Universidade Federal de Goiás Instituto de Informática Introdução à Programação Lista - L1- a

Prof. Msc. Elias Batista Ferreira
Prof. Dr. Gustavo Teodoro Laureano
Profa. Dra. Luciana Berretta
Prof. Dr. Jacson Rodrigues Barbosa
Prof. Dr. Thierson Rosa Couto

Instruções para a Resolução dos Problemas

Os problemas devem ser submetidos ao sistema Sharif da sua turma. A pontuação de cada problema é definida de acordo com o grau de dificuldade do problema, conforme a tabela abaixo:

Grau de Dificuldade	Pontos
+	1
++	2
+++	3
++++	4
++++	5

A lista L1 completa vale 100 pontos (que correspondem a 10 em termos de nota da lista). No Sharif a Lista L1 aparece segmentada em três listas. Este texto corresponde à lista L1- a. Para obter os cem pontos o aluno deve conseguir resolver um número de exercícios de graus de dificuldade +, ++ e +++ que somados formem 90 pontos. Pontos excedentes obtidos com exercícios desses graus de dificuldade serão descartados. Os 10 pontos restantes devem ser obtidos resolvendo-se problemas com graus de dificuldade +++++ ou +++++.

Sumário

1	Aprovado ou Reprovado	3
2	Arrecadação de Jogos	4
3	Composição Inteira (+)	5
4	Consumo de energia	6
5	Conta de Água	7
6	Conversão de temperatura	8
7	Conversões para o Sistema Métrico	9
8	Custo da Lata de Cerveja	10
9	Cálculo do Delta na Equação de Báskara	11
10	Cálculo do Determinante de uma Matriz Quadrada de Duas Dimensões	12
11	Divisível por 3 e 5	13
12	Locadora de charretes	14
13	Conversão de Nota em Conceito	15
14	Volume da Pirâmide de Base Hexagonal	16
15	Quadrado de pares	17
16	Reajuste salarial	18
17	Série de pares	19
18	Soma de progressão aritmética	20
19	Somatório simples	21
20	Tempo em segundos	22

1 Aprovado ou Reprovado

Fazer um algoritmo que calcule a média aritmética das três notas de um aluno e mostre, além do valor da média, uma mensagem de "APROVADO", caso a média seja igual ou superior a seis, ou a mensagem "REPROVADO", caso contrário.

Entrada

A entrada conterá uma linha com as três notas do aluno, separadas entre si por um caractere de espaço.

Saída

A saída deve conter duas linhas. A primeira linha deve conter uma frase com o seguinte formato: MEDIA = x, onde x é o valor da média entre as três notas do aluno, contendo duas casas decimais. A segunda linha contém uma das duas mensagens: APROVADO ou REPROVADO. Após o valor da média e após a mensagem, o programa deve imprimir o caractere de quebra de linha: '\n'.

Entra	ada	
7.4	6.2	3.7
Saída	ì	
MED]	A =	5.77
REPF	ROVAI	00

Entrada	ı	
5.1 9.	. 9	7.2
Saída		
MEDIA	=	7.40
APROVA	ADO	

2 Arrecadação de Jogos

Escrever um algoritmo que lê o público total de futebol, as percentagens de pessoas nas seguintes categorias: *popular*, *geral*, *arquibancada* e *cadeiras* e forneça a renda total do jogo. Sabe-se que o valor dos ingressos por categoria são dados pela tabela abaixo:

Categoria	Valor ingresso
Popular	R\$ 1,00
Geral	R\$ 5,00
Arquibancada	R\$10,00
Cadeiras	R\$ 20,00

Entrada

A entrada contém uma linha inicial com um valor inteiro informando o número de casos de testes que ocorrem nas linhas seguintes. Cada caso de teste seguinte é formado por uma linha contendo os seguintes valores, separados entre si por um espaço:

- O número de pessoas que compraram ingresso para o jogo correspondente ao caso de teste.
- A percentagem de pessoas que compraram ingresso na categoria *Popular*.
- A percentagem de pessoas que compraram ingresso na categoria *Geral*.
- A percentagem de pessoas que compraram ingresso na categoria Arquibancada.
- A percentagem de pessoas que compraram ingresso na categoria *Cadeiras*.

