1 第一章 1

1 第一章

问题(六). 设u = u(x, y, z), 求下列方程的通解:

(1)
$$u_y + a(x,y)u = 0$$
;

(2)
$$u_{xy} + u_y = 0$$
;

(3)
$$u_{tt} = a^2 u_{xx} + 3x^2$$
.

解.
$$(1)$$
 注意到 $0 = e^{\int_0^y a(x,y)dy}(u_y + a(x,y)u) = (e^{\int_0^y a(x,y)dy}u)_y$ 。 所以

$$e^{\int_0^y a(x,y)dy}u = f(x,z).$$

所以

$$u = e^{-\int_0^y a(x,y)dy} f(x,z).$$

(2)
$$(u_x + u)_y = 0$$
。 所以 $u_x + u = f(x, z)$ 。 即

$$(e^x u)_x = f(x, z).$$

所以

$$e^x u = \int f(x, z) dx + g(y, z).$$

所以
$$u = e^{-x} (\int f(x,z) dx + g(y,z)$$
。

(3) 如果
$$a \neq 0$$
,特解 $v = -\frac{x^4}{4a^2}$ 。 设 $w = u - v$,则

$$w_{tt} = a^2 w_{xx}$$

得到

$$w = f(x + at) + q(x - at).$$

所以通解
$$u = f(x+at) + g(x-at) - \frac{x^4}{4a^2}$$
。

如果
$$a=0$$
,

$$u = \frac{3x^2t^2}{2} + g(x) + th(x).$$

问题(十二). 求一端固定的半无界弦振动问题

$$\begin{cases} u_{tt} = a^2 u_{xx}, x > 0, t > 0 \\ u(0, x) = \sin x, u_t(0, x) = kx \\ u(t, 0) = 0. \end{cases}$$

解. 端点固定(u(t,0)=0)做奇延拓,端点自由运动($u_x(t,0)=0$)做偶延拓,这里0 点固定,因而奇延拓。新的定解问题为

$$\begin{cases} v_{tt} = a^2 v_{xx}, -\infty < x < +\infty, t > 0 \\ v(0, x) = \sin x, v_t(0, x) = kx \\ v(t, 0) = 0. \end{cases}$$

2

由达朗贝尔公式

$$u(t,x) = v(t,x)|_{x \ge 0} = \frac{\sin(x+at) + \sin(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} ksds = \sin(x)\cos(at) + 2kxt.$$

问题. 求解一维弦得振动问题:

$$\begin{cases} u_{tt} = u_{xx} - 4t + 2x, -\infty < x < +\infty, t > 0 \\ u(0, x) = x^2, u_t(0, x) = \sin(3x) \end{cases}$$

解. 达朗贝尔公式要求方程齐次,取泛定方程得一个特解 $v(t,x)=-\frac{2t^3}{3}+xt^2$ 。设w=u-v,得

$$\begin{cases} w_{tt} = w_{xx}, -\infty < x < +\infty, t > 0 \\ w(0, x) = x^2, w_t(0, x) = \sin(3x). \end{cases}$$

由达朗贝尔公式

$$w = \frac{(x-t)^2 + (x+t)^2}{2} + \frac{1}{2} \int_{x-t}^{x+t} \sin(3s) ds = x^2 + t^2 + \frac{1}{3} \sin(3x) \sin(3t).$$

所以

$$u(t,x) = w + v = x^{2} + t^{2} - \frac{2t^{3}}{3} + xt^{2} + \frac{1}{3}\sin(3x)\sin(3t)$$

2 第二章

3. 一条均匀的弦固定于x = 0 及x = l,在开始的一瞬间,它的形状是一条以 $(\frac{l}{2}, h)$ 为顶点的抛物线,初速度为零,且没有外力作用,求弦的位移函数。

解. 定解问题为:

$$\begin{cases} u_{tt} = a^2 u_{xx}, 0 < x < l, t > 0 \\ u(0, x) = \frac{4h}{l^2} x(l - x), u_t(0, x) = 0 \\ u(t, 0) = 0, u(t, l) = 0 \end{cases}$$

分离变量, 假设

$$u(t,x) = T(t)X(x).$$

带入泛定方程可得

$$\frac{T''}{a^2T} = \frac{X''}{X}.$$

上式左边为t的函数,右边为x的函数,因而肯定为常值,设为 $-\lambda$ 。从而我们得到以下固有值问题:

$$\left\{ \begin{array}{l} X'' + \lambda X = 0, 0 < x < l \\ X(0) = 0, X(l) = 0. \end{array} \right.$$

以及

$$T''(t) + \lambda a^2 T = 0.$$

分情况讨论:

(1)
$$\lambda < 0$$
时, $X = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x}$ 。 带入边界条件得到 $C_1 = C_2 = 0$ 。 舍去。

$$(2)$$
 $\lambda=0$ 时, $X=C_1x+C_2$ 。带入边界条件得到 $C_1=C_2=0$ 。舍去。

(3)
$$\lambda > 0$$
时, $X = C_1 \cos(\sqrt{\lambda}x) + C_2 \sin(\sqrt{\lambda}x)$ 。 带入边界条件带入边界条件

$$\begin{cases} C_1 = 0, \\ C_1 \cos(\sqrt{\lambda}l) + C_2 \sin(\sqrt{\lambda}l) = 0. \end{cases}$$

3

得到 $C_1=0$ 以及

$$\sqrt{\lambda}l = n\pi, n = 1, 2, 3 \cdots$$

固有值和固有函数为:

固有值:
$$\lambda_n = (\frac{n\pi}{l})^2$$
对应固有函数: $X_n = \sin(\frac{n\pi x}{l}), n = 1, 2, 3 \cdots$

固定 λ_n ,则可以得到对应 T_n 的常微分方程:

$$T_n'' = -\lambda_n a^2 T_n = -\left(\frac{n\pi a}{l}\right)^2 T_n.$$

解得

$$T_n(t) = A_n \cos(\frac{n\pi at}{l}) + B_n \sin(\frac{n\pi at}{l}), n = 1, 2 \cdots$$

整理得原定解问题的解为

$$u(t,x) = \sum_{n=1}^{\infty} \left(A_n \cos(\frac{n\pi at}{l}) + B_n \sin(\frac{n\pi at}{l}) \right) \sin(\frac{n\pi x}{l}).$$

由初始条件

$$u_t(0,x) = \sum_{n=1}^{\infty} B_n n\pi a \sin(\frac{n\pi x}{l}) = 0.$$

所以 $B_n = 0$ 。 展开u(0,x)

$$\frac{4h}{l^2}x(l-x) = \sum_{n=1}^{\infty} c_n X_n = \sum_{n=1}^{\infty} c_n \sin(\frac{n\pi x}{l}).$$

其中

$$c_n = \frac{\langle \varphi, X_n \rangle}{\langle X_n, X_n \rangle} = \frac{2}{l} \int_0^l \frac{4h}{l^2} s(l-s) \sin(\frac{n\pi s}{l}) ds = \frac{16h((-1)^n - 1)}{(n\pi)^3}.$$

当n 为奇数得时候 $c_n = \frac{32h}{(n\pi)^3}$, 当n 为偶数时, $c_n = 0$ 。所以

$$u(t,x) = \sum_{n=0}^{\infty} \frac{32h}{(2n+1)^3 \pi^3} \cos(\frac{(2n+1)\pi at}{l}) \sin(\frac{(2n+1)\pi x}{l})$$

5.(3)
$$\begin{cases} u_{tt} = a^2 u_{xx} - 2hu_t, (0 < x < l, t > 0, 0 < h < \frac{\pi a}{l}, h 为常数), \\ u(t, 0) = u(t, l) = 0, \\ u(0, x) = \varphi(x), u_t(0, x) = \psi(x). \end{cases}$$

解. 分离变量, 假设u(t,x) = T(t)X(x). 带入泛定方程可得

$$\frac{T'' + 2hT'}{a^2T} = \frac{X''}{X}.$$

上式左边为t的函数,右边为x的函数,因而肯定为常值,设为 $-\lambda$ 。从而我们得到以下固有值问题:

$$\left\{ \begin{array}{l} X'' + \lambda X = 0, 0 < x < l \\ X(0) = 0, X(l) = 0. \end{array} \right.$$

以及

$$T''(t) + 2hT' + \lambda a^2T = 0.$$

解固有值问题得到固有值和固有函数为:

固有值:
$$\lambda_n = (\frac{n\pi}{l})^2$$
对应固有函数: $X_n = \sin(\frac{n\pi x}{l})$.

