Near-consistent robust estimations of moments for unimodal distributions

Tuban Leea,1

10

11

12

13

14

15

17

20 21

22

24

27

28

31

32

^aInstitute of Biomathematics, Macau SAR 999078, China

This manuscript was compiled on February 22, 2023

Current robust estimators are inconsistent with population moments under non-sample-dependent breakdown points without distributional assumptions. Here, based on the invariant structure of probability distributions, a series of sophisticated yet efficient estimators, robust to both gross errors and departures from parametric assumptions, are proposed for estimating mean and central moments with insignificant asymptotic biases for common continuous unimodal distributions. This article also illuminates the understanding of the common nature of probability distributions and the measures of them.

Orderliness | invariant | unimodal | adaptive estimation | U-statistics

he asymptotic inconsistencies between sample mean (\bar{x}) and nonparametric robust location estimators in asymmetric distributions on the real line have been noticed for more than two centuries (1) but unsolved. Strictly speaking, it is unsolvable because by trimming, some information about the original distribution is removed, making it impossible to estimate the values of the removed parts without distributional assumptions. Newcomb (1886, 1912) provided the first modern approach to this problem by developing a class of estimators that gives "less weight to the more discordant observations' (2, 3). In 1964, Huber (4) used the minimax procedure to obtain M-estimator for contaminated normal distribution, which has played a pre-eminent role in the later development of robust statistics. As previously demonstrated, under growing asymmetric departures from normality, the bias of the Huber M-estimator increases rapidly. This is a common issue in parametric estimations. For example, He and Fung constructed (5) a robust M-estimator for the two-parameter Weibull distribution. All moments can be calculated from its estimated parameters. As expected, it is inadequate for the gamma, Perato, lognormal, and especially the generalized Gaussian distributions, because the logarithmic function does not produce a result for negative inputs (SI Dataset S1). Another two interesting approaches are the quantile estimator introduced by Seki and Yokoyama (1993) (6) and the median/MAD estimator considered by Oliver (2006) (7). However, the performance of these estimators is even worse than that of the M-estimator when the distributional assumption is violated (SI Dataset S1). Descriptive statistics for parametric models currently rely heavily on the accuracy of distributional assumptions. Even when distributions such as the Weibull and gamma belong to the same larger family, the generalized gamma distribution, a misassumption can still result in substantial biases, rendering the approach ill-suited.

In previous work on semiparametric robust mean estimation, although greatly shrinking the asymptotic biases, binomial mean (BM_{ϵ}) is still inconsistent for any skewed distribution if $\epsilon > 0$ (if $\epsilon \to 0$, since the alternating sum of binomial coefficients is zero, $BM \to \mu$). All robust location estimators commonly used are symmetric due to the universality of the

symmetric distributions. One can construct an asymmetric trimmed mean that is consistent for a semiparametric class of skewed distributions. This approach has been investigated previously, but it is not symmetric and therefore only suitable for some special applications (8). From semiparametric to parametric, an ideal robust location estimator would have a non-sample-dependent breakdown point (defined in Subsection F) and be consistent with any symmetric distribution and a skewed distribution with finite second moments. This is called an invariant mean. Based on the mean-weighted averagemedian inequality, the robust mean is defined as

$$rm_{d,\epsilon,n} := \lim_{c \to \infty} \left(\frac{(WA_{\epsilon,n} + c)^{d+1}}{(median + c)^d} - c \right),$$

where d is for bias correction, $WA_{\epsilon,n}$ is $BM_{\epsilon,n}$ in the first three Subsections, while other symmetric weighted averages can also be used in practice as long as the inequalities hold. The next theorem shows the significance of this composite estimator.

36

40

41

42

45

Theorem .1. If the second moments are finite, $rm_{d\approx 0.375, \epsilon=\frac{1}{8}}$ is a consistent mean estimator for the exponential and any symmetric distributions and the Pareto distribution with quantile function $Q(p) = x_m(1-p)^{-\frac{1}{\alpha}}$, $x_m > 0$, when $\alpha \to \infty$.

Proof. Finding d,ϵ values that make $rm_{d,\epsilon}$ a consistent mean estimator is equivalent to finding the solution of $E\left[rm_{d,\epsilon}\right] = E\left[X\right]$. Rearranging the definition, $rm_{d,\epsilon} = \lim_{c \to \infty} \left(\frac{(\mathrm{BM}_{\epsilon} + c)^{d+1}}{(\mathrm{median} + c)^{d}} - c\right) = (d+1)\,\mathrm{BM}_{\epsilon} - d\mathrm{median} = \mu.$ So, $d = \frac{\mu - \mathrm{BM}_{\epsilon}}{\mathrm{BM}_{\epsilon} - median}$. The pdf of the exponential distribution is $f\left(x\right) = \lambda^{-1}e^{-\lambda^{-1}x}, \ \lambda \geq 0, \ x \geq 0$, the cdf is $F\left(x\right) = 1 - e^{-\lambda^{-1}x}, \ x \geq 0$. The quantile function is $Q(p) = \ln\left(\frac{1}{1-p}\right)\lambda$. $E\left[x\right] = \lambda$. $E\left[median\right] = Q\left(\frac{1}{2}\right) = \ln 2\lambda$.

Significance Statement

Bias, variance, and contamination are the three main errors in statistics. Consistent robust estimation is unattainable without parametric assumptions. Here, based on a paradigm shift inspired by mean-median-mode inequality, Bickel-Lehmann spread, M-estimator, and adaptive estimation, invariant moments are proposed as a means of achieving near-consistent and robust estimations of moments, even in scenarios where moderate violations of distributional assumptions occur, while the variances are sometimes smaller than those of the sample moments.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

¹ To whom correspondence should be addressed. E-mail: tl@biomathematics.org

For the exponential distribution, the expectation of $BM_{\frac{1}{2}}$ is $E\left[\mathrm{BM}_{\frac{1}{8}}\right] = \lambda\left(1 + \ln\left(\frac{46656}{8575\sqrt{35}}\right)\right)$. Obviously, the scale parameter λ can be canceled out, $d \approx 0.375$. The proof of the second assertion follows directly from the coinci-dence property. For any symmetric distribution with a fi-nite second moment, $E[BM_{\epsilon}] = E[median] = E[X]$. Then $E\left[rm_{d,\epsilon}\right]=\lim_{c\to\infty}\left(\frac{(E[X]+c)^{d+1}}{(E[X]+c)^d}-c\right)=E\left[X\right]$. The proof for the Pareto distribution is more general. The mean of the Pareto distribution is given by $\frac{\alpha x_m}{\alpha - 1}$. The d value with two unknown percentiles p_1 and p_2 for the Pareto distribution is $d_{Perato} = \frac{\frac{\alpha x_m}{\alpha - 1} - x_m (1 - p_1)^{-\frac{1}{\alpha}}}{x_m (1 - p_1)^{-\frac{1}{\alpha}} - x_m (1 - p_2)^{-\frac{1}{\alpha}}}.$ Since any weighted average can be expressed as an integral of the quantile function, $\lim_{\alpha\to\infty}\frac{\frac{\alpha}{\alpha-1}-(1-p_1)^{-1/\alpha}}{(1-p_1)^{-1/\alpha}-(1-p_2)^{-1/\alpha}}=-\frac{\ln(1-p_1)+1}{\ln(1-p_1)-\ln(1-p_2)},$ the d value for the Pareto distribution approaches that of the ex-ponential distribution as $\alpha \to \infty$, regardless of the type of weighted average used. This completes the demonstration. \Box

Theorem .1 implies that for the Weibull, gamma, Pareto, lognormal and generalized Gaussian distribution, $rm_{d\approx 0.375, \epsilon=\frac{1}{8}}$ is consistent for at least one particular case of these two-parameter distributions. The biases of $rm_{d\approx 0.375, \epsilon=\frac{1}{8}}$ for distributions with skewness between those of the exponential and symmetric distributions are tiny (SI Dataset S1). Therefore, $rm_{d\approx 0.375, \epsilon=\frac{1}{8}}$ has excellent performance for all these common unimodal distributions (SI Dataset S1).

Besides introducing the concept of invariant mean, the purpose of this paper is to demonstrate that the estimation of central moments can be transformed into a location estimation problem by using U-statistics, the central moment kernel distributions have nice properties, and, in light of previous works, a series of sophisticated yet efficient robust estimators can be constructed whose biases are typically smaller than the variances (n = 5400, Table 1) for unimodal distributions.

Background and Main Results

A. Invariant mean. It has long been known that a theoretical model can be adjusted to fit the first two moments of the observed data. A continuous distribution belonging to a location–scale family has the form $F(x) = F_0\left(\frac{x-\mu}{\lambda}\right)$, where F_0 is a "standard" distribution. Then, $F(x) = Q^{-1}(x) \rightarrow x = Q(p) = \lambda Q_0(p) + \mu$. So, any weighted average can be expressed as $\lambda \mathbf{W}_{estimator}(\epsilon) + \mu$, where $\mathbf{W}_{estimator}(\epsilon)$ is a function of $Q_0(p)$ according to the definition of the weighted average. The simultaneous cancellation of μ and λ in $\frac{(\lambda \mathbf{W}_{\mu}(\epsilon) + \mu) - (\lambda \mathbf{W}_{\mathrm{BM}_{\epsilon}}(\epsilon) + \mu)}{(\lambda \mathbf{W}_{\mathrm{BM}_{\epsilon}}(\epsilon)) + \mu - (\lambda \mathbf{W}_{\mathrm{median}}(\epsilon) + \mu)}$ ensures that d is a constant. Consequently, the roles of BM_{ϵ} and median in $rm_{d,\epsilon}$ can be replaced by any weighted averages.

The performance in heavy-tailed distributions can be improved further by constructing the quantile mean as

$$qm_{d,\epsilon,n} \coloneqq \hat{Q}_n\left(\left(\hat{F}_n\left(\mathrm{WA}_{\epsilon,n}\right) - \frac{1}{2}\right)d + \hat{F}_n\left(\mathrm{WA}_{\epsilon,n}\right)\right),$$

provided that $\hat{F}_n(WA_{\epsilon,n}) \geq \frac{1}{2}$, where $\hat{F}_n(x)$ is the empirical cumulative distribution function of the sample, \hat{Q}_n is the sample quantile function. The most popular method for computing the sample quantile function was proposed

by Hyndman and Fan in 1996 (9). To minimize the finite sample bias, here, $\hat{F}_n(x) \coloneqq \frac{1}{n} \left(\frac{x - \hat{Q}_n(\frac{sp}{n})}{\hat{Q}_n(\frac{1}{n}(sp+1)) - \hat{Q}_n(\frac{sp}{n})} + sp \right)$, where $sp = \sum_{i=1}^n \mathbf{1}_{X_i \le x}$, $\mathbf{1}_A$ is the indicator of event A. The solution of $\hat{F}_n(\mathrm{WA}_{\epsilon,n}) < \frac{1}{2}$ is reversing the percentile by $1 - \hat{F}_n(\mathrm{WA}_{\epsilon,n})$, the obtained percentile is also reversed *. Moreover, in extreme heavy-tailed distributions, the calculated percentile can exceed the breakdown point of WA_{ϵ} , so the percentile will be modified to $1 - \epsilon$ if this happens. The quantile mean uses the location-scale invariant in a different way, as shown in the following proof.

Theorem A.1. $qm_{d\approx 0.321,\epsilon=\frac{1}{8}}$ is a consistent mean estimator for the exponential, Pareto $(\alpha\to\infty)$ and any symmetric distributions provided that the second moments are finite.

Proof. Similarly, rearranging the definition, $d = \frac{F(\mu) - F(\mathrm{BM}_{\epsilon})}{F(\mathrm{BM}_{\epsilon}) - \frac{1}{2}}$. Recall the cdf is $F(x) = 1 - e^{-\lambda^{-1}x}, \ x \ge 0$, the expectation of BM_{ϵ} can be expressed as $\lambda \mathrm{W}_{\mathrm{BM}_{\epsilon}}(\epsilon)$, so $F(\mathrm{BM}_{\epsilon})$ is free of λ . When $\epsilon = \frac{1}{8}, d = \frac{-e^{-1} + e^{-\left(1 + \ln\left(\frac{46656}{8575\sqrt{35}}\right)\right)}}{\frac{1}{2} - e^{-\left(1 + \ln\left(\frac{46656}{8575\sqrt{35}}\right)\right)}} \approx 0.321$.

