Espacios de Señales

Temas a tratar

- · Señales y vectores.
- · La relación entre álgebra lineal y señales.
- Espacios vectoriales y espacios de señales.
- Bases y transformaciones lineales.

Introducción

- En general asociamos a las señales con "elementos aislados".
- Ahora vamos a incorporar a las señales en "marcos estructurados" como los espacios vectoriales.
- Considerando a las señales como vectores de un espacio n-dimensional, podemos:
 - aprovechar las propiedades de la estructura algebraica de los espacios vectoriales.
 - interpretar el procesamiento de las señales desde una perspectiva geométrica.
 - con un abordaje conceptual sencillo e intuitivo...

Experimento conceptual

- •Medimos la temperatura ambiente a intervalos de 1 minuto...
- •Representamos en una gráfica en donde el eje de las ordenadas indica el tiempo y el de las abscisas la magnitud de la temperatura.

Señales y vectores...

•Si volvemos a medir luego de 1 minuto y vemos que la temperatura es 1 ° C \dots

Señales y vectores...

• Definimos una señal \mathbf{x} discreta en \mathbf{R}^N como:

$$\mathbf{x} = [x_n]; \quad n \in \mathbb{N}; x_n \in \mathbb{R}; \mathbf{x} \in \mathbb{R}^N$$

• Definimos una señal x continua en R[∞] como:

$$\mathbf{x} = \left[x(t) \right]; \quad t \in \mathbb{R}; x(t) \in \mathbb{R}; \mathbf{x} \in \mathbb{R}^{\infty}$$

Ahora con varios elementos...

- No nos interesa un elemento aislado...
- Sino c/u en "relación" al resto:
 - Conjuntos de señales
 - Espacios de señales
 - Espacios lineales o vectoriales
 - Espacios normados

Espacio

un conjunto de Un conjunto de relaciones que lo "puntos" estructuran. $d(\mathbf{x}_i, \mathbf{x}_i)$

Espacios

Relaciones geométricas: distancias, tamaños, formas, alineaciones, ángulos, conexidad.

> Otras relaciones definen otros tipos de estructuras.

El caso más interesante es cuando distintas estructuras interactúan en un mismo espacio.

Tipos de espacios

Métricos, topológicos, vectoriales, afines, euclídeos, de medida, de probabilidad, de distribuciones, ...

De Hilbert, de Banach, de Krein, de Orlicz, de Sobolev, de Schwartz, de Lebesgue,

Conjuntos de Señales

El matemático alemán George Cantor introdujo la Teoría de Conjuntos en siglo XIX.

Sud - Sas

Una "señal" es un "punto" o elemento de un conjunto

Para ello debo primero definir un conjunto:

$$\mathbb{X} = \{\mathbf{x}; p\}$$
 $p \Rightarrow \mathbf{x} \in \mathbb{X}$

O el conjunto de las x, tal que p sea cierto, o p es cierto, implica que x pertenece a X.

Ejemplo: conjunto de las señales sinusoidales (1)

$$\mathbb{X} = \{\mathbf{x}; x(t) = \text{Re}[\alpha \exp(\beta + j\omega t)]\}$$

$$\omega = 2\pi f \quad -\infty \le t \le \infty \quad \alpha, \beta, f \in \mathbb{R}$$

Otra forma es como solución de la ecuación diferencial:

$$\mathbb{X} = \{\mathbf{x}; \frac{dx}{dt} + x = 0\}$$

Otros ejemplos... $\{\mathbf{x}; x(t) = 0, T_i > t \ v \ t > T_2\}$ $\{\mathbf{x}; x(t) \leq A_1 v \ x(t) \geq A_2 \}$ Señales limitadas en amplitud (3) $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$ $\mathbb{X} = \{\mathbf{x}; |X(\omega)| = 0, \omega \leq \omega_1, \omega \geq \omega_2\}$ $\mathbb{X} = \{\mathbf{x}; |X(\omega)| = 0, \omega \leq \omega_1, \omega \geq \omega_2\}$

17

Sin embargo, ...

