Digitaltechnik

Kapitel 4, Kombinatorische Schaltungen

Prof. Dr.-Ing. M. Winzker

Nutzung nur für Studierende der Hochschule Bonn-Rhein-Sieg gestattet. (Stand: 20.03.2019)

4.1 Schaltfunktionen

- Die Schaltalgebra verwendet Variablen und Konstanten (ähnlich wie Algebra)
 - In der Algebra gibt es unendlich viele Konstanten; Variablen können unendlich viele Werte annehmen
 - In der **Schaltalgebra** gibt es nur **zwei** Konstanten (0 und 1); Variable können nur zwei Werte annehmen (0 und 1)
- Funktionen, bei denen Eingangs- und Ausgangswerte nur die Werte 0 und 1 annehmen können, bezeichnet man als binäre Schaltfunktionen, boolesche Schaltfunktionen oder einfach Schaltfunktionen
- Das Adjektiv boolesch weist darauf hin, dass die Funktion nach der Booleschen Algebra berechnet wird (nach dem engl. Mathematiker G. Boole)
- Digitale Schaltungen führen in Schaltgliedern eine boolesche Verknüpfung von Eingangsvariablen zu einer Ausgangsvariablen durch
 - Schaltgliedern bezeichnet man auch Verknüpfungsglieder oder Gatter
 - Statt boolesch spricht man auch von logisch (z.B. logische Verknüpfung)

Die Schaltalgebra beschreibt die Rechenregeln zum Umgang mit den Werten 0 und 1; physikalische Eigenschaften, wie Spannungspegel, werden nicht beschrieben

Beispiel: Einfache Alarmanlage

- Eine Tür (T) und zwei Fenster (F1, F2) sollen überwacht werden
- Mit einem Schalter (S) wird die die Alarmanlage ein- oder ausgeschaltet
 - Binäre Werte also ,0' oder ,1'.
 - ,1' bedeutet jeweils "aktiv": Tür oder Fenster offen, Anlage eingeschaltet
- Ausgang A zeigt mit einer ,1' einen Alarm an
 - An A ist eine Alarmhupe angebracht

- Erstellung der Schaltung hier direkt aus der Aufgabenstellung
- Später wird systematische Vorgehensweise erläutert

Darstellung von Schaltfunktionen

- Im folgenden bezeichnen A, B, ... Eingangsvariablen und Y die Ausgangsvariable
- In einer Schaltfunktion ist die Ausgangsvariable von den Eingangsvariablen abhängig: Y = f (A, B)
- Eine boolesche Verknüpfung kann durch ein Schaltzeichen dargestellt werden

$$Y = f(A,B,C)$$

$$\begin{array}{ccc}
A & \longrightarrow & f \\
B & \longrightarrow & C
\end{array}$$

Funktionstabelle

- Die Funktionalität eines Schaltfunktion wird oft über eine Funktionstabelle (Wahrheitstabelle) angegeben
- Dabei wird für jede mögliche Kombination der Eingangsvariablen die Ausgangsvariable bestimmt
 - Bei n Eingangsvariablen sind 2ⁿ Kombinationen möglich
 - Für häufig vorkommende Funktionen mit 2-4 Eingangsvariablen ist eine Funktionstabelle noch relativ übersichtlich

Beispiel Majoritätsschaltung	ABC	Υ
 Schaltung bildet die Mehrheit aus drei Eingangswerten 	0 0 0	0
 Drei Eingänge A, B, C. Wenn zwei oder drei Eingänge ,1' sind, 	0 0 1	0
soll auch der Ausgang Y ,1' sein. Ansonsten ist der Ausgang ,0'.	0 1 0	0
 Anwendung: Sicherheitsschaltung für redundante Systeme 	0 1 1	1
 Eine Fabrikhalle hat drei Rauchmelder und nur wenn zwei 	1 0 0	0
Rauchmelder auslösen, wird ein Alarm gemeldet und die	1 0 1	1
Fabrikation gestoppt.	1 1 0	1
 Ein Fehler in einem Rauchmelder kann also keinen Alarm auslösen. 	1 1 1	1

