

Figure 1. Short fragments exhibit enhancer-blocking insulator activity. A) Known insulators were split into partially overlapping 170bp fragments. The insulator fragments were cloned in the forward or reverse orientation between a 35S, AB80, or Cab-1 enhancer and a 35S minimal promoter (green rectangle) driving the expression of a barcoded GFP reporter gene. Constructs without an enhancer (none) but with insulator fragments were also created. B) All insulator fragment constructs were pooled and subjected to Plant STARR-seq in N. benthamiana leaves (N. benthamiana) and maize protoplasts (maize). Reporter mRNA enrichment was normalized to a control construct without an enhancer or insulator (noEnh; log2 set to 0). The enrichment of a control construct without an insulator is indicated as a black dot. Violin plots represent the kernel density distribution and the box plots inside represent the median (center line), upper and lower quartiles, and 1.5x interquartile range (whiskers) for all corresponding constructs. Numbers at the bottom of each violin indicate the number of samples in each group. C) Correlation between the enrichment of insulator fragments in constructs with the 35S enhancer in N. benthamiana leaves and maize protoplasts. D) Enrichment of constructs with insulator fragments cloned between the 35S enhancer and minimal promoter. The position along the full-length insulator and the orientation (arrow pointing right, fwd; arrow pointing left, rev) of the fragments is indicated by arrows. Clusters of active fragments are shown as shaded areas. Insulators with highly orientation-dependent activity are circled. E) Correlation between insulator fragment enrichment and GC content for constructs with the 35S enhancer. F) Correlation between insulator fragment enrichment in N. benthamiana leaves in constructs with the indicated enhancers. The dashed line represents a y = x line fitted through the point corresponding to a control construct without an insulator (black dot). Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated in (C), (E), and (F). The dotted line in (D) and (E) represents the enrichment of a control construct without an insulator.

Figure 2. Insulators are active in stable transgenic lines in Arabidopsis, rice, and maize. A) Transgenic Arabidopsis and rice lines were generated with T-DNAs harboring a constitutively expressed luciferase (Luc) gene and a nanoluciferase (NanoLuc) gene under control of a 35S minimal promoter coupled to the 35S or AB80 enhancer (as indicated above the plots) with insulator candidates inserted between the enhancer and promoter. Nanoluciferase activity was measured in at least 4 plants from these lines and normalized to the activity of luciferase. The NanoLuc/Luc ratio was normalized to a control construct without an enhancer or insulator (noEnh; log2 set to 0). B, C) The activity of full-length insulators was measured in Arabidopsis lines (B) and compared to the corresponding results from Plant STARR-seq in N. benthamiana leaves (C). D, E) The activity of synthetic full-length insulators was measured in rice lines (D) and compared to the corresponding results from Plant STARR-seg in maize protoplasts (E). F, G) The activity of insulator fragments was measured in Arabidopsis lines (F) and compared to the corresponding results from Plant STARRseg in N. benthamiana leaves (G). H) For transgenic maize lines, a reporter gene driven by the constitutive, moderate-strength ZmGOS2 promoter and an upstream 35S enhancer was created and insulator fragments were inserted between the enhancer and promoter. The reporter gene cassette was inserted in the maize genome by site-directed integration and the expression of the reporter gene was measured in various tissues/developmental stages by ELISA. I, J) The activity of insulator fragments was measured in R1 leaves of transgenic maize lines (I) and compared to the corresponding results from Plant STARR-seq in maize protoplasts (J). K) Correlation (Pearson's R2) between the expression of all tested constructs across different tissues and developmental stages. The correlation with Plant STARR-seg results from maize protoplasts is also shown. Box plots in (B), (D), (F), and (I) represent the median (center line), upper and lower quartiles (box limits), 1.5× interquartile range (whiskers), and outliers (points) for all corresponding samples from two to three independent replicates. Numbers at the bottom of each box plot indicate the number of samples in each group. For groups with less than 10 samples, individual data points are shown as black dots. In (C), (E), (G), and (J), the dashed line represents a linear regression line and error bars represent the 95% confidence interval. Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated. The dotted line in (B), (D), (F) and (I) represents the median enrichment of a control construct without an insulator, and the dashed line in (I) represents the median enrichment of a control construct without an insulator and without the 35S enhancer.

