Algebra

XX

May 27, 2019

1 Group

1.1 Groups

Definition 1.1 (Group). A group (G, *) is a set G together with a law of composition $(G*G \to G)$ which is associative and has an identity element, and such that every element of G has an inverse. That is, (G, *) satisfies

- 1. (Closure) $\forall a, b \in G, a * b \in G$.
- 2. (Identity) $\exists e, s.t. \forall q \in G, q * e = e * q = q.$
- 3. (Inverse) $\forall g \in G, \exists g^{-1} inG, s.t. \ g * g^{-1} = e.$
- 4. (Associativity) $\forall a, b, c \in G, (a * b) * c = a * (b * c).$

Remark 1.1. Identity e is unique.

Proof. Suppose to the contrary, $\exists e' \neq e$, s.t. g*e' = e'*g = g. Then, $e*g = g \Rightarrow e*e' = e'$; $g*e' = g \Rightarrow e*e' = e$. Therefore, e*e' = e' = e. Contradiction.

Remark 1.2. $g^{-1} * g = e$.

Proof. Suppose
$$h * g = e$$
, we want to show $h = g^{-1}$.
 $h = h * e = h * (g * g^{-1}) = (h * g) * g^{-1} = e * g^{-1} = g^{-1}$.

Remark 1.3. $\forall q$, its inverse q^{-1} is unique.

Proof. Suppose
$$\exists h \neq g^{-1}$$
, s.t. $g * h = e$.
 $h = e * h = (g^{-1} * g) * h = g^{-1} * (g * h) = g^{-1} * e = g^{-1}$. Contradiction.

Remark 1.4. If h is the inverse of g, i.e., $h = g^{-1}$, then g is the inverse of h, i.e., $g = h^{-1}$.

Proof.
$$h^{-1} = e * h^{-1} = (g * h) * h^{-1} = g * (h * h^{-1}) = g * e = g.$$

Remark 1.5 (Cancellation Law). Let $\forall a, b, c \in G$. If a * b = a * c, then b = c. If b * a = c * a, then b = c.

Proof.
$$b = e * b = (a^{-1} * a) * b = a^{-1} * (a * b) = a^{-1} * (a * c) = (a^{-1} * a) * c = e * c = c.$$

Definition 1.2 (Abelian Group). An abelian group (G,*) is a group whose law of composition is commutative. That is, $\forall a, b \in G$, a*b=b*a.

Example 1.1. Abelian Groups:

- 1. \mathbb{Z}^+ : integers, with addition.
- 2. \mathbb{R}^+ : real numbers, with addition.
- 3. \mathbb{R}^{\times} : nonzero real numbers, with multiplication.
- 4. $\mathbb{C}^+,\mathbb{C}^\times$: complex numbers, with addition or multiplication (nonzero).

Example 1.2. Non-Abelian Groups:

- 1. (General Linear Group) $GL_n(\mathbb{R})(or\ GL_n(\mathbb{C})) = \{n \times n\ real\ (or\ complex)\ matraces\ A\ with\ \det A \neq 0\}.$
- 2. (Symmetric Group) $S_n = group \ of permutations \ of \{1,...,n\}$. The order of the group is n!.

1.2 Subgroups

Definition 1.3 (Subgroup). A subset H of a group G is called a subgroup if it has the following properties:

- 1. Closure: If $a \in H$ and $b \in H$, then $a * b \in H$.
- 2. Identity: $e \in H$.
- 3. Inverses: If $a \in H$, then $a^{-1} \in H$.

Remark 1.6. Associativity is automatic.

Remark 1.7. Every group has two obvious subgroups:

- 1. the whole group (G,*);
- 2. (e,*).

Definition 1.4 (Proper Subgroup). A subgroup is said to be a proper subgroup if it is not (G, *) or (e, *).

Example 1.3. Proper Subgroups:

1. The set T of invertible upper triangular 2×2 matrices

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} (a, d \neq 0)$$

is a subgroup of the general linear group $GL_n(\mathbb{R})$.

