SPIRou Data Reduction Software

User Guide

0.0.1

For DRS SPIRou0.0.1

N. Cook, F. Bouchy, E. Artigau, I. Boisse, M. Hobson, C. Moutou 2017-12-08

Abstract

This is the guide to installing, running, and using the SPIRou DRS.

Contents

1	In	troduction	1				
2	In	Installation					
	2.1	Introduction	3				
	2.2	Download	3				
	2.3	Prerequisites	4				
		2.3.1 Anaconda python distribution	4				
		2.3.2 Separate python installation	4				
	2.4	Installation Linux and macOS	5				
		2.4.1 Extraction	5				
		2.4.2 Modify environmental settings	5				
		2.4.3 Make recipes executable	5				
	2.5	Installation Windows	6				
		2.5.1 How to modify environmental settings in windows	6				
	2.6	Setting up the DRS	7				
	2.7	Validating Installation on Linux and macOS	8				
	2.8	Validating Installation on Windows	9				
	2.0	variations installation on third to the second seco	Ů				
3	Da	ata Architecture	10				
	3.1	Installed file structure	10				
	3.2		11				
		·	11				
	3.3	v	$\frac{12}{12}$				
	0.0	v	12				
	3.4		13				
	0.1		10				
4	Us	sing the DRS	14				
_	4.1	-	$\frac{-}{14}$				
	4.2		14				
	4.3		14				
	1.0		$\frac{11}{14}$				
			15				
			18				
		4.0.0 Itali tiliough python script	10				
5	Re	equired input header keywords	19				
•	5.1		$\frac{10}{19}$				
	0.1	recognition key words	10				
6	Us	ser modifiable variables	21				
Ŭ	6.1		$\frac{-1}{21}$				
	6.2		21				
	6.3		$\frac{21}{22}$				
	6.4	v	$\frac{22}{24}$				
	6.5	ů	$\frac{24}{26}$				
			$\frac{20}{29}$				
	6.6						
	6.7		31				
	6.8		37				
	6.9		38				
	6.10		40				
	6.11		42				
	6.12	2 Drift-Peak calibration variables	46				

			Contents	iii
	6.13	Bad pixel calibration variables		50
	6.14	Quality control variables		
	6.15	Calibration database variables		
	6.16	Logging and printing variables		
7	The	Recipes		57
	7.1	The cal DARK recipe		57
	7.2	The cal_loc recipe		57
	7.3	The cal SLIT recipe		57
	7.4	The cal FF recipe		57
	7.5	The cal extract recipes		57
	7.6	The cal DRIFT recipes		57
	7.7	The cal BADPIX recipe		
	7.8	The cal_HC recipe		
	7.9	The cal WAVE recipe		
	7.10	The cal CCF recipe		
	7.11	The pol spirou recipe		
	7 12	The validation recipes recipe		57

Chapter 1

Introduction

This documentation will cover the installation, data architecture, , using the DRS (with a working example), descriptions of the variables , and the recipes .

Variables are defined in detail in section 6 and will be defined throughout via the following syntax: VARIABLE. When referred to, one should take it as using the value set in section 6 by default or in the file described in the variables description 'Defined in' section. Clicking these variables will go to the appriopriate variable description.

Certain sections will be written in code blocks, these imply text that is written into a text editor, the command shell console, or a python terminal/script. Below explains how one can distinguish these in this document.

The following denotes a line of text (or lines of text) that are to be edited in a text editor.

```
# A variable name that can be changes to a specific value
VARIABLE_NAME = "Variable Value"
```

These can also be shell scripts in a certain language:

```
#!/usr/bin/bash
# Find out which console you are using
echo $0
# Set environment Hello
export Hello="Hello"
```

```
#!/usr/bin/tcsh
# Find out which console you are using
echo $0
# Set environment Hello
setenv Hello "Hello"
```

The following denotes a command to run in the command shell console

```
CMD input >> cd \sim/Downloads
```

The following denotes a command line print out

```
Command line output

This is a print out in the command line

produced by using the echo command
```

${\bf 2} \qquad {\rm Chapter} \ 1 \quad {\rm Introduction}$

The following denotes a python terminal or python script

```
Python/Ipython

import numpy as np
print("Hello world")
print("{0} seconds".format(np.sqrt(25)))
```

Chapter 2

Installation

2.1 Introduction

Once finalized the installation should just be a download, run setup.py and configure the DRS directories, however, during development the following stages are required.

2.2 Download

Get the latest version of the DRS (for SPIRouversion 0.0.1). Use any of the following ways:

- manually download from here: https://github.com/njcuk9999/spirou_py3
- use Git:

```
CMD input

>> git checkout https://github.com/njcuk9999/spirou_py3.git
```

• use SVN:

```
CMD input

>>> svn checkout https://github.com/njcuk9999/spirou_py3.git
```

• use ssh:

```
CMD input

>>> scp -r git@github.com:njcuk9999/spirou_py3.git
```

2.3 Prerequisites

It is recommended to install the latest version of Anaconda python distribution, available for Windows, macOS and Linux (here: https://www.anaconda.com/download/). However one can run the DRS on a native python installation.

We recommend python 3 over python 2 for long term continued support (however the latest version of the DRS supports the newest versions of python 2.7).

Note: Before installing the DRS you must have one of the following:

- Latest version of Anaconda (for python 2 or python 3) RECOMMENDED
- An Up-to-date version of python (python 2 or python 3)

2.3.1 Anaconda python distribution

A valid version of the Anaconda python distribution (for python2 or python 3) Currently tested version of python are:

- Python 2.7.13 and Anaconda 4.4.0
- Python 3.6.3 and Anaconda 5.0.1 RECOMMENDED

2.3.2 Separate python installation

An up-to-date version of python (either python 2 or python 3) and the following python modules (with version of python they were tested with).

- Python 3.6
 - ASTROPY (tested with version 2.0.2)
 - MATPLOTLIB (tested with version 2.1.0)
 - NUMPY (tested with version 1.13.3)
 - and the following built-in modules (comes with python): DATETIME, FILECMP, GLOB, OS, PKG RESOURCES, SHUTIL, SYS, TIME, WARNINGS
- Python 2.7
 - astropy (tested with version 1.3.2)
 - matplotlib (tested with version 2.0.2)
 - numpy (tested with version 1.12.1)
 - and the following built-in modules (comes with python): __FUTURE__, COLLECTIONS, DATE-TIME, FILECMP, GLOB, OS, PKG RESOURCES, SHUTIL, SYS, TIME, WARNINGS

2.4 Installation Linux and macOS

Currently the DRS has to be installed manually. This involves the following steps:

- 1. Extraction (Section 2.4.1)
- 2. Modify environmental settings (Section 2.4.2)
- 3. Make recipes executable (Section 2.4.3)

2.4.1 Extraction

The first step is to extract the DRS into a folder (the TDATA). Do this by using the following commands:

```
CMD input

>>> cd TDATA
>>> unzip DRS.zip
```

2.4.2 Modify environmental settings

The next step is to modify your PATH and PYTHONPATH environmental variables (to include the TDATA. This depends which shell you are using (type 'echo \$0' to find out which).

• In bash open the '.bashrc' text file in your home (~) directory (or create it if it doesn't exist)

```
export PATH=TDATA/bin/:$PATH

export PYTHONPATH=TDATA:TDATA/bin/:$PYTHONPATH
```

• In csh /tcsh open the '.cshrc' or '.tcshrc' text file in your home (\sim) directory (or create it if it doesn't exist)

```
setenv PATH TDATA/bin/:${PATH}
setenv PYTHONPATH TDATA:TDATA/bin/:${PYTHONPATH}
```

2.4.3 Make recipes executable

To run the recipes from the command line (without starting python) one must make them executable. Do this by using the following command:

```
CMD input

>>> chmod +x TDATA/bin/*.py
```

2.5 Installation Windows

This is very similar currently to the Linux/macOS installation (in the future a '.exe' file will be given).

- 1. Extract to TDATA with your favourite unzipping softwear.
- 2. Add TDATA to your PYTHONPATH (Section 2.5.1)

2.5.1 How to modify environmental settings in windows

This process is a little more convoluted than on Linux or macOS system.

- $1. \ \ Go \ to \ `My \ computer > Properties > Advanced \ System \ Settings > Environmental \ Variables'.$
- 2. if under system variable 'PythonPath' exists click edit and add 'TDATA;' to the end. i.e.

```
text
C:\Python27;TDATA;
```

3. if under system variables 'PythonPath' does not exist create a new variable called 'PythonPath' and add:

```
text
%PYTHONPATH%;TDATA;TDATA\bin\;
```

For problems/troubleshooting see here: https://stackoverflow.com/questions/3701646.

2.6 Setting up the DRS

Before running the DRS one must set the data paths.

The '../config/config.txt' file is located in the TDATAin the config folder. i.e. at TDATA/config/../config/config.txt

The following keywords **must** be changed (and must be a valid path):

```
TDATA
                         = /drs/data/
                                            / Define the DATA directory
DRS ROOT
                         = /drs/INTROOT/ / Define the installation direc-
                                               tory (TDATA)
                         = /drs/data/raw
DRS DATA RAW
                                            / Define the folder with the raw
                                               data files in
DRS_DATA_REDUC
                         = /drs/data/reduced /
                                               Define the directory that the
                                               reduced data should be saved
                                               to/read from
DRS CALIB DB
                         = /drs/data/calibDB/
                                               Define the directory that the
                                               calibration files should be
                                               saved to/read from
DRS DATA MSG
                         = /drs/data/msg
                                               Define the directory that the
                                               log messages are stored in
DRS DATA WORKING = /drs/data/tmp/
                                               Define the working directory
```

The directories here are for linux and macOS $\,$ systems another example would be '/home/user/IN-TROOT' for the $\,$ TDATA $\,$ directory.

On Windows machines this would be equivalent to 'C:\Users\<username>\INTROOT' in Windows Vista, 7, 8 and 10 or 'C:\Documents and Settings\<username>\INTROOT' on early versions of Windows.

