ECE 457- Microwave Devices and Circuits

Spring 2024 Homework #2 - Transmission lines Due: Friday Feb 16th 5pm

1. Pozar, 2.7.

Show that the T-model of a transmission line shown in the accompanying figure also yields the telegrapher equations derived in Section 2.1.

- 2. A lossless transmission line of characteristic impedance $Z_0=100\,\Omega$ is terminated with a load impedance of $Z_L=110+j70\,\Omega$. The transmission line is 0.692λ long.
 - (a) Determine the reactance which, if connected across the input terminals to the line, makes the total impedance purely resistive.
 - (b) Under this condition, what is the input impedance of the line?
 - (c) Suggest a method for realizing this required reactance using only transmission lines.
- **3.** Consider an ideal transformer with a turns ratio of 1 : n connecting two transmission lines, Z_{01} and Z_{02} , as shown below:

- (a) Find the reflection and transmission coefficient of the transformer for a wave incident from the left (on transmission line Z_{01}). Express your answer in terms of the normalized impedance $z = Z_{02}/Z_{01}$ and the turns ratio, n.
- (b) Consider the circuit shown below. Find the turns ratio for the transformer that minimizes the magnitude of the reflection coefficient, Γ .

- 4. Consider the sections of transmission line with four different lumped elements shown below.
 - (a) Find the reflection coefficient at each lumped element for a wave incident from the left (assume the line is infinitely long in both directions).
 - (b) Find simplified expressions for Γ that apply when R,G,L, and C are small (but non-zero).
 - (c) If the incident waveform is a pulse, sketch what the reflected pulse would look like in each case.

1. Pozar, 2.7.

Show that the T-model of a transmission line shown in the accompanying figure also yields the telegrapher equations derived in Section 2.1.

$$i(z,t) \xrightarrow{R\Delta z} \underbrace{\frac{L\Delta z}{2}}_{2} \xrightarrow{i(z+\Delta z,t)}_{2}$$

$$v(z,t) \xrightarrow{G\Delta z} C\Delta z \qquad v(z+\Delta z,t)$$

$$|V(z+z)| = |V(z+z)| = |V(z+z)|$$

- line, makes the total impedance purely resistive. 記:1.1+0·7; (b) Under this condition, what is the input impedance of the line?

(c) Suggest a method for realizing this required reactance using only transmission lines.

2a)
$$\frac{2 \cdot 0.6127}{2 \cdot 0.6127}$$
 [ength of 0.692% is equivalent to length of 0.692% 0.692% 0.192%.

 $\frac{2^{2}}{10+\frac{1}{2}}$ $\frac{10+\frac{1}{2}}{10+\frac{1}{2}}$ $\frac{110+\frac{1}{2}}{10+\frac{1}{2}}$ \frac

$$Z_{in}(d) \approx 96.08 - 65.969$$
; $Y_{in} = 0.7 + 0.48$; => the line can be simplified to this Z_{in}^{2} [72in what is Z_{in}^{2} such that Z_{in}^{2} 11 2in is purely resistive

$$\frac{1}{2T} = \frac{1}{2?} + \frac{1}{2in}$$

$$\frac{1}{2T} = \frac{1}{jX} + \frac{1}{2in}$$

$$\therefore Z_T = R = \frac{2injX}{jX + 2in} - \frac{7Complex}{complex}$$

$$jX + Z_{in}$$
 complex

 $Z_{in}jX = X(96.08j + 65.969)$
 $jX + Z_{in} = 96.08 - 65.969j + jX$

parallel impedances can be viewed as inverse of the sum of admittances

96.08 + (x - 65.969);

in order for 27 to be real, then imaginary components have to sum to 0. 96.082xj - 65.969 x2j + 65.9692xj = 0 $\times (96.08^2 - 65.969 \times +65.969^2) = 0$ $\times = 0$ $96.08^2 + 65.969^2 = 65.969 \times$ $\frac{1}{4}$ trivial case, since 27 = 0 $X = \frac{96.08^2 + 65.969^2}{65.969}$ X \$ 205.906.52 Acactance of around 205.106 j 12 needed b) Using a parallel calculation: $Z_{in,total} = \frac{Z_{in,line} - jx}{jx + Z_{in,line}} \approx [141.375\Omega]$ c) This reactance can be realized with an open stub transmission line in parallel. $Z_{\text{in,open}} = -jZ_{\text{o}}\cot\beta d$ = -j(100) cot($\frac{2\pi}{3}(L'\chi)$) Zin, open = - j/100 cot (2711') = 205.906j cot(2712') = -205.906 $271l' = \arctan\left(\frac{-100}{205.906}\right)$ 1' = 1 (arctan (-100) + 7) L'≈ 0.428A in an open stub t-line with a length of 0.4287 can be used to realize the reactance found in parta.

