

Chapter II. Elements of Signal Detection Theory

Introduction

- ➤ Signal detection = the problem of deciding which signal is present from 2 or more possibilities
 - one possibility may be that there is no signal
- ► Based on **noisy** observations
 - signals are affected by noise
 - noise is additive (added to the original signal)

The model for signal detection

Figure 1: Signal detection model

- Contents:
 - ▶ Information source: generates messages a_n with probabilities $p(a_n)$
 - Generator: generates different signals $s_1(t), \ldots s_n(t)$
 - Modulator: transmits a signal $s_n(t)$ for message a_n
 - Channel: adds random noise
 - ▶ Sampler: takes samples from the signal $s_n(t)$
 - ightharpoonup Receiver: **decides** what message a_n has been transmitted
 - User receives the recovered messages

Practical scenarios

- Data transmission
 - ▶ constant voltage levels (e.g. $s_n(t) = \text{constant} = 0 \text{ or 5V}$)
 - ▶ PSK modulation (Phase Shift Keying): $s_n(t) = \text{cosine with same}$ frequency but various initial phases
 - FSK modulation (Frequency Shift Keying): $s_n(t) = \text{cosines with different frequencies}$
 - ► OFDM modulation (Orthogonal Frequency Division Multiplexing): particular case of FSK
- Radar
 - a signal is emitted; if there is an obstacle, the signal gets reflected back
 - ▶ the receiver waits for possible reflections of the signal and must decide
 - no reflection is present -> no object
 - reflected signal is present -> object detected

- ▶ Decide between more than two signals
- Number of observations:
 - use only one sample
 - use multiple samples
 - observe the whole continuous signal for some time T

Detection of a signal with 1 sample

- ➤ Simplest case: detection of a signal contaminated with noise using 1 sample
 - \blacktriangleright two messages a_0 and a_1
 - messages are encoded as signals $s_0(t)$ and $s_1(t)$
 - \triangleright over the signals there is additive white noise n(t)
 - receiver receives noisy signal r(t) = s(t) + n(t)
 - receiver takes just 1 sample at time t_0 , $r(t_0)$
 - decision: based on $r(t_0)$, which signal was it?

Hypotheses and decisions

- There are two hypotheses:
 - ▶ H_0 : true signal is $s(t) = s_0(t)$ (a_0 has been transmitted)
 - ▶ H_1 : true signal is $s(t) = s_1(t)$ (a_1 has been transmitted)
- Receiver can take two decisions:
 - ▶ D_0 : receiver decides that signal was $s(t) = s_0(t)$
 - ▶ D_1 : receiver decides that signal was $s(t) = s_1(t)$

Possible outcomes

- ► There are 4 possible situations:
 - Correct rejection: true hypothesis is H₀, decision is D₀
 Probability is P_r = P(D₀ ∩ H₀)
 - 2. **False alarm** (false detection): true hypothesis is H_0 , decision is D_1 Probability is $P_{fa}P(D_1 \cap H_0)$
 - 3. Miss (false rejection): true hypothesis is H_1 , decision is D_0
 - Probability is $P_m = P(D_0 \cap H_1)$
 - 4. Correct detection (hit): true hypothesis is H_1 , decision D_1
 - ▶ Probability is $P_d = P(D_1 \cap H_1)$

Origin of terms

- ► Terms originate from radar application (first application of detection theory)
 - signal is emitted from source
 - received signal = possible reflection from a target, with lots of noise
 - $ightharpoonup H_0$ = no target is present, no reflected signal (only noise)
 - $ightharpoonup H_1 = \text{target is present, there is a reflected signal}$
 - ▶ hence the 4 scenarios refer to "has the target been detected"

The noise

- In general we consider additive, white, stationary noise
 - additive = the noise is added to the signal
 - white = two samples from the noise are uncorrelated
 - stationary = has same statistical properties at all times
- ▶ The noise signal n(t) is unknown
 - ▶ it's random
 - we just know it's distribution, but not the actual values

The sample

- ▶ The receiver receives r(t) = s(t) + n(t)
 - $ightharpoonup s(t) = \text{original signal, either } s_0(t) \text{ or } s_1(t)$
 - ightharpoonup n(t) = unknown noise
- ▶ The value of the sample taken at t_0 is $r(t_0) = s(t_0) + n(t_0)$
 - $s(t_0) = \text{either } s_0(t_0) \text{ or } s_1(t_0)$
 - $ightharpoonup n(t_0)$ is a sample of the noise

The sample

- ▶ The sample $n(t_0)$ is a **random variable**
 - ▶ since it is a sample of noise (a sample from a random process)
 - assume is a continuous r.v., i.e. range of possible values is continuous
- $ightharpoonup r(t_0) = s(t_0) + n(t_0) = a \text{ constant} + a \text{ random variable}$
 - it is also a random variable
 - $ightharpoonup s(t_0)$ is a constant, either $s_0(t_0)$ or $s_1(t_0)$
- ▶ What distribution does $r(t_0)$ have?
 - a constant + a r.v. = has same distribution as r.v., but shifted with the constant

The conditional distributions

- Assume the noise has known distribution w(x)
 - ▶ this is the distribution of the r.v. $n(t_0)$
- ► The distribution of $r(t_0) = s(t_0) + n(t_0) = w(x)$ shifted by $s(t_0)$
- ▶ In hypothesis H_0 , the distribution is $w(r|H_0) = w(x)$ shifted by $s_0(t_0)$
- ▶ In hypothesis H_1 , the distribution is $w(r|H_1) = w(x)$ shifted by $s_1(t_0)$
- $w(r|H_0)$ and $w(r|H_1)$ are known as **conditional distributions** or **conditional likelihood functions**
 - " " means "conditioned by", "given that"
 - ▶ i.e. considering one hypothesis or the other one
 - r is the unknown of the function

Maximum Likelihood decision criterion

- ► How to decide what hypothesis is true based on the observed sample $r = r(t_0)$?
- ▶ Maximum Likelihood (ML) criterion: choose the hypothesis that is most likely to have generated the observed sample value $r = r(t_0)$
 - ▶ choose the higher value between $w(r(t_0)|H_0)$ and $w(r(t_0)|H_1)$
- ► ML expressed as a **Likelihood ratio** test:

$$\frac{w(r|H_1)}{w(r|H_0)} \overset{H_1}{\underset{H_0}{\gtrless}} 1$$

riterion is evaluated for our observed value $r = r(t_0)$

Example: gaussian noise

- Consider noise having a normal distribution
- ► At blackboard:
 - ▶ plot the two conditional distributions for $w(r|H_0)$, $w(r|H_1)$
 - discuss the decision taken for different values of r
 - discuss the threshold value T for taking decisions

Gaussian noise (AWGN)

- lacktriangle Particular case: the noise has normal distribution $\mathcal{N}(0,\sigma^2)$
 - i.e. it is AWGN
- ► Likelihood ratio is $\frac{w(r|H_1)}{w(r|H_0)} = \frac{e^{-\frac{(r-s_1(t_0))^2}{2\sigma^2}}}{e^{-\frac{(r-s_0(r_0))^2}{2\sigma^2}}} \underset{H_0}{\gtrless} 1$
- ► For normal distribution, it is easier to apply **natural logarithm** to the terms
 - logarithm is a monotonic increasing function, so it won't change the comparison
 - ▶ if A < B, then log(A) < log(B)
- ► The log-likelihood of an observation = the logarithm of the likelihood value
 - usually the natural logarithm, but any one can be used

Log-likelihood test for ML

▶ Applying natural logarithm to both sides leads to:

$$-(r-s_1(t_0))^2+(r-s_0(t_0))^2 \underset{H_0}{\stackrel{H_1}{\gtrless}} 0$$

Which means

$$|r-s_0(t_0)| \stackrel{H_1}{\underset{H_0}{\gtrless}} |r-s_1(t_0)|$$

- Note that |r A| = distance from r to A
 - |r| = distance from r to 0
- lacktriangle So we choose the smallest distance between $r(t_0)$ and $s_1(t_0)$ vs $s_0(t_0)$

Maximum Likelihood for gaussian noise

- ML criterion **for gaussian noise**: choose the hypothesis based on whichever of $s_0(t_0)$ or $s_1(t_0)$ is **nearest** to our observed sample $r = r(t_0)$
 - also known as nearest neighbor principle / decision
 - very general principle, encountered in many other scenarios
 - because of this, a receiver using ML is also known as minimum distance receiver

Steps for ML decision

- 1. Sketch the two conditional distributions $w(r|H_0)$ and $w(r|H_1)$
- 2. Find out which function is higher at the observed value $r = r(t_0)$ given.

