Nombres et calculs numériques

Hypothèse. « Entier » désigne un nombre entier naturel (positif). « Réel » désigne un nombre quelconque. Les ensembles de nombres : \mathbb{N} (Naturels) $\subset \mathbb{Z}$ (Relatifs) $\subset \mathbb{D}$ (Décimaux) $\subset \mathbb{Q}$ (Rationnels) $\subset \mathbb{R}$ (Réels)

Définition de « a puissance n ». Pour a un réel et n un entier non nul, On note :

 $a^n = \underbrace{a \times a \times ... \times a}_{n \text{ facteurs}}$. On note $a^{-n} = \underbrace{\frac{1}{a \times a \times ... \times a}}_{n \text{ facteurs}}$ De plus, on pose $a^0 = 1$.

Exemples. $2^4 = 2 \times 2 \times 2 \times 2 = 16$. $5^{-2} = \frac{1}{5 \times 5} = \frac{1}{25}$

Règle. $a^{-n} = \frac{1}{a^n}$ $a^1 = a$ $a^{-1} = \frac{1}{a}$ **Règle.** $a^n \times a^m = a^{n+m}$ (Si on <u>multiplie</u> des puissances <u>d'un même réel</u>, on <u>ajoute</u> leurs exposants)

Règle. $\frac{a^n}{a^m} = a^{n-m}$ (Si on <u>divise</u> des puissances <u>d'un même réel</u>, on <u>soustrait</u> leurs exposants)

Règle. $(a^n)^m = a^{n \times m}$ (Si on prend la puissance d'une puissance, on multiplie les exposants)

Règle. $a^n \times b^n = (ab)^n$ (Le produit de puissances *n*-ièmes, est la puissance *n*-ième du produit)

Définition et méthode. Pour écrire un grand nombre en notation scientifique, par exemple 3125,58 : On divise ce nombre par 10 (on décale la virgule à gauche) plusieurs fois, jusqu'à ce que la virgule soit juste après le premier chiffre $3125,58 = 3,12558 \times 10^3$ (avec $10^3 = 1000$).

Pour écrire un petit nombre en notation scientifique, par exemple 0,00052 : On multiplie par 10 (on décale la virgule à droite) plusieurs fois $0,00052 = 5, 2 \times 10^{-4}$ (avec $10^{-4} = \frac{1}{10000} = 0,0001$).

Définition de la valeur absolue. Etant donné un réel a, on définit |a| = a si $a \ge 0$, |a| = -a si $a \le 0$. **Exemple**. |3| = 3; |-4| = 4; |-1,5| = 1,5; |5,6| = 5,6. La valeur absolue « enlève » le signe –.

Propriété et définition de la racine carrée d'un réel positif. Etant donné un réel positif a, il existe un unique réel positif r tel que $r^2 = a$. On le note \sqrt{a} (on dit « racine carrée de a »).

On a donc $\sqrt{a} \times \sqrt{a} = (\sqrt{a})^2 = a$. Si par chance on trouve r tel que $r \times r = a$, nécessairement $r = \sqrt{a}$

Exemples. $\sqrt{9} = 3 \text{ car } 3 \times 3 = 9.$ $\sqrt{1} = 1 \text{ car } 1 \times 1 = 1.$ $\sqrt{0} = 0 \text{ car } 0 \times 0 = 0.$ $\sqrt{2} \approx 1,41 \dots$

Règles. Pour tout réel quelconque a, $\sqrt{a^2} = |a|$. Pour tout réel positif a, $(\sqrt{a})^2 = a$

Règle. Pour tous réels $a, b \ge 0$, $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$. (La racine d'un produit est le produit des racines)

Règle. Pour tous réels a, b > 0, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$. (La racine d'un quotient est le quotient des racines)

Règle. Simplification d'un radical au dénominateur. Pour tous réels a,b>0, $\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}^2}=\frac{a\sqrt{b}}{b}$