Machine Learning Techniques

(機器學習技法)

Lecture 6: Support Vector Regression

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 5: Kernel Logistic Regression

two-level learning for SVM-like sparse model for soft classification, or using representer theorem with regularized logistic error for dense model

Lecture 6: Support Vector Regression

- Kernel Ridge Regression
- Support Vector Regression Primal
- Support Vector Regression Dual
- Summary of Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Recall: Representer Theorem

for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

optimal $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$.

—any L2-regularized linear model can be kernelized!

regression with squared error

$$\operatorname{err}(y, \mathbf{w}^T \mathbf{z}) = (y - \mathbf{w}^T \mathbf{z})^2$$

-analytic solution for linear/ridge regression

analytic solution for kernel ridge regression?

Kernel Ridge Regression Problem

solving ridge regression
$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{z}_n)^2$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{N}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})} + \frac{1}{N} \sum_{n=1}^{N} \left(y_{n} - \sum_{m=1}^{N} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m}) \right)^{2}$$
regularization of $\boldsymbol{\beta}$ on K -based regularizer
$$= \frac{\lambda}{N} \boldsymbol{\beta}^{T} K \boldsymbol{\beta} + \frac{1}{N} \left(\boldsymbol{\beta}^{T} K^{T} K \boldsymbol{\beta} - 2 \boldsymbol{\beta}^{T} K^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y} \right)$$

kernel ridge regression:

use representer theorem for kernel trick on ridge regression

Solving Kernel Ridge Regression

$$E_{\text{aug}}(\boldsymbol{\beta}) = \frac{\lambda}{N} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta} + \frac{1}{N} \left(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta} - 2 \boldsymbol{\beta}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y} \right)$$

$$\nabla E_{\text{aug}}(\boldsymbol{\beta}) = \frac{2}{N} \left(\lambda \mathbf{K}^{\mathsf{T}} \mathbf{I} \boldsymbol{\beta} + \mathbf{K}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta} - \mathbf{K}^{\mathsf{T}} \mathbf{y} \right) = \frac{2}{N} \mathbf{K}^{\mathsf{T}} \left((\lambda \mathbf{I} + \mathbf{K}) \boldsymbol{\beta} - \mathbf{y} \right)$$

want $\nabla E_{\text{aug}}(\beta) = \mathbf{0}$: one analytic solution

$$\boldsymbol{\beta} = (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$

- (·)⁻¹ always exists for λ > 0, because
 K positive semi-definite (Mercer's condition, remember? :-))
- time complexity: $O(N^3)$ with simple dense matrix inversion

can now do non-linear regression 'easily'

Linear versus Kernel Ridge Regression

linear ridge regression

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- more restricted
- O(d³ + d²N) training;
 O(d) prediction
 - —efficient when $N \gg d$

kernel ridge regression

$$\boldsymbol{\beta} = (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$

- more flexible with K
- O(N³) training;
 O(N) prediction
 —hard for big data

linear versus kernel: trade-off between efficiency and flexibility

After getting the optimal β from kernel ridge regression based on some kernel function K, what is the resulting $g(\mathbf{x})$?

- $\bigcirc \sum_{n=1}^{N} \beta_n K(\mathbf{x}_n, \mathbf{x})$
- 3 $\sum_{n=1}^{N} \beta_n K(\mathbf{x}_n, \mathbf{x}) + \lambda$

After getting the optimal β from kernel ridge regression based on some kernel function K, what is the resulting $g(\mathbf{x})$?

- 3 $\sum_{n=1}^{N} \beta_n K(\mathbf{x}_n, \mathbf{x}) + \lambda$

Reference Answer: 1

Recall that the optimal $\mathbf{w} = \sum_{n=1}^{N} \beta_n \mathbf{z}_n$ by representer theorem and $g(\mathbf{x}) = \mathbf{w}^T \mathbf{z}$. The answer comes from combining the two equations with the kernel trick.

