

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
8. Februar 2001 (08.02.2001)

(10) Internationale Veröffentlichungsnummer
WO 01/09148 A1

PCT

- (51) Internationale Patentklassifikation?: C07F 11/00, (74) Anwalt: MEYER, Thomas; BASF Aktiengesellschaft, 67056 Ludwigshafen (DE).
- (21) Internationales Aktenzeichen: PCT/EP00/07103
- (22) Internationales Anmeldedatum: 25. Juli 2000 (25.07.2000)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
199 35 592.4 2. August 1999 (02.08.1999) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): ELENAC GMBH [DE/DE]; 77694 Kehl (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): SCHOPF, Markus [DE/DE]; Albert-Blank-Straße 38, 65931 Frankfurt (DE). SUNDERMEYER, Joerg [DE/DE]; An den Steinbrüchen 7, 35041 Marburg-Michelbach (DE). KIEPK, Jennifer [DE/DE]; Marktstraße 18, 35037 Marburg (DE). RUFANOV, Konstantin A. [RU/DE]; G.-Hauptmann-Straße 14-16, 51379 Leverkusen (DE). HEITZ, Walter [DE/DE]; Am Schmidborn 5, 35274 Kirchhain (DE). PEUCKER, Uwe [DE/DE]; Espenhausen 23, 35091 Cölbe (DE).
- (81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A1

(54) Title: IMIDOCHROME COMPOUNDS CONTAINED IN CATALYST SYSTEMS FOR OLEFIN POLYMERISATION

WO 01/09148

(54) Bezeichnung: IMIDOCHROMVERBINDUNGEN IN KATALYSATORSYSTEMEN FÜR DIE OLEFINPOLYMERISATION

(57) Abstract: The present invention relates to catalyst system containing at least one imidochrome compound and at least one activation compound. This invention also relates to imidochrome compounds, to a method for olefin polymerisation and to methods for producing said imidochrome compounds.

(57) Zusammenfassung: Katalysatorsysteme, enthaltend mindestens eine Imidochromverbindung und mindestens eine Aktivatorverbindung, Imidochromverbindungen, ein Verfahren zur Polymerisation von Olefinen, sowie Verfahren zur Herstellung von Imidochromverbindungen.

Imidochromverbindungen in Katalysatorsystemen für die Olefin-polymerisation

5 Beschreibung

Gegenstand der vorliegenden Erfindung sind Katalysatorsysteme, die Imidochromverbindungen enthalten, neue Imidochromkomplexe, ein Verfahren zur Polymerisation von Olefinen, sowie Verfahren 10 zur Herstellung von Imidochromkomplexen.

Viele der Katalysatoren, die zur Polymerisation von α -Olefinen eingesetzt werden, basieren auf immobilisierten Chromoxiden (siehe z. B. Kirk-Othmer, "Encyclopedia of Chemical Technology", 15 1981, Vol.16, S. 402). Diese ergeben i.a. Ethylenhomo- und Copolymerne mit hohen Molekulargewichten, sind jedoch relativ unempfindlich gegenüber Wasserstoff und erlauben somit keine einfache Kontrolle des Molekulargewichts. Demgegenüber lässt sich durch Verwendung von Bis(cyclopentadienyl)- (US 3,709,853), 20 Bis(indenyl)- oder Bis(fluorenyl)chrom (US 4,015,059), das auf einen anorganischen, oxidischen Träger aufzogen ist, das Molekulargewicht von Polyethylen durch Zugabe von Wasserstoff einfach steuern.

25 Wie bei den Ziegler-Natta-Systemen ist man auch bei den Chromverbindungen seit kurzem auf der Suche nach Katalysatorsystemen mit einem einheitlich definierten, aktiven Zentrum, sogenannten Single-Site-Katalysatoren. Durch gezielte Variation des Ligandgerüsts sollen Aktivität, Copolymerisationsverhalten des Katalysa- 30 tors und die Eigenschaften der so erhaltenen Polymere einfach verändert werden können.

Die Darstellung von Bis(tert.butylimido)bis(trimethylsiloxy)chrom durch Umsetzung von Dioxochromdichlorid mit Tert. butyl(trimethylsilyl)amin wurde von W. Nugent et al. in Inorg. Chem. 1980, 35 19, 777-779 beschrieben. Diaryl-Derivate dieser Verbindung Bis(tert.butylimido)di(aryl)chrom wurden von G. Wilkinson et al. in J. Chem. Soc. Dalton Trans. 1988, 53-60 dargestellt. Die entsprechenden Dialkyl-Komplexe wurden erstmals von C. Schaverien et 40 al. beschrieben (Organomet. 9 (1990), 774-782). Sie konnten auch eine Monoimidochromverbindung Tert.butylimido(oxo)chromdichlorid durch Umsetzung von Tert.butylimido-bis(trimethylsiloanolato)oxochrom mit Phosphorpentachlorid isolieren (W. Nugent, Inorg. Chem. 1983, 22, 965-969).

EP-A-641804 beschreibt die Verwendung von Bis(alkylimido)- und Bis(arylimido)chrom(VI) Komplexen zur Polymerisation von Olefinen. In EP-A-816384 werden diese Bis(imido)chrom(VI) Komplexe auf Polyaminostyrol geträgt zur Polymerisation von Ethylen und Copolymerisation von Ethylen mit höheren α -Olefinen verwendet. Die Darstellung der Bis(arylimido)chromdichloride ist hierbei ein dreistufiger Syntheseweg, da die Umsetzung von Dioxochromdichlorid mit N-Trimethylsilylanilinen nicht zu Bis(arylimido)chromdichlorid führt.

10

G. Wilkinson et al. konnten Tert.butylimidochrom(V)trichlorid und dessen Donor-koordinierte Derivate darstellen (J. Chem. Soc. Dalt. Trans. 1991, 2051-2061).

15

Aufgabe der vorliegenden Erfindung bestand nun darin, neue Katalysatorsysteme zu finden, die sich einfach modifizieren lassen und zur Polymerisation von α -Olefinen geeignet sind.

Weiterhin bestand die Aufgabe darin, einen verbesserten Syntheseweg zur Darstellung von Bis(imido)chrom(VI)verbindungen zu finden.

Demgemäß wurden Katalysatorsysteme gefunden, enthaltend

(A) mindestens eine Imidochromverbindung, erhältlich durch ein Verfahren, welches folgende Verfahrensschritte beinhaltet:

(a) Kontaktieren einer Dioxochromverbindung mit einer N-Sulfinylverbindung $R^1-N=S=O$ oder $R^2-N=S=O$, worin die Variablen folgende Bedeutung haben:

R^1 C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der organische Rest R^1 auch inerte Substituenten tragen kann, SiR^3_3 ,
 $R^3C=NR^4$, $R^3C=O$, $R^3C=O(OR^4)$, $R^3C=S$, $(R^3)_2P=O$, $(OR^3)_2P=O$, SO_2R^3 , $R^3R^4C=N$, NR^3R^4 oder BR^3R^4 ,
 R^3, R^4 unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R^3 und R^4 auch inerte Substituenten tragen können.

45

(b) Kontaktieren des so erhaltenen Reaktionsproduktes mit Chlor, wenn eine Sulfinylverbindung $R^1-N=S=O$ eingesetzt wurde und für den Fall, daß eine N-Sulfinylverbindung $R^2-N=S=O$ eingesetzt wurde, mit Chlor oder Sulfurylchlorid oder mit keinem weiteren Reagens,

5

(B) mindestens eine Aktivatorverbindung

und

10

(C) gegebenenfalls einen oder mehrere weitere für die Polymerisation von Olefinen übliche Katalysatoren.

Weiterhin wurden Imidochromverbindungen der allgemeinen Formel II,

20

gefunden, worin die Variablen folgende Bedeutung haben:

25 R²

$R^3C=NR^4$, $R^3C=O$, $R^3C=O(OR^4)$, $R^3C=S$, $(R^3)_2P=O$, $(OR^3)_2P=O$,

x

SO_2R^3 , $R^3R^4C=N$, NR^3R^4 oder BR^3R^4 , unabhängig voneinander Fluor, Chlor, Brom, Jod, NR^5R^6 ,

$NP(R^5)_3$, OR^5 , $OSi(R^5)_3$, SO_3R^5 , $OC(O)R^5$, β -Diketonat,

Sulfat, Dicarboxylate, Dialkoholate, BF_4^- , PF_6^- , oder

30

sperrige schwach oder nicht koordinierende Anionen,

 R^3-R^6

unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R^3 bis R^6 auch inerte Substituenten tragen können,

35

m 1 für dianionische X, 2 für monoanionische X.

Auch wurden Imidochromverbindungen der allgemeinen Formel III

40

45

gefunden, worin die Variablen folgende Bedeutung haben:

4

R² R³C=NR⁴, R³C=O, R³C=O(OR⁴), R³C=S, (R³)₂P=O, (OR³)₂P=O,
SO₂R³, R³R⁴C=N, NR³R⁴ oder BR³R⁴,

X unabhängig voneinander Fluor, Chlor, Brom, Jod, NR⁵R⁶,
NP(R⁵)₃, OR⁵, OSi(R⁵)₃, SO₃R⁵, OC(O)R⁵, β-Diketonat,

5 Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder
sperrige schwach oder nicht koordinierende Anionen,

R³-R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl,
C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest
und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser
10 an ein Kohlenstoffatom gebunden ist, wobei die organi-
schen Reste R³ bis R⁶ auch inerte Substituenten tragen
können,

m 1 für dianionische X, 2 für monoanionische X

L neutraler Donor,

15 n 0 bis 3.

Des weiteren wurde ein Verfahren zur Herstellung einer Imido-
chromverbindung der allgemeinen Formel IV gefunden,

25 worin die Variablen folgende Bedeutung haben:

R¹ C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1
bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Aryl-
rest, wobei der organische Rest R¹ auch inerte
30 Substituenten tragen kann, SiR³₃,

Z unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl,
C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest
und 6-20 C-Atomen im Arylrest, Fluor, Chlor, Brom, Jod,
NR⁵R⁶, NP(R⁵)₃, OR⁵, OSi(R⁵)₃, SO₃R⁵, OC(O)R⁵, β-Diketonat,

35 Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder
sperrige schwach oder nicht koordinierende Anionen,

R³, R⁵, R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl,
C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest
und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser
40 an ein Kohlenstoffatom gebunden ist, wobei die organi-
schen Reste R³, R⁵ und R⁶ auch inerte Substituenten tra-
gen können,

p 1 für dianionische Z, 2 für monoanionische Z,

45 dadurch gekennzeichnet, daß man eine Dioxochromverbindung mit
einer N-Sulfinylverbindung R¹-NSO umsetzt.

