

Arquitectura de Sistemas e Computadores I

1º Frequência

Licenciatura em Engenharia Informática

27 de Março de 2012

Considere um processador MIPS32 com ordenação de bytes **little endian**. Registos: zero, at, v0-v1, a0-a3, t0-t7, s0-s7, t8-t9, k0-k1, gp, sp, fp/s8, ra.

- 1. Considere a função xpto apresentada em baixo. Suponha que a função é carregada em memória no endereço 0x00400010 e o array A é carregado no endereço 0x10008004.
 - (a) Quantos bytes ocupa este programa em memória? Qual o endereço correspondente à label L2?
 - (b) Analise a função xpto e explique qual a sua finalidade (pretende-se que explique o que faz a função como um todo e não uma descrição do que fazem as instruções. Por ex. calcula o factorial, converte string para maiúsculas, etc).
 - (c) Escreva uma função myfunction que invoque xpto passando como argumento o array A.
 - (d) No caso de ser passado o array ${\tt A}$ como argumento, indique quais as alterações feitas em memória e o valor devolvido pela função.
 - (e) Preencha o conteúdo de cada byte na tabela da direita antes e depois da função executar (use um traço caso não conheça o valor).
 - (f) Quantas instruções são executadas? Assumindo que cada instrução é executada num ciclo de relógio, e que a frequência de relógio é de 100MHz, quanto tempo demora a execução?
 - (g) Optimize o código e calcule o speedup (quantas vezes é mais rápido?).

.data	Endereço Antes	Depois
A: .word 1, -1, 2, -2	0x10008013	I
	0x10008012	I
.text	0x10008011	I
	0x10008010	1
# Args:	0x1000800f	1
# a0 - array address	0x1000800e	1
# a1 - number of elements	0x1000800d	1
xpto:	0x1000800c	1
or \$v0, \$zero, \$zero	0x1000800b	1
L1: lw \$t0, 0(\$a0)	0x1000800a	1
slt \$t0, \$t0, \$zero	0x10008009	1
beq \$t0, \$zero, L2	0x10008008	1
nop	0x10008007	1
sw \$zero, 0(\$a0)	0x10008006	1
addi \$v0, \$v0, 1	0x10008005	1
L2: addi \$a0, \$a0, 4	0x10008004	1
addi \$a1, \$a1, -1	0x10008003	I
bne \$a1, \$zero, L1	0x10008002	I
nop	0x10008001	I
jr \$ra	0x10008000	1
nop	0x10007fff	1
# end of xpto		

- 2. Converta as pseudo-instruções seguintes para instruções reais MIPS:
 - (a) li \$t0, 0x10008004
 - (b) bgt \$t0, \$t1, L1
 - (c) move \$t0, \$t1