

Preliminary

TFT LCD Preliminary Specification

MODEL NO.: V460H1 - LH8

Approved By	TV Product Marketing & Management Div
	Chao-Chun Chung

Reviewed By	QA Dept.	Product Development Div.		
	Hsin-Nan Chen	WT Lin		

Propagad By	LCD TV Marketing and Product Management Div			
Prepared By	Josh Chi	Steven Tu		

Preliminary

CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT INVERTER UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTE 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	15
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	16
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 25
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 29
8. DEFINITION OF LABELS	 33
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 35
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS	 38
11. MECHANICAL CHARACTERISTICS	 39

Preliminary

REVISION HISTORY

			I	
Version	Date	Page (New)	Section	Description
Ver 1.0	Dec. 25,'09	All	All	Preliminary Specification was first issued.

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1 - LH8

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V460H1-LH8_is a 46" TFT Liquid Crystal Display module with 14-CCFL Backlight unit and 4ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 1.073G colors (8bit+Hi-FRC -bit/color). The inverter for backlight is built-in.

1.2 FEATURES

- High brightness (500nits)
- High contrast ratio (7500:1)
- Fast response time (Gray to Gray average 6.5 ms)
- High color saturation (72% NTSC)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 100/120 Hz frame rate
- Ultra wide viewing angle: Super MVA technology

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1018.08(H) x 572.67(V) (46" diagonal)	mm	(1)
Bezel Opening Area	1024.4(H) x 579.2(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.17675(H) x 0.53025(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.073G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 11%) Hardness (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	-	1083	-	mm	
Module Size	Vertical (V)	-	627	-	mm	(1), (2)
	Depth (D)	-	51.2	-	mm	
Weight		-	13200	-	g	-

Global LCD Panel Exchange Center

Preliminar

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol		Va	lue	Unit	Note	
item			Min.	Max.	Offic		
Storage Temperature	T _{ST}		-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}		0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	X, Y axis	-	50	G	(3), (5)	
Shock (Non-Operating)		Z axis	-	35	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}		-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Power Supply Voltage	V _{cc}	-0.3	13.5	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Va	lue	Unit	Note
	Syllibol	Min.	Max.	J	
Lamp Voltage	V _W	_	3000	V _{RMS}	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Preliminary

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

	Parameter		Cumbal		Value	Unit	Note		
	Parame	eter	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Su	pply Voltage		V_{CC}	10.8	12	13.2	V	(1)	
Rush Cur	rent		I _{RUSH}	-	-	4.4	Α	(2)	
		White Pattern	-	-	0.51	0.663	Α		
Power Su	pply Current	Horizontal Stripe	-	-	0.93	1.21	Α	(3)	
		Black Pattern	-	-	0.45	0.585	Α		
Differential Threshold			V_{LVTH}	+100	-		mV		
LVDS	Differential Threshold \	•	V_{LVTL}	-		-100	mV		
interface	Common In	Common Input Voltage		1.0	1.2	1.4	V	(4)	
	Differential	input voltage	V _{ID}	200	-	600	mV		
	Terminating	Terminating Resistor		-	100	-	ohm		
CMOS	Input High 7	Threshold Voltage	V_{IH}	2.7	-	3.3	V		
interface	Input Low T	hreshold Voltage	$V_{\rm IL}$	0	-	0.7	V		

Note (1) The module should be always operated within the above ranges.

Preliminary

Vcc rising time is 470us

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1 - LH8

Preliminary

Note (3) The specified power supply current is under the conditions at Vcc = 12V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Preliminary

Note (4) The LVDS input characteristics are as follows:

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1

Preliminar

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Daramatar	Cymbal		Value	Linit	Nata	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Input Voltage	V_L	-	1100	-	V_{RMS}	-
Lamp Current	ΙL	10.1	10.6	11.1	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	-	-	1820	V_{RMS}	(2), Ta = 0 °C
Lamp rum On voltage		-	-	1650	V_{RMS}	(2), Ta = 25 °C
Operating Frequency	F_L	30	-	80	KHz	(3)
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

		`	,				
Parameter	Symbol		Value	Unit	Note		
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note	
Total Power Consumption	P ₂₅₅	-	156	163	V	(6)	
Power Supply Voltage	V _{BL}	22.8	24	25.2	V		
Power Supply Current	I _{BL}	-	6.5	6.8	Arms	No Dimming	
Input Ripple Noise	-	-	-	912	kHz		
Oscillating Frequency	Fw	37	40	43	mA	H.V (5)	
Dimming frequency	F _B	150	160	170	Hz	Dimming frequency	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	Minimum Duty Ratio	

- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.
- Note (2) The lamp starting voltage V_s should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I₁ = 10.1~ 11.1mArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 46" backlight unit under input voltage 24V, average lamp current 10.9 mA and lighting 30 minutes later.