The proof of the symmetric case is similar. Since for any symmetric distribution with a finite second moment, $F(E[BM_{\epsilon}]) = F(\mu) = \frac{1}{2}$. Then, the expectation of the quantile mean is $qm_{d,\epsilon} = F^{-1}\left(\left(F(\mu) - \frac{1}{2}\right)d + F(\mu)\right) = F^{-1}\left(0 + F(\mu)\right) = \mu$.

For the assertion related to the Pareto distribution, the cdf of it is $1-\left(\frac{x_m}{x}\right)^{\alpha}$. So, the d value with two unknown percentile p_1 and p_2 is

$$dp_{areto} = \frac{1 - \left(\frac{x_m}{\frac{\alpha x_m}{\alpha - 1}}\right)^{\alpha} - \left(1 - \left(\frac{x_m}{\frac{x_m(1 - p_1)^{-\frac{1}{\alpha}}}{\alpha}}\right)^{\alpha}\right)}{\left(1 - \left(\frac{x_m}{\frac{x_m(1 - p_1)^{-\frac{1}{\alpha}}}{\alpha}}\right)^{\alpha}\right) - \left(1 - \left(\frac{x_m}{\frac{x_m(1 - p_2)^{-\frac{1}{\alpha}}}{\alpha}}\right)^{\alpha}\right)} = 0$$

 $\frac{1-\left(\frac{\alpha-1}{\alpha}\right)^{\alpha}-p_{1}}{p_{1}-p_{2}}.$ When $\alpha\to\infty,$ $\left(\frac{\alpha-1}{\alpha}\right)^{\alpha}=\frac{1}{e}.$ The d value for the exponential distribution is identical, since $d_{exp}=$

$$\frac{\left(1-e^{-1}\right)-\left(1-e^{-\ln\left(\frac{1}{1-p_1}\right)}\right)}{\left(1-e^{-\ln\left(\frac{1}{1-p_1}\right)}\right)-\left(1-e^{-\ln\left(\frac{1}{1-p_2}\right)}\right)}=\frac{1-\frac{1}{e}-p_1}{p_1-p_2}. \text{ All results}$$
 are now proven.

The definitions of location and scale parameters are such that they must satisfy $F(x;\lambda,\mu)=F(\frac{x-\mu}{\lambda};1,0)$. Recall that $x=\lambda Q_0(p)+\mu$, so the percentile of any weighted average is free of λ and μ , guaranteeing the validity of the quantile mean. $qm_{d\approx 0.321,\epsilon=\frac{1}{8}}$ works better in the fat-tail scenarios (SI Dataset S1). Theorem .1 and A.1 show that $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ and $qm_{d\approx 0.321,\epsilon=\frac{1}{8}}$ are both consistent mean estimators for any symmetric distribution and a skewed distribution with finite second moments. It's obvious that the breakdown points of $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ and $qm_{d\approx 0.321,\epsilon=\frac{1}{8}}$ are both $\frac{1}{8}$. Therefore they are all invariant means.

It is constructive to consider a symmetric weighted average as a mixture of trimmed mean and symmetric quantile average. Since the orderliness is not a necessary condition of the trimming inequality, the safest choice of symmetric

^{*}Without loss of generality, in the following discussion, only the $\hat{F}_n\left(\mathsf{WA}_{\epsilon,n}\right) \geq \frac{1}{2}$ case will be considered.

weighted average in rm and qm is the $\frac{1}{4}$ -trimmed mean (SI Dataset S1). Although using a less-biased symmetric weighted average can generally improve performance, there is a higher risk of violation in the semiparametric framework. However, another key factor determining the risk of violation is the skewness of the distribution. Consider there is a near-symmetric distribution S such that SQA_{ϵ} as a function of ϵ is monotonic increasing from 0 to u and monotonic decreasing from u to $\frac{1}{2}$, and $\mu = m$. Based on the definition, S is not ordered. Depending on the fluctuation degree, $|SQA_n - m|$, the mean-SWA_{ϵ}-median inequality is usually not valid for S. Then, the monotonic increase from 0 to u implies that $Q'(\epsilon) \geq$ $Q'(1-\epsilon) \Leftrightarrow f(Q(1-\epsilon)) \geq f(Q(\epsilon))$ always holds for $0 \leq \epsilon \leq u$. Similarly, $Q'(\epsilon) \leq Q'(1-\epsilon) \Leftrightarrow f(Q(\epsilon)) \geq f(Q(1-\epsilon))$ always holds for $u \leq \epsilon \leq \frac{1}{2}$. Transforming S with a function $\chi(x)$ such that $\frac{d^2\chi}{dx^2} \geq 0 \wedge \frac{d\chi}{dx} \geq 0$ over the interval supported will decrease $f(Q(\epsilon))$, and the decrease rate, due to the order, is much smaller than $f(Q(1-\epsilon))$. That means, as the second derivative of $\chi(x)$ increases, eventually, after a point, $f(Q(\epsilon))$ will always be greater than $f(Q(1-\epsilon)),$ i.e., the SQA_{ϵ} function will be monotonic decreasing and S will eventually be ordered. $|\mu - m|$ will increase so that the skewness will increase. Even the transformation is not enough to make the SQA function strictly monotonic; suppose it is generally decreasing in [0, u], but increasing in $\left[u,\frac{1}{2}\right]$, since $1-2\epsilon$ of the symmetric quantile averages will be included in the computation of BM_{ϵ} , as long as $|u-\frac{1}{2}| \ll 1-2\epsilon$, and other parts of the SQA function satisfy the inequality constraints which define the ν th orderliness, the mean-BM_{ϵ}-median inequality will still be valid (as an example, the SQA function is non-monotonic when the shape parameter of the Weibull distribution $\alpha>\frac{1}{1-\ln(2)}\approx 3.259$ as shown in the previous article, yet the mean-BM_{$\frac{1}{8}$}-median inequality is still valid when $\alpha \leq 3.322$). Accordingly, in a family of distributions that differ by a skewness-increasing transformation, the violation of the mean-WA_{ϵ}-median inequality often only occurs when the distribution is near-symmetric, but the over-corrections in rm and qm are dependent on the WA_{ϵ}median difference, which is correlated to the skewness, so the over-correction, if it happens, is often tiny with a moderate d. This qualitative analysis provides another perspective, in addition to the bias bounds (10), that rm and qm based on the mean-WA_{ϵ}-median inequality are generally safe.

B. Robust estimations of the central moments. In 1976, Bickel and Lehmann, in their third paper of the landmark series Descriptive Statistics for Nonparametric Models (11), generalized a class of estimators called "measures of disperse," which is now often named as Bickel-Lehmann dispersion. As an example, they proposed a first version of the trimmed standard deviation, $\hat{\tau}^2(F;\epsilon) \equiv \tau^2(F;\epsilon)$, for independent and identically distributed random variables X_i with a distribution F, where $\tau^{2}\left(F;\epsilon\right)=\frac{1}{1-2\epsilon}\int_{Q(\epsilon)}^{Q(1-\epsilon)}ydG(y),\ Q$ is the quantile function of G, G is the distribution of $Y = X^2$. Obviously, when $\epsilon = 0$, the result is equivalent to the second raw moment. In 1979, in the same series (12), they explored another class of estimators called "measures of spread," which "does not require the assumption of symmetry." From that, a popular efficient scale estimator, the Rousseeuw-Croux scale estimator (13), was derived in 1993, but the importance of tackling the symmetry assumption has been greatly underestimated. In the final section of the paper, they considered another two

possible versions of the trimmed standard deviations, which were modified symmetrically here for comparison,

$$\left[n\left(\frac{1}{2} - \epsilon\right)\right]^{-\frac{1}{2}} \left[\sum_{k=\frac{n}{2}}^{n(1-\epsilon)} \left[X_k - X_{n-k+1}\right]^2\right]^{\frac{1}{2}}, \qquad [1] \quad {}_{208}$$

207

211

212

213

214

215

216

218

219

220

221

222

223

225

226

227

228

231

232

233

234

235

237

238

240

241

242

243

244

245

246

247

248

249

250

251

252

253

and

$$\left[\binom{n}{2} (1 - 2\epsilon) \right]^{-\frac{1}{2}} \left[\sum_{k = \binom{n}{2} \epsilon}^{\binom{n}{2} (1 - \epsilon)} (X - X')_k^2 \right]^{\frac{1}{2}}, \qquad [2] \quad {}_{210}$$

where $(X - X')_1 \leq \ldots \leq (X - X')_{\binom{n}{2}}$ are the order statistics of the "pseudo-sample" $X_i - X_j$, i < j. The paper ended with, "We do not know a fortiori which of the measures [1] or [2] is preferable and leave these interesting questions open."

Observe that the kernel of the unbiased estimation of the second central moment by using U-statistic is $\psi_2(x_1, x_2) = \frac{1}{2}(x_1 - x_2)^2$. If adding the $\frac{1}{2}$ term in [2], as $\epsilon \to 0$, the result is equivalent to the standard deviation estimated by using U-statistic (also noted by Janssen, Serfling, and Veraverbeke in 1987) (14). In fact, they also implied that, when ϵ is 0, [2] is $\sqrt{2}$ times the standard deviation.

To address their open questions, the nomenclature used in this paper is introduced as follows:

Nomenclature. Given a robust estimator $\hat{\theta}$. The first part of the name of the robust statistic defined in this paper is a prefix that indicates the type of estimator, and the second part is the name of the population parameter θ that the estimator is consistent with as $\epsilon \to 0$. The abbreviation of the estimator is the initial letter(s) of the first part plus the common abbreviation of the consistent estimator that measures the population parameter. If the estimator is not a U-statistic, the breakdown point, ϵ , is indicated in the subscript of the abbreviation of the estimator. If the estimator is a robustified U-statistic or a composite estimator, the breakdown point of the location estimator is indicated (except the median).

Naturally, the trimmed standard deviation following this nomenclature is $\operatorname{T}\! sd_{\epsilon,n} \coloneqq \left[\operatorname{TM}_\epsilon\left((\psi_2\left(X_{N_1},X_{N_2}\right))_{N=1}^{\binom{n}{2}}\right)\right]^{-\frac{1}{2}},$ where $\operatorname{TM}_\epsilon(Y)$ denotes the ϵ -symmetric trimmed mean with the sequence $(\psi_2\left(X_{N_1},X_{N_2}\right))_{N=1}^{\binom{n}{2}}$ as an input. If the square root is removed, it is named as the trimmed variance $(\operatorname{T}\! var_{\epsilon,n})$. It is now very clear that this definition, essentially the same as [2], should be preferable. Not only because it is essentially a trimmed U-statistic for the standard deviation but also because the orderliness of the pseudo-sample distribution is ensured by the next exciting theorem.

Theorem B.1. The second central moment kernel distribution generated from any continuous unimodal distribution is ordered.

Proof. Let Q(p), $0 \le p \le 1$, denote the quantile of the continuous unimodal distribution $f_X(x)$. The corresponding probability density is f(Q(p)). Generating the distribution of the pair $(Q(p_i), Q(p_j))$, i < j, $p_i < p_j$, the corresponding probability density is $f_{X,X}(Q(p_i), Q(p_j)) = 2f(Q(p_i))f(Q(p_j))$. Transforming the pair $(Q(p_i), Q(p_j))$, i < j, by the function $\Phi(x_1, x_2) = x_1 - x_2$, the pairwise difference distribution has

146

147

148

149

151

152

153

154

155

159

160

161

162

163

166

167

168

169

170

171

172

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

199

200

201

205

a mode that is arbitrary close to M-M=0. The monotonic increasing of the pairwise difference distribution was first implied in its unimodality proof done by Hodges and Lehmann in 1954 (15). Whereas they used induction to get the result, Dharmadhikari and Jogdeo in 1982 (16) gave a modern proof of the unimodality using Khintchine's representation (17). Assuming absolute continuity, Purkayastha (18) introduced a much simpler proof in 1998. Transforming the pairwise difference distribution by squaring and multiplying $\frac{1}{2}$ does not change the monotonicity, making the pdf become monotonically decreasing with mode at zero. In the previous semiparametric robust mean estimation article, it is proven that a distribution with monotonic pdf is always ordered, which gives the desired result.

