勉強の流れ

- [演習問題]: テキストに掲載 ※毎回やってきてください!
- <復習プリント>・<補足説明プリント>: 以下のサイトでオンライン配布 西園寺聖樹ホームページ: https://saionji-chem.github.io/ →「授業補助コンテンツ」

資料 pass:「

授業形式

- 板書がメイン (ノート, ルーズリーフ等が必要)。なるべく板書を頑張って取ること。
 - ※ ☆はポイント

黄色チョークは「重要事項・解答の根拠」/赤色チョークは「注目」/通常は白色チョーク

- 問いかけをたくさんするので、答えを考えるようにしましょう。

困ったことがあったら…

- 講師室に気軽に質問しに来てください。授業以外のことでも歓迎です。
- 授業が簡単すぎたり難しすぎたり感じた場合も,まず私まで相談してください。 適切なアドバイスをします。

化学の成績を伸ばすコツ

インプット

アウトプット

わかりやすい授業を聞き、効率的で面白い勉強をする

- (I) **重要ポイント**をおさえる
- (2) 粒子をイメージ
- (3) フレームワークを活用
 - 多くの問題に共通のやりかたがある
 - → 必要な知識量を削減できる
- (4) 無機化学は理論で攻略
 - 化学反応式をかけるようにする
- (5) 有機化学にも理論がある
 - 構造決定問題はマニュアルに従って解く

最初は問題が解けなくても仕方ない

- → 演習を積んで得点できるようにする 問題集を解くことを目的化してはいけない
- → 先人の知恵を利用し、得点を効率的に上げる
- (1) 図・表・グラフを書いて整理
- (2) "登場人物"を把握せよ
- (3) 単元を把握
 - → 各単元の重要ポイントを思い出して答える
- (4) 計算では単位と桁と対象に注意
- (5) 間違えた内容+その周辺事項を記憶する

試験

- (I) 問題の指示には従う! 「何を」「どう」問われているかをミスしないように! 構造式ミス,有効数字ミス,記号/化学式/語句の回答ミスなど
- (2) 基本的には教科書内容

教科書内容っぽくないことは「問題に書いてある」or「教科書内容の類推」が多い

- (3) 試験はスピード勝負
 - 試験のときは分からないところは一旦飛ばす
 - あまり深く悩んでドツボにハマらない
 - 概算で見当をつける
 - 時間配分に注意するが焦らず計算する

etc.

周期表(原子番号 I~20番)

水 兵 リーベ ぼく の ふね。七 曲がり シップス クラーク か

周期 \ 族	1	2	•••	13	14	15	16	17	18
I									
	水素								ヘリウム
2									
	リチウム	ベリリウム		ホウ素	炭素	窒素	酸素	フッ素	ネオン
3									
	ナトリウム	マグネシウム		アルミニウム	ケイ素	リン	硫黄	塩素	アルゴン
4						•••••			
	カリウム	カルシウム							
:									

アルカリ アルカリ

金属 土類金属

ハロゲン 貴ガス

※ 自分で元素記号を埋めてみよう!

知っておくべきイオン式

陽イオン	<u>陰イオン</u>	
H+ 水素イオン	F ⁻	フッ化物イオン
Li ⁺ リチウムイオン	CI ⁻	塩化物イオン
Na ⁺ ナトリウムイオン	Br ⁻	臭化物イオン
K+ カリウムイオン	I-	ヨウ化物イオン
Cu ⁺ 銅(I)イオン	OH ⁻	水酸化物イオン
Ag ⁺ 銀イオン	CN-	シアン化物イオン
NH ₄ ⁺ アンモニウムイオン	HCO ₃ ⁻	炭酸水素イオン
H₃O ⁺ オキソニウムイオン	CH₃COO ⁻	酢酸イオン
Mg^{2+} マグネシウムイオン	NO_3^-	硝酸イオン
Cα ²⁺ カルシウムイオン	CIO-	次亜塩素酸イオン
Bα ²⁺ バリウムイオン	MnO_4^-	過マンガン酸イオン
Zn ²⁺ 亜鉛イオン	O ²⁻	酸化物イオン
Pb ²⁺ 鉛(Ⅱ)イオン	S ²⁻	硫化物イオン
Fe ²⁺ 鉄(Ⅱ)イオン	CO_3^{2-}	炭酸イオン
Ni ²⁺ ニッケル(Ⅱ)イオン	$C_2O_4{}^{2-}$	シュウ酸イオン
Cu ²⁺ 銅(Ⅱ)イオン	SO ₄ ²⁻	硫酸イオン
Mn^{2+} マンガン $(\mathbbm{1})$ イオン	$S_2O_3^{2-}$	チオ硫酸イオン
Al³+ アルミニウムイオン	CrO ₄ ²⁻	クロム酸イオン
Cr³+ クロム(Ⅲ)イオン	$Cr_2O_7^{2-}$	二クロム酸イオン
Fe ³⁺ 鉄(皿)イオン	PO ₄ ³⁻	リン酸イオン