Soft-Margin SVM versus Least-Squares SVM

least-squares SVM (LSSVM)

= kernel ridge regression for classification

soft-margin Gaussian SVM

Gaussian LSSVM

- LSSVM: similar boundary, many more SVs \implies slower prediction, dense β (BIG g)
- dense β: LSSVM, kernel LogReg;
 sparse α: standard SVM

want: sparse β like standard SVM

Tube Regression

will consider tube regression

- within a tube: no error
- outside a tube: error by distance to tube

error measure:

$$\operatorname{err}(y, s) = \max(0, |s - y| - \epsilon)$$

- $|s-y| \leq \epsilon$: 0
- $|s-y| > \epsilon$: $|s-y| \epsilon$

—usually called ϵ -insensitive error with $\epsilon > 0$

todo: L2-regularized tube regression to get sparse β

Tube versus Squared Regression

tube \approx squared when |s - y| small & less affected by outliers

L2-Regularized Tube Regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \max \left(0, |\mathbf{w}^T \mathbf{z}_n - y_n| - \epsilon \right)$$

Regularized Tube Regr.

 $\min \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{tube violation}$

- unconstrained, but max not differentiable
- 'representer' to kernelize, but no obvious sparsity

standard SVM

 $\min \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum \text{margin vio.}$

- not differentiable, but QP
- dual to kernelize,
 KKT conditions ⇒ sparsity

will mimic standard SVM derivation:

$$\min_{\boldsymbol{b}, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \max \left(0, |\mathbf{w}^T \mathbf{z}_n + \mathbf{b} - \mathbf{y}_n| - \epsilon \right)$$

Standard Support Vector Regression Primal

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max\left(0, |\mathbf{w}^T\mathbf{z}_n + b - y_n| - \epsilon\right)$$

mimicking standard SVM

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \xi_n$$

$$s.t. \ |\mathbf{w}^T \mathbf{z}_n + b - y_n| \le \epsilon + \xi_n$$

$$\xi_n \ge 0$$

making constraints linear

$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} (\xi_{n}^{\vee} + \xi_{n}^{\wedge})$$

$$-\epsilon - \xi_{n}^{\vee} \leq y_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b \leq \epsilon + \xi_{n}^{\wedge}$$

$$\xi_{n}^{\vee} \geq 0, \xi_{n}^{\wedge} \geq 0$$

Support Vector Regression (SVR) primal:

minimize regularizer + (upper tube violations ξ_n^{\wedge} & lower violations ξ_n^{\vee})

Quadratic Programming for SVR

$$\min_{b,\mathbf{w},\boldsymbol{\xi}^{\vee},\boldsymbol{\xi}^{\wedge}} \qquad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} \left(\xi_{n}^{\vee} + \xi_{n}^{\wedge}\right)$$

$$s.t. \qquad -\epsilon - \xi_{n}^{\vee} \leq y_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b \leq \epsilon + \xi_{n}^{\wedge}$$

$$\xi_{n}^{\vee} \geq 0, \xi_{n}^{\wedge} \geq 0$$

- parameter C: trade-off of regularization & tube violation
- parameter ∈: vertical tube width
 —one more parameter to choose!
- QP of $\tilde{d} + 1 + 2N$ variables, 2N + 2N constraints

next: remove dependence on \vec{d} by SVR primal \Rightarrow dual?

Consider solving support vector regression with $\epsilon = 0.05$. At the optimal solution, assume that $\mathbf{w}^T \mathbf{z}_1 + b = 1.234$ and $y_1 = 1.126$. What is ξ_1^\vee and ξ_1^\wedge ?

- $\mathbf{0} \ \xi_1^{\vee} = 0.108, \xi_1^{\wedge} = 0.000$
- $2 \xi_1^{\vee} = 0.000, \xi_1^{\wedge} = 0.108$
- **3** $\xi_1^{\vee} = 0.058, \xi_1^{\wedge} = 0.000$
- $4 \xi_1^{\vee} = 0.000, \xi_1^{\wedge} = 0.058$

Consider solving support vector regression with $\epsilon = 0.05$. At the optimal solution, assume that $\mathbf{w}^T \mathbf{z}_1 + b = 1.234$ and $y_1 = 1.126$. What is ξ_1^{\vee} and ξ_1^{\wedge} ?