256

257

258

259

260

261

262

263

264

265

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

287

Remark. The assumption of continuity of distributions is important for monotonicity because, unlike in the continuous case, it is possible to get pairs with the same value for a discrete distribution. For example, let the probabilities of the singletons $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$ and $\{5\}$ of a probability mass function of a discrete probability distribution be $\frac{1}{11}$, $\frac{4}{11}$, $\frac{3}{11}$, and $\frac{1}{11}$, respectively. This is a unimodal distribution, but the corresponding ψ_2 distribution is non-monotonic, whose singletons $\{0\}$, $\{0.5\}$, $\{2\}$, $\{4.5\}$ and $\{8\}$ have probabilities $\frac{21}{66}$, $\frac{24}{66}$, $\frac{2}{14}$, $\frac{6}{66}$, and $\frac{1}{66}$, respectively.

Previously, it was shown that any symmetric distribution with a finite second moment follows the $\nu {\rm th}$ orderliness. That means the orderliness does not require unimodality, e.g., for a symmetric bimodal distribution, it also follows the orderliness. Examples from the Weibull distribution show that unimodality does not guarantee orderliness. Theorem B.1 reveals another profound relationship between unimodality and orderliness, which is sufficient for trimming inequality.

In 1928, Fisher constructed k-statistics as unbiased estimators of cumulants (19). Halmos (1946) proved that the functional θ admits an unbiased estimator if and only if it is a regular statistical functional of degree k and showed a relation of symmetry, unbiasness and minimum variance (20). In 1948, Hoeffding generalized U-statistics (21) which enable the derivation of a minimum-variance unbiased estimator from each unbiased estimator of an estimable parameter. Heffernan (1997) (22) obtained an unbiased estimator of the kth central moment by using U-statistics and demonstrated that it is the minimum variance unbiased estimator for distributions with finite moments (23, 24). In 1984, to study generalized L-statistics, Serfling considered the U-statistic structure (25). Gijbels, Janssen and Veraverbeke generalized the trimmed U-statistics in 1988 (26). Due to the combinatorial explosion, the bootstrap (27), introduced by Efron in 1979, is indispensable in large sample studies. In 1981, Bickel and Freedman (28) showed that the bootstrap is asymptotically valid to approximate the original distribution in a wide range of situations, including U-statistics. After that, the limit laws of bootstrapped U-statistics have been intensively studied and proven by Athreya, Ghosh, Low, and Sen (1984) and Helmers, Janssen, and Veraverbeke (1990) (29, 30). Users can check the accuracy by comparing the unbiased central moments (31) to the bootstrap central moments. The weighted kth central moment $(k \le n)$ is defined as,

$$Wkm_{\epsilon,n} := WA_{\epsilon,n} \left(\left(\psi_k \left(X_{N_1}, \cdots, X_{N_k} \right) \right)_{N=1}^{\binom{n}{k}} \right),$$

where X_{N_1}, \dots, X_{N_k} are the n choose k elements from X, $\psi_k\left(x_1, \dots, x_k\right) = \sum_{j=0}^{k-2} \left(-1\right)^j \left(\frac{1}{k-j}\right) \sum \left(x_{i_1}^{k-j} \dots x_{i_{(j+1)}}\right) + \left(-1\right)^{k-1} (k-1) x_1 \dots x_k$, the second summation is over $i_1, \dots, i_{j+1} = 1$ to k with $i_1 < \dots < i_{j+1}$ (12, 19, 20, 22). Despite the complexity, the structure of the kth central moment kernel distributions can be elucidated by decomposing.

290

291

294

295

296

300

301

302

303

308

309

310

311

312

314

315

316

317

318

319

322

323

324

325

326

327

328

329

330

331

334

335

336

337

338

341

342

Theorem B.2. For each pair $(Q(p_i), Q(p_j))$ of the original distribution, let $x_1 = Q(p_i)$ and $x_k = Q(p_j)$, $\Delta = Q(p_i) - Q(p_j)$. The kth central moment kernel distribution, k > 2, can be seen as a mixture distribution and each of the components has the support $(-\left(\frac{k}{3+(-1)^k}\right)^{-1}(-\Delta)^k, \frac{1}{k}(-\Delta)^k)$.

Proof. Generating the distribution of the k-tuple $(Q(p_{i_1}), \ldots, Q(p_{i_k})), k$ > $2, i_1$ $p_{i_1} < \ldots < p_{i_k}$, the corresponding probability density is $f_{X,...,X}(Q(p_{i_1}),...,Q(p_{i_k})) = k! f(Q(p_{i_1}))...f(Q(p_{i_k})).$ $_{
m the}$ distribution Transforming of k-tuple by the function $\psi_k(x_1,\ldots,x_k)$, denoting $\bar{\Delta}$ $\psi_k\left(Q(p_{i_1}),\ldots,Q(p_{i_k})\right).$ The probability $f_{\Xi_k}(\Delta)$ $\sum_{\bar{\Delta}=\psi_k(Q(p_{i_1}),...,Q(p_{i_k}))} f_{X,...,X}(Q(p_{i_1}),...,Q(p_{i_k}))$ is the summation of the probabilities of all k-tuples such that Δ is equal to $\psi_k(Q(p_{i_1}),\ldots,Q(p_{i_k}))$. The following Ξ_k is equivalent.

 Ξ_k : Every pair with a difference equal to $\Delta = Q(p_{i_1}) - Q(p_{i_k})$ can generate a pseudodistribution (but the integral is not equal to 1, so "pseudo") such that x_2, \ldots, x_{k-1} exhaust all combinations under the inequality constraints, i.e., $Q(p_{i_1}) = x_1 < x_2 < \ldots < x_{k-1} < x_k = Q(p_{i_k})$. The combination of all the pseudodistributions with the same Δ is ξ_{Δ} . The combination of ξ_{Δ} , i.e., from $\Delta = 0$ to Q(0) - Q(1), is Ξ_k .

The support of ξ_{Δ} is the extrema of ψ_k subject to the inequality constraints. Using the Lagrange multiplier, one can easily determine the only critical point at $x_1=\ldots=x_k=0$, where $\psi_k=0$. Other candidates are within the boundaries, i.e., $\psi_k(x_1=x_1,x_2=x_k,\cdots,x_k=x_k)$, ..., $\psi_k(x_1=x_1,\cdots,x_i=x_1,x_{i+1}=x_k,\cdots,x_k=x_k)$, ..., $\psi_k(x_1=x_1,\cdots,x_i=x_1,x_{i+1}=x_k,\cdots,x_k=x_k)$, and $\psi_k(x_1=x_1,\cdots,x_i=x_1,x_{i+1}=x_k,\cdots,x_k=x_k)$ can be divided into k groups. If $\frac{k+1-i}{2} \leq j \leq \frac{k-1}{2}$, from j+1st to k-jth group, the jth group has $i\binom{i-1}{g-j-1}\binom{k-i}{j}$ terms having the form $(-1)^{g+1}\frac{1}{k-g+1}x_1^{k-j}x_j^k$, from k-j+1th to i+jth group, the jth group, the jth group has $j(\frac{i-1}{g-j-1})\binom{k-i}{j}+k+j-j\binom{k-i}{j}$ terms having the form jth group, the jth group has jth jth group, the jth group has jth jth group, the jth group has jth group has jth group, the jth group has jth group has jth group, the jth group has jth group has jth group, the jth group has jth group has jth group, the jth group has jth group has jth group, the jth group has jth

 $\begin{array}{llll} & (k-i)\int_0^1\sum_{g=i+1}^{k-1}{(-1)^{g+1}}\binom{k-i-1}{g-i-1}t^{k-g}dt & = \\ & (k-i)\int_0^1{((-1)^i(t-1)^{k-i-1}-(-1)^{k+1})}dt & = \\ & (k-i)\left(\frac{(-1)^k}{i-k}+(-1)^k\right) & = & (-1)^{k+1} + \\ & (k-i)\left(-1\right)^k. & \sum_{g=k-i+1}^{k-1}{(-1)^{g+1}}\frac{1}{k-g+1}i\binom{i-1}{g-k+i-1}\right) & = \\ & 348 & (k-i)\left(-1\right)^k. & \sum_{g=k-i+1}^{k-1}{(-1)^{g+1}}\frac{1}{k-g+1}i\binom{i-1}{g-k+i-1}\right) & = \\ & 349 & \int_0^1\sum_{g=k-i+1}^{k-1}{(-1)^{k-i}}(t-1)^{i-1}-i(-1)^{k+1}\right)dt & = & (-1)^k(i-1). \\ & 350 & \text{If } j<\frac{k+1-i}{2}, \ i>k-1, \ \text{if } i=k, \ \psi_k=0, \ \text{if } \frac{k+1-i}{2}\leq j\leq \frac{k-1}{2}, \\ & 351 & \frac{k+1}{2}\leq i\leq k-1, \ \text{the summed coefficient of } x_1^{i}x_k^{k-i} \ \text{is } \\ & 352 & (-1)^{k-1}(k-1)+\sum_{g=k-i+1}^{k-1}{(-1)^{g+1}}\frac{1}{k-g+1}i\binom{i-1}{g-k+i-1}+ \\ & 353 & \sum_{g=i+1}^{k-1}{(-1)^{g+1}}\frac{1}{k-g+1}\left(k-i\right)\binom{k-i-1}{g-i-1}, \ \text{the same as above.} \ \text{If } \\ & i+j<k, \ \text{since } \binom{i}{k-j}=0, \ \text{the related terms can be ignored, so,} \\ & 353 & \text{using the binomial theorem and beta function, the summed coefficient of } x_1^{i}x_k^{i} \ \text{is } \sum_{g=j+1}^{i+j}{(-1)^{g+1}}\frac{1}{k-g+1}i\binom{i-1}{g-j-1}\binom{k-i}{j}=0 \\ & 356 & \binom{k-i}{j}i\int_0^1\sum_{g=j+1}^{i+j}{(-1)^{g+1}}\frac{1}{\binom{i-1}{g-j-1}}t^{k-g}dt & = \\ & 358 & \binom{k-i}{j}i\int_0^1\sum_{g=j+1}^{i+j}{(-1)^{g+i-j-1}}\frac{1}{\binom{k-i}{g-j-1}}t^{k-g}dt & = \\ & 359 & \binom{k-i}{j}i\frac{1}{0}\left((-1)^jt^{k-j-1}\left(\frac{t}{t-1}\right)^{1-i}\right)dt & = \\ & 359 & \binom{k-i}{j}i\frac{1}{0}\frac{1-1}{(k-j+1)}\frac{k!}{(k-j+1)} & = \frac{(-1)^{j+i+1}i!(k-j-i)!(k-i)!}{(k-j)!j!(k-j-i)!} & = \\ & 360 & (-1)^{j+i+1}\frac{i!(k-i)!}{k!}\frac{k!}{(k-j-j)!j!}. & \text{The coefficient of } x_1^ix_k^{k-i} \ \text{in } \\ & \binom{k}{j}-1(-1)^{1+i}(x_1-x_k)^k \ \text{is } \binom{k}{j}-1(-1)^{1+i}\binom{k}{j}(-1)^{k-i} & = \\ & 361 & \binom{k}{j}-1(-1)^{1+i}\binom{k}{j}(-1)^j, \ \text{same as the summed coefficient.} \\ & 362 & \binom{k}{j}-1(-1)^{1+i}\binom{k}{j}(-1)^j, \ \text{same as the summed coefficient.} \\ & 363 & \binom{k}{j}-1(-1)^{1+i}\binom{k}{j}(-1)^j, \ \text{same as the summed coefficient.} \\ & 364 & \binom{k}{j}-1(-1)^{1+i}\binom{k}{j}(-1)^j, \ \text{same as the summed coefficient.} \\ & 365 & \binom{k}{j}-1(-1)^{1+i}\binom{k}{j}(-1)^{j+1}, \ \text{same as the summed coefficient.} \\ & 3$