Preliminary

Preliminary

3.2.3 INVERTER INTERFACE CHARACTERISTICS

D		0	Test		Value		11.2	Nico
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Voltage	ON	V_{BLON}		2.0		5.0	V	
On/On Control Voltage	OFF	▼ BLON	_	0	_	0.8	V	
Internal PWM Control	MAX	V_{IPWM}	_	2.85	3.0	3.15	V	Maximum duty ratio
Voltage	MIN	V IPWM		_	0	_	V	Minimum duty ratio
External PWM Control	HI	V_{EPWM}	_	2.0	_	5.0	V	Duty on
Voltage	LO	▼ EPWW		0	_	0.8	V	Duty off
Status Signal	HI	Status	_	3.0	3.3	3.6	V	Normal
Status Signal	LO	Otatus		0	_	0.8	V	Abnormal
VBL Rising Time		Tr1	_	30	_	_	ms	10%-90%V _{BL}
VBL Falling Time		Tf1	_	30	_	_	ms	10 /0-90 /0 VBL
Control Signal Rising Tin	ne	Tr				100	ms	
Control Signal Falling Tir	ne	Tf				100	ms	
PWM Signal Rising Time)	T_{PWMR}	_		_	50	us	
PWM Signal Falling Time	Э	T_{PWMF}	_			50	us	
Input impedance		R _{IN}	_	1	_		ΜΩ	
PWM Delay Time		T_{PWM}	_	100		_	ms	
BLON Delay Time		T _{on}	_	300			ms	
DECIN Delay Tillle		T _{on1}	-	300)	_	ms	
BLON Off Time		T _{off}	_	300	_	_	ms	

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL → PWM signal → BLON

Turn OFF sequence: BLOFF → PWM signal → VBL

Preliminary

Preliminary

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Preliminary

5 .INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module

CNF1 Connector Pin Assignment (FI-RE41S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	N.C.	No Connection	(1)
6	N.C.	No Connection	
7	N.C.	No Connection	
8	N.C.	No Connection	1
9	GND	Ground	
10	CH3_0N	Third Pixel Negative LVDS differential data input. Channel 0	
11	CH3_0P	Third Pixel Positive LVDS differential data input. Channel 0]
12	CH3_1N	Third Pixel Negative LVDS differential data input. Channel 1	(4)
13	CH3_1P	Third Pixel Positive LVDS differential data input. Channel 1	(4)
14	CH3_2N	Third Pixel Negative LVDS differential data input. Channel 2	
15	CH3_2P	Third Pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	CH3_CLK	Third Pixel Negative LVDS differential clock input.	
1 /	N		
18	CH3_CLKP	Third Pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH3_3N	Third Pixel Negative LVDS differential data input. Channel 3	
21	CH3_3P	Third Pixel Positive LVDS differential data input. Channel 3	(4)
22	CH3_4N	Third Pixel Negative LVDS differential data input. Channel 4	(4)
23	CH3_4P	Third Pixel Positive LVDS differential data input. Channel 4]
24	N.C.	No Connection	(1)
25	N.C.	No Connection	(1)
26	CH4_0N	Fourth Pixel Negative LVDS differential data input. Channel 0	
27	CH4_0P	Fourth Pixel Positive LVDS differential data input. Channel 0]
28	CH4_1N	Fourth Pixel Negative LVDS differential data input. Channel 1	(4)
29	CH4_1P	Fourth Pixel Positive LVDS differential data input. Channel 1	(4)
30	CH4 2N	Fourth Pixel Negative LVDS differential data input. Channel 2	
31	CH4 ₂ P	Fourth Pixel Positive LVDS differential data input. Channel 2	
32	GND	Ground	
33	CH4_CLK N	Fourth Pixel Negative LVDS differential clock input.	
34		Fourth Pixel Positive LVDS differential clock input.	
35	GND	Ground	
36	CH4 3N	Fourth Pixel Negative LVDS differential data input. Channel 3	†
37	CH4 3P	Fourth Pixel Positive LVDS differential data input. Channel 3	(4)
38	CH4 4N	Fourth Pixel Negative LVDS differential data input. Channel 4	1 (.)
39	CH4_4P	Fourth Pixel Positive LVDS differential data input. Channel 4	
40	N.C.	No Connection	(1)

