Model Questions Sets For Practice

MODEL SET 1

Bachelor Level/First Year/Second Semester/Science

Full Marks: 80

Computer Science and Information Technology [MTH. 163] (Mathematics II)

Pass Marks: 32

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Group 'A'

Attempt any three questions:

 $(3 \times 10 = 30)$

1. Let $a_1 = (1, -2, -5)$, $a_2 = (2, 5, 6)$ and b = (7, 4, -3) are three vectors. Determine whether b can be generated as a linear combination of a_1 and a_2 . That is, determine whether x_1 and x_2 exist such that $b = a_1x_1 + a_2x_2$ has solution. Find it.

2. Let
$$\begin{bmatrix} 3 & 0 & | -1 & 5 | & 9 & -2 \\ -5 & 2 & | 4 & 0 | & -3 & 1 \\ -8 & -6 & | 3 & 1 | & 7 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 1 & 5 \\ \hline 4 & 1 \\ \hline -1 & 2 \\ \hline 2 & 3 \end{bmatrix}$$

Compute AB if possible.

3. Find the bases for the row space, column space and the null space of the matrix,

$$\begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

[Ans: Row space: {(1, 3, -5, 1, 5), (0, 1, -2, 2, -7), (0, 0, 0, -4, 20)}

Column space: {(-2, 1, 3, 1), (-5, 3, 11, 7), (0, 1, 7, 5)}

Null: {(-1, 2, 1, 0, 0), (-1, -3, 0, 5, 1)}]

4. Find QR factorization of
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$Ans: Q = \begin{bmatrix} \frac{1}{2} & \frac{-3}{\sqrt{12}} & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3\sqrt{12} & 2\sqrt{12} \\ 0 & 0 & 2\sqrt{6} \end{bmatrix}$$
Group 'B'

Attempt any ten questions:

 $(10 \times 5 = 50)$

- 5. Define a system of linear equations and to solution. When a system is consistent and inconsistent? Give the graphical representation of consistency of linear equations.
- Define the standard matrix for a linear transformation T. find the standard matrix A for the linear transaction T(x) = 4x for $\dot{x} \in \mathbb{R}^2$.

Ans:
$$\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

7. By using inverse matrix method, solve the system:

$$3x_1 + 4x_2 = 3$$

$$5x_1 + 6x_2 = 7$$

Ans: $(x_1, x_2) = (5, -3)$

Using determinant, determine whether the vectors v₁, v₂, v₃, are linearly independent or not where

$$\mathbf{v}_1 \begin{bmatrix} 5 \\ -7 \\ 9 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 3 \\ -3 \\ 5 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2^{-7} \\ -7 \\ 5 \end{bmatrix}$$

Ans: Independent

- Let B = $\{1 + t^2, t + t^2, 1 + 2t + t^2\}$ is a basis for P₂. Find the coordinate vector $P(t) = 1 + 4t + 7t^2$ relative to B. Ans: (2, 6, 1)
- 10. Find the solution of the difference equation,

$$y_{k+3} - 2y_{k+2} - 5y_{k+1} + 6y_k = 0$$
 for all k.

Ans: (1k, -2k, 3k)

Determine the eigen values and eigen vectors of A = complex number.

Ans: i,
$$-i$$
: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

12. Is the set of vectors {(1, 0, 1), (0, 1, 0), (-1, 0, 1)} orthogonal? Obtain the corresponding orthonormal set is R1

Ans:
$$\left(\frac{1}{\sqrt{2}} \circ \frac{1}{\sqrt{2}}\right) (0, 1, 0) \left(\frac{-1}{\sqrt{2}} \circ \frac{1}{\sqrt{2}}\right)$$

- 13. Let (Z, +) and (2Z, +) are two binary structures where Z is the set of all integers then show that ϕ : Z \rightarrow 2Z, is defined by $\phi(n) = 2n$ is an isomorphism.
- 14. Solve the equation $x^2 + 2x + 4 = 0$ in Z_s.

