

Kurs:Mathematik für Anwender/Teil I/48/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 3323417376 0 0 4 0 0 4 0 0 4 51

 \equiv Inhaltsverzeichnis \vee

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine Primzahl.

- 2. Eine Teilfolge einer Folge reeller Zahlen.
- 3. Eine *gerade* Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 4. Der Logarithmus zur Basis $b \in \mathbb{R}_+$ einer positiven reellen Zahl x.
- 5. Das bestimmte Integral zu einer Riemann-integrierbaren Funktion $f{:}\left[a,b
 ight]\longrightarrow\mathbb{R}.$
- 6. Eine *Basis* eines K-Vektorraums V.

Lösung

- 1. Eine natürliche Zahl $n \geq 2$ heißt eine *Primzahl*, wenn die einzigen natürlichen Teiler von ihr 1 und n sind.
- 2. Zu einer streng wachsenden Abbildung $\mathbb{N} \longrightarrow \mathbb{N}$, $i \longmapsto n_i$, heißt die Folge $i \mapsto x_{n_i}$

eine Teilfolge der Folge.

- 3. Eine Funktion $f\colon \mathbb{R} o \mathbb{R}$ heißt gerade, wenn für alle $x\in \mathbb{R}$ die Gleichheit f(x)=f(-x) gilt.
- 4. Der Logarithmus zur Basis b von $x \in \mathbb{R}_+$ ist durch

$$\log_b x := rac{\ln x}{\ln b}$$

definiert.

5. Das nach Voraussetzung existierende Oberintegral zu f über [a,b] heißt bestimmtes Integral.

6. Eine Familie v_i , $i \in I$, von Vektoren in V heißt Basis, wenn diese Vektoren linear unabhängig sind und ein Erzeugendensystem bilden.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die Konvergenz des Cauchy-Produktes.
- 2. Der Mittelwertsatz der Integralrechnung.
- 3. Der Satz über die Beziehung zwischen Eigenschaften von linearen Abbildungen und Matrizen.

Lösung

1. Es seien

$$\sum_{k=0}^{\infty} a_k ext{ und } \sum_{k=0}^{\infty} b_k$$

zwei absolut konvergente Reihen reeller Zahlen. Dann ist auch das Cauchy-Produkt $\sum_{k=0}^{\infty} c_k$ absolut konvergent und für die

Summe gilt

$$\sum_{k=0}^{\infty} c_k = \left(\sum_{k=0}^{\infty} a_k
ight) \cdot \left(\sum_{k=0}^{\infty} b_k
ight).$$

2. Sei [a,b] ein kompaktes Intervall und sei

$$f{:}\left[a,b
ight]\longrightarrow\mathbb{R}$$

eine stetige Funktion. Dann gibt es ein $c \in [a,b]$ mit

$$\int_a^b f(t)\,dt = f(c)(b-a)\,.$$

3. Es sei $m{K}$ ein Körper und es seien $m{V}$ und $m{W}$ Vektorräume über $m{K}$ der Dimension $m{n}$ bzw. $m{m}$. Es sei

$$\varphi : V \longrightarrow W$$

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix $M \in \operatorname{Mat}_{m \times n}(K)$ beschrieben werde. Dann gelten folgende Eigenschaften.

- 1. φ ist genau dann injektiv, wenn die Spalten der Matrix linear unabhängig sind.
- 2. arphi ist genau dann surjektiv, wenn die Spalten der Matrix ein Erzeugendensystem von K^m bilden.
- 3. Bei m=n ist φ genau dann bijektiv, wenn die Spalten der Matrix eine Basis von K^m bilden, und dies ist genau dann der Fall, wenn M invertierbar ist.

Aufgabe (2 Punkte)

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

p q r?

WWWW

wwf f

wf wf

wf f f

f ww f

f wf f

ffwf

fffw

Lösung

$$(p \leftrightarrow q) \land (p \leftrightarrow r).$$

Aufgabe (3 Punkte)

Es sei

$$arphi \colon L \longrightarrow M$$

eine injektive Abbildung. Zeige, dass es eine Teilmenge $T\subseteq M$ derart gibt, dass man arphi als Abbildung

$$arphi'\!:\! L \longrightarrow T$$

auffassen kann (arphi und arphi' unterscheiden sich nur hinsichtlich des Wertebereichs) und dass arphi' bijektiv ist.

