

Dynamic Pricing for Urban Parking Lots Summer Analytics 2025 – Capstone Project

By: Titus Yankson (ekowyankson18@gmail.com)

Hosted by: Consulting & Analytics Club × Pathway

INTRODUCTION

Urban parking is a limited, high-demand resource. Cities often use static pricing models that fail to adapt to real-time changes in demand, leading to either overcrowded lots or underutilized spaces.

This project seeks to optimize parking utilization by dynamically pricing slots based on real-time demand, congestion, vehicle type, and nearby competition using a streaming simulation via Pathway.

PROBLEM STATEMENT

Fixed pricing for urban parking leads to:

- Overcrowding during peak hours
- Low usage during off-peak times
- Lack of economic incentives to guide driver behavior

This project addresses these inefficiencies by building an intelligent, real-time dynamic pricing engine for 14 parking lots.

DATASET DESCRIPTION

• Days: 73

Parking Lots: 14

• Sampling: 18 time points per day (every 30 mins from 08:00–16:30)

• Features:

CATEGORY	FEATURES		
Location	Latitude, Longitude		
Parking Metrics	Occupancy, Capacity, Queue Length		
Vehicle Info	Vehicle Type (car, bike, truck)		
Environment	Traffic Level, Special Day		
Time	Timestamp (Date + Time)		

METHODOLOGY

Three models were built incrementally:

Model 1 – Baseline Linear Pricing
 Price increases linearly with occupancy ratio:

$$\operatorname{Price}_{t+1} = \operatorname{Price}_t + \alpha \cdot \left(\frac{\operatorname{Occupancy}}{\operatorname{Capacity}} \right)$$

• Model 2 – Demand-Based Pricing

Demand is computed as a weighted sum of real-time signals:

$$\label{eq:decomposition} \mathsf{Demand} = \alpha \cdot \left(\frac{\mathsf{Occupancy}}{\mathsf{Capacity}} \right) + \beta \cdot \mathsf{QueueLength} + \gamma \cdot \mathsf{TrafficLevel} + \delta \cdot \mathsf{SpecialDay} + \epsilon \cdot \mathsf{VehicleTypeWeight}$$

Then:

$$Price_t = BasePrice \cdot (1 + \lambda \cdot NormalizedDemand)$$

Model 3 – Competitive Pricing with Rerouting
 Incorporates spatial competition using Haversine distance.

If a nearby lot (within 1 km) is cheaper and available:

- Suggest rerouting (reroute = 1)
- Or reduce price to stay competitive

DEMAND FUNCTION AND WEIGHT JUSTIFICATION

Feature	Weight	Rationale		
Occupancy	0.4	Core signal for capacity stress		
Queue Length	0.2	Proxy for demand pressure		
Traffic Level	0.2	External congestion		
Special Day	0.1	Event-driven surges		
Vehicle Type	0.1	Prioritizing higher-demand vehicles		

Demand is normalized to keep prices bounded:

Min: $0.5 \times BasePrice$, Max: $2 \times BasePrice$

REROUTING LOGIC

Used Haversine formula to compute distance between lots:

Python code:

```
"def haversine(lat1, lon1, lat2, lon2):
...
return distance_km
```

If current lot is $\geq 95\%$ full and nearby lots are cheaper \rightarrow suggest rerouting.

Pricing adjustments are made based on competitors' prices.

Implementation Details

Tool	Purpose
Python	Core Logic
Pandas	Data Cleaning and Processing
Numpy	Numeric Operations
Pathway	Real-time Simulation Engine
Bokeh	Interactive Visualization
Colab	Execution Environment

All logic was implemented from scratch without ML libraries like scikit-learn.

VISUALIZATION (BOKEH)

An interactive **Bokeh** dashboard shows:

- final_price vs time for each lot_id
- Hover tool reveals reroute status, timestamp, price
- Line plot with togglable legend

See sample visual below:

Results Summary

Lot	Occupancy	Capacity	Final Price	Reroute
BHMBCCMKT01	146	577	\$ 14.64	0
BHMNCPHST01	213	1200	\$ 11.06	0
BHMEURBRD01	467	470	\$ 17.66	0

Insights:

- Prices adjust gradually, not erratically
- Lots with rising demand hit upper price bounds
- Rerouting activates only when full & nearby alternatives exist

CONCLUSION

This project demonstrates the effectiveness of a real-time pricing system using minimal libraries and intelligent logic.

Strengths:

- Realistic modeling of parking dynamics.
- Real-time simulation using Pathway.
- Visualization aligns pricing with behaviour.

Future Work:

- Add revenue maximization objective.
- Predictive modeling using time-series.
- Expand rerouting with driver navigation integration.

Appendix

- Pathway docs: pathway.com/developers.
- Dataset: Provided CSV (14 lots × 73 days × 18 intervals).
- Code: Google Colab Notebook submission.