Charts On File

CHARTS ON FILE

By the Diagram Group

Facts On File Publications
New York, New York • Oxford, England

CHARTS ON FILE ™

Text and artwork © Diagram Visual Information Ltd. 1988

Editorial consultants Christine Lovelace, Paul Ruth, Dr Richard Walker

Managing editor Reet Nelis

Editors Annabel Else, Denis Kennedy, Jane Robertson

Art staff

Joe Bonello, Alastair Burnside, Richard Czapnik,
Brian Hewson, Richard Hummerstone, Brian Jobling.

brian Hewson, Richard Hummerstone, Brian Jobling, Lee Lawrence, Arthur Lockwood, Paul McCauley, Eitetsu Nozawa, Philip Patenall, Graham Rosewarne, Guy Ryman, Debbie Skinner, Michael Williams,

Martin Woodward

Indexer Mary Ling

Charts On File is a trademark of Facts On File, Inc.

All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopyring, recording or by any information storage and retrieval systems, without permission in writing from the Publisher, Facts On File, Inc. 460 Park Avenue South, New York, NY 10016; Facts On File, Ltd., Collins Street, Oxford OX4 1XJ.

THE PUBLISHER GRANTS PERMISSION FOR THE REPRODUCTION OF THE ILLUSTRATIONS IN THIS WORK FOR NON-PROFIT EDUCATIONAL USE. THE ILLUSTRATIONS MAY NOT BE USED IN A PROFIT MAKING VENTURE WITHOUT THE PERMISSION OF THE PUBLISHER.

Library of Congress Cataloging-in-Publication Data

Charts on file.

Includes index. 1. Charts, diagrams, etc. I. Diagram Group. AG105.C44 1987 001.4'226 87-36423 ISBN 0-8160-1721-1

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

FARTH SCIENCES

- 01.001 Geological time periods
- 01.002 Life-forms
- 01.003 Mountain-building events
- 01.004 Evolution from common ancestors
- 01.005 Evolution of organisms 01.006 From ape to man
- 01.007 Structure of the Earth
- 01.008 Evolution of the continents
- 01.009 Comparative size of the continents
- 01.010 The World's longest rivers
- 01.011 The World's highest mountains
- 01.012 The World's highest waterfalls
- 01.013 The World's largest countries
- 01.014 The World's smallest countries
- 01.015 Countries ranked by size and continent: 1
- 01.016 Countries ranked by size and continent: 2
- 01.017 Countries ranked by size and continent: 3
- 01.018 Countries ranked by size and continent: 4 01.019 Atmospheric winds
- 01.020 The Beaufort scale of wind speeds
- 01.021 How tides work
- 01.022 The seasons
- 01.023 How volcanoes work
- 01.024 How earthquakes happen
- 01.025 Earthquakes: comparative scales

- 01.026 Mountain formation
- 01.027 Types of fold 01.028 Types of fault
- 01.029 Clouds in a depression
- 01.030 Types of cloud
- 01.031 Structure and composition of the atmosphere
- 01.032 The hydrological cycle 01.033 Tropical rain forest
- 01.034 Soil erosion causes and solutions
- 01.035 Formation of a river valley
- 01.036 Development of a river 01.037 The parts of a glacier
- 01.038 Marine erosion and deposition 01.039 Sand dunes
- 01.040 Population pyramid for USA
- 01.041 Comparative population pyramids
- 01.042 Area of American states (sq. mi.)
- 01.043 Largest American cities by population 01.044 Largest World cities by population
- 01.045 Mileages of American cities 01.046 Mileages of Canadian cities
- 01.047 Mileages of World cities 01.048 Distance of World cities from New York
- 01.049 Winter and Summer temperatures in the USA
- 01.050 World time zones

PHYSICAL SCIENCES

02.001 Table of physical quantities and constants 02.002 Motion in a straight line 02.003 Atoms and molecules 02.004 Crystal structures 02.005 The Periodic table 02.006 Atomic elements 02.007 Air and water 02.008 Atmospheric pressure 02.009 Energy changes 02.010 Heat transfer types 02.011 Electromagnetic spectrum 02.012 Lenses 02.013 The eve

02.014 Sound waves and music 02.015 Noises and decibel ratings 02.016 Radio and television waves

02.017 Electric circuits: 1 02.018 Electric circuits: 2

02.019 Electronic logic gates and truth tables

02.020 Electrostatics 02.021 Magnetic fields 02.022 Radioactivity: 1 02.023 Radioactivity: 2

02.024 Radioactivity: 3 02.025 The uses of oil

02.026 The uses of coal 02.027 Polymers

02.028 Carbon 02.029 Sulfur

02.030 The preparation of different gases 02.031 Chemical substances and formulae

02.032 Melting and boiling points 02.033 Oil production: derricks and rigs

02.034 Oil production: directional drilling 02.035 Oil refining

02.036 Hydro-electric power production

02.037 Electricity transmission and distribution 02.038 How a nuclear reactor works

02.039 Alternative energy sources 02.040 How solar energy is created

02.041 Celestial coordinates 02.042 Constellations of the northern sky 02.043 Constellations of the southern sky

02.044 Relationship of planets to the Sun 02.045 Moons and satellites of planets 02.046 Comparative sizes of stars to the Sun

02.047 Eclipse of the Sun 02.048 Eclipse of the Moon

LIFE SCIENCES

- 03.001 Classification of living organisms
- 03.002 Classification of Kingdom Monera 03.003 Classification of Kingdom Protista
- 03.004 Classification of Kingdom Fungi
- 03.005 Classification of Kingdom Plantae
- 03.006 Numbers of plant species
- 03.007 Some families of flowering plants
- 03.008 Classification of invertebrates
- 03.009 Classification of chordates 03.010 Numbers of animal species
- 03.011 Classification of insects
- 03.012 Classification of fish
- 03.013 Classification of amphibia
- 03.014 Classification of reptiles 03.015 Classification of birds
- 03.016 Classification of mammals
- 03.017 Characteristics of plants 03.018 Characteristics of invertebrates
- 03.019 Characteristics of arthropods
- 03.020 Characteristics of vertebrates
- 03.021 Life processes
- 03.022 Asexual and sexual reproduction
- 03.023 Ova and spermatozoa
- 03.024 Metamorphosis: 1 insects (complete) 03.025 Metamorphosis: 2 insects (incomplete)
- 03.026 Metamorphosis: 3 amphibians
- 03.027 Body systems
- 03.028 Digestive system in humans
- 03.029 Endocrine system in humans

- 03.030 Respiratory systems in animals
- 03.031 Transport systems 03.032 Nitrogenous excretion
- 03.033 Seeing systems
- 03.034 Messenger RNA codons

- 03.034 Messenger have 03.035 Amino acids 03.036 Food energy value 03.037 Energy needs
- 03.038 Energy conversions
- 03.039 Biogeographical regions 03.040 Terrestrial biomes
- 03.041 Effect of temperature and rainfall on vegetation
- 03.042 Altitude, latitude and ecosystems
- 03.043 Woodland food web
- 03.044 Marine biomes: 1
- 03.045 Marine biomes: 2
- 03.046 Marine food web 03.047 Freshwater food web
- 03,048 Evolution clock
- 03.049 Tree of life
- 03.050 Biological dimensions
- 03.051 Animal sizes
- 03.052 Plant sizes 03.053 Gestation and incubation
- 03.054 Life spans
- 03.055 Life levels
- 03.056 Animal speeds: fastest
- 03.057 Animal speeds: slowest

NUMBERS

04.001 Roman numerals 04.022 Compound interest on annual basis 04.002 Number systems 04.023 Simple interest tables 04.003 Numerical prefixes 04.024 Root values 04.004 Mathematical symbols 04.025 Conversion table: length 04.005 Astronomy symbols 04.026 Conversion table: area 04.006 Religious symbols 04.027 Conversion table: volume 04.007 Signs of the Zodiac 04.028 Conversion table: weight 1 04.008 Chinese astrological symbols and year dates 04.029 Conversion table: weight 2

04.007 Signs of the Zodiac

04.008 Chinese satrological symbols and year dates

04.029 Conversion table: weight 1

04.009 Chinese satrological symbols and year dates

04.009 Conversion table: weight 2

04.001 Perpetual calendar: 4

04.010 Perpetual calendar: 1

04.012 Perpetual calendar: 1

04.012 Perpetual calendar: 2

04.033 Conversion table: liquid 3

04.012 Perpetual calendar: 3

04.034 Conversion table: temperature

04.035 Conversion table: temperature

04.035 Conversion table: temperature

04.035 Conversion table: temperature

04.035 Conversion table: speed

04.020 Fractional equivalents of percentages

04.021 Fraction/decimal conversion values

04.041 Non-regular solids

04.042 Solids: calculating volume

HUMANITIES

05.001	The Indo-European family of languages
	Alphabets: Greek
05.003	Alphabets: Hebrew

05 004 Alphahets: Russian 05.005 Alphabets: Braille

05.006 North American manual alphabet 05.007 North American manual numbers

05.008 The international Morse code 05.009 Semaphore

05.010 Musical notation: 1 05.011 Musical notation: 2 05.012 Musical notation: 3

05.013 Music: conductor's movements 05.014 Layout and instruments of an orchestra

05.015 Military marching band 05.016 Jazz and rock bands

05.017 Ballet

05.018 Clothes fashions: women 05.019 Clothes fashions; men

05.020 Fundamental vase forms 05.021 Basic human proportions 05.022 Perspective

05.023 Architecture: columns 05.024 Development of lighting

05.025 Furniture styles: bed 05.026 Furniture styles: chair 05.027 US Presidents and Vice Presidents: 1 1789-1839

05.028 US Presidents and Vice Presidents: 2 1839-1889 05.029 US Presidents and Vice Presidents: 3 1889-1939 05.030 US Presidents and Vice Presidents: 4 1939-1987

05.031 Kings and queens of England and Great Britain 05.032 Popes of the 19th and 20th centuries

05.033 William Shakespeare: first performances of plays 05.034 US states: dates of entry into Union

05.035 Seals of 50 states of the Union: 1 05.036 Seals of 50 states of the Union: 2 05.037 Seals of 50 states of the Union: 3

05.038 Seals of 50 states of the Union: 4 05.039 Seals of 50 states of the Union: 5 05.040 US Government: the Constitution

05.041 US Government: the Senate 05.042 US Government: the House of Representatives

05.043 US Government: the organization of the Presidency 05.044 US Government: the Department of State

05.045 US Government: the Judiciary 05.046 US Government: how a bill becomes law

05.047 US Government: marriage with parental consent 05.048 US Government: marriage without parental consent 05.049 Countries of the World: 1

05.050 Countries of the World: 2 05.051 Countries of the World: 3 05.052 Countries of the World: 4 05.053 Countries of the World: 5 05.054 Countries of the World: 6 05.055 Countries of the World: 7 05.056 Countries of the World: 8 05.057 Countries of the World: 9 05.058 Countries of the World: 10

HOME ECONOMICS AND HEALTH

06.001 Location of organs

06.002 Size and weight of organs

06.003 Dental chart

06.004 Growth charts: children 06.005 Weight/height ratio: men and women

06.006 Pulse rate: body temperature

06.007 Blood pressure: average normal pressures by age 06.008 Blood groups: parents and children

06.009 Blood groups: donors and recipients

06.010 Immunization schedule for children

06.011 Calories: requirements and energy expenditure

06.012 Human expenditure of energy

06.013 Exercise: body types 06.014 Exercise: type of benefit

06.015 Drugs and their effects

06.016 Cuts of meat: beef and chicken

06.017 Cuts of meat: pork and lamb 06.018 Food: meat roasting times

06.019 Food: storage times in refrigerator

06.020 Herbs

06.021 Spices

06.022 Wine: identification of bottles and labels

06.023 Wine: serving temperatures

06.024 Glasses

06.025 Formal dinner setting 06.026 Conversion tables: basic units

06.027 Volume: liquid capacity

06.028 Measuring temperature 06.029 Clothing sizes

06.030 Basic body measurements

06.031 Sewing stitches: 1

06.032 Sewing stitches: 2

06.033 Crocheting: 1 06.034 Crocheting: 2

06.035 Knitting: 1 06.036 Knitting: 2 06.037 Map of the hand

06.038 Birthstones 06.039 Wedding anniversaries and gifts

Geological time periods

^{*}Equivalents in N. America are Mississippian and Pennsylvanian

Life-forms

MILLIONS OF YEARS AGO	ERAS	PERIOD:	S/EPOCHS	LIFE-FORMS
4,600	Z.	Azoic Archeozoic		
1,000	PRECAMBRIAN			Zin
	PR	Proterozoic		
600		Cam	brian	Y/ × A
500		Ordovician		
440 —	ZOIC	Silurian		3
410 —	PALEOZOIC	Deve	onian	
360 —		*Carboniferous		
285 —		Permian		The Let
250		Triassic		* # 0
215 —	MESOZOIC	Jura	essic	
145 —	M	Cretaceous		
65			Paleocene	
55 -			Eocene	*
	38 - 25 - 25 - 25 - 2 - 2 - 2 - 2 - 2 - 2	Tertiary	Oligocene	**
			Miocene	
2-			Pliocene	
0.01		Quaternary	Pleistocene	
0.01		adaterriary	Holocene	## am (()

^{*} Equivalents in N. America are Mississippian and Pennsylvanian

Mountain-building events

MILLIONS OF YEARS AGO	ERAS	PERIODS/EPOCHS		MOUNTAIN-BUILDING EVENTS	LIFE	
4,600 3,000 —	IAN	Azoic Archeozoic Olde			<u></u>	
1,000 —	PRECAMBRIAN			Older Laurentians	oglassicity	
600 —	R	Proterozoic		Younger Laurentians		
500 —		Cami	brian			
		Ordov	vician	Caledonians	The state of the s	
440 —	PALEOZOIC	Silu	ırian		111	
	PALEC	Devo	onian		The state of the s	
360 —		*Carbon	niferous	Appalacians		
285 —		Permian			THE	
250 —		Triassic				
215-	MESOZOIC	OOZO Jurassic	Urals			
145—	ž	Cretaceous		Rockies	1	
	65		Paleocene	Himalayas Alps		
55 — 38 —			Eocene			
25	OIC	Tertiary	Oligocene			
5-	20		Miocene		May C	
-			Pliocene			
0.01		Quaternary Pleistocene			1	
		Holocene				

^{*} Equivalents in N. America are Mississippian and Pennsylvanian

Evolution from common ancestors

01.004

*Equivalents in N. America are Mississipian and Pennsylvanian

Evolution of organisms

^{*} Equivalents in N. America are Mississippian and Pennsylvanian

From ape to man

01.006

A Ramapithecus
B Australopithecus afarensis
C Australopithecus africanus
D Australopithecus robustus
E Australopithecus boisei
F Homo habilis

G Homo erectus

H Homo sapiens (archaic)

I Homo sapiens (Neandertal)
J Homo sapiens (modern)

Structure of the Earth

01.007

C Hydrosphere (oceans)
D Mohorovicic Discontinuity
E Gutenburg (Oldham) Discontinuity

a Sialic continents (silica and aluminum)
 b Basaltic plates (silica and magnesium)
 Upper mantle

3 Lower mantle 4 Outer core

5 Inner core

Evolution of the continents

01.008

A 180 million years ago B 135 million years ago C 65 million years ago D Today

b Laurasia c Tethys Sea

d Panthalassa e Sinus Australis f Sinus Borealis

1 Equator 2 80°W 3 20°E 4 140°E

© DIAGRAM

Comparative size of the continents

01.009

1 Asia

2 Africa 3 North America

4 South America

5 Antarctica 6 Europe

7 Oceania

17,085,000 mi² 11,685,000 mi² 9,420,000 mi²

6,870,000 mi² 5,100,000 mi² 3,825,000 mi² 3,295,000 mi² 44,250,000 km² 30,264,000 km² 24,398,000 km² 17,793,000 km²

13,209,000 km² 9,907,000 km² 8,534,000 km²

The World's longest rivers

01.010

1 Nile, Africa 4,132 mi (6,650 km)

2 Amazon, S. America 3,900 mi (6,276 km) 3 Mississippi-Missouri-Red Rock, N. America 3,860 mi

- (6,212 km)
 4 Ob-Irtysh, Asia 3,461 mi (5,570 km)
- 5 Yangtze, Asia 3,430 mi (5,520 km) 6 Huang Ho, Asia 2,903 mi (4,672 km)
- 7 Zaire (Congo), Africa 2,900 mi (4,667 km) 8 Amur, Asia 2,802 mi (4,509 km)
- 9 Lena, Asia 2,653 mi (4,270 km)

- Mackenzie, N. America 2,635 mi (4,241 km)
 Mekong, Asia 2,600 mi (4,184 km)
- 12 Niger, Africa 2,590 mi (4,168 km)
- 13 Yenisey, Asia 2,566 mi (4,130 km)
- 14 Parana, S. America 2,450 mi (3,943 km)
- 15 Plata-Paraguay, S. America 2,300 mi (3,701km)
- 15 Plata-Paraguay, S. America 2,300 mi (3,701 16 Volga, Europe 2,293 mi (3,690 km)
- 17 Madeira, S. America 2,060 mi (3,315 km)
- 18 Indus, Asia 1,980 mi (3,186 km)

The World's highest mountains

- The World's top ten are all in the Himilayas:
- 1 Everest 29,028 ft (8,848 m)
- 2 K2 (Godwin Austen) 28,250 ft (8,610 m)
- 3 Kanchenjunga 28,208 ft (8,598 m) 4 Lhotse 27,923 ft (8,511 m)
- 5 Yalung Kang 27,894 ft (8,502 m) 6 Makalu 27,824 ft (8,481 m)

- 7 Dhaulagiri 26,795 ft (8,167 m) 8 Manaslu 26,760 ft (8,156 m)

- 9 Cho Oyu 26,750 ft (8,153 m) 10 Nanga Parbat 26,660 ft (8,126 m)

- The highest by continent: 11 Aconcagua, S. America 22,834 ft (6,960 m)
- 12 McKinley, N. America 20,320 ft (6,194 m) 13 Kilimanjaro, Africa 19,340 ft (5,895 m)
- 14 El'brus, Europe 18,481 ft (5,663 m) 15 Vinson Massif, Antarctica 16,863ft (5,140m)
- 16 Jaya, Oceania 16,023 ft (4,884 m)

The World's highest waterfalls

01.012

1 Angel, Venezuela 3,212 ft (979 m) 2 Tugela, S. Africa 3,110 ft (948 m) 3 Utigård, Norway 2,625 ft (800 m) 4 Mongefossen, Norway 2,540 ft (774 m) 5 Yosemite, USA 2,425 ft (739 m) 6 Østre Mardøla, Norway 2,154 ft (656 m)

7 Tyssestrengane, Norway 2,120 ft (646 m) 8 Kukenaam, Venezuela 2,000 ft (610 m) 9 Sutherland, New Zealand 1,904 ft (580 m) 10 Kjellfossen, Norway 1,841 ft (561 m) 11 Takkakaw, Canada 1,650 ft (503 m) 12 Ribbon, USA 1,612 ft (491 m)

The world's largest countries

01.013

DIAGRAM

The world's smallest countries

01.014

©DIAGRAM

01.015

Paraguay (157,047) Ecuador (109,483) Guyana (83,000) Uruguay (68,037) Suriname (63,037) Nicaragua (50,193) Cuba (44,218) Honduras (43,277) Guatemala (42,042) Panama (29,208) Costa Rica (19,575) Dominican Republic (18,816) Haiti (10,714) Belize (8,867) El Salvador (8,260) The Bahamas (5,380) Jamaica (4,232) Trinidad & Tobago (1,980)

Dominica (290) StLucia (238) Antigua & Barbuda (171) Barbados (166) St Vincent & Grenadines (150) Grenada (133) St Christopher & Nevis (101) COLAGRAM

01.016

Afghanistan (251,773)
Thailand (198,456)
Papua New Guinea (178,259)
Iraq (167,924)
Japan (145,856)
South Yemen (128,559)
Vietnam (128,401)
Malaysia (127,316)
Philippines (115,831)
New Zealand (103,736)

Laos (91,428) Oman (82,030) North Yemen (75,290) Syria (71,498) Cambodia (69,898) Nepal (56,136) Bangladesh (55,598) North Korea (46,540) South Korea (38,025) Jordan (37,737) United Arab Emirates (32,000) Sri Lanka (25,332) Bhutan (18,147) Taiwan (13,885) Solomon Islands (10,640) Israel (7,847) Fiji (7,056) Kuwali (6,880) Vanuatu (5,700) Qatar (4,247) Lebanon (4,015) Brunei (2,226) Western Samoa (1,133) Tonga (270) Kiribati (266) Bahrain (258) Singapore (224) Maldives (115) Tuvalu (10) Nauru (8)

01.017

Mauritania (397,954) Egypt (386,650) Tanzania (364,886) Nigeria (356,667) Namibia (317,818) Mozambique (309,494) Zambia (290,588) Central African Rep (240,534) Somalia (246,300) Madagascar (226,657) Botswana (231,804) Kenya (224,960) Cameroon (185,568) Morocco (172,413) Zimbabwe (150,803) Congo (132,046) Ivory Coast (124,503) Burkina Faso (105,869) Gabon (103,346) Guinea (94,098) Uganda (93,354) Ghana (92,098)

Senegal (75,750) Tunisia (63,170) Malawi (45,747) Benin (43,483) Liberia (38,250) Sierra Leone (27,699) Togo (21,622) Guinea-Bissau (13,948) Lesotho (11,716) Burundi (10,759) Equatorial Guinea (10,832) Rwanda (10,169) Djibouti (8,494) Swaziland (6,704) The Gambia (4,361) Cape Verde (1,750) Comoros (838) Mauritius (790) Sao Tome & Principe (372) Seychelles (171)

01.018

UK (94,226) Romania (91,699) Greece (51,146) Czechoslovakia (49,365) Bulgaria (42,823) East Germany (41,768) Iceland (39,769) Hungary (35,919) Portugal (35,553) Austria (32,374) Ireland (27,137) Denmark (16,633) Switzerland (15,941) Netherlands (15,770) Belgium (11,779) Albania (11,100) Cyprus (3,572) Luxembourg (998) Andorra (188) Malta (122) Liechtenstein (62) San Marino (24) Monaco (0.6) Vatican City (108.7 acres)

Atmospheric winds

A Polar easterlies B Prevailing westerlies C Northeast trades D Doldrums

E Southeast trades
F Prevailing westerlies
G Polar easterlies

The Beaufort scale of wind speeds

	Beaufort number	Description	Characteristics	Range of mi/h	wind speed km/h
	1	Light air	Smoke blown by wind	1–3	1–5
. •	2	Light breeze	Wind felt on face	4–7	6–12
	3	Gentle breeze	Wind extends a light flag	8–12	13–20
4	4	Moderate breeze	Dust and loose paper raised	13–18	21–29
	5	Fresh breeze	Small, leafy trees begin to sway	19–24	30–39
- 3	6	Strong breeze	Hard to use umbrellas	25–31	40-50
1000	7	Moderate gale	Difficult to walk against wind	32–38	51–61
	8	Fresh gale	Twigs broken off tree branches	39–46	62–74
	9	Strong gale	Chimneys and roofs damaged	47–54	75–87
	10	Whole gale	Uprooting of trees	55–63	88–102
1	11	Storm	Damage widespread	64–75	103–120
10	12	Hurricane	Extreme violence	Above 75	Above 120

How tides work

01.021

1 and 3 Spring tides – Sun and Moon are in line with the Earth. 2 Neap tides – Sun and Moon are at right angles to each other.

- A Sun
 B Earth
 C Full moon
 D First and last quarter moon
 E New moon

The seasons

- 1 Summer solstice June 21
 2 Autumnal equinox September 23
 3 Winter solstice December 22
 4 Vernal equinox March 21

- A Sun B Rotation of the Earth C Orbit of the Earth D Rays of the Sun

- a North Pole b Arctic Circle (66° 30') c Equator

How volcanoes work

01.023

A Volcano B Molten material and ash L Crustal rocks M Batholith

N Laccolith O Lopolith

C Crater
D Side vent
E Lava flow

F Ash deposits

G Old lava flow

H Sill I Magma Chamber J Conduit

How earthquakes happen

01.024

@DIAGRAM

Breaking of the Earth's crust under stress Epicenter Shockwaves are m 0

generated at hypocenter (focus) Shockwaves travel outwards from ۵

hypocenter (focus) Shockwaves reach the surface

Earthquakes: comparative scales

01.025

D The TNT equivalent

of the total energy

C The Mercalli scale

earthquake

intensity. released.

The Richter scale which is used to magnitude of an equivalent of the which measures total energy earthquake.

record the The Joule released.

œ.

©DIAGRAM.

Α В

A Structural mountains – formed from uplift within the crustal plates of the Earth.

B Fault block mountains – formed from a series of tilted fault blocks.

Dissected mountains – formed after erosion of plateaus or plains.

Types of fold

01.027

A Anticline
B Syncline
C Tight fold
D Overfold
E Recumbent fo

Types of fault

01.028

@DIAGRAM

A Normal fault
B Reverse (or thrust)
fault
C Tear (or strike-slip)
fault
D Graben or rift

Clouds in a depression

01.029

Cool air
Warm air
Scattered show

Types of cloud

01.030

Low clouds A Stratus

B Cumulus

C Stratocumulus

D Cumulonimbus

F Altostratus G Altocumulus

Middle Clouds E Nimbostratus

High clouds H Cirrus I Cirrostratus

J Cirrocumulus

Structure and composition of the atmosphere

01.031

- 1 Structure
- A Thermosphere
- B Mesosphere
- C Stratosphere D Troposphere
- 2 Composition
 - A Nitrogen (78.02832%) B Oxygen (20.99%)
 - C Argon (0.94%)
 - D Carbon dioxide (0.03%)
 - E Hydrogen (0.01%)
 - F Neon (0.00123%) G Helium (0.0004%)

H Krypton (0.00005%) I Zenon (0.000006%)

The hydrological cycle

Tropical rain forest

01.033

(upperlayer)
3 The canopy
5 The middle layer
6 The lower layer

Soil erosion - causes and solutions

01.034

1 Causes

A Deforested land B Övergrazing

C Down slope cultivation

D Monoculture

E Wind erosion F Flood erosion

2 Solutions

G Reduced herds H Reforested land

I Shelter belt J Crop rotation

K Contour cultivation L Strengthened river

banks

Formation of a river valley

01.035

A Upper course Vertical erosion of mountains by streams. Creation of ridges and intervening valleys. Middle course Mountains reduced to low hills by river erosion. Valley floor widened.

C Lower course
Low, wide flood
plain created by
lateral eroslon.
Material deposited
on valley floor.

@DIAGRAM

Development of a river

01.036

A Young river B Mature river C Old river

 Geological fault changes river bed
 Creation of a waterfall
 Widening of valley
 Broad meandering
 Deposition of sediment
 Formation of lakes in abandoned meanders

The parts of a glacier

Marine erosion and deposition

01.038

A The process 1 Bay

1 Bay 2 Erosion of headland 3 Deposition of material 4 Deep water 5 Shallow water

6 Lines of breakers

a Berm

B The features

b Tombolo

c Spit

d Lagoon e Baymouth bar

f Barrier island

Sand dunes

- 1 Barchan dune
- a Windward slope
- b Leeward/slip face
- c Horns 2 Section through a barchan
- 3 Barchan into seif dune
- a Barchan and prevailing wind
- b Wind shifts and one horn lengthens
- c Wind vacillates
- d Seif dune later takes shape

- 4 Seif dune pattern a Long, narrow, straight and parallel dunes
- b Corridors c Eddies

Comparative population pyramids

A Progressive B Stationary

C Regressive D Intermediate

Area of American states (sq. mi.)

