Lecture 12. Fubini, Bounds, Convergence Wednesday, October 18, 2017 9:50 AM
H W 4
min and max confusion
min and max confusion [E (max X;) < b not true
Plan for the nearest future
HW5 due on Friday
No new HW until next Wednesday
30th Wednesday -> Midterm
Topies all the way until convergence
V
Next Monday No In- class Lecture
I will post a practie Mid-term
\downarrow
Posted Pamopto lecture capture on
Solutions for the practice exam
I will make more office hours
No office hours next Monday
New Office hours on Friday 20 th 1-2 pm
Tuesday 24th 5-6 pm
· ·
Previous lecture
Independence intersections
Probabilities of any # of events
factorize
r.v.s and sets
CDFs will also factorize
X is 5 (Y) - measureble then X and Y

Iterated Expectations

```
Expectations of functions of independent random variables
      random variables
      X(\omega) = (X_1(\omega), ..., X_{\mu}(\omega))^T
       defined on a sample space (Rh, Bh, Px)
       Lebergue Integral
                   \int g(x) dP_{x}(x) := \mathbb{E}(g(x); A)
A \in \mathbb{R}^{h}
Some function
                A = { (x, -, x, ), x, EA, , x, EA, y =
                              = A, ×A<sub>2</sub>×...×A<sub>h</sub>
      If X, ,..., Xn are mutually independent
                       P_{X}(x) = \prod_{i} P_{X_{i}}(x_{i})
(x_{1},...,x_{n})^{T}
     TH) ] X, 1 X2 , r. v.s X = (x1, x2)
Fubini
If \int g(x) dP_{\chi}(x) exists then
           \int g(x) dP_{\chi}(x) = \int \left[ \int g(x_1, x_2) dP_{\chi_2}(x_2) \right] dP_{\chi_2}(x_1)
       over the plane order of 1 => 2 can be interchanged w/s proof. You can find the proof usually in
                               Appendices to Probability or Measure
                               Theory textbooks
```

Example:
$$X_1 \perp X_2$$

 $X_1 + X_2 \wedge ?$ Convolution

$$F_{X+X_2} = P (X_1 + X_2 \le \alpha) = \int dP(\alpha, \alpha) = \chi_1 + \chi_2 \le \alpha$$

$$= \int \int dP_{X_1}(\alpha) dP_{X_2}(\alpha) dP_{X_1}(\alpha) = \chi_1 \in \mathbb{R}$$

$$= \int F_{X_2}(\alpha - \alpha) dF_{X_1}(\alpha) \Rightarrow Convolution$$

$$= \int F_{X_2}(\alpha - \alpha) dF_{X_1}(\alpha) \Rightarrow Convolution$$

Convergence of random segmences

In
$$\mathcal{E}-\delta$$
 language
 $\forall \mathcal{E}>0$, $\forall \mathcal{E}>0$ $\exists \mathcal{N}:$
 $P(|X_{h}-X|>\mathcal{E})<\delta$, $\forall \mathcal{N}>\mathcal{N}$
Sup $P(|X_{k}-X|>\mathcal{E})\rightarrow 0$
 $k>\mathcal{N}$

Xhas. X wrt measure P

when $X_n(\omega) \rightarrow X(\omega)$ for all w, except perhaps a set of measure o.

Will connect both definitions to linits of sets Will show that conv. a.s. implies conv in prob.