

Manual Excel Parcial III

Nombre: Revelo Espinoza Andrés Gabriel

NRC:13899

Fecha de Entrega: 26/08/2024

Prueba de Chi - Cuadrado en Excel:

El objetivo de este análisis es comparar el nivel de consumo de helados Polito entre los estudiantes de la carrera de Software, TIC's y Contabilidad en la Universidad ESPE durante los últimos seis meses. Para esto se utilizo una muestra de hombres y mujeres que hemos escogido al azar.

1. Planteamiento del ejercicio

Se realizo una encuesta en la Universidad "ESPE", acerca del consumo de helados polito tanto en hombres como en mujeres, para ello se realizo una encuesta en las carreras de Software, TIC's y Contabilidad, se desea saber si el consumo en cada carrera es igual o diferente. Trabaje con un alfa de 0,05.

2. Cálculo de valores de tabla de resultados observados

Observada	Hombres	Mujeres	
Software	22	15	37
TIC's	19	20	39
Contabilidad	12	12	24
Total	53	47	100
%	0,53	0,47	

3. Cálculo de valores de tabla de resultados esperados

Esperado	Hombres	Mujeres	
Software	19,61	17,39	37
TIC's	20,67	18,33	39
Contabilidad	12,72	11,28	24
Total	53	47	

4. Cálculo de tabla X^2

Calculo X2	Hombres	Mujeres					2 (2)
Software	0,29128506	0,32847039		2		$\nabla (f)$	o-ft)
TIC's	0,13492501	0,15214948	\mathcal{X}		-	= ユー	G
Contabilidad	0,04075472	0,04595745					Ji

5. Calcula el punto Crítico

(X^2) Calculado	0,994
Punto Crítico	5,991
Probabilidad:	0,05
Grado de	
Libertad:	2

6. Prueba de hipótesis

Prueba de Hipótes	sis:						
1) H0: No existe di	iferencias en	tre el conjunt	to de frecuen	cias observad	as y el de frec	uencias espe	radas
H1: Si existe un	a diferencia	entre los dos	conjuntos de	frecuencias			
2) α=0,05 ->	gl-> 3-1 = 2 -	> 5,991					
$3)X^2 = 0.99$							
4) H0 se acepta si	X ² <=5,991						
5) H0 se acepta; n	o existe difer	encias entre	el conjunto d	e frecuencias	observadas y	el de frecue	ncias esperad

7. Tabla mediante herramienta Chi-square Contingency Table Test for Independence

		Hombres	Mujeres	Total
Software	Observed	22	15	37
	Expected	19,61	17,39	37,00
TIC's	Observed	19	20	39
	Expected	20,67	18,33	39,00
Contabilidad	Observed	12	12	24
	Expected	12,72	11,28	24,00
Total	Observed	53	47	100
	Expected	53,00	47,00	100,00

,99 chi-square 2 df ,6085 p-value

Prueba de Post Hoc con Tukey en Excel:

El objetivo de este análisis es comparar el nivel de consumo de helados Polito entre los estudiantes de la carrera de Software, TIC's y Contabilidad en la Universidad ESPE durante los últimos seis meses. Para esto se utilizó una muestra de diez y se ordeno en las diferentes carreras.

1. Organiza los datos de los tres grupos en columnas separadas.

Estudiantes	Software	TIC's	Contabilidad
1	89	83	67,5
2	65,5	83,7	56
3	75,5	70	10,5
4	70	50	70,5
5	85	20	10
6	70,5	65	55,9
7	72	75	64,5
8	66	80	60
9	68,5	20	10
10	74	78,5	20

2. Calcula de Anova de un factor.

ANOVA: Single Fac	tor							
DESCRIPTION					Alpha	0,05		
Group	Count	Sum	Mean	Variance	SS	Std Err	Lower	Upper
Software	10	736	73,6	60,6	545,4	6,71334906	59,8253455	87,3746545
TIC's	10	625,2	62,52	602,159556	5419,436	6,71334906	48,7453455	76,2946545
Contabilidad	10	424,9	42,49	689,312111	6203,809	6,71334906	28,7153455	56,2646545
ANOVA								
Sources	SS	df	MS	F	P value	F crit	RMSSE	Omega Sq
Between Groups	4972,66467	2	2486,33233	5,51671719	0,00979887	3,35413083	0,74274607	0,23142812
Within Groups	12168,645	27	450,690556					
Total	17141,3097	29	591,079644					

3. Cálculo de Tukey mediante la herramienta excel.

TUKEY HSD/k	RAMER		alpha	0,05					
group	mean	n	ss	df	q-crit				
Software	73,6	10	545,4						
TIC's	62,52	10	5419,436						
Contabilidad	42,49	10	6203,809						
		30	12168,645	27	3,506				
Q TEST									
group 1	group 2	mean	std err	q-stat	lower	upper	p-value	mean-crit	Cohen d
Software	TIC's	11,08	6,71334906	1,65044301	-12,457002	34,6170018	0,48252891	23,5370018	0,5219159
Software	Contabilidad	31,11	6,71334906	4,63405072	7,57299821	54,6470018	0,00785929	23,5370018	1,46541551
TIC's	Contabilidad	20,03	6,71334906	2,98360771	-3,5070018	43,5670018	0,10668165	23,5370018	0,9434996

4. Comparativa de valor p y valor alfa.

5. Conclusión

alfa > valor p			
Existen diferencias signific	ativas entre S	Software y Co	ntabilidad