## HOMEWORK 7: Modern Statistics and Big Data Analytics

#### Federico Veronesi

2023-11-26

### **Exercise 1**

## class 3:

0.4680

```
Data prep
library(poLCA)
data(election)
election12 <- election[,1:12]
### create a new factor level for missing values
electionwithna <- election12
for (i in 1:12){
levels(electionwithna[,i]) <- c(levels(election12[,i]), "NA")</pre>
electionwithna[is.na(election12[,i]),i] <- "NA"
}
Point a: latent class model with poLCA (3 classes)
### MDS election data
library(smacof)
library(cluster)
SM_dist <- daisy(electionwithna, metric = "gower")</pre>
mds_election <- mds(SM_dist, ndim = 2)</pre>
cbind(MORALG, CARESG, KNOWG, LEADG, DISHONG, INTELG, MORALB, CARESB, KNOWB, LEADB, DISHONB, I
NTELB)~1
LCM1 <- poLCA (f, electionwithna, nclass=3, maxiter=1000, na.rm = F, nrep = 10)
## Model 1: llik = -25887.51 ... best llik = -25887.51
## Model 2: llik = -25885.25 ... best llik = -25885.25
## Model 3: llik = -25887.51 ... best llik = -25885.25
## Model 4: llik = -25885.25 ... best llik = -25885.25
## Model 5: llik = -25990.17 ... best llik = -25885.25
## Model 6: llik = -25891.5 ... best llik = -25885.25
## Model 7: llik = -25891.5 ... best llik = -25885.25
## Model 8: llik = -25990.17 ... best llik = -25885.25
## Model 9: llik = -25972.59 ... best llik = -25885.25
## Model 10: llik = -25891.91 ... best llik = -25885.25
## Conditional item response (column) probabilities,
## by outcome variable, for each class (row)
##
## $MORALG
##
             1 Extremely well 2 Quite well 3 Not too well 4 Not well at all
                                                                                   NA
## class 1:
                        0.1069
                                     0.4510
                                                     0.2755
                                                                        0.1321 0.0345
## class 2:
                        0.0576
                                     0.4082
                                                     0.1332
                                                                        0.0660 0.3351
```

