA)、免疫組織染色法、免疫細胞染色法などの免疫組織化学染色法(ABC法、CSA法等)、ウェスタンブロッティング法、ドットブロッティング法、免疫沈降法、サンドイッチELISA法により検出できる。

上述の方法により取得した化合物は、ApoEノックアウトマウスや 高コレストロール食を与えたウサギなどの動脈硬化モデル動物に薬剤と

して投与し、該動物の酸化LDLやコレステロールの血管内皮への取り 込みならびに動脈硬化病変の形成を測定することにより、該化合物のそ の動脈硬化を原因とする血管病への治療効果を評価することが可能であ る。

以下に本発明の抗体を用いたドラッグデリバリーの方法について述べる。

当該ドラッグデリバリーに用いられる抗体は、本発明の抗体であればいずれでも良いが、特にヒト化抗体を用いることが望ましい。

ヒト化抗体としては、ヒト型キメラ抗体、ヒト型CDR(Complementary Determining Region;相補性決定領域;以下、CDRと記す)移植抗体などがあげられる。

ヒト型キメラ抗体は、ヒト以外の動物の抗体重鎖可変領域(以下、重鎖はH鎖として、可変領域はV領域としてHVまたはVHとも称す)および抗体軽鎖可変領域(以下、軽鎖はL鎖としてLVまたはVLとも称す)とヒト抗体の重鎖定常領域(以下、定常領域はC領域としてCHとも称す)およびヒト抗体の軽鎖定常領域(以下、CLとも称す)とからなる抗体を意味する。ヒト以外の動物としては、マウス、ラット、ハムスター、ラビット等、ハイブリドーマを作製することが可能であれば、いかなるものも用いることができる。

本発明のヒト型キメラ抗体は、本発明の蛋白質に結合し、本発明の蛋白質の作用を中和するモノクローナル抗体を生産するハイブリドーマより、VHおよびVLをコードするcDNAを取得し、ヒト抗体CHおよびヒト抗体CLをコードする遺伝子を有する動物細胞用発現ベクターにそれぞれ挿入してヒト型キメラ抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ製造することができる。

ヒト型キメラ抗体のCHとしては、ヒトイムノグロブリン(以下、hIgと表記する)に属すればいかなるものでもよいが、hIgGクラスのものが好適であり、更にhIgGクラスに属するhIgG1、hIg

G2、hIgG3、hIgG4といったサブクラスのいずれも用いることができる。また、ヒト型キメラ抗体のCLとしては、hIgに属すればいかなるものでもよく、 κ クラスあるいは λ クラスのものを用いることができる。

ヒト型CDR移植抗体は、ヒト以外の動物の抗体のVHおよびVLのCDRのアミノ酸配列をヒト抗体のVHおよびVLの適切な位置に移植した抗体を意味する。

本発明のヒト型CDR移植抗体は、本発明の蛋白質に反応し、本発明の蛋白質に結合し、本発明の蛋白質の作用を中和する、ヒト以外の動物の抗体のVHおよびVLのCDR配列で任意のヒト抗体のVHおよびVLのCDR配列をそれぞれ置換したV領域をコードするcDNAを構築し、ヒト抗体のCHおよびヒト抗体のCLをコードする遺伝子を有する動物細胞用発現ベクターにそれぞれ挿入してヒト型CDR移植抗体発現ベクターを構築し、動物細胞へ導入し、発現させることにより製造することができる。

ヒト型CDR移植抗体のCHとしては、h I gに属すればいかなるものでもよいが、h I gGクラスのものが好適であり、更にh I gGクラスに属するh I gG1、h I gG2、h I gG3、h I gG4といったサブクラスのいずれも用いることができる。また、ヒト型CDR移植抗体のCLとしては、h I gに属すればいかなるものでもよく、 κ クラスあるいは λ クラスのものを用いることができる。

ヒト抗体は、元来、ヒトの体内に天然に存在する抗体を意味するが、 最近の遺伝子工学的、細胞工学的、発生工学的な技術の進歩により作製 されたヒト抗体ファージライブラリーおよびヒト抗体産生トランスジェ ニック動物から得られる抗体等も含まれる。

ヒトの体内に存在する抗体は、例えば、以下の方法により取得することができる。

ヒト末梢血リンパ球を単離し、EBウイルス等を感染させ不死化さ

せた後、クローニングする。得られた該抗体を産生するリンパ球を培養 し、培養物中より該抗体を取得することができる。

ヒト抗体ファージライブラリーは、ヒトB細胞から調製した抗体遺伝子をファージ遺伝子に挿入することによりFab、一本鎖抗体等の抗体断片をファージ表面に発現させたライブラリーである。該ライブラリーより、抗原を固定化した基質に対する結合活性を指標として所望の抗原結合活性を有する抗体断片を発現しているファージを回収することができる。該抗体断片は、更に遺伝子工学的手法により、完全型ヒト抗体へ変換することができる。

ヒト抗体産生トランスジェニック動物は、ヒト抗体遺伝子が細胞内に組込まれた動物を意味する。具体的には、マウスES細胞へヒト抗体遺伝子を導入し、該ES細胞を他のマウスの初期胚へ移植後、発生させることによりヒト抗体産生トランスジェニック動物を作製することができる。ヒト抗体産生トランスジェニック動物からのヒト抗体の作製方法としては、通常のヒト以外の哺乳動物で行われているハイブリドーマ作製方法によりヒト抗体産生ハイブリドーマを得、培養することで培養物中にヒト抗体を産生蓄積させる方法があげられる。

抗体断片としては、Fab、Fab'、F(ab')₂、一本鎖抗体、dsFv、CDRを含むペプチドなどがあげられる。

Fabは、IgGを蛋白質分解酵素パパインで処理して得られる断片のうち(H鎖の224番目のアミノ酸残基で切断される)、H鎖のN末端側約半分とL鎖全体がジスルフィド結合で結合した分子量約5万の抗原結合活性を有する抗体断片である。

本発明のFabは、本発明の蛋白質に特異的に反応する抗体を蛋白質分解酵素パパインで処理して得ることができる。また、該抗体のFabをコードするDNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入後、該ベクターを原核生物あるいは真核生物へ導入し、該DNAを発現させることによりFabを取得することができる。

F(ab') $_2$ は、IgGを蛋白質分解酵素ペプシンで処理して得られる断片のうち(H鎖の $_2$ 34番目のアミノ酸残基で切断される)、Fabがヒンジ領域のジスルフィド結合を介して結合されたものよりやや大きい、分子量約 $_10$ 万の抗原結合活性を有する抗体断片である。

Fab'は、上記 $F(ab')_2$ のヒンジ領域のジスルフィド結合を切断した分子量約5万の抗原結合活性を有する抗体断片である。

本発明のFab'は、本発明の蛋白質に特異的に反応する抗体を還元 剤ジチオスレイトール処理して得ることができる。また、該抗体のFa b'断片をコードするDNAを原核生物用発現ベクターあるいは真核生 物用発現ベクターに挿入後、該ベクターを原核生物あるいは真核生物へ 導入し、該DNAを発現させることにより、Fab'を取得することが できる。

一本鎖抗体(以下、scFvとも称す)は、一本のVHと一本のVLとを適当なペプチドリンカー(以下、Pと称す)を用いて連結した、VHーPーVL ないしは VLーPーVH ポリペプチドを示す。本発明で使用されるscFvに含まれるVHおよびVLは、本発明の蛋白質に特異的に反応する抗体、例えば、ヒト化抗体、ヒト抗体のいずれをも用いることができる。

本発明の一本鎖抗体は、以下の方法により取得できる。

本発明の蛋白質に特異的に反応する抗体のVHおよびVLをコードする c DNAを取得後、一本鎖抗体をコードするDNAを構築する。該 DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿

入後、該発現ベクターを原核生物あるいは真核生物へ導入し、該DNA を発現させることにより、一本鎖抗体を取得することができる。

ジスルフィド安定化V領域断片(以下、dsFvとも称す)は、VH およびVL中のそれぞれ1アミノ酸残基をシステイン残基に置換したポリペプチドを該システイン残基間のジスルフィド結合を介して結合させたものをいう。システイン残基に置換するアミノ酸残基はReiter らにより示された方法 [Protein Engineering, 7, 697 (1994)] に従って、抗体の立体構造予測に基づいて選択することができる。本発明で使用されるジスルフィド安定化V領域断片に含まれるVHおよびVLは本発明の蛋白質に特異的に反応する抗体、例えば、ヒト化抗体、ヒト抗体のいずれをも用いることができる。

本発明のジスルフィド安定化V領域断片は、以下の方法により取得することができる。

本発明の蛋白質に特異的に反応する抗体のVHおよびVLをコードするcDNAを取得後、ジスルフィド安定化V領域断片をコードするDNAを構築する。該DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入後、該発現ベクターを原核生物あるいは真核生物へ導入し、該DNAを発現させることにより、ジスルフィド安定化V領域断片を取得することができる。

CDRを含むペプチドは、Fmoc法、tBoc法等の化学合成法によって製造することができる。

本発明の抗体により調製された以下に述べる融合抗体は、動脈硬化の病巣へ特異的に薬剤や蛋白質を運ぶ、ドラッグデリバリーに用いることができる。

融合抗体は、本発明の蛋白質に特異的に反応する抗体、例えば、ヒト 化抗体、ヒト抗体およびそれらの抗体断片に放射性同位元素、蛋白質、 低分子の薬剤などを化学的あるいは遺伝子工学的に結合させた抗体をい う。

本発明の融合抗体は、本発明の蛋白質に特異的に反応する抗体および 抗体断片のH鎖或いはL鎖のN末端側或いはC末端側、抗体および抗体 断片中の適当な置換基あるいは側鎖、さらには抗体および抗体断片中の 糖鎖に放射性同位元素、蛋白質あるいは低分子の薬剤などを化学的ある いは遺伝子工学的に結合させることにより製造することができる。

放射性同位元素としては、「31 I、「25 I 等があげられ、例えば、クロラミン T 法等により、抗体または抗体断片に結合させることができる。低分子の薬剤としては、ナイトロジェン・マスタード、サイクロフォスファミドなどのアルキル化剤、5ーフルオロウラシル、メソトレキセートなどの代謝拮抗剤、ダウノマイシン、ブレオマイシン、マイトマイシンC、ダウノルビシン、ドキソルビシンなどの抗生物質、ビンクリスチン、ビンブラスチン、ビンデシンのような植物アルカロイド、タモキシフェン、デキサメタソンなどのホルモン剤等の抗癌剤 [臨床腫瘍研究会編 1996年 癌と化学療法社)]、またはハイドスタシンなどの非ステロイド剤、アスピリン、インドスタシンなどの非ステロイド剤、金チオマレート、ペニシラミンなの免疫調節剤、サイクロフォスファミド、アザチオプリンなどの免疫抑制剤、マレイン酸クロルフェニラミン、クレマシチンのような抗ヒスタミン剤等の抗炎症剤(炎症と抗炎症療法 昭和57年 医歯薬出版株式会社)などがあげられる。

定法により上記抗体に低分子の薬剤を結合させることができるが、例えば、ダウノマイシンと抗体を結合させる方法としては、グルタールアルデヒドを介してダウノマイシンと抗体のアミノ基間を結合させる方法、水溶性カルボジイミドを介してダウノマイシンのアミノ基と抗体のカルボキシル基を結合させる方法等があげられる。

蛋白質としては、免疫担当細胞を活性化するサイトカインや血管内皮、 血管平滑筋等の増殖制御因子が好適であり、例えば、ヒトインターロイ キン2、ヒト顆粒球-マクロファージ-コロニー刺激因子、ヒトマクロ

ファージコロニー刺激因子、ヒトインターロイキン12、繊維芽細胞増殖因子-2(FGF-2),血小板由来増殖因子(PDGF)等があげられる。また、動脈硬化巣の増殖性血管平滑筋細胞を直接障害するため、リシンやジフテリア毒素などの毒素を用いることができる。

蛋白質との融合抗体は、以下の方法により取得できる。

抗体または抗体断片をコードする c D N A に蛋白質をコードする c D N A を連結させた後、融合抗体をコードする D N A を構築する。該 D N A を原核生物あるいは真核生物用発現ベクターに挿入後、該発現ベクターを原核生物あるいは真核生物へ導入し、該 D N A を発現させることにより、融合抗体を取得することができる。

次に本発明のずり応力応答性DNAを含有するウイルスベクターを用いた遺伝治療の方法について述べる。

上述した組換えウイルスベクターおよび遺伝子治療剤に用いる基剤を調合することにより治療剤を製造することができる [Nature Genet., 8, 42(1994)]。

遺伝子治療剤に用いる基剤としては、通常注射剤に用いる基剤であればどのようなものでもよく、蒸留水、塩化ナトリウム又は塩化ナトリウムと無機塩との混合物等の塩溶液、マンニトール、ラクトース、デキストラン、グルコース等の溶液、グリシン、アルギニン等のアミノ酸溶液、有機酸溶液又は塩溶液とグルコース溶液との混合溶液等があげられる。また常法に従い、これらの基剤に浸透圧調整剤、pH調整剤、ゴマ油、ダイズ油等の植物油又はレシチンもしくは非イオン界面活性剤等の即剤を用いて、溶液、懸濁液、分散液として注射剤を調製してもよい。これらの注射剤を、粉末化、凍結乾燥等の操作により用時溶解用製剤として調製することもできる。本発明の遺伝子治療剤は、遺伝子治療の直前に液体の場合はそのままで、個体の場合は必要により滅菌処理をした上記の基剤に溶解して治療に使用することができる。本発明の遺伝子治療剤の投与方法としては、患者の治療部位の血管内皮に吸収

されるように、ダブルバルーンカテーテル等を用いて局所的に投与する 方法をあげることができる。

より特異的に動脈硬化巣にウイルスベクターを輸送する方法として、 LDL受容体を特異的に認識する一本鎖抗体とレトロウイルスベクター のEnv蛋白の融合蛋白を用いる方法がSomiaらにより報告されて いる [Proc. Natl. Acad. Sci. USA, 92, 7570-7574 (1995)]。本シス テムはレトロウイルスベクターに限定されず、レンチウイルスベクター 等にも応用することができる。

当該分野で公知の非ウイルス遺伝子移入法には、リン酸カルシウム共 沈法 [Virology, <u>52</u>, 456-467 (1973); Science, 209, 1414-1422 (1980)]、マイクロインジェクション法 [Proc. Natl. Acad. Sci. USA, 77, 5399-5403 (1980); Proc. Natl. Acad. Sci. USA, 77, 7380-7384 (1980); Cell, 27, 223-231 (1981); Nature, 294, 92-94 (1981)]、リポソームを介した膜融合-介在移入法[Proc. Natl. Acad. Sci. USA, 84, 7413-7417 (1987); Biochemistry, 28, 9508-9514 (1989); J. Biol. Chem., $\underline{264}$, 12126-12129 (1989); Ther., 3, 267-275, (1992); Science, 249, Gene Hum. 1285-1288 (1990); Circulation, <u>83</u>, 2007-2011 (1992)] あるいは 直接DNA取り込みおよび受容体-媒介DNA移入法 [Science, 247, 1465-1468 (1990); J. Biol. Chem., <u>266</u>, 14338-14342 (1991); Proc. Natl. Acad. Sci. USA, 87, 3655-3659 (1991); J. Biol. Chem., $\underline{264}$, 16985-16987 (1989); BioTechniques, $\underline{1}1$, 474-485(1991); Proc. Natl. Acad. Sci. USA, <u>87</u>, 3410-3414 (1990); Proc. Natl. Acad. Sci. USA, 88, 4255-4259 (1991); Proc. Natl. Acad. Sci. USA, 87, 4033-4037 (1990); Proc. Natl. Acad. Sci. USA, 88, 8850-8854 (1991); Hum. Gene Ther., 3, 147-154 (1991)] 等をあげることができる。

ウイルスベクターを用いる遺伝子移入は、リポソームデリバリーを用

いる直接的イン・ビボ(in vivo)遺伝子移入と組み合わせることにより、動脈硬化巣にウイルスベクターを指向させることができる。

その他適当なサイズの本発明のDNAを、アデノウイルス・ヘキソン 蛋白質に特異的なポリリジン-コンジュゲート抗体と組み合わせてコン プレックスを作製し、得られたコンプレックスをアデノウイルスベクタ ーに結合させることにより、ウイルスベクターを調製することができる。 該ウイルスベクターは安定に標的細胞に到達し、エンドソームにより細 胞内に取り込まれ、細胞内で分解され効率的に遺伝子を発現させること ができる。

リポソームを介した膜融合-介在移入法ではリポソーム調製物を標的 とする組織に直接投与することにより、当該組織の局所的な遺伝子の取 り込みおよび発現が可能であることが腫瘍に関する研究において報告さ れている [Hum. Gene Ther., 3, 399-410 (1992)] 。したがって同 様の効果が動脈硬化巣でも期待される。DNAを、動脈硬化巣に直接標 的化するには、遺伝子移入技術が好ましい。受容体-媒介DNA移入は、 例えば、ポリリジンを介して、蛋白質リガンドにDNA(通常、共有的に 閉環したスーパーコイル化プラスミドの形態をとる)をコンジュゲート することによって行う。リガンドは、標的細胞または組織の細胞表面上 の対応するリガンド受容体の存在に基づいて選択する。受容体とリガン ドの組み合わせとしては、例えばLDL受容体とLDL、スカベンジャ 一受容体と酸化LDLの組み合わせが包含される。当該リガンド-DNA コンジュゲートは、所望により、血液に直接注射することができ、受容 体結合およびDNA-蛋白質コンプレックスの内在化が起こる標的組織 に指向し得る。DNAの細胞内破壊を防止するために、アデノウイルス を同時感染させて、エンドソーム機能を崩壊させることもできる。

以下に、本発明のずり応力応答性DNAを特異的に認識する抗体を用いた治療方法について説明する。

本発明の抗体を含有する医薬は、治療薬として単独で投与することも

可能ではあるが、通常は薬理学的に許容される一つあるいはそれ以上の 担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方 法により製造した医薬製剤として提供するのが望ましい。

投与経路は、治療に際して最も効果的なものを使用するのが望ましく、 経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内 等の非経口投与をあげることができ、抗体製剤の場合、望ましくは静脈 内投与をあげることができる。

投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、 乳剤、座剤、注射剤、軟膏、テープ剤等があげられる。

経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠 剤、散剤、顆粒剤等があげられる。

乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖等の糖類、ポリエチレングリコール、プロピレングリコール等のグリコール類、ごま油、オリーブ油、大豆油等の油類、p-ヒドロキシ安息香酸エステル類等の防腐剤、ストロベリーフレーバー、ペパーミント等のフレーバー類等を添加剤として用いて製造できる。

カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マンニトール等の賦形剤、デンプン、アルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、タルク等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤、脂肪酸エステル等の界面活性剤、グリセリン等の可塑剤等を添加剤として用いて製造できる。

非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤等があげられる。注射剤は、塩溶液、ブドウ糖溶液、あるいは両者の混合物からなる担体等を用いて調製される。または、本発明の抗体を常法に従って凍結乾燥し、これに塩化ナトリウムを加えることによって粉末注射剤を調製することもできる。座剤はカカオ脂、水素化脂肪またはカルボン酸等の担体を用いて調製される。

また、噴霧剤は本発明の抗体そのもの、ないしは受容者の口腔および気道粘膜を刺激せず、かつ本発明の抗体を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製される。

担体として具体的には乳糖、グリセリン等が例示される。本発明の抗体および用いる担体の性質により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。

投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、通常成人1日当たり10μg/kg~20mg/kgである。

動脈硬化の病変に関与する活性、即ち動脈硬化の発症を調節する活性の一つとして、血管内皮細胞のアポトーシスの促進あるいは抑制があげられる。血管内皮細胞においては、ずり応力負荷により、内皮細胞のアポトーシスが抑制される方向に傾くことが知られていることから、本発明のずり応力応答性DNAの中には、血管内皮細胞においてずり応力刺激依存的に発現が上昇し、アポトーシス抑制活性を有する遺伝子および蛋白質が含まれているものと考えられる。従って、このアポトーシス抑制活性を有する遺伝子を含むDNAおよび該DNAがコードする蛋白質、該DNAをベクターに組み込んでなる組換えウィルスベクター、該DNAがコードする蛋白質に対する抗体などを用いることにより、(1)細胞のアポトーシス感受性の同定(2)細胞のアポトーシスの調節、(3)細胞のアポトーシスを調節する薬剤のスクリーニングなどの応用が可能となる。以下に、前記(1)(2)(3)について詳細に述べる。

(1)細胞のアポトーシス感受性の同定

以下に本発明のずり応力応答性DNA、該DNAがコードする蛋白質を用いて、細胞のアポトーシス感受性を同定する方法について述べる。

アポトーシス感受性とは、外来からのアポトーシス刺激に対して、細胞がアポトーシスに陥りやすいか否かの程度、即ち細胞のアポトーシス

刺激に対する影響度を意味しており、このアポトーシス感受性は、細胞におけるアポトーシスシグナルに対して抑制性もしくは促進性のシグナルが共存しているか否かによって規定されてくるものと考えられ、この分子的実体としては、アポトーシスシグナル伝達分子などアポトーシスの抑制若しくは促進に関与する一群の蛋白質、いわゆるアポトーシス関連蛋白質があげられる。このアポトーシス関連蛋白質として、例えば、本発明の配列番号7で表される塩基配列を有するDNA(A4RS-041)にコードされる蛋白質、配列番号8で表されるアミノ酸配列を有する蛋白質をあげることができる。

血管内皮細胞に負荷される血行力学的物理力として、一定の方向性を 持った血流、即ち層流に起因し血流方向と平行に負荷されるずり応力と、 血圧に起因し内皮に対して垂直方向に負荷される法線応力があげられる。 血管内皮細胞は常にこの両方の力を受けているが、一般にずり応力が法 線応力と比較して大きな部位では動脈硬化の発症が抑制され、逆にずり 応力にくらべて法線応力の大きな部位では動脈硬化が発症しやすい。実 際、血管内皮細胞に対してアポトーシスを抑制するのは、層流に起因す るずり応力であることが報告されている。本発明のDNAを取得するた めに用いた培養系、即ちマイクロキャリア/スピナーフラスコ系におい ては、流れによるずり応力だけでなく、回転により遠心力が負荷される ため、法線応力もまた内皮細胞に負荷される。ずり応力に応答する遺伝 子群は法線応力により修飾されるものと修飾されないものがある。この ような反応性の違いは、ずり応力のみが負荷される平行平板型培養装置 等で培養したHUVECにおいて発現上昇の有無を確認することで明確 にできる。少なくとも法線応力により修飾されないずり応力応答性遺伝 子群は動脈硬化に対して保護的に働くと考えられ、これら遺伝子群のな かにアポトーシス抑制活性を有する遺伝子および蛋白質が含まれている と考えられる。

そのアポトーシス抑制活性を有する本発明のDNAまたは該DNAの

塩基配列中の連続した5~60塩基と同じ配列を有するDNAまたはアポトーシス抑制活性を有する本発明の蛋白質を認識する抗体などを用いて、アポトーシス抑制活性を有する本発明のDNAの内在性の転写量若しくは、アポトーシス抑制活性を有する本発明の蛋白質の発現量、発現している蛋白質の構造変化を検出することにより細胞のアポトーシス感受性を同定することができる。

アポトーシス感受性を同定する方法において用いられるDNAおよび 該DNAがコードする蛋白質を認識する抗体として、例えば配列番号7 で表される塩基配列を有するDNA、配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNA、配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗体があげられる。

上記方法で用いられた本発明のDNAまたは該DNAの塩基配列中の連続した5~60塩基と同じ配列を有するDNAまたはアポトーシス抑制活性を有する本発明の蛋白質を認識する抗体は細胞のアポトーシス感受性を同定する薬剤として有効である。

動脈硬化巣では、血管内皮細胞のアポトーシスが促進されていることから、本薬剤は、動脈硬化巣の同定あるいは将来動脈硬化を発症する危険性の予測など動脈硬化を原因とする血管病変の診断薬としても利用できる。

細胞のアポトーシス感受性を同定する薬剤として、例えば、配列番号7で表される塩基配列を有するDNA、配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNA、または、配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗体などを含有する薬剤があげられる。

尚、本発明のDNAは、ヒトさい帯静脈血管内皮細胞(HUVEC)を用いて、ずり応力応答性DNAとして取得されてきたものであるから、アポトーシス感受性を同定する対象の細胞としては、ヒト初代血管内皮細胞およびヒトさい帯静脈血管内皮細胞(HUVEC)などの血管内皮

細胞であることが望ましいが、アポトーシスは血管内皮細胞以外の生体 のあらゆる細胞で普遍的にみられる現象であることから、対象となる細 胞は、血管内皮細胞のみに限定されるものではない。

(2) 細胞のアポトーシスの調節

本発明のDNAは、ずり応力により発現が上昇しアポトーシスを抑制する方向に誘導することが知られているずり応力刺激に応答する遺伝子であることから、本発明のDNAまたは該DNA中の連続した5から60塩基の配列を有するDNAは、アポトーシスの抑制に関与しうる。一方、これらの各DNAの塩基配列に相補的な塩基配列を有するアンチセンスDNAを用いる場合には、該DNAの内在性の転写もしくは翻訳が抑制されるために細胞のアポトーシスが促進される。

また、本発明のDNA同様に、本発明のDNAがコードする蛋白質または該蛋白質を認識する抗体を用いて、細胞のアポトーシスを調節することもできる。具体的には、本発明のDNAがコードする蛋白質のうち、アポトーシスを抑制する活性を有する蛋白質を選別し、該蛋白質をコードするDNAをウィルスベクターに組み込んで得られる組換えウィルスベクターを造成し、その組換えウィルスベクターを細胞や組織に導入して、アポトーシスを抑制する活性を有する蛋白質を発現させることにより、細胞や組織のアポトーシスを抑制することができる。

また該蛋白質を認識する抗体を用いて、細胞にアポトーシスを調節する正負のシグナルを付与することにより細胞のアポトーシスを調節する ことができる。

アポトーシスを抑制または促進する方法として、例えば、配列番号7で表される塩基配列を有するDNA、または配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNA、またはこれらの各DNAの塩基配列に相補的な塩基配列を有するアンチセンスDNAを用いて、例えばアンチセンス法等により該DNAの内在性の転写もしくは翻訳を抑制することにより細胞のアポトーシスを促進したり、逆

に該DNAを細胞に導入してDNAの転写を亢進させることにより細胞 のアポトーシスを抑制する方法があげられる。

また、配列番号7で表される塩基配列を有するDNAを含む組換えウイルスベクター、配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクターまたは配列番号8で表されるアミノ酸配列を有する蛋白質を生産する組換えウィルスベクターを用いて、配列番号8で表されるアミノ酸配列を有する蛋白質の細胞内の発現量を亢進させ、細胞のアポトーシスを抑制する方法があげられる。

さらには、配列番号8で表されるアミノ酸配列はその構造から膜蛋白質と考えられることから、配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗体を作用させ、細胞表面に表出した該蛋白質を刺激することにより、細胞内に細胞のアポトーシスを正負に調節するシグナルを流れさせ、細胞のアポトーシスを調節する方法があげられる。

上記方法に用いられた本発明のDNAまたは該DNAの塩基配列中の連続した5~60塩基と同じ配列を有するDNA、アポトーシス抑制活性を有する本発明の蛋白質を発現する組換えウィルスベクターまたは本発明の蛋白質を認識する抗体などは細胞のアポトーシスを調節する薬剤として有効である。本薬剤は、動脈硬化を原因とする血管病変の治療薬としても利用できる。

アポトーシスを調節する薬剤として、例えば、配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAまたはこれらの各DNAの塩基配列に相補的な塩基配列を有するアンチセンスDNA、配列番号7で表される塩基配列を有するDNAを含む組換えウイルスベクター、配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクター、配列番号8で表されるアミノ酸配列を有する蛋白質を生産する組換えウィルスベクターまたは、

配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗体を含有する薬剤があげられる。

尚、本発明のDNAは、ヒトさい帯静脈血管内皮細胞(HUVEC)を用いて、ずり応力応答性DNAとして取得されてきたものであるから、アポトーシスを調節する対象の細胞としては、ヒト初代血管内皮細胞およびヒトさい帯静脈血管内皮細胞(HUVEC)などの血管内皮細胞であることが望ましいが、アポトーシスは血管内皮細胞以外の生体のあらゆる細胞で普遍的にみられる現象であることから、対象となる細胞は、血管内皮細胞のみに限定されるものではない。

(3) 細胞のアポトーシスを調節する薬剤のスクリーニング

以下に本発明のずり応力応答性DNA、該DNAがコードする蛋白質を用いて、細胞のアポトーシスを調節する薬剤をスクリーニングする方法について述べる。

上記スクリーニングの方法の1つは、Fas依存的にアポトーシスが 惹起される動物細胞株を用いてアポトーシスを誘導した際に、本発明の DNAの内在性の転写もしくは翻訳を調節することによりアポトーシス を抑制または促進する化合物あるいは蛋白質を選択することである。

特に、本発明のDNAの内在性の転写もしくは翻訳を促進することによりアポトーシスを抑制する化合物あるいは蛋白質は、動脈硬化を原因とする血管病の治療に有効である。一方、本発明のDNAの内在性の転写もしくは翻訳を抑制することによりアポトーシスを促進する化合物あるいは蛋白質は、癌などの細胞の異常増殖に基く疾患の治療に有効である。

本発明のDNAを用いて細胞のアポトーシスを調節する薬剤をスクリーニングする方法として、例えば、配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAを用いて、被験物質を細胞に作用させた後の配列番号7で表される塩基配列を有するDNAの内在性の転写量の

増減を検定することにより細胞のアポトーシスを抑制または促進する薬 剤をスクリーニングする方法があげられる。

上記スクリーニングのもう1つの方法は、本発明のDNAを導入して本発明の蛋白質あるいは蛋白質の一部を構成するポリペプチドを生産するように形質転換した動物細胞に特異的に結合して細胞のアポトーシスを抑制する化合物あるいは蛋白質を選択することである。この際、形質転換していない細胞を対照として比較することで、特異的な化合物あるいは蛋白質の結合を検出することができる。このスクリーニングにより得られた薬剤も、動脈硬化を原因とする血管病の治療に有効である。

本発明の蛋白質を用いたスクリーニング方法として、例えば、配列番号7で表される塩基配列を有するDNAを含む組換えウイルスベクターまたは配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクターを用いて、細胞内に配列番号7で表される塩基配列を有するDNAを導入し、配列番号8で表されるアミノ酸配列を有する蛋白質を発現させ、該細胞に被験物質を暴露し、被験物質と該蛋白質とを接触させ、該蛋白質に特異的に結合し、該蛋白質の活性変化をもたらす薬剤を選択することにより、細胞のアポトーシスを抑制または促進する薬剤をスクリーニングする方法があげられる。

また、配列番号7で表される塩基配列を有するDNA、または配列番号8で表されるアミノ酸配列を有する蛋白質をコードするDNAをベクターに組み込んで得られる組換え体DNAを、宿主細胞に導入して得られる形質転換体を培地に培養し、該培養物を用いて、培養物中の該蛋白質と被験物質とを接触させ、該蛋白質に特異的に結合し、該蛋白質の活性変化をもたらす薬剤を選択することにより、細胞のアポトーシスを抑制または促進する薬剤をスクリーニングする方法があげられる。

また、in vitro の系で、単離精製した配列番号 8 で表されるアミノ酸配列を有する蛋白質若しくは配列番号 8 で表されるアミノ酸配列を有す

る蛋白質の一部を構成するペプチドを用いて、被験物質と該蛋白質また は該ペプチドとを接触させ、該蛋白質・ペプチドに特異的に結合し、該 蛋白質の活性変化をもたらす薬剤を選択することにより、細胞のアポト ーシスを抑制または促進する薬剤をスクリーニングする方法があげられ る。

細胞内の配列番号 7 で表される塩基配列を有する DNAの転写量の増減を指標にアポトーシスを抑制または促進する薬剤をスクリーニングする際には、配列番号 7 で表される塩基配列を有する DNA または配列番号 7 で表される塩基配列中の連続した 5~60塩基と同じ配列を有する DNAをプローブ若しくはプライマーとして用いて、ノーザンハイブリダイゼーション法、in situ ハイブリダイゼーション法、RNase保護法あるいはRT-PCR法などにより該 DNAの転写量を解析することができる。

また、細胞内の配列番号 8 で表されるアミノ酸配列を有する蛋白質の 発現量を指標にアポトーシスを抑制または促進する薬剤をスクリーニン グする際には、配列番号 8 で表されるアミノ酸配列を有する蛋白質を認 識する抗体を用いた免疫学的検出法により該蛋白質の発現量を解析する ことができる。

上記スクリーニングにより取得された薬剤は、細胞のアポトーシスを 抑制または促進する薬剤として利用できる。

尚、本発明のDNAは、ヒトさい帯静脈血管内皮細胞(HUVEC)を用いて、ずり応力応答性DNAとして取得されてきたものであるから、アポトーシスを調節する対象の細胞としては、ヒト初代血管内皮細胞およびヒトさい帯静脈血管内皮細胞(HUVEC)などの血管内皮細胞であることが望ましいが、アポトーシスは血管内皮細胞以外の生体のあらゆる細胞で普遍的にみられる現象であることから、対象となる細胞は、血管内皮細胞のみに限定されるものではない。

本発明のDNAを動物細胞中で発現させるためのベクター、および組

換えベクターの導入方法としては、既に述べた方法のいずれも用いることができる。

本発明の蛋白質の発現量の増減を抗体を用いて検定する免疫学的検出法については、すでに述べた方法のいずれも用いることができる。

アポトーシスの抑制または促進を検出するためのスクリーニング系に必要な宿主細胞としては、Fas依存的にアポトーシスが誘導される動物細胞であればいずれも用いることができ、例えば浮遊系のJurkat [J. Exp. Med., 152, 1709-19 (1980)]、HPB-ALL[Int. J. Cancer, 21, 166-170 (1978)]、SKW 6.4 [Immunol. Lett., 7, 17-23 (1983)]、接着系のHeLa、A673 [Arch. Biochem. Biophys., 230, 93-102 (1984)] 等があげられる。

上記細胞株にFas依存的な細胞死を誘導する物質として、例えば、抗ヒトFasモノクローナル抗体CH-11 [J. Exp. Med., 169, 1747-1756 (1989)] があげられる。細胞死を誘導する方法として例えば、以下のような方法があげられる。浮遊細胞の場合、約 10^6 細胞/m1になるように培地で希釈して動物細胞培養用の24穴プレート、あるいは 96穴マイクロタイタープレート等に加える。ここに、抗ヒトFasモノクローナル抗体を $1\sim500$ ng/m1の濃度になるように添加し、37 \mathbb{C} or O_2 \mathbb{C} 0 \mathbb{C} 1 ンキュベータ中で数時間から \mathbb{C} 1 日間、培養する。付着細胞の場合、あらかじめ細胞をプレートにまいておき、細胞死を誘導する際に、抗ヒトFasモノクローナル抗体を含む培地に交換して \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} 1 ンキュベータ中で培養を継続する。

アポトーシスの抑制または促進を検出するための方法として例えば、トリパンブルー染色法、ギムザ染色法等を用いて光学顕微鏡観察により検出する方法があげられる。また、接着細胞であればアポトーシスとともにプレートから細胞が剥がれて浮遊してくるため、染色することなく、より容易に判別できる。また、ヘキスト33342、ヘキスト33258、ヨウ化プロピジウムなどの蛍光色素を用い、蛍光顕微鏡観察により

検出する方法も知られている[バイオマニュアルUPシリーズ 新アポトーシス実験法、第2版]。また、アポトーシスの過程で活性化される c a s p a s e の活性を測定する方法 [J. Exp. Med., 183, 1957-1964 (1996)]、あるいは生細胞中のミトコンドリア内脱水素酵素活性を測定するMTTアッセイ法 [J. Immunol. Methods, 16, 55-63 (1983)] のような生化学的方法もあげられる。さらに、Annexin Vを用いて細胞膜の構造変化を検出する方法 [J. Exp. Med., 182, 1545-1556 (1995)]、TUNEL法、Burton法 [バイオマニュアルUPシリーズ 新アポトーシス実験法、第2版] などのDNA断片化に基づく検出法も知られている。

実施例

以下に実施例をあげて本発明を具体的に示すが、本発明はこれらの実 施例に限定されないものとする。

実施例1

ずり応力を負荷させたHUVECからのcDNAライブラリーの作製

(1) HUVECの培養

10%ウシ胎児血清、1%ペニシリン(5,000単位/ml)・ストレプトマイシン(5mg/ml)溶液(Life Technologies 社製)、0.003%の Endothelial Cell Growth Supplement (Becton Dickinson 社製)、0.01%のヘパリン(和光純薬社製)、および0.14%のNaHCO3(Life Technologies 社製)を含むF-12K培地(大日本製薬社製)を用い、5%CO2、37℃の条件で、HUVECの培養および継代を行った。HUVECは Clonetics 社から購入したものを用いた。

(2) HUVECへのずり応力負荷

10m1のPBS緩衝液に懸濁した0.2gのマイクロキャリア (С

y t o d e x 3: Amersham Pharmacia Biotech 社製)を50mlの滅菌チューブに移し、室温で1,000rpm、3分間遠心分離後、上澄みを除き、F12K培地を加えた。再度遠心分離して上澄みを除き、培地を加えて約10mlとした。

上記(1)での培養で得られたHUVECをトリプシン/EDTAで剥がし、約2×10°個のHUVECを10mlの培地に懸濁し、上述のマイクロキャリアと混合した。これを200ml容のスピナーフラスコに移し、培地を15ml加えて総容量を約35mlとした。50~60 rpmで30秒間攪拌し、その後1時間静置した。該攪拌、静置操作を4回繰り返すことによりHUVECをマイクロキャリアに接着させた。160rpmで一定時間攪拌することで、細胞にずり応力を負荷した。

(3) RNAの調製

上記(2)の方法で、ずり応力を0.5時間、1時間、1.5時間、2時間、3時間、4時間、6時間、10時間、20時間負荷させたHUVECを、それぞれ 1.6×10^7 ずつ調製した。これらの細胞から、チオシアン酸グアニジンートリフルオロ酢酸セシウム法 [Methods in Enzymology, 154, 3 (1987)] により、全RNAを調製した。ずり応力負荷時間の異なる、上記 9種のサンプルについて、全RNA 100μ g ずつを混合し 900μ g とした。全RNA 900μ g をオリゴ d Tセルロースカラム (Collaborative Research 社製) に通過させることにより、ポリ (A) $^+$ RNAとしてmRNA 30.9μ g を取得した。

(4) c D N A ライブラリーの作製

上記(3)で取得したmRNA3. 0μ gを用いて、リンカープライマー法 [「遺伝子ライブラリーの作製法」野島博編] に従い cDNA合成、 \underline{B} amHIアダプターの付加、 \underline{N} ot Iによる切断反応を行った。得られた 2本鎖 cDNAを、プラスミドベクター pAP3 ne o [Genes to Cells, $\underline{3}$, 459 (1998)]の \underline{B} gl \underline{I} I \underline{I} \underline{N} \underline{O} \underline{I} 間にライゲーションすることにより、 \underline{C} \underline{D} \underline{N} \underline{A} \underline{O} \underline{O}

イト側にあるようにした。得られたライゲーション反応液を用い、該プラスミドを大腸菌MC1061A [モレキュラー・クローニング 第2版] にエレクトロポレーション法により導入し、cDNAライブラリーを作製した。

実施例2

サブトラクションライブラリーの作製

(1) -本鎖DNAの調製

実施例1においてMC1061A内で増幅させて得られたcDNAラ イブラリーのプラスミド2μgを、エレクトロポレーション法により大 腸菌XL1-Blue MRF'(Stratagene 社製)に導入した。4. 5 m l の S O C 培地 [モレキュラー・クローニング 第 2 版] 中、3 7 ℃ で1時間激しく振とう培養した後、培養液全てを、50 µg/m1のアン ピシリンを含むLB培地〔モレキュラー・クローニング 第2版〕5. 5 m l に加えた。 3 7 ℃で 5 時間激しく振とう培養した後、培養液 5 m 1をアンピシリンを含む45mlの2·YT培地〔モレキュラー・クロー ニング 第2版] に植菌し、ここに1×10¹¹pfuのヘルパーファー ジR408 [Gene, 45, 333 (1986)] を加えた。37℃で12時間激 しく振とう培養した後、培養液を滅菌チューブに移し、4℃で10,0 00 г р m、10分間遠心分離して大腸菌を沈殿させた。ファージを含 む上澄みを新しい滅菌チューブに移し、再度遠心分離した。上澄みを孔 径 0. 2 2 μ m の滅菌フィルター (Millipore 社製) に通し、大腸菌を 完全に除いた。25 m l のファージ液あたり、10 D N a s e 緩衝液[1 $0.0\,\mathrm{m\,M}$ Tris-HCl (pH7.5), $1.00\,\mathrm{m\,M}$ MgCl₂] 2. 5 ml、20単位/μlのDNaseI (ニッポンジーン社製) 1 µ 1を添加し、37℃で30分間反応させた。ここに1/4容の20% ポリエチレングリコール (分子量6,000)/2.5M NaClを 加えてよく混合し、室温に20分間静置した。4℃で10,000 rp

m、10分間遠心分離し、上澄みを完全に除いた。得られたファージの沈殿を、 400μ 1のTE[10mM Tris-HC1(pH8.0)、1mM EDTA(pH8.0)] に溶解し、25mg/m1のProteinase Kを 25μ 1、10%SDSを 4μ 1加えて42%で1時間反応させた。フェノール処理、フェノール・クロロホルム処理、クロロホルム処理の後、エタノール沈殿を行った。得られたファージ1本鎖DNAの沈殿は、 30μ 1のTEに溶解させた。

(2) RNAのビオチン化

ずり応力を負荷していない、即ちマイクロキャリアに接着させただけ のHUVECから、実施例1と同様の方法によりポリ(A) +RNAを 調製した。このRNΑ 30μgに蒸留水を加えて20μ1とし、ここ に1μg/μlのPHOTOPROBE biotin (Vector Laboratories 社製)30μlを暗所で加えた。チューブの蓋を開けて氷 上に置き、約10cmの高さから水銀ランプを20分間照射してビオチ ン化を行った後、50μlの100mM Tris·HCl (pH9. 5) / 1 m M E D T A (p H 8. 0) を加えた。ここに 1 0 0 μ 1 の 水飽和ブタノールを加え、激しく攪拌した。4℃で14,000rpm、 5 分間遠心分離後、上層のブタノール層を除いた。この操作をあと2回 繰り返した。水層に100μ1のクロロホルムを加えて激しく攪拌し、 4℃で14,000rpm、5分間遠心分離後、水層を新しいチューブ に移した。この操作を再度繰り返した後、エタノール沈殿を行った。回 収されたRNAの沈殿を20μlの蒸留水に溶解させ、ビオチン化の操 作を繰り返した。ビオチン化したRNAは、ハイブリダイゼーションま でエタノール沈殿の状態で−80℃に保存した。

- (3) 1本鎖DNAとRNAのハイブリダイゼーション
- (2) で調製したビオチン化RNA20 μ gを4 \mathbb{C} 、14,000 r p m、15分間の遠心分離で回収し、8 μ 1の蒸留水に溶解した。ここに、2×反応用緩衝液 [80%ホルムアミド、100 m M HEPES

(pH7.5)、2mM EDTA(pH8.0)、0, 2% SDS] $12.5\mu1$ 、2, 5M NaCle 2. $5\mu1$ 、 $1\mu g/\mu l$ のポリ (A) $(Amersham Pharmacia Biotech 社製) を <math>1\mu l$ 、および (1) で 調製した、ずり応力を負荷したHUVEC由来の cDNA $ライブラリーの1本鎖DNAを <math>1\mu l$ $(0.5\mu g/\mu l)$ 加え、総容量を $25\mu l$ とした。65 $\mathbb C$ $\mathbb C$ 10 分間加熱した後、速やかに 42 $\mathbb C$ のヒートブロックに移した。2 晩、42 $\mathbb C$ $\mathbb C$ で保温して、ハイブリダイゼーションを行った。

(4) サブトラクション、再ハイブリダイゼーション

ハイブリダイゼーションの終了した反応液に400μ1の緩衝液[5 00mM NaCl, 50mM HEPES (pH7.5), 2mM E DTA(pH8.0)]を加え、ここに $2\mu g/\mu l$ のストレプトアビジ ン (Life Technologies 社製) 5μlを加えて混合した。室温に5分間 置いた後、フェノール・クロロホルム処理を行った。水層を新しいチュ ーブに移し、新たに5μ1のストレプトアビジンを加えた。室温に5分 間置いた後、フェノール・クロロホルム処理を2回、クロロホルム処理 を1回行うことで、サブトラクションを行った。水層をミリポアフィル ターUFCP3TK50 (Millipore 社製) の上室にのせ、溶液が全て 下室に流れ落ちるまで4℃、10,000 r p m で遠心分離した。下室 の溶液を除き、上室に300μlのTEを加え遠心分離することでフィ ルターを洗浄した。この操作を繰り返した後、フィルターに捕獲された 1本鎖DNAを30μ1の1/10TEで回収した。これを真空乾燥さ せ、蒸留水を加えて9μ1とした。(2)で調製したビオチン化RNA 10μgをエタノール沈殿させた後遠心分離して回収し、沈殿に上記1 本鎖DNA溶液9μ1を加えた。ここに12.5μ1の2×反応用緩衝 液、 2.5μ lの2.5M NaCl、 1μ lのポリ(A)を加え、(3) と同様にして2回目のハイブリダイゼーションを行った後、上述した方 法でサブトラクションを行った。以下、同様に1本鎖DNAを回収し、

 10μ gのビオチン化RNAとハイブリダイズさせて 3回目のサブトラクションを、 5μ gのビオチン化RNAを用い 4回目のサブトラクションを行った。

(5) 2本鎖DNAの合成、大腸菌への導入

上記のように 4 回連続してサブトラクションを行った後、得られた 1 本鎖 D N A を 3 0 μ 1 0 1 ℓ 1 0 1 ℓ 1 0 1 ℓ 1 ℓ

(6) リバースサブトラクション

ハイブリダイゼーションを行った。400μ1の緩衝液[500mM N aCl, 50mM HEPES (pH7.5), 2mM EDTA (p H8.0)] を加え、ここに $2\mu g/\mu l$ のストレプトアビジン $7\mu l$ を加えて混合した。室温に5分間置いた後、フェノール・クロロホルム を加え、激しく混合した。室温で14,000грm、7分間遠心分離 後、水層を除いた。ここに新たに400µ1のTEを加えて激しく混合 し、室温で14,000грm、7分間遠心分離後、水層を除いた。こ の操作をあと2回繰り返すことで、ビオチン化RNAとハイブリダイズ しなかった1本鎖DΝΑを除去した。400μ1のΤΕを加え、混合は せずにチューブの蓋を開けた状態で95℃、5分間加熱した。この後、 氷上に5分間置いて変性させることで、フェノール・クロロホルム層に あった、ビオチン化RNAとハイブリダイズしていた1本鎖DNAをビ オチン化RNAから外した。激しく混合して室温で14,000грm、 7分間遠心分離後、水層を新しいチューブに移した。再度フェノール・ クロロホルム処理を行った後、クロロホルム処理を行った。 l 本鎖 D N Aを含む水層をミリポアフィルターUFCP3TK50を用いて濃縮し、 最終的に30μ1の1/10TEで1本鎖DNAを回収した。このうち 15μ1を真空乾燥させ、蒸留水を加えて9μ1とした。ずり応力を負 荷していないHUVEC由来のmRNA5μgをビオチン化し、エタノ ール沈殿により回収し、沈殿に上記1本鎖DNA溶液9μ1を加えた。 ここに12.5μlの2.反応用緩衝液、2.5μlの2.5M NaC 1、1μ1のポリ(A)を加え、(3)、(4)と同様にして通常のサ ブトラクションを行った。

即ち、4回連続してサブトラクションを行い、リバースサブトラクションを1回、さらに通常のサブトラクションを1回行うことで、HUVECにおいてずり応力負荷に伴い発現上昇する遺伝子が濃縮されたサブトラクションライブラリーを作製した。

実施例3

ノーザンハイブリダイゼーションによる発現変動クローンの取得

実施例2で得られたサブトラクションライブラリー中に含まれる、ず り応力依存的に発現上昇するクローンを選択するため、ノーザンハイブ リダイゼーションを行った。

(1) RNAのメンブレンへの転写

ずり応力を負荷したHUVEC、あるいは負荷しないHUVECから実施例1と同様の方法により得られた全RNA4μgに、それぞれ蒸留水を加え1.8μ1とした。ここに10×MOPS緩衝液[80mM 酢酸ナトリウム、197mM MOPS、10mM EDTA(pH8.0)]0.8μ1、35%ホルムアルデヒド溶液(ナカライテスク社製)1.4μ1、脱イオン化ホルムアミド4μ1を加えた。65℃で15分間加熱した後、氷上に5分間置いて急冷し、全量を1×MOPS/2%ホルムアルデヒド/1%アガロースゲルで電気泳動した。泳動終了後、ゲルを蒸留水で20分間ずつ3回洗うことによりゲルからホルムアルデヒドを除いた。20×SSC(3M NaC1、0.3M クエン酸ナトリウム]に30分間浸した後、20×SSCを用いたキャピラリートランスファー法により、ゲル中のRNAをナイロンメンブレンBiodyneA(Pall BioSupport 社製)に転写した。転写終了後、メンブレンを80℃で2時間置くことにより、RNAをメンブレンに固定した。(2)プローブのラベル化

実施例 2 で得られたサブトラクションライブラリー中、挿入DNA断片が 0.4 k b 以上であるクローンについて、プラスミドを S m a I と Not I で切断し、挿入 DNA断片を切り出した。断片の精製には QIAquick Gel Extraction Kit (QIAGEN 社製)を用い、方法はキットに添付のマニュアルに従った。精製した DNA断片 5 0 n g 程度を鋳型とし、Random Primer DNA Labeling Kit Ver. 2 (宝酒造社製)、および [α - 3 ² P] d C T P (1 1 0 T B q / m m o 1; Amersham Pharmacia

Biotech 社製)を用いて該DNA断片をラベルし、プローブとして用いた。 方法はキットに添付のマニュアルに従った。

- (3) ハイブリダイゼーション、オートラジオグラフィー
- (1) で作製したメンブレンをハイブリバッグに入れ、直前に調製し たハイブリダイゼーション液 [50%ホルムアミド、5×Denhar dt's、5×SSC、0.1%SDS、変性サケDNA(0.1mg /m1)]を加えた。42℃で2時間以上保温し、プレハイブリダイゼ ーションを行った。(2)で調製したプローブを95℃で5分間加熱後、 急冷し、変性させた。これをハイブリダイゼーション液と混合し、プレ ハイブリダイゼーションの終了したメンブレンに加えた。42℃で24 時間以上保温し、ハイブリダイゼーションを行った。メンブレンをハイ ブリバッグから取り出し、2×SSC/0.1%SDS中、室温で10 分間ゆっくりと振とうしてハイブリダイゼーション液をできるだけ除い た。次に0. 15×SSC/0. 1%SDS中、42℃で30分間ずつ 2回洗浄した。洗浄操作の終了したメンブレンを X 線フィルムに感光さ せ、オートラジオグラフィーを行った。全部で1026個のクローンの 各々をA4RS-1~A4RS-1026と名付け、各々のクローンに ついてノーザンハイブリダイゼーションを行い、107個のずり応力依 存的に発現が上昇するクローンを得た。

実施例4

発現変動クローンの同定

(1) 塩基配列の決定

実施例3においてずり応力負荷により発現が上昇することが確認されたクローンに関して、377DNAシークエンサー (Perkin Elmer 社製)を用いて塩基配列の決定を行なった。塩基配列の決定は、Perkin Elmer 社 に Llmer 社のダイプライマーサイクルシークエンシングキットを用いた。方法はキットに添付のマニュアルに従った。得られた塩基配列をデ

ータベースGenBankと比較することで、発現変動クローンの同定 を行った。その結果、107個のクローンは88種類の遺伝子に分類さ れた。88種類の中には、血管内皮細胞においてずり応力刺激により発 現誘導されることが報告されている 5 種類の遺伝子、 endothelin-l、 monocyte chemotactic protein-1, heparin-binding EGF-like growth factor、thrombomodulin、transforming growth factor-8 をコードする遺 伝子が含まれていた。したがって、血管内皮細胞においてずり応力刺激 により発現誘導されることがこれまで報告されていない83種類の遺伝 子を同定することができた。これらのうち、既知遺伝子は55種類であ り、28種類は新規遺伝子であった。公知の配列中に一致する完全長 c DNAが存在せず expressed sequence tag (EST) とのみ一致するも の、あるいは公知の配列中に一致する配列が全くないもの、即ち新規遺 伝子に関しては、相当するUniGeneに含まれるESTを全て連結 させ、出来るだけ長い配列をコンピュータ上で作製した。新規遺伝子中 8種類については、後述する実施例5において λ ファージベクターで作 製したcDNAライブラリーから完全長cDNAをクローン化した。

(2) ずり応力依存的発現上昇を示す既知遺伝子

A4RS-016の塩基配列を決定したところ、これは thioredoxin reductase の配列 [Accession: X91247] (配列番号1)と一致した。この遺伝子がコードするアミノ酸配列を配列番号2に示した。thioredoxin reductase は、NADPHを用い thioredoxin を還元する酵素であり、細胞内抗酸化制御、シグナル伝達、NO産生など、様々な生理的反応に関与する。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン1と図3のレーン1に示した。

A 4 R S - 0 2 6 の塩基配列を決定したところ、これは lipopolysaccharide-induced protein gene の配列 (Accession: Q51544) (配列番号 3) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 4 に示した。この遺伝子がコードするタンパク質は、他

の既知のタンパク質と顕著な相同性を示さず、機能も未知である。ずり 応力依存的発現上昇を示すノーザンブロットを、図1のレーン2に示し た。

A 4 R S - 0 4 0 の塩基配列を決定したところ、これは spliceosome-associated protein(SAP145)の配列 [Accession: U41371] (配列番号 5) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 6 に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン3に示した。

A4RS-041の塩基配列を決定したところ、これは human proline-rich membrane proiten(PRMP)の配列(Accession: V50494)(配列番号 7)と一致した。この遺伝子がコードするアミノ酸配列を配列番号 8に示した。PRMPは配列のみデータベースに登録されておりその機能は不明であるが、ラット neural membrane protein 35(NMP35)[Molecular and Cellular Neuroscience, 11, 260 (1998)]、NMDA受容体のグルタミン酸結合サブユニット [Accession: W62612]と顕著な相同性を示す。NMP35は、その機能は明らかにされていないが、NMDA受容体のグルタミン酸結合サブユニットと同様、脳特異的に発現しており、アミノ酸配列から推定される親水性の解析から膜蛋白質と推定されている。RPMPもまた、極めて疎水性が高いことから、膜蛋白質として機能する。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン4と図3のレーン2に示した。

A 4 R S - 0 6 3 の塩基配列を決定したところ、これは puromycin-sensitive aminopeptidase の配列 [Accession: AJ132583] (配列番号9) と一致した。この遺伝子がコードするアミノ酸配列を配列番号10に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン5と図3のレーン3に示した。

A 4 R S - 0 9 6 の塩基配列を決定したところ、これは human secreted protein gene 125 clone HSPAG15 の配列 [Accession: V59635]

(配列番号11)と一致した。この遺伝子がコードするアミノ酸配列を配列番号12に示した。この遺伝子は配列のみバンクに登録されており、その機能は未知である。この遺伝子がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン6と図3のレーン4に示した。

A4RS-116の塩基配列を決定したところ、これは1amin Cの配列 [Accession: M13451] (配列番号13)と一致した。この遺 伝子がコードするアミノ酸配列を配列番号14に示した。1aminC は、核膜の裏打ち蛋白質であり、細胞骨格形成因子のひとつである。ず り応力依存的発現上昇を示すノーザンブロットを、図1のレーン7、図 3のレーン5に示した。

A 4 R S - 1 2 6 の塩基配列を決定したところ、これはcytokine-response gene CR8 の配列 [Accession: T43383] (配列番号 1 5) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 1 6 に示した。cytokine-response gene CR8 は、別名DEC1ともいい、basic helix-loop-helix モチーフを有する転写因子である。特に、神経分化に関与するHESファミリーの転写因子群と相同性が高い。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン8に示した。

A4RS-13lの塩基配列を決定したところ、これは human enhancer of filamentation(HEF1)の配列 [Accession: L43821] (配列番号17)と一致した。この遺伝子がコードするアミノ酸配列を配列番号18に示した。HEF1は、SH3ドメインを有しFAKと結合する活性を持つ、細胞骨格制御に関与するシグナル伝達分子である。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン9に示した。

A 4 R S - 1 4 8 の塩基配列を決定したところ、これは interferon-induced 15-kDa protein gene の配列 [Accession: M21786] (配列番号19) と一致した。この遺伝子がコードするアミノ酸配列を配列番号20に示した。この遺伝子がコードするタンパク質は、他の既

知のタンパク質と顕著な相同性を示さず、機能も未知である。ずり応力 依存的発現上昇を示すノーザンブロットを、図1のレーン10に示した。

A4RS-154の塩基配列を決定したところ、これはLDL受容体の配列 [Accession: N60388] (配列番号21)と一致した。この遺伝子がコードするアミノ酸配列を配列番号22に示した。LDL受容体は、動脈硬化病変形成の原因のひとつであるLDLを内皮下に取り込む。培養ウシ大動脈内皮細胞にずり応力を負荷することで、 LDL受容体を介したLDLの結合、取り込みが増加することが報告されている [Circulation, 76, 648 (1987)]。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン11に示した。

A4RS-174 の塩基配列を決定したところ、これは peripheral myelin protein (PMP) - 22 の配列 [Accession: Q32869] (配列番号 2 3)と一致した。この遺伝子がコードするアミノ酸配列を配列番号 2 4 に示した。PMP-2 2 は末梢神経系に存在するミエリンの構成因子であり、4 つの膜貫通ドメインを有する膜タンパク質である。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン12に示した。

A4RS-175の塩基配列を決定したところ、これはチロシンキナーゼ (tyrosine kinase) 受容体 UFO/Arkの配列 [Accession: S65125] (配列番号25) と一致した。この遺伝子がコードするアミノ酸配列を配列番号26に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン13に示した。

A 4 R S - 1 9 4 の塩基配列を決定したところ、これは calcium-ATPase HK2 の配列 [Accession: M23115] (配列番号27)と 一致した。この遺伝子がコードするアミノ酸配列を配列番号28に示した。calcium-ATPase HK2 は、細胞内の小胞体膜に存在する。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン14に示した。

A 4 R S - 1 9 7 の塩基配列を決定したところ、これは human arginine-rich protein の配列 [Accession: M83751] (配列番号29)

と一致した。この遺伝子がコードするアミノ酸配列を配列番号30に示した。この遺伝子がコードするアミノ酸配列は、他の既知のタンパク質と顕著な相同性を示さず、その機能は未知であるが、原癌遺伝子の一種である可能性が示唆される。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン15に示した。

A4RS-260の塩基配列を決定したところ、これはKIAAO025の配列 [Accession: D14695] (配列番号31)と一致した。この遺伝子がコードするアミノ酸配列を配列番号32に示した。この遺伝子がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さず、機能も未知である。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン16、図3のレーン6に示した。

A4RS-271の塩基配列を決定したところ、これは human high-mobility group phosphoprotein isoform I-C(HMGI-C) の配列 [Accession: U28749] (配列番号33)と一致した。この遺伝子がコードするアミノ酸配列を配列番号34に示した。HMGI-Cはその構造から転写因子である。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン17、図3のレーン7に示した。

A4RS-307の塩基配列を決定したところ、これはPRAD1の配列 [Accession: X59798] (配列番号35)と一致した。この遺伝子がコードするアミノ酸配列を配列番号36に示した。PRAD1はcyclin D1とも呼ばれる。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン18、図3のレーン8に示した。

A4RS-355の塩基配列を決定したところ、これはKIAA0964の配列 [Accession: AB023181] (配列番号37)と一致した。この遺伝子がコードするアミノ酸配列を配列番号38に示した。この遺伝子がコードするタンパク質は、ラット PSD-95/SAP90-associated protein-4(SAPAP-4)のヒトオーソログと判断される。SAPAP-4は

膜に存在し、NMDA受容体のクラスタリングに関与すると考えられている。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン19に示した。

A4RS-389の塩基配列を決定したところ、これは1amin Aの配列 [Accession: M13452] (配列番号39)と一致した。この遺伝子がコードするアミノ酸配列を配列番号40に示した。1amin Aは、核膜の裏打ち蛋白質であり、細胞骨格形成因子のひとつである。 ずり応力依存的発現上昇を示すノーザンブロットを、図1のパネル20、 図3のパネル9に示した。

A4RS-391 の塩基配列を決定したところ、これは non-muscle alpha actinin の配列 [Accession: U48734] (配列番号41)と一致した。この遺伝子がコードするアミノ酸配列を配列番号42に示した。 alpha actininは、細胞骨格形成因子のひとつである。 ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン21、図3のレーン10に示した。

A4RS-423の塩基配列を決定したところ、これはgamma‐ filamin nの配列 [Accession: AF089841] (配列番号43)と一致した。この遺伝子がコードするアミノ酸配列を配列番号44に示した。gamma-filamin は actin filament crosslinking protein であり、 rac、 rhoなどの低分子量GTP結合タンパク質と結合することでfilopodia形成に関与する。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン22に示した。

A4RS-43lの塩基配列を決定したところ、これは growth factor inducible immediate early gene product CYR6l の配列 (Accession: U62015) (配列番号45)と一致した。この遺伝子がコードするアミノ酸配列を配列番号46に示した。CYR61は、別名 gigl、monocyte mature differentiation factor、connective tissue growth factor-2とも呼ばれ、アミノ末端にシグナル配列を有する分泌因子である。ずり

応力依存的発現上昇を示すノーザンブロットを、図1のレーン23に示した。

A4RS-453 の塩基配列を決定したところ、これは nuclear factor of activated T cells (NF-ATc) の配列 [Accession: U08015] (配列番号47) と一致した。この遺伝子がコードするアミノ酸配列を配列番号48に示した。NF-ATcは転写因子の構成因子のひとつである。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン24に示した。

A 4 R S - 4 9 2 の塩基配列を決定したところ、これはG L I Kruppele_related protein の配列 [Accession: M77698] (配列番号 4 9) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 5 0 に示した。G L I - Krupple related protein は、別名 Y Y 1 とも呼ばれ、抑制的に機能する転写因子である。ずり応力依存的発現上昇を示すノーザンブロットを、図 1 のレーン 2 5 に示した。

A4RS-507の塩基配列を決定したところ、これは human mRNA homologous to the p64 bovine chloride channel の配列 [Accession: Y12696] (配列番号51) と一致した。この遺伝子がコードするアミノ酸配列を配列番号52に示した。この遺伝子は配列のみが報告されており、機能は明らかでない。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン26に示した。

A4RS-514の塩基配列を決定したところ、これはKIAAOO800配列 [Accession: D38522] (配列番号53)と一致した。この遺伝子がコードするアミノ酸配列を配列番号54に示した。この遺伝子がコードするタンパク質は、膜タンパク質であるラット synaptotagmin XIのヒトオーソログと判断される。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン27に示した。

A4RS-523の塩基配列を決定したところ、これは nicotinamide N-methyltransferase の配列 [Accession: U08021] (配列番号55)

と一致した。この遺伝子がコードするアミノ酸配列を配列番号56に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン28に示した。

A + R + S - 5 + 4 + 0 塩基配列を決定したところ、これは H. sapiens mRNA for surface glycoprotein の配列 [Accession: Z50022] (配列番号 5 + 7)と一致した。この遺伝子がコードするアミノ酸配列を配列番号 5 + 8 に示した。この遺伝子がコードするタンパク質は 1 + 2 の膜タンパク質である。ずり応力依存的発現上昇を示すノーザンブロットを、図 1 + 2 のレーン 2 + 3 に示した。

A4RS-547の塩基配列を決定したところ、これは early growth response gene alpha (EGR-alpha)の配列 (Accession: S81439) (配列番号 59) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 60に示した。EGR-alphaは転写因子であり、そのホモログのEGR-1は内皮細胞においてずり応力により活性化することが報告されている [Arterioscler. Thromb. Vasc. Biol., 17, 2280, (1997)]。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン30に示した。

A4RS-557の塩基配列を決定したところ、これはSF2p33 の配列 [Accession: M69040] (配列番号 61) と一致した。この遺伝 子がコードするアミノ酸配列を配列番号 62 に示した。SF2p33 は 核内因子であり、pre-mRNAのスプライシングに必須である。ず り応力依存的発現上昇を示すノーザンブロットを、図1のレーン31に 示した。

A4RS-577の塩基配列を決定したところ、これはP66 shc on co n on the control of the control of

に示した。

A4RS-588の塩基配列を決定したところ、これは lysosomal acid lipase (LAL) の配列 [Accession: M74775] (配列番号65) と一致した。この遺伝子がコードするアミノ酸配列を配列番号66に示した。LALは別名 cholesteryl esterase で、細胞内に取り込まれた cholesteryl ester を加水分解する酵素である。この遺伝子が欠損すると cholesteryl ester storage disease となり動脈硬化の原因となる。 ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン33に示した。

A 4 R S - 6 0 2 の塩基配列を決定したところ、これはN^c,N^c-dimethylarginine dimethylaminohydrolase (DDAH) の配列 (Accession: AB001915) (配列番号 6 7) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 6 8 に示した。DDAHはN^c-mono-methyl-L-arginine (MMA) と N^c,N^c-dimethyl-L-arginine (DMA) を c i t r u l l i n に加水分解する。MMAとDMAはNO合成酵素の基質アナログであることから、NOの合成を阻害する。即ち、DDAHはNO合成を間接的に誘導する。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン34、図3のレーン11に示した。

A4RS-608の塩基配列を決定したところ、これは serum deprivation response (SDPR)の配列 [Accession: AF085481] (配列番号69)と一致した。この遺伝子がコードするアミノ酸配列を配列番号70に示した。ヒトSDPRは配列が登録されているのみであるが、マウスオーソログであるsdrは、NIH3T3において血清飢餓により誘導発現することが報告されている。しかし、その機能は未知である。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン35に示した。

A4RS-612の塩基配列を決定したところ、これは regulator of G protein signaling (RGS3) の配列 [Accession: U27655] (配列

番号71)と一致した。この遺伝子がコードするアミノ酸配列を配列番号72に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図1パネル36に示した。

A 4 R S - 6 2 5 の塩基配列を決定したところ、これは cytokine-inducible nuclear protein <math>C-193 の配列 [Accession: X83703] (配列番号 73) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 74 に示した。この遺伝子は内皮細胞において $TNF-\alpha$ 、LPSなどの炎症刺激に伴って発現する。この遺伝子がコードするアミノ酸配列は、他の既知のタンパク質と顕著な相同性を示さないが、核内因子であることは証明されている。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン37に示した。

