Optimization for Machine Learning CS-439

Lecture 4: Projected and Proximal Gradient Descent

Martin Jaggi

EPFL - github.com/epfml/OptML_course

March 16, 2018

Smooth constrained minimization: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a closed convex set, and assume that there is a minimizer \mathbf{x}^* of fover X; furthermore, suppose that f is L-smooth over X. When choosing the stepsize

$$\gamma:=\frac{1}{L},$$

projected gradient descent with $\mathbf{x}_0 \in X$ satisfies:

(i) Function values are monotone decreasing:

Function values are monotone decreasing:
$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \geq 0.$$

(ii)
$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

Smooth constrained minimization: $\mathcal{O}(1/\varepsilon)$ steps

Proof. Use smoothness:
$$\frac{Nofation}{x := x_t}$$

$$f(x^+) \le f(x) + \nabla f(x)^T (x^+ - x) + \frac{1}{2} ||x^+ - x||^2$$

$$= f(x) - \frac{1}{2} (||y - x||^2 + ||x^+ - x||^2 + ||x^+ - x||^2)$$

$$= f(x) - \frac{1}{2} (||y - x||^2 + ||x^+ - x||^2 - ||y - x^+||^2) + \frac{1}{2} ||x^+ - x||^2$$

$$= ||\frac{1}{2} \nabla f(x)||^2$$

$$= f(x) - \frac{1}{2} ||\nabla f(x)||^2 + \frac{1}{2} ||y - x^+||^2 = i)$$

Strongly convex constrained minimization:

$$\mathcal{O}(\log(1/\varepsilon))$$
 steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a closed and convex set and suppose that f is smooth over X with parameter L and strongly convex over X with parameter $\mu > 0$. Choosing

$$\gamma := \frac{1}{L},$$

projected gradient descent with arbitrary x_0 satisfies

(i)
$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^*\|^2, \quad t \ge 0.$$

(ii)
$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{L}{2} \left(1 - \frac{\mu}{L} \right)^t \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

same as unconstrained

Strongly convex constrained minimization:

$$\mathcal{O}(\log(1/\varepsilon))$$
 steps

Proof.

Strengthen the "constrained" vanilla bound

strengthen the constrained vanilla bound
$$\frac{1}{2\gamma} \left(\gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \|\mathbf{x}_t - \mathbf{x}^\star\|^2 - \|\mathbf{x}^+ - \mathbf{x}^\star\|^2 - \|\mathbf{y}^+ - \mathbf{x}^+\|^2 \right)$$
 to
$$\frac{1}{2\gamma} \left(\gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \|\mathbf{x}_t - \mathbf{x}^\star\|^2 - \|\mathbf{x}^+ - \mathbf{x}^\star\|^2 - \|\mathbf{y}^+ - \mathbf{x}^+\|^2 \right)$$

$$-\frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^\star\|^2$$

using strong convexity.

Then proceed as in the unconstrained theorem.

$$X = B_1(\mathbf{R}) := \left\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_1 = \sum_{i=1}^d |x_i| \le \mathbf{R} \right\}$$

 2^d facets!

- project onto simplex

And using this,

Corollary

$$\mathbf{x} = \Pi_X(\mathbf{v})$$
 satisfies $x_i \geq 0$ for all i and $\sum_{i=1}^d x_i = 1$.

simplex

proof: x; < 0 ? No!

could flp sign x: \-x;

(Exercise)

Corollary

Under our assumption (*),

$$\Pi_X(\mathbf{v}) = \operatorname*{argmin}_{\mathbf{x} \in \Delta_d} \|\mathbf{x} - \mathbf{v}\|^2,$$

where

$$\Delta_d := \left\{ \mathbf{x} \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1, x_i \ge 0 \ \forall i \right\}$$

is the standard simplex.

Also, w.l.o.g. assume that v is ordered decreasingly, $v_1 \geq v_2 \geq \cdots \geq v_d$.

Lemma

Let $\mathbf{x}^* := \operatorname{argmin}_{\mathbf{x} \in \Delta_d} \|\mathbf{x} - \mathbf{v}\|^2$, and \mathbf{v} ordered decreasingly. There exists (a unique) index $p \in \{1, ..., d\}$ s.t.

$$x_{i}^{\star} > 0, \quad i \leq p,$$

$$x_{i}^{\star} = 0, \quad i > p.$$

$$x_{i}^{\star} = 0, \quad i > p.$$

Optimality criterion for constrained optimization:

$$\nabla d_{\mathbf{v}}(\mathbf{x}^{\star})^{\top}(\mathbf{x} - \mathbf{x}^{\star}) = 2(\mathbf{x}^{\star} - \mathbf{v})^{\top}(\mathbf{x} - \mathbf{x}^{\star}) \ge 0, \quad \forall \mathbf{x} \in \Delta_{d_{\mathbf{v}}}$$

 \exists a positive entry in \mathbf{x}^* (because $\sum_{i=1}^d \mathbf{x}_i^* = 1$).

Why not $x_i^* = 0$ and $x_{i+1}^* > 0$? If so, we could decrease x_{i+1}^* by ε and increase x_i^* to ε to obtain $\mathbf{x} \in \Delta_d$ s.t.

$$(\mathbf{x}^{\star} - \mathbf{v})^{\top} (\mathbf{x} - \mathbf{x}^{\star}) = (0 - v_i) \varepsilon - (\mathbf{x}_{i+1}^{\star} - v_{i+1}) \varepsilon = \varepsilon (\underbrace{v_{i+1} - v_i}_{\leq 0} - \underbrace{v_{i+1}^{\star}}_{\geq 0}) < 0,$$

contradicting the optimality.

Can say more about x^* :

Lemma

With p as in the above Lemma, and $\hat{\mathbf{v}}$ ordered decreasingly, we have

$$x_i^{\star} = v_i - \Theta_p, \quad i \le p,$$

where

$$\begin{aligned} x_i^\star &= v_i - \Theta_p, & i \leq p, \\ & \text{Covered !} \\ \Theta_p &= \frac{1}{p} \Big(\sum_{i=1}^p v_i - 1 \Big). \end{aligned}$$

Proof.

Assume there is $i, j \leq p$ with $x_i^{\star} - v_i < x_i^{\star} - v_j$ As before, we could decrease $x_i^{\star} > 0$ by ε and increase x_i^{\star} by ε to get $\mathbf{x} \in \Delta_d$ s.t.

$$(\mathbf{x}^{\star} - \mathbf{v})^{\top} (\mathbf{x} - \mathbf{x}^{\star}) = (x_i^{\star} - v_i)\varepsilon - (x_j^{\star} - v_j)\varepsilon = \varepsilon(\underbrace{(x_i^{\star} - v_i) - (x_j^{\star} - v_j)}_{<0}) < \mathbf{0},$$

again contradicting optimality of x^* .

Summary: have d candidates for \mathbf{x}^* , namely

$$\mathbf{x}^{\star}(p) := (v_1 - \Theta_{p_{\boldsymbol{\ell}}} \ldots_{\boldsymbol{\ell}} v_p - \Theta_{p_{\boldsymbol{\ell}}} 0, \ldots, 0), \quad p \in \{1, \ldots, d\},$$

Need to find the right one. In order for candidate $\mathbf{x}^{\star}(p)$ to comply with our first Lemma, we must have

$$v_p - \Theta_p > 0,$$

and this actually ensures $\mathbf{x}^{\star}(p)_i > 0$ for all $i \leq p$ (because \mathbf{v} is ordered) and therefore $\mathbf{x}^{\star}(p) \in \Delta_d$.

But there could still be several choices for p. Among them, we simply pick the one for which $\mathbf{x}^{\star}(p)$ minimizes the distance to \mathbf{v} .

In time $\mathcal{O}(d \log d)$, by first sorting v and checking incrementally.

Theorem

Let $\mathbf{v} \in \mathbb{R}^d$, $R \in \mathbb{R}_+$, $X = B_1(R)$ the ℓ_1 -ball around $\mathbf{0}$ of radius R. The projection

$$\Pi_X(\mathbf{v}) = \operatorname*{argmin}_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{v}\|^2$$

of v onto $B_1(R)$ can be computed in time $\mathcal{O}(d \log d)$.

This can be improved to time $\mathcal{O}(d)$ by avoiding sorting.

Section 3.6

Proximal Gradient Descent

Composite optimization problems

Consider objective functions composed as

$$f(\mathbf{x}) := g(\mathbf{x}) + h(\mathbf{x})$$

where g is a "nice" function, where as h is a "simple" additional term, which however doesn't satisfy the assumptions of niceness which we used in the convergence analysis so far.

In particular, an important case is when h is not differentiable.

Idea

From unconstrained minimization

The classical gradient step for minimizing g:

$$\mathbf{x}_{t+1} = \underset{\mathbf{y}}{\operatorname{argmin}} \ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^{\top} (\mathbf{y} - \mathbf{x}_t) + \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{x}_t\|^2.$$

For the stepsize $\gamma := \frac{1}{L}$ it exactly minimizes the local quadratic model of g at our current iterate \mathbf{x}_t , formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

$$\mathbf{x}_{t+1} := \underset{\mathbf{y}}{\operatorname{argmin}} \ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^{\top} (\mathbf{y} - \mathbf{x}_t) + \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{x}_t\|^2 + h(\mathbf{y})$$
$$= \underset{\mathbf{y}}{\operatorname{argmin}} \ \frac{1}{2\gamma} \|\mathbf{y} - (\mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t))\|^2 + h(\mathbf{y}),$$

the proximal gradient descent update.

The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

$$\mathbf{x}_{t+1} := \operatorname{prox}_{h,\gamma}(\mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t))$$
.

where the proximal mapping for a given function h, and parameter $\gamma > 0$ is defined as

$$\operatorname{prox}_{h,\gamma}(\mathbf{z}) := \operatorname{argmin}_{\mathbf{y}} \left\{ \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{z}\|^2 + h(\mathbf{y}) \right\}.$$

The update step can be equivalently written as $\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma G_{\gamma}(\mathbf{x}_t)$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma G_{\gamma}(\mathbf{x}_t)$$

for $G_{h,\gamma}(\mathbf{x}):=rac{1}{\gamma}\Big(\mathbf{x}-\mathrm{prox}_{h,\gamma}(\mathbf{x}-\gamma\nabla g(\mathbf{x}))\Big)$ being the so called generalized gradient of f.

A generalization of gradient descent?

- ▶ $h \equiv 0$: recover gradient descent
- ▶ $h \equiv \iota_X$: recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the convex function

$$oldsymbol{\iota}_X: \mathbb{R}^d o \mathbb{R} \cup +\infty$$
 $\mathbf{x} \mapsto oldsymbol{\iota}_X(\mathbf{x}) := egin{cases} 0 & ext{if } \mathbf{x} \in X, \ +\infty & ext{otherwise.} \end{cases}$

Proximal mapping becomes

$$\mathrm{prox}_{h,\gamma}(\mathbf{z}) := \operatorname*{argmin}_{\mathbf{y}} \left\{ \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{z}\|^2 + \boldsymbol{\iota}_X(\mathbf{y}) \right\} = \operatorname*{argmin}_{\mathbf{y} \in X} \ \|\mathbf{y} - \mathbf{z}\|^2$$

projection! =
$$\Pi_{X}(2)$$

Convergence in $\mathcal{O}(1/\varepsilon)$ steps

Same as vanilla case for smooth functions, but now for any h for which we can compute the proximal mapping.

Examples: •
$$h(x) = \lambda \|x\|_1$$

prox is soft-thresholding operator.

• $h(x) = \mathbf{1}_{B_1(R)}$

prox is projection onto $11 - 11 - 11 = 11$.