

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsin

Problem Optimistic v

Pessimi

Overvi

Kernel Module Daemon

Configuration Generator GU

Performance Hands On

References Repositories

Adaptive Scheduling Parameters Manager for SCHED DEADLINE

Alessio Balsini a.balsini@sssup.it

Università di Pisa, Scuola Superiore Sant'Anna

Workshop on Real-Time Scheduling in the Linux Kernel 27 June 2014

Scheduling Soft Real-Time Periodic Tasks - What Happens

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsin

Introduction Problem

Optimistic v Pessimistic

Overview Kernel Modu Daemon

Conclusions
Performances
Hands On

References References Computational request at each activation may heavily differ.

Figure: Realistic

Scheduling Soft Real-Time Periodic Tasks - Benchmarks

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introductio Problem

Optimistic v

Pessimistic

Overview Kernel Modu Daemon

Conclusions

Performance Hands On

Figure: Back to the Future (MKV)

Scheduling Soft Real-Time Periodic Tasks - Benchmarks

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Introductio Problem

Optimistic v

Pessimistic

Overview Kernel Modu

Daemon Configuration Generator GU

Performance
Hands On

Figure: Blade Runner (AVI)

Scheduling Soft Real-Time Periodic Tasks - Benchmarks

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction Problem

Optimistic v

Pessimistic

Overview Kernel Modu

Configuration Generator GU

Conclusions
Performance
Hands On

Figure: Superman Returns (MP4)

Scheduling Soft Real-Time Periodic Tasks - Which Parameter Really Matters?

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Daisi

Introductio Problem

Optimistic

Pessimistic

Overview Kernel Module Daemon Configuration

Conclusions
Performances

References Repositories In SCHED_DEADLINE it is possible to choose

- Period
- Relative Deadline
- Bandwidth

But in the just seen examples, a single parameter is enough

Response Time

Scheduling Soft Real-Time Periodic Tasks - Which Parameter Really Matters?

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem Optimistic v

Overview
Kernel Modul
Daemon
Configuration

Conclusions
Performances
Hands On

References

In SCHED_DEADLINE it is possible to choose

- Period
- Relative Deadline
- Bandwidth

But in the just seen examples, a single parameter is enough

Response Time

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction
Problem
Optimistic vs

Pessimistic

Kernel Modu Daemon

Performance

References Repositories

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic vs Pessimistic

Tools

Overview Kernel Modu Daemon

Daemon Configuration Generator GU

Performance Hands On

References Repositories

- Period
 - Euqal to the Response Time
- 2 Relative Deadline
- 3 Bandy dth

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Problem
Optimistic vs

Optimistic vs Pessimistic

Tools

Kernel Module Daemon Configuration Generator GUI

Conclusion: Performance Hands On

References

- Period
 - Euqal to the Response Time
 - 2 Relative Deadline
- 3 Bandy dth

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Introduction
Problem
Optimistic vs
Pessimistic

Tools

Kernel Module
Daemon
Configuration
Generator GUI

Conclusions
Performance
Hands On

References Repositories References

- Period
 - Euqal to the Response Time
- 2 Relative Deadline
 - Euqual to the Period
- 3 Bandwidth

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Tools

Kernel Module Daemon Configuration

Conclusion
Performance
Hands On

References References

- Period
 - Euqal to the Response Time
- 2 Relative Deadline
 - Euqual to the Period
- 3 Bandwidth

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Tools

Kernel Module
Daemon
Configuration
Generator GUI

Conclusions
Performance
Hands On

References Repositories References

- Period
 - Euqal to the Response Time
- 2 Relative Deadline
 - Euqual to the Period
- 3 Bandwidth

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsi

Introduction
Problem
Optimistic vs
Pessimistic

Tools

Kernel Module
Daemon
Configuration
Generator GUI

Conclusion
Performance
Hands On

Reference: Repositorie

- Period
 - Euqal to the Response Time
- 2 Relative Deadline
 - Euqual to the Period
- 3 Bandwidth
 - Hm...

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction
Problem
Optimistic vs

Pessimistic
Tools

Overview
Kernel Modul
Daemon
Configuration
Generator GU

Conclusions
Performances
Hands On

References Repositories Warning: choosing the bandwidth may be the cause of several headaches

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction
Problem
Optimistic vs

Pessimistic
Tools

Overview
Kernel Module
Daemon
Configuration
Generator GU

Conclusions
Performances
Hands On

References Repositories Warning: choosing the bandwidth may be the cause of several headaches

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Tools

Overview Kernel Module Daemon

Configuration Generator GU

Conclusion
Performance
Hands On

References Repositories Warning: choosing the bandwidth may be the cause of several headaches

- Low QoS
- Resources-driven

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Tools

Kernel Modul Daemon

Conclusion:

References Repositories Warning: choosing the bandwidth may be the cause of several headaches

- Low QoS
- Resources-driven?

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Tools

Kernel Modul Daemon

Conclusion Performance

References Repositories Warning: choosing the bandwidth may be the cause of several headaches

- Low QoS
- Resources-driven?

