Bogdan Alex Georgescu Mathématiques 6e année Géométrie June 26, 2023

P2. Médiane dans un triangle rectangle

Problème. Considérez le triangle rectangle $\triangle ABC$, $m(\angle A) = 90^{\circ}$ et M le milieu de BC comme indiqué dans la Fig. 1.

Démontre que $AM = \frac{BC}{2}$.

FIGURE 1. Triangle rectangle et médiane.

Preuve:

La preuve sera complétée en montrant que BAM est isocèle c'est-à-dire AM = BM . Puisque M est le milieu de BC on conclura $AM = BM = \frac{BC}{2}$.

Pour prouver que $AM \cong BM$ il est préférable d'utiliser une construction auxiliaire. Pour relier AM et BM, il est préférable utiliser la perpendiculaire de M à AB. E est un point sur AB tel que $ME \perp AB$.

FIGURE 2. Choix des conditions auxiliaires.

Pour prouver que $AM \cong BM$, la paire de triangles semblables la plus utile est: $\triangle ABC$ et $\triangle EBM$; Considérez la similitude de ces triangles et $BM = \frac{BC}{2}$. Cela implique que E est le milieu de AB. Comme $AE \cong BE$ et qu'ils ont un angle droit, on peut affirmer que le triangle $\triangle AEM$ est congru à $\triangle BEM$.

Le cas de congruence observé est côté-angle-côté.

Une des conséquences de la congruence des triangles est que $AM \cong BM$.

On en conclut: $AM = BM = \frac{BC}{2}$.

APT. 805 80 POINT MCKAY CR NW, CALGARY, ALBERTA, CANADA, T3B 4W4