The Krein-Milman theorem and elementary results in convex analysis

lynne homann cure '27 Ihcure@terpmail.umd.edu

University of Maryland, College Park

Directed Reading Program, Spring 2025

Introduction

We will prove today this statement (Minkowski's theorem, or the finite case of the Krein-Milman theorem):

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is equal to the convex hull of its extreme points.

- Based on Fundamentals of Convex Analysis by Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal
- Thank you to Rémi Barritault for his mentorship this semester!

Convexity

For our purposes, we are working within the real vector space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Convexity

For our purposes, we are working within the real vector space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Formal definition

The set $C \subset \mathbb{R}^n$ is **convex** if $\alpha x + (1 - \alpha)x'$ is in C for all $x, x' \in C$ and $\alpha \in (0, 1)$.

Convexity

For our purposes, we are working within the real vector space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Formal definition

The set $C \subset \mathbb{R}^n$ is **convex** if $\alpha x + (1 - \alpha)x'$ is in C for all $x, x' \in C$ and $\alpha \in (0, 1)$.

Intuitive definition

C is convex if the line segment [x,x'] is entirely contained in C whenever its endpoints x,x' are in C.

Dimension of a convex set

Definition

The **dimension** dim C of a convex set C is taken to be dim span($C - x_0$) for $x_0 \in C$.

This is an adaptation of how the dimension of an affine space (a translation of a linear space) is defined.

For the purposes of this talk, we will assume that if $C \subset \mathbb{R}^n$, then dim C = n.

Convex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is a linear combination with coefficients c_1, \ldots, c_k in \mathbb{R} such that

$$\sum_{i=1}^k c_i = 1 \qquad c_i \ge 0 \ \forall i$$

Convex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is a linear combination with coefficients c_1, \ldots, c_k in \mathbb{R} such that

$$\sum_{i=1}^k c_i = 1 \qquad c_i \ge 0 \ \forall i$$

Definition

The **convex hull** of a nonempty set S, denoted co S, is the set of all convex combinations of elements of S – i.e., the smallest convex set containing S.

Extreme points

Definition

We say that $x \in C$ is an **extreme point** of C if there are no two distinct points $x_1, x_2 \in C$ such that x lies in the line segment between x_1 and x_2 .

We notate the set of extreme points of C as ext C.

Extreme points

Definition

We say that $x \in C$ is an **extreme point** of C if there are no two distinct points $x_1, x_2 \in C$ such that x lies in the line segment between x_1 and x_2 .

We notate the set of extreme points of C as ext C.

Examples

- Every x in the unit ball B(0,1) such that ||x||=1 is an extreme point of B(0,1)
- \bullet The vertices of a triangle (or any convex polygon in $\mathbb{R}^2)$ are its extreme points

Interior, closure, boundary

Definition

- The interior of a set X, notated int X, is the largest open set contained in X.
- The closure of X, notated cl X, is the smallest closed set containing X.
- The **boundary** of X, notated bd X, is cl $X \setminus \text{int } X$.

Interior, closure, boundary

Definition

- The interior of a set X, notated int X, is the largest open set contained in X.
- The closure of X, notated cl X, is the smallest closed set containing X.
- The **boundary** of X, notated bd X, is cl $X \setminus \text{int } X$.

Proposition

If C is convex, so are int C and cl C.

Boundary of convex sets

Lemma

Let $x \in \operatorname{cl} C$ and $x' \in \operatorname{int} C$. Then the half-open segment

$$(x, x'] = \{\alpha x + (1 - \alpha)x' : 0 \le \alpha < 1\}$$

is contained in int C.

An important consequence of this result is that the half-line issued from $x' \in \text{int } C$ cannot intersect bd C more than once; consequently, any affine line meeting int C cannot intersect bd C more than twice.

Faces

Definition

A nonempty convex subset F of a convex set C is a **face** of C if for $x, y \in C$, $t \in (0, 1)$,

$$tx + (1-t)y \in F \implies x, y \in F$$

Faces are a way to generalize extreme points; indeed, $x \in C$ is an extreme point of C iff $\{x\}$ is a face of C.

Faces

Definition

A nonempty convex subset F of a convex set C is a **face** of C if for $x, y \in C$, $t \in (0, 1)$,

$$tx + (1-t)y \in F \implies x, y \in F$$

Faces are a way to generalize extreme points; indeed, $x \in C$ is an extreme point of C iff $\{x\}$ is a face of C.

Proposition

Let F be a face of C. Then any extreme point of F is an extreme point of C.

This property is known as the "transmission of extremality."

Hyperplanes and half-spaces

Definition

An **affine hyperplane** (or just **hyperplane**) in \mathbb{R}^n is a set $H_{s,r}$ associated with an ordered pair $(s,r) \in \mathbb{R}^n \times \mathbb{R}$:

$$H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}$$

Observe that dim $H_{s,r} = n - 1$.