- Un espacio es un conjunto X de elementos x que satisfacen una condición p, pero además...
 - Se requieren otra/s propiedad/es para poder llamar al conjunto "espacio"...
 - En particular, se debe dotar al conjunto de (al menos una):
 - Estructura geométrica (espacio de señales).
 - Estructura algebraica (espacio vectorial).
 - ...

Estructura Geométrica

Espacio de Señales

- Si al conjunto de señales X definido anteriormente le agregamos una métrica d entonces se convierte en un espacio de señales X.
- Los espacios de señales son espacios métricos cuyos elementos son señales.

Espacio de señales

Conjunto de señales

Estructura geométrica

$$\mathcal{X}=\{\mathbb{X};d\}$$

Distancia / Norma

Espacio de señales

Norma vs Distancia

- Norma: depende de un punto del espacio.
- Distancia: función de dos puntos del espacio.

Norma

Analogías entre Señales y Vectores

Norma

- Nos proporciona información acerca del "tamaño" de una señal o vector x:
 - Es un número real no negativo:

$$||x|| \ge 0$$
, $||x|| = 0$

$$|x|| \ge 0$$
, $||x|| = 0$ \Leftrightarrow $x = 0$,

$$\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|$$

$$||x + y|| \le ||x|| + ||y||,$$

· Hay diferentes normas pero la más empleada es la denominada norma-p.

Norma - p

· Secuencias temporales:

$$\left\|\mathbf{x}\right\|_{p} = \left(\sum_{n=-\infty}^{\infty} \left|x_{n}\right|^{p}\right)^{1/p}$$

· Señales continuas:

$$1 \le p < \infty$$

$$\left\|\mathbf{x}\right\|_{p} = \left(\int_{-\infty}^{\infty} \left|x(t)\right|^{p} dt\right)^{1/p}$$

¿Qué pasa cuando p es infinito?

$$\|\mathbf{x}\|_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$$

$$\|\mathbf{x}\|_{\infty} = \sup_{t \in \mathbb{R}} |x(t)|$$

¿Qué pasa para p entre 0 y 1?

La definición es todavía de interés para 0
 1, pero la función resultante no define una norma* (porque viola la desigualdad del triangulo DEMOSTRAR).

Donoho Es una semi-norma

$$\|\mathbf{x}\|_0 = \lim_{p \to 0} \|\mathbf{x}\|_p^p$$

$$\left\|\mathbf{x}\right\|_{0} = \#\left\{n : x_{n} \neq 0\right\}$$

"Norma-0" >> Medida de "dispersión"

Significado de Ralo

 Adjetivo que se aplica a los componentes de algo que están separados y poco densos o espesos.

 Viene del latin "rarus" que no significaba "extraño o extravagante" sino "espaciado, disperso" e "infrecuente, escaso, dificil de encontrar" (castellano, año 1250).

http://etimologias.dechile.net/?ralo

Otros nombres...

 $\|\mathbf{X}\|_{\infty}$ Se denomina amplitud de la señal \mathbf{X}

 $\|\mathbf{x}\|_2^2$ Se conoce como energía de la señal \mathbf{x}

 $\|\mathbf{X}\|_{1}$ Suele llamarse acción de la señal \mathbf{X}

Ejemplo: amplitud y energía

^{*} Salvo en R1, donde coincide con la norma Euclidea, y en R0, donde es trivial.

34

¿Qué ocurre cuando varío p?

El "círculo unitario" en diferentes normas $\|\mathbf{x}\|_p$ para $\mathbf{x} = [x_1, x_2]$

¿La norma-p es la única?

- Otros ejemplos:
 - Norma del Volumen Mínimo (similar a $\|\mathbf{x}\|_0$)
 - Norma de Cauchy
 - Norma Varimax
 - Otras dependiendo de la aplicación...