The following keywords can be changed:

```
DRS_PLOT = 1 / Whether to show plots
PRINT_LEVEL = "all" / Level at which to print
LOG_LEVEL = "all" / Level at which to log in log file
```

For the 'PRINT LEVEL and LOG LEVEL keywords the values are set as follows:

- "all" prints all events
- "info" prints info, warning and error events
- "warning" prints warning and error events
- "error" print only error events

2.7 Validating Installation on Linux and macOS

Note: One must install the DRS (Section 2.4) AND set up the DRS (Section 2.6) before validation will be successful.

There are four ways to run the DRS in Linux and macOS (thus four ways to verify installation was correct).

• To validate running from command line type:

```
CMD input

>> cal_validate_spirou
```

• To validate running from python/ipython from the command line type:

```
CMD input

>>> python cal_validate_spirou

>>> ipython cal_validate_spirou
```

• To validate running from ipython, open ipython and type:

```
Python/Ipython

rum cal_validate_spirou
```

• To validate running from import from python/ipython, open python/ipython and type:

```
Python/Ipython

import cal_validate_spirou
cal_validate_spirou.main()
```

If validation is successful the following should appear:

```
Command line output
             || *******************
HH:MM:SS.S -
HH:MM:SS.S -
             || * SPIROU @(#) Geneva Observatory (0.0.1)
HH:MM:SS.S -
             || ********************
HH:MM:SS.S -
             ||(dir_data_raw) DRS_DATA_RAW=/scratch/Projects/spirou_py3/data/raw
HH:MM:SS.S - ||(dir_data_reduc) DRS_DATA_REDUC=/scratch/Projects/spirou_py3/data/reduced
HH:MM:SS.S - ||(dir_calib_db) DRS_CALIB_DB=/scratch/Projects/spirou_py3/data/calibDB
HH:MM:SS.S - ||(dir_data_msg)
                                 DRS_DATA_MSG=/scratch/Projects/spirou_py3/data/msg
HH:MM:SS.S - ||(print_level)
                                 PRINT LEVEL=all
                                                       %(error/warning/info/all)
                                 LOG_LEVEL=all
HH:MM:SS.S - ||(log_level)
                                                     %(error/warning/info/all)
HH:MM:SS.S - ||(plot_graph)
                                 DRS_PLOT=1
                                                     %(def/undef/trigger)
HH:MM:SS.S - ||(used_date)
                                 DRS_USED_DATE=undefined
HH:MM:SS.S - ||(working_dir)
                                 DRS_DATA_WORKING=/scratch/Projects/spirou_py3/data/tmp/
HH:MM:SS.S - ||
                                 DRS_INTERACTIVE is not set, running on-line mode
HH:MM:SS.S - ||
HH:MM:SS.S - ||Validation successful. DRS installed corrected.
```

2.8 Validating Installation on Windows

Note: One must install the DRS (Section 2.5) AND set up the DRS (Section 2.6) before validation will be successful.

In windows there are currently 3 ways to run the RS (running in python/ipython).

• To validate running from python/ipython from the command line type:

```
CMD input

>>> python cal_validate_spirou
>>> ipython cal_validate_spirou
```

• To validate running from ipython, open ipython and type:

```
Python/Ipython

run cal_validate_spirou
```

• To validate running from import from python/ipython, open python/ipython and type:

```
Python/Ipython

import cal_validate_spirou
cal_validate_spirou.main()
```

If validation is successful the following should appear:

```
Command line output
HH:MM:SS.S -
             || **********************
HH:MM:SS.S -
             || * SPIROU @(#) Geneva Observatory (0.0.1)
            || *******************
HH:MM:SS.S -
                                  DRS_DATA_RAW=/scratch/Projects/spirou_py3/data/raw
HH:MM:SS.S -
             ||(dir_data_raw)
HH:MM:SS.S -
             ||(dir_data_reduc)
                                  DRS_DATA_REDUC=/scratch/Projects/spirou_py3/data/reduced
HH:MM:SS.S - ||(dir_calib_db)
                                  DRS_CALIB_DB=/scratch/Projects/spirou_py3/data/calibDB
HH:MM:SS.S - ||(dir_data_msg)
                                  DRS_DATA_MSG=/scratch/Projects/spirou_py3/data/msg
HH:MM:SS.S -
             ||(print_level)
                                  PRINT_LEVEL=all
                                                        %(error/warning/info/all)
HH:MM:SS.S - ||(log_level)
                                  LOG_LEVEL=all
                                                       %(error/warning/info/all)
             ||(plot_graph)
HH:MM:SS.S -
                                  DRS_PLOT=1
                                                       %(def/undef/trigger)
HH:MM:SS.S -
             ||(used_date)
                                  DRS_USED_DATE=undefined
HH:MM:SS.S -
             ||(working_dir)
                                  DRS_DATA_WORKING=/scratch/Projects/spirou_py3/data/tmp/
HH:MM:SS.S -
                                  DRS_INTERACTIVE is not set, running on-line mode
HH:MM:SS.S -
              ||Validation successful. DRS installed corrected.
HH:MM:SS.S -
```

Chapter 3

Data Architecture

Described below is the file structure, after correct installation (Chapter 2).

3.1 Installed file structure

The file structure should look as follows:

```
{dir}
  _{DRS_ROOT}
   _bin
    _....Documentation files
   SpirouDRS
       The DRS Module
 {TDATA}*
  calibDB
  msg
  raw
  reduced
  _{\rm L} tmp
* This is the recommended file structure and raw, reduced, calibDB, msg and tmp can be changed
using the DRS DATA RAW, DRS DATA REDUC, DRS CALIB DB, DRS DATA MSG,
and DRS DATA WORKING variables in Section 2.6.
```

i.e. for the paths given in Section 2.6 this would be:

```
drs
__INTROOT
__bin
__config
__documentation
__SpirouDRS
__data
__calibDB
__msg
__raw
__YYYYMMDD
__reduced
__tmp
```

3.2 The Installation root directory

The DRS_ROOT contains all the installed recipes, modules functions, documentation and configuration files needed to run the DRS. The file structure is set up as below:

3.2.1 The bin directory

The bin directory is located in the DRS_ROOT directory. This contains all the recipes that can be used. A detailed description of all recipes can be found in Chapter 7 but are listed here for completeness.

- cal DARK spirou
- $\bullet \ {\rm cal_DRIFT_RAW_spirou}$
- \bullet cal_extract_RAW_spirou
- $\bullet \ cal_extract_RAW_spirouAB \\$
- cal extract RAW spirouC
- \bullet cal_FF_RAW_spirou
- cal loc RAW spirou
- \bullet cal_SLIT_spirou
- $\bullet \ \ cal_validate_spirou$

3.3 The data root directory

This is the directory where all the data should be stored. The default and recommended design is to have DRS_DATA_RAW, DRS_DATA_REDUC, DRS_CALIB_DB, DRS_DATA_MSG, and DRS_DATA_WORKING as sub-directories of DRS_ROOT. However as in Section 2.6. these sub-directories can be defined elsewhere.

3.3.1 The raw and reduced data directories

The raw observed data is stored under the DRS_DATA_RAW path, the files are stored by night in the form YYYYMMDD.

The file structure can be seen below:

3.4 The calibration database directory

The calibDB contains all the calibration files that pass the quality tests and a test file ic_calibDB_filename. It is located at DRS_CALIB_DB or if this is not defined is located by default at the TDATA directory. Each line in this file is a unique calibration file and lines are formatted in the following manner:

```
text
{key} {night_repository} {filename} {human readable date} {unix time}
```

where

- key is a code assigned for each type of calibration file. Currently accepted keys are:
 - DARK Created from cal DARK spirou
 - ORDER PROFIL fiber Created in cal loc RAW spirou
 - LOC C Created in cal loc RAW spirou
 - TILT Created in cal_SLIT_spirou
 - FLAT fiber Created in cal_FF_RAW_spirou
 - WAVE Currently manually added
- night_repository is the raw data observation directory (in DRS_DATA_RAW) normally in the form YYYYMMDD.
- filename is the filename of the calibration file (located in the calibDB).
- human readable date is the date in DD/MM/YY/HH:MM:SS.ss format taken from the header keyword 'ACQTIME1' of the file that created the calibration file.
- unix time is the time (as in human readable date) but in unix time (in seconds).

An example working ic_calibDB_filename is shown below (assuming the listed files are present in DRS_CALIB_DB)

```
DARK 20170710 dark_dark02d406.fits 07/10/17/16:37:48 1499704668.0

ORDER_PROFIL_C 20170710 dark_flat02f10_order_profil_C.fits 07/10/17/17:03:50 1499706230.0

LOC_C 20170710 dark_flat02f10_loco_C.fits 07/10/17/17:03:50 1499706230.0

ORDER_PROFIL_AB 20170710 flat_dark02f10_order_profil_AB.fits 07/10/17/17:07:08 1499706428.0

LOC_AB 20170710 flat_dark02f10_loco_AB.fits 07/10/17/17:07:08 1499706428.0

TILT 20170710 fp_fp02a203_tilt.fits 07/10/17/17:25:15 1499705515.0

FLAT_C 20170710 dark_flat02f10_flat_C.fits 07/10/17/17:03:50 1499706230.0

WAVE 20170710 spirou_wave_ini3.fits 07/10/17/17:03:50 1499706230.0
```

Chapter 4

Using the DRS

There are two ways to run the DRS recipes. The first (described in Section 4.1) directly calls the code and inputs arguments (either from the command line or from python), the second way is to import the recipes in a python script and define arguments in a call to a function (see Section 4.2).

