Problem 1

explanations

To find a

take left lower landmark as example, assume the position of robot is Q

the left upper landmark pose(1) should be (x, y + a)

```
in order to calculate p(x_0 = x, y_0 = y)
```

the right lower landmark pose(3) should be (x + a, y)

the right upper landmark pose(4) should be (x + a, y + a)

$$p(\mathbf{x}_0 = \mathbf{x}, \mathbf{y}_0 = \mathbf{y}) = \prod_i G(dist(pose(i), Q) - r_i \mid \mu = 0, \sigma = \sigma_i)$$

problem 2

problem 3

Problem 4

For the left lower single landmark, A

$$\mathrm{p}(\mathrm{x}_{0}=\mathrm{x}\,,\mathrm{y}_{0}=\mathrm{y})=G(\,dist_{A}-r_{A}\mid\mu=0,\sigma=\sigma_{A_dist}\,)\times G(\,\Delta\theta_{A}\mid\mu=0,\sigma=\sigma_{A_theta}\,)$$

where $dist_A$ means distance between $landmark\ A$ and $robot\ position\ Q$, $\Delta\theta = atan2\big(y-y_Q,x-x_Q\big) - atan2\big(y_A-y_Q,x_A-x_Q\big) = atan2\big(y-y_Q,x-x_Q\big) - \theta_2$

Other landmarks are the same idea

Results is shown as below:

