

CHAPTER 3: KINEMATICS

- ☐ Motion by graphs
- Derive equation of motion
- ☐ Free fall acceleration
- ☐ Projectiles
- ☐ Terminal Velocity
- ☐ Experiment acceleration of free fall

KINEMATICS

Study of the motion of bodies without regard to the forces acting on the body

Motion By Graphs

- ➤ Displacement-time (s-t)graph
- ➤ Velocity-time (v-t) graph
- >Acceleration-time (a-t)graph

Distance and displacement

- **Distance** of the boy is total length of route covered from A to B = 5 + 3 + 4 + 5 km = 17 km
- **Displacement of the boy** is 10km, 30° anticlockwise to the horizontal (magnitude of displacement is the shortest distance from A to B)

Displacement – time graphs

Represent the changing position of an object with time

Velocity

 Gradient of the graph represent the velocity. The steeper the gradient, the greater the velocity.

<u>Direction of motion (if forward is + ve)</u>

- If gradient is positive, object velocity is positive. object moves forwards.
- If gradient is negative, object velocity is negative. Means, object moves backwards.

Displacement – time graphs

Gradient: (x-x/t-0) = 0
So velocity is zero
It means, after t second, object is
stationary (remain at same position)

Gradient OA: $(y-0/t_1-0) = (y/t_1)$ Gradient OB: $(x-0/t_1-0) = (x/t_1)$ So, gradient OA > Gradient OB Uniform/constant velocity with A is faster than B

Displacement – time graph

- From A to C, the boy move in +ve direction, so, means, gradient of graph from A to C is +ve
- The slope of graph become negative from C to B
- Means, the object moving backward (or in an opposite sept direction from AC)

Displacement – time graphs

- ☐Gradient of graph decreasing from A to D
- ☐Means, the object moves with decreasing velocity

Displacement – time graphs

<u>OA</u>

- •Velocity = $(x_1-0)/(t_1-0) = x_1/t_1$
- •gradient = +ve, so, object move forward

BC

- •Velocity = $(x_2-x_1)/(t_3-t_2)$
- •Direction = +ve, so, object move forward

<u>AB</u>

Velocity = $(x_1-x_1)/(t_1-t_2) = 0$ And object remains at same position as A <u>CD</u>

- •Velocity = $(0-x_1)/(t_4-t_3) = -x_1)/(t_4-t_3)$
- •Direction = -ve, so, object move backward

September 26, 2016

Velocity and acceleration

- We know speed is distance in a unit time
- While velocity can be thought as speed in a particular direction. So, velocity is a vector quantity and since it has direction. It is defined in terms of displacement

velocity =
$$\frac{\text{change in displacement}}{\text{time taken}}$$

 $\vec{v} = \frac{\Delta s}{\Delta t}$
 $\Delta s = \vec{v} \Delta t$

Speed v also use the same equation

speed =
$$\frac{\text{distance}}{\text{time}}$$

speed, $v = \frac{d}{t}$

Velocity and acceleration

- Any object whose its magnitude of velocity is changing or which is changing its direction has acceleration
- So, it means, acceleration is a vector quantity.
- Acceleration is defined as follows

average acceleration =
$$\frac{\text{change in velocity}}{\text{time taken}}$$

$$a = \frac{\Delta v}{\Delta t}$$

Velocity and acceleration

- We write u as initial velocity and v as final velocity.
- If a moving object accelerates from u to v from time t_1 to t_2 ,
- Its acceleration can be calculated as

average acceleration =
$$\frac{\text{change in velocity}}{\text{time taken}}$$

$$= \frac{\text{final velocity} - \text{initial velocity}}{\text{time taken}}$$

$$a = \frac{v - u}{t_2 - t_1}$$

Deducing acceleration from v-t graphs

- Gradient of velocity time graphs gives acceleration of object.
- Area under velocity time graphs give displacement of object.

Object is moving with uniform/constant velocity Gradient of graph = 0
So, zero acceleration
September 26, 2016

Gradient of graph is x/t_1 So, object move with uniform acceleration

Velocity-time graph

Gradient of slope decreasing with time.

Decelerate non-uniformly

Deducing displacement

- Displacement of a moving object can be calculated from the area under its velocity time graph.
- Displacement = area under velocity-time (v-t) graph.

