

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences

PROGRAM (S) TO

BE

Computer Science

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CS
Course Title	Parallel and Distributed Computing
Credit Hours	3+0
Prerequisites by Course(s) and Topics	Operating Systems
Assessment	Midterms 30%
Instruments with Weights (homework,	Assignments (Quiz optional) 10%
quizzes, midterms,	Projects 10%
final, programming assignments, lab work, etc.)	Final Exam 50%
Course Coordinator	Dr. Nausheen Shoaib
URL (if any)	-
Current Catalog Description	Asynchronous/synchronous computation/communication, concurrency control, fault tolerance, GPU architecture and programming, heterogeneity, interconnection topologies, load balancing, memory consistency model, memory hierarchies, Message passing interface (MPI), MIMD/SIMD, multithreaded programming, parallel algorithms & architectures, parallel I/O, performance analysis and tuning, power, programming models (data parallel, task parallel, process-centric, shared/distributed memory), scalability and performance studies, scheduling, storage systems, synchronization, and tools (Cuda, Swift, Globus, Condor, Amazon AWS, OpenStack, Cilk, gdb, threads, MPICH, OpenMP, Hadoop, FUSE).

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

Textbook (or Laboratory Manual for Laboratory Courses)	Book#1:Introduction to Parallel Computing, Second Edition Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar Book#2: Programming Massively Parallel Processors By David B. Kirk
Reference Material	Book#3: Big Data Systems: A 360 degree Approach
	By Jawwad Shamsi

NCEAC

National Computing Education Accreditation Council $$\operatorname{NCEAC}$$

NCEAC.FORM.001-D

Co	urse	Goa	ls
-	นเอต	Gua	13

A. Course Learning Outcomes (CLOs)

- 1. Learn about parallel and distributed computers.
- 2. Write portable programs for parallel or distributed architectures using Message-Passing Interface (MPI) library.
- 3. Analyze complex problems with shared memory programming with openMP.

<u>.</u>		
B. Program Learn	ing Outcomes	
	te below, indicate whether this attribute is covered in this e cell blank if the enablement is little or non-existent.	s course
1. Academic Education:	To prepare graduates as computing professionals	~
2. Knowledge for Solving Computing Problems:	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.	•
3. Problem Analysis:	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.	>
4. Design/ Development of Solutions:	Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	•
5. Modern Tool Usage:	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.	•
6. Individual and Team Work:	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.	~
7. Communication:	Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.	~

NCEAC.FORM.001-D

8. Computing Professionalism and Society:	Understand and assess societal, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.	•
9. Ethics:	Understand and commit to professional ethics, responsibilities, and norms of professional computing practice.	~
10. Life-long Learning:	Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.	~

	C. Relation between CLOs and PLOs										
(CLO:	(CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)										
			PLOs								
		1	2	3	4	5	6	7	8	9	10
	1	>	~	~							
CLOs	2	~	>	~							
귕	3	>	>	>							
	4										
	5										
	6										
	7										

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and onehour lectures)

1. Topics to be covered:								
List of Topics	No. of Weeks	Contact Hours	CLO					
Introduction: Flynn's Taxonomy, Granularity: fine and coarse grained, some general terms parallel execution, parallel overhead, scalability, Shared Memory paradigm, Distributed memory paradigm, Hybrid – shared and distributed memory.	1	3	1					

NCEAC.FORM.001-D

(Ref Book: Book#3)				
Parallel Programming Platforms: Scope of Parallelism, Implicit Parallelism: Trends in Microprocessor Architectures, Pipelining and Superscalar Execution, Superscalar Execution: Issue Mechanisms, Superscalar Execution: Efficiency Considerations, Very Long Instruction Word (VLIW) Processors, Limitations of Memory System Performance, Memory System Performance: Bandwidth and Latency, Improving Effective Memory Latency Using Caches, Impact of Caches, impact of bandwidth, Alternate Approaches for Hiding Memory Latency, Multithreading and prefetching, Interconnection Networks for Parallel Computers, static and dynamic network, Network Topologies: Buses and Crossbar. (Book: Book#1)	1	3	1	
Principles of Parallel Algorithm Design: Preliminaries: Decomposition, Tasks, and Dependency Graphs, Multiplying a Dense Matrix with a Vector, Database Query Processing, Granularity of Task Decompositions, Degree of Concurrency, Critical Path Length, Limits on Parallel Performance, Task Interaction Graphs, sparse matrix example, Processes and Mapping, Decomposition Techniques: recursive decomposition, Array example, data decomposition, matrix example, itemset	1	3	1,2,3	

