

CONTEXTO

Crisis financiera: El mercado inmobiliario de EE. UU. en alerta

Escrito por Sergio Sánchez — 5 meses atrás En Sector Financiero

Corregir la baja oferta y los altos precios de la vivienda son una de las principales apuestas de ambos candidatos para dar soluciones a una de las mayores preocupaciones de los votantes

Target

Precio

Problema

Mejorar estratégias de venta y toma de decisiones al estimar los precios de las viviendas en una ciudad específica

Objetivo

Construir modelo de predicción que a partir de las características de una casa pueda estimar el precio de la vivienda por encima de la media (desviación actual)

Tipo de problema

Regresión

TIPO	VARIABLES	SELECCIÓN PARA ML
Binaria	* waterfront: Indicates if property has waterfront view (0 for no, 1 for yes).	
Categórica Ordinal	 * condition: Overall condition rating (1 to 5) floors: Number of floors * view: Quality level of property view (0 to 4) 	TODAS
Númerica Continua	* date: Date of property listing * id: Unique identifier for each property * lat: Latitude coordinate of property location * long: Longitude coordinate of property location * price: Property price in currency * sqft_above: Living area above ground level in square feet * sqft_basement: Basement area in square feet * sqft_living: Living area size in square feet * sqft_living15: Living area size of 15 nearest properties in square feet * sqft_lot: Total lot size in square feet * sqft_lot15: Lot size of 15 nearest properties in square feet	* lat * sqft_basement * sqft_living * sqft_lot
Númerica Discreta	 * bathrooms: Number of bathrooms * bedrooms: Number of bedrooms * grade: Overall grade rating (1 to 13) * yr_built: Year property was built * yr_renovated: Year property was last renovated (0 if never) * zipcode: Property location zip code 	* bathrooms * bedrooms * grade

División - Train & Test

1 División de datos

80% Train 20% Test

- 2 Tipo de Datos*1
 - Categóricos Oridnales
 - Númericas Discretos
 - Númericas Continuas

- **Revisón de datos**
 - Cardinalidad
 - Valores Nulos (0%)
 - Tipo de dato: int/float

1*10 Cat 0.90 Continua $\left(1\right)$ [

Desviación estándar

Outliers: sqt_living, sqft_lot, grade, sqtf_above, sqft_basement, yr_built, yr_renovated, zipcode, sqft_living15 ysqft_lot15

Correlación de Pearson

- Criterio 0.09
- Excluidas Baja relación con el target:
 - Últimas 6
 - Target, grade, waterfronr, bathrooms, bedrooms, yr_renovated y floors (categóricas)

Colinealidad

- Criterio: 0.7
- Excluidas Variables que tienen alta relación con otras:
 - sqft_above', 'sqft_living15'

Logaritmo & Escalación

- Aplicación de logaritmo +1 debido a ceros
- Aplicaciónde escalado Ajuste entre min y max manteniendo la distribución

Ordinal encoding

- Agrupación de valores por categorías más compactas
- Aplicación de un órden: A,B,C... / Bueno.Normal,Malo...
- Aplicación de Ordinal Encoder.fit_transform

Descarte de Waterfrony y yr_renovated debido a que la proporción de datos excedía el 80% en una sola categoría.

Mini EDA

price	1.000000
sqft_living	0.701700
grade	0.665093
sqft_above	0.603255
sqft_living15	0.582666
bathrooms	0.526616
view	0.392108
sqft_basement	0.321387
lat	0.310770
bedrooms	0.308297
floors	0.253424
waterfront	0.252946
yr_renovated	0.127737
sqft_lot	0.091039
sqft_lot15	0.079152
zipcode	0.053800
yr_built	0.049099
condition	0.036343
long	0.023485
id	0.020624
Name: price,	dtype: float64

VARIABLES:

NUMÉRICAS: ['sqft_living', 'view', 'sqft_basement', 'lat', 'sqft_lot']

CATEGÓRICAS: ['ordinal_floors', 'ordinal_bedrooms', 'ordinal_condition', 'ordinal_grade', 'ordinal_bathrooms']

Modelado

```
model_names = ["Regresion Lineal","DecisionTree","Random Forest","XGBoost","LightGBM","CatBoost"]
lr_rg = LinearRegression()
tree_rg = DecisionTreeRegressor(random_state= 42)
fr_rg = RandomForestRegressor(random_state= 42)
sqb_rg = XGBRegressor(random_state = 42)
lgb_rg = LGBMRegressor(random_state= 42, verbose = -100)
cat_rg = CatBoostRegressor(random_state= 42, verbose = False)
model_set = [lr_rg, tree_rg, rf_rg, xgb_rg, lgb_rg, cat_rg]

v 0.0s
```

