Лабораторная работа 14

Модели обработки заказов

Герра Максимиано

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Модель оформления заказов клиентов одним оператором	6
	3.2 Построение гистограммы распределения заявок в очереди	13
	3.3 Модель обслуживания двух типов заказов от клиентов в	
	интернет-магазине	18
	3.4 Модель оформления заказов несколькими операторами .	24
4	Выводы	31

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	7
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором	
	с измененными интервалами заказов и времени оформления	
	клиентов	10
3.4	Отчёт по модели оформления заказов в интернет-	
	магазине с измененными интервалами заказов и времени	
	оформления клиентов	11
3.5	Построение гистограммы распределения заявок в очереди	14
3.6	Отчёт по модели оформления заказов в интернет-	
	магазине при построении гистограммы распределения	
	заявок в очереди	15
3.7	Отчёт по модели оформления заказов в интернет-	
	магазине при построении гистограммы распределения	
	заявок в очереди	15
3.8	Гистограмма распределения заявок в очереди	17
3.9	Модель обслуживания двух типов заказов от клиентов в	
	интернет-магазине	19
3.10	Отчёт по модели оформления заказов двух типов	20
3.11	Отчёт по модели оформления заказов двух типов заказов	22
3.12	?Модель оформления заказов несколькими операторами .	25
3.13	ВОтчет по модели оформления заказов несколькими	
	операторами	26
3.14	Модель оформления заказов несколькими операторами с	
	учетом отказов клиентов	28
3.15	Отчет по модели оформления заказов несколькими	
	операторами с учетом отказов клиентов	29

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернетмагазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) - ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и

DEPART, в которых в качестве имени очереди укажем operator_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром operator — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE - 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается - оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 3.1).

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

Model 1.2.1 - REPO	RT					
STAR	T TIME	END TIM	E BLOCKS	FACILITIES	STORAGES	
	0.000	480.00	0 9	1	0	
N.	AME		VALUE			
OPERA	TOR	1	0001.000			
OPERA	TOR_Q		0000.000			
LABEL	LOC BLO	CK TYPE	ENTRY COU	INT CURRENT C	OUNT RETRY	
		ERATE		0		
		JE	32	0	0	
	3 SEI		32	0	0	
	4 DEP		32	0	0	
	5 ADV	ANCE	32	1	. 0	
	6 RELI	EASE	31		0	
	7 TERI	MINATE	31	0	0	
	8 GENI	ERATE	1	0	0	
	9 TERI	MINATE	1	0	0	
FACILITY	ENTRIES UT	IL. AVF	TIME AVATI	. OWNER PEND	INTER RETRY	DELAY
OPERATOR				33 0		
QUEUE	MAX CONT.	ENTRY ENTR	Y(0) AVE.C	CONT. AVE.TIM	IE AVE.(-0)	RETRY
QUEUE OPERATOR_Q	1 0	32	31 0.0	0.02	0.671	0
FEC XN PRI	BDT	ASSEM CU	RRENT NEX	T PARAMETER	VALUE	
33 0	489.786	33	5 6			
33 0 34 0	489.786 496.081 960.000	34	0 1			
35 0	0.60 0.00					

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0. Имена, используемые в программе модели: operator, operator q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT - количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля 0WNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;

- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

Model 1.3.1 - REPO	RT					
	TIME 0.000			FACILITIES 1		
NAME OPERATOR OPERATOR_Q			VALUE 0001.000 0000.000			
LABEL	LOC BLO	OCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY	
	1 GEN	IERATE	152	0	0	
	2 QUE	UE	152	82	0	
		ZE	70 70	0	0	
		PART	70	0		
		ANCE	70	1		
		EASE	69	0	0	
		RMINATE	69	0	0	
	8 GEN		1	0	0	
	9 TEF	RMINATE	1	0	0	
FACILITY	ENTRIES UT	IL. AVE.	TIME AVAIL	. OWNER PEND	INTER RETRY	DELAY
OPERATOR						
QUEUE OPERATOR_Q	MAX CONT.	ENTRY ENTR	Y(0) AVE.C 1 39.0	ONT. AVE.TIM	E AVE.(-0) 1 124.279	RETRY 0
FEC XN PRI				T PARAMETER	VALUE	
71 0 154 0						
155 0	960.000					

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля 0WNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name – метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 3.5).

