報 (B2) 許 特 公

昭54-36441

51 Int.C1.2 H 05 K 9/00

60日本分類 識別記号 96(1) A 2

庁内整理番号 6332-5F

発明の数

(全 5 頁)

匈マイクロ波遮蔽用安全装身具並にその製法

願 昭47-109477 到特

願 昭4.7 (1972)11月2日 (2)出

昭49-67502 公

④昭49(1974)7月1日

出願人に同じ 72発 明 者

願 人 清水暢 创出

狭山市入間川2の2の5

國引用文献

昭39-3477

公 昭43-7478 特

昭44-8394 特

切特許請求の範囲

非極性繊維の編物及び織物からなる布帛及び 繊維製品の表面に体積固有抵抗率が10⁻² Ωcm 以下で且つ非極性の液状超導電性ゴムをリツビン 法又は糊引法にて非極性超導電性ゴム被膜を形成 してなるマイクロ波遮散用安全装身具。

2 液状シリコンゴム100部(重量部)に架橋 剤キャタリストRG10~20部(重量部)、銀 粉(折出法、還元法、電解法)200~300部 (重量部)、トロール20~100部(重量部) 体積固有抵抗率が10⁻² Ωcm以下で且つ非極性 の超導電性液状ゴムを非極性繊維からなる布帛及 び繊維製品にリッピング加工法又は糊引加工法に て超導電性ゴム膜(P:10⁻² Ωcm以下)を形 成した複合体からなる特許請求の範囲第1項記載 30 のマイクロ波遮蔽用安全装身具の製法。

発明の詳細な説明

近時エレクトニクスの目覚しい発展に伴い情報 産業では通信機器、放送、受信、受像等に又家庭 利用が推進され文化生活の向上が図られている反 面、これらのマイクロ波利用機器を製造検査に当

る作業者はマイクロ波を浴びて生理障害などの危 険な高周波公害から未然に防護する安全装身具に 関するもので、従来公知のものは特公昭44-8394号公報で明らかなように銅網からなる 5 防護衣服、合成樹脂フイルムに銀選元鍍金したも のでつくつた防護衣服、或は合成樹脂フイルムに 金属で真空蒸着して作つた防護衣服等のものがあ るがいずれも剛体で身体に順応性が乏しく作業者 をして作業動作を束縛し且つ必要以上のエネルギ 10 -を消耗させ疲労を増大させている。もつと重要 なことはマイクロ波の遮蔽能力で公報に明記の如 く滅衰量が30デシベル以下のもので遮蔽効果が 小でその目的を充分に果すことが出来なかつた。 本発明はこれらの欠陥を除去する為めに、電気抵 15 抗が水銀と同一程度になした柔軟性で非極性の液 状超導電性ゴム、体積固有抵抗率 10^{-2} $\sim \Omega$ cm 10 - Ωcmのゴム 2をナイロン繊維又はテトロン 繊維などの非極性の布帛や編上手袋1、等に糊引 又はリッピングにて任意の膜厚0.3%~0.5%の 20 ゴム膜2を形成させ、必要に応じては更にその表 面に非極性絶縁性液状シリコンゴム 10を糊引又 はリッピングによつて非極性ゴム膜10を形成せ しめた后に加硫缶にて熱風加硫した后に布帛状の ものは任意の形状の作業衣等に貼加工又は縫加工 を加え攪拌混和して均一に分散してなる柔軟性の 25 により成形する。又編上製品等を手袋を例として 説明する。アルミ製又は陶器製の手袋原型7に前 述非極性機維からなる単糸を編上た手袋1を被せ たものを前記柔軟性非極性の液状超導電性ゴム溶 液中に浸漬し乾燥し、この操作を必要に於いて繰 返し所定の膜厚を得た后にその儘、或は必要に応 じては非極性で絶縁性の液状シリコンゴム溶液中 に更に浸漬して前記柔軟性で非極性の超導電性ゴ ム膜2の表面に非極性絶縁ゴム被膜10を形成し た后に加硫缶にて所定温度で熱風加硫を行つた后 内にも電子レンジの極超短波が持込れ高周波加熱 35 に前記アルミ製又は陶器製の手袋原型 7 を離脱し て、柔軟性のマイクロ波遮蔽用安全手袋が得られ る。次に本発明の構成に必須要件である柔軟性で

非極性超導電性ゴムに付いて説明する。重合度 40000~50000の非極性液状シリコンゴ ム (例ば信越化学KK製KE-106LTV) 100部(重量部)に架橋剤(例は信越化学KK 製キヤタリストRG)10部(重量部)、折出銀 5 物にOH基、CN基、C1基等が含まれないもの 粉又は還元銀粉或は電解銀粉200部~300部 (重量部)、稀釈剤(例ばトロール)20部~ 50部(重量部)等を混和して均一に分散する。★ 示す。

