Information Ontology: Rewriting the Foundations of Physics [PHY-SCI-003]

Paper Outline and Plan

1. Abstract

- Introduction to information ontology as a fundamental paradigm shift in physics
- Overview of how information-based principles can rewrite conventional physical theories
- Summary of key theoretical advances and mathematical framework
- Implications for resolving existing paradoxes and contradictions in physics
- Potential applications across multiple physical domains

2. Introduction

- Historical perspective on physical ontologies: matter, energy, and information
- Limitations of current physical frameworks in addressing foundational questions
- Information as a fundamental substrate rather than emergent property
- Key principles of information ontology and how they differ from conventional approaches
- Overview of paper structure and contributions

3. Information Theoretical Foundation

- Formal definition of information in the physical context
 - Beyond Shannon information to ontological information
 - Mathematical formalism for information states and operations
 - Information conservation and transformation principles
- XOR operations as fundamental information differences
 - Mathematical properties of XOR in information space
 - Relationship to quantum superposition and entanglement
 - Physical significance of information differences
- SHIFT operations as information state transformations
 - Mathematical formalism of SHIFT operations
 - Connection to physical transitions and measurements
 - Conservation laws in information transitions
- Information field concept
 - Mathematical definition of information fields
 - Field equations and propagation dynamics
 - Correspondence with conventional physical fields

4. Rewriting Quantum Mechanics

- Information-based quantum states
 - Wave function as information distribution
 - Quantum superposition as information overlays
 - Mathematical equivalence proofs with standard formulations
- Measurement as information extraction
 - Information-theoretic resolution of the measurement problem
 - Observer role as information processor
 - Derivation of quantum probabilities from information principles
- Quantum entanglement from information perspective
 - Non-locality as information connection
 - Bell's inequalities from information constraints
 - Quantum teleportation as information transfer protocol
- Quantum computing in the information ontology framework
 - Quantum algorithms as information transformation processes
 - Error correction as information preservation
 - Novel computational paradigms emerging from information ontology

5. Rewriting Relativistic Physics

- Spacetime as information structure
 - Derivation of spacetime metrics from information relationships
 - Information-based explanation of relativistic effects
 - Time as information processing sequence
- Gravity as information geometry
 - Curvature from information density gradients
 - Deriving Einstein's equations from information principles
 - Gravitational waves as information propagation
- Causality in information framework
 - Light cone as information accessibility boundary
 - Information-theoretical basis for causal structures
 - Resolving apparent causality paradoxes
- Black holes and information
 - Event horizons as information boundaries
 - Novel resolution to information paradox
 - Hawking radiation as information leakage process

6. Rewriting Thermodynamics and Statistical Physics

- Information and entropy relationship
 - Second law reformulation through information principles
 - Entropy as measure of information distribution
 - Maximum entropy principle from information perspective
- Irreversibility as information cascade
 - Time's arrow emergence from information spread
 - Microscopic reversibility versus macroscopic irreversibility

- Quantum decoherence as information diffusion
- Thermodynamic equilibrium as information state
 - Balanced information distribution in equilibrium systems
 - Non-equilibrium systems as information gradients
 - Fluctuation theorems from information principles
- Information engines and Maxwell's demon
 - Work extraction through information processing
 - Fundamental limits of information-based work
 - Unified treatment of information and energy

7. Unification Framework

- Unified information field equations
 - Core mathematical formulation integrating quantum and relativistic regimes
 - Derivation of fundamental constants from information principles
 - Dimensional analysis in information context
- Physical forces as information interactions
 - Common information basis for fundamental forces
 - Force unification through information operations
 - Predictions for force behaviors at extreme scales
- Emergence of physical laws from information principles
 - Derivation of conservation laws from information invariants
 - Symmetry principles as information preservation
 - Physical constants emerging from information operations
- Quantum gravity approach through information
 - Resolution of incompatibilities between quantum mechanics and general relativity
 - Information-based approach to Planck scale physics
 - Novel predictions for quantum gravitational phenomena

8. Experimental Predictions and Tests

- Quantum system tests
 - Novel interference patterns in specific experimental setups
 - Modified predictions for quantum computing protocols
 - Testable deviations in quantum measurement statistics
- $\bullet\,$ Mesoscopic system predictions
 - Quantum-classical boundary behaviors
 - Decoherence modifications in specific systems
 - Experimental design for information preservation measurement
- Astrophysical tests
 - Black hole information signature predictions
 - Gravitational wave pattern modifications
 - Dark energy as information field phenomenon
- Laboratory gravity experiments

- Information-based modifications to precision gravity measurements
- Proposed tabletop experiments to test information gravity
- Specific predictions with numerical values and error ranges

