Change-point detection in a Poisson process

S. Robin

joint work with E. Lebarbier, C. Dion-Blanc [DBLR23]

Sorbonne université

Math pour les Sciences du Vivant, Jan. 2024

Examples

Bat cries (night of the 17 jul. 2019)

Examples

Point process on $t \in [0, 1]$.

Event times:

$$0 < T_1 < \dots T_i < \dots T_n < 1$$

Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{I}\{T_i \leqslant t\}$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Examples

Point process on $t \in [0, 1]$.

Event times

$$0 < T_1 < \dots T_i < \dots T_n < 1$$

Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{I}\{T_i \leqslant t\}$$

Poisson Process.

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t))$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Intensity function $\lambda(t)$:

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{\mathbb{P}\{N(t + \Delta t) - N(t) = 1\}}{\Delta t},$$
 $\mathbb{E}N(s)$

$$\mathbb{E}N(s) - \mathbb{E}N(t) = \int_{s}^{s} \lambda(u) \, du$$

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

 $\,\rightarrow\,$ Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

 $\,\rightarrow\,$ Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

- lacktriangle Segmentation: estimate (au,λ) in a reasonnably fast manner
- Model selection: choose K

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

ightarrow Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Kilauea eruptions

- lacktriangle Segmentation: estimate (au,λ) in a reasonnably fast manner
- Model selection: choose *K*

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

→ Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Kilauea eruptions (from 1750 to 1984)^a

asource: [HB17]

- lacktriangle Segmentation: estimate (au,λ) in a reasonnably fast manner
- Model selection: choose *K*

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

 $\,\rightarrow\,$ Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Kilauea eruptions (from 1750 to 1984)^a

asource: [HB17]

- lacktriangle Segmentation: estimate (au,λ) in a reasonnably fast manner
- Model selection: choose *K*

Three typical steps.

- 1. Propose a set of reasonably realistic models;
- 2. Design an (efficient) algorithm to get the parameter estimates;
- 3. Choose among the models.

Three typical steps.

- 1. Propose a set of reasonably realistic models;
- 2. Design an (efficient) algorithm to get the parameter estimates;
- 3. Choose among the models.

Example.

1. N(t) is a Poisson process with piece-wise constant intensity function λ :

$$\lambda(t) = \lambda_k$$
 if $\tau_{k-1} \leq t < \tau_k$.

Parameters: change-points $\tau = (\tau_k)_{1 \leq k \leq K-1}$ and intensities $\lambda = (\lambda_k)_{1 \leq k \leq K}$.

2. For a given number of segments K find

$$(\widehat{\lambda},\widehat{\tau}) = \mathop{\arg\min}_{\tau,\lambda} C_K(N;\tau,\lambda), \qquad \text{e.g.} \quad C_K(N;\tau,\lambda) = -\log p_{K,\tau,\lambda}(N);$$

3. Choose the number of segments K.

Outline

Reminder: segmentation in discrete time

Segmentation in continuous time

Model selection

Illustrations

Extension to marked-Poisson processes

Future works

Discrete time

A simple discrete-time problem.

- ▶ Data: $Y = (Y_t)_{t=1,...n}$ independent;
- Change-points: $\tau = (\tau_1, \dots \tau_{K-1});$
- Means: $\mu = \mu_1, ..., \mu_K$;

$$\tau_{k-1} < t \leq \tau_k \quad \Rightarrow \quad Y_t \sim \mathcal{N}(\mu_k, 1).$$

Discrete time

A simple discrete-time problem.

- ▶ Data: $Y = (Y_t)_{t=1,...n}$ independent;
- Change-points: $\tau = (\tau_1, \dots \tau_{K-1});$
- Means: $\mu = \mu_1, ... \mu_K$;

$$\tau_{k-1} < t \leqslant \tau_k \quad \Rightarrow \quad Y_t \sim \mathcal{N}(\mu_k, 1).$$

Aim. Estimate τ and μ from Y.

Specificity. μ is continuous whereas τ is discrete: $\mu \in \mathbb{R}^K$, $\tau \in [n-1]^{K-1}$.