Saída

O programa deve gerar uma linha para cada caso de teste na entrada, contendo a frase: A RENDA DO JOGO N. $x \to y$, onde x corresponde a ordem do caso de teste na entrada e y é um valor real com duas casas decimais que corresponde ao valor da renda total do jogo x.

E	ntrada	a							
3									
55	5000	20	0.2	50.4	30	. 2	10	0.2	2
4 9	9732	15	5.2	53.4	20	. 2	4 :	11.	.16
6	7890	3(0.0	42.20	2	3.8	3 4	4.()
Sa	aída								
A	RENI	DΑ	DO	JOGO	Ν.	1	Ε	=	428010.00
A	RENI	DΑ	DO	JOGO	Ν.	2	Ε	=	352003.09
A	RENI	DΑ	DO	JOGO	Ν.	3	Ε	=	379505.09

3 Composição Inteira (+)

Escreva um algoritmo em Linguagem C que leia três números inteiros separados (n_1, n_2, n_3) e calcule o número inteiro correspondente à concatenação dos três números lidos, de modo que n_1 seja a centena, n_2 a dezena e n_3 a unidade. O programa deve apresentar o número calculado e também o seu quadrado. Caso n_1 , n_2 ou n_3 tenham mais que 1 dígito, o programa deve apresentar a mensagem: "DIGITO INVALIDO"e encerrar a execução. O valor de saída não deve ter zeros à esquerda.

Entrada

O programa deve ler 3 números inteiros.

Saída

O programa deve imprimir uma linha contendo o número resultado da composição dos três números inteiros e seu quadrado separados por vírgula e um espaço.

Entra	da
1	
2	
3	
Saída	
123,	15129
Entra	da
10	
l 0	

Entrada	
10	
0	
3	
Saída	
DIGITO	INVALIDO

Consumo de energia 4

(+)

Sabendo-se que 100 kW de energia custam 70% do salário mínimo, escreva um algoritmo em Linguagem C que leia o valor do salário mínimo e a quantidade de kW gasta por uma residência. Calcule e imprima:

- o valor em reais de cada kW;
- o valor em reais a ser pago pelo consumo da residência;
- o novo valor a ser pago pela residência com um desconto de 10%.

Entrada

O programa deve ler o valor do salário mínimo e a quantidade de kW gasta por uma residência. Ambos os valores são reais.

Saída

O programa deve imprimir três linhas contento o texto:

Custo por kW: R\$ x.xx Custo do consumo: R\$ x.xx Custo com desconto: R\$ x.xx

Entrada
81
3.54
Saída
Custo por kW: R\$ 0.57
Custo do consumo: R\$2.01
Custo com desconto: R\$ 1.81

5 Conta de Água

(+)

Desenvolver um programa para calcular a conta de água para uma empresa de saneamento. O custo da água varia dependendo se o consumidor é residencial, comercial ou industrial. A regra para calcular a conta é:

- Residencial: R\$ 5,00 de taxa mais R\$ 0,05 por metros cúbicos gastos;
- Comercial: R\$ 500, 00 para os primeiros 80 metros cúbicos gastos mais R\$ 0, 25 por metros cúbicos gastos;
- Industrial: R\$ 800,00 para os primeiros 100 metros cúbicos gastos mais R\$ 0,04 por metros cúbicos gastos;

O programa deverá ler a conta do cliente, o consumo de água por metros cúbicos e o tipo de consumidor (residencial, comercial e industrial). Como resultado, o programa deve imprimir a conta do cliente e o valor em Reais a ser pago pelo mesmo.

