Naive definition of a set X:

X = an arbitrary collection of objects.

Problem: Russell's Paradox:

 $S = \{X \mid X \text{ doesn't contain itself as an element}\}$

- \bigcirc If S is not an element of S, then S is an element of S
- \bigcirc If S is an element of S, then S is not an element of S

Either way, a contradiction.

The fundamental problem is that a set X must always live in an ambient set $T(X \subseteq T)$. But this weakens the naive definition of a set as it implies too much. Therefore, we must add additional axioms known as Zermelo-Fraenkel Axioms:

1. Axiom of Extensionality: if X and Y have the same elements, X = Y

$$\forall u(u \in X \equiv u \in Y) \Rightarrow X = Y$$

2. Axiom of Unordered Pair: For any a, b there exists a set $\{a, b\}$

$$\forall a \forall b, \exists c \forall x | (x \in c \equiv (x = a \lor x = b))$$

- 3. Axiom of Subsets: ϕ property with parameter $Y = \{u \in X | \phi(u, p)\}$
- 4. Axiom of Sum set: For any set X there exists a set Y = 0X
- 5. Axiom of Power set: Y = P(X) set of all sets.
- 6. Axiom of Infinity
- 7. Axiom of Replacement: Image of set under definable function is a set...UNSURE
- 8. Axiom of Foundation(Regularity)
- 9. Axiom of Choice

Important Operations and Concepts for naive set theory(works in ZFC):

 $\begin{array}{ll} \text{Union:} & X \cup Y = \{z \mid z \in X \text{ or } z \in Y\} \\ \text{Intersection:} & X \cap Y = \{z \mid z \in X \text{ and } z \in Y\} \\ \text{Set Difference (complement):} & X \setminus Y = \{z \mid z \in X \text{ and } z \notin Y\} \\ \text{Cartesian Product:} & X \times Y = \{(x,y) \mid x \in X \text{ and } y \in Y\} \\ \end{array}$

Additional Ideas:

Elemental membership:

 $a \in X$ if a is an element of X

Subset:

 $X\subseteq Y$ if every element of X is an element of YNote: $\{a\}\subseteq X\Longleftrightarrow a\in X$

Overset:

When $S \subseteq X$ and $S \neq X$, we sometimes say that S is an <u>subset</u> of X or that X is an <u>overset</u> of S.

$\underline{\text{Powersets}}$:

Let X be a set. The powerset of X denotes the set of all subsets of X.

Example:

$$X = \{1, 2, 3\}$$

$$P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Further additional concepts:

${\bf Cardinality}:$

Card(X) = |X| = (X) denotes the 'size' of the set X which is defined as the ordinal number measuring the number of elements of X.

${\bf Example:}$

$$X = \{1, 2, 3\}$$

$$\operatorname{Card}(\{1, 2, 3\}) = 3$$

$$|P(X)| = 2^{\operatorname{Card}(X)} \text{ (Question: why?)}$$

$$|P(1, 2, 3)| = 2^3 = 8$$

<u>Inductive set or natural numbers</u>:

$$\mathbb{N} = \{1, 2, 3, 4, \dots, n, n+1, \dots\}$$

(Key feature): If n_1, n_2 are elements, then $n_1 + 1$ is an element.

Further concepts:

Relation: A relation R is a subset of a Cartesian product $X \times Y$.

Given two sets X and Y, we form the set

$$X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$$

Examples:

- 1. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) \mid x,y \in \mathbb{R}\}$ (INSERT IMAGE)
- 2. $\mathbb{R}^n := \mathbb{R}^{n-1} \times \mathbb{R} = \mathbb{R}^1 \times \dots \times \mathbb{R}^1$ $((x_1, \dots, x_{n-1}), x_n) = (x_1, \dots, x_{n-1}, x_n)$
- 3. $\{a\} = X$, and Y an arbitrary set.

$$X \times Y = \{(a, y) \mid y \in Y\} \neq Y$$

But, $X\times Y\xrightarrow{p} Y$, p((a,y))=y (forgets 1st coordinate) is a bijection. Thus, $\{a\}\approx Y$.

4. (Bad example) Rational numbers $\mathbb{Q}=\{\frac{p}{q}\mid p,q\in\mathbb{Z},q\neq 0\}$ "can be thought as" $\mathbb{Z}\times(\mathbb{Z}^*\{0\})$ $(p,q)\to\frac{p}{q}$

Actually, to make precise we need the concept of a relation.

<u>Definition</u>: We say that a subset R of $X \times Y$ is a relation between X and Y. Moreover, we say that R is a <u>function</u> if $(x, y_1), (x, y_2) \in R \implies y_1 = y_2$ (CUTOFF)

Page 5:

We will get to functions in a minute, but lets go back to example 4 above:

$$S' = \mathbb{Z} \times (\mathbb{Z}^* \setminus 0) \to \mathbb{Q}$$

$$(p,q) \to \frac{p}{q}$$

However, the issue is two fractions can reduce:

$$\frac{p}{q} = \frac{p'}{q'}$$
 if $pq' = qp'$.

Therefore, let

$$R \subseteq S \times S$$

 $R = \{((p,q), (p',q')) \mid pq' - qp' = 0\}$

This is an example of an equivalence relation, often we take X=Y and have relations on X - i.e., Subsets $R\subseteq X\times X$.

Example 1:

 $\Delta_X = \{(x, y) \mid x = y\}$ is called the diagonal of X.

This is also an equivalence relation and corresponds to the regular notion of equality x=x.

Example 2:

$$\begin{split} X &= \mathbb{N}\{1,2,3,\ldots\} \cup \{0\} \\ R &= \{(x,y) \mid x+y \text{ divisible by } 2\} \end{split}$$

Example 2 continued:

Describes an equivalence relation on $\mathbb W$ where

x = y iff x and y are even. $\underline{\text{or}} \quad x = y$ iff x and y are odd.

