Regression I

COMP9417, 23T1

- Intro
- 2 Thinking Machine Learning
- 3 Linear Regression
- **5** Question 2 (a \rightarrow h)

Section 1

Intro

Intro

What you'll get from this course:

- Understand the basis of machine learning
- \bullet ML algorithms and the math behind them
- Ability to implement these ideas in Python

How to do well:

- Fully understand tut questions from week to week (they pile up)
- Don't be afraid of math or notation, break it all down
- Keep researching

What do you prefer?

Intro

000

More theory, more practice (i.e Python and using packages), going through questions, consultation etc.

Thinking Machine Learning

Thinking Machine Learning

We try to make sense of data using mathematics to help us quantify what we know.

A standard way to break the problem down is as follows:

- ullet We have 'input' data X and targets/outputs y
- $\bullet \ \, \text{Our data can be modelled as} \,\, y = f(X)$
- \bullet Goal is to find the best approximation for f as \hat{f}

We define the quality of our approximation (\hat{f}) by using a error/loss function.

Section 3

Linear Regression

Linear Regression

We deduct and assume a linear relationship between X and y.

In this simple case, our model will take the form:

$$\hat{y} = w_0 + w_1 X$$

How do we find the optimal w_0 and w_1 ?

- \bullet Target function has ≈ 0 distance to all points
- We can define a basic loss function with one glaring issue:

$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

To make life easy, we define our loss function as:

$$L(w_0,w_1)=\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y_i})^2$$
 a.k.a MSE
$$=\frac{1}{n}\sum_{i=1}^n(y_i-w_0-w_1x_i)^2$$
 by definition

The minimum of our loss function w.r.t w_0 and w_1 will be their optimal values respectively.

Question 1 (a \rightarrow c) \bullet 000000000

Question 1 (a \rightarrow c)

Derive the least-squares estimates for the univariate linear regression model.

i.e Solve:

$$\underset{w_0, w_1}{\operatorname{arg\,min}} L(w_0, w_1)$$

$$\underset{w_0, w_1}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2$$

First we differentiate $L(w_0, w_1)$ with respect to w_0 ,

$$\frac{\partial L(w_0, w_1)}{\partial w_0} = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 - w_1 x_i)$$
$$= -\frac{2}{n} \left(\sum_{i=1}^n y_i - nw_0 - w_1 \sum_{i=1}^n x_i \right)$$

Question 1 (a \rightarrow c)

For the minimum, $\frac{\partial L(w_0, w_1)}{\partial w_0} = 0$,

$$-\frac{2}{n}\left(\sum_{i=1}^{n} y_i - nw_0 - w_1 \sum_{i=1}^{n} x_i\right) = 0$$

Question 1 (a \rightarrow c)

To find w_1 , we follow a similar process and use simple simultaneous equations to solve for the final solution.

So,

$$\frac{\partial L(w_0, w_1)}{\partial w_1} = -\frac{2}{n} \sum_{i=1}^n x_i (y_i - w_0 - w_1 x_i)$$
$$= -\frac{2}{n} \left(\sum_{i=1}^n x_i y_i - w_0 \sum_{i=1}^n x_i - w_1 \sum_{i=1}^n x_i^2 \right)$$

Question 1 (a \rightarrow c)

$$\frac{\partial L(w_0, w_1)}{\partial w_1} = 0$$
,

$$\frac{1}{n} \left(\sum_{i=1}^{n} x_i y_i - w_0 \sum_{i=1}^{n} x_i - w_1 \sum_{i=1}^{n} x_i^2 \right) = 0$$

$$\overline{xy} - w_0 \overline{x} - w_1 \overline{x^2} = 0$$

(2)

$$\overline{xy} - w_0 \overline{x} - w_1 \overline{x^2} = 0$$

$$w_1 = \frac{\overline{xy} - w_0 \overline{x}}{\overline{x^2}}$$

Sub (1) into (2):

$$w_{1} = \frac{xy - (y - w_{1}x)x}{\overline{x^{2}}}$$

$$w_{1} = \frac{\overline{xy} - \overline{x}\overline{y} + w_{1}\overline{x}^{2}}{\overline{x^{2}}}$$

$$w_{1}(\frac{\overline{x^{2}} - \overline{x}^{2}}{\overline{x^{2}}}) = \frac{\overline{xy} - \overline{x}\overline{y} + w_{1}\overline{x}^{2}}{\overline{x^{2}}}$$

$$w_{1} = \frac{\overline{xy} - \overline{x}\overline{y}}{\overline{x^{2}} - \overline{x}^{2}}$$