計算の基礎資料

分数計算
$$\frac{b}{a} + \frac{d}{c} = \frac{bc + ad}{ac}$$
 $\frac{b}{a} \times \frac{d}{c} = \frac{bd}{ac}$ $\frac{b}{a} \div \frac{d}{c} = \frac{b}{a} \times \frac{c}{d} = \frac{bc}{ad}$ $\frac{a}{1/b} = \frac{a}{\left(\frac{1}{b}\right)} = a \times b$

$$\frac{b}{a} \times \frac{d}{c} = \frac{bd}{ac}$$

$$\frac{b}{a} \div \frac{d}{c} = \frac{b}{a} \times \frac{c}{d} = \frac{bc}{ad}$$

$$\frac{a}{1/b} = \frac{a}{\left(\frac{1}{b}\right)} = a \times b$$

<正確な数>

0.1	0.2	0.5	0.04	0.25	0.125	0.0625
$\frac{1}{10}$	$\frac{2}{10} = \frac{1}{5}$	$\frac{5}{10} = \frac{1}{2}$	1 25	$\frac{1}{4}$	1 8	1 16

<大体の数>

0.333	0.111	0.0833	8.31×10 ³	22.4
$\frac{1}{3}$	<u>1</u> 9	1 12	$\frac{1}{12} \times 10^5$	$\frac{45}{2} = \frac{200}{9}$

割合 ⇒ 全体が何かを意識

全体 100%

 $0.01 = \frac{1}{100}$

100

C とする

0.75*C*

0.01*C*

⇒ 割合はかけ算

<u>比例・反比例・比の計算</u> y = ax (比例, aは比例定数) $y = \frac{a}{x}$ or xy = a (反比例, aは定数)

a: b = ax: bx

a: ax = b: bx

a: b = c: d ⇔ ad = bc (外項の積=内項の積)

 $A = ka \ \text{th} \supset B = kb \iff A: B = a: b$

例 x = 2RTかつ $y = 3RT \Leftrightarrow x: y = 2:3$

<u>平均</u> 算術平均 $\frac{a_1+a_2+\cdots+a_n}{n}$ 重み付き平均 $a_1x_1+a_2x_2+\cdots+a_nx_n$ (ただし, $x_1+x_2+\cdots+x_n=1$)

仮平均 $a + \frac{(a_1-a)+(a_2-a)+\cdots+(a_n-a)}{n}$

展開・因数分解公式/二次方程式の解の公式

 $(x+a)(x+b) = x^2 + (a+b)x + ab$ 特に, $(x\pm a)^2 = x^2 \pm 2ax + a^2$ $(x+a)(x-a) = x^2 - a^2$

 $ax^2 + bx + c = 0$ の解は, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$

指数・対数計算

 $10^x \times 10^y = 10^{x+y}$

例 $10^2 \times 10^3 = 10^{2+3} = 10^5$

 $10^x \div 10^y = \frac{10^x}{10^y} = 10^{x-y}$ 特に、 $1 \div 10^x = \frac{1}{10^x} = 10^{-x}$ 例 $10^2 \div 10^3 = \frac{10^2}{10^3} = 10^{2-3} = 10^{-1} = \frac{1}{10}$

 $(10^x)^y = 10^{xy}$, $(ab)^x = a^x b^x$, $10^0 = 1$, $\log_{10} 1 = 0$

 $\log_{10} a + \log_{10} b = \log_{10} (ab)$

例 $\log_{10} 2 + \log_{10} 3 = \log_{10} (2 \times 3) = \log_{10} 6$

 $\log_{10} a - \log_{10} b = \log_{10} \left(\frac{a}{b}\right)$ 特に、 $-\log_{10} a = \log_{10} \left(\frac{1}{a}\right)$ 例 $\log_{10} 2 - \log_{10} 3 = \log_{10} \left(\frac{2}{3}\right) = -\log_{10} \left(\frac{3}{2}\right)$

 $\log_{10} a^x = x \log_{10} a$

特に, $\log_{10} 10^x = x$

例 $\log_{10} 8 = \log_{10} 2^3 = 3 \log_{10} 2$, $\log_{10} 10^{\square} = \square$

 $10^{\log_{10} x} = x$

例 $10^{\log_{10} 100} = 10^{\log_{10} 10^2} = 10^2 = 100$