Otras medidas útiles:

Potencia media de una señal

$$P_{\mathbf{x}} = \frac{1}{2N} \sum_{n=-N}^{N} \left| x_n \right|^2$$

$$P_{\mathbf{x}} = \frac{1}{2T} \int_{-T}^{T} \left| x(t) \right|^2 dt$$

Otras medidas útiles:

Potencia media TOTAL de una señal

$$P_{\mathbf{x}} = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N} \left| x_n \right|^2$$

$$P_{\mathbf{x}} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| x(t) \right|^{2} dt$$

3

39

Otras medidas útiles:

Valor cuadrático medio (RMS):

$$\sqrt{P_{\mathbf{x}}}$$

Otras: Valor medio ...

Distancia

Distancia

- · La distancia es un concepto muy importante asociado a un espacio.
- Nos permite dar sentido geométrico al espacio a través de una "métrica".
- Significados: "error" o "diferencia", "disimilitud" o "grado de aproximación" entre dos señales.

Distancia vs Norma

• Una métrica puede derivarse a partir de una norma:

$$d(x, y) = ||x - y||$$

• La norma se refiere a un solo elemento, mientras que la distancia a dos (norma = distancia al origen).

Distancia: Propiedades

1) Es una función de $\frac{dos}{dos}$ puntos x, y con valor $\frac{real}{real}$ positivo:

$$d(x, y) \ge 0 \land d(x, y) = 0 \Leftrightarrow x = y$$

2) Es simétrica:

$$d(x,y) = d(y,x)$$

3) Cumple con la desigualdad del triángulo:

$$d(x,z) \le d(x,y) + d(y,z)$$

Desigualdad triangular: sentido común ...

"Cada lado de un triángulo es menor que la suma de los otros dos"

"Si antes de ir a casa paso por lo de un amigo, camino más que si voy derecho a casa, salvo que su casa esté de camino a la mía"

"Si para volar a Buenos Aires hago una escala en Córdoba, tomo otro vuelo de Córdoba a Buenos Aires, pago más que volando directamente"

¡No siempre!

¿A qué distancia está
¿Es igual caminando que en auto?

¿402 metros?

¿402 metros?

¿402 metros?

Distancia en Internet

- ¿Cómo medirían las distancias de comunicación por Internet?
- ¿Es razonable medirlas en Kms?

47

Distancia en Internet

- Mapa parcial de Internet (30%, Enero 2005, opte.org).
- Cada línea se dibuja entre dos nodos (direcciones IP).
- La longitud indica el retardo entre nodos.
- Los colores corresponden a los dominios:
 - Azul: net, ca, us - Verde: com, org
 - Rojo: mil, gov, edu
 - Amarillo: jp, cn, tw, au, de
 - Magenta: uk, it, pl, fr
 Oro: br, kr, nl
 - Blanco: desconocido

Distancia en Internet

• El mundo visto desde Internet: ¿Qué pasa si modificamos las distancias teniendo en cuenta la cantidad de conexiones?

49

Entonces ...

 Diferentes relaciones, diferentes maneras de medir distancias, estructuran el espacio de diferentes formas.

Distancias definida por la norma-p

• Como vimos una métrica se puede definir a partir de una norma, por ejemplo la norma-p: $d(x, y) = ||x - y||_p$

51

Distancia entre huellas digitales ...

La mejor distancia a utilizar depende de la aplicación ...

Distancia de Hamming

La distancia de Hamming (1915-1998) entre dos "palabras" es el número de posiciones en que difieren.

Distancia en habla ruidosa

	RUIDO BLANCO			RUIDO MURMULLO		
	-5 dB	0 dB	5 dB	-5 dB	0 dB	5 dB
PSS	84.3	94.1	98.1	76.4	89.3	95.6
WIENER	84.8	94.3	95.5	87.9	94.7	97.6
LogSTSA	92.9	96.3	98.9	86.9	95.2	97.6

La SNR no es una buena medida de la inteligibilidad del habla, ¿Cómo la medimos entonces?

