

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Schwartz, John J. et al.

Serial No.: 10/032,827

Filed: October 23, 2001

For: ENGINEERED STIMULUS-RESPONSIVE

SWITCHES

Attorney Docket No.: ENZ-004

Group Art Unit: 3736

Examiner:

Commissioner for Patents Washington, D.C. 20231

Certificate of First Class Mailing (37 CFR §1.8(a))

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, Washington,

D.C. 20231 on the date set forth below.

Date of Signature and of Mail Deposit

By:

Maria C. Laccotripe, Ph.D. Attorney for Applicants

Limited Recognition Under 37 CFR

§10.9(b)

INFORMATION DISCLOSURE STATEMENT

Dear Sir:

Applicants and their Attorney are aware of the following publications and information. listed on the attached PTO Form 1449, and in accordance with 37 CFR §1.97 hereby submit these publications for the Examiner's consideration. A copy of each cited publication is enclosed.

This statement is not to be interpreted as a representation that the cited publications are material, that an exhaustive search has been conducted, or that no other relevant information exists. Nor shall the citation of any publication herein be construed *per se* as a representation that such publication is prior art. Moreover, the Applicants understand that the Examiner will make an independent evaluation of the cited publications.

Under 37 CFR § 1.97(b)(3), no additional costs are believed to be due in connection with the filing of this disclosure. If, however, a first Office Action on the merits issues in this application bearing a mailing date prior to the date of this Information Disclosure Statement, please charge the appropriate fee as required under 37 CFR §1.17(p) to our Deposit Order Account No. 12-0080.

Respectfully submitted,

LAHIVE & COCKFIELD, LLP

Maria C. Laccotripe, Ph.D.

Attorney for Applicants

Limited Recognition Under 37 CFR §10.9(b)

28 State Street Boston, MA 02109 (617) 227-7400

Date:May 15, 2002

EAH/MCL/JMS/alf Enclosures

APPLICANT FACSIMILE OF FORM PTO-1449
REV 7-80

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ENZ-004
APPLICANT

10/032,827

ST OF PUBLICATIONS CITED BY APPLICANT (Use several sheets if necessary)

Schwartz, John J. et al.

October 23, 2001

3736

U.S. PATENT DOCUMENTS

EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE IF APPROPRIATE
	A1	4,783,605	11/88	Tomisawa et al.	307	450	
	A2	5,190,873	03/93	Lernhardt et al.	435	177	
	А3	5,364,791	11/94	Vegeto et al.	435	320.1	
	A4	5,464,758	11/95	Gossen et al.	435	69.1	
	A 5	5,834,266	11/98	Crabtree et al.	435	172.3	
	A6	5,874,534	02/99	Vegeto et al.	530	350	
	A 7	5,882,924	03/99	Fritz et al.	435	320.1	
	A8	5,935,934	08/99	Vegeto et al.	514	44	
	A9	5,989,910	11/99	Mermod et al.	435	325	<u>, 70</u>
	A10	6,069,239	05/00	Mathias	536	23.17	
	A11	6,153,383	11/00	Verdine et al.	435	6	(S)
	A12	6,157,872	12/00	Michael	700	247	13
							J

FOREIGN PATENT DOCUMENTS

	DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	TRANSL	ATION
						YES	NO
A13	WO 93/23431 A1	11/93	PCT				
A14	WO 98/18925 A2,A3	05/98	PCT				
A15	WO 99/42929 A1	08/99	PCT				

A16	Abouhamad et al. Computer-aided resolution of an experimental paradox in bacterial chemotal <i>J. Bacteriol.</i> 1998 Aug;180(15):3757-64		
A17	Amara et al. A versatile synthetic dimerizer for the regulation of protein-protein interactions. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1997 Sep 30;94(20):10618-23		
A18	Appleby et al. Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet. <i>J. Bacteriol.</i> 1998 Jul;180(14):3563-9		
A19	Astromoff et al. A variant of λ repressor with an altered pattern of cooperative binding to DNA sites. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1995 Aug 29;92(18):8110-4		
A20	Baca et al. Phage display of a catalytic antibody to optimize affinity for transition-state analog binding. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1997 Sep 16;94(19):10063-8		
Examiner	Date Considered		
*EXAMINER:	Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.		

