2017 级线性代数试卷 A 参考答案与评分细则

一、填空题: 1.
$$-12$$
 2. $4/3$ 3. -3 4.
$$\begin{pmatrix} -1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$
 5. $-\frac{3}{2}$ 6.
$$\begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$$

- 7. n-1 8. -3 9. 6 10.t > 2

二、计算题:

$$(x+2a) \begin{vmatrix} -a & 0 & x-a \\ a-x & -x & a-x \\ x-a & 0 & -a \end{vmatrix} \equiv -x(x+2a) \begin{vmatrix} -a & x-a \\ x-a & -a \end{vmatrix} = \underbrace{(9 \%)}_{x-a} x^{2}(x^{2}-4a^{2})$$
 (10 %)

12. 易得
$$|A|=2$$
 (2分) $A^*=|A|A^{-1}=2A^{-1}$, 于是 $AA^*=2E$ (5分)

从而
$$A(A^*X) = A(2A^{-1} - 2X) = 2E - 2AX = 2EX = 2X$$
,即 $(A+E)X = E$ (8 分)

故
$$X = (A+E)^{-1} = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix}$$
 (10 分)

三、解答题:

13.
$$A = (\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3, \vec{\alpha}_4) = \begin{pmatrix} 1 & 0 & 3 & 1 \\ -1 & 3 & 0 & -2 \\ 2 & 1 & 7 & 2 \\ 4 & 2 & 14 & 0 \end{pmatrix} \xrightarrow{(2\%)} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 3 & 3 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & -4 \end{pmatrix} \xrightarrow{--} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} (7 \%)$$

于是
$$R(A)=3$$
,向量组线性相关, (8分) 由 $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ $\neq 0$ 知 $\vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_4$ 为一个最大无关组. (10分)

14.
$$(\mathbf{Ab}) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 1 \\ -1 & a-3 & -2 & b \end{pmatrix} \xrightarrow{(2/\pi)} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & a-2 & -1 & b \end{pmatrix}$$

--→
$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1-a & 2-a+b \end{pmatrix}$$
 (6 分)

(1) 若 $1-a \neq 0$ 或 $a \neq 1$,方程组有唯一解; (8分)

(2) 若
$$1-a=0$$
而 $2-a+b\neq 0$,即 $a=1,b\neq -1$, $R(\mathbf{A})=2,R(\mathbf{Ab})=3$,方程组无解; (10 分)

(3) 若1-a=0且2-a+b=0,即a=1,b=-1, $R(\mathbf{A})=R(\mathbf{Ab})=2<3=n$,方程组有无穷多解,这时

$$(\mathbf{Ab}) \xrightarrow{--} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{R}^{J} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -x_3 + 1 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 (12 \(\frac{1}{2}\))

四、综合应用题:

15. (1)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & a \\ 0 & a & 3 \end{pmatrix}$$
, (2%) $|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & a \\ 0 & a & 3 - \lambda \end{vmatrix}$ $\boxed{\mathbb{R} \lambda = 1}$ $4 - a^2 = 0$,

故 a = 2. (4分)

(2) 当
$$\lambda = 1$$
时, $(A - E)x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$,特征向量为 $k \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$; (6分)

当
$$\lambda = 2$$
 时, $(A-2E)x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$,特征向量为 $k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

当
$$\lambda = 5$$
 时, $(A-5E)x = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$,特征向量为 $k \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ (10 分)

故取取
$$P = (\vec{p}_1, \vec{p}_2, \vec{p}_3) = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{6} & 0 & \frac{1}{6} \end{pmatrix}$$
,则令 $x = Py$,可将二次型化为标准形. (12 分)

16. 由
$$A(A-E) = 2E$$
 或 $A \cdot \frac{A-E}{2} = E$ 知 $|A| \neq 0$,故 A 可逆且 $A^{-1} = \frac{1}{2}(A-E)$; (2 分)

又由
$$|A+2E|=|A^2|=|A|^2\neq 0$$
知 $A+2E$ 可逆, (4分),再由已知得 $A^2-A-6E=-4E$,即

$$(A+2E)\cdot\frac{A-3E}{-4}=E$$
 , 得到 $(A+2E)^{-1}=-\frac{1}{4}(A-3E)$. (6分)