01.042

Idaho (82,412) Utah (82,073) Kansas (81,778) Minnesota (79,548) Nebraska (76,644) South Dakota (75,952) North Dakota (69,300) Missouri (68,945) Oklahoma (68,655) Washington (66,511)

Georgia (58,056) Michigan (56,954) lowa (55,965) Illinois (55,645) Wisconsin (54,426) Florida (54,153) Arkansas (52,078) Alabama (50,767) North Carolina (48.843) New York (47,377)

Mississippi (47,233) Pennsylvania (44,888) Louisiana (44,521) Tennessee (41,155) Ohio (41.004) Virginia (39,704) Kentucky (39,669) Indiana (35,932) Maine (30.995) South Carolina (30,203) West Virginia (24,119) Maryland (9,837) Vermont (9,273) New Hampshire (8,993) Massachusetts (7,824) New Jersey (7,468) Hawaii (6,425) Connecticut (4,872) Delaware (1,932) Rhode Island (1,055)

Largest American cities by population

01.043

Honolulu (805,265) Baltimore (763,570) San Francisco (712,755) Indianapolis (710,280) San Jose (686,180) Memphis (648,340) Washington (622,825) Milwaukee (620,810) Jacksonville (577,970) Boston (570,720) Columbus (566,115) New Orleans (559,100) Cleveland (546,545) Denver (504,590) Seattle (488,475) El Paso (463,810) Nashville-Davidson (462,450) Oklahoma City (443,170) Kansas City (443,075) St Louis (423,300) Atlanta (426,090) Fort Worth (414,560) Pittsburgh (402,585) Austin (397,000) Long Beach (378,750) Tulsa (374,535) Miami (372,635) Cincinnati (370,480) Baton Rouge (368,570) Portland (365,860) Tucson (365,420) Minneapolis (358,335) Oakland (351,900) Albuquerque (350,575) Toledo (343,940) Buffalo (338,980) Omaha (332,240) Charlotte (330,840) Newark (314,385) Vircinia Beach (308,665) DOLACDAM

Largest World cities by population

01.044

New York (7,086,000) Sao Paulo (7,033,500) London (6,756,000) Chongqing (6,000,000) Cairo (5,881,000) Teheran (5,734,200) Hong Kong (5,415,000) Delhi (5,277,700) Canton (5,200,000) Karachi (5,100,000) Rio de Janeiro (5,093,200) Leningrad (4,800,000) Shenyang (4,800,000) Bangkok (4,700,000) Bogota (4,483,000) Wuhan (4,400,000) Madras (4,276,600) Santiago (4,271,500) Lima (4,164,600) Baghdad (3,800,000) Dhaka (3,500,000) Ho Chih Minh City (3,500,000) Pusan (3,395,000) Sydney (3,310,000) Madrid (3,271,800) Kinshasa (3,000,000) Nanjing (3,000,000) Chicago (2,997,200) Berlin (2,995,000) Bangalore (2,913,500) Buenos Aires (2,908,000)
Yokohama (2,900,000)
Melbourne (2,836,800)
Rome (2,800,000)
Istanbul (2,772,700)
Alexandria (2,708,000)
Caracas (2,700,000)
Osaka (2,600,000)
Manchester (2,594,000)
Ahmedabad (2,515,200)

Mileages of American cities

. 6	90	2	ch.	11	3	4	CO	9
Atlanta 11	0 725	820	2260	665	510	880	2595	650
Baltimore 670 4	0 690	1435	2720	1140	1150	185	2870	40
Birmingham 155 11	680	665	2085	780	355	985	2425	755
Boston 1100	990	1805	3085	1565	1550	210	3190	435
Buffalo 955 4	530	1395	2640	1485	1245	360	2740	380
Chicago 725 9	10	960	2120	1400	945	845	2195	705
Cleveland 700 6	345	1210	2415	1335	1075	475	2550	365
Dallas 820 18	960		1425	1370	505	1625	1785	1400
Detroit 730 7	00 275	1180	2400	1380	1070	650	2475	525
El Paso 1455 24	0 1530	625	805	2005	1115	2205	1210	2045
Houston 840 18	1100	245	1545	1220	360	1655	1950	1430
Indianapolis 550 9	5 190	900	2150	1220	825	720	2325	565
Kansas City 815 14	20 510	495	1610	1530	830	1205	1890	1050
Las Vegas 2025 27	1790	1240	285	2555	1745	2580	580	2440
Los Angeles 2260 30	35 2120	1425		2820	1920	2875	400	2725
Louisville 410 9	305	840	2175	1080	710	755	2430	600
Memphis 420 13	545	470	1835	1030	395	1130	2175	905
Miami 665 15	55 1400	1370	2820		875	1340	3160	1115
Milwaukee 805 10	90	1050	2175	1460	1000	935	2190	785
Nashville 250 11	5 460	680	2025	930	530	910	2400	685
New Orleans 510 15	945	505	1920	875		1340	2295	1115
New York 880 2	0 845	1625	2875	1340	1340		3020	230
Oklahoma City 905 16	55 840	210	1350	1555	680	1525	1690	1375
Philadelphia 790 3	00 770	1510	2795	1250	1225	90	2940	135
Phoenix 1875 26	55 1785	1020	385	2410	1520	2500	790	2340
Pittsburgh 710 5	75 470	1255	2510	1240	1080	365	2645	230
Reno 2475 29	0 1940	1690	475	3000	2195	2785	220	2640
San Francisco 2595 31	2195	1785	400	3160	2295	3020		2875
Santa Fe 1445 22	35 1315	640	860	2010	1140	2035	1200	1870
Washington 650 4	35 705	1400	2725	1115	1115	230	2875	

Mileages of Canadian cities

01.046

Callary Orion Hallar Honries Change Charles Only College Harring

		. *	•	-		*	6.	0	-/-	9
Calgary		183	3073	2176	2282	2202	2432	2142	659	832
Edmonton	183		3076	2179	2285	2205	2435	2145	842	835
Ft. William	1271	1274	1812	915	1021	941	1171	881	1929	439
Frederickton	2795	2798	280	895	513	639	379	854	3453	1963
Halifax	3073	3076		1173	791	917	657	1132	3731	2241
Hamilton	2176	2179	1173		382	289	532	41	2834	1344
London	2246	2249	1243	76	452	359	602	111	2904	1414
Moncton	2910	2913	163	1010	628	754	494	969	3568	2078
Montreal	2282	2285	791	382		126	150	341	2940	1450
North Bay	1972	1975	1147	250	356	230	504	216	2630	1140
Ottawa	2202	2205	917	289	126		274	248	2860	1370
Quebec	2432	2435	657	532	150	274		491	3090	1600
Regina	478	497	2596	1699	1805	1725	1955	1665	1136	355
St. John	2862	2865	262	962	580	706	446	921	3520	2030
Saskatoon	389	339	2737	1840	1946	1866	2096	1806	1048	496
Sault. Ste. Marie	1601	1632	1417	474	626	500	774	440	2201	797
Sherbrooke	2372	2375	774	472	90	216	134	431	3030	1540
Toronto	2142	2145	1132	41	341	248	491		2800	1310
Vancouver	659	842	3731	2834	2940	2860	3090	2800		1490
Victoria	702	885	3774	2877	2983	2903	3133	2843	66	1533
Windsor	1868	1910	1353	186	562	469	712	221	2423	1079
Winnipeg	832	835	2241	1344	1450	1370	1600	1310	1490	

IV	Mileages of World cities 01.047																
															- 092'9	HONDY ONAON	Illon
														6,124	9,228 7,349 11,524 5,760	ONAC Y DILOG	
													5,684	6,417 11,535	7,349	OHIO	
												5,125	3,943			29091	in the state of th
											6,423	4,820 10,768	5,047	1,307		Sulty's	8 4
										6,823	439		4,273	6,735	8,946	20	*
									4,662	3,597	4,242	7,179	1,474	4,650	7,019 3,310 11,682 6,714 6,899 10,279	THON MOS THE	non
								6,688	2,085	6,250 7,733	2,454	4,770	6,353	5,470 7,035	668'9	745	%
							1,542	890′9	2,451		2,579	6,296	6,326	5,470	6,714	SOJO	ON SITEM NO SON
						5,439	5,541	1,549	3,459	5,054	3,101	5,772	887	5,938	11,682	HODI	NA SON
					8,598	9,969 7,835	9,081	6,294 7,046 1,549 6,068 6,688	9,959	3,728	9,724	9,960	8,190	3,367	3,310	UINNE US	°>
				6,947	6,005		8,511	6,294	7,081	8,045	7,857	3,769	5,249	9,071	7,019	uno	\$
			5,134	4,503	574 4,462	8,701	9,722	3,131	7,794	2,964	7,371	8,257	3,843	4,188	7,677	100	, SON SON
	I	3,910	5,977	8,036	574	5,782	6,037	966	3,961	4,567	3,583	6,114	734	5,538	11,265	unot tedit united	604
	Berlin	Bombay	Cape Town	Darwin	London	Los Angeles	Mexico City	Moscow	New York	Peking	Quebec	Rio de Janeiro	Rome	Tokyo	Wellington 11,265 7,677	8	>

Distance of World cities from New York

World time zones 01.050

A Prime meridian – 0° longitude through Greenwich, England. Successive zones to the east of the

zones west of it are one hour behind GMT for every 15° interval Greenwich zone (centered on the prime meridian) are one hour in advance of Greenwich Mean Time, and successive

marked. B International Date Line – 180° longitude.

of longitude as

Johannesburg Los Angeles New York London Moscow

Places were standard time differs half an hour from adjacent zones, or which have not adopted a zone

02 PHYSICAL SCIENCES

Table of physical quantities and constants

QUANTITY	SYMBOL	SIUNIT	ABBREVIATION
Length	I, L, x	meter	m
Mass	M, m	kilogram	kg
Time	t, T	second	s
Temperature	t, Τ, θ	degree kelvin	К
Force	F	newton	N
Energy	O, q	joule	J
Pressure	Р, р	pascal	Pa
Electric charge	Q, q	coulomb	С
Electric current	l, i	ampere	А
Potential difference	V	volt	V
Electrical resistance	В	ohm	Ω
Magnetic field intensity	В	tesla	Т

ľ	CONSTANT	SYMBOL	SIVALUE
	Avogadro's number	N _A	$6.025 \times 10^{23} \mathrm{g \ mole^{-1}}$
	Planck's constant	6	6.625 × 10 ⁻³⁴ Js
II.	Free space velocity of light	С	3.00 × 10 ⁸ ms ⁻¹
ľ	Electron charge	е	1.602 × 10 ⁻¹⁹ C
ŀ	Electron rest mass	m _e	9.11×10^{-31} kg
	Specific electron charge	e/m	1.760 × 10 ¹¹ Ckg ⁻¹
	Atomic mass unit	amu	1.660×10^{-27} kg
	Proton rest mass	m _p	1.6724×10^{-27} kg
	Neutron rest mass	m _n	1.6733 × 10 ⁻²⁷ kg
	Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \text{Jm}^{-2} \text{K}^{-4} \text{s}^{-1}$
	Universal gas constant	R	8.31JK ⁻¹ g mole ⁻¹
	Universal gravitation constant	G	6.673 × 10 ⁻¹¹ Nm ² kg ⁻²
	Boltzmann constant	k	1.381 × 10 ⁻²³ JK ⁻¹

Motion in a straight line

02.002

1a Uniform motion

1b Non-uniform motion

2a, 2b Motion at constant speed – acceleration zero
3a, 3b, 3c Motion with constant acceleration

4a Falling object in air 4b A bouncing ball

Atoms and molecules

02.003

charged (+1.6 × 10⁻¹⁸C); mass = 1.6726 × 10⁻¹⁹C); mass = 1.6726 × 10⁻⁷kg. The number of protons (atomic number, Z) determines the identity of an element.

1b The neutron – electrically neutral;

mass = 1.6748 × 10⁻²⁷kg. The number of protons + neutrons = A, the mass number. 1c The electron -

negatively charged (-1.6 × 10⁻¹⁹kg). 2a Hydrogen atom - 1

proton, 1 electron. 2b Isotope of hydrogen (deuterium) – 1 proton, 1 neutron, 1 electron – about 0.1% of hydrogen is deuterium.

3 Carbon atom – 6 protons, 6 neutrons, 6 electrons.

4 Uranium atoms – 92 protons, 92 electrons. 99.28% have 146 neutrons; other isotopes have 142 or 143 neutrons.

143 neutrons. 5 Molecules

5a Water - 3 atoms 5b Aspirin - 21 atoms

5c Glucose – 24 atoms 5d Rubber – 65,000 atoms

Crystal structures

02.004

1 Crystal systems 1a Cubic 1b Hexagonal

1c Trigonal 1d Tetragonal 1e Orthorhombic

1f Monoclinic 1g Triclinic

2 Crystal bonds

2a Covalent bond – sodium chloride
2b lonic bond – sodium chloride
3 Water crystals, e.g. snowflakes. All based on hexagonal shapes.

The Periodic table

NOBLE GASES VIIIA

¥e 2 9 # ¥ 36 7 X 52 86 Pa VIIA **□ □** 8 % - 23 85 At 6 14 ΑN 34 Se 25 **Le** 84 Po . O ဗ လ NONMETALS 33 As Sp 8 ~ 2 5 0 88 **29** Ν ⊼ <u>'2</u> 32 Ge Su 82 Pb ں ہ ¥ 13 A Eg 3 49 ≅ <u>≔</u> 20 9 30 Cd 48 8 F 29 Cn 47 Ag A 79 ₩ 46 Pd ₽ % **Z** 38 -∭B 200 42 1 TRANSITION ELEMENTS 26 Fe 44 Bu 36 0s METALS Z5 Mn VIIB 43 75 Re Ν 42 **№** \$ 3 ت 🌣 ΛB ₽ € 2 P 23 ΝB Z **Ξ** 40 7 ⁷² ₩ E B 21 Sc ₹ > Mg Mg ¥ Be 20 Ca <u>چ</u> 8 a m m - = ∾ := = E 37 **Pb** 55 87 F € ×

	02.005	
71 Lu	103 Lr	= 12.0000
70 Yb	102 No	Carbon 12
69 Tm	Md	Based on Carbon 12 = 12.0000
68 Er	100 Fm	
67 Ho	99 Es	
66 Dy	98 Cf	
65 Tb	97 BK	
64 Gd	og Cm	
63 Eu	95 Am	
Sm	Pu Pu	
Pm	93 P	
PN 09	92	
59 Pr	P a	ies
S8 Ce	유	89–103 Actinide series
57 La	89 Ac	89-103 A
	b b	
<u>6</u> 70	Atomic numbe	
	58 59 60 61 62 63 64 65 66 67 68 69 70 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb	Atomic number

@DIAGRAM

Atomic elements

ELEMENT	SYMBOL	ATOMIC NUMBER	WEIGHT	ELEMENT	SYMBOL	ATOMIC NUMBER	WEIGHT
Hydrogen	Н	1	1.0079	Samarium	Sm	62	150.4
Helium	He	2	4.00260	Europium	Eu	63	151.96
Lithium	Li	3	6.941	Gadolinium	Gd	64	157.25
Beryllium	Be	4	9.01218	Terbium	Tb	65	158.9254
Boron	В	5	10.81	Dysprosium	Dy	66	162.50
Carbon	C	6	12.011	Holmium	HÉ	67	164.9304
Nitrogen	N	7	14.0067	Erbium	Er	68	167.26
Oxygen	0	8	15.9994	Thulium	Tm	69	168.9342
Fluorine	F	9	18.998403	Ytterbium	Yb	70	173.04
Neon	Ne	10	20.179	Lutetium	Lu	71	174.967
Sodium	Na	11	22.9898	Hafnium	Hf	72	178.49
Magnesium	Mg	12	24.305	Tantalum	Ta	73	180.9479
Aluminium	Al	13	26.98154	Tungsten	W	74	183.85
Silicon	Si	14	28.0855	Rhenium	Re	75	186.2
Phosphorus	P	15	30.97376	Osmium	Os	76	190.2
Sulfur	S	16	32.06	Iridium	Ir	77	192.22
Chlorine	CI	17	35.453	Platinum	Pt	78	195.09
Argon	Ar	18	39.948	Gold	Au	79	196.9665
Potassium	K	19	39.0983	Mercury	Hg	80	200.59
Calcium	Ca	20	40.08	Thallium	TI	81	204.37
Scandium	Sc	21	44.9559	Lead	Pb	82	207.2
Titanium	Ti	22	47.90	Bismuth	Bi	83	208.9808
Vanadium	V	23	50.9415	Polonium	Po	84	208.98244*
Chromium	Cr	24	51.996	Astatine	At	85	209.98704*
Manganese	Mn	25	54.9380	Radon	Rn	86	222*
Iron	Fe	26	55.847	Francium	Fr	87	223.01976*
Cobalt	Co	27	58.9332	Radium	Ra	88	226.0254*
Nickel	Ni	28	58.71	Actinium	Ac	89	227.02779*
Copper	Cu	29	63.546	Thorium	Th	90	232.0381
Zinc	Zn	30	65.38	Protactinium	Pa	91	231.0359*
Gallium	Ga	31	69.737	Uranium	U	92	238.029
Germanium	Ge	32	72.59	Neptunium	Np	93	237.0482*
Arsenic	As	33	74.9216	Plutonium	Pu	94	244.06424*
Selenium	Se	34	78.96	Americium	Am	95	243.06139*
Bromine	Br	35	79.904	Curium	Cm	96	247.07038*
Krypton	Kr	36	83.80	Berkelium	Bk Cf	97	247.07032*
Rubidium	Rb	37	85.4678	Californium	Es .	98	251.07961*
Strontium	Sr Y	38	87.62	Einsteinium		99	254.08805*
Yttrium		39	88.9059	Fermium	Fm	100	257.09515*
Zirconium	Zr	40	91.22	Mendelevium	Mv	101	258*
Niobium	Nb	41	92.9064	Nobelium	No	102	255.093*
Molybdenum Technetium	Mo	42	95.94	Lawrencium	Lw	103	258.099*
Ruthenium	Tc	43	96.9062*				
Rhodium	Ru Rh	44	101.07				
Palladium	Pd	45	102.9055				
Silver		46	106.4				
Cadmium	Ag Cd	47 48	107.868				
Indium	In	48 49	112.41				
Tin	Sn	49 50	114.82 118.69				
Antimony	Sh	51	121.75				
Tellurium	Te	52	127.60				
lodine		52					
Xenon	Į.		126.9045				
	Xe	54	131.30				
Cesium Barium	Cs	55	132.9054				
	Ba	56	137.33				
Lanthanum	La	57	138.9055				
Cerium	Ce	58	140.12				
Praseodymium	Pr	59	140.9077				
Neodymium	Nd	60	144.24				
Promethium	Pm	61	144 91279*	I*atomic weight	of the jector	e with the longest kr	nown half-life

Air and water

02.007

1a average young man Water content of human body

An average adult needs 1b middle-aged woman 50% 21/2 quarts of water a 3 Percentages of gases in

clean dry air

A Nitrogen 78%
B Oxygen 20.8%
C Argon 0.9%
D Carbon dioxide C
E Other gases 0.27

(helium, neon, krypton, xenon, hydrogen) 4 Gases breathed in and Carbon dioxide 0.03% Other gases 0.27% ont

b Nitrogen 780 cu.cm in a Oxygen 208 cu.cm in 170 cu.cm out

cu.cm in 38.3 cu.cm out d Other gases 11.7 cu.cm in 11.7 cu.cm out 5 Water content of some Carbon dioxide 0.3 780 cu.cm out

Sugar 0% Salt 0% Butter 9% spool

Bread 42% Chicken 55% Cheese 26% Ham 38%

Tomatoes 94% Cucumber 95% Lettuce 97% Eggs 74% Beef 70%

@DIAGRAM

Atmospheric pressure

¹ To show air has weight

¹a When air is pumped out of the rubber membrane,

¹b When air is pumped out of the can, it collapses 2 Air supports a column of mercury

²a A, B = mercury

C = vacuumh = 76 cm at sea level

²b, 2c h = 76 cm whatever diameter of tube is used or when tilted

³ How atmospheric pressure varies with height 1000mb = 76cm of mercury

Energy changes

02.009

Two ways of getting heat and light energy from the sun which can be used at night.

¹ A bicycle dynamo 2 Hydroelectricity

Heat transfer types

02.010

1a Heat travels along the poker by conduction.

1b A convector fire.

1c Heat is radiated by this fire.

2a Brass conducts heat away faster than wood so paper nearest to the wood chars first.

2b Move an unlighted match along the ends (A) of three heated metal rods (eg iron, copper, aluminum). It ignites first on copper. 3 Experiments with radiation

3a One side of a copper sheet is painted black (A) and heated

3b The painted side feels warmer when put near side of face. @DIAGRAM

Electromagnetic spectrum

waves A detail of the spectrum

02.011

@DIAGRAM

Lenses

02.012

- 1a Convex (converging) lens
 1b Concave (diverging) lens
 2 Other types of lens
 2a Plano-concave (diverging)
 2b Convexo-concave (diverging)
 2c Plano-convex (convexging)
 2d Concavo-convex (converging)

- Forming an image
 A real, inverted, magnified image
 A virtual, upright, magnified image (simple magnifying glass)

C = center of curvature

- F = principal focus
 I = image
 O = object

The eye

- 1 The human eye 1a Muscle 1b Lens

- 1c Iris 1d Pupil

- 1e Cornea 1f Aqueous humor
- 1g Suspensory ligaments 1h Vitreous humor 1i Retina
- 1j Blind spot
 - 1k Optic nerve 2 Short sight and

 - correction 2a Light from distant object is focused before the retina
 - 2b A negative (concave) lens corrects the focusing

- 3 Long sight and correction 3a Light from near object is focused beyond the retina
- 3b A positive (convex) lens corrects the focusing

Sound waves and music

- Sound from a tuning fork
 V = direction of travel of wave
 - m = direction of motion of molecules
 - C = compression R = rarefaction
- 2 Waves in a string
- 2a Fundamental wave length = twice the length of string
 2b First harmonic wave length = length of string
- 2c Second harmonic wave length = two-thirds the length of string
- 2d Third harmonic wave length = half the length of string
- 3 The equally tempered musical scale
- 3a Musical scales Numbers show the frequency between each of the
- 3b Staff notation and tonic sol-fa notation

Noises and decibel ratings

Radio and television waves

¹ Aerials 1a Simple dipole

¹b Improving aerial performance R = Reflector

D = Dipole DR = Directors

RW = Radio wave

² Transmission of radio waves

TA = Transmitting aerial LSW = Lost sky wave

SW = Sky wave

SPW = Space wave

GW = Ground wave

E = Earth

I = lonosphere SD = Skip distance

³ Frequency bands

Electric circuits: 1

- 1 Circuit symbols
- 1a Cell 1b Battery
- 1c Lamp 1d Wires joining
- 1e Resistor
- 1f Ammeter
- 1g Voltmeter 1h Variable resistor

- 2 Series and parallel 2a Resistors in series 2b Resistors in parallel

- 2c Lamps in parallel
- 3 Complete circuits 3a Measuring the current through a resistor and the voltage across it
- 3b Varying the current through a lamp

- 1 Use of fuses
- a Sub-station
- b Live c Neutral
- d Fuses
- e Cooker f Iron
- g Lamps

- 2 Safe wiring h Sub-station
- i Neutral
- j Live
- I House
- k Heating element
- 3 Faulty wiring A Unsafe no earths
- m Mains
- n Neutral
- o Live
- p Live wire damaged and touches kettle B Safe earthed. Fuses now blow

Electronic logic gates and truth tables

02.019

1a Al	ND g	ate	2a OI	Rgat	е
Α	В	F	A	B	F
0	0	0	0	0	0
1	0	0	1	0	- 1
0	1	0	0	1	- 1
1	1	1	1	1	- 1
1b N	AND	gate	2b N	OR g	ate
Α	В	F	A	В	F
0	0	1	0	0	- 1
1	0	1	1	0	0
0	1	1	0	1	0
1	1	Ω	- 1	4	0

3a NO	OT gate (inverter)
A	F
0	1
1	0
	om NAND gate om NOR gate

a E>	KCLU	ISIVE	OR gate	A, B = Inpu
Α	В	F		F = Output
0	0	0		
1	0	1		
0	1	1		
1	1	0		
b EX	XCLL	JSIVE	NOR gate	
Α	В	F		
Ω	Ω	1		

0 0 1

Electrostatics

- kinds of change A Like charges repel a Cotton thread
- b Polythene strip
 c Paper stirrup
 d Ends rubbed with cloth
- B Unlike charges attract e Polythene rod
- g Ends rubbed with cloth 2 Gold leaf electroscope
- h Wooden box i Metal cap
- j Perspex plug k Metal plate
- 1 Gold leaf m Glass window
- - electroscope positively
 - n Charged polythene rod o Gold leaf electroscope A Bring up charged rod
 - B Touch metal cap C Remove finger
 - D Remove rod
- A Two like charges
- B Two unlike charges C Two unlike charges:
- B larger than A

Magnetic fields

- 1 The magnetic field pattern of a bar magnet 2 When a current flows in the wire, the compass needle
- deflects
- 2a No current in wire 2b Current in wire
- 3 Demonstrating that a force is exerted on a currentcarrying wire
- 3a No current
- 3b Current

- 4 Showing magnetic field patterns round a straight wire and a coil
- 5 Demonstrating the corkscrew rule for finding the
- direction of a magnetic field

 6 Demonstrating the rule for finding the direction of the
- 7 Induced current
- 7a If the magnet is moved, a current is registered by G 7b If the current is changed in X, a current is registered

Radioactivity: 1

02.022

@DIAGRAM

1 Types of radiation
2 Range in air
3 Penetrating power a Gold foil
b Paper
c Aluminum sheet
d Lead sheet

@DIAGRAM

Radioactivity: 3

The uses of oil

The uses of coal

Polymers

02.027

1 Part of a molecule of poly(ethene)

a Hydrogen atoms b Carbon atoms

2 Part of a molecule of poly(phenylethene)

c Hydrogen atoms

d Carbon atoms

3 Production of polythene

e Ethylene gas, solvent and catalyst f Separator

g Filter h Precipitation tank i Alcohol

j Centrifuge

k Dryer I Polymer

Carbon

02.028

1 The structure of diamond diamond 2 The structure of graphite 3 The preparation of carbon dioxide a Dilute hydrochloric acid

b Marble chips
Casisum chloride to dry
to gase loss
d Wooden block
d Wooden plock
e Carbon dioxide
f Carbon of colde
f C

Sulfur

02.029

Solution is covered and left to crystallize Preparation of sulfur Dilute sulfuric acid Sodium sulfide Concentrated sulfuric

Sulfur dioxide Acid rain Sulfur dioxide

Solution is filtered

a Powdered sulfur b Warm water c Methylbenzene A Solution is filtered B Solution is covere Powdered sulfur methylbenzene

A Powered sulfur is

mixed with

© DIAGRAM

The preparation of different gases

02.030

Furne cupboard

Cardboard

permanganate

4 W

Hydrogen peroxide Manganese dioxide

a Hydrogen peroxid
b Manganese dioxid
c Oxygen
d Water
2 Carbon dioxide
e Dilute hydrogen

Marble chips

Cardboard

Chemical substances and formulae

COMMON	CHEMICAL	FORMULA	COMMON	CHEMICAL	FORMULA
Alum Ammonia water Aqua fortis Aqua regia Abestos Bastos Bastos Barania Barania Berrin Brin Brin Brin Brin Brin Brin Brin	Potassium aluminum sulfate Ammonium hydroxide Murtic acid with Magnesium alicate Calcium whydroyal magnesium silicate Calcium wyskyhloride Calcium wyskyhloride Copper sulfate was sulfate where sulfate where sulfate where sulfate s	K,SO ₄ AA,SO ₄ J ₃ ·(H ₂ O) ₂ A HNO ₃ HNO ₃ HNO ₄ HNO ₃ HCI+HNO ₃ Mg ₂ Si ₂ O ₇ (H ₂ O) ₂ C ₂ O(2) ₃ C ₂ O(2) ₃ C ₂ O(2) ₃ C ₃ O(2) ₄ C ₃ O ₇ (H ₂ O) ₁ C ₃ O ₇ (H ₂ O) ₁ C ₃ O ₇ (H ₂ O) ₁ C ₃ O ₇ (H ₂ O) ₂ C ₄ O ₇ C ₄ O ₇ C ₅ O ₇ C ₆ O ₇ C ₇ O ₇ C ₇ O ₇ C ₇ O ₇ C ₈ O ₇	kaoin (alay) Lampladek Laughing gas Lumpladek Lime, quick Lime, quick Lime, slaked Limestone Limewater Marbie Marbie Morthbalis Salammoniac Salammoniac Salammoniac Salammoniac Salamder Salammoniac Salam	Iron disulfide Hydrogen aluminum silicate Carbon Nitrous oxide Carloum oxide Calcium oxide Calcium Mydroxide Calcium hydroxide Calcium hydroxide Calcium hydroxide Calcium rachonate Calcium rachonate Calcium rachonate Sulfrifa exid	FeS ₂ C C C C C C C C C C C C C C C C C C C

Melting and boiling points

02.032

1 Water 0/100°C

2 Sulfur 113/445°C

3 Potassium 64/774°C

5 Zinc 420/907°C

6 Magnesium 650/1110°C 7 Radium 700/1140°C 8 Lead 328/1740°C 9 Tin 232/2270°C

4 Sodium 98/883°C 13 Copper 1083/2566°C

11 Silver 962/2210°C

10 Aluminum 660/2452°C

12 Manganese 1244/1962°C

14 Silicon 1412/2355°C

15 Gold 1064/2900°C 16 Nickel 1452/2900°C

17 Iron 1536/3000°C 18 Platinum 1772/3825°C 19 Carbon 3550/4825°C 20 Tungsten 3410/5660°C © DIAGRAM

Oil production: derricks and rigs

- A Drilling derrick 1 Drilling line
- 2 Mud hose 3 Rotary table
- 4 Hydraulic blow-out preventer
- 5 Mud pit
- 6 Mud circulation pump 7 Drill pipe
- B Exploration rig 8 Rotary table

 - 9 Guide lines
 - 10 Flexible control tables 11 Marine riser

 - 12 Blow-out preventer
 - 13 Anchor 14 Drill pipe
 - 15 Cement

Oil production: directional drilling

02.034

A Platform B Wells C Oil field

D Storage tanks

E Pipeline
F Mooring point
G Loading point
H Oil tanker

Oil refining

Hydro-electric power production

02.036

High level reservoir Sluices Dam Control building

Alternative energy sources

02.039

1 Tidal
2 Wave
3 Solar
a photoelectric system
b water heating system
4 Wind

How solar energy is created

A The sun produces radiant energy which warms the

surface of the Earth.