Funktionstabelle mit Don't-Care

- Bei Funktionstabellen kann für eine oder mehrere Eingangskombinationen keine Ausgabe spezifiziert sein
 - Bestimmte Eingangskombinationen kommen laut Aufgabenstellung nicht vor
 - Das Ergebnis bestimmter Eingangskombinationen wird nicht verwendet
- Der nicht definierte Ausgang wird als "Don't-Care" bezeichnet

Kennzeichnung mit Strich ,-' in der	A(3:0)	Y	Zahlenwert
Funktionstabelle gekennzeichnet	0 0 0 0	0	0
3	0 0 0 1	0	1
Beispiel	0 0 1 0	1	2
•	0 0 1 1	1	3
 Primzahlerkennung für die Zahlen 0 bis 9 	0 1 0 0	0	4
 Zahlen als vierstellige Dualzahl A(3:0) 	0 1 0 1	1	5
	0 1 1 0	0	6
6 von 16 Kombinationen unbenutzt	0 1 1 1	1	7
	1000	0	8
	1 0 0 1	0	9
 Beim Schaltungsentwurf können die 	1010	-	
Don't-Care-Einträge benutzt werden, um eine	1 0 1 1	-	
möglichst kleine und damit kostengünstige	1 1 0 0	-	
Schaltung zu entwerfen	1 1 0 1	-	
20.10.10.1.9 20.011111011	1 1 1 0	-	
	4444		

Verknüpfung mit einer Schaltvariable

Frage: Wie viele verschiedene Schaltfunktionen mit einer Eingangsvariable gibt es?

Antwort: 4

für:	<u>A=0</u>	A=1	Bezeichnung
	0	0	Konstante 0
	0	1	Identität
	1	0	Negation
	1	1	Konstante 1

- In der Praxis sinnvoll ist die Negation. Sie wird beschrieben als Y = A oder Y = A(sprich: "Y ist gleich nicht A").
- Die Identität wird beschrieben als Y = A

Die Schaltzeichen sind:

Negation

ebenfalls

- Frage: Wie viele verschiedene Schaltfunktionen mit zwei Eingangsvariablen gibt es?
- Antwort: 16 (Aber einige dieser Schaltfunktionen sind trivial)

Grundverknüpfungen der Schaltalgebra

 Die Grundfunktionen der Schaltalgebra sind UND-Verknüpfung, ODER-Verknüpfung und Negation. Alle anderen Schaltfunktionen lassen sich aus Kombinationen dieser Grundfunktionen darstellen.

UND-Verknüpfung

- Bei einer UND-Verknüpfung (Konjunktion) ist die Ausgangsvariable nur dann 1, wenn Eingang A und Eingang B gleich 1 sind
- Die UND-Verknüpfung wird beschrieben als

$$Y = A \wedge B$$
 oder $Y = A \& B$

(sprich: "Y ist gleich A und B")

 Mit einer UND-Verknüpfung können auch mehr als zwei Variablen verknüpft werden

ΑВ	Υ
0 0	0
0 1	0
1 0	0
1 1	1

Grundverknüpfungen der Schaltalgebra (II)

ODER-Verknüpfung

- Bei einer ODER-Verknüpfung (**Disjunktion**) ist die Ausgangsvariable dann 1, wenn Eingang A **oder** Eingang B gleich 1 sind
- Die ODER-Verknüpfung wird beschrieben als

$$Y = A \vee B$$

(sprich: "Y ist gleich A oder B")

 Mit einer ODER-Verknüpfung können auch mehr als zwei Variablen verknüpft werden

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

- Die ursprüngliche Schreibweise des Erfinders G. Boole war das Multiplikationszeichen ,-' für UND sowie das Additionszeichen ,+' für ODER
- Diese Bezeichnungen werden auch (vor allem im US-amerikanischen) verwendet
- Vermeiden Sie Verwechslungen: (,+' = umgangsspr. "und" = ODER-Verknüpfung)

Zusammengesetzte boolesche Verknüpfungen

NAND-Verknüpfung

- Eine Reihenschaltung von UND-Verknüpfung mit der Negation ergibt die NAND-Verknüpfung (NAND = "not and")
- Die NAND-Verknüpfung wird beschrieben als

