Binary Heap

Pittsford Sutherland Programming Club

By Yizuo Chen, Yiyou Chen

Two Types of Binary Heap

- Max Heap: root's value is greater than its sons
- Min Heap: root's value is less than its sons

Min Heap

Max Heap

Properties of Binary Heaps

For each node with rank i, its left child's rank is 2i, and its right child's rank is 2i +1; its parent's rank is [i / 2].

Rank	1	2	3	4	5	6	7
Value	10	15	30	40	50	100	40

Build a heap

- a[i]: We can use an array to save the elements of heap. For each value a[i], a[i / 2] is its parent, a[i * 2] is its left son, and a[i * 2 + 1] is its right son.
- **size:** the total number of elements in the array

Insert an element

Rank	1	2	3	4	5	6	7
Value	10	15	30	40	50	5	40

When Insert 10 into the heap, there's no elements added before it. So create a new node and make it the root.

Insert an element

Rank 1		2	3	4	5	6	7
a[rank] 1	10	15	30	40	50	5	40

when insert 15 into it, compare 15 (a[2]) with 10 (a[1]); since 15 is greater than 10, we leave them there.

Insert an element -- shift up

Rank	1	2	3	4	5	6	7
a[rank]	10	15	30	40	50	5	40

The special case: when we are adding 6th element 5 into the heap, it's less than its parent 30, so we swap 30 and 5.

Rank	1	2	3	4	5	6	7
a[rank]	10	15	5	40	50	30	40

Then compare a[3] 5 with a[1] 10, a[3] < a[1], so we swap 5 and 10 again.

Rank	1	2	3	4	5	6	7
a[rank]	5	15	10	40	50	30	40

Now, it is a Min heap again.

Rank	1	2	3	4	5	6	7
a[rank]	5	15	10	40	50	30	40

The Heap we got before

Since we want to remove the root, we want to make 5 disappear.

Step1: change the root value to infinite.

Rank	1	2	3	4	5	6	7
a[rank]	INF	15	10	40	50	30	40

Step2: Swap root element with the last element

Rank	1	2	3	4	5	6	7
a[rank]	40	15	10	40	50	30	INF

Step3: Shift down, swap the new root value with its smallest child.

Rank	1	2	3	4	5	6	7
a[rank]	10	15	40	40	50	30	INF

Step4: Shift down, swap again, until it becomes a heap

Rank	1	2	3	4	5	6
a[rank]	10	15	30	40	50	40

Step5: decrease the heap's size by one.

Done!

Time complexity of Binary Heaps

- Either "shift up" or "shift down" goes through the height of the heap.
- So the time complexity of insertion and deletion is O(log n). (Very efficient)

Applications: HeapSort

- If we have a series of numbers and we need to sort them in order, we can actually use heap as a tool to make the sort very efficient.
- ► Hows
- 1. Add all the elements to a heap. (Build a heap).
- 2. Output the root.
- 3. Remove the root.
- 4. Output the root.
- 5. Remove the root.
- 6. Output the root.
- 7. Remove the root, etc.

Time Complexity: Average case = Worst case = O(n log(n))