Distancia en habla ruidosa

• LAR

- Diferencia entre los espectros limpio y ruidoso:

$$LAR(m) = \left[\frac{1}{M} \sum_{i=1}^{M} \left(\log \frac{1 + r_{g}(m)}{1 - r_{g}(m)} - \log \frac{1 + r_{\hat{g}}(m)}{1 - r_{\hat{g}}(m)} \right)^{2} \right]^{\frac{1}{2}}$$

• PESQ

- Modelo de percepción auditiva:

Leandro Di Persia, Diego Milone, Hugo Leonardo Rufiner, Masuzo Yanagida, "Perceptua evaluation of blind source separation for robust speech recognition", Signal Processing 88 (2008) 2578–2583.

- · Distancia entre palabras:
 - Número mínimo de operaciones requeridas para transformar una cadena de caracteres en otra.
 - Operaciones: inserción, eliminación o sustitución de un carácter.
- Es útil en programas que determinan cuán similares son dos cadenas de caracteres, como es el caso de los correctores de ortografía.

67

Distancia de Mahalanobis

• Es como la euclídea pero "pesada":

$$d(x, y) = \sqrt{(x - y)^{T} C^{-1} (x - y)}$$

matriz de covarianza

Toma en cuenta la estadística de los datos

Prasanta Chandra Mahalanobis India 1936.

6

Divergencia de Kullback-Leibler

 Sean x y y dos señales en R^N y sea D_{KL} la denominada "Divergencia de Kullback-Leibler":

$$D_{\mathrm{KL}}(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{N} x[i] \log \frac{x[i]}{y[i]}$$

• ¿Es una distancia?¿Por qué?

Ejemplos de espacios de señales

• Espacio de secuencias temporales reales:

 $\mathbb{X} = \{x[n]\}; n \in \mathbb{N}; x[n] \in \mathbb{R}; 1 \le n \le N$

• Espacio de señales de tiempo continuo reales:

$$\mathbb{X} = \{x(t)\}; \quad t \in \mathbb{R}; \quad x(t) \in \mathbb{R}; \quad -\infty \le t \le \infty$$

- Ambos suelen usar la métrica euclideana:

$$d(x, y) = ||x - y||_2$$

Producto Interno

Analogías entre Señales y Vectores

Producto interno

Otra medida de

similitud

entre señales

Componente de un vector en otro

- Proyección de \mathbf{v}_1 sobre \mathbf{v}_2
- Menor error de modo que:

$$\mathbf{v}_1 = c_{12} \, \mathbf{v}_2 + \mathbf{v}_{\mathrm{e}}$$

Otras alternativas podrían ser

Pero no cumplen la condición de error mínimo

¿Cómo calculamos c_{12} ?

La componente de la componente de \mathbf{v}_1 a lo largo de \mathbf{v}_2 será:

$$c_{12} \left| \mathbf{v}_2 \right| = \left| \mathbf{v}_1 \right| \cos(\theta)$$

¿Cómo calculamos c_{12} ?

La componente de la componente de \mathbf{v}_1 a lo largo de \mathbf{v}_2 será:

$$c_{12} \, |\mathbf{v}_2| = |\mathbf{v}_1| \cos(\theta)$$

Además, sabemos que:

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = |\mathbf{v}_1| |\mathbf{v}_2| \cos(\theta)$$

¿Cómo calculamos c_{12} ?

Ahora podemos escribir:

$$c_{12} = \frac{\left\langle \mathbf{v}_1, \mathbf{v}_2 \right\rangle}{\left\langle \mathbf{v}_2, \mathbf{v}_2 \right\rangle}$$

c_{12} mide el **parecido** entre \mathbf{v}_1 y \mathbf{v}_2

80

81

$$c_{12} = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

Producto interno en ¿señales continuas?