9. Computational Methods and Simulations

- Information dynamics simulation framework
 - Numerical methods for information field equations
 - Multi-scale modeling approach
 - Convergence and stability analysis
- Quantum system simulations
 - Information-based quantum circuit simulations
 - Comparison with standard quantum simulations
 - Efficiency advantages of information approach
- Gravitational simulations
 - Information field approach to gravitational dynamics
 - Computational advantages over conventional methods
 - Novel predictions from simulation results
- Universe evolution simulation
 - Cosmological models based on information principles
 - Structure formation from information perspective
 - Comparison with observational data

10. Philosophical and Foundational Implications

- Information as physical reality
 - Ontological status of information in physics
 - Comparison with other foundational perspectives
 - Resolution of realism vs. instrumentalism debate
- Observer role in physics
 - Information extraction and reality
 - Resolution of measurement problem
 - Participatory universe concept in information framework
- Information determinism and free will
 - Causal structure in information ontology
 - Compatibility with quantum indeterminism
 - Novel perspective on free will debate
- Limits of knowledge
 - Information accessibility constraints
 - Fundamental uncertainty principles
 - Ultimate limits of physical theories

11. Applications and Extensions

- Quantum technology advancements
 - Novel quantum computing paradigms
 - Quantum communication efficiency improvements

- Quantum sensing with information awareness
- Cosmological modeling
 - Information-based dark energy and dark matter models
 - Initial conditions from information principles
 - Universe evolution predictions
- Complex systems analysis
 - Biological systems in information framework
 - Consciousness studies from information perspective
 - Social systems as information processing structures
- Computational physics advancement
 - Information-focused algorithms for physical simulation
 - Efficiency improvements through information principles
 - Novel computational approaches to difficult problems

12. Conclusions and Future Directions

- Summary of information ontology framework
 - Key mathematical advances
 - Core theoretical contributions
 - Experimental verifications and predictions
- Advantages over conventional approaches
 - Parsimony and elegance
 - Explanatory power for existing paradoxes
 - Mathematical consistency across domains
- Open questions and future research
 - Current limitations of the framework
 - Key areas requiring further development
 - Potential breakthrough applications
- Vision for physics based on information ontology
 - Long-term implications for theoretical physics
 - Technological applications and societal impact
 - New research directions enabled by this paradigm

Implementation Timeline

- 1. Core Information Ontology Framework (Deadline: May 31, 2025)
 - Formalize mathematical definitions of information states
 - Develop complete axiom system for information ontology
 - Derive key theorems relating information to physical quantities
 - Establish correspondence with existing physical theories
- 2. Quantum Mechanics Reformulation (Deadline: June 30, 2025)
 - Complete information-based derivation of quantum principles
 - Develop formal resolution of measurement problem
 - Establish information interpretation of quantum entanglement
 - Create mathematical bridge to standard quantum formalism
- 3. Relativistic Physics Reformulation (Deadline: July 31, 2025)

- Derive spacetime structure from information principles
- Complete information-based derivation of Einstein's equations
- Develop black hole information theory
- Establish correspondence with standard relativistic formalism
- 4. Thermodynamics and Statistical Physics Reframing (Deadline: August 15, 2025)
 - Develop information-based entropy foundation
 - Formalize irreversibility principles in information framework
 - Create information engine theoretical models
 - Establish correspondence with standard thermodynamic laws
- 5. Unification Framework Development (Deadline: September 15, 2025)
 - Formulate unified information field equations
 - Develop common framework for fundamental forces
 - Create quantum gravity approach through information principles
 - Establish specific predictions for experimental verification
- 6. Computational Implementation (Deadline: October 15, 2025)
 - Develop simulation algorithms for information fields
 - Create visualization tools for information dynamics
 - Implement test cases across physical domains
 - Validate predictions against existing physical data
- 7. Experimental Prediction Refinement (Deadline: November 15, 2025)
 - Identify key experimental tests with highest differentiation power
 - Calculate precise predictions with uncertainty bounds
 - Design experimental protocols for verification
 - Establish collaboration with experimental groups
- 8. Manuscript Development (Deadline: December 15, 2025)
 - Complete first draft with comprehensive mathematical appendices
 - Prepare visual materials and illustrations
 - Develop supplementary materials package
 - Conduct internal review and refinement

Target Submission Date: January 15, 2026

Authorship and Affiliations

Primary Author: - Auric

Collaborators: - To be determined based on contributions to mathematical formalism, computational implementation, and experimental design.

Institutional Affiliations: - To be confirmed prior to submission.

Publication Strategy Notes

1. Position information ontology as a revolutionary paradigm rather than incremental advance

- 2. Emphasize mathematical rigor and consistency across physical domains
- 3. Focus on resolving existing paradoxes through information framework
- 4. Provide clear experimental predictions that differentiate from conventional theories
- 5. Balance theoretical innovation with connection to established physics
- 6. Include comprehensive supplementary materials to support advanced mathematical claims

Last Updated: April 18, 2025