8/30/2018

Problem 1

Part a

Here our goal will be to minimize a to show that $a = E[\theta|y]$ is the unique Bayes estimate of θ :

$$\begin{split} \frac{d}{da}E[L(a|y)] &= \frac{d}{da}\int L(\theta,a)p(\theta|y)d\theta \\ &= \frac{d}{da}\int (\theta-a)^2p(\theta|y)d\theta \\ &= -2\int (\theta-a)p(\theta|y)d\theta \\ &= -2\left[\int \theta p(\theta|y)d\theta - a\int p(\theta|y)d\theta\right] \\ &= -2\left[E[\theta|y] - a\right] \end{split}$$

$$-2[E[\theta|y] - a] = 0$$
 when $a = E[\theta|y]$

To prove that it is a unique minimizing statistic, we must look at the second derivative:

$$\frac{d}{da}(-2[E[\theta|y] - a]) = 2$$

As 2 > 0, this shows that it is a unique minimzing statistic.

Part b

Here our goal will be to show that for any median value of a, the derivative of $L(\theta, a)$ will evaluate to 0.

$$\begin{split} \frac{d}{da} \big[E[L(a|y)] \big] &= \frac{d}{da} \bigg[\int_{-\infty}^{a} (a-\theta) p(\theta|y) d\theta + \int_{a}^{\infty} (\theta-a) p(\theta|y) d\theta \bigg] \\ &= \int_{-\infty}^{a} \frac{d}{da} (a-\theta) p(\theta|y) d\theta + \int_{a}^{\infty} \frac{d}{da} (\theta-a) p(\theta|y) d\theta \\ &= \int_{-\infty}^{a} p(\theta|y) d\theta + \int_{a}^{\infty} (-1) p(\theta|y) d\theta \\ &= \int_{-\infty}^{a} p(\theta|y) d\theta - \int_{a}^{\infty} p(\theta|y) d\theta \\ &= \frac{1}{2} - \frac{1}{2} \\ &= 0 \end{split}$$

As a result, it has been shown that any posterior median of θ is a Bayes estimate of θ .

Part c