

G3 Fall Preview

Day 1

1 Calculate with long multiplication:

(1)
$$342 \times 21 =$$

(2)
$$690 \times 67 =$$

(3)
$$725 \times 36 =$$

(1)
$$107 \times 26 =$$

(2)
$$403 \times 32 =$$

(3)
$$22 \times 14 =$$

(1)
$$45 \times 207 =$$

(2)
$$730 \times 80 =$$

(3)
$$350 \times 12 =$$

(2)
$$39 \times 34 =$$

(3)
$$28 \times 65 =$$

(1)
$$51 \times 62 =$$

(2)
$$47 \times 58 =$$

(3)
$$73 \times 32 =$$

Day 2

1 Calculate with long division:

$$(1) \quad 665 \div 25 = \underline{\hspace{1cm}} \mathsf{R} \; \underline{\hspace{1cm}}$$

(2)
$$575 \div 25 =$$

(3)
$$208 \div 25 =$$
_____ R ____

$$(1) \quad 605 \div 25 = \underline{\hspace{1cm}} \mathsf{R} \, \underline{\hspace{1cm}}$$

(2)
$$393 \div 25 =$$
_____ R ____

(3)
$$180 \div 25 =$$
_____ R ____

(1)
$$540 \div 30 =$$

(3)
$$927 \div 3 =$$

(1)
$$754 \div 29 =$$

(2)
$$954 \div 30 =$$
_____ R ____

(1)
$$468 \div 6 =$$

Day 3

1 Calculate:

(1)
$$125 \times (10+8) =$$

(2)
$$(100-1) \times 4 =$$

(3)
$$23 \times (6+10+30) =$$

- 2 Calculate:
 - (1) $35 \times 102 =$ _____

(2)
$$(125+13-20)\times 4=$$

(3)
$$79 \times (100 + 1) = \underline{\hspace{1cm}}$$

3 Calculate:

(1)
$$25 \times 99 + 25 =$$

(2)
$$101 \times 34 - 34 =$$

4 Calculate:

(1)
$$98 \times 18 - 98 \times 8 =$$

(2) $67 \times 49 + 67 \times 52 - 67 \times 1 =$

- 5 Calculate:
 - (1) $75 \times 24 + 75 \times 77 75 =$

(2) $28 \times 59 + 40 \times 28 + 28 =$

Day 4

1 The area of the square is 9.

(1) The side length of the square is _____.

- (2) The perimeter of the square is _____.
- 2 A square has a side length of 5.

- (1) The area of the square is _____.
- (2) The perimeter of the square is _____.
- A rectangle has a length of 6 and a width of 3.

- (1) The perimeter of the rectangle is _____.
- (2) The area of the rectangle is _____.
- 4 A rectangle has a perimeter of 28 and a length of 9.

- (1) A rectangle has a width of _____.
- (2) The area of the rectangle is _____.

The area of a rectangle is 28 and it has a width of 4.

- (1) The length of the rectangle is _____.
- (2) The perimeter of the rectangle is _____.

Day 5

1 Look at the given angles and answer the following questions.

- (1) \angle ____ and \angle ___ are right angles.
- (2) \angle and \angle are obtuse angles.
- (3) \angle _____ is a flat angle.
- 2 Look at the given angles and answer the following questions.

(1) Which angles are acute?

 \angle _____ , \angle _____ , and \angle _____ .

(2) Which angles are obtuse?

 \angle _____ , \angle _____ , and \angle _____ .

There are two straight lines and a ray as shown in the figure. If $\angle 1 = 25^{\circ}$, then $\angle 2 =$ _____°, and $\angle 3 =$ _____°.

4 As shown, if $\angle 1 = \angle 2$, then $\angle 2 = \underline{\hspace{1cm}}^{\circ}$.

As shown in the figure, if $\angle 1 = 20^{\circ}$, then $\angle 4 = \underline{\hspace{1cm}}^{\circ}$.

Day 6

1 Fill in the blanks. The same shape represents the same number, and different shapes represent different numbers.

2 Fill in the blanks. The same shape represents the same number, and different shapes represent different numbers.

Fill in the blanks. The same shape represents the same number, and different shapes represent different numbers.

4 There is a sequence of flowers as shown below:

- (1) The 39th flower is _____ (red/yellow).
- (2) There are _____ red flowers among the first 37 flowers.
- 5 There is a number sequence as shown below:
 - 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, ...
 - (1) The **62**nd number is _____.
 - (2) The sum of the first 20 numbers is _____.

Day 7

1 Calculate:

(1)
$$\frac{3}{7} + \frac{2}{7} = \underline{\hspace{1cm}}$$

(2)
$$\frac{8}{11} - \frac{6}{11} = \underline{\hspace{1cm}}$$

(3)
$$\frac{4}{15} + \frac{7}{15} = \underline{\hspace{1cm}}$$

(4)
$$\frac{11}{18} + \frac{3}{18} =$$

2 Fill in the blanks!

(1)
$$\frac{2}{7} = \frac{2 \times ()}{7 \times 3} = \frac{()}{()}$$

(2)
$$\frac{15}{18} = \frac{15 \div 3}{18 \div ()} = \frac{()}{()}$$

(3)
$$\frac{5}{12} = \frac{5 \times ()}{12 \times ()} = \frac{20}{()}$$

(4)
$$\frac{6}{7} = \frac{24}{()}$$

(5)
$$\frac{16}{32} = \frac{()}{2}$$

(6)
$$\frac{15}{20} = \frac{3}{()}$$

- Judge whether each of the following sequences is an arithmetic sequence. Fill in $\sqrt{}$ if yes, and fill in \times if not.
 - 1. 15, 19, 23, 27, 31, 35, 39, ...
 - 2. 38, 36, 34, 30, 28, 26, ...
 - 3. 45, 40, 35, 30, 25, 20, 15, ...
- Fill in the blanks:
 - (1) In the arithmetic sequence 2, 5, 8, 11, \cdots , the 32nd term is ______.
 - (2) In the arithmetic sequence 4, 8, 12, 16, \cdots , the 15th term is ______.

- 5 Solve the following problems:
 - (1) The arithmetic sequence 5, 11, 17, 23, \cdots , 119 has a total of _____ terms.
 - (2) The arithmetic sequence 10, 13, 16, 19, \cdots , 91 has a total of _____ terms.