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introductior Problem Optimistic vs Pessimistic

Overview Kernel Module Daemon

Conclusions
Performances
Hands On

References References Warning: choosing the bandwidth may be the cause of several headaches

Optimistic

Low QoS

I LOW QUS

Resources-driven?

Pessimistic

Best QoS

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Overview
Kernel Module
Daemon
Configuration

Conclusions
Performances
Hands On

References
References

Warning: choosing the bandwidth may be the cause of several headaches

Optimistic

Low QoS

Resources-driven?

Pessimistic

Best QoS

Waste of resources

Another possible approach? Dynamic!

- Let's see how much you drank

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsin

Introduction Problem Optimistic vs Pessimistic

Tools

Overview
Kernel Module
Daemon
Configuration
Generator GUI

Conclusions
Performances
Hands On

References

The bandwidth is dynamically (periodically) chosen *for each SCHED_DEADLINE task*, depending on the history of the required computational times.

So, it's basically a feedback loop controller.

But if this controller modifies the bandwidth isn't it just like removing the CBS by SCHED DEAD (INF?

Yes and no

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction Problem Optimistic vs Pessimistic

Overview Kernel Modu Daemon

Conclusion Performance

Reference: Repositorie The bandwidth is dynamically (periodically) chosen *for each SCHED_DEADLINE task*, depending on the history of the required computational times.

So, it's basically a feedback loop controller.

But if this controller modifies the bandwidth, isn't it just like removing the CBS by SCHED_DEADLINE?

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction Problem Optimistic vs Pessimistic

Overview Kernel Mod

Daemon Configuration Generator GU

Conclusions
Performance
Hands On

Reference: Repositorie The bandwidth is dynamically (periodically) chosen *for each SCHED_DEADLINE task*, depending on the history of the required computational times.

So, it's basically a feedback loop controller.

But if this controller modifies the bandwidth, isn't it just like removing the CBS by SCHED_DEADLINE?

Yes and no.

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Introduction Problem Optimistic vs Pessimistic

Overview
Kernel Modu
Daemon
Configuration

Conclusions
Performance
Hands On

References

The bandwidth is dynamically (periodically) chosen *for each SCHED_DEADLINE task*, depending on the history of the required computational times.

So, it's basically a feedback loop controller.

But if this controller modifies the bandwidth, isn't it just like removing the CBS by SCHED_DEADLINE?

Yes and no.

- Adaptation delay: for the transitory
 - Global controller: for the fairness

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Problem
Optimistic vs
Pessimistic

Overview Kernel Modu Daemon

Conclusions
Performance
Hands On

Reference: Repositorie The bandwidth is dynamically (periodically) chosen *for each SCHED_DEADLINE task*, depending on the history of the required computational times.

So, it's basically a feedback loop controller.

But if this controller modifies the bandwidth, isn't it just like removing the CBS by SCHED_DEADLINE?

Yes and no.

- Adaptation delay: for the transitory
- Global controller: for the fairness

Tools

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic v

Pessin

Tools

Kernel Mod

Daemon

Configuration Generator GU

Performance

References

Repositories References

Hi-level Point of View

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic

Тоо

Overview Kernel Mo

Daemon Configuration Generator GU

Performance Hands On

Figure: Overall Block Scheme

Kernel Module: SCHED_DEADLINE Spy

- Userspace

This module creates a file for each SCHED_DEADLINE task

/proc/sched_deadline/[PID]

Containing something like

1401468028 22757242 10149132 N 1401468028 22757242 86353 N 1401468028 62757243 37679835 Y 1401468028 94757243 26311134 N

. .

- first two rows represent the kernel time (seconds and nanoseconds) at which the measurement was taken
- third row represents the read job execution time
- last row says if execution exceeds the bandwidth

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsini

Problem Optimistic vs Pessimistic

Overview Kernel Module

Daemon Configuration Generator GUI

Conclusions
Performance
Hands On

References References

Kernel Module: SCHED_DEADLINE Spy

- Implementation Hints

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsini

Problem
Optimistic vs
Pessimistic

Overview

Kernel Module

Daemon

Configuration

Generator GUI

Conclusions
Performance
Hands On

References Repositories References Kernel probes: Kprobes

Probes are placed around the kernel and the instrumentation codes are executed when the processor encounters those probe point.

This module attaches probes to

enqueue_task_dl

and

update_dl_entity

With *Jprobe*s it is also possible to access function arguments, used to create tasks' statistics.

Other several callbacks are provided, managing all the statistics sequential files.