Figure 3. Insulator fragments can be stacked to create very strong enhancer-blocking insulators. A) One, two, or three 170-bp fragments of known insulators were cloned between a 35S enhancer and a 35S minimal promoter driving the expression of a barcoded GFP reporter gene. B) All insulator constructs were pooled and subjected to Plant STARR-seg in N. benthamiana leaves (N. benthamiana) and maize protoplasts (maize). Reporter mRNA enrichment was normalized to a control construct without an enhancer or insulator (log2 set to 0). Violin plots are as defined in Figure 1B. C) A linear model was trained to predict the enrichment of stacked insulator constructs based on the activity of individual insulator fragments and their position within the construct. The correlation between the model's prediction (prediction) and experimentally determined enrichment values (measurement) is shown as a hexbin plot (color represents the count of points in each hexagon). Pearson's R^2 , Spearman's ρ , and number (n) of fragments are indicated. D) Coefficients assigned by the linear model to insulator fragments in the indicated positions of the stacked constructs. E, F) The activity of insulator fragment combinations in constructs as in Figure 2H was measured in R1 leaves of transgenic maize lines (E) and compared to the corresponding results from Plant STARR-seg in maize protoplasts (F). Box plots are as defined in Figure 2. The enrichment of a control construct without an insulator (nolns) is indicated as a dotted line. In (F), the dashed line represents a linear regression line and error bars represent the 95% confidence interval. Pearson's R^2 . Spearman's ρ , and number (n) of constructs are indicated. **G)** Correlation (Pearson's R^2) between the expression of all tested constructs across different tissues and developmental stages. The correlation with Plant STARR-seq results from maize protoplasts is also shown. The dotted line in (B) and (E) represents the enrichment of a control construct without an insulator, and the dashed line in (E) represents the enrichment of a control construct without an insulator and without the 35S enhancer.

Figure 4. Insulators exhibit silencer activity in some contexts. **A)** Insulator fragments (yellow triangle) were cloned upstream of a *AB80* or *Cab-1* enhancer and a 35S minimal promoter (green rectangle) driving the expression of a barcoded GFP reporter gene. Half of the constructs also harbored a 35S enhancer upstream of the insulator fragments (with 35S enh) while the other half lacked an upstream enhancer (without 35S enh). **B)** All constructs were pooled and subjected to Plant STARR-seq in *N. benthamiana* leaves. Reporter mRNA enrichment was normalized to a control construct without an enhancer or insulator (noEnh; log2 set to 0). The enrichment of a control construct without an insulator is indicated as a black dot. **C)** Correlation between insulator fragment activity in constructs with or without the upstream 35S enhancer. The dashed line represents a y = x line fitted through the point corresponding to a control construct without an insulator (black dot). **D)** Insulator fragments (yellow triangle) were cloned in between (insulator construct) or upstream of (silencer construct) a 35S enhancer (blue arrow) and a 35S minimal promoter (green rectangle) driving the expression of a barcoded GFP reporter gene. **E)** All constructs were pooled and subjected to Plant STARR-seq in *N. benthamiana* leaves (*N. benthamiana*) or maize protoplasts (maize). Reporter mRNA enrichment was normalized to a control construct without an enhancer or insulator (noEnh; log2 set to 0). The enrichment of a control construct without an insulator is indicated as a dotted line. **F)** Comparison of the enrichment of insulator fragments in insulator or silencer constructs. A linear regression line is shown as a solid line and its slope and goodness-of-fit (*R*²) is indicated. Violin plots in (**B**) and (**E**) are as defined in Figure 1B.

Figure 5. Silencer activity depends on enhancer strength. **A)** Selected insulators and insulator fragments (yellow triangle) were cloned in between (insulator construct) or upstream of (silencer construct) an enhancer and a 35S minimal promoter (green rectangle) driving the expression of a barcoded GFP reporter gene. Eight different enhancers were used to build these constructs. All constructs were pooled and subjected to Plant STARR-seq in *N. benthamiana* leaves (*N. benthamiana*) or maize protoplasts (maize). **B)** Strength of the eight enhancers in constructs without an insulator. Reporter mRNA enrichment was normalized to a control construct without an enhancer (none; log2 set to 0). Box plots represent the median (center line), upper and lower quartiles, and 1.5× interquartile range (whiskers) for all corresponding barcodes from two independent replicates. Numbers at the bottom of the plot indicate the number of samples in each group. **C)** Comparison of the enrichment of insulators and insulator fragments in insulator or silencer constructs. A linear regression line is shown as a solid line and its slope and goodness-of-fit (R^2) is indicated. **D)** Correlation between the slope of the regression lines from (**C**) and the strength of the corresponding enhancer from (**B**). Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated. A linear regression line is shown as a dashed line.

Supplementary Figure S1. Plant STARR-seq detects activity of enhancer-blocking insulators (Supports Figure 1). **A)** Full-length insulators were cloned in the forward (fwd) or reverse (rev) orientation between a 35S enhancer and a 35S minimal promoter driving the expression of a barcoded GFP reporter gene. **B)** In all experiments, control constructs as in (**A**) but without an insulator (noIns) or without an insulator and without an enhancer (noEnh) were added to the library. **C)** All insulator constructs were pooled and subjected to Plant STARR-seq in *N. benthamiana* leaves (*N. benthamiana*) and maize protoplasts (maize). Reporter mRNA enrichment was normalized to a control construct without an enhancer or insulator (noEnh; log2 set to 0). Box plots represent the median (center line), upper and lower quartiles, and 1.5× interquartile range (whiskers) for all corresponding barcodes from two independent replicates. Numbers at the bottom of the plot indicate the number of samples in each group. The enrichment of a control construct without an insulator (noIns) is indicated as a dotted line.

