Лабораторная работа № 4

МОДЕЛИРОВАНИЕ РАДИОСИГНАЛОВ

Цель лабораторной работы. Освоение методики моделирования радиосигналов с амплитудной (AM), фазовой (ФМ) и частотной (ЧМ) модуляцией. Изучение на модели амплитудных спектров этих сигналов.

6.1. Методические указания

6.1.1. Моделирование радиосигналов с помощью функциональных элементов

Для моделирования радиосигналов используются следующие функциональные элементы:

- стандартные источники напряжения (источник синусоидального напряжения Sine Source и источник импульсного напряжения Pulse Source);
- управляемые источники напряжения (NFV);
- источник напряжения с управляемой частотой (VCO);
- умножители (Mul);
- сумматоры (Sum);
- интеграторы (Int).

Эти функциональные элементы включены в библиотеку моделей аналоговых компонентов (**Analog Primitives**) системы Micro-Cap. При этом стандартные источники напряжения находятся в группе источников колебаний (**Waveform Sources**), управляемые источники — в группе функциональных источников напряжения (**Function Sources**), а элементы VCO, Mul, Sum и Int — в группе стандартных макросов (**Macros**).

Моделирование АМ сигналов. Сигнал с амплитудной модуляцией (АМ) описывается функцией

$$u(t) = U_{\rm M}(t)\cos(2\pi f_0 t),$$

где f_0 — частота несущей; $U_{\rm M}(t)$ — изменяющаяся во времени амплитуда (закон модуляции). Такой сигнал может быть смоделирован двумя способами.

Первый способ основан на использовании источника напряжения, задаваемого нелинейной функцией. Этот тип источника называется NFV (Nonlinear Function V – напряжение, заданное нелинейной функцией). Для его размещения на схеме нужно последовательно выбрать следующие пункты меню: Component>Analog Primitives>Function Sources>NFV. Функция времени, определяющая вид сигнала, записывается в окне параметров модели источника как значение атрибута Value. Например, для моделирования синусоидального колебания с частотой f0 и амплитудой Um (постоянной либо изменяющейся во времени) в строке Value следует записать

Um*sin(2*pi*f0*t)

При этом параметры f0 и Um должны быть заданы с помощью оператора .define (определить). Этот оператор записывается либо в текстовом окне, либо в окне схемы (в последнем случае с помощью кнопки **T Text Mode** следует сначала перейти в режим ввода текста; при этом каждый оператор должен быть введён как отдельный текстовый объект)¹⁾. Например, значения частоты 10 кГц и амплитуды 0,7 В задаются следующим образом:

.define f0 10k .define Um 0.7

При использовании для записи операторов текстового окна его удобно разместить на экране под окном схемы с помощью команды **Windows>Split Horizontal**. Если параметры колебания не предполагается менять, то при задании параметров источника в строке **Value** их можно указать сразу в численном виде, например:

$$0.7*sin(2*pi*10k*t)$$

Для моделирования AM сигналов необходимо в операторе .define, которым определяется амплитуда сигнала, задать закон её изменения во времени. При этом закон модуляции сигнала может быть указан явно в виде некоторой функции времени (рис. 6.1), а может определяться законом изменения напряжения в одном из узлов схемы (рис. 6.2).

Рис. 6.1. Моделирование АМ сигнала с помощью функционального источника напряжения. Явное задание закона модуляции

Рис. 6.2. Моделирование АМ сигнала с помощью функционального источника напряжения. Задание закона модуляции через напряжение в узле U_mod

На схеме, приведённой на рис. 6.2, это напряжение создаётся отдельным источником V1 модулирующего гармонического колебания. Для того чтобы при указании в операторе .define узла схемы не зависеть от его номера, проставляемого программой, удобно использовать текстовое имя узла (в данном случае это имя U_mod). Для его задания следует перейти в режим ввода текста (кнопка T), поместить указатель мыши, рядом с которым появляется буква T, вблизи нужного узла и нажать левую кнопку мыши. При этом открывается окно, в котором нужно

¹⁾ Оператор .define, так же как и любой другой текстовый объект, можно переносить из окна текста в окно схемы и обратно, нажимая комбинацию клавиш Ctrl+B.

