Problema

X1	X2	YD1	YD2	YR1	YR2	El1	El2	EP	ERMS
1	1	1	1	0	0	1	1	1	
1	0	0	0	1	1	0	1-	0,5	0,5
0	1	1	0	1	1	-1	0	0,5	
0	0	0	0	0	0	0	0	0	

Parámetros de entrada

numeroPatrones = 4

numeroSalidasDeseadas = 2

numeroSalidaRed = 2

numeroEntradas = 2

Configuración de la red

• Algoritmo de entrenamiento: Regla Delta

• Función de activación: Función Rampa

• Función de activación: Función Escalón

• Error máximo permitido: 0,15

Inicialización pesos sinápticos

• Para inicializar los pesos debemos conocer el tamaño de la matriz de peso (w)

 \circ w = numeroEntradas * numerosSalidas

w = 2 * 2 = 4

• Inicialización de los pesos decidido por el usuario entre -1,1

-1	-1		
-1	0		

Iniciar Entrenamiento

• Presentar primer patrón de entrada

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s1 = x_1 * w_{11} + x_2 * w_{21}$$

 $s1 = 1 * (-1) + 1 * (-1)$

$$s1 = -1 - 1 = -2$$

$$s2 = x_1 * w_{12} + x_2 * w_{22}$$

 $s2 = 1 * (-1) + 1 * (0)$
 $s2 = -1 + 0 = -1$

Aplicando la funcion de activacion rampa

$$YR1 = FA(-2)$$

$$YR2 = FA(-1)$$

$$YR1 = 0$$

$$YR2 = 0$$

o Calcular el error que produce la salida de la red

$$errorLineal1 = YD1 - YR1$$

$$errorLineal1 = 1 - 0 = 1$$

$$errorLineal2 = YD2 - YR2$$

$$errorLineal2 = 1 - 0 = 1$$

o Calcular el error producido en el patrón

$$EP = \frac{\sum ErroresLineales}{numeroSalidas}$$

$$EP = \frac{1+1}{2} = 1$$

- o Realizar ajuste de los pesos
 - Aplicamos la regla Delta

wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada

$$w11 = (-1) + 1 * 1 * 1$$

$$w21 = (-1) + 1 * 1 * 1$$

$$w11 = 0$$

$$w21 = 0$$

$$w12 = (-1) + 1 * 1 * 1$$

$$w22 = (0) + 1 * 1 * 1$$

$$w12 = 0$$

$$w22 = 1$$

Obtenemos la nueva matriz de peso

0	0	
0	1	

• Presentar segundo patrón de entrada

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s1 = x_1 * w_{11} + x_2 * w_{21}$$

 $s1 = 1 * (0) + 0 * (0)$
 $s1 = 0$

$$s2 = x_1 * w_{12} + x_2 * w_{22}$$

 $s2 = 1 * (0) + 0 * (1)$
 $s2 = 0$

Aplicando la funcion de activacion escalonada

$$YR1 = FA(0)$$

$$YR2 = FA(0)$$

$$YR1 = 1$$

 $YR2 = 1$

o Calcular el error que produce la salida de la red

$$errorLineal1 = YD1 - YR1$$

 $errorLineal1 = 1 - 1 = 0$

$$errorLineal2 = YD2 - YR2$$

 $errorLineal2 = 0 - 1 = -1$

o Calcular el error producido en el patrón

$$EP = \frac{\sum |ErroresLineales|}{numeroSalidas}$$

$$EP = \frac{0+1}{2} = 0,5$$

- Realizar ajuste de los pesos
 - Aplicamos la regla Delta

wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada

$$w11 = (0) + 1 * 0 * 1$$

$$w21 = (0) + 1 * 0 * 0$$

$$w11 = 0$$

$$w21=0$$

$$w12 = (0) + 1 * -1 * 1$$

$$w22 = (1) + 1 * -1 * 0$$

$$w12 = -1$$

$$w22 = 1$$

Obtenemos la nueva matriz de peso

0	-1
0	1

• Presentar tercer patrón de entrada

0 1

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s1 = x_1 * w_{11} + x_2 * w_{21}$$

 $s1 = 0 * (0) + 1 * (0)$
 $s1 = 0$

$$s2 = x_1 * w_{12} + x_2 * w_{22}$$

 $s2 = 0 * (-1) + 1 * (1)$
 $s2 = 1$

Aplicando la funcion de activacion escalonada

$$YR1 = FA(0)$$

$$YR2 = FA(1)$$

$$YR1 = 1$$

$$YR2 = 1$$

o Calcular el error que produce la salida de la red

$$errorLineal1 = YD1 - YR1$$

 $errorLineal1 = 0 - 1 = -1$

$$errorLineal2 = YD2 - YR2$$

$$errorLineal2 = 1 - 1 = 0$$

o Calcular el error producido en el patrón

$$EP = \frac{\sum Errores Lineales}{numeros alidas}$$

$$EP = \frac{1+0}{2} = 0.5$$

- o Realizar ajuste de los pesos
 - Aplicamos la regla Delta
 wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada

$$w11 = (0) + 1 * -1 * 0$$

$$w21 = (0) + 1 * -1 * 1$$

$$w11 = 0$$

$$w21 = -1$$

$$w12 = (-1) + 1 * 0 * 0$$

$$w22 = (1) + 1 * 0 * 1$$

$$w12 = -1$$

Obtenemos la nueva matriz de peso

0	-1	
-1	1	

w22 = 1

• Presentar cuarto patrón de entrada

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s1 = x_1 * w_{11} + x_2 * w_{21}$$

 $s1 = 0 * (0) + 0 * (-1)$
 $s1 = 0$

$$s2 = x_1 * w_{12} + x_2 * w_{22}$$

 $s2 = 0 * (-1) + 0 * (1)$
 $s2 = 0$

Aplicando la funcion de activacion rampa

$$YR1 = FA(0)$$

$$YR2 = FA(0)$$

$$YR1 = 0$$

$$YR2 = 0$$

o Calcular el error que produce la salida de la red

$$errorLineal1 = YD1 - YR1$$

 $errorLineal1 = 0 - 0 = 0$

$$errorLineal2 = YD2 - YR2$$

 $errorLineal2 = 0 - 0 = 0$

o Calcular el error producido en el patrón

$$EP = \frac{\sum Errores Lineales}{numero Salidas}$$

$$EP = \frac{0+0}{1} = 0$$

- Realizar ajuste de los pesos
 - Aplicamos la regla Delta
 wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada

$$w11 = (0) + 1 * 0 * 0$$

$$w21 = (-1) + 1 * 0 * 0$$

$$w11 = 0$$

$$w21 = -1$$

$$w12 = (-1) + 1 * 0 * 0$$

$$w22 = (1) + 1 * 0 * 0$$

$$w12 = -1$$

$$w22 = 1$$

Obtenemos la nueva matriz de peso

Se calcula el error RMS, también llamado error de iteración

$$ERMS = \frac{\sum erroresPatron}{numeroPatrones}$$

$$ERMS = \frac{1+0,5+0,5+0}{4}$$

ERMS =
$$\frac{2}{4}$$
 = 0,50

Si el ERMS ≥ al ErrorMaximoPermitido entonces

Termina el entrenamiento.

Sino se cumple la condición entonces

Siga con la siguiente iteración.