Lógica de Predicados de Primer Orden

Temas:

- Lógica de Predicados. Lenguajes de primer orden. Sintaxis: términos y formulas bien formadas. Predicados y cuantificadores. Representación del conocimiento

Bibliografía:

- Pons, Rosenfeld, Smith. Lógica para Informatica. Capítulo 2
- Hamilton. Lógica para Matemáticos. Capítulo 3

Trabajo práctico: TP 04

Introducción

La lógica proposicional permite formalizar y teorizar sobre la validez de una gran cantidad de enunciados. Sin embargo existen enunciados intuitivamente válidos que no pueden ser probados por dicha lógica. Por ejemplo, considérese el siguiente razonamiento:

Todos los hombres son mortales. Sócrates es un hombre.

Por lo tanto, Sócrates es mortal.

Su formalización es la siguiente:

p

q

Por lo tanto, r

Esta es claramente una forma de razonamiento inválido, lo que contradice nuestra intuición.

Sucede que para estudiar la validez de este tipo de razonamientos necesitamos analizar :

- ✓ la naturaleza de la premisa «Todos los As son Bs»
- √ la estructura interna de cada enunciado

Dicha problemática la resuelve la <u>lógica de predicados</u> Esto se corresponde a las ideas de:

- ✓ Cuantificadores
- ✓ Sujetos y Predicados

El **Sujeto** es la cosa acerca de la cual el enunciado está afirmando algo, ej. Sócrates.

El **Predicado** se refiere a una propiedad que posee el sujeto, ej «es mortal»

Predicados

Un predicado es "lo que se afirma de un sujeto en una proposición" (D.R.A.E.).

Los predicados pueden definir propiedades sobre uno, dos, o más individuos (u objetos), establecen relaciones entre ellos.

Así, hay predicados unarios (o monádicos), binarios, ternarios,...,n-arios.

Los predicados unarios definen relaciones de grado uno, es decir propiedades de un objeto, como por ejemplo:

"el 7 es un número primo" que lo simbolizamos P_1^1 (7)

«Socrates es mortal» que lo simbolizamos P_2^1 (socrates)

«Sócrates es un hombre» que lo simbolizamos P_3^1 (socrates)

Los predicado binarios definen una relación de grado dos, por ejemplo:

"9 es múltiplo de 3" que lo simbolizamos P_1^2 (9,3)

"7 es menor que 9" que lo simbolizamos P_2^2 (7,9)

Nota: La lógica de predicados limitada a representar relaciones entre objetos se denomina *de primer orden*, la que permite expresar relaciones entre relaciones se conoce como *de segundo orden*, y así sucesivamente. En este capítulo nos centraremos en la lógica de predicados de primer orden.

Predicados

Ejemplos:

En cada uno de los siguientes enunciados, se ha subrayado el sujeto y el resto es el predicado:

- a) Sócrates es un hombre.
- b) Juan escribe libros.
- c) <u>El número cuya raiz es -1</u> no es real.
- d) <u>El aislamiento</u> durará hasta el 25 de Diciembre.

Resulta conveniente representar a los predicados con letras mayúsculas y a los sujetos con minúsculas, con lo cual los enunciados de arriba se simbolizan del modo siguiente:

- a) H(s) simboliza «Sócrates es un hombre». También podemos representar que Napoleón es un hombre diciendo H(n), donde n simboliza a Napoleón.
- b) E(j) simboliza « Juan escribe libros», donde j simboliza a Juan, mientras que E simboliza a la propiedad de «escribir libros». También podemos simbolizar que Sócrates escribe libros diciendo E(s).
- c) (~ R(j)) donde j representa al número cuya raíz es -1 .
- d) D(a), donde a simboliza al aislamiento y D al predicado «durará hasta el 25 de Dic»
- e) D(a,f), donde a simboliza al aislamiento, f al 25 Dic y D al predicado «durará hasta»

También podemos ponerle nombres mas genéricos a los predicados, por ej:

- a) $P_1^1(x)$ simboliza «x es un hombre»
- b) $P_2^1(x)$ simboliza «x escribo libros»
- c) $P_3^1(x)$) simboliza «x es real»
- d) $P_1^2(x,y)$, simboliza «x durará hasta y»

Ejercicio: Representación del conocimiento

PREMISAS.