Supplementary Figure S2. Plant STARR-seq yields highly reproducible results (Supports all figures). A–F) Correlation between biological replicates of Plant STARR-seq for the full-length insulator library used in Supplementary Figure S1 (A), the insulator fragment library used in Figure 3 (C), the downstream enhancer library (D) and the insulator/silencer library (E) used in Figure 4, and the enhancer-insulator combination library used in Figure 5 (F). Experiments were performed in *N. benthamiana* leaves (*N. benthamiana*) or maize protoplasts (maize) as indicated. Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated. The color in the hexbin plots in (C) represents the count of points in each hexagon.

Supplementary Figure S3. Activity of insulator fragments in different maize tissues (Supports Figure 2). A, B) Transgenic maize lines were created using constructs as in Figure 2H. The activity of insulator fragments was measured in the indicated tissues (A) and compared to the corresponding results from Plant STARR-seq in maize protoplasts (B). Box plots in (A) represent the median (center line), upper and lower quartiles (box limits), 1.5× interquartile range (whiskers), and outliers (points) for all corresponding samples from two to three independent replicates. Numbers at the bottom of each box plot indicate the number of samples in each group. For groups with less than 10 samples, individual data points are shown as black dots. The dotted and dashed lines in (A) represent the median enrichment of control constructs without an insulator or without an enhancer, respectively. In (B), the dashed line represents a linear regression line and error bars represent the 95% confidence interval. Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated.

Supplementary Figure S4. Activity of insulator fragment combinations in different maize tissues (Supports Figure 3). A, B) Transgenic maize lines were created using insulator fragment combinations in constructs as in Figure 2H. The activity of insulator fragments was measured in the indicated tissues (A) and compared to the corresponding results from Plant STARR-seq in maize protoplasts (B). In (A), box plots are as defined in Supplementary Figure S3, and the dotted and dashed lines represent the median enrichment of control constructs without an insulator or without an enhancer, respectively. In (C), the dashed line represents a linear regression line and error bars represent the 95% confidence interval. Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated.

Supplementary Figure S5. Enhancers downstream of insulator fragments slightly reduce their activity (Supports Figure 4). Correlation between the activity of insulator fragments cloned between a 35S enhancer and a 35S minimal promoter with or without an additional *AB80* or *Cab-1* enhancer inserted between the insulator fragment and 35S minimal promoter. The dashed line represents a y = x line fitted through the point corresponding to a control construct without an insulator (black dot). Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated.

Supplementary Figure S6. Enhancer-dependent silencer activity in stable transgenic plants (Supports Figure 5). A) Transgenic Arabidopsis lines were generated with T-DNAs harboring a constitutively expressed luciferase (Luc) gene and a nanoluciferase (NanoLuc) gene under control of a 35S minimal promoter coupled to the 35S or AB80 enhancer (as indicated above the plots) with insulator candidates inserted upstream of the enhancer. Nanoluciferase activity was measured in at least 4 plants from these lines and normalized to the activity of luciferase. The NanoLuc/Luc ratio was normalized to a control construct without an enhancer or insulator (noEnh; log2 set to 0). B, C) The activity of full-length insulators was measured in Arabidopsis lines (B) and compared to the corresponding results from Plant STARR-seq in N. benthamiana leaves (C). Box plots in (B) are as defined in Supplementary Figure S3 and the dotted line indicates the median activity of a control construct without an insulator. In (C), the dashed line represents a linear regression line and error bars represent the 95% confidence interval. Pearson's R^2 , Spearman's ρ , and number (n) of constructs are indicated. D) Comparison of the mean NanoLuc/Luc ratio of full-length insulators in insulator (Figure 2B) or silencer constructs (B). A linear regression line is shown as a solid line and its slope and goodness-of-fit (R^2) is indicated.

Supplementary Table S1. Insulator fragments used in fragment combination library. Positions are numbered by increasing distance from the minimal promoter (position 1 is the fragment closest to the promoter, position 3 the most distal one).

