2,8,8,18

Lewis: Only valence electrons

(Electrons have a negative charge. If the ion is negatively charged, it means it has more electrons. If an ion is positively charged, it means it is missing electrons)

Protons: Positive charge Electrons: Negative charge Neutrons: No charge

C11 - 1.2 - # Atoms Notes

How many of each atom are there in the following molecules?

NaCl Li_2O Cd_3P_2 Li(OH)

 Na: 1
 Li: 2
 Cd: 3
 Li: 1

 Cl: 1
 P: 2
 O: 1

 $1 molecule Li₂O \times \frac{2 atoms Li}{1 molecule Li₂O} = 2 atoms Li$

 $1 \, molecule \, Li_2O \times \frac{1 \, atoms \, O}{1 \, molecule \, Li_2O} = 1 \, atoms \, O$

(OH) $(OH)_2$ H_2O $(H_2O)_2$

0:1 0:2 H:2 H:4 H:1 H:2 0:1 0:2

Double whats inside Brackets Double whats

 $Fe(C_2O_4)_3$

Fe: 1 C: 6 O: 12

Triple whats inside Brackets

2NaCl	$3Li_2O$	$4(H_2O)_2$	$5Fe(C_2O_4)_3$
Na: 2 Cl: 2	Li: 6 O: 3	H: 16 O: 8	Fe: 5 C: 30 O: 72
Double the whole thing	Triple the whole thing	Quadruple the whole thing	Multiply by 5

How many molecules of Fe_2O_3 if you have 6 atoms of Fe??

$$6 \ atoms \ Fe \times \frac{1 \ molecule \ Fe_2O_3}{2 \ atoms \ Fe} = 3 molecules \ Fe_2O_3$$

C11 - 1.2 - Ionic Bonding 1:1 Transfer Electrons Notes

Lithium and fluorine react to produce lithium fluoride.

- -losing an electron, a negative charge, will make you more positive charged.
- -gaining an electron, a negative charge, will make you more negatively charged

Elements are more stable with a full outermost shell (valence shell). Elements have a tendency to react with each other in certain proportions based on this fact. This is called the combining capacity.

An elements ionic charge is exactly the number of electrons it needs to give up or accept in order to have a full valence shell

C11 - 1.2 - Ionic Bonding 2:1 Transfer Electrons Notes

Sodium and oxygen react to produce sodium oxide.

$$2Na + O \rightarrow Na_2O$$

C11 - 1.3 - Covalent Bonding Share Electrons Notes

Carbon and oxygen react to produce carbon dioxide.

$$C + 2O \rightarrow CO_2$$

C11 - 1.4 - Diatomic Bonding

Diatomic Elements

Hydrogen:	H_2		H_2
Nitrogen:	N_2		
Oxygen:	O_2	N_2 O_2	F_2
Fluorine:	F_2		Cla
Chlorine:	Cl_2		Dr.
Bromine:	Br_2		D12
Iodine:	I_2		I_2

Bohr diagrams help explain why the previous atoms form as pairs to fill their valence shell in a covalent bond by sharing electrons.

C11 - 1.5 - Naming Ionic/Covalent/Multivalent Compounds Notes

Ionic Compounds:

- -Metal & non-metal
- -Transfer electrons.

Naming:

Metal Non-metal-ide

 $Na^{1-}Cl^{1-}$ NaCl

Sodium Chlorine NaCl = Sodium Chloride

 $Mg^{2+}O^{2-}$ MgO

 $Magnesium\ Oxygen$ $MgO=Magnesium\ Oxide$ $ine \rightarrow ide$ $gen \rightarrow ide$ $on \rightarrow ide$ $xxx \rightarrow ide$ Boron # Boride
Oxygen # Oxide
Flourine # Flouride
Sulfer # Sulfide

Multi-valent Compounds:

Multi-valent: More than one ionic charge

Naming:

 $Fe^{2+}N^{3-}$ Fe_3N_2 $Fe_3N_2 = Iron (II) Nitride$

Roman Numerals in brackets to the right of the element

II = 2 III = 3IV = 4

V = 5

I = 1

Fe₃N₃ FeN

 $Fe^{3+}N^{3-}$ FeN = Iron (III) Nitride

representing its charge being used.

Covalent Compounds:

-Non-metal & non-metal

-Share electrons.

Non-metal Non-metal-ide

*always write the more metallic non-metal first.

Naming:

 $CO_2 = Carbon\ Dioxide$

BO = Boron Monoxide

 $CCl_4 = Carbon\ Tetrachloride$

 $C_2H_6 = Dicarbon Hexahydride$

* Monocarbon Dioxide

Prefixes

1	Mono
2	Di
3	Tri
4	Tetra
5	Penta
6	Неха
7	Hepta
8	Octa
9	Nona
10	Deca

Monoboard
Dice
Tricycle
Tetrahedral
Pentagon
Hexagon
?
Octagon
Nonagon
Decagon

Exceptions to the naming:

• NH₃: Ammonia

• 0₃: Ozone

• Etc.