期末总结

石宛青

(武汉大学经济与管理学院)

2025年1月15日

本学期工作

• 论文:

- 重新整理修改绿债论文, 更正了数据处理问题和代码规范性。
- 更新 climate 论文的数据,规范代码,增加了新机制与进一步分析,参加会议,整理了修改意见,准备进行进一步修改。

• 数据与复现:

- 爬取了绿债市场的所有债券公告文本、准备构建绿色特质信息指标、可用于绿债中解决机制中一个一直不行的结果
- 复现了《Pricing of sustainability-linked bonds》(JFE, 2024), 阅读相关文献, 找研究价值。

• 感悟 & 提升 & 下一步:

- 数据和代码的规范性非常重要! 便于复现和修改。项目代码管理能力提升较多。
- 自主找到有价值的选题的能力还比较差。扩展阅读其他领域文章如 ML. 目前的太 局限了。
- 复现不够;时间管理。

Real-time Machine Learning in the Cross-Section of Stock Returns

Bin Li, Alberto G. Rossi, Xuemin Yan, Lingling Zheng (JFE,2025)

石宛青

(武汉大学金融系)

2025年01月15日

Motivation

- attention on: ML on asset pricing, return prediction—common: construct long-short investment strategies, with highly profitable.
- an important issue has yet to be fully addressed: real-time implementability
 - use published anomaly variables as predictors, assuming investors knew at training period's start, despite most being discovered years later.
 - natural for econometrician(measure risk premium), but for real-time investor?
 - look-ahead bias: eg: asset growth anomaly of Cooper et al. (2008)
 - publication bias (Harvey et al., 2016):strong in-sample performance—hindsight overly optimistic assessment—prior studies overstated for real-time investors.
- How to solve this problem?——change predictors

Introduction

Question and idea

Motivation

- this paper: examine ML strategies based on a "universe" of over 18,000 fundamental signals.
 - 1 no look-ahead bias: Fundamental analysis, dating back to Graham and Dodd (1934)——investors naturally consider as return predictors
 - 2 economists highlighted economic intuition behind return predictors in ML context (Arnott et, 2019)——related to firm cash flows and valuations
 - 3 construct a "universe" using permutational arguments—real-time investors don't know which signals turn out to be significant ex-post

Introduction

Question

- How does the real-time ML method, based on the "universe" of fundamental signals, perform in predicting stock returns and investment outcomes?
 - While positive and significant, the out-of-sample performance of these strategies is significantly weaker than those documented by prior studies.
 - We find qualitatively similar results when examining a "universe" of past-return-based signals.

Introduction

Contribution

- contributes to literature employing ML methods in empirical asset pricing.
 - prior: large economic gains to investors using machine learning strategies
 - expand: perspective of real-time investors——significantly less profitable
- contributes on accounting variables on stock return prediction using ML
 - prior: a fundamental deviation index from 105 signals (Avramov et al.,2022)
 - prior: accounting variables on stock return prediction (Haugen and Baker, 1996)
 - expand: focus on 'real-time'—— "universe" using permutational arguments

Contribution

- contributes to literature on the limitations of ML methods in invest strategies.
 - prior: profitability of strategies is derived from difficult-to-arbitrage stocks or limits-to-arbitrage period(Avramov et al.,2023)
 - Validation: out-of-sample predictability is significantly weaker among large stocks. expand: discovered anomaly may not be implementable in real-time.
- contributes to literature on ML not work as well in finance as in other areas
 - prior: the lack of data (time series), low signal-to-noise ratio, adaptive nature of financial markets.(Arnott et al.,2019)
 - \bullet expand: modest performance of real-time ML strategies could be a manifestation

Introduction

Design

Design-Stock Sample and Fundamental Signals

- CRSP + Compustat: NYSE, AMEX, and NASDAQ common stocks
- sample spans from July 1963 to June 2019, 15035 stocks.

21 Δ in X/LCT

X/LCT

• universe:240 accounting variables \times 76 signals (Yan and Zheng, 2017)

#	Variable		Description					1	Missing Rate	Start Year			
1	ACCHG		Accounting ch	ange	s - cumulative effe	ect			39.29%	1988			
2	ACO		Current assets	othe	er total				0.76%	1963			
3	ACOX		Current assets	othe	er sundry				2.20%	1963			
4	ACT		Current assets	- to	tal				2.13%	1963			
5	AM		Amortization	nortization of intangibles 33.0									
6	AO		Assets – other										
#	Description	#	Description	#	Description	#	Description	#	Description				
1	X/AT	16	Δ in X/AT	31	$\%\Delta$ in X/AT	46	$\Delta X/LAGAT$	61	$\%\Delta$ in X - $\%\Delta$	in AT			
2	X/ACT	17	Δ in X/ACT	32	$\%\Delta$ in X/ACT	47	$\Delta X/LAGACT$	62	$\%\Delta$ in X - $\%\Delta$	in ACT			
3	X/INVT	18	Δ in X/INVT	33	$\%\Delta$ in X/INVT	48	$\Delta X/LAGINVT$	63	$\%\Delta$ in X - $\%\Delta$	in INVT			
4	X/PPENT	19	Δ in X/PPENT	34	$\%\Delta$ in X/PPENT	49	$\Delta X/LAGPPENT$	64	$\%\Delta$ in X - $\%\Delta$	in PPENT			
5	X/LT	20	A in X/LT	35		50	AX/LAGIT	65	%A in X - %A				

• 18240 (240 \times 76)——18113 meaningful signals, and some are redundant.

36 %Δ in X/LCT

51 \(\Delta X/\)LAGLCT

66 % Δ in X - % Δ in LCT

Design-Methodology

• Prediction Equation:

$$R_{i,t+1} = f(\mathbf{x}_{i,t} \mid \boldsymbol{\theta}) + \epsilon_{i,t+1}$$

- $R_{i,t+1}$: annual excess return for stock i from July of year t to June of year t + 1
- pair accounting variables in year t-1
- scale $\mathbf{x}_{i,t}$ ranks to the interval [1, +1].
- why annual excess returns?
 - X are constructed from annual financial statements and are updated annually
 - number of signals larger than prior, Predict annual returns is more efficient than monthly
- ML v.s. LR
 - 1) variable selection, 2) model combination, 3) regularization, 4) nonlinearities
 - use "unmined" versus "known" predictors: advantages and disadvantages

Design-Methodology

• BRT——Regression Trees + Boosting

- \bullet refit model annually:training sample + 1, maintain validation period at 12 years.
- Every year, we generate return forecasts for all the stocks
- then construct decile portfolios based on the predicted returns
- hold the long-short portfolios for 12 months
- replace missing values with the cross-sectional median—0

Design-Performance Evaluation

• alpha: CAPM 1, FF 3, Carhart 4, FF 5, FF 5 + Mom, and Q factor models

$$\begin{split} r_t &= \alpha + \beta \ \textit{MKT}_t + \epsilon_t \\ r_t &= \alpha + \beta \ \textit{MKT}_t + s \ \textit{SMB}_t + h \ \textit{HML}_t + \epsilon_t \\ r_t &= \alpha + \beta \ \textit{MKT}_t + s \ \textit{SMB}_t + h \ \textit{HML}_t + u \ \textit{UMD}_t + \epsilon_t \\ r_t &= \alpha + \beta \ \textit{MKT}_t + s \ \textit{SMB}_t + h \ \textit{HML}_t + r \ \textit{RMW}_t + c \ \textit{CMA}_t + \epsilon_t \\ r_t &= \alpha + \beta \ \textit{MKT}_t + s \ \textit{SMB}_t + h \ \textit{HML}_t + r \ \textit{RMW}_t + c \ \textit{CMA}_t + u \ \textit{UMD}_t + \epsilon_t \\ r_t &= \alpha + \beta \ \textit{MKT}_t + s \ \textit{SMB}_t + r \ \textit{ROE}_t + i \ \textit{IA}_t + \epsilon_t \end{split}$$

Result-Baseline

		Ec	qual-weighte			Va	alue-weighte	d		
Rank	Pred	Avg	t-stat	SD	SR	Pred	Avg	t-stat	SD	SR
1 (Low)	-0.04	-0.01	-0.05	7.51	-0.01	0.00	0.40	1.30	6.18	0.22
2	0.30	0.49	1.58	6.22	0.28	0.30	0.58	2.39	5.53	0.36
3	0.49	0.65	2.12	6.02	0.37	0.50	0.58	2.63	4.73	0.42
4	0.64	0.74	2.65	5.64	0.46	0.64	0.75	3.21	4.60	0.56
5	0.73	0.76	2.72	5.45	0.48	0.73	0.60	2.34	4.61	0.45
6	0.80	0.90	3.23	5.44	0.58	0.80	0.66	2.99	4.51	0.51
7	0.88	0.90	3.18	5.57	0.56	0.88	0.68	2.68	4.93	0.48
8	0.97	0.96	3.17	5.43	0.62	0.97	0.49	1.81	4.82	0.35
9	1.12	0.93 -	2.84	5.78	0.56	1.11	0.64	2.20	5.15	0.43
10 (High)	1.69	0.94	2.55	6.71	0.48	1.61	0.80	2.51	5.96	0.47
10-1	1.74	0.95	6.63	3.26	1.02	1.61	0.40	2.34	4.68	0.30

- BRT Gu et al.(2020) EW monthly long-short portfolio return of 2.14% per month and SR of 1.73. Chen et al.(2022):2.60; Freyberger et al.(2020): 2.75;
- economic gains to real-time investors from using ML are smaller than prior.

Result-Controlling for Common Risk Factors

					Eq	ual Weigh	ted					
	$^{\mathrm{CA}}$	$_{\mathrm{PM}}$	F	F3	Car	hart	\mathbf{F}	F5	FF5+	-Mom	(Ş
Rank	alpha	t-stat	alpha	t-stat	alpha	t-stat	alpha	t-stat	alpha	t-stat	alpha	t-stat
L(ow)	-0.84	-3.72	-0.76	-4.91	-0.71	-4.65	-0.44	-3.43	-0.43	-3.33	-0.30	-1.78
2	-0.21	-1.00	-0.19	-1.50	-0.17	-1.48	-0.09	-0.74	-0.09	-0.72	0.02	0.17
3	-0.07	-0.34	-0.06	-0.64	-0.06	-0.62	-0.03	-0.36	-0.03	-0.34	0.07	0.70
4	0.05	0.29	0.03	0.50	0.03	0.48	0.02	0.23	0.02	0.24	0.09	1.29
5	0.10	0.58	0.07	1.02	0.07	1.06	0.02	0.32	0.03	0.38	0.09	1.16
6	0.24	1.23	0.18	2.37	0.23	2.80	0.11	1.44	0.15	1.91	0.19	2.03
7	0.23	1.26	0.21	3.05	0.20	2.74	0.22	2.79	0.21	2.65	0.26	3.73
8	0.30	1.59	0.28	3.17	0.29	3.34	0.28	3.23	0.29	3.34	0.35	3.84
9	0.22	1.33	0.22	2.22	0.29	3.08	0.35	3.25	0.39	3.74	0.45	4.87
H(igh)	0.18	0.84	0.25	1.60	0.37	2.64	0.58	3.87	0.65	4.43	0.68	4.67
H-L	1.01	6.30	1.01	6.35	1.08	6.43	1.03	5.42	1.08	5.60	0.98	5.11

• Results remain economically significant after control for risk exposures, but weaker than prior

Result-Different Market Capitalizations

	Ret	urns	an.	CA	PM		Equal We F3	_	hart	FI	75	FF5+	MOM	(Q
Sub-Samples	Avg	t- $stat$	\mathbf{SR}	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$
Large Stocks	0.63	2.93	0.57	0.71	3.17	0.74	3.11	0.77	3.70	0.93	3.39	0.93	3.63	0.90	3.27
Small Stocks	1.13	6.14	1.16	1.18	6.48	1.20	6.21	1.22	5.98	1.23	5.48	1.24	5.35	1.14	5.10
						,	Value We	eight							
	Ret	urns	an.	CA	PM	Fl	F3	Car	hart	FI	75	FF5+	MOM		ર
Sub-Samples	Avg	t- $stat$	\mathbf{SR}	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t-stat	alpha	t- $stat$	alpha	t- $stat$
Large Stocks	0.27	1.23	0.20	0.35	1.37	0.41	1.77	0.52	2.33	0.60	2.39	0.67	2.58	0.66	2.63
Small Stocks	1.16	5.50	1.04	1.18	5.58	1.21	5.29	1.20	5.08	1.27	5.12	1.25	4.87	1.16	4.41

• benefits of machine learning strategies may be even more limited for institutional investors.

Result-Neural Networks

							Equal V	Veight							
	Ret	urns	an.	CA	$_{\mathrm{PM}}$	F	F3	Car	hart	\mathbf{F}	F5	FF5+	MOM	(5
Method	Avg	t- $stat$	SR	alpha	t-stat	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$
NN1	0.66	3.19	0.61	0.70	3.02	0.65	3.26	0.83	5.09	0.73	3.27	0.86	4.45	0.74	3.21
NN2	0.85	4.18	0.92	1.02	5.04	0.93	5.33	0.83	4.93	0.61	4.36	0.56	4.01	0.57	3.56
NN3	0.31	1.76	0.40	0.38	1.99	0.41	2.34	0.37	2.23	0.40	2.83	0.37	2.67	0.37	2.49
NN4	0.41	2.07	0.47	0.37	1.62	0.41	1.98	0.44	2.34	0.62	3.67	0.63	3.79	0.61	3.55
NN5	0.09	0.48	0.10	0.06	0.28	0.10	0.53	0.13	0.74	0.12	0.82	0.14	1.00	0.26	1.74

Made	Ret	urns	CD	CA	PM	F	F 3	Car	hart	F	F5	FF5+	MOM		5
Method	Avg	t-stat	\mathbf{SR}	alpha	t-stat	alpha	t-stat	alpha	t-stat	alpha	t-stat	alpha	t-stat	alpha	$t ext{-}stat$
NN1	0.01	0.03	0.01	0.01	0.03	-0.01	-0.04	0.23	1.18	0.15	0.59	0.32	1.46	0.24	0.99
NN2	0.04	0.15	0.03	0.21	0.79	0.08	0.40	-0.01	-0.04	-0.23	-1.17	-0.27	-1.36	-0.25	-1.13
NN3	-0.01	-0.02	-0.01	0.07	0.28	0.06	0.23	0.16	0.71	-0.10	-0.41	-0.01	-0.06	0.00	-0.01
NN4	0.20	0.60	0.15	0.13	0.30	0.23	0.69	0.22	0.72	0.54	2.02	0.51	1.94	0.54	1.80
NN5	0.20	0.75	0.16	0.11	0.37	0.15	0.56	0.17	0.68	0.12	0.56	0.14	0.67	0.25	1.07

• Real-time performance of ML strategies is more modest than that portrayed by prior. ◆□▶ ◆刪▶ ◆臺▶ ◆臺▶

Result-Past-return Signals

	Ret	urns		$\mathbf{C}\mathbf{A}$	$_{\mathrm{PM}}$	F	F3	Car	hart	F	F5	FF5+	-Mom	(2
Method	Avg	t- $stat$	\mathbf{SR}	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$	alpha	t- $stat$
							Equal	Weight							
BRT	1.38	4.93	1.04	1.63	5.86	1.56	6.90	1.09	6.62	1.09	4.82	0.78	5.83	0.78	3.89
NN1	1.17	6.61	1.33	1.32	7.56	1.32	7.81	0.93	9.33	1.14	5.99	0.87	7.96	0.88	4.83
NN2	1.40	7.46	1.45	1.53	7.81	1.50	8.55	1.10	9.69	1.20	5.24	0.93	6.86	0.96	4.31
NN3	1.30	6.34	1.42	1.42	6.90	1.40	7.62	1.01	8.81	1.16	5.74	0.89	7.60	0.93	4.82
NN4	0.74	5.64	0.81	0.75	5.95	0.76	5.75	0.48	2.53	0.62	2.98	0.43	1.99	0.43	1.74
NN5	0.10	0.50	0.11	-0.02	-0.07	0.09	0.54	0.02	0.14	0.33	2.71	0.27	2.00	0.29	2.18
							Value	Weight							
BRT	0.78	2.41	0.46	1.17	4.00	1.07	4.23	0.63	3.05	0.56	2.37	0.28	1.55	0.28	1.36
NN1	0.87	4.29	0.72	0.98	4.54	1.02	5.08	0.57	3.34	0.90	4.23	0.58	3.14	0.69	3.08
NN2	1.06	4.34	0.78	1.21	4.73	1.23	4.91	0.77	4.49	1.00	3.36	0.68	3.66	0.83	2.81
NN3	1.00	3.79	0.80	1.09	4.22	1.12	4.35	0.63	3.76	0.98	3.32	0.63	3.70	0.78	2.44
NN4	0.38	1.68	0.31	0.39	1.67	0.43	1.97	0.10	0.37	0.39	1.50	0.16	0.58	0.27	0.93
NN5	0.32	1.30	0.26	0.19	0.76	0.32	1.73	0.17	0.88	0.56	3.20	0.43	2.53	0.49	2.17

- the past 120 months, excluding the most recent month
- results based on past-return signals are broadly consistent with those based on fundamental signals.

Result-ML Implementation

	Ret	urns		$^{\mathrm{CA}}$	$_{\mathrm{PM}}$	F	F3	Car	hart	\mathbf{F}	F5	FF5+	-Mom	(Q
Method	Avg	t- $stat$	$_{ m SR}$	alpha	t- $stat$	alpha	t-stat	alpha	t-stat	alpha	t- $stat$	alpha	t-stat	alpha	t- $stat$
							Equal	Weight							
BRT	3.57	8.91	2.35	3.67	9.36	3.69	9.13	3.37	8.61	3.66	7.85	3.43	8.05	3.35	6.71
NN1	3.78	9.74	2.69	3.86	9.87	3.90	10.06	3.60	9.48	3.78	9.34	3.57	9.10	3.67	8.82
NN2	3.87	9.93	2.95	3.94	10.00	3.96	10.08	3.66	9.43	3.78	9.60	3.57	9.36	3.61	9.00
NN3	3.94	10.09	2.84	4.03	10.31	4.05	10.40	3.75	9.57	3.90	9.39	3.69	9.23	3.79	8.98
NN4	2.94	9.59	2.27	3.01	9.78	2.99	9.78	2.78	7.82	2.89	8.98	2.75	7.71	2.71	7.88
NN5	1.70	5.92	1.33	1.62	5.29	1.69	5.44	1.71	5.37	1.77	5.41	1.78	5.37	1.90	5.50
							Value	Weight							
BRT	1.51	4.53	0.71	1.66	5.50	1.70	5.14	1.13	4.08	1.56	3.25	1.15	3.37	1.09	2.20
NN1	1.68	4.84	0.85	1.90	5.56	1.96	6.01	1.30	4.41	1.70	4.49	1.24	4.11	1.33	3.54
NN2	1.87	5.18	0.99	2.04	5.56	2.08	6.13	1.42	4.74	1.74	4.73	1.29	4.34	1.43	3.56
NN3	1.71	4.93	0.90	1.94	5.38	1.95	6.08	1.25	5.45	1.48	3.87	1.00	3.98	1.16	3.13
NN4	1.37	6.32	0.82	1.51	6.23	1.48	7.41	0.98	4.19	1.25	4.71	0.90	3.33	0.89	3.20
NN5	0.69	3.78	0.49	0.76	3.67	0.81	4.22	0.57	2.59	0.81	4.02	0.63	2.93	0.72	3.55

- Green, Hand, and Zhang (2017, GHZ):94 factors; Chen and Zimmermann (2022, CZ):207 factors
- our ML generating strong performance when use published predictors

Result-Short-term Reversal

		GHZ94			GHZ93	
Method	Ret.	t- $stat$	$_{ m SR}$	Ret.	t-stat	\mathbf{SR}
			Equal	Weight		
BRT	3.57	8.91	2.35	3.04	9.11	1.80
NN1	3.78	9.74	2.69	3.22	9.99	2.46
NN2	3.87	9.93	2.95	3.37	10.68	2.30
NN3	3.94	10.09	2.84	3.27	10.57	2.48
NN4	2.94	9.59	2.27	2.30	8.91	1.84
NN5	1.70	5.92	1.33	0.72	3.65	0.62
		TECH120			TECH119	
Method	Ret.	$t ext{-stat}$	$_{ m SR}$	Ret.	t-stat	$_{ m SR}$
			Equal W	Veighted		
$_{ m BRT}$	1.81	6.40	1.77	1.38	4.93	1.04
ATAT4	4.04	F 00	4.00	4.45	0.04	4.00

	Equal Weighted										
$_{ m BRT}$	1.81	6.40	1.77	1.38	4.93	1.04					
NN1	1.61	7.30	1.98	1.17	6.61	1.33					
NN2	1.75	8.82	2.28	1.40	7.46	1.45					
NN3	1.52	7.99	1.94	1.30	6.34	1.42					
NN4	0.98	6.80	1.21	0.74	5.64	0.81					
NN5	0.66	3.73	0.84	0.10	0.50	0.11					

- omission of short-term reversal have a moderate impact on performance
- short-term reversal alone cannot explain the performance difference

Result-After-trading-cost Performance

Methods	a Gross Return	b Turnover (2-Sided)	c Ave. Spread Paid	$d\approx b\times c$ Return Reduction	e=a-d Net Return
			Equal Weight		
BRT	97	14	177	24	73
NN1	67	14	174	25	43
NN2	85	14	187	27	58
NN3	30	14	178	26	4
NN4	38	14	185	24	14
NN5	7	12	177	21	-14

]	Panle A: T	ECH119		1	Panel B: T	ECH120		
Methods	a	b	c	$d \approx b \times c$	e=a-d	a	b	c	d≈ b× c	e=a-d
					Equ	al Weight				
$_{\mathrm{BRT}}$	141	124	190	238	-97	190	144	232	338	-148
NN1	123	153	201	305	-182	167	156	212	330	-163
NN2	146	149	206	309	-163	182	155	219	340	-158
NN3	136	152	210	318	-182	157	156	216	338	-181
NN4	76	153	205	317	-241	104	160	213	340	-236
NN5	9	106	210	221	-212	69	130	213	277	-207

• net performance of ML strategies is positive for fundamental signals and negative for past-return signals.

result-Additional Results

- employs rolling windows instead of recursive windows
 - 0.83% (t = 4.29), SR = 0.77, weaker but robust
- whether our results are robust to alternative training and validation periods.
 - 9 alternative: train:10-18.validation:10-14——robust
- examines different subsets of our universe of fundamental signals
 - 240 Accounting Variables:best performance in 180 or 210.
 - Subsets of Financial Ratio Configurations: weaker than universe
- compare in-sample performance with out-of-sample performance
 - in-sample R2, return >> out-of-sample
- whether performance varies with economic and market conditions.
 - investor sentiment, VIX, market liquidity, business cycle, market state

• Question:

- Short-term Reversal 的一小节是否有必要?
- 240 个会计变量的结果: 0.95 (t= 6.63),SR = 1.02. 是否有必要使用 18000 universe

• Idea:

- 投资者通常在开始投资时已经能够获取的变量包括:宏观+微观:财务报表:市值和股价;宏观经济;行业:股东结构与管理层信息;历史股息和分红记录:信用评级和债务信息。
- 根据因子提出的时间来持续加入因子, 动态的 ML?

Question and idea $\circ \bullet$

Thanks!

Introduction 00000