Problem 6:

Prove that f and g are inverse functions: f(x) = 5x + 1, $g(x) = \frac{x-1}{5}$ $f(g(x)) = 5\left(\frac{x-1}{5}\right) + 1$ f(g(x)) = x - 1 + 1 f(g(x)) = x $g(f(x)) = \frac{(5x-1)+1}{5}$ $g(f(x)) = \frac{5x-\frac{5}{1}+1}{5}$ $g(f(x)) = \frac{5x}{5} = x$ $\therefore g(x) \text{ and } f(x) \text{ are inverse functions}$

Problem 44:

Determine whether the function is monotonic: $f(x) = (x+a)^3 + b$ $f'(x) = 3(x+a)^2 \ge 0$ for all values of x $\therefore f(x)$ is monotonic, and thus has an inverse function

Problem 48:

Determine whether the function is monotonic: f(x) = |x+2|, $[-2,\infty]$ $f'(x) = 1 \ge 0$ $[-2,\infty]$ f(x) is monotonic, and thus has an inverse function

Problem 74:

Find
$$(f^{-1})'(a)$$
, if $f(x) = \frac{1}{27}(x^5 + 2x^3)$ and $a = -11$

$$f'(x) = \frac{1}{27}(5x^4 + 6x^2) > 0, \therefore (f^{-1}) \text{ exists}$$

$$-11 = \frac{1}{27}(x^5 + 2x^3)$$

$$x = 17$$

$$\therefore f(x) = -11 \text{ when } x = -3$$
Theorem 5.9 states that $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

$$(f^{-1})'(-3) = \frac{1}{f'(-3)}$$

$$(f^{-1})'(-3) = \frac{1}{\frac{1}{27}(-3^4 \times 5 + -3^2 \times 6)}$$

$$(f^{-1})'(-3) = 17$$