Example 3:

$$R \subseteq \mathbb{R} \times \mathbb{R}$$

$$R = \{(x, y) \mid x < y\}$$

This is a <u>transitive relation</u> as x < y and $y < z \rightarrow x < z$.

Example 4:

$$R \subseteq \mathbb{R} \times \mathbb{R}$$

$$R = \{(x, y) \mid x \le y\}$$

This is both a <u>transitive</u> and <u>reflexive relation</u> since $x \le x$.

Example 5:

Consider $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ (or \mathbb{W} or $\mathbb{N}).$

Let m be a natural number $m=1,2,3,\ldots$

Then for any $z \in \mathbb{Z}$, there exists a unique q called a quotient such that

$$\boxed{z=mq+r}$$
 where $r=0,1,2,\ldots,m-1,$ $\frac{z}{m}=q+\frac{r}{m}$

If m=2, then either z is even in which case z=2q or odd and then z=2q'+1

We place an equivalence relation on $\mathbb Z$ called mod_m or \equiv_m by

$$z \equiv_m z' \iff z = mq + r \text{ and } z = mq' + r'$$

 $z \equiv z' \mod m \implies r = r'$

$$z \equiv 0 \mod 0 \leftrightarrow \square$$
$$z \equiv 0 \mod 1 \leftrightarrow \bigcirc$$
$$z \equiv 0 \mod 2 \leftrightarrow \diamondsuit$$

Example:

$$\begin{array}{ll} 17 \equiv 7 \pmod{10} \\ 27 \equiv 7 \pmod{10} & \text{Yet } 17 \not\equiv 27 \mod{3} \end{array}$$

$231 \equiv 1111 \mod 4$? To check:

 \therefore Yes, $231 \equiv 1111 \mod 4$

${\bf Example}$

 $15h\equiv 3\!\!\mod 12$

147 mod $12 \equiv 147$ hours after midnight, which is 3 o'clock.

Page 8'

Review: Modular Arithmetic

On the set $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$, we place an equivalence relation $\equiv \mod n$ defined by

$$x \equiv y \mod n \iff x = mq + r \text{ and } y = mq' + r'$$

 \boldsymbol{x} and \boldsymbol{y} are equal provided they have the same remainder. For each n, this relation behaves differently:

$$17 \equiv 27 \mod 10$$
 but $17 \not\equiv 27 \mod 3$.

Question

Find all positive integers x such that

$$x\equiv 1\mod 3.$$

$$\{1, 4, 7, 10, 13, \dots, 3q + 1, \dots\}$$

As discussed, arithmetic operations will carry over. What this means is that adding two numbers goes to the right set.

We define:

$$a+b := (a+b) \mod n$$

$$a \cdot b := (a \cdot b) \mod n$$

Example

$$(17+3) \mod 3 = 20 \mod 3 = 2 \mod 3$$

(CUTOFF)

When (x, y) is an element of R, we write xRy or $x \leq_R y$. A relation can have a lot of properties. Assume X = Y:

- Reflexive iff $x \leq_R x$ for all $x \in X$
- Symmetric iff $x \leq_R y \implies y \leq_R x$ for all $x, y \in X$
- Transitive iff $x \leq_R y$ and $y \leq_R z \implies x \leq_R z$ for all $x, y, z \in X$

If R has all of these properties, then it is an **equivalence relation** on X. In this case, we write $=_R$ or just = (Example: = on rational numbers). More on this topic later.

Def: A function from X to Y is a relation with the following: if for all $x \in X$ and any $y_1, y_2 \in Y$,

$$x \leq_R y_1$$
 and $x \leq_R y_2 \implies y_1 = y_2$.

In this case, we write y = f(x) for $x \leq_R y$.

We say a function $f: X \to Y$ is **injective** if

$$[f(x_1) = f(x_2) \implies x_1 = x_2]$$

$$A \hookrightarrow B$$

And we say $f: X \to Y$ is **surjective** if

 $\forall y \in Y$, there exists an x such that f(x) = y

Provide examples:

$$X = \mathbb{R}$$

 $Y = \mathbb{R}$
 $R = \text{real numbers}$

$$y=f(x), \quad f(x)=3x+1$$
 injective and surjective $y=f(x), \quad f(x)=\sqrt{x}$ injective but not surjective $y=f(x), \quad f(x)=x^3-x$ surjective but not injective

If a function is both injective and surjective, we say that it is **bijective** (or a bijection).

Thm: There exists a bijection $f: X \to Y$ if and only if Card(X) = Card(Y). Question: Are \mathbb{N} and \mathbb{Q} of the same size?

Let X = Y and consider all bijections $f: X \to X$. This is a set usually denoted

$$S(X)$$
, $Sym(X)$, $Biject(X)$, $Bi(X)$.

This is a prototypical example of a group.

$$G := Sym(X)$$

An element is a bijective map $f: X \to Y$.

- 1. $f \circ g : X \to X$ is bijective. $f(g(x)) = (f \circ g)(x)$ is also bijective.
- 2. $(f \circ g) \circ h = f \circ (g \circ h)$.
- 3. 1(x) = x for all x and $(f \circ 1) = f$, $(1 \circ g) = g$.
- 4. If $f:X\to X$ is a bijection, then $f^{-1}:X\to X$ exists and is also a bijection.

These are currently just statements which may be true or not. We need to prove these statements and the question is, how?

