Topic: Traffic Light Controller Design using Verilog

Submitted by: Swayam Swastik Sahu

PROBLEM STATEMENT

This project aims to design a traffic controller for a T-intersection. The image below illustrates the problem statement.

The six cases present here eventually turn to the six states . This is the state diagram:

State Table

PRESENT STATE	INPUT	NEXT STAT E	M1 RTG	M2 RYG	MT RYG	S RYG
000	NA	001	001	001	100	100
000	NA	001				
001	TMG'(count <sec7)< td=""><td>001</td><td>001</td><td>001</td><td>100</td><td>100</td></sec7)<>	001	001	001	100	100
001	TMG(count NOT <sec7)< td=""><td>010</td><td>001</td><td>010</td><td>100</td><td>100</td></sec7)<>	010	001	010	100	100
010	TY'	010	001	010	100	100
010	TY.	011	001	100	001	100
011	TTG'	011	001	100	001	100
011	TTG	100				
100	TY'	100				
100	TY	101				
101	TSG'	101				
101	TSG	110				
110	TY'	110				
110	TY	111				
111	COUNT<2	111	100	100	100	010
111	(COUNT<2)'	001	001	001	100	100

Verilog

```
Code:
timescale 1ns / 1ps
////////////// // Company: // Engineer: // // Create Date:
16.07.2020 12:53:25 // Design Name: // Module Name:
Traffic_Light_Controller // Project Name: // Target Devices: // Tool
Versions: // Description: // // Dependencies: // // Revision: // Revision
0.01 - File Created // Additional Comments: //
module Traffic_Light_Controller(
 input clk,rst,
 output reg [2:0]light_M1,
 output reg [2:0]light_S,
 output reg [2:0]light_MT,
 output reg [2:0]light_M2
 );
 parameter S1=0, S2=1, S3 =2, S4=3, S5=4,S6=5;
 reg [3:0]count;
 reg[2:0] ps;
 parameter sec7=7,sec5=5,sec2=2,sec3=3;
 always@(posedge clk or posedge rst)
   begin
   if(rst==1)
   begin
   ps<=S1;
   count<=0;
   end
   else
```

```
case(ps)
  S1: if(count<sec7)
      begin
      ps<=S1;
      count<=count+1;</pre>
      end
    else
      begin
      ps<=S2;
      count<=0;
      end
  S2: if(count<sec2)
      begin
      ps<=S2;
      count<=count+1;</pre>
      end
    else
      begin
      ps<=S3;
      count<=0;
      end
  S3: if(count<sec5)
      begin
      ps<=S3;
      count<=count+1;</pre>
      end
    else
      begin
      ps<=S4;
      count<=0;
      end
  S4:if(count<sec2)
      begin
      ps<=$4;
      count<=count+1;</pre>
      end
    else
      begin
      ps<=S5;
      count<=0;
      end
  S5:if(count<sec3)
      begin
      ps<=S5;
      count<=count+1;</pre>
      end
    else
      begin
      ps<=S6;
      count<=0;
      end
  S6:if(count<sec2)
      begin
      ps<=S6;
      count<=count+1;</pre>
      end
    else
```

```
begin
      ps<=S1;
      count<=0;
      end
  default: ps<=S1;</pre>
  endcase
always@(ps)
  case(ps)
```

end

begin

```
S1:
begin
 light_M1<=3'b001;
 light_M2<=3'b001;
 light_MT<=3'b100;
 light_S<=3'b100;
end
S2:
begin
 light_M1<=3'b001;
 light_M2<=3'b010;
 light_MT<=3'b100;
 light_S<=3'b100;
end
S3:
begin
 light_M1<=3'b001;
 light_M2<=3'b100;
 light_MT<=3'b001;
 light_S<=3'b100;
end
S4:
begin
 light_M1<=3'b010;
 light_M2<=3'b100;
 light_MT<=3'b010;
 light_S<=3'b100;
end
S5:
begin
 light_M1<=3'b100;
 light_M2<=3'b100;
 light_MT<=3'b100;
 light_S<=3'b001;
end
S6:
begin
 light_M1<=3'b100;
 light_M2<=3'b100;
 light_MT<=3'b100;
 light_S<=3'b010;
end
default:
begin
```

light_M1<=3'b000;

light_M2<=3'b000;

light_MT<=3'b000;

light_S<=3'b000;

end

end

endcase

RTL-SCHEMATIC

Simulation Wave & Timing Diagram

Upon analysing the waveform we can clearly see that the FSM works perfectly.