# ECE 598NSG/498NSU Deep Learning in Hardware Fall 2020

Low-complexity DNNs

Naresh Shanbhag

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

http://shanbhag.ece.uiuc.edu

**COLLEGE OF ENGINEERING** 

Electrical & Computer Engineering

# **Today**

- Motivation
- Low-complexity network MobileNet
- Low-complexity network SqueezeNet
- Low-complexity network ShuffleNet

#### **Motivation**

- faster training
- easier 'over the air' updates to Edge devices
- fewer off-chip accesses during inference lower latency and energy costs of inference
  - e.g., FPGA on-chip memory < 10 MB</p>

### Memory Access Energy in DNNs





- Require large no. of parameters → don't fit within on-chip SRAM
- off-chip DRAM accesses are 100x more energy expensive

### **Low-Complexity DNNs**

- Two approaches
- 1: design a low-complexity network from scratch
  - based on design intuitions (MobileNet, SqueezeNet)
- 2: reduce the complexity of a large network
  - model compression
  - factorization
  - distillation
  - binarization/ternarization
- need to address complexity vs. accuracy trade-off

# **Three Low-Complexity Networks**

- MobileNet
- SqueezeNet
- ShuffleNet

#### MobileNet

# MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard Weijun Wang

Menglong Zhu Tobias Weyand Bo Chen Marco Andreetto

Dmitry Kalenichenko Hartwig Adam

Google Inc.

intrinsically a low-complexity network  $\rightarrow$  embedded vision apps.



|           | # of Layers               | # of parameters<br>CONV | # of<br>parameters<br>FC | # of MACs CONV | # of MACs<br>FC | Top-1 error<br>% | Top-5 error % |
|-----------|---------------------------|-------------------------|--------------------------|----------------|-----------------|------------------|---------------|
| AlexNet   | 5C – 3F                   | 3.7M                    | 58.6M                    | 1,077M         | 58.6M           | 42.9             | 15.3          |
| VGGNet    | 13/16/19C – 3F            | 14.7M                   | 123.6M                   | 15,360M        | 123.6M          | 28.07            | 9.33          |
| ResNet    | 18/34/50/101/152C -<br>1F | 21M                     | 512K                     | 3,643M         | 512K            | 21.53            | 5.6           |
| DenseNet  | 120/160/168/200C –<br>1F  | ~ 52M                   | 1.152M                   | > 7B           | 1.152M          | 20.85            | 5.3           |
| MobileNet | 27C – 1F                  | 3.1M                    | 1M                       | 532M           | 1M              | 29.4             | 11.022        |

[source: Dbouk]

- Objective: to design small, low-latency models for embedded platforms
- 5X smaller model complexity than ResNet but higher error rates

- optimizes size and latency
- parametrized network -> can design many versions
- two parameters: width and resolution multipliers
- built from

depth-wise separable convolutions →
standard convolution = depth-wise separable x point-wise
convolutions

- depth-wise separable convolutions first proposed in (Sifre, Ph.D. thesis, 2014) –
   use pointwise convolutions to reduce input dimension of larger filters
- Used by Inception modules in GoogleNet







total #MACs = 5.3M

- depth-wise separable convolutions first proposed in (Sifre, Ph.D. thesis, 2014) →
  factorize convolutions to save complexity
- better than reducing size of filters for accuracy
- Used by Inception modules in GoogleNet

#### standard convolution

#### 5×5 48 14×14×480 14×14×48

*total #MACs = 112.9M* 

#### factorized convolution



total #MACs = 5.3M

input and output FM sizes in both are the same → reduces impact on accuracy

#### **Standard Convolution**



#### **Standard Convolution Filters**



- Kernel size:  $D_K^2 \times M \times N$
- Computational cost:  $D_K^2 \times M \times N \times D_F^2$

# **Depth-wise Separable Convolutions**

- breaks the relationship between N and kernel size
- depth-wise separable convolution = depth-wise convolution  $\times$  point-wise convolution

#### standard



#### depth-wise (in-plane conv)





#### point-wise (cross-plane conv)





### **Computational Cost**

- Standard:  $D_K^2 \times M \times N \times D_F^2$
- Depth-wise separable:  $D_K^2 \times M \times D_F^2 + N \times M \times D_F^2$
- second term usually dominates
- Savings:

$$\frac{D_K^2 \times M \times D_F^2 + N \times M \times D_F^2}{D_K^2 \times M \times N \times D_F^2} = \frac{1}{N} + \frac{1}{D_K^2}$$