0.4895

0.0286

0.0060 0.0079

| ## |                 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
|----|-----------------|---|----------------------------|---|------------|---|--------|-----|--------|---|--------|------|---------|--------|
|    | \$CARESG        |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## |                 | 1 | Extremely well             | 2 | Quite well | 3 | Not    | too | well   | 4 | Not    | well | at all  | NA     |
|    | class 1:        |   | 0.0333<br>0.0769<br>0.3371 |   | 0.3201     |   |        | 0.  | 4160   |   |        |      | 0.2051  | 0.0255 |
| ## | class 2:        |   | 0.0769                     |   | 0.2832     |   |        | 0.  | . 2050 |   |        |      | 0.1594  | 0.2756 |
| ## | class 3:        |   | 0.3371                     |   | 0.5429     |   |        | 0.  | .0867  |   |        |      | 0.0252  | 0.0081 |
| ## |                 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## | \$KNOWG         |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## | •               | 1 | Extremely well             | 2 | Ouite well | 3 | Not    | too | well   | 4 | Not    | well | at all  | NA     |
|    | class 1:        | _ | 0.1194                     |   |            |   |        |     |        |   |        |      | 0.0496  |        |
|    | class 1:        |   | 0.0818                     |   | 0.0230     |   |        | a.  | 1376   |   |        |      | 0.0430  | 0.0102 |
|    |                 |   | 0.4990                     |   |            |   |        | ο.  | .0131  |   |        |      | 0.0055  |        |
|    | Class 5.        |   | 0.4990                     |   | 0.4024     |   |        | ο.  | . 6131 |   |        |      | 0.0055  | 0.0000 |
| ## | <b>41.545</b> 6 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
|    | \$LEADG         | _ |                            | _ |            | _ |        |     |        | _ |        |      |         |        |
|    |                 |   | Extremely well             |   | -          |   |        |     |        |   |        |      |         |        |
|    |                 |   | 0.0282                     |   |            |   |        |     |        |   |        |      |         |        |
|    | class 2:        |   | 0.0394                     |   | 0.3353     |   |        | 0.  | . 2541 |   |        |      | 0.0966  | 0.2746 |
| ## | class 3:        |   | 0.3298                     |   | 0.5560     |   |        | 0.  | . 1017 |   |        |      | 0.0049  | 0.0076 |
| ## |                 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## | \$DISHONG       |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## | •               | 1 | Extremely well             | 2 | Ouite well | 3 | Not    | too | well   | 4 | Not    | well | at all  | NA     |
| ## | class 1:        |   | 0.1248                     |   |            |   |        |     |        |   |        |      |         |        |
|    |                 |   | 0.0412                     |   |            |   |        |     |        |   |        |      |         |        |
|    |                 |   | 0.0247                     |   |            |   |        |     | 3563   |   |        |      | 0.5322  |        |
| ## | Class J.        |   | 0.0247                     |   | 0.0054     |   |        | 0.  | . 5505 |   |        |      | 0.5522  | 0.0233 |
|    | ¢TNTELC         |   |                            |   |            |   |        |     |        |   |        |      |         |        |
|    | \$INTELG        | 4 | Ft                         | _ | 0          | _ | NI - 4 | 4   |        |   | NI - 4 |      | -4 -11  |        |
| ## |                 | Т | Extremely well             |   |            |   |        |     |        |   |        |      |         |        |
|    | class 1:        |   | 0.1511                     |   |            |   |        |     |        |   |        |      | 0.0509  |        |
|    |                 |   | 0.0876                     |   |            |   |        |     |        |   |        |      |         |        |
|    | class 3:        |   | 0.5060                     |   | 0.4691     |   |        | 0.  | .0188  |   |        |      | 0.0061  | 0.0000 |
| ## |                 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## | \$MORALB        |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## |                 | 1 | Extremely well             | 2 | Quite well | 3 | Not    | too | well   | 4 | Not    | well | at all  | NA     |
| ## | class 1:        |   | 0.3151                     |   | 0.5678     |   |        | 0.  | .0997  |   |        |      | 0.0042  | 0.0132 |
| ## | class 2:        |   | 0.0389                     |   | 0.2634     |   |        | 0.  | 1132   |   |        |      | 0.1183  | 0.4661 |
|    | class 3:        |   | 0.0936                     |   | 0.4307     |   |        |     | 3185   |   |        |      |         | 0.0635 |
| ## |                 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
|    | \$CARESB        |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## | 70,11120        | 1 | Extremely well             | 2 | Ouite well | 3 | Not    | too | well   | 4 | Not    | well | at all  | NA     |
|    | class 1:        | _ | 0.1625                     | _ | 0.5842     |   | 1100   |     | .2230  | _ | 1100   | MCTT |         | 0.0090 |
|    | class 1:        |   | 0.0253                     |   |            |   |        |     | . 2268 |   |        |      |         |        |
|    |                 |   |                            |   | 0.1451     |   |        |     |        |   |        |      | 0.2826  |        |
|    | class 3:        |   | 0.0162                     |   | 0.1375     |   |        | 0.  | 4631   |   |        |      | 0.3687  | 0.0144 |
| ## | 4               |   |                            |   |            |   |        |     |        |   |        |      |         |        |
|    | \$KNOWB         |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## |                 | 1 | Extremely well             |   |            |   | Not    |     |        | 4 | Not    | well |         | NA     |
| ## | class 1:        |   | 0.2390                     |   | 0.6724     |   |        | 0.  | .0856  |   |        |      | 0.0009  | 0.0021 |
| ## | class 2:        |   | 0.0836                     |   | 0.4037     |   |        | 0.  | 1669   |   |        |      | 0.1275  | 0.2183 |
| ## | class 3:        |   | 0.0740                     |   | 0.3821     |   |        | 0.  | . 3875 |   |        |      | 0.1457  | 0.0107 |
| ## |                 |   |                            |   |            |   |        |     |        |   |        |      |         |        |
|    | \$LEADB         |   |                            |   |            |   |        |     |        |   |        |      |         |        |
| ## |                 | 1 | Extremely well             | 2 | Ouite well | 3 | Not    | too | well   | 4 | Not    | well | at all  | NA     |
|    |                 |   | c.mc_j wcli                | _ | £2.20 WCTT | _ |        |     |        | • |        |      | ~ C GII | 147 (  |

```
## class 1:
                                                                0.0041 0.0082
                     0.2759
                                 0.6415
                                               0.0703
## class 2:
                                                                0.1566 0.2881
                     0.0347
                                 0.3396
                                               0.1811
## class 3:
                     0.0350
                                 0.3111
                                               0.4425
                                                                0.1792 0.0323
##
## $DISHONB
##
            1 Extremely well 2 Quite well 3 Not too well 4 Not well at all
                     0.0180
                                               0.3758
## class 1:
                                 0.0933
                                                                0.4861 0.0269
                     0.0478
                                 0.1546
                                               0.2031
                                                                0.1219 0.4725
## class 2:
## class 3:
                                 0.2487
                                               0.4161
                                                                0.1935 0.0795
                     0.0623
##
## $INTELB
            1 Extremely well 2 Quite well 3 Not too well 4 Not well at all
##
                                                                          NA
## class 1:
                     0.2791
                                 0.6565
                                               0.0637
                                                                0.0007 0.0000
## class 2:
                                                                0.1001 0.2495
                     0.0591
                                 0.4647
                                               0.1266
## class 3:
                                                                0.1227 0.0116
                     0.1144
                                 0.4285
                                               0.3229
##
## Estimated class population shares
## 0.4735 0.1462 0.3803
##
## Predicted class memberships (by modal posterior prob.)
## 0.4756 0.1429 0.3815
##
## Fit for 3 latent classes:
## number of observations: 1785
## number of estimated parameters: 146
## residual degrees of freedom: 1639
## maximum log-likelihood: -25885.25
##
## AIC(3): 52062.51
## BIC(3): 52863.64
## G^2(3): 25461.92 (Likelihood ratio/deviance statistic)
## X^2(3): 12552843831 (Chi-square goodness of fit)
##
plot(mds_election$conf, col=LCM1$predclass, main = paste("MDS plot: latent class
(stress=", round(mds election$stress,3)*100, "%)"))
```

