

11.3 Regional descriptors

• Common practice to combine boundary and regional descriptors

11.3.1 Some simple descriptors

- Area: Number of pixels in region
- Perimeter: Length of boundary
- Compactness: Perimeter²/Area
- Mean and median gray levels
- Min and max gray level values
- Number of pixels with values above or below mean

11.3.2 Topological Descriptors

- Topology: Study of properties of a figure that are unaffected by any deformation
- Euler number: E = C H
 - Number of connected components: *C*
 - Number of holes: *H*

 $\textbf{FIGURE 11.22} \ \ Infrared\ images\ of\ the\ \Delta mericas\ at\ night.\ (Courtesy\ of\ NOAA.)$

Region no. (from top)	Ratio of lights per region to total lights
1	0.204
2	0.640
3	0.049
4	0.107

FIGURE 11.23 A region with two holes.

FIGURE 11.24
A region with three connected components.

a b

FIGURE 11.25

Regions with Euler numbers equal to 0 and -1, respectively.

• Polygonal networks: Euler formula...

$$V - Q + F = C - H$$
$$= E$$

V: Number of vertices

Q: Number of edges

F: Number of faces

FIGURE 11.26 A region containing a polygonal network.

$$7 - 11 + 2 = 1 - 3$$

= -2

Example 11.9

a b c d

FIGURE 11.27

(a) Infrared image of the Washington,
D.C. area.
(b) Thresholded image. (c) The largest connected component of (b). Skeleton of (c).

$$E = C - H$$
$$1552 = 1591 - 39$$

11.3.3 Texture

(1) Statistical approaches (2) Structural approaches (3) Spectral approaches

Statistical approaches

When $p(z_i)$, $i=0,\ldots,L-1$ represents a histogram of gray-levels, the nth moment of z about the mean is

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i)$$

where m is the mean value of z...

$$m = \sum_{i=0}^{L-1} z_i \, p(z_i)$$

Relative smoothness...

$$R(z) = 1 - \frac{1}{1 + \sigma^2(z)}$$

• The third moment...

$$\mu_3(z) = \sum_{i=0}^{L-1} (z_i - m)^3 p(z_i)$$

• The fourth moment...

$$\mu_4(z) = \sum_{i=0}^{L-1} (z_i - m)^4 p(z_i)$$

... measure of histogram's flatness

• Measure of uniformity...

$$U(z) = \sum_{i=0}^{L-1} p^2(z_i)$$

... is maximum for an image in which all grey levels are equal

• Average entropy measure...

$$e(z) = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

... measure of variability and is 0 for a constant image

Measures of texture computed using only histograms suffer from the limitation that they carry no information regarding the relative position of pixels with respect to each other

• Gray-level co-occurrence matrices: READ

Example 11.10: Texture measures based on histograms

a b c

FIGURE 11.28

The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael W. Davidson, Florida State University.)

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	-0.105	0.026	5.434
Coarse	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

TABLE 11.2 Texture measures for the subimages shown in Fig. 11.28.

Structural approaches

A simple "texture primitive" can be used to form more complex texture patterns by means of some rules that limit the number of possible arrangements of the primitive(s)

Spectral approaches

- Three features of Fourier spectrum that is useful for texture description...
- (1) Prominent peaks \rightarrow principal direction of texture patterns
- (2) Location of peaks \rightarrow fundamental spatial period
- (3) Elimination of periodic components \rightarrow non-periodic image elements \rightarrow statistical descriptors

- Spectrum is symmetric about origin \Rightarrow only half of frequency plane needs to be considered \Rightarrow every periodic pattern associated with only one peak
- Consider spectrum in polar coordinates $S(r, \theta)$
 - For each direction θ , consider 1-dimensional $S_{\theta}(r)$
 - ullet For each frequency r, consider 1-dimensional $S_r(heta)$
- More global description obtained by summation...

$$S(r) = \sum_{\theta=0}^{n} S_{\theta}(r)$$
 $S(\theta) = \sum_{r=1}^{R_0} S_r(\theta)$

... where R_0 is the radius of a circle centered at the origin

Descriptors of these functions themselves can be computed in order to characterize their behavior quantitatively, for example...

- (1) location of the highest value
- (2) mean and variance
- (3) distance between mean and highest value

Example 11.12: Spectral texture

a b c d

FIGURE 11.35
(a) and (b) Images of random and ordered objects. (c) and (d) Corresponding Fourier spectra. All images are of size 600 × 600 pixels.

a b c d

FIGURE 11.36 Plots of (a) S(r) and (b) $S(\theta)$ for Fig. 11.35(a). (c) and (d) are plots of S(r) and $S(\theta)$ for Fig. 11.35(b). All vertical axes are $\times 10^5$.

Example in 2nd edition:

Spectral texture

c d

e f

FIGURE 11.24 (a) Image showing periodic texture. (b) Spectrum. (c) Plot of S(r). (d) Plot of $S(\theta)$. (e) Another image with a different type of periodic texture. (f) Plot of $S(\theta)$. (Courtesy of Dr. Dragana Brzakovic, University of Tennessee.)