B The air which is near the surface of the Earth is heated

by conduction.
C Warm air rises.
D Cold air sinks due to convection.

Celestial coordinates

02.041

A North celestial pole

B South celestial pole C Zenith

D Nadir

E Celestial equator F Ecliptic

G Celestial object
H Vernal equinox – first point of Aries

Autumnal equinox – first point of Libra
 Celestial longitude of G in degrees anticlockwise from H

K Right ascension of G in hours anticlockwise from H

Constellations of the northern sky

- 3 Leo
- 4 Cancer
- 5 Canes Venatici
- 6 Bootes
- 7 Canis Minor
- 8 Gemini
- 9 Ursa Major 10 Corona Borealis
- - 12 Auriga

 - 13 Ursa Minor
 - 14 Draco
 - 15 Hercules
 - 16 Ophiuchus
 - 17 Orion
 - 18 Taurus 19 Perseus
 - 20 Cassiopeia

- 25 Aries 26 Andromeda 27 Pisces
- 28 Pegasus

Constellations of the southern sky

- 1 Virgo 2 Corvus 3 Libra 4 Hydra

- 5 Centaurus 6 Ophiuchus
- 7 Scorpius 8 Crux
- 9 Vela 10 Monoceros

- 11 Triangulum Australe
- 12 Carina
- 13 Puppis 14 Canis Major
- 15 Sagittarius 16 Pavo
- 17 Columba 18 Orion
- 19 Dorado 20 Lepus

- 21 Tucana
- 22 Capricornus 23 Grus
- 24 Phoenix
- 25 Eridanus
- 26 Piscis Austrinus 27 Aquarius
- 28 Cetus

Relationship of planets to the Sun

02.044

A The distance of planets from the Sun B The inner planets C The size of the planets compared with the Sun

1 Sun
2 Mercury
3 Venus
4 Earth
5 Mars
6 Jupiter
7 Saturn

Moons and satellites of planets

02.045

Number of satellites orbiting the planets 1 Mars 2 Jupiter 3 Saturn 4 Uranus

- 5 Neptune
- 6 Pluto

- Larger satellites and smallest planets
 A Ganymede
 B Titan

- C Mercury D Callisto

- E lo F Europa
- G Pluto

Small satellites

- a Phobos shown to scale
- against Grenada
- b Deimos shown to scale against Kahoolawe
- (Hawaii)

Comparative sizes of stars to the Sun

02.046

Sirins B Sunard's Star Sunard's Star Sunard's Star Higel Rigel Rigel Bettelgeux White devart Yellow diant Red devart Yellow diant Red supergiant Hot Sun's 840,000 mil 1170h of Sun's 8

Eclipse of the Sun

02.047

cover the source of light from the Sun. Whereas that part of the Earth lying directly in the shadow of the Moon (d) experiences Sun (b) and the Earth (c) the disc of the Moon appears to 1 If the Moon (a) lies directly between the

the shadow of the Moon (e) experience a partial eclipse.

a total eclipse of the

2 Types of eclipse (f) Total – the corona of the Sun is visible to the naked eye.

(g) Partial - the disc of the Moon only the Sun, and occurs if partially obscures the source of light from (h) Annular - the disc of the Moon appears slightly smaller than the Moon is at its the Sun.

farthest point from the Earth which is itself at its nearest point to the

Eclipse of the Moon

02.048

B Earth
C Moon
C Umbra (inner
complete shado
E Penumbra (zone
partial shadow)

Phases of the Moon

02.049

@DIAGRAM

New Moon Waxing crescent Moon Half Moon, first

03 LIFE SCIENCES

Classification of living organisms

03.001

© DIAGRAM

Classification of Kingdom Monera

03.002

I Phylum Cyanophyta (blue-green algae, eg Mostoo) 2 Phylum Schizophyta (bacteria) bacteria shapes E Bacterial shapes Bacillus (rods, eg Bacillus anthracis)

Coccus (spheres, eg Streptococcus) Spirillum (spirals, eg 2a-c 2a 2b (

Classification of Kingdom Protista

03.003

1 Heterotrophic protists 1a Phylum Sarcodina (eg

Phylum Myxomycota 10

eg Chlamydomonas Phylum Rhodophyta Phylum Phaeophyta 20

Phylum Chrysophyta (eg Diatoms) 2d

© DIAGRAM

Classification of Kingdom Fungi

03.004

@DIAGRAM

Phylum Zygomycota (eg Rhizopus – bread mold

Phylum Basidiomycota

mushroom) Phylum Ascomycota (eg Saccharomyces-yeast)

Phylum Deuteromycota

Mycophycophyta (eg Penicillium) Phylum

(lichens – a mutualistic relationship between fungi and algae)

Classification of Kingdom Plantae

03.005

@DIAGRAM

5 Subphylum Pteropsic 5a Class Filicinae (ferns) 5b Class Gymnospermae 5c Class Angiospermae (flowering plants)

Numbers of plant species

03.006

Flowering plants (Class Angiospermae) 250,000 species
 Liverworts (Class Hepaticae) 9,000 species
 Mosses (Class Musc) 14,000 species
 Ferns (Class Fliiclinae) 12,000 species
 Ginkgoes, cycads, and confirers (Class Gymnospermae) 700 species

Some families of flowering plants

03.007

@DIAGRAM

11 Monococy Medons
12 Inforence (eg utip)
16 Carmierae (eg wheat)
16 Carmierae (eg wheat)
16 Carmierae (eg adex-in16 Certificaesae (eg adex-in16 Certificaesae (eg ochid)
28 Rantuculaesae (eg adex-in28 Restucesae (eg adex-in28 Battuecup)
28 Battuecae (eg adex-in29 Battuecup)
28 Battuecae (eg adex-in29 Battuecup)
29 Battuecae (eg adex-in20 Ba

Classification of invertebrates

03.008

(spronger)

Phylum Coelenterata (eg hydra)

Phylum Coelenterata (eg hydra)

Phylum Platyhelminthes (eg hydra)

Phylum Nematoda (eg hydra)

Phylum Annelida (eg earthworn)

Phylum Annelida (eg arathworn)

Phylum Annelida (eg garashopper)

Phylum Annelida (eg garashopper)

Phylum Echinodermata

Phylum Echinodermata

Phylum Porifera

Classification of chordates

03.009

1 Subphylum Acrania
1a Class Urochordata (sea squirts)
1b Class Cephalochordata (lancelets)
2 Subphylum Craniata (vertebrates)

28 Class Agnatha (lampreys and hagfishes)
2b Class Chondrichthyes (cartilaginous fishes)
2c Class Osteichthyes (bony fishes)

2d Class Amphibia 2e Class Reptilia

2f Class Aves (birds) 2g Class Mammalia

Numbers of animal species

03.010

Insects (800,000+)
 Sponges and coelenterates (17,000)
 Sponges and coelenterates (17,000)
 Sponges and coelenterates (17,000)
 (25,000)
 Mollusks (85,000)
 Schioderms (5,000)
 Vertebrates (50,000)
 Other arthropods (80,000)

© DIAGRAM

Representative orders of Class Insecta

- 1 Subclass Apterygota (wingless insects)

 1a Order Thysanura
- (silverfish) 1b Order Collembola (springtails)
- 2 Subclass Pterygota
- (winged insects) 3 Exopterygote orders (show incomplete
- metamorphosis) 3a Ephemeroptera
- (mayflies) 3b Odonata (dragonflies)
- 3c Dermaptera (earwigs) 3d Isoptera (termites)
- 3e Orthoptera (grasshoppers) 3f Mallophaga (biting lice)
 - 3g Anoplura (sucking lice) 3h Hemiptera (true bugs) 4 Endopterygote orders (show complete
 - metamorphosis) 4a Neuroptera (lacewings)
- 4b Diptera (flies)
- 4c Siphonaptera (fleas) 4d Lepidoptera
- (butterflies)
- 4e Coleoptera (beetles) 4f Hymenoptera (bees, ants)

DDIAGRAM

Classification of fish

03.012

1 Class Agnatha (lampreys and hagfishes – jawless

(cartilaginous fish)
2a Order Selachii (sharks, 2 Class Chondrichthyes

2b Order Bradyodonti

Crossopterygii (fleshy-(chimaera)
3 Class Osteichthyes
(bony fish) Order Coelacanthini Subclass 49 Order Dipnoi (lung fish) Subclass Actinopterygii (ray-finned) 4p 50

5a Order Acipenseroidei

(sturgeon) 5b Order Teleostei (perch,

Classification of amphibia

03.013

Subclass Apoda (legless amphibians)
 Subclass Urodela (tailed amphibians – salamander,

mudpuppy)
3 Subclass Anura (tailless amphibians – frog, toad)

Classification of reptiles

03.014

Reptile orders
1 Crocodilia (crocodiles and alligators)
2 Chelonia (turtles and

Bird orders

- 1 Struthioniformes
 - (ostriches)
- 2 Rheiformes (rheas)
- 3 Casuariiformes (cassowaries)
- 4 Apterygiformes (kiwis)
- 5 Gaviiformes (loons) 6 Podicipediformes (grebes)
- 7 Sphenisciformes
 - (penguins) 8 Procellariformes
 - (albatross, petrels) 9 Pelecaniformes (cormorants, pelicans,
 - gannets)
 10 Ciconiiformes (storks,
 - herons) 11 Anseriformes (ducks)
- 12 Falconiformes (hawks)
- 13 Galliformes (game birds) 14 Gruiformes (rails, cranes) 15 Charadriiformes (gulls,
- waders) 16 Pteroclidiformes (sand
 - grouse) 17 Columbiformes (pigeons)
 - 18 Psittaciformes (parrots) 19 Cuculiformes (cuckoos)
- 20 Strigiformes (owls) 21 Caprimulgiformes (nightjars)
- 22 Apodiformes (swifts)
- 23 Coliiformes (mousebirds)
- 24 Trogoniformes (trogons)
- 25 Coraciiformes (kingfishers) 26 Piciformes (woodpeckers)
- 27 Passeriformes

(thrushes, sparrows)

- 1 Subclass Prototheria (monotremes) 2 Subclass Theria
- 3 Infraclass Metatheria
- (marsupials) 4 Infraclass Eutheria
- (placentals)
 4a-4p Eutherian orders
- 4a Chiroptera (bats) 4b Edentata (sloths, armadillos, anteaters)
- anteaters)
 4c Insectivora (moles, shrews)
- 4d Pholidota (pangolins) 4e Primates (monkeys, apes)
- 4f Rodentia (rats, mice) 4g Lagomorpha
 - (rabbits, hares)
 4h Cetacea (dolphins, whales)
 - whales)
 4i Carnivora (cats, wolves)
 4j Tubulidentata
 - (aardvarks) 4k Hyracoidea (hyrax)
- 4l Proboscidea (elephants)
- 4m Sirenia (sea cows)
 4n Perissodactyla
 (tapirs, horses,
 rhinos)
- 4o Artiodactyla (pigs, cattle, camels)
- cattle, camels)
 4p Dermoptera (flying lemurs)

Characteristics of plants

03.017

ıldıd	cteristics of pre				03.017
НАВІТАТ	Moist areas on land	Moist areas on land	Moist areas on land	Land	Land
STRUCTURE	Multicellular; no true roots, stems or leaves	Mutticellular; true roots, stems and leaves	Multicellular; true roots, stems and leaves, develop from rhizome	Multicellular; true roots, stems and leaves	Multicellular; true roots, stems and leaves
VASCULAR TISSUE	Absent	Present	Present	Present	Present
EXTERNAL APPEARANCE	En-months Con-months				
COMMON	1 Mosses/Liverworts	2a Club mosses/ Horsetails	2b Ferns	2c Conifers	2d Flowering plants (Monocots and dicots)

@DIAGRAM

1 Phylum Bryophyta 22 Phylum Trachephyta 24 Subphyla Lycopsida and Sphenosida 25 Subphylum Preropsida Class Gymnospermae 26 Subphylum Preropsida Class Gymnospermae 21 Subphylum Preropsida Glass Gymnospermae

Characteristics of invertebrates

03.018

										,	33.010
Mollusks		Muscles	Bilateral	Two	Three	Present	Present	Present	Present	Present	Hard outer shell
Segmented worms		Muscles	Bilateral	Two	Three	Present	Present	Present	Present	None	None
Roundworms	1	Muscles	Bilateral	Two	Three	Present	Present	Present	None	None	None
Flatworms	E	Muscles; cilia	Bilateral	One	Three	Present	Present	Present	None	None	None
Coelenterates		Mostly sessile; free floating	Radial	One	Two	Present	Present	None	None	None	None
Sponges	200	None	None or radial	One	Two	None	None	None	None	None	Spicules, no true system
COMMON NAME	1 FF (F) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	LOCOMOTION	SYMMETRY	NUMBER OF BODY OPENINGS	NUMBER OF CELL LAYERS	NERVOUS SYSTEM	DIGESTIVE SYSTEM	EXCRETORY SYSTEM	CIRCULATORY SYSTEM	RESPIRATORY SYSTEM	SYSTEM
9	0										

@DIAGRAM

Porifera Coelenterata Platyhelmint Nematoda Annelida

Characteristics of arthropods

030.19

GAS EXCHANGE	Tracheae	Tracheae	SIIIS	Tracheae	Tracheae; book lungs
NUMBER OF WALKING LEGS	1 pair per segment	2 pairs per segment	5 pairs in most forms	3 pairs	4 pairs
MOUTHPARTS	Mandibles	Mandibles	Mandibles	Mandibles	Chelicerae
ANTENNAE	1 pair	1 pair	2 pairs	1 pair	None
BODY	Head and body segments	Head and body segments	Cephalothorax and abdomen	Head, thorax and abdomen	and abdomen
EXTERNAL		2			
CLASS	Chilopoda	Diplopoda	Crustacea	Insecta	Arachnida

1 Centipedes
2 Milipedes
3 Crabs, lobsters, water fleas
4 Grasshoppers, butterflies, fleas
5 Scorpions, ticks, spiders

Characteristics of vertebrates

03.020

INTEGUMENT BODY LIMB TEMPERATURE STRUCTURE	Slimy skin Ectotherm No paired imbs	Scales Ectotherm 2 pairs of fins	Scales and Ectotherm 2 pairs of slimy skin fins	Slimy skin Ectotherm 2 pairs of legs, in most forms no claws	Dry, scaly Ectotherm 2 pairs of legs, claws	Feathers, Endotherm 1 pair of scales on legs of legs, claws of legs, claws	Hair Endotherm 2 pairs of legs, claws in most forms
EXTERNAL APPEARANCE							
CLASS	1 Agnatha	2 Chondrichthyes	3 Osteichthyes	4 Amphibia	5 Reptilia	6 Aves	7 Mammalia

@DIAGRAM

Life processes

03.021

А	TA SA	
В	CO ₂ CO ₂ CO ₂ CO ₂ CO ₂	
С	0 ₂ CO ₂ CO ₂ CO ₂	0, 00, 00,
D		
E		
F		
G	William Herrich	

A Movement
B Feeding
C Respiration
D Reproduction
E Growth
F Excretion
G Sensitivity

Asexual and sexual reproduction

03.022

	ASEXUAL	SEXUAL
Α		None
В	A)	(°.)(°.)
С	7	**
D	None	
E		

A Ameba B Paramecium C Hydra D Frog E Flowering plant

Ova and spermatozoa

03.023

A-D Ovum diameter
A Rati O'77mm
B Human 0.15mm
C Frog 3mm
E-H Spermatozoa length
F Frog 100µm
F Frog 100µm
R Art 189µm
H Rat 189µm

Metamorphosis: 1 Insects (complete)

03.024

Metamorphosis in the butterfly
A Adults (imagos) live for 3 weeks feeding on nectar. of attracted to ♀, copulates; eggs laid on leaves.

B Eggs (hatch after 1 week)

C-F Larval stages. Egg hatches to produce larva (caterpillar) which feeds on vegetation. Molts four times (ecdysis); then becomes pupa (4 weeks after hatching).

G Pupa (chrysalis). Cells reorganize to form adult and pupa splits open (7 weeks after hatching).
 H Pupal cuticle splits and adult emerges.

Metamorphosis: 2 Insects (incomplete)

03.025

Metamorphosis in the locust

A Mating and egg laying. Fertilized eggs are buried in damp

Eggs remain in sand for 2 weeks, then C Egg (6mm)
D-H Hopper stages
D 1st instar (9mm) molts after 5 days

E 2nd instar (12mm molts after 4 days

3rd instar (19mm molts after 4 days

molts after 8 days Adult (imago) (50mm) can fly and is sexually molts after 5 days 4th instar (23mm) H 5th instar (32mm)

Metamorphosis: 3 Amphibians

03.026

Metamorphosis in the frog

- A Adult frogs copulating
 B Egg albumen swells in water (20 minutes)
 C Mouthless larva with external gills attached to weed (2 days)
- D Herbivorous with internal gills (3 weeks)
 E Hind legs fully formed (8 weeks)
- F Metamorphosing larva, carnivorous, large eyes and
- mouth (12 weeks) G Frog ready to go on land (15 weeks)

Body systems

A Respiratory (breathing)
B Digestive
C Transport (circulatory)
D Locomotory (movement)
E Nervous

F Endocrine (hormonal)
G Excretory
H Reproductive

Digestive system in humans

A Parts of the digestive system A Salvavy glands A Salvavy glands A Salvavy glands B Mouth and teeth C Ecophagus C Stoneth C S

03.028

" indicates a molecule small enough to be absorbed

					1		I			1		1	1		
PRODUCTS OF ACTION	Maltose			Pepsin	Polypeptides	Small fat droplets	Maltose	Fatty acids * and glycerol	Polypeptides	Maltose	Amino acids *	Monosaccharides *	Fatty acids * and glycerol		
SUBSTANCE ACTED ON	Starch			Pepsinogen	Proteins	Large fat droplets	Starch	Fats	Proteins	Starch	Polypeptides	Disaccharides	Fats		
SECRETION	-			2	3	7	5	9	7	8	6	10	11		_
FUNCTION	Saliva secretion	Mechanical digestion	Carry food to stomach	Food storage and	protein breakdown	Bile production and transport		Pancreatic juice production			Digestion and	absorption		Absorption of water and salts	Egestion of feces
PART	A	В	O	٥	٥	ш		ш			C	ס		Ŧ	_

© DIAGRAM

Fudersine system in humans

03 029

ndo	crin	e sy	ster	n in	hun	nans	S												-03	3.029
FUNCTION	Controls growth	Stimulates thyroid gland	Stimulates adrenal cortex hormone formation	Stimulates mammary glands to produce milk	Stimulates ovaries $(\c Q)$ and testes $(\c G')$	Stimulates melanin production in skin	Causes contraction of uterus during birth	Controls water reabsorption by kidney	Causes calcium to be released from bones	Controls metabolic rate	Causes calcium to be deposited in bones	Related to T-cell and antibody formation	Stimulates formation of carbohydrates from protein	Regulates salt levels	Prepares body for 'flight or fight'	Maintains high blood pressure and vasodilation	Reduces blood glucose level	Increases blood glucose level	Secondary sexual features and menstrual cycle	Secondary sexual features and sperm formation
HORMONE	-	2	8	7	22	9	7	00	6	10	11	12	13,14	15	16	17	18	19	20,21	22
GLAND			∢			В		ပ	0	L	Ш	ш		9		I	-	_	×	
			A,B,C					E											<u></u>)

@DIAGRAM

Hormones
1 Growth
2 Thyroid-stimulating
(TSH)
3 Adrenal cortex
stimulating (ACTH)

4 Prioteinin 4 Pri

Respiratory systems in animals

Transport systems

A Crustacean (water flea) B Insect (grasshopper) C Annelid (earthworm) D Mammal (human)

¹ Gut

² Heart 3 Blood space

⁴ Hearts 5 Main blood vessel 6 Peripheral vessels

Nitrogenous excretion

03.032

ENVIRONMENT	ORGANISM	MAJOR NITROGENOUS EXCRETORY PRODUCT						
		AMMONIA	UREA	URIC ACID				
А	1 (2)							
	2							
	3							
20 en	4							
	5							
	6							
B John Marin	7							
<u> </u>	8							
C	9							
	10							
- The second of	11							
, ,	12 A							
	Decreasing toxicity—							

A Aquatic
B Aquatic changing to terrestrial
C Terrestrial

1 Ameba 2 Hydra 3 Planaria 4 Aquatic insect 5 Squid

6 Freshwater fish

7 Freshwater fish 7 Frog (tadpole) 8 Frog (adult) 9 Terrestrial insect 10 Python 11 Bird 12 Mammal (human)

Seeing systems

03.033

Light detection systems in four organisms

- A Euglena (pigment spot)

 B Honey bee (compound eye)

 C Octopus (eye)

 D Human (eye)

- 1 Pigment spot (light sensitive)
- 2 Lens 3 Light sensitive cells 4 Sensory nerve fibers

- 5 Section through compound eye
 6 Section through octopus eye
 7 Retina (light sensitive cells)
 8 Section through human eye

Messenger RNA codons

03.034

Г		ngoi								-								03.03
	Cont	LETTER	n	υ	٨	G	n	U	A	9	ס	O	A	9	n	C	٨	D G
		Ð	Cysteine	Cysteine	Stop	Tryptophan	Arginine	Arginine	Arginine	Arginine	Serine	Serine	Arginine	Arginine	Glycine	Glycine	Glycine	Glycine
	LETTER	٨	Tyrosine	Tyrosine	Stop	Stop	Histidine	Histidine	Glutamine	Glutamine	Asparagine	Asparagine	Lysine	Lysine	Asparticacid	Aspartic acid	Glutamic acid	Glutamic acid
	SECOND LETTER	υ	Serine	Serine	Serine	Serine	Proline	Proline	Proline	Proline	Threonine	Threonine	Threonine	Threonine	Alanine	Alanine	Alanine	Alanine
		Э	Phenytalanine	Phenylalanine	Leucine	Leucine	Leucine	Leucine	Leucine	Leucine	Isoleucine	Isoleucine	Isolecuine	Start-Methionine	Valine	Valine	Valine	Valine
	TETTER U						(,				(9				

@DIAGRAM

Α	н	В	СН	C CH,-C	CH,	D c	CH, CH,
H ₂ N-	С-С-ОН Н О	H ₂ N-	Н 0 С—С—ОН	CH ₂	CH ₂ CH-C-OH O	H ₂ N	-С-С-ОН Н О
E	ОН	F	СН³	G O	OH	Н	NH ₂
H ₂ N-	CH ₂ -C-C-OH - II H O	H ₂ N-	С-ОН С-С-ОН Н О	H ₂ N-	СН <u>,</u> С-С-ОН Н 0	H ₂ N	CH ₂ -C-C-OH H 0
I		J (1		K	ÇH₃	L	CH ₃ S
	SH CH ₂		H ₃ CH ₃ CH CH ₂	H-	ĊH₂ ·Ċ─CH₃		CH ₂
H ₂ N-	С-С-ОН Н Ö	H ₂ N-	С-С-ОН Н О	H ₂ N-	С-С-ОН Н О	H ₂ N	-С-С-ОН Н 0
M Ó	CH CH	N O	NH ₂ C	0 (P	ОН
H N-	CH ₂ CH ₂		CH,	H N	CH2	SEC NO	CH2
	C-C-OH H O	2	С-С-ОН Н О	2	НО	2	-C-C-OH
Q	NH ₂ C=NH NH CH ₂		H-NH ₂ CH ₂	S	NH	Т	HC-N CH
H ₂ N-	CH2 CH2 C-C-OH		CH ₂ CH ₂ C-C-OH	H ₂ N-	C=CH CH ₂ -C-C-OH	H ₂ N	C-NH CH ₂ -C-C-OH
L	H_O;	L	H_O	L	н о	Ĺ	H O

A Glycine (gly) B Alanine (ala)

C Proline (pro)

D Valine (val)

E Serine (ser)
F Threonine (thr)
G Aspartic acid (asp)

H Asparagine (asn)

¹ Cysteine (cys) J Leucine (leu)

K Isoleucine (ile) L Methionine (met)
M Glutamic acid (glu)
N Glutamine (gln)

O Phenylalanine (phe)

Prenylalanine (pr P Tyrosine (tyr) Q Arginine (arg) R Lysine (lys) S Tryptophan (trp) T Histidine (his)

Food energy value

- Energy values per gram A Butter (7.44 Cals; 31.26 kJ) B Cheese (4.23 Cals; 17.78 kJ) C Honey (3.25 Cals; 13.0 kJ) D Bread (2.77 Cals; 11.1 kJ) E Meat (1.77 Cals; 7.43 kJ)
- F Egg (1.62 Cals; 6.81 kJ) G Chicken (0.89 Cals; 3.72 kJ) H Potato (0.79 Cals; 3.33 kJ)
- 1 Cod (0.72 Cals; 2.9 kJ)
- J Milk (0.67 Cals; 2.82 kJ) K Apple (0.47 Cals; 1.96 kJ)

Energy needs

A Woman (light work) 9450 kJ; 2250 Cal B Girl (15 years old) 9600 kJ; 2285 Cal C Woman (pregnant) 10000 kJ; 2380 Cal D Woman (moderate 10500 kJ; 2500 Cal E Woman (breast 03.037

18500 kJ; 4400 Cal work) 20000 kJ; 4800 Cal

work)

I Man (fairly heavy

(eeding) work)

Energy conversions

03.038

A Light energy
B Chemical energy
(Light energy is converted by plants into chemical
energy. This stored energy is consumed when plants
and their derivatives are eath. Respiration 'unlocks'
this 'trapped' energy for use in C-B. Note that hat
energy is always a by-product of energy conversions.)

