An improvement on Brooks'

Landon Rabern

Introduction

Rephrasing the problem

rephrased problem

A spectrum of generalizations

Further improvements

An improvement on Brooks' theorem

Landon Rabern

landon.rabern@gmail.com

February 28, 2011

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum o generalization

Further improvement

Outline

- 1 Introduction
- 2 Rephrasing the problem
- Solving the rephrased problem Kierstead and Kostochka's proof Problem solved Proof outline Mozhan's lemma The recoloring algorithm
- 4 A spectrum of generalizations Generalizing maximum degree The generalized bound What about Δ_0 ?
- **5** Further improvements

Solving the rephrased problem

A spectrum o generalization

Further improvements

Introduction

Theorem (Brooks 1941)

Every graph with $\Delta \geq 3$ satisfies $\chi \leq \max\{\omega, \Delta\}$.

Definition

The *Ore-degree* of an edge xy in a graph G is $\theta(xy) = d(x) + d(y)$. The *Ore-degree* of a graph G is $\theta(G) = \max_{xy \in E(G)} \theta(xy)$.

- every graph satisfies $\left|\frac{\theta}{2}\right| \leq \Delta$
- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \left|\frac{\theta}{2}\right| + 1$

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalizations

Further improvements

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \left\{ \omega, \left\lfloor \frac{\theta}{2} \right\rfloor \right\}$.

Kierstead and Kostochka [2] conjectured that the 12 could be reduced to 10. That this would be best possible can be seen from the following example which has $\theta=9$, $\omega=4$ and $\chi=5$.

Figure: O_5 , a counterexample with $\theta = 9$.

Rephrasing the problem

Solving th rephrased problem

A spectrum of generalizations

Further improvement

Rephrasing the problem

- let G be a critical graph with $\chi = \left\lfloor \frac{\theta}{2} \right\rfloor + 1$
- it follows that G must satisfy $\theta \leq 2\chi 1$
- if $\Delta < \chi$ we are done by Brooks' theorem
- otherwise we have $\theta \geq \delta + \Delta \geq 2\chi 1$ giving $\theta = 2\chi 1$
- thus, $\chi=\Delta$ and no two vertices of max degree in ${\it G}$ can be adjacent

An improvement on Brooks' theorem

Landon Rabern

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalization

Further improvement

Definition

Let G be a graph. The low vertex subgraph $\mathcal{L}(G)$ is the graph induced on the vertices of degree $\chi(G)-1$. The high vertex subgraph $\mathcal{H}(G)$ is the graph induced on the vertices of degree at least $\chi(G)$.

Problem

Prove that $K_{\Delta(G)+1}$ is the only critical graph G with $\chi(G) \geq \Delta(G) \geq 6$ such that $\mathcal{H}(G)$ is edgeless.

Introduction

the problem

Solving the rephrased problem

Kierstead and Kostochka's proof

Proof outline Mozhan's lemm The recoloring algorithm

A spectrum of generalization

Further improvement

Kierstead and Kostochka's proof

- take a minimal counterexample *G* and use minimality to prove some structural properties
- $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$ by a result of Stiebitz [7]
- since $\mathcal{H}(G)$ is edgeless it has at most as many vertices as $\mathcal{L}(G)$ has components
- apply Alon and Tarsi's algebraic list coloring theorem to an auxilliary bipartite graph
- do some counting and get a contradiction
- it only works for $\theta \ge 12$

_ . . .

Solving the rephrased problem

Kostochka's proof

Problem solved

Mozhan's lemma The recoloring algorithm

A spectrum of generalizations

Further

In [5] we solved the problem in a more general fashion.

Theorem (Rabern 2010)

$$K_{\Delta(G)+1}$$
 is the only critical graph G with $\chi(G) \geq \Delta(G) \geq 6$ and $\omega(\mathcal{H}(G)) \leq \left| \frac{\Delta(G)}{2} \right| - 2$.

Setting $\omega(\mathcal{H}(G))=1$ proves the conjecture of Kierstead and Kostochka.