Deducing s and a from v-t graph

• Acceleration AB

$$a = \frac{30 - 30}{20s} - = \underline{0 \, ms^{-2}}$$

• Displacement AB

$$s = 30 \times (40 - 20) = \underline{600 \ m}$$

• Acceleration OA

$$a = \frac{30 \text{ ms}^{-1}}{15 \text{ s}} = \underline{2ms}^{-2}$$

• Displacement OA

$$s = \frac{1}{2} \times 30 \times 20 = \underline{300m}$$

Acceleration BC

$$a = \frac{0 - 30}{40 \text{ s}} - = \underline{-0.75 \, ms^{-2}}$$

• Displacement OA

$$s = \frac{1}{2} \times 30 \times (80 - 40) = \underline{600 \text{ m}}$$

Definition

- Displacement
 - Distance moved by an object in a particular direction
- Speed
 - Distance in a unit time
- Velocity
 - Change in displacement in a unit time
- Acceleration
 - Rate of change of velocity

Equations of motion

- There are a set of equations which allows us to calculate the quantities involved when for object moves with constant acceleration in a straight line.
- These quantities we are concerned are:
- $\triangleright S = displacement$
- $\triangleright u = \text{initial velocity}$
- $\triangleright v = \text{final velocity}$
- $\triangleright a = acceleration$
- $\succ t = time taken$

Equations of motion

• There are 4 set equations applied for object moves in a straight line with a uniform acceleration (a constant).

1.
$$v = u + at$$

$$2 s = \left(\frac{u+v}{2}\right) \times t$$

$$3. \qquad s = ut + \frac{1}{2}at^2$$

4.
$$v^2 = u^2 + 2as$$

Choosing equation

- How to choose suitable equation in a problem
 Step
 - 1. Write the known or given quantities & write quantities we want to find (unknown quantities)
 - 2. Choose the equation which link all known and unknown quantities & substitute the values
 - 3. Calculate the unknown quantities

Example

1. The cyclist in figure below is travelling at 15 ms⁻¹. She brakes so that she doesn't collide with the wall. Calculate the magnitude of her deceleration

\$1. What are given

- Initial velocity, $u=15~{
 m ms}^{-1}$
- Final velocity, v = 0
- Displacement taken = 8m
- What we want to know = a

S2. Equation we need is eq. 4 : $v^2 = u^2 + 2as$

S3.
$$a = (v^2 - u^2)/2s$$

$$a = (0 - 15^2) \times 2(18) = -6.25 \text{ ms}^{-2}$$

DERIVING EQUATIONS OF MOTION

Quantity x-axis

- This graph represents the motion of an object with initial velocity, u and increase to velocity v in t time.
- Object 's acceleration a is constant and can be calculated as:

equivalent to:
$$y = mx + c$$

$$a = \frac{v - u}{t}$$
So,
$$v = u + at$$
Quantity
y-axis
$$y-\text{Intercept gradient}$$

September 26, 2016

Shaded area = displacement by object

• Derive equation 3: $s = ut + (at^2)$

From eq. 1:
$$v = u + at$$

From eq. 2:
$$s = [(u + v)/2]t$$

So, substitute eq. 1 into eq. 2, and we get:

$$s = \left[(u + u + at)/2 \right] t$$

$$s = (2u + at^2)/2$$

$$s = (u + at^2)$$

• Derive equation 4: $v^2 = u^2 + 2as$

eq. 1:
$$v = u + at$$
, we get t
$$t = (v - u)/a$$
substitute
eq. 2: $s = [(u+v)/2]t$
Then we get: $s = [(u+v)/2] \times [(v-u)/a]$

$$2as = v^2 - u^2$$

Rearrange and we get: $v^2 = u^2 + 2as$

Acceleration caused by gravity

- If we drop a ball or stone near the surface of Earth, it falls to the ground
- Based on a multiflash photograph, which shows position of the ball at equal intervals of time,
- The spaces between the images of the ball increase steadily

Acceleration caused by gravity

- It means, the **ball's velocity increases** as it falls.
- If we measure the rate of change of this ball's velocity, we find a value of about 9.81 ms⁻.
- This is known as acceleration of free fall.
- Because of the gravitational attraction of the Earth, all objects fall with the same uniform acceleration,
- It's value is 9.81 m/ s^2 and is directed downward
- This value is true when air resistance is assumed to be absent/ negligible

Example: Free fall

- +ve

 $0.8 \, \mathrm{m}$

- An egg falls off a table. The floor is 0.8 m from the table top.
 - Calculate the time taken to reach the ground (0.40 s) a)
 - b) Calculate the velocity of impact with the ground (3.9ms^{-1})

Solution

- a) Given s = 0.8 m, $g = 9.81 \text{ ms}^{-2}$,
 - From $s = ut + \frac{1}{2} at^2$
 - $s = 0.8 \text{ m}, g = 9.81 \text{ ms}^{-2},$
 - $0.8 = 0 + (1/2)(9.81)(t^2)$
 - t = 0.40 s
- b) v = u + at
 - $v = 0 + (9.81 \text{ ms}^{-2}) (0.40 \text{s})$
 - $= 3.9 \text{ ms}^{-1}$

Why mass is unimportant in free fall

- If you have already looked at energy you will be familiar with
- Potential Energy = mgh
- Kinetic Energy = $\frac{1}{2}$ mv²
- PE lost = KE gained (conservation of energy)
- $mgh = \frac{1}{2} mv^2$
- So, gh = $\frac{1}{2}$ v² and therefore,

$$v = \sqrt{2gh}$$

Motion in two dimensions

PROJECTILES

Air Resistance and Mass

- The acceleration due to gravity does not depend on the mass of the object which is falling.
- Air creates friction that resists the motion of objects moving through it.
- All of the formulas and examples discussed in this **projectile** section are exact only in a **vacuum** (no air).

Projectile

- A projectile is any object which, once projected, continues its motion by its own inertia and is influenced only by the downward force of gravity without influenced of air resistance.
- There are two type of projectile
 - 1. Projectile in vertical direction
 - 2. Projectile in horizontal and vertical direction simultaneously

1. Type of projectiles : vertical direction

A stone is **thrown upwards** with an initial velocity of 20ms⁻¹. (air resistance is negligible).

Q1: How high the stone will go before it fall downward.

Q2: How long will it take for the stone from leaving the girl's hand to return to its same launched position?

STEP 1. Determine sign of direction

- Take upwards as positive
- So, the stone's initial velocity is +ve and downwards as -ve
- But, acceleration due to gravitational pull is -ve

1. Type of projectiles: vertical direction

Q1: How high the stone will go before it fall downward

- As the stone rises upwards, it moves more and more slowly, because force of gravity act downward, thus, it decelerates.
- At the highest point, the stone's velocity, v is zero.

S1: Quantity given

- \square Initial velocity, u = +20 ms-1,
- \Box Final velocity, v = 0
- \square Acceleration = $-g = -9.81 \text{ ms}^{-2}$

S2: Choose suitable equation. We want to find displacement, s. so, use equation 4: $v^2 = u^2 + 2as$

$$\Box$$
 0 = $(20)^2 + [2(-9.81) \times s]$

S3: Solve equation.

 $\Box s = 20 \text{ m (above initial position)}$ September 26, 2016

1. Type of projectiles: vertical

- direction
- Q2. How long will it take for the stone from leaving the girl's hand to return to its same launched position?
- When the stone returns to the point from which it was thrown, its displacement is zero.
- 1. s = 0, $u = 20ms^{-1}$, $a = -9.81 ms^{-2} t = ?$
- 2. Suitable equation: Eq 3 : $\mathbf{s} = \mathbf{ut} + \frac{1}{2} \mathbf{at^2}$
- 3. Solve equation:

$$0 = 20t + \frac{1}{2}(-9.81)t^2$$

- 1. t = 0. and t = 4.1 s.
- 2. (t = 0 is the time when the stone was initially thrown)
- 3. So, the answer is $\underline{\mathbf{t}} = 4.1 \ \underline{\mathbf{s}}$

2. Projectiles: x & y direction

1. Projectile launch horizontally

2. Projectile launch at an angle

The path (**trajectory**) traced out by this projectile has a mathematical shape known as a **parabolic**

Projectile launch horizontally

- ☐ Gravity only affects vertical motion. So,
 - The horizontal velocity (x-component) is unaffected
 - The vertical velocity (y-component) accelerating downwards

Object Launched Horizontally

 u_r = initial horizontal velocity

in the air

IMPORTANT

- 1. The horizontal velocity is constant. $(u_x = v_x)$
- 2. No horizontal acceleration. $(a_x = 0)$.
- 3. Vertical **acceleration** $(a_v = g)$.
- 4. Launch horizontally with velocity u_x , no initial vertical velocity $(u_y = 0)$
- 5. Time is the same for both vertical & horizontal $(t_x = t_y)$.

Horizontal Range (R_x)

Use equation 3:

- $s = ut + \frac{1}{2} at^2$
- Here, $s = R_x$

So,

- $R_x = u_x t + \frac{1}{2} a_x t_x^2$
- (all components in equation is put with subscript x)
- We know that horizontal acceleration, $a_x = 0$, so, the formula become

$$R_x = u_x t_x$$

• Or, as $u_x = v_x$, R_x can also be calculated as

$$R_x = v_x t_x$$

Use equation 3:

- $s = ut + \frac{1}{2} at^2$
- But here, $s = vertical height(R_y)$
- $R_y = u_y t + \frac{1}{2} a_y t^2$

(all components in equation is put with subscript y)

- Here, $u_y = 0$, $a_y = g$
- Thus, the equation become

$$R_{y} = \frac{1}{2} gt_{y}^{2}$$

Example

• A ball is thrown horizontally from the top of a building. The ball is thrown with a horizontal speed of 8.2 m s⁻¹. The side of the building is vertical. At point P on the path of the ball, the ball is distance x from the building and is moving at an angle of 60° to the horizontal. Air resistance is negligible.

