ЛАБОРАТОРНЫЙ ПРАКТИКУМ МЕХАНИКА

Лабораторная работа 101 ИЗУЧЕНИЕ ДИНАМИКИ ПРОСТЕЙШИХ СИСТЕМ С ПОМОЩЬЮ МАШИНЫ АТВУДА

Москва – 2019

Лабораторная работа 101 изучение динамики простейших систем с помощью машины атвуда

Цель работы

Изучение законов равноускоренного движения

Идея эксперимента

Изучение законов равноускоренного движения производится на основе анализа кинематических характеристик движения системы тел. Для проведения такого анализа используется машина Атвуда, с помощью которой можно получать различные, не слишком большие (по сравнению с ускорением свободного падения) ускорения.

Теоретическое введение

Экспериментальная установка, получившая название «машина Атвуда», представляет собой вращающийся с малым трением легкий блок, через который перекинута тонкая нить с грузами массой m_1 и m_2 (рис. 1).

Выберем систему координат так, как показано на рис. 1, и изобразим действующие на тела системы силы: силы тяжести и силы, действующие со стороны нитей.

Выберем модели тел и их движений. Грузы считаем материальными точками, подвешенными на невесомой и нерастяжимой нити, перекинутой через невесомый абсолютно твердый цилиндрический блок. Будем считать, что грузы движутся вертикально, нить не проскальзывает относительно блока, сопротивления воздуха и трения в оси блока нет.

Рис. 1. Силы, действующие на грузы, блок и участок нити.

Выберем систему координат так, как показано на рис. 1, и изобразим действующие на тела системы силы: силы тяжести и силы, действующие со стороны нитей.

Запишем уравнения движения двух грузов в проекции на ось x и уравнение кинематической связи, являющееся следствием нерастяжимости нити:

$$m_1 a_1 = m_1 g - T_1, (1)$$

$$m_2 a_2 = m_2 g - T_2, (2)$$

$$a_1 + a_2 = 0. (3)$$

Здесь a_1 и a_2 – проекции ускорений грузов на ось x, T_1 и T_2 – модули сил, действующих на грузы со стороны нити.

Установим связь между модулями сил T_1 и T_2 . Сначала докажем постоянство модуля силы натяжения нити вдоль всей ее длины в условиях данной задачи. Для этого выделим мысленно прямолинейный участок нити произвольной длины (см. рис. 1) и запишем уравнение его движения в проекции на ось X:

$$m_{\scriptscriptstyle H} a_{\scriptscriptstyle H} = T_{\scriptscriptstyle H} - T_{\scriptscriptstyle B} + m_{\scriptscriptstyle H} g , \qquad (4)$$

где $m_{_{\rm H}}$ – масса выделенного участка нити, $a_{_{\rm H}}$ – проекция его ускорения на ось X, $T_{_{\rm H}}$ и $T_{_{\rm B}}$ – модули сил натяжения, действующих на выделенный участок нити со стороны нижнего и верхнего примыкающих к нему участков нити.

Поскольку нить в рамках модели невесома (т.е. $m_{\rm H}=0$), то из (4) следует, что модуль силы натяжения нити постоянен вдоль прямолинейного участка нити. Следовательно, сила, приложенная к грузу со стороны нити и сила натяжения нити в верхней части прямолинейного участка равны по модулю.

Запишем уравнение вращательного движения блока вместе с примыкающим к нему участком нити относительно оси, проходящей через центр блока и направленной за плоскость чертежа (рис. 1):

$$J\frac{\mathrm{d}\omega}{\mathrm{d}t} = -T_1 R + T_2 R + M_{\mathrm{Tp}},\tag{5}$$

Здесь J — момент инерции блока вместе с примыкающим к нему участком нити относительно выбранной оси, ω — угловая скорость вращения блока, $M_{_{\rm TD}}$ — момент сил трения, действующих в оси блока.

Поскольку блок и нить невесомы (т.е. J=0), нет трения в оси блока (т.е. $M_{\rm тp}=0$), то в соответствии с (5) модули сил натяжения нити слева и справа от блока равны. Следовательно, равны и силы натяжения нити, приложенные к грузам:

$$T_1 = T_2 \tag{6}$$

Решим полученную систему уравнений (1) - (3), (6) относительно ускорений грузов:

$$a_1 = g \frac{m_1 - m_2}{m_1 + m_2}, \qquad a_2 = -g \frac{m_1 - m_2}{m_1 + m_2}.$$
 (7)

Формулу (7) можно записать в виде:

$$a = \frac{\Delta m}{m} g \,, \tag{8}$$

где $\Delta m = m_1 - m_2$ — разность масс тел системы; $m = m_1 + m_2$ — сумма масс системы.

