Unidade temática 2: Sistema de numeração

Sumário: Conversão de decimal para binário.

A conversão de números decimais para números binários é feita dividindo-se o número decimal por 2 até que o resultado seja zero. O número binário correspondente é obtido agrupando-se os "restos" das divisões no sentido da última divisão para a primeira.

Aula nº11 e 12

Unidade temática 2: Sistema de numeração

Sumário: Sistema hexadecimal.

O Sistema hexadecimal, tal como o nome indica, é formado por 16 símbolos "dígitos" diferentes. Estes símbolos são os conhecidos dígitos

0,1,2,3,4,5,6,7,8,9 do sistema decimal e as letras A,B,C,D,E,F. Estas letras, em correspondência com o sistema decimal, equivalem aos valores

10, 11, 12, 13, 14, 15, respectivamente.

Vejamos a correspondência entre os três sistemas de numeração.

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2 3 4 5 6 7 8	0010	2
3	0011	3
4	0100	4 5
5	0101	5
6	0110	6
7	0111	7
	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

O sistema de numeração hexadecimal é muito utilizado na programação de microprocessadores, especialmente nos equipamentos de estudo e sistemas de desenvolvimento.

Tal como nos sistemas anteriores, podemos desenvolver qualquer número em potências da sua base, neste caso 16.

O primeiro símbolo da direita é sempre o menos significativo e o primeiro símbolo da esquerda é sempre o mais significativo, idêntico aos outros sistemas de numeração.

Aula nº13 e 14

Unidade temática 2: Sistema de numeração

Sumário: Conversão de decimal para binário.

Para converter um número hexadecimal num número decimal, basta aplicar a fórmula genérica já conhecida :

$$N^0 = S_y \times 16^n + S_{y-1} \times 16^{n-1} + ... + S_1 \times 16^1 + S_0 \times 16^0$$

Exemplo 1: X₁₀=(2A)₁₆

Solução:

$$X = 2 \times 16^1 + A \times 16^0$$

$$A = 10$$

$$X = 2 \times 16^{1} + 10 \times 16^{0}$$

$$X = 32 + 10 = 42$$

Portanto: (2A)16= (42)10

Exemplo 2: $Y_{10} = (B1)_{16}$

Solução:

$$Y = B \times 16^1 + 1 \times 16^0$$

$$B = 11$$

$$Y - 11 \times 16^{1} + 1 \times 16^{0}$$

$$Y = 176 + 1 = 177$$

Portanto: (B1)16=(177)10

Unidade temática 2: Sistema de numeração

Sumário: Conversão de decimal para hexadecimal.

O processo é idêntico a conversão Decimal - Binário, dividindo-se o número Decimal pela base 16 até que o resultado seja zero. O número Hexadecimal correspondente é obtido agrupando-se os "restos" das divisões no sentido da última para a primeira.

Unidade temática 2: Sistema de numeração

Sumário: Conversão de binário para hexadecimal.

A conversão Binário - Hexadecimal é feita transformando-se grupos de quarto dígitos binários, no sentido da direita para a esquerda, directamente em números hexadecimais.

Aula nº19 e 20

Unidade temática 2: Sistema de numeração

Sumário: Conversão de hexadecimal para binário.

A conversão de números Hexadecimais em Binários é feita transformando-se os símbolos Hexadecimais directamente em números binários de 4 dígitos.

Os zeros à esquerda do último grupo da esquerda podem ser omitidos, pois não valem nada.

Aula n°21 e 22

Unidade temática 2: Sistema de numeração

Sumário: Sistema octal.

O Sistema octal, tal como o nome indica, é formado por 8 símbolos "dígitos" diferentes. Estes símbolos são os conhecidos dígitos 0,1,2,3,4,5,6,7 do sistema decimal.

Vejamos a correspondência entre os três sistemas de numeração.

Decimal	Binário	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7.	111	7

Tal como nos sistemas anteriores, podemos desenvolver qualquer número em potências da sua base, neste caso 8.

O primeiro símbolo da direita é sempre o menos significativo e o primeiro símbolo da esquerda é sempre o mais significativo, idêntico aos outros sistemas de numeração.

Aula nº23 e 24

Unidade temática 2: Sistema de numeração

Sumário: Conversão de decimal para octal.

O processo é idêntico a conversão decimal - binário ou decimal - hexadecimal dividindo-se o número Decimal pela base 8 até que o resultado seja zero. O

número octal correspondente é obtido agrupando-se os "restos" das divisões no sentido da última para a primeira.

```
Converter 90<sub>10</sub> para octal.  
90|\underline{8}  
2 \ 11|\underline{8}  
3 \ 1|\underline{8}  
10 \ 90_{10} = 132_{8}  
Converter 128<sub>10</sub> para octal.  
128|\underline{8}  
0 \ 16|\underline{8}  
0 \ 2|\underline{8}  
2 \ 0 \ 128_{10} = 200_{8}
```

Aula nº25 e 26

Unidade temática 2: Sistema de numeração

Sumário: Conversão de octal para decimal.

Para converter um número octal num número decimal, basta aplicar a fórmula genérica já referida anteriormente (ver sistema hexadecimal) utilizando como base o valor 8.

Converter 3458 em decimal.

$$3458 = 3x8^3 + 4x8^2 + 5x8^1 + 8x8^0$$

$$3458 = 1536 + 256 + 40 + 8 = 1840$$

Converter 4778 em decimal.

$$4778 = 4x8^3 + 7x8^2 + 7x8^1 + 8x8^0$$

$$4778 = 2048 + 448 + 56 + 8 = 2560$$

Aula nº29 e 30

Unidade temática 2: Sistema de numeração

Sumário: Conversão de octal para binário.

A conversão de números octais em Binários é feita transformando-se os símbolos octais directamente em números binários de 3 dígitos.

Exemplos

Os zeros à esquerda, do último grupo da esquerda, podem ser omitidos, pois não valem nada.

Aula n°31 e 32

Unidade temática 2: Sistema de numeração

Sumário: Conversão de octal para hexadecimal e vice-versa.

A conversão de números octais em hexadecimais (e vice-versa) deve ser feita transformandose os símbolos octais (ou hexadecimais) em binários e posterior transformação em hexadecimal (ou octal).

Exemplo da conversão octal - hexadecimal

Exemplo da conversão hexadecimal - octal