# Vapnik-Chervonenkis classes

Maxim Raginsky

September 23, 2014

A key result on the ERM algorithm, proved in the previous lecture, was that

$$P(\widehat{f}_n) \le L^*(\mathscr{F}) + 4\mathbb{E}R_n(\mathscr{F}(Z^n)) + \sqrt{\frac{2\log(1/\delta)}{n}}$$

with probability at least  $1 - \delta$ . The quantity  $R_n(\mathcal{F}(Z^n))$  appearing on the right-hand side of the above bound is the *Rademacher average* of the random set

$$\mathscr{F}(Z^n) = \{ (f(Z_1), \dots, f(Z_n)) : f \in \mathscr{F} \},\,$$

often referred to as the *projection* of  $\mathscr{F}$  onto the sample  $Z^n$ . From this we see that a sufficient condition for the ERM algorithm to produce near-optimal hypotheses with high probability is that the expected Rademacher average  $\mathbb{E}R_n(\mathscr{F}(Z^n)) = \tilde{O}(1/\sqrt{n})$ , where the  $\tilde{O}(\cdot)$  notation indicates that the bound holds up to polylogarithmic factors in n, i.e., there exists some positive polynomial function  $p(\cdot)$  such that

$$\mathbb{E}R_n(\mathscr{F}(Z^n)) \le O\left(\sqrt{\frac{p(\log n)}{n}}\right).$$

Hence, a lot of effort in statistical learning theory is devoted to obtaining tight bounds on  $\mathbb{E}R_n(\mathcal{F}(Z^n))$ .

One way to guarantee an  $\tilde{O}(1/\sqrt{n})$  bound on  $\mathbb{E}R_n$  is if the "effective size" of the random set  $\mathscr{F}(Z^n)$  is finite and grows polynomially with n. Then the Finite Class Lemma will tell us that

$$R_n(\mathscr{F}(Z^n)) = O\left(\sqrt{\frac{\log n}{n}}\right).$$

In general, a reasonable notion of "effective size" is captured by various *covering numbers* (see, e.g., the lecture notes by Mendelson [Men03] or the recent monograph by Talagrand [Tal05] for detailed expositions of the relevant theory). In this lecture, we will look at a simple combinatorial notion of effective size for classes of *binary-valued* functions. This particular notion has originated with the work of Vapnik and Chervonenkis [VC71], and was historically the first such notion to be introduced into statistical learning theory. It is now known as the *Vapnik–Chervonenkis* (or *VC*) *dimension*.

## 1 Vapnik–Chervonenkis dimension: definition

**Definition 1.** Let  $\mathscr C$  be a class of (measurable) subsets of some space Z. We say that a finite set  $S = \{z_1, ..., z_n\} \subset Z$  is shattered by  $\mathscr C$  if for every subset  $S' \subseteq S$  there exists some  $C \in \mathscr C$  such that  $S' = S \cap C$ .

In other words,  $S = \{z_1, ..., z_n\}$  is shattered by  $\mathscr C$  if for any binary n-tuple  $b = (b_1, ..., b_n) \in \{0, 1\}^n$  there exists some  $C \in \mathscr C$  such that

$$\left(\mathbf{1}_{\{z_1\in C\}},\ldots,\mathbf{1}_{\{z_n\in C\}}\right)=b$$

or, equivalently, if

$$\{(\mathbf{1}_{\{z_1\in C\}},\ldots,\mathbf{1}_{\{z_n\in C\}}):C\in\mathscr{C}\}=\{0,1\}^n,$$

where we consider any two  $C_1, C_2 \in \mathcal{C}$  as equivalent if  $\mathbf{1}_{\{z_i \in C_1\}} = \mathbf{1}_{\{z_i \in C_2\}}$  for all  $1 \le i \le n$ .

**Definition 2.** The Vapnik–Chervonenkis dimension (or the VC dimension) of  $\mathscr C$  is

$$V(\mathscr{C}) \triangleq \max \Big\{ n \in \mathbb{N} : \exists S \subset \mathsf{Z} \text{ such that } |S| = n \text{ and } S \text{ is shattered by } \mathscr{C} \Big\}.$$

If  $V(\mathscr{C}) < \infty$ , we say that  $\mathscr{C}$  is a VC class (of sets).