A4RS-666の塩基配列を決定したところ、これは laminin Bl chain の配列 [Accession: M61916] (配列番号 75)と一致した。この遺伝子がコードするアミノ酸配列を配列番号 76に示した。laminin Bl chain は糖タンパク質であり、細胞外マトリクスの一種である。ウシ動脈内皮細胞において、ずり応力負荷による laminin タンパク質の増加が報告されている [Laboratory Investigation, 73, 565 (1995)] ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン38に示した。

A4RS-6680塩基配列を決定したところ、これはmatrixGla protein (MGP)の配列 [Accession: M58549] (配列番号 77)と一致した。この遺伝子がコードするアミノ酸配列を配列番号 78に示した。MGPは細胞外マトリクスの一種であり、この遺伝子のノックアウトマウスは動脈と軟骨での石灰化が生じ致死になることが報告されている [Nature, 386, 78 (1997)]。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン39に示した。

A4RS-674の塩基配列を決定したところ、これはPTX3(配列番号79)と一致した。この遺伝子がコードするアミノ酸配列を配列

番号80に示した。PTX3はpentraxinファミリーの一種であり、アミノ末端にシグナル配列を有する分泌因子である。血管内皮細胞、単球において、IL-1やTNF-αなどの炎症性刺激により発現することが報告されている。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン40に示した。

A4RS-682 の塩基配列を決定したところ、これは connective tissue growth factor の配列 [Accession: X78947] (配列番号81)と一致した。この遺伝子がコードするアミノ酸配列を配列番号82に示した。connective tissue growth factor は、アミノ末端側にシグナル配列を有する分泌因子であり、発達した動脈硬化巣での発現が報告されている [Circulation, 95, 831 (1997)]。ずり応力依存的発現上昇を示すノーザンブロットを、図1のレーン41に示した。

A4RS-751の塩基配列を決定したところ、これはFLI-1の配列(Accession: Q50644)(配列番号83)と一致した。この遺伝子がコードするアミノ酸配列を配列番号84に示した。FLI-1は、ERGBとも呼ばれ、ETSファミリーに属する転写因子である。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン42に示した。

A4RS-78lの塩基配列を決定したところ、これはHLA-Eの配列(Accession: X56841)(配列番号85)と一致した。この遺伝子がコードするアミノ酸配列を配列番号86に示した。HLA-EはMHC class I タンパク質の一種である。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン43に示した。

A4RS-784の塩基配列を決定したところ、これは plasminogen activator inhibitor(PAI)の配列 [Accession: M16006] (配列番号87)と一致した。この遺伝子がコードするアミノ酸配列を配列番号88に示した。PAIは、plasmiogen activator と拮抗的に働く。ずり応力負荷によりその発現が減少するという報告がある [Blood, 87, 2314

(1996)]。ずり応力依存的発現上昇を示すノーザンブロットを、図2の レーン44、図3のレーン12に示した。

A 4 R S - 8 1 7 の塩基配列を決定したところ、これは keratin 18 の配列 [Accession: M26326] (配列番号 8 9) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 9 0 に示した。 keratin 1 8 は中間フィラメントの一種である。ずり応力依存的発現上昇を示すノーザンブロットを、図 2 のレーン 4 5 に示した。

A 4 R S - 8 1 8 の塩基配列を決定したところ、これは human secreted protein gene 5 clone HELDY 4 1 の配列 [Accession: V34315] (配列番号 9 1) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 9 2 に示した。この遺伝子がコードするアミノ酸配列は、human hedgehog interacting protein [Accession: W56538] の部分配列と一致している。ずり応力依存的発現上昇を示すノーザンブロットを、図 2 のレーン 4 6 に示した。

A 4 R S - 9 1 4 の 塩 基 配 列 を 決 定 し た と こ ろ 、 こ れ は monocyte-derived neutrophil-activating protein (MONAP) の配列 [Accession: M26383] (配列番号 9 3) と一致した。この遺伝子が コードするアミノ酸配列を配列番号 9 4 に示した。 MONAP は別名 interleukin 8(IL-8)であり、動脈硬化の発症との関連性が強く示唆されている。実際に動脈硬化プラークのマクロファージにおいて <math>m R N A V ベル、タンパク質 V ベルでの強い発現が報告されている [Arterioscler. Thromb. Vascul. Biol., 16, 1007 (1996)]。ずり応力依存的発現上昇を示すノーザンブロットを、図 2 のレーン 4 7 に示した。

A 4 R S - 9 2 9 の塩基配列を決定したところ、これは MUC18 glycoprotien の配列 [Accession: M28882] (配列番号 9 5) と一致した。この遺伝子がコードするアミノ酸配列を配列番号 9 6 に示した。MUC18はMel-CAM、あるいはCD146とも呼ばれ、免疫グロブリン様ドメインを有する細胞接着因子である。ずり応力依存的発現上

昇を示すノーザンブロットを、図2のレーン48に示した。

A4RS-93.5 の塩基配列を決定したところ、これは nuclear speckle-type protein(SP0P)の配列 [Accession: AJ000644] (配列番号97)と一致した。この遺伝子がコードするアミノ酸配列を配列番号98に示した。SPOPはスプライシング因子と相互作用すると考えられる核内因子である。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン49に示した。

A4RS-938の塩基配列を決定したところ、これはthrombospondin(TSP)の配列 [Accession: X14787] (配列番号99)と一致した。この遺伝子がコードするアミノ酸配列を配列番号100に示した。TSPは細胞外マトリクスとして機能する糖タンパク質であり、癌化、血管新生を阻害する作用を有する。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン50に示した。

A4RS-939の塩基配列を決定したところ、これは caveolin の配列 [Accession: Z18951] (配列番号101) と一致した。この遺伝子がコードするアミノ酸配列を配列番号102に示した。caveolin は細胞膜に存在する caveolae の主要構成因子であり、nitricoxide(N0)synthase と相互作用することでNO産生制御に関与することが報告されている[J. Biol. Chem., 273, 34724(1998)]。ずり応力依存的発現上昇を示すノーザンブロットを、図200レーン51に示した。

A4RS-945の塩基配列を決定したところ、これは human BENE mRNA の配列 [Accession: U17077] (配列番号103)と一致した。この遺伝子がコードするアミノ酸配列を配列番号104に示した。BEN EはT cell surface glycoprotein MALと相同性を有する膜タンパク質である。内皮細胞において、酸化リポタンパク質の構成因子であるlysophosphatidyl choline(lysoPC)により発現上昇することから、動脈硬化との関連性が示唆されている [J. Biochemistry, 123, 1119 (1998)]。ずり応力依存的発現上昇を示すノーザンブロットを、図2の

レーン52に示した。

A 4 R S - 9 4 7 の塩基配列を決定したところ、これは 1,4-alpha-glucan branching enzyme の配列 [Accession: L07956] (配列番号 1 0 5)と一致した。この遺伝子がコードするアミノ酸配列を配列番号 1 0 6 に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図 $2 の \nu - \nu 5 3$ に示した。

A4RS-949の塩基配列を決定したところ、これは human PAST(HPAST)の配列 [Accession: AF001434] (配列番号109)と一致した。この遺伝子がコードするアミノ酸配列を配列番号110に示した。HPASTは、ハエ由来の糖タンパク質であるPAST-1と相同性を有する。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン55に示した。

(3) ずり応力依存的発現上昇を示す部分長新規遺伝子

A4RS-011の塩基配列を決定したところ、これは UniGene Hs.71475に含まれるEST群と一致した。一致するESTを連結することで、配列番号111に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号112に示した。この配列がコードするアミノ酸配列は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン56に示した。

A4RS-115の塩基配列を決定したところ、これは UniGene Hs.3742 に含まれるEST群と一致した。一致するESTを連結することで、配列番号113に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号114に示した。この遺伝子はラット

SEC 6 1 [Accession: M96630] と非常に高い相同性を示し、ヒトのオーソログと考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図 2 のレーン 5 7、図 3 のレーン 1 3 に示した。

A4RS-143の塩基配列を決定したところ、これは UniGene Hs.5307 に含まれるEST群と一致した。一致するESTを連結することで、配列番号115に示した配列を得ることができた。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン58、図3のレーン14に示した。

A4RS-171の塩基配列を決定したところ、これと完全一致する配列はデータバンク中に存在しなかった。塩基配列を配列番号116に示した。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン59に示した。

A4RS-193の塩基配列を決定したところ、これは UniGene Hs.112157 に含まれるEST群と一致した。一致するESTを連結することで、配列番号117に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号118に示した。この配列がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン60、図3のレーン15に示した。

A4RS-280 の塩基配列を決定したところ、これは UniGene Hs. 109017に含まれる EST 群と一致した。一致する EST を連結することで、配列番号 119 に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号 120 に示した。この遺伝子はヒト ras-like protein TC10 [Accession: M31470] と87%の高い相同性を示し、新規ヒト低分子量GTP結合タンパク質と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン61、図3のレーン1

6に示した。

A4RS-402の塩基配列を決定したところ、これは UniGene Hs. 181077 に含まれるEST群と一致した。一致するESTを連結することで、配列番号121に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号122に示した。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン62、図3のレーン17に示した。

A4RS-533の塩基配列を決定したところ、これはESTクローン、R07925、T86046と一致した。一致するESTを連結することで、配列番号123に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号124に示した。この配列がコードするアミノ酸配列は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン63に示した。

A4RS-604の塩基配列を決定したところ、これは UniGene Hs.34160に含まれるEST群と一致した。一致するESTを連結することで、配列番号125に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号126に示した。この配列がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン64、図4のレーン18に示した。

A4RS-615の塩基配列を決定したところ、これは UniGene Hs.193974 に含まれるEST群と一致した。一致するESTを連結することで、配列番号127に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号128に示した。この配列がコードするタンパク質は、他の既知のタンパク質と有意な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン65に示した。

A4RS-619の塩基配列を決定したところ、これは UniGene

Hs. 14512 に含まれるEST群と一致した。一致するESTを連結することで、配列番号129に示した配列を得ることができた。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン66に示した。

A4RS-626の塩基配列を決定したところ、これと完全一致する配列はデータバンク中に存在しなかった。塩基配列を配列番号130に示した。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン67、図4のレーン19に示した。

A4RS-676の塩基配列を決定したところ、これは UniGene Hs.8881 に含まれるEST群と一致した。一致するESTを連結することで、配列番号131に示した配列を得ることができた。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン68に示した。

A4RS-679の塩基配列を決定したところ、これと完全一致する配列はデータバンク中に存在しなかった。塩基配列を配列番号132に示した。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン69に示した。

A4RS-737の塩基配列を決定したところ、これと完全一致する配列はデータバンク中に存在しなかった。塩基配列を配列番号133に示した。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン70に示した。

A4RS-780の塩基配列を決定したところ、これは UniGene Hs.34489に含まれるEST群と一致した。一致するESTを連結するこ

とで、配列番号134に示した配列を得ることができた。この配列中には50アミノ酸以上から成るORFが存在せず、非翻訳領域と考えられる。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン71に示した。

A4RS-826の塩基配列を決定したところ、これは UniGene Hs.7348 に含まれるEST群と一致した。一致するESTを連結することで、配列番号135に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号136に示した。この配列がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン72に示した。

A4RS-916の塩基配列を決定したところ、これは UniGene Hs.105695 に含まれるEST群と一致した。一致するESTを連結することで、配列番号137に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号138に示した。この配列がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン73、図4のレーン20に示した。

A4RS-933の塩基配列を決定したところ、これはESTクローンAI391599と一致した。一致するESTを連結することで、配列番号139に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号140に示した。この配列がコードするタンパク質は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン74に示した。

A4RS-943の塩基配列を決定したところ、これは UniGene Hs.186838 に含まれるEST群と一致した。一致するESTを連結することで、配列番号141に示した配列を得ることができた。この配列がコードするアミノ酸配列を配列番号142に示した。この配列がコード

するアミノ酸配列は zinc finger モチーフを有し、トリ由来 zinc finger 5 protein [Accession: U51640] 67%の相同性を示した。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン75に示した。

実施例5

完全長 c D N A の クローン化

実施例3において取得した、ずり応力依存的に発現上昇する新規DNAは、ほとんどの場合、そのインサートの長さがノーザンブロッティングで検出されるmRNAの大きさより顕著に短かった。即ち、サブトラクションライブラリーから得られたクローンは、全長cDNAではなく部分cDNA断片であると判断された。そこで、新規DNAのうち8種類について、それらの全長cDNAをcDNAライブラリーから取得し直した。

(1) λファージベクターを用いた c D N A ライブラリーの作製

実施例 1 において取得した HUVEC 由来ポリ(A) $^+RNA4$. 8 μ gに、オリゴ(d T) -Xho I プライマー(配列番号 160) 3. 2 μ g を加え、蒸留水を加えて 6. 8 μ 1 とした。 70 $\mathbb C$ で 10 分間加熱後、氷上に移し急冷した。該溶液に、5 × 逆転写酵素反応用緩衝液(酵素に添付されていたもの) 4 μ 1、 100 mM DTTを 2 μ 1、 dN TP混合液(10 mM dA TP、10 mM dG TP、10 mM 10 TP、10 TP、1

mRNAのハイブリッドを回収した。沈殿を17μ1の蒸留水に溶解さ せ、ここに5μ1の5×反応用緩衝液(酵素に添付のもの)、2.5μ 1の100μM dGTP、および15単位/μlの Terminal deoxynucleotidyl transferase(Life Technologies 社製)を0.5μl 添加した。37℃で30分間反応させ、cDNAの3′末端にオリゴd Gを付加した。該反応液に 5μ 1の0. 5M EDTA (pH8. 0) を加えて反応を止め、フェノール・クロロホルム処理、クロロホルム処 理の後、エタノール沈殿を行った。得られた沈殿を20.7μ1の蒸留 水に溶解させ、反応用緩衝液A〔200mM Tris・HCl(pH 8. 75), 100 mM KC1, 100 mM (NH₄)₂SO₄, 2 $0 \text{ mM} \text{ MgSO}_4$, 1% Triton X - 100, 1 mg/mlBSA] 1. 5μ1、反応用緩衝液B[200mM Tris·HC] (pH9.2), 600mM KCl, 20mM MgCl₂] 1.5 μ 1、オリゴ (d C) N o t I プライマー (配列番号 1 6 1) 0. 3 μ g、10 m M d N T P 混合液 0. 7 5 μ 1、10 m M β - N A D 1. 5 μ 1 を加えて総容量を 2 7. 4 5 μ 1 とした。 5 5 ℃で 5 分間保温し た後、5単位/μlのExTaq DNA polymerase (宝 酒造社製)1.5μ1、100単位/μ1のAmpligase (Epicentre 社製) 0. 75μl、5単位/μlのHybridase (Epicentre 社製) 0. 3 μ l を添加した。サーマルサイクラーDNA engine (MJ Research 社製) を用い、1分間あたり0.3℃の速 度で、55℃から35℃までゆっくりと温度を下げ、その後35℃で1 5分間保温してプライマーを鋳型 1 本鎖 c D N A にアニーリングさせた。 その後72℃で15分間保温し第2ストランドDNAの伸長反応を行っ た。このアニーリング、伸長反応のサイクルをあと3回繰り返すことで、 mRNAを分解しcDNAを2本鎖にした。該反応液に0.5M ED TA (pH8. 0) 0. 5 μ 1、10% SDS & 0. 5 μ 1、20 μ g /μlのProteinase KをO. 5μl添加して45℃で15

分間保温し、反応を停止して酵素を失活させた。フェノール・クロロホ ルム処理、クロロホルム処理の後、エタノール沈殿を行い、得られた沈 殿を44μlの蒸留水に溶解させた。ここに10×反応用緩衝液(酵素 に添付のもの) 5μ l 、 X h o I (10単位 $/\mu$ l ;宝酒造社製) l μ l を添加し、37℃で2時間反応させ、オリゴ (dT) - X h o I プラ イマー内のXhoIサイトを切断した。該反応液に5M NaClを0. 5 μ l 、 N o t I (10単位/μl; 宝酒造社製) l μ l を添加し、 3 7℃で2時間反応させてオリゴ (dC) <u>Not</u> I プライマー内のNot I サイトを切断した。400bp以下の短いcDNAおよび未反応のプ ライマーとヌクレオチドを除くため、TE緩衝液で平衡化させたSiz e S e p - 4 0 0 スパンカラム(Amersham Pharmacia Biotech 社製)に 該反応液を乗せて400gで2分間遠心分離し、溶出液をフェノール・ クロロホルム処理、クロロホルム処理により精製した。クローニングベ クターλ Z A P I I (Stratagene 社製) 5 μ g (5 μ l) に l 0 × 反応 用緩衝液(宝酒造社製) 8 μ l 、蒸留水 6 2 μ l 、 X h ο I 5 0 単位 (5 µ 1)を添加し、3 7 ℃で 4 時間反応させた。該反応液に、5 M N a C l l µ l と <u>N o t</u> I 5 0 単位 (5 µ l) を添加して 3 7 ℃でさ らに4時間反応させ、ベクターのXhoIサイトとNotIサイトを切 断した。該反応液に、10×反応用緩衝液(酵素に添付のもの)9μ1、 0. 025単位の温度感受性アルカリ性フォスファターゼ (Life Technologies 社製)を添加し、65℃で15分間反応させてベクターの XhoI切断末端とNotI切断末端の5、端を脱リン酸化した。該反 応液に10μlの反応停止液(酵素に添付のもの)を添加して反応を止 め、フェノール・クロロホルム処理、クロロホルム処理の後、エタノー ル沈殿により回収した。このベクター0.25μgに、上記で精製した c DNAを加えてエタノール沈殿を行い、回収したベクターDNAと c DNAをリガーゼ緩衝液[100mM Tris-HCl(pH7.6)、 5 m M MgCl₂、300 m M NaCl] 4μlに溶解させ、ライ

ゲーションキットver.l(宝酒造社製)のB液4μlを添加して26℃で10分間反応させ、ベクターDNAにcDNAを結合させた。該反応液を4μlずつ λ phage Packaging Extract Gigapack β Gold (Stratagene 社製)を用いてパッケージングを行った。具体的試薬および方法は、キットに付与されているマニュアルに従った。得られたファージを大腸菌 X L 1 - B l u e MR F'株に感染させてタイターを測定した。さらに、ファージをプレート上で増殖させた後に S M 緩衝液(組成は Stratagene 社のマニュアルに記載)中に回収することによりcDNAライブラリーを 1 回増幅し、最終的なcDNAライブラリーとした。タイターの測定およびライブラリー増幅の具体的な方法は、 λ ファージパッケージングキットに付与されているマニュアルに従った。

- (2) プラークハイブリダイゼーションによる完全長 c D N A の取得
- (1)において作製したライブラリーについて、プラークのDNAをナイロンメンブレンHybondN+ (Amersham Pharmacia Biotech社製)にブロッティングした。鋳型として実施例2で得られたサブトラクションライブラリー由来のプラスミドを、プライマーとして各遺伝子特異的なものを合成し、PCR DIGラベリング・ミックス(Boehringer Mannheim社製)を添加してPCRを行い、各遺伝子特異的な断片を増幅し標識した。該DNA断片をプローブとして用い、Boheringer Mannheim社のマニュアルに従ってハイブリダイゼーションおよび、ポジティブプラークの検出を行った。ポジティブプラークはSM緩衝液中で増幅させ、ヘルパーファージExAssist(Stratagene社製)を用いてプラスミド化した。プラスミド化の具体的な方法は、Stratagene社のマニュアルに従った。

(2) 塩基配列の決定

得られたそれぞれの c D N A クローンの塩基配列は、Perkin Elmer 社の377 D N A シークエンサーを用いて決定した。塩基配列決定のための具体的試薬および方法はパーキンエルマー社のダイプライマーシーク

エンシングFSレディーリアクション (Dye Primer Cycle Sequencing FS Ready Reaction) キットを使用し、キットに添付のマニュアルに従った。また、この塩基配列を3フレームでアミノ酸配列に翻訳し、オープンリーディングフレーム (ORF) が存在するかどうか調べた。

- (3) 完全長 c D N A の相同性解析
- (1) A 4 R S 0 0 2

プラークハイブリダイゼーションの結果取得された完全長cDNAク ローンpfA4RS-002-1のcDNAの全塩基配列を決定し、得 られた塩基配列を配列番号143に示した。クローンpfA4RS-0 0 2 - 1 を導入した大腸菌 D H 5 α株(Escherichia coli DH5 α /pfA4RS-002-1) はブタペスト条約下で工業技術院生命工学工業技術研 究所(日本国茨城県つくば市東1-1-3)に平成11年8月5日付けで 受託番号 F E R M B P - 6 8 2 2 で国際 寄託されている。 A 4 R S - 0 02の塩基配列中には、390アミノ酸から成るORFが観察され(配 列番号144にアミノ酸配列を示した)、相同性解析の結果、免疫グロ ブリンファミリーに属する蛋白質と有意な相同性を示すことがわかった。 その中でも特に、ヒト大腸癌の特異的マーカーであるA33 anti gen [Proc. Natl. Acad. Sci. USA, 94, 469 (1997)]、ウィ ルスの受容体蛋白質であるCAR (Coxackie and adenovirus receptor) [Science, 275, 1320 (1997)] と高い相同性を示した。これらの因 子は、その一次構造からⅠ型の膜蛋白質であることが予測されている。 アミノ酸配列から推定した親水性の解析から、A4RS-002のアミ ノ末端29残基が分泌シグナルと推定され、また、249~270番目 に疎水性の高い、膜貫通領域と考えられる配列が存在している。免疫グ ロブリンファミリーに属するICAM-1やVCAM-1がずり応力依 存的発現変動を示すことからも、A4RS-002は免疫グロブリンフ アミリーに属し、膜蛋白質として機能していることが推測される。ずり 応力依存的発現上昇を示すノーザンブロットを、図2のレーン76、図

4のレーン21に示した。

(2) A 4 R S - 0 4 9

プラークハイブリダイゼーションの結果取得された完全長cDNAク ローンpfA4RS-049-1のcDNAの全塩基配列を決定し、得 られた塩基配列を配列番号145に示した。クローンpfA4RS-0 4 9 - 1 を導入した大腸菌 D H 5 α株 (Escherichia coli DH5 α /pfA4RS-049-1) はブタペスト条約下で工業技術院生命工学工業技術研 究所(日本国茨城県つくば市東1-1-3)に平成11年8月5日付けで 受託番号FERM BP-6823で国際寄託されている。A4RS-0 49の塩基配列中には、881アミノ酸から成るORFが観察された(配 列番号146にアミノ酸配列を示した)。相同性解析の結果、A4RS - 0 4 9 がコードする蛋白質は、マウス由来 3 B P - 1 (SH3 domain binding protein) [EMBO J., 14, 3127 (1995)] をはじめ、rho GAP、Abrといった種々の GTPase-activating protein (GAP) と有意な相同性を示した。GAPとは、ras、rabといった低分子 量GTP結合蛋白質のGTPase活性を制御するファミリーで、A4 RS-049が相同性を示したのは、rho、racなどの細胞骨格制 御に関与すると考えられているサブファミリーに特異的なGAPである。 A4RS-049がコードするアミノ酸配列中には、既知のGAP間で 保存されているGTPase活性化ドメインが存在し、A4RS-04 9がGAPとして機能することが推測される。また、データベース中に はA4RS-049がコードする蛋白質と優位な相同性を示す、機能未 知の線虫 [Accession: Z73425] 、酵母 [Accession: Z97210] 由来の 遺伝子が登録されており、A4RS-049が進化上よく保存された遺 伝子であることが予想される。ずり応力依存的発現上昇を示すノーザン ブロットを、図2のレーン77、図4のレーン22に示した。

3 A 4 R S - 2 3 0

プラークハイブリダイゼーションの結果取得された完全長cDNAク

ローンpfA4RS-230-230-2のcDNAの全塩基配列を決定し、得られた塩基配列を配列番号 147に示した。クローンpfA4RS-23030-2)はブタペスト条約下で工業技術院生命工学工業技術研究所(日本国茨城県つくば市東1-1-3)に平成 11年8月5日付けで受託番号FERM BP-6824で国際寄託されている。

A4RS-230の塩基配列中には、322アミノ酸から成るORFが観察された(配列番号148にアミノ酸配列を示した)。相同性解析の結果、A4RS-230がコードする蛋白質は、マウス myeloid upregulated protein [Accession: 035682] と83%の高い相同性を示し、ヒトカウンターパートとも考えられるが、C末端側はかなり異なっている。マウス myeloid upregulated protein に関してはデータベース中に配列が登録されているだけで、機能は未知である。また、アミノ酸配列から推定される親水性の解析から、A4RS-230がコードする蛋白質は極めて疎水性が高く、膜蛋白質として機能している可能性もある。しかしながら、N末端にシグナル配列と判断される配列は存在しない。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン78、図4のレーン23に示した。

4 A 4 R S - 2 3 9

プラークハイブリダイゼーションの結果取得された完全長 c D N A クローンp f A 4 R S - 2 3 9 - 2 の c D N A の全塩基配列を決定し、得られた塩基配列を配列番号 1 4 9 に示した。クローンp f A 4 R S - 2 3 9 - 2 を 導入 した 大 腸 菌 D H 5 α 株 (Escherichia coli DH5 α /pfA4RS-239-2) はブタペスト条約下で工業技術院生命工学工業技術研究所 (日本国茨城県つくば市東 1-1-3) に平成 11 年 8 月 5 日付けで受託番号 F E R M B P - 6 8 2 5 で国際寄託されている。

A4RS-239の塩基配列中には、663アミノ酸から成るORF が観察された(配列番号150にアミノ酸配列を示した)。相同性解析

の結果、A4RS-239がコードする蛋白質は、上述のA4RS-049と同様、rhoGAP、Abrといった種々のGAPと、低いながらも有意な相同性を示した。ただし、A4RS-239とA4RS-049は別のDNAである。A4RS-239がコードするアミノ酸配列中には、既知のGAP間で保存されているGTPase活性化ドメインが存在し、A4RS-239がGAPとして機能することが推測される。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン79、図3のレーン24に示した。

5 A 4 R S - 2 4 2

プラークハイブリダイゼーションの結果取得された完全長cDNAク ローンpfA4RS-242-1のcDNAの全塩基配列を決定し、得 られた塩基配列を配列番号151に示した。クローンpfA4RS-2 4 2 - 1 を導入した大腸菌 D H 5 α株 (Escherichia coli DH5 α /pfA4RS-242-1)はブタペスト条約下で工業技術院生命工学工業技術研究 所(日本国茨城県つくば市東1-1-3)に平成11年8月5日付けで受 託番号FERM BP-6826で国際寄託されている。A4RS-24 2の塩基配列中には、863アミノ酸から成るORFが観察された(配 列番号152にアミノ酸配列を示した)。相同性解析の結果、A4RS - 2 4 2 がコードする蛋白質のアミノ末端半分は、 e h b 1 0 という遺 伝子の産物のほぼ全長と一致している。しかし、A4RS-242のカ ルボキシ末端半分に相当する部分はehbl0には存在しない。即ち、 両者はスプライシング・バリアントであると考えられる。ehbl0は、 Eps15 (EGF受容体の基質)の蛋白質相互作用に関与すると考え られるEHドメインと結合する因子として発現クローニングにより取得 されたものの1つである [Genes & Dev., 11, 2239 (1997)] が、 その。機能は未知である。ただ、EHドメインとの結合に必要とされる モチーフはA4RS-242にも存在している。ずり応力依存的発現上 昇を示すノーザンブロットを、図2のレーン80、図4のレーン25に

示した。

6 A 4 R S - 4 9 1

プラークハイブリダイゼーションの結果取得された完全長cDNAク ローンpfA4RS-491-1のcDNAの全塩基配列を決定し、得 られた塩基配列を配列番号153に示した。クローンpfA4RS-4 91-1を導入した大腸菌DH5α株(Escherichia <u>coli</u> DH5α /pfA4RS-491-1)はブタペスト条約下で工業技術院生命工学工業技術研究 所(日本国茨城県つくば市東1-1-3)に平成11年8月5日付けで受 託番号FERM BP-6827で国際寄託されている。A4RS-49 1の塩基配列中には、331アミノ酸から成るORFが観察された(配 列番号154にアミノ酸配列を示した)。相同性解析の結果、A4RS - 491がコードする蛋白質は、ヒト hypothetical protein としてデー タベースに登録されているアミノ酸配列 [Accession: 043334] と広い 範囲にわたって一致していた。しかしながら、この hypothetical protein は393アミノ酸からなり、88~148番目のアミノ酸がA4RS-491がコードするアミノ酸配列には含まれないことがわかった。即ち、 両者はスプライシング・バリアントであると考えられる。 A4RS-4 9 1 がコードする蛋白質は、線虫 [Accession: Z78198] 、細菌 E69827] 由来の glycerophosphodiester [Accession: phosphodiesterase と顕著な相同性を示し、進化上よく保存された遺伝 子であることがわかった。細菌由来の glycerophosphodiester phosphodiesterase は膜上に存在することが知られており、A4RS-491がコードするアミノ酸配列から推定した親水性の解析から、配列 番号154の1~26番目のアミノ酸配列がシグナルペプチドと推定さ れた。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレー ン81、図4のレーン26に示した。

 \bigcirc A 4 R S - 5 7 8

プラークハイブリダイゼーションの結果取得された完全長cDNAク

ローンp f A 4 R S - 5 7 8 - 1 の c D N A の全塩基配列を決定し、得 られた塩基配列を配列番号155に示した。クローンpfA4RS-5 78-1を導入した大腸菌 D H 5 α株 (Escherichia coli DH5 α /pfA4RS-578-1)はブタペスト条約下で工業技術院生命工学工業技術研究 所(日本国茨城県つくば市東1-1-3)に平成11年8月5日付けで受 託番号FERM BP-6828で国際寄託されている。A4RS-57 8の塩基配列中には、541アミノ酸から成るORFが観察された(配 列番号156にアミノ酸配列を示した)。相同性解析の結果、A4RS - 5 7 8 がコードする蛋白質は、線虫由来の hypothetical protein とし て 登 録 さ れ て い る 機 能 未 知 の 蛋 白 質 の ア ミ ノ 酸 配 列 〔 Accession: 7.95559〕と最も強い相同性を示し、次いでラット brain finger protein (BFP) (Biochem. Biophys. Res. Commun., 240, 8 (1997)) と有意な相同性を示した。ラットBFPは、zinc fingerモ チーフの一種であるRING fingerモチーフを有する新規遺伝 子としてクローニングされ、脳特異的に発現すること、神経細胞への分 化の段階で誘導発現される可能性が報告されている。しかしながら、A 4RS-578がコードするアミノ酸配列中には、RING fing erモチーフと判断される配列は存在しない。A4RS-578がコー ドする蛋白質はまた、種々のGTP結合蛋白質と有意な相同性を示し、 多くのGTP結合蛋白質が共通して有している3つのモチーフのうち2 つをA4RS-578も有している。モチーフ2つのみを有するGTP 結合蛋白質の存在も報告されており、A4RS-578がコードする蛋 白質もGTP結合蛋白質として機能している可能性が考えられる。 ずり 応力依存的発現上昇を示すノーザンブロットを、図2のレーン82、図 4のレーン27に示した。

(8) A 4 R S - 8 2 9

プラークハイブリダイゼーションの結果取得された完全長 c D N A クローンpf A 4 R S - 8 2 9 - 1 の c D N A の全塩基配列を決定し、得

られた塩基配列を配列番号 157に示した。クローンpfA4RS-829-1を導入した大腸菌 $DH5\alpha$ 株(Escherichia coli DH5 α /pfA4RS-829-1)はブタペスト条約下で工業技術院生命工学工業技術研究所(日本国茨城県つくば市東1-1-3)に平成 11年8月5日付けで受託番号 FERMBP-6829で国際寄託されている。A4RS-829の塩基配列中には、173アミノ酸から成る ORFが観察された(配列番号 158にアミノ酸配列を示した)。相同性解析の結果、A4RS-829がコードする蛋白質は、アラビドプシス [Accession: 048707]、線虫 [Accession: Q20340]、酵母 [Accession: Q03677]、由来の、hypothetical proteinとして登録されている機能未知の蛋白質のアミノ酸配列と顕著な相同性を示し、進化的によく保存された遺伝子であることがわかった。ずり応力依存的発現上昇を示すノーザンブロットを、図2のレーン83、図4のレーン28に示した。

実施例6

A4RS-002の組み換え蛋白質の生産

(1)発現プラスミドの構築

フェノール・クロロホルム処理、クロロホルム処理の後、エタノール沈 殿を行った。得られた沈殿を 5μlの蒸留水に溶解させ、Sfillリン カー (5'-CTTTAGAGCAC-3'、 5'-CTCTAAAG-3') を各々 0. 4 μ g、 0. 3 μ g添加して 6μ 1とした。ここに、ライゲーションキットver. 2 (宝酒造社製)のⅠ液を12μ1、Ⅱ液を6μ1加えて16℃で一晩保温 し、リンカーライゲーションを行った。該反応液全量を0.8%アガロ ースゲルで電気泳動し、目的の断片を QIAEX II Gel Extraction Kit (QIAGEN 社製)を用いて回収した。方法はキットに添付のマニュアルに 従った。回収したDΝΑ断片を10μ1の蒸留水に溶解した。このイン サートDNAに、Sfilで線状化し同様にアガロースゲルから回収し た動物細胞発現用プラスミドベクターpAMo〔J. Biol. Chem., 268. 22782 (1993)、別名 pAMoPRC3Sc (特開平 05-336963 号公報)] をモル比でインサートの1/5量になるように加え、該溶液と等容量の Ligation High (東洋紡績社製) を添加した。16℃で3 時間保温し、リンカー付きインサートとベクターの連結を行った後、コ ンピテントセル大腸菌ΜW294に導入した。導入後の菌液を50μg /mlのアンピシリンを含むLB寒天培地にまき、37℃で終夜保温し てコロニーを形成させた。得られたコロニーをランダムに拾ってプラス ミドを取得し、制限酵素処理によりインサートの有無を確認した。イン サートが入っていたものについてその方向を調べ、望むべき方向性を有 する 1 クローン、pAMo-002について QIAGEN Plasmid Midi Kit(QIAGEN 社製)を用いプラスミドの大量調製を行った。方法はキット に添付のマニュアルに従った。このプラスミドを無菌的にエタノール沈 殿し、蒸留水に溶解させて $1\mu g/\mu l$ に調整した。以上のpAMo-002の構築については図5に示した。

(2)組み換え体プラスミドの動物培養細胞への導入

遺伝子発現用の宿主細胞である N a m a l w a K J M - 1 (Cytotechnology, 1, 151 (1988)] を遠心分離して集め、10 m l

のK-PBS $\{13.7 \text{mM} \text{KC1}, 0.27 \text{mM} \text{NaC1}, 0.81 \text{mM} \text{Na}_2 \text{HPO}_4$ 、 $0.15 \text{mM} \text{KH}_2 \text{PO}_4$ 、 $0.4 \text{mM} \text{M} \text{gC1}_2$)で洗浄した後、冷却したK-PBSに懸濁して 8×10^6 細胞 / m になるように調製した。該細胞懸濁液 $200 \mu \text{l}$ (1.6×10^6) 細胞)と、(1) で調製した $4 \mu \text{l}$ $(4 \mu \text{g})$ のプラスミドDNAを混合し、あらかじめ氷上で冷却しておいたチャンバー(BIO-RAD 社製)に速やかに移した後、Gene Pulser(BIO-RAD 社製)を用いて0.35 kV、 $125 \mu \text{F}$ の電圧を負荷してエレクトロポレーションを行った。その後速やかにチャンバーを氷上に置き、8 m 1 m 0

実施例7

完全長 c D N A のクローン化 (2)

実施例5の場合と同様、サブトラクションライブラリーから得られた 新規部分cDNA断片3種類について、ヒト脂肪組織あるいはKato III 由来完全長cDNAライブラリーから完全長cDNAを取得した。

(1)ヒト脂肪組織およびKatoIII細胞由来完全長cDNAライブラリーの作製

ヒト脂肪組織より、文献 [J. Sambrook, E. F. Fritsch & T. Maniatis, Molecular Cloning Second edition, Cold Spring harbor Laboratory Press, 1989] 記載の方法によりm R N A を抽出した。さらに、オリゴd T セルロースでポリ (A) + R N A を精製した。

同様に、 KatoIII細胞より、文献〔J. Sambrook, E. F. Fritsch &

T. Maniatis, Molecular Cloning Second edition. Cold Spring harbor Laboratory Press, 1989〕記載の方法によりmRNAを抽出した。さらに、オリゴdTセルロースでポリ(A) +RNAを精製した。

それぞれのポリ(A) + R N A よりオリゴキャップ法 (M. Maruyama and S. Sugano, Gene, 138: 171-174 (1994)) により c DNAライブラリー を作製した。Oligo-cap linker(配列番号: 1 6 2)およびOligo dT primer (配列番号:163)を用いて文献〔鈴木・菅野,蛋白質核酸酵素,41: 197-201 (1996)、Y. Suzuki, Gene, 200: 149-156 (1997)〕に記載の方 法に従って、BAP (Bacterial Alkaline Phosphatase)処理、TAP (Tabacco Acid Phosphatase) 処理、RNAライゲーション、第一鎖c DNAの合成とRNAの除去を行った。次いで、5′末端側のセンスプ ライマー(配列番号:164)と3′末端側のアンチセンスプライマー (配列番号:165)の2種のプライマーを用いるPCRにより二本鎖 c DNAに変換し、Sfi Iで切断した。なお、このPCRは、市販の GeneAmp XL PCRキット(Perkin Elmer社製)を使用して、95℃で5分 間熱処理後、95℃で1分間、58℃で1分間および72℃で10分間 の反応サイクルを12回繰り返し、その後4℃で保持することにより行 った。次いで、DraIIIで切断したベクターpME18SFL3 [Accession: AB009864、発現ベクター,3392bp] に c D N A の方向性を決めてクロー ニングし、cDNAライブラリーを作製した。

(2)全長 c D N A 配列の決定

(1)で取得されたcDNAライブラリーから得たクローンのプラスミドDNAについて、GSP-1 Genome Priming System (NEB社製)を用い、試験管内でcDNAクローンにトランスポゾン(以下Tnと略記)転位反応を行った。Tn供与体にはpGPS1.1 (NEB社製)を用いた。Tn転位反応後のDNA試料の一部をとり、大腸菌の形質転換を行い、各cDNAクローンについて、通常それぞれ16クローンのTn挿入クローンを拾った。これらより得たクローンのプラスミドDNAに

ついて、 Primer N (配列番号: 166)、 Primer S (配列番号: 167) をそれぞれプライマーとして実施例 5 の場合と同様に全長 c D N A 配列を決定した。

(3) ずり応力依存的発現上昇を示す完全長新規遺伝子

実施例 3 においてサブトラクションライブラリーから取得された A 4 R S-0 1 1 の配列をクエリーとし、B L A S T [Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman, Nucleic Acids Res., 25, 3389–3402 (1997)] プログラムを用いて(2)で取得された c D N A 配列に対して検索を行ったところ、C - K A T 0 7 9 6 9 (配列番号:1 6 8) と一致した。この c D N A 配列のO R F の中でもっとも長い翻訳アミノ酸をC - K A T 0 7 9 6 9 の c D N A 配列がコードするアミノ酸配列(1 2 1-1 0 6 2 配列番号:1 6 9) とした。このアミノ酸配列は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存性発現上昇を示すノーザンブロットを、図 2 のパネル 5 6 に示した。

実施例 3 においてサブトラクションライブラリーから取得されたA4RS-604の配列をクエリーとし、BLASTプログラムを用いて(2)で取得されたcDNA配列に対して検索を行ったところ、C-ADKA02341の配列(配列番号:170)と一致した。この配列はH. sapiens mRNA for myosin-I betaの配列 [Accession: X98507] の一部と一致する。このcDNA配列のORFの中でもっとも長い翻訳アミノ酸をC-ADKA02341のcDNA配列がコードするアミノ酸配列(配列番号:171)とした。ずり応力依存性発現上昇を示すノーザンブロットを、図2のパネル64、図4のパネル18に示した。

配列のORFの中でもっとも長い翻訳アミノ酸をC-hep01279のcDNA配列がコードするアミノ酸配列(配列番号:173)とした。このアミノ酸配列は、他の既知のタンパク質と顕著な相同性を示さない。ずり応力依存性発現上昇を示すノーザンブロットを、図2のパネル66に示した。

実施例8

A4RS-041のアポトーシス抑制活性の検出

サブトラクションライブラリーより得られた、ずり応力依存性発現上昇を示す遺伝子の機能を調べるため、Fasを介したアポトーシスを抑制する遺伝子LFGと相同性を有する、機能未知の遺伝子、A4RS-041に関して、以下の実験を行った。

(1)組換えウィルスベクターの作製

全長型A4RS-041 (配列番号7) を有するプラスミドを鋳型とし、A4RS-041の蛋白質をコードするcDNA配列の部分をPCRにより特異的に増幅させた。即ち、PCRチューブに、20ngの鋳型プラスミドDNA、 $\underline{HindIII}$ 部位を付加した5 末端側のセンスプライマー(配列番号:174)25pmol、 $\underline{C1aI}$ 部位を付加した3、末端側のアンチセンスプライマー(配列番号:175)25pmol、10×反応用緩衝液(酵素に添付のもの) 5μ 1、2 mM dNTP溶液 5μ 1、0.5 μ 1のKOD DNA polymerase(2.5 μ 1:東洋紡績社製)を混合し、ここに滅菌水を加えて50 μ 1になるようにした。98℃で15秒間、65℃で2秒間、74℃で30秒間のサイクルを25回繰り返すことにより 20 DNAの増幅を行った。得られた全長型A4RS-041の増幅断片の末端をを \underline{HindII} IIと $\underline{C1aI}$ で切断して精製し、あらかじめ $\underline{HindIII}$ と $\underline{C1aI}$ で切断して精製し、あらかじめ $\underline{HindIII}$ と $\underline{C1aI}$ で切断しておいたウィルスベクター \underline{PCLNCX} ($\underline{IMGENEX社}$ 製)と連結させた。その結果、 $\underline{CMVプロモータによりA4RS-04$

1の発現が誘導される組換えウィルスベクターpCLNC041が造成された。得られた組換えウィルスベクターpCLNC041に関して、その挿入断片部分の塩基配列を決定し、PCRによる塩基置換が生じていないことを確認した。対照として、EGFP (enhanced green fluorescent protein; Clontech社製)を同様にpCLNCXの<u>Hind</u>III、<u>Cla</u>I部位に挿入したpCLNCGFPも造成した。

- (2) A 4 R S 0 4 1 を安定に高発現するHe L a 細胞の取得
- (1)で構築した組換え型ウィルスベクターをウィルス産生用の293細胞に導入することにより、組換えウィルスの生産を行った。 pCLNCO41、およびpCLNCGFPの293細胞へのトランスフェクションにはTransFast(Promega 社製)を使用した。方法は添付のマニュアルに従った。また、ウィルスの産生方法、HeLa細胞への感染方法は、使用したウィルスベクター(IMGENEX 社製)に添付のマニュアルに従った。

感染から2日後、He La細胞に300μg/mlのG418 (Life Technologies 社製)を添加し培養を継続する事で、感染されなかった細胞を選択的に排除した。この操作により、A4RS-041あるいはGFPを安定に高発現するHe La細胞の形質転換体を取得した。

- (3)細胞死抑制活性の検出
- (2)で取得された安定形質転換体のHe La細胞(A4RS-041、および対照としてGFPを発現するHe La細胞の安定形質転換体)に100 ng/mlの抗Fasモノクローナル抗体CH-11(MBL社製)を添加しアポトーシスを誘導した。誘導開始から24、36、48時間後の細胞の生存率をトリパンブルー染色法により測定した。この際、浮遊細胞と接着細胞の両方を合わせて生存率を測定した。実験はすべて2連で行い、平均値と標準偏差を示した。結果を図6Aに示した。また、抗体の濃度を10、50、100、500 ng/mlと変化させたときの36時間後の細胞の生存率も測定した。その結果を図6Bに示す。A

4 R S − 0 4 1 が導入された H e L a 細胞(図 6 中、 ●で表示)では、 対照である G F P が導入された H e L a 細胞(図 6 中、 ■で表示)と比較して、いずれの点においても有意に生存率が増加していた。即ち、 A 4 R S − 0 4 1 は、少なくとも H e L a 細胞において、 F a s を介したアポトーシスを抑制する活性を有することがわかった。

実施例9

A 4 R S - 0 4 1 の発現分布の解析

実施例 8 においてアポトーシス抑制活性の見出された A 4 R S - 0 4 1 のヒト組織における発現部位を調べる目的から、以下の実験を行った。 (1) ヒト正常組織における A 4 R S - 0 4 1 の発現解析

A4RS-041に特異的なプライマー(配列番号176、177)、 およびPCR DIGラベリング・ミックス (Boehringer Mannheim 社製) を用い、実施例2において得られたA4RS-041を有するプラスミ ドを鋳型としてPCRを行うことで、DIG標識されたA4RS-04 1特異的断片を調製した。該DNA断片をプローブとして、8種類のヒ ト組織由来RNAがブロットされた Human Multiple Tissue Northern Blot (Clontech 社製) に対してハイブリダイゼーションを行った。洗浄 後、DIG発光検出キット(Boehringer Mannheim 社製)を用いて化学 発光によるシグナルの検出を行った。方法は、キットに添付のマニュア ルに従った。図7のパネルAに示したように、A4RS-041特異的 なシグナルが約2.5kb付近に検出された。レーン1~8にはそれぞ れ膵臓、腎臓、骨格筋、肝臓、肺、胎盤、脳、心臓由来のポリ(A)⁺ RNAを2μgずつ泳動してある。シグナルは全てのレーンに観察され たが、レーン7の脳ではシグナルは弱く、A4RS-041の発現は、 脳では相対的に低いことがわかった。一方、LFGの発現は脳で非常に 高く抹消で低いことが報告されており [Proc. Natl. Acad. Sci. USA, 22, 12673-12678, (1999)]、A4RS-041とLFGが組織特異的に機能

していることが示唆された。

(2)ヒト血管内皮細胞、脳におけるA4RS-041、LFGの発現調査

実施例2において取得したHUVEC(ずり応力を負荷しないもの) 由来ポリ(A) + R N A、あるいはヒト脳由来ポリ(A) + R N A (Clontech 社製) それぞれ 1 μ g を鋳型とし、Superscript Preamplification System(Life Technologies 社製)を用いて 1 本鎖 c D N A の合成を行っ た。方法はキットに添付されたマニュアルに従った。最終的に得られた c D N A 溶液は 5 m l にまで希釈して P C R に使用した。これらの c D NAを鋳型として、A4RS-041 (配列番号176、177)、L FG(配列番号178、179)、G3PDH(配列番号180、18 1) それぞれに特異的なプライマーを用いてPCRを行った。反応液は c D N A 溶液 5 μ 1、1 0 × 反応用緩衝液 (酵素に添付のもの) 2 μ 1、 2. 5 m M d N T P 溶液 1. 6 μ l 、 dimethyl sulfoxide l μ l 、 t ンス、アンチセンスプライマーそれぞれ10pmol、GeneTaq DNA polymerase (5units/μl; ニッポンジーン社製) 0.1μlを含み、こ こに滅菌水を加えて総容量が20μlになるようにした。94℃で1分 間加熱して鋳型とプライマーを変性させた後、94℃1分間、60℃1 分間、72℃1分間のサイクルを繰り返した。サイクル数は、A4RS - 0 4 1、LFGに関しては33サイクル、G3PDHに関しては24 サイクルで行った。72℃で10分保温した後、4℃に冷却した。得ら れたPCR産物の半量を1.8%アガロース電気泳動に供した。その結 果を図7のパネルBに示した。レーン1にはサイズマーカーとして10 O b p ラダー(Life Technologies 社製)を泳動してある。レーン2、 4、6にはHUVEC由来cDNA、レーン3、5、7にはヒト脳由来 cDNAを用いたときのPCR産物を泳動してある。また、レーン2と 3 はA 4 R S - 0 4 1 特異的プライマー、レーン 4 と 5 は L F G 特異的 プライマー、レーン6と7はG3PDH特異的プライマーを用いたとき

のPCR産物を泳動してある。

A4RS-041は、HUVEC(レーン2)、脳(レーン3)の両方でバンドが増幅され、両者で発現していることが確認された。発現量はHUVECに比べると、脳では低い傾向がみられた。一方、LFGは、脳では非常に強く発現している(レーン5)が、HUVECでは全くバンドが増幅されておらず(レーン4)、発現していないことがわかった。

以上の結果から、内皮細胞においてアポトーシス抑制に関与する因子は、LFGではなくA4RS-041であると考えられた。

また、A4RS-041とLFG(ヒト由来)のアミノ酸配列の相同性を図8に示した。両者は、互いに48.9%(152/311)の同一性を有する相似蛋白質と判断されたが、N末側の約3分の1にあたる部分については、相同性がかなり低いことがわかった。

配列表フリーテキスト

配列番号159-人工配列の説明:人工合成プライマー配列

配列番号160-人工配列の説明:人工合成プライマー配列

配列番号161-人工配列の説明:人工合成プライマー配列

配列番号162-人工配列の説明:オリゴキャップリンカー配列

配列番号163-人工配列の説明:オリゴdTプライマー配列

配列番号164-人工配列の説明:人工合成プライマー配列

配列番号165-人工配列の説明:人工合成プライマー配列

配列番号166-人工配列の説明:人工合成プライマー配列

配列番号167-人工配列の説明:人工合成プライマー配列

配列番号174-人工配列の説明:合成 DNA

配列番号175-人工配列の説明:合成 DNA

配列番号176-人工配列の説明:合成 DNA

配列番号177-人工配列の説明:合成 DNA

配列番号178-人工配列の説明:合成 DNA

配列番号179-人工配列の説明:合成 DNA

配列番号180-人工配列の説明:合成 DNA

配列番号181-人工配列の説明:合成DNA

請求の範囲

1. 配列番号143、145、147、149、151、153、15 5、157、168、170および172で表される塩基配列から選ばれる塩基配列を有するDNA。

- 2. 配列番号 1 4 3、 1 4 5、 1 4 9、 1 5 1、 1 5 3、 1 5 5、 1 5 7、 1 6 8、 1 7 0 および 1 7 2 で表される塩基配列を有する D N A と ストリンジェントな条件下でハイブリダイズするずり応力応答性 D N A。
- 3. 配列番号147で表される塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズしかつ該DNAと90%以上の相同性を有するずり応力応答性DNA。
- 4. 配列番号 1 4 3、 1 4 5、 1 4 9、 1 5 3、 1 5 5、 1 5 7、 1 6 8、 1 7 0 および 1 7 2 で表わされる塩基配列から選ばれる塩基配列中の連続した 5 ~ 6 0 塩基と同じ配列を有する DNA または該 DNA と相補的な配列を有する DNA。
- 5. 請求項1~4のいずれか1項に記載のDNAを用いてずり応力応答性遺伝子のmRNAを検出する方法。
- 6. 請求項1~4 のいずれか 1 項に記載のDNAを含有する、動脈硬化を原因とする血管病の診断薬。
- 7. 請求項1~4のいずれか1項に記載のDNAを用いて動脈硬化の原因遺伝子を検出する方法。
- 8. 請求項1~4のいずれか1項に記載のDNAを用いてずり応力応答 性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。
- 9.請求項 1~4のいずれか 1 項に記載の DNA を用いて動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 10.請求項1~4のいずれか1項に記載のDNAを含有する、動脈硬化を原因とする血管病の治療薬。
- 11. 請求項1~4 のいずれか1項に記載のDNAを含む組換えウイルスベクター。

- 12. 請求項1~4のいずれか1項に記載のDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクター。
- 13. 配列番号111、113、115、116、117、119、1
- 21, 123, 125, 127, 129, 130, 131, 132, 1
- 33、134、135、137、139および141で表される塩基配列から選ばれる塩基配列を有するDNA。
- 14. 請求項13記載のDNAとストリンジェントな条件下でハイブリダイズするずり応力応答性DNA。
- 15. 配列番号111、113、115、116、117、119、1
- 21, 123, 125, 127, 129, 130, 131, 132, 1
- 33、134、135、137、139および141で表わされる塩基配列から選ばれる塩基配列中の連続した5~60塩基と同じ配列を有するDNAまたは該DNAと相補的な配列を有するDNA。
- 16. 請求項13~15のいずれか1項に記載のDNAを含有する、動脈硬化を原因とする血管病の診断薬。
- 17. 請求項13~15のいずれか1項に記載のDNAを用いる、動脈硬化の原因遺伝子を検出する方法。
- 18. 請求項13~15のいずれか1項に記載のDNAを用いてずり応力応答性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。
- 19. 請求項 13~15のいずれか1項に記載のDNAを用いて動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 20. 配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する

DNAを用いて、ずり応力応答性遺伝子のmRNAを検出する方法。

- 21. 配列番号7で表される塩基配列を有するDNA、または配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAの内在性NAを用いて、配列番号7で表される塩基配列を有するDNAの内在性の転写量を検出することにより細胞のアポトーシス感受性を同定する方法。
- 22. 配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNA、あるいはこれらの各DNAの塩基配列に相補的な塩基配列を有するアンチセンスDNAを用いて、配列番号7で表される塩基配列を有するDNAの内在性の転写もしくは翻訳を調節することにより細胞のアポトーシスを抑制または促進する方法。
- 23. 配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する DNAを含有する、動脈硬化を原因とする血管病の診断薬。
- 24. 配列番号 7 で表される塩基配列を有する DNA、または配列番号 7 で表される塩基配列中の連続した 5 ~ 6 0 塩基と同じ配列を有する DNA を含有する、細胞のアポトーシス感受性を同定する薬剤。
- 25. 配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する

DNAを用いて、ずり応力応答性遺伝子の転写もしくは翻訳を調節する 薬剤をスクリーニングする方法。

- 26.配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107および109で表される塩基配列から選ばれる塩基配列を有するDNAを用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 27. 配列番号7で表される塩基配列を有するDNAの内在性の転写もしくは翻訳を調節することにより細胞のアポトーシスを抑制または促進する薬剤を、配列番号7で表される塩基配列を有するDNAまたは配列番号7で表される塩基配列中の連続した5~60塩基と同じ配列を有するDNAを用いてスクリーニングする方法。
- 28. 配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する DNAを含有する、動脈硬化を原因とする血管病の治療薬。
- 29. 配列番号 7 で表される塩基配列を有する DNAまたは配列番号 7 で表される塩基配列中の連続した $5\sim6$ 0 塩基と同じ配列を有する DNA 、あるいはこれらの各 DNA の塩基配列に相補的な塩基配列を有する アンチセンス DNA を含有する、細胞のアポトーシスを抑制または促進する薬剤。
- 30. 配列番号1、3、5、7、9、11、13、15、17、19、

21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,

- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する DNAを含む組換えウイルスベクター。
- 31. 配列番号1、3、5、7、9、11、13、15、17、19、
- 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
- 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63,
- 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85,
- 87, 89, 91, 93, 95, 97, 99, 101, 103, 105,
- 107および109で表される塩基配列から選ばれる塩基配列を有する DNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクター。
- 32.請求項30または31記載の組換えウイルスベクターを含有する、動脈硬化を原因とする血管病の治療薬。
- 33. 配列番号7で表される塩基配列を有するDNAを含む組換えウイルスベクターまたは配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクターを用いて細胞のアポトーシスを抑制する方法。
- 34.配列番号7で表される塩基配列を有するDNAを含む組換えウイルスベクターまたは配列番号7で表される塩基配列を有するDNAのセンス鎖と相同な配列からなるRNAを含む組換えウイルスベクターを用いて細胞のアポトーシスを抑制または促進する薬剤をスクリーニングする方法。
- 3 5. 配列番号144、146、148、150、152、154、1 5 6、158、169、171および173で表されるアミノ酸配列か ら選ばれるアミノ酸配列を有する蛋白質。

36.請求項35記載の蛋白質の有するアミノ酸配列とは1以上のアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ動脈硬化病変の形成に関与する活性を有する蛋白質。

- 37. 請求項35または36記載の蛋白質をコードするDNA。
- 38.請求項1~4および37のいずれか1項記載のDNAをベクター に組み込んで得られる組換え体DNA。
- 39. 請求項38記載の組換え体DNAを宿主細胞に導入して得られる 形質転換体。
- 40. 請求項39記載の形質転換体を培地に培養し、培養液中に請求項35または36記載の蛋白質を生成蓄積させ、該培養物から該蛋白質を 採取することを特徴とする蛋白質の製造方法。
- 41. 請求項39記載の形質転換体を培地に培養し、該培養物を用いて動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 42. 請求項35または36記載の蛋白質を用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 43. 請求項35または36記載の蛋白質を生産する組換えウイルスベクター。
- 44. 請求項43記載の組換えウイルスベクターを含有する、動脈硬化を原因とする血管病の治療薬。
- 45. 請求項35または36記載の蛋白質を認識する抗体。
- 46. 請求項45記載の抗体を用いる請求項35または36記載の蛋白質の免疫学的検出方法。
- 47. 請求項45記載の抗体を用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 48. 請求項45記載の抗体を用いて、ずり応力応答性遺伝子の転写もしくは翻訳を調節する薬剤をスクリーニングする方法。
- 49. 請求項45記載の抗体を含有する、動脈硬化を原因とする血管病の診断薬。

50. 請求項45記載の抗体を含有する、動脈硬化を原因とする血管病の治療薬。

- 51. 請求項45記載の抗体と放射性同位元素、蛋白質または低分子の 薬剤とを結合させた融合抗体を動脈硬化巣へ誘導するドラッグデリバリ 一法。
- 52. 配列番号112、114、118、120、122、124、1 26、128、136、138、140または142で表されるアミノ 酸配列を有する蛋白質を認識する抗体。
- 53. 請求項52記載の抗体を用いて、動脈硬化を原因とする血管病の 治療薬をスクリーニングする方法。
- 54. 請求項52記載の抗体を用いて、ずり応力応答性遺伝子の転写も しくは翻訳を抑制する薬剤をスクリーニングする方法。
- 5 5. 請求項 5 2 記載の抗体を含有する、動脈硬化を原因とする血管病の診断薬。
- 5 6. 請求項 5 2 記載の抗体を含有する、動脈硬化を原因とする血管病の治療薬。
- 57. 請求項52記載の抗体と放射性同位元素、蛋白質または低分子の薬剤とを結合させた融合抗体を動脈硬化巣へ誘導するドラッグデリバリー法。
- 58. 配列番号8で表されるアミノ酸配列を有する蛋白質と特異的に結合し細胞のアポトーシスを抑制または促進する薬剤を、配列番号8で表されるアミノ酸配列を有する蛋白質を用いてスクリーニングする方法。
- 59. 配列番号7で表される塩基配列を有するDNA、または配列番号8で表されるアミノ酸配列を有する蛋白質をコードするDNAをベクターに組み込んで得られる組換え体DNAを、宿主細胞に導入して得られる形質転換体を培地に培養し、該培養物を用いて細胞のアポトーシスを抑制または促進する薬剤をスクリーニングする方法。
- 60. 配列番号2、4、6、8、10、12、14、16、18、20、

22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,

- 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
- 66,68,70,72,74,76,78,80,82,84,86,
- 88, 90, 92, 94, 96, 98, 100, 102, 104, 10
- 6、108および110で表されるアミノ酸配列からなる群から選ばれるアミノ酸配列を有する蛋白を生産する組換えウイルスベクター。
- 61.請求項60記載の組換えウイルスベクターを含有する、動脈硬化を原因とする血管病の治療薬。
- 62. 配列番号8で表されるアミノ酸配列を有する蛋白質を生産する組換えウイルスベクターを用いて、細胞のアポトーシスを抑制する方法。
- 63. 配列番号8で表されるアミノ酸配列を有する蛋白質を生産する組換えウイルスベクターを含有する、細胞のアポトーシスを抑制する薬剤。
- 64. 配列番号2、4、6、8、10、12、14、16、18、20、
- 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
- 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
- 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
- 88, 90, 92, 94, 96, 98, 100, 102, 104, 10
- 6、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体を用いて、動脈硬化を原因とする血管病の治療薬をスクリーニングする方法。
- 65. 配列番号2、4、6、8、10、12、14、16、18、20、
- 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
- 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
- 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
- 88, 90, 92, 94, 96, 98, 100, 102, 104, 10
- 6、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体を用いて、ずり応力応答性遺伝子の転写もしくは翻訳を抑制または促進する薬剤をスクリーニングする方法。

6.6.配列番号 8 で表されるアミノ酸配列を有する蛋白質を認識する抗体を用いて、細胞のアポトーシスを調節する方法。

- 67. 配列番号 8 で表されるアミノ酸配列を有する蛋白質を認識する抗体を用いて、細胞のアポトーシスを調節する薬剤をスクリーニングする方法。
- 68. 配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗体用いて、配列番号8で表されるアミノ酸配列を有する蛋白質の発現量を検出することにより細胞のアポトーシス感受性を同定する方法。
- 69. 細胞が血管内皮細胞である請求項21、22、27、33、34、58、59、62、66、67、または68のいずれか1項に記載の方法。
- 70. 配列番号2、4、6、8、10、12、14、16、18、20、
- 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
- 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
- 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
- 88, 90, 92, 94, 96, 98, 100, 102, 104, 10
- 6、108または110で表されるアミノ酸配列を有する蛋白質を認識 する抗体を含有する、動脈硬化を原因とする血管病の診断薬。
- 71. 配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗体を含有する、細胞のアポトーシス感受性を同定する薬剤。
- 72. 配列番号2、4、6、8、10、12、14、16、18、20、
- 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
- 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
- 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
- 88, 90, 92, 94, 96, 98, 100, 102, 104, 10
- 6、108または110で表されるアミノ酸配列を有する蛋白質を認識 する抗体を含有する、動脈硬化を原因とする血管病の治療薬。
- 73.配列番号8で表されるアミノ酸配列を有する蛋白質を認識する抗

体を含有する、細胞のアポトーシスを調節する薬剤。

74. 請求項27、34、58、59または67のいずれか1項に記載の方法により得られる、細胞のアポトーシスを抑制または促進する薬剤。75. 細胞が血管内皮細胞である請求項24、29、63、71、73、または74のいずれか1項に記載の薬剤。

76.配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98、100、102、104、106、108または110で表されるアミノ酸配列を有する蛋白質を認識する抗体と放射性同位元素、蛋白質または低分子の薬剤とを結合させた融合抗体を動脈硬化巣へ誘導するドラッグデリバリー法。

図 2

図 6A

図 6B

図 7A

図 7B

図 8

A4RS-041	-	MSNPSAPPPYEDRNPLYPGPLPPGGYGQPSVLPGGYPAYPGYPO 44
LFG	~	
	45	PGY
	41	
	87	GEWDD
	91	SAGMTKKVRRVFVRKVYTILLIQLLVTLAVVALFTFCDPCQGLCSGQPGW 140
	137	YYVSYAVFVVTYLILACCQGPRRRFPWNIILLTLFTFAMGFMTGTISSMY 186
	141	YWASYAVFFATYLTLACCSGPRRHFPWNLILLTVFTLSMAYLTGMLSSYY 190
	187	OTKAVIIAMIITAVVSISVTIFCFQTKVDFTSCTGLFCVLGIVLLVTGIV 236
	191	NTTSVLLCLGITALVCLSVTVFSFQTKFDFTSCQGVLFVLLMTLFFSGLI 240
	237	TSIVLYFQYVYWLHMLYAALGAICFTLFLAYDTQLVLGNRKHTISPEDYI 286
	241	. .
	287	TGALQIYTDIIYIFTFVLQLMGDRN. 311
	291	

SEQUENCE LISTING

- (110 KYOWA HAKKO KOGYO CO., LTD.
- <120. Shear stress-responsive genes
- <130> PH-1064-PCT
- <140>
- <141>
- <150> JP 1999-280976
- <151> 1999-10-01
- <160> 181
- <170≥ PatentIn Ver. 2.0
- <210> 1
- <211> 3817
- <212 → DNA
- <213> Homo sapiens
- <220>
- <221> CDS
- <222> (440).. (1930)
- <400> 1
- gaattcggt ggagtcctga aggagggcct gatgtcttca tcattctcaa attcttgtaa 60 gctctgcgtc gggtgaaacc agacaaagcc gcgagcccag ggatgggagc acgcggggaa 120 cggcctgccg gcggggacga cagcattgcg cctgggtgca gcagtgtgcg tctcggggaa 180 gggaagatat tttaaggcgt gtctgagcag acggggaggc ttttccaaac ccaggcagct 240 tcgtggcgtg tgcggtttcg acccggtcac acaaagcttc agcatgtcat gtgaggacgg 300 tcgggccctg aaaggaacgc tctcggaatt ggccgcgaa accgatctgc ccgttgtgt 360 tgtgaaacag agaaagatag gcggccatgg tccaaccttg aaggcttatc aggagggcag 420 acttcaaaag ctactaaaa atg aac ggc cct gaa gat ctt ccc aag tcc tat 472

