

9

12

10 © 2025

SKADI KURT GROSSBERNDT

All Rights Reserved

-	equirement for the degree of Doctor of Philosophy.
	Professor Stefan Bathe
Date	Chair of Examining Committee
	Professor Tom Jones
Date	Executive Officer
Professor Adrian Dimitru	
Professor Raghav K Professor Jamal Jallian-Mar	i.a.n
Professor Z	an
Supervisory Committee	

Abstract 18 Energy Correlators as a probe of the hard process in Run 24 p-p19 collisions at $\sqrt{s}=200~GeV$ with the sphenix detector at RHIC 20 by 21 Skadi K Grossberndt 22 Adviser: Professor Stefan Bathe This dissertation consists of four chapters... Chapter 1 Chapter 2 Chapter 3 Chapter 4

₂₉ Contents

30 List of Tables

11 List of Figures

- 32 Chapter 1
- 33 Literature Review

- 34 1.1 Jets Definitions
- 35 1.2 Jet Substucure Measurements
- 36 1.3 N-Point Energy Correlator

Part I

Hardware: The Detector and Simulations

- 40 Chapter 2
- 41 RHIC and BNL

- $_{\tiny 42}$ Chapter 3
- The sPHENIX detector

- 4 Chapter 4
- Monte Carlo Simulations

 $_{46}$ Chapter 5

⁴⁷ Determining Backgrounds and Errors

Part II

Technicalities: The finer points of theory and computing

- 51 Chapter 6
- 52 The Energy Correlator and the
- 53 primary vertex

54 Chapter 7

55 Jets in Vacuum and the PDF

56 7.1 Jet Identification Algorithms

- As discused in chapter 1, there are a variety of jet finding algorithms that prioritize different
- theoretical aspacts of the underlying physics while being experimentally realizable [1] [2].
- In general, a jet identification algorithm needs to be IRC safe. That is, the jet object
- 60 needs to display invariance in the Infrared (IR) and Collinear regimes, managing real-virtual
- cancellation and keeping results meaningful for emmission and splitting respectively.

 $_{62}$ Chapter 8

 $_{63}$ So exactly how intelligent is AI

- $_{\scriptscriptstyle 64}$ Chapter 9
- ⁶⁵ Proof Solving and Validation as
- G Quality Control Mechanisms

Part III

Experimental Output: The Main

Event

To Chapter 10

⁷¹ So is sPHENIX actually working?

72 Chapter 11

⁷³ Measuring the Energy Correlator

- T4 Chapter 12
- The Power of the ENC: α_s at the few
- GeV scale

Thapter 13

⁷⁸ Event-by-Event distinguishing

- ⁷⁹ Chapter 14
- **Comparison** is the Theft of Joy: What
- a does the LHC say, and how about
- STAR?

SChapter 15

Entaglement and other Lofty Goals

Part IV

Wrapping it all up

- ST Chapter 16
- [∞] Observable prospects for Run 25 and
- * the EIC

- [∞] Chapter 17
- n Remaining Questions

- $_{92}$ Chapter 18
- 33 Implementation and application for
- ₉₄ the remaining sPHENIX data

Bibliography

- Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, "Better jet clustering algorithms", JHEP 9708:001,1997 1997, 001–001 (1997).
- ²R. Atkin, "Review of jet reconstruction algorithms", Journal of Physics: Conference Series
 645, 012008 (2015).