Sequence and Series

Gunja Sachdeva

September 9, 2024

Recall

+" cxis(-

Definition

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor series generated by f at

$$x = a$$
 is $\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x - a)^k$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f''(a)}{n!}(x-a)^n + \cdots$$

The Maclaurin series generated by f is the Taylor series generated by f at x=0 given by

$$\sum_{k=0}^{\infty} \frac{f^k(0)}{k!} x^k = f(0) + f'(0) + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^n(0)}{n!} x^n + \dots$$

3 / 12

Example

Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2.

$$f: (x-10) \rightarrow 1R$$

$$f(x) = \frac{1}{3c}$$

$$f(x) = -\frac{1}{3c}$$

$$f(x) = -\frac{1}{3c}$$

$$f(x) = -\frac{1}{3c}$$

$$f'(x) = -\frac{1}{3c}$$

$$f'(x) = -\frac{1}{3c}$$

$$f'(x) = -\frac{1}{3c}$$

$$f'(x) = -\frac{1}{3c}$$

$$f''(x) = -\frac{1}{$$

Example

Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2. Where does the series converge to?

This converges
$$\left|\frac{3c-2}{2}\right| \leq 1$$
 and it is equal to $\frac{1/2}{1-3c-2} = \frac{1}{2}$

Consider

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \checkmark \\ e^{\frac{-1}{x^2}} & \text{if } x \neq 0 \end{cases}$$

Find the Taylor series generated by f at x = 0. Also where does it converge?

$$f'(x)|_{SC=0} = 0$$
 Infact $f''(SC)|_{SC=0} = 0$

$$\leq f(0)(x)^{\alpha} =$$

$$\leq f(0)(x) = f(0) + f(0) x^{1}$$
 $+ f'(0) x^{2} - \cdots$

Consider

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ e^{\frac{-1}{x^2}} & \text{if } x \neq 0 \end{cases}$$

Find the Taylor series generated by f at x=0. Also where does it converge?

Clearly f has derivatives of all orders at x = 0 and that $f^n(0) = 0$ for all n.

The Taylor series generated by f at x=0 is 0 and thus Taylor series converges for all values of x.

But $f(x_0) = e^{\frac{-1}{x_0^2}} \neq 0$ when $x_0 \neq 0$. Thus the series converges to f(x) only at x = 0.

5 / 12

Hence, if we start with an arbitrary function f that is infinitely differentiable on an interval I centered at x = a and use it to generate the series, will the series then converge to f(x) at each x in the interior of I? The answer is

maybe for some functions it will but for other functions it will not.

$$f(x) \longrightarrow \int f(a) (x-a)^{n}$$

$$= f(x)$$

$$=$$

Definition

Taylor Polynomial of order n: Let f be a function with derivatives of order k for $k = 1, 2, \dots, N$ in some interval containing a as an interior point. Then for any integer n from 0 to N, the Taylor polynomial of order n generated by f at x = a is the polynomial

$$P_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n$$

We speak of a Taylor polynomial of order n rather than degree n because $f^n(a)$ may be zero.

Ex.
$$f(x) = Sinx$$
 Find taylor Doly of order 3
 $Sin(0) = 0$ of $Si=0$
 $f'(x) = (oSx, +(o) = 1, +'(x) = Sinx +''(o) = 0$

appe U

Pr(x)= f(a)+f(a) (5(-a)+f(a) (5x-a)²

1!

+ + 1 (a) (x-a)³

7! degene y + f'/(ca/ (>(~c)) = 0 + 1(x) + 0(x) - 1 + 0 + 0 + 0 = 0 $= 3c - 3c^3$ Taylor poly of order 4 P(x)= 21- x3 + x5 - x+

Taylor's Formula

Theorem

Taylor's Theorem: If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^n(a)}{n!}(x - a)^n + R_n(x)$$

where
$$R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}$$
 for some c between a and x.

That is, the Taylor's theorem says that for each $x \in I$, there exists $c \in (a, x)$ such that

$$f(x) = P_n(x) + R_n(x).$$

The function $R_n(x)$ is called the remainder of order n or the error term for the approximation of f by $P_n(x)$ over I.

Taylor series converging to f

If $R_n(x) \to 0$ as $n \to \infty$, for all $x \in I$, we say that the Taylor series generated by f at x = a converges to f on I, and we write

$$f(x) = \sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x - a)^k.$$

Often we can estimate $R_n(x)$ without knowing the value of c, as the following example illustrates.

1. Show that the Taylor series generated by $f(x) = e^x$ at x = 0 converges

to f(x) for every real value of x.

$$f(x) = Taylor poly of order + Rn(x)$$

$$= 1 + x + x^{2} + - + 2x^{n} + Rn(x)$$

$$Rn(x) = e x$$

$$(n+1)!$$
where $c \in (0,x)$

ex is an invocasing function, when sizo wher sceo, ec =1

 $e \leq e$

f(x) = ex = 1

$$|R_{n}(s_{1})| = \left|\frac{e^{C} \times^{n+1}}{(n+1)!}\right| \leq \left|\frac{x^{n+1}}{(n+1)!} \times 20\right|$$

$$|R_{n}(s_{1})| = \left|\frac{x^{n+1}}{(n+1)!} \times 20$$

$$|R_{n}(s_{1})| = \left|\frac{$$

1. Show that the Taylor series generated by $f(x) = e^x$ at x = 0 converges to f(x) for every real value of x.

The function has derivatives of all orders throughout the interval $(-\infty, \infty)$. We get

$$f(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + R_n(x)$$

and

$$R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}x^{n+1} = \frac{e^c}{(n+1)!}x^{n+1}$$

for some c between 0 and x. Since e^x is an increasing function of x, $e^c < 1$ if $x \le 0$ and $e^c \le e^x$ for x > 0. Thus $|R_n(x)| \to 0$ as $n \to 0$.

Thus the series $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges to e^x for every x.

2. Show that the Taylor series for $f(x) = \cos x$ at x = 0 converges to $\cos x$ for every value of x.

$$f(x) = P_{n}(x) + R_{n}(x)$$
 $P_{n}(x) = 1 - \frac{2e^{2}}{2!} + \frac{e^{4}}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{e^{4}}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{e^{4}}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{4!} + - - (-1)^{n} \frac{e^{2n}}{(2n)!}$
 $P_{n}(x) = \frac{1}{2!} + \frac{1}{4!} + \frac{$

2. Show that the Taylor series for $f(x) = \cos x$ at x = 0 converges to $\cos x$ for every value of x.

The Taylor series for $f(x) = \cos x$ around x = 0 given by

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^k \frac{x^{2k}}{(2k)!} + R_{2k}(x)$$

and

$$|R_{2k}(x)| \le 1 \cdot \frac{|x|^{2k+1}}{(2k+1)!}.$$

For every value of x, $R_{2k} \to 0$ as $k \to 0$. Thus $f(x) = \cos x$ converges for all x. Thus

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

11/12

3. Show that the Taylor series for $f(x) = \sin x$ at x = 0 converges to $\sin x$ for every value of x.

$$P_{n}(x) = 3(-3) + - - (-1) \frac{2n+1}{2}$$
 $R_{2n+2}(x) = f(x) = \frac{2n+2}{2n+2}$
 $R_{2n+2}(x) = \frac{2n+2}{2n+2}$
 $R_{2n+2}(x) = \frac{2n+2}{2n+2}$
 $R_{2n+2}(x) = \frac{2n+2}{2n+2}$