MAY 20 200 B

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ENZ-004

10/032,827

STOF PUBLICATIONS CITED BY APPLICANT (Use several sheets if necessary)

Schwartz, John J. et al.

GROUP

October 23, 2001

3736

	OTTIENS (including Author, Title, Date, Fertilient Lages, Etc.)		
B1	Becskei et al. Engineering stability in gene networks by autoregulation. <i>Nature</i> 2000 Jun 1;405(6786):590-3		
B2	Belshaw et al. Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1996 May 14;93(10):4604-7		
В3	Bennett et al. Role of irreversibility in stabilizing complex and nonergodic behavior in locally interacting discrete systems. <i>Phys. Rev. Lett.</i> 1985 Aug 12;55(7):657-660		
B4	Bromberg et al. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000 May 15;19(21):2468-73		
B5	Bass et al. Detection of a conserved α-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning <i>J. Biol. Chem.</i> 1998 Sep 25;273(39):25006-14		
B6	Beckett et al. Isolation of λ repressor mutants with defects in cooperative operator binding. Biochemistry 1993 Sep 7;32(35):9073-9		
B7	Bell et al. Crystal structure of the λ repressor C-terminal domain provides a model for cooperative operator binding. <i>Cell</i> 2000 Jun 23;101(7):801-11		
B8	Benson et al. Genetic selection for mutations that impair the co-operative binding of lambda repressor. <i>Mol. Microbiol.</i> 1994 Feb;11(3):567-79		
B9	Berlekamp et al. What's life. Winning Way for your Mathematical Plays, 2: Games in Particular. Chapter 25, pp. 817-850 (1982)		
B10	Beyersmann. Regulation of mammalian gene expression. In New Approaches to Drug Development (Jolles, P. ed.) pp. 9-28 (2000)		
B11	Bilwes et al. Structure of CheA, a signal-transducing histidine kinase. Cell 1999 Jan 8;96(1):131-41		
B12	Blat et al. Regulation of phosphatase activity in bacterial chemotaxis. <i>J. Mol. Biol.</i> 1998 Dec 11;284(4):1191-9		
B13	Bray et al. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. <i>Mol. Biol. Cell.</i> 1995 Oct;6(10):1367-80		
B14	Burz et al. Single-site mutations in the C-terminal domain of bacteriophage λ cl repressor alter cooperative interactions between dimers adjacently bound to O _R . <i>Biochemistry</i> . 1994 Jul 19;33(28):8406-16		
B15	Bustos et al. Functional domains of the AraC protein. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1993 Jun 15;90(12):5638-42		
B16	Carey et al. An amino-terminal fragment of GAL4 binds DNA as a dimer. <i>J. Mol. Biol.</i> 1989 Oct 5;209(3):423-32		
B17	Carter et al. Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. <i>J. Biol. Chem.</i> 1998 Dec 25;273(52):35000-7		
B18	Culik et al. Computation theoretic aspects cellular automata. <i>Physica</i> 1990;45(1-3):357-378		
B19	Cohen et al. Modular binding domains in signal transduction proteins. Cell 1995 Jan 27;80(2):237-48		
B20	Da Re et al. Kinetics of CheY phosphorylation by small molecule phosphodonors. FEBS Lett. 1999 Sep 3;457(3):323-6		
Examiner	Date Considered		
*EXAMINER:	Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.		

PE PPLICAN 10 MM LA

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ENZ-004

10/032,827

(Use several sheets if necessary)

Schwartz, John J. et al.

