Fonctions polynômes du 2nd degré _{1ère STMG}

Table des matières

1	Définition et représentation graphique				
	1.1	Définition : Fonctions polynômes du $2^{\rm nd}$ degré	2		
	1.2	Représentation graphique	2		
	1.3	Propriétés : Variations d'une fonction polynôme du 2 nd degré	3		
	1.4	Propriété : Axe de symétrie et sommet	4		
	1.5	Méthode : Associer une fonction du $2^{\rm nd}$ degré à sa représentation graphique	4		
2	Forr	ne factorisée d'une fonction polynôme du 2 nd degré	6		
	2.1	Définition : Forme factorisée d'une fonction du $2^{\rm nd}$ degré	6		
	2.2	Propriété : Racines d'une fonction du 2 nd degré			
	2.3	Propriété : Axe de symétrie et sommet	6		
	2.4	Méthode : Représenter graphiquement une fonction du 2 nd degré à partir de sa forme factorisée.			
	2.5	Méthode : Associer une fonction du 2 nd degré à sa représentation graphique			
	2.6	Méthode : Factoriser une expression du 2^{nd} degré			
	2.7	Methode : Démontrer l'égalité de deux fonctions du 2^{nd} degré			
3	Sigr	ne d'une fonction polynôme du 2 nd degré	11		
	_	Méthode : Étudier le signe d'un polynôme du $2^{\rm nd}$ degré	11		
4	Éau	ation de la forme $x^2 = c$	12		
-	•	Propriété : Solutions de l'équation $x^2 = c$	12		
		Méthode : Résoudre une équation du type $x^2 = c$			

1 Définition et représentation graphique

1.1 Définition : Fonctions polynômes du 2nd degré

Les fonctions définies sur \mathbb{R} par $x \longmapsto ax^2$ ou $x \longmapsto ax^2 + b$ sont des **fonctions polynômes du 2nd degré**. Les coefficients a et b sont des réels donnés avec $a \neq 0$.

Exemples et contre-exemples :

- $--f(x) = 3x^2 + 3$
- $g(x) = x^2 4$ sont des fonctions polynômes du 2nd degré. $h(x) = 4 2x^2$
- m(x) = 5x 3 est une fonction polynôme de degré 1 (fonction affine).
- $-n(x) = 5x^4 x^3 + 6x 8$ est une fonction polynôme de degré 4.

1.2 Représentation graphique

FIGURE 1 – Représentation graphique de $f(x) = x^2 - 2$

La représentation graphique d'une fonction polynôme du 2nd degré s'appelle une **parabole**.

1.3 Propriétés : Variations d'une fonction polynôme du 2nd degré

Soit f une fonction polynôme du 2^{nd} degré, telle que $f(x) = ax^2 + b$.

- Si a est positif, f est d'abord décroissante, puis croissante : **cuvette**.
- Si a est négatif, f est d'abord croissante, puis décroissante : **colline**.

FIGURE 2 – Représentation d'une fonction du 2^{nd} degré suivant le signe de a

FIGURE 3 – Méthode mnémotechnique pour l'allur de la parabole

1.4 Propriété : Axe de symétrie et sommet

Les paraboles d'équation $y = ax^2 + b$ ont pour axe de symétrie l'axe des ordonnées et pour sommet le point de coordonnées (0;b).

Exemple

La fonction f telle que $f(x) = -x^2 + 2$ a pour représentation graphique une parabole dont les branches sont tournées vers le bas et dont le sommet est le point S(0; 2). L'axe de symétrie de la parabole est l'axe des ordonnées.

FIGURE 4 – Représentation graphique de $f(x) = -x^2 + 2$

1.5 Méthode : Associer une fonction du 2nd degré à sa représentation graphique

a) Associer chaque fonction à sa représentation graphique :

$$f(x) = -x^2 + 3$$

$$g(x) = -3x^2$$

$$h(x) = x^2 + 3$$

$$p(x) = \frac{x^2}{4} + 1$$

$$q(x) = -\frac{x^2}{4} + 1$$

(a)

1. La **parabole** rouge est la seule dont le sommet est l'origine (0;0). Donc b=0 dans l'écriture de la fonction $x \mapsto ax^2 + b$.

