

FEB 02 2004

Practitioner's Docket No. 59873 (50024)

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: V. Manahilov

Group No.: 2851

Application No.: 10 /656,680

Filed: September 5, 2003

Examiner: Not Yet Assigned

For: SYSTEMS AND APPARATUS FOR ASSESSMENT OF VISUAL FIELD FUNCTIONS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

TRANSMITTAL OF CERTIFIED COPIES

Attached please find the certified copy of the foreign application from which priority is claimed for this case:

Country: **Great Britain**

Application Number: **0220721.5**

Filing Date: **September 6, 2002**

Country:

Application Number:

CERTIFICATE OF MAILING (37 C.F.R. SECTION 1.8a)

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Date: Jan. 29, 2004

George Chacras

(type or print name of person mailing paper)

George Chacras

Signature of person mailing paper

1900 : 6 83

2000 : 6 83

2000 : 6 83

2000 : 6 83

Filing Date:

WARNING: "When a document that is required by statute to be certified must be filed, a copy, including a photocopy or facsimile transmission of the certification is not acceptable." 37 C.F.R. section 1.4(f) (emphasis added).

SIGNATURE OF PRACTITIONER

Reg. No.: 46,608

Jan. 29, 2004

George N. Chaclas

(type or print name of practitioner)

Tel. No.: (860) 541-7720

P.O. Box 55874

P.O. Address

Customer No.: 21874

Boston, MA 02205

NOTE: "The claim to priority need be in no special form and may be made by the attorney or agent, if the foreign application is referred to in the oath or declaration, as required by section 1.63." 37 C.F.R. section 1.55(a).

1968.12.25

1968.12.25

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

I also certify that the attached copy of the request for grant of a Patent (Form 1/77) bears an amendment, effected by this office, following a request by the applicant and agreed to by the Comptroller-General.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 8 January 2004

Request for grant of a patentDAGGER 02026340-1 D02684
THE PATENT OFFICE 0100-0220721.5B
- 6 SEP 2002
NEWPORTThe Patent Office
Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference

P30241-AMO/JCO

2. Patent Application Number
(the Patent Office will fill in this part)

- 6 SEP 2002

0220721.5

3. Full name, address and postcode of the or of each applicant (underline all surnames)

University Court of Glasgow Caledonian University
City Campus
Cowcaddens Road
Glasgow G4 0BA

Patents ADP number (if you know it)

8284481001

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

"Systems and Apparatus For Assessment of Visual Field Functions"

5. Name of your agent (if you have one)

AgentName

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Murgitroyd & Company
165-169 Scotland Street
Glasgow G2 5 8PLHemmings Patent Agency Ltd
Floor 5 Queens House
29 St Vincent Place
Glasgow
G1 2DT

Patents ADP number (if you know it)

1198015

6058240002

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant a patent required in support of this request? (Answer 'Yes' if:

Yes

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 18

Claim(s)

Abstract

Drawing(s) 1

T1

-
10. If you are also filing any of the following,
State how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right
to grant of a patent

Request for preliminary examination
and search (Patents Form 9/77)

Request for substantive examination
(Patents Form 10/77)

Any other document
(please specify)

11.

I/We request the grant of a patent on the basis of this application

Signature

Date 5 September 2002

Murgitroyd & Company

12. Name and daytime telephone number of
person to contact in the United Kingdom

UK Contact Details

John Cooper

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

1 Systems and Apparatus for Assessment of Visual Field
2 Functions

3

4 The present invention relates to systems, apparatus
5 and associated methods for use in the assessment of
6 visual field functions. In its various aspects, the
7 invention is particularly concerned with perimetry
8 testing and visual evoked potential (VEP) testing.

9

10 Perimetry is the systematic measurement of visual
11 field function. It is used in diagnosing different
12 diseases of the eye, optic nerve and central nervous
13 system. The conventional methods for assessment of
14 visual defects of peripheral vision are based of
15 measurement of responses to visual stimuli presented
16 at various locations in the visual field. Several
17 techniques use this approach:

18 (i) White-on-white (W-W) perimetry detects visual
19 field impairments by measuring the sensitivity
20 to a small luminance target presented on a
21 homogeneous background [ref.1]. The two most
22 commonly used types of W-W perimetry are

1 Goldmann kinetic perimetry and threshold static
2 automated perimetry. With Goldmann or "kinetic"
3 perimetry, a trained perimetrist moves the
4 target whose brightness is held constant. The
5 limits of the visual field are mapped for
6 targets of different sizes and brightness. With
7 threshold static automated perimetry, a
8 computer program is used to vary the target
9 brightness until the dimmest target the patient
10 can see at each of the test locations is found.
11 The data are used to construct a map of the
12 visual sensitivity of the retina.