Lösung

Es sei

$$T = \left\{ y \in M \mid ext{ es gibt } x \in L ext{ mit } y = arphi(x)
ight\}.$$

Da T sämtliche Elemente aus M enthält, die überhaupt unter arphi getroffen werden, kann man arphi als eine Abbildung

$$arphi'\!:\! L \longrightarrow T,\, x \longmapsto arphi(x),$$

auffassen. Diese Abbildung ist surjektiv, da ja jedes Element aus T nach Definition getroffen wird. Die Injektivität überträgt sich direkt von φ auf φ' , da die Gleichheit von Elementen in einer Teilmenge mit der Gleichheit in der Menge übereinstimmt. Daher ist φ' bijektiv.

Aufgabe (4 Punkte)

Es seien x,y rationale Zahlen. Zeige, dass

$$|x-\lfloor x
floor=y-\lfloor y
floor$$

genau dann gilt, wenn es ein $n \in \mathbb{Z}$ mit y = x + n gibt.

Lösung

Es sei $x-\lfloor x\rfloor=y-\lfloor y\rfloor$. Da $\lfloor x\rfloor$, $\lfloor y\rfloor$ ganze Zahlen sind, ist $n=\lfloor y\rfloor-\lfloor x\rfloor$ ganzzahlig. Damit gilt

$$egin{aligned} y &= \lfloor y
floor + (y - \lfloor y
floor) \ &= \lfloor y
floor + (x - \lfloor x
floor) \ &= x + \lfloor y
floor - \lfloor x
floor \ &= x + n. \end{aligned}$$

Sei nun y=x+n mit $n\in\mathbb{Z}$. Aus der definierenden Beziehung

$$\lfloor x
floor \leq x < \lfloor x
floor + 1$$

folgt

$$\lfloor x \rfloor + n \leq x + n < \lfloor x \rfloor + n + 1$$
,

daher muss

$$\lfloor x+n
floor = \lfloor x
floor + n$$

sein. Somit ist

$$egin{aligned} y - \lfloor y
floor &= x + n - \lfloor x + n
floor \ &= x + n - (\lfloor x
floor + n) \ &= x - \lfloor x
floor. \end{aligned}$$

Aufgabe (1 Punkt)

Schreibe das Polynom

$$X^4 - 1$$

als Produkt von Linearfaktoren in $\mathbb{C}[X]$.

Lösung

Es ist

$$X^4-1=(X^2-1)(X^2+1)=(X-1)(X+1)(X+i)(X-i)$$
 .

Aufgabe (7 Punkte)

Beweise die Division mit Rest im Polynomring K[X] über einem Körper K.

Lösung

Wir beweisen die Existenzaussage durch Induktion über den Grad von P. Wenn der Grad von T größer als der Grad von P ist, so ist Q=0 und R=P eine Lösung, so dass wir dies nicht weiter betrachten müssen. Bei $\operatorname{grad}(P)=0$ ist nach der Vorbemerkung auch $\operatorname{grad}(TP)=0$, also ist T ein konstantes Polynom, und damit ist (da $T\neq 0$ und K ein Körper ist) Q=P/T und R=0 eine Lösung. Sei nun $\operatorname{grad}(P)=n$ und die Aussage für kleineren Grad schon bewiesen. Wir schreiben

$$P=a_nX^n+\cdots+a_1X+a_0$$
 und $T=b_kX^k+\cdots+b_1X+b_0$ mit $a_n,b_k
eq 0,\,k\leq n$. Dann gilt mit $H=rac{a_n}{b_k}X^{n-k}$ die

Beziehung

$$P':=P-TH \ = 0X^n+\left(a_{n-1}-rac{a_n}{b_k}b_{k-1}
ight)X^{n-1}+\cdots+\left(a_{n-k}-rac{a_n}{b_k}b_0
ight)X^{n-k}+a_{n-k-1}X^{n-k-1}+\cdots+a_0.$$

Dieses Polynom P' hat einen Grad kleiner als n und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt Q' und R' mit

$$P' = TQ' + R' ext{ mit } ext{grad}\left(R'
ight) < ext{grad}\left(T
ight) ext{oder } R' = 0.$$

Daraus ergibt sich insgesamt

$$P = P' + TH = TQ' + TH + R' = T(Q' + H) + R'$$

so dass also Q=Q'+H und R=R' eine Lösung ist. Zur Eindeutigkeit sei P=TQ+R=TQ'+R' mit den angegebenen Bedingungen. Dann ist T(Q-Q')=R'-R. Da die Differenz R'-R einen Grad kleiner als $\operatorname{grad}(T)$ besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei R=R' und Q=Q' lösbar.

