AMENDMENTS TO THE CLAIMS

Claim 1 (currently amended)

1. A fragrance precursor of formula I:

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{15}
 R^{15}
 R^{15}
 R^{14}
 R^{10}
 R^{10}
 R^{10}

wherein the dotted lines indicating one or two optional double bonds in the cyclic acetal,

that forms a fragrant ketone of formula II:

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

(II)

and a fragrant lactone of formula III

containing not more than 20 carbon atoms, wherein

 R^1 to R^5 represent independently H, $-NO_2$, linear or branched $C_1-C_6-alkyl$, $C_1-C_6-alkenyl$, $C_1-C_6-alkynyl$ or $C_1-C_4-alkoxy$,

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , and R^4 and R^5 may form together one or two aliphatic or aromatic rings, these rings may optionally contain linear or branched C_1 - C_4 -alkyl, C_1 - C_4 -alkenyl or C_1 - C_4 -alkynyl residues, and these rings and residues may comprise one or more oxygen atoms,

 R^6 and R^7 are independently H, linear or branched C_1 - C_6 -alkyl-, C_1 - C_6 -alkenyl, C_1 - C_6 -alkynyl, and R^6 or R^7 may form with either R^1 or R^5 a carbocyclic ring optionally substituted by an aliphatic residue,

n is either 0 or 1,

 R^8 to R^{15} are independently H, branched or linear C_1 - C_{15} -alkyl, C_1 - C_{15} -alkenyl, C_1 - C_{15} -alkynyl or C_1 - C_4 -alkoxy, they may form together one or more aliphatic or aromatic rings, these rings may optionally contain branched or linear C_1 - C_{10} -alkyl, C_1 - C_{10} -alkenyl or C_1 - C_{10} -alkynyl residues, and these rings and residues may comprise one or more oxygen atoms, or

 R^8 and R^9 together; R^{10} and R^{11} together; R^{12} and R^{13} together; or R^{14} and R^{15} together represent H, branched or linear C_1 - C_{15} -alkyl, C_1 - C_{15} -alkenyl, C_1 - C_{15} -alkynyl or C_1 - C_4 -alkoxy when the ring carbon atom supporting these groups is unsaturated

and with the proviso that fragrance precursors of formula (I) are excluded when:

- (1) the ring of the acetal is saturated, and n is 1, and all of R^8 to R^{15} are H, or
- (2) the ring of the acetal is saturated, and n is 1, and all of R^{10} to R^{15} are H and either R^{8} is C_{6} and R^{9} is H or R^{9} is C_{6} and C_{6} and C_{6} is H.

Claim 2 (original)

2. A fragrance precursor according to claim 1 wherein n is 0, one of the residues R^{11} to R^{15} is an aliphatic residue having 1 to 15 carbon atoms, and the other residues are H.

Claim 3 (original)

3. A fragrance precursor according to claim 1 wherein in formula I n is 0, R^{10} is an aliphatic residue having 1 to 15 carbon atoms and R^{11} to R^{15} are H.

Claim 4 (original)

4. A fragrance precursor according to claim 1 wherein in formula I n is 0, two or more of the residues R^{10} to R^{15} are aliphatic residues having 1 to 15 carbon atoms, and the other residues are H.

Claim 5 (original)

5. A fragrance precursor according to claim 1 wherein in formula I n is 0, and R^{10} and R^{11} are aliphatic residues having 1 to 10 carbon atoms.

Claim 6 (original)

6. A fragrance precursor according to claim 1 wherein in formula I n is 0, and at least two of the residues R¹⁰ to R¹⁵ are residues having 1 to 15 carbon atoms and form together one or more carbocyclic ring(s), which may optionally be substituted with one or more aliphatic residue(s) having 1 to 10 carbon atoms.

Claim 7 (original)

7. A fragrance precursor according to claim 1 wherein in formula I n is 0, and R^{10} and R^{11} are residues having 1 to 15 carbon atoms and form together a ring which may be further substituted with one or more aliphatic residues having 1 to 10 carbon atoms.

