Small Time Optimality

1 Model

A Reed Shepp car model can be described by two variables v and ω which are the speed and angular velocity. The turning radius is $r = \frac{v}{\omega}$.

We use (x, y, θ) to describe the state of a R.S car, (x, y) being the position of the car, while θ being the orientation.

2 Small Time Optimality

Theorem 2.1 There exist a minimium lenth l for a R.S car to turn angle $\Delta \theta$.

Proof: To turning a car with angle $\Delta\theta$ with the least amount of time, The control has to be $l^+l^-l^+l^-l^+...$ or $r^+r^-r^+r^-r^+...$ (keep turning counterclockwisely or clockwisely)

Assume the i-th operation turns $\Delta\theta_i$ angles, the number of operations is n ($\forall \Delta\theta_i \geq 0$ or $\forall \Delta\theta_i \leq 0$, and $\sum_{i=1}^n \Delta\theta_i = \Delta\theta$). The total path length of these operation is:

$$\sum_{i=1}^{n} r \Delta \theta_i = r \sum_{i=1}^{n} \Delta \theta_i = r \Delta \theta.$$

which has nothing to do with the number of operations, neither with the angle of each turn.

Theorem 2.2 For a start configuration $s = (x_s, y_s, \theta_s)$ and a goal configuration $g = (x_g, y_g, \theta_g)$, and a path σ with length l. σ cannot be the optimal path