Internal Trade in India: Patterns and Determinants

ISI Annual Conference on Economic Growth and Development 2021

Sankalp Sharma¹ Haripriya Enamundram² Prerna Pandey²

¹Development Data Lab / Madras School of Economics

²Madras School of Economics

December 21, 2021

Motivation

- Vast scholarship on India's foreign trade patterns but sporadic research on internal trade flows
- Poor data availability for internal trade flows:
 - No publicly available data for goods transported by roads
 - Highly aggregated
- Limited understanding of internal trade drivers despite large variations in geographic units that trade with each other
- Trade flows intimately linked with trade barriers (Van Leemput (2021)) and costs (Abeberese and Chen (2021)) → important implications for local economic development

Context: Rising Trade within India

- India handles ~4.6 billion tonnes of goods each year
 → total value of 950k cr.
- Policy push to improve logistics performance:
 - Development of Dedicated Freight Corridor
 - Build-out of road infrastructure projects —> Bharatmala, national highway expansion
 - Capacity augmentation of waterways: Sagar Mala, Jal Vikas Marg Project

Preview of Findings

- Internal trade within India's borders is becoming spatially concentrated

 → fewer states are trading more
- Product basket also becoming concentrated over time: Bilateral trade flows dominated by few commodities
- Product concentration matters: Key determinant of how much states trade with each other

Data

5/19

Overall Trends

- Railway dominant mode of transport
- Total trade volume: 600M tonnes in 2013-14, 770M tonnes in 2018-19 (28.3% increase in 5 years)
- 760M tonnes in 2019-20 (1.3% decline in 1 year)

Flow of Goods by Railways and Air

Domestic Trade by Railways and Air (2018)

Source: DGCIS • Figures in million tonnes

Figure: Sankey diagram depicting flow of goods by Railways and Air in 2018

Spatial Concentration

- Fewer states are trading more
- 2013: 24 trading partners accounted for 50% of all trade flows

 → down to 20 partners in 2018-19; 19 in 2019-20

Product Concentration

 Measure of product concentration: Herfindahl-Hirschman Index

$$H_{ij} = \sum_{k=1}^{K} (s_{ij})_{k}^{2} \in [0, 1]$$

- Leverage ITCHS codes to construct H-Index measure for each bilateral trading partner
- $\overline{H_{ij}}$ in 2013: 0.24; $\overline{H_{ij}}$ in 2018: 0.26; $\overline{H_{ij}}$ in 2019: 0.27
- Top commodities traded: Iron ore (OR → WB), Coal (JH → WB), Cement (MP → UP)

Determinants of Trade: Gravity Model

- Structural gravity model in a partial equilibrium framework
- Consumer preferences represented by a CES utility function ((Novy (2013), Behrens et al. (2014), Arkolakis et al. (2012))

Comparison

Standard Model	Structural Model
$Y_{ij} = C \frac{X_i X_j}{t_{ij}}$	$Y_{ij} = \frac{X_i E_j}{X} \cdot \frac{1}{d_{ij}}$

where,

- Y_{ij} = trade flows from exporter state i to destination state j
- t_{ij} = trade cost term (barriers); d_{ij} = Distance between state i and j
- X_i and E_j = sizes (value of output) of state i and state j respectively

Empirical Strategy

 We augment the reduced-form gravity model with a panel structure and additional covariates

$$\underbrace{\mathbf{Y}_{ijt}}_{\text{otal trade volume in year t}} = \alpha_i + \underbrace{\mathbf{X}_{it}\beta_1}_{\text{Output of Exporter}} + \underbrace{\mathbf{E}_{jt}\beta_2}_{\text{output of Importer in year t}} + \underbrace{\mathbf{Z}'_{ijt}\gamma}_{\text{Time-varying covariates}} + \underbrace{\mathbf{B}'_{ij}\omega}_{\text{Time-invariant covariates}} + C_{ij} + U_{ijt}$$

 To account for zero-trade flows: Inverse Hyperbolic Sine Transformation (Bellamare (2020))

$$\tilde{x} = \sinh^{-1}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$
 (1)

- Model Selection:
 - Breusch-Pagan LM Test: $P > \chi^2 = 0 \longrightarrow RE > POLS$ RE/POLS result
 - Durbin-Wu-Hausman Test: $P > \chi^2 = 0 \longrightarrow FE > RE (> POLS)$
 - Use Fixed Effects estimator to estimate parameters of the gravity model

Results: Fixed Effects Estimation

All values (except total commodities) are IHS transformed

Mechanism: Resource Curse

- States that trade more by railways and air (CH, OR, JH) are not economically prosperous
- States rich in resources end up worse off economically (Dhillon (2016))
- Any gains from internal trade don't translate into economic growth

From Volumes to Values: Agricultural Gravity Model

- Previous model only accounted for volume, not value of goods traded
- Agricultural goods:
 - Identifiable by ITCHS codes
 - Agricultural Price data: AgMarkNet database (agmarknet.gov.in)
 - Manually map ITCHS codes to AgMarkNet products
- Construct price difference measure a la Leemput (2021): average out daily modal prices, winsorize at 99th percentile; again average at year-level to get commodity prices

Results: FE Agricultural Gravity Model

Potential Explanations

- Efficiency gains from infrastructural development: Increased productivity — firms prioritize production of goods in which they are most efficient (Abeberese and Chen (2021))
- Quality hypothesis: States that specialize in the production of certain goods tend to export a higher average quality of the good (Alcala (2014))
 — higher demand
- Measurement Error: Non-bulk goods are increasingly transported by roads due to lower trade costs
- Declining trade barriers: Lower bureaucratic complexity, harmonized rates under IGST

Policy Recommendations

- Need for inclusionary internal trade policy: integrate remote geographies in internal trade
- Bigger push to transportation infrastructural development: Potential for increased efficiency gains and product specialization
- Improvements in data ecosystem:
 - Trade flow data for roads: E-Way Bills
 - Spatially and temporally disaggregated data: Trade is a highly local phenomenon

Thank you! Questions?

Results: Pooled OLS v/s Random Effects

► Empirical Strategy