• MobileNet:  $D_K = 3 \rightarrow 8 \times \text{-to-} 9 \times \text{savings in complexity}$ 

#### **Network Architecture**

#### **Standard CONV layer**



#### **MobileNet CONV layer**



MobileNet Layer 1 is standard CONV

# **MobileNet Architecture – 28 Layers**

Table 1. MobileNet Body Architecture

| 1. Mooner et Boay 7 frem             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filter Shape                         | Input Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $3 \times 3 \times 3 \times 32$      | $224 \times 224 \times 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $3 \times 3 \times 32$ dw            | $112\times112\times32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $1 \times 1 \times 32 \times 64$     | $112 \times 112 \times 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $3 \times 3 \times 64$ dw            | $112 \times 112 \times 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $1 \times 1 \times 64 \times 128$    | $56 \times 56 \times 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $1\times1\times128\times128$         | $56 \times 56 \times 128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $1\times1\times128\times256$         | $28 \times 28 \times 128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $1\times1\times256\times256$         | $28 \times 28 \times 256$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $1\times1\times256\times512$         | $14 \times 14 \times 256$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $1\times1\times512\times512$         | $14 \times 14 \times 512$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $1\times1\times512\times1024$        | $7 \times 7 \times 512$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $3 \times 3 \times 1024 \text{ dw}$  | $7 \times 7 \times 1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $1 \times 1 \times 1024 \times 1024$ | $7 \times 7 \times 1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pool $7 \times 7$                    | $7 \times 7 \times 1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $1024 \times 1000$                   | $1 \times 1 \times 1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Classifier                           | $1 \times 1 \times 1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                      | Filter Shape $3 \times 3 \times 3 \times 32$ $3 \times 3 \times 32$ dw $1 \times 1 \times 32 \times 64$ $3 \times 3 \times 64$ dw $1 \times 1 \times 64 \times 128$ $3 \times 3 \times 128$ dw $1 \times 1 \times 128 \times 128$ $3 \times 3 \times 128$ dw $1 \times 1 \times 128 \times 256$ $3 \times 3 \times 256$ dw $1 \times 1 \times 256 \times 256$ $3 \times 3 \times 256$ dw $1 \times 1 \times 256 \times 512$ $3 \times 3 \times 512$ dw $1 \times 1 \times 512 \times 512$ $3 \times 3 \times 512$ dw $1 \times 1 \times 512 \times 1024$ $3 \times 3 \times 1024$ dw $1 \times 1 \times 1024 \times 1024$ Pool $7 \times 7$ $1024 \times 1000$ |







### **Computational Costs by Layer Type**

Table 2. Resource Per Layer Type

| Type                 | Mult-Adds | Parameters |
|----------------------|-----------|------------|
| Conv $1 \times 1$    | 94.86%    | 74.59%     |
| Conv DW $3 \times 3$ | 3.06%     | 1.06%      |
| Conv $3 \times 3$    | 1.19%     | 0.02%      |
| Fully Connected      | 0.18%     | 24.33%     |

- most of the cost in point-wise convolutions  $\rightarrow$  95% computation and 75% of storage
- point-wise convolutions = dot-products

# Parameterizing MobileNet

 how to generate MobileNets with different size, accuracy, latency tradeoffs?

- parameterize the network with:
  - width multiplier scales the number of channels
  - resolution multiplier scales the 2D size of the FMs

# Width Multiplier

• width multiplier ( $\alpha \in (0,1]$ ):  $N \to \alpha N$ ;  $M \to \alpha M$  ( $\alpha = 1$ : baseline)

#### depth-wise



point-wise



• computational cost reduced roughly by  $\alpha^2$ 

$$D_K^2 \times M \times D_F^2 + N \times M \times D_F^2 \to D_K^2 \times \alpha M \times D_F^2 + \alpha N \times \alpha M \times D_F^2$$

### **Resolution Multiplier**

• resolution multiplier ( $\rho \in (0,1]$ ):  $D_F \to \rho D_F$ ; ( $\rho = 1$ : baseline) – implicitly set via assigning input resolution



