L5a Singular Value Decomposition - Definitions and Facts

April 19, 2018

1 Singular Value Decomposition - Definitions and Facts

1.1 Prerequisites

The reader should be familiar with basic linear algebra concepts and notebooks related to eigenvalue decomposition.

1.2 Competences

The reader should be able to undestand and check the facts about singular value decomposition.

1.3 Selected references

There are many excellent books on the subject. Here we list a few:

Section ??

Section ??

Section ??

Section ??

Section ??

Section ??

1.4 Singular value problems

For more details and the proofs of the Facts below, see Section ?? and Section ?? and the references therein.

1.4.1 Definitions

Let $A \in \mathbb{C}^{m \times n}$ and let $q = \min\{m, n\}$.

The **singular value decomposition** (SVD) of A is

$$A = U\Sigma V^*$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \ldots) \in \mathbb{R}^{m \times n}$ with all $\sigma_j \geq 0$. Here σ_j is the **singular value**, $u_j \equiv U_{:,j}$ is the corresponding **left singular vector**, and $v_j \equiv V_{:,j}$ is the corresponding **right singular vector**.

The set of singular values is $sv(A) = \{\sigma_1, \sigma_2, \dots, \sigma_q\}$.

We assume that singular values are ordered, $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_q \geq 0$.

The **Jordan-Wielandt** matrix is the Hermitian matrix

$$J = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} \in \mathbb{C}^{(m+n) \times (m+n)}.$$

1.4.2 Facts

There are many facts related to the singular value problem for general matrices. We state some basic ones:

- 1. If $A \in \mathbb{R}^{m \times n}$, then U and V are real.
- 2. Singular values are unique (uniquely determined by the matrix).
- 3. $\sigma_i(A^T) = \sigma_i(A^*) = \sigma_i(\bar{A}) = \sigma_i(A)$ for i = 1, 2, ..., q.
- 4. $Av_j = \sigma_j u_j$ and $A^*u_j = \sigma_j v_j$ for j = 1, 2, ..., q.
- 5. $A = \sigma_1 u_1 v_1^* + \sigma_2 u_2 v_2^* + \cdots + \sigma_q u_q v_q^*$
- 6. Unitary invariance. For any unitary $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$, sv(A) = sv(UAV).
- 7. There exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that A = UBV if and only if sv(A) = sv(B).
- 8. SVD of A is related to eigenvalue decompositions of Hermitian matrices $A^*A = V\Sigma^T\Sigma V^*$ and $AA^* = U\Sigma\Sigma^TU^*$. Thus, $\sigma_i^2(A) = \lambda_j(A^*A) = \lambda_j(AA^*)$ for j = 1, 2, ..., q.
- 9. The eigenvalues of Jordan-Wielandt matrix are $\pm \sigma_1(A)$, $\pm \sigma_2(A)$, \cdots , $\pm \sigma_q(A)$ together with |m-n| zeros. The eigenvectors are obtained from an SVD of A. This relationship is used to deduce singular value results from the results for eigenvalues of Hermitian matrices.
- 10. trace($|A|_{spr}$) = $\sum_{i=1}^{q} \sigma_i$, where $|A|_{spr} = (A^*A)^{1/2}$.
- 11. If *A* is square, then $|\det(A)| = \prod_{i=1}^{n} \sigma_i$.
- 12. If *A* is square, then *A* is singular $\Leftrightarrow \sigma_i(A) = 0$ for some *j*.
- 13. Min-max Theorem. It holds:

$$\begin{split} \sigma_k &= \max_{\dim(W) = k} \min_{x \in W, \|x\|_2 = 1} \|Ax\|_2 \\ &= \min_{\dim(W) = n - k + 1} \max_{x \in W, \|x\|_2 = 1} \|Ax\|_2. \end{split}$$

- 14. $||A||_2 = \sigma_1(A)$.
- 15. For $B \in \mathbb{C}^{m \times n}$,

$$|\operatorname{trace}(AB^*)| \leq \sum_{j=1}^{q} \sigma_j(A)\sigma_j(B).$$

2

16. **Interlace Theorems.** Let *B* denote *A* with the one of its rows *or* columns deleted. Then

$$\sigma_{i+1}(A) \le \sigma_i(B) \le \sigma_i(A), \quad j = 1, \dots, q-1.$$

Let *B* denote *A* with the one of its rows *and* columns deleted. Then

$$\sigma_{j+2}(A) \leq \sigma_j(B) \leq \sigma_j(A), \quad j=1,\ldots,q-2.$$

17. **Weyl Inequalities.** For $B \in \mathbb{C}^{m \times n}$, it holds:

$$\sigma_{j+k-1}(A+B) \le \sigma_j(A) + \sigma_k(B), \quad j+k \le n+1,$$

$$\sum_{j=1}^k \sigma_j(A+B) \le \sum_{j=1}^k \sigma_j(A) + \sum_{j=1}^k \sigma_j(A), \quad k=1,\ldots,q.$$

