Predicting Medical Insurance Charges using Linear Regression and Random Forest

BY GRISHMA VEMIREDDY

Introduction

Problem statement:

Predict a person's medical insurance charges based on their demographic data and lifestyle.

Purpose:

It supports risk assessment and customer profiling.

Helps understand how insurance companies estimate premiums.


```
RangeIndex: 1338 entries, 0 to 1337 
Data columns (total 7 columns):
```

#	Column	Non-N	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtypes: float64(2),			int64(2),	object(3)
memory usage: 73.3+ KB				

Dataset Overview

Source: Kaggle (Medical Cost Personal Datasets)

Data description:

1,338 total observation

No missing values

7 features:

age, sex, bmi, children, smoker, region, charges (target variable).

Methodology

First performed data cleaning and data exploration, scaled the data, then split data to train and test models.

```
#conver categorical to numerical
df encoded = data df.copy()
df_encoded['sex'] = df_encoded['sex'].map({'male': 0, 'female': 1})
df_encoded['smoker'] = df_encoded['smoker'].map({'no': 0, 'yes': 1})
df encoded['region'] = df encoded['region'].map({'southwest': 0, 'southeast'
sns.heatmap(df_encoded.corr(), annot=True)
plt.show()
                                                             -0.0021
                            -0.046
                                                             0.0046
                                                                        -0.057
                 -0.046
                                                  0.0038
       0.042
      -0.025
                 -0.076
                            0.0038
                                       0.0077
                                                             0.0022
                                                                         0.79
                 0.0046
                                                  0.0022
                                                                        0.0062
      -0.0021
                 -0.067
                                                   0.79
                                                             0.0062
```

children


```
# scale data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

#Splt to train and test 80-20 split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0)
```

Methodology

Two regression models:

1. Linear regression

Implemented a basic model to predict charges.

2. Random Forest

I initially passed in parameters of

n_estimaors=100

max_depth=10

```
#Linear regression

lm = LinearRegression()

lm.fit(X_train,y_train)
```

```
▼ LinearRegression
LinearRegression()
```

```
# Random Forest
rfc = RandomForestRegressor(n_estimators=100,max_depth=10,random_state=42)
rfc.fit(X_train, y_train)
```

```
RandomForestRegressor
RandomForestRegressor(max_depth=10, random_state=42)
```

Then tuned and tested the model with different parameter values to see any performance improvement

```
n_estimaors=300
```


Results and Visualization

Linear Regression

Plot of actual value vs predicted Possible 10000

```
# RMSE and R^2
print('RMSE:', np.sqrt(mean_squared_error(y_test, predictions)))
print('R2 Score: ', r2_score(y_test, predictions))
```

RMSE: 5799.5870914383595 R2 Score: 0.7833463107364536

Random Forest


```
print('RMSE:', np.sqrt(mean_squared_error(y_test, rfc_pred)))
print('R2 Score: ', r2_score(y_test, rfc_pred))
```

RMSE: 4572.110965856546 R2 Score: 0.8653502770474271

Conclusion

Overall, the random forest regression model provided with the best predictions performance with high r-squared score and lower RMSE compare with the linear regression model.

While the Linear Regression model gives a good baseline, the Random Forest model is much more effective at capturing complex relationships within the data.

Thank You!

