Lineaire Algebra Huiswerk

Jasper Vos Huiswerkset 4 29 september 2025

Studentnr: s2911159

Opgave 3.4.6

Bewijs. Laat F een willekeurig lichaam zijn voor een willekeurige vectorruimte V en laat met tegenvoorbeeld zien dat $L(I) \cap L(J) = L(I \cap J)$ niet waar kan zijn. Te bewijzen met een tegenvoorbeeld.

Bekijk $L(I) \cap L(J)$:

Neem $I \in \mathbb{R}^2$ met $I = \{(1,1)\}$, en $J \in \mathbb{R}^2$ met $J = \{(2,2)\}$ dan:

$$L(I) = {\lambda(1,1) : \lambda \in F}$$
 (Voor willekeurige λ)

en

$$L(J) = \{\mu(2,2) : \mu \in F\} \quad \text{(Voor willekeurige μ)}$$

daaruit volgt dus $L(I)\cap L(J)$:

$$L(I)\cap L(J)=\{\lambda(1,1):\lambda\in F\}\quad \text{(Vool willekeurige λ)}$$

Dit komt voort omdat L(I), en L(J) dezelfde lijn opstellen, want $(2,2) \in J$ is een opgeschaalde variant van $(1,1) \in I$.

Bekijk $L(I \cap J)$:

Neem $I = \{1, 1\}$, en $J = \{2, 2\}$, dan:

$$I \cap J = \{(1,1)\} \cap \{(2,2)\} = \emptyset$$

Als we hier het lineaire omhulsel van nemen dan krijgen we $L(\emptyset) = \{0\}.$

Conclusie:

Dit betekent dus dat $L(I) \cap L(J)$ het lineaire omhulsel van (1,1) is, en voor $L(I \cap J)$ geldt alleen de nulvector. Dit betekent dus dat:

$$L(I) \cap L(J) \neq L(I \cap J)$$

Opgave 3.4.7(2)

Bewijs. Laat V een verzameling zijn van alle oneven functies van $\mathbb{R} \to \mathbb{R}$, waarbij V een deelruimte is op $\mathbb{R}^{\mathbb{R}}$.

Het nulelement

Te bewijzen: V bevat het nulelement, wat in dit geval de nulfunctie f_0 is. Zij $f_0 : \mathbb{R} \to \{0\}$ f(x) = 0, dan geldt voor alle $x \in \mathbb{R}$ dat:

$$f(-x) = 0$$
 en $-f(x) = -0 = 0$

Dit betekent dus dat $f_0 \in V$.

Gesloten onder optelling

Te bewijzen: $f, g \in V$ dan $f + g \in V$.

Zij $f,g \in V$ willekeurig gegeven dan geldt voor alle $x \in \mathbb{R}$ dat:

$$(f+g)(-x) = f(-x) + g(-x)$$
 (Definitie optellen functies)
= $-f(x) + -g(x)$ (Eigenschap oneven functie)
= $-(f(x) + g(x))$ (Distributiviteit in \mathbb{R})
= $-((f+g)(x))$ (Definitie optellen functies)

Hieruit volgt dus dat voor alle $x \in \mathbb{R}$ geldt (f+g)(-x) = -(f+g)(x), en dus $f+g \in V$.

Gesloten onder scalaire vermedigvuldiging

Te bewijzen: $f \in V$ en $\lambda \in \mathbb{R}$ dan $\lambda f \in V$.

Zij $f \in V$ en $\lambda \in \mathbb{R}$ dan:

$$\lambda f(-x) = -\lambda f(x)$$
 (Eigenschap oneven functie)

Dus voor elke $x \in \mathbb{R}$ geldt dat $\lambda f(-x) = -\lambda f(x)$, en dus $\lambda f \in V$.

Conclusie:

Door te bewijzen dat V voldoet aan het nulelement, optelling en scalaire vermedigvuldiging hebben we bewezen dat V een deelruimte is van $\mathbb{R}^{\mathbb{R}}$.