- $\mathbf{0} \ \xi_1^{\vee} = 0.108, \xi_1^{\wedge} = 0.000$
- $2 \xi_1^{\vee} = 0.000, \xi_1^{\wedge} = 0.108$
- **3** $\xi_1^{\vee} = 0.058, \xi_1^{\wedge} = 0.000$
- $4 \xi_1^{\vee} = 0.000, \xi_1^{\wedge} = 0.058$

Reference Answer: (3)

 $y_1 - \mathbf{w}^T \mathbf{z}_1 - b = -0.108 < -0.05$, which means that there is a lower tube violation of amount 0.058. When there is a lower tube violation on some example, trivially there is no upper tube violation.

Lagrange Multipliers $lpha^\wedge$ & $lpha^\vee$

objective function
$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N}\frac{\left(\xi_{n}^{\vee} + \xi_{n}^{\wedge}\right)}{\left(\xi_{n}^{\vee} + \xi_{n}^{\wedge}\right)}$$
 Lagrange multiplier α_{n}^{\wedge} for $y_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b \leq \epsilon + \xi_{n}^{\wedge}$ Lagrange multiplier α_{n}^{\vee} for $-\epsilon - \xi_{n}^{\vee} \leq y_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b$

Some of the KKT Conditions

•
$$\frac{\partial \mathcal{L}}{\partial w_i} = 0$$
: $\mathbf{w} = \sum_{n=1}^{N} \underbrace{(\alpha_n^{\wedge} - \alpha_n^{\vee})}_{\beta_n} \mathbf{z}_n$; $\frac{\partial \mathcal{L}}{\partial b} = 0$: $\sum_{n=1}^{N} (\alpha_n^{\wedge} - \alpha_n^{\vee}) = 0$

• complementary slackness: $\frac{\alpha_n^{\wedge}(\epsilon + \boldsymbol{\xi}_n^{\wedge} - y_n + \mathbf{w}^T \mathbf{z}_n + b)}{\alpha_n^{\vee}(\epsilon + \boldsymbol{\xi}_n^{\vee} + y_n - \mathbf{w}^T \mathbf{z}_n - b)} = 0$

standard dual can be derived using the same steps as Lecture 4

SVM Dual and SVR Dual

min
$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} \xi_{n}$$
s.t.
$$y_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \ge 1 - \xi_{n}$$

$$\xi_{n} \ge 0$$

min
$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N}(\xi_{n}^{\wedge} + \xi_{n}^{\vee})$$

s.t. $1(\mathbf{y}_{n} - \mathbf{w}^{T}\mathbf{z}_{n} - b) \leq \epsilon + \xi_{n}^{\wedge}$
 $1(\mathbf{w}^{T}\mathbf{z}_{n} + b - \mathbf{y}_{n}) \leq \epsilon + \xi_{n}^{\vee}$
 $\xi_{n}^{\wedge} \geq 0, \xi_{n}^{\vee} \geq 0$

min
$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$$
$$-\sum_{n=1}^{N} 1 \cdot \alpha_n$$
s.t.
$$\sum_{n=1}^{N} y_n \alpha_n = 0$$
$$0 < \alpha_n < C$$

min
$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (\alpha_{n}^{\wedge} - \alpha_{n}^{\vee}) (\alpha_{m}^{\wedge} - \alpha_{m}^{\vee}) k_{n,m}$$

$$+ \sum_{n=1}^{N} ((\epsilon - y_{n}) \cdot \alpha_{n}^{\wedge} + (\epsilon + y_{n}) \cdot \alpha_{n}^{\vee})$$
s.t.
$$\sum_{n=1}^{N} 1 \cdot (\alpha_{n}^{\wedge} - \alpha_{n}^{\vee}) = 0$$

$$0 < \alpha_{n}^{\wedge} < C, 0 < \alpha_{n}^{\vee} < C$$

similar QP, solvable by similar solver

Sparsity of SVR Solution

•
$$\mathbf{w} = \sum_{n=1}^{N} \underbrace{(\alpha_n^{\wedge} - \alpha_n^{\vee})}_{\beta_n} \mathbf{z}_n$$

complementary slackness:

$$\alpha_n^{\wedge}(\epsilon + \xi_n^{\wedge} - y_n + \mathbf{w}^T \mathbf{z}_n + b) = 0$$

