Каркасная модель поля, работы и гравитации

Автор: Kirill Nikitenko

2025

Введение

Данный документ представляет собой расширение модели каркасного поля, в которой вся материя, энергия, волны и частицы трактуются как формы "работы" E, совершаемой по направляющим каркаса поля (g) во времени t. Расширение охватывает:

- интерпретацию распада бозона Хиггса,
- объяснение квантового туннелирования,
- работу PN-переходов с точки зрения поля,
- описание ЭМ-поля как проявления направляющей работы,
- предсказания амплитуд гравитационных волн при столкновении чёрных дыр.

Основные определения модели

Каркас (g) — направляющая структура поля, вдоль которой может совершаться работа.

Работа (E) — произведение времени t и координаты в каркасе g:

$$E = t \cdot a$$

Форма существования: частицы, поля, волны — это разные способы распределения E по g.

Верхний предел поля — точка, в которой волна достигает максимального напряжения и переходит в рассеянную форму (фотон).

Нижний предел — точка, в которой заряд уходит в "себя" (сингулярность, нейтрино, обнуление).

Интерпретация распада бозона Хиггса

Наблюдение: В CERN зарегистрирован распад бозона Хиггса на фотон (γ) и W-бозон.

Интерпретация:

- Хиггс не частица, а **локальное возбуждение каркаса**.
- При перегрузке E система делится:
 - Фотон: энергия уходит вверх вдоль каркаса, не закрепляясь локально.
 - *W*-бозон: часть, не получившая/потерявшая избыточную энергию, оседает как **остаточная** л**окализация**.

PN-переход и поле

Стандартная модель: диффузия зарядов между двумя полупроводниками с различными уровнями проводимости.

Каркасная модель:

• Работа совершается при совпадении *t* и *g* двух кристаллических сеток:

$$E_1 = t_1 \cdot g_1, E_2 = t_2 \cdot g_2$$

• При определённой *E* происходит **временное замыкание по каркасу**, создающее поток тока без геометрического соединения.

Туннелирование и просачивание

Стандартная модель: частица "преодолевает барьер" квантово.

Каркасная трактовка:

- Каркас **не знает преград**, он знает только работу *E*.
- Если *E* достаточно для продолжения вдоль *g*, **волна не обрывается**, а продолжается сквозь барьер:

$$E = t \cdot g \ge E_{\text{барьер}}$$

Электромагнитное поле как каркасная работа

ЭМ-поле: не собственное поле, а формализованное напряжение каркаса при высоких *E*:

- Электрическое поле: локальная концентрация g (градиент напряжения).
- Магнитное поле: резонанс между направляющими (петлевой обмен).

Следствие: все поля— не независимые сущности, а формы работы по каркасу.

Экспериментальные проверки

Локальная гравитация

- Облучение сверхплотной мишени $\to E \uparrow \to y$ величение $g \to m$ икроскопическое изменение гравитационного потенциала.
- Фиксируется чувствительными гравиметрами.

Влияние на распад частиц

- Подключение внешнего E к нестабильным частицам (например, изотопам).
- Наблюдение за изменением периода полураспада.

PN-замыкание без контакта

- Расположение двух РN-кристаллов рядом.
- Подача энергии с точной частотой ω.
- Замыкание без прямого контакта через временную работу по g.

Гравитационные волны и слияние чёрных дыр

Сценарии:

- **Вся энергия уходит вниз:** амплитуда минимальна, поле стабилизируется.
- **Вся энергия уходит вверх:** мощный фотонный выброс, сильная гравитационная волна.
- **Смешанный режим:** амплитуда зависит от пропорции распределения *E*:

$$A \sim f(E_{\scriptscriptstyle \uparrow}, E_{\scriptscriptstyle \downarrow})$$

Предсказание: если фиксируется малый выброс при огромной массе — значит, энергия ушла в $g_{{\mbox{\tiny HИЖНИЙ}}}.$