NATE STEMEN & KEVIN YEH

RUDIN: TRANSLATED

Contents

0	Preface 9	
1	The Real and Complex Number System 1	1
	Introduction 11	
	Ordered Sets 11	
	Fields 12	
	The Real Field 12	
	The Extended Real Number System 12	
	The Complex Field 12	
	Euclidean Spaces 12	
	Appendix 13	
2	Basic Topology 15	
	Finite, Countable, and Uncountable Sets 15	
	Metric Spaces 15	
	Compact Sets 15	
	Perfect Sets 15	
	Connected Sets 15	
3	Numerical Sequences and Series 17	
_	Convergent Sequences 17	
	Subsequences 17	
	•	

Cauchy Sequences 17

	Upper and Lower Limits 17
	Some Special Sequences 17
	Series 17
	Series of Nonnegative Terms 17
	The Number e 17
	The Root and Ratio Tests 18
	Power Series 18
	Summations by Parts 18
	Absolute Convergence 18
	Addition and Multiplication of Series 18
	Rearrangements 18
4	Continuity 19
	Limits of Functions 19
	Continuous Functions 19
	Continuity and Compactness 19
	Continuity and Connectedness 19
	Discontinuities 19
	Monotonic Functions 19
	Infinite Limits and Limits at Infinity 19
5	Differentiation 21
	The Derivative of a Real Function 21
	Mean Value Theorem 21
	The Continuity of Derivatives 21
	L'Hospital's Rule 21
	Derivatives of Higher Order 21
	Taylor's Theorem 21
	Differentiation of Vector-valued Functions 21
	J,

6 The Riemann-Stieltjes Integral 23
) 8 9
) 8 9
Definition and Existence of the Integral 23
Properties of the Integral 23
Integration and Differentiation 23
Integration of Vector-valued Functions 23
Rectifiable Curves 23
7 Sequences and Series of Functions 25
Discussion of Main Problem 25
Uniform Convergence 25
Uniform Convergence and Continuity 25
Uniform Convergence and Integration 25
Uniform Convergence and Differentiation 25
Equicontinuous Families of Functions 25
The Stone-Weierstrass Theorem 25

8 Some Special Functions 27

Power Series 27

The Exponentiation and Logarithmic Functions 27

The Trigonometric Functions 27

The Algebraic Completeness of the Complex Field 27

Fourier Series 27

The Gamma Function 27

9 Functions of Several Variables 29 Linear Transformations 29 Differentiation 29 The Contraction Principle 29 The Inverse Function Theorem 29 The Implicit Function Theorem 29

	The Rank Theorem 29	
	Determinants 29	
	Derivatives of Higher Order 29	
	Differentiation of Integrals 30	
10	Integration of Differential Forms 31	
	Integration 31	
	Primitive Mappings 31	
	Partitions of Unity 31	
	Change of Variables 31	
	Differential Forms 31	
	Simplexes and Chains 31	
	Stokes' Theorem 31	
	Closed Forms and Exact Forms 31	
	Vector Analysis 32	
11	The Lebesgue Theory 33	
	Set Functions 33	
		33
	Measure Spaces 33	
	Measurable Functions 33	
	Simple Functions 33	
	Integration 33	
		33
	Integration of Complex Functions 33	"
	Functions of Class \mathcal{L}^2 34	
	2 mioricine of Cinice 20 94	

Todo list

	who is this book intended for?		. 9
	what are the real prereqs? just some basic set the	ory?	. 9
I	change bullets to match with rudin		. 12

Preface

The Real and Complex Number System

Introduction

filler content...

Ordered Sets

Often when we talk about collections of things (people, cars, dogs, etc.) we talk about how they compare to each other (height, top speed, cuteness respectively). *But*, we can only do this because we have a way in which these objects relate to each other. My dog is *of course* cuter than yours, so I might say my dog is better than yours. Symbolically, I might write this as

where "<" can be read as "is less cute than" in this particular scenario, but in others, it might mean "has a lower top speed" or really anything else you can think of. We could even take all dogs and compare them in lots of different ways, such as by weight, or tail length, or number of hairs, or...

There are a lot of ways, but the idea is that with a collection of objects we often like to talk about how they relate to each other and how we can compare objects of this underlying collection or set. The following definition puts this in terms we will use through the rest of the book.

Definition 1.0.1. If we let S be a set, then an *order* on S is a relation, often denoted <, with two extra properties.