Cyclic Groups

Definition for x in G: In general, $x^0 = e$ and $x^n = x \cdot x \cdot \ldots \cdot x$ (n times).

$$(x^n)^{-1} = (x^{-1})^n$$

$$x^{-n} = (x^{-1})^n$$

Thm. Let G be a group and let $x \in G$. Let m, n be integers. Then:

1.
$$x^m x^n = x^{m+n}$$

2.
$$(x^m)^{-1} = x^{-m}$$

3.
$$(x^m)^n = x^{mn} = (x^n)^m$$

Proof. For m and n positive, $x^m x^n = x^{m+n}$ (m times x).

If m, n < 0, say m = -r, n = -s then

$$x^{m}x^{n} = x^{-r}x^{-s} = (x^{-1})^{r}(x^{-1})^{s} = (x^{-1})^{r+s} = x^{-(r+s)} = x^{m+n}$$

If m < 0 (say m = -r) and n > 0

$$x^{m}x^{n} = (x^{-1})^{r}x^{n} = (x^{-1})^{r}x^{n} = x^{r-n} = x^{m+n}$$

Part (2) and (3) are easy.

Definition. Let x be an element of a group G. We say x has order n if $x^n = e$ (called finite order).

If x doesn't have finite order, then we say x has infinite order.

Example 1.

$$(\mathbb{Z}_3, \oplus)$$
 $x = [1]$ $[1] + [1] + [1] = [0]$ order of $[1] = 3$

What is the order of [2]? Of [0]?

Example 2.

 $(U(\mathbb{Z}_5), \otimes)$ Calculate the order of all elements

$$4^1 \not\equiv 1 \mod 5$$
 $4^2 = 16 \equiv 1 \mod 5$ order is 2

$$3 \cdot 3 = 9 \equiv 4 \mod 5$$
 $3^2 = 9 \equiv 4 \mod 5$

$$3 \cdot 3 \cdot 3 = 4 \cdot 3 \equiv 12 \equiv 2 \mod 5$$
 order of 3 is 4

$$2^4 = 2 \cdot 2 \cdot 2 \cdot 2 \equiv 16 \equiv 1 \mod 5$$
 order of 2 is 4

Def. Let x be an element of a group G. We say x has order n if $x^n = e$ (called *finite order*). If x doesn't have finite order, then we say x has *infinite order*.

Example: (\mathbb{Z}_3, \oplus)

$$x = [1]$$

 $x^2 = [1] \oplus [1] = [2] \neq [0]$
 $x^3 = [1] \oplus [1] \oplus [1] = [2] \oplus [1] = [0] = e$

[1] has order 3. What is the order of [2]? of [0]?

Example: $(\mathbb{U}(\mathbb{Z}_5), \otimes)$ Calculate the order of all elements.

$$\begin{array}{c} 4^1 \neq 1 \\ 4^2 = 16 \equiv 1 \pmod 5 \pmod 5 \\ 3 \cdot 3 = 9 \equiv 4 \pmod 5 \\ 3 \cdot 3 \cdot 3 = 4 \cdot 3 \equiv 12 \equiv 2 \pmod 5 \\ 3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 2 \cdot 3 \equiv 6 \equiv 1 \pmod 5 \pmod 5 \pmod 5 \end{array}$$

Example:
$$G = GL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc \neq 0 \right\}$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus, this has order 2.

Example: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Order of 1 is ∞ .

Def. A group G is called *cyclic* if there is an element x in G such that $G = \{x^n \mid n \in \mathbb{Z}\}$. In this case, x is said to be a *generator* of G.

Presentation of a group, compact notation: In additive notation, $\langle x \rangle = \{nx \mid n \in \mathbb{Z}\}.$

Examples:

$$\begin{split} \mathbb{Z} &= \langle 1 \rangle \\ \mathbb{Z}_n &= \langle 1 \rangle \\ \mathbb{Z} &= \langle 1 \rangle \text{ (in additive notation)} \end{split}$$

 \mathbb{Q} is not cyclic since $\frac{1}{2} \notin \langle q \rangle$.

Thm Let x be an element of G.

- 1. The order of x is the order of x^{-1} .
- 2. If the order of x = n and $x^m = e$, then n divides m.
- 3. If the order of x = n and gcd(m, n) = d, then the order of $x^{m/d} = \frac{n}{d}$.

Proof. Assume $x^n = e$. Write m = qn + r. $0 \le r < n$

$$x^{m} = e$$

$$x^{qn+r} = e$$

$$x^{qn}x^{r} = e$$

$$(e)^{q}x^{r} = e$$

$$x^{r} = e \Rightarrow r = 0$$

Thm. If $G = \langle x \rangle$ and the order of $x = \infty$, then $x^j \neq x^k$ for all $j \neq k$. If the order of x = n, then $x^j = x^k$ iff $j \equiv k \pmod{n}$.

Def. Number of elements of G is called the order of G.

For finite group with $G = \langle x \rangle$, it must be the case that $G = \{e, x, x^2, x^3, \dots, x^{n-1}\}$.

Cyclic subgroups

Let x be an element of order 18. Calculate orders of $x^2, x^3, x^4, x^5, x^{12}$.

Exercises:

- 1. \mathbb{Z}_{15} and list all elements of order 15.
- 2. \mathbb{Z}_{24} (cyclic group of order 24). List all elements of order 12.

Let X be a set (finite or infinite). $S_X = S(X) = \operatorname{Sym}(X) = \{f : X \to X \mid g \in X\}$ f is a bijection}

When X is finite, say $X = \{1, 2, 3, ..., n\}$, we call $S_n := \text{Sym}(X)$ the sym $metric\ group\ of\ degree\ n.$

Note: $|S_n| = n!$ For $f \in S_X$, f shuffles the elements $\{1, 2, 3, ..., n\}$. Therefore we can represent f explicitly by writing:

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ f(1) & f(2) & f(3) & \cdots & f(n) \end{pmatrix}$$

For example, consider:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

 $h = f \circ g$ Find where each element goes.

