Problem

The following are the state diagrams of two DFAs, M_1 and M_2 . Answer the following questions about each of these machines.

- a. What is the start state?
- **b.** What is the set of accept states?
- $\boldsymbol{c}.$ What sequence of states does the machine go through on input aabb?
- d. Does the machine accept the string aabb?
- e. Does the machine accept the string "?

Step-by-step solution

Step 1 of 7

State diagrams for two DFAs, $\,M_{_{1}}\,$ and $\,M_{_{2}}\,$ are

Step 5 of 7

The machine $\,M_2$ will go through the following sequence of states on input $\it aabb$

ullet Machine $M_{\scriptscriptstyle \parallel}$ will go through following sequence of sates on input aabb

On reading the input aabb, M_1 finally entered into state q_1 , which is not an accept state.

ullet Machine $M_{\scriptscriptstyle 2}$ will go through the following sequence of sates on input aabb

 q_1, q_1, q_1, q_2, q_4

1. Start in state q_1

2. Read a, follow transition from q_1 to q_2 3. Read a, follow transition from q_2 to q_3 4. Read b, follow transition from q_3 to q_1 5. Read b, follow transition from q_1 to q_1

So M_1 reject the input *aabb*.

Comment

1. Start in state $q_{\scriptscriptstyle \parallel}$	
2. Read a, follow tra	nsition from q_1 to q_1
3. Read a, follow tra	nsition from $q_{_1}$ to $q_{_1}$
4. Read b, follow tra	nsition from $q_1^{}$ to $q_2^{}$
5. Read b, follow tra	nsition from $q_2^{}$ to $q_4^{}$
On reading the inpu	aabb, $M_2^{}$ finally entered into state $q_4^{}$.
$q_{\scriptscriptstyle 4}$ accept state of	M_2 .
Hence M_2 accept	ne input <i>aabb</i> .
Comment	
	Step 6 of 7
(e)	Step 6 of 7
	\in (empty string) to machine $M_{\scriptscriptstyle \parallel}, \ M_{\scriptscriptstyle \parallel}$ always in the start state $q_{\scriptscriptstyle \parallel}.$
$ullet$ On giving the input $\{q_1\}$ in not the	\in (empty string) to machine $M_1,\ M_1$ always in the start state $q_1.$ accept sate of $M_1.$
On giving the input	\in (empty string) to machine M_1 , M_1 always in the start state q_1 . accept sate of M_1 .
\bullet On giving the input $\{q_{\rm i}\} \ {\rm in \ not \ the}$ Thus $M_{\rm i}$ does not \bullet	\in (empty string) to machine M_1 , M_1 always in the start state q_1 . accept sate of M_1 .
$ullet$ On giving the input $\{q_1\}$ in not the	\in (empty string) to machine M_1 , M_1 always in the start state q_1 . accept sate of M_1 .
\bullet On giving the input $\{q_{\rm i}\} \ {\rm in \ not \ the}$ Thus $M_{\rm i}$ does not \bullet	\in (empty string) to machine $M_1,\ M_1$ always in the start state $q_1.$ accept sate of $M_1.$
On giving the input $\{q_1\} \text{ in not the }$ Thus M_1 does not $.$ Comment	\in (empty string) to machine M_1 , M_1 always in the start state q_1 . accept sate of M_1 . accept the string \in
On giving the input $\{q_1\} \text{ in not the }$ Thus M_1 does not $.$ Comment	e (empty string) to machine M_1 , M_1 always in the start state q_1 . Accept sate of M_1 . Accept the string \in $\mathbf{Step 7} \text{ of 7}$ $\mathbf{E} \text{ (empty string) to the machine } M_2, \ M_2 \text{ always in the start state } q_1.$