15. Let
$$A = \begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix}$$
, $b_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $B = \{b_1, b_2\}$. Find the

B-matrix of the transformation $x \rightarrow Ax$ with $P = [b_1, b_2]$. Ans: $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

MODEL SET 2

Group 'A'

Attempt any three questions:

 $(3 \times 10 = 30)$

Determine if the following homogeneous system has a non-trivial solution. Then describe the solution set.

$$3x_1 + 5x_2 - 4x_3 = 0$$

$$-3x_1 - 2x_2 + 4x_3 = 0$$

$$6x_1 + x_2 - 8x_3 = 0$$
Ans: $x_3 \left(\frac{4}{3}, 0, 1\right)$

Let A is n × n matrix, is invertible if and only if A is row equivalent to in. Use this statement to find A⁻¹ if exists where

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & 3 & 8 \end{bmatrix}.$$

$$Ans: \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

- Define basis of a subspace of a vector space. Let $v_1 = (0, 2, -1)$, $v_2 = (2, 2, 0), v_3 = (6, 16, -5)$ where $v_4 = 5v_1 + 3v_2$ and let H = Span $\{v_1, v_2, v_3\}$, show that Span $\{v_1, v_2, v_3\}$ = Span $\{v_1, v_2\}$ and find a basis for a subspace H.
- Find the equation $y = \beta_0 + \beta_1 x$ of the least squares line that best fits the Ans: y = 1.1 + 1.3xgiven data. Points: (-1, 0), (0, 1), (1, 2) and (2, 4).

Group 'B'

Attempt any ten questions:

 $(10 \times 5 = 50)$

5. If $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ show that $\begin{bmatrix} h \\ k \end{bmatrix}$ is the Span $\{u, v\}$ for all h

... A Complete TU Solution of CSIT Second Semester and Practice Sets

If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and define $T = \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax, then find the image under T of $u = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \end{bmatrix}$. Ans: $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix}$

Write the algorithm for finding the inverse of A. Using this find the

inverse of $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ Ans: $\begin{bmatrix} \frac{-9}{2} & 7 & \frac{-3}{2} \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{bmatrix}$ System. System.

Let S be parallelogram determined by vectors $b_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$, and let $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$. Compute the area of image of S under the

Ans: 28 mapping $x \rightarrow Ax$.

- Determine, the set of vectors from a basis for \mathbb{R}^3 or not: (1, 4, 3), (0,3,1), (3,-5,4), (0,2,-2)
- 10. Find the basis and dimension of $\begin{cases} a-b \\ b-3c \end{cases}$, $a, b, c \in \mathbb{R}$

Ans: basis =
$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ -3 \\ 0 \end{bmatrix}$$
, dim = 3

- 12. Define inner product space. Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are in \mathbb{R}^r and defined as $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2$ then show that $\langle u, v \rangle$ defines and
- 13. Define subgroup. Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ is a group under addition
- Determine whether $H = \{0, 1, 3\}$ is a subgroup of \mathbb{Z}_4 or not. Ans: not 14. Solve the equation $x^2 - 5x + 6 = 0$ in Z_{12} .
- 15. Define rank of a matrix and state the rank theorem. If A is 7×9 matrix with two-dimensional null space, find the rank of A.

MODEL SET 3

Group 'A'

Attempt any three questions:

 $(3 \times 10 = 30)$

1. Determine if the following system is consistent if consistent solve the

$$-2x_1 - 3x_2 + 4x_3 = 5$$

$$x_1 - 2x_3 = 4$$

$$x_1 + 3x_2 - x_3 = 2$$
Ans: $\left(26, \frac{-13}{3}, 26\right)$

- Let $v_1 = (3, 6, 2)$, $v_2 = (-1, 0, 1)$, x = (3, 12, 7) and $B = \{v_1, v_2\}$. then B is a basis for $H = \text{Span } \{v_1, v_2\}$. Determine if x is in H and if it is, find the coordinate vector of x relative to B.
 - Find the LU factorization of the matrix, $\begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \end{bmatrix}$. Ans: L = $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{\pi}{3} & 1 & 1 \end{bmatrix} U = \begin{bmatrix} 3 & -6 & 3 \\ 0 & 5 & -4 \\ 0 & 0 & 5 \end{bmatrix}$
- Find the last squares line $y = \beta_0 + \beta_1 x$ that best fits the data (-2, 3), (-1, 5), (0, 5), (1, 4) and (2, 3). Suppose the errors in measuring the y-values of the last two data points are greater than for the other points. Weight these data half as much as the rest of the data.

Ans: $y = 4.0 + (0.1) \times$

Group 'B'

Attempt any ten questions:

 $(10 \times 5 = 50)$

- Define a subset spanned by vectors. Give the geometrical description of span $\{u, v\}$ in \mathbb{R}^3 .
- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such the $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find the x such that T(x) = (3, 8).
- Consider the production model x = Cx + d for an economy with two sectors where,

 $C = \begin{bmatrix} 0 & 0.5 \\ 0.6 & 0.2 \end{bmatrix}, d = \begin{bmatrix} 50 \\ 30 \end{bmatrix}$ Ans: $\begin{bmatrix} 110 \\ 120 \end{bmatrix}$

Using cofactor expansion, compute the determinant of

1	4	()	- 7	3	-5 -
	Ü	0	2	0	0
	7	1	- 6	4	_8
	5	Ö	5	2	_3
	Û	0	9	-4	2 -

Find the coordinate vector [x]n of x relative to the given basic $B = \{b_1, b_2\}$ where $b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $b_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ and $x = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

- 10. Let $b_1 = (1, -3)$, $b_2 = (-2, 4)$, $c_1 = (-7, 9)$, $c_2 = (-5, 7)$ are the bases of 3. \mathbb{R}^3 given by $B = \{b_1, b_2\}$ and $c = \{c_1, c_2\}$ then
 - i. Find the change of coordinate matrix from C to B.
 - ii. Find the change of coordinate matrix from B to C.

Ans:
$$\begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 2 & \frac{-3}{2} \\ -3 & \frac{5}{2} \end{bmatrix}$$

Define characteristics equation of a matrix. Find the characteristics equation of

Ans: 5. 3. 1

- 12. Let u and v are non-zero vectors in \mathbb{R}^3 and θ be angle between them-Then prove that $u \cdot v = \| u \| \| v \| \cos \theta$ where the symbols have their
- 13. Let * is defined on \mathbb{R}^4 by a * b = \sqrt{ab} . Then show \mathbb{R}^4 is not a group.
- I find the additive and multiplicative inverse of (3, 2) in sing
- Find the basis for eigenspace corresponding to the eigenvalue of

Group 'A'

Ans: Attempt any three questions:

 $(3 \times 10 = 30)$

- Let T: $\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. T is one-to-one if and only if the equation T(x) = 0 has only the trivial solution, prove the statement.
- What do you understand by Gram-Schmidt process for orthogonal vectors? Let $x_1 = (1, 1, 1, 1, 1)$, $x_2 = (0, 1, 1, 1)$ and $x_3 = (0, 0, 1, 1)$. Then {x1, x2, x3} is linearly independent and thus is a basis for a subspace W of R4. Using Gram-Schmidt process construct an orthogonal basis for W. Ans: $(1, 1, 1, 1, 1) \left(\frac{-3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \left(0, \frac{-2}{3}, \frac{1}{3}, \frac{1}{3} \right)$
 - Find the eigenvalue of A = Ans: 0.8 + 0.6i, 0.8 - 0.6i $\begin{bmatrix} -2 + 4i \\ 5 \end{bmatrix}$ $\begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$ each eigenspace.
- Find the equation $y = \beta_0 + \beta_1 x$ for the least squares line that best fits the Ans: y = 4.3 - 0.7x data points (2, 3), (3, 2), (5, 1), (6, 0).

