Алгоритмы и модели вычислений. Задание 13: Алгоритмы на графах II

Сергей Володин, 272 гр. задано 2014.05.15

(каноническое) Задача 48.0

- 1. Алгоритм, вход.
- 2. (обозначение: $v^{a/b} \Leftrightarrow d[v] = a, f[v] = b$)

(каноническое) Задача 48

(каноническое) Задача 49.1

Зеленые — мосты, красные — точки раздела.

(каноническое) Задача 50.1

Пусть r — корень дерева поиска в глубину. Пусть $v_1,...,v_n$ — его потомки, в порядке обхода.

- 1. $n \geqslant 1$, так как если n = 0, граф не связный (из r нет ребер)
- 2. Пусть r точка раздела. Пусть n=1. Тогда получаем $\forall v \in V \hookrightarrow$ существует путь $r \to v_1 \leadsto v$, причем r встречается в пути ровно один раз (путь в дереве), так как поиск в глубину находит достижимые из r вершины, и только их. Значит, после удаления r граф останется связным: для любой вершины $v \in V \setminus \{r\}$ существует путь $v_1 \leadsto v$, не проходящий через r, откуда $\forall u, v \in V \setminus \{v\} \hookrightarrow u \leadsto v_1 \leadsto v$. Противоречие. Значит, $n \geqslant 1$
- 3. Пусть n > 2. Пусть вершины $u, v \colon r \to v_1 \leadsto u, r \to v_2 \leadsto v$ (из разных поддеревьев). Пусть $u \leadsto v$, путь не содержит r. Тогда v была бы в первом поддереве (с корнем v_1) противоречие. Значит, единственный путь $u \leadsto v$ проходит через r. Значит, r точка раздела.

(каноническое) Задача 50.2

Граф G, совпадающий с T — деревом поиска в глубину:

 \dot{C}

- $1.\ B$ является точкой раздела
- 2. Но существует ребро (B,A), которое является обратным (A является предком B).