Introductio

Rephrasing the problem

Solving the rephrased problem

Kostochka's proof Problem solved

Proof outline Mozhan's lemn

The recoloring algorithm

A spectrum or generalization

Further improvement

Proof outline

- take a minimal counterexample *G* and use minimality to prove some structural properties
- \bullet run a carefully chosen recoloring algorithm to construct a large "dense" subgraph H
- inductively $\Delta 1$ color G H
- use minimality of G to show that the $\Delta-1$ coloring can be completed to H

Solving the rephrased problem

Kostochka's proof Problem solved

Problem solved Proof outline

Mozhan's lemma The recoloring algorithm

A spectrum of generalization

Further improvement

Partitioned colorings

Definition

Let G be a vertex critical graph. Let $a \ge 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. By a (r_1, \ldots, r_a) -partitioned coloring of G we mean a proper coloring of G of the form

$$\{\{x\}, L_{11}, L_{12}, \dots, L_{1r_1}, L_{21}, L_{22}, \dots, L_{2r_2}, \dots, L_{a1}, L_{a2}, \dots, L_{ar_a}\}$$

Here $\{x\}$ is a singleton color class and each L_{ij} is a color class.

Kierstead and Kostochka's proof Problem solve

Problem solve Proof outline

Mozhan's lemma The recoloring

A spectrum of

Further improvement

Mozhan's Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let $a \ge 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. Of all (r_1, \ldots, r_a) -partitioned colorings of G pick one minimizing

$$\sum_{i=1}^{a} \left| E\left(G\left[\bigcup_{j=1}^{r_i} L_{ij} \right] \right) \right|.$$

Remember that $\{x\}$ is a singleton color class in the coloring. Put $U_i = \bigcup_{j=1}^{r_i} L_{ij}$ and let $Z_i(x)$ be the component of x in $G[\{x\} \cup U_i]$. If $d_{Z_i(x)}(x) = r_i$, then $Z_i(x)$ is complete if $r_i \geq 3$ and $Z_i(x)$ is an odd cycle if $r_i = 2$.

Introduction

Rephrasing the problem

Solving the rephrased problem

Kostochka's proof Problem solved Proof outline

The recoloring algorithm

A spectrum of generalizations

Further improvement

The recoloring algorithm

- take a $\left(\left\lfloor\frac{\Delta-1}{2}\right\rfloor, \left\lceil\frac{\Delta-1}{2}\right\rceil\right)$ -partitioned coloring minimizing the above function
- prove that we may assume that x is a low vertex
- by Mozhan's lemma, the neighborhood of x in each part induces a clique or an odd cycle
- swap x with a low vertex x₁ in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around
- use the fact that you wrapped around to show that there are many edges between the two induced cliques (odd cycles)
- we have now constructed the desired large "dense" subgraph

Rephrasing the problem

Solving the rephrased problem

A spectrum or

Generalization Generalizing

maximum degree The generalized bound What about

Further improvements

 Δ_0 ?

Generalizing maximum degree

Definition

For $0 \le \epsilon \le 1$, define $\Delta_{\epsilon}(G)$ as

$$\left[\max_{xy\in E(G)}(1-\epsilon)\min\{d(x),d(y)\}+\epsilon\max\{d(x),d(y)\}\right].$$

Note that $\Delta_1 = \Delta$, $\Delta_{\frac{1}{2}} = \lfloor \frac{\theta}{2} \rfloor$.

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum generalizatio

Generalizing maximum degre The generalized

bound
What about Δ_0 ?

Further

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \le 1$, there exists t_{ϵ} such that every graph with $\Delta_{\epsilon} \ge t_{\epsilon}$ satisfies

$$\chi \leq \max\{\omega, \Delta_{\epsilon}\}.$$

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ , the smallest t_{ϵ} that works
- that $t_1 = 3$ is smallest is Brooks' theorem
- the graph ${\it O}_5$ shows that $t_\epsilon=6$ is smallest for ${1\over 2} \le \epsilon < 1$
- we will see below that if $P \neq NP$, then t_0 does not exist and hence $t_{\epsilon} \to \infty$ as $\epsilon \to 0$

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum of

Generalizing maximum degree The generalized bound

What about Δ_0 ?

Further

What about Δ_0 ?

