PROJEKTOWANIE UKŁADÓW MIKROFALOWYCH

Prowadzący: Stanisław Rosłoniec Instytut Radioelektroniki Politechniki Warszawskiej

Zadania projektowe

Zadanie 1

Udowodnić, że powietrzna linia współosiowa o stosunku promieni przewodów zewnętrznego do wewnętrznego równym $\sqrt{e}=1.648721271...$ może przenosić falę elektromagnetyczną o największej mocy. Zadaną wielkością jest maksymalne natężenie pola elektrycznego, przy którym następuje przebicie elektryczne wypełniającego linię powietrza.

Zadanie 2

Dana jest powietrzna linia współosiowa o średnicach przewodów $a=7\,$ mm i $b=3.04\,$ mm, patrz rys.2.1. O ile należy przesunąć przewód wewnętrzny względem przewodu zewnętrznego (c=?) aby jej impedancja charakterystyczna zmieniła się o $5\,\Omega$.

Zadanie 3

Zaprojektować powietrzną linię cylindryczno – płaską o przekroju poprzecznym jak na rys.3.1 zakładając, że jej impedancja charakterystyczna jest równa $Z_0=30\,\Omega$. Odległość pomiędzy równoległymi przewodzącymi płaszczyznami tej linii jest równa $b=9\,$ mm . O ile zmieni się impedancja charakterystyczna tej linii (zaprojektowanej) po wypełnieniu jej bezstratnym dielektrykiem o $\varepsilon_r=2.04\,$ i $\mu_r=1$.

Zadanie 4

Zaprojektować symetryczną linię paskową, rys.4.1, o impedancji charakterystycznej $Z_0 = 50\,\Omega$. Podłoże linii stanowi dielektryk o $\varepsilon_r = 2.56$, $\mu_r = 1$ i grubości b = 2.8 mm. Obliczenia wykonać, przy założeniu, że grubość przewodu wewnętrznego t = 0 mm. Metodą różnic skończonych obliczyć impedancję charakterystyczną tej linii przyjmując, że przewód wewnętrzny t = 0.150 mm.

Zadanie 5

Wykorzystując oprogramowanie napisane do rozwiązania zadania 4 wyznaczyć impedancję charakterystyczną powietrznej linii TEM o przekroju poprzecznym jak na rys.5.1, przyjmując $b=8\,$ mm i $t=4\,$ mm. Wynik otrzymany numerycznie porównać z wynikiem obliczonym według odpowiednich, przybliżonych wzorów wykorzystujących całki eliptyczne.

Zadanie 6

Zaprojektować niesymetryczną linię paskową, rys.6.1, o impedancji charakterystycznej $Z_0=50\,\Omega$. Podłoże linii stanowi dielektryk o $\varepsilon_r=2.56$, $\mu_r=1$ i grubości h=1.4 mm. Obliczenia wykonać, przy założeniu, że grubość przewodu wewnętrznego t=0.0035 mm. Obliczyć długość fali w tak zaprojektowanej linii wiedząc, ze jej częstotliwość $f=1.5\,\mathrm{GHz}$.

Zadanie 7

Zaprojektować powietrzne cylindryczno – płaskie linie sprzężone dla następujących danych: $Z_{0e} = 60\,\Omega$, $Z_{0o} = 40\,\Omega$. Obliczenia wykonać przy założeniu, że odległość pomiędzy dwoma zewnętrznymi płaszczyznami przewodzącymi jest równa $h=8\,\mathrm{mm}$, rys.7.1.

Zadanie 8

Zaprojektować symetryczne linie paskowe sprzężone dla następujących danych o przekroju poprzecznym jak na rys.8.1. Obliczenia wykonać dla $Z_{0e}=60\,\Omega$, $Z_{0o}=40\,\Omega$ przy założeniu, że podłoże linii stanowi dielektryk o $\varepsilon_r=2.56$, $\mu_r=1$ i grubości b=2.8 mm. W trakcie obliczeń przyjąć, że grubość przewodów wewnętrznych $t\approx 0$ mm.