Producto Interno, normas y métricas

• Al definir el producto interno se obtiene también una norma y una métrica para el espacio:

$$\|\mathbf{x}\|_2^2 = \langle \mathbf{x}, \mathbf{x} \rangle$$

Producto interno ...

- · El concepto de proyección y ortogonalidad de vectores se puede extender a las señales.
- Se considerarán dos señales $f_1(t)$ y $f_2(t)$ donde se se desea aproximar $f_1(t)$ en términos de $f_2(t)$ en un cierto intervalo (t_1, t_2)

Se desea aproximar f_1 mediante f_2

$$f_1(t) \approx C_{12} f_2(t)$$
 en $(t_1 < t < t_2)$.

Se define la función error $f_e(t)$:

$$f_{\rm e}(t) = f_1(t) - C_{12}f_2(t)$$
.

Debemos encontrar un valor de C_{12} que minimice el error entre las dos funciones

$$EM = \frac{\int_{t_1}^{t_2} \left[f_1(t) - C_{12} f_2(t) \right] dt}{t_2 - t_1}$$

$$ECM = rac{\int_{t_1}^{t_2} \! f_e^2(t) \; dt}{t_2 - t_1}$$

$$\begin{split} \frac{\partial ECM}{\partial \, C_{12}} &= 0 \\ & \downarrow \\ C_{\,12} &= \frac{\int_{t_1}^{t_2} \! f_{\,1}(t) f_{\,2}(t) \; dt}{\int_{t_1}^{t_2} \! (f_{\,2}(t))^2 \; dt} \end{split}$$

$$\begin{split} \frac{\partial ECM}{\partial C_{12}} &= 0 \\ & \downarrow \\ C_{12} &= \frac{\int_{t_1}^{t_2} f_1(t) \overline{f_2(t)} \ dt}{\int_{t_1}^{t_2} f_2(t) \overline{f_2(t)} \ dt} \end{split}$$

Si nuestra señal puede tomar valores complejos

Ortogonalidad de Funciones

$$\int_{t_1}^{t_2} f_1(t) \overline{f_2(t)} \, dt = 0$$

Transformaciones lineales...

$$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n).z^{-n}$$

Otras operaciones lineales...

$$x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$$

$$R_{xy}(t) = \int_{-\infty}^{\infty} x(\tau)y(t+\tau)d\tau$$

Campo Escalar

• K es un campo escalar (un conjunto)

 $+:\mathbb{K}\times\mathbb{K}\to\mathbb{K}$ Adición - Producto $: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$

- Neutro aditivo: 0

- Neutro multiplicativo: 1

• Ejemplos: \mathbb{Z} , \mathbb{R} , \mathbb{C}

Espacio Lineal

- Conjunto para el que están definidas las operaciones binarias (cerradas) de:
 - Multiplicación de cualquier elemento por un escalar
 - Adición entre cualesquiera de sus elementos
- Estas operaciones son conmutativas, asociativas y distributivas.
- Poseen elemento neutro y cancelativo.

$$\mathcal{S} = \{ \mathbb{S}; \mathbb{K}; +; \cdot \}$$

Espacio Lineal

1. La adición es cerrada: $\mathbf{x} + \mathbf{y} \in S$; $\forall \mathbf{x}, \mathbf{y} \in S$ $\mathcal{S}{=}\big\{\mathbb{S};\mathbb{K};+;\cdot\big\}$ La adición es conmutativa: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}; \quad \forall \ \mathbf{x}, \mathbf{y} \in S$ La adición es asociativa: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}; \;\; \forall \; \mathbf{x}, \mathbf{y}, \mathbf{z} \in S$ Existe un único elemento $0 \in S$ que es neutro respecto a la adición: $\mathbf{x} + \mathbf{0} = \mathbf{x}; \forall \mathbf{x} \in S$ vi. El producto por un escalar es asociativo: $\alpha(\beta \mathbf{x}) = (\alpha\beta)\mathbf{x}; \ \ \forall \ \mathbf{x} \in S \wedge \forall \ \alpha, \beta \in K$ VIII. El producto por un escalar es distributivo según: $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}; \quad \forall \mathbf{x} \in S \land \forall \alpha, \beta \in K$ ıx. Existe un único elemento $1\in K$ que es neutro respecto al producto por un escalar: $1\mathbf{x}=\mathbf{x}; \ \, \forall \ \mathbf{x}\in S$

Espacio Lineal

• A los elementos de los espacios lineales los llamamos vectores y podemos referirnos al espacio como espacio vectorial.

