

L Devops Blinks

暨 DevOps 金融峰合

指导单位: 《 對策源》 1988

时间:2018年11月2日-3日

地址: 深圳市南山区圣淘沙大酒店(翡翠店)

DevOps中如何系统开展微服务性能测试

刘毅 华为云测试架构师

目录

- 1 微服务架构下的性能测试挑战
 - 2 微服务性能保障解决方案设计
 - 3 性能测试实施策略
 - 4 交流

微服务与DevOps

DOIS

微服务3S原则

DevOps核心点

优秀实践

核心价值

工具链

消除开发、测试、运营鸿沟

众需

把握价值需求和方向

极速迭代

试错, 快速上市, 快速反馈

长短线并行

兼顾平台能力和业务效率

组件化架构

解耦独立交付, 缩短周期

灰度发布

提前暴露问题,降低发布风险

众测

缩短周期,降成本,提升体验

微服务是实现DevOps的重要架构

微服务架构下的业务特点

运营管理云服务 内容呈现云服务 用户呈现云服务 音乐媒资接口 内容呈现接入 用户呈现接入 媒资内容管理 内容搜索 音乐播放控制 内容转码 内容推荐 订单 运营渠道管理 产品呈现 用户行为 运营管理门户 活动呈现 用户社交 华为音乐传统单体架构拆解成15+个微服务,基于CSE开发和治理

- · 亿级用户的平台
- 单服务业务随时扩容
- 服务之间存在相互调用关系
- 版本更新快,上线周期短

微服务架构下的性能测试挑战

单服务流量激增时扩容

调用链条变长,调用关系更加复杂

微服务拆分导致故障点增多

- ▶ 单服务变更性能影响如何评估?
- 性能瓶颈在各微服务间漂移,如何做好性能测试?
- 应对突发流量需求,扩容能否解决问题,如何扩容?
- 服务实例数量众多,如何收集信息,快速定位性能问题?

目录

- 1 微服务架构下的性能测试挑战
- 2 微服务性能保障解决方案设计
 - 3 性能测试实施策略
 - 4 交流

性能测试平台服务化

性能测试服务架构

关键设计1:模块化管理,事务灵活组合与复用 DOIS

关键设计2:应用与资源一体化编排

目录

- 1 微服务架构下的性能测试挑战
- 2 微服务性能保障解决方案设计
- 性能测试实施策略
 - **4** 交流

分层开展微服务性能测试

1、单服务接口测试(契约)

验证单服务的各个接口能力基线以及组合接口的能力基线,服务间遵循契约化原则,大部分问题屏蔽在集成之前

2、全链路测试(SLA)

验证整个系统之上全链路场景以及多链路组合场景的性能,优化链路中性能不足的服务

3、伸缩能力验证(面向现网运维)

验证单服务的水平扩容能力,验证既定模型下的多链路组合场景的资源模型

更高的测试成本?

一个系统从开发到上线我们需要做哪些测试

在微服务架构下,自动化仍然是提升效率,看护质量的重要手段,每个微服务独立快速迭代上线,更加要求微服务的性能不劣化

循序渐进的性能测试执行

性能是一个逐步提升的过程,测试过程中需要找到**扩容的模型,一个从**从不足50的TPS提升至万级TPS的案例:

特点:

百级并发 应用单实例

小规模验证

应用以域名形式配置数据库,但是容器内DNS无缓存,频繁解析DNS导致操作数据库时延大

出现问题基本在应 用和配置 特点:

干级并发 应用多实例、数据库单实例

中规模调优提升

Memcached采用短链接,频繁建拆 链导致TPS无法提升 RDS最大连接数配置过小,导致TPS 无法提升

> 瓶颈逐步到数据库及其 使用方式

特点:

万级以上并发 数据库多实例,堆叠

→ 大规模探底

多网卡队列未开启,导致网络转发时延大 Redis最大连接数不足,导致TPS无法提升

> 带宽、操作系统配置等 底层问题出现

常见微服务性能问题测试结果分析

- 存在部分响应超时:
 - a) 服务器繁忙,如某个服务节点CPU利用率高
 - b) 网络IO超过VM/EIP带宽
 - c) 等待后端微服务、数据库的超时时间设置过长
- · 运行一段时间后全部响应超时或者检查点校验不通过:
 - a) 大压力导致系统中某个微服务奔溃
 - b) 后端数据库无响应

- · TPS未随着并发数增长而上升:
 - a) 系统性能到达瓶颈,持续并发加压过程中响应时延增加(可观察响应区间统计)
 - b) 可通过进一步加压是否会出现非正常响应验证
- · TP90响应时延较短 , TP99时延高 :
 -) 系统性能接近瓶颈
 - b) 可通过进一步加压是否会出现非正常响应验证

