Machine Vision

Homework#5

Deadline: 2024/05/29 23:59:59

Robot Vision Lab (Room 1421)

TAs: 魏士涵 t112598058@ntut.edu.tw

賴靖嫺 t112598008@ntut.edu.tw

- Image filtering
 - 1. Implement Mean Filter with 3*3 and 7*7 mask.
 - 2. Implement Median Filter with 3*3 and 7*7 mask.
 - 3. Implement Gaussian 2D Filter with 5*5 mask.
 - Define your σ and describe your Gaussian kernel.
 - **Don't forget the zero padding, check your image size result

Mean Filter

8	10	21	17	35
2	43	15	72	21
30	94	55	43	74
36	28	69	88	56
45	75	42	47	20

Mean Filter

	0	0	0			
	0	8	10	21	17	35
	0	2	43	15	72	21
_		30	94	55	43	74
		36	28	69	88	56
		45	75	42	47	20

$$0 \times 1/9 + 0 \times 1/9 + 0 \times 1/9 + 0 \times 1/9 + 8 \times 1/9 + 10 \times 1/9 + 0 \times 1/9 + 2 \times 1/9 + 43 \times 1/9 = 7$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

X

7		

Median Filter

0	0	0			
0	8	10	21	17	35
0	2	43	15	72	21
	30	94	55	43	74
	36	28	69	88	56
	45	75	42	47	20

Neighborhood values: 0 0 0 0 8 10 0 2 43

0		

Gaussian 2D Filter

1.
$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

If $\sigma = 1$,

(-	1,-1)	(0,-1)	(1,-1)
(-	-1,0)	(0,0)	(1,0)
(-	-1,1)	(0,1)	(1,1)

0.0585	0.0965	0.0585
0.0965	0.1591	0.0965
0.0585	0.0965	0.0585

- 2. Normalization
- 3. Convolution: I*G

Images

- Report
 - Student ID
 - Name
 - Describe the main part of your method or explain your code
 - 15 result images
 - Compare the result images that were generated by three different filters and describe what you observe

- Rules in using C/C++ OpenCV Lib
 - ➤ Use OpenCV-2.x version

>Allow use:

- 1. Read, save, show image (cvLoadImage, cvShowImage, ...)
- 2. Define image (Mat)
- 3. Get image size (cvSize, cvGetSize)

➤ Not Allow use:

1. Cannot use the function of Lib to do the main part of homework.

Example: filter2D, medianBlur, GaussianBlur, blur

Other libs also not allow use to do the main part of homework

• Rules in using Python OpenCV Lib

>Allow use:

- 1. Read, save, show image (cv2.imread, cv2.imshow, ...)
- 2. Define image
- 3. Get image size

➤ Not Allow use:

1. Cannot use the function of Lib to do the main part of homework.

Example: cv.filter2D, cv.medianBlur, cv.GaussianBlur, cv.blur

Other libs also not allow use to do the main part of homework

- Grade
 - Program(80%)
 - Mean Filter (25%)
 - Median Filter(25%)
 - Gaussian 2D Filter(30%)
 - Report(20%)

- Folder Structure
 - There are 15 images in the results folder.
 - ➤ Write homework on the one program.

project hw5/

images/

results/

- img1.jpg

- img2.jpg

- img3.jpg

img1 q1 3.jpg

-img1 q1 7.jpg

img1 q2 3.jpg

 $img1_q2_7.jpg$

img2 q1 3.jpg

 $img2_q1_7.jpg$

img2 q2 3.jpg

img2 q2 7.jpg

img3_q1_3.jpg

- img3 q1 7.jpg

 $-img3_q2_3.jpg$

- img3_q2_7.jpg

- img3 q3.jpg

112598008 hw5.pdf Readme.txt (Optional)

include/

- func.cpp

- main.cpp

└─ func.h

img2 q3.jpg

img1 q3.jpg

- Please compress your files.
 - > Example: 112598008_hw5.zip
- Deadline: 2024/05/29 23:59:59
 - For each hour late, 10% of the total score will be deducted.
- Don't share your code and your report with other students.
 Do it by yourself.