附录 A MIPSsim 的指令列表

(MIPS 64 指令集的一个子集)

MIPSsim 是一个指令级和流水线级的 MIPS 模拟器。它能够执行用 MIPS 汇编语言(子集)编写的程序。下面给出它能够执行的 MIPS 指令的列表。

符号说明:

- ① 在指令助记符中,".W"表示 32 位整数、".L"表示 64 位整数、".S"表示单精度浮点数、".D"表示双精度浮点数。".fmt"表示多种格式的数据,fmt ∈ (S, D, W, L)。
- ② 助记符的最后一个字母为 U 表示无符号操作,I 表示与立即值操作,IU 表示无符号立即值操作。助记符的第一个字母为 D 表示是双字(64位)操作。
- ③ 为简洁起见,直接用 rs 来表示 rs 寄存器中的内容,其他的如 rt、rd、fs、ft、fd 等都是如此。
- ④ fs、ft、fd 表示浮点寄存器。一般来说,fs 和 ft 表示源操作数(寄存器),fd 表示结果寄存器。
- ⑤ rs、rt、rd 表示整数寄存器,也称为通用寄存器。一般来说,rs 和 rt 表示源操作数(寄存器),rd 表示目的寄存器。
 - ⑥ 以下是两个特殊寄存器:
 - LO——常用来存放乘积的低 32 位(或 64 位)以及除法的商;
 - HI——常用来存放乘积的高 32 位(或 64 位)以及除法的余数。

1. 算术运算指令

名称	格式	描述
寄存器加(ADD)	ADD rd, rs, rt	rd←rs + rt 32 位,按有符号数操作
立即值加(ADDI)	ADDI rt, rs, immediate	rt←rs + immediate 32 位,按有符号数操作, immediate 都是 16 位的。下同

续表

名称	格式	描述
无符号立即值加(ADDIU)	ADDIU rt, rs, immediate	rt←rs + immediate 32 位,按无符号数操作
无符号加(ADDU)	ADDU rd, rs, rt	rd←rs + rt 32 位,按无符号数操作
双字寄存器加(DADD)	DADD rd, rs, rt	rd ←rs + rt 按有符号数操作
双字立即值加(DADDI)	DADDI rt, rs, immediate	rt ←rs + immediate 按有符号数操作
双字无符号立即值加 (DADDIU)	DADDIU rt, rs, immediate	rt ←rs + immediate 按无符号数操作
双字无符号加(DADDU)	DADDU rd, rs, rt	rd ←rs + rt 按无符号数操作
寄存器减(SUB)	SUB rd, rs, rt	rd←rs - rt 32 位,按有符号数操作
无符号减(SUBU)	SUBU rd, rs, rt	rd←rs - rt 32 位,按无符号数操作
双字寄存器减(DSUB)	DSUB rd, rs, rt	rd ←rs - rt 按有符号数操作
双字无符号减(DSUBU)	DSUBU rd, rs, rt	rd ←rs - rt 按无符号数操作
寄存器乘 1(MUL)	MUL rd, rs, rt	rd←rs×rt 32 位,按有符号数操作
寄存器乘 2(MULT)	MULT rs, rt	(LO, HI)←rs×rt, 32 位, 按有符号数操作。所得到的积的低 32 位按符号扩展后送特殊寄存器 LO,高 32 位按符号扩展后送特殊寄存器 HI
无符号寄存器乘(MULTU)	MULTU rs, rt	按无符号数操作。其余同 MULT
双字寄存器乘(DMULT)	DMULT rs, rt	(LO, HI)←rs×rt 积的低 64 位送 LO, 高 64 位送 HI, 按有符号数操作
双字无符号乘(DMULTU)	DMULTU rs, rt	按无符号数操作。其余同 DMULT

