Einführung in die Neuroinformatik

Tim Luchterhand, Paul Nykiel

8. Mai 2018

1 Aufgabe

1.1 DGL

$$\tau \dot{u}_j(t) = -u_j(t) + \sum_{i=1}^n c_{ij} \cdot y_i(t - d_{ij}) + x_j(t)$$

Erstes Neuron:

$$\tau \dot{u}_1(t) = -u_1(t) + x_1(t)$$

Zweites Neuron:

$$\tau \dot{u}_2(t) = -u_2(t) + 0.8u_1(t)$$

1.2 Verlauf

1.3 Maximum

Erstes Neuron: $\max(y_1(t)) = 1$, da der maximale Eingangswert $\max(x_1(t)) = 1$.

Zweites Neuron: $\max(y_2(t)) = 0.8$, da der maximale Eingangswert $\max(u_1(t)) = 0.8$.

1.4 Matlab

```
(a) Matlab Code:
  %Constants
   tau = 1;
   deltaT = 0.1;
   tEnd = 30;
   weight = 0.8; %c {12}
   timestamps = 0:deltaT:tEnd;
   input = zeros (length (timestamps), 1);
   input (find (timestamps >= 5 & timestamps <= 15)) = 1;
10
  % Allocate memory
   derivative = zeros(1, length(timestamps));
   derivative2 = zeros(1, length(timestamps));
   potential = zeros(1, length(timestamps));
   potential2 = zeros(1, length(timestamps));
15
16
  % First neuron
17
   for c = 1:length (timestamps)
       derivative(c) = (-potential(c) + input(c))/tau;
19
       if c = length(timestamps)
20
            potential(c+1) = potential(c) + deltaT * derivative
21
               (c);
       end
   end
23
24
  % Second neuron
   for c = 1:length(timestamps)
26
       derivative2(c) = (-potential2(c) + 0.8 * potential(c))/
27
          tau;
       if c = length(timestamps)
28
            potential2(c+1) = potential2(c) + deltaT *
29
               derivative2(c);
       end
30
   end
31
  % Plots
  subplot(2,2,1)
   plot(timestamps, potential, "b");
   title ("Dendritischen Potenzial an Neuron 1");
   ylabel("t")
```

```
xlabel("u_1(t)")
  subplot (2,2,3)
40
  plot(timestamps, derivative, "b");
41
  title ("Ableitung des dendritischen Potenzial an Neuron 1");
42
  ylabel("t")
43
  xlabel("u_1'(t)")
44
  subplot (2,2,2)
  plot(timestamps, potential2, "g");
  title ("Dendritischen Potenzial an Neuron 2");
  ylabel("t")
  xlabel("u_2(t)")
  subplot (2,2,4)
  plot(timestamps, derivative2, "g");
  title ("Ableitung des dendritischen Potenzial an Neuron 2");
  ylabel("t")
  xlabel("u 2'(t)")
```

(b) Plots:

Abbildung 1: Dendritischen Potentiale und deren jeweilige Ableitungen

(c) Ab t=15 fallen die Funktionswerte wieder ab, so dass sie für $t\to\infty$ wieder bei 0 sind. Biologisch macht das sind, da das Neuron nach dem Feuern wieder in den stillen Zustand abklingt und erst wieder bei erneuter Erregung feuert.

1.5 Zeitkonstante

(a) Mit steigender Zeitkonstante nimmt die Flankensteigung am Ausgang ab, das Neuron reagiert langsamer. Bei geringerer Zeitkonstante reagiert das Neuron schneller.

Abbildung 2: Dendritischen Potentiale und deren jeweilige Ableitungen mit $\tau=0.5$

Abbildung 3: Dendritischen Potentiale und deren jeweilige Ableitungen mit $\tau=2$

(b) Erstes Neuron:

$$0 \cdot \dot{u}_1(t) = -u_1(t) + x_1(t)$$

$$\Leftrightarrow u_1(t) = x_1(t)$$

Zweites Neuron:

$$0 \cdot \dot{u}_2(t) = -u_2(t) + 0.8u_1(t)$$

$$u_2(t) = 0.8u_1(t)$$

Für $\tau=0$ ist die Flankensteigung unendlich hoch und das Eingangssignal wird unverändert vom Neuron wieder ausgegeben, beziehungsweise nur skaliert.

1.6 Übertragungszeit

Eine Übertragungszeit führt dazu das die Antwort des zweiten Neurons auf das Signal des ersten Neurons verzögert wird, das heißt $u_2(t)$ wird nach rechts verschoben.