

Collected Experiment Report: SimpleNN - DeepNN .

16/02/2025

					•	
1	nt	ra	\sim	 \sim t	\sim	n
1		. ()	(1	 (: 1	I()	

This is an automated report for the Experimen	nt with neural netv	works on traffic volume	e dataset; the following
models have been analyzed:			

○ Simp	leNN
--------	------

○ DeepNN

Experiment description:

Experiment with neural networks on traffic volume dataset

Model setup

The models have been used for the following forecast purposes:

- one_step
- multistep
- o recursive

The models have been optimized using the following hyperparameters:

- optimizer: ['adam', 'sgd']

- epochs: [100, 200]

- batch_size: [32, 64]

- scaler: [None, StandardScaler(), MinMaxScaler(), RobustScaler(), PowerTransformer()]

And with the following search algorithms:

o grid

 $\quad \circ \, random \\$

The used performance measure is the neg_mean_absolute_error measure.

Dataset setup

The baseline dataset used for these forecasts is

the 'Metro Interstate Traffic Volume with hourly features and holiday markings.' dataset: 'Metro Interstate Traffic Volume with hourly features and holiday markings.'.

The test size used for the forecasts is 0.2.

ODataset 1

- name: univariate_lagged

- dataset_type: univariate

prediction_type: one_step

- components: ['one_step_target', 'lagged_target']

ODataset 2

- name: univariate_temporal

- dataset_type: univariate

prediction_type: one_step

- components: ['one_step_target', 'temporal_features']

ODataset 3

name: multivariate_lagged

- dataset_type: multivariate

prediction_type: one_step

- components: ['one_step_target', 'lagged_target', 'feature_columns']

ODataset 4

- name: multivariate_lagged_temporal

- dataset_type: multivariate

prediction_type: one_step

- components: ['one_step_target', 'temporal_features', 'feature_columns', 'lagged_target']

ODataset 5

- name: univariate_lagged_multistep

- dataset_type: univariate

- prediction_type: multistep

- components: ['multistep_target', 'lagged_target']

ODataset 6

- name: multivariate_lagged_temporal_multistep

- dataset_type: multivariate

- prediction_type: multistep

- components: ['multistep_target', 'temporal_features', 'feature_columns', 'lagged_target']

Results

For the models; SimpleNN, DeepNN, the following models and datasets yielded the best results.

The best model for one_step forecasting.

The best model for one_step forecasting is the DeepNN model.

The model has been trained on the multivariate_lagged_temporal_lags10 dataset.

The best score for the one_step forecasting is 0.9670901298522949.

Best DeepNN forecast over time

The best model for multistep forecasting.

The best model for multistep forecasting is the DeepNN model.

The model has been trained on the multivariate_lagged_temporal_multistep_lags10_steps10 dataset.

The best score for the multistep forecasting is 0.8332775235176086.

Best predicted days for DeepNN.

Worst predicted days for DeepNN.

Steps plots for DeepNN forecasts over time

Multistep forecast for DeepNN_multistep_multivariate_lagged_temporal_multistep_lags10_steps10, Traffic Volume, average performance 0.8332775235176086, step score 0.7077272630710357

The best model for recursive forecasting.

The best model for recursive forecasting is the DeepNN model.

The model has been trained on the multivariate_lagged_temporal_lags10 dataset.

The best score for the recursive forecasting is 0.7752858400344849.

Best predicted days for DeepNN.

Worst predicted days for DeepNN.

Steps plots for DeepNN forecasts over time

