アルゴリズム 第4回授業 "基本制御構造 繰り返し" (教科書 Page 24-33)

山口雅樹 (CISSP)

本日の進め方

・基本制御構造その2 繰り返し

1-5 基本制御構造 繰り返し (WIKIより)

ループとは、特定の条件下において特定の処理を繰り返すこと、あるいはそのように 作られた制御構造のことを言う。日本語の名詞として「繰り返し」とも。特定の条件 が成立している限り、特定の処理を繰り返し何度でも実行する。逆に言えば、条件が 成立しなくなったときに、処理を中止する。

次のページのサンプルプログラムでは、CNT(カウント)が10未満の場合に、繰り返し処理を行うプログラムを動かしてみます。

プログラムの宣言部と処理部、フローチャート

○プログラム名:Loop10Times() /* 教科書 25ページ 繰り返し処理 */ ○整数型:CNT ◆CNT ← 0 初期化 ループ処理 ■ CNT < 10 ●表示処理 (CNT) (CNTが10未満の場合に繰り返す) 前判定となる |●表示処理(CNT)| デバッグメッセージ / 出力: 実行..

プログラムの宣言部と処理部変数の流れ(前判定)

	判定	処理	CNTの値
1回目判定	CNT=0 <10	表示処理	CNT=0
2回目判定	1<10	表示処理	CNT=1
3回目判定	2<10	表示処理	CNT=2
4回目判定	3<10	表示処理	CNT=3
5回目判定	4<10	表示処理	CNT=4
6回目判定	5<10	表示処理	CNT=5
7回目判定	6<10	表示処理	CNT=6
8回目判定	7<10	表示処理	CNT=7
9回目判定	8<10	表示処理	CNT=8
10回目判定	9<10	表示処理	CNT=9
11回目判定	10<10 ★ここでループを抜ける	表示処理	CNT=10

前判定と後判定

```
○プログラム名: Loop10Times() /* 教科書 27ページ 繰り返し処理 */
○整数型: CNT
●CNT ← 10
■ CNT < 10
■表示処理 (CNT)
●表示処理 (CNT)
●表示処理 (CNT)
●表示処理 (CNT)
●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

●表示処理 (CNT)

10

11

11
```

Main

入口

10→CNT

ループ1

表示処理 (CNT)

CNT+1→CNT

ループ1

CNT<10 の間

表示処理(CNT)

出口

前判定だと 一度も実行されないケースがあるが、 後判定だと、必ず一度は実行される。

For型ループ

```
○プログラム名:Loop10Times() /* 教科書 28ページ 繰り返し処理 */
○整数型:LoopCount
      初期值 継続条件 增分
■ LoopCount:0, LoopCount < 10,1
│●表示処理(LoopCount) 処理について
デバッグメッセージ / 出力:
  ★継続条件 LoopCountが10になったらループを抜けます
```

ここでTraining (コピー利用)

教科書 29ページの解答例

```
○ブログラム名:Loop10Times() /* 教科書 29ページ 繰り返し処理 */
|○整数型:Cnt,Total
■ Total ← 0
■ Cnt:0, Cnt < 101,1</p>
|●Total ← Total + Cnt
●表示処理(Total)
デバッグメッセージ / 出力:
実行...
5050
```

1から10までの整数の合計を求める

```
|○プログラム名:Loop10Times() /* 教科書 30ページ | 合計 */-
|○整数型:Cnt,Total
🌰 Total ← N
|●Total ← 1 + Total
l●Total ← 2 + Total
l●Total ← 3 + Total
●Total ← 4 + Total
|●Total ← 5 + Total
                  ←同じ命令を繰り返して記述しなければならない。
|●Total ← 6 + Total
l●Total ← 7 + Total
l●Total ← 8 + Total
l●Total ← 9 + Total
|●Total ← 10 + Total |
|●表示処理(Total)|
デバッグメッセージ / 出力:
```

55

実行...

1から10までの整数の合計を求める (効率よくかけるのと、Cntを100とか1000に簡単に変更できる)

```
|○プログラム名:Loop10Times() /* 教科書 31ページ - 繰り返し */-
○整数型:Cnt,Total
 ) Cnt ← 0
D Total ← 0
■ Cnt ≦ 10
 ◆Total ← Total + Cnt
  ●Cnt ← Cnt + 1
●表示処理(Total)
デバッグメッセージ / 出力:
55
```

プログラムの宣言部と処理部 変数の流れ

	判定	処理	CNTの値	TOTALの値
1回目判定	CNT=0 ≤10	Total=Total+Cnt	CNT=0	0
2回目判定	1 ≦ 10	Total=Total+Cnt	CNT=1	1
3回目判定	2 ≤ 10	Total=Total+Cnt	CNT=2	3
4回目判定	3 ≦ 10	Total=Total+Cnt	CNT=3	6
5回目判定	4 ≦ 10	Total=Total+Cnt	CNT=4	10
6回目判定	5 ≤ 10	Total=Total+Cnt	CNT=5	15
7回目判定	6 ≤ 10	Total=Total+Cnt	CNT=6	21
8回目判定	7 ≦ 10	Total=Total+Cnt	CNT=7	28
9回目判定	8 ≦ 10	Total=Total+Cnt	CNT=8	36
10回目判定	9 ≤ 10	Total=Total+Cnt	CNT=9	45
11回目判定	10 ≤ 10	Total=Total+Cnt	CNT=10	55
12回目判定	11≦10 ★ここでループを 抜ける	なし		55

- ○プログラム名:Loop10Times() /* 教科書 31ページ 繰り返し */ /* こうすると処理を1回減らせる */
- ○整数型:Cnt,Total
- Ont ← 2
- Total ← 1
- Cnt ≦ 10
- |●Total ← Total + Cnt
- | ●Cnt ← Cnt + 1
- ●表示処理(Total)

デバッグメッセージ / 出力:

実行..

55

1から100のうちの偶数の合計を求める

○プログラム名:EvenGokei() /* 教科書 32ベージ 繰り返し */ |○整数型:Cnt,Total ♠ Cnt ← 2 ◆ Total ← 0| **■** Cnt ≦ 100 ◆Total ← Total + Cnt Cnt ← Cnt + 2 ●表示処理(Total) デバッグメッセージ / 出力: 実行... 2550

引き算の繰り返しで余りを求める (負の数は考えない)

- ○プログラム名:Divide() /* 教科書 33ページ 繰り返し */ ○整数型:A,B,Syo,Amari
- A ← 7
- B ← 3
- Syo ← 0
- A ≧ B
- | **●**A ← A − B
- ●Syo ← Syo + 1
- ●Amari ← A
- ●表示処理(Amari)

デバッグメッセージ / 出力:

実行..

初期化について

変数の内容は不定(定まっていない)ことが多いので、 初期化しておくことが必要 特に、ループ処理の回数(Count)などは初期化することが重要