Group 'B'

Attempt any ten questions:

 $(10 \times 5 = 50)$

5. Determine for what value of h, the set of vectors $\{v_1, v_2, v_3\}$ is linearly

Determine for what value of it, the set of vectors
$$\begin{bmatrix} v_1 & v_2 \\ -1 \\ 4 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ -5 \\ h \end{bmatrix}$. Ans: -6

- Define one-to-one and onto transformation. If a linear transformation T: $\mathbb{R}^4 \to \mathbb{R}^4$ is defined as T $(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_2, x_3 + x_4)$ Ans: not one-to-one, not onto then check T is one-to-one and onto.
- Define singular and non-singular matrix. Examine the matrix is

Singular or non singular,
$$\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$
. Ans: non-singular

Find the determinant by row reduction to echelon form,

$$\begin{bmatrix} 1 & 5 & -3 \\ -3 & -3 & 3 \\ 2 & 13 & 7 \end{bmatrix}$$
 Ans: -18

9. Let $A = \begin{bmatrix} -2 & 4 \\ 1 & 2 \end{bmatrix}$ and $w = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Determine if w is in Col(A). Is w_{ij} , 2. Complete AB of the partitioned matrices

Nul (A) ?

Ans: $w \in Col(A)$, $w \in Nul$ (A) $A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & -4 & -2 & 7 & -1 \end{bmatrix}, B = \begin{bmatrix} -5 & 4 \\ -3 & 7 \\ -1 & 3 \\ 5 & 2 \end{bmatrix}$ Ans: $\begin{bmatrix} -5 & 4 \\ -6 & 2 \\ 2 & 1 \end{bmatrix}$ 10. Find the dimension of null space of $\begin{bmatrix} -5 & 4 \\ -6 & 2 \\ 2 & 1 \end{bmatrix}$

11. Find the basis for the eigenspace corresponding to the eigenvalue $\lambda = 3$ where.

A = $\begin{bmatrix} -1 & 1 & -3 \\ 1 & \end{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$

- 12. Show that $\{v_1, v_2, v_3\}$ is an orthogonal basis for \mathbb{R}^3 where $v_1 = \left(\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right), v_2 = \left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), v_3 = \left(\frac{-1}{\sqrt{66}}, \frac{-4}{\sqrt{66}}, \frac{7}{\sqrt{66}}\right).$
- 13. Let $G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}, ab bc \neq 0; a, b, c, d \right\}$. Then show that G is a group under multiplication.
- 14. Define zero divisors in ring. Find zero divisor of a ring Z_{10} .

15. Why the system $x_1 - 3x_2 = 4$, $-3x_1 + 9x_2 = 8$ inconsistent? Give graphical representation.

MODEL SET 5

Group 'A'

Attempt any three questions:

1. Define echelon form of a given matrix A with example. Given matrix $(3 \times 10 = 30)$

apply the row operation to transform the echelon and then reduced

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & -4 & -2 & 7 & -1 \end{bmatrix}, B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ -1 & 3 \\ 5 & 2 \end{bmatrix}$$

- Let $b_1 = (1, 0, 0)$, $b_2 = (-3, 4, 0)$, $b_3 = (3, -6, 3)$ and x = (-8, 2, 3) then
 - Show that $B = \{a_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .
 - ii. Find the change of coordinate matrix from B to the standard basis. iii. Find [x]B.
- Find the equation $y = a_0 + a_1x$ for the least squares line that best fits the data points (2, 1), (5, 2), (7, 3), (8, 3).