# MDS plot: latent class (stress= 31 %)



Results: the interpretation of the "red" cluster is difficult (not homogeneous). The other two clusters are homegeneous and not well separated. The MDS loses a lot of information (31%) so the plot could somehow be misleading.

## Point b: latent class model with flexmixedruns (3 classes)

```
library(flexmix)
## Warning: il pacchetto 'flexmix' è stato creato con R versione 4.2.3
## Caricamento del pacchetto richiesto: lattice
library(fpc)
## Warning: il pacchetto 'fpc' è stato creato con R versione 4.2.3
LCM2 <- flexmixedruns(electionwithna, continuous = 0, discrete =12, n.cluster = 3)
## k= 3 new best fit found in run 1
## Nonoptimal or repeated fit found in run 2
## k= 3 new best fit found in run 3
## k= 3 new best fit found in run 4
## Nonoptimal or repeated fit found in run 5
## Nonoptimal or repeated fit found in run
## Nonoptimal or repeated fit found in run 7
## Nonoptimal or repeated fit found in run
## Nonoptimal or repeated fit found in run 9
## Nonoptimal or repeated fit found in run
                                           10
## Nonoptimal or repeated fit found in run 11
## Nonoptimal or repeated fit found in run
```

```
## k= 3 new best fit found in run 13
## Nonoptimal or repeated fit found in run 14
## Nonoptimal or repeated fit found in run 15
## Nonoptimal or repeated fit found in run 16
## Nonoptimal or repeated fit found in run 17
## Nonoptimal or repeated fit found in run 18
## Nonoptimal or repeated fit found in run 19
## Nonoptimal or repeated fit found in run 20
## k= 3 BIC= 52863.68

plot(mds_election$conf, col=LCM2$flexout[[3]]@cluster ,main = paste("MDS plot: latent class (stress=", round(mds_election$stress,3)*100, "%)"))
```

## MDS plot: latent class (stress= 31 %)



The results are very similar to the previous point. So we can say that in this case there's no big difference between the two functions.

### **Point c: Partitioning Around Medoids**



K=2 seems the best n°of clusters, but we will investigate also K=5 as a local optimum.

```
plot(mds_election$conf, col=election_pam[[2]]$clustering ,main = paste("MDS plot:
Partitioning around medoids K=2 (stress=", round(mds_election$stress,3)*100,
"%)"), pch=20,cex=0.7)
```

# IDS plot: Partitioning around medoids K=2 (stress= :



```
plot(mds_election$\footnote{\text{col}} = election_pam[[5]]$\clustering ,main = paste("MDS plot:
    Partitioning around medoids K=5 (stress=", round(mds_election$\footnote{\text{stress}},3)*100,
    "%)"), pch=20,cex=0.7)
```

