Plan du cours

I.	Expression littérale	1
	1. Des exemples en géométrie	1
	2. Utiliser des lettres dans les calculs	1
II.	Simplifier l'écriture des expressions littérales	2
III.	Transformer les expressions littérales	2
	1. Développer	
	2. Factoriser	3
IV.	Notion d'égalité	3

I. Expression littérale

1. Des exemples en géométrie

- D 4	c:			
Dé	111	111	[0]	
	-			

Une expression littérale est une expression dans laquelle un ou plusieurs nombres sont représentés par des lettres.

A quoi co	orrespondent chacune des expressions suivantes :
• 4 × <i>c</i>	
• L × 1 >	< h
• <i>c</i> × <i>c</i>	
• 2 × 1 +	$-2 \times L$
• 2 × (<i>L</i>	+ I)
• 2 × π	× r
2. Ut	iliser des lettres dans les calculs
On utilise	e une lettre pour représenter :
• un nor	nbre quelconque,
• une qu	antité dont on ne connaît pas la valeur.
Exemple Que peut	: -on dire des nombres qui peuvent s'écrire sous la forme de $5 \times n$?
Commen	t peut s'écrire, à l'aide d'une lettre, un multiple de 2?
Commen	t peut s'écrire, à l'aide d'une lettre, un nombre pair?
Commen	t peut s'écrire, à l'aide d'une lettre, un nombre impair?
Comment s'	n désigne un entier. écrit : de n et de 7?
	de 11 et du double de \emph{n}

Simplifier l'écriture des expressions littérales 11.

Propriété

Le signe "×" peut être supprimé :

- devant une lettre;
- devant une parenthèse.

Exemple:

$$3 \times a$$
 s'écrit 3a $b \times 3$ s'écrit 3b (mais pas b 3)

$$b \times c$$
 s'écrit bc
4 × (2+3) s'écrit 4 (2+3)

Exercice d'application 1

$$4x$$
 est le produit de par $a(3-b)$ est le produit de par

$$(x+y)(3+y)$$
 est le produit de

Définition

Notation

Soit a un nombre quelconque.

- $a \times a$ se note a^2 et se lit "a au carré"
- $a \times a \times a$ se note a^3 et se lit "a au cube".

Exemple:

$$3 \times 3 = 3^2$$

$$5 \times 5 \times 5 = 5^3$$

$$x \times x = x^2$$

$$u \times u \times u = u^3$$

$$8 \times 8 \times c \times c \times c = 8^2 \times c^3$$

$$2 \times y \times 2 \times y \times y = 2^2 \times y^3$$

Attention

$$3^2 \neq 3 \times 2$$

En effet, $3^2 = 3 \times 3 = 9$ et $3 \times 2 = 6$

Transformer les expressions littérales III.

Développer

Définition

Développer une expression, c'est transformer un produit en une somme (ou une différence).

Propriété

Soient a, b et k trois nombres, avec a > b.

$$k \times (a+b) = k \times a + k \times b$$

$$k \times (a - b) = k \times a - k \times b$$

Exemple:

$$A = 13, 1 \times (10 + 1)$$

$$B = 5(x - 8)$$

2. Factoriser

Définition

Factoriser une expression, c'est transformer une somme (ou une différence) en un produit.

Propriété

Soient a, b et k trois nombres, avec a > b.

$$k \times a + k \times b = k \times (a + b)$$

$$k \times a - k \times b = k \times (a - b)$$

Exemple:

$$C = 9 \times 12, 7 + 9 \times 7, 3$$

$$D = 6a - 18$$

IV. Notion d'égalité

Définition

Une égalité est composée de deux membres séparés par le symbole "=".

Pour que l'égalité soit vraie (ou vérifiée), il faut que les deux membres aient la même valeur.

Exemple:

L'égalité $5 \times 7 = 20 + 3 \times 5$ est-elle vraie?

L'égalité $3 \times 6 = 14 - 5 \times 2$ est-elle vraie?

• D'autre part : $14 - 5 \times 2 = 14 - 10 = 4$

• D'une part : $3 \times 6 = 18$

• D'une part : $5 \times 7 = 35$

• D'autre part : $20 + 3 \times 5 = 20 + 15 = 35$

....

Les deux membres n'ont pas la même valeur donc l'égalité

est fausse!

Les deux membres sont égaux donc l'égalité est vraie!

Evereing d'application 2						
Exercice d'application 2						
	1. Tester si l'égalité $3x - 7 = x + 1$ est vraie pour $x = 5$.					
	2. Tester si l'égalité $3x - 7 = x + 1$ est vraie pour $x = 4$.					
- 1						