Maximum-likelihood inference

Principle. For a given number of segments K, look for

$$\widehat{\theta} = \operatorname*{arg\,max} \log p_{\theta}(Y) = \operatorname*{arg\,min} \sum_{k=1}^K \sum_{t=\tau_{k-1}+1}^{\tau_k} (Y_t - \mu_k)^2$$

where $\theta = (\tau, \mu)$.

Maximum-likelihood inference

Principle. For a given number of segments K, look for

$$\widehat{\theta} = \argmax_{\theta} \log p_{\theta}(Y) = \arg \min_{\theta} \sum_{k=1}^K \sum_{t=\tau_{k-1}+1}^{\tau_k} (Y_t - \mu_k)^2$$

where $\theta = (\tau, \mu)$.

Estimating μ . For a given τ , we have that

$$\widehat{\mu}_k(\tau) = \arg\min_{\mu_k} \sum_{t=\tau_{k-1}+1}^{\tau_k} (Y_t - \mu_k)^2 = \frac{1}{\tau_k - \tau_{k-1}} \sum_{t=\tau_{k-1}+1}^{\tau_k} Y_t.$$

Maximum-likelihood inference

Principle. For a given number of segments K, look for

$$\hat{\theta} = \operatorname*{arg\,max} \log p_{\theta}(Y) = \operatorname*{arg\,min} \sum_{k=1}^{K} \sum_{t=\tau_{k-1}+1}^{\tau_k} (Y_t - \mu_k)^2$$

where $\theta = (\tau, \mu)$.

Estimating μ . For a given τ , we have that

$$\hat{\mu}_k(\tau) = \arg\min_{\mu_k} \sum_{t=\tau_{k-1}+1}^{\tau_k} (Y_t - \mu_k)^2 = \frac{1}{\tau_k - \tau_{k-1}} \sum_{t=\tau_{k-1}+1}^{\tau_k} Y_t.$$

Estimating τ . We are left with the discrete optimization problem

$$\widehat{\tau} = \operatorname*{arg\,max}_{\tau} \log p_{(\tau,\widehat{\mu}(\tau))}(Y) = \operatorname*{arg\,min}_{\tau} \sum_{k=1}^{K} \underbrace{\sum_{t=\tau_{k-1}+1}^{\tau_k} (Y_t - \widehat{\mu}_k(\tau))^2}_{C(\tau_{k-1}+1,\tau_k)}$$

Discrete-time segmentation problem

- ▶ Consider a cost function $C(t_1, t_2)$ defined for $1 \leq t_1 < t_2 \leq n$;
- Define the segmentation space

$$\mathcal{T}_{K} = \{ \tau \in [n-1]^{K-1} : 1 \leqslant \tau_{1} < \dots \tau_{K-1} < n \},$$

observe that

$$\operatorname{card}(\mathcal{T}) = \binom{n-1}{K-1} = \mathcal{O}(n^K);$$

▶ Define the contrast $\gamma: \mathcal{T} \mapsto \mathbb{R}$:

$$\gamma(au) = \sum_{k=1}^K C(au_{k-1} + 1, au_k), \qquad ext{with } au_0 = 0, au_K = n.$$

Discrete-time segmentation problem

- ▶ Consider a cost function $C(t_1, t_2)$ defined for $1 \le t_1 < t_2 \le n$;
- Define the segmentation space

$$\mathcal{T}_K = \{ \tau \in [n-1]^{K-1} : 1 \leqslant \tau_1 < \dots \tau_{K-1} < n \},$$

observe that

$$\operatorname{card}(\mathcal{T}) = \binom{n-1}{K-1} = \mathcal{O}(n^K);$$

▶ Define the contrast $\gamma: \mathcal{T} \mapsto \mathbb{R}$:

$$\gamma(\tau) = \sum_{k=1}^{K} C(\tau_{k-1} + 1, \tau_k), \quad \text{with } \tau_0 = 0, \tau_K = n.$$

Dynamic programming. The optimal segmentation

$$\hat{\tau} = \operatorname*{arg\,min}_{\tau \in \mathcal{T}_{\mathsf{K}}} \gamma(\tau)$$

can be recovered in $\mathcal{O}(n^2)$ using a dynamic programming algorithm.

Dynamic programming

Belman's principle. All sub-paths of the optimal path must be optimal themselves.

