Course Name: Fundamentals of Robotics and Control

Course Code: MDMRB01

Category: Multidisciplinary Minor (MDM)

Preamble:

This course introduces the foundational principles of robotics, including kinematics, dynamics, and control systems. The course explores real-world robotic applications and the growing role of automation in modern industries. Students will gain hands-on experience with robotic systems and process automation tools. The course integrates Robotic Process Automation (RPA) to bridge physical and digital automation domains.

Course Objectives:

Understand the foundational principles of robotics, including kinematics, dynamics, and control of robotic systems.

Apply basic control strategies such as PID to robotic manipulators and mobile robots

Explore the role of Robotic Process Automation (RPA) as a complementary software-based automation technique and build simple RPA workflows.

Pre-requisites:

1. Engineering Mathematics-I

2. Engineering Mathematics-II

3. Structured Programming

4. Object Oriented Programming

Course Outcome:

The students will be able to:

CO1: Explain the components and types of robotic systems and their applications.

CO2: Derive and apply forward and inverse kinematics for simple manipulators.

CO3: Analyze and implement feedback control systems, including PID controllers

CO4: Simulate basic robotic arm motion and trajectory control using software tools...

CO5: Describe the fundamentals of Robotic Process Automation (RPA) and its uses in industry.

CO6: Develop a basic RPA workflow to automate a simple rule-based software task.

Course Scheme:

Contac	t Hours	Credits Assigned
Theory Practical		Total
03	02	04

Assessment guidelines:

Head of Learning	Head of Learning ISA		ESE	Total	
Theory+ Tutorial	45	30	50	125	

The assessment/evaluation guidelines for the courses of different credits are mentioned in the above table. Notwithstanding the above, each course faculty shall have the choice to decide her/his assessment methodology based on the nature of the course. Faculty may propose a revised assessment methodology for his/her course. However, the revised assessment methodology shall be approved by a panel constituted at institute level and published to the learners before the commencement of the semester.

Detailed Syllabus:

Module No.	Module Name	Module Contents	No. of Hours
01	Introduction to Robotics	Learning Objective: Introduce types, anatomy, and applications of robotic systems including manipulators, mobile robots, and humanoids. Contents: Types of robots: manipulators, mobile robots, humanoids; Robot anatomy: joints, links, actuators, sensors; Applications in manufacturing, healthcare, and services. Learning Outcomes: A learner will be able to: LO1.1 Identify the major types of robots and classify them based on structure and mobility. (PI 1.1.1, 1.4.1) (CO1) LO1.2 Describe the function of key components such as joints, links, actuators, and sensors in robotic systems. (PI 1.4.1, 2.1.1) (CO1) LO1.3 Explain real-world applications of robotic systems in	06
		different industries.	

Module No.	Module Name	Module Contents	No. of Hours
		(PI 6.1.1, 1.3.1) (CO1)	
		Learning Objective: Apply coordinate transformation and Denavit—Hartenberg conventions to derive and solve forward and inverse kinematics for basic manipulators.	10
02	Kinematics of Robotic Manipulators	Contents: Coordinate systems and transformations, Denavit–Hartenberg (D-H) parameters, Forward and inverse kinematics for 2-DOF and 3-DOF arms. Learning Outcomes: A learner will be able to: LO2.1 Apply D-H parameters to model the configuration of 2-DOF and 3-DOF robotic arms. (PI 1.3.1, 2.2.1) (CO2) LO2.2 Derive forward kinematic equations for a planar robotic arm. (PI 2.3.1, 2.4.1) (CO2) LO2.3 Compute inverse kinematics for positioning a robotic endeffector.	
03	Dynamics and Trajectory Planning	Learning Objective: Analyze dynamic behavior of robotic systems and apply motion planning using joint and Cartesian trajectories. Contents: Basic concepts in robot dynamics (torque, inertia – overview), Joint and Cartesian trajectory planning, Linear and cubic interpolation. Learning Outcomes: A learner will be able to: LO3.1 Interpret torque, inertia, and other dynamic effects influencing robotic motion. (PI 1.1.1, 4.3.2) (CO4) LO3.2 Design joint trajectories using linear and cubic interpolation methods. (PI 3.2.1, 3.4.1) (CO4)	06