- C Heat energy
- D Kinetic (movement) energy

- E Sound energy F Electrical energy
- G Light energy

Biogeographical regions

03.039

@DIAGRAM

Terrestrial biomes

03.040

@DIAGRAM

C Deciduous forest and scrub D Grassland

A Arctic tundra and mountain B Coniferous forest

Effect of temperature and rainfall on vegetation

03.041

A Arctic tundra and mountain B Conferous forest C Decidous forest and scrub D Grassland

Altitude, latitude and ecosystems

03.042

a Tropic-like b Temperate-like c Taiga-like d Tundra-like

Vegetation 1 Snow, ice e Polar-like

Mountain climatic

regions

Woodland food web

03.043

A Secondary
consumers
B Primary consum:
C Producers
D Decomposers

2 Screechowd 3 Weasel 4 Green tortrib 5 Caterpillar 6 Rabbit 7 Deer mouse 8 Red-backed 9 Oak leaf Marine biomes: 1

03.044

A Intertidal zone
B Continental shelf
C Continental slope
D Abyss
E Benthic zone (bottom)
F Pelagic zone (ocean water)
G Limit of light penetration

Marine hinmes: 2

03.045

Name of organism and approximate size

- 1 Sea horse (7 in)
- 4 Sole (12 in)
- 5 Halibut (3 ft)
- 6 Cod (2 ft 6 in) 7 By-the-wind-sailor (2 in) 16 Angler (11/2 in)
- 8 Basking shark (25 ft)
- 9 Mackerel (12 in) 10 Herring (9 in)
- 2 Common skate (6 ft wide)
 11 Portuguese man-of-war (10 in)
 20 Prawn (3 in)

 3 Common eel (2 ft 6 in)
 12 Flying fish (9 in)
 21 Devilfish (3 in)
 - 13 Sperm whale (50 ft) 14 Common dolphin (7 ft) 15 Blue shark (15 ft)
- 17 Short-finned tunny (8 ft)
- 18 Hatchet fish (4 in) 19 Rabbit fish (3 ft)
- 22 A stomiatoid fish (12 in) 23 Giant squid (40 ft)
- 24 Bat fish (5 in) 25 Squid (5 in)
- 26 Viper fish (12 in)
- 27 Cross-toothed perch (5 in) 28 Giant-tail (12 in)
- 29 Wonderlamp squid (5 in) 30 Big-headed rat-tail (12 in)
- 31 Prawn (22 in)
- 32 Oarfish (12 ft) 33 Pelican eel (18 in)
- 34 Angler fish (4 in)

Marine food web

- C Primary consumers
 D Producers
- E Decomposers
- 1 Sharks
- 2 Killer whales 3 Dolphins
- A Tertiary consumers B Secondary consumers
- 4 Giant squids 5 Large fish 6 Baleen whales

 - 7 Smaller fish
 - 8 Small crustaceans
 - 9 Dinoflagellates 10 Diatoms

 - 11 Scavengers

Freshwater food web

- A Producers (rooted vegetation)
 B Producers (phytoplankton)
 C Primary consumers (zooplankton)
 D Primary consumers (bottom dwellers)
 E Secondary consumers
 F Tertiary consumers
 Decomposers (hasteria and funcil)

- G Decomposers (bacteria and fungi)
 H Nutrients for recycling through producers

Evolution clock

	EVENT/ORGANISM	TIME OF APPEARANCE	MILLIONS OF YEARS AGO								
	Earth formed	00:00	4600								
	Life appeared	02:52	3500								
А	Protist	09:00	1150	4							
В	Plant	09:24	1000	\$11							
С	Crustacean	10:18	650	Entille							
D	Fish	10:40	510	-							
E	Land plant	10:50	400	The state of the s							
F	Insect	11:02	370	水							
G	Seed plant	11:05	350	*							
н	Amphibian	11:05	350	¥							
1	Dinosaur	11:28	205	A STATE OF THE PARTY OF THE PAR							
J	Mammal	11:30	190	-304-							
К	Bird	11:36	150	*							
L	Flowering plant	11:38	140								
М	Human	11:59:23	4	*							

Tree of life

03.049

Gaeologic time period
A Quaternary
B Terriary
C Cretaceous
D Quassic
F Trinssic
F Fermian
G Carboniferous
H Devonian
J Silurian
J Ordovician
K Cambrian
L Proterozoic

Organisms 1 Angiosperms 2 Gymnosperms

Hemichordates

Cephalochordates
Agnatha
Placoderms
Bony fish
Amphibians
Reptiles
Birds
Mammals 1 Angiosperma 3 Ferma 3 Ferma 5 Culchronasses 6 Culchronasses 6 Culchronasses 7 Expoply via 7 Expoply via 11 Spronges 12 Cheleinterieses 13 Foreistes 14 Fallworms 15 Cheleinterieses 16 Cheleinterieses 17 Trioblese 18 Cheleinterieses 18 Cheleinterieses 19 Cheleinterieses 10 Cheleinterieses 11 Foreistes 12 Cheleinterieses 13 Foreistes 14 Anameliases 15 Cheleinterieses 16 Cheleinterieses 17 Triobleses 18 Cheleinterieses 18 Cheleinterieses 18 Cheleinterieses 19 Cheleinterieses 10 Cheleinterieses 10 Cheleinterieses 11 Foreinterieses 12 Cheleinterieses 13 Foreinterieses 14 Cheleinterieses 15 Cheleinterieses 16 Cheleinterieses 17 Triobleses 18 Cheleinterieses 18 Ch

Biological dimensions

Animal sizes

03.051

- Largest animals

 * = Extinct species

 A Mammai: blue whale (110.5ft 33.6m)

 8 Rephie: Ultrasaurus (100.3ft 30.5m)

 C Fish: whale shark (60ft 187m)

 D Mollusk: giant squid (56ft 17m)

 £ Amphiblan: Pronosuchus (36ft 9m)

 £ Bird: Teratornis (16ft 55m wingspan)

 £ Altripoda: Japanese spider rabe (12.5ft 3.8m width)

*H Bird: Aepyornis (9.8ft 3m height)

I Mammal: human (6ft 1.8m height)

Plant sizes

- Tallest plants

 * = Extinct species

 A Callie grass (18ft 5.5m)
- B Saguara cactus (52.6ft 16m)
 C Tree fern (59.2ft 18m)
 *D Giant horsetail (100ft 30m)
 *E Giant club moss (100ft 30m)

- F Bamboo (122ft 37m) G Giant kelp seaweed (200ft 60m)
- H Coast redwood conifer (368.5ft 112m) I Eucalyptus regnans (483.3ft 132m)

Gestation and incubation

Viviparous lizard 90 Tortoise 105 Incubation time in

birds (days) Finch 12 Thrush 14

В

Python 61.5 Spiny lizard 63

Box turtle 87

03.053

Gestation time in mammals (days)

ပ

Chimpanzee 237

Dog 63

@DIAGRAM

Life spans

03.054

Avverage in separa (years)

A Tortoise 100

B Human of 86 9 76

C Rinnoarce 30

Life levels

- been observed A Bird: whooper swan 27,077ft/8,230m
- B Amphibian: toad 26,000ft/8,000m
- C Arthropod: spider 22,000ft/6,700m
- D Flowering plant 20,130ft/6,400m E Mammal: yak 20,000ft/6,100m F Reptile: lizard 18,100ft/5,500m

- G-L The lowest levels at which these living things have been observed
- G Reptile: marine iguana -33ft/-10m

 H Bird: emperor penguin -872ft/-265m

 I Blue-green alga 1,300ft/-400m

 J Mammal: sperm whale -7,400ft/-2,250m

 K Arthropod: shrimp 35,800ft/-10,900m

- L Fish: flat fish -35,800ft/-10,900m

Animal speeds: fastest

03.056

A Spine-tailed swift 106.25 mph 171 kph B Cheetah 70 mph

112.6 kph C Pigeon 60 mph 96.5 kph

D Prong-horned antelope 60 mph 96.5 kph E Sailfish 60 mph 96.5 kph F Jackrabbit 45 mph 72.4 kph

64.4 kph H Dolphin 37 mph 60 kph I Hawk moth 33 mph G Flying fish 40 mph

48 kph

J Ostrich 30 mph 48 kph K Human (running) 27 mph 43.4 kph L Monarch butterfly 20mph 32 kph

20mph 32 kph M Trout 15 mph 24 kph N Honey bee 11 mph

O Human (swimming) 5.19 mph 8.3 kph

@DIAGRAM

Animals and speeds A Centipede 96 ft/min

29.3 m/min

- B Spider 37 ft/min
- 11.2 m/min C Giant tortoise 15 ft/min
- 4.6 m/min D Three-toed sloth 13.2 ft/min 4 m/min
- E Garden snail 2.7 ft/min
- 0.82 m/min
- F Burrowing mole 0.69 ft/min 0.21 m/min

04 NUMBERS

Roman numerals

04.001

9	12 X	THE WATER THE PROPERTY OF THE	XI 09	1000 M	
2	T X	The state of the s	20	200	WXXVIIII
M 7	10 X	16 X	40 M	100	MCML
3	M 6	TS X	30 WW	JX 06	1988
2	8	W XW	XX XX		N_000001
	7 M	13 X	XIX		

@DIAGRAM

A single letter before one of greater value subtracts from that letter; 900 = CM. A dash over a letter multiplies the value by 1,000.

Number systems

04.002

Α	В	С	D	Е	F	G	Н	1	J
0			0				0	٠	
1	Y	1	•	X	Α	I	2	1	_
2	YY	11	••		В	II	2	٢	=
3	YYY	[1]	•••	7	Γ	III	2	٣	Ξ
4	777	1111	••••	7	Δ	IV	Я	٤	四
5	ΥΫ́	111	_	7	E	V	y	٥	五
6	YYY	111	•	1	F	VI	É	7	六
7	***	1111	• •	3	Z	VII	V	٧	七
8	***	1111	•••		Н	VIII	7	٨	Λ
9	***	111 111 111	••••	0	θ	IX	ξ	9	九
10	<	Λ	-	>	1	X	20	1.	+
50	////	000	=	\supset	N	L	yo	0.	五十
100	Y4444	9		P	P	С	200	1	頁
500	*** *	999 99	.10	7	Ф	D	You	0	育五
1000	Y 1/2	*		K	/A	M	2000	\	Ŧ

A Arabic (modern Western)
B Babylonian
C Egyptian
D Mayan
E Hebrew
F Ionic
G Roman
H Hindu
I Arabic (c 900 AD)
J Chinese

Numerical prefixes

Bi- 2 Deca- 10 Deci- ½0 Demi- ½2 Di- 2 Dodeca- 12 Ennea- 9 Hemi- ½2 Hendeca- 11 Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quinqu-, quinque- 5 Semi- ½2 Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11 Uni- 1	ALPHABETICAL ORDER	
Deci- ½ Demi- ½ Di- 2 Dodeca- 12 Ennea- 9 Hemi- ½ Hendeca- 11 Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Bi-	2
Demi- ½ Di- 2 Dodeca- 12 Ennea- 9 Hemi- ½ Hendeca- 11 Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quinqua-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tri- 3 Undec-, undeca- 11	Deca-	10
Di- 2 Dodeca- 12 Ennea- 9 Hemi- ½ Hendeca- 11 Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quinqua-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tri-, tetra- 4 Tri- 3 Undec-, undeca- 11	Deci-	1/10
Dodeca-	Demi-	1/2
Ennea- 9 Hemi- ½ Hendeca- 11 Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tri-, tetra- 4 Tri-, tetra- 3 Undec-, undeca- 11	Di-	2
Hemi- ½ Hendeca- 11 Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadri-, quadri- 4 Quinqu-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Dodeca-	12
Hendeca- Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quinqu-, quinque- 5 Semi- 5 Semi- 5 Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Ennea-	9
Hepta- 7 Hex-, hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quinque- 5 Quinqu-, quinque- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Hemi-	1/2
Hex., hexa- 6 Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Hendeca-	11
Icos-, icosa-, icosi- 20 Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quinqu-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Hepta-	7
Non-, nona- 9 Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Hex-, hexa-	6
Oct-, octa- 8 Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tri- 3 Undec-, undeca- 11	Icos-, icosa-, icosi-	20
Pent-, penta- 5 Quadr-, quadri- 4 Quindeca- 15 Quinqu-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tri-, tetra- 4 Tri- 3 Undec-, undeca- 11	Non-, nona-	9
Quadr-, quadri- 4 Quindeca- 15 Quinqu-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Oct-, octa-	8
Quindeca- 15 Quinqu-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Pent-, penta-	5
Quinqu-, quinque- 5 Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Quadr-, quadri-	4
Quint- 5 Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Quindeca-	15
Semi- ½ Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Quinqu-, quinque-	5
Sept-, septem-, septi 7 Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Quint-	5
Sex-, sexi 6 Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Semi-	1/2
Ter- 3 Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Sept-, septem-, septi	7
Tessara- 4 Tetr-, tetra- 4 Tri- 3 Undec-, undeca- 11	Sex-, sexi	6
Tetr-, tetra-	Ter-	3
Tri- 3 Undec-, undeca- 11	Tessara-	4
Undec-, undeca- 11	Tetr-, tetra-	4
	Tri-	3
Uni- 1	Undec-, undeca-	11
	Uni-	1

NUMERICAL ORDER
1/10 Deci-
½ Semi-, hemi-, demi-
1 Uni-
2 Bi-, di-
3 Tri-, ter-
4 Tetra-, tetr-, tessara-, quadri-, quadr-
5 Pent-, penta-, quinqu-, quinque-, quint-
6 Sex-, sexi-, hex-, hexa-
7 Hepta-, sept-, septi-, septem-
8 Oct- octa-
9 Non-, nona-, ennea-
10 Deca-
11 Hendeca-, undec-, undeca-
12 Dodeca-
15 Quindeca-
20 Icos-, icosa-, icosi-

Mathematical symbols

04.004

1 Plus 2 Minus 3 Multiplied by 4 Divided by 5 Square root 6 Cube root 7 Smaller than

8 Not smaller than

9 Larger than 10 Not larger than 11 Equal to

11 Equal to
12 Approximately equal to
13 Not equal to
14 Identically equal to
15 Angle
16 Parallel to
17 Perpendicular to

18 Is to

19 Therefore 20 Infinity

Astronomy symbols

04.005

1	2	3	4	5
€ \$	P	8	9	24
7	Ψ	1 3	P	15
16	17	18	19	20
21	22	23	Y 24	25
1 Sun 2 New Moon 3 First quarter Moon 4 Full Moon 5 Last quarter Moon 6 Mercury	11 Saturn - 12 Neptune 13 Uranus 14 Pluto - 15 Star 16 Comet	23 Desce 24 Aries:	sition ding node nding node vernal equinox autumnal equinox	

7 Venus 8 Earth: globular cluster 9 Mars

12 Neptune 13 Uranus 14 Pluto _ 15 Star 16 Comet 17 Galactic cluster

18 Planetary nebula

10 Jupiter

19 Galaxy 20 Conjunction

1 Buddhism 1a Buddha

1b Wheel of law 1c Lotus

2 Christianity

2a Latin cross 2b Chi Rho 2c Agnus Dei

3 Confucianism

3a Confucius 3b Conjugal bliss 4 Hinduism

4a Mandala

4b Shiva 4c Aum

5a Star and crescent 5b Holy Koran 6 Judaism

6a Star of David 6b Menorah

7 Shinto 7a Torii

8 Sikhism 8a Kirpan

8b Khanda

9 Taoism

9a Yin-Yang 9b Water

10 Zoroastrianism 10a Sacred fire

Signs of the Zodiac

04.007

1 Aries (Ram) 2 Taurus (Bull) 3 Gemini (Twins)

6 Virgo (Virgin)

4 Cancer (Crab) 5 Leo (Lion)

March 21 – April 20 April 21 – May 20 May 21 – June 20 June 21 – July 21 July 22 – August 21 August 22 – September 21

7 Libra (Balance)

Scorpio (Scorpion)
 Sagittarius (Archer)
 Capricorn (Goat)
 Aquarius (Water-bearer)

12 Pisces (Fish)

September 22 – October 22 October 23 – November 21 November 22 – December 20 December 21 – January 19 January 20 – February 18

February 19 - March 20

Chinese astrological symbols and year dates

							_
BUFFALO	1925 Jan 25, 1925- Feb 13, 1926	1937 Feb 12, 1937- Jan 31, 1938	1949 Jan 30, 1949- Feb 17, 1950	1961 Feb 16, 1961- Feb 4, 1962	1973 Feb 3, 1973- Jan 23, 1974	1985 Feb 20, 1985- Feb 8, 1986	
TIGER	1926 Feb 14, 1926- Feb 2, 1927	1938 Feb 1, 1938- Feb 18, 1939	1950 Feb 18, 1950- Feb 6, 1951	1962 Feb 5, 1962- Jan 25, 1963	1974 Jan 24, 1974- Feb 10, 1975	1986 Feb 9, 1986- Jan 28, 1987	
RABBIT	1927 Feb 3, 1927-Jan 22, 1928	1939 Feb 19, 1939- Feb 7, 1940	1951 Feb 7, 1951- Jan 26, 1952	1963 Jan 26, 1963- Feb 13, 1964	1975 Feb 11, 1975- Jan 30, 1976	1987 Jan 29, 1987- Feb 16, 1988	
DRAGON	1928 Jan 23, 1928- Feb 10, 1929	1940 Feb 8, 1940- Jan 27, 1941	1952 Jan 27, 1952- Feb 14, 1953	1964 Feb 14, 1964- Feb 2, 1965	1976 Jan 31, 1976- Feb 17, 1977	1988 Feb 17, 1988- Feb 5, 1989	
SNAKE	1929 Feb 11, 1929- Jan 30, 1930	1941 Jan 28, 1941- Feb 15, 1942	1953 Feb 15, 1953- Feb 3, 1954	1965 Feb 3, 1965- Jan 21, 1966	1977 Feb 18, 1977- Feb 7, 1978	1989 Feb 6, 1989- Jan 26, 1990	
HORSE	1930 Jan 31, 1930- Feb 17, 1931	1942 Feb 16, 1942- Feb 4, 1943	1954 Feb 4, 1954- Jan 23, 1955	1966 Jan 22, 1966- Feb 8, 1967	1978 Feb 8, 1978-Jan 27, 1979	1990 Jan 27, 1990- Feb 14, 1991	
GOAT	1931 Feb 18, 1931- Feb 6, 1932	1943 Feb 5, 1943- Jan 25, 1944	1955 Jan 24, 1955- Feb 11, 1956	1967 Feb 9, 1967- Jan 29, 1968	1979 Jan 28, 1979- Feb 15, 1980	1991 Feb 15, 1991- Feb 3, 1992	
MONKEY	1932 Feb 7, 1932- Jan 25, 1933	1944 Jan 26, 1944- Feb 12, 1945	1956 Feb 12, 1956- Jan 30, 1957	1968 Jan 30, 1968- Feb 16, 1969	1980 Feb 16, 1980- Feb 4, 1981	1992 Feb 4, 1992- Jan 22, 1993	
ROOSTER	1933 Jan 26, 1933- Feb 13, 1934	1945 Feb 13, 1945- Feb 1, 1946	1957 Jan 31, 1957- Feb 18, 1958	1969 Feb 17, 1969- Feb 5, 1970	1981 Feb 5, 1981- Jan 24, 1982	1993 Jan 23, 1993- Feb 9, 1994	
DOG	1934 Feb 14, 1934- Feb 4, 1935	1946 Feb 2, 1946- Jan 21, 1947	1958 Feb 19, 1958- Feb 7, 1959	1970 Feb 6, 1970- Jan 26, 1971	1982 Jan 25, 1982- Feb 12, 1983	1994 Feb 10, 1994- Jan 30, 1995	
PIG	1935 Feb 5, 1935- Jan 23, 1936	1947 Jan 22, 1947- Feb 9, 1948	1959 Feb 8, 1959- Jan 27, 1960	1971 Jan 27, 1971- Feb 18, 1972	1983 Feb 13, 1983- Feb 1, 1984	1995 Jan 31, 1995- Feb 18, 1996	
RAT	1936 Jan 24, 1936- Feb 11, 1937	1948 Feb 10, 1948- Jan 29, 1949	1960 Jan 28, 1960- Feb 15, 1961	1972 Feb 19, 1972- Feb 2, 1973	1984 Feb 2, 1984- Feb 19, 1985		

Calendars : Gregorian, Hebrew, Moslem

04.009

GREGORIAN		HEBREW		MOSLEM	
NAME	NUMBER OF DAYS	NAME	NUMBER OF DAYS	NAME	NUMBER OF DAYS
January	31	Tishri	30	Muharram	30
February	28 (29 in leap year)	Heshvan	29 (30 in some years)	Safar	29
March	31	Kislev	29 (30 in some years)	Rabil	30
April	30	Tevet	29	Rabi II	29
Мау	31	Shevat	30	Jumada I	30
June	30	Adar	29 (30 in leap year)	Jumada II	29
July	31	Nisan	30	Rajab	30
August	31	lyar	29	Sha'ban	29
September	30	Sivan	30	Ramadan	30
October	31	Tammuz	29	Shawwal	29
November	30	٩٧	30	Dhu'l-Qa dah	30
December	31	Elul	29	Dhu'l-Hijja	29 (30 in leap year)
@DIAGRAM					

DIAGRAM

04.010

1780	N	1820	N	1860	Н	1900	В	1940	- 1	1980	J
1781	В	1821	В	1861	С	1901	C	1941	D	1981	E
1782	С	1822	C	1862	D	1902	D	1942	Е	1982	F
1783	D	1823	D	1863	E	1903	E	1943	F	1983	G
1784	L	1824	L	1864	M	1904	M	1944	N	1984	H
1785	G	1825	G	1865	Α	1905	Α	1945	В	1985	c
1786	A	1826	A	1866	В	1906	В	1946	C	1986	Ď
1787	В	1827	В	1867	C	1907	Č	1947	Ď	1987	E
1788	J	1828	J	1868	K	1908	K	1948	Ĺ	1988	M
1789	Ē	1829	Ē	1869	F	1909	F	1949	G	1989	A
1790	F	1830	Ē	1870	G	1910	Ġ	1950	A	1990	B
1791	Ġ	1831	Ġ	1871	A	1911	A	1951	В	1991	č
1792	Н	1832	Н	1872	î	1912	- î	1952	J	1992	ĸ
1793	С	1833	C	1873	D.	1913	D	1953	Ē	1993	F
1794	D	1834	Ď	1874	E	1914	E	1954	F	1994	Ġ
1795	E	1835	E	1875	F	1915	F	1955	G	1995	A
1796	M	1836	M	1876	N	1916	N	1956	Н	1996	- î l
1797	A	1837	A	1877	В	1917	В	1957	C	1996	D,
1798	В	1838	В	1878	C	1917	C	1957	D	1997	
1799	C	1839	C	1879	D	1919	D	1959	E	1998	E F
1800	D	1840	K	1880	L	1919	L	1960			N
1801	E	1841	F	1881					M	2000	
1802	F	1842		1882	G	1921	G	1961	A	2001	В
1803	G		G		A	1922	Α	1962	В	2002	С
		1843	A	1883	В	1923	В	1963	C	2003	D
1804 1805	H	1844	I	1884	J	1924	J	1964	K	2004	L
		1845	D	1885	E	1925	E	1965	F	2005	G
1806	D	1846	E	1886	F	1926	F	1966	G	2006	A
1807	E	1847	F	1887	G	1927	G	1967	A	2007	В
1808	M	1848	N	1888	Н	1928	Н	1968	_ [2008	J
1809	Α	1849	В	1889	С	1929	С	1969	D	2009	E
1810	В	1850	С	1890	D	1930	D	1970	E	2010	F
1811	C	1851	D	1891	Е	1931	E	1971	F	2011	G
1812	K	1852	L	1892	M	1932	M	1972	N	2012	H
1813	F	1853	G	1893	Α	1933	Α	1973	В	2013	С
1814	G	1854	Α	1894	В	1934	В	1974	С	2014	D
1815	Α	1855	В	1895	C	1935	С	1975	D		
1816	- 1	1856	J	1896	K	1936	K	1976	L		
1817	D	1857	Е	1897	F	1937	F	1977	G		
1818	Е	1858	F	1898	G	1938	G	1978	Α		
1819	F	1859	G	1899	Α	1939	Α	1979	В		

How to use the calendar.

To discover on which day of the week any date between the years 1780 to 2014 falls, look up the year in the key (above) and the letter shown in bold typeface to the right of the year will indicate which of the calendars A-N you should consult. The following list shows on which plates the respective calendars appear.

Calendar Plate

A and B 04.011 C and D 04.012 E and F 04.013 G and H 04.015

I and J 04.015 K and L 04.016 M and N 04.017 DDIAGRAM

SM TW T F S

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

Perpetual calendar: 1

SM TW T F S

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

1 2

04.011

1					4700
	JANUARY	FEBRUARY	MARCH	APRIL	1786 1797
ļ	SMTWTFS	SMTWTFS	SMTWTFS	S M T W T F S	1809
	1 2 3 4 5 6 7	1 2 3 4	1 2 3 4	1	1815
	8 9 10 11 12 13 14	5 6 7 8 9 10 11	5 6 7 8 9 10 11	2 3 4 5 6 7 8	1826
	15 16 17 18 19 20 21	12 13 14 15 16 17 18	12 13 14 15 16 17 18	9 10 11 12 13 14 15	1837
ı	22 23 24 25 26 27 28	19 20 21 22 23 24 25	19 20 21 22 23 24 25	16 17 18 19 20 21 22	1843 1854
ı	29 30 31	26 27 28	26 27 28 29 30 31	23 24 25 26 27 28 29	1865
ı				30	1871
ı					1882
ı	MAY	JUNE	JULY	AUGUST	1893
ı	SMTWTFS	SMTWTFS	SM TW T F S	SM TW TFS	1899
I	1 2 3 4 5 6	1 2 3	1	1 2 3 4 5	1905
ı	7 8 9 10 11 12 13	4 5 6 7 8 9 10	2 3 4 5 6 7 8	6 7 8 9 10 11 12	1911
ı	14 15 16 17 18 19 20	11 12 13 14 15 16 17	9 10 11 12 13 14 15	13 14 15 16 17 18 19	1922
ı	21 22 23 24 25 26 27	18 19 20 21 22 23 24	16 17 18 19 20 21 22	20 21 22 23 24 25 26	1933
ı	28 29 30 31	25 26 27 28 29 30	23 24 25 26 27 28 29	27 28 29 30 31	1939 1950
			30 31		1961
ı					
	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	1967

SM TW T F S

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

1 2 3 4

SM TW TFS

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

В	JA	NU	IAR	ΙY				F	EBR	UA	RY				M	٩R	:H					Al	PRI	L.					178 178
	S	M	Т	w	т	F	S	9	: M	Т	W	т	F	S	S	M	т	w	т	F	S	S	M	Т	W	т	F	S	179
	_	1	2	3	4	5	6					1	2	3		•••		•••	1	2	3	1	2	3	4	5	6	7	181
	7	8	9	10	11				1 5	6	7	8	9	10	4	5	6	7	8	9	10	8	_	10			13		182
	14		16	17	18	19	20	- 1			14	15	16	17	11	12	13	14	15	16	17					19			182
	21	22	23	24				1					23				20	21		23						26			183 184
	28	29	30	31							28					26							30		20	2.0			185
				-				-		-					20					00	01	2.0	- 00						186
										_																			187
	M	AY						J	UNI	E					JU	LY						Αl	JGI	JST	Γ				188
	S	M	T	W	Т	F	S		M	T	W	Т	F	S	S	M	Т	W	T	F	S	S	M	Т	W	Т	F	S	189
			1	2	3	4	5						- 1	2	1	2	3	4	5	6	7				- 1	2	3	4	190
	6	7	8	9	10	11	12		3 4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11	190
	13	14	15	16	17	18	19	1	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18	191
	20	21	22	23	24	25	26	1	7 18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25	192
	27	28	29	30	31			2	1 25	26	27	28	29	30	29	30	31					26	27	28	29	30	31		193
																													195
	CE	от	EM	DE	n																								196
										DBE	:K				M	OVE	IVI	RFI	1			DI	ECE	MI	BEF	ŀ			197
	S	M	T	W	Т	F	S		S IV		W	Т	F	S	S	M	T	W	Т	F	S	S	M	Т	W	Т	F	S	197
							1		1	2	3	4	5	6					- 1	2	3							1	199
	2		4	5	6	7	8		7 8		10	11	12	13	4	5	6	7	8	9	10	2	3	4	- 5	6	7	8	200
	9		11	12	13			1-	4 15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	200
	16	17		19		21	22	2				25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	
	23	24	25	26	27	28	29	2	3 29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29	
	30																					30	31						

