SMODERP2D SOIL EROSION MODEL ENTERING AN OPEN SOURCE ERA WITH GPU-BASED PARALLELIZATION

Landa, Jeřábek, Pešek, Kavka Faculty of Civil Engineering Czech Technical University in Prague

What is SMODERP2D?

- Runoff-soil erosion physically-based distributed episodic model
- Calculation and prediction processes at agricultural areas and small watersheds

- Written in Python
- Open Source project since 2018
- Code on GitHub https://github.com/storm-fsv-cvut/smoderp2d
- GNU GPL 3.0 licence

History

- Long-term project driven by the Department of Landscape Water
 Conservation at the Czech Technical University in Prague
- Originally developed as a surface runoff simulated by profile model (1D)
- Later redesigned using spatially distributed method → SMODERP2D
- Originally written in Fortran, later in Visual Basic, currently in Python
- Major refactoring / functionality improvements started in 2018

SMODERP2D Model

- GIS based model
- Cell by cell mass balance information
- Kinematic wave approach for sheet flow
- Explicit solution of time discretization
- Rill development implemented in the model
- See <u>related paper</u> for details

Model structure:

$$\frac{\mathrm{d}h}{\mathrm{d}t} = (q_{in} + ep) - (q_{out} + inf + ret)$$

$$q_{in} = \sum$$
 sheet and rill flow

$$q_{out} =$$
 sheet and rill flow

Workflow

1. Data preparation (pre-processing)

- a. DEM→calculate flow direction
- b. Soil map, land-use map \rightarrow assign soil properties to each polygon
- c. Rainfall data \rightarrow check the data for correctness
- d. Watercourse network (WN) → check WN connection → assign order to WN reaches

2. Model computation

- a. For each DEM cell and each time step:
 - i. Calculate the current rainfall and infiltration
 - ii. Calculate inflow from surrounding and outflow from current cell
 - iii. Move to the next time step

3. Data post-processing

a. Store rasters, vectors and text files with results

Ongoing development | Major goals

- Major refactoring: separate Data Preparation and Model Computation packages
- Data preparation provided by various software packages (ArcGIS 10.x/Pro, GRASS GIS, QGIS)
- Python 3 support
- Model computation parallelization experiments (ongoing, experimental)

Result

Ongoing development | GIS tools

Options:

- 1. Perform data preparation (pre-processing) part only
- 2. Run model computation only
- 3. Perform full workflow (data preparation + model computation)

Supported platforms:

- 1. Esri ArcGIS 10.x (Pro)
- 2. GRASS GIS
- 3. QGIS

GIS tools | Esri ArcGIS

Toolbox for ArcGIS 10.x / Pro

GIS tools | ArcGIS Toolbox

- Existing ArcGIS toolbox rewritten
- Data preparation done by ArcGIS GIS provider (arcpy)
- Added support for ArcGIS Pro (Python3)
- Available on GitHub

Ongoing development | GIS tools

GRASS GIS 7.8+ Addons

GIS tools | GRASS GIS Addons

- New GRASS Addonsr.smoderp2d
- Available via g.extension
- Data preparation done using GRASS GIS provider (pygrass)
- GRASS GIS 7.8 (currently RC1) required (Python3)

Ongoing development | GIS tools

QGIS 3 Plugin

GIS tools | QGIS plugin

- New QGIS plugin
- QGIS 3.x required
- Available from GitHub
- Final release planned to uploaded into official QGIS repository
- Data preparation done using GRASS GIS provider (pygrass)
- GRASS GIS 7.8 required (Python3)

```
# search for GRASS GIS installation
qrass7bin = fg()
# get input parameters from dialog
self. get input params()
try:
    runner = QGISRunner()
except ProviderError as e:
    raise ProviderError(e)
# import input data into temporary GRASS location
runner.import data(self. input params)
# perform data preparation and run the model in temporary
# GRASS location using GRASS GIS provider
runner.run()
# export result data from temporary GRASS location into
# output directory and display in QGIS map canvas
runner.show results()
```

Ongoing development | Parallelization experiments

- Reasons
 - To reduce the computation time
 - For both CPU and GPU
- Approach
 - Loop-based computations rewritten to matrix-based ones
 - Mathematical operations rewritten to TensorFlow (2.0) or NumPy
 - Graph-based computations (independent math operations run in parallel)

Ongoing development | Parallelization experiments

Results of experimental parallelized branch

Results

Table 1. Results of parallelization tests

RAM	Processing unit	Data 62 KB	Data 197 MB
		[s]	[s]
15 GB	GPU1	4.0	7,560
	CPU1	0.2	12,809
	CPU2 2.1	2.1	7,249
	GPU2 2.5	6,611	
251 GB	CPU3	PU3 0.2	10,637
	CPU4 1.5	1.5	8,631

Table 2. Used processing units

ID	Model	Clock speed	Memory
GPU1	GeForce GTX 1060 3GB	33 MHz	3,016 MiB
GPU2	4× GeForce GTX 1080 Ti	33 MHz	11,178 MiB
CPU1	AMD Ryzen 7 1700 Eight Core Processor	1.373 GHz	512 KB
CPU2	16× AMD Ryzen 7 1700 Eight Core Processor	1.373 GHz	512 KB
CPU3	Intel Xeon CPU E5-2630 v4	2.4 GHz	25,600 KB
CPU4	40× Intel Xeon CPU E5-2630 v4	2.4 GHz	25,600 KB

Ongoing development | Parallelization experiments

Sub-catchments based parallelization approach (planned)

Conclusion

- Ongoing development
 - Release candidates Q4/2019
 - Final release Q1/2020
- Join us on <u>GitHub</u>
 - Report <u>issues</u>

Thanks for attention!