 $\alpha_n^{\vee}(\epsilon + \xi_n^{\vee} + y_n - \mathbf{w}^T \mathbf{z}_n - b) = 0$

• strictly within tube $|\mathbf{w}^T \mathbf{z}_n + b - y_n| < \epsilon$ $\Longrightarrow \boldsymbol{\xi}_n^{\wedge} = 0$ and $\boldsymbol{\xi}_n^{\vee} = 0$ $\Longrightarrow (\epsilon + \boldsymbol{\xi}_n^{\wedge} - y_n + \mathbf{w}^T \mathbf{z}_n + b) \neq 0$ and $(\epsilon + \boldsymbol{\xi}_n^{\vee} + y_n - \mathbf{w}^T \mathbf{z}_n - b) \neq 0$ $\Longrightarrow \alpha_n^{\wedge} = 0$ and $\alpha_n^{\vee} = 0$ $\Longrightarrow \beta_n = 0$

• SVs ($\beta_n \neq 0$): on or outside tube

SVR: allows sparse β

What is the number of variables within the QP problem of SVR dual?

- $\mathbf{1}$ $\tilde{d} + 1$
- $\tilde{d} + 1 + 2N$
- **3** N
- 4 2N

What is the number of variables within the QP problem of SVR dual?

- $\mathbf{1}$ $\tilde{d} + 1$
- $\tilde{d} + 1 + 2N$
- **3** N
- 4 2N

Reference Answer: 4

There are *N* variables within α^{\vee} , and another *N* in α^{\wedge} .

Map of Linear Models

PLA/pocket

minimize $err_{0/1}$ specially

linear SVR

minimize regularized err_{TUBE} by QP

linear soft-margin SVM

minimize regularized $\widehat{\operatorname{err}}_{\operatorname{SVM}}$ by QP

linear ridge regression

minimize regularized errson analytically

regularized logistic regression

minimize regularized err_{CE} by GD/SGD

second row: popular in LIBLINEAR

Map of Linear/Kernel Models

PLA/pocket

linear SVR

linear soft-margin SVM

linear ridge regression

regularized logistic regression

kernel ridge regression

kernelized linear ridge regression kernel logistic regression

kernelized regularized logistic regression

SVM

minimize SVM dual by QP

SVR

minimize SVR dual by QP

probabilistic SVM

run SVM-transformed logistic regression

fourth row: popular in LIBSVM

Map of Linear/Kernel Models

first row: less used due to worse performance third row: less used due to dense β

Kernel Models

possible kernels:

polynomial, Gaussian, \ldots , your design (with Mercer's condition),

coupled with

kernel ridge regression

kernel logistic regression

SVM

SVR

probabilistic SVM

powerful extension of linear models

-with great power comes great responsibility in Spiderman, remember? :-)

Which of the following model is less used in practice?

- pocket
- 2 ridge regression
- (linear or kernel) soft-margin SVM
- 4 regularized logistic regression

Which of the following model is less used in practice?

- pocket
- 2 ridge regression
- (linear or kernel) soft-margin SVM
- 4 regularized logistic regression

Reference Answer: 1

The pocket algorithm generally does not perform better than linear soft-margin SVM, and hence is less used in practice.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 6: Support Vector Regression

- Kernel Ridge Regression
 representer theorem on ridge regression
- Support Vector Regression Primal minimize regularized tube errors
- Support Vector Regression Dual
 a QP similar to SVM dual
- Summary of Kernel Models
 with great power comes great responsibility
- 2 Combining Predictive Features: Aggregation Models
 - next: making cocktail from learning models
- 3 Distilling Implicit Features: Extraction Models