13 (ii) Short wavelength automated perimetry (SWAP)
14 utilises a blue stimulus to preferentially
15 stimulate the blue cones. A high luminance
16 yellow background is used to adapt the green
17 and red cones and to saturate, simultaneously,
18 the activity of the rods.

19 (iii) Frequency-doubling perimetry (FDP) uses
20 rapidly flickering gratings. These stimuli
21 create an illusion (apparent doubling of
22 grating spatial frequency) that allows only a
23 small set of retinal ganglion (M cells) cells
24 to respond.

25
26 These techniques reveal visual defects by comparing
27 patients' results with those obtained with normal
28 observers. A disadvantage of these approaches is
29 that visual sensitivity is measured by
30 psychophysical procedures which usually depend on
31 the criterion used by the observers. This might

1 result in large inter-individual differences which
2 reduce the sensitivity of the measurements.

3 Objective techniques have also been developed:

4 (i) Multifocal electroretinogram (ERG) perimetry.

5 ERGs are electrical signals generated by
6 retinal cells in response to a visual stimulus.
7 MERGs are elicited by a pseudorandom binary m-
8 sequence of luminance patches. The luminance of
9 each sector of a dartboard-like pattern
10 alternates between white and black. MERGs
11 elicited by different patches are analysed by a
12 reverse correlation technique in order to
13 construct a map of the responses of retinal
14 cells.

15 (ii) Multifocal visual evoked potential (VEP)
16 perimetry. VEPs are electrical signals
17 generated by cortical cells in response to a
18 visual stimulus. The stimulation is also based
19 on a pseudo-random binary m-sequence of visual
20 targets presented in different visual-field
21 locations. A reverse correlation technique is
22 used to analyse the data.

23

24 It is known that the visual cortex has an expanded
25 representation of the fovea because of the high
26 density of ganglion cells in the fovea. The fovea is
27 represented on the surface of the brain. The
28 activity of this area can be recorded by scalp
29 electrodes. The primary visual cortex representing
30 the peripheral parts of the visual field, however,
31 is folded in deeper areas of the brain. These areas

1 of the primary visual cortex contribute little to
2 the VEPs.

3

4 One aspect of the present invention concerns long-
5 distance perimetry, providing new systems, apparatus
6 and associated methods for assessment of visual-
7 field defects which are based on measurement of
8 long-distance interactions between an "inducing"
9 stimulus and a "test" stimulus.

10

11 The term "long-distance interactions" usually refers
12 to interactions between the responses to two stimuli
13 whose separation is larger than the receptive field
14 size. Electrophysiological studies have shown that
15 the responses of cells in cat and monkey retina,
16 lateral geniculate nucleus and visual cortex can be
17 affected by a moving or shifting luminance pattern
18 outside their receptive fields [refs.2-5].

19 Psychophysical data also have shown that the
20 threshold visibility of a foveal test spot was
21 reduced when a luminance grating is jerked in the
22 periphery of the visual field [refs.6-8].

23 Measurements of visual evoked potentials (VEPs) in
24 humans have demonstrated that the contrast reversal
25 of a structured image reduced the magnitude of the
26 VEPs elicited by a foveal stimulus [ref.9].

27

28 One possible explanation of these findings is that
29 long-distance interactions between the peripheral
30 inducing stimulus and the test stimulus may increase
31 the neural internal noise of the cells which are
32 involved in the detection of the test pattern

1 [ref.8]. The increased internal noise will require a
2 stronger signal in order to maintain a given level
3 of visibility. Another possible explanation is based
4 on the assumption that the long-distance
5 interactions result in cortical transient-to-
6 sustained neurone inhibition [ref.8].