Let X_1, X_2, \ldots, X_r $(1 \le r \le n)$ be r distinct elements of $\{1, 2, \ldots, n\}$. The r-cycle (X_1, X_2, \ldots, X_r) is the element of S_n such that

$$X_1 \to X_2$$

$$X_2 \to X_3$$

$$\vdots$$

$$X_{r-1} \to X_r$$

$$X_r \to X_1$$

For example,

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = (2,4)$$

The identity permutation can be written as (1)(2)(3)(4).

Two cycles are disjoint if their elements as a set are disjoint: $\{x_1, \ldots, x_r\} \cap \{y_1, \ldots, y_s\} = \emptyset$.

Theorem: For any f in S_n , there exist disjoint cycles $\sigma_1, \sigma_2, \ldots, \sigma_m$ such that $f = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_m$.

Proof. Choose some $x_1 \in \{1, ..., n\}$.

$$x_2 = f(x_1)$$
$$x_3 = f(x_2)$$
$$\vdots$$

There must be a first element x_k which is the same as a previous element $x_j \to \text{say } x_k = x_j$. j < k. In this case j = 1 since $x_k = x_j$ implies $x_k = x_{j-1}$ which contradicts the minimality of k because f is one-to-one.

Thus, the first k-1 elements $x_1, x_2, \ldots, x_{k-1}$ are distinct with $x_k = x_1$. Thus $f = f_1 \circ h_1$ with $f_1 = (x_1, x_2, \ldots, x_{k-1})$ with h_1 permutes elements other than those above.

We can continue this argument until

```
\begin{split} f &= f_1 \circ f_2 \circ h_2 \\ f &= f_1 \circ f_2 \circ f_3 \circ h_3 \\ \vdots \\ f &= f_1 \circ f_2 \circ f_3 \circ \ldots \circ f_m \circ h_m \quad \text{where } h_m \text{ has nothing left to permute.} \end{split}
```

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 4 & 2 & 8 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 3 & 4 & 2 & 6 & 7 & 8 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 7 \end{pmatrix} \circ \begin{pmatrix} 2 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 7 \end{pmatrix} \circ \begin{pmatrix} 2 & 5 \end{pmatrix} \circ \begin{pmatrix} 6 & 8 \end{pmatrix}$$

This is similar to factorization of integers into primes.

Note that disjoint cycles commute.

Theorem: For $n \geq 2$, any permutation in S_n factors as a product of transpositions $(a \ b)$.

Proof:

$$(1) = (1\ 2) \circ (2\ 1)$$

For a general r-cycle with $r \geq 2$,

$$(x_1 \ x_2 \ \dots \ x_r) = (x_1 \ x_r) \circ (x_1 \ x_{r-1}) \circ \dots \circ (x_1 \ x_2)$$

Example:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 4 & 2 & 8 & 1 & 6 \end{pmatrix} = (1 \ 3 \ 7) \circ (2 \ 5) \circ (6 \ 8)$$
$$= (1 \ 7) \circ (1 \ 3) \circ (2 \ 5) \circ (6 \ 8)$$

Def. A permutation is *even* if it can be written as an even number of transpositions and odd if it can be written as an odd number of transpositions.

Theorem: No permutation is both even and odd. Why?

 $A_n = \{ f \in S_n \mid f \text{ is even} \} \text{ for } n \geq 2.$ **Theorem:** A_n is a subgroup of S_n and $|A_n| = \frac{n!}{2}$. Why? Investigate S_3 :

$$f = (1 \ 2 \ 3), \quad g = (1 \ 3 \ 2)$$

 $S_3 = \{e, f, f^2, g, fg, f^2g\} = D_3$

Review Exam. Quiz 6.

Computations with A_3

$$|A_3| = \frac{3!}{2} = 3$$

$$A_3 = \{(1), (1\ 3\ 2), (1\ 2\ 3)\} = (1\ 2\ 3)$$

Claim: A_3 is normal in S_3 .

Def. We say a subgroup N < G is normal (written $N \triangleleft G$) if gN = Ng for all g in G.

Note:

$$gN = \{g \cdot x \mid x \in N\}$$
$$Ng = \{x \cdot g \mid x \in N\}$$

When $N \triangleleft G$, then the left cosets are equal to right cosets. Remark: In general, H < G general subgroup

 $|H| \cdot [G:H] = |G|$ equal to the number of left cosets

We know $S_n \xrightarrow{\sigma} \{-1,1\}$ where $\sigma(\varphi) = (-1)^{\text{sign of } \varphi}$ is a group homomorphism and $\text{ker}(\sigma) = A_n$, which provides an automatic proof of normality.

Let's check directly:

$$(12)(132)(12)^{-1} = (12)(132)(12)$$

$$(12)(123)(12)^{-1} = (12)(123)(12)$$

$$(13)(132)(13)^{-1} = (13)(132)(13)$$

$$(23)(132)(23)^{-1} = (23)(123)(23)$$

Groups up to order 16:

- 1 trivial group
- $2 \quad \mathbb{Z}/2\mathbb{Z}$
- $3 \quad \mathbb{Z}/3\mathbb{Z}, A_3$
- 4 $\mathbb{Z}/4\mathbb{Z}$ and $K = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- $5 \quad \mathbb{Z}/5\mathbb{Z}$
- 6 $\mathbb{Z}/6\mathbb{Z}$ non-abelian, D_3
- $7 \quad \mathbb{Z}/7\mathbb{Z}$
- 8 $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, non-abelian, D_4
- $9 \quad \mathbb{Z}/9\mathbb{Z}$
- 10 $\mathbb{Z}/10\mathbb{Z}$, non-abelian D_5
- 12 $\mathbb{Z}/12\mathbb{Z}$, abelian, D_6
- $16 \quad \mathbb{Z}/16\mathbb{Z}, \ \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb$

 $A_4 = \langle a, b \rangle$ where a = (12)(34) and b = (123).

