1. Электромагнитные и акустические волны

Электромагнитное излучение наблюдается при ускоренном движении электрических зарядов. Рассмотрим излучение электрического точечного диполя, совершающего гармонические колебания на частоте ω ,

$$\vec{P}(t) = q\vec{l}(t) = q\vec{l}_0\cos\omega t = \vec{P}_0\cos\omega t,$$

где постоянный вектор \vec{l}_0 проведен от отрицательного заряда -q к положительному заряду +q. Полный заряд диполя равен нулю. Диполь считается точечным, если $l_0 << \lambda$, где λ - длина волны излучения диполя.

Согласно системе уравнений Максвелла в линейной среде частота электромагнитного излучения равна частоте колебаний диполя, поэтому $\lambda = 2\pi\,c/\omega$, где c — скорость электромагнитных волн. Если диполь находится в вакууме, **мгновенная** мощность электромагнитного излучения

$$N(t) = \oint_{S} (\vec{\Pi}(t)\vec{n})ds = \frac{\vec{p}^{2}}{6\pi\varepsilon_{0}c^{3}},$$

где $\vec{\Pi} = \left[\vec{E}\vec{H}\right]$ - вектор Пойнтинга, \vec{E} и \vec{H} - векторы напряженности электрического и магнитного поля соответственно, S — замкнутая поверхность, охватывающая диполь, \vec{n} - единичный вектор внешней нормали к элементу поверхности ds, $\epsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/\mathrm{M}$ - электрическая постоянная и $c = 3 \cdot 10^8 \, \mathrm{m/c}$ - скорость света в вакууме. Точка сверху обозначает производную по времени.

Усредненный по интервалу времени $\Delta t >> T$, где T — период колебаний, вектор Пойнтинга определяет **интенсивность** J излучения

$$\left\langle \vec{\varPi} \right\rangle = \left\langle \left[\vec{E} \vec{H} \right] \right\rangle = J \vec{n} \ .$$

Здесь угловые скобки обозначают усреднение по интервалу времени Δt , а \vec{n} - единичный вектор, задающий направление вектора Пойнтинга. Излучение диполя является анизотропным, поскольку величина интенсивности J зависит от направления наблюдения. В дальней (волновой) зоне диполя, где

$$r \gg l_0$$
, $\lambda = cT = \frac{2\pi c}{\omega}$,

угловое распределение интенсивности описывается формулой

$$J = \frac{3}{8\pi} \frac{\langle N \rangle}{r^2} \sin^2 \theta.$$

Здесь $\langle N \rangle$ - средняя мощность излучения, \vec{r} - вектор, проведенный из центра диполя в точку наблюдения, θ - угол между векторами \vec{l}_0 и \vec{r} . Таким образом, интенсивность излучения обращается в нуль при $\theta=0$ и $\theta=\pi$ (вдоль прямой, на которой лежит вектор \vec{l}_0) и принимает максимальное значение при $\theta=\pi/2$ (в плоскости, перпендикулярной вектору \vec{l}_0 и проходящей через точку, в которой находится диполь).

Анизотропию излучения источника удобно представлять с помощью диаграммы направленности. Для получения диаграммы направленности в волновой зоне необходимо построить сферу с центром в точке нахождения источника. Вдоль прямой, соединяющий источник с некоторой точкой сферы, откладывается отрезок, длина которого равна интенсивности излучения в данном направлении согласно выбранному масштабу. Если перебрать все точки сферы, то конец откладываемого отрезка опишет замкнутую поверхность, охватывающую источник. Данная поверхность является диаграммой направленности.

В случае излучения рассматриваемого диполя диаграмма направленности имеет ось симметрии — это прямая, по которой направлен вектор \vec{l}_0 . При повороте вокруг этой оси на любой угол диаграмма направленности не меняется. В сечении, проходящем через ось симметрии, диаграмма направленности дает замкнутую кривую типа «восьмерки», ориентированной перпендикулярно вектору \vec{l}_0 (см. рис.1.1). Эта кривая позволяет сразу понять характер зависимости интенсивности излучения точечного диполя от угла наблюдения θ .

Рис.1.1

Для получения полной диаграммы направленности эту замкнутую кривую необходимо повернуть на угол π вокруг вектора \vec{l}_0 . Описанная при повороте замкнутой кривой поверхность есть диаграмма направленности диполя.

Электрический дипольный момент, направленный по оси x, изменяется во времени согласно выражению

$$P(t) = P_0 \cos(\omega t) e^{-\gamma t}$$
,

где P_0 - постоянная, ω - частота колебаний диполя и γ - коэффициент затухания колебаний ($\gamma << \omega$ - случай слабого затухания). Считая, что диполь находится в вакууме, определить: 1) зависимость мощности N(t) излучения диполя от времени, 2) среднюю за период $T=2\pi/\omega$ колебаний мощность $\langle N(t) \rangle$ и 3) нарисовать диаграмму направленности.

Решение

Мгновенная мощность излучения диполя в вакууме

$$N(t) = \frac{\ddot{\vec{p}}^2}{6\pi\varepsilon_0 c^3} \,, \tag{1}$$

где $\vec{p}=(p,0,0),\ p(t)=p_0\cos(\omega t)e^{-\gamma t},\ \dot{p}=-\omega p_0\sin(\omega t)e^{-\gamma t}-\gamma p_0\cos(\omega t)e^{-\gamma t},$ $\ddot{p}=-\omega^2 p_0\cos(\omega t)e^{-\gamma t}+2\gamma\omega p_0\sin(\omega t)e^{-\gamma t}+\gamma^2 p_0\cos(\omega t)e^{-\gamma t}\approx -\omega^2 p_0\cos(\omega \cdot t)e^{-\gamma t},$ поскольку $\omega>>\gamma$. Следовательно, мгновенная мощность излучения описывается формулой

$$N(t) \approx \frac{p_0^2 \omega^4 \cos^2(\omega t) e^{-2\gamma t}}{6\pi \varepsilon_0 c^3}.$$
 (2)

Средняя за период T мощность

$$\langle N(t) \rangle = \frac{1}{T} \int_{t}^{t+T} N(t) dt = \frac{p_0^2 \omega^4}{6\pi \varepsilon_0 c^3} \left(\frac{1}{T} \int_{t}^{t+T} \cos^2(\omega t) \cdot e^{-2\gamma t} dt \right) \approx$$

$$\approx \frac{p_0^2 \omega^4}{6\pi \varepsilon_0 c^3} e^{-2\gamma t} \left(\frac{1}{T} \int_{t}^{t+T} \frac{1 + \cos(2\omega t)}{2} dt \right) = \frac{p_0^2 \omega^4}{12\pi \varepsilon_0 c^3} e^{-2\gamma t}.$$
(3)

Здесь использован тот факт, что $\omega >> \gamma$ и относительно медленно меняющуюся функцию $e^{-2\gamma t}$ можно вынести за знак интеграла. Из формул (2) и (3) видно, что мощность излучения диполя пропорциональна четвертой степени частоты его колебаний и монотонно уменьшается во времени в соответствии с законом уменьшения во времени квадрата амплитуды этих колебаний.

Диаграмма направленности имеет вид, показанный на рис.1. Для ее получения необходимо в плоскости xoz нарисовать замкнутую кривую в виде «восьмерки», расположенной вдоль оси z и затем повернуть эту кривую вокруг оси симметрии x на угол

 π . Полученная таким образом замкнутая поверхность есть диаграмма направленности электрического диполя, совершающего гармонические колебания вдоль оси x.

Рис.1

Otbet:
$$N(t) \approx \frac{p_0^2 \omega^4 \cos^2(\omega t) e^{-2\gamma t}}{6\pi \varepsilon_0 c^3}$$
, $\langle N(t) \rangle = \frac{p_0^2 \omega^4}{12\pi \varepsilon_0 c^3} e^{-2\gamma t}$.