- a) El aislamiento durará hasta el 25de Diciembre.
- b) <u>El 25 de Diciembre</u> es Navidad

CONCLUSION.

El aislamiento durará hasta Navidad.

PREMISAS

- a) D(a), donde a simboliza al aislamiento y D(x) al predicado «x durará hasta el 25 de Diciembre»
- a) N(f), donde f simboliza al 25 Dic y N(x) al predicado «x es Navidad»

CONCLUSION.

P(a), donde P(x) es el predicado «x durará hasta Navidad.»

PREMISAS

- a) D(a,f), donde a simboliza al aislamiento y f simboliza al 25 Dic y D(x,y) al predicado «x durará hasta y»
- a) N(f), donde N(x) al predicado «x es Navidad»

CONCLUSION.

 $(D(a,f) \wedge N(f))$

Cuantificadores

⊳¿Qué ocurre ahora con enunciados tales como «todos los hombres son mortales»? Necesitamos algo más que un análisis de sujeto y predicado, ya que el significado del enunciado depende de la fuerza de la palabra «todos». Consideremos otro ejemplo:

Todo entero tiene un factor primo.

En el simbolismo matemático ordinario, escribiriamos esto así:

Para todo x, si x es un entero entonces x tiene un factor primo.

Usando el lenguaje simbólico que acabamos de introducir, podemos escribir:

Para todo x,
$$E(x) \rightarrow P(x)$$

Donde E(x) simboliza «x es un entero» y P(x) simboliza «x tiene un factor primo».

Introduciendo un símbolo para el cuantificador:

$$(\forall x) (E(x) \rightarrow P(x))$$

Cuantificadores

Hay otro cuantificador que parece necesario para simbolizar frases corrientes.

Consideremos la frase:

«Algunos mamíferos tienen alas»

También lo podemos reformular como:

«Existe al menos un mamífero que tiene alas»

O en lenguaje más artificial podemos decir:

Existe al menos un objeto x, tal que x es mamífero y x tiene alas.

La frase «Existe al menos un objeto x, tal que» se simboliza (∃x) y se denomina Cuantificador Existencial

Utilizando el cuantificador pdemos escribir la frase como:

 $(\exists x) (M(x) \land A(x))$

Donde M(x) significa «x es un mamífero»

A(x) significa «x tiene alas»

Relación entre ∀∃

Veamos estos ejemplos:

```
«No todas las aves vuelan» \sim (\forall x) (A(x) \rightarrow V(x)) «Algunas aves no vuelan» (\exists x) (A(x) \land \sim V(x))
```

Estos ejemplos ilustran un esquema común (pero que puede no cumplirse):

El cuantificador universal va seguido de una implicación, debido a que los enunciados universales suelen ser de la forma,

«dado un x cualquiera, si tiene la propiedad A entonces tiene también la propiedad B»

El cuantificador existencial va seguido de una conjunción, debido a que los enunciados existenciales suelen ser de la forma,

«existe al menos un x, que tiene la propiedad A y tiene también la propiedad B»

Relación entre ∀∃

(i)
$$\sim (\forall x)(A(x) \rightarrow V(x)),$$

(ii) $(\exists x)(A(x) \land \sim V(x)).$

Para comparar más de cerca, transformemos el primero en

$$\sim (\forall x)(\sim A(x) \vee V(x))$$

según las reglas del Capítulo 1, y luego en $\sim (\forall x) \sim (A(x) \land \sim V(x))$.

La forma de este enunciado es ahora similar a la de (ii), pero con $\sim (\forall x) \sim$ en lugar de $(\exists x)$.

La consideración de ejemplos como éste nos permite comprender intuitivamente que las dos frases:

(i) No es el caso que todos los x no tengan la propiedad P,

(ii) Existe algún x que tiene la propiedad P, tienen el mismo significado, cualquiera que sea la propiedad P.

Sintaxis: el lenguaje simbólico de la lógica

Para estudiar los principios del razonamiento, la lógica necesita en primer término capturar y formalizar las estructuras del lenguaje natural en un lenguaje simbólico, para luego formalizar los mecanismos de razonamiento que se aplican sobre dichas estructuras lingüísticas.