3. Consider an ideal transformer with a turns ratio of 1:n connecting two transmission lines, Z_{01} and Z_{02} , as shown below:

(a) Find the reflection and transmission coefficient of the transformer for a wave incident from the left (on transmission line Z_{01}). Express your answer in terms of the normalized impedance $z = Z_{02}/Z_{01}$ and the turns ratio, n.

$$Z_0 = 50 \,\Omega$$

$$Z_0 = 100 \,\Omega$$

$$Z_0 = 100 \,\Omega$$

$$\theta = 112.5$$

$$\theta = 90$$

$$Z_0 = 100 \,\Omega$$

$$\theta = 112.5$$

$$\theta = 112.5$$

$$\theta = 100 \,\Omega$$

the line ferminated
$$w/2$$

has a $Z_{in,1} = Z_0 \frac{1 + \Gamma_i e}{1 - \Gamma_i e}$

$$Z_{in,2} = Z_0 \frac{1 + \Gamma_2 e^{-j2\beta d}}{1 - \Gamma_2 e^{-j2\beta d}}$$
 where $\Gamma_2 = \frac{100 + 200j - 100}{100 + 200j + 100}$

 $= 100 \left(\frac{2\sqrt{2}}{2\pi \sqrt{2}} \right)$

≈ 17.157 s

where
$$2 \cdot \text{pd} = 2 \cdot 112 \cdot 5^\circ = 225^\circ = 200j$$

$$Z_{in,2} = Z_0 \frac{1 + \Gamma_2 e^{-j} \cdot 225^\circ}{1 - \Gamma_2 e^{-j} \cdot 225^\circ} \qquad \qquad \Gamma_2 = \frac{j(1-j)}{1 - \Gamma_2 e^{-j} \cdot 225^\circ}$$

$$Z_{in,2} = 100 \frac{1 + \sqrt{2} e^{j} \cdot 45^\circ}{1 - \sqrt{2} e^{j} \cdot 45^\circ} \qquad \qquad \Gamma_2 = \frac{j+1}{2}$$

$$1 + \sqrt{2} e^{-j \cdot 180^\circ}$$

$$Z_{in,1} = 100 \left(\frac{1 + \frac{1}{3} e^{ij2(90^{\circ})}}{1 - \frac{1}{3} e^{ij2(90^{\circ})}} \right)$$

$$Z_{in,1} = 100 \left(\frac{1 + \frac{1}{3} e^{ij(800^{\circ})}}{1 - \frac{1}{3} e^{ij(800^{\circ})}} \right)$$

$$= 100 \left(\frac{2}{3} \right) = 100 \left(\frac{1}{2} \right) = 50.0$$

$$Z_{in,2} = Z_0 \frac{1 + \Gamma_2 e^{-ij2Pd}}{1 - \Gamma_2 e^{-ij2Pd}} \text{ where } \Gamma_2 = 100 \right)$$

$$Z_{in,2} = Z_0 \frac{1 + \Gamma_2 e^{-ij2Pd}}{1 - \Gamma_2 e^{-ij2Pd}} = \frac{1}{1 - \Gamma_2 e^{-ij2Pd}}$$

$$Z_{in,2} = Z_0 \frac{1 + \Gamma_2 e^{-ij2Pd}}{1 - \Gamma_2 e^{-ij2Pd}} = \frac{1}{1 - \Gamma_2 e^{-ij2Pd}}$$

$$Z_{in,2} = 100 \frac{1 + \sqrt{2} e^{ij4Pd}}{1 - \sqrt{2} e^{ij4Pd}} = \frac{1}{1 - \sqrt{2} e^{-ijB0^{\circ}}}$$

$$= 100 \frac{1 + \sqrt{2} e^{-ijB0^{\circ}}}{1 - \sqrt{2} e^{-ijB0^{\circ}}}$$

- 4. Consider the sections of transmission line with four different lumped elements shown below.
 (a) Find the reflection coefficient at each lumped element for a wave incident from the left (assume the line is infinitely long in both directions).
 (b) Find simplified expressions for Γ that apply when R, G, L, and C are small (but non-zero)
 - non-zero).

 (c) If the incident waveform is a pulse, sketch what the reflected pulse would look like in each case.
 - like in each case.

b)	for	Γ = -	R_ +2Zn	as R -	-> 0, I will also approach 0 since it will be a	
					very small # divided by 220	
		TR	≈ 0	7		
	£	J'u	,L	011 - 24	O, I will also approach O since it will be a small	
	Jor 1	. " jwL	+220	03 2 -> (
		:.IF	× 0 [†] /		number divided by 220. it will also advance in phase by 90°	
		_				
	for to	6	Z. <u> </u>	as G-> 0	divided by 2 will also be small, however	
		2+	GZ,		divided by 2 will also be small, however	
		(T6	× 0		it will be a negative number since it will approach	
		`			O from negative side.	
		- ju	ر دی			
	for C	2 +	;wCZo	as C->	O, Twill approach D since a very small #	
		1		7	divided by 2 will also be small, just	
		[Tc.	~0	_	like to, it will be negative.	
					return nave also lagged in phase 90°.	
c١	The	Dulca	for	To will	look like!	
<i>'</i>		r	30.	r	Namplitude smaller	
		1	>		1) amplitude smaller	
	The	oulse.	for t	L Will Look	k sike	
		۸ .			1) amplitude smaller	
		_→				
	т1	, ,	+		10.	
	(NE P	ulsa tov	16	will look	(like 1) amp) itude smaller	
		ح ∖		\supset		
					2) sign flip	
	The pa	alse for	- Г _{с. ч}	will look l	like	
					1) amplitude smaller	
			>	2	2) Sign flip.	