4.1 Running the DRS recipes directly

As in Chapter 2, using Linux or macOS one can run DRS recipes from the command line or from python, in windows one is required to be in python before running the scipts. Below we use cal_DARK_spirouss an example:

• To run from command line type:

```
CMD input

>>> cal_DARK_spirou YYMMDD Filenames
```

• To run from python/ipython from the command line type:

```
CMD input

>>> python cal_DARK_spirou YYMMDD Filenames

>>> ipython cal_DARK_spirou YYMMDD Filenames
```

• To run from ipython, open ipython and type:

```
Python/Ipython

run cal_DARK_spirou YYMMDD Filenames
```

4.2 Running the DRS recipes from a python script

In any operating system one can also import a recipe and call a function to run the code. This is useful in batch operations, timing tests and unit tests for example. Below we use cal_DARK_spirouss an example:

```
# import the recipe
import cal_DARK_spirou
# define the night folder name
night_name = "20170710"
# define the file(s) to run through the code
files = ['dark_dark02d406.fits']
# run code
cal_validate_spirou.main(night_name=night_name, files=files)
```

4.3 Working example of the code for SPIRou

4.3.1 Overview

For this example all files are from:

```
CMD input

Spirou@10.102.14.81:/data/RawImages/H2RG-AT4/AT4-04/2017-07-10_15-36-18/ramps/
```

following our example data architecture (from Section 2.6 and shown explicity in Section 3.1) all files should be places in the DRS_DATA_RAW (/drs/data/raw in our case). and we will also need the current WAVE file from here:

```
CMD input

>>> spirou@10.102.14.81:/data/reduced/DATA-CALIB/spirou_wave_ini3.fits
```

which needs to be placed in the DRS_CALIB_DB directory (/drs/data/calibDB in our case). Starting with RAMP files and ending with extracted orders and calculated drifts we need to run six codes:

```
1. cal_DARK_spirou (See Section 7.1)
2. cal_loc_RAW_spirou(×2) (See Section 7.2)
3. cal_SLIT_spirou (See Section 7.3)
4. cal_FF_RAW_spirou(×2) (See Section 7.4)
5. (add spirou_wave_ini3.fits to calibDB)
6. cal_extract_RAW_spirouABand cal_extract_RAW_spirouC(many times) (See Section 7.5)
7. cal_DRIFT_RAW_spirou (See Section 7.6)
```

4.3.2 Run through from command line/python shell (Linux and macOS)

As long as all codes are excutable (see Section 2.4.3) one can run all codes from the command line or if not excutable or one has a preference for python one can run the following with 'python {command}', 'ipython {command}' or indeed through an interactive ipython session using 'run {command}'.

1. run the dark extraction on the 'dark dark' file:

```
CMD input

>>> cal_DARK_spirou.py 20170710 dark_dark02d406.fits
```

2. run the order localisation on the 'dark flat' files:

3. run the order localisation on the 'flat dark' files:

```
CMD input

>>> cal_loc_RAW_spirou.py 20170710 flat_dark02f10.fits flat_dark03f10.fits flat_dark04f10.fits
    flat_dark05f10.fits flat_dark06f10.fits
```

4. run the slit calibration on the 'fp fp' files.

```
CMD input

>>> cal_SLIT_spirou.py 20170710 fp_fp02a203.fits fp_fp03a203.fits fp_fp04a203.fits
```

5. run the flat field creation on the 'dark flat' files:

Note: if using same files as above you will get an error message when running the file. To solve this open the 'ic_calibDB_filename' file located in {DATA_ROOT_CALIB}. Edit the unix date in the line that begins 'TILT' so that it is less than or equal to the unix date on rows 'ORDER_PROFIL_AB' (i.e. easiest to change it to the date on the 'ORDER_PROFIL_AB')

The human date format must match the unix date thus both must be changed if one is modified.

i.e. the 'ic_calibDB_filename' file should look go from

```
DARK 20170710 dark_dark02d406.fits 07/10/17/16:37:48 1499704668.0

ORDER_PROFIL_C 20170710 dark_flat02f10_order_profil_C.fits 07/10/17/17:03:50 1499706230.0

LOC_C 20170710 dark_flat02f10_loco_C.fits 07/10/17/17:03:50 1499706230.0

ORDER_PROFIL_AB 20170710 flat_dark02f10_order_profil_AB.fits 07/10/17/17:07:08

1499706428.0

LOC_AB 20170710 flat_dark02f10_loco_AB.fits 07/10/17/17:07:08 1499706428.0

TILT 20170710 fp_fp02a203_tilt.fits 07/10/17/17:25:15 1499707515.0
```

to this:

```
DARK 20170710 dark_dark02d406.fits 07/10/17/16:37:48 1499704668.0

ORDER_PROFIL_C 20170710 dark_flat02f10_order_profil_C.fits 07/10/17/17:03:50 1499706230.0

LOC_C 20170710 dark_flat02f10_loco_C.fits 07/10/17/17:03:50 1499706230.0

ORDER_PROFIL_AB 20170710 flat_dark02f10_order_profil_AB.fits 07/10/17/17:07:08

1499706428.0

LOC_AB 20170710 flat_dark02f10_loco_AB.fits 07/10/17/17:07:08 1499706428.0

TILT 20170710 fp_fp02a203_tilt.fits 07/10/17/17:07:08 1499706428.0
```

CMD input

cal_FF_RAW_spirou.py 20170710 dark_flat02f10.fits dark_flat03f10.fits dark_flat04f10.fits
dark_flat05f10.fits dark_flat06f10.fits

6. Currently we do not create a new wavelength calibration file for this run. Therefore we need one (as stated in the above section). We use the one from here:

```
CMD input

>> spirou@10.102.14.81:/data/reduced/DATA-CALIB/spirou_wave_ini3.fits
```

then place it in the DRS_CALIB_DB folder. You will also need to edit the 'ic_calibDB_filename' file located in DRS_CALIB_DB.

Add the folloing line to 'ic calibDB filename'

```
text
WAVE 20170710 spirou_wave_ini3.fits 07/10/17/17:03:50 1499706230.0
```

and the 'master calib SPIROU.txt' should look like this:

```
DARK 20170710 dark_dark02d406.fits 07/10/17/16:37:48 1499704668.0

ORDER_PROFIL_C 20170710 dark_flat02f10_order_profil_C.fits 07/10/17/17:03:50 1499706230.0

LOC_C 20170710 dark_flat02f10_loco_C.fits 07/10/17/17:03:50 1499706230.0

ORDER_PROFIL_AB 20170710 flat_dark02f10_order_profil_AB.fits 07/10/17/17:07:08 1499706428.0

LOC_AB 20170710 flat_dark02f10_loco_AB.fits 07/10/17/17:07:08 1499706428.0

TILT 20170710 fp_fp02a203_tilt.fits 07/10/17/17:07:08 1499706428.0

WAVE 20170710 spirou_wave_ini3.fits 07/10/17/17:03:50 1499706230.0
```

7. run the extraction files on the 'hcone_dark', 'dark_hcone', 'hcone_hcone', 'dark_dark_AHC1', 'hctwo_dark', 'dark_hctwo', 'hctwo-hctwo', 'dark_dark_AHC2' and 'fp_fp' files. For example for the 'fp_fp' files:

```
CMD input

>>> cal_extract_RAW_spirouAB.py 20170710 fp_fp02a203.fits fp_fp03a203.fits fp_fp04a203.fits

>>> cal_extract_RAW_spirouC.py 20170710 fp_fp02a203.fits fp_fp03a203.fits fp_fp04a203.fits
```

8. run the drift calculation on the 'fp_fp' files:

```
CMD input

CMD input

CMD input

CMD input

CMD input
```

4.3.3 Run through python script

The process is in the same order as Section 4.3.2, including changing the date on the 'TILT' keyword and adding the 'WAVE' line, and adding the wave file to the calibDB folder).

```
import cal_DARK_spirou, cal_loc_RAW_spirou
import cal_SLIT_spirou, cal_FF_RAW_spirou
import cal_extract_RAW_spirou, cal_DRIFT_RAW_spirou
import matplotlib.pyplot as plt
# define constants
NIGHT_NAME = '20170710'
# cal_dark_spirou
files = ['dark_dark02d406.fits']
                                          # set up files
cal_DARK_spirou.main(NIGHT_NAME, files) # run cal_dark_spirou
plt.close('all')
                                          # close graphs
# cal_loc_RAW_spirou - flat_dark
files = ['flat_dark02f10.fits', 'flat_dark03f10.fits', 'flat_dark04f10.fits',
         'flat_dark05f10.fits','flat_dark06f10.fits']
cal_loc_RAW_spirou.main(NIGHT_NAME, files)
plt.close('all')
# cal_loc_RAW_spirou - dark_flat
files = ['dark_flat02f10.fits', 'dark_flat03f10.fits', 'dark_flat04f10.fits',
         'dark_flat05f10.fits', 'dark_flat06f10.fits']
cal_loc_RAW_spirou.main(NIGHT_NAME, files)
plt.close('all')
# cal_SLIT_spirou
files = ['fp_fp02a203.fits', 'fp_fp03a203.fits', 'fp_fp04a203.fits']
cal_SLIT_spirou.main(NIGHT_NAME, files)
plt.close('all')
# cal_FF_RAW_spirou - flat_dark
files = ['flat_dark02f10.fits', 'flat_dark03f10.fits','flat_dark04f10.fits',
         'flat_dark05f10.fits', 'flat_dark06f10.fits']
cal_FF_RAW_spirou.main(NIGHT_NAME, files)
plt.close('all')
# cal_FF_RAW_spirou - dark_flat
files = ['dark_flat02f10.fits', 'dark_flat03f10.fits', 'dark_flat04f10.fits',
         'dark_flat05f10.fits', 'dark_flat06f10.fits']
cal_FF_RAW_spirou.main(NIGHT_NAME, files)
plt.close('all')
# cal_extract_RAW_spirou - fp_fp AB
files = ['fp_fp02a203.fits', 'fp_fp03a203.fits', 'fp_fp04a203.fits']
cal_extract_RAW_spirou.main(NIGHT_NAME, files, 'AB')
plt.close('all')
# cal_extract_RAW_spirou - fp_fp C
files = ['fp_fp02a203.fits', 'fp_fp03a203.fits', 'fp_fp04a203.fits']
cal_extract_RAW_spirou.main(NIGHT_NAME, files, 'C')
plt.close('all')
# test cal_DRIFT_RAW_spirou
files = ['fp_fp02a203.fits', 'fp_fp03a203.fits', 'fp_fp04a203.fits']
cal_DRIFT_RAW_spirou.main(NIGHT_NAME, files)
plt.close('all')
```

Chapter 5

Required input header keywords

5.1 Required keywords

The following keywords are required by the current recipes to run.