Entrada

O programa deverá ler uma linha na entrada contendo: a conta do cliente (um número inteiro), o consumo de água por metros cúbicos (float) e o tipo do consumidor (um caractere: 'C' - COMERCIAL, 'I' - INDUSTRIAL ou 'R' - RESIDENCIAL). Há um espaço entre os valores na linha de entrada

Saída

O programa deve imprimir duas linhas, contendo o seguinte:

- CONTA = u, onde u é o código inteiro identificador da conta;
- VALOR DA CONTA = v, onde v é o valor da conta com duas casas decimais, a ser pago pelo consumidor;

Após o valor impresso em cada linha, o programa dev imprimir o caractere de quebra de linha; '\n'. Os valores de v,x e w devem conter duas casas decimais.

Exemplo

Abaixo são mostrados dois exemplos de entrada e saída, mas há apenas um caso de entrada (uma linha) para esse programa.

Entrada
39393939 230 C
Saída
CONTA = 39393939
VALOR DA CONTA = 537.50

Entrada
888 3752 I
Saída
CONTA = 888
VALOR DA CONTA = 946.08

6 Conversão de temperatura

Escreva um programa que imprima uma tabela de conversão de graus Fahrenheit para graus Celsius. Dado um valor de temperatura F medida na escala Fahrenheit, seu valor equivalente C na escala Celsius é dado pela seguinte equação:

$$C = \frac{5(F - 32)}{9}$$

.

Entrada

A entrada conterá várias linhas. A primeira delas contém o número n de temperaturas em Fahrenheit a serem convertidas para Celsius. Cada uma das n linhas seguintes contém um valor real (float) com a medida de uma temperatura em graus Fahrenheit.

Saída

O programa deve imprimir n linhas cada uma no seguinte formato x FAHRENHEIT EQUIVALE A y CELSIUS, onde x corresponde a um valor de temperatura em Fahrenheit e y corresponde ao valor equivalente em graus Celsius. Logo após a palavra CELSIUS em cada linha de saída deve ser impresso o caractere de quebra de linha. Os valores de x e y devem ser impressos com duas casas decimais.

Entrada
3
8
60
-20
Saída
8.00 FAHRENHEIT EQUIVALE A -13.33 CELSIUS
60.00 FAHRENHEIT EQUIVALE A 15.56 CELSIUS
-20.00 FAHRENHEIT EQUIVALE A -28.89 CELSIUS

7 Conversões para o Sistema Métrico

Muitos países estão passando a utilizar o sistema métrico. Faça um programa para executar as seguintes conversões:

- Ler uma temperatura em Fahrenheit e imprimir o equivalente em Celsius (C = (5F 160)/9).
- Ler uma quantidade de chuva dada em polegadas e imprimir o equivalente em milímetros (1 polegada = 25.4 mm).

Entrada

O programa deve ler dois valores na entrada: um valor em Fahrenheit e outro valor em polegadas. Ambos os valores são do tipo float. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir duas linhas. Aa primeira contém a frase: O VALOR EM CELSIUS = X, onde X é o valor de temperatura convertido de Fahrenheit para Celsius e deve ter duas casas decimais. A segunda linha deve conter a frase: A QUANTIDADE DE CHUVA E = Y, onde Y é o valor em milímetros correspondente ao valor em polegadas dado como entrada. Y é um valor real (float) e deve ter duas casas decimais. Logo após o valor de Y, o programa deve imprimir o caractere de quebra de linha '\n'.

Entrada
53
120
Saída
O VALOR EM CELSIUS = 11.67
A QUANTIDADE DE CHUVA E = 3048.00

8 Custo da Lata de Cerveja

Um fabricante de latas deseja desenvolver um programa para calcular o custo de uma lata cilíndrica de alumínio, sabendo-se que o custo do alumínio por m² é R\$ 100,00.

Entrada

O programa deve ler dois valores na entrada: o raio e a altura da lata. Ambos os valores correspondem a valores em metros. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir a frase: O VALOR DO CUSTO E = XXX.XX, onde XXX.XX é o valor do custo da lata. Logo após o valor do custo da lata o programa deve imprimir o caractere de quebra de linha '\n'.

Observações

- O seu programa deve utilizar a constante π com o valor aproximado de 3.14159.
- O valor total da área de um cilindro é dada por $A_t = 2A_c + A_l$, onde A_c é a área do círculo, calculada como: $A_c = \pi r^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2\pi ra$, onde r é o raio e a a altura da lata em metros.

