MATH 60604 Exercice 3

3.1 On considère trois modèles de régression emboîtés afin de modéliser le nombre d'accidents de voiture selon la région (region). La variable catégorielle niveaux de risque (risque) a 3 niveaux et le nombre d'années d'expérience (expe) au volant est un facteur à 4 niveaux.

Modèle	variables	<i>p</i> + 1	$\ell(\widehat{m{eta}})$	AIC	BIC
M_1	risque	3	-244.566	495.132	510.362
M_2	risque+region	*	-151.620	*	*
M_3	risque + region + expe	10	-139.734	299.468	350.235

Table 1: Mesures d'adéquation de trois modèles emboîtés avec les covariables, le nombre de coefficients du modèle (p+1), la valeur de la log-vraisemblance évaluée au maximum de vraisemblance $(\ell(\widehat{\beta}))$ et les critères d'information.

Quelle est la différence entre le AIC et le BIC du modèle M2 (en valeur absolue)?

3.2 Une variable aléatoire X suit une loi géométrique de paramètre p si sa fonction de masse est

$$P(X = x) = (1 - p)^{x-1}p, \qquad x = 1, 2, ...$$

- (a) Écrivez la vraisemblance et la log-vraisemblance d'un échantillon aléatoire de taille *n* si les observations sont indépendantes.
- (b) Dérivez l'estimateur du maximum de vraisemblance pour le paramètre p.
- (c) Calculez l'information observée.
- (d) Supposons qu'on a un échantillon de 15 observations, {5,6,3,7,1,2,11,8,7,34,1,7,10,1,0}, dont la somme est 216. Calculez l'estimé du maximum de vraisemblance et son erreur-type approximative.
- (e) Calculez la statistique du rapport de vraisemblance et la statistique de Wald pour un test à niveau 5% de l'hypothèse \mathcal{H}_0 : $p_0 = 0.1$ contre l'alternative bilatérale \mathcal{H}_a : $p_0 \neq 0.1$.
- 3.3 On considère le temps avant défaillance de machines sur la base de leur niveau de corrosion w. Spécifiquement, le temps avant défaillance, T, est modélisé à l'aide d'une loi exponentielle de densité $f(t) = \lambda \exp(-\lambda t)$, mais d'intensité $\lambda = aw^b$; si b = 0, le temps de défaillance moyen est constant et vaut $E(T_i) = a^{-1}$. On suppose que les n observations sont indépendantes et que les niveaux de corrosion w_i sont supposés connus (donc fixes). [Coles (2001)]
 - (a) Écrivez la log-vraisemblance du modèle
 - (b) Dérivez les matrices d'informations observées et de Fisher.
 - (c) Montrez que la log-vraisemblance profilée pour b est

$$\ell_{\mathsf{p}}(b) = n \ln(\widehat{a}_b) + b \sum_{i=1}^{n} \ln(w_i) - \widehat{a}_b \sum_{i=1}^{n} w_i^b t_i,$$

et dérivez une formule explicite pour l'estimateur du maximum de vraisemblance partiel \hat{a}_h .

page $1\ de\ 1$ Compilé le 25/09/2020 à 21:47