ARTIGO DE REVISÃO Open Access

Efeitos do treino com jogos de videogame na cognição de idosos: revisão sistemática

Effects of video game training on cognition in the elderly: systematic review

Simone Aparecida Celina das Neves Assis¹,³, Ângelo José Gonçalves Bós¹⊠, Jociane de Carvalho Myskiw¹,³, Marcio Sarroglia Pinho², Irenio Gomes da Silva Filho¹, Carla Helena Augustin Schwanke¹, Ivan Antonio Izquierdo^{1,3}

- ¹ Programa de Pós-Graduação em Gerontologia Biomédica do Instituto de Geriatria e Gerontologia (IGG) da Pontifícia Universidade Católica do Rio Grande do Sul. Porto Alegre, RS, Brasil.

 2 Programa de Pós-Graduação em Ciências da Computação da Faculdade de Informática da Pontifícia Universidade Católica do Rio Grande do Sul.
- Porto Alegre, RS, Brasil.
- 3 Centro de Memória e Centro de Altos Estudos em Neurociências do Instituto do Cérebro da Pontifícia Universidade Católica do Rio Grande do Sul. Porto Alegre, RS, Brasil.

Este estudo teve apoio do INCT MACC - Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 181813/2010-6.

RESUMO

Objetivos: realizar uma revisão sistemática da literatura sobre o efeito do treino com jogos de videogame na cognição de idosos.

Métodos: Busca nas bases de dados LILACS, SciELO, PsycINFO e PubMed, idiomas Inglês e Português. Utilizaram-se os descritores treino com jogos de videogame / video game training, adicionando aos seguintes: cognição / cognitivo, efeito cognitivo / cognitivo / cognitivo effects, desempenho cognitivo / cognitive performance, plasticidade cognitiva / cognitive plasticity, testes cognitivos / cognitive tests. Foram incluídos estudos de intervenção cognitiva, artigos originais e disponíveis na íntegra, população alvo idosos (60 anos ou mais), publicados entre 2005 e 2015. A revisão ocorreu entre janeiro e julho de 2015.

Resultados: Dos 70 artigos encontrados inicialmente, 21 estudos atenderam aos critérios de seleção. Sete estudos (33%) verificaram melhoras significativas em velocidade de processamento, atenção sustentada, alerta, memória de trabalho visoespacial, flexibilidade cognitiva, memória visual imediata e tardia e coordenação viso-motora-espacial. Em relação à metodologia de treino dos estudos, 11 (52%) foram com treino de curta duração (uma a seis semanas) e tempo total entre menor tempo 4,5 horas e maior tempo 23,5 horas; e 10 (47%) com treino de longa duração (sete a 12 semanas) e tempo total de treino entre 12 e 36 horas. Os treinos de curta duração foram mais eficazes

Conclusões: A constatação do tempo total necessário de treino foi o achado principal desta revisão sistemática. Intervenção cognitiva com uso de jogos de vídeo game de curta duração, entre uma e seis semanas, e tempo total do programa de treino cognitivo entre 4,5 horas e 23,5 horas foi eficaz para idosos, sendo esta uma dose de tempo de intervenção cognitiva necessária e suficiente para a consolidação de sistemas e aquisição de um aprendizado no envelhecimento. Os efeitos cognitivos encontrados nos estudos sugerem que o cérebro idoso é capaz de adquirir, manter e enriquecer-se com novas aprendizagens.

DESCRITORES: idoso; jogos de vídeo; treino cognitivo; cognição; desempenho cognitivo.

ABSTRACT

Aims: To perform a systematic review of the literature on the effect of video game training on cognition in the elderly.

Methods: The search was conducted using LILACS, SciELO, PsyINFO and PubMed databases in both English and Portuguese. The search term used were video game training, combined with the following: cognition, cognitive effects, cognitive performance, cognitive plasticity, cognitive tests. The inclusion criteria consisted of intervention studies on video game training, original articles in English or Portuguese, fulltext availability, and target population older people. Studies that failed to meet these criteria were excluded. Articles from 2005 to 2015 were collected, and the review was performed between January 2015 and July 2015.

Results: Seventy articles were found, but only twenty-one met the selection criteria. Of the 21 articles included in the study, only 7 studies (33%) revealed statistically significant improvement in speed of processing, sustained attention and alert, working visuospatial memory, cognitive flexibility, immediate and delayed visual memory, visual-motor coordination and visuospatial ability between the research groups (p<0.05). Other results were found in relation to the methodology of the studies. Of the 21 studies, 11 studies (52%) were performed with training of short duration (1-6 weeks) and total time of training ranging between 4.5 and 23.5 hours. Ten studies (47%) were performed with training of long duration (7-12 weeks) total time of training between 12 and 36 hours. The short duration training showed better performance.

Conclusions: The total time required for training was the main finding of this systematic review. Cognitive intervention using short duration training (between one and six weeks) with video games in a total time between 4.5 and 23.5 hours is effective in elderly participants. This length time between the minimum and maximum time of cognitive intervention is necessary and sufficient for the consolidation of systems and acquisition of a learning in aging. The cognitive effects observed in the studies suggest that the aging brain is able to acquire, maintain and even enrich new learnings.

KEY WORDS: aged; video games; cognitive training; cognition; cognitive performance.

Recebido: agosto, 2015 Aceito: setembro, 2015

Abreviaturas: GE, grupo experimental; GC, grupo controle; PRISMA. Statement for Reporting Systematic Reviews and Meta Analyses of Studies That Evaluate Health Care Interventions; MEEM, Mini Exame do Estado Mental; WHOQOL-Bref, versão abreviada do Instrumento de Avaliação de Qualidade de Vida da Organização Mundial da Saúde; GDS-15, Escala de Depressão Geriátrica de Yesavage reduzida.

INTRODUÇÃO

Com o envelhecimento ocorre uma diminuição dos recursos cognitivos das pessoas, incluindo velocidade de processamento, atenção, controle executivo, memória de trabalho, controle inibitório e memória episódica. Na vida diária, essas perdas resultam em dificuldades no desempenho de atividades comuns como dirigir um carro, no manejo financeiro e no cumprimento de obrigações [1,2]. Consequentemente, o somatório dos eventos causados pelo declínio cognitivo conduz à redução no número das relações sociais, à depressão e por fim, ao isolamento [3,4].

Para retardar ou evitar esse processo, pesquisas sobre o envelhecimento buscam por ferramentas que possam manter ou melhorar o desempenho em funções cognitivas ao longo da vida. Neste contexto, o jogo de videogame tem recebido destaque como método tecnológico de treino cognitivo [1,3,5,6]. Evidências sugerem que esse tipo de intervenção tem efeito positivo na cognição de idosos em velocidade de processamento [7], atenção [8,9], memória espacial [7], controle cognitivo [10], inteligência [11], coordenação visomotora [11] e funcionamento cognitivo global [12]. Tal discussão e estudos científicos são de grande relevância em nível de saúde pública, uma vez que os jogos eletrônicos são ferramentas de intervenção não farmacológicas de baixo custo e de fácil acesso à população [6].