$Y = \overline{A \& B}$	("Y ist gleich A nand B")
-------------------------	---------------------------

 Die Negation wird im Schaltsymbol durch einen Kreis am Ausgang dargestellt

A	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

A — & >- Y

NOR-Verknüpfung

- Eine Reihenschaltung von ODER-Verknüpfung mit der Negation ergibt die NOR-Verknüpfung (NOR = "not or")
- Die NOR-Verknüpfung wird beschrieben als

$$\mathbf{Y} = A \vee B$$
 ("Y ist gleich A nor B")

A —	≥1	0− Υ
D —		

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

- NAND und NOR können auch für mehr als zwei Variablen gebildet werden.
- Durch Beschalten beider Eingänge mit dem gleichen Signal können NAND- und NOR-Logikgatter als Inverter benutzt werden

Zusammengesetzte boolesche Verknüpfungen (II)

Antivalenz – XOR

•	Die	Antivalenz	rist nur	für zwei	Variablen	definiert
_	レル	\neg IIIIVAICIIZ	. ISC LIGI	IUI ZVVCI	variabicii	ucilille

•	Antivalenz wird meist als Exklusiv-Oder (kurz XOR)
	bezeichnet, denn der Ausgang ist 1, wenn A oder B
	gleich 1 sind, nicht aber wenn beide 1 sind

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

- Die Funktion entspricht einem Flurlicht, mit zwei Schaltern
- Die Antivalenz wird beschrieben als

$$Y = A \oplus B = (\overline{A} \& B) \lor (A \& \overline{B})$$
 ("Y ist gleich A xor B")

Das Schaltsymbol hat das Symbol ,=1'

Zusammengesetzte boolesche Verknüpfungen (III)

Äquivalenz – XNOR

- Die Äquivalenz ist ebenfalls nur für zwei Variablen definiert
- Der Ausgang ist 1, wenn die Eingänge gleich sind
- Äquivalenz entspricht der negierten Antivalenz und wird auch als Exklusiv-NOR (kurz XNOR) bezeichnet

 A
 B
 Y

 0
 0
 1

 0
 1
 0

 1
 0
 0

 1
 1
 1

Die Äquivalenz wird beschrieben als

$$Y = A \leftrightarrow B = \overline{A \oplus B} = (A \& B) \lor (\overline{A} \& \overline{B})$$

("Y ist gleich A äquivalent B" oder "Y ist gleich A xnor B")

Das Schaltsymbol hat das Symbol ,='

- Es gibt noch weitere Verknüpfungen (Inhibition, Implikation)
 - Die Funktionen selbst sind sinnvoll
 - Die Begriffe werden in der Praxis jedoch nur selten verwendet

US-Amerikanische Logiksymbole

- In englischsprachiger Literatur und in Datenblättern finden Sie auch Logiksymbole in US-amerikanischer Darstellungsweise
- Durch einen Kreis am Ausgang werden die Varianten mit invertiertem Ausgang gekennzeichnet
 - Aus AND wird NAND, aus XOR wird XNOR.

Tipps zum Merken:

- Gerade linke Kante des AND ähnlich wie vertikale Striche des A
- Gebogene linken Kante des OR ähnlich wie Rundungen des O
- Extra-Strich des XOR, wie Extra-Ergänzung des OR

Bezeichnung der Schaltungselemente

- Allgemein werden die Schaltungselemente zu booleschen Verknüpfungen als Schaltglieder bezeichnet
- Logische Verknüpfungen werden als Gatter (engl. "gate") bezeichnet
 - UND-Gatter, ODER-Gatter, XOR-Gatter
- Das Schaltglied zur Negation wird als **Inverter** (engl. "**inverter**") bezeichnet
- Eine Schaltung aus mehreren (oder einem) Gattern ist ein Schaltnetz oder kombinatorische Schaltung
- Die von einem Signal maximal zu durchlaufenden Gatter werden als Logik-Stufen oder kurz Stufen eines Schaltnetzes bezeichnet
 - Man spricht z.B. von zweistufiger Logik
 - Inverter werden hierbei nicht gezählt

Beispiel: Zweistufige Logik

Gesucht ist die Funktionstabelle für die skizzierte Schaltung.

