

Homework 2 AE 5535

Assigned: 2/15/2021 Due: 2/22/2021

An ideal fixed-area turbojet (FAT-jet) is operated on-design where $\pi_C = 15$, $M_0 = 0.8$, $T_0 = 260$ K, $T_{t4} = 2000$ K, and $P_0 = 20,000$ N/m². Mass flow rate of air processed by this engine at on-design is 100 kg/sec.

What will be the performance of this engine (thrust and mass capture) compared to the on-design conditions if it is flown at a Mach of 0.3 and at an altitude where temperature and pressure are 288K and 101325 N/m², respectively. Furthermore, the fuel throttle is set such that fuel flow rate is 21.5% higher than the fuel flow rate at the on-design point. Assume that A_9 is varied to keep $P_9 = P_0$.

What is the ratio of the off to on-design A_9 required to maintain $P_9 = P_0$? Does this seem reasonable? If not, perhaps the analysis needs to be redone with the A_9 'fixed'. (Don't do it, just realize it).