CS156 (Introduction to AI), Fall 2022

Homework 6 submission

Roster Name: Preet LNU

Student ID: 014755741

Email address: preet.lnu@sjsu.edu

▼ References and sources

Perceptron.Breast

▼ Solution

▼ Load libraries and set random number generator seed

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.metrics import plot_confusion_matrix

from sklearn.model_selection import train_test_split
np.random.seed(42)
```

Load the dataset

Code the solution

```
digits = datasets.load_digits()
X = digits.data
X = X.astype("float32") / 255
Y = digits.target
class_names = digits.target_names
X.shape, Y.shape, class_names

((1797, 64), (1797,), array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
digits_df = pd.DataFrame(X, columns=digits.feature_names)
digits_df['output_digit'] = Y
digits_df.head()
```

	pixel_0_0	pixel_0_1	pixel_0_2	pixel_0_3	pixel_0_4	pixel_0_5	pixel_0_6	рi
0	0.0	0.0	0.019608	0.050980	0.035294	0.003922	0.0	
1	0.0	0.0	0.000000	0.047059	0.050980	0.019608	0.0	
2	0.0	0.0	0.000000	0.015686	0.058824	0.047059	0.0	
3	0.0	0.0	0.027451	0.058824	0.050980	0.003922	0.0	
4	0.0	0.0	0.000000	0.003922	0.043137	0.000000	0.0	

5 rows × 65 columns

Converting digits to binary classifier

	pixel_0_0	pixel_0_1	pixel_0_2	pixel_0_3	pixel_0_4	pixel_0_5	pixel_0_6
0	0.0	0.0	0.019608	0.050980	0.035294	0.003922	0.000000
1	0.0	0.0	0.000000	0.047059	0.050980	0.019608	0.000000
2	0.0	0.0	0.000000	0.015686	0.058824	0.047059	0.000000
3	0.0	0.0	0.027451	0.058824	0.050980	0.003922	0.000000
4	0.0	0.0	0.000000	0.003922	0.043137	0.000000	0.000000
1792	0.0	0.0	0.015686	0.039216	0.050980	0.023529	0.000000
1793	0.0	0.0	0.023529	0.062745	0.050980	0.043137	0.003922
1794	0.0	0.0	0 003922	0 043137	0 058824	0 003922	0 000000

Train a single layer perceptron model on the training data and compute accuracy of the model on the test data. Output a non-normalized confusion matrix for the test set prediction results.

```
for i in range(10):
    Y new = df numeric[converted[i]]
    X train, X test, Y train, Y test = train test split(X, Y new, test size=0.2, rando
   model = Perceptron(tol=1e-3, random state=0).fit(X train, Y train)
    print('Accuracy of perceptron on training set: {:.2f}'.format(model.score(X train,
   print('Accuracy of perceptron on test set: {:.2f}'.format(model.score(X test, Y te
   model acc = "{:.2f}".format(model.score(X test, Y test))
    title = "Test set results for " + converted[i] + " (" + model acc + ")"
   print('\n')
    disp = plot confusion matrix(model, X test, Y test,
                                display labels=['Not ' + str(i), str(i)],
                                cmap=plt.cm.Blues,
                                normalize=None)
    disp.ax_.set_title(title)
    print(title)
   print(disp.confusion matrix)
    plt.show()
```

Accuracy of perceptron on training set: 0.99
Accuracy of perceptron on test set: 0.99

Test set results for output_digit_0 (0.99)
[[324 0]
 [2 34]]

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarnings.warn(msg, category=FutureWarning)

Accuracy of perceptron on training set: 0.95 Accuracy of perceptron on test set: 0.94

Test set results for output_digit_1 (0.94)
[[324 0]
 [20 16]]

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWa: warnings.warn(msg, category=FutureWarning)

Accuracy of perceptron on training set: 0.99
Accuracy of perceptron on test set: 0.99

Test set results for output_digit_2 (0.99)
[[325 0]

[2 33]]

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWa: warnings.warn(msg, category=FutureWarning)

Accuracy of perceptron on training set: 0.98 Accuracy of perceptron on test set: 0.98

Test set results for output_digit_3 (0.98)
[[323 0]

[7 30]]

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWa: warnings.warn(msg, category=FutureWarning)

Accuracy of perceptron on training set: 0.98 Accuracy of perceptron on test set: 0.97

Test set results for output_digit_4 (0.97)

[[324 0] [11 25]]

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWa: warnings.warn(msg, category=FutureWarning)

Test set results for output digit 4 (0.97)