# IDS plot: Partitioning around medoids K=5 (stress= :



The solution with 5 clusters is quite good (it produces homogeneous clusters). However I would choose K=2. It depends on our will to have smaller clusters (in this case, K=5), or two big clusters (K=2)

#### Point d

```
LCMflex <- flexmixedruns(electionwithna, continuous = 0, discrete =12, n.cluster =
1:10)
plot(1:10,LCMflex$bicvals,typ="l", xlab="Number of clusters",ylab="BIC")</pre>
```



```
which.min(LCMflex$bicvals)
## [1] 8
```

We have the smallest BIC for k=8:

```
plot(mds_election$conf, col=LCMflex$flexout[[8]]@cluster ,main = paste("MDS plot:
latent class (stress=", round(mds_election$stress,3)*100, "%)"))
```

# MDS plot: latent class (stress= 31 %)



There is overlapping between the components in certain zones of the plot. Maybe, a smaller K could be investigated, even if BIC suggests K=8

### Point e:

```
CODE: election[is.na(electionAGE),14] < -mean(electionAGE) election[is.na(electionEDUC),15] < -mean(electionEDUC)
```

for (i in 1:12){ levels(election[,i]) <- c(levels(election[,i]),"NA") election[is.na(election[,i]),i] <- "NA" }

```
election <- election [,c(14:15), c(1:12)] LCMflex <- flexmixedruns(election, continuous = 2, discrete =12, n.cluster = 1:10)
```

The function flexmixedruns gives an error when we insert some continuous variable. I wasn't able to solve it.

### **Exercise 2**

### **Heatmap**

```
colnames(mat_e12na)[13] = "CLASS"
mat_e12na_0 = mat_e12na[order(mat_e12na[,13]),]
for (col in 1:12){
  mat_e12na_0[, col] <- as.factor(mat_e12na_0[,col])</pre>
mat_dist <- daisy(t(mat_e12na_0[,-13]),metric="gower")</pre>
## Warning in daisy(t(mat_e12na_0[, -13]), metric = "gower"): variabili binarie
## 5, 11, 14, 17, 23, 27, 33, 47, 52, 55, 58, 63, 65, 73, 81, 87, 89, 91, 97,
## 106, 112, 118, 133, 134, 144, 154, 166, 168, 170, 182, 189, 192, 195, 207, 213,
## 216, 217, 219, 240, 242, 246, 253, 265, 266, 273, 281, 282, 294, 303, 305, 309,
## 311, 315, 321, 328, 330, 334, 343, 347, 348, 349, 350, 352, 364, 367, 368, 373,
## 382, 385, 389, 395, 402, 406, 407, 422, 433, 434, 435, 438, 450, 457, 470, 491,
## 504, 508, 519, 522, 524, 525, 529, 530, 532, 541, 547, 556, 557, 561, 563, 568,
## 571, 573, 580, 584, 589, 594, 616, 620, 623, 624, 628, 630, 631, 637, 645, 649,
## 659, 660, 664, 667, 669, 673, 710, 720, 728, 731, 735, 739, 756, 764, 773, 776,
## 782, 790, 794, 796, 804, 812, 817, 841, 846, 865, 866, 868, 869, 874, 877, 881,
## 896, 903, 907, 916, 920, 928, 936, 958, 960, 963, 965, 966, 968, 971, 972, 977,
## 983, 994, 1000, 1015, 1017, 1023, 1030, 1036, 1040, 1061, 1069, 1085, 1094,
## 1098, 1109, 1121, 1208, 1214, 1228, 1229, 1268, 1280, 1286, 1291, 1298, 1299,
## 1306, 1311, 1314, 1320, 1324, 1325, 1327, 1341, 1343, 1355, 1359, 1363, 1365,
## 1379, 1410, 1414, 1415, 1416, 1428, 1457, 1458, 1460, 1495, 1496, 1508, 1510,
## 1525, 1530, 1585, 1602, 1608, 1615, 1619, 1628, 1631, 1635, 1637, 1653, 1655,
## 1665, 1677, 1699, 1705, 1726, 1736, 1738, 1743, 1753, 1754, 1761 trattate come
## intervallo ridimensionato
varclust <- hclust(mat_dist,method="complete")</pre>
col2 <- brewer.pal(5, "Pastel1")</pre>
heatmap(mat_e12na_0[,-13], Rowv=NA, RowSideColors=col2[mat_e12na_0[,13]],
Colv=as.dendrogram(varclust),scale="none")
```



From this heatmap, the conditional independence seems to hold: there are three quite well dinstinct patterns corresponding to the clusters.

