3. Conditional distribution and conditional expectation (cont'd)

3.2. Conditional Expectation (cont'd)

$$\mathbb{E}(g(X)|Y=y) = egin{cases} \sum_{i_1}^{\infty} g(x_i) P(X=x_u|Y=y) & & ext{if } X|Y=y ext{ is discrete} \ \\ \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx & & ext{if } X|Y=y ext{ is continuous} \end{cases}$$

3.2.1 What is $\mathbb{E}(X|Y)$?

Different ways to understand conditional expectation

- 1. Fix a value y , $\mathbb{E}(g(X)|Y=y)$ is a number
- 2. As y changes $\mathbb{E}(g(x)|Y=y)$ becomes a function of y (that each y gives a value): $h(y)=:\mathbb{E}(g(x)|Y=y)$
- 3. since y is actually random, we can define $\mathbb{E}(g(x)|Y)=h(Y)$. This is a random variable

$$\mathbb{E}(g(x)|Y))_{(\omega)} = \mathbb{E}(g(x)|Y = Y(\omega))$$

 $\omega \in \Omega$ this random variable takes value $\mathbb{E}(g(x)|Y=y)$ When Y=y

$$egin{aligned} \Omega &
ightarrow \mathbb{R} \ h(Y)_{(\omega)} &= h(Y(\omega)) \end{aligned}$$

3.2.2 Properties of conditional expectation

1. Linearity (inherited from expectation)

$$\mathbb{E}(aX+b|Y=y) = a\mathbb{E}(X|Y=y) + b$$

$$\mathbb{E}(X+Z|Y=y) = \mathbb{E}(X|Y=y) + \mathbb{E}(Z|Y=y)$$

2. $\mathbb{E}(g(X,Y)|Y=y)=\mathbb{E}(g(X,y)|Y=y)\neq\mathbb{E}(g(X,y))$ when X and Y are not independent

Proof (Discrete):

$$\mathbb{E}(g(X,Y)|Y=y) = \sum_{x_i} \sum_{y_j} g(x_i,y_j) \cdot P(X=x_i,Y=y_j|Y=y)$$
 if $y_j \neq y$ $P(X=x_i,Y=y_j|Y=y) = egin{cases} 0 & ext{if } y_j
eq y \end{cases}$ $P(X=x_i,Y=y_j|Y=y) = P(X=x_i|Y=y)$ if $y_j = y$

$$Arr \mathbb{E}(g(X,Y)|Y=y) = \sum_{x_i} g(x_i,y) \cdot P(X=x_i|Y=y)$$
 $= \mathbb{E}(g(X,y)|Y=y)$ $g(X,y)$ regarded as a function of x

In particular,

$$\mathbb{E}(g(X) \cdot h(Y)|Y = y) = h(y)\mathbb{E}(g(X)|Y = y)$$
$$\mathbb{E}(g(X) \cdot h(Y)|Y) = h(Y)\mathbb{E}(g(X)|Y)$$

3. If
$$X \perp Y$$
, then $\mathbb{E}(q(X)|Y=y) = \mathbb{E}(q(X))$

Fact: If $X \perp Y$, then conditional distribution of X given Y = y is the same as the unconditional distribution of X

Proof(Discrete):

$$egin{aligned} & ext{if } X \perp Y \ & P(X = x_i | Y = y_j) \ & = P(X = x_i | Y = y_j) / P(Y = y_j) \ & = P(X = x_i) P(Y = y_j) / P(Y = y_j) \ & = P(X = x_i) \end{aligned}$$

4. Law of iterated expectation (or double expectation): Expectation of conditionally expectation is its unconditional expectation

$$\mathbb{E}(\mathbb{E}(X|Y))) = \mathbb{E}(X)$$

 $\mathbb{E}(X|Y)$ is a r.v, a function of Y .

