딥러닝은 작은 통계의 결과들이 무수히 얽혀 이루어지는 복잡한 연산의 결정체이다. 딥러닝을 이해하기 위해 말단에서 이뤄지는 가장 기본적인 두 가지 계산원리인 **선형** 회귀와 로지스틱 회귀를 알아야한다.

# 1. 선형 회귀 (linear regression): '가장 훌륭한 예측선 긋기'라는 통계학 용어

'학생들의 중간고사 성적이 [ ]에 따라 다르다' [ ]='정보'=x(독립 변수), 성적 =y(종속 변수,x 값에 따라 변함)

- → 선형 회귀란 독립변수 x 를 사용해 종속 변수 y 의 움직임을 예측하고 설명하는 작업을 말함.
  - **단순 선형 회귀(simple linear regression)**: 하나의 x 값만으로 y 값을 설명
  - 다중 선형 회귀(multiple linear regression):x 값이 여러 개 필요

# (예시)



### 이 점들의 특징을 가장 잘 나타내는 선 = 훌륭한 예측선

→일차 함수y = ax + b에서 최적의 기울기 a 값과 y 절편 b 값을 찾아야 함.정확한 직선을 그린 후에는 x 값을 대입하여 y 값을 예측해 낼 수 있음.

: 기존 데이터(정보)를 가지고 어떤 선이 그려질지 예측한 뒤, 아직 답이 나오지 않은 무언가를 그 선에 대입함으로써 예측 가능.

# 2. 최소 제곱법 (method of least squares)

최적의 a, b 값을 찾기 위해 최소 제곱법 적용. (주어진 x 의 값이 하나일 때 적용 가능)

$$a = \frac{(x-x평균)(y-y평균)의 합}{(x-x평균)의 합의 제곱}$$
  
 $b=y$ 의 평균- $(x$ 의 평균×기울기  $a$ )

최소 제곱법을 통해 a, b 변수값을 구하고, 예측 값을 구하기 위한 직선의 방정식을 완정할 수 있음.

직선의 방정식에 데이터를 입력해 예측 값을 구하고 그 점들을 이으면 오차가 최저가 되는, 주어진 좌표의 특성을 가장 잘 나타내는 직선을 그릴 수 있음.



오차가 최저가 되는 직선의 완성

# 3. 평균 제곱 오차 (mean square error, MSE)

여러 개의 입력 값을 계산할 때는 임의의 선을 그리고 '오차 평가 알고리즘'을 이용해 선의 오차를 평가하며 수정.

가설 세우기 → 값이 요건 충족하는지 판단→ 변화가 긍정적이면 오차가 최소가 될 때까지 반복.



빨간색 직선들의 합이 작을수록 잘 그어진 직선→ 직선의 기울기가 중요

오차의 합 
$$=\sum_{i=1}^n \left(p_i-y_i\right)^2$$
 평균 제곱 오차(MSE)  $=\frac{1}{n}\sum_{i=1}^n \left(p_i-y_i\right)^2$ 

오차의 부호때문에 제곱을 하여 정확한 오차의 합을 구함.

 $\therefore$  선형 회귀란 임의의 직선을 그어 이에 대한 평균 제곱 오차를 구하고, 이 값을 가장 작게 만들어주는 a 와 b 의 값을 찾아가는 작업.