Karnaugh maps, minimization

1. More on Boolean function forms

- a. Boolean function from last time
 - i. True when either, but not both, of the first two variables is true
 - ii. Truth table below

Index	Α	В	С	f(A, B, C)	Minterm	Maxterm
0	0	0	0	0	$m_0 = \overline{ABC}$	$M_0 = A + B + C$
1	0	0	1	0	$m_1 = \overline{ABC}$	$M_1 = A + B + \overline{C}$
2	0	1	0	1	$m_2 = \overline{A}B\overline{C}$	$M_2 = A + \overline{B} + C$
3	0	1	1	1	$m_3 = \overline{A}BC$	$M_3 = A + \overline{B} + \overline{C}$
4	1	0	0	1	$m_4 = A\overline{BC}$	$M_4 = \overline{A} + B + C$
5	1	0	1	1	$m_5 = A\overline{B}C$	$M_5 = \overline{A} + B + \overline{C}$
6	1	1	0	0	$m_6 = AB\overline{C}$	$M_6 = \overline{A} + \overline{B} + C$
7	1	1	1	0	$m_7 = ABC$	$M_7 = \overline{A} + \overline{B} + \overline{C}$

b. Sum-of-products

i.
$$f = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C = m_2 + m_3 + m_4 + m_5$$

ii. Can simplify using equivalence laws to reduce number of gates

1.
$$f = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C$$

2. =
$$\overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C)$$
 by distributive law

3. =
$$\overline{AB} + A\overline{B}$$
 by OR complement law

c. Product-of-sums

i.
$$f = (A + B + C) * (A + B + \overline{C}) * (\overline{A} + \overline{B} + C) * (\overline{A} + \overline{B} + \overline{C}) = M_0 * M_1 * M_6 * M_7$$

ii. Can also simplify using laws of equivalence

1.
$$f = (A + B + C) * (A + B + \overline{C}) * (\overline{A} + \overline{B} + C) * (\overline{A} + \overline{B} + \overline{C})$$

2. =
$$((A + B)(C + \overline{C})) * ((\overline{A} + \overline{B})(C + \overline{C}))$$
 by distributive law

3. =
$$(A + B) * (\overline{A} + \overline{B})$$
 by OR complement law

2. Karnaugh maps

- a. Method of simplifying Boolean expressions visually
- b. Hamming distance minimum number of bits needed to change a binary number to another number
 - i. 101 to 110 has a Hamming distance of two
- c. Karnaugh maps have a Hamming distance of one between all adjacent cells
 - i. Why the order on a 2-variable row/column goes 00, 01, 11, 10, see next page
- d. Map wraps around top, bottom, sides
- e. Place a 1 wherever the function is true, 0 elsewhere
- f. Examples on next page

			AB				
			00	01	11	10	
	_	0	0	0	d	0	
С	C	1	1	0	d	0	

		AB			
		00	01	11	10
CD	00	0	0	0	1
	01	(1	1)	0	1
	11	d	0	d	0
	10	d	0	d	0

Three variable Karnaugh map

Four variable Karnaugh map

3. Terminology

- a. Literal each variable in a product term, either uncomplemented or complemented
 - i. Example: A in $A\overline{BC}$
- b. Don't cares combinations of inputs that will never occur (represented by a d or D)
 - i. Thus, the output at that point can be either 1 or 0
 - ii. Binary to decimal converters if they use 4 bits to represent a decimal digit, we'll never see 1010, 1011, 1100, 1101, and 1111 and thus those are don't cares
 - iii. Don't cares are useful for simplifying function further
- c. Implicant product term for which the function is 1 (e.g., 11 for AND)
- d. Prime implicant the largest possible implicant
 - i. Essential prime implicant prime implicant that contains a 1 that no other prime implicant has
 - ii. Don't cares can be included in these
- e. Cover set of implicants that cover all the 1's in the map
- f. Cost of a circuit number of gates + the total number of inputs to the gates

4. Minimization

- a. Generate all prime implicants
 - i. Draw rectangles around entries that include 1s and not 0s
 - ii. Size of rectangles must be powers of 2 (remember, 1 is a power of 2 as well!)
 - iii. Make sure rectangles are as large as possible
 - iv. Remember that you can wrap around sides
- b. Eliminate prime implicants that overlap until you find the essential implicants
 - i. Other considerations: may want to minimize cost

5. Examples

a.
$$f_1 = m0 + m1 + m4 + m5 + m7 = \Sigma(0, 1, 4, 5, 7) = \bar{B} + AC$$

		AB					
		00	01	11	10		
С	0	1	0	0	$\widetilde{1}$		
	1	1	0	1	ϵ		

b. $f_2 = \Sigma(6, 8, 9, 10, 11, 12, 13, 14) = A\overline{C} + A\overline{B} + BC\overline{D}$

		AB				
		00	01	11	10	
	00	0	0	1	ſ	
CD	01	0	0	1	1	
	11	0	0	0	1	
	10	0	1	1	[1]	