

Comment on "Refractive index change by photothermal effect with a constant density detected as temperature grating in various fluids" [J. Chem. Phys. 104, 4988 (1996)]

Z. Niedrich

Citation: The Journal of Chemical Physics 106, 1296 (1997); doi: 10.1063/1.473970

View online: http://dx.doi.org/10.1063/1.473970

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/106/3?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Comment on "Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond" [J. Chem. Phys. 115, 1414 (2001)]

J. Chem. Phys. 116, 2665 (2002); 10.1063/1.1434994

Comment on "Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density-functional calculations?" [J. Chem. Phys. 111, 7727 (1999)]

J. Chem. Phys. 113, 1666 (2000); 10.1063/1.481955

Complex photothermal refractive index change in host-guest liquid crystals determined with a novel interferometric method

Appl. Phys. Lett. 70, 2544 (1997); 10.1063/1.118915

Response to "Comment on 'Refractive index change by photothermal effect with a constant density detected as temperature grating in various fluids'" [J. Chem. Phys. 106, 1296 (1997)]

J. Chem. Phys. 106, 1298 (1997); 10.1063/1.473969

Refractive index change by photothermal effect with a constant density detected as temperature grating in various fluids

J. Chem. Phys. 104, 4988 (1996); 10.1063/1.471129

Comment on "Refractive index change by photothermal effect with a constant density detected as temperature grating in various fluids" [J. Chem. Phys. 104, 4988 (1996)]

Z. Niedrich

Chełmońskiego 21, PL 60-756 Poznań, Poland

(Received 1 August 1996; accepted 11 October 1996)

[S0021-9606(97)51203-7]

Much more experimental evidence for nonpolar liquids is in favor of $(\partial n/\partial T)_V > 0$ than $(\partial n/\partial T)_V < 0$. None of these facts has been mentioned by Terazima in his article¹ as if they were not existing at all. We will point out then the main of them to complete the issue.

A simple way to determine $(\partial n/\partial T)_V$ is from the exact relation

$$\left(\frac{\partial n}{\partial T}\right)_{V} = \left(\frac{\partial n}{\partial T}\right)_{p} + \left(\frac{\partial n}{\partial p}\right)_{T} \left(\frac{\partial p}{\partial T}\right)_{V}, \tag{1}$$

where $(\partial p/\partial T)_V = \alpha_p/\beta_T$. Measurements made in the Koninklijke Shell Laboratorium in Amsterdam by Coumou and co-workers² for Eq. (1), give $(\partial n/\partial T)_V > 0$ (Table I). It would be of interest to know $(\partial n/\partial p)_T$ from the exact Eq. (1) for α_p and β_T used by Terazima, unfortunately he did not specify them (nor β_S , c_p , c_V) although he used them in calculating the TG signal.

A more complicated way to obtain $(\partial n/\partial T)_V$ is from the isotropic Rayleigh light scattering (Smoluchowski, Einstein) by the approximate formula

$$\left(\frac{\partial n}{\partial T}\right)_{V} = \left(\frac{\partial n}{\partial T}\right)_{p} + \frac{\lambda^{2}}{\pi} \left(\frac{R_{is}}{2kT\beta_{T}}\right)^{0.5} \frac{\alpha_{p}}{n},\tag{2}$$

where $R_{is} = [(1-7D/6)/(1+D)]R$, D is the depolarization degree, R the absolute Rayleigh ratio. The absolute isotropic Rayleigh ratio values of Coumou's *et al.*² are well accepted and used to calibrate the scattering apparatus.³ Also for these data Eq. (2) gives $(\partial n/\partial T)_V > 0$ (Table I). Certainly, even good accuracy of R_{is} cannot guarantee Eq. (2) to be as accurate as Eq. (1) with $(\partial n/\partial T)_p$ and $(\partial n/\partial p)_T$, nevertheless satisfactory agreement of these equations for liquids listed in Table I is obtained except of slight negative value for n-octane.

From a new optical equation of a nonpolar liquid proposed by Niedrich⁴

$$(\epsilon - 1) \frac{2\epsilon + 1}{9\epsilon} = c_{\lambda} r \exp \frac{r^2}{1 - T/T_1}, \tag{3}$$

where $\epsilon \equiv n^2$, $c_{\lambda} \gtrsim 1$ is the liquid constant at wavelength λ , $r \equiv (4/3)\pi\rho\alpha$, α the mean molecular polarizability, $T_1 = a\rho/NR$ the internal temperature, a the Van der Waals constant, comes

$$\left(\frac{\partial n}{\partial T}\right)_{V} = (\epsilon - 1) \frac{2\epsilon + 1}{2\epsilon + 1/\epsilon} \left(\frac{r}{1 - T/T_{1}}\right)^{2} \frac{1}{2nT_{1}},\tag{4}$$

therefore $(\partial n/\partial T)_V > 0$. Comparison of Eq. (4) with Eq. (1) in Table I needs no comment. There is no such equation in the literature to give similar numerical agreement for negative experimental values of $(\partial n/\partial T)_V$. The physical interpretation of Eq. (4) involves the structure of a liquid via the equation

$$\left(\frac{\partial n}{\partial T}\right)_{V} = (\epsilon - 1) \frac{2\epsilon + 1}{2\epsilon + 1/\epsilon} \left(\frac{\partial}{\partial T} \langle x^{-6} \rangle\right)_{V} \frac{\alpha^{2}}{n},\tag{5}$$

where $\langle x^{-6} \rangle$ is the binary radial correlation parameter, and which means that $(\partial \langle x^{-6} \rangle / \partial T)_V > 0$.