Wie viele Einträge hat die Funktionstabelle?

Übung für zu Hause:

Es gibt verschiedene grafische Simulatoren für Digitalschaltungen:

LogiFlash-Composer: http://tiweb.hsu-hh.de/LogiFlash/index.html

CEDAR Logic Simulator: http://sourceforge.net/projects/cedarlogic/

Logisim: http://sourceforge.net/projects/circuit/

Logic Friday: Download z.B. über http://download.cnet.com

Erstellen Sie die Schaltung mit einem Simulator und simulieren Sie die Funktionstabelle

Die genannten Simulatoren werden zum Teil nicht mehr gepflegt. Die Industrie verwendet VHDL-Simulation (Kapitel 7).

Beispiel: LogiFlash

Tipps: - Der Inverter befindet sich in der Kategorie "Misc"

- Mit STRG wird ein Draht an einen bestehenden Draht angeschlossen

Beispiel: Logic Friday

4.2 Rechenregeln der Schaltalgebra

Für Schaltfunktionen gelten Rechenregeln der Schaltalgebra

- Dies ist vergleichbar zur herkömmlichen Algebra
- Die Rechenregeln gelten für UND sowie ODER, teilweise auch für XOR und XNOR
- Hier nur die wichtigsten Regeln, da sie in der Praxis wenig angewandt werden
 - → Die kompletten Regeln finden sich in der Literatur

Kommutatives Gesetz (Vertauschungsgesetz)

Variablen können in der Reihenfolge vertauscht werden

Z.B.:
$$A \& B = B \& A$$
; $A \lor B = B \lor A$

Assoziatives Gesetz (Verbindungsgesetz)

• Die Variablen können in beliebiger Reihenfolge zusammengefasst werden

Z. B.:
$$A \& B \& C = (A \& B) \& C = A \& (B \& C) = (A \& C) \& B$$

Distributives Gesetz (Verteilungsgesetz)

Variablen können "ausmultipliziert" und ausgeklammert werden

$$Z.B.: A \& (B \lor C) = (A \& B) \lor (A \& C)$$

Vorrangregeln

- Vorrang der Operationen (beginnend mit höchstem):
 - Negation
 - UND, ODER, NAND, NOR
 - Äquivalenz und Antivalenz
- Funktionen einer Ebene haben (eigentlich) gleichen Vorrang
- **Aber:** Oft wird ein Vorrang von UND gegenüber ODER verwendet
 - \rightarrow Schreibweise: (A & B) v (C & D) = A·B v C·D = A B v C D
 - → Auch hier in der Lehrveranstaltung gilt, wenn nichts anderes genannt, ein Vorrang von UND gegenüber ODER
- In der Klausur dürfen Sie eine der üblichen Schreibweisen verwenden, wenn die Bedeutung klar wird
 - Also auch: (A & B) \vee (C & D) = A \wedge B \vee C \wedge D = A·B + C·D
- **Tipp für die Praxis:** Im Zweifelsfall Klammern setzen

De Morgansche Gesetze

Beschreibt die **Umwandlung** von UND-Verknüpfungen in ODER-Verknüpfungen und umgekehrt, mit Hilfe von Negationen

- 1. De Morgansche Gesetz: $A \& B = A \lor B$ Eine NAND-Verknüpfung ist gleich einer ODER-Verknüpfung der negierten Variablen
- 2. De Morgansche Gesetz: $\overline{A \vee B} = \overline{A} \& \overline{B}$ Eine NOR-Verknüpfung ist gleich einer UND-Verknüpfung der negierten Variablen

Die De Morganschen Gesetze gelten für beliebig viele Variablen

$$\overline{A \& B \& C \& D} = \overline{A} \lor \overline{B} \lor \overline{C} \lor \overline{D}$$

$$\overline{A \lor B \lor C \lor D} = \overline{A} \& \overline{B} \& \overline{C} \& \overline{D}$$

