醇和醚

第一节 醇

一、醇的定义、结构及物理性质

定义	烃分子中的一个或多个氢原子被羟基取代生成的化合物称为醇(alcohl)。醇的通式为 ROH, 羟基是醇的官能团				
结 料 整基直接与饱和碳原子相连,C-0键、0-H键均具有较强极性					
物理性质	性状	低级一元饱和醇为无色液体,高级醇室温下为固体;醇分子间能形成氢键, 因此醇的沸点较相近相对分子质量的烷烃明显偏高;醇能与水分子形成氢键, 因此醇具有较好的水溶性。低级醇能与 CaCl ₂ 、MgCl ₂ 等无机盐形成配合物			
	波谱性质	IR:游离 O — H 伸缩振动 3650 ~ 3500cm ⁻¹ 尖峰,形成氢键后波长降低,峰形变宽。C — O 伸缩振动 1260 ~ 1000cm ⁻¹			

二、醇的分类和命名

分	分类 结构特点 命名实例				
按	一元	含一个	CH ₃ CH ₂ OH	СН ₂ =СНСН ₂ ОН	CH ₂ OH
羟基的	醇	羟基	乙醇 ethanol	烯丙醇 allyl alcohol	苯甲醇(苄醇) benzyl alcohol
数目	二元醇	含两个 羟基		CH ₂ —CH ₂ OH OH 乙二醇(glycol)	

分	类	结构特点	命名实例
按羟基的数目	多元醇	含三个或 三个以上 羟基	CH ₂ —CH—CH ₂
按烃基的种类	伯醇	羟基与 伯碳相连	CH ₃ CHCH ₂ OH CH ₃ CHCH ₂ CHCHCH ₃ CH ₃ CHCH ₂ CHCHCHCH ₃ CH ₃ OH 2-甲基-1-丙醇 3,5-二甲基-2-己醇 3,5-dimethyl-2-hexanol
	仲醇	羟基与 仲碳相连	OH CH ₃ CHCH ₃ OH OH CHCH ₃ 异丙醇 环己醇 1-苯基乙醇 isopropylalcohol cyclohexanyl alcohol 1-phenyl ethanol
	叔醇	羟基与 叔碳相连	OH CH ₃ —C—CH ₃ CH ₃ —C—CH ₂ —CH ₂ CH ₃ 起丁醇 tert-butyl alcohol

三、醇的化学性质

	与碱金属反应:	反应活性: 甲醇>伯醇>仲醇>叔醇
醇的酸性	与其他活泼金属反应: $ 2ROH + Mg \xrightarrow{I_2} (RO)_2 Mg + H_2 \uparrow \\ 3ROH + Al \longrightarrow (RO)_3 Al + 3/2 H_2 \uparrow $	与金属镁反应 需要少量碘催 化。异丙醇铝 和叔丁醇铝在 有机合成中有 重要用途
	RONa + H₂O → ROH + NaOH	醇的酸性比水弱

续表

			续表
		$C_2H_5OH + H_2SO_4 \xrightarrow{<100^{\circ}} C_2H_5OSO_3H + H_2O$ 硫酸氢乙酯 $C_2H_5OH + C_2H_5OSO_3H \longrightarrow C_2H_5OSO_2OC_2H_5 + H_2O$ 硫酸二乙酯 $CH_3OH + H_2SO_4 \longrightarrow CH_3OSO_3H + H_2O$ 硫酸氢甲酯	硫酸二甲酯和 硫酸二乙酯是 很好的烷基 化试剂,可用 于向有机分子 中导入甲基或 乙基
无机酸酯的生成	CH I CH₃CI	$CH_3OH + CH_3OSO_3H \longrightarrow (CH_3O)_2SO_4 + H_2O$	三硝酸异 油油 和 面 在 临
		通式: R-OH + HX → R-X + H ₂ O	HX 相对活性: HI>HBr>HCl
亲核取代反应	与氢卤酸反应	实例: (CH ₃) ₃ COH + HCl(浓) 室温 ➤ (CH ₃) ₃ CCl + H ₂ O CH ₃ CH ₂ CH ₂ CH ₂ OH + HCl(浓) ZnCl ₂ → CH ₃ CH ₂ CH ₂ CH ₂ Cl + H ₂ O 故醇	醇与氢卤酸反应的活性顺序为: 叔醇 > 仲醇 > 伯醇 Lucas 试剂(浓盐酸+无水氯化锌)可鉴

		決衣
与卤反应	反应机制: $R-\ddot{O}H + H^{+} \longrightarrow R-\overset{\dagger}{O}H_{2} \longrightarrow$ $R^{+} + H_{2}O \xrightarrow{X^{-}} R-X$ CH_{3} $H_{3}C-\overset{\dagger}{C}-CH_{2}OH + HBr \longrightarrow H_{3}C-\overset{\dagger}{C}-CH_{2}CH_{3}$ Br 重排产物	烯两型、苄型、 松醇、大多一次 多一次 多一次 多一次 多一次 多一次 多一次 多一次 多一次 多一次
亲核取代反应	$S_N 2$ 机制: $R-CH_2\ddot{O}H + H^{\dagger} \Longrightarrow R-CH_2\ddot{O}H_2$ $X' + \begin{pmatrix} R \\ C \\ H \end{pmatrix} \begin{pmatrix} R \\ C \\ OH_2 \end{pmatrix} \longrightarrow \begin{pmatrix} R \\ X - C - OH_2 \\ H \end{pmatrix} \end{pmatrix} \xrightarrow{\text{the superscription of the problem}} X-CH_2R + H_2O$	大多数伯醇按 S _N 2 机制进行
与化或化砜反	$3ROH + PX_3 \longrightarrow 3RX + H_3PO_3$ $ROH + PCl_5 \longrightarrow RCl + POCl_3 + HCl$ $ROH + SOCl_2 \longrightarrow RCl + SO_2 \uparrow + HCl \uparrow$ $CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3$ $H_3C \longrightarrow OH \downarrow \qquad \qquad CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3$ $ROH + PX_3 \longrightarrow RCl + POCl_3 + HCl \uparrow$ $CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3 \downarrow \qquad CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3 \downarrow \qquad \qquad CH_2CH_3 \downarrow \qquad CH_2$	该类卤代试剂 可避免生成 排产物 醇与氮企产物。 与位代烷,易立 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

