

Synchronous counter design

- All the flip flops are clocked simultaneously using same clock.
- Suitable for high frequency applications
- Designed using sequential circuit design process which can be used for any synchronous circuit designs

8. Design 3-bit gray code counter using JK ffs

Nox State fabre	St. up	Counting	3611	> 3 JK	. flytlop	2
Deand Number Gray Code fort -> forth		n countrie	r	NSB	•	<u> </u>
2 010 011 Eggs Jack bil		present state	Next-Stali	Je Kz	J, K, 3	Toko
) 3 011 010 34 BT S		Q ₂ Q ₁ Q ₆	620,00			
5 (0)	₽ ſ\re	000	501	0 ×	0 X	1 x
6 100	~ 1	0 0 1	0 1 1	N X	ιχ	× 0 ~
- 1 TTT	w ³		0 (0	۷ ×	XO	× 1 ~
8 Course pe va breserva	mz	O / O	/ / 0	ι×	× O	o x ~
	m L	1 1 0	(\ \ 1)	× o	× 0	1x V
3-61- Gray code up country down country	ብታ	1 🏚 🕽	(0)	X D	× (× 0 ~
(000)	നൃ	7101	100	× o	X 6	×I
Jup- Lourton &	ന4	001	000	メー	0 X	ð x ~
(100)	Dr. Nort	Z K from	function to the		met that	JZZZ JA JOKO
State diagram	0-30		a.	001	00/	O x o x l x 6 x l x x b
State	0 -> 1	1 (1) (1) X 5-16	M 2 M 2	011	010	X X O X X O X I
	100	W Di Sarah		100	000	X A A A A A A A A A A A A A A A A A A A
	l → l	3 0 100	. a	6 110	111	X
		XO OO Set	Ū			20 21 20

9. Design a 3-bit up/down synchronous binary counter using T ffs

• If control input up/down = 0, counter should count upwards from the present count or else it has to count downwards from the present count.

3-bit up/down synchronous binary counter using T ffs

Design 3-bit synchronous counter to count according to the given sequence using D ffs.

Design 3-bit synchronous counter to count according to the given sequence using D ffs. All the undefined states should go to state 0.---Self correcting counters.

• $0 \rightarrow 5 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 0$

please Dow Me arail

$$D_1 = 6_1 \overline{Q}_0 + G_2 \overline{Q}_1 O_0$$

Design 3-bit synchronous counter to count according to the given sequence using D ffs. All the undefined states should go to next valid/defined state.

74193 IC: 4-bit up/down synchronous counter

MITE OD OC OB OA

74193 IC: 4-bit up/down synchronous counter

MODE SELECT TABLE

	MR	PL	CPU	CPD	MODE	
	π	X	X X	X X	Reset (Asyn.)	at c
	L	H	Ĥ	Ĥ	Preset (Asyn.) -> preset b No Change	₽ (
•	L L	H	H level	T H m	Count Up Count Down	

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

■ I = LOW-to-HIGH Clock Transition

Ex1:

Design a MOD 16 binary <u>UP</u> counter using 74193 IC