固定 λ_n ,则可以得到对应 T_n 的常微分方程:

$$T_n''(t) + 2hT_n' + (\frac{n\pi}{l})^2 a^2 T_n = 0.$$

解得

$$T_n(t) = e^{-ht} \left(A_n \cos(\sqrt{(\frac{n\pi a}{l})^2 - h^2 t}) + B_n \sin(\sqrt{(\frac{n\pi a}{l})^2 - h^2 t}) \right), n = 1, 2 \cdots$$

整理得原定解问题的解为

$$u(t,x) = \sum_{n=1}^{\infty} e^{-ht} \left(A_n \cos(\sqrt{(\frac{n\pi a}{l})^2 - h^2} t) + B_n \sin(\sqrt{(\frac{n\pi a}{l})^2 - h^2} t) \right) \sin(\frac{n\pi x}{l}).$$

其中

$$A_n = \frac{2}{l} \int_0^l \varphi(s) \sin(\frac{n\pi s}{l}) ds,$$

$$B_n = \frac{1}{\sqrt{(\frac{n\pi a}{l})^2 - h^2}} \left(ha_n + \frac{2}{l} \int_0^l \psi(s) \sin(\frac{n\pi s}{l}) ds \right).$$

5.(6) 环域内的狄利克莱问题:

$$\begin{cases} \Delta_2 u = 0, (a < r < b), \\ u(a, \theta) = 1, u(b, \theta) = 0. \end{cases}$$

解. 容易看出u 与 θ 无关, 不妨设u = u(r), 所以

$$\Delta_2 u = u_{rr} + \frac{u_r}{r} = u'' + \frac{u'}{r} = 0.$$

做变量替换 $r = e^t$ 得到

$$\frac{d^2u}{dt^2} = 0.$$

所以 $u = A + Bt = A + B \ln r$ 。 带入边界条件得

$$A + B \ln a = 1, A + B \ln b = 0.$$

解得: $A = -\frac{\ln b}{\ln a - \ln b}$, $B = \frac{1}{\ln a - \ln b}$ 。 所以

$$u = \frac{\ln r - \ln b}{\ln a - \ln b}.$$

5

8. 一个半径为a 的半圆形平板,其圆周边界上的温度保持 $u(a,\theta) = T\theta(\pi - \theta)$,而直径边界上的温度为零度,板的上下侧面绝热,试求板内的温度分布。

解. 写出定解问题

$$\begin{cases} \Delta_2 u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2} = 0, 0 < r < a, 0 < \theta < \pi \\ u(a, \theta) = T\theta(\pi - \theta) \\ u(r, 0) = u(r, \pi) = 0 \end{cases}$$

分离变量,设 $u(r,\theta) = R(r)\Theta(\theta)$,则有

$$-\frac{r^2R'' + rR'}{R} = \frac{\Theta''}{\Theta}$$

为常数,设为 $-\lambda$,得到固有值问题

$$\left\{ \begin{array}{l} \Theta'' + \lambda \Theta = 0, 0 < \theta < \pi \\ \Theta(0) = \Theta(\pi) = 0. \end{array} \right.$$

解得固有值及对应固有函数: $\lambda_n=n^2, \Theta_n=\sin(n\theta), n=1,2,3\cdots$. 将固有值带入R 得微分方程

$$r^2 R_n'' + r R_n' - n^2 R_n = 0,$$

做变量替换 $r = e^t$, 得

$$\frac{d^2R}{dt^2} - n^2R = 0.$$

解之,得

$$R_n = C_{n,1}e^{nt} + C_{n,2}e^{-nt} = C_{n,1}r^n + C_{n,2}r^{-n}, n = 1, 2, 3 \cdots$$

注意到 $|R(0)|<\infty$ 得

$$R_n = C_n r^n, n = 1, 2, 3 \cdots$$

从而

$$u = \sum_{n=1}^{\infty} C_n \sin(n\theta) r^n.$$

求系数, 将 $T\theta(\pi-\theta)$ 按正弦函数分解:

$$T\theta(\pi - \theta) = \sum_{n=0}^{\infty} \frac{8T_0}{(2n+1)^3 \pi} \sin((2n+1)\theta).$$

对照得 $C_{2n}=0, C_{2n+1}=rac{8T_0}{(2n+1)^3\pi a^{2n+1}}$ 。 所以

$$u(r,\theta) = \sum_{n=0}^{\infty} \frac{8T_0}{(2n+1)^3 \pi} \left(\frac{r}{a}\right)^{2n+1} \sin((2n+1)\theta).$$

1. 解下列固有值问题

(1).

$$\left\{ \begin{array}{l} y^{\prime\prime} - 2ay^{\prime} + \lambda y = 0, 0 < x < l, a = constant, \\ y(0) = y(l) = 0. \end{array} \right.$$

解. 化为

$$\left\{ \begin{array}{l} [e^{-2ax}y']' + e^{-2ax}\lambda y = 0, 0 < x < l, a = constant, \\ y(0) = y(l) = 0. \end{array} \right.$$

由SL 理论,零不是固有值,且固有值大于零。解方程 $t^2-2at+\lambda=0$,得 $t=a\pm\sqrt{a^2-\lambda}$ 。如果 $\lambda<a^2$,解之,舍去。如果 $\lambda=a^2$,解之,舍去。如果 $\lambda>a^2$, $y=C_1e^{ax}\cos(\sqrt{\lambda-a^2}x)+C_2e^{-ax}\sin(\sqrt{\lambda-a^2}x)$ 。代入边界条件,得 $C_1=0$, $\sin(\sqrt{\lambda-a^2}l)=0$ 。得

$$\sqrt{\lambda - a^2}l = n\pi, n = 1, 2, \cdots.$$

固有值 $\lambda_n = a^2 + \left(\frac{n\pi}{l}\right)^2$,固有函数 $y_n = e^{ax} \sin\left(\frac{n\pi x}{l}\right), n = 1, 2, \cdots$

问题. 求固有值问题:

$$\begin{cases} y'' + 2y' + \lambda y = 0, 0 < x < 9, \\ y(0) = y(9) = 0. \end{cases}$$

解. 化为

$$\begin{cases} [e^{2x}y']' + e^{2x}\lambda y = 0, 0 < x < 9, \\ y(0) = y(9) = 0. \end{cases}$$

由SL 理论,零不是固有值,且固有值大于零。解方程 $t^2+2t+\lambda=0$, $\lambda \leq 1$ 讨论可以舍去, $\lambda > 1$ 时得 $t=-1\pm\sqrt{\lambda-1}i$ 。所以 $y=C_1e^{-x}\cos(\sqrt{\lambda-1}x)+C_2e^{-x}\sin(\sqrt{\lambda-1}x)$ 。代入边界条件,得 $C_1=0$, $\sin(9\sqrt{\lambda-1})=0$ 。得

$$9\sqrt{\lambda-1} = n\pi, n = 1, 2, \cdots.$$

固有值 $\lambda_n = 1 + \left(\frac{n\pi}{9}\right)^2$,固有函数 $y_n = e^{-x} \sin(\frac{n\pi}{9}x), n = 1, 2, \cdots$

(2).

$$\left\{ \begin{array}{l} [r^2R']' + \lambda r^2R = 0, 0 < r < a, \\ |R(0)| < \infty, R(a) = 0; [提示: y = rR] \end{array} \right.$$

解. 由提示做因变量替换y = rR,则R = y/r。

$$[r^2R']' + \lambda r^2R = [r^2(y/r)']' + \lambda yr = ry'' + \lambda ry = 0.$$

即

$$\begin{cases} y'' + \lambda y = 0, 0 < r < a, \\ |y(0)| = 0, y(a) = 0. \end{cases}$$

固有值和对应固有函数为 $\lambda_n=(\frac{n\pi}{a})^2$, $R_n=y_n/r=\frac{1}{r}\sin(\frac{n\pi r}{a}), n=1,2,\cdots$.