Atualmente, os jogos de videogame de última geração são ferramentas tecnológicas que despertam o interesse dos idosos para o treino cognitivo [12]. Os jogos eletrônicos são atraentes, divertidos e desafiam a cognição através da interação entre o jogador e a máquina. Para isso são utilizadas tecnologias de sensores de movimento e telas sensíveis ao toque, o que facilita o uso para o idoso. A interação ocorre através de uma interface de jogo que possibilita feedback visual, motor e auditivo [2].

Há um crescente número de estudos na literatura investigando os jogos de videogame como método de treino cognitivo [13]. Anguera et al. [14] encontraram em idosos plasticidade robusta no córtex pré-frontal e melhora em controle cognitivo no pós-treino com o simulador de direção NeuroRacer® (University of Califórnia, San Francisco) [14]. Nikolaidis et al. [15] verificaram, em jovens adultos, alteração de atividade cerebral em resposta ao treino no lobo parietal superior com melhora de desempenho em tarefa de memória de trabalho [15]. Estudo anterior aos mencionados observou aumento no volume cerebral em resposta ao treino cognitivo [16]. Em conjunto, esses resultados são importantes indicadores de plasticidade cognitiva.

Neste cenário, evidências sugerem que o cérebro possui longevidade plástica para novas aprendizagens e capacidade para reorganização neuronal [17]. Teoricamente, esta longevidade é uma porta aberta ao enriquecimento ambiental, às intervenções cognitivas no processo de envelhecimento. Como método de intervenção cognitiva temos a estimulação cognitiva, que compreende um grupo de atividades desenvolvidas para melhorar o funcionamento cognitivo e social [18,19]; a reabilitação cognitiva, que é um programa de treino personalizado com ênfase em manter ou desenvolver um bom nível de desempenho em atividades da vida diária [19-21]; e o treino cognitivo, que é uma prática estruturada que ensina estratégias para otimizar o desempenho de uma função cognitiva específica ou de um conjunto de funções cognitivas [1,18,20].

O treino cognitivo com jogos de videogame é o foco desta revisão sistemática. Estudos prévios demonstram que o treino cognitivo resulta em aumento de atividade cerebral em áreas frontais, temporais e occipitais de idosos portadores de comprometimento cognitivo leve tipo amnésico no pós-treino de memória [12,22,23] e aumento dopaminérgico em regiões frontais e parietais pós-treino com melhora de desempenho em memória de trabalho [16].

Com base no panorama apresentado sobre o tema, o presente estudo teve como propósito realizar uma revisão sistemática da literatura sobre o efeito do treino cognitivo com jogos de videogame na cognição de idosos.

MÉTODOS

Foi realizada uma busca de artigos científicos publicados no período de 2005 a 2015, por meio das bases de dados LILACS, SciELO, PubMed e PsychINFO. Utilizaram-se os descritores treino com jogos de videogame / video game training, adicionando aos seguintes: cognição / cognition, efeito cognitivo / cognitive effects, desempenho cognitivo / cognitive performance, plasticidade cognitiva / cognitive plasticity, testes cognitivos / cognitive tests.

ARTIGO DE REVISÃO

A revisão sistemática do presente estudo foi norteada pela seguinte questão de pesquisa: Qual é o efeito do treino com jogos de videogame na cognição de idosos? A revisão sistemática foi conduzida baseada nos critérios de elegibilidade recomendados pelo PRISMA (Statement for Reporting Systematic Reviews and Meta Analyses of Studies That Evaluate Health Care Interventions) [24]. Foram eleitos os seguintes critérios de inclusão: (a) população do estudo pessoas com idade acima de 65 anos; (b) intervenção cognitiva com jogos de videogame; (c) ter Grupo Experimental (GE) e Grupo Controle (GC); (d) desfecho: efeito significativo no desempenho cognitivo medido por testes neuropsicológicos. Também foram considerados critérios para filtragem dos artigos: (a) presença de um resumo; (b) texto em língua inglesa ou espanhola ou portuguesa; (c) publicação em um periódico

revisado por pares (peer-reviewed); (d) pesquisa com humanos; (e) artigos originais, disponíveis na íntegra. A leitura dos resumos e, posteriormente, a revisão dos artigos selecionados, foi realizada independentemente por dois autores, conforme os critérios de inclusão citados.

RESULTADOS DA SELEÇÃO

A busca dos descritores na literatura resultou em 70 artigos. Destes, 49 foram excluídos: 21 eram duplicatas, dois eram estudos de revisão e 26 estudos focavam a doença de Parkinson, derrame, artroplastia de joelho e quedas. Assim, a revisão sistemática selecionou 21 estudos que abordaram o efeito do treino cognitivo com jogos de videogame na cognição de idosos (Figura 1).

Busca nas bases de dados: LILACS, SciELO, PubMed, PsycInfo **DESCRITORES**

treino com jogos de videogame / video game training, adicionando aos seguintes: cognição / cognition, efeito cognitivo / cognitive effects, desempenho cognitivo / cognitive performance, plasticidade cognitiva / cognitive plasticity, testes cognitivos / cognitive tests.

Figura 1. Etapas da revisão sistemática: busca, seleção e inclusão de estudos sobre o efeito do treino cognitivo com uso de jogos de videogame na cognição de idosos.

CONTEÚDO DA REVISÃO

Os 21 estudos foram compostos majoritariamente por uma amostra de idosas com idades entre 60 e 87 anos. Nenhum participante tinha experiência anterior com jogos de videogame, sendo que este foi um critério de seleção comum a todos os estudos.

A literatura é crescente quanto a este tema, e a maioria dos estudos selecionados questiona o tempo de duração do treino, questão com grande variação, ainda sem padronização [1,25]. Conforme os critérios de inclusão, todos os estudos tinham um GE que recebeu treinamento e um ou dois GC para comparação.

Dos 21 estudos, quatro utilizaram GC ativo (grupo que realizou algum tipo de tarefa cognitiva para comparação com a tarefa experimental e testado com testes neuropsicológicos antes e após o treino), sete estudos GC sem contato (grupo controle que não realizou atividade cognitiva e não participou de encontros semanais com o time de pesquisadores, apenas foi testado com testes neuropsicológicos antes e após o treino) e seis estudos compararam o GE a um GC ativo e GC sem contato. Somente um estudo utilizou para comparação um grupo de jovens, e em três estudos o GC recebeu palestras (**Tabela 1**).

Os efeitos de melhora cognitiva no pós-treino no GE foram encontrados nos seguintes domínios cognitivos: cinco estudos (24%) encontraram melhora em memória, 12 estudos (57%) em funções executivas, oito estudos (38%) em atenção, três estudos (14%) em linguagem e sete estudos (33%) em percepção (**Tabela 2**).

Dos 21 artigos incluídos no estudo, sete estudos (33%) verificaram melhoras estatisticamente significativas (p<0,05) nos seguintes subsistemas cognitivos pós-treino no GE em relação ao GC: em tempo de reação, atenção sustentada, memória de trabalho, funções executivas, velocidade de processamento, alerta atencional, memória visual imediata e tardia, memória de trabalho visoespacial, processo inibitório, raciocínio intuitivo, coordenação visomotora, flexibilidade cognitiva e habilidade visoespacial (**Tabela 2**).

