

Lecture 8

Cycle Choice ~ Military & Supersonic Transports

Objective: To outline the reasons for the choice of engine cycle for combat aircraft & supersonic transports.

Propulsion System Requirements

Optimum for Airframe Manufacturer:

- Sufficient Thrust to meet all Aircraft Requirements (Take-off, climb, Manoeuvre etc.)
- To use the minimum amount of fuel (low sfc, weight & drag)
- To have the lowest purchase price
- To have thrust growth for change in requirements

Optimum for Customer (Airline, Air Force etc.):

- *All of above, plus*:
- High Reliability
- Low Unscheduled removal rates
- Long time between overhauls
- Maintenance low cost, easy to carry out & predictable.

Aircraft Flight Envelope

Key Cycle Parameters

- Overall Pressure Ratio
- Fan Pressure Ratio
- Stator Outlet Temperature
- Specific Thrust
- By-pass Ratio

$$OPR = P_{03}/P_{01}$$

$$FPR = P_{02}/P_{01}$$

$$SOT K = To_4$$

$$ST = F/\dot{m}$$

$$\lambda = \frac{m_c}{m_h}$$
 (by-pass flow/core flow)

Note for mixed flow engines p_{sh}/p_{sc} is also important

Propulsion Systems for Transport & Combat Aircraft

High by-pass ratio Turbofan

Thrust ~2000 to 100,000 lb

By-pass ratio 4 - 10

OPR ~ 40

Fan PR ~ 1.9

Specific Thrust $\sim 25 - 35 \text{ lb/lb/sec}$

Low by-pass ratio Reheated Turbofan

Thrust $\sim 10,000$ to 40,000 lb (inc R/H)

By-pass ratio 0.3 - 1

 $OPR \sim 25 - 30$

Fan PR $\sim 3-5$

Specific Thrust ~ 120 lb/lb/sec (inc R/H)

Specific Thrust ~ the basic parameter

SPECIFIC THRUST (Thrust per unit Mass Flow) = $(C_j - C_a)$ (Unit of velocity)

AENG31102 Lecture 8

Specific Thrust - Variation with design flight speed

Typical Civil Mission

Combat Aircraft Roles

Role	Mission Requirements	Aircraft Type
Air Superiority	Highly manoeuvreable	F15/F16/F18
Interceptor	Combar Persisitence	F22 F35
	Supersonic Performance	Typhoon Rafale
	Short T/O &Landing	
	STOVL	
Interdictor	Long range	F111
	Low obervables	TornadoF111
	Sophisticated weapons carriage	F117
	Self Defence Capability	B2
Battlefield Support	Survivable	Harrier AV8B
	Large stores carriage	A10
	Highly Manoeuvrable	F35
	Short T/O &Landing	Apache
	STOVL or Rotary	

Typical Military Missions for Combat Aircraft

Fuel Breakdown

Military Missions

Interception

Air Superiority

Reheat On

Dry Low Power

T/O & Reserves.

Cycle Options for Combat Aircraft

Engine Cycles for Combat Aircraft

- Over the past 30 years, the trend has been for the engine cycle for Supersonic CTOL Aircraft to have increasing values of specific thrust (reheat-off)
- This has been driven by the need for:
 - High Non-reheat to Reheat thrust ratios
 - Low SFC Reheat on
 - Low cross-section & weight
 - Adequate SFC Reheat off
- Long range attack aircraft, STOVL & other requirements may well modify the need for high specific thrust but studies have shown that for combat persistence, high specific thrust is the most fundamental paraffecter. Lecture 8

The trend in Supersonic Fighter Engines

Future Combat Engines

UTILISATION

- The Military Customer utilises his systems in order to maintain the minimum level of readiness, train new personnel and, all the while, keeping a Military Capability in reserve for use in times of conflict.
 - Utilisation low in order to preserve capability & minimise costs. (Typically 300 hours per year e.g. one flight of one hour per day)
- The Airline maximises utilisation (if there are sufficient passengers) in order to maximise revenue.
 - Utilisation high. (Typically 3000 hours per year e.g. 10 one hour flights per day or 1 ten hour flight per day)
- For some operations e.g. military transport and primary training the Military will behave more like an Airline

Intensity of Usage

- The Airline Pilot will keep excursions from the norm e.g. "g" loadings, engine throttle movements... to a minimum for reasons of passenger comfort & to keep costs as low as possible.
 - Typically one engine throttle cycle (idle- max. thrust idle) per flight.

