Mid-Semester Test (AY22/23 S1)

EP0605 – Advanced Physics

Time Allowed: 1 hour 40 minutes

Instructions to Candidates

Max Marks: 100

- 1. All the Singapore Polytechnic examination rules must be strictly adhered to.
- 2. This paper consists of **5** questions. Take $g = 9.80 \text{ m/s}^2$.
- 3. Answer all the questions in this question booklet. All working must be shown.
- 4. This paper consists of **6** pages (inclusive of the cover page).
- 5. Fill in the table below.

Name:			
Admission No:		S/No	
Class:	EL/EP0605/FT/01	Date:	

For Official Use Only	Question	Marks
	1	
	2	
	3	
	4	
	5	
	Total	

1. (a) In the below equation, the SI units of ν is metre/second (m/s) and T is newton (N). Using dimensional analysis, determine the unit of μ in terms of base units.

$$v = \sqrt{\frac{T}{\mu}}$$

- (b) A force $\mathbf{F} = (6.00\mathbf{i} 2.00\mathbf{j})$ N acts on a particle that undergoes a displacement $\Delta \mathbf{r} = (3.00\mathbf{i} + \mathbf{j})$ m. Find the angle between \mathbf{F} and $\Delta \mathbf{r}$.
- (c) Given $\mathbf{M} = 2\mathbf{i} 3\mathbf{j} + \mathbf{k}$ and $\mathbf{N} = 4\mathbf{i} + 5\mathbf{j} 2\mathbf{k}$, calculate the cross product $\mathbf{M} \times \mathbf{N}$. (20 marks)

Solution:

(a) Dimension of $v: [L][T]^{-1}$ Dimension of $T: [M][L][T]^{-2}$

Through the given equation $v = \sqrt{T/\mu}$, we have

$$\frac{[L]}{[T]} = \sqrt{\frac{[M][L][T]^{-2}}{[\mu]}}$$

$$\frac{[L]^2}{[T]^2} = \frac{[M][L]}{[\mu][T]^2}$$

$$[\mu] = [M][L]^{-1}$$

SI unit of μ is kg/m.

(b) $\vec{F} \cdot \Delta \vec{r} = (6.00\hat{\imath} - 2.00\hat{\jmath}) \cdot (3.00\hat{\imath} + \hat{\jmath}) = 18 - 2 = 16 \text{ J}$

$$\cos\theta = \frac{\vec{F} \cdot \Delta \vec{r}}{\left|\vec{F}\right| \left[\Delta \vec{r}\right]} = \frac{16}{\sqrt{40}\sqrt{10}} = 0.8$$

$$\theta = \cos^{-1} 0.8 = 36.9^{\circ}$$

(c) Cross product:

$$\vec{M} \times \vec{N} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -3 & 1 \\ 4 & 5 & -2 \end{vmatrix} = (6 - 5)\hat{\imath} + (4 + 4)\hat{\jmath} + (10 + 12)\hat{k} = \hat{\imath} + 8\hat{\jmath} + 22\hat{k}$$

- 2. The position of a particle is given by $x = 2t 0.5t^3$, where x is in metres and t is in seconds. Let positive x means to the right of the origin.
 - a) Determine the average velocity of the particle between t = 1.0 s and t = 4.0 s.
 - b) Will the particle's velocity be zero? If yes, when?
 - c) When is the particle's acceleration a equal to zero?
 - d) Sketch the acceleration-time graph.

(20 marks)

Solution:

(a) Average velocity
$$v_{avg} = \frac{\Delta x}{\Delta t}$$

 $x(1.0) = 2(1.0) - 0.5(1.0)^3 = 1.5 \text{ m}$
 $x(4.0) = 2(4.0) - 0.5(4.0)^3 = -24 \text{ m}$
 $v_{avg} = \frac{\Delta x}{\Delta t} = \frac{-24 - 1.5}{4 - 1} = -8.5 \text{ m/s}$

(b)
$$v = \frac{dx}{dt} = 2 - 1.5t^2$$

When $v = 0$, $2 - 1.5t^2 = 0$
 $t = \sqrt{\frac{2}{1.5}} = 1.15 \text{ s}$

Yes, the velocity of the particle is zero at t = 1.15 s.

(c)
$$a = \frac{dv}{dt} = -3t$$

When $a = 0$, $t = 0$.
The acceleration of the particle is zero at $t = 0$.

(d) Straight line graph starting from origin with a negative gradient.

- 3. (a) A rock climber stands on top of a 40.0 m high cliff overhanging a pool of water. He throws two stones, A and B, vertically downwards 0.800 s apart at different speeds and observes that they cause a single splash. The initial speed of stone A was 1.00 m/s.
 - (i) How long after stone A leaves his hand does stone B hit the water?
 - (ii) What was the initial speed of stone B?
 - (b) A cannon ball is launched at an angle 40.0° from the horizontal with a speed of 60.0 m/s. Calculate the horizontal range and the time spent in the air of the cannon ball.