We can express the VC dimension in terms of *shatter coefficients* of  $\mathscr{C}$ : Let

$$\mathbb{S}_n(\mathscr{C}) \triangleq \sup_{S \subset \mathbb{Z}, |S| = n} |\{S \cap C : C \in \mathscr{C}\}|$$

denote the *n*th *shatter coefficient* of  $\mathscr{C}$ , where for each fixed *S* we consider any two  $C_1, C_2 \in \mathscr{C}$  as equivalent if  $S \cap C_1 = S \cap C_2$ . Then

$$V(\mathcal{C}) = \max \Big\{ n \in \mathbb{N} : \mathbb{S}_n(\mathcal{C}) = 2^n \Big\}.$$

The VC dimension  $V(\mathscr{C})$  may be infinite, but it is always well-defined. This follows from the following lemma:

**Lemma 1.** If  $\mathbb{S}_n(\mathscr{C}) < 2^n$ , then  $\mathbb{S}_m(\mathscr{C}) < 2^m$  for all m > n.

*Proof.* Suppose  $\mathbb{S}_n(\mathscr{C}) < 2^n$ . Consider any m > n. We will suppose that  $\mathbb{S}_m(\mathscr{C}) = 2^m$  and derive a contradiction. By our assumption that  $\mathbb{S}_m(\mathscr{F}) = 2^m$ , there exists  $S = \{z_1, \dots, z_m\} \in \mathbb{Z}^m$ , such that for every binary n-tuple  $b = (b_1, \dots, b_n)$  we can find some  $C \in \mathscr{C}$  satisfying

$$\left(\mathbf{1}_{\{z_1 \in C\}}, \dots, \mathbf{1}_{\{z_n \in C\}}, \mathbf{1}_{\{z_{n+1} \in C\}}, \dots, \mathbf{1}_{\{z_m \in C\}}\right) = (b_1, \dots, b_n, 0, \dots, 0). \tag{1}$$

From (1) it immediately follows that

$$(\mathbf{1}_{\{z_1 \in C\}}, \dots, \mathbf{1}_{\{z_n \in C\}}) = (b_1, \dots, b_n).$$
 (2)

Since  $b = (b_1, ..., b_n)$  was arbitrary, we see from (2) that  $\mathbb{S}_n(\mathscr{C}) = 2^n$ . This contradicts our assumption that  $\mathbb{S}_n(\mathscr{C}) < 2^n$ , so we conclude that  $\mathbb{S}_m(\mathscr{C}) < 2^m$  whenever m > n and  $\mathbb{S}_n(\mathscr{F}) < 2^n$ .

There is a one-to-one correspondence between binary-valued functions  $f: Z \to \{0, 1\}$  and subsets of Z:

$$\forall f: \mathsf{Z} \to \{0,1\} \text{ let } C_f \triangleq \{z: f(z) = 1\}$$
  
 $\forall C \subseteq \mathsf{Z} \text{ let } f_C \triangleq \mathbf{1}_{\{C\}}.$ 

Thus, we can extend the concept of shattering, as well as the definition of the VC dimension, to any class  $\mathscr{F}$  of functions  $f: \mathbb{Z} \to \{0, 1\}$ :

**Definition 3.** Let  $\mathscr{F}$  be a class of functions  $f: \mathbb{Z} \to \{0,1\}$ . We say that a finite set  $S = \{z_1, ..., z_n\} \subset \mathbb{Z}$  is shattered by  $\mathscr{F}$  if it is shattered by the class

$$\mathscr{C}_{\mathscr{F}} \triangleq \left\{ \mathbf{1}_{\{f=1\}} : f \in \mathscr{F} \right\},\,$$

where  $\mathbf{1}_{\{f=1\}}$  is the indicator function of the set  $C_f \triangleq \{z \in \mathbb{Z} : f(z) = 1\}$ . The nth shatter coefficient of  $\mathscr{F}$  is  $\mathbb{S}_n(\mathscr{F}) = \mathbb{S}_n(\mathscr{C}_{\mathscr{F}})$ , and the VC dimension of  $\mathscr{F}$  is defined as  $V(\mathscr{F}) = V(\mathscr{C}_{\mathscr{F}})$ .

In light of these definitions, we can equivalently speak of the VC dimension of a class of sets or a class of binary-valued functions.

## 2 Examples of Vapnik–Chervonenkis classes

#### 2.1 Semi-infinite intervals

Let  $Z = \mathbb{R}$  and take  $\mathscr{C}$  to be the class of all intervals of the form  $(-\infty, t]$  as t varies over  $\mathbb{R}$ . We will prove that  $V(\mathscr{C}) = 1$ . In view of Lemma 1, it suffices to show that (1) any one-point set  $S = \{a\}$  is shattered by  $\mathscr{C}$ , and (2) no two-point set  $S = \{a, b\}$  is shattered by  $\mathscr{C}$ .

