CS447: Natural Language Processing

http://courses.engr.illinois.edu/cs447

Lecture 17: More on PCFG parsing

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

Probabilistic Context-Free Grammars

For every nonterminal X, define a probability distribution $P(X \rightarrow \alpha \mid X)$ over all rules with the same LHS symbol X:

S	\rightarrow NP VP	0.8
S	ightarrow S conj S	0.2
NP	ightarrow Noun	0.2
NP	ightarrow Det Noun	0.4
NP	ightarrow NP PP	0.2
NP	ightarrow NP conj NP	0.2
VP	ightarrow <code>Verb</code>	0.4
VP	ightarrow Verb NP	0.3
VP	ightarrow Verb NP NP	0.1
VP	ightarrow VP PP	0.2
PP	\rightarrow P NP	1.0

2

Transforming a PCFG to Chomsky Normal Form

S -	\rightarrow NP VP	0.8
S -	ightarrow S conj S	0.2
NP -	ightarrow Noun	0.2
NP -	ightarrow Det Noun	0.4
NP -	\rightarrow NP PP	0.2
NP -	ightarrow NP conj NP	0.2
VP -	→ Verb	0.3
VP -	ightarrow Verb NP	0.3
VP -	ightarrow Verb NP NP	0.1
VP -	\rightarrow VP PP	0.3
PP -	ightarrow Prep NP	1.0
Prep	\rightarrow P	1.0
Noun	\longrightarrow N	1.0
Verb	\longrightarrow V	1.0

This grammar is not in Chomsky Normal Form:

- Ternary rules, e.g: S → S conj S
- RHS with nonterminals and terminals
 S → S conj S
- Unary rules from one nonterminal to another, e.g.:
 VP → Verb

Transforming a PCFG to Chomsky Normal Form

$ extsf{S} \longrightarrow extsf{NP VP}$	0.8	S	\longrightarrow	NP VP	0.8
$\mathtt{S} \longrightarrow \mathtt{S} \hspace{0.1cm} \mathtt{conj} \hspace{0.1cm} \mathtt{S}$	0.2	S	\longrightarrow	S conjS	0.2
$ ext{NP} ightarrow ext{Noun}$		conjS	\longrightarrow	Conj S	1.0
	0.2	NP	\longrightarrow	N	0.2
$ exttt{NP} \longrightarrow exttt{Det Noun}$	0.4	NP	\longrightarrow	Det Noun	0.4
$ exttt{NP} \longrightarrow exttt{NP} exttt{PP}$	0.2	NP	\longrightarrow	NP PP	0.2
$ exttt{NP} \longrightarrow exttt{NP conj NP}$	0.2	NP	\longrightarrow	NP conjNP	0.2
$ exttt{VP} \longrightarrow exttt{Verb}$	0.3	conjNP	\longrightarrow	Conj NP	1.0
$ exttt{VP} \longrightarrow exttt{Verb} exttt{NP}$	0.3	VP	\longrightarrow	V	0.3
$ exttt{VP} \longrightarrow exttt{Verb} exttt{NP} exttt{NP}$	0.1	VP	\longrightarrow	Verb NP	0.3
		VP	\longrightarrow	Verb NPNP	0.1
$ extsf{VP} \longrightarrow extsf{VP} extsf{PP}$	0.3	NPNP	\longrightarrow	NP NP	1.0
$ exttt{PP} \longrightarrow exttt{Prep NP}$	1.0	VP	\longrightarrow	Verb PP	0.3
$\texttt{Prep} \ \ \rightarrow \ \texttt{P}$	1.0	PP		Prep NP	1.0
Noun \longrightarrow N	1.0	Prep	\longrightarrow	_	1.0
$\texttt{Verb} \longrightarrow \ \texttt{V}$	1.0	Noun	\longrightarrow	N	1.0
		Verb	\longrightarrow	v	1.0
		Conj	\longrightarrow	C	1.0
		Det	\longrightarrow	D	1.0

Transforming a PCFG to Chomsky Normal Form

What we did here:

New NTs for ternary rules

$$S \rightarrow S \text{ conj } S \qquad 0.2$$
 is now

$$S \rightarrow S \text{ conjS}$$
 0.2 conjS \rightarrow Conj S 1.0

Introduced new terminals

Conj
$$\rightarrow$$
 C

 Removed unary rules from one NT to another, e.g.:

```
VP \rightarrow Verb \quad 0.3 is now VP \rightarrow V \quad 0.3
```

```
0.8
S
          \rightarrow NP VP
                              0.2
S
          \rightarrow S conjS
conjS
                              1.0
          \rightarrow Conj S
                              0.2
NP
          \longrightarrow N
NP
          \rightarrow Det Noun 0.4
          \rightarrow NP PP 0.2
NP
NP \longrightarrow NP conjNP
                              0.2
                              1.0
conjNP \rightarrow Conj NP
                              0.3
VP
          \longrightarrow V
          \rightarrow Verb NP 0.3
VP

ightarrow Verb NPNP
                              0.1
VP
NPNP
          \rightarrow NP NP
                              1.0
VP
                             0.3

ightarrow Verb PP
PP
          \rightarrow Prep NP
                              1.0
                              1.0
Prep
          \longrightarrow P
          \longrightarrow N
Noun
                              1.0
\texttt{Verb} \longrightarrow \texttt{V}
                              1.0
Conj \rightarrow C
                              1.0
Det
          \rightarrow D
                              1.0
```

PCFG parsing (decoding): Probabilistic CKY

Probabilistic CKY: Viterbi

Like standard CKY, but with probabilities.

Finding the most likely tree is similar to Viterbi for HMMs:

Initialization:

- [optional] Every chart entry that corresponds to a **terminal** (entries w in cell[i][i]) has a Viterbi probability $P_{VIT}(w_{[i][i]}) = 1$ (*)
- Every entry for a **non-terminal** X in cell[i][i] has Viterbi probability $P_{VIT}(X_{[i][i]}) = P(X \rightarrow w \mid X)$ [and a single backpointer to $w_{[i][i]}(*)$]

Recurrence: For every entry that corresponds to a **non-terminal** X in cell[i][j], keep only the highest-scoring pair of backpointers to any pair of children (Y in cell[i][k] and Z in cell[k+1][j]): $P_{VIT}(X_{[i][j]}) = \operatorname{argmax}_{Y,Z,k} P_{VIT}(Y_{[i][k]}) \times P_{VIT}(Z_{[k+1][j]}) \times P(X \to YZ|X)$

Final step: Return the Viterbi parse for the start symbol S in the top cell[1][n].

*this is unnecessary for simple PCFGs, but can be helpful for more complex probability models

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

John	eats		pie	with		cre	am		
Noun NP 1.0 0.2	S 0.8 · 0.2 · 0.3		S 0.8 · 0.2 · 0.06	S 0.2 · 0.0036 · 0.				John	
	Verb 1.0	VP 0.3	VP 1 · 0.3 · 0.2 = 0.06			VI x(1.0 · (0.06 · 0.2	0 · 800.C	.3,	eats
			Noun NP 1.0 0.2			0.2 · 0	P .2·0.2 .008		pie
		,		Prep		PI	•	,	with
						Noun 1.0	NP 0.2	С	ream

S	\longrightarrow	NP VP	0.8
S	\longrightarrow	S conjS	0.2
conjS	\longrightarrow	Conj S	1.0
NP	\longrightarrow	N	0.2
NP	\longrightarrow	Det Noun	0.4
NP	\longrightarrow	NP PP	0.2
NP	\longrightarrow	NP conjNP	0.2
conjNP	\longrightarrow	Conj NP	1.0
VP	\longrightarrow	V	0.3
VP	\longrightarrow	Verb NP	0.3
VP	\longrightarrow	Verb NPNP	0.1
NPNP	\longrightarrow	NP NP	1.0
VP	\longrightarrow	Verb PP	0.3
PP	\longrightarrow	Prep NP	1.0
Prep	\longrightarrow	P	1.0
Noun	\longrightarrow	N	1.0
Verb	\longrightarrow	V	1.0
Conj	\longrightarrow	C	1.0
Det	\longrightarrow	D	1.0

How well can a PCFG model the distribution of trees?

PCFGs make independence assumptions:

Only the label of a node determines what children it has.

Factors that influence these assumptions:

Shape of the trees:

A corpus with **flat trees** (i.e. few nodes/sentence) results in a model with few independence assumptions.

Labeling of the trees:

A corpus with **many node labels** (nonterminals) results in a model with few independence assumptions.

