Moscow 2025

Research of Criminal Cases and Identification of their Important Characteristics

Исследование уголовных дел и выявление их важных характеристик

Software Teamproject

Course project of: Morozova Yulia (DSBA), Khugaeva Dana (AMI), Sheredeko Arina (DSBA) Supervisor: Ilya Munerman (Associate Professor)

Research of Criminal Cases and

Identification of their Important

Characteristics

Presentation plan

General idea

Relevance of the work

Purpose and objectives of the work

Review of Relevant Studies

Dataset preparation

Feature extraction

Visualization and analysis

Vector of future development

Conclusion

Project's GitHuB

General Idea

This project explores how NLP and ML tools can be applied to analyze large volumes of Russian court decisions under Article 228 in a structured and scalable way.

Research of Criminal Cases and Identification of their Important

Characteristics

Relevance

Why it can be useful / relevant?
What tasks does it solve / contribute?

- Handle a big amount of legal information, process the data
- Help human workers with the revision of the criminal cases
- Assist students in their learning of the law (use results for AI assistant)
- Develop a model for predicting court decisions
- Contribute to the AI judge creation
- Lack of ML/NLP studies on Russian court texts

Goal

To develop **automated methods** for extracting and analyzing key features from Russian court decisions under **Article 228** using **machine learning and NLP**, in order to **identify patterns** and potential **biases** in sentencing.

Research of Criminal Cases and

Identification of their Important

Characteristics

Key tasks

- Data Collection & Preprocessing
- Extract features: punishment type/length, drug weight, circumstances, etc.
- Use regular expressions, manual markup, and LLMs
- Visualizations + regression analysis to find patterns

Review of Relevant Literature

Extracting Legal Facts with ML and Embeddings (Luo et al., 2021) [1]

Research of Criminal Cases and

Identification of their Important

Characteristics

Proposed extraction of legal facts (law articles, penalties, etc.) from English texts using TF-IDF, embeddings, Random Forest and SVMs — though models ignored domain-specific topics like drugs.

Legal Data Extraction in Russian Cases (Ivanov et al., 2022) [2]

Used Natasha and spaCy for rule-based extraction from Russian court texts. Focused on articles and penalties, but lacked modern LLMs and did not target drug-related offenses.

LLMs in Legal NLP: GPT-4 for UK Tribunals (Smith et al., 2023) [3]

Applied GPT-4 to extract structure and predict outcomes in 14,000+ UK tribunal cases. Transformer models performed on par with fine-tuned classifiers.

LLMs for Legal Design & Education (Brown et al., 2022) [4]

Explored generative AI in legal innovation — including chatbots, visual maps and tools for student engagement in legal tech courses.

Data Collection and preparation

Research of Criminal Cases and

Identification of their Important

Characteristics

Tool used:

A specialized parser "Если быть точным"

Filters:

Type of case: Criminal Code

Article: 228 Format: CSV

Court level: district, regional

Region: any

Years: 2015-2024

Restriction:

Manual CAPTCHA — restriction by courts

Size:

Volume: $7.16 \text{ GB} \rightarrow 223 \text{ MB}$

Rows: 303 783 Columns: 25

Key columns:

id, entry_date, result_date, court, codex_articles, penalty_type, result_text, region, defendants_gender, judge, case_number, and etc.

Cleaning:

- Removing empty columns and links (dropna)
- Deleting incorrect rows
- Sampling from the received values

Extracted Characteristics

Main text source:

result_text - the full text of the sentence (analyzed to extract key characteristics, including the type of punishment and term).

Research of Criminal Cases and

Identification of their Important

Characteristics

Terms of punishment:

- sentence_years
- sentence_months
- sentence_days
- sentence_hours
- is_suspended
- suspention_years
- suspention_months

Fine:

- fine_is_fixed
- fixed or shared
- fine_amount

the amount of the fine in rubles

Drugs:

- drug_weight
- drug_type

name of the substance

- drug_purpose

sales, storage, transportation, etc.

- drug_amount

significant/large/especially large volume

Factors:

- aggravating_factors
- mitigating_factors

Others:

location

coordinates of the region (lat, lon)

result_type

type of punishment (fine, probation, imprisonment, etc.)

