What is claimed is:

5

A (meth) acrylate compound represented by the formula
or the formula (2),

5

10

15

20

wherein each of R₁, R₂, R₃, R₄ and R₅ is independently a hydrogen atom or a methyl group, each of R_6 , R_7 and R_8 is independently a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms, -(O-X-O) - is represented by the formula (3) (in which A is a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms, each of R₉, R₁₀, R₁₅ and R₁₆ is independently a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group and each of R_{11} , R_{12} , R_{13} and R_{14} is independently a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group) or the formula (4) (in which each of R_{17} , R_{18} , R_{19} R_{23} and R_{24} is independently a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group and each of R_{20} , R_{21} and R_{22} is independently a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group), -(Y-O) - is an arrangement of one kind of structure defined by the formula (5) or a random arrangement of at least two kinds of structures defined by the formula (5) (in which each of R25 and R26 is independently a halogen atom, an alkyl group having 6 or less carbon atoms or

a phenyl group and each of R_{27} and R_{28} is independently a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group), Z is an organic group which has at least one carbon atom and which may contain an oxygen atom, a nitrogen atom, a sulfur atom or a halogen atom, each of a and b is an integer of 0 to 30, provided that at least either a or b is not 0, each of c and d is an integer of 0 or 1, and n is an integer of 0 to 10.

- 2. A (meth) acrylate compound according to claim 1, wherein R_9 , R_{10} , R_{15} and R_{16} in (O-X-O) of the formula (3) are an alkyl group having 3 or less carbon atoms, R_{11} , R_{12} , R_{13} and R_{14} in (O-X-O) of the formula (3) are a hydrogen atom or an alkyl group having 3 or less carbon atoms, R_{25} and R_{26} in (Y-O) of the formula (5) are an alkyl group having 3 or less carbon atoms and R_{27} and R_{28} in (Y-O) of the formula (5) are a hydrogen atom or an alkyl group having 3 or less carbon atoms.
- 3. A (meth) acrylate compound according to claim 1, wherein R_{17} , R_{18} , R_{19} , R_{23} and R_{24} in -(0-X-0) of the formula (4) are an alkyl group having 3 or less carbon atoms, R_{20} , R_{21} and R_{22} in -(0-X-0) of the formula (4) are a hydrogen atom or an alkyl group having 3 or less carbon atoms, R_{25} and R_{26} in -(Y-0) of the formula (5) are an alkyl group having 3 or less carbon atoms and R_{27} and R_{28} in -(Y-0) of the formula (5) are a hydrogen atom or an alkyl group having 3 or less carbon atoms.
- 30 4. A (meth) acrylate compound according to claim 1, wherein -(O-X-O) is represented by the formula (3) or the formula (4) and -(Y-O) is an arrangement of the formula

(7) or the formula (8) or a random arrangement of the formula (7) and the formula (8),

5 5. A (meth)acrylate compound according to claim 1, wherein -(O-X-O) - is represented by the formula (6) and -(Y-O) - is represented by the formula (5),

- 10 6. A (meth)acrylate compound according to claim 1, wherein -(O-X-O) is represented by the formula (6) and -(Y-O) is represented by the formula (7) or the formula (8).
- 7. A curable resin composition containing the (meth)acrylate compound as recited in claim 1.
 - 8. A photosensitive resin composition containing the (meth)acrylate compound as recited in claim 1 and a
- 20 photopolymerization initiator.

9. A cured product obtained by curing the curable resin composition as recited in claim 7 or the photosensitive resin composition as recited in claim 8.