LISTA DE EXERCÍCIOS nº 01 PARTE II

1. A distribuição binomial $B(m, \theta)$, com $0 < \theta < 1$ e m, o número conhecido de ensaios independentes, é usada para análise de dados na forma de proporções e tem função de probabilidade:

$$f(x;\theta) = {m \choose x} \theta^x (1-\theta)^{m-x} =$$

Coloque na forma:

$$f(x;\theta) = h(x) \exp \left[\eta(\theta) t(x) - b(\theta) \right]$$

2. A distribuição de Poisson $P(\theta)$ de parâmetro $\theta > 0$, usada para analisar dados na forma de contagens, tem função de probabilidade:

$$f(x;\theta) = \frac{e^{-\theta}\theta^x}{x!}$$

Coloque na forma:

$$f(x;\theta) = h(x) \exp \left[\eta(\theta) t(x) - b(\theta) \right].$$

- 3. Seja uma v.a. com distribuição $N(\mu;\sigma^2)$. Quais são estatísticas? Justifique.
 - a) $X^2 \mu$; b) X/σ^2 ; c) $X^2 3$; d) X 4; e) $X log X^3$
- 4. Prove que a média amostral, \bar{x} , de uma a.a. de uma população (distribuição) com média μ e variância σ^2 é estimador consistente do parâmetro μ .
- Descreva as quatro propriedades fundamentais dos estimadores: suficiência, consistência, não-viciado e eficiência (estimador de variância mínima).