- 2. The set of complex numbers of absolute value 1 the set of points on the unit circle in the complex plane is a subgroup of \mathbb{C}^{\times} .
- 3. The subset $b\mathbb{Z} = \{n \in \mathbb{Z} \mid n = bk \text{ for some } k \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z}^+ . Moreover, every subgroup H of \mathbb{Z}^+ is of the type $H = b\mathbb{Z}$ for some integer b.

Proposition 1.1. Let a, b be integers, not both 0, and let d be the positive integer which generates the subgroup $a\mathbb{Z} + b\mathbb{Z}$. Then,

- 1. d can be written in the form d = ar + bs for some integer r and s.
- 2. d divides a and b.
- 3. If integer e divides a and b, it also divides d.

Definition 1.5 (Order of a Group). The order of any group G is the number of its elements.

$$|G| = number of elements of G.$$

Definition 1.6 (Order of an Element). An element of a group is said to have order m (possibly infinity) if the cyclic subgroup it generates has order m. That is, m is the smallest positive integer with the property $x^m = 1$ or, if the order is infinite, that $x^m \neq 1$ for all $m \neq 0$.

Example 1.4. For $GL_n(\mathbb{R})$

- 1. $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ is an element of order 6.
- 2. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has infinite order, since $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$.

Example 1.5. Non-cyclic Groups:

- 1. The Klein four group $V = \langle a, b \mid a^2 = b^2 = (ab)^2 = e \rangle$ is the simplest group which is not cyclic.
- 2. The quaternion group H is another example of a small subgroup of $GL_n(\mathbb{C})$ which is not cyclic. It consists of the eight matrices $H = \{\pm 1, \pm i, \pm j, \pm k\}$, where

$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, i = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, k = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

1.3 Isomorphisms

Definition 1.7 (Isomorphic). Let G and G' be two groups. We want to say that they are isomorphic if all properties of the group structure of G hold for G' as well, and conversely. Denote $G \approx G'$.

Definition 1.8 (Isomorphism). An isomorphism φ from (G,*) to (G',*') is a bijective map which is compatible with the laws of composition. That is $\varphi(a*b) = \varphi(a)*'\varphi(b)$.

Example 1.6. Isomophisms:

- 1. Let $C = \{\ldots, a^{-2}, a^{-1}, 1, a, a^2, \ldots\}$ be an infinite cyclic group. Then the map $\varphi : \mathbb{Z}^+ \to C$ defined by $\varphi(n) = a^n$ is an isomorphism.
- 2. Let $G = \{1, x, x^2, \dots, x^{n-1}\}$ and $G' = \{1, y, y^2, \dots, y^{n-1}\}$ be two cyclic groups, generated by elements x, y of the same order. Then the map which sends x^i to y^i is an isomorphism: Two cyclic groups of the same order are isomorphic.

Definition 1.9 (Isomorphism Class). The groups isomorphic to a given group G form what is called the isomorphism class of G, and any two groups in an isomorphism class are isomorphic.

Definition 1.10 (Automorphism). A map $\varphi: G \to G$ is called an automorphism of G.

Remark 1.8. The identity map is an automorphism.

Remark 1.9. The most important example of automorphism is conjugation: Let $b \in G$ be a fixed element. Then conjugation by b is the map φ from G to itself defined by

$$\varphi(x) = bxb^{-1}$$
.

This is an automorphism. Any noncommutative group has some nontrivial conjugations, and so it has nontrivial automorphisms.

Definition 1.11 (Conjugate). Two elements a, a' of a group G are called conjugate if $a' = bab^{-1}$ for some $b \in G$.

Remark 1.10. The conjugate behaves in much the same way as the element a itself; for example, it has the same order in the group. This follows from the fact that it is the image of a by an automorphism.