• Data fits file type (kw DPRTYPE)

```
The data fits file type (template Name)

kw_DPRTYPE = ["TPL_NAME", ""DATA"", "template Name"]

HEADER file entry:

TPL_NAME = "DATA" \ template Name

Used in: All Recipes
Defined in: SpirouDRS.spirouConfig.spirouKeywords
```

• Acquisition time (human readable) (kw ACQTIME KEY)

```
The acquisition time in format YYYY-mm-dd-HH-MM-SS.ss

kw_ACQTIME_KEY = ["ACQTIME1", "YYYY-mm-dd-HH-MM-SS.ss", "Date at start of observation"]

HEADER file entry:

ACQTIME1 = YYYY-mm-dd-HH-MM-SS.ss \ Date at start of observation

Used in: All Recipes
Defined in: SpirouDRS.spirouConfig.spirouKeywords
```

• Acquisition time (unix time format) (kw ACQTIME KEY UNIX)

```
The acquisition time in in unix time format (time since 1970-01-01-00-00)

kw_ACQTIME_KEY_UNIX = ["ACQTIME", "0000000000.00", "Date in unix time at start of observation"]

HEADER file entry:

ACQTIME = 000000000.00 \ Date in unix time at start of observation

Used in: All Recipes
Defined in: SpirouDRS.spirouConfig.spirouKeywords
```

• Read noise (kw RDNOISE)

```
The read noise (used for sigdet) [e-]

kw_RDNOISE = ["RDNOISE", "0.0", "read noise (electrons)"]

HEADER file entry:

RDNOISE = 0.0 \ read noise (electrons)

Used in: All Recipes
Defined in: SpirouDRS.spirouConfig.spirouKeywords
```

• Gain (kw_GAIN)

```
The gain [e-/ADU]

kw_GAIN = ["GAIN", "0.0", "gain (electrons/ADU)"]

HEADER file entry:

GAIN = 0.0 \ gain (electrons/ADU)

Used in: All Recipes
Defined in: SpirouDRS.spirouConfig.spirouKeywords
```

• Exposure time (kw_EXPTIME)

```
The integration time in seconds

kw_EXPTIME = ["EXPTIME", "0.0", "Integration time (seconds)"]

HEADER file entry:

EXPTIME = 0.0 \ Integration time (seconds)

Used in: All Recipes
Defined in: SpirouDRS.spirouConfig.spirouKeywords
```

Chapter 6

User modifiable variables

To better understand the variables in the DRS we have laid out each variable in the following way:

• Variable title (VARIABLE NAME)

Description of the variable

VARIABLE NAME = Default Value

Used in: The recipe used the variable is used in.

Defined in: The place where the variable is defined.

6.1 Variable file locations

The variables are currently stored in two places. The first (../config/config.txt) contains constants that deal with initial set up. These were mentioned in Section 2.6 and are located in TDATA/config/../config/config.txt.

The other variables modify how the DRS runs. These are located in constants_SPIROU.txt (located at TDATA/config/constants_SPIROU.txt).

6.2 Global variables

• Plotting switch (DRS_PLOT)

Defines whether to show plots (A value of 1 to show plots, a value of 0 to not show plots). Value must be an integer (0 or 1) or boolean (True or False)

DRS PLOT = 1

Used in: All Recipes

Defined in: ../config/config.txt

• Debug mode (DRS DEBUG)

Defines whether we should run the DRS in debug mode. Certain print/log statements and certain graphs only plot in debug mode. On an error the option to enter the python debugger is asked (allows user to look into functions/current memory and see what variables are currently defined. Value must be an integer. Value must be an integer where:

- -0 = No debug
- -1 = Level 1 debug

TODO: Define level 1 debug

-2 = Level 2 debug

TODO: Define level 2 debug

DRS DEBUG = 0

Used in: All Recipes
Defined in: ../config/config.txt

• Plot interval (ic_display_timeout)

Set the interval between plots in seconds (for certain interactive graphs). Value must be a valid float larger than zero.

 $ic_{display_timeout} = 0.5$

Used in: cal_loc_RAW_spirou
Defined in: constants SPIROU.txt

6.3 Directory variables

• The data directory (TDATA)

Defines the path to the data directory. Value must be a string containing a valid file location.

TDATA = /drs/data/

Used in: All Recipes

Defined in: ../config/config.txt

• The installation directory (DRS ROOT)

Defines the installation directory (TDATA). Value must be a string containing a valid file location.

 $\frac{DRS}{ROOT} = \frac{\sqrt{drs}}{INTROOT}$

Used in: All Recipes

Defined in: ../config/config.txt

• The raw data directory (DRS DATA RAW)

Defines the directory that the reduced data will be saved to/read from. Value must be a string containing a valid file location.

 $DRS_DATA_RAW = /drs/data/raw$

Used in: All Recipes

Defined in: ../config/config.txt

• The reduced data directory (DRS_DATA_REDUC)

Defines the directory that the reduced data will be saved to/read from. Value must be a string containing a valid file location.

 $DRS_DATA_REDUC = /drs/data/reduced$

Used in: All Recipes

Defined in: ../config/config.txt

• The calibration database and calibration file directory (DRS CALIB DB)

Defines the directory that the calibration files and database will be saved to/read from. Value must be a string containing a valid file location.

DRS CALIB DB = /drs/data/calibDB

Used in: All Recipes

Defined in: ../config/config.txt

• The log directory (DRS DATA MSG)

Defines the directory that the log messages are stored in. Value must be a string containing a valid file location.

 $\overline{\text{DRS}}$ $\overline{\text{DATA}}$ $\overline{\text{MSG}}$ = $/\overline{\text{drs}}/\overline{\text{data}}/\overline{\text{msg}}$

Used in: All Recipes

Defined in: ../config/config.txt

• The working directory (DRS DATA WORKING)

```
Defines the working directory. Value must be a string containing a valid file location.

DRS_DATA_WORKING = /drs/data/tmp/

Used in: All Recipes
Defined in: ../config/config.txt
```

6.4 Image variables

• Resizing blue window (ic_ccd{x/y}_blue_{low/high})

```
The blue window used in cal_DARK_spirou. Each value must be a integer between 0 and the maximum array size in each dimension.

ic_ccdx_blue_low = 2048-200
ic_ccdx_blue_high = 2048-1500
ic_ccdy_blue_low = 2048-20
ic_ccdy_blue_high = 2048-350

Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt
```

• Resizing red window (ic_ccd{x/y}_red_{low/high})

```
The blue window used in cal_DARK_spirou. Each value must be a integer between 0 and the maximum array size in each dimension.

ic_ccdx_red_low = 2048-20
ic_ccdx_red_high = 2048-1750
ic_ccdy_red_low = 2048-1570
ic_ccdy_red_high = 2048-1910

Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt
```

The blue window used in **cal_DARK_spirou**. Each value must be a integer between 0 and the maximum array size in each dimension.

• Available fiber types (fiber_types)

Defines the type of fiber we have (used in various codes). Theses are define in a python list of string, where the earlier a fiber is in the list the more it takes priority in searches (i.e. AB over A or B if AB is first)

```
fiber types = ['AB', 'A', 'B', 'C']
```

 $\begin{tabular}{lll} Used in: & cal_extract_RAW_spirou, cal_DRIFT_E2DS_spirou \end{tabular}$

Defined in: constants_SPIROU.txt

6.5 Fiber variables

These variables are defined for each type of fiber and thus are defined as a python dictionary of values. As such they all must contain the same dictionary keys (currently 'AB', 'A', 'B' and 'C').

• Number of fibers (nbfib fpall)

This describes the number of fibers of a given type. Must be a python dictionary with identical keys to all other fiber parameters (each value must be an integer).

```
nbfib_fpall = {'AB':2, 'A':1, 'B':1, 'C':1}

Used in: cal_loc_RAW_spirou
Defined in: constants SPIROU.txt
```

• Order skip number (ic first order jump fpall)

Describes the number of orders to skip at the start of an image. Must be a python dictionary with identical keys to all other fiber parameters (each value must be an integer).

• Maximum order numbers (ic locnbmaxo fpall)

Describes the maximum allowed number of orders. Must be a python dictionary with identical keys to all other fiber parameters (each value must be an integer).

• Number of orders to fit (QC) (qc_loc_nbo_fpall)

Quality control parameter for the number of orders on fiber to fit. Must be a python dictionary with identical keys to all other fiber parameters (each value must be an integer).

• Fiber types for this fiber (fib type fpall)

The fiber type(s) – as a list – for this fiber. Must be a python dictionary with identical keys to all other fiber parameters (each value must be a list of strings).

```
 \begin{array}{lll} \mbox{fib\_type\_fpall} & = & \{\mbox{`AB'}: [\mbox{`AB''}: [\mbox{`AB''}: [\mbox{`AB''}: [\mbox{`B''}], \mbox{`B''}: [\mbox{`B''}], \mbox{`C'}: [\mbox{`C''}: [\mbox{`C''}]\} \\ \mbox{Used in:} & & \mbox{cal\_FF\_RAW\_spirou} \\ \mbox{Defined in:} & & \mbox{constants SPIROU.txt} \\ \end{array}
```

• Half-zone extraction width (left/top) (ic_ext_range1_fpall)

The pixels are extracted from the center of the order out to the edges in the row direction (y-axis), i.e. defines the illuminated part of the order - this number defines the **top** side (if one requires a symmetric extraction around the order fit both range 1 and range 2 – below – should be the same). This can also be used to extract A and B separately (where the fit order is defined at the center of the AB pair). Must be a python dictionary with identical keys to all other fiber parameters.

```
ic_ext_rangel_fpall = {'AB':14.5, 'A':0.0, 'B':14.5, 'C':7.5}

Used in: cal_FF_RAW_spirou
Defined in: constants_SPIROU.txt
```

• Half-zone extraction width (right/bottom) (ic_ext_range2_fpall)

The pixels are extracted from the center of the order out to the edges in the row direction (y-axis), i.e. defines the illuminated part of the order - this number defines the **bottom** side (if one requires a symmetric extraction around the order fit both range 1 and range 2 – below – should be the same). This can also be used to extract A and B separately (where the fit order is defined at the center of the AB pair). Must be a python dictionary with identical keys to all other fiber parameters.