		头衣
	实例: CH ₃ CH ₂ OH H ₂ SO ₄ → H ₂ C=CH ₂ + H ₂ O	
消除反应	OH $\frac{\text{H}_{3}\text{PO}_{4}}{165-170^{\circ}\text{C}} + \text{H}_{2}\text{O}$	醇的脱水活性 顺序为: 叔醇 > 仲醇 > 伯醇
	$(CH_{3})_{3}C - OH \xrightarrow{20\%H_{2}SO_{4}} CH_{2} = C - CH_{3} + H_{2}O$ $CH_{3} \qquad CH_{3} \qquad CH_{3} \qquad CH_{3}$ $H_{3}C - C - CH_{2}CH_{3} \xrightarrow{H_{3}SO_{4}} CH_{3} - C = CHCH_{3} + H_{2}C = C - CH_{2}CH_{3}$ $OH \qquad 90\% \qquad 10\%$ $CH_{3}CH_{2}CH_{2}CH_{3} \xrightarrow{H_{3}SO_{4}} \xrightarrow{H_{3}C} C = C \xrightarrow{H_{3}} C = C$	分子中有多个 β-H 时,脱水 时遵循 Zaitset 规则 主要产物有顺 反异构体时, 常以反式异构 体为主
	反式(75%) 顺式(25%)	rie e
	反应机制:	E1 机制
	$\stackrel{\leftarrow}{\leftarrow}$ $C = C$	
成醚反应	实例: CH ₃ CH ₂ OH + HOCH ₂ CH ₃ → CH ₃ CH ₂ OCH ₂ CH ₃ + H ₂ O	成醚和消除并存,伯醇易成醚,叔醇易发生消除反应。低温有利于成醚,高温有利于成
	反应机制: $R-\ddot{O}H \xrightarrow{H^+} R-\overset{\dagger}{O}H_2 \xrightarrow{H\ddot{O}R} R-\overset{H}{O}-R \xrightarrow{-H^+} R-O-R$	S _N 2 机制

续表

	_		续表
	强氧化剂	RCH_2OH $K_2Cr_2O_2/H_2SO_4$ $RCHO$ RCH_2OH RCH_2	可用于伯醇、 仲醇的定性 鉴别 叔醇与Na ₂ Cz ₂ O, 不发生氧化反
18	氧化	$CH_3(CH_2)_5$ — C — CH_3 CH_3 H_3C — C — OH $Na_2Cr_2O_7/H_2SO_4$ A	应,在强氧化 剂中,先脱水 成烯,再发生 碳碳键的断裂 反应
		$H_2C = C(CH_2)_2CH = C(CH_2)_3CH_2OH \xrightarrow{CrO_3 \cdot (C_3H_5N)_2} CH_2CI_2$ $CH_3 CH_3$ $H_2C = C(CH_2)_2CH = C(CH_2)_3CHO$	常用选择性氧
氧化和脱氢反	选择 性氧 化剂 氧化	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	化剂(活性 MnO ₂ 、CrO ₃ / (C ₅ H ₅ N) ₂ 等) 将伯醇氧化 为醛而不氧化 C=C、C ≡ C CrO ₃ /H ₂ SO ₄ 可将
应		CH ₃ CH ₃ CHO	伯醇氧化到酸
	欧芬脑尔氧化	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	把仲醇上的 两个氢原酮, 转移给丙酮, 其他官能团 不受影响
	催化 脱氢 反应	CH ₃ CH ₂ OH	催化剂通常为 活性铜、银、 镍等。叔醇不 反应

四、邻二醇的化学性质

续表

			. 100000000
频哪醇重排	重排时遵循下列规律: (1)优先生成较稳定的碳正离子 (2)基团的迁移能力一般为:芳基>烷基>氢		
与氢氧化铜的反应	CH─OH + Cu(OH) ₂ → C CH ₂ ─OH (CH ₂ → DH)	CH ₂ -O、Cu CH-O Cu CH ₂ OH 甘油铜 蓝色溶液)	用于鉴别邻二醇类化合物

五、醇的制备

由烯烃	酸催化水合	$R-CH=CH_2\xrightarrow{H_2O}R-CH-CH_3$ OH	除乙烯外,其 他烯烃反应得 仲醇或叔醇
制备	硼氢化 – 氧化	$R-CH=CH_2\xrightarrow{B_2H_6}\xrightarrow{H_2O}R-CH_2-CH_2OH$	可制备伯醇
由格氏试剂制备	R — C — H	$H \xrightarrow{R-MgX} R-CH_2OMgX \xrightarrow{H_2O} R-CH_2OH$ $\xrightarrow{R'MgX} R-CH-OMgX \xrightarrow{H_2O} R-CH-OH$ $R' \qquad R'$	最常用的制备方法,用于制备伯、仲、 叔醇