1.4.3 Example - Symbolic computation

In [6]: =map(Rational, solve(p(x), x))

```
In [1]: using SymPy
In [2]: A=[ 3
         -5 -1 -4
         5 0 2]
Out[2]: 3@3 Array{Int64,2}:
         -5 -1 -4
In [3]: @vars x
Out[3]: (x,)
In [4]: B=A'*A
Out[4]: 3@3 Array{Int64,2}:
        59 11 33
        11
                  6
        33
              6
                 21
In [5]: # Characteristic polynomial p_B()
        p(x)=simplify(det(B-x*I))
       p(x)
  Out[5]:
                               -x^3 + 85x^2 - 393x + 441
```

```
Out[6]: 3-element Array{Rational{Int64},1}:
                       3//1
        2064549086305011//1125899906842624
         5641202704674385//70368744177664
In [7]: V=Array(Any)(3,3)
       for j=1:3
           V[:,j]=nullspace(B-[j]*I)
       end
       V
Out[7]: 3@3 Array{Any,2}:
        -3.2754f-7 -0.519818 -0.854277
         0.948684
                     0.270146 -0.164381
         -0.316227
                     0.810438 -0.493142
In [8]: U=Array(Any)(3,3)
       for j=1:3
           U[:,j]=nullspace(A*A'-[j]*I)
       end
       U
Out[8]: 3@3 Array{Any,2}:
         0.912871 -0.154138 -0.378032
         0.182574 -0.67409
                               0.71573
         -0.365148 -0.722388 -0.587215
In [9]: =sqrt.()
Out[9]: 3-element Array{Float64,1}:
        1.73205
        1.35414
        8.95356
In [10]: A-U*diagm()*V'
Out[10]: 3@3 Array{Float64,2}:
          2.02284e-7 3.05213e-7 9.51424e-7
          9.53544e-7 -6.66283e-7 -7.23387e-7
          -7.64795e-7 1.85427e-8 3.64772e-7
In [11]: S=svd(A)
Out[11]: ([-0.378032 -0.912871 -0.154137; 0.71573 -0.182574 -0.67409; -0.587215 0.365148 -0.7223
In [12]: typeof(S)
Out[12]: Tuple{Array{Float64,2},Array{Float64,1},Array{Float64,2}}
```

```
In [13]: U=S[1]
        =S[2]
        V=S[3]
Out[13]: 3@3 Array{Float64,2}:
         -0.854277 0.0
                               -0.519818
         -0.164381 -0.948683
                              0.270146
         -0.493143 0.316228
                              0.810438
In [14]: V
Out[14]: 3@3 Array{Any,2}:
         -3.2754f-7 -0.519818 -0.854277
          0.948684
                      0.270146 -0.164381
         -0.316227
                      0.810438 -0.493142
1.4.4 Example - Random complex matrix
In [15]: m=5
        n=3
        s=srand(421)
        q=min(m,n)
        A=rand(m,n)+im*rand(m,n)
Out[15]: 5@3 Array{Complex{Float64},2}:
         0.345443+0.915812im 0.77247+0.198694im 0.958365+0.37833im
          0.68487+0.605095im
                               0.17008+0.854638im
                                                   0.560486+0.834811im
         0.650991+0.83639im 0.525208+0.905889im
                                                   0.608612+0.353274im
         0.973053+0.766264im 0.785847+0.0936446im 0.346561+0.831302im
         0.105135+0.810683im 0.135538+0.651562im 0.561248+0.217897im
In [16]: U,,V=svd(A, thin=false)
Out[16]: 5@5 Array{Complex{Float64},2}:
         -0.326131-0.323713im -0.214728+0.0378561im
                                                        -0.304393-0.109676im
         -0.204849-0.411755im 0.124224-0.410762im
                                                         -0.123119-0.163377im
         -0.277774-0.399041im -0.235078+0.0866662im
                                                         -0.181124+0.460827im
         -0.342932-0.328115im 0.718399+0.105642im
                                                          0.147071+0.0774263im
         -0.109764-0.321934im -0.42215-0.00780174im
                                                          0.736473-0.195654im
In [17]:
Out[17]: 3-element Array{Float64,1}:
         3.30202
         0.965571
         0.76542
In [18]: V
```

```
Out[18]: 3@3 Array{Complex{Float64},2}:
                            0.461649-0.0im -0.595559-0.0im
         -0.657411-0.0im
         -0.525502-0.0714762im -0.021837+0.45993im 0.563152+0.435416im
         -0.523002-0.114098im -0.496126-0.573347im 0.192746-0.318484im
In [19]: norm(A-U[:,1:q]*diagm()*V'), norm(U'*U-I), norm(V'*V-I)
Out[19]: (2.2933010552997958e-15, 7.04377263940463e-16, 8.629134923109423e-16)
In [20]: # Fact 4
        @show k=rand(1:q)
        norm(A*V[:,k]-[k]*U[:,k],Inf), norm(A'*U[:,k]-[k]*V[:,k],Inf)
k = rand(1:q) = 1
Out [20]: (1.2947314098277873e-15, 9.305364597889227e-16)
In [21]: ,V=eig(A'*A)
Out[21]: ([0.585867, 0.932328, 10.9034], Complex{Float64}[-0.308357-0.509516im -0.302079+0.34908
In [22]: sqrt.()
Out[22]: 3-element Array{Float64,1}:
         0.76542
         0.965571
         3.30202
In [23]: U,U=eig(A*A')
Out[23]: ([1.66533e-16, 3.61372e-16, 0.585867, 0.932328, 10.9034], Complex{Float64}[-0.257033-0.
In [24]: V
Out[24]: 3@3 Array{Complex{Float64},2}:
                           0.461649 - 0.0im
         -0.657411-0.0im
                                                    -0.595559-0.0im
         -0.525502-0.0714762im -0.021837+0.45993im 0.563152+0.435416im
         -0.523002-0.114098im -0.496126-0.573347im 0.192746-0.318484im
In [25]: V
Out[25]: 3@3 Array{Complex{Float64},2}:
          -0.308357-0.509516im -0.302079+0.349097im -0.642304+0.140124im
         -0.0809315+0.707232im -0.333508-0.317467im -0.528661+0.0421748im
           0.372268-0.0im
                                 0.7582+0.0im -0.535303-0.0im
In [26]: abs.(V'*V)
Out[26]: 3E3 Array{Float64,2}:
         2.65135e-16 3.19189e-16 1.0
         1.73089e-15 1.0
                                  3.92523e-16
         1.0
                     2.02635e-15 4.8473e-16
```

