IV DERIVABILITE

1. Fonctions dérivables

1.1 Définitions

Soit x_0 un réel et f une fonction définie sur un voisinage $]x_0 - r, x_0 + r[$ de x_0 (r > 0).

On dit que f est dérivable en x_0 si le taux d'accroissement $T(f, x_0)(x) := \frac{f(x) - f(x_0)}{x - x_0}$ de f en x_0 admet une limite finie quand $x \longrightarrow x_0$ dans $]x_0 - r, x_0 + r[\setminus \{x_0\}]$. On note alors $f'(x_0)$ cette limite et on l'appelle la dérivée de f en x_0 .

1.2 Interprétation géométrique

On munit le plan d'un repère orthonormé (O, \vec{i}, \vec{j}) et on considère la courbe représentative \mathcal{C} de f dans ce repère; soit M_0 le point de coordonnées $(x_0, f(x_0))$ et soit M le point de coordonnées (x, f(x)) pour $x \neq x_0$ voisin de x_0 , alors le taux d'accroissement $T(f, x_0)(x)$ de f en x_0 n'est autre que la pente de la droite (MM_0) et si f est dérivable en x_0 , alors la droite (MM_0) tend vers une droite appelée tangente à la courbe \mathcal{C} au point M_0 et qui a pour pente $f'(x_0)$.

1.3 Remarque

La courbe représentative d'une fonction f peut posséder une tangente en un point $M_0(x_0, f(x_0))$ sans que f soit dérivable en x_0 : c'est le cas quand le taux d'accroissement $T(f, x_0)(x)$ tend vers $\pm \infty$ quand $x \longrightarrow x_0$ dans $]x_0 - r, x_0 + r[-\{x_0\} \text{ (exemple : } f(x) = \sqrt[3]{x} \text{ en } 0).$

1.4 Proposition

Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$ une application. Si f est dérivable en un point x_0 de I alors f est continue en x_0 .

Preuve: si f est dérivable en x_0 , alors le taux d'accroissement $T(f, x_0)(x) := \frac{f(x) - f(x_0)}{x - x_0}$ de f en x_0 admet une limite finie l quand $x \longrightarrow x_0$ dans $I - \{x_0\}$, alors si on pose

$$\varepsilon(x) = T(f, x_0)(x)$$
 si $x \neq x_0$ et $\varepsilon(x_0) = 0$

on peut écrire $f(x) = f(x_0) + (x - x_0)\varepsilon(x)$ donc $f(x) \longrightarrow f(x_0)$ quand $x \longrightarrow x_0$.

Remarque La réciproque de ce résultat est fausse : la fonction f(x) = |x| est continue en 0 sans être dérivable en 0.

1.5 Définitions et notations

Soit I un sous-ensemble de \mathbb{R} et soit $f:I\longrightarrow\mathbb{R}$ une application. On dit que f est dérivable sur I si f est dérivable en tout point de I; l'application

$$f': \quad I \longrightarrow \mathbb{R}$$
$$x \longmapsto f'(x)$$

est appelée la dérivée de f. On utilise aussi la notation $\frac{df}{dx}$ au lieu de f'.

1.6 Opérations sur les dérivées

a) Si f et g sont dérivables en x_0 et si $k \in \mathbb{R}$, alors f + g et kf sont dérivables en x_0 et on a

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$
$$(kf)'(x_0) = kf'(x_0).$$

b) Si f et g sont dérivables en x_0 , alors fg est dérivable en x_0 et on a

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

c) Si f est dérivable en x_0 et si g est dérivable en $f(x_0)$, alors $g \circ f$ est dérivable en x_0 et on a

$$(g \circ f)'(x_0) = f'(x_0) \times (g' \circ f)(x_0).$$

d) Si f et g sont dérivables en x_0 et si $g(x_0) \neq 0$, alors $\frac{f}{g}$ est dérivable en x_0 et on a

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Preuve : laissée au lecteur.

1.7 Dérivées des fonctions usuelles

*
$$\frac{d}{dx}x^n = nx^{n-1} \text{ sur } \mathbb{R} \text{ si } n \in \mathbb{N}$$

*
$$\frac{d}{dx}x^n = nx^{n-1}$$
 sur \mathbb{R}^* si n est un entier < 0

*
$$\frac{d}{dx}x^{\alpha} = \alpha x^{\alpha-1}$$
 sur $]0, +\infty[$ si $\alpha \in \mathbb{R}$ non entier.