Eı	ntrada							
0	.02							
0	.09							
Sa	ıída							
0	VALOR	DO	CUSTO	Ε	=	1.	38	

9 Cálculo do Delta na Equação de Báskara

Fazer um programa para ler os valores dos coeficientes A,B e C de uma equação quadrática e calcular e imprimir o valor do discriminante (Δ). O valor de Δ é dado pela fórmula: $\Delta = B^2 - 4AC$.

Entrada

O programa deve ler três valores reais na entrada. O primeiro valor corresponde ao valor do coeficiente A, o segundo, do coeficiente B e o terceiro, do coeficiente C, de uma equação do seguro grau. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE DELTA E = X, onde X é o valor de delta computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor de delta, o programa deve imprimir um caractere de quebra de linha: "\n".

Observação

Para imprimir uma expressão do tipo float com duas casas decimais, você deve usar a formatação %.2f na função de impressão printf(). Supondo que você usou a variável delta para armazenar o valor do discriminante, você poderia imprimir o conteúdo dessa variável com duas casas decimais usando a função de impressão do seguinte modo: printf("%.2f\n", delta);.

Eı	ntrada					
5						
12	2					
4						
Sa	ıída					
0	VALOR	DE	DELTA	Ε	=	64.00

10 Cálculo do Determinante de uma Matriz Quadrada de Duas Dimensões

Fazer um programa tal que dados os quatro elementos de uma matriz 2×2 , calcule e escreva o valor do determinante desta matriz.

Entrada

O programa deve ler os quatro elementos a, b, c e d que formam uma matriz quadrada bidimensional. Há um valor por linha de entrada. Cada valor corresponde a um número real (float).

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DO DETERMINANTE E = X, onde X é o valor do determinante computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor do determinante, o programa deve imprimir um caractere de quebra de linha: "\n".

Observações

Dada uma matriz quadrada bidimensional $M=\left(egin{array}{c} a & b \\ c & d \end{array} \right)$, o determinante de M, denotado por det(M) é definido como: det(M)=ad-bc.

Eı	ntrada					
4						
3						
5						
4						
Sa	ıída					
0	VALOR	DO	DETERMINANTE	Ε	=	1.00

11 Divisível por 3 e 5

Desenvolver um programa que leia um número inteiro e verifique se o número é divisível por três e também é divisível por cinco.

Entrada

O programa deve ler uma linha contendo um número inteiro na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: O NUMERO E DIVISIVEL, se ele for divisível tanto por três quanto por cinco, ou a frase O NUMERO NAO E DIVISIVEL, em caso contrário. Após imprimir uma das frases, o programa deve imprimir um caractere de quebra de linha: '\n'.

Entrada								
75	5							
Sa	Saída							
0	NUMERO	Ε	DIVISIVEL					

Locadora de charretes **12**

(+)

Uma locadora de charretes cobra R\$ 10,00 de taxa para cada 3 horas de uso de uma charrete e R\$5,00 para cada 1 hora abaixo dessas 3 horas. Fazer um programa que leia a quantidade de horas que a charrete foi usada e que calcule e escreva quanto o cliente tem de pagar.

Entrada

O programa deve ler uma única linha na entrada, contendo o número de horas que o locatário utilizou a charrete.

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR A PAGAR E = X, onde X é o valor do aluguel e deve conter no máximo 2 casas decimais. Após o valor do aluguel o programa deve imprimir um caractere de quebra de linha: '\n'.

Eı	Entrada						
29	9						
Sa	Saída						
0	VALOR	Α	PAGAR	Ε	=	100.00	

13 Conversão de Nota em Conceito

Em um curso de mestrado as avaliações dos alunos no histórico escolar aparecem em forma de conceito. O regulamento do mestrado indica que um professor pode avaliar seus alunos com notas convencionais de zero a dez, mas precisa repassar à secretaria do curso a avaliação em termos de conceito. Nesse caso, a seguinte tabela de conversão deve ser usada pelo professor:

Intervalo da Nota	Conceito
[9,0 a 10]	A
[7,5,9,0)	В
[6, 7,5)	С
[0,6,0)	D

Escreva um programa para ler um nota e converte-la no conceito correspondente.