Ускорение тел системы всегда меньше ускорения свободного падения и меняется при изменении соотношения между массами грузов.

Для выбранной системы тел можно учесть влияние массы блока и силы трения в его оси. Система уравнений в этом случае дополняется уравнением вращательного движения блока и уравнением кинематической связи между угловым ускорением блока и ускорением одного из грузов. В этом случае силы натяжения нитей слева и справа от блока будут отличаться. Окончательно система уравнений имеет вид

$$m_1 a_1 = m_1 g - T_1, (9)$$

$$m_2 a_2 = m_2 g - T_2, (10)$$

$$J\varepsilon = (T_1 - T_2)R - M_{\rm Tp},\tag{11}$$

$$a_1 = -a_2 = a, (12)$$

$$a = \varepsilon R, \tag{13}$$

где $J = \alpha m_{\delta n} R^2$ — момент инерции блока, $m_{\delta n}$ и R — его масса и радиус, α — коэффициент, зависящий от распределения массы (от формы блока), ϵ — угловое ускорение блока, $M_{\rm TP}$ — момент силы трения в оси.

Решая систему уравнений (9) – (13), получаем значение ускорения

$$a = \frac{\Delta mg - M_{\rm Tp}/R}{\alpha m_{\tilde{o}\pi} + m}.$$
 (14)

Из уравнения (14) следует, что ненулевые значения силы трения в оси и массы блока уменьшают величину ускорения по сравнению с идеальным случаем.

Экспериментальная установка

Машина Атвуда состоит из прикрепленной к основанию вертикальной стойки, на верхнем конце которой имеется система из

двух легких *блоков* 1, способный вращаться с малым трением (рис. 2). Через блок перекинута легкая нить, к концам которой прикреплены две

одинаковых платформы массой $m_{\text{пл}}$, поэтому система находится в равновесии. платформы 2 можно помещать добавочные грузы 3 в виде тонких пластин (перегрузки), в результате этого система грузов начинает двигаться с некоторым ускорением. Меняя массу перегрузка, ОНЖОМ менять ускорение системы.

Система грузов удерживается в состоянии покоя с ПОМОЩЬЮ электромагнита 4, притягивающего один из грузов при непосредственном контакте. При нажатии на кнопку системы управления электромагнитом 5 происходит разблокировка системы, И грузы начинают движение.

Рис. 2. Экспериментальная установка.

Измерение зависимости расстояния прошедшего *грузами* 2 от времени, осуществляется при помощи фотоэлектрического датчика 6, помещенного у одного из блоков, и программы Машина Атвуда установленной на компьютере 7 Вид меню компьютера для управления экспериментальной установкой Машина Атвуда показан на рис. 3. Датчик 6 представляет собой «световые ворота», которые открываются и закрываются при прохождении отдельных непрозрачных «лепестков» блока. Зная радиус блока и число «лепестков», можно по углу поворота блока рассчитать изменение координаты х груза.

Для «отчистки» экрана компьютера и проведения нового эксперимента необходимо нажать кнопку «Reset». Кроме зависимости пройденного грузами расстояния от времени имеется возможность отобразить графики зависимости скорости и ускорения грузов от времени, для этого необходимо нажать кнопки «V» и «A» соответственно.

Рис. 3. Внешний вид программы «Машина Атвуда».

В режиме отображения «V» отображается скорость, вычисленная по двум соседним точкам (x(t)) по формуле:

$$v_i = \frac{x_{i+1} - x_i}{t_{i+1} - t_i} \tag{15}$$

В режиме отображения «А» отображается ускорение, вычисленное по трём соседним точкам по формуле:

$$a_{i} = \frac{\frac{\left(x_{i+1} - x_{i}\right)}{\left(t_{i+1} - t_{i}\right)} - \frac{\left(x_{i} - x_{i-1}\right)}{\left(t_{i} - t_{i-1}\right)}}{\frac{t_{i+1} + t_{i}}{2} + \frac{t_{i} + t_{i-1}}{2}}.$$
(16)