(3).

$$\begin{cases} y^{(4)} + \lambda y = 0, 0 < x < l, \\ y(0) = y(l) = y''(0) = y''(l) = 0. \end{cases}$$

解. 解特征方程: $\mu^4 + \lambda = 0$ 。 分情况讨论:

如果 $\lambda=0$,有四重根0,解为 $y=C_0+C_1x+C_2x^2+C_3x^3$,带入边界条件得 $C_0=C_1=C_2=C_3=0$,舍去。

如果 $\lambda<0$,有根 $\mu_1=|\lambda|^{1/4}$, $\mu_2=-|\lambda|^{1/4}$, $\mu_3=|\lambda|^{1/4}i$, $\mu_4=-|\lambda|^{1/4}i$ 。微分方程得解为

$$y = C_0 exp(|\lambda|^{1/4}x) + C_1 exp(-|\lambda|^{1/4}x) + C_2 \cos(|\lambda|^{1/4}x) + C_3 \sin(|\lambda|^{1/4}x).$$

带入边界条件

$$\begin{cases} C_0 + C_1 + C_2 = 0 \\ C_0 exp(|\lambda|^{1/4}l) + C_1 exp(-|\lambda|^{1/4}l) + C_2 \cos(|\lambda|^{1/4}l) + C_3 \sin(|\lambda|^{1/4}l) = 0 \\ C_0 |\lambda|^{1/2} + C_1 |\lambda|^{1/2} - C_2 |\lambda|^{1/2} = 0 \\ C_0 |\lambda|^{1/2} exp(|\lambda|^{1/4}l) + C_1 |\lambda|^{1/2} exp(-|\lambda|^{1/4}l) - C_2 |\lambda|^{1/2} \cos(|\lambda|^{1/4}l) - C_3 |\lambda|^{1/2} \sin(|\lambda|^{1/4}l) = 0 \end{cases}$$

解之, $C_0 = C_1 = C_2 = 0$, $C_2 \sin(|\lambda|^{1/4} l) = 0$ 。 当

$$|\lambda|^{1/4}l = n\pi, n = 1, 2, 3, \cdots$$

有非零解。固有值 $\lambda_n = -(\frac{n\pi}{l})^4$,固有函数 $y_n = \sin(\frac{n\pi x}{l}), n \ge 1$.

如果 $\lambda > 0$,有根 $\mu_1 = |\lambda|^{1/4} exp(\frac{\pi i}{4})$, $\mu_2 = |\lambda|^{1/4} exp(\frac{3\pi i}{4})$, $\mu_3 = |\lambda|^{1/4} exp(\frac{5\pi i}{4})$, $\mu_4 = |\lambda|^{1/4} exp(\frac{7\pi i}{4})$ 。微分方程得解为

$$y = C_1 e^{|\lambda|^{1/4} exp(\frac{\pi i}{4})x} + C_2 e^{|\lambda|^{1/4} exp(\frac{3\pi i}{4})x} + C_3 e^{|\lambda|^{1/4} exp(\frac{5\pi i}{4})x} + C_4 e^{|\lambda|^{1/4} exp(\frac{7\pi i}{4})x}.$$

带入边界条件

$$\left\{ \begin{array}{l} C_1 + C_2 + C_3 + C_4 = 0 \\ C_1 e^{|\lambda|^{1/4} exp(\frac{\pi i}{4})l} + C_2 e^{|\lambda|^{1/4} exp(\frac{3\pi i}{4})l} + C_3 e^{|\lambda|^{1/4} exp(\frac{5\pi i}{4})l} + C_4 e^{|\lambda|^{1/4} exp(\frac{7\pi i}{4})l} \\ C_1 - C_2 + C_3 - C_4 = 0 \\ C_1 e^{|\lambda|^{1/4} exp(\frac{\pi i}{4})l} - C_2 e^{|\lambda|^{1/4} exp(\frac{3\pi i}{4})l} + C_3 e^{|\lambda|^{1/4} exp(\frac{5\pi i}{4})l} - C_4 e^{|\lambda|^{1/4} exp(\frac{7\pi i}{4})l} \end{array} \right.$$

解得
$$C_1 = C_2 = C_3 = C_4 = 0$$
, 含去。

10. 解下列非齐次固有值问题:

(2)
$$\begin{cases} u_t = a^2 u_{xx}, 0 < x < l, a = constant > 0, \\ u(t,0) = 0, u_x(t,l) = -\frac{q}{k} \\ u(0,x) = u_0. \end{cases}$$

并求 $\lim_{t\to+\infty} u(t,x)$ 。

解. 定解问题非齐次, 首先齐次化: 取 $v(t,x) = -\frac{q}{k}x$, 设w = u - v 得到

$$\begin{cases} w_t = a^2 w_{xx}, 0 < x < l, a = constant > 0, \\ w(t, 0) = 0, w_x(t, l) = 0 \\ w(0, x) = u_0 + \frac{q}{k}x. \end{cases}$$

分离变量,设w = T(t)X(x),得

$$\frac{T'}{T} = \frac{X''}{X}.$$

设上式为-λ 得固有值问题

$$\begin{cases} X'' + \lambda X = 0 \\ X(0) = 0, X'(0) = 0. \end{cases}$$

解之,固有值为 $\lambda_n = (\frac{(2n-1)\pi}{2l})^2$,固有函数为 $X_n = \sin(\frac{(2n-1)\pi x}{2l}), n \geq 1$ 。解常微分方程

$$T_n' + \lambda_n a^2 T_n = 0$$

得 $T_n = exp(-(\frac{(2n-1)\pi a}{2l})^2 t)$ 。 所以

$$w(t,x) = \sum_{n=1}^{\infty} A_n exp(-(\frac{(2n-1)\pi a}{2l})^2 t) \sin(\frac{(2n-1)\pi x}{2l}).$$

将 $w(0,x) = u_0 + \frac{q}{k}x$ 分解得:

$$u_0 + \frac{q}{k}x = \left(\frac{4u_0}{(2n-1)\pi} - \frac{(-1)^n 8ql}{k[(2n-1)\pi]^2}\right) \sin\left(\frac{(2n-1)\pi x}{2l}\right).$$

对照得

$$w(t,x) = \sum_{n=1}^{\infty} \left(\frac{4u_0}{(2n-1)\pi} - \frac{(-1)^n 8ql}{k[(2n-1)\pi]^2} \right) exp(-(\frac{(2n-1)\pi a}{2l})^2 t) \sin(\frac{(2n-1)\pi x}{2l}).$$

最终

$$u = v + w = -\frac{q}{k}x + \sum_{n=1}^{\infty} \left(\frac{4u_0}{(2n-1)\pi} - \frac{(-1)^n 8ql}{k[(2n-1)\pi]^2} \right) exp(-(\frac{(2n-1)\pi a}{2l})^2 t) \sin(\frac{(2n-1)\pi x}{2l}).$$

$$\lim_{t \to +\infty} u(t,x) = -\frac{q}{k}x.$$

(5)

解. 取 $\tilde{u}(t,x) = xE$ 及 $w = u - \tilde{u}$ 。 得到定解问题

$$\begin{cases} w_{tt} = w_{xx} + g, \\ w(t,0) = 0, w_x(t,l) = 0, \\ w(0,x) = 0, w_t(0,x) = 0. \end{cases}$$

令 $\tilde{w} = \frac{g}{2}x(2l-x)$ 及 $v = w - \tilde{w}$ 得:

$$\begin{cases} v_{tt} = v_{xx}, \\ v(t,0) = 0, v_x(t,l) = 0 \\ v(0,x) = -\frac{g}{2}x(2l-x), v_t(0,x) = 0. \end{cases}$$

分离变量, 我们假设

$$v(t,x) = T(t)X(x).$$

带入泛定方程可得

$$\frac{T''}{T} = \frac{X''}{X}.$$

上式左边为t的函数,右边为x的函数,因而肯定为常值,设为 $-\lambda$ 。从而我们得到以下固有值问题:

$$\left\{ \begin{array}{l} X'' + \lambda X = 0, 0 < x < l \\ X(0) = 0, X'(l) = 0. \end{array} \right.$$

以及

$$T''(t) + \lambda a^2 T = 0.$$

解得固有值和固有函数为:

固有值:
$$\lambda_n = \left(\frac{(2n-1)\pi}{2l}\right)^2$$
对应固有函数: $X_n = \sin(\frac{(2n-1)\pi x}{2l}), n \geq 1.$

固定 λ_n ,则可以得到对应 T_n 的常微分方程:

$$T_n'' = -\lambda_n T_n = -\left(\frac{(2n-1)\pi}{2l}\right)^2 T_n.$$

解得

$$T_n(t) = A_n \cos(\frac{(2n-1)\pi t}{2l}) + B_n \sin(\frac{(2n-1)\pi t}{2l}), n = 0, 1, 2 \cdots$$

整理得

$$v(t,x) = \sum_{n=1}^{\infty} \left(A_n \cos(\frac{(2n-1)\pi t}{2l}) + B_n \sin(\frac{(2n-1)\pi t}{2l}) \right) \sin(\frac{(2n-1)\pi x}{2l}).$$