Manual Annotation & "Gold" Dataset

Volume:

150 manually marked-up cases (50 per participant)

Manual Marking of Features:

All key characteristics: punishment type, drug info, circumstances, etc.

Research of Criminal Cases and Identification of their Important

Characteristics

Purpose:

- To evaluate model accuracy (comparison against human labels)
- Calculate metrics: precision, recall, F1-score
- Identify which features are predicted accurately and which require improvement

Extracting characteristics from sentencing texts using LLM

Research of Criminal Cases and

Identification of their Important

Characteristics

Model: DeepPavlov/rubert-base-cased (Russian, cased, 12-layer, 768-hidden, 12-heads, 180M parameters)

Tasks:

- Classify result_type (6 punishment types)
- Classify drug_amount category (3 categories)
- Extract multiple classes for mitigating_factors

Implementation:

- Extract key sentence fragments using RE
- Fine-tune on labeled dataset of 150 cases
- Predict on 10,000 cases from the random sample

			_	× .
	precision	recall	f1-score	
исправительные работы	1.00	0.75	0.86	
лишение свободы	0.89	1.00	0.94	
обязательные работы	1.00	1.00	1.00	
ограничение свободы	1.00	0.50	0.67	
условное осуждение	0.97	1.00	0.99	
штраф	1.00	1.00	1.00	
accuracy			0.98	
macro avg	0.98	0.88	0.91	
weighted avg	0.98	0.98	0.98	/
	0.00	Solid Andrew	Wike 15-60 - 60	
значительный	0.89	1.00	0.94	
крупный	1.00	0.64	0.78	
accuracy			0.91	
macro avg	0.94	0.82	0.86	
weighted avg	0.92	0.91	0.90	
признание вины	0.93	1.00	0.97	
раскаяние	0.83	1.00	0.91	
for other 19 classes of mit	igating_facto	rs metric va	lues are 0.0)0
micro avg	0.88	0.57	0.69	

0.08

0.51

0.88

macro avg

weighted avg

samples avg

0.10

0.57

0.62

0.09

0.54

0.70

Performance:

- + result_type F1 0.95
- + drug_amount F1 up to 0.94 (but no data for "особо крупный")
- + mitigating_factors F1 0.09 (low)

Limitations:

- Small training set
- Imbalanced labels
- Complex and dispersed wording in legal texts

the model overfitted because of the imbalance of classes

Find numeric characteristics using Regular Expressions

Why regex:

Regular expressions are a simple and effective tool for extracting structured info (e.g., numbers, keywords) from unstructured legal text — without model training. Was used to extract drug_weight.

Research of Criminal Cases and

Identification of their Important

Characteristics

Implementation:

- Python script using pandas + re
- Patterns searched for values near keywords like "gram", "g.", etc.
- Fractional and integer numbers handled
- Context-limited to prevent false matches (e.g., medical data)

Limitations:

- Didn't convert units (mg/kg → grams)
- Skipped text fragments could miss info
- Complex wording (e.g., "one gram") reduced accuracy
- No aggregation of multiple doses

Despite its simplicity, the RE approach worked reliably across 150 human-annotated cases.

Research of Criminal Cases and

Identification of their Important

Characteristics

Results summary

The extracted features achieved high accuracy across the board, with most exceeding 0.90.

Key legal attributes such as result_type, is_suspended, and drug_weight were identified with strong reliability, confirming the effectiveness of our LLM and regex-based **pipelines**.

Feature	Accuracy			
result_type	0.9463			
$sentence_year$	0.8800			
$sentence_month$	0.9267			
$sentence_day$	0.9133			
sentence_hour	0.9467			
is_suspended	0.9600			
suspension_years	0.9067			
suspension_months	0.9800			
is_fixed_fine	0.9600			
$fine_amount$	0.9333			
drug_weight	0.9400			
drug_amount	0.9060			

Combining All Results

Steps:

10 CSVs (0–10k cases) combined using a Python script Duplicate headers removed Combined Predictions:

Research of Criminal Cases and Identification of their Important

Characteristics

- Regex outputs (e.g., fines, durations)
- LLM/NER predictions

All matched by id into a unified DataFrame

Final Cleanup & Validation:

- Removed duplicates
- Verified presence of key features
- Minor columns added/removed for visualization purposes

Was done for:

- Analysis & statistics
- Dashboards (e.g., Tableau)
- Model performance evaluation

Visualizations

Research of Criminal Cases and Identification of their Important

Characteristics

To enhance the spatial analysis, a new feature — **region coordinates** — was added to the dataset.

