

Интерференция в монохроматическом свете

ЛЕКЦИЯ 3

Плоская монохроматическая электромагнитная волна в вакууме

электромагнитной волне:

Электрическое поле в плоской
$$\vec{E}=\vec{E}_0e^{ikz-i\omega t+i\varphi_0}$$
, \vec{k} направлен по оси z электромагнитной волне: $\vec{E}=\vec{E}_0e^{i\vec{k}\vec{r}-i\omega t+i\varphi_0}$, в общем случае

Плоская электромагнитная волна в среде. Оптическая длина

Электрическое поле в электромагнитной волне

в среде:
$$\vec{E} = \vec{E}_0 e^{iknz - i\omega t + i\varphi_0}$$
 \Rightarrow

Длина волны в среде:

$$\lambda_{\rm cp} = \frac{v}{v} = \frac{c}{nv} = \frac{\lambda}{n}$$

 λ – длина волны в вакууме,

n – показатель преломления среды

Волновое число в среде:

$$k_{\rm cp} = \frac{2\pi}{\lambda_{\rm cp}} = \frac{2\pi n}{\lambda} = kn$$

Оптическая длина:

$$l = nz$$

Интенсивность света

Вектор Пойнтинга:

$$ec{S}=rac{c}{4\pi}igl[ec{E},ec{H}igr]$$
 $|ec{S}|=rac{c}{4\pi}EH=rac{c}{4\pi}nE^2,$ где $H=nE$

Интенсивность:
$$I = |\vec{S}| \implies$$

(черта – усреднение по времени)

$$I = \frac{c}{4\pi} n \overline{E^2} = \frac{cn}{8\pi} E_0^2$$

Для поля, заданного в комплексном виде:

$$I = \frac{cn}{8\pi} \vec{E} \vec{E}^*$$

Постоянный множитель часто отбрасывают:

$$I = \vec{E}\vec{E}^*$$

Двулучевая интерференция в монохроматическом свете

Световое поле: $\vec{E} = \vec{E}_1 + \vec{E}_2$

$$\vec{E}_1 = \vec{A}_1 e^{i\varphi_1}, \ \vec{E}_2 = \vec{A}_2 e^{i\varphi_2}$$

$$\varphi_1 = -\omega t + k z_1 + \varphi_{01}$$

$$\varphi_2 = -\omega t + k z_2 + \varphi_{02}$$

Два источника излучают на одной и той же частоте $\omega!$

Интенсивность $I = \vec{E}\vec{E}^*$:

$$I = I_1 + I_2 + 2\vec{A}_1\vec{A}_2\cos(\Delta\varphi)$$

где
$$I_1=\left|\vec{A}_1\right|^2$$
, $I_2=\left|\vec{A}_2\right|^2$, $\Delta \varphi=\varphi_2-\varphi_1=k(z_2-z_1)+\varphi_{02}-\varphi_{01}$

Условия возникновения интерференции

- 1) Источники излучают на одной и той же частоте.
- 2) Разность начальных фаз $\, \varphi_{02} \varphi_{01} \,$ не меняется во времени.
- 3) Вектора \vec{E}_1 и \vec{E}_2 не перпендикулярны.

Если условия 1) и 2) выполнены, такие источники называются когерентными.

Вид интерференционной картины

При условии $\vec{E}_1 \uparrow \uparrow \vec{E}_2$ и $\, \varphi_{02} = \varphi_{01} \,$

Интенсивность света в интерференционной картине:

$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(k\Delta L)$$

Разность хода: $\Delta L=z_2-z_1$, $k=2\pi/\lambda$

Если
$$I_1 = I_2 = I_0$$

$$I = 2I_0[1 + \cos(k\Delta L)]$$

Интерференционная схема Юнга

Разность хода:
$$\Delta L = z_2 - z_1 = \frac{xd}{L}$$
 (см. следующий слайд)

Интенсивность света в интерференционной картине:

$$I(x) = 2I_0 \left[1 + \cos\left(\frac{2\pi xd}{\lambda L}\right) \right]$$

Период интерференционной картины (ширина полосы): $\Lambda = \lambda L/d$

Вывод разности хода в параксиальном приближении

$$r = \sqrt{L^2 + x^2}$$

При $x \ll L$: $r = L\sqrt{1 + rac{x^2}{L^2}} pprox L + rac{x^2}{2L}$

Разность хода: $\Delta L = z_2 - z_1$

$$\Delta L = \sqrt{L^2 + \left(x + \frac{d}{2}\right)^2} - \sqrt{L^2 + \left(x - \frac{d}{2}\right)^2}$$

$$\Delta L = \frac{1}{2L} \left[\left(x + \frac{d}{2} \right)^2 - \left(x - \frac{d}{2} \right)^2 \right] = \boxed{\frac{xd}{L}}$$

