

TECHARENA

Global Talent Building the Future Together

Huawei Nuremberg Tech Arena 2025

€20,000 Prize Pool

OPENING WEBINAR

Agenda

- Timeline
- Prize Pool
- Challenge
- Competition Phases
- Evaluation Criteria
- Next Steps
- Discord
- Team Formation
- Finding teammates

TIMELINE

PRIZE POOL

Prize pool

Gold prize

The sum of 6,000 € (divided equally between each member of the winning team)

One winning team in total.

Silver prize

The sum of 4,000 € (divided equally between each member of the winning team)

There will be two winning teams.

Bronze prize

The sum of 2,000 € (divided equally between each member of the winning team)

There will be three winning teams.

Opportunity for future research collaboration with Huawei.

The Challenge

Power the Future of Energy Optimization at Huawei Nuremberg Tech Arena 2025

Utility-scale Battery Energy Storage Systems (BESS) are essential for building a more flexible, resilient, and sustainable power grid.

WELCOME

Dr. Mansour Alramlawi Senior Engineer - Energy Storage System Algorithm

CHALLENGE

The EMS will need to optimize the battery's charge and discharge strategy based on **wholesale** electricity market prices and participation in ancillary service markets, such as Frequency Containment Reserve (**FCR**) and automatic Frequency Restoration Reserve (**aFRR**).

- The electricity market ensures a constant balance between generation and consumption in real time.
- Supply-demand mismatches can destabilize the grid and cause blackouts.
- Market mechanisms coordinate producers, consumers, and storage to maintain system reliability.

TECHARENA

Optimal Operation

Optimal Investment

Optimal Configuration

Maximize revenue by determining the optimal charge/discharge strategy for the BESS. The BESS will participate in

- wholesale day ahead
- FCR
- aFRR capacity

Identify the best European country to install a BESS by considering the country- specific markets, aiming to achieve the highest return on investment (**ROI**) over a 10-year period. Selected countries include

- Germany (DE)
- Austria (AT)
- Switzerland (CH)
- Hungary (HU),
- Czech Republic (CZ).

Participants are tasked with determining the optimal configuration for the utility scale BESS by identifying the best configuration that balances profitability, performance, and longevity, considering

- Daily number of cycles
- · C-rate

NRC preparing guideline , Data, Instruction

Student support and Webinars attending

Algorithm and results Evolution NRC preparing guideline , Data, Instruction

Student direct technical support

Algorithm and results Evolution NRC preparing guideline , Data, Instruction for final Ceremony

Final ceremony technical arrangement

Phase 1

In the first phase,

1. Operation Optimization:

Maximize revenue by determining the optimal charge/discharge strategy for a BESS based on market prices and participation in ancillary services.

1 2. Investment Optimization:

Identify the best European countries to achieve the highest return on investment (ROI) over a 10-year period by installing a utility-scale BESS.

3. Configuration Optimization: Optimize the BESS configuration

Phase 2

In the second phase,

1. Operation Optimization:

Maximize revenue by determining the optimal charge/discharge strategy for a BESS based on market prices and participation in ancillary services.

participants will further improve their EMS algorithm operation with focusing on battery degradation cost

2. Investment Optimization:

Identify the best European countries to achieve the highest return on investment (ROI) over a 10-year period by installing a utility-scale BESS.

3. Configuration Optimization: Optimize the BESS configuration.

EVALUATION CRITERIA

- **Revenue maximization (50%)**. This will evaluate how well the algorithm maximizes revenue based on market prices. A linear scaling formula will be used to map all submission values between the minimum and maximum observed
- **Investment optimization (20%)**. This will evaluate the assessment of optimal investment locations and markets. The evaluation will consider

- Configuration optimization (20%). This will evaluate the assessment of the most relevant configuration parameters on BESS revenue.
- Code Quality and Documentation (10%). This will evaluate the clarity and structure of the code.

Dr. Paolo Gabrieli
Principal Engineer- Energy management System Algorithm

1. Historical electricity prices for 2024 relevant for Phase 1.

Electricity price	Time resolution	Description The day-ahead market is a wholesale electricity trading platform operated by PEX SPOT across the selected countries, where participants submit hourly or uarter-hourly bids one day before delivery.	
Day-ahead wholesale electricity price	15-minute		
Settlement price for contracted Frequency Containment Reserves (FCR)	4-hour	The FCR market is jointly coordinated via regelleistung.net for Central Europe, providing fully automatic, symmetric reserves that respond within 30 seconds to frequency deviations.	
Settlement price for contracted automatic Frequency Restoration Reserves (aFRR)	4-hour	The aFRR capacity market is operated via regelleistung.net, where providers bid daily to deliver flexible reserves, activated through the PICASSO platform to maintain balance within five minutes.	

2. Investment market conditions

Country	Weighted-average cost of capital (WACC)	Inflation rate
Germany (DE)	8.3%	2.0%
Austria (AT)	8.3%	3.3%
Switzerland (CH)	8.3%	0.1%
Czech Republic (CZ)	12.0%	2.9%
Hungary (HU)	15.0%	4.6%

3. System Configuration

Huawei's **LUNA2000-4.5 MWh** Battery Energy Storage System (BESS). It shows the unit as a 20-foot containerized module outfitted with liquid cooling components for enhanced capacity and performance.

