CS214 -- Algorithm and Complexity

Course Syllabus -- Spring 2019

COURSE INFORMATION:

Time: 10:00 – 11:40, Monday & 16:00 – 17:40, Thursday **Location:** Dong Zhong Yuan 4-103(东中院 4-103)

February 2019 **March 2019 April 2019** Т S M T \mathbf{W} T S S M W T F S S M \mathbf{W} T week F week week F \mathbf{S} (1) (6) (2) (7) (3) (8) (4) (9)(1) (5) (10)

	May 2019							June 2019								
week	S	M	T	W	Т	F	S	week	S	M	Т	W	T	F	S	
(10)				1	2	3	4	(14)							1	Class Day
(11)	5	6	7	8	9	10	11	(15)	2	3	4	5	6	7	8	
(12)	12	13	14	15	16	17	18	(16)	9	10	11	12	13	14	15	Holiday
(13)	19	20	21	22	23	24	25	(17)	16	17	18	19	20	21	22	
(14)	26	27	28	29	30	31		(18)	23	24	25	26	27	28	29	Final Exam Week
									30							

INSTRUCTOR INFORMATION:

Name: Xiaofeng Gao(高晓沨) Office: Telecom Building 3-543

Phone: 021-34207407

Email: gao-xf@cs.sjtu.edu.cn

Office Hour: By appointment (Please mention your class ID and purpose in email beforehand)

Teaching Assistant: Jiahao Fan (范佳豪), Mingran Peng (彭铭燃)

COURSE PREREQUISITES:

Discrete Mathematics, Data Structure, Programming Language

TEXTBOOKS:

- T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009.
- J. Kleinberg, and E. Tardos, Algorithm Design, Pearson-Addison Wesley, 2005.
- S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithm, McGraw-Hill, 2007.

OTHER REFERENCES:

• Algorithm:

- o M. H. Alsuwaiyel, Algorithm Design Technique and Analysis, World Scientific, 1999.
- Alfred V. Aho, John E Hopcroft, Jeffery D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.
- o Udi Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, 1989.
- o Henming Zou, The Way of Algorithms, China Machine Press, 2010.

Computational Complexity:

- o Christos Papadimitriou, Computational Complexity, Addison Wesley, 1994.
- o Theory of Computational Complexity, by Ding-Zhu Du, and Ker-I Ko, published by John Wiley & Sons, Inc., 2000.
- John Martin, Introduction to Languages and the Theory of Computation, McGraw-Hill, 2002.
- Computational Complexity: A Modern Approach, by Sanjeev Arora and Boaz Barak, Cambridge University Press, 2006.

Approximation:

- o Vijay V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001.
- o D.P. Williamson and D.B. Shmoys, The Design of Approximation Algorithms, 2011.
- o D.Z Du, K-I. Ko, X.D. Hu, Design and Analysis of Approximation Algorithms, 2012.

EVENTS AND GRADING:

The final grade will be derived from your performance on the tests, and assignments. The class participation is shown as follows:

Events:		. <u>(</u>	Frading Policy:	
Midterm Exam	30%	9	00-100%	A
Final Exam	30%	8	80-89%	В
Assignments	30%	7	70-79%	C
Class Participation	10%	ϵ	60-69%	D
Total	100%		59% and below	F

WEBPAGE AND MATERIALS:

- All the class materials (slides, references), homework assignments, announcements, and other information can be seen from http://cs.sjtu.edu.cn/~gao-xf/Teaching/
- Please check the webpage often to get the up-to-date information.

INSTRUCTOR/COURSE POLICIES

Common Sense Notices

- Please attend every class and do not be late. **15-minute** late attendance is considered absent.
- Please turn off all cell phones, buzzers, and other noisy electronic devices during class time.
- Please show common courtesy to your fellow classmates and professor.

Homework

- English only.
- **Electronic Submission only.**
- Late assignments. Every effort should be made to hand assignments by the due date and time. NO late submission is accepted. Missed work will result in a grade of ZERO.
- Academic dishonesty. Your work must be your own. Cheating will result in a grade of 0 for the applicable assignment; further disciplinary action, including assigning a failing grade for the entire course and reporting your name to the department may also be taken.

Computer Practical Report

- **English only.**
- **Electronic Submission only.**
- Include source code and other required materials (like data testing results, samples, etc.).

Email Netiquette

- My response will be irregular on the weekend or when I am away from campus.
- When you email me you should consider the email as official correspondence. As such, the email should not appear as a text message but should have proper grammar and punctuation. The email title should include: **Class ID/Your Purpose.** An example is below.

(Email Title: [CS214] Want a material for midterm)

Dear Dr. Gao,

My name is John Smith. I'm from your class CS214-Algorithm. I will not attend tomorrow's class due to sickness. Can you send me a copy of the midterm review so I may use it as a study tool? Thanks a lot.

Sincerely Yours,

John Smith

SID: 509030XXXX

Department of Computer Science and Engineering

Shanghai Jiao Tong University Email: JohnSmith@gmail.com

TENTATIVE SCHEDULE: (These dates could be changed depending upon the pace of the course)

Week	Date	Lecture Topic	Event				
1	Feb.25	Algorithm Design and Analysis Sorting Algorithm, Time Complexity, Space Complexity, etc.					
	Feb.28	Amortized Analysis Aggregate Analysis, Accounting Method, Potential Method, Dynamic Table, etc.	Lab-01				
2	Mar.04	Divide-and-Conquer (1) Mergesort, Selection, Master's Theorem, etc.					
	Mar.07	Divide-and-Conquer (2) Sorting Network, etc.	Lab-02				
3	Mar.11	Greedy Approach (1) Interval Scheduling, Interval Partitioning, Minimum Lateness, etc.					
	Mar.14	Greedy Approach (2) Matroid, Greedy-Max Algorithm, etc.	Lab-03				
4	Mar.18	<u>Dynamic Programming (1)</u> Weighted Interval Scheduling, Segmented Least Squares, Knapsack, etc.					
	Mar.21	RNA Secondary Structure, Sequence Alignment, Minimum Spanning Tree, etc.					
5	Mar.25	Graph Algorithms (2) Searching and Exploration, etc.					
3	Mar.28	Graph Algorithms (3) Single Source Shortest Paths (Greedy & DP), All-Pair Shortest Paths, etc.	Lab-05				
6	Apr.01	Graph Algorithms (4) Flow Problem, Maximum Flow, Minimum Cut, etc.					
	Apr.04	<u>Linear Programming</u> Basic Form, Duality Theory, Simplex Algorithm, etc.	Lab-06				
7	Apr.08	N/: 14					
	1	Midterm Exam Turing Machine	Midterm				
0	Apr.15	Computability, Turing Machine, etc.					
8	Apr.18	NP-Completeness (1) NP class, Polynomial time, etc.	Lab-07				
0	Apr. 22	NP-Completeness (2) Reducibility, Proofs, etc.					
9	Apr. 25	NP-Completeness (3) Reducibility, Proofs, etc.	Lab-08				
10	Apr. 29	Approximation (1) Approximation Ratio, Approximation Class, Greedy Algorithm, etc.					
	May.2	Approximation (2) Local Search, LP+Rounding (Deterministic & Randomized), etc.	Lab-09				
11	May.6	Randomized Algorithm (1) Max-3SAT Approximation, Universal Hashing, etc.					
11	May.9	Randomized Algorithm (2) Load Balancing, Exercises, etc.	Lab-10				
12	May.13						
12	May.16	Online Algorithm (2) + Final Review TBD.	Lab-11				