(20 marks)

Solution:

(a) (i) Using
$$\Delta y = v_{0y}t - \frac{1}{2}gt^2$$
,
$$-40 = -t - \frac{1}{2}(9.8)t^2$$
$$4.9t^2 + t - 40 = 0$$
$$t = \frac{-1 \pm \sqrt{1^2 + 4(4.9)(40)}}{9.8} = 2.76 \text{ s or } -2.96 \text{ s (NA)}$$

Time taken for stone A to hit the water = 2.76 s

(ii) Time taken for stone B to hit the water = 2.76 s - 0.80 s = 1.96 s

Using
$$\Delta y = v_{0y}t - \frac{1}{2}gt^2$$
,

$$v_{0y} = \frac{1}{t} \left[\Delta y + \frac{1}{2}gt^2 \right] = \frac{1}{1.96} \left[-40 + \frac{1}{2}(9.8)(1.96)^2 \right] = -10.9 \text{ m/s}$$

Initial speed of stone B = 10.9 m/s

(b) Using the range formula,

$$R = \frac{v^2 \sin 2\theta}{q} = \frac{60.0^2 \sin 2(40.0^\circ)}{9.80} = 362 \text{ m}$$

Using the time-of-flight formula,

$$t = \frac{2v\sin\theta}{g} = \frac{2(60.0)\sin(40.0^\circ)}{9.80} = 7.87 \text{ s}$$

- 4. (a) Three forces acting on a 4.00-kg object are given by $\mathbf{F}_1 = (-2.00 \, \mathbf{i} + 2.00 \, \mathbf{j}) \, \text{N}$, and $\mathbf{F}_2 = (5.00 \, \mathbf{i} 3.00 \, \mathbf{j}) \, \text{N}$, and $\mathbf{F}_3 = (-4.00 \, \mathbf{i}) \, \text{N}$. The object is at rest initially. Determine
 - (i) the acceleration in unit vector notation and its magnitude,
 - (ii) the velocity in unit vector notation at t = 5.00 s.
 - (b) In the figure at right, a 10.0 kg load is hung from the ceiling of an elevator that is moving at constant velocity. Find the tension in each of the three cords supporting the load.

(20 marks)

Solution:

(a) (i) Net force, $\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$ $\vec{F}_{net} = (-2\hat{\imath} + 2\hat{\jmath}) + (5\hat{\imath} - 3\hat{\jmath}) - 4\hat{\imath} = (-\hat{\imath} - \hat{\jmath}) \text{ N}$ Newton's 2^{nd} law: $\vec{F}_{net} = m\vec{a}$ $\vec{a} = \frac{\vec{F}_{net}}{m} = \frac{1}{4}(-\hat{\imath} - \hat{\jmath}) \text{ m/s}^2$ Magnitude of acceleration, $a = \sqrt{0.25^2 + 0.25^2} = 0.354 \text{ m/s}^2$

(ii) Using
$$\vec{v} = \vec{v}_0 + \vec{a}t$$
,
$$\vec{v} = \frac{1}{4}(-\hat{\imath} - \hat{\jmath}) \times 5 = \frac{5}{4}(-\hat{\imath} - \hat{\jmath}) \text{ m/s}$$

(b) Constant velocity means acceleration = 0 $T_3 = Mg = 10(9.80) = 98.0 \text{ N}$

$$\Sigma F_x = 0$$
: $T_1 \cos 40.0^\circ = T_2 \cos 50.0^\circ$
 $T_1 = T_2 \frac{\cos 50.0^\circ}{\cos 40.0^\circ}$

$$\Sigma F_y = 0$$
: $T_1 \sin 40.0^\circ + T_2 \sin 50.0^\circ = 98$
 $T_2(\cos 50^\circ)(\tan 40^\circ) + T_2 \sin 50^\circ = 98$

$$T_2 = \frac{98}{\cos 50^{\circ} \tan 40^{\circ} + \sin 50^{\circ}} = 75.0 \text{ N}$$
$$T_1 = 75.0 \frac{\cos 50.0^{\circ}}{\cos 40.0^{\circ}} = 63.0 \text{ N}$$

5. The diagram below shows two blocks that are connected by a string of negligible mass, placed on a rough surface. Block 2 is pulled by a 30.0 N force to the right.

Given that $m_1 = 4.00 \text{ kg}$ and $m_2 = 2.00 \text{ kg}$, and the coefficient of kinetic friction between each block and the horizontal surface is 0.20.

- (a) Draw free-body diagrams for blocks 1 and 2.
- (b) Calculate the acceleration of the blocks.
- (c) What is the tension in the string?

(20 marks)

Solution:

(a) Free-body diagrams of m_1 and m_2 :

(b) The acceleration of each block is to the right, writing equations using Newton's 2nd law using blocks 1 and 2 as 1 system,

$$\Sigma F_x = (m_1 + m_2)a$$
: $F - f_1 - f_2 = (m_1 + m_2)a$

Frictions: $f_1 = \mu_k m_1 g$, $f_2 = \mu_k m_2 g$

$$a = \frac{F - f_1 - f_2}{m_1 + m_2} = \frac{30.0 - 0.2(2.00 + 4.00)(9.80)}{2.00 + 4.00} = 3.04 \text{ m/s}^2$$

(c) Using the free-body diagram for block 1, Newton's 2nd law gives

$$\Sigma F_x = m_1 a$$
: $T - f_1 = m_1 a$
 $T = m_1 a + f_1 = m_1 a + \mu_k m_1 g = 4.00(3.04) + 0.20(4.00)(9.80) = 20.0 \text{ N}$