X est continue

- $\mathbb{P}[A] > 0$.
- $\mathbb{P}[S] = 1$.
- $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B]$, si $A \cup B = \emptyset$.

Permutations

$$\mathcal{P}_n^k = \frac{n!}{(n-k)!}$$

Permutations semblables

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

Combinaisons

$$\mathcal{C}_n^k = \frac{n!}{k!(n-k)!}$$

•
$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$
.

Binôme de Newton

$$(a+b)^n = \sum_{k=0}^n \mathcal{C}_n^k \cdot a^k \cdot b^{n-k}$$

Probabilité conditionnelles

$$\mathbb{P}(A|B) = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

- $\mathbb{P}[A \cap B] = \mathbb{P}(A|B)\mathbb{P}[B]$.
- $\mathbb{P}(A|B) = \mathbb{P}(B|A) = 0$, si $A \cap B = \emptyset$.
- $\mathbb{P}(A|B) = \mathbb{P}(B|A)$, en général.
- $\mathbb{P}(A|S) = \mathbb{P}[A]$, si $A \in S$.

Probabilité totales

$$\mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A \cap B_i]$$
$$= \sum_{i=1}^{n} \mathbb{P}(A|B_i) \mathbb{P}[B_i]$$

si B_1, B_2, \ldots, B_n des partitions.

Règles d'inversion

$$\mathbb{P}\left(B|A\right) = \frac{\mathbb{P}\left(A|B\right)\mathbb{P}\left[B\right]}{\mathbb{P}\left[A\right]}$$

Règles de Bayes

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}[B]}{\sum_{k=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}[B_i]}$$

si B_1, B_2, \ldots, B_n des partitions.

Médiane

$$F_X(x_{1/2}) = 1/2$$

$$F_X(x) = \mathbb{P}\left[X \le x\right]$$

- $0 \le F_X(x) \le 1$.
- $\bullet \lim_{x \to \infty} F_X(x) = 0.$
- $\lim_{x \to 0} F_X(x) = 1$.
- $x_0 < x_1 \Leftrightarrow F_X(x_0) < F_X(x_1)$.
- $F_X(x^+) = F_X(x)$.

Fonction de masse

$$p_X(x) = \mathbb{P}[X = x]$$

- $p_X(x_k) \ge 0$.
- $\sum_{a < x_k \le b} p_X(x_k) = \mathbb{P}[A < X \le b].$
- $\bullet \sum_{k=0}^{\infty} p_X(x_k) = 1.$

Fonction de densité

$$f_X(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \mathbb{P}\left[x - \frac{\epsilon}{2} \le X \le x + \frac{\epsilon}{2}\right]$$

- $f_X(x) > 0$.
- $\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$

Règles de calcul

- $\mathbb{P}[a < X < B] = F_X(b) F_X(a)$.
- $\mathbb{P}[X = x] = F_X(x) F_X(x^-).$
- $f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x)$, si X est continue.
- $F_X(x) = \int_0^x f_X(t) dt$, si X est continue.
- $F_X(x) = \sum p_X(x_k),$

Fonction conditionnelle

- $F_X(x|A) = \frac{\mathbb{P}\left[\{X \le x\} \cap A\right]}{\mathbb{P}\left[A\right]}$.
- $f_X(x|A) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x|A),$
- $P_X(x_k|A) = \begin{cases} \frac{p_X(x_k)}{\mathbb{P}[A]}, & x_k \in A, \\ 0, & x_k \notin A \end{cases}$

Indépendance

$$\mathbb{P}\left(A|B\right) = \mathbb{P}\left[A\right] \Leftrightarrow \mathbb{P}\left(B|A\right) = \mathbb{P}\left[B\right]$$

- $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$.
- $\mathbb{P}[A \cap B^c] = \mathbb{P}[A]\mathbb{P}[B^c]$.

Quantile

$$F_X(x_p) = p$$

$$\mathrm{E}[X] = \sum_{k=1}^{\infty} x_k p_X(x_k)$$

•
$$E[g(X)] = \sum_{k=1}^{\infty} g(x_k) p_X(x_k).$$

•
$$E[X|A] = \sum_{k=1}^{\infty} g(x_k) p_X(x_k|A).$$

$$\mathrm{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \,\mathrm{d}x$$

- $\mathrm{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x.$
- $E[X|A] = \int_{-\infty}^{\infty} x f_X(x|A) dx$.
- E[c] = c.
- E[aX + b] = aE[X] + b.
- $E[X] = \sum_{i=1}^{n} E[X|B_i] \mathbb{P}[B_i]$ si B_1, B_2, \dots, B_n des partitions.