 ξ_{Δ} is closely related to $f_{\Xi}(\Delta)$, which is the pairwise difference distribution, since the probability density of ξ_{Δ} is $f_{\Xi_k}(\bar{\Delta}|\Delta)$, $\sum_{\bar{\Delta}=-\left(\frac{k}{3+(-1)^k}\right)^{-1}(-\Delta)^k}^{k} f_{\Xi_k}(\bar{\Delta}|\Delta) = f_{\Xi}(\Delta)$. Re-

call that $f_{\Xi}(\Delta)$ is monotonic increasing with a mode at the origin if the original distribution is unimodal. Thus, in general, ignoring the shape of ξ_{Δ} , Ξ_k is monotonic left and right around zero. In fact, the median of Ξ_k is also close to zero, as it can be cast as a weighted average of the medians of ξ_{Δ} . When Δ is small, all values of ξ_{Δ} are close to zero, resulting in a median arbitrarily close to zero, When Δ is large, the median of ξ_{Δ} depends on its skewness, but the corresponding weight is much smaller, so even if ξ_{Δ} is highly skewed, the median of Ξ_k will only be slightly shifted from zero (denote the median of Ξ_k as m_{Ξ_k} , for five parametric distributions here, $|m_{\Xi_k}|$ s are all $\leq 0.1\sigma$ for Ξ_3 and Ξ_4 , SI Dataset S1). Assuming $m_{\Xi_k} = 0$, for the even ordinal central moment kernel distribution, the average probability density on the left side of zero is greater than that on the right side, since $\frac{\frac{1}{2}}{\binom{k}{2}^{-1}(Q(0)-Q(1))^k} > \frac{\frac{1}{2}}{\frac{1}{k}(Q(0)-Q(1))^k}$. This means that, on average, the inequality $f(Q(\epsilon)) \geq f(Q(1-\epsilon))$ holds. For the odd ordinal distribution, the discussion is harder since it is generally symmetric. Just consider Ξ_3 , let $x_1 = Q(p_i)$ and $x_3 = Q(p_j)$, changing the value of x_2 from $Q(p_i)$ to $Q(p_j)$ will monotonically change the value of $\psi_3(x_1, x_2, x_3)$, since $\frac{\partial \psi_3(x_1, x_2, x_3)}{\partial x_2} = -\frac{x_1^2}{2} - x_1 x_2 + 2x_1 x_3 + x_2^2 - x_2 x_3 - \frac{x_3^2}{2},$ $-\frac{3}{4} (x_1 - x_3)^2 \leq \frac{\partial \psi_3(x_1, x_2, x_3)}{\partial x_2} \leq -\frac{1}{2} (x_1 - x_3)^2 \leq 0.$ If the original distribution is right-skewed, ξ_{Δ} will be left-skewed, so, for Ξ_3 , the average probability density of the right side of zero will be greater than that of the left side, which means, on average, the inequality $f(Q(\epsilon)) \leq f(Q(1-\epsilon))$ holds (the same result can be inferred from the definition of central moments, the positive of odd order central moment is directly related to the left-skewness of the corresponding kernel distribution). In all, the monotonicity of the pairwise difference distribution guides the general shape of the kth central moment kernel distribution, k>2, forcing it to be unimodal-like with mode and median close to zero, then, the inequality $f(Q(\epsilon)) \leq f(Q(1-\epsilon))$ or $f(Q(\epsilon)) \geq f(Q(1-\epsilon))$ holds in general. Although the inequality may be violated in a small range, as discussed in Subsection A, the mean-SWA $_\epsilon$ -median inequality remains frequently valid for the central moment kernel distribution.

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

418

419

420

421

422

423

424

425

426

427

428 429

430

433

434

435

437

438

439

440

441

442

443

445

446

447

448

449

450

451

453

Another key property of the central moment kernel distribution, location invariant, is introduced in the next theorem.

Theorem B.3. $\psi_k(x_1 = \lambda x_1 + \mu, \dots, x_k = \lambda x_k + \mu) = \lambda^k \psi_k(x_1, \dots, x_k).$

Proof. ψ_k can be divided into k groups. From 1st to k-1th group, the gth group has $\binom{k}{q}\binom{g}{1}$ terms having the form $(-1)^{g+1} \frac{1}{k-g+1} x_{i_1}^{k-g+1} \dots x_{i_g}^{g/2}$... The final kth group is the term $(-1)^{k-g+1} \overset{i}{w_{i_1}} \cdots \overset{i}{w_{i_g}}$ group is the term $(-1)^{k-1} (k-1) x_1 \cdots x_k$. Let $x_{i_1} = x_1$, $k \neq g$, the gth group of ψ_k has $\binom{k-l}{g-l}$ terms having the form $(-1)^{g+1} \frac{1}{k-g+1} x_1^{k-g+1} x_2 \cdots x_l x_{i_1} \cdots x_{i_{g-l}}$, where x_1, x_2, \cdots, x_l are fixed, $x_{i_1}, \cdots, x_{i_{g-l}}$ are selected such that $i_1, \dots, i_{g-l} \neq 1, 2, \dots, l.$ Let $\Psi_k \left(x_1, x_2, \dots, x_l, x_{i_1}, \dots, x_{i_{g-l}} \right) =$ $(\lambda x_1 + \mu)^{k-g+1} (\lambda x_2 + \mu) \cdots (\lambda x_l + \mu) (\lambda x_{i_1} + \mu) \cdots (\lambda x_{i_{g-l}} + \mu), \text{ the first group of } \Psi_k \text{ is } \lambda^k x_1 \cdots x_l x_{i_1} \cdots x_{i_{g-l}},$ the hth group of Ψ_k , h > 1, has $\binom{k-g+1}{k-h-l+2}$ terms having the form $\lambda^{k-h+1}\mu^{h-1}x_1^{k-h-l+2}x_2\cdots x_l$. Transforming ψ_k by Ψ_k , then combing all terms with $\lambda^{k-h+1}\mu^{h-1}x_1^{k-h-l+2}x_2\cdots x_l$, $x_1^{k-h-l+2}\neq x_1$, the summed coefficient is $S1_l=\sum_{g=l}^{h+l-1}(-1)^{g+1}\frac{1}{k-g+1}\binom{k-g+1}{k-h-l+2}\binom{k-l}{g-l}=\sum_{g=l}^{h+l-1}(-1)^{g+1}\frac{(k-l)!}{(h+l-g-1)!(k-h-l+2)!(g-l)!}=0$, since the summation is starting from l, ending at h+l-1, the first term includes the factor g - l = 0, the final term includes the factor h + l - g - 1 = 0, the terms in the middle are also zero due to the factorial property. Another possible choice is letting one of $x_{i_2} \dots x_{i_g}$ equal to x_1 , the gth group of ψ_k has $(k-h)\binom{h-1}{g-k+h-1}$ terms having the form $(-1)^{g+1}\frac{1}{k-g+1}x_1x_2\dots x_j^{k-g+1}\dots x_{k-h+1}x_{i_1}\dots x_{i_g-k+h-1}$, provided that $k\neq g,\ 2\leq j\leq k-h+1$, where x_1,\dots,x_{k-h+1} are fixed, x_j^{k-g+1} and $x_{i_1},\dots,x_{i_{g-k+h-1}}$ Transforming these terms $\Psi_k\left(x_1, x_2, \dots, x_j, \dots, x_{k-h+1}, x_{i_1}, \dots, x_{i_{g-k+h-1}}\right)$ $(\lambda x_1 + \mu) (\lambda x_2 + \mu) \cdots (\lambda x_j + \mu)^{k-g+1} \cdots (\lambda x_{k-h+1} + \mu)$ $(\lambda x_{i_1} + \mu) \cdots (\lambda x_{i_{g-k+h-1}} + \mu)$, then, there are k - g + 1 terms having the form $\lambda^{k-h+1} \mu^{h-1} x_1 x_2 \dots x_{k-h+1}$. So, the combined result is $(-1)^{g+1} (k-h) \binom{h-1}{g-k+h-1} \lambda^{k-h+1} \mu^{h-1} x_1 x_2 \dots x_{k-h+1}$. Transforming the final kth group of ψ_k by then, Ψ_k , then, there is one term having the form $(-1)^{k-1}(k-1)\lambda^{k-h+1}\mu^{h-1}x_1x_2\dots x_{k-h+1}$. Another possible combination is that the gth group of ψ_k contains $(g-k+h-1)\binom{h-1}{g-k+h-1}$ terms having the form $(-1)^{g+1}$ $\frac{1}{k-g+1}x_1x_2\dots x_{k-h+1}x_{i_1}\dots x_{i_j}^{k-g+1}\dots x_{i_{g-k+h-1}},$ there is only one term having the fo

369

370

371

372

374

375

376

377

378

379

380

382

383

384

385

386

387

390

391

392

393

 $\lambda^{k-h+1}\mu^{h-1}x_1x_2\dots x_{k-h+1}. \quad \text{The above summation } S1_l \text{ should also be included, i.e., } x_1^{k-h-l+2} = x_1, \ k=h+l-1, \text{ so, combing all terms with } \lambda^{k-h+1}\mu^{h-1}x_1x_2\dots x_{k-h+1}, \text{ according to the binomial theorem, the summed coefficient is } S2_l = \sum_{g=k-h+1}^{k-1} (-1)^{g+1} \binom{h-1}{g-k+h-1} \left(k-h+1+\frac{g-k+h-1}{k-g+1}\right) + (-1)^{k-1} (k-1) = (-1)^k + (-1)^k (k-h) + (h-2)(-1)^k + (-1)^{k-1} (k-1) = 0. \quad \text{The result is the same if replacing } x_1 \text{ with } x_i, \text{ where } i \text{ is from 2 to } k, \text{ and replacing } x_l \text{ with other } x_i. \quad \text{Thus, all terms including } \mu \text{ can be canceled out. The proof is complete by noticing that the remaining part is } \lambda^k \psi_k (x_1, \cdots, x_k). \quad \square$

Consider two continuous distributions belonging to the same location—scale family, their corresponding kth central moment kernel distributions only differ in scaling. So d is invariant, as shown in Subsection A. The robust kth central moment, based on rm, is defined by,

$$rkm_{d,\epsilon,n} := (d+1) Wkm_{\epsilon,n} - dmkm_{\epsilon,n},$$

where $Wkm_{\epsilon,n}$ is using the binomial kth central moment $(Bkm_{\epsilon,n})$ here, $mkm_{\epsilon,n}$ is the median kth central moment. Similarly, the quantile will not change after scaling. The quantile kth central moment is thus defined as

$$qkm_{d,\epsilon,n} := \hat{Q}_n\left(\left(pWkm - \frac{1}{2}\right)d + pWkm\right),$$

where $pWkm = \hat{F}_n(Wkm_{\epsilon,n})$, \hat{F}_n is the empirical cumulative distribution function of the corresponding central moment kernel distribution.

Finally, for standardized moments, quantile skewness and quantile kurtosis are defined to be $qskew_{d,\epsilon,n} \coloneqq \frac{qtm_{d,\epsilon,n}}{qsd_{d,\epsilon,n}^3}$ and $qkurt_{d,\epsilon,n} \coloneqq \frac{qfm_{d,\epsilon,n}}{qsd_{d,\epsilon,n}^4}$. Quantile standard deviation $(qsd_{d,\epsilon,n})$, robust standard deviation $(rsd_{d,\epsilon,n})$, quantile third central moment $(qtm_{d,\epsilon,n})$, quantile fourth central moment $(qfm_{d,\epsilon,n})$, robust third central moment $(rtm_{d,\epsilon,n})$, robust fourth central moment $(rfm_{d,\epsilon,n})$, robust skewness $(rskew_{d,\epsilon,n})$, and robust kurtosis $(rkurt_{d,\epsilon,n})$ are all defined similarly as above and not repeated here. The transformation to a location problem

not repeated here. The transformation to a location problem can also empower related statistical tests. From the better performance of the quantile mean in heavy-tailed distributions, quantile central moments are generally better than robust central moments regarding asymptotic bias.

To avoid confusion, the robust location estimations of the kernel distributions here are very different from Joly and Lugosi (2016) and Laforgue, Clemencon, and Bertail (2019)'s approach (32, 33), which is computing the median of all *U*-statistics from different blocks based on the median of means technique.

C. Congruent distribution. In the realm of nonparametric statistics, the precise value of a robust location estimator is of secondary importance. What is of primary importance is the relative difference between each group. The statement implicitly assumes that, in the absence of contamination, as the parameters of the distribution vary, the nonparametric robust location estimator will asymptotically change in the same direction as the sample mean. Otherwise if the results based on trimmed mean are completely different from those based on median, a contradiction arises. A distribution satisfying this property for any symmetric weighted average is called a

congruent distribution. If extending to any weighted average, it is strong congruent. A distribution is completely congruent if and only if it is congruent and its all central moment kernel distributions are also congruent. Complete strong congruence is analogous. From the definition, distributions with infinite moments are always not congruent. Also, Chebyshev's inequality implies that, for any probability distribution with finite moments, even if some weighted averages change in a direction different from that of the sample mean, the deviations are bounded. The following theorems show the conditions that a distribution is congruent or strong congruent by classifying distributions through inequalities.