Example 1: flat trees

What sentences would a PCFG estimated from this corpus generate?

Example 2: deep trees, few labels

What sentences would a PCFG estimated from this corpus generate?

Example 3: deep trees, many labels

What sentences would a PCFG estimated from this corpus generate?

Aside: Bias/Variance tradeoff

A probability model has low **bias** if it makes few independence assumptions.

⇒ It can capture the structures in the training data.

This typically leads to a more fine-grained partitioning of the training data.

Hence, fewer data points are available to estimate the model parameters.

This increases the **variance** of the model.

⇒ This yields a poor estimate of the distribution.

Parser evaluation

Precision and recall

Precision and recall were originally developed as evaluation metrics for information retrieval:

- -Precision: What percentage of retrieved documents are relevant to the query?
- -Recall: What percentage of relevant documents were retrieved?

In NLP, they are often used in addition to accuracy:

- -Precision: What percentage of items that were assigned label X do actually have label X in the test data?
- **-Recall:** What percentage of items that have label X in the test data were assigned label X by the system?

Particularly useful when there are more than two labels.

True vs. false positives, false negatives

-True positives: Items that were labeled X by the system,

and should be labeled X.

- False positives: Items that were labeled X by the system,

but should not be labeled X.

- False negatives: Items that were not labeled X by the system,

but should be labeled X

Precision, recall, f-measure

Precision: P = TP / (TP + FP)

Recall: R = TP / (TP + FN)

F-measure: harmonic mean of precision and recall

$$F = (2 \cdot P \cdot R) / (P + R)$$

Evalb ("Parseval")

Measures recovery of phrase-structure trees.

Labeled: span and label (NP, PP,...) has to be right.

[Earlier variant— unlabeled: span of nodes has to be right]

Two aspects of evaluation

Precision: How many of the predicted nodes are correct?

Recall: How many of the correct nodes were predicted?

Usually combined into one metric (F-measure):

$$P = \frac{\text{\#correctly predicted nodes}}{\text{\#predicted nodes}}$$
 $R = \frac{\text{\#correctly predicted nodes}}{\text{\#correct nodes}}$
 $F = \frac{2PR}{P+R}$

Parseval in practice

Gold standard

d Parser output

eat sushi with tuna: Precision: 4/5 Recall: 4/5

eat sushi with chopsticks: Precision: 4/5 Recall: 4/5

Penn Treebank parsing

The Penn Treebank

The first publicly available syntactically annotated corpus

Wall Street Journal (50,000 sentences, 1 million words) also Switchboard, Brown corpus, ATIS

The annotation:

- POS-tagged (Ratnaparkhi's MXPOST)
- Manually annotated with phrase-structure trees
- Richer than standard CFG: *Traces* and other *null elements* used to represent non-local dependencies
 (designed to allow extraction of predicate-argument
 structure) [more on this later in the semester]

Standard data set for English parsers

The Treebank label set

48 preterminals (tags):

- 36 POS tags, 12 other symbols (punctuation etc.)
- Simplified version of Brown tagset (87 tags)
 (cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags)

14 nonterminals:

standard inventory (S, NP, VP,...)

A simple example

Relatively flat structures:

- There is no noun level
- VP arguments and adjuncts appear at the same level

Function tags, e.g. -SBJ (subject), -MNR (manner)

A more realistic (partial) example

Until Congress acts, the government hasn't any authority to issue new debt obligations of any kind, the Treasury said

The Penn Treebank CFG

The Penn Treebank uses very flat rules, e.g.:

```
NP \rightarrow DT JJ NNS
NP \rightarrow DT JJ NNS
NP \rightarrow DT JJ NN NN
NP \rightarrow DT JJ JJ NN
NP \rightarrow DT JJ JJ NN
NP \rightarrow DT JJ CD NNS
NP \rightarrow RB DT JJ NN NN
NP \rightarrow RB DT JJ NN NN
NP \rightarrow DT JJ JJ NNP NNS
NP \rightarrow DT JJ JJ NNP NNP NNP JJ NN
<math>NP \rightarrow DT NNP NNP NNP NNP JJ NN
<math>NP \rightarrow DT JJ NNP CC JJ JJ NN NNS
NP \rightarrow DT JJ NNP CC JJ JJ NN NNS
NP \rightarrow RB DT JJS NN NN SBAR
NP \rightarrow DT VBG JJ NNP NNP CC NNP
NP \rightarrow DT JJ NNS , NNS CC NN NNS NN
<math>NP \rightarrow DT JJ NNS , NNS CC NN NNS NN
NP \rightarrow DT JJ JJ VBG NN NNP NNP FW NNP
NP \rightarrow NP JJ , JJ ``SBAR '' NNS
```

- Many of these rules appear only once.
- Many of these rules are very similar.
- Can we pool these counts?