Steps for ML decision in case of gaussian noise

- ▶ Only if the noise is Gaussian, identical for all hypotheses:
 - 1. Find $s_0(t_0)=$ the value of the original signal, in absence of noise, in case of hypothesis H_0
 - 2. Find $s_1(t_0)$ = the value of the original signal, in absence of noise, in case of hypothesis H_1
 - 3. Compare with observed sample $r(t_0)$ and choose the nearest

Thresholding based decision

- Choosing the nearest value = same thing as comparing r with a threshold $T = \frac{s_0(t_0) + s_1(t_0)}{2}$
 - ▶ i.e. if the two values are 0 and 5, decide by comparing with 2.5 (like in laboratory)
- ▶ In general, the threshold = the cross-over point between the conditioned distributions

Exercise

- A signal can have two possible values, 0 or 5. The signal is affected by white gaussian noise \mathcal{N} ($\mu=0,\sigma^2=2$). The receiver takes one sample with value r=2.25
 - a. Write the expressions of the conditional probabilities and sketch them
 - b. What is the decision based on the Maximum Likelihood criterion?
 - c. What if the signal 0 is affected by gaussian noise $\mathcal{N}(0,0.5)$, while the signal 5 is affected by uniform noise $\mathcal{U}[-4,4]$?
 - d. Repeat b. and c. assuming the value 0 is replaced by -1

Decision regions

- ► The **decision regions** = the range of values of *r* for which a certain decision is taken
- ightharpoonup Decision regions R_0 = all the values of r which lead to decision D_0
- lacktriangle Decision regions $R_1=$ all the values of r which lead to decision D_1
- lacktriangle The decision regions cover the whole ${\mathbb R}$ axis
- Example: indicate the decision regions for the previous exercise:
 - $ightharpoonup R_0 = [-\infty, 2.5]$
 - ► $R_1 = [2.5, \infty]$

The likelihood function

- ▶ Call the hypotheses, generically, H_i , and the signals $s_i(t)$, where i is either 0 or 1
- Consider the conditional distribution $w(r|H_i)$
 - think of the function in the previous example, e.g.:

$$w(r|H_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r-s_i(t_0))^2}{2\sigma^2}}$$

- Which is the unknown in this function?
 - not r, since it is actually given in the exercise
 - i is the unknown variable

Terminology: probability vs likelihood

- ▶ In the same mathematical expression of a distribution function:
 - if we know the parameters (e.g. μ , σ , H_i), and the unknown is the value (e.g. r, x) we call it **probability density function** (distribution)
 - if we know value (e.g. r, x), and the unknown is some statistical parameter (e.g. μ , σ , i), we call it a **likelihood function**
- ► Hence the subtle distinction in terms: "probability" vs "likelihood"

The likelihood function

- ▶ The function $w(r|H_i) = f(i)$ is a likelihood function
 - the unknown is i
- ▶ The function exists only in 2 points, for i = 0 and i = 1
 - \triangleright or, in general, for i = how many hypotheses exist in the problem
- ▶ ML criterion = choose the *i* for which this function is maximum

Decision
$$D_i = \arg \max_i w(r|H_i)$$

- Notation:
 - ▶ arg max f(x) = the x for which the function f(x) is maximum
 - ightharpoonup max f(x) = the maximum value of the function f(x)
 - see graphical explanation at blackvoard
- Maximum Likelihood criterion means "choose the i which maximizes the likelihood function $f(i) = w(r|H_i)$ "

- What if the noise has another distribution?
 - Sketch the conditional distributions
 - Locate the given $r = r(t_0)$
 - ▶ ML criterion = choose the highest function $w(r|H_i)$ in that point
- The decision regions are defined by the cross-over points
 - There can be more cross-overs, so multiple thresholds

- ▶ What if the noise has a different distribution in hypothesis H_0 than in hypothesis H_1 ?
- ► Same thing:
 - Sketch the conditional distributions
 - ▶ Locate the given $r = r(t_0)$
 - ▶ ML decision = choose the highest function $w(r|H_i)$ in that point

- ▶ What if the two signals $s_0(t)$ and $s_1(t)$ are constant / not constant?
- ▶ We don't care about the shape of the signals
 - \triangleright All we care about are the two values at the sample time t_0 :
 - $ightharpoonup s_0(t_0)$
 - $ightharpoonup s_1(t_0)$

- ▶ What if we have more than two hypotheses?
- Extend to *n* hypotheses
 - We have *n* possible signals $s_0(t)$, ... $s_{n-1}(t)$
 - ▶ We have *n* different values $s_0(t_0)$, . . . $s_{n-1}(t_0)$
 - We have *n* conditional distributions $w(r|H_i)$
 - For the given $r = r(t_0)$, choose the maximum value out of the n values $w(r|H_i)$

- ▶ What if we take more than 1 sample?
- Patience, we'll treat this later as a separate sub-chapter

Exercise

▶ A signal can have four possible values: -6, -2, 2, 6. Each value lasts for 1 second. The signal is affected by white noise with normal distribution. The receiver takes 1 sample per second. Using ML criterion, decide what signal has been transmitted, if the received samples are:

$$4, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

Conditional probabilities

- ▶ We compute the **conditional probabilities** of the 4 possible outcomes
- ► Consider the decision regions:
 - ▶ R_0 : when $r \in R_0$, decision is D_0
 - $ightharpoonup R_1$: when $r \in R_1$, decision is D_1
- ► Conditional probability of correct rejection
 - ightharpoonup = probability to take decision D_0 in the case that hypothesis is H_0
 - ightharpoonup = probability that r is in R_0 computed from the distribution $w(r|H_0)$

$$P(D_0|H_0) = \int_{R_0} w(r|H_0) dx$$

- ► Conditional probability of false alarm
 - ightharpoonup = probability to take decision D_1 in the case that hypothesis is H_0
 - ightharpoonup = probability that r is in R_1 computed from the distribution $w(r|H_0)$

$$P(D_1|H_0) = \int_{R_1} w(r|H_0) dx$$

Conditional probabilities

- Conditional probability of miss
 - ightharpoonup = probability to take decision D_0 in the case that hypothesis is H_1
 - ightharpoonup = probability that r is in R_0 computed from the distribution $w(r|H_1)$

$$P(D_0|H_1) = \int_{R_0} w(r|H_1) dx$$

- Conditional probability of correct rejection
 - ightharpoonup = probability to take decision D_1 in the case that hypothesis is H_1
 - ightharpoonup = probability that r is in R_1 computed from the distribution $w(r|H_1)$

$$P(D_1|H_1) = \int_{R_1} w(r|H_1) dx$$

Conditional probabilities

- ► Relation between them:
 - ightharpoonup sum of correct rejection + false alarm =1
 - ▶ sum of miss + correct detection = 1
 - Why? Prove this.