续表

		没 衣
名称	格式	描述
寄存器除(DIV)	DIV rs, rt	(LO, HI)←rs/rt 32 位商送 LO, 32 位余数送 HI, 按有 符号数操作
无符号寄存器除(DIVU)	DIVU rs, rt	按无符号数操作。其余同 DIV
双字寄存器除(DDIV)	DDIV rs, rt	(LO, HI)←rs/rt 64 位商送 LO,64 位余数送 HI,按有 符号数操作
双字无符号除(DDIVU)	DDIVU rs, rt	按无符号数操作。其余同 DDIV
小于比较(SLT)	SLT rd, rs, rt	if (rs < rt) rd←1 else rd←0 按有符号数操作
无符号小于比较(SLTU)	SLTU rd, rs, rt	if (rs < rt) rd←1 else rd←0 按无符号数操作
立即值小于比较(SLTI)	SLTI rt, rs, immediate	if (rs < immediate) rt←1 else rt←0 按有符号数操作
无符号立即值小于比较 (SLTIU)	SLTIU rt, rs, immediate	if (rs < immediate) rt←1 else rt←0 按无符号数操作
字节符号位扩展(SEB)	SEB rd, rt	rd←rt 的末字节按符号位扩展
半字符号位扩展(SEH)	SEH rd, rt	rd←rt 的后半字按符号位扩展
2. 逻辑运算指令	2	
名称	格式	描述
与(AND)	AND rd, rs, rt	rd←rs AND rt
立即值与(ANDI)	ANDI rt, rs, immediate	rt←rs AND immediate
取立即值高位(LUI)	LUI rt, immediate	16 位 immediate 低位拼接 16 位 0,然 后按符号位扩展后装入 rt
或非(NOR)	NOR rd, rs, rt	rd←rs NOR rt
或(OR)	OR rd, rs, rt	rd←rs OR rt

续表

名称	格式	描述
立即值或(ORI)	ORI rt, rs, immediate	rt←rs OR immediate
异或(XOR)	XOR rd, rs, rt	rd←rs XOR rt
立即值异或(XORI)	XORI rt, rs, immediate	rt←rs XORI immediate

3. CPU 移位指令

名称	格式	描述
按立即值逻辑左移(SLL)	SLL rd, rt, sa	rd←rt << sa rt 中的低 32 位进行逻辑左移,结果 按符号位扩展,然后放入 rd。移动 的位数由立即值 sa 给出
按立即值算术右移(SRA)	SRA rd, rt, sa	rd←rt >> sa rt 中的低 32 位进行算术右移,其余 同 SLL
按立即值逻辑右移(SRL)	SRL rd, rt, sa	rd←rt >> sa rt 中的低 32 位进行逻辑右移,其余 同 SLL
按变量逻辑左移(SLLV)	SLLV rd, rt, rs	rd←rt << rs rt 中的低 32 位进行逻辑左移,结果 进行符号位扩展,然后放入 rd。移 动的位数由寄存器 rs 给出
按变量算术右移(SRAV)	SRAV rd, rt, rs	rd←rt >> rs rt 中的低 32 位进行算术右移,其余 同 SLLV
按变量逻辑右移(SRLV)	SRLV rd, rt, rs	rd←rt >> rs rt 中的低 32 位进行逻辑右移,其余 同 SLLV
按立即值循环右移(ROTR)	ROTR rd, rt, sa	rd← rt 中的低 32 位进行循环右移。 移动的位数由立即值 sa 给出
按变量循环右移(ROTRV)	ROTRV rd, rt, rs	rd← rt 中的低 32 位进行循环右移。 移动的位数由寄存器 rs 给出
双字按立即值逻辑左移 (DSLL)	DSLL rd, rt, sa	rd←rt << sa 移动的位数由立即值 sa 给出

续表

	格式	描述
双字按立即值逻辑右移 (DSRL)	DSRL rd, rt, sa	rd←rt >> sa 移动的位数由立即值 sa 给出
双字按立即值算术右移 (DSRA)	DSRA rd, rt, sa	rd←rt >> sa 移动的位数由立即值 sa 给出
双字按变量逻辑左移 (DSLLV)	DSLLV rd, rt, rs	rd←rt << rs 移动的位数由寄存器 rs 给出
双字按变量逻辑右移(DSR-LV)	DSRLV rd, rt, rs	rd←rt >> rs 移动的位数由寄存器 rs 给出
双字按变量算术右移 (DSRAV)	DSRAV rd, rt, rs	rd←rt >> rs 移动的位数由寄存器 rs 给出
双字按立即值循环右移 (DROTR)	DROTR rd, rt, sa	rd← rt 中的双字循环右移。 移动的位数由立即值 sa 给出
双字按变量循环右移(DRO-TRV)	DROTRV rd, rt, rs	rd← rt 中的双字循环右移。 移动的位数由寄存器 rs 给出