Ainsi, la **parabole rouge** est la fonction g définie par $g(x) = -3x^2$.

2. La **parabole** verte et la **parabole** noire ont toutes les deux pour sommet le point de coordonnées (0;3). Donc b=3 dans l'écriture de la fonction $x \mapsto ax^2 + b$.

Ainsi, il faut choisir parmi les expressions :

$$- f(x) = -x^2 + 3$$

 $- h(x) = x^2 + 3$

Les branches de la **parabole** noire sont tournées vers le haut donc a > 0.

Donc, la **parabole** noire représente la fonction h pour qui a=1>0. $\longrightarrow h(x)=x^2+3$

Les branches de la **parabole** verte sont tournées vers le bas donc a < 0.

Donc, la **parabole** verte représente la fonction f pour qui a=-1<0. $\longrightarrow f(x)=-x^2+3$

3. La **parabole** bleue et la **parabole** jaune ont toutes les deux pour sommet le point de coordonnées (0;1). Donc b=1 dans l'écriture de la fonction $x \mapsto ax^2 + b$.

Ainsi, il faut choisir parmi les expressions :

-
$$p(x) = \frac{x^2}{4} + 1$$

- $q(x) = -\frac{x^2}{4} + 1$

Les branches de la **parabole** bleue sont tournées vers le haut donc a > 0.

Donc, la **parabole** bleue représente la fonction p pour qui $a = \frac{1}{4} > 0$. $\longrightarrow p(x) = \frac{x^2}{4} + 1$

Les branches de la **parabole** jaune sont tournées vers le bas donc a < 0.

Donc, la **parabole** jaune représente la fonction q pour qui $a=-\frac{1}{4}<0$. $\longrightarrow q(x)=-\frac{x^2}{4}+1$

2 Forme factorisée d'une fonction polynôme du 2nd degré

2.1 Définition : Forme factorisée d'une fonction du 2nd degré

Les fonctions définies sur $\mathbb R$ par

$$f(x) = a(x - x_1)(x - x_2)$$

sont des fonctions polynômes du $2^{\rm nd}$ degré.

Les coefficients a, x_1 et x_2 sont des réels avec $a \neq 0$.

2.2 Propriété : Racines d'une fonction du 2nd degré

Soit la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)$.

L'équation f(x) = 0 possède deux solutions (éventuellement égales) : $x = x_1$ et $x = x_2$ appelées les **racines** de la fonction polynôme f.

2.3 Propriété : Axe de symétrie et sommet

Soit la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)$.

La droite d'équation x = p avec $p = \frac{x_1 + x_2}{2}$ est l'**axe de symétrie** de la parabole représentant la fonction f.

Le point S de coordonnées (p; f(p)) est le **sommet** de la parabole représentant la fonction f.

Remarque

Plus généralement, on appelle fonction polynôme du 2nd degré, toute fonction qui s'écrit sous la forme :

$$f(x) = ax^2 + bx + c$$

Par exemple, la fonction $x \longmapsto 3x^2 - 2x + 1$ est une fonction polynôme du 2^{nd} degré.

Exemple

La fonction f définie par f(x) = 2(x-2)(x+2) est une fonction du 2^{nd} degré.

En effet, elle s'écrit aussi sous la forme $x \mapsto ax^2 + b$.

$$f(x) = 2(x-2)(x+2) = 2(x^2-4) = 2x^2-8$$

2.4 Méthode : Représenter graphiquement une fonction du 2nd degré à partir de sa forme factorisée.

On considère la fonction f définie sur \mathbb{R} par f(x) = 2(x-2)(x+4) et \mathcal{C}_f sa représentation graphique dans un repère.