					Me	et As	sn Gl	у Рі	o G	u As	sp Le	eu Pi	o Ly	is Se	er Ty	г
						1				5				j	0	
gac	t a t	gac	ctt	atc	ato	att	gga	ggt	ggo	t ca	gga	ggt	ctg	g gca	gct	520
Asp	Tyr	Asp	Leu	lle	He	He	Gly	Gly	Gly	Ser	Gly	Gly	Leu	ı Ala	Ala	
			15					20					25			
gct	aag	gag	gca	gcc	caa	tat	ggc	aag	aag	gtg	atg	gtc	ctg	gac	ttt	568
Ala	Lys	Głu	Ala	Ala	Gln	Tyr	Gly	Lys	Lys	Val	Met	Val	Leu	Asp	Phe	
		30					35					40				
gtc	ac t	ccc	acc	cct	ctt	gga	act	aga	tgg	ggt	ctt	gga	gga	aca	tgt	616
Val	Thr	Pro	Thr	Pro	Leu	Gly	Thr	Arg	Trp	Gly	Leu	Gly	Gly	Thr	Cys	
	45					50					55					
gtg	aat	gtg	ggt	tgc	ata	cct	aaa	aaa	ctg	atg	cat	caa	gca	gct	ttg	664
Val	Asn	Val	Gly	Cys	He	Pro	Lys	Lys	Leu	Met	His	Gln	Ala	Ala	Leu	
60					65					70					75	
tta	gga	caa	gcc	ctg	caa	gac	tct	cga	aat	tat	gga	tgg	aaa	gtc	gag	712
Leu	Gly	Gln	Ala	Leu	Gln	Asp	Ser	Arg	Asn	Tyr	Gly	Trp	Lys	Val	Glu	
				80					85					90		
				cat												760
Glu	Thr	Val		His	Asp	Trp	Asp		Met	He	Glu	Ala		Gln	Asn	
			95					100					105			
				ttg												808
His	He		Ser	Leu	Asn	Trp		Tyr	Arg	Val	Ala		Arg	Glu	Lys	
		110					115					120				
				gag												856
Lys		Val	Tyr	Glu	Asn	Ala	Tyr	Gly	Gln	Phe	He	Gly	Pro	His	Arg	
	125					130					135					

att aag gca aca aat aat aaa ggc aaa gaa aaa att tat tca gca gag 904

lle Lys Ala Thr Asn Asn Lys Gly Lys Glu Lys Ile Tyr Ser Ala Glu agt tit ctc att gcc act ggt gaa aga cca cgt tac tig ggc alc cct Ser Phe Leu Ile Ala Thr Gly Glu Arg Pro Arg Tyr Leu Gly Ile Pro ggt gac aaa gaa tac tgc atc agc agt gat gat ctt ttc tcc ttg cct Gly Asp Lys Glu Tyr Cys Ile Ser Ser Asp Asp Leu Phe Ser Leu Pro tac tgc ccg ggt aag acc ctg gtt gtt gga gca tcc tat gtc gct ttg Tyr Cys Pro Gly Lys Thr Leu Val Val Gly Ala Ser Tyr Val Ala Leu gag tgc gct gga ttt ctt gct ggt att ggt tta ggc gtc act gtt atg Glu Cys Ala Gly Phe Leu Ala Gly Ile Gly Leu Gly Val Thr Val Met gtt agg tee att ett ett aga gga tit gae eag gae atg gee aac aaa Val Arg Ser Ile Leu Leu Arg Gly Phe Asp Gln Asp Met Ala Asn Lys att ggt gaa cac atg gaa gaa cat ggc atc aag ttt ata aga cag ttc lle Gly Glu His Met Glu Glu His Gly Ile Lys Phe Ile Arg Gln Phe gta cca att aaa gtt gaa caa att gaa gca ggg aca cca ggc cga ctc Val Pro Ile Lys Val Glu Gln Ile Glu Ala Gly Thr Pro Gly Arg Leu aga gta gta gct cag tcc acc aat agt gag gaa atc att gaa gga gaa Arg Val Val Ala Gln Ser Thr Asn Ser Glu Glu Ile Ile Glu Gly Glu

tat	a a t	ace	ggtg	ate	ctg	gca	ata	n gga	a ga	gat	gct	tgo	aca	aga	a aaa	1336
Tyr	Asn	Thr	Val	Me t	Leu	Ala	He	e Gly	/ Arg	Asp	Ala	Cys	Thr	Are	g Lys	
	285					290					295	· •				
att	ggc	t t a	gaa	acc	gta	ggg	gtg	g aag	ata	aat	gaa	aag	act	gga	aaa	1384
He	Gly	Leu	Glu	Thr	Val	Gly	Val	Lys	He	Asn	Glu	Lys	Thr	Gly	Lys	
300					305					310					315	
a t a	cct	gtc	aca	gat	gaa	gaa	cag	acc	aat	gtg	cct	tac	atc	tat	gcc	1432
Ile	Pro	Val	Thr	Asp	Glu	Glu	Gln	Thr	Asn	Val	Pro	Tyr	Ile	Tyr	Ala	
				320					325					330		
att	ggc	gat	ata	ttg	gag	gat	aag	gtg	gag	ctc	acc	cca	gtt	gca	atc	1480
He	Gly	Asp	He	Leu	Glu	Asp	Lys	Val	Glu	Leu	Thr	Pro	Val	Ala	Ile	
			335					340					345			
cag	gca	gga	aga	ttg	ctg	gct	cag	agg	ctc	tat	gca	ggt	tcc	ac t	gtc	1528
Gln	Ala	Gly	Arg	Leu	Leu	Ala	Gln	Arg	Leu	Tyr	Ala	Gly	Ser	Thr	Val	
		350					355					360				
aag	tgt	gac	tat	gaa	aat	gtt	cca	acc	act	gta	ttt	ac t	cct	ttg	gaa	1576
Lys	Cys	Asp	Tyr	Glu	Asn	Val	Pro	Thr	Thr	Val	Phe	Thr	Pro	Leu	Glu	
	365					370					375					
tat	ggt	gct	tgt	ggc	ctt	tct	gag	gag	aaa	gct	gtg	gag	aag	ttt	ggg	1624
Туг	Gly	Ala	Cys	Gly	Leu	Ser	Glu	Glu	Lys	Ala	Val	Glu	Lys	Phe	Gly	
380					385					390					395	
gaa	gaa	aat	att	gag	gtt	tac	cat	agt	tac	ttt	tgg	cca	ttg	gaa	tgg	1672
Glu	Glu	Asn	He	Glu	Val	Tyr	His	Ser	Tyr	Phe	Trp	Pro	Leu	Glu	Trp	
				400					405					410		
acg	att	ccg	tca	aga	gat	aac	aac	aaa	tgt	tat	gca	aaa	ata	atc	tgt	1720
Thr	He	Pro	Ser	Arg	Asp	Asn	Asn	Lys	Cys	Tyr	Ala	Lys	He	He	Cys	
			415					49N					125			

WO 01/25427 PCT/JP00/06840

aat act aaa gac aat gaa cgt gtt gtg ggc ttt cac gta ctg ggt cca 1768
Asn Thr Lys Asp Asn Glu Arg Val Val Gly Phe His Val Leu Gly Pro
430 435 440

aat get gga gaa gtt aca caa gge ttt gea get geg ete aaa tgt gga 1816 Asn Ala Gly Glu Val Thr Gln Gly Phe Ala Ala Ala Leu Lys Cys Gly

445 450 455

ctg acc aaa aag cag ctg gac agc aca att gga atc cac cct gtc tgt 1864 Leu Thr Lys Lys Gln Leu Asp Ser Thr Ile Gly Ile His Pro Val Cys 460 465 470 475

gca gag gta ttc aca aca ttg tct gtg acc aag cgc tct ggg gca agc 1912

Ala Glu Val Phe Thr Thr Leu Ser Val Thr Lys Arg Ser Gly Ala Ser

480 485 490

atc ctc cag gct ggc tgc tgaggttaag ccccagtgtg gatgctgttg 1960 Ile Leu Gln Ala Gly Cys

495

ccaagactgc aaaccactgg ctcgtttccg tgcccaaatc caaggcgaag tittctagag 2020 ggttcttggg ctcttggcac ctgcgtgtcc tgtgcttacc accgcccaag gcccccttgg 2080 atctcttgga taggagttgg tgaatagaag gcaggcagca tcacactggg gtcactgaca 2140 gacttgaagc tgacatttgg cagggcatcg aagggatgca tccatgaagt caccagtctc 2200 aagcccatgt ggtaggcggt gatggaacaa ctgtcaaatc agttttagca tgacctttcc 2260 ttgtggattt tcttattctc gttgtcaagt tttctagggt tgaatttttt tcttttttct 2320 ccatggtgt aatgatatta gagatgaaaa acgttagcag ttgatttttt tcttttttct 2320 ccatggtgtt aatgatatta gagatgaaaa acgttagcag ttgatttttt tccaaaagca 2380 agtcatggct aggatacca tgcaaggtgt cttgttgcat ggaagggata gtttggctcc 2440 cttggaggct atgtaggctt gtcccgggaa agagaactgt cctgcagctg aaatggactg 2500 ttctttactg acctgctcag cagtttcttc tctcatatat tcccaaaaca agtacatctg 2560 cgatcaactc tagccaaatt tgcccctgtg tgctacatga tggatgatta ttattttaag 2620

5/527

WO 01/25427 PCT/JP00/06840

gtctgtttag gaagggaaat ggctacttgg ccagccattg cctggcattt ggtagtatag 2680 tatgattete accattattt gteatggagg eagacataca eeagaaatgg gggagaaaca 2740 glacatatet tielgtetti agittatigi glgetggiet aageaageig agateatiig 2800 caatggaaaa cacgtaactt gtttaaaagt ttttctggta gctttagctt tatgctaaaa 2860 aaaataatga cattgggtat ctatttettt etaagacata cattagtagg aaaataagte 2920 ttttcatgct tatgatltag ctgttttgtg gtaattgctt tttaaaggaa gttattaata 2980 tcataagtta ttattaatat tttgaacaca ggtggatgtg aaggattttc atttaaaaac 3040 caagtggttt tgactttttc tgttgaatga acaactgtgc cttgtggaat ttttgcagaa 3100 gtgtttatgc titgttagca titcaacitg cattattata aagaggtati aatgccicag 3160 ttatgtgttt gtcaatgtac tggctgagga ttctatctca gctgtctttt ctaactgtgt 3220 aggitgagit itgaacacgi gciigtggac alcagceice igecagcagi iciigaagei 3280 tettitical teetgetact claceigial ticteagitg cageacigag iggicaaaat 3340 acatttctgg gccacctcag ggaacccatg catctgcctg gcatttaggc agcagagccc 3400 ctgaccgtcc cccacagget ctgcctcacg tecteatete atttggetgt gtaaagaaat 3460 gggaaaaggg aaaaggagag agcaaltgag gcagttgacc ataltcagtt ttatttattt 3520 atttttaatt tgttttttc tccaagtcca ccagtclctg aaattagaac agtaggcggt 3580 atgagataat caggcctaat catgttgtga ttctcttttc ttagtggagt ggaatgttct 3640 ttttattgaa acatatacta agttccatgt atttttgtta caaatcttct gaaaaaaaac 3760 aaaacaatgt gaaacattaa aattaaaagg cattaataat aaaaaaaaa aaaaaaa 3817

<210> 2

<211> 497

<212> PRT

<213 > Homo sapiens

<400> 2

Met Asn Gly Pro Glu Asp Leu Pro Lys Ser Tyr Asp Tyr Asp Leu Ile

!				ļ	5				10)				15	·)
He	He	e Gly	Gly	Gly	/ Sei	r Gly	/ Gly	/ Leu	ı Ala	. Ala	Ala	Ly:	s Glu	ı Ala	Ala
			20)				25					30)	
Gln	Tyr	Gly	Lys	Lys	va I	Met	Val	Leu	Asp	Phe	Val	Thi	Pro	Thr	Pro
		35					40)				45			
Leu	Gly	Thr	Arg	Trp	Gly	Leu	Gly	Gly	Thr	Cys	Val	Asn	Val	Gly	Cys
	50					55					60				
He	Pro	Lys	Lys	Leu	Me t	His	Gln	Ala	Ala	Leu	Leu	Gly	Gln	Ala	Leu
65					70					75					80
GIn	Asp	Ser	Arg	Asn	Tyr	Gly	Trp	Lys	Val	Glu	Glu	Thr	Val	Lys	His
				85					90					95	
Asp	Trp	Asp	Arg	Met	He	Glu	Ala	Val	Gln	Asn	His	He	Gly	Ser	Leu
			100					105					110		
Asn	Trp	Gly	Tyr	Arg	Val	Ala	Leu	Arg	Glu	Lys	Lys	Val	Val	Tyr	Glu
		115					120					125			
Asn	Ala	Tyr	Gly	Gln	Phe	Ile	Gly	Pro	His	Arg	Ile	Lys	Ala	Thr	Asn
	130					135					140				
Asn	Lys	Gly	Lys	Glu	Lys	Ile	Tyr	Ser	Ala	Glu	Ser	Phe	Leu	He	Ala
145					150					155					160
Thr	Gly	Glu	Arg	Pro	Arg	Tyr	Leu	Gly	Ile	Pro	Gly	Asp	Lys	Glu	Tyr
				165					170					175	
Cys	Ile	Ser	Ser	Asp	Asp	Leu	Phe	Ser	Leu	Pro	Tyr	Cys	Pro	Gly	Lys
			180					185					190		
Thr	Leu	Val	Val	Gly	Ala	Ser	Tyr	Val	Ala	Leu	Glu	Cys	Ala	Gly	Phe
		195					200					205			
Leu .	Ala	Gly	He	Gly	Leu	Gly	Val	Thr	Val	Met	Val	Arg	Ser	He	Leu
	210					215					220				

Leu	Arg	Gly	Phe	Asp	Gln	Asp	Met	Ala	Asn	Lys	He	Gly	Glu	His	Met
225					230					235					240
Glu	Glu	His	Gly	He	Lys	Phe	He	Arg	Gln	Phe	Val	Pro	He	Lys	Val
				245					250					255	
Glu	Gln	He	Glu	Ala	Gly	Thr	Pro	Gly	Arg	Leu	Arg	Val	Val	Ala	Gln
			260					265					270		
Ser	Thr	Asn	Ser	Glu	Glu	He	He	Glu	Gly	Glu	Tyr	Asn	Thr	Val	Met
		275					280					285			
Leu	Ala	Ile	Gly	Arg	Asp	Ala	Cys	Thr	Arg	Lys	He	Gly	Leu	Glu	Thr
	290					295					300				
Val	Gly	Val	Lys	He	Asn	Glu	Lys	Thr	Gly	Lys	He	Pro	Val	Thr	Asp
305					310					315					320
Glu	Glu	Gln	Thr	Asn	Val	Pro	Tyr	He	Tyr	Ala	He	Gly	Asp	Ile	Leu
				325					330					335	
Glu	Asp	Lys	Val	Glu	Leu	Thr	Pro	Val	Ala	Ile	Gln	Ala	Gly	Arg	Leu
			340					345					350		
Leu	Ala	Gln	Arg	Leu	Tyr	Ala	Gly	Ser	Thr	Val	Lys	Cys	Asp	Tyr	Glu
		355					360					365			
Asn	Val	Pro	Thr	Thr	Val	Phe	Thr	Pro	Leu	Glu	Tyr	Gly	Ala	Cys	Gly
	370					375					380				
Leu	Ser	Glu	Glu	Lys	Ala	Val	Glu	Lys	Phe	Gly	Glu	Glu	Asn	He	
385					390					395					400
Val	Tyr	His	Ser	Tyr	Phe	Trp	Pro	Leu	Glu	Trp	Thr	He	Pro	Ser	Arg
				405					410					415	
Asp	Asn	Asn	Lys	Cys	Tyr	Ala	Lys	Ile	He	Cys	Asn	Thr	Lys	Asp	Asn
			420					425					430		

Glu Arg Val Val Gly Phe His Val Leu Gly Pro Asn Ala Gly Glu Val 435 440 445 Thr Gln Gly Phe Ala Ala Ala Leu Lys Cys Gly Leu Thr Lys Lys Gln 450 460 455 Leu Asp Ser Thr Ile Gly Ile His Pro Val Cys Ala Glu Val Phe Thr 465 470 475 480 Thr Leu Ser Val Thr Lys Arg Ser Gly Ala Ser Ile Leu Gln Ala Gly 485 490 495 Cys <210> 3 (211) 1487 <212> DNA <213> Homo sapiens 〈220〉 <221> CDS $\langle 222 \rangle$ (6)... (938) <400> 3 ggagc atg cgg ggc gcg gcg cgg gca tgg ggg cgc gcg ggg cag ccg 50 Met Arg Gly Ala Ala Arg Ala Ala Trp Gly Arg Ala Gly Gln Pro 1 5 10 15 98 Trp Pro Arg Pro Pro Ala Pro Gly Pro Pro Pro Pro Pro Leu Pro Leu 20 25 30 146 Leu Leu Leu Leu Ala Gly Leu Leu Gly Gly Ala Gly Ala Gln Tyr 35 40 45

10/527

agt	gac	acc	gag	gtg	ctc	cta	gcc	gtc	tgc	acc	agc	gac	ttc	gcc	gtt	626
Ser	Asp	Thr	Glu	Val	Leu	Leu	Ala	Val	Cys	Thr	Ser	Asp	Phe	Ala	Val	
			195					200					205			
cga	ggc	tcc	atc	cag	caa	gtt	acc	cac	gag	cct	gag	cgg	cag	gac	tca	674
Arg	Gly	Ser	He	Gln	Gln	Val	Thr	His	Glu	Pro	Glu	Arg	Gln	Asp	Ser	
		210					215					220				
gcc	atc	cac	ctg	cgc	gtg	agc	aga	ctc	tat	cgg	cag	aaa	agc	agg	gtc	722
Ala	He	His	Leu	Arg	Val	Ser	Arg	Leu	Tyr	Arg	Gln	Lys	Ser	Arg	Val	
	225					230					235					
t t c	gag	ccg	gtg	ccc	gag	ggt	gac	ggc	cac	tgg	cag	ggg	cgc	gtc	agg	770
Phe	Glu	Pro	Val	Pro	Glu	Gly	Asp	Gly	His	Trp	Gln	Gly	Arg	Val	Arg	
240					245					250					255	
acg	ctg	ctg	gag	tgt	ggc	gtg	cgg	ccg	ggg	cat	ggc	gac	ttc	ctc	ttc	818
Thr	Leu	Leu	Glu	Cys	Gly	Val	Arg	Pro	Gly	His	Gly	Asp	Phe	Leu	Phe	
				260					265					270		
					ttc											866
Thr	Gly	His	Met	His	Phe	Gly	Glu			Leu	Gly	Cys		Pro	Arg	
			275					280					285			
					agg											914
Phe	Lys	Asp	Phe	Gln	Arg	Met		Arg	Asp	Ala	Gln		Arg	Gly	Leu	
		290					295					300				
aac	cct	tgt	gag	gtt	ggc	acg	gac	tgad	ctccs	gtg	ggccs	gctgo	cc c	ttcct	tctcc	968
Asn	Pro	Cys	Glu	Val	Gly		Asp									
	305					310										
															gggcca	
cgcs	entgi	gga (geege	egtge	cc ci	tgggo	ccar	g tee	etgad	ccct	ggta	accga	aag (tgts	ggacgt	1088

tetegecaca eteaaceca tgagetteca gecaaggatg ecetggecga ttggaaatge 1148
tgtaaaatge aaactaagtt attatattt tttttggtaa aaaagaaatg teeataggaa 1208
acaaatteet gtgtettaaa aegeettggt gtgeegtetg atactgttet etaaagaegt 1268
taggagteae ggeatetgge etgeggttgg gtgaageaet ggeegttggg cacagtggat 1328
gtgtgaaaag gtgeeattea gagttgttat teteatgaeg gaagttttgg ageeaaataa 1388
taegttttt atttteattt tattttaaa ggatgagett tggteetttt eaggeegeeg 1448
gttgttteeg tteeegagaa taaagaegag gateegaee

<210> 4

⟨211⟩ 311

<212> PRT

<213> Homo sapiens

(400) 4

Met Arg Gly Ala Ala Arg Ala Ala Trp Gly Arg Ala Gly Gln Pro Trp

1 5 10 15

Pro Arg Pro Pro Ala Pro Gly Pro Pro Pro Pro Leu Pro Leu Leu

20 25 30

Leu Leu Leu Ala Gly Leu Leu Gly Gly Ala Gly Ala Gln Tyr Ser

35 40 45

Ser Asp Arg Cys Ser Trp Lys Gly Ser Gly Leu Thr His Glu Ala His

50 55 60

Arg Lys Glu Val Glu Gln Val Tyr Leu Arg Cys Ala Ala Gly Ala Val

65 70 75 80

Glu Trp Met Tyr Pro Thr Gly Ala Leu Ile Val Asn Leu Arg Pro Asn

85 90 95

Thr Phe Ser Pro Ala Arg His Leu Thr Val Cys Ile Arg Ser Phe Thr

100 105 110

изр	361	361	Giy	пта	W211	116	1 9 1	Leu	Gru	Lys	1 11 1	GIY	GIU	Let	I MIS
		115					120					125			
Leu	Leu	Val	Pro	Asp	Gly	Asp	Gly	Arg	Pro	Gly	Arg	Val	Gln	Cys	Phe
	130					135					140				
Gly	Leu	Glu	Gln	Gly	Gly	Leu	Phe	Val	Glu	Ala	Thr	Pro	Gln	GIn	Asp
145					150					155					160
Пe	Gly	Arg	Arg	Thr	Thr	Gly	Phe	Gln	Tyr	Glu	Leu	Val	Arg	Arg	His
				165					170					175	
Arg	Ala	Ser	Asp	Leu	His	Glu	Leu	Ser	Ala	Pro	Cys	Arg	Pro	Cys	Ser
			180					185					190		
Asp	Thr	Glu	Val	Leu	Leu	Ala	Val	Cys	Thr	Ser	Asp	Phe	Ala	Val	Arg
		195					200					205			
Gly	Ser	He	Gln	Gln	Val	Thr	His	Glu	Pro	Glu	Arg	Gln	Asp	Ser	Ala
	210					215					220				
He	His	Leu	Arg	Val	Ser	Arg	Leu	Tyr	Arg	Gln	Lys	Ser	Arg	Val	Phe
225					230					235					240
Glu	Pro	Val	Pro	Glu	Gly	Asp	Gly	His	Trp	Gln	Gly	Arg	Val	Arg	Thr
				245					250					255	
Leu	Leu	Glu	Cys	Gly	Val	Arg	Pro	Gly	His	Gly	Asp	Phe	Leu	Phe	Thr
			260					265					270		
Gly	His	Me t	His	Phe	Gly	Glu	Ala	Arg	Leu	Gly	Cys	Ala	Pro	Arg	Phe
		275					280					285			
Lys	Asp	Phe	Gln	Arg	Met	Tyr	Arg	Asp	Ala	Gln	Glu	Arg	Gly	Leu	Asn
	290					295					300				
Pro	Cys	Glu	Val	Gly	Thr	Asp									
305					310										

<210> 5

<211 ≥ 2820

< 212 → DNA

<213> Homo sapiens

<220>

<221> CDS

 $\langle 222 \rangle$ (49)... (2664)

70

<400> 5

ctcccaaagc agaattgcag ctgccgccgc cgccacctcc aggccact atg gcg cct 57

Met Ala Pro

1

ggg gct gcc cag gag ctt cag gcc aag ttg gca gag atc gga gct ccg 105 Gly Ala Ala Gln Glu Leu Gln Ala Lys Leu Ala Glu Ile Gly Ala Pro

5 10 15

atc cag ggt aat cgc gag gag ctg gtg gag cgg ctg cag agc tac acc 153 Ile Gln Gly Asn Arg Glu Glu Leu Val Glu Arg Leu Gln Ser Tyr Thr

20 25 30 35

cgc cag act ggc atc gtg ctg aat cgg ccg gtt ttg aga ggg gaa gat 201

Arg Gln Thr Gly Ile Val Leu Asn Arg Pro Val Leu Arg Gly Glu Asp

40 45 50

ggg gac aaa gcc gct cca cct ccc atg tcg gca cag ctc cct gga att 249 Gly Asp Lys Ala Ala Pro Pro Pro Met Ser Ala Gln Leu Pro Gly Ile

55 60 65

ccc atg cca cca cct ttg gga ctc ccc cct ctg cag cct cct ccg 297

Pro Met Pro Pro Pro Leu Gly Leu Pro Pro Leu Gln Pro Pro

75

cca ccc cca cca cct cca cca ggc ctt ggc ctt ggc ttt cct atg gcc 345

Pro	Pro	Pro	Pro	Pro	Pro	Pro	Gly	/ Leu	Gly	Lei	Gly	' Phe	Pro) Me	t Ala	
	85					90)				95					
cac	сса	cca	aat	ttg	ggg	ccc	ccg	cct	c c t	ctc	cgt	gtg	ggt	gas	у сса	393
His	Pro	Pro	Asn	Leu	Gly	Pro	Pro	Pro	Pro	Leu	Arg	Val	Gly	Glu	Pro	
100					105					110					115	
gtg	gca	ctg	tca	gag	gag	gag	cgg	ctg	aag	ttg	gct	cag	cag	cag	gcg	441
Val	Ala	Leu	Ser	Glu	Glu	Glu	Arg	Leu	Lys	Leu	Ala	Gln	Gln	Gln	Ala	
				120					125					130		
gca	ttg	ctg	atg	cag	cag	gag	gag	cgt	gcc	aag	cag	cag	gga	gat	cat	489
Ala	Leu	Leu	Me t	Gln	Gln	Glu	Glu	Arg	Ala	Lys	Gln	Gln	Gly	Asp	His	
			135					140					145			
tcg	ctg	aag	gaa	cat	gag	ctc	ttg	gag	cag	cag	aag	cgg	gca	gct	gtg	537
Ser	Leu	Lys	Glu	His	Glu	Leu	Leu	Glu	Gln	Gln	Lys	Arg	Ala	Ala	Val	
		150					155					160				
								gag								585
Leu		Glu	Gln	Glu	Arg	Gln	Gln	Glu	He	Ala	Lys	Met	Gly	Thr	Pro	
	165					170					175					
								ggc								633
	Pro	Arg	Pro	Pro		Asp	Met	Gly	Gln		Gly	Val	Arg	Thr	Pro	
180					185					190					195	
								gtg								681
Leu	Gly	Pro	Arg		Ala	Ala	Pro	Val		Pro	Val	Gly	Pro		Pro	
				200					205					210		
								gtt								729
Thr	Val	Leu		Met	Gly	Ala		Val	Pro	Arg	Рго			Pro	Pro	
			215					220					225			

ccg	CCC	cct	gga	gat	gag	aac	aga	gag	atg	gat	gac	ccc	tct	gtg	ggc	777
Pro	Pro	Pro	Gly	Asp	Glu	Asn	Arg	Glu	Met	Asp	Asp	Pro	Ser	Val	Gly	
		230					235					240				
ccc	aag	atc	ccc	cag	gc t	ttg	gag	aag	atc	ctg	cag	ctg	aag	gag	agc	825
Pro	Lys	He	Pro	Gln	Aia	Leu	Glu	Lys	He	Leu	Gln	Leu	Lys	Glu	Ser	
	245					250					255					
cgc	cag	gaa	gag	atg	aat	tct	cag	cag	gag	gaa	gag	gaa	atg	gaa	aca	873
Arg	Gln	Glu	Glu	Met	Asn	Ser	Gln	Gln	Glu	Glu	Glu	Glu	Met	Glu	Thr	
260					265					270					275	
gat	gct	cgc	tcg	tcc	ctg	ggc	cag	tca	gcg	tca	gag	act	gag	gag	gac	921
Asp	Ala	Arg	Ser	Ser	Leu	Gly	Gln	Ser	Ala	Ser	Glu	Thr	Glu	Glu	Asp	
				280					285					290		
aca	gtg	tcc	gta	tct	aaa	aag	gag	aaa	aac	cgg	aag	cgt	agg	aac	cga	969
Thr	Val	Ser	Val	Ser	Lys	Lys	Glu	Lys	Asn	Arg	Lys	Arg	Arg	Asn	Arg	
			295					300					305			
aag	aag	aag	aaa	aag	ccc	cag	cgg	gtg	cga	ggg	gtg	tcc	tct	gag	agc	1017
Lys	Lys	Lys	Lys	Lys	Pro	Gln	Arg	Val	Arg	Gly	Val	Ser	Ser	Glu	Ser	
		310					315					320				
tct	ggg	gac	cgg	gag	aaa	gac	tca	acc	cgg	tcc	cgt	ggc	tct	gat	tcc	1065
Ser	Gly	Asp	Arg	Glu	Lys	Asp	Ser	Thr	Arg	Ser	Arg	Gly	Ser	Asp	Ser	
	325					330					335					
cca	gca	gct	gat	gtt	gag	att	gag	tat	gtg	act	gaa	gaa	cct	gaa	att	1113
Pro	Ala	Ala	Asp	Val	Glu	He	Glu	Tyr	Val	Thr	Glu	Glu	Pro	Glu	He	
340					345					350					355	
tac	gag	ccc	aac	ttt	atc	ttc	ttt	aag	agg	atc	ttt	gag	gct	ttt	aag	1161
Tyr	Glu	Pro	Asn	Phe	He	Phe	Phe	Lys	Arg	He	Phe	Glu	Ala	Phe	Lys	
				360					365					370		

ctc	ac t	gat	gat	gtg	aag	aag	gag	aaa	gag	aaa	gag	cca	gag	aaa	ctt	1209
Leu	Thr	Asp	Asp	Val	Lys	Lys	Glu	Lys	Glu	Lys	Glu	Pro	Glu	Lys	Leu	
			375					380					385			
gac	aaa	ctg	gag	aac	tct	gca	gcc	ссс	aag	aag	aag	gga	ttt	gaa	gag	1257
Asp	Lys	Leu	Glu	Asn	Ser	Ala	Ala	Pro	Lys	Lys	Lys	Gly	Phe	Glu	Glu	
		390					395					400				
gag	cac	aag	gac	agt	gat	gat	gac	agc	agt	gat	gac	gag	cag	gaa	aag	1305
Glu	His	Lys	Asp	Ser	Asp	Asp	Asp	Ser	Ser	Asp	Asp	Glu	Gln	Glu	Lys	
	405					410					415					
aag	cca	gaa	gcc	ccc	aag	ctg	tcc	aag	aag	aag	ttg	cgc	cga	atg	aac	1353
Lys	Pro	Glu	Ala	Pro	Lys	Leu	Ser	Lys	Lys	Lys	Leu	Arg	Arg	Met	Asn	
420					425					430					435	
cgc	ttc	ac t	gtg	gct	gaa	ctc	aag	cag	ctg	gtg	gct	cgg	ccc	gat	gtc	1401
Arg	Phe	Thr	Val	Ala	Glu	Leu	Lys	Gln	Leu	Val	Ala	Arg	Pro	Asp	Val	
				440					445					450		
gtg	gag	atg	cac	gat	gtg	aca	gcg	cag	gac	cct	aag	ctc	ttg	gtt	cac	1449
Val	Glu	Met	His	Asp	Val	Thr	Ala	Gln	Asp	Pro	Lys	Leu	Leu	Val	His	
			455					460					465			
	aag															1497
Leu	Lys	Ala	Thr	Arg	Asn	Ser	Val	Pro	Val	Pro	Arg		Trp	Cys	Phe	
		470					475					480				
	cgc															1545
Lys	Arg	Lys	Tyr	Leu	Gln	Gly	Lys	Arg	Gly	He	Glu	Lys	Pro	Pro	Phe	
	485					490					495					
	ctg															1593
Glu	Leu	Pro	Asp	Phe	He	Lys	Arg	Thr	Gly	Ile	Gln	Glu	Met	Arg	Glu	

500					505					510					515	
gcc	ctg	cag	gag	aag	gaa	gaa	cag	aag	acc	atg	aag	tca	aaa	atg	cga	1641
Ala	Leu	Gln	Glu	Lys	Glu	Glu	Gln	Lys	Thr	Me t	Lys	Ser	Lys	Met	Arg	
				520					525					530		
gag	aaa	gll	cgg	cct	aag	atg	ggc	aaa	att	gac	atc	gac	tac	cag	aaa	1689
Glu	Lys	Val	Arg	Pro	Lys	Met	Gly	Lys	He	Asp	He	Asp	Tyr	Gln	Lys	
			535					540					545			
ctg	cat	gat	gcc	ttc	ttc	aag	tgg	cag	acc	aag	cca	aag	ctg	acc	atc	1737
Leu	His	Asp	Ala	Phe	Phe	Lys	Trp	Gln	Thr	Lys	Pro	Ĺys	Leu	Thr	He	
		550					555					560				
cat	ggg	gac	ctg	tac	tat	gag	ggg	aag	gag	ttc	gag	aca	cga	ctg	aag	1785
His	Gly	Asp	Leu	Tyr	Tyr	Glu	Gly	Lys	Glu	Phe	Glu	Thr	Arg	Leu	Lys	
	565					570					575					
gag	aag	aag	cca	gga	gat	ctg	tct	gat	gag	cta	agg	att	tcc	ttg	ggg	1833
Glu	Lys	Lys	Pro	Gly	Asp	Leu	Ser	Asp	Glu	Leu	Arg	He	Ser	Leu	Gly	
580					585					590					595	
atg	cca	gta	gga	cca	aat	gcc	cac	aag	gtc	cct	ccc	cca	tgg	ctg	att	1881
Met	Pro	Val	Gly	Pro	Asn	Ala	His	Lys	Val	Pro	Pro	Pro	Trp	Leu	He	
				600					605					610		
gcc	atg	cag	cga	tat	gga	cca	ccc	cca	tcg	tat	ccc	aac	ctg	aaa	atc	1929
Ala	Met	Gln	Arg	Туг	Gly	Pro	Pro	Pro	Ser	Tyr	Pro	Asn	Leu	Lys	Ile	
			615					620					625			
cct	ggg	ctg	aac	tcg	ccc	atc	cct	gag	agc	tgt	tcc	ttt	ggg	tac	cat	1977
Pro	Gly	Leu	Asn	Ser	Pro	Ile	Pro	Glu	Ser	Cys	Ser	Phe	Gly	Tyr	His	
		630					635					640				
gc t	ggt	ggc	tgg	ggc	aaa	cct	cca	gtg	gat	gag	act	ggg	aaa	ccg	ctc	2025
Ala	Gly	Gly	Trp	Gly	Lys	Pro	Pro	Val	Asp	Glu	Thr	Gly	Lys	Pro	Leu	

	645					650					655					
t a	t ggg	gac	gtg	ttt	gga	acc	aat	gc t	gct	gaa	t t t	cag	acc	aag	act	2073
Ту	r Gly	Asp	Val	Phe	Gly	Thr	Asn	Ala	Ala	Glu	Phe	Gln	Thr	Lys	Thr	
66	0				665					670					675	
ga	g gaa	gaa	gag	att	gat	cgg	acc	cct	tgg	ggg	gaa	ctg	gaa	cca	tct	2121
Gl	u Glu	Glu	Glu	He	Asp	Arg	Thr	Pro	Trp	Gly	Glu	Leu	Glu	Pro	Ser	
				680					685					690		
ga	t gaa	gaa	tcc	tca	gaa	gaa	gag	gaa	gag	gaa	gaa	agt	gat	gaa	gac	2169
As	p Glu	Glu	Ser	Ser	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Ser	Asp	Glu	Asp	
			695					700					705			
aa	а сса	gat	gag	aca	ggc	ttt	att	acc	cct	gca	gac	agt	ggc	ctt	atc	2217
Ly	s Pro	Asp	Glu	Thr	Gly	Phe	He	Thr	Pro	Ala	Asp	Ser	Gly	Leu	He	
		710					715					720				
ac	t cct	gga	ggc	ttt	tca	tca	gtg	cct	gc t	gga	atg	gag	acc	cct	gaa	2265
Th	г Рго	Gly	Gly	Phe	Ser	Ser	Val	Pro	Ala	Gly	Met	Glu	Thr	Pro	Glu	
	725					730					735					
	c att															2313
Le	u Ile	Glu	Leu	Arg	Lys	Lys	Lys	Ile	Glu		Ala	Met	Asp	Gly		
74					745					750					755	
	g aca															2361
Gl	u Thr	Pro	Gln		Phe	Thr	Val	Leu		Glu	Lys	Arg	Thr		Thr	
				760					765					770		
gt	t gga	ggg	gcc	atg	atg	gga	tca	acc	cac	att	tat	gac	atg	tcc	acg	2409
۷a	l Gly	Gly		Met	Met	Gly	Ser		His	Ile	Tyr	Asp		Ser	Thr	
			775					780					785			
gt	t atg	agc	cgg	aag	ggc	ccg	gc t	cct	gag	ctg	c a a	ggt	gtg	gaa	gtg	2457

Val Met Ser Arg Lys Gly Pro Ala Pro Glu Leu Gln Gly Val Glu Val 795 800 790 gcg ctg gcg cct gaa gag ttg gag ctg gat cct atg gcc atg acc cag 2505 Ala Leu Ala Pro Glu Glu Leu Glu Leu Asp Pro Met Ala Met Thr Gln 815 810 805 aag tat gag gag cat gtg cgg gag cag cag gct caa gta gag aag gag 2553 Lys Tyr Glu Glu His Val Arg Glu Gln Gln Ala Gln Val Glu Lys Glu 835 830 825 820 gac ttc agt gac atg gtg gct gag cac gct gcc aaa cag aag caa aaa 2601 Asp Phe Ser Asp Met Val Ala Glu His Ala Ala Lys Gln Lys Gln Lys 845 850 840 aaa cgg aaa gct cag ccc cag gac agc cgt ggg ggc agc aag aaa tat 2649 Lys Arg Lys Ala Gln Pro Gln Asp Ser Arg Gly Gly Ser Lys Lys Tyr 865 855 860 2704 aag gag ttc aag ttt taggtcccct cacactagcc ctttttttgg ccctacgtct Lys Glu Phe Lys Phe 870 ggatgcctgg gcttcacaca agaaccacct ctcccgcagt tcccaaggac ttgtcatttc 2764 atgitettat ittagaeetg tittgiaaat aaageiglii eecaaggaaa gagatg 2820 <210> 6 <211> 872 <212> PRT <213> Homo sapiens <400> 6 Met Ala Pro Gly Ala Ala Gln Glu Leu Gln Ala Lys Leu Ala Glu Ile 10 15

5

Gly	Ala	Pro	He	Gln	Gly	Asn	Arg	Glu	Glu	Leu	Val	Glu	Arg	Leu	Gln
			20					25					30		
Ser	Tyr	Thr	Arg	Gln	Thr	Gly	He	Val	Leu	Asn	Arg	Pro	Val	Leu	Arg
		35					40					45			
Gly	Glu	Asp	Gly	Asp	Lys	Ala	Ala	Pro	Pro	Pro	Met	Ser	Ala	Gln	Leu
	50					55					60				
Pro	Gly	He	Pro	Me t	Pro	Pro	Pro	Pro	Leu	Gly	Leu	Pro	Pro	Leu	Gln
65					70					75					80
Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Gly	Leu	Gly	Leu	Gly	Phe
				85					90					95	
Pro	Me t	Ala	His	Рго	Pro	Asn	Leu	Gly	Pro	Pro	Pro	Pro	Leu	Arg	Val
			100					105					110		
Gly	Glu	Pro	Val	Ala	Leu	Ser	Glu	Glu	Glu	Arg	Leu	Lys	Leu	Ala	Gln
		115					120					125			
Gln	Gln	Ala	Ala	Leu	Leu	Met	Gln	Gln	Glu	Glu	Arg	Ala	Lys	Gln	Gln
	130					135					140				
Gly	Asp	His	Ser	Leu	Lys	Glu	His	Glu	Leu	Leu	Glu	Gln	Gln	Lys	Arg
145					150					155					160
Ala	Ala	Val	Leu	Leu	Glu	Gln	Glu	Arg	Gln	Gln	Glu	He	Ala	Lys	Met
				165					170					175	
Gly	Thr	Pro	Val	Pro	Arg	Pro	Pro	Gln	Asp	Met	Gly	Gln	He	Gly	Val
			180					185					190		
Arg	Thr	Pro	Leu	Gly	Pro	Arg	Val	Ala	Ala	Pro	Val	Gly	Pro	Val	Gly
		195					200					205			
Pro	Thr	Pro	Thr	Val	Leu	Pro	Met	Gly	Ala	Pro	Val	Pro	Arg	Pro	Arg
	210					215					220				
Glv	Pro	Pro	Pro	Pro	Pro	Gly	Asp	Glu	Asn	Arg	Glu	Met	Asp	Asp	Pro

225					230					235					240
Ser	Val	Gly	Pro	Lys	He	Pro	Gln	Ala	Leu	Glu	Lys	He	Leu	Gln	Leu
				245					250					255	
Lys	Glu	Ser	Arg	Gln	Glu	Glu	Me t	Asn	Ser	Gln	Gln	Glu	Glu	Glu	Glu
			260					265					270		
Me t	Glu	Thr	Asp	Ala	Arg	Ser	Ser	Leu	Gly	Gln	Ser	Ala	Ser	Glu	Thr
		275					280					285			
Glu	Glu	Asp	Thr	Val	Ser	Val	Ser	Lys	Lys	Glu	Lys	Asn	Arg	Lys	Arg
	290					295					300				
Arg	Asn	Arg	Lys	Lys	Lys	Lys	Lys	Pro	Gln	Arg	Val	Arg	Gly	Val	Ser
305					310					315					320
Ser	Glu	Ser	Ser	Gly	Asp	Arg	Glu	Lys	Asp	Ser	Thr	Arg	Ser	Arg	Gly
				325					330					335	
Ser	Asp	Ser	Pro	Ala	Ala	Asp	Val	Glu	He	Glu	Tyr	Val	Thr	Glu	Glu
			340					345					350		
Pro	Glu		Tyr	Glu	Pro	Asn		He	Phe	Phe	Lys		Ile	Phe	Glu
		355					360					365			
Ala		Lys	Leu	Thr	Asp		Val	Lys	Lys	Glu		Glu	Lys	Glu	Pro
	370					375					380		_	_	
	Lys	Leu	Asp	Lys	Leu	Glu	Asn	Ser	Ala		Pro	Lys	Lys	Lys	
385	0.1				390		•			395	2				400
Phe	Glu	Glu	Glu		Lys	Asp	Ser	Asp		Asp	Ser	Ser	Asp		Glu
	6.1		_	405	0.1		.		410	0		_		415	
Gln	Glu	Lys		Pro	Glu	Ala	Pro		Leu	Ser	Lys	Lys		Leu	Arg
			420	<i>D</i> .	T.	· ·		425	Y	,	0.1		430		
Arg	me t	Asn	Arg	Phe	Thr	Val	Ala	Glu	Leu	Lys	GIN	Leu	Val	Ala	Arg

Pro Asp Val Val Glu Met His Asp Val Thr Ala Gln Asp Pro Lys Leu Leu Val His Leu Lys Ala Thr Arg Asn Ser Val Pro Val Pro Arg His Trp Cys Phe Lys Arg Lys Tyr Leu Gln Gly Lys Arg Gly Ile Glu Lys Pro Pro Phe Glu Leu Pro Asp Phe Ile Lys Arg Thr Gly Ile Gln Glu Met Arg Glu Ala Leu Gln Glu Lys Glu Glu Gln Lys Thr Met Lys Ser Lys Met Arg Glu Lys Val Arg Pro Lys Met Gly Lys Ile Asp Ile Asp Tyr Gln Lys Leu His Asp Ala Phe Phe Lys Trp Gln Thr Lys Pro Lys Leu Thr Ile His Gly Asp Leu Tyr Tyr Glu Gly Lys Glu Phc Glu Thr Arg Leu Lys Glu Lys Lys Pro Gly Asp Leu Ser Asp Glu Leu Arg Ile Ser Leu Gly Met Pro Val Gly Pro Asn Ala His Lys Val Pro Pro Pro Trp Leu Ile Ala Met Gln Arg Tyr Gly Pro Pro Pro Ser Tyr Pro Asn Leu Lys Ile Pro Gly Leu Asn Ser Pro Ile Pro Glu Ser Cys Ser Phe Gly Tyr His Ala Gly Gly Trp Gly Lys Pro Pro Val Asp Glu Thr Gly

Lys Pro Leu Tyr Gly Asp Val Phe Gly Thr Asn Ala Ala Glu Phe Gln Thr Lys Thr Glu Glu Glu Glu Ile Asp Arg Thr Pro Trp Gly Glu Leu Glu Pro Ser Asp Glu Glu Ser Ser Glu Glu Glu Glu Glu Glu Ser Asp Glu Asp Lys Pro Asp Glu Thr Gly Phe Ile Thr Pro Ala Asp Ser Gly Leu Ile Thr Pro Gly Gly Phe Ser Ser Val Pro Ala Gly Met Glu Thr Pro Glu Leu IIe Glu Leu Arg Lys Lys IIe Glu Glu Ala Met Asp Gly Ser Glu Thr Pro Gln Leu Phe Thr Val Leu Pro Glu Lys Arg Thr Ala Thr Val Gly Gly Ala Met Met Gly Ser Thr His Ile Tyr Asp Met Ser Thr Val Met Ser Arg Lys Gly Pro Ala Pro Glu Leu Gln Gly Val Glu Val Ala Leu Ala Pro Glu Glu Leu Glu Leu Asp Pro Met Ala Met Thr Gln Lys Tyr Glu Glu His Val Arg Glu Gln Gln Ala Gln Val Glu Lys Glu Asp Phe Ser Asp Met Val Ala Glu His Ala Ala Lys Gln Lys Gln Lys Lys Arg Lys Ala Gln Pro Gln Asp Ser Arg Gly Gly Ser

WO 01/25427

PCT/JP00/06840

Lys Lys Tyr Lys Glu Phe Lys Phe

865

870

<210> 7

<211> 2433

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (214).. (1146)

<400> 7

40

atgccagccc caaacctcat ccctagtga ggccttgctg atgtggaagt ggccagggcc 60
ctcatggtag gctgggcaga agcccaagaa caggctctaa agctgctaaa cccggcagtc 120
ctggtccccg gaggctcttg ccagtctgac agtgttcttg gcactgctca aaggtcccag 180
cagctggggt tccccgtcag cccgtgagcg gcc atg tcc aac ccc agc gcc cca 234
Met Ser Asn Pro Ser Ala Pro

5

55

cca cca tat gaa gac cgc aac ccc ctg tac cca ggc cct ccg ccc cct 282
Pro Pro Tyr Glu Asp Arg Asn Pro Leu Tyr Pro Gly Pro Pro Pro Pro

1

10 15 20

ggg ggc tat ggg cag cca tct gtc ctg cca gga ggg tat cct gcc tac 330 Gly Gly Tyr Gly Gln Pro Ser Val Leu Pro Gly Gly Tyr Pro Ala Tyr

25 30 35

45

cct ggc tac ccg cag cct ggc tac ggt cac cct gct ggc tac cca cag 378 Pro Gly Tyr Pro Gln Pro Gly Tyr Gly His Pro Ala Gly Tyr Pro Gln

ccc atg ccc ccc acc cac ccg atg ccc atg aac tac ggc cca ggc cat 426

Pro	Met	Pro	Рго	Thr	His	Pro	Met	Pro	Met	Ası	ı Tyr	Gly	Pro) Gly	/ His	
				60					65	•				7()	
ggc	tat	gat	ggg	gag	gag	aga	gcg	gtg	agt	gat	agc	ttc	ggg	cct	gga	474
Gly	Туг	Asp	Gly	Glu	Glu	Arg	Ala	Val	Ser	Asp	Ser	Phe	Gly	Pro	Gly	
			75					80					85			
gag	tgg	gat	gac	cgg	aaa	gtg	cga	cac	act	ttt	atc	cga	aag	gtt	tac	522
Glu	Trp	Asp	Asp	Arg	Lys	Val	Arg	His	Thr	Phe	He	Arg	Lys	Val	Tyr	
		90					95					100				
tcc	atc	atc	tcc	gtg	cag	ctg	ctc	atc	ac t	gtg	gcc	atc	a t t	gct	atc	570
Ser	He	He	Ser	Val	Gln	Leu	Leu	He	Thr	Val	Ala	He	He	Ala	He	
	105					110					115					
ttc	acc	ttt	gtg	gaa	cct	gtc	agc	gcc	ttt	gtg	agg	aga	aat	gtg	gct	618
Phe	Thr	Phe	Val	Glu	Pro	Val	Ser	Ala	Phe	Val	Arg	Arg	Asn	Val	Ala	
120					125					130					135	
gtc	tac	tac	gtg	tcc	tat	gct	gtc	ttc	gtt	gtc	acc	tac	ctg	atc	ctt	666
Val	Туг	Tyr	Val	Ser	Tyr	Ala	Val	Phe	Val	Val	Thr	Tyr	Leu	He	Leu	
				140					145					150		
								cgt								714
Ala	Cys	Cys		Gly	Pro	Arg	Arg	Arg	Phe	Pro	Trp	Asn		He	Leu	
			155					160					165			
								ggc								762
Leu	Thr		Phe	Thr	Phe	Ala		Gly	Phe	Met	Thr		Thr	He	Ser	
		170					175					180				
								atc								810
Ser		Tyr	Gln	Thr	Lys		Val	He	He	Ala	Met	He	He	Thr	Ala	
	185					190					195					
gtg	gta	tcc	att	tca	gtc	acc	atc	ttc	tgc	ttt	cag	acc	aag	gtg	gac	858

Val Val Ser Ile Ser Val Thr Ile Phe Cys Phe Gln Thr Lys Val Asp 215 210 205 200 ttc acc tcg tgc aca ggc ctc ttc tgt gtc ctg gga att gtg ctc ctg 906 Phe Thr Ser Cys Thr Gly Leu Phe Cys Val Leu Gly Ile Val Leu Leu 230 225 220 gtg act ggg att gtc act agc att gtg ctc tac ttc caa tac gtt tac 954 Val Thr Gly Ile Val Thr Ser Ile Val Leu Tyr Phe Gln Tyr Val Tyr 245 240 235 tgg ctc cac atg ctc tat gct gct ctg ggg gcc att tgt ttc acc ctg 1002 Trp Leu His Met Leu Tyr Ala Ala Leu Gly Ala Ile Cys Phe Thr Leu 260 255 250 tto ctg got tac gac aca cag ctg gtc ctg ggg aac cgg aag cac acc 1050 Phc Leu Ala Tyr Asp Thr Gln Leu Val Leu Gly Asn Arg Lys His Thr 275 270 265 atc agc ccc gag gac tac atc act ggc gcc ctg cag att tac aca gac 1098 lle Ser Pro Glu Asp Tyr Ile Thr Gly Ala Leu Gln Ile Tyr Thr Asp 290 295 285 280 atc atc tac atc ttc acc ttt gtg ctg cag ctg atg ggg gat cgc aat 1146 lle lle Tyr lle Phe Thr Phe Val Leu Gln Leu Met Gly Asp Arg Asn 305 310 300 taaggagcaa gcccccattt tcacccgatc ctgggctctc ccttccaagc tagagggctg 1206 ggccctatga ctgtggtctg ggctttaggc ccctttcctt ccccttgagt aacatgccca 1266 gtttcctttc tgtcctggag acaggtggcc tctctggcta tggatgtgtg ggtacttggt 1326 ggggacggag gagctaggga ctaactgttg ctcttggtgg gcttggcagg gactaggctg 1386 aagatgtgtc ttctccccgc cacctactgt atgacaccac attcttccta acagctgggg 1446 ttgtgaggaa tatgaaaaga gcctattcga tagctagaag ggaatatgaa aggtagaagt 1506

gacticaagg teacgaggtt ececteceae etetgteaca ggettettga etacgtagtt 1566 ggagetattt etteeceeag caaageeaga gagetttgte eeeggeetee tggacacata 1626 ggccattate etgtatteet tiggetigge atetitlage teaggaaggi agaagagate 1686 tgtgcccatg ggtctccttg cttcaatccc ttcttgtttc agtgacatat gtattgttta 1746 totgggttag ggatggggga cagataatag aacgagcaaa gtaacctata caggccagca 1806 tggaacagca tctcccctgg gcttgctcct ggcttgtgac gctataagac agagcaggcc 1866 acatgtggcc atctgctccc cattettgaa agetgetggg geeteettge aggettetgg 1926 atototogic agagtgaact offiction gtattcagge agotoagage agaaagtaag 1986 gggcagagte atacgtgtgg ccaggaagta gccagggtga agagagacte ggtgcgggca 2046 gggagaatgc ctgggggtcc ctcacctggc tagggagata ccgaagccta ctgtggtact 2106 gaagactict gggtictitc citcigctaa cccagggagg gicciaagag gaaggigact 2166 tctctctgtt tgtcttaagt tgcactgggg gatttctgac ttgaggccca tctctccage 2226 cagccactgc cttctttgta atattaagtg ccttgagctg gaatggggaa gggggacaag 2286 ggtcagtctg tcgggtgggg gcagaaatca aatcagccca aggatatagt taggattaat 2346 tacttaatag agaaatccta actatatcac acaaagggat acaactataa atgtaataaa 2406 2423 atttatgtct agaagtt

<210> 8

<211> 311

<212> PRT

<213> Homo sapiens

<400> 8

Met Ser Asn Pro Ser Ala Pro Pro Pro Tyr Glu Asp Arg Asn Pro Leu

1 5 10 15

Tyr Pro Gly Pro Pro Pro Pro Gly Gly Tyr Gly Gln Pro Ser Val Leu

20 25 30

Pro Gly Gly Tyr Pro Ala Tyr Pro Gly Tyr Pro Gln Pro Gly Tyr Gly

PCT/JP00/06840

WO 01/25427 His Pro Ala Gly Tyr Pro Gln Pro Met Pro Pro Thr His Pro Met Pro Met Asn Tyr Gly Pro Gly His Gly Tyr Asp Gly Glu Glu Arg Ala Val Ser Asp Ser Phe Gly Pro Gly Glu Trp Asp Asp Arg Lys Val Arg His Thr Phe Ile Arg Lys Val Tyr Ser lle Ile Ser Val Gln Leu Leu Ile Thr Val Ala Ile Ile Ala Ile Phe Thr Phe Val Glu Pro Val Ser Ala Phe Val Arg Arg Asn Val Ala Val Tyr Tyr Val Ser Tyr Ala Val Phe Val Val Thr Tyr Leu lle Leu Ala Cys Cys Gln Gly Pro Arg Arg Arg Phe Pro Trp Asn Ile Ile Leu Leu Thr Leu Phe Thr Phe Ala Met Gly Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln Thr Lys Ala Val Ile Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile Ser Val Thr Ile Phe

Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys Thr Gly Leu Phe Cys

Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile Val Thr Ser Ile Val

Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met Leu Tyr Ala Ala Leu

Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr Asp Thr Gln Leu Val 260 265 270 Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu Asp Tyr Ile Thr Gly 285 275 280 Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile Phe Thr Phe Val Leu 300 290 295 Gln Leu Met Gly Asp Arg Asn 310 305 <210> 9 <211> 4049 <212> DNA <213> Homo sapiens <220> <221> CDS ⟨222⟩ (86).. (2710) <400> 9 cctcggccct ccgcctcctc ccctcctct tctcgtcttc agccgctcct ctcgccgccg 60 cctccacage ctgggcctcg ccgcg atg ccg gag aag agg ccc ttc gag cgg 112 Met Pro Glu Lys Arg Pro Phe Glu Arg 1 5 ctg cct gcc gat gtc tcc ccc atc aac tac agc ctt tgc ctc aag ccc 160 Leu Pro Ala Asp Val Ser Pro Ile Asn Tyr Ser Leu Cys Leu Lys Pro 20 25 10 15 gac ttg ctg gac ttc acc ttc gag ggc aag ctg gag gcc gcc gcc cag Asp Leu Leu Asp Phe Thr Phe Glu Gly Lys Leu Glu Ala Ala Gln 40 30 35

gtg	agg	cag	gcg	ac t	aat	cag	att	gtg	atg	aat	tgt	gct	gat	a t t	gat	256
Val	Arg	Gln	Ala	Thr	Asn	Gln	He	Val	Met	Asn	Cys	Ala	Asp	He	Asp	
			45					50					55			
att	att	aca	gc t	tca	tat	gca	cca	gaa	gga	gat	gaa	gaa	ata	cat	gct	304
He	He	Thr	Ala	Ser	Tyr	Ala	Pro	Glu	Gly	Asp	Glu	Glu	He	His	Ala	
		60					65					70				
aca	gga	ttt	aac	tat	cag	aat	gaa	gat	gaa	aaa	gtc	acc	ttg	tct	ttc	352
Thr	Gly	Phe	Asn	Tyr	Gln	Asn	Glu	Asp	Glu	Lys	Val	Thr	Leu	Ser	Phe	
	75					80					85					
cct	agt	ac t	ctg	caa	aca	ggt	acg	gga	acc	t t a	aag	ata	gat	ttt	gtt	400
Pro	Ser	Thr	Leu	Gln	Thr	Gly	Thr	Gly	Thr	Leu	Lys	He	Asp	Phe	Val	
90					95					100					105	
gga	gag	ctg	aat	gac	aaa	atg	aaa	ggt	ttc	tat	aga	agt	aaa	tat	act	448
Gly	Glu	Leu	Asn	Asp	Lys	Met	Lys	Gly	Phe	Tyr	Arg	Ser	Lys	Tyr	Thr	
				110					115					120		
acc	cct	tct	gga	gag	gtg	cgc	tat	gct	gc t	gta	aca	cag	t t t	gag	gct	496
Thr	Pro	Ser	Gly	Glu	Val	Arg	Tyr	Ala	Ala	Val	Thr	Gln	Phe	Glu	Ala	
			125					130					135			
act	gat	gcc	cga	agg	gc t	ttt	cct	tgc	tgg	gat	gag	cct	gct	atc	aaa	544
Thr	Asp	Ala	Arg	Arg	Ala	Phe	Pro	Cys	Trp	Asp	Glu	Pro	Ala	lle	Lys	
		140					145					150				
gca	act	ttt	gat	atc	tca	ttg	gtt	gtt	cct	aaa	gac	aga	gta	gct	tta	592
Ala	Thr	Phe	Asp	He	Ser	Leu	Val	Val	Pro	Lys	Asp	Arg	Val	Ala	Leu	
	155					160					165					
tca	aac	atg	aat	gta	att	gac	cgg	aaa	cca	tac	cct	gat	gat	gaa	aat	640
Ser	Asn	Me t	Asn	Val	He	Asp	Arg	Lys	Pro	Tyr	Pro	Asp	Asp	Glu	Asn	

170					175					180					185	
t t a	gtg	gaa	gtg	aag	ttt	gcc	cgc	aca	cct	gtt	atg	tct	aca	tat	ctg	688
Leu	Val	Glu	Val	Lys	Phe	Ala	Arg	Thr	Pro	Val	Met	Ser	Thr	Туг	Leu	
				190					195					200		
gtg	gca	ttt	gtt	gtg	ggt	gaa	tat	gac	ttt	gta	gaa	aca	agg	tca	aaa	736
Val	Ala	Phe	Val	Val	Gly	Glu	Tyr	Asp	Phe	Val	Glu	Thr	Arg	Ser	Lys	
			205					210					215			
gat	ggt	gtg	tgt	gtc	cgt	gtt	tac	ac t	cct	gtt	ggc	aaa	gca	gag	caa	784
Asp	Gly	Val	Cys	Val	Arg	Val	Tyr	Thr	Pro	Val	Gly	Lys	Ala	Glu	Gln	
		220					225					230				
gga	aaa	ttt	gcg	t t a	gag	gtt	gct	gc t	aaa	acc	ttg	cct	ttt	tat	aag	832
Gly	Lys	Phe	Ala	Leu	Glu	Val	Ala	Ala	Lys	Thr	Leu	Pro	Phe	Tyr	Lys	
	235					240					245					
gac	tac	ttc	aat	gtt	cct	tat	cct	cta	cct	aaa	att	gat	ctc	att	gct	880
Asp	Tyr	Phe	Asn	Val	Pro	Tyr	Pro	Leu	Pro	Lys	He	Asp	Leu	He		
250					255					260					265	
		gac														928
Ile	Ala	Asp	Phe	Ala	Ala	Gly	Ala	Met		Asn	Trp	Gly	Leu		Thr	
				270					275					280		0.50
		gag														976
Tyr	Arg	Glu	Thr	Ala	Leu	Leu	Ile		Pro	Lys	Asn	Ser		Ser	Ser	
			285					290					295			1004
		cag														1024
Ser	Arg	Gln	Trp	Val	Ala	Leu		Val	Gly	His	Glu		Ala	HIS	GIN	
		300					305					310				1050
		gga														1072
Trn	Pho	Glv	Asn	Len	Val	Thr	Met	Glu	Trp	Tro	Thr	His	Leu	lrp	Leu	

	215					320					325					
	315														.	1 1 2 0
							att									1120
Asn	Glu	Gly	Phe	Ala	Ser	Trp	He	Glu	Tyr	Leu	Cys	Val	Asp	His	Cys	
330					335					340					345	
ttc	cca	gag	tat	gat	att	tgg	ac t	cag	ttt	gtt	tct	gct	gat	tac	acc	1168
Phe	Pro	Glu	Tyr	Asp	He	Trp	Thr	Gln	Phe	Val	Ser	Ala	Asp	Tyr	Thr	
				350					355					360		
cgt	gcc	cag	gag	ctt	gac	gcc	tta	gat	aac	agc	cat	cct	att	gaa	gtc	1216
Λrg	Ala	Gln	Glu	Leu	Asp	Ala	Leu	Asp	Asn	Ser	His	Pro	He	Glu	Val	
			365					370					375			
agi	gtg	ggc		сса	tct	gag	gtt	gat	gag	ata	ttt	gat	gct	ata	tca	1264
							Val									
501	7 (4.1	380				0.0	385					390				
			1		t a t	ata		0.00	o t a	e t a	ant		tac	att	aaa	1312
							atc									1012
Tyr	Ser	Lys	Gly	Ala	Ser		He	Arg	met	Leu		ASP	IУГ	116	GIY	
	395					400					405					
gat	aag	gac	ttt	aag	aaa	gga	atg	aac	atg	tat	tta	acc	aag	ttc	caa	1360
Asp	Lys	Asp	Phe	Lys	Lys	Gly	Met	Asn	Me t	Tyr	Leu	Thr	Lys	Phe	Gln	
410					415					420					425	
caa	aag	aat	gc t	gcc	aca	gag	gat	ctc	tgg	gaa	agt	tta	gaa	aat	gct	1408
Gln	Lys	Asn	Ala	Ala	Thr	Glu	Asp	Leu	Trp	Glu	Ser	Leu	Glu	Asn	Ala	
				430					435					440		
agt	ggt	aaa	cct	ata	gca	gct	gtg	atg	aat	acc	t gg	acc	aaa	caa	atg	1456
							Val									
~~ .	3	, ,	445					450					455			
	.	0.5.5		0 1 1	tot	a t c	gaa		d a a	രാസ	σta	gaa		gar	202	1504
gga	iii	CCC	CIC	all	ıaı	BIB	Баа	5C L	Баа	ιας	5 t a	944	541	540	u o u	.001

Gly	Phe	Pro	Leu	11e	lyr	Val	Glu	Ala	Glu	GIr	val	Glu	i Ast) Ast	Arg	
		460					465					470)			
t t a	ttg	agg	ttg	tcc	caa	aag	aag	ttc	tgt	gct	ggt	ggg	t ca	tat	gtt	1552
Leu	Leu	Arg	Leu	Ser	GIn	Lys	Lys	Phe	Cys	Ala	Gly	Gly	Ser	Tyr	Val	
	475					480					485					
ggt	gaa	gat	tgt	ссс	cag	t gg	atg	gtc	cct	atc	aca	atc	tct	act	agt	1600
Gly	Glu	Asp	Cys	Pro	Gln	Trp	Met	Val	Pro	Ile	Thr	He	Ser	Thr	Ser	
490					495					500					505	
gaa	gac	ccc	aac	cag	gcc	aaa	cta	aaa	att	cta	atg	gac	aag	cca	gag	1648
Glu	Asp	Pro	Asn	Gln	Ala	Lys	Leu	Lys	He	Leu	Met	Asp	Lys	Pro	Glu	
				510					515					520		
atg	aat	gtg	gtt	ttg	aaa	aat	gtc	aaa	cca	gac	caa	tgg	gtg	aag	t t a	1696
Met	Asn	Val	Val	Leu	Lys	Asn	Val	Lys	Pro	Asp	Gln	Trp	Val	Lys	Leu	
			525					530					535			
aac	tta	gga	aca	gtt	ggg	ttt	tat	cgg	acc	cag	tac	agc	tct	gcc	atg	1744
Asn	Leu	Gly	Thr	Val	Gly	Phe	Tyr	Arg	Thr	Gln	Туг	Ser	Ser	Ala	Met	
		540					545					550				
ctg	gaa	agt	tta	tta	cca	ggc	att	cgt	gac	ctt	tct	ctg	ccc	cct	gtg	1792
Leu	Glu	Ser	Leu	Leu	Pro	Gly	He	Arg	Asp	Leu	Ser	Leu	Pro	Pro	Val	
	55 5					560					565					
gat	cga	ctt	gga	tta	cag	aat	gac	ctc	ttc	tcc	ttg	gct	cga	gct	gga	1840
Asp	Arg	Leu	Gly	Leu	Gln	Asn	Asp	Leu	Phe	Ser	Leu	Ala	Arg	Ala	Gly	
570					575					580					585	
atc	att	agc	ac t	gta	gag	gtt	cta	aaa	gtc	atg	gag	gct	ttt	gtg	aat	1888
Ile	He	Ser	Thr	Val	Glu	Val	Leu	Lys	Val	Me t	Glu	Ala	Phe	Val	Asn	
				590					595					600		
gag	ccc	aat	tat	ac t	gta	tgg	agc	gac	ctg	agc	tgt	aac	ctg	ggg	att	1936

