CSE 250B: Section 5 - Sharad Vikram

1. Perceptron Practice

Recall in the perceptron algorithm, our classifier is of the form:

$$h_w(x) = \begin{cases} +1 & \text{if } w^T x > 0\\ -1 & \text{if } w^T x \le 0 \end{cases}$$

Let's try running through a few iterations of the perceptron algorithm! Let $w_0 = [0,0]$ and recall that the update rule is if a training point (x,y) is misclassified, update $w_{t+1} = w_t + yx$. Please record the following: (a) whether or not the point is misclassified (b) the new weights, and (c) a plot of the decision boundary. The first two have been filled out for you.

- 1. Training point: $x_1 = (1, 1), y_1 = +1$
 - (a) Point is misclassified.
 - (b) $w_1 = w_0 + [1, 1] = [1, 1]$
 - (c) See board
- 2. Training point: x = (2, -1), y = -1
 - (a) Point is misclassified.
 - (b) $w_2 = w_1 [2, -1] = [-1, 2]$
 - (c) See board
- 3. Training point: x = (0, 2), y = +1

4. Training point: x = (-3, -1), y = -1

5. Training point: x = (3, 1), y = 1

2. Matrix calculus

Let A be a $n \times n$ matrix, and let $x \in \mathbb{R}^n$. Show the following identities are true (the gradient will be typically be an $n \times 1$ vector):

- (a) $\nabla_x(x^Ty) = y$
- (b) $\nabla_x(y^Tx) = y$
- (e) $\nabla_x(x^Tx) = 2x$
- (c) $\nabla_x(Ax) = A$
- (d) $\nabla_x(x^T A) = A^T$
- (f) $\nabla_x(x^TAx) = (A + A^T)x$ (hint: use product rule)

3. Linearly Separable Data with Logistic Regression

Show (or explain) that for a linearly separable data set, the maximum likelihood solution for the logistic regression model is obtained by finding a vector β whose decision boundary $\beta^T x = 0$ separates the classes, and taking the magnitude of β to be infinity.

4. Quadratic Kernel

Find a feature mapping Φ such that $\Phi(x)^T \Phi(y) = K(x,y)$ where the kernel function is $K(x,y) = (x^T y + 1)^2$. For simplicity, you may assume that the data is 2-dimensional, i.e. $x = [x_1, x_2]^T$.

5. Fun with Newton's method for root-finding

- (a) Write down the iterative update equation of Newton's method for finding a root x : f(x) = 0 for a real-valued function f.
- (b) Prove that if f(x) is a quadratic function $(f(x) = ax^2 + bx + c)$, then it only takes one iteration of Newton's Method to find the minimum/maximum.