Steps Taken:

- 1. Selected region names from 10,000 cases.
- Manually created a region-to-coordinates dictionary (latitude & longitude).
- 3. Added latitude, longitude columns to the dataset.
- Grouped by region → counted number of cases per region.

Output:

An interactive choropleth map showing the distribution of Article 228 cases across Russian regions.

Color gradient:

Light green → few cases

Bright red → high case concentration

Insights:

Easily identifies **regions with anomalously high incidence**, enabling deeper regional analysis.

Research of Criminal Cases and

Identification of their Important

Characteristics

Visualizations

Gender	Amount		
Women	777		
Men	8480		
Mixed	50		
Unknown	476		

Preprocessing:

- Normalized the defendants_gender column.
- Cleaned ambiguous entries (e.g., "M, F", "F.", "-")

Created unified categories:

Men, Women, Mixed, Unknown

Key Insight:

- Clear gender imbalance: majority of cases involve male defendants.
- Rare instances of mixed or unspecified gender cases.

The dashboard: a) Distribution of result_type by drug_amount category, b) Overall distribution of predicted result_type, c) Suspended vs Non-Suspended sentences by result_type

Number of cases distribution for drug weight for different scale: a) from 0 to 62 grams, b) from 62 to 250 grams

Research of Criminal Cases and

Identification of their Important

Characteristics

The distribution of drug weights shows sharp peaks at legally significant thresholds like 1g, 100g, and 200g, suggesting influence from law enforcement practices. These patterns indicate that weight values may reflect not only actual possession but also legal boundaries and potential procedural manipulation.

Hypothesis 1

H: Larger drug amounts reduce the probability of receiving lenient punishments (fines or suspended sentences) compared to imprisonment.

Research of Criminal Cases and Identification of their Important

Characteristics

Methodology: Multinomial logistic regression model using

- predicted_amount_bin = 1 if drug amount is large
- predicted_amount_bin = 0 if drug amount is significant

Results:

- Statistically significant effect for suspended sentence:
 - Coefficient: –0.2403
 - o p-value: 0.004
- Near-significant effect for fine:
 - Coefficient: –0.1421
 - o p-value: 0.075

MNLogit Regression Results

	Dep. Variable:	result_type_c	at No.	Observations	:	9783
nt.	Model:	MNLog	it Df R	esiduals:		9773
	Method:	M	LE Df M	odel:		5
	Date:	Mon, 26 May 20	25 Pseu	do R-squ.:		0.0004303
	Time:	19:53:	48 Log-	Likelihood:		-11342.
	converged:	Fal	se LL–N	ull:		-11347.
	Covariance Type:	nonrobu	st LLR	p-value:		0.08213
	sult_type_cat=условн nst	ное осуждение	coef 	std err 0.037	z 29.978	P> z
	edicted_amount_bin		-0.2403	0.083	-2.905	0.004
1000000-00	result_t	уре_cat=штраф	coef	std err	z	P> z
cons			1.3360	0.037	36.507	0.000
pred	icted_amount_bin 		-0.1421 	0.080	-1.783 	0.075

The results suggest that **higher drug amounts significantly reduce the likelihood of receiving suspended sentences** and may also reduce chances of receiving a fine, compared to imprisonment.

This **supports** the hypothesis.

Hypothesis 2

H: Among convicted individuals, larger drug weights are associated with longer prison sentences.

Methodology: Linear regression model (OLS) on cases with result_type = 'лишение свободы'

- sentence_total_months dependent variable
- log(drug_weight) independent variable

Results:

Coefficient: +2.1545

p-value: 0.023

R²: 0.004

The coefficient indicates that an increase in drug weight **is associated** with a longer prison sentence. However, the **low R²** value shows that **drug weight alone explains very little variance in sentence length** — other factors also play an important role.