Until now we have taken into consideration the experimental results by Coumou *et al.* because (i) they were obtained for the same samples of liquids at identical conditions for both derivatives $(\partial n/\partial T)_p$ and $(\partial n/\partial p)_T$, as well as for R and D, simultaneously, (ii) the pressure while determining $(\partial n/\partial p)_T$ was not higher than 2 atm being in the range of strict linearity of n(p). However, there are in the literature other experimental results which due to Eq. (3) are in support of $(\partial n/\partial T)_V > 0$. As an example let us take the high pressure increase of n of carbon disulfide, with the largest $(\partial n/\partial T)_V$ in Table I, which has been measured by Chen and Vedam. This increase, calculated by the formula resulting from Eq. (3)

$$\Delta n = [z + (z^2 + 0.5)^{0.5}]^{0.5} - n_0, \tag{6}$$

where $z = 0.25\{1 + 9c_{\lambda}r \exp[r^2/(1 - T/T_1)]\}, \alpha = 8.74 \cdot 10^{-24}$ cc, $a = 1.11 \cdot 10^{13} \text{ cm}^4 \text{ dyne/mole}^2$, and $c_{\lambda} = 1.04 \text{ to fit } n_0 \text{ at } 1$

TABLE I. $(\partial n/\partial T)_V \times 10^5$ K⁻¹ for nonpolar liquids.

Liquid	Experiment			
	Terazima (Ref. 1)	Coumou et al. (Ref. 2)		Theory Niedrich
		Eq. (1)	Eq. (2)	Eq. (4)
CS ₂	-2.5	+4.7	+5.8	+4.4
benzene	-2.1	+3.1	+1.8	+2.1
CCl ₄	-2.9	+1.7	+0.6	+1.6
$C_6H_{12}^{a}$	-2.6	+1.1	+0.1	+1.4
n-decane	-2.1	+1.7	+0.1	+1.0
<i>n</i> -octane	-2.3	+1.0	-0.5	+1.1
n-hexane	-2.1	+1.2	+1.7	+1.1

^aCyclohexane.

TABLE II. $\Delta n(p)$ for liquid carbon disulfide.

Pressure <i>p</i> /kbar	Experiment Chen, Vedam (Ref. 5) $\Delta n \times 10^2$	Theory Niedrich (Ref. 4) $\Delta n \times 10^2$	
0.54	3.12	3.15	
2.18	9.40	9.50	
4.26	14.80	14.88	
6.19	18.72	18.76	
8.22	22.25	22.13	
10.86	26.18	25.84	
12.46	28.32	27.85	

atm and 20 °C, gives excellent agreement with experiment (Table II). As an another example we present in Table III \sim 1% agreement for *n*-hexane and toluene of our calculation by the formula coming from Eq. (3)

$$\left(\frac{\partial n}{\partial T}\right)_{p} = (\epsilon - 1) \frac{2\epsilon + 1}{2\epsilon + 1/\epsilon} \left[1 + \left(2 - \frac{3T + 1/\alpha_{p}}{T_{1}}\right) \times \left(\frac{r}{1 - T/T_{1}}\right)^{2} \right] \frac{\alpha_{p}}{n}, \tag{7}$$

with data from Ref. 4, with the experimental results obtained by Li, Segre, Gammon, Sengers, and Lamvik.⁶

It comes from Table I that only systematic error in Ref. 2, a little larger than the estimated, could be the reason for $(\partial n/\partial T)_V < 0$ obtained by Terazima, and vice versa. To resolve this controversy we propose to determine $(\partial n/\partial T)_p$, $(\partial n/\partial p)_T$, α_p and β_T for carbon diselenide, for which Eq. (4) gives $(\partial n/\partial T)_V = 6 \cdot 10^{-5} \text{ K}^{-1}$, the larger value than that for CS₂ and therefore the error being smaller part of it than for the liquids investigated previously.

TABLE III. $(-\partial n/\partial T)_p \times 10^4$ K⁻¹-temperature dependence.

	n-hexane		toluene	
	Niedrich Eq. (7)	exp- t Ref. 6	Niedrich Eq. (7)	exp-t Ref. 6
15 °C	5.298	5.356	5.615	5.634
20 °C	5.341	5.394	5.636	5.638
25 °C	5.384	5.433	5.646	5.648
30 °C	5.423	5.475	5.653	5.656
35 °C	5.469	5.520	5.662	5.667
40 °C	5.508	5.564	5.669	5.681
45 °C	5.551	5.611	5.677	5.700

Despite the small numerical value of $(\partial n/\partial T)_V$ it is of importance in our understanding the role of molecular interactions in liquids. From Terazima's data it comes that only dispersion interaction is important for $(\partial n/\partial T)_V$ while H-bonding interaction (water) is negligible. From Coumou $et\ al.$ data and experimental $(\partial n/\partial T)_V^{\text{water}} = -1.5 \cdot 10^{-5}\ \text{K}^{-1}$ it comes that the influence of H-bonding interaction is nearly twice as large as that from dispersion interaction and has the opposite sign. We must know the exact value of $(\partial n/\partial T)_V$ to answer what is the case.

¹M. Terazima, J. Chem. Phys. **104**, 4988 (1996).

²D. J. Coumou, E. L. Mackor, and J. Hijmans, Trans. Faraday Soc. **60**, 1539 (1964).

³S. Sen, V. Galiatsatos, and G. D. Patterson, J. Chem. Phys. **103**, 892 (1995).

⁴Z. Niedrich, Physica **128B**, 69 (1985).

⁵C. C. Chen and K. Vedam, J. Chem. Phys. **73**, 4577 (1980).

⁶W. B. Li, P. N. Segre, R. W. Gammon, J. V. Sengers, and M. Lamvik, J. Chem. Phys. **101**, 5058 (1994).