Zadanie 9

Zaprojektować tłumik rezystywny typu T o tłumieniu $L=10\,\mathrm{dB}$, który włączony pomiędzy linie długie o impedancjach charakterystycznych $Z_{01}=50\,\Omega$ i $Z_{02}=60\,\Omega$ powinien zapewniać obustronne dopasowanie w nieskończenie szerokim paśmie częstotliwości. Zaprojektować równoważną wersję tego tłumika typu Π .

Zadanie 10

Zaprojektować schodkowy, ćwierćfalowy transformator impedancji o charakterystyce równomiernie falistej (Czebyszewa) dopasowujący dwie linie współosiowe o impedancjach charakterystycznych $Z_{01}=30\,\Omega$ i $Z_{02}=75\,\Omega$. Transformator ten powinien zapewniać w paśmie $2\div 3\,\mathrm{GHz}$ dopasowanie z *WFS* ≤ 1.12 . Projekt transformatora wykonać przy założeniu, że przewody zewnętrzne obu dopasowywanych linii mają średnicę $a=7\,\mathrm{mm}$. Zaprojektować równoważny wariant tego transformatora w postaci transformatora II klasy, tj. transformatora złożonego z niewspółmiernych odcinków linii o impedancjach charakterystycznych $Z_{01}=30\,\Omega$ i $Z_{02}=75\,\Omega$.

Zadanie 11

Zaprojektować jednosekcyjny, zbliżeniowy sprzęgacz kierunkowy o sprzężeniu $C=13\,\mathrm{dB}$ przy częstotliwości $f=1.34\,\mathrm{GHz}$. Sprzęgacz zrealizować z odcinków symetrycznych linii paskowych (pojedynczych i sprzężonych) przyjmując, że podłoże linii stanowi dielektryk o $\varepsilon_r=2.56$, $\mu_r=1$ i grubości b=2.8 mm. Projekt wykonać przy założeniu, że grubość przewodów wewnętrznych jest pomijalnie mała z grubością dielektryka b=2.8 mm a impedancja charakterystyczna linii obciążających sprzęgacz jest równa $Z_0=50\,\Omega$.

Zadanie 12

Zaprojektować dwugałęziowy sprzęgacz kierunkowy zapewniający przy częstotliwości $f=1.34\,\mathrm{GHz}$ sprzężenie $C=3.9\,\mathrm{dB}$. Sprzęgacz zrealizować z odcinków niesymetrycznej linii paskowej przyjmując, że podłoże linii stanowi dielektryk o $\varepsilon_r=4.34$, $\mu_r=1$ i grubości $h=1.4\,\mathrm{mm}$. Projekt wykonać przy założeniu, że grubość przewodu wewnętrznego $t=0.035\,\mathrm{mm}$ a impedancja charakterystyczna linii obciążających sprzęgacz jest równa $Z_0=50\,\Omega$. Wyznaczyć częstotliwościową charakterystykę sprzężenia $C(f)[\mathrm{dB}]$ w paśmie od $f=1.75\,\mathrm{GHz}$ do $f=2.25\,\mathrm{GHz}$.

Zadanie 13

Zaprojektować czteroramienny, pierścieniowy sprzęgacz kierunkowy zapewniający przy częstotliwości $f=1.35\,\mathrm{GHz}$ sprzężenie $C=3.01\,\mathrm{dB}$. Sprzęgacz zrealizować z odcinków niesymetrycznej linii paskowej przyjmując, że podłoże linii stanowi dielektryk o $\varepsilon_r=4.34$, $\mu_r=1$ i grubości h=1.4 mm. Projekt wykonać przy założeniu, że grubość przewodu wewnętrznego t=0.035 mm a impedancja charakterystyczna linii obciążających sprzęgacz jest równa $Z_0=50\,\Omega$. Wyznaczyć częstotliwościową charakterystykę sprzężenia $C(f)[\mathrm{dB}]$ w paśmie od $f=1.25\,\mathrm{GHz}$ do $f=1.45\,\mathrm{GHz}$.

