

第2编 Python数据分析

第2讲 Matplotlib可视化

余力

buaayuli@ruc.edu.cn

01. pyplot与pylab

pyplot的方式

```
import numpy as np
import matplotlib.pyplot as plt
x=np.arange(0,10,1)
y=np.random.randn( len(x) )
plt.title("pyplot")
plt.plot(x,y)
plt.show()
```

类封装的方式

```
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 10, 1)
y = np.random.randn(len(x))
#生成一个figure对象
fig = plt.figure()
ax = fig.add subplot(111)
ax.set title("object oriented")
plt.plot(x, y)
plt.show()
```

pylab的方式

```
#coding: utf-8
from pylab import *
x = arange(0, 10, 1)
y = randn(len(x))
title("pylab")
plot(x, y)
show()
```

典型图形

```
import pylab as pl
import numpy as np
pl.figure(figsize=(8, 6), dpi=80)
pl.subplot(1, 1, 1)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
pl.plot(X, C, color="blue", linewidth=1.0, linestyle="-")
pl.plot(X, S, color="green", linewidth=1.0, linestyle="-")
pl.xlim(-4.0, 4.0)
pl.xticks(np.linspace(-4, 4, 9, endpoint=True))
pl.ylim(-1.0, 1.0)
pl.yticks(np.linspace(-1, 1, 5, endpoint=True))
# savefig("exercice 2.png", dpi=72)
pl.show()
```

美化图形线条

- 1) 控制颜色
- 红色: 把pl.plot(x, y, 'o')改成pl.plot(x, y, 'or')
- 颜色之间的对应关系为

```
b---blue c---cyan (青色)
g---green k----black
m---magenta (紫红) r---red
w---white y----yellow
```

美化图形线条

■ 2) 控制标记风格***

■ 蓝色星型markers: plot(x, y, 'b*')

0		1,1	点	
'D'	菱形	's'	正方形	
'h'	六边形1	1 *1	星号	
'H'	六边形2	'd'	小菱形	
	水平线	'v'	一角朝下的三角形	
'8'	八边形	'<'	一角朝左的三角形	
'p'	五边形	'>'	一角朝右的三角形	
,	像素	'A'	一角朝上的三角形	
'+'	加号	"\	T	
'None',",' '	无	' x '	X	

美化图形线条

- **3)控制线型**
 - 实线
 - -- 短线
 - -. 短点相间线
 - : 虚点线

美化图形线条-例

```
import matplotlib.pyplot as plt
import numpy as np
y=np.arange(1, 3, 0.3)
plt.plot(y,'cx--',y+1, 'mo:',y+2,'kp-.')
plt.show()
```

坐标刻度

■ 设置极值

- **pl.xlim**(X.min() * 1.1, X.max() * 1.1)
- **pl.ylim**(C.min() * 1.1, C.max() * 1.1)
- 设置坐标轴刻度值
- pl.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
- pl.yticks([-1, 0, +1])
- 设置刻度标签
- **pl.xticks**([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'\$-\pi\$', r'\$-\pi/2\$', r'\$0\$', r'\$+\pi/2\$', r'\$+\pi\$'])
- pl.yticks([-1, 0, +1], [r'\$-1\$', r'\$0\$', r'\$+1\$'])

添加图例

- pl.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
- **pl.plot**(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
- pl.legend(loc='upper left')

Legend位置与两个图

```
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add axes([0.1, 0.1, 0.4, 0.7]) # 固定坐标画,[left, bottom, width, height]
ax2 = fig.add axes([0.55, 0.1, 0.4, 0.7])
x = np.arange(0.0, 2.0, 0.02)
y1 = np.sin(2*np.pi*x)
y2 = np.exp(-x)
11,12 = ax1.plot(x, y1, 'rs-', x, y2, 'go')
y3 = np.sin(4*np.pi*x)
y4 = np.exp(-2*x)
13,14 = ax2.plot(x, y3, 'yd-', x, y3, 'k^')
fig.legend((I1, I2), ('Line 1', 'Line 2'), 'upper center',bbox to anchor=(0.5,
0.90),ncol=2,fontsize=10,shadow=True)
fig.legend((13, 14), ('Line 3', 'Line 4'), 'upper right')
```

图形

参数	默认值	描述
num	1	图形编号
figsize	figure.figsize	以英寸表示的图形大小 (宽、高)
dpi	figure.dpi	分辨率以每英寸点数表示
facecolor	figure.facecolor	背景色
edgecolor	figure.edgecolor	背景边缘色
frameon	True	是否绘制框架

子图

共享x、y轴

```
import matplotlib.pyplot as plt
x = range(10)
y = range(10)
fig, ax=plt.subplots(nrows=2,ncols=2, sharex=True, sharey=True)
for row in ax:
    for col in row:
        col.plot(x, y)
plt.show()
```

轴

02. 主要统计图

常用图

EMPID	Gender	Age	Sales	BMI	Income
E001	M	34	123	Normal	350
E002	F	40	114	Overweight	450
E003	F	37	135	Obesity	169
E004	M	30	139	Underweight	189
E005	F	44	117	Underweight	183
E006	M	36	121	Normal	80
E007	M	32	133	Obesity	166
E008	F	26	140	Normal	120
E009	M	32	133	Normal	75
E010	M	36	133	Underweight	40

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
df = pd.read_excel('example.xlsx', 'Sheet1')

1、直方图

```
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(df['Age'], bins=7)
plt.title('Age distribution')
plt.xlabel('Age')
plt.ylabel('Employee')
plt.show()
```

2、箱线图

fig = plt.figure()

 $ax = fig.add_subplot(111)$

ax.boxplot(df['Age'])

plt.show()

3、小提琴图

sns.violinplot(df['Age'], df['Gender'])
sns.despine()
plt.show()

4、条形图

```
var = df.groupby('Gender').Sales.sum()
fig = plt.figure()
ax1 = fig.add subplot(111)
ax1.set xlabel('Gender')
ax1.set ylabel('Sum of Sales')
ax1.set title('Gender wise Sum of Sales')
var.plot(kind='bar')
```

plt.show()

5、折线图

```
var = df.groupby('BMI').Sales.sum()
fig = plt.figure()
ax = fig.add subplot(111)
ax.set xlabel('BMI')
ax.set ylabel('Sum of Sales')
ax.set title('BMI wise Sum of Sales')
var.plot(kind='line')
plt.show()
```


6、堆积柱形图

var = df.groupby(['BMI', 'Gender']).Sales.sum()

var.unstack().plot(kind='bar', stacked=True, color=['red', 'blue'])

plt.show()

7、散点图

```
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(df['Age'], df['Sales'])
plt.show()
```


8、气泡图

```
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(df['Age'], df['Sales'], s=df['Income'])
# 第三个变量表明根据收入气泡的大小
plt.show()
```

9、饼图

```
var = df.groupby(['Gender']).sum().stack()
temp = var.unstack()
type(temp)
x list = temp['Sales']
label list = temp.index
                                                      expense
plt.axis('equal')
plt.pie(x list, labels=label list, autopct='%
                                                        39.3%
plt.title('expense')
                                                     60.7%
plt.show()
```


谢谢大家!