Dynamic programming

Belman's principle. All sub-paths of the optimal path must be optimal themselves.

Dynamic programming algorithm [AL89].

1. For each $m \in [n]$, compute (in $\mathcal{O}(m)$)

$$t_1(m) = \underset{1 \leqslant t < m}{\text{arg min }} C(1, t) + C(t + 1, m), \qquad S_2(m) = \underset{1 \leqslant t < m}{\text{min}} ();$$

2. Then, for each k = 3 ... K and each $m \in [n]$, compute (in $\mathcal{O}(m)$)

$$t_{k-1}(m) = \underset{k-1 \leqslant t < m}{\arg\min} S_{k-1}(1,t) + C(t+1,m), \qquad S_k(m) = \underset{k-1 \leqslant t < m}{\min}().$$

Dynamic programming

Belman's principle. All sub-paths of the optimal path must be optimal themselves.

Dynamic programming algorithm [AL89].

1. For each $m \in [n]$, compute (in $\mathcal{O}(m)$)

$$t_1(m) = \underset{1 \leqslant t < m}{\text{arg min }} C(1, t) + C(t + 1, m), \qquad S_2(m) = \underset{1 \leqslant t < m}{\text{min}} ();$$

2. Then, for each k = 3 ... K and each $m \in [n]$, compute (in $\mathcal{O}(m)$)

$$t_{k-1}(m) = \underset{k-1 \leqslant t < m}{\arg\min} S_{k-1}(1,t) + C(t+1,m), \qquad S_k(m) = \underset{k-1 \leqslant t < m}{\min}().$$

Solution. After $\mathcal{O}(Kn^2)$ operations:

$$\min_{\tau \in \mathcal{T}_{\kappa}} \gamma(\tau) = S_{\kappa}(n),$$

and

$$\hat{\tau}_{K-1} = t_{K-1}(n), \qquad \hat{\tau}_{k-1} = t_{K-1}(\hat{\tau}_k).$$

Outline

Reminder: segmentation in discrete time

Segmentation in continuous time

Model selection

Illustrations

Extension to marked-Poisson processes

Future works

First useful property of Poisson processes: Independence of disjoint intervals.

First useful property of Poisson processes: Independence of disjoint intervals.

(Neg-log-)likelihood. Denoting

- $\Delta \tau_k$ the length of the k-th interval $(= \tau_k \tau_{k-1})$,
- $ightharpoonup \Delta N_k$ the number of events within the k-th interval (= $N(\tau_k) N(\tau_{k-1})$):

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

First useful property of Poisson processes: Independence of disjoint intervals.

(Neg-log-)likelihood. Denoting

- $\Delta \tau_k$ the length of the k-th interval $(= \tau_k \tau_{k-1})$,
- $lack \Delta N_k$ the number of events within the k-th interval $(=N(au_k)-N(au_{k-1}))$:

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Additive contrast. General form = sum over the segments

$$\gamma(\tau,\lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

First useful property of Poisson processes: Independence of disjoint intervals.

(Neg-log-)likelihood. Denoting

- $\Delta \tau_k$ the length of the k-th interval $(=\tau_k-\tau_{k-1})$,
- ▶ ΔN_k the number of events within the k-th interval (= $N(\tau_k) N(\tau_{k-1})$):

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^{K} \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Additive contrast. General form = sum over the segments

$$\gamma(\tau, \lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

Optimization problem.

$$(\widehat{\tau},\widehat{\lambda}) = \underset{\tau \in \mathcal{T}_K, \lambda \in (\mathbb{R}^+)^K}{\arg \min} \ \ \gamma(\tau,\lambda).$$

Minimizing the contrast function

Optimal λ . Because the contrast is additive, we may define

$$\widehat{\lambda}_k = \widehat{\lambda}_k(\tau) = \operatorname*{arg\,min}_{\lambda_k \in \mathbb{R}^+} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

e.g. $\hat{\lambda}_k = \Delta N_k / \Delta \tau_k$ if $\gamma = -\log p_\theta$.