Attempt any ten questions:

 $(10 \times 5 = 50)$

5. Define linearly dependence of a set of vectors. Are the following sets of vectors linearly dependent?

$$\begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 5 \end{bmatrix},$$

6. Let $A = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0.5 & 0 \end{bmatrix}$, $u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Define

T(x) = Ax. Then find T(u) and T(v). Ans: (0.5, 0, -2), (0.5a, 0.5b, 0.5c)

7. If $A = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$ and $x = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$, compute $(Ax)^T$, x^TA^T and xx^T . Can we

compute $A^{T}x^{T}$?

Ans: $(Ax)^T = x^TA^T = [-4 \ 2], xx^T \begin{vmatrix} 25 \ 15 \end{vmatrix}$

- State the Cramer's rule to finding solution of a system of linear equations and justify it.
- 9. Determine $w \in Nul(A)$ where $w = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $A = \begin{bmatrix} 3 3 3 \\ 6 2 \end{bmatrix}$

1 ... A Complete TU Solution of CSIT Second Semester and Practice Sets 0. If 4×7 matrix A has rank 3. Find dim (Nul A), dim (Row A) and rank of

1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformation defined by T(x, y) =(x-y, x+y) and $B = \{b_1, b_2\}$ be basis where $b_1 = (1, 1)$ and $b_2 = (-1, 0)$. Then find B matrix for T be. $[T]_B$.

2. Find the least square solution of Ax = b for

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 7 \\ 2 \\ 3 \\ 6 \\ 5 \\ 4 \end{bmatrix}$$

Ans:
$$\begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

- 13. Define subgroup of a group G. Show that R is a group.
- 14. Find zero divisors of the rings: (i) Z₁₆ (ii) Z₁₁

Ans: (i) 2, 4, 6, 8, 10, 12, 14 (ii) no zero divisors

15. Let $A = PDP^{-1}$. Compute A^4 if $P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.

MODEL SET 6

Group 'A'

Attempt any three questions:

Determine, if the following homogeneous system has a non-trivial

$$x_1 + 3x_2 - 5x_3 = 0$$

$$x_1 + 4x_2 - 8x_3 = 0$$

$$-3x_1 - 7x_2 + 9x_3 = 0$$

Solve the Leontief production equation for an economy with three

$$\begin{bmatrix} 0.5 & 0.4 & 0.2 & 0.2 \\ 0.3 & 0.1 & 0.1 & 0.3 \end{bmatrix} \text{ and } d = \begin{bmatrix} 50 \\ 30 \\ 20 \end{bmatrix}$$

Define coordinate vector of x relative to the basis B. Prove that, such vector has unique linear combination with the basis for x.

Diagonalizable the matrix, if possible

$$\begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix} \quad \text{Ans: } P = \begin{bmatrix} 0 & 0 & -8 & -16 \\ 0 & 0 & 4 & -4 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} D = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Group 'B'

Attempt any ten questions:

 $(10 \times 5 = 50)$

Define the consistency of a system of linear equations. Show that the following system is inconsistent;

$$2x - 3\dot{y} + 7z = 5$$

 $3x + y - 3z = 13$
 $2x + 19y - 47z = 32$.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Then T is one-to-one if and only if T(x) = 0 has only the trivial solution.

7. Let
$$A = \begin{bmatrix} 5 & 1 \\ 3 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix}$. Show that $AB \neq BA$.

By choosing suitable example, show that

- (i) $\det(AB) = \det(A) \cdot \det(B)$.
- (ii) $\det(A + B) \neq \det(A) + \det(B)$.

9. Let W be the set of all vectors of the form
$$\begin{bmatrix} 2s + 4t \\ 3s \\ 2s - 3t \\ 3t \end{bmatrix}$$
. Show that W is

a subspace of R4.

10. Let B = {b₁, b₂} and C = {c₁, c₂} when b₁ =
$$\begin{bmatrix} -9 \\ 0 \end{bmatrix}$$
, b₂ = $\begin{bmatrix} -5 \\ -1 \end{bmatrix}$ c₁ = $\begin{bmatrix} 1 \\ -4 \end{bmatrix}$, c₂ = $\begin{bmatrix} 3 \\ -5 \end{bmatrix}$ are two bases for \mathbb{R}^2 then

i. Find the change of coordinate matrix from B to C.ii. Find the change of coordinate matrix from C to B.