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVE-VALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVE-VALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. 3.6, 3.7).

	START TI 0.0	ME 00					ACILITII 1		RAGES 0		
	NAME CUSTNUM FIN OPERATOR OPERATOR WAITTIME	Q		10	VALUI 0002.00 10.00 0003.00 0001.00	00 00 00					
LABEL		1 2 3 4 5 6 7 8	BLOCK TYPE GENERATE TEST SAVEVALUE ASSIGN QUEUE SEIZE DEPART ADVANCE RELEASE	Ξ	ENTRY 1	02 02 55 55 55 54 53	CURRENT	COUNT 0 0 0 0 1 1 0	RETRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
FIN			TERMINATE	Ε	1			0	0		
FACILITY OPERATOR			UTIL. 0.987							DELAY	
QUEUE OPERATOR		MAX CO	ONT. ENTRY				T. AVE.1		AVE.(-0) 10.824		ſ

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

TABLE WAITTIME		STD.DEV. 2.702	RA	NGE	RETRY 0	FREQUENCY	CUM.%
			_	0	.000	1	1.89
		0	.000 -	2	.000	0	1.89
		2	.000 -	4	.000	1	3.77
		4	.000 -	6	.000	0	3.77
		6	.000 -	8	.000	4	11.32
		8	.000 -	10	.000	12	33.96
		10	.000 -	12	.000	17	66.04
		12	.000 -	14	.000	14	92.45
		14	.000 -	16	.000	4	100.00
SAVEVALUE CUSTNUM	RE1		VALUE 55.000				
CEC XN PRI 98 0	M1 341.236		CURRENT 6	NEXT	PARAMETER	VALUE	
30 0	341.23	, 50	0		CUSTNUM	54.000	
FEC XN PRI 103 0	BDT 356.553		CURRENT 0	NEXT 1	PARAMETER	VALUE	

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля 0WNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;

- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. 3.8).

