Programma seconda 3

May 14, 2024

Contents

1	Puliamo il dataset	2
2	Visualiziamo i grafici	7
3	Age vs Thalach	10
4	Test e train dataset	11
5	Accuratezza dei vari modelli	12
6	Logistic Regression model	14
7	Support Vector Machine model	15
8	Decision Tree model	15
9	Random Forest model	16
10	k-Nearest Neighbors model	17

1 Puliamo il dataset

```
[19]: import sys
      import pandas as pd
      import numpy as np
      import sklearn
      import matplotlib
      print('Python: {}'.format(sys.version))
      print('Pandas: {}'.format(pd.__version__))
      print('Numpy: {}'.format(np.__version__))
      print('Sklearn: {}'.format(sklearn.__version__))
      print('Matplotlib: {}'.format(matplotlib.__version__))
     Python: 3.11.9 (tags/v3.11.9:de54cf5, Apr 2 2024, 10:12:12) [MSC v.1938 64 bit
     (AMD64)]
     Pandas: 2.2.1
     Numpy: 1.26.4
     Sklearn: 1.4.1.post1
     Matplotlib: 3.8.4
[20]: import matplotlib.pyplot as plt
      from pandas.plotting import scatter_matrix
      import seaborn as sns
      from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LogisticRegression
      from sklearn.svm import SVC
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.metrics import accuracy_score
      from sklearn.model_selection import train_test_split, GridSearchCV
[21]: cleveland = pd.read_csv(r'C:\Users\david\Documents\heart.csv')
[22]: print( 'Shape of DataFrame: {}'.format(cleveland.shape))
      print (cleveland.loc[1])
     Shape of DataFrame: (303, 14)
                  37.0
     age
     sex
                   1.0
                   2.0
     ср
     trestbps
                 130.0
     chol
                 250.0
     fbs
                   0.0
     restecg
                   1.0
     thalach
                 187.0
                   0.0
     exang
     oldpeak
                   3.5
```

 slope
 0.0

 ca
 0.0

 thal
 2.0

 target
 1.0

Name: 1, dtype: float64

[24]: #ultimi 20 valori del dataframe print(cleveland.tail(20))

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	١
283	40	1	0	152	223	0	1	181	0	0.0	
284	61	1	0	140	207	0	0	138	1	1.9	
285	46	1	0	140	311	0	1	120	1	1.8	
286	59	1	3	134	204	0	1	162	0	0.8	
287	57	1	1	154	232	0	0	164	0	0.0	
288	57	1	0	110	335	0	1	143	1	3.0	
289	55	0	0	128	205	0	2	130	1	2.0	
290	61	1	0	148	203	0	1	161	0	0.0	
291	58	1	0	114	318	0	2	140	0	4.4	
292	58	0	0	170	225	1	0	146	1	2.8	
293	67	1	2	152	212	0	0	150	0	0.8	
294	44	1	0	120	169	0	1	144	1	2.8	
295	63	1	0	140	187	0	0	144	1	4.0	
296	63	0	0	124	197	0	1	136	1	0.0	
297	59	1	0	164	176	1	0	90	0	1.0	
298	57	0	0	140	241	0	1	123	1	0.2	
299	45	1	3	110	264	0	1	132	0	1.2	
300	68	1	0	144	193	1	1	141	0	3.4	
301	57	1	0	130	131	0	1	115	1	1.2	
302	57	0	1	130	236	0	0	174	0	0.0	

	slope	ca	thal	target
283	2	0	3	0
284	2	1	3	0
285	1	2	3	0
286	2	2	2	0
287	2	1	2	0
288	1	1	3	0
289	1	1	3	0
290	2	1	3	0
291	0	3	1	0
292	1	2	1	0
293	1	0	3	0
294	0	0	1	0
295	2	2	3	0
296	1	0	2	0
297	1	2	1	0
298	1	0	3	0

```
299
       1 0
                3
                       0
300
                       0
       1 2
                3
301
       1
                3
                       0
          1
302
       1
          1
                2
                       0
```

[37]: #rimuove i missing values indicati con "?"
data = cleveland[~cleveland.isin(['?'])]
data.loc[280:]