El lenguaje simbólico consta de:

El alfabeto o vocabulario

Es el conjunto de símbolos primitivos que pertenecen al lenguaje.

La gramática

Consiste en un conjunto de reglas que definen recursivamente las cadenas de símbolos que pertenecen al lenguaje.

Sintaxis: el lenguaje simbólico de la lógica

Alfabeto

El alfabeto del lenguaje está formado por:

- ✓ Un conjunto de símbolos de constantes $C = \{c_1, c_2, ...\}$.
- ✓ Un conjunto de símbolos de variables X = $\{x_1, x_2, ...\}$.
- ✓ Un conjunto de símbolos de funciones $F = \{f_1^1, f_2^1, ..., f_1^2, f_2^2, ...\}$.
- ✓ Un conjunto de símbolos de predicados P = $\{P_1^1, P_2^1, ..., P_1^2, P_2^2, ...\}$.
- ✓ Símbolos de conectivas (los mismos de la lógica proposicional): \neg , \land , \lor , \rightarrow , \leftrightarrow .
- ✓ Paréntesis de apertura y cierre.
- ✓ El cuantificador universal \forall ("para todo") y el cuantificador existencial \exists ("existe").

Gramática

La gramática del lenguaje define dos clases de elementos, por un lado los **términos**, que son las expresiones que denotan los objetos del dominio, y por el otro las **fórmulas bien formadas (fbf)**, con las que se expresan las relaciones entre los objetos.

Los términos se definen inductivamente de la siguiente manera:

- ✓ Los símbolos de constantes y de variables son términos.
- ✓ Si t_1 , ..., t_n son términos y f_i^n es un símbolo de función, entonces $f_i^n(t_1, ..., t_n)$ es un término.
- ✓ Sólo las expresiones que pueden ser generadas mediante las cláusulas i y ii en un número finito de pasos son términos.

Por su parte, las fórmulas bien formadas se definen así:

- ✓ Si t_1 , ..., t_n son términos y P_i^n es un símbolo de predicado, entonces $P_i^n(t_1, ..., t_n)$ es una formula bien formada. En este caso se denomina *fórmula atómica* o directamente *átomo*.
- ✓ Si A y B son fórmulas bien formadas, entonces (\neg A), (A \wedge B), (A \vee B), (A \rightarrow B) y (A \leftrightarrow B) también lo son.
- ✓ Si A es una fórmula bien formada y x es un símbolo de variable, entonces $(\forall x)$ A y $(\exists x)$ A son fórmulas bien formadas.
- ✓ Sólo las expresiones que pueden ser generadas mediante las cláusulas i a iii en un número finito de pasos son fórmulas bien formadas.

Sintaxis: por ejemplo, hablemos de números

Los Símbolos del alfabeto del lenguaje de los números:

```
c<sub>1</sub> será el símbolo de constante para representar el cero. x será un símbolo de variable.
```

```
f_1^1 será el símbolo de función para representar el sucesor. f_1^2 será el símbolo de función para representar la suma.
```

 P_1^1 será el símbolo de predicado para representar la propiedad de ser par.

 P_1^2 será el símbolo de predicado para representar la relación de igualdad.

 P_2^2 será el símbolo de predicado para representar la relación <.

Ejemplos de Términos:

- √ Los símbolos de constantes y de variables son términos.
 - ➤ Entonces c₁ y x son términos.
- \checkmark Si t_1 , ..., t_n son términos y f_i^n es un símbolo de función, entonces $f_i^n(t_1, ..., t_n)$ es un término.
 - \succ Como $\mathbf{c_1}$ es un término, y f_1^1 es un símbolo de función unario, entonces f_1^1 ($\mathbf{c_1}$) es un término. Que podría interpretarse como la función sucesor aplicada al cero, suc(0).
 - ightharpoonup Como $m c_1$ y x son términos, y $m f_1^2$ es un símbolo de función binario, entonces $m f_1^2$ ($m c_1$, x) es un término Que podría interpretarse como la función suma, +(0,x).

 Notar: notación prefija +(0,x) vs. notación infija (0+x).