Finally, we have

$$w_1=rac{\overline{xy}-ar{x}ar{y}}{\overline{x^2}-ar{x}^2}$$
 and $w_0=ar{y}-w_1ar{x}$

1b

Problem: Prove (\bar{x}, \bar{y}) is on the line.

From 1(a), the equation of our line $(\hat{y} = w_0 + w_1 x)$ becomes:

$$\hat{y} = \bar{y} - \bar{x} \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - \bar{x}^2} + \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - \bar{x}^2} x$$

Sub $x = \bar{x}$.

$$\hat{y} = \bar{y} - \bar{x} \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - \bar{x}^2} + \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - \bar{x}^2} \bar{x}$$

$$\hat{y} = \bar{y}$$

 (\bar{x}, \bar{y}) is on the line

000000000

1c

Similar to 1a, though take care with the partial derivatives:

$$\frac{\partial L(w_0, w_1)}{\partial w_0} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)$$

$$\frac{\partial L(w_0, w_1)}{\partial w_1} = -\frac{2}{n} \sum_{i=1}^n x_i (y_i - w_0 - w_1 x_i) + 2\lambda w_1$$

Final result is:

$$w_0 = \bar{y} - w_1 \bar{x}$$

$$w_1 = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - \bar{x}^2 + \lambda}$$

Notice how the coefficients have an inverse relationship with λ .

Question 2 (a \rightarrow h)

Math for multiple linear regression

Say we have our weight vector \boldsymbol{w} and a constant vector \boldsymbol{c} ,

$$\begin{split} \frac{\partial(cw)}{\partial w} &= c^T \\ \frac{\partial(w^Tcw)}{\partial w} &= 2cw \\ \frac{\partial(cw^2)}{\partial w} &= 2cw \end{split}$$

2a

Problem: Show that $\mathcal{L}(w) = \frac{1}{n} \|y - Xw\|_2^2$ has critical point $\hat{w} = (X^T X)^{-1} X^T y$.

To find optimal w, solve $\frac{\partial \mathcal{L}(w)}{\partial w} = 0$

$$\mathcal{L}(w) = \frac{1}{n} (y - Xw)^T (y - Xw)$$

$$= \frac{1}{n} (y^T y - y^T Xw - w^T X^T y + w^T X^T Xw)$$

$$= \frac{1}{n} (y^T y - 2y^T Xw + w^T X^T Xw)$$

To solve for \hat{w} ,

$$-2X^{T}y + 2X^{T}X\hat{w} = 0$$
$$\hat{w} = (X^{T}X)^{-1}X^{T}y$$

2b

Problem: Prove $\hat{w} = (X^T X)^{-1} X^T y$ is a global minimum.

$$\nabla_w^2 \mathcal{L}(w) = \nabla_w (\nabla_w \mathcal{L}(w))$$
$$= \nabla_w (-2X^T y + 2X^T X w)$$
$$= 2X^T X$$

So, for a vector $u \in \mathbb{R}^p$,

$$u^{T}(2X^{T}X)u = 2(u^{T}X^{T})(Xu)$$
$$= 2(Xu)^{T}(Xu)$$
$$= 2\|Xu\|_{2}^{2} \ge 0$$

Therefore, ${\cal L}$ is convex and \hat{w} is the unique global minimum.

