LeanSearch

Find theorems in Mathlib4 using natural language query

Query Name or description of the theorem or definition you are looking for

Affine Space Characterization Theorem: An affine space is completely and uniquely defined by two fundamental operations: the translation operation that moves points along vectors, and the difference operation that measures the vector between two points. These operations must satisfy the torsor axioms, which are a set of three fundamental conditions: the translation of a point by the zero vector leaves the point //

Number of results

Clear

Query Augmentation

Search

Tip: **Query Augmentation** augments your query to increase the chance to find relevant results.

50 ♀

vadd_right_mem_affineSpan_pair

theorem

 ${p_1 p_2 : P} {v : V} : v +_v p_2 \in line[k, p_1, p_2] \leftrightarrow \exists r : k, r \bullet (p_1 -_v p_2) = v$

► Characterization of Points in Affine Span via Right Translation:

$$egin{aligned} v+p_2 \in && ext{affineSpan}\{p_1,p_2\} \leftrightarrow \ \exists r \in k, v = r \cdot (p_1 - p_2) \end{aligned}$$

Doc Doc-Next-Gen (beta) Similar

vadd_left_mem_affineSpan_pair

theorem

 $\{p_1 \ p_2 : P\} \ \{v : V\} : v +_v p_1 \in \triangleright Characterization of$ line[k, p_1 , p_2] $\leftrightarrow \exists r : k, r \bullet$ $(p_2 -_v p_1) = v$

Affine Span Membership via **Scaled Difference:**

$$egin{aligned} v + p_1 \in \ ext{affineSpan}_k\{p_1, p_2\} \leftrightarrow \ \exists r \in k, v = r \cdot (p_2 - p_1) \end{aligned}$$

Doc Doc-Next-Gen (beta) Similar

mem_affineSpan_iff_eq_affineCombination theorem

[Nontrivial k] $\{p1 : P\} \{p : \iota \rightarrow \{p\} \}$ P}: p1 ∈ affineSpan k (Set.range p) ↔ \exists (s : Finset \(\text{\text{1}}\) (w : \(\text{\text{\text{1}}}\) \(\text{\text{k}}\), \(\Sigma\) i \(\epsi\) $s, w i = 1 \land p1 =$ s.affineCombination k p w

Characterization of Points in Affine Span via Affine Combinations

Doc Doc-Next-Gen (beta) Similar

mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd the

[Nontrivial k] $(p : \iota \rightarrow P)$ $(j : \iota)$ (q:P):q ∈ affineSpan k (Set.range p) ↔ \exists (s : Finset 1) (w : 1 \rightarrow k), q = s.weightedVSubOfPoint p (p j) w +v рj

Characterization of Affine Span Membership via Weighted Vector Subtraction

Doc Doc-Next-Gen (beta) Similar

mem_affineSpan_iff_exists

 $\{p: P\} \{s: Set P\}: p \in$ affineSpan k s \leftrightarrow \exists p₁ \in s, \exists v \in vectorSpan k s, $p = v +_{v} p_{1}$

theorem

Characterization of Points in Affine Span via Vector Span

AffineEquiv.constVSub

definition

$$(p : P_1) : P_1 \simeq^a [k] V_1$$

► Affine equivalence by vector subtraction from a fixed point

Doc Doc-Next-Gen (beta) Similar

affineSpan_singleton_union_vadd_eq_top_of_span_eq

{s : Set V} (p : P) (h :
Submodule.span k (Set.range ((↑) :
s → V)) = T) :
 affineSpan k ({ p } U (fun v ⇒ v
+v p) '' s) = T

► Affine Span of a Point and its Translations by a Spanning Set is the Entire Space

Doc Doc-Next-Gen (beta) Similar

linearIndependent_set_iff_affineIndependent_vadd_

{s : Set V} (hs : $\forall v \in s, v \neq (0 : V)$) (p₁ : P) : LinearIndependent k (fun $v \Rightarrow v$: $s \rightarrow V$) \leftrightarrow AffineIndependent k (fun $p \Rightarrow p$: ({ p₁ } U (fun $v \Rightarrow v +_{v} p_{1}$) '' s

: Set P) \rightarrow P)

► Linear Independence of Vectors vs. Affine Independence of Translated Points

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.vadd_mem_pointwise_vadd_iff theorem

 $\{v : V\} \{s : AffineSubspace k P\}$ $\{p : P\} : v +_v p \in v +_v s \leftrightarrow p \in s$ ► Translation Invariance of Membership in Affine Subspaces

AffineSubspace.pointwise vadd span

theorem

 $(v : V) (s : Set P) : v +_{v}$ affineSpan k s = affineSpan k (v +v Commutes with s)

► Affine Span Translation

Doc Doc-Next-Gen (beta) Similar

mem_vsub_const_affineSegment

theorem

 $\{x \ y \ z : P\} \ (p : P) : z -_v p \in$ affineSegment R $(x -_{v} p) (y -_{v} p) \leftrightarrow$ $z \in affineSegment R x y$

▶ Translation Invariance of Affine Segment Membership under **Vector Subtraction**

Doc Doc-Next-Gen (beta) Similar

affineSpan_induction

theorem

 ${x : P} {s : Set P} {p : P \rightarrow Prop}$ (h: $x \in affineSpan k s$) (mem: $\forall x$: P, $x \in s \rightarrow p x$) (smul_vsub_vadd : ∀ (c : k) (u v $w : P), p u \rightarrow p v \rightarrow p w \rightarrow p (c \cdot (u))$ -v (v) + v (w): p x

► Induction Principle for Affine Span Membership

Doc Doc-Next-Gen (beta) Similar

AffineEquiv

structure

 $(k P_1 P_2 : Type*) \{V_1 V_2 : Type*\}$ [Ring k] [AddCommGroup V₁] [AddCommGroup V₂] [Module k V_1] [Module k V_2] [AddTorsor V₁ P₁] [AddTorsor V₂ P₂] extends $P_1 \simeq P_2$

► Affine equivalence between affine spaces

{s : Set P} [Nontrivial P] :
affineSpan k s = T ↔ vectorSpan k s
= T

► Affine Span
Equals Space iff
Vector Span Equals
Module in
Nontrivial Affine
Space

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.coe pointwise vadd

theorem

(v : V) (s : AffineSubspace k P) : $((v +_{v} s : AffineSubspace k P) :$ Set P) = $v +_{v}$ (s : Set P)

► Translation of Affine Subspace Underlying Set by Vector

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.mem_affineSpan_insert_iff theorem

{s: AffineSubspace k P} {p₁: P} (hp₁: p₁ \in s) (p₂ p: P): p \in affineSpan k (insert p₂ (s: Set P)) \leftrightarrow ∃ r: k, ∃ p0 \in s, p = r \bullet (p₂ -v p₁: V) +v p0

► Characterization of Affine Span Membership After Insertion via Scalar Multiple and Base Point

Doc Doc-Next-Gen (beta) Similar

sbtw_vadd_const_iff

theorem

 $\{x \ y \ z : V\} \ (p : P) : Sbtw R (x +_{V} p) (y +_{V} p) (z +_{V} p) \leftrightarrow Sbtw R x y z$

► Translation
Invariance of Strict
Betweenness in
Affine Space

{x y z : V} (p : P) : $z +_{v} p \in$ affineSegment R (x +_v p) (y +_v p) \leftrightarrow z \in affineSegment R x y

► Translation
Invariance of Affine
Segment
Membership

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.sOppSide_vadd_left_iff theorem

{s: AffineSubspace R P} {x y : P} {v : V} (hv : $v \in s.direction$) : s.SOppSide (v +_v x) y $\leftrightarrow s.SOppSide$ x y

► Translation
Invariance of
Strictly Opposite
Sides Condition for
Affine Subspaces

Doc Doc-Next-Gen (beta) Similar

vsub_mem_vectorSpan_of_mem_affineSpan_of_me

{s: Set P} { p_1 p_2 : P} (hp_1 : p_1 \in affineSpan k s) (hp_2 : p_2 \in affineSpan k s): p_1 -v p_2 \in vectorSpan k s

► Difference of Points in Affine Span Belongs to Vector Span

Doc Doc-Next-Gen (beta) Similar

${\bf Affine Equiv.constVAdd_add}$

theorem

 $(v w : V_1) : constVAdd k P_1 (v + w) = (constVAdd k P_1 w).trans$ $(constVAdd k P_1 v)$

► Additivity of Translation Affine Equivalences:

$$t_{v+w} = t_w \circ t_v$$

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.pointwise_vadd_top

theorem

 $(v : V) : V +_V (T : AffineSubspace k P) = T$

► Translation of Entire Affine Space by a Vector Preserves the Space

Doc Doc-Next-Gen (beta) Similar

vadd_mem_affineSpan_of_mem_affineSpan_of_mem_vector

 $\{s: Set P\} \{p: P\} \{v: V\} (hp: p \in affineSpan k s) (hv: v \in vectorSpan k s): v +_v p \in affineSpan k s$

► Affine span is closed under translation by vectors in its direction

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.vadd_mem_iff_mem_direction theorem

{s : AffineSubspace k P} (v : V) {p : P} (hp : p \in s) : v +_v p \in s \leftrightarrow v \in s.direction

► Characterization of Affine Subspace Membership via Direction Vectors

Doc Doc-Next-Gen (beta) Similar

AffineMap.lineMap_vsub_left

theorem

 $(p_0 p_1 : P1) (c : k) : lineMap$ $p_0 p_1 c -_v p_0 = c \cdot (p_1 -_v p_0)$ ▶ Vector difference property of affine line map: $\operatorname{lineMap}(p_0, p_1)(c) - p_0 = c \cdot (p_1 - p_0)$

[Fintype i] (p : i →
P) {n : N} (hc :
Fintype.card i = n +
1) :
 AffineIndependent k
p ↔ finrank k
(vectorSpan k
(Set.range p)) = n

► Affine Independence Characterized by Dimension of Vector Span:

 $egin{aligned} & \operatorname{AffineIndependent}(k,p) \leftrightarrow \ & \dim_k(\operatorname{vectorSpan}_k(\operatorname{range}(p))) = n \end{aligned}$

Doc Doc-Next-Gen (beta) Similar

smul_vsub_rev_vadd_mem_affineSpan_pair theorem

$$(r : k) (p_1 p_2 : P) : r \cdot (p_1 - p_2) + p_2 \in line[k, p_1, p_2]$$

► Scaled Reverse
Difference Lies in
Affine Span of Two
Points

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.mem_direction_iff_eq_vsub_left theo

{s : AffineSubspace k P} {p : P} (hp : p \in s) (v : V) : v \in s.direction \leftrightarrow \exists p₂ \in s, V = p - v p₂ ► Characterization of Direction Vectors via Left Subtraction in Affine Subspace

Doc Doc-Next-Gen (beta) Similar

AffineIsometryEquiv.map_vsub

theorem

(p1 p2 : P) : e.linearIsometryEquiv (p1 -v p2) = e p1 -v e p2

► Affine Isometric Equivalence Preserves Vector Difference

Doc Doc-Next-Gen (beta) Similar

affineIndependent_set_iff_linearIndependent_vsub t

{s : Set P} {p₁ : P} (hp₁ : p₁ \in S):

AffineIndependent k (fun p \Rightarrow p : Set S \Rightarrow P) \leftrightarrow LinearIndependent k (fun v \Rightarrow v : (fun p \Rightarrow (p \neg v p₁ : V)) '' (s \ Diffine P₁ }) \Rightarrow V)

Doc Doc-Next-Gen (beta) Similar

► Affine
Independence of a
Set via Linear
Independence of
Difference Vectors

↑ ↓ ×

AffineMap.coe_sub

theorem

(f g : P1 →
$$a[k]$$
 V2) : $a(f - g) = f$ - g

▶ PointwiseDifference of AffineMaps

Doc Doc-Next-Gen (beta) Similar

↑ ↓ ×

Finset.sum_smul_vsub_eq_affineCombination_vsub the

 $(w : \iota \rightarrow k) (p_1 p_2 : \iota \rightarrow P) :$ $(\sum i \in s, w i \cdot (p_1 i -_v p_2 i)) =$ s.affineCombination $k p_1 w -_v$ s.affineCombination $k p_2 w$

 Weighted Sum of Vector
 Subtractions
 Equals Difference of Affine
 Combinations

Doc Doc-Next-Gen (beta) Similar

↑ ↓ ×

Finset.affineCombination_sdiff_sub

theorem

[DecidableEq 1] {s₂: Finset 1} (h
: s₂ ⊆ s) (w : 1 → k) (p : 1 → P) :
 (s \ s₂).affineCombination k p w
-v s₂.affineCombination k p (-w) =
s.weightedVSub p w

► Difference of
Affine
Combinations
Equals Weighted
Vector Subtraction

Doc Doc-Next-Gen (beta) Similar

↑ ↓ ×

 $\{p_1 \ p_2 : P\}$ {direction : Submodule $k \ V\}$: $p_2 \in mk' \ p_1$ direction $\Leftrightarrow p_2$ $-_V \ p_1 \in direction$

► Membership in Affine Subspace via Difference Vector

Doc Doc-Next-Gen (beta) Similar

AffineMap.lineMap_vsub_lineMap

theorem

 $(p_1 p_2 p_3 p_4 : P1) (c : k) :$ lineMap $p_1 p_2 c -_v$ lineMap $p_3 p_4 c$ = lineMap $(p_1 -_v p_3) (p_2 -_v p_4) c$ ► Vector
Difference of Affine
Line Maps Equals
Affine
Combination of
Vector Differences

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.pointwise_vadd_eq_map

theorem

(v : V) (s : AffineSubspace k P) :
v +_v s = s.map
(AffineEquiv.constVAdd k P v)

► Translation of Affine Subspace as Image under Translation Map

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.coe_vsub

theorem

(s: AffineSubspace k P) [Nonempty s] (a b: s): \uparrow (a - $_v$ b) = (a: P) - $_v$ (b: P)

► Coercion of Vector Subtraction in Affine Subspace Equals Vector Subtraction in Ambient Space

{s : Set P} (hs : s.Nonempty) : affineSpan $k s = \tau \leftrightarrow vectorSpan k s$

