

MEX 模板参考

目录

第一部分 $DT_{\mathbf{E}}X$ 语法	1
第一章 基本语法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.1 章节 ·····	3
1.2 交叉引用	3
1.3 无序列表	3
1.4 有序列表	3
1.5 脚注 ·····	4
1.6 图片	4
1.7 公式	4
1.8 代码	5
1.9 表格 · · · · · · · · · · · · · · · · · ·	5
1.10 文献引用	6
第二章 高级语法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.1 框内文字	7
2.2 背景颜色文字	7
2.3 伪代码	7
2.4 合并单元格	8
2.5 并排子图	9
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11

第一部分

MEX 语法

第一章 基本语法

1.1 章节

```
1 \part{部分标题}
2 \chapter{章标题}
3 \section{节标题}
4 \subsection{小节标题}
5 \subsubsection{小小节标题}
```

1.2 交叉引用

引用公式1.7.1和公式所在的页号4。 引用图片1.6.1和图片所在的页号4。

```
1 引用公式\ref{eq:test}和公式所在的页号\pageref{eq:test}。
```

3 |引用图片\ref{fig:test}和图片所在的页号\pageref{fig:test}。

1.3 无序列表

- + 并列元素1
- + 并列元素 2

```
1 \begin{enumerate}
```

2 **\item[+]** 并列元素**1**

3 **\item[+]** 并列元素2

4 \end{enumerate}

1.4 有序列表

- 1. 有序元素 1
- 2. 有序元素 2

```
1 \begin{enumerate}
```

2 **\item** 有序元素1

3 \ **item** 有序元素2

4 \end{enumerate}

1.5 脚注

脚注1的作用是解释说明。

脚注\footnote{英文: footnote}的作用是解释说明。

1.6 图片

如图1.6.1所示。

图 1.6.1 图片文字说明

1 如图\ref{fig:test}所示。

2

3 \begin{figure}\label{fig:test}

4 \centering

5 \includegraphics[width=0.8\textwidth]{figures/test}

6 \end{figure}

1.7 公式

如公式1.7.1所示。

$$a^2 + b^2 = c^2 (1.7.1)$$

¹英文: footnote

```
如公式\ref{eq:test}所示。%注意这里没有空行
  \begin{equation}\label{eq:test}
2
     a^2+b^2=c^2
3
  \end{equation}
```

1.8 代码

```
行内代码: print函数。
代码块:
```

```
int main() {
1
2
      printf("Hello World!\n");
3
      return 0;
  }
4
```

1.9 表格

如表格1.9.1所示。

表 1.9.1 表头

小写字母	大写字母		
a	A		
b	В		

```
如表格\ref{tab:test}所示。
1
2
   \begin{table}[H]\small
3
4
      \centering
      \caption{表头} \label{tab:test}
5
      \begin{tabular*}{0.5\textwidth}{@{\extracolsep{\fill}}cc}
6
7
         \toprule
8
         小写字母
                  & 大写字母
                               \\\midrule
9
                            11
         a
                  &
10
                            11
         b
                  &
                      В
11
         \bottomrule
```

