```
1. Relational schema for Library
a)
SELECT DISTINCT LastName
FROM Reader
WHERE Address = 'Moscow';
b)
SELECT Author, Title
FROM Book, Publisher
WHERE PubKind = 'Science' OR PubKind = 'Reference';
c)
SELECT DISTINCT Author, Title
FROM Reader, Borrowing, Book
WHERE FirstName = 'Ivan' AND LastName = 'Ivanov';
d)
SELECT ISBN
FROM BookCat
WHERE CategoryName = 'mountains' AND
      ISBN NOT IN
      (SELECT ISBN
      FROM BookCat
      WHERE CategoryName = 'travel');
e)
SELECT DISTINCT LastName, FirstName
FROM Reader, Borrowing
WHERE ReturnDate NOT NULL;
f)
SELECT DISTINCT LastName, FirstName
FROM Reader, Borrowing
```

WHERE FirstName != 'Ivan' AND LastName != 'Ivanov' AND ISBN IN

(SELECT ISBN

FROM Reader, Borrowing

WHERE FirstName = 'Ivan' and LastName = 'Ivanov');

2. Relational schema for Trains

a)

SELECT DISTINCT from tation fst, tostation

FROM connections con1

WHERE tostation NOT IN

(SELECT tostation

FROM connections

WHERE fromstation IN

(SELECT tostation

FROM connections con2

WHERE from station = fst AND con1.trainnr = con2.trainnr AND con1.departure <= con2.departure AND con1.arrival >= con2.arrival

));

3. Represent outer join as relational algebra expression using only basic operations (select, project, cartesian, rename, union, minus)

$$R = (A_{1}, ..., A_{n}, B_{1}, ..., B_{k})$$

$$S = (B_{1}, ..., B_{k}, C_{1}, ..., C_{m})$$

$$\Pi_{A_{1}, ..., A_{n}, R.B_{1}, ..., R.B_{k}, C_{1}, ..., C_{m}}(\sigma_{R.B_{1} = S.B_{1}} \wedge ... \wedge R.B_{k} = S.B_{k}}(R \times S))$$

$$\cup \Pi_{A_{1}, ..., A_{n}, NULL_{1}, ..., NULL_{n}}(\sigma_{A_{1}, ..., A_{n}}(R))$$

$$\cup \Pi_{NULL_{1}, ..., NULL_{m}, C_{1}, ..., C_{m}}(\sigma_{C_{1}, ..., C_{m}}(S))$$