напечатать имя узла. Введённое имя «привязывается» к требуемому узлу схемы, если после закрытия окна оно оказывается в непосредственной близости от узла, который при этом выделяется большой красной точкой. Если имя оказалось напечатанным слишком далеко от узла, его следует передвинуть к узлу, перейдя предварительно в режим выбора элементов схемы (кнопка Select Mode)²⁾.

На схемах, изображённых на рис. 6.1 и 6.2, U0 – амплитуда несущей. Её значение также задаётся оператором .define.

Второй способ моделирования AM сигналов основан на использовании функционального элемента — умножителя Mul (Multiplier — умножитель). Этот элемент выбирается из меню компонентов в разделе аналоговых компонентов в подразделе макросов: Component>Analog Primitives>Macros>Mul. При задании параметров умножителя в строке Param:SCALE (*параметр: масштаб*) указывается значение масштабного коэффициента, на который дополнительно умножаются перемножаемые напряжения. По умолчанию он равен 1.

Поскольку для моделирования сигнала с гармонической AM необходимо умножить несущее колебание $U_0 \cos(2\pi f_0 t)$ на модулирующую функцию

 $1 + m\cos(2\pi F_{_{\rm M}}t)$, то в источник модулирующего напряжения следует ввести постоянное смещение, равное 1, и задать амплитуду колебания равной m. Например, при m = 0.5 и $F_{_{\rm M}} = 5$ к Γ ц параметры источника задаются следующим образом:

.model U_mod3 sin(DC=1 A=0.5 F=5k)

Схема, реализующая данную модель АМ сигнала, показана на рис. 6.3.

Моделирование с использованием умножителя позволяет формировать не только сигналы с гармонической амплитудной модуляцией, но и радиоимпульсные сигналы. Для этого в качестве модулирующего напряжения следует использовать последовательность прямоугольных импульсов, создаваемую источником импульсного сигнала **Pulse Source** (источник импульсов) (рис. 6.4).

.MODEL U_mod SIN (A=0.5 DC=1 F=5k)
.MODEL U_sig SIN (F=100k)

Рис. 6.3. Моделирование AM сигнала с помощью умножителя

Рис. 6.4. Моделирование радиоимпульсного сигнала

²⁾ Для облегчения «привязки» имён к узлам нужно в пункте меню **Options** в подпункте **Preferences...** на вкладке **Common Options** (*Общие настройки*) в группе опций, объединённых заголовком **Circuit** (*схема*), отметить галочкой пункт **Node Snap**. При этом текст будет автоматически «привязываться» к ближайшему узлу координатной сетки.

Моделирование ФМ сигналов. Сигнал с фазовой модуляцией описывается функцией

$$u(t) = U_0 \cos(2\pi f_0 t + \varphi(t)),$$

где f_0 – частота несущей; U_0 – амплитуда сигнала; $\varphi(t)$ – изменяющаяся во времени фаза сигнала (закон Φ M).

Моделирование Φ М сигнала производится с помощью функционального источника напряжения,— элемента NFV (рис. 6.5). При задании параметров этого источника в строке **Value** следует записать

$$U0*cos(2*pi*f0*t+phi),$$

где U0 – амплитуда сигнала; f0 – частота сигнала; phi – фаза, изменяющаяся в соответствии с законом ФМ. Закон модуляции, как и в случае моделирования АМ

сигнала, может либо задаваться в виде функции времени, либо определяться законом изменения напряжения в каком-либо узле схемы. На рис. 6.5 приведён пример моделирования сигнала с гармонической ФМ. При этом модуляция производится напряжением в узле с именем U_mod_PhM, создаваемым источником синусоидального колебания

Рис. 6.5. Моделирование ФМ сигнала

U_mod. Связь между модулирующим напряжением и фазой задаётся операторами .define:

Первый оператор показывает, что фаза прямо пропорциональна модулирующему напряжению, а второй определяет значение коэффициента пропорциональности k_phi . В данном примере он равен $0.1 \cdot 2\pi = 0.2\pi$.

