Assignment 1

Ivan Efremov

March 2022

$1 \quad \text{Task } 1$

1.1 Task 1.1

We can see, that vectors v_i , w_i form the plane. So this vectors should not lie in the same line to form a plane. If one of the vector of second plane not lie in the first plane, first and second planes would intersect, otherwise they are parallel.

So we can from two matrices A1 = [v1 w1 v2] and A2 = [v1 w1 w2]. If one of them is invertible (has independent columns), planes would intersect.

The code you can find in Task $_1$ 1.m

Figure 1: Intersection of 2 planes

1.2 Task 1.2

Find representation in form $n * (r - r_0) = 0$.

n is perpendicular to the plane, so it's perpendicular to vectors \mathbf{v} and \mathbf{w} - left null space of matrix $[\mathbf{v} \ \mathbf{w}].$

r0 is equal to any point in that plane. So let it be just p. You can find a code in Task 1 2.m

Figure 2: First plane in task 1.2

Figure 3: Second plane in task 1.2

1.3 Task 1.3

Line vector is equal to normal of the plane. To find a projection I am using the formula of projection: $g_{proj} = n * (n^T * n)^{-1} * n^T * g$

You can find a code in Task_1_3.m

Figure 4: Solution of the task 1.3

1.4 Task 1.4

In this task I decompose vector g on two vectors: projection vector to plane s and perpendicular vector to the plane s equals to distance to that plane (n vector). So symmetrical point will compute as $g^* = g_{proj} - n$

You can find a code in Task_1_4.m

Figure 5: Solution of the task 1.4

2 Task 2

To get a basis of V, we should just compute null space of the matrix. This function is available in matlab.

Finding orthogonal projection onto V and onto the orthogonal compliment of V is similar as in task 1.4.

To recover g: $g = g^{\perp} + g^{\parallel}$. To prove that g^{\perp} and g^{\parallel} are perpendicular we can take scalar multiplication of this vectors, which should be equal to zero.

You can find a code in Task 2.m

Figure 6: Solution of the task 2

3 Task 3

To rearrange optimization problem in another form we should use the following values:

$$H = \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix}$$

$$c = \begin{bmatrix} 0 & -32 \end{bmatrix}$$

$$c0 = 60$$

$$A = egin{bmatrix} 1 & 1 \ 1 & 2 \ -1 & 0 \ 0 & -1 \ 1 & 1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 6 \\ 8 \\ 0 \\ 0 \\ 9 \end{bmatrix}$$

A solution on CVXPY and visualization you can find in Task_3.ipynb