INDUSTRY SPECIFIC - INTELLIGENT FIRE MANAGEMENT SYSTEM

Team ID: PNT2022TMID16087

Team Members

VEERADHARSHINI R(927619BEC4230)

SHUBIKSHA P (927619BEC4194)

SRIRAGAVI R (927619BEC4207)

VANDHANA M (927619BEC4226)

INTRODUCTION

PROJECT OVREVIEW:

Industrial-based intelligent fire management system that can control security and safety of the industry intelligently within the minimum time and the design of a system using wireless sensor networks, fire alarm sensor, and human detecting sensor to address the problems with existing disaster emergency response systems in times of fire hazard. The system has decentralized control that can intelligently guide evacuees based on the detection of humans for removing them from industry to minimize the loss of human life and industrial assist. The existing system was able to secure the industry but not within enough time as the system was designed using various sensors but not as a single unit to address the problems in times of fire or any other. Each sensor was connected to the system separately and function individually which makes the system slow. The modified system can secure the industry intelligently within minimum time as the system is designed using different sensors as a single unit to address the problems in times of fire or any other. A fire alarm system warns people when smoke, fire, carbon monoxide or other fire-related or general notification emergencies are detected. These alarms may be activated automatically from smoke detectors and heat detectors or may also be activated via manual fire alarm activation devices such as manual call points or pull stations. Alarms can be either motorized bells or wall mountable sounders or horns. They can also be speaker strobes which sound an alarm, followed by a voice evacuation message which warns people inside the building not to use the elevators. Fire alarm sounders can be set to certain frequencies and different tones including low, medium, and high, depending on the country and manufacturer of the device. Most fire alarm systems in Europe sound like a siren with alternating frequencies. Fire alarm electronic devices are known as horns in the United States and Canada and can be either continuous or set to different codes. Fire alarm warning devices can also be set to different volume levels.

PURPOSE:

A fire alarm system is the detection system designed to protect the building population in the event of fires and gas leaks. The system continuously monitors the building areas for fire and harmful gases and provides early warning so that proper mitigating actions can be taken in a timely manner. Growing awareness about fire protection systems and benefits of better technology for fire prevention are driving growth in the fire alarm market. Users are looking for the latest technology, and the market is seeing growing investment. For facility owners and managers, one of the most effective ways to enhance overall protection could be through the integration of the fire alarm system with other building systems, such as mass notification systems and security systems. By integrating these systems together, users can improve oversight and management of multiple systems from a single point of control. Integrated systems can be more costeffective, as multiple systems can be managed from a central station and fewer resources are required. In case of emergency, users may also be able to respond in a more efficient manner. In particular, integration with a mass notification system can be extremely helpful. In an event of fire or other emergency, safety personal can effectively relay critical announcements to building occupants. Similarly, integration with a fire alarm system can also help building occupants in safe evacuations, as systems can be automatically programmed open locks in the event to

LITERATURE SURVEY

EXISTING PROBLEM:

The existing system Recently, it has sometimes been impossible for fire-fighting personnel to access the site of a fire, even as the fire causes tremendous property damage and loss of human life, due to hightemperatures or the presence of explosive materials. In such environments, firefighting robots can be useful for extinguishing a fire. Thus ire-fighting robots are operated where firefighters cannot work. Besides that, firefighting robots can be used for protecting firefighters from extreme danger in the petrochemical chemical dangerous product, and toxicity or exploder fire accidents. Therefore, it also canreduce the human injury from a fire burning

REFERENCES:

S.no	Year	Researche	Title	Methodology	Remarks
0.1		r			
01	2021	Ravindra	GSM-BASED	MQ5 Gas	Indicating
		Koggalag	SMART FIRE	sensor, GSM,	firethrough
		e ,	AND HIGH-	Arduino	SMS Alert
		Manjula	TEMPERATU	ATmega328	using Gas
		Welihind	RE		Sensor
		a, Hasitha Nuwan3	DETECTION SYSTEM		
02	2019	J	Early Fire	LBP	Thus, the
		Olivares-	Detection on	(Local	smoke
		Mercado	Video Using	Binary	detection
			LBPand	Pixel)	method
			Spread		using an
			Ascending of		image from
			Smoke		video
					sequences
					has
					been identified