Computing conditional probabilities

Figure 2: Conditional probabilities

- Ignore the text, just look at the nice colors
- [image from hhttp://gru.stanford.edu/doku.php/tutorials/sdt]*

Probabilities of the 4 outcomes

- Conditional probabilities are computed given that one or the other hypothesis is true
- ▶ They do not account for the probabilities of the hypotheses themselves
 - ▶ i.e. $P(H_0)$ = how many times does H_0 happen?
 - ▶ $P(H_1)$ = how many times does H_1 happen?
- ▶ To account for these, multiply with $P(H_0)$ or $P(H_1)$
 - $ightharpoonup P(H_0)$ and $P(H_1)$ are known as the **prior** (or **a priori**) probabilities of the hypotheses

Reminder: the Bayes rule

Reminder: the Bayes rule

$$P(A \cap B) = P(B|A) \cdot P(A)$$

- Interpretation
 - ▶ The probability P(A) is taken out from P(B|A)
 - ▶ P(B|A) gives no information on P(A), the chances of A actually happening
 - **Example:** $P(\text{score} \mid \text{shoot}) = \frac{1}{2}$. How many goals are scored?
- ▶ In our case: $P(D_i \cap H_j) = P(D_i|H_j) \cdot P(H_j)$
 - for all i and j, i.e. all 4 cases

Exercise

- A constant signal can have two possible values, -2 or 5. The signal is affected by gaussian noise $\mathcal{N}(\mu=0,\sigma^2=2)$. The receiver performs ML decision based on a single sample.
 - a. Compute the conditional probability of a false alarm
 - b. Compute the conditional probability of a miss
 - c. If $P(H_0) = \frac{1}{3}$ and $P(H_1) = \frac{2}{3}$, compute the actual probabilities of correct rejection and correct detection (not conditional)

Pitfalls of ML decision criterion

- The ML criterion is based on comparing conditional distributions
 conditioned by H₁ or by H₁
- \blacktriangleright Conditioning by H_0 and H_1 ignores the prior probabilities of H_0 or H_1
 - Our decision doesn't change if we know that $P(H_0) = 99.99\%$ and $P(H_1) = 0.01\%$, or vice-versa
- ▶ But if $P(H_0) > P(H_1)$, we may want to move the threshold towards H_1 , and vice-versa
 - because it is more likely that the true signal is $s_0(t)$
 - \triangleright and thus we want to "encourage" decision D_0
- Looks like we want a more general criterion . . .

The minimum error probability criterion

- ▶ Takes into account the probabilities $P(H_0)$ and $P(H_1)$
- ▶ Goal is to minimize the total probability of error $P_e = P_{fa} + P_m$
 - errors = false alarms and misses
- \blacktriangleright We need to find a new criterion (new decision regions R_0 and R_1)

Deducing the new criterion

► The probability of false alarm is:

$$P(D_1 \cap H_0) = P(D_1|H_0) \cdot P(H_0)$$

$$= \int_{R_1} w(r|H_0) dx \cdot P(H_0)$$

$$= (1 - \int_{R_0} w(r|H_0 dx) \cdot P(H_0)$$

► The probability of miss is:

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$

= $\int_{R_2} w(r|H_1) dx \cdot P(H_1)$

▶ The total error probability (their sum) is:

$$P_e = P(H_0) + \int_{R_0} [w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0)] dx$$

Minimum probability of error

- \triangleright We want to minimize P_e , i.e. to minimize the integral
- \triangleright We can choose R_0 as we want for this purpose
- ▶ We choose R_0 such that for all $r \in R_0$, the term inside the integral is **negative**
 - because integrating over all the interval where the function is negative ensures minimum value of integral
- So, when $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ we have $r \in R_0$, i.e. decision D_0
- ▶ Conversely, when $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ we have $r \in R_1$, i.e. decision D_1
- ► Therefore

$$w(r|H_{1}) \cdot P(H_{1}) - w(r|H_{0}) \cdot P(H_{0}) \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 0$$

$$\frac{w(r|H_{1})}{w(r|H_{0})} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{P(H_{0})}{P(H_{1})}$$

Minimum probability of error

► The minimum probability of error criterion (MPE):

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{P(H_0)}{P(H_1)}$$

Interpretation

- ▶ MPE criterion is more general than ML, depends on probabilities of the two hypotheses
 - ► Also expressed as a likelihood ratio test
- ▶ When one hypothesis has higher probability than the other, the threshold is **pushed in its favor**, towards the other one
- ▶ The ML criterion is a particular case of the MPE criterion, for $P(H_0) = P(H_1) = \frac{1}{2}$

Minimum probability of error - Gaussian noise

lacktriangle Assuming the noise has normal distribution $\mathcal{N}(0,\sigma^2)$

$$w(r|H_1) = e^{-\frac{(r-s_1(t_0))^2}{2\sigma^2}}$$
$$w(r|H_0) = e^{-\frac{(r-s_0(t_0))^2}{2\sigma^2}}$$

Apply natural logarithm

$$-\frac{(r-s_1(t_0))^2}{2\sigma^2} + \frac{(r-s_0(t_0))^2}{2\sigma^2} \mathop{\gtrless}_{H_0}^{H_1} \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Equivalently

$$(r - s_0(t_0))^2 \stackrel{H_1}{\underset{H}{\gtrless}} (r - s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

or, after further processing:

or, after further processing:
$$r \underset{H_0}{\gtrless} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Interpretation 1: Comparing distance

For ML criterion, we compare the (squared) distances:

$$|r - s_0(t_0)| \stackrel{H_1}{\underset{H_0}{\gtrless}} |r - s_1(t_0)|$$
 $(r - s_0(t_0))^2 \stackrel{H_1}{\underset{H_0}{\gtrless}} (r - s_1(t_0))^2$

For MPE criterion, we compare the squared distances, but a supplementary term appears in favour of the most probable hypothesis:

$$(r-s_0(t_0))^2 \stackrel{H_1}{\underset{H_0}{\gtrless}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

▶ term depends on the ratio $\frac{P(H_0)}{P(H_1)}$

Interpretation 2: The threshold value

▶ For ML criterion, we compare r with a threshold T

$$r \underset{H_0}{\gtrless} \frac{s_0(t_0) + s_1(t_0)}{2}$$

► For MPE criterion, the threshold is moved towards the less probable hypothesis:

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

• depending on the ratio $\frac{P(H_0)}{P(H_1)}$

Exercises

- Consider the decision between two constant signals: $s_0(t) = -5$ and $s_1(t) = 5$. The signals are affected by gaussian noise $\mathcal{N}(0, \sigma^2 = 3)$ The receiver takes one sample r.
 - a. Find the decision regions R_0 and R_1 according to the MPE criterion
 - b. What are the probabilities of false alarm and of miss?
 - c. Repeat a) and b) considering that $s_1(t)$ is affected by uniform noise $\mathcal{U}[-4,4]$

Minimum risk criterion

- ▶ What if we care more about one type of errors (e.g. false alarms) than other kind (e.g. miss)?
 - ▶ MPE criterion treats all errors the same
 - ► Need a more general criterion
- ▶ Idea: assign a **cost** to each scenario, minimize average cost
- $ightharpoonup C_{ij} = {\sf cost}$ of decision D_i when true hypothesis was H_j
 - $ightharpoonup C_{00} = {\rm cost}$ for good detection D_0 in case of H_0
 - $ightharpoonup C_{10} = {
 m cost}$ for false alarm (detection D_1 in case of H_0)
 - $ightharpoonup C_{01} = {\sf cost}$ for miss (detection D_0 in case of H_1)
 - $C_{11} = \text{cost for good detection } D_1 \text{ in case of } H_1$
- ► The idea of assigning "costs" and minimizing average cost is very general
 - e.g. IT: Shannon coding: "cost" of each message is the length of its codeword, we want to minimize average cost, i.e. minimize average length