• computational cost: reduced roughly by  $ho^2$ 

$$D_K^2 \times M \times D_F^2 + N \times M \times D_F^2 \rightarrow D_K^2 \times M \times \rho^2 D_F^2 + N \times M \times \rho^2 D_F^2$$

# **Total Cost with Both Multipliers**

Table 3. Resource usage for modifications to standard convolution. Note that each row is a cumulative effect adding on top of the previous row. This example is for an internal MobileNet layer with  $D_K = 3$ , M = 512, N = 512,  $D_F = 14$ .

| Layer/Modification       | Million   | Million    |
|--------------------------|-----------|------------|
|                          | Mult-Adds | Parameters |
| Convolution              | 462       | 2.36       |
| Depthwise Separable Conv | 52.3      | 0.27       |
| $\alpha = 0.75$          | 29.6      | 0.15       |
| $ \rho = 0.714 $         | 15.1      | 0.15       |

- Baseline:  $D_K^2 \times M \times D_F^2 + N \times M \times D_F^2$
- Reduced:  $D_K^2 \times \alpha M \times \rho^2 D_F^2 + \alpha N \times \alpha M \times \rho^2 D_F^2$
- overall: computational cost reduced by  $(\alpha \rho)^2$ ; storage cost by  $(\alpha)^2$

#### Accuracy vs. Size

Table 4. Depthwise Separable vs Full Convolution MobileNet

| Model          | ImageNet | Million   | Million    |
|----------------|----------|-----------|------------|
|                | Accuracy | Mult-Adds | Parameters |
| Conv MobileNet | 71.7%    | 4866      | 29.3       |
| MobileNet      | 70.6%    | 569       | 4.2        |
|                |          |           |            |

Table 5. Narrow vs Shallow MobileNet

| 10010 011         |          | mon monte |            |
|-------------------|----------|-----------|------------|
| Model             | ImageNet | Million   | Million    |
|                   | Accuracy | Mult-Adds | Parameters |
| 0.75 MobileNet    | 68.4%    | 325       | 2.6        |
| Shallow MobileNet | 65.3%    | 307       | 2.9        |

- Shallow MobileNet remove 5 layers with  $14 \times 14 \times 512$  FMs
- narrow network preserves depth → good for accuracy

# Accuracy vs. Size

Table 6. MobileNet Width Multiplier

| Width Multi   | plier  | ImageNet | Million   | Million    |
|---------------|--------|----------|-----------|------------|
|               |        | Accuracy | Mult-Adds | Parameters |
| 1.0 MobileNe  | et-224 | 70.6%    | 569       | 4.2        |
| 0.75 MobileNo | et-224 | 68.4%    | 325       | 2.6        |
| 0.5 MobileNe  | et-224 | 63.7%    | 149       | 1.3        |
| 0.25 MobileNo | et-224 | 50.6%    | 41        | 0.5        |
|               |        |          |           |            |

Table 7. MobileNet Resolution

|               |            | t itebolation | 7. 101001101 (0 | Tuote             |
|---------------|------------|---------------|-----------------|-------------------|
| lion          | Million    | Million       | ImageNet        | Resolution        |
| neters        | Parameters | Mult-Adds     | Accuracy        |                   |
| .2            | 4.2        | 569           | 70.6%           | 1.0 MobileNet-224 |
|               | 4.2        | 418           | 69.1%           | 1.0 MobileNet-192 |
| .2 – smooth r | 4.2        | 290           | 67.2%           | 1.0 MobileNet-160 |
| .2            | 4.2        | 186           | 64.4%           | 1.0 MobileNet-128 |
|               |            |               |                 |                   |

# Accuracy vs. Storage/Complexity Trade-off



Imagenet Accuracy vs Million Parameters 80 128



log-linear dependence

log-linear dependence

Networks generated as a cross-product:

$$\alpha \in \{1, 0.75, 0.5, 0.25\} \times \rho \in \{224, 192, 160, 128\}$$

### SqueezeNet

SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND < 0.5MB MODEL SIZE

Forrest N. Iandola<sup>1</sup>, Song Han<sup>2</sup>, Matthew W. Moskewicz<sup>1</sup>, Khalid Ashraf<sup>1</sup>, William J. Dally<sup>2</sup>, Kurt Keutzer<sup>1</sup>