Module No.	Module Name	Module Contents					
		LO3.3 Simulate basic robotic motion trajectories using available tools. (PI 5.1.1, 4.1.3) (CO4)					
		Learning Objective: Introduce control strategies including PID for robotic motion control and analyze feedback stability concepts.	08				
		Contents: Introduction to control systems, PID control: tuning, implementation, and real-time control, Stability and feedback concepts.					
04	Control of Robotic Systems	Learning Outcomes: A learner will be able to: LO4.1 Explain control loops, feedback, and system stability in					
		robotics. (PI 1.4.1, 2.1.1) (CO3) LO4.2 Tune and implement a PID controller for a robotic joint. (PI 2.3.1, 3.4.2) (CO3) LO4.3 Analyze system response and stability using control performance metrics. (PI 4.3.2, 3.3.1) (CO3)					
		Learning Objective: Understand RPA concepts and differentiate it from physical robotics, including its core components and tools. Contents:	06				
05	Introduction to Robotic Process Automation	What is RPA; Difference from physical robotics; Components of an RPA system: bots, orchestrators, recorders; Overview of popular RPA tools (e.g., UiPath).					
		Learning Outcomes: A learner will be able to: LO5.1 Define RPA and differentiate it from hardware-based robotic systems. (PI 1.1.2, 6.1.1) (CO5) LO5.2 Identify components of an RPA system and their roles. (PI 1.4.1, 5.1.1) (CO5)					

Module No.	Module Name	Module Contents					
		LO5.3 Discuss applications of RPA in sectors such as healthcare,					
		banking, and logistics.					
		(PI 6.1.1, 10.2.1) (CO5)					
		Learning Objective:	09				
		Design and simulate RPA workflows for basic automation tasks					
		and explore conceptual integration with physical robotic systems.					
		Contents:					
		Creating simple bots to automate tasks (e.g., Excel, web forms),					
		Control structures, data handling, and triggers in RPA,					
		Conceptual integration with physical robot actions.					
		Learning Outcomes:					
	RPA Workflow	A learner will be able to:					
06	Design and	LO6.1 Create and simulate a simple bot workflow using an RPA					
	Integration	tool (e.g., UiPath).					
		(PI 5.2.1, 3.4.2) (CO6)					
		LO6.2 Use control logic, triggers, and data handling in RPA					
		environments.					
		(PI 3.4.1, 3.4.3) (CO6)					
		LO6.3 Conceptually demonstrate how RPA can integrate with					
		robotic systems (e.g., IoT triggers).					
		(PI 3.1.5, 10.2.1) (CO6)					
		Total	45				

Suggested List of Practicals:

Sr No.	Suggested Topic(s)
	Research a Real-Life Robotic System (e.g., Da Vinci, AGV, Boston Dynamics Spot)
	Learning Objective:
	Describe the components, sensors, actuators, and control logic of a real-world robotic
	system and propose improvements for alternate applications.
	Learning Outcomes:
1.	A learner will be able to:
	LO1.1: Identify components and structure of an industrial robotic system. (CO1) (PI 1.1.1,
	1.4.1)
	LO1.2: Explain the working of sensors and actuators used in the robotic system. (CO1) (PI
	1.4.1, 2.1.1)
	LO1.3: Propose a reconfiguration of the robotic system for a new application. (CO1) (PI 3.2.1,
	3.3.1)
2.	Design and Simulate 2-DOF/3-DOF Manipulator

Learning Objective:

Model and simulate basic robotic manipulators using kinematic equations.

Learning Outcomes:

A learner will be able to:

LO2.1: Apply coordinate transformations and D-H parameters to a manipulator. (CO2) (PI 1.3.1, 2.2.1)

LO2.2: Simulate forward kinematics of a robotic arm in MATLAB/Python. (CO2) (PI 2.3.1, 5.1.1)

LO2.3: Compute inverse kinematics and visualize joint movements. (CO2) (PI 2.2.2, 4.1.3)

Trajectory Planning for Robotic Painter

Learning Objective:

Generate joint-space trajectories using linear and cubic interpolation techniques.