PCFGs in practice: Charniak (1996) *Tree-bank grammars*

How well do PCFGs work on the Penn Treebank?

- Split Treebank into test set (30K words) and training set (300K words).
- Estimate a PCFG from training set.
- Parse test set (with correct POS tags).
- Evaluate unlabeled precision and recall

Sentence	Average		
Lengths	Length	Precision	Recall
2-12	8.7	88.6	91.7
2-16	11.4	85.0	87.7
2-20	13.8	83.5	86.2
2-25	16.3	82.0	84.0
2-30	18.7	80.6	82.5
2-40	21.9	78.8	80.4

Two ways to improve performance

... change the (internal) grammar:

- Parent annotation/state splits:
Not all NPs/VPs/DTs/... are the same.
It matters where they are in the tree

... change the probability model:

- Lexicalization:

Words matter!

- Markovization:

Generalizing the rules

The parent transformation

PCFGs assume the expansion of any nonterminal is independent of its parent.

But this is not true: NP subjects more likely to be modified than objects.

We can change the grammar by adding the name of the parent node to each nonterminal

Markov PCFGs (Collins parser)

The RHS of each CFG rule consists of: one head H_X , n left sisters L_i and m right sisters R_i :

$$X \rightarrow L_n...L_1$$
 H_X $R_1...R_m$ left sisters

Replace rule probabilities with a generative process: For each nonterminal X

- -generate its head H_X (nonterminal or terminal)
- -then generate its left sisters L_{1..n} and a STOP symbol conditioned on H_X
- then generate its right sisters R_{1...n} and a STOP symbol conditioned on H_X

Lexicalization

PCFGs can't distinguish between "eat sushi with chopsticks" and "eat sushi with tuna".

We need to take words into account!

```
P(VP_{eat} \rightarrow VP \ PP_{with \ chopsticks} \ | \ VP_{eat})
vs. P(VP_{eat} \rightarrow VP \ PP_{with \ tuna} \ | \ VP_{eat})
```

Problem: sparse data (PPwith fattylwhitel... tuna....)

Solution: only take **head words** into account!

Assumption: each constituent has one head word.

Lexicalized PCFGs

At the root (start symbol S), generate the head word of the sentence, w_s , with $P(w_s)$

Lexicalized rule probabilities:

Every nonterminal is lexicalized: X_{wx} Condition rules $X_{wx} \rightarrow \alpha Y \beta$ on the lexicalized LHS X_{wx} $P(|X_{wx} \rightarrow \alpha Y \beta | X_{wx})$

Word-word dependencies:

For each nonterminal Y in RHS of a rule $X_{w_x} \to \alpha Y \beta$, condition w_y (the head word of Y) on X and w_x : $P(w_Y | Y, X, w_X)$

Dealing with unknown words

A lexicalized PCFG assigns zero probability to any word that does not appear in the training data.

Solution:

Training: Replace rare words in training data with a token 'UNKNOWN'.

Testing: Replace unseen words with 'UNKNOWN'

Refining the set of categories

Unlexicalized Parsing (Klein & Manning '03)

Unlexicalized PCFGs with various transformations of the training data and the model, e.g.:

- Parent annotation (of terminals and nonterminals):
 distinguish preposition IN from subordinating conjunction IN etc.
- Add head tag to nonterminals
 (e.g. distinguish finite from infinite VPs)
- Add distance features

Accuracy: 86.3 Precision and 85.1 Recall

The Berkeley parser (Petrov et al. '06, '07)

Automatically learns refinements of the nonterminals Accuracy: 90.2 Precision, 89.9 Recall

Summary

The Penn Treebank has a large number of very flat rules.

Accurate parsing requires modifications to the basic PCFG model: refining the nonterminals, relaxing the independence assumptions by including grandparent information, modeling word-word dependencies, etc.

How much of this transfers to other treebanks or languages?