Zadanie 14

Zaprojektować dwusekcyjny, trójwrotowy dzielnik sygnału mikrofalowego obciążony od strony wejścia rezystancją $Z_{01}=35\,\Omega$. Wrota wyjściowe tego dzielnika są obciążone rezystancjami $Z_{02}=Z_{03}=50\,\Omega$, odpowiednio. Projekt wykonać, przy założeniu, że środkowa częstotliwość pasma pracy $f_0=1.35\,\mathrm{GHz}$. Wyznaczyć częstotliwościowe charakterystyki dopasowania we wrotach wejściowych *WFS* (f) i izolacji (separacji) pomiędzy wrotami $I(f)[\mathrm{dB}]$ w paśmie od $f_1=1.25\,\mathrm{GHz}$ do $f_2=1.45\,\mathrm{GHz}$.

Zadanie 15

Zaprojektować dzielnik sygnału mikrofalowego typu Gysel'a przyjmując $f_0=1.35\,\mathrm{GHz}\,\mathrm{i}$ $Z_0=50\,\Omega$. Projekt dzielnika wykonać przy założeniu, że jest on realizowany z odcinków powietrznej, symetrycznej linii paskowej o grubości $b=8\,\mathrm{mm}$. Grubość przewody wewnętrznego $t=0.8\,\mathrm{mm}$. Obliczyć charakterystykę sprzężenia $C(f)[\mathrm{dB}]$ w paśmie od $f_1=1.25\,\mathrm{GHz}$ do $f_2=1.45\,\mathrm{GHz}$.

Zadanie 16

Zaprojektować filtr dolnoprzepustowy (FDP) o charakterystyce równomiernie falistej, rys. 16.1, dla następujących danych: $Z_0 = 50\,\Omega$, $f_1 = 10^9\,\mathrm{Hz}$, $L_r = 0.2\,\mathrm{dB}$, $f_a = 1.43\cdot10^9\,\mathrm{Hz}$ i $L_a = 30\,\mathrm{dB}$. Filtr zrealizować z odcinków linii współosiowej o średnicy przewodu zewnętrznego $D = 7\,\mathrm{mm}$, rys.16.2. Obliczenia wykonać przy założeniu, że impedancje charakterystyczne niskoomowych i wysokoomowych sekcji filtru są równe odpowiednio $Z_1 = 10\,\Omega$ i $Z_h = 120\,\Omega$. Ponadto założyć, że niskoomowe sekcje filtru są odcinkami linii współosiowej wypełnionej dielektrykiem o $\varepsilon_r = 2.05\,\mathrm{i}\,\mu_r = 1$.

Zadanie 17

Zaprojektować czebyszewowski filtr pasmowo przepustowy (FPP, rys. 17.1) o strukturze paskowej jak na rys.17.2 dla następujących danych: $Z_0 = 50\,\Omega$, $f_0 = 2.8\cdot 10^9\,\mathrm{Hz}$, $w = 0.1\,L_r = 0.2\,\mathrm{dB}$, $f_a = 3.2\cdot 10^9\,\mathrm{Hz}$ i $L_a = 30\,\mathrm{dB}$. Filtr zrealizować z odcinków symetrycznej linii paskowej opisanej w zadaniu 4.

Literatura

- 1. Rosłoniec S., Algorytmy projektowania wybranych liniowych układów mikrofalowych. Wydawnictwa Komunikacji i Łączności, Warszawa 1987
- 2. Rosłoniec S., Algorithms for computer aided design of linear microwave circuits. Artech House Inc., Boston (MA), 1990. Książka dostępna w bibliotece Instytutu Radioelektroniki Politechniki Warszawskiej
- 3. Rosłoniec S., Liniowe obwody mikrofalowe metody analizy i syntezy. Wydawnictwa Komunikacji i Łączności, Warszawa 1999

Rys.2.1

Rys.3.1

Rys.4.1

Rys.5.1

Rys.6.1

Rys.7.1

Rys.8.1

Rys.16.1

Rys.16.2

Rys.17.1

Rys.17.2