

- **a.** Determina il dominio, l'insieme immagine e studia il segno della funzione $f(x) = \begin{cases} -x & \text{se } |x| < 1 \\ |x-2| & \text{se } |x| \ge 1 \end{cases}$
 - **b.** Calcola f(-1), f(3), $f(\frac{1}{2})$ e determina le controimmagini di 0 e $-\frac{2}{5}$.
 - **c.** Rappresenta il grafico di f(x) e conferma graficamente i risultati trovati.
 - **d.** f(x) è una corrispondenza biunivoca?

[a) D:
$$\mathbb{R}$$
, $Im(f)$: $y > -1$; $f(x) > 0$ per $x < 0 \lor 1 < x < 2 \lor x > 2$; b) 3,1, $-\frac{1}{2}$, $0 \lor 2$, $\frac{2}{5}$; d) no

SE4NO

Choficamente si rede che f(x) > 0 for $x \in]-\infty, 0[U]1, 2[U]2, +\infty[$ $f(x) < 0 \text{ for } x \in]0, 1[$

$$f(x) = \begin{cases} -x & \text{se } -1 < x < 1 \\ |x-2| & \text{se } x < -1 < x > 1 \end{cases}$$

$$f(-1) = |-1-2| = 3$$
 $f(3) = |3-2| = 1$ $f(\frac{1}{2}) = -\frac{1}{2}$

$$f^{-1}(\{0\}) = \{0,2\}$$
 $f^{-1}(\{-\frac{2}{5}\}) = \{\frac{2}{5}\}$ $f^{-1}(\{-2\}) = \emptyset$

INSIEME DELLE CONTROLHMACINI

O e 2 sons le due contrainnagin

2 à l'unico contrainmagine di - 2 5

I mon é une conispondense liminoca (cioè non é biethiro)

