

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta074

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea:$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze suma de numere complexe $(1+2i)^2 + (1-2i)^2$.
- (4p) b) Să se calculeze $\cos^2 \frac{\pi}{13} + \sin^2 \frac{\pi}{13}$.
- (4p) c) Să se determine $a \ge 0$, știind că vectorul $\vec{v} = (a+1) \cdot \vec{i} + a \cdot \vec{j}$ are modulul egal cu 5.
- (4p) d) Să se calculeze lungimea medianei din A a triunghiului ABC cu laturile AB = 5, BC = 6, CA = 5.
- (2p) e) Să se determine ecuația planului care trece prin punctul A(2, 1, 1) și este paralel cu planul de ecuație x + y + z = 2.
- (2p) f) Să se scrie ecuația tangentei la cercul de ecuație $x^2 + y^2 = 200$ în punctul T(10, 10).

SUBIECTUL II (30p)

- 1.
- (3p) a) Să se determine numărul soluțiilor întregi ale inecuației $x^2 5x + 6 \le 0$.
- (3p) **b**) Să se calculeze $\hat{1} \cdot \hat{2} + \hat{3} \cdot \hat{4} + \hat{5} \cdot \hat{6}$ în inelul \mathbf{Z}_{12} .
- (3p) c) Să se arate că $\log_2 16 + \log_3 \sqrt{81}$ este un număr natural.
- (3p) d) Să se afle câte numere de forma \overline{abc} există, știind că $a, b, c \in \{1, 2, 3\}$.
- (3p) e) Să se determine probabilitatea ca un element din \mathbb{Z}_8 să fie soluție a ecuației $\hat{x}^4 = \hat{1}$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = xe^{-x}$.
- (3p) a) Să se calculeze $\lim_{x\to\infty} f(x)$.
- (3p) b) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) c) Să se arate că $e^x \ge ex$, $\forall x \in \mathbb{R}$.
- (3p) d) Să se determine punctele de inflexiune ale funcției f.
- (3p) e) Să se calculeze $\int_{0}^{1} f(x) dx$.

SUBIECTUL III (20p)

Se consideră $G = \{A \in M_2(\mathbf{R}) \mid \det(A) \in \{-1,1\}\}, H = \{A \in M_2(\mathbf{C}) \mid \det(A) = 1\}$ și

$$\text{matricele } X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad Z = \begin{pmatrix} 0 & a \\ \frac{1}{a} & 0 \end{pmatrix}, \text{ cu } a \in \mathbf{R}^* \text{ si } I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (4p) a) Să se arate că $X,Z \in G, Y,I_2 \in H$.
- (4p) b) Să se demonstreze că dacă $A, B \in H$, atunci $A \cdot B \in H$. (Se știe că determinantul produsului a două matrice este egal cu produsul determinanților lor).
- (2p) c) Să se arate că orice matrice din mulțimea G este inversabilă și inversa ei este în G.
- (4p) d) Să se arate că $Z^2 = I_2$.
- (2p) e) Să se demonstreze că ecuația matriceală $U^2 = I_2$ are în mulțimea H numai soluțiile $U = I_2$ și $U = -I_2$.
- (2p) | f | Să se arate că ecuația matriceală $U^2 = I_2$ are o infinitate de soluții în mulțimea G.
- (2p) g) Să se arate că nu există o funcție bijectivă $f: G \to H$ astfel încât $f(A \cdot B) = f(A) \cdot f(B)$, pentru orice $A, B \in G$.

SUBIECTUL IV (20p)

Se consideră funcția $f:[0,\infty)\to \mathbf{R}$, $f(x)=e\cdot x^{n+1}-(n+2)\cdot a^n\cdot x+n\cdot a^{n+1}$, unde $a\geq 0$, $n\in \mathbf{N}^*$ și șirurile de numere reale $(a_n)_{n\geq 1}$ și $(g_n)_{n\geq 1}$,

cu
$$a_n \ge 0$$
, $g_n = (a_1 \cdot a_2 \cdot ... \cdot a_n)^{\frac{1}{n}}$, $\forall n \in \mathbb{N}^*$.

- (4p) a) Să se calculeze f(0) și $\lim_{x\to\infty} f(x)$.
- (4p) b) Să se calculeze f'(x), $x \in [0, \infty)$.
- (4p) c) Să se arate că ecuația f'(x) = 0 are o unică soluție în mulțimea $[0, \infty)$.

 Notăm cu t_n această soluție.
- (2p) d) Să se arate că $f(t_n) \ge 0$ și că $f(x) \ge 0$, $\forall x \ge 0$.
- (2p) e) Să se arate că $e \cdot a_{n+1} (n+2) \cdot g_{n+1} + n \cdot g_n \ge 0$, $\forall n \in \mathbb{N}^*$.
- (2p) f) Utilizând metoda inducției matematice, să se arate că $g_1 + g_2 + g_3 + ... + g_{n-1} + g_n + n \cdot g_n \le e(a_1 + a_2 + ... + a_n), \quad \forall n \in \mathbb{N}^*.$

g) Ştiind că $\lim_{n\to\infty} \frac{1+\frac{1}{\sqrt{2!}}+...+\frac{1}{\sqrt[n]{n!}}}{1+\frac{1}{2}+...+\frac{1}{n}} = e$, să se determine cel mai mic c>0 astfel încât

pentru orice şir $(x_n)_{n\geq 1}$, cu $x_n\geq 0$ şi orice $n\in \mathbb{N}^*$ să fie adevărată inegalitatea $\sum_{k=1}^n (x_1\cdot ...\cdot x_k)^{\frac{1}{k}} \leq c(x_1+...+x_n), \quad \forall n\in \mathbb{N}^*.$