Tutorial 3 (with solution)

Relations

Q.1 Properties of Relation

Let
$$A = \{1, 2, 3, 4\}$$
. Define a relation R on A by $R = \{(1,2), (1,3), (2,3), (4,4)\}$.

- a) Is it reflexive?
- b) Is it symmetric?
- c) Is it antisymmetric?
- d) Is it transitive?

Q.1 (solution)

- a) No
- b) No
- c) Yes
- d) Yes

Q.2 Properties of Relation

Let A be the set of all lines in the 2-dimensional plane. Let R be the relation on A defined by l_1Rl_2 iff l_1 is perpendicular to l_2 .

- a) Is it reflexive?
- b) Is it symmetric?
- c) Is it antisymmetric?
- d) Is it transitive?

Q.2 (solution)

- a) No
- b) Yes
- c) No
- d) No

Q.3 Equivalence Relation

Let *S* be the set of all digital logic circuit with two inputs and one output.

Let *R* be defined on *S* as follows:

 c_1Rc_2 iff c_1 has the same input/output table as c_2 .

- *a) Is R* an equivalence relation? Why?
 - 1. Yes
 - 2. No

Q.3 Equivalence Relation

Let *S* be the set of all digital logic circuit with two inputs and one output.

Let *R* be defined on *S* as follows:

 c_1Rc_2 iff c_1 has the same input/output table as c_2 .

- b) How many distinct equivalence classes are there?
 - *1.* 2⁴
 - $2. 2^3$
 - $3. 2^2$

Q.3 Equivalence Relation

Let *S* be the set of all digital logic circuit with two inputs and one output.

Let *R* be defined on *S* as follows:

 c_1Rc_2 iff c_1 has the same input/output table as c_2 .

c) Find two different circuits that are in the same equivalence class.

Q.3 (solution)

- a) Check the three defining conditions. Details omitted.
- b) There are $2^4 = 16$ equivalence classes.
- c) An example:

Q.4 Partial Order

Let $A = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$. Consider the relation R on A defined as xRy iff x is a factor of y.

- a) Is *R* a partial order? Why?
 - 1. Yes
 - 2. No
- b) List all maximal elements.
- c) List all minimal elements.

Q.4 (solution)

- a) Yes. Check the three defining conditions of partial order. Details omitted.
- b) Maximal elements: 8, 9, 10, 11, 12, 13, 14, 15
- c) Minimal elements: 2, 3, 5, 7, 11, 13

Q.5 Congruence

Let $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Is $a + c \equiv b + d \pmod{n}$ right? Prove or disprove it.

- 1. Yes
- 2. No

Q.5 (solution)

By the definition of congruences,

$$a = kn + b$$
 for some integer k .

c = hn + d for some integer h.

Adding the two equations,

$$a + c = kn + hn + b + d$$
$$= (k + h)n + (b + d).$$

□ Since (k + h) is an integer, $a + c \equiv b + d \pmod{n}$.

Q.E.D.

Q.5 (a question from one student)

Is $a + c \pmod{n} \equiv a \pmod{n} + c \pmod{n}$ right?

Yes. The following is the proof.

■ By the definition of congruences, $(a \equiv b \pmod{n})$ and $c \equiv d \pmod{n}$) a = kn + b for some integer k. c = hn + d for some integer h. a + c = kn + hn + b + d = (k + h)n + (b + d).

 $\equiv b + d \pmod{n}$.

Q.5 (a question from one student)

□ While a(mod n) + c(mod n) = $b + d \equiv b + d \pmod{n}$. Thus, $a + c \pmod{n} \equiv a \pmod{n} + c \pmod{n}$.

Q.E.D.

More about Module n

"A fundamental fact about congruence modulo *n* is that if you first perform an addition, subtraction, or multiplication on integers and then reduce the result modulo *n*, you will obtain the same answer as if you had first reduced each of the numbers modulo *n*, per- formed the operation, and then reduced the result modulo *n*. " -----Chapter 8, S. S. Epp,

Discrete Mathematics with Applications, 4th ed., Brooks Cole, 2010.