*
$$\frac{d}{dx}e^x = e^x \text{ sur } \mathbb{R}$$

*
$$\frac{d}{dx} \ln |x - a| = \frac{1}{x - a} \operatorname{sur} \mathbb{R} \setminus \{a\}$$

*
$$\frac{d}{dx}\sin x = \cos x \, \text{sur } \mathbb{R}$$

*
$$\frac{d}{dx}\cos x = -\sin x \, \text{sur } \mathbb{R}$$

*
$$\frac{d}{dx} \tan x = 1 + \tan^2 x = \frac{1}{\cos^2 x} \sup \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right] \text{ avec } k \in \mathbb{Z}$$

*
$$\frac{d}{dx}$$
sh $x = \text{ch } x \text{ sur } \mathbb{R}$

*
$$\frac{d}{dx}$$
ch $x = \text{sh } x \text{ sur } \mathbb{R}$

*
$$\frac{d}{dx}$$
th $x = 1 - \text{th }^2 x = \frac{1}{\text{ch }^2 x} \text{ sur } \mathbb{R}$

*
$$\frac{d}{dx}$$
Arcsin $x = -\frac{d}{dx}$ Arccos $x = \frac{1}{\sqrt{1-x^2}}$ sur] - 1, 1[

*
$$\frac{d}{dx} \operatorname{Arctg} x = \frac{1}{1+x^2} \operatorname{sur} \mathbb{R}$$

*
$$\frac{d}{dx}$$
Argsh $x = \frac{1}{\sqrt{x^2 + 1}}$ sur \mathbb{R}

*
$$\frac{d}{dx}$$
Argch $x = \frac{1}{\sqrt{x^2 - 1}}$ sur $]1, +\infty[$

*
$$\frac{d}{dx} \text{Argth} x = \frac{1}{1 - x^2} \text{ sur }] - 1, 1[.$$

On va maintenant enrichir le théorème de la bijection (cf. III 3.5) dans le cas où la fonction considérée est dérivable :

1.8 Théorème

Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$ une application continue, strictement monotone sur I; alors f(I) est un intervalle de \mathbb{R} , f est une bijection de I sur f(I) et f^{-1} est continue sur f(I).

Si de plus f est dérivable en $x_0 \in I$ et si $f'(x_0) \neq 0$, alors f^{-1} est dérivable en $y_0 = f(x_0)$ et $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$, ce qui peut aussi s'écrire $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$.

Preuve : notons $f(x_0) = y_0$ et f(x) = y pour tout x au voisinage de x_0 , alors le taux d'accroissement de f^{-1} en y_0 s'écrit

$$T(f^{-1}, y_0)(y) = \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{T(f, x_0)(x)}$$

or f^{-1} est continue sur f(I) donc, quand $y \longrightarrow y_0, x \longrightarrow x_0$, donc $T(f, x_0)(x) \longrightarrow f'(x_0)$, on en déduit

$$T(f^{-1}, y_0)(y) \longrightarrow \frac{1}{f'(x_0)}$$
 quand $y \longrightarrow y_0$

puisque $f'x_0 \neq 0$.

1.9 Définition

Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$ une application.

a) On dit que f est dérivable à gauche en un point x_0 de I si et seulement si le taux d'accroissement $T(f,x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}$ de f en x_0 admet une limite finie quand $x \longrightarrow x_0^-$. On note alors $f'_g(x_0)$ cette limite et on l'appelle la dérivée à gauche de f en x_0 .

La courbe représentative C de f admet alors une demi-tangente au point M_0 de coordonnées $(x_0, f(x_0))$ dans le demi-plan $x < x_0$.

b) On dit que f est dérivable à droite en un point x_0 de I si et seulement si le taux d'accroissement $T(f,x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}$ de f en x_0 admet une limite finie quand $x \longrightarrow x_0^+$. On note alors $f'_d(x_0)$ cette limite et on l'appelle la dérivée à droite de f en x_0 .