- the above proofs only work for $\epsilon>0$
- what happens when $\epsilon = 0$?
- the parameter Δ_0 has already been investigated by Stacho [6] under the name Δ_2

Definition (Stacho 2001)

For a graph G define

$$\Delta_2(G) = \max_{xy \in E(G)} \min\{d(x), d(y)\}.$$

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalization

Generalizing maximum degree The generalized bound

What about Δ_0 ?

Further improvements

Facts about Δ_2

- $\Delta_2 = \Delta_0$
- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \Delta_2 + 1$
- for any fixed $t \geq 3$, the problem of determining whether or not $\chi(G) \leq \Delta_2(G)$ for graphs with $\Delta_2(G) = t$ is *NP*-complete (see [6])

Solving the rephrased problem

generalizations
Generalizing
maximum degree

The generalized bound
What about

 Δ_0 ?

Further improvements

A tempting thought

A tempting thought

There exists t such that every graph with $\Delta_2 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_2\}$.

- unfortunately, the tempting thought cannot hold for any t if $P \neq NP$
- to show this, we use Lovász's ϑ parameter [1] which can be appoximated in polynomial time and has the property that $\omega(G) \leq \vartheta(G) \leq \chi(G)$

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum of

Generalizing maximum degree The generalized

What about Δ_0 ?

Further improvements

A polynomial-time algorithm

- assume the tempting thought holds for some $t \ge 3$
- ullet take any arbitrary graph with $\Delta_2 \geq t$
- first, compute Δ_2 in polynomial time
- second, compute x such that $x \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \ge \Delta_2 + \frac{1}{2}$, then $\chi \ge \vartheta > \Delta_2$ and hence $\chi = \Delta_2 + 1$
- if $x < \Delta_2 + \frac{1}{2}$, then $\omega \le \vartheta < \Delta_2 + 1$, and hence $\omega \le \Delta_2$
- now, $\chi \leq \max\{\omega, \Delta_2\} \leq \Delta_2$
- we just gave a polynomial time algorithm to determine whether or not $\chi \leq \Delta_2$ for graphs with $\Delta_2 \geq t$
- this is impossible unless P=NP

An improvement on Brooks' theorem

Landon Rabern

Introductio

Rephrasing the problem

Solving the rephrased problem

A spectrum o

Generalizing maximum degree The generalized bound

What about Δ_0 ?

Further improvements

What we can prove about Δ_0 (aka Δ_2)

Theorem (Rabern 2010)

Every graph with $\Delta \geq 3$ satisfies

$$\chi \leq \max \left\{ \omega, \Delta_2, rac{5}{6}(\Delta+1)
ight\}.$$

- the proof uses a recoloring algorithm similar to the above
- actually, all the above results about Δ_{ϵ} follow from this result

Introduction

Rephrasing the problem

Solving the rephrased problem

A spectrum of generalizations

Further improvements

In joint work with Kostochka and Stiebitz [3] similar techniques were used to improve the bounds further. We give some highlights.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with $\theta \geq 8$, except O_5 , satisfies $\chi \leq \max\left\{\omega, \left\lfloor \frac{\theta}{2} \right\rfloor\right\}$.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

$$\chi \leq \max \left\{ \omega, \Delta_2, rac{3}{4}(\Delta+2)
ight\}.$$

An improvement on Brooks' theorem

Further improvements

M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), no. 2, 169-197.

H.A. Kierstead and A.V. Kostochka, Ore-type versions of Brooks' theorem, Journal of Combinatorial Theory, Series B 99 (2009), no. 2, 298-305.

A.V. Kostochka, L. Rabern, and M. Stiebitz, Graphs with chromatic number close to maximum degree, Submitted.

L. Rabern, An Improvement On Brooks' Theorem, Submitted.

______, Δ-Critical Graphs With Small High Vertex Cliques, Journal of Combinatorial Theory, Series B (forthcoming).

L. Stacho, New upper bounds for the chromatic number of a graph, Journal of Graph Theory 36 (2001), no. 2, 117-120.

M. Stiebitz. Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs. Combinatorica 2 (1982), no. 3, 315-323.