Variance

$$Var[X] = E[(X - E[X])^{2}]$$
$$= E[X^{2}] - (E[X])^{2}$$

- Var[c] = c.
- $Var[aX + b] = a^2Var[X]$.
- $Var[X|A] = E[X^2|A] (E[X|A])^2$.
- Std $[X] = \sqrt{\operatorname{Var}[X]}$.

Inégalité de Markov

$$\mathbb{P}\left[X \ge a\right] \le \frac{\mathrm{E}\left[X\right]}{a}, \forall a > 0$$

Inégalité de Bienaymé-Tchebychev

$$\mathbb{P}\left[|X-\mu| \geq a\right] \leq \frac{\sigma^2}{a^2}, \forall a > 0$$

Fonction caractéristique

$$\phi_X(\omega) = \mathbf{E} \left[e^{i\omega X} \right]$$

- $\phi_X(\omega) = \sum_{k=1}^{\infty} e^{i\omega x_k} p_X(x_k),$ si X est discrète.
- $\phi_X(\omega) = \int_{-\infty}^{\infty} e^{i\omega x} f_X(x) dx$, si X est continue.
- $\phi_X(0) = 1$.

•
$$\mathrm{E}[X^n] = (-i)^n \left[\frac{\mathrm{d}^n}{\mathrm{d}\omega^n} \phi_X(\omega) \right]_{\omega=0}$$
.

	Loi	Notation	S_X	F_X	f_X	p_X	$\mathrm{E}\left[X ight]$	$\operatorname{Var}\left[X\right]$	ϕ_X
Distributions discrètes	Bernoulli	$X \sim \mathcal{B}(1,p)$	{0,1}	$\begin{cases} 0 & \text{si} k < 0 \\ 1 - p & \text{si} 0 \le k < 1 \\ 1 & \text{si} 1 \le k \end{cases}$	_	$\begin{cases} q & \text{si } k = 0 \\ p & \text{si } k = 1 \end{cases}$	p	pq	$pe^{i\omega} + q$
	Binomiale	$X \sim \mathcal{B}(n, p)$	$\{0,1,\ldots,n\}$	$\sum_{i=0}^{\lfloor k\rfloor} \mathcal{C}_n^i p^i q^{n-i}$	_	$\mathcal{C}_n^k p^k q^{n-k}$	np	npq	$\left(p\mathrm{e}^{i\omega}+q\right)^n$
	Géométrique	$X \sim \mathcal{G}\left(p\right)$	$\{1,2,\dots\}$	$1 - q^k$	_	$q^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p\mathrm{e}^{i\omega}}{1 - q\mathrm{e}^{i\omega}}$
	Poisson	$X \sim \operatorname{Poi}\left(\alpha\right)$	$\{0,1,\dots\}$	$e^{-\alpha} \sum_{i=0}^{\lfloor k \rfloor} \frac{\alpha^i}{i!}$	_	$\frac{\alpha^k}{k!} \mathrm{e}^{-\alpha}$	λ	λ	$\exp\left\{\lambda\left(\mathrm{e}^{i\omega}-1\right)\right\}$
Distributions continues	Uniforme	$X \sim \mathcal{U}\left(a,b\right)$	[a,b]	$\begin{cases} 0 & \text{si} x < a \\ \frac{x-a}{b-a} & \text{si} a \le x < b \\ 1 & \text{si} a \le x \end{cases}$	$\begin{cases} \frac{1}{b-a} & \text{si } a \le x < b \\ 1 & \text{sinon} \end{cases}$	_	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{\mathrm{e}^{i\omega b} - \mathrm{e}^{i\omega a}}{i\omega(b-a)}$
	Exponentielle	$X \sim \operatorname{Exp}(\lambda)$	$[0,\infty[$	$\begin{cases} 1 - e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$	$\begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$	_	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$	$rac{\lambda}{\lambda-i\omega}$
	Gamma	$X \sim \Gamma\left(\alpha, \lambda\right)$	$[0,\infty[$	$1 - \sum_{k=0}^{n-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}$ si $\alpha = n = 1, 2, 3, \dots$	$\frac{\left(\lambda x\right)^{\alpha-1}\lambda \mathrm{e}^{-\lambda x}}{\Gamma\left(\alpha\right)}$	_	$\frac{lpha}{\lambda}$	$rac{lpha}{\lambda^2}$	$\left(1 - \frac{i\omega}{\lambda}\right)^{-\alpha}$
	Gaussienne	$X \sim \mathcal{N}\left(\mu, \sigma^2\right)$	\mathbb{R}	$\frac{1}{2} \left[1 + \operatorname{erf} \left\{ \frac{x - \mu}{\sigma \sqrt{2}} \right\} \right]$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	_	μ	σ^2	$\exp\left\{i\mu\omega - \frac{1}{2}\sigma^2\omega^2\right\}$