- The Military Pilot is training for combat and hence there will be many excursions from the norm in terms of g" loadings, engine throttle movements etc.
 - Can be as high as ten engine throttle cycles (idle- max.
 thrust idle) per flight Lecture 8

Peacetime Mission Throttle Movement

Red Arrows Flight Data

Propulsion Units for Helicopters

Requirements:

- Power to drive rotor
- Adequate power to cater for engine failure
- Light weight
- Low fuel consumption
- Low price & Maintenance Costs
- High levels of reliability with low levels of maintenance

Shaft Power Cycles for Helicopters

In general shaft power cycles for Aircraft & Helicopter applications are 'Open Cycle' i.e. air entering the engine is not re-circulated. The engine produces both shaft power & residual exhaust thrust

Shaft Power Cycles

Specific Fuel Consumption & Specific Power versus Pressure Ratio & SOT

Major Features of Helicopter Powerplants

• Configuration and Cycle:

- Single spool at smallest size for simplicity & low engine mass
- For Medium/High power levels configuration as Turboprop
- Levels of Pressure ratio ~ 15 20:1 (optimised for max. specific power & low sfc)
- Stator outlet Temperatures ~ 1500K (cooled turbine blades required)

Key Design Criteria:

- Maximum power sized by hot/high operations and/or engine failure for multiengined helicopters
- Low Specific Fuel Consumption at normal operating conditions
- Low engine mass
- Frontal area not significant due to low flight speed &"buried" installation

• Piston Engines:

Used only at lowest power levels

Unmanned Aerial Vehicles

Tactical - Predator 100 - 900 lbs thrust

Target / Decoy 50 - 1,700 lbs thrust

Reconnaissance - Global Hawk 2,000 - 15,000 lbs thrust

AENG31102 Lecture 8 4,000 - 12,000 lbs thrust

Piston Engines

Four stroke, two stroke Turbochargers with Propellers

Applications:

Mainly used by General Aviation, Unmanned Aerial Systems & light helicopters.

Four Stroke Piston Engines:

- Power levels generally in the 100 500 HP class
- Typical of type ~ Lycoming O-235-L2C, flat four 85kW (115hp), driving a two blade fixed pitch propeller.

Two Stroke:

- Offer more power at the expense of fuel economy & noise
- Technological developments in this field are addressing this issue.

Turbochargers:

- An externally driven compressor driven by a turbine using exhaust gases.
- The device is designed to maintain the sea level power to altitude.
- Above the critical altitude the engine supercharger combination is no longer capable of delivering full power.

Aero Diesel Engines

Advantages:

- Excellent Fuel economy.
- No complicated ignition system.
- Diesel is a lot safer, as it is much less flammable than petrol.
- Diesel fuel easily available.
- High Reliability

Disadvantages:

- Weight
- Pollution

Future SST Propulsion Requirements

- High Specific thrust to give:
 - Sufficient supersonic thrust
 - Low installed drag supersonically
- SFC at Supersonic Cruise at least as good as the Olympus 593
- Low Specific Thrust at Take-off to meet noise requirements
- Good SFC subsonically (to give same range subsonic as supersonic)

Hence the need for a variable cycle engine

High Speed Commercial Transport

Quiet Small Supersonic Transport

Aerion SSBJ

Specification:

12 Passengers

Powered by three engines ~ 15,000 Lb.

Range 5000 nm

L = 49 m Span = 21 m

Cruise M = 1.4 - 1.6 No some Propropred M = 81.1 - 1.2

Take off Mass − 54 tonnes

(Sonic Boom @ $M = 1.6 \sim 1/100$ Concorde)

Future Propulsion Technologies

Increased Operating Temperatures

New materials, improved cooling, control of emissions etc.

• Improved Methods:

Higher component efficiencies in less stages.

New concepts:

Ducted Fans, Variable Cycle Engines etc.

• Alternative Fuels:

Hydrogen, etc.

Advanced Digital Control Systems

Integration with the Aircraft Control System

• Engine/Airframe Installation:

Improved integration of propulsion system with airframe.

Key Lessons from Lecture 8

The choice of Engine Cycle for any Platform is a compromise between:

- The Platform Requirements:
 - Performance Thrust, SFC, Installed Drag
 - Geometric constraints, Mass etc.
 - Price, Maintenance Costs etc.
 - Reliability, maintainability, supportability etc.
- The Propulsion System Design:
 - Layout
 - Technology Levels
 - Mechanical Design & Material specification
 - Ease of Manufacture
- For the best overall system design, the airframe & engine should not be treated as independent units.

Lecture 9

Propulsion Systems for Super/Hypersonic Flight

Objective ~ Lecture 9

A review of the major propulsion systems for Supersonic & Hypersonic Flight.