03	2019	Park J.H.,	Dependable	Adaptive	The highest
		Lee S.,	Fire Detection	fuzzy	accuracy of
		YunS.,	Systemwith	algorithms	Fire
		Kim H.,	Multifunctiona	and	Detection
		Kim	1 Artificial	Multifunctio	has been
		W.T.	Intelligence	nalAI	achieved
			Framework	framework -	usingMAI
				Fire	
				Detection	
				System	
				(MAI- FDS)	

PROBLEM STATEMENT DEFINITION STATEMENT:

The fire management system in houses and industries is not very reliable, efficient, cost effective, and does not have any advanced processing and does not have any features like automatic alert system for admin and authorities and in many buildings, there are using older fire safety system that cannot even activate the sprinkler system and all of them do not communicate with each other properly to prevent false alarms. Safety is a crucial consideration in the design of residential and commercial buildings to safeguard against the loss of life and damage to property. The existing fire alarm system on market nowadays is too complex in terms of its design and structure. Since the system is too complex, it needs regular maintenance to be carried out to make sure the system operates well. Meanwhile, when the maintenance is being done to the existing system, it could raise the cost of the system

IDEATION AND PROPOSED SOLUTION

EMPATHY MAP CANVAS:

EMPATHY MAP

INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM

To alert/evacuate the occupants siren are used. With the Intelligent Building of the rapid development of technology applications, commercial fire alarm market demand growth, the key is to use the bus system intelligent distributed computer system fire alarm system, although installation in the system much easier than in the past

TASK

0

INFLUENCES

Due to the impact of this fire alarm system, early warning of fire can be triggered so that people can be evacuated & immediate action can be taken to stop or eliminate of the fire effect as soon as possible

The main aims to detect any changes the environment, Based on the temperature readings and if any Gases are present the exhaust fans are powered ON. If any flame is detected the sprinklers will be switched on automatically. Emergency alerts are notified to the authorities and Fire station.

PAINS

The fundamental problem with conventional panels is that it is impossible to figure out which device within a circuit has been activated.

GAINS

Alarm can be triggered by using detectors or by manual call point (Remotely)

IDEATION AND BRAINSTORMING:

PROPOSED SOLUTION:

S.No	Parameter	Description		
1.	Problem Statement (Problem to be solved)	To improve the safety management system in industries. Improving the safety management system against fire incidents in industries.		
2.	Idea / Solution description	To implement fire safety management in the industry based on IOT using Arduino Uno board with fire detection and fire extinguisher system. And using some sensors (Humidity sensor, Flame sensor, smoke sensor) with GPS tracking system.		
3.	Novelty / Uniqueness	An integrated system of temperature monitoring, gas monitoring, and fire detection automatically fire extinguisher with the accusation of information about locations and response through SMS notification and call.		
4.	Social Impact / Customer Satisfaction	 It early prevents accident costs by fire in industries. Nearby locations so maximum extend more accurate reliability. Compatibility design integrated system. 		

5.	Business Model (Revenue Model)	
6.	Scalability of the Solution	 This project can be used more efficiently with the accurate information required. Easy operability and maintenance. Required low time for maintaining Cost is a reasonable value.

PROBLEM SOLUTION FIT:

REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENT:

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	User Registration	Registration through website or application Registration through Social medias (like Instagram, Facebook) Registration through LinkedIn
FR-2	User Confirmation	Verification via Email Verification via OTP
FR-3	User Login	Login through website or App using the respective username and password
FR-4	User Access	Allows the app requirement
FR-5	User Guide	Guides the basic steps of using the application
FR-6	User Upload	User should be able to send the data
FR-7	User Solution	Data report should be generated and delivered to user for per every 24 hours
FR-8	User Data Sync	API interface to increase to invoice system

NON FUNCTINAL REQUIREMENT:

