

Sesión 5.1 Diffusion models

DDPM, LDM, LCM, DIT

1.

Es un proceso estocástico en el que una variable aleatoria evoluciona de manera continua en el tiempo y su cambio está gobernado por ecuaciones diferenciales estocásticas. Se utilizan para modelar sistemas dinámicos en los que hay incertidumbre o fluctuaciones aleatorias.

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t$$

Ecuación de Itô

donde:

- X_t es el valor del proceso en el tiempo t.
- $\mu(X_t, t)$ es la **función de deriva** (controla la tendencia del proceso).
- $\sigma(X_t, t)$ es la **difusión** (controla la variabilidad).
- W_t es un proceso de Wiener.

Kiyosi Itô

Es un proceso estocástico en el que una variable aleatoria evoluciona de manera continua en el tiempo y su cambio está gobernado por ecuaciones diferenciales estocásticas. Se utilizan para modelar sistemas dinámicos en los que hay incertidumbre o fluctuaciones aleatorias.

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t$$

Ecuación de Itô

Un proceso estocástico W_t es un proceso de Wiener si cumple las siguientes condiciones:

- 1. $W_0 = 0$ casi seguramente (P = 1).
- 2. Incrementos independientes: Para cualquier conjunto de tiempos $t_1 < t_2 < t_3 < \cdots < t_n$, los incrementos $W_{t_2} W_{t_1}$, $W_{t_3} W_{t_2}$, son independientes entre sí.
- 3. Incrementos gaussianos: Para cualquier s < t, el incremento $W_t W_s$ sigue una distribución normal con media cero y varianza t s:

$$W_t - W_s \sim \mathcal{N}(0, t - s)$$

4. Trayectorias continuas: W_t es una función continua en t con probabilidad 1, aunque sus trayectorias son irregulares (no diferenciables en casi ningún punto).

Kiyosi Itô

Es un proceso estocástico en el que una variable aleatoria evoluciona de manera continua en el tiempo y su cambio está gobernado por ecuaciones diferenciales estocásticas. Se utilizan para modelar sistemas dinámicos en los que hay incertidumbre o fluctuaciones aleatorias.

Se considera el stochastic differential equation (SDE) en tiempo continuo:

$$dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dW_t$$

donde:

- $\beta(t)$ es una función o schedule que, en la práctica, se evalúa en pasos discretos: $\beta_t = \beta(t)$ (se supone pasos muy pequeños).
- dW_t es el incremento de un proceso de Wiener (con $dW_t \sim \mathcal{N}(0, dt)$).

Se considera el stochastic differential equation (SDE) en tiempo continuo:

$$dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dW_t$$

donde:

- $\beta(t)$ es una función o schedule que, en la práctica, se evalúa en pasos discretos: $\beta_t = \beta(t)$ (se supone pasos muy pequeños).
- dW_t es el incremento de un proceso de Wiener (con $dW_t \sim \mathcal{N}(0, dt)$).

Esta SDE tiene dos propiedades deseadas:

- 1. Disminución de la magnitud de la entrada: La parte determinista $-\frac{1}{2}\beta(t)xdt$ reduce la magnitud de x.
- 2. Adición controlada de ruido: La parte estocástica $\sqrt{\beta(t)}dW_t$ añade ruido gaussiano con varianza proporcional a $\beta(t)$.

Se considera el stochastic differential equation (SDE) en tiempo continuo:

$$dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dW_t$$

donde:

- $\beta(t)$ es una función o schedule que, en la práctica, se evalúa en pasos discretos: $\beta_t = \beta(t)$ (se supone pasos muy pequeños).
- dW_t es el incremento de un proceso de Wiener (con $dW_t \sim \mathcal{N}(0, dt)$).

Se considera el stochastic differential equation (SDE) en tiempo continuo:

$$dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dW_t$$

Se considera el stochastic differential equation (SDE) en tiempo continuo:

$$dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dW_t$$

La solución en el intervalo [t, t+1] es:

$$x_{t+1} = x_t \exp\left(-\frac{1}{2}\beta_t\right) + \sqrt{1 - \exp(-\beta_t)} z_t$$
, donde $z_t \sim \mathcal{N}(0, I)$.