Quanto aos tipos de videogames utilizados como ferramentas de treino cognitivo, dois estudos utilizaram simulador de direção; quatro estudos utilizaram jogos online com objetivo de treino cerebral; quatro estudos utilizaram jogos de ação; seis estudos utilizaram jogos para treino cerebral; dois estudos utilizaram jogos de esportes; dois estudos utilizaram jogos de quebra-cabeça; um estudo utilizou o jogo de música; e um estudo utilizou um jogo de plataforma. Podemos observar que os tipos de jogos mais utilizados são os

jogos para treino cerebral, 28%, e jogos de ação, 19% (**Tabela 1**).

Apenas quatro estudos foram realizados com serious games (jogos desenvolvidos com objetivo científico): Neuroracer[®] (University of California, San Francisco, USA) [14], Cognifit[®] (Cognifit, USA) [26], Space Fortress[®] (University of Illinois, USA) [27] e Music Game Smart Harmony[®] (Logitech, USA) [28].

Como controles para jogar, dois estudos utilizaram volantes com pedais (simulador de direção), dois estudos utilizaram *joystick*, cinco estudos utilizaram *mouse* para computador e 13 estudos utilizaram sensor de movimento, sendo 10 para o console Nintendo Wii[®] (Nintendo, USA) [29] e três para Nintendo DS[®] (Nintendo, JAPAN) [30].

Os principais instrumentos neuropsicológicos utilizados estão descritos na **Tabela 3**, que demonstra uma grande variabilidade nos resultados dos instrumentos de medidas utilizados nos 21 estudos. Verificamos que 19 estudos utilizaram testes neuropsicológicos e apenas dois estudos tarefas ecológicas, como métodos para mensurar o efeito do treino cognitivo com jogos de videogame. Também foram utilizados instrumentos de autorrelato para avaliação da qualidade de vida (um estudo) e autoconceito (um estudo). Os dois instrumentos neuropsicológicos mais utilizados entre os 21 estudos foram o Mini Exame do Estado Mental (MEEM) (28%, seis estudos) e o *Stroop Color and Word Test* (28%) (**Tabela 3**).

Foram utilizados também, em três estudos, baterias de avaliação computadorizadas: *Computerized Assessment of Mild Cognitive Impairment* (CAMCI) [29] e *Cambridge Neuropsychological Test Automated Battery* [26].

Um estudo utilizou o questionário de autorrelato *Modifiable Activity Questionnaire* (MAQ) para avaliar diferentes níveis de atividade física (frequência e duração) durante o período de treino de 12 semanas com o jogo *Wii Sports* da Nintendo[®]. Esse estudo encontrou melhora em controle executivo, velocidade de processamento e atividade física entre GE e GC (p<0,01) [47] (**Tabela 3**).

Dois estudos utilizaram inventários: Inventário Neuropsiquiátrico (NPIQ) e *Clinical Inventory of Self-Concept*. Um estudo utilizou a versão abreviada do Instrumento de Avaliação de Qualidade de Vida da Organização Mundial da Saúde (WHOQOL-Bref) para avaliar qualidade de vida. Duas escalas de depressão foram utilizadas para excluir idosos com depressão: Escala de depressão de Cornell [31] e Escala de Depressão Geriátrica de Yesavage reduzida (GDS-15) [32].

Sci Med. 2015;25(3):ID21636 4/12

Tabela 1. Principais achados de estudos que investigaram o efeito do treino cognitivo com jogos de videogame no período de 2005 a 2015.

Autor (ano)	N	Controle	Instrumentos de medida pré- intervenção e pós-intervenção	Variáveis analisadas	Treino (nº sessões, tempo sessão, nº sessões por semana, nº horas total)	p (entre grupos)	Principais achados	Jogos
Cassavaugh & Kramer ⁴⁸	21	Controle sem contato	Tarefas cognitivas: Tarefa de atenção seletiva Tarefa N-back	Atenção viso-espacial, Memória de trabalho, Controle manual em tarefas de dupla condição	8 sessões, 3 semanas	0,005	GE melhora em tempo de reação	Programa de treino Simulador de direção
Bozoki et al. ⁴⁹	60	Grupo controle com atividades online	Bateria de testes neuropsicológicos computadorizados	Atenção visual, Memória de trabalho visual, Velocidade de processamento, Memória verbal, Processamento executivo espacial, Planejamento estratégico	6 semanas 30 sessões, 1h, 5 vezes por semana, 30h	0,001	GE melhora em memória de trabalho e habilidade viso-espacial	Jogos on-line My Better Mind® (Michigan State University, USA)
Anguera et al. ¹⁴	174	Grupo ativo de única tarefa e Grupo não ativo	Memória de trabalho: Reconhecimento visual tardio, Tarefa de controle motor, Velocidade de processamento, Tarefa símbolos (dígitos), Test of Variables of Attention (TOVA), Useful field of view test (UFOV)	Controle cognitivo	12sessões (4semanas), 1h, 3 vezes por semana, 12h	0,005	GE melhora em atenção sustentada e memória de trabalho	Neuroracer® (University of California, San Francisco, USA)
Belchior et al. ⁸	58	Grupo controle sem contato Grupo controle ativo: jogo de ação (Medal of Honor)	MEEM Useful Field of View (UFOV) test	Atenção visual seletiva	6 sessões, 90 min, 2-3 sessões por semana, 9h	0,001	GE melhora em atenção visual seletiva	Useful Field of View® (UFOV) Medal of Honor® (Eletronic Arts, Sony, Japan)
Boot et al.5	62	Grupo controle Grupo ativo: jogo de ação Mario Kart DS®	Corsi Block Tapping Raven's Matrices	Velocidade de processamento (Tempo de reação), Memória, Atenção, Controle executivo	1,5 a 2h por sessão, 12 semanas, 60 horas de jogo.	0,002	GE melhora em atenção com transferência para funções executivas	Brain Fitness Game® (BFG) (Happy Neuron Inc, USA) Mario Kart DS® (Nintendo, Japan)
Stern et al. ²⁷	60	Grupo ativo com game play Grupo controle sem game play	Subteste símbolos WAIS III, Trail Making Test parte A, Trail Making Test Part B, Subteste cubos WAIS III, California Verbal Learning, Test (recordação), Controlled Oral Word, Association Test, Subteste sequência de números e letras, Stroop Color and WordTest	Controle executivo, Viso construção Memória Linguagem Atenção dividida Multi tarefas Controle motor Memória Memória de trabalho	36 sessões, 1h, 3 vezes por semana, 36h	0,001	GE melhora em controle executivo	Space Fortress® (SF) (University of Illinois, USA)
Nouchi et al. ⁴²	32	Grupo controle	Teste de trilhas e Bateria de avaliação frontal	Funções executivas	20 sessões, 15min, 5 sessões por semana, 5h	0,005	GE melhora em funções executivas e velocidade de processamento.	Brain Age® (BA) (Nintendo, USA)
Ackerman et al. ⁵⁴	78	Grupo de leitura	CogAT battery	Velocidade de processamento, Memória de trabalho visual, Espacial orientação, Velocidade de percepção, Inteligência fluída e cristalizada	20 sessões, 1h, 5 vezes por semana, 4 semanas, 20 h	0,001	GE melhora de desempenho de tarefas cognitivo motoras	Wii Big Brain Academy® (Nintendo, USA)
Nacke et al. ⁵⁵	21	Grupo de comparação: jovens	Tarefas cognitivas informatizadas para medida de desempenho em jogar Nintendo DS Comparação entre grupo jovem e grupo idoso	Solução de problemas na experiência em jogar com Nintendo DS versus lápis e papel	1 sessão (com 5 min de treino para aprendizado)	0,001	GE melhora no desempenho e motivação tarefas envolvendo solução de problemas matemáticos	Dr Kawashima Brain training Nintendo DS® (Nintendo, Japan)

