Microeconomics 1

Intertemporal choices under uncertainty

Johan Hombert (HEC Paris)

MiE M2, 2021-22

Outline of the lecture

• Extend the 2-period production economy to the case with risk

pprox framework in previous class (2-period, no risk) + framework studied with Bruno (1-period, risk)

Application: climate policy

Road map

Two-period economy with risk

The Ramsey rule

Two periods economy with risk

• With Bruno: one-period economy with risk

• Last class: two-period economy with no risk

• Now: two-period economy with risk

Model

- Two periods t = 0, 1
- State of nature at t=1: ω drawn from set Ω , proba $\pi(\omega)$
- Agents *i* = 1, ..., *N*
 - Maximize expected discounted utility $EU_i = u(c_{i0}) + \beta E[u(c_{i1}(\omega))]$ $\beta < 1, u' > 0, u'' < 0$
 - ▶ Endowment of good: y_{i0} at date 0; $y_{i1}(\omega)$ at date 1 in state ω
 - ▶ Endowment of asset j at date 0: \overline{n}_{ij}

Model

- Assets $j = 1, \ldots, J$
 - ► Stocks, bonds, houses, etc.
 - Produce $d_j(\omega)$ units of good at date 1 in state ω
 - Supply $\overline{n}_j = \sum_i \overline{n}_{ij}$
- · Aggregate endowment of consumption good
 - ▶ Date 0: $\sum_i y_{i0}$
 - ▶ Date 1 state ω : $\sum_i y_{i1}(\omega) + \sum_j \overline{n}_j d_j(\omega)$
- Q. Are markets complete in this economy?

Model

Q. Are markets complete in this economy?

- Only if the set of assets is sufficiently rich to deliver the payoff of all Arrow securities paying off in the next period
- Formally: if and only if the matrix of asset payoff $(d_j(\omega))_{(\omega,j)\in\Omega\times\{1,\dots,J\}}$ has rank $\mathit{Card}(\Omega)$
- From now on, assume markets are complete
 - Assume the set of assets has sufficiently rich payoff structure

OR

lacktriangle Assume the Arrow security paying 1 in state ω exists for all $\omega\in\Omega$

Agent's problem

- Agent i maximizes $u(c_{i0}) + \sum_{\omega \in \Omega} \beta \pi(\omega) u(c_{i1}(\omega))$ by choice of
 - ▶ Consumption profile: c_{i0} , $c_{i1}(\omega)$
 - ► Holdings of each asset *j*: n_{ij}
 - ▶ Holdings of each state ω -Arrow security: $a_i(\omega)$
- Subject to budget constraints

▶ Date 0:
$$c_{i0} + \sum_{j=1}^{J} n_{ij} p_j + \sum_{\omega \in \Omega} a_i(\omega) \phi(\omega) \leq y_{i0} + \sum_{j=1}^{J} \overline{n}_{ij} p_j$$

▶ Date 1 state
$$\omega$$
: $c_{i1}(\omega) \leq y_{i1}(\omega) + \sum_{i=1}^{J} n_{ij}d_{j}(\omega) + a_{i}(\omega)$

where
$$p_j=$$
 date 0 price of asset j $\phi(\omega)=$ date 0 price of state $\omega ext{-Arrow}$ security

First order conditions

ullet Substitute $c_{i1}(\omega)$ in expected utility using date 1 budget constraint

First order conditions

• w.r.t.
$$c_{i0}$$
: $u'(c_{i0}) - \lambda_i = 0$

where λ_i = multiplier of date 0 budget constraint

► FOC w.r.t.
$$a_i(\omega)$$
: $\beta \pi(\omega) u'(c_{i1}(\omega)) - \lambda_i \phi(\omega) = 0$

State prices

$$\Rightarrow \phi(\omega)u'(c_{i0}) = \pi(\omega)\beta u'(c_{i1}(\omega))$$

- Intuition: move 1 unit of consumption from date 0 to date 1 state ω
- LHS: MU loss at date 0
- ▶ RHS: expected MU gain at date 1

$$\Rightarrow$$
 State price: $\phi(\omega) = \frac{\pi(\omega)\beta u'(c_{i1}(\omega))}{u'(c_{i0})}$

- \blacktriangleright LHS: relative price of consumption in date 1 state ω / price of consumption at date 0
- ightharpoonup RHS: intertemporal marginal rate of substitution $\mathit{IMRS}_i(\omega)$ between date 1 state ω consumption and date 0 consumption

Marginal rates of substitution

• FOC holds for all agents \Rightarrow *IMRS*_i(ω) equalized across agents

As in the riskless economy (cf. last class)

• MRS between states $\frac{\pi(\omega_1)u'(c_{i1}(\omega_1))}{\pi(\omega_2)u'(c_{i1}(\omega_2))}$ are equalized across agents and equal to relative state prices $\frac{\phi(\omega_1)}{\phi(\omega_2)}$

As in the static risky economy (cf. classes with Bruno)

Asset prices

• FOC w.r.t. n_{ij} : $\sum_{\omega} \pi(\omega) \beta u'(c_{i1}(\omega)) d_j(\omega) - \lambda_i p_j = 0$ and using $\lambda_i = u'(c_{i0})$:

$$p_j u'(c_{i0}) = \sum_{\omega} \pi(\omega) \beta u'(c_{i1}(\omega)) d_j(\omega)$$

- Intuition
 - Reduce consumption at date 0 to buy one unit of asset j and consume its payoff at date 1
 - LHS: MU loss at date 0
 - ▶ RHS: expected MU gain at date 1

Asset prices

$$\Rightarrow p_j = E\left[\frac{\beta u'(c_{i1}(\omega))}{u'(c_{i0})}d_j(\omega)\right]$$

where
$$\frac{\beta u'(c_{i1}(\omega))}{u'(c_{i0})} = \frac{\textit{IMRS}_i(\omega)}{\pi(\omega)} \equiv \textit{M}(\omega)$$
 is equalized across agents

• $M(\omega)$ is the stochastic discount factor that prices all assets:

$$p_j = E[M(\omega)d_j(\omega)]$$

Checking intuitions

Q1. The stochastic discount factor $M(\omega)$ is high...

Checking intuitions

Q1. The stochastic discount factor $M(\omega)$ is high... in a recession

Q2. Holding fixed $E[d_i(\omega)]$, an asset has a higher price if it has...

Checking intuitions

Q1. The stochastic discount factor $M(\omega)$ is high... in a recession

- **Q2.** Holding fixed $E[d_j(\omega)]$, an asset has a higher price if it has... higher payoff in recessions and lower payoff in expansions
 - Consumption in recession is more valuable because MU is higher

Expected returns

ullet Can be rewritten in terms of asset return $R_j(\omega)=d_j(\omega)/p_j$

$$E[M(\omega)R_j(\omega)]=1$$

ullet Applies to assets $1, \ldots, J$ and to any other security in zero net supply

Building the intuition

Q3. Asset j has higher expected return when $Cov(M(\omega), R_j(\omega))$ is positive or negative?

Building the intuition

Q3. Asset j has higher expected return when $Cov(M(\omega), R_j(\omega))$ is positive or negative?

Negative covariance: low return when M is high i.e. in bad time when MU is high \Rightarrow unattractive risk profile \Rightarrow require higher average return to compensate

Risk-free rate

- One-period risk-free bond
 - Pays off 1 in all states at date 1
 - Price at date 0: $p_f = E[M(\omega)]$
 - Return: $\frac{1}{p_f} \equiv R_f$

$$\Rightarrow$$
 Risk-free rate $R_f = \frac{1}{E[M(\omega)]}$

Systematic risk & Risk premium

• Asset j's risk premium (\equiv expected return in excess of risk-free rate)

$$E[R_j(\omega)] - R_f = -R_f Cov(M(\omega), R_j(\omega))$$

- The risk premium does not depend on the variance of the asset's payoff but on the <u>covariance</u> with aggregate risk
 - ► Idiosyncratic risk (uncorrelated with aggregate risk) can be diversified away ⇒ does not command a risk premium
 - Systematic risk (correlated with aggregate risk) cannot be diversified away ⇒ commands a risk premium
- Intuition: Tradeoff between risk and expected return
 - Assets with low return in bad time (i.e. when consumption is low and MU is high) have an unattractive risk profile
 - ⇒ They must have a lower price i.e. a higher average return so that agents are willing to hold these assets

Quiz

- Suppose markets are complete and that
 - return on gold is very volatile but has zero correlation with the business cycle and consumption
 - return on the stock market is less volatile but positively correlated with the business cycle and consumption

Q. Rank $E[R_{gold}]$, $E[R_{stock}]$ and R_f

Quiz

- Suppose markets are complete and that
 - return on gold is very volatile but has zero correlation with the business cycle and consumption
 - return on the stock market is less volatile but positively correlated with the business cycle and consumption

