

Proyecto IA1

Daniel L. Aguilar Navas - 2230034 Juan José Ardila Aragón - 2230035

Presentación del proyecto

Título Motivación Objetivo

Presentación del dataset

Información general Columnas

Procesamiento

Procesamiento del dataset Estadísticas del dataset

Algoritmo genético

Estructura del algoritmo

Contenido:

Clasificación por RandomForest

Contenido:

Clasificación por SVM

Regresión por DNN

Regresión por DT

No supervisado por PCA y TSNE

Contenido:

No supervisado por K-Means y Agglomerative Clustering

Comparaciones y
Conclusiones

01 Presentación

General del proyecto

Predicción del IMC en la Población en base a sus hábitos

Motivación:

México: El 40% de adolescentes y 38% de los adultos tienen obesidad. [1]

Colombia: Alrededor del 25% de adultos son obesos, con mayor incidencia en zonas urbanas.^[2]

Perú y Colombia: La obesidad infantil está relacionada con trastornos metabólicos.^[3]

Objetivo:

Diseñar y desarrollar un modelo de aprendizaje automático para predecir el nivel de obesidad en función de los hábitos y características personales.

Obesity Prediction Dataset

Este conjunto de datos extraído de kaggle [4] incluye datos para la estimación de los niveles de obesidad en individuos de los países de México, Perú y Colombia

Obesity Prediction Dataset

El dataset se encuentra compuesto por 17 columnas y 2111 registros que brindan información sobre el estado físico de la persona y diferentes hábitos que presenta en su diario vivir.

- Gender: Género
- Age: Edad
- Height: Altura (en metros)
- Weight: Peso (en kilogramos)
- family_history: ¿Algún miembro de tu familia ha sufrido o sufre de sobrepeso?
- FAVC: ¿Consumes alimentos con alto contenido calórico frecuentemente?
- FCVC: ¿Sueles incluir verduras en tus comidas?
- NCP: ¿Cuántas comidas principales tienes al día?
- CAEC: ¿Consumes algún alimento entre comidas?
- SMOKE: ¿Fumas?
- CH2O: ¿Cuánta agua bebes diariamente?
- SCC: ¿Monitoreas las calorías que consumes diariamente?
- FAF: ¿Con qué frecuencia realizas actividad física?
- TUE: ¿Cuánto tiempo usas dispositivos tecnológicos como celulares, videojuegos, televisión, computadora y otros?
- CALC: ¿Con qué frecuencia consumes alcohol?
- MTRANS: ¿Qué medio de transporte utilizas normalmente?
- Obesity level (Target Column): Nivel de obesidad

03 Procesamiento

Procesamiento del dataset Estadísticas del dataset

Cómo se realizó el procesamiento:

- 1. Cambiar nombre de columnas
- 2. Verificación de datos nulos.
- 3. Insertar una columna respecto a IMC
- 4. Cambiar columnas que contienen "Strings" por números enteros que simbolizan un dato.
- 5. Calcular estadísticas de los datos.

04 Algoritmo Genético

Estructura del A.G.

Fitness Function: Evalúa la salud de cada individuo con base en condiciones como IMC, consumo de calorías, ejercicio, etc.

Selección: Se eligen los mejores individuos en cada generación.

Crossover: Se combinan características de los individuos seleccionados.

Mutación: Se introducen cambios aleatorios en algunos individuos.

Reducción de Población: Se mantiene la mejor mitad de los individuos para la siguiente generación.

Resultado: Se obtiene un vector con los índices de las mejores condiciones del dataset.

Clasificación por RF por tipo de obesidad

Random forest

Train-test 80-20 criterion="gini" evaluando que tan mezcladas están las clases en un nodo

Profundidad del árbol	Train Accuracy	Train F1 Score	Train Recall	Test Accuracy	Test F1 Score	Test Recall
3	0.56 ± 0.01	0.51 ± 0.01	0.56 ± 0.01	0.54 ± 0.04	0.49 ± 0.04	0.54 ± 0.04
5	0.66 ± 0.01	0.62 ± 0.01	0.66 ± 0.01	0.62 ± 0.04	0.58 ± 0.04	0.62 ± 0.04
7	0.77 ± 0.01	0.76 ± 0.01	0.77 ± 0.01	0.69 ± 0.03	0.67 ± 0.04	0.69 ± 0.03
10	0.91 ± 0.01	0.91 ± 0.01	0.91 ± 0.02	0.74 ± 0.02	0.74 ± 0.03	0.74 ± 0.02
15	0.99 ± 0.01	0.99 ± 0.01	0.99 ± 0.02	0.76 ± 0.02	0.75 ± 0.02	0.76 ± 0.02

Clasificación por SVM por tipo de obesidad

SVM

Con sigmoid

Reporte de clasificación tras K-Fold con SVC:					
		precision	recall	f1-score	support
e	9.0	0.50	0.43	0.46	287
1	1.0	0.58	0.27	0.37	290
2	2.0	0.52	0.25	0.34	290
3	3.0	0.50	0.60	0.54	351
4	1.0	0.60	0.64	0.62	272
5	5.0	0.54	0.81	0.65	297
€	5.0	0.75	0.99	0.86	324
accura	асу			0.58	2111
macro a	avg	0.57	0.57	0.55	2111
weighted a	avg	0.57	0.58	0.55	2111

. . .

