Week 4

1) Which of the following matrices represent a reflexive relation? (multiple select question)

$$A. \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A. \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B. \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$C. \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$D. \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Correct Answer: C, D, E

Solution: A reflexive relation must have all diagonal entries as 1 Lecture 131: Reflexive relation-matrix representation

- 2) $A = \{\text{srijit, akash, abhi}\}\$ and $B = \{\text{shraddha, sanchita}\}\$ Which of the following subsets belong to $A \times B$?
 - A. {(srijit, sanchita), (abhi, shraddha), (akash, sanchita), (srijit, shraddha)}
 - B. {(abhi, shraddha), (akash, shraddha), (sanchita, srijit), (abhi, sanchita)}
 - C. {(akash, akash), (akash, shraddha), (srijit, sanchita), (abhi, shrijit)}
 - D. {(shrijit, shraddha), (shraddha, shraddha), (shraddha, sanchita), (abhi, shrijit)}

Correct Answer: A

Solution: $A \times B = \{(x,y) \mid x \in A, y \in B\}$

A × B = {(srijit, shraddha),(srijit, sanchita),(akash, shraddha),(akash, sanchita),(abhi, shraddha),(abhi, sanchita)}

Lecture 124: Set representation of a relation

- 3) What is the total number of reflexive relations of the set {5,7,13,15}?
 - A. 256
 - B. 14
 - C. 64
 - D. 4096

Correct Answer: D

Solution: total number of reflexive relations is $2^{n^2-n} = 2^{4^2-4} = 4096$

Lecture 132: Number of reflexive relations

- 4) $S = \{1,2,3,4,5\}$. A relation R on set S is defined as $R = \{(b,a) \mid 0 \le -a + b \le 3\}$ What is the cardinality of set R?
 - A. 25
 - B. 8
 - C. 14
 - D. 12

Correct Answer: C

Solution: $a,b \in S$ and $0 \le -a + b \le 3$

 $R = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,5)\}$

Therefore, the cardinality of R is 14.

Lecture 126: Examples of relations

5) Let R be a relation on a collection of sets defined as follows,

$$R = \{(A,B) \mid A \subseteq B\}$$

Which of the following statement(s) is/are correct? (multiple select question)

- A. *R* is reflexive and transitive
- B. *R* is symmetric
- C. R is anti-symmetric
- D. *R* is reflexive but not transitive

Correct Answer: A, C

Solution:

Given $R = \{(A, B) \mid A \subseteq B\}$

- A. For any set A, we have $A \subseteq A$. Hence $(A, A) \in R$. Hence R is reflexive. Moreover, for three sets A, B and C if $(A, B) \in R$ and $(B, C) \in R$, then from the given relation, we have $A \subseteq B \subseteq C$. Clearly $A \subseteq C$, and form the definition of R we have $(A, C) \in R$. Hence R is transitive.
- B. Let $A = \{1, 2\}$ and $B = \{1, 2, 3, 4\}$. Clearly $A \subseteq B$, but $B \nsubseteq A$. Hence $(A, B) \in R$ does not imply $(B, A) \in R$. Hence R is not symmetric.
- C. If $A \subseteq B$, and $B \subseteq A$, then A = A. Hence if $(A, B) \in R$ and $A \ne B$, then $(B, A) \notin R$. Therefore R is anti-symmetric.
- D. As *R* is transitive, the last option is not correct.

Lecture 129, 133, 140: Reflexive relations, symmetric relations, transitive relations.

- 6) Let a relation R be defined as $R = \{(A, B) \mid Both A \text{ and } B \text{ live in the same city}\}$. Pick out the correct statement(s).
 - A. *R* is anti-symmetric
 - B. R is reflexive
 - C. R is transitive
 - D. *R* is symmetric

Correct Answer: B, C, D

Solution:

Given $R = \{(A, B) \mid \text{Both } A \text{ and } B \text{ live in the same city } \}.$

- A. "A and B live in the same city" is the same as "B and A live in the same city". Hence $(A, B) \in R$, implies $(B, A) \in R$. Hence it is symmetric, it is not anti-symmetric.
- B. Clearly $(A, A) \in R$, for all A. Hence R is reflexive.