7

8 One aspect of the present invention uses the
9 phenomenon of long-distance interactions as a
10 perimetric tool. In essence, a flashing peripheral
11 stimulus reduces the response to a central test spot
12 if the peripheral location has normal functioning.
13 Lack of effect points to a loss of visual function
14 at the peripheral location. The long-distance effect
15 is estimated by methods of psychophysics and visual
16 evoked potentials.

17

18 In accordance with a first aspect of the invention,
19 there is provided apparatus for use in the
20 assessment of visual field functions, comprising:

21 a visual display device adapted to display
22 visual stimulus patterns; and

23 a computer adapted to generate visual stimulus
24 patterns within a predetermined visual field and to
25 control the display of said visual stimulus patterns
26 by said visual display device; wherein:

27 said computer is adapted to generate a test
28 stimulus for display in a central region of the
29 visual field and to generate an inducing stimulus
30 for display in a peripheral region of the visual
31 field, and to control the visual display device so
32 as to selectively display the test stimulus alone

1 and in combination with the inducing stimulus in
2 accordance with a predetermined test protocol.

3

4 Preferably, the visual display device is a plasma
5 monitor.

6

7 In embodiments for use in electrophysiological
8 testing, the apparatus preferably further includes:

9 at least three test electrodes for detecting
10 VEPs in response to visual stimuli displayed by said
11 display device; and

12 a computer adapted to record VEP signals from
13 said test electrodes and to compare VEP signals
14 generated in response to the display of the test
15 stimulus alone with VEP signals generated in
16 response to the display of the test stimulus in
17 combination with the inducing stimulus.

18

19 Preferably, the computer is adapted to calculate a
20 Laplacian response (second spatial derivative) from
21 each set of VEP signals and to calculate a ratio of
22 the Laplacian response for the test stimulus alone
23 and the Laplacian response for the combination of
24 the test stimulus and inducing stimulus.

25

26 In embodiments for use in psychophysical testing,
27 the apparatus preferably further includes:

28 control means operable by a test subject for
29 increasing and decreasing the contrast of the visual
30 stimulus displayed by the display device and for
31 indicating a threshold contrast value.

32

1 Preferably, the computer is adapted to execute a
2 test protocol comprising: generating a first visual
3 stimulus; recording a first threshold contrast value
4 indicated by the test subject using the control
5 means; displaying the stimulus again with a contrast
6 equal to a randomly selected multiple of the first
7 threshold contrast; recording a second threshold
8 contrast value indicated by the test subject using
9 the control means; repeating this process for a
10 predetermined number of iterations; and calculating
11 a mean threshold contrast value from said first,
12 second and subsequent threshold contrast values.

13

14 Preferably, the computer is adapted to calculate a
15 mean threshold value for a stimulus comprising the
16 test stimulus alone and a stimulus comprising the
17 combination of the test stimulus and inducing
18 stimulus, and to calculate the ratio of these two
19 mean threshold values.

20

21 In accordance with a second aspect of the invention,
22 there is provided a method for assessing visual
23 field functions, comprising:

24 displaying visual stimulus patterns within a
25 predetermined visual field using a visual display
26 device, said visual stimulus patterns comprising a
27 test stimulus displayed in a central region of the
28 visual field and an inducing stimulus displayed in a
29 peripheral region of the visual field; and
30 selectively displaying the test stimulus alone and
31 in combination with the inducing stimulus in
32 accordance with a predetermined test protocol.

1

2 Preferably, the visual display device is a plasma
3 monitor.

4

5 In embodiments for use in electrophysiological
6 testing, the method preferably further includes:

7 deploying at least three test electrodes for
8 detecting VEPs in response to visual stimuli
9 displayed by said display device; and

10 recording VEP signals from said test electrodes
11 and comparing VEP signals generated in response to
12 the display of the test stimulus alone with VEP
13 signals generated in response to the display of the
14 test stimulus in combination with the inducing
15 stimulus.

16

17 Preferably, the method includes calculating a
18 Laplacian response (second spatial derivative) from
19 each set of VEP signals and calculating a ratio of
20 the Laplacian response for the test stimulus alone
21 and the Laplacian response for the combination of
22 the test stimulus and inducing stimulus.

23

24 In embodiments for use in psychophysical testing,
25 the method preferably further includes:

26 the test subject operating control means to
27 increase and decrease the contrast of the visual
28 stimulus displayed by the display device and to
29 indicate a threshold contrast value.

