

Network Address Translation and Port Forwarding

Prof. Chien-Chao Tseng

曾建超教授

Department of Computer Science
National Yang Ming Chiao Tung University
cctseng@cs.nctu.edu.tw

Reference: J. F. Kurose and K. W. Ross, Computer

Networking: A Top Down Approach

NYCU CS

Depletion of IP Addresses

- Internet Protocol (IP) Address: Host ID on Internet
 - IPv4 addresses: 32-bits long
 - Numbers of IPs: $0 \sim 2^{32} 1 = 4,294,967,295$.
- Machine connects directly into Internet must have a globally unique IP address
- Public IPs: Globally unique, registered IP addresses
 - Administered by Internet Assigned Numbers Authority (IANA)
- > Depletion of IP address
- Solutions
 - Short term

Internet

Router/NAT

Local

Public IP

Private IP

140.113.24.1 192.168.1.1 192.168.1.3

Classless Inter-Domain Routing (CIDR) with subnetting

140.113.100.10

- Private IP addresses with Network Address Translation (NAT)
- Long term
 - IPv6 (with 128 bits address space)

Public and Private IP Addresses

- Public IPs: Administered by Internet Assigned Numbers Authority (IANA)
 - Globally unique, registered IP addresses,
 - Globally Routable

Private IP Addresses

Internet

Router/NAT

Local

Public IP

Private IP

- Not Globally Delegated 140.113.100.10 140.113.24.1 192.168.1.1
- Used for intranets (private networks),
- Three blocks of IP address space for private networks (RFC 1918) 172.1111 0000.255.255

Block Size`	CIDR Prefix	Mask	Private Address Space	Classful
24 bits	10.0.0.0/8	255.0.0.0	10 .0.0.0 - 10 .255.255.255	<mark>1 A</mark>
20-bits	172.16.0.0/ <mark>12</mark>	255.240.0.0	172.16 .0.0 - 172.31 .255.255	<mark>16 B</mark>
16 bits	192.168.0.0/ <mark>16</mark>	255.255.0.0	<u>192.168.0</u> .0 - <u>192.168.255</u> .255	256 C

Cannot be transmitted onto the public Internet

.

172.00010000.255.255

➤ Need Network Address Translation (NAT)

172.00011111.255.255

What is Network Address Translation (NAT)?

Network Address Translation
 A method that maps IP addresses from one address realm to another

- NAT maps private addresses into globally routable ones and vice versus
 - Allows organization to use private IP addresses and yet connect to the Internet
- ✓ With NAT, internal network of an organization appear, from the outside, to be using a different IP address space (than what it is actually using.)

Transport Multiplexing

- Access to multiple services
- Not mixing up sessions
 - Host OS can identify distinct sessions
- Unique Flow IDs:
 - Five-tuples
 - Destination IP, Port
 - Source IP, Port
 - Protocol

Example: Multiple Co-existing Session Identification

- **TCP** is connection-oriented
 - TCP Sessions identified by Five Tuples

Protocol	Source IP	Source Port	Destination IP	Destination Port
TCP	192.168.0.193	53375	140.113.43.18	443
ТСР	192.168.0.193	53509	140.113.43.18	443
ТСР	192.168.0.193	55466	180.222.102.158	443 <a> 図を変通た學 National Chiao Tang University
UDP		•••		

Application (Browser) provides Destination IP and Port

OS provides Source IP and a unique Source Port

UDP is connectionless,

UDP Sessions identified by Protocol and

(Dest IP, Dest port)

(on receiving host) 180.222.102.158

Anatomy of IP Addresses

- NAT device divides its universe into
 - Inside: Private network and devices connected to the network
 - Outside: Public Internet and devices reachable over Internet.
- IP addresses could be classified as local or global.
 - Local address: address seen by devices on the inside
 - Global address: address seen by devices on the outside.

Overview of NAT

- What does NAT do?
 - Re-write the source and/or destination addresses of IP packets when they pass through a router or firewall
 - What can be re-written?
 - Source/Destination IPs
 - Source/Destination Ports
- What can NAT do?
 - Solve the IPv4 address shortage . (Most common purpose)
 - Firewall (Security)
 - Load balancing (Scalability)
 - Fail over (High Availability)

Public IP

Private IP

NAT Overloading (Port Address Translation)

- Dynamic NAT: Dynamically map private IP addresses to public IP addresses
- Overloading: Many-to-one mapping between private and public addresses
 - ➤ Mapping multiple private IP addresses to a single registered public IP address.
- Network Address Port Translation (NAPT)/Port Address Translation (PAT)
 - Track IP addresses, Protocol and Ports
 - Translating both **IP** address and **Port** number of packets

External	Internal	
140.113.24.1: 4321	192.168.1.3: 1234	
140.113.24.1:8765	192.168.1.5:5678	

- A single global address can map up to 65535 local addresses
- > Many hosts can simultaneously connect to Internet using a single global IP address
- ✓ Helps with the issue of IP depletion problem.

NAT Port Address Translation

- Assigns transport identifiers (ports) for connections
- Maps internal transport addresses (IP and port) to external transport addresses
- Records mapping and re-write transport addresses in IP headers

External	Internal
140.113.24.1:4321	192.168.1.3:1234
140.113.24.1: <mark>8765</mark>	192.168.1.3 <mark>:5678</mark>
140.113.24.1:9999	192.168.1.5:1234

192.168.1.5

How NAT/NAPT Works

- For outgoing datagrams:
 - Replaces (IP address, Port #) in Source Fields with (NAT IP address, NAT Port #),
 - Sends replaced datagram to remote host
 - ➤ Remote host responds using (NAT IP address, NAT Port #) as Destination Transport address

- Remember (in NAT translation table)
 every (IP address, Port #) to (NAT IP address, NAT port #) translation pair
- For incoming datagrams:
 - Replace (NAT IP address, NAT Port #) in <u>Destination Fields</u>
 with corresponding (IP address, Port #) stored in NAT table

NYCU CS 4-11

SNATs and DNATs

■ Source NAT (SNAT)

- Change source IP address, retain destination IP address.
- Allows a host on "inside" with a private IP address to initiate a connection to a host on "outside".

Destination NAT (DNAT):

- Retain source IP address, change destination address.
- Allows a host on "outside" with a public IP to connect to a host on the "inside" with a private IP.

Port forwarding

- A common application of DNAT
- Redirects a packet from one destination transport address to another.
- Commonly used to publish a service located in a private network

Illustration of Port Forwarding

- NAT Translation Table:
- Recall: IP is destination-based routing
 - **SNAT** is performed after routing decision.
 - DNAT is performed before routing decision

External	Internal
140.113.24.1:80	192.168.1.3:80
0 0 0	0 0 0
140.113.24.1: <mark>21</mark>	192.168.1.3:21
140.113.24.1:5060	192.168.1.5:6000

NYCU CS 13

Virtual Machine

- A virtual machine is a software computer that, like a physical computer, runs an operating system and applications.
- Physical Machine

Virtual Machines

VirtualBox and Networking Modes

- By Oracle
- Networking Modes:
 - Not attached.
 - Network AddressTranslation (NAT)
 - Default Mode
 - NAT Network.
 - Bridged networking.
 - Internal networking.
 - Host-only networking.
 - Cloud networking.
 - Generic networking.

