PRPAGATION D'UN SIGNAL

Exercice n°1

Au cours d'une séance de travaux pratiques, un élève dispose du matériel suivant :

- un émetteur d'ultrasons E et son alimentation électrique ;
- deux récepteurs d'ultrasons R1 et R2;
- un oscilloscope;
- une règle graduée.

Il réalise le montage suivant :

L'émetteur E génère une onde ultrasonore progressive sinusoïdale qui se propage dans l'air jusqu'aux récepteurs R1 et R2. L'émetteur et les deux récepteurs sont alignés.

Le récepteur R1 est placé au zéro de la règle graduée.

Les signaux captés par les récepteurs R₁ et R₂ sont appliqués respectivement sur les voies 1 et 2 d'un oscilloscope pour être visualisés sur l'écran de celui-ci.

Lorsque le récepteur R₂ est situé à d = 2,8 cm du récepteur R₁, les signaux reçus par les deux récepteurs sont en phase. On observe l'oscillogramme ci-dessous sur l'écran.

L'élève éloigne lentement R₂ le long de la règle ; il constate que le signal reçu par R₂ se décale vers la droite. Il continue à éloigner R₂ jusqu'à ce que les signaux reçus par R₁ et R₂ soient à nouveau en phase. Soit R'₂ la nouvelle position occupée par R₂.

Il relève la distance d' séparant désormais R₁ de R'₂: d' = 3,5 cm.

- 1. Déterminer la fréquence f des ultrasons émis.
- 2. Déterminer la longueur d'onde λ des ultrasons.
- 3. Calculer la célérité V des ultrasons dans l'air.

Exercice n°2

Analyse d'un son.

On a obtenu le spectre d'un son émis par un tuyau d'orgue :

- 1. Quelle est la fréquence f₁ du fondamental ?
- 2. Quelle est la fréquence du troisième harmonique ?
- 3. Quelle est la fréquence qui détermine la hauteur de ce son ?
- 4. Quelle est la fréquence de l'harmonique de plus grande amplitude ?

Exercice n°3

Onde progressive sans amortissement le long d'une corde

On étudie la propagation sans amortissement d'une perturbation le long d'une corde élastique.

A la date t = 0, le front de l'onde quitte l'extrémité S de la corde.

A la date t_1 = 2,3 s, on prend un cliché de la corde ; la figure ci-après reproduit le cliché avec deux échelles de longueurs différentes suivant l'horizontale et suivant la verticale.

 M_1 est la position du front de l'onde à la date t_1 , N_1 celle de la crête et P_1 , celle de la queue de l'onde.

- 1. L'onde qui se propage le long de la corde est-elle transversale ou longitudinale ? Quelle est son amplitude ?
- 2. Calculer la célérité de l'onde le long de la corde.
- 3. Quelle est la durée τ du mouvement d'un point de la corde au passage de l'onde ?
- 4. A la date t_1 , quels sont les points de la corde qui s'élèvent ? ceux qui descendent ?
- 5. Dessiner sur le graphique donné ci-dessous, l'aspect de la corde à la date t_2 = 3,6 s.
- 6. Soit le point Q de la corde situé à 12.0 m de S.
 - 6.1. A quelle date t₃ commence-t-il à bouger ?
 - 6.2. A quelle date t₄ passe-t-il par un maximum d'altitude ?
 - 6.3. A quelle date *t*₅ cesse-t-il de bouger ?
 - 6.4. A l'aide des résultats précédents, schématiser l'allure de la courbe $y_Q = f(t)$ où y_Q représente l'élongation du point Q à la date t.

Exercice n°4

Dans tout l'exercice, on néglige l'amortissement tout au long de la propagation.

On dispose d'un vibreur dont la point affleure au repos un point O de la surface d'une nappe d'eau initialement au repos. Le mouvement de O débute à t = 0s.

1. Ecrire l'équation horaire $y_0(t)$ du mouvement du point O sachant que celui-ci est animé d'un mouvement vertical sinusoïdal de fréquence N = 100Hz et d'amplitude 2mm et qu'à l'instant t = 0s il débute son mouvement dans le sens négatif.

On donne la vitesse de propagation de l'onde : v = 0.8m/s.

- 2. Calculer la valeur de la longueur d'onde λ .
- 3. Ecrire l'équation horaire y_M(t) du mouvement d'un point M de la surface du liquide d'abscisse x.
- 4. Tracer, en respectant l'échelle adoptée, une coupe de la surface du liquide par un plan vertical passant par O à la date $t_1 = 2 \ 10^{-2}$ s sur la figure ci-dessous.