La courbe représentative C de f admet alors une demi-tangente au point M_0 de coordonnées $(x_0, f(x_0))$ dans le demi-plan $x > x_0$.

c) L'application f est dérivable en x_0 si et seulement si $f'_g(x_0)$ et $f'_d(x_0)$ existent et sont égales, et dans ce cas, on a $f'(x_0) = f'_g(x_0) = f'_d(x_0)$.

Par exemple, $f(x) = x^2 + 2|x-1|$: $f'_g(1) = 0$ et $f'_d(1) = 4$ donc f n'est pas dérivable en 1.

1.10 Définition

Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$ une application.

- a) Si f est dérivable sur I et si sa dérivée f' est elle-même dérivable sur I, on dit que f est deux fois dérivable sur I: la dérivée de f' est notée f'' ou $f^{(2)}$ et s'appelle la dérivée seconde de f. Si f'' est dérivable sur I, sa dérivée est notée f''' ou $f^{(3)}$, etc...
- b) Soit $n \in \mathbb{N}^*$: on dit que f est n-fois dérivable sur I si f est dérivable sur I, f' est dérivable sur I, f'' est dérivable sur I, f'' est dérivable sur I, est dérivable sur I et on note $f^{(n)} = (f^{(n-1)})'$. La fonction $f^{(n)}$ est appelée la dérivée n-ième de f ou dérivée d'ordre n de f. Par convention, on pose $f^{(0)} = f$.
- c) Soit $n \in \mathbb{N}^*$: on dit que f est classe \mathcal{C}^n sur I si f est n-fois dérivable sur I et si la dérivée n-ième $f^{(n)}$ est continue sur I. Par convention, on dit que f est classe \mathcal{C}^0 sur I si f est continue sur I.
- d) on dit que f est de classe \mathcal{C}^{∞} sur I si f est de classe \mathcal{C}^n sur I pour tout $n \in \mathbb{N}$ ou, ce qui est équivalent, si f est n-fois dérivable sur I pour tout entier $n \in \mathbb{N}$.

1.11 Exemples

- a) La fonction exponentielle est de classe \mathcal{C}^{∞} sur \mathbb{R} et $(\exp)^{(n)} = \exp$ pour tout $n \in \mathbb{N}$.
- b) Les fonction sin et cos sont de classe \mathcal{C}^{∞} sur \mathbb{R} .
- c) La fonction $f(x) = |x|^3$ est de classe C^2 sur \mathbb{R} mais n'est pas trois fois dérivable en 0.

1.12 Formule de Leibniz

Soit $n \in \mathbb{N}^*$ et soient f et g deux fonctions n-fois dérivables sur un intervalle I de \mathbb{R} , alors fg est n-fois dérivable sur I et

$$\forall x \in I, \ (fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x).$$

Preuve: on fait une démonstration par récurrence: soit (H_p) la proposition: fg est p-fois dérivable sur I et

$$\forall x \in I, \ (fg)^{(p)}(x) = \sum_{k=0}^{p} {p \choose k} f^{(k)}(x) g^{(p-k)}(x)$$

la proposition (H_1) est vraie d'après 1.6; supposons maintenant (H_{n-1}) vraie pour un certain entier $n \geq 2$, alors $(fg)^{(n-1)}$ est dérivable sur I d'après 1.6, et on a pour tout $x \in I$

$$(fg)^{(n)}(x) = \left((fg)^{(n-1)}\right)'(x) = \sum_{k=0}^{n-1} \binom{n-1}{k} \left(f^{(k)}(x)g^{(n-1-k)}\right)'(x)$$
i.e $(fg)^{(n)}(x) = \sum_{k=0}^{n-1} \binom{n-1}{k} \left(f^{(k+1)}(x)g^{(n-1-k)}(x) + f^{(k)}(x)g^{(n-k)}(x)\right)$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} f^{(k+1)}(x)g^{(n-1-k)}(x) + \sum_{k=0}^{n-1} \binom{n-1}{k} f^{(k)}(x)g^{(n-k)}(x)$$

$$= f^{(n)}(x)g(x) + \sum_{j=1}^{n-1} \binom{n-1}{j-1} f^{(j)}(x)g^{(n-j)}(x) + \sum_{k=1}^{n-1} \binom{n-1}{k} f^{(k)}(x)g^{(n-k)}(x) + f(x)g^{(n)}(x)$$

$$= f^{(n)}(x)g(x) + \sum_{k=1}^{n-1} \binom{n}{k-1} + \binom{n-1}{k} f^{(k)}(x)g^{(n-k)}(x) + f(x)g^{(n)}(x)$$

$$= f^{(n)}(x)g(x) + \sum_{k=1}^{n-1} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x) + f(x)g^{(n)}(x)$$

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x)$$
ainsi $(H_{n-1}) \Longrightarrow (H_n)$, donc (H_n) est vraie pour tout $n \in \mathbb{N}^*$.