• Half-zone extraction width for full extraction (ic ext range fpall)

The pixels are extracted from the center of the order out to the edges in the row direction (y-axis), i.e. defines the illuminated part of the order. In cal_extract_RAW_spirouboth sides of the fit order are extracted at with the same width (symmetric). Must be a python dictionary with identical keys to all other fiber parameters.

```
ic_ext_range_fpall = {'AB':14.5, 'A':14.5, 'B':14.5, 'C':7.5}

Used in: cal_extract_RAW_spirou
Defined in: constants SPIROU.txt
```

• Localization fiber for extraction (loc file fpall)

Defines the localization fiber to use for each fiber type. This is the file in calibDB that is used i.e. the keyword <code>ic_calibDB_filename</code>used will be <code>LOC_{loc_file_fpall}</code>' (e.g. for fiber='AB' use 'LOC_AB'). Must be a python dictionary with identical keys to all other fiber parameters.

• Order profile fiber for extraction (orderp_file_fpall)

Defines the order profile fiber to use for each fiber type. This is the file in calibDB that is used i.e. the keyword <code>ic_calibDB_filename</code>used will be <code>ORDER_PROFILE_{orderp_file_fpall}</code>' (e.g. for fiber='AB' use 'ORDER_PROFILE_AB'). Must be a python dictionary with identical keys to all other fiber parameters.

• Half-zone extract width cal_DRIFT_RAW_spirou (ic_ext_d_range_fpall)

The size in pixels of the extraction away from the order localization fit (to the top and bottom) - defines the illuminated area of the order for extraction. Must be a python dictionary with identical keys to all other fiber parameters.

6.6 Dark calibration variables

• Lower percentile for dead pixel stats (dark qmin)

This defines the lower percentile to be logged for the fraction of dead pixels statistics. Value must be an integer between 0 and 100 (1 sigma below the mean is \sim 16).

```
dark_qmin = 5
Used in: cal_DARK_spirou
Defined in: constants SPIROU.txt
```

• Upper percentile for dead pixel stats (dark qmax)

This defines the upper percentile to be logged for the fraction of dead pixels statistics. Value must be an integer between 0 and 100 (1 sigma above the mean is \sim 84).

```
dark_qmax = 95
Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt
```

• Dark stat histogram bins (histo bins)

```
Defines the number of bins to use in the dark histogram plot. Value must be a positive integer.

histo_bins = 200
```

Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt

• Lower bound for the Dark stat histogram (histo range low)

Defines the lower bound for the dark statistic histogram. Value must be a float less than (no equal to) the value of 'histo range high'

```
histo_range_low = -0.5

Used in: cal_DARK_spirou
Defined in: constants SPIROU.txt
```

• Upper bound for the Dark stat histogram (histo range high)

Defines the upper bound for the dark statistic histogram. Value must be a float greater than (not equal to) the value of 'histo_range_low'

• Bad pixel cut limit (dark_cutlimit)

Defines the bad pixel cut limit in ADU/s. $badpixels = (image > {\rm dark_cut_limit}) \ {\rm OR} \ ({\rm non\text{-}finite}) \eqno(6.1)$

 $dark_cutlimit = 100.0$

Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt

6.7 Localization calibration variables

• Order profile smoothed box size (loc box size)

Defines the size of the order profile smoothing box (from the central pixel minus size to the central pixel plus size). Value must be an integer larger than zero.

```
loc_box_size = 10

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt
```

• Image row offset (ic offset)

The row number (y axis) of the image to start localization at (below this row orders will not be fit). Value must be an integer equal to or larger than zero.

```
 \begin{array}{lll} \textbf{ic\_offset} & = & 40 \\ \\ \textbf{Used in:} & \textbf{cal\_loc\_RAW\_spirou} \\ \textbf{Defined in:} & \textbf{constants\_SPIROU.txt} \\ \end{array}
```

• Central column of the image (ic cent col)

The column which is to be used as the central column (x-axis), this is the column that is initially used to find the order locations. Value must be an integer between 0 and the number of columns (x-axis dimension).

• Localization window row size (ic ext window)

Defines the size of the localization window in rows (y-axis). Value must be an integer larger than zero and less than the number of rows (y-axis dimension).

```
ic\_ext\_window = 12
Used in: cal\_loc\_RAW\_spirou
Defined in: constants\_SPIROU.txt
```

• Localization window column step (ic locstepc)

For the initial localization procedure interval points along the order (x-axis) are defined and the centers are found, this is used as the first estimate of the order shape. This parameter defines that interval step in columns (x-axis). Value must be an integer larger than zero and less than the number of columns (x-axis dimension).

```
ic_locstepc = 12

Used in: cal_loc_RAW_spirou
Defined in: constants SPIROU.txt
```

• Image gap index (ic image gap)

Defines the image gap index. The order is skipped if the top of the row (row number $-ic_ext_window$) or bottom of the row (row number $+ic_ext_window$) is inside this image gap index. i.e. a order is skipped if:

```
(top of the row < ic_image_gap) OR (bottom of the row > ic_image_gap) (6.2)
```

Value must be an integer between zero and the number of rows (y-axis dimension).

• Minimum order row size (ic widthmin)

Defines the minimum row width (width in y-axis) to accept an order as valid. If below this threshold order is not recorded. Value must be an integer between zero and the number of rows (y-axis dimension).

• Min/Max smoothing box size (ic locnbpix)

Defines the half-size of the rows to use when smoothing the image to work out the minimum and maximum pixel values. This defines the half-spacing between orders and is used to estimate background and the maximum signal. Value must be greater than zero and less than the number of rows (y-axis dimension).

```
ic_locnbpix = 45

Used in: cal_loc_RAW_spirou
Defined in: constants SPIROU.txt
```

• Minimum signal amplitude (ic min amplitude)

Defines a cut off (in e-) where below this point the central pixel values will be set to zero. Value must be a float greater than zero.

```
ic_min_amplitude = 100.0
```

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt

• Normalized background amplitude threshold (ic locseuil)

Defines the normalized amplitude threshold to accept pixels for background calculation (pixels below this normalized value will be used for the background calculation). Value must be a float between zero and one.

```
ic_locseuil = 0.2
```

Used in: cal_loc_RAW_spirou Defined in: constants_SPIROU.txt

• Saturation threshold on the order profile plot (ic_satseuil)

Defines the saturation threshold on the order profile plot, pixels above this value will be set this value (ic_satseuil). Value must be a float greater than zero.

```
ic satseuil = 64536
```

Used in: cal_loc_RAW_spirou Defined in: constants SPIROU.txt

• Degree of the fitting polynomial for localization position (ic locdfitc)

Defines the degree of the fitting polynomial for locating the positions of each order i.e. if value is 1 is a linear fit, if the value is 2 is a quadratic fit. The value must be a positive integer equal to or greater than zero (zero would lead to a constant fit along the column direction (x-axis direction).

```
ic locdfitc = 5
```

Used in: cal_loc_RAW_spirou Defined in: constants_SPIROU.txt

• Degree of the fitting polynomial for localization width (ic locdfitw)

Defines the degree of the fitting polynomial for measuring the width of each order i.e. if value is 1 is a linear fit, if the value is 2 is a quadratic fit. The value must be a positive integer equal to or greater than zero (zero would lead to a constant fit along the row direction (y-axis direction).

```
ic_locdfitw = 5
```

Used in: cal_loc_RAW_spirou Defined in: constants_SPIROU.txt

• Degree of the fitting polynomial for localization position error (ic locdfitp)

Defines the degree of the fitting polynomial for locating the positions error of each order i.e. if value is 1 is a linear fit, if the value is 2 is a quadratic fit. The value must be a positive integer equal to or greater than zero (zero would lead to a constant fit along the column direction (x-axis direction).

```
\begin{array}{lll} \mbox{ic\_locdfitp} & = & 3 \\ \\ \mbox{Used in:} & \mbox{cal\_loc\_RAW\_spirou} \\ \mbox{Defined in:} & \mbox{constants\_SPIROU.txt} \end{array}
```

• Maximum RMS for sigma-clipping order fit (positions) (ic max rms center)

Defines the maximum RMS allowed for an order, if RMS is above this value the position with the highest residual is removed and the fit is recalculated without that position (sigma-clipped). Value must be a positive float. i.e. position fit is recalculated if:

$$max(RMS) > ic max rms center$$
 (6.3)

```
ic max rms center = 0.2
```

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt

• Maximum peak-to-peak for sigma-clipping order fit (positions) (ic max ptp center)

Defines the maximum peak-to-peak value allowed for an order, if the peak to peak is above this value the position with the highest residual is removed and the fit is recalculated without that position (sigma-clipped). Value must be a positive float. i.e. position fit is recalculated if:

$$max(|residuals|) > ic max ptp center$$
 (6.4)

 $ic_{max_ptp_center} = 0.2$

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_loc_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants SPIROU.txt} \\ \end{array}$

• Maximum peak-to-peak-RMS ratio for sigma-clipping order fit(positions) (ic_ptporms_center)

Defines the maximum ratio of peak-to-peak residuals and rms value allowed for an order, if the ratio is above this value the position with the highest residual is removed and the fit is recalculated without that position (sigma-clipped). Value must be a positive float. i.e. position

fit is recalculated if:

$$max(|residuals|)/RMS > ic ptporms center$$
 (6.5)

 $ic_ptporms_center = 8.0$

Used in: cal_loc_RAW_spirou
Defined in: constants SPIROU.txt

• Maximum RMS for sigma-clipping order fit (width) (ic max rms fwhm)

Defines the maximum RMS allowed for an order, if RMS is above this value the width with the highest residual is removed and the fit is recalculated without that width (sigma-clipped). Value must be a positive float. i.e. width fit is recalculated if:

$$max(RMS) > ic max rms width$$
 (6.6)

ic max rms fwhm = 1.0

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_loc_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

• Maximum peak-to-peak for sigma-clipping order fit (widths) (ic max ptp fracfwhm)

Defines the maximum peak-to-peak value allowed for an order, if the peak to peak is above this value the width with the highest residual is removed and the fit is recalculated without that width (sigma-clipped). Value must be a positive float. i.e. width fit is recalculated if:

```
max(|residuals/data|) \times 100 > ic max ptp fracfwhm (6.7)
```

```
ic max ptp fracfwhm = 1.0
```

Used in: cal_loc_RAW_spirou
Defined in: cal_loc_RAW_spirou
constants_SPIROU.txt

• Delta width 3 convolve shape model (ic loc delta width)

Defines the delta width in pixels for the 3 convolve shape model - currently not used. Value must be a positive float.

```
ic_loc_delta_width = 1.85
```

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt

• Localization archiving option (ic locopt1)

Whether we save the location image with the superposition of the fit (zeros). If this option is 1 or True it will save the file to '_with-order_fiber.fits' if 0 or False it will not save this file. Value must be 1, 0, True or False.

```
ic locopt1 = 1
```

Used in: cal_loc_RAW_spirou Defined in: constants_SPIROU.txt

6.8 Slit calibration variables

• Tilt oversampling factor (ic_tilt_coi)

Defines the oversampling factor used to work out the tilt of the slit. Value must be an integer value larger than zero.

