Algèbre II

? - Notes prises par Pierre Gervais January 21, 2017

Contents

1 Espaces affines 2

Exercice 1. Soit G un groupe abélien agissant transitivement sur un ensemble A, alors G agit fidèlement si et seulement s'il agit librement.

Supposons qu'il agisse fidèlement, montrons qu'il agit librement, c'est-à-dire que les stabilisateurs sont réduits à l'élément neutre.

Soient $x, y \in A$, l'action est transitive alors il existe $g \in G$ tel que $y = g \cdot x$, leurs stabilisateurs sont alors conjugués. Or G est abélien, donc leurs stabilisateurs sont égaux. De plus l'intersection des stabilisateurs est égale à tout stabilisateur, et celle-ci est réduite à l'élément neutre ar hypothèse. L'action est donc libre.

1 Espaces affines

Définition 1. Deux espaces affines \mathcal{E} et \mathcal{F} sont dit isomorphes s'il existe une application affine bijective entre eux.

Proposition 1. Soit \mathcal{E} un espace affine, il est isomorphe à $\overrightarrow{\mathcal{E}}$.

En effet, en fixant $O \in \mathcal{E}$, on définit $f: \overrightarrow{\mathcal{E}} \longrightarrow \mathcal{E}$ définie par f(u) := O + u pour tout $u \in \overrightarrow{\mathcal{E}}$

Définition 2. Une suite exacte est une suite de la forme

$$G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} ... G_n$$

où pour tout i, $\ker f_{i+1} = Im(f_i)$

Exemple 1. - Si $\{e\} \to G \xrightarrow{f} H$ est exacte, alors f est injective.

- Si $G \to H \xrightarrow{f} \{e\}$ est exacte, alors f est surjective.
- {groupe des translations} $\to GA(\mathcal{E}) \to_{\varphi} GL(E)$ où φ associe à une application affine son application linéaire associée.

Définition 3. Soit \mathcal{E} un espace affine de dimension E, $(\lambda_i)_{i \leq n}$ des scalaires de somme égale à 1 et $(A_i)_{i \leq n}$, on appelle barycentre des points pondérés $((A_i, \lambda_i))_{i \leq n}$ l'unique point G tel que

$$\sum_{i=1}^{n} \lambda_i \overrightarrow{GA_i} = 0$$

Plus précisément pour tout $O \in \mathcal{E}$

$$\sum \lambda_i \overrightarrow{OA_i} = \overrightarrow{OG}$$

Par convention on note

$$\sum \lambda_i A_i$$

Théorème 1. Soit $\mathcal{F} \subseteq \mathcal{E}$

- 1. \mathcal{F} est un sous-espace affine s'il est stable par barycentre
- 2. $f: \mathcal{E} \longrightarrow \mathcal{F}$ est affine si et seulement si elle préserve les barycentres

Propriété 1. Soit $(A_{i,j})$ une famille de suite de points. de coefficients $(\lambda_{i,j})$, (G_i) leurs barycentres et G le barycentre des barycentres affectés des poids (μ_i) , alors

$$G = \sum \lambda_{j,i} \mu_j A_{j,i}$$