Data Mining

Frequent Pattern Mining

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods

Learning Outcomes

- Define the basic concepts in frequent pattern analysis
- Compute support and confidence for association rules
- Use Apriori & FPGrowth algorithms to generate frequent itemsets

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Juice and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNAs are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Basic Concepts: Frequent Patterns and Association Rules

- Let $I = \{I_1, I_2, ..., I_m\}$ be a set of items E.g., I={Coffee, Diaper, Eggs, Juice, Milk, Nuts}}
- A transaction T is a set of items such that $T \subseteq I$ E.g., T={Nuts, Eggs, Milk}
- A transaction T is said to contain A if and only if $A \subseteq T$
- An association rule is an implication of the form A={Nuts} B={Eggs, Milk} A \Rightarrow B where $A \subset I$, $B \subset I$ and $A \cap B = \phi$ R=>B={Eggs, Milk} A=>B=\{Nuts}=> {Eggs, Milk}
- Support is the percentage of transactions containing $A \bigcup B$
- Confidence is the percentage of transactions containing A that also contains B
- Itemset is a set of items
- An itemset containing k items is a k-itemset

```
E.g.,
A={Nuts}
B={Eggs, Milk}
A and B are itemsets
A is 1-itemset
B is 2-itemset
```

Basic Concepts: Frequent Patterns

E.g., I={Coffee,Diaper,Eggs,Juice,Milk,Nuts}

Tid	Items bought	
10	Juice, Nuts, Diaper	
20	Juice, Coffee, Diaper	
30	Juice, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought	
10	Juice, Nuts, Diaper	
20	Juice, Coffee, Diaper	
30	Juice, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X U Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Juice:3, Nuts:3, Diaper:4, Eggs:3, {Juice, Diaper}:3

- Association rules: (many more!)
 - Juice \rightarrow Diaper (3/5=60%, 3/3=100%)
 - Diaper \rightarrow Juice (3/5=60%, $\frac{3}{4}$ =75%)

Exercise 1

Tid	Items bought
10	Juice, Nuts, Diaper
20	Juice, Coffee, Diaper
30	Juice, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- List any three association rules
 - **1**.
 - **2**.
 - **3**.
- Find the support of these rules
 - **1**.
 - **2**.
 - **3**.
- Find the confidence of these rules
 - **1**.
 - **2.**
 - **3**.
- If the minsup is 40%, which association rules are frequent?

Exercise 1 - Sol

Tid	Items bought
10	Juice, Nuts, Diaper
20	Juice, Coffee, Diaper
30	Juice, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- List any three association rules
 - 1. {Milk, Eggs} => {Juice}
 - 2. {Coffee} => {Diaper}
 - 3. {Juice, Nuts, Milk} => {Coffee, Eggs}
- Find the support of these rules
 - 1. {Milk, Eggs} => {Juice} : 0/5 = 0%
 - 2. {Coffee} => {Diaper} :2/5 = 40%
 - 3. {Juice, Nuts, Milk} => {Coffee, Eggs}: 0
- Find the confidence of these rules
 - 1. {Milk, Eggs} => {Juice} : 0
 - 2. {Coffee} => {Diaper} : 2/2 = 100%
 - {Diaper} => {Coffee} : 2/4 = 50%
 - 3. {Juice, Nuts, Milk} => {Coffee, Eggs}: 0
- If the minsup is 40%, which association rules are frequent?

Association Rule Mining

- Association rule mining can be viewed as a twostep process
 - Find all frequent itemsets: items satisfying minimum support
 - Generate strong association rules from the frequent itemsets: these rules must satisfy minimum support and minimum confidence
- Second step is much less costly than the first
- Overall performance of mining association rules is determined by the first step

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: 2^N (number of subsets) where N: # distinct items
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - Total number of possible itemsets = 2^{10⁴}

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods

Which Patterns Are Interesting?—Pattern Evaluation Methods

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test

Approach

- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {juice, diaper, nuts} is frequent, so is {juice, diaper}
 - i.e., every transaction having {juice, diaper, nuts} also contains {juice, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
 Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

	1
1 st	scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

sup

2

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sun	ĺ
L 2	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

{A, B} {A, C} {A, E} {B, C} {B, E} {C, E} C_2 $2^{\text{nd}} \text{ scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

Exercise 2

- Find all the frequent itemsets with minsup = 3
- Create 3 association rules from the frequent itemsets
- Find support and confidence of the association rules

Tid	Items
1	A, B, D
2	B, C, D, E
3	A, B, D, F
4	B, C, D, F
5	A, B, C, D
6	B, D, E

Exercise 2

Tid	Items
1	A, B, D
2	B, C, D, E
3	A, B, D, F
4	B, C, D, F
5	A, B, C, D
6	B, D, E

Find all the frequent itemsets with minsup = 3

Α	3
В	6
С	3
D	6
Е	2
F	2

AB	3
AC	1
AD	3
BC	3
BD	6
CD	3

ABD	3
BCD	3

- A,B,C,D,AB,AD,BC,BD,CD,ABD,BCD
- Create 3 association rules from the frequent itemsets
 - A=>B, B=>A, A=>BD, ...
- Find support and confidence of the association rules

Assignment

TID	Items
10	A,B,C,D,E
20	B,D,E
30	C,D
40	B,C,D,E
50	D,E
60	C,D,E

- 1. Use Apriori algorithm to find all the frequent itemsets with minimum support count of 2.
- 2. Find the support and confidence of the following rules

$$A = > D, E$$

$$D=>A,E$$

$$A = > D$$

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori

FPGrowth: A Frequent Pattern-Growth Approach

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

FP-Growth vs. Apriori: Scalability With the Support Threshold

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- **Basic Concepts**
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods

Interestingness Measure: Correlations (Lift)

Measure of dependent/correlated events: lift

A ⇒ B [support, confidence, lift].

Lift<1 => negatively correlated, means occurrence of one likely leads to absence of the other

=1 independent,

Lift>1 => positively correlated

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(i, W) = \frac{2000/5000}{3750/5000 * 3000/5000} = 0.88$$

$$lift(i,\neg W) = \frac{1750/5000}{3750/5000 * 2000/5000} = 1.16$$

	WhatsApp	No WhatsApp	Sum (row)
iPhone	2000	1750	3750
No iPhone	1000	250	1250
Sum(col.)	3000	2000	5000

Exercise 3

 Find the lift of the rule "noIphone => noWhatsApp" based on the previous slide

$$lift(\neg i, \neg W) = \frac{\frac{250}{5000}}{\left(\frac{1250}{5000}\right) * \left(\frac{2000}{5000}\right)}$$

Find the lift of the 3 association rules found in Exercise 2

$$A=>B$$
, $B=>A$, $A=>BD$

Tid	Items
1	A, B, D
2	B, C, D, E
3	A, B, D, F
4	B, C, D, F
5	A, B, C, D
6	B, D, E

Exercise 3

Find the lift of the 3 association rules found in Exercise 2

$$A => B$$

$$lift(A, B) = \frac{\frac{3}{6}}{\left(\frac{3}{6}\right) * \left(\frac{6}{6}\right)}$$

$$B => A$$

B=>A
$$lift(B,A) = \frac{\frac{3}{6}}{\left(\frac{6}{6}\right) * \left(\frac{3}{6}\right)}$$

$$A = > BD$$

$$lift(A, BD) = \frac{\frac{3}{6}}{\left(\frac{3}{6}\right) * \left(\frac{6}{6}\right)}$$

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

Tid	Items
1	A, B, D
2	B, C, D, E
3	A, B, D, F
4	B, C, D, F
5	A, B, C, D
6	B, D, E