FTN, Pripremna nastava

FTN Katedra za matematiku

septembar 2020.

Integralni račun

Neodređeni integral

Neka je funkcija f(x) definisana na nekom intervalu [a,b]. Funkcija F(x) definisana na istom intervalu [a,b] za koju za svako $x \in (a,b)$ postoji izvod i važi

$$F'(x) = f(x)$$

naziva se **primitivna funkcija** za funkciju f(x). Kako je izvod bilo koje konstante $c \in \mathbb{R}$ jednak nuli, dobijamo

$$F'(x) = (F(x) + c)' = f(x)$$

što znači da za svaku funkciju f(x) postoji beskonačno mnogo primitivnih funkcija. Skup svih primitivnih funkcija $\{F(x)+c\}$ funkcije f(x) naziva se **neodređeni integral** i označava se sa

$$\int f(x)dx.$$

Dakle,

$$\int f(x)dx = F(x) + c.$$

Postupak traženja neodredjenog integrala se naziva **integracija**. Funkcija f se naziva **podintegralna funkcija**, a konstanta c se naziva **konstanta integracije**.

Osobine neodređenog integrala

1.
$$\left(\int f(x)dx\right)' = f(x);$$

$$2. \int F'(x)dx = F(x) + c;$$

3.
$$\int \alpha f(x)dx = \alpha \int f(x)dx$$
, $\alpha \in \mathbb{R}$;

4.
$$\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx.$$

Prve dve osobine pokazuju da su operacije integracije i diferenciranja inverzne jedna drugoj. Iz treće osobine vidimo da se proizvoljna konstanta može umesto u podintegralnoj funkciji pisati ispred integrala. Na osnovu druge osobine, integral možemo rastaviti na sumu više prostijih integrala.

Metode integracije

Izračunavanje neodređenog integrala neke funkcije je često mnogo teže od traženja izvoda date funkcije. Neke od metoda koje se koriste pri izračunavanju integrala su sledeće:

- korišćenje tablice osnovnih integrala;
- smena promenljive;
- parcijalna integracija.

Najjednostavniji način rešavanja integrala je korištenje sledeće **tablice osnovnih integrala**.

Sledeća metoda koja se koristi da bi se pojednostavio određeni integral je smena promenljive. Ako je t = g(x) diferencijabilna funkcija, neprekidna na svom kodomenu tada je

$$\int f(g(x))g'(x)dx = \int f(t)dt$$

$$\int f(g(x))g'(x)dx = \int f(t)dt.$$

funkcije f(x) i g(x) diferencijabilne na intervalu (a,b). Tada je

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$

Ako uvedemo oznake u = f(x), v = g(x), du = f'(x)dx i dv = g'(x)dx prethodnu formulu možemo napisati kao

Poslednja metoda koju ćemo koristiti je **parcijalna integracija**. Neka su

$$\int udv = uv - \int vdu.$$

Ovaj oblik ćemo najčešće koristiti pri rešavanju zadataka. Najvažniji deo pri rešavanju integrala primenom parcijalne integracije je razdvajanje podintegralne funkcije na proizvod dve funkcije takve da funkcija u postaje jednostavnija nakon diferenciranja, a funkcija v jednostavnija nakon integracije. Kada se izračunava funkcija v, pretpostavićemo da je konstanta c jednaka nuli (c=0).

Rešeni zadaci

Tablični integrali

1.
$$\int 10x^4 dx = 10 \int x^4 dx = 10 \cdot \frac{x^{4+1}}{4+1} + c = 2x^5 + c.$$

2.
$$\int (3x^2 + 2x - 5) dx = \int 3x^2 dx + \int 2x dx - \int 5 dx$$
$$= 3 \int x^2 dx + 2 \int x dx - 5 \int dx$$

$$= 3 \int x^{2} dx + 2 \int x dx - 5 \int dx$$

$$= 3 \frac{x^{2+1}}{2+1} + 2 \frac{x^{1+1}}{1+1} - 5x + c$$

$$= 3 \frac{x^{3}}{3} + 2 \frac{x^{2}}{2} - 5x + c$$

$$= x^3 + x^2 - 5x + c.$$

3. $\int \frac{2}{x^5} dx = 2 \int x^{-5} dx = 2 \frac{x^{-5+1}}{-5+1} + c$

 $= 2\frac{x^{-4}}{-4} + c = -\frac{1}{2x^4} + c.$

4. $\int \left(\frac{1}{x^3} + \frac{1}{x^2} - \frac{1}{x} + 33\right) dx = \int \frac{1}{x^3} dx + \int \frac{1}{x^2} dx - \int \frac{1}{x} dx + \int 33 dx$

