Parcial 1, Lenguajes Formales 2005

- 1. Verdadero o falso, justifique.
 - (a) Sea G = ({a,b}, V, P, S) una gramática libre de contexto tal que para toda producción A → α ∈ P se cumple que la cantidad de ocurrencias de variables en α cs igual a |α|_a. Entonces si S ≜ w ∈ {a,b}*, se tiene que |w|_a = k − 1.
 - (b) Si $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ es un automata a pila, y $w \in \Sigma^*$ entonces: $w \notin L(M)$ si y solo si $(q_0, w, Z_0) \stackrel{*}{\vdash} (q, \varepsilon, \gamma)$, para algun $q \notin F$ y $\gamma \in \Gamma^*$
 - (c) Sean $M_1 = (\{q_0, q_1\}, \Sigma, \Gamma, \delta_1, q_0, Z_0, \emptyset)$ y $M_2 = (\{q_0, q_2\}, \Sigma, \Gamma, \delta_2, q_0, Z_0, \emptyset)$ automatas a pila. Sea $M = (\{q_0, q_1, q_2\}, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$ donde $\delta(q_0, \sigma, Z) = \delta_1(q_0, \sigma, Z) \cup \delta_2(q_0, \sigma, Z)$

 $\delta(q_1,\sigma,Z)=\delta_1(q_1,\sigma,Z)$

 $\delta(q_2,\sigma,Z)=\delta_2(q_2,\sigma,Z)$

para todo $\sigma \in \Sigma$ y $Z \in \Gamma$.

Entonces $N(M) = N(M_1) \cup N(M_2)$.

- Sea G = ({a,b}, V, P, S) una gramática libre de contexto. Dar un algoritmo para encontrar el conjunto V_a = {A ∈ V : A ⇒ γ para algún γ ∈ ({a,b} ∪ V)* tal que a ocurre en γ}, definiendo recursivamente una sucesión de conjuntos C₁ ⊆ C₂ ⊆ C₃ ⊆ ... tal que
 - (i) $\bigcup_{i\geq 1} C_i = V_a$
 - (ii) Si $C_k = C_{k+1}$ entonces $\bigcup_{i>1} C_i = C_k$
 - (a) Aplique el algoritmo a la gramatica

 $S \rightarrow aA/abb$

 $D \to DbbC/\varepsilon$

 $B \to bHA/SS/\varepsilon$

 $J \rightarrow Ja/bb$

 $A \rightarrow AS$

 $\sim H \rightarrow Bb/BH/\varepsilon$

 $-C \rightarrow bAbbbb/bbb$

- (b) Pruebe la corrección del algoritmo.
- 3. Para G dada por las siguientes producciones encuentre L(G), y pruebe la igualdad entre los lenguajes

 $S \rightarrow aA/bA/\epsilon$

 $A \rightarrow aB/bB$

 $B \rightarrow aS/bS$