# 第十讲 唯一决定分式线性映射的条件

# §3 唯一决定分式线性映射的条件

- □ 1. 分式线性映射的存在唯一性
- □ 2. 举例

#### 1. 分式线性映射的存在唯一性

虽然 $w = \frac{az + b}{cz + d}$ 含有a,b,c,d四个常数,实际只有三个是独立的.

所以,只需给定三个条件,就能决定一个分式 线性映射,我们有:

定理 在z平面上任意给定三个相异的点 $z_1, z_2, z_3,$ 在w平面上也任意给定三个相异的点 $w_1, w_2, w_3$   $\Rightarrow$  存在唯一的分式线性映 射f(z):

$$f: z_k \xrightarrow{f} w_k (k = 1,2,3)$$

证明 设
$$w = \frac{az+b}{cz+d}(ad-bc \neq 0),$$
将 $z_k(k=1,2,3)$ 依次

$$\rightarrow w_k (k = 1,2,3), \quad \mathbb{D} w_k = \frac{az_k + b}{cz_k + d} \quad (k = 1,2,3)$$

因而有 
$$w-w_k = \frac{(z-z_k)(ad-bc)}{(cz+d)(cz_k+d)}, (k=1,2)$$

$$w_3 - w_k = \frac{(z_3 - z_k)(ad - bc)}{(cz_3 + d)(cz_k + d)}, (k = 1,2)$$

$$\frac{w - w_1}{w - w_2} = \frac{(z - z_1)(ad - bc)}{(cz + d)(cz_1 + d)} \frac{(cz + d)(cz_2 + d)}{(z - z_2)(ad - bc)} = \frac{z - z_1}{z - z_2} \frac{(cz_2 + d)}{(cz_1 + d)}$$

同理 
$$\frac{w_3 - w_1}{w_3 - w_2} = \frac{z_3 - z_1}{z_3 - z_2} \frac{(cz_2 + d)}{(cz_1 + d)}$$

所求分式线性映射

故 
$$\frac{w-w_1}{w-w_2} \frac{w_3-w_2}{w_3-w_1} = \frac{z-z_1}{z-z_2} \frac{z_3-z_2}{z_3-z_1}$$
 --(1)

- □ ① 式(1)是三对点所确定的唯一的一个映射。
  - ② 点  $z_1, z_2, z_3 \xrightarrow{\text{b}(1)}$  点  $w_1, w_2, w_3$  且等式两边依次同时变为 $0, \infty, 1$ .
  - ③式(1)左端的式子通常称为四个点 $w, w_1, w_2, w_3$ 的交比(cross-ratio).

因此,式(1)说明分式线性映射具有保交比不变性。

由分式线性映射的存在唯一性定理知:在已知圆周 C和 C' 上分别取定三个不同点以后,必存在分式线性映射 F将  $C \longrightarrow C'$ . 以下讨论这个映射会把 C 的内部映射成什么?

: C将z平面划分为两个区域:内部为 $d_1$ ,外部为 $d_2$ ,它的象C'把w平面分为内部 $D_1$ ,外部 $D_2$ ,则可以断定 $d_1$ 的象 $F(d_1)$ 必然是 $D_1$ , $D_2$ 中的一个,而 $d_2$ 的象 $F(d_2)$ 是 $D_1$ 和 $D_2$ 中的另一个(不可能把  $d_1$  的部分映入  $D_1$  ,  $d_1$  的另一部分映入  $D_2$ ).

事实上,

且 $w_1 \in D_2, w_2 \in D_1 \Rightarrow$ 弧 $w_1 w_2 \otimes b \in C'$ 交于一点 $Q \in C'$ ,它一定是C上某点的象,由假设Q又是 $\overline{z_1 z_2}$ 上某一点的象,:就有两个不同的点(一个在圆周C上,另一在线段

 $z_1z_2$ 上)被映射为同一点.



这与分式线性映射的一一对应性相矛盾!

#### 由以上讨论给出确定对应区域的两个方法:

$$(1) \forall z_0 \in d_1, \forall w_0 = F(z_0) \in D_1 \Rightarrow d_1 \stackrel{F}{\rightarrow} D_1;$$
否则, 
$$\forall w_0 = F(z_0) \in D_2 \Rightarrow d_1 \stackrel{F}{\rightarrow} D_2.$$

(2) 
$$\forall z_1, z_2, z_3 \in C, \mathbb{N}$$
  $w_1 = F(z_1), w_2 = F(z_2),$   $w_3 = F(z_3) \in C'$ 