Glu	Pro	Asn	Tyr	Thr	Val	Trp	Ser	Asp	Leu	Ser	Cys	Asn	Leu	Gly	He	
			605					610					615			
ctc	tca	ac t	ctc	ttg	tcc	cac	aca	gac	ttc	tat	gag	gaa	atc	cag	gag	1984
Leu	Ser	Thr	Leu	Leu	Ser	His	Thr	Asp	Phe	Tyr	Glu	Glu	He	Gln	Glu	
		620					625					630				
ttt	gtg	aaa	gat	gtc	ttt	tca	cct	ata	ggg	gag	aga	ctg	ggc	tgg	gac	2032
Phe	Val	Lys	Asp	Val	Phe	Ser	Pro	He	Gly	Glu	Arg	Leu	Gly	Trp	Asp	
	635					640					645					
ccc	aaa	c c t	gga	gaa	ggt	cat	ctc	gat	gca	ctc	ctg	agg	ggc	ttg	gtt	2080
Pro	Lys	Pro	Gly	Glu	Gly	llis	Leu	Asp	Ala	Leu	Leu	Arg	Gly	Leu	Val	
650					655					660					665	
ctg	gga	aaa	cta	gga	aaa	gca	gga	cat	aag	gca	acg	tta	gaa	gaa	gcc	2128
Leu	Gly	Lys	Leu	Gly	Lys	Ala	Gly	His	Lys	Ala	Thr	Leu	Glu	Glu	Ala	
				670					675					680		
cgt	cgt	cgg	ttt	aag	gac	cac	gtg	gaa	gga	aaa	cag	att	ctc	tcc	gct	2176
Arg	Arg	Arg	Phe	Lys	Asp	His	Val	Glu	Gly	Lys	Gln	He	Leu	Ser	Ala	
			685					690					695			
gat	ctg	agg	agt	cct	gtc	tat	ctg	act	gtt	ttg	aag	cat	ggt	gat	ggc	2224
Asp	Leu	Arg	Ser	Pro	Val	Tyr	Leu	Thr	Val	Leu	Lys	His	Gly	Asp	Gly	
		700					705					710				
ac t	act	tta	gat	att	atg	tta	aaa	ctt	cat	aaa	caa	gca	gat	atg	caa	2272
Thr	Thr	Leu	Asp	He	Me t	Leu	Lys	Leu	His	Lys	Gln	Ala	Asp	Met	Gln	
	715					720					725					
gaa	gag	aaa	aac	cga	atc	gaa	aga	gtc	ctt	ggc	gct	act	ctt	ttg	cct	2320
Glu	Glu	Lys	Asn	Arg	He	Glu	Arg	Val	Leu	Gly	Ala	Thr	Leu	Leu	Pro	
730					735					740					745	

gac	ctg	att	caa	aaa	gtc	ctc	acg	ttt	gca	ctt	tca	gaa	gag	gta	cgt	2368
Asp	Leu	He	Gln	Lys	Val	Leu	Thr	Phe	Ala	Leu	Ser	Glu	Glu	Val	Arg	
				750					755					760		
сса	cag	gac	ac t	gta	tcg	gta	att	ggt	gga	gta	gct	gga	ggc	agc	aag	2416
Pro	Gln	Asp	Thr	Val	Ser	Val	He	Gly	Gly	Val	Ala	Gly	Gly	Ser	Lys	
			765					770					775			
cat	ggt	agg	aaa	gct	gct	t gg	aaa	ttc	ata	aag	gac	aac	t gg	gaa	gaa	2464
His	Gly	Arg	Lys	Ala	Ala	Trp	Lys	Phe	Ile	Lys	Asp	Asn	Trp	Glu	Glu	
		780					785					790				
ctt	tat	aac	cga	tac	cag	gga	gga	ttc	t t a	a t a	tcc	aga	c t a	a t a	aag	2512
Leu	Tyr	Asn	Arg	Tyr	Gln	Gly	Gly	Phe	Leu	He	Ser	Arg	Leu	He	Lys	
	795					800					805					
cta	tca	gtt	gag	gga	ttt	gca	gtt	gat	aaa	atg	gct	gga	gag	gtt	aag	2560
Leu	Ser	Val	Glu	Gly	Phe	Ala	Val	Asp	Lys	Met	Ala	Gly	Glu	Val	Lys	
810					815					820					825	
gct	ttc	ttc	gag	agt	cac	cca	gct	cct	tca	gct	gag	cgt	acc	atc	cag	2608
Ala	Phe	Phe	Glu	Ser	His	Pro	Ala	Pro	Ser	Ala	Glu	Arg	Thr	Ile	Gln	
				830					835					840		
cag	tgt	tgt	gaa	aat	att	ctg	ctg	aat	gct	gcc	t gg	cta	aag	cga	gat	2656
Gln	Cys	Cys	Glu	Asn	He	Leu	Leu	Asn	Ala	Ala	Trp	Leu	Lys	Arg	Asp	
			845					850					855			
gct	gag	agc	atc	cac	cag	tac	ctc	ctt	cag	cgg	aag	gcc	tca	cca	ссс	2704
Ala	Glu	Ser	He	His	Gln	Tyr	Leu	Leu	Gln	Arg	Lys	Ala	Ser	Pro	Pro	
		860					865					870				
aca	gtg	tgaa	tcct	ga g	gtgc	cgcc	a tt	ggcg	gttc	tgc	tgct	tcg	ctgc	aggg	a t	2760
Thr	Val															

aaggtggage taccgaacag etgatteata tgccaagaat ttggagtett ettteaaace 2820 agtgggggtt ggacaatgaa tgtagttaac tggttcctgc tcacactcca gaattaaatt 2880 ctattgaaaa aggaaaatca gcaattcagc aaaaaaataa ataaaaaata aaaatgtaaa 2940 tatgatagta ataaaataga gcataacgaa actgtgaaac tttctgaagc cttgtcagtg 3000 gttaaaagta tttaacactc tactgttaat gacagatgtt ctgtttttat aacctaccaa 3060 aaggaaacta gaggettett ggtgaagage attittigtga agtgggttet geaaggagee 3120 tataaagcca agggtggtgt ccatttctgg gaatggttaa acacaaaagg ctgatagctg 3180 gtatcacata gttggagtca gtgcataatt ccaagtggct ttttttttt ttggcacggg 3240 gactgateag gaagatatat teetgeataa eteaatetga accaaggatt glagtitagt 3300 tttcctcctt gccttccctt ctgtgtgacc gaccccttgg ccaaaaaaaa aacaaaaagc 3360 aaaaaaaaaa aacctaccct gttctggttt ttttcctccc tttagttcca cccccaaccc 3420 ccattccctg gtgtccttct tagagatgaa gaaataataa ggaaacatct ttcatagcca 3480 cattaaataa gagaaactga tatacattat titilitetti ttaaagatga ettataagaa 3540 ccctgaaatt tatataggtg agacaataga aataaaaaga tcttcagcca ggcctttctg 3600 aaggagttat tetgetaaaa atggtettag ttgtetgaaa ageeagetet tgaacetett 3660 cacaacagta tcaacactgg cttctcccgg ttcattttat gcgtgcgaga agtcagtggt 3720 aactgctgca gggcttaata cattagtggt aactggttta aaaaacaaag actgtaagcc 3780 tgtgtgtgcc actgtttgct tcaacagtat atcctactaa taagcctcac ctatttaatc 3840 caatgagttt taaatctaaa teteatteee ttettettte eetaeetttt ttttetttt 3900 ttcttaaaaa aatatttigi gitattaaca gaaattcata tilggigigg citaacggta 3960 tttcagaagg tcatcagatt gtgagactgc ttccttgaaa catttttgtg ctattgtttt 4020 4049 aaaaaaataa ttaaaaaaca gttggcgtt

<210> 10

<211> 875

<212> PRT

<213> Homo sapiens

<400> 10

Met Pro Glu Lys Arg Pro Phe Glu Arg Leu Pro Ala Asp Val Ser Pro

1 5 10 15

Ile Asn Tyr Ser Leu Cys Leu Lys Pro Asp Leu Leu Asp Phe Thr Phe
20 25 30

Glu Gly Lys Leu Glu Ala Ala Ala Gln Val Arg Gln Ala Thr Asn Gln 35 40 45

Ile Val Met Asn Cys Ala Asp Ile Asp Ile Ile Thr Ala Ser Tyr Ala
50 55 60

Pro Glu Gly Asp Glu Glu Ile Ilis Ala Thr Gly Phe Asn Tyr Gln Asn
65 70 75 80

Glu Asp Glu Lys Val Thr Leu Ser Phe Pro Ser Thr Leu Gln Thr Gly
85 90 95

Thr Gly Thr Leu Lys IIe Asp Phe Val Gly Glu Leu Asn Asp Lys Met
100 105 110

Lys Gly Phe Tyr Arg Ser Lys Tyr Thr Thr Pro Ser Gly Glu Val Arg

Tyr Ala Ala Val Thr Gln Phe Glu Ala Thr Asp Ala Arg Arg Ala Phe 130 135 140

Val Val Pro Lys Asp Arg Val Ala Leu Ser Asn Met Asn Val Ile Asp 165 170 175

Arg Lys Pro Tyr Pro Asp Asp Glu Asn Leu Val Glu Val Lys Phe Ala 180 185 190

Arg Thr Pro Val Met Ser Thr Tyr Leu Val Ala Phe Val Val Gly Glu

		195					200					205			
Tyr	Asp	Phe	Val	Glu	Thr	Arg	Ser	Lys	Asp	Gly	Val	Cys	Val	Arg	Val
	210					215					220				
Tyr	Thr	Pro	Val	Gly	Lys	Ala	Glu	Gln	Gly	Lys	Phe	Ala	Leu	Glu	Val
225					230					235					240
Ala	Ala	Lys	Thr	Leu	Pro	Phe	Tyr	Lys	Asp	Tyr	Phe	Asn	Val	Pro	Tyr
				245					250					255	
Pro	Leu	Pro	Lys	Ile	Asp	Leu	He	Ala	He	Ala	Asp	Phe	Ala	Ala	Gly
			260					265					270		
Ala	Met	Glu	Asn	Trp	Gly	Leu	Val	Thr	Tyr	Arg	Glu	Thr	Ala	Leu	Lei
		275					280					285			
Ile	Asp	Pro	Lys	Asn	Ser	Cys	Ser	Ser	Ser	Arg	Gln	Trp	Val	Ala	Leu
	290					295					300				
Val	Val	Gly	His	Glu	Leu	Ala	His	Gln	Trp	Phe	Gly	Asn	Leu	Val	Thi
305					310					315					320
Met	Glu	Trp	Trp	Thr	His	Leu	Trp	Leu	Asn	Glu	Gly	Phe	Ala		Trp
				325					330					335	
He	Glu	Tyr		Cys	Val	Asp	His		Phe	Pro	Glu	Tyr		Ile	Trp
			340					345					350		
Thr	Gln		Val	Ser	Ala	Asp		Thr	Arg	Ala	Gln		Leu	Asp	Ala
		355					360					365	_		<i>a</i> .
Leu		Asn	Ser	His	Pro		Glu	Val	Ser	Val		His	Pro	Ser	Glu
	370					375					380			_	
Val	Asp	Glu	He	Phe	Asp	Ala	Ile	Ser	Tyr		Lys	Gly	Ala	Ser	
385					390					395					400
He	Arg	Met	Leu		Asp	Tyr	He	Gly		Lys	Asp	Phe	Lys		Gly
				405					410					415	

Met	Asn	Me t	lyr	Leu	lhr	Lys	rne	GIN	GIN	Lys	ASII	Ala	нта	1 11 1	GIU
			420					425					430		
Asp	Leu	Trp	Glu	Ser	Leu	Glu	Asn	Ala	Ser	Gly	Lys	Pro	He	Ala	Ala
		435					440					445			
Val	Met	Asn	Thr	Trp	Thr	Lys	Gln	Met	Gly	Phe	Pro	Leu	Ile	Tyr	Val
	450					455					460				
Glu	Ala	Glu	Gln	Val	Glu	Asp	Asp	Arg	Leu	Leu	Arg	Leu	Ser	Gln	Lys
465					470					475					480
Lys	Phe	Cys	Ala	Gly	Gly	Ser	Tyr	Val	Gly	Glu	Asp	Cys	Pro	Gln	Trp
				485					490					495	
Me t	Val	Pro	Ile	Thr	He	Ser	Thr	Ser	Glu	Asp	Pro	Asn	Gln	Ala	Lys
			500					505					510		
Leu	Lys	He	Leu	Met	Asp	Lys	Pro	Glu	Met	Asn	Val	Val	Leu	Lys	Asn
		515					520					525			
Val	Lys	Pro	Asp	Gln	Trp	Val	Lys	Leu	Asn	Leu	Gly	Thr	Val	Gly	Phe
	530					535					540				
Tyr	Arg	Thr	Gln	Tyr	Ser	Ser	Ala	Met	Leu	Glu	Ser	Leu	Leu	Pro	
545					550					555					560
Ile	Arg	Asp	Leu	Ser	Leu	Pro	Pro	Val	Asp	Arg	Leu	Gly	Leu		Asn
				565					570					575	
Asp	Leu	Phe	Ser	Leu	Ala	Arg	Ala	Gly	He	He	Ser	Thr		Glu	Val
			580					585					590		
Leu	Lys	Val	Me t	Glu	Ala	Phe	Val	Asn	Glu	Pro	Asn	Tyr	Thr	Val	Trp
		595					600					605			
Ser	Asp	Leu	Ser	Cys	Asn	Leu	Gly	He	Leu	Ser	Thr	Leu	Leu	Ser	His
	610					615					620				

Thr	Asp	Phe	Tyr	Glu	Glu	He	Gln	Glu	Phe	Val	Lvs	Asp	Val	Phe	Ser
625					630					635					640
Pro	Пе	Gly	Glu	Arg	Leu	Gly	Trp	Asp	Pro	Lys	Pro	Gly	Glu	Gly	His
				645					650					655	
Leu	Asp	Ala	Leu	Leu	Arg	Gly	Leu	Val	Leu	Gly	Lys	Leu	Gly	Lys	Ala
			660					665					670		
Gly	His	Lys	Ala	Thr	Leu	Glu	Glu	Ala	Arg	Arg	Arg	Phe	Lys	Asp	His
		675					680					685			
Val	Glu	Gly	Lys	Gln	He	Leu	Ser	Ala	Asp	Leu	Arg	Ser	Pro	Val	Tyr
	690					695					700				
Leu	Thr	Val	Leu	Lys	His	Gly	Asp	Gly	Thr	Thr	Leu	Asp	Ile	Met	Leu
705					710					715					720
Lys	Leu	His	Lys	Gln	Ala	Asp	Met	Gln	Glu	Glu	Lys	Asn	Arg	He	Glu
				725					730					735	
Arg	Val	Leu	Gly	Ala	Thr	Leu	Leu	Pro	Asp	Leu	He	Gln	Lys	Val	Leu
			740					745					750		
Thr	Phe	Ala	Leu	Ser	Glu	Glu	Val	Arg	Pro	Gln	Asp	Thr	Val	Ser	Val
		755					760					765			
He	Gly	Gly	Val	Ala	Gly	Gly	Ser	Lys	His	Gly	Arg	Lys	Ala	Ala	Trp
	770					775					780				
Lys	Phe	He	Lys	Asp	Asn	Trp	Glu	Glu	Leu	Tyr	Asn	Arg	Tyr	Gln	Gly
785					790					795					800
Gly	Phe	Leu	He	Ser	Arg	Leu	He	Lys	Leu	Ser	Val	Glu	Gly	Phe	Ala
				805					810					815	
Val	Asp	Lys	Me t	Ala	Gly	Glu	Val	Lys	Ala	Phe	Phe	Glu	Ser	His	Pro
			820					825					830		
Ala	Pro	Ser	Ala	Glu	Arg	Thr	Ile	Gln	Gln	Cys	Cys	Glu	Asn	He	Leu

835

840

845

Leu Asn Ala Ala Trp Leu Lys Arg Asp Ala Glu Ser Ile His Gln Tyr

850

855

860

Leu Leu Gln Arg Lys Ala Ser Pro Pro Thr Val

865

870

875

<210> 11

<211> 2007

<212> DNA

<213 ≠ Homo sapiens

<220>

<221> CDS

<222> (1124).. (1330)

<400> 11

tetaaaagee eeettatace eeaetttgtg eageaaagat eeeegtgeag gteacageet 60 gatttgtge eagetggae aaatteetga ggeacaactt ggetteagtt eagattteaa 120 getgtgttgg tgttgggaee ageagaagge aaacgteeag eeaacacaca ggaetgtaag 180 aggaetetga getacgtgee eigtgaagae eeeeaggett tgteatagga ggtegtteag 240 etteeceaaa gteagaggtg atttgatttg gggaagaetg aatatteaca eetaagtegt 300 gageatatee tgagtttac tteettatgg eitgeeetee aagttetet teteatacac 360 acacacacce ttgeteeaga ateaceagae aceteeatgg eiceagetat gggaacaget 420 geattgggge tgeetttetg tittggettag gaacttetgt gettettgtg geteeacteg 480 egaggeaget egagtggg gaeteegatt gggetgeagg eagetetggg aeggeacagg 540 gegggegete tgateagete gigtaaaaca eacegtette ttggeeteet ggeagttett 600 tetgegaata gteeteece tgggeagitg aatgggggaa getgetggea eaggaaggag 660 aggegateee ggetgagget taggaaattg etggageegg etceaagga gtgteacaca 780 gggggggttt teagagteaa acateattet geetgtkitg ggggeeaggt gtgteacaca 780

1327

agcateteaa agteaaaage eatetggge tgetgettet ettteteagg etetgggaa 840
aggaatetee eteteete aettgattee aagtgtggtt gaattgtetg gageaetggg 900
actititite tetitteett gatgaceaa eagtgeaaat geaatetege eatitaaett 960
teaggtegat tieettteet gateagaeat etttgtgeee eetttaggaa ggaaaagaat 1020
acacetaega tgtgeeagge aetgtgtag gegetittat atagateete gitaggatga 1080
gaetaaggga tgaggaeate tetitataaa aggeeeetaa gta atg gat aaa eag 1135
Met Asp Lys Gln

1

aaa cac tta gag gtg aga agg tct gtc ttc aag atc caa ggt aag att 1183

Lys His Leu Glu Val Arg Arg Scr Val Phe Lys IIe Gln Gly Lys IIe

5 10 15 20

gcc ttc agt ctg atg ttt gtt ctc aag gac tta tcc cct aca ata ttc 1231

25 30 35

40 45 50 cct cag atg gtc aga ggg gta acc caa gtc ctt aga gaa ttt ggg gac

Ala Phe Ser Leu Met Phe Val Leu Lys Asp Leu Ser Pro Thr Ile Phe

Pro Gin Met Val Arg Gly Val Thr Gln Val Leu Arg Glu Phe Gly Asp

55 60 65

caa tagaatatgt gatgtgtaa ttttctttaa aaaacttaag gagtctttgc 1380 Gln

tacctictgc ttgttgagtt gttttggcat tcatattaaa agccagcatc tcactattta 1440 ttgacaggtt gggctgtgt tgtgcgcatg tgtgtataca tttccaggcg tgcctgtgtc 1500 ctgtagcttt ttaaaaggaa acccagtcat cccactatga atctggcatc ttcttatgct 1560 tctagtgttt tggccataca tcaaccaagg ggtttaattt atccaatgct tgacgacatg 1620

WO 01/25427 PCT/JP00/06840

ttcaggaggg gctggatcaa attitgagag ggttatggga aagggaggg gagaagaaat 1680
tgacatttat titattatti attitaaatg titacatcii cittatgiig talcaagcci 1740
gaatagaaac tgatagcatt aaaatactcc gttcctctct ctcttctcgc ttccttitti 1800
tittititta aattiaggat aacacattii tgittctaaa gtgattigig attigtgctg 1860
talaaactgi ataaaaggii cigittitaa aggiggatti tcattcctct ggggacagig 1920
gtcgccaaga catctacati gtaagagaac acagtggaag atcctgtcct gattctcaaa 1980
aattattitc tctgtatgat taaaagt

<210> 12

<211> 69

<212> PRT

<213> Homo sapiens

<400> 12

Met Asp Lys Gln Lys His Leu Glu Val Arg Arg Ser Val Phe Lys Ile

1 5 10 15

Gln Gly Lys Ile Ala Phe Ser Leu Met Phe Val Leu Lys Asp Leu Ser

20 25 30

Pro Thr Ile Phe Ser His Ser Ile Leu Leu Leu Leu Pro His His Val

35 40 45

Leu Pro Cys Thr Pro Gln Met Val Arg Gly Val Thr Gln Val Leu Arg

50 55 60

Glu Phe Gly Asp Gln

65

<210> 13

<211> 1953

<212> DNA

<213> Homo sapiens

(220)

₹221 · CDS

 $\langle 222 \rangle$ (135).. (1850)

<400> 13

acgcctgcca ggagcaagcc gaagagccag ccggccggcg cactccgact ccgagcagtc 60 tetgteette gacccgagcc ccgcgccctt teegggaccc etgeeeegeg ggcagcgctg 120 ccaacctgcc ggcc atg gag acc ccg tee cag cgg cgc gcc acc cgc agc 170

Met Glu Thr Pro Ser Gln Arg Arg Ala Thr Arg Ser

10

5

ggg gcg cag gcc agc tcc act ccg ctg tcg ccc acc cgc atc acc cgg 218 Gly Ala Gln Ala Ser Ser Thr Pro Leu Ser Pro Thr Arg Ile Thr Arg

15 20 25

ctg cag gag aag gag gac ctg cag gag ctc aat gat cgc ttg gcg gtc 266 Leu Gln Glu Lys Glu Asp Leu Gln Glu Leu Asn Asp Arg Leu Ala Val

30 35 40

tac atc gac cgt gtg cgc tcg ctg gaa acg gag aac gca ggg ctg cgc 314

Tyr Ile Asp Arg Val Arg Ser Leu Glu Thr Glu Asn Ala Gly Leu Arg

45 50 55 60

ctt cgc atc acc gag tct gaa gag gtg gtc agc cgc gag gtg tcc ggc 362 Leu Arg Ile Thr Glu Ser Glu Glu Val Val Ser Arg Glu Val Ser Gly

65 70 75

atc aag gcc gcc tac gag gcc gag ctc ggg gat gcc cgc aag acc ctt 410 Ile Lys Ala Ala Tyr Glu Ala Glu Leu Gly Asp Ala Arg Lys Thr Leu

80 85 90

gac toa gta goo aag gag ogo goo ogo otg oag otg gag otg ago aaa 458 Asp Ser Val Ala Lys Glu Arg Ala Arg Leu Gln Leu Glu Leu Ser Lys

		95					100					105				
gtg	cgt	gag	gag	ttt	aag	gag	ctg	aaa	gcg	cgc	aat	acc	aag	aag	gag	506
Val	Arg	Glu	Glu	Phe	Lys	Glu	Leu	Lys	Ala	Arg	Asn	Thr	Lys	Lys	Glu	
	110					115					120					
ggt	gac	ctg	ata	gc t	gct	cag	gct	cgg	ctg	aag	gac	ctg	gag	gct	ctg	554
Gly	Asp	Leu	He	Ala	Ala	Gln	Ala	Arg	Leu	Lys	Asp	Leu	Glu	Ala	Leu	
125					130					135					140	
ctg	aac	tcc	aag	gag	gcc	gca	ctg	agc	act	gc t	ctc	agt	gag	aag	cgc	602
Leu	Asn	Ser	Lys	Glu	Ala	Ala	Leu	Ser	Thr	Ala	Leu	Ser	Glu	Lys	Arg	
				145					150					155		
acg	ctg	gag	ggc	gag	ctg	cat	gat	ctg	cgg	ggc	cag	gtg	gcc	aag	ctt	650
Thr	Leu	Glu	Gly	Glu	Leu	His	Asp	Leu	Arg	Gly	Gln	Val	Ala	Lys	Leu	
			160					165					170			
gag	gca	gcc	cta	ggt	gag	gcc	aag	aag	caa	ctt	cag	gat	gag	atg	ctg	698
Glu	Ala	Ala	Leu	Gly	Glu	Ala	Lys	Lys	Gln	Leu	Gln		Glu	Met	Leu	
		175					180					185				
	cgg															746
Arg	Arg	Val	Asp	Ala	Glu		Arg	Leu	Gln	Thr		Lys	Glu	Glu	Leu	
	190					195					200					704
	ttc															794
	Phe	GIn	Lys	Asn		lyr	Ser	GIU	GIU		Arg	GIU	inr	LYS		
205	ı				210			- 4.4		215	~~~	200	2.00	o art	220	049
	cat															842
Arg	His	GIU	inr		Leu	vai	GIU	116		ASII	GIY	LyS	GIII		GIU	
	۰۰ ندیس	60.		225	a	an 4	a	2. k =	230	g A A	o t a	0.55	aro o	235	on t	890
	gag															030

			240					245					250			
a a a	or a C	cao		σασ	caσ	tat	aag		ឲ្យឲ្	rtø	gag	aag	act	tat	tct	938
														Tyr		
GIU	ASP		Val	Olu	GIII	1 9 1	260	Lys	Olu	LCu	01u	265		.,.	001	
		255						tot	got	ana	oaa		a a c	220	cta	986
														aac		300
Ala		Leu	Asp	Asn	Ala		GIN	ser	Ala	GIU		ASII	261	Asn	Leu	
	270					275					280					1004
														atc		1034
Val	Gly	Ala	Ala	His	Glu	Glu	Leu	Gln	Gln	Ser	Arg	He	Arg	He		
285					290					295					300	
agc	ctc	tct	gcc	cag	ctc	agc	cag	ctc	cag	aag	cag	clg	gca	gcc	aag	1082
Ser	Leu	Ser	Ala	Gln	Leu	Ser	Gln	Leu	Gln	Lys	Gln	Leu	Ala	Ala	Lys	
				305					310					315		
gag	gcg	aag	ctt	cga	gac	ctg	gag	gac	tca	ctg	gcc	cgt	gag	cgg	gac	1130
Glu	Ala	Lys	Leu	Arg	Asp	Leu	Glu	Asp	Ser	Leu	Ala	Arg	Glu	Arg	Asp	
			320					325					330			
acc	agc	cgg	cgg	ctg	ctg	gcg	gaa	aag	gag	cgg	gag	atg	gcc	gag	atg	1178
Thr	Ser	Arg	Arg	Leu	Leu	Ala	Glu	Lys	Glu	Arg	Glu	Met	Ala	Glu	Met	
		335					340					345				
cgg	gca	agg	atg	cag	cag	cag	ctg	gac	gag	tac	cag	gag	ctt	ctg	gac	1226
Arg	Ala	Arg	Met	Gln	Gln	Gln	Leu	Asp	Glu	Tyr	Gln	Glu	Leu	Leu	Asp	
	350					355					360					
atc	aag	ctg	gcc	ctg	gac	atg	gag	atc	cac	gcc	tac	cgc	aag	ctc	ttg	1274
Ile	Lys	Leu	Ala	Leu	Asp	Met	Glu	Ile	His	Ala	Tyr	Arg	Lys	Leu	Leu	
365					370					375					380	
	ggn	gag	gag	gag	agg	cta	cgc	ctg	tcc	ccc	agc	cct	acc	tcg	cag	1322
o	550	040	5-0	2.0	20		J -									

Ģln	Gly	Glu	Glu	Glu	Arg	Leu	Arg	Leu	Ser	Pro	Ser	Pro	Thr	Ser	Gln	
				385					390					395		
cgc	agc	cgt	ggc	cgt	gc t	tcc	tct	cac	tca	tcc	cag	aca	cag	ggt	ggg	1370
Arg	Ser	Arg	Gly	Arg	Ala	Ser	Ser	His	Ser	Ser	Gln	Thr	Gln	Gly	Gly	
			400					405					410			
ggc	agc	gtc	acc	aaa	aag	cgc	aaa	ctg	gag	tcc	act	gag	agc	cgc	agc	1418
Gly	Ser	Val	Thr	Lys	Lys	Arg	Lys	Leu	Glu	Ser	Thr	Glu	Ser	Arg	Ser	
		415					420					425				
agc	ttc	tca	cag	cac	gca	cgc	ac t	agc	ggg	cgc	gtg	gcc	gtg	gag	gag	1466
Ser	Phe	Ser	Gln	His	Ala	Arg	Thr	Ser	Gly	Arg	Val	Ala	Val	Glu	Glu	
	430					435					440					
gtg	gat	gag	gag	ggc	aag	ttt	gtc	cgg	ctg	cgc	aac	aag	tcc	aat	gag	1514
Val	Asp	Glu	Glu	Gly	Lys	Phe	Val	Arg	Leu	Arg	Asn	Lys	Ser	Asn	Glu	
445					450					455					460	
		tcc														1562
Asp	Gln	Ser	Met	Gly	Asn	Trp	Gln	He	Lys	Arg	Gln	Asn	Gly	Asp	Asp	
				465					470					475		
																1610
Pro	Leu	Leu	Thr	Tyr	Arg	Phe	Pro	Pro	Lys	Phe	Thr	Leu	Lys	Ala	Gly	
			480					485					490			
cag	gtg	gtg	acg	atc	tgg	gct	gca	gga	gct	ggg	gcc	acc	cac	agc	ccc	1658
Gln	Val	Val	Thr	He	Trp	Ala	Ala	Gly	Ala	Gly	Ala	Thr	His	Ser	Pro	
		495					500					505				
cct	acc	gac	ctg	gtg	tgg	aag	gca	cag	aac	acc	t gg	ggc	t gc	ggg	aac	1706
Pro	Thr	Asp	Leu	Val	Trp	Lys	Ala	Gln	Asn	Thr	Trp	Gly	Cys	Gly	Asn	
	510					515					520					
agc	ctø	rgt	acg	grt	ctc	atc	aac	tee	act	ggg	gaa	gaa	gtg	gcc	atg	1754

Ser Leu Arg Thr Ala Leu Ile Asn Ser Thr Gly Glu Glu Val Ala Met 535 540 530 525 cgc aag ctg gtg cgc tca gtg act gtg gtt gag gac gac gag gat gag 1802 Arg Lys Leu Val Arg Ser Val Thr Val Val Glu Asp Asp Glu Asp Glu 555 550 545 gat gga gat gac ctg ctc cat cac cac gtg agt ggt agc cgc cgc 1850 Asp Gly Asp Asp Leu Leu His His His Wal Ser Gly Ser Arg Arg 570 560 565 tgaggeegag cetgeactgg ggeeaceage caggeetggg ggeageetet ecceageete 1910 1953 cccgtgccaa aaatcttttc attaaagaat gttltggaac ttt <210> 14 <211> 572 <212> PRT <213> Homo sapiens <400> 14 Met Glu Thr Pro Ser Gln Arg Arg Ala Thr Arg Ser Gly Ala Gln Ala 10 15 1 5 Ser Ser Thr Pro Leu Ser Pro Thr Arg Ile Thr Arg Leu Gln Glu Lys 25 30 20 Glu Asp Leu Gln Glu Leu Asn Asp Arg Leu Ala Val Tyr Ile Asp Arg 35 40 45 Val Arg Ser Leu Glu Thr Glu Asn Ala Gly Leu Arg Leu Arg Ile Thr 50 55 60Glu Ser Glu Glu Val Val Ser Arg Glu Val Ser Gly Ile Lys Ala Ala 75 80 6570 Tyr Glu Ala Glu Leu Gly Asp Ala Arg Lys Thr Leu Asp Ser Val Ala

49/527

				85					90					95	
Lys	Glu	Arg	Ala	Arg	Leu	Gln	Leu	Glu	Leu	Ser	Lys	Val	Arg	Glu	Glu
			100					105					110		
Phe	Lys	Glu	Leu	Lys	Ala	Arg	Asn	Thr	Lys	Lys	Glu	Gly	Asp	Leu	He
		115					120					125			
Ala	Ala	Gln	Ala	Arg	Leu	Lys	Asp	Leu	Glu	Ala	Leu	Leu	Asn	Ser	Lys
	130					135					140				
Glu	Ala	Ala	Leu	Ser	Thr	Ala	Leu	Ser	Glu	Lys	Arg	Thr	Leu	Glu	Gly
145					150					155					160
Glu	Leu	His	Asp	Leu	Arg	Gly	Gln	Val	Ala	Lys	Leu	Glu	Ala	Ala	Leu
				165					170					175	
Gly	Glu	Ala	Lys	Lys	Gln	Leu	Gln	Asp	Glu	Me t	Leu	Arg	Arg	Val	Asp
			180					185					190		
Ala	Glu	Asn	Arg	Leu	Gln	Thr	Met	Lys	Glu	Glu	Leu	Asp	Phe	Gln	Lys
		195					200					205			
Asn	He	Туг	Ser	Glu	Glu	Leu	Arg	Glu	Thr	Lys	Arg	Arg	His	Glu	Thr
	210					215					220				
Arg	Leu	Val	Glu	He	Asp	Asn	Gly	Lys	Gln	Arg	Glu	Phe	Glu	Ser	Arg
225					230					235					240
Leu	Ala	Asp	Ala	Leu	Gln	Glu	Leu	Arg	Ala	Gln	His	Glu	Asp	Gln	Val
				245					250					255	
Glu	Gln	Tyr	Lys	Lys	Glu	Leu	Glu	Lys	Thr	Tyr	Ser	Ala	Lys	Leu	Asp
			260					265					270		
Asn	Ala	Arg	g Gln	Ser	Ala	Glu	Arg	Asn	Ser	Asn	Leu	Val	Gly	Ala	Ala
		275)				280					285			
His	Glu	Glu	ı Leu	Gln	Gln	Ser	Arg	He	Arg	He	Asp	Ser	Leu	Ser	Ala

	290					295					300				
Gln	Leu	Ser	Gln	Leu	Gln	Lys	Gln	Leu	Ala	Ala	Lys	Glu	Ala	Lys	Lei
305					310					315					320
Arg	Asp	Leu	Glu	Asp	Ser	Leu	Ala	Arg	Glu	Arg	Asp	Thr	Ser	Arg	Are
				325					330					335	
Leu	Leu	Ala	Glu	Lys	Glu	Arg	Glu	Me t	Ala	Glu	Met	Arg	Ala	Arg	Met
			340					345					350		
Gln	Gln	Gln	Leu	Asp	Glu	Tyr	Gln	Glu	Leu	Leu	Asp	Ile	Lys	Leu	Ala
		355					360					365			
Leu	Asp	Met	Glu	He	His	Ala	Туг	Arg	Lys	Leu	Leu	Glu	Gly	Glu	Glu
	370					375					380				
Glu	Arg	Leu	Arg	Leu	Ser	Pro	Ser	Pro	Thr	Ser	Gln	Arg	Ser	Arg	Gly
385					390					395					400
Arg	Ala	Ser	Ser	His	Ser	Ser	Gln	Thr	Gln	Gly	Gly	Gly	Ser	Val	Thr
				405					410					415	
Lys	Lys	Arg	Lys	Leu	Glu	Ser	Thr	Glu	Ser	Arg	Ser	Ser	Phe	Ser	Gln
			420					425					430		
His	Ala	Arg	Thr	Ser	Gly	Arg	Val	Ala	Val	Glu	Glu	Val	Asp	Glu	Glu
		435					440					445			
Gly	Lys	Phe	Val	Arg	Leu	Arg	Asn	Lys	Ser	Asn	Glu	Asp	Gln	Ser	Met
	450					455					460				
Gly	Asn	Trp	Gln	He	Lys	Arg	Gln	Asn	Gly	Asp	Asp	Pro	Leu	Leu	Thr
465					470					475					480
Tyr	Arg	Phe	Pro	Pro	Lys	Phe	Thr	Leu	Lys	Ala	Gly	Gln	Val	Val	Thr
				485					490					495	
Ile	Trp	Ala	Ala	Gly	Ala	Gly	Ala	Thr	His	Ser	Pro	Pro	Thr	Asp	Leu
			500					505					510		

Val Trp Lys Ala Gln Asn Thr Trp Gly Cys Gly Asn Ser Leu Arg Thr 515 520 525 Ala Leu Ile Asn Ser Thr Gly Glu Glu Val Ala Met Arg Lys Leu Val 530 535 540 Arg Ser Val Thr Val Val Glu Asp Asp Glu Asp Glu Asp Gly Asp Asp 545 550 555 560 Leu Leu His His His His Val Ser Gly Ser Arg Arg 565 570 <210> 15 <211> 2865 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (240).. (1475) **<400>** 15 cacaccgcca gtctgtgcgc tgagtcggag ccagaggccg cggggacacc gggccatgca 60 cgccccaac tgaagctgca tctcaaagcc gaagattcca gcagcccagg ggatttcaaa 120 gageteagae teagaggaae atetgeggag agaceeegga ageeetetee agggeagtee 180 tcatccagac gctccgttag tgcagacagg agcgcgcagt ggccccggct cgccgcgcc 239 atg gag egg ate eec age geg caa eea eee eee gee tge etg eec aaa 287 Met Glu Arg Ile Pro Ser Ala Gln Pro Pro Pro Ala Cys Leu Pro Lys 1 5 10 15 gca ccg gga ctg gag cac cga gac cta cca ggg atg tac cct gcc cac 335 Ala Pro Gly Leu Glu His Arg Asp Leu Pro Gly Met Tyr Pro Ala His

30

25

20

ac 38	g gac	gag	agc	cgg	aag	ata	gga	cgg	aga	g tca	c aag	tae	a gte	caa	tac	ate
S P	ı Asp	Glu	Ser	Arg	Lys	He	Gly	Arg	Arg	s Sei	Lys	Туг	ı Val	Gli	Tyr	Me t
				45					40)	35		
ga 43	gaga	aag	aaa	gag	ttc	ctc	cgg	cac	ccg	ttg	aaa	: tac	g acc	gag	aag	agc
rg	Arg	Lys	Lys	Glu	Phe	Leu	Arg	His	Pro	Leu	Lys	Tyr	Thr	Gli	Lys	Ser
					60					55					50	
cc 479	ccc	cta	ctc	gat	aag	ctg	cag	gcc	atc	tgc	gag	aac	att	cgg	gac	cgt
ro	Pro	Leu	Leu	Asp	Lys	Leu	Gln	Ala	He	Cys	Glu	Asn	lle	Arg	Asp	Arg
80	80					75					70					65
tt 527	gtt	gtg	gca	aaa	gaa	ttg	cac	ggt	ttg	ac t	aca	ctt	aaa	ctc	cat	gaa
a l	Val	Val	Ala	Lys	Glu	Leu	His	Gly	Leu	Thr	Thr	Leu	Lys	Leu	His	Glu
		95					90					85				
					aca											
3p	Asp	Ile	Leu	Asn	Thr	Leu	Ala		Val	His	Lys	Leu		Leu	Glu	Leu
			110					105					100			
					ggt											
У	Gly	Ala	GIn		Gly	Ser	GIn	Leu		He	11e	Lys	GIN		GIN	GIN
. 671	• • •	+ = =	++-	125	g.o.g	000	aat	000	120	at o	ant	0.00	aaa	115	c t a	ana
					gag Glu											
1	361	CYS	1 116	MCL	140	GIH	Oly	1111	oru	135	ASI	ni 6	Oly	JCI	130	014
c 719	cac	220	gee	ctø	tat	റമമ	ctt	gtø	gag		ecc.	tgt	aca	cag		ggt
					Tyr											
	160			20 u	- , ,	155				0	150	- • -			•	145
			cac (acc	gtc			tcg	tct	aag		gac	cgg	act	aac	
					Val '											

				165					170					175		
cgg	gtg	gtc	tcg	gag	ctg	ctg	cag	ggt	ggt	acc	tcc	agg	aag	cca	tca	815
Arg	Val	Val	Ser	Glu	Leu	Leu	Gln	Gly	Gly	Thr	Ser	Arg	Lys	Pro	Ser	
			180					185					190			
gac	cca	gc t	ccc	aaa	gtg	atg	gac	ttc	aag	gaa	aaa	ccc	agc	tct	ccg	863
Asp	Pro	Ala	Pro	Lys	Val	Met	Asp	Phe	Lys	Glu	Lys	Pro	Ser	Ser	Pro	
		195					200					205				
gcc	aaa	ggt	tcg	gaa	ggt	cct	ggg	aaa	aac	tgc	gtg	cca	gtc	atc	cag	911
Ala	Lys	Gly	Ser	Glu	Gly	Pro	Gly	Lys	Asn	Cys	Val	Pro	Val	He	Gln	
	210					215					220					
cgg	act	ttc	gc t	cac	tcg	agt	ggg	gag	cag	agc	ggc	agc	gac	acg	gac	959
Arg	Thr	Phe	Ala	His	Ser	Ser	Gly	Glu	Gln	Ser	Gly	Ser	Asp	Thr	Asp	
225					230					235					240	
aca	gac	agt	ggc	tat	gga	gga	gat	tcg	gag	aag	ggc	gac	ttg	cgc	agt	1007
Thr	Asp	Ser	Gly	Tyr	Gly	Gly	Asp	Ser	Glu	Lys	Gly	Asp	Leu	Arg	Ser	
				245					250					255		
gag	cag	ccg	tgc	ttc	aaa	agt	gac	cac	gga	cgc	agg	ttc	acg	atg	gga	1055
Glu	Gln	Pro	Cys	Phe	Lys	Ser	Asp	His	Gly	Arg	Arg	Phe	Thr	Met	Gly	
			260					265					270			
gaa	agg	atc	ggc	gca	att	aag	caa	gag	tcc	gaa	gaa	ccc	ccc	aca	aaa	1103
Glu	Arg	He	Gly	Ala	He	Lys	Gln	Glu	Ser	Glu	Glu	Pro	Pro	Thr	Lys	
		275					280					285				
aag	aac	cgg	atg	cag	ctt	tcg	gat	gat	gaa	ggc	cat	ttc	act	agc	agt	1151
Lys	Asn	Arg	Me t	Gln	Leu	Ser	Asp	Asp	Glu	Gly	His	Phe	Thr	Ser	Ser	
	290					295					300					
gac	ctg	atc	agc	tcc	ccg	ttc	ctg	ggc	cca	cac	cca	cac	cag	cct	cct	1199
Asp	Leu	He	Ser	Ser	Pro	Phe	Leu	Gly	Pro	His	Pro	His	Gln	Pro	Pro	

305 310 315 320 ttc tgc ctg ccc ttc tac ctg atc cca cct tca gcg act gcc tac ctg 1247 Phe Cys Leu Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr Ala Tyr Leu 325 330 335 ccc atg ctg gag aag tgc tgg tat ccc acc tca gtg cca gtg cta tac 1295 Pro Met Leu Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro Val Leu Tyr 340 345 350 cca ggc ctc aac gcc tct gcc gca gcc ctc tct agc ttc atg aac cca 1343 Pro Gly Leu Asn Ala Ser Ala Ala Ala Leu Ser Ser Phe Met Asn Pro 355 360 365 gae aag ate teg get eec ttg ete atg eec eag aga ete eet tet eec 1391 Asp Lys Ile Ser Ala Pro Leu Leu Met Pro Gln Arg Leu Pro Ser Pro 370 375 380 ttg cca get cat ceg tee gte gae tet tet gte ttg ete caa get etg 1439 Leu Pro Ala His Pro Ser Val Asp Ser Ser Val Leu Leu Gln Ala Leu 390 385 395 400 aag cca atc ccc cct tta aac tta gaa acc aaa gac taaactctct 1485 Lys Pro Ile Pro Pro Leu Asn Leu Glu Thr Lys Asp 405 410 aggggatect getgetinge tiliceinect egetactice taaaaageaa eennaaagni 1545 tingtgaatg cignnagani gitgcatigi gialactgag alaatcigag gcatggagag 1605 caganneagg gigigigigi gigigigigi gigigigigi giaigigegi gigegigeae 1665 atgigigeet gegigliggi ataggaetti anngeteett nnggeatagg gaagteaega 1725 aggattgetn gacatcagga gactnggggg ggattgtage agacgtetgg gettnnecee 1785

acccagagaa tagccccnn chanacanat cagctggatt tacaaaaget tcaaagtett 1845

ggtctgtgag tcactcttca gtttgggagc tgggictgtg gctttgatca gaaggtactt 1905

traaaagagg gettteeagg geteagetee caaccagetg ttaggaceee accettttgc 1965 ctttattgtc gacgtgactc accagacgtc ggggagagag agcagtcaga ccgagctttt 2025 ctgctaacat ggggagggta gcagacactg gcatagcacg gtagtggttt gggggagggt 2085 tteegeaggt etgeteeca eccetgeete ggaagaataa agagaatgta gtteectaet 2145 caggettieg tagtgattag ettactaagg aactgaaaat gggeeectig tacaagetga 2205 getgeeegg agggaggag gagtteetg ggettetgge acetgtttet aggeetaace 2265 attagtacti actgtgcagg gaaccaaacc aaggtctgag aaatgcggac ancccgagcg 2325 agcaccccaa agtgcacaaa gctgagtaaa aagctgcccc cttcaaacag aactagactc 2385 agttticaat tecateetaa aacteetttt aaccaagett agetteteaa agggetaace 2445 aageettgga accgecagat cetttetgta ggetaattee tettggecaa eggeatatgg 2505 agtgtcctta ttgctaaaaa ggattccgnc tccttcaaag aagttttatt tttggtccag 2565 agtactigit ticccgatgi giccagccag ciccgcagca gcitticaaa aigcactaig 2625 cctgattgct gatcgtgttt taactttttc tlltcctgtt tttattttgg taltaagtcg 2685 ntgttncaga tgtttatttg tataattact tgattcacan agngagaaaa antgantgta 2805 ttcctgtnti ngaagagaag annaattttt ittttctcta gggagaggia cagngtinnt 2865

<210> 16

<211> 412

<212> PRT

<213> Homo sapiens

<400> 16

Met Glu Arg Ile Pro Ser Ala Gln Pro Pro Pro Ala Cys Leu Pro Lys

1 5 10 15

Ala Pro Gly Leu Glu His Arg Asp Leu Pro Gly Met Tyr Pro Ala His

20 25 30

Met Tyr Gln Val Tyr Lys Ser Arg Arg Gly Ile Lys Arg Ser Glu Asp

35	40	45

Ser Lys Glu Thr Tyr Lys Leu Pro His Arg Leu Phe Glu Lys Lys Arg
50 55 60

Arg Asp Arg Ile Asn Glu Cys Ile Ala Gln Leu Lys Asp Leu Leu Pro

65 70 75 80

Glu His Leu Lys Leu Thr Thr Leu Gly His Leu Glu Lys Ala Val Val

85 90 95

Leu Glu Leu Thr Leu Lys His Val Lys Ala Leu Thr Asn Leu Ilc Asp 100 105 110

Gln Gln Gln Lys Ile Ile Ala Leu Gln Ser Gly Leu Gln Ala Gly
115 120 125

Glu Leu Ser Gly Arg Asn Val Glu Thr Gly Gln Glu Met Phe Cys Ser 130 135 140

Gly Phe Gln Thr Cys Ala Arg Glu Val Leu Gln Tyr Leu Ala Lys His 145 150 155 160

Glu Asn Thr Arg Asp Leu Lys Ser Ser Gln Leu Val Thr His Leu His

165 170 175

Arg Val Val Ser Glu Leu Leu Gln Gly Gly Thr Ser Arg Lys Pro Ser 180 185 190

Asp Pro Ala Pro Lys Val Met Asp Phe Lys Glu Lys Pro Ser Ser Pro
195 200 205

Ala Lys Gly Ser Glu Gly Pro Gly Lys Asn Cys Val Pro Val Ile Gln 210 215 220

Arg Thr Phe Ala His Ser Ser Gly Glu Gln Ser Gly Ser Asp Thr Asp
225 230 235 240

Thr Asp Ser Gly Tyr Gly Gly Asp Ser Glu Lys Gly Asp Leu Arg Ser 245 250 255

<221> CDS

Glu Gln Pro Cys Phe Lys Ser Asp His Gly Arg Arg Phe Thr Met Gly Glu Arg Ile Gly Ala Ile Lys Gln Glu Ser Glu Glu Pro Pro Thr Lys Lys Asn Arg Met Gln Leu Ser Asp Asp Glu Gly His Phe Thr Ser Ser Asp Leu Ile Ser Ser Pro Phe Leu Gly Pro His Pro His Gln Pro Pro Phe Cys Leu Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr Ala Tyr Leu Pro Met Leu Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro Val Leu Tyr Pro Gly Leu Asn Ala Ser Ala Ala Ala Leu Ser Ser Phe Met Asn Pro Asp Lys Ile Ser Ala Pro Leu Leu Met Pro Gln Arg Leu Pro Ser Pro Leu Pro Ala His Pro Ser Val Asp Ser Ser Val Leu Leu Gln Ala Leu Lys Pro Ile Pro Pro Leu Asn Leu Glu Thr Lys Asp <210> 17 <211> 3817 <212> DNA <213> Homo sapiens <220>

<222> (164).. (2665)

<400> 17

tgaattcgtg agagacttga gggaggcgct gcgactgaca agcggctctg cccgggacct 60
tctcgctttc atctagcgct gcactcaatg gaggggcggg caccgcagtg cttaatgctg 120
tcttaactag tgtaggaaaa cggctcaacc caccgctgcc gaa atg aag tat aag 175
Met Lys Tyr Lys

1

aat ctt atg gca agg gcc tta tat gac aat gtc cca gag tgt gcc gag 223
Asn Leu Met Ala Arg Ala Leu Tyr Asp Asn Val Pro Glu Cys Ala Glu
5 10 15 20

gaa ctg gcc ttt cgc aag gga gac atc ctg acc gtc ata gag cag aac 271 Glu Leu Ala Phe Arg Lys Gly Asp Ile Leu Thr Val Ile Glu Gln Asn

25 30 35

aca ggg gga ctg gaa gga tgg tgg ctg tgc tcg tta cac ggt cgg caa 319
Thr Gly Gly Leu Glu Gly Trp Trp Leu Cys Ser Leu His Gly Arg Gln

40 45 50

ggc att gtc cca ggc aac cgg gtg aag ctt ctg att ggt ccc atg cag 367

Gly Ile Val Pro Gly Asn Arg Val Lys Leu Leu Ile Gly Pro Met Gln

55 60 65

gag act gcc tcc agt cac gag cag cct gcc tct gga ctg atg cag cag 415 Glu Thr Ala Ser Ser His Glu Gln Pro Ala Ser Gly Leu Met Gln Gln

70 75 80

acc ttt ggc caa cag aag ctc tat caa gtg cca aac cca cag gct gct 463

Thr Phe Gly Gln Gln Lys Leu Tyr Gln Val Pro Asn Pro Gln Ala Ala

85 90 95 100

ccc cga gac acc atc tac caa gtg cca cct tcc tac caa aat cag gga 511

Pro	Arg	Asp	Thr	He	Tyr	Gin	Val	Pro	Pro	Ser	Tyr	Gln	Asn	Gln	Gly	
				105					110					115		
att	tac	caa	gtc	ccc	ac t	ggc	cac	ggc	acc	caa	gaa	caa	gag	gta	tat	559
He	Tyr	Gln	Val	Pro	Thr	Gly	His	Gly	Thr	Gln	Glu	Gln	Glu	Val	Tyr	
			120					125					130			
cag	gtg	cca	cca	tca	gtg	cag	aga	agc	att	ggg	gga	acc	agt	ggg	ccc	607
Gln	Val	Pro	Pro	Ser	Val	Gln	Arg	Ser	He	Gly	Gly	Thr	Ser	Gly	Pro	
		135					140					145				
cac	gtg	ggt	aaa	aag	gtg	a t a	acc	ccc	gtg	agg	aca	ggc	cat	ggc	tac	655
His	Val	Gly	Lys	Lys	Val	He	Thr	Pro	Val	Arg	Thr	Gly	His	Gly	Tyr	
	150					155					160					
gta	tac	gag	tac	cca	tcc	aga	tac	caa	aag	gat	gtc	tat	gat	atc	cct	703
Val	Tyr	Glu	Tyr	Pro	Ser	Arg	Tyr	Gln	Lys	Asp	Val	Tyr	Asp	He	Pro	
165					170					175					180	
cct	tct	cat	acc	ac t	caa	ggg	gta	tac	gac	atc	cct	ccc	tca	tca	gca	751
Pro	Ser	His	Thr	Thr	GIn	Gly	Val	Tyr	Asp	He	Pro	Pro	Ser	Ser	Ala	
				185					190					195		
aaa	ggc	cct	gtg	ttt	tca	gtt	cca	gtg	gga	gag	ata	aaa	cct	caa	ggg	799
Lys	Gly	Pro	Val	Phe	Ser	Val	Pro	Val	Gly	Glu	Ile	Lys	Pro	Gln	Gly	
			200					205					210			
gtg	tat	gac	atc	ccg	cct	aca	aaa	ggg	gta	tat	gcc	att	ccg	ccc	tct	847
Val	Tyr	Asp	He	Pro	Pro	Thr	Lys	Gly	Val	Tyr	Ala	He	Pro	Pro	Ser	
		215					220					225				
gct	tgc	cgg	gat	gaa	gca	ggg	ctt	agg	gaa	aaa	gac	tat	gac	ttc	ccc	895
Ala	Cys	Arg	Asp	Glu	Ala	Gly	Leu	Arg	Glu	Lys	Asp	Tyr	Asp	Phe	Pro	
	230					235					240					
cct	ccc	atg	aga	caa	gct	gga	agg	ccg	gac	ctc	aga	ccg	gag	ggg	gtt	943

P	ro	Pro	Me	tJÁrg	g Gli	ı Ala	ı Gly	y Are	g Pro	Ası	Le	u Ar	g Pr	o Gl	u G1	y Val	
2	45					250)				25	5				260	
t	a t	gac	a t t	cct	cca	acc	t go	aco	aag	cca	a gc	a ggg	g aag	g ga	c ct	t cat	991
T	уг	Asp	Πe	e Pro	Pro	Thr	Cys	Thr	Lys	Pro	Ala	a Gly	/ Lys	s Ası	Le	u His	
					265					270)				27	5	
g	t a	aaa	tac	aac	tgt	gac	att	cca	gga	gct	gca	a gaa	cce	ggtg	g gc	t cga	1039
Va	al	Lys	Tyr	Asn	Cys	Asp	He	Pro	Gly	Ala	Ala	Glu	Pro	va l	Ala	a Arg	
				280					285					290)		
ag	gg	cac	cag	agc	ctg	tcc	ccg	aat	cac	сса	ccc	ccg	caa	cto	gga	cag	1087
Aı	g	His	Gln	Ser	Leu	Ser	Pro	Asn	His	Pro	Pro	Pro	Gln	Leu	Gly	Gln	
			295					300					305				
to	a	gtg	ggc	tct	cag	aac	gac	gca	tat	gat	gtc	ccc	cga	ggc	gtt	cag	1135
Se	r	Val	Gly	Ser	Gln	Asn	Asp	Ala	Tyr	Asp	Val	Pro	Arg	Gly	Val	Gln	
		310					315					320					
																gaa	1183
		Leu	Glu	Pro	Pro		Glu	Thr	Ser	Glu	Lys	Ala	Asn	Pro	Gln	Glu	
32						330					335					340	
								cct									1231
Ar	g .	Asp	Gly	Val		Asp	Val	Pro	Leu		Asn	Рго	Pro	Asp		Lys	
		1 - 1			345					350					355		
								ggg									1279
GI:	у,	ser	Arg		Leu	vai	ASP	Gly		Asn	Arg	Leu	Ser		Ser	Ser	
0.0				360		,			365					370			
								atg									1327
1 N 1	г (lhr	Arg	Ser		Met	Ser	Thr	Ser			Ser	Ser	Lys	
			375					380					385				

gag tee tea etg tea gee tee eea get eag gae aaa agg ete tte etg	1375
Glu Ser Ser Leu Ser Ala Ser Pro Ala Gln Asp Lys Arg Leu Phe Leu	
390 395 400	
gat cca gac aca gct att gag aga ctt cag cgg ctc cag cag gcc ctt	1423
Asp Pro Asp Thr Ala Ile Glu Arg Leu Gln Arg Leu Gln Gln Ala Leu	
405 410 415 420	
gag alg ggt gtc tcc agc cta atg gca ctg gtc act acc gac tgg cgg	1471
Glu Met Gly Val Ser Ser Leu Met Ala Leu Val Thr Thr Asp Trp Arg	
425 430 435	
tgt tac gga tat atg gaa aga cac atc aat gaa ata cgc aca gca gtg	1519
Cys Tyr Gly Tyr Met Glu Arg His Ile Asn Glu Ile Arg Thr Ala Val	
440 445 450	
gac aag gtg gag ctg ttc ctg aag gag tac ctc cac ttt gtc aag gga	1567
Asp Lys Val Glu Leu Phe Leu Lys Glu Tyr Leu His Phe Val Lys Gly	
455 460 465	
get git gea aat get gee tge ete eeg gaa ete ate ete eac aac aag	1615
Ala Val Ala Asn Ala Ala Cys Leu Pro Glu Leu Ile Leu His Asn Lys	
470 475 480	
atg aag cgg gag ctg caa cga gtc gaa gac tcc cac cag atc ctg agt	1663
Met Lys Arg Glu Leu Gln Arg Val Glu Asp Ser His Gln Ile Leu Ser	
485 490 495 500	
caa acc agc cat gac tta aat gag tgc agc tgg tcc ctg aat atc ttg	1711
Gln Thr Ser His Asp Leu Asn Glu Cys Ser Trp Ser Leu Asn Ile Leu	
505 510 515	
	1759
Ala IIe Asn Lys Pro Gln Asn Lys Cys Asp Asp Leu Asp Arg Phe Val	
520 525 530	

ate	ggtg	g gca	a a a g	g ace	gtg	cco	gat	gac	gco	aag	g cag	g cto	c acc	c aca	a acc	1807
Me t	Val	Ala	Lys	Thr	Val	Pro) Asp	Asp	Ala	Lys	s G1r	ı Lei	Thi	Thi	Thr	
		535	,				540)				545)			
atc	aac	acc	aac	gca	gag	gcc	cto	ttc	aga	ccc	ggc	cct	ggo	ago	ttg	1855
He	Asn	Thr	Asn	Ala	Glu	Ala	Leu	Phe	Arg	Pro	Gly	Pro	Gly	' Ser	Leu	
	550					555					560					
cat	ctg	aag	aat	ggg	ccg	gag	agc	atc	atg	aac	tca	ace	gag	tac	cca	1903
His	Leu	Lys	Asn	Gly	Pro	Glu	Ser	He	Met	Asn	Ser	Thr	Glu	Tyr	Pro	
565					570					575					580	
cac	ggt	ggc	tcc	cag	gga	cag	ctg	ctg	cat	cct	ggt	gac	cac	aag	gcc	1951
His	Gly	Gly	Ser	Gln	Gly	Gln	Leu	Leu	His	Pro	Gly	Asp	His	Lys	Ala	
				585					590					595		
cag	gcc	cac	aac	aag	gca	ctg	ccc	cca	ggc	ctg	agc	aag	gag	cag	gcc	1999
Gln	Ala	His	Asn	Lys	Ala	Leu	Pro	Pro	Gly	Leu	Ser	Lys	Glu	Gln	Ala	
			600					605					610			
cct	gac	tgt	agc	agc	agt	gat	ggt	tct	gag	agg	agc	tgg	atg	gat	gac	2047
Pro	Asp	Cys	Ser	Ser	Ser	Asp	Gly	Ser	Glu	Arg	Ser	Trp	Met	Asp	Asp	
		615					620					625				
tac	gat	tac	gtc	cac	cta	cag	ggt	aag	gag	gag	t t t	gag	agg	caa	cag	2095
Tyr	Asp	Tyr	Val	His	Leu	Gln	Gly	Lys	Glu	Glu	Phe	Glu	Arg	Gln	Gln	
	630					635					640					
aaa	gag	cta	ttg	gaa	aaa	gag	aat	atc	atg	aaa	cag	aac	aag	atg	cag	2143
Lys	Glu	Leu	Leu	Glu	Lys	Glu	Asn	He	Met	Lys	Gln	Asn	Lys	Met	Gln	
645					650					655					660	
ctg	gaa	cat	cat	cag	ctg	agc	cag	ttc	cag	ctg	ttg	gaa	caa	gag	att	2191
Leu	Glu	His	His	Gln	Leu	Ser	Gln	Phe	Gln	Leu	Leu	Glu	Gln	Glu	Ile	

`	VO 0	1/254	27													PC 1/J
				665					670	1				675		
aca	aag	ccc	gtg	g gag	aat	gac	atc	tcg	aag	tgg	aag	ссс	tct	cag	agc	2239
Thr	Lys	Pro	Val	Glu	Asn	Asp	He	Ser	Lys	Trp	Lys	Pro	Ser	Gln	Ser	
			680	ı				685					690			
cta	ссс	acc	a c a	aac	agt	ggc	gtg	agt	gc t	cag	gat	cgg	cag	ttg	ctg	2287
Leu	Pro	Thr	Thr	Asn	Ser	Gly	Val	Ser	Ala	Gln	Asp	Arg	Gln	Leu	Leu	
		695					700					705				
tgc	ttc	tac	tat	gac	caa	tgt	gag	acc	cat	ttc	att	tcc	ctt	ctc	aac	2335
Cys	Phe	Tyr	Tyr	Asp	Gln	Cys	Glu	Thr	His	Phe	Ile	Ser	Leu	Leu	Asn	
	710					715					720					
gcc	att	gac	gca	ctc	ttc	agt	tgt	gtc	agc	tca	gcc	cag	ссс	ccg	cga	2383
Ala	He	Asp	Ala	Leu	Phe	Ser	Cys	Val	Ser	Ser	Ala	Gln	Pro	Pro	Arg	
725					730					735					740	
atc	ttc	gtg	gca	cac	agc	aag	ttt	gtc	atc	ctc	agt	gca	cac	aaa	ctg	2431
He	Phe	Val	Ala	His	Ser	Lys	Phe	Val	He	Leu	Ser	Ala	His	Lys	Leu	
				745					750					755		
		att														2479
Val	Phe	He		Asp	Thr	Leu	Thr		Gln	Val	Thr	Ala		Asp	Ile	
			760					765					770			
		aaa														2527
Arg	Asn	Lys	Val	Met	Asn	Ser		Asn	Gln	Leu	Cys		Gln	Leu	Lys	
		775					780					785				
ac t	ata	gtc	atg	gca	acc	aag	atg	gcc	gcc	сtс	cat	tac	ccc	agc	acc	2575

790 795 800

acg gcc ctg cag gaa atg gtg cac caa gtg aca gac ctt tct aga aat 2623

Thr Ala Leu Gln Glu Met Val His Gln Val Thr Asp Leu Ser Arg Asn

Thr Ile Val Met Ala Thr Lys Met Ala Ala Leu His Tyr Pro Ser Thr

805 810 815 820

gcc cag ctg ttc aag cgc tct ttg ctg gag atg gca acg ttc 2665

Ala Gln Leu Phe Lys Arg Ser Leu Leu Glu Met Ala Thr Phe

825 830

tgagaagaaa aaaaagagga aggggactgc gttaacggtt actaaggaaa actggaaata 2725 ctgtctggtt tttgtaaatg ttatctattt ttgtagataa ttttatataa aaatgaaata 2785 tittaacatt tiaigggica gacaactiic agaaaticag ggagciggag agggaaatci 2845 ttttttcccc cctgagtgtt cttatgtata cacagaagta tctgagacat aaactgtaca 2905 gaaaacttgt ccacgicctt tigtatgccc atgtaticat gittitgtit gtagatgitt 2965 gtotgatgoa ittoattaaa aaaaaaaacca tgaattacga agcaccttag taagcacctt 3025 ctaatgctgc attitititg tigitgttaa aaacalccag ciggitataa taligiicic 3085 cacgteetig igaigatici gageetggea etgggaatet gggaageata gittatiige 3145 aagigitcac ciiccaaatc aigaggcata gcaigactia iiciigiiii gaaaacicii 3205 ttcaaaactg accatcttaa acacatgatg gccaagtgcc acaaagccct cttgcggaga 3265 catttacgaa tatatatgtg gatccaagtc tcgatagtta ggcgttggag ggaagagaga 3325 ccagagagtt tagaggccag gaccacagtt aggattgggt tgtttcaata ctgagagaca 3385 gctacaataa aaggagagca attgcctccc tgggggctgtt caatcttctg catttgtgag 3445 tggttcagtc atgaggtttt ccaaaagatg tttttagagt tgtaaaaacc atatttgcag 3505 caaagattta caaaggcgta tcagactatg attgttcacc aaaatagggg aatggtttga 3565 teegeeagtt geaagtagag geetttetga etettaatat teaetttggt getaetaece 3625 ccattacctg aggaactggc caggiccttg atcatggaac tatagagcta ccagacatat 3685 cctgctctct aagggaattt attgctatct tgcaccttct ttaaaactca aaaaacatat 3745 geagacetga caeteaagag tggetageta caeagagtee atetaatttt tgcaacttee 3805 cccccgaat tc 3817

<210> 18

<211> 834

<212> PRT <213> Homo sapiens <400> 18 Met Lys Tyr Lys Asn Leu Met Ala Arg Ala Leu Tyr Asp Asn Val Pro Glu Cys Ala Glu Glu Leu Ala Phe Arg Lys Gly Asp Ile Leu Thr Val lle Glu Gln Asn Thr Gly Gly Leu Glu Gly Trp Trp Leu Cys Ser Leu His Gly Arg Gln Gly Ile Val Pro Gly Asn Arg Val Lys Leu Leu Ile Gly Pro Met Gln Glu Thr Ala Ser Ser His Glu Gln Pro Ala Ser Gly Leu Met Gln Gln Thr Phe Gly Gln Gln Lys Leu Tyr Gln Val Pro Asn Pro Gln Ala Ala Pro Arg Asp Thr Ile Tyr Gln Val Pro Pro Ser Tyr Gln Asn Gln Gly Ile Tyr Gln Val Pro Thr Gly His Gly Thr Gln Glu Gln Glu Val Tyr Gln Val Pro Pro Ser Val Gln Arg Ser Ile Gly Gly

Thr Ser Gly Pro His Val Gly Lys Lys Val Ile Thr Pro Val Arg Thr

145

Gly His Gly Tyr Val Tyr Glu Tyr Pro Ser Arg Tyr Gln Lys Asp Val

165

Tyr Asp Ile Pro Pro Ser His Thr Thr Gln Gly Val Tyr Asp Ile Pro

			18	0				18	5				19	0	
Pr	o Se	r Se	r Ala	a Ly	s Gly	Pr	o Va	l Phe	e Se	r Va	l Pro	o Va	1 G1	y Gl	u Ile
		198	5				200)				20	5		
Lys	s Pr	o Gli	n Gly	/ Val	l Tyr	Ası) He	e Pro	Pro) Thi	r Lys	GI:	y Va	l Ty	r Ala
	210)				215	<u>,</u>				220)			
П	Pro	Pro	Ser	Ala	ı Cys	Are	g Asp	Glu	Ala	Gly	/ Leu	ı Arg	g Gli	u Ly	s Asp
225					230					235					240
Tyr	Asp	Phe	Pro	Pro	Pro	Met	Arg	Gln	Ala	Gly	Arg	Pro	Ası	Le	u Arg
				245					250					25	5
Pro	Glu	Gly	Val	Tyr	Asp	He	Pro	Pro	Thr	Cys	Thr	Lys	Pro	Ala	a Gly
			260					265					270)	
Lys	Asp	Leu	His	Val	Lys	Tyr	Asn	Cys	Asp	He	Pro	Gly	Ala	Ala	Glu
		275					280					285			
Pro	Val	Ala	Arg	Arg	His	Gln	Ser	Leu	Ser	Pro	Asn	His	Pro	Pro	Pro
	290					295					300				
Gln	Leu	Gly	Gln	Ser	Val	Gly	Ser	Gln	Asn	Asp	Ala	Tyr	Asp	Val	Pro
305					310					315					320
Arg	Gly	Val	Gln	Phe	Leu	Glu	Pro	Pro	Ala	Glu	Thr	Ser	Glu	Lys	Ala
				325					330					335	
Asn	Pro	Gln	Glu	Arg	Asp	Gly	Val	Tyr	Asp	Val	Pro	Leu	His	Asn	Pro
			340					345					350		
Pro	Asp	Ala	Lys	Gly	Ser	Arg	Asp	Leu	Val	Asp	Gly	He	Asn	Arg	Leu
		355					360					365			
Ser	Phe	Ser	Ser	Thr	Gly	Ser	Thr	Arg	Ser	Asn	Met	Ser	Thr	Ser	Ser
	370					375					380				
Thr	Ser	Ser	Lys	Glu	Ser	Ser	Leu	Ser	Ala	Ser	Pro.	Ala	Gln	Asp	Lys
385					390					395					400

Arg	Lei	ı Phe	e Leu	l Asp	Pro	Asp	Thi	r Ala	a He	e GI	u Ar	g Le	u G1	n Ar	g Leu
				405					41()				41	5
Gln	Glr	ı Ala	ı Leu	Glu	Me t	Gly	Val	Ser	- Sei	Lei	ı Me	t Al	a Le	u Va	l Thr
			420					425	,				43	0	
Thr	Asp	Trp	Arg	Cys	Tyr	Gly	Tyr	Met	Glu	ı Arg	g His	s He	e Ası	n Gl	u Ile
		435					440					44	.		
Arg	Thr	Ala	Val	Asp	Lys	Val	Glu	Leu	Phe	Leu	Lys	Glu	і Тур	r Lei	ı His
	450					455					460	١			
Phe	Val	Lys	Gly	Ala	Val	Ala	Asn	Ala	Ala	Cys	Leu	Pro	G G L	ı Leı	ille
465					470					475					480
Leu	His	Asn	Lys	Met	Lys	Arg	Glu	Leu	Gln	Arg	Val	Glu	Asp	Ser	His
				485					490					495	
Gln	He	Leu	Ser	Gln	Thr	Ser	His	Asp	Leu	Asn	Glu	Cys	Ser	Trp	Ser
			500					505					510		
Leu	Asn	He	Leu	Ala	He	Asn	Lys	Pro	Gln	Asn	Lys	Cys	Asp	Asp	Leu
		515					520					525			
Asp	Arg	Phe	Val	Met	Val	Ala	Lys	Thr	Val	Pro	Asp	Asp	Ala	Lys	Gln
	530					535					540				
Leu	Thr	Thr	Thr	lle	Asn	Thr	Asn	Ala	Glu	Ala	Leu	Phe	Arg	Pro	Gly
545					550					555					560
Pro	Gly	Ser	Leu	His	Leu	Lys	Asn	Gly	Pro	Glu	Ser	He	Met	Asn	Ser
				565					570					575	
Thr	Glu	Tyr	Pro	His	Gly	Gly	Ser	Gln	Gly	Gln	Leu	Leu	His	Pro	Gly
			580					585					590		
Asp	His	Lys	Ala	Gln .	Ala l	His .	Asn	Lys	Ala	Leu	Pro	Pro	Gly	Leu	Ser
		595					500					605			