 A_4 does not have a subgroup of order 6 as its index would be 2.

Proof: Any subgroup of index 2 must contain all elements of odd order. Let H be finite, $H \triangleleft G$.

$$|G:H|=2$$

Note that index 2 implies normality.

Let g be any element of G. If $g \notin H$, then $gH \neq Hg$. If $g \in H$, cosets are H and gH. Since left cosets are disjoint, gH = G - H. But right cosets are also disjoint, Hg = G - H. Thus, H is normal.

Thus, if $H \triangleleft A_4$, consider coset {3-cycle} H and cosets H, xH, x^2H . A_4 implies $x^2H = gH$ since if $x \cdot H = H \Rightarrow x^{-1} \cdot e \in H \Rightarrow x \cdot H = H$ or $x \cdot H = x^2H \Rightarrow x = e$.

Next: Applications, solvable groups, and extra groups by page 30 of supplementary text after mid Isomorphism Theorems.

Cayley's Theorem: Every group G can be identified with a subgroup of $\mathrm{Sym}(G)$.

Proof: This is established by left group action $G \times G \to G$.

In general, a group homomorphism

$$\varphi:G\to \mathrm{Sym}(X)$$
 is equivalent to a group action $G\times X\to X.$

1. When $\ker(\varphi) = \{e\}$, the group action is called *faithful*. 2. When φ is surjective, we say the group action is *transitive*.

Theorem: $G \times X$ and $|G|/|X| \Rightarrow \ker(\varphi) = \{e\}$, the action is not faithful.

The Orbit-Stabilizer Theorem: $G \times X \to G \times X$ finite.

For any $x \in X$, $|G : G_x| = \#(G/G_x)$.

Proof: Consider the mapping $\varphi: G/G_x \to O_x$, given by $\varphi(hG_x) = h \cdot x$. 1. φ is well-defined: $gG_x = hG_x \Rightarrow h^{-1}g \in G_x$ and so $\varphi(h^{-1}g \cdot x) = \varphi(h \cdot x)$. 2. φ is surjective: $\varphi(gG_x) = \varphi(hG_x)$ same element of orbit. 3. φ is injective: $\varphi(gG_x) = \varphi(hG_x) \Rightarrow \varphi(h \cdot x) = \varphi(g \cdot x)$.

Corollary: $|G:G_x| = \#O_x$ since $O_x = |G:G_x|$ for all $x \Rightarrow G \times X \to X$ transitive.

As we saw before, the conjugation action $\varphi: G \to \operatorname{Sym}(G)$ has $\ker(\varphi) = Z(G)$, the center of G.

Proof demonstrated last class.

Burnside's Orbit Counting Theorem: Let G be a finite group,

$$\frac{1}{|G|} \sum_{g \in G} |\mathrm{Stab}_G(g)| = \text{number of orbits of } G \text{ on } X$$

In the case that the group action is conjugation,

$$\frac{1}{|G|} \sum_{g \in G} |C_G(g)| = \text{number of conjugacy classes in } G$$

where $C_G(g) = \{h \in G \mid hg = gh\}$, the number of elements that commute with g.

Thus, for $h \in G$, the orbit of the conjugation action is given by

$$O_h = \{ghg^{-1} \mid g \in G\} = [h] \text{ (conjugacy class of } h)$$

The stabilizer subgroup of h is the centralizer of h in G,

$$Stab(h) = \{g \in G \mid ghg^{-1} = h\} = C_G(h)$$

and

$$|O_h| = |[h]| = [G: C_G(h)]$$
 (number of cosets)

Because X = G for the conjugation action, we can write

$$|G| = |O_{g_1}| + |O_{g_2}| + \ldots + |O_{g_m}|$$
 for some g_1, g_2, \ldots, g_m

Note $|O_h| = 1$ iff $h \in Z(G)$ (center). The Class Equation:

$$|G| = |Z(G)| + \sum_i [G:C_G(y_i)]$$

This equation reveals the deeper structure of the group.

Def. A p-group P is any group of order $|P| = p^n$ with p a prime.

Lemma: Let P be a p-group acting on a set X. If |X| is not divisible by p, then there is at least one fixed element in X.

Proof: Generally, $|X| = |O_{x_1}| + \ldots + |O_{x_n}|$. Since P is a p-group, $|O_{x_i}|$ is a power of p. Thus, $|O_{x_i}| = 1$ for some i. Otherwise, if $|O_{x_i}| > 1$ for all i, p divides |X|, a contradiction. But if $|O_{x_i}| = 1$, then $O_{x_i} = \{x_i\}$.

Proposition: For a prime p and a p-group P, the center of P is not the trivial subgroup.

Proof: If $Z(P) = \{e\}$ and the class equation implies that the other conjugacy classes $[y_i]$ have cardinality p^k for some $k \ge 1$,

$$|P| = p^n = 1 + p^m$$
 which is impossible

Corollary: For a prime p, a group of order p^2 is abelian.

Proof: We know by the previous lemma |Z(P)| = p or p^2 . If $|Z(P)| = p^2$, then Z(P) = P, so P is abelian. Suppose |Z(P)| = p and $x \in P$ and $x \notin Z(P)$. The centralizer of x,

$$C_P(x) = \{ g \in P \mid gx = xg \} \supseteq Z(P)$$

Thus, $Z(P) \subset C_P(x) \subset P$, but then $|C_P(x)| \neq p^2$, and $C_P(x) = P$. Thus, x commutes with every element of P, and so $x \in Z(P)$, a contradiction.