$$x_i = \begin{bmatrix} 1 \\ x_{i1} \end{bmatrix}$$
 to represent our input & the bias (w_0)

$$y = egin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
 to represent the target variable

$$w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$
 to represent the parameters

$$X = \begin{bmatrix} 1 & x_{11} \\ 1 & x_{21} \\ \vdots & \vdots \\ 1 & x_{n1} \end{bmatrix}$$

$$X^{T}y = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{11} & x_{21} & \cdots & x_{n1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
$$X^{T}y = \begin{bmatrix} n\bar{y} \\ n\overline{xy} \end{bmatrix}$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{11} & x_{21} & \cdots & x_{n1} \end{bmatrix} \begin{bmatrix} 1 & x_{11} \\ 1 & x_{11} \\ \vdots & \vdots \\ 1 & x_{n1} \end{bmatrix}$$
$$= \begin{bmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{bmatrix}$$
$$= \begin{bmatrix} n & n\bar{x} \\ n\bar{x} & n\bar{x}^{2} \end{bmatrix}$$

$$X^{T}X = \begin{bmatrix} n & n\bar{x} \\ n\bar{x} & n\bar{x}^{2} \end{bmatrix}$$
$$(X^{T}X)^{-1} = \frac{1}{n^{2}\bar{x}^{2} - n^{2}\bar{x}^{2}} \begin{bmatrix} n\bar{x}^{2} & -n\bar{x} \\ -n\bar{x} & n \end{bmatrix}$$
$$= \frac{1}{n(\bar{x}^{2} - \bar{x}^{2})} \begin{bmatrix} \bar{x}^{2} & -\bar{x} \\ -\bar{x} & 1 \end{bmatrix}$$

$$(X^T X)^{-1} X^T y = \frac{1}{n(\overline{x^2} - \bar{x}^2)} \begin{bmatrix} \overline{x^2} & -\bar{x} \\ -\bar{x} & 1 \end{bmatrix} \begin{bmatrix} n\bar{y} \\ n\overline{xy} \end{bmatrix}$$
$$= \frac{1}{\overline{x^2} - \bar{x}^2} \begin{bmatrix} \overline{x^2} \bar{y} - \bar{x} \overline{x} \overline{y} \\ \overline{xy} - \bar{x} \overline{y} \end{bmatrix}$$
$$= \begin{bmatrix} \bar{y} - \hat{w}_1 \bar{x} \\ \frac{\overline{xy} - \bar{x} \bar{y}}{x^2 - \bar{x}^2} \end{bmatrix}$$

2e - Lab

 $Onto\ Jupyter.$

Say we have the classic regression problem with data $X \in \mathbb{R}^{n \times p}$ and target variable $y \in \mathbb{R}^n$. We can define a feature mapping $\phi : \mathbb{R}^p \to \mathbb{R}^K$. For example, say we have p=1 and we choose K=4, our mapping can be as follows

$$\phi(x) = \begin{bmatrix} x, & x^2, & x^3, & x^4 \end{bmatrix}^T$$

So our original model for a data point $i \in [1, n]$ becomes

$$\hat{y_i} = w^t \phi(x_i).$$

We can generalise our transformation to the matrix:

$$\Phi(x) = \begin{bmatrix} \phi(x_1)^T \\ \phi(x_2)^T \\ \vdots \\ \phi(x_n)^T \end{bmatrix} \in \mathbb{R}^{n \times K}$$

As we use the transpose of our transformation, our model now takes the form $\hat{y} = \Phi w$.

This allows us to solve

$$\hat{w} = \underset{w}{\operatorname{arg\,min}} \frac{1}{n} \|y - \Phi w\|_{2}^{2}$$

Which gives us the classic form of the LS solution:

$$\hat{w} = (\Phi^T \Phi)^{-1} \Phi^T y$$

$$\mathsf{MSE}(w) = \operatorname*{arg\,min}_{w} \frac{1}{n} \|y - Xw\|_2^2 \text{ and } \mathsf{SSE}(w) = \operatorname*{arg\,min}_{w} \|y - Xw\|_2^2$$

- i) Is the minimiser of MSE and SSE the same?
- ii) Is the minimum value of MSE and SSE the same?

Section 6

 $3 (a \rightarrow b)$

What is the difference between a population and a sample?

3b

Intro 000

What is population parameter? How can we estimate it?