МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Анализ, моделирование и оптимизация систем» Тема: Моделирование и исследование случайных величин и последовательностей

Студентка гр. 6373	 Чудновская А. А.
Преподаватель	Филатов А. Ю.

Санкт-Петербург 2020

Цель работы

Целью работы является напоминание свойств и способа построения случайной величины, освоение ее моделирования.

Для достижения поставленной цели требуется решить следующие задачи:

- 1) Рассмотреть способ построения функции над заданной случайной величиной, для получения заданной случайной величины;
 - 2) Смоделировать этот процесс;
 - 3) Оценить результаты.

Задание

Пользуясь датчиками, генерирующими последовательность случайных чисел, распределенных по равномерному закону, смоделировать:

1. Случайную величину, распределенную по равномерному случайному закону на интервале $[0; \alpha]$, где α — заданный параметр

Вариант №12: $\alpha = 110$

Равномерный случайный закон:

Функция распределения:
$$F_x(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

Математическое ожидание: $M(x) = \frac{a+b}{2}$

CKO:
$$\sigma(x) = \frac{(b-a)\sqrt{3}}{6}$$

В GPSS равномерное распределение генерирует случайные величины на диапазоне [0, 999], $F_x(x) = \frac{x}{999}$ По заданию нужно генерировать случайные величины в диапазоне [0, 110], $F_y(y) = \frac{y}{110}$. Для того, чтобы получить требуемое распределение, найдем обратную функцию:

$$\frac{x}{999} = \frac{y}{110} \Rightarrow y = \frac{110x}{999}$$

Код GPSS:

SIMULATE
GENERATE 1
E1 FVARIABLE (RN1#110/999)
TAB1 TABLE V\$E1,10,10,15
TABULATE TAB1
TERMINATE 1
START 100

Для оценки полученного распределения, проведем моделирования, изменяя число прогонов модели в операторе START. Данные сведены в табл. 1.

Табл. 1. Оценка мат. ожидания и СКО равномерного распределения

	Теоретическое	100	1000	10000
	значение	прогонов	прогонов	прогонов
M(y)	55	55.623	55.032	55.047
σ(y)	31,75	30.354	32.868	31.949

Γ истограммы смоделированных распределений приведены на рис 1.1-1.3.

Рис. 1.1. Гистограмма модели со 100 прогонами

Рис. 1.2. Гистограмма модели с 1000 прогонов

Рис. 1.3. Гистограмма модели с 10000 прогонов

2. Случайную величину, распределенную по показательному закону с параметром λ .

Вариант №12: $\lambda = 1/130$

Показательный закон:

Функция распределения: $F_x(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$

Математическое ожидание: λ^{-1}

CKO: λ⁻¹

Для того, чтобы получить требуемое распределение, найдем обратную

функцию:
$$\frac{x}{999} = 1 - e^{-\frac{1}{130}\lambda y} \Rightarrow y = 130 \ln \left(\frac{-999}{x - 999} \right)$$

Код GPSS

SIMULATE
GENERATE 1
E1 FVARIABLE 130#LOG(-999/((RN1-1)-999))
TAB1 TABLE V\$E1,50,50,20
TABULATE TAB1
TERMINATE 1
START 100

Комментарий: из RN1 вычитается 1 для того, чтобы при предельном значении RN1 = 999 не происходило деление на 0. Прибавлять 1 в данном случае нельзя, так как тогда при предельном значении будет вычисляться логарифм отрицательного числа, что приведет к ошибке.

Для оценки полученного распределения, проведем моделирования, изменяя число прогонов модели в операторе START. Данные сведены в табл. 2.

Табл. 2. Оценка мат. ожидания и СКО показательного распределения

	Теоретическое	100	1000	10000
	значение	прогонов	прогонов	прогонов
M(y)	130	132.126	131.661	129.953
σ(y)	130	143.212	131.244	129.216

Гистограммы смоделированных распределений приведены на рис 2.1 – 2.3.

Рис. 2.1 Гистограмма модели со 100 прогонами

Рис. 2.2. Гистограмма модели с 1000 прогонов

Рис. 2.3. Гистограмма модели с 10000 прогонов

3. Случайную величину, распределенную по треугольному закону с параметрами (a=0; b=0; c=a), где а — заданный параметр

Вариант № 12: а = 110

Треугольный закон:

Функция распределения:
$$F_x(X) = \begin{cases} 0, x < a \\ \frac{(x-a)^2}{(b-a)(c-a)}, x \in [a,c) \\ 1 - \frac{(b-x)^2}{(b-a)(b-c)}, x \in [c,b] \\ 1, x > b \end{cases}$$

Математическое ожидание: $M(x) = \frac{a+b+c}{3}$

CKO:
$$\sigma(x) = \sqrt{\frac{a^2 + b^2 + c^2 - ab - ac - bc}{18}}$$

Для того, чтобы получить требуемое распределение, найдем обратную

функцию:
$$\frac{x}{999} = 1 - \frac{(110 - y)^2}{110^2} \Rightarrow y = 110 \left(1 - \sqrt{\frac{x}{999}}\right)$$

Код GPSS:

SIMULATE
GENERATE 1
E1 FVARIABLE 110#(1-SQR(RN1/999))
TAB1 TABLE V\$E1,10,10,15
TABULATE TAB1
TERMINATE 1
START 100

Для оценки полученного распределения, проведем моделирования, изменяя число прогонов модели в операторе START. Данные сведены в табл. 3.

Табл. 3. Оценка мат. ожидания и СКО треугольного распределения

	Теоретическое	100	1000	10000
	значение	прогонов	прогонов	прогонов
M(y)	36,7	35.701	37.154	36.727
σ(y)	25,9	24.583	27.345	26.197

 Γ истограммы смоделированных распределений приведены на рис 3.1-3.3.

Рис 3.1. Гистограмма модели со 100 прогонами

Вывод: с помощью генератора последовательности случайных чисел, распределенных по равномерному закону, можно смоделировать последовательность случайных чисел, распределенных по другим законам. Полученные в результате моделирования математическое ожидание и СКО случайных величин, а также качественная оценка плотности распределения (гистограмма) близки к теоретическим. При этом с увеличением числа случайных чисел в последовательности (т.е. числа прогонов модели в данной работе), точность моделирования повышается.