Cauchy's Theorem: For a finite group G, if p is a prime that divides |G|, then there is an element $g \in G$ of order p.

Ludwig Sylow extended the above result.

Def. Let p be a prime number and let G be a finite group. Suppose $|G| = p^e m$ where $p \nmid m$. A Sylow p-subgroup of G is a subgroup P that is a p-group of order p^e .

The Sylow Theorems: Suppose p is a prime and G is a finite group for which p divides |G|. Then:

- 1. G contains a Sylow p-subgroup.
- 2. The Sylow p-subgroups of G are conjugates of one another.
- 3. If P and Q are Sylow p-subgroups of G, then $\exists x \in G$ such that $P = xQx^{-1}$.
- 4. If $|G| = p^e m$ and n_p denotes the number of Sylow *p*-subgroups of G, then n_p divides m and $n_p \equiv 1 \pmod{p}$.

Proposition: If $|G| = p^k m$, $p \nmid m$, then G is not a simple group. For example,

$$30 = 2 \cdot 3 \cdot 5,$$

$$56 = 2^{3} \cdot 7,$$

$$60 = 2^{2} \cdot 3 \cdot 5,$$

$$63 = 3^{2} \cdot 7,$$

$$72 = 2^{3} \cdot 3^{2},$$

$$90 = 2 \cdot 3^{2} \cdot 5,$$

$$105 = 3 \cdot 5 \cdot 7,$$

$$108 = 2^{2} \cdot 3^{3},$$

$$120 = 2^{3} \cdot 3 \cdot 5.$$

None of these orders can form simple groups, as they all have non-trivial Sylow p-subgroups.

A brief note:

$$PSL_2(\mathbb{F}_7) = PSL_2(7)$$

is a simple group of order 168. This explains why 168 was stubborn.

This is an example of a matrix group over a finite field. As we will see later, $\mathbb{Z}/n\mathbb{Z}$ is actually a ring, but when $n=p^e$ with p a prime, it is actually a field.

Thus, we can talk about vector spaces V over a field and in particular over $\mathbb{Z}/p\mathbb{Z}$.

Note:

$$GL_n(k) = \{n \times n \text{ matrices with entries in } k \text{ with } \det(A) \neq 0\},$$

 $SL_n(k) = \{A \in GL_n(k) \mid \det(A) = 1\},$
 $PGL_n(k) = GL_n(k)/Z(GL_n),$
 $PSL_n(k) = SL_n(k)/Z(SL_n).$

The center of the group is identified with the n-th roots of unity in k.

Theorem: $PGL_n(k) \cong PSL_n(k)$ iff every element of k has an n-th root in k.

For example, $PGL_n(\mathbb{C}) \cong PSL_n(\mathbb{C})$ but $PGL_n(\mathbb{R}) > PSL_n(\mathbb{R})$.

This can be defined over a ring R with the most important example being the modular group $\Gamma = PSL_2(\mathbb{Z})$, linear fractional transformations of upper half-plane.

This group is actually generated by two elements:

$$S: z \mapsto -\frac{1}{z}$$
 (reflection), $T: z \mapsto z+1$ (translation).

In the 1830's, after finding the alternating group A_n , Galois discovered another family of simple groups as $PSL_2(q)$ where q is a power of a prime.

We have the so-called exceptional isomorphisms:

$$PSL_2(2) \cong S_3,$$

 $PSL_2(3) \cong A_4,$
 $PGL_2(3) \cong S_4.$

Also,

$$PSL_{2}(4) \cong A_{5},$$

 $PSL_{2}(5) \cong A_{5},$
 $PSL_{2}(9) \cong A_{6}$ unless $(n,q) = (2,2)$ or $(2,3).$

Finally,

$$PSL_2(7) \cong PSL_3(2)$$
 (second smallest non-abelian simple group).

There are a few other exceptional isomorphisms.

Question: Why does $PSL_2(7)$ have 168 elements?

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Total possibilities for the first column is $7^2 - 1 = 49 - 1 = 48$.

Then we must solve the equation ad - bc = 1. $ay - bx \neq 0$.

Continue to count: Column 2 must not be a multiple of Column 1. So we have 49 - 1 possibilities like before, except we have to account for:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \dots, \begin{pmatrix} 6 & 0 \\ 0 & 1 \end{pmatrix}.$$

So, 49 - 7 possibilities for column 2 = 42.

Now det(A) = 1, 2, 3, 4, 5, 6 = 7!. We must divide by 6 to reduce down to

 $SL_2(7)$. Thus, $|PSL_2(7)| = 48 \cdot 42/7 \cdot 24/7 = 168$. On another note: $3^{\rm rd} \quad \frac{|S_5|}{|A_5|} = 5$. Thus, $S_n/A_n \cong S/S_5N$. Related to Quiz 11:

$$PGL_2(\mathbb{C}) = GL_2(\mathbb{C})/(\mathbb{Z}_2 \times N) = PSL_2(\mathbb{C}) \cong SL_2(\mathbb{C})/E.$$

Notes on Rings:

There are slightly different definitions of rings. For us, the general idea is that a ring is a set R with two operations $(R, +, \cdot)$ where (R, +) is an abelian group with additive identity 0.

Then (R, \cdot) can either be one of the three:

- 1. Semigroup
- 2. Monoid
- 3. Commutative Monoid

Since I like commutative algebra, I choose option B and then later specialize to option C. In general, we mainly focus on option C.