1.13 Opérations sur les fonctions de classe \mathcal{C}^n

a) Si f et g sont des applications de classe C^n sur un intervalle I $(n \in \mathbb{N})$ et si $k \in \mathbb{R}$, alors f + g, fg et kf sont de classe C^n sur I.

b) Si f et g sont des applications de classe \mathcal{C}^n sur un intervalle I $(n \in \mathbb{N})$ et si g ne s'annule en aucun point de I alors $\frac{f}{g}$ est de classe \mathcal{C}^n sur I.

5

c) Soient I et J des intervalles et $\varphi: I \longrightarrow \mathbb{R}$ une application de classe \mathcal{C}^n $(n \in \mathbb{N})$ sur I telle que $\varphi(I) \subset J$; si $f: J \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^n sur J alors $f \circ \varphi$ est de classe \mathcal{C}^n sur I.

Preuve : par récurrence en utilisant 1.6 et 1.12.

2 Théorème des accroissements finis

2.1 Définitions

Soit f une fonction de \mathbb{R} dans \mathbb{R} définie au voisinage d'un point x_0 ;

a) on dit que f présente un maximum local en x_0 s'il existe r > 0 tel que

$$\forall x \in]x_0 - r, x_0 + r[, f(x) \le f(x_0);$$

b) on dit que f présente un minimum local en x_0 s'il existe r > 0 tel que

$$\forall x \in]x_0 - r, x_0 + r[, f(x) \ge f(x_0);$$

- c) on dit que f présente un extremum local en x_0 si f présente un maximum ou un minimum local en x_0 ;
- d) on dit que x_0 est un point critique de f si f est dérivable en x_0 et si $f'(x_0) = 0$.

2.2 Proposition

Soit f une fonction de \mathbb{R} dans \mathbb{R} définie au voisinage d'un point x_0 et dérivable en x_0 ; si f présente un extremum local en x_0 , alors x_0 est un point critique de $f: f'(x_0) = 0$.

Preuve: on fait la démonstration dans le cas où f présente un maximum local en x_0 (s'il s'agit d'un minimum, alors -f présente un maximum local): il existe donc r > 0 tel que

$$\forall x \in]x_0 - r, x_0 + r[, f(x) \le f(x_0).$$

De plus f est dérivable en x_0 , donc $f'(x_0) = f'_g(x_0) = f'_d(x_0)$ on a alors

$$\forall x \in]x_0 - r, x_0[, \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \text{ d'où } f'(x_0) = f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

et de même

$$\forall x \in]x_0, x_0 + r[, \frac{f(x) - f(x_0)}{x - x_0} \le 0 \text{ d'où } f'(x_0) = f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

d'où $f'(x_0) = 0$.

2.3 Remarques

- a) x_0 peut être un point critique de f sans que f présente un extremum local en x_0 : par exemple la fonction $f(x) = x^3$ admet 0 comme point critique mais ne présente pas un extremum local en 0.
- b) une fonction peut présenter un extremum local en un point x_0 sans que f soit dérivable en x_0 et par conséquent sans que x_0 soit un point critique de f: par exemple la fonction $f(x) = \sqrt{x^2 x^3}$ présente un minimum local en 0 mais f n'est pas dérivable en 0 puisque $f'_d(0) = 1$ et $f'_d(0) = -1$.

2.4 Théorème de Rolle

Soient a et b deux réels tels que a < b. On considère une application $f : [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b); alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Preuve: la fonction f est continue sur l'intervalle fermé borné [a,b] donc est bornée et atteint ses bornes: il existe donc c_1 et $c_2 \in [a,b]$ tels que $f(c_1) = m = \inf_{[a,b]} f$ et

$$f(c_2) = M = \sup_{[a,b]} f.$$

Si m=M alors f est constante sur [a,b] et par conséquent sa dérivée f' est nulle sur [a,b].

