Decadimento Z = 1 proh. dideled. N(4) = N(0) e = e + tr = e At per unité di tempa T = Ct> = } vite medic AND. welnt solidele conte particelle. N(A) = N(O) & TE TLAB= YT trans = XLAD = XLAR 3C XLAB) distoute percore dalla produzione a) decedimento. 1 Pm = 200 MeV a: mistreto dei deti a = BYCT sisure delle vite media Percui decedimento: ; d + (k+) = + + (k+) particula libera con Ho Ej: autovolori de energic $H + f_j(x_i, t) = E_j(x_i, t)$

$$4j(x,t) = 4j(x,t) = 0$$
 $5petiek$
 $14j(x,t)|^2 = 14j(x)|^2$

Tutode Grow Dinterctone come perturb. diperturbed of 1

Introducions l'interctione come perturb. dipendente de l'eyro.

conservatione 4-impulso.

Ref. Solidele con a

=)
$$\overline{0} = \overline{R} + \overline{c}$$
 = $\overline{R} = -\overline{c}$

di impulso.

Q = Ma - mb - mc = Kb + Kc >,0. Q-vare del decelments Q>0 in Atti-decelimente permess: Decadimenti radiativis

d = ithe Decadimentod del Avcies

A-2: neutroni

Decediment B1

$$m_{N} = 936 \text{ MeV}$$
 $m_{1}^{0} = 935 \text{ MeV}$
 $m_{e} = 0.511 \text{ MeV}$
 $m_{5} \ge 0 \text{ NeV}$

$$Q = Ma - M_1 - - M_N >_C O$$

	Mode		Fraction (Γ_i/Γ)		Confidence level
Γ_1	$e^-\overline{ u}_e u_\mu$		$\approx 100\%$		
Γ_2	e $^-\overline{ u}_e^{} u_\mu\gamma$	[a	[(6.0±0.5	$) \times 10^{-8}$	
Γ_3	$e^-\overline{ u}_e u_\mue^+e^-$	[b	[3.4±0.4]	$) \times 10^{-5}$	
Lepton Family number (LF) violating modes					
Γ_4	$e^- u_e\overline{ u}_\mu$	LF [c] < 1.2	%	90%
Γ_5	$e^-\gamma$	LF	< 4.2	$\times 10^{-13}$	
Γ_6	$e^-e^+e^-$	LF	< 1.0	$\times 10^{-12}$	
Γ_7	$e^-2\gamma$	LF	< 7.2	$\times 10^{-11}$	90%

Ve: rentimo

Je: outinentino.

P: protone P: auti-protone

My=106 HeV ji -> e + Y Me = 0.5 MeV Q = 106-0.5 = VS-5 MeV MY = 0 MeV violezione del numero l'epton: Lo (ud), (ud) meson: Mu = 140 MeV Ma- Me/MM >0 TT - pt for Fraction (Γ_i/Γ) Confidence level et le $\begin{array}{ccc} \overline{\Gamma_1 & \mu^+ \nu_\mu} \\ \Gamma_2 & \mu^+ \nu_\mu \gamma \end{array}$ [a] $(99.98770 \pm 0.00004) \%$ [b] $(2.00 \pm 0.25) \times 10^{-4}$ [a] (1.230 ± 0.004 $(1.036 \pm 0.006) \times 10^{-8}$ $(3.2 \pm 0.5) \times 10^{-9}$ $e^{+} \, \nu_{e} \, e^{+} \, e^{-}$ $\mu^+ \bar{\nu_\mu} \nu \bar{\nu}$ $\times 10^{-6}$ $e^+ \nu_e \nu \overline{\nu}$ Qr= Ma-mp= 160-106 Mer= 34 Mer. Qe = Mr-Me = 139.5 MeV Qe>> QM => Trt -> et dovrenbe essere più abbondente MH = 125 GW **H DECAY MODES** H-> W+W-* MV = 60 CeV Fraction (Γ_i/Γ) Mode Confidence level WW³ → 3° 2° × M2 = 90 GeN ZZ^* (2.80±0.30) % $(2.50\pm0.20)\times10^{-3}$ $\frac{\gamma}{b}\frac{\gamma}{b}$ $(53 \pm 8)\%$ $< 3.0 \times 10^{-4}$ e^+e^- 95% $\mu^+\mu^-$ (2.6 ± 1.3) $\times 10^{-4}$ $\tau^+\tau^-$ ($6.0 \, ^{+0.8}_{-0.7}$) % $Z\gamma$ $Z\rho$ (770) $(3.4 \pm 1.1) \times 10^{-3}$ 0 = mH - SmM <0 < 1.21 95% \times 10 $^{-3}$ $Z \phi(1020)$ 95% $\begin{array}{ccc} \Gamma_{11} & Z \, \eta_c \\ \Gamma_{12} & Z \, J/\psi \end{array}$ < 1.9 1 de l'alle W.Z virtuele $\Gamma_{13} \quad Z\psi(2S)$ $\times 10^{-3}$ 95% < 6.6 $\times\,10^{-4}$ $\Gamma_{14} \quad J/\psi \gamma$ < 2.0 95% $\times\,10^{-4}$ $\Gamma_{15} = J/\psi J/\psi$ (olf-shell) H -> LL H -> hb H -> T, ww

η = Ε; Π; = Prof di deacdruments.

$$\frac{\Gamma'}{\Gamma} = \text{Bronching Frection / Ratio}$$

$$0 \subset \Gamma' \subset 1 \quad \text{percentrate di decedianento in }$$

$$T = \frac{1}{\Gamma} = \frac{1}{\Sigma_1 \cdot \Gamma}$$

$$H \to \Upsilon \Upsilon \qquad P_H = \frac{1}{\Gamma_1} + \frac{1}{\Gamma_2}$$

$$M_H = \overline{\Sigma_1} + \overline{\Sigma_2}$$

$$M_H = \overline{\Sigma$$

=> misure di MM de energie, d, l' dei loton;

$$\alpha \rightarrow b + C$$

$$(P_b + P_c)^2 = m_{inv} \quad \text{masse in vowente.}$$

$$m_{inv} \approx m_a$$

$$\alpha : \psi(\vec{x};t) = \psi(\vec{x}) = e^{-iEt} = e^{-iEt}$$

$$\chi(E) = \int_0^\infty dt' e^{-iEt'} + f(x) e^{-iEt} e^{-iEt} = e^{-iEt'}$$

$$\chi(E) = \int_0^\infty dt' e^{-i(E-E_v)t'} e^{-iEt'} e^{-iEt'}$$

$$\chi(E) = \int_0^\infty dt' e^{-i(E-E_v)t'} e^{-iEt'} e^{-iEt'}$$

$$\chi(E) = \int_0^\infty dt' e^{-i(E-E_v)t'} e^{-iEt'} e^{-iEt'}$$

$$\chi(E) = \int_0^\infty dt' e^{-iEt'} + \int_0^\infty dt' e^{-iEt'} e^{-iEt'} e^{-iEt'}$$

$$\chi(E) = \int_0^\infty dt' e^{-iEt'} e^{-iEt'}$$

E.

$$E = M+K = I \sqrt{M^2+P^2} = M \sqrt{1 + \frac{1}{P^2}} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$E = M+K = I \sqrt{M^2+P^2} = M \sqrt{1 + \frac{1}{P^2}} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left(1 + \frac{1}{2} \frac{P^2}{M^2}\right)$$

$$= M + \frac{1}{2} \frac{P^2}{M^2} = M \left($$