Therefore, a ring is a set R with set theoretic maps $+: R \times R \to R$ and $\cdot: R \times R \to R$ which satisfy:

- 1. $\forall a, b, c \in R, a + (b + c) = (a + b) + c$ (associativity)
- 2. $\forall a, b \in R, a + b = b + a$ (commutativity)
- 3. $\exists 0 \in R \text{ such that } a + 0 = a \pmod{\text{additive identity}}$
- 4. $\forall a \in R, \exists -a \in R \text{ such that } a + (-a) = 0$ (additive inverse)
- 5. $\forall a, b, c \in R, a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity of multiplication)
- 6. $\forall a, b, c \in R, a \cdot (b+c) = a \cdot b + a \cdot c$ (left distributivity)
- 7. $\forall a, b, c \in R, (a+b) \cdot c = a \cdot c + b \cdot c$ (right distributivity)

If, in addition, we have property 9

$$\forall a, b \in R, a \cdot b = b \cdot a$$

then we say that R is a commutative ring. When the context is clear, $CR \equiv \text{Commutative Ring} = \text{Ring}$.

If, in addition, we have property 10 (inverses), then we say R is a field.

$$\forall a \in R \setminus \{0\}, \exists b \in R \text{ such that } a \cdot b = b \cdot a = 1$$

An aside:

If we have property 10 but not property 9, then we say that R is a skew-field or a division ring.

We can use other notations such as a semi-ring (basically (R, +) semigroup and (R, \cdot) semigroup with 0 additive identity).

Next: Ring homomorphism, subrings, ideals, isomorphism theorem.

Examples:

- 1. Prototypical example $(\mathbb{Z}, +, \cdot)$
- 2. Another great example $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$
- 3. When n=p a prime, a field (finite field) $(\mathbb{Z}/p\mathbb{Z},+,\cdot)$ is usually denoted \mathbb{F}_p .
- 4. Non-commutative example: $M_n(\mathbb{R}) = n \times n$ matrices with matrix addition and matrix multiplication.

Endomorphism of a Group: $G \rightarrow R$

For these, go into non-commutative stuff.

In general, given a group G, there is a such thing as a group ring:

$$R[G] = \{f : G \to R \mid f \text{ finite support}\}\$$

Thus, an element can be written as:

$$f = \sum_{g \in G} f(g)g$$
 (example of free construction)

If you take an abelian group, you get commutative rings (example polynomial rings). Otherwise, you get non-commutative rings.

$$R[\mathbb{Q}]$$
 elements are $x^2 + x(g) + \dots$

These are the so-called quaternions over \mathbb{R} , or otherwise the so-called ring of differential operators.

Note: Actually for a monoid M, we can form R[M].

Free Groups:

Given a set S, we define F_S the free group generated over S by all finitely supported maps $f: \mathbb{Z} \to S$.

$$\sum f(x)e_x$$
 (finite support)

Addition notation because it is abelian. A similar construction can occur if we want a non-commutative group.

$$\langle S \rangle = \{ x_1^{a_1} x_2^{a_2} \dots x_n^{a_n} \mid x_i \in S, a_i \in \mathbb{Z} \setminus \{1\} \}$$

with identification

$$x_i^m x_i^n = x_i^{m+n}, \quad x_i^{-m} x_i^m = 1 \quad \text{(identity)}$$

 $Universal\ Properties:$

$$F_S \to G$$
 abelian

For general free group:

$$S \to \langle S \rangle \to G$$

Further examples of rings: 1. R[x]: polynomial ring over R, R ring.

$$R[x] = \{a_n x^n + \dots + a_0 \mid a_i \in R\}$$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

$$p(x) \cdot q(x) = \sum_{i=1}^{n} a_i b_i x^{i+j}$$

Generally speaking, polynomial rings have additional properties (ID, UFD, PID).

2. $R[x_1, \ldots, x_n]$: multivariate polynomial ring over R.

In general, given a polynomial $p(x_1, \ldots, x_n) \in S[x_1, \ldots, x_n]$ and $s_1, \ldots, s_n \in R$:

evaluation
$$p(x_1, \ldots, x_n) \mapsto p(s_1, \ldots, s_n)$$

This is a ring homomorphism.

Let S and R be two rings. We say that $f: S \to R$ is a ring homomorphism if:

- 1. $\forall x, y \in S$, f(x+y) = f(x) + f(y)
- 2. $\forall x, y \in S$, $f(x \cdot y) = f(x) \cdot f(y)$
- 3. $f(1_S) = 1_R$

Condition 3 is necessary if option A definition is allowed.

Some basic examples:

- 1. $R \to R[x]$, R is a subring of R[x].
- 2. $R \to \mathbb{Q}$ (actually two fields have only injective morphisms).
- 3. $\mathbb{C}[x] \to \mathbb{C}$, $p(x) \mapsto \text{constant term (surjective)}$.
- 4. $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, \, \mathbb{Z}/n\mathbb{Z} \not\cong \mathbb{Z}$ not a ring homomorphism.

When I is just a subring:

- $1.\ \ I=\{f\mid f:I\rightarrow I\}.$
- 2. (Absorption) $\forall I \in I$, $ideal(I) \Rightarrow I$.

Let I be a subset of R closed under + and \cdot . For all subsets S of a ring R, I is the ideal of S if I satisfies:

- 1. If $a \in I$, $b \in R \Rightarrow ab \in I$ (left ideal, ideal is absorbed).
- 2. (I) ideal is absorbed if $b \in I$.

CRU:

Def. Let R be a ring. We trust R is an *integral domain* if it has the zero property:

$$\forall a, b \in R, \quad ab = 0 \Rightarrow a = 0 \text{ or } b = 0$$

Examples: Fields, \mathbb{Z} , $R[x, \ldots, x_n]$.

