数学建模

Mathematical Modeling

清华大学 姜启源

从包汤圆 (饺子) 说起

《入通常,1公斤馅,1公斤面,包100个汤圆(饺子). 今天,多于1公斤馅,1公斤面,应多包几个(小的),

还是少包几个(大的)?

问题

圆面积为S的一个皮,包成体积为V的汤圆。 若分成n个皮,每个圆面积为s,包成体积为v。

问V<nv? V>nv? V=nv?

从包汤圆 (饺子) 说起

假设

1. 皮的厚度一样 2. 汤圆(饺子) 的形状一样

模型

S = ns

S=k₁R², V=k₂R³, R~大皮的半径 $s=k_1r^2$, $v=k_2r^3$, $r\sim$ 小皮的半径

 \Rightarrow V=n^{1/2}(nv) V>nv (n>1)

应用 (定量结果) V 比nv大n^{1/2}倍

50个汤圆(饺子) 可以包1.4公斤馅

数学建模课程的由来

- 数学知识和能力的培养 ~ "算数学"与"用数学"
- 数学教学体系和内容的改革
- 从20世纪六、七十年代(西方)到八、九十年代(我国) 数学建模课程的产生与发展

开设数学建模课程的目的

引起注意 激发兴趣 介绍方法 培养能力

第一章 建立数学模型

- §1 从现实对象到数学模型
- § 2 数学建模示例
- § 3 数学建模的方法和步骤

§1 从现实对象到数学模型

1. 我们常见的模型

玩具、照片、飞机、火箭模型... ~实物模型

水箱中的舰艇、风洞中的飞机... ~物理模型

地图、电路图、分子结构图... ~符号模型

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物。

模型集中反映了原型中人们需要的那一部分特征。

2. 你碰到过的数学模型—"航行问题"

甲乙两地相距750公里,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少。

用 x 表示船速, v 表示水速, 列出方程:

$$(x + y) \times 30 = 750$$

$$(x - y) \times 50 = 750$$

求解得到 x=20, y=5, 答: 船速每小时20千米

航行问题建立数学模型的基本步骤

- •作出简化假设(船速、水速为常数):
- •用符号表示有关量(x,y表示船速和水速);
- •用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程):
- ·求解得到数学解答(x=20, y=5);
- •回答原问题(船速每小时20千米)。

3. 数学模型 (Mathematical Model) 和 数学建模 (Mathematical Modeling)

数学模型:对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。

> 数学建模:建立数学模型的全过程 (包括表述、求解、解释、检验等)

4. 数学建模的重要意义

- •电子计算机的出现及飞速发展;
- •数学以空前的广度和深度向一切领域渗透。

数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。

- •在一般工程技术领域数学建模仍然大有用武之地;
- 在高新技术领域数学建模几乎是必不可少的工具;
- •数学进入一些新领域,为数学建模开辟了许多处女地。

§ 2 数学建模示例

1. 椅子能在不平的地面上放稳吗

问题分析 通常—三只脚着地 放稳—四只脚着地

模型假设

- •四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;
- 地面高度连续变化,可视为数学上的连续曲面;
- •地面相对平坦,使椅子在任意位置至少三只脚同时着地.
- 1. 椅子能在不平的地面上放稳吗

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

• 椅子位置 利用正方形(椅脚连线)的对称性 β'用θ(对角线与x轴的夹角)表示椅子位置

• 四只脚着地

着地—- 椅脚与地面距离为零 距离是θ的函数

四个距离(四只脚)

正方形对称性

两个距离

正方形ABCD 绕O点旋转

A,C 两脚与地面距离之和 $\sim f(\theta)$

B,D 两脚与地面距离之和 \sim g(θ)

1. 椅子能在不平的地面上放稳吗

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

 $f(\theta)$, $g(\theta)$ 是 θ 的连续函数(假设2)

 $f(\theta)$, $g(\theta)$ 至少一个为零(对任意 θ ,假设3)

设 θ =0时, $f(\theta) > 0$, $g(\theta)$ =0

数学 问题 已知: $f(\theta)$, $g(\theta)$ 是 θ 的连续函数, 对任意 θ ,

 $f(\theta) \cdot g(\theta) = 0$, $\exists g(0) = 0$, f(0) > 0.

证明: 存在 θ_0 , 使 $f(\theta_0) = g(\theta_0) = 0$.

