Departamento de Ciência de Computadores Modelos de Computação (CC1004)

FCUP 2014/15

1º Teste – 11.04.2015

Uma resolução (v3)

duração: 2h + 30m

- **1.** Seja $\Sigma = \{a, b, c\}$ e seja r a expressão $((((a+b)^*)c)((a+b)^*))$
- a) Baseando-se na definição de expressão regular, mostre que r é uma expressão regular sobre Σ .

Resposta:

Uma expressão regular sobre Σ é qualquer sequência finita de símbolos de $\Sigma \cup \{\emptyset, \varepsilon, +, *, \}, (\}$ que se possa obter por aplicação das regras seguintes: ε, \emptyset , a, b e c são expressões regulares sobre Σ ; se r e s são expressões regulares sobre Σ então (r+s), (rs) e (r^*) são expressões regulares sobre Σ .

Assim, r é uma expressão regular sobre Σ porque $r=(r_1r_2)$, com $r_1=(((\mathtt{a}+\mathtt{b})^\star)\mathtt{c})$ e $r_2=((\mathtt{a}+\mathtt{b})^\star)$, sendo $r_1=(r_2r_3)$, com $r_3=\mathtt{c}$. Por sua vez, $r_2=(r_4^\star)$, com $r_4=(r_5+r_6)$, $r_5=\mathtt{a}$ e $r_6=\mathtt{b}$.

b) Determine o autómato finito que resulta da aplicação do método de Thompson à expressão regular r. Apresente **os passos relevantes** dessa construção.

Resposta:

Na continuação da resposta anterior, os AFNDs- ε para r_3 , r_5 , e r_6 são:

 $A(r_3): \longrightarrow \widehat{(i_3)} \xrightarrow{c} \widehat{(j_3)}$

 $A(r_5): \longrightarrow (i_5) \xrightarrow{a} (j_5)$

 $A(r_6): \longrightarrow \widehat{(i_6)} \xrightarrow{b} \widehat{(f_6)}$

Os AFNDs- ε para $r_4=(r_5+r_6)$ e $r_2=(r_4^\star)$ são:

A partir dos AFNDs- ε $A(r_2)$ e $A(r_3)$ construimos o autómato $A(r_1)$ para $r_1=(r_2r_3)$, por identificação do estado inicial de $A(r_3)$ com o final de $A(r_2)$. Usando $A(r_1)$ e um clone de $A(r_2)$, construimos o autómato para $r=(r_1r_2)$, por identificação do estado final de $A(r_1)$ com o inicial do clone de $A(r_2)$.

c) Apresente a expressão r na forma *abreviada*, retirando parentesis desnecessários, e descreva informalmente a linguagem de Σ^* que é caraterizada pela expressão regular r.

Resposta:

 $\overline{A \text{ express}}$ ão abreviada é $(a+b)^*c(a+b)^*$.

A linguagem descrita pela expressão r é o conjunto das palavras de $\{a, b, c\}^*$ que têm exatamente um c.

d) Descreva informalmente a linguagem descrita pela expressão regular $((rr)^*)$. Partindo dessa descrição, determine um AFD que reconheça tal linguagem. Justifique sucintamente a correção da resposta, descrevendo o que memoriza cada estado (e explicando a necessidade das mudanças de estado).

Resposta:

A linguagem descrita pela expressão indicada é o conjunto das palavras de $\{a, b, c\}^*$ que têm número par de c's e em que esse número não é zero, a menos que a palavra seja ε .

A linguagem é reconhecida pelo AFD representado à esquerda.

O que se sabe em cada estado:

 s_1 : a palavra não tem c's mas tem algum a ou b.

 s_2 : a palavra tem número ímpar de c's.

 s_3 : a palavra tem número par de c's e tem c's.

 s_0 : a palavra é vazia.

O estado s_0 é estado final porque $\varepsilon \in \mathcal{L}((rr)^*)$. Em s_0 muda para s_1 quando lê a ou b pois as palavras que não têm c's mas têm a's ou b's não pertencem a $\mathcal{L}((rr)^*)$. Os estados s_2 e s_3 são necessários para controlar a paridade do número de c's e s_3 não é equivalente a s_0 pois em s_0 a palavra ainda não tem c's e em s_3 já tem (e o autómato deveria rejeitar palavras εz com $z \in \{a, b\}^* \setminus \{\varepsilon\}$ e aceitar ccz).

2. Seja $A=(S,\Sigma,\delta,q_0,F)$ o autómato finito não determinístico com transições por ε representado pelo diagrama seguinte, com alfabeto $\Sigma=\{\mathtt{a},\mathtt{b}\}.$

a) Qual é o valor de $\delta(q_0, a)$, $\delta(q_2, b)$, $\delta(q_3, \varepsilon)$, e $\delta(q_3, b)$? Justifique sucintamente.

