Natural Language Processing

NLP in one day

Introduction

Angus Roberts
Senior Lecturer,
Health Informatics

Yamiko Msosa Research Fellow, Health Informatics

Stephen Barlow PhD student, clinical NLP

Text is everywhere

Data Never Sleeps 10.0 from domo.com (April 2022)

Generative Al

Write a short definition of natural language processing

Natural Language Processing (NLP) is a field of artificial intelligence that focuses on enabling computers to understand, interpret, and generate human language. It involves analyzing and processing natural language data, such as text or speech, to perform tasks like translation, sentiment analysis, speech recognition, and information extraction. NLP combines linguistics, computer science, and machine learning to bridge the gap between human communication and computer understanding.

Electronic health records (EHRs) – structured and unstructured information

HAEMATOLOGY HAEMOGLOBIN (g/L)
RED CELL COUNT
MCV
MCH
MCHC (g/L)
RDW
PLATELET COUNT
MPV
WHITE CELL COUNT
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophils
ESR

BIOCHEMISTRY SODIUM POTASSIUM CHLORIDE BICARBONATE UREA CREATININE estimated GFR

	151 0.422 4.83 87.4
*	31.3 358

Clinical Findings

Concept ID	Preferred term		
16932000	Nausea and vomiting		
68566005	Urinary tract infectious disease		
38341003	Hypertensive disorder		
49436004	Atrial fibrillation		
49218002	Hip pain		
301011002	Escherichia coli urinary tract infec		
40835002	Coffee ground vomiting		
167667006	Fecal occult blood: negative		

Procedures

Concept ID	Preferred term		
52734007	Total replacement of hip		
117010004	Urine culture		
76009000	Esophagogastroduodenoscopy		
91251008	Physical therapy procedure		

Reason: CHECK ETT TUBE PLACEMENT, ?PNA, CHF
[**Signature 1**]
UNDERLYING MEDICAL CONDITION:

85 y/o male s/p acute mi and catherization now in ccu with cardiogenic shock
REASON FOR THIS EXAMINATION:
CHECK ETT TUBE PLACEMENT
?PNA
CHF
[**Signature 1**]
FINAL REPORT
CLINICAL INDICATION: Assess endotracheal tube placement in patient with congestive heart failure.

Comparison is made to previous study of one day earlier. An endotracheal tube is present, in satisfactory position. A Swan-Ganz catheter terminates in the proximal left pulmonary artery and has been withdrawn in the interval. An intraaortic balloon pump terminates about 3.3 cm below the superior aspect of the aortic knob, and a nasogastric tube terminates in the region of the gastroduodenal junction.

How much unstructured, textual information is in an EHR?

Figure 2. Green: Unstructured free text EHR data; Other colours: structured data. "The value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification". (Kharrazi et al., 2018)

An example – Mini Mental State Examinations

Thank you

angus.roberts@kcl.ac.uk

https://www.kcl.ac.uk/people/angus-roberts