Minimum risk criterion

▶ Define the **risk** = **the average cost** value

$$R = C_{00}P(D_0 \cap H_0) + C_{10}P(D_1 \cap H_0) + C_{01}P(D_0 \cap H_1) + C_{11}P(D_1 \cap H_1)$$

- Minimum risk criterion: minimize the risk R
 - i.e. minimize the average cost
 - also known as "minimum cost criterion"

Computations

- ▶ Proof on blackboard: (sorry, no time to put in on slides)
 - ► Use Bayes rule
 - Notations: $w(r|H_i)$ (likelihood)
 - ▶ Probabilities: $\int_{R} w(r|H_i)dV$
- ► Conclusion, decision rule is

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Minimum risk criterion

Minimum risk criterion (MR):

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Interpretation

- MR is a generalization of MPE criterion (which was itself a generalization of ML)
 - also expressed as a likelihood ratio test
- ▶ Both **probabilities** and the assigned **costs** can influence the decision towards one hypothesis or the other
- ▶ If $C_{10} C_{00} = C_{01} C_{11}$, MR reduces to MPE:
 - e.g. if $C_{00} = C_{11} = 0$, and $C_{10} = C_{01}$

Minimum Risk - gaussian noise

- ► If the noise is gaussian (normal), do like for the other criteria, apply logarithm
- Obtain:

$$(r-s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\geqslant}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{(C_{10}-C_{00})p(H_0)}{(C_{01}-C_{11})p(H_1)}\right)$$

▶ or

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln \left(\frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)} \right)$$

Interpretation 1: Comparing distance

► For MPE criterion, we compare the squared distances, but a supplementary term appears in favour of the most probable hypothesis:

$$(r-s_0(t_0))^2 \stackrel{H_1}{\underset{H_0}{\gtrless}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

- term depends on the ratio $\frac{P(H_0)}{P(H_1)}$
- ► For MR criterion, besides the probabilities we also are influenced by the costs

$$(r-s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\geqslant}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln \left(\frac{(C_{10}-C_{00})p(H_0)}{(C_{01}-C_{11})p(H_1)} \right)$$

Interpretation 2: The threshold value

► For MPE criterion, the threshold is moved towards the less probable hypothesis:

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

- ▶ depending on the ratio $\frac{P(H_0)}{P(H_1)}$
- ► For MR criterion, besides the probabilities we also are influenced by the costs

$$r \underset{H_0}{\overset{H_1}{\geqslant}} \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}\right)$$

Influence of costs

- ► The MR criterion pushes the decision towards minimizing the high-cost scenarios
- Example: from the equations:
 - \triangleright what happens if cost C_{01} increases, while the others are unchanged?
 - \triangleright what happens if cost C_{10} increases, while the others are unchanged?
 - what happens if both costs C_{01} and C_{10} increase, while the others are unchanged?

General form of ML, MPE and MR criteria

ML, MPE and MR criteria all have the following form

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- ightharpoonup for ML: K=1
- ► for MPE: $K = \frac{P(H_0)}{P(H_1)}$ ► for MR: $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$

General form of ML, MPE and MR criteria

In gaussian noise, all criteria reduce to:

Comparing squared distances:

$$(r-s_0(t_0))^2 \underset{H_0}{\stackrel{H_1}{\gtrless}} (r-s_1(t_0))^2 + 2\sigma^2 \cdot \ln(K)$$

ightharpoonup Comparing the sample r with a threshold T:

$$r \underset{H_0}{\gtrless} \underbrace{\frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln(K)}_{T}$$

Exercise

- A vehicle airbag system detects a crash by evaluating a sensor which provides two values: $s_0(t) = 0$ (no crash) or $s_1(t) = 5$ (crashing)
- ▶ The signal is affected by gaussian noise \mathcal{N} ($\mu = 0, \sigma^2 = 1$).
- ▶ The costs of the scenarios are: $C_{00} = 0$, $C_{01} = 100$, $C_{10} = 10$, $C_{11} = -100$
 - a. Find the decision regions R_0 and R_1 .

Neyman-Pearson criterion

- An even more general criteria than all the others until now
- ▶ **Neyman-Pearson criterion**: maximize probability of correct detection $(P(D_1 \cap H_1))$ while keeping probability of false alarms smaller then a limit $(P(D_1 \cap H_0) \le \lambda)$
 - ▶ Deduce the threshold T from the limit condition $P(D_1 \cap H_0) = \lambda$
- \blacktriangleright ML, MPE and MR criteria are particular cases of Neyman-Pearson, for particular values of λ

Exercise

- An information source provides two messages with probabilities $p(a_0) = \frac{2}{3}$ and $p(a_1) = \frac{1}{3}$.
- ▶ The messages are encoded as constant signals with values -5 (a_0) and 5 (a_1).
- ▶ The signals are affected by noise with uniform distribution U[-5, 5].
- ▶ The receiver takes one sample *r*.
 - a. Find the decision regions according to the Neymar-Pearson criterion, considering $P_{\rm fa} \leq 10^{-2}$
 - b. What is the probability of correct detection, in this case?

Application: Differential vs single-ended signalling

- ► Application: binary transmission with constant signals (e.g. constant voltage levels)
- ► Two common possibilities:
 - ► Single-ended signalling: one signal is 0, other is non-zero ► $s_0(t) = 0$, $s_1(t) = A$
 - Differential signalling: use two non-zero levels with different sign, same absolute value
 - $ightharpoonup s_0(t) = -\frac{A}{2}, \ s_1(t) = \frac{A}{2}$
- Find out which is better?

Differential vs single-ended signalling

- Since difference between levels is the same, decision performance is the same
- Average power of a signal = average squared value
- ► For differential signal: $P = \left(\pm \frac{A}{2}\right)^2 = \frac{A^2}{4}$
- ► For signal ended signal: $P = P(H_0) \cdot 0 + P(H_1)(A)^2 = \frac{A^2}{2}$
 - ▶ assuming equal probabilities $P(H_0) = P(H_1) = \frac{1}{2}$
- ▶ Differential uses half the power of single-ended (i.e. better), for same decision performance

Summary of criteria

- We have seen decision based on 1 sample r, between 2 signals (mostly)
- ▶ All decisions are based on a likelihood-ratio test

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- ▶ Different criteria differ in the chosen value of K (likelihood threshold)
- ► Depending on the noise distributions, the real axis is partitioned into regions
 - ▶ region R_0 : if r is in here, decide D_0
 - region R_1 : if r is in here, decide D_1
- ▶ For gaussian noise, the boundary of the regions (threshold) is

$$T = \frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln(K)$$

Receiver Operating Characteristic

- ► The receiver performance is usually represented with "Receiver Operating Characteristic" (ROC) graph
- ▶ It is a graph of $P_d = P(D_1|H_1)$ as a function of $P_{fa} = P(D_1|H_0)$,
 - obtained for different values of the threshold value T
 - ightharpoonup i.e. for every T you get a certain value of P_{fa} and a certain value of P_{d}

Figure 3: Sample ROC curves

Receiver Operating Characteristic

- ightharpoonup It shows there is always a **tradeoff** between good P_d and bad P_{fa}
 - ▶ to increase P_d one must also increase P_{fa}
 - ▶ if we want to make sure we don't miss any real detections (increase P_d), we pay by increasing the chances of false alarms
- ightharpoonup Different criteria = different likelihood thresholds K= different points on the graph = different tradeoffs
 - but the tradeoff cannot be avoided
- ▶ How to improve the receiver?
 - ightharpoonup i.e. increase P_D while keeping P_{fa} the same