Hyperplanes and half-spaces

Definition

An **affine hyperplane** (or just **hyperplane**) in \mathbb{R}^n is a set $H_{s,r}$ associated with an ordered pair $(s,r) \in \mathbb{R}^n \times \mathbb{R}$:

$$H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}$$

Observe that dim $H_{s,r} = n - 1$.

Definition

The **closed half-space** delineated by a hyperplane $H_{s,r}$ in \mathbb{R}^n is the set $\{x \in \mathbb{R}^n : \langle s, x \rangle \leq r\}$. When the inequality is instead strict inequality, this is instead the **open half-space**.

Supporting hyperplanes

Definition

A hyperplane $H_{s,r}$ is said to **support** the convex set C when C is entirely contained in one of the two closed half-spaces delineated by $H_{s,r}$:

$$\langle s, y \rangle \leq r \quad \forall y \in C$$

 $H_{s,r}$ supports C at $x \in C$ when the above holds and $\langle s, x \rangle = r$ (that is, $x \in H_{s,r}$)

Supporting hyperplanes

Definition

A hyperplane $H_{s,r}$ is said to **support** the convex set C when C is entirely contained in one of the two closed half-spaces delineated by $H_{s,r}$:

$$\langle s, y \rangle \le r \quad \forall y \in C$$

 $H_{s,r}$ supports C at $x \in C$ when the above holds and $\langle s, x \rangle = r$ (that is, $x \in H_{s,r}$)

Lemma

Let $x \in \text{bd } C$, where $C \neq \emptyset$ is convex in \mathbb{R}^n . There exists a hyperplane supporting C at x.

Exposed faces

Definition

The set $F \subset C$ is an **exposed face** of C if there is a supporting hyperplane $H_{s,r}$ of C such that $F = C \cap H_{s,r}$

Proposition

An exposed face is a face.

Krein-Milman theorem

The Krein-Milman theorem applies to any locally convex Hausdorff topological vector space, but we will prove only the finite-dimensional case today.

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

Recall that a set is compact in \mathbb{R}^n iff it is closed and bounded.

Proof

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

We will prove this by induction on dim C.

This is trivial when dim C = 0 – i.e., C is a singleton.

Proof

$\mathsf{Theorem}$

Let C be compact and convex in \mathbb{R}^n . Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

We will prove this by induction on dim C.

This is trivial when dim C = 0 – i.e., C is a singleton. Now suppose that dim C = k and for all dim C < k, the result is true.

Take $x \in C$.

- Case 1: x ∈ bd C
- Case 2: $x \in \text{int } C \ (= C \setminus \text{bd } C)$

Case 1: $x \in bd C$

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

• Since $x \in \text{bd } C$, we have a hyperplane H supporting C at x. Then the set $C \cap H$ is nonempty (as it contains x), compact, and an exposed face of C.

Case 1: $x \in bd C$

Theorem

- Since $x \in \text{bd } C$, we have a hyperplane H supporting C at x. Then the set $C \cap H$ is nonempty (as it contains x), compact, and an exposed face of C.
- $C \cap H$ has at most dimension k-1, and since it is compact and convex, our induction hypothesis tells us that $C \cap H = \operatorname{co} \operatorname{ext}(C \cap H)$.

Case 1: $x \in bd C$

Theorem

- Since $x \in \text{bd } C$, we have a hyperplane H supporting C at x. Then the set $C \cap H$ is nonempty (as it contains x), compact, and an exposed face of C.
- $C \cap H$ has at most dimension k-1, and since it is compact and convex, our induction hypothesis tells us that $C \cap H = \operatorname{co} \operatorname{ext}(C \cap H)$.
- Then x is a convex combination of extreme points of $C \cap H$. By transmission of extremality, those points are also extreme in C.

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

• Since dim C > 0, we can take some $x' \neq x$ in C.

Theorem

- Since dim C > 0, we can take some $x' \neq x$ in C.
- The affine line generated by x' and x cuts bd C in two points (since C is compact) y and z.

Theorem

- Since dim C > 0, we can take some $x' \neq x$ in C.
- The affine line generated by x' and x cuts bd C in two points (since C is compact) y and z.
- Then from Case 1, y and z are convex combinations of extreme points of C.

Theorem

- Since dim C > 0, we can take some $x' \neq x$ in C.
- The affine line generated by x' and x cuts bd C in two points (since C is compact) y and z.
- Then from Case 1, y and z are convex combinations of extreme points of C.
- Since x is a convex combination of y and z, it is also a convex combination of extreme points of C.

Closing remarks

• What kinds of convex sets have no extreme points?

Closing remarks

- What kinds of convex sets have no extreme points?
- What can happen when C is not compact? Not closed? Not bounded?

Questions?