excution\_sample.md 2021/5/25

# 顕微鏡画像解析プログラム実行例

顕微鏡画像からdropletの部分(画像の白い丸の部分)を抜き出し、その蛍光輝度値を求める。

from dropletparse import DropletParse

#### 顕微鏡画像の読み込み・表示

顕微鏡画像(sample.tif)を読み込み、表示する。

```
dp = DropletParse('sample.tif')
dp.show_img()
```



# 画像の二値化・マスク処理

画像の二値化とマスク処理を行う。背景の輝度値を0、dropletの部分の輝度値を1とした二値化画像を作成。 二値化画像と元の画像を掛け算し、元画像から背景を消す。これにより、dropletの検出感度が上昇する。

```
dp.make_binary(show=False)
dp.apply_mask(show=True)
```

excution\_sample.md 2021/5/25



## dropletの検出

マスク処理した画像を用いて、dropletを検出する。画像に表示された色のついている丸が、検出したdrolpetである。

dp.droplet\_detection(radius=30)



### dropletの輝度値計算

検出したそれぞれのdrolpetの輝度値を求める。検出したdropletの中心座標なども算出する。輝度値は brightness列

excution\_sample.md 2021/5/25

```
dp.calculate_brightness()
dp.make_result()
dp.df_result.head(10)
```

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|   | brightness | x_coordinate | y_coordinate | accuracy | radius |
|---|------------|--------------|--------------|----------|--------|
| 0 | 462.471698 | 1163         | 698          | 1.0      | 30     |
| 1 | 813.998576 | 1532         | 1332         | 1.0      | 30     |
| 2 | 319.009968 | 119          | 1439         | 1.0      | 30     |
| 3 | 337.555714 | 572          | 1436         | 1.0      | 30     |
| 4 | 376.742969 | 751          | 1435         | 1.0      | 30     |
| 5 | 431.997864 | 913          | 1443         | 1.0      | 30     |
| 6 | 489.315415 | 1384         | 1431         | 1.0      | 30     |
| 7 | 376.335351 | 642          | 1376         | 1.0      | 30     |
| 8 | 442.530082 | 1304         | 1381         | 1.0      | 30     |
| 9 | 361.787825 | 964          | 1264         | 1.0      | 30     |