Entrada

A entrada consiste de uma linha com um valor real entre 0 e 10 e com uma casa decimal.

Saída

O programa deve imprimir a seguinte frase: NOTA = x CONCEITO = y, onde x é o valor da nota lido na entrada, impresso com uma casa decimal y é o conceito correspondente. Após a frase, o programa deve imprimir o caractere de quebra de linha: '\n'.

Entrad	a		
3.4			
Saída			
NOTA	= 3.4	CONCEITO =	D

Entrada	ì		
6.0			
Saída			
NOTA =	- 6.0	CONCEITO = C	

14 Volume da Pirâmide de Base Hexagonal

(+) O volume (V) de uma pirâmide cuja base é um hexágono regular é computado pela

Equação 1:

$$v = \frac{1}{3} \cdot A_b \cdot h,\tag{1}$$

onde h é a altura da pirâmide e A_b é a área do hexágono que forma a base da pirâmide. A área do hexágono é computada pela Equação 2:

$$A_b = \frac{3 \cdot a^2 \cdot \sqrt{3}}{2},\tag{2}$$

onde a é o comprimento de uma aresta do hexágono regular.

Entrada

O programa deve ler uma linha com dois números float, separados entre si por um espaço. O primeiro número corresponde à altura da pirâmide e o segundo número corresponde a uma aresta do hexágono que forma a abase da pirâmide. Ambos são valores em metros.

Saída

O programa deve emitir a frase: O VOLUME DA PIRAMIDE E = x METROS CUBICOS, onde x é o valor do volume da pirâmide em metros cúbicos e com duas casas decimais. Ao final da frase o programa deve imprimir o caractere de quebra de linha (\n).

E	ntrada							
1:	2.0							
8	. 0							
Sa	aída							
0	VOLUME	DA	PIRAMIDE	Ε	=	665.11	METROS	CUBICOS

Eı	ntrada		
0 .	.45		
0.	.23		
Sa	ıída		
0	VOLUME	DA	PIRAMIDE

15 Quadrado de pares

Escreva um programa para ler um valor inteiro N e que gere o quadrado de cada um dos valores pares, de 1 até N, inclusive N, se for o caso.

Entrada

A entrada conterá uma linha com um valor inteiro N, 5 < N < 2000.

Saída

A saída deve conter, uma linha para cada quadrado computado. Em cada linha deve constar uma expressão do tipo $x^2 = y$, onde x é um número par e y é o seu valor elevado ao quadrado. Imediatamente após o valor de y deve aparecer o caractere de quebra de linha: '\n'.

Entrada						
6						
Saíd	a					
2^2	=	4				
4^2	=	16				
6^2	=	36				

¹Fonte: Site do URI - https://www.urionlinejudge.com.br/judge/pt/problems/view/1073.

16 Reajuste salarial

(+)

Fazer um algoritmo que calcule e imprima o salário reajustado de um funcionário de acordo com as seguintes regras:

- Salário de até R\$ 300,00, reajuste de 50%;
- Salário maior que R\$300,00 reajuste de 30%;

Entrada

A entrada conterá uma linha com o salário do funcionário.

Saída

A saída deve conter, numa linha com a frase: SALARIO COM REAJUSTE = x, onde x é um valor real com duas casas decimais e corresponde ao valor do salário reajustado. Logo em seguida ao valor de x, o programa devem imprimir o caractere de quebra de linha: '\n'.

Exemplo

A seguir são mostrados dois casos distintos de entrada, somente para efeito de ilustração, porém, esse problema contém apenas um caso de teste na entrada, formado por apenas uma linha de entrada.