 $=\int x^{-3}dx + \int x^{-2}dx - \int \frac{1}{x}dx + 33 \int dx$

 $= \frac{x^{-3+1}}{-3+1} + \frac{x^{-2+1}}{-2+1} - \ln|x| + 33x + c$

 $= \frac{x^{-2}}{-2} + \frac{x^{-1}}{-1} - \ln|x| + 33x + c$

 $= -\frac{1}{2x^2} - \frac{1}{x} - \ln|x| + 33x + c.$

5. $\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2\sqrt{x^3}}{3} + c.$

6. $\int \frac{1}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} dx = \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$

 $= 2\sqrt{x} + c.$

7. $\int \left(\sqrt{x^3} - \sqrt[3]{x^2} + \frac{1}{\sqrt[4]{x}}\right) dx = \int \sqrt{x^3} dx - \int \sqrt[3]{x^2} dx + \int \frac{1}{\sqrt[4]{x}} dx$

 $= \int x^{\frac{3}{2}} dx - \int x^{\frac{2}{3}} dx + \int x^{-\frac{1}{4}} dx$

 $= \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} - \frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1} + \frac{x^{-\frac{1}{4}+1}}{-\frac{1}{4}+1} + c$

 $= \frac{x^{\frac{5}{2}}}{\frac{5}{2}} - \frac{x^{\frac{5}{3}}}{\frac{5}{3}} + \frac{x^{\frac{3}{4}}}{\frac{3}{4}} + c$ $= \frac{2\sqrt{x^{5}}}{5} - \frac{3\sqrt[3]{x^{5}}}{5} + \frac{4\sqrt[4]{x^{3}}}{3} + c.$

8. $\int \left(\frac{12}{x} + 7e^x - 7^x\right) dx = \int \frac{12}{x} dx + \int 7e^x dx - \int 7^x dx$

 $= 12 \int \frac{1}{x} dx + 7 \int e^x dx - \int 7^x dx$

 $= 12\ln|x| + 7e^x - \frac{7^x}{\ln 7} + c.$

Integrali koji se rešavaju uvođenjem smene

1.
$$\int (2x+3)^3 dx = \begin{cases} 2x+3=t \\ 2dx = dt \Rightarrow dx = \frac{1}{2}dt \end{cases}$$
$$= \frac{1}{2} \int t^3 dt = \frac{1}{2} \cdot \frac{t^4}{4} + c = \frac{(2x+3)^4}{8} + c.$$

2.
$$\int \frac{1}{x+1} dx = \begin{cases} x+1=t \\ dx=dt \end{cases} = \int \frac{1}{t} dt$$

 $= \ln|t| + c = \ln|x+1| + c.$
3. $\int \frac{1}{(x+1)^2} dx = \begin{cases} x+1=t \\ dx=dt \end{cases} = \int \frac{1}{t^2} dt = \int t^{-2} dt$

 $=\frac{t^{-2+1}}{-2+1}+c = -\frac{1}{t}+c = -\frac{1}{r+1}+c.$

2.
$$\int \frac{1}{x+1} dx = \begin{cases} x+1=t \\ dx=dt \end{cases} = \int \frac{1}{t} dt$$
$$= \ln|t| + c = \ln|x+1| + c.$$
3.
$$\int \frac{1}{x+1} dx = \begin{cases} x+1=t \\ 0 = x \end{cases} = \int \frac{1}{t} dt = \int \frac$$

$$= \frac{t^{-\frac{1}{3}+1}}{-\frac{1}{3}+1} + c = \frac{t^{\frac{2}{3}}}{\frac{2}{3}} + c = \frac{3\sqrt[3]{t^2}}{2} + c$$
$$= \frac{3\sqrt[3]{(x+2)^2}}{2} + c.$$

4. $\int \sqrt{3x - 5} dx = \begin{cases} 3x - 5 = t \\ 3dx = dt \Rightarrow dx = \frac{1}{3}dt \end{cases} = \frac{1}{3} \int \sqrt{t} dt$ $= \frac{1}{3} \cdot \frac{2}{3} \sqrt{t^3} + c = \frac{2}{9} \sqrt{(3x - 5)}$

5. $\int \frac{1}{\sqrt[3]{x+2}} dx = \begin{cases} x+2=t \\ dx=dt \end{cases} = \int \frac{1}{\sqrt[3]{t}} dt = \int t^{-\frac{1}{3}} dt$