► Affine Span **Equals Entire** Space iff Vector Span Equals Entire Module for Nonempty Sets

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.map_pointwise_vadd

theorem

 $(f : P_1 \rightarrow^a [k] P_2) (v : V_1) (s :$ AffineSubspace $k P_1$): $(v +_v s)$.map $f = f.linear v +_v s.map f$

Compatibility of Affine Map with Translation and Subspace Image

Doc Doc-Next-Gen (beta) Similar

AffineEquiv.constVAdd_zero

theorem

: constVAdd k P₁ 0 = AffineEquiv.refl _ _

► Translation by Zero Vector is **Identity Affine** Equivalence

Doc Doc-Next-Gen (beta) Similar

AffineEquiv.pointReflection_apply

theorem

(x y : P₁) : pointReflection k x y ▶ Point Reflection $= (X -_{V} Y) +_{V} X$

Formula in Affine Space

Doc Doc-Next-Gen (beta) Similar

AffineMap.instAddTorsor

instance

: AffineSpace (P1 →a[k] V2) (P1 →a[k] P2) ► Affine Space Structure on Affine Maps Between Affine Spaces

Doc Doc-Next-Gen (beta) Similar

AffineMap.left_vsub_lineMap

theorem

$$(p_0 p_1 : P1) (c : k) : p_0 -_v$$

lineMap $p_0 p_1 c = c \cdot (p_0 -_v p_1)$

► Left Vector
Difference Property
of Affine Line Map:

$$egin{aligned} p_0 &- \ \operatorname{lineMap}(p_0,p_1)(c) = \ c \cdot (p_0-p_1) \end{aligned}$$

Doc Doc-Next-Gen (beta) Similar

affineSpan_eq_affineSpan_lineMap_units theorem

[Nontrivial k] {s : Set P} {p : P}
(hp : p ∈ s) (w : s → Units k) :
 affineSpan k (Set.range fun q : s

⇒ AffineMap.lineMap p ↑q (w q :
k)) = affineSpan k s

► Invariance of Affine Span Under Scaled Line Transports from Base Point

Doc Doc-Next-Gen (beta) Similar

Finset.sum_smul_vsub_const_eq_affineCombination_v

 $\begin{array}{l} (\text{W}: \text{l} \rightarrow \text{k}) \; (\text{p}_1: \text{l} \rightarrow \text{P}) \; (\text{p}_2: \text{P}) \\ (\text{h}: \sum \text{i} \in \text{s}, \; \text{W} \; \text{i} = 1) : \\ (\sum \text{i} \in \text{s}, \; \text{W} \; \text{i} \bullet \; (\text{p}_1 \; \text{i} -_{\text{v}} \; \text{p}_2)) = \\ \text{s.affineCombination} \; \text{k} \; \text{p}_1 \; \text{W} \; \text{-}_{\text{v}} \; \text{p}_2 \end{array}$

▶ Weighted Sum of VectorDifferences EqualsAffineCombinationMinus Fixed Point

smul vsub vadd mem affineSpan pair

theorem

 $(r : k) (p_1 p_2 : P) : r \cdot (p_2 - v)$ $p_1) +_{V} p_1 \in line[k, p_1, p_2]$

▶ Scaled Difference Added to Point Lies in Affine Span of Pair

Doc Doc-Next-Gen (beta) Similar

AffineMap.right_vsub_lineMap

theorem

$$(p_0 p_1 : P1) (c : k) : p_1 -_v$$

lineMap $p_0 p_1 c = (1 - c) \cdot (p_1 -_v p_0)$

▶ Right Vector Difference Property of Affine Line Map:

$$egin{aligned} p_1 - \ \operatorname{lineMap}(p_0, p_1)(c) = \ (1-c) \cdot (p_1-p_0) \end{aligned}$$

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.mem direction iff eq vsub right the

{s : AffineSubspace k P} {p : P} $(hp : p \in s) (v : V) : v \in$ s.direction $\leftrightarrow \exists p_2 \in s, v = p_2 -_v p$

Characterization of Direction **Vectors via Right** Subtraction in Affine Subspace

Doc Doc-Next-Gen (beta) Similar

AffineSubspace.ext

theorem

{p q : AffineSubspace k P} (h :
$$\forall$$
 Extensionality of x, $x \in p \leftrightarrow x \in q$) : p = q Affine Subspaces

Affine Subspaces

Doc Doc-Next-Gen (beta) Similar

vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vecto

{s : Set P} {p : P} {v : V} (hp : $p \in spanPoints k s) (hv : v \in$ vectorSpan k s) : $v +_v p \in$ spanPoints k s

▶ Affine Span is **Closed Under** Translation by **Vector Span** Elements

Doc Doc-Next-Gen (beta) Similar

AI4M Team, BICMR@PKU Help us improve LeanSearch