280 42 1 0 136 315 0 1 125 1 1.8 281 52 1 0 128 204 1 1 156 1 1.0 282 59 1 2 126 218 1 1 134 0 2.2 283 40 1 0 152 223 0 1 181 0 0.0 284 61 1 0 140 207 0 0 138 1 1.9 285 46 1 0 140 311 0 1 162 0 0.8 286 59 1 3 134 204 0 1 162 0 0.8 287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0	[37]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	\
282 59 1 2 126 218 1 1 134 0 2.2 283 40 1 0 152 223 0 1 181 0 0.0 284 61 1 0 140 207 0 0 138 1 1.9 285 46 1 0 140 311 0 1 120 1 1.8 286 59 1 3 134 204 0 1 162 0 0.8 287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0		280	42	1	0	136	315	0	1	125	1	1.8	
283 40 1 0 152 223 0 1 181 0 0.0 284 61 1 0 140 207 0 0 138 1 1.9 285 46 1 0 140 311 0 1 120 1 1.8 286 59 1 3 134 204 0 1 162 0 0.8 287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0		281	52	1	0	128	204	1	1	156	1	1.0	
284 61 1 0 140 207 0 0 138 1 1.9 285 46 1 0 140 311 0 1 120 1 1.8 286 59 1 3 134 204 0 1 162 0 0.8 287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2		282	59	1	2	126	218	1	1	134	0	2.2	
285 46 1 0 140 311 0 1 120 1 1.8 286 59 1 3 134 204 0 1 162 0 0.8 287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0		283	40	1	0	152	223	0	1	181	0	0.0	
286 59 1 3 134 204 0 1 162 0 0.8 287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 4.0 296 63 1 0		284	61	1	0	140	207	0	0	138	1	1.9	
287 57 1 1 154 232 0 0 164 0 0.0 288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 4.0 296 63 1 0 140 187 0 0 144 1 4.0 297 59 1 0		285	46	1	0	140	311	0	1	120	1	1.8	
288 57 1 0 110 335 0 1 143 1 3.0 289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0		286	59	1	3	134	204	0	1	162	0	0.8	
289 55 0 0 128 205 0 2 130 1 2.0 290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0		287	57	1	1	154	232	0	0	164	0	0.0	
290 61 1 0 148 203 0 1 161 0 0.0 291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 132 0 1.2 300 68 1 0		288	57	1	0	110	335	0	1	143	1	3.0	
291 58 1 0 114 318 0 2 140 0 4.4 292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 132 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0		289	55	0	0	128	205	0	2	130	1	2.0	
292 58 0 0 170 225 1 0 146 1 2.8 293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 130 131 0 1 115 1 1.2		290	61	1	0	148	203	0	1	161	0	0.0	
293 67 1 2 152 212 0 0 150 0 0.8 294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 130 131 0 1 115 1 1.2		291	58	1	0	114	318	0	2	140	0	4.4	
294 44 1 0 120 169 0 1 144 1 2.8 295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		292	58	0	0	170	225	1	0	146	1	2.8	
295 63 1 0 140 187 0 0 144 1 4.0 296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		293	67	1	2	152	212	0	0	150	0	0.8	
296 63 0 0 124 197 0 1 136 1 0.0 297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		294	44	1	0	120	169	0	1	144	1	2.8	
297 59 1 0 164 176 1 0 90 0 1.0 298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		295	63	1	0	140	187	0	0	144	1	4.0	
298 57 0 0 140 241 0 1 123 1 0.2 299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		296	63	0	0	124	197	0	1	136	1	0.0	
299 45 1 3 110 264 0 1 132 0 1.2 300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		297	59	1	0	164	176	1	0	90	0	1.0	
300 68 1 0 144 193 1 1 141 0 3.4 301 57 1 0 130 131 0 1 115 1 1.2		298	57	0	0	140	241	0	1	123	1	0.2	
301 57 1 0 130 131 0 1 115 1 1.2		299	45	1	3	110	264	0	1	132	0	1.2	
		300	68	1	0	144	193	1	1	141	0	3.4	
302 57 0 1 130 236 0 0 174 0 0.0		301	57	1	0	130	131	0	1	115	1	1.2	
		302	57	0	1	130	236	0	0	174	0	0.0	

