Kholle 2 filière MPSI Jean-Louis CORNOU

1. Donner la définition de la bijectivité d'une application $f: E \to F$. Démontrer que f est bijective si et seulement si

$$\forall y \in F, \exists ! x \in E, f(x) = y$$

2. On définit sur \mathbb{N}^* une relation binaire \mathcal{R} via

$$\forall (x, y) \in (\mathbb{N}^*)^2, x \mathcal{R} y \iff \exists n \in \mathbb{N}^*, y = x^n$$

- (a) Démontrer que \mathcal{R} est une relation d'ordre non totale sur \mathbb{N}^* .
- (b) Déterminer l'ensemble des majorants de la partie $\{2,3\}$ de \mathbb{N}^* .
- 3. Soit $f: \mathbb{R} \to \mathbb{C}, x \mapsto (1+ix)/(1-ix)$. Déterminer son ensemble de définition, $f(\mathbb{R})$ et $f^{-1}(\mathbb{R})$.

1. Cours

- 2. (a) En choisissant n=1, pour tout x dans \mathbb{N}^* , $x=x^1$, donc $x\mathcal{R}x$, d'où réflexivité. Si $x\mathcal{R}y$ et $y\mathcal{R}x$, alors il existe n, m des entiers naturels non nuls tels que $x=y^n=x^{nm}$. Comme x est non nul, $x^{nm-1}=1$. Donc nm-1=0, donc n divise 1, donc n=m=1 et y=x. Si $x\mathcal{R}y\mathcal{R}z$, alors $x=y^n=z^{nm}$ avec $nm\in\mathbb{N}^*$. Donc relation d'ordre. 2 et 3 ne sont pas comparables puisque les majorants de 2 ne contiennent pas 3 et les majorants de 3 sont tous impairs.
 - (b) Soit x un majorant de $\{2,3\}$, alors il existe des entiers naturels n et m tels que $2=x^n$ et $3=x^m$. Donc si $x\neq 1$, n est la fois pair et impair, ce qui est absurde. Donc x=1. Toutefois, 1 ne majore pas 2 puisque pour tout entier non nul n, $2^n>1$. Donc l'ensemble des majorants est vide.
- 3. Pour tout réel x, 1-ix est non nul, puisque de partie réelle non nulle. Donc $D_f=\mathbb{R}$. Soit $x\in\mathbb{R}$, alors |f(x)|=|1+ix|/|1-ix|=1, donc $f(\mathbb{R})\subset\mathbb{U}$. Réciproquement soit z de module 1. Alors, on cherche x un réel tel que z=(1+ix)/(1-ix). Supposons qu'un tel réel existe pour pouvoir le construire plus aisément par la suite. Alors z(1-ix)=1+ix, donc ix(z+1)=1-z. On voit que z=-1 pose problème. Supposons alors que z=-1, on trouve $x=-i\frac{1-z}{1+z}$. Par technique de l'angle moitié, on retrouve que x est réel. Enfin, $f(z)=-1\iff 1+ix=ix-1\iff 1=-1$. Donc $f(\mathbb{R})=\mathbb{U}\setminus\{1\}$.

Kholle 2 filière MPSI Jean-Louis CORNOU

- 1. Soit E un ensemble. Donner la définition d'une relation d'équivalence sur E. Démontrer que l'ensemble des classes d'équivalence d'une relation d'équivalence forme une partition de E.
- 2. On définit l'application $f:[0,1] \to [0,1], x \mapsto x$ si $x \in \mathbb{Q}, x \mapsto 1-x$ si $x \notin \mathbb{Q}$. Montrer que f est bijective. Quelle est alors sa réciproque?
- 3. On se donne une fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto \tan\left(\frac{\pi}{2}\sqrt{\frac{1+x}{1-x}}\right)$. Déterminer son ensemble de définition.

