

NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2019

WISKUNDE: VRAESTEL I

NASIENRIGLYNE

Tyd: 3 uur 150 punte

Hierdie nasienriglyne word voorberei vir gebruik deur eksaminatore en subeksaminatore, almal van wie vereis word om 'n standardiseringsvergadering by te woon om te verseker dat die riglyne konsekwent geïnterpreteer en toegepas word in die nasien van kandidate se skrifte.

Die IEB sal nie enige besprekings of korrespondensie rakende die nasienriglyne aangaan nie. Dit word erken dat daar verskillende sienings oor sekere sake van belang of detail in die nasienriglyne mag wees. Dit word ook erken dat, sonder die voordeel van die bywoning van 'n standardiseringsvergadering, daar verskillende interpretasies van die toepassing van die nasienriglyne mag wees.

LET WEL:

- Indien 'n leerder 'n vraag meer as een keer beantwoord, sien slegs die EERSTE poging na.
- Deurlopende akkuraatheid geld vir alle aspekte van die nasienmemorandum.

AFDELING A

VRAAG 1

(a)(1)	$2(-2)^2 + (-2) + k = 0$	korrekte vervanging van –2
	8-2+k=0	<i>k</i> = −6
	k = -6	
(a)(2)	$\therefore 2x^2 + x - 6 = 0$	Faktore/korrek vervang in
	(2x-3)(x+2)=0	formule
	\therefore Ander wortel is $\frac{3}{2}$	3
	2	$\frac{3}{2}$
(b)(1)	$x-2=3\sqrt{x+2}$	Isoleer wortelvorm
	- •	x^2-4x+4
	$\left(x-2\right)^2 = \left(3\sqrt{x+2}\right)^2$	9(x+2)
	$x^2 - 4x + 4 = 9(x+2)$	$x^2 - 13x - 14$
	$x^2 - 13x - 14 = 0$	faktore
	(x-14)(x+1)=0	antwoord met seleksie
	x = 14 of $x = -1$	
	Kontroleer: $x = -1$ is nie geldig nie	
(b)(2)	$x^2-x-6\leq 0$	
	$(x-3)(x+2)\leq 0$	Faktore/kritieke waardes
	Kritieke waardes: 3; –2	Getallelyn/grafiek
	2	Cotalioly 1/1/ granick
	4-3-2-1 1 2 8 4 5	<i>x</i> ≥ −2
	+ 1 - 1 +	
	-2 3	<i>x</i> ≤ 3
	6	
	Oplossing: $-2 \le x \le 3$	

(a)	$A = P(1+i)^n$	Vervang P in korrekte
		formule
	$A = 12349 \left(1 + \frac{0,123}{52}\right)^{1}$	0,123
	A = R12 378,21	52 n=1
(b)	$\begin{bmatrix} 1 - (1+i)^{-n} \end{bmatrix}$	
	$P = x \left[\frac{1 - (1+i)^{-n}}{i} \right]$	0,123
	$\begin{bmatrix} (0.133)^{-52n} \end{bmatrix}$	52
	$1 - \left(1 + \frac{0.123}{52}\right)$	Konnoldo Don vin konnoldo
	$12349 = 94,75 \left[\frac{1 - \left(1 + \frac{0,123}{52}\right)^{-52n}}{\frac{0,123}{52}} \right]$	Korrekte <i>P</i> en <i>x</i> in korrekte formule
	52	
	$0,6917 = (1,00236)^{-52n}$	Skakel om na logaritmes
	$\log_{1,00236} 0,6917 = -52n$	
	n≈3 jaar	antwoord
(c)	A = P(1 - in)	P=12349
	$A = 12349(1-0.2\times2)$	0,2×2
	A = 7409,40	antwoord
(d)	Saldo uitstaande = $A - F$	Gebruik korrekte formule
	$94,75 \left \left(1 + \frac{0,123}{50} \right)^{2.52} - 1 \right $	Gebruik korrekte formule
	$=12349\left(1+\frac{0{,}123}{52}\right)^{2\times52}-\frac{94{,}75\left[\left(1+\frac{0{,}123}{52}\right)^{2\times52}-1\right]}{\underline{0{,}123}}$	n = 104 in A–F-formule
	52 = 15 788,54384 – 11 156,97628	94,75
	= R4 631,57	. 123
	Verminderde bedrag = R7 409,40	koers $\frac{720}{5200}$
	-	Antwoord
	Dus sal dit genoeg wees.	Antwoord
	OF	Gevolgtrekking
	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	Korrekte Py-formule
	, (0.133) ⁻⁵²]	94,75 in P-formule
	$P = \frac{94,75\left[1 - \left(1 + \frac{0,123}{52}\right)^{-52}\right]}{0,123}$	$n \approx 52$ in formule
	$\frac{0,123}{52}$	123
	52	koers $\frac{120}{5200}$
	P = R4 630,90	Antwoord
	Verminderde bedrag = R7 409,40	Gevolgtrekking
	Dus sal dit genoeg wees.	

