

Contractivity of Markov Processes

Sam Power

University of Bristol

4 April, 2023

Contractivity of Markov Processes

Lecture 2

Sam Power

University of Bristol

4 April, 2023

Basic Examples

- Many idealised Markov chains satisfy curvature conditions with explicit constants.
- ✓ Here, I will catalog some examples which are relatively transparent.
- ★ The choice of examples is guided by our shared interests in Monte Carlo methods with applications to statistical computation.

Advice for 'Curvature Hunters'

- 1. On your first try, make generous assumptions.
- 2. For calculations, it can help to work with continuous-time processes.
- 3. Try to reduce to studying a lower-dimensional problem.
- 4. For harder problems, be flexible about the metric.
 - ► This will be the focus of Section 3.

Example 1: Curvature in the Discrete Metric

- \mathbb{K} Recall the discrete metric on E, given by $d(x, y) = I[x \neq y]$.
- ₭ In this context, one can identify

$$\mathfrak{I}_{\mathsf{1,d}}\left(P\left(x,\cdot
ight),P\left(y,\cdot
ight)
ight)=\mathrm{TV}\left(P\left(x,\cdot
ight),P\left(y,\cdot
ight)
ight)$$
 ,

and the contractivity condition reads as

$$x \neq y \implies \text{TV}(P(x,\cdot), P(y,\cdot)) \leqslant 1 - \kappa$$

k Consequently, there exists a probability measure $\nu \in \mathcal{P}(E)$ such that

$$x \in E \implies \text{TV}(P(x,\cdot), \nu) \leqslant 1 - \kappa.$$

Example 1: Application to IMH (1)

- $\mathbf{k} \in \operatorname{Let} \pi, q \in \mathcal{P}(E) \text{ such that } M = \|w\|_{\infty} < \infty, \text{ where } w \coloneqq \frac{\mathrm{d}\pi}{\mathrm{d}a}.$
- \mathbf{k} Define a π -invariant Markov kernel P as the Independent Metropolis-Hastings kernel with proposal q, i.e.

$$P(x, dz) = q(dz) \cdot \alpha(x, z) + (1 - \alpha(x)) \cdot \delta(x, dz).$$

with

$$lpha\left(x,z
ight) = \min\left\{1,rac{w\left(z
ight)}{w\left(x
ight)}
ight\} \ lpha\left(x
ight) = \int q\left(\mathrm{d}z
ight)\cdotlpha\left(x,z
ight).$$

Example 1: Application to IMH (2)

- u Note that since $w(x) \leq M$ almost surely, we can always bound $w(x)^{-1} \geqslant M^{-1}$.
- We can then write

$$lpha\left(x,z
ight)=\min\left\{1,rac{w\left(z
ight)}{w\left(x
ight)}
ight\}\geqslant\min\left\{1,M^{-1}\cdot w\left(z
ight)
ight\}=M^{-1}\cdot w\left(z
ight),$$

and hence

$$P(x, dz) \geqslant q(dz) \cdot \alpha(x, z) \geqslant q(dz) \cdot M^{-1} \cdot w(z) \geqslant M^{-1} \cdot \pi(dz)$$
.

- \checkmark Thus, the IMH has curvature $\geqslant M^{-1}$ with respect to the discrete metric.
- ✓ Approach generalises to i-SIR, i-cSMC, and related algorithms.

Example 2: Curvature in the Euclidean Metric

- \mathbb{R} Recall the Euclidean metric on $E = \mathbb{R}^d$, given by $d(x, y) = ||x y||_2$.
- ✓ I will give some examples in both continuous and discrete time.
- ✓ In the Euclidean case, sometimes you can even have almost-sure contractivity, rather than just 'on average'.
 - Not always realistic, but can be insightful to study.
 - Often easier to prove these results.
 - Consequences are often much stronger than 'simple' curvature.

Example 2: Almost-Sure Contraction of Diffusions

Consider the overdamped Langevin diffusion, as applied to sampling from an m-strongly log-concave target $\pi(dx) = \exp(-V(x)) dx$, whose trajectories follow the stochastic differential equation

$$\mathrm{d}X_t = -\nabla V(X_t) \, \mathrm{d}t + \sqrt{2} \, \mathrm{d}W_t.$$

$$\begin{split} \operatorname{d}\left(X_{t}-Y_{t}\right) &= -\left(\nabla V\left(X_{t}\right)-\nabla V\left(Y_{t}\right)\right) \operatorname{d}t \\ \operatorname{d}\left\|X_{t}-Y_{t}\right\|_{2}^{2} &= -2 \cdot \left\langle X_{t}-Y_{t}, \nabla V\left(X_{t}\right)-\nabla V\left(Y_{t}\right)\right\rangle \operatorname{d}t \\ &\leqslant -2 \cdot m \cdot \left\|X_{t}-Y_{t}\right\|_{2}^{2} \operatorname{d}t. \end{split}$$

Example 2: Almost-Sure Contraction of Diffusions

∠ By Grönwall's inequality, holds almost-surely that

$$||X_t - Y_t||_2^2 \leq \exp(-2 \cdot m \cdot t) \cdot ||X_0 - Y_0||_2^2$$

i.e. curvature $\geq m$.

- u Can also study $dX_t = b(X_t) dt + \sqrt{2} dW_t$ with right conditions on b.

Example 2: Contraction of IRFS

- 'Iterated Random Function Systems'
- k At each step, draw a random function from some distribution over mappings $E \to E$, and then apply it to your current state, i.e.

$$f_n \sim F$$
 , $\quad X_n = f_n \left(X_{n-1}
ight)$.

- c.f. random dynamical systems, stochastic flows, ...
- k Assume that F is supported on functions which are almost-surely Lipschitz with respect to d.
 - ▶ If $\operatorname{Lip}_{E,E}(f) \leq 1 \kappa$ almost surely, quite simple.
 - ▶ If $\mathbb{E}_F \left[\text{Lip}_{E,E} (f) \right] < 1$, still reasonably simple.
 - ▶ Actually, $\mathbb{E}_F \left[\log \operatorname{Lip}_{E.E}(f) \right] < 0$ is sufficient for exponential ergodicity.

Example 2: Contraction of IRFS (ULA)

№ Unadjusted Langevin Algorithm: draw $\xi \sim \Re (0, I_d)$, set

$$f=f_{\mathcal{E}}:x\mapsto x-h
abla\,V\left(x
ight)+\sqrt{2h}\,\xi.$$

Write

$$egin{aligned} f_{\xi}\left(x
ight) - f_{\xi}\left(y
ight) &= \left(x - h
abla V\left(x
ight) + \sqrt{2h}\xi
ight) - \left(y - h
abla V\left(y
ight) + \sqrt{2h}\xi
ight) \ &= \int_{0}^{1} \left(I - h
abla^{2}V\left(t\cdot x + (1-t)\cdot y
ight)
ight)\left(x - y
ight) \end{aligned}$$

Assume now that V is m-strongly convex and L-smooth, so that $\operatorname{eigs}(\nabla^2 V) \in [m, L]$; write $q = m \cdot L^{-1} \in [0, 1]$.

Example 2: Contraction of IRFS (ULA)

It then holds that

$$\begin{split} \left\| f_{\xi}\left(x\right) - f_{\xi}\left(y\right) \right\|_{2} \leqslant & \int_{0}^{1} \left\| I - h \nabla^{2} V\left(t \cdot x + (1 - t) \cdot y\right) \right\|_{\text{op}} \cdot \left\| x - y \right\|_{2} \\ \leqslant & \max\{\left| 1 - h \cdot \lambda \right| : m \leqslant \lambda \leqslant L\} \cdot \left\| x - y \right\|_{2}. \end{split}$$

- Ke Taking $h = \frac{2}{L+m}$ yields that $\operatorname{Lip}_{E,E}(f_{\xi}) \leqslant \frac{1-q}{1+q}$ a.s., so that $\kappa \geqslant \frac{2 \cdot q}{1+q} \sim 2 \cdot q$.
- Exercise: Generalise this analysis to MYULA.
- <u>Exercise</u>: Generalise this analysis to SGLD.

Example 2: Some Other Euclidean Contractions

- Ideal Hamiltonian Monte Carlo (on e.g. well-conditioned potentials)
- Generalised Doubling Maps (deterministic dynamics, backwards in time)
- Simple Slice Sampling (reduction to spherical symmetry; convexity)
- Mean-Field Diffusions (convex confinement, convex interaction)

Example 3: Curvature in the Hamming Metric

- k Recall the Hamming metric on $E = \{\pm 1\}^d$, given by $d(x, y) = \sum_{i \in [d]} I[x_i \neq y_i]$.
- - 1. For each $i \in [d]$, have a rate-one Poisson clock.
 - 2. When clock i rings, replace x_i by a draw from its full conditional distribution.
- Intuition: under weak dependence, this should mix well.