30

31 Preferably, the method includes a test protocol
32 comprising: generating a first visual stimulus;

1 recording a first threshold contrast value indicated
2 by the test subject using the control means;
3 displaying the stimulus again with a contrast equal
4 to a randomly selected multiple of the first
5 threshold contrast; recording a second threshold
6 contrast value indicated by the test subject using
7 the control means; repeating this process for a
8 predetermined number of iterations; and calculating
9 a mean threshold contrast value from said first,
10 second and subsequent threshold contrast values.

11

12 Preferably, the method further includes calculating
13 a mean threshold value for a stimulus comprising the
14 test stimulus alone and a stimulus comprising the
15 combination of the test stimulus and inducing
16 stimulus, and calculating the ratio of these two
17 mean threshold values.

18

19 In accordance with a third aspect of the invention,
20 there is provided apparatus for use in the
21 assessment of visual field functions, comprising:

22 a visual display device adapted to display
23 visual stimulus patterns;

24 a computer adapted to generate visual stimulus
25 patterns within a predetermined visual field and to
26 control the display of said visual stimulus patterns
27 by said visual display device, said computer being
28 adapted to generate test stimuli for display in a
29 first region of the visual field and to generate
30 visual Gaussian noise patterns of different noise
31 densities for display in at least one other region
32 of the visual field, and to control the visual

1 display device so as to selectively display the test
2 stimulus alone and in combination with the noise
3 pattern in accordance with a predetermined test
4 protocol;

5 at least three test electrodes for detecting
6 VEPs in response to visual stimuli displayed by said
7 display device; and

8 a computer adapted to record VEP signals from
9 said test electrodes, to calculate a Laplacian
10 response (second spatial derivative) from each set
11 of VEP signals, and to derive an internal neural
12 noise value for said first region of the visual
13 field from said Laplacian responses and associated
14 Gaussian noise densities.

15

16 In accordance with a fourth aspect of the invention,
17 there is provided a method for assessing visual
18 field functions, comprising:

19 generating visual stimulus patterns within a
20 predetermined visual field using a visual display
21 device, said stimulus patterns comprising test
22 stimuli displayed in a first region of the visual
23 field and visual Gaussian noise patterns of
24 differing noise densities displayed in at least one
25 other region of the visual field; and selectively
26 displaying the test stimulus alone and in
27 combination with the noise pattern in accordance
28 with a predetermined test protocol;

29 deploying at least three test electrodes for
30 detecting VEPs in response to visual stimuli
31 displayed by said display device; and

1 recording VEP signals from said test
2 electrodes, calculating a Laplacian response (second
3 spatial derivative) from each set of VEP signals,
4 and deriving an internal neural noise value for said
5 first region of the visual field from said Laplacian
6 responses and associated Gaussian noise densities.

7

8 Embodiments of the invention will now be described,
9 by way of example only, with reference to the
10 accompanying drawings, in which:

11

12 Fig. 1 is a diagram illustrating one example of the
13 type of visual stimuli employed in embodiments of
14 the present invention; and

15

16 Fig. 2 is a block diagram illustrating apparatus in
17 accordance with one embodiment of the present
18 invention.

19

20 Referring now to the drawings, Fig. 1 shows one
21 example of the type of stimuli used for the purposes
22 of the invention. The drawing illustrates the
23 visual field as a circular dartboard pattern, with
24 an "inducing stimulus" I comprising a series of
25 concentric circles around the periphery of the field
26 and a "test stimulus" T comprising a circular visual
27 checkerboard or noise pattern at the centre of the
28 field. It will be understood that the nature of
29 these stimuli may vary widely. In particular, the
30 inducing stimulus I may vary in terms of its
31 location within the visual field, the type of
32 pattern and the dynamics of the stimulus (generally,

1 the stimuli will comprise time varying patterns,
2 typically including flashing or contrast reversal at
3 a particular frequency). The stimuli are discussed
4 further below.

5

6 The stimuli are generated by a first computer 10
7 (Fig. 2) and presented by means of any suitable
8 visual display apparatus 12. The visual display
9 apparatus 12 may comprise any of a variety of well
10 known display devices, including cathode ray tubes,
11 LCD displays, video projectors etc. It is preferred
12 that the display area is relatively large in order
13 to allow a reasonable distance between the test
14 subject and the display. It is particularly
15 preferred that the display 12 comprises a plasma
16 type monitor, which provides a large display area
17 and instantaneous screen updates (as compared with
18 raster-scan type displays).

19

20 As noted above, the first computer 10 generates the
21 stimuli and controls the display apparatus 12. When
22 the invention is applied for electrophysiological
23 testing, the apparatus further includes a second
24 computer 14, connected to electrodes 16 for
25 detecting the subject's neural responses, which
26 records and processes signals from the electrodes
27 16, as described further below. The first and
28 second computers 10 and 14 are connected to enable
29 the correlation of stimuli and responses.
30 Alternatively, the functions of the first and second
31 computers may be performed by a single computer or
32 by any other suitable arrangement of computers.

1
2 When the invention is applied for psychophysical
3 testing, as also described further below, the second
4 computer 14 and electrodes 16 are not required, and
5 the apparatus further includes a control unit 18
6 connected to the first computer 10 and operable by
7 the test subject.

8
9 In this example, the inducing stimulus I comprises a
10 circular grating presented in a peripheral sector of
11 the visual field as shown in Fig. 1. This stimulus
12 will be flickering or moving. The test stimulus T
13 may be a checkerboard or visual noise pattern
14 flickering at F Hz.

15
16 The invention may be applied for
17 electrophysiological testing by recording monopolar
18 VEPs elicited by the test stimulus using at least
19 three test electrodes attached on the skin, suitably
20 in a transverse row across the occiput, e.g. at
21 locations O3, Oz and O4 (standard nomenclature for
22 locations on the skull), plus (preferably) a
23 reference electrode, e.g. attached at location Fz.
24 The VEPs from the test electrodes are used to
25 calculate the second spatial derivative of the
26 potential field distribution (Laplacian responses)
27 [refs. 10-11]. The Laplacian response, L, may be
28 calculated for example, as

29 $L = 2Oz - O4 - O3.$

30

31 The generators of the early component of the
32 Laplacian responses are located within the primary

1 visual cortex. Laplacian responses have several
2 advantages as compared to monopolar VEPs. They have
3 higher signal-to-noise ratio; they do not depend on
4 the reference electrode; alpha activity and
5 electrical signals due to eye movements are
6 eliminated. The Laplacian responses may be
7 recognised in a single sweep [ref. 13].
8

9 The Laplacian responses elicited by the test
10 stimulus T are recorded in absence and presence of
11 the inducing stimulus I. The Laplacian responses are
12 attenuated due to long-distance interactions in the
13 visual network. The presence of defects in the area
14 where the inducing stimulus I is displayed might
15 result in a reduced inducing effect. The ratio
16 between the Laplacian responses to the test stimulus
17 T in the absence and presence of the inducing
18 stimulus I can be used to evaluate visual defects in
19 the area where the inducing stimulus I is presented.
20 If the stimulated peripheral area has normal
21 functions, the Laplacian ratio will be less than 1
22 (i.e. the response to the test stimulus T is
23 affected by the presence or absence of the inducing
24 stimulus I). If the stimulated peripheral area has a
25 visual defect, the Laplacian ratio will be 1 (i.e.
26 the response to the test stimulus T is not affected
27 by the presence or absence of the inducing stimulus
28 I).

29

30 The second computer 14 is adapted and programmed to
31 record the signals from the electrodes 16 and to
32 process the signals as described above.

1
2 When the invention is applied for psychophysical
3 testing, the contrast threshold for detection of the
4 test stimulus T is measured by the method of
5 adjustment. The test subject has to fixate the
6 centre of the display 12. Two buttons on the control
7 unit (or "response box") 18 enable the subject to
8 decrease and increase the stimulus contrast. Using
9 these buttons the subject varies the contrast until
10 a just noticeable sensation of flicker occurs.
11 Pressing a third button then indicates that the
12 threshold contrast has been reached and the computer
13 10 will record its value. The stimulus then appears
14 again, but its contrast is randomly selected by the
15 computer 10 to be a multiple (suitably 3-10 times
16 higher or lower) of the measured threshold contrast.
17 The programme repeats the measurements until a
18 suitable number (e.g. 10) thresholds are collected
19 for each experimental condition.
20
21 The mean threshold is determined in the absence and
22 presence of the inducing stimulus. The ratio between
23 these two mean threshold measurements may be used
24 for assessment of visual defects in the area where
25 the inducing stimulus is presented, e.g. in a
26 similar manner to that described above for
27 electrophysiological testing.
28
29 In summary, long-distance perimetry in accordance
30 with the present invention is based on interactions
31 between the responses to an inducing stimulus I and
32 a test stimulus T. The magnitude of visual defects

