

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA EN COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea 6

FECHA DE ENTREGA LÍMITE: 09/05/2025

ALUMNO: Murillo Tobar Juan

TEMA

Método de la secante

OBJETIVOS

- Utilizar el método de secante y de Newton para realizar comparaciones en base a sus iteraciones.
- Comprender porque el método de secante es mejor en comparación con el método de Newton Raphson en términos de complejidad en sus operaciones.

MARCO TEÓRICO

Método de la secante

Como se menciona en [1] el método de la secante es muy similar al método de Newton con la diferencia que en este método se utilizan dos aproximaciones iniciales y que la derivada es reemplazada con un cociente de diferencias finitas. Por lo anterior mencionado podemos

decir que la complejidad en las operaciones es menor y por lo tanto el tiempo de computo también va a ser menor en el método de la secante, pero hay que aclarar que ambos no dejan de ser métodos abiertos con posibilidad a divergencia.

DESARROLLO

1. Use el método de la secante para encontrar una solución para

$$x = \cos(x)(f(x) = \cos(x) - x = 0)$$

con tolerancia tal que:

$$|P_n - P_{n-1}| < (tolerancia = 10^{-16})$$

y compare las aproximaciones con las determinadas en el ejemplo visto en clase, el cual aplica el método de Newton, resuelva hasta llegar a la misma tolerancia para este método también. Suponga que usamos $p_0=0.5$ y $p_1=\frac{\pi}{4}$, trabaje con 13 cifras decimales de redondeo.

Fórmula Secante

$$X_n = X_{n-1} - f(X_{n-1}) \times \frac{X_{n-1} - X_{n-2}}{f(X_{n-1}) - f(X_{n-2})}$$

Aproximaciones por Secante

X_n	X_{n-1}	X_{n-2}	$f(X_n)$	$E_e st$
0,50000000000000			0,3775825619000	
0,7853981634000	0,50000000000000		-0.0782913822100	0,2854
0,7363841388000	0,7853981634000	0,50000000000000	0,0045177185830	0,04901
0,7390581564000	0,7363841388000	0,7853981634000	0,0000451484193	$2,674*10^{-3}$
0,7390851493000	0,7390581564000	0,7363841388000	$-0.269198 * 10^{-7}$	$2,699*10^{-5}$
0,7390851332000	0,7390851493000	0,7390581564000	$0,254 * 10^{-10}$	$1,61*10^{-8}$

Fórmula Newton

$$X_n = X_{n-1} - \frac{f(X_{n-1})}{f'(X_{n-1})}, n \ge 1$$

Aproximaciones por Newton

X_n	X_{n-1}	$E_e st$
0,7395361335000	$\frac{\pi}{4}$	0,04586
0,7390851781000	0,7395361335000	$4,51*10^{-4}$
0,7390851332000	0,7390851781000	$4,49*10^{-8}$

REFERENCIAS

[1] T. Sauer and J. E. M. Murrieta, $Análisis\ num{\'e}rico.$ Pearson Educación México, 2013.