

Sanguijuelas

7 de octubre de 2014

 $\begin{array}{c} {\rm M\acute{e}todos~Num\acute{e}ricos} \\ {\rm Trabajo~Pr\'actico~Nro.~1} \end{array}$

Integrante	LU	Correo electrónico
Martin Carreiro	45/10	martin301290@gmail.com
Kevin Kujawski	459/10	kevinkuja@gmail.com
Juan Manuel Ortíz de Zárate	403/10	jmanuoz@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

$$\label{eq:tensor} \begin{split} \text{Tel/Fax: (54 11) 4576-3359} \\ \text{http://www.fcen.uba.ar} \end{split}$$

Índice

1.	Resumen	3
2.	Introducción teórica	4
3.	Desarrollo	5
	3.1. Matriz Dispersa	5
	3.2. DOK vs CRS vs CSC	5
4.	Experimentación Y Resultados	6
5 .	Discusión	7
6	Conclusiones	R

1. Resumen

2. Introducción teórica

3. Desarrollo

3.1. Matriz Dispersa

Se define una matrix dispersa aquella a la que la mayoría de sus elementos son cero.

$$\begin{bmatrix} 0 & 0 & 0 & 0 & a_{04} \\ 0 & a_{11} & a_{12} & 0 & 0 \\ 0 & 0 & 0 & a_{23} & 0 \\ 0 & 0 & 0 & a_{33} & 0 \\ a_{40} & 0 & 0 & 0 & 0 \end{bmatrix}$$

3.2. DOK vs CRS vs CSC

La matriz dispersa al tener la propiedad de tener muy pocos valores no-cero es conveniente solo guardar estos y asumir el resto como cero. Existen varias estructuras como Dictionary of Keys (dok), Compressed Sparse Row (CSR) o Compressed Sparse Column (CSC). En el desarrollo de este TP, utilizamos DOK por facilidad en el uso del mismo. Tanto CSR o CSC se basan en la estructura Yale y se diferencian en como guardan los mismos valores, uno priorizando las columnas y otro las filas respectivamente.

La estructura Yale consiste en a partir de la matriz original obtener tres vectores que contengan

- A = los elementos no—cero de arriba-abajo,izquierda-derecha
- IA = los indices para cada fila i del primer elemento no-cero de dicha fila
- JA = los indices de columna para cada valor de A

Si bien en caso de que haya en una fila muchos números no-ceros es más beneficioso la utilización de esta estructura, la facilidad con DOK permite hacer pruebas más rápido.

4. Experimentación Y Resultados

5. Discusión

6. Conclusiones