Planche 1

Cours

Passage au logarithme dans les équivalents : Enoncé et preuve.

Exercice 1.

Donner le développement limité à l'ordre 4 en 0 de $x \mapsto ((1 + \sin x)^x, 0)$.

Exercice 2.

Résoudre dans \mathbb{C} l'équation : $(z+1)^n = e^{2ina}$, n étant un entier $\geqslant 1$ et $a \in \mathbb{R}$. En déduire les valeurs de $u_n(a) = \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n})$ et de $v_n(a) = \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n})$.

Planche 2

Cours

Enoncé et preuve de la formule de Taylor Young à l'ordre n en x_0 .

(On précisera soigneusement les hypothèses de validité de cet énoncé.)

La réciproque de cette propriété est elle vraie?

Exercice 1.

Donner le développement à l'ordre 3 de $x \mapsto \frac{1}{1+x^2}$ en $x_0 = 2$.

Exercice 2.

Soit P un polynôme scindé à racines simples, $\alpha_1, \ldots, \alpha_n$ ses racines.

On suppose que $P(0) \neq 0$. Montrer que

$$\sum_{i=1}^{n} \frac{1}{\alpha_i P'(\alpha_i)} = -\frac{1}{P(0)}$$

Exercice 3.

Soit $n \in \mathbb{N}^*$.

Décomposer en éléments simples dans $\mathbb{C}(X)$, puis dans $\mathbb{R}(X)$ la fraction $F_n := \frac{1}{X^n - 1}$.

Planche 3

Cours

Unicité de la partie régulière d'un développement limité si existence : Enoncé et preuve.

Exercice 1.

Donner le développement à l'ordre 5 en 0 de $\ln\left(\frac{1+\tan(x)}{1-\tan(x)}\right)$.

Exercice 2.

Soit $P \in \mathbb{R}[X]$ un polynôme de degré n unitaire (ie de coefficient dominant égal à 1).

Soit
$$Q = \prod_{i=0}^{n} (X - i)$$
.

- 1. Décomposer $F = \frac{P}{Q}$ en éléments simples.
- 2. Montrer que $\max\{|P(k)|, k \in [0, n]\} \ge \frac{n!}{2^n}$.