Fonction de fiabilité

Système en série

$R(t) = \mathbb{P}\left[T > t\right] = 1 - F_T(t)$

Taux de défaillance

$$r(t) = \lim_{s \to t} f_T(s|T > t)$$
$$= -\frac{R'(t)}{R(t)} = \frac{f_T(t)}{1 - F_T(t)}$$

•
$$R(t) = \exp\left\{-\int_0^t r(s) \,\mathrm{d}s\right\}$$
.

Durée de vie moyenne

$$\mathrm{E}\left[T\right] = \int_0^\infty R(t) \,\mathrm{d}t$$

$$R(t) = \prod_{k=1}^{n} R_k(t)$$

Système en parrallèle

$$R(t) = 1 - \prod_{k=1}^{n} \left[1 - R_k(t) \right]$$

Indépendance

$$\mathbb{P}\left(A|B\right) = \mathbb{P}\left[A\right] \Leftrightarrow \mathbb{P}\left(B|A\right) = \mathbb{P}\left[B\right]$$

- $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$.
- $\mathbb{P}[A \cap B^c] = \mathbb{P}[A]\mathbb{P}[B^c]$.

Approximation par une loi de Poisson

$$X \sim \mathcal{B}(n, p) \approx \text{Poi}(np) \text{ si } n \geq 30$$

•
$$\mathbb{P}[X=k] \approx \frac{(np)^k}{k!} e^{-np} \text{ si } p \leq 0.05.$$

•
$$\mathbb{P}[X=k] \approx \frac{(nq)^k}{(n-k)!} e^{-nq} \text{ si } p \to 1.$$

$$\sum_{\forall (j,k) \in S_{X,Y}} p_{X,Y}(j,k) = 1.$$

Fonction de masse conjointe

$$p_{X|Y}(k|j) = \mathbb{P}\left(X = k|Y = j\right)$$

$$\bullet \ p_{X|Y}(j|k) = \frac{p_{X,Y}(j,k)}{p_Y(k)}.$$

Fonction de densité conjointe

•
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y} \, \mathrm{d}y$$

•
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y} \, \mathrm{d}x \mathrm{d}y = 1.$$

Fonction de masse conjointe

•
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$
.

Fonction de répartition conjointe

$$F_{X,Y}(x,y) = \mathbb{P}\left[\left\{X \le x\right\} \cap \left\{Y \le y\right\}\right]$$

- $F_{X,Y}(x,y) = \sum_{j \le x} \sum_{k \le y} p_{X,Y}(j,k)$ si (X,Y) est discret.
- $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) \, ds dt$ si (X,Y) est continu.
- $f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \, \partial y} F_{X,Y}(x,y)$ si (X,Y) est continu.
- $F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$.

Indépendance

1.
$$S_{X,Y} = S_X \times S_Y$$

2.
$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$\Rightarrow p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

$$\Rightarrow f(x,y) = f(x)f(y)$$

$$\Rightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Espérance et Variance

- $\bullet \ \operatorname{E}\left[\,X\,\right] = \operatorname{E}\left[\,\operatorname{E}\left[\,X|Y\,\right]\,\right].$
- $Var[X|Y] = E[X^2|Y] (E[X|Y])^2$.
- $\operatorname{Var}[X] = \operatorname{E}[\operatorname{Var}[X|Y]] + \operatorname{Var}[\operatorname{E}[X]Y].$
- Si X et Y sont indépendantes et g(x,y)=g(x)g(y), alors $\mathrm{E}\left[g(X,Y)\right]=\mathrm{E}\left[g_x(X)\right]\mathrm{E}\left[g_y(Y)\right]$.