Lys	s Glu	ıGlr	ı Ala	a Pro) Ası	Cys	s Sei	r Sei	- Sei	· Asp	o Gly	/ Sei	Glu	Arg	g Ser
	610)				615)				620)			
Trp	Met	Asp	Asp	туг	Ası	yr C	Val	His	Let	Glm	Gly	Lys	Glu	Glu	Phe
625)				630)				635)				640
Glu	Arg	Gln	Gln	Lys	Glu	Leu	Leu	Glu	Lys	Glu	Asn	lle	Met	Lys	Gln
				645					650	١				655	
Asn	Lys	Me t	Gln	Leu	Glu	His	His	Gln	Leu	Ser	Gln	Phe	Gln	Leu	Leu
			660					665					670		
Glu	Gln	Glu	Ile	Thr	Lys	Pro	Val	Glu	Asn	Asp	Ile	Ser	Lys	Trp	Lys
		675					680					685			
Pro	Ser	Gln	Ser	Leu	Pro	Thr	Thr	Asn	Ser	Gly	Val	Ser	Ala	Gln	Asp
	690					695					700				
Arg	Gln	Leu	Leu	Cys	Phe	Tyr	Tyr	Asp	Gln	Cys	Glu	Thr	His	Phe	He
705					710					715					720
Ser	Leu	Leu	Asn	Ala	He	Asp	Ala	Leu	Phe	Ser	Cys	Val	Ser	Ser	Ala
				725					730					735	
Gln	Pro	Pro	Arg	He	Phe	Val	Ala	His	Ser	Lys	Phe	Val	He	Leu	Ser
			740					745					750		
Ala	His	Lys	Leu	Val	Phe	Ile	Gly	Asp	Thr	Leu	Thr	Arg	Gln	Val	Thr
		755					760					765			
Ala	Gln	Asp	He	Arg	Asn	Lys	Val	Met	Asn	Ser	Ser	Asn	Gln	Leu	Cys
	770					775					780				
Glu	Gln	Leu	Lys	Thr	He	Val	Met	Ala	Thr	Lys	Met	Ala	Ala	Leu	His
785					790					795					800
Tyr	Pro	Ser	Thr	Thr	Ala	Leu	Gln	Glu	Met	Val	His	Gln	Val	Thr	Asp
				805					810					815	
Leu	Ser	Arg	Asn	Ala	Gln	Leu	Phe	Lys	Arg	Ser	Leu	Leu	Glu	Met	Ala

820

825

830

Thr Phe

⟨210⟩ 19

<211> 567

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (36).. (506)

<400> 19

tgtgacgcct gcagggctgg gacctgacgg tgaag atg ctg gcg ggc aac gaa 53

Met Leu Ala Gly Asn Glu

5

ttc cag gtg tcc ctg agc agc tcc atg tcg gtg tca gag ctg aag gcg 101 Phe Gin Val Ser Leu Ser Ser Ser Met Ser Val Ser Glu Leu Lys Ala

1

10 15 20

cag atc acc cag aac att ggc gtg cac gcc ttc cag cag cgt ctg gct 149 Gln Ile Thr Gln Asn Ile Gly Val His Ala Phe Gln Gln Arg Leu Ala

35

gtc cac ccg agc ggt gtg gcg ctg cag gac agg gtc ccc ctt gcc agc 197 Val His Pro Ser Gly Val Ala Leu Gln Asp Arg Val Pro Leu Ala Ser

40 45 50

cag ggc ctg ggc cct ggc agc acg gtc ctg ctg gtg gtg gac aaa tgc 245 Gln Gly Leu Gly Pro Gly Ser Thr Val Leu Leu Val Val Asp Lys Cys 55 60 65 70

gac gaa cct ctg agc atc ctg gtg agg aat aac aag ggc cgc agc agc 293

Asp	Glu	Pro	Leu	Ser	He	Leu	Val	Arg	Asn	Asn	Lys	Gly	Arg	Ser	Ser	
				75					80					85		
acc	tac	gag	gtg	cgg	ctg	acg	cag	acc	gtg	gcc	cac	ctg	aag	cag	caa	341
Thr	Tyr	Glu	Val	Arg	Leu	Thr	Gln	Thr	Val	Ala	His	Leu	Lys	Gln	Gln	
			90					95					100			
gtg	agc	ggg	ctg	gag	ggt	gtg	cag	gac	gac	ctg	ttc	tgg	ctg	acc	ttc	389
Val	Ser	Gly	Leu	Glu	Gly	Val	Gln	Asp	Asp	Leu	Phe	Trp	Leu	Thr	Phe	
		105					110					115				
gag	ggg	aag	ccc	ctg	gag	gac	cag	ctc	ccg	ctg	ggg	gag	tac	ggc	ctc	437
Glu	Gly	Lys	Pro	Leu	Glu	Asp	Gln	Leu	Pro	Leu	Gly	Glu	Tyr	Gly	Leu	
	120					125					130					
aag	ccc	ctg	agc	acc	gtg	ttc	atg	aat	ctg	cgc	ctg	cgg	gga	ggc	ggc	485
Lys	Pro	Leu	Ser	Thr	Val	Phe	Met	Asn	Leu	Arg	Leu	Arg	Gly	Gly	Gly	
135					140					145					150	
aca	gag	cct	ggc	ggg	cgg	agc	taas	gggcc	ctc o	cacca	agcat	C CE	gagca	agga	t	536
Thr	Glu	Pro	Gly	Gly	Arg	Ser										
				155												
caag	gggc	egg a	ataa	aggo	t gt	tgta	agag	g a								567
<210)> 20)														
<211	> 15	57														
<212	2> PF	T.														
<213	3> Hc	omo s	apie	n s												
<400)> 20)														
Met	Leu	Ala	Gly	Asn	Glu	Phe	Gln	Val	Ser	Leu	Ser	Ser	Ser	Met	Ser	
1				5					10					15		
Val	Ser	Glu	Leu	Lys	Ala	Gln	He	Thr	Gln	Asn	He	Gly	Val	His	Ala	

20 25 30

Phe Gln Gln Arg Leu Ala Val His Pro Ser Gly Val Ala Leu Gln Asp

35 40 45

Arg Val Pro Leu Ala Ser Gln Gly Leu Gly Pro Gly Ser Thr Val Leu

50 55 60

Leu Val Val Asp Lys Cys Asp Glu Pro Leu Ser Ile Leu Val Arg Asn

-65 70 75 80

Asn Lys Gly Arg Ser Ser Thr Tyr Glu Val Arg Leu Thr Gin Thr Val

85 90 95

Ala His Leu Lys Gln Gln Val Ser Gly Leu Glu Gly Val Gln Asp Asp

100 105 110

Leu Phe Trp Leu Thr Phe Glu Gly Lys Pro Leu Glu Asp Gln Leu Pro

115 120 125

Leu Gly Glu Tyr Gly Leu Lys Pro Leu Ser Thr Val Phe Met Asn Leu

130 135 140

Arg Leu Arg Gly Gly Gly Thr Glu Pro Gly Gly Arg Ser

145 150 155

<210> 21

<211> 5095

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (14).. (2593)

⟨400⟩ 21

49

				мет	ыту	PTO	Пр	GIY	11b	Lys	Leu	Arg	irp	INT	v a i	
				1				5					10			
gcc	ttg	cto	cto	gcc	gcg	gcg	ggg	act	gca	gtg	ggc	gac	aga	ı tg	t gaa	97
Ala	Leu	Leu	Leu	Ala	Ala	Ala	Gly	Thr	Ala	Val	Gly	Ası	Arg	g Cys	s Glu	
		15					20					25				
aga	aac	gag	ttc	cag	t gc	caa	gac	ggg	aaa	tgc	atc	tcc	tac	: aag	g tgg	145
Arg	Asn	Glu	Phe	Gln	Cys	Gln	Asp	Gly	Lys	Cys	He	Ser	Tyr	Lys	Trp	
	30					35					40					
gtc	tgc	gat	ggc	agc	gc t	gag	tgc	cag	gat	ggc	tct	gat	gag	tcc	cag	193
Val	Cys	Asp	Gly	Ser	Ala	Glu	Cys	Gln	Asp	Gly	Ser	Asp	Glu	Ser	Gln	
45					50					55					60	
gag	acg	tgc	ttg	tct	gtc	acc	tgc	aaa	tcc	ggg	gac	ttc	agc	tgt	ggg	241
Glu	Thr	Cys	Leu	Ser	Val	Thr	Cys	Lys	Ser	Gly	Asp	Phe	Ser	Cys	Gly	
				65					70					75		
ggc	cgt	gtc	aac	cgc	tgc	att	cct	cag	ttc	tgg	agg	tgc	gat	ggc	caa	289
Gly	Arg	Val	Asn	Arg	Cys	He	Pro	Gln	Phe	Trp	Arg	Cys	Asp	Gly	Gln	
			80					85					90			
gtg	gac	tgc	gac	aac	ggc	tca	gac	gag	caa	ggc	tgt	ccc	ccc	aag	acg	337
Val	Asp	Cys	Asp	Asn	Gly	Ser	Asp	Glu	Gln	Gly	Cys	Pro	Pro	Lys	Thr	
		95					100					105				
tgc	tcc	cag	gac	gag	ttt	cgc	t gc	cac	gat	ggg	aag	tgc	atc	tct	cgg	385
Cys	Ser	Gln	Asp	Glu	Phe	Arg	Cys	His	Asp	Gly	Lys	Cys	He	Ser	Arg	
	110					115					120					
cag	ttc	gtc	tgt	gac	tca	gac	cgg	gac	tgc	ttg	gac	ggc	tca	gac	gag	433
Gln	Phe	Val	Cys	Asp	Ser	Asp	Arg	Asp	Cys	Leu	Asp	Gly	Ser	Asp	Glu	
125					130					135					140	

gcc	tcc	tgc	ccg	gtg	ctc	acc	tgt	ggt	ccc	gcc	agc	ttc	cag	tgc	aac	481
Ala	Ser	Cys	Pro	Val	Leu	Thr	Cys	Gly	Pro	Ala	Ser	Phe	Gln	Cys	Asn	
				145					150					155		
agc	tcc	acc	tgc	atc	ссс	cag	ctg	tgg	gcc	tgc	gac	aac	gac	ссс	gac	529
Ser	Ser	Thr	Cys	He	Pro	Gin	Leu	Trp	Ala	Cys	Asp	Asn	Asp	Pro	Asp	
			160					165					170			
tgc	gaa	gat	ggc	tcg	gat	gag	tgg	ccg	cag	cgc	tgt	agg	ggt	ctt	tac	577
Cys	Glu	Asp	Gly	Ser	Asp	Glu	Trp	Pro	Gln	Arg	Cys	Arg	Gly	Leu	Tyr	
		175					180					185				
gtg	ttc	caa	ggg	gac	agt	agc	ccc	tgc	tcg	gcc	ttc.	gag	ttc	cac	t gc	625
Val	Phe	Gln	Gly	Asp	Ser	Ser	Pro	Cys	Ser	Ala	Phe	Glu	Phe	His	Cys	
	190					195					200					
cta	agt	ggc	gag	tgc	atc	cac	tcc	agc	tgg	cgc	tgt	gat	ggt	ggc	ссс	673
Leu	Ser	Gly	Glu	Cys	He	His	Ser	Ser	Trp	Arg	Cys	Asp	Gly	Gly	Pro	
205					210					215					220	
gac	tgc	aag	gac	aaa	tct	gac	gag	gaa	aac	tgc	gct	gtg	gcc	acc	tgt	721
Asp	Cys	Lys	Asp	Lys	Ser	Asp	Glu	Glu	Asn	Cys	Ala	Val	Ala	Thr	Cys	
				225					230					235		
cgc	cct	gac	gaa	ttc	cag	t gc	tct	gat	gga	aac	t gc	atc	cat	ggc	agc	769
Arg	Pro	Asp	Glu	Phe	Gln	Cys	Ser	Asp	Gly	Asn	Cys	He	His	Gly	Ser	
			240					245					250			
cgg	cag	tgt	gac	cgg	gaa	tat	gac	tgc	aag	gac	atg	agc	gat	gaa	gtt	817
Arg	Gln	Cys	Asp	Arg	Glu	Tyr	Asp	Cys	Lys	Asp	Met	Ser	Asp	Glu	Val	
		255					260					265				
ggc	tgc	gtt	aat	gtg	aca	ctc	tgc	gag	gga	ccc	aac	aag	ttc	aag	tgt	865
Gly	Cys	Val	Asn	Val	Thr	Leu	Cys	Glu	Gly	Pro		Lys	Phe	Lys	Cys	
	270					275					280					

cac	agc	ggc	gaa	tgc	atc	acc	ctg	gac	aaa	gtc	t gc	aac	atg	gct	aga	913
His	Ser	Gly	Glu	Cys	He	Thr	Leu	Asp	Lys	Val	Cys	Asn	Met	Ala	Arg	
285					290					295					300	
gac	tgc	cgg	gac	tgg	tca	gat	gaa	ссс	atc	aaa	gag	tgc	ggg	acc	aac	961
Asp	Cys	Arg	Asp	Trp	Ser	Asp	Glu	Pro	He	Lys	Glu	Cys	Gly	Thr	Asn	
				305					310					315		
gaa	tgc	ttg	gac	aac	aac	ggc	ggc	tgt	tcc	cac	gtc	t gc	aat	gac	ctt	1009
Glu	Cys	Leu	Asp	Asn	Asn	Gly	Gly	Cys	Ser	His	Val	Cys	Asn	Asp	Leu	
			320					325					330			
aag	atc	ggc	tac	gag	tgc	ctg	tgc	ccc	gac	ggc	ttc	cag	ctg	gtg	gcc	1057
Lys	He	Gly	Tyr	Glu	Cys	Leu	Cys	Pro	Asp	Gly	Phe	Gln	Leu	Val	Ala	
		335					340					345				
cag	cga	aga	tgc	gaa	gat	atc	gat	gag	tgt	cag	gat	ccc	gac	acc	t gc	1105
Gln	Arg	Arg	Cys	Glu	Asp	He	Asp	Glu	Cys	Gln	Asp	Pro	Asp	Thr	Cys	
	350					355					360					
agc	cag	ctc	tgc	gtg	aac	ctg	gag	ggt	ggc	tac	aag	tgc	cag	tgt	gag	1153
Ser	Gln	Leu	Cys	Val	Asn	Leu	Glu	Gly	Gly	Tyr	Lys	Cys	Gln	Cys	Glu	
365					370					375					380	
gaa	ggc	ttc	cag	ctg	gac	ccc	cac	acg	aag	gcc	tgc	aag	gct	gtg	ggc	1201
Glu	Gly	Phe	Gln	Leu	Asp	Pro	His	Thr	Lys	Ala	Cys	Lys	Ala	Val	Gly	
				385					390					395		
tcc	atc	gcc	tac	ctc	ttc	ttc	acc	aac	cgg	cac	gag	gtc	agg	aag	atg	1249
Ser	He	Ala	Tyr	Leu	Phe	Phe	Thr	Asn	Arg	His	Glu	Val	Arg	Lys	Met	
			400					405					410			
acg	ctg	gac	cgg	agc	gag	tac	acc	agc	ctc	atc	ccc	aac	ctg	agg	aac	1297
Thr	Leu	Asp	Arg	Ser	Glu	Tyr	Thr	Ser	Leu	Ile	Pro	Asn	Leu	Arg	Asn	

		415					420					425				
gtg	gtc	gct	ctg	gac	acg	gag	gtg	gcc	agc	aat	aga	atc	tac	t gg	tct	1345
Val	Val	Ala	Leu	Asp	Thr	Glu	Val	Ala	Ser	Asn	Arg	He	Tyr	Trp	Ser	
	430					435					440					
gac	ctg	tcc	cag	aga	atg	atc	t gc	agc	acc	cag	ctt	gac	aga	gcc	cac	1393
Asp	Leu	Ser	Gln	Arg	Met	He	Cys	Ser	Thr	Gln	Leu	Asp	Arg	Ala	His	
445					450					455					460	
ggc	gtc	tct	tcc	tat	gac	acc	gtc	atc	agc	agg	gac	atc	cag	gcc	ссс	1441
Gly	Val	Ser	Ser	Tyr	Asp	Thr	Val	He	Ser	Arg	Asp	He	Gln	Ala	Pro	
				465					470					475		
gac	ggg	ctg	gct	gtg	gac	tgg	atc	cac	agc	aac	atc	tac	tgg	acc	gac	1489
Asp	Gly	Leu	Ala	Val	Asp	Trp	He	His	Ser	Asn	He	Tyr	Trp	Thr	Asp	
			480					485					490			
tct	gtc	ctg	ggc	ac t	gtc	tct	gtt	gcg	gat	acc	aag	ggc	gtg	aag	agg	1537
Ser	Val	Leu	Gly	Thr	Val	Ser	Val	Ala	Asp	Thr	Lys	Gly	Val	Lys	Arg	
		495					500					505				
aaa	acg	tta	ttc	agg	gag	aac	ggc	tcc	aag	cca	agg	gcc	atc	gtg	gtg	1585
Lys	Thr	Leu	Phe	Arg	Glu	Asn	Gly	Ser	Lys	Pro	Arg	Ala	He	Val	Val	
	510					515					520					
gat	cct	gtt	cat	ggc	ttc	atg	tac	tgg	act	gac	tgg	gga	act	ccc	gcc	1633
Asp	Pro	Val	His	Gly	Phe	Met	Tyr	Trp	Thr	Asp	Trp	Gly	Thr	Pro	Ala	
525					530					535					540	
aag	atc	aag	aaa	ggg	ggc	ctg	aat	ggt	gtg	gac	atc	tac	tcg	ctg	gtg	1681
Lys	He	Lys	Lys	Gly	Gly	Leu	Asn	Gly	Val	Asp	He	Tyr	Ser	Leu	Val	
				545					550					555		
ac t	gaa	aac	att	cag	tgg	ccc	aat	ggc	atc	acc	cta	gat	ctc	ctc	agt	1729
Thr	Glu	Asn	He	Gln	Trp	Pro	Asn	Gly	Ile	Thr	Leu	Asp	Leu	Leu	Ser	

	560	565		570
ggc cgc ctc	tac tgg gtt	gac tcc aaa	ctt cac tcc at	c tca agc atc 1777
Gly Arg Leu	Tyr Trp Val	Asp Ser Lys	Leu His Ser II	e Ser Scr Ile
575		580	58	5
gat gtc aat	ggg ggc aac	cgg aag acc	atc ttg gag ga	t gaa aag agg 1825
Asp Val Asn	Gly Gly Asn	Arg Lys Thr	lle Leu Glu As	p Glu Lys Arg
590		595	600	
ctg gcc cac	ccc ttc tcc	ttg gcc gtc	ttt gag gac aa	a gta ttt tgg 1873
Leu Ala His	Pro Phe Ser	Leu Ala Val	Phe Glu Asp Ly	s Val Phe Trp
605	610		615	620
aca gat atc	atc aac gaa	gcc att ttc	agt gcc aac cg	c ctc aca ggt 1921
Thr Asp Ile	Ile Asn Glu	Ala Ile Phe	Ser Ala Asn Ar	g Leu Thr Gly
	625		630	635
tcc gat gtc	aac ttg ttg	gct gaa aac	cta ctg tcc cc	a gag gat atg 1969
Ser Asp Val	Asn Leu Leu	Ala Glu Asn	Leu Leu Ser Pr	o Glu Asp Met
	640	645		650
gtc ctc ttc	cac aac ctc	acc cag cca	aga gga gtg aa	c tgg tgt gag 2017
Val Leu Phe	His Asn Leu	Thr Gln Pro	Arg Gly Val As	
655		660	66	
agg acc acc	ctg agc aat	ggc ggc tgc	cag tat ctg tg	c ctc cct gcc 2065
Arg Thr Thr	Leu Scr Asn	Gly Gly Cys	Gln Tyr Leu Cy	s Leu Pro Ala
670		675	680	
ccg cag atc	aac ccc cac	tcg ccc aag	ttt acc tgc gc	c tgc ccg gac 2113
Pro Gln Ile	Asn Pro His	Ser Pro Lys	Phe Thr Cys Al	a Cys Pro Asp
685	690		695	700
ggc atg ctg	ctg gcc agg	gac atg agg	age tge etc ac	a gag gct gag 2161

G	lу	Me t	Leu	Leu	Ala	Arg	Asp	Met	Arg	Ser	Cvs	Leu	Thr	Glu	Ala	Glu	
					705					710					715		
g	c t	gca	gtg	gcc	acc	cag	gag	aca	tcc	acc	gtc	agg	cta	aag	gtc	agc	2209
A	l a	Ala	Val	Ala	Thr	Gln	Glu	Thr	Ser	Thr	Val	Arg	Leu	Lys	Val	Ser	
				720					725					730			
t	сс	aca	gcc	gta	agg	aca	cag	cac	aca	acc	acc	cgg	cct	gtt	ccc	gac	2257
S	e r	Thr	Ala	Val	Arg	Thr	Gln	His	Thr	Thr	Thr	Arg	Pro	Val	Pro	Asp	
			735					740					745				
a	сс	tcc	cgg	ctg	cct	ggg	gcc	acc	cct	ggg	ctc	acc	acg	gtg	gag	a t a	2305
Ţ	hr	Ser	Arg	Leu	Pro	Gly	Ala	Thr	Pro	Gly	Leu	Thr	Thr	Val	Glu	He	
		750					755					760					
g	t g	aca	atg	tct	cac	caa	gct	ctg	ggc	gac	gtt	gct	ggc	aga	gga	aat	2353
V	a l	Thr	Met	Ser	His	Gln	Ala	Leu	Gly	Asp	Val	Ala	Gly	Arg	Gly	Asn	
7	65					770					775					780	
g	ag	aag	aag	ccc	agt	agc	gtg	agg	gct	ctg	tcc	att	gtc	ctc	ссс	atc	2401
G	lu	Lys	Lys	Pro	Ser	Ser	Val	Arg	Ala	Leu	Ser	He	Val	Leu	Pro	He	
					785					790					795		
g	tg	ctc	ctc	gtc	ttc	ctt	tgc	ctg	ggg	gtc	ttc	ctt	cta	tgg	aag	aac	2449
V	a l	Leu	Leu	Val	Phe	Leu	Cys	Leu	Gly	Val	Phe	Leu	Leu	Trp	Lys	Asn	
				800					805					810			
t	gg	cgg	ctt	aag	aac	atc	aac	agc	atc	aac	ttt	gac	aac	ccc	gtc	tat	2497
T	rp	Arg	Leu	Lys	Asn	He	Asn	Ser	He	Asn	Phe	Asp	Asn	Pro	Val	Tyr	
			815					820					825				
c	ag	aag	acc	ac a	gag	gat	gag	gtc	cac	att	tgc	cac	aac	cag	gac	ggc	2545
G	l n	Lys	Thr	Thr	Glu	Asp	Glu	Val	His	He	Cys	His	Asn	Gln	Asp	Gly	
		830					835					840					
t	ac	agc	tac	ссс	tcg	aga	cag	atg	gtc	agt	ctg	gag	gat	gac	gtg	gcg	2593

78/527

Tyr Ser Tyr Pro Ser Arg Gln Met Val Ser Leu Glu Asp Asp Val Ala 845 850 855 860

tgaacatcig cetggagice egeceeigee cagaaceett eetgagaeet egeeggeeit 2653 gttttattca aagacagaga agaccaaagc attgcctgcc agagctttgt tttatatatt 2713 tattcatctg ggaggcagaa caggcttcgg acagtgccca tgcaatggct tgggttggga 2773 ttttggtttc ttcctttcct gtgaaggata agagaaacag gcccggggcg accaggatga 2833 cacctccatt tctctccagg aagttttgag tttctctcca ccgtgacaca atcctcaaac 2893 atggaagatg aaagggcagg ggatgtcagg cccagagaag caagtggctt tcaacacaca 2953 acagcagatg geaccaaegg gaecceetgg ecetgeetea tecaccaate tetaagceaa 3013 accectaaac teaggagtea aegtgtttae etettetatg caageettge tagacageea 3073 ggttagcctt tgccctgtca cccccgaatc atgacccacc cagtgtcttt cgaggtgggt 3133 ttgtaccttc cttaagccag gaaagggatt catggcgtcg gaaatgatct ggctgaatcc 3193 gtggtggcac cgagaccaaa ctcattcacc aaatgatgcc acttcccaga ggcagagcct 3253 gagtcaccgg tcacccttaa tatttattaa gtgcctgaga cacccggtta ccttggccgt 3313 gaggacacgt ggcctgcacc caggtgtggc tgtcaggaca ccagcctggt gcccatcctc 3373 ccgaccccta cccacttcca tteccgtggt ctccttgcac tttetcagtt cagagttgta 3433 cactgtgtac atttggcatt tgtgttatta ttttgcactg ttttctgtcg tgtgtgttgg 3493 gatgggatcc caggccaggg aaagcccgtg tcaatgaatg ccggggacag agaggggcag 3553 gttgaccggg acttcaaagc cgtgatcgtg aatatcgaga actgccattg tcgtctttat 3613 gtccgcccac ctagtgcttc cacttctatg caaatgcctc caagccattc acttccccaa 3673 tcttgtcgtt gatgggtatg tgtttaaaac atgcacggtg aggccgggcg cagtggcctc 3733 acgcctgtaa tcccagcact ttgggaggcc gaggcgggtg gatcatgagg tcaggagatc 3793 gagaccatee tggetaacaa ggtgaaacee egtetetaet aaaaatacaa aaaattagee 3853 gggcgcggtg gtgggcacct gtagtcccag ctactcggga ggctgaggca ggagaatggt 3913 gtgaacccgg gaagcggagc ttgcagtgag ccgagattgc gccactgcag tccgcagtct 3973 ggcctgggcg acagagcgag actccgtctc aaaaaaaaca aaacaaaaaa aaaccatgca 4033

tggtgcatca gcagcccatg gcctctggcc aggcatggcg aggctgaggt gggaggatgg 4093 tttgagetea ggeatttgag getgtegtga getatgatta tgeeaetget tteeageetg 4153 ggcaacatag taagacccca tetellaaaa aatgaatttg gecagacaca ggtgeeteac 4213 geetgtaate eeageacttt gggaggetga getggateae ttgagtteag gagttggaga 4273 ccaggcetga gcaacaaage gagateecat etetacaaaa accaaaaagt taaaaatcag 4333 ctgggtatgg tggcacgtgc ctgtgatccc agctacttgg gaggctgagg caggaggatc 4393 geotgageee aggaggtgga ggttgeagtg agceatgate gageeactge acteeageet 4453 gggcaacaca tgaagaccct atttcagaaa tacaactata aaaaaaataa ataaatcctc 4513 cagtotggat cgtttgacgg gacttcaggt tctttctgaa atcgccgtgt tactgttgca 4573 ctgatgtccg gagagacagt gacagcctcc gtcagactcc cgcgtgaaga tgtcacaagg 4633 gattggcaat tgtccccagg gacaaaacac tgtgtccccc ccagtgcagg gaaccgtgat 4693 aagcettict ggtticggag cacgtaaatg cgleectgta cagatagtgg ggattitttg 4753 ttatgtttgc actitgtata ttggttgaaa ctgttatcac ttatatata atatacacac 4813 atatatata aatetatila liitigeaaa eeelggiige igtatiigii eagigaetai 4873 tctcggggcc ctgtgtaggg ggttattgcc tctgaaatgc ctcttcttta tgtacaaaga 4933 ttatttgcac gaactggact gtgtgcaacg ctttttggga gaatgatgtc cccgttgtat 4993 gtatgagtgg cttctgggag atgggtgtca ctttttaaac cactgtatag aaggtttttg 5053 5095 tagcctgaat gtcttactgt gatcaattaa atttcttaaa tg

<210> 22

<211> 860

<212> PRT

<213> Homo sapiens

<400> 22

Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu Leu Leu

1 5 10 15

Ala Ala Ala Gly Thr Ala Val Gly Asp Arg Cys Glu Arg Asn Glu Phe

,	WUU	1/254	12/												
			20					25					30)	
Gln	Cys	Gln	Asp	Gly	Lys	Cys	He	Ser	Tyr	Lys	Trp	Val	Cys	Asp	Gly
		35	ı				40					45			
Ser	Ala	Glu	Cys	Gln	Asp	Gly	Ser	Asp	Glu	Ser	Gln	Glu	Thr	Cys	Lei
	50					55					60				
Ser	Val	Thr	Cys	Lys	Ser	Gly	Asp	Phe	Ser	Cys	Gly	Gly	Arg	Val	Ast
65					70					75					80
Arg	Cys	He	Pro	Gln	Phe	Trp	Arg	Cys	Asp	Gly	Gln	Val	Asp	Cys	Asp
				85					90					95	
Asn	Gly	Ser	Asp	Glu	Gln	Gly	Cys	Pro	Pro	Lys	Thr	Cys	Ser	Gln	Asr
			100					105					110		
Glu	Phe	Arg	Cys	His	Asp	Gly	Lys	Cys	He	Ser	Arg	Gln	Phe	Val	Cys
		115					120					125			
Asp	Ser	Asp	Arg	Asp	Cys	Leu	Asp	Gly	Ser	Asp	Glu	Ala	Ser	Cys	Pro
	130					135					140				
Val	Leu	Thr	Cys	Gly	Pro	Ala	Ser	Phe	Gln	C y.s	Asn	Ser	Ser	Thr	Cys
145					150					155					160
He	Pro	Gln	Leu		Ala	Cys	Asp	Asn	Asp	Pro	Asp	Cys	Glu	Asp	Gly
				165					170					175	
Ser	Asp	Glu		Pro	Gln	Arg	Cys	Arg	Gly	Leu	Tyr	Val	Phe	Gln	Gly
			180					185					190		
Asp	Ser		Pro	Cys	Ser	Ala	Phe	Glu	Phe	His	Cys	Leu	Ser	Gly	Glu
		195					200					205			
Cys	Ιlε	His	Ser	Ser	Trp	Arg	Cys	Asp	Gly	Gly	Pro	Asp	Cys	Lys	Asp

| 210 | 215 | 220 | 220 | Lys | Ser | Asp | Glu | Glu | Asp | Cys | Ala | Val | Ala | Thr | Cys | Arg | Pro | Asp | Glu | 225 | 230 | 230 | 235 | 235 | 240 |

Phe	GIN	ı tys	Ser	Asp	Gly	Asn	Cys	He	His	Gly	Ser	Arg	g Gln	Cys	Asp
				245					250					255	
Arg	Glu	Tyr	Asp	Cys	Lys	Asp	Met	Ser	Asp	Glu	Val	Gly	Cys	Val	Asn
			260					265					270		
Val	Thr	Leu	Cys	Glu	Gly	Pro	Asn	Lys	Phe	Lys	Cys	His	Ser	Gly	Glu
		275					280					285			
Cys	He	Thr	Leu	Asp	Lys	Val	Cys	Asn	Met	Ala	Arg	Asp	Cys	Arg	Asp
	290					295					300				
Trp	Ser	Asp	Glu	Pro	He	Lys	Glu	Cys	Gly	Thr	Asn	Glu	Cys	Leu	Asp
305					310					315					320
Asn	Asn	Gly	Gly	Cys	Ser	His	Val	Cys	Asn	Asp	Leu	Lys	He	Gly	Tyr
				325					330					335	
Glu	Cys	Leu	Cys	Pro	Asp	Gly	Phe	Gln	Leu	Val	Ala	Gln	Arg	Arg	Cys
			340					345					350		
Glu	Asp	He	Asp	Glu	Cys	Gln	Asp	Pro	Asp	Thr	Cys	Ser	Gln	Leu	Cys
		355					360					365			
Val	Asn	Leu	Glu	Gly	Gly	Tyr	Lys	Cys	Gln	Cys	Glu	Glu	Gly	Phe	Gln
	370					375					380				
Leu	Asp	Pro	His	Thr	Lys	Ala	Cys	Lys	Ala	Val	Gly	Ser	He	Ala	Tyr
385					390					395					400
Leu	Phe	Phe	Thr	Asn	Arg	His	Glu	Val	Arg	Lys	Met	Thr	Leu	Asp	Arg
				405					410					415	
Ser	Glu	Tyr	Thr	Ser	Leu	He	Pro	Asn	Leu	Arg	Asn	Val	Val	Ala	Leu
			420					425					430		
Asp	Thr	Glu	Val	Ala	Ser	Asn	Arg	He	Tyr	Trp	Ser	Asp	Leu	Ser	Gln
		435					440					445			

Arg	мет	116	СУS	26 L	ınr	Gill	ren	ASP	Arg	ATA	HIS	GTY	vai	ser	Ser
	450					455					460				
Туг	Asp	Thr	Val	He	Ser	Arg	Asp	He	Gln	Ala	Pro	Asp	Gly	Leu	Ala
465					470					47 5					480
Val	Asp	Trp	He	His	Ser	Asn	He	Tyr	Trp	Thr	Asp	Ser	Val	Leu	Gly
				485					490					495	
Thr	Val	Ser	Val	Ala	Asp	Thr	Lys	Gly	Val	Lys	Arg	Lys	Thr	Leu	Phe
			500					505					510		
Arg	Glu	Asn	Gly	Ser	Lys	Pro	Arg	Ala	He	Val	Val	Asp	Pro	Val	His
		515					520					525			
Gly	Phe	Me t	Tyr	Trp	Thr	Asp	Trp	Gly	Thr	Pro	Ala	Lys	He	Lys	Lys
	530					535					540				
Gly	Gly	Leu	Asn	Gly	Val	Asp	Ile	Tyr	Ser	Leu	Val	Thr	Glu	Asn	He
545					550					555					560
Gln	Trp	Pro	Asn	Gly	He	Thr	Leu	Asp	Leu	Leu	Ser	Gly	Arg	Leu	Tyr
				565					570					575	
Trp	Val	Asp	Ser	Lys	Leu	His	Ser	Ile	Ser	Ser	He	Asp	Val	Asn	Gly
			580					585					590		
Gly	Asn	Arg	Lys	Thr	He	Leu	Glu	Asp	Glu	Lys	Arg	Leu	Ala	His	Pro
		595					600					605			
Phe	Ser	Leu	Ala	Val	Phe	Glu	Asp	Lys	Val	Phe	Trp	Thr	Asp	He	Ile
	610					615					620				
Asn	Glu	Ala	He	Phe	Ser	Ala	Asn	Arg	Leu	Thr	Gly	Ser	Asp	Val	Asn
625					630					635					640
Leu	Leu	Ala	Glu	Asn	Leu	Leu	Ser	Pro	Glu	Asp	Met	Val	Leu	Phe	His
				645					650					655	
Asn	Leu	Thr	Gln	Pro	Arg	Gly	Val	Asn	Trp	Cys	Glu	Arg	Thr	Thr	Leu

660 665 670

Ser Asn Gly Gly Cys Gln Tyr Leu Cys Leu Pro Ala Pro Gln Ile Asn

675 680 685

Pro His Ser Pro Lys Phe Thr Cys Ala Cys Pro Asp Gly Met Leu Leu

690 695 700

Ala Arg Asp Met Arg Ser Cys Leu Thr Glu Ala Glu Ala Ala Val Ala

705 710 715 720

Thr Gln Glu Thr Ser Thr Val Arg Leu Lys Val Ser Ser Thr Ala Val

725 730 735

Arg Thr Gln His Thr Thr Thr Arg Pro Val Pro Asp Thr Ser Arg Leu

740 745 750

Pro Gly Ala Thr Pro Gly Leu Thr Thr Val Glu Ile Val Thr Met Ser

755 760 765

His Gln Ala Leu Gly Asp Val Ala Gly Arg Gly Asn Glu Lys Lys Pro

770 775 780

Ser Ser Val Arg Ala Leu Ser Ile Val Leu Pro Ile Val Leu Leu Val

785 790 795 800

Phe Leu Cys Leu Gly Val Phe Leu Leu Trp Lys Asn Trp Arg Leu Lys

805 810 815

Asn Ile Asn Ser Ile Asn Phe Asp Asn Pro Val Tyr Gln Lys Thr Thr

820 825 830

Glu Asp Glu Val His Ile Cys His Asn Gln Asp Gly Tyr Ser Tyr Pro

835 840 845

Ser Arg Gln Met Val Ser Leu Glu Asp Asp Val Ala

850 855 860

<210> 23

<211> 1660

<212> DNA

<213⊅ Homo sapiens

<220>

<221> CDS

<222> (50).. (529)

<400> 23

5

gegeteteet egeaggeaga aacteegetg ageagaactt geegeeaga atg etc etc 58

Met Leu Leu

1

ctg ttg ctg agt atc atc gtc ctc cac gtc gcg gtg ctg gtg ctg ctg 106

Leu Leu Leu Ser Ile Ile Val Leu His Val Ala Val Leu Val Leu Leu

10 15

ttc gtc tcc acg atc gtc agc caa tgg atc gtg ggc aat gga cac gca 154

Phe Val Ser Thr Ile Val Ser Gln Trp Ile Val Gly Asn Gly His Ala

20 25 30

act gat ctc tgg cag aac tgt agc acc tct tcc tca gga aat gtc cac 202

Thr Asp Leu Trp Gln Asn Cys Ser Thr Ser Ser Ser Gly Asn Val His

40 45 50

cac tgt ttc tca tca tca cca aac gaa tgg ctg cag tct gtc cag gcc 250

His Cys Phe Ser Ser Ser Pro Asn Glu Trp Leu Gln Ser Val Gln Ala

55 60 65

acc atg atc ctg tcg atc atc ttc agc att ctg tct ctg ttc ctg ttc 298

Thr Met Ile Leu Ser Ile Ile Phe Ser Ile Leu Ser Leu Phe Leu Phe

70 75 80

ttc tgc caa ctc ttc acc ctc acc aag ggg ggc agg ttt tac atc act 346

Phe Cys Gln	Leu Phe	Thr Leu	Thr I	Lys Gly	Gly	Arg	Phe	Tyr	He	Thr	
85		90				95					
gga atc ttc	caa att	ctt gct	ggt	ctg tgc	gtg	atg	agt	gct	gcg	gcc	394
Gly Ile Phe	Gln Ile	Leu Ala	Gly I	Leu Cys	Val	Met	Ser	Ala	Ala	Ala	
100		105			110					115	
atc tac acg	gtg agg	cac ccg	gag	tgg cat	ctc	acc	tcg	gat	tac	tcc	442
lle Tyr Thr	Val Arg	His Pro	Glu 7	Trp His	Leu	Thr	Ser	Asp	Tyr	Ser	
	120			125					130		
tac ggt ttc	gcc tac	atc ctg	gcc 1	tgg gtg	gcc	ttc	ссс	ctg	gcc	ctt	490
Tyr Gly Phe	Ala Tyr	Ile Leu	Ala	Trp Val	Ala	Phe	Pro	Leu	Ala	Leu	
	135]	140				145			
ctc agc ggt	gtc atc	tat gtg	atc 1	ttg cgg	aaa	cgc	gaa	tga	ggcg	ссс	539
Leu Ser Gly	Val Ile	Tyr Val	lle l	Leu Arg	Lys	Arg	Glu				
150			155				160				
150 agacggtctg		tc tgagc		tagggaa	aggg	agga		gaa a	aaca	gaaagc	599
	tctgaggc		gtaca				aggg				
agacggtctg	tctgaggc aaaagagc	ta gccca	gtaca aaatc	ccaaac	tcaa	acca	aggg aacc	aa a	acaga	ıaagca	659
agacggtctg agacaaagaa	tctgaggc aaaagagc gggttgct	ta gccca gt tgatt	gtaca aaatc gaaga	ccaaac tgtata	tcaa t aa t	acca atc t	aggg aacc	aa a	acaga tataa	iaagca iaacct	659 719
agacggtctg agacaaagaa gtggaggtgg	tetgagge aaaagage gggttget etttttac	ta gccca gt tgatt at atatg	gtaca aaatc gaaga tacat	ccaaac tgtata agtatts	tcaa taat gttt	acca atct gctt	aggs aacc ccgs ttta	aa a gtt itg	acaga tataa ttgad	aaagca aaacct	659 719 779
agacggtctg agacaaagaa gtggaggtgg atttataaca	tctgaggc aaaagagc gggttgct; ctttttac gagcctta	ta gccca gt tgatt at atatg aa gaagt	gtaca aaatc gaaga tacat agcta	ccaaac tgtata agtatts aggaac	tcaa taat gttt ttta	acca atct gctt catc	aggs aacc ccgs ttta	taa i	acaga tataa ttgad gtata	naagca naacct ccatca natcca	659 719 779 839
agacggtctg agacaaagaa gtggaggtgg atttataaca gcctcgtgtt	tetgagge aaaagage gggttgets etttttac gageetta tttgtttt	ta gccca gt tgatt at atatg aa gaagt gt tttt	gtaca aaatc gaaga tacat agcta gtttg	ccaaac tgtata agtatts aggaac tttgtt	tcaa taat gttt ttta ttgt	acca atct gctt catc	aggs aacc ccgs ttta ctaa	tt ttg ttg	acaga tataa ttgac gtata aataa	naagca naacct ccatca natcca	659 719 779 839 899
agacggtctg agacaaagaa gtggaggtgg atttataaca gcctcgtgtt gctcagtatt	tctgaggc aaaagagc gggttgct; ctttttac; gagcctta; tttgtttt; ccccttcc	ta gccca gt tgatt at atatg aa gaagt gt tttt ct ttcat	gtaca aaatc gaaga tacat agcta gtttg ctgaa	ccaaac tgtata agtattg aggaac tttgtt agaaga	tcaa taat gttt ttta tttgt tacc	acca atct gctt catc	aagggaaacc ccgg tttta ctaa ccca	taa a	acaga tataa ttgad gtata aataa tccad	naagca naacct ccatca natcca ngataa	659 719 779 839 899 959
agacggtctg agacaaagaa gtggaggtgg atttataaca gcctcgtgtt gctcagtatt ctccatctcg	tctgaggc aaaagagc gggttgct; ctttttac; gagcctta; tttgtttt; ccccttcc; aaagtgtg;	ta gccca gt tgatt at atatg aa gaagt gt tttt ct ttcat gg tagaa	gtaca aaatc gaaga tacat agcta gtttg ctgaa acccc	ccaaac tgtata agtatts aggaac tttgtt agaaga aaatgto	tcaa taat gttt ttta ttgt tacc ccaa	acca atct gctt catc tita tccc aagc	aggg aacc ccgg ttta ctaa ccca tccc	tt (acaga tataa ttgac gtata aataa tccac	naagca naacct ccatca natcca ngataa cctcat	659 719 779 839 899 959 1019
agacggtctg agacaaagaa gtggaggtgg atttataaca gcctcgtgtt gctcagtatt ctccatctcg ttagaaaacc	tctgaggc aaaagagc gggttgct; ctttttac; gagcctta; tttgtttt; ccccttcc; aaagtgtg; tccaacag;	ta gccca gt tgatt at atatg aa gaagt gt tttt ct ttcat gg tagaa aa acagc	gtaca aaatc gaaga tacat agcta gtttg ctgaa acccc cgctg	ccaaac tgtata agtattg aggaac tttgttg agaaga aaatgtc cccgaac	tcaa taat gttt ttta ttgt tacc ccaa	acca atct gctt catc ttta tccc aagc tgtg	aagggaaacc ccgg tttta ctaa ccca tccc cctt	tt de seconda de secon	acaga tataa ttgac gtata aataa tecac ctggt	naagca naacct ccatca natcca ngataa cctcat gggtg	659 719 779 839 899 959 1019 1079
agacggtctg agacaaagaa gtggaggtgg atttataaca gcctcgtgtt gctcagtatt ctccatctcg ttagaaaacc acccagtgca	tctgaggc aaaagagc gggttgct; ctttttac; gagcctta; tttgtttt; ccccttcc; aaagtgtg; tccaacag; atgcccaa;	ta gccca gt tgatt at atatg aa gaagt gt tttt ct ttcat gg tagaa aa acagc ac cggag	gtaca aaatc gaaga tacat agcta gtttg ctgaa acccc cgctg ccctc	ccaaac tgtata agtattg aggaac tttgtt agaaga aaatgtc cccgaac gaaaaaa	tcaa taat gttt ttta ttgt tacc ccaa cctc	acca atct gctt catc ttta tccc aagc tgtg gctt	aggg aacc ccgg ttta ctaa ccca tccc cctt tgaa gtgg	tt de seconda de secon	acaga tataa ttgac gtata aataa tccac ctggt tttac	aaagca aaacct ccatca aatcca agataa cctcat gggtg egcgca	659 719 779 839 899 959 1019 1079 1139

tggaaatcca attaacaatt ttataacata agatagaatg gagacctgaa taattctgtg 1319

taatataaat ggittataac tgctittgta cctagctagg ctgctattat tactataatg 1379
agtaaatcat aaagccitcg tcactcccac agtittetta eggteggage ateacaacaa 1439
gegtetagac teettgggac egtgagtice tagagettgg etgggtetag getgitetgi 1499
geeteeaagg actgtetgge aatgactigt attggeeaec aactgtagat gtatatatgg 1559
tgeeettetg atgetaagac teeagacett tigitittge titgeatitt etgatitata 1619
ceaactgigt ggactaagat geattaaaat aaacatcaga g 1660

<210> 24

<211> 160

<212> PRT

<213> Homo sapiens

<400> 24

Met Leu Leu Leu Leu Ser Ile Ile Val Leu His Val Ala Val Leu

1 5 10 15

Val Leu Leu Phe Val Ser Thr Ile Val Ser Gln Trp Ile Val Gly Asn

20 25 30

Gly His Ala Thr Asp Leu Trp Gln Asn Cys Ser Thr Ser Ser Gly
35 40 45

Asn Val His His Cys Phe Ser Ser Ser Pro Asn Glu Trp Leu Gln Ser
50 55 60

Val Gln Ala Thr Met Ile Leu Ser Ile Ile Phe Ser Ile Leu Ser Leu
65 70 75 80

Phe Leu Phe Phe Cys Gln Leu Phe Thr Leu Thr Lys Gly Gly Arg Phe
85 90 95

Tyr Ile Thr Gly Ile Phe Gln Ile Leu Ala Gly Leu Cys Val Met Ser 100 105 110

Ala Ala Ala Ile Tyr Thr Val Arg His Pro Glu Trp His Leu Thr Ser

120 125 115 Asp Tyr Ser Tyr Gly Phe Ala Tyr Ile Leu Ala Trp Val Ala Phe Pro 130 135 140 Leu Ala Leu Leu Ser Gly Val Ile Tyr Val Ile Leu Arg Lys Arg Glu 160 155 150 145 <210> 25 <211> 3116 <212> DNA <213> Homo sapiens <220> <221> CDS ⟨222⟩ (36).. (2717) <400> 25 ggagcccagc aacttctgag gaaagtttgg caccc atg gcg tgg cgg tgc ccc 53 Met Ala Trp Arg Cys Pro 5 1 101 agg atg ggc agg gtc ccg ctg gcc tgg tgc ttg gcg ctg tgc ggc tgg Arg Met Gly Arg Val Pro Leu Ala Trp Cys Leu Ala Leu Cys Gly Trp 20 10 15 gcg tgc atg gcc ccc agg ggc acg cag gct gaa gaa agt ccc ttc gtg 149 Ala Cys Met Ala Pro Arg Gly Thr Gln Ala Glu Glu Ser Pro Phe Val 25 30 35

cgg tgt cag ctc cag gtt cag gga gag ccc ccc gag gta cat tgg ctt 245

ggc aac cca ggg aat atc aca ggt gcc cgg gga ctc acg ggc acc ctt

Gly Asn Pro Gly Asn Ile Thr Gly Ala Arg Gly Leu Thr Gly Thr Leu

45

40

50

Arg	Cys	Gln	Leu	Gln	Val	Gln	Gly	Glu	Pro	Pro	Glu	Val	His	Trp	Leu	
55					60					65					70	
cgg	gat	gga	cag	atc	ctg	gag	ctc	gcg	gac	agc	acc	cag	acc	cag	gtg	293
Arg	Asp	Gly	Gln	He	Leu	Glu	Leu	Ala	Asp	Ser	Thr	Gln	Thr	Gln	Val	
				75					80					85		
ccc	ctg	ggt	gag	gal	gaa	cag	gat	gac	tgg	ata	gtg	gtc	agc	cag	ctc	341
Pro	Leu	Gly	Glu	Asp	Glu	Gln	Asp	Asp	Trp	He	Val	Val	Ser	Gln	Leu	
			90					95					100			
aga	atc	acc	tcc	ctg	cag	ctt	tcc	gac	acg	gga	cag	tac	cag	tgt	ttg	389
Arg	He	Thr	Ser	Leu	Gln	Leu	Ser	Asp	Thr	Gly	Gln	Tyr	Gln	Cys	Leu	
		105					110					115				
gtg	ttt	ctg	gga	cat	cag	acc	ttc	gtg	tcc	cag	cct	ggc	tat	gtt	ggg	437
Val	Phe	Leu	Gly	His	Gln	Thr	Phe	Val	Ser	Gln	Pro	Gly	Tyr	Val	Gly	
	120					125					130					
ctg	gag	ggc	ttg	cct	tac	ttc	ctg	gag	gag	ccc	gaa	'gac	agg	ac t	gtg	485
Leu	Glu	Gly	Leu	Pro	Tyr	Phe	Leu	Glu	Glu	Pro	Glu	Asp	Arg	Thr	Val	
135					140					145					150	
gcc	gcc	aac	acc	ccc	ttc	aac	ctg	agc	tgc	caa	gct	cag	gga	ccc	cca	533
Ala	Ala	Asn	Thr	Pro	Phe	Asn	Leu	Ser	Cys	Gln	Ala	Gln	Gly	Pro	Pro	
				155					160					165		
gag	ccc	gtg	gac	cta	ctc	tgg	ctc	cag	gat	gc t	gtc	ccc	ctg	gcc	acg	581
Glu	Pro	Val	Asp	Leu	Leu	Trp	Leu	Gln	Asp	Ala	Val	Pro	Leu	Ala	Thr	
			170					175					180			
gc t	сса	ggt	cac	ggc	ccc	cag	cgc	agc	ctg	cat	gtt	cca	ggg	ctg	aac	629
Ala	Pro	Gly	His	Gly	Pro	Gln	Arg	Ser	Leu	His	Val	Pro	Gly	Leu	Asn	
		185					190					195				

aag	g aca	tco	: tc	t tt	e teo	e tgo	gaa	a gco	са	t aac	e gee	aag	g ggs	ggt	c acc	677
Lys	Thr	Sei	Sei	r Pho	e Sei	Cys	s Glu	ı Ala	Hi:	s Ası	n Ala	Lys	Gly	y Va	l Thr	
	200	l				205)				210					
aca	tcc	cgc	aca	gco	acc	ato	aca	gtg	cto	c ccc	cag	cag	ccc	c cg	t aac	725
Thr	Ser	Λrg	Thr	Ala	Thr	He	Thr	Val	Let	i Pro	Gln	Gln	Pro	Ar	g Asn	
215					220	1				225					230	
ctc	cac	ctg	gtc	tcc	cgc	caa	ccc	acg	gag	ctg	gag	gtg	gct	tgg	g act	773
Leu	His	Leu	Val	Ser	Arg	Gln	Pro	Thr	Glu	Leu	Glu	Val	Ala	Trp	Thr	
				235					240	l				245)	
cca	ggc	ctg	agc	ggc	atc	tac	ccc	ctg	acc	cac	tgc	acc	ctg	сав	gct	821
Pro	Gly	Leu	Ser	Gly	He	Tyr	Pro	Leu	Thr	His	Cys	Thr	Leu	Gln	Ala	
			250					255					260			
gtg	ctg	tca	gac	gat	ggg	atg	ggc	atc	cag	gcg	gga	gaa	cca	gac	ccc	869
Val	Leu	Ser	Asp	Asp	Gly	Met	Gly	He	Gln	Ala	Gly	Glu	Pro	Asp	Pro	
		265					270					275				
											ccc					917
Pro		Glu	Pro	Leu	Thr		Gln	Ala	Ser	Val	Pro	Pro	His	Gln	Leu	
	280					285					290					
											cac					965
	Leu	Gly	Ser	Leu		Pro	His	Pro	Pro		His	He	Arg	Val		
295					300					305					310	
											cac					1013
LYS	Inr	Ser	Ser		Gly	Pro	Ser	Ser		Thr	His	Trp	Leu		Val	
				315	i				320					325		
gag																1061
GIU	Ihr			Gly	val	Pro	Leu		Pro	Pro	Glu.			Ser	Ala	
			330					335					340			

ace	cgg	g aat	. ggg	gago	cas	ggc	tto	gtg	cat	tgg	g caa	a gag	ccc	c cgs	g gcg	1109
Thr	Arg	g Asn	Gly	/ Ser	Glr	Ala	Phe	Val	His	Trp	Gli	ı Glu	Pro	Arg	g Ala	
		345					350	1				355				
ссс	ctg	cag	ggt	acc	ctg	tta	ggg	tac	cgg	cte	gcg	tat	caa	ggo	: cag	1157
Pro	Leu	Gln	Gly	Thr	Leu	Leu	Gly	Туг	Arg	Leu	Ala	Tyr	Gln	Gly	Gln	
	360					365					370					
gac	acc	cca	gag	gtg	cta	atg	gac	ata	ggg	cta	agg	caa	gag	gtg	acc	1205
Asp	Thr	Pro	Glu	Val	Leu	Me t	Asp	He	Gly	Leu	Arg	Gln	Glu	Val	Thr	
375					380					385					390	
ctg	gag	ctg	cag	ggg	gac	ggg	tct	gtg	tcc	aat	ctg	aca	gtg	tgt	gtg	1253
Leu	Glu	Leu	Gln	Gly	Asp	Gly	Ser	Val	Ser	Asn	Leu	Thr	Val	Cys	Val	
				395					400					405		
gca	gcc	tac	ac t	gct	gct	ggg	gat	gga	ccc	tgg	agc	ctc	сса	gta	ccc	1301
Ala	Ala	Tyr	Thr	Ala	Ala	Gly	Asp	Gly	Pro	Trp	Ser	Leu	Pro	Val	Pro	
			410					415					420			
ctg	gag	gcc	tgg	cgc	cca	ggg	gaa	gca	cag	cca	gtc	cac	cag	ctg	gtg	1349
Leu	Glu	Ala	Trp	Arg	Pro	Gly	Glu	Ala	Gln	Pro	Val	His	Gln	Leu	Val	
		425					430					435				
aag	gaa	cct	tca	act	cct	gcc	ttc	tcg	t gg	ccc	tgg	tgg	tat	gta	ctg	1397
Lys	Glu	Pro	Ser	Thr	Pro	Ala	Phe	Ser	Trp	Pro	Trp	Trp	Tyr	Val	Leu	
	440					445					450					
cta	gga	gca	gtc	gtg	gcc	gct	gcc	tgt	gtc	ctc	atc	ttg	gct	ctc	ttc	1445
Leu	Gly	Ala	Val	Val	Ala	Ala	Ala	Cys	Val	Leu	He	Leu	Ala	Leu	Phe	
455					460					465					470	
ctt	gtc	cac	cgg	cga	aag	aag	gag	acc	cgt	tat	gga	gaa	gtg	ttt	gaa	1493
Leu	Val	His	Arg	Arg	Lys	Lys	Glu	Thr	Arg	Tyr	Gly	Glu	Val	Phe	Glu	

				475					480					485		
cca	aca	gtg	gaa	aga	ggt	gaa	ctg	gta	gtc	agg	tac	cgc	gtg	cgc	aag	1541
Pro	Thr	Val	Glu	Arg	Gly	Glu	Leu	Val	Val	Arg	Tyr	Arg	Val	Arg	Lys	
			490					495					500			
tcc	tac	agt	cgt	cgg	acc	ac t	gaa	gct	acc	ttg	aac	agc	ctg	ggc	atc	1589
Ser	Tyr	Ser	Arg	Arg	Thr	Thr	Glu	Ala	Thr	Leu	Asn	Ser	Leu	Gly	He	
		505					510					515				
agt	gaa	gag	ctg	aag	gag	aag	ctg	cgg	gat	gtg	atg	gtg	gac	cgg	cac	1637
Ser	Glu	Glu	Leu	Lys	Glu	Lys	Leu	Arg	Asp	Val	Met	Val	Asp	Arg	His	
	520					525					530					
aag	gtg	gcc	ctg	ggg	aag	ac t	ctg	gga	gag	gga	gag	ttt	gga	gct	gtg	1685
Lys	Val	Ala	Leu	Gly	Lys	Thr	Leu	Gly	Glu	Gly	Glu	Phe	Gly	Ala	Val	
535					540					545					550	
atg	gaa	ggc	cag	ctc	aac	cag	gac	gac	tcc	atc	ctc	aag	gtg	gct	gtg	1733
Met	Glu	Gly	Gln	Leu	Asn	Gln	Asp	Asp	Ser	Ile	Leu	Lys	Val	Ala	Val	
				555					560					565		
aag	acg	atg	aag	att	gcc	atc	tgc	acg	agg	tca	gag	ctg	gag	gat	ttc	1781
Lys	Thr	Met	Lys	He	Ala	Ile	Cys	Thr	Arg	Ser	Glu	Leu	Glu	Asp	Phe	
			570					575					580			
ctg	agt	gaa	gcg	gtc	tgc	atg	aag	gaa	ttt	gac	cat	ccc	aac	gtc	atg	1829
Leu	Ser	Glu	Ala	Val	Cys	Met	Lys	Glu	Phe	Asp	His	Pro	Asn	Val	Met	
		585					590					595				
agg	ctc	atc	gg t	gtc	tgt	ttc	cag	ggt	tct	gaa	cga	gag	agc	ttc	cca	1877
Arg	Leu	He	Gly	Val	Cys	Phe	Gln	Gly	Ser	Glu	Arg	Glu	Ser	Phe	Pro	
	600					605					610					

gca cct gtg gtc atc tta cct ttc atg aaa cat gga gac cta cac agc

Ala Pro Val Val Ile Leu Pro Phe Met Lys His Gly Asp Leu His Ser

615					620)				62	5				630	
ttc	ctc	cto	t a	t tee	cgg	cto	gg	g gg	c cas	g cc	a gt:	g tao	c ct	g cco	c act	1973
Phe	Leu	Leu	Тул	se s	Arg	Leu	Gly	y GI:	y Glr	Pro	o Va	l Tyı	Le	ı Pro	Thr	
				635	;)				640)				645	,	
cag	atg	cta	gte	g aag	ttc	atg	gca	a ga	ato	gco	c agi	gge	ate	g gag	tat	2021
Gln	Met	Leu	Val	Lys	Phe	Me t	Ala	ı Ası	lle	Ala	a Sei	Gly	Met	Glu	Tyr	
			650)				655	j				660)		
ctg	agt	acc	aag	aga	ttc	a t a	cac	cgg	gac	ctg	g gcg	gcc	agg	aac	tgc	2069
Leu	Ser	Thr	Lys	Arg	Phe	He	His	Are	Asp	Leu	ı Ala	Ala	Arg	Asn	Cys	
		665					670					675				
atg	ctg	aat	gag	aac	atg	tcc	gtg	tgt	gtg	geg	gac	ttc	ggg	ctc	tcc	2117
Met	Leu	Asn	Glu	Asn	Met	Ser	Val	Cys	Val	Ala	Asp	Phe	Gly	Leu	Ser	
	680					685					690					
aag	aag	atc	tac	aat	ggg	gac	tac	tac	cgc	cag	gga	cgt	atc	gcc	aag	2165
Lys	Lys	He	Tyr	Asn	Gly	Asp	Tyr	Tyr	Arg	Gln	Gly	Arg	He	Ala	Lys	
695					700					705					710	
atg	cca	gtc	aag	tgg	att	gcc	att	gag	agt	cta	gct	gac	cgt	gtc	tac	2213
Met	Pro	Val	Lys	Trp	He	Ala	He	Glu	Ser	Leu	Ala	Asp	Arg	Val	Tyr	
				715					720					725		
acc	agc	aag	agc	gat	gtg	tgg	tcc	ttc	ggg	gtg	aca	atg	tgg	gag	att	2261
Thr	Ser	Lys	Ser	Asp	Val	Trp	Ser	Phe	Gly	Val	Thr	Me t	Trp	Glu	He	
			730					735					740			
gcc	aca	aga	ggc	caa	acc	cca	tat	ccg	ggc	gtg	gag	aac	agc	gag	att	2309
Ala	Thr	Arg	Gly	Gln	Thr	Pro	Tyr	Pro	Gly	Val	Glu	Asn	Ser	Glu	He	
		745					750					755				
tat g	gac	tat	ctg	cgc	cag .	gga	aat	cgc	ctg	aag	cag	cct	gcg	gac	tgt	2357

Туг	Asp	Туі	r Lei	ı Arş	g Glr	ı Gly	/ Asi	n Arg	Lei	Lys	s Gli	n Pro	o Ala	a Ası	o Cys	
	760)				765	}	•			77()				
ctg	gat	gga	cte	g tat	gco	tte	ate	tcg	cgg	gtgo	tgg	g gag	g cta	a a a t	ccc	2405
Leu	Asp	Gly	Leu	Tyr	Ala	Leu	Me t	Ser	Arg	cys	Trp	Glu	ı Lei	ı Asr	Pro	
775					780)				785	i				790	
cag	gac	cgg	сса	agt	ttt	aca	gag	ctg	cgg	gaa	. gat	ttg	gag	aac	aca	2453
Gln	Asp	Arg	Pro	Ser	Phe	Thr	Glu	Leu	Arg	Glu	Asp	Leu	Glu	Asn	Thr	
				795					800					805		
ctg	aag	gcc	ttg	cct	cct	gcc	cag	gag	cct	gac	gaa	atc	ctc	tat	gtc	2501
Leu	Lys	Ala	Leu	Pro	Pro	Ala	Gln	Glu	Pro	Asp	Glu	He	Leu	Tyr	Val	
			810					815					820			
aac	atg	gat	gag	ggt	gga	ggt	tat	cct	gaa	ссс	cct	gga	gct	gca	gga	2549
Asn	Met	Asp	Glu	Gly	Gly	Gly	Tyr	Pro	Glu	Pro	Pro	Gly	Ala	Ala	Gly	
		825					830					835				
gga	gct	gac	ссс	cca	acc	cag	cca	gac	cct	aag	gat	tcc	tgt	agc	tgc	2597
Gly	Ala	Asp	Pro	Pro	Thr	Gln	Pro	Asp	Pro	Lys	Asp	Ser	Cys	Ser	Cys	
	840					845					850					
															cct	2645
	Thr	Ala	Ala	Glu		His	Pro	Ala	Gly	Arg	Tyr	Val	Leu	Cys	Pro	
855					860					865					870	
								cct								2693
Ser	Thr	Thr	Pro	Ser	Pro	Ala	Gln	Pro	Ala	Asp	Arg	Gly	Ser	Pro	Ala	
				875					880					885		
gcc	cca	ggg	cag	gag	gat	ggt	gcc	tgag	acaa	сс с	tcca	.cctg	g ta	ctcc	ctct	2747
Ala	Pro	Gly	Gln	Glu	Asp	Gly	Ala									
			890													

caggatccaa gctaagcact gccactgggg gaaactccac cttcccactt tcccaccca 2807

cgccttatcc ccacttgcag ccctgtcttc ctacctatcc cacctccatc ccagacaggt 2867 ccctggcctt ctctgtgcag tagcatcacc ttgaaagcag tagcatcacc atctgtaaaa 2927 ggaaggggtt ggattgcaat atctgaagcc ctcccaggtg ttaacattcc aagactctag 2987 agtccaaggt ttaaaggtc tagattcaaa ggttctaggt ttcaaagatg ctgtgagtct 3047 ttggttctaa ggacctgaaa ttccaaagtc tctaattcta ttaaagtgct aaggttctaa 3107 ggcctaaaa 3116

<210> 26

<211> 894

<212> PRT

<213 > Homo sapiens

<400. 26

Met Ala Trp Arg Cys Pro Arg Met Gly Arg Val Pro Leu Ala Trp Cys

1 5 10 15

Leu Ala Leu Cys Gly Trp Ala Cys Met Ala Pro Arg Gly Thr Gln Ala

20 25 30

Glu Glu Ser Pro Phe Val Gly Asn Pro Gly Asn Ile Thr Gly Ala Arg

35 40 45

Gly Leu Thr Gly Thr Leu Arg Cys Gln Leu Gln Val Gln Gly Glu Pro

50 55 60

Pro Glu Val His Trp Leu Arg Asp Gly Gln Ile Leu Glu Leu Ala Asp

65 70 75 80

Ser Thr Gln Thr Gln Val Pro Leu Gly Glu Asp Glu Gln Asp Asp Trp

85 90 95

Ile Val Val Ser Gln Leu Arg Ile Thr Ser Leu Gln Leu Ser Asp Thr

100 105 110

Gly Gln Tyr Gln Cys Leu Val Phe Leu Gly His Gln Thr Phe Val Ser

Gln Pro Gly Tyr Val Gly Leu Glu Gly Leu Pro Tyr Phe Leu Glu Glu Pro Glu Asp Arg Thr Val Ala Ala Asn Thr Pro Phe Asn Leu Ser Cys Gln Ala Gln Gly Pro Pro Glu Pro Val Asp Leu Leu Trp Leu Gln Asp Ala Val Pro Leu Ala Thr Ala Pro Gly His Gly Pro Gln Arg Ser Leu His Val Pro Gly Leu Asn Lys Thr Ser Ser Phe Ser Cys Glu Ala His Asn Ala Lys Gly Val Thr Thr Ser Arg Thr Ala Thr Ile Thr Val Leu Pro Gln Gln Pro Arg Asn Leu His Leu Val Ser Arg Gln Pro Thr Glu Leu Glu Val Ala Trp Thr Pro Gly Leu Ser Gly Ile Tyr Pro Leu Thr His Cys Thr Leu Gln Ala Val Leu Ser Asp Asp Gly Met Gly Ile Gln Ala Gly Glu Pro Asp Pro Pro Glu Glu Pro Leu Thr Ser Gln Ala Ser Val Pro Pro His Glm Leu Arg Leu Gly Scr Leu His Pro His Pro Pro Tyr His Ile Arg Val Ala Cys Thr Ser Ser Gln Gly Pro Ser Ser Trp Thr His Trp Leu Pro Val Glu Thr Pro Glu Gly Val Pro Leu Gly Pro