		T
(a)(1)	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$-5(x+h)^2+(x+h)$
	$f'(x) = \lim_{h \to 0} \frac{-5(x+h)^2 + (x+h) - (-5x^2 + x)}{h}$	Kuradnanin sa ara wa alakira sa
	$f'(x) = \lim_{h \to 0} \frac{-5(x^2 + 2xh + h^2) + x + h + 5x^2 - x}{h}$	Kwadrering en verdeling
	$f'(x) = \lim_{h \to 0} \frac{-5x^2 - 10xh - 5h^2 + x + h + 5x^2 - x}{h}$	Faktorisering
	$f'(x) = \lim_{h \to 0} \frac{h(-10x - 5h + 1)}{h}$	notasie
	••	
	$f'(x) = \lim_{h \to 0} (-10x - 5h + 1)$ = -10x + 1	Vervang met 0 om -10x + 1 te kry
	OF	
	$f(x+h) = -5(x+h)^2 + (x+h)$	
	$f(x+h) = -5(x^2 + 2xh + h^2) + x + h$	
	$f(x+h) = -5x^2 - 10xh - 5h^2 + x + h$	$-5(x+h)^2+(x+h)$
	$f(x+h)-f(x) = -5x^2-10xh-5h^2+x+h-(-5x^2+x)$	Kwadrering en verdeling
	$f(x+h)-f(x) = -10xh-5h^2+h$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	Faktorisering
	• • • • • • • • • • • • • • • • • • • •	Notasie
	$f'(x) = \lim_{h \to 0} \frac{h(-10x - 5h + 1)}{h}$	Notasie
	$f'(x) = \lim_{h \to 0} (-10x - 5h + 1)$	Vervang met 0 om
	=-10x+1	-10x + 1 te kry
(a)(2)	By: $x = 1$, $f'(1) = -10(1) + 1$ f'(1) = -9	f'(1) = -9
	. (),	
		1 5 1 1 11 11 1
	∴ Vergelyking van raaklyn: $y = -9x + c$	Bereken <i>y</i> -koördinaat van
	Vervang: (1; -4)	Bereken <i>y</i> -koordinaat van -4
	Vervang: $(1; -4)$ -4 = -9(1) + c	
	Vervang: $(1; -4)$ -4 = -9(1) + c c = 5	-4
	Vervang: $(1; -4)$ -4 = -9(1) + c c = 5 ∴ $y = -9x + 5$	-4
	Vervang: $(1; -4)$ -4 = -9(1) + c c = 5	-4 Antwoord
	Vervang: $(1; -4)$ -4 = -9(1) + c c = 5 $\therefore y = -9x + 5$	-4
	Vervang: $(1; -4)$ -4 = -9(1) + c c = 5 $\therefore y = -9x + 5$ OF By: $x = 1$, $f'(1) = -10(1) + 1$ f'(1) = -9 Vervang: $(1; -4)$	-4Antwoordf'(1) = −9Bereken <i>y</i>-koördinaat van
	Vervang: $(1; -4)$ -4 = -9(1) + c c = 5 $\therefore y = -9x + 5$ OF By: $x = 1$, $f'(1) = -10(1) + 1$ f'(1) = -9	-4 Antwoord $f'(1) = -9$

