A friendly introduction to Distributed Algorithms & Locality ... through two examples

Jukka Suomela Aalto University

Distributed algorithms

- You write a program for one computer
 - you can use also commands like "send this message to this communication port" etc.
- Your adversary constructs a network of n computers, all running your program
- Switch everything on, see what happens

Distributed algorithms

- Useful abstraction: identical computers, working in a synchronous manner
- Running time = number of communication rounds
- Key challenge: what to do in the middle of a very large network?

Theme: Symmetry breaking

Example:
3-coloring
cycles

Computer network: directed cycle

All nodes have a well-defined "successor" and "predecessor"

Coloring:

how to break symmetry?

Color reduction:

unique identifiers or random strings

 \rightarrow poly(n) colors \rightarrow 3 colors

20 colors \rightarrow 6 colors

20 colors \rightarrow ...

20 colors \rightarrow 3-element subsets of {1, 2, ..., 6} \rightarrow

I will use one of colors {1, 4, 6}

20 colors \rightarrow 3-element subsets of $\{1, 2, ..., 6\}$

 \rightarrow one communication round \rightarrow ...

I promised to use one of colors {1, 4, 6}

My successor will use one of colors {1, 2, 6}

I can therefore safely output 4

 5
 19
 3
 9
 4
 16
 15
 16
 13
 7
 4
 16
 1
 13
 14
 20

 1
 3
 2
 4
 1
 5
 4
 5
 2
 3
 1
 5
 1
 3
 2
 4

One color reduction step:

20 colors \rightarrow 3-element subsets of {1, 2, ..., 6}

 \rightarrow one communication round \rightarrow 6 colors

 $(2k \text{ choose } k) \text{ colors } \rightarrow 2k \text{ colors}$

 $(2k \text{ choose } k) \text{ colors} \rightarrow 2k \text{ colors}$ c colors $\rightarrow O(\log c) \text{ colors}$

Color reduction:

unique identifiers or random strings

- \rightarrow poly(n) colors
- \rightarrow O(log* n) color reduction steps
- \rightarrow 3 colors

- Algorithm: O(log* n) rounds
 - color reduction: c colors in T rounds
 - \rightarrow O(log c) colors in T + 1 rounds
 - poly(n) colors in 0 rounds
 - \rightarrow 3 colors in $O(\log^* n)$ rounds
- Lower bound: this is optimal!
 - round elimination: c colors in T rounds
 - \rightarrow 2° colors in T-1 rounds
 - 3 colors in $o(\log^* n)$ rounds
 - \rightarrow \ll poly(n) colors in 0 rounds \rightarrow impossible

Locality

Each node knows its final output after **T** communication rounds

Each node can compute its final output if it knows its **T-radius neighborhood**

Theme: Local coordination

Example:
Maximal
matching

Maximal matching

• Setting:

- 2-colored graph "black" and "white" nodes
- maximum degree ∆

· Goal:

 maximal matching: if you are unmatched, all your neighbors must be matched

Proposal algorithm

Black nodes:

- send a proposal to 1st neighbor
- if rejected, send a proposal to 2nd neighbor ...

White nodes:

- wait for proposals
- accept the first proposal
- reject all other proposals

- Algorithm: $O(\Delta)$ rounds
 - proposal algorithm: after failed attempts you run out of neighbors to propose and can safely output "unmatched"
- Lower bound: this is optimal!
 - round elimination: maximal matching in T rounds
 - \rightarrow a sloppy matching in T-1 rounds
 - maximal matching in $o(\Delta)$ rounds
 - → something nontrivial in 0 rounds
 - \rightarrow contradiction

Summary

3-coloring cycles:

- trivial sequential greedy algorithm
- O(log* n)-round distributed algorithm
- tight, by round elimination

Maximal matching:

- trivial sequential greedy algorithm
- O(Δ)-round distributed algorithm
- tight, by round elimination