Financial Engineering & Risk Management Introduction to Brownian Motion

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Brownian Motion

Definition. We say that a random process, $\{X_t: t \geq 0\}$, is a Brownian motion with parameters (μ, σ) if

1. For $0 < t_1 < t_2 < \ldots < t_{n-1} < t_n$

$$(X_{t_2}-X_{t_1}), (X_{t_3}-X_{t_2}), \ldots, (X_{t_n}-X_{t_{n-1}})$$

are mutually independent.

- 2. For s>0, $X_{t+s}-X_t \sim \mathsf{N}(\mu s,\sigma^2 s)$ and
- 3. X_t is a continuous function of t.

We say that X_t is a $B(\mu, \sigma)$ Brownian motion with drift μ and volatility σ

Property #1 is often called the independent increments property.

Remark. Bachelier (1900) and Einstein (1905) were the first to explore Brownian motion from a mathematical viewpoint whereas Wiener (1920's) was the first to show that it actually exists as a well-defined mathematical entity.

Standard Brownian Motion

- When $\mu = 0$ and $\sigma = 1$ we have a standard Brownian motion (SBM).
- We will use W_t to denote a SBM and we always assume that $W_0 = 0$.
- Note that if $X_t \sim B(\mu, \sigma)$ and $X_0 = x$ then we can write

$$X_t = x + \mu t + \sigma W_t \tag{8}$$

where W_t is an SBM. Therefore see that $X_t \sim N(x + \mu t, \sigma^2 t)$.

Sample Paths of Brownian Motion

Information Filtrations

- ullet For any random process we will use \mathcal{F}_t to denote the information available at time t
 - the set $\{\mathcal{F}_t\}_{t\geq 0}$ is then the information filtration
 - so $E[\cdot | \mathcal{F}_t]$ denotes an expectation conditional on time t information available.
- Will usually write $E[\cdot | \mathcal{F}_t]$ as $E_t[\cdot]$.

Important Fact: The independent increments property of Brownian motion implies that any function of $W_{t+s}-W_t$ is independent of \mathcal{F}_t and that

$$(W_{t+s} - W_t) \sim \mathsf{N}(0, s).$$

A Brownian Motion Calculation

Question: What is $E_0[W_{t+s}W_s]$?

Answer: We can use a version of the conditional expectation identity to obtain

$$\mathsf{E}_{0} [W_{t+s} W_{s}] = \mathsf{E}_{0} [(W_{t+s} - W_{s} + W_{s}) W_{s}]
= \mathsf{E}_{0} [(W_{t+s} - W_{s}) W_{s}] + \mathsf{E}_{0} [W_{s}^{2}].$$
(9)

Now we know (why?) $\mathsf{E}_0 \left[W_s^2 \right] = s$.

To calculate first term on r.h.s. of (9) a version of the conditional expectation identity implies

$$\begin{array}{lcl} \mathsf{E}_{0} \left[\left(\, W_{t+s} - \, W_{s} \right) \, \, W_{s} \right] & = & \mathsf{E}_{0} \left[\, \mathsf{E}_{s} \left[\left(\, W_{t+s} - \, W_{s} \right) \, W_{s} \right] \right] \\ & = & \mathsf{E}_{0} \left[\, W_{s} \, \mathsf{E}_{s} \left[\left(\, W_{t+s} - \, W_{s} \right) \right] \right] \\ & = & \mathsf{E}_{0} \left[\, W_{s} \, 0 \right] \\ & = & 0. \end{array}$$

Therefore obtain $E_0[W_{t+s}W_s] = s$.

Financial Engineering & Risk Management Geometric Brownian Motion

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Geometric Brownian Motion

Definition. We say that a random process, X_t , is a geometric Brownian motion (GBM) if for all $t \geq 0$

$$X_t = e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t}$$

where W_t is a standard Brownian motion.

We call μ the drift, σ the volatility and write $X_t \sim \mathsf{GBM}(\mu, \sigma)$.

Note that

$$X_{t+s} = X_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)(t+s) + \sigma W_{t+s}}$$

$$= X_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t + \left(\mu - \frac{\sigma^2}{2}\right)s + \sigma(W_{t+s} - W_t)}$$

$$= X_t e^{\left(\mu - \frac{\sigma^2}{2}\right)s + \sigma(W_{t+s} - W_t)}$$
(10)

a representation that is very useful for simulating security prices.

Geometric Brownian Motion

Question: Suppose $X_t \sim \mathsf{GBM}(\mu, \sigma)$. What is $\mathsf{E}_t[X_{t+s}]$?