,	WO (01/25-	127												
				325	<u>-</u>				330)				335)
Pro	o Gli	u Ası	ı Ile	e Ser	- Ala	Thr	Arg	g Asn	Gly	' Ser	Gln	Ala	ı Phe		His
			340)				345					350)	
Trp	o Gli	ı Glu	Pro	Arg	. Ala	Pro	Leu	ı Gln	Gly	Thr	Leu	Leu	Gly	Туг	Arg
		355					360)				365			
Leu	Ala	а Туг	Gln	Gly	Gln	Asp	Thr	Pro	Glu	Val	Leu	Met	Asp	He	Gly
	370)				375					380				
Leu	Arg	g Gln	Glu	Val	Thr	Leu	Glu	Leu	Gln	Gly	Asp	Gly	Ser	Val	Ser
385					390					395					400
Asn	Leu	Thr	Val	Cys	Val	Ala	Ala	Tyr	Thr	Ala	Ala	Gly	Asp	Gly	Pro
				405					410					415	
Trp	Ser	Leu	Pro	Val	Pro	Leu	Glu	Ala	Trp	Arg	Pro	Gly	Glu	Ala	Gln
			420					425					430		
Pro	Val	His	Gln	Leu	Val	Lys	Glu	Pro	Ser	Thr	Pro	Ala	Phe	Ser	Trp
		435					440					445			
Pro	Trp	Trp	Tyr	Val	Leu	Leu	Gly	Ala	Val	Val	Ala	Ala	Ala	Cys	Val
	450					455					460				
Leu	He	Leu	Ala	Leu	Phe	Leu	Val	His	Arg	Arg	Lys	Lys	Glu	Thr	Arg
465					470					475					480
Tyr	Gly	Glu	Val	Phe	Glu	Pro	Thr	Val	Glu	Arg	Gly	Glu	Leu	Val	Val
				485					490					495	
Arg	Tyr	Arg	Val	Arg	Lys	Ser	Tyr	Ser	Arg	Arg	Thr	Thr	Glu	Ala	Thr

Leu Asn Ser Leu Gly Ile Ser Glu Glu Leu Lys Glu Lys Leu Arg Asp

Val Met Val Asp Arg His Lys Val Ala Leu Gly Lys Thr Leu Gly Glu

G1	y G	l u	Phe	e Gl	y Al	a Va	1 Me	t Gl	u G1	y Gl	ln Le	u As	n Gl	n As	p As	p Ser
54	5					55	0				55	5				560
П	e Le	e u	Lys	s Va	l Al	a Va	l Ly	s Th	r Me	t Ly	's II	e Al	a II	e Cy	s Th	r Arg
					56	5				57	0				57	5
Se	r Gl	u	Leu	GI:	u Ası	p Ph	e Lei	u Sei	r G1	u Al	a Va	l Cy:	s Me	t Lys	s Gli	ı Phe
				580	0				58	5				590)	
Ası	э Ні	S	Рго	Ası	n Val	Me	t Arg	g Lei	H	e Gl	y Val	Суз	s Phe	e Glr	Gly	/ Ser
			595					600)				605	<u>,</u>		
Glu	ı Ar	g	Glu	Sei	Phe	Pro) Ala	Pro	Va	l Va	l Ile	Leu	Pro	Phe	Met	Lys
	61	0					615	I				620)			
His	GI.	у	Asp	Leu	His	Ser	Phe	Leu	Lei	і Тур	r Ser	Arg	Leu	Gly	Gly	Gln
625	I					630					635					640
Pro	Va	1 7	Гуг	Leu	Pro	Thr	Gln	Met	Leu	Val	Lys	Phe	Me t	Ala	Asp	Ile
					645					650)				655	
Ala	Sei	. (Gly	Me t	Glu	Tyr	Leu	Ser	Thr	Lys	Arg	Phe	He	His	Arg	Asp
				660					665					670		
Leu	Ala	ı A	la	Arg	Asn	Cys	Met	Leu	Asn	Glu	Asn	Met	Ser	Val	Cys	Val
		6	75					680					685			
Ala	Asp	P	he	Gly	Leu	Ser	Lys	Lys	Ile	Tyr	Asn	Gly	Asp	Tyr	Tyr	Arg
	690						695					700				
Gln	Gly	Α	rg	He	Ala	Lys	Met	Pro	Val	Lys	Trp	Ile	Ala	He	Glu	Ser
705						710					715					720
Leu	Ala	A	sp.	Arg	Val	Tyr	Thr	Ser	Lys	Ser	Asp	Val	Trp	Ser	Phe	Gly
					725					730					735	
Val	Thr	M	et '	Trp	Glu	He	Ala	Thr	Arg	Gly	Gln	Thr	Pro	Tyr	Pro	Gly
				740					745					750		

Val Glu Asn Ser Glu Ile Tyr Asp Tyr Leu Arg Gln Gly Asn Arg Leu 755 760 765 Lys Gln Pro Ala Asp Cys Leu Asp Gly Leu Tyr Ala Leu Met Ser Arg 770 775 780 Cys Trp Glu Leu Asn Pro Gln Asp Arg Pro Ser Phe Thr Glu Leu Arg 785 790 795 800 Glu Asp Leu Glu Asn Thr Leu Lys Ala Leu Pro Pro Ala Gln Glu Pro 805 810 815 Asp Glu Ile Leu Tyr Val Asn Met Asp Glu Gly Gly Gly Tyr Pro Glu 820 825 830 Pro Pro Gly Ala Ala Gly Gly Ala Asp Pro Pro Thr Gln Pro Asp Pro 835 840 845 Lys Asp Ser Cys Ser Cys Leu Thr Ala Ala Glu Val His Pro Ala Gly 850 855 860 Arg Tyr Val Leu Cys Pro Ser Thr Thr Pro Ser Pro Ala Gln Pro Ala 865 870 875 880 Asp Arg Gly Ser Pro Ala Ala Pro Gly Gln Glu Asp Gly Ala 885 890 <210> 27 <211> 3781 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (4).. (2994)

<400> 27

gcc	atg	gag	g aac	geg	g cao	e acc	c aag	ace	ggtg	g gag	gag	ggtg	ct	g gg	c cac	48	
	Met	Gli	ı Asn	ı Ala	a His	Thr	Lys	Thi	· Val	Glu	Glu	ı Val	Lei	ı Gly	/ His		
	1				į)				10					15		
ttc	ggc	gto	: aac	gag	gagt	acg	ggg	ctg	agc	ctg	gaa	cag	gto	aa g	g aag	96	
Phe	Gly	Val	Asn	Glu	Ser	Thr	Gly	Leu	Ser	Leu	Glu	Gln	Val	Lys	Lys		
				20	1				25					30	1		
ctt	aag	gag	aga	tgg	ggc	tcc	aac	gag	tta	ccg	gct	gaa	gaa	gga	aaa	144	
Leu	Lys	Glu	Arg	Trp	Gly	Ser	Asn	Glu	Leu	Pro	Ala	Glu	Glu	Gly	Lys		
			35					40					45				
acc	ttg	ctg	gaa	ctt	gtg	att	gag	cag	ttt	gaa	gac	ttg	cta	gtt	agg	192	
Thr	Leu	Leu	Glu	Leu	Val	He	Glu	Gln	Phe	Glu	Asp	Leu	Leu	Val	Arg		
		50					55					60					
att	t t a	tta	ctg	gca	gca	tgt	ata	tct	ttt	gtt	ttg	gc t	tgg	ttt	gaa	240	
Пе	Leu	Leu	Leu	Ala	Ala	Cys	He	Ser	Phe	Val	Leu	Ala	Trp	Phe	Glu		
	65					70					75						
gaa	ggt	gaa	gaa	aca	a t t	aca	gcc	ttt	gta	gaa	cct	ttt	gta	att	tta	288	
	Gly	Glu	Glu	Thr	He	Thr	Ala	Phe	Val	Glu	Pro	Phe	Val	He	Leu		
80					85					90					95		
							att									336	
Leu	Ile	Leu	Val		Asn	Ala	He	Val	Gly	Val	Trp	Gln	Glu	Arg	Asn		
				100					105					110			
							ctt									384	
Ala	Glu	Asn		He	Glu	Ala	Leu		Glu	Tyr	Glu	Pro	Glu	Met	Gly		
			115					120					125				
							aag									432	
Lys			Arg	Gln	Asp		Lys	Ser	Val	Gln	Arg	He	Lys	Ala	Lys		
		130					135					140					

gao	ata	a gt	t cc	t gg	t ga	t at	t gt:	a gaa	at	t gc	t gt	t gg	t ga	c aa	a gti	t 480
Asp	Hle	e Va	l Pro	o Gly	/ As;	p II	e Val	l Glu	1 11	e Al	a Va	1 G1:	y As	p Ly	s Val	
	148	D				15)				15	5				
cct	gct	t gat	t ata	ı agg	tta	a ac	t tee	ato	aaa	a tc	t ac	c aca	a ct	a ag	a gtt	528
Pro	Ala	a Asj) Ile	e Arg	Let	ı Thi	r Ser	lle	Lys	s Sei	r Thi	r Thi	Le	u Ar	g Val	
160					165)				170)				175	
gac	cag	t t c a	att	ctc	aca	ggt	gaa	tct	gto	e tet	gto	ato	aa	g cao	c act	576
Asp	Gln	Ser	lle	Leu	Thr	Gly	Glu	Ser	Val	Ser	· Val	Ile	Lys	s His	Thr	
				180					185)				190)	
gat	ссс	gtc	cct	gac	сса	cga	gct	gtc	aac	саа	gat	aaa	aag	g aac	atg	624
Asp	Pro	Val	Pro	Asp	Pro	Arg	Ala	Val	Asn	Gln	Asp	Lys	Lys	s Asr	Met	
			195					200					205	;)		
ctg	ttt	tet	ggt	aca	aac	att	gct	gct	ggg	aaa	gct	atg	gga	gtg	gtg	672
Leu	Phe	Ser	Gly	Thr	Asn	He	Ala	Ala	Gly	Lys	Ala	Met	Gly	Val	Val	
		210					215					220				
gta	gca	ac t	gga	gtt	aac	acc	gaa	att	ggc	aag	atc	cgg	gat	gaa	atg	720
Val	Ala	Thr	Gly	Val	Asn	Thr	Glu	He	Gly	Lys	He	Arg	Asp	Glu	Met	
	225					230					235					
gtg	gca	aca	gaa	cag	gag	aga	aca	ccc	ctt	cag	caa	aaa	cta	gat	gaa	768
	Ala	Thr	Glu	Gln	Glu	Arg	Thr	Pro	Leu	Gln	Gln	Lys	Leu	Asp	Glu	
240					245					250					255	
								atc								816
Phe	Gly	Glu	GIn		Ser	Lys	Val	He	Ser	Leu	He	Cys	He	Ala	Val	
				260					265					270		
								aat								864
Trp	He	He	Asn	He	Glv	His	Phe	Asn	Asp	Pro	Val	His	Glv	G1v	Ser	

280

285

t g g	g ato	c aga	a ggl	t gc i	t at	t tad	e tao	ettt	aaa	a at	t gca	gt	g gc	c ct	g gct	912
Trp	116	e Are	g Gly	/ Ala	ı Ile	: Туг	ту	r Phe	Lys	s 11e	e Ala	. Va	l Al	a Le	u Ala	
		290)				298	<u>.</u>)				300)			
gta	gca	gee	att	cct	gaa	ggt	cte	cct	gca	gto	e ato	aco	c acc	c tgo	ctg	960
Val	Ala	Ala	He	Pro	Glu	Gly	Leu	Pro	Ala	Val	He	Thi	r Thi	r Cys	. Leu	
	305	•				310	1				315					
gct	ctt	gga	act	cgc	aga	atg	gca	aag	aaa	aat	gcc	a t t	gti	cga	agc	1008
Ala	Leu	Gly	Thr	Arg	Arg	Met	Ala	Lys	Lys	Asn	Ala	He	Val	Arg	Ser	
320					325					330	1				335	
ctc	ccg	tct	gtg	gaa	acc	ctt	ggt	tgt	ac t	tct	gtt	ato	tgc	: tca	gac	1056
Leu	Pro	Ser	Val	Glu	Thr	Leu	Gly	Cys	Thr	Ser	Val	He	Cys	Ser	Asp	
				340					345					350		
aag	ac t	ggt	aca	ctt	aca	aca	aac	cag	atg	tca	gtc	tgc	agg	atg	ttc	1104
Lys	Thr	Gly	Thr	Leu	Thr	Thr	Asn	Gln	Met	Ser	Val	Cys	Arg	Met	Phe	
			355					360					365			
att	ctg	gac	aga	gtg	gaa	ggt	gat	act	tgt	tcc	ctt	aat	gag	ttt	acc	1152
Ile	Leu	Asp	Arg	Val	Glu	Gly	Asp	Thr	Cys	Ser	Leu	Asn	Glu	Phe	Thr	
		370					375					380				
ata	act	gga	tca	act	tat	gca	cct	att	gga	gaa	gtg	cat	aaa	gat	gat	1200
He	Thr	Gly	Ser	Thr	Tyr	Ala	Pro	He	Gly	Glu	Val	His	Lys	Asp	Asp	
	385					390					395					
aaa	сса	gtg	aat	tgt	cac	cag	tat	gat	ggt	ctg	gta	gaa	t t a	gca	aca	1248
Lys	Pro	Val	Asn	Cys	His	Gln	Tyr	Asp	Gly	Leu	Val	Glu	Leu	Ala	Thr	
400					405					410					415	
att	tgt	gct	ctt	tgt	aat	gac	tct	gct	ttg	gat	tac	aat	gag	gca	aag	1296
Ile	Cys	Ala	Leu	Cys	Asn	Asp	Ser	Ala	Leu	Asp	Tyr	Asn	Glu	Ala	Lys	

ggt gtg tat gaa aaa gtt gga gaa gct aca gag act gct ctc act tgc Gly Val Tyr Glu Lys Val Gly Glu Ala Thr Glu Thr Ala Leu Thr Cys cta gta gag aag atg aat gta ttt gat acc gaa ttg aag ggt ctt tct Leu Val Glu Lys Met Asn Val Phe Asp Thr Glu Leu Lys Gly Leu Ser aaa ata gaa cgt gca aat gcc tgc aac tca gtc att aaa cag ctg atg Lys Ile Glu Arg Ala Asn Ala Cys Asn Ser Val Ile Lys Gln Leu Met aaa aag gaa tto act cta gag ttt toa ogt gao aga aag toa atg tog Lys Lys Glu Phe Thr Leu Glu Phe Ser Arg Asp Arg Lys Ser Met Ser gtt tac tgt aca cca aat aaa cca agc agg aca tca atg agc aag atg Val Tyr Cys Thr Pro Asn Lys Pro Ser Arg Thr Ser Met Ser Lys Met ttt gtg aag ggt gct cct gaa ggt gtc att gac agg tgc acc cac att Phe Val Lys Gly Ala Pro Glu Gly Val Ile Asp Arg Cys Thr His Ile cga gtt gga agt act aag gtt cct atg acc tct gga gtc aaa cag aag Arg Val Gly Ser Thr Lys Val Pro Met Thr Ser Gly Val Lys Gln Lys

atc atg tct gtc att cga gag tgg ggt agt ggc agc gac aca ctg cga 1680

Ile Mct Ser Val IIe Arg Glu Trp Gly Ser Gly Ser Asp Thr Leu Arg

545 550 555

tgc ctg gcc ctg gcc act cat gac aac cca ctg aga aga gaa gaa atg 1728

tys Leu Ala Leu Ala Thr His Asp Asn Pro Leu Arg Arg Glu (Glu Met
560 565 570	575
cae ett gag gae tet gee aae tit att aaa tai gag aee aai e	ctg acc 1776
His Leu Glu Asp Ser Ala Asn Phe Ile Lys Tyr Glu Thr Asn L	eu Thr
T00	590
ttc gtt ggc tgc gtg ggc atg ctg gat cct ccg aga atc gag g	stg gcc 1824
Phe Val Gly Cys Val Gly Met Leu Asp Pro Pro Arg Ile Glu V	
595 600 605	
tcc tcc gtg aag ctg tgc cgg caa gca ggc atc cgg gtc atc a	tg atc 1872
Ser Ser Val Lys Leu Cys Arg Gln Ala Gly Ile Arg Val Ile Me	
610 615 620	
act ggg gac aac aag ggc act gct gtg gcc atc tgt cgc cgc at	tc ggc 1920
Thr Gly Asp Asn Lys Gly Thr Ala Val Ala Ile Cys Arg Arg Il	
625 630 635	
atc ttc ggg cag gat gag gac gtg acg tca aaa gct ttc aca gg	c cgg 1968
lle Phe Gly Gln Asp Glu Asp Val Thr Ser Lys Ala Phe Thr Gl	
640 645 650	655
gag tit gat gaa cic aac cee tee gee cag ega gae gee ige ci	g aac 2016
Glu Phe Asp Glu Leu Asn Pro Ser Ala Gln Arg Asp Ala Cys Leu	u Asn
660 665 670	
gcc cgc tgt ttt gct cga gtt gaa ccc tcc cac aag tct aaa atc	c gta 2064
Ala Arg Cys Phe Ala Arg Val Glu Pro Ser His Lys Ser Lys Ile	e Val
675 680 685	
gaa tit cit cag tot tit gat gag att aca got atg act ggc gat	ggc 2112
Glu Phe Leu Gln Ser Phe Asp Glu Ile Thr Ala Met Thr Gly Asp	
690 695 700	-
gtg aac gat gct cct gct ctg aag aaa gcc gag att ggc att gct	atg 2160

Val	Asn	ı Asp	Ala	Pro	Ala	Leu	Lys	Lys	Ala	Glu	H	e Gly	116	e Ala	a Met	
	705					710	l				715	j				
ggc	tct	ggc	act	gcg	gtg	gct	aaa	acc	gcc	tet	gag	g atg	gto	cts	g gcg	2208
Gly	Ser	Gly	Thr	Ala	Val	Ala	Lys	Thr	Ala	Ser	Glu	Met	Val	Lei	ı Ala	
720					725					730					735	
gat	gac	aac	ttc	tcc	acc	a t t	gtg	gct	gcc	gtt	gag	gag	ggg	cgg	gca	2256
Asp	Asp	Asn	Phe	Ser	Thr	He	Val	Ala	Ala	Val	Glu	Glu	Gly	Arg	Ala	
				740					745					750)	
atc	tac	aac	aac	atg	aaa	cag	ttc	atc	cgc	tac	ctc	atc	teg	tcc	aac	2304
He	Tyr	Asn	Asn	Me t	Lys	Gln	Phe	He	Arg	Tyr	Leu	He	Ser	Ser	Asn	
			755					760					765			
gtc	ggg	gaa	gtt	gtc	tgt	att	t t c	ctg	aca	gca	gcc	ctt	gga	ttt	ccc	2352
Val	Gly	Glu	Val	Val	Cys	He	Phe	Leu	Thr	Ala	Ala	Leu	Gly	Phe	Pro	
		770					775					780				
gag	gct	ttg	att	cct	gtt	cag	ctg	ctc	tgg	gtc	aat	ctg	gtg	aca	gat	2400
Glu	Ala	Leu	He	Pro	Val	Gln	Leu	Leu	Trp	Val	Asn	Leu	Val	Thr	Asp	
	785					790					795					
ggc	ctg	cct	gcc	act	gca	ctg	ggg	ttc	aac	cct	cct	gat	ctg	gac	atc	2448
Gly	Leu	Pro	Ala	Thr	Ala	Leu	Gly	Phe	Asn	Pro	Pro	Asp	Leu	Asp	He	
800					805					810					815	
atg	aat	aaa	cct	ссс	cgg	aac	cca	aag	gaa	cca	ttg	atc	agc	ggg	tgg	2496
Me t	Asn	Lys	Pro	Pro	Arg	Asn	Pro	Lys	Glu	Pro	Leu	He	Ser	Gly	Trp	
				820					825					830		
ctc	ttt	ttc	cgt	tac	ttg	gct	att	ggc	tgt	tac	gtc	ggc	gct	gct	acc	2544
Leu	Phe	Phe	Arg	Tyr	Leu	Ala	He	Gly	Cys	Tyr	Val	Gly	Ala	Ala	Thr	
			835					840					845			

gtg ggt gct gct gca tgg	g tgg ttc att gct gc	t gac ggt ggt cca aga 2592	2
Val Gly Ala Ala Ala Trp	Trp Phe Ile Ala Al	a Asp Gly Gly Pro Arg	
850	855	860	
gtg tee tte tac eag etg	agt cat ttc cta cas	g tgt aaa gag gac aac 2640	l
Val Ser Phc Tyr Gln Leu	Ser His Phe Leu Gli	n Cys Lys Glu Asp Asn	
865	870	875	
ccg gac ttt gaa ggc gtg	gat tgt gca atc ttt	gaa tcc cca tac ccg 2688	
Pro Asp Phe Glu Gly Val	Asp Cys Ala Ile Phe	e Glu Ser Pro Tyr Pro	
880 885	890	895	
atg aca atg gcg ctc tct	gtt cta gta act ata	gaa atg tgt aac gcc 2736	
Met Thr Met Ala Leu Scr	Val Leu Val Thr Ile	Glu Met Cys Asn Ala	
900	905	910	
ctc aac agc ttg tcc gaa			
Leu Asn Ser Leu Ser Glu	Asn Gln Ser Leu Leu	Arg Met Pro Pro Trp	
915	920	925	
gag aac atc tgg ctc gtg a			
Glu Asn Ile Trp Leu Val (Ser Met Ser Leu His	
930	935	940	
ttc ctg atc ctc tat gtc g			
Phe Leu Ile Leu Tyr Val G 945 9	. = •		
•		955	
ecg ctg aac gtg acc cag t			
Pro Leu Asn Val Thr Gln T 960 965		Lys Ile Ser Leu Pro	
•••	970	975	
gtg att ctc atg gat gag ac			
Val Ile Leu Met Asp Glu Ti			
980	985	990	

WO 01/25427

PCT/JP00/06840

gaa cci gca ata ctg gag taaccgcttc ctaaaccatt ttgcagaaat 3024 Glu Pro Ala IIe Leu Glu

995

gtaagggtgt teggttgest geatgtgest tittageaac acatetacea accetatgea 3084
tgactgatgt tggggaaaaa gaaaagtaaa aaactteeea acteacttt tggtaatgtg 3144
aggaaatgtg tattaceaat ggggttgita gettitaaat caaaatactg attacagatg 3204
tacaatttag ettaateaga aageetetee aggaaggett ggtteettt etgeaagagg 3264
aatgaggete tgtaacetta tetaagaact tggaageegt eageeaagte gecacattie 3324
tetgeaaaat gteatagett atataaatgt acagtattea attgtaatge atgetteggt 3384
tgtaagtage eagateeete teeagtgaca tiggaaceatg etactittta attggeeetg 3444
tacagtttge ttatttataa atteattaaa aacactacag gtgttgaatg gttaaaatgt 3504
aggeeteeag tteatittea gttattitet gagtgtgeag acagetatit egeactgtat 3564
taaatgtaac ttatttaatg aaateagaag eagtagacag atgttggtge aatacaaata 3624
titgtgatgea titatettaa taaaatgeta aatgteaatt tateactgeg eatgttgac 3684
titagactgt aaatagagat eagttigitt etttetigtge tggtaacaat gagegtegea 3744
cagacatggt tteaggtaaa taaatetatt etatgat

<210> 28

<211> 997

<212> PRT

<213 Homo sapiens

20

<400> 28

Met Glu Asn Ala His Thr Lys Thr Val Glu Glu Val Leu Gly His Phe

1 5 10 15

Gly Val Asn Glu Ser Thr Gly Leu Ser Leu Glu Gln Val Lys Lys Leu

25 30

Lys Glu Arg Trp Gly Ser Asn Glu Leu Pro Ala Glu Glu Gly Lys Thr

35	40	45
Leu Leu Glu Leu Val	lle Glu Gln Phe	Glu Asp Leu Leu Val Arg Ile
50	55	60
Leu Leu Leu Ala Ala	Cys Ile Ser Phe	Val Leu Ala Trp Phe Glu Glu
65	70	75 80
Gly Glu Glu Thr Ilc	Thr Ala Phe Val	Glu Pro Phe Val Ile Leu Leu
85		90 95
Ile Leu Val Ala Asn	Ala Ile Val Gly	Val Trp Gln Glu Arg Asn Ala
100	105	110
Glu Asn Ala Ile Glu a	Ala Leu Lys Glu 1	Tyr Glu Pro Glu Met Gly Lys
115	120	125
Val Tyr Arg Gln Asp A	Arg Lys Ser Val (Gln Arg Ile Lys Ala Lys Asp
130	135	140
Ile Val Pro Gly Asp I	lle Val Glu Ile A	la Val Gly Asp Lys Val Pro
145	50	155 160
Ala Asp Ile Arg Leu T	hr Ser Ile Lys S	er Thr Thr Leu Arg Val Asp
165	1	70 175
Gln Ser Ile Leu Thr G	ly Glu Ser Val S	er Val Ile Lys His Thr Asp
180	185	190
Pro Val Pro Asp Pro A.	rg Ala Val Asn Gl	In Asp Lys Lys Asn Met Leu
195	200	205
Phe Ser Gly Thr Asn II	le Ala Ala Gly Ly	vs Ala Met Gly Val Val Val
210	215	220
Ala Thr Gly Val Asn Th	nr Glu Ile Gly Ly	s Ile Arg Asp Glu Met Val
225 23	0	235 240
Ala Thr Glu Gln Glu Ar	g Thr Pro Leu Gl	n Gln Lys Leu Asp Glu Phe

245 250 255

Gly Glu Gln Leu Ser Lys Val IIe Ser Leu IIe Cys IIe Ala Val Trp

260 265 270

Ile Ile Asn Ile Gly His Phe Asn Asp Pro Val His Gly Gly Ser Trp
275 280 285

Ile Arg Gly Ala Ile Tyr Tyr Phe Lys Ile Ala Val Ala Leu Ala Val
290 295 300

Ala Ala Ile Pro Glu Gly Leu Pro Ala Val Ile Thr Thr Cys Leu Ala 305 310 315 320

Leu Gly Thr Arg Arg Met Ala Lys Lys Asn Ala Ile Val Arg Ser Leu

325 330 335

Pro Scr Val Glu Thr Leu Gly Cys Thr Scr Val IIe Cys Scr Asp Lys

340 345 350

Thr Gly Thr Leu Thr Thr Asn Gln Met Ser Val Cys Arg Met Phe Ile
355 360 365

Leu Asp Arg Val Glu Gly Asp Thr Cys Scr Leu Asn Glu Phe Thr Ile 370 375 380

Thr Gly Ser Thr Tyr Ala Pro Ile Gly Glu Val His Lys Asp Asp Lys 385 390 395 400

Pro Val Asn Cys His Gln Tyr Asp Gly Leu Val Glu Leu Ala Thr Ile
405 410 415

Cys Ala Leu Cys Asn Asp Ser Ala Leu Asp Tyr Asn Glu Ala Lys Gly
420 425 430

Val Tyr Glu Lys Val Gly Glu Ala Thr Glu Thr Ala Leu Thr Cys Leu
435 440 445

Val Glu Lys Met Asn Val Phe Asp Thr Glu Leu Lys Gly Leu Ser Lys
450 455 460

H	e Gli	u Ar	g Ala	a Asi	n Ala	a Cys	a Asi	i Sei	r Val	116	e Ly	s G1	n Le	u Me	t Lys
465)				470)				478	<u>,</u>				480
Lys	Gli	ı Phe	e Thr	Lei	ı Glu	ı Phe	e Ser	. Ar	g Asp	Arg	g Ly	s Se	r Me	t Se	r Val
				485)				490	}				49	5
Tyr	Cys	Thi	Pro	Asr	Lys	s Pro	Ser	Are	g Thr	Ser	Me	t Se	r Lys	s Me	t Phe
			500	,				505	·)				510)	
Val	Lys	Gly	Ala	Pro	Glu	Gly	Val	He	. Asp	Arg	Cys	Thi	r His	s IIe	e Arg
		515	•				520					525)		
Val	Gly	Ser	Thr	Lys	Val	Pro	Met	Thr	Ser	Gly	Val	Lys	s G1r	Lys	s He
	530					535					540)			
Met	Ser	Val	He	Arg	Glu	Trp	Gly	Ser	Gly	Ser	Asp	Thr	Leu	Arg	g Cys
545					550					555					560
Leu	Ala	Leu	Ala	Thr	His	Asp	Asn	Pro	Leu	Arg	Arg	Glu	Glu	Me t	His
				565					570					575	1
Leu	Glu	Asp	Ser	Ala	Asn	Phe	He	Lys	Tyr	Glu	Thr	Asn	Leu	Thr	Phe
			580					585					590		
Val	Gly	Cys	Val	Gly	Me t	Leu	Asp	Pro	Pro	Arg	He	Glu	Val	Ala	Ser
		595					600					605			
Ser	Val	Lys	Leu	Cys	Arg	Gln	Ala	Gly	He	Arg	Val	He	Met	He	Thr
	610					615					620				
Gly	Asp	Asn	Lys	Gly	Thr	Ala	Val	Ala	He	Cys	Arg	Arg	He	Gly	He
625					630					635					640
Phe	Gly	Gln	Asp	Glu	Asp	Val	Thr	Ser	Lys	Ala	Phe	Thr	Gly	Arg	Glu
				645					650					655	
Phe	Asp	Glu	Leu	Asn	Pro	Ser	Ala	Gln	Arg	Asp	Ala	Cys	Leu	Asn	Ala
			660					665					670		

Arg Cys Phe Ala Arg Val Glu Pro Ser His Lys Ser Lys Ile Val Glu
675 680 685
Phe Leu Gln Ser Phe Asp Glu Ile Thr Ala Met Thr Gly Asp Gly Val
690 695 700
Asn Asp Ala Pro Ala Leu Lys Lys Ala Glu Ile Gly Ile Ala Met Gly
705 710 715 720
Ser Gly Thr Ala Val Ala Lys Thr Ala Ser Glu Met Val Leu Ala Asp
725 730 735
Asp Asn Phe Ser Thr Ile Val Ala Ala Val Glu Glu Gly Arg Ala Ile
740 745 750
Tyr Asn Asn Met Lys Gln Phe Ile Arg Tyr Leu Ile Ser Ser Asn Val
755 760 765
Gly Glu Val Val Cys Ile Phe Leu Thr Ala Ala Leu Gly Phe Pro Glu
770 775 780
Ala Leu Ile Pro Val Gln Leu Leu Trp Val Asn Leu Val Thr Asp Gly
785 790 795 800
Leu Pro Ala Thr Ala Leu Gly Phe Asn Pro Pro Asp Leu Asp Ile Met
805 810 815
Asn Lys Pro Pro Arg Asn Pro Lys Glu Pro Leu Ile Ser Gly Trp Leu
820 825 830
Phe Phe Arg Tyr Leu Ala IIe Gly Cys Tyr Val Gly Ala Ala Thr Val
835 840 845
Gly Ala Ala Arp Trp Phe Ile Ala Ala Asp Gly Gly Pro Arg Val
850 855 860
Ser Phe Tyr Gln Leu Ser His Phe Leu Gln Cys Lys Glu Asp Asn Pro
865 870 875 880
Asp Phe Glu Gly Val Asp Cys Ala Ile Phe Glu Ser Pro Tyr Pro Met

885 890

Thr Met Ala Leu Ser Val Leu Val Thr Ile Glu Met Cys Asn Ala Leu

900 905 910

Asn Ser Leu Ser Glu Asn Gln Ser Leu Leu Arg Met Pro Pro Trp Glu

915 920 925

Asn Ile Trp Leu Val Gly Ser Ile Cys Leu Ser Met Ser Leu His Phe

930 935 940

Leu Ile Leu Tyr Val Glu Pro Leu Pro Leu Ile Phe Gln Ile Thr Pro

945 950 955 960

Leu Asn Val Thr Gln Trp Leu Met Val Leu Lys Ile Ser Leu Pro Val

965 970 975

Ile Leu Met Asp Glu Thr Leu Lys Phe Val Ala Arg Asn Tyr Leu Glu

980 985 990

Pro Ala Ile Leu Glu

995

<210> 29

<211> 1103

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (133).. (834)

<400> 29

ctteggteet getgtagtge ettetgegee aggeeeggtt caateagegg ceacaactgt 60 ctagggetea gacaceacea geeaatgagg gagggeaegt ggageegegt etgggetege 120 ggeteetgae ea atg ggg aag tgg eat gtg gga ggg ege egg ggt tee eee 171

			Ņ	let (ıly L	ys 1	îrp E	lis V	al (aly (Gly A	rg A	rg (Hy S	Ser P	ro
				1				5					10			
cgc	caa	tgg:	gga	gct	acg	gcg	c gc	ggc	cgg	gac	ttg	gag	gce	ggtg	cgg	219
Arg	GIn	Trp	Gly	Ala	Thr	Ala	Arg	Gly	Arg	Asp	Leu	Glu	Ala	. Val	Arg	
	15					20					25					
cgc	ggc	ggg	tgc	ggt	tca	gtc	ggt	cgg	cgg	cgg	cag	cgg	agg	agg	agg	267
Arg	Gly	Gly	Cys	Gly	Ser	Val	Gly	Arg	Arg	Arg	Gln	Arg	Arg	Arg	Arg	
30					35					40					45	
agg	agg	agg	agg	atg	agg	agg	atg	agg	agg	atg	t gg	gcc	acg	cag	ggg	315
Arg	Arg	Arg	Arg	Met	Arg	Arg	Met	Arg	Arg	Met	Trp	Ala	Thr	Gln	Gly	
				50					55					60		
ctg	gcg	gtg	cgc	gtg	gct	ctg	agc	gtg	ctg	ccg	ggc	agc	cgg	gcg	ctg	363
Leu	Ala	Val	Arg	Val	Ala	Leu	Ser	Val	Leu	Pro	Gly	Ser	Arg	Ala	Leu	
			65					70					75			
cgg	ccg	ggc	gac	tgc	gaa	gtt	tgt	att	tct	tat	ctg	gga	aga	ttt	tac	411
Arg	Pro	Gly	Asp	Cys	Glu	Val	Cys	Ile	Ser	Tyr	Leu	Gly	Arg	Phe	Tyr	
		80					85					90				
											cca					459
Gln		Leu	Lys	Asp	Arg		Val	Thr	Phe	Ser	Pro	Ala	Thr	He	Glu	
	95					100					105					
											ggc					507
	GIu	Leu	He	Lys		Cys	Arg	Glu	Ala		Gly	Lys	Glu	Asn	Arg	
110					115					120					125	

ttg tgc tac tat atc ggg gcc aca gat gat gca gcc acc aca atc atc 555
Leu Cys Tyr Tyr Ile Gly Ala Thr Asp Asp Ala Ala Thr Lys Ile Ile
130 135 140

aat gag gta tea aag eet etg gee eac eac ate eet gtg gag aag ate 603 Asn Glu Val Ser Lys Pro Leu Ala His His Ile Pro Val Glu Lys Ile 145 150 155

tgt gag aag ctt aag aag aag gac agc cag ata tgt gag ctt aag tat 651 Cys Glu Lys Leu Lys Lys Lys Asp Ser Gln Ile Cys Glu Leu Lys Tyr 160 165 170

gac aag cag atc gac ctg agc aca gtg gac ctg aag aag ctc cga gtt 699 Asp Lys Gln Ile Asp Leu Ser Thr Val Asp Leu Lys Lys Leu Arg Val 175

185

180

aaa gag ctg aag aag att ctg gat gac tgg ggg gag aca tgc aaa ggc 747 Lys Glu Leu Lys Lys Ile Leu Asp Asp Trp Gly Glu Thr Cys Lys Gly 190 195 200 205

tgt gca gaa aag tct gac tac atc cgg aag ata aat gaa ctg atg cct 795 Cys Ala Glu Lys Ser Asp Tyr Ile Arg Lys Ile Asn Glu Leu Met Pro 210 215 220

aaa tat gcc ccc aag gca gcc agt gca ccg acc gat ttg tagtctgctc 844 Lys Tyr Ala Pro Lys Ala Ala Ser Ala Pro Thr Asp Leu

225 230

aatctctgtt gcacctgagg gggaaaaaac agttcaactg cttactccca aaacagcctt 904 tttgtaatti attttttaag tgggctcctg acaatactgt atcagatgtg aagcctggag 964 ctttcctgat gatgctggcc ctacagtacc cccatgaggg gattcccttc cttctgttgc 1024 tggtgtactc taggacttca aagtgtgtct gggatttttt tattaaagaa aaaaaatttc 1084 tagctgtcaa aaaaaaaaa 1103

<210> 30

<211> 234

<212> PRT

WO 01/25427 <213 Homo sapiens ⟨400⟩ 30 Met Gly Lys Trp His Val Gly Gly Arg Arg Gly Ser Pro Arg Gln Trp Gly Ala Thr Ala Arg Gly Arg Asp Leu Glu Ala Val Arg Arg Gly Gly Cys Gly Ser Val Gly Arg Arg Arg Gln Arg Arg Arg Arg Arg Arg Arg Met Arg Arg Met Arg Arg Met Trp Ala Thr Gln Gly Leu Ala Val Arg Val Ala Leu Ser Val Leu Pro Gly Ser Arg Ala Leu Arg Pro Gly Asp Cys Glu Val Cys Ile Ser Tyr Leu Gly Arg Phe Tyr Gln Asp Leu Lys Asp Arg Asp Val Thr Phe Ser Pro Ala Thr Ile Glu Asn Glu Leu Ile Lys Phe Cys Arg Glu Ala Arg Gly Lys Glu Asn Arg Leu Cys Tyr Tyr Ile Gly Ala Thr Asp Asp Ala Ala Thr Lys Ile Ile Asn Glu Val Ser Lys Pro Leu Ala His His Ile Pro Val Glu Lys Ile Cys Glu Lys

165 170 175

Ille Asp Leu Ser Thr Val Asp Leu Lys Lys Leu Arg Val Lys Glu Leu
180 185 190

Leu Lys Lys Lys Asp Ser Gln lle Cys Glu Leu Lys Tyr Asp Lys Gln

Lys Lys Ile Leu Asp Asp Trp Gly Glu Thr Cys Lys Gly Cys Ala Glu

200

205

Lys Ser Asp Tyr Ile Arg Lys Ile Asm Glu Leu Met Pro Lys Tyr Ala

210

215

220

Pro Lys Ala Ala Ser Ala Pro Thr Asp Leu

225

230

⟨210⟩ 31

<211> 1860

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (94).. (1266)

⟨400⟩ 31

gcgcagcgga gccccgacac cgccgccgcc gcc atg gag tcc gag acc gaa ccc 114

Met Glu Ser Glu Thr Glu Pro

1

5

gag ccc gtc acg ctc ctg gtg aag agc ccc aac cag cgc cac cgc gac 162 Glu Pro Val Thr Leu Leu Val Lys Ser Pro Asn Gln Arg His Arg Asp

10

15

20

ttg gag ctg agt ggc gac cgc ggc tgg agt gtg ggc cac ctc aag gcc 210 Leu Glu Leu Ser Gly Asp Arg Gly Trp Ser Val Gly His Leu Lys Ala

25

30

35

cac ctg agc cgc gtc tac ccc gag cgt ccg cgt cca gag gac cag agg 258 His Leu Ser Arg Val Tyr Pro Glu Arg Pro Arg Pro Glu Asp Gln Arg

40

45

50

55

ita att ta	t tot ggg a	ag ctg ttg	ttg gat c	ac caa tgt d	etc agg gac	306
				is Gln Cys L		
	60		65		70	
ttg ctt cc	a aag cag g	aa aaa cgg	cat gtt tt	g cat ctg g	tg tgc aat	354
Leu Leu Pro	o Lys Gln G	lu Lys Arg	His Val Le	u His Leu V	al Cys Asn	
	75		80		85	
gtg aag agt	cct tca aa	ia atg cca	gaa atc aa	c gcc aag g	tg gct gaa	402
Val Lys Ser	Pro Ser Ly	s Met Pro	Glu Ile As	n Ala Lys Va	al Ala Glu	
90		95		100		
tcc aca gag	gag cct gc	t ggt tct	aat cgg gg:	a cag tat co	t gag gat	450
Ser Thr Glu	Glu Pro Al	a Gly Ser	Asn Arg Gly	Gln Tyr Pr	o Glu Asp	
105		110		115		
tcc tca agt	gat ggt tt.	a agg caa	agg gaa gtt	ctt cgg aa	c ctt tct	498
Ser Ser Ser	Asp Gly Le	ı Arg Gln <i>A</i>	Arg Glu Val	Leu Arg As	n Leu Ser	
120	125)	130		135	
tcc cct gga	tgg gaa aac	atc tca a	igg cct gaa	get gee cas	g cag gca	546
Ser Pro Gly	Trp Glu Asn	lle Ser A	rg Pro Glu	Ala Ala Glr	ı Gln Ala	
	140		145		150	
ttc caa ggc	ctg ggt cct	ggt ttc t	cc ggt tac	aca ccc tat	ggg tgg	594
Phe Gln Gly	Leu Gly Pro	Gly Phe S	er Gly Tyr	Thr Pro Tyr	Gly Trp	
	155	1	60	165		
ctt cag ctt	tcc tgg ttc	cag cag a	ta tat gca	cga cag tac	tac atg	642
Leu Gln Leu S						
170		175		180		
caa tat tta g	sca gcc act	gct gca to	a ggg gct	ttt gtt cca	cca cca	690
Gln Tyr Leu A						

185	190)	195	
agt gca ca	a gag ata cct gtg	g gtc tct gca	cct gct cca gcc	cct att 738
Ser Ala Gl	n Glu Ile Pro Val	Val Ser Ala	Pro Ala Pro Ala	Pro Ile
200	205		210	215
cac aac ca	g tit cca gct gaa	aac cag cct	gcc aat cag aat	gct gct 786
His Asn Gli	n Phe Pro Ala Glu	Asn Gln Pro	Ala Asn Gln Asn	Ala Ala
	220	225		230
cct caa gtg	g gtt gtt aat cct	gga gcc aat	caa aat tig cgg	atg aat 834
Pro Gln Val	Val Val Asn Pro	Gly Ala Asn	Gln Asn Leu Arg 1	Met Asn
	235	240	245	
gca caa ggt	ggc cct att gtg	gaa gaa gat	gat gaa ata aat o	ega gat 882
Ala GIn Gly	Gly Pro Ile Val	Glu Glu Asp	Asp Glu Ile Asn A	Arg Asp
250		255	260	
tgg ttg gat	tgg acc tat tca	gca gct aca t	ttt tct gtt ttt c	tc agt 930
Trp Leu Asp	Trp Thr Tyr Ser	Ala Ala Thr F	Phe Ser Val Phe L	eu Ser
265	270		275	
atc ctc tac	ttc tac tcc tcc	ctg agc aga t	tc ctc atg gtc a	tg ggg 978
lle Leu Tyr	Phe Tyr Ser Ser 1	Leu Ser Arg P	he Leu Met Val Mo	et Gly
280	285		90	295
	gtt atg tac ctg o			
Ala Thr Val	Val Met Tyr Leu H	lis His Val G	ly Trp Phe Pro Ph	ne Arg
	300	305	31	
	gtt cag aac ttc c			
Pro Arg Pro	Val Gln Asn Phe P	ro Asn Asp Gl	y Pro Pro Pro As	p Val
	315	320	325	
gta aat cag g	gac ecc aac aat aa	ac tta cag ga	a ggc act gat cc	t gaa 1122

Val Asn Gln Asp Pro Asn Asn Leu Gln Glu Gly Thr Asp Pro Glu

375

330 335 340

act gaa gac ccc aac cac ctc cct cca gac agg gat gta cta gat ggc 1170 Thr Glu Asp Pro Asn His Leu Pro Pro Asp Arg Asp Val Leu Asp Gly

345 350 355

365

gag cag acc agc ccc tcc ttt atg agc aca gca tgg ctt gtc ttc aag 1218 Glu Gln Thr Ser Pro Ser Phe Met Ser Thr Ala Trp Leu Val Phe Lys

act ttc ttt gcc tct ctt ctt cca gaa ggc ccc cca gcc atc gca aac — 1266 Thr Phe Phe Ala Ser Leu Leu Pro Glu Gly Pro Pro Ala Ile Ala Asn

380 385 390

370

tgatggtgtt tgtgctgtag ctgttggagg ctttgacagg aatggactgg atcacctgac 1326
tccagctaga ttgcctctcc tggacatggc aatgatgagt ttttaaaaaa cagtgtggat 1386
gatgatatgc ttttgtgagc aagcaaaagc agaaacgtga agccgtgata caaattggtg 1446
aacaaaaaat gcccaaggct tctcatgtgt ttattctgaa gagctttaat atatactcta 1506
tgtagtttaa taagcactgt acgtagaagg ccttaggtgt tgcatgtcta tgcttgagga 1566
acttttccaa atgtgtgt ctgcatgtgt gtttgtacat agaagtcata gatgcagaag 1626
tggttctgct ggtaagattt gattcctgtt ggaatgttta aattacacta agtgtactac 1686
tttatataat caatgaaatt gctagacatg ttttagcagg acttttctag gaaagactta 1746
tgtataattg ctttttaaaa tgcagtgctt tactttaaac taaggggaac tttgcggagg 1806
tgaaaacctt tgctgggttt tctgttcaat aaagttttac tatgaatgac cctg 1860

<210> 32

<211> 391

<212> PRT

<213> Homo sapiens

<400> 32

Met Glu Ser Glu Thr Glu Pro Glu Pro Val Thr Leu Leu Val Lys Ser

Pro Asn Gln Arg His Arg Asp Leu Glu Leu Ser Gly Asp Arg Gly Trp Ser Val Gly His Leu Lys Ala His Leu Ser Arg Val Tyr Pro Glu Arg Pro Arg Pro Glu Asp Gln Arg Leu Ile Tyr Ser Gly Lys Leu Leu Leu Asp His Gln Cys Leu Arg Asp Leu Leu Pro Lys Gln Glu Lys Arg His Val Leu His Leu Val Cys Asn Val Lys Ser Pro Ser Lys Met Pro Glu Ile Asn Ala Lys Val Ala Glu Ser Thr Glu Glu Pro Ala Gly Ser Asn Arg Gly Gln Tyr Pro Glu Asp Ser Ser Ser Asp Gly Leu Arg Gln Arg Glu Val Leu Arg Asn Leu Ser Ser Pro Gly Trp Glu Asn Ile Ser Arg Pro Glu Ala Ala Gln Gln Ala Phe Gln Gly Leu Gly Pro Gly Phe Ser Gly Tyr Thr Pro Tyr Gly Trp Leu Gln Leu Ser Trp Phe Gln Gln Ile Tyr Ala Arg Gln Tyr Tyr Met Gln Tyr Leu Ala Ala Thr Ala Ala Ser Gly Ala Phe Val Pro Pro Pro Ser Ala Gln Glu Ile Pro Val Val Ser Ala Pro Ala Pro Ala Pro Ile His Asn Gln Phe Pro Ala Glu Asn Gln

WO 01/25427 Pro Ala Asn Gln Asn Ala Ala Pro Gln Val Val Asn Pro Gly Ala Asn Gln Asn Leu Arg Met Asn Ala Gln Gly Gly Pro Ile Val Glu Glu Asp Asp Glu Ile Asn Arg Asp Trp Leu Asp Trp Thr Tyr Ser Ala Ala Thr Phe Ser Val Phe Leu Ser IIe Leu Tyr Phe Tyr Ser Ser Leu Ser Arg Phe Leu Met Val Met Gly Ala Thr Val Val Met Tyr Leu His His Val Gly Trp Phe Pro Phe Arg Pro Arg Pro Val Gln Asn Phe Pro Asn Asp Gly Pro Pro Pro Asp Val Val Asn Gln Asp Pro Asn Asn Leu Gln Glu Gly Thr Asp Pro Glu Thr Glu Asp Pro Asn His Leu Pro Pro Asp Arg Asp Val Leu Asp Gly Glu Gln Thr Ser Pro Ser Phe Met Ser

Thr Ala Trp Leu Val Phe Lys Thr Phe Phe Ala Ser Leu Leu Pro Glu

Gly Pro Pro Ala Ile Ala Asn

<210> 33

<211> 4067

<212> DNA

WO 01/25427 PCT/JP00/06840

·213 · Homo sapiens

 $\langle 220 \rangle$

1221 · CDS

·222 (812) . . (1138)

400 33

cttgaatett ggggeaggaa eteagaaaae tteeageeeg ggeagegege gettggtgea 60 agacteagga getageagee egteeceete egacteteeg gtgeegeege tgeetgetee 120 cgccacccta ggaggcgcgg tgccacccac tactctgtcc tctgcctgtg ctccgtgccc 180 gaccetatee eggeggagte tecceateet cettigetit eegactgeee aaggeactit 240 caateleaal elettetete teletelete teletelgte teletelete teletele 300 teletetete geagggtggg gggaagagga ggaggaalle titeeeegce taacatitea 360 agggacacaa ttcactccaa gtctcttccc tttccaagcc gcttccgaag tgctcccggt 420 georgeaact cetgateeca accegegaga ggageetetg egaceteaaa geotetette 480 cttetecete getteeetee teetettget aceteeacet ceaeegeeae eteeacetee 540 ccctcttctc tttttggcag ccgctggacg tccggtgttg atggtggcag cggcggcagc 660 ctaagcaaca geageeeteg cageeegeea getegegete geeeegeegg egteeeeage 720 cctatcacct catctcccga aaggtgctgg gcagctccgg ggcggtcgag gcgaagcggc 780 tgcagcggcg gtagcggcgg cgggaggcag g atg agc gca cgc ggt gag ggc 832 Met Ser Ala Arg Gly Glu Gly

5

geg ggg cag ceg tee act tea gee cag gga caa eet gee gee eea geg 880 Ala Gly Gln Pro Ser Thr Ser Ala Gln Gly Gln Pro Ala Ala Pro Ala

1

10 15 20

25

30

35

acc ggi gag ccc tct cct aag aga ccc agg gga aga ccc aaa ggc agc 976 Thr Gly Glu Pro Ser Pro Lys Arg Pro Arg Gly Arg Pro Lys Gly Ser 40 45 50 55 aaa aac aag agt ccc tct aaa gca gct caa aag aaa gca gaa gcc act 1024 Lys Asn Lys Ser Pro Ser Lys Ala Ala Gln Lys Lys Ala Glu Ala Thr

60 65 70

85

100

gga gaa aaa cgg cca aga ggc aga cct agg aaa tgg cca caa caa gtt 1072 Gly Glu Lys Arg Pro Arg Gly Arg Pro Arg Lys Trp Pro Gln Gln Val 75 80

gtt cag aag aag oot got cag gag gaa act gaa gag aca too toa caa 1120 Val Gln Lys Lys Pro Ala Gln Glu Glu Thr Glu Glu Thr Ser Ser Gln 90 95

gag tet gee gaa gag gae tagggggege aacgttegat ttetacetea 1168 Glu Ser Ala Glu Glu Asp

105

gcagcagtig gatcittiga agggagaaga cactgcagtg accacttati cigiatigcc 1228 tggggagaaa tcacataacc ttaaaaagga ctatattaat caccttcttt gtaatccctt 1348 cacagteeca ggtttagtga aaaactgetg taaacacagg ggacacaget taacaatgca 1408 actittaatt actgittict titticitaa cotactaata gittgitgat cigataagca 1468 agagtgggcg ggtgagaaaa accgaattgg gtttagtcaa tcactgcact gcatgcaaac 1528 aagaaacgtg tcacacttgt gacgtcgggc attcatatag gaagaacgcg gtgtgtaaca 1588 ctgtgtacac ctcaaatacc accccaaccc actccctgta gtgaatcctc tgtttagaac 1648 accaaagata aggactagat actactttct ctttttcgta taatcttgta gacacttact 1708 tgatgatttt taacttttta tttctaaatg agacgaaatg ctgatgtatc ctttcattca 1768 gctaacaaac tagaaaaggt tatgttcatt tttcaaaaag ggaagtaagc aaacaaatat 1828

WO 01/25427 PCT/JP00/06840

tgccaactct tctatttatg gatatcacac atatcagcag gagtaataaa tttactcaca 1888 geactigiit teaggaeaac acticatiit eaggaaatet acticetaea gageeaaaat 1948 gecatttage aataaataac aettgteage eteagageat ttaaggaaac tagacaagta 2008 aaattateet ettigtaatt taatgaaaag glacaacaga ataatgeatg atgaacteae 2068 ctaattatga ggtgggagga gcgaaatcta aatttelttt gctatagtta tacatcaatt 2128 taaaaagcaa aaaaaaaaag gggggggcaa tetetetetg tgtetttete tetetetet 2188 cetetecete tetettitea tgtgtateag titecatgaa agaeetgaat accaettace 2248 tcaaattaag catatgtgtt acttcaagta atacgttttg acataagatg gttgaccaag 2308 gtgettttet teggettgag tteaceatet etteatteaa aetgeaettt tageeagaga 2368 tgcaatatat ccccactact caatactacc tctgaatgtt acaacgaatt tacagtctag 2428 tacttattac atgctgctat acacaagcaa tgcaagaaaa aaacttactg ggtaggtgat 2488 tctaatcatc tgcagttctt tttgtacact taattacagt taaagaagca atctccttac 2548 tgtgtttcag catgactatg tatttttcta tgttttttta attaaaaatt tttaaaatac 2608 ttgtttcagc ttctctgcta gatttctaca ttaacttgaa aattttttaa ccaagtcgct 2668 cctaggitet taaggataat iiicctcaai cacactacac aicacacaag aiitigacigi 2728 aatatttaaa tattaccete caagtetgta eetcaaatga attetttaag gagatggact 2788 aattgacttg caaagaccta cctccagact tcaaaaggaa tgaacttgtt acttgcagca 2848 ttcattigit tittcaaigi tigaaalagi tcaaacigca gciaacccia gicaaaacia 2908 tttttgtaaa agacatttga tagaaaggaa cacgttttta catacttttg caaaataagt 2968 aaataataaa taaaataaag ccaaccttca aagaacttga agctttgtag gtgagatgca 3028 acaageeetg ettttgeata atgeaaleaa aaatatgtgt tiltaagatt agitgaatat 3088 aagaaaatgo tigacaaata tiitoaigia tiitacacaa aigigatiit tgiaataigi 3148 ctcaaccaga titatittaa acgclictia igiagagitt tialgeetti eletectagi 3208 gagtgtgctg actititaac atggtattat caactgggcc aggaggtagt tictcatgac 3268 ggcttttgtc agtatggctt ttagtactga agccaaatga aactcaaaac catctctctt 3328 ccagctgctt cagggaggta gtttcaaagg ccacatacct ctctgagact ggcagatcgc 3388 tcactgttgt gaatcaccaa aggagctatg gagagaatta aaactcaaca ttactgttaa 3448

titiggatggg cettitiagaa accicatigg ceageteata aaatggaage aatteetat 3568 gitiggeeaaa catggigeac egagtgatti eeatetetig taaaagttaca ettitatite 3628 ettgatgiig tacaateaaa acacaetaci accictitaag teecagtata eeteatiiti 3688 eatacatgaaa aaaaaagett gitggeeaatg gaacagtaag aacateataa aattittata 3748 tatatagiiti attitigigg gagataaatt tetacagiiti eteecagtata gitettiget gitgitiggie 3808 geagetacat aagactggae attitaactit tetaceatti etgeaagtta ggatagiiti 3868 eaggagaaaa giateaagae gittaactge agtigaetti eteectgiite etitigaate 3928 ettetaacti tattetigt tettiatgia gaattgetgi etatgattgi actitigaate 3988 gettgettgi tgaaaatatt tetetagtgi attateect tetigtee acaataaaca 4048 taacageete tgtgateec testgateec 4067

<210> 34

<211> 109

<212> PRT

<213> Homo sapiens

⟨400⟩ 34

Met Ser Ala Arg Gly Glu Gly Ala Gly Gln Pro Ser Thr Ser Ala Gln

1 5 10 15

Gly Gln Pro Ala Ala Pro Ala Pro Gln Lys Arg Gly Arg Pro

20 25 30

Arg Lys Gln Gln Gln Glu Pro Thr Gly Glu Pro Ser Pro Lys Arg Pro

35 40 45

Arg Gly Arg Pro Lys Gly Ser Lys Asn Lys Ser Pro Ser Lys Ala Ala

50 55 60

Gln Lys Lys Ala Glu Ala Thr Gly Glu Lys Arg Pro Arg Gly Arg Pro

65 70 75

WO 01/25427 PCT/JP00/06840

90

95

Arg Lys Trp Pro Gln Gln Val Val Gln Lys Lys Pro Ala Gln Glu Glu

Thr Glu Glu Thr Ser Ser Gln Glu Ser Ala Glu Glu Asp

100

85

<210> 35

<211> 4228

<212> DNA

<213> Homo sapiens

<220,

<221> CDS

<222> (148).. (1032)

<400> 35

1 5

gtg gaa acc atc cgc cgc gcg tac ccc gat gcc aac ctc ctc aac gac 222
Val Glu Thr Ile Arg Arg Ala Tyr Pro Asp Ala Asn Leu Leu Asn Asp
10 25

cgg gtg ctg cgg gcc atg ctg aag gcg gag gag acc tgc gcg ccc tcg 270 Arg Val Leu Arg Ala Met Leu Lys Ala Glu Glu Thr Cys Ala Pro Ser

30 35 40

gtg tcc tac ttc aaa tgt gtg cag aag gag gtc ctg ccg tcc atg cgg 318 Val Ser Tyr Phe Lys Cys Val Gln Lys Glu Val Leu Pro Ser Met Arg

45 50 55

aag	ato	gto	gcc	acc	tgg	ate	cte	gag	gto	tgo	gag	gaa	ca	g aag	gtgc	366
Lys	He	e Val	Ala	Thr	Trp	Met	Lei	ı Glu	Val	Cys	s Glu	Glu	ı Gli	n Lys	Cys	
		60	ł				65)				70)			
gag	gag	gag	gtc	ttc	ccg	ctg	gcc	atg	aac	tac	ctg	gac	cgo	e tto	ctg	414
Glu	Glu	Glu	Val	Phe	Pro	Leu	Ala	Met	Asn	Tyr	Leu	Asp	Arg	g Phe	Leu	
	75					80					85					
tcg	ctg	gag	ссс	gtg	aaa	aag	agc	cgc	ctg	cag	ctg	ctg	ggg	g gcc	act	462
Ser	Leu	Glu	Pro	Val	Lys	Lys	Ser	Arg	Leu	Gln	Leu	Leu	Gly	/ Ala	Thr	
90					95					100					105	
tgc	atg	ttc	gtg	gcc	tet	aag	atg	aag	gag	acc	atc	ccc	ctg	acg	gcc	510
Cys	Met	Phe	Val	Ala	Ser	Lys	Met	Lys	Glu	Thr	He	Pro	Leu	Thr	Ala	
				110					115					120		
gag	aag	ctg	tgc	atc	tac	acc	gac	aac	tcc	atc	cgg	ccc	gag	gag	ctg	558
Glu	Lys	Leu	Cys	He	Tyr	Thr	Asp	Asn	Ser	He	Arg	Pro	Glu	Glu	Leu	
			125					130					135			
				ctg												606
Leu	Gln		Glu	Leu	Leu	Leu		Asn	Lys	Leu	Lys	Trp	Asn	Leu	Ala	
		140					145					150				
				cac												654
Ala		lhr	Pro	His	Asp		He	Glu	His	Phe		Ser	Lys	Met	Pro	
	155					160					165					
				aac												702
	Ala	GIU	GIU	Asn		GIN	He	He	Arg		HIS	Ala	Gin	lhr		
170		a. 4 -	4 4		175		4			180	4	_ ,			185	7.50
				gcc Ala												750
v d i	A I A	1.6411	UVS	A I A	1 11 1	ASD	val	2.V.1	ተበሶ	116	SPT	ASD	410	rrn	761	

	190	195		200
atg gtg gca gcg	ggg agc gtg	gtg gcc gca g	stg caa ggc ci	g aac ctg = 798
Met Val Ala Ala				
205		210	21	
agg agc ccc aac	aac ttc ctg	tcc tac tac c	gc ctc aca cg	cttcctc 846
Arg Ser Pro Asn	Asn Phe Leu	Ser Tyr Tyr A	rg Leu Thr Ar	g Phe Leu
220		225	230	
tcc aga gtg atc	aag tgt gac	cca gac tgc c	tc cgg gcc tg	c cag gag 894
Ser Arg Val Ile	Lys Cys Asp	Pro Asp Cys Le	eu Arg Ala Cy	s Gln Glu
235	240		245	
cag atc gaa gcc	ctg ctg gag	tca agc ctg cg	ge cag gee cag	g cag aac 942
Gln Ile Glu Ala	Leu Leu Glu	Ser Ser Leu Ar	g Gln Ala Glr	Gln Asn
250	255	26	0	265
atg gac ccc aag	gcc gcc gag g	gag gag gaa ga	g gag gag gag	gag gtg 990
Met Asp Pro Lys	Ala Ala Glu (Glu Glu Glu Gl	u Glu Glu Glu	Glu Val
:	270	275		280
gac ctg gct tgc a	aca ccc acc g	gac gtg cgg ga	c gtg gac atc	1032
Asp Leu Ala Cys 7	fhr Pro Thr A	asp Val Arg Ası	p Val Asp Ile	
285		290	295	
tgagggcgcc aggcag	gegg gegeeac	cgc cacccgcago	c gagggcggag (ccggccccag 1092
gtgctccact gacagt	ccct cctctcc	gga gcattttgat	accagaaggg a	naagetteat 1152
tctccttgtt gttggt	tgtt ttttcct	ttg ctctttcccc	cttccatctc 1	gacttaagc 1212
aaaagaaaaa gattac	ccaa aaactgto	ctt taaaagagag	agagagaaaa a	aaaaatagt 1272
attigcataa ccctga	gcgg tgggggag	gga gggttgtgct	acagatgata g	aggatttta 1332
taccccaata atcaac	tcgt ttttatat	tta atgtacttgt	ttctctgttg t	aagaatagg 1392
cattaacaca aaggagg	gogt otogggag	gag gattaggttc	cateetttae g	tgittaaaa 1459

aaaagcataa aaacatttta aaaacataga aaaattcagc aaaccatttt taaagtagaa 1512

gagggtttta ggtagaaaaa catattettg tgetttteet gataaageae agetgtagtg 1572 gggttctagg catcicigta cittigctigc icataigcai giagtcacti lataagicai 1632 tgtatgitat tatattccgt aggtagatgt gtaacctctt caccitattc atggctgaag 1692 teacetettg gttacagtag egtagegtgg eegtgtgeat gteetttgeg eetgtgacea 1752 ccaccccaac aaaccatcca gtgacaaacc atccagtgga ggtltgtcgg gcaccagcca 1812 gcgtagcagg gtcgggaaag gccacctgtc ccactcctac gatacgctac tataaagaga 1872 agacgaaata gtgacataat atattctatt tttatactct teetattttt gtagtgacet 1932 gtttatgaga tgctggtttt ctacccaacg gccctgcagc cagctcacgt ccaggttcaa 1992 cccacageta ettggtttgt gttettette atattetaaa accatteeat ttecaageae 2052 tttcagtcca ataggtgtag gaaatagcgc tgtttttgtt gtgtgtgcag ggagggcagt 2112 tttctaatgg aatggtttgg gaatatccat gtacttgttt gcaagcagga ctttgaggca 2172 agtgtgggcc actgtggtgg cagtggaggt ggggtgtttg ggaggctgcg tgccagtcaa 2232 gaagaaaaag giitgcatic icacatigce aggatgataa giicciitce tittetitaa 2292 agaagttgaa gtttaggaat cctttggtgc caactggtgt ttgaaagtag ggacctcaga 2352 ggtttaccta gagaacaggt ggtttttaag ggttatctta gatgtttcac accggaaggt 2412 ttttaaacac taaaatatat aatttatagt taaggetaaa aagtatattt attgcagagg 2472 atgitcataa ggccagtaig attiataaat gcaatciccc citgattiaa acacacagai 2532 acacacaca acacacaca acacacaaac cttctgcctt tgatgttaca gatttaatac 2592 agtttatttt taaagataga teettttata ggtgagaaaa aaacaatetg gaagaaaaaa 2652 accacacaaa gacattgatt cagcctgttt ggcgtttccc agagtcatct gattggacag 2712 gcatgggtgc aaggaaaatt agggtactca acctaagttc ggttccgatg aattcttatc 2772 ccctgcccct tcctttaaaa aacttagtga caaaatagac aatttgcaca tcttggctat 2832 gtaattettg taattittat tiaggaagig tigaagggag giggcaagag igiggagget 2892 gacgtgtgag ggaggacagg cgggaggagg tgtgaggagg aggctcccga ggggaagggg 2952 cggtgcccac accggggaca ggccgcagct ccattttctt attgcgctgc taccgttgac 3012 ttccaggcac ggtttggaaa tattcacatc gcttctgtgt atctctttca cattgtttgc 3072

WO 01/25427 PCT/JP00/06840

tgctattgga ggatcagitt titgitttac aatgicatat actgccatgi actagitiia 3132 gttitetett agaacattgi attacagatg cetititigi agittititt tittitatgi 3192 gatcaatttt gacttaatgt gattactgct ctattccaaa aaggttgctg tttcacaata 3252 ecteatgett cacttageca tggtggaece agegggeagg ttetgeetge tttggeggge 3312 agacacgegg gegegateee acacaggetg gegggggeeg geeecgagge egegtgegtg 3372 agaaccgcgc cggtgtcccc agagaccagg ctgtgtccct cttctcttcc ctgcgcctgt 3432 gatgctgggc acticatetg ategggggeg tageateata gtagttttta eagetgtgtt 3492 atwetttgcg tgtagetatg gaagttgeat aaltattatt attattatta taacaagtgt 3552 gtcttacgtg ccaccacggc gttgtacctg taggactete attcgggatg attggaatag 3612 cttctggaat tigitcaagt tilgggtatg lilaatetgi tatgtactag tgitctgiit 3672 gttattgttt tgttaattac accataatgc taatttaaag agactccaaa tctcaatgaa 3732 gccagctcac agtgctgtgt gccccggtca cctagcaagc tgccgaacca aaagaatttg 3792 caccecgetg eggeecacg tggttgggge cetgecetgg eagggteate etgtgetegg 3852 aggecatete gggcacagge ceaeceegee ceaeceetee agaacaegge teaegettac 3912 ctcaaccate ctggctgcgg cgtctgtctg aaccacgcgg gggccttgag ggacgctttg 3972 tetgtegtga tggggeaagg geacaagtee tggatgttgt gtgtrtegag aggeeaaagg 4032 ctggtggcaa gtgcacgggg cacagcggag tctgtcctgt gacgcgcaag tctgagggtc 4092 tgggcggcgg gcggctgggt ctgtgcattt ctggttgcac cgcggcgctt cccagcacca 4152 acatgtaacc ggcatgtttc cagcagaaga caaaaagaca aacatgaaag tctagaaata 4212 aaactgglaa aacccc 4228