Resposta:

A função de transição δ do AFND- ε $A=(S,\Sigma,\delta,q_0,F)$ é uma função de $S\times(\Sigma\cup\{\varepsilon\})$ em 2^S . O diagrama de transição tem um arco de s para s' com etiqueta α se e só se $s'\in\delta(s,\alpha)$. Se houver várias transições de um estado para outro (ou para si próprio), essas transições representam-se por um único arco, com os símbolos correspondentes separados por vírgulas.

$$\text{Assim, } \delta(q_0, \mathtt{a}) = \{q_3\}, \, \delta(q_2, \mathtt{b}) = \emptyset, \, \delta(q_3, \varepsilon) = \{q_1\}, \, \delta(q_3, \mathtt{b}) = \{q_1, q_3\}.$$

b) Determine $\hat{\delta}(\{q_0\}, abb)$. Apresente os cálculos intermédios.

Resposta:

$$\begin{array}{lll} \overline{\hat{\delta}(\{q_{0}\}, \mathtt{abb})} &=& \hat{\delta}(Fecho_{\varepsilon}(\{q_{3}\}), \mathtt{bb}) &=& \hat{\delta}(\{q_{3}, q_{1}, q_{2}\}, \mathtt{bb}) &=& \hat{\delta}(Fecho_{\varepsilon}(\{q_{3}, q_{1}, q_{2}\}), \mathtt{b}) \\ \hat{\delta}(\{q_{3}, q_{1}, q_{2}\}, \mathtt{b}) &=& \hat{\delta}(Fecho_{\varepsilon}(\{q_{3}, q_{1}, q_{2}\}), \varepsilon) &=& Fecho_{\varepsilon}(\{q_{3}, q_{1}, q_{2}\}) &=& \{q_{3}, q_{1}, q_{2}\}. \end{array}$$

(a definição de $\hat{\delta}$ que estamos a seguir está em **2e**))

c) Que interpretação tem $\hat{\delta}(\{q_0\}, abb)$? É verdade ou é falso que $abb \in \mathcal{L}(A)$? Justifique.

Resposta:

 $\hat{\delta}(\{q_0\}, abb)$ representa o conjunto de estados em que o autómato se pode encontrar se consumir a palavra abb partindo do estado q_0 (estado inicial do autómato).

A palavra abb pertence a $\mathcal{L}(A)$ porque $\hat{\delta}(\{q_0\}, \mathsf{abb}) = \{q_3, q_2, q_1\}$ contém estados finais (nomeadamente, os estados q_1 e q_3).

d) Por aplicação do método de eliminação de estados, determine uma expressão regular que descreva a linguagem que *A* reconhece. Deverá apresentar os passos intermédios da aplicação do algoritmo. Pode apresentar expressões abreviadas, usando as propriedades e precedência das operações para retirar parentesis desnecessários. Sempre que for óbvio, simplifique as expressões obtidas em cada passo.

Resposta:

Todos os estados do autómato são acessíveis do estado inicial e permitem aceder a algum estado final. Assim, não há estados que se possam eliminar por serem inutéis.

Começamos por substituir os estados finais por um único estado final f (do qual não saem transições). Inserimos um novo estado inicial i, para garantir que não chegam transições ao estado inicial. Substituimos as etiquetas dos ramos por expressões regulares.

Eliminamos q_0 , substituindo os percursos $q_2q_0q_3$ e iq_0q_3 por arcos (q_2,q_3) e (i,q_3) , com etiquetas aa e $\varepsilon a \equiv a$, respetivamente. Como já existia um arco de q_2 para q_3 , substituimos a sua expressão regular por a +aa.

Eliminamos q_2 , substituindo o percurso $q_1q_2q_3$ por um arco (q_1, q_3) com etiqueta $(\varepsilon + a + b)(a + aa)$.

Eliminamos q_1 , substituindo o percurso q_3q_1f e $q_3q_1q_3$ por arcos (q_3,f) e (q_3,q_3) com etiquetas $(\varepsilon+b)\varepsilon\equiv\varepsilon+b$ e $(\varepsilon+b)(\varepsilon+a+b)(a+aa)$.

No diagrama, $\gamma = b + (\varepsilon + b)(\varepsilon + a + b)(a + aa)$.

(cont.)

Resposta 2d) cont.:

Finalmente eliminamos q_3 , substituindo os percursos $iq_3q_3^*f$ por um arco (i, f), etiquetado pela expressão a $\gamma^*(\varepsilon + b)$.

Como $\gamma^* = (b + (\varepsilon + b)(\varepsilon + a + b)(a + aa))^* \equiv (a + b)^*$, pois $\varepsilon \varepsilon a = a \in \mathcal{L}((\varepsilon + b)(\varepsilon + a + b)(a + aa))$, a expressão obtida para $\mathcal{L}(A)$ pode ser simplificada assim:

$$a\gamma^*(\varepsilon+b)\equiv a(a+b)^*(\varepsilon+b)\equiv a(a+b)^*+a(a+b)^*b\equiv a(a+b)^*.$$

Portanto, $\mathcal{L}(A) = \mathcal{L}(a(a+b)^*)$.

e) Por aplicação do método de conversão descrito nas aulas para obter um AFD equivalente a um dado AFND- ε , determine o diagrama de transição de um AFD equivalente ao autómato A. Explique.