Orthogonalité

$$\mathrm{E}\left[\,XY\,\right]=0$$

Covariance

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])]$$

- Cov[X, Y] = E[XY] E[X]E[Y].
- $\operatorname{Cov}[X, X] = \operatorname{Var}[X]$.

Coefficient de corrélation

$$\rho_{X,Y} = \frac{\operatorname{Cov}\left[X,Y\right]}{\operatorname{Std}\left[X\right]\operatorname{Std}\left[Y\right]}$$

- $\rho_{X,Y} = 1 \Leftrightarrow Y = aX + b$ où a > 0.
- $\rho_{X,Y} = -1 \Leftrightarrow Y = aX + b$ où a < 0.
- $\rho_{X,Y} = 0$ si X et Y indépendantes.
- Si $\rho_{X,Y} = 0$, X et Y des normales, alors X et Y sont indépendantes.

Loi binormale

$$(X,Y) \sim \mathcal{N}(\mu_x, \mu_y, \sigma_X^2, \sigma_Y^2, \rho)$$

- $X | \{Y = y\} \sim \mathcal{N}(\mu, \sigma^2)$, où $\mu = \mu_X + \rho \frac{\sigma_X}{\sigma_Y} (y \mu_Y)$ et $\sigma^2 = \sigma_X^2 (1 \rho)^2$.
- $X \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ et $Y \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$

Estimateur

$$\min E[(X - g(Y))^2]$$

Estimateur constant

$$g(Y) = E[X]$$

•
$$\mathrm{E}\left[\left(X-g(Y)\right)^{2}\right]=\mathrm{Var}\left[X\right].$$

Estimateur linéaire

$$g(Y) = \hat{a}Y + \hat{b}$$

οù

$$\hat{a} = \frac{\operatorname{Std}[X]}{\operatorname{Std}[Y]}\rho$$

 et

$$\hat{b} = \mathbf{E}[X] - \hat{a}\mathbf{E}[Y]$$

• $E[(X - g(Y))^2] = Var[X](1 - \rho^2).$

Estimateur non linéaire

$$g(Y) = E[X|Y]$$

• Si (X, Y) suit une binormale, alors le meilleur estimateur de X en fonction de Y est linéaire.

Combinaison linéaire

$$Z = a_0 + \sum_{k=1}^{n} a_k X_k$$

•
$$E[Z] = a_0 + \sum_{k=1}^{n} a_k E[X_k].$$

•
$$\operatorname{Var}[Z] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \operatorname{Cov}[X_i, X_j].$$

Variables aléatoires indépendantes et identiquement distribuées

$$S_n = \sum_{k=1}^n X_k$$

- $\mathrm{E}[S_n] = n\mathrm{E}[X].$
- $\operatorname{Var}[S_n] = n \operatorname{Var}[X].$

Loi faible des grands nombres

$$\lim_{n \to \infty} \mathbb{P}\left[\left| \frac{S_n}{n} - \mu \right| < c \right] = 1,$$

pour tout c > 0 avec μ connue.

Loi faible des grands nombres

$$\mathbb{P}\left[\lim_{n\to\infty}\frac{S_n}{n}=\mu\right]=1,$$

avec μ et σ^2 connues.

Théorème central limite

$$S_n \approx \mathcal{N}\left(n\mu, n\sigma^2\right) \Leftrightarrow \frac{S_n}{n} \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

lorsque n est grand.

