# **GR** notes

### Yucun Xie

August 7, 2022

| Contents                                                                           |        |
|------------------------------------------------------------------------------------|--------|
| 1 Differential Geometry 1.1 Tensor 1.2 Connection 1.3 Geodesics 1.4 Riemann Tensor | 2<br>2 |
| 2 Gravitation                                                                      | 2      |
| Appendix                                                                           | 3      |
| A Special Relativity A.1 Spacetime                                                 |        |
| B Topological Space                                                                | 4      |
| C Manifolds                                                                        | 4      |
| D Property for some tensors                                                        | 4      |

#### **Conventions**

- 1. Greek index (e.g.  $\alpha, \beta, \mu, \nu$ ) take value from  $\{0, 1, 2, 3\}$ .
- 2. Events denoted by cursive capitals (e.g.  $\mathscr{A}, \mathscr{B}, \mathscr{E}$ ).
- 3.  $(x^0, x^1, x^2, x^3) \equiv (t, x, y, z) \equiv x^{\alpha}$
- 4. Latin index (e.g. i, j, k) take value from  $\{1, 2, 3\}$ .
- 5. New unit that speed of light c=1
- 6. Einstein summation convention  $ds^2 = g_{\mu\nu}x^{\mu}x^{\nu} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu}x^{\mu}x^{\nu}$

# **Differential Geometry**

#### 1.1 **Tensor**

Tensor is a quantity that have same form in all coordinate system. Tensor does not have components naturally, but when we choose specific coordinate system, we can write down its components.

#### 1.2 Connection

*Proof.* Here is a proof shows that connection not a tensor by show connection does not obey tensor transformation law.

$$\begin{split} \nabla_{\beta'} e_{\alpha'} &= \Gamma_{\alpha'\beta'}^{\gamma'} e_{\gamma'} \\ &= \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \nabla_{\lambda} (\frac{\partial x^{\mu}}{\partial x^{\alpha'}} e_{\mu}) \\ &= \frac{\partial x^{\lambda}}{\partial x^{\beta'}} (\frac{\partial}{\partial x^{\lambda}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} e_{\mu} + \frac{\partial x^{\mu}}{\partial x^{\alpha'}} \Gamma_{\mu\lambda}^{\gamma} e_{\gamma}) \\ &= \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \frac{\partial}{\partial x^{\lambda}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} e_{\mu} + \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} \Gamma_{\mu\lambda}^{\gamma} e_{\gamma} \\ &= \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \frac{\partial}{\partial x^{\lambda}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} \frac{\partial x^{\gamma'}}{\partial x^{\mu}} e_{\gamma'} + \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} \frac{\partial x^{\gamma'}}{\partial x^{\gamma'}} \Gamma_{\mu\lambda}^{\gamma} e_{\gamma'} \end{split}$$

which yield

$$\Gamma_{\alpha'\beta'}^{\gamma'} = \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \frac{\partial}{\partial x^{\lambda}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} \frac{\partial x^{\gamma'}}{\partial x^{\mu}} + \frac{\partial x^{\lambda}}{\partial x^{\beta'}} \frac{\partial x^{\mu}}{\partial x^{\alpha'}} \frac{\partial x^{\gamma'}}{\partial x^{\gamma}} \Gamma_{\mu\lambda}^{\gamma}$$
There is an extra term in transformation of connection, so connection is not a tensor.

#### Geodesics

### Riemann Tensor

### Gravitation

# A Special Relativity

### A.1 Spacetime

#### **Definition A.1.** Inertial coordinate

The coordinate system must satisfy three property to be consider inertial coordinat:

- 1. The distance between two points are independent of time.
- 2. The clocks at every points ticking off time coordinate t at same rate.
- 3. The geometry of space is always flat.



Figure 1: two events with coordinate (-1, -1, 0, 0) and (4, 3, 0, 0). Orange line is light's worldline.

The event in 4-D spacetime is defined by a set of coordinate (t, x, y, z). For simplicity, we assume those events have y = 0, z = 0 so that we can draw a 2D graph to represent them.

Analog to Euclidean geometry, just like the euclidean distance  $\Delta l^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$ , we define the spacetime interval  $\Delta s^2 = -\Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2$ .

**Remark.** There are a lot different conventions to define the sign of interval, here we just use the popular one (-,+,+,+).

#### Example.

Interval for the two events in Figure 1 is  $\Delta s^2 = -\Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2 = -9$ .

The universality speed of light means that  $\frac{\Delta r}{\Delta t} = \frac{\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}}{\Delta t} = 1$  are always hold, then we can then write the interval  $\Delta s^2 = -\Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2 = 0$ . This experimental fact yield all law of special relativity.

When the interval  $\Delta s^2$  is less than 0, we call the separation bewteen events is **timelike**; When the interval  $\Delta s^2$  is equal to 0, we call it **lightlike** or null; When the interval  $\Delta s^2$  is greater than 0, we call it **spacelike**.

### A.2 Energy and Momentum

## **B** Topological Space

### **C** Manifolds

Mathematically, specetime is a **manifold**.

**Definition C.1.** An n-dimensional manifold is a set that can be parameterized continuously by n independent real coordinates for each point. If a manifold is differentiable at each point, it is a **differentiable manifold**.

**Definition C.2.** A coordinate system (also called chart) is n labels uniquely with each point of an n-dimensional manifold through a one-to-one mapping from  $\mathbb{R}^n$  to M. Generally, more than one charts are required to cover entire manifold, which called **atlas**.

**Definition C.3.** Cartesian product  $X \times Y$  is set of all possible ordered pairs of element which one from X and one from Y.

Subset of points within a manifold for curves and surfaces. Our spacetime is a 4-dimensianl **pseudo** Riemannian manifold which is a manifold with some additional property and structures.

**Remark.** Manifolds also have a important property which is locally **homeomorphism** to  $\mathbb{R}^n$ . See the discussion of topology for definition of homeomorphism.

# D Property for some tensors

$$F_{\mu\nu} = -F_{\nu\mu}$$

$$T_{ij} = T_{ji}$$

$$g_{\mu\nu} = g_{\nu\mu}$$

$$\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\nu\mu}$$

$$R_{\alpha\beta\mu\nu} = -R_{\beta\alpha\mu\nu}$$

$$R_{\alpha\beta\mu\nu} = -R_{\alpha\beta\nu\mu}$$

$$R_{\alpha\beta\mu\nu} = R_{\mu\nu\alpha\beta}$$

$$R_{\alpha\beta\mu\nu} + R_{\alpha\nu\beta\mu} + R_{\alpha\mu\nu\beta} = 0$$

$$R_{\alpha\beta} = R_{\beta\alpha}$$