《计算机组成原理》实验报告

	2023 级计算机科学与技术 06 班		饶格奇
年级、专业、班级	2023 级计算机科学与技术 04 班	姓名	刘雨霜
	2023 级计算机科学与技术 04 班		李隆征
实验题目	实验三简易单周期 CPU 实验		
实验时间	2025 年 5 月 11 日	实验地点	A 主 404
			□验证性
实验成绩	优秀/良好/中等	实验性质	☑设计性
			□综合性
教师评价:		•	

□算法/实验过程正确; □源程序/实验内容提交; □程序结构/实验步骤合理; □实验结果正确; □语法、语义正确; □报告规范;

其他:

评价教师: 钟将

实验目的

- (1)掌握不同类型指令在数据通路中的执行路径。
- (2)掌握 Vivado 仿真方式。

报告完成时间: 2025 年 4 月 26 日

1 实验内容

阅读实验原理实现以下模块:

- (1) Datapath, 其中主要包含 alu(实验一已完成), PC(实验二已完成), adder、mux2、signext、sl2(其中 adder、mux2 数字逻辑课程已实现, signext、sl2 参见实验原理),
- (2) Controller(实验二已完成),其中包含两部分,分别为 main_decoder,alu_decoder。
- (3) 指令存储器 inst_mem(Single Port Ram),数据存储器 data_mem(Single Port Ram);使用 Block Memory Generator IP 构造指令,注意考虑 PC 地址位数统一。(参考实验二)
- (4) 参照实验原理,将上述模块依指令执行顺序连接。实验给出 top 文件,需兼容 top 文件端口设定。
- (5) 实验给出仿真程序,最终以仿真输出结果判断是否成功实现要求指令。

2 实验设计

这一节,主要描述各个模块的功能、接口、逻辑控制方法(状态机控制方法)等。(红字为内容说明,请删除)

2.1 数据通路

2.1.1 功能描述

简单描述实现的功能即可,一句话亦可(红字为内容说明,请删除)

2.1.2 接口定义

接口定义请使用表格,需要包括接口信号名、方向、宽度、含义(红字为内容说明,请删除)

表 1:接口定义模版

信号名	方向	位宽	功能描述	
valid	Output	1-bit	If CPU stopped or any exception	
			happens, valid signal is set to 0.	

3 实验过程记录

记录实验的过程,完成了什么样的工作,存在的问题包括哪些,解决方案如何等。subsubsection 名称自行设定。

4 实验结果及分析

需要仿真图一张,控制台打印输出图一张,要求仿真图中包含 pc、instr、rs、rt、rd、result 信号, 仿真图应在控制台打印输出 Simulation succeeded 时截图。控制台打印输出图为此时截图。

A Datapath 代码

其他模块不需要填写(红字为内容说明,请删除)