Espacios Normados

- · Son aquellos espacios vectoriales en los que todos sus elementos poseen norma finita.
- Ejemplos:
 - Los subconjuntos de señales que poseen energía finita o acción finita son espacios normados:

$$L_1(\mathbb{R})$$
 $L_2(\mathbb{R})$ $\ell_1(\mathbb{Z})$ $\ell_2(\mathbb{Z})$

Espacios Normados

• Ejemplos:

$$\begin{split} L_{\mathbf{I}}(\mathbb{R}) &= \left\{ x; \int_{-\infty}^{\infty} \left| x(t) \right| dt < \infty \right\}; \quad t \in \mathbb{R}; \quad x(t) \in \mathbb{R}, \quad -\infty \leq t \leq \infty \\ L_{2}(\mathbb{R}) &= \left\{ x; \int_{-\infty}^{\infty} \left| x(t) \right|^{2} dt < \infty \right\}; \quad t \in \mathbb{R}; \quad x(t) \in \mathbb{R}; \quad -\infty \leq t \leq \infty \\ \ell_{1}(\mathbb{R}) &= \left\{ x; \sum_{n=-\infty}^{\infty} \left| x[n] \right| < \infty \right\}; \quad n \in \mathbb{N}; \quad x[n] \in \mathbb{R}; \quad -\infty \leq n \leq \infty \\ \ell_{2}(\mathbb{R}) &= \left\{ x; \sum_{n=-\infty}^{\infty} \left| x[n] \right|^{2} < \infty \right\}; \quad n \in \mathbb{N}; \quad x[n] \in \mathbb{R}; \quad -\infty \leq n \leq \infty \end{aligned}$$
 (pueden definits también en \mathbb{C} o \mathbb{Z}):

Espacios con Producto Interno

- Debido a la importancia del producto interno para comparar señales aparece este tipo particular de espacios.
- Un espacio con producto interno:

$$I(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle,$$

es un espacio vectorial con un producto interno definido en él.

Espacios con Producto Interno

· Como ya vimos, al definir el producto interno se obtiene también una norma y una métrica para el espacio:

$$\left\|\mathbf{x}\right\|_{2}^{2}=\left\langle\mathbf{x},\mathbf{x}\right
angle$$

Espacio Euclídeo

- Es el espacio matemático *n*-dimensional usual, una generalización de los espacios de 2 y 3 dimensiones estudiados por Euclides.
- Estructuralmente es:
 - un espacio vectorial normado de dimensión finita sobre los reales
 - la norma es la asociada al producto escalar ordinario (norma 2).
- Se denota como: \mathbb{R}^N

Euclides (300 a.C, Grecia)

Espacios de Hilbert

- \mathcal{H} es un espacio de Hilbert si es completo con respecto a la norma generada por $\langle \mathbf{x}, \mathbf{x} \rangle$.
- · Completo significa que no tiene "agujeros".
- Constituye una generalización del concepto de espacio euclídeo.
- · Permite extender nociones de espacios de dimensión finita a los de dimensión infinita.

David Hilbert (1862-1943, Alemania)

Conjunto generador

Dado un conjunto N vectores (señales) $X_0 = \{x_i\}$ con $N < \infty$:

$$\mathbf{x} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i \quad \text{combinación lineal de vectores } \mathbf{x}_i,$$
 donde α_i son escalares.