### **Exercise 3**

- a) number of free parameters:  $(2-1)^5 * (3-1)^3 * (5-1)^2 = 128$
- b) n° of free parameters =  $(K-1) + K(\sum_{j=1}^{p} m_j 1) = 3 + 4(1+1+1+1+1+2+2+2+4+4) = 39$

### **Exercise 4a**

```
setwd("C:/Users/Veronesi/Desktop/uniBo/Magistrale/Modern Statistics and Big Data
Analytics")

library(fda) # Functional data analysis

covid21 <- read.table("covid2021.dat")
    covid <- read.table("covid2021.dat")
    covid21v <- as.matrix(covid21[,5:559])
# Raw data plot:
    plot(1:555,covid21v[1,],type="l",ylim=c(0,25),ylab="New cases over one week per 1000 inhabitants",xlab="Day (1 April 2020-7 October 2021)",
    main="Covid weekly new cases for 179 countries")
    for(i in 2:179)
    points(1:555,covid21v[i,],type="l")</pre>
```

# Covid weekly new cases for 179 countries



Day (1 April 2020-7 October 2021)

```
# Constructing B-spline basis
bbasis100 <- create.bspline.basis(c(1,555),nbasis=100) #with p=100
fdcovid100 <- Data2fd(1:555,y=t(as.matrix(covid21v)),basisobj=bbasis100)
# Plot basis
plot(bbasis100)</pre>
```



```
par(mfrow = c(3,1), mar = c(2,2,2,2))
plotfit.fd(t(covid21v),1:555,fdcovid100,index=79,cex.pch=0.5, residual = TRUE)
```





plotfit.fd(t(covid21v),1:555,fdcovid100,index=164,cex.pch=0.5,residual= TRUE)



The residuals are scattered around zero, but their variance isn't constant over time. This means that there are potential violations of model assumptions.

### **Exercise 4b**

```
fdcovid <- Data2fd(1:555,y=t(as.matrix(covid21v)),basisobj=bbasis100)
covidpca <- pca.fd(fdcovid, nharm = 5)
plot(covidpca$harmonics) # PCs phi_k</pre>
```





```
# PCA scores

# Create functional data object of PCA approximations
mcovid <- mean.fd(fdcovid)

covidpcaapprox <- covidpca$harmonics
i <- 1
pcacoefi <- covidpca$harmonics$coefs %*% covidpca$scores[i,]+mcovid$coefs
covidpcaapprox$coefs <- pcacoefi
for (i in 2:179){
pcacoefi <- covidpca$harmonics$coefs %*% covidpca$scores[i,]+mcovid$coefs
covidpcaapprox$coefs <- cbind(covidpcaapprox$coefs, pcacoefi)
}
dimnames(covidpcaapprox$coefs)[[2]] <- covid21[,1]
plotfit.fd(t(covid21v),1:555,covidpcaapprox,index=79,cex.pch=0.5, residual = T)</pre>
```





plotfit.fd(t(covid21v),1:555,covidpcaapprox,index=69,cex.pch=0.5, residual = T)

# Haiti



plotfit.fd(t(covid21v),1:555,covidpcaapprox,index=164,cex.pch=0.5, residual = T)

US



Here the residuals are scattered around 0 and the magnitude of their variance seems constant over time. We can say that model assumptions are not violated.

### **Exercise 5**

```
covidpca1 <- pca.fd(fdcovid, nharm = 1)</pre>
anova_data <- cbind(covidpca1$scores, covid$continent)</pre>
anova_data <- as.data.frame(anova_data)</pre>
anova_data[,1] <- as.numeric(anova_data[,1])</pre>
colnames(anova_data) <- c("firstPC", "continent")</pre>
onewayanova <- aov(formula = firstPC ~ continent, data = anova data)
summary(onewayanova)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
                                      27.62 <2e-16 ***
                               4177
## continent
                  6 25062
## Residuals
                    26008
                172
                                151
## ---
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

There are significant differences among continents(p-value small).

```
library(ggplot2)
## Warning: il pacchetto 'ggplot2' è stato creato con R versione 4.2.3
ggplot(data = anova_data,
aes(continent,firstPC))+geom_boxplot()+geom_hline(yintercept = 0, col = "red")
```



Africa, Asia, Australia and Central America have mainly negative scores. Europe, North America, South America have more positive scores.