Symbolic Music Loop Generation with Neural Discrete Representations

Sangjun Han¹, Hyeongrae Ihm¹, Moontae Lee^{1,2}, and Woohyung Lim^{1*}

¹LG AI Research, Seoul, South Korea, ²University of Illinois at Chicago, Chicago, Illinois, USA

Introduction

Loop Generation

- ▶ Loops in music are essential ingredient for creating remixes or mash-ups
- Generating long sequences by utilizing the expressive power of Transformer has limitations, derived from the error accumulation and rhythmic irregularity
- Previous works have attempted to extract loops explicitly, requiring musical feature extraction and heuristic process to decide which features should be more weighted

Discrete Representations for Music

- ► Musical Ideas can be formed in combinations of finite symbols
 - Learning discrete codes is sufficient to represent the continuous world such as objects in vision, words in language, and phonemes in speech
 - Consecutive notes can be also represented as discrete symbol

Contributions

- ► We propose the framework of symbolic music loop generation, which involves loop extraction, loop generation, and its evaluation
- ► For loop extraction, we design a structure-aware loop detector trained by external audio sources to extract loops of 8 bars from MIDI
- ► For loop generation, we verify that an autoregressive model combined with discrete representations can generate plausible loop phrases which can be repeated
- ► With randomly initialized networks for embedding, we evaluate sample quality in terms of fidelity and diversity

Methods

Data Preparation

- ► Audio loop dataset from Looperman ($x_{wav} \in \mathcal{R}$, 1,000 loops of 8 bars)
- ► Lakh MIDI dataset, $(x_{MIDI} \in \{0, 1\}^{time \times pitch}, 5,687,274 \text{ phrases of 8 bars})$

Loop Extraction

- ▶ We transform each the x_{wav} and x_{MIDI} to two bar-to-bar correlation matrix indicated as C_{wav} and C_{MIDI} (Fig. 1)
- ▶ We train a loop detector using Deep SVDD [1], treating C_{wav} as normal samples (training set) and measure the likelihood of C_{MIDI} (test set)
- \blacktriangleright At inference time, the loop score of C_{MIDI} can be estimated by the Deep SVDD's distance metric
- ▶ We collect 751,935 x_{MIDI} for loops using our loop detector

Fig. 1. The process of loop extraction

Loop Generation

- ➤ VQ-VAE maps a data sequence into discrete latent space and reconstructs it to the original data space (Fig. 2) [2]
 - Due to finite latent codes, our VQ-VAE is a little worse than CNN-VAE for the reconstruction task
- ► We design a LSTM autoregressive model over quantized embeddings to generate unseen samples (Accuracy: 76.65 %)

Quantitative Evaluation

- ► Model metric: related to evaluating the capacity of generative models
- Reconstruction Error
- ► Musical style: related to measuring how much our intended properties of the loop are involved in generated samples

- Loop Score (LS) from our loop detector, Unique Pitch (UP) for harmony,
 Note Density (ND) for rhythm
- ➤ Similarity metrics: related to measuring similarity of true and generated samples on random latent space, indicating the sample fidelity and diversity
 - Precision & Recall (P & R) [3]
 - Density & Coverage (D & C) [4]

Fig. 2. The process of loop generation

Results Model \mathbf{UP} NDLS 14.383 Training Set 6.806e-3 CNN-VAE 0.642 ± 0.033 0.617±0.076 0.746 ± 0.024 0.625 ± 0.02 Music Transformer 0.546 ± 0.07 0.359 ± 0.113 0.687 ± 0.174 0.408 ± 0.064 MuseGAN 0.641 ± 0.013 0.673 ± 0.045 0.842 ± 0.013 0.689 ± 0.012 VQ-VAE+LSTM 0.768 ± 0.013 2.275e-1 5.079 14.289 0.655 ± 0.022 1.263±0.047 0.949 ± 0.002 (temperature sampling) VQ-VAE+LSTM 1.978e-1 5.044 14.320 0.636 ± 0.015 1.328 ± 0.072 0.952 ± 0.004 (top-k sampling=30) VQ-VAE+LSTM 2.037e-1 5.042 14.341 0.783 ± 0.017 0.638 ± 0.029 0.950 ± 0.005 1.337 ± 0.075 (top-p sampling=0.08)

- Our proposed model has achieved the highest performance in terms of LS, ND, P, D, and C
- ▶ Depending on sampling methods and their parameters, we can observe that there is a trade-off between fidelity and diversity
- ► The human listening test for 20 people shows that our proposed model can generate musical samples comparable with its training set (Fig. 3)

Fig. 3. Human listening test

► Additionally, we verify that the trained loop detector can be used to control the trade-off between fidelity and diversity of the generative models, as known as rejection sampling

Discussion

The Framework of Symbolic Music Generation

- ► We leverage recurring nature of music by adopting the concept of the loop
- ► We address two processes; loop extraction and loop generation
- We evaluate our generative models on measuring fidelity and diversity on random latent space

Limitation & Future work

► 1) Generating multi-track instrument, 2) Imposing recurring nature

4. Naeem et al., 2020

References

- 1. Ruff et al., 2018
- 2. Oord et al., 2017
- 3. Sajjadi et al., 2018