Preliminary

41	N.C.	No Connection	

CNF2 Connector Pin Assignment (FI-RE51S-HF (JAE) or equivalent)

Pin	Name	Description	Note
1	N.C.	No Connection	
2	N.C.	No Connection	
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(2)
8	N.C.	No Connection	
9	N.C.	No Connection	(1)
10	N.C.	No Connection	
11	GND	Ground	
12	CH1_0N	First Pixel Negative LVDS differential data input. Channel 0	
13	CH1_0P	First Pixel Positive LVDS differential data input. Channel 0	
14	CH1_1N	First Pixel Negative LVDS differential data input. Channel 1	(2)
15	CH1_1P	First Pixel Positive LVDS differential data input. Channel 1	(3)
16	CH1_2N	First Pixel Negative LVDS differential data input. Channel 2	
17	CH1_2P	First Pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	CH1_CLK N	First Pixel Negative LVDS differential clock input.	
20	CH1_CLK P	First Pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	CH1 3N	First Pixel Negative LVDS differential data input. Channel 3	
23	CH1 3P	First Pixel Positive LVDS differential data input. Channel 3	(2)
24	CH1 4N	First Pixel Negative LVDS differential data input. Channel 4	(3)
25	CH1 4P	First Pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	- (1)
28	CH2 0N	Second Pixel Negative LVDS differential data input. Channel 0	
29	CH2 OP	Second Pixel Positive LVDS differential data input. Channel 0	
30	CH2 1N	Second Pixel Negative LVDS differential data input. Channel 1	
31	CH2 1P	Second Pixel Positive LVDS differential data input. Channel 1	(3)
32	CH2 2N	Second Pixel Negative LVDS differential data input. Channel 2	
33	CH2 2P	Second Pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	CH2_CLK N		
36	1	Second Pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	CH2 3N	Second Pixel Negative LVDS differential data input. Channel 3	(3)

Preliminary

39	CH2_3P	Second Pixel Positive LVDS differential data input. Channel 3	
40	CH2_4N	Second Pixel Negative LVDS differential data input. Channel 4	
41	CH2_4P	Second Pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	
43	N.C.	No Connection	(1)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	
48	Vin	Power input (+12V)	
49	Vin	Power input (+12V)	
50	Vin	Power input (+12V)	
51	Vin	Power input (+12V)	

Note (1) Please be reserved to open.

Note (2) Low or Open: VESA Format(default), connect to GND. High: JEIDA Format, connect to

Note (3) LVDS 4-Port Data Mapping

Port	CH of LVDS	Data Stream
1st Port	First pixel	1, 5, 9,, 1913, 1917
2nd Port	Second pixel	2, 6, 10,, 1914, 1918
3rd Port	Third pixel	3, 7, 11,, 1915, 1919
4th Port	Fourth pixel	4, 8, 12,, 1916, 1920

Preliminary

5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN2-CN8: CP042EP1MFB-LF (Cvilux)

Pin	Name	Description	Wire Color
1	HV	High Voltage	Blue
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042EP1MFB-LF, manufactured by Cvilux. The mating header on inverter part number is CP042EP1MFB-LF (Cvilux)

Preliminary

5.3 INVERTER UNIT

CN1: CI0114M1ER0-LA (Cvilux) or equivalent

Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	STATUS	Normal (3.3V) Abnormal(GND)
12	E_PWM	External PWM Control Signal
13	I_PWM	Internal PWM Control Signal
14	BLON	BL ON/OFF

Note (1) Pin 12: External PWM control (use pin 12): Pin 13 must open.

Note (2) Pin 13: Internal PWM control (use pin 13): Pin 12 must open.

Note (3) Pin 12 and Pin 13 can't open in the same period.

CN2~CN8: CP042EP1MFB-LF (Cvilux)

Pin №	Symbol	Description						
1	CCFL HOT	CCFL high voltage						
2	CCFL HOT	CCFL high voltage						

Preliminary

5.4 BLOCK DIAGRAM OF INTERFACE

Preliminary

AR0~AR9: First pixel R data

AG0~AG9: First pixel G data

AB0~AB9: First pixel B data

BR0~BR9: Second pixel R data

BG0~BG9: Second pixel G data

BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data

CG0~CG9: Third pixel G data

CB0~CB9: Third pixel B data

DR0~DR9: Fourth pixel R data

DG0~DG9: Fourth pixel G data

DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Preliminary

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB)

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB)

AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK : Data clock signal

RSV : Reserved

23

Preliminary

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

			Data Signal																												
	Color					Re		-	-							Gre						Blue B9 B8 B7 B6 B5 B4 B3 B2 B1 B0									
	T=	R9	R8		R6	R5		R3		R1	R0	G9	G8	G7	G6			G3	G2	G1	G0		B8								B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green Blue	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0 1	0	0	0	0	1	1	1	1	1	1	1	1	1	
Colors	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	Ó	0	0	Ó	1		1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	o l
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	-	:		:	:	:	:	:	:	:	:	:	:	:	:
Of	: Red (1021)	4	4	:	1	1	1	1	1	:	1	:	: 0	: 0	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (1021) Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	-	:	:	:	:	1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	i	:	:	:	:	:	:	:	:	:	:	: `		:\		:/	7 :	:	:	:	:	:	:	1	:	:	1	1	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
010011	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0
Gray	Blue (2)	0																												! -	
Scale	:	:	:	:	:	:	:					÷	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:
Of	Blue (1021)	0	0	0	0	0	ò	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Blue	Blue (1022)	0	0	Ö	Ö	Ö	Ö	0	Ö	0	Ö	0	Ö	Ö	0	0	0	0	Ö	0	0	1	1	i	1	1	1	i	Ιi	1	0
	Blue (1023)	0	Ö	Ö	Ö	0	0	0	Ö	0	0	Ö	Ö	Ö	0	0	0	0	0	Ö	Ö	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

6. INTERFACE TIMING

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	-	F _{clkin} +2%	MHz		
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)	
LVDS Receiver	Setup Time	Tlvsu	600	-	-	ps	(5)	
Data	Hold Time	Tlvhd	600	-	- ps		(0)	
	Frame Rate	F _{r5}	97	100	103	Hz	(6)	
Vertical	Traine Rate	F _{r6}	117	120	123	Hz	(6)	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb 3		45	55	Th	_	
Horizontal	Total	Th	540	550	575	Тс	Th=Thd+Thb	
Active Display	Display	Thd	480	480	480	Тс	_	
Term	Blank	Thb	60	70	95	Тс	_	

- Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.
- Note (2) Please make sure the range of pixel clock has follow the below equation:

$$Fclkin(max) \ge Fr_6 \times Tv \times Th$$

$$Fr5 \times Tv \times Th \ge Fclkin(min)$$

Preliminary

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1 **Preliminary**

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6): (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Note:

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V _{CC}	12V	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Lamp Current	I_L	10.6±0.5	mA		
Oscillating Frequency (Inverter)	F_W	40±3	KHz		
Vertical Frame Rate	Fr	120	Hz		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		4000	6000	-	-	Note (2)
Response Tim	е	Gray to gray	θ _x =0°, θ _Y =0° Viewing angle at normal direction	-	4.5	9	ms	Note (3)
Center Lumina	nce of White	L _C		360	450	ı	cd/ m ²	Note (4)
White Variation	า	δW		-	-	1.3	-	Note (7)
Cross Talk		CT		-	-	4	%	Note (5)
Color Chromaticity Red Green Blue White	Red	Rx		Тур 0.03	0.633	Typ.+ 0.03	-	Note (6)
	rtod	Ry			0.324		-	
	Groon	Gx			0.289		-	
	Green	Gy			0.603		-	
	Blue	Bx			0.147		-	
	Dide	Ву			0.050		-	
	\//hita	Wx			0.285		-	
	Wy			0.293		-		
	Color Gamut			70	72	-	%	NTSC
Viewing Horizontal Vertical	θ_x +		80	88	-			
	Horizoniai	θ_{x} -	CR≥20	80	88	-	Deg.	Note (1)
	Vortical	θ _Y +		80	88	-		
	vertical	θ _Y -		80	88	-		

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1 **Preliminary**

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

0

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1

Preliminary

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point.

 $L_C = L(5)$, where L(x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

(a)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Preliminary

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V460H-LH8
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(d) Production Location:XXXX, for example:TAIWAN or CHINA.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

33

Global LCD Panel Exchange Center

Issued Date: Dec.25, 2009 Model No.: V460H1 - LH8

Preliminary

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Preliminary

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 3 LCD TV modules / 1 Box

(2) Box dimensions : 1144(L)x 266(W)x 725(H)mm

(3) Weight: approximately 45Kg (3 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

Preliminary

Preliminary

Figure.9-2 packing method

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
Information Technology equipment	UL	UL 60950-1: 2003
	cUL	CAN/CSA C22.2 No.60950-1-03
	СВ	IEC 60950-1:2001
Audio/Video Apparatus	UL	UL 60065: 2003
	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

Preliminary

11. MECHANICAL CHARACTERISTIC

Preliminary

Preliminary