Для повышения точности расчётов используется метод наименьших квадратов (МНК). Программа МНК по экспериментальным точкам строит параболу, наиболее близко приближающуюся к экспериментальным точкам

$$y = Ax^2 + Bx + C. (17)$$

Эта кривая сравнивается с теоретическим предсказанием:

$$x = a \frac{(t - t_0)^2}{2} + v_0(t - t_0) + x_0$$
 (18)

или

$$x = a\frac{t^2}{2} + (v_0 - at_0)t + \left(x_0 - v_0t_0 + a\frac{t_0^2}{2}\right).$$
 (19)

Если приравнять коэффициенты при t^2 в теоретическом предсказании и кривой, полученной при помощи МНК, получим:

$$A = \frac{a}{2}. (20)$$

Поэтому, зная коэффициент А, полученный в МНК, можно получить ускорение груза, воспользовавшись формулой

$$a = 2A. (21)$$

В программе МНК имеется встроенная функция, которая через экспериментальные точки строит параболу и определяет коэффициенты A, B и C. Для этого необходимо нажать кнопку «Proc.» и выделить мышкой область с экспериментальными точками, после чего внизу появятся значения коэффициентов A, B и C (см. рис. 3) соответствующие движению грузов (коэффициенты имеют размерность !!!).

Для дальнейшего построения графиков и обработки экспериментальных данных имеется возможность кнопкой «*Export*» экспортировать данные в текстовый файл.

Проведение эксперимента

Упражение 1. Анализ закона движения и определение ускорения

Измерения

1. С помощью весов определите массу двух платформ и связывающей их нити m_0 . Результат запишите в табл. 1.

2. Используемые в задаче грузы имеют примерно одинаковую массу m_{Π} . Определив массу m_{i} каждого из грузов, в качестве оценки m_{Π} возьмите среднее арифметическое \overline{m}_{Π} , а оценку погрешности массы каждого из грузов рассчитайте по формуле

$$\sigma_m = \sqrt{\frac{\sum (m_i - \overline{m}_{_{\Pi}})}{N - 1}},$$

где N – общее количество грузов.

Таблица 1 Значение масс объектов и погрешностей их измерений

N	$m_{ m ni},$ Г	$ar{m}_{_{\!\Pi}},$ г	$\sigma_{_m},$	$m_0,$ Γ
1				
2				
3				
•-				
9				

- 3. С помощью электромагнита зафиксируйте левый груз в нижнем положении, а на правый груз положите один из грузов. Нажмите кнопку «Start» в программе Машина Атвуда и кнопку системы управления электромагнитом 5 (см. рис. 2). Система тел придет в движение, а на экране будет отображаться график зависимости x(t).
- 4. Методом МНК определите ускорение $a_{\mathfrak{I}\mathsf{KCN}}$ груза. Для этого нажатием кнопки «Ргос.» запустите встроенную программу МНК, выделите мышкой область с экспериментальными точками. Программа рассчитает значения коэффициентов A, B и C. Вычислите ускорение a_i по формуле (14). Результат запишите в табл. 2. в строку N=1, где N- число грузов. Измерение ускорения повторите не менее 3-х раз для каждого числа грузов. Результаты запишите в табл. 2.

Таблица 2 Значение масс объектов и погрешностей их измерений

N	$a_{ m эксп}$, м/с ²			$\bar{a}_{\text{эксп}}$,	$\sigma_{\overline{a}}$,	a_{pacy}	$\sigma_{a_{\mathrm{pac}_{\mathtt{q}}}}$,
	a_1	a_2	a_3	M/C ²	M/C ²	M/C ²	м/c ²

1								
2								
3								
4								

- 5. Повторите измерения п. 3 4, постепенно увеличивая число грузов ($N = 2, 3, 4, \ldots$).
- 6. Для одного-двух измерений экспериментальные данные необходимо кнопкой «*Export*» экспортировать в текстовый файл. Далее этот файл необходимо сохранить на свою карту памяти или открыть файлы и переписать данные в тетрадь. По полученным данным самостоятельно рассчитать ускорение и сравнить с полученным в программе.

Обработка результатов

1. Для каждой серии измерений определить ускорения и случайные погрешности. Считать, что «прибором», измеряющим непосредственно ускорение, является компьютер. Поэтому требуемые оценки находятся по формулам для серии прямых измерений, проведенных в одинаковых условиях:

$$\overline{a}_{\text{\tiny 3KCII}} = \frac{\sum a_{\text{\tiny 3KCII},i}}{n} \; ; \qquad \sigma_{\overline{a}} = \sqrt{\frac{\sum \left(a_{\text{\tiny 3KCII},i} - \overline{a}_{\text{\tiny 3KCII}}\right)^2}{n(n-1)}}$$

(здесь n— число измерений в серии).