© DIAGRAM

2

04.012

ANUARY	FEBRUARY	MARCH	APRIL
S M T W T F S	SMTWTFS	SMTWTFS	SMTWTFS
1 2 3 4 5	1 2	1 2	1 2 3 4 5 6
6 7 8 9 10 11 12	3 4 5 6 7 8 9	3 4 5 6 7 8 9	7 8 9 10 11 12 13
3 14 15 16 17 18 19	10 11 12 13 14 15 16	10 11 12 13 14 15 16	14 15 16 17 18 19 20
0 21 22 23 24 25 26	17 18 19 20 21 22 23	17 18 19 20 21 22 23	21 22 23 24 25 26 27
7 28 29 30 31	24 25 26 27 28	24 25 26 27 28 29 30	28 29 30
		31	
/IAY	JUNE	JULY	AUGUST
SMTWTFS	S M T W T F S	SM TW T F S	SMTWTFS
1 2 3 4	1	1 2 3 4 5 6	1 2 3
5 6 7 8 9 10 11	2 3 4 5 6 7 8	7 8 9 10 11 12 13	4 5 6 7 8 9 10
2 13 14 15 16 17 18	9 10 11 12 13 14 15	14 15 16 17 18 19 20	11 12 13 14 15 16 17
9 20 21 22 23 24 25	16 17 18 19 20 21 22	21 22 23 24 25 26 27	18 19 20 21 22 23 24
6 27 28 29 30 31	23 24 25 26 27 28 29	28 29 30 31	25 26 27 28 29 30 31
	30		
EPTEMBER	OCTOBER	NOVEMBER	DECEMBER
SMTWTFS	S M T W T F S	SMTWTFS	SM TW T F S
1 2 3 4 5 6 7	1 2 3 4 5	1 2	1 2 3 4 5 6 7
8 9 10 11 12 13 14	6 7 8 9 10 11 12	3 4 5 6 7 8 9	8 9 10 11 12 13 14
5 16 17 18 19 20 21	13 14 15 16 17 18 19	10 11 12 13 14 15 16	15 16 17 18 19 20 21
22 23 24 25 26 27 28	20 21 22 23 24 25 26	17 18 19 20 21 22 23	22 23 24 25 26 27 28
29 30	27 28 29 30 31	24 25 26 27 28 29 30	29 30 31

1799
1805
1811
1822
1833
1839
1850
1850 1861
1001
1867 1878 1889
1000
1889
1895
1901
1907
1918
1929
1935
1946
1957
1963
1974
1985
1991
2002
2013
2010

JA	NU	AR	Υ				FEI	BRI	UAI	RY				IN	NA	RC	Н					AP	RII					
S	M	Т	W	Т	F	S	S	M	Т	W	T	F	S		S	M	Τ	W	Τ	F	S	S	M	Т	W	Т	F	S
			1	2	3	4							-1								1			1	2	3	4	5
5	6	7	8	9	10	11	2	3	4	5	6	7	8		2	3	4	5	6	7	8	6	7	8	9	10	11	12
12	13	14	15	16	17	18	9	10	11	12	13	14	15		9	10	11	12	13	14	15	13	14	15	16	17	18	19
19	20	21	22	23	24	25	16	17	18	19	20	21	22	1	6	17	18	19	20	21	22	20	21	22	23	24	25	26
26	27	28	29	30	31		23	24	25	26	27	28		2	3	24	25	26	27	28	29	27	28	29	30			
														3	0	31												
VIA	v						JU	ME								LY						ΔI	IGL	ıeı				
		_		_	_	_					_	_	_				_		_	_	_					_	_	_
S	M	Т	W	T	F	S	S	M		W	T	F	S		S	M	T	W	T	F	S	S	M	T	W	Т	F	S
	_		_	1	2	-	1	2	3	4	5	6	7				1	2	3	4	5						- 1	2
4	5	6	7	8	9		8	9	10	11	12	13			6	7	8	9	10		12	3	4	5	6	7	8	9
11	12	13	14	15	16	17	15	16		18		20	21		-		15	16	17		19	10	11	12	13		15	16
					23				24	25	26	27	28							25	26	17		19		21		
25	26	27	28	29	30	31	29	30						- 2	27	28	29	30	31			24	25	26	27	28	29	30
																						31						
SE	PT	EM	BE	R			00	TO	BE	R				-	١C	VE	MI	BEF	}			DE	CE	MI	BEF	1		
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S		S	M	Т	w	Т	F	S	S	M	Т	w	Т	F	S
	1	2	3	4	5	6				1	2	3	4								1		1	2	3	4	5	6
7	8	9	10	11	12	13	5	6	7	8	9	10	11		2	3	4	5	6	7	8	7	8	9	10		12	
4	15	16	17	18	19	20	12	13	14	15	16	17	18		9	10	11	12	13	14	15	14	15	16	17	18	19	20
21	22	23	24	25	26	27	19	20	21	22	23	24	25		16	17	18	19	20	21	22	21	22	23	24	25	26	27
20	29	30					26	27	28	29	30	31			23	24	25	26	27	28	29	28	29	30	31			

JANUARY	FEBRUARY	MARCH	APRIL
SMTWTFS	SM TW T F S	SMTWTFS	SMTWTFS
1 2 3	1 2 3 4 5 6 7	1 2 3 4 5 6 7	1 2 3 4
4 5 6 7 8 9 10	8 9 10 11 12 13 14	8 9 10 11 12 13 14	5 6 7 8 9 10 11
11 12 13 14 15 16 17	15 16 17 18 19 20 21	15 16 17 18 19 20 21	12 13 14 19 16 17 18
18 19 20 21 22 23 24	22 23 24 25 26 27 28	22 23 24 25 26 27 28	19 20 21 22 23 24 25
25 26 27 28 29 30 31	22 23 24 23 20 27 20	29 30 31	26 27 28 29 30
25 20 27 26 25 50 51		29 30 31	26 27 28 29 30
MAY	JUNE	JULY	AUGUST
SMTWTFS	SM TW T F S	SMTWTFS	SMTWTFS
1 2	1 2 3 4 5 6	1 2 3 4	S WI I VV I F S
3 4 5 6 7 8 9	7 8 9 10 11 12 13	5 6 7 8 9 10 11	2 3 4 5 6 7 8
10 11 12 13 14 15 16	14 15 16 17 18 19 20	12 13 14 15 16 17 18	9 10 11 12 13 14 15
17 18 19 20 21 22 23	21 22 23 24 25 26 27	19 20 21 22 23 24 25	16 17 18 19 20 21 22
24 25 26 27 28 29 30	28 29 30	26 27 28 29 30 31	
31	20 25 30	20 27 20 29 30 31	23 24 25 26 27 28 29
31			30 31
SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
1 2 3 4 5	1 2 3	1 2 3 4 5 6 7	1 2 3 4 5
6 7 8 9 10 11 12	4 5 6 7 8 9 10	8 9 10 11 12 13 14	6 7 8 9 10 11 12
13 14 15 16 17 18 19	11 12 13 14 15 16 17	15 16 17 18 19 20 21	13 14 15 16 17 18 19
20 21 22 23 24 25 26	18 19 20 21 22 23 24	22 23 24 25 26 27 28	20 21 22 23 24 25 26
27 28 29 30	25 26 27 28 29 30 31	29 30	27 28 29 30 31
		20 00	27 20 20 00 01

_	_	_										_																	7 1700
F	JA	NU	IAR	Υ				FE	BR	UA	RY				M	ARC	H					Α	PRI	L					1790 1802
	S	M	Т	w	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	w	т	F	S	9	M	Т	w	т	F	S	1813
						1	2		1	2	3	4	5	6	-	1	2	3	4	5	6				•••	1	2	3	1819
	3	4	5	6	7	8	9	7	8	9	10	11	12	13	7	8	9	10	11	12	13	4	1 5	6	7	8	9	10	1830
	10	11	12	13	14	15	16	14	15	16	17	18	19	20	14	15	16	17	18		20	11		_	14	15	16	17	1841 1847
	17	18	19	20	21	22	23	21		23	24	25		27	21			24	25			18			21		23		1858
	24	25	26	27	28	29	30	28							28	29	30	31					5 26						1869
	31																					-	,				00		1875
	MA	ΔV						- 11	INE						JU	ıv						۸	UGI	101	r				1886
- 1			_		_	_						_	_	_			_		_		_								1897
	2	M	- 1	W	- 1	ŀ	S	S	M	Т	W	Т	F	S	S	M	T	W	Т	F	S	5	M		W	Т	F	S	1909
							-1			- 1	2	3	4	5					1	2	3		1 2	. 3	4	5	6	7	1915 1926
	_	3	4	5	6	7	8	6		8	9	10	11	12	4	5	6	7	8	9	10	8		10	11	12	13	14	1926
		10	11	12			15	13		15	16	17	18	19		12		14	15		17	15			18				1943
					20	21	22		21			24	25	26	18		20	21	22			22			25	26	27	28	1954
			25	26	27	28	29	27	28	29	30				25	26	27	28	29	30	31	29	30	31					1965
	30	31																											1971
	SE	PT	ΕM	BE	R			00	CTO	BE	R				NO	OVE	MI	BEF	3			D	ECE	MI	BEF				1982 1993
	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	9	M	Т	W	Т	F	S	1999
				1	2	3	4						1	2		1	2	3	4	5	6				1	2	3	4	2010
	5	6	7	8	9	10	11	3	4	5	6	7	8	9	7	8	9	10	11	12	13		5 6	. 7	8	9	10	11	
	12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20	13		14	_	16	17	18	
	19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27	19	3 20	21	22		24	25	
	26	27	28	29	30			24	25	26	27	28	29	30	28	29	30						3 27	28	29	30	31		
								31															-			0			
																													1

04.014

_		_		_		_			_							_													
	JA	NU	JAF	łγ				FI	В	RU/	ARY				M	AR	СН					AF	RI	L					71
	S	M	Т	W	Т	F	S	5	i N	1 1	W	Т	F	S	5	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	1
							- 1			1	2	3	4	5			1	2	3	4	5						1	2	1
	2	3	4	5	6	7	8		6	7 8	3 9	10	11	12	6	7	8	9	10	11	12	3	4	5	6	7	8	9	1
	9	10	11	12	13	14	15	10	3 1	1 15	16	17	18	19	13	14	15	16	17	18	19	10	11	12	13	14	15	16	1
	16	17	18	19	20	21	22	21	2	1 22	2 23	24	25	26	20	1 21	22	23	24	25	26	17	18	19	20	21	22	23	1
	23	24	25	26	27	28	29	2	1 2	3					27	28	29	30	31						27				1
	30	31																											li
	M	۸v							LAI	-																			Ιi
									JN							JLY						Αl	JGl	12					Ιi
	S	M		W			_	5	i N	1 1	W	Т	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	1
	1	2			5						1	2		4						- 1	2		1	2	. 3	4	5	6	1
	8	9			12		14				7 8	9	10	11	3	4	5	6	7	8	9	7		9	10	11	12	13	1
	15	16						1:				16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20	1
				25	26	27	28	15				23		25	17					22		21	22	23	24	25	26	27	1
	29	30	31					21	3 2	7 28	3 29	30				25	26	27	28	29	30	28	29	30	31				1
															31														1
	SE	РТ	ΈΝ	IBE	R			0	СТ	0B	ER				N	0VI	M	BEI	R			DI	CE	MI	BEF				1
	S	M	Т	W	т	F	S		: A	1 1	W	Т	F	S		M	Т	w	т	E	S	9	B/I	т	w	Т	F	S	1
ı	-			•••	- 1	2	_	•						1			1	2			5	3	141		**	- 1	2		1
	4	5	6	7	8	-			,	3 4	1 5	6	7	8	6	. 7	8	9	-		12	4	5	6	7	8	9	10	2
				14	-				3 1		1 12	-	14	15	13		-	-			19	11	12			15			2
	18		20			23		1						22		1 21									21		23		
				28				2			5 26					28				20	20				28				
		20		2.0	20	50			3		, 20	-/		20	2.	20	23	30				23	20	21	20	23	30	O I	

JAN	١U	AR	γ				FE	BR	UA	RY				M	ARO	CH					AF	PRII						1792 1804
SI	VI	Т	w	т	F	S	S	M	т	W	т	F	S	S	M	т	w	т	E	S	c	M	т	w	т	F	S	1832
1	2	3	4	5	6	7	_			1	2	3	4					1	2	3	1	2	3	4	5	6	7	1860
8	9	10	11	12	13	14	5	6	7	8	9	10	11	4	5	6	7	8	9	10	8	9	10		12			1888
_	-			19		21		13	14	15	16		18	11	12	13	14	15	16	17	15	_		18				1928
22 2								20						18					23					25				1956
29 3			20	20	2,	20		27			20	24	20		26							30	24	20	20	21	20	1984
200		01					20	21	20	23				25	20	21	20	23	30	31	23	30						2012
MA	Υ						JL	INE						JU	LY						Αl	JGL	IST	г				
SI	М	т	w	т	E	S	c	M	т	10/	т	F	S	c	M	т	w	_	F	S		M			-		S	
3 1	W.	1	2	3	4	5	3	IAI		W		- 1	2	3	2	3	4	-		3	3	IVI		W	1	Г	_	
6	7	8	9	10	11	12	3	4	E		7	8	9	1	_	_	4	5	6	14	-		-	1	2	3	4	1
	14	_		17	10				5	6			-	8	9	10	11	12	13		5			8	9	10	11	
					18			11					16						20			13		15	16	17	18	
			23		25	26		18							23		25	26	27	28				22			25	
27 2	28	29	JU	31			24	25	26	27	28	29	30	29	30	31					26	27	28	29	30	31		
SEP	TI	CB/I	DE	D			0.0	сто	DE	D				BIC	OVE	B.#	DEC	,			D	-05						
																					DI	LUE	IVI	BER	i			
SI	VI	Т	W	T	F	S	S	M	T	W	Т	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
						- 1		1	2	3	4	5	6					- 1	2	3							1	
2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	
9 '	10	11	12	13	14	15	14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	
16 1	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	
23 2	24	25	26	27	28	29	28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29	
30																						31						

© DIAGRAM

04.015

JANUARY	FEBRUARY	MARCH	APRIL
SMTWTFS	SMTWTFS	SMTWTFS	SM TW T F S
1 2 3 4 5 6	1 2 3	1 2	1 2 3 4 5 6
7 8 9 10 11 12 13	4 5 6 7 8 9 10	3 4 5 6 7 8 9	7 8 9 10 11 12 13
14 15 16 17 18 19 20	11 12 13 14 15 16 17	10 11 12 13 14 15 16	14 15 16 17 18 19 20
21 22 23 24 25 26 27	18 19 20 21 22 23 24	17 18 19 20 21 22 23	21 22 23 24 25 26 27
28 29 30 31	25 26 27 28 29	24 25 26 27 28 29 30	28 29 30
		31	20 20 00
MAY	JUNE	JULY	AUGUST
SMTWTFS	S M T W T F S	SMTWTFS	SMTWTFS
1 2 3 4	1	1 2 3 4 5 6	1 2 3
5 6 7 8 9 10 11	2 3 4 5 6 7 8	7 8 9 10 11 12 13	4 5 6 7 8 9 10
12 13 14 15 16 17 18	9 10 11 12 13 14 15	14 15 16 17 18 19 20	11 12 13 14 15 16 17
19 20 21 22 23 24 25	16 17 18 19 20 21 22	21 22 23 24 25 26 27	18 19 20 21 22 23 24
26 27 28 29 30 31	23 24 25 26 27 28 29	28 29 30 31	25 26 27 28 29 30 31
	30	20 23 30 31	20 20 21 20 25 30 31
SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
SM TW T F S	SMTWTFS		
1 2 3 4 5 6 7	1 2 3 4 5	0 111 1 11 1 0	SM TW T F S
8 9 10 11 12 13 14	6 7 8 9 10 11 12	1 2	1 2 3 4 5 6 7
15 16 17 18 19 20 21		3 4 5 6 7 8 9	8 9 10 11 12 13 14
22 23 24 25 26 27 28	13 14 15 16 17 18 19	10 11 12 13 14 15 16	15 16 17 18 19 20 21
29 30	20 21 22 23 24 25 26	17 18 19 20 21 22 23	22 23 24 25 26 27 28
	27 28 29 30 31	24 25 26 27 28 29 30	29 30 31

7 T F S 2 3 4 5 3 10 11 12 5 17 18 19 3 24 25 26
9 10 11 12 6 17 18 19 8 24 25 26
3 17 18 19 3 24 25 26
3 24 25 26
)
TES
1 2
7 8 9
3 14 15 16
21 22 23
7 28 29 30
R
TFS
3 4 5 6
11 12 13
7 18 19 20
1 25 26 27
1

@DIAGRAM

04.016

JANUARY	FEBRUARY	MARCH	APRIL
SMTWTFS	SM TW T F S	SM TW T F S	SMTWTFS
1 2 3 4	1	1 2 3 4 5 6 7	1 2 3 4
5 6 7 8 9 10 11	2 3 4 5 6 7 8	8 9 10 11 12 13 14	5 6 7 8 9 10 11
12 13 14 15 16 17 18	9 10 11 12 13 14 15	15 16 17 18 19 20 21	12 13 14 15 16 17 18
19 20 21 22 23 24 25	16 17 18 19 20 21 22	22 23 24 25 26 27 28	19 20 21 22 23 24 25
26 27 28 29 30 31	23 24 25 26 27 28 29	29 30 31	26 27 28 29 30
VIAY	JUNE	JULY	AUGUST
SMTWTFS	SM TW T F S	SMTWTFS	SMTWTES
1 2	1 2 3 4 5 6	1 2 3 4	1
3 4 5 6 7 8 9	7 8 9 10 11 12 13	5 6 7 8 9 10 11	2 3 4 5 6 7 8
10 11 12 13 14 15 16	14 15 16 17 18 19 20	12 13 14 15 16 17 18	9 10 11 12 13 14 15
17 18 19 20 21 22 23	21 22 23 24 25 26 27	19 20 21 22 23 24 25	16 17 18 19 20 21 22
24 25 26 27 28 29 30	28 29 30	26 27 28 29 30 31	23 24 25 26 27 28 29
31			30 31
SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
1 2 3 4 5	1 2 3	1 2 3 4 5 6 7	1 2 3 4 5
6 7 8 9 10 11 12	4 5 6 7 8 9 10	8 9 10 11 12 13 14	6 7 8 9 10 11 12
13 14 15 16 17 18 19	11 12 13 14 15 16 17	15 16 17 18 19 20 21	13 14 15 16 17 18 19
20 21 22 23 24 25 26	18 19 20 21 22 23 24	22 23 24 25 26 27 28	20 21 22 23 24 25 26
27 28 29 30	25 26 27 28 29 30 31	29 30	27 28 29 30 31

9 20 21 14 15 16 6 27 28 21 22 23	3 4 5 6 10 11 12 13 4 5 17 18 19 20 11 12	1 TW T F S 1 2 3 5 6 7 8 9 10 2 13 14 15 16 17
2 13 14 7 8 9 9 20 21 14 15 16 6 27 28 21 22 23	10 11 12 13	6 7 8 9 10
6 27 28 21 22 23		2 13 14 15 16 17
		20 21 22 23 24
28 29 30	31 25 26	5 27 28 29 30
JULY	AUG	UST
F S SM T	NTFS SM	TWTFS
	1 2 3 1 2	3 4 5 6 7
	7 8 9 10 8 9	
		17 18 19 20 21
		3 24 25 26 27 28
25 26 27	28 29 30 31 29 30	31
NOVEME	ED DEGE	TAIDED.
		TWTFS
		1 2 3 4
,		7 8 9 10 11
		21 22 23 24 25
8 29 30 28 29 30	26 27	7 28 29 30 31
	JULY 1 F S SM TV 3 4 5 6 11 12 4 5 6 7 18 19 11 12 13 4 25 26 18 19 20 25 26 27 : NOVEMB 1 F S SM TV 1 2 1 1 2 1 1 2 1 4 25 6 1 1 2 7 8 9 7 8 9 7 8 9 7 8 9 7 15 16 16 17 15 16	28 29 30 31 25 26 JULY AUG T F S S M T W T F S S M 0 11 12 4 5 6 7 8 9 10 8 5 7 18 19 11 12 13 14 15 16 17 14 25 26 18 19 20 21 22 23 24 22 23 24 25 6 27 28 29 30 31 NOVEMBER DECI T F S S M T W T F S S M 1 2 1 2 3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 7 8 9 10 11 12 13 5 5 6 14 15 16 14 15 16 17 16 19 20 21 22 32 42 25 26 27 19 20 30

©DIAGRAM

1[_	_	_	_	_				_			_	_				_											7 1
I	JA	Νl	JAI	RΥ				FEI	BRI	UΑ	RY				M	AR	СН					A	PR	L					11
ı	S	M	T	W	T	F	S	S	M	T	W	Т	F	S	S	M	T	W	Т	F	S	S	IV	1	W	Т	F	S	1
l						-1	2		1	2	3	4	5	6			1	2	3	4	5						- 1	2	1
l	3	4	- 5	6	7	8	9	7	8	9	10	11	12	13	6	7	8	9	10	11	12	3	3 4		5 6	7	8	9	1
Į	10	11	12	13	14	15	16	14	15	16	17	18	19	20	13	14	15	16	17	18	19	10	1	12	2 13	14	15	16	1
l				20						23	24	25	26	27	20	21	22	23	24	25	26	17	18	3 19	3 20	21	22	23	1
١		25	26	27	28	29	30	28	29						27	28	29	30	31			24	2	26	3 27	28	29	30	1
ı	31																												
١	M	٩Y						JU	NE						Jl	JLY						Α	UG	US	Т				1
l	S	M	Т	W	Т	F	S	S	M	Т	w	т	F	S	S	M	T	w	Т	F	S	9	· N	1	r w	т	E	S	
ı	1	2	3	4	5	6	7				1	2	3	4				-		1	2	_			2 3	4	5	6	
١	8	9	10	11	12	13	14	5	6	7	8	9	10	11	3	4	- 5	6	7	8	9	7	1 1	3 9	10	11	12	13	ı
l	15	16	17	18	19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	1.19	5 16	3 17	18	19	20	
l	22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	2	2 2:	3 24	25	26	27	ı
l	29	30	31					26	27	28	29	30			24	25	26	27	28	29	30				31				ı
Ì															31														ı
l	SE	PT	EIV	BE	R			00	то	BE	R				N	οv	EM	BE	R			D	EC	EM	BEI	R			
ı	S	M	T	W	Т	F	S	S	M	Т	W	Т	F	S	9	M	Т	w	т	F	S	9	N	1	r w	Т	F	S	ı
ı					1	2	3	_						1			1	2		4	5					1	2		ı
١	4	5	6	7	8	9	10	2	3	4	5	6	7	8	Е	. 7	8		10	11	12		1 !	5 1	6 7	8	9	10	
1	11	12	13	14	15	16	17	9	10	11	12	13	14	15		14	_	_		18	19	11				1 15	16	17	1
١	18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22			25		18			0 21	22	23	24	
I	25	26	27	28	29	30		23	24	25	26	27	28	29			29			20	0				7 28				
1								30	31																	-	-		

JANU	AR	Υ				FE	BR	UA	RY				M	AR	СН					AF	RII					
SM	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
					1			1	2	3	4	5				1	2	3	4							1
2 3	4	5	6	7	8	6	7	8	9	10	11	12	5	6	7	8	9	10	11	2	3	4	5	6	7	8
9 10	11	12	13		15		14	15	16	17		19	12	13	14	15	16	17	18	9	10	11	12	13		
16 17	18	19	20	21	22	20			23	24	25	26	19	20	21	22	23	24	25	16	17	18	19	20	21	22
	25	26	27	28	29	27	28	29					26	27	28	29	30	31		23	24	25	26	27	28	29
30 31																				30						
MAY						JU	INE						Jl	ΙLΥ						Αl	JGL	JST	Г			
SM	T	w	Т	F	S	S	M	T	w	Т	F	S	S	M	Т	W	Т	F	S	S	M	т	w	Т	E	S
1	2	3	4	5	6					1	2	3							1	_		1	2	3	4	5
7 8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12
14 15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19
21 22	23	24	25			18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26
28 29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29	27	28	29	30	31		
													30	31			-							-		
SEPT	EIV	BE	R			00	сто	ВЕ	R				N	OVE	MI	BEI	3			DE	CE	MI	BER	1		
SIM	T	w	Т	F	S	S	M	Т	W	т	F	S	S	M	т	w	т	F	S	S	M	Т	w	Т	F	S
				1	2	1	2	3	4	5	6	7				1	2	3	4				•••		1	2
3 4	5	6	7	8	9	8	9	10	11	12	13	14		6	7	8	9	10	11	3	4	5	6	7	8	9
10 11	12	13	14	15	16	15	16	17	18	19	20	21		13	14	15	16	17	18	10		12	-	14	-	16
17 18	19		21	22	23		23	24			27		19			22		24		17	18	19		21	22	23
24 25							30							27	-	-			20	24				28	29	30
- / 20	20		20		00	2.0	50	01					20	21	20	20	30			31	20	20	21	20	23	00

Multiplication table

	Γ.											
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Percentage equivalents of fractions

				%						%
			1/64	1.5625					33/64	51.5625
		1/32		3.125				17/32		53.125
			3/64	4.6875					35/64	54.6875
	1/16			6.25			9/16			56.25
			5/64	7.8125					37/64	57.8125
		3/32		9.375				19/32		59.375
			7/64	10.9375					39/64	60.9375
1/8				12.5		9/8				62.5
			9/64	14.0625	_				41/64	64.0625
		5/32		15.625	_			21/32		65.625
			11/64	17.1875	_				43/64	67.1875
	3/16			18.75			11/16			68.75
			13/64	20.3125	_				45/64	70.3125
		7/32		21.875	_			23/32		71.875
			15/64	23.4375	_				47/64	73.4375
1/4				25	-3	3/4				75
			17/64	26.5625	_				49/64	76.5625
		9/32		28.125	_			25/32		78.125
			19/64	29.6875	_				51/64	79.6875
	5/16			31.25	_		13/16			81.25
			21/64	32.8125	_				53/64	82.8125
		11/32		34.375	_			27/32		84.375
			23/64	35.9375	_				55/64	85.9375
3/8				37.5	_	7/8				87.5
			25/64	39.0625	_				57/64	89.0625
		13/32		40.625	_			29/32		90.625
			27/64	42.1875	_				59/64	92.1875
	7/16			43.75	_		15/16			93.75
			29/64	45.3125	_				61/64	95.3125
		15/32		46.875	_			31/32		96.875
			31/64	48.4375	_				63/64	98.4375
1/2				50	_	1				100

Fractional equivalents of percentages

%								
1								1/
2							1/50	1/100
3							750	3/400
4						1/		3/100
5					1/20	1/25		
6					720		3/	
7					_		3/50	7/
8						2/		7/100
9						2/25		9/
10				1/				9/100
				1/10	2/			
15			1/		3/20			
_20		1/	1/5					
25		1/4		0.4				
30				3/10				
_35					7/20			
40			2/5					
45					9/20			
50	1/2							
_ 55					11/20			
60			3/5					
65					13/20			
70				7/10				
75		3/4						
80			4/5					
85					17/20			
90				9/10				
95					19/20			
100	1				, 20			

Fraction/decimal conversion values

			1/64 0.015 625				33/64 O·515 625
		1/32	0.031 25			17/32	0.531 25
			3/64 0·046 875				35/64 0.546 875
	1/16		0.062 5		9/16		0.562 5
			5/64 0.078 125				37/64 O·578 125
		3/32	0.093 75			19/32	0.593 75
			7/64 0.109 375				39/64 0.609 375
1/8			0.125	5/8			0-625
			% ₄ 0·140 625				41/64 0.640 625
		5/32	0.156 25			21/32	0.656 25
			11/64 0·171 875				43/64 0.671 875
	3/16		0.187 5		11/16		0.687 5
			13/64 0·203 125				45/64 0.703 125
		7/32	0.218 75			23/32	0.718 75
			15/64 0·234 375				47/64 0.734 375
1/4			0.25	3/4			0.75
			17/64 0·265 625				49/64 0.765 625
		9/32	0.281 25			25/32	0.781 25
			19/64 0.296 875				51/64 0.796 875
	5/16		0.312 5		13/16		0.812 5
			21/64 0·328 125				53/64 0.828 125
		11/32	0.343 75			27/32	0.843 75
			23/64 0.359 375				55/64 0.859 375
3/8			0.375	7/8			0.875
			25/64 0·390 625				57/64 0·890 625
		13/32	0.406 25			29/32	0.906 25
			²⁷ / ₆₄ 0·421 875				59/64 0.921 875
	7/16		0.437 5		15/16		0.937 5
			²⁹ / ₆₄ 0·453 125				61/64 0.953 125
		15/32	0.468 75			31/32	0.968 75
			31/64 0.484 375				63/64 0.984 375
1/2			0.5	1			1.0