Answer: From (10) we have

$$\mathsf{E}_{t}[X_{t+s}] = \mathsf{E}_{t} \left[X_{t} e^{\left(\mu - \frac{\sigma^{2}}{2}\right)s + \sigma(W_{t+s} - W_{t})} \right] \\
= X_{t} e^{\left(\mu - \frac{\sigma^{2}}{2}\right)s} \mathsf{E}_{t} \left[e^{\sigma(W_{t+s} - W_{t})} \right] \\
= X_{t} e^{\left(\mu - \frac{\sigma^{2}}{2}\right)s} e^{\frac{\sigma^{2}}{2}s} \\
= e^{\mu s} X_{t}$$

– so the expected growth rate of X_t is μ .

Sample Paths of Geometric Brownian Motion

Geometric Brownian Motion

The following properties of GBM follow immediately from the definition of BM:

- 1. Fix t_1, t_2, \ldots, t_n . Then $\frac{X_{t_2}}{X_{t_1}}, \frac{X_{t_3}}{X_{t_2}}, \ldots, \frac{X_{t_n}}{X_{t_{n-1}}}$ are mutually independent. (For a period of time t, consider 0<t1 <t2 <t3 <t4tn < t)
- 2. Paths of X_t are continuous as a function of t, i.e., they do not jump.
- 3. For s > 0, $\log\left(\frac{X_{t+s}}{X_t}\right) \sim \mathsf{N}\left((\mu \frac{\sigma^2}{2})s, \ \sigma^2 s\right)$.

Modeling Stock Prices as GBM

Suppose $X_t \sim \mathsf{GBM}(\mu, \sigma)$. Then clear that:

- 1. If $X_t > 0$, then X_{t+s} is always positive for any s > 0.
 - so limited liability of stock price is not violated.
- 2. The distribution of X_{t+s}/X_t only depends on s and not on X_t

These properties suggest that GBM might be a reasonable model for stock prices.

Indeed it is the underlying model for the famous Black-Scholes option formula.

Financial Engineering and Risk Management Review of vectors

Martin Haugh Garud Iyengar

Columbia University
Industrial Engineering and Operations Research

Reals numbers and vectors

- ullet We will denote the set of real numbers by ${\mathbb R}$
- Vectors are finite collections of real numbers
- Vectors come in two varieties
 - Row vectors: $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$

$$ullet$$
 Column vectors $oldsymbol{w} = egin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$

- By default, vectors are column vectors
- ullet The set of all vectors with ${f n}$ components is denoted by ${\Bbb R}^{f n}$

Linear independence

• A vector **w** is linearly dependent on $\mathbf{v}_1, \mathbf{v}_2$ if

$$\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$$
 for some $\alpha_1, \alpha_2 \in \mathbb{R}$

Example:

$$\begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

- Other names: linear combination, linear span
- A set $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ are linearly independent if **no** \mathbf{v}_i is linearly dependent on the others, $\{\mathbf{v}_j: j \neq i\}$

Basis

ullet Every $old w \in \mathbb{R}^n$ is a linear combination of the linearly independent set

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix} \right\} \qquad \mathbf{w} = w_1 \underbrace{\begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}}_{2} + w_2 \underbrace{\begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}}_{2} + \dots + w_n \underbrace{\begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}}_{2}$$

- ullet Basis \equiv any linearly independent set that spans the entire space
- Any basis for \mathbb{R}^n has exactly n elements

Norms

- A function $\rho(\mathbf{v})$ of a vector \mathbf{v} is called a norm if
 - $\rho(\mathbf{v}) \geq 0$ and $\rho(\mathbf{v}) = 0$ implies $\mathbf{v} = \mathbf{0}$
 - $\rho(\alpha \mathbf{v}) = |\alpha| \, \rho(\mathbf{v})$ for all $\alpha \in \mathbb{R}$
 - $\rho(\mathbf{v}_1 + \mathbf{v}_2) \le \rho(\mathbf{v}_1) + \rho(\mathbf{v}_2)$ (triangle inequality)

ho generalizes the notion of "length"

• Examples:

- ℓ_2 norm: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$... usual length
- ℓ_1 norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ℓ_{∞} norm: $\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |x|_{i}$
- ℓ_p norm, $1 \le p < \infty$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x|_i^p\right)^{\frac{1}{p}}$

Inner product

• The inner-product or dot-product of two vector $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ is defined as

$$\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{n} v_i w_i$$

- The ℓ_2 norm $\|\mathbf{v}\|_2 = \sqrt{\mathbf{v} \cdot \mathbf{v}}$
- The angle θ between two vectors **v** and **w** is given by

$$\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|_2 \, \|\mathbf{w}\|_2}$$

• Will show later: $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^{\top} \mathbf{w} = \text{product of } \mathbf{v} \text{ transpose and } \mathbf{w}$