Chapter Exam

Chapter 2.1~2.9-instructions: language of the computer

2019/04/30

*Please write the answer on your answer sheet

1. Please use a 4 bytes data 0x1234abcd for example to describe what would the data stored in the following Little-Endian memory architecture and Big-Endian memory architecture? (20%)

	Little-Endian	Big-Endian
Memory address	LIC MENSOR OF THE PARTY.	
00		in an area and a second
01		
02		
03		

2. Assume variable h is associated with register \$s2 and the base address of the Array A is in \$s3. Now the C assignment statement is as below:

$$A[8] = h + A[2]$$

Write the answers of (A) \((B) \((C) \) according to the following MIPS assembly code. (15%)

3. A recursive C language statement is as:

```
Void swap(int v[], int k)

Int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
```

課程: Computer Organization, The corresponding MIPS assembly code is as:

國立中山大學資訊工程學系,教師:黃英哲

swap: muli \$t1, \$a1, (A) add \$t1, \$a0, \$t1

lw \$t0, (B) lw \$t2, (C)

\$t2, _(D)_ sw

sw \$t0, (E)

void swap (int V[], int k) {
int temp; temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; 3

Now you have three temporal registers, \$t0, \$t1, \$t2, \$a1 for k, the base address of array $v[\]$ is \$a0. Write the answers of (A)~(E). (20%)

4. What is the MIPS assembly code to load the following 32-bit constant into register \$s0? (10%)

32-bit constant: 0000 0000 1100 1010 0000 0000 0001 1000

5. Converting the following MIPS codes to C codes. The argument register \$a0 corresponds to the parameter

variable n. (20%) Test:

addi \$sp, \$sp, -8 sw \$ra, 4(\$sp)

sw \$a0, 0(\$sp)

slti \$t0, \$a0, 1

beg \$t0, \$zero, L1

addi \$v0, \$zero, 1

addi \$sp, \$sp, 8

\$ra ir

addi \$a0, \$a0, -1 L1:

jal fact

lw \$a0, 0(\$sp)

\$ra, 4(\$sp) lw

addi \$sp, \$sp, 8

mul \$v0, \$a0, \$v0

Sec ir

Test

Category	Instruction	Example
Arithmetic	add	add \$s1.\$s2.\$s3
	subtract	sub \$s1.\$s2.\$s3
	add immediate	addi \$s1.\$s2.20
the oun	load word	lw \$s1,20(\$s2)
	store word	sw \$s1.20(\$s2)
	load half	lh \$51,20(\$52)
	load half unsigned	1hu \$s1.20(\$s2)
	store half	sh \$s1.20(\$s2)
Data	load byte	1b \$s1,20(\$s2)
transfer	load byte unsigned	1bu \$s1,20(\$s2)
	store byte	sb \$s1.20(\$s2)
	load linked word	11 \$s1.20(\$s2)
	store condition, word	sc \$s1.20(\$s2)
	load upper immed.	lui \$s1.20
Logical	and	and \$s1,\$s2,\$s3
	or	or \$s1,\$s2,\$s3
	nor	nor \$s1,\$s2,\$s
	and immediate	andi \$s1,\$s2,20
	or immediate	ori \$s1.\$s2.20
	shift left logical	511 \$51,\$52,10
	shift right logical	srl \$s1,\$s2,10

	SP-= 8 1
	10 = 48 LIJ)
	n = 4p[0];
+0	= N = 1
if	to == 0 => L1

	branch on equal	beq \$51.\$52.25
	branch on not equal	bne \$51.\$52.25
	set on less than	slt \$51.\$52.\$53
	set on less than unsigned	sltu \$51,\$52,\$53
	set less than immediate	slti \$51.\$52.20
	set less than immediate unsigned	sltiu \$s1.\$s2.20
Unconditional jump	jump	j 2500
	jump register	jr \$ra
	jump and link	jal 2500

6. Converting the following C codes to MIPS codes. In the following code segment, f, g, h, i, and j are variables. The five variables f through j corresponds to the five registers \$s0 through \$s4. (25%)

$$if(i = j)$$

$$f = g + h;$$

else

$$f = g - h;$$