Aufgabe (3 Punkte)

Berechne von Hand die Approximationen x_1, x_2, x_3 im Heron-Verfahren für die Quadratwurzel von 5 zum Startwert $x_0 = 2$.

Lösung

Es ist

$$x_1 = rac{2 + rac{5}{2}}{2} = rac{9}{4} \,, \ x_2 = rac{rac{9}{4} + rac{5}{rac{9}{4}}}{2} = rac{rac{9}{4} + rac{20}{9}}{2} = rac{81 + 80}{72} = rac{161}{72} \,, \ x_3 = rac{rac{161}{72} + rac{5}{rac{161}{72}}}{2} = rac{rac{161}{72} + rac{360}{161}}{2} = rac{25921 + 25920}{23184} = rac{51841}{23184} \,.$$

Aufgabe (7 (2+2+3) Punkte)

- 1. Man gebe ein Beispiel für reelle Folgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$, $y_n\neq 0$, derart, dass $\frac{x_n}{y_n}$ gegen 1 konvergiert, aber x_n-y_n nicht konvergiert.
- 2. Man gebe ein Beispiel für reelle Folgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$, $y_n\neq 0$, derart, dass x_n-y_n gegen 0 konvergiert, aber $\frac{x_n}{y_n}$ nicht konvergiert.
- 3. Es seien $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ reelle Folgen derart, dass x_n-y_n gegen 0 konvergiert. Es gebe ein a>0 mit $y_n\geq a$

für alle n. Zeige, dass $\dfrac{x_n}{y_n}$ gegen 1 konvergiert.

Lösung

1. Es sei

$$x_n=n^2+n$$

und

$$y_n=n^2$$

für $n \geq 1$. Dann ist

$$rac{x_n}{y_n} = rac{n^2 + n}{n^2} = 1 + rac{1}{n} \, .$$

Dies konvergiert gegen 1. Die Differenzfolge

$$x_n - y_n = n^2 + n - n^2 = n$$

konvergiert nicht.

2. Es sei

$$x_n=rac{1}{n}$$

und

$$y_n=rac{1}{n^2}\,.$$

Dann ist

$$rac{x_n}{y_n}=rac{rac{1}{n}}{rac{1}{n^2}}=rac{n^2}{n}=n$$

Dies konvergiert nicht. Die Differenzfolge

$$x_n-y_n=rac{1}{n}-rac{1}{n^2}$$

konvergiert gegen $\mathbf{0}$, da beide Folgen Nullfolgen sind.

3. Wir schreiben

$$x_n=y_n+z_n\;,$$

wobei $oldsymbol{z_n}$ nach Voraussetzung eine Nullfolge ist. Damit ist

$$egin{aligned} rac{x_n}{y_n} &= rac{y_n + z_n}{y_n} \ &= 1 + rac{z_n}{y_n} \end{aligned}$$

Dabei ist

$$|rac{z_n}{y_n}|=|z_n|\cdot|rac{1}{y_n}|\leq |z_n|\cdot|rac{1}{a}|$$

eine Nullfolge. Somit konvergiert die Quotientenfolge gegen 1.

Aufgabe (6 Punkte)

Beweise den Zwischenwertsatz.

Lösung

Wir beschränken uns auf die Situation $f(a) \le u \le f(b)$ und zeigen die Existenz von einem solchen c mit Hilfe einer Intervallhalbierung. Dazu setzt man $a_0 := a$ und $b_0 := b$, betrachtet die Intervallmitte $c_0 := \frac{a_0 + b_0}{2}$ und berechnet

$$f(c_0)$$
.

