$\begin{tabular}{ll} Wintersemester $2015/16$ \\ Modulprüfung "Automaten und Formale Sprachen" \\ 23.03.2016 & 11:00 \begin{tabular}{ll} 11:00 \begi$

Name):				
Matri	ikelnum	mer:			
Studiengang, Abschluss:					
Namer	ı zu verse	ehen und		gen eindeu	eidseitig beschriebenen Bogen DIN A4, der mit dem itig zu kennzeichnen ist. Keine elektronischen Hilfs-
Bearb	eitungs	zeit: 60]	Minuten		
Hinw	eise:				
6 • B fe	0 Punkte Beschrifte est zusam	e erreichen n Sie alle nmengehe	n. Bei 30 od abzugebend	er mehr P len Blätte ern genüg	en so viele wie möglich. Dabei können Sie insgesamt Punkten ist die Prüfung bestanden. r mit Ihrem Namen und Ihrer Matrikelnummer. Bei t es das oberste zu beschriften.
	Aufgabe	Punkte	erreicht	Note:	
	1	12			
	2	8		Bemei	rkungen:
	3	10			
	4	9			
	5	15			
	6	6			
	Summe	60			

gabe 1	(12	Punkte
geben sei die Sprache $L = \{w \in \{a, b\}$	$ w ^* w _a = 5$	
er dem Alphabet $\{a,b\}$. Hierbei bezeichnet $ a $		a in w.
) Geben Sie einen deterministischen endliche		(8 P)
) Geben Sie für jeden der folgenden reguläre	n Ausdrücke an, ob er L beschreibt.	(4 P)
1. (a b)(a b)(a b)(a b)(a b)	\square beschreibt L \square beschreibt	L nicht
2. $(b)*a(b)*a(b)*a(b)*a(b)*a(b)*$	\square beschreibt L \square beschreibt	L nicht
3. $(a)*b(a)*b(a)*b(a)*b(a)*b(a)*$	\square beschreibt L \square beschreibt	L nicht
4. aaaaa	\square beschreibt L \square beschreibt	L nicht
5. $(b)^*aaaaa(b)^*$	\square beschreibt L \square beschreibt	L nicht
6. $(a b)^*$	\square beschreibt L \square beschreibt	L nicht
7. $(a b)^*a(a b)^*a(a b)^*a(a b)^*a(a b)^*a(a b)^*$		L nicht
8. $((b)^* a)((b)^* a)((b)^* a)((b)^* a)$	\square beschreibt L \square beschreibt	L nicht

Aufgabe 2	(8 Punkte)
Sei L die Sprache	
$L = \{a^n b^m \mid n, m \in \{0, 1, \dots\}, n \neq m\}$ Then does Alphabet Σ	
über dem Alphabet $\Sigma = \{a, b\}.$ a) Ist L regulär? \square Ja \square Nein	(1 P)
b) Beweisen Sie Ihre Antwort.	(7 P)
b) Deweisen Sie fine Antwort.	(11)

Aufgabe 3	(10 Punkte)
-----------	-------------

Sei Σ ein Alphabet. Für jeden Buchstaben $a \in \Sigma$ sei ein Wort $w_a \in \Sigma^*$ gegeben. Für jedes Wort $w \in \Sigma^*$ bezeichne $\llbracket w \rrbracket$ das Wort, in dem jeder Buchstabe a durch das entsprechende Wort w_a ersetzt wurde. Formal ist $\llbracket \cdot \rrbracket$ definiert über

$$[a_1 a_2 \cdots a_n] = w_{a_1} w_{a_2} \cdots w_{a_n},$$

wobei $a_1, a_2, \dots, a_n \in \Sigma$ sei. Auf eine Sprache L lässt sich $\llbracket \cdot \rrbracket$ folgendermaßen verallgemeinern:

$$[\![L]\!] = \{[\![w]\!] \mid w \in L\} = \{[\![a_1 a_2 \cdots a_n]\!] \mid a_1 a_2 \cdots a_n \in L\} = \bigcup_{\substack{a_1 a_2 \cdots a_n \in L \\ \text{mit } a_1, a_2, \cdots, a_n \in \Sigma}} \{w_{a_1} w_{a_2} \cdots w_{a_n}\}$$

a)	In dieser Teilaufgabe sei $\Sigma = \{a, b, c\}, w_a = a, w_b = ba$ und $w_c = \varepsilon$. Geben Sie $[\{a^n b^n c^m \mid m, n \in \{0, 1, \dots\}\}]]$ an.			