★尚浸漬の場合は稀釈剤を更に加えて適度の濃度に 整制する。

前述の非極性布帛、棣維、非極性絶縁性ゴム、 非極性超導電性ゴム等の非極性とは構成する組成 で繊維では例ばナイロン、テトロン等である。

次に前述の実施例の配合及び物性を下記表1に

表

	•	実 施 例 1	実施例 2	実 施 例 3
液状シリコン	゚ヹ゚ム	100	100	100
架 橋.	剤	1 0	1 0	1 0
銀	粉	200	250	3 0 0
<u> </u>	ル	2 0	3 5	5 σ
体積固有抵	抗率	$9 \times 10^{-3} \Omega cm$	1.2 ⁻³ Ω cm	5 × 1 0 ⁻⁴ Ωcm
弾 力	(95)	. 4 8	4 5	4 3
硬 度	(废)	6 0	6 5	7 0
発 熱 劣 化 変	2化	異状なし	異状なし	異状なし
		60以上	70以上	90以上
	液状の機の一体の関を強いして、対して、対して、対して、対して、対して、対して、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、	液状シリコンゴム 架 橋 剤 祭 銀 ト の の の の の の の の の の の の の の の の の の	液状シリコンゴム 100 架 橋 剤 10 の 銀 粉 200 ト ロール 20 体積固有抵抗率 9×10 ⁻³ Ωcm 弾 力 (多) 48 硬 度 (度) 60 発熱劣化変化 異状なし 減 衰 量	液状シリコンゴム

- ▲ 液状シリコンゴムはKE-106LTV(信越化学KK製)
- ◆◆ 架橋剤はキャタリストRG(信越化学KK製)
- ▲▲▲ 銀粉は還元法又は電解折出法によるもの
- ▲▲▲ 硬度はJIS硬度計で測定
- ▲▲▲▲ マイクロ波照射の周波数は10000MHZ
- ▲▲▲▲▲ 配合蘭の数値は重量部である。

次に柔軟性で非極性絶縁ゴム10の配合並に物性を表2に示す。

表 2

·	項。目	数 值
配	液状シリコンゴム (信越化学・KE106LTV)	100部
合	架橋剤(信越化学、キャタリストRG)	10部
加の	体積固有抵抗率	$2.6 \times 10^{15} \Omega cm$
硫物后性	弹 性 (%)	5 5
	硬 度 (度)	5 0

5

更に従来公知(特公昭44-8394号公報) ※の比較を表3に示す。 のものと本発明のものとの構成並に物性及び効果※

表	n
70	.~1
	U

		2 0	
	項・目	従来公知のもの(特公昭44-83945号)	本発明のもの
樽	遮蔽機構	銀メツキフイルム二枚袷	銀含有ゴム
, , J	ベースの組成	ポリエステル樹脂	シリコンゴム
成	遮蔽膜の厚み	1 μ×2枚: 2 μ	3 0 0 μ ~ 5 0 0 μ
物	遮蔽膜の硬度JIS硬度計	測定不可	60~70度
	ASTM硬度計D型	80度	8~12度
性	遮蔽膜の柔軟性	剛体	柔 軟 体
	極性	極性. 非極性混用	非 極 性
効	マイクロ波照射による映響	発 熱 劣 化	変化なし
果	同上に於ける遮蔽効果・減 衰量で(デジベル)	2 6.9	60~90以上

本発明のものは非極性物質で構成されているか らマイクロ波の照射を受けても発熱劣化すること 25 なく耐用命数が大である。又遮蔽機構の組成が銀 含有ゴムであるからゴム特有の柔軟屈撓弾性に富 み作業者の身体に防護衣具が順応性で作業能率向 上に寄与する。 尚遮蔽効果は抜群で実施例1配合 のものでは減衰量が60デシベル以上、実施例330されヒーター6で乾燥される。第2図は本発明品 配合のものでは90デシベル以上であつて従来公 知のものに比し2倍~3倍の遮蔽効果をあげると とが出来た。

とのように本発明は耐用命数並に作業能率向上 等の作用効果を発揮し且つマイクロ波遮蔽につい 35 大図である。第4図は本発明の液状シリコンゴム ては格段な効果を奏するものである。

図面の簡単な説明

第1図は本発明の糊引工程を示したもので非極 性吊布 1 がポックス 3 に巻かれたものがドクター ナイフ11を径て后部ロール5を介して前方ボッ クス4に巻取られる。この間にドクターナイフ 11に液状超導電性ゴム2が非極性吊布1に糊引 の浸漬工程を示したもので容器 8 の底部には攪拌 羽9が取付られ比重の大の超導電性ゴム2液を均 一に攪拌され手袋型7に被つた非極性繊維製手袋 が浸漬される。第3図は本発明品の一部の切欠拡 に対する銀粉混和量の変化による体積固有抵抗変 化を示したものである。