1.4 Homomorphisms

Definition 1.12 (Homomorphism). Let G, G' be groups. A homomorphism $\varphi : G \to G'$ is any map satisfying $\varphi(a * b) = \varphi(a) *' \varphi(b)$.

Remark 1.11. Note that φ does not need to be bijective.

Example 1.7. Homomorphisms:

- 1. the determinant function $\det: GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$.
- 2. the sign of a permutation sign: $S_n \to \{\pm 1\}$.
- 3. the map $\varphi: \mathbb{Z}^+ \to G$ defined by $\varphi(n) = a^n$, where a is a fixed element of G.
- 4. the inclusion map: $i: H \to G$ of a subgroup H into a group G, defined by i(x) = x.

Remark 1.12. A group homomorphism $\varphi: G \to G'$ carries the identity to the identity, and inverses to inverses.

Proof.
$$\varphi(e) = \varphi(e * e) = \varphi(e) *' \varphi(e); \varphi(a^{-1}) *' \varphi(a) = \varphi(a^{-1} * a) = \varphi(e) = e'.$$

Definition 1.13 (Image). The image of a homomorphism $\varphi: G \to G'$ is the image of the map

$$\operatorname{im} \varphi = \{ x \in G' \mid x = \varphi(a) \text{ for some } a \in G \}.$$

Definition 1.14 (Kernel). The kernel of φ is the set of elements of G which are mapped to the identity in G':

$$\ker \varphi = \{ a \in G \mid \varphi(a) = e' \}.$$

Remark 1.13. The kernel is a subgroup of G.

Example 1.8. Kernels:

1. The kernel of determinant homomorphism is called the special linear group

$$SL_n(\mathbb{R}) = \{ real \ n \times n \ matrices \ A \mid \det A = 1 \}.$$

2. The kernel of the sign homomorphism is called the alternating group

$$A_n = \{even \ permutations\}.$$

Definition 1.15 (Normal Subgroup). A subgroup N of a group G is called a normal subgroup if it has the following property: For every $a \in N$ and every $b \in G$, the conjugate $bab^{-1} \in N$.

Remark 1.14. The kernel of a homomorphism is a normal subgroup.

Proof.
$$\varphi(bab^{-1}) = \varphi(b)\varphi(a)\varphi(b^{-1}) = \varphi(b)e\varphi(b)^{-1} = e'.$$

Remark 1.15. Any subgroup of an abelian group G is normal.

Definition 1.16 (Center of a Group). The center of a group G, sometimes denoted by Z or by Z(G), is the set of elements which commute with every element of G:

$$Z = \{ z \in G \mid zx = xz \text{ for all } x \in G \}.$$

Remark 1.16. The center of any group is a normal subgroup of the group.

Example 1.9. The center of $GL_n(\mathbb{R})$ is the group of scalar matrices, that is, those of the form $c \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

1.5 Equivalence Relations and Partitions

Definition 1.17 (Equivalence Relation). An equivalence relation on S is a relation which holds between certain elements of S. Denoted as $a \sim b$. An equivalence relation is required to be:

- 1. transitive: If $a \sim b$ and $b \sim c$, then $a \sim c$.
- 2. symmetric: If $a \sim b$, then $b \sim a$.
- 3. reflexive: $a \sim a$ for all $a \in S$.

Definition 1.18 (Equivalence Class). The equivalence class of a is

$$C_a = \{b \in S \mid a \sim b\}.$$

Remark 1.17. If C_a and C_b have an element d in common. Then $C_a = C_b$.

Proposition 1.2. Let $\varphi: G \to G'$ be a group homomorphism with kernel N, and let a, b be elements of G. Then $\varphi(a) = \varphi(b)$ if and only if b = an for some element $n \in N$, or equivalently, if $a^{-1}b \in N$.