FR	Non-Functional	Description		
No.	Requirement			
NFR-	Usability	Usability requirements can consider		
1		language barriers and localization		
		tasks. Usability can be assessed from		
		the below functions. Efficiency of use. Low perceived workload. Easy and simple UI.		
NFR-	Security	Access permissions for the particular		
2		system information may only be		
		changed by the system's data		
		administrator.		
NFR-	Reliability	The database update process must		
3		roll back allrelated updates when		
		any update fails.		
NFR-	Performance	The front-page load time must be no		
4		more than 2 seconds for users that access		
		the website using an VoLTE mobile		
		connection.		
NFR-	Availability	New module deployment mustn't		
5		impact front page, product pages, and		
		check out pages availability and mustn't		
		take longer than one hour. The rest of		
		the pages that may experience		
		problems must display a notification		
		with a timer showing when the system		
NED	Coolobility	is going to be up again. We can increase scalability by adding		
NFR-	Scalability	memory, servers, or disk space. On the		
6		other hand, we can compress data, use		
		optimizing algorithms. The		
		website attendance limit must be		
		scalable enough to support 500,000		
		users at a time.		

PROJECT DESIGN

DATA FLOW DIAGRAM:

SOLUTION AND TECHNICAL ARCHITECTURE:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Web UI, Node-RED, MIT app	IBM IoT Platform, IBM Node red, IBM Cloud
2.	Application Logic-1	Create Ibm Watson IoT platform and create node-red service	Ibm Watson, ibm cloudant service ibm node-red
3.	Application Logic-2	Develop python script to publish and subscribe toIBM IoT Platform	python
4.	Application Logic-3	Build a web application using node-red service	IBM Node-red
5.	Database	Data Type, Configurations etc.	MySQL
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant
7.	File Storage	Developing mobile application to store and receivethe sensors information and to react accordingly	Web <u>Ul.python</u>
8.	External API-1	Using this IBM fire management <u>API</u> we can trackthe temperature of the incident place and where the fire had been attacked.	IBM fire management API
9.	External API-2	Using this IBM Sensors it detects the fire, gas <u>leaks</u> , temperature and provides the activation ofsprinklers to web UI	IBM Sensors
10.	Machine Learning Model	Using this we can derive the object recognitionmodel	Object Recognition Model
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / CloudCloud Server Configuration	IBM cloudant, IBM IoT Platform

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	MIT app Inventor	MIT License
2.	Security Implementations	IBM Services	Encryptions, IBM Controls
3.	Scalable Architecture	sensor-IoT Cloud based architecture	cloud computing and AI
4.	Availability	Mobile, laptop, desktop	MIT app
5.	Performance	Detects the Fire, gas leak temperature	sensors

USER STORIES:

User Type	Functiona	User story	User	Acceptan	Priority	Release
	requireme	number	story/task	ce criteria		
	nt					
Customer	Registratio	USN-1	As a user,	I can access	High	Sprint-1
(Mobile user,	n		I			
(Widdie user,			can	my account/		
Web user,			register for the	dashboar		
Care				d		
C 111 C			applicatio n			
executive,			by			
			entering			
Administrator			my mail,			
,			password,			
			and			
			confirmin			
			g			
			my			
		LIGNI O	password As a user,	I can	77' 1	G : . 1
		USN-2	I	receive	High	Sprint-1
			will receive	confirmat		
			confirmati	email & click		
			email once	confirm		
			have			
			registered			
			for the			
			applicatio n			
	Dashboard	USN-3	As a user,	I can	Lo	Sprint-2
			can	register & access	W	
			register for the	the dashboar		
			applicatio	d		
			n through	Internet log1		
			ınternet	n		
			As a user,	I can		

	USN-4	can register for the applicatio n through	confirm the registratio n in Gmail	Medium	Sprint-1
Logi n	USN-5	As a user, I can log into the applicatio n by entering email & password	I can login with my id and password	High	Sprint-1

PROJECT PLANNINGAND SCHEDULING

SPRINT PLANNINGAND ESTIMATION:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Sensing	USN-1	Sensing the environmen t using the sensors.	3	High	Veeradharshini
	Operating	USN-2	Turning on the exhaust fan as well asthe fire sprinkler system in cause of fire and gas leakage.	3	Medium	Shubiksha
Sprint-2	Sending collected data tothe IBM Watson platform	USN-3	Sending the data of the Sensors to the IBM Watson.	3	High	Veeradharshini, Sriragavi