insulator	start	stop	orientation	insulator activity in N. benthamiana	
fragments for position 1 and 2					
β-phaseolin	230	399	fwd and rev	bottom 25% (both orientations)	
β-phaseolin	383	552	fwd and rev	bottom 25% (both orientations)	
β-phaseolin	1148	1317	fwd and rev	top 25% (rev orientation)	
β-phaseolin	1317	1486	fwd and rev	top 25% (rev orientation)	
β-phaseolin	1395	1564	fwd and rev	top 25% (both orienations)	
β-phaseolin	1633	1802	fwd and rev	top 25% (fwd orientation)	
β-phaseolin	1712	1881	fwd and rev	top 25% (both orienations)	
β-phaseolin	1791	1960	fwd and rev	top 25% (both orienations)	
β-phaseolin	2266	2435	fwd and rev	top 25% (both orienations)	
β-phaseolin	2345	2514	fwd and rev	top 25% (fwd orientation)	
β-phaseolin	2741	2910	fwd and rev	top 25% (fwd orientation)	
β-phaseolin	3058	3227	fwd and rev	top 25% (both orienations)	
β-phaseolin	3454	3623	fwd and rev	bottom 25% (both orientations)	
TBS	252	421	fwd and rev	top 25% (both orienations)	
TBS	588	757	fwd and rev	top 25% (both orienations)	
TBS	756	925	fwd and rev	bottom 25% (both orientations)	
TBS	1681	1850	fwd and rev	top 25% (both orienations)	
TBS	1765	1934	fwd and rev	top 25% (rev orientation)	
λ-EXOB	1	170	fwd and rev	top 25% (both orienations)	
λ-EXOB	83	252	fwd and rev	top 25% (both orienations)	
λ-EXOB	166	335	fwd and rev	top 25% (both orienations)	
λ-EXOB	249	418	fwd and rev	top 25% (both orienations)	
λ-EXOB	332	501	fwd and rev	top 25% (both orienations)	
λ-EXOB	415	584	fwd and rev	top 25% (both orienations)	
λ-EXOB	663	832	fwd and rev	top 25% (rev orientation)	
λ-EXOB	829	998	fwd and rev	top 25% (fwd orientation)	
BEAD-1C	246	415	fwd and rev	top 25% (both orienations)	
UASrpg	157	326	fwd and rev	top 25% (fwd orientation)	
slns1	54	223	fwd and rev	top 25% (rev orientation)	
slns2	335	504	fwd and rev	top 25% (both orienations)	
gypsy	1	170	fwd and rev	bottom 25% (both orientations)	
gypsy	54	223	fwd and rev	bottom 25% (both orientations)	
		fragme	ents for position 3		
β-phaseolin	1633	1802	fwd	top 5%	
β-phaseolin	1712	1881	rev	top 5%	
λ-EXOB	1	170	fwd	top 5%	
λ-EXOB	332	501	fwd	top 5%	
λ-EXOB	415	584	rev	top 5%	

Supplementary Table S2. Insulator fragment combinations tested in stable transgenic maize lines. Positions are numbered by increasing distance from the minimal promoter (position 1 is the fragment closest to the promoter, position 3 the most distal one).

name	fragments	position 3	position 2	position 1	insulator activity in maize
D2	2		β-phaseolin 1148-1317, fwd	slns2 335-504, fwd	strong
T30	3	β-phaseolin 1633-1802, fwd	λ-EXOB 663-832, fwd	β-phaseolin 1564-1395, rev	intermediate
T21	3	β-phaseolin 1881-1712, rev	λ-EXOB 663-832, fwd	λ-EXOB 170-1, rev	weak
T27	3	λ-EXOB 1-170, fwd	λ-EXOB 584-415, rev	TBS 925-756, rev	strong
T32	3	λ-EXOB 584-415, rev	λ-EXOB 832-663, rev	β-phaseolin 1960-1791, rev	strong
T24	3	λ-EXOB 584-415, rev	β-phaseolin 3227-3058, rev	λ-EXOB 170-1, rev	strong
T25	3	λ-EXOB 1-170, fwd	β-phaseolin 1802-1633, rev	β-phaseolin 1317-1148, rev	strong
T19	3	λ-EXOB 1-170, fwd	β-phaseolin 1148-1317, fwd	slns2 335-504, fwd	strong
Т9	3	λ-EXOB 584-415, rev	TBS 1765-1934, fwd	slns2 335-504, fwd	strong

Supplementary Table S3. Insulators and insulator fragments used in the enhancer-insulator combination library.

type	insulator	start	stop	orientation
full-length insulator	λ-EXOB	1	998	fwd
full-length insulator	BEAD-1C	1	538	fwd
full-length insulator	UASrpg	1	378	fwd
full-length insulator	slns1	1	386	fwd
full-length insulator	slns2	1	504	fwd
full-length insulator	gypsy	1	386	fwd
insulator fragment	β-phaseolin	1395	1564	fwd
insulator fragment	TBS	756	925	fwd
insulator fragment	λ-EXOB	1	170	fwd
insulator fragment	BEAD-1C	246	415	fwd
insulator fragment	UASrpg	1	170	fwd
insulator fragment	gypsy	54	223	fwd

insulator	sequence
	1 CATAAGAAAT ATGAAAATCG TTATGAACTT TATTATTTGT TAAACGTTTT CATAACCGCA TAAAATTTTA TAAAGTC
	81 TCTATCTTTA ATATGTAGTC TAACATTTTC ATATTGAAAT ATATAATTTA CTTAATTTTA GTGTTGGTAG AAAGCAT
	161 GATTTATTCT TGTTCATATA AATGTTTAAT ATAAACAAAC TCTTTACCTT AAGAAGGATT TCCCATTTTA TATTTTA
	241 ATATATTTAT CAAATATTTT TCAACCACGT AAATCTCATA ATAATAAGTT GTTTCAAAAG TAATAAAATT TAACTCC
	321 ATTTTTTAT TTGACTGATC TTAAAGCAAC ACCCAGTGAC ACAACTAGTA ATTTTTTCT TTGAATAAAA AAATCCA
	401 ATCATTGTAT TTTTTTTATA CAATGAAAAT TTCACCAAAC AATGATTTGT GGTATTTCTG AAGCAAGTCA TGTTAAT
	481 AAATTCTATA ATTCACATTT GACACTACGG AAGTGACTGA AAATCTGTTT TTACATGCGA GACACATCAA TTTTTAA
	561 TAAAGTAATT TTAATAATAG TTACTATATT CAAGATTTGA TATATCAAAT ACTCAATATT ACTTCTAAAA AATTAAT
	641 ATATAATTAA AAAATTACTT TTTTAATTTT AAGTTTAATT GTTGGATTTG TGACTATTGA TTTATTATTC TACTATO
	721 AAACTGTTTT ATAGATAGTT TAAAGTAAAT ATAAGTATTG TAGAGTGTTA CCGTAAACTA TAAGATTTAT GTTGGAC
	801 TTTTATGTTC TTCATTTGCA ATATTTTAAT ATATTTGTTG TTGGTTTACC TTTCTTGGTA TGTAAGTCCG TAACCAC
	881 TACTGTGGGT TGCCATGGCA CTCTGTAGTC TTTTGGTTCG TGCATGGATG CTTGCGCAAG AAAAAGACAT AGAACAA
	961 AAAAAGACAA AACAGAGAGA GAAAACGCAA TCACACAACC AACTCAAATT AGTCACTGGC TGATCAAGAT CGCCGCC
	1041 ATGTATGTCT AAATGCCATG CAAAGCAACA CGTGCTTAAC ATGCACTTTA AATGGCTCAC CCATCTCAAC CCACACA
	1121 ACACATTGTC TTTTTCTCA TCATCACCAC AACCACCTGT ATATATTCAT TCTCTTCCGC CACCTCAATT TCTTCAC
	1201 AACACACGTC AACCTGCATA TGCGTGTCAT CCCATGCCCA AATCTCCATG CATGTTCCAA CCACCTTCTC TCTTATA
	1281 TACCTATAAA TACCCCTAAT ATCACTCACT TCTTTCATCA TCCATCCA
	1361 CCCAACCCAA CTCATATTCA ATACTACTCT ACTATGATGA GAGCAAGGGT TCCACTCCTG TTGCTGGGAA TTCTTTT
	1441 GGCATCACTT TCTGCCTCAT TTGCCACTTC ACTCCGGGAG GAGGAGAGA GCCAAGATAA CCCCTTCTAC TTCAACT
	1521 ACAACTCCTG GAACACTCTA TTCAAAAACC AATATGGTCA CATTCGTGTC CTCCAGAGGT TCGACCAACA ATCCAAA
	1601 CTTCAGAATC TTGAAGACTA CCGTCTTGTG GAGTTCAGGT CCAAACCCGA AACCCTCCTT CTTCCTCAGC AGGCTGA
	1681 TGAGTTACTC CTAGTTGTCC GTAGTGGTAA GTAATTGCTA CTGGTATCAC TTGTTTCTTC TTGCAGAAAT AATGGTA
	1761 AGTTTTTTTA TAATTTCAGG GAGCGCCATA CTCGTCTTGG TGAAACCTGA TGATCGCAGA GAGTACTTCT TCCTTAC
	1841 AGGCGATAAC CCGATATTCT CTGATAACCA GAAAATCCCT GCAGGAACCA TTTTCTATTT GGTTAACCCT GACCCCA
	1921 AGGATCTCAG AATAATCCAA CTCGCCATGC CCGTTAACAA CCCTCAGATT CATGTACTGC CTTTTGTAAT ACCAAAC
	2001 TTTTTTTGTT ATTTTAACTT GCAATTTCTC TCCAAATGTG ATGATAAATG TTTGTCCTGT AGGAATTTTT CCTATCT
	2081 ACAGAAGCCC AACAATCCTA CTTGCAAGAG TTCAGCAAGC ATATTCTAGA GGCCTCCTTC AATGTAAGAA AGAAAAC
	2161 ATCTAACTAC ATATTTGCGT CATCTAACTA CATATTTTCG TTGCCATTTA GCTAGTACTT TGTCTAAATG TCACACT