Ans:
$$\begin{bmatrix} 6 & 4 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} -\frac{3}{2} - 2 \\ \frac{5}{2} & 3 \end{bmatrix}$$

Ans: (226, 119, 78) 11. Find the eigenvalue of
$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
. Ans: 0, 2

40 ... A Complete TU Solution of CSIT Second Semester and Practice Sets 12. Show that $\{v_1, v_2, v_3\}$ is an orthogonal set of vectors where $\mathbf{v}_1 = \{3, 1, 1\}$

2. Show that
$$\{v_1, v_2, v_3\}$$
 is an experiment $v_2 = (-1, 2, 1), v_3 = \left(-\frac{1}{3}, -2, \frac{7}{2}\right)$.

- 13. Define group with binary operation. Let * is defined on Q' by $a * b = \frac{ab}{2}$ then show that Q' is a group under the binary operation *.
- 14. When we called a ring is a field? Prove that a ring Z_{11} is a field.
- 15. Let y = (-1, -5, -10), $u_1 = (5, -2, 1)$ and $u_2 = (1, 2, -1)$. Find the neares point is W to y and the distance between y and the nearest point where Ans: (-1, -8, 4), \(\sqrt{45} $W = Span\{u_1 | u_2\}$

MODEL SET 7

Group 'A'

Attempt any three questions:

 $(3 \times 10 = 30)$

1. Determine if the following system is consistent,

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_1 + 2x_3 = 1$$

$$5x_1 - 8x_2 + 7x_3 = 1$$

$$\begin{bmatrix} 1 & .3 & 3 \\ -3 & -5 & .2 \end{bmatrix}$$

Ans: Consistent

Diagonalizable:

Ans:
$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

- Discuss, when two vectors are orthogonal to each other. Let u and v are vectors, prove that $[\operatorname{dist}(u, -v)]^2 = [\operatorname{Dist}(u, v)]^2$ iff $u \cdot v = 0$.
- Find the equation $y = \beta_0 + \beta_1 x$ of the least squares line that best fits the given data: (2, 3), (3, 2) (5, 1) and (6, 0). **Ans:** y = 4.3 - 0.7xGroup 'B'

Attempt any ten questions:

 $(10 \times 5 = 50)$

Determine if the given set is linearly dependent:

, i.
$$\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$$

ii,
$$\begin{bmatrix} -2\\4\\6\\10\end{bmatrix}\begin{bmatrix} 3\\-6\\-9\\15\end{bmatrix}$$
Ans: (i) Dependent (ii) Independent

- 6. Let $A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}$ and $b = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$. Define T by Tx = Ax. Find a vector x whose image under T is b.
- 7. Let $\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$ where A_{11} is $p \times p$, A_{22} is $q \times q$ and A is invertible. Find a

formula for A⁻¹. Ans:
$$\begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1} A_{12} & \frac{1}{22} \\ 0 & \frac{1}{22} \end{bmatrix}$$

- Compute the determinant of 3 1 2 Ann: -5
- If $B = \{(1, -2), (-3, 5)\}$ and x = (2, -5) then find $\{x\}_{B}$ 10. Consider two bases $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ for V such that $b_1 = 4c_1 + c_2$ and $b_2 = -6c_1 + c_2$. Suppose that $x = 3b_1 + b_2$ then find $|x|_{1/2}$
- Ans: (6, 4) 11. What do you mean by eigenvalues, eigenvectors and characteristics polynomial of a matrix? Explain with suitable example.
- 12. Define Gram-Schmidt process. Let W = Span{x₁, x₂} where x₁ = {3, 6, 6} and $x_2 = (1, 2, 2)$. Then construct an orthogonal basis $\{v_1, v_2\}$ for W.
- Determine whether $C = \{x + iy : x, y \in \mathbb{R}\}$ is a group under addition or not. Ans: Group
- Prove that every field I is an integral domain.
- Find rank of A, dimension of null space of A.

