Smart Parking TEAM MEMBERS

912221104018 - K.K.Hari Prakash 912221104016 - P.Gurudeep Swasanekar 912221104302 - J.Gnana Prakasha Martin 912221104006 - D.Aravind 912221104306 - P.Muneeswaran

Phase-1 Document Submission

Subject: Smart Parking

Project Overview:

The project aims to integrate IoT sensors into public transportation vehicles to monitor ridership, track locations, and predict arrival times. The ultimate goal is to provide real-time transit information to the public via a user-friendly platform, thus enhancing the efficiency and quality of public transportation services. The project encompasses the following key components:

Defining Objectives:

Establish specific objectives that include real-time parking space monitoring, mobile app integration, and efficient parking guidance.

IoT Sensor Design:

Develop a comprehensive plan for the design and deployment of IoT sensors in parking spaces to accurately detect occupancy and availability.

Real-Time Transit Information Platform:

Design an intuitive and user-friendly mobile app interface that displays real-time parking availability to users.

Integration Approach:

Determine how Raspberry Pi devices will collect data from the sensors and update the mobile app with real-time transit information.

Design Thinking

Project Objectives:

Objective 1: Real-Time Parking Space Monitoring

- Create a system for monitoring parking spaces in real-time.
- Gather data on the availability and occupancy of parking spaces.

Objective 2: Mobile App Integration

- Develop a user-friendly mobile application for both Android and iOS platforms.
- Ensure seamless integration with IoT sensors and real-time transit data.

Objective 3: Efficient Parking Guidance

- Utilize the real-time data to provide parking guidance to users, directing them to available parking spaces.
- Improve the overall efficiency of public transportation services.

IoT Sensor Design:

1. Sensor Selection

- Identify suitable IoT sensors capable of detecting occupancy and availability.
- Choose sensors that can communicate data effectively.

2. Sensor Placement

- Strategically position sensors within parking spaces.
- Ensure a comprehensive coverage of all parking areas.

3. Data Transmission

• Establish a reliable data transmission protocol to send sensor data to a central hub.

4. Data Processing

• Implement data processing algorithms to convert sensor data into actionable information.

5. Power Management

- Optimize power usage to extend the sensor's lifespan.
- Implement an efficient power management system.

Real-Time Transit Information Platform:

1. User Interface Design

- Design an intuitive and visually appealing mobile app interface.
- Prioritize user experience by making it easy to understand and navigate.

2. Real-Time Data Integration

- Create a system to ingest data from IoT sensors and location trackers on public transportation vehicles.
- Ensure the data is processed in real-time.

3. Predictive Analysis

- Implement algorithms to predict arrival times based on the real-time data.
- Enable users to plan their journeys effectively.

4. User Notifications

- Set up a notification system to inform users about parking availability and transit updates.
- Push notifications for real-time alerts.

Integration Approach:

1. Data Collection and Communication

- Deploy Raspberry Pi devices to collect data from IoT sensors.
- Implement a secure and efficient communication protocol between sensors and Raspberry Pi.

2. Data Processing and Storage

- Process data collected by Raspberry Pi for real-time updates.
- Store data in a secure database for historical analysis and reporting.

3. Mobile App Integration

- Develop a mobile app capable of receiving data from the central hub.
- Ensure data is displayed in a user-friendly and real-time manner.

4. Continuous Improvement

- Establish a mechanism for monitoring the system's performance.
- Plan for iterative improvements and updates based on user feedback and changing requirements.

Conclusion:

integrating IoT objectives, sens enhance efficie	mary, this project for sensors and creating sor design, and a undercy and quality in the public. Continuation	ng a real-time t ser-friendly mo public transpor	ransit informat bile app. The p tation, making	ion platform. It project's success it more accessi	defines clear promises to ble and
convenient for	the public. Continu	uous improvem	ent will ensure	its long-term e	nectiveness.