

General information

Designation

Dalbergia latifolia

Typical uses

Veneer; decorative plywood; speciality items: cutlery handles; brush backs; billiard cue butts; fancy turnery articles, woodwind instruments, boatbuilding, agricultural implements.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%
Composition detail (polymers and	natural materials)	
Composition detail (polymers and Wood	natural materials) 100	%
	<u>'</u>	%

Physical properties

Price per unit volume

Density	840	_	1.02e3	kg/m^3
Deficity	0-10		1.0200	Kg/III 0

* 5.63e3

USD/m^3

1.1e4

Mechanical properties

wechanical properties				
Young's modulus	* 4.82	-	5.38	GPa
Yield strength (elastic limit)	* 3.12	-	3.84	MPa
Tensile strength	* 5.2	-	6.4	MPa
Elongation	* 0.32	-	0.39	% strain
Compressive strength	* 12.4	-	15.2	MPa
Flexural modulus	4.38	-	4.89	GPa
Flexural strength (modulus of rupture)	* 5.2	-	6.4	MPa
Shear modulus	* 0.498	-	0.685	GPa
Shear strength	* 39	-	47.7	MPa
Rolling shear strength	* 1.44	-	4.33	MPa
Bulk modulus	* 2.39	-	2.68	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.7			
Hardness - Vickers	12.7	-	15.5	HV
Hardness - Brinell	* 36.3	-	44.3	НВ

Rosewood (dalbergia latifolia) (t)

EDUPACK					
Hardness - Janka	1:	2.7	-	15.5	kN
Fatigue strength at 10^7 cycles	* 1.	.56	-	1.92	MPa
Mechanical loss coefficient (tan delta)	* 0.	.011	-	0.014	
Differential shrinkage (radial)	0.	.15	-	0.18	%
Differential shrinkage (tangential)	0.	.23	-	0.26	%
Radial shrinkage (green to oven-dry)	2.	.4	-	3	%
Tangential shrinkage (green to oven-dry)	5.	.2	-	6.4	%
Volumetric shrinkage (green to oven-dry)	* 1	1	-	18	%
Work to maximum strength	* 8.	.1	-	9.9	kJ/m^3
Impact & fracture properties					
Fracture toughness	* 0.	.807	-	0.986	MPa.m^0.5
Thermal properties					
Glass temperature	7	7	-	102	$\mathcal C$
Maximum service temperature		20	-	140	$\mathcal C$
Minimum service temperature	* -7		-	-23	$\mathcal C$
Thermal conductivity	0.	.191	-	0.234	W/m.℃
Specific heat capacity	1.	.66e3	-	1.71e3	J/kg.℃
Thermal expansion coefficient	* 3	7.5	-	49.2	µstrain/℃
Electrical properties					
Electrical resistivity	* 2.	.1e14	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	* 4.	.97	-	6.08	
Dissipation factor (dielectric loss tangent)	* 0.	.073	-	0.09	
Dielectric strength (dielectric breakdown)	* 1		-	2	MV/m
Magnetic properties					
Magnetic type	N	on-ma	gnet	ic	
Optical properties					
Transparency	U	paque			
Critical materials risk					
Contains >5wt% critical elements?	N	No			
Durability					
Water (fresh)	Li	imited	use		
Water (salt)	Li	imited	use		
Weak acids		imited			
Strong acids		nacce		е	
Weak alkalis		ccepta			
	1	Λυσεμιανίε			

Rosewood (dalbergia latifolia) (t)

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.616	-	0.681	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0462	-	0.0511	kg/kg
Fine machining energy (per unit wt removed)	* 1.88	-	2.08	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.141	-	0.156	kg/kg
Grinding energy (per unit wt removed)	* 3.29	-	3.64	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.247	-	0.273	kg/kg

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	√
Combust for energy recovery	√
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	