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
	Registration	USN-4	Entering my email and password toverify authenticatio n process.	3	High	Veeradharshini, Shubiksha
Sprint-3	Storing of sensordata	USN-5	Storing in Cloud ant database.	2	Medium	Vandhana, Sriragavi
	Node red	USN-6	Sending the data from the IBMWatson to the Node red.	3	High	Shubiksha
	Web UI	USN-7	Monitors the situation of the environment which displays sensor information.	1	Low	Veeradharsh ini, Vandhana
Sprint-4	Fast SMS Service	USN-8	Use Fast SMS to Send alert message once the parameters like temperature, flame and gas sensor readings goes beyond the threshold value.	3	High	Veeradharshini, Shubiksha
	Turn ON/OFF theactuators	USN-9	User can turn off the Exhaust fan as well as the sprinkler system If need in that Situation.	2	Medium	Veeradharshini, Shubiksha

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priority	Team Members
	Testing	USN-10	Testin	1	Low	Sriragav
			g of			i,
			projec			Vandhan
			t and			a
			Final			
			Delive			
			rables.			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Point s	Duration	Sprint Start Date	Sprint End Date (Planne d)	Story Points Complet ed (as on Planned End Date)	Sprint Releas e Date (Actua l)
Sprint-1	6	6 Days	24 Oct 2022	29 Oct 2022	6	29 Oct 2022
Sprint-2	6	6 Days	31 Oct 2022	05 Nov 2022	6	05 Nov 2022
Sprint-	6	6 Days	07 Nov 2022	12 Nov 2022	6	12 Nov 2022

Sprint	Total Story Point s	Duratio n	Sprint Start Date	Sprint End Date (Planne d)	Story Points Complet ed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-4	6	6 Days	14 Nov 2022	19 Nov 2022	6	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's averagevelocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progressover time.

CODING AND SOLUTIONING

FEATURE 1:

CODING AND SOLUTIONING

FEATURE-1

```
if(temp < 45)
if(flame > 650)
accidentstatus = "Need Auditing";
if(canfanoperate)
isfanon = true;
else isfanon = false;
issprinkon = false;
else if(flame <= 10)
accidentstatus = "nothing happened";
isfanon = false;
issprinkon = false;
else if(temp >= 45 \&\& temp <= 55)
if(flame <=650 && flame >100)
if(cansprinkoperate) issprinkon = true;
else issprinkon = false;
accidentstatus = "moderate";
if(gas > 160 \&\& canfanoperate)
isfanon = true;
else{ isfanon = false;
else if(flame <= 100 && flame > 10)
```

```
if(cansprinkoperate) issprinkon = true;
else issprinkon = false;
isfanon = false;
accidentstatus = "moderate";
else if(temp > 55)
if(flame > 650)
gas = 500 + rand()\%500;
accidentstatus = "severe";
if(cansprinkoperate) issprinkon = true;
else issprinkon = false;
if(canfanoperate) isfanon = true;
else isfanon = false;
else if(flame < 650 \&\& flame > 400)
gas = 300 + rand()\%500;
accidentstatus = "severe";
if(cansprinkoperate) issprinkon = true;
else issprinkon = false;
if(canfanoperate) isfanon = true;
else isfanon = false;
else { accident status = "Need moderate Auditing";
isfanon = false;
issprinkon = false;
if(issprinkon){ if(flow)
{ sprinkstatus = "working";
else { sprinkstatus = "not working";
```

```
else if(!issprinkon)
{ sprinkstatus = "ready";
}
else
{
sprinkstatus = "something's wrong";
}
```

Explanation

- This set of code checks the false alarms and sets the current status
- ➤ It also handles the permission management of whether a device will work or not

FEATURES 2

```
void PublishData(float temp, int gas ,int flame ,int flow,bool isfanon,bool
issprinkon)
mqttconnect();
String payload = "{\"temp\":";
payload += temp;
payload += "," "\"gas\":";
payload += gas;
payload += "," "\"flame\":";
payload += flame;
payload += "," "\"flow\":";
payload += ((flow)?"true":"false");
payload += "," "\"isfanon\":";
payload += ((isfanon)?"true":"false");
payload += "," "\"issprinkon\":";
payload += ((issprinkon)?"true":"false");
payload += "," "\"cansentalert\":";
payload += ((cansentalert)?"true":"false");
payload += "," "\"accidentstatus\":";
payload += "\""+accidentstatus+"\"";
20 payload += "," "\"sprinkstatus\":";
payload += "\""+sprinkstatus+"\"";
```

```
payload += "}";
if (client.publish(publishTopic, (char*) payload.c_str()))
{
    Serial.println("Publish ok");// if it successfully upload data on the }
    else
    {
        Serial.println("Publish failed");
    }
}
```

