

What is computer vision?

Computer vision

From CS131 course "computer vision", Prof. Fei-Fei Li, Stanford 'Vision'Lab

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Plan

- · What is computer vision?
 - Concepts and definitions
 - Levels of vision (Low level vision, Middle level vision, High level vision)
- Related fields
- · Applications areas

The goal of computer vision

• To bridge the gap between pixels and "meaning"

0	3	2	5	4	7	6	9	8
3	0	1	2	3	4	5	6	7
2	1	0	3	2	5	4	7	6
5	2	3	0	1	2	3	4	5
4	3	2	1	0	3	2	5	4
7	4	5	2	3	0	1	2	3
6	5	4	3	2	1	0	3	2
9	6	7	4	5	2	3	0	1
				$\overline{\Box}$	$\overline{\Box}$		ā	_

What we see

What a computer sees

SO DE OF INFORMATION AND COMMUNICATION TECHNOLOGY

Source: S. Narasımı

What kind of information can we extract from an image?

- Metric 3D information
- Semantic information

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Vision as a source of semantic information

Vision as measurement device

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

What is computer vision?

- Computer vision
 - Is an interdisciplinary scientific field that deals with how computers can be made to gain high-level understanding from digital images or videos.
 - From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
- · Computer vision tasks include
 - methods for acquiring, processing, analyzing and understanding digital images,
 - and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions. (Wikipedia).

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

_

What is computer vision?

- The two definitions of CV can be defined as a scientific field that extracts information out of digital images.
- · Another way to define CV is through its applications.
 - Computer vision is building algorithms that can understand the content of images and use it for other application [3].

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

What is computer vision?
Levels of vision

- Middle-level Vision: Feature, Image matching
 - Feature extraction: Image features at various levels of complexity are extracted from the image data. Examples of such features: Edges, ridges, lines, texture, shape ...
 - Image matching
 - Image segmentation

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

What is computer vision? Levels of vision

- Low-level Vision: Image Formation, Acquisition, Image Processing
 - Image formation studies the forward process of producing images and videos
 - Image acquisition:
 - A digital image is produced by several image sensors
 - Depending on the type of sensor, the resulting *image data* is an ordinary 2D image, a 3D volume, or an image sequence.
 - Image processing focuses on 2D image data processing using point operators such as contrast enhancement, filtering (local operations), noise reduction, image transforms. Image processing is considered as pre-processing that is usually necessary to process the image data for CV applications
 - Work with image as a matrix
 - · Input: image → output: image

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3D urban modeling

Bing maps, Google Streetview

Source: S. Seitz

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

_

What is computer vision? Levels of vision

- · High-level Vision: High-level vision is to infer the semantics, for example, object recognition and scene understanding.
- · Several application topics:
 - Object recognition (classification), Identification
 - Detection
 - Motion analysis
 - Scene reconstruction; 3D reconstruction

2.5D Object Surfaces

Related fields

Source: From EECS 432-Advanced Computer Vision, Northwestern University

Related fields

Computer vision at the intersection of multiple scientific fields [3]

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Related fields

- Machine Learning: "The field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel
- Artificial intelligence and computer vision share other topics such as pattern recognition and learning techniques.
- · Computer vision Deep learning: Artificial Neural Networks with many layers (CNN: Convolutional Neural Network)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Applications areas

Robotics Application

- Localization-determine robot location automatically
- Navigation
- Obstacles avoidance
- Assembly peg in hole, welding, painting
- Manipulation e. g. PUMA robot manipulator
- Human Robot Interaction HRI: Intelligent robotics to interact with and serve people

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Examples Face Detection

Source: from S. Seitz

SOICT SCH

Applications areas

Security Application

- Biometrics iris, fingerprint, face recognition
- Surveillance-detecting certain suspicious activities or behaviors

rint coonnors

Face recognition systems

Source: from S. Seitz

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Examples of Computer Vision

Slide from Vicente Ordonez

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

_

Applications areas

Medicine Application

- Classification and detection e. g.
- 2D/3D segmentation
- 3D human organ reconstruction MRI or ultrasound
- Vision-guided robotics surgery

Slide from Jason Lawrence

Facebook's suggestion

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Applications areas

Industrial Automation Application

- Industrial inspection defect detection
- Barcode and package label reading
- Object sorting
- Document understanding e. g. OCR

Transportation Application

- Autonomous vehicle
- Safety, e.g., driver vigilance monitoring

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Examples **Toys and Robots**

Examples Optical character recognition (OCR)

http://en.wikipedia.org/wiki/Automatic_number_pl ate recognition

Source: from S. Seitz

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