(b)(1)	$y = \frac{x^3 + x^{\frac{3}{2}}}{x}$	
	\mathbf{x} \mathbf{x} \mathbf{y}^3 $\mathbf{y}^{\frac{3}{2}}$	
	$y = \frac{x^3}{x} + \frac{x^{\frac{3}{2}}}{x}$ $y = x^2 + x^{\frac{1}{2}}$	χ^2
	$y = x^2 + x^{\overline{2}}$	$\frac{1}{X^2}$
	$\frac{dy}{dx} = 2x + \frac{1}{2}x^{-\frac{1}{2}}$	
	$\frac{dy}{dx} = 2x + \frac{1}{2\sqrt{x}}$	2x
(h)(0)	,	$\frac{1}{2}x^{-\frac{1}{2}}$
(b)(2)	$D_{x}\left[\frac{(2x-3)(4x^{2}+6x+9)}{(4x^{2}+6x+9)}\right]$	$(2x-3)(4x^2+6x+9)$
	$D_{x}(2x-3)$	$D_x(2x-3)$
	= 2	= 2

(4)(a)	$T_n = a + (n-1)d$	
() ()		d = 4
	$T_n = 5 + (n-1)(4)$ $T_n = 4n + 1$	$d = 4$ $T_n = 4n + 1$
	n	$I_n = 4n + 1$
	100 = 4n + 1	$T_n = 100$
	4n = 99	<i>T_n</i> = 100
	$n = 24\frac{3}{4}$	Antwoord
	4	
	24 pentagone	
(b)(1)	$T_1 = 3$ en $T_n = 47$	
	$S_n = 300$	
	$S_n = 300$ $S_n = \frac{n}{2}(a+1)$ $300 = \frac{n}{2}(3+47)$	Korrekte formule
	$300 = \frac{n}{2}(3+47)$	$300 = \frac{n}{2}(3+47)$
	n = 12	Antwoord
(b)(2)	$T_n = a + (n-1)d$	Korrekte formule
	47 = 3 + 11d	47 = 3 + 11 <i>d</i> Antwoord
(c)	d = 4	Antwoord
(0)	Reeks: $\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$	Ontwikkeling
	1 0 10	
	$r = \frac{1}{2}$, konvergerende reeks	1
	2	$r=\frac{1}{2}$
	a	
	$S_{\infty} = \frac{a}{1-r}$; $-1 < r < 1$	
	1	Korrekte formule
	$S_{\infty} = \frac{4}{1}$	
	$\int_{0}^{\infty} 1 - \frac{1}{2}$	
	2	Anturand
	$S_{\infty} = \frac{1}{2}$	Antwoord
(d)	T_5 T_7	
	$S_{\infty} = \frac{1}{2}$ $\frac{T_5}{T_3} = \frac{T_7}{T_5}$	Stel verhoudings gelyk
	$\frac{4}{2} = \frac{1}{4}$	Korrekte vervanging
	5 <i>p</i> +1 4	
	p=3	Antwoord
	1	, u.c. 10010