Example 3: Dobrushin's Criterion

Let A be a finite alphabet, let V be a finite index set, and let π be a probability measure on A^V. Write

$$egin{aligned} \pi_i\left(\cdot\mid x
ight) &:= \operatorname{Law}_{\pi}\left(X_i\mid X_j = x_j ext{ for } j\in V\setminus\{i\}
ight) \ c_{i,j} &:= \sup\left\{\operatorname{TV}\left(\pi_i\left(\cdot\mid x
ight), \pi_i\left(\cdot\mid y
ight)
ight) : x = y ext{ off } j
ight\}. \end{aligned}$$

- **№** If the spectral radius of C satisfies ρ (C) < 1, then pRSGS(π) is exponentially ergodic with rate $\lambda \leq \rho$ (C).
- k (usually stated in terms of a particular estimate on $\rho(C)$)

Example 3: Dobrushin-Wu Criterion

- Is the discreteness of the spins relevant? No!
- $\ensuremath{\mathbb{K}}$ Let $(E, \ensuremath{\mathrm{d}})$ be a metric space, let V be a finite index set, and let π be a probability measure on E^V . Write

$$c_{i,j} := \mathsf{sup}\left\{rac{\mathfrak{T}_{\mathsf{1,d}}\left(\pi_i\left(\cdot\mid x
ight),\pi_i\left(\cdot\mid y
ight)
ight)}{\mathsf{d}\left(x_{\!j},y_{\!j}
ight)} : x = y \; \mathsf{off} \, \mathsf{j}
ight\}$$

№ If the spectral radius of C satisfies ρ (C) < 1, then pRSGS(π) is exponentially ergodic with rate $\lambda \leq \rho$ (C).

Example 3: Hybrid Metric Perspective

- * These results can be viewed as 'stitching together several near-contractions'.
- ★ The conditions of the Theorem imply that if we define

$$\operatorname{Lip}_{i}\left(f
ight):=\sup\left\{ rac{\left|f\left(x
ight)-f\left(y
ight)
ight|}{d_{i}\left(x,y
ight)}:x=y ext{ off }i
ight\} ext{,}$$

then it holds for $i \neq i$ that

$$\operatorname{Lip}_{i}(P^{i}f) \leq \operatorname{Lip}_{i}(f) + \operatorname{Lip}_{i}(f) \cdot c_{ij}.$$

★ This implies (with some care) that

$$\operatorname{Lip}(P_t f) \leq \operatorname{Lip}(f) \cdot \exp(-t(I - C))$$
,

which is **stronger** than a single Lipschitz contraction.

There exists a more general result involving this principle; see Section 3.

Example 3: Curie-Weiss Model

 \checkmark Consider the Curie-Weiss Model on $\{\pm 1\}^N$ with law

$$\pi\left(x_{\!1},\cdots,x_{\!N}
ight) \propto \exp\left(h \cdot \sum_{i \in [N]} x_{i} + rac{c}{N} \cdot \sum_{i,j \in [N]} x_{i} x_{j}
ight).$$

The conditionals are then given by

$$\pi\left(x_i \mid x_{-i}
ight) \propto \exp\left(x_i \cdot \left\{h + rac{c}{N} \cdot \sum_{j \in [N] \setminus \{i\}} x_j
ight\}
ight)$$
 ,

and in particular,

$$\mathbb{E}\left[x_i \mid x_{-i}
ight] = \mathsf{tanh}\left(h + rac{c}{N} \cdot \sum_{i \in [N]\setminus\{i\}} x_i
ight).$$

Example 3: Curie-Weiss Model

✓ As the conditional laws are binary, we bound TV by the difference in means:

$$\begin{split} \operatorname{TV}\left(\pi_i\left(\cdot\mid x\right), \pi_i\left(\cdot\mid y\right)\right) &\leqslant \frac{1}{2} \cdot \left| \operatorname{tanh}\left(h + c \cdot m_i(x)\right) - \operatorname{tanh}\left(h + c \cdot m_i(y)\right) \right| \\ &\leqslant \frac{c}{2} \cdot \left| m_i(x) - m_i(y) \right| \\ &\leqslant c \cdot N^{-1} \end{split}$$

- if x = y off j.
- \checkmark So, if c < 1, then $pRSGS(\pi)$ will have a spectral gap of at least 1 c.
- κ n.b. estimate holds *uniformly* in N.

Example 3: Some Other Spin Systems

- Can apply to other mean-field spin systems (e.g. SK); not necessarily well-suited
- ✓ Can apply to Gaussian graphical models with 'diagonally dominant' precision

Basic Examples: Recap

- Some recurrent elements:
 - 1. Kernels have large probability overlap.
 - 2. Kernels have large spatial overlap.
- ★ These examples haven't fought back too much: the natural metric was enough.