NCEAC.FORM.001-D

<u></u>					
	frequencies, exploratory				
	decomposition, 15-puzzle				
	example,speculative				
	decomposition, simulation of				
	network nodes. Parallel				
	Algorithm Models: Data Parallel				
	Model, Task Graph Model,				
	Master-Slave Model, Pipeline /				
	Producer-Comsumer Model,				
	Hybrid Models.				
	(Book: Book#1)				
	Programming Shared Address				
	Space (OpenMP): OpenMP				
	programming model, parallel				
	directive, reduction clause, for				
	loop, nowait clause, scheduling				
	clause: static, dynamic, guided,				
	Data sharing attribute clauses:				
	shared, private, default, reduction,	_			
	Synchronization clauses: critical,	2	6	1,3	
	atomic, barrier, ordered. Parallel				
	For Loops, sections directive,				
	OpenMP Library Functions: int				
	omp_get_num_threads ();				
	int omp_get_max_threads ();				
	int omp_get_thread_num (),				
	(Book : Book#1))				
		Exams			
	Programming Using the				
	Message Passing Paradigm:				
	Principles of MPI, The Building				
	Blocks: Send and Receive				
	Operations, Buffered and non				
	bufferedMP, MPI interface,				
	Starting and Terminating the MPI				
	Library, Communicators,	2	6	1,2	
	Querying Information, Sending	_		.,2	
	and Receiving Messages,				
	overlapping communication with				
	computation, collective				
	communication and computation				
	opertaions: barrier, broadcast,				
	-				
	reduction, prefix, scatter, gather.				

(Book : Book#1)				
Distributed File System (HDF	(S)·			
Client-server file systems, Wh	*			
is a parallel file system, Googl				
File System (GFS), Design				
Assumptions and design				
principles. File System Interface	ce.			
GFS Master & Chunkservers,	,			
files, chunks, Master, Client				
Interaction Model, Reading and	1			
writing to files, namespace, Co				
Part of Google Cluster				
Environment, HDFS design go	als, 1	3	1	
architecture, namenode, datano	de,			
rackawareness. Hadoop:				
Distributed file system.				
(Ref Book: Book#3)				
(Daniel Olama) I a Kanadani				
(Paper: Shvachko, Konstantin, Hairong Kuang, Sanjay Radia, a	nd			
Robert Chansler. "The hadoop				
distributed file system." In 2010				
IEEE 26th symposium on mass				
storage systems and technolog (MSST), pp. 1-10. leee, 2010.)	les			
Map Reduce Framework: N	l an			
Partition, shuffle, sort, red	-			
Example: word count, URL acc	ress			
count, reverse web link gra		6	1	
inverted index, stock summary.				
(Ref Book:Book#3)				
	id 1I Exams			
Introduction to Data Parallel				
and CUDA C: Data Paralleli				
CUDA program structure, Ve	·			
Addition kernel, Device glo				
memory and data transfer, ke	rnel	•	400	
functions and threading. CU	1 1 1	3	1,2,3	
Memories: Importance of Mem	nory			
Access Efficiency, CUDA Dev	vice			
Memory Types.				
(Book:Book#2)				
Data-Parallel Execution Mod	el: 1.5	6	1,2,3	
Cuda thread organization,		•	.,_,	

NCEAC.FORM.001-D

	mapping thread multidimension and transparent assigning resou query device procession (Book: Book#2	nal, synchronization scalability, rces to blocks, operties.	15					
Laboratory Projects/Experiments Done in the Course	Lab 1: Parallel Execution in OpenMP Lab 2: Scheduling in OpenMP Lab 3: Critical in OpenMP Lab 4: Independent Parallel Task using Sections in OpenMP Lab 5: Communication rank and size in MPI Lab 6: MPI_send / MPI_Recv Lab 7: MPI Scatter, Gather, Bcast Lab 8: Map Reduce Lab 9: CPU / GPU transfer in CUDA C							
Programming Assignments Done in the Course	Assignment # 1: Task: OpenMP Assignment (Lab 1, 2,3,4) Assignment#2: Task: MPI Assignment (Lab 5,6,7) Assignment #3: Task 1: Hadoop installation on a single node (screen shot submission of jps) on VM Task 2: Map Reduce Assignment (Lab 8) Assignment#4: (Note: Student list need to be given to IT to make account on GPU server so they can ssh remotely through MobaXterm) Task: CUDA C Assignment (Lab 9)							
Class Time Spent on (in credit hours)	Theory	Problem Analysis		n Design	Social and I			
	20	30	4	0	10			
Oral and Written Communications	Every student is 8 pages.	required to submit a	project alor	ng with its re	port of not m	ore than		

Instructor Name: Dr. Nausheen Shoaib

Instructor Signature

Date 07th February, 2022