/	Feature	Specification	
	Energy Capacity	~4,472 kWh	
	Power Rating	~2,236 kW	
	Charge/Discharge C-rates	0.25 C□, 0.33 C□, 0.50 C□	
	Daily Number of Cycles	1.0, 1.5, 2.0	
	Cooling Method	Liquid cooling	

Model: LUNA2000-4.5MWH-2H1 Smart String ESS (Preliminary)

Ultra Safety	Native Stability	Higher Revenue	Smart O&M			
	Battery (Container				
Model		LUNA2000-4.5MWH-2H1				
DC Rated Voltage		1,331.2 V				
DC Max. Voltage		1,500 V				
Nominal Energy Capacity		4,472 kWh				
Charge & Discharge Rate		≤ 0.5 C				
Rated Power		2,236 kW				
Dimension (W x H x D)		6,058 x 2,896 x 2,438 mm				
Weight		s 41 t				
Operation Temperature Range		-30°C - 55°C				
Storage Temperature Range		-40°C - 60°C				
Relative Humidity		0 - 100% (Non-condensing)				
Max. Operating Altitude		4,700 m				
Cooling Method		Liquid Cooling				
Fire Suppression System		Water Sprinkler, Novec 1230 (Optional)				
Communication Interface		Ethernet / SFP				
Communication Protocol		Modbus TCP				
Protection Degree		IP55				
Anti-corrosion Degree		C5-Medium				
Standards Compliance						
RoHS, IEC6247		EC62933-5-2, UL9540A, IEC62619, L	IN38.3, etc.			
	Batter	y Pack				
Cell Material		LFP				
Number of Cell		104				
Nominal Capacity		280 Ah / 93.18 kWh				
Protection Degree		IP65 670±10 kg				

Mangesh Mankar Senior Data Engineer

Fair, Fast, and Consistent Evaluation System

We've implemented a state-of-the-art automated evaluation system that assesses submissions immediately upon upload, designed with three core principles:

Fairness

Every submission is evaluated using identical criteria - no human bias, no inconsistencies

Speed

Evaluation feedback within minutes, not hours or days

Transparency

Clear, actionable feedback helps you understand exactly what needs improvement

Important note: This automated system is used exclusively by our evaluation team. The validation tools and criteria are **not shared with participants** to maintain evaluation integrity and prevent system gaming.

Comprehensive Technical Assessment

What we evaluate

Submission Structure & Compliance

ZIP file organization, naming conventions, required files, and proper directory structure

Code Quality & Executability

Python code runs without syntax errors, proper imports, and basic quality indicators

Technical Execution

Script runs in clean environment, dependency compatibility, execution time and resources

Output Validation

All required output files generated with correct formats, naming, and specifications

The beauty of this system is consistency - every team's submission goes through exactly the same evaluation process.

Evaluation Process Flow: From Submission to Feedback in Minutes

Step 1: Secure Upload & Extraction

- ZIP file uploaded to secure platform
- System extracts submission in isolated environment

Step 2: Automated Validation

- · Structure and file compliance checking
- Code quality and syntax validation
- Dependency resolution

Û

Step 3: Execution Testing

- main.py runs in controlled sandbox
- Output files generated and captured
- · Performance metrics recorded

Step 4: Reporting

- Detailed validation report generated
- · Clear feedback on pass/fail status
- Specific improvement recommendations

All of this happens within minutes of your submission!

Your Success Strategy

Follow the Guidelines Precisely

- Stick exactly to the provided file structure and naming conventions
- Include all required files in the correct locations
- Test your submission structure before final upload

Test Early and Often

- Don't wait until the deadline to test your complete submission
- Create your ZIP file and test the entire workflow multiple times
- Verify your main.py runs successfully in a clean environment

Focus on Robustness

- Write code that handles edge cases gracefully
- Use relative paths, never absolute ones
- Include proper error handling and meaningful output messages

JOIN THE DISCORD

TEAM FORMATION

TEAM FORMATION

Let's Get You Set Up!

Make sure to complete the **team formation Excel sheet** so we can give you access to the Data.

 If you already have a team or are participating solo, fill out the "Have a Team / Participating Solo" tab or confirm your information by checking the box if it's already there.

*If you register solo and later decide to form a team, just update the Excel sheet.

 If you're still looking for teammates, fill out the "Looking for a Teammate" or confirm your information by checking the box so we can match you with others!

Reminder: You can join the hackathon solo or in a team of up to 3 people.

FILL OUT THE EXCEL SHEET

HOW TO FIND TEAMMATES?

Looking for a Team?

Head over to the <u>#looking-for-a-team</u> channel on Discord to introduce yourself, connect with other participants, and form a team. Once your team is ready, don't forget to add it to the <u>Excel</u> <u>sheet</u>.

Note: If you have a friend who wants to join the challenge with you, make sure they register first using the registration form here — everyone must register individually.

CHALLENGE DATA ACCESS

You'll receive an email with a link to download the data to begin your challenge on Wednesday,

August 27th.

That's where your hackathon journey officially begins!

The LINK will include everything you need: **key details, competition guidelines, and submission instructions.**

ANY QUESTIONS?

If you have any questions, please contact amandine@bemyapp.com