1. 椅子能在不平的地面上放稳吗

模型求解

给出一种证明方法

将椅子旋转90°,对角线AC和BD互换。

由g(0)=0,f(0)>0,知 $f(\pi/2)=0$, $g(\pi/2)>0$.

 \diamondsuit h(θ)= f(θ)-g(θ), 则h(θ)>0和h(π /2)<0.

由 f, g的连续性知 h为连续函数,据连续函数的基本性质,必存在 θ_0 ,使h(θ_0)=0,即f(θ_0)=g(θ_0).

因为 $f(\theta_0) \cdot g(\theta_0) = 0$, 所以 $f(\theta_0) = g(\theta_0) = 0$.

评注和思考

建模的关键~ θ 和 $f(\theta)$, $g(\theta)$ 的确定

假设条件的本质与非本质 考察四脚呈长方形的椅子

2. 商人们怎样安全过河

问题(智力游戏)

随从们密约, 在河的任 一岸,一旦随从的人数 比商人多,就杀人越货.

但是乘船渡河的方案由商人决 定. 商人们怎样才能安全过河?

ΔΔΔ 3名商人

××× 3名随从

问题分析 多步决策过程

决策~每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多), 经有限步使全体人员过河

2. 商人们怎样安全过河

模型构成

 x_k ~第k次渡河前此岸的商人数 x_k, y_k =0,1,2,3;

 y_k ~第k次渡河前此岸的随从数 k=1,2,...

 $s_k = (x_k, y_k)$ ~过程的状态 $S \sim 允许状态集合$

 $S=\{(x,y)| x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2\}$

 u_{ι} ~第k次渡船上的商人数 u_{ι} , v_{ι} =0,1,2;

 v_k ~第k次渡船上的随从数 k=1,2,...

 $d_k = (u_k, v_k)$ ~决策 D={(u, v)| u+v=1, 2} ~允许决策集合 $s_{k+1}=s_k+(-1)^kd_k$ ~状态转移律

多步决 策问题

 $求d_k \in D(k=1,2,...n)$, 使 $s_k \in S$ 按转移律 曲s₁=(3,3)到达s_{n+1}=(0,0).

2. 商人们怎样安全过河

 $S=\{(x, y)| x=0, y=0,1,2,3;$

x=3, y=0,1,2,3; x=y=1,2}

模型

• 穷举法~ 编程上机

求解

•图解法

状态s=(x,y)~16个格点 允许状态 ~10个◎点 允许决策~移动1或2格; k奇,左下移; k偶,右上移.

d₁, ...d₁₁给出安全渡河方案

评注和思考

规格化方法, 易于推广 考虑4名商人各带一随从的情况

3. 如何预报人口的增长

背景

世界人口增长概况

年	1625	1830	1930	1960	1974	1987	1999	
人口(亿)	5	10	20	30	40	50	60	

中国人口增长概况

年	1908	1933	1953	1964	1982	1990	1995
人口(亿)	3	4.7	6	7	10.1	11.3	12

研究人口变化规律

控制人口过快增长

指数增长模型

常用的计算公式 今年人口 x0, 年增长率 r

马尔萨斯 (1766--1834) 提出的指数增长模型 (1798)

$$x(t)$$
~时刻 t 人口 r ~人口(相对)增长率(常数)

$$x(t + \Delta t) - x(t) = rx(t)\Delta t$$

$$x(t) = x_0 e^{rt}$$

$$\frac{dx}{dt} = rx, \ x(0) = x_0$$
 $x(t) = x_0(e^r)^t \approx x_0(1+r)^t$

随着时间增加人口按指数规律无限增长

指数增长模型的应用及局限性

- 与19世纪以前欧洲一些地区人口统计数据吻合
- 适用于19世纪后迁往加拿大的欧洲移民后代
- 可用于短期人口增长预测
- 不符合19世纪后多数地区人口增长规律
- 不能预测较长期的人口增长过程

19世纪后人口数据 ➡人口增长率r不是常数(逐渐下降)

阻滞增长模型 (Logistic模型)

人口增长到一定数量后,增长率下降的原因:

资源、环境等因素对人口增长的阻滞作用

且阻滞作用随人口数量增加而变大 🖒 r是x的减函数

假定: r(x) = r - sx (r, s > 0) $r \sim 固有增长率(x很小时)$

 x_m ~人口容量(资源、环境能容纳的最大数量)

$$\Rightarrow r(x_m) = 0 \Rightarrow s = \frac{r}{x_m} \qquad r(x) = r(1 - \frac{r}{x_m})$$

$$r(x) = r(1 - \frac{x}{x_m})$$

模型的参数估计

用指数增长模型或阻滞增长模型作人口预报, 必须先估计模型参数 r 或 r, x_m

• 利用统计数据用最小二乘法作拟合

例:美国人口数据(单位~百万)

