EAIS: Energy-aware adaptive scheduling for DNN inference on high-performance GPU

提纲

研究背景 研究动机 调度算法 实验结果 总结

研究背景

- 深度学习推理
 - > 低延迟,高并发
 - > 具有复杂的应用要求
 - ➤ GPU能耗高

如何在推理阶段降低能耗?

提 纲

1	研究背景						
2		研究动机					
3		调度算法					
4		实验结果					
5		总结					
_							

Batching & DVFS

- ➤ Batching提高吞吐量 (Clipper, Nanily)
- ▶ DVFS降低GPU核心频率 (PIT)

如何协调batching和DVFS使得满足延迟要求的同时降低能耗?

●挑战

- ▶配置空间大
- 离线状态下考虑batch size和core frequency的多种组合。 (GPU V100具有187个core frequency级别。计算能力达到15.7 TFLOPS, 这就使得ResNet-50的batch size最大可达到1024)
- 不同GPU和DNN表现出的性能不同。

> 负载波动

• 在实际推理服务中,请求到达率是随机且突发。

➤ batching机制

- GPU没有被充分利用;
- · 增大GPU固定的能耗开销;

●目的

在推理调度阶段,满足延迟目标Service-Level Objectives (SLOs), 并最小化推理能耗。

$$\min \sum_{i=1}^{\infty} E_{batch}^{[i]}$$
 s.t. $L^{[i]} \leq L_{SLO}, i \in \mathbb{N}_{+}$

●方法

提出一种能量感知的自适应调度框架EAIS。EAIS由DNN inference profiler, asynchronous execution strategy, energy-aware scheduler组成。

提纲

研究背景 研究动机 调度算法 实验结果 总结

● 调度框架

- ➤ DNN Inference Profiler: 提供关于DNN模型的性能特征的有效信息。
- ➤ Asynchronous Execution Strategy: 使数据上传与GPU计算重叠。
- ➤ Energy-Aware Scheduler: 自适应批调度,使能耗最低。

Algorithm 1 Using the fitting method to complete the data

Input:

The sampling data of upload, GPU calculation, and energy per image, \tilde{T}_{upload} , $\tilde{T}_{calculate}$, \tilde{E}_{image} ;

Output:

Fitted value, \hat{T}_{upload} , $\hat{T}_{calculate}$, \hat{E}_{image} ; Energy efficiency, \hat{EE} ;

- 1: for each $b_i \in B$ do
- 2: Upload, GPU calculation and energy discrete data on core frequencies, $\tilde{T}_{upload,i}(f)$, $\tilde{T}_{calculate,i}(f)$, $\tilde{E}_{image,i}(f)$;
- 3: $\tilde{T}_{upload,i}(f)$ and $\tilde{T}_{calculate,i}(f)$ are fitted by Rational function curve, $\hat{T}_{upload,i}(f)$, $\hat{T}_{calculate,i}(f)$;
- 4: $\tilde{E}_{image,i}(f)$ is fitted by Fourier curve, $\hat{E}_{image,i}(f)$;
- 5: end for
- 6: Update F;
- 7: for each $f_i \in F$ do
- 8: Upload, GPU calculation and energy discrete data on batch sizes, $\tilde{T}_{upload,j}(b)$, $\tilde{T}_{calculate,j}(b)$, $\tilde{E}_{image,j}(b)$;
- 9: $T_{upload,j}(b)$ and $T_{calculate,j}(b)$ are fitted by least squares curve, $\hat{T}_{upload,j}(b)$, $\hat{T}_{calculate,j}(b)$;
- 10: $E_{image,j}(b)$ is fitted by Power function curve, $\hat{E}_{image,j}(b)$;
- 11: end for

- ➤ 在给定的batch size时
 - 有理数曲线拟合
 - **,**傅里叶曲线拟合

- ▶ 在给定的核心频率时
 - → 最小二乘曲线拟合
 - → 幂函数曲线拟合

Asynchronous Execution Strategy

➤ batch 填充

$$T_{fill} = \sum_{k=1}^{\infty} \frac{n_k}{R_{request,k}} \qquad b = \sum_{k=1}^{\infty} n_k$$