Weiterhin wurde ein Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel I gefunden

worin die Variablen folgende Bedeutung haben:

- 10 X unabhängig voneinander Fluor, Chlor, Brom, Jod, NR^5R^6 , $\text{NP}(\text{R}^5)_3$, OR^5 , $\text{OSi}(\text{R}^5)_3$, SO_3R^5 , $\text{OC(O)}\text{R}^5$, β -Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF_4^- , PF_6^- , oder sperrige schwach oder nicht koordinierende Anionen.
- 15 R¹ C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der organische Rest R¹ auch inerte Substituenten tragen kann, SiR^3_3 ,
- R³, R⁵, R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl,
- 20 C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R³, R⁵ und R⁶ auch inerte Substituenten tragen können,
- 25 L neutraler Donor,
- n 0 bis 3,
- m 1 für dianionische X, 2 für monoanionische X

dadurch gekennzeichnet, daß man eine Imidochromverbindung der 30 allgemeinen Formel V

worin die Variablen folgende Bedeutung haben:

- 40 R¹ C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der organische Rest R¹ auch inerte Substituenten tragen kann, SiR^3_3 ,
- X unabhängig voneinander Fluor, Chlor, Brom, Jod, NR^5R^6 , $\text{NP}(\text{R}^5)_3$, OR^5 , $\text{OSi}(\text{R}^5)_3$, SO_3R^5 , $\text{OC(O)}\text{R}^5$, β -Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF_4^- , PF_6^- , oder sperrige schwach oder nicht koordinierende Anionen,

6

R^3, R^5, R^6 unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R^3 , R^5 und R^6 auch inerte Substituenten tragen können,

5 m 1 für dianionische X, 2 für monoanionische X,

mit Chlor umsetzt.

10

Auch wurde ein Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel III gefunden,

15

- R^2 $R^3C=NR^4$, $R^3C=O$, $R^3C=O(OR^4)$, $R^3C=S$, $(R^3)_2P=O$, $(OR^3)_2P=O$,
 20 SO_2R^3 , $R^3R^4C=N$, NR^3R^4 oder BR^3R^4 ,
- X unabhängig voneinander Fluor, Chlor, Brom, Jod, NR^5R^6 ,
 $NP(R^5)_3$, OR^5 , $OSi(R^5)_3$, SO_3R^5 , $OC(O)R^5$, β -Diketonat,
 25 Sulfat, Dicarboxylate, Dialkoholate, BF_4^- , PF_6^- , oder sperrige schwach oder nicht koordinierende Anionen,
- R^3-R^6 unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R^3 bis R^6 auch inerte Substituenten tragen
 30 können,
- L neutraler Donor,
- n 0 bis 3,
- m 1 für dianionische X, 2 für monoanionische X,
- 35 dadurch gekennzeichnet, daß man eine Dioxochromverbindung mit einer N-Sulfinylverbindung $R^2-N=S=O$ in Gegenwart von Chlor oder Sulfurylchlorid umsetzt.

Auch wurde ein Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel VI gefunden

45

7

5

worin die Variablen folgende Bedeutung haben:

10

R^2 $R^3C=NR^4$, $R^3C=O$, $R^3C=O(OR^4)$, $R^3C=S$, $(R^3)_2P=O$, $(OR^3)_2P=O$,
 SO_2R^3 , $R^3R^4C=N$, NR^3R^4 oder BR^3R^4 ,

15

Z unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl,
 C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest
und 6-20 C-Atomen im Arylrest, Fluor, Chlor, Brom, Jod,
 NR^5R^6 , $NP(R^5)_3$, OR^5 , $OSi(R^5)_3$, SO_3R^5 , $OC(O)R^5$, β -Diketonat,
Sulfat, Dicarboxylate, Dialkoholate, BF_4^- , PF_6^- , oder
sperrige schwach oder nicht koordinierende Anionen,

R^3-R^6 unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl,

20

C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest
und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser
an ein Kohlenstoffatom gebunden ist, wobei die organi-
schen Reste R^3 bis R^6 auch inerte Substituenten tragen
können,

25

p 1 für dianionische Z , 2 für monoanionische Z ,

dadurch gekennzeichnet, daß man eine Dioxochromverbindung mit
einer N-Sulfinylverbindung R^2-NSO umsetzt.

30

Des weiteren wurde ein Verfahren zur Polymerisation von Olefinen
bei Temperaturen im Bereich von 0 bis 300°C und bei Drücken von 1
bis 4000 bar gefunden, dadurch gekennzeichnet, daß man die
Polymerisation in Anwesenheit eines erfindungsgemäßen
Katalysatorsystems durchführt.

35

Das Verfahren zur Herstellung der Chromkomplexe kann verschieden-
ste Dioxochromverbindungen als Ausgangsstoffe einsetzen. Wichtig
ist das Vorhandensein der beiden Oxogruppen. Weitere Liganden in
der Chromausgangsverbindung können unter anderem die für X und Z
40 angeführten, mono- und dianionischen Liganden sein. Monoanioni-
sche Liganden sind z.B. Halogene, wie z.B. Fluor, Chlor, Brom und
Jod, Amide, z.B. Dimethylamid, Diethylamid und Pyrrolidin,
Alkoholat, z.B. Methanolat, Ethanolat, Isopropanolat, Butanolat,
Phenolat und Biphenolat, Carboxylat, z.B. Acetat und Trifluor-
45 acetat, β -Diketonat, z.B. Acetylacetonat, Dibenzoylmethanat,
1,1,1-Trifluoropentandionat und 1,1,1,5,5,-Hexafluoropentadio-
nat, Sulfonat, z.B. Toluolsulfonat und Trifluormethansulfonat,

C_1-C_{20} -Alkyl, insbesondere C_1-C_{20} -Alkylsilyle, wie z.B. Methylentrimethylsilyl, Bistrimethylsilylmethyl, C_6-C_{20} -Aryl, wie z.B. Mesityl oder schwach, bzw. nicht koordinierende Anionen. Dianionische Liganden sind z.B. Sulfat und chelatisierende Dicarboxy-

5 late, wie z.B. Oxalat, Fumarat, Malonat oder Succinat und Dialkoholate wie z.B. Glykolat. Es können ein oder mehrere mono-, bzw. dianionische Liganden an die Dioxochromverbindung gebunden sein sein (siehe auch Compr. Coord. Chem. Vol. 3, G. Wilkinson, Pergamon Press 1987, First Edition, Kap. 35.6.1.3. S. 935 u. Kap.

10 35.7.1.-35.7.2. S. 938-941). Zusätzlich können an die Chrom-Edukte auch ein oder mehrere neutrale Donoren L koordiniert sein. Die Donormoleküle besitzen in der Regel ein Heteroatom der 15. oder 16. Gruppe des Periodensystems. Bevorzugt sind Amine, z.B. Trimethylamin, Dimethylamin, N,N-Dimethylanilin oder Pyridin,

15 Ether, z.B. Tetrahydrofuran, Diethylether, Dibutylether, Dimethoxyethan oder Dimethyldiethylethenglykol, Thioether, z.B. Dimethylsulfid, Ester, wie z.B. Essigsäuremethylester, Essigsäureethyl-ester oder Ameisensäureethylester, Ketone, z.B. Aceton, Benzophenon oder Acrolein, Schiffsche Basen, α -Diimine, Phosphine, wie

20 z.B. Trimethylphosphin, Triethylphosphin oder Triphenylphosphin, Phosphite, wie z.B. Trimethylphosphit oder Triethylphosphit, Phosphinoxide, Phosphorsäureester oder -amide, wie z.B. Hexamethylphosphorsäuretriamid oder N-Oxide. Die eingesetzten Chromverbindungen können in den verschiedensten Oxidationsstufen vor-

25 liegen, bevorzugt von +4 bis +6 und ganz besonders bevorzugt in der Oxidationsstufe +6. Bevorzugte Dioxochromverbindungen sind Dioxochromdihalogenide und ganz besonders bevorzugt ist Dioxochromdichlorid.

30 Die eingesetzten N-Sulfinylverbindungen sind für $R^1-N=S=O$ z.B. N-Sulfinylamine und für $R^2-N=S=O$ z.B. N-Sulfinylcarbamidine, N-Sulfinylcarbamide, N-Sulfinylcarbamate, N-Sulfinylcarboxamide, N-Sulfinylthiocarboxylamide, N-Sulfinylphosphonamide oder N-Sulfinylsulfonamide. Die N-Sulfinylverbindungen werden meist

35 problemlos und in der Regel mit hoher Ausbeute aus NH_2 -Gruppen enthaltenden Verbindungen und Sulfinyllierungsmitteln wie Thionylchlorid, Schwefeldioxid oder mit Hilfe anderer N-Sulfinylverbindungen dargestellt (Z. Chem. 22, (1982), 237-245).

40 Die Reste R^3 und R^4 sind C_1-C_{20} -Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Hepptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C_6-C_{10} -Arylgruppe

45 als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopantan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclonanon oder Cyclododekan, C_2-C_{20} -Alkenyl, wobei das Alkenyl linear, cyclisch

oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooctadienyl, C₆-C₂₀-Aryl, wobei der Arylrest

5 durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substi-

10 tuiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei R³ bis R⁴ zu einem 5- oder 6-gliedrigen Ring verbunden sein können und/oder auch inerte Substituenten wie Halogene, wie z.B. Fluor, Chlor oder Brom tragen. Bevorzugt Reste R³ und R⁴ sind Wasserstoff

15 (falls dieser an ein Kohlenstoffatom gebunden ist), Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Vinyl, Allyl, Benzyl, Phenyl, ortho oder para substituierte Alkyl oder Chlоро, bzw. Bromosubstituierte Phenyle, ortho, ortho oder ortho, para Dialkyl- oder

20 Dichloro, bzw. Dibromosubstituierte Phenyle, Trialkyl- oder Trichlorosubstituierte Phenyle, Fluor substituierte Phenyle, Naphthyl, Biphenyl und Anthranyl. Besonders bevorzugte Reste R³ und R⁴ sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Allyl,

25 Benzyl, Phenyl, 2-Chlorphenyl, 2-Methylphenyl, 2,6-Dimethylphenyl, 2,4-Dimethylphenyl, 2,6-Diisopropylphenyl, 2,6-Dichlorophenyl, 2,4-Dichlorophenyl, 2,6-Dibromophenyl, 2,4-Dibromophenyl, 2,4,6-Trimethylphenyl, 2,4,6-Trichlorophenyl und Pentafluorophenyl.

30 Der Rest R¹ kann einerseits ein C-organischer Rest, wie oben für R³ und R⁴ beschrieben oder ein Si-organischer Rest sein. Bei den Si-organischen Substituenten SiR³₃ können gegebenenfalls auch zwei R³ zu einem 5- oder 6-gliedrigen Ring verbunden sein und die drei Reste R³ sind unabhängig voneinander auswählbar, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Als Si-organische Substituenten kommen besonders Trialkylsilyl-Gruppen mit 1 bis 10 C-Atomen im Alkylrest in Betracht, insbesondere Trimethylsilyl-Gruppen. Bevorzugter Rest R¹ ist Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Vinyl, Allyl, Benzyl, Phenyl, ortho oder para substituierte Alkyl oder Chlоро, bzw. Bromosubstituierte Phenyle, ortho, ortho oder ortho, para Dialkyl- oder Dichloro,

40 bzw. Dibromosubstituierte Phenyle, Trialkyl- oder Trichlorosubstituierte Phenyle, Fluor substituierte Phenyle, Naphthyl, Biphenyl und Anthranyl. Besonders bevorzugter Rest R¹ ist Benzyl,

45

10

Phenyl, 2-Chlorphenyl, 2-Methylphenyl, 2,6-Dimethylphenyl,
2,4-Dimethylphenyl, 2,6-Diisopropylphenyl, 2,6-Dichlorphenyl,
2,4-Dichlorphenyl, 2,6-Dibromophenyl, 2,4-Dibromophenyl,
2,4,6-Trimethylphenyl, 2,4,6-Trichlorphenyl, Pentafluorophenyl,

5 Naphthyl und Anthranyl.

R² kann eine Imino-, Isocyanid-, Formyl-, Oxo-, Thioxo, Alkoxy-carbonyl, Aryloxycarbonyl, Carbamoyl-, Phosphinoyl-, Dialkoxy-, bzw. -aryloxyphosphoryl, Sulfonyl-, Dialkyl, bzw. -aryl amino- 10 oder Dialkyl-, bzw. -aryl boryl- Gruppe sein. Bevorzugte Gruppen sind Sulfonyl und Oxo, insbesondere Arylsulfonyle, wie z.B. Toluolsulfonyl, Benzolsulfonyl, p-Trifluormethylbenzolsulfonyl oder 2,6-Diisopropylbenzolsulfonyl und Aryloxo, wie z.B. Benzoyl, 2-Methylbenzoyl, 2,6-Dimethylbenzoyl, 2,6-Diisopropylbenzoyl und 15 2,4,6-Trimethylbenzoyl.

Imidochromverbindungen sind im folgenden sowohl Mono- als auch Bisimidochromverbindungen.

20 Die Reaktion zur Darstellung der Imidochromverbindung (A) wird in der Regel unter Inertgasatmosphäre, mit z.B. Stickstoff oder Argon als Inertgas durchgeführt. Reaktionsschritt a) kann bei Temperaturen zwischen 0 bis 150°C, bevorzugt zwischen 10 und 100°C durchgeführt werden. Als Lösungsmittel finden vor allem

25 aprotische Solventien Verwendung, wie Ether, z.B. Tetrahydrofuran, Diethylether, Dibutylether, 1,2-Dimethoxyethan oder Diethylenglykoldimethylether, Alkane, z.B. Pentan, n-Hexan, iso-Hexan, n-Heptan, n-Oktan, Cyclohexan oder Dekalin, Aromaten, z.B. Benzol, Toluol oder Xylool oder chlorierte Kohlenwasserstoffe wie 30 Methylenchlorid, Chloroform, Tetrachlorkohlenstoff oder Dichlorethan. Auch Lösungsmittelgemische können verwendet werden. Bevorzugt werden Alkane und/oder chlorierte Kohlenwasserstoffe verwendet und ganz besonders bevorzugt n-Oktan und/oder Tetrachlorkohlenstoff.

35 Das Reaktionsprodukt aus Schritt a) kann dabei entweder mit oder ohne Zwischenreinigung oder Isolierung dem zweiten Reaktionsschritt unterworfen werden. Die beiden Reaktionsschritte können auch gleichzeitig in einer Stufe durchgeführt werden. Bevorzugt 40 wird der Imidochromkomplex mit R¹ aus Reaktionsschritt a) vor Schritt b) isoliert. Für Imidochromkomplexe mit R² ist Schritt b) optional. Der R²-Imidochromkomplex kann also auch direkt, ohne mit Chlor oder Sulfurylchlorid kontaktiert zu werden mit dem Aktivator vermischt und in der Polymerisation eingesetzt werden.

45 Die Reaktionsprodukte aus a) mit R² können aber auch mit Chlor oder Sulfurylchlorid kontaktiert werden und dann erst mit der Ak-

11

tivatorverbindung vermischt werden. Bevorzugt wird für R² Schritt a) und b) gleichzeitig, als Eintopf-Reaktion ausgeführt.

Das Verhältnis der Dioxochromverbindung zu N-Sulfinylverbindung 5 liegt zwischen 1:1 und 1:10, Bevorzugt zwischen 1:1 und 1:3 und besonders bevorzugt zwischen 1:1 und 1:2.5.

Das Verhältnis der Dioxochromverbindung zu N-Sulfinylverbindung 10 liegt zwischen 1:1 und 1:10, Bevorzugt zwischen 1:1 und 1:3 und besonders bevorzugt zwischen 1:1 und 1:2.5.

Reaktionsschritt b) kann in Analogie zu der Vorschrift von G. Wilkinson et al. J. Chem. Soc. Dalt. Trans. 1991, 2051-2061 durchgeführt werden, unter Verwendung des Reaktionsproduktes nach 15 a) an Stelle von Bis(tert.butylimido)chromdichlorid. Für R² ist als Chlorübertragungsreagenz zusätzlich auch Sulfurylchlorid verwendbar. Das Sulfurylchlorid kann im Überschuß zur gebildeten Verbindung aus Schritt a) eingesetzt werden. Das Verhältnis Sulfurylchlorid zu eingesetzter Dioxochromverbindung kann zwischen 20 1:1 und 100:1 liegen, bevorzugt liegt es zwischen 1:1 und 10:1 und besonders bevorzugt zwischen 1:1 und 3:1. Die Reaktion wird bevorzugt in Tetrachlorkohlenstoff durchgeführt. Die Reaktionstemperatur kann dabei zwischen 0°C und 100°C betragen, bevorzugt liegt sie zwischen 10°C und 60°C und ganz besonders bevorzugt zwischen 20°C und 60°C.

Besonders bevorzugt sind Katalysatorsysteme, in welchen Imidochromverbindungen der allgemeinen Formel I

35 verwendet werden, worin die Variablen folgende Bedeutung haben:

X unabhängig voneinander Fluor, Chlor, Brom, Jod, NR⁵R⁶, NP(R⁵)₃, OR⁵, OSi(R⁵)₃, SO₃R⁵, OC(O)R⁵, β-Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder

40 sperrige schwach oder nicht koordinierende Anionen, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der organische Rest R¹ auch inerte Substituenten tragen kann, SiR³₃,

45 R³, R⁵, R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser

12

an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R³, R⁵ und R⁶ auch inerte Substituenten tragen können,

- L neutraler Donor,
5 n 0 bis 3,
m 1 für dianionische X, 2 für monoanionische X.

R¹ und dessen bevorzugte Ausführungsformen wurden schon weiter oben beschrieben. Die Beschreibung der Reste R³, R⁵ und R⁶ ist 10 gleich wie für R³ und R⁴ weiter oben näher ausgeführt.

Die Substituenten X ergeben sich durch die Auswahl der entsprechenden Chromausgangsverbindungen, die zur Synthese der Chromkomplexe verwendet werden. Als Substituenten X kommen insbesondere die Halogene wie Fluor, Chlor, Brom oder Jod und darunter insbesondere Chlor in Betracht. Als weitere Liganden X sollen nur exemplarisch und keineswegs abschließend Trifluoracetat, BF₄⁻, PF₆⁻ sowie schwach bzw. nicht koordinierende Anionen (siehe z.B. S. Strauss in Chem. Rev. 1993, 93, 927-942) wie B(C₆F₅)₄⁻ genannt 20 werden.

Auch Amide, Alkoholate, Sulfonate, Carboxylate und β-Diketonate sind besonders geeignet. Durch Variation der Reste R⁵ und R⁶ können z.B. physikalische Eigenschaften wie Löslichkeit fein einge-25 stellt werden. Bevorzugt werden C₁-C₁₀-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, sowie Vinyl, Allyl, Benzyl und Phenyl als Reste R⁵ und R⁶ verwendet. Manche dieser substituierten Liganden X werden ganz besonders bevorzugt verwendet, da sie aus billigen und einfach 30 zugänglichen Ausgangsstoffen erhältlich sind. So ist eine besonders bevorzugte Ausführungsform, wenn X für Dimethylamid, Methanolat, Ethanolat, Isopropanolat, Phenolat, Naphtholat, Triflat, p-Toluolsulfonat, Acetat oder Acetylacetonat steht. Auch die dianionische Liganden, wie sie weiter oben näher beschrieben 35 sind, können eingesetzt werden. Ganz besonders bevorzugt ist X Chlor und m gleich 2. Die Benennung der Liganden X als Anionen beinhaltet keine Festlegung welcher Art die Bindung zum Übergangsmetall M ist. Ist X z.B. ein nicht oder schwach koordinierendes Anion, so ist die Wechselwirkung zwischen dem Metall M und 40 dem Liganden X eher elektrostatischer Natur. Im Falle z.B. für X gleich Alkyl ist die Bindung dagegen kovalent. Die verschiedenen Arten von Bindungen sind dem Fachmann bekannt.

Auch der Donor L wurde weiter oben schon beschrieben, wobei n der 45 Anzahl an neutralen Donormolekülen entspricht.

Die Imidochromverbindung I kann monomer oder dimer, aber auch polymer sein. Ist sie dimer oder polymer, so können ein oder mehrere Liganden am Chrom - dies können X, L oder auch die Imido-Gruppe sein - zwei Chromzentren verbrücken.

5

Bevorzugte Imidochromkomplexe der Formel I bzw. III sind:

Methylimidochromtrichlorid, Ethylimidochromtrichlorid, n-Propylimidochromtrichlorid, iso-Propylimidochromtrichlorid, n-Butylimidochromtrichlorid, iso-Butylimidochromtrichlorid, tert.-Butylimidochromtrichlorid, n-Pentylimidochromtrichlorid, n-Hexylimidochromtrichlorid, n-Heptylimidochromtrichlorid, n-Octylimidochromtrichlorid, Allylimidochromtrichlorid, Benzylimidochromtrichlorid, Phenylimidochromtrichlorid, Naphthylimidochromtrichlorid,
10 Biphenylimidochromtrichlorid, Anthranylimidochromtrichlorid, 2-Chlorphenylimidochromtrichlorid, 2-Methylphenylimidochromtrichlorid, 2,6-Dimethylphenylimidochromtrichlorid, 2,4-Dimethylphenylimidochromtrichlorid, 2,6-Diisopropylphenylimidochromtrichlorid, 2,6-Dichlorphenylimidochromtrichlorid, 2,4-Dichlorphenylimidochromtrichlorid, 2,6-Dibromophenylimidochromtrichlorid, 2,4-Dibromo-
15 phenylimidochromtrichlorid, 2,4,6-Trimethylphenylimidochromtrichlorid, 2,4,6-Trichlorphenylimidochromtrichlorid, Pentafluorophenylimidochromtrichlorid, Trifluormethylsulfonylimidochromtrichlorid, Toluolsulfonylimidochromtrichlorid, Phenylsulfonylimidochromtrichlorid, p-Trifluormethylphenylsulfonylimidochromtrichlorid oder 2,6-Diisopropylphenylsulfonylimidochromtrichlorid. Formylimidochromtrichlorid, Acylimidochromtrichlorid, Benzoylimidochromtrichlorid, Naphthoylimidochromtrichlorid, Anthra-
20 noylimidochromtrichlorid, 2-Chlorbenzoylimidochromtrichlorid,
25 2-Methylbenzoylimidochromtrichlorid, 2,6-Dimethylbenzoylimidochromtrichlorid, 2,4-Dimethylbenzoylimidochromtrichlorid, 2,6-Diisopropylbenzoylimidochromtrichlorid, 2,6-Dichlorbenzoylimidochromtrichlorid, 2,4-Dichlorbenzoylimidochromtrichlorid, 2,6-Dibromobenzoylimidochromtrichlorid, 2,4-Dibromobenzoylimidochrom-
30 trichlorid, 2,4,6-Trimethylbenzoylimidochromtrichlorid, 2,4,6-Trichlorbenzoylimidochromtrichlorid oder Pentafluorobenzoylimidochromtrichlorid.
35

Die erfindungsgemäßen Katalysatorsysteme enthalten des weiteren einen Aktivator, die Komponente (B), die mit dem Chromkomplex in Kontakt gebracht wird. Als Aktivatorverbindungen kommen beispielsweise solche vom Alumoxantyp (oder Aluminoxan) in Betracht, insbesondere Methylalumoxan MAO. Alumoxane werden z.B. durch kontrollierte Addition von Wasser oder wasserhaltigen Substanzen zu Alkylaluminiumverbindungen, insbesondere Trimethylaluminium, hergestellt (z.B. US 4,404,344). Als Co-Katalysator geeignete Alumoxan-Zubereitungen sind kommerziell erhältlich. Es

14

wird angenommen, daß es sich hierbei um eine Mischung von cyclischen und linearen Verbindungen handelt. Die cyclischen Alumoxane können durch die Formel $(R^7AlO)_s$ und die linearen Aluminoxane durch die Formel $R^7(R^7AlO)_sAlR^7_2$ zusammengefaßt werden, wobei s 5 den Oligomerisationsgrad angibt und eine Zahl von ungefähr 1 bis 50 ist. Vorteilhafte Alumoxane enthalten im wesentlichen Alumoxan-Oligomere mit einem Oligomerisationsgrad von etwa 2 bis 30 und R^7 ist bevorzugt ein C_1-C_6 -Alkyl und besonders bevorzugt Methyl, Ethyl, Butyl oder Isobutyl.

10

Neben den Alumoxanen können als Aktivatorkomponenten auch solche eingesetzt werden, wie sie in der sogenannten kationischen Aktivierung der Metallocen-Komplexe Verwendung finden. Derartige Aktivatorkomponenten sind z.B. aus EP-B-0468537 und aus 15 EP-B-0427697 bekannt. Insbesondere können als solche Aktivatorverbindungen (B) Borane, Boroxine oder Borate, wie z. B. Trialkylboran, Triarylboran, Trimethylboroxin, Dimethylaniliniumtetraarylborat, Trityltetraarylborat, Dimethylaniliniumboratabenzole oder Tritylboratabenzole (siehe WO-A-97/36937) eingesetzt werden. Besonders bevorzugt werden Borane oder Borate eingesetzt, 20 welche mindestens zwei perfluorierte Arylreste tragen.

Auch Aktivatorverbindungen mit stärker oxidierenden Eigenschaften sind einsetzbar, wie z.B. Silberborate, insbesondere Silbertetrakis pentafluorophenylborat oder Ferroceniumborate, insbesondere Ferroceniumtetrakis pentafluorophenylborat oder Ferroceniumtetraphenylborat.

Weiterhin können als Aktivatorkomponente Verbindungen wie Aluminiumalkyle, insbesondere Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Tributylaluminium, Dimethylaluminiumchlorid, Dimethylaluminiumfluorid, Methylaluminiumdichlorid, Methylaluminiumsesquichlorid, Diethylaluminiumchlorid oder Aluminiumtrifluorid eingesetzt werden. Auch die Hydrolyseprodukte von 30 Aluminiumalkylen mit Alkoholen können eingesetzt werden (siehe z.B. WO-A-95/10546).

Als Aktivatorverbindungen können des weiteren auch Alkylverbindungen von Lithium, Magnesium oder Zink verwendet werden wie 40 z.B. Methylmagnesiumchlorid, Methylmagnesiumbromid, Ethylmagnesiumchlorid, Ethylmagnesiumbromid, Butylmagnesiumchlorid, Phenylmagnesiumchlorid, Dimethylmagnesium, Diethylmagnesium, Dibutylmagnesium, Methylolithium, Ethyllithium, Methylzinkchlorid, Dimethylzink oder Diethylzink.

15

- Besonders bevorzugt sind Katalysatorsysteme in denen die Aktivatorverbindung (B) aus der folgenden Gruppe ausgewählt ist:
Aluminoxan, Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Dimethylaluminiumchlorid, Diethylaluminiumchlorid, Methylaluminiumsesquichlorid, Dimethylaniliniumtetrakis(pentafluorophenyl)borat, Trityltetrakis(pentafluorophenyl)borat oder Trispentafluorophenylboran.
- 10 Manchmal ist es wünschenswert, eine Kombination von verschiedenen Aktivatoren zu verwenden. Dies ist z.B. bei den Metallocenen bekannt, bei denen Borane, Boroxine (WO-A-93/16116) und Borate oft in Kombination mit einem Aluminiumalkyl eingesetzt werden. Generell ist auch eine Kombination von verschiedenen Aktivatorkomponenten mit den erfindungsgemäßen Chromkomplexen möglich.

Die Menge der zu verwendenden Aktivatorverbindungen hängt von der Art des Aktivators ab. Generell kann das Molverhältnis Chromkomplex (A) zu Aktivatorverbindung (B) von 1:0.1 bis 1:10000 betragen, bevorzugt werden 1:1 bis 1:2000. Das Molverhältnis von Chromkomplex (A) zu Dimethylaniliniumtetrakis(pentafluorophenyl)borat, Trityltetrakis(pentafluorophenyl)borat oder Trispentafluorophenylboran liegt bevorzugt zwischen 1:1 und 1:20, und besonders bevorzugt zwischen 1:1 und 1:10, zu Methylaluminoxan bevorzugt zwischen 1:1 und 1:2000 und besonders bevorzugt zwischen 1:10 und 1:1000. Da viele der Aktivatoren, wie z.B. Aluminiumalkyle gleichzeitig zur Entfernung von Katalysatorgiften verwendet werden (sogenannte scavenger), ist die eingesetzte Menge auch von der Reinheit der übrigen Einsatzstoffe abhängig. Der Fachmann kann jedoch durch einfaches Probieren die optimale Menge bestimmen.

Die Mischung mit der Aktivatorverbindung kann in den verschiedensten aprotischen Lösungsmitteln erfolgen, bevorzugt werden Alkane wie Pentan, Hexan, Heptan oder Oktan oder Aromaten wie Benzol, Toluol und Xylol, besonders bevorzugt sind Pentan, Hexan, Heptan und Toluol. Auch Lösungsmittelgemische insbesondere von Alkanen mit Aromaten sind günstig, um sich den Löslichkeiten des Katalysatorsystems anpassen zu können.

40 Die Mischung mit der Aktivatorverbindung erfolgt bei Temperaturen zwischen -50°C und 150°C, bevorzugt zwischen 10°C und 50°C und ganz besonders bevorzugt zwischen 15°C und 30°C.

45 Zur Polymerisation können einer oder mehrere der erfindungsgemäßen Katalysatorsysteme gleichzeitig verwendet werden. Dadurch können z.B. bimodale Produkte erhalten werden. Ein breiteres Pro-

16

duktspektrum kann auch durch Verwendung der erfindungsgemäßen Imidochromverbindungen in Kombination mit einem anderen polymerisationsaktiven Katalysator (C) erreicht werden. Dabei wird mindestens eines der erfindungsgemäßen Katalysatorsysteme in Gegenwart von mindestens einem für die Polymerisation von Olefinen üblichen Katalysator (C) verwendet. Als Katalysatoren (C) werden hierbei bevorzugt klassische Ziegler Natta Katalysatoren auf der Basis von Titan, klassische Phillips Katalysatoren auf der Basis von Chromoxiden, Metallocene, die sogenannten constrained geometry Komplexe (siehe z.B. EP-A-416815 oder EP-A-420436), Nickel und Palladium Bisimin-Systeme (zu deren Darstellung siehe WO-A-98/03559), Eisen und Cobalt Pyridinbisimin-Verbindungen (zu deren Darstellung siehe WO-A-98/27124) oder Chrompyrrol-Verbindungen (siehe z.B. EP-A-608447) verwendet. So können durch derartige Kombinationen z.B. bimodale Produkte hergestellt oder in situ Comonomer erzeugt werden. Hierbei sind je nach Katalysatorauswahl ein oder mehrere Aktivatoren vorteilhaft. Die Polymerisationskatalysatoren (C) können ebenfalls geträgert sein und gleichzeitig oder in einer beliebigen Reihenfolge mit dem erfindungsgemäßen Katalysatorsystem oder seinen Komponenten kontaktiert werden. Auch eine Voraktivierung des Katalysators (C) mit einer Aktivatorverbindung (B) ist möglich.

Die Beschreibung und die bevorzugten Ausführungsformen von R¹ bis R⁶, als auch für X in den Imidochromverbindungen II und III, als auch in den Verfahren zur Herstellung der Chromkomplexe I, III, IV und VI, ersteres unter Verwendung der Imidochromverbindung V, sind gleich wie weiter oben ausgeführt. Auch die Reaktionsbedingungen sind größtenteils schon weiter oben beschrieben.

Z und dessen bevorzugte Ausführungsformen sind gleich wie für X weiter oben beschrieben und zusätzlich auch Alkyle oder Aryle, besonders bevorzugt Methylentrimethylsilyl, Benzyl oder Mesityl.

Die Verfahren zur Herstellung der Chromkomplexe III und V werden prinzipiell unter den gleichen Bedingungen durchgeführt und die Reaktionsparameter deswegen im folgenden gemeinsam beschrieben.

Essentieller Reaktionsschritt ist das Kontaktieren der N-Sulfinylverbindung mit der entsprechenden Dioxochromverbindung. Die Dioxochromverbindungen wurden ebenfalls schon weiter oben beschrieben. Bevorzugte Dioxochromverbindung ist hier auch Dioxochromdichlorid. Auch die N-Sulfinylverbindungen sind schon weiter oben beschrieben. Die bevorzugten Ausführungsformen ergeben sich aus den bevorzugten Ausführungsformen der Reste R¹, bzw. R² der Imido-Gruppe des entstehenden Chromkomplexes (siehe oben). Der Reaktionsschritt ist bereits für den Reaktionsschritt a) näher

beschrieben. Danach kann ein üblicher Reinigungschnitt z.B. durch Umkristallisation oder Filtration erfolgen.

Das erfindungsgemäße Verfahren zur Polymerisation von Olefinen
5 lässt sich mit allen technisch bekannten Polymerisationsverfahren bei Temperaturen im Bereich von 0 bis 300°C und unter Drücken von 1 bis 4000 bar kombinieren. Die vorteilhaften Druck- und Temperaturbereiche zur Durchführung des Verfahrens hängen demgemäß stark von der Polymerisationsmethode ab. So lassen sich die
10 erfindungsgemäß verwendeten Katalysatorsysteme in allen bekannten Polymerisationsverfahren, also beispielsweise in Hochdruck-Polymerisationsverfahren in Rohrreaktoren oder Autoklaven, in Suspensions-Polymerisationsverfahren, in Lösungs-Polymerisationsverfahren oder bei der Gasphasenpolymerisation einsetzen. Bei den
15 Hochdruck-Polymerisationsverfahren, die üblicherweise bei Drücken zwischen 1000 und 4000 bar, insbesondere zwischen 2000 und 3500 bar, durchgeführt werden, werden in der Regel auch hohe Polymerisationstemperaturen eingestellt. Vorteilhafte Temperaturbereiche für diese Hochdruck-Polymerisationsverfahren liegen zwischen 200 und 300°C, insbesondere zwischen 220 und 270°C. Bei Niederdruck-Polymerisationsverfahren wird in der Regel eine Temperatur eingestellt, die mindestens einige Grad unter der Erweichungstemperatur des Polymerisates liegt. Die Polymerisationstemperatur kann zwischen 0°C und 180°C liegen. Insbesondere werden
20 in diesen Polymerisationsverfahren Temperaturen zwischen 50 und 180°C, vorzugsweise zwischen 70 und 120°C, eingestellt. Von den genannten Polymerisationsverfahren ist erfindungsgemäß die Gasphasenpolymerisation, insbesondere in Gasphasenwirbelschicht-Reaktoren, sowie die Suspensionspolymerisation, insbesondere in
25 Schleifen- und Rührkesselreaktoren, als auch die Lösungspolymerisation besonders bevorzugt. Die Gasphasenpolymerisation kann auch in der sogenannten condensed, supercondensed oder superkritischen Fahrweise durchgeführt werden. Die verschiedenen oder auch gleichen Polymerisationsverfahren können auch wahlweise mit
30 einander in Serie geschaltet sein und so eine Polymerisationskaskade bilden. Weiterhin kann zur Regelung der Polymereigenschaften auch ein Zusatz, wie z.B. Wasserstoff in den Polymerisationsverfahren verwendet werden.
35
40 Nach dem erfindungsgemäßen Verfahren lassen sich verschiedene olefinisch ungesättigte Verbindungen polymerisieren, wobei dies auch die Copolymerisation umfaßt. Im Gegensatz zu einigen bekannten Eisen- und Cobaltkomplexen zeigen die erfindungsgemäß eingesetzten Übergangsmetallkomplexe eine gute Polymerisationsaktivität auch mit höheren α-Olefinen, so daß ihre Eignung zur Copolymerisation besonders hervorzuheben ist. Als Olefine kommen dabei neben Ethylen und α-Olefinen mit 3 bis 12 Kohlenstoffatomen auch
45

interne Olefine und nichtkonjugierte und konjugierte Diene wie Butadien, 1,5-Hexadien oder 1,6-Heptadien, cyclische Olefine wie Cyclobuten, Cyclopenten oder Norbornen und polare Monomere wie Acrylsäureester, Acrolein, Acrylnitril, Vinylether, Allylether 5 und Vinylacetat in Betracht. Auch vinylaromatische Verbindungen wie Styrol lassen sich nach dem erfindungsgemäßen Verfahren polymerisieren. Bevorzugt wird mindestens ein Olefin ausgewählt aus der Gruppe Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, Cyclopenten und Norbornen polymerisiert. Eine bevorzugte 10 Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß man als Monomere Gemische von Ethylen mit C₃- bis C₈-a-Olefinen einsetzt.

Der Chromkomplex kann dabei entweder vor oder nach Kontaktierung 15 mit den zu polymerisierenden Olefinen mit der oder den Aktivatorverbindungen in Kontakt gebracht werden. Auch eine Voraktivierung mit einem oder mehreren Aktivatorverbindungen vor der Durchmischung mit dem Olefin und weitere Zugabe der gleichen oder anderer Aktivatorverbindungen nach Kontaktierung dieses Gemisches mit dem 20 Olefin ist möglich. Eine Voraktivierung erfolgt in der Regel bei Temperaturen zwischen 10-100°C, bevorzugt zwischen 20-80°C.

Auch kann mehr als eines der erfindungsgemäßen Katalysatorsysteme 25 gleichzeitig mit dem zu polymerisierenden Olefin in Kontakt gebracht werden. Dies hat den Vorteil, daß so ein weiter Bereich an Polymeren erzeugt werden kann. Auf diese Weise können z.B. bimodale Produkte hergestellt werden.

Die erfindungsgemäßen Katalysatorsysteme können optional auch auf 30 einem organischen oder anorganischen Träger immobilisiert und in geträgerter Form in der Polymerisation verwendet werden. Dies ist eine gängige Methode, um Reaktorablagerungen zu vermeiden und die Polymermorphologie zu steuern. Als Trägermaterialien werden bevorzugt Kieselgel, Magnesiumchlorid, Aluminiumoxid, mesoporöse 35 Materialien, Alumosilikate und organische Polymere wie Polyethylen, Polypropylen oder Polystyrol und insbesondere Kieselgel oder Magnesiumchlorid verwendet.

Eines oder mehrere der erfindungsgemäßen Katalysatorsysteme können auf einem Träger immobilisiert sein. Die Komponenten des 40 Katalysatorsystems können mit dem Träger in verschiedenen Reihenfolgen oder gleichzeitig in Kontakt gebracht werden. Dies wird in der Regel in einem inerten Lösungsmittel durchgeführt, das nach der Immobilisierung abfiltriert oder verdampft werden kann. Auch 45 die Verwendung des noch feuchten, geträgerten Katalysators ist möglich. So kann zuerst die Mischung des Trägers mit dem oder den Aktivatorverbindungen oder auch zuerst das Kontaktieren des Trä-

19

gers mit dem Polymerisationskatalysator erfolgen. Auch eine Voraktivierung des Katalysators mit einer oder mehreren Aktivatorverbindungen vor der Durchmischung mit dem Träger ist möglich. Die Menge an Chromkomplex (A) in mmol pro Gramm Trägermaterial kann stark variieren z.B. zwischen 0.001 bis 1 mmol/g. Die bevorzugte Menge an Chromkomplex (A) pro Gramm Trägermaterial liegt zwischen 0.001 und 0.5 mmol/g, und besonders bevorzugt zwischen 0.005 und 0.1 mmol/g. In einer möglichen Ausführungsform kann der Chromkomplex (A) auch in Anwesenheit des Trägermaterials hergestellt werden. Eine weitere Art der Immobilisierung ist auch die Vorpolymerisation des Katalysatorsystems mit oder ohne vorherige Trägerung.

Durch das erfindungsgemäße Verfahren lassen sich Polymerivate von Olefinen darstellen. Der Begriff Polymerisation, wie er zur Beschreibung der Erfindung hier verwendet wird, umfaßt sowohl Polymerisation als auch Oligomerisation, d.h. Oligomere und Polymere mit Molekulargewichten im Bereich von etwa 56 bis 4000000 können durch diese Verfahren erzeugt werden.

Auf Grund ihrer guten mechanischen Eigenschaften eignen sich die mit dem erfindungsgemäßen Katalysatorsystem hergestellten Polymerivate vor allem für die Herstellung von Folien, Fasern und Formkörpern.

25

Die erfindungsgemäßen Katalysatoren zeigen moderate Produktivitäten.

Die Vergleichsbeispiele zu den in EP-A-641 804 beschriebenen Bisimidochromverbindungen zeigen, daß die erfindungsgemäße Monoimidoverbindung $(C_6F_5N)CrCl_3$ höhere Aktivitäten ergab. Bei der Norbornenpolymerisation ergaben die Monoimidoverbindungen im Vergleich zu den Bisimidoverbindungen keine Metatheseprodukte.

35 Das neue Verfahren zur Darstellung von Bisimidochromverbindungen ist eine Ein-Topf-Synthese. Damit können bis zu zwei Synthesestufen bei der Darstellung von Bis(arylimido)chromkomplexen eingespart werden.

40 N-Sulfinylamine wurden von S. Chenini und M. Pizzotti (Inorg. Chim. Acta 42, (1980), 65) zur Synthese von Molybdänimidoverbindungen verwendet. Es wurde vermutet, daß das freiwerdende SO_2 bei Verwendung der reduktionslabilen Chrom(VI)dioxoverbindungen die Chromspezies reduzieren würde. Überraschenderweise wird dies jedoch nicht beobachtet.

20

Die folgenden Beispiele erläutern die Erfindung:

Alle Arbeiten wurden, falls nicht anders vermerkt, unter Luft- und Feuchtigkeitsausschluß durchgeführt. Toluol wurde über eine 5 Molekularsiebsäule oder Kalium/Benzophenon getrocknet und abdestilliert. Triethylaluminium (2 M in Heptan) und MAO (Methylaluminoxan 30% in Toluol) wurden von den Firmen Witco GmbH und Albemarle bezogen.

10 Analytik

Elementaranalysen wurden an einem Heraeus CHN-Rapid bestimmt.

IR-Spektren wurden mit einem Nicolet 510M als Nujolverreibung 15 zwischen KBr-Platten aufgenommen.

Der η Wert wurde mit einem automatischen Ubbelohde Viskometer (Lauda PVS 1) mit Dekalin als Lösungsmittel bei 130°C bestimmt (ISO1628 bei 130°C, 0,001 g/ml Decalin).

20

EI-Massenspektren wurden mit einem Varian MAT CH7 aufgenommen.

Schmelzpunkte wurden an einem Schmelzpunktsbestimmungsgeräet b-540 der Firma Buechi bestimmt.

25

NMR-Spektren wurden mit einem Bruker ARX 200, bzw. Bruker AMX 300 aufgenommen.

Abkürzungen in den folgenden Tabellen:

30

Kat.Bsp.	Katalysator entsprechend Beispiel
Ausbeute	Ausbeute Polymer
gP	Gramm Polymer
Tg	Glastemperatur
35 Tm	Schmelztemperatur
h	Staudingerindex (Viskosität)
tBu	tert. Butyl
Ts	para-Toluolsulfon
Bz	Benzoyl
40 Tf	Trifluoromethansulfon

Beispiel 1

Darstellung von Bis((2,6-diisopropylphenyl)imido)chromdichlorid
45 Eine 0.84 molare Lösung von Chromylchlorid in CCl₄ (455 mg, 2.94 mmol CrO₂Cl₂) wurde mit 30 ml Octan verdünnt und langsam mit 45 g (6.47 mmol) (2,6-Diisopropylphenyl)sulfinylamin versetzt.

21

Das Reaktionsgemisch wurde anschließend 12 Stunden am Rückfluß erhitzt, wobei zeitweise ein Inertgasstrom durch die Reaktionslösung geleitet wurde, um das entstehende SO₂ zu vertreiben. Der ausgefallene braunvioletter Feststoff wurde abfiltriert, mit kaltem Pentan gewaschen und im Hochvakuum getrocknet. Ausbeute:
 5 1.22 g (88 %) Bis(diisopropylphenylimido)chromdichlorid.

1H-NMR (C₆D₆, 200 MHz): δ = 1.08 (d, 24H, 3J_{HH} = 6.8 Hz, CH(CH₃)₂),
 3.86 (sept, 4H, 3J_{HH} = 6.7 Hz, CH(CH₃)₂), 6.72 (s, 6H, Ph-H) ppm.
 10 13C-NMR (C₆D₆, 50 MHz): δ = 23.5 (CH(CH₃)₂), 30.0 (CH(CH₃)₂), 123.7
 (Ph-C_(meta)), 132.3 (Ph-C_(para)), 148.9 (Ph-C_(ortho)) ppm.
 IR (Nujol): - = 2855 s, 1642 w, 1582 m, 1296 m, 1262 m, 1221 w,
 1142 w, 1080 m(br), 1022 m(br), 912 w, 799 m, 754 w, 721 w, 563 m
 cm⁻¹.
 15 EI-MS: m/z = 175 (DipN+, 57 %), 160 (Dip-H, 71 %), 119 (C₉H₁₂⁺,
 25 %), 36 (Cl, 100 %).
 Dip = 2,6-Diisopropylphenyl
 Ph = Phenyl

20 Beispiel 2

Darstellung von Bis(tert.butylimido)chromdichlorid
 Eine 0.84 molare Lösung von Chromylchlorid in CCl₄ (566 mg,
 3.67 mmol CrO₂Cl₂) wurde mit 20 ml Octan verdünnt und mit 963 mg
 25 (8.08 mmol) Tert.butylsulfinylamin versetzt. Das Reaktionsgemisch
 wurde anschließend 12 Stunden am Rückfluß erhitzt, wobei zeit-
 weise ein Inertgasstrom durch die Reaktionslösung geleitet wurde
 um das entstehende SO₂ zu vertreiben. Der ausgefallene violette
 Feststoff wurde abfiltriert, mit kaltem Pentan gewaschen und im
 30 Hochvakuum getrocknet. Ausbeute: 770 mg (79 %) Bis(tert.butyl-
 imido)chromdichlorid.

1H-NMR (CDCl₃, 200 MHz): δ = 1.60 (s, 18H, C(CH₃)₃) ppm.
 13C-NMR (CDCl₃, 50 MHz): δ = 30.2 (C(CH₃)₃) ppm.
 35
 Beispiel 3
 Darstellung von Bis((2,4,6-trimethylphenyl)imido)chromdichlorid
 Eine 0.84 molare Lösung von Chromylchlorid in CCl₄ (605 mg,
 40 3.92 mmol CrO₂Cl₂) wurde mit 20 ml Octan verdünnt und langsam mit
 1.66 g (8.63 mmol) Mesitylsulfinylamin versetzt. Das Reaktionsge-
 misch wurde anschließend 12 Stunden am Rückfluß erhitzt, wobei
 zeitweise ein Inertgasstrom durch die Reaktionslösung geleitet
 wurde, um das entstehende SO₂ zu vertreiben. Der ausgefallene rot-
 45 braune Feststoff wurde abfiltriert, mit kaltem Pentan gewaschen

22

und im Hochvakuum getrocknet. Bis((2,4,6-trimethyl-phenyl)imido)chromdichlorid wurde in 91% Ausbeute isoliert.

¹H-NMR (C₆D₆, 200 MHz): δ = 1.84 (s, 6H, Mes-CH₃(para)), 2.25 (s, 5 12H, Mes-CH₃(ortho)), 6.23 (s, 4H, Mes-H(meta)) ppm.

Beispiel 4

Darstellung von Bis(pentafluorophenylimido)chromdichlorid

- 10 Eine 0.84 molare Lösung von Chromylchlorid in CCl₄ (3.30 g; 21.4 mmol CrO₂Cl₂) wurde mit 80 ml Tetrachlormethan verdünnt und bei Raumtemperatur mit 10.79 g (47.08 mmol) Pentafluorphenylsulfinylamin versetzt. Das Reaktionsgemisch wurde anschließend 4 Stunden gerührt bis keine Gasentwicklung mehr zu beobachten war.
- 15 Beim Abkühlen wurde ein leichter Inertgasstrom durch die Reaktionslösung geleitet, um das bei der Reaktion entstandene SO₂ zu vertreiben. Der ausgefallene dunkelrote Feststoff wurde abfiltriert, mit kaltem Pentan gewaschen und im Hochvakuum getrocknet. Ausbeute: 95% Bis(pentafluorophenylimido)chromdichlorid.
- 20 ¹⁹F-NMR (CDCl₃, 188 MHz): δ = -144.2 (d, 4F, 3J_{FF} = 15.3 Hz, Arf-F(ortho)), -148.3 (t, 2F, 3J_{FF} = 20.4 Hz, Arf-F(para)), -155.9 (t, 4F, 3J_{FF} = 20.3 Hz, Arf-F(meta)) ppm.
- IR (Nujol): ~ = 1632 s, 1507 s, 1263 m, 1150 m, 1121 m, 1063 s,
- 25 997 s, 864 w, 802 w, 721 w, 642 m, 561 m, 440 w cm⁻¹.
- Arf = Pentafluorphenyl

Beispiel 5

- 30 Umsetzung von Dioxochromdichlorid mit N-(Toluolsulfonyl)sulfinylamid
- Eine 0.84 molare Lösung von Chromylchlorid in CCl₄ wurde bei Raumtemperatur mit 2.2 Äquivalenten des Sulfinylamids in Tetrachlormethan gelöst, versetzt. Anschließend wurde das Reaktionsgemisch so lange am Rückfluß erhitzt bis keine Gasentwicklung mehr zu beobachten war. Der entstandene braune Feststoff wurde abfiltriert, mit Pentan gewaschen und im Vakuum getrocknet. Ausbeute 90 %.

Für die Verbindung wurde im EPR-Spektrum nur ein scharfes Signal 40 beobachtet.

Mittelwerte für die Elementaranalyse:

C - 25.31 H - 2.37 N - 3.28 Cl - 22.89 S - 12.15 Cr - 13.16

Beispiel 6

Umsetzung von Dioxochromdichlorid mit N-(Toluolsulfonyl)sulfinylamid in Gegenwart von Chlor

5 Eine 0.84 molare Lösung von Chromylchlorid in CCl_4 wurde bei Raumtemperatur mit 2.2 Äquivalenten N-(Toluolsulfonyl)sulfinylamid in Tetrachlormethan gelöst, versetzt. Durch die Reaktionslösung wurde 10 Minuten ein Chlorgasstrom geleitet. Anschließend wurde das Reaktionsgemisch so lange am Rückfluß erhitzt, bis keine Entwicklung mehr beobachtet werden konnte. Auch während der Reaktion wurde ein schwacher Chlorgasstrom durch die Reaktionslösung geleitet. Der entstandene gelbbraune Feststoff wurde abfiltriert, mit Pentan gewaschen und im Vakuum getrocknet. Die Ausbeute betrug ca. 90%.

15

Alternativ kann auch in die obige Lösung anstatt Chlorgas 5ml Sulfurylchlorid zugegeben werden. Nach 24 Stunden Rühren bei Raumtemperatur wurde analog aufgearbeitet.

20 Im $^1\text{H-NMR}$ -Spektrum sind sehr breite, schwache Signale zu erkennen, die auf eine paramagnetische Verbindung hinweisen.

Beispiele 7 bis 9

25 Umsetzung der Bis(imido)chromdichloride mit Chlor (analog zu G. Wilkinson et al., J. Chem. Soc. Dalton Trans. 1991, 2051-2061) Diese Versuche wurden für Komplexe mit folgenden Resten am Imidoliganden durchgeführt: tert.Butyl (7), 2,6-Diisopropylphenyl (8) und Pentafluorophenyl (9)

30 5 g der Bis(imido)chromdichloride wurden in 50 ml Methylenchlorid gelöst. Bei Raumtemperatur wurde für 10 Minuten ein Chlorgasstrom durch die Reaktionslösung geleitet. Anschließend wurde eine Stunde bei Raumtemperatur, danach wurden die flüchtigen Bestandteile im Vakuum entfernt.

35

Diese Reaktionen verliefen nahezu quantitativ.
Elementaranalysen:

(8) ber.: C 43.20, H 5.14, N 4.20

40 gef.: C 41.60, H 5.24, N 5.46

(9) ber.: C 21.23, N 4.13
gef.: C 21.27, N 4.25

Beispiel 10**Ethenpolymerisation**

Es wurden 0.20 mmol der Chromverbindung aus Beispiel 5 in 61 ml 5 Toluol gelöst. Die Lösung wurde in einen 250 ml Glasautoklaven überführt, dort zunächst auf 0°C temperiert und anschließend 30 min mit 3 bar Ethen gesättigt. Dann wurde die Reaktion durch Zugabe von 670 mg MAO (Cr:Al=1:50), gelöst in 40 ml Toluol, gestartet. Dabei fielen schon nach wenigen Minuten erste Polymer-10 partikel aus der Reaktionslösung aus. Nach einer Reaktionszeit von 3 Stunden wurde die Reaktion durch Eintropfen der Polymerisationssmischung in ein Methanol/Salzsäure-Gemisch abgebrochen. Der dabei erhaltene Polymerniederschlag wurde abfiltriert, mit Methanol gewaschen und bei 100°C im Vakuum getrocknet. 2.3 g Poly-15 ethylen mit einem Schmelzpunkt von 136°C und $\eta = 19$ wurden erhalten.

Beispiel 11**20 Norbornen Ethen Copolymerisation**

Zunächst wurden 0.200 mmol der Chromverbindung aus Beispiel 5 in 50 ml Toluol suspendiert. Diese Lösung wurde in einen 250 ml Glasautoklaven überführt. Zu dieser Lösung wurden nun 40 ml einer Norbornen-Toluol-Lösung (318.60 mmol Norbornen) gegeben. Die da-25 bei erhaltene Reaktionsmischung wurde zunächst auf 0°C temperiert und anschließend 30 Minuten mit 3 bar Ethen gesättigt. Dann wurde die Reaktion durch Zugabe von 1.34 g MAO (Cr:Al=1:50), gelöst in 20 ml Toluol, gestartet. Nach einer Reaktionszeit von 1.5 Stunden wurde die Reaktion durch Eintropfen der Polymerisationsmischung 30 in ein Methanol/Salzsäure-Gemisch abgebrochen. Der dabei erhaltene Polymerniederschlag wurde abfiltriert, mit Methanol gewaschen und bei 70°C im Vakuum getrocknet. Es konnten 28g Polymer mit T_g 128°C erhalten werden.

35 Beispiel 12**Hexenpolymerisation**

Zunächst wurden 0.106 mmol der Chromverbindung aus Beispiel 5 in 10 ml Toluol gelöst. Zu dieser Lösung wurden nun 2.64 ml 1-Hexen 40 (21.24 mmol) gegeben. Die erhaltene Reaktionsmischung wurde auf 25°C temperiert und die Polymerisation durch Zugabe von 300 mg MAO (Cr:Al=1:50), gelöst in 3 ml Toluol, gestartet. Nach einer Reaktionszeit von 3 Tagen wurde die Polymerisation durch Eintropfen der Polymerisationsmischung in ein Methanol/Salzsäure-Gemisch ab-45 gebrochen. Dabei ergab sich ein ölig, klebriger Niederschlag, der nicht filtriert werden konnte. Daher wurde das Methanol wieder abdestilliert und der erhaltene Rückstand in 50 ml Cyclohexan

25

aufgenommen. Diese Lösung wurde nun mit 10 ml Wasser unterschichtet, um das erhaltene Polymer chromfrei zu waschen. Anschließend wurde die wässrige Phase abgetrennt. Von der organischen Phase wurde das Lösungsmittel im Vakuum abdestilliert und der erhaltene Polymerrückstand wurde im Vakuum getrocknet. Die Ausbeute betrug 3% Polyhexen.

Beispiele 13 bis 16

10 Norbornenpolymerisation

- A) Aktivierung des Katalysators mit einer kommerziellen MAO-Toluol-Lösung:

Zunächst wurden 0.106 mmol der Chromverbindung aus Beispiel 5 mit 2 g Norbornen in 10 ml Toluol vermischt. Die erhaltene Reaktionsmischung wurde auf 25°C temperiert und die Reaktion durch Zugabe von 3 ml 1.53 M Methylalumininoxanlösung (in Toluol) gestartet. Nach einer Reaktionszeit von einer Stunde wurde die Reaktion durch Eintropfen der Polymerisationsmischung in ein Methanol/Salzsäure-Gemisch abgebrochen. Der dabei erhaltene Polymerniederschlag wurde abfiltriert, mit Methanol gewaschen und im Vakuum getrocknet.

- B) Aktivierung des Katalysators mit festem MAO, das wieder in Toluol aufgenommen wurde.

Zunächst wurden 0.106 mmol der Chromverbindung aus Beispiel 5 mit 2 g Norbornen, gelöst in 10 ml Toluol vermischt. Die erhaltene Reaktionsmischung wurde nun auf 25°C temperiert und die Reaktion durch Zugabe von 300 mg MAO, gelöst in 3 ml Toluol, gestartet. Nach einer Reaktionszeit von einer Stunde wurde die Reaktion durch Eintropfen der Reaktionsmischung in ein Methanol/Salzsäure-Gemisch abgebrochen. Der dabei erhaltene Polymerniederschlag wurde abfiltriert, mit Methanol gewaschen und im Vakuum getrocknet.

Die Ergebnisse der Polymerisationen sind Tabelle 1 zu entnehmen.

Vergleichsbeispiele 17 und 18

- 40
Norbornenpolymerisation

Die Versuche wurden wie zuvor für die Norbornenpolymerisation B) beschrieben durchgeführt. In Beispiel 17 wurde die Chromverbindung aus Beispiel 4, in Beispiel 18 die Chromverbindung aus Beispiel 2 verwendet.

26

Die Ergebnisse der Polymerisationen sind Tabelle 1 zu entnehmen.

5

10

15

20

25

30

35

40

45

Tabelle 1 : Ergebnisse der Norbornenpolymerisation

Bsp.	Metathese ^{a)}	Ausbeute
13 (A)	nein	82 %
14 (B)	nein	95 %
15 (A)	nein	5 %
16 (B)	nein	53 %
17 (B)	ja	89 %
18 (B)	ja	5 %

a) Metathese, bezieht sich auf Produkt erhalten durch Ring öffnende Metathese Polymerisation (ROMP) (ermittelt durch NMR-Messungen und Tg-Werte).

15 Beispiele 19 bis 24

Ethenpolymerisation

Es wurden 0.05 mmol der in Tabelle 2 angegebenen Chromverbindung 20 in 20 ml Toluol gelöst. Die Lösung wurde in einen 250 ml Glasautoklaven überführt, dort zunächst auf 60°C temperiert und anschließend 30 min mit 3 bar Ethen gesättigt. Dann wurde die Reaktion durch Zugabe von 12.5 mmol MAO (Cr:Al=1:250), gelöst in 20 ml Toluol, gestartet. Dabei fielen schon nach wenigen Minuten er- 25 ste Polymerpartikel aus der Reaktionslösung aus. Nach einer Reak- tionszeit von 30 Minuten bei 60°C unter konstantem Ethylendruck von 3 bar wurde die Reaktion durch Eintropfen der Polymerisati- onssmischung in 400 ml Methanol/konz. Salzsäure-Gemisch (10:1) abgebrochen. Der dabei erhaltene Polymerniederschlag wurde ab- 30 filtriert, mit Methanol gewaschen und bei 100°C im Vakuum getrock- net.

Beispiel 24 ist zum Vergleich aufgeführt.