Example

$$V_y$$

- For the ball at point P;
 - a) show that the vertical component of its velocity is 14.2 m s^{-1} ,
 - b) determine the vertical distance through which the ball has fallen,
 - c) Determine the horizontal distance *x*.

answer (a)

• $u_x = v_x = \text{horizontal speed constant at}$ 8.2 m s⁻¹

So, vertical component of speed, v_y

• $v_v = 8.2 \text{ tan } 60^{\circ} = 14.2 \text{ m s}^{-1}$

Example

- The vertical distance through which the ball has fallen (s_{ν})
- From eq 4:
- $v^2 = u^2 + 2as$
- $v_y^2 = u_y^2 + 2a_y s_y$
- $(14.2)^2 = 0 + 2 (9.81) s_y$
- $\underline{s_y} = 10.3 \text{ m}$

2. Projectiles at an angle

Object Launched at an Angle

It reaches maximum height in half the total time. Gravity only effects the vertical motion.

$$\frac{\text{vertical}}{u_{v} = u \sin \theta}$$

Time of flight, t

- From equation 3:
- $s = ut + \frac{1}{2} at^2$; now $s = s_y$
- Add subscript y to equation

$$s_y = u_y t + \frac{1}{2} a_y t^2$$

 $s_y = (u \sin \theta)t + \frac{1}{2} a_y t^2$
 $0 = (u \sin \theta)t + \frac{1}{2} a_y t^2, a_y = -g$
 $0 = t[(u \sin \theta) - \frac{1}{2} gt]$
 $t = 0$, and $t = (2u \sin \theta / g)$

- t = 0 when the ball is launched
- So, time of flight, t is $t = (2u \sin \theta / g)$

Horizontal range, R_x

We know that time of flight t is

$$t = (2u \sin \theta / g)$$

- From equation 3:
 - $s = ut + \frac{1}{2} at^2$; now $s = R_x$
 - $-R_x = u_x t + \frac{1}{2} a_x t^2$, but $a_x = 0$, so,
 - $-R_x = u_x t$
 - we know, $u_x = u \cos \theta$ and $t = (2u \sin \theta / g)$
 - $-R_x = u \cos \theta$ (2u sin θ / g), becomes

$$R_x = u^2 \sin 2\theta / g$$

Maximum height, Y_{max}

- Maximum height, y_{max} is when $v_y = 0$
- From equation 4: $v^2 = u^2 + 2as$
- $v_y^2 = u_y^2 + 2a_y y_{max}, a_y = -g$
- $O = (u \sin \theta)^2 + (-2gy_{max})$
- *So,*

$$y_{max} = (u \sin \theta)^2/2g$$

A ball is kicked with initial velocity of 20 ms⁻¹ at an angle 32° from a field

Calculate

- i. Its initial velocity at x-component & y component (16.96ms⁻¹ and 10.60 ms⁻¹)
- ii. Time of flight of the ball on the air (2.16 s)
- iii. Maximum range achieved (36.69 m)
- iv. Maximum height and time to reach that height (5.73 m, 1.08 s)
- v. Maximum range that possibly reach (40.82 m)

TERMINAL VELOCITY (MOTION THROUGH FLUID)

Terminal Velocity

- For objects falling with air resistance influence as such parachutist;
- The resistance from air friction increases as a falling object's velocity increases.
- Thus, the velocity is not increase indefinitely, but reach a maximum velocity)
- This maximum velocity is called **terminal velocity**.
- This is when the force due to air resistance reach an equal value to the weight of the falling object.

Terminal velocity

When

$$F_{up} = F_{down}$$

 $F_{net} = F_{up} - F_{down} = 0$
 $F_{net} = ma \text{ when } F = 0,$
Thus, acceleration a also 0

Thus, acceleration is reduced to zero (g
 =0) and the object falls with constant velocity

Laboratory measurement

- Determining speed
 - Using one light gate
 - Using two light gates
 - Using ticker timer
- Determining acceleration
 - Using two light gates
 - Using ticker timer

Using one light gate

- ✓ Gate detects the time taken from point X to point Y on the card to pass it= t
- \checkmark So, speed = d/t

Using two light gate

Gate detects the time taken for the card to pass **d** distance = t So, speed = d/t

• Using ticker timer with frequency 50 Hz

Time between space = 1/50 = 0.02 second Time taken = 15 spaces x 0.02 s = 0.3 s

Distance travel = 15 cm

Speed = $15 \text{ cm} / 0.3 \text{ s} = 50 \text{ cms}^{-1}$

Determine acceleration

- a = (v-u) t
 - \checkmark u = 0.5 cm / 0.02 s = 25 cms⁻¹
 - \checkmark v = 3.0 cm / 0.02 s = 150 cms⁻¹
- Time taken for the velocity change

$$\checkmark$$
 (0.5 + 4 + 0.5) x0.02s = 0.1 s

• $v = (150 - 25) / 0.1 = 1250 \text{ cms}^{-1}$

Determining acceleration

Using 2 light gates

 T_1 = Time for the card to pass A

 $T_2 = time for card to pass B$

 T_3 = time for card to pass distance AB (d_2)

 $\upsilon = d1/T_1$

Determine g using a falling body

- 1. A steel ball bearing is held by an electromagnet.
- 2. When current to magnet is switched off, the ball begins to fall and an electronic timer starts.
- 3. The ball falls through a distance d and reach trapdoor.
- 4. This breaks a circuit to stop the timer.
- 5. The timer records the time for the ball to fall through the distance d

Determine g using a falling body

- Displacement, s by the ball : d
- Time taken: *t*
- Initial velocity : u = 0
- Acceleration a = g
- By using equation $s = ut + (1/2)at^2$, we get $d = (1/2)gt^2$
- 6. Experiment is repeated with different value of d

Determine g using a falling body

• When plot a graph of d against t^2 , The equation of $d = (1/2)gt^2$ is actually a straight line graph through 0 origin;

- It means gradient, m = (1/2)g, so, g = 2m
- This means, $g = 2 \times gradient$ of graph

Tutorials

8 A stone is thrown horizontally from the top of a cliff. Air resistance is negligible.

Which graph shows the variation with time of the vertical component of the stone's velocity?

8 The velocity of an electric car changes as shown.

What is the acceleration of the car?

A 210 m s⁻²

B 58 m s⁻²

C 26 m s⁻²

D 7.3 m s⁻²

6 A tennis ball is thrown horizontally in air from the top of a tall building.

If the effect of air resistance is **not** negligible, what happens to the horizontal and vertical components of the ball's velocity?

	horizontal component of velocity	vertical component of velocity
A	constant	constant
В	constant	increases at a constant rate
С	decreases to zero	increases at a constant rate
D	decreases to zero	increases to a maximum value

7 An object is thrown with velocity 5.2 m s⁻¹ vertically upwards on the Moon. The acceleration due to gravity on the Moon is 1.62 m s⁻².

What is the time taken for the object to return to its starting point?

A 2.5s

B 3.2s

C 4.5s

D 6.4s

8 The graph shows how the acceleration of an object moving in a straight line varies with time.

The object starts from rest.

Which graph shows the variation with time of the velocity of the object over the same time interval?

8 The curved line PQR is the velocity-time graph for a car starting from rest.

What is the average acceleration of the car over the first 5s?

- A the area below the curve PQ
- B the area of the triangle PQS
- C the gradient of the straight line PQ
- D the gradient of the tangent at Q

9 A ball is released from rest above a horizontal surface. It strikes the surface and bounces several times.

The velocity-time graph for the first two bounces is shown.

What is the maximum height of the ball after the first bounce?

- **A** 0.20 m
- **B** 0.25 m
- C 0.45 m
- D 0.65 m

9 A sprinter runs a 100 m race in a straight line. He accelerates from the starting block at a constant acceleration of 2.5 m s⁻² to reach his maximum speed of 10 m s⁻¹. He maintains this speed until he crosses the finish line.

Which time does it take the sprinter to run the race?

A 45

B 10s

C 12s

- D 20s
- 10 A firework rocket is fired vertically upwards. The fuel burns and produces a constant upwards force on the rocket. After 5 seconds there is no fuel left. Air resistance is negligible.

What is the acceleration before and after 5 seconds?

	before 5 seconds	after 5 seconds
A	constant	constant
В	constant	zero
C	increasing	constant
D	increasing	zero

9 The water surface in a deep well is 78.0 m below the top of the well. A person at the top of the well drops a heavy stone down the well.

Air resistance is negligible. The speed of sound in the air is 330 m s⁻¹.

What is the time interval between the person dropping the stone and hearing it hitting the water?

A 3.75s

B 3.99 s

C 4.19s

D 4.22s