Daemon: SCHED_DEADLINE Dynamic Manager - Interface

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsin

Problem Optimistic vs Pessimistic

Overview
Kernel Module
Daemon
Configuration
Generator GU

Conclusions
Performances
Hands On

Reference Repositorie References This tool provides the following DBus interface

core.sched.dl.ProcessManager

with the following methods:

- xml: requires a string input, corresponding to the path of the XML file containing the task information
- fixed_add: adds a new fixed task to the control list, with the defined SCHED_DEADLINE parameters
- fixed_launch: creates a new fixed task and adds it to the control list, with the defined SCHED_DEADLINE parameters
- control: adds a new dynamic task to the control list, with the defined response time parameter
- launch: creates a new dynamic task and adds it to the control list, with the defined response time parameter

Daemon: SCHED_DEADLINE Dynamic Manager - Interface, XML File Example

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic v
Pessimistic

Тоо

Overview Kernel Modul

Configuration Generator GU

Conclusions
Performance:
Hands On

```
<?xml version="1.0"?>
<SchedulingAlgorithm name="SCHED_DEADLINE">
  <path>/usr/bin/executable</path>
  <args>-p parameter</args>
  <runtime>28000000</runtime>
  <deadline>33333333</deadline>
  <period>333333333</period>
</SchedulingAlgorithm>
```


Daemon: SCHED_DEADLINE Dynamic Manager

- Implementation, Local Controllers

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem
Optimistic vs
Pessimistic

Overview
Kernel Module
Daemon

Conclusions
Performances
Hands On

References

One local controller for each dynamic scheduled task. It performs the following operations cyclically

- obtains task statistics
- runs the Control Algorithm to calculate the best utilization factor.
 - Current Control Algorithm Implementation: uses the worst case within a window of samples
- sends the computed utilization factor to the global controller

Daemon: SCHED_DEADLINE Dynamic Manager

- Implementation, Global Controller

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsin

Problem Optimistic vs Pessimistic

Overview
Kernel Module
Daemon
Configuration
Generator GUI

Conclusions
Performance
Hands On

References References It performs the following operations cyclically

 checks the schedulability of all the SCHED_DEADLINE utilization factors

$$\sum_{i=1}^{n} \frac{B_{D,i}}{T_{D,i}} + \sum_{i=1}^{m} \frac{B_{F,i}}{T_{F,i}} \le B_{SD}$$

• if not verified, uses the *Spring With no Length Constraints* algorithm to compress the dynamic tasks' requirements

$$\forall i, \ \textit{U}'_{\textit{D},i} = \frac{\textit{B}_{\textit{D},i}}{\textit{T}_{\textit{D},i}} - \left(\textit{U}_{\textit{D}} - \textit{B}_{\textit{residual}}\right) \cdot \frac{\textit{T}_{\textit{D},i}}{\sum_{i=1}^{n} \textit{T}_{\textit{D},i}}$$

updates SCHED_DEADLINE parameters

Configuration Generator: SchedConfigTool

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsi

Introduction

Optimistic v Pessimistic

Tools

Overview Kernel Modi

Configuration Generator GUI

Performance

Configuration Generator: SchedConfigTool

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Problem

Optimistic v Pessimistic

Tool

Kernel Modu

Configuration Generator GUI

Performance Hands On

References

Performances

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic vs

Pessimistic

Overview

Kernel Modul Daemon

Configuration Generator GU

Conclusions Performances

References

- MPlayer Without SCHED_DEADLINE

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Introductio

Optimistic v

Too

Overview Kernel Mod

Configuration

Conclusions Performances

Figure: Eve Online Rubicon (MP4) without SCHED_DEADLINE

- MPlayer With Dynamic Manager, Alone

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Introductio

Optimistic v Pessimistic

Pessimistic

Overview Kernel Modul

Configuration Generator GU

Performances
Hands On

Figure: Eve Online Rubicon (MP4) Dynamic Manager, Alone

- MPlayer With Dynamic Manager, With Fixed

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic Pessimistic

Тоо

Overview
Kernel Module
Daemon
Configuration
Generator GUI

Conclusions
Performances
Hands On

References
References

Figure: Eve Online Rubicon (MP4) Dynamic Manager, Running Together With Several Fixed Parameters SCHED_DEADLINE Tasks

- MPlayer With Dynamic Manager, With Other

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic v Pessimistic

Tools

Kernel Module Daemon Configuration Generator GUI

Conclusions
Performances
Hands On

References References

Figure: Eve Online Rubicon (MP4) Dynamic Manager, Running Together With Several Other Linux Tasks

Practical Session

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Introduction

Optimistic vs

Pessimistic

Tools

Overview

Kernel Mod

Configuration

Conclusio

Hands On

References

Repositories References

Repositories

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsii

Problem
Optimistic v

Тоо

Overview Kernel Module Daemon Configuration Generator GUI

Conclusion: Performance Hands On

References Repositories SCHED_DEADLINE Spy

→ github.com/balsini/sched-deadline-spy

■ SCHED_DEADLINE Dynamic Manager

github.com/balsini/sched-deadline-dynamic-manager

SchedConfigTool

▶ github.com/balsini/SchedConfigTool

References

SCHED_DL: Adaptive Scheduling Parameters Manager

A.Balsir

Problem Optimistic vs Pessimistic

Tools

Overview Kernel Module Daemon Configuration Generator GUI

Conclusions
Performance
Hands On

References References L. Palopoli, T. Cucinotta, L. Marzario, G. Lipari, AQoSA - Adaptive Quality of Service Architecture. Wiley InterScience, 2008.

G. C. Buttazzo, *Hard Real-Time Computing Systems:* Predictable Scheduling Algorithms and Applications 3rd. Springer Publishing Company, 2011.