Pregunta 1 (2,5 puntos)

Sean X e Y dos conjuntos no vacíos y $f: X \longrightarrow Y$ una aplicación.

- a) Demuestre que $\forall B \subset Y$ se tiene que $f(f^{-1}(B)) = f(X) \cap B$.
- b) Demuestre que f es inyectiva si sólo si $\forall A \subset X$ se tiene que $f^{-1}(f(A)) = A$.

Pregunta 2 (2,5 puntos)

Sean X un conjunto no vacío y \leq una relación de orden en X. Se define en $\mathcal{P}(X) \setminus \{\emptyset\}$ la relación \mathcal{R} dada por:

$$A \mathcal{R} B$$
 si y sólo si $A = B$ o $(\forall a \in A \ \forall b \in B \ a \leq b)$

Determine razonadamente si \mathcal{R} es una relación de equivalencia o de orden en $\mathcal{P}(X) \setminus \{\emptyset\}$.

Pregunta 3 (3 puntos)

Sea $f \colon \mathbb{Q} \longrightarrow \mathbb{Q}$ una aplicación tal que:

$$\forall x, y \in \mathbb{Q}, \quad f(x+y) = f(x) + f(y)$$

- a) Calcule razonadamente el valor de f(0).
- b) Demuestre que $\forall x \in \mathbb{Q}, f(-x) = -f(x).$
- c) Demuestre por inducción sobre n, que:

$$\forall n \in \mathbb{N} \ y \ \forall x \in \mathbb{Q}, \quad f(nx) = nf(x)$$

Deduzca que también es cierto $\forall n \in \mathbb{Z}$.

d) Demuestre que $\forall x \in \mathbb{Q}$ se cumple que f(x) = kx siendo k = f(1).

Pregunta 4 (2 puntos)

Si E(a) denota la parte entera de cualquier $a \in \mathbb{R}$, demuestre que $\forall x, y \in \mathbb{R}$ se cumple:

$$E(x) + E(y) \leqslant E(x+y) \leqslant E(x) + E(y) + 1$$