微小流量計測装置に用いる細管の光を使った内径計測手法の開発

Development of an optical internal diameter measurement method using light for microflow measurement devices

contents

- □研究背景・目的 Research Background and Objectives
- ロシミュレーション方法 Simulation Method
- □内径100μmの場合の結果 Results for an inner diameter of 100μm
- □結言 Conclusion

Background

微小流量 micro flow

- 一般的に1L/minより低い流量
 Flow rate generally lower than 1L/min
- 測定原理は容積式、熱式、電磁式、超音波式等様々
 The measuring principles are volumetric, thermal, electromagnetic, etc.
- 薬液等を取り扱う化学プラント、微量制御を必要とする 半導体製造過程に用いられる Used in chemical plants that handle chemicals, etc.
 - ▶ 小型化に伴うµオーダーの微小流量計測に対する ニーズが高まる

Increasing need for μ -order micro flow measurement with miniaturization

- マイクロスケールでの計測手法の開発
 - ➤ 2次元あるいは3次元的な画像計測 Image measurement is attracting attention as a measurement method at the microscale
- 再現性や安定度の向上
 - 計測機器の精度
 (実用上、メーカの初期キャリブレーションが保証した精度を頼りにしている)
 Improving reproducibility and stability is essential

ex)点滴 成人用ルートで20滴≒1ml 1秒間に1滴のペースで落とした場合, 流量は1分間に約3ml (約3ml/min) 1秒間に3.3滴というやや速めのペース で落とした場合, 流量は1分間に約10ml (約10ml/min)

細管画像 内径2mm

 $Q = \frac{\pi}{4}d^2 \cdot u \times 10^{-3} \times 60$

Q:流量[*ml*/min] d:内径[*mm*] u:界面速度[*mm/s*]

Background

流量計測に用いられる細管の構造 Structure of a thin tube used for flow measurement

- 計測に用いる細管は真円ではない
 - ▶ 内外径ともに多少偏心している

The small tube used for measurement is not a perfect circle.

2次元画像処理計測を行う際の問題点

Issues in performing 2D image processing measurements

計測点により内径が異なる

Inner diameter varies depending on the measurement point

[1] An Introduction to Roundness Measurement/Yoshiyuki OMORI(2016)

Configuration of roundness measuring machine^[1]

Error due to worker volume and eccentricity [1]

Issue

実用的な円管内径計測手法

A Practical Method for Measuring the Inner Diameter of a Circular Tube

- 接触・非接触の2種類
 - 管内部に計測機器を挿入 (計測範囲は数mmオーダー)

Inserting a measurement device into the inside of a pipe

細管の形状計測手法

極細プローブによって管内の形状変化を定量化

Quantifying shape changes in microtubules with an ultra-fine probe

Setup of micro-hole measurement

3D wireframe representation of hole

マイクロスケールの2次元画像処理計測を行う測定系において、任意の計測点の内径を求めることは困難

It is difficult to obtain the internal diameter of an arbitrary measurement point in a measurement system that performs 2-D image processing measurement

Objective

微小流量計測の二次元画像処理計測に使用する細管 の内径を任意の計測点から取得する手法の開発

Development of a method to obtain the inner diameter of a small tube from an arbitrary measurement point for two-dimensional image processing measurement of micro-flow rate measurement

- 光学的な内径計測研究の妥当性確認
 Validation of optical bore measurement studies
- シミュレーションプログラムの作成 Create a simulation program
- 光学系設計および実験
 Design the optical system and Conduct an experiment

Prior Study

Inner Radius Measuring Method of Transparent Capillary(kozima et al., 1998)

透明細管の管軸に対し垂直に平行光線を照射し,2種類の光線の光強度を測定

A parallel light beam is irradiated perpendicular to the tube axis of a transparent tube, and the light intensities of two types of light beams are measured.

①透明細管内を内径に接して透過する光線

Light rays transmitted through the transparent tube in contact with the inner diameter

②内径面上の一点で反射し平行光線の光軸に平行に透過する光線

Light ray reflected at a point on the inner diameter surface and transmitted parallel to the optical axis of the parallel beam

n: 屈折率 Index of refraction
D[mm]: 管の外径 Outer diameter of tube
d[mm]: 管の内径 Inner diameter of tube
a[mm]: 透過距離 Through Distance
Θ[deg]: 透過角 Through the corner

① :
$$\left(n^2 - 2n\cos\frac{\theta}{2} + 1\right)d^2 - D^2\sin^2\frac{\theta}{2} = 0$$

