PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

SUPERFICIES DE RIEMANN

Semestre académico 2020-1

Tarea 3

- 1. Sea X una superficie de Riemann. Dado $x \in X$ denotamos por T_xX el espacio tangente a X en el punto x. Pruebe que $TX = \bigcup T_xX$ es un fibrado vectorial real diferenciable de dimensión dos. Este fibrado se llama el fibrado tangente de X.
- 2. Sea X una superficie de Riemann. Dado $x \in X$, denotamos por T_x^*X el espacio cotangente a X en el punto x. Muestre que $T^*X = \bigcup_{x \in X} T_x^*X$ es en efecto un fibrado vectorial real diferenciable de dimension dos. Este fibrado vectorial se denomina el fibrado cotangente de X.
- 3. Sea X una superficie de Riemann. Sea α una 1-forma. Muestre que α es una sección diferenciable (suave) del fibrado cotangente T^*X .
- 4. Sea X una superficie de Riemann. Sea V un campo vectorial en X. Muestre que V se puede considerar como una sección diferenciable del fibrado tangente TX.
- 5. Sea $\Omega^*(\mathbb{R}^n)$ el espacio de formas diferenciales (suaves) en \mathbb{R}^n . Sea d el operador derivada exterior. Muestre lo siguiente:
 - (a) Si τ y w son formas diferenciales en \mathbb{R}^n de grado p y q respectivamente, entonces $d(\tau \wedge w) = d\tau \wedge w + (-1)^p \tau \wedge dw$
 - (b) $d^2 = d \circ d = 0$
- 6. Sea U un subconjunto abierto de \mathbb{R}^n . Muestre que toda k-forma exacta (en U) es cerrada (en U).
- 7. Sea U un subconjunto abierto de \mathbb{R}^n y denotemos por $H^k_{dR}(U)$, el k-ésimo grupo de cohomología de de Rham de U.
 - (a) Muestre que $H_{dR}^k(U)$ es un espacio vectorial real.
 - (b) Muestre que la dimensión del espacio vectorial $H_{dR}^0(U)$ es igual al número de componentes conexas de U.
 - (c) Muestre que $H_{dR}^k(U)$ cuantifica la obstrucción para que una k-forma cerrada sea exacta. Esto es, muestre que $H^k(\mathbb{R}^n)=0$ si y sólo si toda k-forma cerrada en U es exacta.
- 8. El lema de Poincaré afirma lo siguiente

$$H_{dR}^{k}(\mathbb{R}^{n}) = \begin{cases} \mathbb{R} & \text{si } k = 0\\ 0 & \text{si } k \neq 0 \end{cases}$$

Pruebe, explícitamente, el lema de Poincaré para los casos n = 1, 2, 3, 4.

9. Sean P,Q dos puntos distintos de \mathbb{R}^2 . Muestre lo siguiente:

$$H^{k}(\mathbb{R}^{2} \setminus \{P,Q\}) = \begin{cases} \mathbb{R} & \text{si} \quad k = 0\\ \mathbb{R}^{2} & \text{si} \quad k = 1\\ 0 & \text{si} \quad k \ge 2. \end{cases}$$

Halle, además, formas cerradas explícitas cuyas clases en cohomología representan las bases de estos espacios vectoriales.

¿Cómo podría generalizar su argumento para calcular la cohomología de deRham de \mathbb{R}^2 menos un número finito de puntos? Justifique y calcule los grupos de cohomología en este caso.

10. El lema de Poincaré para cohomología de de Rham con soporte compacto afirma lo siguiente

$$H_c^k(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{si } k = n \\ 0 & \text{si } k \neq n \end{cases}$$

Pruebe, explícitamente, el lema de Poincaré con soporte compacto para los casos n = 1, 2.

11. Sea $f: M \to N$ una función diferenciable entre abiertos de \mathbb{R}^n y \mathbb{R}^m respectivamente. Muestre que el pullback $f^*: \Omega^*(N) \to \Omega^*(M)$ conmuta con la derivada exterior, esto es, muestre que

$$f^* \circ d_N = d_M \circ f^*,$$

donde d_M y d_N son las derivadas exteriores de $\Omega^*(M)$ y $\Omega^*(N)$ respectivamente. Asimismo, muestre que f^* induce un homomorfismo en cohomología de de Rham.

- 12. Sea X una superficie de Riemann compacta. Muestre que si α es una 1-forma holomorfa entonces $d\alpha = 0$ (esto es, toda 1-forma holomorfa es cerrada).
- 13. Sea X una superficie de Riemann compacta. Sea f una 1-forma meromorfa en X. Muestre que la suma de los residuos de f sobre todos los polos de f es igual a cero.
- 14. Sea X una superficie de Riemann compacta. Sean f y g funciones reales suaves en X, de las cuales al menos una de ellas tiene soporte compacto. Si f o g son armónicas, muestre que

$$\langle f, g \rangle_D = 0,$$

donde $\langle \, , \, \rangle_D$ es el producto interno de Dirichlet.

15. Sea X una superficie de Riemann. Sea U una subregión compacta de X con frontera suave $\partial U \subset X$. Si φ es una función real positiva en (el interior de) U y que se anula en ∂U , muestre que

$$\int_{\partial U} i\partial\varphi \geq 0.$$

Sugerencia: Considere $U \subset \mathbb{C}$ y muestre que la integral es, en notación tradicional, la fluctuación de flujo (flux) del gradiente de φ a través de la frontera de U.

- 16. Sean x_1, \ldots, x_n puntos distintos en una superficie de Riemann compacta X, y sean w_1, \ldots, w_n puntos distintos de \mathbb{C} . Muestre que existe una función meromorfa en X que envía x_i a w_i para $i = 1, \ldots, n$.
- 17. Muestre que si S_g es una superficie de Riemann con género $g \ge 1$, entonces no hay punto en X donde todas las 1-formas holomorfas de X se anulen simultáneamente.

- 18. Sea X una superficie de Riemann compacta (y conexa). Muestre que si $\dim H_X^{0,1} = 1$ entonces existe una 1-forma que nunca se anula en X. Es más, muestre que X es isomorfa, como superficie de Riemann, al toro.
- 19. Sea ω una 1-forma meromorfa no trivial en una superficie de Riemann compacta X. Muestre que el número de ceros menos el número de polos de ω (contados con multiplicidad) es igual a 2g-2.
- 20. Muestre que una superficie de Riemann compacta es un cubrimiento ramificado de la esfera con solo puntos de ramificación simples.

Profesor: Richard Gonzales Vilcarromero

Fecha de entrega: Martes 28 de julio, a las 11:59 pm.