- a) Déterminer l'intersection de C_f avec l'axe des abscisses.
- b) Déterminer l'axe de symétrie de C_f .
- c) Déterminer les coordonnées du sommet de C_f .
- d) Placer ces éléments géométriques dans un repère puis tracer C_f .
- (a) Pour déterminer l'intersection de C_f avec l'axe des abscisses, il suffit de résoudre l'équation f(x) = 0.

Soit :
$$2(x-2)(x+4) = 0$$
.

Il s'agit d'une équation-produit. On a donc : (x-2)=0 ou (x+4)=0 soit : x=2 ou x=-4.

La courbe de f traverse l'axe des abscisses en x = -4 et en x = 2.

FIGURE 5 – Points d'intersection de C_f avec l'axe des abscisses

(b) Ici,
$$f(x) = 2(x-2)(x+4)$$
 donc $x_1 = 2$ et $x_2 = -4$, et donc $p = \frac{2-4}{2} = -1$.

La droite d'équation x = -1 est l'axe de symétrie de la parabole représentant la fonction f.

FIGURE 6 – Axe de symétrie de C_f

(c) Le sommet S de la parabole se trouve sur l'axe de symétrie, donc il a pour abscisse p=-1 et pour ordonnées :

$$f(p) = f(-1)$$
= 2 (-1 - 2) (-1 + 4)
= 2 \times (-3) \times 3
= -18

Le sommet de la parabole S est donc le point de coordonnées S(-1;-18).

FIGURE 7 – Sommet de C_f

(d) L'expression de la fonction f est f(x) = 2(x-2)(x+4), donc a = 2 > 0.

On en déduit que la parabole représentant la fonction f possède des branches tournées vers le **haut**. Le sommet de la parabole correspond donc **au minimum** de la fonction f.

FIGURE 8 – Représentation graphique de f(x) = 2(x-2)(x+4)

2.5 Méthode : Associer une fonction du 2nd degré à sa représentation graphique

a) Associer chaque fonction à sa représentation graphique :

$$f(x) = 3(x - 1)(x + 3)$$

$$g(x) = -2(x - 1)(x + 3)$$

$$h(x) = 5(x - 1)^{2}$$

- (a) On a : $f(x) = 5(x-1)^2 = 5(x-1)(x-1)$.
- 1. La fonction h est la seule à posséder une racine double égale à 1. Cela signifie que la parabole correspondante ne possède qu'un seul point d'intersection avec l'axe des abscisses.

La **parabole** bleue intercepte l'axe des abscisses en 1 uniquement, c'est donc la représentation graphique de la fonction h. $\longrightarrow h(x) = 5(x-1)^2$

2. On a
$$f(x) = 3(x-1)(x+3)$$
 et $g(x) = -2(x-1)(x+3)$.

Ces fonctions possèdent donc toutes les deux les mêmes racines : $x_1 = 1$ et $x_2 = -3$.

On peut donc les associer à la **parabole** rouge et à la **parabole** verte qui passent toutes les deux par les points d'abscisse -3 et 1.

Les branches de la **parabole** verte sont tournées vers le haut donc a>0 donc la **parabole** verte représente la fonction f pour qui a=3>0. $\longrightarrow f(x)=3(x-1)(x+3)$

La **parabole** rouge représente alors la fonction g. $\longrightarrow g(x) = -2(x-1)(x+3)$

2.6 Méthode : Factoriser une expression du 2nd degré

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 + 4x - 6$.

- a) Conjecturer une racine de la fonction polynôme f et vérifier par calcul.
- b) Factoriser f
- (a) On peut conjecturer que 1 est racine de la fonction polynôme f.

En effet, $f(1) = 2 \times 1^2 + 4 \times 1 - 6 = 2 + 4 - 6 = 0$.

(b) On a
$$f(x) = 2x^2 + 4x - 6$$
, on peut affirmer que $a = 2$.

Par ailleurs, 1 est une racine de f. Donc, sous sa forme factorisée, f s'écrit :

$$f(x) = 2(x-1)(x-x_2)$$

Il s'agit donc de déterminer x_2 , tel que : $2x^2 + 4x - 6 = 2(x-1)(x-x_2)$.