Explain non-uniqueness of U and V!

q=min(m,n)

A=rand(-9:9,m,n)

```
In [27]: # Jordan-Wielandt matrix
         J=[zeros(A*A') A; A' zeros(A'*A)]
Out[27]: 8G8 Array{Complex{Float64},2}:
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                      0.958365+0.37833im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                       0.560486+0.834811im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                       0.608612 + 0.353274im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                       0.346561+0.831302im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                       0.561248+0.217897im
         0.345443-0.915812im 0.68487-0.605095im
                                                           0.0 + 0.0 im
                                                            0.0+0.0im
          0.77247-0.198694im 0.17008-0.854638im
         0.958365-0.37833im 0.560486-0.834811im
                                                            0.0 + 0.0 im
In [28]: round.(abs.(J),2)
Out[28]: 8E8 Array{Float64,2}:
         0.0
               0.0
                      0.0
                                        0.98 0.8
                                                    1.03
                           0.0
                                  0.0
         0.0
                0.0
                     0.0
                           0.0
                                        0.91 0.87 1.01
                                  0.0
          0.0
               0.0
                     0.0
                           0.0
                                  0.0
                                        1.06 1.05 0.7
          0.0
               0.0
                     0.0
                           0.0
                                  0.0
                                        1.24 0.79 0.9
         0.0
               0.0
                           0.0
                                  0.0
                                        0.82 0.67 0.6
                     0.0
         0.98 0.91 1.06 1.24 0.82 0.0
                                              0.0 0.0
          0.8
                0.87 1.05 0.79 0.67 0.0
                                              0.0
                                                    0.0
          1.03 1.01 0.7
                           0.9
                                  0.6
                                        0.0
                                              0.0
                                                    0.0
In [29]: J,UJ=eig(J)
Out[29]: ([-3.30202, -0.965571, -0.76542, -7.50067e-17, 2.84505e-17, 0.76542, 0.965571, 3.30202]
In [30]: J
Out[30]: 8-element Array{Float64,1}:
          -3.30202
          -0.965571
          -0.76542
          -7.50067e-17
          2.84505e-17
          0.76542
          0.965571
          3.30202
1.4.5 Example - Random real matrix
In [31]: m=8
```

```
Out[31]: 8@5 Array{Int64,2}:
         -8
             -5
                 -7
                     -6 -7
          -9 -5
                 -8
                      6
                          2
          5 -5
                 0 -8 -4
          1
             7
                0 0 -9
             5
                 4 -9 -5
          -5
         -1 -5
                 6 3 -9
          -8
             8
                  3 -2 3
         -6 -1 7 -5 4
In [32]: U,,V=svd(A)