Ya que β_t es pequeño, podemos aproximar:

$$\exp\left(-\frac{1}{2}\beta_t\right) \approx \sqrt{1-\beta_t}$$
 $\sqrt{1-\exp(-\beta_t)} \approx \sqrt{\beta_t}$

Entonces obtenemos:

$$x_{t+1} = \sqrt{1 - \beta_t} x_t + \sqrt{\beta_t} z_t, \quad z_t \sim \mathcal{N}(0, I)$$

Forward Process: Se define como un proceso de ruido aditivo gaussiano con reducción progresiva de señal.

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} z_t, \quad z_t \sim \mathcal{N}(0, I)$$

Forward Process: Se define como un proceso de ruido aditivo gaussiano con reducción progresiva de señal.

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} z_t, \quad z_t \sim \mathcal{N}(0, I)$$

Reverse Process: Se aprende una distribución gaussiana para reconstruir los datos originales.

$$x_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} (x_t - \sigma_t z_t)$$

Forward Process: Se define como un proceso de ruido aditivo gaussiano con reducción progresiva de señal.

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} z_t, \quad z_t \sim \mathcal{N}(0, I)$$

Se define como una cadena de Markov en la que los datos se corrompen progresivamente:

$$q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

Reverse Process: Se aprende una distribución gaussiana para reconstruir los datos originales.

$$x_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} (x_t - \sigma_t z_t)$$

También se formula como una cadena de Markov pero en dirección contraria:

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(\boldsymbol{x}_t, \boldsymbol{t}), \boldsymbol{\Sigma})$$

Red Neuronal

Entrenamiento Se basa en minimizar la divergencia KL entre:

- La verdadera distribución inversa $q(x_{t-1} \mid x_t, x_0)$ (obtenida por el forward process).
- La distribución modelada por la red $p_{\theta}(x_{t-1} \mid x_t)$.

El objetivo final es maximizar la log-verosimilitud de los datos x_0 , lo que equivale a minimizar el ELBO:

Es decir, se entrena la red neuronal $\mu_{\theta}(x_t, t)$ para que la distribución inversa estimada $p_{\theta}(x_{t-1}|x_t)$ se acerque lo más posible a la distribución teórica $q(x_{t-1}|x_t, x_0)$.

$$\mathcal{L}_{ELBO} = \sum_{t=1}^{T} D_{KL} (q(x_{t-1}|x_t, x_0) || p_{\theta}(x_{t-1}|x_t))$$

Este criterio obliga a la red neuronal a aprender la media correcta $\mu_{\theta}(x_t, t)$ para revertir el proceso de difusión.

Use variational lower bound

Forward Process: Se define: $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$ donde $x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t}z_t$, $z_t \sim \mathcal{N}(0, I)$

Aquí β_t controla la cantidad de ruido que se añade en cada paso.

Jonathan Ho et al. propusieron reformular la ecuación:

$$x_t = \sqrt{\overline{\alpha}_t} \, x_0 + \sqrt{1 - \overline{\alpha}_t} \, \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$
 donde: $\overline{\alpha}_t = \prod_{s=1}^t \beta_s$

Forward Process: Se define: $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$ donde $x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t}z_t$, $z_t \sim \mathcal{N}(0, I)$

Aquí β_t controla la cantidad de ruido que se añade en cada paso.

Jonathan Ho et al. propusieron reformular la ecuación:

$$x_t = \sqrt{\bar{\alpha}_t} \, x_0 + \sqrt{1 - \bar{\alpha}_t} \, \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$
 donde: $\bar{\alpha}_t = \prod_{s=1}^t \beta_s$

Reverse Process:

En lugar de modelar directamente $p_{\theta}(x_{t-1}|x_t)$, Ho et al. reformularon el problema y propusieron entrenar la red neuronal para predecir el ruido ϵ en la ecuación del forward process.

La red neuronal aprende una función $\hat{\epsilon}_{\theta}(x_t, t)$ que estima el ruido presente en x_t : $\epsilon \approx \hat{\epsilon}_{\theta}(x_t, t)$

Entonces, el reverse process se define como:

$$x_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(x_t - \beta_t \hat{\epsilon}_{\theta}(x_t, t) \right) + \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, I)$$

donde σ_t controla el ruido en la reconstrucción.

$$\sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

Entrenamiento:

Dado que sabemos el ruido original ϵ que se usó en el forward process, podemos entrenar la red neuronal para predecir dicho ruido con una pérdida de error cuadrático medio (MSE):

$$\mathcal{L} = \mathbb{E}_{x_{\theta,\epsilon,t}}[\|\epsilon - \hat{\epsilon}_{\theta}(x_t, t)\|^2]$$

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\|^{2}$$

6: **until** converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: **return** \mathbf{x}_0

2.

