KNN (K - Nearest Neighbors)

어떤 한 record를 분류하기 위해, 주변(Near)의 record를 이용하는 분류기법(지도학습).

NN

=>한 record에서 가장 가까운 record가 속한 class 로 분류한다.

과일과 야채 분류 예시, y축 당도, x축 아삭함

"?" 가 속할 class는?

"가장 가까움"을 측정 하는 방법

→유클리드 거리법(Euclidean Distance) [점과 점 사이의 거리]

$$\sqrt{(x_1-u_1)^2+(x_2-u_2)^2+\cdots+(x_p-u_p)^2}$$

Normalization의 필요성

	연식	주행거리(km)	class
Α	1.5	5000	GOOD
В	20	4800	BAD
Χ	1	100	?

단 하나의 최근접 이웃으로 분류를 하는 것이 옳은가?

The SPEED and AGILITY ratings for 20 college athletes and whether they were drafted by a professional team.

ID	SPEED	AGILITY	DRAFT	ID	SPEED	AGILITY	DRAFT
1	2.50	6.00	no	11	2.00	2.00	no
2	3.75	8.00	no	12	5.00	2.50	no
3	2.25	5.50	no	13	8.25	8.50	no
4	3.25	8.25	no	14	5.75	8.75	yes
5	2.75	7.50	no	15	4.75	6.25	yes
6	4.50	5.00	no	16	5.50	6.75	yes
7	3.50	5.25	no	17	5.25	9.50	yes
8	3.00	3.25	no	18	7.00	4.25	yes
9	4.00	4.00	no	19	7.50	8.00	yes
10	4.25	3.75	no	20	7.25	5.75	yes

K 값의 결정

K값은 보통 3이상의 홀수로 한다.

-다수결로 이루어 지는 "분류"라는 의사결정을 위해 여러 K(3<= K <<n)값에 대해서 학습한 후 validation set으로 검증.

*검증 후

Accuracy 가 비슷한 수준일 때 가장 작은 K값 선택

K 값이 너무 작으면 → outlier(이상치)에 민감

K 값이 너무 크면 → over fitting

Q : If K = = n ???

분류에 대한 평가에 대한 척도

		실제 정답		
		True	False	
분류 결과	True	True Positive	False Positive	
결과	False	False Negative	True Negative	

정확도(Accuracy): (TP+TN)/ALL

-한계가 있음

ex) 암환자판단의 경우 중요한 것은 암환자를 정상이라고 판단하는 비율 낮게 하는 것 이다.

정밀도(precision): True라고 분류한 것들 중 정말 True인 비율

재현율(recall) or (sensitivity): 정답이 True인데 분류를 True라고 한 것 의 비율 Precision 과 recall은 trade off 관계이다.

-둘 중에 하나를 올리면 어느 하나는 떨어질 수 있는 관계 -둘 다를 증가시킬 수는 없다.

Ex) 4월의 30일 중에 20일은 맑은 날인 데이터가 존재

모델이 판단하기에 가장 확실해 보이는 2일만 맑았다고 판단하고 (맑았다고 판단하는 기준을 높인다.) 나머지는 틀렸다고 판단한다면

TP = 2
$$\mathbf{FP} = 0$$
 \Rightarrow precision =1

Recall

→0.1

Recall 을 올리기 위해 맑았다고 판단하는 기준을 조금 낮추면

FP(실제로는 어두웠는데 맑다고 판단)가 증가 → precision down
TF는 작아짐 → recall up

ROC - curve (수신자 판단 특성 곡선)

위 그림으로부터

TPR(왼쪽 빨강이 / 왼쪽 노랑이) 을 Y축,

FPR(오른쪽 빨강이/ 오른쪽노랑이) 을 X축 으로 해서 그린 곡선

TPR 은 성능의 좋음에 대한 지표 이고 FPR 은 성능의 좋지 않음에 대한 지표이다

위에서 언급 했던 내용을 상기해 보자

To make TPR(recall) up → FN 감소시켜야함.

그러나, FN 감소하면

Trade off 효과로 FP 증가→ FPR 또한 증가

분류 모델에 대한 평가를 위해서는 분류기준을 바꿔가면서 TPR 과 FPR의 변화 양상을 보며 판단해야 하며 그것을 위해 ROC-curve 이용

ROC- curve의 면적을 AUC(Area Under Curve)라 하며 AUC의 크기를 이용해 분류모델의 성능을 평가한다.

0.5~1사이의 값을 가지며 1에서의 성능이 제일 좋다.

반약 위의 분포저렴 많이 접지는 부분이 많을 수독 식습

주어진 데이터(곡선)에서 최적의 분류 기준(초록선) 일때 AUC 값이 가장 크게 되며 좌,우로 이동할 경우 AUC값이 작아진다.

머신러닝, 딥러닝에서 ROC-curve를 모델판단의 척도로 사용

정리:

K-NN

주변에 존재 하는 인접한 K개의 record로부터 분류 해 낸다.

변수들의 scale이 다르므로 정규화를 해주어야 한다.

적당한 K값을 찾아 내야 한다.(작으면 이상치에 민감, 크면 overfitting) 장점:

- 1. 간단하다.
- 2. 모델을 설정할 필요없이 데이터를 바로 이용하면 된다.

단점:

- 1. 변수의 수가 늘어날수록 필요한 training set의 크기가 커진다.
 - -변수(차원)이 늘어남에 따라 계산 record간의 거리가 커지게 되므로 적은 dataset으로는 유의미하게 가까운 record를 찾는 것이 힘들다.
- 2. Training set이 커짐에 따라 필요한 계산 횟수도 커진다.
- 3. 모델 설정을 하지 않으므로 실행할 때 마다 반복적으로 계산을 처음부터 다시 해야함
- 4. 분류 카테고리가 3가지 이상일 때 동점일 확률이 있다.

(이경우 랜덤하게 둘 중에서 선택한다.)