Prof. Dr. Matthias Schütt Dr. Claudia Schoemann

Algebra II Übungsblatt 1

Abgabe: 27.04.2020 bis 12:15 per email an algebra2@math.uni-hannover.de

Aufgabe 1.1 (2+4+4 Punkte)

Sei $n \geq 3$ eine natürliche Zahl. Weiterhin sei die lineare Abbildung σ die Drehung des \mathbb{R}^2 mit dem Drehwinkel $\frac{2\pi}{n}$ und τ die Spiegelung an der y - Achse. D_n sei die von σ und τ erzeugte Untergruppe der linearen Automorphismen von \mathbb{R}^2 , d.h. $D_n = \langle \sigma, \tau \rangle$. Beweisen Sie:

- (a) Es gilt $\operatorname{ord}(\sigma)=n$, $\operatorname{ord}(\tau)=2$ und $\sigma\tau\sigma=\tau$.
- (b) Es gilt $D_n = \{ \tau^i \sigma^j \mid i \in \{0, 1\}, j \in \{0, 1, \dots n 1\} \}.$
- (c) D_n hat 2n Elemente und ist nicht kommutativ.

Aufgabe 1.2 (3+2+2+3 Punkte)

Sei K ein Körper und $f(x) \in K[x]$ ein irreduzibles normiertes Polynom. Sei weiter a eine Nullstelle von f(x) in einem Erweiterungskörper von K.

(a) Beweisen Sie: Ist auch f(a+1) = 0, so gilt char(K) > 0.

Gelte nun weiter char(K) = p und $a^p - a \in K$.

- (b) Beweisen Sie, dass $f(x) = x^p x (a^p a)$ gilt.
- (c) Beweisen Sie, dass die Erweiterung K(a)/K galoissch ist.
- (d) Beweisen Sie, dass Aut(K(a); K) zyklisch von Ordnung p ist.

Aufgabe 1.3 (4+6 Punkte)

Sei $\mathbb{C}(x)$ der Körper der rationalen Funktionen über \mathbb{C} . Betrachten Sie in $\operatorname{Aut}(\mathbb{C}(x);\mathbb{C})$ die Elemente σ und τ induziert durch $\sigma(x) = -x$ und $\tau(x) = \mathrm{i} x^{-1}$. Sei $G = \langle \sigma, \tau \rangle \subseteq \operatorname{Aut}(\mathbb{C}(x);\mathbb{C})$.

- (a) Beweisen Sie, dass G endlich ist. Welche Ihnen bekannte Gruppe ist G?
- (b) Beweisen Sie, dass $\operatorname{Fix}(\mathbb{C}(x); G)$ wieder ein rationaler Funktionenkörper über \mathbb{C} ist, d.h. beweisen Sie $\operatorname{Fix}(\mathbb{C}(x); G) = \mathbb{C}(y)$ mit einem $y \in \mathbb{C}(x)$. Geben Sie explizit ein y an.