Si m < M, alors $m \neq f(a)$ ou $M \neq f(a)$: si $m \neq f(a)$, on a alors $f(c_1) = m < f(a) = f(b)$ et par conséquent $c_1 \in]a, b[$ donc il existe r > 0 tel que $]c_1 - r, c_1 + r[\subset [a, b]$ et f présente un minimum local en c_1 , d'où $f'(c_1) = 0$ d'après 2.2, et si $M \neq f(a)$, on a alors $f(a) = f(b) < M = f(c_2)$ donc $c_2 \in]a, b[$ et par conséquent f présente un maximum local en c_2 , d'où $f'(c_2) = 0$.

2.5 Théorème des accroissements finis

Soient a et b deux réels tels que a < b. On considère une application $f : [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b] et dérivable sur [a, b[; alors il existe $c \in]a, b[$ tel que

$$f(b) - f(a) = (b - a)f'(c).$$

On peut aussi exprimer le théorème des accroissements finis sous la forme suivante : soient $x_0 \in \mathbb{R}$ et h > 0 et soit f une application continue sur $[x_0, x_0 + h]$ et dérivable sur $[x_0, x_0 + h]$, alors il existe un réel $\theta \in]0, 1[$ tel que

$$f(x_0 + h) - f(x_0) = hf'(x_0 + \theta h).$$

(de même avec h < 0 et f continue sur $[x_0 + h, x_0]$, dérivable sur $]x_0 + h, x_0[.)$

Preuve : On considère la fonction φ définie sur [a,b] par

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a) - f(a).$$

La fonction φ est continue sur [a,b] et dérivable sur]a,b[puisque f l'est et on a $\varphi(a)=0$ mais aussi $\varphi(b)=0$; on peut donc appliquer le théorème de Rolle à φ : il existe $c\in]a,b[$ tel que $\varphi'(c)=0$. Or pour tout $x\in]a,b[$, on a

$$\varphi'(x) = f'(x) - \frac{f(a) - f(b)}{b - a}$$

donc $\varphi'(c) = 0$ signifie f(a) - f(b) = (b - a)f'(c).

2.6 Corollaire Soit f une application dérivable sur un intervalle I de \mathbb{R} .

a) pour tous a et $b \in I$ distincts, il existe c strictement compris entre a et b tel que

$$f(b) - f(a) = (b - a)f'(c).$$

b) Soit $x_0 \in I$ et $h \in \mathbb{R}^*$ tel que $x_0 + h \in I$ alors il existe un réel $\theta \in]0,1[$ tel que

$$f(x_0 + h) - f(x_0) = hf'(x_0 + \theta h).$$

c) S'il existe une constante M>0 telle que $\forall x\in I, |f'(x)|\leq M$, alors on a

$$\forall x, y \in I, |f(x) - f(y)| \le M|x - y|.$$

2.7 Corollaire

Soit $x_0 \in \mathbb{R}$ et soit f une application continue au voisinage de x_0 et dérivable au voisinage de x_0 sauf en x_0 ; si f' admet une limite $l \in \mathbb{R} \cup \{\pm \infty\}$ quand $x \to x_0, x \neq x_0$, alors la courbe représentative de f admet une tangente de pente l au point $(x_0, f(x_0))$ et si $l \in \mathbb{R}$, f est dérivable en x_0 et $f'(x_0) = l$.

Preuve: pour h > 0 suffisamment proche de 0, f est continue sur $[x_0, x_0 + h]$ et dérivable sur $[x_0, x_0 + h]$ donc il existe $\theta \in]0, 1[$ tel que

$$T(f,x_0)(h) = \frac{f(x_0+h) - f(x_0)}{h} = f'(x_0+\theta h)$$

donc

$$\lim_{h \to 0^+} T(f, x_0)(h) = l.$$

De même avec h < 0 suffisamment proche de 0, on obtient $\lim_{h \to 0^-} T(f, x_0)(h) = l$ d'où

$$\lim_{h \to 0^{-}} T(f, x_0)(h) = l$$

et ainsi, d'après 1.9, la courbe représentative de f admet une tangente de pente l au point $(x_0, f(x_0))$. De plus si $l \in \mathbb{R}$, alors f est dérivable en x_0 et $f'(x_0) = l$.

