

Introduction to Data Mining

Lecture #13: Frequent Itemsets-2

U Kang Seoul National University

Outline

- **→** □ A-Priori Algorithm
 - □ PCY Algorithm
 - ☐ Frequent Itemsets in ≤ 2 Passes

A-Priori Algorithm – (1)

- A two-pass approach called A-Priori limits the need for main memory
- Key idea: *monotonicity*
 - If a set of items *I* appears at least *s* times, so does every subset *J* of *I*
 - E.g., if {A,C} is frequent, then {A} is frequent (so does {C})
- Contrapositive for pairs:
 - If item i does not appear in s baskets, then no pair including i can appear in s baskets
 - □ E.g., if {A} is not frequent, then {A,C} is not frequent
- So, how does A-Priori find freq. pairs?

3

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items
- Items that appear $\geq s$ times are the frequent items
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)

Main-Memory: Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = number of frequent items
 - Why?
 - => May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Pass 1

Pass 2

Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - □ C_k = candidate k-tuples = those that might be frequent sets (support \geq s) based on information from the pass for k-1
 - \Box L_k = the set of truly frequent k-tuples

Example

Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- □ Count the support of itemsets in C₁
- □ Prune non-frequent: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- □ Count the support of itemsets in C₂
- □ Prune non-frequent: $L_2 = \{ \{b,c\} \{b,m\} \{c,j\} \{c,m\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- □ Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$

** Note here we generate new candidates by generating C_k from L_{k-1} .

But one can be more careful with candidate generation. For example, in C_3 we know {b,m,j} cannot be frequent since {m,j} is not frequent

Generating C₃ From L₂

- Assume {x1, x2, x3} is frequent.
- Then, {x1,x2}, {x1, x3}, {x2, x3} are frequent, too.
- = > if any of {x1,x2}, {x1, x3}, {x2, x3} is NOT frequent, then {x1, x2, x3} is NOT frequent!

- So, to generate C_3 from L_2 ,
 - □ Find two frequent pairs in the form of {a, b}, and {a, c}
 - This can be done efficiently if we sort L₂
 - Check whether {b,c} is also frequent
 - □ If yes, include {a,b,c} to C₃

A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable minimum support (e.g., 1%), k = 2 requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 60 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter → FruitJam
 - BakedGoods, MilkProduct → PreservedGoods
- Lower the min. support s as itemset gets bigger

Outline

- A-Priori Algorithm
- **→** □ PCY Algorithm
 - ☐ Frequent Itemsets in ≤ 2 Passes

PCY (Park-Chen-Yu) Algorithm

- Observation:
 - In pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
 - Can we use the idle memory to reduce memory required in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
 - Keep a count for each bucket into which pairs of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!

PCY Algorithm – First Pass

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

Few things to note:

- Pairs of items need to be generated from the input file;
 they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times

Example

Assume min. support = 10

- \Box Sup(1,2) = 10
- \square Sup(3,5) = 10
- \square Sup(2,3) = 5
- \square Sup(1,5) = 4
- \square Sup(1,6) = 7
- \Box Sup(4,5) = 8

{1,2} {3,5}

{2,3} {1,5}

{1,6} {4,5}

Total count: 20

Total count: 9

Total count: 15

Note that {2,3}, and {1,5} cannot be frequent itemsets. (Why?)

Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent ☺
 - So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent ©
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
 - E.g., even though {A}, {B} are frequent, count of the bucket containing {A,B} might be < s

■ Pass 2:

Only count pairs that hash to frequent buckets

U Kang

15

PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support s
 (call it a frequent bucket); 0 means it did not
- 4-byte integer counts are replaced by bits,
 so the bit-vector requires 1/32 of memory
- Also, decide which items are frequent and list them for the second pass

PCY Algorithm – Pass 2

- Count all pairs $\{i, j\}$ that meet the conditions for being a candidate pair:
 - Both i and j are frequent items
 - The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)
 - Both conditions are necessary for the pair to have a chance of being frequent

Main-Memory: Picture of PCY

Main-Memory Details

Buckets require a few bytes each:

- \square Note: we do not have to count past s
 - If s < 256, then we need at most 1 byte for a bucket
- #buckets is O(main-memory size)
 - Large number of buckets helps. (How?)
 - => decreases false positive

Refinement: Multistage Algorithm

- Limit the number of candidates to be counted
 - Remember: Memory is the bottleneck
 - We only want to count/keep track of the ones that are frequent
- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
 - i and j are frequent, and
 - [i, j] hashes to a frequent bucket from Pass 1
- On middle pass, fewer pairs contribute to buckets, so fewer false positives
- Requires 3 passes over the data

Main-Memory: Multistage

Pass 1

Count items
Hash pairs {i,j}

Pass 2

Hash pairs {i,j}
into Hash2 iff:
i,j are frequent,
{i,j} hashes to
reg. bucket in B

Pass 3

Count pairs {i,j} iff: i,j are frequent, {i,j} hashes to freq. bucket in B1 {i,j} hashes to freq. bucket in B2

21

freq. bucket in B1 {i,j} hashes to 질문: B1에 있는 것을 뽑아서 다시 Hashing하는 것이고 그 결과가 B2인데 B1을 가지고 있을 필요가 있느냐? freq. bucket in B2 답변: False positive를 막기 위해서? 같은 곳에 들어갔을 때?

Multistage – Pass 3

- Count only those pairs $\{i, j\}$ that satisfy these candidate pair conditions:
 - Both i and j are frequent items
 - Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
 - Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is **1**

Important Points

- The two hash functions have to be independent
- 2. We need to check both hashes on the third pass
 - If not, we may end up counting pairs of items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket

Refinement: Multihash

- Key idea: Use several independent hash tables on the first pass
- Risk: Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s
- If so, we can get a benefit like multistage, but in only 2 passes

Main-Memory: Multihash

PCY: Extensions

- Either multistage or multihash can use more than two hash functions
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
 - If we spend too much space for bit-vectors, then we run out of space for candidate pairs
- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions make all counts > s

Outline

- A-Priori Algorithm
- PCY Algorithm
- **→** □ Frequent Itemsets in < 2 Passes

Frequent Itemsets in < 2 Passes

 A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- Can we use fewer passes?
- Method that uses 2 or fewer passes for all sizes:
 - Random sampling
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen (see textbook)

Random Sampling (1)

Take a random sample of the market baskets

Data양이 너무 많으니까 sampling해서 memory위에 올리고 결과를 찾도록 하자.

- Run a-priori or one of its improvements in main memory
 - So we don't pay for disk I/O each time we increase the size of itemsets
 - Reduce min. support proportionally to match the sample size

Main memory

Copy of sample baskets

Space for counts

Random Sampling (2)

 Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass (avoid false positives)

- But you don't catch sets frequent in the whole but not in the sample (cannot avoid false negatives)
 - □ Smaller min. support, e.g., s/125, helps catch more truly frequent itemsets

SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - We are not sampling, but processing the entire file in memory-sized chunks
 - Min. support decreases to (s/k) for k chunks
- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.

SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
 - □ Task: find frequent (>= s) itemsets among n baskets
 - n baskets divided into k subsets
 - Load (n/k) baskets in memory, look for frequent (>= s/k)
 pairs

SON – Distributed Version

- SON lends itself to distributed data mining
- Baskets distributed among many nodes
 - Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates

SON: Map/Reduce

■ Phase 1: Find candidate itemsets

- Map? each machine finds frequent itemsets for the subset of baskets assigned to it
- Reduce? Collect and output candidate frequent itemsets (remove duplicates)

Phase 2: Find true frequent itemsets

- Map? Output (candidate_itemset, count) for the subset of baskets assigned to it
- Reduce? Sum up the count, and output truly frequent (>= s) itemsets

Summary

- Frequent Itemsets
 - One of the most 'classical' and important data mining task
- Association Rules: {A} -> {B}
 - Confidence, Support, Interestingness
- Algorithms for Finding Frequent Itemsets
 - A-Priori
 - PCY
 - <= 2-Pass algorithm: Random Sampling, SON</p>

Questions?