Example for Drain Current

Problem 1: A JFET has the following parameters : I_{DSS} =5 mA and $V_{GS(off)}$ = - 6 V. Find I_D for V_{GS} = - 2.5 V.

Solution 1:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(off)}} \right)^2$$

$$I_D = 5mA \times \left(1 - \frac{-2.5 V}{-6 V}\right)^2$$

$$I_D = 3.30 \ mA$$

Example for Drain Current

Problem 2: Determine the transconductance of the given FET when the gate to source voltage changes from -3.5 V to -3.0 V and the drain current changes from 3 mA to 4 mA.

Solution 2:

$$\Delta V_{GS} = -3V - (-3.5 V) = 0.5 V$$

$$\Delta I_D = -4 \ mA - 3.0 \ mA = 1 \ mA$$

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

$$g_m = \frac{1 \, mA}{0.5 \, V} = 2 \, m\mho = 2 \, mS$$
 $-V_{GS}(V) \leftarrow$

Example for V_{DS} and V_{GS}

Problem 3: Determine V_{DS} and V_{GS} for the given JFET when I_D =5 mA and V_{DD} =15 V.

Solution 3:

When
$$I_G=0$$
, $V_G=0$

$$V_D = V_{DD} - I_D R_D$$

$$V_D = 15 - 5 \, mA \times 1k\Omega = 10 \, V$$

$$V_S = I_D \times R_S = 5 \text{ mA} \times 470 \Omega = 2.35 \text{ V}$$

$$V_{GS} = V_G - V_S = 0 - 2.35 V = -2.35 V$$

$$V_{DS} = V_D - V_S = 10 - 2.35 V = 7.65 V$$

Example for I_D and V_{GS}

Problem 4: Determine I_D and V_{GS} for the given JFET if V_D =7 V.

Solution 4:

$$I_D = \frac{V_{DD} - V_D}{R_D} = \frac{12 V - 7 V}{3.3 k\Omega} = 1.52 mA$$

$$V_S = I_D R_S = 1.52 \text{ mA} \times 2.2 \text{ k}\Omega = 3.34 \text{ V}$$

$$V_G = \frac{R_2}{R_1 + R_2} \times V_{DD} = \frac{1 M\Omega}{7.8 M\Omega} \times 12 = 1.54 V$$

$$V_{GS} = V_G - V_S = 1.54 V - 3.34 V = -1.84 V$$

Example for E-MOSFET Drain Current

Problem 1: The datasheet for an E-MOSFET gives $I_{D(ON)}$ = 500 mA (minimum) at V_{GS} =10 V and $V_{GS(th)}$ =1 V. Determine the drain current for V_{GS} = 5 V.

Solution 1:

$$K = \frac{I_{D(ON)}}{(V_{GS} - V_{GS(th)})^2} I_{D(ON)} = I_{D1}$$

$$K = \frac{500 \, mA}{(10V - 1V)^2} = 6.17 \, mA/V^2$$

Using V_{GS}=5 V,

$$I_{D2} = K(V_{GS} - V_{GS(th)})^2 = (6.17 \text{ mA/V}^2)(5V - 1V)^2$$

$$I_{D2} = (6.17 \text{ mA/V}^2)(5V - 1V)^2 = 98.7 \text{ mA}$$

Example for D-MOSFET Drain Current

Problem 2: For a certain D-MOSFET, I_{DSS} =10 mA and $V_{GS(off)}$ = -8V Is this an n-channel or a p-channel? Calculate I_D at V_{GS} =±3 V.

Solution 2:

2022 01 15

Dr. Matiar Hawladar ELECENIC 20102 2023

Example for Drain Current and V_{DS}

Problem 3: The datasheet for this E-MOSFET shows that I_D = 10 mA when V_{GS} = V_{DS} . Find I_D and V_{DS} .

Solution 3:

Since no current flows in R_G

$$V_{GS} = V_{DS}$$
 $I_D = 10 mA$

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{DS} = 20V - 10mA \times 1k\Omega = 10 V$$

$$V_{DS} = V_{GS} = 10 V$$

Example for Drain to Source Voltage

Problem 4: Determine the drain-to-source voltage in the given circuit. The MOSFET datasheet gives $V_{GS(off)} = -8 \text{ V}$ and $I_{DSS} = 12 \text{ mA}$.

Solution 4:

No current flows in R_G

$$V_{GS} = 0$$
 $I_D = I_{DSS}$

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{DS} = 18V - 12mA \times 620\Omega = 10.56 V$$

$$V_{DS} = 10.56 V$$

