Laboratory Manual of Computer Organization and Architecture

EXPERIMENTS 3 - DATA PATH

Circuit Diagram

Steps of the Experiment

- (1) Reset all the enabling pins of 74LS181 and set the other enabling pins. Then start the simulation.
- (2) Enable the SW-BUS. Write data 19H on the BUS. Enable the RO_OE and DR1_OE. Reset the enabling pin DR1_LE.
- (3) Write data 02H to DR2 using the same way mentioned in step (2). Then set the RO_OE and SW-BUS.
- (4) Set the enabling pins S₃S₂S₁S₀ into 1110 and set the enabling pin M (OR calculation).
- (5) Enable the RF_OE and RO_OE. Reset the enabling pin RO_LE. Disable the RF_OE. Give a single positive pulse to DR2_LE.

 The set the RO_LE at last.(Save the result to DR2 for purpose)
- (6) Set the enabling pins S₃S₂S₁S₀ into 0110 and set the enabling pin M (XOR calculation).
- (7) Save the result to DR1 using the same way mentioned in step (5).
- (8) Write address 0AAH into AR using the way mentioned in experiment 2. Set the enabling pins $S_3S_2S_1S_0$ into 1111 and set the enabling pin M (Output operand A directly to BUS). Enable the RF_ \overline{OE} . Write the data on BUS into RAM.
- (9) Write the operand B which is in DR2 into RAM addressed 0ABH using the same way mentioned in step (8). (To Output operand B directly, Set the enabling pins S₃S₂S₁S₀ into 1010 and set the enabling pin M)
- (10) Pause the simulation. Click the menu 'Debug' and then 'Memory Contents-RAM' to see data written in RAM.

Please answer the questions below according to the steps above:

- 1. What are the contents in RAM?
- 2. What is the main function according to the steps?
- 3. Can you complete the main function with fewer steps? If you can, please write it down.

EXPERIMENTS OF CPU 3 - DATA PATH