Given  $S = \{a\}$ , choose any  $t_1 < a$  and  $t_2 > a$ . Then  $(-\infty, t_1] \cap S = \emptyset$  and  $(-\infty, t_2] \cap S = S$ . Thus, S is shattered by  $\mathscr{C}$ . This holds for every one-point set S, and therefore we have proved (1). To prove (2), let  $S = \{a, b\}$  and suppose, without loss of generality, that a < b. Then there exists no  $t \in \mathbb{R}$  such that  $(-\infty, t] \cap S = \{b\}$ . This follows from the fact that if  $b \in (-\infty, t] \cap S$ , then  $t \ge b$ . Since b > a, we must have t > a, so that  $a \in (-\infty, t] \cap S$  as well. Since a and b are arbitrary, we see that no two-point subset of  $\mathbb{R}$  can be shattered by  $\mathscr{C}$ .

#### 2.2 Closed intervals

Again, let  $Z = \mathbb{R}$  and take  $\mathscr{C}$  to be the class of all intervals of the form [s, t] for all  $s, t \in \mathbb{R}$ . Then  $V(\mathscr{C}) = 2$ . To see this, we will show that (1) any two point set  $S = \{a, b\}$  can be shattered by  $\mathscr{C}$  and that (2) no three-point set  $S = \{a, b, c\}$  can be shattered by  $\mathscr{C}$ .

For (1), let  $S = \{a, b\}$  and suppose, without loss of generality, that a < b. Choose four points  $t_1, t_2, t_3, t_4 \in \mathbb{R}$  such that  $t_1 < t_2 < a < t_3 < b < t_4$ . There are four subsets of  $S: \emptyset$ ,  $\{a\}$ ,  $\{b\}$ , and  $\{a, b\} = S$ . Then

$$[t_1, t_2] \cap S = \emptyset$$
,  $[t_2, t_3] \cap S = \{a\}$ ,  $[t_3, t_4] \cap S = \{b\}$ ,  $[t_1, t_4] \cap S = S$ .

Hence, S is shattered by  $\mathscr{C}$ . This holds for every two-point set in  $\mathbb{R}$ , which proves (1). To prove (2), let  $S = \{a, b, c\}$  be an arbitrary three-point set with a < b < c. Then the intersection of any  $[t_1, t_2] \in \mathscr{C}$  with S containing a and c must necessarily contain b as well. This shows that no three-point set can be shattered by  $\mathscr{C}$ , so by Lemma 1 we conclude that  $V(\mathscr{C}) = 2$ .

#### 2.3 Closed halfspaces

Let  $Z = \mathbb{R}^2$ , and let  $\mathscr{C}$  consist of all closed halfspaces, i.e., sets of the form

$$\{z = (z_1, z_2) \in \mathbb{R}^2 : w_1 z_1 + w_2 z_2 \ge b\}$$

for all choices of  $w_1, w_2, b \in \mathbb{R}$  such that  $(w_1, w_2) \neq (0,0)$ . Then  $V(\mathscr{C}) = 3$ .



Figure 1: Impossibility of shattering an affinely independent four-point set in  $\mathbb{R}^2$  by closed halfspaces.

To see that  $S_3(\mathscr{C}) = 2^3 = 8$ , it suffices to consider any set  $S = \{z_1, z_2, z_3\}$  of three *non-collinear* points. Then it is not hard to see that for any  $S' \subseteq S$  it is possible to choose a closed halfspace  $C \in \mathscr{C}$  that would contain S', but not S. To see that  $S_4(\mathscr{C}) < 2^4$ , we must look at all four-point sets  $S = \{z_1, z_2, z_3, z_4\}$ . There are two cases to consider:

- 1. One point in S lies in the convex hull of the other three. Without loss of generality, let's suppose that  $z_1 \in \text{conv}(S')$  with  $S' = \{z_2, z_3, z_4\}$ . Then there is no  $C \in \mathscr{C}$  such that  $C \cap S = S'$ . The reason for this is that every  $C \in \mathscr{C}$  is a convex set. Hence, if  $S' \subset C$ , then any point in conv(S') is contained in C as well.
- 2. No point in S is in the convex hull of the remaining points. This case, when S is an *affinely independent set*, is shown in Figure 1. Let us partition S into two disjoint subsets,  $S_1$  and  $S_2$ , each consisting of "opposite" points. In the figure,  $S_1 = \{z_1, z_3\}$  and  $S_2 = \{z_2, z_4\}$ . Then it is easy to see that there is no halfspace  $\mathscr C$  whose boundary could separate  $S_1$  from its complement  $S_2$ . This is, in fact, the (in)famous "XOR counterexample" of Minsky and Papert [MP69], which has demonstrated the impossibility of universal concept learning by one-layer perceptrons.

Since any four-point set in  $\mathbb{R}^2$  falls under one of these two cases, we have shown that no such set can be shattered by  $\mathscr{C}$ . Hence,  $V(\mathscr{C}) = 3$ .