2. Формула (8) для расчета ускорения при отсутствии потерь при числе грузов N запишется в виде :

$$a = g \frac{Nm_{_{\Pi}}}{m_0 + Nm_{_{\Pi}}}. (22)$$

(здесь N — число грузов). Видно, что ускорение тел зависит от N нелинейно.

Зная массы всех тел, рассчитайте по (22) ускорения $a_{\text{расч}}$ для каждого числа N грузов и рассчитайте стандартное отклонение по формуле для косвенных измерений:

¹ Выполняется по указанию преподавателя

$$\sigma_{a_{\mathrm{pac}^{\mathrm{q}}}} = \sqrt{\left(\frac{\partial a_{\mathrm{pac}^{\mathrm{q}}}}{\partial m_{\mathrm{n}}}\right)^{2} \cdot \sigma_{m_{n}}^{2} + \left(\frac{\partial a_{\mathrm{pac}^{\mathrm{q}}}}{\partial m_{0}}\right)^{2} \cdot \sigma_{m_{0}}^{2}}.$$

3. Постройте на одном рисунке графики зависимостей $\overline{a}_{\mbox{\tiny 3}}(N)$ и $\overline{a}_{\mbox{\tiny 2}}(N)$. Сравните результаты и сделайте выводы.

Упражнение 2. Измерение ускорения грузов при постоянной разности масс Δm

Выполнение соотношения (8) указывает на то, что движение равноускоренное, поэтому в данной работе проводится измерение ускорение тел от суммарной массы m и от разности масс Δm . B данном упражнении измеряется ускорение при постоянной разности масс Δm и изменяющейся суммарной массы m.

Измерение

- 1. Для проведения эксперимента рекомендуется проводить
- измерения при Δm равной массе одного груза. На рис. 5 показано расположение грузов для первого измерения.
- 2. Проведите измерение (трижды) ускорение грузов для перегруза в один малый груз. Результаты запишите в табл. 3.
- 3. Поместите дополнительно одинаковые грузы на обе платформы и проведите 3 раза измерения ускорения грузов. Запишите результаты измерения a и значения m_1 и m_2 в табл. 3.

Рис. 4. Расположение грузов на платформах машины Атвуда при выполнении упр. 3.

4. Выполните п.3 три раза. Результаты запишите в табл. 4. Таблица 3

Экспериментальные значения ускорения грузов для различных значений m_1 и m_2 (при постоянном значении Δm)

N	$m_{1,}$	$m_{2,}$	$a_{\scriptscriptstyle ЭКСП}$, м/ c^2					
	Γ	Γ	$a_{1,}$ $_{ m M/c^2}$	$a_{2,}$ $ ext{m/c}^2$	$a_{3,}$ $ ext{M/c}^2$	$\overline{a}_{_{ m 2KCH}}, \ { m M/c^2}$		

1									
2									
3									

Обработка результатов

$$\overline{a}_{\mathfrak{I}_{\mathsf{SKCII}}} = \frac{\sum_{i=1}^{n} a_{i}}{n}.$$

Результаты запишите в табл. 5.

Таблица 4 Значения ускорений грузов установленные экспериментально и вычисленные по формуле (8)

N	т, Г	<i>М</i> , Г	$\overline{a}_{ ext{\tiny 3KCII}}, \ ext{M/c}^2$	$a_{ m Teop,} \ { m M/c}^2$	Δ <i>a</i> , %		
1							
2							
3							

2. Вычислите суммарную массу, равную массе грузов и платформы $M=m_1+m_2+m_0=m+m_0$.

Результаты запишите в табл. 4

3. Для каждого значения M вычислите значения $a_{\text{теор}}$ по формуле:

$$a_{\text{reop}} = \frac{\Delta m \cdot g}{M}.$$

Результаты запишите в табл. 4.

4. Для каждого значения M вычислите отличие $a_{\text{теор}}$ от $\overline{a}_{\text{эксп}}$ по формуле

$$\Delta a = \frac{\left| a_{meop} - \overline{a}_{_{9KCN}} \right|}{a_{meop}} \cdot 100\%.$$

5. Постройте на одном рисунке графики зависимостей $a_{\text{¬ксп}} \left(\frac{1}{M} \right)$, $a_{\text{¬teop}} \left(\frac{1}{M} \right)$ и $\Delta a \left(\frac{1}{M} \right)$ (при необходимости ввести дополнительную ось). Проанализируйте полученные зависимости.