最后一步,确定 A_n 和 B_n 的取值。对 $\varphi(x)$ 做展开

$$-\frac{g}{2}x(2l-x) = \sum_{n=1}^{\infty} c_n X_n = \sum_{n=1}^{\infty} c_n \sin(\frac{(2n-1)\pi x}{2l}).$$

其中

$$c_n = \frac{\langle -\frac{g}{2}x(2l-x), X_n \rangle}{\langle X_n, X_n \rangle} = -\frac{g}{l} \int_0^l x(2l-x) \sin(\frac{(2n-1)\pi s}{2l}) ds = -\frac{16gl^2}{(2n-1)^3 \pi^3}.$$

令t = 0并对照, 我们可以得到:

$$\begin{cases} A_n = -\frac{16gl^2}{(2n-1)^3\pi^3} \\ B_n = 0. \end{cases}$$

所以

$$v(t,x) = -\frac{16gl^2}{\pi^3} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} cos(\frac{(2n-1)\pi t}{2l}) sin(\frac{(2n-1)\pi x}{2l}).$$

10

定解问题的解为

$$u = \tilde{u} + \tilde{w} + v = Ex + \frac{g}{2}x(2l - x) - \frac{16gl^2}{\pi^3} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} cos(\frac{(2n-1)\pi t}{2l}) sin(\frac{(2n-1)\pi x}{2l}).$$

 $\frac{12}{10}$. 设 ω_n 是 $J_0(2\omega)=0$ 的正实根,把函数

$$f(x) = \begin{cases} 1, & 0 < x \le 1 \\ 0.5, & x = 1 \\ 0, & 1 < x < 2 \end{cases}$$

展开成 $J_0(\omega_n x)$ 的级数。

解. ω_n^2 以及 $J_0(\omega_n x)$ 为对应如下零阶贝塞尔固有值问题的固有值和固有函数

$$\begin{cases} x^2y'' + xy' + \mu x^2y = 0, 0 < x < 2 \\ |y(0)| < \infty, y(2) = 0. \end{cases}$$

边界条件为I 类边界条件,所以 $\mathcal{N}_{0,n}^2=2J_1^2(2\omega_n)$ 。

首先求

$$\langle f(x), J_0(\omega_n x) \rangle = \int_0^1 J_0(\omega_n x) x dx = \frac{1}{\omega_n^2} \int_0^{\omega_n} J_0(x) x dx = \frac{1}{\omega_n^2} \int_0^{\omega_n} (x J_1(x))' dx = \frac{J_1(\omega_n)}{\omega_n}.$$

从而

$$f(x) = \sum_{n=1}^{\infty} \frac{\langle f(x), J_0(\omega_n x) \rangle}{\mathcal{N}_{0,n}^2} J_0(\omega_n x) = \sum_{n=1}^{\infty} \frac{J_1(\omega_n)}{2\omega_n J_1^2(2\omega_n)} J_0(\omega_n x).$$

13. 设 ω_n 是 $J_1(\omega) = 0$ 的正实根,把函数f(x) = x, 0 < x < 1 展开成 $J_1(\omega_n x)$ 的级数。

解. ω_n^2 以及 $J_1(\omega_n x)$ 为对应如下1阶贝塞尔固有值问题的固有值和固有函数

$$\begin{cases} x^2y'' + xy' + (\mu x^2 - 1)y = 0, 0 < x < 1 \\ |y(0)| < \infty, y(1) = 0. \end{cases}$$

边界条件为I 类边界条件,所以 $\mathcal{N}_{1,n}^2=\frac{J_2^2(\omega_n)}{2}=\frac{1}{2}\left(\frac{2J_1(\omega_n)}{x}-J_0(\omega_n)\right)^2=\frac{J_0^2(\omega_n)}{2}$ 。首先求

$$\langle x, J_1(\omega_n x) \rangle = \int_0^1 J_1(\omega_n x) x^2 dx = \frac{1}{\omega_n^3} \int_0^{\omega_n} J_1(x) x^2 dx = \frac{1}{\omega_n^3} \int_0^{\omega_n} (x^2 J_2(x))' dx = \frac{J_2(\omega_n)}{\omega_n} = -\frac{J_0(\omega_n)}{\omega_n}.$$

从而

$$f(x) = \sum_{n=1}^{\infty} \frac{\langle x, J_1(\omega_n x) \rangle}{\mathcal{N}_{1,n}^2} J_1(\omega_n x) = -\sum_{n=1}^{\infty} \frac{2}{\omega_n J_0(\omega_n)} J_1(\omega_n x).$$

16. 半径为R 的无限长圆柱的侧表面保持一定的温度 u_0 ,柱子内的初始温度为0,内部无热源,求柱子内的温度分布变化?

解. 由对称性,容易知道温度分布与角度无关,与z 无关,不妨设温度u=u(t,r)。因而可以写出定解问题

11

$$\begin{cases} u_t = a^2 \left(\frac{\partial u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right), 0 < r < R, t > 0. \\ u|_{r=R} = u_0, u(0, r) = 0. \end{cases}$$

首先边界条件齐次化,设 $v = u - u_0$,得到

$$\begin{cases} v_t = a^2 \left(\frac{\partial v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} \right), 0 < r < R, t > 0. \\ v|_{r=R} = 0, v(0, r) = -u_0. \end{cases}$$

分离变量, $v(r,z) = \mathcal{R}(r)T(t)$, 有

$$\frac{T'}{a^2T} = \frac{r\mathcal{R}'' + \mathcal{R}'}{r\mathcal{R}}.$$

设上式为常值-μ,得到固有值问题

$$\left\{ \begin{array}{l} r^2 \mathcal{R}^{\prime\prime} + r \mathcal{R}^{\prime} + \mu r^2 \mathcal{R} = 0, 0 < r < R \\ |\mathcal{R}(0)| < \infty, \mathcal{R}(R) = 0. \end{array} \right.$$

这是零阶的贝塞尔固有值问题, 因为有一个边界条件是 I 类边界条件。因而零不是固有值, 设

$$J_0(\omega R)$$

的所有正解为 $0 < \omega_1 < \omega_2 < \cdots$ 。则对应固有值 ω_n^2 ,固有函数 $J_0(\omega_n r)$,将固有值带入 T_n 的方程. 得到:

$$T_n' + a^2 \omega_n^2 T_n = 0.$$

 $T_n = A_n e^{-a^2 \omega_n^2 t}$ 。 从而

$$v(t,r) = \sum_{n=1}^{\infty} A_n e^{-a^2 \omega_n^2 t} J_0(\omega_n r).$$

求系数, 令t=0, 得到

$$-u_0 = \sum_{n=1}^{\infty} A_n J_0(\omega_n r).$$

边界为1类边界条件,所以

$$\mathcal{N}_{0,n}^2 = \frac{R^2 J_1^2(\omega_n R)}{2},$$

并且

$$\langle -u_0, J_0(\omega_n r) \rangle = -u_0 \int_0^R J_0(\omega_n r) r dr = -\frac{u_0}{\omega_n^2} \int_0^{\omega_n R} J_0(r) r dr = -\frac{u_0}{\omega_n^2} \int_0^{\omega_n R} (r J_1(r))' dr = -\frac{u_0 R J_1(\omega_n R)}{\omega_n}.$$

所以

$$-u_0 = \sum_{n=1}^{\infty} -\frac{2u_0}{\omega_n R J_1(\omega_n R)} J_0(\omega_n r).$$

对照得:

$$v(t,r) = \sum_{n=1}^{\infty} -\frac{2u_0}{\omega_n R J_1(\omega_n R)} e^{-a^2 \omega_n^2 t} J_0(\omega_n r).$$

所以

$$u(t,r) = v(t,r) + u_0 = u_0 - 2u_0 \sum_{n=1}^{\infty} \frac{1}{\omega_n R J_1(\omega_n R)} e^{-a^2 \omega_n^2 t} J_0(\omega_n r).$$

其中 ω_n 为 $J_0(\omega R) = 0$ 的所有正根。

18(1). 解下列定解问题:

$$\begin{cases} u_{rr} + \frac{u_r}{r} + u_{zz} = 0, & 0 < r < a, 0 < z < l \\ u(a, z) = 0, & \\ u(r, 0) = 0, u(r, l) = T_0(\sharp \mathfrak{Y}). \end{cases}$$

解. 分离变量, u(r,z) = R(r)Z(z), 有

$$-\frac{Z''}{Z} = \frac{rR'' + R'}{rR}.$$

设上式为常值-μ,得到固有值问题

$$\begin{cases} r^2 R'' + rR' + \mu r^2 R = 0, 0 \le r \le a \\ |R(0)| < \infty, R(a) = 0. \end{cases}$$