<sup>1</sup>DeepScale\* & UC Berkeley

<sup>2</sup>Stanford University

- another low-complexity network
- based on a set of design intuitions to reduce network size

# **Design Strategies**

- **S1**: replace  $3\times3$  filters with  $1\times1$  filters  $\rightarrow 9\times$  fewer parameters
- **S2**: decrease the number of input channels to  $3\times3$  filters  $\rightarrow$  reduces the number of parameters (width multiplier)



reduce M when  $D_K = 3$ 

 S3: downsample late in network → conv layers have large activation maps → better accuracy

#### Fire Module



- concatenation of squeeze (\$1) and expand layers
- parameterized by 3 variables:  $s_{1x1}$ ,  $e_{1x1}$ ,  $e_{3x3}$
- Set:  $s_{1x1} < e_{1x1} + e_{3x3}$  per **S2**



#### SqueezeNet Architecture

- Conv1: standard; no FC layer
- 8 Fire modules (fire2-9)
- max pooling after conv1, fire4, fire8, conv10 (per S3)

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the Inception2 paper (Ioffe & Szegedy, 2015).)

| layer<br>name/type | output size | filter size /<br>stride<br>(if not a fire<br>layer) | depth | S <sub>1x1</sub><br>(#1x1<br>squeeze) | e <sub>1x1</sub><br>(#1x1<br>expand) | e <sub>3x3</sub><br>(#3x3<br>expand) | S <sub>1x1</sub> sparsity | e <sub>1x1</sub> sparsity | e <sub>3x3</sub> sparsity | # bits | #parameter<br>before<br>pruning | #parameter<br>after<br>pruning |
|--------------------|-------------|-----------------------------------------------------|-------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------|---------------------------|---------------------------|--------|---------------------------------|--------------------------------|
| input image        | 224x224x3   |                                                     |       |                                       |                                      |                                      |                           |                           |                           |        | -                               | -                              |
| conv1              | 111x111x96  | 7x7/2 (x96)                                         | 1     |                                       |                                      |                                      | 1                         | 100% (7x7                 | )                         | 6bit   | 14,208                          | 14,208                         |
| maxpool1           | 55x55x96    | 3x3/2                                               | 0     |                                       |                                      |                                      |                           |                           |                           |        |                                 |                                |
| fire2              | 55x55x128   |                                                     | 2     | 16                                    | 64                                   | 64                                   | 100%                      | 100%                      | 33%                       | 6bit   | 11,920                          | 5,746                          |
| fire3              | 55x55x128   |                                                     | 2     | 16                                    | 64                                   | 64                                   | 100%                      | 100%                      | 33%                       | 6bit   | 12,432                          | 6,258                          |
| fire4              | 55x55x256   |                                                     | 2     | 32                                    | 128                                  | 128                                  | 100%                      | 100%                      | 33%                       | 6bit   | 45,344                          | 20,646                         |
| maxpool4           | 27x27x256   | 3x3/2                                               | 0     |                                       |                                      |                                      |                           |                           |                           |        |                                 |                                |
| fire5              | 27x27x256   |                                                     | 2     | 32                                    | 128                                  | 128                                  | 100%                      | 100%                      | 33%                       | 6bit   | 49,440                          | 24,742                         |
| fire6              | 27x27x384   |                                                     | 2     | 48                                    | 192                                  | 192                                  | 100%                      | 50%                       | 33%                       | 6bit   | 104,880                         | 44,700                         |
| fire7              | 27x27x384   |                                                     | 2     | 48                                    | 192                                  | 192                                  | 50%                       | 100%                      | 33%                       | 6bit   | 111,024                         | 46,236                         |
| fire8              | 27x27x512   |                                                     | 2     | 64                                    | 256                                  | 256                                  | 100%                      | 50%                       | 33%                       | 6bit   | 188,992                         | 77,581                         |
| maxpool8           | 13x12x512   | 3x3/2                                               | 0     |                                       |                                      |                                      |                           |                           |                           |        |                                 |                                |
| fire9              | 13x13x512   |                                                     | 2     | 64                                    | 256                                  | 256                                  | 50%                       | 100%                      | 30%                       | 6bit   | 197,184                         | 77,581                         |
| conv10             | 13x13x1000  | 1x1/1 (x1000)                                       | 1     |                                       |                                      |                                      |                           | <b>20</b> % (3x3)         |                           | 6bit   | 513,000                         | 103,400                        |
| avgpool10          | 1x1x1000    | 13x13/1                                             | 0     |                                       |                                      |                                      |                           |                           |                           |        |                                 |                                |
|                    | activations |                                                     | pa    | rameters                              |                                      |                                      |                           | compress                  | ion info                  |        | 1,248,424<br>(total)            | <b>421,098</b> (total)         |

