Assignment 5 Analysis I Report

Alifian Mahardhika Maulana

August 3, 2018

Problem 1. Prove that every sequentially compact subset of a metric space is bounded and closed.

Answer: Let X be a metric space and $K \subset X$ be compact. If x_n is a convergent sequence in K with limit $x \in X$, then every subsequence of x_n converges to x. Since K is compact, some subsequence of x_n converges to a limit in K, so $x \in K$ and K is closed.

We use contradiction to prove bounded. Assume K is closed and bounded. Take sequence $X_n \subset \mathbb{R}^n$ where $X_n = (x_1^n, \dots, x_N^n)$. Since X_n is bounded, each of the sequences $(x_j^n), i \leq j \leq N$, is bounded. Since every bounded sequence in \mathbb{R} has a converging subsequence in K, then setting $X(x_1, \dots, x_N)$, we have that $x_{n_k} \to x \in \mathbb{R}^N$. Since K is closed, $X \in K$ and K is compact.

Problem 2. Let X be a Banach space and let f, g be linear operators on X, $f: X \to X$ is compact and $g: X \to X$ is continuous. Prove that the composition maps $g \circ f$ and $f \circ g$ are compact.

Answer:

Proposition 1. Let $(X, d_x), (Y, d_y)$: metric space $f: X \to Y$ continuous, then $M \subset X$: $compact \Rightarrow f(M)$ is compact in Y

Definition 1. X, Y: Banach space, $f: M \subset X \to Y$. f is called a compact mapping if f is continuous and $\forall B \subset M$ bounded, f(B) is relatively compact

- 1. $f \circ g$ is compact. Since f is compact, by definition (1), f(x) is continuous and by proposition (1), a continuous function map compact sets into compact sets, therefore $f \circ g$ is compact.
- 2. $g \circ f$ is compact. Since g is continuous, by proposition (1), a continuous function map compact sets into compact sets, moreover f is compact, hence subset of f is also compact, therefore $g \circ f$ is compact.

Problem 3. Let X = C[0,1] and $||u|| := \max_{0 \le x \le 1} |u(x)|$. For given $\alpha \in \mathbb{R}$ and $f \in X$, consider the nonlinear integral equation:

$$u(x) = \alpha \int_0^1 \sin u(x) dx + f(x) \quad (*)$$

- 1. Show that if $|\alpha| < 1$, (*) has a unique solution $u \in X$. (Hint: Contraction mapping principle)
- 2. (extra) Consider the case $|\alpha| \geq 1$. Does (*) has a solution $u \in X$?

Answer:

1. Let $g(u(x)) = \alpha \int_0^1 \sin u(x) dx + f(x)$, and $g(v(x)) = \alpha \int_0^1 \sin v(x) dx + f(x)$, taking distance of g(u(x)) and g(v(x)), we get

$$d(g(u(x)) - g(v(x))) = \left| \alpha \int_0^1 \sin u(x) dx + f(x) - \alpha \int_0^1 \sin v(x) dx - f(x) \right|$$

$$= \left| \alpha \int_0^1 (\sin u(x) - \sin v(x)) dx \right|$$
(1)

by triangle inequality,

$$d(g(u(x)) - g(v(x))) \le |\alpha| \left| \int_0^1 (\sin u(x) - \sin v(x)) dx \right| \tag{2}$$

Since X = C[0,1] and $||u|| := \max_{0 \le x \le 1} |u(x)|$, we can rewrite (2) as follows:

$$d(g(u(x)) - g(v(x))) \le |\alpha| \max_{0 \le x \le 1} \left| \int_0^1 (\sin u(x) - \sin v(x)) dx \right|$$

$$\le |\alpha| \left| |u(x) - v(x)| \right|$$

$$(3)$$

Therefore, (*) satisfied contraction mapping principle, so that u(x) has unique solution $u \in X$ if $|\alpha| < 1$.

2. Assume u(x) and v(x) are fixed point, then it should satisfies

$$0 \le d(u(x) - v(x)) = d(g(u(x)) - g(v(x))) < \alpha d(g(u(x)) - g(v(x))), \quad \alpha \in [0, 1]$$
 (4)

if we choose $|\alpha| \geq 1$, then u(x) doesn't satisfied (4), therefore u(x) doesn't have an unique solution $u \in X$.