• Slit fit order plot offset factor (ic facdec)

Defines an offset of the position fit to show the edges of the illuminated area. (Final offset is $\pm \times$ 2 of this offset away from the order fit. Value must be a positive float.)

```
ic_facdec = 1.6

Used in: cal_SLIT_spirou
Defined in: constants_SPIROU.txt
```

• Degree of the fitting polynomial for the tilt (ic_tilt_fit)

Defines the degree of the fitting polynomial for determining the tilt i.e. i.e. if value is 1 is a linear fit, if the value is 2 is a quadratic fit. The value must be a positive integer equal to or greater than zero (zero would lead to a constant fit).

```
ic_tilt_fit = 4
Used in: cal_SLIT_spirou
Defined in: constants SPIROU.txt
```

• Selected order in Slit fit order plot (ic_slit_order_plot)

Defines the selected order to plot the fit for in the Slit fir order plot. Value must be between zero and the maximum number of orders.

```
 \begin{array}{lll} \mbox{ic\_slit\_order\_plot} & = & 10 \\ \\ \mbox{Used in:} & & \mbox{cal\_SLIT\_spirou} \\ \mbox{Defined in:} & & \mbox{constants\_SPIROU.txt} \\ \end{array}
```

6.9 Flat fielding calibration variables

• Measure background (ic_do_bkgr_subtraction)

Define whether to measure the background and do a background subtraction. Value must be True or 1 to do the background measurement and subtraction or be False or 0 to not do the background measurement and subtraction.

```
 \begin{array}{lll} \textbf{ic\_do\_bkgr\_subtraction} &=& 0 \\ \\ \textbf{Used in:} & & \textbf{cal\_FF\_RAW\_spirou} \\ \textbf{Defined in:} & & \textbf{constants SPIROU.txt} \\ \end{array}
```

• Half-size of background window (ic_bkgr_window)

Defines the half-size (in pixels) of the background window to create a sub-frame to find the minimum $2 \times ic_bkgr_window$ pixels for which to calculate the background from. Size is used in both row and column (y and x) direction. Value must be an integer between zero and the minimum(row number, column number) (minimum(x-axis dimension, y-axis dimension)).

```
ic_bkgr_window = 100

Used in: cal_FF_RAW_spirou
Defined in: constants SPIROU.txt
```

• Number of orders in tilt measurement (ic tilt nbo)

Defines the number of orders in the tilt measurement file (TILT key in the ic_calibDB_filename). This is the number of tilts that will be extracted. Value must be an integer larger than zero and smaller than or equal to the total number of orders present in the TILT file.

```
ic_tilt_nbo = 36
Used in: cal_FF_RAW_spirou
Defined in: constants_SPIROU.txt
```

• The manually set sigdet for flat fielding. (ic_ff_sigdet)

This defines the sigdet to use in the weighted tilt extraction. Set to -1 to use from the input file ('fitsfilename') HEADER. Value must be either -1 or a positive float.

```
ic_ff_sigdet = 100.0

Used in: cal_FF_RAW_spirou
Defined in: constants SPIROU.txt
```

• Half size blaze window (ic extfblaz)

Defines the distance from the central column that should be used to measure the blaze for each order. Value must be an integer greater than zero and less than half the number of columns (x-axis dimension).

```
ic_extfblaz = 50

Used in: cal_FF_RAW_spirou
Defined in: constants SPIROU.txt
```

• Fit degree for the blaze polynomial fit (ic blaze fitn)

Defines the degree of the fitting polynomial for fitting the blaze function of each order i.e. if value is 1 is a linear fit, if the value is 2 is a quadratic fit. The value must be a positive integer equal to or greater than zero (zero would lead to a constant fit along the column direction (x-axis direction).

```
ic_blaze_fitn = 5

Used in: cal_FF_RAW_spirou
Defined in: constants_SPIROU.txt
```

• Selected order for flat fielding plot (ic_ff_order_plot)

Defines the selected order to plot on the flat fielding image plot. Value must be a integer between zero and the number of orders.

```
ic_ff_order_plot = 5

Used in: cal_FF_RAW_spirou
Defined in: constants SPIROU.txt
```

• Plot all order fits for flat fielding plot (ic ff plot all orders)

If True or 1, instead of plotting the selected order from ic_ff_order_plot will plot the order fits (and edges) for all orders. This is slower than just plotting one. Value must be True or 1 or False or 0.

```
 \begin{array}{lll} \mbox{ic\_ff\_plot\_all\_orders} & = & 0 \\ \\ \mbox{Used in:} & & \mbox{cal\_FF\_RAW\_spirou} \\ \mbox{Defined in:} & & \mbox{constants SPIROU.txt} \\ \end{array}
```

6.10 Extraction calibration variables

• Extraction option - rough extraction (ic_extopt)

Extraction option for rough extraction:

- if 0 extraction by summation over a constant range
- if 1 extraction by summation over constants sigma (not currently available)
- if 2 horne extraction without cosmic elimination (not currently available)
- if 3 horne extraction with cosmic elimination (not currently available)

Used for estimating the slit tilt and in calculating the blaze/flat fielding. Value must be a integer between 0 and 3.

```
 \begin{array}{lll} \textbf{ic\_extopt} & = & 0 \\ \\ \textbf{Used in:} & \textbf{cal\_SLIT\_spirou, cal\_FF\_RAW\_spirou} \\ \textbf{Defined in:} & \textbf{constants\_SPIROU.txt} \\ \end{array}
```

• Extraction distance - rough extraction (ic extnbsig)

The pixels are extracted from the center of the order out to the edges in the row direction (y-axis), i.e. defines the illuminated part of the order). Used for estimating the slit tilt and in calculating the blaze/flat fielding. Value must be a positive float between 0 and the total number of rows (y-axis dimension).

```
ic_extnbsig = 2.5

Used in: cal_SLIT_spirou, cal_FF_RAW_spirou
Defined in: constants SPIROU.txt
```

• Extraction type (ic extact type)

Defines which type of extract should be used in cal_extract_RAW_spirou. This variable is overwritten if using cal_extract_RAW_spirouABor cal_extract_RAW_spirouC. The value must be one of the following:

- simple just does extraction as is.
- weight does the extraction with a weighting for bad pixels
- tiltweightdoes the extraction + 'tilt' + 'weight'
- allperforms all extractions (saves separately). The E2DS file='weight'.

Value should be a python string with one of the above values only. Any other value will cause an error and a recipe to exit.

```
ic extact type = tiltweight
```

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_extract_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

• Manually set the extraction sigdet (ic ext sigdet)

Set the sigdet used in the extraction process instead of using the sigdet in the FITS rec HEADER file. If the value is set to -1 the sigdet from the HEADER is used instead.

```
ic ext sigdet = 100
```

Used in: cal_extract_RAW_spirou
Defined in: constants_SPIROU.txt

• Selected order in extract fit order plot (ic_ext_order_plot)

Defines the selected order to plot the fit for in the extract fit order plot. Value must be between zero and the maximum number of orders.

```
ic ext order plot = 20
```

Used in: cal_extract_RAW_spirou Defined in: cal_extract_SPIROU.txt

6.11 Drift calibration variables

• Noise value for SNR drift calculation (ic drift noise)

Define the noise value for the signal to noise ratio in the drift calculation.

$$snr = flux/\sqrt{(flux + noise^2)}$$
 (6.8)

Value must be a float larger than zero.

ic_drift_noise = 100.0

Used in: cal_DRIFT_RAW_spirou Constants_SPIROU.txt

• The maximum flux for a good (unsaturated) pixel (ic drift maxflux)

Defines the maximum flux to define a good pixel. This pixels and those that surround it will not be used in determining the RV parameters. Value must be a float greater than zero.