Resposta:

$$\overline{\text{O AFD } A'} = (2^S, \Sigma, \delta', Fecho_{\varepsilon}(q_0), F'), \text{ com } F' = \{E \mid E \in 2^S \text{ e } E \cap F \neq \emptyset\} \text{ e}$$

$$\delta'(E, a) = Fecho_{\varepsilon} \left(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s, a) \right) = \hat{\delta}(E, a)$$

para todo $E \in 2^S$ e $a \in \Sigma$, é equivalente ao AFND- ε $A = (S, \Sigma, \delta, q_0, F)$.

Por definição, $Fecho_{\varepsilon}(s) = \{s\} \cup \{s' \mid \text{ existe um percurso de } s \text{ para } s' \text{ formado por transições-} \varepsilon\}$ e $Fecho_{\varepsilon}(E) = \bigcup_{s \in E} Fecho_{\varepsilon}(s)$.

Como o número de estados deste AFD genérico é exponencial no número de estados do AFND- ε dado, vamos tentar obter um AFD com menos estados, criando apenas os estados que são acessíveis do seu estado inicial $Fecho_{\varepsilon}(q_0) = \{q_0\}$. Obtém-se o seguinte AFD.

Nota adicional: o AFD obtido reconhece $\mathcal{L}(a(a+b)^*)$, como seria de esperar, por 2d).

3. Seja L a linguagem de alfabeto $\Sigma = \{a, b\}$ que é aceite pelo AFD $A = (\{s_1, s_2, s_3, s_4, s_5\}, \Sigma, \delta, s_1, F)$, com $F = \{s_1, s_2\}$ e δ dada pela tabela representada à esquerda.

	a	b
s_1	s_2	s_4
s_2	s_3	s_4
s_3	s_3	s_4
s_4	s_2	s_5
s_5	s_2	s_1

- a) Desenhe o diagrama de transição de A e descreva informalmente L.
- $\mathbf{b)} \ \ \mathrm{Diga, justificando, se \ o \ AFD \ dado \ \acute{e} \ o \ AFD \ m\'inimo \ para} \ L.$
- c) Assuma que, para aplicação do método de Kleene a A, se designa o estado s_i apenas pelo símbolo i, para i=1,2,3,4,5. Indique uma expressão regular (abreviada) que descreva a linguagem $\mathcal{L}(r_{13}^{(3)})$. Justifique sucintamente.

Resposta:

3a)

L é o conjunto das sequências finitas de a's e b's que terminam em a mas não em aa ou o número de b's depois do último a é múltiplo positivo de três. Se não têm a's, têm um número de b's que é multiplo de três, podendo ser zero.

3b)

Sendo R_L a relação do teorema de Myhill-Nerode que carateriza o AFD mínimo para L, temos:

- $(\varepsilon, b) \notin R_L$ pois $\varepsilon \in L$ e b $\notin L$.
- $(\varepsilon, \mathtt{a}) \notin R_L$ pois $\varepsilon \mathtt{a} \in L$ e $\mathtt{a} \mathtt{a} \notin L$.
- $(b, a) \notin R_L$ pois $a \in L$ e $b \notin L$.
- $(\varepsilon, aa) \notin R_L$ pois $\varepsilon \in L$ e $aa \notin L$.
- $(a, aa) \notin R_L$ pois $a \in L$ e $aa \notin L$.
- $(b, aa) \notin R_L$ pois $ba \in L$ e $aaa \notin L$.
- $(\varepsilon, bb) \notin R_L \text{ pois } \varepsilon \in L \text{ e bb } \notin L.$
- $(a, bb) \notin R_L$ pois $aa \notin L$ e $bba \in L$.
- $(b, bb) \notin R_L$ pois $bb \notin L$ e $bbb \in L$.
- $(aa, bb) \notin R_L$ pois $aaa \notin L$ e $bba \in L$.

Então, o AFD mínimo para L tem pelo menos cinco estados ($[\varepsilon]$, [a], [b], [aa] e [bb]), e como $L = \mathcal{L}(A)$ e A é um AFD com cinco estados, então A é o AFD mínimo para L.

3c)

No método de Kleene, a expressão regular $r_{ij}^{(k)}$ descreve a linguagem das palavras que levam o autómato do estado i ao estado j, podendo passar por estados *intermédios* numerados até k (inclusivé).

Assim, a $\mathcal{L}(r_{13}^{(3)})$ é descrita pela expressão regular aaa* pois apenas podemos considerar palavras que correspondem a percursos do estado s_1 para o estado s_3 que não passem em s_4 nem s_5 , o que restringe a análise ao diagrama seguinte:

(Fim)