4. CPU 传送指令

名称	格式	描述
等于0传送(MOVZ)	MOVZ rd, rs, rt	If(rt=0) then rd←rs
不等于0传送(MOVN)	MOVN rd, rs, rt	If(rt!=0) then rd←rs
从 HI 传送至整数寄存器 (MFHI)	MFHI rd	rd←HI
从 LO 传送至整数寄存器 (MFLO)	MFLO rd	rd←LO
从整数寄存器传送至 HI (MTHI)	MTHI rs	HI ←rs
从整数寄存器传送至 LO (MTLO)	MTLO rs	LO ←rs
浮点条件码为假整数传送 (MOVF)	MOVF rd, rs, cc	if FPConditionCode(cc) = 0 then rd←rs
浮点条件码为真整数传送 (MOVT)	MOVT rd, rs, cc	if FPConditionCode(cc) = 1 then rd←rs

5. 浮点传送指令

名称	格式	描述
把浮点控制寄存器的内容传 送至整数寄存器(CFC1)	CFC1 rt, fs	把 fs 中的 32 位数据按符号位扩展 成 64 位后送入 rt
把整数寄存器的内容传送至 浮点控制寄存器(CTC1)	CTC1 rt, fs	fs ← rt
从浮点寄存器传送双字到整 数寄存器(DMFC1)	DMFC1 rt, fs	rt←fs
从整数寄存器传送双字到浮 点寄存器(DMTC1)	DMTC1 rt, fs	fs ← rt
从浮点寄存器传送 32 位至 整数寄存器(MFC1)	MFC1 rt, fs	rt←fs 符号位扩展后
从整数寄存器传送 32 位至 浮点寄存器(MTC1)	MTC1 rt, fs	fs←rt
单精度浮点传送(MOV.S)	MOV.S fd, fs	- fd←fs
双精度浮点传送(MOV.D)	MOV.D fd, fs	14-18
等于 0 单精度浮点传送 (MOVZ.S)	MOVZ.S fd, fs, rt	16/ -1 = 0) show file for
等于 0 双精度浮点传送 (MOVZ.D)	MOVZ.D fd, fs, rt	If (rt=0) then fd←fs
不等于 0 单精度浮点传送 (MOVN.S)	MOVN.S fd, fs, rt	
不等于 0 双精度浮点传送 (MOVN.D)	MOVN.D fd, fs, rt	If $(rt! = 0)$ then $fd \leftarrow fs$
浮点条件码为假单精度浮点 传送(MOVF.S)	MOVF.S fd,fs, cc	if FPConditionCode(cc) = 0 then fd←fs
浮点条件码为假双精度浮点 传送(MOVF.D)	MOVF.D fd,fs, cc	if FPConditionCode(cc) = 0 then fd←fs
浮点条件码为真单精度浮点 传送(MOVT.S)	MOVT.S fd,fs, cc	if FPConditionCode(cc) = 1 then fd←fs
浮点条件码为真双精度浮点 传送(MOVT.D)	MOVT.D fd,fs, cc	if FPConditionCode(cc) = 1 then fd←fs

6. 分支指令

名称	格式	描述
无条件转移(B)	B offset	用以下指令实现: BEQ r0, r0, offset
等于 0 转移(BEQZ)	BEQZ rs, rt, offset	if(rs=0) then action action 表示以 offset 作为相对于 PC+ 4 的偏移量进行转移。下同
不等于0转移(BNEZ)	BNEZ rs, rt, offset	if(rs!=0) then action
相等转移(BEQ)	BEQ rs, rt, offset	if(rs=rt) then action
不相等转移(BNE)	BNE rs, rt, offset	if(rs!=rt) then action
大于等于 0 转移(BGEZ)	BGEZ rs, offset	if(rs>=0) then action
大于 0 转移(BGTZ)	BGTZ rs, offset	if(rs>0) then action
小于等于 0 转移(BLEZ)	BLEZ rs, offset	if(rs<=0) then action
小于 0 转移(BLTZ)	BLTZ rs, offset	if(rs<0) then action
大于等于 0 转移并链接 (BGEZAL)	BGEZAL rs, offset	If (rs>=0) then action,并将返回 地址(当前的 PC 值)保存到 R31
小于 0 转 移 并 链 接 (BLTZAL)	BLTZAL rs, offset	If (rs<0) then action,并将返回地址保存到 R31
从异常处理返回(ERET)	ERET	