EXPLANATION

- ➤ The user's action is received as a command and stored in a buffer
- ➤ The event in the device is performed in accordance with the command
- ➤ It searches for a secret encrypted pin to perform that event

TESTING

Test case ID	Feature Type	Comparent	Test Somerie	Pro-Requistr	Steps To Execute	Test Date	Expected New R	Actual Fernit	State	Comments	Automation(N)	B)C	Executed By
Sersar_001	Functional	Micropotroler	Servar data is properly taken	The connections to the crout	1.Open the constraint in water	Senior valves generated	Get the values and print it in the	Warting as	Par.				Alexhoya
Setsor 000	Functional	Wosartole	Service distarts parted as joon	The microspetroller should	1. Open the projector in works.	Paration raises president	Get the values and print it in the	Working as	Pare				farths)
90% OEL	Puretienal	Merocentralier	To other in false plants	The sensor values are taken.	1.5 multiple the device(die a proctesal	Rendom values governord.	Accident status is properly updated	Working at	Pen				Ajm .
MA-6 (00)	Parettenel	Microspetroler and	The date should be sent to 1992	The down setup is completed	1. Stort the structures or motival	Random school generated.	The natives are shown in record	Working as	Pes				Jinshoya
Rest, 000	Functional	Nude-Ind	The data should be even to	The recessory puckages	5. logit to rade red editor	solver got have the let	The detail area should show the	Working at	Park				Pairrel
969,004	Purstional	Node red	Worth that the just data is paried	A configured radio ced with	Lingh to reduced editor	refuel get from the let	the fitting men's shows the subsuit.	Working as	Pen				Faceton
Omber (N)	Street	Oculant	The received data is stored at detables if a key value pair	The rests red is convented with disultent node	Lings to clouder dashboard. Zonara new database. 3. connect the dashboar with node and and their give the database name in required bath.	White get have the be device	After sending the data the data is stored in circulant	Mortery as	Pen		×		famili
104,00	AN.	IN AS	The area is sent when there is the skett	The redo red phospid be configured to send a post request.	Is bireally the fire in the smulater(I marker to share it used real for it used). 2 or dict the sert shot button in	Tim shirt at ay industries thany? And the trigger inputs	one receiving to the given phoneius	Working as respected	fan		1.40		4Jm
No. (50)	Parallelai	¥	East of Street of principality spiral framed control is required.	the destinant interaction attraction is served to the node red	L in the decisional enter the contest per 2 click the enter to be done	The pattern by some	manual command system accels and	Wasting as expected	***				years
Auto, 001	Festional	u	Verify that the connect pin is arrand	tert find a given in Austriana's to error per), The connect gas is present . 2. Then recessory action is required	1234	commercia in seri successful.	working so reported	Pate			П	Anthoya
Adm, XV	Parallelad	u	Verify that it handles when wrong pin is entered	and find a guest in Australian to order pro	Life cornect per in proceed 2 then temporary action in required	34(324 62363 1 1013 Me	You a remajor that the extension pit is arrived.	Washing as expected	Pes				tana
945,002	Particul	Versentraler	tienly that the montage is not seed confinemely when there is the C seeds a message they want for 2d minutes even when that if the this words it seemly again.	the one factoristy should be implemented	2. Simulate a fire accident scenario. Zier clost the send alent faulties an the distributed il wort for the message to be sent	On overt is provided on triggered	The service chould not upon't continuous montages to authorities, as the work be down within therbian of seconds.	Working as expected	Pen		2.831		40

UAT

Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	9	0	2	1	12
External	0	0	1	0	1
Fixed	19	24	25	14	82
Not Reproduced	0	0	2	0	2
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	28	24	30	15	97

Test Case Analysis

Section	Total Cases	Not Tested	Fail	Pass
Client Application	4	0	0	4
Security	2	0	0	2
Exception Reporting	11	0	0	11
Final Report Output	5	0	0	5

RESULTS:

CPU Usage:

The micro version of C++ makes the most efficient use of the CPU. The program runs in O(1) time for each loop, ignoring the network and communication. To improve communication with MQTT and the program sleeps every 1 second. Because the program runs in O(1) time and the compiler optimizes it during compilation, there is less CPU load per cycle. The following instructions are stored on the stack memory and can be popped after execution.