#### **Design Intuitions**

- add 1 pixel zero-padding to input of  $3\times3$  expand filters  $\rightarrow 3\times3$  and  $1\times1$  filters output activations have identical dimensions
- ReLU is applied to activations from squeeze and expand layers (Nair & Hinton, 2010)
- dropout (Srivastava et. al., 2014) with ratio 50% after fire9
- no FC layer (inspired by NiN Lin et al., 2013)
- linearly decrease learning rate from 0.04 down (Mishkin et al., 2016)
- expand layer implemented in Caffe as concatenation of  $1\times1$  filters and  $3\times3$  filters

#### with simple bypass



#### **SqueezeNet Variants**

- similar to ResNet
- simple bypass applies to fire modules with same # of input and output dimensions
- complex bypass applied to fire modules with differing input/output dimensions (adds extra parameters)
- Squeeze layers limit information; bypass layers compensate for it

#### with complex bypass



Table 3: SqueezeNet accuracy and model size using different macroarchitecture configurations

| Architecture                | Top-1 Accuracy | Top-5 Accuracy | Model Size |
|-----------------------------|----------------|----------------|------------|
| Vanilla SqueezeNet          | 57.5%          | 80.3%          | 4.8MB      |
| SqueezeNet + Simple Bypass  | 60.4%          | 82.5%          | 4.8MB      |
| SqueezeNet + Complex Bypass | 58.8%          | 82.0%          | 7.7MB      |

• also applied model compression -> low-complexity model is further compressible

#### **ShuffleNet**

# ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang\* Xinyu Zhou\* Mengxiao Lin Jian Sun Megvii Inc (Face++)

{zhangxiangyu,zxy,linmengxiao,sunjian}@megvii.com

- Another low complexity network for mobile devices
- Channel shuffle and ShuffleNet Unit

### **Design Strategy**

- Repurpose two principles:
  - Use of repeated blocks of same shape (VGG and ResNet)
  - Use of split-transform-merge strategy (Inception models GoogleLeNet,
     SqueezeNet)
- Channel Shuffle: related input and output channels by cross talking
- Replace standard convolution with 1x1 Point-wise Group convolution and 3x3 Depth-wise Separable convolution

### **Group Convolution**

[Xie et al., '17, ResNext]

#### Standard ResNet block

ResNext block with C = 32



- used by AlexNet to distribute computations across GPUs; used by ResNext to enhance accuracy without increasing computational cost (use of cardinality)
- GC: split input FM into  $\mathcal{C}$  (cardinality) groups; each group responsible for certain depth; concatenate (sum) each group at the end

#### **Channel Shuffle**



- allow information flow between channel groups and strengthen representation
- differentiable operation, meaning end-to-end training is available

#### **ShuffleNet Units**



- Consist of 1x1 group convolution followed by channel shuffle, 3x3 depthwise separable Convolution, and 1x1 group convolution
- Batch Normalization and ReLU after each convolution except the last 1x1 GConv
- Element-wise addition or concatenation to inputs at the final step