3736

October 23, 2001

	OTHERS (including Author, Title, Date, Pertinent Pages, Etc.)		
C1	Daugherty et al. Development of an optimized expression system for the screening of antibody libraries displayed on the <i>Escherichia coli</i> surface. <i>Protein Eng.</i> 1999 Jul;12(7):613-21		
C2	Djordjevic et al. Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. <i>J. Struct. Biol.</i> 1998 Dec 15;124(2-3):189-200		
C3	Donner et al. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities. <i>J. Mol. Biol.</i> 1998 Nov 13;283(5):931-46		
C4	Dove et al. Mechanism for a transcriptional activator that works at the isomerization step. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 2000 Nov 21;97(24):13215-20		
C5	Dove et al. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 1997 Apr 10;386(6625):627-30		
C6	Drexler. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1981 September;78(9):5275-5278		
C7	Dutta et al. Histidine kinases: diversity of domain organization. <i>Mol. Microbiol.</i> 1999 Nov;34(4):633-40		
C8	Earhart et al. Use of an Lpp-OmpA fusion vehicle for bacterial surface display. <i>Methods Enzymo</i> 2000;326:506-16		
C9	Eisenbach. Control of bacterial chemotaxis. Mol. Microbiol. 1996 Jun;20(5):903-10		
C10	Elowitz et al. A synthetic oscillatory network of transcriptional regulators. <i>Nature</i> . 2000 Jan 20;403(6767):335-8		
C11	Ermentrout et al. Cellular automata approaches to biological modeling. <i>J. Theor. Biol.</i> 1993 Jan 7;160(1):97-133		
C12	Finkelstein. Conservative logic. <i>Internat. J. Theor. Phys.</i> 1982;21(3/4):219-253		
C13	Firestine et al. Using an AraC-based three-hybrid system to detect biocatalysts in vivo. <i>Nat. Biotechnol.</i> 2000 May;18(5):544-7		
C14	Freiberg et al. Transcriptional control in keratinocytes and fibroblasts using synthetic ligands. <i>J. Clin. Invest.</i> 1997 Jun 1;99(11):2610-5		
C15	Frisch et al. Lattice-gas automata for the Navier-Stokes equation. <i>Phys. Rev. Lett.</i> 1986 Apr 7;56(14):1505-1508		
C16	Fuh et al. Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. <i>J. Biol. Chem.</i> 2000 Jul 14;275(28):21486-91		
C17	Gardner. On cellular automata, self-reproduction, the garden of Eden and the game of "life." Scientific American. 1971;224(2):112-117		
C18	Gardner. The fantastic combinations of John Conway's new solitair game "life." <i>Scientific American</i> 1970;223(4):120-123		
C19	Gardner et al. Construction of a genetic toggle switch in <i>Escherichia coli. Nature.</i> 2000 Jan 20;403(6767):339-42		
C20	Gether. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 2000 Feb;21(1):90-113		
C21	Giannattasio et al. Modulation of erm methyltransferase activity by peptides derived from phage display. <i>Antimicrob. Agents Chemother.</i> 2000 Jul;44(7):1961-3		
Examiner	Date Considered		
*EXAMINER:	Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applican		

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTY DOCKET NO
ENZ-004
APPLICANT

10/032,827

SERIAL NO

LIST OF PUBLICATIONS CITED BY APPLICANT (Use several sheets if necessary)

Schwartz, John J. et al.