Theorem C.1. Let the symmetric quantile average function of a parametric distribution be denoted as $SQA(\epsilon, \alpha_1, \dots, \alpha_i, \dots, \alpha_k)$, where α_i represent the parameters of the distribution. This distribution is congruent if and only if the sign of $\frac{\partial SQA(\epsilon, \alpha_i)}{\partial \alpha_i}$ remains the same for all $0 < \epsilon < \frac{1}{2}$. Replacing SQA with Q constitutes a necessary and sufficient condition for the distribution to be considered strong congruent.

Proof. Asymptotically, any symmetric weighted average can be expressed as an integral of the symmetric quantile average function. Since the sign won't change after integration, from definition, the sign of $\frac{\partial \mathrm{SQA}(\epsilon,\alpha_i)}{\partial \alpha_i}$ remains the same for all $0<\epsilon<\frac{1}{2}$ is equivalent to all symmetric weighted averages also change in the same direction as the sample mean since the sample mean is also a symmetric weighted average and can be expressed as $\int_0^{\frac{1}{2}} \mathrm{SQA}(\epsilon) d\epsilon$. The same logic applies to the strong congruence case, as the constancy of the sign of $\frac{\partial \mathcal{Q}(p,\alpha_i)}{\partial \alpha_i}$ for all 0< p<1 is equivalent to the statement that all weighted averages also change in the same direction as the sample mean. The proof is finished.

Theorem C.2. If a distribution is strong congruent, then it is congruent.

Proof. From the definition in the previous article, any symmetric weighted average is also a weighted average. This concludes the proof. $\hfill\Box$

Theorem C.3. A symmetric distribution with a finite second moment is always congruent.

Proof. For any symmetric distribution with a finite second moment, all symmetric quantile averages coincide. The conclusion follows immediately. \Box

Theorem C.4. A positive define location-scale distribution with a finite second moment is always strong congruent.

Proof. As shown in discussions in Subsection A, for a location-scale distribution, any weighted average can be expressed as $\lambda W_{estimator}(\epsilon) + \mu$, where $W_{estimator}(\epsilon)$ is a function of $Q_0(p)$ according to the definition of the weighted average. Therefore, the derivatives with respect to the parameters λ or μ are always positive. By application of Theorem C.1, the desired outcome is obtained.

Theorem C.5. The second central moment kernal distribution derived from a continuous location-scale unimodal distribution with a finite second moment is always strong congruent.

Proof. Theorem B.3 shows that the corresponding central moment kernel distribution is also a location-scale family distribution. Theorem B.1 shows that it is positively defined. Implementing Theorem C.4 yields the desired result. \Box

552

553

554

555

556

557

558

559

560

561

562

564

565

566

567

568

569

570

571

572

573

574

575

577

578

579

580

581

582

583

584

585

586

587

588

589

590

595

596

597

598

599

601

602

603

604

605

607

609

For the Pareto distribution, $\frac{\partial Q(p,\alpha)}{\partial \alpha} = \frac{x_m(1-p)^{-1/\alpha} \ln(1-p)}{\alpha^2}$. Since $\ln(1-p) < 0$ for all $0 , <math>(1-p)^{-1/\alpha} >$ 0 for all 0 < p < 1 and α > 0, the Pareto distribution is strong congruent and therefore congruent. derivative for the lognormal distribution is $\frac{\partial SQA(\epsilon,\sigma)}{\partial \sigma}$ $-\operatorname{erfc}^{-1}(2\epsilon)e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2\epsilon)} - \operatorname{erfc}^{-1}(2-2\epsilon)e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2-2\epsilon)}$ the inverse complementary error function is positive when the input is smaller than 1, and negative when the input is larger than 1, $\operatorname{erfc}^{-1}(2\epsilon) = -\operatorname{erfc}^{-1}(2-2\epsilon)$, $e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2-2\epsilon)} > e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2\epsilon)}$, $\frac{\partial\operatorname{SQA}(\epsilon,\sigma)}{\partial\sigma} > 0$, the lognormal distribution is congruent. It is not strong congruent, since the quantile function is $Q(p) = e^{\mu - \sqrt{2}\sigma \operatorname{erfc}^{-1}(2p)}$, the derivative is $\frac{\partial Q(p,\sigma)}{\partial \sigma} = -\sqrt{2}\operatorname{erfc}^{-1}(2p)e^{\mu - \sqrt{2}\sigma \operatorname{erfc}^{-1}(2p)}$. Theorem C.3 implies that the generalized Gaussian distribution is congruent. Although the derivatives of the quantile functions of the gamma and generalized Gaussian distributions are very complex, just consider the Gaussian distribution, when the scale parameter increases, Q(p) for $p>\frac{1}{2}$ will increase, for $p<\frac{1}{2}$ will decrease, therefore, they are not strong congruent distributions. For the Weibull distribution, just consider the median, $E[m] = \lambda \sqrt[\alpha]{\ln(2)}$, $E[\mu] = \lambda \Gamma \left(1 + \frac{1}{\alpha}\right)$, then, when $\alpha = 1$, $E[m] = \lambda \ln(2) \approx 0.693\lambda$, $E[\mu] = \lambda$, but when $\alpha = \frac{1}{2}$. $E[m] = \lambda \ln^2(2) \approx 0.480\lambda$, $E[\mu] = 2\lambda$, the mean increases, but the median decreases, therefore, it is not congruent. When α changes from 1 to $\frac{1}{2}$, the average probability density on the left side of median increases, since $\frac{\frac{1}{2}}{\lambda \ln(2)} < \frac{\frac{1}{2}}{\lambda \ln^2(2)}$, but the mean increases, meaning that the distribution is more heavytailed, the probability density of large values will also increase. The simultaneous increases in both probability densities, one close to zero and the other close to infinity, are the reason for non-congruence. Note that the gamma distribution does not have this issue, it looks to be congruent.

Although many common parametric distributions are not congruent, Theorem C.4 establishes that strong congruence always holds for a positive define location-scale family distribution and thus for the second central moment kernel distribution generated from a continuous location-scale unimodal distribution as shown in Theorem C.5. Theorem B.2 demonstrates that all their central moment kernel distributions are unimodallike with mode and median close to zero, as long as they are unimodal distributions. This implies, align with Theorem B.3, that different kernel distributions mainly differ in scale and they are, in some senses, reduced to a location-scale family distribution. If Q(0) - Q(1) remains constant, increasing the mean will result in a more heavy-tailed distribution, i.e., the probability density closer to $\frac{1}{k}(-\Delta)^k$ will increase. While the total probability density on either side of zero will remain unchanged as the median is generally close to zero and much less impacted during the mean increasing, the probability density close to zero will decrease. This transformation will also increase other symmetric weighted averages, in the general sense, due to the heavy tail. As a result, nearly all symmetric weighted averages for all central moment kernel distributions derived from unimodal distributions should change in the same direction as the parameters change.

D. A two-parameter distribution as the consistent distribution.

610

611

612

613

616

617

618

619

620

621

622

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

642

643

644

645

646

649

650

651

652

653

654

655

656

657

658

Up to this point, the consistent robust estimation has been limited to a parametric location-scale distribution. The location parameter is often omitted for simplicity. A distribution specified by a shape parameter (denoted as α here) and a scale parameter (denoted as λ here) is often referred to as a twoparameter distribution. Weibull, gamma, Pareto, lognormal, and generalized Gaussian distributions are all two-parameter unimodal distributions. α can be converted to skewness or kurtosis, e.g., for the gamma distribution, the skewness is $\frac{2}{\sqrt{\alpha}}$, the kurtosis is $\frac{6}{\alpha} + 3$. If α is a constant, the two-parameter distribution is reduced to a single-parameter distribution. The discussion in Subsection A shows that, for a single-parameter distribution as the consistent distribution and a fixed ϵ , there should be a k-tuple $(d_{im}, \ldots, d_{ikm})$ (using a distribution as the consistent distribution means the d values used are calibrated by the distribution or the corresponding kernel distributions generated from this distribution). For a two-parameter distribution, let $D(kurtosis, |skewness|, k, etype, dtype, n) = d_{ikm}$ denote these relations, where the first input is the kurtosis, the second input is the square of the skewness, the third is the order of the central moment (if k=1, the mean), the fourth is the type of estimator, the fifth is the type of consistent distribution, the sixth input is the sample size. For simplicity, the last three inputs will be omitted in the following discussion. Note that specifying d values of d for a two-parameter distribution requires only kurtosis or skewness.

Using a two-parameter distribution as the consistent distribution is a problem of robust estimation of parametric models. The object is to find solutions for the system of equations

```
\begin{cases} rm\left(\text{WA, median}, D(rkurt, |rskew|, 1)\right) = \mu \\ rvar\left(\text{W}var, mvar, D(rkurt, |rskew|, 2)\right) = \mu_2 \\ rtm\left(\text{W}tm, mtm, D(rkurt, |rskew|, 3)\right) = \mu_3 \\ rfm\left(\text{W}fm, mfm, D(rkurt, |rskew|, 4) = \mu_4 \\ rskew = \frac{\mu_3}{\frac{3}{2}} \\ \mu_2^{\frac{1}{2}} \\ rkurt = \frac{\mu_4}{\mu_2^2} \end{cases} , \text{ where } \mu_2, \quad \text{so } \mu_2
```

 μ_3 and μ_4 are the population second, third and fourth central moments. rkurt and |rskew| should be the invariant points of the functions $\varkappa(rkurt) = \frac{rfm(\mathrm{W}fm, mfm, D(rkurt, 4))}{rvar(\mathrm{W}var, mvar, D(rkurt, 2))^2}$ and

$$\varsigma(|rskew|) = \left| \frac{rtm(Wtm, mtm, D(|rskew|, 3))}{rvar(Wvar, mvar, D(|rskew|, 2))^{\frac{3}{2}}} \right|.$$
 Clearly, this is

an overdetermined nonlinear system of equations, because the skewness and kurtosis are interrelated for a two-parameter distribution. As an overdetermined system constructed with random coefficients is almost always inconsistent, it is natural to optimize them separately using the fixed-point iteration (see Algorithm 1, only *rkurt* is provided, others are the same).

The following theorem shows the validaty of Algorithm 1.

Theorem D.1. rkurt and |rskew|, defined as the largest attracting fix points of the functions $\varkappa(rkurt)$ and $\varsigma(|rskew|)$, are consistent estimators for a completely congruent two-parameter distribution, as long as they are within the domain of D.

Proof. Without loss of generality, only rkurt is considered here, while the logic for |rskew| is the same. Even without knowning any details of D, from the definition, $\lim_{rkurt\to\infty}\frac{\varkappa(rkurt)}{rkurt}=$

Algorithm 1 rkurt for a two-parameter distribution

```
Input: D; Wvar; Wfm; mvar; mfm; maxit; \delta
Output: rkurt_{i-1}
i=0
2: rkurt_i \leftarrow \varkappa(kurtosis_{max}) \triangleright \text{Using the maximum kurtosis}
available in D as an initial guess.

repeat
4: i=i+1
```

4: i = i + 1 $rkurt_{i-1} \leftarrow rkurt_i$ 6: $rkurt_i \leftarrow \varkappa(rkurt_{i-1})$

677

678

679

680

684

685

686

687

688

689

691

692

693

694

695

697

until i > maxit or $|rkurt_i - rkurt_{i-1}| < \delta \implies maxit$ is the maximum number of iterations, δ is a small positive number. Here, maxit = 100, $\delta = 10^{-30}$.

As a result of Theorem D.1, assuming continuity and congruence of the central moment kernel distributions, Algorithm 1 converges surely if a fix point exists within the domain of D. At this stage, D can only be approximated through a Monte Carlo study. Using linear interpolation can ensure continuity. A common encountered problem is that D has a domain depending on both the consistent distribution and the Monte Carlo study, and the iteration may halt at the boundary if the fix point is not within the domain. However, by setting a proper maximum number of iterations, the algorithm will return the boundary value which is optimal within D. For quantile moments, the logic is similar, if the percentiles do not exceed the breakdown point. If so, consistent estimation is impossible and the algorithm will stop due to the maximum number of iterations. The fix point iteration is, in principle, similar to the iterative reweighing in M-estimator, but an advantage of this algorithm is that the optimization is only related to the function of d value and is independent of the sample size (except for the quantile moments, which require re-computation of the quantile function, but this operation has a time complexity of O(1) for a sorted sample). Since |rskew|can specify d_{rm} after optimization, this enables the robust estimations of all four moments to reach a near-consistent level for all five unimodal distributions (Table 1, SI Dataset S1), just using the Weibull distribution as the consistent distribution.