Learning Outcomes:

A learner will be able to:

LO3.1: Define constraints on joint velocity and acceleration. (CO4) (PI 2.4.1, 4.1.2)

LO3.2: Plan and simulate linear and cubic trajectories. (CO4) (PI 3.2.1, 5.2.1)

LO3.3: Analyze trajectory efficiency and motion smoothness. (CO4) (PI 4.3.2, 4.3.4)

Implement PID Controller for Inverted Pendulum

Learning Objective:

Implement PID control logic to stabilize dynamic robotic systems.

4. Learning Outcomes:

A learner will be able to:

LO4.1: Develop the control model of an inverted pendulum. (CO3) (PI 1.4.1, 4.1.1)

LO4.2: Tune PID parameters for performance optimization. (CO3) (PI 3.4.1, 3.4.3)

LO4.3: Evaluate system stability and response. (CO3) (PI 4.3.2, 4.3.4)

Automate a Repetitive Digital Task Using RPA

Learning Objective:

Use RPA tools to automate tasks like data entry, file handling, or notifications.

Learning Outcomes:

5. A learner will be able to:

LO5.1: Identify a repetitive software task suitable for automation. (CO5) (PI 1.1.2, 6.1.1)

LO5.2: Create a simple RPA workflow using UiPath/Power Automate. (CO5) (PI 5.2.1, 3.4.2)

LO5.3: Evaluate task efficiency after automation. (CO5) (PI 4.3.4, 10.2.1)

Event-Triggered RPA Bot

Learning Objective:

Design an RPA bot triggered by external events such as email, file upload, or form submission.

6. Learning Outcomes: A learner will be able to:

LO6.1: Configure event-based triggers for RPA workflows. (CO6) (PI 3.4.1, 5.2.1)

LO6.2: Implement control structures and data handling in RPA tools. (CO6) (PI 3.4.3, 4.1.3)

LO6.3: Demonstrate integration of RPA bot with external applications. (CO6) (PI 10.2.1, 3.1.5)

	Voice-Controlled Assistive Robotic Arm for Elderly/Disabled
	Learning Objective:
	Design a robotic arm that can perform basic movements controlled by voice commandsto
	assist the elderly or differently abled.
	Learning outcomes:
7.	A learner will be able to:
	LO1.1: Identify the key components (microphone, actuator, processor) used in voicecontrolled robotic arms. (CO1) (PI 1.4.1, PI 1.1.1)
	LO1.2: Simulate arm movement using kinematic equations and control logic. (CO2, CO3)
	(PI 2.3.1, PI 5.1.1)
	LO1.3: Implement voice control logic and test its reliability through repeated use. (CO4) (PI 3.4.2, PI 4.3.2)
	RPA-Based Smart Appointment Scheduler for Public Hospitals
	Learning Objective:
	Automate appointment scheduling and queue management using RPA and form-
	based input.
	Learning outcomes:
	A learner will be able to:
8	LO2.1: Identify suitable use-cases of RPA in hospital administration. (CO5) (PI 6.1.1, PI 10.2.1)
	LO2.2: Create and deploy an RPA bot to capture form data and assign time slots.
	(CO6) (PI 5.2.1, PI 3.4.2)
	LO2.3: Evaluate improvements in scheduling efficiency post-automation. (CO6) (PI 4.3.4, PI 10.1.1)
	IoT-Integrated Sorting Robot for Municipal Waste Management
	Learning Objective:
	Design a robotic system with sensors for automatic waste categorization and real-
	time analytics via RPA.
9	Learning outcomes:
	A learner will be able to:
	LO3.1: Integrate sensors (IR, proximity, moisture) into a sorting robot.
	(CO1) (PI 1.4.1, PI 1.1.1)
	LO3.2: Develop logic for waste classification using sensor data.
	'