• 请求速率稳定时

$$T_{fill} = \frac{b}{R_{request}}$$

▶ 满足延迟要求的最大请求速率和batch size

$$\begin{cases} T_{\mathit{fill}} \geq T_{\mathit{calculate}} \\ T_{\mathit{fill}} + T_{\mathit{upload}} + T_{\mathit{calculate}} \leq L_{\mathit{SLO}} \end{cases}$$
 其中,
$$\begin{cases} T_{\mathit{fill}} = \frac{b}{R_{\mathit{request}}} \\ T_{\mathit{upload}} = \alpha_{\mathit{upload}} b + \beta_{\mathit{upload}} \\ T_{\mathit{calculate}} = \alpha_{\mathit{calculate}} b + \beta_{\mathit{calculate}} \end{cases}$$

➤ **DVFS**开销

DVFS的时间开销为23~26μs

GPU M40的核心频率从532MHz变成595MHz

Energy-Aware Scheduler

贪心标准:
$$EE = \frac{Throughput}{\overline{P}}$$
 其中,
$$\begin{cases} Throughput = \frac{b}{t} \\ \overline{P} = \frac{E_{batch}}{t} \end{cases}$$
 $EE = \frac{b}{E_{batch}} = \frac{1}{E_{image}}$

```
Algorithm 2 Adaptive-batching scheduling
                                                                                15: E_{batch} \leftarrow b^{[i]}, f^{[i]};
Input:
                                                                                16: E_{total} + = E_{batch};
  Request queue, q;
                                                                                       for j=1 To j \leq b^{[i]} do
  Latency SLO, L_{SLO};
                                                                                       q.pop();
                                                                                18:
Output:
                                                                                       end for
                                                                                19:
  Total energy consumption, E_{total};
                                                                                       i++;
                                                                                20:
 1: batch index, i = 1;
                                                                                21: end while
 2: while True do
 3: if i = 1 then
          b^{[i]}, f^{[i]} = \underset{b, f}{\operatorname{argmax}} (EE^{[i]}) s.t. \max[(T_{upload}^{[i-1]} + \longrightarrow \text{lt} \text{//} i>1
T_{calculate}^{[i-1]}), (T_{fill}^{[i]} + T_{upload}^{[i]})] + T_{calculate}^{[i]} \leq
          L_{SLO};
         if b^{[i]} < 1 then
          return 0;
 8:
         else if b^{[i]} < len(q) then
        b^{[i]} = q.size();

f^{[i]} = argmaxEE^{[i]}(b^{[i]} = q); 最后的批次
10:
11:
         return 1;
12:
          end if
13:
       end if
14:
```

提纲

研究背景 研究动机 调度算法 实验结果 总结

● 实验环境

GPU: M40, V100

➤ **DNN Model:** ResNet-50, Inception-v3

> Platform: TensorRT

➤ **SLO setting**: 200~500ms (200为默认值)

➤ Workload: SogouQ, WiKi, Dynamic

● 满足SLO同时降低能耗

Table The total energy consumption (x10⁴J) under different workloads.

GPUs	Networks	SogouQ		WiKi			Dynamic			
		Clipper	Nanily	EAIS	Clipper	Nanily	EAIS	Clipper	Nanily	EAIS
M40	ResNet-50	15.647	14.846	12.201	20.077	19.070	15.669	16.183	15.366	12.629
	Inception-v3	20.247	19.205	15.204	26.004	24.697	19.553	20.955	19.880	15.739
V100	ResNet-50	7.567	7.155	5.447	9.576	9.071	6.907	7.814	7.388	5.625
	Inception-v3	9.768	9.22	7.202	12.285	11.627	9.086	10.075	9.511	7.432

- □ EAIS可以降低总能耗17.82%~28.02%;
- EAIS
 - ▶ 低负载时,使用较低的核心频率降低能耗;
 - ▶ 高负载时,使用较高的核心频率减小GPU的计算时间;
- □ Clipper和Nanily使用最高核心频率;

> ResNet-50, M40

● 深入EAIS

▶ 稳定请求速率&能耗

- 当请求速率较小时,四种调度算法的能耗趋势相似。EAIS节省能耗17.29% (Clipper),
 13.68% (Nanily), 2% (EAIS- Synchronous)。
- 当请求速率较大时,与Clipper和Nanily相比, EAIS将吞吐量分别提高了8.33%和5.05%。
- Nanily与EAIS-Synchronous的最大吞吐量是一致的(点B)。

● SLO对能耗的影响

- 延迟为200ms的能耗最高,500ms的能耗 最低。
- 随着延迟SLO的增大,能耗先降低然后 趋于平缓。

提纲

研究背景 研究动机 调度算法 实验结果 总结

总结

- ▶EAIS可以将能耗降低多达28.02%, 同时满足延迟SLO;
- ➤ EAIS在不同的延迟SLO约束下也具有良好的通用性。

谢谢!