Compound interest on annual basis

Years	4%	2%	%9	7%	%8	%6	10%	12%	14%	16%
	4.00	2.00	00.9	7.00	8.00	9.00	10.00	12.00	14.00	16.00
2	8.16	10.25	12.36	14.49	16.64	18.81	21.00	25.44	29.96	34.56
	12.49	15.76	19.10	22.50	25.97	29.50	33.10	40.49	48.15	56.09
4	16.99	21.55	26.25	31.08	36.05	41.16	46.41	57.35	68.90	81.06
LO.	21.67	27.63	33.82	40.26	46.93	53.86	61.05	76.23	92.54	110.03
9	26.53	34.01	41.85	50.07	58.69	67.71	77.16	97.38	119.50	143.64
	31.59	40.71	50.36	85.09	71.38	82.80	94.87	121.07	150.23	182.62
80	36.86	47.75	59.38	71.82	85.09	99.26	114.36	147.60	185.26	227.84
6	42.33	55.13	68.95	83.85	99.90	117.19	135.79	177.31	225.19	280.30
10	48.02	62.89	79.08	96.72	115.89	136.74	159.37	210.58	270.72	341.14
2	60.10	79.59	101.22	125.22	151.82	181.27	213.84	289.60	381.79	493.60
15	80.09	107.89	139.66	175.90	217.22	264.25	317.72	447.36	613.79	826.55
20 1	119.11	165.33	220.71	286.97	366.10	460.44	572.75	864.63	864.63 1,274.35 1,846.08	1,846.08

Simple interest tables

	6.7270	0/0	0/2/0	+	2		0/2/0	
1 day	690.0	0.083	0.097	0.111	0.125	0.139	0.153	0.167
2 days	0.139	0.167	0.194	0.222	0.250	0.278	0.306	0.333
3 days	0.208	0.250	0.292	0.333	0.375	0.417	0.458	0.500
4 days	0.278	0.333	0.389	0.444	0.500	0.556	0.611	0.667
5 days	0.347	0.417	0.486	0.556	0.625	0.694	0.764	0.833
6 days	0.417	0.500	0.583	0.667	0.750	0.833	0.917	1.000
30 days	2.083	2.500	2.917	3.333	3.750	4.167	4.583	5.000
60 days	4.167	2.000	5.833	6-667	7.500	8.333	9.167	10.000
90 days	6.250	7.500	8.750		10.000 11.250	12.500	13.750	15.000
180 days	12.500	15.000	15.000 17.500	20.000	20.000 22.500	25.000	27-500	30.000
360 days	25.000	30.000	30.000 35.000 40.000 45.000	40.000		50.000	55.000	000.09

Root values

	$\sqrt{}$	3√		$\sqrt{}$	3√		$\sqrt{}$	3/
1	1.000	1.000	35	5.916	3.271	69	8.306	4.101
2	1.414	1.259	36	6.000	3.301	70	8.366	4.121
3	1.732	1.442	37	6.082	3.332	71	8.426	4.140
4	2.000	1.587	38	6.164	3.362	72	8.485	4.160
5	2.236	1.710	39	6.245	3.391	73	8.544	4.179
6	2.449	1.817	40	6.324	3.420	74	8.602	4.198
7	2.645	1.913	41	6.403	3.448	75	8.660	4.217
8	2.828	2.000	42	6.480	3.476	76	8.717	4.235
9	3.000	2.080	43	6.557	3.503	77	8.775	4.254
10	3.162	2.154	44	6.633	3.530	78	8.831	4.272
11	3.316	2.224	45	6.708	3.556	79	8.888	4.290
12	3.464	2.289	46	6.782	3.583	80	8.944	4.308
13	3.605	2.351	47	6.855	3.608	81	9.000	4.326
14	3.741	2.410	48	6.928	3.634	82	9.055	4.344
15	3.873	2.466	49	7.000	3.659	83	9.110	4.362
16	4.000	2.519	50	7.071	3.684	84	9.165	4.379
17	4.123	2.571	51	7.141	3.708	85	9.219	4.396
18	4.242	2.620	52	7.211	3.732	86	9.273	4.414
19	4.358	2.668	53	7.280	3.756	87	9.327	4.431
20	4.472	2.714	54	7.348	3.779	88	9.380	4.448
21	4.582	2.758	55	7.416	3.803	89	9.434	4.464
22	4.690	2.802	56	7.483	3.825	90	9.486	4.481
23	4.795	2.843	57	7.549	3.848	91	9.539	4.497
25	4·899 5·000	2·884 2·924	58 59	7·615 7·681	3·870 3·893	92 93	9.591	4.514
26	5.000	2.924	60	7.746	3.893	94	9·643 9·695	4·530
27	5.196	3.000	61	7.740	3.936	95	9.746	4·546 4·562
28	5.291	3.036	62	7.874	3.957	96	9.746	4.562
29	5.385	3.030	63	7.937	3.957	97	9.798	4.578
30	5.477	3.107	64	8.000	4.000	98	9.899	4.610
31	5.567	3.141	65	8.062	4.000	99	9.949	4.626
32	5.656	3.174	66	8.124	4.041	100	10.000	4.641
33	5.744	3.207	67	8.185	4.061	100	10 000	7 0-7 1
34	5.831	3.239	68	8.246	4.081			
	5 50 1	0 200	30	0 2-10	. 501			

Conversion table: length

04.025

A Inches

B Centimeters

C Feet D Meters

E Yards

F Miles G Kilometers 1 inch = 2.5400 centimeters

1 centimeter = 0.3937 inch

1 foot = 0.3048 meter

1 meter = 3-2808 feet

1 yard = 0.9144 meter

1 meter = 1-0936 yards

1 mile = 1-6093 kilometers

1 kilometer = 0-6214 mile

Conversion table: area

04.026

A Square inches

B Square centimeters C Square yards

D Square meters E Acres

F Hectares 1 hectare = 2.4710 acres

G Square miles H Square kilometers 1 square inch = 6:4516 square centimeters

1 square centimeter = 0-1550 inch

1 square yard = 0-8361 square meter 1 square meter = 1.1960 square yards

1 acre = 0.4047 hectare

1 square mile = 2-5900 square kilometers 1 square kilometer = 0-3861 square mile

Conversion table: volume

A Cubic inches **B** Cubic centimeters

C Cubic feet

D Cubic meters

¹ cubic inch = 16-387 cubic centimeters

¹ cubic centimeter = 0.0610 cubic inch 1 cubic foot = 0.0283 cubic meter

¹ cubic meter = 35-315 cubic feet

Conversion table: weight 1

A Ounces B Grams C Pounds D Kilograms

¹ ounce = 28-350 grams 1 ounce = 28:350 grams 1 gram = 0:0353 ounce 1 pound = 0:4536 kilogram 1 kilogram = 2:2046 pounds

Conversion table: weight 2

A Tons (US)

B Tons (UK)

C Tonnes

¹ ton (US) = 0-89286 ton (UK) 1 ton (US) = 0.907194 tonne

¹ ton (UK) = 1·12 tons (US) 1 ton (UK) = 1·01606 tonnes 1 tonne = 1·1023 tons (US)

¹ tonne = 0.984197 ton (UK)

Conversion table: liquid 1

A Fluid ounces (US)

B Fluid ounces (UK) C Centiliters

¹ fluid ounce (US) = 1-0408 fluid ounces (UK)

¹ fluid ounce (US) = 2-9573 centiliters

¹ fluid ounce (UK) = 0.9608 fluid ounce (US) 1 fluid ounce (UK) = 2-8413 centiliters

¹ centiliter = 0-3381 fluid ounce (US)

¹ centiliter = 0.3520 fluid ounce (UK)

Conversion table: liquid 2

04.031

A Pints (US) B Pints (UK) C Liters

1 pint (US) = 0-8327 pint (UK) 1 pint (US) = 0-4732 liter 1 pint (UK) = 1-2010 pints (US) 1 pint (UK) = 0-5683 liter 1 liter = 2-1134 pints (US) 1 liter = 1-7598 pints (UK)

Conversion table: liquid 3

04.032

A Gallons (US) B Gallons (UK) C Liters

1 gallon (US) = 0.8327 gallon (UK) 1 gallon (US) = 3.7853 liters 1 gallon (UK) = 1.2009 gallons (US) 1 gallon (UK) = 4.5460 liters 1 liter = 0.2642 gallon (US) 1 liter = 0.2200 gallon (UK)

Conversion table: temperature

A Celsius

B Fahrenheit C Kelvin

^{1°} Celsius = 33.8° Fahrenheit

^{1°} Celsius = 274-16° Kelvin

^{1°} Fahrenheit = -17-22° Celsius

^{1°} Fahrenheit = 255-93° Kelvin

^{1°} Kelvin = -272·16° Celsius 1° Kelvin = -457·87° Fahrenheit

Conversion table: speed

04.034

A Miles per hour B Kilometers per hour

C Knots per hour

1 mile per hour = 1-6093 kilometers per hour 1 mile per hour = 0-86897 knot per hour

I mile per nour = 0-86897 knot per hour
kilometer per hour = 0-6214 mile per hour
kilometer per hour = 0-53997 knot per hour
knot per hour = 1-1507823 miles per hour
knot per hour = 1-852 kilometers per hour

Circles

04.035

Area of circle

AB = diameter, CD = radius

Area = π (radius)² = $\frac{\pi (diameter)^2}{4}$

Circumference = π (diameter)

 $C = 2\pi$ (radius)

 $\frac{\text{arc }BC}{\text{circumference}} = \frac{\text{angle }BDC}{360^{\circ}}$

1 radian = $\frac{180^{\circ}}{\pi}$ = 57.2958°

Area of sector

Area = $\frac{(arc\ AB)\ (radius)}{2}$

= π (radius)² (angle ACB) 360°

(radius)2 (angle ACB in radians)

Area of segment

Area = $\frac{(\text{radius})^2}{2} \left[\frac{\pi(\text{angle}ACB^\circ)}{180} - \sin ACB^\circ \right]$

Area = $\frac{(\text{radius})^2}{2}$ angle ACB in radians – $\sin ACB^{\circ}$

Area = area of sector ACB - area of triangle ABC

1e Tangent

1f Secant 2 Spaces

2a Semicircle
2b Sector
2c Segment
3 Annulus

¹ Lines 1a Diameter 1b Radius 1c Chord 1d Arc

Angles: degrees

04.036

- 1 Names of angles
- a Acute: more than 0° less than 90° b Right: 90°
- c Obtuse: more than 90° less than 180° d Straight: 180°

- a Straight: 160 e Reflex: more than 180° less than 360° f Complementary: two angles whose sum is 90° g Supplementary: two angles whose sum is 180° h Conjugate: two angles whose sum is 360°

2 Degrees: subdivision of half circle

Regular polygons

04.037

S DIAGRAIT

Triangles and quadrilaterals

04.038

- 1 Equilateral triangle: all sides equal 2 Isosceles triangle: two sides equal

- 2 isosceles triangle: two stoes equal
 3 Scalene triangle: no stoes equal
 4 Right-angled triangle: one right angle
 5 Obtuse-angled triangle: one obtuse angle
 6 Acute-angled triangle: three acute angles
 7 Paullelogram: opposite sides equal
 8 Square: equal sides and angles

- 9 Rectangle: opposite sides and angles equal 10 Rhombus: equal sides but no right angles

11 Trapezium: two parallel sides 12 Irregular quadrilateral: no parallel sides

All faces of a regular solid are identical polygons of equal size

Semi-regular solids

04.040

CINCENT

Non-regular solids

¹ Sphere 2 Spheroid 3 Torus 4 Cylinder 5 Triangular prism 6 Cone 7 Square-based pyramid

Solids: calculating volume

04.042

Cube or cuboid

 $volume = breadth \times height \times length$

Prism

 $volume = \frac{breadth \times height \times length}{2}$

Pyramid

 $volume = \frac{breadth \times height \times length}{3}$

Cylinder

volume = $3.1416 \times \text{radius}^2 \times \text{length}$

Cone

 $volume = \frac{3.1416 \times radius^2 \times height}{3}$

Sphere

 $volume = \frac{4 \times 3.1416 \times radius^3}{3}$

b = Breadth h = Height

n ≈ Height I = Length

r = Radius

 $[\]pi = 3.1416$

05 HUMANITIES

The Indo-European family of languages

Alphabets: Greek

05.002

		1	
alpha (a)	beta (b)	gamma (g)	delta (d)
Aa	Вр	Гү	Δδ
epsilon (e)	zeta (z)	eta (e)	theta (th)
Eε	Zζ	Hŋ	68
iota (i)	kappa (k)	lambda (I)	mu (m)
Ιι	Kĸ	Vy	Mµ
nu (n)	xi (x)	omicron (o)	pi (p)
Nv	Ξξ	00	Пп
rho (r)	sigma (s)	tau (t)	upsilon (u)
Pp	ΣσS	Tτ	Yu
phi (ph)	khi (kh)	psi (ps)	omega (o)
Φφ	Xx	ΨΨ	Ωω

Name sound alpha (a)

Alphabets: Hebrew

05.003

Aipilabets, neblew 05			05.003
,	~	2 3	
,	o b		_
	· ·		E
	,	A	.2
ì	R		***
· ·	E .	, n	ſ
Z	5-	£ 1	· C

Hebrew script is written from right to left.

The outline forms are used when the letter falls at the end of a word.

Alphabets: Russian

05.004

Аа Б6 Вв Гг Дд

Ее Жж Зз Ии

Кк Лл Мм Нн

Оо Пп Рр Сс Тт

Үү Фф Хх Цц Чч

sh shch (hard si

Шш Щщ Ъъ Ыы

(soft sign)

вы Ээ Юю Яя

Sound

Alphabets: Braille

05.005

DIAGRAM

North American manual alphabet

05.006

Capitals such as USA are indicated by making a clockwise circle round each letter.

@ DIAGRAM

North American manual numbers

05.007

10 Shake thumb
11 Shap index finger up
12 Shap index and middle fingers up
13 Sign for 10 with palm facing in, then 3
13 Sign for 10 with palm facing in, then 3
30 Sign for and and index fingers together
30 Sign for 7, then iteter 0
10 Sign for 1 and then lietter C
1,000 Sign for 1 and then lietter C
1,000 Sign for 1 with in gift hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twice
1,000 Sign for M with right hand, tap left palm twith hand twice
1,0 number.

The international Morse code

05.008

Semicolon Colon

Period

Question mark

Quotation marks

Wait

End of message

Error

Understand

Hyphen

Apostrophe

Semaphore

05.009

Semaphore is a visual signaling system using flags. At the end of each word drop the arms down in front of you and pause. If you make a mistake, give 'Annul' sign and start the word again. Use 'Numeral' before a number and 'Alphabetical' when you go back to letters.

Musical notation: 1

05.010

@DIAGRAM

1 Trabel (s) Cleft
Bass (F) cleft
Ba

Arpeggio (rolled chord) Sharp % time % time 2/2 time 5% time 5% time Triad (3 note chord)

Pianissimo (very soft) Forte (loud) Fortissimo (very loud)

Musical notation: 3

05.012

@DIAGRAM

Music: conductor's movements

A 2/4 rhythm B 3/4 rhythm C 4/4 rhythm

The right hand (with baton) beats time. The left hand indicates degree of loudness required.

Layout and instruments of an orchestra

05.014

Percussion
13 Tam-tam
14 Cymbals
15 Xylophone
16 Glockensp
17 Tubular be
18 Side drum
19 Bass drum
20 Timpani

Military marching band

05.015

1 Trombone

2 Marching tuba

3 Trumpet

4 Cornet

5 Euphonium

6 Mellophone

7 Bugle 8 Horn

9 Cymbals 10 Glockenspiel 11 Side drum 12 Tenor drum

13 Bass drum

14 Clarinet

15 Alto saxophone

16 Tenor saxophone 17 Flute

18 Piccolo 19 Oboe

20 Bassoon

- A Traditional jazz band
- 1 Clarinet
- 2 Trumpet 3 Trombone
- 4 Cymbals 5 Bass drum
- 6 Side drum 7 Tenor drum
- 8 Banjo

- 9 Double bass
- 10 Piano

- B Modern rock group 1 Cymbals
 - 2 Bass drum
 - 3 Side drum
 - 4 Tenor drum 5 Electric guitar

 - 6 Electric bass guitar 7 Electric organ
 - 8 Electric piano
 - 9 Synthesizer

Ballet

- 1 Ancient Egyptian 2 Ancient Greek
- 3 Ancient Roman
- 4 French c 1250 5 Italian c 1300
- 6 French c 1430
- 7 English c 1540
- 8 Spanish c 1550 9 German c 1550 10 English c 1600
- 11 Puritan c 1650 12 French c 1780

 - 13 French c 1805
 - 14 English c 1817 15 American c 1850
 - 16 American c 1870
 - 17 French c 1906
 - 18 French c 1927 19 French c 1950
 - 20 Modern blue jeans

Clothes fashions: men

- 1 Ancient Egyptian
 2 Ancient Greek
 3 Ancient Roman
 4 1st century Frankish
 5 French c 1260
 6 English c 1350
- 7 German c 1350 8 Italian c 1450
- 9 Italian c 1550 10 French c 1550
- 11 French knight c 1630 12 French c 1680 13 English c 1680 14 French c 1780 15 French c 1795 16 English c 1795 17 French c 1830 18 English c 1870 19 English Blunting 1950

- 19 English Hunting 1950s 20 Modern business suit

Fundamental vase forms

05.020

- 1 Cylindrical 1a Conical
- 1b Bag-shaped
- 1c Inverted cone 1d Canopus
- 2 Spherical
- 2a Echinus
- 2b Spheroid 2c Cake-shaped
- 2d Recumbent 2e Dish-shaped
- 2f Plate-shaped
- 2g Top-shaped
- 2h Inverted egg 2i Ellipsoid
- 2j Egg-shaped
- 2k Inverted top
- 21 Erect cask
- 2m Cup-shaped
 2n Wedge, spindle and drop-shaped
 3 Hyperboloid
 3a Hyperboloid foot
 3b Pear-shaped
 3c Hyperboloid neck
 3d Bell-shaped

SDIAGRAM

Basic human proportions

- A Adult female and male divided into 8 units.
- 1 unit = height of head (M 9"; F 81/4")
- B Proportions at various ages a Adult: head 9" × 8 units

- a Adult: head 9" × 8 units
 b 15: head 9" × 7½ units
 c 10: head 7" × 7 units
 d 5: head 7" × 6 units
 e 3: head 6½" × 5 units
 f 1: head 6" × 4 units

- C Body positions by units
- b Seated = 61/4 units on chair c Kneeling = 43/4 units d Seated on floor = 41/2 units

Perspective

- A Parallel perspective (one point)
 B Angular perspective (two point)
 C Oblique perspective (three point)
 D Point of view

- a Eye level b Vanishing point

Architecture: columns

05.023

A Doric B lonic

C Corinthian

1 Entablature

1a Cornice

1b Frieze 1c Architrave

2 Column

2a Capital 2b Shaft

Development of lighting

- 1 Candles
 1a Single candlestick
 1b Wall sconce
 1c Ceiling candelabrum
 2 Oil lamps
 2s Roman lamp

- 2b Table lamp
- 2c Hanging lamp
- 3 Gas 3a Simple wall bracket
- 3b Elaborate wall bracket 3c Adjustable hanging lamp 4 Electric

- 4a Single bulb 4b Shaded table lamp
- 4c Imitation candle ceiling light 4d Globe shade 4f Desk anglepoise
- 4e Neon

Furniture styles: bed

A Four poster bed with curtain
B Duchesse bed with part canopy and curtain
C Brass bedstead
D Modern bed

Furniture styles: chair

05.026

© DIAGRAM

- A English 16th century framed oak
 B American early 18th century, Pennsylvania
 C New England Windsor, late 18th century
 D American, Duncan Phyfe, early 19th century
 E American Hitchcock chair, 19th century
 Modern 20th century

US Presidents: 1 1789-1839

05.027

Federalist

Democratic-Republican

US Presidents: 2 1839-1889

05.028

Democratic

US Presidents: 3 1889-1939

US Presidents: 4 1939-1989

05.030

Democratic
Republican

Kings and Queens of England and Great Britain

^{1 1492} Christopher Columbus landed in West Indies 2 1620 Mayflower landed with Pilgrims

^{3 1776} Declaration of Independence

^{4 1861-65} Civil War

^{5 1914-18} World War I

^{6 1939-45} World War II

Pius VII Leo XII Pius IX Leo XIII Pius X

Luigi Barnaba Chiaramonti (1740-1823) Annibale Sermattei della Genga (1760-1829) Pius VIII Francesco Xaviero Castiglioni (1761–1830)
Gregory XVI Bartolommeo Alberto Cappellari (1765–1846) Giovanni Maria Masttai-Ferretti (1792-1878) Vincenzo Gioacchino Pecci (1810-1903) Giuseppe Melchiorre Sarto (1835-1914)

Benedict XV Giacomo della Chiesa (1854-1922) Pius XI Achille Ratti (1857-1939) Pius XII Eugenio Pacelli (1876-1958) John XXIII

Paul VI

Angelo Giuseppe Roncalli (1881–1963) Giovanni Battista Montini (1897-1978) Albino Luciani (1913-1978)

John Paul I John Paul II Karol Wojtyla (1920-

William Shakespeare: first performances of plays

^{1 1558} Elizabeth I became Queen of England 2 1584 Sir Walter Raleigh founded Virginia

^{3 1588} Armada (naval conflict between England and Spain)

^{4 1603} Death of Queen Elizabeth I

^{5 1620} Pilgrims on Mayflower sailed from England

US States: dates of entry into Union

05.035

DIACKAM

Architect of the Capitol United States Botanic Garden

General Accounting Office Government Printing Office Library of Congress Office of Technology Assessment Congressional Budget Office

Copyright Royalty Tribunal

Executive Office of the President

White House Office Office of Management and Budget

Council of Economic Advisers National Security Council Office of Policy

Development Office of the United States Trade Representative Council on Environmental Quality

Office of Science and Technology Policy Office of Administration

THE VICE PRESIDENT

United States Courts of Appeals United States District

Courts United States Claims Court

United States Court of Appeals for the Federal Circuit

United States Court of International Trade Territorial Courts United States Court of Military Appeals

United States Tax Court Administrative Office of the United States Courts Federal Judicial Center

US Government: the Senate

US Government: the House of Representatives

US Government: the organization of the Presidency

US Government: the Department of State

05 044

@DIAGRAM

Stages

- 1 Bill introduced in either chamber.
- 2 Bill then goes to full committee, then subcommittee for hearings, revisions and approval. then back to full committee for possibly more hearings and revisions. Full committee may recommend passage of bill, give unfavorable recommendation (rarely happens), or take no action, letting bill die.
- 3 In House, before floor action, many bills go to Rules Committee, which sets conditions for debate and amendments on floor. Some bills go directly to the floor. Other procedures exist for routine bills. Rules are not used in the Senate: leadership schedules action.
- 4 Bill is debated, generally amended, and a vote

- is taken. If passed, bill goes to other chamber and follows a similar route. If other chamber has already passed a similar version, both versions go to conference.
- 5 Conference committee comprising members of both houses works out difference between House and Senate versions of bill.
- 6 Compromise version worked out in stage 5 is sent to each house for final approval.
- 7 If compromise version approved by both houses, bill is sent to President, who either signs the bill, making it law, or vetoes it, and returns it to Congress. Vetoed bills may be overridden by a two-thirds majority in both houses; such bills then become law.

US government: marriage with parental consent

US government: marriage without parental consent

05.048

4 P P P P P P P P P P P P P P P P P P P	
4	
Σ 9	
15 16	T
Nebraska Newada Newada New Hampshire New Macko New Mexico New Morico North Carolina Ohlo Oregon Oregon Pennsylvania Rhode Island South Carolina South Carolina Washington Washington Washington Washington Washington Washington	
12	T
de d	T
Femole 16 T	
15 T	T

	21																						Г				Г
	18	•	•	•	•	•	•	•	•	•	_	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	11																					_			•		Ī
Male	16										•												Г				
AGE	12					Т				_			Г														
STATE	21	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	Florida	Georgia	Hawaii	Idaho	Illinois	Indiana	lowa	Kansas	Kentucky	Louisiana	Maine	Maryland	Massachusetts	Michigan	Minnesota	Mississippi	Missouri	A december of
	9	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
ale	17																										
Female	16										•															-	
AGE	12	Г					Г															Г			•	Г	r

DIAGRAM

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES*	CURRENCY
AFGHANISTAN	Kabul	Pashta (Iranian), Dari Persian, Uzbek (Turkic)	Afghani
DE AFGHANISTAN DE	MOCRATEEK J	AMHURIAT	
ALBANIA	Tirana	Albanian, Greek	Lek
REPUBLIKA POPULLO	RE SOCIALISTE	E SHQIPËRISË	
ALGERIA	Algiers	Arabic, Berber, French	Dinar
	ZĂIRIYA AD-DII	MUQRATIYA ASH-SHABIYA	
ANDORRA		Catalan, Spanish, French	French franc Spanish peseta
PRINCIPAT D'ANDORF			
ANGOLA	Luanda	Portuguese, Bantu (various)	Kwanza
REPÚBLICA POPULAR			
ANTIGUA AND BARBUDA	St John's	English	East Caribbean dollar
ARGENTINA	Buenos Aires	Spanish, English, Italian, German, French	Austral
REPÚBLICA ARGENTII	NA		
AUSTRALIA	Canberra	English, Aboriginal	Dollar
COMMONWEALTH OF			
AUSTRIA	Vienna	German, Slovene	Schilling
REPUBLIK ÖSTERREIC			
THE BAHAMAS	Nassau	English	Dollar
THE COMMONWEALT			
BAHRAIN	Manama	Arabic, Persian	Dinar
DAWLAT AL-BAHRAYI			
BANGLADESH	Dacca	Bengali, English	Taka
GAMA PRAJĀTANTRĪ			
BARBADOS	Bridgetown	English	Dollar
BELGIUM	Brussels	Flemish, French	Franc
KONINKRIJK BELGIË ROYAUME DE BELGIË	OLIE.		
BELIZE	Belmopan	English, Spanish, Creole	Belize dollar
BENIN	Porto-Novo	French	
RÉPUBLIQUE POPULA		rrendi	CFA franc
BHUTAN	Thimphu	Decembe Nameli	Namedania
DRUK-YUL	mpnu	Dzongkha, Nepali	Ngultrum
DITOR-TOL			

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES*	CURRENCY
BOLIVIA	Sucre, La Paz	Spanish, Quechua, Aymara	Peso
REPÚBLICA DE BOLIV	/IA		
BOTSWANA	Gaborone	English, Setswana	Pula
REPUBLIC OF BOTSV	/ANA		
BRAZIL	Brasilia	Portuguese, English	Cruzeiro
REPÚBLICA FEDERAT	IVA DO BRASIL		
BRUNEI	Bandar Seri Begawan	Malay, English	Brunei dollar
NEGARA BRUNEI DA			
BULGARIA	Sofia	Bulgarian, Turkish, Greek	Lev
NARODNA REPUBLIK			
BURKINA FASO	Ouagadougou	French, More, Sudanic tribal	CFA franc
BURMA	Rangoon	Burmese	Kyat
		A MYANMA NAINGNGANDA	.W
BURUNDI	Bujumbura	French, Rundi	Franc
REPUBLIKA Y'UBURU	NDI		
CAMBODIA	Phnom Penh	Khmer, French	Riel
CAMBODIAN PEOPLE	'S REPUBLIC		
CAMEROON	Yaounde	English, French, Bantu, Sudanic	CFA franc
UNITED REPUBLIC O	F CAMEROON		
CANADA	Ottawa	English, French	Dollar
CAPE VERDE	Praia	Portuguese, Crioulo	Escudo
REPUBLICA DE CABO	VERDE		
CENTRAL AFRICAN REPUBLIC	Bangui	French, local dialects	CFA franc
REPUBLIQUE CENTRA			
CHAD	N'Djamena	French, Arabic	CFA franc
RÉPUBLIQUE DU TCH			
CHILE	Santiago	Spanish	Peso
REPÚBLICA DE CHILE			
CHINA	Peking	Mandarin Chinese	Yuan
ZHONGHUA RENMIN			
COLOMBIA	Bogota	Spanish	Peso
REPÚBLICA DE COLO			
COMOROS	Moroni	Shaafi Islam, French	CFA franc
JUMHURÎYAT AL-QUI	MUR AL-ITTHAD	DĪYAH AL-ISLĀMĪYAH	