Q. Rank $E[R_{gold}]$, $E[R_{stock}]$ and R_f

$$E[R_{stock}] > E[R_{gold}] = R_f$$

Present value and discount rate

• $p_j = E[M(\omega)d_j(\omega)]$ is also called the present value of risky payoff $d_j(\omega)$

If you studied finance in a business school, you learned that

$$p_j = \frac{E[d_j(\omega)]}{1 + \text{discount rate}}$$

• The two formulas are equivalent and asset j's discount rate is $E[R_i(\omega)] = R_f - R_f Cov(M(\omega), R_i(\omega))$

Equilibrium

- Equilibrium: all agents maximize and markets clear
- Market clearing for

date 0 good:
$$\sum_{i=1}^{I} c_{i0} = \sum_{i=1}^{I} y_{i0}$$

date 1 state
$$\omega$$
 good: $\sum_{i=1}^{I} c_{i1}(\omega) = \sum_{i=1}^{I} y_{i1}(\omega) + \sum_{j} \overline{n}_{j} d_{j}(\omega)$

asset
$$j$$
: $\sum_{i=1}^{I} n_{ij} = \overline{n}_{j}$

state
$$\omega$$
-Arrow security: $\sum_{i=1}^{l} a_i(\omega) = 0$

Road map

Two-period economy with risk

The Ramsey rule

Production choices

- So far: exchange economy, i.e., investment and production unmodeled, \overline{n}_j and $d_j(\omega)$ exogenous
- Now: production economy
- Suppose agent *i* has investment opportunity:
 - t = 0: investment cost ε (small relative to the economy)
 - t=1: output $d(\omega)\varepsilon$ in each state ω
- Q. At which condition should this investment be carried out?
 - 1. The condition depends on the vector $d(\omega)$: true or false?
 - 2. The condition depends on the identity of agent i: true or false?
 - Necessary and sufficient condition:

Production choices

- So far: exchange economy, i.e., investment and production unmodeled, \overline{n}_j and $d_j(\omega)$ exogenous
- Now: production economy
- Suppose agent *i* has investment opportunity:
 - t = 0: investment cost ε (small relative to the economy)
 - t=1: output $d(\omega)\varepsilon$ in each state ω
- Q. At which condition should this investment be carried out?
 - 1. The condition depends on the vector $d(\omega)$: true or false? true
 - 2. The condition depends on the identity of agent i: true or false?
 - Necessary and sufficient condition:

Production choices

- So far: exchange economy, i.e., investment and production unmodeled, \overline{n}_j and $d_j(\omega)$ exogenous
- Now: production economy
- Suppose agent *i* has investment opportunity:
 - t = 0: investment cost ε (small relative to the economy)
 - t=1: output $d(\omega)\varepsilon$ in each state ω
- Q. At which condition should this investment be carried out?
 - 1. The condition depends on the vector $d(\omega)$: true or false? true
 - 2. The condition depends on the identity of agent i: true or false? false
 - Necessary and sufficient condition: $E[M(\omega)d(\omega)] > 1$

Example: Climate policy

- Suppose each ton of carbon emission today generates certain costs of adaptation to climate change of 500 in 100 years
- Should we implement a green policy that reduces carbon emission today at a cost of 50 per ton?
- Yes if and only if $50 < \frac{500}{(1+r_{100})^{100}}$ where r_{100} is the annualized 100-year discount rate of a risk-free investment
- r₁₀₀ is not observed
 - 100-year bonds don't (barely) exist
 - Even if they did, their price would not reflect social preferences because generations living in 100 years are not born yet (see macro courses: eqm in OLG models is in general not socially optimal)
- Let's calibrate r₁₀₀

Intuitions

Q1. If future generations are much richer than we are, should we care more or less about climate change?

Intuitions

Q1. If future generations are much richer than we are, should we care more or less about climate change? higher discount rate ⇒ care less about future costs

Q2. This argument is stronger when marginal utility decreases fast: true or false?