Con ajuste polinomico

Reporte de clasificación tras K-Fold con SVC:					
	precision	recall	f1-score	support	
Ø	0.49	0.43	0.45	235	
1	0.52	0.37	0.43	237	
2	0.54	0.35	0.42	235	
3	0.53	0.62	0.57	292	
4	0.69	0.65	0.67	207	
5	0.59	0.86	0.70	233	
6	0.84	0.98	0.90	249	
accuracy			0.61	1688	
macro avg	0.60	0.61	0.59	1688	
weighted avg	0.60	0.61	0.59	1688	

07

Regresión de IMC por DNN

Dense Neural Network

Para entrenar el modelo se usaron 3 capas relu de 512,128,64 parámetros y por último, una capa densa para predicción de datos.

Predicciones (primeros 5): [19.109716 39.29602 23.070292 16.962923 29.497086] Reales (primeros 5): [17.41536553 42.03995319 17.53104456 18.17867036 24.16326531]

• •

Grafica train vs test MAE

08

Regresión de IMC por DT

Árbol de Decisión para regresión:

Predicciones de IMC con datos de prueba: [18.66783428 19.1349481 27.67775922]
/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2732: UserWarning: X has warnings.warn(

Variación de la profundidad del DT:

```
Profundidad: 1 -> MAE: 5.718 (+/- 0.42787)
Profundidad: 2 -> MAE: 5.365 (+/- 0.27632)
Profundidad: 3 -> MAE: 4.693 (+/- 0.14970)
Profundidad: 4 -> MAE: 4.135 (+/- 0.13519)
Profundidad: 5 -> MAE: 3.797 (+/- 0.19740)
Profundidad: 6 -> MAE: 3.582 (+/- 0.19213)
Profundidad: 7 -> MAE: 3.476 (+/- 0.25854)
Profundidad: 8 -> MAE: 3.346 (+/- 0.26488)
Profundidad: 9 -> MAE: 3.111 (+/- 0.31895)
Profundidad: 10 -> MAE: 2.986 (+/- 0.32032)
Profundidad: 11 -> MAE: 2.981 (+/- 0.34192)
Profundidad: 12 -> MAE: 2.977 (+/- 0.36276)
Profundidad: 13 -> MAE: 2.932 (+/- 0.40381)
Profundidad: 14 -> MAE: 2.918 (+/- 0.33592)
Profundidad: 15 -> MAE: 2.897 (+/- 0.35425)
Profundidad: 16 -> MAE: 2.913 (+/- 0.36164)
Profundidad: 17 -> MAE: 2.919 (+/- 0.38172)
Profundidad: 18 -> MAE: 2.860 (+/- 0.31706)
Profundidad: 19 -> MAE: 2.881 (+/- 0.29248)
Profundidad: 20 -> MAE: 2.928 (+/- 0.34083)
```

Por medio de validación cruzada y kfold = 10

Variación de la profundidad del DT:

Mejor profundidad según CV: 18 con MAE: 2.860

Métrica	DNN	DT (k fold)
MAE	3.7987277	2.860

El mejor modelo fue el Decision Tree. 😎 🎄

OS No supervisado por PCA y TSNE

No supervisado por K-Means y Agglomerative Clustering

11 Comparaciones y Conclusiones

Agglomerative

Clustering

No

supervisado

0.31

El mejor modelo fue el Random Forest. 😎 🎄

0.29

0.31

Referencias:

1)Zafra-Tanaka, J.H., Braverman, A., et al. (2023). City features related to obesity in preschool children: A cross-sectional analysis of 159 cities in Latin America. The Lancet Regional Health.

https://www.thelancet.com/journals/lanam/article/PIIS2667-193X(23)00032-7/fulltext 2)Castro, P.A., & Spijker, J. (2024). Adult Obesity in Colombia from the Sociodemographic and Public Health Perspective: A Scoping Review. Revista Gerencia y Políticas de Salud.

- 3)Loayza-Castro, J.A., Vera-Ponce, V.J., et al. (2024). Maternal obesogenic environment and its association with childhood obesity in Peru: A 9-year analysis. MedRxiv.
- 4) Dataset : https://www.kaggle.com/datasets/ruchikakumbhar/obesity-prediction 5)colab:

https://colab.research.google.com/drive/1ovEYbf1fTEQXc_Gr8_8g0EBOyGSsPbrk?usp =drive_link

