TABLE 5.2 Fourier Transform Pairs

Time Domain Signal	Fourier Transform
f(t)	$\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$
$\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega$	$F(\omega)$
$\delta(t)$	1
$A\delta(t-t_0)$	$Ae^{-j\omega t_0}$
u(t)	$\pi\delta(\omega)+rac{1}{i\omega}$
1	$2\pi\delta(\omega)$
K	$2\pi K\delta(\omega)$
$\operatorname{sgn}(t)$	$\frac{2}{i\omega}$
$ ho j\omega_0 t$	$\frac{j\omega}{2\pi\delta(\omega-\omega_0)}$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t$	$\frac{\pi}{i}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
rect(t/T)	f Tsinc ($\omega T/2$)
$\cos(\omega_0 t)u(t)$	$rac{\pi}{2}\left[\delta(\omega-\omega_0)+\delta(\omega+\omega_0) ight]+rac{j\omega}{\omega_0^2-\omega^2}$
$\sin(\omega_0 t)u(t)$	$rac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+rac{\omega_0}{\omega_0^2-\omega^2}$
$\operatorname{rect}(t/T)\cos(\omega_0 t)$	$\frac{T}{2} \left[\operatorname{sinc} \left(\frac{(\omega - \omega_0) T}{2} \right) + \operatorname{sinc} \left(\frac{(\omega + \omega_0) T}{2} \right) \right]$
$\frac{\beta}{\pi}\operatorname{sinc}(\beta t)$	$\mathrm{rect}(\omega/2\beta)$
$\operatorname{tri}(t/T)$	$T\operatorname{sinc}^2(T\omega/2)$
$\operatorname{sinc}^2(Tt/2)$	$\frac{2\pi}{T}\operatorname{tri}(\omega/T)$
$e^{-at}u(t)$, $\operatorname{Re}\{a\} > 0$	$\frac{1}{a+i\omega}$
$te^{-at}u(t)$, Re{ a } > 0	$\left(\frac{1}{a+i\omega}\right)^2$
$t^{n-1}e^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{(n-1)!}{(a+i\omega)^n}$
$e^{-a t }$, Re{ a } > 0	$\frac{2a}{a^2 + \omega^2}$
$\sum_{n=-\infty}^{\infty} g(t-nT_0)$	$\sum_{n=-\infty}^{\infty} \omega_0 G(n\omega_0) \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T_0}$
$\sum_{n=-\infty}^{\infty} g(t-nT_0) = \sum_{k=-\infty}^{\infty} C_k e^{jk\omega_0 t}$	$2\pi \sum_{n=-\infty}^{\infty} C_n \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T_0}$
$\delta_T(t)$	$\sum_{k=-\infty}^{\infty}\omega_0\delta(\omega-k\omega_0)$