Moyenne de l'échantillion

$$\bar{x} = frac1n \sum_{k=1}^{n} x_k$$

Médianne de l'échantillion

$$\widetilde{x} = \begin{cases} \frac{x_{(n+1/2)}}{x_{(n/2)} + x_{(n/2+1)}} & \text{si } n \text{ est impair,} \\ \frac{x_{(n/2)} + x_{(n/2+1)}}{2} & \text{si } n \text{ est pair} \end{cases}$$

Variance de l'échantillion

$$s^{2} = \frac{1}{n-1} \left(\sum_{k=1}^{n} x_{k}^{2} - n\bar{x}^{2} \right)$$

Étendue de l'échantillion

$$R = x_{(n)} - x_{(1)}$$

Fonction de répartition d'ordre n

$$F(x_1, \dots, x_n; t_1, \dots, t_n)$$

$$= \mathbb{P}\left[\bigcap_{k=1}^n \left\{X(t_k) \le x_k\right\}\right]$$

Fonction de densité d'ordre n

$$f(x_1, \dots, x_n; t_1, \dots, t_n)$$

$$= \mathbb{P} \left[\bigcap_{k=1}^n \{ X(t_k) = x_k \} \right]$$

$$= \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F(x_1, \dots, x_n; t_1, \dots, t_n)$$

Accroissement

$$X(t_1, t_2) = X(t_2) - X(t_1)$$

Moyenne d'un processus stochastique

$$m_x(t) = E[X(t)]$$

Fonction d'autocorrélation

$$R_X(t,\tau) = \mathbb{E}[X(t)X(\tau)]$$

Fonction d'autocovariance

$$C_X(t,\tau) = \operatorname{Cov} [X(t), X(\tau)]$$

•
$$C_X(t,\tau) = R_X(t,\tau) - m_X(t)m_X(\tau)$$
.

Processus stochastique SSL

$$m_X(t) = c$$
 et $R_X(t_1, t_2) = h(t_2 - t_1)$

Chaîne de Markov

$$\{X_n: n=0,1,\dots\}$$

- $p_{i,j} = \mathbb{P}(X_{n+1} = j | X_n = i).$
- $p_{i,j}^n = \mathbb{P}\left(X_{m+n} = j | X_m = i\right)$.

Processus de Poisson

$$\{N(t): t \ge 0\}$$

- N(0) = 0.
- $N(t_1, t_2)$ et $N(t_3, t_4)$ indépendants si $t_1 < t_2 \le t_3 < t_4$.
- $N(\tau, \tau + t) \sim \text{Poi}(\lambda t)$.

Différence entre deux événements

$$T_n \sim \mathrm{E}\left[\lambda\right]$$

Temps d'arrivé d'un événement

$$S_n \sim \Gamma(n,\lambda)$$

Processus de Wiener

$$\{W(t): t \ge 0\}$$

- W(0) = 0.
- $W(t_1, t_2)$ et $W(t_3, t_4)$ indépendants si $t_1 < t_2 \le t_3 < t_4$.
- $W(t_1, t_2)$ et $W(t_1 + \tau, t_2 + \tau)$ suivent la même loi.
- $W(t) \sim \mathcal{N}(0, \sigma^2 t)$.
- $C_W(t_1, t_2) = \sigma^2 \min\{t_1, t_2\}.$

Mouvement Brownien

$$\sigma^2 = 0$$

Table 1 – Test d'une moyenne (variance connue)

(\(\cdot\)					
	Hypothèse	nulle Statistique du test Constante			
	$H_0: \mu =$	μ_0 $z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$ $\delta = \mu - \mu_0$			
Contre-hypothèse	On rejette H_0 si	Erreur de 2^e espèce	Taille nécessaire		
$H_1: \mu \neq \mu_0$	$ z_0 > z_{\alpha/2}$	$\beta = \Phi\left(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right)$	$n = \frac{\left(z_{\alpha/2} + z_{\beta}\right)^2 \sigma^2}{\delta^2}$		
$H_1: \mu > \mu_0$	$z_0 > z_{\alpha}$	$\beta = \Phi\left(z_{\alpha} - \frac{\delta\sqrt{n}}{\sigma}\right)$	$n = \frac{\left(z_{\alpha} + z_{\beta}\right)^2 \sigma^2}{\delta^2}$		
$H_1: \mu < \mu_0$	$z_0 < -z_{\alpha}$	$\beta = \Phi\left(z_{\alpha} + \frac{\delta\sqrt{n}}{\sigma}\right)$	$n = \frac{\left(z_{\alpha} + z_{\beta}\right)^2 \sigma^2}{\delta^2}$		

Table 2 – Test d'une moyenne (variance inconnue)

