Midterm Review

2018-07-18

Throughout, let V, W be vector spaces over a field F and $T: V \to W$ a linear map.

- 1. Prove that the intersection of 2 subspaces is a subspace.
- 2. Let $V_1, V_2 \subseteq V$ be subspaces. Find necessary and sufficient conditions for $V_1 \cup V_2$ to be a subspace.
- 3. Let $V_1, V_2 \subseteq V$ be subspaces. Find necessary and sufficient conditions for $V_1 \setminus V_2$ to be a subspace.
- 4. Let $V_1, V_2 \subseteq V$ be subspaces. Find necessary and sufficient conditions for $V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$ to be a subspace.
- 5. Prove that $V_1 + V_2 := \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$ is the smallest subspace of V containing both V_1 and V_2 .
- 6. Prove that $V \times W$ is a vector space with the addition law and scalar multiplication law derived from the addition law and scalar multiplication law from V and W so

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2), \quad c(v_1, w_1) = (cv_1, cw_1).$$

7. Suppose V_1, V_2 are subspaces of V, prove

$$\dim V_1 + \dim V_2 - \dim V \ge \dim V_1 \cap \dim V_2.$$

- 8. Prove that $S = \{p \in P_5(F) : p'' + 2p' = 0\}$ is a subspace of $P_5(F)$. What is dim S?
- 9. Prove that $S = \{A \in M_n(F) : \operatorname{tr}(A) = 0\}$ is a subspace of $M_n(F)$. What is dim S?
- 10. Is the set of invertible $n \times n$ matrices a subspace?
- 11. Is the set of symmetric $n \times n$ matrices a subspace?
- 12. Is the set of 3×3 rank 2 matrices a subspace?
- 13. Suppose $T: V \to W$ and $S: W \to V$ are linear maps so that $S \circ T$ is an isomorphism. Prove that S is onto and T is one-to-one. Give an example where S is not one-to-one and T is not onto.
- 14. Prove that T is onto if and only if T(S) is spanning whenever S is spanning.
- 15. Prove that T is one-to-one if and only if T(S) is linearly independent whenever S is linearly independent.
- 16. Prove that T is an isomorphism if and only if T(B) is a basis for any basis B.
- 17. Suppose $\{u, v\}$ is a basis for V. Is $\{u v, u + v\}$ a basis for V?
- 18. Suppose $\{u, v, w\}$ is a basis for V. Is $\{u v, v w, w u\}$ a basis for V?
- 19. (Definitely not on exam) Let B be a basis for \mathbf{R} as a \mathbf{Q} vector space. Prove that B is uncountable.