Сумма Минковского

1. Пусть A и B — фиксированные точки, λ и μ — фиксированные числа. Выберем произвольную точку X и зададим точку P равенством $\overline{XP} = \lambda \overline{XA} + \mu \overline{XB}$. Докажите, что положение точки P не зависит от выбора точки X тогда и только тогда, когда $\lambda + \mu = 1$. Докажите также, что в этом случае точка P лежит на прямой AB.

Определение 1. Если $\lambda + \mu = 1$, то точку P из предыдущей задачи будем обозначать $P = \lambda A + \mu B$.

Пусть M_1 и M_2 — выпуклые многоугольники, λ_1 и λ_2 — положительные числа, сумма которых равна 1. Фигуру $\lambda_1 M_1 + \lambda_2 M_2$, состоящую из всех точек вида $\lambda_1 A_1 + \lambda_2 A_2$, где A_1 — точка M_1 , а A_2 — точка M_2 , называют суммой Минковского многоугольников M_1 и M_2 .

Упражнение 1. Найдите сумму Минковского а) двух отрезков;б) выпуклой фигуры самой с собой.

Определение 2. На плоскости дана точка O. Суммой Минковского фигур A и B называется множество точек C таких, что для $\forall C' \in C, \exists A' \in A, B' \in B: \overline{OC'} = \overline{OA'} + \overline{OB'}$

Упражнение 2. Чем является сумма двух равных фигур по второму определению?

- 2. Докажите, что сумма выпуклых фигур выпукла.
- 3. Чему равна ширина суммы двух фигур по направлению?
- **4.** Докажите, что сумма фигур постоянной ширины есть фигура постоянной ширины. Докажите, что если фигуру постоянной ширины сложить с собой, повёрнутой на π , то получится окружность.
- **5.** Докажите, что если M_1 и M_2 выпуклые многоугольники, то $\lambda_1 M_1 + \lambda_2 M_2$ выпуклы многоугольник, число сторон которого не превосходит суммы чисел сторон многоугольников M_1 и M_2 . А периметр сумме периметров исходных фигур, помноженных на коэффициенты.