-phaseolin	2241 TGAATTTGTT GAATGATATC ATTATATATG TTTGCATGAT TTTTATAGAG CAAATTCGAG GAGATCAACA GGGTTCT
	2321 TGAAGAGGAG GGACAGCAAG AGGGAGTGAT TGTGAACATT GATTCTGAAC AGATTGAGGA ACTGAGCAAA CATGCAA
	2401 CTAGTTCAAG GAAATCCCAT TCCAAACAAG ATAACACAAT TGGAAACGAA TTTGGAAACC TGACTGAGGA GACCGAT
	2401 CTRGTTCAAG GRANTCCCAT TCCHARCAAG ATRACACAAT TGGAAACGAA TTTGGAAACC TGACTGAGAG GACCGAT 2481 TCCTTGAATG TGTTAATCAG TTCTATAGAG ATGAAAGAGG TAAATACAAA GAAAAAACAT ATAGACAAAC TTAGCAA
	2561 AGTTCTATTA TTCACTGTCG TCTTGGTTAG AAAATCTTAG TATTGAGAAT ATAATTAAAT AATGGTTTTT TTTGTTA
	2641 AATTTAGGGA GCTCTTTTTG TGCCACACTA CTATTCTAAG GCCATTGTTA TACTAGTGGT TAATGAAGGA GAAGCAC
	2721 TTGAACTTGT TGGCCCAAAA GGAAATAAGG AAACCTTGGA ATTTGAGAGC TACAGAGCTG AGCTTTCTAA AGACGAT
	2801 TTTGTAATCC CAGCAGCATA TCCAGTTGCC ATCAAGGCTA CCTCCAACGT GAATTTCACT GGTTTCGGTA TCAATGC
	2881 TAACAACAAT AGGAACCTCC TTGCAGGTAT ATATATTTAT TATATATGAC CATGAATTTG AATATAGGGT TGTTGAT
	2961 ATTTTTTATT TATAATTGGT AATGCGTGAT TGTGATTGAA AATATGAAGG TAAGACGGAC AATGTCATAA GCAGCAT
	3041 TAGAGCTCTG GACGGTAAAG ACGTGTTGGG GCTTACGTTC TCTGGGTCTG GTGAAGAAGT TATGAAGCTG ATCAACA
	3121 AGAGTGGATC GTACTTTGTG GATGGACACC ATCACCAACA GGAACAGCAA AAGGGAAGTC ACCAACAGGA ACAGCAA
	3201 GGAAGAAAGG GTGCATTTGT GTACTGAATA AGTATGAACT AAAATGCATG TATGGTGTAA GAGCTCATGG AGAGCAT
	3281 AATATGTATC AGACCATGTA ACACTATAAT AACTGAGCTC CATCTCACTT CTTCTATGAA TAAACAAAGG ATGTTAT
	3361 ATATTAACAC TATATGCACC TTACATAGTA ATACATTAAT ATTTAATACT TTTTATTTTA
	3441 ATTATATTAT TAACTTTTTA GTTTAAAATA TTTATATTAT TATAAAGAGA AATAAACAAA GGATGTTATG ATATATT
	3521 ACTATATGTA CCTTACATAG TAATATATTA ATATTTAATA CTTTTTATTT TAACTTTTTA ATTTAAAATA TTATTAT
	3601 TGATGCTTGT GTTTTATGTG TTGGCATGCT TGTATTTTAT GTGTTGACTT TCTGTGTGAA GGTAATGTGA TATGGTT
	3681 TGGTGGTAAC AATTGTGTTT TATGTGTTGG CTTTCTGTGA AGCTAATTTG ATATGGTTAG CTGATGGGAA CAAAATA
	3761 AAGGAAGCTA ATTTGATATG GTTAGCTGAT AGTAACAAAA TATCAAAATA AATTTCTTCT TACTTTAATA AATTATA
	3841 ATTGTGACGG ATTATATGGA ATGTATAGGA CAAAATCTTT AATAAATTAC ATGAATTGTG ACGGATTATG GAATGGA
	3921 TAGCAAATAG GACAAAACAA ATGTTTGTAA GAACCAAGAG ATCCTAACCA TGTATAGGCT AACCATATAT AGGCTTA
	4001 CAAAAACAAA CCTAAACTCT TAAACTTTGA TTTATTATAA AAAAAAAATG ATTATTTAAT ATATAGGCTT AGGCCAA
	4081 CAAACCTAAA CTCTTAAACT TTGATTTATT ATAAAAAAA AATGATTATT TAACACCATG CACCTTACAC CCTACTA
	4161 TTTAATATTT TAATTATTT TAATTTTAAA AATTATT
	4241 ATTATAAATA TTAATATTTT ATTATAGATA TAAAGTGAAG CAATATTGTT TGAAAATATC ATTACCCGTT ACAAAAT
	4321 GTACAACTAG CTATAAAAAA GCAAACCACA AGGAAACAGA AGACTTTCAC TTTGAAAAGG GGTGCCTGCT AAGACCG
	4401 TTTTGCTTCA GATAAAAAAC CATCACAACT CAATAGGTAC TCACAAAACT ACTT

