

2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution

Kai Liu¹, Haotong Qin², Yong Guo³, Xin Yuan⁴, Linghe Kong¹, Guihai Chen^{1*}, Yulun Zhang^{1*}

¹Shanghai Jiao Tong University, ²ETH Zürich, ³Max Planck Institute for Informatics, ⁴Westlake University

Introduction

Vision Transformers (ViTs) excel in SR tasks but face high costs. Low bit post-training quantization (PTQ) reduces memory and computation. However, the deterioration of selfattention in quantized transformers limit its application. To tackle this, we propose **2DQuant** a novel PTQ for ViT in SR.

Contribution

- Exploration: We are the first to explore PTQ with ViT models in SR thoroughly.
- Pipeline: Design two-stage PTQ method for SR, DOBI for fast rough bound search while **DQC** for fine-grained sophisticated bound search.
- **Performance:** Compress the model to 4, 3, and 2 bits with speedup ratio being 3.99x, 4.47x, and 5.08x respectively. Surpass existing SOTA on all benchmark and visual effects.

Method

* Algorithm

- Challenge I: Long Tail distribution. The distribution of weight and activation of ViT present long tail distribution. The hugh values are crutial but hinders quantized model's performance.
- Challenge II: Mismatch between Quant loss and Task loss. Optimizing quant loss from the local perspective is not always align with the task loss, making

- **DOBI:** We note that the data distribution falls into two categories: one resembling a bellshaped distribution and the other resembling an exponential distribution. Different searching directions are used for different shapes to guarantee fast and accurate search.
- **DQC:** Distillation quantization calibration between the FP model and the quantized model further adjust the boud and improve the model's performance.

Clipping Bound Distribution

- The local search result of DOBI is still around the min value and the max value.
- After DQA, the bound presents more extreme distribution. The most extreme one leaves only 46% data in clipping range and the values beyond are all clipped. This shows that mearly local search can not guarantee low task loss, namely high performance.

Experiments

Ablation Study

earning rate	PSNR↑	SSIM↑		Batch size	PSNR↑	SSIM↑		DOBI	DQC	PSNR↑	S
10^{-1}	37.82	0.9594		4	37.82	0.9594				34.39	0
10^{-2}	37.87	0.9594		8	37.83	0.9594		\checkmark		37.44	0
10^{-3}	37.78	0.9592		16	37.84	0.9593			\checkmark	37.32	0
10^{-4}	37.74	0.9587		32	37.87	0.9594		√	\checkmark	37.87	0
(a) Learning rate			(b) Batch size				(c) DOBI and DQC				

BI DQC PSNR† SSIM†

Quantitative Results

Mathad	Bit	Set5 (×4)		Set14 (×4)		B100 (×4)		Urban $100 (\times 4)$		Manga109 (×4)	
Method		PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑
SwinIR-light [32]	32	32.45	0.8976	28.77	0.7858	27.69	0.7406	26.48	0.7980	30.92	0.9150
Bicubic	32	27.56	0.7896	25.51	0.6820	25.54	0.6466	22.68	0.6352	24.19	0.7670
MinMax [22]	4	28.63	0.7891	25.73	0.6657	25.10	0.6061	23.07	0.6216	26.97	0.8104
Percentile [27]	4	30.64	0.8679	27.61	0.7563	26.96	0.7151	24.96	0.7479	28.78	0.8803
$EDSR^{\dagger}$ [33, 41]	4	31.20	0.8670	27.98	0.7600	27.09	0.7140	25.56	0.7640	N/A	N/A
DBDC+Pac [41]	4	30.74	0.8609	27.66	0.7526	26.97	0.7104	24.94	0.7369	28.52	0.8697
DOBI (Ours)	4	31.10	0.8770	28.03	0.7672	27.18	0.7237	25.43	0.7631	29.31	0.8916
2DQuant (Ours)	4	31.77	0.8867	28.30	0.7733	27.37	0.7278	25.71	0.7712	29.71	0.8972
MinMax [22]	3	19.41	0.3385	18.35	0.2549	18.79	0.2434	17.88	0.2825	19.13	0.3097
Percentile [27]	3	27.55	0.7270	25.15	0.6043	24.45	0.5333	22.80	0.5833	26.15	0.7569
DBDC+Pac [41]	3	27.91	0.7250	25.86	0.6451	25.65	0.6239	23.45	0.6249	26.03	0.7321
DOBI (Ours)	3	29.59	0.8237	26.87	0.7156	26.24	0.6735	24.17	0.6880	27.62	0.8349
2DQuant (Ours)	3	30.90	0.8704	27.75	0.7571	26.99	0.7126	24.85	0.7355	28.21	0.8683
MinMax [22]	2	23.96	0.4950	22.92	0.4407	22.70	0.3943	21.16	0.4053	22.94	0.5178
Percentile [27]	2	23.03	0.4772	22.12	0.4059	21.83	0.3816	20.45	0.3951	20.88	0.3948
DBDC+Pac [41]	2	25.01	0.5554	23.82	0.4995	23.64	0.4544	21.84	0.4631	23.63	0.5854
DOBI (Ours)	2	28.82	0.7699	26.46	0.6804	25.97	0.6319	23.67	0.6407	26.32	0.7718
2DQuant (Ours)	2	29.53	0.8372	26.86	0.7322	26.46	0.6927	23.84	0.6912	26.07	0.8163

Visual Results

