6316 Homework 3

James Harbour gtr8rh@virginia.edu

March 18, 2024

1 Problem 1

Show the following monotonicity property of VC-dimension: For every two hypothesis calsses, if $\mathcal{H}' \subseteq \mathcal{H}$ then $VC\dim(\mathcal{H}') \leq VC\dim(\mathcal{H})$.

Proof. Note that, if $C \subseteq X$ is any subset, then

$$\mathcal{H}'_{C} = \{(h(c_1), \dots, h(c_{\text{VCdim}(\mathcal{H}')})) : h \in \mathcal{H}'\} \stackrel{\mathcal{H}' \subseteq \mathcal{H}}{\subseteq} \{(h(c_1), \dots, h(c_{\text{VCdim}(\mathcal{H}')})) : h \in \mathcal{H}\} = \mathcal{H}_{C}$$
(1)

Suppose first that $VCdim(\mathcal{H}') < +\infty$. By definition, there exists a finite set $C \subseteq X$ of size $VCdim(\mathcal{H}')$ which is shattered by \mathcal{H}' , i.e. $\mathcal{H}'_C = \{0,1\}^C$. Appealing to equation (1), we find

$$\{0,1\}^C = \mathcal{H}_C' \stackrel{\text{(1)}}{\subseteq} \mathcal{H}_C \subseteq \{0,1\}^C,$$

whence $\mathcal{H}_C = \{0, 1\}^C$. Thus, as \mathcal{H} shatters C which is a set of size $VCdim(\mathcal{H}')$, it follows by definition that $VCdim(\mathcal{H}) \geq VCdim(\mathcal{H}')$ as desired.

Now assume that $\operatorname{VCdim}(\mathcal{H}') = +\infty$. Fix arbitrary $N \in \mathbb{N}$. Since \mathcal{H}' has infinite VC-dimension, there exists a set $C \subseteq X$ of size $|C| \ge N$ which is shattered by \mathcal{H}' . By equation (1), we have again that $\mathcal{H}_C = \{0,1\}^C$ whence \mathcal{H} shatters C. Thus, \mathcal{H} shatters sets of arbitrarily large size, whence $\operatorname{VCdim}(\mathcal{H}) = +\infty$ and trivially $\operatorname{VCdim}(\mathcal{H}') = +\infty \le +\infty = \operatorname{VCdim}(\mathcal{H})$.

2 Problem 2

Let \mathcal{H} be the class of signed intervals, that is, $\mathcal{H} = \{h_{a,b,s} : a \leq b, s \in \{\pm 1\}\}$ where

$$h_{a,b,s} = \begin{cases} s & \text{if } x \in [a,b] \\ -s & \text{otherwise} \end{cases}$$

Calculate $VCdim(\mathcal{H})$.

Solution. We claim that $VCdim(\mathcal{H}) = 3$. First consider the set $C = \{1, 3, 5\}$. Consider the hypotheses $h_{0,2,\pm 1}, h_{2,4,\pm 1}, h_{4,6,\pm 1}, h_{0,6,\pm 1}$. We claim these classes restricted to C witness all of $\{\pm 1\}^C$. This is clear from the computations below.

$$h_{0,2,\pm 1}(1) = \pm 1, \ h_{0,2,\pm 1}(3) = \mp 1, \ h_{0,2,\pm 1}(5) = \mp 1$$

$$h_{2,4,\pm 1}(1) = \mp 1, \ h_{2,4,\pm 1}(3) = \pm 1, \ h_{2,4,\pm 1}(5) = \mp 1$$

$$h_{4,6,\pm 1}(1) = \mp 1, \ h_{4,6,\pm 1}(3) = \mp 1, \ h_{4,6,\pm 1}(5) = \pm 1$$

 $h_{0,6,\pm 1}(1) = \pm 1, \ h_{0,6,\pm 1}(3) = \pm 1, \ h_{0,6,\pm 1}(5) = \pm 1$

Hence \mathcal{H} shatters C, so $VCdim(\mathcal{H}) \geq 3$.

Now suppose that $C \subseteq \mathbb{R}$ with |C| = 4. Write $C = \{a, b, c, d\}$ with a < b < c < d. We claim that $(+1, -1, +1, -1) \notin \mathcal{H}_C$. Suppose, for the sake of contradiction, that there is some $h = h_{\alpha,\beta,s} \in \mathcal{H}$ such that (+1, -1, +1, -1) = (h(a), h(b), h(c), h(d)).

For the first case, assume s = 1. As h(a), h(c) = +1, we have $a, c \in [\alpha, \beta]$. But then $b \in [a, c] \subseteq [\alpha, \beta]$, whence h(b) = +1 contradicting the assumption that h(b) = -1.

For the second case, assume s = -1. As h(b), h(d) = -1, we have $b, d \in [\alpha, \beta]$. But then $c \in [b, d] \subseteq [\alpha, \beta]$, whence h(c) = -1 contradicting the assumption that h(c) = +1.

In both cases, we reach a contradiction, so the claim follows and thus \mathcal{H} cannot shatter any set of size 4. Hence $VCdim(\mathcal{H}) = 3$.