② : $\left\{n^2(D^2 - a^2) - a^2\right\}d^2 + 2a^3d - a^2D^2 = 0$

保証精度 ±1/500

Guaranteed accuracy

Preparing for the simulation

光は電磁波の性質を持ち,その性質はマクスウェルの方程式により記述される

微分形

$$\operatorname{div}E(\boldsymbol{r},t) = \frac{\rho(\boldsymbol{r},t)}{\varepsilon_0}$$
$$\operatorname{div}\boldsymbol{B}(\boldsymbol{r},t) = 0$$

$$rot E(r,t) = -\frac{\partial B(r,t)}{\partial t}$$

$$\mathrm{rot} \boldsymbol{H}(\boldsymbol{r},t) = \mu_0 i(\boldsymbol{r},t) + \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t}$$
 ・・・アンペールの法則

・・・ガウスの法則

・・・単磁化が存在しない

D: 電東密度

B: 磁束密度

E: 電場

H: 磁場

 μ_0 : 透磁率

i:電流密度

 ε_0 : 誘電率

 ρ : 電荷密度

波動方程式を求め,異なる媒質間の光(偏光)の振る舞いを記述した式を導く

$$t_p = \frac{2n_1 \cos \theta_i}{n_2 \cos \theta_i + n_1 \cos \theta_t} \qquad T_j = |t_j|^2 \frac{n_2 \cos \theta_t}{n_1 \cos \theta_i}$$

$$r_p = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t} \qquad R_j = |r_j|^2 (j = P, S)$$

$$t_S = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

$$r_S = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

それぞれの偏光の光強度を取得

Obtain the light intensity of polarized light

電場と磁場の振動方向が規則的な光

n_i:媒質iの屈折率

 θ_i :入射角

 θ_t :屈折角

r:反射率

t:诱過率

 $n_1 \sin \theta_i = n_2 \sin \theta_i$

光線の光路を取得

Obtain the optical path of a light beam

Preparing for the simulation

µスケールでも先行研究と同様の手法で測定可能かを確かめるため、

- シミュレーションを実施 In order to confirm whether the same method can be used for µ-scale measurements, we performed Simulation
- ②細管外径及び,③細管-ピンホール間の距離を変化させる
 Varying the distance between the tube and the pinhole, and the outer diameter of the tube

	Beam radius[mm]	2.0	
①laser	Beam power[mW]	2.0	
	Wavelength[nm]	630	
②Grass capillary	Inner diameter[mm]	0.1	
	External diameter[mm]	0.15-	
③Distance[mm]	0.1 ~ 1.0		
Pinhole	4Thickness[mm]	1.0	
	⑤Diameter[mm]	0.05	
©Light receiving section	Minimum detectable illuminance [lx](data sheet)	0.1	
⑦Rotating table[deg]	0.01		

Flowchart of the simulation program

前提

- ・レーザーの出力分布は一様であると仮定
- ・レーザー光は一応な正方形に補正
- ・空間分解能:10⁻⁶[mm]
- ・光強度分解能:10⁻⁹ [W]

光路及び光強度取得

Result

③細管-ピンホール間の距離を変化させた結果 (A:100µmとB:1mmの比較)

Results of varying the distance between the microtubule and the pinhole (A: 100 µm vs. B: 1 mm)

外径ごとに細管-ピンホール間の距離を変化させた結果

The results of varying the distance between the narrow tube and the pinhole for each outer diameter.

	細管-ピンホール間 Between tubule and pinhole		外径 outer diameter	
	小	大	小	大
透過角	誤差大 high error rate	誤差小 small error rate	誤差小	誤差大
透過距離	誤差小	誤差大	誤差小	誤差大

Conclusion

微小流量計測の二次元画像処理計測に使用する細管 の内径を任意の計測点から取得する手法の開発

Development of a method to obtain the inner diameter of a small tube from an arbitrary measurement point for two-dimensional image processing measurement of micro-flow rate measurement

□ 先行研究の理論をもとにシミュレーションを行なった結果,内径 100µmの細管でも適切な実験体系を設計することにより内径計測 が可能であることを確認した

As a result of the simulation based on the theory of the previous study, it was confirmed that the inner diameter measurement was possible even for a thin tube with an inner diameter of 100 μ m by designing an appropriate experimental system.

Future Plan

□ 実際に光学系の設計及び内径の計測を行い,µスケールの場合でも内径計測可能であるかを確認する

Actually design the optical system and measure the inner diameter to confirm that the inner diameter can be measured even in the case of μ scale.