- 12 \end{tabular*}
- 13 \end{table}

1.10 文献引用

本文主要参考的文献有《一份(不太)简短的 $E\!Y$ EX 介绍》 $^{[1]}$,多个参考文献之间用英文逗号隔开。

I 本文主要参考的文献有《一份(不太)简短的\$\LaTeX\$介绍》\cite{刘海洋2013 LATEX},多个参考文献之间用英文逗号隔开。

第二章 高级语法

2.1 框内文字

框内文字

```
1 \begin{framed}
```

- 2 框内文字
- 3 \end{framed}

2.2 背景颜色文字

背景颜色文字

```
1 \begin{shaded}
```

- 2 背景颜色文字
- 3 \end{shaded}

2.3 伪代码

Algorithm 1 Prim 算法

6: $U \leftarrow U \cup \{v\}$ \triangleright 顶点归入树

```
\begin{algorithm}
1
2
     \caption{Prim算法}
     \begin{algorithmic}[1]
3
        \State T = $\varnothing$ \Comment{初始化空树}
4
        \State U = {w} \Comment{添加任意一个顶点w}
5
6
        \While{(V - U) != $\varnothing$}
        \State 设(u,v)是使得$u\in U$与$v\in V-U$, 且权值最小的边
7
        \State $T \gets T \cup \{(u,v)\}$ \Comment{边归入树}
8
```

```
9 \State $U \gets U \cup \{v\}$ \Comment{顶点归入树}
10 \EndWhile
11 \end{algorithmic}
12 \end{algorithm}
```

2.4 合并单元格

表格2.4.1展示了合并单元格的样式。

算法种类	时间复杂度 最好情况 平均情况 最坏情况		空间复杂度	是否稳定	
直接插入排序	O(n)	$O(n^2)$	$O(n^2)$	O(1)	是
冒泡排序	O(n)	$O(n^2)$	$O(n^2)$	O(1)	是
简单选择排序	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	否
希尔排序				O(1)	否
快速排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n^2)$	$O(\log_2 n)$	否
堆排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O(1)	否
2 路归并排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O(n)	是
基数排序	O(d(n+r))	O(d(n+r))	O(d(n+r))	O(r)	是

表 2.4.1 排序算法

```
1
   表格\ref{tab:merge}展示了合并单元格的样式。
2
3
  \begin{table}[htbp]
4
     \centering
5
     \begin{tabular}{|c|c|c|c|c|}
         \hline
6
7
         \multirow{2}*{算法种类} & \multicolumn{3}{c|}{时间复杂度} & \
               multirow{2}*{空间复杂度} & \multirow{2}*{是否稳定} \\
8
         \cline{2-4}
        ~ & 最好情况 & 平均情况 & 最坏情况 & ~ & ~ \\
9
10
         \hline
         直接插入排序 & $0(n)$ & $0(n^2)$ & $0(n^2)$ & $0(1)$ & 是 \\\
11
               hline
         冒泡排序 & $0(n)$ & $0(n^2)$ & $0(n^2)$ & $0(1)$ & 是 \\\
12
               hline
         简单选择排序 & $0(n^2)$ & $0(n^2)$ & $0(n^2)$ & $0(1)$ & 否
13
```

```
\\\hline
14
         希尔排序 & \multicolumn{3}{c|}{} & $O(1)$ & 否 \\\hline
15
         快速排序 & $0(n\log_2n)$ & $0(n\log_2n)$ & $0(n^2)$ & $0(\log
                _2n)$ & 否 \\\hline
16
         堆排序 & $0(n\log_2n)$ & $0(n\log_2n)$ & $0(n\log_2n)$ & $0
                (1)$ & 否 \\hline
17
         2路归并排序 & $0(n\log_2n)$ & $0(n\log_2n)$ & $0(n\log_2n)$ &
                 $0(n)$ & 是 \\\hline
18
         基数排序 & $0(d(n+r))$ & $0(d(n+r))$ & $0(d(n+r))$ & $0(r)$ &
                 是 \\\hline
19
      \end{tabular}
20
      \caption{排序算法}
21
      \label{tab:merge}
22
   \end{table}
```

2.5 并排子图

b 子图 2

\begin{figure}[htbp] 1 2 \centering 3 \begin{subfigure}[t]{0.4\textwidth} 4 \centering \includegraphics[width=0.9\textwidth]{figures/test} 5 \caption{子图1} 6 7 \end{subfigure} 8 \qquad 9 \begin{subfigure}[t]{0.4\textwidth}

```
10 \centering
11 \includegraphics[width=0.9\textwidth]{figures/test}
12 \caption{子图2}
13 \end{subfigure}
14 \end{figure}
```

参考文献

[1] 刘海洋. LATEX 入门[M]. LATEX 入门, 2013.