(a)	50	50
(b)	2a = -4 $3a + b = 18$ $a + b + c = 2$	Bepaal verskille
	a = -2 $3(-2) + b = 18$ $(-2) + 24 + c = 2$	<i>a</i> = −2
	b = 24 $c = -20$	b = 24
		<i>c</i> = –20
	$T_n = -2n^2 + 24n - 20$	
	OF	
	2a = -4 a = -2	
	$T_n = -2n^2 + bn + c$	Bepaal verskille a = -2
	$T_1: -2+b+c=2 : b+c=4 : verg. 1$	b = 24 $c = -20$
	T_2 : $-8+2b+c=20$:: $2b+c=28$ verg. 2	
	$T_2 - T_1$: $b = 24$	
	Vervang in verg. 1: $24 + c = 4$ \therefore $c = -20$	
	$T_n = -2n^2 + 24n - 20$	
	OF	
	$T_n = T_2(n-1) - T_1(n-2) + \frac{(n-1)(n-2)}{2} \times (2^{de} \text{ verskil})$	Bepaal verskille a = -2
	$T_n = 20(n-1) - 2(n-2) + \frac{(n-1)(n-2)}{2} \times (-4)$	b = 24 $c = -20$
	$T_n = 20n - 20 - 2n + 4 - 2(n^2 - 3n + 2)$	0 - 20
	$T_n = 20n - 20 - 2n + 4 - 2n^2 + 6n - 4$	
	$T_n = -2n^2 + 24n - 20$	

(-)	T 0 2 04 00	Dencel
(c)	$T_n = -2n^2 + 24n - 20$	Bepaal n
	$T_n = -2(n^2 - 12n + 10)$	<i>n</i> = 6
	$T_n = -2\Big[\big(n-6\big)^2 - 26\Big]$	
	$T_n = -2(n-6)^2 + 52$	Antuo and
	Maksimum passasiers is 52	Antwoord
	OF	
	$T_n' = -4n + 24$	Bepaal n
	-4n + 24 = 0	<i>n</i> = 6
	<i>n</i> = 6	
	Vervang $n=6$	
	$T_n = -2(6)^2 + 24(6) - 20$	Antwoord
	$T_6 = 52$	
(1)	Maksimum passasiers is 52	
(d)	Laat $n = 12$ stoppe	
	$T_{12} = -2(12)^2 + 24(12) - 20$	
	$T_{12} = -20$	Vervanging
	Ongeldig vanweë negatiewe antwoord	Verduideliking
	OF	
	$-2n^2 + 24n - 20 \ge 0$	
	Passasiers moet ≥0 wees	
	Kritieke waardes: $6 \pm \sqrt{26}$	Vervanging Verduideliking
	•	Volddideliking
		
	0,9 + 11.09	
	Dus $0,9 \le n \le 11,09$	

AFDELING B

VRAAG 6

(a)	f(x) > g(x) vir 0 < x < 3	x > 0
		<i>x</i> < 3
(b)	$g(x) = \log_a x$ vervang (3;1)	Vervanging
	$1 = \log_a 3$	Antwoord
	a = 3	
	$f(x) = \sqrt{kx}$ vervang (3;1)	
	$1=\sqrt{3k}$	Vervanging
	$(1)^2 = \left(\sqrt{3k}\right)^2$	
	$k=\frac{1}{3}$	Antwoord
(c)	$f: y = \sqrt{\frac{1}{3}x}$ $f^{-1}: x = \sqrt{\frac{1}{3}y}$ $x^{2} = \frac{1}{3}y$	Verander x en y
	$f^{-1}: x = \sqrt{\frac{1}{3}y}$	
	$x^2 = \frac{1}{3}y$	
	$y = 3x^2$ vir $x \ge 0$	$y = 3x^2$
		Definisiegebied: $x \ge 0$

