ECSE 325 Lab 3 Report

Group 06

 Adrian Wang
 260769387

 Irene Ma
 260776283

 Xiangyun Wang
 260771591

1. Circuit Function Description

This circuit describes and analyses the remaining parts of the Hash Core Logic. The 2 to 1 multiplexers A, B, C with A_i, B_i, C_i are connected to registers A, B, C. Register A is connected to the SIG0 operation and B, C are connected to the MAJ operation. The 2 to 1 multiplexers E, F, G with E_i, F_i, G_i are connected to registers E, F, G. Register E is connected to SIG1 operation and E, F are connected to the CH operation. The output of SIG0, MAJ, register D, SIG1, CH, Kt_i, Wt_i and register H are summed together as a_0. The output of SIG1, CH, register D, register H and Kt_i, Wt_i are summed together as e_0. The next register state is updated according to LD. next_A <= unsigned(A_i) when LD = '1' else a_0; next_E <= unsigned(B_i) when LD = '1' else reg_A; and etc.

 $\textbf{List of inputs} \hbox{:} \ \, A_o,\, B_o,\, C_o,\, D_o,\, E_o,\, F_o,\, G_o,\, H_o$

 $A_i,\,B_i,\,C_i,\,D_i,\,E_i,\,F_i,\,G_i,\,H_i$

Kt_i, Wt_i LD, CLK

List of outputs: A_o, B_o, C_o, D_o, E_o, F_o, G_o, H_o

GV_SHA256 Hash Core Logic

2. Flow Summary and Chip Planner Layout

2.1. Compilation result with 6 ns period

2.2. Compilation result with 8 ns period

3. Timing analyses Summary

When setting the clock period at 6 ns, as shown in the figure below, two slow models did not pass. The worst-case setup time slack happens with the slow 1100 mV 0C Model which is - 1.252. The other timing analyses results are filled in the figure below.

Slow 1100mV 85C Model
 Slow 1100mV 0C Model
 Fast 1100mV 85C Model
 Fast 1100mV 0C Model

Requested <i>Fmax</i> =166 MHz	
Fast 1100mV 0C Model <i>Hold</i> Slack Value = 0.125	
Slow 1100mV 85C Model <i>Setup</i> Slack Value = -1.070	
Slow 1100mV 85C Model <i>Fmax</i> = 141.44 MHz	

The worst failing paths are listed in the figure below.

Ti	ming C	losure Recommendations				
S	ummary	/ [hide details]				
	_		s with a worst-case slack of -1.070 ns. Run p timing. For recommendations for any pa			
Top Failing Paths [hide details]						
	Slack	From	То	Recommendations		
1	-1.070	g06_Hash_Core:i1 reg_H[0]	g06_Hash_Core:i1 reg_A[29]	Report recommendations for this path		
,	-1.066	g06_Hash_Core:i1 reg_H[0]	g06_Hash_Core:i1 A[29]~DUPLICATE	Report recommendations for this path		
_						
	-1.045	g06_Hash_Core:i1 reg_H[2]	g06_Hash_Core:i1 reg_A[29]	Report recommendations for this path		
3			g06_Hash_Core:i1 reg_A[29] g06_Hash_Core:i1 A[29]~DUPLICATE			

At the beginning, the worst-case slack is even as low as -40, and the code is optimized by defining more temp signals and separating the additions. This is because the codes outside the process happen concurrently, and multilayers of addition or multiplication could add timing delay a lot. By avoiding additional dependencies in the code logic, the maximum parallelism can be ensured and when the constraint is loosening a little, all tests are expected to pass.

When the clock period is set to 8 ns, all models pass, and the critical information is filled in the figure below.

Requested <i>Fmax</i> =125 MHz
Fast 1100mV 0C Model <i>Hold</i> Slack Value = 0.123
Slow 1100mV 85C Model <i>Setup</i> Slack Value = 0.655
Slow 1100mV 85C Model <i>Fmax</i> = 136.15 MHz

4. Further Discussion about Hashes

The maximum clock rate achieved in the simulation is 136.15 MHz Since a 256-bit hash is created every 65 clock cycles, there are about 136.15 MHz / 65 = 2E6 hashes performed per second. For a single core the logic utilization is 208/32070 as shown in the flow summary before. This means that in theory, we could put around 32070/208 = 154 cores onto the FPGA. Assuming all of them could run at the same maximum clock rate, the total number of 308E6

hashes per second could be achieved with this FPGA. However, we should also notice that with only one core, the total pins utilization is already more than 50%. Besides, considering the physical and timing constraints such as memory of the FPGA, it is very unlikely that this number could be reached.