(continua)

Sci Med. 2015;25(3):ID21636 5/12

Tabela 1 (continuação)

Autor (ano)	N	Controle	Instrumentos de medida pré- intervenção e pós-intervenção	Variáveis analisadas	Treino (nº sessões, tempo sessão, nº sessões por semana, nº horas total)	p (entre grupos)	Principais achados	Jogos
Basak et al. ⁵⁰	40	Grupo controle sem treino e sem contato	Tarefas de Controle Executivo: Operation Span, Tarefa de alternância, N-Back Task, Tarefa de memória visual de curto prazo, Raven, Stopping Task, Tarefas de Atenção Viso-espacial: Functional Field of View, Attentional Blink, Enumeration, Mental Rotation	Alternância de tarefas Memória de trabalho, Memória de curto prazo visual	15 sessões, 1,5h treino, 3 vezes por semana, 23,5 h	0,001	GE melhora de desempenho na velocidade de jogo	Rise of Nations® (RON) (Microsoft Game Studios, USA)
Ballesteros et al. ⁵³	60	Grupo controle (palestras)	Speed of Processing Task, WCST, Cross-modal visual- auditory odd-ball task, Corsi blocks, Jigsaw-puzzle tasks, Rey-Osterrieth Complex, Figure Test, Faces I e II, Family Pictures I e II, WMS III	Efeito na cognição	20 sessões, 1h, 5 semanas, 20h	0,005	GE melhora em alerta atencional e tarefas de memória visual imediata e tardia	Lumosity® cognitive training platform (Lumos Lab, San Francisco, USA)
Mayas et al.⁵¹	40	Grupo controle (encontros)	MEEM, GDS, Subteste vocabulário WAIS III, Cross-modal addball task: Medidas de alerta e distração	Plasticidade cognitiva	20 sessões, 1h, 2 vezes por semana, 20h	0,007	GE redução da distração, aumento do alerta atencional	Lumosity® cognitive training platform (Lumos Lab, San Francisco, USA)
Maillot et al. ³²	32	Grupo controle sem contato	MEEM, GDS, Modifiable Activity Questionnaire (MAQ), Trail Making Test, Stroop Color Word, Interference Test, Letter Sets Test, Matrix Reasoning Test, Digit Symbol Substitution Test, Spatial Span Test, Directional Headings Test, Mental Rotation Test, Cancellation Test, Number Comparison Test, Reaction Time Test, Plate Tapping Test	Atividade física, Controle executivo, Velocidade de processamento viso-espacial	24 sessões, 1h, 2 vezes por semana, 24h	0,001	GE melhorou mais do que o GC em medidas: controle executivo, velocidade de processamento e física. Sem melhora em medida viso-espacial	Nintendo Wii* Wii Sports: Wii Tennis, Wii, Boxing game, Wii Bowling game, Wii Soccer Headers, Wii Ski Jump, Wii Marbles games (Nintendo, Japan)
McDougall & House⁵6	41	Grupo controle sem contato	Digit Span Test	Velocidade de processamento, funções executivas, memória de trabalho viso espacial	6 semanas		GE melhorou em memória de trabalho viso-espacial, funções executivas e velocidade de processamento	Nintendo Brain Training® (Nintendo, Japan)
Peretz et al. ²⁶	121	Grupo controle: jogos de PC	Cambridge Neuropsychological Test, Automated Battery, Raven's Standard, Progressive Matrices, WCST, Continuous Performance Test, Stroop Test	Memória, Atenção, Habilidades viso-espaciais, Funções executivas, Flexibilidade Mental	36 sessões, 25 min, 3 vezes por semana, 16h	0,005	GE melhorou em memória de trabalho viso-espacial, aprendizagem viso-espacial e foco atencional. O teste personalizado é mais eficaz que os jogos computadorizados	Cognifit® Personal Coach (Cognifit, USA)

(continua)

Sci Med. 2015;25(3):ID21636 6/12

Tabela 1 (conclusão)

Autor (ano)	N	Controle	Instrumentos de medida pré- intervenção e pós-intervenção	Variáveis analisadas	Treino (nº sessões, tempo sessão, nº sessões por semana, nº horas total)	p (entre grupos)	Principais achados	Jogos
Sosa et al. ³⁰	31	Grupo controle não ativo	Memory Alterations Test, Mini Mental State, Examination, The Trail Making Test, Global Feelings of Control, Stroop Test	Memória, Funções executivas, Bem estar, Interferência e flexibilidade cognitiva	5 sessões, 1 semana.	Sem diferença entre os grupos	GE melhora (tempo) processamento silábico e aritmético, melhora em atenção seletiva e funções executivas, flexibilidade cognitiva e suscetibilidade a interferência	Brain Age® Nintendo DS (Nintendo, Japan)
Torres et al. ¹²	43	Grupo de relaxamento muscular, Grupo sem contato	Cognitive Sub-scale of Alzheimer's Disease Assessment Scale, Clinical Inventory of Self-Concept, WHOQOL-Bref, ADAS-Cog	Autoconceito, Qualidade de vida, Cognição	8 semanas	0,003	GE melhora do funcionamento cognitive geral, autoconceito e qualidade de vida	Super Granny® (Sandlot Games, USA), Zoo Keeper® (USA), Penguin Push® (USA), Bricks® (Brick Game, USA), Memory games® (USA)
Van Muijden et al. ⁵²	72	Grupo questões documentário	MMSE, Stroop color-word test, Stop-signal test, Counting span, Mental counters, Useful field of view test, Raven standard progressive matrices, Global-local switching test, Smiling faces switching test, Test of attentional performance	Memória de trabalho, Alternância e inibição da atenção, Raciocinio intuitivo	49 sessões, 30min, 7 sessões por semana, 25h	0,005	GE melhora no processo inibitório em Stop-Signal task e em raciocínio intuitivo (Raven-SPM), GC melhora em atenção seletiva (UFoV-3)	Anagram® (USA) , Falling bricks® (Bricks games, USA)
Kim et al. ²⁸	28	Grupo atividades comunitárias, duração 8 semanas	Digit Span Test, Trail-Making Test Parts A and B, Stroop Word-Color Test, Rey Complex Figure Test, and a verbal fluency test	Coordenação viso-motora, Flexibilidade cognitiva viso- espacial, Memória e Cognição verbal	8 semanas, 40 min, 3 vezes por semana	0,005	GE melhora em coordenação viso motora, flexibilidade cognitiva, habilidade viso espacial, memória e habilidade verbal	Music Game Training Program Smart Harmony® (Logitech, USA)
Hughes et al. ²⁹	20	Grupo controle: saúde educacional	Computerized Assessment of Mild Cognitive Impairment (CAMCI), Cognitive Self-Report Questionnaire-25	Atenção, Funções executivas, Memória e, Velocidade de processamento	24 sessões, 90 min, total de 36h	0,002	Tamanho de efeito mediano	Wii Sports® games, including boliche, golf, tennis, and baseball (Nintendo, Japan)
Fernández-Calvo et al. ³¹	45	Grupo ativo: programa de estimulação cognitiva tradicional, Grupo controle: sem contato	Mini-Mental State, Examination, ADAS-Cog, NPI-Q (inventário neuropsiquiátrico), Escala de depresión de Cornell	Atenção, Memória e, Linguagem	12 semanas, 3 sessões por semana (total de 36h)	0,001	GE melhora significativa em ADAS-COG em comparação com o grupo tradicional de treino cognitivo. Programa Big Brain Academy (BBA)	Big Brain Academy® (Nintendo DS,USA)

Sci Med. 2015;25(3):ID21636 7/12

Tabela 2. Domínios cognitivos, efeitos de melhora cognitiva no pós-treino nos grupos de estudo e principais instrumentos neuropsicológicos utilizados nos 21 estudos selecionados.