3736 October 23, 2001

	OTHERS (including Author, Title, Date, Pertinent Pages, Etc.)			
D1	Gilchrist et al. A dominant-negative strategy for studying roles of G proteins in vivo. J. Biol. Chem 1999 Mar 5;274(10):6610-6			
D2	Gilchrist et al. Use of peptides-on-plasmids combinatorial library to identify high-affinity peptides that bind rhodopsin. <i>Methods Enzymol.</i> 2000;315:388-404			
D3	Gonzalez et al. An engineered allosteric switch in leucine-zipper oligomerization. <i>Nat. Struct. Biol.</i> 1996 Jun;3(6):510-5			
D4	Gouldson et al. Dimerization and domain swapping in G-protein-coupled receptors: a computational study. <i>Neuropsychopharmacology</i> . 2000 Oct;23(4 Suppl):S60-77			
D5	Guo et al. Designing small-molecule switches for protein-protein interactions. <i>Science</i> . 2000 Jun 16;288(5473):2042-5			
D6	New England Biolabs, Inc., GPS™-LS Linker Scanning System. <i>Technical Bulletin</i> . No. E7102, 2001;pp. 1-2			
D7	Hamm et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. <i>Science</i> . 1988 Aug 12;241(4867):832-5			
D8	Hamm et al. Heterotrimeric G proteins. Curr. Opin. Cell Biol. 1996 Apr;8(2):189-96			
D9	Hamm. The many faces of G protein signaling. J. Biol. Chem. 1998 Jan 9;273(2):669-72.			
D10	Han et al. Peptides selected to bind the Gal80 repressor are potent transcriptional activation domains in yeast. <i>J. Biol. Chem.</i> 2000 May 19;275(20):14979-84			
D11	Hardy et al. Molecular dynamics of a classic lattice gas transport properties and time correlations functions. <i>Physical Review A</i> . 1976 May;13(5):1949-1961			
D12	Harvey et al. Inducible control of gene expression: prospects for gene therapy. <i>Curr. Opin. Chem Biol.</i> 1998 Aug;2(4):512-8			
D13	Hoogenboom et al. Natural and designer binding sites made by phage display technology. Immunol Today. 2000 Aug;21(8):371-8			
D14	Jasuja et al. Response tuning in bacterial chemotaxis. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1999 Sep 28;96(20):11346-51			
D15	Joung et al. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 2000 Jun 20;97(13):7382-7			
D16	Kalkbrenner et al. Transcriptional activation by human c-myb and v-myb genes. Oncogene. 1990 May;5(5):657-61			
D17	Katz. Streptavidin-binding and -dimerizing ligands discovered by phage display, topochemistry, and structure-based design. <i>Biomol. Eng.</i> 1999 Dec 31.16(1-4):57-65			
D18	Kayman et al. The hypervariable domain of the murine leukemia virus surface protein tolerates large insertions and deletions, enabling development of a retroviral particle display system. <i>J. Virol.</i> 1999 Mar;73(3):1802-8			
D19	Kusser. Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. Rev. Mol. Biotechnol. 2000 Mar;74(1):27-38			
xaminer	Date Considered			
EXAMINER:	Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applican			

APPLICANT FACSIMILE OF FORM PTO-1449

7-80

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ENZ-004

10/032,827

LIST OF PUBLICATIONS CITED BY APPLICANT (Use several sheets if necessary)

Schwartz, John J. et al.

ROUP

SERIAL NO

October 23, 2001

3736

OTHERS (including Author, Title, Date, Pertinent Pages, Etc.)

	OTHERS (including Author, Title, Date, Pertinent Pages, Etc.)			
E1	Lee et al. Thyroid hormone receptor dimerization function maps to a conserved subregion of the ligand binding domain. <i>Mol. Endocrinol.</i> 1992 Nov;6(11):1867-73			
E2	Makeyev et al. Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire. <i>FEBS Lett.</i> 1999 Feb 12;444(2-3):177-80			
E3	Margolus. Physics-like models of computation. <i>Physica</i> 1984;10D:81-95			
E4	Marmorstein et al. DNA recognition by GAL4: structure of a protein-DNA complex. <i>Nature</i> . 1992 Apr 2;356(6368):408-14			
E5	Marshak et al. Synthetic peptide substrates for casein kinase II. <i>Methods Enzymol</i> . 1991;200:134-56			
E6	Marvin et al. Conversion of a maltose receptor into a zinc biosensor by computational design. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 2001 Apr 24;98(9):4955-60			
E7	McEvoy et al. Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1998 Jun 23;95(13):7333-8			
E8	Menon et al. Activation of <i>ara</i> operons by a truncated AraC protein does not require inducer. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1990 May;87(10):3708-12			
E9	Miyawaki et al. Dynamic and quantitative Ca ²⁺ measurements using improved cameleons. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1999 Mar 2;96(5):2135-40			
E10	Pabo et al. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? <i>J. Mol. Biol.</i> 2000 Aug 18;301(3):597-624			
E11	Perrier et al. Toward a viable, self-reproducing universal computer. <i>Physica</i> 1996;D97 335			
E12	Roberts et al. RNA-peptide fusions for the <i>in vitro</i> selection of peptides and proteins. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1997 Nov 11,94(23):12297-302			
E13	Roychoudhury et al. Use of combinatorial library screening to identify inhibitors of a bacterial two component signal transduction kinase. <i>Mol. Divers.</i> 1998;4(3):173-82			
E14	Saha et al. An operator-induced conformational change in the C-terminal domain of the λ repressor. <i>J. Biol. Chem.</i> 1992 Mar 25;267(9):5862-7			
E15	Schaffitzel et al. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. <i>J. Immunol. Methods</i> . 1999 Dec 10;231(1-2):119-35			
E16	Scharf et al. Control of direction of flagellar rotation in bacterial chemotaxis. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1998 Jan 6;95(1):201-6			
E17	Shimizu et al. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol. 2000 Nov;2(11):792-6			
E18	Shukla et al. Mutations leading to altered CheA binding cluster on a face of CheY. J. Biol. Chem. 1995 Oct 13;270(41):24414-9			
E19	Shusta et al. Biosynthetic polypeptide libraries. Curr. Opin. Biotechnol. 1999 Apr;10(2) 117-22			