Zeigen Sie: Ist $L \subseteq \{a, b\}^*$ konte	extfrei, so ist dies	s auch $\llbracket L rbracket$ (bei je	eder Wahl von w_a	und w_b).

gabe 4 Sei $G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$ duktionen	(9) die Grammatik in Chomsky-Normalform mit) Punkte den Pro
$P = \{ S \to CB \mid BC$	$C, C \to AS \mid SA \mid c, A \to a, B \to b \}.$	
a) Führen Sie den CYK-Algorithn Verwenden Sie dafür folgende	mus für G auf dem Wort $w_1 = bcab$ aus. Tabelle:	(5 H
b) Ist das Wort w_1 in der Sprache Begründen Sie Ihre Antwort ku	· /	(1 I
c) Sei $w_2 = bca$. Geben Sie die Med. h. die Menge aller Variablen Hinweis: w_2 ist ein Faktor von	in G , aus denen sich w_2 ableiten lässt.	(2 1
Begründen Sie Ihre Antwort ku	urz.	
d) Ist $w_2 \in L(G)$? \square Ja \square Ne Begründen Sie Ihre Antwort ku		(1 I

Aufgabe 5	(15 Punkte)
-----------	-------------

Sei $\Sigma=\{a,b\}$ und der folgende (nicht minimale) deterministische endliche Automat $M=(Q,\Sigma,\delta,q_0,F)$ gegeben. Die von M akzeptierte Sprache sei L=T(M).

Zur Erinnerung: Die Myhill-Nerode-Relation R_L einer Sprache $L\subseteq \Sigma^*$ ist über

$$u R_L v \iff (\forall w \in \Sigma^* : uw \in L \iff vw \in L)$$

definiert.

enmert.	
a) Gilt $b R_L aa$? \square Ja \square Nein Beweisen Sie Ihre Antwort.	(3 P)
b) Gilt $a R_L b$? \square Ja \square Nein	(3 P)
Beweisen Sie Ihre Antwort.	(01)
c) Gilt $aa R_L bb$? \square Ja \square Nein	(3 P)
Beweisen Sie Ihre Antwort.	

Beim □ Stir	Stimmt folgende Aussage? (3 Beim Minimieren von M werden $\delta(q_0,a)=q_1$ und $\delta(q_0,b)=q_3$ zusammengefasst. \square Stimmt \square Stimmt nicht Begründen Sie Ihre Antwort kurz.						
Beim ∶ □ Stir	at folgende Aussage? Minimieren von M werden mmt \square Stimmt nicht nden Sie Ihre Antwort kurz		$=q_5 \; ext{und} \; \hat{\delta}(q_5)$	$q_0, bb) = q_6$ zus	sammengefas	(3 P) sst.	
	e jeweils die kleinste (bez thalten ist. Nicht angekreuz	_	, -	·	in der die j	_	
Sprache		regulär	det. kontextfrei	kontextfrei	kontext- sensitiv	Typ-0	
$\{a^nb^n \mid n =$	42}						
$\{a^nb^n\mid n$ go	erade }						
$\{a,b\}^*\setminus\{a$	$^{n}b^{n} \mid n \text{ ungerade } \}$						
$\{a^n \mid n \in \mathbb{N}$	[}						
$\{a^nb^nc^n\mid n$	$\in \mathbb{N}\} \cap \{a^ib^nc^i \mid n, i \in \mathbb{N}\}$						
$\{a^nb^nc^n\mid n$	$\in \mathbb{N} \} \cup \{ a^i b^n c^i \mid n, i \in \mathbb{N} \}$						