PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-241900

(43) Date of publication of application: 17.09.1996

(51)Int.CI.

H01L 21/56

H01L 21/60

(21)Application number: 07-042888

(71) Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing:

02.03.1995

(72)Inventor: MORIMOTO KENJI

TAKAYAMA YOSHIHISA

(54) RESIN-SEALING OF FLIP-CHIP MOUNTED BODY

(57) Abstract:

PURPOSE: To carry out resin-sealing of a gap between a semiconductor device and a substrate in a short time. CONSTITUTION: A sealing resin 6 is spread on one side part of a flip-chip packaged body 4, to which a semiconductor 1 and a substrate 3 are connected, and this is disposed on a hot plate 7 in a hermetically sealed container 8. The hot plate 7 is heated and at the same time the air in the container 8 is exhausted by a rotary pump 9 externally. The sealing resin whose viscosity is decreased fills a gap quickly by utilizing an air flow due to a pressure difference.

LEGAL STATUS

[Date of request for examination]

20.01.2000

[Date of sending the examiner's decision of

16.07.2002

rejection

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平8-241900

(43)公開日 平成8年(1996)9月17日

(51) Int. C1. 6		識別記号	庁内整理番号	FΙ				技術表示箇所
H 0 1 L	21/56	•		H 0 1 L	21/56		E	
	21/60	3 1 1			21/60	3 1 1	Q	

~	査請求 未請求 請求項の数1	OL		(全4頁)		
(21)出願番号(22)出願日	特願平7-42888 平成7年(1995)3月2日		(71)出願人	000005821 松下電器産業株式会社 大阪府門真市大字門真1006番地		
(22) IIIII H	十九十 (1333) 35 [2]		(72)発明者			
			(72)発明者	高山 佳久 香川県高松市古新町8番地の1 松下寿電子 工業株式会社内		
			(74)代理人	弁理士 滝本 智之 (外1名)		

(54) 【発明の名称】フリップチップ実装体の樹脂封止方法

(57)【要約】

【目的】 フリップチップ実装体の樹脂封止方法に関 し、半導体素子と基板との間隙の樹脂封止を短時間に行 なう。

【構成】 半導体素子1と基板3とを接続したフリップ チップ実装体4の一側部に、封止樹脂6を塗布し、これ を密閉した容器8のホットプレート7上に配置する。ホ ットプレート7を加熱するとともに、容器8の空気をロ ータリーポンプ9により外部に排出する。粘度の低下し た封止樹脂6は、圧力差による空気の流れを利用するこ とによって、急速に間隙を充たす。

【特許請求の範囲】

【請求項1】半導体素子を基板に接合したフリップチッ プ実装体の一側部に樹脂を塗布し、これを密閉した容器 内に配置して、前記樹脂を加熱するとともに、前記容器 内の圧力を減圧することにより、前記半導体素子と基板 との間隙に、前記樹脂を封入することを特徴とするフリ ップチップ実装体の樹脂封止方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体素子を基板上に 10 フリップチップ実装した後に、その半導体素子と基板と の間を樹脂で封止する、フリップチップ実装体の樹脂封 止方法に関するものである。

[0002]

【従来の技術】近年、半導体実装技術は高密度化の方向 に進んでおり、実装面積の低減や半導体素子の電極の増 加に対応するためには、フリップチップ実装(ベアチッ プのフェースダウン実装) が最も有利であると言われて いる。

【0003】フリップチップ実装においては、半導体素 20 子と基板とを接合した後、両者の約数十µmの隙間に封 止樹脂を充填することが一般に行なわれている。この理 由は、例えばアイエムシー・1992・プロシーディン グス・横浜, 1992年6月3~5日, 144~149 頁(IMC 1992 Proceedings Yo kohama)で報告されているように、熱衝撃などに より半導体素子と基板との熱膨張係数の差から生じる応 力が、半導体素子上の突起電極に集中するのを防ぎ、封 止樹脂全体に応力を分散させるためである。樹脂封止し ないフリップチップ実装体に比べ、接続信頼性が飛躍的 30 の侵入速度を速めようとするものである。 に向上することが知られており、現在のフリップチップ 実装技術に欠かせない工程である。

【0004】そこで従来の樹脂封止の方法について図2 を用いて説明する。まず図2(a)に示されるように、 半導体素子1上に、例えば特開平4-263433号公 報等に示される方法で、突起電極としての半田バンプ2 を形成する。半導体素子1をフェースダウンにより基板 3に位置合わせして配置する。その後リフロー処理など の熱処理を施すことで、半田バンプ2を溶融させて、半 導体素子1と基板3と接合し、フリップチップ実装体4 40 を完成する。

【0005】次に洗浄後、図2(b)に示されるよう に、水平面よりある角度を持たせたホットプレート7上 に、フリップチップ実装体4を配置し、その片隅にディ スペンサー5により封止樹脂6を塗布する。

【0006】ホットプレート7を加熱することにより、 粘度の低下した封止樹脂6は、自重と毛細管現象によ り、図2 (c) に示すように、半導体素子1と基板3と の隙間を満たす。その後約150℃で封止樹脂6を硬化 させると樹脂封止が完了する(図2-(d))。

[0007]

【発明が解決しようとする課題】しかしながら上記従来 の方法では以下のような問題点がある。すなわち、樹脂 が少しでも速く充填されるように、ホットプレートに角 度を持たせているのだがそれでも侵入速度が遅く、例え ば12mm×12mmの大きさを持つ半導体素子で、半 導体素子と基板との隙間が60μmのフリップチップ実 装体では、樹脂が間隙を充たすまでに約15分を要して

