Midpoint Progress Report

Model Implementation

1 Logistic Regression as Baseline Model¹

1.1 Overview of Logistic Regression

Logistic regression can model the probabilities of classification problems. As a discriminative model, it directly computes P(c|d). For this project, we used logistic regression as our baseline model to predict the closing stock price direction of the following day.

We used y = 1 to refer to the upward movement of closing stock price and y = -1 to refer to the downward movement of closing stock price. Given the historical stock prices as inputs, we modeled the probability of the output being 1 and being -1, as $P(y = 1 \mid x)$ and $P(y = -1 \mid x)$, which are calculated as below:

$$P(y = 1) = \sigma(wx + b) = \frac{1}{1 + exp(-(wx+b))}$$

$$P(y = -1) = 1 - \sigma(wx + b) = \frac{exp(-(wx+b))}{1 + exp(-(wx+b))}$$

1.2 Summary Statistics

We took Apple as our target company and looked at the pricing data from 2021-12-29 to 2022-04-28 (84 days). Within the 84 days, there were 36 days when the stock price went up and 48 days when the price went down. Detailed statistics related to models can be found in implementation parts below.

We chose not to consider a longer time period in our approach so that we can align the time period for historical pricing data with our StockTwits data. Obtaining posts from StockTwits for a longer period may not be in the scope of this project, as it takes prohibitively long to acquire this data.

1.3 Implementation (without technical indicators)

After taking 'High', 'Low', 'Open' as feature values and splitting the dataset into 80% for training data and testing data, we obtained 67 instances of training data and 17 instances of testing data. By implementing the logistic regression, we got the model coefficients below:

	0	1
0	High	[0.26218930818632746]
1	Low	[0.15304821604380683]
2	Open	[-0.47929093522655974]

A look at the classification report shows that the overall accuracy score is around 0.53, with precision of y = -1 as 0.64 and y = 1 as 0.33.

precision	recall	f1-score	support
0.64	0.64	0.64	11
0.33	0.33	0.33	6
		0.53	17
0.48	0.48	0.48	17
0.53	0.53	0.53	17
	0.64 0.33 0.48	0.64 0.64 0.33 0.33 0.48 0.48	0.64 0.64 0.64 0.33 0.33 0.33 0.48 0.48 0.48

¹ Please refer to "Stockprice Baseline Models.ipynb" in GitHub for the code implementation

On one hand, the accuracy score of 0.53 is merely a bit higher than a random guess; on the other hand, the precision rate for prediction of y = 1 is extremely low, indicating a poor true positive rate especially of y = 1. The above result led us to consider ways in which we could potentially improve the accuracy of our logistic regression baseline model. One approach we took was to add more technical features as x inputs, which we describe in the part below.

1.4 Implementation (with **all** technical indicators)

We generated 86 technical features from Technical Analysis library² and 12 date features from fastai library³. We added those features to the model in 3.1.2 and ran a logistic regression. The classification report is as follows.

	precision	recall	f1-score	support
-1 1	0.58 0.20	0.64 0.17	0.61 0.18	11 6
accuracy macro avg weighted avg	0.39 0.45	0.40 0.47	0.47 0.40 0.46	17 17 17

Now, the accuracy dropped to 0.47 because we included too many features (around 100), leading to a multicollinearity problem and overfitting. To address this, we decided to select the important features based on previous literature.

1.5 Implementation (with selected technical indicators)

We selected 12 technical features, which have been frequently used in previous studies⁴. We also dropped some of the date features that are irrelevant in short time prediction. A sample selection of summary statistics is displayed below:

	count	mean	std	min	25%	50%	75%	max
Close	84.000	168.334	6.831	150.620	163.192	168.850	174.130	182.010
High	84.000	170.458	6.368	154.120	165.518	171.175	175.205	182.940
Low	84.000	166.218	7.139	150.100	161.342	166.600	171.573	179.120
Open	84.000	168.361	6.895	150.900	163.757	168.995	172.868	182.630
Volume	84.000	91000642.857	20564526.445	59773000.000	77108000.000	89238450.000	97243250.000	179935700.000
Year	84.000	2021.964	0.187	2021.000	2022.000	2022.000	2022.000	2022.000
Month	84.000	2.845	2.080	1.000	2.000	3.000	4.000	12.000
Week	84.000	10.452	9.361	1.000	5.000	9.000	13.250	52.000
Day	84.000	15.786	9.029	1.000	8.000	15.500	24.000	31.000
Dayofweek	84.000	2.036	1.384	0.000	1.000	2.000	3.000	4.000
trend_sma_fast	84.000	169.218	5.138	159.282	166.183	169.407	173.193	177.359
trend_ema_fast	84.000	169.054	4.632	159.106	166.137	169.601	172.030	177.464
momentum_stoch_rsi_k	84.000	0.408	0.351	0.000	0.101	0.345	0.747	1.000
momentum_stoch_rsi_d	84.000	0.411	0.337	0.000	0.106	0.346	0.729	1.000
momentum_rsi	84.000	49.049	9.363	31.549	42.509	48.299	55.351	67.483

³ https://docs.fast.ai/tabular.core.html

² https://github.com/bukosabino/ta

⁴ Peng et. al. (2021), Table 1 summarized technical indicators used in recent financial prediction studies. We selected technical features that have been used in more than 3 literatures and available in the library.

Similarly, we ran a logistic regression and produced a classification report.

	precision	recall	f1-score	support
-1 1	0.70 0.43	0.64 0.50	0.67 0.46	11 6
accuracy macro avg weighted avg	0.56 0.60	0.57 0.59	0.59 0.56 0.59	17 17 17

Note that overall accuracy increased to 0.59, which is higher than the models without technical indicators. However, the precision rate of y=1 is still below 0.5.

1.6 Incorporation of StockTwits Data

We scraped StockTwits for additional data. Previously, we only had posts made in the last month for 6 companies. We decided to narrow our focus to AAPL, MSFT, and NVDA, and we rescraped the site for all posts which tag these companies dating back to 12/31/2021. For now, we consider only posts with labeled sentiment (with "bullish" and "bearish" representing positive and negative sentiment, respectively).

We added the number of positive and the number of negative posts by day as a feature in our model. We also used the selected technical features from part 1.5. Then, we ran a regression and again obtained an accuracy of 0.59 on the test set. The model's predictive power did not increase with the addition of the new features because its predictions are largely determined by a subset of the features with comparatively massive coefficients. The features *volume*, *volume*_obv, and *volume*_adi had coefficients which were orders of magnitude larger than the coefficients of the other features. Therefore, the values of those features (mostly) determine the model's predictions, so the StockTwits sentiments could not influence these predictions. Simply standardizing features would not address this issue for a logistic regression. However, we will have to explore feature selection and feature normalization techniques to address this behavior of our model.

Conclusion and Next-Step Focus

We observed that feature engineering and feature selection could improve the model's performance. In addition to using Logistic Regression as a baseline model, we have started to⁵:

- 1. implement Random Forest to select important features more effectively,
- 2. feed important features into an LSTM model and implement it, since LSTM is widely used in the latest stock prediction studies, and
- 3. continue to explore feature selection and normalization techniques.

We also plan to begin work on Sentiment Analysis of posts from Stocktwits to label the posts which are not pre-labeled and thus expand our ability to use this dataset.

Following these approaches, we will track accuracy scores produced by different models and design an algorithm with the highest accuracy score within our capabilities.

⁵ Preliminary codes of these approaches are available in our GitHub Repo. Please notice that we will continue to work on and improve these models.