Ed 3- Desures, tribus

Exo 1. Poit E un ensemble + Ø. 1.1. Post ACE, AFFIR AFE; Leterminer B({A}). Comme B(A) > {\psi, A, \in A, E} can B(A) tribu (>A).

Rieuproquement, B>A; danc, si Best une tribu, on autre

11 + 1 (at hout A) nécessairement 60 B(A) (qui est la plus jetite tribu contenant A).

(Oh) on a: $i) \phi \in \mathcal{G}$ ii) il est clair que 6 est stable par complémentaire (f, \phi = \earthightarrow \text{A} \earthightarrow \text{A} \earthightarrow \text{CA} = A \earthightarrow \text{CA} \) iii) comme la famille & contrent un nombre fini de parties, il suffit de montrer la stabilité par Neuhin de 2,3,4 éléments; en a: # Néwhion a 2: $\beta U A = A \in \mathcal{C}$) C_4 porsibilités $AUE = E \in \mathcal{C}$

* réunion = 3 (Cy = 4 possibilités): soit on prend E, et la néhhim vant EE B, sit on me prend pas Est on a publich = EEC * réunion à 4: ça donne (encore) E & B. 1.2. Prit F := [A,B,C] une partition de E; déterminer B(F). On a: E=AUBUC avec A, But C 2 2 2 disjointes: AMB=BMC=AMC=&

Vécessitement, B(F) > {\$\psi}, A,B,C, ^A, ^B, ^C, E}

Neuhion à 2 rélèments

De même pour les téchnions à 3 éléments: AUBUC = E & C AUBUC = AUB= C & C Pour les cas de néunier à 4 (sans prendre & m E) on obtient toujours EEB. Cest danc une tribe, et contient F: CDR(F). Donc B(A)= 8.

Rq: si on prend une partition An,..., An de E, on obtient plus généralement une tribu à 2^méléments:

 $\mathcal{B}(\mathcal{F}) \supset \{ \emptyset, A_{1}, A_{2}, \dots, A_{n}, A_{n} \}$ An UAZ, A, UAZ, ..., Am-n UAm, Meuhion à 0 Téunion téunion à l'éléments de 1 élément 2 éléments & pan construction, $F := \{A_1, \dots, A_m\}$ 6 3 \$, est stable ---, Anu...UAm-n,..., Azu...UAm, Anu...UAm par reuhin, et réunion à m-ni-léments la réunion à stable par complément $(f. C(A_N \cup A_2) = A_3 \cup ... \cup A_n)$ Et on a card $\mathcal{B}(f) = g^n$ can \mathcal{F} pantition $(= \sum_{k=0}^{\infty} C_n^k)$.

13. Sun 12, quelle est la tribu engendrée par A:= [[0,1[,[1,2],]2,3]}? On a: $\Box - \omega, \circ [\cup] \}, \omega [= ([\circ, \wedge [\cup [1, 2] \cup] 2,]))$ $\in \mathcal{B}(A)$ [0,3]Clairement $\mathcal{B}(A) = \mathcal{B}(A \cup \{1 - \infty, o[J]3, \infty[)\}$ $\longrightarrow \mathcal{B}(A)$ compte les 2 parties dévites au 1.2.

Exo 2 Soit (X, B) un espace mesurable, Soit A < X, est Soit $\chi_{A} = \Lambda_{A} : \chi \longrightarrow 1R$ indicative (on fonction $\chi_{A} = \Lambda_{A} : \chi \longrightarrow \chi_{A}(\chi_{A}) = \Lambda_{A} : \chi_{A} = \Lambda_{A} :$ fermi (= complémentaire) EBR

(T) Réciproquement, supposois
$$A \in \mathcal{B}$$
, it my $(+B \in \mathcal{B}_{|R|}): \mathcal{X}_{A}^{-1}(B) \in \mathcal{B}$ $(=:\{ccex|\mathcal{X}_{A}(a)\in B\})$ $(scex)(a)\in B$ $(sc$

Exo3. Soit f: X->Y, soit Bx trich sur X) et soit A = P(Y); ma + (Bx, B(A))_mesurche $(=)(\forall \mathcal{B} \in \mathcal{A}): f(\mathcal{B}) \in \mathcal{B}_{X}$ =)/ Evident (f, $B(A) \supset A$) (=/ mg $G := \{B \subset Y \mid \tilde{f}(B) \in B_X\}$ est une triba)

ii)
$$\hat{f}(\phi) = \phi \in \mathcal{B}_{x}$$
 (can \mathcal{B}_{x} tribu)

iii) \hat{s} int $\hat{B} \in \mathcal{B}$, my $\hat{f}(\hat{C}_{B}) \in \mathcal{B}_{x}$

On $\hat{f}(\hat{C}_{B}) = \hat{C}(\hat{f}^{-1}(\hat{G})) \in \mathcal{B}_{x}$ $\hat{f}(\hat{f}) \in \mathcal{B}_{x}$

iii) \hat{s} sout \hat{s}_{n} , \hat{s}_{n} , \hat{e} \hat{e} \hat{b}_{x} my \hat{b}_{n} \hat{c} \hat{b} \hat{c} \hat{b} \hat{c} \hat{b} \hat{c} \hat{b} \hat{c} \hat{b} \hat{c} \hat{b} \hat{c} \hat{c}

Doke Cest une tribu, par hypnothèse, CoA, donc $G \supset \mathcal{B}(A)$ (qui est le plus petite trichn contenent A). \Box $\hat{F}(x) \not\in B \\
\hat{F}(x) \not\in B \\
\hat{F}(x) \in B$ $\frac{1}{1} \int_{-1}^{1} (\beta) = \frac{1}{2} \times (x) + \frac{1$