若C依 $z_1 \rightarrow z_2 \rightarrow z_3$ 的绕向与C依 $w_1 \rightarrow w_2 \rightarrow w_3$ 的绕向相同时,那么 $d_1 \stackrel{F}{\longrightarrow} D_1$ ,反之 $d_1 \stackrel{F}{\longrightarrow} D_2$ (沿曲线方向绕行时,在观察者左方的区域) 事实上 过 $z_1$ 作C的一段法线 $z_1z \ \partial z_1z \subset d_1$ ,于是, 顺着 $z_1 \rightarrow z_2 \rightarrow z_3$ 看, $z_1z$ 在观察者的左方,象 $F(z_1z)$ 是过 $w_1$ ,并与C'正交的一段圆弧(或者直线段) 由于在 $z_1$ 的保角性,顺着 $w_1, w_2, w_3$ 看, $F(z_1z)$ 也 应在观察者的左方,:: $d_1 \xrightarrow{F} D_1$ ; 反之 $d_1 \xrightarrow{F} D_2$  $z_3$ 

#### 由上一节和本节的讨论,还有以下结论:

- ()当二圆周上没有点映射 成无穷远点时,这二圆周的弧所围成的区域  $\xrightarrow{F}$  二圆弧所围成的区域;
- (II)当二圆周上有一个点映射成 $\infty$ 点时,这二圆周的弧所围成的区域— $F\to$ 一圆弧与一直线所围成的区域;
- (III)当二圆周交点中的一个 $\xrightarrow{F}$ ∞点时,这二圆周的弧所围成区域 $\xrightarrow{F}$ 角形区域.

分式线性映射具有保圆性与保对称性,在处理边界,由圆周,圆弧,直线,直线段所组成的区域的共形映射问题时,分式线性映射起着十分重要的作用.

## 2. 举例

例 1 求将  $Im(z) > 0 \rightarrow Im(w) > 0$ 的分式线性映射.

当
$$a,b,c,d$$
均为实数时, $w_k = \frac{az_k + b}{cz_k + d}$ 也为实数,

故,ѡ必将实轴 →实轴.

又
$$w' = \frac{ad - bc}{(cz + d)^2} > 0$$
(当z为实数且 $ad - bc > 0$ 时)

即,实轴变成实轴是同向的,

因此,上半z平面 → 上半w平面.

即,当a,b,c,d均为实数时,且ad-bc>0,线性

分式映射
$$w = \frac{az+b}{cz+d}$$
将  $\text{Im}(z) > 0 \rightarrow \text{Im}(w) > 0$ 



## ①具有这一形式的映射 也将 $Im(z) < 0 \rightarrow Im(z) < 0$

②
$$w = \frac{az + b}{cz + d}$$
,其中 $a,b,c,d$   
为实数, $ad - bc < 0$   
将  $Im(z) > 0 \rightarrow Im(w) < 0$   
 $L \neq z$ 平面 下半 $w$ 平面

③求 $Im(z) > 0 \rightarrow Im(w) > 0$ 的映射,可在实轴上取三对

#### 相异的对应点:

$$z_1 < z_2 < z_3$$
,  
 $w_1 < w_2 < w_3$ 代入  
 $\frac{w - w_1}{w - w_2} \cdot \frac{w_3 - w_2}{w_3 - w_1}$   
 $= \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1}$   
即得.

例 2 求将上半z平面 Im(z) > 0映射成单位圆 |w| < 1的分式线性映射,且满足条件 w(2i) = 0, arg(w'(2i)) = 0的分式线性映射.

若我们把上半平面看成是半径为∞的圆域. 那么实轴就相当于圆域的边界圆周、分式线性 映射具有保圆性,:: 它必将上半平面 → 单位圆 |w| < 1.  $\exists z = \lambda \rightarrow |w| = 1$ 的圆心,即 w = 0实轴 $R \rightarrow |w| = 1, \ \ Z = \lambda = \lambda = \lambda$ 关于实轴 对称,由保对称性 $\lambda \rightarrow w = \infty$ 

$$\therefore w = k(\frac{z - \lambda}{z - \overline{\lambda}})$$

$$(k为常数)$$



$$\forall z \in R \rightarrow w \in \{w | |w| = 1\}$$

$$\left|\frac{z-\lambda}{z-\overline{\lambda}}\right|=1, \quad |w|=1, \quad |k|=1$$

设 $k = e^{i\theta}$  约人任意实数

因此,所求分式线性映射

一般形式为:

$$w = e^{i\theta} \left( \frac{z - \lambda}{z - \overline{\lambda}} \right)$$

$$(\operatorname{Im}(\lambda) > 0) - -(2)$$

反之,形如(2)