- 1 Mejores parámteros:
 - RF
 - CatBoost
- 2 Selección de párametro ganador:
 - Random Forest Regressor
 - Obtención de resultado más eficiente
 - Mejora de desviación en estimación de precios vs mediana de un 30% (\$162k/\$537k)

Optimización de métricas

```
params_grid = {
        "n_estimators": [250,500], #número de árboles, ir probando poquitos, hasta una metrica razonable.- por defecto es 100 - poner hasta 50
                               # El Random Forest no suele empeorar por exceso de
                               # estimadores. A partir de cierto numero no merece la pena
                               # perder el tiempo ya que no mejora mucho más la precisión.
                                # Entre 100 y 200 es una buena cifra
        "max_depth": [100,200], #máximo de hojas (altura y hasta donde llega) - es None0 (dejar que sea None, probar, 10,4)
                            # No le afecta tanto el overfitting como al decissiontree.
                           # Podemos probar mayores profundidades
        "max_features": [5,7], #suelen ser estándar - SQRT
                                            # Numero de features que utiliza en cada split.
                                           # cuanto más bajo, mejor generalizará y menos overfitting.
        "max_samples": [0.7,None] #suelen ser estándar - None
15 }
17 rf_rg = RandomForestRegressor(random_state= 42)
18 rf_grid = GridSearchCV(rf_rg,
                          param_grid= params_grid,
                          cv = 5,
                          scoring = "neg_mean_squared_error",
                          n_{jobs} = -1)
24 rf_grid.fit(X_train_scaled, y_train)
```


Análisis

Consideraciones a tener en cuenta para un mejor pronóstico

- Algunas variables númericas discretas tuvieron que convertirse a categóricas ordinales como baños, cuartos, etc...
- Se excluyeron aquellas variables que tenían poca relación con el target o mucha relación entre sí (seleccionando solo una
- Se exluyeron aquellas variables que en proporción con su categoría se excedía más del 80/20 ejemplo waterfront sin (17k) y con (124k)
- A mayor cantidad de condiciones, mayor es el outlier ejemplo, entre más cuartos menor representación de población
- El mejor modelo fue el CatBoost, sin embargo, el tiempo de optimización es más costoso en tiempo y herramientas, por lo cual se ha seleccionado a RandomForest siendo el segundo mejor en métricas y el mejor en relación coste/eficiencia

Otras métricas optimizadas

```
1 ### Linear Regresion
      from sklearn.linear model import ElasticNet
      param grid = {
          "alpha": [0.1, 1, 10, 100],
          "11_ratio": [0.2,0.4,0.6,1]
   8 }
   9 model = ElasticNet()
     lr_grid = GridSearchCV( model,
  11
                                   cv = 5
  12
                                   param_grid = param_grid,
  13
                                   scoring= "neg mean squared error"
  14
  15
      lr grid.fit(X train scaled,y train)
      print("LR best_score:", np.sqrt(-lr_grid.best_score_))
     metricas optimizadas["Linear Regresion"] = np.sqrt(-lr grid.best score )
 1.0s
LR best_score: 238678.22577900416
```

```
1 ### CatBoost
      cat_rg = CatBoostRegressor(verbose = False)
      param_grid= {'depth': [3, 6, 12],
                 'learning_rate': [0.1, 0.2, 0.3, 0.4],
                #'bagging_fraction': [0.3,0.6,1], No hay hiperparametro equivalente
                'colsample_bylevel': [0.5,1],
                'iterations': [100, 250, 500, 750],
  10
                "border_count": [125,250]
  11
  12
  14 cat_grid = RandomizedSearchCV(cat_rg,
                                     cv = 5.
                                     n_{iter} = 3,
                                     param_distributions= param_grid,
                                     scoring = "neg mean squared error")
  21 cat_grid.fit(X_train, y_train)
  22 print("CatBoost best_score:", np.sqrt(-cat_grid.best_score_))
  23 metricas_optimizadas["CatBoost"] = np.sqrt(-cat_grid.best_score_)
√ 54.0s
CatBoost best_score: 161557.17927476042
```

- Observamos que incluso optimizando los hipérparametros en CatBoost, la desviación/error sigue en un 30%, por lo que esto nos confirma quedarnos con Random Forest Regressor
- No se elige GridSearch vomo contraste puesto que:
 - El tiempo de obtención de resultados, sigue siendo más rápido en RF. Adicionalmente, la variación sigue estando en un 30%. Puesto que en caso de querer seguir haciendo mejoras a través de los hiperparámetros RF se mantiene como la mejor opción.

Gracias