More generally, if  $Z = \mathbb{R}^d$  and  $\mathscr{C}$  is the class of all closed halfspaces

$$\left\{ z \in \mathbb{R}^d : \sum_{j=1}^d w_j z_j \ge b \right\}$$

for all  $w = (w_1, ..., w_d) \in \mathbb{R}^d$  such that at least one of the  $w_j$ 's is nonzero and all  $b \in \mathbb{R}$ , then  $V(\mathscr{C}) = d + 1$  [WD81]; we will see a proof of this fact shortly.

#### 2.4 Axis-parallel rectangles

Let  $Z = \mathbb{R}^2$ , and let  $\mathscr{C}$  consist of all "axis-parallel" rectangles, i.e., sets of the form  $C = [a_1, b_1] \times [a_2, b_2]$  for all  $a_1, b_1, a_2, b_2 \in \mathbb{R}$ . Then  $V(\mathscr{C}) = 4$ .



Figure 2: Impossibility of shattering a five-point set by axis-parallel rectangles.

First we exhibit a four-point set  $S = \{z_1, z_2, z_3, z_4\}$  that is shattered by  $\mathscr{C}$ . It suffices to take  $z_1 = (-2, -1)$ ,  $z_2 = (1, -2)$ ,  $z_3 = (2, 1)$ ,  $z_4 = (-1, 2)$ . To show that no five-point set is shattered by  $\mathscr{C}$ , consider an arbitrary  $S = \{z_1, z_2, z_3, z_4, z_5\}$ . Of these, pick any one point with the smallest first coordinate and any one point with the largest first coordinate, and likewise for the second coordinate (refer to Figure 2), for a total of at most four. Let S' denote the set consisting of these points; in Figure 2,  $S' = \{z_1, z_2, z_3, z_4\}$ . Then it is easy to see that any  $C \in \mathscr{C}$  that contains the points in S' must contain all the points in  $S \setminus S'$  as well. Hence, no five-point set in  $\mathbb{R}^2$  can be shattered by  $\mathscr{C}$ , so  $V(\mathscr{C}) = 5$ .

The same argument also works for axis-parallel rectangles in  $\mathbb{R}^d$ , i.e., all sets of the form  $C = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_d, b_d]$ , leading to the conclusion that the VC dimension of the set of all axis-parallel rectangles in  $\mathbb{R}^d$  is equal to 2d.

#### 2.5 Sets determined by finite-dimensional function spaces

The following result is due to Dudley [Dud78]. Let Z be arbitrary, and let  $\mathcal{G}$  be an m-dimensional linear space of functions  $g: Z \to \mathbb{R}$ , which means that each  $g \in \mathcal{G}$  has a unique representation of the form

$$g = \sum_{j=1}^{m} c_j \psi_j,$$

where  $\psi_1, ..., \psi_m : \mathsf{Z} \to \mathbb{R}$  form a fixed linearly independent set and  $c_1, ..., c_m$  are real coefficients. Consider the class

$$\mathcal{C} = \Big\{ \{z \in \mathsf{Z} : g(z) \ge 0\} : g \in \mathcal{G} \Big\}.$$

Then  $V(\mathscr{C}) \leq m$ .

To prove this, we need to show that no set of m+1 points in Z can be shattered by  $\mathscr{C}$ . To that end, let us fix m+1 arbitrary points  $z_1, \ldots, z_{m+1} \in \mathsf{Z}$  and consider the mapping  $L : \mathscr{G} \to \mathbb{R}^{m+1}$  defined by

$$L(g) \triangleq (g(z_1), \dots, g(z_{m+1})).$$

It is easy to see that because  $\mathscr{G}$  is a linear space, L is a linear mapping, i.e., for any  $g_1, g_2 \in \mathscr{G}$  and any  $c_1, c_2 \in \mathbb{R}$  we have  $L(c_1g_1 + c_2g_2) = c_1L(g_1) + c_2L(g_2)$ . Since  $\dim \mathscr{G} = m$ , the image of  $\mathscr{G}$  under L, i.e., the set

$$L(\mathcal{G}) = \left\{ (g(z_1), \dots, g(z_{m+1})) \in \mathbb{R}^{m+1} : g \in \mathcal{G} \right\},\,$$

is a linear subspace of  $\mathbb{R}^{m+1}$  of dimension at most m. This means that there exists some nonzero vector  $v = (v_1, ..., v_{m+1}) \in \mathbb{R}^{m+1}$  orthogonal to  $L(\mathcal{G})$ , i.e., for every  $g \in \mathcal{G}$ 

$$v_1 g(z_1) + \ldots + v_{m+1} g(z_{m+1}) = 0.$$
 (3)

Without loss of generality, we may assume that at least one component of v is strictly negative (otherwise we can take -v instead of v and still get (3)). Hence, we can rearrange the equality in (3) as

$$\sum_{i:v_i \ge 0} v_i g(z_i) = -\sum_{i:v_i < 0} v_i g(z_i), \qquad \forall g \in \mathcal{G}. \tag{4}$$