Memory Usage:

Sensor values and networking data are saved in the ESP32's sram. It's a lot of information because the ESP32 only has 520 KB of memory. To save memory and ensure optimal program execution, the exact addresses for each memory cycle are overwritten with new values.

Error Rates:

The error rates are very low because the backend and dashboard are handled with node-red. Exceptions are handled properlyso that the system's usability is not affected.

```
Default levels ▼ ● 10
★ ➤ You are using the ngTouch module.
AngularJS Material already has mobile click, tap, and swipe support...
ngTouch is not supported with AngularJS Material!
※ Failed to load resource: the server responded with a status of 404 (Not Found)
② ► SideNav 'left' is not available! Did you use md-component-id='left'?
▲ DevTools failed to load source map: Could not load content for <a href="https://node-red-nxzwb-2022-10-1">https://node-red-nxzwb-2022-10-1</a>
```

Latency and Response Time:

The DOM handling of the received data is optimal and latency is low. After the DOM is loaded the entire site is loaded to the browser.

```
19 requests 10.1 kB transferred 2.2 MB resources Finish: 2.53 s DOMContentLoaded: 1.21 s Load: 1.31 s
```

In addition, the server respondsquickly. The average response time is acceptable.

For the data sent from the IoT Device (considering the sleep of one second from the IoT), the response is much faster. We can see the delay caused by the sleep function.

The average time is well over optimal value

Average Time = (5ms + 2600ms)/2 = 1302.5

Garbage Collection:

The Node framework handles garbage collection on the server side. C++ does not have garbage collection features in IoT devices. However, in this case, it is not necessary because the memory will be used again to store the data. There is no allocation of any dangling pointers or poorly handled address space.

ADVANTAGES AND DISADVANTAGES:

ADVANTAGE:

- ➤ Active detection of gas leaks and fire outbreaks
- ➤ SMS alerting of administrators and fire authorities
- ➤ Turning on/off sprinklers and exhaust fans automatically
- ➤ Tomanually turn on/off sprinklers and exhaust fans, as well as send SMS alerts, authentication is required
- ➤ It detectsfalse fire outbreaks automatically, reducing unnecessary panic
- ➤ We can confirm that the sprinkler system is functioning properly by using flow sensors
- ➤ A dashboard can display the status of any device

DISADVANTAGE:

- ➤ Always requirean internet connection [only to send the SMS alert]
- ➤ If the physical device fails, the entire operation fails.

➤ Because a large amount of data is stored in the cloud database

every second, a large database is required

CONCLUSION:

So, we conclude that, our problem premise is solved using IoT devices by

developing a smart management system that solves many inherent problems in traditional fire management systems, such as actively monitoring for fire breakouts

and gas leakage and sending SMS alerts to administrators and fire authorities.

FUTURE SCOPE:

The existing devices can be modified to work in various specialized

environments, as well as scaled to house use to large labs [Because fire accidents

can cause significant loss of human lives in homes

to large industries], as well as used in public places and vehicles.

APPENDIX

ESP32 - Microcontroller:

The ESP32 is a low-cost, low-power system-on-a-chip microcontroller

family with integrated Wi-Fi and dual-mode Bluetooth.

• Memory: 320 KiB SRAM

• CPU: Tensilica Xtensa LX6 Microprocessor @ 160 or 240 MHz

Power: 3.3 VDC

• Manufacturer: Espress if Systems

Predecessor: ESP8266

SENSORS:

DHT22 - Temperature & Humidity Sensor:

The DHT22 is a simple and inexpensive digital temperature and humidity sensor. It measures the surrounding air with a capacitive humidity sensor and a thermistor and outputs a digital signal on the datapin (no analog input pins needed).

