Problem 1: Root Solving

Problem Statement Consider the "Rosenbrock" function for x_1 and x_2 :

$$f(\mathbf{x}) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

Part 1.1

Problem Statement Demonstrate the topology of the function for the ranges of $x_1=[-33]$ and $x_2=[-15]$

Part 1.2

Problem Statement Visually, where is the global minimum?

Looking specifically at the density of the countour lines, indicates a region around [11] being the minimum.

Homework 3 1

Part 1.3

Problem Statement Using calculus, demonstrate the answer is a local minimum with the sufficient and necessary conditions.

Second Order Necessary Condition: $\nabla f(\mathbf{x}_*) = \vec{0}$

Second Order Sufficient Condition: $\nabla^2 f(\mathbf{x}_*)$ is positive definite

Calculating the first gradient of the function yields a 2×1 vector:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2 x_1 - 400 x_1 (x_2 - x_1^2) - 2 \\ 200 x_2 - 200 x_1^2 \end{bmatrix} \\ \begin{bmatrix} 2 x_1 - 400 x_1 (x_2 - x_1^2) - 2 \\ 200 x_2 - 200 x_1^2 \end{bmatrix} \Big|_{\mathbf{x} = [1, 1]^T} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \checkmark$$

With the first order gradient having zeros in every index, the second order necessary condition is satisified. Taking the second gradient, using the first, yields a 2×2 matrix of second order parital derivatives:

$$\begin{split} \nabla^2 f(\mathbf{x}) &= \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 f}{\partial x_1 x_2} \\ \frac{\partial^2 f}{\partial x_2 x_1} \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 1200 \, x_1^2 - 400 \, x_2 + 2 & -400 \, x_1 \\ -400 \, x_1 & 200 \end{bmatrix} \\ \operatorname{chol}(\begin{bmatrix} 1200 \, x_1^2 - 400 \, x_2 + 2 & -400 \, x_1 \\ -400 \, x_1 & 200 \end{bmatrix} \bigg|_{\mathbf{x} = [1,1]^T}) = \begin{bmatrix} \sqrt{802} & -\frac{200 \, \sqrt{802}}{401} \\ 0 & \frac{10 \, \sqrt{2} \, \sqrt{401}}{401} \end{bmatrix} \end{split}$$

Seeing as the Cholesky factorization was completed successfully, the second order gradient evaluated at $[1,1]^T$ is positive definite, satisfying the second order sufficient condition.

Homework 3 2