Sintaxis: por ejemplo, hablemos de números

Los Símbolos del alfabeto del lenguaje de los números:

- c₁ será el símbolo de constante para representar el cero. x será un símbolo de variable.
- f_1^1 será el símbolo de función para representar el sucesor. f_1^2 será el símbolo de función para representar la suma.
- P_1^1 será el símbolo de predicado para representar la propiedad de ser par.
- $m{P}_1^2$ será el símbolo de predicado para representar la relación de igualdad.
- P_2^2 será el símbolo de predicado para representar la relación >

Ejemplos de fórmulas bien formadas (fbf) :

- ✓ Si t_1 , ..., t_n son términos y P_i^n es un símbolo de predicado, entonces $P_i^n(t_1, ..., t_n)$ es una fbf (en este caso es atómica).
 - ightharpoonup Como ${f c_1}$ es un término y ${m P_1^1}$ es un símbolo de predicado, entonces ${m P_1^1(c_1)}$ es una fbf. Que podría interpretarse como la afirmación «el número cero es par».
 - ightharpoonup Como c_1 y x son términos y P_1^2 es un símbolo de predicado, entonces $P_1^2(x, c_1)$ es una fbf. Que podría interpretarse como la afirmación «x es igual a 0».
 - ightharpoonup Como c_1 y f_1^2 (c_1 , x) son términos y P_1^2 es un símbolo de predicado, entonces $P_1^2(f_1^2$ (c_1 , x), x) es una fbf.

Que podría interpretarse como la afirmación «0+x es igual a x».

ightharpoonup Como ${\bf c_1}$ y f_1^1 (${\bf c_1}$) son términos, entonces ${\bf P_1^2}({\bf f_1^1(c_1), c_1})$ es una fbf. Que podría interpretarse como «El sucesor del cero es igual a cero».

Sintaxis: por ejemplo, hablemos de números

Los Símbolos del alfabeto del lenguaje de los números:

c₁ será el símbolo de constante para representar el cero. x será un símbolo de variable.

 f_1^1 será el símbolo de función para representar el sucesor. f_1^2 será el símbolo de función para representar la suma.

 P_1^1 será el símbolo de predicado para representar la propiedad de ser par.

 $m{P}_1^2$ será el símbolo de predicado para representar la relación de igualdad.

 P_2^2 será el símbolo de predicado para representar la relación >

Ejemplos de fórmulas bien formadas (fbf) :

- ✓ Si A y B son fórmulas bien formadas, entonces (¬A), (A ∧ B), (A ∨ B), (A → B) y (A ↔ B) también lo son.
 - $ightharpoonup P_1^2(f_1^1(c_1), c_1)$ es una fbf.

Que podría interpretarse como «El sucesor del cero no es igual a cero».

- ✓ Si A es una fórmula bien formada y x es un símbolo de variable, entonces $(\forall x)$ A y $(\exists x)$ A son fórmulas bien formadas.
 - $ightharpoonup (\forall x) P_1^2(f_1^2(x, c_1), x)$ es una fbf.

Que podría interpretarse como «el cero es el neutro de la suma».

 \triangleright (\forall x) $P_2^2(f_1^1(x), x)$ es una fbf.

Que podría interpretarse como «suc(x)>x».

Sintaxis: scope, ligadura, variable libre

Los cuantificadores tienen un *alcance* o scoupe, o *radio de acción* determinado. Por ejemplo, en la fórmula bien formada:

$$(\forall \mathsf{x}) \ (P_1^1(\mathsf{x}) \to P_2^1(\mathsf{x}))$$

las dos ocurrencias del símbolo de variable x suceden dentro del alcance del cuantificador \forall Mientras que en la fórmula bien formada:

$$(\forall x) P_1^1(x) \rightarrow P_2^1(x)$$

el \forall alcanza sólo a la primera ocurrencia de x. Diremos en el primer caso que x está *ligada*, y en el segundo que la primera x está *ligada* y la otra está *libre* (por lo que podría sustituirse por cualquier otro símbolo de variable).

Una fbf es *abierta* si contiene algún símbolo de variable libre, y *cerrada* si todos los símbolos de variables están ligados.