Proof. Suppose $\varphi(a) = \varphi(b)$. Then $\varphi(a)^{-1}\varphi(b) = e'$. Since φ is a homomorphism, $\varphi(a^{-1}b) = e'$. By definition of the kernel, $a^{-1}b \in N$. Conversely, if b = an for some $n \in N$. Then $\varphi(b) = \varphi(a)\varphi(n) = \varphi(a)e' = \varphi(a)$.

Figure 1: A schematic diagram of a group homomorphism.

Definition 1.19 (Coset). The set of elements of the form an is denoted by aN and is called a coset of N in G:

$$aN = \{g \in G \mid g = an \text{ for some } n \in N\}.$$

1.6 Cosets

One can define cosets for any subgroup H of a group G, not only for the kernel of a homomorphism.

Definition 1.20 (Left Coset). A left coset is a subset of the form

$$aH = \{ah \mid h \in H\}.$$

Remark 1.18. The cosets are equivalence classes.

Remark 1.19. The left cosets of a subgroup partition the group.

Remark 1.20. Each coset aH has the same number of elements as H does.

Definition 1.21 (Index). The number of left eosets of a subgroup is called the index of H in G and is denoted by

Theorem 1.1 (Lagrange's Theorem). Let G be a finite group, and let H be a subgroup of G. The order of H divides the order of G.

Corollary 1.1. Let $\varphi: G \to G'$ be a homomorphism of finite groups. Then

$$|G| = |\ker \varphi| \cdot |\operatorname{im} \varphi|.$$

Definition 1.22 (Right Coset). A right coset is a subset of the form

$$Ha = \{ha \mid h \in H\}.$$

Remark 1.21. Right cosets need not be the same as left cosets.

Proposition 1.3. A subgroup H of a group G is normal if and only if every left coset is also a right coset. If H is normal, then aH = Ha for every $a \in G$.

Proof. Suppose that H is normal. For any $h \in H$, and any $a \in G$,

$$ah = (aha^{-1})a \in Ha.$$

This shows that $aH \subset Ha$. Similarly, $Ha \subset aH$. So, aH = Ha. Conversely, suppose that H is not normal. Then $\exists h \in H$ and $a \in G$ s.t. $aha^{-1} \notin H$. Then $ah \in aH$ and $ah \notin Ha$. So, $aH \neq Ha$. However, $a \in aH \cap Ha$. Therefore, aH can't be in some other right coset. This shows that the partition into left cosets is not the same as the partition into right cosets.

1.7 Restriction of a Homomorphism to a Subgroup

Proposition 1.4. The intersection $K \cap H$ of two subgroups is a subgroup of H. If K is a normal subgroup of G, then $K \cap H$ is a normal subgroup of H.

Remark 1.22. If |H| and |K| have no common factor, then $K \cap H = \{1\}$.

Remark 1.23. Suppose that a homomorphism $\varphi: G \to G'$ is given and that H is a subgroup of G. Then we may restrict φ to H:

$$\varphi|_H: H \to G'$$
.

The kernel of $\varphi|_H$ is

$$\ker \varphi|_H = (\ker \varphi) \cap H.$$

Proposition 1.5. Let $\varphi: G \to G'$ be a homomorphism, and let H' be a subgroup of G'. Denote the inverse image $\varphi^{-1}(H') = \{x \in G \mid \varphi(x) \in H'\}$ by \tilde{H} .

- 1. \tilde{H} is a subgroup of G.
- 2. If H' is a normal subgroup of G', then \tilde{H} is a normal subgroup of G.
- 3. \tilde{H} contains $\ker \varphi$.
- 4. The restriction of φ to H defines a homomorphism $H \to H'$, whose kernel is $\ker \varphi$. Proof. We verify the conditions for a subgroup:
 - 1. Closure: Suppose $x, y \in \tilde{H}$, then $\varphi(x)$ and $\varphi(y)$ are in H'. Since H' is a subgroup, $\varphi(x)\varphi(y) \in H'$. Since φ is a homomorphism, $\varphi(x)\varphi(y) = \varphi(xy) \in H'$. So, $xy \in \tilde{H}$.
 - 2. Identity: $e \in \tilde{H}$ since $\varphi(e) = e' \in H'$.
 - 3. Inverses: Suppose $x \in \tilde{H}$, so that $\varphi(x) \in H'$, then $\varphi(x)^{-1} \in H'$. Since φ is a homomorphism, $\varphi(x)^{-1} = \varphi(x^{-1})$. Thus, $x^{-1} \in \tilde{H}$.

