第四章 随机变量的数字特征

1.			同分布,且方差为 $\it I$	$O(X_i) = \sigma^2 > 0$, ($i =$		
	$1, 2,, n$), $\Leftrightarrow Y = \frac{1}{n}$	$\sum_{i=1}^n X_i$,则())。				
	$(\mathbf{A}) \operatorname{Cov}(X_1, Y) = \frac{\sigma^2}{n}$		(B) $Cov(X_1, Y) = \sigma^2$			
	(C) $D(X_1 + Y) = \frac{n}{n}$		(D) $D(X_1 - Y) = \frac{n}{N}$	$\frac{1}{i}\sigma^2$		
2.	设 X_1, X_2, X_3 相互独立同服从参数 $\lambda = 3$ 的泊松分布, $Y = \frac{1}{3}(X_1 + X_2 + X_3)$, 则					
	$E(Y^2) = ($).					
	(A) 1	(B) 6	(C) 9	(D) 10		
3.	设 <i>X</i> 与 <i>Y</i> 为两个随	X 与 Y 为两个随机变量,且它们的相关系数 $ ho_{XY}=0$,则成立的是 ().				
	(A) X 与 Y 一定独立		(B) X 与 Y 不相关			
	(C) X 与 Y 独立且不	相关	(D) X 与 Y 仅不相	关,但不独立		
4.	设 (X, Y) 为二维随机	l变量 , 且 $D(X) > 0$,	D(Y)>0,则下列等:	式成立的是().		
	(A) $E(XY) = E(X) \cdot E(X)$	E(Y)	(B) Cov $(X, Y) = \rho_{XY}$	$\cdot \cdot \sqrt{D(X)} \cdot \sqrt{D(Y)}$		
	(C) D(X+Y) = D(X)+D(Y)	(D) $Cov(2X, 2Y) = 2$	$2\operatorname{Cov}(X,Y)$		
5 .	设随机变量 X 的数字	机变量 X 的数学期望存在,则 $E(E(E(X))) = ($).				
	(A) 0	(B) $E(X)$	(C) $D(X)$	(D) $[E(X)]^2$		
6.	设 $X \sim N(0,1)$, $Y \sim N$	$\sim N(0,1),Y\sim N(1,1)$,且 X 与 Y 相互独立,则下列结论正确的是 $()$.				
	(A) $P\{X+Y\leq 0\}=\frac{1}{2}$	-	(B) $P\{X + Y \le 1\} =$	$\frac{1}{2}$		
	(C) $P\{X - Y \le 0\} = \frac{1}{2}$	- - -	(D) $P\{X - Y \le 1\} =$	$\frac{1}{2}$		
7.	设随机变量 X 服从	参数为 $\lambda(\lambda>0)$ 指数	以分布,则 $\frac{D(X)}{A}=0$).		
			E(X)	•		

(B) λ

(A) 1

(C) $\frac{1}{\lambda}$

(D) λ^2

- 8. 设随机变量 X 与 Y 的相关系数为 0.5, E(X) = E(Y) = 0, $E(X^2) = E(Y^2) = 2$, 则 $E[(X+Y)^2] =$ ______.
- 9. 若 $X_i \sim N(\mu_i, \sigma_i^2)$, $i = 1, 2, \cdots, n$, 且 X_i 相互独立,则 $X = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n$ 服 从 ______ 分布,且 D(X) = ______.
- **10**. 设随机变量 X = Y 相互独立,且方差分别为 6 和 3,则 D(2X-Y+4) =
- **11.** 设随机变量 X 与 Y 相互独立, 且 $X \sim B\left(16, \frac{1}{2}\right)$, Y 服从于参数为 9 的泊松分布, 则 D(X-2Y+1)=______.
- **12.** 设随机变量 X 的数学期望 $E(X) = \mu, D(X) = \sigma^2 (> 0)$, 则 $P\{ | X \mu | \ge 3\sigma \} \le$ ______.
- **13.** 设随机变量 X 与 Y 相互独立, 且 D(X) = 4, D(Y) = 2 则 D(3X 2Y + 4) = ______.
- **14.** 设随机变量 X = Y 相互独立,且方差分别为 6 和 3,则 D(2X-Y+4) =
- **15.** 设二维离散型随机变量 (X,Y) 的概率分布如图所示, 试求:
 - (1)分别关于 $X \times Y$ 的边缘概率分布,并判断 $X \hookrightarrow Y$ 的独立性;
 - (2)协方差 cov(X, Y);
 - (3)概率 $P\{X > Y\}$;
 - (4)在X=0的条件下Y的条件分布律:
 - (5)随机变量 $Z = X^2 Y$ 的概率分布.

XY	-1	0	3
-2	1/15	2/15	0
0	2/15	3/15	4/15
1	0	1/15	2/15

- **16**. 掷一枚均匀的骰子两次,设X表示出现的点数之和,Y表示第一次出现的点数减去第二次出现的点数、试求:
 - (1)D(X), D(Y);
 - (2)X 与 Y 的相关系数 ρ_{XY} ;
 - (3)问 X与 Y 是否独立?

- **17**. 设随机变量 $X = \begin{cases} 1, & \text{若 } A \text{ 发生} \\ 0, & \text{若 } A \text{ 不发生} \end{cases}$, $Y = \begin{cases} 1, & \text{若 } B \text{ 发生} \\ 0, & \text{若 } B \text{ 不发生} \end{cases}$, 其中随机事件 A 和 B 相互独立,且 P(A) = P(B) = p(0 。 求二维随机变量 <math>(X, Y) 的联合分布律,并说明 X 与 Y 的线性相关性。
- **18.** 设 U=aX+b, V=cY+d, 其中 a>0, c>0, 证明: 随机变量 U 与 V 的相关系数 ρ_{UV} 等于随机变量 X 与 Y 的相关系数 ρ_{XY} , 即 $\rho_{UV}=\rho_{XY}$.
- **19**. 设随机变量 (X, Y) 的分布律为:

YX	-1	0	1
-1	1/8	1/8	1/8
0	1/8	0	1/8
1	1/8	1/8	1/8

验证: X 和 Y 是不相关的, 但 X 和 Y 不是相互独立的.