Cost of Neural Network

In [1]: from IPython import display
display.Image("WhatsApp Image 2022-10-18 at 15.43.50.jpg")

Out[1]:

For training d	lataset as	
X	Υ	Output
1	5	0
4	2	1
6	0	1

Calculate cost of the network for training data. Cost function to be used is mean squared error function i.e. $(1 / m)*(sum((yi - ypred)^2))$, where m is number of training data points.

```
(theta) (Ypred) (Yi-Ypred)

(Yi-Ypred)2

-0.7 == 0.3318122278318338934692 == -0.3318122278318338934692 ==

0.11009935453872484306413964214093

+0.8 == 0.6899744811276124426339 == +0.3100255188723875573661 ==

0.09611582235209313349941978652679
```

mean squared error function = (1 / m)*(sum((yi - ypred)^2))

In [2]:	(1/3)*(0.11009935453872484306413964214093+0.09611582235209313349941978652679+0.02		
Out[2]:	0.07544563383474012		
In []:			