701

702

703

704

705

706

707

709

711

712

713

714

715

716

717

718

719

720

721

722

723

724

726

727

728

729

730

731

733

734

735

736

737

738

741

742

743

744

745

747

748

751

752

753

754

E. Variance. As the fundamental theorem in statistics, the central limit theorem states that the standard deviation of the limiting form of the sampling distribution of the sample mean is $\frac{\sigma}{\sqrt{n}}$. The principle was later applied to the sampling distributions of the robust location estimators (2, 34–40) and it was found that the efficiencies of the robust location estimators are sometimes very different from the arithmetic mean. Daniell (1920) stated (34) that the comparison of efficiencies of the various kinds of estimators is useless unless they all tend to coincide asymptotically. Bickel and Lehmann argued, also in the landmark series (38, 39), that meaningful comparisons can be made by studying the standardized variance, asymptotic variances, and sharp lower bounds of these estimators. Here, the scaled standard error (SSE) is proposed to estimate the variances of all estimators, including robust/quantile moments, on a scale similar to that of the sample mean.

Definition E.1 (Scaled standard error). Let $\mathcal{M}_{s_is_j} \in \mathbb{R}^{i \times j}$ denote the sample-by-statistics matrix, i.e., the first column is the main statistics of interest, $\widehat{\theta_m}$, the second to the jth column are j-1 statistics required to scale, $\widehat{\theta_{r_1}}$, $\widehat{\theta_{r_2}}$, ..., $\widehat{\theta_{r_{j-1}}}$. Then, the scaling factor $\mathcal{S} = \left[1, \frac{\bar{\theta_{r_1}}}{\theta_m}, \frac{\bar{\theta_{r_2}}}{\theta_m}, \dots, \frac{\bar{\theta_{r_{j-1}}}}{\theta_m}\right]^T$ is a $j \times 1$ matrix, which $\bar{\theta}$ is the mean of the column. The normalized matrix is $\mathcal{M}_{s_is_j}^N = \mathcal{M}_{s_is_j}\mathcal{S}$. The SSEs are the unbiased standard deviations of the corresponding columns.

Setting the bootstrap moments as the main, the SSEs of all robust estimators proposed here are often between those of the median moments and those of the sample moments (SI Dataset S1). This is because similar monotonic relations between robustness and variance are also very common, e.g., Bickel and Lehmann (39) proved that a bound for the efficiency of TM_{ϵ} to sample mean is $(1-2\epsilon)^2$ and this monotonic bound is valid for any distribution. Lai, Robbins, and Yu (1983) proposed an estimator that adaptively chooses the mean or median in a symmetric distribution and showed that the result is typically as good as the better of sample mean and median regarding variance (41). It may be interpreted as an attempt to use the variance version of mean-SWA-median inequality. While they used bootstrap standard error as the criterion, another approach can be dated back to Laplace (1812) (42) is using a linear combination of median and mean and the weight is deduced to achieve minimum variance; examples for symmetric distributions see Samuel-Cahn, Chan and He, and Damilano and Puig (43–45).

Scaled standard error enables the direct comparison of variances of different location estimators for asymmetric distributions. Here, two invariant means and related weighted averages (BM $_{\frac{1}{8}}$, SQM $_{\frac{1}{8}}$, BM $_{\nu=2,\epsilon=\frac{1}{8}}$, WM $_{\frac{1}{8}}$, BWM $_{\frac{1}{8}}$, and TM $_{\frac{1}{8}}$ used here) can create twelve possible combinations. Each combination has an SSE for a single-parameter distribution, which can be inferred by a Monte Carlo study. Then, among twelve possible combinations, there is one that has the smallest SSE (if the percentiles of quantile moments exceed the breakdown point, this combination will be excluded). Theoretically, bootstrap is the optimal way to infer the variance-optimal choice without distributional assumption, however, the computational cost is very high. Similar to Subsection D, let $I(kurtosis, |skewness|, k, dtype, n) = ikm_{WA}$ denote these re-

Table 1. The performance of invariant moments for five common unimodal distributions compared to current popular methods

Errors	$TM_{\frac{1}{8}}$	H-L	$WM_{\frac{1}{8}}$	НМ	$BM_{\frac{1}{8}}$	$rm_{rac{1}{8}}$	$qm_{rac{1}{8}}$	$T s d^2_{rac{1}{8}}$	$rvar_{\frac{1}{8}}$	$qvar_{\frac{1}{8}}$	$rtm_{\frac{1}{8}}$	$qtm_{\frac{1}{8}}$	$rfm_{\frac{1}{8}}$	$qfm_{rac{1}{8}}$
WAAB	0.128	0.109	0.078	0.102	0.057	0.002	0.004	0.237	0.031	0.013	0.025	0.009	0.071	0.019
WRMSE	0.131	0.111	0.082	0.105	0.061	0.017	0.019	0.235	0.037	0.025	0.030	0.018	0.073	0.027
$WAB_{n=5400}$	0.128	0.108	0.078	0.102	0.057	0.002	0.005	0.235	0.031	0.013	0.025	0.009	0.070	0.019
WSE ∨ WSSE	0.014	0.014	0.014	0.014	0.015	0.017	0.018	0.015	0.016	0.018	0.012	0.014	0.012	0.016
WAAB	0.128	0.109	0.078	0.102	0.057	0.003	0.004	0.237	0.007	0.007	0.009	0.007	0.018	0.014
WRMSE	0.131	0.111	0.082	0.105	0.061	0.018	0.019	0.235	0.020	0.021	0.019	0.020	0.033	0.025
$WAB_{n=5400}$	0.128	0.108	0.078	0.102	0.057	0.003	0.004	0.235	0.007	0.007	0.009	0.008	0.018	0.015
WSE ∨ WSSE	0.014	0.014	0.014	0.014	0.015	0.017	0.018	0.015	0.018	0.018	0.014	0.017	0.021	0.017

Errors	m	$BWM_{\frac{1}{8}}$	$SQM_{\frac{1}{8}}$	$SQM_{\frac{1}{8}}$	$SM_{\frac{1}{9}}$	\bar{x}	$im_{v, \frac{1}{8}}$	var	$ivar_{v,\frac{1}{8}}$	tm	$itm_{v,\frac{1}{8}}$	fm	$ifm_{v,\frac{1}{8}}$
WAAB	0.205	0.104	0.057	0.070	0.000	0.003	0.000	0.007	0.000	0.009	0.000	0.017	
WRMSE	0.208	0.108	0.061	0.074	0.014	0.017	0.017	0.020	0.021	0.020	0.028	0.031	
$WAB_{n=5400}$	0.205	0.104	0.057	0.070	0.000	0.003	0.000	0.006	0.000	0.010	0.001	0.016	
WSE ∨ WSSE	0.016	0.014	0.015	0.014	0.014	0.016	0.017	0.018	0.021	0.014	0.026	0.020	

Errors	\bar{x}	rm	im_v	var	var_{bs}	rvar	$ivar_v$	tm	tm_{bs}	rtm	itm_v	fm	fm_{bs}	rfm	ifm_v
RMSE	0.014	0.016	0.016	0.018	0.017	0.019	0.018	0.021	0.019	0.018	0.018	0.027	0.023	0.023	0.022
SE ∨ SSE	0.014	0.016	0.016	0.017	0.017	0.019	0.018	0.020	0.019	0.018	0.018	0.025	0.021	0.022	0.021

The first section uses the exponential distribution as the consistent distribution for five common unimodal distributions, Weibull, gamma, Pareto, lognormal and generalized Gaussian distribution, while the second section uses the Weibull distribution as the consistent distribution. The third section uses the Weibull distribution plus optimization (ikm_v is invariant kth moment, variance-optimized). The fourth section uses the Weibull distribution; the breakdown points are all $\frac{1}{8}$ (not indicated). BM $\frac{1}{8}$ is the weighted average used in robust/quantile

moments. The average asymptotic bias (AAB, $n \to \infty$), root mean square error (RMSE, n = 5400), average bias (AB, n = 5400) and variance (SE \vee SSE, n = 5400) of the estimators are in the units of the standard deviations of the kernel distributions. bs indicates the bootstrap central moments. W means that the results were weighted by the number of Google Scholar search results on May 30, 2022 (including synonyms). The calibrations of d values and the computations of AAB, AB, and SSE were described in Subsection E, F and SI Methods. The detailed results and related codes are available in SI Dataset S1 and GitHub.

lations. Then since $\lim_{rkurt\to\infty}\frac{I(rkurt,4)}{I(rkurt,2)^2rkurt}<1$, the same fix point iteration algorithm can be used to choose the variance-optimum combination. The only problem is that unlike D,I is defined to be discontinuous and also simulated by a Monte Carlo study, but linear interpolation can also be used to ensure the continuity. Using this approach, the result is often very close to the optimum choice (SI Dateset S1).

In general, compared to the unbiased sample central moments, the variances of invariant central moments are much smaller (except the second central moment, Table 1). In 1958, Richtmyer proposed quasi-Monte Carlo simulation based on low-discrepancy sequences, which dramatically reduces the computational cost of large sample simulation (46). Quasi-Monte Carlo methods frequently employ Sobol sequences as the favored numerical sets (47). Do and Hall extended the principle to bootstrap in 1991 (48) and found that the quasirandom approach is competitive in terms of variance when compared with other bootstrap Monte Carlo procedures. By using quasi-sampling, the impact of the number of repetitions of the bootstrap, or bootstrap size, on variance is negligible. An estimator based on the quasi-bootstrap approach can be seen as a very complex deterministic estimator which is not only computationally efficient, but also statistical efficient. The only drawback is that a small bootstrap size can produce additional finite sample bias but can be corrected by recalibrating the d values (18 thousand is used here as default as it balances computational cost and finite sample bias, except the asymptotic value calculation).

F. Robustness. The measure of robustness to gross errors used here is the breakdown point proposed by Hampel (49) in 1968. However, the sample-dependent breakdown point has apparently not been defined previously.

787

788

789

790

791

793

796

797

798

801

802

803

804

806

807

808

810

811

813

814

815

Definition F.1 (Sample-dependent breakdown point). An estimator $\hat{\theta}$ has a sample-dependent breakdown point if and only if its asymptotic breakdown point $\epsilon(\hat{\theta},R,\zeta,v)$ is zero and the empirical influence function of $\hat{\theta}$ is bounded, where R is the measure of badness, ζ is the contaminating processes, v is the uncontaminated process. For a full formal definition of the asymptotic breakdown point, which is the breakdown point when $n \to \infty$, and the empirical influence function, the reader is referred to Genton and Lucas (2003) and Devlin, Gnanadesikan and Kettenring (1975)'s papers (50, 51).

Bear in mind that it dffers from the "infinitesimal robustness" defined by Hampel, which is related to whether the asymptotic influence function is bounded (52–54). The proof of the consistency of MoM assumes that it is an estimator with a sample-dependent breakdown point since its breakdown point is $\frac{\beta}{2n}$, where β is the number of blocks, then $\lim_{n\to\infty} \left(\frac{\beta}{2n}\right) = 0$, if β is a constant or $\beta \ll n$, and any changes in any one of the points of the sample cannot breakdown this estimator (55–57).

For the robust estimations of central moments or other robustified U-statistics based on a robust location estimator, the asymptotic breakdown points are suggested by the following theorem by extending the method in Donoho and Huber (1983)'s proof of the breakdown point of the Hodges-Lehmann estimator (58).

Theorem F.1. Given n independent random variables

759

761

762

763

764

765

766

767

772

773

774

775

776

779

780

781

782

783

784

786

 (X_1, \ldots, X_n) with the same distribution F and a U-statistic associated with a symmetric kernel of degree k. Then, assuming as $n \to \infty$, $k \ll n$, the asymptotic breakdown point of the robust location estimation of the distribution of the kernel of the U-statistic is $1 - (1 - \epsilon)^{\frac{1}{k}}$, where ϵ is the breakdown point of the symmetric robust location estimator.