Suppose that H' is a normal subgroup, and let $x \in \tilde{H}$ and $g \in G$. Then $\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1}$, and $\varphi(x) \in H'$. Therefore, $\varphi(gxg^{-1}) \in H'$, and this shows that $gxg^{-1} \in \tilde{H}$.

Next, \tilde{H} contains $\ker \varphi$ because if $x \in \ker \varphi$ then $\varphi(x) = e'$, and $e' \in H'$. So $x \in \varphi^{-1}(H')$.

Example 1.10. Consider the determinant homomorphism: det: $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$. The set P of positive real numbers is a subgroup of \mathbb{R} , and its inverse image is the set of invertible $n \times n$ matrices with positive determinant, which is a normal subgroup of $GL_n(\mathbb{R})$.

1.8 Products of Groups

Definition 1.23 $(G \times G')$. We define multiplication of pairs by the rule

$$(a, a'), (b, b') \mapsto (ab, a'b'),$$

for $a, b \in G$ and $a', b' \in G'$. The pair (e, e') is an identity. And $(a, a')^{-1} = (a^{-1}, a'^{-1})$. The group thus obtained is called the product of G and G' and is denoted by $G \times G'$.

Remark 1.24. The order of $G \times G'$ is the product of the orders of G and G'.

Remark 1.25. The product group is related to the two factors G, G' in a simple way, which can be summed up in terms of some homomorphisms:

defined by

$$i(x) = (x, 1), i'(x') = (1, x');$$

 $p(x, x') = x, p'(x, x') = x'.$

The maps i, i' are injective and the maps p, p' are surjective.

$$\ker p = 1 \times G'$$

and

$$\ker p' = G \times 1.$$

These maps are called projections.

Proposition 1.6 (The mapping property of products). Let H be any group. The homomorphisms $\Phi: H \to G \times G'$ are in bijective correspondence with pairs (φ, φ') of homomorphisms

$$\varphi: H \to G, \varphi': H \to G'.$$

The kernel of Φ is the intersection $(\ker \varphi) \cap (\ker \varphi')$.

Proof. Given a pair (φ, φ') of homomorphisms, we define the corresponding homomorphism

$$\Phi: H \to G \times G'$$

by the rule $\Phi(h) = (\varphi(h), \varphi'(h))$. Conversely, given Φ , we obtain φ and φ' by composition with the projections, as

$$\varphi = p\Phi, \varphi' = p'\Phi.$$

Obviously, $\Phi(h) = (e, e')$ if and only if $\varphi(h) = e$ and $\varphi'(h) = e'$, which shows that $\ker \Phi = (\ker \varphi) \cap (\ker \varphi')$.

Example 1.11. A cyclic group C_6 of order 6 is isomorphic to the product $C_2 \times C_3$ of cyclic groups of orders 2 and 3.

Proposition 1.7. Let r, s be integers with no common factor. A cyclic group of order rs is isomorphic to the product of a cyclic group of order r and a cyclic group of order s.

Definition 1.24. Let A and B be subsets of a group G. Then we denote the set of products of elements of A and B by

$$AB = \{x \in G \mid x = ab \text{ for some } a \in A \text{ and } b \in B\}.$$

Proposition 1.8. Let H and K be subgroups of a group G.

