Diagnosis for Interconnect Faults in Memory-based Reconfigurable Logic Device

Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi

Department of Computer Science,

Ehime University

Nov. 25, 2021

Outline

- Background
 - The application of Reconfigurable devices
 - —FPGA and its challenge
 - -MRLD and its chance
- Purpose
- Architecture and Working principle of MRLD
- Interconnect fault models in MRLD
 - Stuck-at faults
- Diagnosing the interconnect faults of MRLD
- Experimental results
- Conclusions

$Background \sim \text{The application of Reconfigurable devices} \sim$

- Reconfigurable devices (e.g.: FPGAs) are gaining increased attentions for IoT, Automotive and AI field
 - ★ Flexibility and scalability
 - ★ High performance (parallel computing)
 - ★ Better time to market
 - ★ Low design cost (shortening of development cycle)

IoT Edge Computing

Edge Computing GW and IoT Solution:

Xlinx's Automotive Solution: Zynq UltraScale+MPSoC

Bing Intelligent Search Engine FPGA accelerator

Accelerating Large-Scale Services – Bing Search

1,632 Servers with FPGAs Running Bing Page Ranking Service (~30,000 lines of C++)

95% Query Latency vs. Throughput

SW + FPGA

2x Increase in Throughput

Reduced # SW Only
of Servers

Reduction

< 30% Cost

25 W Power

HW Failures

$Background \sim \text{FPGA and its challenge} \sim$

- Three types of configurable elements
 - Input/output blocks (IOBs)
 - Configurable logic blocks (CLBs)
 - Programmable interconnect resources (SM: switch matrix,
 PSB: programmable switch blocks)
- Large amount of interconnect resource
 - > Large area
 - > Large delay
 - > High power
 - Significant production cost

Overhead compared to ASIC

	Area	Delay	Power
ASIC	1	1	1
FPGA	20~35 or more	3~4	~10
Programmable interconnect resources	90%	40~80%	60~70%

Alternative reconfigurable devices with low cost, low power and small delay is required

Background ~ MRLD and its chance~

- Memory-based Reconfigurable Logic Device.
 - MLUTs (Multiple Look-Up-Table) array
 - MLUT configured with multiple SRAM blocks
 - Alternate interconnect of Address and Data line of MLUTs
 - Support Memory mode and Logic reconfiguration mode
- Logic and wiring are directly configured in the MLUTs
 - > Lower area overhead
 - Smaller delay (logic wiring)
 - Low power
 - Low production cost

Interconnect Structure of MRLD

Motivation & Purpose & Objective

- To improve the yield and reliability of MRLD.
 - Detecting and locating the defects on AD interconnects

(AD: Address line & Data line)

Purpose

Develop the diagnosis approaches for identifying the location of AD interconnect defects

Objective

- 1. Propose the diagnosis strategy for interconnect defects of MRLD
- 2. Propose the diagnostic generation method for Stuck-at faults

^{*} Detection approaches have been proposed in our previous research in ATS2017

Architecture & Working principle of MRLD

- MLUT consists of four SRAM blocks (two asynchronous and two synchronous SRAMs)
- Each SRAM works as look-up tables (LUTs) to support logic reconfiguration by writing the corresponding truth tables into the SRAM
- Each MLUT can work at either Memory mode or Logic reconfiguration mode
- The data outputs of a MLUT are connected with the address inputs of other MLUTs

Working principle of MRLD ~ an example ~

• Configure the logic circuit by writing the **truth table** of the logic circuit (**including wiring logic**) into the SRAM of MLUT

Interconnect fault models in MRLD ~Stuck-at~

A short between the ground (supply) and AD interconnect (address line or data line)

MLUT1_D5	MLUT2_A5	behavior
0	0/1	MLUT2_D0/1
0	0/1	MLUT2_D0/1
1	1	1
1	1	1

Logic behavior of Stuck-at-1 Fault

Diagnosing the location of the fault is helpful to avoid configuring the logic to pass through the faulty AD interconnects

Diagnostic Test Generation

- Diagnostic Cubes:
 - → Data in the SRAMs for Creating fault propagation path on MLUTs
- External Patterns:
 - → patterns applied to the external input ports of MRLD for fault excitation
- Basic principle of diagnosis
 - Configuring Fault Propa. Path on Row&Column:
 - → Diagnostic Cubes Reconfiguration
 - Applying External Patterns:
 - → to external inputs of MRLD
 - Observing External Outputs:
 - → fault effects can be propagated and observed at the external outputs of MRLD.

$Diagnosis\ Flow\ \sim\ {\rm for\ the\ interconnect\ faults\ of\ MRLD}\sim$

Diagnosis Flow

• Step1: Row-direction diagnosis

- a) Configuring *Diagnostic Cubes* (*DCr*)
- b) Applying External Pattern
- c) Obtaining *Fault Path* (*FPr*)

• Step2: Col-direction diagnosis

- a) Configuring *Diagnostic Cubes* (*DCc*)
- b) Applying External Pattern
- c) Obtaining Fault Path (FPc)

Step3: Determining fault location

 \rightarrow Find out the Fault location (F_{loc}) through computing the intersection of FPr and FPc: $F_{loc} = \text{FPr} \cap \text{FPc}$

Diagnostic Cubes & External Patterns ~ Row-direction ~

Diagnostic Cubes for row-direction (DCr):

Diagnostic Cube 1: For the SRAMs share the low-order address inputs (A[m/2-1:0]) of MLUT, set contents of the address lines A[m/2-1:0] to D[m-1:m/2]=A[0:m/2-1], D[m/2-1:0]=all-zero.