Flow Sensors:

A flow sensor (also known as a "flow meter") is an electronic device that measures or controls the flow rate of liquids and gases through pipes and tubes. **MQ5 - Gas Sensor:**

Gas sensors (also referred to as gas detectors) are electronic devices that detect and identify various types of gasses. They are frequently used to detect toxic or explosive gases as well as to measure gas concentration.

Flame Sensor:

A flame-sensor is a type of detector that is intended to detect and respond to the occurrence of a fire or flame. The response to flame detection can be affected by its fitting.

Source Code:

```
#include <WiFi.h>//library for wifi
#include
<PubSubClient.h>//library for
MQtt#include "DHT.h"// Library
for dht11 #include <cstdlib>
#include
<time.h>
#include
<mjson.h>
                     // what pin we're connected to
#define DHTPIN 15
                             // define type of sensor DHT 11
#define DHTTYPE DHT22
DHT dht (DHTPIN, DHTTYPE); // creating the instance by passing pin and typr of dht
connected
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);
//----credentials of IBM Accounts-----
#define ORG "fvs923"
#define DEVICE_TYPE
"zenabc"#define
DEVICE_ID "221"
#define TOKEN "12345678"
String data3 = "";
String
accidentstatus ="";
```

```
String sprinkstatus
= ""; float temp
=0:
bool isfanon = false;
bool issprinkon = false;
bool cansprinkoperate
= true; bool
canfanoperate = true;
bool cansentalert
= false; int gas = 0;
int flame
=0;
int flow =
0;
long int cooldown= 600;
char server[] = ORG
".messaging.internetofthings.ibmcloud.com"; char
publishTopic[] = "iot-2/evt/data/fmt/json";
char subscribetopic[] = "iot-
2/cmd/command/fmt/String"; char
authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, callback, wifiClient); //calling the
```

```
predefined client id by passing parameter like server id, portand
wificredential
void setup()// configureing the ESP32
Serial.begin(115200); dht.begin();
//if real gas sensor is used make sure the senor is heated up for acurate readings
/*
- Here random values for readings and stdout were used to show the
working of the devices as physical or simulated devices are not available.
*/
delay(10);
Serial.print
ln();
wificonnec
t();
mqttconnec
t();
void loop()
temp = dht.readTemperature();
//setting a random seed (only for random values not in real life scenarios)
srand(time(0));
//initial variable activities like declaring, assigning gas = rand()%400;
```

```
int flamereading = rand()\% 1024;
flame = map(flamereading, 0, 1024, 0, 1024);
int flow = ((rand()\% 100)>50?1:0); //find the accident status 'cause fake alert may be
caused by some mischiefactivities
if(temp < 45){ if(flame
> 650){
accidentstatus = "Need
Auditing";
if(canfanoperate)
isfanon =
true; else
isfanon =
false;
issprinkon =
false;
else if(flame <= 10){
accidentstatus = "nothing
happened";isfanon = false;
issprinkon = false;
else if(temp >= 45 \&\& temp <= 55)
if(flame <=650 && flame >100 )
if(cansprinkoperate)
issprinkon = true; else
```

```
issprinkon = false;
accidentstatus =
"moderate"; if(gas >
160 && canfanoperate)
isfanon = true;
else{
isfanon = false;
else if(flame <= 100 && flame > 10)
if(cansprinkoperate)
is sprink on = \\
true; else
issprinkon =
false; isfanon =
false;
accidentstatus = "moderate";
else if(temp > 55)
if(flame > 650)
gas = 500 + rand()\%500;
accidentstatus =
"severe";
```

```
if(cansprinkoperate
) issprinkon = true;
else issprinkon =
false;
if(canfanoperate)
isfanon =
true; else
isfanon =
false;
else if(flame < 650 \&\& flame > 400)
gas = 300 +
rand()%500;
accidentstatus =
"severe";
if(cansprinkoperate
) issprinkon = true;
else issprinkon =
false;
if(canfanoperate)
isfanon =
true; else
isfanon = false;
else {
```

```
accidentstatus = "Need moderate
Auditing"; isfanon = false;
issprinkon = false;