Упраженение 3. Измерение ускорения грузов при постоянной общей массе m. Определение момента силы трения $M_{\rm TP}$ в оси блока и ускорения свободного падения g.

Измерение

- 1. Для проведения *N* измерений необходимо, чтобы на правой платформе машины Аутвуда было *N* грузов, а на левой платформе *N*-1 таких же грузов. На рис. 5, в качестве примера, показано расположение грузов для проведения 5 измерений.
- 2. Проведите измерение (трижды) ускорения грузов с помощью программы МНК для перегруза в один груз. Результаты запишите в табл. 5.

Рис. 5. Расположение грузов на платформах машины Атвуда при выполнении упр.3.

Таблица 5 Экспериментальные значения ускорения грузов для различных значений m_1 и m_2 (при постоянном значении m)

N	$m_{1,}$	$m_{2,}$	$\Delta m,$ Γ	$a_{\text{эксп}}, \text{ M/c}^2$					
	Γ	Γ	Γ	$a_{1,}$ $_{ m M/c^2}$	$a_{2,}$ $ ext{M/c}^2$	<i>a</i> ₃ , M/c ²	$\overline{a}_{\scriptscriptstyle ext{ m SKCH}}, \ { m M/c}^2$		
1									
2									

3			
		•••	

- 3. Переместите один груз с левой платформы на правую и проведите 3 раза измерения ускорения грузов. Запишите результаты измерения a и значения m_1 и m_2 в табл. 5.
- 4. Выполните п.3 несколько раз (пока на левой платформе не останется грузов). Результаты запишите в табл. 5.

Обработка результатов

1. Для каждых значений m_1 и m_2 вычислить среднее арифметическое значение $\overline{a}_{\text{аксп}}$

$$\overline{a}_{\mathfrak{I}_{\mathsf{SKCII}}} = \frac{\sum_{i=1}^{n} a_{i}}{n}.$$

Результаты запишите в табл.6.

Таблица 6 Значения ускорений грузов установленные экспериментально и вычисленные по формуле (8)

N	$\Delta m, \ \Gamma$	<i>М</i> , Г	$\overline{a}_{_{ m 9KCII}}, \ { m M/c^2}$	$a_{ m reop,} \ { m M/c^2}$	$\Delta a, \ \%$				
1									
2									
3									

1. Вычислите суммарную массу, равную массе грузов и платформы $M = m_1 + m_2 + m_0 = m + m_0$.

Результаты запишите в табл. 6

2. Для каждого значения Δm вычислите значения $a_{\text{теор}}$ по формуле:

$$a_{\text{reop}} = \frac{\Delta m \cdot g}{M}.$$

Результаты запишите в табл. 6.

2. Для каждого значения Δm вычислите отличие $a_{\text{теор}}$ от $\overline{a}_{\text{эксп}}$ по формуле

$$\Delta a = \frac{\left| a_{meop} - \overline{a}_{_{9KCN}} \right|}{a_{meop}} \cdot 100\%.$$

- 3. Постройте на одном рисунке графики зависимостей $a_{\text{эксп}}(\Delta m)$, $a_{\text{теор}}(\Delta m)$ и $\Delta a_{\cdot}(\Delta m)$ (при необходимости ввести дополнительную ось). Проанализируйте полученные зависимости.

Таблица 7 Определенные значения ускорения свободного падения ${\bf g}$ и момента сил трения ${\bf b}$ блоке ${\bf M}_{\rm Tp}$

$\frac{C}{c}$, $\frac{M}{c^2 \cdot \kappa \Gamma}$	$\sigma_{C},$ $rac{ ext{M}}{ ext{c}^2 \cdot ext{K}\Gamma}$	<i>D</i> , м/с ²	σ_D $_{ m M/c^2}$	<i>g</i> м/с ²	σ _g , _{M/c²}	$\frac{M_{\rm Tp,}}{{\rm m}^2 \cdot {\rm K}\Gamma}$	$\frac{\sigma_{M_{\mathrm{Tp}}}}{c^2},$

