Candidate's Name:
Signature:
P ₅₂₅ / ₁ CHEMISTRY
Paper 1
2 ³ / ₄ hours

Uganda Advanced Certificate of Education CHEMISTRY Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer **all** questions in section **A** and **six** questions in section **B** All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables(3 – figure tables) are adequate or non-programmable scientific electronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \, \text{JK}^{-1} \, \text{mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 $N \text{ m}^{-2}$

						For	Exa	mine	r's Us	se On	ıly						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	۱7	Гotal

SECTION A: (46 MARKS)

- 1. (a) Complete the following nuclear Equations (2 marks)
- (ii) ⁷₃Li + 2 ⁴₂H

- (b) The half-life of bismuth is 19.7 minutes. Determine the time taken for 75% by mass of the bismuth to decay (3 marks)

2. (a) Explain what is meant by the term oxidation number (1 mark)

- (b) Determine the oxidation number of @ 0.5 marks
- (i) Sulphur in $S_2O_8^2$ and SO_4^2

(ii) Manganese in MnO ₄ ⁻
(ii) Manganese in Mine 4
(c) Write the half equation for the conversion of $S_2O_8^{2-}$ to SO_4^{2-} (1 mark)
(d) Complete the following and balance the equations @ 1.5 marks
(i) $S_2O_8^{2-} + I^- \longrightarrow$
(ii) $MnO_4^- + Fe^{2+} + H^+ \longrightarrow$
3. (a) Complete the following equations and in each case give the IUPAC name of the main

organic product @ 1 mark)

(ii)
$$CH_3C = CH + H_2O = \frac{Hg^{2+}(aq)}{H_2SO_4 , 60^0C}$$

(b) Complete the following equations and in each case write a mechanism for the reaction (@ $1\frac{1}{2}$ marks)

(ii) + Cl₂ AlCl₃

4. (a) Sketch and name the shape of each of the following species (4 marks)

NH4+			
PCl ₅			
NCl ₃			
The atomic number of eleme Write the outermost electron		(½ mark)	
State the possible oxidation s	states X can show	(1 mark)	

Shape

Species

Name of shape

5. (a)Define the term "partial pressure" (1 mark)

b) The vapour pressures of pure chloroform and carbon tetrachloride are 199.1 and 114.5mmHg respectively at 25°C.
(Assume that a mixture of the two liquids behave as an ideal gas and that it contains 0.96 mole of each pure liquid). Calculate;
i) The partial pressure of each component in the mixture. (2 marks)
ii) The total pressure. (ımark)
c). Calculate the percentage of carbon tetrachloride in the vapour in equilibrium with the liquid mixture. (1 mark)
6. a) State Graham's law. (01 mark)
b) A certain volume of oxygen diffused through a porous membrane in 120s. Under the same conditions the same volume of a gas. X diffuses in 112s. Calculate the relative molecular mass
of X. (4 marks)

7. The ionic radii of Na^+ , Mg^{2+} and Al^{3+} are 0.095, 0.065 and 0.050 respectively. a) Calculate the charge/ radius ratio per (@ 1 mark) i) Na^+
ii) Mg ²⁺
:::) A l>±
iii) Al³+
b) Which of the ions has i) The least polarizing power? Give reason for your answer (2marks)
8. (a) Why does the vapour pressure of a given mass of solvent decrease when a known mass of non-volatile solute is added to the solvent? (2marks)
(b) A solution was prepared by dissolving 7.5g of propan – 1,2,3- triol (glycerol), $C_3H_8O_3$ in 200g of water at 25°C and at standard pressure. Calculate the boiling point of the solution at standard pressure (Kb of water = 0.52 K kgmol $^{-1}$) (3 marks)

9. The empirical formula of a fluoride of Sulphur, Y 1 is SF4. 0.1g of Y occupied 22.10cm3 when vaporized at 200C and 766mmHg.

a) Determine the molecular formula of Y. (3 ½ marks)	
	· ····
	•••••
b. Draw the structure of Y and name the shape (1 ½ marks)	
SECTION B: (54 MARKS)	
10. State what would be observed and write equation for the reaction that would take place when	ce
a) Copper is added to a solution of concentrated nitric acid. (2 $\frac{1}{2}$ marks) Equation	
	•••••
Observation	
	•••••
b) Potassium iodide is added to acidified solution of hydrogen peroxide. (02 marks) Equation.	
Observation	· ····
	••••••
	•••••
c) Sodium sulphite is added to a solution of acidified potassium dichromate (VI) Observation (2.5marks)	•••••
	•••••

pg. 8 ALL THAT GLITTERS MAY NOT BE GOLD BUT ATLEAST IT CONTAINS FREE ELECTRONS" @ DUTCHMASTER

Equation
d). Aqueous iron (ii) sulphate is added to acidified potassium manganate (VII) solution. (2 marks) Equation
Observation
11. a) When 8.8g of a hydrocarbon, Z was burnt in excess air, 14.4g of water and 13.44dm³ of carbon dioxide were obtained at s.t.p. Determine the empirical formula of Z. (3 ½ marks)
b) The vapour density of Z is 22. Write the name and molecular formula of Z. (1 mark)
a) i) Write equation to show how Z can be synthesized from an alcohol (2 ½ marks)
i) Indicate a mechanism for the first stage of the reaction ©(i) (2 marks)