2

【0008】また、毛細管現象による封止樹脂の侵入速 度は、半導体素子と基板との隙間の大きさに依存するた め、隙間の大きさの違うフリップチップ実装体では、封 止完了までの時間が異なり、製造工程上非常に扱いにく

【0009】加えて、毛細管現象という非常に微小な力 を利用して、半導体素子と基板との間を充填するため、 充填完了後でも、半導体素子と基板との隙間にボイド (気泡) が残りやすく、このボイドにより半導体素子と 基板間の接続の信頼性が低下してしまうこともある。

【0010】本発明は、樹脂封止に要する時間を短縮し て、その時間のばらつきも低減するとともに、気泡に起 因する不良もなくすることを目的とするものである。

[0011]

【課題を解決するための手段】上記課題を解決するため に、本発明のフリップチップ実装体の樹脂封止方法は、 フリップチップ実装体の一側部に封止樹脂を塗布し、こ れを密閉した容器内に配置する。そして容器中の封止樹 脂を加熱するとともに、容器内の圧力を減圧する。この 時に生じる空気の流れを利用することにより、封止樹脂

[0012]

【作用】上記方法によれば、容器内の空気を吸引して容 器外に排出するなどして、圧力を減圧すると、その圧力 差により空気の流れが生じるため、封止樹脂の侵入速度 が著しく速くなり、時間を短縮できる。

【0013】このため隙間の大きさの異なるフリップチ ップ実装体間でも、充填完了までの時間のバラツキが少 なくなり、またボイドも減圧の際に容器外に排気される ので皆無となる。

[0014]

【実施例】以下、本発明のフリップチップ実装体の樹脂 封止方法について、その実施例を図面を参照しながら具 体的に説明する。

【0015】図1 (a) において、従来と同様にしてフ リップチップ実装体4を形成したが、本実施例では特 に、半田バンプ2として635n-37Pbなる組成の ものを用い、また基板3としては低温焼成多層セラミッ ク基板を用いた。

【0016】次に洗浄工程を経て、図1(b)に示すよ 50 うに、基板3との間隙を塞ぐように、ディスペンサー5

を用いて封止樹脂6を半導体素子1の一辺に沿って塗布 する。本実施例では、封止樹脂6としては、熱硬化性樹 脂であるエポキシ樹脂を主成分として約40重量%含有 し、フィラー(酸化珪素)を約60重量%含有するもの を用いた。またフィラー径は平均15μmであった。

【0017】次に図1(c)に示すように、封止樹脂6 を塗布したフリップチップ実装体4を、密閉された容器 8内のホットプレート7上に配置する。なお、容器8に はロータリーポンプ9とつながる排気孔を設けてある。

60℃に加熱し、ロータリーポンプ9を作動させて容器 8内の空気を外部に排気させると、加熱によって粘度の 低下した封止樹脂 6 は、圧力差によって生じる空気の流 れによって、数秒で半導体素子1と基板3の隙間を充填 する。そしてフリップチップ実装体4を容器8から取り 出し、150℃の雰囲気中で3時間放置すると、封止樹 脂6は硬化し樹脂封止が完了する(図1(d))。

【0019】本実施例では、12mm×12mmの大き さの半導体素子1で、半導体素子と基板3との隙間が6 0μmのフリップチップ実装体4を用いた場合、約0. 1 c c の封止樹脂を塗布し、容器8内のホットプレート を55℃に加熱し、1001/minの能力を持つロー タリーポンプ9で排気したところ、およそ10秒で封止 樹脂6を充填することができた。また、封止樹脂6が硬 化した後、x線にてボイドの発生を調べたが皆無であっ

【0020】なお、本実施例では、半田バンプ2に63 Sn-37РЬの組成をもつ合金を用いたが、半田バン プ材料は上記組成に限定されるものではなく、錫(S n)、鉛(Pb)、ビスマス(Bi)、インジウム(I 30 7 ホットプレート n) を主とする合金または金属単体でも良い。また、基 板3として低温焼成多層セラミック基板を用いたが、ガ

ラスエポキシ基板に代表される有機樹脂基板やフレキシ

ブルプリント基板にも応用できることは言うまでもな

【0021】また、本実施例では、容器8内に1つのフ リップチップ実装体しか配置しなかったが、容器の大き さに応じて複数個のフリップチップ実装体を配置すれ ば、効率的な作業が行える。

【0022】さらに、本実施例では容器8内にホットプ レート7を設け、ホットプレート7上に配置したフリッ 【0018】この状態でホットプッレート7を約50~ 10 プチップ実装体4を加熱することにより、封止樹脂6を 加熱していたが、容器8内にヒーターなどの発熱体を設 け、容器8内全体を加熱するようにしても良い。

[0023]

【発明の効果】以上のように本発明によれば、短時間で ボイドのない樹脂封止が可能となり、効率的な作業が行 えるとともに、信頼性の高いフリップチップ実装体を提 供することができる。

【図面の簡単な説明】

【図1】本発明のフリップチップ実装体の樹脂封止方法 20 の一実施例における各工程の断面図

【図2】従来のフリップチップ実装体の樹脂封止方法に おける各工程を示す断面図

【符号の説明】

- 1 半導体素子
- 2 半田バンプ
- 3 基板
- フリップチップ実装体
- 5 ディスペンサー
- 6 封止樹脂
- 8 容器 .
- ロータリーポンプ