这是零阶的贝塞尔固有值问题, 因为有一个边界条件是 I 类边界条件。因而零不是固有值, 设

$$J_0(\omega a)$$

的所有正解为 $0 < \omega_1 < \omega_2 < \cdots$ 。则对应固有值 ω_n^2 ,固有函数 $J_0(\omega_n r)$,将固有值带入 Z_n 的方程,得到:

$$Z_n'' - \omega_n^2 Z_n = 0.$$

 $Z_n = A_n e^{\omega_n z} + B_n e^{-\omega_n z}$ 。 从而

$$u(r,\theta) = \sum_{n=1}^{\infty} (A_n e^{\omega_n z} + B_n e^{-\omega_n z}) J_0(\omega_n r).$$

求系数,

$$\mathcal{N}_{0,n}^2 = \frac{a^2 J_1^2(\omega_n a)}{2},$$

并且

$$\langle T_0, J_0(\omega_n r) \rangle = \frac{T_0 a J_1(\omega_n a)}{\omega_n}.$$

$$u(r,l) = T_0 = \sum_{i=1}^{\infty} \frac{2T_0}{a\omega_n J_1(\omega_n a)} J_0(\omega_i x).$$

对照得

$$\begin{cases} A_n + B_n = 0 \\ A_n e^{\omega_n l} + B_n e^{-\omega_n l} = \frac{2T_0}{a\omega_n J_1(\omega_n a)} \end{cases}$$

解得

$$\begin{cases} A_n = \frac{2T_0}{(e^{\omega_n l} - e^{-\omega_n l})a\omega_n J_1(\omega_n a)} \\ B_n = -\frac{2T_0}{(e^{\omega_n l} - e^{-\omega_n l})a\omega_n J_1(\omega_n a)}. \end{cases}$$

从而

$$u = \sum_{n=1}^{\infty} \frac{2T_0}{sh(\omega_n l)a\omega_n J_1(\omega_n a)} sh(\omega_n z) J_0(\omega_n r).$$

26 在半径为1的球内求调和函数($\Delta u = 0$), 使得

$$u|_{r=1} = 3\cos(2\theta) + 1.$$

解. 仅需求解泊松方程的定解问题:

$$\begin{cases} \Delta_3 u = 0 \\ u|_{r=1} = 3\cos(2\theta) + 1. \end{cases}$$

注意到在边界上满足轴对称,因而u本身也是轴对称。在球坐标系下用勒让德多项式,解可以表示为(P277,第一行)

$$u = \sum_{n=0}^{\infty} (A_n r^n + B_n r^{-n-1}) p_n(\cos \theta).$$

既然在球心处有定义,所以 $B_n = 0$. 令r = 1 得到

$$3\cos(2\theta) + 1 = \sum_{n=0}^{\infty} A_n p_n(\cos\theta) = 6\cos^2\theta - 2.$$

 $2\cos\theta$ 的偶函数,因而有待定系数

$$6\cos^2\theta - 2 = ap_2(\cos\theta) + bp_0(\cos\theta).$$

查表并解得a=4,b=0。所以

$$u = 4r^2p_2(\cos\theta) = 2r^2(3\cos^2\theta - 1).$$

24 把下列函数按勒让德多项式展开:

- $(1) x^3$
- (2) x^4
- (3) |x|

解. (1)和(2)用待定系数法, 得:

$$x^{3} = \frac{2}{5}p_{3}(x) + \frac{3}{5}p_{1}(x).$$
$$x^{4} = \frac{8}{35}p_{4}(x) + \frac{4}{7}p_{2}(x) + \frac{1}{5}p_{0}(x).$$

(3)则要求系数,由于是偶函数,故不需要考虑奇数项。

$$\langle |x|, p_{2k}(x) \rangle = 2 \int_0^1 x p_{2k}(x) dx.$$

当k=0 的时候,上式等于1。当 $k\neq0$ 的时候,上式等于

$$2\int_0^1 x p_{2k}(x) dx = \frac{2}{2k+2} \int_0^1 p_{2k-1}(x) dx = \frac{p_{2k-2}(0) - p_{2k}(0)}{(k+1)(4k-1)}.$$

整理得

$$\langle |x|, p_{2k}(x) \rangle = \frac{2(-1)^{k-1}(2k-2)!}{2^{2k}(k-1)!(k+1)!}$$

所以

$$|x| = \sum_{k=0}^{\infty} \frac{\langle |x|, p_{2k}(x) \rangle}{\|p_{2k}\|^2} p_{2k}(x) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (4k+1)(2k-2)!}{2^{2k} (k-1)! (k+1)!} p_{2k}(x).$$

- 28 半球的球面保持温度 u_0 ,分别在下列条件下求稳定温度分布:
 - (1) 底面保持零度;
 - (2) 底面绝热。

解. (1) 把半球补成一个完整得球面,恒温=0,奇扩充,下半球面温度为 $-u_0$,所以

$$u(r,\theta) = \sum_{n=0}^{\infty} (A_n r^n + B_n r^{-n-1}) p_n(\cos \theta).$$

在球心处有定义,所以 $B_n = 0$ 。所以

$$u(r,\theta) = \sum_{n=0}^{\infty} A_n r^n p_n(\cos \theta).$$

取r等于半球得半径a,则有

$$f(\cos \theta) = \sum_{n=0}^{\infty} A_n a^n p_n(\cos \theta),$$

其中 $f(\cos\theta) = u_0, \cos\theta \in [0,1], f(\cos\theta) = -u_0, \theta \in [-1,0].$ 将 $f(\cos\theta)$ 做分解,因为是奇函数,不需要考虑奇数项

$$\langle f(\cos\theta), p_{2k+1}(x) \rangle = 2u_0 \int_0^1 p_{2k+1}(x) dx = 2u_0 \frac{p_{2k}(0) - p_{2k+2}(0)}{4k+3} = \frac{2u_0(-1)^k (2k-1)!!}{(2k+2)!!}.$$

上式仅对k>0 成立, 当k=0 时, $\langle f(\cos\theta), p_1(x) \rangle = u_0$. 所以

$$f(\cos \theta) = \sum_{k=0}^{\infty} \frac{\langle f(\cos \theta), p_{2k+1}(x) \rangle}{\|p_{2k+1}\|^2} p_{2k+1}(x) = \frac{3u_0}{2} + u_0 \sum_{k=1}^{\infty} \frac{(-1)^k (2k+3)(2k-1)!!}{(2k+2)!!} p_{2k+1}(x).$$

对照得,

$$A_{2k} = 0, A_{2k+1} = \frac{(-1)^k (2k+3)(2k-1)!!}{(2k+2)!!} \frac{1}{a^{2k+1}}, A_1 = \frac{3u_0}{2} \times \frac{1}{a}.$$

3 第四章

所以

$$u(r,\theta) = \frac{3u_0}{2} \times \frac{r}{a}\cos\theta + \sum_{k=1}^{\infty} \frac{(-1)^k (2k+3)(2k-1)!!}{(2k+2)!!} \left(\frac{r}{a}\right)^{2k+1} p_{2k+1}(\cos\theta).$$

15

(2),显然 $u = u_0$.

29 半径为R 厚度为R/2 的空心半球,内外球面的温度保持为

$$A\sin^2(\frac{\theta}{2}), \theta \in [0, \frac{\pi}{2}],$$

底面温度为A/2, 求半空心球温度分布?

