which shows that the sequence $(\langle v, u_k \rangle)_{k \geq 0}$ is bounded. Since V is a separable Hilbert space, there is a countable family $(v_k)_{k \geq 0}$ of vectors $v_k \in V$ which is dense in V. Since the sequence $(\langle v_1, u_k \rangle)_{k \geq 0}$ is bounded (in \mathbb{R}), we can find a convergent subsequence $(\langle v_1, u_{i_1(j)} \rangle)_{j \geq 0}$. Similarly, since the sequence $(\langle v_2, u_{i_1(j)} \rangle)_{j \geq 0}$ is bounded, we can find a convergent subsequence $(\langle v_2, u_{i_2(j)} \rangle)_{j \geq 0}$, and in general, since the sequence $(\langle v_k, u_{i_{k-1}(j)} \rangle)_{j \geq 0}$ is bounded, we can find a convergent subsequence $(\langle v_k, u_{i_k(j)} \rangle)_{j \geq 0}$.

We obtain the following infinite array:

$$\begin{pmatrix} \langle v_1, u_{i_1(1)} \rangle & \langle v_2, u_{i_2(1)} \rangle & \cdots & \langle v_k, u_{i_k(1)} \rangle & \cdots \\ \langle v_1, u_{i_1(2)} \rangle & \langle v_2, u_{i_2(2)} \rangle & \cdots & \langle v_k, u_{i_k(2)} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle v_1, u_{i_1(k)} \rangle & \langle v_2, u_{i_2(k)} \rangle & \cdots & \langle v_k, u_{i_k(k)} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Consider the "diagonal" sequence $(w_{\ell})_{\ell>0}$ defined by

$$w_{\ell} = u_{i_{\ell}(\ell)}, \quad \ell \geq 0.$$

We are going to prove that for every $v \in V$, the sequence $(\langle v, w_{\ell} \rangle)_{\ell \geq 0}$ has a limit.

By construction, for every $k \geq 0$, the sequence $(\langle v_k, w_\ell \rangle)_{\ell \geq 0}$ has a limit, which is the limit of the sequence $(\langle v_k, u_{i_k(j)} \rangle)_{j \geq 0}$, since the sequence $(i_\ell(\ell))_{\ell \geq 0}$ is a subsequence of every sequence $(i_\ell(j))_{j \geq 0}$ for every $\ell \geq 0$.

Pick any $v \in V$ and any $\epsilon > 0$. Since $(v_k)_{k \geq 0}$ is dense in V, there is some v_k such that

$$||v - v_k|| \le \epsilon/(4C).$$

Then we have

$$\begin{aligned} |\langle v, w_{\ell} \rangle - \langle v, w_{m} \rangle| &= |\langle v, w_{\ell} - w_{m} \rangle| \\ &= |\langle v_{k} + v - v_{k}, w_{\ell} - w_{m} \rangle| \\ &= |\langle v_{k}, w_{\ell} - w_{m} \rangle + \langle v - v_{k}, w_{\ell} - w_{m} \rangle| \\ &\leq |\langle v_{k}, w_{\ell} \rangle - \langle v_{k}, w_{m} \rangle| + |\langle v - v_{k}, w_{\ell} - w_{m} \rangle|. \end{aligned}$$

By Cauchy–Schwarz and since $||w_{\ell} - w_m|| \le ||w_{\ell}|| + ||w_m|| \le C + C = 2C$,

$$|\langle v - v_k, w_\ell - w_m \rangle| \le ||v - v_k|| ||w_\ell - w_m|| \le (\epsilon/(4C))2C = \epsilon/2,$$

SO

$$|\langle v, w_{\ell} \rangle - \langle v, w_{m} \rangle| \le |\langle v_{k}, w_{\ell} - w_{m} \rangle| + \epsilon/2.$$

With the element v_k held fixed, by a previous argument the sequence $(\langle v_k, w_\ell \rangle)_{\ell \geq 0}$ converges, so it is a Cauchy sequence. Consequently there is some ℓ_0 (depending on ϵ and v_k) such that

$$|\langle v_k, w_\ell \rangle - \langle v_k, w_m \rangle| \le \epsilon/2$$
 for all $\ell, m \ge \ell_0$,