insulator	sequ	ence							
	1	TTCCTAACAC	CTGGAGAACC	TTTTATGTAC	TTCACAACCC	TCAATGCTGC	TTCCAGGTGT	GACTGTTTGG	GTTGCTGCAT
	81	${\tt GAATTGACTC}$	AGCACCTGCA	CTGCAAAGCT	GATATCTGGC	CTTGTGATTG	TCAAGTAGAG	AAGCTTTCCC	ACCAGTCTCT
	161	${\tt GATAGGATCC}$	CACATCCTCT	AACTCTGCAT	CATCAGTCTT	TCCTAAGTGC	TTGTCATATT	CTACAGTAGT	CAGCCTTTGG
	241	${\tt TTCTGTTCCA}$	${\tt TTGGGGTTGA}$	CACTGGTCTG	CAGCCTCCCA	GACCAACACC	TGATATCAGT	TCCAGTGCAT	ACTTCCTCTG
	321	${\tt GTTCAGTAGG}$	ATTCCCTTTT	CTGATCTCAG	CACCTCAATG	CCTAAGAAGT	${\tt ATTTTAGTTC}$	TCCCAAATCT	TTCATCTTGA
	401	${\tt AATGCTGATG}$	CAGGGTTGCC	TTTGCTTCTG	AAATCAAAAC	ATTGCTGCTG	${\tt CCTGTTATTA}$	ACAGATCATC	${\tt CACATAAATC}$
	481	${\tt AGGATTATGA}$	${\tt CAAGGTCAGT}$	CCCCTCTCTT	${\tt TTGGTAAACA}$	AGGAGTGATC	ATAAGCACTT	TGCATAAAC	CAGCCTGCAT
	561	${\tt AAGGACAGTG}$	GTAAGCTTGA	TGTTCCACTG	CCTTGATGCT	TGCTTTAAAC	CATAGAGGGA	TTCAACAGCC	TGCACACTTT
	641	${\tt GGACTCCCCT}$	TGGCTGTGAA	AACCCTGAGG	CAGAGACATA	TAAACTTCTT	CCATGAGGTC	ACCTTGTAGA	AAAGCATTGT
	721	${\tt TGACATCCAT}$	${\tt CTGGAAAAGG}$	AACCAGCCCT	TGGAAGCAGC	AACAGATATG	ACAGCTTTTA	CAGTGACCAT	TTTGGCCACT
	801	GGAGAAAAG	TTTCATGGTA	GTCAAGGCCT	TCTTGCTGAG	TGTATCCCTT	GGCCACTAGC	CTTGCCTTAA	ACCTGTCAAC
	881	TTCACCATTA	GCTTTGTATT	TAATTTTGTA	CACCCATTTG	GACCCTATAG	GCTGTTTACC	AGGGGGTAAA	GGGACAATCT
TBS	961	CCCAGGTGTT	ATTATCCTCA	AGAGCCTGTA	TCTCAAGGGA	CATGGCCTCC	ATCCATTTCT	CATCTTGAGC	TGCTTCTTTG
150	1041	${\tt AAGGATTTAG}$	GTTCAGTATA	AGTGGAGAAA	GCACTCAAAT	AAGCTTGATA	GTGAACAGGC	AAGTGATCAT	AGGAAACATA
	1121	GTTGGCTATA	GGGTATGGAA	CATCCCTAGA	GCCTTTGTTC	AGTGTCACAA	AGTCCTTGAG	CCAGATGGGA	GGACCTGCAT
	1201	TGCGTTTAGG	TCTAGTGTGC	AGGTTTGCTG	GAACTAGAGA	GGGATCAGCT	ACAGCAGTAT	GGTGCTCAAA	TTCAGCATTT
			GCTCAGCTGA						
	1361	ATGATTTTGG	GTAGAATGAG	TCCCCAAAGT	GATATCCTCA	TTGGCCTCTA	CAATGTCAGG	AATAAGAACT	GGAGTATCAT
	1441	CATCATCAGT	ATGAAAGCTG	GAAGGAAAA	TATCATTATA	CACTAGCTGC	AAAGCTGTAT	CTTCAGAGCT	AAGTGAACCT
	1521	GCTCGAGTGA	ACATATCAGG	TTCATGGGAG	ATGGACTCTT	TGAAAGGGAA	CTGAAACTCT	CTGAAAACTA	CATCCCTGCT
	1601	CACTATGATC	ACCTTATTAT	CCAAGTCATA	CAACCTGTAA	CCCTTTTGAG	TCTCAGAATA	ACCAATGAAG	ATGGTTCGCT
			TGCAAGTTTG						
	1761	TTGGCATGTT	TCTGATAGAG	TAGTTCATAT	GGACATTTGC	CTTGTAAGAT	TGGAGTAGGG	AGTCTATTGA	TCAGGTATAC
	1841	AACAGTCTTG	ACACAGTCTC	CCCAAAACCT	GGTAGGTACA	CCACTCTGAA	ACTTAAGTGC	CCTTGCCATC	TCAAGGATGT
	1921	GTCTGTGCTT	TCTCTCCACA	ACACCATTCT	GTTGTGGTGT	GTAGGGACAG	CTACTTTGAT	GAACAATCCC	AAGAGAGGCC
	2001	AGCAACTCAT	TACAACTT						
	1	AATTCAAACA	GGGTTCTGGC	GTCGTTCTCG	TACTGTTTTC	CCCAGGCCAG	TGCTTTAGCG	TTAACTTCCG	GAGCCACACC
	81	GGTGCAAACC	TCAGCAAGCA	GGGTGTGGAA	GTAGGACATT	TTCATGTCAG	GCCACTTCTT	TCCGGAGCGG	GGTTTTGCTA
	161	TCACGTTGTG	AACTTCTGAA	GCGGTGATGA	CGCCGAGCCG	TAATTTGTGC	CACGCATCAT	CCCCCTGTTC	GACAGCTCTC
	241	ACATCGATCC	CGGTACGCTG	CAGGATAATG	TCCGGTGTCA	TGCTGCCACC	TTCTGCTCTG	CGGCTTTCTG	TTTCAGGAAT
	321	CCAAGAGCTT	TTACTGCTTC	GGCCTGTGTC	AGTTCTGACG	ATGCACGAAT	GTCGCGGCGA	AATATCTGGG	AACAGAGCGG
	401	CAATAAGTCG	TCATCCCATG	TTTTATCCAG	GGCGATCAGC	AGAGTGTTAA	TCTCCTGCAT	GGTTTCATCG	TTAACCGGAG
λ-EXOB	481	${\tt TGATGTCGCG}$	TTCCGGCTGA	CGTTCTGCAG	TGTATGCAGT	ATTTTCGACA	ATGCGCTCGG	CTTCATCCTT	GTCATAGATA
	561	${\tt CCAGCAAATC}$	CGAAGGCCAG	ACGGGCACAC	TGAATCATGG	CTTTATGACG	TAACATCCGT	TTGGGATGCG	ACTGCCACGG
	641	CCCCGTGATT	TCTCTGCCTT	CGCGAGTTTT	GAATGGTTCG	CGGCGGCATT	CATCCATCCA	TTCGGTAACG	CAGATCGGAT
	721	${\tt GATTACGGTC}$	CTTGCGGTAA	ATCCGGCATG	TACAGGATTC	ATTGTCCTGC	TCAAAGTCCA	TGCCATCAAA	$\mathtt{CTGCTGGTTT}$
	801	${\tt TCATTGATGA}$	TGCGGGACCA	GCCATCAACG	CCCACCACCG	GAACGATGCC	ATTCTGCTTA	TCAGGAAAGG	${\tt CGTAAATTTC}$
	881	TTTCGTCCAC	GGATTAAGGC	CGTACTGGTT	GGCAACGATC	AGTAATGCGA	TGAACTGCGC	ATCGCTGGCA	TCACCTTTAA
	961	${\tt ATGCCGTCTG}$	$\tt GCGAAGAGTG$	GTGATCAGTT	CCTGTGGG				
	1	TTCAGTAATA	CGGGTAGCTG	GGACATGCCA	TATTTGGAAC	ACATTTATAC	TAAAAAAGTA	TTCATTGTTT	ATCTGAAATT
	81	CAAATTCCAC	TGGGCATCCT	GTGTTTTATC	TGGCAATGCT	AGGCATGCAG	AATACCAAAA	GTAAGCACCA	GGCAGGCCAG
			TGAGCATCTT						
BEAD-1C			GGCCTGCACT						
			CGGTTCTCCC						
			TGGGCTTGAT						
			TCTTCTAACT						
			GTCCCGCCGG					TCACACTCTT	CACCTCCCCA
			ATGATGTGAC						
UASrpg			CGGCGCGAAC						
O/Olba			CCCCACGGCG						
			AATCTTGCTA					GAGGIICIIC	TITCATATAC
			GTGTGCGTTG						
			GTGCTGCATA						
gypsy			TAATAAAAA						
			TTTAATAAAA						AAATTTTCGT
	201	TCCATACCCA	ATAAAAGATT	ATTATATTGC	ATACCTTTTC	TTGCCATACC	ATTTAGCCGA	TCAATT	