Bei $f(c_0) \leq u$ setzt man

$$a_1 := c_0 \text{ und } b_1 := b_0$$

und bei $f(c_0)>u$ setzt man

$$a_1 := a_0 \ \ \mathrm{und} \ \ b_1 := c_0.$$

In jedem Fall hat das neue Intervall $[a_1,b_1]$ die halbe Länge des Ausgangsintervalls und liegt in diesem. Da es wieder die Voraussetzung $f(a_1) \leq u \leq f(b_1)$ erfüllt, können wir darauf das gleiche Verfahren anwenden und gelangen so rekursiv zu einer Intervallschachtelung. Sei c die durch diese Intervallschachtelung definierte reelle Zahl. Für die unteren Intervallgrenzen gilt $f(a_n) \leq u$ und das überträgt sich wegen der Stetigkeit nach dem Folgenkriterium auf den Grenzwert c, also $f(c) \leq u$. Für die oberen Intervallgrenzen gilt $f(b_n) \geq u$ und das überträgt sich ebenfalls auf c, also $f(c) \geq u$. Also ist f(c) = u.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Bestimme den Grenzwert der Funktion $f(x) = (\cos x)^{1/x}$ für x o 0 (x > 0).

Lösung

Es ist

$$f(x) = (\cos x)^{1/x} = \expigg(rac{1}{x}\ln(\cos x)igg)$$

und somit ist

$$\lim_{x o 0} \; \expigg(rac{1}{x} \ln(\cos x)igg)$$

zu bestimmen. Da die Exponentialfunktion stetig ist, müssen wir

$$\lim_{x o 0} \ rac{\ln(\cos x)}{x}$$

bestimmen. Sowohl die Zähler- als auch die Nennerfunktion besitzen den Grenzwert **0**. Wir können die Regel von Hospital anwenden und betrachten

$$\frac{\frac{-\sin x}{\cos x}}{1}.$$

Dies konvergiert für $x o \operatorname{\mathsf{gegen}} 0$. Somit ist auch

$$\lim_{x o 0} \ rac{\ln(\cos x)}{x} = 0$$

und damit ist

$$\lim_{x o 0} \ \exp\!\left(rac{1}{x}\ln(\cos x)
ight) = \exp 0 = 1\,.$$

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Wir betrachten die Quadratabbildung

$$\varphi : K \longrightarrow K, \ x \longmapsto x^2,$$

für verschiedene Körper $oldsymbol{K}$.

1. Ist φ linear für

$$K = \mathbb{Q}$$
?

2. Ist φ linear für

$$K=\mathbb{Z}/(2)$$
,

dem Körper mit zwei Elementen.

3. Es sei nun K ein Körper, in dem 2=1+1=0 gelte, der mehr als zwei Elemente enthalte. Ist φ linear? Ist φ verträglich mit der Addition?

Lösung

1. Es ist

$$\varphi(1+1) = \varphi(2) = 4 \neq 1+1 = \varphi(1) + \varphi(1)$$
,

somit ist φ auf $\mathbb Q$ nicht linear.

- 2. Für den Körper mit zwei Elementen $\mathbb{Z}/(2)=\{0,1\}$ ist $\varphi(0)=0$ und $\varphi(1)=1$. Also ist φ die Identität und somit linear.
- 3. Es ist

$$arphi(u+v) = (u+v)^2 = u^2 + 2uv + v^2 = u^2 + v^2 = arphi(u) + arphi(v)$$
,

daher erfüllt φ die Additivität. Sie ist aber nicht mit der Skalierung verträglich und somit nicht linear. Nehmen wir an, dass φ mit der Skalierung verträglich wäre. Dann ist für jedes $s\in K$

$$s^2=arphi(s)=arphi(s1)=sarphi(1)=s1=s$$
 .

In einem Körper gibt es aber nur zwei Elemente, die die Gleichung

$$s^2 = s$$

erfüllen.

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Es sei V ein endlichdimensionaler K-Vektorraum und seien $\varphi, \psi \colon V \to V$ lineare Abbildungen, von denen die charakteristischen Polynome bekannt seien. Kann man daraus das charakteristische Polynom von $\varphi + \psi$ bestimmen?

Lösung

Das kann man nicht. Wir betrachten die beiden nilpotenten 2×2 -Matrizen

$$arphi = \left(egin{matrix} 0 & 1 \ 0 & 0 \end{matrix}
ight) \ \ ext{und} \ \ \psi = \left(egin{matrix} 0 & 0 \ 1 & 0 \end{matrix}
ight).$$

Ihr charakteristisches Polynom ist jeweils $oldsymbol{X^2}$. Ihre Summe ist

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

und das charakteristische Polynom davon ist X^2-1 . Wenn man dagegen arphi zweimal nimmt, also

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
, so ist dies ebenfalls nilpotent, und das charakteristische Polynom ist X^2 .

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht