1. Euklidinen avaruus \mathbb{R}^n

1.1. \mathbb{R}^n :N STRUKTUURI

Euklidinen avaruus $\mathbb{R}^n,\ n=1,2,\ldots,$ määritellään joukkona

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i = 1, \dots, n\},\$$

missä (x_1,x_2,\ldots,x_n) on luvun n pituinen reaalilukujono. Avaruuden \mathbb{R}^n pisteille eli vektoreille käytetään merkintää

$$x = \overline{x} = (x_1, x_2, \dots, x_n)$$

ja x_i :tä kutsutaan x:n i. koordinaatiksi. Emme yleensä käytä vektorin päällä viivaa. Kaksi \mathbb{R}^n :n vektoria, $x=(x_1,x_2,\ldots,x_n)$ ja $y=(y_1,y_2,\ldots,y_n)$, ovat samat silloin ja vain silloin kun $x_i=y_i$ jokaisella $i=1,\ldots,n$. Havaitaan, että \mathbb{R}^1 on samaistettavissa \mathbb{R} :n kanssa.

Avaruus \mathbb{R}^n on reaalinen vektori- eli lineaariavaruus, kun määritellään vektoreiden x ja y summa

$$x+y=(x_1+y_1,\ldots,x_n+y_n)$$

ja reaaliluvulla λ kertominen

$$\lambda x = (\lambda x_1, \dots, \lambda x_n);$$

nolla-alkio \mathbb{R}^n :ssä on nollavektori, merkitään $0 = \overline{0} = (0, \dots, 0)$. Käytämme \mathbb{R}^n :ssä lineaarialgebran tietoja.

Vektoriavaruuden \mathbb{R}^n standardiyksikkövektorit ovat

$$e_1 = (1, 0, \dots, 0),$$

 $e_2 = (0, 1, 0, \dots, 0),$
 \vdots
 $e_n = (0, \dots, 0, 1).$

Jokainen vektori $x=(x_1,x_2,\ldots,x_n)$ voidaan yksikäsitteisellä tavalla esittää muodossa

$$x = x_1e_1 + x_2e_2 + \ldots + x_ne_n.$$

Vektoreiden kertolasku ei yleensä ole määritelty, paitsi kun n=1, jolloin se on tavallinen reaalilukujen kertolasku. Avaruudessa \mathbb{R}^2 eli tasossa voidaan käyttää vektoreiden kertolaskuna kompleksista kertolaskua. Tätä emme kuitenkaan käytä tällä kurssilla. Myöhemmin käytämme \mathbb{R}^3 :ssa vektoreiden $x,y\in\mathbb{R}^3$ ristituloa $x\times y$ muutamassa yhteydessä.

Avaruudessa \mathbb{R}^n määriteltyä pistetuloa $x\cdot y$ ei pidä sekoittaa kertolaskuun. Pistetulo liittää vektoripariin $x,y\in\mathbb{R}^n$ reaaliluvun $x\cdot y$ kaavalla

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n.$$

Pistetulo toteuttaa yhtälöt

$$x \cdot y = y \cdot x,$$

 $x \cdot (y + z) = x \cdot y + x \cdot z.$

Vektorin $x \in \mathbb{R}^n$ pituus määritellään kaavalla

$$|x| = \sqrt{x \cdot x} = \sqrt{x_1^2 + \ldots + x_n^2} \ge 0$$

ja kahden vektorin x ja y välinen etäisyys kaavalla

$$d(x,y) = |x - y| = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}.$$

Havaitaan, että |x| = 0 täsmälleen silloin kun x = 0 eli kun x on nollavektori.

Vektoreiden x ja y välinen kulma $\theta \in [0,\pi]$ on kulma, joka toteuttaa yhtälön

$$(1.1.1) \qquad \cos \hat{\theta} = \left\{ \begin{array}{l} \frac{x \cdot y}{|x||y|} & \text{, kun } |x| \neq 0 \neq |y|, \\ 1 & \text{, kun } |x| = 0 \text{ tai } |y| = 0. \end{array} \right.$$

1.1.2. Huomautus. Kulman θ olemassaolon ehtona on

$$\frac{x \cdot y}{|x||y|} \in [-1, 1],$$

Palaamme tähän myöhemmin.

Seuraavassa tarkastelemme joitakin pistetulon, pituuden ja etäisyyden ominaisuuksia.

A) Cauchy-Schwartzin epäyhtälö:

$$(1.1.3) |x \cdot y| \le |x||y|$$

eli

$$|x_1y_1 + \ldots + x_ny_n| \le \sqrt{x_1^2 + \ldots + x_n^2} \sqrt{y_1^2 + \ldots + y_n^2}.$$

Todistus. Voidaan olettaa, että $x \neq 0 \neq y$, koska muuten kaava (1.1.3) on selvä. Olkoon $t \in \mathbb{R}$. Tällöin pätee

$$0 \le |tx + y|^2 = (tx + y) \cdot (tx + y)$$

= $t^2 x \cdot x + tx \cdot y + ty \cdot x + y \cdot y$
= $t^2 |x|^2 + 2tx \cdot y + |y|^2$

Nyt $t\mapsto t^2|x|^2+2tx\cdot y+|y|^2\geq 0$ on toisen asteen polynomi, jonka graafi on t-akselin yläpuolella ja jolla voi olla enintään yksi nollakohta. Näin ollen sen diskriminantti $D=b^2-4ac$ toteuttaa epäyhtälön $D\leq 0$ eli

$$D = b^2 - 4ac = 4(x \cdot y)^2 - 4|x|^2|y|^2 \le 0.$$

Tästä seuraa

$$(x \cdot y)^2 \le |x|^2 |y|^2,$$

mikä puolestaan on yhtäpitävää epäyhtälön

$$|x \cdot y| \le |x||y|$$

kanssa.

1.1.4. Huomautus. Edellä käytimme tietoa

$$\alpha^2 \le \beta^2 \gamma^2 \quad \Leftrightarrow \quad |\alpha|^2 \le |\beta|^2 |\gamma|^2 \quad \Leftrightarrow \quad |\alpha| \le |\beta| |\gamma|.$$

Cauchy-Schwartzin epäyhtälöstä seuraa, että kaavan (1.1.1) kulma θ on hyvin määritelty.

- B) Etäisyydellä on seuraavat ominaisuudet:
 - (i) $|x| \ge 0$ ja |x| = 0 täsmälleen silloin kun x = 0.
 - (ii) $|\lambda x| = |\lambda||x|$ jokaisella $\lambda \in \mathbb{R}$,
- (iii) kolmioepäyhtälö

$$|x+y| \le |x| + |y|.$$

Todistus. Kohdat (i) ja (ii) ovat selviä, kohdan (iii) jätämme harjoitustehtäväksi.

- C) Kohdalla B) (iii) on yleistykset
 - (I) $|x+y+\ldots+w| \le |x|+|y|+\ldots+|w|$
- (II) kolmioepäyhtälön vasen puoli

$$|x| - |y| \le ||x| - |y|| \le |x + y|$$

Todistus. Kohta (I) on selvä. Kohdan (II) ensimmäinen epäyhtälö on myös selvä, koska jokaisella reaaliluvulla α pätee $\alpha \leq |\alpha|$. Epäyhtälöstä

$$|x| = |(x+y) - y| \le |x+y| + |y|$$

seuraa $|x| - |y| \le |x + y|$ ja epäyhtälöstä

$$|y| = |(y+x) - x| \le |x+y| + |x|$$

seuraa $|y| - |x| \le |x + y|$. Yhdistämällä nämä saadaan

$$||x| - |y|| \le |x + y|,$$

mikä päättää todistuksen.

D) Havaitaan, että jokaisella $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ pätee

$$|x_i| \le |x| \le |x_1| + |x_2| + \ldots + |x_n|$$
.

Todistus. Selvästi $|x_i| \leq \sqrt{x_1^2 + \ldots + x_n^2} = |x|$. Oikean puolen todistamiseksi esitetään x muodossa

$$x = x_1 e_1 + \ldots + x_n e_n,$$

jolloin kohdan C) (I) ja tiedon $|e_1| = 1, i = 1, ..., n$, nojalla

$$|x| = |x_1e_1 + \ldots + x_ne_n| \le |x_1e_1| + \ldots + |x_ne_n|$$
$$= |x_1||e_1| + \ldots + |x_n||e_n| = |x_1| + \ldots + |x_n|.$$

HARJOITUSTEHTÄVIÄ

1.1:1 Olkoon $x, y \in \mathbb{R}^n$ ja |x| = |y| = 1. Mikä on vektorin x - y suurin mahdollinen pituus?

1. EUKLIDINEN AVARUUS \mathbb{R}^n

1.1:2 Todista kolmioepäyhtälö $|x+y| \leq |x| + |y|$ avaruudessa \mathbb{R}^n . Vihje: Käytä hyväksi tietoa $|x+y|^2 = (x+y) \cdot (x+y)$ ja Cauchy-Schwartz -epäyhtälöä $|x \cdot y| \leq |x||y|$.

1.2. Konvergenssi \mathbb{R}^n :ssä

Olkoon x_1, x_2, \dots jono \mathbb{R}^n :n pisteitä (huomaa, että x_i ei ole pisteen x koordinaatti) eli

$$x_i = (x_{i,1}, \ldots, x_{i,n}), i = 1, 2, \ldots$$

Merkitsemme vektorijonoa x_1, x_2, \ldots kuten reaalilukujonoakin (x_i) :llä.

1.2.1. Esimerkki. Määrittelemällä $x_i = (1/i, 1/(i+1)) \in \mathbb{R}^2, i = 1, 2, \ldots$, saadaan jono (x_i) tason \mathbb{R}^2 pisteitä.

Olkoon $x_0 \in \mathbb{R}^n$. Jono (x_i) konvergoi eli suppenee kohti pistettä x_0 , jos

$$(1.2.2) |x_i - x_0| \to 0,$$

kun $i \to \infty$. Tällöin sanomme, että x_0 on jonon (x_i) raja-arvo. Huomaa, että kaavassa (1.2.2) esiintyy tavallinen reaalilukujen raja-arvo. Toisin sanoen pisteiden x_i etäisyys pisteestä x_0 lähestyy nollaa, kun $i \to \infty$. Merkitään lyhyesti $x_i \to x_0$, $i \to \infty$, tai vain $x_i \to x_0$.

- 1.2.3. Huomautus. Vektorijonon suppenemisen määritelmä on oleellisesti sama kuin reaalilukujonon, sillä reaalilukujonolle (x_i) seuraavat ehdot ovat yhtäpitävät:
 - (i) $x_i \rightarrow x_0$,
 - (ii) $|x_i x_0| \rightarrow 0$.

1.2.4. Lause. Pätee: $x_i \to x$, $i \to \infty$ jos ja vain jos $x_{i,j} \to x_j$ jokaisella $j = 1, \ldots, n$. Toisin sanoen jono (x_i) konvergoi kohti pistettä x jos ja vain jos jokainen pisteiden x_i koordinaattien muodostama jono $(x_{i,j})$, $j = 1, \ldots, n$, konvergoi kohti pisteen x vastaavaa koordinaattia x_j .

Todistus. \implies Kiinnitetään $j=1,\ldots,n$. On osoitettava, että $x_{i,j} \rightarrow x_j$. Ominaisuuden D) nojalla

$$|x_{i,j}-x_j| \leq |x_i-x| \to 0,$$

mistä väite seuraa.

Tunnetusti lukujonoille pätee, että ehdoista $x_n \to 0, y_n \to 0,$..., $z_n \to 0$ seuraa $x_n + y_n + \ldots + z_n \to 0$. Oletetaan, että $x_{i,j} \to x_j$ jokaisella j, jolloin $|x_{i,j} - x_j| \to 0$, kun $i \to \infty$. Koska tämä pätee kaikilla $j = 1, \ldots, n$, niin

$$|x_{i,1}-x_1|+|x_{i,2}-x_2|+\ldots+|x_{i,n}-x_n|\to 0,$$

kun $i \to \infty$. Näin ollen ominaisuuden D) nojalla

$$|x_i - x| \le |x_{i,1} - x_1| + \ldots + |x_{i,n} - x_n| \to 0,$$

kun $i \to \infty$, mistä väite seuraa.

Lauseen 1.2.4 nojalla \mathbb{R}^n :n pistejonon (x_i) konvergenssi palautuu reaalilukujen konvergenssin käsitteeseen. Esimerkin 1.2.1 jonolle $x_i = (1/i, 1/(i+1)), i = 1, 2, \ldots$ pätee, että $x_i \to 0 = (0, 0)$, kun $i \to \infty$, sillä $1/i \to 0$ ja $1/(i+1) \to 0$. Havaitaan, että jonon (x_i) raja-arvo on yksikäsitteinen (johtuen lauseesta 1.2.4 ja raja-arvon yksikäsitteisyydestä \mathbb{R} :ssä).

1. EUKLIDINEN AVARUUS \mathbb{R}^n

Pistejono (x_i) , $x_i \in \mathbb{R}$, hajaantuu eli divergoi, jos se ei suppene. Pistejono hajaantuu siis täsmälleen silloin, kuin ainakin yksi reaalilukujonoista

$$(x_{i,j}), j = 1, \ldots, n,$$

hajaantuu.

Konvergenssin käsite syvenee topologian kurssilla

HARJOITUSTEHTÄVIÄ

- 1.2:1 Osoita määritelmän nojalla, että jonolle $x_i = (1/i, 1/i)$ pätee $x_i \to (0, 0)$, kun $i \to \infty$.
- 1.2:2 Suppeneeko vai hajaantuuko jono $x_i = (1/i, (i^2 + 1)/i)$?

1.3. \mathbb{R}^n :N JOUKOT

Eräs avaruuden \mathbb{R}^n , $n \geq 2$, perusvaikeuksista on, ettei siellä ole samanlaista "luonnollista" järjestystä kuin reaaliakselilla. Tästä seuraa, ettei \mathbb{R}^n :ssä ole yhtä luonnollista joukkoa kuin \mathbb{R} :n väli.

Etäisyyden avulla on mahdollista määritellä joitakin \mathbb{R}^n :n perusjoukkoja. Jos $x\in\mathbb{R}^n$ ja r>0, niin joukkoa

$$B(x,r) = B^{n}(x,r) = \{ y \in \mathbb{R}^{n} : |y - x| < r \}$$

kutsutaan \mathbb{R}^n :n x-keskiseksi, r-säteiseksi avoimeksi palloksi tai kuulaksi. Nimitystä kiekko käytetään, kun n=2. Joukkoa B(0,1) kutsutaan avoimeksi yksikköpalloksi. Kun n=1, niin määritelmän nojalla B(x,r) on avoin väli (x-r,x+r) ja B(0,1) avoin väli (-1,1). Kun n=2, niin $B(0,1)=\{y\in\mathbb{R}^2:y_1^2+y_2^2<1\}$.

Pallon B(x,r) reunaa

$$\partial B(x,r) = S(x,r) = S^{n-1}(x,r) = \{ y \in \mathbb{R}^n : |y-x| = r \}$$
$$= \{ y \in \mathbb{R}^n : (y_1 - x_1)^2 + \dots + (y_n - x_n)^2 = r^2 \}$$

kutsutaan (n-1-ulotteiseksi) x-keskiseksi, r-säteiseksi palloksi \mathbb{R}^n :ssa. Selvyyden vuoksi käytämme joukosta S(x,r) usein nimitystä pallokuori. Kun n=2, niin S(x,r) on x-keskinen, r-säteinen ympyrä.

Avaruuden \mathbb{R}^n joukkojen tehokas käyttö vaatii joitakin topologian peruskäsitteitä. Olkoon $A \subset \mathbb{R}^n$ mielivaltainen joukko. Joukko A on suljettu, jos jokaisella suppenevalla jonolla (x_i) , missä $x_i \in A$ ja $x_i \to x_0$, pätee $x_0 \in A$. Sanomme, että A sisältää kaikki rajapisteensä.

1.3.1. Esimerkki. Avaruuden \mathbb{R}^n suljettu pallo, joka määritellään joukkona

$$\overline{B}(x,r) = \overline{B}^n(x,r) = \{ y \in \mathbb{R}^n : |y - x| \le r \},$$

on \mathbb{R}^n :n suljettu osajoukko. Tämän todentamiseksi olkoon (x_i) jono, missä $x_i \in \overline{B}(x,r)$ ja $x_i \to x_0$. On näytettävä $x_0 \in \overline{B}(x,r)$. Koska $x_i \in \overline{B}(x,r)$, niin pätee $|x_i-x| \le r$ ja siis $|x_i-x|^2 \le r^2$. Tämä merkitsee sitä, että $\alpha_i = (x_{i,1}-x_1)^2 + \ldots + (x_{i,n}-x_n)^2 \le r^2$. Koska $x_{i,j} \to x_{0,j}$ kun $i \to \infty$ jokaisella $j = 1, 2, \ldots, n$, niin lukujonolla (α_i) on raja-arvo $\alpha_0 = (x_{0,1}-x_1)^2 + \ldots + (x_{0,n}-x_n)^2$ ja $\alpha_0 \le r^2$. Tämä merkitsee, että $|x_0-x|^2 \le r^2$ ja siis $|x_0-x| \le r$.

1.3.2. Huomautus. Edellä käytettiin epäyhtälön säilymisen periaatetta eli jos $\alpha_i \to \alpha_0$ ja $\alpha_i \le r^2$, niin $\alpha_0 < r^2$

Joukko $A \subset \mathbb{R}^n$ määritellään avoimeksi, jos $\mathbb{R}^n \setminus A$ on suljettu.

1.3.3. Lause. Joukko $A \subset \mathbb{R}^n$ on avoin täsmälleen silloin, kuin jokaisella $x \in A$ on olemassa sellainen r > 0, että $B(x, r) \subset A$.

Todistus. \subseteq On näytettävä, että ehdosta seuraa, että $\mathbb{R}^n \setminus A$ on suljettu. Olkoon (x_i) jono pisteitä $x_i \in \mathbb{R}^n \setminus A$ ja $x_i \to x_0$. On osoitettava, että $x_0 \in \mathbb{R}^n \setminus A$. Tällöin on kaksi mahdollisuutta: $x_0 \in \mathbb{R}^n \setminus A$, jolloin väite on todistettu, tai $x_0 \in A$, mikä on näytettävä mahdottomaksi.

Jos $x_0 \in A$, niin olettamuksen nojalla on olemassa r > 0 siten, että $B(x_0,r) \subset A$. Toisaalta $x_i \in \mathbb{R}^n \backslash A$ ja siis $x_i \notin B(x_0,r)$, mistä seuraa, että $|x_i - x_0| \geq r$. Nyt $x_i \not \to x_0$, sillä $x_i \to x_0$ tarkoittaa, että $|x_i - x_0| \to 0$. Saatiin haluttu ristiriita.

Olkoon $A \subset \mathbb{R}^n$ joukko. Joukon A reuna ∂A on joukko

$$\partial A = \{ x \in \mathbb{R}^n : \forall r > 0 \ B(x,r) \cap A \neq \emptyset \text{ ja } B(x,r) \cap (\mathbb{R}^n \backslash A) \neq \emptyset \}.$$

Joukon A reuna on siis niiden pisteiden x joukko, joiden jokainen palloympäristö kohtaa sekä A:n että A:n komplementin. Jos A on avoin, niin ∂A :n pisteet eivät milloinkaan ole A:n pisteitä. Tämä seuraa lauseesta 1.3.3. Toisaalta jos A on suljettu, niin $\partial A \subset A$. Jätämme tämän todistamisen harjoitustehtäväksi.

1.3.4. Esimerkki. Olkoon A yksiö, eli $A = \{x_0\}$. Tällöin $A = \partial A = \{x_0\}$. Piste x_0 kuuluu ∂A :han, sillä jokaisella r > 0 pallo $B(x_0, r)$ sisältää A:n pisteitä (pisteen x_0), ja selvästi myös $\mathbb{R}^n \setminus A$:n pisteitä.

Jos $x \neq x_0$, niin $x \notin \partial A$, sillä jos $r = |x - x_0| > 0$, niin pallo B(x,r) ei sisällä x_0 :aa eikä siis A:n pisteitä. Siten x_0 on ∂A :n ainoa piste ja siis $\partial A = \{x_0\}$.

1.3.5. Lause. Olkoon $A \subset \mathbb{R}^n$. Tällöin

- (i) ∂A on suljettu ja
- (ii) $A \cup \partial A$ on suljettu.

Todistus. Harjoitustehtävä.

Joukkoa $A \cup \partial A$ sanotaan A:n sulkeumaksi ja merkitään \overline{A} . Lauseen 1.3.5 nojalla se on suljettu joukko. Itse asiassa se on pienin suljettu joukko, joka sisältää A:n.

1.3.6. Esimerkki. Olkoon $B(x_0, r)$ avoin pallo \mathbb{R}^n :ssä. Havaitaan, että $\partial B(x_0, r) = S(x_0, r) = \{y : |y - x_0| = r\}$. Nyt sulkeuman määritelmän nojalla

$$\overline{B(x_0,r)} = B(x_0,r) \cup S(x_0,r) = \{y : |y - x_0| \le r\}.$$

Näin ollen $\overline{B}(x_0,r) = \overline{B(x_0,r)}$ todella on "suljettu pallo".

1.3.7. Huomautus. Tapauksessa n=1

$$B(x_0, r) = (x_0 - r, x_0 + r),$$

$$S(x_0,r) = \{x_0 - r, x_0 + r\},\$$

$$\overline{B}(x_0,r) = [x_0 - r, x_0 + r].$$

Topologian tärkeimpiä käsitteitä on kompaktius. Euklidisessa avaruudessa \mathbb{R}^n tämä voidaan määritellä seuraavasti. Joukko $A \subset \mathbb{R}^n$ on kompakti, jos jokaisella jonolla (x_i) , $x_i \in A$, on sellainen osajono (x_{i_j}) , että $x_{i_j} \to x_0$ ja $x_0 \in A$. Toisin sanoen jokaisesta jonosta A:n pisteitä voidaan valita osajono, joka suppenee kohti A:n pistettä.

1.3.8. Huomautus. Tapauksessa n=1 pätee: Jos $x_i \in [a,b], i=1,2,\ldots$, niin on olemassa osajono $x_{i_j} \to x_0$ ja $x_0 \in [a,b]$. Osajono (x_{i_j}) löydetään esimerkiksi välin [a,b] "puolitusmenetelmällä". Siis suljettu väli [a,b] on reaaliakselin $\mathbb{R} = \mathbb{R}^1$ kompakti osajoukko.

Sanomme joukkoa $A \subset \mathbb{R}^n$ rajoitetuksi, jos $A \subset B(0,r)$ jollakin r > 0.

1.3.9. Lause. Olkoon $A \subset \mathbb{R}^n$. Tällöin A on kompakti täsmälleen silloin, kun A on suljettu ja rajoitettu.

Todistus. \iff Olkoon (x_i) jono A:n pisteitä. On ensiksi näytettävä, että tällä jonolla on suppeneva osajono. Jokainen reaalilukujono $(x_{i,j}), j = 1, 2, \ldots, n$, on rajoitettu $(|x_{i,j}| \leq |x_i| < r)$, joten sille voidaan niin sanotulla välin puolitusmenetelmällä valita suppeneva osajono. Valitaan reaalilukujonosta $(x_{i,1})$ suppeneva osajono $(x_{i_j,1})$, sitten jonosta $(x_{i,2})$ suppeneva osajono ja jatketaan näin ottamalla lopulta jonosta $(x_{i,n})$ suppeneva osajono $(x_{k_i,n})$. Nyt kaikki jonot $(x_{k_i,j})$, $j=1,2,\ldots,n$, suppenevat, koska suppenevan jonon jokainen osajono suppenee. Toisin sanoen löytyy sellaiset luvut $x_i \in \mathbb{R}$, että

$$x_{k_i,j} \to x_j, \ i \to \infty, \ j = 1, 2, \dots, n.$$

Asetetaan $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Tällöin $x_{k_i} \to x$ kun $i \to \infty$, sillä $x_i \to x$ tarkoittaa, että pisteen x_i jokainen koordinaatti konvergoi kohti x:n vastaavaa koordinaattia, vertaa lause 1.2.4.

On näytetty, että jonolla (x_i) on osajono (x_{k_i}) joka suppenee kohti x:
ää. On vielä näytettävä, että $x \in A.$ Olettamuksen nojall
aAon suljettu, joten jonon (x_{k_i}) raja-arvo x kuuluu A:han.

Harjoitustehtävä.

1.3.10. Esimerkki. Suljettu pallo $\overline{B}(x_0,r)$ on kompakti, sillä se on suljettu ja selvästi rajoitettu.

Avoimet, suljetut ja kompaktit joukot selvitetään tarkemmin topologian kurssilla.

Harjoitustehtäviä

- 1.3:1 Todista lause 1.3.5: Joukon $A \subset \mathbb{R}^n$ reuna ∂A sekä sen sulkeuma $\overline{A} = A \cup \partial A$ ovat suljettuja.
- 1.3:2 Todista lauseen 1.3.3. toinen puoli: Olkoon joukko A avoin. Tällöin jokaisella $x \in A$ on olemassa sellainen r > 0, että $B(x,r)\subset A$.
- 1.3:3 Olkoon

1. EUKLIDINEN AVARUUS \mathbb{R}^n

$$\mathbb{Q}^2 = \{ (x, y) \in \mathbb{R}^2 : a \in \mathbb{Q}, b \in \mathbb{Q} \}$$

avaruuden \mathbb{R}^2 rationaalipisteiden joukko ja a joukon \mathbb{Q}^2 piste. Tällöin avoin pallo B(a,r) sisältää jokaisella r>0 sekä joukon \mathbb{Q}^2 että sen komplementin pisteitä, joten joukko \mathbb{Q}^2 ei ole avoin. Koska \mathbb{Q}^2 ei ole avoin, se on suljettu. Mikä virhe tässä päättelyssä tehdään ja mitä todella voit päätellä joukosta \mathbb{Q}^2 ?

- 1.3:4 Olkoon $A \subset \mathbb{R}^n$ diskreetti joukko, toisin sanoen joukko, jonka pisteet ovat erillisiä eli jokaisella $x \in A$ on olemassa sellainen r > 0, että pallo B(x, r) sisältää joukon A pisteistä ainoastaan pisteen x. Tutki, onko joukko A avoin tai suljettu.
- 1.3:5 Todista lauseen 1.3.9 toinen puoli: Jos $A \subset \mathbb{R}^n$ on kompakti, niin se on suljettu ja rajoitettu.
- 1.3:6 Olkoon $A \subset \mathbb{R}^n$ suljettu. Osoita, että $\partial A \subset A$.

2. Reaaliarvoiset funktiot \mathbb{R}^n :ssä

2.1. Funktiot \mathbb{R}^n :ssä

Olkoon $A \subset \mathbb{R}^n$ joukko ja $u: A \to \mathbb{R}$ reaaliarvoinen funktio eli kuvaus joukossa A, toisin sanoen jokaiseen $x \in A$ on liitetty yksikäsitteinen reaaliluku $u(x) \in \mathbb{R}$. Usein kirjoitetaan $u(x) = u(x_1, \ldots, x_n)$, eli $x = (x_1, \ldots, x_n)$. Funktioiden kuvaajien eli graafien luonnostelu on \mathbb{R}^n :ssä, $n \geq 2$, hankalampaa kuin reaaliakselilla \mathbb{R} . Avaruuden \mathbb{R}^n funktion graafi on aina avaruuden \mathbb{R}^{n+1} osajoukko. Yksiulotteisessa tapauksessa reaaliarvoisen funktion graafi on siis tasossa \mathbb{R}^2 , jolloin se on helppo hahmotella.

2.1.1. Esimerkki. Olkoon $u: \mathbb{R}^n \to \mathbb{R}$, u(x) = |x|, pisteen x etäisyys origosta. Tapauksessa n=2 funktion u graafi on \mathbb{R}^3 :n osajoukko

$$\{(x_1, x_2, u(x_1, x_2)) \in \mathbb{R}^3 : (x_1, x_2) \in \mathbb{R}^2\}.$$

Tämä on \mathbb{R}^3 :n kartio, jonka kärki on origossa.

2.1.2. Esimerkki. Olkoon $u : \mathbb{R}^n \to \mathbb{R}$, $u(x) = u(x_1, \dots, x_n)$, luvun x_1 ensimmäinen desimaali. Tällöin u ei ole funktio, sillä jos $x_1 = 1,00 \dots = 0,99 \dots$, niin u(x) = 0 tai u(x) = 9, eikä siis u:n arvo pisteessä x ole yksikäsitteisesti määrätty.

2.1.3. Esimerkki. Olkoon $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = x^2 - y^2$ sekä $c \in \mathbb{R}$. Joukkoa

$$C = C_c = \{(x, y) \in \mathbb{R}^2 : f(x, y) = c\}$$

kutsutaan f:n tasa-arvokäyräksi. Joukon C ei tarvitse olla "käyrä"; yleiselle kuvaukselle f se voi olla \mathbb{R}^2 :n mielivaltainen joukko. Tässä tapauksessa C on helposti määrättävissä:

$$f(x,y) = x^2 - y^2 = c \quad \Leftrightarrow \quad (x-y)(x+y) = c.$$

Jos c=0, niin x-y=0 tai x+y=0, mikä merkitsee, että C_0 muodostuu suorasta x=y tai x=-y. Jos $c\neq 0$, niin C_c koostuu kahdesta hyperbelin kaaresta $x^2-y^2=c$.

Huomaa, että esimerkissä 2.1.3 käytimme merkinnän (x_1, x_2) sijaan merkintää (x, y). Tämä on yleinen käytäntö \mathbb{R}^2 :ssa. Vastaavasti avaruudessa \mathbb{R}^3 pisteiden tavallinen esitystapa on (x, y, z).

2.1.4. Esimerkki. Olkoon $f: \mathbb{R}^3 \to \mathbb{R}$. Nyt on mahdotonta piirtää f:n graafia, koska tämä on \mathbb{R}^4 :n osajoukko

$$\{(x, y, z, f(x, y, z)) \in \mathbb{R}^4 : (x, y, z) \in \mathbb{R}^3\}.$$

Olkoon $f(x, y, z) = x^2 - z$. Nyt voi luonnostella funktion f tasa-arvopinnat eli joukot

$$C_c = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = c\}$$
$$= \{(x, y, z) \in \mathbb{R}^3 : x^2 - z = c\}$$
$$= \{(x, y, z) \in \mathbb{R}^3 : z = x^2 - c\}.$$

Joukko C_c on parabolinen sylinteri.

HARJOITUSTEHTÄVIÄ

- 2.1:1 Missä tason \mathbb{R}^2 joukossa $\ln(xy)$ määrittelee funktion? Missä joukossa funktio saa arvon 0? Luonnostele tämän funktion tasaarvojoukkoja.
- 2.1:2 Olkoon $x=(x_1,x_2)\in\mathbb{R}^2$ ja $f:\mathbb{R}^2\to\mathbb{R},\ f(x)=e^{|x|}$. Luonnostele f:n graafi. Mitä voidaan sanoa funktion f arvoista joukossa $\mathbb{R}^2\backslash B(0,\ln 2)$.

2.1:3 Olkoon $x=(x_1,x_2)\in\mathbb{R}^2$. Mitä vikaa on funktion $f:\mathbb{R}^2\to\mathbb{R}$,

$$f(x) = \begin{cases} |x|^3/x_1, & \text{kun } x \neq 0, \\ 0, & \text{kun } x = 0, \end{cases}$$

määrittelyssä?

2.2. Raja-arvot ja jatkuvuus

Olkoon $A \subset \mathbb{R}^n$ ja $f: A \to \mathbb{R}$ sekä $x_0 \in \mathbb{R}^n$ ja $a \in \mathbb{R}$. Funktiolla f on raja-arvo a pisteessä x_0 , jos jokaisella jonolla (x_i) , jolla $x_i \in A$, $x_i \to x_0$ ja $x_i \neq x_0$, pätee

$$(2.2.1) f(x_i) \to a.$$

Merkitsemme $\lim_{x\to x_0} f(x) = a$. Toisinaan käytetään myös merkintää

$$\lim_{\substack{x \to x_0 \\ x \in A \setminus \{x_0\}}} f(x) = a.$$

Jono $(f(x_i))$ on reaalilukujono ja kaavassa (2.2.1) esiintyy tavallinen reaalilukujonon raja-arvo.

2.2.2. Huomautus. Jotta määritelmä olisi mielekäs, tulee olla $x_0 \in \overline{A}$. Mikäli tämä ei päde, niin $x_0 \in \mathbb{R}^n \backslash \overline{A}$. Joukko $\mathbb{R}^n \backslash \overline{A}$ on avoin, joten on olemassa sellainen r > 0, että $B(x_0, r) \subset \mathbb{R}^n \backslash \overline{A}$. Lisäksi $\overline{A} = A \cup \partial A$, joten $A \subset \overline{A}$ ja erityisesti $B(x_0, r) \subset \mathbb{R}^n \backslash A$. Näin ollen ei ole olemassa sellaista joukon A jonoa (x_i) , että $x_i \to x_0$. Vastaava päättely pätee myös, kun x_0 on joukon A erillinen piste, toisin sanoen kun jollakin r > 0 pätee $B(x_0, r) \cap A = \{x_0\}$.

2.2.3. Esimerkki. Olkoon $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$,

$$f(x,y) = \frac{2xy}{x^2 + y^2}.$$

Tutkitaan, onko raja-arvo $\lim_{x\to 0} f(x)$ olemassa. Ensinnäkin kysymys on mielekäs, koska $0 \in \overline{\mathbb{R}^2 \setminus \{0\}} = \mathbb{R}^2$. Tutkitaan raja-arvoa katsomalla, miten f käyttäytyy pisteissä $f(x_i)$ kun jono (x_i) valitaan sopivasti. Valitaan ensin

$$x_i = (1/i, 0) \in \mathbb{R}^2 \setminus \{0\}.$$

Nyt $x_i \rightarrow 0 = (0,0)$, sillä

$$|x_i - 0| = \sqrt{(1/i - 0)^2 + (0 - 0)^2} = 1/i \to 0.$$

Toisaalta

$$f(x_i) = f(1/i, 0) = \frac{2 \cdot 1/i \cdot 0}{1/i^2 + 0^2} = 0,$$

joten $f(x_i) \to 0$. Valitaan seuraavaksi

$$y_i = (1/i, 1/i) \in \mathbb{R}^2 \setminus \{0\}.$$

Nyt myös $y_i \rightarrow 0$ ja

$$f(y_i) = f(1/i, 1/i) = \frac{2 \cdot 1/i \cdot 1/i}{1/i^2 + 1/i^2} = \frac{2}{1+1} = 1,$$

joten vakiojonona $(f(y_i))$ toteuttaa $f(y_i) \rightarrow 1$. Tästä voimme päätellä, ettei f:llä ole raja-arvoa origossa, sillä raja-arvon on oltava sama jokaisella jonolla.

2.2.4. Huomautus. Raja-arvon määritelmä on sama kuin tapauksessa n=1. Ainoa ero on, että nytfvoi olla määritelty $\mathbb{R}:$ n mielivaltaisessa joukossa A. Huomaa, että tällä määritelmällä tulevat toispuoleiset rajaarvot välin päätepisteissä käsiteltyä samalla kertaa.

2.2.5. Esimerkki. Olkoon $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$,

$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}.$$

Osoitamme, että $\lim_{x\to 0} f(x) = 0$. Olkoon $(x_i, y_i) \to (0, 0), (x_i, y_i) \in$ $\mathbb{R}^2 \setminus \{0\}$. On näytettävä: $f(x_i, y_i) \to 0$.

Todistus 1.

$$|f(x_i, y_i) - 0| = f(x_i, y_i) = \frac{x_i^2 y_i^2}{x_i^2 + y_i^2}$$

Olkoon $\varepsilon > 0$. Jos $x_i \to 0$, niin $x_i^2 \to 0$. Näin ollen on olemassa sellainen i_{ε} , että $x_i^2 < \varepsilon$ kun $i > i_{\varepsilon}$. Tästä seuraa

$$|f(x_i, y_i) - 0| = \frac{x_i^2 y_i^2}{x_i^2 + y_i^2} \le \frac{\varepsilon y_i^2}{y_i^2} = \varepsilon, \text{ kun } i > i_\varepsilon,$$

joten väite pätee.

Edellisessä todistuksessa on virhe. Viimeinen arvio on mieletön, koska tässä tapauksessa y_i voi olla 0, sillä vaikka $(x_i, y_i) \neq 0$, voi olla $y_i = 0$. Päättely voidaan kuitenkin korjata seuraavasti.

Todistus 2. Koska $\alpha^2 + \beta^2 - 2\alpha\beta = (\alpha - \beta)^2 > 0$, niin $2\alpha\beta < \alpha^2 + \beta^2$. Näin ollen pätee $2x_iy_i < x_i^2 + y_i^2$. Tästä seuraa

$$\frac{x_i^2 y_i^2}{x_i^2 + y_i^2} = \frac{2x_i y_i \cdot x_i y_i}{2(x_i^2 + y_i^2)} \le \frac{x_i y_i}{2} \to 0, \text{ kun } i \to \infty,$$

sillä jos $x_i \to 0$, $y_i \to 0$, niin $x_i y_i \to 0$.

2. Reaaliarvoiset funktiot \mathbb{R}^n :ssä

Tarkastellaan seuraavaksi jatkuvuuden käsitettä avaruudessa \mathbb{R}^n . Olkoon $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}$ ja $x_0 \in A$. Kuvaus f on jatkuva pisteessä x_0 , jos

$$\lim_{x \to x_0} f(x) = f(x_0).$$

2.2.6. Huomautus. Akateeminen tapaus: jos x_0 on kuvauksen f määrittelyjoukon A erillinen piste, niin f on automaattisesti jatkuva pisteessä x_0 .

Jatkuvuudelle saadaan yhtäpitävä karakterisaatio myös pistejonojen kautta. Kuvaus f on jatkuva pisteessä $x_0 \in A$ täsmälleen silloin, kun kaikilla jonoilla (x_i) , joilla $x_i \in A$ ja $x_i \to x_0$ pätee $f(x_i) \to f(x_0)$.

Huomaa, että tässä x_i saa olla myös x_0 , mutta riittää tarkastella jonoja (x_i) , joilla pätee $x_i \neq x_0$ jokaisella i.

2.2.7. Esimerkki. Tarkastellaan esimerkin 2.2.5 funktiota

$$f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, \ f(x,y) = \frac{x^2 y^2}{x^2 + y^2}.$$

Funktion jatkuvuutta origossa ei voida tutkia, koska kuvaus f ei ole määritelty origossa. Pisteissä $(x,y) \neq (0,0)$ jatkuvuuden tutkiminen on mielekästä.

Olkoon $(x_i,y_i) \to (x,y)$, $(x_i,y_i) \neq (0,0)$. Koska $x_i \to x$ ja $y_i \to y$, niin $x_i^2 \to x^2$ ja $y_i^2 \to y^2$. Näin ollen $x_i^2 y_i^2 \to x^2 y^2$. Samoin $x_i^2 + y_i^2 \to x^2 + y^2 \neq 0$. Tästä seuraa, että

$$\frac{x_i^2 y_i^2}{x_i^2 + y_i^2} \to \frac{x^2 y^2}{x^2 + y^2},$$

ja siis

$$|f(x_i, y_i) - f(x, y)| = \left| \frac{x_i^2 y_i^2}{x_i^2 + y_i^2} - \frac{x^2 y^2}{x^2 + y^2} \right| \to 0,$$

joten f on jatkuva pisteissä $(x, y) \neq (0, 0)$.

Määritellään f(0,0)=0. Nyt f on jatkuva myös origossa, koska esimerkin 2.2.5 nojalla

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0).$$

Jos määritellään $f(0,0)=a\neq 0$, niin saatu funktio ei ole jatkuva origossa.

2.2.8. Esimerkki. Olkoon $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = ax^ny^n + bx^ny^{n-1} + \dots + cx + dy + \alpha$. Tällaista funktiota sanotaan *polynomiksi* \mathbb{R}^2 :ssa ja se on selvästi jatkuva jokaisessa \mathbb{R}^2 :n pisteessä.

Funktiota $f:A\to\mathbb{R}$ sanotaan jatkuvaksi joukossa A, jos f on jatkuva joukon A jokaisessa pisteessä.

Raja-arvoa ja jatkuvuutta käsitellään tarkemmin topologian kurssilla.

HARJOITUSTEHTÄVIÄ

2.2:1 Osoita, että jos

$$\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b,$$

niin

$$\lim_{x \to x_0} (f(x) + g(x)) = a + b.$$

Muotoile väite oikein kiinnittämällä huomiota kuvausten määrittelyjoukkoihin.

- 2.2:2 Olkoon $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, $f(x,y) = 2x^2y/(x^4+y^2)$. Osoita, että funktiolla f ei ole raja-arvoa origossa.
- 2.2:3 Olkoon $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$. Mitä tarkoitetaan kun sanotaan, että f:llä on raja-arvo pitkin jokaista origon kautta kulkevaa suoraa? Osoita, että tehtävän 2.2:2 funktiolla f on tämä ominaisuus.
- 2.2:4 Olkoon $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$,

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}.$$

Onko olemassa raja-arvoa

$$\lim_{(x,y)\to(0,0)} f(x,y)?$$

2.2:5 Olkoon $f:A\to\mathbb{R}$ jatkuva, missä $A\subset\mathbb{R}^2$ on kompakti joukko. Osoita, että f on tasaisesti jatkuva, toisin sanoen jokaisella $\varepsilon>0$ on olemassa sellainen $\delta>0$, että $|f(x)-f(y)|<\varepsilon$ kun $x,y\in A$ ja $|x-y|<\delta$. Vihje: Tee vastaoletus.

2.3. Osittaisderivaatat

Olkoon $D \subset \mathbb{R}^n$ avoin ja $f: D \to \mathbb{R}$. Kiinnitetään piste $x_0 \in D$. Koska D on avoin, on olemassa sellainen r > 0, että $B(x_0, r) \subset D$. Siten f on määritelty pisteissä $x_0 + y$, kun |y| < r. Kiinnitetään $j = 1, 2, \ldots, n$. Nyt funktio $h \mapsto f(x_0 + he_j)$ on määritelty ainakin, kun $h \in (-r, r)$. Jos raja-arvo

$$\lim_{h \to 0} \frac{f(x_0 + he_j) - f(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_{0,1}, x_{0,2}, \dots, x_{0,j} + h, \dots, x_{0,n}) - f(x_0)}{h}$$

on olemassa, niin sitä kutsutaan funktion f osittaisderivaataksi muuttujan x_j suhteen pisteessä x_0 ja merkitään

$$\partial_j f(x_0) = \frac{\partial f}{\partial x_j}(x_0) = D_j f(x_0) = D_j f(x_{0,1}, \dots, x_{0,n}).$$

Määritelmän nojalla $\partial_i f(x_0) \in \mathbb{R}$, jos se on olemassa.

Osittaisderivaatan geometrinen merkitys on helppo tulkita. Yksinkertaisuuden vuoksi tarkastellaan tapausta tasossa, eli kun n=2, ja osittaisderivaattaa $\partial_1 f(x_0)$. Funktio f rajoitetaan suoran

$$L = \{ x \in \mathbb{R}^2 : x = x_0 + te_1, t \in \mathbb{R} \},\$$

ja D:n leikkaukseen, toisin sanoen tarkastellaan reaaliarvoista funktiota

$$s \stackrel{g}{\mapsto} f(s, x_{0,2}).$$

Tämä on määritelty ainakin välillä $(x_{0,1}-r,x_{0,1}+r)$. Lasketaan tämän funktion derivaatta, jos sellainen on olemassa, pisteessä $x_{0,1}$. Saadaan

$$g'(x_{0,f}) = \lim_{h \to 0} \frac{g(x_{0,1} + h) - g(x_{0,1})}{h}$$

$$= \lim_{h \to 0} \frac{f(x_{0,1} + h, x_{0,2}) - f(x_{0,1}, x_{0,2})}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + he_1) - f(x_0)}{h}$$

$$= \partial_1 f(x_0).$$

Osittaisderivaatan laskeminen palautuu siis aivan tavallisen yksiulotteisen derivaatan laskemiseen.

Ylläolevat merkinnät ovat turhan monimutkaisia. Siirtymällä käyttämään tason \mathbb{R}^2 pisteille merkintää (x,y) tarkastellaan funktiota

$$(x,y) \mapsto f(x,y)$$

pisteen $(x_0, y_0) \in D$ lähellä. Asetetaan kuten yllä $g(s) = f(s, y_0)$, mutta käytetään s:n tilalla x:ää, $g(x) = f(x, y_0)$. Nyt $\partial_1 f(x_0, y_0) = g'(x_0)$ ja vastaavasti $\partial_2 f(x_0, y_0) = h'(y_0)$, missä $h(y) = f(x_0, y)$.

Havaitaan siis, että osittaisderivaatan laskeminen pisteessä

$$x_0 = (x_{0,1}, x_{0,2}, \dots, x_{0,n})$$

muuttujan x_j , $j=1,\ldots,n$, suhteen palautuu seuraavaan. Tarkastellaan välillä $(x_{0,j}-r,x_{0,j}+r)$ määriteltyä funktiota

$$s \mapsto f(x_{0,1}, \dots, x_{0,j-1}, s, x_{0,j+1}, \dots, x_{0,n})$$

ja muodostetaan sen derivaatta pisteessä $x_{0,j}$.

2.3.1. Esimerkki. Olkoon $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = xy. Määrätään $\partial_1 f(x_0, y_0)$. Pitää derivoida funktio $s \mapsto f(s, y_0)$ pisteessä x_0 . Tämä on funktio $g(s) = sy_0$. Nyt $g'(s) = y_0$ ja siis $\partial_1 f(x_0, y_0) = y_0$. Tämä

voidaan tehdä helpommin muuttamalla merkintöjä. Osittaisderivaatan $\partial_1 f(x_0, y_0)$ määräämiseksi pitää derivoida $x \mapsto f(x, y) = xy$. Derivointi x:n suhteen, pitäen y:tä vakiona, antaa $\partial_1 f(x, y) = y$. Vastaavasti $\partial_2 f(x, y) = x$, sillä funktion $s \mapsto xs$ derivaatta pisteessä y on x.

2.3.2. Esimerkki. Olkoon $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = |x|. Mikä on $\partial_2 f(x,y)$? Tämän määräämiseksi pitää derivoida funktio $y \mapsto f(x,y) = |x|$, kun x on kiinnitetty. Tämä on vakiofunktio. Siis $\partial_2 f(x,y) = 0$ jokaisella $(x,y) \in \mathbb{R}^2$.

Määrätään seuraavaksi $\partial_1 f(x,y)$. Pitää siis derivoida funktio $x\mapsto f(x,y)=|x|$, kun y on kiinnitetty.

$$\partial_1 f(x,y) = \begin{cases} \frac{x}{|x|}, & \text{kun } x \neq 0, \\ \text{ei määritelty, kun } x = 0. \end{cases}$$

Näin ollen osittaisderivaattaa $\partial_1 f(0, y)$ ei ole olemassa.

2.3.3. Esimerkki. Olkoon

$$f(x,y) = \frac{1}{x} + \cos(xy) + e^{\sin(x+y)}$$
.

Tämä lauseke määrittelee funktion $f: \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : x=0\} \to \mathbb{R}$.

Määrätään $\partial_2 f(x,y)$ kun $x\neq 0$, toisin sanoen y-akselin ulkopuolella. Tätä varten kiinnitetään $x\neq 0$ ja derivoidaan funktio

$$y \mapsto \frac{1}{x} + \cos(xy) + e^{\sin(x+y)}$$
.

Tämän derivaatta on

$$\partial_2 f(x,y) = 0 - \sin(xy) \cdot x + e^{\sin(x+y)} \cos(x+y) \cdot 1$$
$$= -x \sin(xy) + \cos(x+y)e^{\sin(x+y)}.$$

Korkeammissa ulottuvuuksissa osittaisderivaatat lasketaan täysin vastaavasti.

2.3.4. Esimerkki. Olkoon $f: \mathbb{R}^4 \to \mathbb{R}$, $f(x) = x_1x_2 + x_3e^{x_4}$. Määrätään $\partial_3 f(x)$. Kiinnitetään x_1, x_2, x_4 ja derivoidaan funktio

$$x_3 \mapsto x_1 x_2 + x_3 e^{x_4}$$

Tämän derivaatta on $e^{x_4} = \partial_3 f(x)$.

2.3.5. Huomautus. Sovelluksissa f ei usein ole määritelty \mathbb{R}^n :n avoimessa joukossa (\mathbb{R}^n :ssä esiintyy derivaatta myös päätepisteissä). Esimerkiksi funktio voi olla määritelty \mathbb{R}^2 :n "suljetussa" neliössä. Tällöin on mielekästä tutkia osittaisderivaattoja myös neliön reunalla. Määritelmä muistuttaa toispuoleisia derivaattoja päätepisteissä.

HARJOITUSTEHTÄVIÄ

- 2.3:1 Muodosta funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = e^{xy} \cos(x+y)$, osittaisderivaatat $\partial_1 f(x,y)$ ja $\partial_2 f(x,y)$.
- 2.3:2 Muodosta funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \sin^2 x + \cos^2 y$, osittaisderivaatat $\partial_1 f(x,y)$ ja $\partial_2 f(x,y)$.
- 2.3:3 Anna esimerkki funktiosta $f: \mathbb{R}^2 \to \mathbb{R}$, jolla $\partial_1 f(x,y) = 0$ jokaisella $(x,y) \in \mathbb{R}^2$, mutta f ei ole jatkuva.

2.4. Derivoituvuus ja tangenttitaso

Tapauksessa n=1 pätee $\partial_1 f(x)=f'(x)$. Jos f:llä on derivaatta f'(x) pisteessä x, niin f on jatkuva pisteessä x.