	(COA) (DL 2 A 1 DL A 2 2)						
	(CO4) (PI 3.4.1, PI 4.3.2)						
	LO3.3: Automate report generation and analytics using an RPA dashboard.						
	(CO6) (PI 5.2.1, PI 10.2.1)						
	Gesture-Controlled Smart Home System with RPA Alerts						
	Learning Objective:						
	Build a gesture-based robotic interface for smart home control with automation alerts via RPA.						
	Learning outcomes:						
	A learner will be able to:						
10	LO4.1: Detect gestures using sensor modules and interpret them for control logic.						
	(CO1) (PI 1.4.1, PI 2.1.1)						
	LO4.2: Program home appliance control using a robotic interface.						
	(CO4) (PI 3.4.2, PI 4.3.3)						
	LO4.3: Automate safety alerts using an RPA system.						
	(CO6) (PI 5.2.1, PI 6.1.1)						
	AI-Powered Medicine Dispenser Robot with Usage Logs via RPA						
	Learning Objective:						
	Create an intelligent medicine dispenser that provides reminders and logs dosage through RPA.						
	Learning outcomes:						
	A learner will be able to:						
11	LO5.1: Design a robotic dispensing system with real-time clock and sensor control. (CO1) (PI 1.1.1, PI 3.4.1)						
	LO5.2: Implement schedule-based medicine dispensing with feedback						
	confirmation.						
	(CO3, CO4) (PI 3.4.3, PI 4.3.4)						
	LO5.3: Log user compliance using automated reports via RPA.						
	(CO6) (PI 5.2.1, PI 10.2.1)						
	Robotic Stick for Visually Impaired with Terrain Detection						
12							
12	Learning Objective:						
	Develop a robotic stick that guides users by detecting terrain changes and						

Learning outcomes:
A learner will be able to:

LO6.1: Interface terrain-sensing sensors (ultrasonic, LDR, accelerometers).

(CO1) (PI 1.4.1, PI 1.1.1)

LO6.2: Process sensor feedback and simulate response via buzzer/vibration.

(CO3) (PI 3.4.3, PI 6.1.1)

LO6.3: Validate the prototype for obstacle avoidance and direction feedback.

(CO4) (PI 4.3.2, PI 4.3.4)

Performance Indicators

- PI 1.1.1 Remembering: Recall components, types, and applications of robotic systems.
- Pl 1.4.1 Applying: Apply basic principles of mechatronics to robotic structures.
- PI 6.1.1 Analyzing: Identify societal applications of robotics.
- PI 2.2.1 Analyzing: Reframe robotic arms into joints and links for kinematic modeling.
- PI 2.3.1 Applying: Apply transformations and D-H parameters to robot linkages.
- PI 5.1.1 Applying: Use MATLAB/Python to simulate robot kinematics.
- PI 3.4.1 Applying: Refine high-level robotic motion into joint-level trajectory design.
- PI 4.3.2 Analyzing: Analyze trajectory performance under velocity constraints.
- PI 4.3.4 Evaluating: Synthesize results from trajectory planning to ensure smoothness.
- PI 3.4.3 Applying: Tune and implement PID controllers in dynamic systems.
- PI 4.3.2 Analyzing: Evaluate controller response and system behavior.
- PI 5.1.1 Applying: Simulate feedback control using digital tools.
- PI 5.2.1 Applying: Use appropriate software tools for automation tasks.
- PI 6.1.1 Analyzing: Identify administrative processes suitable for RPA.
- PI 10.2.1 Evaluating: Present process flows automated via RPA bots.
- PI 3.4.2 Creating: Develop rule-based workflows for task automation.
- PI 4.1.3 Applying: Select tools and datasets for automation testing.
- PI 10.1.1 Creating: Communicate automated processes through reports or dashboards.

