DELTA TopGun

07 - Stromové struktury

Tomáš Faltejsek, Luboš Zápotočný, Michal Havelka

2022

Hlavní motivace

- Vyhledávání sekvenční × linéarní datové struktury
- Přirozená reprezentace
- Rozšíření konceptu linked list

Stromová struktura

Stromová struktura

Vlastnosti stromové struktury

- Acyklický orientovaný graf
- Skládá se z uzlů které jsou propojeny orientovanými hranami
- Rekurzivní datová struktura (podstromy)

Vlastnosti stromové struktury – hrany (edge)

- Každý uzel (s výjimkou kořene) je propojen orientovanou hranou přesně z jednoho dalšího uzle
- Orientace hrany je rodič (parent) → dítě (child)

Vlastnosti stromové struktury – kořen (**root**)

- Kořen nemá rodiče
- A je rodičem B, C, D
- Z kořene se dostaneme k libovolnému uzlu

Vlastnosti stromové struktury – uzel (inner node)

- Každý uzel může mít libovolný počet potomků
- Inner node musí mít alespoň jednoho potomka
- Inner node má právě jednoho rodiče

Vlastnosti stromové struktury – uzel (inner node)

```
// Node of a general tree structure with n children
typedef struct Node {
   int data; // Or any other data-type
   Node * child1;
   Node * child2;
   // .
   // .
   Node * childN;
} Node;
```

Vlastnosti stromové struktury – list (leaf node)

- Leaf node má právě jednoho rodiče
- Leaf node nemá žádného potomka

Vlastnosti stromové struktury – předek (ancestor)

Vlastnosti

 Libovolný přecházející uzel v uspořádané stromové struktuře

Vlastnosti stromové struktury – hloubka uzlu (**depth of node**)

- Počet hran od kořene k uzlu
- Hloubka uzlu F je 2

Vlastnosti stromové struktury – výška (**height**)

- Počet hran od uzlu k nejhlubšímu listu
- Hloubka stromu je 3

Vlastnosti stromové struktury – sourozenci (siblings)

Vlastnosti

 Uzly se stejným rodičem (parent)

Vlastnosti stromové struktury – podstrom (**subtree**)

Vlastnosti

Kořen A má 3 podstromy

<u>Vlastnosti stromové struktury – shrnutí</u>

Acyklický graf

- Orientované hrany
- Přesně jeden kořen
- 4 Každý inner a leaf node má přesně jednoho rodiče
- 5 Každá inner node má alespoň jednoho potomka
- 6 Leaf node nemá žádného potomka

Řešení

- Acyklický graf √
- 2 Orientované hrany 🗸
- Přesně jeden kořen
 √
- 4 Každý inner a leaf node má přesně jednoho rodiče √
- 5 Každá inner node má alespoň jednoho potomka √
- 6 Leaf node nemá žádného potomka √

Řešení

- Acyklický graf √
- 2 Orientované hrany 🗸
- Přesně jeden kořen
 √
- 4 Každý inner a leaf node má přesně jednoho rodiče √
- 5 Každá inner node má alespoň jednoho potomka √
- 6 Leaf node nemá žádného potomka √
- → Validní stromová struktura

Řešení

- Acyklický graf √
- 2 Orientované hrany 🗸
- Přesně jeden kořen
 √
- 5 Každá *inner* node má alespoň jednoho potomka √
- 6 Leaf node nemá žádného potomka √

Řešení

- Acyklický graf √
- 2 Orientované hrany 🗸
- Přesně jeden kořen
 √
- 5 Každá *inner* node má alespoň jednoho potomka √
- 6 Leaf node nemá žádného potomka √
- \rightarrow Validní stromová struktura s branching factorem = 1 (unární strom)

Vlastnosti stromové struktury 000000000000000000

Řešení

- Acyklický graf √
- Orientované hrany 🗸
- Přesně jeden kořen √
- Každý inner a leaf node má přesně jednoho rodiče X
- Každá inner node má alespoň jednoho potomka 🗸
- 6 Leaf node nemá žádného potomka √

- Acyklický graf √
- ② Orientované hrany √
- Přesně jeden kořen √
- Každý inner a leaf node má přesně jednoho rodiče X
- Každá inner node má alespoň jednoho potomka 🗸
- 6 Leaf node nemá žádného potomka √
- → NEVALIDNÍ stromová struktura

Vlastnosti stromové struktury 000000000000000000

Řešení

- Acyklický graf ×
- Orientované hrany 🗸
- 3 Přesně jeden kořen √
- 4 Každý inner a leaf node má přesně jednoho rodiče 🗴
- Každá inner node má alespoň jednoho potomka 🗸
- Leaf node nemá žádného potomka 🗸

- Acyklický graf ×
- ② Orientované hrany √
- 3 Přesně jeden kořen √
- 4 Každý inner a leaf node má přesně jednoho rodiče 🗴
- Každá inner node má alespoň jednoho potomka 🗸
- 6 Leaf node nemá žádného potomka √
- → NEVALIDNÍ stromová struktura

Řešení

- Acyklický graf √
- 2 Orientované hrany 🗸
- Přesně jeden kořen
 √
- 5 Každá inner node má alespoň jednoho potomka √
- 6 Leaf node nemá žádného potomka √

Řešení

- Acyklický graf √
- 2 Orientované hrany 🗸
- Přesně jeden kořen
 √
- 6 Každá inner node má alespoň jednoho potomka √
- 6 Leaf node nemá žádného potomka √
- → Validní stromová struktura

Binární strom

Vlastnosti

 Každý uzel má maximálně dva potomky

Binární strom - node

```
// Node of a binary tree
typedef struct Node {
   int data; // Or any other data-type
   Node * left;
   Node * right;
} Node;
```

Průchody - INORDER - LNR

- 1 Rekurzivní průchod levým podstromem aktuálního uzlu
- Navštívení aktuálního uzlu
- 3 Rekurzivní průchod pravým podstromem aktuálního uzlu

Průchody - POSTORDER - LRN

- Rekurzivní průchod levým podstromem aktuálního uzlu
- Rekurzivní průchod pravým podstromem aktuálního uzlu
- Navštívení aktuálního uzlu

Průchody - PREORDER - NLR

- Navštívení aktuálního uzlu
- Rekurzivní průchod levým podstromem aktuálního uzlu
- Rekurzivní průchod pravým podstromem aktuálního uzlu

Ukázka - syntaktické stromy

- Demonstrace na tabuli -

Přirozeně hiearchická data - file system

- Demonstrace na tabuli -

Organizace dat - Binární vyhledávací strom

Na příští přednášce