Ширина интерференционных полос

Световое поле:
$$\vec{E} = \vec{E}_1 + \vec{E}_2$$

$$\vec{E}_1 = \vec{E}_0 e^{i\vec{k}_1 \vec{r}}, \quad \vec{E}_2 = \vec{E}_0 e^{i\vec{k}_2 \vec{r}}$$

Интенсивность света: $I = 2I_0[1 + \cos(\Delta \varphi)]$

$$\Delta \varphi = (\vec{k}_2 - \vec{k}_1)\vec{r} = Kx, \quad \vec{K} = \vec{k}_2 - \vec{k}_1$$

$$K = 2k \sin(\alpha/2) \approx k\alpha = \frac{2\pi\alpha}{\lambda}$$

Разность фаз:
$$\Delta \varphi = Kx = \frac{2\pi\alpha}{\lambda}x$$

Ширина полосы:
$$\Lambda = \lambda/\alpha$$

Бипризма Френеля

Расстояние между мнимыми источниками:

$$d=2\gamma a=2\alpha(n-1)a$$
, где $\gamma=\alpha(n-1)$ (см следующий слайд).

Ширина полосы:

$$\Lambda = \frac{\lambda}{\beta} = \frac{\lambda(a+L)}{d} = \frac{\lambda(a+L)}{2\alpha(n-1)a}$$

Интенсивность света в

интерференционной картине:

$$I(x) = 2I_0 \left[1 + \cos\left(\frac{2\pi x}{\Lambda}\right) \right]$$

Поворот луча клином

$$\begin{cases} \varphi = \theta + \alpha, \\ \varphi = n\psi, \\ \delta = \psi - \alpha, \\ n\delta = \theta' \implies \\ \theta' = n\psi - n\alpha \end{cases}$$

$$\theta' = \theta - (n-1)\alpha$$

Все лучи поворачиваются на один и тот же угол γ (по часовой стрелке):

$$\gamma = -(n-1)\alpha$$

Многолучевая интерференция в пленках (полосы равного наклона)

Разность хода:

$$\Delta L = \frac{2nd}{\cos\psi} - 2d \, \mathrm{tg} \, \psi \sin\varphi$$

$$\Delta L = \frac{2nd(1-\sin^2\psi)}{\cos\psi}$$

$$\Delta L = 2nd \cos \psi \pm \frac{\lambda}{2}$$

Темная полоса:
$$\Delta L = m\lambda \pm \frac{\lambda}{2}$$

$$2nd \cos \psi = m\lambda$$

Интерференция в клине

(6)
$$\varphi = 2\alpha n$$
,

$$\Lambda = \frac{\lambda}{\varphi} = \frac{\lambda}{2n\alpha}$$

(a) Разность хода:
$$\Delta L = 2nd + \frac{\lambda}{2}$$
 $d = \alpha x$

Темная полоса:
$$\Delta L = m\lambda + \frac{\lambda}{2}$$
 $2n\alpha x_m = m\lambda$, $m = 0,1,2,...$

Ширина полосы:
$$\Lambda = x_{m+1} - x_m$$

$$\Lambda = \frac{\lambda}{2n\alpha}$$

Интерференционная картина в клине – полосы равной толщины

Кольца Ньютона

В центре – темное пятно в отраженном свете

Разность хода:
$$\Delta L = 2d + \frac{\lambda}{2}$$
 $d = R - \sqrt{R^2 - r^2} = \frac{r^2}{2R}$ Темные полосы: $\Delta L = m\lambda + \frac{\lambda}{2}$

$$r_m = \sqrt{m\lambda R}, \qquad m = 1,2,...$$

Ширина полосы: $\Lambda = r_{m+1} - r_m$

$$\Lambda = rac{\sqrt{\lambda R}}{\sqrt{m+1} + \sqrt{m}} pprox rac{\sqrt{\lambda R}}{2\sqrt{m}}$$
 при $m \gg 1$

Примеры многолучевой интерференции

Интерференционные полосы равной толщины на клине

Интерференционные кольца Ньютона

Просветление оптики

Отраженные волны будут

в противофазе, если:

$$2n_1d = \lambda/2$$

Оптическая толщина пленки:

$$n_1 d = \lambda/4$$

Если коэффициенты отражения взять одинаковые $r_1 = r$, то отраженные волны от поверхностей 1 и 2 погасят друг друга:

$$\frac{n_1 - 1}{n_1 + 1} = \frac{n/n_1 - 1}{n/n_1 + 1} \implies \frac{n}{n_1} = n_1$$

Показатель преломления просветляющей пленки:

$$n_1 = \sqrt{n}$$

Дополнение к лекции 2: Оптические инструменты. Бинокль. Призмы Порро