1 in the early stages of the visual system is
2 evaluated by the ratio between the responses to the
3 test stimulus T in the absence and presence of the
4 inducing stimulus I. This relative measurement will
5 reduce inter-individual differences, as compared
6 with conventional methods based on "absolute
7 sensitivity" measurements.

8

9 The psychophysical test as described above may be
10 applied for patients who can understand and perform
11 the visual task. The electrophysiological test is an
12 objective procedure which requires only fixation at
13 the centre of the display.

14

15 According to another aspect, the invention may also
16 be applied for the purpose of measuring internal
17 neural noise. Internal noise may be associated with
18 neural fluctuations of early visual stages [ref. 12].
19 The method of visual evoked potentials (VEPs) in the
20 presence of external noise [ref. 13] may be used to
21 evaluate internal noise at different retinal areas.

22

23 In this case the stimuli presented by the display
24 apparatus 12 consist of test patterns presented at
25 various parts of the retina/visual field. Laplacian
26 responses are recorded without noise and in the
27 presence of several densities of external Gaussian
28 dynamic noise, N. Thresholds are estimated from the
29 contrast-axis intercept of linear regression
30 approximating the contrast response; i.e. if the VEP
31 response is plotted as a function of contrast, the
32 intercept with the contrast-axis (zero response)

1 indicates the threshold contrast. The threshold
2 signal energy is approximately equal to the threshold
3 contrast squared, multiplied by a constant.

4 Threshold signal energy E as a function of external
5 noise density is fitted by equation (1) :

$$6 \quad E = (N + N_i) / G \quad (1)$$

7 The intercept on the noise density axis, N_i , is the
8 equivalent input noise that is a measure of the
9 internal noise. The slope is a measure of the
10 response gain G .

11

12 The results provide objective information about
13 internal noise and response gain of different parts
14 of the retina.

15

16 Improvements and modifications may be incorporated
17 without departing from the scope of the invention.

18

19 **References**

- 20 1. Lachenmayr, B.J. & Vivell, P.M.O. (1993)
21 Perimetry and its clinical correlations.
22 Stuttgart: Thieme Verlag.
- 23 2. McIlwain, J.T. (1966) J. Experimental Brain
24 Research, 1, 265-271.
- 25 3. Ikeda H. & Wright, M.J. (1972) Vision Research,
26 12, 1857-1879.
- 27 4. Fisher, B. & Kruger, J. (1974) Experimental Brain
28 Research, 21, 225-227.
- 29 5. Barlow, H., Derrington, A.M., Hariss, L.R. &
30 Lennie, P. (1977) Int. Journal of Physiology,
31 269, 177-194.

- 1 6. Breitmeyer, B. & Valberg, A. (1977) *Science*, 203,
2 463-465.
- 3 7. Breitmeyer, B., Valberg, A., Kurtenbach, W. &
4 Neumeyer, C. (1980) *Vision Research*, 20, 799-
5 805.
- 6 8. Valberg A. & Breitmeyer, B. (1980) *Vision
7 Research*, 20, 789-798.
- 8 9. Valberg A., Borgar, T.O. & Marthinsen, S. (1981)
9 *Vision Research*, 21, 947-950.
- 10 10. Hjorth, D. (1975) *EEG and Clinical
11 Neurophysiology*, 39, 526-530.
- 12 11. Manahilov V., Riemslag F.C., & Spekreijse H.,
13 (1992). *EEG and Clinical Neurophysiology*, 82,
14 220-224.
- 15 12. Tolhurst, D.J., Movshon, J.A. & Dean, A.F.
16 (1983) *Vision Research*, 23, 775-785.
- 17 13. Skoczenski, A.M. & Norcia, A.M. (1998) *Nature*
18 391, 697-700.
- 19

1/1

Fig. 1

Fig.2