Now let us suppose that  $\mathbb{S}_{m+1}(\mathscr{C}) = 2^{m+1}$  and derive a contradiction. Consider a binary (m+1)-tuple  $b = (b_1, \dots, b_{m+1}) \in \{0,1\}^{m+1}$ , where  $b_j = 1$  if and only if  $v_j \ge 0$ , and 0 otherwise. Since we assumed that  $\mathbb{S}_{m+1}(\mathscr{C}) = 2^{m+1}$ , there exists some  $g \in \mathscr{G}$  such that

$$(\mathbf{1}_{\{g(z_1)\geq 0\}},\ldots,\mathbf{1}_{\{g(z_{m+1})\geq 0\}})=b.$$

By our definition of b, this means that the left-hand side of (4) is nonnegative, while the right-hand side is negative, which is a contradiction. Hence,  $\mathbb{S}_{m+1}(\mathscr{C}) < 2^{m+1}$ , so  $V(\mathscr{C}) \leq m$ .

This result can be used to bound the VC dimension of many classes of sets:

• Let  $\mathscr C$  be the class of all closed halfspaces in  $\mathbb R^d$ . Then any  $C \in \mathscr C$  can be represented in the form  $C = \{z: g(z) \geq 0\}$  for  $g(z) = \langle w, z \rangle - b$  with some nonzero  $w \in \mathbb R^d$  and  $b \in \mathbb R$ . The set  $\mathscr C$  of all such affine functions on  $\mathbb R^d$  is a linear space of dimension d+1, so by the above result we have  $V(\mathscr C) \leq d+1$ . In fact, we know that this holds with equality [WD81]. This can also be seen from the following result, due to Cover [Cov65]: Let  $\mathscr C$  be the linear space of functions spanned by functions  $\psi_1, \ldots, \psi_m$ , and let  $\{z_1, \ldots, z_n\} \subset \mathbb Z$  be such that the vectors  $\Psi(z_i) = (\psi_1(z_i), \ldots, \psi_m(z_i)), 1 \leq i \leq n$ , form a linearly independent set. Then for the class of sets  $\mathscr C = \{\{z: g(z) \geq 0\}: z \in \mathbb Z\}$  we have

$$|C \cap \{z_1,\ldots,z_n\}: C \in \mathscr{C}| = \sum_{i=0}^{m-1} {n-1 \choose i}.$$

The conditions needed for Cover's result are seen to hold for indicators of halfspaces, so letting n = m = d + 1 we see that  $\mathbb{S}_d(\mathscr{C}) = \sum_{i=0}^d \binom{d}{i} = 2^d$ . Hence,  $V(\mathscr{C}) = d + 1$ .

• Let  $\mathscr C$  be the class of all closed balls in  $\mathbb R^d$ , i.e., sets of the form

$$C = \left\{ z \in \mathbb{R}^d : \|z - x\|^2 \le r^2 \right\}$$

where  $x \in \mathbb{R}^d$  is the *center* of C and  $r \in \mathbb{R}^+$  is its *radius*. Then we can write  $C = \{z : g(z) \ge 0\}$ , where

$$g(z) = r^2 - \|z - x\|^2 = r^2 - \sum_{j=1}^{d} |z_j - x_j|^2.$$
 (5)

Expanding the second expression for g in (5), we get

$$g(z) = r^2 - \sum_{j=1}^d x_j^2 + 2\sum_{j=1}^d x_j z_j - \sum_{j=1}^d z_j^2,$$

which can be written in the form  $g(z) = \sum_{k=1}^{d+2} c_k \psi_k(z)$ , where  $\psi_1(z) = 1$ ,  $\psi_k(z) = z_k$  for  $k = 2, \ldots, d+1$ , and  $\psi_{d+2} = \sum_{j=1}^d z_j^2$ . It can be shown that the functions  $\{\psi_k\}_{k=1}^{d+2}$  are linearly independent. Hence,  $V(\mathscr{C}) \leq d+2$ . This bound, however, is not tight; as shown by Dudley [Dud79], the class of closed balls in  $\mathbb{R}^d$  has VC dimension d+1.