一些常见的微服务性能优化手段

- **1. 扩容**:链路中的某一应用可能出现cpu使用率较高或者连接池资源不够用(rpc、jdbc、redis连接池等)但本身对于拿到连接的请求处理又很快,这一类需要横向扩展资源。
- 2. 应用逻辑优化:比如存在慢sql、逻辑的不合理如调用db或者redis次数过多、没有做读写分离造成写库压力过大。
- 3. 超时时间的合理设置:对于应用之间的rpc调用或者应用与其他基础组件之间的调用,均需要设置合理的超时时间, 否则过长的等待将造成整个链路的故障。
- **4. 缓存的应用**:请求尽可能从前端返回,而不是每一个都要让后端应用处理后再返回,减轻后端应用及数据库压力,提高系统吞吐能力。
- 5. **限流**:对于超出承载能力的QPS或并发,可以进行拦截并直接返回提示页面。
- 6. 降级:对于非核心链路上的应用,允许故障关闭而不影响核心链路。

典型互联网平台的全链路分段压测

一个典型的互联网平台:突发事件高流量突发,如瞬间由百级用户增长到万级

对于网络架构复杂的应用,可以拆分压力的入口点,进行分段验证,屏蔽对应网元带来的性能影响,如分别从最外端的CDN入口(1)、中间的ELB(2)、业务层(3)分别做测试,验证复杂网络架构情况下,各网元的瓶颈和影响

系统内部的性能瓶颈如何提升定位效率?

APM调用链跟踪解决问题定位最后一公里

基于Pinpoint技术构建的APM服务可以非常好辅助的分布式性能问题定位,云服务更便于集成

- ➤ 在上线和活动前期通过云性能测试服务进行压力测试, 发现部分接口的响应时间比较长,会出现比对失败和 响应超时,通过APM的调用链分析,发现有部分SQL 语句比较耗时,针对这些SQL查询语句,建立了索引, 快速定位问题并迅速解决。
- ▶最终经过两轮测试优化后,官网首页访问响应超时与 正常返回比提升了43.3%, 预约试驾场景响应超时与 正常返回比降低到0, 提升了100%。
- ▶性能瓶颈定位时间,从官网未使用APM时需要1周,缩 短到俱乐部使用APM后的0.5天,效率提升90%

资源分析

调用链分析

失败週用链 ⑦							
TraceID	应用名称	事务	英型	W.S.	开始时间	意理用耗針(ms)	16/7
f499d14d36cf0b27	api-gatemay	POST_/product/buy/[id]	TOMCAT_METH	○ 失效	2018/10/25 16:45:36 GMT+08:00	38	查看用用关系
e983a10572e7ec18	dao-service	GET_/persistence/paymen	TOMCAT_METH	○ 先敗	2018/10/25 16:45:36 GMT+08:00	11	查看视用关系
9d2b899bc8bbbc91	ui-service	GET_/product/searchAll	TOMCAT_METH	○ 失敗	2018/10/25 16:45:38 GMT+08:00	2002	查看视用关系
70305bb7c3afb3a4	api-gateway	POST_/product/buy/[id]	TOMCAT_METH	○ 失敗	2018/10/25 16:45:24 GMT+08:00	30	西春初 司米米
daf8fa917d0c74f4	dao-service	BACKEND_SQL_/execute	MYSQL_EXECUT	○ 失敗	2018/10/25 16:45:24 GMT+08:00	1	西春初刊 米系
Sclaf4ele46bd27c	dao-service	GET_/persistence/paymen	TOMCAT_METH	○ 失敗	2018/10/25 16:45:24 GMT+08:00	11	西南部市 大阪
27268bf8b23cbe78	ul-service	GET_/product/searchAll	TOMCAT_METH	○ 失敗	2018/10/25 16:45:25 GMT+08:00	2002	京市 研究系
b2a7d8f475a97a0e	ul-service	GET_/product/searchAll	TOMCAT_METH	○ 失敗	2018/10/25 16:45:14 GMT+08:00	2002	принск
3168ebaa9df3ffb2	dao-service	BACKEND_SQL_/execute	MYSQL_EXECUT	○ 朱政	2018/10/25 16:45:12 GMT+08:00	1	ппиния
4bc142b51a0b9d6f	dao-service	GET_/persistence/paymen	TOMCAT_METH	○ 失敗	2018/10/25 16:45:12 GMT+08:00	11	MERCHAN

目录

- 1 微服务架构下的性能测试挑战
- 2 微服务性能保障解决方案设计
- 3 性能测试实施策略
- **4** 交流

更多交流

华为云性能测 试服务

个人微信

Thank You