 $=\frac{2}{9}\sqrt{(3x-5)^3}+c.$

6. $\int x^2 \sqrt{x^3 + 3} dx = \begin{cases} x^3 + 3 = t \\ 3x^2 dx = dt \Rightarrow x^2 dx = \frac{1}{3} dt \end{cases}$ $= \int \frac{1}{3} \sqrt{t} dt = \frac{1}{3} \cdot \frac{2}{3} \sqrt{t^3} + c$

 $=\frac{1}{3}\sqrt{(x^3+3)^3}+c.$

$$= \int \frac{x+2}{x+2} dx + \int \frac{-2}{x+2} dx$$
$$= \int dx - 2 \int \frac{1}{x+2} dx$$

7. $\int \frac{x}{x+2} dx = \int \frac{x+2-2}{x+2} dx$

$$= \int dx - 2 \int dx - 2$$

$$= \begin{cases} x+2=t \\ dx=dt \end{cases}$$
 (smena za drugi integral)

$$x + 2 = t$$

$$dx = dt$$

$$2 \int_{-1}^{1} dt$$

 $= x - 2 \ln |t| + c$

 $= x-2\ln|x+2|+c$.

$$= \begin{cases} dx = dt \\ = x - 2 \int_{-\tau}^{1} dt \end{cases}$$

$$\begin{bmatrix} dt \\ 1 \\ -dt \end{bmatrix}$$

8. $\int e^{2x} dx = \begin{cases} 2x = t \\ 2dx = dt \end{cases} = \frac{1}{2} \int e^{t} dt$ = $\frac{1}{2} e^{t} + c$ = $\frac{1}{2} e^{2x} + c$.

9. $\int \sqrt[3]{e^x} dx = \int e^{\frac{x}{3}} dx = \begin{cases} \frac{x}{3} = t \\ \frac{1}{3} dx = dt \end{cases}$

 $= 3 \int e^t dt = 3e^t + c$

 $= 3e^{\frac{x}{3}} + c = 3\sqrt[3]{e^x} + c.$

11.
$$\int e^x \sqrt{1 + e^x} dx = \begin{cases} 1 + e^x = t \\ e^x dx = dt \end{cases}$$
$$= \int \sqrt{t} dt = \frac{2}{3} t^{\frac{3}{2}} + c$$

10. $\int \frac{5}{\sqrt{e^{5x}}} dx = 5 \int e^{-\frac{5x}{2}} dx = \begin{cases} -\frac{5x}{2} = t \\ -\frac{5}{2} dx = dt \end{cases}$

 $= 5 \cdot \left(-\frac{2}{5}\right) \int e^t dt = -2e^t + c$

 $= -2e^{-\frac{5x}{2}} + c = -\frac{2}{\sqrt{e^{5x}}} + c.$

$$= \int \sqrt{t}dt = \frac{2}{3}t$$
$$= \frac{2}{3}\sqrt{(1+e^x)^3} + c.$$

12. $\int 2^{-4x} dx = \begin{cases} -4x = t \\ -4dx = dt \end{cases} = -\frac{1}{4} \int 2^t dt$ $= -\frac{1}{4} \cdot \frac{2^t}{\ln 2} + c = -\frac{2^{-4x}}{4 \ln 2} + c.$

14. $\int \ln(5x)dx = \begin{cases} 5x = t \\ 5dx = dt \end{cases} = \frac{1}{5} \int \ln t dt$ $= \frac{1}{5} (t \ln t - t + c) = x \ln(5x) - x + c.$

13. $\int e^{-x^2} x dx = \begin{cases} -x^2 = t \\ -2x dx = dt \Rightarrow x dx = -\frac{1}{2} dt \end{cases}$ $= -\frac{1}{2} \int e^t dt = -\frac{1}{2} e^t + c = -\frac{1}{2} e^{-x^2} + c.$

15.
$$\int \frac{\ln \sqrt{x}}{\sqrt{x}} dx = \begin{cases} \sqrt{x} = t \\ \frac{dx}{2\sqrt{x}} = dt \end{cases} = 2 \int \ln t dt$$
$$= 2(t \ln t - t + c) = 2\sqrt{x} \ln \sqrt{x} - 2\sqrt{x} + c.$$

Integrali koji se rešavaju parcijalnom integracijom

1.
$$\int xe^x dx = \begin{cases} u = x & dv = e^x dx \\ du = dx & v = \int e^x dx = e^x \end{cases}$$
$$= xe^x - \int e^x dx$$

$$= xe^{x} - e^{x} + c.$$

$$2. \int \ln x dx = \begin{cases} u = \ln x & dv = dx \\ du = \frac{1}{x} dx & v = \int dx = x \end{cases}$$

$$= x \ln x - \int x \cdot \frac{1}{x} dx$$

$$= x \ln x - \int dx = x \ln x - x + c.$$

Napomena: Ovaj primer pokazuje da integral $\int \ln x dx = x \ln x - x + c$ nije tablični integral nego integral koji se može izračunati koristeći parcijalnu integraciju.

cijalnu integraciju.

