1. Известно, что генеральная совокупность распределена нормально со средним квадратическим отклонением, равным 16.

Найти доверительный интервал для оценки математического ожидания а с надежностью 0.95, если выборочная средняя M = 80, а объем выборки n = 256.

В случае, когда дисперсия распределения известна и равна σ^2 , границы доверительного интервала имеют вид

$$T_{1,2} = \overline{X} \pm \frac{\sigma}{\sqrt{n}} \cdot t$$

Где t берется из таблицы распределения Лапласа по соотношению $\Phi(t)=rac{\gamma}{2}$

t = 1.96

$$T_{1,2} = 80 \pm \frac{16}{\sqrt{256}} \cdot 1.96 = 80 \pm 1.96$$

Доверительный интервал [78.04, 81.96]

2. В результате 10 независимых измерений некоторой величины X, выполненных с одинаковой точностью, получены опытные данные:

Предполагая, что результаты измерений подчинены нормальному закону распределения вероятностей, оценить истинное значение величины X при помощи доверительного интервала, покрывающего это значение с доверительной вероятностью 0,95

X	n	n-1	\overline{X}	$X - \overline{X}$	$(X-\overline{X})^2$	S_0
6,9	10	9	6,59	0,31	0,0961	0,45
6,1				-0,49	0,2401	
6,2				-0,39	0,1521	
6,8				0,21	0,0441	
7,5				0,91	0,8281	
6,3				-0,29	0,0841	
6,4				-0,19	0,0361	
6,9				0,31	0,0961	
6,7				0,11	0,0121	
6,1				-0,49	0,2401	
Σ					1,829	

В случае, когда дисперсия распределения неизвестна.

$$T_{1,2} = \overline{X} \pm \frac{S_0}{\sqrt{n}} \cdot t$$

Где t берется из таблицы Стьюдента: $t = t(\gamma; n-1)$

t = 2.26

$$T_{1,2} = 6.59 \pm \frac{0.45}{\sqrt{10}} \cdot 2.26 = 6.59 \pm 0.322$$

Доверительный интервал [6,268, 6,912]

3. Утверждается, что шарики для подшипников, изготовленные автоматическим станком, имеют средний диаметр 17 мм.

Используя односторонний критерий с α =0,05, проверить эту гипотезу, если в выборке из n=100 шариков средний диаметр оказался равным 17.5 мм, а дисперсия известна и равна 4 мм.

$$H_0$$
: $\mu_0 = 17$

H₁:
$$\mu_0 > 17$$

$$t_{\text{кр.одн}(0.05;99)} = 1,66$$

$$t = \left| \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \right| = \left| \frac{17.5 - 17}{2 / \sqrt{100}} \right| = 2.5$$

 $t>t_{ ext{\tiny Kp.}}\,\Rightarrow\,$ принимается альтернативная гипотеза

4. Продавец утверждает, что средний вес пачки печенья составляет 200 г.

Из партии извлечена выборка из 10 пачек. Вес каждой пачки составляет:

202, 203, 199, 197, 195, 201, 200, 204, 194, 190.

Известно, что их веса распределены нормально.

Верно ли утверждение продавца, если учитывать, что доверительная вероятность равна 99%?

$$H_0$$
: $\mu_0 = 200$

$$H_1$$
: $\mu_0 \neq 200$

X	n	n-1	\overline{X}	$X - \overline{X}$	$(X-\overline{X})^2$	S_0
202	10	9	198,5	3,5	12,25	4,45
203				4,5	20,25	
199				0,5	0,25	
197				-1,5	2,25	
195				-3,5	12,25	
201				2,5	6,25	
200				1,5	2,25	
204				5,5	30,25	
194				-4,5	20,25	
190				-8,5	72,25	
Σ					178,5	

t берется из таблицы Стьюдента: $t = t(\gamma; n-1)$ t = 3.25

$$t = \left| \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \right| = \left| \frac{198.5 - 200}{4.45 / \sqrt{10}} \right| = 1.06$$

 $t < t_{ ext{\tiny KD.}} \Rightarrow$ принимается гипотеза H₀: $\mu_0 = 200$