Non-example: $\mathbb{Z}/n\mathbb{Z}$, n=pq composite.

In any ring, we have the ideal generated by the zero element 0:

$$(0) = \{0\}$$

Definition of prime ideal:

Prove R a Domain \Rightarrow (0) a prime ideal

Another concept: principal ideal and principal ideal domain.

Definition of maximal ideal:

R/I domain $\Leftrightarrow I$ prime

R/I field $\Leftrightarrow I$ field

Field Theory: Simple Extensions.

 $F \subseteq k, \, \alpha \in k, \, \text{fields.}$

 $F(\alpha)=$ smallest subfield of k containing α and F= all possible applications of $f\mapsto x,\, f\mapsto \alpha$ and F.

 $F[x] = F(\alpha)$ (Remark: function field of an integral domain)

Rings of integers of a number field

Evaluation Map:

$$F[x] =$$
 Univariate polynomials over F

F a field \Rightarrow

- 1. Euclidean Domain
- 2. PID
- 3. UFD

Ex: $\mathbb{E}(x) \to F[x] \subseteq K \subseteq \mathbb{C}$ calc. closed field π irreducible elements ev_x is a ring homomorphism.

There are only two possibilities:

- 1. $\ker(ev_{\alpha}) = \{0\} \Rightarrow ev_{\alpha}$ is injective.
- 2. $\ker(ev_{\alpha}) = (f_{\alpha})$ because it's a PID.

In the case of 0, we can construct an inverse, so:

$$F[x] \cong F(\alpha)$$

In this case, we say α is transcendental over F. **Example:** $\mathbb{Q}[x] \cong \mathbb{Q}[\pi]$, e, π , e^{π} transcendental over rationals.

Note: For any $\alpha, \beta \in k$, $F(\alpha) \cong F(\beta)$ as fields $\cong F(x)$.

But this doesn't mean $F(\alpha) = F(\beta)$ in k.

$$\mathbb{Q}(x,y) \neq \mathbb{Q}(e^{\pi})$$
 (non-canonical $\mathbb{Q}(x)$ in \mathbb{R})

2nd case:

$$\ker(ev_{\alpha}) = (f_{\alpha}) \quad f_{\alpha} \neq 0$$

In a Euclidean Domain, we find f_{α} by minimizing deg f up to a unit u (leading coefficient).

 $\Rightarrow f_{\alpha}$ is a monic polynomial of minimal degree d such that $f_{\alpha}(\alpha) = 0$.

Thm: f_{α} is irreducible (hence (f_{α}) is prime). Proof: If $f_{\alpha} = gh$ then $0 \leq \deg(g), \deg(h) < \deg(f_{\alpha}) = d$ then $g(\alpha), h(\alpha) \neq$ 0 by minimizing property.

Then $g(\alpha)h(\alpha) = 0 \Rightarrow$ zero divisors in $F[x] \subseteq k$ but k is a field so it is integral domain. Contradiction.

So, f_{α} irreducible $/\Rightarrow f_{\alpha}$ irreducible in $F[x]\Rightarrow (f_{\alpha})$ maximal ideal (prime $= \max \text{ for } F[x]).$

Theory:

$$ev_{\alpha}: F[x]/(f_{\alpha}) \to F(\alpha) \subseteq k$$

is a field homomorphism.

Theorem: $F(\alpha)$ is a subfield of k with $[F(\alpha):F] = \deg(f_{\alpha})$.

Basis:

$$F[x]/(f_{\alpha})$$
 1, x, x^2, \dots, x^{d-1}

Basis:

$$F(\alpha) \quad 1, \alpha, \alpha^2, \dots, \alpha^{d-1}$$

Recall: $F[x]/(f_{\alpha})$ field with cosets as elements. F[u] s.t. $f_{\alpha}(u)=0$ (factors all roots).

$$f(x) = x^{d} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

$$f_{\alpha}(u) = 0 \Rightarrow u^{d} = -a_{n-1}u^{d-1} - \dots - au - a$$

Alternatively, F[x] ED \Rightarrow division algorithm:

$$g = qf_{\alpha} + r \quad r = 0$$

$$\deg(r) < \deg(f_{\alpha}) = d$$

Now, $g + (f_{\alpha}) = r + (f_{\alpha}) \Rightarrow r(\alpha) \in F(\alpha)$.

Thus, every non-zero coset is represented by r with $\deg(r) < \deg(f_{\alpha})$.

That is, all elements in F[x] are of the form $a + bx + ... + c\alpha^{d-1}$ (dim = d).

Basically obvious: $\mathbb{Q} \subseteq r(\alpha)^{-1}$ in $F(\alpha)$.

 $F[x] \to Bezout's Identity.$

 f_{α} irreducible $\deg r < \deg f_{\alpha}$, so $\gcd(r, f_{\alpha}) = 1$.

 $\exists p, q \text{ s.t. } pr + qf_{\alpha} = 1 \text{ Bezout's Identity.}$ Evaluate at α : $p(\alpha)r(\alpha) = 1$.

Example:

$$\mathbb{Q}[\sqrt{2}] \quad (a+b\sqrt{2})^{-1}$$

$$(a+b\sqrt{2})(c+d\sqrt{2})=1 \Rightarrow ac+2bd=1 \Rightarrow bc+ad=0$$

Def. $\alpha \in k$ is called algebraic over F if there exists $a_i \in F$ (not all 0) such that:

$$a_n \alpha^n + a_{n-1} \alpha^{n-1} + \ldots + a_1 \alpha + a_0 = 0$$

If so, \exists ! monic polynomial f_{α} of smallest degree s.t. $f_{\alpha}(\alpha) = 0$. f_{α} is called the minimal polynomial of α/F (irreducible over F).