Resumen de teorico para el final de Probabilidad y Estadística

Agustin Curto, agucurto95@gmail.com

2015

Índice general

1.	Estadística Descriptiva	2
2.	Probabilidad2.1. Modelo Probabilístico2.2. Técnicas de Conteo2.3. Probabilidad Condicional	3 3 4 4
3.	Variables Aleatorias Discretas	6
4.	Variables Aleatorias Continuas	7
5 .	Distribución de Probabilidad Conjunta	8
6.	Estimación Puntual	9
7.	Intervalos de Confianza	10
8.	Prueba de Hipótesis	11

Capítulo 1 Estadística Descriptiva

Probabilidad

2.1. Modelo Probabilístico

Espacio Muestral: Es el conjunto de todos los resultados posibles del experimento. Se lo denota S.

Evento: Es cualquier subconjunto de S. Si el evento tiene un solo elemento se llama evento simple, si no, es un evento compuesto.

Definición: Cuando A y B (eventos) no tienen resultados en común, se dice que son eventos mutuamente excluyentes o disjuntos. Además $P(A \cap B) = \emptyset$.

A se dice **familia de eventos** si:

- $S \in A$
- Si $a \in A \Rightarrow \overline{a} \in A$
- $\{a_i\}_{i=1}^{\infty}$ tal que $a_i \in A \Rightarrow \bigcup_{i=1}^{\infty} a_i \in A$

Medida de Probabilidad: Diremos que $P:A\to [0,1],$ con A evento, es medida de probabilidad si:

- $0 \le P(a) \le 1 \ \forall a \in A$
- P(S) = 1
- $\{a_i\}_{i=1}^{\infty}$ con $a_i \in A \ \forall i \ y \ \text{mutuamente disjuntos}.$

Modelo Probabilístico: Es una terna compuesta (S, A, P), espacio muestral, familia de eventos y medida de probabilidad respectivamente.

Propiedades: Dado un experimento, tenemos (S, A, P) entonces se puede probar que:

■ Si
$$A \subset B \Rightarrow P(B - A) = P(B) - P(A)$$
 y $P(B) \ge P(A)$

$$P(\overline{A}) = 1 - P(A) \qquad P(\emptyset) = 0$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

2.2. Técnicas de Conteo

Reglas del producto: Suponga que un conjunto consiste en colecciones ordenadas de k elementos y que hay n_1 opciones posibles para el primer elemento; para cada elección del primer elemento, hay n_2 elecciones posibles del segundo elemento; . . . para elección posible de los k-1 elementos, hay n_k elecciones del k-esimo elemento. Entonces hay $n_1 n_2 \dots n_k$ k-tuplas posibles.

Definición: Para cualquier secuencia ordenada de k objetos tomada de un conjunto de n objetos, el número de *permutaciones* de tamaño k que se pueden construir a partir de n objetos, se denota $P_{k,n}$ y se define:

$$P_{k,n} = \frac{n!}{(n-k)!}$$

Definición: Dado un conjunto de n elementos distintos, cualquier subconjuto no ordenado de tamaño k de los objetos, se llama combinación. El número de combinaciones de tamaño k que se puede formar a partir de n objetos, se denota $\binom{n}{k}$, y se define:

$$C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

2.3. Probabilidad Condicional

Sean A y B eventos tal que P(B) > 0, llamamos **probabilidad condicional** de A dado B, y denotamos P(A|B), porbabilidad de A dado que ocurrio B, al evento:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definición: Diremos que A y B son eventos independientes, si:

$$P(A \cap B) = P(A) P(B)$$
 con A, B \in \mathbf{a}

Proposición: Sean A y B eventos:

- $\blacksquare \overline{A}$ y \overline{B} son independientes.
- \overline{A} y B son independientes.
- \bullet A y \overline{B} son independientes.

Definición: Diremos que $A_1, A_2 \dots A_n$ son mutuamente independientes si $\forall I \in \{1, 2, \dots n\}$ resulta que:

$$P(\cap_{i,j\in I}A_{i,j}) = \prod_{i,j\in I} P(A_{i,j})$$

Ley de la multiplicación: Sean $\{A_i\}_{i=1}^{\infty}$ eventos en a, entonces:

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1) P(A_2|A_1) P(A_3|A_1 \cap A_2) \dots P(A_n|\bigcap_{i=1}^{n-1} A_i)$$

Ley de Probabilidad Total: Si $\{A_i\}_{i=1}^{\infty}$ son eventos disjuntos en **a** tal que $S = \bigcup_{i=1}^{n} A_i$ entonces $\forall B \in \mathbf{a}$:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$$

Teorema de Bayes: Si $\{A_i\}_{i=1}^{\infty}$ son eventos disjuntos en **a** y $P(A_i) > 0 \ \forall i$ tal que $S = \bigcup_{i=1}^{n} A_i$, entonces para cualquier otro evento B tal que P(B) > 0:

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i) P(B|A_i)}{P(B)}$$

donde $P(B) = \sum_{i=1}^{n} P(A_i) \ P(B|A_i)$ como se dijo en la ley de probabilidad total.

Variables Aleatorias Discretas

Variables Aleatorias Continuas

Distribución de Probabilidad Conjunta

Capítulo 6 Estimación Puntual

Intervalos de Confianza

Capítulo 8 Prueba de Hipótesis

Bibliografía

[1] AGUSTÍN CURTO, «Carpeta de Clase, 2015», FaMAF, UNC.

Por favor, mejorá este documento en github **O** https://github.com/ResumenesFaMAF/resumenProbYEst