Minimizing the contrast function

Optimal λ . Because the contrast is additive, we may define

$$\widehat{\lambda}_k = \widehat{\lambda}_k(\tau) = \mathop{\arg\min}_{\lambda_k \in \mathbb{R}^+} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

e.g. $\hat{\lambda}_k = \Delta N_k / \Delta \tau_k$ if $\gamma = -\log p_\theta$.

Optimal τ . We are left with the minimization problem

$$\hat{\tau} = \underset{\tau \in \mathcal{T}_K}{\arg\min} \ \, \hat{\gamma}(\tau), \qquad \text{where} \quad \hat{\gamma}(\tau) = \gamma(\tau, \hat{\lambda}(\tau))$$

where \mathcal{T}_K is the continuous segmentation space:

$$\mathcal{T}_{K} = \left\{ \tau \in \left[0,1\right]^{K+1} : 0 = \tau_{0} < \tau_{1} \cdot \cdot \cdot < \tau_{K-1} < \tau_{K} = 1 \right\}.$$

Minimizing the contrast function

Optimal λ . Because the contrast is additive, we may define

$$\widehat{\lambda}_k = \widehat{\lambda}_k(\tau) = \operatorname*{arg\,min}_{\lambda_k \in \mathbb{R}^+} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

e.g. $\hat{\lambda}_k = \Delta N_k / \Delta \tau_k$ if $\gamma = -\log p_\theta$.

Optimal τ . We are left with the minimization problem

$$\hat{\tau} = \underset{\tau \in \mathcal{T}_K}{\arg\min} \ \, \hat{\gamma}(\tau), \qquad \text{where} \quad \hat{\gamma}(\tau) = \gamma(\tau, \hat{\lambda}(\tau))$$

where \mathcal{T}_K is the continuous segmentation space:

$$\mathcal{T}_{K} = \left\{ \tau \in [0, 1]^{K+1} : 0 = \tau_{0} < \tau_{1} \dots < \tau_{K-1} < \tau_{K} = 1 \right\}.$$

Main issue: The contrast $\hat{\gamma}(\tau)$ is neither convex nor continuous wrt τ .

Shape of the contrast fonction

Observed N(t): n = 10,

¹gray borders come by pair

Shape of the contrast fonction

Observed N(t): n = 10,

Contrast $\hat{\gamma}(\tau)$ for K=3 segments:

$$\tau=(\tau_1,\tau_2).$$

One 'block' = one specific value for the vector 1

$$\Delta N = (\Delta N_1, \Delta N_2, \Delta N_3)$$

¹gray borders come by pair

Partitioning the segmentation space

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$. $\rightarrow \nu_k = \text{given number of events in segment } k$.

Partitioning the segmentation space

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

 $\rightarrow \nu_k$ = given number of events in segment k.

Partitioning the segmentation space. For $\nu \in \mathcal{N}_K$, define

$$\mathcal{T}(\nu) = \left\{ \tau \in \mathcal{T}_K : \Delta N = \nu \right\}.$$

 $\rightarrow \mathcal{T}(\nu) = \text{set of segmentation satisfying the prescribed } \nu = (\nu_1, \dots \nu_K).$

We have

$$\min_{\tau \in \mathcal{T}_K} \widehat{\gamma}(\tau) = \min_{\nu \in \mathcal{N}^K} \min_{\tau \in \mathcal{T}(\nu)} \widehat{\gamma}(\tau,).$$

Optimal segmentation

Proposition 1. If $K \leq n$ and if $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}(\nu)$ for each $\nu \in \mathcal{N}^K$, then

$$\widehat{\tau} = \operatorname*{arg\,min}_{\tau \in \mathcal{T}_K} \widehat{\gamma}(\tau) \subset \{\mathit{T}_1^-, \mathit{T}_1, \mathit{T}_2^-, \mathit{T}_2^-, \ldots \mathit{T}_n^-, \mathit{T}_n\}.$$

Optimal segmentation

Proposition 1. If $K \leqslant n$ and if $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}(\nu)$ for each $\nu \in \mathcal{N}^K$, then

$$\widehat{\tau} = \operatorname*{arg\,min}_{\tau \in \mathcal{T}_K} \widehat{\gamma}(\tau) \subset \{ \mathcal{T}_1^-, \mathcal{T}_1, \mathcal{T}_2^-, \mathcal{T}_2^-, \dots \mathcal{T}_n^-, \mathcal{T}_n \}.$$

Proposition 2. If each $\hat{C}(\nu_k, \Delta \tau_k) := C(\nu_k, \Delta \tau_k, \hat{\lambda}_k)$ is strictly concave wrt $\Delta \tau_k$, then $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}(\nu)$.

