Fraunhofer Center for Sustainable Energy Systems

An approximate probabilistic approach for event-based disaggregation

Michael Zeifman

1st International Workshop on Non-Intrusive Load Monitoring Pittsburgh 7 May 2012

Fraunhofer CSE

- ☐ CSE = Center for Sustainable Energy Systems
- ☐ Located in Cambridge, MA (moving soon to Innovation District in Boston)
- ☐ One of seven Fraunhofer USA centers

Prospective CSE building in Boston

NILM at CSE

- ☐ Interdisciplinary research team (2 behavioral scientists, DAQ engineer, modeling and simulation scientist, interns)
- ☐ High-frequency and low-frequency approaches
- ☐ High-Frequency: combination of several classifiers, need for special hardware (Custom-built DAQ system, National Instruments USB-6251)
- □ Low-Frequency: approximate probabilistic approach, OTS sensor (Home Energy Display, e.g., TED The Energy Detective)

Custom-built DAQ for high frequency sampling

NILM for HED: User Requirements

☐ Features: compatible with 1 Hz, real power only
□ Accuracy: 80-90%
□ No training
☐ Real-time capabilities
☐ Scalability (up to 20-30 appliances)
☐ Various appliance types

NILM: Types of Appliances

□ Permanent ☐ On/off ■ Multi State □ Variable

NILM Classic

Hart, 1992 (MIT method): What is the problem?

Proposed Method: Features

■ Power-related

- ☐ Time-related
 - ➤ Time-on, time-off statistics
 - > Can be conditional on time of day

Proposed Method: Key Idea

- ☐ Order appliances by power draw
- ☐ Consider appliance tuplets, e.g., i ±1
- ☐ Track tuplets separately in time
- \Box Tuplet size 3, or even 2 (triplet split in two)
- ☐ Foreign and missing data

Transitions within a Tuplet

Tuplet size: 2

System states

Negative power change, system transitions

STATE	Appliance i	Appliance (i + 1)	TRANSITION BETWEEN	UNDERLYING EVENT(S)
1	OFF	OFF	STATES	
2	On	Off	1 1	In fourier datum
3	Off	On	1,1	Is foreign datum Was missing datum from state 2 and is foreign datum
_4	On	On	1,2	Was missing datum from state 2 and is foreign datum
			1,3	Was missing datum from state 3 and is foreign datum
			1,4	Were missing data from states 2 and 3 and is foreign datum
			2,1	Appliance i is turning off but appliance $(i + 1)$ has not turned on
			2,2	Is foreign datum
			2,3	Was missing datum from state 4 and is 4,3 transition
		2,4	Was missing datum from state 4 and is external datum	
		3,1	Appliance $(i + 1)$ is turning off but appliance i has not turned on	
			-,-	
			3,2	Was missing datum from state 4 and is 4,2 transition
		3,3	Is foreign datum	
□ Example	e of transitio	n probability:	3,4	Was missing datum from state 4 and is foreign datum
		4,1	Was missing datum from either state 2 or 3 and is 2,1 or 3,1	
$P_{4,2} \propto p_{i+1}(\Delta P) f_{i+1}(\tau_{i+1,on}) [1 - F_i(\tau_{i,on})] $			transition	
		4,2	Appliance $(i + 1)$ is turning off but appliance i has not turned off	
			4,3	Appliance i is turning off but appliance $(i + 1)$ has not turned off
			4.4	To Constant determ
			4,4	Is foreign datum

Modified Viterbi Algorithm

$$\{\hat{s}_t\} = \arg\max\{\{s_t\} | \{\omega_t\}\}\}$$

 $\{\hat{S}_t\}$ - maximum likelihood estimation of state sequence

 $\{s_t\}$ - state sequence

 $\{w_t\}$ - transition observations' sequence

- ☐ Developed for 1-st order Hidden Markov models
- ☐ Our model can be of higher order
- ☐ Keep in memory previous state for each appliance in tuplet

Estimation of Power and Time Distributions

- ☐ Historical data (~ two weeks)
- ☐ Clustering negative power changes (ISODATA)
- ☐ Matching negative and positive changes, power surges
- ☐ Estimation of time-on and time-off durations
- ☐ Statistical modeling of all distributions

