DOCUMENTAÇÃO DO PROJETO

1.OBJETIVO

O objetivo desse trabalho foi aprender e treinar habilidades na área de Aprendizado de Máquina. O conjunto de dados utilizado foi o *House Prices* (fonte: https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data). Trata-se de uma análise preditiva para prever o preço de vendas de imóveis (em dólares) utilizando uma base histórica de vendas com registros de 1460 imóveis na cidade de Ames (Iowa, USA) e seus 79 atributos. Através desse exercício pude desenvolver habilidades na área de *Analytics Advanced*, como seleção de atributos, *encoders* e aplicação de técnicas de regressão.

2.ABORDAGEM PARA SOLUÇÃO DO PROBLEMA

A análise foi construída em 2 diferentes arquivos: I) Pré-processamento dos dados e II) Construção dos modelos de Machine Learning:

1) Pré-processamento dos dados: processo de ingestão e transformação de dados.

Neste arquivo inspecionei os dados a procura de valores nulos, faltantes ou duplicados. Também explorei as relações entre as variáveis e realizei uma análise para detecção de *outliers* para excluir valores discrepantes que pudessem envisesar alguns atributos e comprometer os resultados dos modelos. Além disso apliquei transformações nos atributos categóricos para se tornarem numéricos e se adequarem ao formato exigido pelos algoritmos. Os dados também foram normalizados, com o objetivo de minimizar diferenças na escala das diferentes variáveis. E por fim, com o objetivo de reduzir a dimensionalidade dos dados, realizei uma análise de seleção de *features* eliminando aquelas que menos contribuíam para explicar a variação no atributo de interesse a ser predito (preço dos imóveis). No fim o conjunto de dados que seguiu para os modelos de machine learning ficou com a dimensão de 1204 registros e 42 atributos.

II) Previsão com machine learning: construção dos modelos estatísticos.

Na fase de aprendizado dos dados, testei quatro diferentes algoritmos de regressão:

- Linear Regression
- KNN Regressor
- Tree Decision Regressor
- Random Forest Regressor

Também construí um modelo *baseline* adicional baseado na média dos preços dos imóveis para simular o cenário mais simples que eu imaginei e confrontar com o desempenho dos 4 modelos mais complexos citados acima. para analisar o desempenho dos modelos utilizei as 4 principais métricas de problemas de regressão:

- Erro absoluto médio (MAE)
- Erro percentual médio (MAPE)

- Raiz do erro quadrático médio (RMSE)
- Coeficiente de determinação (R²).

A descrição detalhada e a expressão matemática das métricas podem ser encontradas aqui: https://scikit-learn.org/stable/modules/model_evaluation.html.

O primeiro passo dessa análise foi construir modelos gerais usando os valores padrão dos hiperparâmetros dos algoritmos e checar se eles superavam o modelo *baseline*. Se sim, valeria a pena seguir e tentar melhorá-los posteriormente. Nessa etapa inicial realizei apenas um treino para aprendizado do modelo.

Na fase seguinte selecionei os 2 modelos que tiveram melhor desempenho nos testes da fase anterior com treino único. E então apliquei a técnica de validação cruzada, com múltiplos treinos e testes. O objetivo dessa implementação é diminuir os efeitos da aleatoriedade sobre a escolha dos dados utilizados durante a fase de aprendizado do modelo. Através dela garantimos que o modelo será treinado e testado com todos os registros pelo menos uma vez, e aumentamos as chances dele realmente aprender os padrões que explicam a variação do preçodos imóveis, ao invés de apenas "decorar" os valores. Também reduzimos as chances de ocorrer *overfitting* (sobre-ajuste e ótima performance do modelo na fase de treino, mas performance ruim na fase de teste e em produção).

Além da validação cruzada, nesse segunda etapa realizei o *tunning* dos dois melhores modelos através do ajuste dos hiperparâmetros, na tentativa de obter resultados ainda mais apurados. Assim pude comparar qual dos dois gerava as menores métricas de erro e obtive o meu modelo candidato final.

Abaixo um fluxograma ilustrando os processos realizados na abordagem do problema:

3.RESULTADOS

O modelo campeão que gerou as previsões de preços de imóveis com menores erros foi o Random Forest, embora o modelo Linear Regression também tenha performado bem, com valores ligeiramente superiores de MAPE e MAE. A **figura 1** mostra o desempenho de todos os modelos candidatos antes da implementação da validação cruzada, quando realizamos o teste depois de um treino único do algoritmo. Nela podemos ver que a Regressão Linear e o Random Forest tiveram os melhores desempenho, com a Regressão Linear performando ligeiramente melhor. Porém, quando implementei a validação cruzada com múltiplos treinos e testes (kfold = 10) e fiz o *tunning* dos modelos para esses dois candidatos, o Random Forest se saiu melhor para a maioria das métricas (**Tabela 2**).

Figura 1. Métrica de erros para todos os modelos testados na primeira fase de modelagem (treino e teste únicos) e antes do ajuste dos hiperparâmetros (*tunning* dos modelos).

Tabela2. Métrica de erros para os 2 melhores modelos após a validação cruzada (múltiplos treinos e testes) e o *tunning*.

	Linear Regression	Random Forest
MAE	14307.752396	14123.160094
MAPE	0.087483	0.085075
RMSE	19355.136755	20018.180437
R2	0.885014	0.876791

Como podemos ver acima, o MAPE (erro percentual médio) do algoritmo campeão foi de apenas 8.5%. Ou seja, quando o modelo previu os preços dos imóveis que tinham um valor de venda já conhecido, ele errou cerca de 8.5% (em média) para mais ou para menos em relação ao valor real desses imóveis. Transferindo a ideia para o cenário real de previsão de valores, isso significa que quando ele prever um valor de venda de U\$100.000 para um imóvel - por exemplo - o valor real de venda de imóveis com as mesmas características desse deve estar entre U\$92.000 e U\$108.000. Olhando as métricas que estão na escala real da variável de interesse (dólares), temos um MAE (erro absoluto médio) de ~U\$14320, enquanto o RMSE (raiz do erro quadrático) foi de ~U\$19414.

4.CONCLUSÃO E POTENCIAIS MELHORIAS

O nosso melhor modelo foi o Random Forest capaz de prever o preço de novos imóveis com um erro médio de 8.5%. Com o objetivo de aprimorar a análise eu gostaria de aprender e aplicar outros tipos de algoritmos, como regressão Lasso/Ridge e modelos que usam a ideia de *gradient boosting* (como o *XGBoost*), na tentativa de conseguir erros menores que aqueles obtidos aqui. Também seria interessante aprender a implementação de técnicas de redução de dimensionalidade dos dados, como a PCA (Principal Component Analysis), para ver se temos algum ganho na performance.

Também gostaria de experimentar outros métodos de detecção de outliers para checar se os resultados divergem.

5.FONTE DE DADOS

Base e descrição dos dados no Kaggle: https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

6.REFERÊNCIAS

- 1.Peng, Chao-Ying Joanne. Dong, Yiran. Principled missing data methods for researchers. Fonte: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701793/.
- 2.Curso Machine Learning e Data Science com Python de A a Z. Plataforma Udemy. https://ibm-learning.udemy.com/course/machine-learning-e-data-science-com-python-y/
- 3.Alto, Valentina. Detecting outliers with PyOD. https://towardsdatascience.com/detecting-and-modeling-outliers-with-pyod-d40590a96488