2018-2018 Exam

▶ 2018-2019 Exam: Skip next 3 slides (until Signal-to-noise ratio)

Performance of likelihood-ratio decoding in AWGN

- ► WGN = "White Gaussian Noise"
- Assume equal probabilities $P(H_0) = P(H_1) = \frac{1}{2}$
 - ► Equivalently, consider only the conditional probabilities
- ▶ All decisions are based on a likelihood-ratio test

$$\frac{w(r|H_1)}{w(r|H_0)} \overset{H_1}{\gtrless} K$$

► Conditional probability of correct detection is:

$$P_{d} = P(D_{1}|H_{1})$$

$$= \int_{T}^{\infty} w(r|H_{1})$$

$$= (F(\infty) - F(T))$$

$$= \frac{1}{2} \left(1 - erf\left(\frac{T - s_{1}(t_{0})}{\sqrt{2}\sigma}\right) \right)$$

$$= Q\left(\frac{T - s_{1}(t_{0})}{\sqrt{2}\sigma}\right)$$

Performance of likelihood-ratio decoding in AWGN

Conditional probability of false alarm is:

$$\begin{aligned} P_{fa} = & P(D_1|H_0) \\ &= \int_T^{\infty} w(r|H_0) \\ &= & (F(\infty) - F(T)) \\ &= & \frac{1}{2} \left(1 - erf\left(\frac{T - s_0(t_0)}{\sqrt{2}\sigma}\right) \right) \\ &= & Q\left(\frac{T - s_0(t_0)}{\sqrt{2}\sigma}\right) \end{aligned}$$

- ► Therefore $\frac{T-s_0(t_0)}{\sqrt{2}\sigma} = Q^{-1}(P_{fa})$,
- ► And: $\frac{T s_1(t_0)}{\sqrt{2}\sigma} = Q^{-1}(P_{fa}) + \frac{s_0(t_0) s_1(t_0)}{\sqrt{2}\sigma}$

Performance of likelihood-ratio decoding in AWGN

ightharpoonup Replacing in P_d yields:

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} + \frac{s_0(t_0) - s_1(t_0)}{\sqrt{2}\sigma}\right)$$

- ► Consider a simple case:
 - $ightharpoonup s_0(t_0) = 0$
 - $ightharpoonup s_1(t_0) = A = constant$
- ► We get:

$$P_d = Q \left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \frac{A}{\sqrt{2}\sigma} \right)$$

Signal-to-noise ratio

- **Signal-to-noise ratio (SNR)** = $\frac{\text{power of original signal}}{\text{power of noise}}$
- Average power of a signal = average squared value = $\overline{X^2}$
 - Original signal power of s(t) is $\frac{A^2}{2}$
 - Noise power is $\overline{X^2} = \sigma^2$ (when noise mean value $\mu = 0$)
- ▶ In our case, $SNR = \frac{A^2}{2\sigma^2}$

$$P_d = Q \left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \sqrt{SNR} \right)$$

- \triangleright For a fixed P_{fa} , P_d increases with SNR
 - Q is a monotonic decreasing function

Performance depends on SNR

- Receiver performance increases with SNR increase
 - high SNR: good performance
 - poor SNR: bad perfomance

Figure 4: Detection performance depends on SNR

[source: Fundamentals of Statistical Signal Processing, Steven Kay]

Applications of decision theory

- Can we apply these decision criteria in other engineering problems?
 - e.g. not for deciding between two signals, but for something else
- ▶ The core mathematical problem we solve is:
 - we have 2 (or more) possible distributions
 - we observe 1 value
 - we determine the most likely distribution, according to the value
- In our particular problem, we decide between two signals
- But this can be applied to many other statistical problems:
 - medicine: does this ECG signal look healthy or not?
 - business: will this client buy something or not?
 - ▶ Typically we use more than 1 value for these, but the mathematical principle is the same

Applications of decision theory

Example (purely imaginary):

- ▶ A healthy person of weight = X kg has the concentration of thrombocytes per ml of blood distributed approximately as \mathcal{N} ($\mu = 10 \cdot X, \sigma^2 = 20$).
- ▶ A person suffering from disease D has a much lower value of thrombocytes, distributed approximately as \mathcal{N} (100, $\sigma^2 = 10$).
- The lab measures your blood and finds your value equal to r = 255. Your weight is 70 kg.
- Decide: are you most likely healthy, or ill?

Multiple samples from a signal

- ▶ The overall context stays the same:
 - ightharpoonup A signal s(t) is transmitted
 - ► There are **two hypotheses**:
 - $ightharpoonup H_0$: true signal is $s(t) = s_0(t)$
 - $ightharpoonup H_1$: true signal is $s(t) = s_1(t)$
 - Receiver can take two decisions:
 - ▶ D_0 : receiver decides that signal was $s(t) = s_0(t)$
 - ▶ D_1 : receiver decides that signal was $s(t) = s_1(t)$
 - ► There 4 possible outcomes

Multiple samples from a signal

- ► The overall context stays the same:
 - ► There is noise on the channel (unknown)
 - ▶ The receiver receives r(t) = s(t) + n(t)
- ▶ Suppose we take N samples from r(t), not just 1
 - ▶ Each sample is $r_i = r(t_i)$, taken at moment t_i
- ► The samples are arranged in a sample vector

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

Multiple samples from a signal

- \triangleright Each sample r_i is a **random variable**
 - ▶ since $r(t_i) = s(t_i) + n(t_i) = a$ constant + a random variable
- ► The sample vector r is a set of N random variables from a random process
- ightharpoonup Considering the whole sample vector ${\bf r}$ as a whole, the values of ${\bf r}$ are described by the **distributions of order** N
- ▶ In hypothesis H_0 :

$$w_N(\mathbf{r}|H_0) = w_N(r_1, r_2, ... r_N|H_0)$$

▶ In hypothesis H_1 :

$$w_N(\mathbf{r}|H_1) = w_N(r_1, r_2, ... r_N|H_1)$$

Likelihood of vector samples

We can apply the same criteria based on likelihood ratio as for 1 sample

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Notes
 - r is a vector; we consider the likelihood of all the sample vector as a whole
 - $w_N(\mathbf{r}|H_0)$ = likelihood of the whole vector \mathbf{r} being obtained in hypothesis H_0
 - $w_N(\mathbf{r}|H_1) = \text{likelihood of the whole vector } \mathbf{r} \text{ being obtained in hypothesis } H_1$
 - the value of K is given by the actual decision criterion used
- Interpretation: we choose the hypothesis that is most likely to have produced the observed data
 - now the data = a set of samples, not just 1

Separation

- Assuming the noise is white noise, the noise samples are independent, and therefore the samples r_i are independent
- In that case the joint distribution $w_N(\mathbf{r}|H_i)$ can be decomposed as a **product of individual distributions**:

$$w_N(\mathbf{r}|H_i) = w(r_1|H_i) \cdot w(r_2|H_i) \cdot ... \cdot w(r_N|H_i)$$

- e.g. the likelihood of obtaining [5.1, 4.7, 4.9] = likelihood of obtaining $5.1 \times$ likelihood of getting $4.7 \times$ likelihood of getting 4.9
- ▶ The $w(r_i|H_i)$ are just conditional distributions for each sample
 - we've seen them already

Separation

► Then all likelihood ratio criteria can be written as:

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- ► The likelihood ratio of a vector of samples = product of likelihood ratio for each sample
- We multiply the likelihood ratio of each sample, and then use the same criteria for the end result

Criteria for decisions

All likelihood ratio criteria can be written as:

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \overset{H_1}{\underset{H_0}{\gtrless}} K$$

- ▶ The value of *K* is the same as for 1 sample:
 - ▶ for ML: K = 1
 - $\blacktriangleright \text{ for MPE: } K = \frac{P(H_0)}{P(H_1)}$
 - ► for MR: $K = \frac{(C_{10} \dot{C}_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$

Particular case: AWGN

- ► AWGN = "Additive White Gaussian Noise"
- ► In hypothesis H_1 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-s_1(t_i))^2}{2\sigma^2}}$
- ► In hypothesis H_0 : $w(r_i|H_0) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-s_1(t_i))^2}{2\sigma^2}}$
- Likelihood ratio for vector **r**

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - s_1(t_i))^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i - s_0(t_i))^2}{2\sigma^2}}} = e^{\frac{\sum (r_i - s_0(t_i))^2 - \sum (r_i - s_1(t_i))^2}{2\sigma^2}}$$

Decision criteria for AWGN

 \triangleright The global likelihood ratio is compared with K:

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = e^{\frac{\sum (r_{i} - s_{0}(t_{i}))^{2} - \sum (r_{i} - s_{1}(t_{i}))^{2}}{2\sigma^{2}}} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} K$$

Applying the natural logarithm, this becomes:

$$\sum (r_i - s_0(t_i))^2 \underset{H_0}{\overset{H_1}{\geq}} \sum (r_i - s_1(t_i))^2 + 2\sigma^2 \ln(K)$$

Interpretation 1: geometrical distance

► The sums are squared **geometrical distances**:

$$\sum (r_i - s_1(t_i))^2 = \|\mathbf{r} - \mathbf{s_1(t)}\|^2 = d(\mathbf{r}, s_1(t))^2$$
$$\sum (r_i - s_0(t_i))^2 = \|\mathbf{r} - \mathbf{s_0(t)}\|^2 = d(\mathbf{r}, s_0(t))^2$$

- ▶ the distance between the observed samples \mathbf{r} and the true possible underlying signals $s_1(t)$ and $s_0(t)$
- \triangleright with N samples => distance between vectors of size N
- It comes down to a decision between distances

Interpretation 1: geometrical distance

- Maximum Likelihood criterion:
 - K = 1, ln(K) = 0
 - we choose the **minimum distance** between what is (\mathbf{r}) and what should have been in absence of noise $(s_1(t))$ and $s_0(t))$
 - ▶ hence the name "minimum distance receiver"
- ▶ Minimum Probability of Error criterion:
 - $K = \frac{P(H_0)}{P(H_1)}$
 - An additional term appears in favor of the most probable hypothesis
- Minimum Risk criterion:
 - $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$
 - Additional term depends on both probabilities and costs

Exercise

Exercise:

- A signal can have two values, 0 (hypothesis H_0) or 6 (hypothesis H_1). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 1)$. The receiver takes 5 samples with values $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.
 - a. What is decision according to Maximum Likelihood criterion?
 - b. What is decision according to Minimum Probability of Error criterion, assuming $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
 - c. What is the decision according to Minimum Risk Criterion, assuming $P(H_0)=2/3$ and $P(H_1)=1/3$, and $C_{00}=0$, $C_{10}=10$, $C_{01}=20$, $C_{11}=5$?

Another exercise

Another Exercise:

- Consider detecting a signal $s_1(t) = 3\sin(2\pi f_1 t)$ that can be present (hypothesis H_1) or not ($s_0(t) = 0$, hypothesis H_0). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 1)$. The receiver takes 2 samples.
 - a. What are the best sample times t_1 and t_2 to maximize detection performance?
 - b. The receiver takes 2 samples with values $\{1.1, 4.4\}$, at sample times $t_1 = \frac{0.125}{f_1}$ and $t_2 = \frac{0.625}{f_1}$. What is decision according to Maximum Likelihood criterion?
 - c. What if we take the decision with Minimum Probability of Error criterion, assuming $P(H_0)=2/3$ and $P(H_1)=1/3$?
 - d. What is the decision according to Minimum Risk Criterion, assuming $P(H_0)=2/3$ and $P(H_1)=1/3$, and $C_{00}=0$, $C_{10}=10$, $C_{01}=20$, $C_{11}=5$?
 - e. What if the receiver takes an extra third sample at time $t_3 = \frac{0.5}{f_1}$. Will the detection be improved?

▶ Let's decompose the parentheses in the distances:

$$\sum (r_i - s_0(t_i))^2 \underset{H_0}{\overset{H_1}{\geq}} \sum (r_i - s_1(t_i))^2 + 2\sigma^2 \ln(K)$$

► Equivalent to:

$$\sum (r_i)^2 + \sum s_0(t_i)^2 - 2\sum r_i s_0(t_i) \stackrel{H_1}{\geq} \sum (r_i)^2 +$$

$$+ \sum s_1(t_i)^2 - 2\sum r_i s_1(t_i) + 2\sigma^2 \ln(K)$$

► Equivalent to:

$$\sum r_i s_1(t_i) - \frac{\sum (s_1(t_i))^2}{2} \underset{H_0}{\overset{H_1}{\geqslant}} \sum r_i s_0(t_i) - \frac{\sum (s_0(t_i))^2}{2} + \sigma^2 \ln(K)$$

Linear algebra: **inner product** of vectors **a** and **b**:

$$\langle a,b\rangle = \sum_i a_i b_i$$

- $ightharpoonup r_i s_1(t_i) = \langle \mathbf{r}, \mathbf{s_1(t)} \rangle$ is the inner product of vector $\mathbf{r} = [r_1, r_2, ... r_N]$ with $\mathbf{s_1(t_i)} = [s_1(t_1), s_1(t_2), ... s_1(t_N)]$
- $ightharpoonup r_i s_0(t_i) = \langle \mathbf{r}, \mathbf{s_0(t)} \rangle$ is the inner product of vector $\mathbf{r} = [r_1, r_2, ... r_N]$ with $\mathbf{s_0(t_i)} = [s_0(t_1), s_0(t_2), ... s_0(t_N)]$
- $\sum (s_1(t_i))^2 = \sum s_1(t_i) \cdot s_1(t_i) = \langle \mathbf{s_1(t)}, \mathbf{s_1(t)} \rangle = E_1$ is the **energy** of vector $s_1(t)$
- $ightharpoonup \sum (s_0(t_i))^2 = \sum s_0(t_i) \cdot s_0(t_i) = \langle \mathbf{s_0(t)}, \mathbf{s_0(t)} \rangle = E_0$ is the **energy** of vector $s_0(t)$

The decision can be rewritten as:

$$\langle \mathbf{r}, \mathbf{s_1} \rangle - \frac{E_1}{2} \underset{H_0}{\overset{H_1}{\gtrless}} \langle \mathbf{r}, \mathbf{s_0} \rangle - \frac{E_0}{2} + \sigma^2 \ln(K)$$

- ▶ Interpretation: we compare the inner-products
 - ▶ also subtract the energies of the signals, for a fair comparison
 - also with a term depending on the criterion
- Particular case:
 - If the two signals have the same energy:

$$E_1 = \sum s_1(t_i)^2 = E_0 = \sum s_0(t_i)^2$$

- Examples:
 - ▶ BPSK modulation: $s_1 = A\cos(2\pi ft)$, $s_0 = -A\cos(2\pi ft)$
 - ▶ 4-PSK modulation: $s_{n=0,1,2,3} = A\cos(2\pi f t + n\frac{\pi}{4})$
- Then it is simplified as:

$$\langle \mathbf{r}, \mathbf{s_1} \rangle \overset{H_1}{\underset{H_0}{\gtrless}} \langle \mathbf{r}, \mathbf{s_0} \rangle + \sigma^2 \ln(K)$$

- ▶ Inner-product in signal processing measures **similarity** of two signals
- ▶ Interpretation: we check if the received samples \mathbf{r} look more similar to $s_1(t)$ or to $s_0(t)$
 - Choose the one which shows more similarity to **r**
 - There is also the subtraction of the energies, for a fair comparison (due to mathematical reasons)

Inner product vs. cross-correlation

Inner product of vectors a and b:

$$\langle a,b\rangle=\sum_i a_ib_i$$

► (Temporal) cross-correlation function:

$$R_{ab}[\tau] = E\{a_i b_{i+\tau}\}$$

▶ (Temporal) cross-correlation function for $\tau = 0$:

$$R_{ab}[0] = E\{a_ib_i\} = \frac{1}{N}\sum_i a_ib_i$$

- ▶ Inner product = cross-correlation in $\tau = 0$
 - ightharpoonup with a scaling factor $\frac{1}{N}$ in front

Decision with correlator circuits

Figure 5: Decision between two signals

[source: Fundamentals of Statistical Signal Processing, Steven Kay]

Matched filters

▶ How to compute the inner product of two signals r[n] and s[n] of length N?

$$\langle \mathbf{r}, \mathbf{s} \rangle = \sum r_i s(t_i)$$

- Let h[n] be the signal s[n] flipped / mirrored ("oglindit") and delayed with N
 - ▶ starts from time 0, goes up to time N-1, but backwards

$$h[n] = s[N-1-n]$$

- Example:
 - if $s[n] = [\frac{1}{2}, 2, 3, 4, 5, 6]$
 - ▶ then h[n] = s[N-1-n] = [6, 5, 4, 3, 2, 1]

Matched filters

▶ The convolution of r[n] with h[n] is

$$y[n] = \sum_{k} r[k]h[n-k] = \sum_{k} r[k]s[N-1-n+k]$$

▶ The convolution sampled at the end of the signal, y[N-1] (for n = N-1), is the inner product:

$$y[N-1] = \sum_{k} r[k]s[k]$$

Matched filters

To detect a signal s[n] we can use a **filter with impulse response** = **mirrored version of** s[n], and take the final sample of the output

$$h[n] = s[N - 1 - n]$$

- ▶ it is identical to computing the inner product
- ► Matched filter = a filter designed to have the impulse response the flipped version of a signal we search for
 - ▶ the filter is *matched* to the signal we want to detect
 - rom. "filtru adaptat"

Signal detection with matched filters

- ▶ Use one filter matched to signal $s_1(t_i)$
- Use another filter matched to signal $s_0(t_i)$
- ightharpoonup Sample both filters at the end of the signal n=N-1
 - obtain the values of the inner products
- Use the decision rule (with the inner products) to decide

Signal detection with matched filters

In case $s_0(t) = 0$, we need only one matched filter for $s_1(t)$, and compare the result to a threshold

Figure 6: Signal detection with matched filter

[source: Fundamentals of Statistical Signal Processing, Steven Kay]

Continuous observation of a general signal

- ► Continuous observation = we don't take samples anymore, we use **all the continuous signal**
 - ▶ like taking *N* samples but with $N \to \infty$
- ▶ Original signals are $s_0(t)$ and $s_1(t)$
- ► Signals are affected by noise
 - Assume only Gaussian noise, for simplicity
- ightharpoonup Received signal is r(t)

Euclidian space

- \triangleright Extend from N samples to the case a full continuous signal
- ► Each signal r(t), $s_1(t)$ or $s_0(t)$ is a data point in an infinite-dimensional Euclidean space
- ▶ **Distance** between two signals is:

$$d(\mathbf{r},\mathbf{s}) = \sqrt{\int (r(t) - s(t))^2 dt}$$

▶ Inner product between two signals is:

$$\langle \mathbf{r}, \mathbf{s} \rangle = \int r(t) s(t) dt$$

▶ Similar with the N dimensional case, but with integral instead of sum

Decision rule for AWGN: distances

For AWGN, same decision rule as always:

$$d(\mathbf{r}, \mathbf{s_0})^2 \underset{H_0}{\overset{H_1}{\geqslant}} d(\mathbf{r}, \mathbf{s_1})^2 + 2\sigma^2 \ln(K)$$

- Distance = previous formula, with integral
- Same criteria:
 - Maximum Likelihood criterion: K = 1, ln(K) = 0
 - we choose the minimum distance
 - ▶ Minimum Probability of Error criterion: $K = \frac{P(H_0)}{P(H_1)}$
 - ▶ Minimum Risk criterion: $K = \frac{(C_{10} C_{00})p(H_0)}{(C_{01} C_{11})p(H_1)}$

Decision rule for AWGN: inner products

► For AWGN, same decision rule as always:

$$\langle \mathbf{r}, \mathbf{s_1} \rangle - \frac{E_1}{2} \overset{H_1}{\underset{H_0}{\gtrless}} \langle \mathbf{r}, \mathbf{s_0} \rangle - \frac{E_0}{2} + \sigma^2 \ln(K)$$

- ▶ Inner product = previous formula, with integral
- ► All interpretations remain the same
 - we only change the type of signal we work with

Matched filters

- Inner product of signals can be computed with matched filters
- ► Matched filter = a filter designed to have the impulse response the flipped version of a signal we search for
 - ightharpoonup if original signal s(t) has length T

 - filter is analogical, impulse response is continuous
- ▶ Output of a matched filter at time t = T is equal to the inner product of the input r(t) with s(t)

Signal detection with matched filters

- ▶ Use one filter matched to signal $s_1(t)$
- Use another filter matched to signal $s_0(t)$
- ightharpoonup Sample both filters at the end of the signal t = T
 - obtain the values of the inner products
- Use the decision rule (with the inner products) to decide

- ► Review of Euclidean vector spaces
- Vector space
 - one thing + another thing = still in same space
 - constant × a vector = still in same space
 - has basic arithmetic: sum, multiplication by a constant
 - Examples:
 - ▶ 1D = a line
 - ▶ 2D = a plane
 - ▶ 3D = a 3-D space
 - ► N-D = ...
 - ▶ ∞-D = ..

- ► The fundamental function: inner product
 - for discrete signals

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i} x_{i} y_{i}$$

for continuous signals

$$\langle \mathbf{x}, \mathbf{y} \rangle = \int x(t)y(t)$$

Norm (length) of a vector = sqrt(inner product with itself)

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

▶ Distance between two vectors = norm of their difference

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

► Energy of a signal = squared norm

$$E_{\mathsf{x}} = \|\mathbf{x}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle$$

► Angle between two vectors

$$cos(\alpha) = \frac{\langle x, y \rangle}{||x|| \cdot ||y||}$$

- ▶ value between -1 and 1
- if $\langle x, y \rangle = 0$, the two vectors are **orthogonal** (perpendicular)

▶ Bonus: the Fourier transform = inner product with $e^{j\omega t}$

$$\mathcal{F}\{x(t)\} = \langle x(t), e^{j\omega t} \rangle = \int x(t)e^{-j\omega t}$$

lacktriangle for complex signals, the second function is conjugated, hence -j instead of j

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i} x_{i} y_{i}^{*}$$

 $\langle \mathbf{x}, \mathbf{y} \rangle = \int x(t) y(t)^{*}$

Also same for discrete signals

- ► Conclusion: expressing algorithms in a generic way, with inner products / distances / norms, is very powerful
 - they automatically apply to all vector spaces
 - work once, reuse in many places

II.5 Decision with unknown distributions

Knowing vs not knowing the distribution

- ▶ Until now, we always knew what samples we expect
 - ► We knew the signals:
 - $ightharpoonup s_0(t) = ...$
 - $> s_1(t) = ...$
 - ► We knew the noise type
 - gaussian, uniform, etc.
 - ► So we knew the sample distributions:
 - $varphi(r|H_0) = ...$
 - $w(r|H_1) = ...$
- In real life, things are more complicated

Typical example

- ▶ What if the signals $s_0(t)$ and $s_1(t)$ do not exist / we do not know them?
- Example: face recognition
 - ► Task: identify person A vs B based on a face image
 - ► We have:
 - ▶ 100 images of person A, in various conditions
 - ▶ 100 images of person B, in various conditions

Samples vs distributions

- Compare face recognition with our previous signal detection
- ► We still have:
 - ightharpoonup two hypotheses H_0 (person A) and H_1 (person B)
 - ightharpoonup a sample vector $m {f r}=$ the test image we need to decide upon
 - we can take two decisions
 - ▶ 4 scenarios: correct rejection, false alarm, miss, correct detection
- What's different? We don't have formulas
 - lacktriangle there is no "true" data described by formulas $s_0(t)=...$ and $s_1(t)...$
 - (faces of persons A and B are not signals)
 - instead, we have lots of examples of each distribution
 - ▶ 100 images of A = examples of **r** might look in hypotesis H_0
 - ▶ 100 images of B = examples of \mathbf{r} might look in hypotesis H_1

Machine learning terminology

- ► Terminology used in **machine learning**:
 - ► This kind of problem = signal classification problem
 - be given one data vector, specify which class it belongs to
 - ▶ The **classes** = the two categories, hypotheses H_i , persons A/B etc
 - ► A training set = a set of known data
 - e.g. our 100 images of each person
 - it will be used in the decision process
 - ► Signal **label** = the class of a signal

Machine learning terminology

- ► Terminology used in **machine learning**:
 - Supervised learning = algorithms where you know the classes of the training set data (labelled data)
 - > you know what signals in the training set is class A and which is class B
 - ► Unsupervised learning = algorithms where you don't know the classes of the training set data (unlabelled data)
 - harder, less info is available

Samples vs distributions

- ▶ In supervised learning, training set gives us the same information as the conditional distributions $w(r|H_0)$ and $w(r|H_1)$
 - $w(r|H_0)$ tells us how r looks like in hypothesis H_0
 - \triangleright $w(r|H_1)$ tells us how r looks like in hypothesis H_1
 - the training set shows the same thing, without formulas, but via many examples
- OK, so how to classify the data in these conditions?

The k-NN algorithm

The k-Neareast Neighbours algorithm (k-NN)

- Input:
 - ▶ a labelled training set of vectors $\mathbf{x}_1...\mathbf{x}_N$, from L possible classes $C_1...C_L$
 - ▶ a test vector **r** we need to classify
 - a parameter k
- 1. Compute distance from \mathbf{r} to each training vector \mathbf{x}_i
 - can use same Euclidean distance we used for signal detection with multiple samples
- 2. Choose the closest k vectors to \mathbf{r} (the k nearest neighbours)
- 3. Determine class of $\mathbf{r}=$ the majority class among the k nearest neighbours
- Output: the class of r

The k-NN algorithm

Figure 7: The k-NN algorithm illustrated [1]

[1] image from "KNN Classification using Scikit-learn", Avinash Navlani,

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

Exercise

Exercise

- 1. Consider the k-NN algorithm with the following training set, composed of 5 vectors of class A and another 5 vectors from class B:
 - Class A:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \ \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \ \mathbf{v}_3 = \begin{bmatrix} -4 \\ 2 \end{bmatrix} \ \mathbf{v}_4 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \ \mathbf{v}_5 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Class B:

$$\textbf{v}_6 = \begin{bmatrix} 7 \\ 0 \end{bmatrix} \ \textbf{v}_7 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \ \textbf{v}_8 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \ \textbf{v}_9 = \begin{bmatrix} -3 \\ 8 \end{bmatrix} \ \textbf{v}_{10} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$

Compute the class of the vector $\mathbf{x}=\begin{bmatrix} -3\\ 6 \end{bmatrix}$ using the k-NN algorithm, with $k=1,\ k=3,\ k=5,\ k=7$ and k=9

Discussion

- k-NN is a supervised learning algorithm
 - training data needs to be labelled
- ► Effect of *k* is to smooth the decision boundary:
 - ► small *k*: lots of edges
 - ► large k: smooth boundary
- \blacktriangleright How to find k?

Cross-validation

- ► How to find a good value for *k*?
 - by trial and error ("băbește")
- ► Cross-validation = use a small testing set for checking what parameter value is best
 - this data set is known as cross-validation set
 - use k = 1, test with cross-validation set and see how many vectors are classified correctly
 - repeat for k = 2, 3, ...max
 - choose value of k with best results on the cross-validation set

Evaluating algorithms

- ► How to evaluate the performance of k-NN?
 - Use a testing set to test the algorithm, check the percentage of correct classification
- ▶ Final testing set should be different from the cross-validation set
 - ► For final testing, use data that the algorithm has never seen, for fairness
- How to split the data into datasets?

Datasets

- Suppose you have 200 face images, 100 images of person A and 100 of person B
- ► Split the data into:
 - ► Training set
 - data that shall be used by the algorithm
 - ▶ largest part (about 60% of the whole data)
 - ▶ i.e. 60 images of person A and 60 images of B
 - Cross-validation set
 - ightharpoonup used to test the algorithm and choose best value of parameters (k)
 - smaller, about 20%, e.g. 20 images of A and 20 images of B
 - Testing set
 - used to evaluate the final algorithm, with all parameters set to a final value
 - ▶ smaller, about 20%, e.g. 20 images of A and 20 images of B

- k-Means: an algorithm for data clustering
 - ▶ identifying groups of close vectors in data
- ▶ Is an example of unsupervised learning algorithm
 - "unsupervised learning" = we don't know the data classes of the signals beforehand

The k-Means algorithm

- ► Input:
 - unlabelled training set of vectors x₁...x_N
 - number of classes C
- ▶ Initialization: randomly initialize the C centroids

$$\mathbf{c}_i \leftarrow \text{ random values}$$

- Repeat
 - 1. Classification: assign each data \mathbf{x} to the nearest centroid \mathbf{c}_i :

$$I_n = \arg\min_i d(\mathbf{x}, \mathbf{c}_i), \forall \mathbf{x}$$

2. Update: update each centroids \mathbf{c}_i = average of the \mathbf{x} assigned to \mathbf{c}_i

$$\mathbf{c}_i \leftarrow \text{ average of } \mathbf{x}, \forall \mathbf{x} \text{ in class } i$$

ightharpoonup Output: return the centroids \mathbf{c}_i , the labels l_i of the input data \mathbf{x}_i

Video explanations of the k-Means algorithm:

- Watch this, starting from time 6:28 to 7:08 https://www.youtube.com/watch?v=4b5d3muPQmA
- Watch this, starting from time 3:05 to end https://www.youtube.com/watch?v=IuRb3y8qKX4

- Not guaranteed that k-Means identifies good clusters
 - results depend on the random initialization of centroids
 - repeat many times, choose best result
 - smart initializations are possible (k-Means++)

Exercise

Exercise

1. Consider the following data

$$\{\boldsymbol{v_n}\} = [1.3, -0.1, 0.5, 4.7, 5.1, 5.8, 0.4, 4.8, -0.7, 4.9]$$

Use the k-Means algorithm to find the two centroids ${\bf c}_1$ and ${\bf c}_2$, starting from two random values ${\bf c}_1=-0.5$ and ${\bf c}_2=0.9$. Perform 5 iterations of the algorithm.