3.
$$\int x^2 \ln x dx = \begin{cases} u = \ln x & dv = x^2 dx \\ du = \frac{1}{x} dx & v = \int x^2 dx = \frac{x^3}{3} \end{cases}$$

cijalnu integraciju.

3.
$$\int x^2 \ln x dx = \begin{cases} u = \ln x & dv = x^2 dx \\ du = \frac{1}{x} dx & v = \int x^2 dx = \frac{x^3}{3} \end{cases}$$

3.
$$\int x^{2} \ln x dx = \begin{cases} u = \ln x & dv = x^{2} dx \\ du = \frac{1}{x} dx & v = \int x^{2} dx = \frac{x^{3}}{3} \end{cases}$$
$$= \frac{x^{3}}{3} \ln x - \int \frac{x^{3}}{3} \cdot \frac{1}{x} dx$$

 $=\frac{x^3}{2}\ln x - \frac{1}{2}\int x^2 dx = \frac{x^3}{2}\ln x - \frac{x^3}{9} + c.$

Zadaci za samostalan rad

$$1. \int 2x^2 dx.$$

Uputstvo: Tablični integral
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
 za $n = 2$.

Rešenje:
$$\frac{2x^3}{3} + c$$
.

2.
$$\int 3x^5 dx$$
.

Uputstvo: Tablični integral $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ za $n = 5$.

Rešenje: $\frac{x^6}{2} + c$.

3.
$$\int (10x^4 - 5x^3 + x) dx.$$

Uputstvo: Rastaviti na sumu tri integrala i koristiti tablični integral $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = 4, 3, 1.$ *Rešenje:* $2x^5 - 5\frac{x^4}{4} + \frac{x^2}{2} + c$.

4. $\int \frac{3}{x^4} dx$.

Uputstvo: Tablični integral $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ za n = -4. Rešenje: $-\frac{1}{x^3} + c$.

5. $\int \left(\frac{1}{r^6} - \frac{2}{r^3} + \frac{7}{r^2}\right) dx$. *Uputstvo:* Rastaviti na sumu tri integrala i koristiti tablični integral $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = -6, -3, -2.$

6. $\int \sqrt[3]{x} dx$.

Rešenje: $-\frac{1}{5r^5} + \frac{1}{r^2} - \frac{7}{r} + c$.

Rešenje: $\frac{3}{4}\sqrt[3]{x^4} + c$.

Rešenje: $-\frac{3}{\sqrt[3]{x}} + c$.

Uputstvo: Tablični integral $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ za $n = \frac{1}{3}$.

Uputstvo: Tablični integral $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ za $n = -\frac{4}{3}$.

7. $\int \frac{1}{\sqrt[3]{x^4}} dx$.

 $\int \frac{1}{x} dx = \ln|x| + c \text{ i } \int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = -\frac{1}{2}, \frac{3}{4}.$ $Re \check{s}enje: \ln|x| - 2\sqrt{x} + 4\sqrt[4]{x^7} + c.$ 9. $\int (\frac{3}{5}e^x + 6a^x) dx.$ Uputstvo: Rastaviti na sumu dva integrala i koristiti tablične integrale

Uputstvo: Rastaviti na sumu tri integrala i koristiti tablične integrale

8. $\int (\frac{1}{x} - \frac{1}{\sqrt{x}} + 7\sqrt[4]{x^3}) dx$.

 $\int e^x dx = e^x + c i \int a^x dx = \frac{a^x}{\ln a} + c.$

Rešenje: $\frac{3}{5}e^x + 6\frac{a^x}{\ln a} + c$.

10. $\int (7x-1)^6 dx$.

Uputstvo: Uvesti smenu 7x - 1 = t, a zatim koristiti tablični integral

11.
$$\int \frac{2}{(5x-1)^4} dx.$$
Uputstvo: Uvesti smenu $5x-1=t$, a zatim koristiti tablični integral
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = -4.$$

$$Rešenje: -\frac{2}{15(5x-1)^3} + c.$$

Uputstvo: Uvesti smenu 3x + 2 = t, a zatim koristiti tablični integral

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = 6.$

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = \frac{1}{3}.$

Rešenje: $\frac{(7x-1)^7}{40} + c$.

12. $\int \sqrt[3]{3x+2} dx$.