解. 我们自然得想法是把半球壳变成一个完整得球壳。底面恒温,因而要用奇扩充,但是温度不是零,所以要先找个特解A/2,然后令v=u-A/2. 此时内外球壳温度分别为

$$f(\cos \theta) = -A/2 \times \cos \theta.$$

按勒让德分解得 (待定系数)

$$f(\cos \theta) = -A/2p_1(\cos \theta).$$

又

$$v(r,\theta) = \sum_{n=0}^{\infty} (A_n r^n + B_n r^{-n-1}) p_n(\cos \theta).$$

分别令r = R, R/2 并对照得:

$$A_n = B_n = 0, n \neq 1;$$

$$A_1R + B_1R^{-2} = -A/2, A_1R/2 + B_1(R/2)^{-2} = -A/2.$$

解得

$$A_1 = -\frac{3A}{7R}, B_1 = -\frac{AR^2}{14}.$$

所以

$$v(r,\theta) = -\left(\frac{3}{7R} + \frac{R^2}{14r^2}\right)A\cos\theta.$$

所以

$$u(r,\theta) = \frac{A}{2} - (\frac{3}{7R} + \frac{R^2}{14r^2})A\cos\theta.$$

3 第四章

1.用傅里叶变换解下列问题:

(1)
$$\begin{cases} \Delta_2 u = 0, -\infty < x < \infty, y > 0 \\ u(x, 0) = f(x), \\ \lim_{x^2 + y^2 \to \infty} u(x, y) = 0. \end{cases}$$

3 第四章

解. 做傅里叶变换, 设

$$U(\lambda, y) = \int_{\mathbb{R}} u(x, y) e^{i\lambda x} dx.$$

16

则

$$\left\{ \begin{array}{l} -\lambda^2 U + U_{yy} = 0, -\infty < \lambda < \infty, y > 0 \\ U(\lambda, 0) = F[f]. \end{array} \right.$$

这是常微分方程,解得

$$U(\lambda, y) = C_1(\lambda)e^{-\lambda y} + C_2(\lambda)e^{\lambda y}.$$

又因为当 $y\to +\infty$ 时候,为0,所以当 $\lambda>0$ 的时候, $C_2(\lambda)=0$;当 $\lambda<0$ 的时候, $C_1(\lambda)=0$ 。即

$$U(\lambda, y) = \begin{cases} C_1(\lambda)e^{-\lambda y}, \lambda > 0, y > 0 \\ C_2(\lambda)e^{\lambda y}, \lambda < 0, y > 0. \end{cases}$$

取y=0, 得到

$$C_1(\lambda) = \begin{cases} F[f], \lambda > 0, y > 0 \\ 0, \lambda < 0, y > 0. \end{cases}$$

以及

$$C_2(\lambda) = \begin{cases} 0, \lambda > 0, y > 0 \\ F[f], \lambda < 0, y > 0. \end{cases}$$

所以

$$U(\lambda, y) = \begin{cases} F[f]e^{-\lambda y}, \lambda > 0, y > 0 \\ F[f]e^{\lambda y}, \lambda < 0, y > 0. \end{cases}$$

用傅里叶反变换

$$u(x,y) = \frac{1}{2\pi} \left(\int_0^\infty F[f] e^{-\lambda y} e^{-i\lambda x} + \int_{-\infty}^0 F[f] e^{\lambda y} e^{-i\lambda x} d\lambda \right).$$

如果令 $h(\lambda) = 1, \lambda > 0, h(\lambda) = 0, \lambda < 0$, 则上式为

$$F^{-1}[F[f]\times e^{-\lambda y}h(\lambda)]+F^{-1}[F[f]\times e^{\lambda y}(1-h(\lambda))].$$

计算

$$F^{-1}[e^{-\lambda y}h(\lambda)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\lambda y}h(\lambda)e^{-i\lambda x}d\lambda = \frac{1}{2\pi} \int_{0}^{\infty} e^{-\lambda y}e^{-i\lambda x}d\lambda = \frac{1}{2\pi} \frac{e^{-\lambda y - i\lambda x}}{-y - ix}\Big|_{0}^{\infty} = \frac{1}{2\pi} \frac{1}{y + ix}.$$

计算

$$F^{-1}[e^{\lambda y}(1 - h(\lambda))] = \frac{1}{2\pi} \int_{-\infty}^{0} e^{\lambda y} e^{-i\lambda x} d\lambda = \frac{1}{2\pi} \frac{e^{\lambda y - i\lambda x}}{y - ix} \Big|_{-\infty}^{0} = \frac{1}{2\pi} \frac{1}{y - ix}.$$

所以

$$F^{-1}[F[f] \times e^{-\lambda y} h(\lambda)] + F^{-1}[F[f] \times e^{\lambda y} (1 - h(\lambda))] = \frac{1}{2\pi} \left(f * \frac{1}{y + ix} + f * \frac{1}{y - ix} \right) = \frac{y}{\pi} \times f * \frac{1}{x^2 + y^2}.$$

即

$$u(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(x-\xi)^2 + y^2} d\xi.$$

3 第四章

(2)
$$\begin{cases} u_t = a^2 u_{xx} + f(t, x), -\infty < x < \infty, t > 0 \\ u(0, x) = 0. \end{cases}$$

解. 先用冲量原理, 只要求

$$\begin{cases} v_t = a^2 v_{xx}, -\infty < x < \infty, t > \tau \\ v(\tau, x) = f(\tau, x) \end{cases}$$

做F-变换, V = F[v]。得到

$$\begin{cases} V_t = -a^2 \lambda^2 V \\ V(\tau, \lambda) = F[f]. \end{cases}$$

解得

$$V = C(\lambda)e^{-a^2\lambda^2t}.$$

带入 $t = \tau$, 得

$$V(t, \lambda; \tau) = F[f]e^{-a^2\lambda^2(t-\tau)}.$$

反变换,

$$v(t, x; \tau) = f * \frac{1}{2a\sqrt{\pi(t - \tau)}} e^{-\frac{x^2}{4a^2(t - \tau)}} = \int_{-\infty}^{\infty} f(\tau, \xi) \frac{1}{2a\sqrt{\pi(t - \tau)}} e^{-\frac{(x - \xi)^2}{4a^2(t - \tau)}} d\xi.$$

由冲量原理,

$$u = \int_0^t v(t, x; \tau) d\tau = \int_0^t \int_{-\infty}^{\infty} f(\tau, \xi) \frac{1}{2a\sqrt{\pi(t - \tau)}} e^{-\frac{(x - \xi)^2}{4a^2(t - \tau)}} d\xi d\tau.$$

(3)

$$\begin{cases} u_t = a^2 u_{xx}, 0 < x < \infty, t > 0 \\ u(t, 0) = \varphi(t), u(0, x) = 0, \\ u(t, +\infty) = u_x(t, +\infty) = 0 \end{cases}$$

解. 做正弦变换, 设

$$U(t,\lambda) = \int_{\mathbb{R}} u(t,x) \sin(\lambda x) dx.$$

则

$$\begin{cases} U_t = -\lambda^2 a^2 U + a^2 \lambda u(t,0) = -\lambda^2 a^2 U + a^2 \lambda \varphi(t), -\infty < \lambda < \infty, t > 0 \\ U(0,\lambda) = 0. \end{cases}$$

从而

$$(e^{\lambda^2 a^2 t} U)_t = a^2 \lambda \varphi(t) e^{\lambda^2 a^2 t}.$$

所以由牛顿莱布尼兹公式

$$e^{\lambda^2 a^2 t} U(t,\lambda) = e^{\lambda^2 a^2 \times 0} U(0,\lambda) + \int_0^t a^2 \lambda \varphi(\tau) e^{\lambda^2 a^2 \tau} d\tau = \int_0^t a^2 \lambda \varphi(\tau) e^{\lambda^2 a^2 \tau} d\tau.$$

4 第五章 18

所以

$$U(t,\lambda) = e^{-\lambda^2 a^2 t} \int_0^t a^2 \lambda \varphi(\tau) e^{\lambda^2 a^2 \tau} d\tau = \int_0^t a^2 \lambda \varphi(t-\tau) e^{-\lambda^2 a^2 \tau} d\tau.$$

做反正弦变换得到:

$$u(t,x) = \frac{2}{\pi} \int_0^\infty \int_0^t a^2 \lambda \varphi(t-\tau) e^{-\lambda^2 a^2 \tau} d\tau \sin(\lambda x) d\lambda = \frac{1}{\pi} \int_0^t a^2 \varphi(t-\tau) d\tau \int_{-\infty}^\infty \lambda e^{-\lambda^2 a^2 \tau} \sin(\lambda x) d\lambda.$$

计算

$$\begin{split} \int_{-\infty}^{\infty} \lambda e^{-\lambda^2 a^2 \tau} \sin(\lambda x) d\lambda &= \frac{1}{i} \int_{-\infty}^{\infty} \lambda e^{-\lambda^2 a^2 \tau} e^{i\lambda x} d\lambda = \frac{1}{i} \int_{-\infty}^{\infty} \lambda e^{-(a\sqrt{\tau}\lambda - \frac{ix}{2a\sqrt{\tau}})^2 - \frac{x^2}{4a^2 \tau}} d\lambda \\ &= \frac{1}{ia^2 \tau} \int_{-\infty}^{\infty} \lambda e^{-(\lambda - \frac{ix}{2a\sqrt{\tau}})^2 - \frac{x^2}{4a^2 \tau}} d\lambda \\ &= \frac{1}{ia^2 \tau} \left(\int_{-\infty}^{\infty} (\lambda - \frac{ix}{2a\sqrt{\tau}}) e^{-(\lambda - \frac{ix}{2a\sqrt{\tau}})^2 - \frac{x^2}{4a^2 \tau}} d\lambda + \int_{-\infty}^{\infty} \frac{ix}{2a\sqrt{\tau}} e^{-(\lambda - \frac{ix}{2a\sqrt{\tau}})^2 - \frac{x^2}{4a^2 \tau}} d\lambda \right) \\ &= \frac{1}{ia^2 \tau} \frac{ix}{2a\sqrt{\tau}} e^{-\frac{x^2}{4a^2 \tau}} \int_{-\infty}^{\infty} e^{-\lambda^2} d\lambda \\ &= \frac{xe^{-\frac{x^2}{4a^2 \tau}}}{2a^3 \tau^{3/2}} \times \sqrt{\pi} \end{split}$$

