

Aplicações de Processamento Digital de Sinais - 4456S-04

Experiência E12: Reconhecimento de padrões em imagens - Transformada de Hough

Objetivos

- a) Detecção de curvas em imagens utilizando a transformada de Hough.
- b) Identificar os principais recursos do MATLAB para aplicações em DSP.

<u>Introdução</u>

A transformada de Hough é um algoritmo que permite encontrar formas geométricas parametrizáveis em imagens de forma eficiente. A ideia original é a determinação de subconjuntos de pixels que pertencem a bordas através do mapeamento entre o espaço da imagem e o espaço de parâmetros utilizado.

Um exemplo do uso da transformada de Hough é o procedimento para detecção de retas descrito a seguir. Considerando a equação geral de uma reta $y_i = ax_i$ + b, infinitos valores de (a, b) satisfazem a mesma para um determinado ponto (x_i, y_i) . Neste caso, uma solução seria encontrar as retas comuns para cada par de pontos da imagem e determinar os pixels que se encontram sobre as mesmas (retas com mesmos valores de a e b), o que seria computacionalmente oneroso. Por outro lado, escrever a equação da reta na forma polar como $x_i \cos \theta + y_i \sin \theta = \rho$, conforme representado na Figura 1a, permite uma solução mais eficiente. De acordo com a Figura 1b, o mapeamento de cada pixel do plano xy da imagem para o plano $\rho\theta$ gera uma forma senoidal que representa a família de retas que podem passar pelo ponto em questão. Os pontos de intersecção das curvas senoidais representam retas que passam simultaneamente por mais de um ponto da imagem. A Figura 1c representa a quantização do espaço $\rho\theta$ em células denominadas acumuladoras. Para cada ponto (x_i y_i), o ângulo θ_k é variado do entre -90° e +90° e determinado o respectivo valor de ρ_k , o qual ficará restrito ao intervalo de –*D* até *D*, onde *D* o comprimento da reta diagonal da imagem. O acumulador correspondente à (θ_k, ρ_k) é então incrementado e, ao final do processo, seu valor indicará o número de pontos que pertencem à reta $x \cos \theta_k + y$ sen $\theta_k = \rho_k$.

Figura 1- Parametrização de uma reta em coordenadas polares e mapeamento para o plano $\rho\theta$ (Gonzalez e Woods, 2010).

A transformada de Hough pode ser aplicada a qualquer função da forma $g(\mathbf{v}, \mathbf{c})$, onde \mathbf{v} é o vetor de coordenadas dos pixels da imagem e \mathbf{c} é o vetor de parâmetros relacionado com o modelo escolhido. Para o caso de uma circunferência, pode-se

utilizar o modelo apresentado pela equação (1). Neste caso, a existência de três parâmetros (c_1 , c_2 e c_3), implica células acumuladoras tridimensionais, sendo o procedimento geral basicamente o mesmo utilizado para o caso de retas.

$$(x-c_1)^2 + (y-c_2)^2 = c_3^2$$
 (1)

Atividade Prática

- a) Carregar o *script Exp12a.m* e verificar o resultado da aplicação da transformada de Hough para os cinco pontos não nulos presentes na imagem (centro e cantos). Verificar quantas linhas poderiam estar presentes na imagem e se a transformada indica as mesmas.
- b) Carregar o *script Exp12b.m* e verificar o resultado da aplicação da transformada de Hough para identificação das formas geométricas presentes na imagem *formas1.bmp*.
- c) Modificar o *script Exp12b.m* para identificação dos círculos na imagem *formas2.bmp*.