<210> 36

<211> 295

<212> PRT

<213> Homo sapiens

<400> 36

Met Glu His Gln Leu Leu Cys Cys Glu Val Glu Thr Ile Arg Arg Ala

1				Ē)				1 ()				18	-)
Tyr	Pro	Asp	Ala	ı Asn	Leu	Leu	Ası	Ası	Arg	g Val	Lei	ı Ar	g Ala	a Met	t Leu
			20)				25	· •				30)	
Lys	Ala	Glu	Glu	Thr	Cys	Ala	Pro	Ser	Val	Sei	Tyr	Phe	Lys	Cys	val
		35					40					45			
Gln	Lys	Glu	Val	Leu	Pro	Ser	Met	Arg	Lys	He	Val	Ala	Thr	Trp	Met
	50					55					60				
Leu	Glu	Val	Cys	Glu	Glu	Gln	Lys	Cys	Glu	Glu	Glu	Val	Phe	Pro	Leu
65					70					75					80
Ala	Met	Asn	Туг	Leu	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Pro	Val	Lys	Lys
				85					90					95	
Ser	Arg	Leu	Gln	Leu	Leu	Gly	Ala	Thr	Cys	Met	Phe	Val	Ala	Ser	Lys
			100					105					110		
Met	Lys	Glu	Thr	He	Pro	Leu	Thr	Ala	Glu	Lys	Leu	Cys	He	Tyr	Thr
		115					120					125			
Asp	Asn	Ser	He	Arg	Pro	Glu	Glu	Leu	Leu	Gln	Met	Glu	Leu	Leu	Leu
	130					135					140				
Val	Asn	Lys	Leu	Lys	Trp	Asn	Leu	Ala	Ala	Met	Thr	Pro	His	Asp	Phe
145					150					155					160
Ile	Glu	His	Phe	Leu	Ser	Lys	Me t	Pro	Glu	Ala	Glu	Glu	Asn	Lys	Gln
				165					170					175	
He	He	Arg	Lys	His	Ala	Gln	Thr	Phe	Val	Ala	Leu	Cys	Ala	Thr	Asp
			180					185					190		
Val	Lys	Phe	He	Ser	Asn	Pro	Pro	Ser	Me t	Val	Ala	Ala	Gly	Ser	Val
		195					200					205			
Val	Ala	Ala	Val	Gln	Gly	Leu	Asn	Leu	Arg	Ser	Pro	Asn	Asn	Phe	Leu

220

215

Ser Tyr Tyr Arg Leu Thr Arg Phe Leu Ser Arg Val Ile Lys Cys Asp

225

230

235

240

Pro Asp Cys Leu Arg Ala Cys Gln Glu Gln Ile Glu Ala Leu Leu Glu

245

250

255

Ser Ser Leu Arg Gln Ala Gln Gln Asn Met Asp Pro Lys Ala Ala Glu

260

265

270

Glu Glu Glu Glu Glu Glu Glu Val Asp Leu Ala Cys Thr Pro Thr

275

280

285

Asp Val Arg Asp Val Asp Ile

290

295

⟨210⟩ 37

<211 → 5007

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (436) . . (3402)

⟨400⟩ 37

ggggcgcccg cgggccggag ccggggcggg ggccagcgg aacggcagag cgggccggag gggccgagg ggcccgggg aacggcaggg cggccgggg ggcccgggg aacggcaggag cgggccggag gcggccgagg 120 cgcccggcgc aggcacccgt gcctccctc tgccaggaac cttggggcct tgtgtgtgac 180 caggacctgg tggccccgg gcggtggcag agcccctgtc ccaagctgct tcctgccggc 240 acctctgatc aagtgcctag agggatgtgt gtgccagccc tcggtccagt gcccgctcct 300 gagctgactc ctgctgggcc ccgacagctt gccggtgttc ctgtgcctgt agctccctgg 360 ttggatagct gccgcccgg ggatc atg aaa ggc ctc ggt gac agc cgc ccc cgc cac ctc 471

Met Lys Gly Leu Gly Asp Ser Arg Pro Arg His Leu tcc gac ago cta gac cca ccc cac gag ccc ctg ttt gca ggg acc gac Ser Asp Ser Leu Asp Pro Pro His Glu Pro Leu Phe Ala Gly Thr Asp ege aac eee lac etg etg teg eee aeg gag gee tte gee ege gag gee Arg Asn Pro Tyr Leu Leu Ser Pro Thr Glu Ala Phe Ala Arg Glu Ala ege tte eee ggg eag aac ace etg eea gga gat gge ete til eee ete Arg Phe Pro Gly Gln Asn Thr Leu Pro Gly Asp Gly Leu Phe Pro Leu aac aac cag ctg ccc ccg ccc agc agc acc ttt ccc cgc atc cac tac Asn Asn Gln Leu Pro Pro Pro Ser Ser Thr Phe Pro Arg Ile His Tyr aac too cae tto gag gtg coa gag gag ago coe tto coc ago cat goo Asn Ser His Phe Glu Val Pro Glu Glu Ser Pro Phe Pro Ser His Ala caa gcc acc aag atc aac cgg ctg ccc gcc aac ctc ctg gac cag ttt Gln Ala Thr Lys Ile Asn Arg Leu Pro Ala Asn Leu Leu Asp Gln Phe

Glu Lys Gln Leu Pro IIe His Arg Asp Gly Phe Ser Thr Leu Gln Phe

110

ccc cgt ggc gag gcc aag gcc cgt ggt gag agc cct ggc cgc atc cgc 855

Pro Arg Gly Glu Ala Lys Ala Arg Gly Glu Ser Pro Gly Arg IIe Arg

125

130

130

140

gag aag cag ctg ccc atc cac cgt gat ggc ttc agc acc ctc caa ttt

сас	ctg	gto	cac	tca	gtc	cag	cgg	ctt	ttc	tto	acc	aag	gca	CCC	tea	903
His	Leu	Val	His	Ser	Val	Gln	Arg	Leu	Phe	Phe	Thr	Lys	Ala	Pro	Ser	
				145					150					155		
ctg	gag	ggc	aca	gcg	ggc	aag	gtc	ggt	ggc	aat	ggc	agc	aag	aag	ggt	951
Leu	Glu	Gly	Thr	Ala	Gly	Lys	Val	Gly	Gly	Asn	Gly	Ser	Lys	Lys	Gly	
			160					165					170			
ggc	atg	gag	gac	ggc	aag	ggc	cgg	agg	gcc	aaa	agc	aag	gag	cgg	gcc	999
Gly	Me t	Glu	Asp	Gly	Lys	Gly	Arg	Arg	Ala	Lys	Ser	Lys	Glu	Arg	Ala	
		175					180					185				
aag	gc t	ggg	gag	ссс	aaa	cgg	cgc	agc	cgc	tee	aac	atc	tca	ggc	tgg	1047
Lys	Ala	Gly	Glu	Pro	Lys	Arg	Arg	Ser	Arg	Ser	Asn	He	Ser	Gly	Trp	
	190					195					200					
tgg	agc	tcc	gat	gac	aac	ttg	gac	ggc	gag	gcc	ggc	gcc	ttc	cgc	agc	1095
Trp	Ser	Ser	Asp	Asp	Asn	Leu	Asp	Gly	Glu	Ala	Gly	Ala	Phe	Arg	Ser	
205					210					215					220	
agt	ggc	cca	gcc	tct	ggg	ctg	atg	ata	cta	ggc	cgc	cag	gca	gaa	cgc	1143
Ser	Gly	Pro	Ala	Ser	Gly	Leu	Met	He	Leu	Gly	Arg	Gln	Ala	Glu	Arg	
				225					230					235		
agc	cag	cca	cgc	tac	ttc	atg	cac	gcc	tac	aac	acc	atc	agt	ggg	cac	1191
Ser	Gln	Pro	Arg	Tyr	Phe	Met	His	Ala	Tyr	Asn	Thr	He	Ser	Gly	His	
			240					245					250			
atg	ctc	aaa	acc	acc	aag	aac	aac	act	act	gag	ctg	ac t	gcc	cca	cca	1239
Met	Leu	Lys	Thr	Thr	Lys	Asn	Asn	Thr	Thr	Glu	Leu	Thr	Ala	Pro	Pro	
		255					260					265				
ccc	ccg	ccc	gca	ccc	cca	gcc	acc	tgc	ccc	agc	ctt	ggg	gtg	ggc	act	1287
Pro	Pro	Pro	Ala	Pro	Pro	Ala	Thr	Cys	Pro	Ser	Leu	Gly	Val	Gly	Thr	
	270					275					280					

gao	acc	: aac	c tac	gto	c aaa	e cgg	ggg	tco	tg	g te	c ac	t ct	g ac	c cto	agc	1335
Asp	Th i	r Ası	туі	r Val	Lys	Arg	g Gly	' Ser	Tri	se:	r Th	r Le	u Th	r Lei	ı Ser	
285					290)				298	<u>.</u>				300	
cac	gcc	сас	gag	ggto	t gc	cag	aag	acc	tea	ı gco	c acc	e tt	g ga	t aag	gage	1383
His	Ala	His	Glu	ı Val	Cys	Gln	Lys	Thr	Ser	Ala	1 Thi	Lei	ı Ası	o Lys	Ser	
				305	,				310)				315		
ctg	ctc	aag	tcc	aaa	tcc	tgc	cac	cag	ggt	c t a	gco	t ac	c cat	t tac	ctg	1431
Leu	Leu	Lys	Ser	Lys	Ser	Cys	His	Gln	Gly	Leu	Ala	Туг	His	S Tyr	Leu	
			320					325					330)		
cag	gtg	ccc	ggc	ggc	ggc	ggc	gag	t gg	agc	acc	acg	cts	cte	tcc tcc	cca	1479
Gln	Val	Pro	Gly	Gly	Gly	Gly	Glu	Trp	Ser	Thr	Thr	Leu	Leu	Ser	Pro	
		335					340					345	•			
cgc	gag	acg	gat	gcc	gcg	gcc	gag	ggc	cct	atc	ccg	tgc	cgg	cgc	atg	1527
Arg	Glu	Thr	Asp	Ala	Ala	Ala	Glu	Gly	Pro	Ile	Pro	Cys	Arg	Arg	Met	
	350					355					360					
cgc	agc	ggc	agc	tac	atc	aag	gcc	atg	ggc	gac	gag	gac	agc	gac	gag	1575
Arg	Ser	Gly	Ser	Tyr	He	Lys	Ala	Met	Gly	Asp	Glu	Asp	Ser	Asp	Glu	
365					370					375					380	
tcc	ggc	ggc	agc	ccc	aag	ccc	tca	ccc	aag	acc	gcg	gcg	cgg	cgc	cag	1623
Ser	Gly	Gly	Ser	Pro	Lys	Pro	Ser	Pro	Lys	Thr	Ala	Ala	Arg	Arg	Gln	
				385					390					395		
agc	tat	ctg	agg	gcc	acg	cag	cag	tcg	ctg	gga	gag	cag	agc	aac	ccc	1671
Ser	Tyr	Leu	Arg	Ala	Thr	Gln	GIn	Ser	Leu	Gly	Glu	Gln	Ser	Asn	Pro	
			400					405					410			
cgc	agg	agt	ctg	gac	cgc	ctg	gat	tca	gtg	gac	atg	ctg	ctg	ccc	tcc	1719
Arg	Aro	Ser	Let	Asn	Aro	Len	Asn	192	l e V	Acn	Mat	Lau	Lau	Dro	Sar	

415 420 425

435

aag tgt ccg agc tgg gaa gag gac tac acc ccc gtc agc gac agc ctc 1767 Lys Cys Pro Ser Trp Glu Glu Asp Tyr Thr Pro Val Ser Asp Ser Leu

440

aac gac too ago tgc atc ago cag att ttt gga cag gcc tcc ctg atc 1815 Asn Asp Ser Ser Cys Ile Ser Gln Ile Phe Gly Gln Ala Ser Leu Ile 445 450 450 450

CCC cag ttg ttt ggc cat gag cag cag gta cgg gag gca gag ctg agt 1863
Pro Gln Leu Phe Gly His Glu Gln Gln Val Arg Glu Ala Glu Leu Ser
465
470
475

gac cag tat gag gcg gcc tgc gag tca gcc tgc agt gaa gcg gag tcc 1911
Asp Gln Tyr Glu Ala Ala Cys Glu Ser Ala Cys Ser Glu Ala Glu Ser
480 485 490

aca gcg gca gag acg ctt gac ttg cca ctg ccc agc tac ttc cgc tcc 1959

Thr Ala Ala Glu Thr Leu Asp Leu Pro Leu Pro Ser Tyr Phe Arg Ser

495 500 505

cgc agc cac agc tac ctg cgt gcc atc cag gca ggc tgc tcg cag gag 2007

Arg Ser His Ser Tyr Leu Arg Ala Ile Gln Ala Gly Cys Ser Gln Glu

510 515 520

gag gac agt gtc tcc ctg cag tcc ctc tcc cca ccg ccc agt acc ggc 2055

Glu Asp Ser Val Ser Leu Gln Ser Leu Ser Pro Pro Pro Ser Thr Gly

525 530 540

agc ctc agc aat agt cgc acg ctt ccg agt tca tca tgc cta gtg gcg 2103

Ser Leu Ser Asn Ser Arg Thr Leu Pro Ser Ser Ser Cys Leu Val Ala

545 550 555

tat aag aag acc ccg cca ccg gtc cct cca cgc acc act tca aag ccg 2151 Tyr Lys Lys Thr Pro Pro Pro Val Pro Pro Arg Thr Thr Ser Lys Pro

			560)				565					570	+		
tto	ato	t ca	gto	a ca	gtc	cag	ago	agt	ac t	gag	tet	gcc	: cag	gac	acc	2199
Phe	He	Ser	Val	Thr	Val	Gln	Ser	Ser	Thr	Glu	Ser	Ala	Gln	Asp	Thr	
		575					580	;				585				
tac	ctg	gac	agc	cag	gac	cac	aag	agc	gag	gtg	act	agc	cag	tcg	ggc	2247
Tyr	Leu	Asp	Ser	Gln	Asp	His	Lys	Ser	Glu	Val	Thr	Ser	Gln	Ser	Gly	
	590					595					600					
ctg	agc	aac	tcg	tcg	gac	agc	ctg	gac	agc	agt	acc	cga	ccg	ссс	agc	2295
Leu	Ser	Asn	Ser	Ser	Asp	Ser	Leu	Asp	Ser	Ser	Thr	Arg	Pro	Pro	Ser	
605					610					615					620	
gtg	aca	cgg	ggt	gga	gtc	gcc	cca	gcc	cct	gag	gcc	cca	gag	cca	ccc	2343
Val	Thr	Arg	Gly	Gly	Val	Ala	Pro	Ala	Pro	Glu	Ala	Pro	Glu	Pro	Pro	
				625					630					635		
cca	aaa	cat	gca	gc t	ctg	aaa	agt	gaa	caa	ggg	acg	ctg	acc	agc	tct	2391
Pro	Lys	His	Ala	Ala	Leu	Lys	Ser	Glu	Gln	Gly	Thr	Leu	Thr	Ser	Ser	
			640					645					650			
gag	tcc	cac	ccc	gag	gcc	gcc	ccc	aaa	agg	aaa	ctg	tca	tcg	ata	gga	2439
Glu	Ser	His	Pro	Glu	Ala	Ala	Pro	Lys	Arg	Lys	Leu	Ser	Ser	lle	Gly	
		655					660					665				
ata	caa	gag	agg	act	aga	agg	aac	ggt	tcc	cac	ctc	tcg	gag	gac	aac	2487
He	Gln	Glu	Arg	Thr	Arg	Arg	Asn	Gly	Ser	His	Leu	Ser	Glu	Asp	Asn	
	670					675					680					
gga	ссс	aaa	gcg	atc	gat	gtg	atg	gca	ccc	tcc	tca	gaa	agc	agc	gtc	2535
Gly	Pro	Lys	Ala	He	Asp	Val	Me t	Ala	Pro	Ser	Ser	Glu	Ser	Ser	Val	
685					690					695					700	
ccc	tct	cac	agt	atg	tcc	tcc	cga	cgg	gac	aca	gac	tcg	gat	acc	cag	2583

Pro	Ser	His	Ser	Me t	Ser	Ser	Arg	Arg	asr	Thr	Ast	Se i	Asp	Th	r Gln	
				705)				710)				715	Ď	
gat	gcc	aat	gac	tea	ago	tgt	aag	tea	. tct	gag	gagg	ago	cto	CC8	g gac	2631
Asp	Ala	Asn	Asp	Ser	Ser	Cys	Lys	Ser	Ser	Glu	Arg	Ser	Leu	Pro	Asp	
			720					725					730			
tgt	acc	cc t	cac	ссс	aac	tcc	atc	agc	atc	gat	gcc	ggt	ссс	cgg	cag	2679
Cys	Thr	Pro	His	Pro	Asn	Ser	Ile	Ser	Ile	Asp	Ala	Gly	Pro	Arg	Gln	
		735					740					745				
gcc	ccc	aag	att	gcc	cag	atc	aag	cgc	aac	ctc	tcc	tat	gga	gac	aac	2727
Ala	Pro	Lys	He	Ala	Gln	He	Lys	Arg	Asn	Leu	Ser	Tyr	Gly	Asp	Asn	
	750					755					760					
agc	gac	cct	gcc	cta	gag	gcg	tcc	tcg	ctg	ссс	cca	ссс	gac	ссс	tgg	2775
Ser	Asp	Pro	Ala	Leu	Glu	Ala	Ser	Ser	Leu	Pro	Pro	Pro	Asp	Pro	Trp	
765					770					775					780	
ctc	gag	acc	tcc	tcc	agc	tcc	сса	gca	gag	ccg	gca	cag	cca	ggg	gcc	2823
Leu	Glu	Thr	Ser	Ser	Ser	Ser	Pro	Ala	Glu	Pro	Ala	Gln	Pro	Gly	Ala	
				785					790					795		
tgc	cgc	cga	gac	ggc	tac	t gg	ttc	cta	aag	cta	ctg	cag	gca	gaa	aca	2871
Cys	Arg	Arg	Asp	Gly	Tyr	Trp	Phe	Leu	Lys	Leu	Leu	Gln	Ala	Glu	Thr	
			800					805					810			
gag	cgg	ctg	gaa	ggc	tgg	tgc	tgc	cag	atg	gac	aag	gag	acc	aaa	gag	2919
Glu	Arg	Leu	Glu	Gly	Trp	Cys	Cys	GIn	Met	Asp	Lys	Glu	Thr	Lys	Glu	
		815					820					825				
aac	aac	ctc	tct	gaa	gaa	gtc	t t a	gga	aaa	gtc	ctc	agt	gct	gtg	ggc	2967
Asn	Asn	Leu	Ser	Glu	Glu	Val	Leu	Gly	Lys	Val	Leu	Ser	Ala	Val	Gly	
	830					835					840					
agt	gcc	cag	cta	ctg	atg	tcc	cag	aaa	ttc	cag	cag	ttc	cgg	gge	ctc	3015

Ser Ala Gln Le	u Leu Met Ser G	ln Lys Phe Gln Gln	Phe Arg Gly Leu
845	850	855	860
tgt gag caa aa	c itg aac cci g	at gcc aac cca cgc	ccc aca gcc cag 3063
Cys Glu Gln As	n Leu Asn Pro A	sp Ala Asn Pro Arg	Pro Thr Ala GIn
	865	870	875
gac ctg gca gg	g ttc tgg gac ci	g cta cag ctg tcc ;	atc gag gat atc 3111
Asp Leu Ala Gly	y Phe Trp Asp Le	eu Leu Gln Leu Ser 1	lle Glu Asp Ile
880)	885	890
age atg aag tte	gat gaa ctc ta	c cac ctc aag gcc a	ac agc tgg cag 3159
Ser Met Lys Phe	Asp Glu Leu Ty	r His Leu Lys Ala A	sn Scr Trp Gln
895	90	0 9	05
ctg gtg gag acc	ccc gag aag ag	g aag gaa gag aag a	aa cca ccc cct 3207
Leu Val Glu Thr	Pro Glu Lys Ar	g Lys Glu Glu Lys L	ys Pro Pro Pro
910	915	920	
ccg gtc cca aag	aag cca gcc aaa	a tee aag eeg gea g	tg agc cgc gac 3255
Pro Val Pro Lys	Lys Pro Ala Lys	s Ser Lys Pro Ala Va	al Ser Arg Asp
925	930	935	940
aag gcc tca gac	gcc agc gac aag	cag cgc cag gag go	c cgc aag aga 3303
Lys Ala Ser Asp	Ala Ser Asp Lys	Gln Arg Gln Glu Al	a Arg Lys Arg
	945	950	955
ctc ctg gcg gcc	aag cgg gca gct	tct gtg cgg cag aa	c tca gcc acc 3351
Leu Leu Ala Ala	Lys Arg Ala Ala	Ser Val Arg Gln As	n Ser Ala Thr
960		965	970
		tat gtc ccg gag gcc	
Glu Ser Ala Asp S	Ser Ile Glu Ile	Tyr Val Pro Glu Ala	a Gln Thr Arg
975	980	985	i

ctc tgagaccatg caggaggaaa gaaacgattt taaatcatta aaaacacaaa

3452

Leu

aactaagtge gaacggaaca gagttttete aacetttget atggttatte tgtetagaga 3512 ccctgageca actiticaaat igaegeatac aagggeteae aattiggett tittigggiee 3572 cteccagett taggitatga agallitaet cacaaaaaaa atcaacaaaa atcaegaaac 3632 tagaaaacti tiittiicci cilgciggcc giggiggaci agatagaigg acgicggcaa 3692 cteceggeee ageeteeata etgeggtett tilactegit etatetgatg agaacteaca 3752 ctagettgtt tacaagatga egacagteca agggeageet tgggeacetg ceatgteeet 3812 cellicecca getalecceg eletgacett gattileatt ettalgillt teletitiee 3872 cttcagaget cacacagtgg teaccattgt ggeaagegge titetgggte teagecetet 3932 ctgcggttga gggcccagag gacagagaga tggacatgcg tcccctcct cccccgcca 3992 agtgeteaca cacaacetea egegeacaca cacacaegea gatggaggeg ceteaetggg 4052 aggigence coageeeigg geagigicag geaggaetea eteacegeig ageagaigag 4112 agaagtttta gtcttggcgg gtggaaatga gacgaagcca cagttatcac actccagact 4172 cotgecetti tattitetee ageeeettei teetteagea aaatetagga eteeegagig 4232 gcttccaggg ggccgtcagt cctcagccgc gcctgtgtcc ggtgcccgag gggcgggcgg 4292 eggtgtetgt atgtatgtgt acatatgeae atagaeetta gagtgtatag ttaacaaaeg 4352 eccatetget cacceatgee cacceagege egeegeeget ggeteteggg geacetggea 4412 ggaggcgggt gtgtgaatag catatatttt tacatgtact atatctaggt gtgtgtacaa 4472 gigigigiaa aaatatatac ciligigigia agcageeett tilitittig gictecaeec 4532 ccctccccc gcccgcact cctaagggcc catctgccca gcctctgagt tttctgttct 4592 attitititt taaccccaat tatccticic teteteelge eeeegeatee cacteecagg 4652 gtgtcacgag ccctgagctg caatggcccg ggcctgcagg gcggggtagg ggagggcagg 4712 ggetcagece egaagecage teagtacetg aggggetget etatgetgtg tatgegeete 4772 totagoatoo gagacatoot ottagotago gottagotago agagagacoo coccocato 4832 cccaggtgaa ccaagggtct gctccggggc ccatttccag cttggccgcc gtctgtgacc 4892 tigggcaagt cactigacci cigigigeet caactiecte etelgtaaaa eggggaeagt 4952

cccigcccct ccctacctca caggcatgtt gtgagaataa atgaggtaac gtgta

<210> 38

<211 > 989

<212 - PRT

<213> Homo sapiens

<400> 38

Met Lys Gly Leu Gly Asp Ser Arg Pro Arg His Leu Ser Asp Ser Leu

1 5 10 15

Asp Pro Pro His Glu Pro Leu Phe Ala Gly Thr Asp Arg Asn Pro Tyr

20 25 ' 30

Leu Leu Ser Pro Thr Glu Ala Phe Ala Arg Glu Ala Arg Phe Pro Gly

35 40 45

Gln Asn Thr Leu Pro Gly Asp Gly Leu Phe Pro Leu Asn Asn Gln Leu

50 55 60

Pro Pro Pro Ser Ser Thr Phe Pro Arg Ile His Tyr Asn Ser His Phe

65 70 75 80

Glu Val Pro Glu Glu Ser Pro Phe Pro Ser His Ala Gln Ala Thr Lys

90 95

lle Asn Arg Leu Pro Ala Asn Leu Leu Asp Gln Phe Glu Lys Gln Leu

100 105 110

Pro Ile His Arg Asp Gly Phe Ser Thr Leu Gln Phe Pro Arg Gly Glu

115 120 125

Ala Lys Ala Arg Gly Glu Ser Pro Gly Arg Ile Arg His Leu Val His

130 135 140

Ser Val Gln Arg Leu Phe Phe Thr Lys Ala Pro Ser Leu Glu Gly Thr

145 150 155 160

Ala	Gly	Lys	Val	Gly	Gly	Asn	Gly	Ser	Lys	Lys	Gly	Gly	Me t	Glu	Asp
				165					170					175	
Gly	Lys	Gly	Arg	Arg	Ala	Lys	Ser	Lys	Glu	Arg	Ala	Lys	Ala	Gly	Glu
			180					185					190		
Pro	Lys	Arg	Arg	Ser	Arg	Ser	Asn	He	Ser	Gly	Trp	Trp	Ser	Ser	Asp
		195					200					205			
Asp	Asn	Leu	Asp	Gly	Glu	Ala	Gly	Ala	Phe	Arg	Ser	Ser	Gly	Pro	Ala
	210					215					220				
Ser	Gly	Leu	Me t	He	Leu	Gly	Arg	Gln	Ala	Glu	Arg	Ser	Gln	Pro	Arg
225					230					235					240
Tyr	Phe	Met	His	Ala	Туг	Asn	Thr	He	Ser	Gly	His	Met	Leu	Lys	Thr
				245					250					255	
Thr	Lys	Asn	Asn	Thr	Thr	Glu	Leu	Thr	Ala	Pro	Pro	Pro	Pro	Pro	Ala
			260					265					270		
Pro	Pro	Ala	Thr	Cys	Pro	Ser	Leu	Gly	Val	Gly	Thr	Asp	Thr	Asn	Tyr
		275					280					285			
Val	Lys	Arg	Gly	Ser	Trp	Ser	Thr	Leu	Thr	Leu	Ser	His	Ala	His	Glu
	290					295					300				
	Cys	Gln	Lys	Thr		Ala	Thr	Leu	Asp		Ser	Leu	Leu	Lys	Ser
305					310					315					320
Lys	Ser	Суs	His		Gly	Leu	Ala	Tyr		Tyr	Leu	Gln	Val	Pro	Gly
				325					330					335	
Gly	Gly	Gly	Glu	Trp	Ser	Thr	Thr	Leu	Leu	Ser	Pro	Arg	Glu	Thr	Asp
			340					345					350		
Ala	Ala	Ala	Glu	Gly	Pro	He	Pro	Cys	Arg	Arg	Met	Arg	Ser	Gly	Ser
		355					360					365			

Tyr	He	Lys	Ala	. Me t	Gly	Asp	Glu	Asp	Ser	Asp	Gli	i Sei	r Gly	/ Gly	/ Ser
	370					375					380)			
Pro	Lys	Pro	Ser	Pro	Lys	Thr	Ala	Ala	Arg	Arg	Glr	Ser	Tyr	Let	. Arg
385					390					395					400
Ala	Thr	Gln	Gln	Sei	Leu	Gly	Glu	Gln	Ser	Asn	Pro	Arg	g Arg	Ser	Leu
				405					410					415	
Asp	Arg	Leu	Asp	Ser	Val	Asp	Met	Leu	Leu	Pro	Ser	Lys	Cys	Pro	Ser
			420					425					430		
Trp	Glu	Glu	Asp	Tyr	Thr	Pro	Val	Ser	Asp	Ser	Leu	Asn	Asp	Ser	Ser
		435					440					445			
Cys	He	Ser	Gln	He	Phe	Gly	Gln	Ala	Ser	Leu	He	Pro	GIn	Leu	Phe
	450					455					460				
Gly	His	Glu	Gln	Gln	Val	Arg	Glu	Ala	Glu	Leu	Ser	Asp	Gln	Туг	Glu
465					470					475					480
Ala	Ala	Cys	Glu	Ser	Ala	Cys	Ser	Glu	Ala	Glu	Ser	Thr	Ala	Ala	Glu
				485					490					495	
Thr	Leu	Asp		Pro	Leu	Pro	Ser		Phe	Arg	Ser	Arg	Ser	His	Ser
			500					505					510		
Tyr	Leu		Ala	He	Gln	Ala		Cys	Ser	Gln	Glu		Asp	Ser	Val
		515					520					525			
Ser		Gln	Ser	Leu	Ser		Pro	Pro	Ser	Thr		Ser	Leu	Ser	Asn
	530					535					540				
	Arg	Thr	Leu	Pro		Ser	Ser	Cys	Leu	Val	Ala	Tyr	Lys	Lys	
545					550					555					560
Pro	Pro	Pro	Val		Pro	Arg	Thr	Thr		Lys	Pro	Phe	He		Val
				565					570					575	
Thr	Val	Gln	Ser	Ser	Thr	Glu	Ser	Ala	Gln	Asp	Thr	Tyr	Leu	Asp	Ser

Gln Asp His Lys Ser Glu Val Thr Ser Gln Ser Gly Leu Ser Asn Ser Ser Asp Ser Leu Asp Ser Ser Thr Arg Pro Pro Ser Val Thr Arg Gly Gly Val Ala Pro Ala Pro Glu Ala Pro Glu Pro Pro Pro Lys His Ala Ala Leu Lys Ser Glu Gln Gly Thr Leu Thr Ser Ser Glu Ser His Pro Glu Ala Ala Pro Lys Arg Lys Leu Ser Ser Ile Gly Ile Gln Glu Arg Thr Arg Arg Asn Gly Ser His Leu Ser Glu Asp Asn Gly Pro Lys Ala lle Asp Val Met Ala Pro Ser Ser Glu Ser Ser Val Pro Ser His Ser Met Ser Ser Arg Arg Asp Thr Asp Ser Asp Thr Gln Asp Ala Asn Asp Ser Ser Cys Lys Ser Ser Glu Arg Ser Leu Pro Asp Cys Thr Pro His Pro Asn Ser Ile Ser Ile Asp Ala Gly Pro Arg Gln Ala Pro Lys Ile Ala Gln Ile Lys Arg Asn Leu Ser Tyr Gly Asp Asn Ser Asp Pro Ala Leu Glu Ala Ser Ser Leu Pro Pro Pro Asp Pro Trp Leu Glu Thr Ser Ser Ser Ser Pro Ala Glu Pro Ala Gln Pro Gly Ala Cys Arg Arg Asp

Gly Tyr Trp Phe Leu Lys Leu Gln Ala Glu Thr Glu Arg Leu Glu Gly Trp Cys Cys Gln Met Asp Lys Glu Thr Lys Glu Asn Asn Leu Ser Glu Glu Val Leu Gly Lys Val Leu Ser Ala Val Gly Ser Ala Gln Leu Leu Met Ser Gln Lys Phe Gln Gln Phe Arg Gly Leu Cys Glu Gln Asn Leu Asn Pro Asp Ala Asn Pro Arg Pro Thr Ala Gln Asp Leu Ala Gly Phe Trp Asp Leu Leu Gln Leu Ser Ile Glu Asp Ile Ser Met Lys Phe Asp Glu Leu Tyr His Leu Lys Ala Asn Ser Trp Gln Leu Val Glu Thr Pro Glu Lys Arg Lys Glu Glu Lys Lys Pro Pro Pro Pro Val Pro Lys Lys Pro Ala Lys Ser Lys Pro Ala Val Ser Arg Asp Lys Ala Ser Asp Ala Ser Asp Lys Gln Arg Gln Glu Ala Arg Lys Arg Leu Leu Ala Ala Lys Arg Ala Ala Ser Val Arg Gln Asn Ser Ala Thr Glu Ser Ala Asp Ser lle Glu Ile Tyr Val Pro Glu Ala Gln Thr Arg Leu

<210> 39

<211 · 2522

<212 → DNA

<213 Homo sapiens

<220.

<221> CDS

<222. (1).. (1545)

<400> 39

act get etc agt gag aag ege acg etg gag gge gag etg eat gat etg 48 Thr Ala Leu Ser Glu Lys Arg Thr Leu Glu Gly Glu Leu His Asp Leu

I 5 10 15

cgg ggc cag gtg gcc aag ctt gag gca gcc cta ggt gag gcc aag aag 96 Arg Gly Gln Val Ala Lys Leu Glu Ala Ala Leu Gly Glu Ala Lys Lys

> 20 25 30

caa ctt cag gat gag atg ctg cgg cgg gtg gat gct gag aac agg ctg 144 Gln Leu Gln Asp Glu Met Leu Arg Arg Val Asp Ala Glu Asn Arg Leu

> 35 40 45

> > 55

cag acc atg aag gag gaa ctg gac ttc cag aag aac atc tac agt gag 192 Gln Thr Met Lys Glu Glu Leu Asp Phe Gln Lys Asn Ile Tyr Ser Glu 50

60

gag ctg cgt gag acc aag cgc cgt cat gag acc cga ctg gtg gag att 240

Glu Leu Arg Glu Thr Lys Arg Arg His Glu Thr Arg Leu Val Glu Ile 65 70 75 80

gac aat ggg aag cag cgt gag ttt gag agc cgg ctg gcg gat gcg ctg 288 Asp Asn Gly Lys Gln Arg Glu Phe Glu Ser Arg Leu Ala Asp Ala Leu

85 90 95

cag gaa ctg cgg gcc cag cat gag gac cag gtg gag cag tat aag aag 336 Gln Glu Leu Arg Ala Gln His Glu Asp Gln Val Glu Gln Tyr Lys Lys

			100					105					110	ı		
gag	ctg	gag	aag	act	tat	tet	gcc	aag	ctg	gac	aat	gcc	agg	cag	tct	384
Glu	Leu	Glu	Lys	Thr	Tyr	Ser	Ala	Lys	Leu	Asp	Asn	Ala	Arg	Gln	Ser	
		115					120					125				
gc t	gag	agg	aac	agc	aac	ctg	gtg	ggg	gct	gcc	сас	gag	gag	ctg	cag	432
Ala	Glu	Arg	Asn	Ser	Asn	Leu	Val	Gly	Ala	Ala	His	Glu	Glu	Leu	Gln	
	130					135					140					
cag	tcg	cgc	atc	cgc	atc	gac	agc	ctc	tct	gcc	cag	ctc	agc	cag	ctc	480
Gln	Ser	Arg	He	Arg	He	Asp	Ser	Leu	Ser	Ala	Gln	Leu	Ser	Gln	Leu	
145					150					155					160	
cag	aag	cag	ctg	gca	gcc	aag	gag	gcg	aag	ctt	cga	gac	ctg	gag	gac	528
Gln	Lys	Gln	Leu	Ala	Ala	Lys	Glu	Ala	Lys	Leu	Arg	Asp	Leu	Glu	Asp	
				165					170					175		
tca	ctg	gcc	cgt	gag	cgg	gac	acc	agc	cgg	cgg	ctg	ctg	gcg	gaa	aag	576
Ser	Leu	Ala	Arg	Glu	Arg	Asp	Thr	Ser	Arg	Arg	Leu	Leu	Ala	Glu	Lys	
			180					185					190			
gag	cgg	gag	atg	gcc	gag	atg	cgg	gca	agg	atg	cag	cag	cag	ctg	gac	624
Glu	Arg	Glu	Met	Ala	Glu	Met	Arg	Ala	Arg	Met	Gln	Gln	Gln	Leu	Asp	
		195					200					205				
gag	tac	cag	gag	ctt	ctg	gac	atc	aag	ctg	gcc	ctg	gac	atg	gag	atc	672
Glu		Gln	Glu	Leu	Leu	Asp	He	Lys	Leu	Ala	Leu	Asp	Met	Głu	He	
	210					215					220					
cac	gcc	tac	cgc	aag	ctc	ttg	gag	ggc	gag	gag	gag	agg	c t a	cgc	ctg	720
His	Ala	Tyr	Arg	Lys	Leu	Leu	Glu	Gly	Glu	Glu	Glu	Arg	Leu	Arg	Leu	
225					230					235					240	
t c c	ccc	agc	cc t	acc	tcg	cag	cgc	agc	cgt	ggc	cgt	gct	tcc	tct	cac	768

Ser	Pro	Ser	Pro	Thr	Ser	Gln	Arg	: Ser	Arg	Gly	/ Arg	, Ala	Ser	Ser	His	
				245					250					255	•	
tca	tcc	cag	aca	cag	ggt	ggg	ggc	agc	gtc	acc	aaa	aag	cgc	aaa	ctg	816
Ser	Ser	Gln	Thr	Gln	Gly	Gly	Gly	Ser	Val	Thr	Lys	Lys	Arg	Lys	Leu	
			260					265					270	l		
gag	tcc	ac t	gag	agc	cgc	agc	agc	t t c	tca	cag	cac	gca	cgc	ac t	agc	864
Glu	Ser	Thr	Glu	Ser	Arg	Ser	Ser	Phe	Ser	Gln	His	Ala	Arg	Thr	Ser	
		275					280					285				
ggg	cgc	gtg	gcc	gtg	gag	gag	gtg	gat	gag	gag	ggc	aag	ttt	gtc	cgg	912
Gly	Arg	Val	Ala	Val	Glu	Glu	Val	Asp	Glu	Glu	Gly	Lys	Phe	Val	Arg	
	290					295					300					
ctg	cgc	aac	aag	tcc	aat	gag	gac	cag	tcc	atg	ggc	aat	t gg	cag	atc	960
Leu	Arg	Asn	Lys	Ser	Asn	Glu	Asp	Gln	Ser	Met	Gly	Asn	Trp	Gln	He	
305					310					315					320	
aag	cgc	cag	aat	gga	gat	gat	ссс	ttg	ctg	ac t	tac	cgg	ttc	сса	cca	1008
Lys	Arg	Gln	Asn	Gly	Asp	Asp	Pro	Leu	Leu	Thr	Tyr	Arg	Phe	Pro	Pro	
				325					330					335		
aag	ttc	acc	ctg	aag	gct	ggg	cag	gtg	gtg	acg	atc	tgg	gct	gca	gga	1056
Lys	Phe	Thr	Leu	Lys	Ala	Gly	Gln	Val	Val	Thr	He	Trp	Ala	Ala	Gly	
			340					345					350			
gc t	ggg	gcc	acc	cac	agc	ссс	cct	acc	gac	ctg	gtg	tgg	aag	gca	cag	1104
Ala	Gly	Ala	Thr	His	Ser	Pro	Pro	Thr	Asp	Leu	Val	Trp	Lys	Ala	Gln	
		355					360					365				
aac	acc	tgg	ggc	tgc	ggg	aac	agc	ctg	cgt	acg	gct	ctc	atc	aac	tcc	1152
Asn	Thr	Trp	Gly	Cys	Gly	Asn	Ser	Leu	Arg	Thr	Ala	Leu	He	Asn	Ser	
	370					375					380					
act	ggg	gaa	gaa	gtg	gcc	atg	cgc	aag	ctg	gtg	cgc	tca	gtg	act	gtg	1200

Thr	Gly	Glu	Glu	Val	Ala	Met	Årg	Lys	Leu	Val	Arg	Ser	Val	Thr	val	
385					390					395					400	
gtt	gag	gac	gac	gag	gat	gag	gat	gga	gat	gac	ctg	ctc	cat	cac	cac	1248
Val	Glu	Asp	Asp	Glu	Asp	Glu	Asp	Gly	Asp	Asp	Leu	Leu	His	His	His	
				405					410					415		
cac	ggc	tcc	cac	tgc	agc	agc	tcg	ggg	gac	ссс	gct	gag	tac	aac	ctg	1296
His	Gly	Ser	His	Cys	Ser	Ser	Ser	Gly	Asp	Pro	Ala	Glu	Tyr	Asn	Leu	
			420					425					430			
cgc	tcg	cgc	acc	gtg	ctg	tgc	ggg	acc	tgc	ggg	cag	cct	gcc	gac	aag	1344
Arg	Ser	Arg	Thr	Val	Leu	Cys	Gly	Thr	Cys	Gly	Gln	Pro	Ala	Asp	Lys	
		435					440					445				
gca	tct	gcc	agc	ggc	tca	gga	gcc	cag	gtg	ggc	gga	ссс	atc	tcc	tct	1392
Ala	Ser	Ala	Ser	Gly	Ser	Gly	Ala	Gln	Val	Gly	Gly	Pro	He	Ser	Ser	
	450					455					460					
ggc	tct	tct	gcc	tcc	agt	gtc	acg	gtc	act	cgc	agc	tac	cgc	agt	gtg	1440
	Ser	Ser	Ala	Ser	Ser	Val	Thr	Val	Thr	Arg	Ser	Tyr	Arg	Ser	Val	
465					470					475					480	
		agt														1488
Gly	Gly	Ser	Gly		Gly	Ser	Phe			Asn	Leu	Val	Thr		Ser	
				485					490					495		
		ctg														1536
lyr	Leu	Leu		Asn	Ser	Ser			lhr	GIn	Ser	Pro		Asn	Cys	
			500					505					510			
		atg	taat	ctgg	ga c	ctgc	cagg	c ag	gggt	gggg	gtg	gagg	ctt			1585
Ser	lle	Met														

ectgegteet ecteacetea tgeceaeeee etgecetgea egteatgga gggggettga 1645 agccaaagaa aaataaccct tiggitiitt tetteigiat tittititet aagagaagit 1705 attitetaca giggilitat acigaaggaa aaacacaagc aaaaaaaaaa aaaaagcatc 1765 ccacatetge ettaaaacca aagaggett celetagaag ecaagggaaa ggggtgettt 1885 tatagagget agettetget tittetgeeet ggetgetgee eeaceeeggg gaeeetgtga 1945 catggtgcct gagaggcagg catagaggct totocgccag cotoctotgg acggcagget 2005 cactgocagg coagcotoog agagggagag agagagagag aggacagott gagcogggoc 2065 cotggettgg cotgetgtga itccactaca cotggetgag gitectotge etgeologic 2125 cccagtecce acceptace ecageeeegg ggtgagteca tteteccagg taccagetge 2185 gettgettit etgtatttta titagacaag agatgggaat gaggtgggag giggaagaag 2245 ggagaagaaa ggtgagtttg agctgccllc cctagcttta gaccctgggt gggctctgtg 2305 cagtcactgg aggttgaagc caagtggggt gctgggagga gggagaggga ggtcactgga 2365 aaggggaga cotgotgoac coaccgtgga ggaggaaggo aagagggggt ggagggtgt 2425 ggcagttggt tttggcaaac gcttaaagag cccttgcctc cccatttccc atctgcaccc 2485 ctteteteet eeccaaatea atacaetagt tgtttet 2522

<210> 40

<211> 515

<212> PRT

<213> Homo sapiens

<400> 40

Thr Ala Leu Ser Glu Lys Arg Thr Leu Glu Gly Glu Leu His Asp Leu

1 5 10 15

Arg Gly Gln Val Ala Lys Leu Glu Ala Ala Leu Gly Glu Ala Lys Lys

20 25 30

Gln Leu Gln Asp Glu Met Leu Arg Arg Val Asp Ala Glu Asn Arg Leu

'	VO 0	1/254	27												
		35					40					45			
Gln	Thr	Me t	Lys	Głu	Glu	Leu	Asp	Phe	Gi'n	Lys	Asn	Ile	Tyr	Ser	Glu
	50					55					60				
Glu	Leu	Arg	Glu	Thr	Lys	Arg	Arg	His	Glu	Thr	Arg	Leu	Val	Glu	He
65					70					75					80
Asp	Asn	Gly	Lys	Gln	Arg	Glu	Phe	Glu	Ser	Arg	Leu	Ala	Asp	Ala	Leu
				85					90					95	
Gln	Glu	Leu	Arg	Ala	Gln	His	Glu	Asp	Gln	Val	Glu	Gln	Tyr	Lys	Lys
			100					105					110		
Glu	Leu	Glu	Lys	Thr	Tyr	Ser	Ala	Lys	Leu	Asp	Asn	Ala	Arg	Gln	Ser
		115					120					125			
Ala	Glu	Arg	Asn	Ser	Asn	Leu	Val	Gly	Ala	Ala	His	Glu	Glu	Leu	Gln
	130					135					140				
Gln	Ser	Arg	He	Arg	He	Asp	Ser	Leu	Ser	Ala	Gln	Leu	Ser	Gln	Leu
145					150					155					160
Gln	Lys	Gln	Leu	Ala	Ala	Lys	Glu	Ala	Lys	Leu	Arg	Asp	Leu	Glu	Asp
				165					170					175	
Ser	Leu	Ala	Arg	Glu	Arg	Asp	Thr	Ser	Arg	Arg	Leu	Leu	Ala	Glu	Lys
			180					185					190		
Glu	Arg	Glu	Met	Ala	Glu	Met	Arg	Ala	Arg	Met	Gln	Gln	Gln	Leu	Asp
		195					200					205			
Glu	Tyr	Gln	Glu	Leu	Leu	Asp	He	Lys	Leu	Ala	Leu	Asp	Met	Glu	He

His Λla Tyr Arg Lys Leu Leu Glu Gly Glu Glu Glu Arg Leu

Ser Pro Ser Pro Thr Ser Gln Arg Ser Arg Gly Arg Ala Ser Ser His

Ser Ser Gln Thr Gln Gly Gly Gly Ser Val Thr Lys Lys Arg Lys Leu Glu Ser Thr Glu Ser Arg Ser Ser Phe Ser Gln His Ala Arg Thr Ser Gly Arg Val Ala Val Glu Glu Val Asp Glu Glu Gly Lys Phe Val Arg Leu Arg Asn Lys Ser Asn Glu Asp Gln Ser Met Gly Asn Trp Gln He Lys Arg Gln Asn Gly Asp Asp Pro Leu Leu Thr Tyr Arg Phe Pro Pro Lys Phe Thr Leu Lys Ala Gly Gin Val Val Thr Ile Trp Ala Ala Gly Ala Gly Ala Thr His Ser Pro Pro Thr Asp Leu Val Trp Lys Ala Gln Asn Thr Trp Gly Cys Gly Asn Ser Leu Arg Thr Ala Leu Ile Asn Ser Thr Gly Glu Glu Val Ala Met Arg Lys Leu Val Arg Ser Val Thr Val Val Glu Asp Asp Glu Asp Glu Asp Gly Asp Asp Leu Leu His His His His Gly Ser His Cys Ser Ser Ser Gly Asp Pro Ala Glu Tyr Asn Leu Arg Ser Arg Thr Val Leu Cys Gly Thr Cys Gly Gln Pro Ala Asp Lys Ala Ser Ala Ser Gly Ser Gly Ala Gln Val Gly Gly Pro Ile Ser Ser

Gly Ser Ser Ala Ser Ser Val Thr Val Thr Arg Ser Tvr Arg Ser Val 465 470 475 480 Gly Gly Ser Gly Gly Gly Ser Phe Gly Asp Asn Leu Val Thr Arg Ser 485 490 495 Tyr Leu Leu Gly Asn Ser Ser Pro Arg Thr Gln Ser Pro Gln Asn Cys 500 505 510 Ser Ile Met 515 <210> 41 <211> 3474 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (78).. (2813) <400> 41 gcgcgccggc ggctcgggca gaggggcgga agctgaggcg ggagcggaca ggctggtggg 60 cgagcgagag gcgcgga atg gtg gac tac cac gcg gcg aac cag tcg tac 110 Met Val Asp Tyr His Ala Ala Asn Gln Ser Tyr 1 5 10 cag tac ggc ccc agc agc gcg gca atg gct tgg cgg cgg ggg agc atg 158 Gln Tyr Gly Pro Ser Ser Ala Ala Met Ala Trp Arg Gly Ser Met 15 20 25 ggc gac tac atg gcc cag gag gac gac tgg gac cgg gac ctg ctg 206 Gly Asp Tyr Met Ala Gln Glu Asp Asp Trp Asp Arg Asp Leu Leu Leu

40

35

gae eeg gee tgg gag aag eag eag ege aag ace tte aeg gea tgg age	254
Asp Pro Ala Trp Glu Lys Gln Gln Arg Lys Thr Phe Thr Ala Trp Sei	
45 50 55	
aac tee cae etg egg aag gea gge aca eag ate gag aac att gat gag	302
Asn Ser His Leu Arg Lys Ala Gly Thr Gln Ile Glu Asn Ile Asp Glu	
60 65 70 75	
gae tte ega gae ggg ete aag ete atg etg ete etg gag gte ata tea	350
Asp Phe Arg Asp Gly Leu Lys Leu Met Leu Leu Glu Val Ile Ser	
80 85 90	
ggg gag cgg tta cct aag ccg gag cgg ggg aag atg aga gtg cac aaa	398
Gly Glu Arg Leu Pro Lys Pro Glu Arg Gly Lys Met Arg Val His Lys	
95 100 105	
alc aac aat gtg aac aaa gcg ctg gac ttt att gcc agc aaa ggg atc	446
Ile Asn Asn Val Asn Lys Ala Leu Asp Phe Ile Ala Ser Lys Gly Ile	
110 115 120	
aag ctg gac ttc cat cgg gca gaa gag att gtg gac ggc aac gca aag	494
Lys Leu Asp Phe His Arg Ala Glu Glu Ile Val Asp Gly Asm Ala Lys	
125 130 135	
atg acc ctg gga atg atc tgg acc atc atc ctt agg ttc gcc atc cag	542
Met Thr Leu Gly Met Ile Trp Thr Ile Ile Leu Arg Phe Ala Ile Gln	
140 145 150 155	
gac atc tcc gtg gaa gag acc tcg gcc aag gaa ggg ctc ctt ctc tgg	590
Asp Ile Ser Val Glu Glu Thr Ser Ala Lys Glu Gly Leu Leu Trp	
160 165 170	
tgc cag aga aag aca gcc cca tat aag aac gtc aat gtg cag aac ttc	638
Cys Gln Arg Lys Thr Ala Pro Tyr Lys Asn Val Asn Val Gln Asn Phe	
175 180 185	

cac	atc	agc	tgg	aag	gat	ggt	ctt	gcc	ttc	aat	gcc	ctg	ate	cac	cgg	686
His	He	Ser	Trp	Lys	Asp	Gly	Leu	Ala	Phe	Asn	Ala	Leu	Пе	e His	Arg	
		190					195	-				200				
cac	aga	cca	gag	ctg	at t	gag	tat	gac	aag	ctg	agg	aag	gao	gac	cct	734
His	Arg	Pro	Glu	Leu	He	Glu	Tyr	Asp	Lys	Leu	Arg	Lys	Asp	Asp	Pro	
	205					210					215					
gtc	acc	aac	ctg	aac	aat	gcc	ttc	gaa	gtg	gct	gag	aaa	tac	ctc	gac	782
Val	Thr	Asn	Leu	Asn	Asn	Ala	Phe	Glu	Val	Ala	Glu	Lys	Tyr	Leu	Asp	
220					225					230					235	
atc	ccc	aag	atg	ctg	gat	gca	gag	gac	atc	gtg	aac	acg	gcc	cgg	ccc	830
He	Pro	Lys	Met	Leu	Asp	Ala	Glu	Asp	He	Val	Asn	Thr	Ala	Arg	Pro	
				240					245					250		
gac	gag	aag	gcc	ata	atg	acc	tat	gtg	tcc	agc	ttc	tac	cat	gcc	ttt	878
Asp	Glu	Lys	Ala	He	Met	Thr	Tyr	Val	Ser	Ser	Phe	Tyr	His	Ala	Phe	
			255					260					265			
tca	gga	gcg	cag	aag	gct	gaa	act	gaa	act	gcc	gcc	aac	cgg	atc	tgt	926
Ser	Gly	Ala	Gln	Lys	Ala	Glu	Thr	Glu	Thr	Ala	Ala	Asn	Arg	He	Cys	
		270					275					280		•		
aag	gtg	ctg	gc t	gtc	aac	caa	gag	aac	tgc	agc	acc	tcg	atg	gag	gac	974
Lys	Val	Leu	Ala	Val	Asn	Gln	Glu	Asn	Cys	Ser	Thr	Ser	Me t	Glu	Asp	
	285					290					295					
tac	gag	aag	ctg	gcc	agc	gac	ctc	ctg	gag	tgg	atc	cgg	cgc	acc	atc	1022
Tyr	Glu	Lys	Leu	Ala	Ser	Asp	Leu	Leu	Glu	Trp	He	Arg	Arg	Thr	He	
300					305					310					315	
ссс	tgg	ctg	gag	gac	cgt	gtg	ccc	caa	aag	act	atc	cag	gag	atg	cag	1070
Pro	Trp	Leu	Glu	Asp	Arg	Val	Pro	Gln	Lys	Thr	He	Gln	Glu	Met	Gln	

325

С	ag	aag	z ct	g ga	ıg ga	ic t	.c cg	c ga	ic ta	с сд	g cg	t gt	g ca	ic a	ag c	cg	ссс	1118
G	ln	Lys	s Le	u Gl	u As	p Ph	ie Ar	g As	р Ту	r Ar.	g Ar	g Va	l Hi	s L	ys P	ro	Pro	
				33	5				340	0				34	1 5			
a	ag	gtg	ca	g ga	g aa	g tg	с са	g ct	g gag	g ato	c aa	c tt	c aa	с ая	gc g	t g	cag	1166
L	y s	Val	Gli	n G1	u Ly	s Cy	s Gl	n Le	u Glu	ı Ile	e Asi	n Ph	e As	n Se	r V	a l	Gln	
			350)				35	5				36	0				
ac	cc	aag	cts	g cg	c ct	c ag	c aa	c cg	g ccc	gcc	tto	c at:	g cc	c tc	c g	ag	ggc	1214
Th	ìΓ	Lys	Leu	ı Ar	g Le	u Se	r Ası	n Arg	g Pro	Ala	Phe	e Me	t Pro	o Se	r G	l u	Gly	
		365					370)				379	ī					
aa	g	atg	gtc	tcs	g gao	c ato	: aac	aat	ggc	tgg	cag	cac	e tte	g ga	g ca	ıg	gct	1262
Lу	s l	Me t	Val	Ser	Asp	Пе	e Asn	Asn	n Gly	Trp	Gln	His	Lei	ı G1	u Gl	n	Ala	
38	0					385	·)				390	l					395	
ga	ga	aag	ggc	tac	gag	gag	tgg	ctg	ctg	aat	gag	att	cgc	agg	g ct	g	gag	1310
Gl	u I	L y s	Gly	Tyr	Glu	Glu	Trp	Leu	Leu	Asn	Glu	He	Arg	Arg	g Le	u (Glu	
					400					405					41	0		
cg	g c	tc	gac	cac	ctg	gca	gag	aag	ttc	cgg	cag	aaa	gcc	tcc	at	c c	cac	1358
Arg	g L	eu	Asp	His	Leu	Ala	Glu	Lys	Phe	Arg	Gln	Lys	Ala	Ser	Il	e E	lis	
				415					420					425				
gag	g g	сс	tgg	act	gac	ggg	aag	gaa	gcc	atg	ctg	aag	cac	cgg	gao	c t	ac	1406
Glu	ı A	la	Trp	Thr	Asp	Gly	Lys	Glu	Ala	Met	Leu	Lys	His	Arg	Ası	Т	yr	
			430					435					440					
gag	a	cg :	gcc	aca	cta	tcg	gac	atc	aaa	gcc	ctc	att	cgc	aag	сас	g	ag	1454
Glu	T	hr .	Ala	Thr	Leu	Ser	Asp	He	Lys .	Ala	Leu	He	Arg	Lys	His	G	lu	
	4	45					450					455						
gcc	į i	tc į	gag	agc	gac	ctg	gct	gcg	cac	cag	gac	cgc	gtg	gag	cag	a	tc	1502
Ala	Pł	ne (Glu	Ser	Asp	Leu	Ala	Ala	His (Gln <i>i</i>	Asp.	Arg	Val	Glu	Gln	I	le	

460					465					470					475	
gcc	gcc	tcc	gcc	cag	gag	ctc	aac	gag	ctg	gat	tac	tac	gac	tcc	cac	1550
Ala	Ala	Ser	Ala	Gln	Glu	Leu	Asn	Glu	Leu	Asp	Tyr	Tyr	Asp	Ser	His	
				480					485					490	l	
aat	gtc	aac	acc	cgg	tgc	cag	aag	atc	tgt	gac	cag	tgg	gac	gcc	ctc	1598
Asn	Val	Asn	Thr	Arg	Cys	Gln	Lys	He	Cys	Asp	Gln	Trp	Asp	Ala	Leu	
			495					500					505			
ggc	tct	ctg	aca	cat	agt	cgc	agg	gaa	gcc	ctg	gag	aaa	aca	gag	aag	1646
Gly	Ser	Leu	Thr	His	Ser	Arg	Arg	Glu	Ala	Leu	Glu	Lys	Thr	Glu	Lys	
		510					515					520				
cag	ctg	gag	gcc	atc	atc	gac	cag	ctg	cac	ctg	gaa	tac	gcc	aag	ccc	1694
Gln	Leu	Glu	Ala	He	He	Asp	Gln	Leu	His	Leu	Glu	Tyr	Ala	Lys	Pro	
	525					530					535					
gcg	gcc	ccc	ttc	aac	aac	tgg	atg	gag	agc	gcc	atg	gag	gac	ctc	cag	1742
Ala	Ala	Pro	Phe	Asn	Asn	Trp	Met	Glu	Ser	Ala	Met	Glu	Asp	Leu	Gln	
540					545					550					555	
					cat											1790
Asp	Met	Phe	He		His	Thr	He	Glu		He	Glu	Gly	Leu		Ser	
				560					565					570		
					aag											1838
Ala	His	Asp		Phe	Lys	Ser	Thr		Pro	Asp	Ala	Asp		Glu	Arg	
			575					580					585			
					cca											1886
Glu	Ala		Leu	HIS	Pro			Gly	GIn	Arg	He		Glu	Ser	Asn	
		590					595					600				
cac	atc	aag	ctg	tcg	ggc	agc	aac	ccc	tac	acc	acc	gtc	acc	ccg	caa	1934

	His	He	Lys	Leu	Ser	Gly	Ser	Asn	Pro	Tyr	Thr	Thr	Val	Thr	Pro	Gln	
		605					610					615	•				
	atc	atc	aac	tee	aag	lgg	gag	aag	gtg	cag	cag	ctg	gtg	cca	aaa	cgg	1982
	Пе	He	Asn	Ser	Lys	Trp	Glu	Lys	Val	Gln	GIn	Leu	Val	Pro	Lys	Arg	
	620					625					630					635	
	gac	cat	gcc	ctc	ctg	gag	gag	cag	agc	aag	cag	cag	cag	tcc	aac	gag	2030
	Asp	His	Ala	Leu	Leu	Glu	Glu	Gln	Ser	Lys	Gln	Gln	Gln	Ser	Asn	Glu	
					640					645					650		
	cac	ctg	cgc	cgc	cag	ttc	gcc	agc	cag	gcc	aat	gtt	gtg	ggg	ссс	t gg	2078
	His	Leu	Arg	Arg	Gln	Phe	Ala	Ser	Gln	Ala	Asn	Val	Val	Gly	Pro	Trp	
				655					660					665			
	atc	cag	acc	aag	atg	gag	gag	atc	gcg	atc	tcc	att	gag	atg	aac	ggg	2126
	He	Gln	Thr	Lys	Me t	Glu	Glu	He	Ala	He	Ser	He	Glu	Met	Asn	Gly	
			670					675					680				
	acc	ctg	gag	gac	cag	ctg	agc	cac	ctg	aag	cag	tat	gaa	cgc	agc	atc	2174
	Thr		Glu	Asp	Gln	Leu		His	Leu	Lys	Gln	Tyr	Glu	Arg	Ser	He	
		685					690					695					
								gac									2222
		Asp	Tyr	Lys	Pro		Leu	Asp	Leu	Leu		Gln	Gln	His	Gln		
	700					705					710					715	
								gac								_	2270
	He	Gln	Glu	Ala		He	Phe	Asp	Asn		His	Thr	Asn	Tyr		Met	
					720					725					730		
								gag									2318
	Glu	His	He		Val	Gly	Trp	Glu		Leu	Leu	Thr			Ala	Arg	
				735					740					745			
•	acc	atc	aac	gag	gtg	gag	aac	cag	atc	ctt	acc	cgc	gac	gcc	aag	ggc	2366

Thr Ile Asn Glu Val Glu Asn Gln Ile Leu Thr Arg Asp Ala Lys Gly atc agc cag gag cag atg cag gag ttc cgg gcg tcc ttc aac cac ttc lle Ser Gln Glu Gln Met Gln Glu Phe Arg Ala Ser Phe Asn His Phe gac aag gat cat ggc ggg gcg ctg ggg cga gga gtt caa ggc ctg cct Asp Lys Asp His Gly Gly Ala Leu Gly Arg Gly Val Gln Gly Leu Pro cat cag cct ggg cta cga cgt gga gaa cga ccg gca ggt gag gcc gag His Gln Pro Gly Leu Arg Arg Gly Glu Arg Pro Ala Gly Glu Ala Glu tic aac cgc atc atg agc ctg gtc gac ccc aac cat agc ggc ctt gtt Phe Asn Arg Ile Met Ser Leu Val Asp Pro Asn His Ser Gly Leu Val acc ttc caa gcc ttc atc gac ttc atg tcg cgg gag acc acc gac acc Thr Phe Gln Ala Phe Ile Asp Phe Met Ser Arg Glu Thr Thr Asp Thr gac acg gct gac cag gta atc act tcc ttc aag gtc cta gca ggg gac Asp Thr Ala Asp Gln Val Ile Thr Ser Phe Lys Val Leu Ala Gly Asp aag aac ttc atc aca gct gag gag ctg cgg aga gag ctg ccc ccc gac Lys Asn Phe lle Thr Ala Glu Glu Leu Arg Arg Glu Leu Pro Pro Asp cag gcc gag tac tgc atc gcc cgc atg gcg cca tac cag ggc cct gac Gln Ala Glu Tyr Cys Ile Ala Arg Met Ala Pro Tyr Gln Gly Pro Asp

ggc gtg cgc ggt gcc ctc gac tac aag tcc ttc tcc acg gcc ttg tat 2798 Gly Val Arg Gly Ala Leu Asp Tyr Lys Ser Phe Ser Thr Ala Leu Tyr

895 900 905

ggc gag age gac etg tgaggeecca gagacetgae ecaacacece egaegeetee 2853 Gly Glu Ser Asp Leu

910

aggagectigg cagececaca gleecatice tecacterist ateratgoan ageaetete 2913
ctgeagtete egggstgggt gggtgggeag ggagggett gggeaggete tetectetet 2973
ctettigtigg gittggeeagg aggitteceee gaceaggitt gggagaetitt gggeeaggee 3033
tietggietig giaaatatgi algalgigtt gtgettittt aaceaaggag gggeeagtgg 3093
atteecacaca cacaaceggi ecetteeatg eeetgggatg eeteaceaca eeeaggitete 3153
tieetitiget etgaggieee tieaaggeet eeetgggatg eeeaggee eeatggeet 3213
tigteeaggga actgeetggg eeatgegagg ggeeageag gggeeagee acetggaege 3273
tigggaeeeae eeageeeete teeeetetet geteeagaet eactigeeat tigeeaggaga 3333
tiggeeeeaae aageaeeeeg ettitigeage agaggagetig agitiggeaga eegggeeeee 3393
ctgaacegea eeeeateeea eeageeeeg eettigeetig tetggeetea egigteteag 3453
attitetaag aaceaaaaaa a

<210> 42

<211> 912

<212> PRT

<213> Homo sapiens

<400> 42

Met Val Asp Tyr His Ala Ala Asn Gln Ser Tyr Gln Tyr Gly Pro Ser

1 5 10 15

Ser Ala Ala Met Ala Trp Arg Arg Gly Ser Met Gly Asp Tyr Met Ala

20 25 30

Gin	Glu	Asp	Asp	Trp	Asp	Arg	Asp	Leu	Leu	Leu	. Asp	Pro	Ala	Trp	Glu
		35					40					45			
Lys	Gln	Gln	Arg	Lys	Thr	Phe	Thr	Ala	Trp	Ser	Asn	Ser	His	Leu	Arg
	50					55					60				
Lys	Ala	Gly	Thr	Gln	He	Glu	Asn	He	Asp	Glu	Asp	Phe	Arg	Asp	Gly
65					70					75					80
Leu	Lys	Leu	Met	Leu	Leu	Leu	Glu	Val	He	Ser	Gly	Glu	Arg	Leu	Pro
				85					90					95	
Lys	Pro	Glu	Arg	Gly	Lys	Me t	Arg	Val	His	Lys	He	Asn	Asn	Val	Asn
			100					105					110		
Lys	Ala	Leu	Asp	Phe	He	Ala	Ser	Lys	Gly	He	Lys	Leu	Asp	Phe	His
		115					120					125			
Arg	Ala	Glu	Glu	He	Val	Asp	Gly	Asn	Ala	Lys	Met	Thr	Leu	Gly	Met
	130					135					140				
He	Trp	Thr	He	He	Leu	Arg	Phe	Ala	He	Gln	Asp	He	Ser	Val	Glu
145					150					155					160
Glu	Thr	Ser	Ala		Glu	Gly	Leu	Leu		Trp	Cys	Gln	Arg	Lys	Thr
				165					170					175	
Ala	Pro	Tyr		Asn	Val	Asn	Val	Gln	Asn	Phe	His	He	Ser	Trp	Lys
			180					185					190		
Asp	Gly	Leu	Ala	Phe	Asn	Ala		He	His	Arg	His		Pro	Glu	Leu
		195					200					205			
		Tyr	Asp	Lys	Leu		Lys	Asp	Asp	Pro		Thr	Asn	Leu	Asn
	210					215					220				
	Ala	Phe	Glu			Glu	Lys	Туг	Leu		He	Pro	Lys	Met	Leu
225					230					235					240
qz	Ala	Glu	Asp	He	Val	Asn	Thr	Ala	Arg	Pro	Asp	Glu	Lys	Ala	He

161/527

Met Thr Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly Ala Gln Lys Ala Glu Thr Glu Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala Val Asn Gln Glu Asn Cys Ser Thr Ser Met Glu Asp Tyr Glu Lys Leu Ala Ser Asp Leu Glu Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asp Arg Val Pro Gln Lys Thr Ile Gln Glu Met Gln Gln Lys Leu Glu Asp Phe Arg Asp Tyr Arg Arg Val His Lys Pro Pro Lys Val Gln Glu Lys Cys Gln Leu Glu Ile Asn Phe Asn Ser Val Gln Thr Lys Leu Arg Leu Ser Asn Arg Pro Ala Phe Met Pro Ser Glu Gly Lys Met Val Ser Asp Ile Asn Asn Gly Trp Gln His Leu Glu Gln Ala Glu Lys Gly Tyr Glu Glu Trp Leu Leu Asn Glu Ile Arg Arg Leu Glu Arg Leu Asp His Leu Ala Glu Lys Phe Arg Gln Lys Ala Ser Ile His Glu Ala Trp Thr Asp Gly Lys Glu Ala Met Leu Lys His Arg Asp Tyr Glu Thr Ala Thr Leu