(a)(1)	$\left(2x-1\right)^2\geq 0$	Antwoord
(a)(2)	28 T Y	Vorm Draaipunt $\left(\frac{1}{2};5\right)$ y-afsnit: $(0;6)$
(a)(3)	Skuif 5 eenhede af	Antwoord
(a)(4)	Skuif 5 eenhede af $(2x-1)^2 = k$	
	$4x^2 - 4x + (1-k) = 0$	Vervang in formule
	$4x^{2} - 4x + (1 - k) = 0$ $x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(4)(1 - k)}}{2(4)}$	$x = \frac{1 \pm \sqrt{k}}{2}$
	2(4)	
	$x = \frac{4 \pm \sqrt{16k}}{8}$	<i>k</i> ≥ 0
	$x = \frac{4 \pm \sqrt{16k}}{8}$ $x = \frac{4 \pm 4\sqrt{k}}{8}$ $x = \frac{1 \pm \sqrt{k}}{2}$ Wortels is reëel vir $k \ge 0$	
	\mathbf{OF} $(2x-1)^2 = k$	Vervang in formule
	$4x^2 - 4x + (1 - k) = 0$	$x = \frac{4 \pm \sqrt{16k}}{8}$
	$4x^{2} - 4x + (1 - k) = 0$ $x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(4)(1 - k)}}{2(4)}$ $x = \frac{4 \pm \sqrt{16k}}{8}$	$\frac{x-\sqrt{8}}{8}$ $16k \ge 0 : k \ge 0$
	$x = \frac{4 \pm \sqrt{16K}}{8}$	
	Wortels is reëel vir $16k \ge 0$: $k \ge 0$	
	OF	
	$\left(2x-1\right)^2=k$	$2x-1=\pm\sqrt{k}$ $x=\frac{1\pm\sqrt{k}}{2}$
	$2x-1=\pm\sqrt{k}$	$X = \frac{1 + \sqrt{N}}{2}$
	$(2x-1)^{2} = k$ $2x-1 = \pm \sqrt{k}$ $x = \frac{1 \pm \sqrt{k}}{2}$	$k \ge 0$
	Wortels is reëel vir $k \ge 0$	

		·
(a)(5)	$y = 4x^2 - 4x + (1+k)$	
	Vir reëel, ongelyk en rasionaal, $\Delta > 0$ en volkome vierkant	
	$\Delta = (-4)^2 - 4(4)(1+k)$ $\Delta = -16k$	$\Delta = -16k$
	$\therefore k = -1, \ k = -\frac{1}{4}, \ k = -\frac{1}{16} \text{ ens.}$	akkurate waarde van <i>k</i> akkurate waarde van <i>k</i> akkurate waarde van <i>k</i>
	OF	
	$y = 4x^2 - 4x + (1+k)$. 2
	Los op vir $4x^2 - 4x + (1+k) = 0$ deur probeer en tref: Wanneer $k = -1$: wortels is reëel, rasionaal en	$4x^2 - 4x + (1+k) = 0$ akkurate waarde van k
	ongelyk Wanneer $k = -4$: wortels is reëel, rasionaal en	akkurate waarde van k
	ongelyk, ens.	akkurate waarde van k
(b)	$px^2 + qx + \underline{r} = 0$	
	$X = \frac{-q \pm \sqrt{q^2 - 4pr}}{2p}$	
	$\therefore P = \frac{-q + \sqrt{q^2 - 4pr}}{2p}$ $x = \frac{-q \pm \sqrt{q^2 - 4pr}}{2}$	$P = \frac{-q + \sqrt{q^2 - 4pr}}{2p}$
	$x = \frac{-q \pm \sqrt{q^2 - 4pr}}{2}$	2ρ
	$\therefore Q = \frac{-q + \sqrt{q^2 - 4pr}}{2}$	$Q = \frac{-q + \sqrt{q^2 - 4pr}}{2}$
	Vir: P:Q	2
	$\frac{1}{p} \left[\frac{-q + \sqrt{q^2 - 4pr}}{2} \right] : 1 \left[\frac{-q + \sqrt{q^2 - 4pr}}{2} \right]$	
	Verhouding: $\frac{1}{p}$:1	
	OF	Antwoord
	Verhouding: 1: p	

