Exercícios

1) Expresse as funções na notação Big O, determinando a constante C e n_o, se possível.

a)
$$f(n) = \frac{n^3}{100} + n^2 + 10n + 3$$

$$b) f(n) = 10n^2 + 2^n + 4$$

$$c) f(n) = log_2^n + n + n^2$$

Solução exercício 1

a)
$$O(m^3)$$
 entite $100 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, \frac{m^3}{m^3} + \frac{m^2}{m^3} + \frac{10m}{m^3} \in \mathbb{C}$. m^3
 $p/m \rightarrow \infty \, Termo$
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^2 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3
 $1000 \, m^3 + m^3 + 10m \in \mathbb{C}$. m^3

 $\frac{1}{100}$ n³ + n² + 10 n = $\frac{1}{50}$ n³ $-1 m^3 + m^2 + 10 m = 0$ $m.(-\frac{1}{100}m^2 + m + 10) = 0 \implies m = 0$ m = 109, 1607ENIÃO MO= 109 1607

Título do Gráfico

	£()	-(-)
	τ(n)	g(n)
0	0	0
10	210	20
15	408,75	67,5
16	456,96	81,92
17	508,13	98,26
17,5	534,8438	107,1875
17,55	537,5569	108,1089
18	562,32	116,64
19	619,59	137,18
20	680	160
30	1470	540
40	2640	1280
50	4250	2500
60	6360	4320
70	9030	6860
80	12320	10240
90	16290	14580
100	21000	20000
109,1607	26015,34	26015,33
110	26510	26620
120	32880	34560
	15 16 17 17,5 17,55 18 19 20 30 40 50 60 70 80 90 100 109,1607 110	0 0 10 210 15 408,75 16 456,96 17 508,13 17,5 534,8438 17,55 537,5569 18 562,32 19 619,59 20 680 30 1470 40 2640 50 4250 60 6360 70 9030 80 12320 90 16290 100 21000 109,1607 26015,34 110 26510

b)
$$f(n) = 10n^2 + 2^n + 4$$

Utilizando o mesmo raciocínio da questão a. Teremos $O(2^n)$

Solution
$$10m^{2} + 2^{m} + 4 \leq C2^{n}$$

$$\frac{10m^{2}}{2^{n}} + \frac{2^{n}}{2^{n}} + \frac{4}{2^{n}} \leq C \cdot \frac{2^{n}}{2^{n}}$$

$$0 + 1 + 0 \leq C \qquad pan \quad m > \infty$$

$$1 \leq C$$

$$2 \leq$$

n	f(n)	g(n)
0	5	2
1	16	4
2	48	8
3	102	16
4	180	32
5	286	64
6	428	128
7	622	256
9	1326	1024
9,9605	1992,46	1992,688
10	2028	2048
11	3262	4096

Título do Gráfico

c)
$$log_2^n + n + n^2$$

A função log_2^n tem crescimento menor que n e n^2 . Então podemos escrever $O(n^2)$

$$\frac{\log n}{\sqrt{2}} + m + n^2 \leq c. m^2$$

$$\frac{\log n}{m^2} + \frac{n}{m^2} + \frac{n^2}{m^2} \leq c. m^2$$

$$\frac{\log n}{m^2} + \frac{1}{m} + 1 \leq c$$

$$0 + 0 + 1 \leq c$$
Supondo $c = 2$

$$\text{Tenemos} \quad m_0 = d$$

n	f(n)	g(n)
0,5	-0,25	0,5
1	2	2
1,5	4,334963	4,5
2	7	8
2,5	10,07193	12,5
3	13,58496	18
3,5	17,55735	24,5

- 2) Considere a ordenação de n números armazenados no arranjo A, localizando primeiro o menor elemento de A e permutando esse elemento com o elemento contido em A[1]. Em seguida, determine o segundo menor elemento de A e permute-o com A[2]. Continue dessa maneira para os primeiros n-1 elementos de A.
- a) Qual algoritmo que apresenta este comportamento?
- b) Porque ele precisa ser executado para os primeiros n-1 elementos, e não para os n elementos?
- c) Forneça os tempos de execução do melhor caso e do pior caso da ordenação por seleção O.
- d) A partir do vetor A=[7, 4, 5, 9, 8, 2, 1] apresente o exemplo de funcionamento do algoritmo.

Solução questão 2

a) Ordenação por seleção A **ordenação por seleção** é um <u>algoritmo de</u>

<u>ordenação</u> baseado em se passar sempre o menor valor do vetor para a primeira posição
(ou o maior dependendo da ordem requerida), depois o de segundo menor valor para a segunda posição, e assim é feito sucessivamente com os elementos restantes, até os últimos dois.

- Do inglês: Selection Sort.

b) Ele inicia em 1 e não em zero.

c) Este algoritmo não tem um pior/melhor caso pois todos os elementos são varridos sempre. Sua complexidade $\theta(n^2)$.

d)

- 7 4 5 9 8 2 1
- 1 4 5 9 8 2 7
- 1 2 5 9 8 4 7
- 1 2 4 9 8 5 7
- 1 2 4 5 8 9 7
- 1245798
- 1245789

3) Verifique se cada questão abaixo é verdadeira ou falsa e diga porque é falsa ou verdadeira.

a)
$$10^{56}$$
. $n^2 \in O(n^2)$?

Verdadeira (Mas observe o coeficiente de n^2). $C \ge 10^{56}$. Este número é extremamente grande.

b)
$$10^{56}n^2 \in O(n^3)$$
?

Verdadeiro. (Mas observe o coeficiente de n^2). Supondo nossa constante igual a 1 teremos n_0 = 10^{56} .

c)
$$10^{56}n^2 \epsilon O(n)$$
?

Falsa

d)
$$2^{n+1} \in O(2^n)$$
?

Verdadeira

$$f) n \in O(n^3)$$
?

Falsa. (Apesar de n^3 ser superior a n, a diferença entre ambas é exageradamente grande).

4) Análise o algoritmo abaixo e identifique o pior caso usando a notação Assintótica.

```
Exibe_matriz_30[M]  \begin{aligned} & \text{FOR } i \leftarrow 1 \text{ to comprimento}\_x\{M] \\ & \text{FOR } j \leftarrow 1 \text{ to comprimento}\_y\{M] \\ & \text{FOR } k \leftarrow 1 \text{ to comprimento}\_z[M] \\ & \text{Do descreva } (M[i][j][k]) \end{aligned}
```

```
Exibe_matriz_30[M]

FOR i \leftarrow 1 to comprimento_x[M] \nearrow \gamma

FOR j \leftarrow 1 to comprimento_y[M] \nearrow \gamma

FOR k \leftarrow 1 to comprimento_z[M] \nearrow \gamma

Do descreva (M[i][j][k])
```

Para os pares de funções seguintes indique se é verdadeira ou falsa cada uma das seguintes afirmações: $f(n) \in O(g(n))$, $f(n) \in \Omega(g(n))$ e $f(n) \in \Theta(g(n))$. Explique sucintamente as suas opções.

a
$$f(n) = 2n^3 - 10n^2$$
; $g(n) = 25n^2 + 37n$

b.
$$f(n) = 56$$
; $g(n) = \log_2 30$

c.
$$f(n) = \log_3 n$$
; $g(n) = \log_2 n$

$$f(n) = n^3; g(n) = 3^n$$

$$f(n) = n!; g(n) = 2^n$$

Solução

f	$(n) \in O(g(n))$	$f(n) \in \Omega(g(n$	$f(n) \in \Theta(g(n))$
$\int_{0}^{(a)} f(n) = 2n^{3} - 10n^{2} ; g(n) = 25n^{2} - 10n^{2} ; g(n) = 2$	falso	verdadeiro	falso
$f(n) = 56; g(n) = \log_2 30$	verdadeiro	verdadeiro	verdadei ro
$\int_{0}^{(c)} f(n) = \log_3 n; g(n) = \log_2 n$	verdadeiro	verdadeiro	verdadei ro
$f(n) = n^3; g(n) = 3^n$	verdadeiro	falso	falso
$f(n) = n!; g(n) = 2^n$	falso	verdadeiro	falso