Optimal segmentation

Proposition 1. If $K \leq n$ and if $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}(\nu)$ for each $\nu \in \mathcal{N}^K$, then

$$\widehat{\tau} = \underset{\tau \in \mathcal{T}_K}{\text{arg min }} \widehat{\gamma}(\tau) \subset \{T_1^-, T_1, T_2^-, T_2^-, \dots T_n^-, T_n\}.$$

Proposition 2. If each $\hat{C}(\nu_k, \Delta \tau_k) := C(\nu_k, \Delta \tau_k, \hat{\lambda}_k)$ is strictly concave wrt $\Delta \tau_k$, then $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}(\nu)$.

Consequence. $\hat{\tau}$ can be obtained by dynamic programming over the 2n+2 possible change-points

$$S = \{0, T_1^-, T_1, T_2^-, T_2, \dots T_n^-, T_n, 1\}$$

with complexity at most $O(n^2)$.

Admissible contrasts

Poisson contrast. $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ is concave wrt $\Delta \tau$.

Admissible contrasts

Poisson contrast. $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ is concave wrt $\Delta \tau$.

Poisson-Gamma model. For each segment $1 \le k \le K$:

$$\Lambda_k \text{ iid } \sim \mathcal{G}am(a, b), \qquad \{N(t)\}_{t \in I_k} \mid \Lambda_k \sim PP(\Lambda_k).$$

Admissible contrasts

Poisson contrast. $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ is concave wrt $\Delta \tau$.

Poisson-Gamma model. For each segment $1 \le k \le K$:

$$\Lambda_k \text{ iid } \sim \mathcal{G}am(a, b), \qquad \{N(t)\}_{t \in I_k} \mid \Lambda_k \sim PP(\Lambda_k).$$

Contrast for one segment:

$$C_{PG}(\Delta N_k, \Delta \tau_k) = \operatorname{cst} - \log \Gamma(a + \Delta N_k) + (a + \Delta N_k) \log(b + \Delta \tau_k)$$

 \rightarrow Strictly concave wrt $\Delta \tau_k$.

Desirable contrast

Remark. The Poisson contrast $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ satisfies

$$\hat{C}_P(\nu_k=1,\Delta\tau_k=0)=-\infty.$$

- The optimal solution will involve segments with null length and containing only one event.
- 'Undesirable' contrast.

Desirable contrast

Remark. The Poisson contrast $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ satisfies

$$\hat{C}_P(\nu_k = 1, \Delta \tau_k = 0) = -\infty.$$

- The optimal solution will involve segments with null length and containing only one event.
- 'Undesirable' contrast.

Poisson-Gamma contrast. $C_{PG}(\nu_k, \Delta \tau_k) = -\log \Gamma(a + \nu_k) + (a + \nu_k) \log(b + \Delta \tau_k)$.

- Satisfies the concavity property (→ admissible),
- but avoids segments with null length (→ desirable).

Outline

Reminder: segmentation in discrete time

Segmentation in continuous time

Model selection

Illustrations

Extension to marked-Poisson processes

Future works

Second useful property of Poisson processes: Thining.

- $\blacktriangleright \ \{\textit{N}(t)\} \sim \textit{PP}(\lambda(t))$
- ► Sample event times (with prob. *f*)
- ► Store the remaining events

Second useful property of Poisson processes: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ▶ Sample event times (with prob. *f*)
- Store the remaining events

$$\{N^L(t)\} \sim PP(f\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-f)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Second useful property of Poisson processes: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample event times (with prob. *f*)
- Store the remaining events

$$\{N^L(t)\} \sim PP(f\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-f)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Consequence. If $\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t))$, with $\lambda(t)$ piecewise constant with change-points $\tau = (\tau_k)$ and intensities $\lambda = (\lambda_k)$, then