	slope	ca	thal	target
280	1	0	1	0
281	1	0	0	0
282	1	1	1	0
283	2	0	3	0
284	2	1	3	0
285	1	2	3	0
286	2	2	2	0
287	2	1	2	0
288	1	1	3	0
289	1	1	3	0
290	2	1	3	0
291	0	3	1	0

```
292
             2
                            0
                   1
         1
293
             0
                   3
                            0
         1
294
                            0
         0
             0
                   1
295
             2
                   3
                            0
                   2
                            0
296
         1
             0
297
         1
             2
                   1
                            0
298
         1
             0
                   3
                            0
299
         1
             0
                   3
                            0
300
         1
             2
                   3
                            0
301
                   3
                            0
         1
             1
302
                   2
                            0
         1
             1
```

```
[45]: #elimina le righe con valori mancanti
data = data.dropna(axis=0)
data.loc[280:]
```

[45]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	\
	280	42	1	0	136	315	0	1	125	1	1.8	
	281	52	1	0	128	204	1	1	156	1	1.0	
	282	59	1	2	126	218	1	1	134	0	2.2	
	283	40	1	0	152	223	0	1	181	0	0.0	
	284	61	1	0	140	207	0	0	138	1	1.9	
	285	46	1	0	140	311	0	1	120	1	1.8	
	286	59	1	3	134	204	0	1	162	0	0.8	
	287	57	1	1	154	232	0	0	164	0	0.0	
	288	57	1	0	110	335	0	1	143	1	3.0	
	289	55	0	0	128	205	0	2	130	1	2.0	
	290	61	1	0	148	203	0	1	161	0	0.0	
	291	58	1	0	114	318	0	2	140	0	4.4	
	292	58	0	0	170	225	1	0	146	1	2.8	
	293	67	1	2	152	212	0	0	150	0	0.8	
	294	44	1	0	120	169	0	1	144	1	2.8	
	295	63	1	0	140	187	0	0	144	1	4.0	
	296	63	0	0	124	197	0	1	136	1	0.0	
	297	59	1	0	164	176	1	0	90	0	1.0	
	298	57	0	0	140	241	0	1	123	1	0.2	
	299	45	1	3	110	264	0	1	132	0	1.2	
	300	68	1	0	144	193	1	1	141	0	3.4	
	301	57	1	0	130	131	0	1	115	1	1.2	
	302	57	0	1	130	236	0	0	174	0	0.0	

	slope	ca	thal	target
280	1	0	1	0
281	1	0	0	0
282	1	1	1	0
283	2	0	3	0
284	2	1	3	0

```
285
                2
                        3
           1
                                  0
286
           2
                2
                        2
                                  0
           2
                        2
                                  0
287
                1
                        3
                                  0
288
           1
                1
289
           1
                1
                        3
                                  0
290
           2
                        3
                                  0
                1
291
           0
                3
                        1
                                  0
292
                2
                        1
                                  0
           1
293
                        3
                                  0
           1
                0
294
           0
                0
                        1
                                  0
           2
                2
                        3
                                  0
295
296
           1
                0
                        2
                                  0
297
           1
                2
                        1
                                  0
298
                        3
                                  0
           1
                0
299
           1
                0
                        3
                                  0
300
                2
                        3
                                  0
           1
                        3
                                  0
301
           1
                1
                        2
                                  0
302
           1
```

[28]: #stampa la forma e il tipo di dati del dataframe print(data.shape) print(data.dtypes)

(303, 14)int64 age int64 sex int64 ср trestbps int64 chol int64 fbs int64 restecg int64 thalach int64 exang int64 oldpeak float64 slope int64 ca int64 int64 thal target int64 dtype: object

[29]: | #stampa le caratteristiche data data.describe()