Hypothesis 3

H: Women receive more lenient punishments (fines or suspended sentences) than men, without considering other factors.

Methodology:

A simplified logistic regression model:

• female = 1 if the defendant is a woman

• female = 0 other

Results:

Sample size: 9,257 cases

Coefficient for the variable female: 0.0987

• p-value: 0.316

The positive coefficient suggests a slightly higher probability of receiving a lenient sentence for women. However, the effect is **not statistically significant**. Therefore, the data does not provide sufficient evidence to support the hypothesis.

Logit Regression Results

Dep. Variabl	le: s	oft_punishme	ent No. Ob	servations:		9257	
Model:		Log	git Df Res	iduals:		9255	
Method:		MLE Tue, 27 May 2025				0.0001143	
Date:	Tu						
Time:		11:32:	20 Log-Li	Log-Likelihood:		-4480.3	
converged:		Tr	rue LL-Nul	1:		-4480.8	
Covariance Typ	ype:	nonrobu	ust LLR p-	value:		0.3116	
========	coef	std err	Z	P> z	[0.025	0.975]	
const	1.4517	0.028	52.416	0.000	1.397	1.506	
female	0.0987	0.098	1.003	0.316	-0.094	0.292	

Vector of future development

- Expanding the training sample
- Improving extraction of complex features

aggravating_factors, mitigating_factors, drug_type

- Expanding analytical capabilities
 - O Perform **factor analysis** to identify key influences on court decisions
 - O Use **clustering** to group cases by substance type, region, or sentence st

Research of Criminal Cases and Identification of their Important

Characteristics

- O Test fairness hypotheses, such as regional or gender biases in sentence
- Multifactorial forecasting of court decisions

Develop predictive models that estimate:

- Type and severity of the sentence
- o Influence of drug amount, article part, region, and circumstances

Conclusion

Our project team:

 Developed a pipeline to extract several features from court decisions under Article 228 using LLMs and regular expressions.

Research of Criminal Cases and

Identification of their Important

Characteristics

- 2. Achieved high accuracy for key characteristics: result_type, drug_weight, sentence length (accuracy > 0.90 in most cases).
- 3. Identified statistical patterns in sentencing drug amount impacts the severity of punishment.
- 4. Found no significant effect of gender on sentence leniency in a simplified model.
- 5. Conducted visual and regression analysis, that revealed hidden trends and raised questions about fairness and consistency.

This project demonstrates that modern NLP tools and Regular Models can effectively extract and analyze complex legal data and paving the way for scalable, data-driven legal analysis in Russian judicial practice.

Sources

- 1. Extracting Legal Facts with ML and Embeddings (Luo et al., 2021)
- 2. Legal Data Extraction in Russian Cases (Ivanov et al., 2022)
- 3. LLMs in Legal NLP: GPT-4 for UK Tribunals (Smith et al., 2023)
- 4. LLMs for Legal Design & Education (Brown et al., 2022)
- 5. <u>How can we... use AI to predict the outcome of court cases?</u>
 (Professor Felix Steffek, Faculty of Law and Dr Helena Xie, Centre for Business Research)
- 6. Extracting Proceedings Data from Court Cases with Machine Learning (Bruno Mathis)

Research of Criminal Cases and

Identification of their Important

Characteristics

- 7. <u>Predicting Indian Supreme Court Judgments, Decisions, Or Appeals (Sugam Sharma, Ritu Shandilya and Swadesh Sharma)</u>
- 8. <u>USING AI SYSTEMS IN JUDICIAL WORK (INVESTIGATION, EVIDENCE AND LEGAL RESEARCH) (Herzi Said, Mourad Khelifa)</u>
- 9. Rethinking the field of automatic prediction of court decisions (Masha Medvedeva)
- 10. <u>Icons for the presentation</u>
- 11. <u>S1E5 | Using machine learning to predict court decisions of the ECtHR | TLOT Podcast (a podcast episode with one of the article authors Masha Medvedeva)</u>

