

TESTEO PCR

I_{M} $\theta \alpha$ ρCR_{IM} ρCR_{IM}

 $N_{PCR} = PCR_{IM} + PCR_{IC}$

TESTEO PCR Y RT

$$N_{PCR} = PCR_{IM} + RT_0$$

 β_i =0.01 \rightarrow Tasa de contagio intrahospitalario (desde I_{HR} - I_{UR} - I_{HD} - I_{UD})

 $\beta_M = \beta_C \rightarrow \text{Tasa de transmisión para individuo que circula sin restricciones}$

 $\beta_T \rightarrow \text{Tasa de transmisión de individuos testeados con PCR (se asume igual a <math>\beta_M$)

 $q=80\% \rightarrow Nivel de aislamiento de testeados <math>I_{MT}$

r=65% → Nivel de aislamiento I_{CA}

Tiempos de transición entre Compartimentos

 $1/\omega$ 4.6 Tiempo promedio de incubación

1/α 1 Tempo promedio antes de testear a un individuo con infección moderada

 $1/\gamma_M$ 1.1 Tiempo promedio de un infectado moderado antes de recuperarse tras testeo

 $1/\sigma_{\rm C}$ 3 Tiempo promedio infeccioso antes de aislamiento de un individuo que requerirá hospitalización

 $1/\sigma_{CA}$ 4.1 Tiempo promedio de aislamiento de un individuo que requerirá hospitalización

 $1/\gamma_{HR}$ 9.5 Tiempo promedio en hospitalización genera antes de infectarse

1/v 11.3 Tiempo promedio en UCI antes de pasar a cama de recuperación

 $1/\gamma_R$ 3.4 Tiempo promedio de cama de recuperación antes de darse de alta

 $1/\sigma_{HD}$ 7.6 Tiempo promedio en hospitalización general antes de fallecer

 $1/\sigma_{UD}$ 10.1 Tiempo promedio en UCI antes de fallecer

Probabilidad de evolución de enfermedad distintos estadios de hospitalización

$\delta_{ m M}$	0.97	Probabilidad de ingresar a infecciosos moderados
δ_{HR}	0.70	Probabilidad de ingreso a I _{HR}
$\delta_{ ext{UR}}$	0.12	Probabilidad de ingreso a I _{UR}
$\delta_{\rm HD}$	0.58	Probabilidad de ingreso a I _{HD}
δ_{UD}	1 - δ_{HR} - δ_{UR} - δ_{HD}	Probabilidad de ingreso a I _{UD}

Características de testeos RT y PCR

θ	€ [0,1]	Proporción de individuos I _M testeados por PCR
ξ_{PCR}	0.7	Sensibilidad de prueba PCR
ξ_{RT}	0.5	Sensibilidad de prueba RT

1. Transiciones entre compartimentos

$$\frac{dS}{dt} = -\frac{\beta_M}{N} [I_M + (1-q)I_{MT} + I_{MNT} + I_C + (1-r)I_{CA}]S - \frac{\beta_i}{N} S[I_{HR} + I_{UR} + I_{HD} + I_{UD} + I_R]$$
 (1)

$$\frac{dE}{dt} = \frac{\beta_M}{N} [I_M + (1 - q)I_{MT} + I_{MNT} + I_C + (1 - r)I_{CA}]S + \frac{\beta_i}{N} S[I_{HR} + I_{UR} + I_{HD} + I_{UD} + I_R] - \omega E$$
(2)

$$\frac{dI_M}{dt} = \delta_M \omega E - \alpha I_M \tag{3}$$

$$\frac{dI_{MT}}{dt} = \theta \alpha I_M - \gamma_M I_{MT} \tag{4}$$

$$\frac{dI_{NMT}}{dt} = (1 - \theta)\alpha I_M - \gamma_M I_{NMT} \tag{5}$$

$$\frac{dI_C}{dt} = (1 - \delta_M)\omega E - \sigma_C I_C \tag{6}$$

$$\frac{dI_{CA}}{dt} = \sigma_C I_C - \sigma_{CA} I_{CA} \tag{7}$$

$$\frac{dI_{HR}}{dt} = \delta_{HR}\sigma_{CA}I_{CA} - \gamma_{HR}I_{HR} \tag{8}$$

$$\frac{dI_{UR}}{dt} = \delta_{UR}\sigma_{CA}I_{CA} - \nu I_{UR} \tag{9}$$

$$\frac{dI_{HD}}{dt} = \delta_{HD}\sigma_{CA}I_{CA} - \sigma_{HD}I_{HD} \tag{10}$$

$$\frac{dI_{UD}}{dt} = \delta_{UD}\sigma_{CA}I_{CA} - \sigma_{UD}I_{UD} \tag{11}$$

$$\frac{dI_{IR}}{dt} = \nu I_{UR} - \gamma_R I_R \tag{12}$$

$$\frac{dR}{dt} = \gamma_M (I_{MT} + I_{MNT}) + \gamma_R I_R \tag{13}$$

$$\frac{dD}{dt} = \sigma_{UD}I_{UD} + \sigma_{HD}I_{HD} \tag{14}$$

$$\frac{dN}{dt} = -\sigma_{UD}I_{UD} - \sigma_{HD}I_{HD} \tag{15}$$

2. Testeo con pruebas PCR con capacidad fija para \mathcal{I}_C e \mathcal{I}_M (Hasta Agosto 1)

$$\frac{N_{PCR}}{Pos(t)} = PCR_{IM} + PCR_{IC},$$

• Se calcula el número de PCR en cada tiempo t proporcional al número de individuos que dejan los compartimentos I_M e I_{CA} (i.e. nuevo testeados I_{MT} y nuevos HR, HD, UR, UD):

$$PCR_{IM} = \theta \alpha I_M, \quad PCR_{IC} = \sigma_{CA} I_{CA}$$

• Luego,

$$\theta = \frac{\frac{N_{PCR}}{Pos(t)} - \sigma_{CA}I_{CA}}{\alpha I_{M}}$$

• Si $\frac{N_{PCR}}{Pos(t)} - \sigma_{CA}I_{CA} < 0$, entonces:

$$\theta = 0$$

• Si $\alpha I_M < \frac{N_{PCR}}{Pos(t)} - \sigma_{CA} I_{CA}$, entonces:

$$\theta = 1$$

3. Testeo con pruebas PCR con capacidad fija únicamente para I_M (Desde Agosto 1)

$$\frac{N_{PCR}}{Pos(t)} = PCR_{IM} + RT_0$$

• Se calcula el número de PCR y RT en cada tiempo t proporcional al número de individuos que dejan los compartimentos I_M e I_{CA} (i.e. nuevo testeados I_{MT} y nuevos HR, HD, UR, UD):

$$PCR_{IM} = \theta \alpha I_M, \quad RT = \sigma_{CA} I_{CA}$$

• Así, el número de falsos negativos por RT es:

$$RT_0 = (1 - \xi_{RT})\sigma_{CA}I_{CA}$$

• Luego,

$$\theta = \frac{\frac{N_{PCR}}{Pos(t)} - (1 - \xi_{RT})\sigma_{CA}I_{CA}}{\alpha I_{M}}$$

• Si
$$\frac{N_{PCR}}{Pos(t)} - (1 - \xi_{RT})\sigma_C I_C < 0$$
, entonces:

$$\theta = 0$$

• Si
$$\alpha I_M < \frac{N_{PCR}}{Pos(t)} - (1 - \xi_{RT}) \sigma_C I_C$$
, entonces:

$$\theta = 1$$