Second useful property of Poisson processes: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ▶ Sample event times (with prob. *f*)
- Store the remaining events

$$\{N^L(t)\} \sim PP(f\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-f)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Consequence. If $\{N(t)\}_{0\leqslant t\leqslant 1}\sim PP(\lambda(t))$, with $\lambda(t)$ piecewise constant with change-points $\tau=(\tau_k)$ and intensities $\lambda=(\lambda_k)$, then

- $\lambda^{L}(t)$ piecewise constant with change-points (τ_{k}) and intensities $(f\lambda_{k})$,
- $\lambda^T(t)$ piecewise constant with change-points (τ_k) and intensities $((1-f)\lambda_k)$,
- $\{N^L(t)\} \perp \{N^T(t)\}.$

Sampling event times provides two independent Poisson processes with same change-points.

Sampling event times provides two independent Poisson processes with same change-points.

Cross-validation procedure. For $1 \le K \le K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - 3 Compute the contrast $\gamma_K^{T,m} = \gamma\left(\{N^T(t)\}; \hat{\tau}^{L,m}, \frac{1-f}{f}\hat{\lambda}^{L,m}\right)$.

Sampling event times provides two independent Poisson processes with same change-points.

Cross-validation procedure. For $1 \leqslant K \leqslant K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - 3 Compute the contrast $\gamma_K^{T,m} = \gamma \left(\{ N^T(t) \}; \hat{\tau}^{L,m}, \frac{1-f}{f} \hat{\lambda}^{L,m} \right)$.
- Compute

$$\overline{\gamma}_K = \frac{1}{M} \sum_{m=1}^M \gamma_K^{T,m}$$

Sampling event times provides two independent Poisson processes with same change-points.

Cross-validation procedure. For $1 \le K \le K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - 3 Compute the contrast $\gamma_K^{T,m} = \gamma \left(\{ N^T(t) \}; \hat{\tau}^{L,m}, \frac{1-f}{f} \hat{\lambda}^{L,m} \right)$.
- Compute

$$\overline{\gamma}_K = \frac{1}{M} \sum_{m=1}^{M} \gamma_K^{T,m}$$

Select

$$\widehat{K} = \mathop{\arg\min}_K \overline{\gamma}_K$$

Outline

Reminder: segmentation in discrete time

Segmentation in continuous time

Model selection

Illustrations

Extension to marked-Poisson processe

Future works

Practical implementation.

Contrasts. During the CV process, we use

- a sampling rate of f = 4/5,
- **ightharpoonup** the Poisson-Gamma contrast γ_{PG} for the learning step and
- the Poisson contrast γ_P for the test step.

Practical implementation.

Contrasts. During the CV process, we use

- a sampling rate of f = 4/5,
- the Poisson-Gamma contrast γ_{PG} for the learning step and
- the Poisson contrast γ_P for the test step.

Hyper-parameters. For an observed path $\{N(t)\}_{0 \le t \le 1}$ with n = N(1) events, we use

$$a = 1, \qquad b = 1/n$$

to fit the observed total number of events.

Practical implementation.

Contrasts. During the CV process, we use

- a sampling rate of f = 4/5,
- the Poisson-Gamma contrast γ_{PG} for the learning step and
- the Poisson contrast γ_P for the test step.

Hyper-parameters. For an observed path $\{N(t)\}_{0 \le t \le 1}$ with n = N(1) events, we use

$$a = 1, b = 1/n$$

to fit the observed total number of events.

R package CptPointProcess available on github.com/Elebarbier/CptPointProcess.

Some simulations

Simulation setting. K = 6 segments with varying length. Tuning parameters:

- $\overline{\lambda}$ average intensity (\rightarrow total number of events),
- ▶ λ_R = height of the steps (→ contrast between segments).

Estimation. Choose K via CV, then refit the parameters to the whole dataset.

Some simulations

Simulation setting. K = 6 segments with varying length. Tuning parameters:

- $\overline{\lambda}$ average intensity (\rightarrow total number of events),
- λ_R = height of the steps (\rightarrow contrast between segments).

Estimation. Choose K via CV, then refit the parameters to the whole dataset.

