

Course Info

Instructor: Andrei Bulatov

Image: Email: abulatov@cs.sfu.ca
Room: TASC 8013
Office hours (tentative):
Thursday 3:30 – 17:00

Teaching Assistant:
Carrie Wang, email: cwa9@sfu.ca

Algorithms - Introduction

To introduce more advanced algorithmic techniques, methods of algorithm analysis, and models of computation

Syllabus:

Course Info

Course objective:

- Review of models of computation, dynamic programming, greedy algorithms
- Graph algorithms and network flow
- Branch and bound
- NP-Completeness
- Approximation algorithms
- Randomized algorithms
- Algorithmic game theory, Markov chains, Monte Carlo method, fast Fourier transform (if time permits)

Algorithms - Introduction

ion

Course Info

- Textbook:
 - Commen, Leiserson, Rivest, Stein, Introduction to Algorithms, McGraw Hill, MIT Press.
 - Kleinberg, Tardos,

 Algorithm Design, Addison Wesley
 - It is impossible to finish studying all the contents of the textbook in one semester. The contents not covered in lectures/slides are not required, unless explicitly indicated as required.
 - The content and order of topics, as presented in the class, do not one-to-one correspond to any part of the books. Use of Subject Index and Recommended Text is advised.

Algorithms - Introduction 1-5

Course Info

- References:
 - D. E. Knuth, The Art of Computer Programming. Vol. 1,2,3,4, Addison-Wesley
 - R. L. Graham; D. E. Knuth; and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1994

Algorithms - Introduction

1.6

Course Info

- Grading:
 - 8 Assignments (8 × 3%)
 - 1 Midterm 26%
 - 1 Final Exam 50%

Algorithms - Introduction

Prerequisites

- Basic knowledge of algorithms
- Some general knowledge is needed, as there will be examples
- Basic math erudition
- Some experience in programming is very helpful

Closest Pair: The Problem

The Closest Pair Problem
Instance:
 n points in the plane
Objective:
 Find a pair of points that are closest together

Algorithms - Introduction

Closest Pair: Algorithm

Input:

output a,b

points a_1,\dots,a_n in the plane Output pair a_i,a_j such that $|a_ia_j|$ is minimal Method: set $a=a_1,\ b=a_2$ and $d=a_1a_2$ for $1\leq i< j\leq n$ do if $|a_ia_j|< d$ then set $a=a_i,\ b=a_j$ and $d=|a_ia_j|$ endfor

Algorithms - Introduction

1-1

Closest Pair: Soundness

An algorithm is sound / correct if it outputs what it is supposed to output

Theorem

The Closest Pair algorithm is sound. (In other words for any input points it returns a pair of points that are at minimal distance between them.)

Proof.

trivial

Algorithms - Introduction

1-11

Closest Pair: Running Time

Evaluating running time is not easy

In the Closest Pair algorithm the **for** loop is executed $\frac{n(n-1)}{2}$ times However each execution requires several elementary steps, so we tend to say that its running time is somewhat like n^2

Algorithms - Introduction

Asymptotic Notation

g is in o(f) if for any c starting from some k(c): $g(n) < c \cdot f(n)$ The running time of Closest Pair is $O(n^2)$ Other frequent running times: linear O(n) $O(n \log n)$ polynomial $O(n^k)$ exponential $O(2^{cn})$ sublinear O(n)

Algorithms - Introduction 1-14 f Closest Pair: Real Running Time f Do you see anything wrong with our $f O(n^2)$ estimation?