Prove the following theorem (terminology is given below):

Suppose X is compact and $f: X \to \mathbb{R}$ is lower semicontinuous. Then F is bounded below on X, and there exists a point $z \in X$ satisfying $f(z) \leq f(x)$ for all $x \in X$.

Recall that in a HTS (X, \mathcal{T}) , a function $f: X \to \mathbb{R}$ is called lower semicontinuous if the following set is closed for every $p \in \mathbb{R}$:

$$f^{-1}((-\infty, p]) = \{x \in X : f(x) \le p\}.$$

(One approach uses the family of closed sets $f^{-1}((-\infty,p])$ satisfyin $p > \inf f(x)$.)

Solution. ff

Let (X,d) be a metric space, with $K \subseteq X$ a compact set. Prove that whenever \mathcal{G} is an open cover for K, there exists r < 0 with this property: for every pair of points $x, y \in K$ obeying d(x,y) > r, some open set $G \in \mathcal{G}$ contains both x and y.

Solution. Let G_1, G_2, \ldots, G_N be the finite subcover of K such that $G_i \in \mathcal{G}$ for all $i \in 1, 2, \ldots, N$ and $K \subseteq \bigcup_{1 \leq i \leq N} G_i$, which we know exists from the compactness of K. Since G_i is open, there exists some r_i such that $\mathbb{B}[x, r_i) \subseteq G_i$ for all $x \in G$. Then, let $r := \min_i \{r_i\}$. If

Define the set-valued "projection" mapping $p_1 \colon \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R})$ by

$$p_1(S) = \{x_1 \in \mathbb{R} : (x_1, x_2) \in S \text{ for some } x_2\}, \qquad S \subseteq \mathbb{R}^2$$

- (a). If S is bounded, must $p_1(S)$ be bounded? (Why or why not?)
- (b). If S is closed, must $p_1(S)$ be closed? (Why or why not?)
- (c). If S is compact, must $p_1(S)$ be compact? (Why or why not?)
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff

Recall the set ℓ^2 from HW07 Q3, and the standard "unit vectors" $\hat{p} = (0, 0, \dots, 0, 1, 0, \dots)$, where the only nonzero entry in \hat{p} occurs in component p. For any x in ℓ^2 and subset $V \subseteq \ell^2$, write

$$\Omega(x; V) = \{ y \in \ell^2 \colon -1 < (v, y - x) < 1, \forall v \in V \}.$$

Then define a collection \mathcal{T} of subsets of ℓ^2 by saying $G \in \mathcal{T}$ if and only if every point $x \in G$ has the property that $x \in \Omega(x; V) \subseteq G$ for some finite set $V \subseteq \ell^2$.

- (a). Prove that $\Omega(x; V) \in \mathcal{T}$ of every finite set $V \subseteq \ell^2$ and point $x \in \ell^2$.
- (b). Prove that (ℓ^2, \mathcal{T}) is a Hausdorff Topological Space.
- (c). Let $S = \{\hat{p} : p \in \mathbb{N}\}$. Prove that $0 \in S'$. (Here 0 denotes $(0,0,\ldots)$, the "origin in ℓ^2 .) Note: This fact proves that \mathcal{T} is different from the metric topology on ℓ^2 .
- (d). Prove that every G in T has the property: for every x in G, there exists r > 0 such that

$$G \supseteq \mathbb{B}[x;r) = \{ y \in \ell^2 : ||y - x|| < r \}.$$

This fact proves that every set considered "open" in \mathcal{T} is also open in the metric topology on ℓ^2 . This explains why \mathcal{T} gets called "the weak topology" and the metric topology is also called "the strong topology."

- (e). Prove that the following set is closed in the weak topology of ℓ^2 : $\mathbb{B}[0;1] = \{y \in \ell^2 : ||y|| \le 1\}$.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff
- (d). Solution. ff
- (e). Solution. ff