	1 —		•	
Can we do better?	Recap:		Call this c	a 1-Dim Range Tree
Days a Case:	レユーエ	ree: General-purpo	je .	0
- Space is O(n log d-1	n) data	astructure for pts in	IK Claim: A	1-Dim range tree with
- (Juero Time:	/J~() -	nogonal range query:	n pts h	ias space O(n) and
Counting: O(log"	n) Coun	t/report pts in axis-	aligned answer	s 1-D range count/rept
Reporting: O(k+1	og'n) rec	t lee Ansed	queries	in time O'llogn)
→In IR: login much be	tter than - kd-ti	ree: Counting: O(Un)	time / Cor O(k	in time O'(log n) }
· Vn for large	L M	Report: O (k+ m) +	ime No. of	Count = 1+2+2+4+) = 10
	nore limited No. of			
45	\	() () () () () () () () () () () () () (4 (1)	968
Layering: Combing sear	h structures	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1 12 13 17 20 22 24 25 12 12 12 12 12 12 12 12 12 12 12 12 12
Simple to the second second	-\	CA Track T)	Miles 23 27	
- Suppose you want to a		ige Trees I) (P		
composite query w. mu	miple , , ,	TANK CA	x /px/Lie Li Li	
criteria:	~~> [[6] Q		Q _{lo} =Z	Q _H =24
- Medical data: Count s	ubjects un earl.			·))
	e sahi age 57	1-Dim Range Tree: d g a cle b f Q ₁₀ proach: Re	Canon	nical Subsets:
Age range: $a_{10} \le a_{10}$ Weight range: $w_{10} \le a_{10}$	reight = Whi	dga cle b f	-G	oal: Express answer as
- Design a data structu	re for	$Q_{i} \rightarrow C_{i}$	unt: 5	disjoint union of subsets
each criterion indivi	dually Do	Pe	pt: {g,a,c,e} - N	lethod: Search for Q10+
	c tocather	- Balanced BST (eg	AVI.DR)	Qni + take maximal subtress
- Layer these structure		. \		This wax (Max 1308 Mess
to answer full query		- Assume extended to	•	logn
		- Each node p stores	no. ot	$\langle \mathcal{L} x t \rangle \rangle = 1$
→ Multi-Layer Data	structures	entrie in subtrec:	p.517e	Mani i
			<u> </u>	(

Answering Queries?
Given query range 2010 Higher Dimensions! 2D Kange Tree: -In d-dim space, we create - Construct 1D range tree d-layers Q=[Qb.x, Qhi,x]x[Qlo.y,Qhi.y] based on x woords for all pts - Each recurses one dim lower - Run range 1Dx to find all - For each node p: until we reach 1-d search subtrees that contribute - Let S(p) be pts of ps tree - For each such node p. -Build 1D range tree for - Time is the product: logn·logn····logn=O(logn) S(p) based on y - p. aux run range 1Dy on plaux - Return sum of all result - Final structure is union of x-range tree p.aux

Range Trees III

Range Trees III

Alo.x

S(p)

Int range 2D (Node points of the properties of the pr x-tree + (n-1) y-trees Analysis: The 1Dx search takes of Ollogn) time + generator Ollogny calls to 1Dy search ⇒ Total: O(logn. logn)=O(logn) Analysis: 25 int range 2D (Node p, Rect Q, Intv (=[xo,x,])) -Qhiy y-range tree it (p is external) return. p.pt ∈ Q? € 1 else it (Q.x contains ()} // C = Q's x-projection [yo,y,] = [-0,+0] // init y-cell Invoked Ollogn) Lreturn range IDy (p.aux, Q, [50, y,]) times - once permaximal Intuition: The x-layer finds Selse it (Q.x is disjoint of C) return O jubtree else // partial x-overlap subtrees p contained in x-range Throked Ollogn) + each aux tree filters based return range 2D (p.left, Q, [xo, p.x]) times-once for + range 2D(p. right, Q, Lp. x, χ_1) each ancestor of max subtree