### 2.6 VC dimension vs. number of parameters

Looking back at all these examples, one may get the impression that the VC dimension of a set of binary-valued functions is just the number of parameters. This is not the case. Consider the following one-parameter family of functions:

$$g_{\theta}(z) \triangleq \sin(\theta z), \quad \theta \in \mathbb{R}.$$

However, the class of sets

$$\mathcal{C} = \left\{ \{ z \in \mathbb{R} : g_{\theta}(z) \ge 0 \} : \theta \in \mathbb{R} \right\}$$

has infinite VC dimension. Indeed, for any n, any collection of numbers  $z_1, ..., z_n \in \mathbb{R}$ , and any binary string  $b \in \{0,1\}^n$ , one can always find some  $\theta \in \mathbb{R}$  such that

$$\operatorname{sgn}(\sin(\theta z_i)) = \begin{cases} +1, & \text{if } b_i = 1\\ -1, & \text{if } b_i = 0 \end{cases}.$$

### 3 Growth of shatter coefficients: the Sauer-Shelah lemma

The importance of VC classes in learning theory arises from the fact that, as n tends to infinity, the fraction of subsets of any  $\{z_1, \ldots, z_n\} \subset Z$  that are shattered by a given VC class  $\mathscr C$  tends to zero. We will prove this fact in this section by deriving a sharp bound on the shatter coefficients  $S_n(\mathscr C)$  of a VC class  $\mathscr C$ . This bound have been (re)discovered at least three times, first in a weak form by Vapnik and Chervonenkis [VC71] in 1971, then independently and in different contexts by Sauer [Sau72] and Shelah [She72] in 1972. In strict accordance with Stigler's law of eponymy<sup>1</sup>, it is known in the statistical learning literature as the *Sauer–Shelah lemma*.

Before we state and prove this result, we will collect some preliminaries and set up some notation. Given integers  $n, d \ge 1$ , let

$$\phi(n,d) \triangleq \begin{cases} \sum_{i=0}^{d} \binom{n}{i}, & \text{if } n > d \\ 2^{n}, & \text{if } n \leq d \end{cases}$$

If we adopt the convention that  $\binom{n}{i} = 0$  for i > n, we can write

$$\phi(n,d) = \sum_{i=0}^{d} \binom{n}{i}$$

for all  $n, d \ge 1$ . We will find the following recursive relation useful:

#### Lemma 2.

$$\phi(n,d) = \phi(n-1,d) + \phi(n-1,d-1).$$

Proof. We have

$$\binom{n-1}{i-1} + \binom{n-1}{i} = \frac{(n-1)!}{(i-1)!(n-i)!} + \frac{(n-1)!}{i!(n-i-1)!}.$$

<sup>&</sup>lt;sup>1</sup> "No scientific discovery is named after its original discoverer" (http://en.wikipedia.org/wiki/Stigler's\_law\_of\_eponymy)

Multiplying both sides by i!(n-i)!, we obtain

$$i!(n-i)!\left[\binom{n-1}{i-1}+\binom{n-1}{i}\right]=i(n-1)!+(n-i)(n-1)!=n!$$

Hence,

$$\binom{n-1}{i-1} + \binom{n-1}{i} = \frac{n!}{i!(n-i)!} = \binom{n}{i}.$$
 (6)

Using the definition of  $\phi(n, d)$ , as well as (6), we get

$$\phi(n,d) = \sum_{i=0}^{d} \binom{n}{i} = 1 + \sum_{i=1}^{d} \binom{n}{i} = \underbrace{1 + \sum_{i=1}^{d} \binom{n-1}{i}}_{=\phi(n-1,d)} + \underbrace{\sum_{i=1}^{d} \binom{n-1}{i-1}}_{=\phi(n-1,d-1)}$$

and the lemma is proved.

Now for the actual result:

**Theorem 1** (Sauer–Shelah lemma). Let  $\mathscr C$  be a class of subsets of some space  $\mathsf Z$  with  $V(\mathscr C) = d < \infty$ . Then for all n,

$$\mathbb{S}_n(\mathscr{C}) \le \phi(n, d). \tag{7}$$

*Proof.* There are several different proofs in the literature; we will use an inductive argument following Blumer et al. [BEHW89].

We can assume, without loss of generality, that n > d, for otherwise  $\mathbb{S}_n(\mathscr{C}) = 2^n = \phi(n, d)$ . For an arbitrary finite set  $S \subset \mathbb{Z}$ , let

$$\mathbb{S}(S,\mathscr{C}) \triangleq |\{S \cap C : C \in \mathscr{C}\}|,$$

where, as before, we count only the distinct sets of the form  $S \cap C$ . By definition,  $S_n(\mathscr{C}) = \sup_{S:|S|=n} S(S,\mathscr{C})$ . Thus, it suffices the prove the following: For any  $S \subset Z$  with |S| = n > d,  $S(S,\mathscr{C}) \leq \phi(n,d)$ .