Hypothèse nulle	Statistique du test		
$H_0: \mu = \mu_0$	$t_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$		
Contre-hypothèse	On rejette H_0 si		
$H_1: \mu \neq \mu_0$	$ t_0 > t_{\alpha/2, n-1}$		
$H_1: \mu > \mu_0$	$t_0 > t_{\alpha,n-1}$		
$H_1: \mu < \mu_0$	$t_0 < -t_{\alpha, n-1}$		

Table 3 – Test d'une variance (moyenne inconnue)

	Hypothèse nulle	Statistique du test	Constante	Distribution	
	$H_0: \sigma^2 = \sigma_0^2$	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\lambda = \frac{\sigma_0^2}{\sigma^2}$	$\chi_n^2 \approx \mathcal{N}(n, 2n)$	
Contre-hypothèse	On rejette H_0 si	Erreur de	2^e espèce	Ta	aille nécessaire
$H_1: \sigma^2 \neq \sigma_0^2$	$\chi_0^2 > \chi_{\alpha/2, n-1}^2$	$\beta = \mathbb{P}\left[\lambda \chi_{1-\alpha/2, n-1}^2 \le \right]$	$\leq \chi_{n-1}^2 \leq \lambda \chi_c^2$	$\begin{bmatrix} \frac{2}{2} \\ \frac{2}{\sqrt{2}, n-1} \end{bmatrix} n = \frac{3}{2} + \frac{3}{2} $	$-\frac{1}{2} \left[\frac{\sigma_0 z_{\alpha/2} + \sigma z_{\beta}}{\sigma - \sigma_0} \right]^2$
$H_1: \sigma^2 > \sigma_0^2$	$\chi_0^2 > \chi_{\alpha,n-1}^2$	$\beta = \mathbb{P}\left[\chi_{n-1}^2\right.$	$\leq \lambda \chi_{\alpha,n-1}^2 \Big]$	$n = \frac{3}{2}$	$+\frac{1}{2} \left[\frac{\sigma_0 z_\alpha + \sigma z_\beta}{\sigma - \sigma_0} \right]^2$
$H_1: \sigma^2 < \sigma_0^2$	$\chi_0^2 < \chi_{1-\alpha, n-1}^2$	$\beta = \mathbb{P}\left[\chi_{n-1}^2\right]$	$\geq \lambda \chi^2_{1-\alpha,n-1}$	$n = \frac{3}{2}$	$+\frac{1}{2}\left[\frac{\sigma-\sigma_0}{\sigma-\sigma_0}\right]^2$

Table 4 – Test de 2 moyennes (variances inconnues)

	Hypothèse nulle		nte
	$H_0: \mu_1 = \mu_2$	$z_0 = \frac{X_1 - X_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \qquad \delta = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1}}}$	$\frac{1}{1 + \frac{\sigma_2^2}{n_2}}$
Contre-hypothèses	On rejette H_0 si	Erreur de 2^e espèce	Taille nécessaire
$H_1: \mu_1 \neq \mu_2$	$ z_0 > z_{\alpha/2}$	$\beta = \Phi(z_{\alpha/2} - \delta) - \Phi(-z_{\alpha/2} - \delta)$	$n = \frac{(z_{\alpha/2} + z_{\beta})^{2} (\sigma_{1}^{2} + \sigma_{2}^{2})}{(\mu_{1} - \mu_{2})^{2}}$ $n = \frac{(z_{\alpha} + z_{\beta})^{2} (\sigma_{1}^{2} + \sigma_{2}^{2})}{(\sigma_{1}^{2} + \sigma_{2}^{2})}$
$H_1: \mu_1 \neq \mu_2$	$z_0 > z_{\alpha}$	$\beta = \Phi(z_{\alpha} - \delta)$	$n = \frac{(z_{\alpha} + z_{\beta})^{2}(\sigma_{1}^{2} + \sigma_{2}^{2})}{(\mu_{1} - \mu_{2})^{2}}$
$H_1: \mu_1 \neq \mu_2$	$z_0 < -z_{\alpha}$	$\beta = \Phi(z_{\alpha} + \delta)$	$n = \frac{(\mu_1 - \mu_2)^2}{(z_\alpha + z_\beta)^2 (\sigma_1^2 + \sigma_2^2)}$ $n = \frac{(z_\alpha + z_\beta)^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$