[29]: trestbps chol fbs age sex ср 303.000000 303.000000 303.000000 303.000000 303.000000 count 303.000000 131.623762 0.148515 mean 54.366337 0.683168 0.966997 246.264026 std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 94.000000 126.000000 0.000000 min 29.000000 0.000000 0.000000

```
25%
        47.500000
                      0.000000
                                   0.000000
                                              120.000000
                                                          211.000000
                                                                         0.000000
50%
        55.000000
                      1.000000
                                   1.000000
                                              130.000000
                                                           240.000000
                                                                         0.000000
75%
        61.000000
                      1.000000
                                   2.000000
                                              140.000000
                                                           274.500000
                                                                         0.000000
        77.000000
                                   3.000000
                                              200.000000
                                                          564.000000
max
                      1.000000
                                                                          1.000000
                                                 oldpeak
          restecg
                       thalach
                                      exang
                                                                slope
                                                                                ca
       303.000000
                    303.000000
                                              303.000000
                                                          303.000000
                                 303.000000
                                                                       303.000000
count
mean
         0.528053
                    149.646865
                                   0.326733
                                                1.039604
                                                             1.399340
                                                                         0.729373
std
         0.525860
                     22.905161
                                   0.469794
                                                1.161075
                                                             0.616226
                                                                          1.022606
         0.000000
                     71.000000
                                                0.000000
                                                             0.000000
                                                                         0.000000
min
                                   0.000000
25%
         0.000000
                    133.500000
                                   0.000000
                                                0.000000
                                                             1.000000
                                                                         0.000000
50%
         1.000000
                    153.000000
                                   0.000000
                                                0.800000
                                                             1.000000
                                                                         0.000000
75%
         1.000000
                    166.000000
                                   1.000000
                                                1.600000
                                                             2.000000
                                                                         1.000000
max
         2.000000
                    202.000000
                                   1.000000
                                                6.200000
                                                             2.000000
                                                                         4.000000
              thal
                        target
       303.000000
                    303.000000
count
                      0.544554
mean
         2.313531
std
         0.612277
                      0.498835
         0.000000
                      0.000000
min
25%
         2.000000
                      0.000000
50%
         2.000000
                      1.000000
75%
         3.000000
                      1.000000
         3.000000
                      1.000000
max
```

2 Visualiziamo i grafici

```
[20]: #istogrammi per ogni caratteristica
data.hist(figsize = (12, 12))
plt.show()
```



```
[21]: pd.crosstab(data.age,data.target).plot(kind="bar",figsize=(20,6))
    plt.title('Heart Disease Frequency for Ages')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```



```
[22]: plt.figure(figsize=(10,10))
sns.heatmap(data.corr(),annot=True,fmt='.1f')
plt.show()
```


3 Age vs Thalach

```
[23]: age_unique=sorted(data.age.unique())
age_thalach_values=data.groupby('age')['thalach'].count().values
mean_thalach=[]
for i,age in enumerate(age_unique):
    mean_thalach.append(sum(data[data['age']==age].thalach)/
    →age_thalach_values[i])
```

```
plt.figure(figsize=(10,5))
sns.pointplot(x=age_unique,y=mean_thalach,color='red',alpha=0.8)
plt.xlabel('Age',fontsize = 15,color='blue')
plt.xticks(rotation=45)
plt.ylabel('Thalach',fontsize = 15,color='blue')
plt.title('Age vs Thalach',fontsize = 15,color='blue')
plt.grid()
plt.show()
```


4 Test e train dataset

```
plt.colorbar(label='Target')
plt.grid(True)
plt.show()
```


5 Accuratezza dei vari modelli

```
[7]: #dividiamo il dataset in features (X) e target variable (y)

X = heart_data.drop('target', axis=1) # Features
y = heart_data['target'] # Target variable

#suddividiamo il dataset in set di addestramento e di test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □ → random_state=42)

#inizializziamo i modelli

models = {
    'Logistic Regression': LogisticRegression(),
    'Support Vector Machine': SVC(),
    'Decision Tree': DecisionTreeClassifier(),
```