816

817

818

820

821

823

824

825

826

828

829

830

831

832

833

834

835

836

837

838

839

844

845

846

847

851

852

853

854

Proof. According to the definition of ϵ -contamination (58), suppose m contaminants are added to the sample. The fraction of bad values in the sample is $\epsilon_U = \frac{m}{n+m}$, while the original n data points are not impacted. That means, in the distribution of the kernel, $\binom{n}{k}$ of total $\binom{n+m}{k}$ points are not corrupted. Then, the breakdown will not occur if the following inequality holds

$$\binom{n}{k} > \left(\frac{1}{\epsilon} - 1\right) \times \left(\binom{n+m}{k} - \binom{n}{k}\right),\,$$

Since ϵ is the breakdown point of the robust location estimator, $\frac{1}{2} \geq \epsilon \geq 0$,

$$\frac{1}{1-\epsilon} > \frac{\binom{n+m}{k}}{\binom{n}{k}} = \frac{(n+m)(n+m-1)\dots(n+m-k+1)}{n(n-1)\dots(n-k+1)}.$$

For asymptotic breakdown point, assuming $n \to \infty$, $k \ll n$, $\lim_{n\to\infty} \left(\frac{n+m-k+1}{n-k+1}\right) = \frac{n+m}{n} = x$, then the above inequality does not hold when $x \ge \left(\frac{1}{1-\epsilon}\right)^{\frac{1}{k}}$. So, the breakdown point of the U-statistic is $\epsilon_U = \frac{m}{n+m} = 1 - \frac{n}{n+m} = 1 - \frac{1}{x} = 1 - (1-\epsilon)^{\frac{1}{k}}$.

Remark. If k=1, $1-(1-\epsilon)^{\frac{1}{k}}=\epsilon$, so this formula also holds for the robust location estimator. In addition, the numerical solutions for $k=2,3,4,\,\epsilon=\frac{1}{8}$ are $\approx 0.065,\,0.044,$ and 0.033, respectively. When $\epsilon=\frac{1}{2}$, the robustified *U*-statistic becomes *U*-quantile, which converges almost surely as proven by Choudhury and Serfling (59) in 1988.

Every statistic is based on certain assumptions. For instance, the sample mean assumes that the second moment of the underlying distribution is finite. If this assumption is violated, the variance of the sample mean becomes infinitely large even the population mean is finite. Therefore, the sample mean not only has zero robustness to gross errors, but also has zero robustness to departures. If departures are unlimited, nearly any estimators can be broken, so posing a constraint on departures is necessary for comparison.

Bias bound (1) is the first approach to study the robustness to departures under regularity conditions, i.e., although all estimators can be biased under departures from the assumptions, but their standardized maximum biases can differ substantially (60, 61). In the previous semiparametric robust mean estimation article, it is shown that another way to qualitatively compare the estimators' robustness to departures from the symmetry assumption is constructing and comparing the corresponding semiparametric models. An estimator based on a smaller model is naturally more robust to asymmetric departures within that model. Although the comparison is limited to the smaller semiparametric model and is not universal, quite surprisingly, the results coincide with those obtained from the bias bound analysis. Bias bound is more universal since it is possible to deduce the bounds for distributions with finite moments without assumming unimodality (60, 61). However, the bias bounds are often hard to deduce for complex estimators.

Also, sometimes there are discrepencies between maximum bias and average bias. For example, the maximum bias of $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ is higher than $\mathrm{SQM}_{\frac{1}{8}}$, but it has much better average bias (SI Dataset S1). Since the estimators proposed here are all consistent under certain assumptions, measuring their biases is a convenient way of measuring the robustness to departures. Average asymptotic bias is thus defined as follows. Definition F.2 (Average asymptotic bias). For a single-parameter distribution, the average asymptotic bias (AAB) is just the standardized asymptotic bias $\frac{|\hat{\theta}-\theta|}{\sigma}$, where $\hat{\theta}$ is the estimation of θ and σ is the population standard deviation of the distribution. For a two-parameter distribution, the first step is setting the lower bound of the kurtosis range of interest $\hat{\mu}_{4_I}$. Then, the average asymptotic bias is defined as

860

861

862

867

873

874

875

876

877

878

879

881

882

883

884

885

886

888

889

893

894

895

896

897

899

900

901

902

903

$$AAB_{\hat{\theta}} := \frac{1}{C} \sum_{\substack{\delta + \tilde{\mu}_{4_{l}} \leq \tilde{\mu}_{4} \leq C\delta + \tilde{\mu}_{4_{l}} \\ \tilde{\mu}_{4} \text{ is a multiple of } \delta}} E_{x|\tilde{\mu}_{4}} \left[\frac{\left| \hat{\theta} - \theta \right|}{\sigma} \right]$$

where $\tilde{\mu}_4$ is the kurtosis specifying the two-parameter distribution, $E_{x|\tilde{\mu}_4}$ denotes the expected value over $P(x|\tilde{\mu}_4)$.

Standardization is crucial for comparing the performances of estimators under different distributions. Currently, there are several options available, such as using the root mean square deviation from the mode (as in Gauss (1)), the mean absolute deviation, or standard deviation. The standard deviation is used here because of its central role in standard error estimation. The estimation of central moments based on the location estimations of the kernel distributions also enables the standardization of average biases (ABs, for finite sample scenarios) and average asymptotic biases (AABs) of robustified central moments. The only difference is that the population standard deviation is replaced by the asymptotic standard deviation of the kernel distribution (σ_{km}) .

In Table 1, $\delta = 0.1$, C = 120. For the Weibull, gamma, lognormal and generalized Gaussian distributions, the kurtosis range is from 3 to 15 (there are two shape parameter solutions for the Weibull distribution, the lower one is used here). For the Pareto distribution, the range is from 9 to 21. To provide a more practical and straightforward illustration, all results from five distributions are further weighted by the number of Google Scholar search results. Interestingly, the asymptotic biases of $TM_{\frac{1}{2}}$ and $WM_{\frac{1}{2}}$, after averaging and weighting, are 0.128σ and 0.078σ , respectively, in line with the sharp bias bounds of $TM_{2,14:15}$ and $WM_{2,14:15}$ (a different subscript is used to indicate a sample size of 15, with the removal of the first and last order statistics.), 0.173σ and 0.126σ , for distributions with finite moments, without assuming unimodality (60, 61). This setting seems arbitrary, however, the orderliness ensures that the order among different SWAs remains generally the same as the parameters change, the range of kurtosis is in fact not very important for AAB. It is important if using the maximum biases within the range of kurtosis among all five unimodal distributions as a measure of robustness to departures, because different estimators reach their maximum biases at different parameters. Within the range of kurtosis setting, nearly all SWAs and SWkms proposed here reach or at least close to their maximum biases (SI Dataset S1). The pseudo-maximum bias is thus defined as the maximum value of the biases in the AAB computations for all five unimodal distributions. In most cases, the pseudo-maximum biases of invariant moments occur

in lognormal or generalized Gaussian distributions (SI Dataset S1), since besides unimodality, the Weibull distribution differs entirely from them.

Discussion

908

909

910

911

912

913

914

915

916

917

918

919

923

924

925

926

927

928

929

930

931

932

933

934

935

938

939

940

941

942

943

945

947

953

954

955

957

960

961

962

963

967

Moments, including raw moments, central moments, and standardized moments, are key parameters that determine probability distributions. Central moments are much more popular than raw moments because they are invariant to translation. In 1947, Hsu and Robbins proved that the arithmetic mean converges completely to the population mean provided the second moment is finite (62). The strong law of large numbers (proven by Kolmogorov in 1933) (63) implies that the kth sample central moment is asymptotically unbiased. Recently, fascinating statistical phenomena about Taylor's law for distributions with infinite moments were found by Drton and Xiao (2016) (64), Pillai and Meng (2016) (65), Cohen, Davis, and Samorodnitsky (2020) (66), and Brown, Cohen, Tang, and Yam (2021) (67). Lindquist and Rachev (2021) commented: "What are the proper measures for the location, spread, asymmetry, and dependence (association) for random samples with infinite mean?" (68). This is not the focus of this paper, but it is almost sure that the estimators proposed here will have a place. For example, they (68) suggested using median, interquartile range, and medcouple (69) as the robust versions of the first three moments (70–72). Obviously now, if one wants to preserve the original relationship between each moment while ensuring maximum robustness, the natural choices are median, median variance, and median third central moment. Analogously to the most robust version of L-moment (73) being trimmed L-moment (74), the central moment now also has its standard most robust version based on the congruence of the central moment kernel distributions generated from unimodal distributions.

More generaly, parametrics, nonparametrics, and semiparametrics are the current three main branches of statistics. Consistent robust estimation is impossible without specific parametric assumptions. Maximum likelihood was first introduced by Fisher in 1922 (75) in a multinomial model and later generalized by Cramér (1946), Hájek (1970), and Le Cam (1972) (31, 37, 76). Besides Newcomb (2, 3), the general robust estimation of parametric models dates back to 1939, when Wald (77) suggested the use of minimax estimates to solve such problems. Hodges and Lehmann in 1950 (78) expanded upon this concept and obtained minimax estimates for a series of important problems. It was soon clear that a minimax estimator should be a Bayes estimator with regard to the least favorable prior distribution of θ as a minimax estimator is the best in the worst case scenario. Following Huber's seminal work (4), M-statistics have dominated the field of parametric robust statistics for over half a century. In 1984, Bickel addressed the challenge of robustly estimating the parameters of a linear model while acknowledging the possibility that the model may be invalid, but still within the confines of a larger model (79, 80). As the title Parametric Robustness: Small Biases can be Worthwhile suggests, biases exists, but by carefully designing the estimators, they can be very small. The study of semiparametric models was initiated by Stein (81) (1956). Estimation of the center of symmetry for an unknown symmetric distribution is an important example in his paper. The adaptive estimation of the center of symmetry was studied by van Eeden (1970) and Takeuchi (1971) (82, 83). Bickel, in 1982, simplified the general heuristic necessary condition proposed by Stein (81) (1956) and derived sufficient conditions for this type of problem, adaptive estimation (84). As pointed out in Begun, Hall, Huang, and Wellner's paper (1983) and their semiparametrics textbook with Bickel, Klaassen, and Ritov (1993) (85, 86), the two problems, semiparametrics (or adaptive estimation) and parametric robustness, are closely related but different. The paradigm shift here opens up the possibility that by defining a large semiparametric model, constructing estimators simultaneously for two or more very different semiparametric/parametric models within the large semiparametric model, then even for a seemingly "wrong" parametric model belongs to the large semiparametric model but not to the semiparametric/parametric models used for calibration, their performance might still be near-optimal due to the common nature shared by the models used by the estimators. The models can be directly expanded and not limited to a single parametric form. Maybe it can be named as comparametrics. Closely related topics are "mixture model" and "constraint defined model" generalized in (86) and the method of sieves, introduced by Grenander in 1981 (87). Furthermore, it shows that by utilizing the invariant structure of probability distributions and their measures, it is possible to construct consistent robust estimators without considering the residuals. Maybe this class of estimators can be named as I-statistics. As building blocks of statistics, invariant moments provide an option for estimating distribution parameters robustly and near-consistently with moderate variances under mild assumptions. This can improve the consistency of statistical results across studies, particularly when heavy-tailed distributions may be present (88–92).

969

970

971

972

974

975

976

977

978

979

981

982

983

984

985

986

987

988

989

990

991

992

993

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1020

1021

1022

1023

1025

1027

1029

1031

1032

1034

1035

Data Availability. Data for Table 1 are given in SI Dataset S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I gratefully acknowledge the constructive comments made by the editor which substantially improved the clarity and quality of this paper.

- CF Gauss, Theoria combinationis observationum erroribus minimis obnoxiae. (Henricus Dieterich). (1823).
- S Newcomb, A generalized theory of the combination of observations so as to obtain the best result. Am. journal Math. 8, 343–366 (1886).
- S Newcomb, Researches on the motion of the moon. part ii, the mean motion of the moon and other astronomical elements derived from observations of eclipses and occultations extending from the period of the babylonians until ad 1908. *United States. Naut. Alm. Off. Astron. paper*; v. 9 9 1 (1912)
- 4. PJ Huber, Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964).
- X He, WK Fung, Method of medians for lifetime data with weibull models. Stat. medicine 18, 1993–2009 (1999).
- T Seki, S Yokoyama, Simple and robust estimation of the weibull parameters. Microelectron Reliab. 33, 45–52 (1993).
- D Olive, Robust estimators for transformed location scale families. Unpubl. manuscript available from (www. math. siu. edu/olive/preprints. htm) (2006).
- RV Hogg, Adaptive robust procedures: A partial review and some suggestions for future applications and theory. J. Am. Stat. Assoc. 69, 909–923 (1974).
- A. All. Stat. Assoc. 63, 909–923 (1974).
 B.J. Hyndman, Y. Fan, Sample quantiles in statistical packages. The Am. Stat. 50, 361–365 (1996).
- C Bernard, R Kazzi, S Vanduffel, Range value-at-risk bounds for unimodal distributions under partial information. *Insur. Math. Econ.* 94, 9–24 (2020).
- PJ Bickel, EL Lehmann, Descriptive statistics for nonparametric models. iii. dispersion in Selected works of EL Lehmann. (Springer), pp. 499–518 (2012).
- PJ Bickel, EL Lehmann, Descriptive statistics for nonparametric models iv. spread in Selected Works of EL Lehmann. (Springer), pp. 519–526 (2012).
- PJ Rousseeuw, C Croux, Alternatives to the median absolute deviation. J. Am. Stat. association 88, 1273–1283 (1993).
- P Janssen, R Serfling, N Veraverbeke, Asymptotic normality of u-statistics based on trimmed samples. J. statistical planning inference 16, 63–74 (1987).
- J Hodges, E Lehmann, Matching in paired comparisons. The Annals Math. Stat. 25, 787–791 (1954).

