MOwNiT, Laboratorium 2., Nikodem Korohoda

Za pomocą interpolacji Lagrange'a oraz Newtona, dla punktów równoodległych oraz punktów Chebysheva wyznaczono przybliżenia funkcji $e^{4*\cos 2x}$, a następnie określono za pomocą dwóch sposobów dla jakiej liczby węzłów niedokładność między funkcją oczekiwaną a otrzymaną jest najmniejsza.

W poszukiwaniu najlepszej dokładności przeanalizowane kolejno wszystkie liczby węzłów od 3 do 30 (powyżej 30 powstawały błędy podczas obliczania funkcji)

Niebieskimi liniami zaznaczono uzyskane wielomiany, pomarańczowymi liniami funkcję $e^{4*\cos 2x}$, zaś niebieskie punkty oznaczają znane węzły.

Wyznaczone liczby węzłów dla których największa różnica między wartością oczekiwaną a otrzymaną jest najmniejsza:

Metoda Newtona, punkty Chebysheva, 29 węzłów

Wyznaczone liczby węzłów dla których suma podniesionych do kwadratu różnic między wartością oczekiwaną a otrzymaną jest najmniejsza:

Metoda Lagrange'a, punkty Chebysheva, 29 węzłów

Metoda Newtona, punkty równoodległe, 8 węzłów

Metoda Newtona, punkty Chebysheva, 29 węzłów

Tabela 1. przedstawia różnicę między wartością oczekiwaną a otrzymaną, która jest najmniejsza dla poszczególnych technik oraz ilość węzłów dla których owa różnica została znaleziona

Różnica (liczba węzłów)	Metoda Lagrange'a	Metoda Newtona
Punkty równoodległe	~ 50,67 (10)	~ 50,67 (10)
Punty Chebysheva	~ 12,52 (29)	~ 14,74 (29)

Tabela 1.

Tabela 2. przedstawia sumę podniesionych do kwadratu różnic między wartością oczekiwaną a otrzymaną, która jest najmniejsza dla poszczególnych technik oraz ilość węzłów dla których owa suma została znaleziona

Suma (liczba węzłów)	Metoda Lagrange'a	Metoda Newtona
Punkty równoodległe	~ 313861,46 (8)	~ 313861,46 (8)
Punty Chebysheva	~ 44066,13 (29)	~ 44068,68 (29)

Tabela 2.

Dla wariantu z punktami równoodległymi można zaobserwować efekt Runge'go (tzn. znaczne odchylenia od wartości oczekiwanej na krańcach przedziału). Poniższy przypadek jest przykładem, że owe odchylenia mogą być bardzo duże – dla 70 węzłów wynoszą wartości w okolicach $3\ast10^{15}$

Dla porównania, w przypadku punktów Chebysheva efekt Runge'go nie występuje (dla 70 węzłów największa odległość między funkcjami wynosi 1,69). Dobrą praktyką jest zatem wykorzystywanie rozkładu punktów Chebysheva zamiast punktów równoodległych

Dla metody Newtona, w przypadku obliczania wielomianu dla znaczącej liczby węzłów, błędy obliczeniowe pojawiają się znacznie szybciej niż w przypadku metody Lagrange'a. Jak widać poniżej, dla 70 węzłów wykres otrzymanej funkcji jest zdecydowanie błędny.

Wnioski

Nie powinno się wykorzystywać równomiernego rozkładu węzłów, ponieważ może prowadzić to do powstawania efektu Runge'go. Zamiast tego, należy skorzystać np. z rozkładu punktów Chebysheva.

Metoda Lagrange'a jest lepsza niż metoda Newtona w przypadku kiedy operujemy na większej liczbie węzłów. Prawdopodobnie wynika to z powodu niedokładności obliczeń dla liczb zmiennoprzecinkowych, która to powoduje spore rozbieżności funkcji otrzymanej względem oczekiwanej w przypadku stosowanie metody Newtona.