

SRM Institute of Science and Technology Faculty of Engineering and Technology

DEPARTMENT OF CSE

Vadapalani Campus, Chennai 600026, Tamilnadu Academic Year: 2024-25 Semester: ODD

Mode of Exam OFFLINE SET-A

Test: CLAT-3

Course Code & Title: 21CSC201J & Data Structures and Algorithms

Year & Sem: II/III

Date: 05.11.2024

Duration: 90 min.

Max. Marks: 50

Course Articulation Matrix:

S. No	Course Outcomes (CO)	Program Outcomes (PO)										PSO				
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Develop programs using data types like structures, pointers and arrays supported by C programming language	1	_	3	_	_	_	_	-	2	-	-	-	1	-	2
2	Analyze the complexity of algorithm and if needed, modify it to improve its efficiency	2	3	2	1	_	-	-	-	-	-	-	-	1	2	-
3	Identify and use appropriate data structure for devising solution	1	3	2	_	<u>-</u>	-	-	-	-	-	-	-	1	1	2
4	Describe and use tree structure while developing programs	2	_	3	2	_	-	-	-	-	-	-	-	1	-	2
5	Implement the Graph structure and use it whenever deemed university for provide	3	2	3	-	_	-	-	-	-	-	-	-	1	1	2

Part – A (11 x 01 = 11 Marks) Instructions: Answer All the Questions

Q.	Question	Mark	В	C	PO
No		s	L	O	
1	The number of edges from the node to the deepest leaf is called of the tree. a) Height b) Depth c) Length d) Width	1	1	2	2
2	What is a complete binary tree? a) Each node has exactly zero or two children b) A binary tree, which is completely filled, with the possible exception of the bottom level, which is filled from right to left c) A binary tree, which is completely filled, with the possible exception of the bottom level, which is filled from left to right d) A tree In which all nodes have degree 2		1	2	2
3	Which of the following is false about a binary search tree? a) The left child is always lesser than its parent b) The right child is always greater than its parent c) The left and right sub-trees should also be binary search trees d) In order sequence gives decreasing order of elements	1	1	2	2

4	What are the worst case and average case complexities of a binary search tree? a) O(n), O(n) b) O(logn), O(logn) c) O(logn), O(n) d) O(n), O(logn)	1	1	2	1
5	The maximum possible height of an AVL Tree with 7 nodes is a) 3 b) 4 c) 5 d) 6	1	2	3	1
6	What is a hash function? (a)A function has allocated memory to keys (b)A function that computes the location of the key in the array (c) A function that creates an array	1	1	3	2
7	Consider the following graph. Using Kruskal's algorithm, which edge will be selected first?	1	3	3	1
	a) GF b) DE c) BE d) BG				
8	The traveling salesman problem can be solved using a) A spanning tree b) A minimum spanning tree c) Bellman – Ford algorithm d) DFS traversal	1	1	3	2
9	Consider the graph M with 3 vertices. Its adjacency matrix is shown below. Which of the following is true? $\mathbf{M} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	1	2	3	2

10	Consider the graph shown below. Which of the following are the edges in the MST of the given graph	1	2	3	1		
	a) (a-c)(c-d)(d-b)(d-b) b) (c-a)(a-d)(d-b)(d-e) c) (a-d)(d-c)(d-b)(d-e) d) (c-a)(a-d)(d-c)(d-b)(d-e)						
11	Dijkstra's Algorithm is used to solve problems. a) Single source shortest path b) All pair shortest path c) Sorting d) Network flow	1	1	2	1		
	Part – B (3 * 8 = 24 Marks) Instructions: Answer All the Questions						
12. A	Explain linear probing technique for handling collisions and employ the same for creating the hash table for the keys, 13, 1, 6, 11 and 10. Use M as 5. Discuss the complexity of storing and retrieving data in a hash table.	8	2	3	1		
	OR			Į.			
12. B	(i) Consider the keys 8, 10, 14, 3, 6, 13, 1, 4 and 7. Construct a Binary Search Tree (BST) by inserting the keys in the same order.(ii) Write the output for In-order and Pre-order traversal.	8	2	3	1		
13. A	Explain Single and Double rotations in AVL tree with suitable examples.		3	2	2		
OR							
13. B	Construct a 3-way B-Tree by inserting the following data elements, 7, 8, 9, 10, 11, 16, 21, and 18.	8	3	2	3		

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