- 5. Из (14) следует, что ускорение свободного падения g равно $g = C\left(\alpha m_{6\pi} + m_1 + m_2 + m_0\right) = C\left(\alpha m_{6\pi} + m + m_0\right).$ (23) Вычислите g по формуле (23), используя m из табл. 6, $\alpha = 0.3$ и $m_{6\pi} = 0.0175$ кг. Результат записать в табл. 7.
- 6. Для g рассчитать стандартное отклонение σ_g по формуле для косвенных измерений (считать, что α определен без погрешностей):

$$\sigma_{g} = \sqrt{\left(\frac{\partial g}{\partial C}\right)^{2} \cdot \sigma_{C}^{2} + \left(\frac{\partial g}{\partial m_{\delta \Pi}}\right)^{2} \cdot \sigma_{m_{\delta \Pi}}^{2} + \left(\frac{\partial g}{\partial m}\right)^{2} \cdot \sigma_{m}^{2} + \left(\frac{\partial g}{\partial m_{0}}\right)^{2} \cdot \sigma_{m_{0}}^{2}} .$$

Результаты записать в табл. 7.

7. Из (14) следует, что момент сил трения в блоке $M_{\rm тp}$ равен $M_{\rm тp} = D \left(\alpha m_{\rm бл} + m_1 + m_2 + m_0\right) \cdot R = D \left(\alpha m_{\rm бл} + m + m_0\right) \cdot R$. (24) Вычислите $M_{\rm тp}$ по формуле (24), используя $\alpha = 0.3$ и R = 0.025 м. Результат запишите в табл. 7.

8. Для $M_{\rm тр}$ рассчитать стандартное отклонение $\sigma_{\rm g}$ по формуле для косвенных измерений (считать, что α определен без погрешностей):

$$\begin{split} \sigma_{M_{\text{Tp}}} &= \sqrt{\left(\frac{\partial M_{\text{Tp}}}{\partial D}\right)^2 \cdot \sigma_D^2 + \left(\frac{\partial M_{\text{Tp}}}{\partial m_{\text{бл}}}\right)^2 \cdot \sigma_{m_{\text{бл}}}^2 + \left(\frac{\partial M_{\text{Tp}}}{\partial m}\right)^2 \cdot \sigma_m^2 + .} \\ &+ \left(\frac{\partial M_{\text{Tp}}}{\partial R}\right)^2 \cdot \sigma_R^2 + \left(\frac{\partial M_{\text{Tp}}}{\partial m_0}\right)^2 \cdot \sigma_{m_0}^2 \,. \end{split}$$

Результат запишите в табл. 7.

Основные итоги работы

На основании проведенных экспериментов и выполненных расчетов должно быть показано, что движение системы тел под действием постоянной силы является равноускоренным, должны быть определены значения ускорения свободного падения д и момент силы трения в оси блока, а также проанализировано влияние момента силы трения в оси блока и массы блока на точность определения ускорения.

Контрольные вопросы

- 1. Какова цель лабораторной работы?
- 2. Какое движение называется равноускоренным? Напишите кинематические формулы, описывающие равноускоренное прямолинейное движение тел.
- 3. Что такое инерциальные и неинерциальные системы отсчета? Сформулировать первый закон Ньютона.
- 4. Что такое масса, как ее измерить?
- 5. Что такое сила, как ее измерить?
- 6. Сформулировать второй закон Ньютона.
- 7. Сформулировать третий закон Ньютона.
- 8. Что представляет собой машина Атвуда?
- 9. Какие силы действуют на грузы, прикрепленные к концам нити, во время движения? Напишите уравнения движения этих грузов.
- 10. Моменты каких сил действуют на шкив машины Атвуда. Напишите уравнение движения шкива.
- 11. Груз подвешен на весомой нити. Как при этом изменяется сила натяжения нити?

- 12. Каков порядок выполнения лабораторной работы? Как проводится обработка результатов измерений?
- 13. Каковы причины погрешности измерений?
- 14. В реальных механических системах блоки не являются абсолютно безмассовыми и без трения. Как изменится ускорение системы по сравнению с идеальным случаем, если блок не будет безмассовым? А если шкив не был без трения?
- 15. Каким будет ускорение системы, если массы грузов 1 и 2 равны? Каким будет натяжение нити?

Литература

- 1. А. Н. Матвеев. Механика и теория относительности. М. Изд. дом «Оникс 21 век», 2003. Гл. 1, 2.
- 2. В. А. Алешкевич, Л. Г. Деденко, В. А. Караваев. Механика. М.: Изд. центр «Академия», 2004. Лекции 1 3.
- 3. Митин И. В., Русаков В. С. Анализ и обработка экспериментальных данных. Учебно-методическое пособие для студентов младших курсов. М.: МГУ.