For the purpose of computing  $S(S, \mathcal{C})$ , any two  $C_1, C_2 \in \mathcal{C}$  such that  $S \cap C_1 = S \cap C_2$  are deemed equivalent. Hence, let

$$\mathcal{A} \triangleq \{A \subseteq S : A = S \cap C \text{ for some } C \in \mathscr{C}\}.$$

Then we may write

$$S(S, \mathcal{C}) = |\{S \cap C : C \in \mathcal{C}\}| = |\{A \subseteq S : A = S \cap C \text{ for some } C \in \mathcal{C}\}| = |\mathcal{A}|.$$

Moreover, it is easy to see that  $V(\mathcal{A}) \leq V(\mathcal{C}) = d$ .

Thus, the desired result is equivalent to saying that if  $\mathscr{A}$  is a collection of subsets of an n-element set S (which we may, without loss of generality, take to be  $[n] \triangleq \{1, ..., n\}$ ) with  $V(\mathscr{A}) \leq d < n$ , then  $|\mathscr{A}| \leq \phi(n, d)$ . We will prove this statement by "double induction" on n and d. First of all, the statement (7) holds for all  $n \geq 1$  and d = 0. Indeed, if  $V(\mathscr{A}) = 0$ , then  $|\mathscr{A}| = 1 \leq 2^n$ . Now assume that (7) holds for all  $n \geq 1$  and all  $n \geq 1$  and for all integers up to  $n \geq 1$  and all  $n \geq 1$  and with  $n \geq 1$  and for all integers up to  $n \geq 1$  and all  $n \geq 1$  and  $n \geq 1$  and let  $n \geq 1$  and so collection of subsets of  $n \geq 1$  with  $n \geq 1$  and let  $n \geq 1$  a

To prove this claim, let us choose an arbitrary  $i \in S$  and define

$$\mathcal{A} \setminus i \triangleq \{A \setminus \{i\} : A \in \mathcal{A}\}$$
$$\mathcal{A}_i \triangleq \{A \in \mathcal{A} : i \not\in A, A \cup \{i\} \in \mathcal{A}\}$$

Observe that both  $\mathcal{A}\setminus i$  and  $\mathcal{A}_i$  are classes of subsets of  $S\setminus \{i\}$ . Moreover, since A and  $A\cup \{i\}$  map to the same element of  $\mathcal{A}\setminus i$ , while  $|\mathcal{A}_i|$  is the number of pairs of sets in  $\mathcal{A}$  that map into the same set in  $\mathcal{A}\setminus i$ , we have

$$|\mathcal{A}| = |\mathcal{A} \setminus i| + |\mathcal{A}_i|. \tag{8}$$

Since  $\mathscr{A}\setminus i\subseteq\mathscr{A}$ , we have  $V(\mathscr{A}\setminus i)\leq V(\mathscr{A})\leq d$ . Also, every set in  $\mathscr{A}\setminus i$  is a subset of  $S\setminus\{i\}$ , which has cardinality n-1. Therefore, by the inductive hypothesis  $|\mathscr{A}\setminus i|\leq \phi(n-1,d)$ . Next, we show that  $V(\mathscr{A}_i)\leq d-1$ . Suppose, to the contrary, that  $V(\mathscr{A}_i)=d$ . Then there must exist some  $T\subseteq S\setminus\{i\}$  with |T|=d that is shattered by  $\mathscr{A}_i$ . But then  $T\cup\{i\}$  is shattered by  $\mathscr{A}$ . To see this, given any  $T'\subseteq T$  choose some  $A\in\mathscr{A}_i$  such that  $T\cap A=T'$  (this is possible since T is shattered by  $\mathscr{A}_i$ ). But then  $A\cup\{i\}\in\mathscr{A}$  (by definition of  $\mathscr{A}_i$ ), and

$$(T \cup \{i\}) \cap (A \cup \{i\}) = (T \cap A) \cup \{i\} = T' \cup \{i\}.$$

Since this is possible for an arbitrary  $T' \subseteq T$ , we conclude that  $T \cup \{i\}$  is shattered by  $\mathscr{A}$ . Now, since  $T \subseteq S \setminus \{i\}$ , we must have  $i \neq T$ , so  $|T \cup \{i\}| = |T| + 1 = d + 1$ , which means that there exists a (d+1)-element subset of S = [n] that is shattered by  $\mathscr{A}$ . But this contradicts our assumption that  $V(\mathscr{A}) \leq d$ . Hence,  $V(\mathscr{A}_i) \leq d - 1$ . Since  $\mathscr{A}_i$  is a collection of subsets of  $S \setminus \{i\}$ , we must have  $|\mathscr{A}_i| \leq \phi(n-1,d-1)$  by the inductive hypothesis. Hence, from (8) and from Lemma 2 we have

$$|\mathcal{A}| = |\mathcal{A} \setminus i| + |\mathcal{A}_i| \le \phi(n-1,d) + \phi(n-1,d-1) = \phi(n,d).$$

This completes the induction argument and proves (7).