Rešenje: $\frac{1}{4}\sqrt[3]{(3x+2)^4} + c$.

13.
$$\int \frac{1}{\sqrt{4x-3}} dx.$$
Uputstvo: Uvesti smenu $4x-3=t$, a zatim koristiti tablični integral
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = -\frac{1}{2}.$$

Rešenje:
$$\frac{1}{2}\sqrt{4x-3}+c$$
.

14. $\int \sqrt[4]{x^2 + 2x} dx$. *Uputstvo:* Uvesti smenu $x^2 + 2 = t$, a zatim koristiti tablični integral

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = \frac{1}{4}.$ Rešenje: $\frac{2}{5} \sqrt[4]{(x^2+2)^5} + c.$

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ za } n = 5.$ $Re \check{s}enje: \frac{(1-t^4)^6}{24} + c.$ $16. \int \frac{3x^2 - 1}{x^3 - x + 1} dx.$

Uputstvo: Uvesti smenu $x^3 - x + 1 = t$, a zatim koristiti tablični integral

Uputstvo: Uvesti smenu $1 - x^4 = t$, a zatim koristiti tablični integral

15. $\int x^3 (1 - x^4)^5 dx.$

 $\int \frac{1}{x} dx = \ln|x| + c.$ Rešenje: $\ln|x^3 - x + 1| + c.$ 17. $\int \frac{x}{x - 7} dx.$ Uputstvo: Dodati i oduzeti 7 u brojiocu, rastaviti na sumu dva integrala,

u drugom integralu uvesti smenu x-7=t, a zatim koristiti tablične integrale $\int dx = x + c i \int \frac{1}{x} dx = \ln|x| + c$. Rešenje: $x + 7 \ln|x - 7| + c$.

18.
$$\int e^{-5x} dx.$$

Rešenje:
$$-\frac{1}{2}e^{-\frac{1}{2}}$$

Rešenje: $2\sqrt{e^x} + c$.

Uputstvo: Uvesti smenu -5x = t, a zatim koristiti tablični integral $\int e^x dx$ Rešenje: $-\frac{1}{5}e^{-5x} + c$.

$$19 \int \sqrt{e^x} dx$$

9.
$$\int \sqrt{e^x} dx$$
.

Uputstvo: Ovaj integral možemo napisat:

19. $\int \sqrt{e^x} dx$.

Uputstvo: Ovaj integral možemo napisati kao $\int e^{\frac{x}{2}} dx$ i uvesti smenu

 $\frac{x}{2} = t$, a zatim koristiti tablični integral $\int e^x dx = e^x + c$.

 $20. \int \frac{1}{\sqrt[3]{e^x}} dx.$

Uputstvo: Ovaj integral možemo napisati kao $\int e^{-\frac{x}{3}} dx$ i uvesti smenu

$$-\frac{x}{3} = t$$
, a zatim koristiti tablični integral $\int e^x dx = e^x + c$.

Rešenje:
$$-\frac{3}{\sqrt[3]{e^x}} + c$$
.

21.
$$\int \frac{e^x}{e^x + 1} dx.$$
Uputstvo: Uvesti smenu $e^x + 1 = t$, a zatim koristiti tablični integral
$$\int \frac{1}{x} dx = \ln|x| + c.$$
Rešenje: $\ln(e^x + 1) + c.$

 $22. \int 5^{3x} dx.$

Uputstvo: Uvesti smenu 3x = t, a zatim koristiti tablični integral $\int a^x dx = t$ za a = 5. Rešenje: $\frac{5^{3x}}{3 \ln 5} + c$.

 $23. \int e^{-x^2} x dx.$

23.
$$\int e^{-x^2} x dx$$
.
Uputstvo: Uvesti smenu $-x^2 = t$, a zatim koristiti tablični integral $\int e^x dx = t$

Rešenje:
$$-\frac{1}{2}e^{-x^2}+c$$
.

$$24. \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx.$$

Uputstvo: Uvesti smenu $\sqrt{x} = t$, a zatim koristiti tablični integral $\int e^x dx = t$

Rešenje: $2e^{\sqrt{x}} + c$.

- *Uputstvo:* Uvesti smenu 10x = t, a zatim koristiti tablični integral $\int \ln x dx$ Rešenje: $x \ln 10x - x + c$.
- 26. $\int (x+1) \ln x dx.$

25. $\int \ln(10x)dx.$

- *Uputstvo:* Parcijalna integracija $u = \ln x$, dv = (x+1)dx.
- *Rešenje:* $(\frac{x^2}{2} + x) \ln x \frac{x^2}{4} x + c$.