7. 跳转指令

名称	格式	描述
跳转(J)	J target	无条件转移到目标地址 target
寄存器跳转(JR)	JR rs	无条件转移,目标地址由 rs 给出
跳转并链接(JAL)	JAL target	无条件转移到目标地址 target,并将 返回地址 PC+4 保存到 R31
寄存器跳转并链接(JALR)	JALR rd, rs	无条件转移到 rs 给出的地址,并将返回地址 PC+4 保存到 R31

8. 访存指令

从存储器读出数据或将数据写入存储器。存储器的地址按"16 位偏移量 offset+定 点寄存器 base 的内容"计算。

名称	格式	描述
取字节(LB)	LB rt, offset(base)	
取半字(LH)	LH rt, offset(base)	rt←memory[base+offset] 按有符号数操作
取字(LW)	LW rt, offset(base)	12 13 13 3 20 00 11
取无符号字节(LBU)	LBU rt, offset(base)	
取无符号半字(LHU)	LHU rt, offset(base)	rt←memory[base+offset] 按无符号数操作
取无符号字(LWU)	LWU rt, offset(base)	1,2,013, 3,30,811
取双字(LD)	LD rt, offset(base)	rt←memory[base+offset]
取浮点数(LDC1)	LDC1 ft, offset(base)	ft←memory[base+offset]
存字节(SB)	SB rt, offset(base)	
存半字(SH)	SH rt, offset(base)	memory[base+offset]←rt
存字(SW)	SW rt, offset(base)	memory pase onset j. It
存双字(SD)	SD rt, offset(base)	
存浮点数(SDC1)	SDC1 ft, offset(base)	memory[base+offset]←ft

9. 浮点访存指令

名称	格式	描述
取单精度浮点数(L.S)	L.S ft, offset(base)	ft←memory[base+offset]
取双精度浮点数(L.D)	L.D ft, offset(base)	
取字到 FPR(LWC1)	LWC1 ft, offset(base)	ft 及下面的 fd、fs 为浮点寄存器
取双字到 FPR(LDC1)	LDC1 ft, offset(base)	
存单精度浮点数(S.S)	S.S ft, offset(base)	memory[base+offset] ←ft
存双精度浮点数(S.D)	S.D ft, offset(base)	
存 FPR 中的单字到存储器 (SWC1)	SWC1 ft, offset(base)	— memory[base+offset] ←ft
存 FPR 中的双字到存储器 (SDC1)	SDC1 ft, offset(base)	
变址取单字到 FPR (LWXC1)	LWXC1 fd, index(base)	fd←memory[base+index]
变址取双字到 FPR (LDXC1)	LDXC1 fd, index(base)	

名称	格式	描述
变址存 FPR 中的单字 (SWXC1)	SWXC1 fs, index(base)	memory[base+index]—fs
变址存 FPR 中的双字 (SDXC1)	SDXC1 fs, index(base)	

10. 自陷指令

名称	格式	描述
等于自陷(TEQ)	TEQ rs, rt	If rs=rt then trap
不等于自陷(TNE)	TNE rs, rt	If rs! = rt then trap
大于等于自陷(TGE)	TGE rs, rt	If rs>=rt then trap
小于自陷(TLT)	TLT rs, rt	If rs <rt td="" then="" trap<=""></rt>
大于等于自陷(TGEU)	TGEU rs, rt	If rs>=rt then trap
小于自陷(TLTU)	TLTU rs, rt	If rs <rt td="" then="" trap<=""></rt>
等于立即值自陷(TEQI)	TEQI rs, immediate	If rs=immediate then trap
不等于立即值自陷(TNEI)	TNEI rs, immediate	If rs!=immediate then trap
大于等于立即值自陷(TGEI)	TGEI rs, immediate	If rs>=immediate then trap
小于立即值自陷(TLTI)	TLTI rs, immediate	If rs <immediate td="" then="" trap<=""></immediate>
大于等于无符号立即值自陷 (TGEIU)	TGEIU rs, immediate	If rs>=immediate then trap
小于无符号立即值自陷 (TLTIU)	TLTIU rs, immediate	If rs <immediate td="" then="" trap<=""></immediate>