(a)(1)	$y = a(x - x_1)(x - x_2)(x - x_3)$	Formule
	$y = a(x+3)(x+3)\left(x-\frac{1}{2}\right)$	Vervanging van afsnitte
	Vervang: (0;9) a = -2	Vervanging van (0;9)
	$y = -2(x+3)^2 \left(x-\frac{1}{2}\right)$	<i>a</i> = −2
	$y = -2\left(x - \frac{1}{2}\right)\left(x^2 + 6x + 9\right)$	
	$y = -2\left(x^3 + 6x^2 + 9x - \frac{1}{2}x^2 - 3x - 4\frac{1}{2}\right)$	Antwoord toon a,b,c en d
	$y = -2\left(x^3 + 5\frac{1}{2}x^2 + 6x - 4\frac{1}{2}\right)$ $y = -2x^3 - 11x^2 - 12x + 9$	
	$y = -2x^2 - 11x^2 - 12x + 9$	
	y = a(x+3)(x+3)(2x-1)	Formule Vervanging van afsnitte Vervanging van (0;9)
	Vervang: (0;9) a = -1	a = -1
	y = -1(x+3)(x+3)(2x-1) $y = -1(x^2+6x+9)(2x-1)$	
	$y = -1(2x^{3} + 12x^{2} + 18x - x^{2} - 6x - 9)$ $y = -1(2x^{3} + 11x^{2} + 12x - 9)$ $y = -2x^{3} - 11x^{2} - 12x + 9$	Antwoord toon a,b,c en d
(a)(2)	$f(x) = -2x^3 - 11x^2 - 12x + 9$ $f'(x) = -6x^2 - 22x - 12$ f''(x) = -12x - 22	$f'(x) = -6x^2 - 22x - 12$
	$ \begin{array}{l} 7(x) = -12x - 22 \\ -12x - 22 = 0 \\ x = -\frac{11}{6} \end{array} $	$f''(x) = -12x - 22$ $x = -\frac{11}{6}$
(b)	f'(x)=8	$\frac{6}{f'(x)=8}$
	$-6x^{2} - 22x - 12 = 8$ $-6x^{2} - 22x - 20 = 0$	<i>x</i> = −2
	$x = -\frac{5}{3}$ of $x = -2$	<i>y</i> = 5
	E(-2;5)	

(c)	$y = \frac{2}{x+p} + q$	
	p=3	
	$y = \frac{2}{x+3} + q$ vervang (-2;5)	<i>x</i> + 3
	$5 = \frac{2}{-2+3} + q$	Vervanging
	q=3	q=3
	$\therefore y = \frac{2}{x+3} + 3$ $y = x+6$	
(d)	y = x + 6	y = x $y = x + 6$
		y = x + 0
	OF	
	Lyn gaan deur (-3;3)	(-3;3) $y = x + 6$
	y = x + c vervang (-3;3)	y=x+6
	$\therefore y = x + 6$	
(e)	$\left(-\infty;-3\right)\cup\left[-2;0\right]$	$(-\infty;-3)$
		() vanweë asimptoot
		[-2;0]
(f)	$h(x) - k = -2x^3 - 11x^2 - 12x + 9$	
	Vir h: y-afsnit (0;9)	y-afsnit (0;9)
	Vir $g: y$ -afsnit $\left(0; \frac{11}{3}\right)$	y-afsnit $\left(0, \frac{11}{3}\right)$ $k < -\frac{16}{3}$
	$k < -\frac{16}{3}$	$k < -\frac{16}{3}$

$$V = \pi r^{2}h + \frac{4}{3}\pi r^{3}$$

$$1000 = \pi r^{2}h + \frac{4}{3}\pi r^{3}$$

$$\pi r^{2}h = 1000 - \frac{4}{3}\pi r^{3}$$

$$h = \frac{1}{\pi r^{2}} \left(1000 - \frac{4}{3}\pi r^{3}\right) \quad \dots \text{Verg. 1}$$