Anwendung der De Morganschen Gesetze

- Mit den De Morganschen Gesetzen lassen sich Schaltnetze einfach umformen
- Inverter an Eingängen und Ausgängen von Logikgattern werden durch Kreise dargestellt
- Die Äquivalenzen nach De Morgan erlauben die folgenden Umwandlungen

Anwendung der De Morganschen Gesetze (II)

- Inverter können an den Anfang oder das Ende eine Leitung verschoben werden Achtung: Wenn der Ausgang eines Logikgatters an mehrere Eingänge angeschlossen ist, müssen alle Eingänge invertiert werden
- Zwei Inverter heben sich auf

- Diese Umformungen werden auch als "Bubble Pushing" bezeichnet
- Ziel ist es, vorhandene oder kostengünstige Logikgatter für ein Schaltnetz zu verwenden

Beispiel: Anwendung der De Morganschen Gesetze

Shannonsches Gesetz

- Die De Morganschen Gesetze lassen sich noch verallgemeinern
- Eine beliebige Schaltfunktion lässt sich negieren, indem
 - Alle Variablen negiert werden
 - Die Verknüpfungen UND in ODER sowie ODER in UND gewandelt werden
- Formal kann man schreiben:

$$\overline{f(A,B,C,...,\overline{A},\overline{B},\overline{C},...,\&,v)} = f(\overline{A},\overline{B},\overline{C},...,A,B,C,...,v,\&)$$

4.3 Entwurfsverfahren nach Karnaugh

- Der Entwurf digitaler Schaltungen erfolgt heutzutage meist durch VHDL-Entwurf und EDA-Programme
 - EDA = Electronic Design Automation
- Kleinere Schaltungen mit bis zu 4 6 Eingangsvariablen können sehr einfach grafisch entworfen werden
 - Dies wird als Minimierung mit Karnaugh-Diagramm bezeichnet
 - Andere Bezeichnungen sind: Venn-Diagramm, KV-Diagramm (V="Veitch")

Weitere Verfahren

- Mit Minimierungsalgorithmen lassen sich Funktionen fast beliebiger Größe minimieren
- Am bekanntesten ist das Verfahren nach Quine-McCluskey
- Die Berechnung mit Papier und Bleistift ist möglich, es empfiehlt sich jedoch der Einsatz eines Computers
 - Einige Programme sind frei verfügbar

Normalformen

- Durch Anwendung der Regeln der Schaltalgebra lässt sich jede Schaltfunktion in eine Normalform umwandeln
- Eine Normalform ist eine besonders **anschauliche** und **übersichtliche** Form der Schaltfunktion
 - Es gibt zwei Normalformen, disjunktive und konjunktive Normalform
- In einer Normalform treten nur **UND** sowie **ODER**-Verknüpfungen auf. Variablen werden **nicht negiert** und **negiert** verwendet.
- Die Normalformen benutzen Minterme und Maxterme

Minterm

- Ein Minterm ist eine **UND**-Verknüpfung die **jede Variable** genau einmal benutzt
- Die Variable kann **nicht negiert** oder **negiert** verwendet werden
- Ein Minterm ist bei genau einer Kombination der Eingangsvariablen 1
- Bei n Eingangsvariablen existieren 2ⁿ verschiedene Minterme Beispiele für 3 Eingangsvariable:

A&B&C; $A\&\overline{B}\&C$; $\overline{A}\&\overline{B}\&C$; $\overline{A}\&\overline{B}\&\overline{C}$

Normalformen (II)

Maxterm

- Ein Maxterm ist eine ODER-Verknüpfung die jede Variable genau einmal benutzt
- Die Variable kann nicht negiert oder negiert verwendet werden
- Ein Maxterm ist bei genau einer Kombination der Eingangsvariablen nicht 1
- Bei n Eingangsvariablen existieren 2ⁿ verschiedene Maxterme