Intuitions

Q1. If future generations are much richer than we are, should we care more or less about climate change? higher discount rate ⇒ care less about future costs

Q2. This argument is stronger when marginal utility decreases fast: true or false? true: in this case, (dis)utility of future costs is very small

CRRA-lognormal case

Closed-form formula in the case:

- CRRA utility
 - $u(c) = c^{1-\gamma}/(1-\gamma)$, relative risk aversion $\gamma > 0$
- and lognormal random variables
 - ▶ Log aggregate consumption: $c_t = \log(C_t)$ where $C_t = \sum_i c_{it}$
 - ▶ Log return: $r_j = \log(R_j)$
 - Assume (c_1, r_i) is jointly normally distributed
 - ▶ NB: We now have a continuum of states

CRRA-lognormal case

- Stochastic discount factor: $M = \beta \left(\frac{C_1}{C_0}\right)^{-\gamma}$
- Take log: $m \equiv \log(M) = \log(\beta) \gamma \Delta c$

where $\Delta c \equiv \log(\mathit{C}_{1}/\mathit{C}_{0})$ is aggregate consumption growth

• Take log of $E[MR_j] = 1$:

$$\log(\beta) + E(r_j) - \gamma E(\Delta c) + \frac{1}{2} Var(r_j - \gamma \Delta c) = 0$$

where we have used that if X is normal, $E\left(e^{X}\right)=e^{E(X)+\frac{1}{2}Var(X)}$

CRRA-lognormal case

Risk-free rate

$$r_f = -\log(\beta) + \gamma E(\Delta c) - \frac{1}{2} \gamma^2 Var(\Delta c)$$

- Checking intuitions
 - ▶ Richer future generations (higher $E(\Delta c)$) \Rightarrow higher discount rate
 - Even more so if MU decreases fast $(\gamma \text{ high})$
- NB
 - ► The formula for r_f in the special case with no aggregate risk $(Var(\Delta c) = 0)$ is called the Ramsey rule
 - ightharpoonup Agg risk lowers r_f due to precautionary saving (see problem set)
- Let's calibrate β , γ , Δc and $Var(\Delta c)$ at a 100-year horizon

$$\beta = ?$$

- When c_0 and c_1 are for the same individual
 - $\triangleright \beta$ reflects psychological traits
 - \triangleright β can be elicited from individual choices
 - ightharpoonup First Welfare Theorem: social planner should use agents' β
 - NB: ...unless individuals behave impatiently due to lack of self-control or other behavioral mistakes. In this case, should the social planner use a higher β? Paternalism vs. liberal ethics
- When c_0 and c_1 are for different generations
 - \triangleright β reflects the weight on future vs. current generation in social welfare
 - $\beta = 1$ as the only morally justifiable choice?

100-year risk-free discount rate

• An aggressive calibration (Nordhaus 2008)

$$\gamma$$
: RRA = 2
$$E(\Delta c)$$
: Avg growth rate of agg consump = 2% per year
$$\sigma(\Delta c)$$
: S.D. of agg consump = 2% per year

$$\Rightarrow r_f = 3.9\% \text{ per year}$$

$$\frac{500}{1.030100} = 11$$

• A conservative calibration (Stern 2007)

$$\gamma = 1$$
; $E(\Delta c) = 1.3\%$; $\sigma(\Delta c) = 2\%$

$$\Rightarrow r_f = 1.3\%$$
 per year

$$\frac{500}{1.013^{100}} = 137$$

Uncertain cost of climate change

Suppose cost of climate change is uncertain and still 500 in expectation

⇒ Climate policy is a risky investment

• Expected return on risky asset

$$E(r_j) = r_f - \frac{1}{2} Var(r_j) + \gamma Cov(r_j, \Delta c)$$

Take exponential:

$$E(R_i) = R_f e^{\gamma Cov(r_j, \Delta c)}$$

Uncertain cost of climate change

- Suppose cost of climate change can vary by factor x2: S.D. of log cost = In(2)
- ullet ... and is higher if economic growth is higher (with corr. =1)
 - **Q.** This increases the discount rate on the green policy i.e. makes it less valuable: true or false?

Uncertain cost of climate change

- Suppose cost of climate change can vary by factor x2: S.D. of log cost = ln(2)
- ...and is higher if economic growth is higher (with corr. = 1)
 - Q. This increases the discount rate on the green policy i.e. makes it less valuable: true or false? true

$$\gamma Cov(r_i, \Delta c) = 1.4\%$$
 using $\gamma = 1$ and $\sigma(\Delta c) = 2\%$

$$\Rightarrow R_j \simeq R_f + 1.4\%$$

• ... and is higher if economic growth is lower (with corr. -1)

$$\Rightarrow$$
 $R_i \simeq R_f - 1.4\%$