Discussion 12

2022.06.09

• CNN

• RNN

• LSTM

Autoencoder

VAE

• GAN

CNN

CNN

CNN/filter

CNN/convolution

1	1	1
1	1	1
1	1	1

CNN/convolution

Feature map

CNN/convolution

										$\overline{}$
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -				0.77	-0.11	0.11	0.33	0.55	0.11	0.33
11111111		1 -1 -1		0.1	1 1.00	-0.11	0.33	0.11	0.11	-0.11
3 3 3 1 3 1 3 3 3				0.11	-0.11	1.00	0.33	0.11	0.11	0.55
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	X	-1 1 -1		0.33	0.33	-0.33	0.55	0.33	0.33	0.33
51 51 51 51 51 51 51 51		-1 -1 1		0.55	-0.11	0.11	0.33	1.00	0.11	0.11
51 1 51 51 51 51 1 51				0.1	0.11	-0.11	0.33	0.11	1.00	-0.11
-1 -1 -1 -1 -1 -1 -1 -1 -1				0.33	-0.11	0.55	0.33	0.11	0.11	0.77
-1 -1 -1 -1 -1 -1 -1 -1 -1				0.33	-0.55	0.11	-0.11	0.11	0.55	0.33
-1 1 -1 -1 -1 -1 1 -1		_		0.50	5 0.55	-0.55	0.33	0.55	0.55	-0.55
-1 -1 1 -1 -1 -1 1 -1 -1		1 -1 1		0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
1111111111111 11111		1 1 1	_	0.1	1 0.33	-0.77	1.00	0.77	0.33	-0.11
51 51 51 1 51 51 51 51		-1 1 -1	_	0.11	-0.55	0.55	-0.77	0.55	0.55	0.11
-1 -1 1 -1 -1 1 1 -1 -1		1 -1 1		0.50	5 0.55	-0.55	0.33	0.55	0.55	-0.55
-1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1				0.33	-0.55	0.11	-0.11	0.11	0.55	0.33
-1 -1 -1 -1 -1 -1 -1 -1 -1				0.33	0.11	0.55	0.33	0.11	-0.11	0.77
-1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1		1 1 1		0.1	0.11	-0.11	0.33	-0.11	1.00	-0.11
51 51 51 51 51 51 51		-1 -1 1		0.53	0.11	0.11	0.33	1.00	0.11	0.11
51 51 51 51 51 51 51 51	(\mathbf{X})	-1 1 -1		0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
				0.11	0.11	1.00	0.33	0.11	-0.11	0.55
31		1 -1 -1		0.1	1.00	0.11	0.33	-0.11	0.11	-0.11
-1 -1 -1 -1 -1 -1 -1 -1				0.77	0.11	0.11	0.33	0.55	-0.11	0.33

CNN/Relu

CNN/Relu

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

CNN/pooling

CNN/pooling

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

CNN

- 1. Convolution Layer(s)
- 2. Pooling Layer(s)
- 3. Classification Fully Connected Layer

RNN

I ate an apple.

apple

RNN

RNN

$$h_t = f_W(h_{t-1}, x_t)$$
new state old state input vector at some time step some function with parameters W

$$y_t = W_{hy}h_t$$

LSTM (Long short-term memory)

Decide if something is important or not

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Autoencoder

Autoencoder

Autoencoder

VAE

Smile (probability distribution)

VS.

VAE

VAE

■ Objective $\mathcal{L}(x, \phi, \theta) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$

Regularization term

Reconstruction term

GAN

GAN

Reference

- https://zhuanlan.zhihu.com/p/27908027
- https://www.bilibili.com/video/BV1qM4y1M7Nv?p=3&vd_source=4e16ec5d64dfcf4e3da2a8cae0e32d0b
- https://zhuanlan.zhihu.com/p/72228021
- https://www.zhihu.com/search?type=content&g=%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
- https://www.zhihu.com/search?type=content&q=%E7%94%9F%E6%88%90%E5%AF%B9%E6%8A%97%E7%BD%91%E7%BB%9C
- https://www.zhihu.com/search?q=%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8%20VAE&utm_content=search_history&type=content
- https://zhuanlan.zhihu.com/p/33752313

THANKS