Totale buiteopp (S) = Buiteopp silinder + Buiteopp sfeer

$$S = 2\pi r h + 4\pi r^2 \quad \text{ Vervang verg. 1}$$

$$S = 2\pi r \left[\frac{1}{\pi r^2} \left(1000 - \frac{4}{3}\pi r^3 \right) \right] + 4\pi r^2$$

$$S = \frac{2}{r} \left(1000 - \frac{4}{3}\pi r^3 \right) + 4\pi r^2$$

$$S = 2000r^{-1} - \frac{8}{3}\pi r^2 + 4\pi r^2$$

$$S = 2000r^{-1} + \frac{4}{3}\pi r^2$$

$$\frac{dS}{dr} = -2000r^{-2} + \frac{8}{3}\pi r$$
$$\frac{8\pi r}{3} - \frac{2000}{r^2} = 0$$

$$8\pi r^3 - 6000 = 0$$
$$r^3 = \frac{6000}{9}$$

 $r \approx 6.2$ vir buiteoppervlakte om 'n minimum te wees

$$V = \pi r^2 h + \frac{4}{3} \pi r^3$$

Maak *h* onderwerp van formule

$$h = \frac{1}{\pi r^2} \left(1000 - \frac{4}{3} \pi r^3 \right)$$

$$S = 2\pi r h + 4\pi r^2$$

$$2000r^{-1} + \frac{4}{3}\pi r^{2}$$

$$\frac{dS}{dr} = -2000r^{-2} + \frac{8}{3}\pi r$$

Antwoord

(a)	10!	10!
	5!×2!×3!	<u> </u>
		[]
	= 2 520	<u>5!×2!×3!</u>
		Antwoord
(b)(1)	$P(\text{nie gepluk nie}) = 0.3 \times 0.65$	0,3 en 0,65
	= 0,195	Vermenigvuldiging v bg.
		Antwoord
(b)(2)	P(verwerk tot sap)	Dui 0,6 of 60% aan
	$=(0,7\times0,6)+(0,3\times0,35\times0,6)$	$(0,7\times0,6)$
	= 0,483	$(0,3\times0,35\times0,6)$
	∴ Ongeveer 48,3% sal tot sap verwerk word	0,483
	OF	
	P(verwerk tot sap)	Dui 0,6 of 60% aan
	$=(1-0,195)\times0,6$	(1-0,195)
	= 0,483	$(1-0,195)\times0,6$
	Ongeveer 48,3% sal tot sap verwerk word	0,483

Getal lemoene uitgevoer = 120×172 = 20 640	20 640
P(uitgevoer) = $(0,7 \times 0,09) + (0,3 \times 0,35 \times 0,09)$ = 0,07245 ∴ 7,245% uitgevoer	$(0,7\times0,09)$ $(0,3\times0,35\times0,09)$
Laat getal lemoene = x $\frac{20 640}{x} \times 100 = 7,245$ $\therefore x = 284 886 \text{ lemoene in totaal}$	Antwoord
OF	
Getal lemoene uitgevoer = 120×172 = 20 640	20 640
P(uitgevoer) = (1-0,195)×0,09 = 0,07245 ∴ 7,245% uitgevoer	(1-0,195) (1-0,195)×0,09
Laat getal lemoene = x $\frac{20640}{x} \times 100 = 7,245$ $\therefore x = 284886 \text{ lemoene in totaal}$	Antwoord
	= 120×172 = 20 640 P(uitgevoer) = (0,7×0,09)+(0,3×0,35×0,09) = 0,07245 ∴ 7,245% uitgevoer Laat getal lemoene = x $\frac{20 640}{x}$ ×100 = 7,245 ∴ x = 284 886 lemoene in totaal OF Getal lemoene uitgevoer = 120×172 = 20 640 P(uitgevoer) = (1-0,195)×0,09 = 0,07245 ∴ 7,245% uitgevoer Laat getal lemoene = x $\frac{20 640}{x}$ ×100 = 7,245

Totaal: 150 punte