udent ID:	
Surname:	O'Denevan
iven Name:	

- Two identical pucks of mass m and radius r are in contact and at rest on a frictionless horizontal surface third identical puck is sliding along the surface with a velocity \vec{v}_{ij} such that it will strike the two stationary pucks simultaneously in a perfectly elastic two dimensional collision
- (a) Below the diagram to the right draw the sys-tem at the moment of contact of the three pucks. Add vectors representing the direc-tions of final velocities, $\vec{v}_{2f} \& \vec{v}_{3f}$, of the two initially stationary pucks.
- (a) Bekay the diagram to the right draw the sys tem at the recoment of contact of the three pucks. Add vectors representing the directions of final velocities, $\vec{v}_{2f} & \vec{v}_{3f}$, of the two initially stationary pucks.

(b) What will be the directions, θ₁, θ₂ & θ₃, of

- the velocities of the three pucks with respect to the direction of i unit vector after the Sin Q= =

(d) What will be the final speed of the initially moving puck, v_{1f}? (5)

MV1: = MV1+ + MV2+ (0502+ MV3+ COSO3

$$V_{11}^{2} = V_{14}^{2} + V_{24}^{2} + V_{34}^{2}$$

$$V_{11}^{2} = V_{14}^{2} + 2V_{24}^{2} \rightarrow V_{11}^{2} - V_{14}^{2} = 2V_{24}^{2}$$

 $(V_{1i} - V_{1f})(V_{1i} + V_{1f}) = 2V_{2f}^{2}$

$$V_{1i} + V_{14} = \frac{2}{\sqrt{3}} \left(\frac{V_{1i} - V_{14}}{\sqrt{3}} \right)$$