Dominios cognitivos	Variáveis analisadas	Testes neuropsicológicos
Memória 5 estudos	Memória e trabalho (2 estudos) Memória imediata (1 estudo) Memória tardia (1 estudo) Memória de trabalho viso-espacial (1 estudo)	Rey-Osterrieth Complex Figure Test ^{28,53} Corsi Block Tapping ^{5,53} Spatial Span (WMSIII) ^{32,56} Digit Span Test ²⁸
Funções executivas 12 estudos	Controle executivo (5 estudos) Dupla tarefa (2 estudos) Resolução de problemas (1 estudo) Processo inibitório (2 estudos) Flexibilidade cognitiva (2 estudos)	Trail Making Test A e B ^{27,28,30,32,42,} Stroop Color and Word Test ^{26-28,30,32,52} Teste Wisconsin e Classificação de Cartas (WCST) ^{26,53} Mental Rotation Test ^{32,50}
Atenção 8 estudos	Atenção sustentada (1 estudo) Atenção visual (1 estudo) Atenção (1 atenção) Atenção seletiva (1 estudo) Alerta atencional (2 estudo) Distração (1 estudo) Foco atencional (1 estudo)	Useful Field of View (UFOV) ^{8,14,52}
Linguagem 2 estudos	Área verbal (1 estudo) Processamento silábico (1 estudo)	Subteste vocabulário (WAIS III) ⁵¹
Percepção 8 estudos	Tempo de reação (1 estudo) Viso-espacial (3 estudos) Velocidade de processamento (3 estudos) Viso-motora (1 estudo)	Subteste Símbolos (WAIS III) ^{14,27} Trail Making Test A e B ^{27,28,30,32,42}
Cognição geral 3 estudos	Cognição geral (3 estudos)	ADAS – Cog ^{31,12} Cognitive Self-Report ²⁹ Mini Exame do Estado Mental ^{8,30,32,51,52} CoAT Battery ⁵⁴

Tabela 3. Testes utilizados no pré-teste e no pós-teste como instrumentos de medidas nos 21 estudos revisados.

Testes Neuropsicológicos	
• T.O.VA. – Test Of Variables of Attention ¹⁴ (1 estudo) • Useful field of view test (UFOV) ^{8,14,52} (3 estudos) • MEEM ^{8,30-32,51,52} (6 estudos) • Corsi Block Tapping ^{5,53} (2 estudos) • Raven standard progressive matrices ^{5,26,50} (3 estudos) • Subteste símbolos WAIS IIII ^{1,27} (2 estudos) • Trail Making Test parte A e B ^{27,28,30,32,42} (5 estudos) • Trail Making Test parte A e B ^{27,28,30,32,42} (5 estudos) • Subteste cubos WAIS IIII ²⁷ (1 estudo) • California Verbal Learning Test ²⁷ (1 estudo) • Controlled Oral Word Association Test ²⁷ (1 estudo) • Subteste sequência de números e letras ²⁷ (1 estudo) • Sutroop Color and WordTest ^{20-28,30,32,52} (6 estudos) • Bateria de avaliação frontal ⁴² (1 estudo) • CogAT battery ⁵⁴ (1 estudo) • Attentional Blink ⁵⁰ (1 estudo) • Attentional Blink ⁵⁰ (1 estudo) • Mental Rotation ^{32,50} (2 estudos) • Rey-Osterrieth Complex Figure Test ^{28,53} (2 estudos) • Faces I e II WMS III ⁵³ (1 estudo) • Family Pictures I e II WMS III ⁵¹ (1 estudo) • Subteste vocabulário WAIS III ⁵¹ (1 estudo) • Letter Sets Test ³² (1 estudo)	 Digit Symbol Substitution Test³² (1 estudo) Spatial Span Test WMS III³² (1 estudo) Digit Span^{28,56} (2 estudos) Directional Headings Test³² (1 estudo) Cancellation Test³² (1 estudo) Number Comparison Test³² (1 estudo) Reaction Time Test³² (1 estudo) Plate Tapping Test³² (1 estudo) Plate Tapping Test³² (1 estudo) Cambridge Neuropsychological Test Automated Battery²⁶ (1 estudo) Wisconsin Card Short Test^{26,53} (2 estudos) Continuous Performance Test²⁶ (1 estudo) Memory Alterations Test³⁰ (1 estudo) Cognitive Sub-scale of Alzheimer's Disease Assessment Scale¹² (1 estudo) ADAS-Cog³¹ (1 estudos) Stop-signal test³² (1 estudo) Counting span⁵² (1 estudo) Mental counters⁵² (1 estudo) Global-local switching test⁵² (1 estudo) Smiling faces switching test⁵² (1 estudo) Test of attentional performance⁵² (1 estudo) Verbal fluency test²⁸ (1 estudo) Verbal fluency test²⁸ (1 estudo) Computerized Assessment of Mild Cognitive Impairment (CAMCI)²⁹ (1 estudo) NPI-Q (inventário neuropsiquiátrico)³¹ (1 estudo)
Autorrelato	
 Escala de depressão de Cornell³¹ (1 estudo) Global Feelings of Control³⁰ (1 estudo) Cognitive Self-Report²⁹ (1 estudo) Clinical Inventory of Self-Concept¹² (1 estudo) 	 WHOQOL-Bref¹² (1 estudo) Questionnaire-25²⁹ (1 estudo) GDS-15³² (1 estudo) Modifiable Activity Questionnaire³² (1 estudo)
Tarefas Ecológicas	
 Odd-ball task⁵³ (1 estudo) Cross-modal visual-auditory odd- ball task^{51,53} (2 estudos) Speed of Processing Task⁵³ (1 estudo) Tarefa de atenção seletiva⁴⁸ (1 estudo) Tarefa N-back^{48,50} (2 estudos) Tarefa de controle motor Velocidade de Processamento¹⁴ (1 estudo) Tarefa símbolos (dígitos)¹⁴ (1 estudo) 	 Tarefas cognitivas informatizadas para medida de desempenho em Jogar Nintendo DS⁵⁵ (1 estudo) Tarefa Operation Span⁵⁰ (1 estudo) Tarefa de alternância⁵⁰ (1 estudo) Tarefa de memória visual de curto prazo⁵⁰ (1 estudo) Stopping Task⁵⁰ (1 estudo) Jigsaw-puzzle tasks⁵³ (1 estudo)

DISCUSSÃO

Verificamos que os estudos selecionados buscaram identificar uma definição de dose, ou seja, o número de ensaios ou total de horas necessárias de treino cognitivo para aquisição de um aprendizado [22]. Achados em neurofisiologia da memória indicam que durante os primeiros minutos ou horas após a aquisição de um aprendizado, a informação é suscetível a interferências do ambiente, o que pode exigir um tempo hábil de exposição à informação para que esta se torne um registro [33,34].

