

Explanation of symbols [10]

Assume only lamped schances 2

1)
$$\frac{dE_c}{dt} = Q_e - Q_e$$
; $\boxed{2}$
2) $\frac{dE_i}{dt} = Q_e$; $-(Q_{if} + Q_{io} + Q_{eo})$ $\boxed{4}$
3) $E_c = f(T_e)$ $\boxed{2}$

3)
$$E_{i} = f_{i}(T_{e})$$
 [2]
4) $E_{i} = f_{i}(T_{i})$ [2]

Layart: 2

			Page 2
QD			
INPUTS	Parameters	Otputs	
I NPUTS Network load	hio	Otputs Ec	
94	A ;	Q _C	
T∞	لح.	Qc;	
	Aci	E_;	
	he.	Pi _f	
	Aco	φ_{i} ,	
	Ac	Pc.	
	·	TZ	
		T;	
		hf	
3	7	10	
V		_	
	15]		
Q3 Total symbols: 20 ty			
Mins equations: 10			
Degrees of Freedom: 10 Dot 1			
Specifying inpits + paramaters completely specifies to			
the for feedback controlled wanted and			
manipulate a variable that affects it. He will measure To and			
manipulate a variable that affects it. He will measure To and manipulate of. To and the network load would be disturbances I			

$$y(t) = \omega(\epsilon) - \omega(\epsilon) \log [z\alpha]$$

$$\frac{dy}{H} = g(t) - cg(t)$$

$$\frac{dg}{dt} = \sin(t+1) z(t) - y(t)$$

1)
$$c=3$$
, $\omega(0)=1$ and $g(0)=1$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\frac{1}{2} dg = 0 = \sin(0+1) = 2(0) - y(0) = \frac{1}{2} \sin(1)z = \frac{1}{2}$$

$$\frac{1}{3} \sin(1)z = \frac{1}{2} \cos(1)z = \frac{1}{2} \cos($$

Let
$$y = 1 - u \log 2 = \frac{2}{3}$$

$$U = \frac{1 - \frac{2}{3}}{\log(\frac{2}{3\sin(1)})} \approx \frac{-3}{3}\pi 6$$

2)
$$y(t) = w'(t) - \log_{10} z u'(t) - u z'(t)$$
 $= \ln_{10} (10)$

$$\frac{dy'}{dt} = g'(t) - cy'(t)$$

$$\frac{dg'}{dt} = \frac{d}{\sin(1)z'(t)} - y'(t)$$

$$5/(s) = G(s) - e(s) - e(2)$$

=> $1/(s) = 1/(G(s))$

$$= \frac{1}{2} \frac{$$

$$SG(s) = dZ(s) - Y(s)$$

$$G(s) = dZ(s) - Y(s) - eq(3)$$

$$G(y) = \begin{bmatrix} -1 & y & y \\ 1 & -d & y \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & &$$

10