High-Level Block Scheme

Simulation Example

- ☐ 5 on-off overlapping appliances
- ☐ Normal (Gaussian) distributions of power changes
- ☐ Uniform distributions of time-on and time-off

	SIMULATED APPLIANCE	MEAN M, POSITIVE CHANGE, W	MEAN M, NEGATIVE CHANGE (ABSOLUTE VALUE), W	STANDARD DEVIATION Σ, W
1		110	105	10
2		130	135	13.5
3		150	160	10
4		180	190	13.5
5		210	210	10

SIMULATED APPLIANCE	TIME-ON, MINIMUM, S	TIME-ON, MAXIMUM, S	TIME-OFF, MINIMUM, S	TIME-OFF, MAXIMUM, S
1	30	100	400	600
2	70	150	500	600
3	100	180	350	500
4	150	270	200	400
5	40	140	300	700

Simulated Time Series

Simulated Time Series: Disaggregation Results

Indicator = $\pm 2 \rightarrow$ Appliance 2 is on(off)

Simulated Time Series

☐ Accuracy metric: F-measure

$$F = 2\frac{\frac{TP}{TP + FP} \cdot \frac{TP}{TP + FN}}{\frac{TP}{TP + FP} + \frac{TP}{TP + FN}}$$

	SIMULATED APPLIANCE	BAYESIAN CLASSIFIER	OUR ALGORITHM, NO TIME-OFF STATISTICS USED	OUR ALGORITHM
_	1	0.859	0.910	0.985
	2	0.666	0.835	0.865
	3	0.749	0.850	0.925
	4	0.743	0.865	0.970
	5	0.859	0.950	0.965

Real Household Data: Appliance Characteristics

- ☐ Kolter and Johnson (2011) collected data in six households in Massachusetts
- ☐ Submetered on individual circuit level
- ☐ Selected 1 household with 9 "good" circuits recorded over 26 days

CIRCUIT (APPLIANC E)	POSITIVE, MEAN, W	POSITIVE, STANDARD DEVIATIO N, W	NEGATIVE, MEAN, W	NEGATIVE, STANDARD DEVIATION, W
1	204.3	3.9	179.5	2.4
Refrigerator				
2 Dishwasher	217.3	20.6	212.1	19.7
3 Kitchen outlet 1	1084.8	14.5	1074.6	15.1
4 Microwave	1548.5	52.4	1504.9	43.9
5 Kitchen outlet 2	1543.5	21.1	1533.5	14.5
6 Bathroom GFI	1613.2	18.6	1607.3	18.4
7 Oven 1	1651.4	22.4	1640.7	21.1
8 Oven 2	2474.9	29.5	2448.4	24.2
9 Kitchen outlet 3	2767.9	51.3	2706.3	33.1

W → V·A (apparent power)

Real Household Data: Disaggregation Results

APPLIANCE FROM TABLE VI	BAYESIAN CLASSIFIER	OUR ALGORITHM
1 Refrigerator	0.859	0.831
2 Dishwasher	0.881	0.846
3 Kitchen outlet 1	0.989	0.936
4 Microwave	0.775	0.899
5 Kitchen outlet 2	0.409	0.840
6 Bathroom GFI	0.753	0.927
7 Oven 1	0.800	0.908
8 Oven 2	1.0	0.962
9 Kitchen outlet 3	1.0	0.971

Real Household Data: Disaggregation Results

1. Refrigerator

5. Kitchen outlet 2

Needs Improvement

☐ Fully develop triplet
☐ Better pre-processing (filtering, incremental power changes)
☐ Better change detection (change-point problem)
■ More advanced clustering procedure
☐ Matching between found clusters and real appliances (use of
estimated time-on and time-off features)

Conclusions

Use Requirements	Our Method
☐ Features: compatible with 1 Hz, real power only	□ Yes
☐ Accuracy: 80-90%	☐ Accuracy: 80-90%
□ No training	☐ Learning from historical data. Matching with real appliances forthcoming
☐ Real-time capabilities	☐ Yes
☐ Scalability (up to 20-30 appliances)	☐ Yes. Complexity linear with number of appliances
☐ Various appliance types	☐ Not yet, but in the process