Variando los α_i se genera un nuevo conjunto X, que en el caso que sea un espacio vectorial entonces X_0 es un conjunto generador de ese espacio.

Definición de base

$$\text{Base } \begin{cases} \text{ Conjunto generador.} \\ \{\mathbf{x}_i\} \text{ linealmente independientes.} \end{cases}$$

 $\{\mathbf{x}_i\}$ son linealmente independientes si:

$$\sum_{i=1}^{N} \alpha_i \mathbf{x}_i = \mathbf{0} \quad \Leftrightarrow \quad \alpha_i = 0 \quad \forall i$$

Volvemos sobre ortogonalidad...

Si el conjunto \mathbb{X}_0 es ortogonal

$$\begin{cases} \langle \mathbf{x}_i, \mathbf{x}_j \rangle = 0 \ \forall \ i \neq j \\ \langle \mathbf{x}_i, \mathbf{x}_j \rangle = k \ \forall \ i = j \end{cases}$$

O, si k = 1 entonces X_0 es **ortonormal**.

Entonces, si \mathbb{X}_0 es una base del espacio vectorial \mathcal{X}_i los coeficientes α_i se pueden calcular mediante el *producto interno* entre el vector (señal) y cada uno de los elementos de la base.

Representación de señales

Suponga que quiere representar el vector ${\bf x}$ en \mathbb{R}^N generado por el conjunto $\mathbb{X}_0 = \{x_i\}$, con $i=1\dots N$.

$$\mathbf{x} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_N \mathbf{x}_N$$

Efectuando producto interno por \mathbf{x}_i a ambos miembros:

$$\langle \mathbf{x}, \mathbf{x}_i \rangle = \alpha_1 \langle \mathbf{x}_1, \mathbf{x}_i \rangle + \alpha_2 \langle \mathbf{x}_2, \mathbf{x}_i \rangle + ... + \alpha_N \langle \mathbf{x}_N, \mathbf{x}_i \rangle$$

Representación de señales

Si
$$X_0$$
 es ortogonal, entonces: $\langle \mathbf{x}, \mathbf{x}_i \rangle = \alpha_i \langle \mathbf{x}_i, \mathbf{x}_i \rangle$

$$\alpha_i = \frac{\langle \mathbf{x}, \mathbf{x}_i \rangle}{\langle \mathbf{x}_i, \mathbf{x}_i \rangle} = \frac{\langle \mathbf{x}, \mathbf{x}_i \rangle}{\left\| \mathbf{x}_i \right\|^2}$$

$$\mathrm{Si} \ \mathbb{X}_0 \ \mathrm{es \ ortonormal}, \ \mathrm{entonces} : \qquad \langle \mathbf{x}, \mathbf{x}_i \rangle = \alpha_i \langle \mathbf{x}_i, \mathbf{x}_i \rangle$$

$$\alpha_i = \langle \mathbf{x}, \mathbf{x}_i \rangle$$

Concepto importante: α_i es la componente de la señal \mathbf{x} en \mathbf{x}_i .

Ejemplos: Bases ortogonales

- Polinomios de Legendre [-1,1]
- Polinomios de Chebyshev [-1, 1]
- Polinomios de Hermite $[-\infty, \infty]$
- Funciones de Hermite $[-\infty, \infty]$
- Funciones de Walsh [0,T]
- Funciones de Haar [0,1]
- Wavelets
- Funciones de Fourier

Ejemplo: Wavelets

Funciones de Haar:

Ejemplo: Wavelets

Onditas de Meyer

Bibliografía

- Mertins, "Signal Analysis", John Wiley & Sons
- Franks, "Teoría de la señal", Reverté.
- De Coulon, "Signal Theory and Processing", Artech-House.
- · Lathi, "Modern Digital and Analog Communication Systems", Holt, Rinehart & Winston.
- Citas completas y repaso en:
 - Milone, Rufiner, Acevedo, Di Persia, Torres, "Introducción a las señales y los sistemas discretos", EDUNER (Cap. 2).