Beispiele für 3 Eingangsvariable: $A \lor B \lor C$; $A \lor B \lor C$

Beispiel: Funktionstabelle einiger Minterme und Maxterme

_A	В	С	A&B&C	A&B&C	A&B&C	AvBvC	AvBvC	AvBvC
0	0	0	0	0	1	0	1	1
0	0	1	0	0	0	1	1	1
0	1	0	0	0	0	1	0	1
0	1	1	0	0	0	1	1	1
1	0	0	0	0	0	1	1	1
1	0	1	0	1	0	1	1	1
1	1	0	0	0	0	1	1	1
1	1	1	1	0	0	1	1	0

Disjunktive Normalform

- Die disjunktive Normalform (DNF) ist die ODER-Verknüpfung von Mintermen
 (Zur Erinnerung: Disjunktion meint die ODER-Verknüpfung)
- Jede Schaltfunktion kann in die disjunktive Normalform umgewandelt werden:
 - Für jede Kombination an Eingangsvariablen, die den Ausgangswert 1 ergibt, wird der Minterm gebildet
 - Die Minterme werden mit der ODER-Verknüpfung verbunden

Beispiel: Funktion laut Tabelle

_A	В	С	<u> </u>	2 N A !+	$\frac{1}{4}$ 0 D 0 $\frac{1}{6}$
0	0	0	0	3 Minterme:	A & B & C
Ō	Ō	1	0		$\overline{A} \& B \& C$
0	1	0	1		
0	1	1	1		A & B & C
1	0	0	0		
1	0	1	1	Disjunktive Norm	nalform:
1	1	0	0	,	
1	1	1	0	Y =	$=\overline{A}B\overline{C}\vee\overline{A}BC\vee A\overline{B}C$

Konjunktive Normalform

- Die konjunktive Normalform (KNF) ist die UND-Verknüpfung von Maxtermen
 (Zur Erinnerung: Konjunktion meint die UND-Verknüpfung)
- Jede Schaltfunktion kann in die konjunktive Normalform umgewandelt werden:
 - Für jede Kombination an Eingangsvariablen, die den Ausgangswert 0 ergibt, wird der Maxterm gebildet
 - Die Maxterme werden mit der UND-Verknüpfung verbunden

Beispiel: Funktion laut Tabelle

_A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

3 Maxterme:
$$A \lor B \lor C$$

$$\overline{A} \lor B \lor C$$

$$\overline{A} \lor \overline{B} \lor C$$

Konjunktive Normalform:

$$Y = (A \lor B \lor \overline{C}) \& (\overline{A} \lor B \lor C) \& (\overline{A} \lor \overline{B} \lor C)$$

Vergleich der Normalformen

- Beide Normalformen sind gleich gut zur Schaltungsdarstellung geeignet
- Die Anzahl der Minterme bzw. Maxterme entspricht der Anzahl an Eingangskombination die eine 1 (DNF) bzw. 0 (KNF) ergeben.
 - Die disjunktive Normalform ist üblicherweise anschaulicher und wird meist verwendet
 - In der Vorlesung wird hauptsächlich die disjunktive Normalform (DNF) verwendet
 - Falls nur wenige Eingangskombinationen eine 0 ergeben, kann die konjunktive Normalform vorteilhaft sein

<u>Hinweis:</u> Die Normalformen werden manchmal auch als vollständige Normalformen oder kanonische Normalformen bezeichnet

Vereinfachung von Schaltfunktionen

- Eine Schaltfunktion kann entsprechend der Normalform direkt in ein Schaltnetz umgesetzt werden
- Oft kann die Schaltfunktion jedoch noch vereinfacht werden

Beispiel:

Disjunktive Normalform:

$$Y = \overline{A}B\overline{C} \vee \overline{A}BC \vee A\overline{B}C$$

Die ersten beiden Terme können zusammengefasst werden: $Y = AB \lor ABC$

$$Y = \overline{AB} \lor A\overline{BC}$$

Da nicht einfach ersichtlich ist, welche Terme zusammengefasst werden können, wird ein grafisches Verfahren verwendet

