3. Consider n=3

Cost for flipping the index at $k=2:2^2=4$

Cost for flipping the move at k = 1: $2^2 = 2$

Cost for flipping the index at k=0: $2^{\circ}=1$

Binary Bits Accumulated Cost 0 1 0 1 0 1 122+4+2+1 132+1 1 1 0 162+1+2 1 1 0 1 1

Next increment is going to take $2^3 + 2^2 + 2^2 + 2^\circ$.

Aggregating Kethod

Brt	Frequency flipped	Tme.
0	1	1
1	1/2	2
2	1/4	4
3	1/8	8
	• • • • · · · · · · · · · · · · · · · ·	
i≥k	0	0

The accumulated cost is then defined by: $\sum_{i=0}^{k-1} \frac{n}{2^{i}} \cdot 2^{i} = n \cdot \sum_{i=0}^{k-1} \frac{2^{i}}{2^{i}}$

 $\Rightarrow n \cdot \sum_{i=0}^{k-1} 1 = n \cdot k$ where k is the number of bits and n is the number of Morments.

Since $k \leq \log(n)$, then $nk \leq n \log(n)$.

So the accumulated cost for n increments is $O(n\log(n))$ such that for each increment, the amortized cost is $O(\log(n))$. \square

H. K' 13 the smallest integer such that 2k' << n for n = 1 which It is safe to reset the binary counter to n = 1.

(

(

I

でてててて

 $0 \underbrace{1 \ 1 \ 1 \dots \ 1^{\cdot} \ 1}_{k'-1} + 1 = 1 \underbrace{0 \ 0 \ 0 \dots \ 0 \ 0}_{k'-1}$

a) Cost of a roset operation:

There are k bits flips required and the cost for each flip appends on its index outs that:

$$\frac{\sum_{i=0}^{k-1} 2^i}{1-2} = \frac{1-2^{k'}}{1-2} = -(1-2^{k'}) = 2^{k'}-1$$

We can assign an amortized cost of $2 \cdot 2' = 2' + 2$ for each increment where we can use 2' to flip the bit from 0 to 1 and otore 2' to flip it back to 0 later.

O

Since for each bit, we are storing on additionnal 2ⁱ, when it needs to reset all bits to zero, thus will be:

 $\sum_{i=0}^{k'-1} 2^i = 2^{k'} - 1$ Stored.

Since this is equal to the cost of roset, the credit will never go negative.

In conclusion, for n operations, we have a maximum total cost of $n \cdot 2^{k'+2}$ (since $2^{l+2} \leq 2^{k'+2}$). Since $2^{k'+2}$ is a constant, the increment operation is O(n).

Therefore, for each Mcroment operation, it takes O(1). Similarly, since the cost of reset is a constant, the reset operation takes O(1). \square

のできるという

0