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES.	CURRENCY
CONGO	Brazzaville	French, Bantu dialects	CFA franc
RÉPUBLIQUE POPULA	IRE DU CONGO)	
COSTA RICA	San Jose	Spanish	Colon
REPÚBLICA DE COST.	A RICA		
CUBA	Havana	Spanish	Peso
REPÚBLICA DE CUBA			
CYPRUS	Nicosia	Greek, Turkish, English	Pound
KIPRIAKI DIMOKRATIA			
KIBRIS CUMHURIYETI			
CZECHOSLOVAKIA	Prague	Czech, Slovak	Koruna
ČESKOSLOVENSKÁ S			
DENMARK	Copenhagen	Danish	Krone
KONGERIGET DANMA			
DJIBOUTI	Djibouti	French, Arabic	Franc
JUMHOURIYYA DJIBO			
DOMINICA	Roseau	English, French patois	East Caribbean
COMMONWEALTH OF	DOMINICA		dollar
DOMINICAN	Santo	Spanish	Peso
REPUBLIC	Domingo		
REPÚBLICA DOMINICA	ANA		
ECUADOR	Quito	Spanish, Quechuan, Jivaroan	Sucre
REPÚBLICA DEL ECU.	ADOR		
EGYPT	Cairo	Arabic, English	Pound
JUMHÜRÏYAH MISR A	AL-ARABIYA		
EL SALVADOR	San Salvador	Spanish, Nahuati	Colon
REPÚBLICA DE EL SA	ALVADOR		
EQUATORIAL GUINEA	Malabo	Spanish, Fang, English	Ekuele
REPÚBLICA DE GUIN	EA ECUATORIA	L	
ETHIOPIA	Addis Ababa	Amharic, Tigre, Galla, Arabic	Birr
HEBRETASEBAWIT ET	YOPIA	3 - , ,	
FIJI	Suva	English, Fijian, Hindustani	Dollar
DOMINION OF FIJI			
FINLAND	Helsinki	Finnish, Swedish	Markka
SUOMEN TASAVALTA			
FRANCE	Paris	French	Franc
RÉPUBLIQUE FRANÇA	AISE		

05.052

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES*	CURRENCY
GABON	Libreville	French, Bantu dialects	CFA franc
RÉPUBLIQUE GABONA	AISE		
THE GAMBIA	Banjul	English, Mandinka, Wolof	Dalasi
REPUBLIC OF THE GA	AMBIA		
EAST GERMANY	East Berlin	German	Mark
DEUTSCHE DEMOKRA	TISCHE REPUB	LIK	
WEST GERMANY	Bonn	German	Mark
BUNDESREPUBLIK DE	UTSCHLAND		
GHANA	Accra	English, tribal languages	Cedi
REPUBLIC OF GHANA	١		
GREECE	Athens	Greek	Drachma
ELLINIKI DIMOKRATIA			
GRENADA	St George's	English, French-African patois	East
OTATE OF ORESIANA			Caribbean
STATE OF GRENADA GUATEMALA			dollar
		Spanish, Indian dialects	Quetzal
REPÚBLICA DE GUAT GUINEA			
	Conakry	French, tribal languages	Syli
RÉPUBLIQUE DE GUII GUINEA-BISSAU			
	Bissau	Portuguese, Criolo	Peso
REPUBLICA DA GUIN			
	Georgetown	English, Amerindian dialects	Dollar
COOPERATIVE REPUB			
	Port-au-Prince	French, Creole	Gourde
RÉPUBLIQUE D'HAITI			
HONDURAS	Tegucigalpa	Spanish, Indian dialects	Lempira
REPUBLICA DE HOND HUNGARY			
	Budapest	Hungarian	Forint
MAGYAR NÉPKÖZTÁF			
ICELAND	Reykjavik	Icelandic	Krona
LÝOVELDIO ISLAND			
INDIA	New Delhi	Hindi, English, (16 languages)	Rupee
BHARAT			
INDONESIA	Jakarta	Bahasa Indonesian, Javanese	Rupiah
REPUBLIK INDONESIA			
IRAN	Teheran	Farsi, Turk, Kurdish, Arabic, English, French	Rial
JOMHORI-E-ISLAMI-E-	IRÂN		

• Official languages are shown in **bold** typeface

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES*	CURRENCY
IRAQ	Baghdad	Arabic, Kurdish	Dinar
AL JUMHOURIYA AL	'IRAQIA		
IRELAND	Dublin	English	Pound
EIRE			
ISRAEL	Jerusalem	Hebrew and Arabic, Yiddish	Shekel
MEDINAT ISRAEL			
ITALY	Rome	Italian	Lira
REPUBBLICA ITALIAN			
IVORY COAST		French, tribal languages	CFA franc
RÉPUBLIQUE DE LA			
JAMAICA	Kingston	English, Jamaican Creole	Dollar
JAPAN	Tokyo	Japanese	Yen
NIPPON			
JORDAN	Amman	Arabic, English	Dinar
AL MAMLAKA AL UI			
KENYA	Nairobi	Swahili, English	Shilling
JAMHURI YA KENYA			
KIRIBATI	Tarawa	Gilbertese and English	Australian dollar
REPUBLIC OF KIRIBA			
NORTH KOREA	Pyongyang	Korean	Won
CHOSUN MINCHU-CH			
SOUTH KOREA	Seoul	Korean	Won
TAEHAN MIN'GUK			
KUWAIT	Kuwait	Arabic	Dinar
DOWLAT AL-KUWAIT			A1 17
LAOS	Vientiane	Lao, French, English	New Kip
SATHALANALAT PAX			
LEBANON	Beirut	Arabic, French, Armenian	Pound
AL-JUMHOURIYA AL		Facilists Countries	Maloti
KINGDOM OF LESOT	Maseru	English, Sesotho	IVIOIDII
LIBERIA	Monrovia	English, tribal dialects	Dollar
REPUBLIC OF LIBERI		English, tribal dialects	Dollar
LIBYA	Tripoli	Arabic	Dinar
		BYA AL-SHABIYA AL-ISHTIRAI	
AL-VAIVIATINITATI AL	-ANADITA AL-LI	DIA AL-SHABITA AL-ISHTIKAI	NIA

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES.	CURRENCY
LIECHTENSTEIN	Vaduz	German, Alemannic dialect	Swiss franc
FÜRSTENTUM LIECHT	ENSTEIN		
LUXEMBOURG	Luxembourg	French, German, Luxembourgian	Franc
GRAND-DUCHÉ DE LI	JXEMBOURG		
MADAGASCAR	Antananarivo	Malagasy, French	Franc
REPOBLIKA DEMOKRA	ATIKA MALAGA	SY	
MALAWI	Lilongwe	English, Chichewa	Kwacha
REPUBLIC OF MALAV	VI		
MALAYSIA	Kuala Lumpur	Malay, English, Chinese, Indian	Ringgit
MALDIVES	Male	Divehi (Sinhalese dialect)	Rufiyaa
DIVEHI JUMHURIYA			
MALI	Bamako	French, Bambara	Franc
RÉPUBLIQUE DU MA	LI		
MALTA	Valletta	Maltese, English	Pound
REPUBBLIKA TA'MAL	ГА		
MAURITANIA	Nouakchott	French, Hassanya Arabic	Ouguiya
RÉPUBLIQUE ISLAMIC	QUE DE MAURI	TANIE	
MAURITIUS	Port Louis	English, French, Creole	Rupee
MEXICO	Mexico City	Spanish	Peso
ESTADOS UNIDOS M			. 555
MONACO	Monaco-Ville	French	French franc Monégasque
PRINCIPALITY OF MC	NACO		franc
MONGOLIA	Ulaanbaatar	Khalkha Mongolian, Russian Chinese	Tugrik
BÜGD NAYRAMDAKH	MONGOL ARD	ULS	
MOROCCO	Rabat	Arabic	Dirham
AL-MAMLAKA AL-MA	GHREBIA		
MOZAMBIQUE	Maputo	Portuguese, Bantu languages	Metical
REPUBLICA POPULAR	DE MOCAMBIO		
NAURU	Yaren	Nauruan, English	Australian dollar
NAOERO			
NEPAL	Kathmandu	Nepali, 12 others	Rupee
SRI NEPALA SARKAR			

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES.	CURRENCY
NETHERLANDS	Amsterdam	Dutch	Guilder
KONINKRIJK DER NE	DERLANDEN		
NEW ZEALAND	Wellington	English, Maori	Dollar
NICARAGUA	Managua	Spanish, English	Cordoba
REPUBLICA DE NICA	RAGUA		
NIGER	Niamey	French, Hausa, Djerma	CFA franc
RÉPUBLIQUE DU NIC	ER		
NIGERIA	Lagos	English, Hausa, Yoruba, Ibo	Naira
FEDERAL REPUBLIC	OF NIGERIA		
NORWAY	Oslo	Norwegian, Lapp	Krone
KONGERIKET NORGE			
OMAN	Muscat	Arabic, English, Urdu	Rial Omani
SALTANAT 'UMAN			
PAKISTAN	Islamabad	Urdu, English	Rupee
ISLAMIC REPUBLIC C	F PAKISTAN		
PANAMA	Panama	Spanish, English	Balboa
REPÚBLICA DE PANA	AMÁ		
PAPUA NEW GUINEA	Port Moresby	English, Melanesian Pidgin	Kina
PARAGUAY	Asunción	Spanish, Guarani	Guarani
REPUBLICA DEL PAR	AGUAY		
PERU	Lima	Spanish, Quechua	Sol
REPUBLICA DEL PER	U		
PHILIPPINES	Quezon City, Manila	Philipino, English	Peso
REPUBLIC OF THE P	HILIPPINES		
POLAND	Warsaw	Polish	Zloty
POLSKA RZECZPOSP	OLITA LUDOWA		
PORTUGAL	Lisbon	Portuguese	Escudo
RÉPUBLICA PORTUGI	JESA		
QATAR	Doha	Arabic, English	Riyal
DAWLET AL-QATAR			
ROMANIA	Bucharest	Romanian, Hungarian, German	Leu
REPUBLICA SOCIALIS	TĂ ROMÂNIA		
RWANDA	Kigali	French, Kinyarwandu	Franc
REPUBLIKA Y'U RWA	NDA		

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES.	CURRENCY
ST. CHRISTOPHER (ST. KITTS) AND NEVIS	Basseterre	English	East Caribbean dollar
ST. CHRISTOPHER NE	EVIS		
SAINT LUCIA	Castries	English, French patois	East Caribbean dollar
ST VINCENT AND THE GRENADINES	Kingstown	English	East Caribbean dollar
SAN MARINO	San Marino	Italian	Italian lira
SERENISSIMA REPUB	LICA DI SAN M	IARINO	
SAO TOME AND PRINCIPE	Sao Tome	Portuguese	Dobra
REPÚBLICA DEMOCR.	ÁTICA DE SAO	TOME E PRINCIPE	
SAUDI ARABIA	Riyadh	Arabic	Riyal
AL-MAMALAKA AL-'A	RABIYA AS-SA'	UDIYA	
SENEGAL	Dakar	French, tribal languages	CFA franc
RÉPUBLIQUE DU SÉM	NÉGAL		
SEYCHELLES	Victoria	English and French	Rupee
REPUBLIC OF SEYCH	ELLES	_	·
SIERRA LEONE	Freetown	English, tribal languages	Leone
REPUBLIC OF SIERRA	LEONE		
SINGAPORE	Singapore	Chinese, Malay, Tamil, English	Dollar
REPUBLIC OF SINGA			
SOLOMON ISLANDS	Honiara	English, Pidgin	Dollar
SOMALIA	Mogadishu	Somali, Arabic	Shilling
JAMHURIYADDA DIM	UGRADIGA SON	MALIYA	Ü
SOUTH AFRICA	Cape Town	Afrikaans, English	Rand
REPUBLIEK VAN SUII	D-AFRIKA	3	
SPAIN	Madrid	Spanish, Catalan	Peseta
ESPAÑA			
SRI LANKA	Colombo	Sinhala, Tamil, English	Rupee
SRI LANKA PRAJATH	ANTHRIKA SAN	MAJAVADI JANARAJAYA	
SUDAN	Khartoum	Arabic, tribal languages	Pound

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES*	CURRENCY
SURINAME	Paramaribo	Dutch, Sranan, English	Guilder
REPUBLIC OF SURIN	AME		
SWAZILAND	Mbabane	Siswati, English	Lilangeni
KINGDOM OF SWAZ	LAND		
SWEDEN	Stockholm	Swedish, Finnish	Krona
KONUNGARIKET SVE	RIGE		
SWITZERLAND	Bern	German, French, Italian	Franc
SWISS CONFEDERAT	ION		
SYRIA	Damascus	Arabic, Kurdish, Armenian	Pound
AL-JAMHOURIYA AL	ARABIA AS-SOL	JRIYA	
TAIWAN	Taipei	Mandarin Chinese, Taiwan,	New Taiwan
		Hakka dialects	dollar
CHUNG-HUA MIN-KU			
TANZANIA		Swahili, English	Shilling
JAMHURI YA MWUN		111111111111111111111111111111111111111	
THAILAND	Bangkok	Thai	Baht
MUANG THAI OR PE			
TOGO	Lomé	French	CFA franc
RÉPUBLIQUE TOGOL			
TONGA	Nuku'alofa	Tongan, English	Pa'anga
PULE 'ANGA TONGA			
TRINIDAD AND TOBAGO	Port-of-Spain	English, Hindi, French, Spanish	Dollar
REPUBLIC OF TRINID	AD AND TOBA		
TUNISIA	Tunis	Arabic, French	Dinar
AL JUMHURIYAH AT	-TUNISIYAH		
TURKEY	Ankara	Turkish, Kurdish, Arabic	Lira
TURKIYE CUMHURIYI	ETI		
TUVALU	Funafuti	Tuvaluan, English	Australian dollar
UGANDA	V	Facility of Control	
REPUBLIC OF UGAN	Kampala	English, Luganda, Swahili	Shilling
UNION OF SOVIET		D	D 11
SOCIALIST REPUBLICS	Moscow	Russian	Ruble
SOYUZ SOVETSKYKH	SOTSIALISTIC	HESKIKH RESPUBLIC	

COUNTRY	CAPITAL	PREDOMINANT LANGUAGES.	CURRENCY
UNITED ARAB EMIRATES	Abu Dhabi	Arabic, Farsi, English, Hindi, Urdu	Dirham
ITTIHĀD AL-IMARAT	AL-ARABIYAH		
UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND	London	English, Welsh, Gaelic	Pound
UNITED STATES OF AMERICA	Washington DC	English	Dollar
URUGUAY	Montevideo	Spanish	New Peso
REPÚBLICA ORIENTA	L DEL URUGUA	Y	
VANUATU RIPABLIK BLONG VA	Vila	Bislama, French and English	Australian dollar Vanuatu franc
VATICAN CITY	Vatican City	Italian, Latin	Lira
STATE OF THE VATI	,	italiali, Lätifi	LII'd
VENEZUELA	Caracas	Spanish, Indian languages	Bolivar
REPUBLICA DE VENE		Spanish, mulan languages	DUIIVAL
VIETNAM	Hanoi	Vietnamese, French, English	Dong
CONG HOA XA HOI			Dong
WESTERN SAMOA	Apia	Samoan, English	Tala
MALOTUTO'ATASI O			Turu
NORTH YEMEN	Sanaa	Arabic	Rial
AL-JUMHURIYAT AL-	ARABIYAH AL-Y		
SOUTH YEMEN	Aden	Arabic	Dinar
JUMHURIYAT AL-YAI	MAN AD-DIMUQ	RATIYAH ASH-SHA'BIYAN	
YUGOSLAVIA	Belgrade	Serbo-Croatian, Macedonian, Slovenian	Dinar
	ERATIVNA REPL	JBLIKA JUGOSLAVIJA	
ZAIRE	Kinshasa	French, Bantu dialects	Zaire
RÉPUBLIQUE DU ZAÏ	RE		
ZAMBIA	Lusaka	English, Bantu dialects	Kwacha
REPUBLIC OF ZAMBI	A	-	
ZIMBABWE	Harare	English, Shona, Sindebele	Dollar

06 HOME ECONOMICS AND HEALTH

Location of organs

06.001

1 Brain

2 Larynx 3 Trachea

4 Esophagus

5 Lungs

6 Heart 7 Liver 8 Spleen

9 Stomach 10 Kidney 11 Gall bladder 12 Large intestine 13 Small intestine 14 Rectum 15 Bladder

Size and weight of organs

06.002

A Brain 3lb B Heart 9.8oz

C Spleen 7oz D Liver 3lb 1oz

E Testes 0.4oz each (men) F Pancreas 2.9oz

G Kidneys 4.9oz each H Ovaries 0.1oz each (women)

I Average size man's hand

Each square on grid represents 5 square inches. Size and weights are based on average man. Organs in women and children are comparatively

smaller.

Dental chart

- A Primary teeth
- 1 Central incisor 2 Lateral incisor
- 3 Canine 4 First molar
- 5 Second molar B Permanent teeth
- 1 Central incisor

- 2 Lateral incisor 3 Canine
- 4 First premolar
- 5 Second premolar
- 6 First molar 7 Second molar
- 8 Third molar (wisdom tooth)

Growth charts: children

Weight/height ratio: men and women

A Women

B Men

a Large frame

b Medium frame

Pulse rate: body temperature

06.006

@DIAGRAM

Blood pressure: average normal pressures by age

06.007

A Systolic pressure B Diastolic pressure

Blood groups: parents and children

06.008

biood groups, parents and chin					06.008
B × B	B.0	A.AB		0	A.B.AB
· · ·	A.0	B.AB	ABX O	A.B	AB.O
A×AB A×AB	A.B.AB	0	AB× AB	A.B.AB	0
A × B	A.B.O.AB	None	B _× o	B.0	A.AB
×× →	A.0	B.AB	B×AB	A.B.AB	0
-	7	m	_	~	m

@DIAGRAM

Blood groups: donors and recipients

Immunization schedule for children

Calories: requirements and energy expenditure

06.011

CALORIES USED IN AVERAGE DAY (Male office worker)

Human expenditure of energy

Exercise: body types

Strength	Suppleness	Stamina	
0	0		Calisthenics
	0		Yoga
	0		Stretching
0	0	0	Dancing
0			Weight training
0	0	0	Aerobics
-		0	Walking
		0	Jogging
		0	Jumping rope
		0	Cycling
0		0	Racket sports
0	0	0	Swimming
0	0	0	Skiing
0	0	0	Martial arts

	MM	M	MA
	Ectomorph	Mesomorph	Endomorph
s	•	•	
	•	•	•
3	•	•	•
		•	•
ing		•	
	•		
	•	•	
	•	•	
ре	•	•	
	•	•	
rts	•	•	
9		•	•
		•	
s		•	

A Most suitable exercises for developing strength, stamina and suppleness B Most suitable exercises for different body types

Exercise: type of benefit

06.014

				_						_		_														_								
A Muscle strength ■ Muscle strength ■ Muscle strength ■ Muscle strength A Mobility and flexbility □ Heart/fung endurance	Activity	Baseball	Basketball	Beam (gymnastics)	Boxing	Cross-country running	Fencina	Field hockey	Floor exercises (gymnastics)	Football	Handball	High jump	Horizontal bar (gymnastics)	Horse (gymnastics)	Ice hockey	Judo	Karate	Long iump	Parallel bars (gymnastics)	Pole vault	Racketball	Rings (gymnastics)	Rowing	Skilling (cross-country)	Social	Squash	Swimming	Tennis	Throwing events	Volleyball	Waterpolo	Watersking	Weightlifting	Wrestling
	Legs	▼	▼ ■ ▽	▼ ∨	▼ ■ ▽	▼ ■ ▽	■ □	▼ ■ ▽	▼ ∨	■ ▽	▼ ■ ▽	Δ			■ ∇	▼ ■ ▽	▼ ■ ▽	▼ ∨	•		▼ ■ ▽		ŀ	4	-	-	-	▼ ■ ▽	▼ ∨	■ ▽	-	■ ▽		4 8 4
	Hips			4			4	4	4	4		4		4	•	4	4	4	4	4		4		4			4		▼					4
	Arms	4		4	▼ ■ ▽		4	4	▼ ■ ▽	۷	▼ ∇		▼ ■ ▽	▼ ■ ▽	Δ	▼ ■ ▽	▼ ■ ▽		▼ ■ ▽	▼ ∨			٠	4		•	▼ ■ ▽	▼ ∇	▼ ∇	▼ ■ ▽	■ ▽	■ ▽	■ □	▼ ■ ▽
Benefit	Trunk			◁	■ ▽				◁	◁		Δ	□	Δ	Δ	■ ▽	■ ▽	∇	Δ	▼ ∨		ŀ	4	4			■ ▽					-	■ ▽	▼ ■ ▽
	Back			⊲	■ ▽	-		-	∇	■ ∇		Δ	Δ	Δ	Δ	■ ▽	■ ∇	٥	∇	▼ ▽		- 1	4	1			■ ▽		∇		-	-	- 1	▼ ■ ▽
	Shoulders	4							4		4		▼ ■ ▽	■ ▽					▼ ■ ▽	▼ ∨		4	1			▼ ∇	▼ ■ ▽	▼ ∇	▼ ■ ▽	4	4	- 1	- 1	▼ ■ ▽
	Heart and lungs		0		0		0	0		_	0				0	_	_				-					0	0	_		_	0	0		-
			_	_	_																													

@DIAGRAM

Drugs and their effects

06.015

DIAGRAM

A Beef

1 Neck

2 Chuck short rib

3 Blade 4 Rib eye

5 Rib

6 Wing 7 T-bone

8 Porterhouse

9 Sirloin

10 Rump

11 Round

12 Heel of round

13 Hind shank

14 Sirloin tip

15 Flank 16 Plate

17 Short ribs

18 Brisket

19 Cross rib

20 Shoulder

21 Front shank

B Chicken

1 Wishbone

2 Breast

2 Breast 3 Drumstick (leg) 4 Thigh 5 Wing

6 Neck

Cuts of meat: pork and lamb

06.017

A Pork

1 Shoulder butt

2 Rib portion

3 Center cut 4 Tenderloin portion

5 Butt

6 Center cut 7 Shank portion

8 Foot 9 Shank

11 Side rib

12 Picnic shoulder

13 Hock

14 Jowl

2 Shoulder

1 Neck

3 Rib

4 Loin

5 Shank

6 Shank portion 7 Butt portion

8 Flank

9 Breast

Food: meat roasting times

TYPE OF MEAT		~~~	OVEN TEMPERATURE	MEAT THERMOMETER READING
		Coe		Degrees Fahrer
BEEF			₩ Rare 23–25	Rare 140°
	Standing rib	325°	▼ ★ Medium 27–30	Medium 160°
			▼ ▼ Well done 32–35	Well done 180°
			₩ Rare 28–30	Rare 140°
	Rolled rib	325°	Medium 32–35	Medium 160°
			Well done 40–45 Well done	Vell done 180°
			₩ Rare 18–20	Rare 140°
	Sirloin, rump,	325°	Medium 22–25	Medium 160°
			Well done 30–35	Well done 180°
	Tenderloin	425°	45-60 in total	Usually served rare
LAMB	Leg, loin,		\vdash	Medium 150°
	shoulder	325	Well done 25–30	Well done 180°
	Crown	325°	2 hours total	Usually served medium
PORK	Loin	350°	Well done 45	185°
	Shoulder	350°	Well done	185°
POULTRY	Chicken	325°	◆ Well done 25–30	180°
	Turkey	325°	Well done 20–25	180°
	Duck	325°	Well done 20–25	175°
	Goose	325°	Well done 25–30	175°
©DIAGRAM	2	Minutes 0	15 30 45 60	

Food: storage times in refrigerator

06.019

DDIAGRAM

Herbs 06.020

- 1 Basil Best with tomatoes, tomato sauces and salads. 2 Chives Best as a garnish, in salads and cold soups.
- 3 Dill The seeds are best used in pickles; the leaves with
- 3 Dill The seeds are best used in pickles; the leaves with vegetables, fish and cold soups.

 4 Marjoram Can be used instead of oregano. Best with green vegetables, chicken and salads.

 5 Mint Best used for mint sauce or jelly with lamb.
- Excellent with fruit drinks.

 6 Oregano A favorite in Italian dishes. Good in soups and salads.
- 7 Parsley Often used as a garnish: Good in white sauces, stews and cooked vegetables.
 8 Rosemary Best with lamb.
 9 Sage Good with pork. Best in stuffings, meat loaves and

- 10 Savory Good with bean salads and dishes.
 11 Tarragon Good with fish, chicken and for flavoring
- vinegar.

 12 Thyme Best in stews and stuffings.

Spices

為	Allspice	Flavor like a blend of cinnamon, cloves and nutmeg. Use in stews, sauces and marinades.
Ju .	Anise	Licorice flavor. Use sparingly in cookies and candies.
	Bay leaf	Use in stews, sauces, marinades and pickling.
	Caraway	Seeds used in baking and cooking, especially sauerkraut.
2	Cardamom	Use pod and seeds whole in spicy dishes like curries.
	Cinnamon	Use for flavoring cookies, puddings (especially apple dishes) and hot drinks.
1 Die	Cloves	Use whole in fruit dishes, baked ham and marinades.
**	Coriander	Use whole seeds in pickles; ground coriander in curries and spicy dishes.
	Cumin	Use ground in curries and hot spicy dishes.
<*	Ginger	Use to spice cookies, cakes, preserves and meat and vegetable dishes. Best used fresh.
8	Mace	The skin of the nutmeg shell. Use as a seasoning in meat, vegetable and fish dishes.
A	Nutmeg	Best used freshly grated with most dishes and hot drinks.
0 00 00 00 00 00 00 00 00 00 00 00 00 0	Pepper	Best used freshly ground. White is usually used in light- colored dishes. Black pepper is picked as an underripe berry and dried; white is picked ripe. Paprika is a milder red pepper; chilli and cayenne are hotter.
	Saffron	A cultivated yellow crocus. Use for coloring and flavoring in baking, rice dishes.
A.K.	Vanilla	Use seed pods for flavoring in puddings and baking.

