|--|

21			
2)		

3) _____

, _____

4) _____

Nota:	
Nota.	

lomo:	DA.
lome:	KA:

<u>Primeira Prova - F 228 C (noturno) - 18/04/2012</u>

Questão 1 (2,5 pts): Uma prancha uniforme, de comprimento L = 6,0 m e peso igual a 500 N, repousa apoiada no chão e em um rolamento sem atrito no alto de uma parede de altura h = 3,0 m. A prancha permanece em equilíbrio para qualquer valor de $\theta \ge 70^{0}$, mas escorrega se $\theta < 70^{0}$.

- a) Indique na figura as forças que agem na prancha.
- b) Calcule as forças que agem na prancha em equilíbrio, em função do ângulo $\theta.$
- c) Determine o coeficiente de atrito estático entre a prancha e o chão.

 $sen(70^{0})\approx0.9$; $cos(70^{0})\approx0.3$.

Questão 2 (2,5 pts): Uma esfera maciça uniforme tem massa $M = 1,0 \times 10^4$ kg e raio R = 1,0 m. Qual é o módulo da força gravitacional exercida pela esfera sobre uma partícula de massa m = 2 kg localizada a uma distância de (a) 2,0 m e (b) 0,50 m do centro da esfera?

 $G = 6.7 \times 10^{-11} \text{ N m}^2/\text{kg}^2.$

Questão 3 (2,5 pts): A figura mostra a energia potencial U(r) de um projétil em função da distância da superfície de um planeta de raio R_s . Se o projétil é lançado verticalmente para cima com uma energia mecânica de -2,0 x 10^9 J, quais são (a) sua energia cinética a uma distância r = 1,25 R_s e (b) seu ponto de retorno em termos de R_s ?

Questão 4 (2,5 pts): Um tanque aberto na parte superior contém uma grande quantidade de água (de densidade ρ) que pode ser esgotada por meio de um cano ligado à sua parte inferior. A secção reta do cano na região do ponto X, localizado a uma altura h_1 abaixo do nível da água, é A_1 , e na região Y, localizado a uma altura h_2 abaixo de X, é $A_2 = A_1/2$. No final do encanamento existe uma válvula V. Considere que a área da superfície do tanque é muito maior que a área da secção reta da tubulação. Calcule:

- a) a pressão nos pontos X e Y com a válvula fechada.
- b) a velocidade da água no ponto Y com a válvula aberta.
- c) a pressão no ponto X com a válvula aberta.

