ISE/DSA 5113 Advanced Analytics and Metaheuristics

Charles Nicholson, Ph.D.

Assistant Professor

School of Industrial & Systems Engineering
University of Oklahoma

Lecture Week 2

LINEAR PROGRAMMING

linear programming (LP) problem

maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} > 0$

- many problems can be formulated as LP
- no analytical formula for solution
- efficient solution techniques exist
- provide useful "what if" analysis

LP assumptions

- objective function appropriateness
- decision variable appropriateness
- constraint appropriateness
- additivity
- proportionality
- divisibility
- certainty

The Galaxy Industries Production Problem

Galaxy manufactures two toy guns:

- 1. Space Rays
 - \$8 dollar profit per unit
- 2. Zappers
 - \$5 dollar profit per unit

Management is seeking a production schedule that will increase the company's profit.

The current heuristic production plan:

- Produce as much of the more profitable product, Space Ray's
- Use left over resources to produce Zappers

constraints

- Resources are limited:
 - 1000 pounds of special plastic
 - 40 hours of production time per week
- Space Rays requires 2 pounds of plastic and 3 minutes of labor per unit.
- Zappers requires 1 pound of plastic and 4 minutes of labor per unit.
- Total production cannot exceed 700 units.
- Number of units of Space Rays cannot exceed Zappers by more than 350.

Develop a mathematical model for this problem.

The Galaxy Linear Programming Model

Decision variables:

 X_1 = Weekly production level of Space Rays

 X_2 = Weekly production level of Zappers

Objective Function: maximize weekly profit

The Galaxy Linear Programming Model

```
Max: 8X_1 + 5X_2
                      (Weekly profit)
subject to
 2X_1 + 1X_2 \le 1000
                      (Plastic)
                     (Production Time)
 3X_1 + 4X_2 \le 2400
                      (Total production)
  X_1 + X_2 \le 700
  X_1 - X_2 \le 350
                      (Mix)
  X_i > = 0, j = 1,2 (Nonnegativity)
```


There are three types of feasible points

search for an optimal solution

Start at some arbitrary profit, say profit = \$2,000...

summary of the optimal solution

```
Space Rays = 320 units

Zappers = 360 units

Profit = $4360
```

- This solution utilizes all the plastic and all the production hours.
- Total production is only 680 (not 700).
- Zappers exceed Space Rays.

extreme points and optimal solutions

If a linear programming problem has an optimal solution, an extreme point is optimal.

multiple optimal solutions

For multiple optimal solutions to exist, the objective function must be parallel to one of the constraints

Let's look as doing this with AMPL

basic AMPL commands

- reset: clears all information from memory
- model: loads a model from a file to memory
- data: loads data from file to memory
- solve : solves the current model in memory
- option : sets a variety of options
 - including the solver and info to pass to the solver
 - available solvers include CPLEX, Gurobi, Minos
- display, show, printf, expand
 - various commands for printing or display model information

basic AMPL commands

- var: to declare decision variables
- minimize: to define objective function
- maximize: to define objective function
- subject to: to define constraint

Free AMPL book:

http://ampl.com/resources/the-ampl-book/

See video lecture and files for code.

Is the optimal solution sensitive to changes in input parameters?

sensitivity analysis of objective function coefficients

The optimal solution will remain unchanged as long as:

- An objective function coefficient lies within its range of optimality
- There are no changes in any other input parameters.

sensitivity analysis of right-hand side values

 Keeping all other factors the same, how much would the optimal value of the objective function change if the right-hand side of a constraint changed by one unit?

 For how many additional or fewer units will this per unit change be valid?

Shadow Price – graphical demonstration

Range of Feasibility

Range of Feasibility

Range of Feasibility

basic AMPL commands for sensitivity analysis

```
display <var name>.down; display <var name>.up: lower/upper
endpoints of the range of feasibility of objective-function
coefficient of variable
display <constr name>: shadow price of constraint
display <constr name>.down; display <constr name>.up:
lower/upper endpoints of the range of feasibility of objective-
function coefficient of variable
display <constr name>.slack : slack in the constraint
display <var name>.rc: reduced cost of variable
```

Infeasibility: Occurs when a model has no feasible point

<u>Unboundness:</u> Occurs when the objective can become infinitely large (max), or infinitely small (min)

Infeasible Model

Unbounded solution