Initial if reference considered, whether or not citation is in conformance with MPEP 609; Praw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

PPICAN 2 TO STATE OF THE STATE

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ENZ-004

10/032,827

IST OF PUBLICATIONS CITED BY APPLICANT (Use several sheets if necessary)

Schwartz, John J. et al.

3736

October 23, 2001

	OTHERS (including Author, Title, Date, Pertinent Pages, Etc.)		
F1	Sipper. Non-uniform cellular automata: Evolution in rule space and formation of complex structures. In <u>Artificial Life IV R. A. Brooks and P. Maes, eds, 1994;pps. 394-399, Cambridge, Massachusetts, The MIT Press.</u>		
F2	Solà et al. Towards understanding a molecular switch mechanism: thermodynamic and crystallographic studies of the signal transduction protein CheY. <i>J. Mol. Biol.</i> 2000 Oct 20;303(2):213-25.		
F3	Swanson et al. Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface. <i>Nat. Struct. Biol.</i> 1995 Oct;2(10):906-10		
F4	Takahashi et al. Measurement of intracellular calcium. <i>Physiol. Rev.</i> 1999 Oct;79(4):1089-125		
F5	Ten Dijke et al. Signaling inputs converge on nuclear effectors in TGF-β signaling. <i>Trends Biochem. Sci.</i> 2000 Feb;25(2):64-70		
F6	Toffoli. Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. <i>Physica</i> 1984;10D:117-127		
F7	Toffoli. Reversible computing. In Lecture Notes in Computer Science. J.W. Bakker and J. van Leeuwen, eds. 1980;pp. 632-644 Springer-Verlag, Berlin Heidelberg NY		
F8	Vichniac. Simulating physics with cellular automata. Physica 1984;10D: 96-116		
F9	Vichniac et al. Annealed and quenched inhomogeneous cellular automata (INCA). <i>J. Statistical Phys.</i> 1986;45(5-6):875-883		
F10	Welch et al. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. <i>Nat. Struct. Biol.</i> 1998 Jan;5(1):25-9		
F11	Whaley et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. <i>Nature</i> . 2000 Jun 8;405(6787):665-8		
F12	Whipple et al. Amino acid-amino acid contacts at the cooperativity interface of the bacteriophage λ and P22 repressors. <i>Genes Dev.</i> 1998 Sep 1;12(17):2791-802		
F13	Whipple et al. Specificity determinants for the interaction of λ repressor and P22 repressor dimers. <i>Genes Dev.</i> 1994 May 15;8(10):1212-23		
F14	Wolfe et al. Combining structure-based design with phage display to create new Cys ₂ His ₂ zinc finger dimers. <i>Structure</i> 2000 Jul 15;8(7):739-50		
F15	Wolfram. Cellular automata as models of complexity. <i>Nature</i> . 1984;311 419-424		
F16	Wolfram. Statistical mechanics of cellular automata. <i>Reviews of Modern Physics</i> . 1983;55(3):601-641		
F17	Wolfram. Universality and complexity in cellular automata. <i>Physica</i> 1984;10D(1&2):1-35		
F18	Xu et al. A bioluminescence resonance energy transfer (BRET) system application to interacting circadian clock proteins. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 1999 Jan 5;96(1):151-6,		
F19	Zhang et al. Selection and application of peptide-binding peptides. <i>Nat. Biotechnol.</i> 2000 Jan;18(1):71-4		
F20	Zhu et al. Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli. J. Bacteriol. 1996 Jul;178(14):4208-15		
Examiner	Date Considered		
*EXAMINER:	Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.		