Рис. 3.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 3.9, 3.10).

```
; order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Model 3.1.1 - RE								
	суббо	га, июня 08,	2024 18:	12:40				
ST	ART TIME		TIME BLO			S STORA	GES	
	0.000	480	.000 1	7	1	0		
	NAME		VALU					
	RATOR		10001.0					
OPE	RATOR_Q		10000.0	00				
LABEL	100	DIOCK TABE	PUTDY	COUNT	CUDDENT	COUNT D	PTDV	
LADEL		BLOCK TYPE GENERATE		32	CURRENT	O COUNT F	0 0	
		OUEUE		32 32		4	0	
		SEIZE		32 28			0	
	_	DEPART		28		0	0	
	-	ADVANCE		28		1	0	
		RELEASE		27		0	0	
		TERMINATE		27		0	0	
		GENERATE		15		0	0	
		QUEUE		15		3	0	
		SEIZE		12		0	0	
		DEPART		12		0	0	
	12	ADVANCE		12		0	0	
	13	ADVANCE		12		0	0	
	14	RELEASE		12		0	0	
	15	TERMINATE		12		0	0	
	16	GENERATE		1		0	0	
	17	TERMINATE		1		0	0	
FACILITY	ENTRIES	UTIL. AV	E. TIME A	VAIL.	OWNER PE	ND INTER	RETRY	DELAY
OPERATOR	40	0.947	11.365	1	42	0 0	0	7
QUEUE OPERATOR_Q	MAX C	ONT. ENTRY E	NTRY(0) A	VE.CON	T. AVE.T	IME AV	E.(-0)	RETRY
OPERATOR Q	8	7 47	2	3.355	34.	261	35.784	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMET	ER VA	LUE	
42 0		325 42	5	6				

Рис. 3.10: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным Проанализируем результаты моделирования (рис. 3.11).

T TIME END TIME BLOCKS FACILITIES STORAGES 0.000 480.000 11 1 0 START TIME NAME VALUE NOEXTRA 8.000 OPERATOR OPERATOR Q LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY GENERATE 33
QUEUE 33 1 GENERATE 33 0
2 QUEUE 33 0
3 SEIZE 33 0
4 DEPART 33 0
5 ADVANCE 33 0
6 TRANSFER 33 0
7 ADVANCE 8 1
8 RELEASE 32 0
9 TERMINATE 32 0
10 GENERATE 1 0 EXTRA NOEXTRA FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY OPERATOR 33 0.766 11.146 1 34 0 0 0 0 DUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OPERATOR_Q 1 0 33 25 0.054 0.70, BDT ASSEM CURRENT NEXT PARAMETER VALUE 482.925 34 7 8 487.726 35 0 1 960.000 36 0 10

Рис. 3.11: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля 0WNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;

- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 3.12).

operator STORAGE 4 GENERATE 5,2 QUEUE operator_q ENTER operator_1 DEPART operator_q ADVANCE 10,2 LEAVE operator,1 TERMINATE 0 ;timer GENERATE 480 TERMINATE 1 START 1

Рис. 3.12: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.13).

1	IME 000			ACILITIES STO	
NAME OPERATOR OPERATOR			VALUE 000.000 001.000		
LABEL	LOC BLOCK 1 GENER 2 QUEUE 3 ENTER 4 DEPAR 5 ADVAN 6 LEAVE 7 TERMI 8 GENER 9 TERMI	ATE T CE NATE ATE	93 93 93 93 93 93 91 91	CURRENT COUNT 0 0 0 0 2 0 0 0 0 0 0	0 0 0 0 0 0
QUEUE OPERATOR_Q				r. AVE.TIME 0.000	
STORAGE OPERATOR				. AVE.C. UTIL 1.926 0.48	
FEC XN PRI 95 0 93 0	BDT 480.457 482.805	95 0	1	PARAMETER	VALUE

Рис. 3.13: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа - когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи

заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q,2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 3.14).

Рис. 3.14: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.15).

Model 4.3.1 - REPOR	т					
	TIME					
	0.000	480.000	10	0	1	
NA NA	ME		VALUE			
OPERAT	OR	100	00.000			
OPERAT	OR_Q	100	01.000			
LABEL	LOC BLOCK T	YPE E	NTRY COU	NT CURRENT C	OUNT RETRY	
	1 GENERAT		94	27		
	2 TEST		67	0	0	
	3 QUEUE		67		0	
	4 ENTER		64		0	
	5 DEPART		64	-	0	
	6 ADVANCE		64	-	0	
	7 LEAVE		60	-	0	
	8 TERMINA		60	-	0	
	9 GENERAT		1	0	-	
	10 TERMINA	TE	1	0	0	
QUEUE	MAX CONT. ENT	RY ENTRY(0) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	3 3	67 4	2.7	19.34	7 20.576	27
STORAGE	CAP. REM. MIN	. MAX. E	NTRIES A	/L. AVE.C.	UTIL. RETRY D	ELAY
OPERATOR	4 0 0	4	64	1 3.885	0.971 0	3
FEC XN PRI	BDT AS	SEM CURR	ENT NEXT	r parameter	VALUE	
	480.736		1			
62 0	491.784		7			
63 0	491.929					
64 0	495.070	64 6	7			
65 0		65 6	7			
^7 ^	000 000	^7 ^	^			

Рис. 3.15: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STOR-AGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE.TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернетмагазине;
- модель оформления заказов несколькими операторами.