safeAI | checking logical models

ANNELINE DAGGELINCKX, MATTHIJS KEMP, and OTTO MÄTTAS, Utrecht University, The Netherlands

1 WEEK 8 ASSIGNMENTS

1.1 Defining Concurrent Epistemic Game Structures

Consider a CEGS $M_{chicken}$, where (Agt, St, Act, d, out) is a concurrent game structure, and \sim_a are indistinguishability relations over St, one per agent in Agt. We can now define the CEGS as a tuple

$$M_{chicken} = (\mathbb{A}gt, St, \sim_a | a \in \mathbb{A}gt, Act, d, out) \tag{1}$$

, where

- $Agt = \{a_1, a_2\}$
- St =
 - -q0 =in country where traffic is left
 - -q1 =in country where traffic is right
 - q2 =in country where traffic is left; a1 drives left; a2 drives left
 - q3 =in country where traffic is left; a1 drives left; a2 drives right
 - -q4 =in country where traffic is left; a1 drives right; a2 drives left
 - -q5 =in country where traffic is left; a1 drives right; a2 drives right
 - q6 =in country where traffic is right; a1 drives right; a2 drives right
 - q7 =in country where traffic is right; a1 drives right; a2 drives left
 - q8 =in country where traffic is right; a1 drives left; a2 drives right
 - -q9 =in country where traffic is right; a1 drives left; a2 drives left
- $\sim_a = \{\{q_0, q_1\}, \{q_3, q_8\}, \{q_4, q_7\}, \{q_2\}, \{q_5\}, \{q_6\}, \{q_9\}\}$
- $Act = \{drive_left, drive_right\}$
- $d(Agt, q_i) = \{drive_left, drive_right\}, \forall i \in \{0, ..., 9\}$
- out =
 - $out(q_0, left, left) = q_2$
 - $out(q_0, left, right) = q_3$
 - $out(q_0, right, left) = q_4$
 - $out(q_0, right, right) = q_5$
 - $-\ out(q_1, left, left) = q_9$
 - $out(q_1, left, right) = q_8$
 - $out(q_1, right, left) = q_7$
 - $out(q_1, right, right) = q_6$
- \bullet let the evaluations be V, where
 - $-V(crash) = \{q_3, q_4, q_5, q_7, q_8, q_9\}$
- $-V(left) = \{q_0, q_2, q_3, q_4, q_5\}$

As there is no proposition for taking action $drive_right$, we are evaluating q_6 implicitly.

1.2 Validating Concurrent Epistemic Game Structures

For the defined CEGS $M_{chicken}$, it is **untrue** that agent 1 has a memoryless strategy to enforce $\neg crash$ in the next state ($<<1>>X\neg crash$), starting from q0 because in q_0 , the only way to not crash is if both agents drive left. Agent a_1 itself cannot force this protocol on its own, agent a_2 needs to adhere to it as well.

- 1.3 3
- 1.4
- 1.5
- 16 6
- 1.7 7
- 1.8 8
- 1.9 9
- 1.10 10