Logikminimierung mit Karnaugh-Diagramm

- In einem Karnaugh-Diagramm wird eine Funktionstabelle grafisch dargestellt
- Minterme oder Maxterme, die zusammengefasst werden können, liegen nebeneinander und können leicht identifiziert werden
 - Hier soll vorrangig das Karnaugh-Diagramm der disjunktiven Normalform mit Mintermen erläutert werden. Das Verfahren ist gleich gut für die konjunktive Normalform geeignet.
- Eine Schaltfunktion mit n Variablen wird in 2ⁿ Feldern eingetragen
- Benachbarte Felder unterscheiden sich in nur einer Variable und können zusammengefasst werden

Karnaugh-Diagramm für zwei Variablen

Α	В	Y			В	5=	
0 0	0	1 0	Λ_	0	1	0	0
1 1	0 1	1 1	A =	1	1	1	1

Karnaugh-Diagramm für drei Variablen

- Gegenüber dem Fall für zwei Variablen muss beachtet werden:
 - Erweiterung auf 8 Felder
 - An einer Kante werden zwei Variable angeordnet
 - Die Anordnung ist so, dass benachbarte Felder sich in nur einer Variable unterscheiden (Gray-Code)
 - In Richtung der zwei Variablen sind auch linker und rechter Rand benachbart
 - Auch Gruppen von vier Funktionswerten können zusammengefasst werden

В,	C=	00	01	11	10	
۸	0	1	0	0	1	
Α=	1	0	0	0	0	A=0, C=0

В,	C=	00	01	11	10	
Λ_	0	0	1	1	0	-C=1
Α=	1	1	1	1	1	A=1

Karnaugh-Diagramm für vier Variablen

- Erweiterung auf 16 Felder
- An beiden Kanten werden zwei Variable angeordnet
- Auch Gruppen von acht Funktionswerten können zusammengefasst werden
 - <u>Tipp:</u> Auch die vier Ecken sind benachbart

- Auch für 5 und 6 Variablen können Karnaugh-Diagramme aufgestellt werden
- Identifikation benachbarter Terme erfordert mehr Übung (trainiert aber das räumliche Vorstellungsvermögen)

Überdeckte Terme

- Mittels der Nachbarschaft in der grafischen Darstellung werden Minterme zu einfacheren Termen, den Produkttermen, zusammengefasst
- Die Produktterme werden durch eine ODER-Verknüpfung zusammengefasst
- Terme, die komplett von anderen Termen überdeckt sind, können möglicherweise weggelassen werden

A,B=

Beispiel:

- Term 1 und Term 4 werden benötigt, da sie 1-Stellen umfassen, die von keinem anderen Term abgedeckt werden
- Term 2 und Term 3 umfassen nur 1-Stellen, die auch von anderen Termen abgedeckt sind
- Term 2 oder Term 3 können weggelassen werden
- Achtung: Werden Term 2 und Term 3 weggelassen, wäre eine 1-Stelle nicht abgedeckt Dies wäre ein Fehler

Formulierung der Minterme

- Aus der grafischen Darstellung müssen die Minterme abgelesen werden
 - Identifizieren Sie die Variablen, über die sich ein Term nur in einer Polarität (nicht negiert oder negiert) ausdehnt
 - Ein Minterm entspricht der UND-Verknüpfung dieser Variablen
- Zur besseren Identifikation, kann die Polarität der Variablen durch Balken eingetragen werden

Beispiel:

Term 1: $\overline{A} \& \overline{C}$

Term 2: B & C & D

Term 3: A&B&D

Term 4: A&C&D

"Don't Cares"

- Manche Schaltfunktionen sind nicht für alle Kombinationen an Eingangsvariablen definiert
- Die undefinierten Ausgangswerte werden als "don't care" bezeichnet und erhalten das Symbol ,-'
- Bei der Minimierung werden "don't cares" wie folgt benutzt:
 - Zur Bildung möglichst großer Produktterme werden "don't cares" wie 1-Stellen verwendet

 Zur Auswahl der benötigten Produktterme werden "don't cares" nicht verwendet und wie 0-Stellen betrachtet

Beispiel:

- Mit Hilfe der "don't cares" können vier Produktterme gebildet werden
- Term 3 wird nicht benötigt
- Die Schaltfunktion lautet:

$$Y = \overline{ABCD} \lor BC\overline{D} \lor A\overline{C}$$