2.8 Estimation d'erreur

Le théorème des accroissements finis permet de calculer une valeur approchée d'une fonction f de classe \mathbb{C}^1 en un point avec estimation de l'erreur commise, en majorant |f'(x)| sur un segment bien choisi à l'aide de 2.6 c) : par exemple, calculons une valeur approchée de $\ln(1,001)$ en appliquant le théorème pour la fonction $f(x) = \ln x$ sur l'intervalle [0,999;1,001] : il est clair que

$$\forall x \in [0,999; 1,001], |f'x| \le \frac{1}{0.999}$$

donc, d'après 2.6 c), on a

$$|f(1,001) - f(1)| \le \frac{1}{0.999} \times 0,001 \le 0,0011$$

et ainsi $ln(1,001) \simeq 0$ avec une erreur majorée par 0,0011.

2.9 Proposition

Soit f une application dérivable sur un intervalle I de \mathbb{R} dont la dérivée est l'application nulle; alors f est une application constante.

Preuve: soit $x_0 \in I$ fixé et considérons un point quelconque x de I distinct de x_0 ; alors d'après 2.6, il existe c strictement compris entre x et x_0 tel que

$$f(x) - f(x_0) = (x - x_0)f'(c)$$

or f' est l'application nulle donc $f(x) = f(x_0)$, et ce pour tout $x \in I$: f est donc constante.

2.10 Définition

Soit f une application définie sur un intervalle I de \mathbb{R} .

a) on dit que f est croissante (resp. décroissante) sur I si et seulement si :

$$\forall x_1, x_2 \in I, \ x_1 \leq x_2 \Longrightarrow f(x_1) \leq f(x_2) \ (\text{resp. } f(x_1) \geq f(x_2)).$$

b) on dit que f est strictement croissante (resp. strictement décroissante) sur I si et seulement si :

$$\forall x_1, x_2 \in I, x_1 < x_2 \Longrightarrow f(x_1) < f(x_2) (\text{ resp. } f(x_1) > f(x_2)).$$

2.11 Théorème

Soit f une application dérivable sur un intervalle I de \mathbb{R} .

- a) si $\forall x \in I$, $f'(x) \ge 0$, alors f est croissante sur I.
- b) si $\forall x \in I, f'x \le 0$, alors f est décroissante sur I.

- c) si $\forall x \in I, f'x \ge 0$ et si f' ne s'annule au plus qu'en un nombre fini de points de I, alors f est strictement croissante sur I.
- d) si $\forall x \in I, f'x \le 0$ et si f' ne s'annule au plus qu'en un nombre fini de points de I, alors f est strictement décroissante sur I.

Preuve:

- a) on suppose $\forall x \in I$, $f'x \ge 0$; soient a et $b \in I$ tels que a < b alors d'après le corollaire 2.6, il existe $c \in]a, b[$ tel que f(b) f(a) = (b-a)f'(c) d'où $f(b) \ge f(a)$ puisque $f'(c) \ge 0$ et ainsi f est croissante.
- b) : démonstration analogue.
- c) : on suppose $\forall x \in I$, $f'x) \geq 0$ et f' ne s'annule qu'en un nombre fini de points. D'après a) f est croissante sur I : raisonnons par l'absurde et supposons qu'il existe a et $b \in I$ tels que a < b et f(a) = f(b), alors, pour tout $x \in [a,b]$, on a $a \leq x \leq b$ donc $f(a) \leq f(x) \leq f(b)$ puisque f est croissante sur I, or f(a) = f(b) donc pour tout $x \in [a,b]$, f(x) = f(a) = f(b) donc f est constante sur [a,b] donc f' est l'application nulle sur [a,b], ce qui est impossible puisque f ne s'annule qu'en un nombre fini de points : on en déduit que pour tous $f(a) \in I$

$$a < b \Longrightarrow f(a) < f(b)$$

et ainsi f est strictement croissante sur I.

d): démonstration analogue.