11. 浮点运算指令

名称	格式	描述
单精度求绝对值(ABS.S)	ABS.S fd, fs	fd←abs(fs)
双精度求绝对值(ABS.D)	ABS.D fd, fs	
单精度浮点加(ADD.S)	ADD.S fd, fs, ft	fd←fs + ft
双精度浮点加(ADD.D)	ADD.D fd, fs, ft	

名称	格式	描述
单精度浮点减(SUB.S)	SUB.S fd, fs, ft	fd←fs − ft
双精度浮点减(SUB.D)	SUB.D fd, fs, ft	
单精度浮点乘(MUL.S)	MUL.S fd, fs, ft	- fd←fs×ft
双精度浮点乘(MUL.D)	MUL.D fd, fs, ft	
单精度浮点除(DIV.S)	DIV.S fd, fs, ft	fd←fs / ft
双精度浮点除(DIV.D)	DIV.D fd, fs, ft	
单精度浮点求负(NEG.S)	NEG.S fd, fs	fd← -fs
双精度浮点求负(NEG.D)	NEG.D fd, fs	fd← -fs
单精度求平方根(SQRT.S)	SQRT.S fd, fs	fd←SQRT(fs)
双精度求平方根(SQRT.D)	SQRT.D fd, fs	
12. 浮点分支指令		
浮点条件码为假转移 (BC1F)	BC1F cc, offset	if FPConditionCode(cc) = 0 then 转移
浮点条件码为真转移 (BC1T)	BC1T cc, offset	if FPConditionCode(cc) = 1 then 转移
13. 浮点比较指令		
单精度浮点比较并设置条件码 (C.cond.S)	C.cond.S fs, ft	cond ∈ (LT, GT, LE, GE, EQ, NE),按 cond 的关系对 fs 和 ft 进行比较,如果关系成立,则置浮点条件码 cc 为 1,否则置为 0
双精度浮点比较并设置条件码 (C.cond.D)	C.cond.D fs, ft	按双精度比较。其余同 C.cond.S

14. 浮点转换指令

名称	格式	描述
单精度浮点数转换成双精度 (CVT.D.S)	CVT.D.S fd, fs	
32 位整数转换成双精度浮 点数(CVT.D.W)	CVT.D.W fd, fs	
64 位整数转换成双精度浮 点数(CVT.D.L)	CVT.D.L fd, fs	
32 位整数转换成单精度浮 点数(CVT.S.W)	CVT.S.W fd, fs	
64 位整数转换成单精度浮 点数(CVT.S.L)	CVT.S.L fd, fs	CVT.x.y 把 fs 中的 y 类型的数据转换成 x 类型,并送给 fd。x, y ∈ (L
双精度浮点数转换成单精度 (CVT.S.D)	CVT.S.D fd, fs	(64 位整数), W(32 位整数), D(双精度), S(单精度))
单精度浮点数转换成 32 位 整数(CVT.W.S)	CVT.W.S fd, fs	
双精度浮点数转换成 32 位 整数(CVT.W.D)	CVT.W.D fd, fs	7
单精度浮点数转换成 64 位 整数(CVT.L.S)	CVT.L.S fd, fs	
双精度浮点数转换成 64 位 整数(CVT.L.D)	CVT.L.D fd, fs	e sars
单精度转换并截断成单字整 数(TRUNC.L.S)	TRUNC.L.S fd, fs	
双精度转换并截断成单字整 数(TRUNC.L.D)	TRUNC.L.D fd, fs	C1
单精度转换并截断成双字整 数(TRUNC.W.S)	TRUNC.W.S fd, fs	fd←fs 转换并截断
双精度转换并截断成双字整 数(TRUNC.W.D)	TRUNC.W.D fd, fs	