- C. Suppose $(A, B) \in R$ and $(B, C) \in R$. Hence A and B live in the same city, and B and C also live in the same city. Therefore A and C live in the same city, and from the definition of R, it is clear that $(A, C) \in R$. Hence R is transitive.
- D. As proved in option A. *R* is symmetric.
- 7) Which of the following is an equivalence relation?
 - A. $R = \{(a,b) \mid \text{both } a \text{ and } b \text{ are even non-zero integers and } \frac{a}{b} \text{ is an integer}\}$
 - B. $R = \{(x,y) \mid y x = 0\}$
 - C. $R = \{(1,2),(2,3),(3,4),(4,5),(5,6)\}$
 - D. $R = \{(a,b) \mid a \le b^3\}$

Correct Answer: B

Solution:

- A. A relation R on a set A is said to be reflexive if $(a, a) \in R$ for all $a \in A$. R is called symmetric if $(a, b) \in R$ implies $(b, a) \in R$, and R is called transitive if (a, b) and (b, c) is in R implies $(a, c) \in R$. If a relation R is reflexive, symmetric and transitive, then it is called an equivalence relation. For any non-zero even integer a, $\frac{a}{a} = 1$ is an integer. Hence, $(a, a) \in R$, which implies that R is reflexive. Now, let a = 4, and b = 2. Then, $\frac{a}{b} = \frac{4}{2} = 2$ is an integer. Hence, $(a, b) \in R$. But $\frac{b}{a} = \frac{2}{4} = \frac{1}{2}$ is not an integer. Therefore, $(b, a) \notin R$. It follows that R is not symmetric. Let $(a, b) \in R$ and $(b, c) \in R$. That is, both $\frac{a}{b}$ and $\frac{b}{c}$ are integers. Hence, their product $\frac{a}{b} \cdot \frac{b}{c} = \frac{a}{c}$ is also an integer. It follows that $(a, c) \in R$. Therefore, R is transitive. Although R is reflexive and transitive but not symmetric, it is not an equivalence relation.
- B. y x = 0 is the equation of a line, it can be written as y = x, therefore $(x,x) \in R$ and by the above explanation, R is an equivalence relation.
- C. Similar explanation as option A.
- D. Similar explanation as option A.

Lecture 153: Equivalence relations

8) Suppose the cardinality of a set A is 4 and the cardinality of a set B is 3, what are the cardinalities of the cartesian product $A \times B$ and the power set of $A \times B$?

- A. 7 and 128
- B. 12 and 144
- C. 12 and 4096
- D. 7 and 49

Correct Answer: C

Solution: Let the cardinality of set A be n(A) and the cardinality of set B be n(B). Then, the cardinality of the cartesian product of $(A \times B)$ is $n(A \times B) = n(A) \times n(B) = 4 \times 3 = 12$. If a set A has cardinality n, then the cardinality of the power set of A is 2^n . It follows that the cardinality of the power set of $(A \times B)$ is $2^{12} = 4096$. Hence, option C is correct. Lecture 123: Cartesian product

- 9) Which of the following collection of subsets is a partition of $A = \{1,2,3,4,5\}$
 - A. {1,2,3},{2,3,4,5}
 - B. {4}{2}{3}{1,5}{2,3}
 - C. $\{1,5\},\{2,3\},\{4,5\}$
 - D. {1,2}{5}{3,4}

Correct Answer: D

Solution: Sets in option D are mutually disjoint.

Lecture 156: Partitions-part 2

- 10) Let A be a set with cardinality n, and B be a set with cardinality m. There are a total of 64 symmetric relations on A, and 216 anti-symmetric relations on B. What is $n \cdot m$?
 - A. 9
 - B. 3
 - C. 6
 - D. 12

Correct Answer: A

Solution: total number of symmetric relations is $2^{\frac{n^2+n}{2}}$ and the total number of anti-symmetric relations is $2^n \cdot 3^{\frac{n^2-n}{2}}$ therefore, n = 3, m = 3, $n \cdot m = 9$

Lecture 145: Number of Antisymmetric relations.