Appendix D: Datasheets

D.1 Basic computer instructions and hexadecimal codes

Symbol	Hexadecimal code		Description
<i>y</i>	I=0	I=1	
AND	0XXX	8XXX	AND memory word to AC
ADD	1XXX	9XXX	Add memory word to AC
LDA	2XXX	AXXX	Load memory word to AC
STA	3XXX	BXXX	Store AC in memory word
BUN	4XXX	CXXX	Branch unconditionally by setting PC to the address in instruction
BSA	5XXX	DXXX	Branch and save return address
ISZ	6XXX	EXXX	Increment word in memory itself and if word becomes 0, skip
			next instruction.
CLA	7800		Clear AC
CLE	7400		Clear E
CMA	7200		Complement AC
CME	7100		Complement E
CIR	7080		Circulate right AC and E
CIL	7040		Circulate left AC and E
INC	7020		Increment AC
SPA	7010		Skip next instruction if AC is positive
SNA	7008		Skip next instruction if AC is negative
SZA	7004		Skip next instruction if AC is zero
SZE	7002		Skip next instruction if E is zero
HLT	7001		Halt computer
INP	F800		Input information from INPR register and clears flag
OUT	F400		Output information to OUTR register and clears flag
SKI	F200		Skip is input flag is on
SKO	F100		Skip if output flag is on
ION	F080		Turn interrupt on
IOF	F040		Turn interrupt off

${\rm D.2~Instruction}$ and interrupt cycles

Detailed one

D.3 Micro-operations tables (spread on 2 pages)

TABLE 5-6 Control Functions and Microoperations for the Basic Computer

```
Fetch
                                       R'T_0:
                                                     AR \leftarrow PC
                                       R'T_1:
                                                     IR \leftarrow M[AR], PC \leftarrow PC + 1
Decode
                                       R'T_2:
                                                     D_0, \ldots, D_7 \leftarrow \text{Decode } IR(12-14),
                                                     AR \leftarrow IR(0-11), I \leftarrow IR(15)
Indirect
                                                     AR \leftarrow M[AR]
                                      D_{7}^{\prime}IT_{3}^{\prime}
Interrupt:
     T_0'T_1'T_2'(IEN)(FGI + FGO):
                                                     R \leftarrow 1
                                         RT_0:
                                                     AR \leftarrow 0, TR \leftarrow PC
                                                     M[AR] \leftarrow TR, PC \leftarrow 0
                                         RT_1:
                                         RT_2:
                                                     PC \leftarrow PC + 1, IEN \leftarrow 0, R \leftarrow 0, SC \leftarrow 0
 Memory-reference:
                                                 DR \leftarrow M[AR]
     AND
                                     D_0T_4:
                                                  AC \leftarrow AC \land DR, SC \leftarrow 0
                                     D_0T_5:
     ADD
                                                 DR \leftarrow M[AR]
                                     D_1T_{4}
                                                 AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0
                                     D_1T_5:
    LDA
                                                 DR \leftarrow M[AR]
                                     D_2T_4:
                                                 AC \leftarrow DR, SC \leftarrow 0
                                     D_2T_5:
                                     D_3T_4:
                                                 M[AR] \leftarrow AC, SC \leftarrow 0
     STA
     BUN
                                     D_4T_4:
                                                 PC \leftarrow AR, SC \leftarrow 0
                                                 M[AR] \leftarrow PC, AR \leftarrow AR + 1
     BSA
                                     D<sub>5</sub>T<sub>4</sub>
                                                  PC \leftarrow AR, SC \leftarrow 0
                                     D_5T_5:
     ISZ
                                     D<sub>6</sub>T<sub>4</sub>
                                                 DR \leftarrow M[AR]
                                     D_6T_5:
                                                  DR \leftarrow DR + 1
                                                  M[AR] \leftarrow DR, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0
                                     D_6T_6:
```

```
Register-reference:
```

```
D_7 I' T_3 = r (common to all register-reference instructions)
                               IR(i) = B_i (i = 0, 1, 2, ..., 11)
                                           SC ←0
                                    T:
CLA
                                           AC \leftarrow 0
                                rB_{11}:
CLE
                                           E \leftarrow 0
                                rB_{10}:
                                           AC \leftarrow \overline{AC}
CMA
                                 rB<sub>9</sub>:
                                           E \leftarrow \overline{E}
CME
                                 rB_{\rm B}:
                                           AC \leftarrow \operatorname{shr} AC, AC(15) \leftarrow E, E \leftarrow AC(0)
CIR
                                 rB_7:
                                           AC \leftarrow \text{shl } AC, AC(0) \leftarrow E, E \leftarrow AC(15)
CIL
                                 rB<sub>6</sub>:
                                           AC \leftarrow AC + 1
INC
                                 rB₅:
                                           If (AC(15) = 0) then (PC \leftarrow PC + 1)
SPA
                                 rB<sub>4</sub>:
                                           If (AC(15) = 1) then (PC \leftarrow PC + 1)
SNA
                                 rB_3:
                                           If (AC = 0) then PC \leftarrow PC + 1
SZA
                                 rB_2:
                                           If (E = 0) then (PC \leftarrow PC + 1)
SZE
                                 rB_1:
HLT
                                           S←0
                                 rB_0:
```

Input-output:

$$D_7IT_3 = p \text{ (common to all input-output instructions)}$$

$$IR(i) = B_i \text{ } (i = 6, 7, 8, 9, 10, 11)$$

$$p: SC \leftarrow 0$$
INP
$$pB_{11}: AC(0-7) \leftarrow INPR, FGI \leftarrow 0$$
OUT
$$pB_{10}: OUTR \leftarrow AC(0-7), FGO \leftarrow 0$$
SKI
$$pB_9: \text{ If } (FGI = 1) \text{ then } (PC \leftarrow PC + 1)$$
SKO
$$pB_8: \text{ If } (FGO = 1) \text{ then } (PC \leftarrow PC + 1)$$
ION
$$pB_7: IEN \leftarrow 1$$

$$pB_6: IEN \leftarrow 0$$

D.4 Basic computer and control unit

