Cellular Networks and Mobility

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Cellular Networks

Cellular Networks Mobility Mobile IP Cellular Mobility

Basic Architecture

- hierarchy
 - telephone network
 - Gateway Mobile Switching Center
 - Mobile Switching Center
 - Base Station Controller
 - Base Station Transceiver
- each BST covers a cell
 - imagined as a hexagon
 - actual coverage depends on transmission power, obstacles
 - directional antennas increase capability of a single tower

2G Standard

- GSM: combined FDM/TDM
 - divide into 200 kHz bands
 - each band supports 8 TDM calls
 - 13 kbps
- BSC
 - locate the cell where the phone is located
 - allocate channels to cell phones
 - perform handoff to a new BST or BSC
- MSC
 - handles about five BSCs, or 200K customers
 - call creation, teardown, handoff, authorization and accounting

3G Standard

- combine data with voice
 - developed slowly: 30 kbps 144 kbps 384 kbps 2 Mbps 3
 Mbps
 - UMTS has up to 14 Mbps download speeds
- replace BSC with RNC (Radio Network Controller)
 - uses circuit switching to connect to phone network, packet switching to connect to Internet
 - uses CDMA within TDMA slots, and TDMA slots available on various frequencies

4G/LTE Standard

Figure 1. LTE: Evolution from separate CS and PS core sub-domains (3GPP case shown) to one common IP core

4G/LTE Standard

- Evolved Packet Core (EPC)
 - all IP core no circuits
 - provides Quality of Service to voice calls
- LTE Radio Access Network
 - OFDM (combination of FDM and TDM) that allocates time slots to each device on one or more frequencies
 - MIMO antennas
 - 100 Mbps downstream, 50 Mbps upstream

Mobility

Mobility

- how fast is the user moving?
- does the user need to keep her IP address?
 - cellular or high speed car vs DHCP on a laptop
 - need to maintain Internet connections when user becomes mobile: is it the application's or TCP's job?
- is infrastructure available?

Mobility Terminology

- home agent: entity that acts on behalf of mobile user while she is away
- foreign agent: entity that acts on behalf of mobile user in visited network

Mobility Terminology

- permanent address: address in home network
- care-of-address: address in the foreign network

Cellular Networks Mobility Mobile IP Cellular Mobility

Approaches

network-layer routing

- routers advertise permanent address of mobile nodes via usual routing algorithm
- no changes to end systems
- not scalable breaks IP address aggregation
- could separate routing from naming (Nimrod IPv6 proposal), but this requires massive Internet architecture change

application-layer routing

- applications register with home network when they visit a foreign network
- indirect routing: home agent routes packets to foreign agent
- direct routing: home agent tells correspondent about foreign agent

Indirect Routing

transparent to correspondent

Indirect Routing

 causes a triangle routing problem: forward path is different from the reverse path, may be inefficient and may cause problems with TCP

Direct Routing

solves triangle routing problem, but not transparent to correspondent

Direct Routing

- foreign agent chaining when mobile node moves to a new foreign network
- subsequent foreign networks just notify the anchor foreign agent
- used in GSM

Mobile IP

Mobile IP

- RFC 3220
- uses home agents, foreign agents, foreign agent registration, care-of-addresses, encapsulation
- three components
 - indirect routing
 - agent discovery
 - registration with home agent

Mobile IP Agent Discovery

- foreign and home agents advertise services by broadcasting ICMP messages
- H, F bits: home and/or foreign agent
- R bit: registration required

Mobile IP Registration Example

Cellular Networks Mobility Mobile IP Cellular Mobility

Mobile TCP

- not possible with today's operating systems
 - TCP sockets use source and destination IP addresses along with ports to identify a connection
 - would need to replace socket API
- TCP performance over wireless may be bad
 - high packet loss over wireless due to bit errors, collisions, handoff
 - TCP interprets loss as congestion, will slow down
- possible solutions
 - reliability at link layer
 - TCP awareness of wireless links distinguish between congestion and wireless loss, react properly
 - split the connection into two parts wired and wireless, used in cellular networks

Cellular Call to Mobile User

- home network: cellular provider network (e.g. Verizon)
- HLR: home location register - database with your profile (number, services, billing) and location
- VLR: visitor location register - database containing all users currently in network

Cellular Networks Mobility Mobile IP Cellular Mobility

Cellular Mobility - Same MSC

- goal: route call via new base station with no interruption
- motivation
 - connectivity
 - stronger signal from new BS
 - load balancing
- cell phone measures signal strength of all BS it can hear, reports to current BS
- handoff initiated by current BS

Cellular Handoff Steps

- old BS informs MSC of handoff, list of 1+ new BS
- MSC creates circuit to new BS
- 3 new BS allocates radio channel for phone
- new BS signals MSC that it is ready
- 6 old BS tells phone to perform handoff
- 6 phone activates new channel
- phone signals MSC that handoff is complete
- MSC releases circuit to old BS

Cellular Mobility - Different MSC