所以

$$u(t,x) = \frac{1}{\pi} \int_0^t a^2 \varphi(t-\tau) \frac{xe^{-\frac{x^2}{4a^2\tau}}}{2a^3\tau^{3/2}} \times \sqrt{\pi} d\tau = \frac{x}{2a\sqrt{\pi}} \int_0^t \varphi(t-\tau) \frac{e^{-\frac{x^2}{4a^2\tau}}}{\tau^{3/2}} d\tau.$$

4 第五章

3 解下列定解问题:

(1)

$$\begin{cases} u_t = a^2 u_{xx}, (0 < x < l, t > 0) \\ u(t, 0) = u(t, l) = 0, \\ u(0, x) = \delta(x - \xi), 0 < \xi < l. \end{cases}$$

解. 用分离变量法,定解问题是齐次的,因而不需要齐次化,设u=T(t)X(x)。则有

$$T'X = a^2TX''$$
.

所以

$$\frac{T'}{a^2T} = \frac{X''}{X}.$$

左端为t 的函数又端为x 的函数,所以为常数,记为 $-\lambda$ 。得到固有值问题

$$\left\{ \begin{array}{l} X'' + \lambda X = 0, (0 < x < l, t > 0) \\ X(0) = X(l) = 0. \end{array} \right.$$

以及

$$T' + \lambda a^2 T = 0$$

边界条件均为I类边界条件,由sl理论,零不是固有值,且所有固有值都大于零。解之固有值及对应固有函数为:

$$\lambda_n = (\frac{n\pi}{l})^2, X_n = \sin(\frac{n\pi x}{l}), n = 1, 2, 3, \cdots$$

将固有值代入T 的常微分方程, 得到

$$T_n = A_n e^{-\left(\frac{n\pi a}{l}\right)^2 t}.$$

所以

$$u(t,x) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{n\pi a}{l}\right)^2 t} \sin\left(\frac{n\pi x}{l}\right).$$

令t=0, 得到

$$\delta(x-\xi) = \sum_{n=1}^{\infty} A_n sin(\frac{n\pi x}{l}).$$

由傅里叶分解

$$A_n = \frac{\int_0^l \sin(\frac{n\pi x}{l})\delta(x-\xi)dx}{\int_0^l \sin^2(\frac{n\pi x}{l})dx} = \frac{2}{l}\sin(\frac{n\pi \xi}{l}).$$

所以

$$u(t,x) = \sum_{n=1}^{\infty} \frac{2}{l} sin(\frac{n\pi\xi}{l}) e^{-(\frac{n\pi\alpha}{l})^2 t} \sin(\frac{n\pi x}{l}).$$

(2)

$$\begin{cases} u_{tt} = a^2 u_{xx}, (0 < x < l, t > 0) \\ u_x(t, 0) = u_x(t, l) = 0, \\ u(0, x) = 0, u_t(0, x) = \delta(x - \xi), 0 < \xi < l. \end{cases}$$

解,用分离变量法,定解问题是齐次的,因而不需要齐次化,设u = T(t)X(x)。则有

$$T''X = a^2TX''$$

所以

$$\frac{T''}{a^2T} = \frac{X''}{X}.$$

左端为t 的函数又端为x 的函数,所以为常数,记为 $-\lambda$ 。得到固有值问题

$$\left\{ \begin{array}{l} X'' + \lambda X = 0, (0 < x < l, t > 0) \\ X'(0) = X'(l) = 0. \end{array} \right.$$

以及

$$T'' + \lambda a^2 T = 0.$$

边界条件均为II类边界条件q=0, 由sI理论, 零是固有值, 所以 $\lambda_0=0, X_0=1$ 。其余所有固有值都大于零。解之其他固有值及对应固有函数为:

$$\lambda_n = (\frac{n\pi}{l})^2, X_n = \cos(\frac{n\pi x}{l}), n = 1, 2, 3, \cdots$$

将固有值代入T 的常微分方程, 得到

$$T_0 = A_0 + B_0 t, T_n = A_n \cos(\frac{n\pi at}{l}) + B_n \sin(\frac{n\pi at}{l})$$

所以

$$u(t,x) = A_0 + B_0 t + \sum_{n=1}^{\infty} \left(A_n \cos(\frac{n\pi at}{l}) + B_n \sin(\frac{n\pi at}{l}) \right) \cos(\frac{n\pi x}{l}).$$

令t=0, 得到 $A_0=A_n=0$, 以及

$$\delta(x-\xi) = B_0 + \sum_{n=1}^{\infty} B_n \frac{n\pi a}{l} \cos(\frac{n\pi x}{l}).$$

由傅里叶分解

$$B_0 = \frac{\int_0^l 1\delta(x - \xi) dx}{\int_0^l 1^2 dx} = \frac{1}{l},$$

和当 $n \ge 1$ 时

$$B_n \frac{n\pi a}{l} = \frac{\int_0^l \cos(\frac{n\pi x}{l})\delta(x-\xi)dx}{\int_0^l \cos^2(\frac{n\pi x}{l})dx} = \frac{2}{l}\cos(\frac{n\pi \xi}{l}).$$

所以当n > 1 时,

$$B_n = \frac{2}{n\pi a}\cos(\frac{n\pi\xi}{l}).$$

$$u(t,x) = \frac{t}{l} + \sum_{l=1}^{\infty} \frac{2}{n\pi a}\cos(\frac{n\pi\xi}{l})\sin(\frac{n\pi at}{l})\cos(\frac{n\pi x}{l}).$$

- 6. 求下列区域内第一边值问题的格林函数:
 - (1) 四分之一空间: x > 0, y > 0;

解. 设 $M_0=(\xi,\eta,\zeta)$ 处有正电荷大小为 ε_0 只要再对应点摆上电荷,让在边界上电势为零即可: 在 $M_1=(-\xi,\eta,\zeta)$ 和 $M_2=(\xi,-\eta,\zeta)$ 处各摆上 $-\varepsilon_0$ 得电荷,在 $M_3=(-\xi,-\eta,\zeta)$ 处摆上大小为 ε_0 得电荷,这样由对称性,就知道边界上电势为0,所以格林函数

$$G(M; M_0) = \frac{1}{4\pi} \left(\frac{1}{r(M, M_0)} - \frac{1}{r(M, M_1)} - \frac{1}{r(M, M_2)} + \frac{1}{r(M, M_3)} \right);$$

(2) $\pm x^2 + y^2 + z^2 < a^2, z > 0$;

解. 设 $M_0=(\xi,\eta,\zeta)$ 处有正电荷大小为 ε_0 只要再对应点摆上电荷,让在边界上电势为零即可:在 $M_1=(\xi,\eta,-\zeta)$ 处摆上大小为 $-\varepsilon_0$ 电荷,在 $M_2=\frac{a^2}{|OM_0|^2}(\xi,\eta,\zeta)$ 处摆上一 $\frac{a}{|OM_0|}\varepsilon_0$ 得电荷,在 $M_3=\frac{a^2}{|OM_0|^2}(\xi,\eta,-\zeta)$ 处摆上大小为 $\frac{a}{|OM_0|}\varepsilon_0$ 得电荷,这样由对称性,就知道边界上电势为0,所以格林函数

$$G(M;M_0) = \frac{1}{4\pi} \left(\frac{1}{r(M,M_0)} - \frac{1}{r(M,M_1)} - \frac{a}{|0M_0|} \frac{1}{r(M,M_2)} + \frac{a}{|0M_0|} \frac{1}{r(M,M_3)} \right);$$

(3) 层状空间: 0 < z < H.