1. Cours.

2. On vérifie que $f \circ f = \mathrm{Id}_{[0,1]}$ par disjonction de cas.

3. tan(a) est définie ssi $a \not\equiv \pi/2[x]$, donc f(x) définie ssi $\sqrt{\frac{1+x}{1-x}} \not\equiv 1[2]$, i.e $(1+x)/(1-x) \geqslant$ $0, 1-x \neq 0$ et $\sqrt{\frac{1+x}{1-x}} \not\equiv 1[2]$. L'étude de signe donne $x \in [-1,1[$. Il reste à résoudre à n

$$\sqrt{\frac{1+x}{1-x}} = 2n+1 \iff \frac{1+x}{1-x} = 4p+1 \iff x = \frac{2p}{2p+1}$$

Pour $p \in \mathbb{Z}^-$, 2p/2p+1 > 1, donc

$$D_f = \left[-1, 1\right] \setminus \left\{ \frac{2p}{2p+1} \middle| p \in \mathbb{N} \right\}$$

Kholle 2 filière MPSI Jean-Louis CORNOU

- 1. Soit (E, \leq) un ensemble ordonné, $f: E \to E$ et $g: E \to E$ deux applications monotones. Démontrer que $g \circ f$ est monotone. Soit X un ensemble. On considère l'ensemble ordonné $(\mathcal{P}(X), \subset)$ et A une partie de F. L'application $\mathcal{P}(X) \to \mathcal{P}(X), B \mapsto A \cup B^c$ est-elle monotone?
- 2. On note $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ et $f_2: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 1$. Déterminer l'ensemble des applications affines g de \mathbb{R} dans \mathbb{R} telles que
 - (a) $f_1 \circ g = g \circ f_1$.
 - (b) $f_2 \circ g = g \circ f_2$.
 - (c) g commute avec une application affine donnée.
- 3. On note $h: \mathbb{R}^* \to \mathbb{R}$, $x \mapsto \sin(\pi/x)$ et la relation d'équivalence $x\mathcal{R}y \iff h(x) = h(y)$ sur \mathbb{R}^* . Décrire l'ensemble de ses classes d'équivalence.

- 1. Cours. L'application est la composé de $X \mapsto X^c$ qui est décroissante et de $X \mapsto A \cup X$ qui est croissante, elle est donc décroissante.
- 2. (a) Soit g telle que $\forall x \in \mathbb{R}$, $(ax^2 + b) = (ax + b)^2$, soit $ax^2 + b = a^2x^2 + 2abx + b^2$. Pour x = 0, on obtient $b = b^2$. Par dérivation, et x = 0, 2ab = 0. On trouve alors $x \mapsto x$ et $x \mapsto 0$ et $x \mapsto 1$ et vérifications aisées.
 - (b) 2(ax+b)+1=a(2x+1)+b, soit 2b+1=a+b. $x\mapsto ax+a-1$.
 - (c) a(cx+d) = c(ax+b) + d, soit ad+b = cb+d, i.e d(a-1) = b(c-1), i.e (a-1,b) et (c-1,d) colinéaires.
- 3. Soit x, y deux réels non nuls. Alors $h(x) = h(y) \iff \pi/x \equiv \pi/y[2\pi] \lor \pi/x \equiv \pi \pi/y[2\pi]$. La première condition équivaut à

$$\exists n \in \mathbb{Z}, \pi/x = \pi/y + 2n\pi \iff \exists n \in \mathbb{Z}, 1/x = 1/y + 2n \iff \exists n \in \mathbb{Z}, x = \frac{y}{1 + 2ny}$$

On a alors $C(x) = \bigcup_{n \in \mathbb{N}} \{\frac{x}{1+2nx}\}$ quand x n'est pas l'inverse d'un entier pair. Le deuxième cas donne des enmbles similaires à l'exclusion d'inversion d'entiers impairs. D'autre part $\sin(n\pi) = 0$ et $\sin(n\pi + \pi/2) = 1$.

Kholle 2 filière MPSI Jean-Louis CORNOU

Exercices supplémentaires et plus corsés pour les gourmands :

- 1. Soit $n \in \mathbb{N}^*$. Déterminer les variations de $x \mapsto \sum_{k=0}^n x^k$ sur \mathbb{R} . Sur quelles parties de \mathbb{R} est-elle injective?
- 2. Montrer qu'il n'existe pas de surjection de E dans $\mathcal{P}(E)$.
- 3. On munit \mathbb{N}^2 de la relation d'ordre lexicographique. Montrer que $s: \mathbb{N} \to \mathbb{N}^2, x \mapsto (x,0)$ est injective monotone. On note $\omega = (0,1)$, montrer que ω est un majorant de $s(\mathbb{N})$. Quels sont les majorants de $s(\mathbb{N})$?

- 1. Signe de $(1-x^{n+1})(1-x)$ selon la parité de n. Théorème de la bijection truc.
- 2. Si une telle surjection existe, alors $A = \{x \in E | x \notin \pi(\{x\})\}$ est un objet contradictoire de la théorie via ses antécédents par π .
- 3. Les majorants sont $0 \times \mathbb{N}^*$.