Entrada				
755.00				
Saída				
SALARIO	COM	REAJUSTE	=	981.50

Entrada				
265.32				
Saída				
SALARIO	COM	REAJUSTE	=	397.98

17 Série de pares

(+)

Escreva um programa para ler uma linha com dois números inteiros x e y. O programa deve verificar se x é um número par. Se for, o programa deve imprimir uma sequência de y números pares, iniciando com x. Se x não for par, o programa deve imprimir uma linha com a mensagem: O PRIMEIRO NUMERO NAO E PAR.

Entrada

A entrada conterá uma linha com dois números inteiros separados entre si por um caractere de espaço. Após o segundo número na entrada há um caractere de quebra de linha (\n).

Saída

Se o primeiro número for par, o programa deve imprimir uma linha contendo a sequência de números pares, com um espaço entre cada número par. Após o último número da serie, o programa deve imprimir um espaço seguido de um caractere de quebra de linha ('\n'). Se o primeiro número não for par, o programa deve imprimir a mensagem O PRIMEIRO NUMERO NAO E PAR e logo em seguida, o caractere de quebra de linha.

Ent	rada	a								
20	10									
Saí	da									
20	22	24	26	28	30	32	34	36	38	

E	ntrada				
3	20				
Sa	aída				
0	PRIMEIRO	NUMERO	NAO	Ε	PAR

18 Soma de progressão aritmética

Nerdilton adora Matemática, mas ele não tem a memória muito boa para memorizar fórmulas. Geralmente ele entende como a fórmula funciona e deriva o valor de saída da fórmula. Ele precisa responder a um conjunto de exercícios que pedem a soma dos n primeiros elementos de uma progressão aritmética, dados o primeiro elemento da progressão e a razão. Escreva um programa que seja capaz de encontrar a soma dos n primeiros termos de uma progressão aritmética sem usar a fórmula fechada da soma dos elementos de uma progressão aritmética. Lembre-se que uma progressão aritmética com valor inicial a_1 e razão r é a sequência formada por: $a_1, a_1 + r, a_1 + 2r, \cdots, a_1 + (n-1)r$. O programa precisa computar a soma dos valores dessa sequência.

Entrada

A entrada conterá uma linha com três números inteiros separados entre si por um caractere de espaço. O primeiro número corresponde ao valor inicial da progressão aritmética, o segundo, corresponde à razão da mesma e o terceiro corresponde ao número n de elementos da progressão.

Saída

O programa deve imprimir o valor da soma dos n primeiro elementos da progressão, seguido de um caracter de quebra de linha.

Exemplo

A seguir são mostrados dois casos distintos de entrada, somente para efeito de ilustração, porém, esse problema contém apenas um caso de teste na entrada, formado por apenas uma linha.

Entrada						
2	4	5				
Saída						
50						

Entrada					
7	-2	10			
Saída					
-20					

19 Somatório simples

Faça um programa que leia um valor n, inteiro e positivo, calcule e mostre a seguinte soma:

$$S = \sum_{k=1}^{n} = \frac{1}{k} = 1 + 1/2 + 1/3 + 1/4 + \dots + 1/n$$
(3)

Entrada

O programa deve ler um número inteiro positivo e maior que 1.

Saída

O programa deve apresentar uma linha contendo o valor final do somatório com 6 casas decimais. Caso o número lido não atenda as especificações da entrada, o programa deve apresentar a mensagem: "Numero invalido!".

Observações

Use precisão dupla para o cálculo de S.

Entrada	
10	
Saída	
2.928968	

20 Tempo em segundos

Fazer um programa que leia um valor de tempo expresso em horas, minutos e segundos e que converta esse tempo para um valor em segundos.

Entrada

O programa deve ler três linhas na entrada. A primeira contém um valor em horas, a segunda, contém um valor em minutos e a terceira, contém um valor em segundos. Os valores são todos números inteiros.

Saída

O programa deve imprimir uma linha contendo a frase: O TEMPO EM SEGUNDOS E = X, onde X é o valor do tempo convertido em segundos. Após o valor do tempo em segundos, o programa deve imprimir um caractere de quebra de linha: '\n'.

Eı	ıtrada						
5							
12	2						
1							
Sa	ída						
0	TEMPO	EM	SEGUNDOS	Ε	=	18721	