Kilauea eruptions

n = 63 eruptions reported between the mid 18th and the late 20th century.

Resulting segmentation

Outline

Reminder: segmentation in discrete time

Segmentation in continuous time

Model selection

Illustrations

Extension to marked-Poisson processes

Future works

Extension to marked-Poisson processes

Marked Poisson Process.

• $\{Y(t)\}_{0 \leqslant t \leqslant 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t)),$$
 at each T_i : $X_i \sim \mathcal{F}(\mu(T_i))$

- ▶ Volcanos: mark = eruption duration.
- ▶ Bat cries: mark = bat species or cry duration.

Extension to marked-Poisson processes

Marked Poisson Process.

• $\{Y(t)\}_{0 \leqslant t \leqslant 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0\leqslant t\leqslant 1}\sim PP(\lambda(t)), \qquad \text{at each } T_i\colon \ X_i\sim \mathcal{F}(\mu(T_i))$$

- ▶ Volcanos: mark = eruption duration.
- Bat cries: mark = bat species or cry duration.

Proposed method.

- Works the same way, provided that concavity holds.
- ▶ Poisson-Gamma events + Exponential-Gamma durations is both admissible and desirable.

Count and marks: Events = eruptions, marks = duration of each eruption.

Model.

- ▶ Piecewise-constant intensity Poisson process for the events
- Exponential distribution (with segment specific parm.) for the durations

Count and marks: Events = eruptions, marks = duration of each eruption.

Model.

- ▶ Piecewise-constant intensity Poisson process for the events
- Exponential distribution (with segment specific parm.) for the durations

CV for the selection of K

Outline

Reminder: segmentation in discrete time

Segmentation in continuous time

Model selection

Illustrations

Extension to marked-Poisson processes

Future works

Future works

Segmentation-clustering.

- Each segment belongs to a class $1\leqslant q\leqslant Q$ (with probability π_q and intensity $\lambda_k=\ell_q$),
- Combination of EM and DP algorithms [PRLD07],
- ▶ Bat cries: Class = animal behaviour (hunt, transit, ...)

Future works

Segmentation-clustering.

- ▶ Each segment belongs to a class $1 \leq q \leq Q$ (with probability π_q and intensity $\lambda_k = \ell_q$),
- Combination of EM and DP algorithms [PRLD07],
- ▶ Bat cries: Class = animal behaviour (hunt, transit, ...)

And also.

- Theoretically grounded model selection criterion (BIC: ongoing),
- Consistency of the estimated change-points (ongoing),
- Other desirable contrasts, ...

References I

- ion-Blanc, E Lebarbier, and S Robin. Multiple change-point detection for Poisson processes. Technical Report 2302.09103, arXiv, 2023.
- Ho and M Bhaduri. A quantitative insight into the dependence dynamics of the Kilauea and Mauna Loa volcanoes, Hawaii. *Mathematical Geosciences*, 49(7):893–911, 2017.
- Figicard, S. Robin, E Lebarbier, and J-J Daudin. A segmentation/clustering model for the analysis of array CGH data. *Biometrics*, 63(3):758–766, 2007.

Appendix

Number of elements in the partition of the segmentation space.

$$|\mathcal{N}_{\mathcal{K}}| = \sum_{h=\lfloor (\mathcal{K}-1)/2 \rfloor}^{\mathcal{K}} {n-1 \choose h-1} {h+1 \choose \mathcal{K}-h}$$

Appendix

Number of elements in the partition of the segmentation space.

$$|\mathcal{N}_{\mathcal{K}}| = \sum_{h=\lfloor (\mathcal{K}-1)/2 \rfloor}^{\mathcal{K}} {n-1 \choose h-1} {h+1 \choose \mathcal{K}-h}$$

Simulations: Shape of the intensity function $\lambda(t)$. K=6, $\overline{\lambda}=100$, $\lambda_R=1,3,8$.

Choice of the hyper-parameters (a, b)

Sticking to a/b=n ($\overline{\lambda}=100$ and $\lambda_R=8$) :

Choice of the fraction f for cross-validation

Proposed f=4/5 ($\overline{\lambda}=100$ and $\lambda_R=8$) :

Poisson process: Mauna Loa eruptions