```
'Random Forest': RandomForestClassifier(),
    'k-Nearest Neighbors': KNeighborsClassifier()
}
#addestramento e valutazione dei modelli
results = {}
for name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    results[name] = accuracy
#grafico a barre
plt.bar(results.keys(), results.values(), color='blue')
plt.ylabel('Accuracy')
plt.title('Model Accuracies')
plt.ylim(0, 1)
plt.xticks(rotation=45, ha='right')
plt.show()
C:\Users\david\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n
2kfra8p0\LocalCache\local-packages\Python311\site-
packages\sklearn\linear_model\_logistic.py:469: ConvergenceWarning: lbfgs failed
to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-
regression
 n_iter_i = _check_optimize_result(
```


6 Logistic Regression model

```
[8]: #divisione del dataset in features (X) e target variable (y)

X = heart_data.drop('target', axis=1)
y = heart_data['target']

#suddividivisione del dataset in set di addestramento e di test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □ → random_state=42)

#addestramento e valutazione della regressione logistica
model = LogisticRegression().fit(X_train, y_train)

#valutazione dell'accuratezza del modello sui dati di test
```

```
accuracy = accuracy_score(y_test, model.predict(X_test))
print(f'Accuracy del modello di regressione logistica: {accuracy:.2f}')

Accuracy del modello di regressione logistica: 0.89

C:\Users\david\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n
2kfra8p0\LocalCache\local-packages\Python311\site-
packages\sklearn\linear_model\_logistic.py:469: ConvergenceWarning: lbfgs failed
to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-
regression
    n_iter_i = _check_optimize_result(
```

7 Support Vector Machine model

Accuracy del modello Support Vector Machine: 0.67

8 Decision Tree model

```
[13]: #divisione del dataset in features (X) e target variable (y)
X = heart_data.drop('target', axis=1) #features
y = heart_data['target'] #target variable
```

Accuracy of Decision Tree model: 0.80

9 Random Forest model

```
[14]: #divisione del dataset in features (X) e target variable (y)
      X = heart_data.drop('target', axis=1) #features
      y = heart_data['target']
                                              #target variable
      #suddividivisione del dataset in set di addestramento e di test
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
      #definiamo i parametri della griglia da testare
      param_grid = {
          'n_estimators': [100, 200, 300],
          'max_depth': [None, 10, 20],
          'min_samples_split': [2, 5, 10],
          'min_samples_leaf': [1, 2, 4]
      }
      #inizializziamo il classificatore Random Forest
      random_forest = RandomForestClassifier(random_state=42)
      #utilizziamo la ricerca dei parametri tramite cross-validation per trovare i_{\sqcup}
      →migliori parametri
      grid_search = GridSearchCV(random_forest, param_grid, cv=5)
      grid_search.fit(X_train, y_train)
      #otteniamo il miglior modello dalla ricerca dei parametri
      best_random_forest = grid_search.best_estimator_
      #valutiamo l'accuratezza del modello sui dati di test
      y_pred = best_random_forest.predict(X_test)
```

```
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy of Random Forest model: {accuracy:.2f}')
```

Accuracy of Random Forest model: 0.85

10 k-Nearest Neighbors model

```
[15]: #divisione del dataset in features (X) e target variable (y)
      X = heart_data.drop('target', axis=1) #features
      y = heart_data['target']
                                              #target variable
      #suddividivisione del dataset in set di addestramento e di test
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
       →random_state=42)
      #definiamo i parametri della griglia da testare
      param_grid = {'n_neighbors': range(1, 21)} # Testa k da 1 a 20
      #inizializziamo il classificatore k-Nearest Neighbors
      knn = KNeighborsClassifier()
      #utilizziamo la ricerca dei parametri tramite cross-validation per trovare il_{\sqcup}
      \rightarrow miglior valore di k
      grid_search = GridSearchCV(knn, param_grid, cv=5)
      grid_search.fit(X_train, y_train)
      #otteniamo il miglior modello dalla ricerca dei parametri
      best_knn = grid_search.best_estimator_
      #valutiamo l'accuratezza del modello sui dati di test
      y_pred = best_knn.predict(X_test)
      accuracy = accuracy_score(y_test, y_pred)
      print(f'Accuracy of k-Nearest Neighbors model: {accuracy:.2f}')
```

Accuracy of k-Nearest Neighbors model: 0.66