Proof(Discrete):

When $Y=y_j$, the r.v. $\mathbb{E}(X|Y)=\mathbb{E}(X|Y=y_j)=\sum_{x_i}x_iP(X=x_i|Y=y_j)$. This happens with probability $P(Y=y_j)$ $\mathbb{E}(\mathbb{E}(X|Y))=\sum_{y_j}(\sum_{x_i}x_iP(X=x_i|Y=y_j))P(Y=y_j)$ $=\sum_{x_i}\sum_{y_j}P(X=x_i|Y=y_j)P(Y=y_j)$ $=\sum_{x_i}x_i\sum_{y_j}P(X=x_i|Y=y_j)P(Y=y_2) \quad \text{ law of total probability}$ $=\sum_{x_i}x_iP(X=x_i)=\mathbb{E}(X)$

Alternatively,

$$egin{aligned} \sum_{x_i} \sum_{y_j} x_i P(X=x_i|Y=y_j) P(Y=y_j) \ &= \sum_{x_i} \sum_{y_j} x_i P(X=x_i,Y=y_j) \ &= \mathbb{E}(X) \end{aligned} \qquad g(X,Y) = X ext{ at } (x_i,y_j)$$

Example:

Y: # of claims receive by insurance company

X: some random parameter

$$Y|X \sim Poi(X), X \sim Exp(\lambda)$$

a)
$$\mathbb{E}(Y)$$
 ?

b)
$$P(Y=n)$$
 ?

a)

$$egin{aligned} Y|X \sim Poi(X) &\Rightarrow \mathbb{E}(Y|X=x) = x \Rightarrow \mathbb{E}(Y|X) = X \\ &\therefore \mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X)) \\ &= \mathbb{E}(X) = rac{1}{\lambda} \end{aligned}$$

b)

$$\begin{split} P(Y=n) &= \int_0^\infty P(Y=n|X=x) f_x(x) dx \\ &= \int_o^\infty \frac{e^{-x} x^n}{n!} \cdot \lambda e^{-\lambda x} dx \\ &= \frac{\lambda}{n!} \int_0^\infty x^n e^{-(\lambda+1)x} dx \\ &= \frac{\lambda}{(\lambda+1)^{n+1} n!} \int_0^\infty ((\lambda+1)x)^n e^{-(\lambda+1)x} d(\lambda+1)x \\ &= \frac{\lambda}{(\lambda+1)^{n+1} n!} \Gamma(n+1) \\ &= \frac{\lambda}{(\lambda+1)^{n+1}} \Gamma(n+1) \\ &= \frac{\lambda}{(\lambda+1)^{n+1}} = (\frac{1}{\lambda+1})^n \cdot \frac{1}{\lambda+1} \\ &\Rightarrow Y+1 \sim Geo(\lambda/(\lambda+1)) \end{split}$$

We verify that $\mathbb{E}(Y) = rac{\lambda+1}{\lambda} - 1 = rac{1}{\lambda}$

3.3 Decomposition of variance (EVVE's low)

Definition: The conditional variance of Y given X=x is defined as

$$Var(Y|X=x)=\mathbb{E}((Y-\mathbb{E}(Y|X=x))^2|X=x)$$
 $Var(Y|X)_{(\omega)}=Var(Y|X=X_{(\omega)})$ $Var(Y|X)_{(\omega)}\colon ext{a r.v, a function of }X$

The conditional variance is simply the variance taken under the conditional distribution

$$\Rightarrow V(Y|X=x) = \mathbb{E}(Y^2|X=x) - (\mathbb{E}(Y|X=x))^2$$

Thus

$$Var(Y) = \mathbb{E}(Var(Y|X)) + Var(\mathbb{E}(Y|X))$$

 $\mathbb{E}(Var(Y|X))$: "intra-group variance" $Var(\mathbb{E}(Y|X))$: "inter-group variance"

Proof:

$$\begin{split} RHS &= E(E(Y^2|X) - (E(Y|X))^2) + E((E(Y|X))^2) - (E(E(Y|X)))^2 \\ &= E(E(Y^2|X)) - \frac{E((E(Y|X))^2)}{E((E(Y|X))^2)} + \frac{E((E(Y|X))^2)}{E(E(Y|X))^2} - (E(E(Y|X)))^2 \\ &= E(Y^2) - (E(Y))^2 \\ &= Var(Y) \end{split}$$