- 1. If $H \cap K = e$, the product map $p: H \times K \to G$ defined by p(h, k) = hk is injective. Its image is the subset HK.
- 2. If either H or K is a normal subgroup of G, then the product sets HK and KH are equal, and HK is a subgroup of G.
- 3. If H and K are normal, $H \cap K = e$, and HK = G, then G is isomorphic to the product group $H \times K$.
- Proof. 1. Let (h_1, k_1) , (h_2, k_2) be elements of $H \times K$ such that $h_1 k_1 = h_2 k_2$. multiplying both sides of this equation on the left by h_1^{-1} and on the right by k_2^{-1} , we find $k_1 k_2^{-1} = h_1^{-1} h_2$. Since $H \cap K = e$, $k_1 k_2^{-1} = h_1^{-1} h_2 = e$, hence $h_1 = h_2$ and $k_1 = k_2$. This shows that p is injective.
 - 2. Suppose that H is a normal subgroup of G, and let $h \in H$ and $k \in K$. Note that $kh = (khk^{-1})k$. Since H is normal, $khk^{-1} \in H$. Therefore $kh \in HK$, which shows that $KH \subset HK$. The proof of the other inclusion is similar. The fact that HK is a subgroup now follows easily. For closure under multiplication, note that in a product (hk)(h'k') = h(kh')k', the middle term kh' is in KH = HK, say kh' = h''k''. Then $hkh'k' = (hh'')(k''k') \in HK$. Closure under inverses is similar: $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$. And of course, $e = ee \in HK$. Thus HK is a subgroup. The proof is similar in the case that K is normal.
 - 3. Assume that both subgroups are normal and that $H \cap K = e$. Consider the product $(hkh^{-1})k^{-1} = h(kh^{-1}k^{-1})$. Since K is a normal subgroup, the left side is in K. Since H is normal, the right side is in H. Thus this product is the intersection $H \cap K$, i.e., $hkh^{-1}k^{-1} = e$. Therefore hk = kh. This being known, the fact that p is a homomorphism follows directly: In the group $H \times K$, the product rule is $(h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2)$, and this element corresponds to $h_1h_2k_1k_2 \in G$, while in G the products h_1k_1 and h_2k_2 multiply as $h_1k_1h_2k_2$. Since $h_2k_1 = k_1h_2$, the products are equal. Part (1) shows that p is injective, and the assumption that HK = G shows that p is surjective.

Remark 1.26. It is important to note that the product map $p: H \times K \to G$ will not be a group homomorphism unless the two subgroups commute with each other.

1.9 Quotient Groups

Lemma 1.1. Let N be a normal subgroup of a group G. Then the product of two cosets aN, bN is again a coset, in fact

$$(aN)(bN) = abN.$$

Proof. Note that Nb = bN, and since N is a subgroup NN = N.

$$(aN)(bN) = a(Nb)N = a(bN)N = abNN = abN.$$

Theorem 1.2. With the law of composition, $\bar{G} = G/N$ is a group, and the map $\pi : G \to \bar{G} = G/N$ sending $a \mapsto \bar{a} = aN$ is a homomorphism with kernel N.

Corollary 1.2. Every normal subgroup of a group G is the kernel of a homomorphism.

Theorem 1.3 (First Isomorphism Theorem). Let $\varphi: G \to G'$ be a surjective group homomorphism, and let $N = \ker \varphi$. Then G/N is isomorphic to G' by the map $\bar{\varphi}$ which sends the cosets $\bar{a} = aN$ to $\varphi(a)$:

$$\bar{\varphi}(\bar{a}) = \varphi(a).$$

- **Example 1.12.** 1. The absolute value map $\mathbb{C}^{\times} \to \mathbb{R}^{\times}$ maps the nonzero complex numbers to the positive real numbers, and its kernel is the unit circle U. So the quotient group \mathbb{C}^{\times}/U is isomorphic to the multiplicative group of positive real numbers.
 - 2. The determinant is a surjective homomorphism $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$, whose kernel is the special linear group $SL_n(\mathbb{R})$. So the quotient group $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ is isomorphic to \mathbb{R}^{\times} .