2.12 Théorème de prolongement

Soit $k \in \mathbb{N}^*$ et soit f une fonction de classe C^k sur]a,b] et telle que pour tout entier $i \in [0,k]$, $f^{(i)}$ admet une limite finie quand x tend vers $a, x \neq a$, alors f est de classe C^k sur [a,b] et pour tout entier $i \in [0,k]$, on a

$$f^{(i)}(a) = \lim_{\substack{x \to a \\ x \neq a}} f^{(i)}(x).$$

Preuve : par récurrence :

pour tout $j \in \mathbb{N}$, considérons la proposition (\mathcal{P}_i) suivante :

 (\mathcal{P}_j) : pour toute fonction f de classe C^j sur]a,b] telle que pour tout entier $i \in [0,j], f^{(i)}$ admet une limite finie ℓ_i quand x tend vers $a, x \neq a$, alors f est de classe C^j sur [a,b] et $f^{(i)}(a) = \ell_i$ pour tout $i \in [0,j]$.

La proposition (\mathcal{P}_0) est vraie d'après III 2.7 (prolongement par continuité).

Supposons que (\mathcal{P}_{k-1}) est vraie pour un entier $k \geq 1$ et considérons f une fonction de classe C^k sur]a,b] et telle que pour tout entier $i \in [0,k]$, $f^{(i)}$ admet une limite finie ℓ_i quand x tend vers $a, x \neq a$; alors, comme (\mathcal{P}_{k-1}) est supposée vraie, pour tout $x \in]a,b]$, la fonction $f^{(k-1)}$ est continue sur [a,x] et dérivable sur]a,x[donc vérifie le théorème des accroissements finis : il existe $c_x \in]a,x[$ tel que

$$f^{(k-1)}(x) - f^{(k-1)}(a) = (x-a)f^{(k)}(c_x)$$

on en déduit que

$$\frac{f^{(k-1)}(x) - f^{(k-1)}(a)}{x - a} = f^{(k)}(c_x) \xrightarrow[\substack{x \to a \\ x \neq a}]{} \ell_k$$

ainsi $f^{(k-1)}$ est dérivable en a et $f^{(k)}(a) = \ell_k$, donc $f^{(k)}$ est continue en a. Donc (\mathcal{P}_k) est vraie et le théorème est démontré par récurrence.

2.13 Formule de Taylor-Lagrange

Soient a et b deux réels tels que a < b, n un entier naturel et soit $f : [a, b] \longrightarrow \mathbb{R}$ une application de classe \mathbb{C}^n telle que $f^{(n)}$ est dérivable sur]a, b[.

Alors il existe un réel $c \in]a, b[$ tel que

$$f(b) = f(a) + (b-a)f'(a) + (b-a)^{2} \frac{f''(a)}{2!} + \dots + (b-a)^{n} \frac{f^{(n)}(a)}{n!} + (b-a)^{n+1} \frac{f^{(n+1)}(c)}{(n+1)!}.$$

Le terme $f(a)+(b-a)f'(a)+(b-a)^2\frac{f''(a)}{2!}+\cdots+(b-a)^n\frac{f^{(n)}(a)}{n!}$ est appelé développement de Taylor de f en a à l'ordre n, et le terme $(b-a)^{n+1}\frac{f^{(n+1)}(c)}{(n+1)!}$ est appelé reste de Lagrange.

Preuve:

Soit A le nombre réel défini par

$$f(b) = f(a) + (b-a)f'(a) + (b-a)^{2} \frac{f''(a)}{2!} + \dots + (b-a)^{n} \frac{f^{(n)}(a)}{n!} + (b-a)^{n+1} \frac{A}{(n+1)!}$$

et soit φ l'application définie sur [a, b] par

$$\varphi(x) = f(b) - \left[f(x) + (b-x)f'(x) + (b-x)^2 \frac{f''(x)}{2!} + \dots + (b-x)^n \frac{f^{(n)}(x)}{n!} + (b-x)^{n+1} \frac{A}{(n+1)!} \right].$$

Il est clair que φ est continue sur [a,b] et dérivable sur]a,b[et vérifie $\varphi(a)=\varphi(b)=0$, donc par le théorème de Rolle, il existe un réel $c\in]a,b[$ tel que $\varphi'(c)=0$. Or le calcul de φ' donne

$$\varphi'(x) = \frac{(b-x)^n}{n!} \left(-f^{(n+1)}(x) + A \right)$$

donc, comme $\varphi'(c) = 0$, on en déduit $A = f^{(n+1)}(c)$.