Density, mass and charge.

$$m = \iint_D \rho(x, y) \, dA$$

$$Q = \iint_D \sigma(x, y) \, dA$$

EXAMPLE 1 Charge is distributed over the triangular region D in Figure 3 so that the charge density at (x, y) is $\sigma(x, y) = xy$, measured in coulombs per square meter (C/m^2) . Find the total charge.

Moments and center of mass.

Moment about the x-axis

$$M_x = \iint_D y \rho(x, y) \, dA$$

Moment about the y-axis

$$M_y = \iint_D x \rho(x, y) \, dA$$

The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$\bar{x} = \frac{M_y}{m} = \frac{1}{m} \iint_D x \rho(x, y) dA$$

$$\bar{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y \rho(x, y) dA$$

$$\bar{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y \rho(x, y) dA$$

where the mass m is given by

$$m = \iint\limits_{D} \rho(x, y) \, dA$$

EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices $(0, 0), (1, 0), \text{ and } (0, 2) \text{ if the density function is } \rho(x, y) = 1 + 3x + y.$

EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the distance from the center of the circle. Find the center of mass of the lamina.

Inertia about the x-axis

Inertia about the y-axis

$$I_x = \iint_D y^2 \rho(x, y) \, dA$$

$$I_y = \iint_D x^2 \rho(x, y) \, dA$$

Inertia about the origin

$$I_0 = \iint_D (x^2 + y^2)\rho(x, y) dA$$

EXAMPLE 4 Find the moments of inertia I_x , I_y , and I_0 of a homogeneous disk D with density $\rho(x, y) = \rho$, center the origin, and radius a.