insulator	sequence
	1 AGAACTTTAA AAGTGCTCAT CATTGGAAAA CGTTCTTCGG GGCGAAAACT CTCAAGGATC TTACCGCTGT TGAGATCCAC
sIns1	81 TTCGATGTAA CCCACTCGTG CACCCAACTG ATCTTCAGCA TCTTTTACTT TCACCAGCGT TTCTGGGTGA GCAAAAACAC
	161 GAAGGCAAAA TGCCGCAAAA AAGGGAATAA GGGCGACACG GAAATGTTGA ATACTCATAC TCTTCCTTTT TCAATATTAT
	241 TGAAGCATTT ATCAGGGTTA TTGTCTCATG AGCGGATACA TATTTGAATG TATTTAGAAA AATAAACAAA TAGGGGTTCC
	321 GCGCACATTT CCCCGAAAAG TGCCACCTGA CGTCCAACAT ATGGCACCGG AGGCTTTCGT CTTCAC
	1 GCTGAACGCA AAGCTGATCA CTCAGCGGAA GTTCGACAAT CTCACTAAGG CTGAGAGGGG CGGACTGAGC GAACTGGACA
	81 AAGCAGGATT CATTAAACGG CAACTTGTGG AGACTCGGCA GATTACTAAA CATGTCGCCC AAATCCTTGA CTCACGCATC
	161 AATACCAAGT ACGACGAAAA CGACAAACTT ATCCGCGAGG TGAAGGTGAT TACCCTGAAG TCCAAGCTGG TCAGCGATTT
slns2	241 CAGAAAGGAC TTTCAATTCT ACAAAGTGCG GGAGATCAAT AACTATCATC ATGCTCATGA CGCATATCTG AATGCCGTGC
	321 TGGGAACCGC CCTGATCAAG AAGTACCCAG CACTGGAAAG CGAGTTCGTG TACGGAGACT ACAAGGTCTA CGACGTGCGC
	401 AAGATGATTG CCAAATCTGA GCAGGAGATC GGAAAGGCCA CCGCAAAGTA CTTCTTCTAC AGCAACATCA TGAATTTCTT
	481 CAAGACCGAA ATCACCCTTG CAAA

