ЛАБОРАТОРНАЯ РАБОТА 52

ОПРЕДЕЛЕНИЕ ПОТЕНЦИАЛОВ ИОНИЗАЦИИ И ВОЗБУЖДЕНИЯ АТОМОВ ГАЗА

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата

<u>Цель работы</u>: ознакомиться с работой газонаполненной электронной лампы (тиратрона), определить потенциалы возбуждения и ионизации газа.

Описание установки

На сетку тиратрона подаётся положительное относительно катода напряжение $U_{\rm c}$, регулируемое потенциометром R, и измеряемое вольтметром V. Сеточный ток $I_{\rm c}$, измеряется миллиамперметром mA. Такой ток резко возрастает за счет процесса ионизации — выбивания электронов из атомов газа электронами, вылетающими из катода и ускоренными напряжением $U_{\rm c}$.

На коллектор, который в обычной лампе-триоде является анодом, подаётся отрицательное напряжение, предотвращающее попадание на него электронов. Слабый ток коллектора $I_{\rm K}$ возникает только за счет фотоэффекта при свечении газа в лампе. Ввиду малости коллекторный ток $I_{\rm K}$ измеряется специальным чувствительным измерительным прибором ИП, показания которого видны в окошке. Тумблер S включает и выключает ИП.

Порядок выполнения работы

- 1. Разобраться с назначением и расположением элементов схемы установки и определить цену деления вольтметра, измеряющего напряжение $U_{\rm c}$, и миллиамперметра, измеряющего ток $I_{\rm c}$.
- 2. Не занося данные в таблицу, провести предварительный эксперимент. Регулятором R установить напряжение $U_{\rm c}=0$. Включить измерительный прибор ИП, и медленно и плавно увеличивая от нуля напряжение $U_{\rm c}$, заметить такое значение $U_{\rm c}=U_{\rm B}$, при котором появится ток в коллекторе, и такое значение $U_{\rm c}=U_i$, при котором начнется резкое возрастание сеточного тока.

<u>Внимание!</u> При достижении коллекторным током $I_{\rm K}$ предельного значения, указанного на установке, немедленно отключить измерительный прибор ИП!

3. Начать измерения заново, изменяя напряжение $U_{\rm c}$ от 0 до $U_{\rm B}$ через интервалы 2 В, а затем через 0.2-0.3 В от $U_{\rm B}$ до предела. При этом измерять значения тока коллектора $I_{\rm K}$ и тока сетки $I_{\rm c}$. Данные занести в таблицу 1. Во избежание выхода из строя прибора ИП отключить его (замыкая ключ S на схеме), как только показание прибора ИП дойдет до предельного, указанного на установке значения!

$U_{\rm c}$, B													
$I_{\scriptscriptstyle m K}$, дел													
$I_{\rm c}$, mA													
$\phi_{\rm B} = \dots$	$ \phi_{\rm B} = \dots $ B; $ \phi_i = \dots $ B;				$\omega = \dots c^{-1}; \qquad \lambda = \dots M$								

- 4. По полученным данным построить графики зависимостей $I_{\kappa} = f\left(U_{\rm c}\right)$ и $I_{\rm c} = f\left(U_{\rm c}\right)$, примерный вид которых изображен на рисунке:
- 5. По этим графикам определить величину потенциала возбуждения $\phi_{\rm B}$ (это значение $U_{\rm C}=U_{\rm B}$, при котором возбужденные атомы газа начинают испускать фотоны, создающие фототок в приборе ИП) и величину по-

тенциала ионизации ϕ_i (это значение $U_c = U_i$, при котором число выбитых из атомов газа электронов лавинообразно возрастает, резко увеличивая сеточный ток). Результаты занести в таблицу.

6. По формулам
$$\omega = \frac{e\phi_{\rm B}}{\hbar}$$
, $\lambda = \frac{2\pi c}{\omega}$.

вычислить частоту и длину волны излучения возбужденных атомов газа.

Зависимость
$$I_{\kappa} = f(U_{c})$$

Зависимость
$$I_{\rm c} = f(U_{\rm c})$$

7. По прилагаемой таблице определить, какой газ находится в лампе.

Газ		Не						
$\varphi_{\scriptscriptstyle B}, B$	11,2	20,9	11,6	10,0	8,5	16,6	2,1	4,9
φ_i , B	15,6	24,6	15,8	14,0	12,1	21,6	5,1	10,4

Контрольные вопросы к лабораторной работе № 52

- 1. Какой процесс называется возбуждением атома? Чем возбужденный атом отличается от невозбужденного? Что происходит с возбужденными атомами?
- 2. Опишите процесс ионизации атома газа. Каким образом этот процесс происходит в данной работе?
- 3. Какие энергетические уровни в атоме называются основными? Возбужденными?
- 4. Что называется первым потенциалом возбуждения и потенциалом ионизации атома?
- 5. Используя схему установки, объясните, почему покинувшие катод электроны создают ток сетки и не создают ток коллектора?
- 6. В чем состоит явление фотоэффекта, и как оно используется в работе для определения потенциала возбуждения?
- 7. Что создаёт ток коллектора и почему по графику этого тока можно определить величину потенциала возбуждения?
- 8. Как по графику зависимости тока коллектора определить длину волны излучения светящегося газа?
- 9. В чем заключается закон Богуславского-Лэнгмюра?
- 10. По каким причинам ток сетки резко возрастает, когда напряжение между сеткой и катодом достигает величины потенциала ионизации?
- 11. Каким образом в данной работе определяется вид газа, заполняющего тиратрон?

Теоретические сведения к данной работе можно найти в учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт. СПб., М., Краснодар: Лань, 2008. : Т. 3: \S 21-22.
- 2. Колмаков Ю.Н., Пекар Ю.А., Лежнева Л.С., Семин В.А. Основы квантовой теории и атомной физики, изд. ТулГУ. 2010, гл.2 §1, гл.3 §3.