Моделирование ЧМ сигналов. Сигнал с частотной модуляцией в общем случае описывается функцией [4]

$$u(t) = U_0 \cos \left(2\pi f_0 t + 2\pi \int \Delta f(t) dt\right),\,$$

где U_0 – амплитуда сигнала; f_0 – частота несущей; $\Delta f(t)$ – изменяющееся во времени отклонение мгновенной частоты сигнала от частоты несущей (закон ЧМ). Из этого выражения следует, что моделирование ЧМ сигнала сводится к моделированию ФМ сигнала с законом фазовой модуляции

$$\varphi(t) = 2\pi \int \Delta f(t) dt.$$

В связи с этим моделирование ЧМ сигнала, так же как и моделирование ФМ сигнала, может быть выполнено с помощью функционального источника напряжения NFV. При задании параметров этого источника в строке **Value** следует записать

где U0 – амплитуда сигнала; f0 – частота несущей; phi – изменяющаяся во времени фаза $\varphi(t)$.

фаза Поскольку сигнала пропорциональна интегралу ОТ мгновенной частоты, то в состав модели источника ЧМ сигнала входит функциональный элемент *интегратор* Int. Этот элемент выбирается из меню компонентов в разделе аналоговых компонентов в подразделе макросов: **Component>Analog Primitives>Macros>Int.** При описании параметров интегратора в строке **Param:SCALE** (параметр: масштаб) следует указать значение (Value) масштабного коэффициента, на который дополнительно умножается проинтегрированное напряжение, a строке **Param:VINIT** *Vначальное*) – начальное напряжения (параметр: значение интегратора. При моделировании ЧМ сигнала масштабный коэффициент равен 2π , а начальное значение равно 0.

При гармонической ЧМ отклонение мгновенной частоты равно

$$\Delta f(t) = \Delta f_m \sin(2\pi F_M t)$$
,

где Δf_m – девиация (т.е. максимальное отклонение) частоты сигнала; $F_{\rm M}$ – частота модуляции. На рис. 6.6 приведена схема модели источника сигнала с гармонической ЧМ, имеющего следующие параметры³⁾:

- амплитуда 1 В;
- частота несущей 100 кГц;
- девиация частоты 40 кГц;
- частота модуляции 1000 Гц.

Рис. 6.6. Моделирование ЧМ сигнала

Описанный алгоритм моделирования ЧМ сигнала реализован в стандартном

макросе VCO (Voltage-Controlled Oscillator – генератор, управляемый напряжением). Для этого макроса задаются следующие параметры: **Param:VP** (параметр: Vпиковое) – амплитуда сигнала, **Param:F0** (*napamemp: F0*) частота несущей, **Param:KF** (параметр: KF) – коэффициент пропорциональности между отклонением частоты и напряжением, имею- Рис. 6.7. Моделирование ЧМ сигнала щий размерность В/Гц.

с помощью макроса VCO

На рис. 6.7 приведена схема такой модели источника ЧМ сигнала с теми же параметрами, что и на рис. 6.6.

6.1.2. Расчёт спектра сигнала с помощью дискретного преобразования Фурье

³⁾ Обратите внимание на то, что при описании источника модулирующего колебания U_mod в операторе .model для большей наглядности используются буквенные обозначения для амплитуды и частоты сигнала – dfm и FM соответственно. Значения этих переменных задаются операторами .define.

Частотный состав модулированного сигнала характеризуется его амплитудным спектром. Расчёт спектра производится в режиме анализа переходных процессов (Analysis>Transient...) в соответствии с методикой, изложенной в п. 5.1.2 описания лабораторной работы № 5 «Исследование модели резонансного усилителя». Для правильного вычисления спектра сигнала необходимо, чтобы длительность интервала спектрального анализа была кратна периоду повторения сигнала, который зависит как от частоты несущей, так и от частоты модуляции. Поскольку во всех вариантах лабораторного задания частота несущей кратна частоте модуляции, то длительность интервала анализа должна быть равна целому числу периодов модуляции.

6.2. Домашняя подготовка

- 1. Используя методические указания к лабораторной работе, изучите методику моделирования сигналов с амплитудной, фазовой и частотной модуляцией.
- 2. Изобразите ожидаемый вид сигналов и их амплитудных спектров.
- 3. Запишите выражения, определяющие моделируемые сигналы.
- 4. Подготовьтесь к ответу на контрольные вопросы.