GLIDE

(Guided Language to Image Diffusion for Generation and Editing)

Dall-E2

3.

Map Data into Compressed Latent Space. Train Diffusion Model efficiently in Latent Space.

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \left[\| \epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y)) \|_2^2 \right]$$

Latent Consistency Models se basan en la idea de destilar el proceso inverso iterativo de DDPM en una única (o muy pocas) transformación(s) directa(s) que mapeen una muestra ruidosa en el espacio latente a la versión limpia.

Reconstrucción:

Dada una muestra z_t obtenida del forward process (en el espacio latente)

$$z_t = \sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

el modelo debe predecir el latente original z_0 . Es decir, queremos que $f_{\theta}(z_t,t) \approx z_0$

Latent Consistency Models se basan en la idea de destilar el proceso inverso iterativo de DDPM en una única (o muy pocas) transformación(s) directa(s) que mapeen una muestra ruidosa en el espacio latente a la versión limpia.

Reconstrucción:

Dada una muestra z_t obtenida del forward process (en el espacio latente)

$$z_t = \sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

el modelo debe predecir el latente original z_0 . Es decir, queremos que $f_{\theta}(z_t,t) \approx z_0$

Consistency Models:

La idea es que, para cualquier par de tiempos t y s con s < t (diferentes niveles de ruido), el mapeo debe ser consistente. Es decir, si definimos

$$z_t = \sqrt{\overline{\alpha}_t} z_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon$$
 y $z_s = \sqrt{\overline{\alpha}_s} z_0 + \sqrt{1 - \overline{\alpha}_s} \epsilon'$

se desea que $f_{\theta}(z_t, t) \approx f_{\theta}(z_s, s)$.

En particular, fijando s=0, la propiedad de consistencia nos dice que para cualquier t: $f_{\theta}(z_t,t)\approx z_0$

Latent Consistency Models se basan en la idea de destilar el proceso inverso iterativo de DDPM en una única (o muy pocas) transformación(s) directa(s) que mapeen una muestra ruidosa en el espacio latente a la versión limpia.

Reconstruction loss:

A partir z_t (obtenido a partir de z_0 mediante el forward process) se espera predecir z_0 :

$$\mathcal{L}_{rec} = E_{z_0,t,\epsilon} \left[\left\| f_{\theta} \left(\sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t \right) - z_0 \right\|^2 \right]$$

Latent Consistency Models se basan en la idea de destilar el proceso inverso iterativo de DDPM en una única (o muy pocas) transformación(s) directa(s) que mapeen una muestra ruidosa en el espacio latente a la versión limpia.

Reconstruction loss:

A partir z_t (obtenido a partir de z_0 mediante el forward process) se espera predecir z_0 :

$$\mathcal{L}_{rec} = E_{z_0, t, \epsilon} \left[\left\| f_{\theta} \left(\sqrt{\overline{\alpha}_t} z_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t \right) - z_0 \right\|^2 \right]$$

Consistency loss:

Buscamos que el mapeo sea invariante al nivel de ruido, es decir, que la predicción del modelo sea la misma si se evalúa en diferentes tiempos. Formalmente, para dos tiempos t y s (con s < t) definimos:

$$\mathcal{L}_{cons} = E_{z_0, t, s, \epsilon, \epsilon'} \left[\left\| f_{\theta} \left(\sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t \right) - f_{\theta} \left(\sqrt{\bar{\alpha}_s} z_0 + \sqrt{1 - \bar{\alpha}_s} \epsilon', s \right) \right\|^2 \right]$$

Esta pérdida fuerza a que, sin importar el nivel t en el que se observe la muestra ruidosa, el modelo produzca la misma estimación de z_0 .

Total loss:

$$\mathcal{L} = \mathcal{L}_{rec} + \lambda \mathcal{L}_{cons}$$

4-Step Inference

LCM-LoRA-SD-V1.5

LCM-LoRA-SDXL

LCM-LoRA-SSD-1B

Increasing transformer size

Walking through DiT-XL/2's (512x512) learned label embedding space

step

2 steps

"A brain riding a rocketship heading towards the moon."

> Reinventa el mundo <

GRACIAS

Victor Flores Benites