- S Dharmadhikari, K Jogdeo, Unimodal laws and related in A Festschrift For Erich L, Lehmann. 16. (CRC Press), p. 131 (1982).
- 17. AY Khintchine, On unimodal distributions. Izv. Nauchno-Isled. Inst. Mat. Mech. 2, 1-7 (1938).
- 18. S Purkayastha, Simple proofs of two results on convolutions of unimodal distributions. Stat. & probability letters 39, 97-100 (1998).
- 1041 19. RA Fisher, Moments and product moments of sampling distributions. Proc. Lond. Math. Soc. 1042 2. 199-238 (1930).
 - 20. PR Halmos. The theory of unbiased estimation. The Annals Math. Stat. 17, 34–43 (1946).
 - W Hoeffding, A class of statistics with asymptotically normal distribution. The Annals Math. Stat 19 293-325 (1948)
- 1046 PM Heffernan, Unbiased estimation of central moments by using u-statistics. J. Royal Stat. 1047 Soc. Ser. B (Statistical Methodol, 59, 861–863 (1997).
- 1048 23 D Fraser, Completeness of order statistics. Can. J. Math. 6, 42-45 (1954).
- 1049 AJ Lee, U-statistics: Theory and Practice. (Routledge), (2019).

1036

1037

1038

1039

1040

1043

1044

1045

1050

1053

1054

1055

1056

1057

1058

1059

1060 1061

1062

1063

1064

1066

1067

1068

1069

1070

1074

1076

1077

1078

1079

1081

1086

1087

1088

1089

1090

1093

1094

1095

1096

1097

1102

1103

1109

1110 1111

1112

1115

1116

1119

- RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76-86 (1984).
- 1051 I Gijbels, P Janssen, N Veraverbeke, Weak and strong representations for trimmed u-statistics. Probab. theory related fields 77, 179-194 (1988). 1052
 - B Efron, Bootstrap methods: Another look at the jackknife. The Annals Stat. 7, 1-26 (1979).
 - PJ Bickel, DA Freedman, Some asymptotic theory for the bootstrap. The annals statistics 9, 1196-1217 (1981).
 - 29 KB Athreya, M Ghosh, LY Low, PK Sen, Laws of large numbers for bootstrappedu-statistics. J. statistical planning inference 9, 185-194 (1984).
 - R Helmers, P Janssen, N Veraverbeke, Bootstrapping U-quantiles. (CWI. Department of Operations Research, Statistics, and System Theory [BS]), (1990).
 - H Cramér, Mathematical methods of statistics. (Princeton university press) Vol. 43, (1999).
 - E Joly, G Lugosi, Robust estimation of u-statistics. Stoch. Process. their Appl. 126, 3760-3773
 - P Laforgue, S Clémençon, P Bertail, On medians of (randomized) pairwise means in International Conference on Machine Learning. (PMLR), pp. 1272–1281 (2019).
- 1065 P Daniell, Observations weighted according to order. Am. J. Math. 42, 222-236 (1920)
 - PJ Bickel, , et al., Some contributions to the theory of order statistics in Proc. Fifth Berkeley Sympos, Math. Statist, and Probability, Vol. 1, pp. 575-591 (1967).
 - H Chernoff, JL Gastwirth, MV Johns, Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. The Annals Math. Stat. 38, 52-72 (1967).
 - L LeCam, On the assumptions used to prove asymptotic normality of maximum likelihood estimates. The Annals Math. Stat. 41, 802-828 (1970).
- 1071 1072 P Bickel, E Lehmann, Descriptive statistics for nonparametric models i, introduction in Selected 1073 Works of EL Lehmann. (Springer), pp. 465-471 (2012).
- PJ Bickel, EL Lehmann, Descriptive statistics for nonparametric models ii. location in selected 1075
 - works of EL Lehmann. (Springer), pp. 473-497 (2012). P Janssen, R Serfling, N Veraverbeke, Asymptotic normality for a general class of statistical
 - functions and applications to measures of spread. The Annals Stat. 12, 1369-1379 (1984). T Lai, H Robbins, K Yu, Adaptive choice of mean or median in estimating the center of a
 - symmetric distribution. Proc. Natl. Acad. Sci. 80, 5803-5806 (1983).
- PS Laplace, Theorie analytique des probabilities. (1812). 1080
 - E Samuel-Cahn, Combining unbiased estimators. The Am. Stat. 48, 34 (1994).
- Y Chan, X He, A simple and competitive estimator of location. Stat. & Probab. Lett. 19, 1082 137-142 (1994). 1083
- G Damilano, P Puig, Efficiency of a linear combination of the median and the sample mean: 1084 45. The double truncated normal distribution, Scand. J. Stat. 31, 629-637 (2004). 1085
 - RD Richtmyer, A non-random sampling method, based on congruences, for" monte carlo" 46. problems, (New York Univ., New York. Atomic Energy Commission Computing and Applied ...), Technical report (1958).
 - 47. IM Sobol', On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vvchislitel'noi Matematiki i Matematicheskoi Fiziki 7, 784-802 (1967).
- KA Do, P Hall, Quasi-random resampling for the bootstrap. Stat. Comput. 1, 13-22 (1991). 1091 48 1092
 - 49. FR Hampel, Contributions to the theory of robust estimation. (University of California, Berkeley). (1968)
 - MG Genton, A Lucas, Comprehensive definitions of breakdown points for independent and 50. dependent observations. J. Royal Stat. Soc. Ser. B (Statistical Methodol. 65, 81-94 (2003).
 - SJ Devlin, R Gnanadesikan, JR Kettenring, Robust estimation and outlier detection with correlation coefficients. Biometrika 62, 531-545 (1975).
- 1098 FR Hampel, A general qualitative definition of robustness. The annals mathematical statistics 1099 42 1887-1896 (1971)
- 1100 53. FR Hampel, The influence curve and its role in robust estimation. J. american statistical 1101 association 69 383-393 (1974)
 - PJ Rousseeuw, FR Hampel, EM Ronchetti, WA Stahel, Robust statistics: the approach based on influence functions. (John Wiley & Sons), (2011).
- 1104 AS Nemirovskij, DB Yudin, Problem complexity and method efficiency in optimization. (Wiley-Interscience), (1983) 1105 1106
- MR Jerrum, LG Valiant, VV Vazirani, Random generation of combinatorial structures from a 1107 uniform distribution. Theor. computer science 43, 169-188 (1986). 1108
 - N Alon, Y Matias, M Szegedy, The space complexity of approximating the frequency moments in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. pp. 20-29 (1996).
 - DL Donoho, PJ Huber, The notion of breakdown point. A festschrift for Erich L. Lehmann 157184 (1983).
- J Choudhury, R Serfling, Generalized order statistics, bahadur representations, and sequential 1113 nonparametric fixed-width confidence intervals. J. Stat. Plan. Inference 19, 269–282 (1988). 1114
 - M Bieniek, Comparison of the bias of trimmed and winsorized means. Commun. Stat. Methods **45**, 6641–6650 (2016).
- K Danielak, T Rychlik, Theory & methods: Exact bounds for the bias of trimmed means. Aust. 1118 & New Zealand J. Stat. 45, 83–96 (2003)
 - 62. PL Hsu, H Robbins, Complete convergence and the law of large numbers. Proc. national

- academy sciences 33, 25-31 (1947).
- A Kolmogorov, Sulla determinazione empirica di una loge di distribuzione. Inst. Ital. Attuari. Giorn. 4, 83-91 (1933).

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1145

1146

1147

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

- 64. M Drton, H Xiao, Wald tests of singular hypotheses, Bernoulli 22, 38-59 (2016).
- 65. NS Pillai, XL Meng, An unexpected encounter with cauchy and lévy. The Annals Stat. 44, 2089-2097 (2016).
- JE Cohen, RA Davis, G Samorodnitsky, Heavy-tailed distributions, correlations, kurtosis and taylor's law of fluctuation scaling. Proc. Royal Soc. A 476, 20200610 (2020).
- 67. M Brown, JE Cohen, CF Tang, SCP Yam, Taylor's law of fluctuation scaling for semivariances and higher moments of heavy-tailed data, Proc. Natl. Acad. Sci. 118, e2108031118 (2021).
- WB Lindquist, ST Rachev, Taylor's law and heavy-tailed distributions. Proc. Natl. Acad. Sci. 118. e2118893118 (2021).
- 69 G Brys, M Hubert, A Struyf, A robust measure of skewness. J. Comput. Graph. Stat. 13, 996-1017 (2004).
- DC Hoaglin, F Mosteller, JW Tukey, Exploring data tables, trends, and shapes. (John Wiley & Sons), (2011).
- PJ Huber, Wiley series in probability and mathematics statistics. Robust statistics pp. 309–312 (1981).RA Maronna, RD Martin, VJ Yohai, M Salibián-Barrera, Robust statistics: theory and methods
- (with R). (John Wiley & Sons), (2019). JR Hosking, L-moments: Analysis and estimation of distributions using linear combinations of
- order statistics. J. Royal Stat. Soc. Ser. B (Methodological) 52, 105-124 (1990). EA Elamir, AH Seheult, Trimmed I-moments, Comput. Stat. & Data Analysis 43, 299-314
- RA Fisher, On the mathematical foundations of theoretical statistics. Philos. transactions Royal Soc. London. Ser. A, containing papers a mathematical or physical character 222, 309-368
- J Hájek, Local asymptotic minimax and admissibility in estimation in *Proceedings of the sixth* Berkeley symposium on mathematical statistics and probability. Vol. 1, pp. 175-194 (1972).
- A Wald, Contributions to the theory of statistical estimation and testing hypotheses. The Annals Math. Stat. 10, 299-326 (1939).
- J Hodges, EL Lehmann, Some problems in minimax point estimation in Selected Works of EL Lehmann. (Springer), pp. 15-30 (2012).
- P Bickel, Parametric robustness: small biases can be worthwhile. The Annals Stat. 12,
- 80. PJ Bickel, Robust regression based on infinitesimal neighbourhoods. The Annals Stat. pp.
- C Stein, , et al., Efficient nonparametric testing and estimation in Proceedings of the third Berkeley symposium on mathematical statistics and probability. Vol. 1, pp. 187-195 (1956).
- C Van Eeden, Efficiency-robust estimation of location. The Annals Math. Stat. 41, 172-181 (1970).
- 83. K Takeuchi, A uniformly asymptotically efficient estimator of a location parameter. J. Am. Stat. Assoc. 66, 292-301 (1971).
- 84. PJ Bickel, On adaptive estimation. The Annals Stat. 10, 647-671 (1982).
- 85. JM Begun, WJ Hall, WM Huang, JA Wellner, Information and asymptotic efficiency in parametric-nonparametric models. The Annals Stat. 11, 432-452 (1983).
- P Bickel, CA Klaassen, Y Ritov, JA Wellner, Efficient and adaptive estimation for semiparametric models. (Springer) Vol. 4. (1993).
- 87. U Grenander, Abstract Inference. (1981).
- JT Leek, RD Peng, Reproducible research can still be wrong: adopting a prevention approach. 88 Proc. Natl. Acad. Sci. 112, 1645-1646 (2015).
- 89. B Baribault, et al., Metastudies for robust tests of theory, Proc. Natl. Acad. Sci. 115, 2607–2612 (2018)
- 90. MJ Schuemie, G Hripcsak, PB Ryan, D Madigan, MA Suchard, Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proc. Natl. Acad. Sci. 115, 2571-2577 (2018).
- P Patil, G Parmigiani, Training replicable predictors in multiple studies. Proc. Natl. Acad. Sci. 115. 2578-2583 (2018).
- 92. E National Academies of Sciences, et al., Reproducibility and Replicability in Science. (National 1178 Academies Press), (2019). 1179

12 | Lee