Signal classification

- many ways in which signal may be classified, i.e. periodic, when x(t) = x(t+T), where the smallest value of T defines the period
- we can also classify signals as either energy or power signals
- energy signals
 - non-zero and finite total dissipated energy, E
 - usually exist for a finite interval of time or have most of their energy concentrated in a finite interval of time

 $0 \le E \le \infty$, $E = \int_{-\infty}^{\infty} x^2(t) dt$

- power signals
 - non-zero and finite average delivered power, P an example is the unit step function u(t) and a periodic signal of period T such as $x(t)=\sin(2\pi t/T)$

 $0 \le P \le \infty \qquad P = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} x^2(t) dt = \frac{1}{T} \int_{0}^{T} x^2(t) dt$

Example

Find the energy in the decaying exponential signal $x_1(t)$ =5exp(-2t) if $t \ge 0$ and $x_1(t) = 0$ if t < 0.

Signal representation and system response

98

Energy =
$$\int_{0}^{\infty} (x)^{2} dt = \int_{0}^{\infty} 25 \exp(-4t) dt = \frac{-25}{4} \left[\exp(-4t) \right]_{0}^{\infty}$$

= $\frac{25}{4}$

Fourier series

Trigonometric Fourier series

we can represent any finite power periodic signal x(t) with a period T as a sum of sine and cosine

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t)$$

fundamental frequency:

$$\omega_0 = 2\pi/T \text{ rad/s}$$
 or $1/T \text{ Hz}$

(b)

harmonics are generally found at $2/T\,\mathrm{Hz}$, $3/T\,\mathrm{Hz}$... according to Fourier coefficients:

$$A_n = \frac{2}{T} \int_{T/2}^{T/2} x(t) \cos(n\omega_0 t) dt \quad n = 0, 1, 2, ...$$

$$B_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin(n\omega_0 t) dt \quad n = 1, 2, 3, ...$$

Example

Evaluate the Fourier series of the square wave (a)

An=) x(t) cos(nort) elt

The period T of he squeet wave = 25 wo= 20 = 20 = 20

E U

For even values of a the B wells are

The bigometic forme seies representation of he waveform in 12(t) = \(\frac{2}{n\pi} \left(1-cos(n\pi) \right) \sin (M\pi t)

ニバ

Example

Derive an expression for the complex Fourier coefficient, X_n , associated with

the periodic signal x(t):

$$\begin{aligned}
\chi_{n} &= \frac{1}{T} \int_{-T/2}^{T/2} \chi(t) \exp(-jn\omega_{0}t) dt \\
&= \frac{1}{T} \int_{-T/2}^{T/2} A \exp(-jn\omega_{0}t) dt \\
&= \frac{-A}{jn\omega_{0}T} \left[\exp(-jn\omega_{0}t) - \exp(jn\omega_{0}t) \right] \\
&= \frac{At}{T} \sin(n\omega_{0}t/2) \\
&= \frac{At}{T} \sin(n\omega_{0}t/2) \\
&= \frac{At}{T} \sin(n\omega_{0}t/2)
\end{aligned}$$

Orthogonality

- we already looked at the concept of othogonality last time (i.e. QR decomposition and Gram-Schmidt)
- the Fourier series is an orthogonal expansion
- we say two signals $f_1(t)$ and $f_2(t)$ are orthogonal if $\frac{1}{T} \int_{-T/2}^{T/2} f_1(t) f_2(t) dt = 0$

and for the complex Fourier series the basis functions are mutually orthogonal:

$$\frac{1}{T} \int_{-T/2}^{T/2} \exp(jn\omega_0 t) \exp^*(jm\omega_0 t) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