435 440 445

Ser Asp Ile Lys Ala Leu Ile Arg Lys His Glu Ala Phe Glu Ser Asp

450 455 460 Leu Ala Ala His Gln Asp Arg Val Glu Gln Ile Ala Ala Ser Ala 465 470 475 Glu Leu Asn Glu Leu Asp Tyr Tyr Asp Ser His Asn Val Asn Thr	480
465 470 475	480
465 470 475	480
Glu Leu Asn Glu Leu Asn Tvr Tvr Asn Sar Hig Asn Vol Ass The	Arg
and and the the upp out this wan and asu the	
485 490 495	
Cys Gln Lys Ile Cys Asp Gln Trp Asp Ala Leu Gly Ser Leu Thr	His
500 505 510	
Ser Arg Arg Glu Ala Leu Glu Lys Thr Glu Lys Gln Leu Glu Ala	He
515 520 525	
lle Asp Gln Leu His Leu Glu Tyr Ala Lys Pro Ala Ala Pro Phe	Asn
530 535 540	
Asn Trp Met Glu Ser Ala Met Glu Asp Leu Gln Asp Met Phe Ile	Val
545 550 555	560
His Thr Ile Glu Glu Ile Glu Gly Leu Ile Ser Ala His Asp Gln	?he
565 570 575	
Lys Ser Thr Leu Pro Asp Ala Asp Arg Glu Arg Glu Ala Ile Leu I	lis
580 585 590	
Pro Gln Gly Gly Gln Arg Ile Ala Glu Ser Asn His Ile Lys Leu S	er
595 600 605	
Gly Ser Asn Pro Tyr Thr Thr Val Thr Pro Gln Ile Ile Asn Ser L	уѕ
610 615 620	
Trp Glu Lys Val Gln Gln Leu Val Pro Lys Arg Asp His Ala Leu L	e u
625 630 635	10
Glu Glu Gln Ser Lys Gln Gln Gln Ser Asn Glu His Leu Arg Arg G	n

Phe Ala Ser Gln Ala Asn Val Val Gly Pro Trp Ile Gln Thr Lys Met

665

655

670

645

Giu Giu 11e Ala 11e Ser 11e Glu Met Asn Gly Thr Leu Glu Asp Gln
675 680 685
Leu Ser His Leu Lys Glm Tyr Glu Arg Ser Ile Val Asp Tyr Lys Pro
690 695 700
Asn Leu Asp Leu Leu Glu Gln Gln His Gln Leu Ilc Gln Glu Ala Leu
705 710 715 720
lle Phe Asp Asn Lys His Thr Asn Tyr Thr Met Glu His Ile Arg Val
725 730 735
Gly Trp Glu Gln Leu Leu Thr Thr Ile Ala Arg Thr Ile Asn Glu Val
740 745 750
Glu Asn Gln Ile Leu Thr Arg Asp Ala Lys Gly Ile Ser Gln Glu Gln
755 760 765
Met Gln Glu Phe Arg Ala Ser Phe Asn His Phe Asp Lys Asp His Gly
770 775 780
Gly Ala Leu Gly Arg Gly Val Gln Gly Leu Pro His Gln Pro Gly Leu
785 790 795 800
Arg Arg Gly Glu Arg Pro Ala Gly Glu Ala Glu Phe Asn Arg Ile Met
805 810 815
Ser Leu Val Asp Pro Asn His Ser Gly Leu Val Thr Phe Gln Ala Phe
820 825 830
lle Asp Phe Met Ser Arg Glu Thr Thr Asp Thr Asp Thr Ala Asp Gln
835 840 845
Val Ile Thr Ser Phe Lys Val Leu Ala Gly Asp Lys Asn Phe Ile Thr
850 855 860
Ala Glu Glu Leu Arg Arg Glu Leu Pro Pro Asp Gln Ala Glu Tyr Cys
865 870 875 880

lle Ala Arg Met Ala Pro Tyr Gln Gly Pro Asp Gly Val Arg Gly Ala

885

890

895

Leu Asp Tyr Lys Ser Phe Ser Thr Ala Leu Tyr Gly Glu Ser Asp Leu

900

905

910

(210) 43

<211> 8971

<212> DNA

<213> Homo sapiens

₹220>

<221> CDS

<222> (110) . . (8224)

<400> 43

ageceaaace geggeeetag eeeeggeege acceeeagee egegeeagea tgatgaacaa 60 cageggetae teagaegeeg geeteggeet gggegatgag acagaegag atg eeg tee 118

Met Pro Ser

1

acg gag aag gac ctg gcg gag gac gcg ccg tgg aag aag atc cag cag 166 Thr Glu Lys Asp Leu Ala Glu Asp Ala Pro Trp Lys Lys Ile Gln Gln

5

10

15

aac aca ttc acg cgc tgg tgc aat gag cac ctc aag tgc gtg ggc aag 214 Asn Thr Phe Thr Arg Trp Cys Asn Glu His Leu Lys Cys Val Gly Lys

20

25

30

35

cgc ctg acc gac ctg cag cgc gac ctc agc gac ggg ctc cgg ctc atc 262

Arg Leu Thr Asp Leu Gln Arg Asp Leu Ser Asp Gly Leu Arg Leu Ile

40

45

50

gcg ctg ctc gag gtg ctc agc cag aag cgc atg tac cgc aag ttc cat 310

Ala	Leu	Leu	Glu	Val	Leu	Ser	Glm	Lys	Arg	Me t	Туг	Arg	Lys	Phe	His	
			55					60					65			
ccg	cgc	ссс	aac	ttc	cgc	caa	atg	aag	ctg	gag	aac	gtg	tcc	gtg	gcc	358
Pro	Arg	Pro	Asn	Phe	Arg	Gln	Me t	Lys	Leu	Glu	Asn	Val	Ser	Val	Ala	
		70					75					80				
ctc	gag	ttc	ctc	gag	cgc	gag	cac	atc	aag	ctc	gtg	tcc	ata	gac	agc	406
Leu	Glu	Phe	Leu	Glu	Arg	Glu	His	He	Lys	Leu	Val	Ser	He	Asp	Ser	
	85					90					95					
aag	gcc	atc	gtg	gat	ggg	aac	ctg	aag	ctg	atc	ctg	ggc	ctg	atc	tgg	454
Lys	Ala	He	Val	Asp	Gly	Asn	Leu	Lys	Leu	He	Leu	Gly	Leu	He	Trp	
100					105					110					115	
acg	ctg	atc	ctg	cac	tac	tcc	atc	tcc	atg	ccc	atg	tgg	gag	gat	gaa	502
Thr	Leu	He	Leu	His	Tyr	Ser	He	Ser	Met	Pro	Met	Trp	Glu	Asp	Glu	
				120					125					130		
gat	gat	gag	gat	gcc	cgc	aaa	cag	acg	ccc	aag	cag	cgg	ctg	ctt	ggc	550
Asp	Asp	Glu	Asp	Ala	Arg	Lys	Gln	Thr	Pro	Lys	Gln	Arg	Leu	Leu	Gly	
			135					140					145			
tgg	atc	cag	aac	aag	gtg	ccc	cag	ctg	ccc	atc	acc	aac	ttc	aac	cgt	598
Trp	Ile	Gln	Asn	Lys	Val	Pro	Gln	Leu	Pro	He	Thr	Asn	Phe	Asn	Arg	
		150					155					160				
gac	tgg	cag	gac	ggc	aaa	gct	ctg	ggc	gcc	ctg	gtg	gac	aac	tgc	gcc	646
Asp	Trp	Gln	Asp	Gly	Lys	Ala	Leu	Gly	Ala	Leu	Val	Asp	Asn	Cys	Ala	
	165					170					175					
ccc	ggt	ctc	tgc	ccc	gac	tgg	gag	gcc	tgg	gat	ссс	aac	cag	ccc	gtg	694
Pro	Gly	Leu	Cys	Pro	Asp	Trp	Glu	Ala	Trp	Asp	Pro	Asn	Gln	Pro	Val	
180					185					190					195	
gag	aac	tcc	cgg	gag	gcc	atg	cag	cag	gcc	gac	gac	tgg	ctt	ggg	gtg	742

Glu	Asn	Ser	Arg	Glu	Ala	Met	Gln	Gln	Ala	Asp	Asp	Trp	Leu	ıGly	Val	
				200					205	,				210		
ссс	cag	gtc	att	gcc	cct	gag	gag	att	gtg	gac	ccc	aac	gtg	gat	gag	790
Pro	Gln	Val	He	Ala	Pro	Glu	Glu	He	Val	Asp	Pro	Asn	Val	Asp	Glu	
			215					220					225			
cat	tct	gtt	atg	acc	tac	ctg	tcc	cag	ttc	ссс	aag	gcc	aag	ctc	aaa	838
His	Ser	Val	Met	Thr	Tyr	Leu	Ser	Gln	Phe	Pro	Lys	Ala	Lys	Leu	Lys	
		230					235					240				
cct	ggt	gcc	cct	gtt	cga	tcc	aag	cag	ctg	aac	ccc	aag	aaa	gcc	atc	886
Pro	Gly	Ala	Pro	Val	Arg	Ser	Lys	Gln	Leu	Asn	Pro	Lys	Lys	Ala	He	
	245					250					255					
gcc	tat	ggg	cct	ggc	atc	gag	cca	cag	ggc	aac	acc	gtg	ctg	cag	cct	934
Ala	Туг	Gly	Pro	Gly	He	Glu	Pro	Gln	Gly	Asn	Thr	Val	Leu	Gln	Pro	
260					265					270					275	
gcc	cac	ttc	acc	gtg	cag	acg	gtg	gac	gcg	ggc	gtg	ggc	gag	gtg	ctg	982
Ala	His	Phe	Thr	Val	Gln	Thr	Val	Asp	Ala	Gly	Val	Gly	Glu	Val	Leu	
				280					285					290		
gtc	tac	atc	gag	gac	cct	gaa	ggc	cac	acc	gag	gag	gct	aag	gtg	gtt	1030
Val	Tyr	He	Glu	Asp	Pro	Glu	Gly	His	Thr	Glu	Glu	Ala	Lys	Val	Val	
			295					300					305			
ссс	aac	aat	gac	aag	gat	cgc	acc	tat	gct	gtc	tcc	tat	gtg	ссс	aag	1078
Pro	Asn	Asn	Asp	Lys	Asp	Arg	Thr	Туг	Ala	Val	Ser	Tyr	Val	Pro	Lys	
		310					315					320				
gtc	gc t	ggg	tta	cac	aag	gtg	acc	gtg	ctc	ttt	gct	ggc	cag	aac	att	1126
Val	Ala	Gly	Leu	His	Lys	Val	Thr	Val	Leu	Phe	Ala	Gly	Gln	Asn	He	
	325					330					335					

gaa	cgc	agt	ccc	ttt	gag	gtg	aac	gtg	ggo	ate	g gcc	cte	gga	gal	gcc	1174
Glu	Arg	Ser	Pro	Phe	Glu	Val	Asn	Val	Gly	Met	Ala	Leu	Gly	' Asp	Ala	
340					345					350)				355	
aac	aag	gtg	tca	gcc	cgt	ggc	cct	ggc	ctg	gaa	cct	gtg	ggc	aat	gtg	1222
Asn	Lys	Val	Ser	Ala	Arg	Gly	Pro	Gly	Leu	Glu	Pro	Val	Gly	Asn	Val	
				360					365					370		
gcc	aac	aaa	ссс	acc	tac	ttt	gac	atc	tac	act	gcg	ggg	gcc	ggc	act	1270
Ala	Asn	Lys	Pro	Thr	Tyr	Phe	Asp	He	Tyr	Thr	Ala	Gly	Ala	Gly	Thr	
			375					380					385			
ggc	gat	gtt	gct	gtg	gtg	atc	gtg	gac	cca	cag	ggc	cgg	cgg	gac	aca	1318
Gly	Asp	Val	Ala	Val	Val	He	Val	Asp	Pro	Gln	Gly	Arg	Arg	Asp	Thr	
		390					395					400				
gtg	gag	gtg	gcc	ctg	gag	gac	aag	ggt	gac	agc	acg	ttc	cgc	tgc	aca	1366
Val	Glu	Val	Ala	Leu	Glu	Asp	Lys	Gly	Asp	Ser	Thr	Phe	Arg	Cys	Thr	
	405					410					415					
tac	aga	cct	gcc	atg	gag	ggg	cca	cat	acc	gtg	cat	gtg	gcc	ttt	gcg	1414
Tyr	Arg	Pro	Ala	Met	Glu	Gly	Pro	His	Thr	Val	His	Val	Ala	Phe	Ala	
420					425					430					435	
ggt	gcc	ccc	atc	acc	cgc	agt	ccc	ttc	cct	gtc	cat	gtg	tcg	gaa	gcc	1462
Gly	Ala	Pro	Ile	Thr	Arg	Ser	Pro	Phe	Pro	Val	His	Val	Ser	Glu	Ala	
				440					445					450		
tgt	aac	ccc	aac	gcc	tgc	cgc	gcc	tct	ggg	cga	ggc	ctg	cag	ccc	aag	1510
Cys	Asn	Pro	Asn	Ala	Cys	Arg	Ala	Ser	Gly	Arg	Gly	Leu	Gln	Pro	Lys	
			455					460					465			
ggt	gtt	cgc	gtg	aaa	gag	gtg	gct	gac	ttc	aag	gtg	ttt	acc	aag	ggt	1558
Gly	Val	Arg	Val	Lys	Glu	Val	Ala	Asp	Phe	Lys	Val	Phe	Thr	Lys	Gly	
		470					475					480				

gcc	ggc	agc	ggg	gag	ctc	aag	gtc	acg	gtc	aag	ggg	cca	aag	ggc	aca	1606
Ala	Gly	Ser	Gly	Glu	Leu	Lys	Val	Thr	Val	Lys	Gly	Pro	Lys	Gly	Thr	
	485					490					495					
gag	gag	сса	gtg	aag	gtg	cgg	gag	gct	ggg	gat	ggt	gtg	t t c	gag	tgc	1654
Glu	Glu	Pro	Val	Lys	Val	Arg	Glu	Ala	Gly	Asp	Gly	Val	Phe	Glu	Cys	
500					505					510					515	
gag	tac	tac	ccg	gtg	gtg	cct	ggg	aag	tat	gtg	gtg	acc	atc	acg	tgg	1702
Glu	Tyr	Tyr	Pro	Val	Val	Pro	Gly	Lys	Tyr	Val	Val	Thr	Пе	Thr	Trp	
				520					525					530		
ggc	ggc	tac	gcc	atc	cct	cgc	agc	ccc	ttt	gag	gta	cag	gtg	agc	сса	1750
Gly	Gly	Tyr	Ala	He	Pro	Arg	Ser	Pro	Phe	Glu	Val	Gln	Val	Ser	Pro	
			535					540					545			
gag	gca	gga	gtg	caa	aag	gtc	cgg	gcc	t gg	ggt	cct	ggt	ttg	gag	ac t	1798
Glu	Ala	Gly	Val	Gln	Lys	Val	Arg	Ala	Trp	Gly	Pro	Gly	Leu	Glu	Thr	
		550					555					560				
ggc	cag	gtg	ggc	aag	tca	gcc	gat	t t t	gtg	gtg	gaa	gcc	a t t	ggc	acc	1846
Gly	Gln	Val	Gly	Lys	Ser	Ala	Asp	Phe	Val	Val	Glu	Ala	He	Gly	Thr	
	565					570					575					
gag	gtg	ggg	aca	ctg	ggc	ttc	tcc	atc	gag	ggg	ccc	tca	caa	gcc	aag	1894
Glu	Val	Gly	Thr	Leu	Gly	Phe	Ser	He	Glu	Gly	Pro	Ser	Gln	Ala	Lys	
580					585					590					595	
atc	gaa	tgt	gac	gat	aag	ggg	gat	ggc	tcc	t gc	gat	gtg	cgg	tac	tgg	1942
Ile	Glu	Cys	Asp	Asp	Lys	Gly	Asp	Gly	Ser	Cys	Asp	Val	Arg	Tyr	Trp	
				600					605					610		
ccc	acg	gag	cct	ggg	gag	tac	gct	gtg	cac	gtc	atc	tgt	gac	gat	gag	1990
Pro	Thr	Glu	Pro	Gly	Glu	Туг	Ala	Val	His	Val	He	Cys	Asp	Asp	Glu	

gac atc cga gac toa ccc ttc att gcc cac atc ctg ccc gcc cca cct Asp Ile Arg Asp Ser Pro Phe Ile Ala His Ile Leu Pro Ala Pro Pro gac tgc ttc cca gat aag gtg aag gcc ttt ggg cct ggc ctg gag cct Asp Cys Phe Pro Asp Lys Val Lys Ala Phe Gly Pro Gly Leu Glu Pro acc ggc tgc atc gtg gac aag ccc gct gag ttc acc att gat gct cgt Thr Gly Cys Ile Val Asp Lys Pro Ala Glu Phe Thr Ile Asp Ala Arg gca gct ggc aag gga gac ctg aag ctc tat gcc cag gac gcc gac ggc Ala Ala Gly Lys Gly Asp Leu Lys Leu Tyr Ala Gln Asp Ala Asp Gly tgt ccc atc gac atc aag gtg atc ccc aac ggc aac ggc acc ttc cgc Cys Pro Ile Asp Ile Lys Val Ile Pro Asn Gly Asn Gly Thr Phe Arg tgc tcc tac gtg ccc acc aag ccc att aag cac acc atc atc tcc Cys Ser Tyr Val Pro Thr Lys Pro Ile Lys His Thr Ile Ile Ile Ser tgg gga ggc gta aac gtg ccc aag agc ccc ttc cgg gtg aac gtg ggc Trp Gly Gly Val Asn Val Pro Lys Ser Pro Phe Arg Val Asn Val Gly gag ggc agc cac ccc gag cgg gta aag gtg tac ggc ccc gga gtg gag

Glu Gly Ser His Pro Glu Arg Val Lys Val Tyr Gly Pro Gly Val Glu

aag aca ggc ctc aag gcc aat gag ccc acc tac ttc acg gtg gac tgc Lys Thr Gly Leu Lys Ala Asn Glu Pro Thr Tyr Phe Thr Val Asp Cys

				760					765)				770)		
agc	gag	gcg	ggg	саа	ggc	gac	gtg	agc	atc	ggc	atc	aag	t gc	gcc	cca	2470	
Ser	Glu	Ala	Gly	Gln	Gly	Asp	Val	Ser	He	Gly	He	Lys	Cys	Ala	Pro		
			775					780					785				
ggc	gtg	gtg	ggc	cct	gca	gag	gct	gac	att	gac	ttc	gac	a t c	atc	aag	2518	
Gly	Val	Val	Gly	Pro	Ala	Glu	Ala	Asp	He	Asp	Phe	Asp	He	Ile	Lys		
		790					795					800					
aat	gac	aac	gac	acc	ttc	acc	gtc	aag	tac	acg	cca	cca	ggg	gcg	ggc	2566	
Asn	Asp	Asn	Asp	Thr	Phe	Thr	Val	Lys	Tyr	Thr	Pro	Pro	Gly	Ala	Gly		
	805					810					815						
cgc	tac	acc	atc	atg	gtg	ctg	ttt	gcc	aac	cag	gag	atc	ccc	gcc	agc	2614	
Arg	Tyr	Thr	He	Met	Val	Leu	Phe	Ala	Asn	Gln	Glu	He	Pro	Ala	Ser		
820					825					830					835		
ccc	ttc	cac	atc	aag	gtg	gac	cca	tcc	cac	gat	gcc	agc	aaa	gtc	aag	2662	
Pro	Phe	His	He	Lys	Val	Asp	Pro	Ser	His	Asp	Ala	Ser	Lys	Val	Lys		
				840					845					850			
gcc	gag	ggc	cct	ggg	ctg	aat	cgc	aca	ggt	gtg	gaa	gtc	ggg	aag	ccc	2710	
Ala	Glu	Gly	Pro	Gly	Leu	Asn	Arg	Thr	Gly	Val	Glu	Val	Gly	Lys	Pro		
			855					860					865				
acc	cac	ttc	acg	gtg	ctg	acc	aag	gga	gcc	ggc	aag	gcc	aag	ctg	gat	2758	
Thr	His	Phe	Thr	Val	Leu	Thr	Lys	Gly	Ala	Gly	Lys	Ala	Lys	Leu	Asp		
		870					875					880					
gtg	cag	ttt	gca	ggg	aca	gcc	aag	ggc	gag	gtt	gtg	cgg	gac	ttt	gag	2806	
Val	Gln	Phe	Ala	Gly	Thr	Ala	Lys	Gly	Glu	Val	Val	Arg	Asp	Phe	Glu		
	885					890					895						
atc	ata	gac	aac	cat	gac	tac	tcc	t ac	act	gtc	aag	tac	acc	gct	gtc	2854	

lle lle Asp A	Asn His Asp Tyr	Ser Tyr Thr V	al Lys Tyr Thr	Ala Val
900	905		10	915
cag cag ggc a	iac atg gca gtg	aca gtg act t	at ggc ggg gac	cct gtc 2902
			yr Gly Gly Asp]	
	920	925		930
ccc aag agc c			cc ccg ctg gac c	
	35		o Pro Leu Asp L	eu Ser
		940	945	
			g gct gtg gga c	
	il Gin Gly Leu	Asn Ser Lys Va	l Ala Val Gly G	ln Glu
950		955	960	
			c ggt cag ggc c	
Gln Ala Phe Se	r Val Asn Thr	Arg Gly Ala Gly	y Gly Gln Gly G	ln Leu
965	970		975	
gat gtg cgg at	g act tcg ccc	tet ege egg ecc	e atc ecc tgc aa	ig ctg 3094
Asp Val Arg Me	t Thr Ser Pro S	Ser Arg Arg Pro	lle Pro Cys Ly	s Leu
980	985	990		995
gag cca ggc gg	t gga gcg gaa g	scc cag gct gtg	cgc tac atg cc	c ccg 3142
Glu Pro Gly Gly	/ Gly Ala Glu A	la Gln Ala Val	Arg Tyr Met Pr	
	1000	1005	101	
gag gag ggg ccc	tac aag gtg g	at atc acc tac	gat ggt cac ccg	g gtg 3190
			Asp Gly His Pro	
1015		1020	1025	, , , ,
cct ggc agc ccg	ttt get gtg g:			
Pro Gly Ser Pro				Ser
	103		1040	
aag gtc tgt gct	tat ggc ccg gg	it ctc aag ggt	gga ctg gta ggc	acc 3286

Lys Val Cys	Ala Tyr G	ly Pro Gly	Leu Lys Gly	Gly Leu Val Gly	Thr
1045		1050		1055	
ccc gcg cca	ttc tcc a	c gac acc	aag ggg gct	ggc aca ggt ggc	ctg 3334
Pro Ala Pro	Phe Ser I	e Asp Thr	Lys Gly Ala	Gly Thr Gly Gly	Leu
1060	106	55	1070		1075
ggg ctg acc	gta gag gg	c ccc tgc	gag gcc aag	atc gag tgc cag	gac 3382
Gly Leu Thr	Val Glu Gl	y Pro Cys	Glu Ala Lys	lle Glu Cys Gln	Asp
	1080		1085	1090	
aat ggt gat	ggc tca tg	t get gte	age tac etg	ccc acg gag cct	ggc 3430
Asn Gly Asp	Gly Ser Cy	s Ala Val	Ser Tyr Leu	Pro Thr Glu Pro	Gly
	1095	i	100	1105	
gag tac acc	atc aac at	c ctg ttt	gct gag gcc	cac atc cct ggc	tcg 3478
Glu Tyr Thr	lle Asn Il	e Leu Phe	Ala Glu Ala	His Ile Pro Gly	Ser
1110		1115		1120	
ccc ttc aaa	gcc acc at	t cgg cct	gtg ttt gac	ccg agc aag gtg	cgg 3526
Pro Phe Lys	Ala Thr Il	e Arg Pro	Val Phe Asp	Pro Ser Lys Val	Arg
1125		1130	1	1135	
gcc agt gga	ccg ggc ct	g gag cgc	ggc aag gtc	ggt gag gca gcc	acc 3574
Ala Ser Gly	Pro Gly Le	u Glu Arg	Gly Lys Val	Gly Glu Ala Ala	Thr
1140	114	5	1150	1	155
ttc act gtg	gac tgc tc	a gag gca	ggc gag gcg	gag ctg acc att	gag 3622
Phe Thr Val	Asp Cys Se	r Glu Ala	Gly Glu Ala	Glu Leu Thr lle	Glu
	1160		1165	1170	
atc ctg tcg	gat gcc gg	g gtc aag	gcc gag gtg	ctg atc cac aac	aac 3670
				ctg atc cac aac Leu Ile His Asn	

gc.	g ga	t gg	c ac	cta	c ca	ic at	c ac	c ta	cag	с сс	t gc	c tt	C Ç	et g	gç	acc	3718
Ala	a As	p Gl	y Th	r Ty	r Hi	s 11	e Th	r Tyı	Se	r Pr	o Al	a Ph	e Pi	o G	lу	Thr	
		119	0				119	5				120	0				
tad	c ac	c at	t ac	c at	c aa	g ta	t gg	c ggg	cat	cc	c gts	g cc	c aa	a tt	c	ссс	3766
Туі	Th	r II	e Th	r II	e Ly	s Ty	r Gi	y Gly	His	Pro	o Val	Pro	o Ly	s Ph	ıe	Pro	
	1205	5				121	0				1215	<u>.</u>					
acc	cgt	gte	с са	t gti	g ca.	g cc	t gcg	g gtc	gat	acc	c agt	ggo	gt	c aa	g	gtc	3814
Thr	Arg	y Val	l His	s Val	l Gli	n Pro	o Ala	ı Val	Asp	Thr	Ser	Gly	v Va	l Ly	s '	Val	
122	0				122	5				1230)				13	235	
tca	ggg	cct	ggt	gti	. gag	g cca	a cac	ggt	gtc	ctg	cgg	gag	gts	g ac	c a	ac t	3862
Ser	Gly	Pro	Gly	v Val	Glu	Pro	His	Gly	Val	Leu	Arg	Glu	Val	l Th	r 1	Thr	
				1240)				1245					1250	0		
gag	ttc	act	gtg	gat	gca	aga	. tcc	cta	aca	gcc	aca	ggc	ggo	c aac	СС	ac	3910
Glu	Phe				Ala	Arg	Ser	Leu	Thr	Ala	Thr	Gly	Gly	' Asr	n H	lis	
			1255					1260					1265				
								tcg									3958
Val			Arg	Val	Leu			Ser	Gly	Ala	Lys	Thr	Asp	Thr	· T	уr	
		1270					1275					280					
								tac									4006
		Asp	Asn	Gly			Thr	Tyr	Arg			Tyr	Thr	Ala	T	уг	
	285			4		1290					295						
								gtc									4054
	GIU	GIY	vai			Val	Glu	Val 1			Asp	Glu	Val	Ala	Va	ı l	
1300					305					310					131		
								gtg a									4102
Pro 1	L y S	ser			Arg	val	ь(y			ilu (Gly (Cys I			Th	Γ	
			i	320				13	25				1	330			

cgc gtc cga gcc ttc ggg c	ca ggc ctg gag gg	t ggc tig gic aac aag	4150
Arg Val Arg Ala Phe Gly P	ro Gly Leu Glu Gly	y Gly Leu Val Asn Lys	
1335	1340	1345	
gcc aac cga ttc act gtg g	ag acc agg gga gcg	g ggc acc ggg ggc ctt	4198
Ala Asn Arg Phe Thr Val G			
1350	1355	1360	
ggc cta gcc atc gag ggt co	c tog gaa god aag	atg tcc tgc aag gac	4246
Gly Leu Ala Ile Glu Gly Pr	o Ser Glu Ala Lys	Met Ser Cys Lys Asp	
1365 137	0	1375	
aac aag gat ggt agc tgc ac	c gtg gag tac atc	ccc ttc act ect gga	4294
Asn Lys Asp Gly Ser Cys Th	r Val Glu Tyr Ile	Pro Phe Thr Pro Gly	
1380 1385	1390	1395	
gac tat gac gtc aac atc acc	c tic ggg ggg cgg	ccc atc cca ggg agc	4342
Asp Tyr Asp Val Asm Ile Thi	Phe Gly Gly Arg	Pro Ile Pro Gly Ser	
1400	1405	1410	
ccg ttc cgc gtg cca gtg aag	gat gtg gtg gac	cct ggg aag gtg aag	4390
Pro Phe Arg Val Pro Val Lys	Asp Val Val Asp 1	Pro Gly Lys Val Lys	
1415	1420	1425	
tgc tca ggg cca ggg ctg ggg			4438
Cys Ser Gly Pro Gly Leu Gly	Ala Gly Val Arg A	Ala Arg Val Pro Gln	
	1435	1440	
acc ttc aca gtg gac tgc agt			4486
Thr Phe Thr Val Asp Cys Ser	Gln Ala Gly Arg A	la Pro Leu Gln Val	
1445 1450	14		
gct gtg ctg ggc ccc aca ggt	gtg gcc gag cct g	tg gag gtg cgg gac	4534
Ala Val Leu Gly Pro Thr Gly	Val Ala Glu Pro Va	al Glu Val Arg Acp	

1460	1465	1470	1475
aat gga gat	ggc acc cac act	gtc cac tac acc cca gc	c act gac ggg 4582
Asn Gly Asp	Gly Thr His Thr	Val His Tyr Thr Pro Ala	a Thr Asp Gly
	1480	1485	1490
ccc tac acg	gta gcc gtc aag	tat get gae eag gag gtg	cca cgc agc 4630
		Tyr Ala Asp Gin Glu Val	
1.	495	1500	1505
ccc ttc aag	atc aag gtc ctc	cca gct cat gat gcc agc	aag gtg cgg 4678
Pro Phe Lys	lle Lys Val Leu	Pro Ala His Asp Ala Ser	Lys Val Arg
1510	1	515 1520	
gcc agc ggg c	ca ggc ctc aac	gcc tct ggc atc cct gcc	agc ctg cct 4726
Ala Ser Gly P	ro Gly Leu Asn A	Ala Ser Gly Ile Pro Ala	Ser Leu Pro
1525	1530	1535	
gtg gag ttc a	cc atc gac gca c	cgg gac gcg ggc gag ggg	ttg ctc act 4774
Val Glu Phe T	hr lle Asp Ala A	arg Asp Ala Gly Glu Gly	Leu Leu Thr
1540	1545	1550	1555
gtc cag atc t	tg ggc ccc gag g	gt aag ccc aag aag gcc	aac atc cgg 4822
Val Gln Ile Le	eu Gly Pro Glu G	ly Lys Pro Lys Lys Ala A	Asn Ile Arg
	1560	1565	1570
gac aat ggg ga	t ggc acg tac go	ct gtg tcc tac ctg ccg g	sac atg agt 4870
Asp Asn Gly As	p Gly Thr Tyr Al	la Val Ser Tyr Leu Pro A	sp Met Ser
157	5	1580	85
ggc cgg tac ac	c atc acc atc aa	ig tat ggc ggt gat gag a	tc ccc tac 4918
Gly Arg Tyr Th	r Ile Thr Ile Ly	s Tyr Gly Gly Asp Glu 1	le Pro Tyr
1590	159	5 1600	
tcg ccc ttc cgc	e atc cat gct ct	g ccc act ggg gat gcc ag	gc aag tgc 4966
Ser Pro Phe Arg	g Ile His Ala Le	u Pro Thr Gly Asp Ala Se	er Lys Cys

ctc gtc aca gtg tcc att gga ggc cat ggc ctg ggt gcc tgc ctg ggc Leu Val Thr Val Ser Ile Gly Gly His Gly Leu Gly Ala Cys Leu Gly cct cga atc cag att ggg cag gag acg gtg atc acg gtg gat gcc aag Pro Arg Ile Gln Ile Gly Gln Glu Thr Val Ile Thr Val Asp Ala Lys gca gcc ggt gag ggg aag gtg aca tgc acg gtg tcc acg ccg gat ggg Ala Ala Gly Glu Gly Lys Val Thr Cys Thr Val Ser Thr Pro Asp Gly gca gag ctc gat gtg gat gtg gtt gag aac cat gac ggt acc ttt gac Ala Glu Leu Asp Val Asp Val Val Glu Asn His Asp Gly Thr Phe Asp atc tac tac aca gcg ccc gag ccg ggc aag tac gtc atc acc atc cgc lle Tyr Tyr Thr Ala Pro Glu Pro Gly Lys Tyr Val Ile Thr Ile Arg ttc ggg ggt gag cac atc ccc aac agc ccc ttc cac gtg ctg gcg tgt Phe Gly Gly Glu His Ile Pro Asn Ser Pro Phe His Val Leu Ala Cys gac ecc etg ecg cac gag gag gag ecc tet gaa gtg eca eag etg ege Asp Pro Leu Pro His Glu Glu Glu Pro Ser Glu Val Pro Gln Leu Arg cag ccc tac gct cct ccc cgg ccc ggc gcc cgc ccc aca cac tgg gcc Gln Pro Tyr Ala Pro Pro Arg Pro Gly Ala Arg Pro Thr His Trp Ala aca gag gag cca gig gtg cct gtg gag cca atg gag tcc atg ctg agg

	Arg	Leg	Met	Ser	Glu	Met	Pro	Glu	Val	Pro	Val	Val	Pro	Glu	Glu	Thr
				1760					1755					1750		
5446	aca	ctc	gag	ggg	aaa	cag	gtg	gcg	ttc	ccc	atc	gtc	ctg	aac	ttc	ccc
	Thr	Leu	Glu	Gly	Lys	Gln	Val	Ala	Phe	Pro	He	Val	Leu	Asn	Phe	Pro
					1775					1770					1765	
5494	acc	atc	aac	ссс	cgg	gca	acg	aag	ggg	tcg	ссс	atg	cgg	gtg	gag	gga
	Thr	Ile	Asn	Pro	Arg	Ala	Thr	Lys	Gly	Ser	Pro	Met	Arg	Val	Glu	Gly
	1795	1				1790					1785				0	178
5542	aaa	gag	act	ccc	gca	tat	agg	gtg	acg	atc	acc	ggc	gac	aag	aac	gac
	Lys	Glu	Thr	Pro	Ala	Tyr	Arg	Val	Thr	He	Thr	Gly	Asp	Lys	Asn	Asp
		1810					1805					1800				
5590	ggg	cct	atc	cac	aac	ggc	gac	tat	aag	atc	ggg	atg	cag	cac	ctg	ggc
	Gly	Pro	He	His	Asn	Gly	Asp	Туг	Lys	He	Gly	Met	Gln	His	Leu	Gly
			1825					1820					1815	j		
5638	agt	gtc	cat	cgc	agc	aac	atc	gcc	gat	gtg	tat	ttc	cag	tta	ccc	agc
	Ser	Val	His	Arg	Ser	Asn	He	Ala	Asp	Val	Tyr	Phe	Gln	Leu	Pro	Ser
				840	1				1835					830]	
5686	acc	gcc	cca	aag	aac	gtc	atg	ggc	cat	agc	ctg	ggc	cca	ggg	tat	gcc
	Thr	Ala	Pro	Lys	Asn	Val	Me t	Gly	His	Ser	Leu	Gly	Pro	Gly	Tyr	Ala
					855	1				1850					845	1
5734	gcc	ctg	tca	ctg	ggt	ggg	gaa	gga	gct	gat	aaa	acc	gtc	att	ac t	ttc
	Ala	Leu .	Ser	Leu	Gly	Gly	Glu	Gly	Ala	Asp	Lys	Thr	Val	He	Thr	Phe
	875	1				870	1				865	1)	1860
5782	gat	aag	aac	gac	aag	tgt	acc	atc	gag	gca	aag	tcc	cca	ggc	gag	gtg
	Asp	Lys .	Asn	Asp	Lys	Cys	Thr	Ile	Glu	Ala	Lys	Ser	Pro	Gly	Glu	Val
		890	1				885	1				880	1			
5830	agc	tac a	gac	gga	cct	gcg	ac t	ccg	ctg	tat	tcc	gtg	acc	tgc	acc	ggc

178/527

Gly Thr C	ys Thr Val Sei	r Tyr Leu Pro	Thr Ala Pro G	ly Asp Tyr Ser	
	1895	1900		1905	
atc atc g	tg cgc ttc gat	gac aag cac	atc ccg ggg ag	c ccc ttc aca	5878
He He Va	al Arg Phe Asp	Asp Lys His	lle Pro Gly Se	r Pro Phe Thr	
191	0	1915	192	0	
gcc aag at	c aca ggt gat	gac tcc atg	agg acc tca ca	g ctg aat gtg	5926
Ala Lys II	e Thr Gly Asp	Asp Ser Met A	Arg Thr Ser Gl	n Leu Asn Val	
1925		1930	1935		
ggc acc tc	c acg gac gtg	tca ctg aag a	tc acc gag ag	t gat ctg agc	5974
Gly Thr Se	r Thr Asp Val	Ser Leu Lys I	le Thr Glu Sei	Asp Leu Ser	
1940	1945		1950	1955	
cag ctg ac	c gcc agc atc	cgt gcc ccc t	cg ggc aac gag	gag ccc tgc	6022
Gln Leu Th	r Ala Ser Ile	Arg Ala Pro S	er Gly Asn Glu	Glu Pro Cys	
	1960	19	65	1970	
ctg ctg aag	g cgc ctg ccc	aac cgg cac a	tt ggg atc tcc	ttc acc ccc	6070
Leu Leu Lys	Arg Leu Pro	Asn Arg His I	le Gly Ile Ser	Phe Thr Pro	
	1975	1980		1985	
aag gag gtc	ggg gag cac	gtg gtg agc gt	g cgc aag agt	ggc aag cat	6118
Lys Glu Val	Gly Glu His '	Val Val Ser Va	l Arg Lys Ser	Gly Lys His	
1990		1995	2000		
gtc acc aac	age ecc tte a	ag atc ctg gt	g ggg cca tct	gag atc ggg	6166
Val Thr Asn	Ser Pro Phe I	ys Ile Leu Va	l Gly Pro Ser	Glu Ile Gly	
2005	20	10	2015		
gac gcc agc	aag gtg cgg g	tc tgg ggc aa	g ggg ctt tcc	gag gga cac 6	3214
Asp Ala Ser	Lys Val Arg V	al Trp Gly Lys	s Gly Leu Ser	Glu Gly His	
2020	2025		2030	2035	

aca 1	ttc	cag	gtg	gca	gag	tto	ato	gt	g ga	c ac	t cg	c aat	gca	ggl	t tat	6262
Thr F	Phe (Gln	Val	Ala	Glu	Phe	Пе	e Va	l Ası	Th:	r Arg	g Asn	Ala	Gly	/ Tyr	
2040									2045					2050)	
ggg g	gc t	tg	ggg	ctg	agt	att	gaa	ggo	: cca	ago	c aag	ggg	gac	atc	aac	6310
Gly G	ly L	eu	Gly	Leu	Ser	He	Glu	Gly	Pro	Ser	Lys	Val	Asp	He	Asn	
2055								2060					2065			
tgt g	ag g	ac	atg	gag	gac	ggg	aca	t gc	aaa	gtc	acc	tac	tgc	ссс	acc	6358
Cys G																
2070						2075				2080						
gag co	cc gg	gc	acc	tac	atc	atc	aac	atc	aag	ttt	gct	gac	aag	cac	gtg	6406
																0.700
	Glu Pro Gly Thr Tyr Ile Ile Asn Ile Lys Phe Ala Asp Lys His Val 2085 2090 2095															
cct gg	a ag	sc c	сс	ttc	act a	gtg	aag	gtg	acc	ggc	gag	ggc (cgc a	atg	aag	6454
Pro Gl																
2100					105					110					115	
gag ag	c at	c a	сс с	gg (egg a	iga (cag :	gca	cct	tcc	atc	gcc a	icc a			6502
Glu Ser Ile Thr Arg Arg Gln Ala Pro Ser Ile Ala Thr Ile Gl 2120 2125 2130										·						
agc acc	c tgt	t ga	ас с	tc a	ac c	tc a	ag a	itc (cca g	gga a	aac 1	tgg t			ıtg	6550
Ser Thr Cys Asp Leu Asn Leu Lys IIe Pro Gly Asn Trp Phe Gln Met 2135 2140 2145																
gtg tct	gcc	ca	g ga	ag c	gc c	tg a	са с	gc a	.cc t	tc a	са с	gc a	gc as	gc c	ac	6598
Val Ser																
2150 2155 2160																
acc tac	acc	cg	с ас	g ga	ıg cg	c ac	cg ga	ag a	tc a	gc a	ag a	cg cg	g gg	C gg	gg	6646
Thr Tyr																•
2165					217					217					•	

gag aca aag eee gag gtg egg gtg gag tee ace eag gte gge ggg	6694
Glu Thr Lys Pro Glu Val Arg Val Glu Glu Ser Thr Gln Val Gly Gly	
2180 2185 2190 2195	
gac ecc tte ect get gtg ttt ggg gac ite etg gge egg gag ege etg	6742
Asp Pro Phe Pro Ala Val Phe Gly Asp Phe Leu Gly Arg Glu Arg Leu	
2200 2205 2210	
gga tee tte gge age ate ace egg eag eag gag ggt gag gee age tet	6790
Gly Ser Phe Gly Ser Ile Thr Arg Gln Gln Glu Gly Glu Ala Ser Ser	
2215 2220 2225	
cag gac atg act gca cag gtg acc agc cca tcg ggc aag gtg gaa gcc	6838
Gln Asp Met Thr Ala Gln Val Thr Ser Pro Ser Gly Lys Val Glu Ala	
2230 2235 2240	
gca gag atc gtc gag ggc gag gac agc gcc tac agc gtc cgc ttt gtg	6886
Ala Glu Ile Val Glu Gly Glu Asp Ser Ala Tyr Ser Val Arg Phe Val	
2245 2250 2255	
ccc cag gaa atg ggg ccc cat acg gtc gct gtc aag tac cgt ggc cag 6	5934
Pro Gln Glu Met Gly Pro His Thr Val Ala Val Lys Tyr Arg Gly Gln	
2260 2265 2270 2275	
cac gtg ccc ggc agc ccc ttt cag ttc act gtg ggg ccg ctg ggt gaa 6	982
His Val Pro Gly Ser Pro Phe Gln Phe Thr Val Gly Pro Leu Gly Glu	
2280 2285 2290	
ggt ggt gcc cac aag gtg cgg gcc gga cga gca ggg ctg gag cga ggt 70	030
Gly Gly Ala His Lys Val Arg Ala Gly Arg Ala Gly Leu Glu Arg Gly	
2305 2300 2305	
gtg gcc ggc gtg cca gcc gag ttc agc atc tgg acc cgg gag gct ggc 70	178
Val Ala Gly Val Pro Ala Glu Phe Ser Ile Trp Thr Arg Glu Ala Gly	

get ggg ggc etg tee att get gtg gag ggt eet age aaa geg gag att Ala Gly Gly Leu Ser Ile Ala Val Glu Gly Pro Ser Lys Ala Glu Ile

gca ttt gag gat cgc aaa gat ggc tcc tgc ggc gtc tcc tat gtc gtc Ala Phe Glu Asp Arg Lys Asp Gly Ser Cys Gly Val Ser Tyr Val Val

cag gaa cca ggt gac tat gag gtc tcc atc aag ttc aat gat gag cac Gln Glu Pro Gly Asp Tyr Glu Val Ser Ile Lys Phe Asn Asp Glu His

ate eca gae age ecc tit gig gig ect gig gee tee etc teg gat gae lle Pro Asp Ser Pro Phe Val Val Pro Val Ala Ser Leu Ser Asp Asp

get ege egt ete act gte ace age ete eag gag acg ggg ete aag gtg Ala Arg Arg Leu Thr Val Thr Ser Leu Gln Glu Thr Gly Leu Lys Val

aac cag cca gcg tcc ttt gcc gtg cag ctg aac ggt gcc cgg ggc gtg Asn Gln Pro Ala Ser Phe Ala Val Gln Leu Asn Gly Ala Arg Gly Val

att gat gcc cgg gtg cac aca ccc tcg ggg gct gtg gag gag tgc tac Ile Asp Ala Arg Val His Thr Pro Ser Gly Ala Val Glu Glu Cys Tyr

gtc tct gag ctg gac agt gac aag cac acc atc cgc ttc atc ccc cac Val Ser Glu Leu Asp Ser Asp Lys His Thr Ile Arg Phe Ile Pro His

gag aat ggc gtc cac tcc atc gat gtc aag ttc aac ggt gcc cac atc Glu Asn Gly Val His Ser Ile Asp Val Lys Phe Asn Gly Ala His Ile

cct gga agt ccc ttc aag atc cgc gtt ggg gag cag agc cag gct ggg Pro Gly Ser Pro Phe Lys Ile Arg Val Gly Glu Gln Ser Gln Ala Gly gac cca ggc ttg gtg tca gcc tac ggt cct ggg ctc gag gga ggc act Asp Pro Gly Leu Val Ser Ala Tyr Gly Pro Gly Leu Glu Gly Gly Thr acc ggt gtg tca tca gag ttc atc gtg aac acc ctg aat gcc ggc tcg Thr Gly Val Ser Ser Glu Phe Ile Val Asn Thr Leu Asn Ala Gly Ser ggg gcc tig tci gic acc att gat ggc ccc tcc aag gig cag cig gac Gly Ala Leu Ser Val Thr Ile Asp Gly Pro Ser Lys Val Gln Leu Asp tgt cgg gag tgt cct gag ggc cat gtg gtc act tat act ccc atg gcc Cys Arg Glu Cys Pro Glu Gly His Val Val Thr Tyr Thr Pro Met Ala cct ggc aac tac ctc att gcc atc aag tac ggt ggc ccc cag cac atc Pro Gly Asn Tyr Leu Ile Ala Ile Lys Tyr Gly Gly Pro Gln His Ile glg ggc agc ccc itc aag gcc aag gtc act ggt ccg agg ctg tcc gga Val Gly Ser Pro Phe Lys Ala Lys Val Thr Gly Pro Arg Leu Ser Gly ggc cac agc ctt cac gaa aca tcc acg gtt ctg gtg gag act gtg acc Gly His Ser Leu His Glu Thr Ser Thr Val Leu Val Glu Thr Val Thr aag tee tee tea age egg gge tee age tac age tee ate eec aag tte

WO 01/25427 PCT/JP00/06840

Lys Ser Ser Ser Ser Arg Gly Ser Ser Tyr Ser Ser Ile Pro Lys Phe

2600

2605

2610

tee tea gat gee age aag gtg gtg act egg gge eet ggg etg tee eag 7990 Ser Ser Asp Ala Ser Lys Val Val Thr Arg Gly Pro Gly Leu Ser Gln

2615

2620

2625

gcc ttc gtg ggc cag aag aac tcc ttc acc gtg gac tgc agc aaa gca 8038 Ala Phe Val Gly Gln Lys Asn Ser Phe Thr Val Asp Cys Ser Lys Ala

2630

2635

2640

ggc acc aac atg atg atg gtg ggc gtg cac ggc ccc aag acc ccc tgt 8086 Gly Thr Asn Met Met Val Gly Val His Gly Pro Lys Thr Pro Cys

2645

2650

2655

gag gag gtg tac gtg aag cac atg ggg aac cgg gtg tac aat gtc acc 8134 Glu Glu Val Tyr Val Lys His Met Gly Asn Arg Val Tyr Asn Val Thr 2660 2665 2670 2675

tac act gtc aag gag aaa ggg gac tac atc ctc att gtc aag tgg ggt 8182 Tyr Thr Val Lys Glu Lys Gly Asp Tyr Ile Leu Ile Val Lys Trp Gly

2680

2685

2690

gac gaa agt gtc cct gga agc ccc ttc aaa gtc aag gtc cct

Asp Glu Ser Val Pro Gly Ser Pro Phe Lys Val Lys Val Pro

2695 2700 2705

tgaatcccaa aagtgcctcc ccagcctcag cccccacctc cagccacaca cacattacac 8284
acacacacac acacacaaa atgtgccaca cccagacacg cacagaatca gacactacaa 8344
acacctgcct tgggggtgaa gtgaaggccc agcctcccca ccccaccgcg ccccaggggt 8404
tggaggacct tgtctgtgtc agacagtgtc cctccctgga atgtgacatg aggccgactg 8464
gggccaggct caggggcaga ggctgggaca caaggggctg gggagggctg cgaggccagg 8524
gaagccctga gtttctggcg gggctgagca gtggggagc attgtgttgt gggtgtctgt 8584
gtgtgaggtc accctcaaac tgcaccgcg gccagatacc ctcctgaccc cgaggacttg 8644

WO 01/25427 PCT/JP00/06840

gictggtctc tetggtggct acaaccccag agtittaagg actiggaaag gaagcacaat 8704 cagagaagaa aacagccccc aaccagcagg agcggcetgg cacatggacc ggcctgagcg 8764 atgtgcactc cacccaagcc aggeteccag ggggcctgat titetetea etgtetetit 8824 tittaaaatg gitgcacggc tetgecccat ggggggcctt tittacacac tgcgaggccc 8884 agctitetag gggactittg cacatgtcat gcageteagc tgggagctgc ttaggtggaa 8944 aactccaaat aaagtgcgcc tgtcgcc 8971

<210> 44

<211> 2705

212> PRT

<213> Homo sapiens

<400> 44

Met Pro Ser Thr Glu Lys Asp Leu Ala Glu Asp Ala Pro Trp Lys Lys

1 5 10 15

Ile Gln Gln Asn Thr Phe Thr Arg Trp Cys Asn Glu His Leu Lys Cys

20 25 30

Val Gly Lys Arg Leu Thr Asp Leu Gln Arg Asp Leu Ser Asp Gly Leu

35 40 45

Arg Leu Ile Ala Leu Leu Glu Val Leu Ser Gln Lys Arg Met Tyr Arg

50 55

85

Lys Phe His Pro Arg Pro Asn Phe Arg Gln Met Lys Leu Glu Asn Val

65 70 75 80

Ser Val Ala Leu Glu Phe Leu Glu Arg Glu His Ile Lys Leu Val Ser

90 95

Ile Asp Ser Lys Ala Ile Val Asp Gly Asn Leu Lys Leu Ile Leu Gly

100 105 110

Leu Ile Trp Thr Leu Ile Leu His Tyr Ser Ile Ser Met Pro Met Trp

Glu Asp Glu Asp Asp Glu Asp Ala Arg Lys Gln Thr Pro Lys Gln Arg Leu Leu Gly Trp Ile Gln Asn Lys Val Pro Gln Leu Pro Ile Thr Asn Phe Asn Arg Asp Trp Gln Asp Gly Lys Ala Leu Gly Ala Leu Val Asp Asn Cys Ala Pro Gly Leu Cys Pro Asp Trp Glu Ala Trp Asp Pro Asn Gln Pro Val Glu Asn Ser Arg Glu Ala Met Gln Gln Ala Asp Asp Trp Leu Gly Val Pro Gln Val Ile Ala Pro Glu Glu Ile Val Asp Pro Asn Val Asp Glu His Ser Val Met Thr Tyr Leu Ser Gln Phe Pro Lys Ala Lys Leu Lys Pro Gly Ala Pro Val Arg Ser Lys Gln Leu Asn Pro Lys Lys Ala Ile Ala Tyr Gly Pro Gly Ile Glu Pro Gln Gly Asn Thr Val Leu Gln Pro Ala His Phe Thr Val Gln Thr Val Asp Ala Gly Val Gly Glu Val Leu Val Tyr Ile Glu Asp Pro Glu Gly His Thr Glu Glu Ala Lys Val Val Pro Asn Asn Asp Lys Asp Arg Thr Tyr Ala Val Ser Tyr

Val Pro Lys Val Ala Gly Leu His Lys Val Thr Val Leu Phe Ala Gly

325 330 335

Gln Asn Ile Glu Arg Ser Pro Phe Glu Val Asn Val Gly Met Ala Leu 340 345 350

Gly Asp Ala Asn Lys Val Ser Ala Arg Gly Pro Gly Leu Glu Pro Val

Gly Asn Val Ala Asn Lys Pro Thr Tyr Phe Asp IIe Tyr Thr Ala Gly
370 375 380

Ala Gly Thr Gly Asp Val Ala Val Val Ile Val Asp Pro Gln Gly Arg
385 390 395 400

Arg Asp Thr Val Glu Val Ala Leu Glu Asp Lys Gly Asp Ser Thr Phe
405 410 415

Arg Cys Thr Tyr Arg Pro Ala Met Glu Gly Pro His Thr Val His Val
420 425 430

Ala Phe Ala Gly Ala Pro Ile Thr Arg Ser Pro Phe Pro Val His Val
435 440 445

Ser Glu Ala Cys Asn Pro Asn Ala Cys Arg Ala Ser Gly Arg Gly Leu
450 455 460

Gln Pro Lys Gly Val Arg Val Lys Glu Val Ala Asp Phe Lys Val Phe
465 470 475 480

Thr Lys Gly Ala Gly Ser Gly Glu Leu Lys Vai Thr Val Lys Gly Pro
485 490 495

Lys Gly Thr Glu Glu Pro Val Lys Val Arg Glu Ala Gly Asp Gly Val
500 505 510

Phe Glu Cys Glu Tyr Tyr Pro Val Val Pro Gly Lys Tyr Val Val Thr
515 520 525

Ile Thr Trp Gly Gly Tyr Ala Ile Pro Arg Ser Pro Phe Glu Val Gln
530 535 540

Val	Ser	Pro	Glu	Ala	Gly	Val	Gln	Lys	Val	Arg	Ala	Trp	Gly	Pro	Gly
545					550					555					560
Leu	Glu	Thr	Gly	Gln	Val	Gly	Lys	Ser	Ala	Asp	Phe	Val	Val	Glu	Ala
				565					570					575	
He	Gly	Thr	Glu	Val	Gly	Thr	Leu	Gly	Phe	Ser	He	Glu	Gly	Pro	Ser
			580					585					590		
Gln	Ala	Lys	He	Glu	Cys	Asp	Asp	Lys	Gly	Asp	Gly	Ser	Cys	Asp	Val
		595					600					605			
Arg	Tyr	Trp	Pro	Thr	Glu	Pro	Gly	Głu	Tyr	Ala	Val	His	v _{a1}	He	Cys
	610					615					620				
Asp	Asp	Glu	Asp	He	Arg	Asp	Ser	Pro	Phe	He	Ala	His	Ile	Leu	Pro
625					630					635					640
Ala	Pro	Pro	Asp	Cys	Phe	Pro	Asp	Lys	Val	Lys	Ala	Phe	Gly	Pro	Gly
				645					650					655	
Leu	Glu	Pro	Thr	Gly	Cys	He	Val	Asp	Lys	Pro	Ala	Glu	Phe	Thr	He
			660					665					670		
Asp	Ala	Arg	Ala	Ala	Gly	Lys	Gly	Asp	Leu	Lys	Leu	Tyr	Ala	Gln	Asp
		675					680					685			
Ala	Asp	Gly	Cys	Pro	He	Asp	He	Lys	Val	He	Pro	Asn	Gly	Asn	Gly
	690					695					700				
Thr	Phe	Arg	Cys	Ser	Tyr	Val	Pro	Thr	Lys	Pro	He	Lys	His	Thr	He
705					710					715					720
He	He	Ser	Trp	Gly	Gly	Val	Asn	Val	Pro	Lys	Ser	Pro	Phe	Arg	Val
				725					730					735	
Asn	Val	Gly	Glu	Gly	Ser	His	Pro	Glu	Arg	Val	Lys	Val	Tyr	Gly	Pro
*			740					745					750		

WO 01/25427 PCT/JP00/06840

Gly	Val	Glu	Lys	Thr	Gly	Leu	Lys	Ala	Asn	GLu	Pro	Thr	Tyr	Phe	Thr
		755					760					765			
Val	Asp	Cys	Ser	Glu	Ala	Gly	Gln	Gly	Asp	Val	Ser	He	Gly	He	Lys
	770					775					780				
Cys	Ala	Рго	Gly	Val	Val	Gly	Pro	Ala	Glu	Ala	Asp	He	Asp	Phe	Asp
785					790					795					800
He	He	Lys	Asn	Asp	Asn	Asp	Thr	Phe	Thr	Val	Lys	Tyr	Thr	Pro	Pro
				805					810					815	
G] y	Ala	Gly	Arg	Tyr	Thr	He	Met	Val	Leu	Phe	Ala	Asn	Gln	Glu	He
			820					825					830		
Pro	Ala	Ser	Pro	Phe	His	He	Lys	Val	Asp	Pro	Ser	His	Asp	Ala	Ser
		835					840					845			
Lys	Val	Lys	Ala	Glu	Gly	Pro	Gly	Leu	Asn	Arg	Thr	Gly	Val	Glu	Val
	850					855					860				
Gly	Lys	Pro	Thr	His	Phe	Thr	Val	Leu	Thr	Lys	Gly	Ala	Gly	Lys	Ala
865					870					875					880
Lys	Leu	Asp	Val	Gln	Phe	Ala	Gly	Thr	Ala	Lys	Gly	Glu	Val	Val	Arg
				885					890					895	
Asp	Phe	Glu	He	He	Asp	Asn	His	Asp	Tyr	Ser	Tyr	Thr	Val	Lys	Tyr
			900					905					910		
Thr	Ala	Val	Gln	Gln	Gly	Asn	Me t	Ala	Val	Thr	Val	Thr	Tyr	Gly	Gly
		915					920					925			
Asp	Pro	Val	Pro	Lys	Ser	Pro	Phe	Val	Val	Asn	Val	Ala	Pro	Pro	Leu
	930					935					940				
Asp	Leu	Ser	Lys	Ile	Lys	Val	Gln	Gly	Leu	Asn	Ser	Lys	Val	Ala	Val
945					950					955					960
Gly	Gln	Glu	Gln	Ala	Phe	Ser	Val	Asn	Thr	Arg	Gly	Ala	Gly	Gly	Gln

Gly Gln Leu Asp Val Arg Met Thr Ser Pro Ser Arg Arg Pro Ile Pro Cys Lys Leu Glu Pro Gly Gly Gly Ala Glu Ala Gln Ala Val Arg Tyr Met Pro Pro Glu Glu Gly Pro Tyr Lys Val Asp Ile Thr Tyr Asp Gly His Pro Val Pro Gly Ser Pro Phe Ala Val Glu Gly Val Leu Pro Pro Asp Pro Ser Lys Val Cys Ala Tyr Gly Pro Gly Leu Lys Gly Gly Leu Val Gly Thr Pro Ala Pro Phe Ser Ile Asp Thr Lys Gly Ala Gly Thr Gly Gly Leu Gly Leu Thr Val Glu Gly Pro Cys Glu Ala Lys Ile Glu Cys Gln Asp Asn Gly Asp Gly Ser Cys Ala Val Ser Tyr Leu Pro Thr Glu Pro Gly Glu Tyr Thr Ile Asn Ile Leu Phe Ala Glu Ala His Ile Pro Gly Ser Pro Phe Lys Ala Thr Ile Arg Pro Val Phe Asp Pro Ser Lys Val Arg Ala Ser Gly Pro Gly Leu Glu Arg Gly Lys Val Gly Glu Ala Ala Thr Phe Thr Val Asp Cys Ser Glu Ala Gly Glu Ala Glu Leu Thr Ile Glu Ile Leu Ser Asp Ala Gly Val Lys Ala Glu Val Leu Ile

His Asn Asn Ala Asp Gly Thr Tyr His Ile Thr Tyr Ser Pro Ala Phe Pro Gly Thr Tyr Thr Ile Thr Ile Lys Tyr Gly Gly His Pro Val Pro Lys Phe Pro Thr Arg Val His Val Gln Pro Ala Val Asp Thr Ser Gly Val Lys Val Ser Gly Pro Gly Val Glu Pro His Gly Val Leu Arg Glu Val Thr Thr Glu Phe Thr Val Asp Ala Arg Ser Leu Thr Ala Thr Gly Gly Asn His Val Thr Ala Arg Val Leu Asn Pro Ser Gly Ala Lys Thr Asp Thr Tyr Val Thr Asp Asn Gly Asp Gly Thr Tyr Arg Val Gln Tyr Thr Ala Tyr Glu Glu Gly Val His Leu Val Glu Val Leu Tyr Asp Glu Val Ala Val Pro Lys Ser Pro Phe Arg Val Gly Val Thr Glu Gly Cys Asp Pro Thr Arg Val Arg Ala Phe Gly Pro Gly Leu Glu Gly Gly Leu Val Asn Lys Ala Asn Arg Phe Thr Val Glu Thr Arg Gly Ala Gly Thr Gly Gly Leu Gly Leu Ala Ile Glu Gly Pro Ser Glu Ala Lys Met Ser Cys Lys Asp Asn Lys Asp Gly Ser Cys Thr Val Glu Tyr Ile Pro Phe

Thr Pro Gly Asp Tyr Asp Val Asn Ile Thr Phe Gly Gly Arg Pro Ile Pro Gly Ser Pro Phe Arg Val Pro Val Lys Asp Val Val Asp Pro Gly Lys Val Lys Cys Ser Gly Pro Gly Leu Gly Ala Gly Val Arg Ala Arg Val Pro Gln Thr Phe Thr Val Asp Cys Ser Gln Ala Gly Arg Ala Pro Leu Gln Val Ala Val Leu Gly Pro Thr Gly Val Ala Glu Pro Val Glu Val Arg Asp Asn Gly Asp Gly Thr His Thr Val His Tyr Thr Pro Ala Thr Asp Gly Pro Tyr Thr Val Ala Val Lys Tyr Ala Asp Gln Glu Val Pro Arg Ser Pro Phe Lys Ile Lys Val Leu Pro Ala His Asp Ala Ser Lys Val Arg Ala Ser Gly Pro Gly Leu Asn Ala Ser Gly Ile Pro Ala Ser Leu Pro Val Glu Phe Thr Ile Asp Ala Arg Asp Ala Gly Glu Gly Leu Leu Thr Val Gln Ile Leu Gly Pro Glu Gly Lys Pro Lys Lys Ala Asn Ile Arg Asp Asn Gly Asp Gly Thr Tyr Ala Val Ser Tyr Leu Pro Asp Met Ser Gly Arg Tyr Thr Ile Thr Ile Lys Tyr Gly Gly Asp Glu

lle Pro Tyr Ser Pro Phe Arg Ile His Ala Leu Pro Thr Gly Asp Ala Ser Lys Cys Leu Val Thr Val Ser Ile Gly Gly His Gly Leu Gly Ala Cys Leu Gly Pro Arg Ile Gln Ile Gly Gln Glu Thr Val Ile Thr Val Asp Ala Lys Ala Ala Gly Glu Gly Lys Val Thr Cys Thr Val Ser Thr Pro Asp Gly Ala Glu Leu Asp Val Asp Val Val Glu Asn His Asp Gly Thr Phe Asp Ile Tyr Tyr Thr Ala Pro Glu Pro Gly Lys Tyr Val Ile Thr Ile Arg Phe Gly Gly Glu His Ile Pro Asm Ser Pro Phe His Val Leu Ala Cys Asp Pro Leu Pro His Glu Glu Glu Pro Ser Glu Val Pro Gln Leu Arg Gln Pro Tyr Ala Pro Pro Arg Pro Gly Ala Arg Pro Thr His Trp Ala Thr Glu Glu Pro Val Val Pro Val Glu Pro Met Glu Ser Met Leu Arg Pro Phe Asn Leu Val Ile Pro Phe Ala Val Gln Lys Gly Glu Leu Thr Gly Glu Val Arg Met Pro Ser Gly Lys Thr Ala Arg Pro Asn lle Thr Asp Asn Lys Asp Gly Thr Ile Thr Val Arg Tyr Ala Pro Thr Glu Lys Gly Leu His Gln Met Gly Ile Lys Tyr Asp Gly Asn His

lle Pro Gly Ser Pro Leu Gln Phe Tyr Val Asp Ala Ile Asn Ser Arg His Val Ser Ala Tyr Gly Pro Gly Leu Ser His Gly Met Val Asn Lys Pro Ala Thr Phe Thr Ile Val Thr Lys Asp Ala Gly Glu Gly Gly Leu Ser Leu Ala Val Glu Gly Pro Ser Lys Ala Glu Ile Thr Cys Lys Asp Asn Lys Asp Gly Thr Cys Thr Val Ser Tyr Leu Pro Thr Ala Pro Gly Asp Tyr Ser Ile Ile Val Arg Phe Asp Asp Lys His Ile Pro Gly Scr Pro Phe Thr Ala Lys Ile Thr Gly Asp Asp Ser Met Arg Thr Ser Gln Leu Asn Val Gly Thr Ser Thr Asp Val Ser Leu Lys Ile Thr Glu Ser Asp Leu Ser Gln Leu Thr Ala Ser Ile Arg Ala Pro Ser Gly Asn Glu Glu Pro Cys Leu Leu Lys Arg Leu Pro Asn Arg His Ile Gly Ile Ser Phe Thr Pro Lys Glu Val Gly Glu His Val Val Ser Val Arg Lys Ser Gly Lys His Val Thr Asn Ser Pro Phe Lys Ile Leu Val Gly Pro Ser

Glu Ile Gly Asp Ala Ser Lys Val Arg Val Trp Gly Lys Gly Leu Ser

Glu Gly His Thr Phc Gln Val Ala Glu Phe Ile Val Asp Thr Arg Asn Ala Gly Tyr Gly Gly Leu Gly Leu Ser Ile Glu Gly Pro Ser Lys Val Asp Ile Asn Cys Glu Asp Met Glu Asp Gly Thr Cys Lys Val Thr Tyr Cys Pro Thr Glu Pro Gly Thr Tyr Ile Ile Asn Ile Lys Phe Ala Asp Lys His Val Pro Gly Ser Pro Phe Thr Val Lys Val Thr Gly Glu Gly Arg Met Lys Glu Ser Ile Thr Arg Arg Arg Gln Ala Pro Ser Ile Ala Thr Ile Gly Ser Thr Cys Asp Leu Asn Leu Lys Ile Pro Gly Asn Trp Phe Gln Met Val Ser Ala Gln Glu Arg Leu Thr Arg Thr Phe Thr Arg Ser Ser His Thr Tyr Thr Arg Thr Glu Arg Thr Glu Ile Ser Lys Thr Arg Gly Gly Glu Thr Lys Pro Glu Val Arg Val Glu Glu Ser Thr Gln Val Gly Gly Asp Pro Phe Pro Ala Val Phe Gly Asp Phe Leu Gly Arg Glu Arg Leu Gly Scr Phe Gly Ser Ile Thr Arg Gln Gln Glu Gly Glu

Ala Ser Ser Gln Asp Met Thr Ala Gln Val Thr Ser Pro Ser Gly Lys

PCT/JP00/06840

Val Glu Ala Ala Glu Ile Val Glu Gly Glu Asp Ser Ala Tyr Ser Val Arg Phe Val Pro Gln Glu Met Gly Pro His Thr Val Ala Val Lys Tyr Arg Gly Gln His Val Pro Gly Ser Pro Phe Gln Phe Thr Val Gly Pro Leu Gly Glu Gly Gly Ala His Lys Val Arg Ala Gly Arg Ala Gly Leu Glu Arg Gly Val Ala Gly Val Pro Ala Glu Phe Ser Ile Trp Thr Arg Glu Ala Gly Ala Gly Gly Leu Ser Ile Ala Val Glu Gly Pro Ser Lys Ala Glu Ile Ala Phe Glu Asp Arg Lys Asp Gly Ser Cys Gly Val Ser Tyr Val Val Gln Glu Pro Gly Asp Tyr Glu Val Ser Ile Lys Phe Asn Asp Glu His Ile Pro Asp Ser Pro Phe Val Val Pro Val Ala Ser Leu Ser Asp Asp Ala Arg Arg Leu Thr Val Thr Ser Leu Gln Glu Thr Gly Leu Lys Val Asn Gln Pro Ala Ser Phe Ala Val Gln Leu Asn Gly Ala Arg Gly Val Ile Asp Ala Arg Val His Thr Pro Ser Gly Ala Val Glu Glu Cys Tyr Val Ser Glu Leu Asp Ser Asp Lys His Thr Ile Arg Phe