

Measuring the field of contrast sensitivity via saccadic foraging

Concetta F. Alberti (c.alberti@northeastern.edu), Anna Kosovicheva, Peter J. Bex

33.439

Department of Psychology, Northeastern University, Boston, MA, USA

The field of contrast sensitivity

Measuring the contrast sensitivity function (CSF) across the visual field (field of contrast sensitivity; Watson, 2018) has significant value, but requires too many measurements for practical applications. However, simplification may be possible via a spatial scaling factor (Strasburger et al, 2011), using a saccadic foraging task (Jones at al., 2016), and only testing 2 points (Chung & Legge, 2016).

Method

We estimated the CSF across the visual field (3 eccentricities x 8 angular locations) with spatially-scaled Laplacian-of-Gaussian (LoG) targets.

We estimated the CSF at each location from two data points (•):

Results

No significant differences between thresholds and test duration measured with saccade and button press responses (p>0.05), suggesting that these methods are interchangeable.

Conclusions

In healthy visual systems:

- the field of resolution linearly decreases with eccentricity
- the field of peak contrast sensitivity is uniform with scaled visual stimuli.

The ease of comprehension of the eye movement task may favor its use in naive populations.

References:

Watson. The Field of View, the Field of Resolution, and the Field of Contrast Sensitivity. JPI, 2018
Strasburger at al. Peripheral Vision and Pattern Recognition: a Review. J Vis, 2011.
Jones et al. Portable Perimetry Using Eye-Tracking on a Tablet Computer—A Feasibility Assessment. Tvst, 2019.
Chung & Legge. Comparing the Shape of Contrast Sensitivity Functions for Normal and Low Vision. IOVS, 2016.

Acknowledgements: CFA: NIH K99 EY026130 AK: NIH F32 EY028814 PJB: NIH R01 EY029713