• If *x* and *y* are in *S*, then *only one* of the following is true.

$$x < y$$
, $x = y$, $y < x$

• If x, y and z are in S and x < y and y < z, then x < z.

change bullets to match with rudin

Note that we did not define what the symbol > means, but as is often done we will use it because mathematics is nothing without some abuses of notation. If we write x > y, take that to mean y < x, but instead you may read it as x is "greater than" y or x is "larger than" y. Along with this notation, we will use $x \leq y$ to mean that x is either less than y or it is equal to y, but we don't know which. Similarly with \geq .

While in english (and many other languages) we rely on context to understand what set and order people are using when they talk, in mathematics we have to be very pedantic. Hence the following definition.

Definition 1.0.2. An *ordered set* is a set, together with an order defined on said set.

Going back to the dogs, people often say "Nate, you're dog is the cutest" which would imply, if taken literally, that there is no dog that is cuter than mine. People love these kind of extremes. We have a whole book dedicated to people who are the *most* at something (The Guiness World Records) and it comes out every year. We also have the olympics to find more of the *most* people. The fastest person on land, the fastest person in water, the fastest person on land/water/wheel (triathlon). We love this kind of thing, and of course some people are also intersested in the slowest .::

Fields filler content... The Real Field filler content... The Extended Real Number System filler content... The Complex Field filler content...

Euclidean Spaces

Appendix

Basic Topology

Finite, Countable, and Uncountable Sets
filler content
Metric Spaces
filler content
Compact Sets
filler content
Perfect Sets
filler content
Connected Sets

Numerical Sequences and Series

Convergent Sequences
filler content
Subsequences
filler content
Cauchy Sequences
filler content
Upper and Lower Limits
filler content
Some Special Sequences
filler content
Series
filler content
Series of Nonnegative Terms
filler content
The Number e
filler content

The Root and Ratio Tests
filler content
Power Series
filler content
Summations by Parts
filler content
Absolute Convergence
filler content
Addition and Multiplication of Series
filler content
Rearrangements
filler content

4 *Continuity*

Limits of Functions
filler content
Continuous Functions
filler content
Continuity and Compactness
filler content
Continuity and Connectedness
filler content
Discontinuities
filler content
Monotonic Functions
filler content
Infinite Limits and Limits at Infinity

5 Differentiation

The Derivative of a Real Function
filler content...

Mean Value Theorem
filler content...

The Continuity of Derivatives
filler content...

L'Hospital's Rule
filler content...

Derivatives of Higher Order
filler content...

Taylor's Theorem
filler content...

Differentiation of Vector-valued Functions

The Riemann-Stieltjes Integral

Definition and Existence of the Integral

filler content...

Properties of the Integral

filler content...

Integration and Differentiation

filler content...

Integration of Vector-valued Functions

filler content...

Rectifiable Curves

Sequences and Series of Functions

Discussion of Main Problem
filler content...

Uniform Convergence
filler content...

Uniform Convergence and Continuity
filler content...

Uniform Convergence and Integration
filler content...

Uniform Convergence and Differentiation
filler content...

Equicontinuous Families of Functions
filler content...

The Stone-Weierstrass Theorem
filler content...

Some Special Functions

Power Series
filler content
The Exponentiation and Logarithmic Functions
filler content
The Trigonometric Functions
filler content
The Algebraic Completeness of the Complex Field
filler content
Fourier Series
filler content
The Gamma Function
filler content

Functions of Several Variables

Linear Transformations
filler content
Differentiation
filler content
The Contraction Principle
filler content
The Inverse Function Theorem
filler content
The Implicit Function Theorem
filler content
filler content The Rank Theorem
The Rank Theorem
The Rank Theorem filler content
The Rank Theorem filler content Determinants

Differentiation of Integrals

Integration of Differential Forms

Integration
filler content
Primitive Mappings
filler content
Partitions of Unity
filler content
Change of Variables
filler content
Differential Forms
filler content
Simplexes and Chains
filler content
Stokes' Theorem
filler content
Closed Forms and Exact Forms
filler content

Vector Analysis

The Lebesgue Theory

Set Functions
filler content
Constructions of the Lebesgue Measure
filler content
Measure Spaces
filler content
Measurable Functions
filler content
Simple Functions
filler content
Integration
filler content
Comparison with the Riemann Integral
filler content
Integration of Complex Functions
filler content

Functions of Class \mathcal{L}^2