2. The table and R	e below gives the f	irst, second thi	rd and fou	arth ionizat	tion energie	es of elements P
	ement	nisation e	energy (KJ	mol -1)		
			Second	Third	Fourth	
		800	2,400	3,700	25,000	
		900	1,800	1,4800	21,000	
		500	4,600	6,900	9,500	
b) State the answer (3	group and period marks)			ongs. In ea	ch case give	e a reason for yo
b) State the	group and period			ongs. In ea	ch case give	e a reason for yo
b) State the answer (3 Group:	group and period			ongs. In ea	ch case give	e a reason for yo
b) State the answer (3 Group:	group and period			ongs. In ea	ch case give	e a reason for yo

ELECTRONS " @ DUTCHMASTER

Calculate the first ionization energy of sodium in $(C = 3.0 \times 10^8 \text{ms}^{-1})$, Planks' constant = 6.626×10^{-34}	
mol ⁻¹)	(o3 marks)
13. Write equations to show how the following co	nversions can be made
(a) ethyne from ethanol	(4 marks)
(b) Benzoic acid from benzene	(2 marks)
(b) Benzoic acid from benzene	(2 marks)
(c) Propane from 1 bromobutane	(3 marks)

	14. mecha		ete the fo or the rea		equati	ons and	l in each	ı case ou	ıtline a suitable
(CH ₃ CH ₂ C≡	≡сн-	2HBr	→	• • • • • • • • •	•••••	• • • • • • • • • •	•••••	(03 marks)
	3 2								
••		••••••		•••••		•••••	•••••		
••									
••	•••••	••••••	••••••	•••••	••••••	•••••	•••••		•••••
••	•••••••••••	••••••	••••••	••••••	•	••••••	••••••	•••••••	•••••
••						•••••	•••••		
ĺ		Cono	п со –	Conc.F	INO ₃	-			(02 ½ marks)
l	+	Conc	.п ₂ зО ₄			•••••	••••••	••••••	(02 72 IIIaIKS)
••		•••••		•••••	•••••	•••••	•••••	•••••	
••	••••••	••••••	••••••	•••••	••••••	•••••	•••••	••••••	•••••
•	••••••	•••••	••••••	••••••	••••••	•••••	••••••		•••••
••							•••••		
		Na∩I	1. /CH.	CH.OF	ı				
C	$C(CH_3)_3Br$ -	NaOi	Heat	C112O1			•••••		(03½ marks)
			Hour						
							•••••		

•••••				•••••		
The	table below gives some da	ata on substan	ices A to	o D		
	Substance	A		В	С	D
	Melting point (°C)	1610		- 183	2015	
C	Conduction of electricity in molten state	n Does no	ot I	Does not	Does	Does
Clas	sify the solid formed by ea	ach substance	accord	ing to its st	ructure and	d type of bo
	Substance					
	Type of structure					
	Type of bonding					
marks In th	s) ne series Na, Mg, Al, Si, P,	S and Cl		l		
ate ele	ement with					
				Elem	ient	
	highest melting	point				
	(ii) Smallest atomic	radius				
	(iii) largest ionisation	n energy				

(2 marks)

	(c) Explain why the element you have stated in (b) (i) has the highest melting poin	t (3 marks)
	16. (a)Define the following terms s used in periodic table and periodicity (o1 mark . Orbital	each)
ii.	. Energy level	
iii.	. Atomic radius	
	(b) Write the electronic configuration of the following (04 marks) . copper	
ii.	. manganese	
iii.	. chromium	
iv.	. iron II	

(c) State the block to which the following belong to	(02 marks)
i. Aluminium	
ii. iron III	
17. (a) What is a dynamic equilibrium (1 mark)	••••
	1 1.1
(b) 1 mole of ethanol was added to 1 mole of ethanoic acid At equilibrium 2/3 moles of reactants were converted to	
constant Kc for the reaction. (4 marks)	products. Carculate the equilibrium
(c) Calculate the mass of the ester that would be present	- 0
is added to 120g of ethanoic acid at 250C (Kc = 3.9)	(04 marks)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 He 2
6.9 Li 3	9.0 Be	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	1 3 3 3	50.9 V 23	52.0 Cr 24	54.9 Mn 25	1	1	58.7 Ni 28	1	65.7 Zn 30					79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	1		1	101 Ru 44	1	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	1	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				4 15		9 85				2 (59 (2) (59					2 3 25 3 3 13
		6 1	139 La 57		141 Pr 59		147 Pm 61	150 Sm 62	152 Eu 63			162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		3 8	227 Ac 89	232 Th 90	231 Pa 91	238 U 92						251 Cf 98	Es	Fm	256 Md 101	No	Lw

hg. To

ALL THAT GLITTERS MAY NOT BE GOLD BUT ATLEAST IT CONTAINS FREE ELECTRONS" @ DUTCHMASTER