 $ic_drift_maxflux = 1.e9$

Used in: cal_DRIFT_RAW_spirou
Defined in: constants_SPIROU.txt

• Saturated pixel flag size (ic drift boxsize)

Defines the number of pixels around a saturated pixel to flag as unusable (and hence not used in determining the RV parameters). Value must be a integer larger than zero.

```
ic drift boxsize = 12
```

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_DRIFT_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

• Large number of files for skip (drift nlarge)

Defines the number of files that is large enough to require the 'drift_file_skip' parameter (only uses one file in every 'drift_file_skip' files). This is done to speed up the code and avoid a bug. Value must be an integer larger than zero.

```
\frac{drift}{drift} = \frac{300}{drift}
```

 $\begin{tabular}{lll} Used in: & cal_DRIFT_RAW_spirou, & cal_DRIFT_E2DS_spirou, \\ \end{tabular}$

cal_DRIFT-PEAK_E2DS_spirou

• Large number of files skip parameter (cal DRIFT RAW spirou) (drift file skip)

Defines how many files we skip. This is done by selecting one file every 'drift_file_skip' files. i.e. if skip is 3 the code uses every 3rd file to calculate the drift. Value must be an integer larger than zero. A value of 1 is equivalent to no skipping of files regardless of the file number.

```
drift file skip = 3
```

 $\begin{array}{ll} \mbox{Used in:} & \mbox{cal_DRIFT_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

 $\bullet \ \ Large \ number \ of \ files \ skip \ parameter \ (cal_DRIFT_E2DS_spirou) \ (drift_e2ds_file_skip)$

Defines how many files we skip. This is done by selecting one file every 'drift_file_skip' files. i.e. if skip is 3 the code uses every 3rd file to calculate the drift. Value must be an integer larger than zero. A value of 1 is equivalent to no skipping of files regardless of the file number.

```
drift e2ds file skip = 1
```

Used in: cal_DRIFT_E2DS_spirou
Defined in: constants_SPIROU.txt

• Number of sigmas to cut in cosmic renormalization (cal_DRIFT_RAW_spirou) (ic drift cut raw)

Defines the number of standard deviations to remove fluxes at (and replace with the reference flux) for cal DRIFT RAW spirou. Value must be a float larger than zero.

```
ic drift cut raw = 3
```

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_DRIFT_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

• Number of sigmas to cut in cosmic renormalization (cal_DRIFT_E2DS_spirou) (ic drift cut e2ds)

Defines the number of standard deviations to remove fluxes at (and replace with the reference flux) for cal_DRIFT_E2DS_spirou. Value must be a float larger than zero.

```
ic drift cut e2ds = 4.5
```

Used in: cal_DRIFT_E2DS_spirou
Defined in: constants_SPIROU.txt

• Number of orders to use in drift (ic drift n order max)

Defines the number of orders to use (starting from zero to maximum number). This is used to get the median drift. Value must be an integer between 0 and the maximum number of orders.

ic drift n order $\max = 28$

Used in: cal_DRIFT_RAW_spirou
Defined in: cal_DRIFT_RAW_spirou
constants SPIROU.txt

• Define the way to combine orders for drift (for cal_DRIFT_RAW_spirou) (ic_drift_type_raw)

Defines the way to calculate the combine order drifts (to one drift per image) should either be 'weighted mean' (Equation 6.9) or 'median' (Equation 6.10) for cal DRIFT RAW spirou.

$$drift = \frac{\sum (drift_i * w_i)}{\sum w_i}$$
 (6.9)

where w_i is $1/\Delta v_{rms}$

$$drift = median(drift_i) (6.10)$$

Value should be a valid python string either 'median' or 'weighted mean'.

 $ic_drift_type_raw = median$

Used in: cal_DRIFT_RAW_spirou
Defined in: constants_SPIROU.txt

• Define the way to combine orders for drift cal_DRIFT_E2DS_spirou) (ic_drift_type_e2ds)

Defines the way to calculate the combine order drifts (to one drift per image) should either be 'weighted mean' (Equation 6.11) or 'median' (Equation 6.12) for cal DRIFT E2DS spirou.

$$drift = \frac{\sum (drift_i * w_i)}{\sum w_i}$$
 (6.11)

where w_i is $1/\Delta v_{rms}$

$$drift = median(drift_i) (6.12)$$

Value should be a valid python string either 'median' or 'weighted mean'.

ic drift type e2ds = weighted mean

Used in: cal_DRIFT_E2DS_spirou Defined in: constants_SPIROU.txt

• Selected order in drift fit order plot (ic_drift_order_plot)

Defines the selected order to plot the fit for in the drift fit order plot. Value must be between zero and the maximum number of orders.

 $ic_drift_order_plot = 20$

 $\begin{tabular}{lll} Used in: & cal_DRIFT_RAW_spirou, cal_DRIFT_E2DS_spirou \end{tabular}$

Defined in:

6.12 Drift-Peak calibration variables

• First order to use in drift-peak (ic drift peak n order min)

Defines the first order to use (from this to ic_drift_peak_n_order_max). This is used to get the median drift. Value must be an integer greater than or equal to 0 and less than ic_drift_peak_n_order_max.

ic_drift_peak_n_order_min = 2

Used in: cal_DRIFT-PEAK_E2DS_spirou

constants SPIROU.txt

• Last order to use in drift-peak (ic drift peak n order max)

Defines the last order to use (from ic_drift_peak_n_order_min to this). This is used to get the median drift. Value must be an integer greater than ic_drift_peak_n_order_min and less than or equal to the maximum number of orders.

```
 \begin{array}{lll} ic\_drift\_peak\_n\_order\_max & = & 30 \\ \\ Used in: & cal\_DRIFT-PEAK\_E2DS\_spirou \\ Defined in: & constants\_SPIROU.txt \\ \end{array}
```

• Large number of files skip parameter (cal DRIFT E2DS spirou) (drift e2ds file skip)

Defines how many files we skip. This is done by selecting one file every 'drift_file_skip' files. i.e. if skip is 3 the code uses every 3rd file to calculate the drift. Value must be an integer larger than zero. A value of 1 is equivalent to no skipping of files regardless of the file number.

• Minimum box size for min max smoothing (drift peak minmax boxsize)

Defines the minimum size of the box used to get the minimum and maximum pixel values (specifically minimum pixel values). Each box (defined as the pixel position \pm box size) is used to work out the background value for that pixel. Value must be an integer larger than zero and less than half the number of columns (x-dimension).

```
drift_peak_minmax_boxsize = 6

Used in: cal_DRIFT-PEAK_E2DS_spirou
Defined in: constants_SPIROU.txt
```

• Image column (x-dim) border size (drift peak border size)

Defines the number of pixels on either side of an image that should not be used to find FP peaks. This size must be larger to or equal to drift_peak_fpbox_size, therefore the fit to an individual FP does not go off the edge of the image. Value must be an integer larger to or equal to drift_peak_fpbox_size and less than and less than half the number of columns (x-dimension).

```
drift_peak_border_size = 3
```

Used in: cal DRIFT-PEAK E2DS spirou

Defined in: constants SPIROU.txt

• Box size for fitting individual FP peak. (drift_peak_fpbox_size)

Defines the half-box size (i.e. central position \pm box size) of the box used to fit an individual FP peak. This size must be large enough to fit a peak but not too large as to encompass multiple FP peaks. The value must be an integer larger than zero and smaller than or equal to drift peak border size (to avoid fitting off the edges of the image).

```
drift peak fpbox size = 3
```

Used in: cal DRIFT-PEAK E2DS spirou

Defined in: constants_SPIROU.txt

• Minimum sigma above median for valid peak (drift peak peak sig lim)

Defines the flux a valid peak must have in order to be recognized as a valid peak (before the peak fitting is done). If a peaks meaximum is below this threshold it will not be used as a valid peak in finding the drifts. Value is a dictionary containing keys equivalent to the lamp types (currently this is 'fp' and 'hc'. The values of each must be a float greater than 1 for above the median and, between zero and 1 for below the median).

```
drift_peak_peak_sig_lim = fp':1.0, 'hc':7.0'fp':1.0, 'hc':7.0
```

Used in: cal DRIFT-PEAK E2DS spirou

Defined in: constants_SPIROU.txt

• Minimum spacing between valid peaks (drift peak inter peak spacing)

Defines the minimum spacing peaks must have (between neighbouring peaks) in order to recognized as valid peaks (before the peak fitting is done). If peak is closer than this sepration to a previous peak the peak will not be used as a valid peak in finding the drifts. Value must be an integer greater than zero.

```
drift_peak_inter_peak_spacing = 5
```

Used in: cal DRIFT-PEAK E2DS spirou

• Expected width of FP peaks (drift peak exp width)

Defines the expected width of the FP peaks. Parameter is used to 'normalise' the peaks which are then subsequently removed if:

this is equivalent to:

$$FP FWHM > (drift peak exp width + drift peak norm width cut)$$
 (6.14)

Value must be a float larger than zero and less than the number of columns (x-dimension).

```
drift peak \exp_{\text{width}} = 0.8
```

Used in: cal DRIFT-PEAK E2DS spirou

Defined in: constants_SPIROU.txt

• Normalized FP width threshold (drift peak norm width cut)

Defines the maximum 'normalized' width of FP peaks that is acceptable for a valid FP peak. i.e. widths above this threshold are rejected as valid FP peaks. This works as follows:

this is equivalent to:

$$FP FWHM > (drift_peak_exp_width + drift_peak_norm_width_cut)$$
 (6.16)

Value must be a float larger than zero and less than the number of columns (x-dimension) but if drift peak exp width is defined sensibly then this number should be small.

```
drift peak norm width cut = 0.2
```

Used in: cal DRIFT-PEAK E2DS spirou

Defined in: constants SPIROU.txt

• Get drift via a Gaussian fitting process (drift peak getdrift gaussfit)

Defines whether the drift is calculated via a Gaussian fitting process (fitting the targeted order with a Gaussian) – $\sim \times 10$ slower, or adjusts a barycenter to get the drift. Value must be True or 1 to do the Gaussian fit, or False or 0 to use the barycenter adjustment.

```
drift peak getdrift gaussfit = False
```

Used in: cal DRIFT-PEAK E2DS spirou

• Pearson R coefficient (between reference and image) (drift peak pearsonr cut)

Defines the threshold below which a image is deemed to dissimilar from the reference image to be used. A Pearson R test is performed between the reference image (e2ds file) and the current iteration image (e2ds file), the minimum of all usable orders is then tested. If any order does not pass the criteria:

```
coefficient_{order} > drift_peak_pearsonr_cut (6.17)
```

then the whole image (e2ds file) is rejected. Value must be a float larger than zero and less than 1.0, values should be close to unity for a good fit i.e. 0.97.

```
drift_peak_pearsonr_cut = 0.9
```

Used in: cal DRIFT-PEAK E2DS spirou

Defined in: constants_SPIROU.txt

• Sigma clip for found FP peaks (drift peak sigmaclip)

Defines the number of sigmas above the median that is used to remove bad FP peaks from the drift calculation process. Value must be a float larger than zero.

```
drift_peak_sigmaclip = 1.0
```

