Introducción a la Compilación: Parsing Descendente

Construyendo un parser descendente

Recordemos la gramática de expresiones "natural".

¿Qué problema fundamental tiene esta gramática?

. . .

No modela la precedencia de los operadores.

Precedencia de operadores

Resolvemos la precedencia poniendo un no-terminal por cada "nivel".

¿Y ahora qué problema tiene?

. . .

Asocia "incorrectamente" hacia la derecha.

Asociatividad

¿Por qué no cambiar entonces las producciones para asociar "correctamente"?

```
¿Esta sí?
```

. . .

No se puede *parsear* recursivamente.

Eliminando la recursión izquieda

Definición: Una gramática libre del contexto G=< S, N, T, P> se dice recursiva izquierda si y solo si $S \to^* Sw$ (donde $w \in \{N \cup T\}^*$ es una forma oracional).

Ejemplo (recursión directa):

```
S -> Sa | b
```

¿Se puede arreglar?

. . .

```
S -> bX
X -> aX | epsilon
```

¿Cómo queda la gramática de expresiones?

```
E -> T X

X -> + T X

| - T X
 | epsilon

T -> F Y

Y -> * F Y
 | / F Y
 | epsilon

F -> ( E )
 | i
```

¿Sigue mantienendo la asociatividad "correcta"?

Otra forma de llegar a lo mismo

¿Qué otro problema tiene al parsear?

. . .

Ambigüedad para escoger la siguiente producción.

Factorización a la izquierda

Definición: Diremos que una gramática $G = \langle S, N, T, P \rangle$ está factorizada a la izquierda si para todo par de producciones $A \to \theta_i w_i$ y $A \to \theta_j w_j$ se cumple $\theta_i \neq \theta_j$ ($\theta_i, \theta_j \in N \cup T$).

```
S -> cA | cB
A -> aA | a
B -> bB | b
```

Se puede arreglar, ¿verdad?

. . .

```
S -> cX
X -> A | B
A -> aA | a
B -> bB | b
```

Volviendo a la gramática de expresiones

Y luego es solo un pasito para llegar a la misma gramática...

Vamos a parsear

Por vagancia, usemos una gramática más sencilla...

```
E -> T X
X -> + E | epsilon
T -> i Y | ( E )
Y -> * T | epsilon
```

Y veamos cómo queda el parse de:

```
w = i * ( i + i )
```

Parsing final

```
E -> T X

-> i Y X

-> i * T X

-> i * (E) X

-> i * (T X) X

-> i * (i Y X) X

-> i * (i X) X

-> i * (i + E) X

-> i * (i + E) X

-> i * (i + i Y X) X

-> i * (i + i Y X) X

-> i * (i + i Y X) X

-> i * (i + i Y X) X

-> i * (i + i X) X
```

¿Qué hemos hecho en cada paso?

- ullet Saber si alguna de las producciones de X puede derivar en una forma oracional cuyo primer símbolo sea el terminal que toca generar.
- Si $X \to \epsilon$, saber si esta derivación puede potencialmente redundar en que "lo que sea que venga detrás" de X genere el terminal que toca.

Tratemos de definir formalmente estas ideas.

First y Follow

Definición: Sea G=< S, N, T, P> una gramática libre del contexto, $\alpha \in \{N \cup T\}^*$ una forma oracional, y $x \in T$ un terminal. Decimos que $x \in First(\alpha)$ si y solo si $\alpha \to^* x\beta$ (donde $\beta \in \{N \cup T\}^*$ es otra forma oracional).

Definición: Sea G=< S, N, T, P> una gramática libre del contexto, $X\in N$ un noterminal, y $x\in T$ un terminal. Decimos que $x\in Follow(X)$ si y solo si $S\to^*\alpha Xx\beta$ (donde $\alpha,\beta\in\{N\cup T\}^*$ son formas oracionales cualesquiera).

¿Para qué nos sirve esto?

Intuitivamente, los conjuntos First y Follow nos permiten decidir qué producción escoger. ¿Cómo?

. . .

- 1. X o W es una producción posible si y solo si el próximo token [t] pertenece al First(W)
- 2. $X o \epsilon$ es una producción posible si y solo si el próximo token ${ t t}$ pertenece al Follow(X)

. . .

Informalmente, llamaremos a una gramática, LL(1) si estos conjuntos nos permiten escoger siempre.

LL(1): Left-to-right Leftmost-derivation Lookahead 1

Calculando el First

- Si $X o W1|W2|\dots|Wn$ entonces por definición, $First(X) = \cup First(W_i)$.
- ullet Si $X
 ightharpoonup^* \epsilon$ entonces $\epsilon \in First(X)$.
- Si W = xZ donde x es un terminal, entonces trivialmente First(W) = x.
- Si W=YZ donde Y es un no-terminal y Z una forma oracional, entonces $First(Y)\subseteq First(W)$.
- Si W = YZ y $Y \to^* \epsilon$ entonces $First(Z) \subseteq First(W)$.

¡A calcular todos los First!

Calculando el Follow

- \$ pertenece al Follow(S).
- Por definición ϵ nunca pertenece al Follow(X) para todo X.
- Si X o WAZ siendo W y Z formas oracionales, y A un no-terminal cualquiera, entonces $First(Z) \epsilon \subseteq Follow(A)$.
- Si $X \to WAZ$ y $Z \to^* \epsilon$ (o igualmente ϵ está en el First(Z)), entonces $Follow(X) \subseteq Follow(A)$.

¡A calcular todos los Follow!

Construyendo la tabla LL(1)

- 1. Si X o W y $t \in First(W)$ entonces T[X,t] = X o W.
- 2. Si $X
 ightarrow \epsilon$ y $t \in Follow(X)$ entonces $T[X,t] = X
 ightarrow \epsilon$.

	i	+	*	()	\$
Е	ΤX			ΤX		
Т	iΥ			(E)		
Х		+ E			ϵ	
Υ		ϵ		* T		ϵ

Finalmente...

Definición: Sea G=< S, N, T, P> una gramática libre del contexto. G es LL(1) si y solo si para todo no-terminal $X\in N$, tal que $X\to W_1|W_2|\dots|W_n$ se cumple que:

- $First(Wi) \cap First(Wj) = \emptyset \ \forall i \neq j$
- $\epsilon \in First(Wi) => First(Wj) \cap Follow(X) = \emptyset \ \forall j \neq i$

Algunas conclusiones parciales

- Este es el primer tipo de *parser* de verdad, usado en la práctica, que se puede implementar a mano.
- Pero... al tener un algoritmo de construcción de parser, ya no hay que hacerlo a mano.
- Aunque la mayoría de las gramáticas interesantes no son LL(1), con un poco de esfuerzo casi siempre se pueden transformar.
- De todas formas, las gramáticas LL(1) son bastante feas...
- Si una gramática es ambigua, no es LL(1) (y el algoritmo dice dónde).
- Si una gramática no es LL(1), no tiene por qué ser ambigua (hay *parsers* más potentes).

. . .

Pregunta interesante: ¿Existen lenguajes no ambiguos para los que no existe ninguna gramática LL(1)?