Wine: identification of bottles and labels

Wine: serving temperatures

Glasses

06.024

2 Sherry 3 Champagne 4 Champagne

5 Punch

6 Beer mug

7 Iced tea

8 Water goblet 9 Water tumbler 10 Juice

11 Old-fashioned

12 Highball 13 Spirit shot

14 All purpose wine glass 15 All purpose wine glass

16 White wine

17 Hock 18 Red wine

19 Liqueur

20 Brandy

@DIAGRAM

Formal dinner setting

Glasses a Sherry b White wine c Red wine

2645978601

06.025

@DIAGRAM

Conversion tables: basic units

06.026

To convert miles to kilometers; multiply by 1,609 To convert kilometers to miles: multiply by 0.62137

SPEED

TEMPERATURE

To convert Fahrenheit to Celsius: subtract 32 then multiply by 5/9 To convert Celsius to Fahrenheit: multiply by % then add 32

LIQUIDS

Liters

To convert gallons to liters: multiply by 3.7853 To convert liters to gallons: multiply by 0.2642

Volume: liquid capacity

US pints		ÚK pints	US pints		liters
1.2010	1	0.8327	2.1134	1	0.4732
2.4020	2	1.6653	4.2269	2	0.9463
3.6030	3	2.4980	6.3403	3	1.4195
4.8039	4	3.3306	8.4537	4	1.8926
6.0049	5	4.1633	10.567	5	2.3658
7.2059	6	4.9959	12.681	6	2.8390
8.4069	7	5.8286	14.794	7	3.3121
9.6079	8	6.6612	16.907	8	3.7853

US gallons		UK gallons	gallons		liters	
1.2009	1	0.8327	0.2642	1	3.7853	
2.4019	2	1.6653	0.5284	2	7.5706	
3.6029	3	2.4980	0.7925	3	11.356	
4.8038	4	3.3307	1.0567	4	15.141	
6.0047	5	4.1634	1.3209	5	18.926	
7.2057	6	4.9960	1.5851	6	22.712	
8.4066	7	5.8287	1.8492	7	26.497	
9.6076	8	6.6614	2.1134	8	30.282	
10.809	9	7.4941	2.3776	9	34.067	
18.014	15	12.490	3.9627	15	56.780	
30.024	25	20.817	6.6045	25	94.633	
42.033	35	29.144	9.2463	35	132.49	
54.043	45	37.470	11.888	45	170.34	
66.052	55	45.797	14.530	55	208.25	
78.062	65	54.124	17.172	65	246.04	
90.071	75	62.451	19.813	75	283.90	
102.08	85	70.777	22.455	85	319.46	
114.09	95	79.104	25.097	95	359.60	

US flui ounce:		UK fluid ounces	US fluid ounces		centi- liters
0.9608	1	1.0408	0.3381	1	2.9573
1.9216	2	2.0816	0.6763	2	5.9145
2.8824	3	3.1224	1.0144	3	8.8718
3.8431	4	4.1633	1.3526	4	11.829
4.8039	5	5.2041	1.6907	5	14.786
5.7647	6	6.2449	2.0289	6	17.744
6.7255	7	7.2857	2.3670	7	20.701
7.6863	8	8.3265	2.7052	8	23.658
8.6471	9	9.3673	3.0433	9	26.615

a Bucket b Pressure cooker c Large saucepan

c Large saucepan
d Casserole
e Medium saucepan
f Mixing bowl
g Thermos (4-cup)
h Wine bottle

i Beer bottle

j Wine glass

¹ Quick comparison of capacity units 2 Conversion tables: liquid capacity

Measuring temperature

06.028

	·				00.02
%	С	Fr	K	R	CIF
	100 / 2	12 80	373.16		100 212
~~ /	90	90 70	363.16 —	661.67 — 651.67 —	95 — 203 90 — 194
	80 -	80 70 60 —	353.16	641.67 — 631.67 —	85 — 185 80 — 176 75 — 167
	1 ~ 71	60	343.16	621.67 —	70 — 158
<u></u>		40 50 —	333.16	601.67 — 591.67 —	60 — 140
	50 - 1	20 40 —	323.16	581.67 — 571.67 —	50 — 122
	-1	00 30 —	313.16	561.67	40 — 104
T	30 - 5	1	303.16	551.67 —	30 — 86
	20 5	30	293.16	531.67 — 521.67 —	20 — 68
纝	10 5	10	283.16	511.67 — 501.67 —	10 — 50 5 — 41
***	0 - :	0	273.16	491.67	0 32
٦	-10	20	263.16	481.67 — 471.67 —	-5 -23 -10 -14
•	-20	-10 -20	253.16	461.67 — 451.67 —	-15
	-30	-20 -30 -30 -30 -	243.16 —	441.67 —	-3022 -3531
-	-40	-40 -30 -	233.16	421.67 —	-

C Centigrade (Celsius) F Fahrenheit r Réaumur K Kelvin R Rankine

Clothing sizes

Cont.	0	1	2	3	4	5	41	42	43	44	45	46	38	38	39	39	40	41	
N Y	00	81/2	6	91/2	10	101/2	7	71/2	81/2	91/2	101/2	11	41/2	2	51/2	9	61/2	7	
USA	∞	81/2	6	91/2	10	101/2	∞	81/2	91/2	101/2	111/2	12	9	61/2	7	71/2	∞	81/2	
	Ladies'	hosiery		3	=		Men's shoes		ì	m			Women's	shoes		1	1		

Cont.	46	48	50	52	54	99	38	40	42	44	46	48	36	37	38	33	41	42	43
UK	36	38	40	42	44	46	10	12	14	16	18	20	14	141/2	15	151/2	16	161/2	17
NSA	36	38	40	42	44	46	8	10	12	14	16	18	14	141/2	15	151/2	16	161/2	17
	Men's suits	and overcoats					Women's suits	and dresses	Ē	ر ٦			Men's shirts		P	• • •			

Basic body measurements

06.030

1 Bust (fullest part)

3 Skirtlength (waist to hem)

Center back (nape of neck to waist)
 Center front (base of neck to waist)

6 Sleeve length (shoulder to wrist)

7 Wrist 8 Hips (7" below waist) 9 Hips (fullest part)

Sewing stitches: 1

06.031

1 Backstitch 2 Basket 3 Blanket

4 Bullion 5 Bundle

6 Buttonhole 7 Chain

8 Chevron

9 Cross

10 Daisy 11 Double cross

12 Feather 13 Fern 14 Fishbone 15 Fly

Sewing stitches: 2

06.032

1 French knot

2 Herringbone 3 Honeycomb 4 Leaf 5 Long and short

6 Long-armed cross 7 Open chain 8 Roll

10 Running 11 Satin 12 Satin dart

13 Seed 14 Stem

15 Straight

9 Rumanian

Crocheting: 1

06.033

Basic chain stitch (ch)

A Make a loose slipknot round hook. Pull both ends of

A Make a loose slipknot round nook. Pull both ends or yarn to tighten.

B Hold yarn tight round left hand.
C Catch yarn with hook and pull through to form a loop.
D Catch yarn again to form another loop.
Repeat until you have length of chain required.

Single crochet (sc)

1a Insert hook in chain to left of loop. Catch yarn. Draw up to form second loop.

1b Pull yarn through both loops. Half-double crochet (hdc)

2a Bring yarn forward. Insert hook in third chain. 2b Pull yarn through all three loops. Double crochet (dc)

3a Bring yarn forward. Insert hook in fourth chain. Catch yarn to make loop. Three loops on hook. Pull yarn

forward. Draw yarn through two loops.

3b Pull yarn forward and draw through last two loops. Triple crochet (tr) 4a Pull yarn over twice. Insert hook in fifth chain, Catch

yarn to make loop. Four loops on hook. Pull yarn forward. Draw two loops. Yarn forward, Draw two more loops. 4b Pull yarn over and draw through last two loops. Slip stitch (sl st)

5a Insert hook in stitch. Catch yarn to make loop. 5b Draw this loop through loop on hook.

Knitting: 1

06.035

1 Measure yarn, allowing 1" for each stitch required, and make a slipknot.

make a sipxnor.

2 Slide knot onto needle and tighten.

3 Wrap yarn from ball over left index finger and measured length on thumb.

4 Insert needle in loop on thumb.

5 Catch yarn on index finger, draw it through thumb loop with the needle and tighten by pulling end of thumb yarn.

Repeat 4 and 5 for required number of stitches.

Knitting: 2

06.036

1 Knit stitch

1a Hold row of stitches in left hand. Insert needle into stitch from front to back. Wrap yarn under and over needle.

- needle.

 1b Pull loop through the stitch. Push old stitch off left needle.

 1c Keep new stitch on right needle and repeat until row finished.

 2 Purl stitch
- 2a Hold yarn in front and insert needle from back into stitch.
 2b Wrap yarn over and under needle and pull loop through stitch.

2c Push stitch off left needle.

3 Joining new ball

Begin new ball of yarn at beginning of row. Tie end of yarn to new ball. Tighten knot. Ends can be weaved in later.

4 Casting off

4a Knit first two stitches on row, slip first stitch over second stitch and slip off needle. Knit the next stitch and slip previous one over it and off needle.

4b Repeat until one stitch remains. Pull yarn through it and weave into side edge.

AND VIOLE

Map of the hand

- 2 Solomon's ring
- 2 Solomon's ring 3 Phalange of will 4 Mount of Jupiter 5 Girdle of Venus 6 Phalange of logic
- 7 Lower mount of Mars
- 8 Lifeline
- 9 Line of Mars 10 Mount of Venus
- 11 Via Lasciva
 - 12 Rascettes
 - 13 Finger of Saturn

 - 14 Finger of Apollo 15 Finger of Mercury 16 Ring of Saturn

 - 17 Mount of Saturn 18 Mount of Apollo
- 19 Heartline 20 Mount of Mercury
- 21 Headline
- 22 Child lines
- 23 Line of marriage
- 24 Hepatica
- 25 Line of intuition 26 Upper mount of Mars
- 27 Line of fate
- 28 Line of the Sun 29 Mount of the Moon

Birthstones

06.038

MONTH	ANCIENT	MODERN	
January	Garnet	Garnet	
February	Amethyst	Amethyst	
March	Jasper	Aquamarine or Bloodstone	
April	Sapphire	Diamond	
May	Agate	Emerald	
June	Emerald	Pearl, Moonstone or Alexandrite	
July	Onyx	Ruby	
August	Carnelian	Peridot or Sardonyx	
September	Chrysolite	Sapphire	
October	Aquamarine	Opal or Tourmaline	AMMINION WITTER
November	Topaz	Торах	
December	Ruby	Turquoise or Zircon	

@DIAGRAM

Wedding anniversaries and gifts

NUMBER	TRADITIONAL	MODERN
1st	Paper	Clocks
2nd	Cotton	China
3rd	Leather	Crystal and glass
4th	Linen (silk)	Electrical appliances
5th	Wood	Silverware
6th	Iron	Wood
7th	Wool (copper)	Desk sets
8th	Bronze	Linens and lace
9th	Pottery (china)	Leather
10th	Tin (aluminum)	Diamond jewelry
11th	Steel	Fashion jewelry, accessories
12th	Silk	Pearls or colored gems
13th	Lace	Textiles and furs
14th	lvory	Gold jewelry
15th	Crystal	Watches
20th	China	Platinum
25th	Silver	Sterling silver jubilee
30th	Pearl	Diamond
35th	Coral (jade)	Jade
40th	Ruby	Ruby
45th	Sapphire	Sapphire
50th	Gold	Gold
55th	Emerald	Emerald
60th	Diamond	Diamond

INDFX

A	
Acres, conversion to hectare 4.026	4
Aerials, radio 2.016 Africa, size 1.017	
Air, composition of 2.007; weight of 2.008	
Algae, classification of 3.002 lowest depths found at 3.055	;
Alphabet, American manual 5.006; Braille 5.005; Greek 5.002; Hebrew 5.003; Russian 5.004	
Altitude, and ecosystems 3.042	
Amino acids, chart of 3.035 Amphibians, characteristics 3.020; classification of 3.009, 3.013; evolution of 1.004, 3.048; highest levels found at 3.055; metamorphosis in 3.026;	
size of 3.051 Angles, names of 4.036 Animals, characteristics of	
Animals, characteristics of 3.018-3.020; circulatory system of 3.031; colors of classification of oldution of 1.002-1.005; excretion by 3.032; gestation periods of 3.053; highest and lowest levels found at 3.055; life processes of 3.021, 3.024- 3.026; life spans of 3.054; regional distribution 3.039 3.023; respiratory system 3.030; sizes of 3.069-3.051 speeds of 3.056-3.057 Anniversaries, wedding 6.03 Architecture, columns 5.04 Architecture, columns 5.04 Arc	;
3.008; highest and lowest levels found at 3.055; numbers of 3.010; size of 3.051	
Asia, size of 1.016 Astrological symbols, Chine 4.008	
Astronomy, symbols of 4.00 Atmosphere, composition and structure of 1.031 Atmospheric pressure, diagrams showing 2.008 Atoms, in polymers 2.027; structure of 2.003	5
В	

Bacteria, classification of 3.002 Ballet positions 5.017 Beaufort Scale, showing windspeeds 1.020 Beds, styles of 5.025 Beef, cuts of 6.016 Bills, passage through US parliament 5.046

Birds, characteristics of 3.020: classification of 3,009. 3.015: evolution of 1.002-1.005, 3.048; excretion by 3.032; gestation period of 3.053; highest and lowest levels found at 3.055

Birthstones 6.038 Blood groups 6.008-6.009 Blood pressure, by age 6.007 Body, human, measurements of 6.030; organs of 6.001-6.002 Body temperature, and pulse

rate 6.006 Boiling points, of various substances 2.032 Bottles, wine 6.022 Braille alphabet 5,005 Butterfly, metamorphosis of 3.024

Calendar, perpetual 4.010-4.017 Calendars, various 4.009 Calories, food values 3.036: human needs 3.037, 6.011 Carbon, forms of 2,028 Carbon dioxide, preparation of 2.028, 2.030 Celestial objects, positions of 2 0/11

Celsius, conversion to Fahrenheit 4.033, 6.026: conversion to Kelvin 4.033: temperature measurement Centiliters, conversion to fluid ounces 4.030, 6.027 Centimeters, conversion to

Chairs, styles of 5,026 Chemical substances. formulae of 2.031 Chicken, cuts of 6.016 Children, growth of 6.004; immunization of 6.010 Chinese astrological symbols 4.008

inches 4.025

Chinese year dates 4.008 Chlorine, preparation of 2.030 Chordates, classification of 3 009 Circles, degrees in 4.036;

parts of 4.035 Circuits, electric 2.017-2 018

Circulatory systems, various 3.027, 3.031 Cities, mileages between 1.045-1.048; USA 1.043;

World 1,044 Climate, by region 3.042 Clothes, men 5.019: sizes 6.029: women 5.018 Clouds, in a depression 1.029: types 1,030 Coal, uses of 2,026 Columns, architectural 5.023 Compound interest, tables 4 022

Conductor, orchestral 5.013 Conifers, classification of 3.005-3.006

Constants, physical 2.001 Constellations of northern sky 2.042; of southern sky 2.043

Continents, divided into countries 1.015-1.018evolution of 1.008; size of 1.009 Constitution, of USA 5.040

Countries, capitals of 5.049-5.058; currency of 5.049-5.058; languages of 5.049-5.058; largest 1.013; ranked by size 1.015-1.018; emallort 1 014

Conversion tables, area 4.026: length/distance 4 025 6 026: liquid 4.030-4.032; speed 4.034; volume 4.027; weight 4.028-4.029 Crocheting 6.033-6.034

Crystals, structure of 2.004 Cube roots, value of 4 024 Cubic centimeters,

conversion to cubic inches Cubic feet, conversion to cubic meters 4.027 Cubic inches, conversion to cubic centimeters 4.027 Cubic meters, conversion to cubic feet 4.027 Currents, and magnetic fields Cycads, classification of

3.005-3.006

Decibels, and noise 2.015 Decimals, equivalents of fractions 4.021 Department of State, USA 5 044 Degrees, in angles 4.036 Diamond, structure of 2.028 Digestive system, in humans 3 027-3 028 Dinner setting, formal 6,025 Diseases, immunization against 6.010 Distance, conversion table 6.026 Distances, between cities 1.045-1.048 Drilling, oil 2.033-2.034 Drugs, effects of 6.015

Earth, biogeographical regions of 3.039; evolution of 1.008; structure of 1.007; types of vegetation of 3.040 Earthquakes, causes of 1.024; scale of 1.025 Echinoderms, classification of 3.008; numbers of 3.010 Eclipse, of moon 2.048; of sun 2.047 Ecosystems 3.042 Electricity, transmission and distribution 2.037 Electrostatics, diagrams showing 2,020

Elements, list of 2,006; on Periodic Table 2.005 Endocrine system, human

Energy, alternative 2.039: from food 3,036; human needs for 3.037; 6.011-6.012; solar 2.009, 2.039-2.040: types 3.038 Epochs, geological, life forms

during 1.002-1.003: mountain formation during 1,003; timescale 1,001 Eras, geological, evolution

during 1.005; life forms during 1.002-1.003; mountain formation during 1.003; timescale 1.001 Erosion, marine 1.038; soil 1.034; and valley formation

1.035 Europe, size of 1.018 Evolution, 1.004-1.006, 3.048 Excretion, of nitrogenous products 3.032

Excretory system, human

Exercise, benefits from 6.014; related to body types 6.013 Eye, structure of 2.013; in various creatures 3.033

Fahrenheit, conversion to Celsius 4.033, 6.026; conversion to Kelvin 4 033: temperature measurement

Fashion, men 5.019; women 5.018

Faults, geological 1.028 Feet, conversion to meters

Ferns, characteristics of 3.017, classification of 3.005-3.006 Fields, electric 2.020; magnetic 2.021

Fish, characteristics of 3.020; classification of 3.009, 3.012; evolution of 1.004-1.005, 3.048; in food webs 3.046-3.047; lowest level found at 3.055; nitrogenous excretion by 3.032; respiratory system of 3.030; sizes of 3.045, 3.051

Flowering plants, characteristics of 3.017: classification of 3.005-3.007; evolution of 3.048

Fluid ounces, conversion to centiliters 4.030, 6.027 Folds, geological 1.027 Food, cuts of meat 6.016-6.017; energy value of 3.036; meat roasting times 6.018; storage times 6.019 Food web, freshwater 3.047: marine 3.046; woodland

3.043 Formulae, chemical 2.031 Fractions, expressed as

decimals 4.021; expressed as percentages 4.019

Frequency, radio 2.016 Fungi, classification of 3.001. 3.004 Furniture, styles of beds

5.025: styles of chairs 5.026 Fuses, electrical 2.018

G

Gallons, conversion to liters 4.032.6.026-6.027 Gases, in atmosphere 1.031; in breathing 2.007; list of 2.006; on Periodic table 2.005; preparation of 2.030 Geological time periods,

diagram of 1.001; events during 1.002-1.005 Gestation time, of reptiles, birds and mammals 3 053 Gifts, for wedding anniversaries 6.039 Ginkgoes, classification of 3.005-3.006 Glacier, parts of 1.037 Glasses, shapes of 6 024 Government, USA 5.040-5.046

Grams, conversion to ounces 4.028 Graphite, structure of 2.028 Greek alphabet 5,002 Gregorian calendar 4.009 Growth, of children 6.004

Hebrew alphabet 5.003 Hebrew calendar 4.009 Hectares, conversion to acres 4.026 Height, and weight of humans 6.005 Herbs, types of 6.020 Hosiery, sizes 6.029 House of Representatives, USA 5.040 5.042 Human body, location of organs 6.001; size and weight of organs 6.002 Humans, body proportions 5.021; body systems 3.027-3.031; energy needs 3.037; evolution of 1.002-1.003,

Hand, lines on 6.037

Heat, transfer of 2.010

Hydroelectric power 2.036 Hydrogen, preparation of 2.030 Hydrological cycle 1.032

1.005-1.006

Image, formed by lenses 2.012 Immunization, schedule for children 6.010 Inches, conversion to centimeters 4.025 Incubation times, various animals 3.053 Indo-European languages, family of 5.001

Insects, circulatory system of 3.031: classification of 3.011; evolution of 1 002-1 005-3.048; excretion by 3.032; metamorphosis of 3.024-3.025; numbers of 3.010 Instruments, band 5.015; jazz and rock 5.016; orchestral 5.014

Interest, compound 4.022; simple 4.023 Invertebrates, characteristics of 3.018; classification of

3.008 Isotopes, radio 2.024

Jazz band, instruments of Judiciary, USA 5.040, 5.045

Kelvin, conversion to Fahrenheit and Celsius 4.033; temperature measurement 6 028 Key signatures, in music 5.012 Kilograms, conversion to pounds 4.028 Kilometers, conversion to miles 4.025, 6.026 Kilometers per hour,

conversion to miles per hour 4.034, 6.026; conversion to knots 4,034 Kingdoms, of living organisms 3.001 Kings, of England and Great

Britain 5.031 Knitting, 6.035-6.036 Knots, conversion to kilometers per hour 4.034; conversion to miles per hour 4.034

Lamb, cuts of 6.017 Languages, Indo-European family 5.001 Latitude, and ecosystems 3.042 Lenses 2.012 Length, conversion tables Life spans, of animals 3.054 Lighting types of 5.024 Liquid, conversion tables 4.030-4.032, 6.026-6.028 Liters, conversion to gallons 4.032, 6.026-6.027 conversion to pints 4.031, Liverworts, characteristics of

3.017; classification of 3.005-3.006 Locomotory system, human

Locust, metamorphosis of

Logic gates, electronic 2.019 Long sight 2.013

Magnetic fields 2 021 Mammals, characteristics of 3.020: circulatory system of 3.031; classification of 3.009 3.016; evolution of 1.002-1.005, 3.048; excretion by 3.032; gestation time of 3.053; highest and lowest levels found at 3,055; sizes of 3.051

Man, body systems in 3.027-3.031; classification of 3.009; energy needs of 3.037; evolution of 1.006, 3.048; sight in 3.033; size of

Manual alphabet, North American 5 006 Manual numbers, North American 5 007

3.051

Marine organisms, in food web 3.046; sizes of 3.045 Marriage, in USA 5.047-5.048 Mathematical symbols

4.004 Meat, cuts of 6.016-6.018 Melting points, of various substances 2.032 Messenger RNA codons 3.034 Metals, list of 2.006; on Periodic table 2 005 Metamorphosis, in amphibians 3.026; in

insects 3.024-3.025 Meters, conversion to feet and vards 4.025 Microscope, capabilities of 3 050

Miles, conversion to kilometers 4.025, 6.026 Miles per hour, conversion to kilometers per hour 4.034, 6.026: conversion to knots 4.034 Military band, instruments of

5.015

Minerals, in bottled water 2.007

Moisture, movement of in atmosphere 1.032 Molecules, structure of 2,003 Mollusks, characteristics of 3.018: classification of 3.008; numbers of 3.010: size of 3.051 Monera, classification of

3.001-3.002 Moon, eclipse of 2.048: and eclipse of sun 2.047; phases

of 2.049 Morse code 5.008 Moslem calendar 4.009 Mosses, classification of 3.005-3.006

Motion, graphs showing 2.002 Mountains, as climatic region 3.042: evolution of 1.011 formation of 1.026; highest

Multiplication table 4.018 Music, conductor's movements 5.013: instruments of jazz and rock bands 5.016; instruments of marching band 5.015; instruments of orchestra 5.014; notation of 5.010-5.012; and sound waves

Nervous system, human 3.027 Nitrogen, as excreted by animals 3.032 Noise, decibel ratings of 2.015 North America, highest mountains 1.011: longest rivers 1.010: size of 1.009. North American manual alphabet 5.006

North American manual numbers 5.007 Notes, musical 5.010-5.012 Nuclear reactor 2.038 Numbers, systems of 4.002 Numerals, Roman 4,001 Numerical prefixes 4.003

Ocean, organisms in 3.045; zones of 3,044 Oceania, size of 1,016 Oil, production of 2.033-2.034; refining 2.035; uses of 2.025 Orchestra, instruments of 5.014; layout of 5.014 Organisms, during geological time periods 3.049 Organs, of human body, 6.001-6.002 Ounces, conversion to grams 4.028 Ova, of various species 3.023 Oxygen, preparation of 2.030

Percentages, equivalents of

Periods, geological 1.001-

as fractions 4.020

fractions 4.019; expressed

1 005

Perpetual calendar 4.010-4.017 Perspective 5.022 Pints, conversion to liters Planets, distance from Sun 2 044 Plants, characteristics of 3.017; classification of 3.001, 3.005; evolution of 1.002-1.005, 3.048; families of 3.007; highest level found at 3.055; numbers of 3.006; sizes of 3.052 Polygons, regular 4.037 Polymers 2,027 Polythene, production of Popes, of 19th and 20th centuries 5.032 Population, comparative

1.041; of world cities 1.040,

1.043-1.044

Pork, cuts of 6,017

Pounds, conversion to kilograms 4.028 Presidency, USA. organization of 5.040, 5.043 Presidents, of USA 5,027-5.030 Pressure, atmospheric 2,008 Protista, classification of 3.001, 3.003; evolution 3.048 Pulse rate, and body temperature 6.006

Quadrilaterals, types of 4.038 Quantities, physical 2.001 Queens, of England and Great

Radiation, types of 2,022

Radio aerials 2.016

Radioactivity 2.022-2.024

Radio waves 2.016 Rainfall, effect on vegetation 3.041 Rankine, temperature measurement 6.028 Réaumur, temperature measurement 6.028 Refining, oil 2.035 Religions, symbols of 4.006 Reproduction, of various species 3.022 Reproductive system, human 3.027 Reptiles, characteristics of 3.020; classification of 3.009 3.014 evolution of 1.004, gestation period of 3.053. highest and lowest levels found at 3.055 Respiratory system, in animals 3.030; human 3.027, 3.030

Rhombic sulfur, production of Rivers, development of 1.036; formation of valley 1.035;

longest 1.010 Rock band, instruments of 5.016 Roman numerals 4.001 Root values 4.024 Russian alphabet 5.004

Sand dunes, formation of Scales, musical 2.014 Seals, of American states 5.035-5.039 Seasons 1.022 Semaphore 5.009 Senate, USA 5.040-5.041 Sewing, stitches 6.031-6.032 Shakespeare, William, plays of 5.033 Shoes, sizes of 6,029 Short sight 2.013 Sight, in various creatures

Sign language, North American 5.006 Simple interest, tables 4.023 Sizes, of animals 3.051; of human body 5.021; of organisms 3.050; of plants 3.052 Soil, erosion of 1.034

Solar energy 2.009, 2.039— 2.040 Solids, geometric 4.039—4.042 Sound waves 2.014 South America, size of 1.015

Spectrum, electromagnetic 2.011 Speed, conversion tables 4.034, 6.026 Spermatozoa, of various

species 3.023
Spices, types of 6.021
Sponges, characteristics of 3.018; classification of 3.008; numbers of 3.010
Square inches, conversion to square centimeters 4.026
Square kilometers, conversion to square

miles 4.026
Square meters, conversion to square yards 4.026
Square miles, conversion to square kilometers 4.026
Square roots, values of 4.024
Square yards, conversion to

square meters 4.026 Staff, musical 5.010 Stars, comparative size 2.046; constellations of 2.042– 2.043

States of America, area 1.042; dates of entry into the Union 5.034; seals of 5.035– 5.039

Stitches, crochet 6.033–6.034; knitting 6.035–6.036; sewing 6.031–6.032 Storage, of food 6.019 Sulfur, types of 2.029 Sulfur dioxide, preparation of

2.029–2.030
Sun, distances of planets from
2.044; eclipses of 2.047–
2.048; as energy source
2.009; and other stars 2.046
Symbols, astronomical 4.005;
Chinese astrological 4.008;
mathematical 4.004;
musical 5.011; religious
4.006

Т

Teeth, human 6.003 Television waves 2.016 Temperature, conversion tables 4.033, 6.026, 6.028; effect on vegetation 3.041; for serving wine 6.023 Temperatures, in USA 1.049 Tidal energy 2.039 Tides, causes of 1.021 Time periods, causes of 1.021 Time zones, World 1.050 Tonnes, conversion to tons 4.029 Tons, conversion to tonnes 4.029 Triangles, types of 4.037– 4.038

Tropical rain forest 1.033 Truth tables, electronic 2.019

U

United States of America, cities of 1.043–1.044, cities of 1.043–1.044, constitution of 5.040–5.045; dates of entry into Union 5.044, sovernment of 5.045–5.048; powerment of 5.045–5.048; highest waterfall 1.012; mileages between cities 1.045; population 1.040; presidents of 5.027–5.030; size of 1.013; states of 1.042, 5.035–5.039 temperatures

V

Valleys, formation of 1.035—
1.036
Vases, shapes of 5.020
Vegetation, distribution of 3.040, types of 3.041—3.042
Vertebrates, characteristics of 3.020; numbers of 3.010
Volcanoes, workings of 1.023
Volume, conversion tables
4.027, 6.027; of solids 4.042

W

Water, in foods 2.007; in human body 2.007 Waterfalls, highest 1.012 Waves, electromagnetic 2.011 energy from 2.039; radio 2.016; sound 2.014; television 2.016 Wedding anniversaries 6.039 Weight, conversion tables 4.028-4.029; and height of humans 6.005 Winds, atmospheric 1.019; energy from 2.039; speeds of 1.020 Wine, bottles and labels 6.022; serving temperatures Wiring, electrical 2.018 Woodland food web 3.043 World, countries of 5.049-

5.058
Worms, characteristics of 3.018; circulatory systems of 3.031; classification of 3.008; numbers of 3.010

Υ

Yards, conversion to meters 4.025 Year dates, Chinese 4.008

4

Zodiac, signs of 4.007