1790 1800 1810 1820 1830 1950 1960 1970 1980 9.6 12.9 150.7 179.3 204.0 226.5 3.9

 $r=0.2072, x_m=464$

• 专家估计

模型检验

用模型预报1990年美国人口,与实际数据比较

 $x(1990) = x(1980) + \Delta x = x(1980) + rx(1980)[1 - x(1980)/x_m]$

 $\Rightarrow x(1990) = 250.5$

实际为251.4 (百万)

模型应用——人口预报

用美国1790~1990年人口数据重新估计参数

 $\implies r=0.2083, x_m=457.6 \implies x(2000)=275.0$

Logistic模型在经济领域中的应用(如耐用消费品的售量)

§ 3 数学建模的方法和步骤

1. 数学建模的基本方法

•机理分析

根据对客观事物特性的认识, 找出反映内部机理的数量规律

•测试分析

将研究对象看作"黑箱",通过对量测数据 的统计分析,找出与数据拟合最好的模型

•二者结合 机理分析建立模型结构,测试分析确定模型参数

机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析

2. 数学建模的一般步骤

模型假设

针对问题特点和建模目的

作出合理的、简化的假设

在合理与简化之间作出折中

模型构成

用数学的语言、符号描述问题

发挥想象力

使用类比法

尽量采用简单的数学工具

2. 数学建模的一般步骤

模型求解

各种数学方法、数学软件和计算机技术

模型 分析 如结果的误差分析、模型对数据的稳定性分析

模型检验

与实际现象、数据比较, 检验模型的合理性、适用性

模型应用

3. 怎样学习数学建模

数学建模与其说是一门技术,不如说是一门艺术

技术大致有章可循 艺术无法归纳成普遍适用的准则

想象力 洞察力 判断力

- 学习、分析、评价、改进别人作过的模型
- 亲自动手。认真作几个实际题目

参考书目

课本: "数学模型" (第二版), 姜启源编

- 参考书 "数学模型", 谭永基等编
 - "数学模型与数学建模", 刘来福等编
 - "数学模型"(第二版),任善强等编
 - "数学建模的理论与实践", 吴翊等编
 - 全国大学生数学建模竞赛辅导教材(一),(二),(三),叶其孝主编
 - 数学建模竞赛教程, 李尚志主编

数学建模竞赛 (Mathematical Contest in Modeling) 简介

内容 • 赛题:工程技术、管理科学中经过简化的实际问题

• 答卷: 一篇包含模型假设、建立、求解、计算方法设计和 计算机实现、结果分析和检验、模型改进等方面的论文

形式

- •3名大学生组队,在3天内完成的通讯比赛
- •可使用任何"死"材料(图书、计算机、软件、互联网等),但不得与队外任何人讨论

标准

假设的合理性,建模的创造性,结果的正确性, 表述的清晰程度

宗旨

创新意识 团队精神 重在参与 公平竞争

数学建模竞赛 (Mathematical Contest in Modeling) 简介

美国大学生数学建模竞赛

- •1985年开始举办,每年一次(2月);现称作"国际竞赛"
- •我国(我校)大学生1989年开始每年都参加,用英文答卷
- 1999年有9个国家(地区)223所学校479队参赛,其中 我国有43所学校155队
- 1996年起,复旦、中国科大、华东理工、清华、浙大 先后荣获最高奖
- 每年赛题和优秀答卷刊登于同年 UMAP第3期

数学建模竞赛 (Mathematical Contest in Modeling) 简介

全国大学生数学建模竞赛

- •1992年由中国工业与应用数学学会(CSIAM)组织第一次竞赛
- •1994年起由教育部高教司和CSIAM共同举办,每年一次(9月)
- 2000网易杯全国大学生数学建模竞赛有27省(市、自治区) 510所学校的3168队参加,将于9月26日至28日举行.
- 每年赛题和优秀答卷刊登于次年"数学的实践与认识"第1期
- •全国竞赛组委会设在清华大学数学系(理科楼1101)
- 网址: http://csiam.edu.cn/mcm/

网易网址: www.163.com 教育频道