if(issprinkon){ if(flow)
sprinkstatus = "working";
}
else{
sprinkstatus = "not working";
}
else if(!issprinkon)
sprinkstatus = "ready";
else {
sprinkstatus = "something's wrong";
PublishData(temp,gas,flame,flow,isfanon,issprinkon);
//a cooldown period is set as the values and situations are random in real life
sceanarios the time can be reduced or neclected
if(accidentstatus=="severe" && cooldown >= 600)
cooldown
= 0;
sendalert();
PublishData(temp,gas,flame,flow,isfanon,iss
```

```
prinkon);cansentalert = false;
  }
 if(cooldown > 999999)
 cooldown = 601;
 delay(1000);
 ++cooldown;
 if (!client.loop())
mqttconnect();
  }
 /*.... retrieving to
 Cloud. */
 void PublishData(float temp, int gas ,int flame ,int flow,bool isfanon,bool issprinkon) {
 mqttconnect(); //function call for connecting to ibm
 /*
 creating the String in in form JSon to update the data to ibm cloud
 */
 String payload =
 "{\"temp\":";payload
 += temp;
 payload += ","
 "\"gas\":";payload
 += gas;
```

```
payload += ","
"\"flame\":";payload
+= flame:
payload += "," "\"flow\":";
payload += ((flow)?"true":"false");
payload += "," "\"isfanon\":";
payload +=
((isfanon)?"true":"false");
payload += ","
"\"issprinkon\":"; payload +=
((issprinkon)?"true":"false");
payload += ","
"\"cansentalert\":";
payload +=
((cansentalert)?"true":"false");
payload += ","
"\"accidentstatus\":"; payload
+= "\""+accidentstatus+"\"";
payload += ","
"\"sprinkstatus\":"; payload +=
"\""+sprinkstatus+"\""; payload
+="}";
if (client.publish(publishTopic, (char*) payload.c_str())) {
Serial.println("Publish ok"); // if it sucessfully upload data on the cloud then it
will print publish ok in Serialmonitor or else it will print publish failed
} else {
```

```
Serial.println("Publish failed");
}
void mqttconnect() {
if (!client.connected())
Serial.print("Reconnecting
client to ");
Serial.println(server);
while (!!!client.connect(clientId, authMethod, token))
Serial.print(
".");
delay(500);
}
initManagedDe
vice();
Serial.println();
}
                       //function defination for wificonnect
void wificonnect()
Serial.println();
Serial.print("Connecting to
"); WiFi.begin("Wokwi-
GUEST", "", 6);
while (WiFi.status() != WL_CONNECTED)
```

```
{
delay(100);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi
connected");
Serial.println("IP address:
");
Serial.println(WiFi.localIP()
);
```

```
void initManagedDevice() {
 if (client.subscribe(subscribetopic))
 Serial.println((subscribetopi
 c)); Serial.println("subscribe
 to cmd OK");
 else {
 Serial.println("subscribe to cmd FAILED");
 }
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
 Serial.print("callback invoked
 for topic: ");
 Serial.println(subscribetopic);
 for (int i = 0; i < payloadLength; i++)
 data3 += (char)payload[i];
 Serial.println("data: "+
 data3); const char *s
 =(char*) data3.c_str();
 double pincode = 0;
 if(mjson_get_number(s, strlen(s), "$.pin", &pincode))
 if(((int)pincode)=137153)
```

```
{
const char *buf; int len;
if (mjson_find(s, strlen(s), "$.command", &buf, &len)) // And print it
{
String
command(buf,len);
if(command=="\"cant
fan\""){
//this works when there is gas sensor reads high value and if there should be a
//manual trigger else it will be automate canfanoperate = !canfanoperate;
}
else if(command=="\"cantsprink\"")
cansprinkoperate = !cansprinkoperate;
}else if(command=="\"sentalert\"")
```

```
//this works when there is accident status is severe and if there should be a
//manual trigger else it will be automate resetcooldown();
}
}
}
data3="";
void resetcooldown()
cooldown = 0;
//sent alert request to node-red void
sendalert(){ cansentalert = true;
cooldown = 0;
}
```

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-25420-1659963040

Demo Video:

 $https://drive.google.com/file/d/1JcNyJdD2fwlgT4IANDfyc7IQhzTADihI/view?usp=share_link$