Why put mechanics into food web studies?

Mehdi Cherif*, Sébastien Portalier[¶], Gregor Fussmann[¶], Michel Loreau[§], Danielle Wain[&], Russell Arnott[&]

^{*}Ecology and Environmental Science, Umeå University, Sweden

[¶]Biology Department, McGill University, Québec, Canada

[§]Centre for Biodiversity Theory and Modelling, CNRS, Moulis, France

[&]Department of Architecture and Civil Engineering, University of Bath, UK

Life!

Life?

Physical properties of exoplanets

- Radius
- Mass
- Radiation
- Surface t° (sometimes)
- Atmospheric composition (sometimes)
- Composition (inferred)

Earth as seen by an alien astronomer?

Light curves:

Figure 4 from Earth as an Exoplanet: A Two-dimensional Alien Map Siteng Fan et al. 2019 ApJL 882 L1 doi:10.3847/2041-8213/ab3a49

How much of Life's structure is determined by the physical properties of the habitat?

©Higham et al (2015)

How much of Life's structure is determined by the elemental properties of the habitat?

Analogy:

Everything?

Field: Biophysics

Morphological adaptations

Field: Biomechanics

Dispersal, movement

Field: Spatial/landscape/movement ecology

Fluid, resource movements

Field: Limnology/oceanography/hydroecology

Ecological interactions

Field: Trophic ecology

Expansion of the theory

Field: Ecomechanics

Expansion of the theory

Ecomechanics of food webs

How much of food webs' structure and dynamics is determined by the mechanical properties of species and habitats?

- Species richness
- Size spectrum
- Connectance
- Nestedness
- Interaction strengths

•

Mechanics:

Pros:

- Some "laws" and relationships are known
- and are general
- Traits are "easy" to measure
- Predict existing and potential food webs

Cons:

- Organisms are not particles.
- Physiology and evolution have to be accounted for

Luckinbill, 1973, Ecology

- Lab experiments
- Didinium nasutum feeding on Paramecium aurelia
- Viscosity of the medium manipulated by adding Methyl Cellulose:

Table 1. Comparison of the average swimming velocity of *P. aurelia* and *D. nasutum* for both Cerophyl medium and the Methyl Cellulose experimental medium

	Cerophyl only		Methyl Cellulose mixture	
	P. aurelia	D. nasutum	P. aurelia	D. nasutum
Mean time (seconds)	2.6	5.5	53.0	87.5
Standard deviation	1.13	2.40	35.57	44.09
Linear distance traversed	5000μ		2500μ	
Average velocity (μ/sec) 1	923	909	47.0	29.0

Luckinbill, 1973, Ecology

- Lab experiments
- Didinium nasutum feeding on Paramecium aurelia
- Viscosity of the medium manipulated by adding Methyl Cellulose:

Without methyl cellulose

Luckinbill, 1973, Ecology

- Lab experiments
- Didinium nasutum feeding on Paramecium aurelia
- Viscosity of the medium manipulated by adding Methyl Cellulose:

With methyl cellulose

Baird et al, 1999, 2007, 2010:

Size-resolved planktonic food web:

Baird et al, 1999, 2007, 2010:

Allometric relationships:

Baird et al, 1999, 2007, 2010:

Mechanistic functions:

Shape	Absorption cross-section for random orientation, \overline{aA} (m ²)	Reference
Sphere	$\pi r_1^2 \left(1 - \frac{2 \left(1 - (1 + 2 \overline{\gamma C} r_1) e^{-2 \overline{\gamma C} r_1} \right)}{(2 \overline{\gamma C} r_1)^2} \right)$	Kirk (1975b)
Spheroid	$\int_{0}^{\pi/2} \pi L v \cos \theta \left(1 - \frac{4}{\pi L v} \int_{0}^{s} \int_{0}^{L} e^{-2\overline{\gamma C}R} \sqrt{1 - \frac{Z^{2}}{s^{2}}} dX dZ \right) d\theta$	Kirk (1976)
$r_1 \ge r_2 \ge r_3$	$L = \sqrt{w^2 \cos^2 \theta + v^2 \sin^2 \theta}$ $s = v \sqrt{1 - \frac{X^2}{L^2}}$	
	$R = \frac{wv \sqrt{v^2 + w^2 \cot^2 \theta - X^2 \csc^2 \theta}}{\sin \theta (v^2 + w^2 \cot^2 \theta)}$ prolate spheroid $r_1 = w - r_2 = r_3 = v$	
	oblate spheroid $r_1 = r_2 = v$ $r_3 = w$	
Cylinder	$\int_{0}^{\pi/2} 2r_1 h \cos^2 \theta \left(1 - \frac{1}{r_1} \int_{0}^{r_1} e^{-2\overline{\gamma C} r_1 \sec \theta \sqrt{\left(1 - \frac{Z^2}{r_1^2}\right)}} dZ \right) d\theta$	Kirk (1976)

$$\left(\frac{\mathrm{d}P_{j}}{\mathrm{d}t}\right)_{sinking} = -\frac{gV_{j}\left(\rho_{j} - \rho_{water}\right)}{C_{D,j}vM}P_{j}$$

$$U_{swim,j,k} = \frac{U_{slow}^2 + 3U_{fast}^2}{3U_{fast}}$$

Baird et al, 1999, 2007, 2010:

Focus on simulation and ecosystem-level properties:

Baird et al, 1999, 2007, 2010:

Focus on accuracy and precision:

An ecosystem approach at heart

"Though the organisms may claim our prime interest, when we are trying to think fundamentally, we cannot separate them from their special environments, with which they form one physical system"

A. Tansley, 1937

Acknowledgements:

Michel Loreau

Gregor Fussmann

Lai Zhang

Russell Arnott

Sébastien Portalier

Acknowledgements:

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig