27. a.i.	State A^* algorithm and explain it with example.	7	1	2	1	
ii.	State hill climbing algorithm.	3	1	2	1	
Ъ.	(OR) Explain the following (i) Best first search (ii) Genetic algorithm	5+5	_1	2	1	
28. a.	Consider the following sentences • John likes all kinds of food • Apples are food • Chick is food • Anything that anyone eats and is not killed by is food		2	3	2	
	 Bill eats peanuts and is still alive Sue eats everything bill eats (i) Translate these sentences into formulate in predicate logic (ii) Prove that "John like Peanuts" using forward chaining". 	4				
b.	(OR) Explain with suitable example the Bayesian belief network.	10	1	3	1	
29. a.	Solve the following block word problem using goal stack planning method? a e d c b a Initial state Goal state	10	2	4	2	
b.	(OR) Explain the following learning models (i) Linear regression (ii) Support vector machine	5+5	1	4	1	
30. a.	What is expert system? Explain all the components by showing the architecture.	10	1	5	1	
b.	(OR) Explain the concept of (i) Information retrieval (ii) Syntactic and semantic analysis	5+5	1	5	1	

Page 4 of 4 29NA6/18CSC305J

Reg. No.								
	1 - 1	1						

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022 Sixth Semester

18CSC305J – ARTIFICIAL INTELLIGENCE

Note: (i) (ii)		Part - A should be answered in OMR shover to hall invigilator at the end of 40 th m Part - B should be answered in answer bo	neet v	e.		d be	han	ded
Time:	21/2	½ Hours			Max.	Ma	rks:	75
		$PART - A (25 \times 1 = Answer ALL Qu$,	Marks	BL	co	PO
	1.	d min	(B)	stion (for example, A^* , best first) Semi dynamic Trust worthy AI	3	1	1	1
	2.	is used to determine the best s worst case terminal utility			1	2	1	2
			` '	Min-Max algorithm Validation dataset				
	3.	The process of allowing computers known as			1	1	1	1
. "				Knowledge representation Computer vision				
	4.	Pick out the wrong statement about so (A) Need for decomposition of problem (C) Understanding the problem structure	(B)	Analyze the problem structure Directly implementing the	1	1	1	2
	_			problem				
		Pick the odd one out of demand constr (A) Water jug problem (C) Employee task management	(B)		1	2	1	1
(The block world problem in artificia about		# W	1	1	4	1
			` /	Search KB system				
,		If any search algorithm is able to ge called			1	1	2	1
		(A) Efficient (C) Complete	(B) (D)	Optimal Informed				

Page 1 of 4

8.	Which search technique wo	uld you use?	oors and you want to locate him.	1	2	2	2
	(A) Depth first search(C) Depth limited search	` '	Breadth first search Iterative depending				
9.	Which of the following FOI "There exist a student"		this English statement	1	2	2	2
	(A) ∀ student (x)		∃ (x)				
	(C) \exists student (x)	` '	\Box student (x)				
10.	Which representation exhibit representation?	its the property	of ISA relationship and instance	1	1	2	1
	(A) Universe of discourse	(B)	Existential quantifiers				
	(C) Inheritance	, ,	Conjunctive normal form				
11.	Which informed algorithm current and the upcoming st		track and it depends only on the	1	1	2	1
	(A) A* algorithm		AO^* algorithm				
	(C) Hill climbing algorithm		Steepest ascent hill climbing				
12.	ARC consistency propagate	es.		1	2	3	1
	(A) Information	(B)	Unassigned variables				
	(C) Constraints	(D)	Back tracking				
13.	Production rules system cor			1	2	3	2
	(A) Predicate logic	` '	Condition, action				
	(C) Syntax	(D)	Symbols				
14.	Which of the following caproblem?	an act as an a	dmissible heuristic for 8 puzzle	1	2	5	2
	(A) Manhattan distance	(B)	Based on the number of tiles misplacement				
	(C) Sum of permutation in	versions (D)	-				
15.	Which could be the best wa			1	1	3	1
	(A) Linear approach	` ′	Heuristic approach				
	(C) Random approach	(D)	An optimal approach				
16.	is an action language system with the same	ge which was a	a part of the first major planning	1	1	4	1
	(A) ADL	(B)	PDDL				
	(C) STRIPS	` /	VDL				
17.	Identify antecedent and cor	sequent in the	below rule if the light is red then	1	2	4	2
	(A) Antecedent: the light	is red (B)	Antecedent: stop				
	Consequent: stop	(D)	Consequent: the light is red				
	(C) Antecedent : if Consequent : then	(D)	Antecedent: then Consequent: if				
	Consequent . men		Consequent . II				

	Which one of the following is not a type of supervised learning? (A) Clustering (B) Regression (C) Support Vector Machine (D) K Nearest Neighbour	1	1	4	1
	The STRIPS representation is (A) Feature centric representation (B) Action centric representation (C) Hierarchical feature centric (D) Combination of feature representation	1	1	3	1
	The artificial intelligence techniques imposed in Tesla, Waymo cars are the applications of learning. (A) Supervise (B) Unsupervised (C) Semi-supervised (D) Reinforcement	1	2	4	1
	The popular voices assistance, Alexa, SIRI implement the concept of (A) Machine learning (B) Deep learning (C) Data learning (D) Human learning	1	2	5	1
22.	What is the selection rule with the highest priority from agenda (A) Kenelling (B) Conflict resolution (C) Production rule (D) Deep learning	1	1	5	2
23.	The problem space of means-end analysis has not included (A) An initial state (B) One or more goal state (C) A set of operators with set of (D) A* algorithm conditions	1	1	3	1
24.	List the components of natural language processing (A) Sentences, clauses, phrases, (B) Syntax and semantics words (C) Rules and knowledge (D) Visualization	1	1	5	1
25.	Identify a native language model, not derivatives (A) CNN (B) RNN (C) LSTM (D) Roberta	1	1	5	1
	PART – B (5 × 10 = 50 Marks) Answer ALL Questions	Marks	BL	со	PO
26. a.	Explain in detail the characteristics to be analyzed for solving problems in AI.	10	1	1	1
b.	(OR) We are given two jugs, a 4 gallon jug and 3 gallon jug. Neither has any marking on it. How can we get exactly two gallons of water into 4 gallon jug? Represent the above problem by state space search problem.	10	2	1	2
	(i) Initial state (ii) Goal state (iii) Operators (iv) Action plan (v) Find the solution	*			

Page 2 of 4 Page 3 of 4 Page 3 of 4