**Corollary 1.** *If*  $\mathscr{C}$  *is a collection of sets with*  $V(\mathscr{C}) \leq d < \infty$ *, then* 

$$\mathbb{S}_n(\mathscr{C}) \leq (n+1)^d$$
.

*Moreover, if*  $n \ge d$ *, then* 

$$\mathbb{S}_n(\mathscr{C}) \leq \left(\frac{en}{d}\right)^d$$
,

where e is the base of the natural logarithm.

*Proof.* For the first bound, write

$$\phi(n,d) = \sum_{i=0}^{d} \binom{n}{i} = \sum_{i=1}^{d} \frac{n!}{i!(n-i)!} \le \sum_{i=1}^{d} \frac{n^i}{i!} \le \sum_{i=0}^{d} \frac{n^i d!}{i!(d-i)!} = \sum_{i=0}^{d} n^i \binom{d}{i} = (n+1)^d,$$

where the last step uses the binomial theorem. On the other hand, if  $d/n \le 1$ , then

$$\left(\frac{d}{n}\right)^{d}\phi(n,d) = \left(\frac{d}{n}\right)^{d}\sum_{i=0}^{d}\binom{n}{i} \le \sum_{i=1}^{d}\left(\frac{d}{n}\right)^{i}\binom{n}{i} \le \sum_{i=1}^{n}\left(\frac{d}{n}\right)^{i}\binom{n}{i} = \left(1 + \frac{d}{n}\right)^{n} \le e^{d},$$

where we again used the binomial theorem. Dividing both sides by  $(d/n)^d$ , we get the second bound.  $\Box$ 

Let  $\mathscr{C}$  be a VC class of subsets of some space Z. From the above corollary we see that

$$\limsup_{n \to \infty} \frac{\mathbb{S}_n(\mathscr{C})}{2^n} \le \lim_{n \to \infty} \frac{(n+1)^{V(\mathscr{C})}}{2^n} = 0.$$

In other words, as n becomes large, the fraction of subsets of an arbitrary n-element set  $\{z_1, ..., z_n\} \subset \mathbb{Z}$  that are shattered by  $\mathscr{C}$  becomes negligible. Moreover, combining the bounds of the corollary with the Finite Class Lemma for Rademacher averages, we get the following:

**Theorem 2.** Let  $\mathscr{F}$  be a VC class of binary-valued functions  $f: \mathbb{Z} \to \{0,1\}$  on some space  $\mathbb{Z}$ . Let  $\mathbb{Z}^n$  be an i.i.d. sample of size n drawn according to an arbitrary probability distribution  $P \in \mathscr{P}(\mathbb{Z})$ . Then

$$\mathbb{E}R_n(\mathscr{F}(Z^n)) \le 2\sqrt{\frac{V(\mathscr{F})\log(n+1)}{n}}.$$

A more refined *chaining technique* [Dud78] can be used to remove the logarithm in the above bound:

**Theorem 3.** There exists an absolute constant C > 0, such that under the conditions of the preceding theorem

$$\mathbb{E} R_n(\mathcal{F}(Z^n)) \leq C \sqrt{\frac{V(\mathcal{F})}{n}}.$$

### References

- [BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik–Chervonenkis dimension. *Journal of the ACM*, 36(4):929–965, 1989.
- [Cov65] T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. *IEEE Transactions on Electronic Computers*, 14:326–334, 1965.
- [Dud78] R. M. Dudley. Central limit theorems for empirical measures. *Annals of Probability*, 6:899–929, 1978.
- [Dud79] R. M. Dudley. Balls in  $\mathbb{R}^k$  do not cut all subsets of k+2 points. *Advances in Mathematics*, 31(3):306–308, 1979.
- [Men03] S. Mendelson. A few notes on statistical learning theory. In S. Mendelson and A. J. Smola, editors, *Advanced Lectures in Machine Learning*, volume 2600 of *Lecture Notes in Computer Science*, pages 1–40. 2003.
- [MP69] M. Minsky and S. Papert. *Perceptrons: An Introduction to Computational Geometry*. MIT Press, 1969.
- [Sau72] N. Sauer. On the density of families of sets. *Journal of Combinatorial Theory, Series A*, 13:145–147, 1972.
- [She72] S. Shelah. A combinatorial problem: stability and order for models and theories in infinity languages. *Pacific Journal of Mathematics*, 41:247–261, 1972.

- [Tal05] M. Talagrand. *Generic Chaining: Upper and Lower Bounds of Stochastic Processes.* Springer, 2005.
- [VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. *Theory of Probability and Its Applications*, 16:264–280, 1971.
- [WD81] R. S. Wencour and R. M. Dudley. Some special Vapnik–Chervonenkis classes. *Discrete Mathematics*, 33:313–318, 1981.