En prenant par exemple x = 0, cette égalité s'écrit :

$$2x^{2} + 4x - 6 = 2(x - 1)(x - x_{2})$$
$$2 \times 0^{2} + 4 \times 0 - 6 = 2(0 - 1)(0 - x_{2})$$
$$-6 = 2(-1)(-x_{2})$$
$$-6 = 2x_{2}$$
$$3 = x_{2}$$

Ainsi, sous sa forme factorisée, la fonction polynôme f s'écrit f(x) = 2(x-1)(x-(-3)) ou encore

$$f(x) = 2(x-1)(x+3)$$

2.7 Methode : Démontrer l'égalité de deux fonctions du 2nd degré

Soit la fonction f définie sur \mathbb{R} par $f(x) = 3x^2 - 3x - 6$

- a) Démontrer que f(x) = 3(x-2)(x+1)
- (a) On developpe l'expression 3(x-2)(x+1)

$$3(x-2)(x+1) = 3 \times [(x \times x) + (x \times 1) + (-2 \times x) + (-2 \times 1)]$$
$$= 3 \times (x^2 - x - 2)$$
$$= 3x^2 - 3x - 6$$

3 Signe d'une fonction polynôme du 2nd degré

3.1 Méthode : Étudier le signe d'un polynôme du 2nd degré

Soit f définie sur \mathbb{R} par f(x) = -2(x-3)(x+2).

- a) Étudier le signe de la fonction polynôme f
- (a) Le signe de -2(x-3)(x+2) dépend du signe de chaque facteur -2, (x-3) et (x+2)

On étudie ainsi le signe de chaque facteur et on présente les résultats dans un tableau de signes.

$$x-3>0 \qquad x+2>0 \\ \Leftrightarrow x>3 \qquad \Leftrightarrow x>-2$$

En appliquant la règle des signes dans le tableau suivant, on peut en déduire le signe du produit

$$f(x) = -2(x-3)(x+2)$$

x	$-\infty$		-2		3		$+\infty$
-2				_			
(x-3)			_		0	+	
(x+2)		_	0		+		
f(x)		_	0	+	0	_	

On en déduit que :

La représentation de la fonction f à l'aide d'un logiciel permet de confirmer les résultats établis précédemment.

FIGURE 9 – Représentation graphique de $f\left(x\right)=-2\left(x-3\right)\left(x+2\right)$

4 Équation de la forme $x^2=c$

4.1 Propriété : Solutions de l'équation $x^2 = c$

Les solutions dans $\mathbb R$ de l'équation $x^2=c$ dépendent du signe de c.

- Si c < 0, alors l'équation n'a pas de solution.
- Si c=0, alors l'équation possède une unique solution qui est 0.
- Si c > 0, alors l'équation possède deux solutions qui sont \sqrt{c} et $-\sqrt{c}$.

4.2 Méthode : Résoudre une équation du type $x^2=c$

Résoudre dans \mathbb{R} les équations :

- a) $x^2 = 16$
- b) $x^2 = -8$
- c) $2x^2 8 = 120$
- (a) 16 est positif donc l'équation $x^2 = 16$ admet deux solutions $x = \sqrt{16} = 4$ et $x = -\sqrt{16} = -4$.

$$x^2 = 16 \Leftrightarrow x = 4 \text{ ou } x = -4$$

- (b) -8 est négatif donc l'équation $x^2 = -8$ n'a pas de solution dans \mathbb{R} .
- (c) $2x^2 8 = 120$

$$2x^2 - 8 = 120$$

$$\Leftrightarrow 2x^2 = 120 + 8$$

$$\Leftrightarrow 2x^2 = 128$$

$$\Leftrightarrow x^2 = 64$$

$$\Leftrightarrow x = \sqrt{64} \text{ ou } x = -\sqrt{64}$$

$$\Leftrightarrow x = 8 \text{ ou } x = -8$$

L'équation admet donc deux solutions $x = \sqrt{64} = 8$ et $x = -\sqrt{64} = -8$.