Used in: cal_DRIFT-PEAK_E2DS_spirou

Defined in: constants SPIROU.txt

• Plot linelist vs log Amplitude (drift peak plot line log amp)

Defines whether we plot the line list against log amplitude. Value must be 1 or True to plot, or 0 or False to not plot

```
drift_peak_plot_line_log_amp = False
```

Used in: cal DRIFT-PEAK E2DS spirou

6.13 Bad pixel calibration variables

• Bad pixel median image box width (badpix flat med wid)

A similar flat is produced by taking the running median of the flat in the column direction (x-dimension) over a boxcar width of badpix_flat_med_wid. This assumes that the flux level varies only by a small amount over badpix_flat_med_wid pixels and that the bad pixels are isolated enough that the median along that box will be representative of the flux they should have if they were not bad. Value should be an integer larger than zero and less than the number of columns (x-axis dimension).

```
badpix_flat_med_wid = 7
```

Used in: cal_BADPIX_spirou
Defined in: constants_SPIROU.txt

• Bad pixel illumination cut parameter (badpix illum cut)

Threshold below which a pixel is considered unilluminated. As we cut the pixels that fractionally deviate by more than a certain amount (badpix_flat_cut_ratio) this would lead to lots of bad pixels in unilluminated regions of the array. This parameter stops this, as the pixels are normalised this value must be a float greater than zero and less than 1.

```
badpix illum cut = 0.05
```

Used in: cal_BADPIX_spirou
Defined in: constants_SPIROU.txt

• Bad pixel maximum differential pixel cut ratio (badpix flat cut ratio)

This sets the maximum differential pixel response relative to the expected value. Value must be a float larger than zero.

```
badpix flat cut ratio = 0.5
```

Used in: cal_BADPIX_spirou
Defined in: cal_BADPIX_spirou
constants SPIROU.txt

• Bad pixel maximum flux to considered too hot (badpix max hotpix)

Defines the maximum flux value to be considered too hot to user.

```
badpix max hotpix = 100.0
```

Used in: cal_BADPIX_spirou
Defined in: cal_BADPIX_spirou
constants_SPIROU.txt

6.14 Quality control variables

• Maximum dark median level (qc max darklevel)

Defines the maximum dark median level in ADU/s. If this is greater than median flux it does not pass the quality control criteria:

Median Flux
$$<$$
 qc max darklevel (6.18)

Value must be a float equal to or larger than zero.

 $qc_{max_{darklevel}} = 0.5$

Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt

• Maximum percentage of dead pixels (qc max dead)

Defines the maximum allowed percentage of dead pixels in a dark image. If the number of dead pixels is greater than this it does not pass the quality control criteria:

dead pixels = (pixel value > dark_cutlimit) and (pixel value
$$\neq$$
 NaN) (6.19)

Percentage of dead pixels
$$< qc max dead$$
 (6.20)

 $qc_{max_{dead}} = 20.0$

Used in: cal_DARK_spirou
Defined in: constants SPIROU.txt

• Maximum percentage of bad dark pixels (qc_max_dark)

Defines the maximum allowed percentage of bad dark pixels in a dark image. If the number of dead pixels is greater than this it does not pass the quality control criteria:

bad dark pixels = pixel value
$$>$$
 dark cutlimit (6.21)

Percentage of bad dark pixels
$$<$$
 qc max dead (6.22)

qc max dark = 6.0

Used in: cal_DARK_spirou
Defined in: constants_SPIROU.txt

• Minimum dark exposure time (qc dark time)

Defines the minimum dark exposure time. If exposure time (from FITS rec HEADER) is below this the code will exit with 'Dark exposure time too short' message. Value must be a float greater than zero.

```
qc_{dark_time} = 599.0
```

Used in: cal_DARK_spirou
Defined in: constants SPIROU.txt

• Maximum points removed in localization position fit (qc loc maxlocfit removed ctr)

Defines the maximum allowed number of points removed in the position fitting process (during localization). If number is more than this it does not pass the quality control criteria:

Number of rejected orders in center fit > qc loc maxlocfit removed ctr (6.23)

Value must be a integer greater than zero.

```
qc_loc_maxlocfit_removed_ctr = 1500
```

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt

• Maximum points removed in localization width fit (qc loc maxlocfit removed wid)

Defines the maximum allowed number of points removed in the width fitting process (during localization). If number is more than this it does not pass the quality control criteria:

Number of rejected orders in width fit > qc loc maxlocfit removed width (6.24)

Value must be a integer greater than zero.

```
qc loc maxlocfit removed wid = 105
```

Used in: cal_loc_RAW_spirou
Defined in: cal_loc_RAW_spirou
constants SPIROU.txt

• Maximum allowed RMS in fitting in localization position fit (qc loc rmsmax center)

Defines the maximum RMS allowed in the position fitting process (during localization). If the RMs is higher than this value it does not pass the quality control criteria:

Mean rms center fit
$$>$$
 qc loc rmsmax center (6.25)

Value must be a float greater than zero.

```
qc loc rmsmax center = 100
```

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt

• Maximum allowed RMS in fitting in localization width fit (qc loc rmsmax fwhm)

Defines the maximum RMS allowed in the width fitting process (during localization). If the RMs is higher than this value it does not pass the quality control criteria:

Mean rms width fit
$$> qc_loc_rmsmax_fwhm$$
 (6.26)

Value must be a float greater than zero.

```
qc_loc_rmsmax_fwhm = 500
```

Used in: cal_loc_RAW_spirou
Defined in: constants_SPIROU.txt

• Maximum allowed RMS (qc_ff_rms)

Defines the maximum RMS allowed to accept a flat-field for calibration. Value must be a float greater than zero.

```
qc_ff_rms = 0.12
```

Used in: cal_FF_RAW_spirou Defined in: constants SPIROU.txt

• Saturation level reached warning (qc loc flumax)

Defines the level above which a warning is generated in the form 'SATURATION LEVEL REACHED on Fiber'. Value must be a float greater than zero.

```
qc_loc_flumax = 64500
```

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_FF_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

• Maximum RMS allowed for slit TILT (qc_slit_rms)

Defines the maximum allowed RMS in the calculated TILT to add TILT profile to the calibration database. Value must be a float larger than zero.

```
qc_slit_rms = 0.1
```

 $\begin{array}{ll} \mbox{Used in:} & \mbox{cal_SLIT_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \end{array}$

• Minimum angle allowed for slit TILT (qc slit min)

Defines the minimum tilt angle allowed to add TILT profile to the calibration databse. Value must be a float and must be less than qc_slit_max

```
qc_slit_min = -8.0
```

Used in: cal_SLIT_spirou
Defined in: constants_SPIROU.txt

• Maximum angle allowed for slit TILT (qc slit max)

Defines the maximum tiult angle allowed to add TILT profile to the calibration databse. Value must be a float and must be greater than qc slit min

```
qc_slit_max = 0.0
```

Used in: cal_SLIT_spirou
Defined in: constants_SPIROU.txt

• Saturation point (qc max signal)

Defines the maximum signal allowed (when defining saturation limit). Currently this does not contribute to failing the quality test. Value must be a float greater than zero.

```
qc_{max_signal} = 65500
```

 $\begin{array}{lll} \mbox{Used in:} & \mbox{cal_extract_RAW_spirou} \\ \mbox{Defined in:} & \mbox{constants_SPIROU.txt} \\ \end{array}$

6.15 Calibration database variables

• The calibration database master filename (ic calibDB filename)

Defines the name of the master calibration database text file for use in all calibration database operation.

```
ic_calibDB_filename = master_calib_SPIROU.txt
```

Used in: All Recipes

Defined in: constants SPIROU.txt

• Maximum wait time for locked calibration database (calib max wait)

Defines the maximum time the code waits for the calibration database when it is locked. A locked file is created every time the calibration database is open (and subsequently closed when reading of the database was successful). If a lock file is present the code will wait a maximum of this many seconds and keep checking whether the lock file has been removed. After which time the code will exit with an error. Value must be a positive float greater than zero. Measured in seconds.

```
calib \max wait = 3600
```

Used in: All Recipes

Defined in: constants_SPIROU.txt

• Calibration database duplicate key handler (calib db match)

Defines the mechanism to use in deciding between duplicate keys in the calibration database file. Value must be a string and must be either 'older' or 'closest'. If 'older' the calibration database will only use keys that are older than the timestamp in the input fits file (first argument) using the key kw ACQTIME KEY

```
calib db match = 'closest'
```

Used in: All Recipes

6.16 Logging and printing variables

• Print message level (PRINT LEVEL)

The level of messages to print, values can be as follows:

- "all" prints all events
- "info" prints info, warning and error events
- "warning" prints warning and error events
- "error" print only error events

Value must be a valid string.

```
PRINT\_LEVEL = all
```

Used in: All Recipes
Defined in: ../config/config.txt

• Log message level (LOG_LEVEL)

The level of messages to print, values can be as follows:

- "all" prints all events
- "info" prints info, warning and error events
- "warning" prints warning and error events
- "error" print only error events

Value must be a valid string.

```
LOG LEVEL = all
```

Used in: All Recipes
Defined in: ../config/config.txt

• Toggle coloured log (COLOURED_LOG)

Defines whether the log (printed to the standard output) is coloured . Value must be True or 1 to colour the log or False or 0 to use the default console colour throughout.

```
\begin{array}{cccc} {\rm COLOURED} & {\rm LOG} & = & {\rm True} \end{array}
```

Used in: All Recipes

Defined in: ../config/config.txt

Chapter 7

The Recipes

- 7.1 The cal DARK recipe
- 7.2 The cal loc recipe
- 7.3 The cal SLIT recipe
- 7.4 The cal FF recipe
- 7.5 The cal extract recipes
- 7.6 The cal DRIFT recipes
- 7.7 The cal BADPIX recipe
- 7.8 The cal HC recipe
- 7.9 The cal WAVE recipe
- 7.10 The cal CCF recipe
- 7.11 The pol spirou recipe
- 7.12 The validation recipes recipe