式的分式线性

映射必将

$$\operatorname{Im}(z) > 0 \longrightarrow |w| < 1$$

进一步,由条件
$$w(2i) = 0$$

$$\therefore$$
 在(2)式中取 $\lambda = 2i$ 

即
$$w = e^{i\theta} \left( \frac{z - 2i}{z - \overline{2i}} \right) = e^{i\theta} \left( \frac{z - 2i}{z + 2i} \right)$$

$$w' = e^{i\theta} \frac{4i}{(z+2i)^2}, w'(2i) = -\frac{i}{4}e^{i\theta}$$

$$\Rightarrow$$
 arg  $w'(2i) = \arg e^{i\theta} + \arg(-\frac{l}{4})$ 

$$=\theta+(-\frac{\pi}{2})=0\Rightarrow \theta=\frac{\pi}{2}$$
,从而有 $w=i\left(\frac{z-2i}{z+2i}\right)$ 

- (1)本题可在x轴上任意取定三点,在|w|=1上依次取三点,由交比形式可求得分式线性映射(见 $P_{203}$ 解法二).
- (2)由于 $\theta$ 的任意性, $Im(z) > 0 \rightarrow |w| < 1$ 的 映射不唯一,且无穷多.

例 3 求将|z| < 1  $\rightarrow |w|$  < 1的分式线性映射.

解 由保对称性  $\alpha$ 关于|z|=1的对称点 $\frac{1}{\alpha} \rightarrow w=\infty$ 

 $(w = 0 = \infty = \infty = 0) = 0$  (w = 0 与 w = \infty 是关于 | w | = 1 的 对 称点)



$$\therefore w = k \left( \frac{z - \alpha}{z - \frac{1}{\alpha}} \right) = k \overline{\alpha} \left( \frac{z - \alpha}{\overline{\alpha}z - 1} \right) = k' \left( \frac{z - \alpha}{1 - \overline{\alpha}z} \right) \quad (\sharp \Phi)$$

又 :: 
$$|1-\alpha|=|1-\overline{\alpha}|$$
 ::  $|k'|=1$ ,

取 $k' = e^{i\theta}$  的实常数,故

$$|z|<1\rightarrow |w|<1$$
的线性分式映射为

$$w = e^{i\theta} \left( \frac{z - \alpha}{1 - \alpha z} \right) \quad (|\alpha| < 1) - -(3)$$

# 例 4 求将 $Im(z) > 0 \rightarrow |w - w_0| < R$ 的分式线性 变换使满足条件 $w(i) = w_0, w'(i) > 0$

解令
$$\xi = \frac{w - w_0}{R}$$
 (4)  $x = w_0 \rightarrow \xi = 0$  将 $|w - w_0| < R \rightarrow |\xi| < 1$ , 中将 Im(z)  $> 0 \rightarrow |\xi| < 1$  由例2有, $\xi = e^{i\theta} \frac{z - i}{z + i}$  — (5)  $z = i \rightarrow \xi = 0$ 

$$\mathbf{h}(4)$$
有 $w = w_0 + R\xi - -(6)$ 

复合(5)(6)有 
$$w = w_0 + \text{Re}^{i\theta} \frac{z-i}{z+i} - -(7)$$

### 再由w'(i) > 0先求得

$$\left. \frac{dw}{dz} \right|_{z=i} = \operatorname{Re}^{i\theta} \left. \frac{z+i-z+i}{(z+i)^2} \right|_{z=i} = \operatorname{Re}^{i\theta} \left. \frac{1}{2i} \right|_{z=i}$$

即 
$$w'(i) = \operatorname{Re}^{i\theta} \frac{1}{2i} = \frac{R}{2} e^{i(\theta - \frac{\pi}{2})}$$

例 5 中心分别在z = 1与z = -1,半径为 $\sqrt{2}$ 的二 圆弧所围区域,在映射 $w = \frac{z-i}{z+i}$ 下映成 什么区域?

两圆弧的交点为-i与i,且互相正交,交点  $z = i \rightarrow w = 0$   $z = -i \rightarrow w = \infty$ 

:: 映射后的区域是以原点为顶点张角为 $\frac{\pi}{2}$ 的

角形区域. (第三象限的点) 
$$p_z = \sqrt{2} - 1 \in C_1 \to w = \frac{(1 - \sqrt{2}) + i(1 - \sqrt{2})}{2 - \sqrt{2}}$$

## $\therefore C_1 \rightarrow C_1' - -$ 第三象限的分角线 由保角性 $C_2 \rightarrow C_2' - -$ 第二象限的分角线



# 作业

• P246 15(1)(2),16(1)(2)