35 Tabelle 2: Ergebnisse der Ethenpolymerisation

Bsp.	Katalysator	Menge [mg]	Ausbeute [mg]	Aktivität [gPE/mmol·bar·h]
19	[Cr(NtBu)Cl ₃]	11.5	287	3.8
20	[Cr(NC ₆ F ₅)Cl ₃]	17	1001	13.4
21	[Cr(NTs)Cl ₃]	16.4	383	5.1
22	[Cr(NBz)Cl ₃]	13.8	224	3
23	[Cr(NTf) ₂ Cl ₃]	15.3	285	3.8
45 24	[Cr(NC ₆ F ₅) ₂ Cl ₂]	24.3	428	5.7

Beispiele 25 bis 27

Ethenpolymerisation

In einem 1l-Autoklaven wurden bei 70°C 400 ml Toluol vorgelegt,
 5 dann wurde die in Tabelle 3 angegebene Menge Katalysator in 2.5 ml einer 30%igen MAO-Lösung (12 mmol) suspendiert und nach 10 Minuten in den Reaktor eingebracht. Die Polymerisation wurde durch Aufpressen von 40 bar Ethylen gestartet. Nach einer Stunde Polymerisationszeit bei 40 bar Ethylen und 70°C wurde die Reaktion
 10 durch Entspannen abgebrochen und das Polymer wie zuvor beschrieben aufgearbeitet.

Tabelle 3: Ergebnisse der Ethylenpolymerisation

15	Bsp.	Kat. (Bsp.)	Menge [mmol]	Hexen [ml]	Ausbeute [g]	Aktivität [gP/mmol·bar·h]	η [dL/g]
	25	5	0.056	-	12	5.4	6.3
	26	5	0.056	40	7	3.1	5.69
20	27	8	0.06	-	3	1.2	15.1

Beispiel 28

Ethenpolymerisation

25 Die Polymerisation wurde wie für Bsp. 25 bis 27 beschrieben durchgeführt. Der Chromkomplex aus Beispiel 9 wurde verwendet. Als Cokatalysator wurden 2 ml Triethylaluminium (4 mmol) eingesetzt.

30 Es konnten 14.5 g Polyethylen mit einem η -Wert von 7.8 dL/g erhalten werden. Die Aktivität betrug 3 gP/mmol·bar·h.

35

40

45

Patentansprüche

1. Katalysatorsysteme enthaltend

5

(A) mindestens eine Imidochromverbindung, erhältlich durch ein Verfahren, welches folgende Verfahrensschritte beinhaltet:

10

(a) Kontaktieren einer Dioxochromverbindung mit einer N-Sulfinylverbindung $R^1-N=S=O$ oder $R^2-N=S=O$, worin die Variablen folgende Bedeutung haben:

15

R^1 C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der organische Rest R^1 auch inerte Substituenten tragen kann, SiR^3_3 ,

20

R^2 $R^3C=NR^4$, $R^3C=O$, $R^3C=O(OR^4)$, $R^3C=S$, $(R^3)_2P=O$, $(OR^3)_2P=O$, SO_2R^3 , $R^3R^4C=N$, NR^3R^4 oder BR^3R^4 ,

25

R^3, R^4 unabhängig voneinander C_1-C_{20} -Alkyl, C_2-C_{20} -Alkenyl, C_6-C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R^3 und R^4 auch inerte Substituenten tragen können,

30

(b) Kontaktieren des so erhaltenen Reaktionsproduktes mit Chlor, wenn eine Sulfinylverbindung $R^1-N=S=O$ eingesetzt wurde und für den Fall, daß eine N-Sulfinylverbindung $R^2-N=S=O$ eingesetzt wurde, mit Chlor oder Sulfurylchlorid oder mit keinem weiteren Reagens,

35

(B) mindestens eine Aktivatorverbindung

und

40

(C) gewünschtenfalls einen oder mehrere weitere für die Polymerisation von Olefinen übliche Katalysatoren.

45

2. Katalysatorsystem nach Anspruch 1, in welchem die Imidochromverbindung durch Kontaktieren von Dioxochromdichlorid mit der N-Sulfinylverbindung erhältlich ist.

30

3. Katalysatorsystem nach Anspruch 1, in welchem Imidochromverbindungen der allgemeinen Formel I

10 verwendet werden, worin die Variablen folgende Bedeutung haben:

- X unabhängig voneinander Fluor, Chlor, Brom, Jod,
NR⁵R⁶, NP(R⁵)₃, OR⁵, OSi(R⁵)₃, SO₃R⁵, OC(O)R⁵, β-Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder sperrige schwach oder nicht koordinierende Anionen,
- 15 R¹ C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der organische Rest R¹ auch inerte Substituenten tragen kann, SiR³₃,
- 20 R³, R⁵, R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wo-
bei die organischen Reste R³, R⁵ und R⁶ auch inerte Substituenten tragen können,
- 25 L neutraler Donor,
- n 0 bis 3,
- m 1 für dianionische X, 2 für monoanionische X

- 30 4. Katalysatorsystem nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Aktivatorverbindung (B) aus der Gruppe Aluminoxan, Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Dimethylaluminiumchlorid, Diethylaluminiumchlorid, Methylaluminiumdichlorid, Ethylaluminiumchlorid, Methylaluminiumsesquichlorid, Dimethylaniliniumtetraakis(pentafluorophenylborat, Trityltetrakis(pentafluorophenylborat oder Trispentafluorophenylboran ausgewählt ist.

40

45

5. Imidochromverbindung der allgemeinen Formel II

5

10 worin die Variablen folgende Bedeutung haben:

- 15 R² R³C=NR⁴, R³C=O, R³C=O(OR⁴), R³C=S, (R³)₂P=O, (OR³)₂P=O,
SO₂R³, R³R⁴C=N, NR³R⁴ oder BR³R⁴,
X unabhängig voneinander Fluor, Chlor, Brom, Jod,
15 NR⁵R⁶, NP(R⁵)₃, OR⁵, OSi(R⁵)₃, SO₃R⁵, OC(O)R⁵, β-Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder sperrige schwach oder nicht koordinierende Anionen,
- 20 R³-R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R³ bis R⁶ auch inerte Substituenten tragen können,
- 25 m 1 für dianionische X, 2 für monoanionische X

6. Imidochromverbindung der allgemeinen Formel III

30

worin die Variablen folgende Bedeutung haben:

- 35 R² R³C=NR⁴, R³C=O, R³C=O(OR⁴), R³C=S, (R³)₂P=O, (OR³)₂P=O,
SO₂R³, R³R⁴C=N, NR³R⁴ oder BR³R⁴,
X unabhängig voneinander Fluor, Chlor, Brom, Jod,
NR⁵R⁶, NP(R⁵)₃, OR⁵, OSi(R⁵)₃, SO₃R⁵, OC(O)R⁵, β-Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder sperrige schwach oder nicht koordinierende Anionen,
- 40 R³-R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R³ bis R⁶ auch inerte Substituenten tragen können,
- 45 R³-R⁶ unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Wasserstoff, falls dieser an ein Kohlenstoffatom gebunden ist, wobei die organischen Reste R³ bis R⁶ auch inerte Substituenten tragen können,

32

- L neutraler Donor,
 n 0 bis 3,
 m 1 für dianionische X, 2 für monoanionische X

5 7. Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel IV,

10

worin die Variablen die in Anspruch 3 genannte Bedeutung haben und:

15

- Z unabhängig voneinander C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, Fluor, Chlor, Brom, Jod, NR⁵R⁶, NP(R⁵)₃, OR⁵, OSi(R⁵)₃,

20

- SO₃R⁵, OC(O)R⁵, β-Diketonat, Sulfat, Dicarboxylate, Dialkoholate, BF₄⁻, PF₆⁻, oder sperrige schwach oder nicht koordinierende Anionen,

- p 1 für dianionische Z, 2 für monoanionische Z,

25

dadurch gekennzeichnet, daß man eine Dioxochromverbindung mit einer N-Sulfinylverbindung R¹-NSO umsetzt.

8. Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel I

30

35

worin die Variablen die in Anspruch 3 genannte Bedeutung haben:

40

dadurch gekennzeichnet, daß man eine Imidochromverbindung der allgemeinen Formel V

45

worin die Variablen die in Anspruch 3 genannte Bedeutung haben,

mit Chlor umsetzt.

5

9. Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel III

10

15

worin die Variablen die in Anspruch 6 genannte Bedeutung haben,

dadurch gekennzeichnet, daß man eine Dioxochromverbindung mit einer N-Sulfinylverbindung $\text{R}^2\text{-N}=\text{S}=\text{O}$ in Gegenwart von Chlor oder Sulfurylchlorid umsetzt.

20

10. Verfahren zur Herstellung einer Imidochromverbindung der allgemeinen Formel VI

25

30

worin die Variablen die in Anspruch 6 und 7 genannte Bedeutung haben,

35

dadurch gekennzeichnet, daß man eine Dioxochromverbindung mit einer N-Sulfinylverbindung $\text{R}^2\text{-NSO}$ umsetzt.

40

11. Verfahren zur Polymerisation von Olefinen bei Temperaturen im Bereich von 0 bis 300°C und bei Drücken von 1 bis 4000 bar, dadurch gekennzeichnet, daß man die Polymerisation in Anwesenheit eines Katalysatorsystems gemäß den Ansprüchen 1 bis 4 durchführt.

45

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man die Polymerisation in Gasphase, Lösung oder Suspension durchführt.

34

13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet,
daß mindestens ein Olefin ausgewählt aus der Gruppe Ethen,
Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, Cyclo-
penten und Norbornen polymerisiert wird.

5

14. Verfahren gemäß den Ansprüchen 11 bis 13, dadurch gekenn-
zeichnet, daß mindestens ein Katalysatorsystem gemäß den An-
sprüchen 1 bis 4 auf einem Träger immobilisiert ist.

10

15

20

25

30

35

40

45

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/07103

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07F11/00 C08F4/69 C08F10/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07F C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 641 804 A (BP CHEMICALS LTD., UK) 8 March 1995 (1995-03-08) cited in the application page 5 -page 12 -----	1,5-11

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

2 November 2000

Date of mailing of the international search report

13/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patendaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Bader, K

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/07103

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0641804	A 08-03-1995	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 00/07103

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 C07F11/00 C08F4/69 C08F10/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 C07F C08F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

CHEM ABS Data, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 641 804 A (BP CHEMICALS LTD., UK) 8. März 1995 (1995-03-08) in der Anmeldung erwähnt Seite 5 -Seite 12 -----	1,5-11

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
2. November 2000	13/11/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Bader, K

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

internationales Aktenzeichen

PCT/EP 00/07103

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0641804 A	08-03-1995	KEINE	