Primal problem: $\frac{1}{2} \|\omega\|^2 + C \stackrel{\text{iff}}{\leq} \frac{3}{6}$ Subject to $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ $\frac{g_i(w_i \cdot x_i + b)}{g_i} > 1 - g_i$ E=0 HARD SVM Soft SVM 1. SVM convex optimization 2. What are support rectors? 3. Analysio : generalization bounds for SVM Material: Ch 5 of Mohriet al SVM in Hastie, Tibohirani Margin: 1 1/w+11 (min Kw; x; >+61)

Necessary and sufficient conditions for existence of unique to convex optimization problems: w^{*} is a minimizer of Primal problem, iff $\Rightarrow \exists w \in \mathcal{Y}_{s}(w) \leq 0 \in S$ (after's condition) $\Rightarrow \nabla_{w} \mathcal{L}(w, \alpha) = 0$ Complementarity constraints $\Rightarrow \sum_{i=1}^{m} \alpha_{i}^{*} g(\omega^{*}) = 0$ $\Rightarrow \alpha_i^* g_i(\omega^*) = 0$ Primal problem $\min_{\omega} f(\omega)$ ie [m] $\partial_{i} \cdot (\omega) \leq 0$ $\mathcal{L}(\omega,\alpha) = f(\omega) + \sum_{i=1}^{m} \alpha_i g_i(\omega)$

$$\mathcal{L}(\omega, b, \xi, \alpha, \beta)$$

$$= \frac{1}{2} \frac{\|\omega\|^2 + C}{\sum_{i=1}^{m} \xi_i} + \frac{1}{2} \frac{\|\omega_i\|^2 + C}{\sum_{i=1}^{m} \xi_i} + \frac{1}{2} \frac{\|\omega_i\|^2 + C}{\sum_{i=1}^{m} \xi_i} + \frac{1}{2} \frac{\|\omega_i\|^2 + \|\omega_i\|^2 + \|\omega_i\|^$$

 \mathcal{X}_i are called support vectors for any i when $\alpha_i \neq 0$

$$\mathcal{L} = \underbrace{\sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} \alpha$$

Dual problem

 $\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{j=1}^{m} \alpha_i d_j y_i y_j \langle x_i, x_j \rangle$

C > di >, 0

i ∈ [m]

Margin loss function min (), max $(0, 1-\frac{y(\omega, x)+b}{f})$ Hinge loss: max(0, 1-2)(max(0, 1-x)) 0-1 loss minimization is NP- hard $\Rightarrow R_{s,f}(h)$ $= \leq \min(1, \max(0)$ (w, b) ERS(h) $R_s(h) \leq$

(<w, xi7+b)y, 7,83 (~~, ...

(\$\hat{k}) R_{s,s}(h) + ____ R_s(h) + ___ If there is an "appropriate" margin P for the data distribution D then, SVM problem generalizes with a bound that does not "explicitly" depend on d.

x, WERd

Rademacher Complexity Rad(H) = \frac{1}{m} \in \sup \left\{ sup \left\{ sup \left\{ i=1} \head(\frac{1}{2})} $\sigma = \{\sigma_1, \ldots, \sigma_m\}$ O. = S 1 Probability 1/2 2-1 Probability 1/2 Soi h(xi): "Correlation" between junction output & noise $\mathcal{H} = \left\{ h \left(\epsilon, \omega, b \right) : \langle \omega, x \rangle + b \right\}$ $\mathcal{H} = \left\{ h(\cdot, \omega, b) : h(x) = \langle \omega, x \rangle + b \right\}$ $\|h(x)\| < \Lambda \mathcal{J}$ Class of Classifiers is H: \$\phi_0\$H

e.g.

\$\phi: \text{Sgn} \\
\$\phi: \text{hinge loss} \\
\$\phi: \text{hing $\frac{H}{H} = \left\{ h(., \omega, b) : \min_{x, y \in \mathcal{Y}} \{ \frac{\omega, x > + b}{p}, 0 \} \right\}$ Thm: If Φ is l-lipschitz, $Rad_{S}(\Phi\circ H) \leq l Rad(H)$

 $\frac{1}{|\Phi(x) - \Phi(y)|} \leq \frac{|\Phi(x) - \Phi(y)|}{|\Phi(x) - \Phi(y)|} \leq \frac{|\Phi(x) - \Phi(y)|}{|\Phi(x) - \Phi(y)|}$ $\lim_{x \to \infty} \frac{|\nabla \Phi(x)|}{|\Phi(x)|} = \frac{|\nabla \Phi(x)|}{|\Phi(x)|}$

Next time: i) Rads (H) < C
linear
2) Use thm