Digital Logic Gates and Boolean Algebra Part 1

Introduction

- Boolean Algebra: named after mathematician George Boole (1815-1864).
 - Base 2 algebra
 - All variables hold the literal value True (1) or False (0)
- A (5v) digital circuit can have one of two values:
 - Signal between 0 and 0.8 volt: 0 value
 - Signal between 2 and 5 volts: 1 value
 - Signal between 0.8 and 2 volts:
 - undefined, gate has no deterministic output.
- Gates calculate various functions of one or more input values to generate an output.
 - NOT, AND, OR, XOR, etc.
- Computers are made up of gates.
 - Performs all logical operations
 - Composed of connected transistors, resistors, capacitors, etc.
 - Digital circuits

Combinational Logic

- Translates a set of N input variables (0 or 1) by a mapping function.
 - Uses Boolean operations to produce a set of M output variables (0 or 1).

Boolean Operators

- Basic Operators
 - AND
 - •OR
 - NOT
- Other Useful Operators
 - NAND
 - NOR
 - XOR
 - XNOR

NOT Operator (Inverter)

- 1 goes in, 0 comes out and vice versa
- Circuit:
 - When input (V_{in}) is low, transistor turns off (infinite resistance) which means output is V_{cc}
 - (0 in = 1 out)
 - When V_{in} is high, transistor acts like a wire to ground making V_{cc} 0 volts.
 - (1 in = 0 out)
- •Instant switching of states?
 - Takes a few nanoseconds.

NOT Operator (Inverter)

NOT truth table:

X	\overline{X}
0	1
1	0

NOT gate symbol

AND Operator

AND truth table:

- Output is High if all inputs are high.
- Otherwise, output is low.

A	В	A \(\begin{array}{c} B \end{array} \)
0	0	0
0	1	0
1	0	0
1	1	1

AND gate symbol

NAND Operator

- NAND truth table:
 - Output is Low if all inputs are high.
 - Otherwise, output is high.

A	B	$\overline{A \wedge B}$
0	0	1
0	1	1
1	0	1
1	1	0

NAND gate symbol

NAND Operator

Simplified Circuit:

•If V_1 and V_2 are both high, both transistors will conduct and produce a path to ground. V_{out} will be low (0).

•If either V_1 or V_2 , or both, are low, the corresponding transistor resists, not allowing electricity to ground. V_{out} will be high (1).

OR Operator

- OR truth table:
 - Output is low if all inputs are low.
 - Otherwise, output is high.

A	B	$A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1

OR gate symbol

NOR Operator

- NOR truth table:
 - Output is High if all inputs are low.
 - Otherwise, output is low.

A	B	$\overline{A \lor B}$
0	0	1
0	1	0
1	0	0
1	1	0

NOR gate symbol

NOR Operator

- Simplified Circuit:
 - If either V₁ or V₂, or both, are high, then transistor will conduct and produce a path to ground.
 V_{out} will be low (0).

•If both V₁ and V₂, are low, then both transistors resist, not allowing electricity to ground.
V_{out} will be high (1).

12

+Vcc

XOR Operator

- Exclusive-OR truth table:
 - Output is High if all inputs are mismatched.
 - Otherwise, output is low.

• XOR = A	\bigoplus	B =	AB	+AI	B

Build this using AND, OR Gates?

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

XOR gate symbol

XNOR Operator

- Exclusive-NOR truth table:
 - Output is low if all inputs are mismatched.
 - Otherwise, output is high.

A	B	$\overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

• XNOR =
$$A \oplus B = AB + \overline{AB}$$

Build this using AND, OR Gates?

XNOR gate symbol

Three Input AND Gate

Α	В	C	$A \wedge B \wedge C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Three Input Or Gate

A	В	C	$A \lor B \lor C$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1