В дальней волновой зоне локальная пространственная структура излучения может быть описана с помощью **плоской монохроматической электромагнитной волны**. Рассмотрим плоскую монохроматическую электромагнитную волну, линейно поляризованную по оси y и распространяющуюся в положительном направлении оси x в вакууме. Из системы уравнений Максвелла следует, что векторы напряженности электрического \vec{E} и магнитного \vec{H} полей описываются формулами:

$$\vec{E}(x,t) = \vec{e}_E E_0 \cos(kx - \omega t + \Phi_0), \quad \vec{H}(x,t) = \vec{e}_H H_0 \cos(kx - \omega t + \Phi_0).$$

Здесь $\vec{e}_E = (0,1,0)$ и $\vec{e}_H = (0,0,1)$ - единичные векторы, определяющие направления векторов напряженности электрического и магнитного поля волны соответственно, при этом вектор \vec{e}_E задает поляризацию волны и называется вектором поляризации, E_0 — амплитуда электрического поля, имеющая размерность В/м, H_0 — амплитуда магнитного поля, имеющая размерность А/м, причем для данной волны они связаны между собой соотношением

$$\frac{E_0}{H_0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} ,$$

где $\, \epsilon_0 = 8,85 \cdot 10^{-12} \, \Phi$ /м - электрическая постоянная и $\, \mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м — магнитная постоянная, $\, \vec{k} = (k,0,0) \,$ - волновой вектор, задающий направление распространения

волны, \vec{k} , \vec{e}_E и \vec{e}_H образуют правую тройку векторов, величина волнового вектора называется волновым числом и определяет длину волны

$$\lambda = \frac{2\pi}{k},$$

отношение частоты ω волны к ее волновому числу k равно фазовой скорости волны

$$u_{\Phi} = \frac{\omega}{k} = \frac{\lambda}{T} = c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3 \cdot 10^8 \,\text{m/c},$$

где $T=2\pi/\omega$ - период колебаний.

Из этих характеристик видно, что рассматриваемая волна является **поперечной**, поскольку векторы \vec{E} и \vec{H} совершают колебания в плоскости, перпендикулярной к волновому вектору \vec{k} , задающему направление распространения волны.

Мгновенная плотность энергии электромагнитной волны определяется выражением

$$w = \frac{\varepsilon_0 \vec{E}^2}{2} + \frac{\mu_0 \vec{H}^2}{2} \ .$$

Отсюда следует, что средняя за период колебаний T плотность энергии плоской монохроматической волны в вакууме имеет вид:

$$\langle w \rangle = \frac{\varepsilon_0 E_0^2}{4} + \frac{\mu_0 H_0^2}{4} = \frac{\varepsilon_0 E_0^2}{2} = \frac{\mu_0 H_0^2}{2}.$$

Интенсивность (средняя плотность потока энергии, переносимой волной через плоскость, перпендикулярную к направлению распространения волны) для плоской монохроматической волны в вакууме имеет вид:

$$J = c \langle w \rangle = c \frac{\varepsilon_0 E_0^2}{2} = c \frac{\mu_0 H_0^2}{2}.$$

Наряду с энергией плоская монохроматическая волна переносит **импульс**, плотность потока которого описывается формулой

$$\vec{I} = \frac{J}{c} \frac{\vec{k}}{k} = \langle w \rangle \frac{\vec{k}}{k}$$
.

Модель плоской монохроматической волны часто используется для оценки характеристик других видов электромагнитного излучения.

Задача № 2

Импульс лазерного излучения, распространяющийся в вакууме, имеет длину волны λ = 1мкм, длительность τ = 1мкс, площадь поперечного сечения σ = 1мм 2 и энергию W = 1Дж. Определить для лазерного импульса: 1)среднюю плотность энергии $\langle w \rangle$, 2) интенсивность J, 3) амплитуду E_0 электрического поля и 4) амплитуду H_0 магнитного поля.

Решение

Поскольку продольный и поперечный размеры импульса много больше длины волны излучения, то для приближенной оценки можно считать, что электромагнитное поле равномерно заполняет круговой цилиндр с длиной $l=c\tau$ и площадью поперечного сечения σ (геометрическая модель импульса). Объем V этого цилиндра, движущегося со скоростью света в вакууме, равен

$$V = l\sigma = c\tau\sigma = 3 \cdot 10^{-4} \,\mathrm{m}^3. \tag{1}$$

Средняя плотность энергии, распределенной по всему объему цилиндра,

$$\langle w \rangle = \frac{W}{V} = 3,3 \cdot 10^3 \,\text{Дж/м}^3.$$
 (2)

Для оценки других характеристик излучение можно рассматривать как ограниченную в пространстве плоскую монохроматическую волну (физическая модель импульса), поэтому интенсивность

$$J = c\langle w \rangle = 10^{12} \,\mathrm{BT/M}^2,\tag{3}$$

амплитуда электрического поля

$$E_0 = \sqrt{\frac{2\langle w \rangle}{\varepsilon_0}} = 2 \cdot 10^7 \,\text{B/m} \tag{4}$$

и амплитуда магнитного поля

$$H_0 = \sqrt{\frac{2\langle w \rangle}{\mu_0}} = 7 \cdot 10^4 \,\text{A/M}. \tag{5}$$

Ответ: $\langle w \rangle = 3, 3 \cdot 10^3 \, \text{Дж/м}^3$, $J = 10^{12} \, \text{Вт/м}^2$, $E_0 = 2 \cdot 10^7 \, \text{В/м}$, $H_0 = 7 \cdot 10^4 \, \text{А/м}$.

В газах и жидкостях **звуковые волны**, переносящие механические колебания элементов среды, являются продольными и описываются скалярной волновой функцией, которая в случае плоской монохроматической волны, бегущей в положительном направлении оси x, имеет вид:

$$\psi = a\cos(kx - \omega t + \Phi_0),$$

где a=const>0 - амплитуда волны, ω - частота волны, λ - длина волны, $k=2\pi/\lambda$ - волновое число, Φ_0 - начальная фаза волны, $\omega/k=\upsilon_{_{3B}}$ - фазовая скорость звука. При возбуждении звуковой волны в среде возникает дополнительное к постоянному равновесному давлению среды давление

$$p_{_{3B}} = \rho v_{_{3B}} \frac{\partial \psi}{\partial t}$$
,

действующее вдоль прямой, по которой распространяется волна. Здесь ρ - плотность среды в отсутствие звуковой волны. Это давление обусловлено вынужденными колебаниями частиц среды.

Звуковая волна переносит энергию и соответствующая интенсивность описывается формулой

$$J = \upsilon_{_{3B}} \langle w \rangle = \frac{1}{2} \upsilon_{_{3B}} \rho \omega^2 a^2 ,$$

где $\langle w \rangle = \rho \omega^2 a^2/2$ - средняя плотность энергии звуковой волны, связанная с потенциальной энергией деформированной среды и кинетической энергией, обусловленной колебательным движением элементов среды.

Залача № 3

При какой интенсивности J звуковая волна создает в воде амплитуду давления $p_{_{3B}}=100\,\Pi$ а, если скорость звука в воде $\upsilon_{_{3B}}=1500\,\text{м/c}$ и плотность воды $\rho=1\,\text{г/cm}^3$?

Решение

Для оценки примем, что звуковая волна является плоской монохроматической волной, для которой смещение элементов среды описывается функцией

$$\Psi = a\cos(kx - \omega t + \Phi_0). \tag{1}$$

В этом случае интенсивность волны

$$J = \frac{1}{2} \upsilon_{_{3B}} \rho \omega^2 a^2, \tag{2}$$

а возникающая волна давления имеет вид:

$$p_{_{3B}} = \rho v_{_{3B}} \frac{\partial \psi}{\partial t}. \tag{3}$$

Из формул (1) — (3) следует, что амплитуда давления $p_{_{3B}}$, т. е. максимальное изменение давления среды, вызванное звуковой волны, и интенсивность J связаны между собой соотношением:

$$J = \frac{p_{_{3B}}^2}{2\rho v_{_{3B}}}.$$
 (4)

Подставляя в формулу (4) $p_{_{3B}} = 100\,\mathrm{\Pi a}, \; \rho = 10^3\,\mathrm{кг/m}^3, \; \upsilon_{_{3B}} = 1500\,\mathrm{m/c}, \; \mathrm{получаем}$

$$J = 3, 3 \cdot 10^{-3} \,\mathrm{Br/m^2}. \tag{5}$$

Ответ: $J = 3, 3 \cdot 10^{-3}$ Вт/м².