#### **ShuffleNet Architecture**

| Layer      | Output size      | KSize        | Stride | Repeat | Output channels (g groups) |       |       |       |       |
|------------|------------------|--------------|--------|--------|----------------------------|-------|-------|-------|-------|
|            |                  |              |        |        | g=1                        | g = 2 | g = 3 | g = 4 | g = 8 |
| Image      | $224 \times 224$ |              |        |        | 3                          | 3     | 3     | 3     | 3     |
| Conv1      | $112 \times 112$ | $3 \times 3$ | 2      | 1      | 24                         | 24    | 24    | 24    | 24    |
| MaxPool    | $56 \times 56$   | $3 \times 3$ | 2      |        |                            |       |       |       |       |
| Stage2     | $28 \times 28$   |              | 2      | 1      | 144                        | 200   | 240   | 272   | 384   |
|            | $28 \times 28$   |              | 1      | 3      | 144                        | 200   | 240   | 272   | 384   |
| Stage3     | $14 \times 14$   |              | 2      | 1      | 288                        | 400   | 480   | 544   | 768   |
|            | $14 \times 14$   |              | 1      | 7      | 288                        | 400   | 480   | 544   | 768   |
| Stage4     | $7 \times 7$     |              | 2      | 1      | 576                        | 800   | 960   | 1088  | 1536  |
|            | $7 \times 7$     |              | 1      | 3      | 576                        | 800   | 960   | 1088  | 1536  |
| GlobalPool | $1 \times 1$     | $7 \times 7$ |        |        |                            |       |       |       |       |
| FC         |                  |              |        |        | 1000                       | 1000  | 1000  | 1000  | 1000  |
| Complexity |                  |              |        |        | 143M                       | 140M  | 137M  | 133M  | 137M  |

- Conv1: standard
- 3 stages of ShuffleNet unit groups
  - Each contains ShuffleNet units with stride = 1 and stride = 2
  - The number of units in each stage is specified by the number of repeats

### **Accuracy vs. Use of Channel Shuffle**

| Model                      | Cls err. (%, no shuffle) | Cls err. (%, shuffle) | $\Delta$ err. (%) |
|----------------------------|--------------------------|-----------------------|-------------------|
| ShuffleNet $1x (g = 3)$    | 34.5                     | 32.6                  | 1.9               |
| ShuffleNet $1x (g = 8)$    | 37.6                     | 32.4                  | 5.2               |
| ShuffleNet $0.5x (g = 3)$  | 45.7                     | 43.2                  | 2.5               |
| ShuffleNet $0.5x (g = 8)$  | 48.1                     | 42.3                  | 5.8               |
| ShuffleNet $0.25x (g = 3)$ | 56.3                     | 55.0                  | 1.3               |
| ShuffleNet $0.25x (g = 8)$ | 56.5                     | 52.7                  | 3.8               |

- Small number represents better accuracy
- Channel Shuffle provide 6% decrease in classification error

# Accuracy vs. Architecture

| Complexity (MFLOPs) | VGG-like | ResNet | Xception-like | ResNeXt | ShuffleNet (ours)                  |
|---------------------|----------|--------|---------------|---------|------------------------------------|
| 140                 | 50.7     | 37.3   | 33.6          | 33.3    | <b>32.4</b> $(1 \times, g = 8)$    |
| 38                  | -        | 48.8   | 45.1          | 46.0    | <b>41.6</b> (0.5×, $g = 4$ )       |
| 13                  | _        | 63.7   | 57.1          | 65.2    | <b>52.7</b> $(0.25 \times, g = 8)$ |

| Model                                            | Complexity (MFLOPs) | Cls err. (%) | $\Delta$ err. (%) |
|--------------------------------------------------|---------------------|--------------|-------------------|
| 1.0 MobileNet-224                                | 569                 | 29.4         | -                 |
| ShuffleNet $2 \times (g = 3)$                    | 524                 | 26.3         | 3.1               |
| ShuffleNet $2 \times$ (with $SE[13]$ , $g = 3$ ) | 527                 | 24.7         | 4.7               |
| 0.75 MobileNet-224                               | 325                 | 31.6         | -                 |
| ShuffleNet $1.5 \times (g = 3)$                  | 292                 | 28.5         | 3.1               |
| 0.5 MobileNet-224                                | 149                 | 36.3         | -                 |
| ShuffleNet $1 \times (g = 8)$                    | 140                 | 32.4         | 3.9               |
| 0.25 MobileNet-224                               | 41                  | 49.4         | -                 |
| ShuffleNet $0.5 \times (g = 4)$                  | 38                  | 41.6         | 7.8               |
| ShuffleNet $0.5 \times$ (shallow, $g = 3$ )      | 40                  | 42.8         | 6.6               |

• achieves best performance across all network architectures

#### Summary

- Trade-off between complexity and accuracy
- Based on design intuitions to preserve accuracy
- separable convolutions
- use of point-wise convolutions
- delaying max-pooling
- others

#### **Course Web Page**

https://courses.grainger.illinois.edu/ece598nsg/fa2020/https://courses.grainger.illinois.edu/ece498nsu/fa2020/

http://shanbhag.ece.uiuc.edu