Mapping of Course Outcomes with Learning Outcomes:

	Mapped to Learning Outcomes
CO1	1.1, 1.2, 1.3
CO2	2.1, 2.2, 2.3

соз	3.1, 3.2, 3.3
CO4	4.1, 4.2, 4.3
CO5	5.1,5.2
CO6	6.1, 6.2, 6.3

CO-PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2/18	1/18	1/18	-	-	1/18	-	-	-	-	-	-
CO 2	3/18	2/18	1/18	-	1/18	-	-	-	-	-	-	-
CO 3	2/18	1/18	2/18	2/18	1/18	-	-	-	-	-	-	-
CO 4	2/18	1/18	2/18	2/18	1/18	-	-	-	-	-	-	-
CO 5	1/18	-	1/18	1/18	2/18	1/18	-	-	-	1/18	-	-
CO6	1/18	-	1/18	1/18	2/18	1/18	-	-	-	1/18	-	-

CO PSO Mapping

CO	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	S	-	W	-
CO 2	S	-	W	-
CO 3	S	W	W	-
CO 4	S	W	W	-
CO 5	М	W	М	-
CO6	М	W	М	-

Assessment Criteria of Learning Outcomes:

Learning Outcomes:	Assessment Criteria:	Evaluated under	
The Learner will:	The Learner can:	ISA/MSE/ESE/LAB	
LO1: Introduce types, anatomy,	1.1 Identify major types of robots	Quiz, MSE	
and applications of robotic	and classify them		
systems	1.2 Describe joints, links, actuators,	MSE, LAB	
	sensors		
	1.3 Explain applications of robotics	MSE, ESE	
	in industries		
LO2: Apply coordinate	2.1 Apply D-H parameters to 2-	MSE, LAB	
transformation and D-H	DOF/3-DOF arms		

	22 Deci e (e. e. el l'incertio	NACE ECE
conventions to derive and solve	2.2 Derive forward kinematic	MSE, ESE
kinematics	equations	
	2.3 Compute inverse kinematics	MSE, LAB
LO3: Analyze robot dynamics and	LO3.1 Interpret torque, inertia and	ISA,LAB,MSE
trajectory planning	motion behavior	
	LO3.2 Design linear and cubic	LAB, ISA
	interpolated trajectories	
	LO3.3 Simulate basic trajectories	LAB, Mini Project
	using tools	·
LO4: Introduce control systems	LO4.1 Explain feedback loops and	MSE, ESE
including PID and stability	stability	
concepts	O4.2 Tune and implement a PID	LAB, ISA
	controller	·
	LO4.3 Analyze control system	MSE, LAB
	response and metrics	
LO5: Understand Robotic Process	LO5.1 Define and differentiate RPA	Quiz, MSE
Automation (RPA) concepts	from physical robotics	
	LO5.2 Identify RPA components	MSE, LAB
	and their functions	·
	LO5.3 Discuss RPA applications in	MSE, ISA, ESE
	industries	
LO6: Design and simulate RPA	LO6.1 Create RPA bot for	LAB, Mini Project
workflows and integration	Excel/web form tasks	
concepts	LO6.2 Use control logic, data	LAB, ISA
'	handling in workflows	
	LO6.3 Conceptually demonstrate	Mini Project, Presentation
	RPA integration with robotics	

Reference Books / Articles

- 1. Robert Shilling, Fundamentals of Robotics-Analysis and control, Prentice Hall of India, 2003.
- 2. John J. Craig, Introduction to Robotics–Mechanics &Control Pearson Education, India, Third Edition, ,2009.
- 3. Katsuhiko Ogata, Modern Control Engineering
- 4. Alok Mani Tripathi, Learning Robotic Process Automation
- 5. Fu, Gonzales and Lee, Robotics, Robotics, McGraw Hill, SecondEdition, 2011.
- 6. Staughard, Robotics and Al, Prentice Hall of India.
- 7. Grover, Wiess, Nagel, Oderey Industrial Robotics, , McGraw Hill.
- 8. Walfram Stdder, Robotics and Mechatronics, Mc Graw Hill, New York 2008.
- 9. Saeed B Niku, Introduction to Robotics, Pearson Education.
- 10. Mittal, Nagrath, Robotics and Control, Tata McGraw Hill publications
- 11. The Robotic Process Automation Handbook

Programme Scheme	ыы	medicai Engine	ering		