Out[32]: ([-0.200296 0.785765 -0.0531203 0.214687; 0.441635 0.58177 0.140171 -0.108251; ; -0.
In [33]: # Fact 10
        trace(sqrtm(A'*A)), sum()
Out [33]: (78.87502223506586, 78.87502223506581)
In [34]: # Fact 11
        B=rand(n,n)
        det(B), prod(svdvals(B))
Out [34]: (-0.2458771005140237, 0.24587710051402362)
In [35]: # Fact 14
        norm(A), [1]
Out[35]: (19.45078341709841, 19.450783417098403)
In [36]: # Fact 15
        B=rand(m,n)
        abs(trace(A*B')), sum(svdvals(A)svdvals(B))
Out [36]: (50.64537766210586, 99.0009477844518)
In [37]: # Interlace Theorems (repeat several times)
        j=rand(1:q)
        Brow=svdvals(A[[1:j-1;j+1:m],:])
        Bcol=svdvals(A[:,[1:j-1;j+1:n]])
        j, , Brow, Bcol
Out[37]: (4, [19.4508, 17.9708, 17.4113, 12.9019, 11.1402], [18.7887, 17.9646, 17.1446, 11.2341,
In [38]: [1:end].>=Brow, [1:end-1].>=Bcol, [2:end].<=Brow[1:end-1], [2:end].<=Bcol</pre>
Out[38]: (Bool[true, true, true, true], Bool[true, true, true, true], Bool[true, true, true]
In [39]: # Weyl Inequalities
        B=rand(m,n)
        =svdvals(B)
        =svdvals(A+B)
        [ ]
```

1.5 Matrix approximation

Let $A = U\Sigma V^*$, let $\tilde{\Sigma}$ be equal to Σ except that $\tilde{\Sigma}_{jj} = 0$ for j > k, and let $\tilde{A} = U\tilde{\Sigma}V^*$. Then $\operatorname{rank}(\tilde{A}) \leq k$ and

$$\min\{\|A - B\|_2 : \operatorname{rank}(B) \le k\} = \|A - \tilde{A}\|_2 = \sigma_{k+1}(A)$$

$$\min\{\|A - B\|_F : \operatorname{rank}(B) \le k\} = \|A - \tilde{A}\|_F = \left(\sum_{j=k+1}^q \sigma_j^2(A)\right)^{1/2}.$$

This is the **Eckart-Young-Mirsky Theorem**.

```
In [43]: @show k=rand(1:q-1)
        k=3
        B=U*diagm([[1:k];zeros(q-k)])*V'
k = rand(1:q - 1) = 2
Out[43]: 8@5 Array{Float64,2}:
         -8.76602 -5.51867 -5.3996
                                      -4.51139 -7.74616
         -8.46919 -5.62061 -8.52415
                                      4.41628
                                               3.12919
          3.66858 -2.36294 0.670024 -3.41882
                                               -7.50717
          1.41571 1.12119
                             2.80764
                                      -4.27887
                                               -4.74724
         -5.24483 4.53814
                            4.6882
                                      -8.69105
                                               -5.05354
          1.98163 -2.68496 -0.406102 -2.62736 -6.28064
         -7.77341
                   6.57427
                             3.46896
                                      -3.3301
                                                4.20708
                                      -3.38539
         -5.37598 4.44032
                             2.70188
                                                1.47365
In [44]: A
Out[44]: 8@5 Array{Int64,2}:
         -8
            -5
                -7 -6 -7
         -9
            -5
                         2
                -8
                     6
          5 -5
                0 -8 -4
          1
            7
                0 0 -9
                4 -9 -5
         -5
                    3 -9
         -1 -5
                 6
         -8
            8
                 3 -2
                        3
         -6 -1
                 7 -5 4
In [45]: norm(A-B), [k+1]
Out[45]: (12.901878235505487, 12.901878235505484)
In [46]: vecnorm(A-B), vecnorm([k+1:q])
Out [46]: (17.045925026559797, 17.045925026559797)
In []:
```