6.3. Лабораторное задание

1. Составьте функциональные схемы для генерации сигналов с амплитудной, фазовой и частотной модуляцией. Параметры сигналов возьмите из табл. 6.1 в соответствии с номером бригады.

Таблица 6.1

№ бри-	<i>f</i> ₀ , кГц	Параметры модуляции								
		AM								
гады		гармоническая		импульсная			ΦМ		ЧМ	
		$F_{\scriptscriptstyle \mathrm{M}}$, к Γ ц	m	Т, мс	τ, мкс	<i>U</i> , B	<i>F</i> _м , кГц	$\Delta\phi_{m}/2\pi$	<i>F</i> _м , кГц	Δf _m , кГц
1	100	5	0,5	1,1	110	1	20	0,10	1,0	40
2	120	6	0,4	1,0	100	0,9	30	0,12	1,2	48
3	160	8	0,5	1,5	150	1,1	40	0,08	1,6	64
4	200	10	0,4	2,5	250	1,5	50	0,11	2,0	80
5	240	12	0,6	0,5	50	0,8	25	0,09	2,4	96
6	260	13	0,3	1,5	150	1,2	35	0,12	2,6	104
7	300	15	0,6	2,7	270	2,0	40	0,07	3,0	120
8	320	16	0,5	2,5	250	0,5	30	0,10	3,2	128
9	360	18	0,3	1,0	100	0,8	25	0,08	3,6	144
10	400	20	0,4	2,3	230	1,3	45	0,11	4,0	160

В таблице приняты следующие обозначения: f_0 – частота несущей; $F_{\rm M}$ – частота модуляции; m – коэффициент АМ; T – период повторения импульсов; τ – длительность импульса; U – амплитуда импульса; $\Delta \phi_{\rm m}$ – максимальное отклонение фазы; $\Delta f_{\rm m}$ – девиация частоты.

- 2. Выбрав один из способов моделирования АМ сигнала, проведите моделирование сигнала и расчёт его спектра для заданного значения коэффициента модуляции. Учтите, что для правильного расчёта спектра необходимо, чтобы интервал анализа содержал целое число периодов сигнала. По спектру сигнала измерьте уровень несущей и боковых составляющих и сравните измеренные значения с теоретическими.
- 3. Проведите моделирование последовательности радиоимпульсов с заданными параметрами. Рассчитайте спектр модулирующей последовательности видеоимпульсов и радиоимпульсного сигнала. Постройте графики спектров в интервале частот $[0, 2f_0]$, сравните их и сделайте выводы.
- 4. Проведите моделирование ΦM сигнала с заданными параметрами. Рассчитайте спектр сигнала в интервале частот $[0, 2f_0]$ для заданного значения коэффициента k_phi, определяющего индекс модуляции, а также для значения, вдвое большего. Учтите, что для правильного расчёта спектра необходимо, чтобы интервал анализа содержал целое число периодов сигнала. Сделайте выводы о влиянии индекса ΦM на вид спектра.
- 5. Выполните моделирование ЧМ сигнала
 - а) с заданными параметрами;
 - б) при вдвое меньшем значении девиации частоты.

Рассчитайте спектр сигнала в интервале частот $[0, 2f_0]$. Оцените влияние девиации частоты на форму и ширину спектра сигнала.

6. Повторите моделирование ЧМ сигнала с использованием макроса VCO. Сопоставьте результаты с полученными в п. 5.

6.4. Контрольные вопросы

- 1. Какие функциональные элементы используются для моделирования АМ сигнала с гармонической модуляцией?
- 2. Как связаны параметры амплитудного спектра АМ сигнала с параметрами модуляции?
- 3. Как смоделировать радиоимпульсный сигнал?
- 4. Какой вид имеет амплитудный спектр радиоимпульсного сигнала?
- 5. Как моделируется сигнал с гармонической ФМ?
- 6. На каком принципе основано моделирование ЧМ сигнала?
- 7. Что такое девиация частоты ЧМ сигнала?
- 8. Какие условия необходимо обеспечить для правильного вычисления спектра сигнала с помощью дискретного преобразования Фурье?