Package 'mixingsimulation'

November 29, 2020

11010111001 25, 2020
Type Package
Title Simulation for powder mixing process
Version 0.0.0
Authors Mayooran Thevaraja [aut, cre], Kondaswamy Govindaraju [aut], Mark Bebbington [aut]
<pre>URL https://github.com/Mayooran1987/mixingsimulation</pre>
BugReports https://github.com/Mayooran1987/mixingsimulation/issues
Description This package develops for simulating powder mixing process for microbial risk assessment in the bulk material production process.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports ggplot2, ggthemes, plyr, reshape2, stats
Suggests testthat
RoxygenNote 7.1.1
Depends R (>= 4.0)
Maintainer Mayooran Thevaraja <mayooran@eng.jfn.ac.lk></mayooran@eng.jfn.ac.lk>
Language en-US
R topics documented:
compare_mixing
Index

2 compare_mixing

compare_mixing	The graphical comparison between different mixing schemes with
	varying parameters of mixing by simulation results.

Description

This function provides the graphical displays for a different set of mixing plans for comparison purpose. (to be finished later on)

Usage

```
compare_mixing(n_iter, mu, sigma, b, k, distribution)
```

Arguments

n_iter	number of iterations
mu	average number of colony-forming units in mixed sample which is in logarithmic scale if we use a lognormal distribution
sigma	log standard deviation of the colony-forming units in the mixed sample
b	concentration parameter
k	number of small portions/ primary samples
distribution	what suitable distribution type we have employed for simulation such as "Poisson-Type A" or "Poisson-Type B" or "Lognormal-Type A" or "Lognormal-Type B"

Details

Let N' be the number of colony-forming units in the mixed sample which is produced by mixing of k primary samples and $N' = \sum N_i$ and N_i be the number of colony-forming units in the i^{th} primary sample; where i=1,2,....k. Following Nauta (2005), contribution weight of contamination by each primary sample can be defined by the random variable y_i which is possible to be following either uniform distribution with parameter k or joint distribution of $y_1, y_2, \cdots y_k$ follows Dirichlet distribution with concentration parameter k. Based on the literature, Dirichlet distribution can be formulated by beta or gamma algorithm which are revealed the same results; see Nauta (2005). This function is developed by based on gamma algorithm, it is formulated the following steps.

$$y_i = \frac{x_i}{\sum_{j=1}^k x_j} \quad \forall i = 1, 2, \dots k$$

; where x_i follows gamma(b, 1) and also $\sum y_i$ must be equal to one.

- Case 1 (Poisson-Type A): N_i follows $Poisson(\mu/k)$
- Case 2 (Poisson-Type B): N_i follows $Poisson(\mu * y_i)$
- Case 3 (Lognormal-Type A): N_i follows $Binomial(M_i, 1/k)$; where M_i follows $Lognormal(\mu, \sigma)$
- Case 4 (Lognormal-Type B): N_i follows $Binomial(M_i, y_i)$; where M_i follows $Lognormal(\mu, \sigma)$

Value

graphical comparison between different mixing schemes

sim_multiple 3

References

 Nauta, M.J., 2005. Microbiological risk assessment models for partitioning and mixing during food handling. International Journal of Food Microbiology 100, 311-322.

See Also

```
sim multiple, sim single
```

Examples

sim_multiple

The total number of colony-forming units in the mixed sample by simulation result (in the multiple mixing plan).

Description

This function calculates the resulting total number of colony forming units in the mixed sample in the multiple mixing plans. (to be finished later on)

Usage

```
sim_multiple(n_iter, mu, sigma, b, k, distribution)
```

Arguments

n_iter	number of iterations
mu	average number of colony-forming units in mixed sample which is in logarithmic scale if we use a lognormal distribution
sigma	log standard deviation of the colony-forming units in the mixed sample
b	concentration parameter
k	number of small portions/ primary samples
distribution	what suitable distribution type we have employed for simulation such as "Poisson-Type A" or "Poisson-Type B" or "Lognormal-Type A" or "Lognormal-Type B"

Details

Let N' be the number of colony-forming units in the mixed sample which is produced by mixing of k primary samples and $N' = \sum N_i$. To more details, please refer the details section of compare_mixing. (to be finished later on)

Value

total number of colony forming units in the multiple mixing scheme

4 sim_single

References

• Nauta, M.J., 2005. Microbiological risk assessment models for partitioning and mixing during food handling. International Journal of Food Microbiology 100, 311-322.

See Also

```
sim_single, compare_mixing
```

Examples

sim_single

The total number of colony-forming units in the mixed sample by simulation result (in the single mixing plan).

Description

This function calculates the resulting total number of colony forming units in the mixed sample in the single mixing plan. (to be finished later on)

Usage

```
sim_single(n_iter, mu, sigma, b, k, distribution, summary = FALSE)
```

Arguments

n_iter	number of iterations
mu	average number of colony-forming units in mixed sample which is in logarithmic scale if we use a lognormal distribution
sigma	log standard deviation of the colony-forming units in the mixed sample
b	concentration parameter
k	number of small portions/ primary samples
distribution	what suitable distribution type we have employed for simulation such as "Poisson-Type A" or "Poisson-Type B" or "Lognormal-Type A" or "Lognormal-Type B"
summary	if we need to get the mean and standard deviation of simulated N' , use summary = TRUE (default summary =FALSE).

Details

Let N' be the number of colony-forming units in the mixed sample which is produced by mixing of k primary samples and $N' = \sum N_i$. To more details, please refer the details section of compare_mixing. (to be finished later on)

sim_single 5

Value

total number of colony forming units in the single mixing plan

References

• Nauta, M.J., 2005. Microbiological risk assessment models for partitioning and mixing during food handling. International Journal of Food Microbiology 100, 311-322.

See Also

```
sim_multiple, compare_mixing
```

Examples

```
 \begin{array}{l} n\_iter <-\ 200000 \\ mu <-\ 100 \\ sigma <-\ 0.8 \\ b <-\ 0.1 \\ k <-\ 10 \\ sim\_single(\ n\_iter,\ mu,\ sigma,\ b,\ k,\ distribution =\ "Poisson-Type\ A",\ summary =\ TRUE) \\ \end{array}
```

Index

```
compare_mixing, 2, 3-5
sim_multiple, 3, 3, 5
sim_single, 3, 4, 4
```