STAT GU4261/GR5261 STATISTICAL METHODS IN FINANCE

Fall 2018

Homeowork 4 Suggested Solution

If you have questions on the solution, please contact Brian at hl2902@columbia.edu

- 1. (a) $\mu_j = \mu_f + \beta_j(\mu_M \mu_f) = 0.03 + 0.75(0.1 0.03) = 0.0825.$
 - (b) Since the expected return implied by CAPM is lower than 0.09, the stock is underpriced.
- 2. Problem 17.10.3 in textbook:
 - (a) $\mu_R = \mu_f + \frac{\mu_M \mu_f}{\sigma_M} \sigma_R = 0.05508333.$
 - (b) $\beta_A = \frac{\sigma_{AM}}{\sigma_M^2} = 0.2777778.$
 - (c) Let $r_P = \frac{1}{2}r_B + \frac{1}{2}r_C$.

Note that $\mu_B = \mu_f + \beta_B(\mu_M - \mu_f) = 0.1385$ and $\mu_C = \mu_f + \beta_C(\mu_M - \mu_f) = 0.1616$. Hence, the expected return of P is $\frac{1}{2}\mu_B + \frac{1}{2}\mu_C = 0.15005$.

(ii)

$$Var(r_{P}) = \frac{1}{4} Var(r_{B}) + \frac{1}{4} Var(r_{C}) + \frac{1}{2} Cov(r_{B}, r_{C})$$

$$= \frac{1}{4} (\beta_{B}^{2} \sigma_{M}^{2} + \sigma_{\varepsilon,B}^{2}) + \frac{1}{4} (\beta_{C}^{2} \sigma_{M}^{2} + \sigma_{\varepsilon,C}^{2}) + \frac{1}{2} \beta_{B} \beta_{C} \sigma_{M}^{2}$$

$$= 0.043304$$

Therefore, $\sigma_P = 0.2080961$.

Problem 17.10.6 in textbook:

- (a) $\beta_A = \frac{\sigma_{A,M}}{\sigma_M^2} = \frac{15}{11}$.
- (b) $\mu_A = r_f + \beta_A(\mu_M r_f) = \frac{41}{275}$.
- (c) (This question is problematic, exclude this question for grading) If we assume that the characteristic line model is true, then this is not possible, as variance due to market is $\beta_A^2 \sigma_M^2 = 0.0225 > 0.022$, which is the variance of r_A .
- 3. (a)

$$egin{array}{lcl} m{w}_{\min} & = & \dfrac{\Omega^{-1} \mathbf{1}}{\mathbf{1}^T \Omega^{-1} \mathbf{1}} = (0.500, 0.375, 0.125) \\ \mu_{\min} & = & m{w}_{\min}^T \mu = 0.075 \\ \mathrm{Var}_{\min} & = & m{w}_{\min}^T \Omega m{w}_{\min} = 0.01125. \end{array}$$

(b) Let

$$w_{1} = \frac{\Omega^{-1}1}{1^{T}\Omega^{-1}1},$$

$$w_{2} = \frac{\Omega^{-1}\mu}{1^{T}\Omega^{-1}\mu},$$

$$\theta = \frac{\mu_{p} - w_{2}^{T}\mu}{w_{1}^{T}\mu - w_{2}^{T}\mu}.$$

Then $w = \theta w_1 + (1 - \theta)w_2 = (0.1666667, 0.2500000, 0.5833333)$. Risk is $\sqrt{w^T \Omega w} = 0.1607275$.

(c)
$$\boldsymbol{w}_T = \frac{\Omega^{-1}(\boldsymbol{\mu} - \mu_f \mathbf{1})}{\mathbf{1}^T \Omega^{-1}(\boldsymbol{\mu} - \mu_f \mathbf{1})} = (0.3163265, 0.3061224, 0.3775510).$$

- (d) First, compute μ_T and σ_T . Then, setting $0.1 = \alpha \mu_T + (1 \alpha)0.04$ gives $\alpha = 1.230126$. Hence, $\sigma_p = \alpha \sigma_T = 0.1540255$.
- 4. (a) To estimate the CAPM model, we perform linear regressions of the excess returns of stocks against the excess return of market. Comment on the beta values: the aggressiveness of the stocks: MSOFT > IBM > GM > GE. (any reasonable answer is ok)

	MSOFT	GE	GM	IBM
alpha	0.0102	0.0059	-0.0023	0.0068
beta	1.4299	0.9830	1.0744	1.2683
$alpha_pvalue$	0.2502	0.2329	0.7518	0.3491

- (b) Since the *p*-values for the alphas are all greater 0.05, we do not reject the null hypothesis that $\alpha = 0$ for all the stocks at 0.05 significance level.
- (c) The 95% CIs are:

Microsoft: [1.06, 1.80]

GE: [0.78, 1.19] GM: [0.77, 1.38] IBM: [0.96, 1.57]

Although the point estimates of betas appear to be greater than 1 for MSOFT, GM and IBM, the confidence intervals show the uncertainties involved in the estimates are actually quite large. (any reasonable answer is ok)

- (d) Based on (c), we reject H_0 only for Microsoft as 1 does not lie in its CI.
- (e) Reject when $\hat{\beta}_{MSOFT} \ge 1 + \hat{\sigma}_{\hat{\beta}_{MSOFT}} z_{0.95} = 1.301$. Therefore, we reject H_0 for Microsoft.