

planetmath.org

Math for the people, by the people.

semidirect product of groups

 ${\bf Canonical\ name} \quad {\bf SemidirectProductOfGroups}$

Date of creation 2013-03-22 12:34:49 Last modified on 2013-03-22 12:34:49

Owner djao (24) Last modified by djao (24)

Numerical id 10

Author djao (24) Entry type Definition Classification msc 20E22

Synonym semidirect product Synonym semi-direct product The goal of this exposition is to carefully explain the correspondence between the notions of external and internal semi-direct products of groups, as well as the connection between semi-direct products and short exact sequences.

Naturally, we start with the construction of semi-direct products.

Definition 1. Let H and Q be groups and let $\theta: Q \longrightarrow \operatorname{Aut}(H)$ be a group homomorphism. The *semi-direct product* $H \rtimes_{\theta} Q$ is defined to be the group with underlying set $\{(h,q) \mid h \in H, q \in Q\}$ and group operation $(h,q)(h',q') := (h\theta(q)h',qq')$.

We leave it to the reader to check that $H \rtimes_{\theta} Q$ is really a group. It helps to know that the inverse of (h, q) is $(\theta(q^{-1})(h^{-1}), q^{-1})$.

For the remainder of this article, we omit θ from the notation whenever this map is clear from the context.

Set $G := H \rtimes Q$. There exist canonical monomorphisms $H \longrightarrow G$ and $Q \longrightarrow G$, given by

$$h \mapsto (h, 1_Q), \qquad h \in H$$

 $q \mapsto (1_H, q), \qquad q \in Q$

where 1_H (resp. 1_Q) is the identity element of H (resp. Q). These monomorphisms are so natural that we will treat H and Q as subgroups of G under these inclusions.

Theorem 2. Let $G := H \rtimes Q$ as above. Then:

- H is a normal subgroup of G.
- \bullet HQ = G.
- $H \cap Q = \{1_G\}.$

Proof. Let $p: G \longrightarrow Q$ be the projection map defined by p(h,q) = q. Then p is a homomorphism with kernel H. Therefore H is a normal subgroup of G.

Every $(h,q) \in G$ can be written as $(h,1_Q)(1_H,q)$. Therefore HQ = G. Finally, it is evident that $(1_H,1_Q)$ is the only element of G that is of the form $(h,1_Q)$ for $h \in H$ and $(1_H,q)$ for $q \in Q$.

This result motivates the definition of internal semi-direct products.

Definition 3. Let G be a group with subgroups H and Q. We say G is the internal semi-direct product of H and Q if:

- H is a normal subgroup of G.
- HQ = G.
- $H \cap Q = \{1_G\}.$

We know an external semi-direct product is an internal semi-direct product (Theorem ??). Now we prove a converse (Theorem ??), namely, that an internal semi-direct product is an external semi-direct product.

Lemma 4. Let G be a group with subgroups H and Q. Suppose G = HQ and $H \cap Q = \{1_G\}$. Then every element g of G can be written uniquely in the form hq, for $h \in H$ and $q \in Q$.

Proof. Since G = HQ, we know that g can be written as hq. Suppose it can also be written as h'q'. Then hq = h'q' so ${h'}^{-1}h = q'q^{-1} \in H \cap Q = \{1_G\}$. Therefore h = h' and q = q'.

Theorem 5. Suppose G is a group with subgroups H and Q, and G is the internal semi-direct product of H and Q. Then $G \cong H \rtimes_{\theta} Q$ where $\theta : Q \longrightarrow \operatorname{Aut}(H)$ is given by

$$\theta(q)(h) := qhq^{-1}, \ q \in Q, \ h \in H.$$

Proof. By Lemma ??, every element g of G can be written uniquely in the form hq, with $h \in H$ and $q \in Q$. Therefore, the map $\phi: H \rtimes Q \longrightarrow G$ given by $\phi(h,q) = hq$ is a bijection from G to $H \rtimes Q$. It only remains to show that this bijection is a homomorphism.

Given elements (h, q) and (h', q') in $H \times Q$, we have

$$\phi((h,q)(h',q')) = \phi((h\theta(q)(h'),qq')) = \phi(hqh'q^{-1},qq') = hqh'q' = \phi(h,q)\phi(h',q').$$

Therefore ϕ is an isomorphism.

Consider the external semi-direct product $G := H \rtimes_{\theta} Q$ with subgroups H and Q. We know from Theorem ?? that G is isomorphic to the external semi-direct product $H \rtimes_{\theta'} Q$, where we are temporarily writing θ' for the

conjugation map $\theta'(q)(h) := qhq^{-1}$ of Theorem ??. But in fact the two maps θ and θ' are the same:

$$\theta'(q)(h) = (1_H, q)(h, 1_Q)(1_H, q^{-1}) = (\theta(q)(h), 1_Q) = \theta(q)(h).$$

In summary, one may use Theorems ?? and ?? to pass freely between the notions of internal semi-direct product and external semi-direct product.

Finally, we discuss the correspondence between semi-direct products and split exact sequences of groups.

Definition 6. An exact sequence of groups

$$1 \longrightarrow H \stackrel{i}{\longrightarrow} G \stackrel{j}{\longrightarrow} Q \longrightarrow 1.$$

is *split* if there exists a homomorphism $k:Q\longrightarrow G$ such that $j\circ k$ is the identity map on Q.

Theorem 7. Let G, H, and Q be groups. Then G is isomorphic to a semi-direct product $H \rtimes Q$ if and only if there exists a split exact sequence

$$1 \longrightarrow H \stackrel{i}{\longrightarrow} G \stackrel{j}{\longrightarrow} Q \longrightarrow 1.$$

Proof. First suppose $G \cong H \rtimes Q$. Let $i: H \longrightarrow G$ be the inclusion map $i(h) = (h, 1_Q)$ and let $j: G \longrightarrow Q$ be the projection map j(h, q) = q. Let the splitting map $k: Q \longrightarrow G$ be the inclusion map $k(q) = (1_H, q)$. Then the sequence above is clearly split exact.

Now suppose we have the split exact sequence above. Let $k:Q\longrightarrow G$ be the splitting map. Then:

- $i(H) = \ker j$, so i(H) is normal in G.
- For any $g \in G$, set q := k(j(g)). Then $j(gq^{-1}) = j(g)j(k(j(g)))^{-1} = 1_Q$, so $gq^{-1} \in \text{Im } i$. Set $h := gq^{-1}$. Then g = hq. Therefore G = i(H)k(Q).
- Suppose $g \in G$ is in both i(H) and k(Q). Write g = k(q). Then $k(q) \in \text{Im } i = \ker j$, so $q = j(k(q)) = 1_Q$. Therefore $g = k(q) = k(1_Q) = 1_G$, so $i(H) \cap k(Q) = \{1_G\}$.

This proves that G is the internal semi-direct product of i(H) and k(Q). These are isomorphic to H and Q, respectively. Therefore G is isomorphic to a semi-direct product $H \rtimes Q$. Thus, not all normal subgroups $H \subset G$ give rise to an (internal) semi-direct product $G = H \rtimes G/H$. More specifically, if H is a normal subgroup of G, we have the canonical exact sequence

$$1 \longrightarrow H \longrightarrow G \longrightarrow G/H \longrightarrow 1.$$

We see that G can be decomposed into $H \rtimes G/H$ as an internal semi–direct product if and only if the canonical exact sequence splits.