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4 \end{bmatrix}$$

Ans: rank = 2, dim Nul (A) = 3

MODEL SET 8

Group 'A'

Attempt any three questions:

 $(3 \times 10 = 30)$

- Prove that the transformation T is linear. Also, find the matrix that implements the mapping: $T(x_1, x_2, x_3) = (x_1 - 5x_2 + 4x_3, x_2 - 6x_3)$. Also, check whether T is Ans: $\begin{bmatrix} 1 & 5 & -4 \\ 0 & 1 & 6 \end{bmatrix}$ not one to one but onto one to - one and onto or not.
- The set of matrices of the form 0 a22 a21 is a subspace of the vector space of 3 × 3 matrices. Verify it

42 ... A Complete TU Solution of CSIT Second Semester and Practice Sets

- Let V and W are vectors space over a field F or real numbers. Let $\dim (V) = n$, $\dim (W) = m$. Let $\{e_1, e_2, \dots, e_n\}$ be a basis for V and $\{f_1, \ldots, f_m\}$ be a basis for W. Then prove that each linear transformation T: $V \rightarrow W$ can be represented by $m \times n$ matrix A with elements from F such that Y = AX where $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_m)$ are column matrices of coordinates of $v \in N$ relative to its basis and coordinates of $w \in W$ relative to its basis, respectively.
- What is the least squares solution? Find a least squares solution of

Ax = b where A =
$$\begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
, b = $\begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.

Ans: $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Attempt any ten questions:

 $(10 \times 5 = 50)$

- Prove that any set $\{v_1, \ldots, v_n\}$ in \mathbb{R}^n , is linearly dependent if p > n.
- Prove that the transformation T $(x_1, x_2, x_3) = (x_1 5x_2 + 4x_3, x_2 6x_3)$ is linear.

Group 'B'

State the Column-Row Expansion Theorem for two matrix.

$$A = \begin{bmatrix} -3 & 1 & 2 \\ 1 & -4 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 1 \\ 4 & 5 \\ 6 & 3 \end{bmatrix}. \text{ Find AB by Column-Row expansion.}$$

Ans:
$$\begin{bmatrix} 10 & 8 \\ 16 & -4 \end{bmatrix}$$

- Using determinant, show that the matrix A is invertible where A = 1 3 4
- Let $v_1 = (1, -2, 3)$, $v_2 = (-2, 7, -9)$. Determine if $\{v_1, v_2\}$ is a basis for \mathbb{R}^3 . Is $\{v_1, v_2\}$ a basis for \mathbb{R}^2 ?
- Let B = $\{b_1, b_2\}$ and C = $\{c_1, c_2\}$ are bases for \mathbb{R}^2 . If $b_1 = (6, -12)$, $b_2 = (4, 2)$, $c_1 = (4, 2)$ and $c_2 = (3, 9)$. Then find the coordinate matrix from B to

C and also from C to B.

Ans:
$$\begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{-1}{2} \\ 1 & \frac{3}{2} \end{bmatrix}$$

11. Let
$$A = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix}$$
, $b_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $b_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $B = \{b_1, b_2\}$. Find the B-man

for the transformation
$$x \rightarrow Ax$$
 with $P = [b_1, b_2]$.

Ans:
$$\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$$
12. Find the orthogonal projection of y onto u where $y = (7, 6)$ and $y = (4, 2)$

- Find the orthogonal projection of y onto u where y = (7, 6) and u = (4, 2).
- Check whether G is group or not where $G = \{1, \omega, \omega^2\}$ under multiplication. With ω is an imaginary cube root of unity.
- Define integral domain with example. Show that the ring Z_{10} is not an integral 14. domain.
- Let a and b are two positive numbers. Find the area of the region bounded by the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$, Ans: nab