A formação de um aprendizado requer modificações estruturais e funcionais que ocorrem nas sinapses de distintas vias devido ao uso ou desuso das mesmas [35]. A formação de uma memória requer uma série de processos metabólicos no hipocampo e outras estruturas cerebrais; isso exige cerca de três a oito horas [36,37].

Toril et al. [1], em uma metanálise sobre o efeito do treino cognitivo com jogos de videogame na cognição de idosos, sugeriram que os efeitos de uma intervenção dependem de variáveis moderadoras, tais como a idade dos participantes e o número de sessões. Essa metanálise mostrou que intervenções de uma a seis semanas foram mais eficazes do que intervenções com longa duração (de sete a 12 semanas) [1].

Na presente revisão, do total de 21 estudos, 11 estudos (52%) foram realizados com treino de curta duração e tempo total de treino mais curto, enquanto 10 estudos (48%) foram realizados com treino de longa duração. Os estudos de curta duração apresentaram melhor desempenho em tempo de reação, atenção sustentada e memória de trabalho entre GE e GC (p<0,05). Os principais resultados da presente revisão corroboram com os do estudo de Toril et al. [1] que indicam maior efeito quando o treino é de curta duração (uma a seis semanas).

Por outro lado, evidências demonstram que sessões muito curtas de treino cognitivo (menos de 30 minutos) podem ser ineficazes, possivelmente porque a plasticidade sináptica é mais provável após 30 a 60 minutos de estimulação [38]. Medidas de memória pós-treino são usualmente ricas e declinam mais ou menos exponencialmente em poucas horas [39].

O treino cognitivo computadorizado com mais de três sessões por semana neutraliza a eficácia, sugere o estudo metanalítico de Lampit et al. [25]. É possível que exista uma dose máxima para o treino cognitivo ter efeito, após a qual outros fatores podem interferir com os ganhos do treino, uma forma de fadiga cognitiva. Esta questão não é exclusiva para pessoas idosas.

Estudos com treinos cognitivos com jovens e adultos com longas agendas de treinamento incluem intervalos de tempo pré-programados objetivando a eficácia do treinamento [25,40,41].

Nesta revisão foram encontrados diferentes gêneros de jogos de videogame usados nas intervenções. Importante ressaltar que apenas dois estudos utilizaram jogos que foram desenvolvidos exclusivamente para o treino cognitivo de idosos (NeuroRacer e Brain Age Dr. Kawashima) [16,42]. Todos os outros jogos não visaram características como idade para o *design* dos jogos. O *design* do jogo é um importante moderador dos efeitos cognitivos da intervenção [1,25].

Estudos com jogos comerciais são trabalhos que evidenciam as habilidades cognitivas que tais jogos são capazes de exercitar. Observamos um crescente interesse da indústria dos jogos de videogame no desenvolvimento de jogos para o treino cerebral, uma vez que entre os 21 estudos foram frequentemente utilizados os jogos especialmente criados para esta finalidade: My better mind®, Brain Fitness Game®, Brain Age®, Big Brain Academy®, Lumosity®.

A forma como os jogos são controlados, ou seja, a interação entre o jogador e a máquina, é de grande importância para a metodologia do treino cognitivo com jogos de videogame. Atualmente, o clássico manche (controle com várias funções, semelhante ao usado na pilotagem de aviões), recebeu mais botões e um formato mais anatômico, para proporcionar um manuseio mais eficaz. O uso do joystick exige treinamento e destreza motora, sendo bem aceito por jovens e adultos e rejeitado por idosos. O mouse e os sensores de movimento são bem aceitos pelos idosos e oportunizam a estes a interação com jogos de última geração. O controle de jogo proporciona o exercício motor, sendo alvo da neurorreabilitação cognitiva que objetiva investigar métodos que possam maximizar o efeito plástico, promovendo a reorganização funcional através de alterações nas redes motoras [17,43,44]. O sensor de movimento possibilita um canal de transdução entre a percepção e a execução da ação através de uma representação virtual do corpo, sistema de neurônios espelhos, induzindo a forte ativação de áreas motoras primárias e secundárias associadas ao controle sensório motor [17,45,46].

Houve uma grande variabilidade de instrumentos de medida da cognição utilizados nos 21 estudos. Sendo que 19 estudos (90%) utilizaram o mesmo tipo de instrumentos, estes são testes neuropsicológicos visando à confiabilidade dos resultados. Apenas dois estudos utilizaram tarefas ecológicas para medir o desempenho. Desses 19 estudos que utilizaram medidas

Sci Med. 2015;25(3):ID21636 9/12

neuropsicológicas, seis utilizaram também escalas e questionários para mensurar autoconceito, atividade física, estado emocional, qualidade de vida e depressão.

Dos 21 estudos, apenas dois (9%) utilizaram tarefas cognitivas para avaliar o desempenho cognitivo dos participantes. O domínio cognitivo memória foi o mais explorado por uma maior diversidade de instrumentos neuropsicológicos. Podemos observar uma variedade de formas utilizadas para mensurar um mesmo construto: foram utilizadas tarefas de reconhecimento visual de faces, cópia e recordação de figuras com uso de lápis e papel, recordação visual de uma navegação espacial, recordação auditiva de spans, entre outros. As medidas neuropsicológicas oferecem tarefas padronizadas que possibilitam avaliar o substrato neurológico presumido do comportamento que está sendo medido [47].

Corroborando com Hampstead et al. [22] podese inferir que a escolha por testes neuropsicológicos está associada a sensibilidade desses instrumentos de mensuração de variáveis cognitivas aos efeitos do treino cognitivo na cognição dos idosos. Observamos que os testes neuropsicológicos utilizados para medir o desempenho são compostos por uma variedade de tarefas cognitivas que de forma padronizada referem-se a um construto cognitivo. Visando à confiabilidade dos resultados, consideramos que os testes neuropsicológicos são os mais apropriados para medir o efeito do treino cognitivo com jogos de videogame. Podemos considerar que os jogos de videogame são tarefas cognitivas que desafiam a cognição do jogador. Entre os jogos e as medidas neuropsicológicas existe certa semelhança entre o design do método (medida e treino) o que favorece a evidencia do efeito. Futuramente, isso poderá ser melhor investigado, questionando qual o construto cognitivo que determinado jogo exercita, facilitando assim o uso dos jogos de videogame como método de treino cognitivo.

