Quiz 1 (bonus)	Numerical Analysis Fall 2023
Name:	NetID:
Do not begin until instructed. Circle your final answer.	
Problem 1. A matrix T is said to be tridiagonal	l if $[\mathbf{T}]_{i,j} = 0$ for all i, j where $ i - j > 1$.
Let A be a $n \times n$ tridiagonal matrix and D a $n \times n$ diagonal matrix. Prove that AD is tridiagonal.	
<i>Hint</i> : for $n \times n$ matrices $\mathbf{X}, \mathbf{Y}, [\mathbf{XY}]_{i,j} = \sum_{k=1}^{n} [\mathbf{X}]_{i,k} [\mathbf{Y}]_{k,j}$.	

Problem 2. Suppose that

$$\begin{bmatrix} \begin{vmatrix} & & | \\ \mathbf{x}_1 & \mathbf{x}_2 \\ | & & | \end{bmatrix} \begin{bmatrix} \pi & \mathbf{e} \\ \pi^2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} \begin{vmatrix} & & | & | & | \\ \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \\ | & & | & | \end{bmatrix} \begin{bmatrix} 8 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Compute the following:

a)
$$\begin{bmatrix} | & | \\ \mathbf{x}_1 & \mathbf{x}_2 \\ | & | \end{bmatrix} \begin{bmatrix} \pi - e \\ \pi^2 + 3 \end{bmatrix}$$
, b) $\begin{bmatrix} | & | & | & | & | \\ \mathbf{x}_1 & \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{x}_2 \\ | & | & | & | & | \end{bmatrix} \begin{bmatrix} \pi & 2e \\ 8 & 0 \\ 2 & 0 \\ -3 & 0 \\ -\pi^2 & -6 \end{bmatrix}$

a)

b)