Example

Calculate the power in the simple periodic signal x(t) where:

$$x(t) = a_1 \sin(\omega_0 t) + a_2 \sin(2\omega_0 t)$$

Signal representation and system response

104

$$P = \frac{1}{T} \int_{0}^{T} x^{2}(t) dt$$

$$= \frac{1}{T} \int_{0}^{T} a_{1}^{2} \sin^{2}(\omega t) dt + \frac{2}{T} \int_{0}^{T} a_{1} a_{2} \sin(\omega t) \sin(2\omega t) dt$$

$$+ \frac{1}{T} \int_{0}^{T} a_{1}^{2} \sin^{2}(2\omega t) dt$$

$$=\frac{\alpha^2+\alpha^2}{2}$$

therefore we have
$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

$$x(t) = \lim_{T \to \infty} \sum_{n=-\infty}^{+\infty} X_n \exp(jn\omega_0 t) \frac{\omega_0}{2\pi}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega$$

and we can represent most finite energy signal in this way

Example

Evaluate the Fourier transform of the finite energy signal x(t)

$$X(u) = \int_{-\infty}^{\infty} Y(t) \exp(-jut) dt$$

$$= A \int_{-\infty}^{\infty} \exp(-jut) dt = A \left[\frac{-1}{jw} \exp(-jut) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

$$= A \left[-\frac{1}{jw} \exp(-jwx) + \frac{1}{jw} \exp(-jwx) \right]_{-\infty}^{\infty} (t)$$

Applicability and physical interpretation

 the basis functions of the Laplace transform are growing or decaying complex phasors

$$A \exp(st) = A \exp(\sigma t) \cos(\omega t) + jA \exp(\sigma t) \sin(\omega t)$$

- the signal x(t) has components with
 - frequency ω
 - magnitude $|X(s)|d\omega/(2\pi)$
 - σ growth or decay determined by σ
 - phase $\angle X(s)$

Example

Evaluate the Laplace transform of a one-sided signal $x(t) = \exp(-\alpha t)$

Signal representation and system response

114

$$X(s) = \int_{0}^{\infty} \exp(-\alpha t) \exp(-st) dt$$

$$= \int_{0}^{\infty} \exp(-(s+\alpha)t) dt$$

$$= \frac{-1}{s+\alpha} \left[\exp(-(s+\alpha)t) \right]_{0}^{\infty}$$
Then provided that $Re(s) = \sigma > -\alpha$
The function $\exp(-(s+\alpha)t) = 0$ as $t = -\infty$
The function $\exp(-(s+\alpha)t) = 0$ as $t = -\infty$

$$X(s) = \frac{1}{s+\alpha}$$

Transform analysis of linear systems Linear ordinary differential equations

many linear systems can be modelled with linear ordinary differential equations $a_0 y + a_1 \frac{dy}{dt} + ... + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + ... + b_m \frac{d^m x}{dt^m}$

where the input, x(t), defines the output, y(t), according to system parameters $a_0 \dots a_n$ and $b_0 \dots b_m$

Example

Evaluate the response $y_n(t)$ of the following circuit to n^{th} harmonic, i.e. the complex phasor $\exp(jn\omega_0 t)$

(Ising Kirchoff's laws (2nd law - algebraic sum of rollings dops around any closed larp = a)
The system can be described by the differential equation

Transant response due to initial condition will have decayed to zero long ago

Assume a solution of the form you (joust)

a. Kenglinust) + a. K(jnw.) explinust) = b. enplinust)

$$K = \frac{bo}{a_0 + a_1 j r w_0}$$

: the response
$$y_n(t) = \frac{bs}{as + a, jaso} \exp(jasot)$$

Laplace transfer function

defined in the same way as for the Fourier transfer function

$$H_s = \frac{L[\text{output}]}{L[\text{input}]} = \frac{Y(s)}{X(s)}$$

and completely specifies system characteristics

 with knowledge of the transfer function we can calculate the response of the system to any input

Example

Evaluate the transfer function of the following circuit:

MathEng - Lecture 2b: Signal representation and system response

123

$$\frac{x(t)-x_1(t)}{n}=c\frac{dy}{dt}$$

$$\frac{x(t)}{R} = C \frac{dy}{dt} + y(t)$$

& taking laplace transforms

$$\frac{X(s)}{R} = C \left\{ sY(s) - Y(o^{-}) \right\} + \frac{Y(s)}{R}$$

$$\frac{\chi(s)}{R} : \left\{ \left(s + \frac{1}{R} \right) \right\} / s$$

$$H(s) = \frac{Y(s)}{X(s)} : \frac{1}{1 + R(s)}$$