Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 1

Consigna

Estudiar monotonía, acotación y convergencia de las siguientes sucesiones $(a_n)_{n\in\mathbb{N}}$, donde:

1.
$$a_n = 1 + \frac{1}{n}$$

1.
$$a_n = 1 + \frac{1}{n}$$

2. $a_n = 1 + \frac{(-1)^n}{n}$
3. $a_n = n + \frac{1}{n}$
4. $a_n = \frac{n}{\sqrt{n^2 + 1}}$
5. $a_n = \frac{n^2}{2^n}$

3.
$$a_n = n + \frac{1}{n}$$

4.
$$a_n = \frac{n}{\sqrt{n^2+1}}$$

5.
$$a_n = \frac{n^2}{2^n}$$

Resolución

Sucesión #1

- $a_n = 1 + \frac{1}{n}$
- Monotonía: Estrictamente decreciente.
 - Esto porque la sucesión $a_n = \frac{1}{n}$ es estrictamente decreciente, y se está sumando a una función constante.
- Acotación: Acotada.
 - Pues $a_1 = 2$ y luego decrece hasta casi llegar a 1.
- Convergencia: $\lim_{n\to\infty} 1 + \frac{1}{n} = 1$
 - Por suma de límites.

Sucesión #2

- $\bullet \ a_n = 1 + \tfrac{(-1)^n}{n}$
- Monotonía: No es monótona.
 - Tiene términos cada vez más cercanos al uno, pero por arriba y por abajo.
- Acotación: Acotada.
 - Le sumamos/restamos a 1, términos cada vez más pequeños (y acotados).

- Convergencia: $\lim_{n\to\infty} 1 + \frac{(-1)^n}{n} = 1$
 - Por suma de límites.

Sucesión #3

- $a_n = n + \frac{1}{n}$
- Monotonía: Estrictamente creciente.
 - Pues $a_n=n$ es estrictamente creciente y le estamos sumando
- Acotación: No acotada
 - Crece hasta infinito.
- Convergencia: $\lim_{n\to\infty} n + \frac{1}{n} = +\infty$
 - Por suma de límites.

Sucesión #4

- $a_n = \frac{n}{\sqrt{n^2+1}}$
- Monotonía: Monotona decreciente.
 - Pues el denominador crece muy ligeramente más rapido que el numerador, por lo tanto la función va decreciendo.
- Acotación: Acotada.
 - Pues empieza en $a_1 = \frac{1}{\sqrt{2}}$ y decrece hasta el límite 1.
- Convergencia:

$$\lim_{n\to\infty}\frac{n}{\sqrt{n^2+1}}=\lim_{n\to\infty}\frac{n}{\sqrt{n^2}}=1$$

Sucesión #5

- $a_n = \frac{n^2}{2^n}$
- Montonía: Monotona decreciente.
 - Pues el denominador crece más rápido que el numerador, por lo tanto la función va decreciendo.
- Acotación: Acotada.
 - $-\,$ Pues empieza en $a_1=1$ y decrece hasta el límite0
- Convergencia: $\lim_{n\to\infty} \frac{n^2}{2^n} = 0$
 - Por órdenes de crecimiento.