Dos 21 estudos analisados, identificamos efeito positivo em um total de 18 variáveis cognitivas. Nesses estudos, o treino com jogos de videogame teve efeito de melhora no desempenho entre GE e GC (p<0,05) em tempo de reação, atenção sustentada, memória de trabalho, funções executivas, velocidade de processamento, alerta atencional, tarefas de memória visual imediata e tardia, flexibilidade cognitiva, processo inibitório e coordenação visomotora. Sendo que três estudos encontraram melhora em habilidades envolvendo atividade motora, quando comparados o GE e o GC. Isso pode indicar que o treino cognitivo motor pode maximizar o efeito plástico, promovendo a reorganização funcional através de alterações em redes motoras e, assim, facilitando a via neurológica para o aprendizado [17,43,44].

CONSIDERAÇÕES FINAIS

Aproximadamente 80% dos estudos incluídos nesta revisão utilizaram jogos comerciais, sendo que um quarto utilizou jogos *online*. Apenas quatro (19%) dos estudos desenvolveram ou utilizaram serious games desenhados ou adaptados especificamente para o treino cognitivo de idosos. O treino cognitivo com uso de jogos de videogame como uma modalidade de intervenção cognitiva, nos estudos incluídos nesta revisão, apresentou efeito positivo em diferentes domínios da cognição, com destaque em funções executivas, atenção e velocidade de processamento. Esses benefícios cognitivos podem ter impacto na vida do idoso, melhorando seu desempenho em diferentes atividades rotineiras. Para esse efeito na cognição é preciso empenho no treino, porque o efeito depende da intensidade de ocorrência da atividade cognitiva em um período de tempo suficiente para resultar em plasticidade neuronal.

Encontramos como resultado deste estudo que os treinamentos de curta duração e tempo total de treino entre 4,5 a 23,5 horas apresentaram desempenho melhor ou igual a treinamentos de mais longa duração. Sendo que o efeito na cognição foi melhor evidenciado em participantes mais idosos, do sexo feminino e menor nível educacional. Fatores metodológicos, como o tipo de jogo, duração do treino e medidas cognitivas antes e após o tratamento também influenciaram os resultados.

A investigação em métodos para atenuar os efeitos da longevidade na cognição é importante e deve ser aprofundada. Uma questão que poderá ser de grande importância é a investigação sobre o efeito do treino cognitivo com jogos de videogame em relação ao gênero e nível educacional. As limitações dos estudos encontram-se na padronização metodológica do treino cognitivo. Os resultados desta revisão sistemática sugerem que o cérebro idoso é capaz de adquirir, manter e enriquecer novas aprendizagens no envelhecimento. Podemos concluir que a dose da intervenção e a duração do treino são pontos chave para o resultado do treino cognitivo com uso de jogos de videogame em idosos.

REFERÊNCIAS

- 1. Toril P, Reales JM, Ballesteros S. Video game training enhances cognition of older adults: a meta-analytic study. Psychol Aging. 2014;29(3):706-16. http://dx.doi.org/10.1037/a0037507
- Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406e417.
- 3. Strenziok M, Parasuraman R, Clarke E, Cisler DS, Thompson JC, Greenwood PM. Neurocognitive enhancement in older adults: Comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. NeuroImage. 2014;85:1027-39. http://dx.doi.org/10.1016/j.neuroimage.2013.07.069
- 4. Salthouse TA. The processing speed theory of adult age differences in cognition. Psychol Rev. 1996;103:403-28. http://dx.doi.org/10.1037/0033-295X.103.3.403
- 5. Boot WR, Champion M, Blakely DP, Wright T, Souders DJ, Charness N. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness. Front Psychol. 2013;4:31. http://dx.doi.org/10.3389/fpsyg.2013.00031
- Kühn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry. 2014;19:265-71. http://dx.doi.org/10.1038/mp.2013.120
- 7. Clark JE, Lamphear AK, Riddick CC. The effects of videogame playing on the response selection processing of elderly adults. J Gerontol. 1987;42:82-85. http://dx.doi.org/10.1093/geronj/42.1.82
- 8. Belchior PDC. Cognitive training with video games to improve driving skills and driving safety among older adults [dissertation]. Dissertation Abstract International: The Science and Engineering. 2008;68:(9-B).
- Ball K, Owsley C, Sloane M, Roenker D, Bruni J. Visual attention problems as a predictor of vehicle crashes in older drivers. Invest. Ophthalmol Vis Sci. 1993;34:3110-23.
- 10. Diehl M., Willis SL, Schaie KW. Everyday problem solving in older adults: Observational assessment and cognitive correlates. Psychol Aging. 1995;10:478-91. http://dx.doi.org/10.1037/0882-7974.10.3.478
- 11. Drew B, Waters J. Video games: Utilization of a novel strategy to improve perceptual motor skills and cognitive functioning in the non-institutionalized elderly. Cognitive Rehabilitation.1986;4(2):26-31.
- 12. Torres A. Cognitive effects of video games on older people. International Conference on Disability, Virtual Reality & Associated Technologies [Abstract]. 2008;19:191-8.
- 13. Royall DR, Palmer R, Chiodo LK, Polk MJ. Declining executive control in normal aging predicts change in functional status: the freedom house study. J Am Geriatr Soc. 2004;52:346-52. http://dx.doi.org/10.1111/j.1532-5415.2004.52104.x
- Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, Gazzaley A. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97-101. http://dx.doi.org/10.1038/nature12486
- Nikolaidis A, Voss MW, Lee H, VO LT, Kramer AF. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front Hum Neurosci. 2014;8:169. http://dx.doi.org/10.3389/ fnhum.2014.00169
- 16. Goh JO, Park DC. Neuroplasticity and cognitive aging: the scaffolding theory of aging and cognition. Restor Neurol Neurosci. 2009;27(5):391-403. http://dx.doi.org/10.3233/RNN-2009-0493
- 17. Cameirão MS, Badia SB, Oller ED, Verschure PF. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48. http://dx.doi.org/10.1186/1743-0003-7-48
- Rönnlund M, Nyberg L, Bäckman L, Nilsson LG. Stability, growth and decline in adult life span development of declarative memory: Cross-sectional and longitudinal data from a population-based study. Psychol Aging. 2005;20:3-18. http://dx.doi.org/10.1037/0882-7974.20.1.3
- 19. Simon SS, Yokomizo JE, Bottino CM.Cognitive intervention in amnestic Mild Cognitive Impairment: a systematic review. Neurosci Biobehav Rev. 2012;36(4):1163-78. http://dx.doi.org/10.1016/j.neubiorev.2012.01.007
- 20. Nilsson LG. Memory function in normal aging. Acta Neurol Scand Suppl. 2003;179:7-13. http://dx.doi.org/10.1034/j.1600-0404.107.s179.5.x
- 21. Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer's disease and vascular dementia. Cochrane Database Syst Rev. 2013;6:CD003260. http://dx.doi.org/10.1002/14651858.cd003260.pub2
- 22. Hampstead BM, Stringer AY, Stilla RF, Deshpande G, Hu X, Moore AB, Sathian K. Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: a pilot study. Neurorehabil Neural Repair. 2011;25(3):210-22. http://dx.doi.org/10.1177/1545968310382424
- 23. Kueider AM, Parisi JM, Gross AL, Rebok GW.Computerized Cognitive Training with Older Adults: A Systematic Review. PLoS One. 2012;7(7):e40588. http://dx.doi.org/10.1371/journal.pone.0040588
- 24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009 Jul 21;6(7):e1000100. http://dx.doi.org/10.1371/journal.pmed.1000100
- 25. Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11(11):e1001756. http://dx.doi.org/10.1371/journal.pmed.1001756
- Peretz C, Korczyn AD, Shatil E, Aharonson V, Birnboim S, Giladi N. Computer-base d, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology. 2011;36(2):91-9. http://dx.doi. org/10.1159/000323950
- 27. Stern Y, Blumen HM, Leigh W, Alexis R, Herzberg G, Gopher D. Space Fortress game training and executive control in older adults: A pilot intervention. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2011;18(6):653-77. http://dx.doi.org/10.1080/13825585. 2011.613450

