ROC Example

EE 361M
Introduction to Data Mining
Fall 2016

Receiver Operating Characteristic (ROC) curve

- Shows performance of binary classifier for varying decision threshold
- TPR (True Positive Rate):

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

• FPR (False Positive Rate):

$$\frac{FP}{N} = \frac{FP}{FP + TN}$$

True	f(x)
1	0.9
1	0.6
0	0
1	0.3
0	0.1
0	0.1
0	0
0	0.5
0	0
0	0.6

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

True	f(x)	Decision
1	0.9	1
1	0.6	1
0	0	1
1	0.3	1
0	0.1	1
0	0.1	1
0	0	1
0	0.5	1
0	0	1
0	0.6	1

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 0$$

True	f(x)	Decision
1	0.9	1
1	0.6	1
0	0	1 X
1	0.3	1
0	0.1	1 🗙
0	0.1	1 🗙
0	0	1 🗙
0	0.5	1 🗙
0	0	1 X
0	0.6	1 X

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 0$$

$$TPR = \frac{3}{3} = 1$$

$$FPR = \frac{7}{7} = 1$$

True	f(x)	Decision
1	0.9	1
1	0.6	1
0	0	0
1	0.3	1
0	0.1	1 🗙
0	0.1	1 🗙
0	0	0
0	0.5	1 🗙
0	0	0
0	0.6	1 X

$$Decision = \begin{cases} 1 & if \quad f(x) \ge T \\ 0 & if \quad f(x) < T \end{cases}$$

$$T = 0.1$$

$$TPR = \frac{3}{3} = 1$$

$$FPR = \frac{4}{7}$$

True	f(x)	Decision
1	0.9	1
1	0.6	1
0	0	0
1	0.3	1
0	0.1	0
0	0.1	0
0	0	0
0	0.5	1 🗙
0	0	0
0	0.6	1 X

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 0.3$$

$$TPR = \frac{3}{3} = 1$$

$$FPR = \frac{2}{7}$$

True	f(x)	Decision
1	0.9	1
1	0.6	1
0	0	0
1	0.3	0
0	0.1	0
0	0.1	0
0	0	0
0	0.5	1 🗙
0	0	0
0	0.6	1 X

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 0.5$$

$$TPR = \frac{2}{3}$$
$$FPR = \frac{2}{7}$$

True	f(x)	Decision
1	0.9	1
1	0.6	1
0	0	0
1	0.3	0
0	0.1	0
0	0.1	0
0	0	0
0	0.5	0
0	0	0
0	0.6	1 X

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 0.6$$

$$TPR = \frac{2}{3}$$
$$FPR = \frac{1}{7}$$

f(x)	Decision
0.9	1
0.6	0
0	0
0.3	0
0.1	0
0.1	0
0	0
0.5	0
0	0
0.6	0
	0.9 0.6 0 0.3 0.1 0.1 0 0.5

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 0.9$$

$$TPR = \frac{1}{3}$$

$$FPR = \frac{0}{7} = 0$$

f(x)	Decision
0.9	0
0.6	0
0	0
0.3	0
0.1	0
0.1	0
0	0
0.5	0
0	0
0.6	0
	0.9 0.6 0 0.3 0.1 0 0.5 0

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

$$T = 1 \ (+\epsilon)$$

$$TPR = \frac{0}{3}$$
$$FPR = \frac{0}{7} = 0$$

Precision-Recall curve

- Shows performance of binary classifier for varying decision threshold
- Precision (PPV):

$$\frac{TP}{TP + FP}$$

• Recall (TPR):

$$\frac{TP}{TP + FN}$$

Precision-Recall curve Example

True	f(x)
1	0.9
1	0.6
0	0
1	0.3
0	0.1
0	0.1
0	0
0	0.5
0	0
0	0.6

$$Decision = \begin{cases} 1 & if & f(x) \ge T \\ 0 & if & f(x) < T \end{cases}$$