Diagnostic Cube 2: For the SRAMs share the high-order address inputs (A[m-1:m/2]) of MLUT, set contents of the address lines A[m-1:m/2] to D[m-1:m/2]=all-zero, D[m/2-1:0]=A[m/2:m-1]

• External Patterns: All-zero for stuck-at-1 fault, All-one for stuck-at-0 fault

Diagnostic Cubes & External Patterns ~ Col-direction ~

Diagnostic Cube for col-direction (DCc):

Diagnostic Cube 1: For the SRAMs share the low-order address inputs (A[m/2-1:0]) of MLUT, set contents of the address lines A[m/2-1:0] to D[m-1:m/2]=all-zero, D[m/2-1:0]=A[0:m/2-1].

Diagnostic Cube 2: For the SRAMs share the high-order address inputs (A[m-1:m/2]) of MLUT, set contents of the address lines A[m-1:m/2] to D[m-1:m/2]=A[m/2:m-1], D[m/2-1:0]=all-zero.

• External Patterns: *All-zero* for stuck-at-1 fault, *All-one* for stuck-at-0 fault

Simulation method

- MRLD design: 6 × 6 MLUT array
 - IO ports: left & right 48bits, top & bottom 20bits
 - MLUT: Four 256word × 16bit SRAMs
- Simulation method
 - Logic simulation by ModelSim
 - Fault node insertion (random)

*Port Definition:

li: left address input lo: left data output ri: right address input ro: right data output ti: top address input to: top data output

bi: bottom address input bo: bottom data output

14

Step 1 : Reconfigure Diagnostic Cube for row-direction (DCr)

— into each MLUT

Step 2 : Apply External Patterns

— to external input ports of MRLD

Step 3: Reconfigure Diagnostic Cube for col-direction (DCc)

— into each MLUT

Step 4: Apply External Patterns

— to external input ports of MRLD

111111 11111 Top IO port: ti[19:0], to[19:0] 1111111....111111

Simulation result ~stuck-at 1 fault diagnosis ~

 $FPc = \{x2y0A2 \rightarrow x1y0A5 \rightarrow x2y1A2 \rightarrow x1y1A5 \rightarrow x2y2A2 \rightarrow x1y2A5 \rightarrow x2y3A2 \rightarrow x1y3A5 \rightarrow x2y4A2 \rightarrow x1y4A5 \rightarrow Floc = FPr \cap FPc = x2y1A2 \rightarrow x1y5A5 \rightarrow bo[14]\}$

Simulation result ~stuck-at 0 fault diagnosis ~

b. col-direction Wave - Default /tmem_mrld/dk /tmem_mrld/li **External Patterns:** /tmem_mrld/ri /tmem_mrld/ti 11111111111111111111111 all-one 111111111111111111111111 11111111111111111111111111 /tmem_mrld/mem_mrld/stuck_at_flt_cf/flt_mlut_x2y1 Stuct-at-0 is injected /tmem_mrld/mem_mrld/ST_INJ_x2y1/mlut_flt_loc[2] at x2y1A2 /tmem_mrld/mem_mrld/ST_INJ_x2y1/faulty_value **External Outputs:** +- /tmem_mrld/ro /tmem_mrld/to 111111111111111111111111 bo[14] = 0/tmem_mrld/bo

 $FPc = \{x2y0A2 \rightarrow x1y0A5 \rightarrow x2y1A2 \rightarrow x1y1A5 \rightarrow x2y2A2 \rightarrow x1y2A5 \rightarrow x2y3A2 \rightarrow x1y3A5 \rightarrow x2y4A2 \rightarrow x1y4A5 \rightarrow F_{loc} = FPr \cap FPc = x2y1A2 \rightarrow x2y5A2 \rightarrow x1y5A5 \rightarrow bo[14]\}$

Conclusions

- MRLD should be a promising alternative reconfigurable device to FPGA with the benefits of low production cost, low power and small delay.
- We proposed the diagnosis strategy and the method for locating the stuck-at interconnect faults.
 - The method can diagnose the location of all stuck-at faults at any interconnects.

MRLD size	Total fault numbers	Locatable fault numbers	Reconfiguration (Row and Column)	
$X \times Y MLUT(with M-bit)$ array	$\left((X+1)Y + \frac{X-1}{2} \right) M$	$\left((X+1)Y + \frac{X-1}{2} \right) M$	2 times	2 times

^{*}X, Y: the number of rows and columns for MLUT array

• Future work

- Evaluate the effectivity of the proposed diagnosis method for multiple stuck-at faults.
- Analyze the diagnostic generation method for locating others interconnect faults such as bridge faults and open fault in MRLD.

^{*}M: the number of AD line pairs for an MLUT

Thanks for listening