ME4001 Engineering Management Jummer '08 Statistical Inventory Management MMRP In statistical inventory management, all of the parameters (d, Sd, LT, SLT, etc.) are found using statistical methods. P is found from machine capabilities/constraints and is generally regarded as a constant. All of these quantities must be found for all the items in the inventory and the corresponding EOQ calculated. This is acceptable for distribution type of inventory as the demand for each item is independent. · be manufacturing inventory, EDQ and other quantities need not be calculated for all items in the inventory. As the products are built from components, only the product (parent item) requirements are necessary. If the demand for the papent item is known, then the demand for the components can be worked out using a bill of materials. This system is known as "Materials Requirement Planning" (MRP). MRP is also used as a scheduling tool. If the date the papent item is required is known we can then work out the date the components are required.

ME4001 Engineering Management Summer '08
3. Mean Demand Duking LT = dexLT
= 4,000 items Std. Deviation of LT Demand = 0a JLT = 400 items
95% service level (from table) => 7 = 1.645
R.O.L. = dLT + 7 (5aLT) = 4,658 items
Safety Stock = 658 items
C) We know: C = Md + CHB+ (H(\(\frac{1}{2}[1-\frac{1}{2}]) + \frac{Csd}{Q}\) Fixed Variable
For min. Cvar, Q= Qecon Cvarmin = €547.72) For 10% Deviction:
$1.1 \times (varmin = £602.49)$ = 0.05Q + $\frac{1.5 \times 10^6}{9}$
⇒ Q ² - 12049.8Q.+(1=5×10€×20) Q = 8,534 or 3515

ME4001 Engineering Management Summer "07
d = 1.000 week
Manufacture:
Average Stock Level = $\frac{Q_{12} \times Tp}{Tc} = \frac{Q_{21} \times Q_{12}}{Q_{12}} = \frac{Q_{22}}{Q_{12}}$ $Q = p Tp = dTc$
$Q = \rho T \rho = dT c$
Ost p.u. time of holding stock = CH Qd
Setup cost p.u. time = $\frac{c_s}{r_c} = \frac{c_s d}{c_s}$
Assembly:
Average Stock Level = 3
Cost p. u. time of holding stock = CH &
Setup (Transport) east pu time = Grad
Total Cost:
$C = C_H \left[\frac{Qd}{2p} + \frac{Q}{2} \right] + \frac{d}{Q} \left(C_T + C_{SM} \right)$
$= \left(H^{\frac{\alpha}{2}}\left[1+\frac{\alpha}{p}\right] + \frac{\alpha}{\alpha}\left(C_{T}+C_{SM}\right)$
Optimum Batch Size:
$\frac{dC}{da} = 0$
$= \frac{d(Csn+Cr)}{Qa} = \frac{CH}{2} \left[1 + \frac{d}{p} \right]$
$Q = 2d(Csm+C_T)$
V (1+ d/p)
Qopt = 7,135 items

ME4001 Engineering Management Summer '07
JC CUAR = CH皇(1+4p)+ 를 罍(CSM+CT) de FOR min Cuar, Q = Qopt
(VARmin = €981.07
1.1 Cuarmin = E1.079.18 = 0.06875Q + & (3.5×106) Q = 11,118 or 4,579 items

ME4001 Engineering Management Summer '06
3. P=15,000 LT=4 weeks
$d = 1,000$ $\delta_{LT} = 1$ week
$M= \in 2$ $C_H = \in 0.01$ per week
Csn = € 500
Q = 3000x $Q = dTc = pTp$
i) R.O.L. = dLT + zdSLT = 6,328 items
Average Stock = $B + \frac{(P-d)T_P}{2} = B + \frac{Q}{2}(1-d/P)$
Holding Cost = CH [B+@(1-d/p)]
Setup Cost = CSM = CSMA
(= Md + G1 B+ 2 (1- d/p) + Cond
Optimum Quantity: de = 0
$\Rightarrow \frac{C_{\text{SM}}Q}{Q^2} = \frac{C_H}{2} \left(1 - \frac{d}{p} \right)$
$Q_{EOQ} = \frac{2C_{SM}d}{C_{H}(1-d/p)}$
= 10,351 items Must be a multiple of 3,000
$\Rightarrow Q = 9,000$ items
- CX 11000 cames
夏 C= Md + CH[B+皇(1-d/p)] + Csnd
$= 2.000 + 0.01[2.328 + 4500(14/5)] + \frac{500,000}{9000}$
C1 = €2,120.84
ii) $M_a = \epsilon 2.50$ $B = 2.328$
(GRO = €70) Qeoa = 2Grod = 3,347
LT = Juceks V(H)
(H = €0.0125/wk : Q = 5,000

ME 4001	Engineering Management	Dummer '06
5. Ca = Md +	CH Q + B + Cord d Q	0,000
	0 + 0.0125 [2,500+2,328] + 5	000
	a = €2,574·35	
oolt is	cheaper to manufacture	
78		
		5)
		-

ME4001 Engineering Management Summer '05
5. $p = 10.000$ Average Stock = $B + \frac{x}{a}$
d = 1.000 where $x = Tp(p-d)$
M=€30 But Q=pTp=dTc
(s = €1,000
GH = €0.15 lwk Average Stock = B+ \$\frac{1}{3}(1-d/p)\ Holding Cost of Aug. Stock = GH [B+\$\frac{1}{3}(1-d/p)]
Setup Cost pour time = Cs = Csd
Total (ost = Md + (+ B+ & (1-d/p)) + &a
Total (ost = Md + (+ B+ & (1-d/p)) + a For Optimum: da=0
$\frac{C_{sd}}{Q^2} = \frac{C_H}{a} \left(1 - \frac{d}{p} \right)$
$\frac{Q_{\text{exa}}}{\sqrt{\left(\frac{1-dp}{dp}\right)}}$
"V (1- d/p)
Qea = 3,849 items
Q = 10,000 items
,
Crin = Md + CH (B+ & [i-ap]) + Csd
= 30,000 + 259.81 + 259.81
=€30,520
Cualmin = CH = [1-d/p] + Csd
= € 519.62
1.1 Cvarmin = €571.58 = 0.0675Q+ = (1×106)
Q = 5,998 or 2470 items

For Q=10,000 AC = €(675+100)-€519.62 = €255.38/week

ME4001 Engineering Management Summer '04 2. P= 5,000 lueck Csm = 850 d = 1,000 / week CH = €0.05 M=€10 Q= PTp=dTc Aug. Stock = B+ x ROL = dLT + ZSa-JLT where x = Tp(p-d) = 3,000 + 7,100-13 $=\frac{Q}{P}(P-d)$ 7=1.382 = Q (1-d/p) = 3.326Cost of holding aug. stock = CH (B+ Q(1-4/P)) Setup Cost P.U. Time = CSM = CSM = CSM Q Total Cost C = Md + CH B+ & (1-0/p) + Csrd FOR Optimins: $\frac{dC}{dQ} = 0$ $= \sum \frac{C_{SM}d}{Q^2} = \frac{C_H}{2}(1-d/p)$ Q= 2Csnd = 6,519 VCH(1-d/p) €10,278 Q = 7,000 Minimum Safety Stock = 326 items