Sci Med. 2015;25(3):ID21636 11/12

- - 28. Kim KW, Choi Y, You H, Na DL, Yoh MS, Park JK, Seo JH, Ko MH. Effects of a serious game training on cognitive functions in older adults. J Am Geriatr Soc. 2015;63(3):603-5. http://dx.doi.org/10.1111/jgs.13304
 - 29. Hughes TF, Flatt JD, Bo Fu, Butters MA, Chang CCH, Ganguli M. Interactive video gaming compared with health education in older adults with mild cognitive impairment: a feasibility study. Int J Geriatr Psychiatry 2014;29:890-8. http://dx.doi.org/10.1002/gps.4075
 - 30. Sosa, G. The impact of video game intervention in the cognitive functioning, self-efficacy, self-esteen and video games attitude of older adults . A final project. CUG Theses and Dissertations (2011).
 - 31. Fernández-Calvo B, Rodríguez-Pérez R, Contador I, Rubio-Santorumy A, Ramos F. Eficacia del entrenamiento cognitivo basado en nuevas tecnologias en pacientes con demencia tipo Alzheimer. Psicothema. 2011;23:44-50.
 - 32. Maillot P, Perrot A, Hartley A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol Aging. 2012;27(3):589-600. http://dx.doi.org/10.1037/a0026268
 - 33. McGaugh JL. Time-dependent processes in memory storage. Science. 1966;153:1351-8. http://dx.doi.org/10.1126/science.153.3742.1351
 - 34. Izquierdo I, Different forms of posttraining memory processing, Behav Neural Biol, 1989;51:171-202, http://dx.doi.org/10.1016/S0163-1047(89)90812-1
 - 35. Izquierdo I. Memória. 2ª ed. Porto Alegre: Artmed. 2011.
 - 36. Izquierdo I, Medina JH. Memory formation, the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Memory. 1997;68:285-316. http://dx.doi.org/10.1006/nlme.1997.3799
 - 37. Izquierdo I, Bevilagua L, Rossato JL, Bonini JS, Medina JH, Cammarota M, Different molecular cascades in different sites of the brain control consolidation. Trends Neurosci. 2006;29:496-505. http://dx.doi.org/10.1016/j.tins.2006.07.005
 - 38. Luscher C, Nicoll RA, Malenka RC, Muller D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci. 2000;3:545-50. http://dx.doi.org/10.1038/75714
 - 39. EbbingHaus H. On Memory. New York. 1964: Dover Edition (Original Work Published, 1885).
 - 40. Wang Z, Zhou R, Shah P. Spaced cognitive training promotes training transfer. Front Hum Neurosci. 2014;8:217. http://dx.doi.org/10.3389/ fnhum.2014.00217
 - 41. Penner IK, Vogt A, Stöcklin M, Gschwind L, Opwis K, Calabrese P. Computerised working memory training in healthy adults: a comparison of two different training schedules. Neuropsychol Rehabil. 2012;22(5):716-33. http://dx.doi.org/10.1080/09602011.2012.686883
 - 42. Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, Shigemune Y, Sekiguchi A, Kotozaki Y, Tsukiura T, Yomogida Y, Kawashima R. Brain Training Game Improves Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial. PLoS One. 2012;7(1):e29676. http://dx.doi.org/10.1371/journal.pone.0029676
 - 43. Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D, Llewellyn DME, Ramachandran VS. Rehabilitation of hemiparesis after stroke with a mirror. Lancet. 1999;353:2035-6. http://dx.doi.org/10.1016/S0140-6736(99)00920-4
 - 44. Kwakkel G, Van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Linclon N, Partridge C, Wellwood I, Langhorne P.Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529-39. http://dx.doi.org/10.1161/01. STR.0000143153.76460.7d
 - 45. August K, Lewis JA, Chandar G, Merians A, Biswal B, Adamovich S. FMRI analysis of neural mechanisms underlying rehabilitation in virtual reality: activating secondary motor areas. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3692-5. http://dx.doi.org/10.1109/ IEMBS.2006.260144
 - 46. Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F, Buccino G. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage. 2007;36(Suppl 2):T164-73. http://dx.doi.org/10.1016/j.neuroimage.2007.03.043
 - 47. D'Amato, R.C., Hartlage, L.C. Essentials of neuropsychological assessment. New York: Springer; 2008.
 - 48. Cassavaugh ND, Kramer AF. Transfer of computer-based training to simulated driving in older adults. Appl Ergon. 2009;40(5):943-52. http://dx.doi.org/10.1016/j.apergo.2009.02.001
 - 49. Bozoki A, Radovanovic M, Winn B, Heeter C, Anthony JC. Effects of a computer based cognitive exercise program on age-related cognitive decline. Arch Gerontol Geriatr. 2013;57(1):1-7. http://dx.doi.org/10.1016/j.archger.2013.02.009
 - 50. Basak C, Boot WR, Voss MW, Kramer AF. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging. 2008;23(4):765-77. http://dx.doi.org/10.1037/a0013494
 - 51. Mayas J, Parmentier FBR, Andrés P, Ballesteros S. Plasticity of Attentional Functions in Older Adults after Non-Action Video Game Training: A Randomized Controlled Trial. PLoS One. 2014;9(3):e92269. http://dx.doi.org/10.1371/journal.pone.0092269
 - 52. Van Muijden J, Guido PH.B, Hommel B. Online games training aging brains: limited transfer to cognitive control functions. Front Hum Neurosci. 2012;6:221. http://dx.doi.org/10.3389/fnhum.2012.00221
 - 53. Ballesteros S, Prieto A, Mayas J, Toril P, Pita C, Ponce de León L, Reales JM, Waterworth J. Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Front Aging Neurosci. 2014;6:277. http://dx.doi.org/10.3389/ fnagi.2014.00277
 - 54. Ackerman PL, Kanfer R, Calderwood C. Use it or Lose it? Wii Brain Exercise Practice and Reading for Domain Knowledge. Psychol Aging. 2010;25(4):753-66. http://dx.doi.org/10.1037/a0019277
 - 55. Nacke LE, Nacke A, Lindley CA. Brain training for silver gamers: effects of age and game form on effectiveness, efficiency, self-assessment, and game play experience. Cyberpsychol Behav. 2009;12(5):493-9. http://dx.doi.org/10.1089/cpb.2009.0013
 - 56. McDougall S, House B. Brain training in older adults: evidence of transfer to memory span performance and pseudo-Matthew effects. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19(1-2):195-221. http://dx.doi.org/10.1080/13825585.2011.640656 😄