4 第五章 21

解. 设 $M_0=(\xi,\eta,\zeta),0<\zeta< H$ 处有正电荷大小为 ε_0 只要再对应点摆上电荷,让在边界上电势为零即可:在 $M_1=(\xi,\eta,-\zeta)$ 处摆上大小为 $-\varepsilon_0$ 电荷,在 $M_{2k}=(\xi,\eta,\zeta+2kH)$ 处摆上 ε_0 电荷,在 $M_{2k+1}=(\xi,\eta,-\zeta+2kH)$ 处摆上 $-\varepsilon_0$ 电荷,这样由对称性,就知道边界上电势为0,所以格林函数

$$G(M; M_0) = \frac{1}{4\pi} \left(\sum_{k=-\infty}^{\infty} \frac{1}{r(M, M_{2k})} - \sum_{k=-\infty}^{\infty} \frac{1}{r(M, M_{2k+1})} \right);$$

- 7. 求下列平面区域内第一边值问题的格林函数:
 - (1) 四分之一平面: x > 0, y > 0;

解. 设 $M_0 = (\xi, \eta)$ 处有正电荷大小为 ε_0 只要再对应点摆上电荷, 让在边界上电势为零即可: 在 $M_1 = (-\xi, \eta)$ 和 $M_2 = (\xi, -\eta)$ 处各摆上 $-\varepsilon_0$ 得电荷, 在 $M_3 = (-\xi, -\eta)$ 处摆上大小为 ε_0 得电荷, 这样由对称性, 就知道边界上电势为0, 所以格林函数

$$G(M; M_0) = \frac{1}{2\pi} \left(\ln \frac{1}{r(M, M_0)} - \ln \frac{1}{r(M, M_1)} - \ln \frac{1}{r(M, M_2)} + \ln \frac{1}{r(M, M_3)} \right);$$

(2) 上半圆盘 $x^2 + y^2 < 1, y > 0$;

解. 设 $M_0=(\xi,\eta)$ 处有正电荷大小为 ε_0 , 在 $M_1=(\xi,-\eta,)$ 处摆上大小为 $-\varepsilon_0$ 电荷,在 $M_2=\frac{1}{|OM_0|^2}(\xi,\eta)$ 处摆上 $-\varepsilon_0$ 得电荷,在 $M_3=\frac{1}{|OM_0|^2}(\xi,-\eta)$ 处摆上大小为 ε_0 得电荷,这样圆周上和底边上电势为0. 所以

$$G(M; M_0) = \frac{1}{2\pi} \left(\ln \frac{1}{r(M, M_0)} - \ln \frac{1}{r(M, M_1)} - \ln \frac{1}{r(M, M_2)} + \ln \frac{1}{r(M, M_3)} \right);$$

(3)

例子1. 设平面区域 $\Omega = \{(x,y) : x+y > 0\},$

求区域 Ω 的格林函数;

(2) 求区域 Ω 的定解问题:

$$\begin{cases} \Delta_2 u = 0, x + y > 0 \\ u|_{x+y=0} = \varphi(x). \end{cases}$$

解. (1). 设 $M_0=(\xi,\eta)$ 为 Ω 内点,则 M_0 关于x+y=0 的对称点为 $M_0'=(-\eta,-\xi)$ 所以格林函数为

$$G(M; M_0) = -\frac{1}{2\pi} \left(\ln r(M, M_0) - \ln r(M, M'_0) \right) = \frac{1}{4\pi} \ln \frac{(x+\eta)^2 + (y+\xi)^2}{(x-\xi)^2 + (y-\eta)^2}.$$

(2).单位外法向为 $\vec{n} = -\frac{1}{\sqrt{2}}(1,1)$,所以

$$\frac{\partial G}{\partial \vec{n}}|_{\xi+\eta=0} = -\frac{1}{\sqrt{2}}(G_{\xi} + G_{\eta})|_{\xi+\eta=0} = -\frac{x+y}{\pi\sqrt{2}}\frac{1}{(x-\xi)^2 + (y+\xi)^2}.$$

所以

$$u(x,y) = \frac{x+y}{\sqrt{2}\pi} \int \frac{\varphi(\xi)}{(x-\xi)^2 + (y+\xi)^2} dl = \frac{x+y}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(\xi)}{(x-\xi)^2 + (y+\xi)^2} d\xi.$$

定理. 泊松方程边值问题:

$$\begin{cases} \Delta u = -f(x, y, z), M \in V \\ u|_{\partial V} = \varphi(x, y, z). \end{cases}$$

的解为

$$u(M) = -\int_{S} \varphi(M_0) \frac{\partial_{M_0} G}{\partial \vec{n}} dS + \int_{V} G(M; M_0) f(M_0) dM_0,$$

其中 $G = G(M; M_0)$ 。

定理. 泊松方程边值问题:

$$\left\{ \begin{array}{l} \Delta u = -f(x,y), M \in V \\ u|_{\partial V} = \varphi(x,y). \end{array} \right.$$

的解为

$$u(M) = -\int_{\partial V} \varphi(M_0) \frac{\partial_{M_0} G}{\partial \vec{n}} dl + \int_V G(M; M_0) f(M_0) dM_0,$$

其中 $G = G(M; M_0)$ 。

8. 求方程 $u_t = a^2 u_{xx} + bu$ 的柯西问题的基本解.

解. 即求解定解问题:

$$\begin{cases} u_t = a^2 u_{xx} + bu, (-\infty < x < +\infty, t > 0) \\ u(0, x) = \delta(x). \end{cases}$$

做傅里叶变换

$$U(t,\lambda) = \int_{-\infty}^{\infty} u(t,x)e^{i\lambda x} dx.$$

则有

$$\begin{cases} U_t = -\lambda^2 a^2 U + bU, (-\infty < \lambda < +\infty, t > 0) \\ U(0, \lambda) = 1. \end{cases}$$

这是一个t 常微分方程, 虽然和 λ 有关, 解之

$$U(t,\lambda) = C(\lambda)e^{-(\lambda^2 a^2 - b)t}$$
.

令t=0,得

$$C(\lambda) = 1.$$

所以

$$U(t,\lambda) = e^{-(\lambda^2 a^2 - b)t}.$$

4 第五章

23

用傅里叶反变换

$$u(t,x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(\lambda^2 a^2 - b)t} e^{-i\lambda x} d\lambda$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(\lambda a\sqrt{t} + \frac{ix}{2a\sqrt{t}})^2 + bt - \frac{x^2}{4a^2t}} d\lambda$$

$$= \frac{e^{bt - \frac{x^2}{4a^2t}}}{2\pi} \times \frac{1}{a\sqrt{t}} \int_{-\infty}^{\infty} e^{-(\lambda a\sqrt{t} + \frac{ix}{2a\sqrt{t}})^2} da\sqrt{t}\lambda$$

$$= \frac{e^{bt - \frac{x^2}{4a^2t}}}{2\pi} \times \frac{1}{a\sqrt{t}} \int_{-\infty}^{\infty} e^{-\lambda^2} d\lambda$$

$$= \frac{e^{bt - \frac{x^2}{4a^2t}}}{2a\sqrt{\pi t}}$$

计算这种积分就是无脑配平方。

9. 用基本解法求解下列柯西问题:

(1)
$$\begin{cases} u_t + au_x = f(t, x), (-\infty < x < +\infty, t > 0) \\ u(0, x) = \varphi(x). \end{cases}$$

解. 基本解即求定解问题

$$\begin{cases} v_t + av_x = 0, (-\infty < x < +\infty, t > 0) \\ v(0, x) = \delta(x). \end{cases}$$

做傅里叶变换

$$V(t,\lambda) = \int_{-\infty}^{\infty} v(t,x)e^{i\lambda x}dx.$$

则有

$$\begin{cases} V_t - \lambda iaV = 0, (-\infty < \lambda < +\infty, t > 0) \\ V(0, \lambda) = 1. \end{cases}$$

这是一个t 常微分方程, 虽然和 λ 有关, 解之

$$V(t,\lambda) = C(\lambda)e^{i\lambda at}.$$

令t=0, 得到 $C(\lambda)=1$, 所以

$$V(t,\lambda) = e^{i\lambda at}.$$

做傅里叶反变换, 基本解

$$U(t,x) = v(t,x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda at} e^{-i\lambda x} d\lambda = \delta(x - at).$$

4 第五章 24

代入书上得公式

$$u(t,x) = U * \varphi + \int_0^t U(t-\tau,x) * f(\tau,x)d\tau$$

$$= \int_{-\infty}^\infty \delta(\xi - at)\varphi(x-\xi)d\xi + \int_0^t U(t-\tau,x) * f(\tau,x)d\tau$$

$$= \varphi(x-at) + \int_0^t f(\tau,x-a(t-\tau))d\tau.$$