Claim 8 (original)

8. A fragrance precursor according to claim 1 wherein in formula I n is 1, one or more of the residues R^8 to R^{15} are an aliphatic residue having 1 to 15 carbon atoms, and the other residues are H.

Claim 9 (original)

9. A fragrance precursor according to claim 1 wherein in formula I n is 1, R^8 is an aliphatic residue having 1 to 15 carbon atoms, and R^9 to R^{15} are H.

Claim 10 (original)

10. A fragrance precursor according to claim 1, wherein in formula I n is 1, at least two of the residues R^8 to R^{15} are aliphatic and have 1 to 15 carbon atoms, and the other residues are H.

Claim 11 (original)

11. A fragrance precursor according to claim 1, wherein in formula I n is 1, and at least two of the residue R⁸ to R¹⁵ are residues having 1 to 15 carbon atoms and form together one or more carbocyclic ring(s), which may optionally be substituted with one or more aliphatic residues having 1 to 10 carbon atoms.

Claim 12 (original)

12. A fragrance precursor according to claim 1 wherein in formula I at least one of the residues R^6 and R^7 is H.

Claim 13 (original)

13. A fragrance precursor according to claim 1 wherein in formula I the residues R^6 and R^7 are H.

Claim 14 (original)

14. A fragrance precursor according to claim 1 wherein the residues R^6 and R^7 are H, and R^1 to R^5 represent independently H, $-NO_2$, linear or branched C_1-C_6 -alkyl, C_1-C_6 -alkenyl, C_1-C_6 -alkynyl or C_1-C_4 alkoxy.

Claim 15 (original)

15. A fragrance precursor according to claim 1 wherein in formula I the fragrant ketone of formula II is selected from 1-phenylethanone, 2,4-dimethylphenylethanone, 1-[4-(1,1-dimethylethyl)-2,6-dimethylphenyl]-ethanone, 1-(4-tert-butyl-3,5-dinitro-2,6-dimethyl)-ethanone and 1-(4-methoxyphenyl)-ethanone.

Claim 16 (original)

16. A fragrance precursor according to claim 1 wherein in formula I R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , and R^4 and R^5 , form together one or two aliphatic or aromatic rings which may optionally contain substituted or unsubstituted C_1 - C_4 -alkyl, C_1 - C_4 -alkynyl residues and may comprise one or more oxygen atoms.

Claim 17 (original)

17. A fragrance precursor according to claim 1 wherein the fragrant ketone of formula II is selected from the group consisting of 1-(2-naphtalenyl)-ethanone, 4-acetyl-6-tert-butyl-1,1-dimethyl-indan, 1-(5,6,7,8-tetrahydro-3',5',5',6',8',8'-hexamethyl-2-naphthalenyl)-ethanone, 1-(5,6,7,8-tetrahydro-3',5',5',8',8'-pentamethyl-2-naphthalenyl)-ethanone, 1-(5,6,7,8-tetrahydro-3'-ethyl-5',5',8',8'-tetramethyl-2-naphthalenyl)-ethanone, 1-(2,3-dihydro-1',1',2',3',3',6'-hexamethyl-1H-inden-5-yl-ethanone, 1-[2,3-dihydro-1',1',2',6'-tetramethyl-3-(1-methylethyl)-1H-inden-5-yl]-ethanone, 5-acetyl-1,1,2,3,3-pentamethyl-indane, 1-(5,6,7,8-tetrahydro-2-naphthalenyl)-ethanone.

Claim 18 (currently amended)

18. A compound of formula I:

$$R^{2}$$
 R^{1}
 R^{6}
 R^{7}
 R^{15}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

the dotted lines indicating one or two double bonds in the ring of the cyclic acetal, wherein

 R^1 to R^5 represent independently H, $-NO_2$, linear or branched C_1-C_6 -alkyl, C_1-C_6 -alkenyl, C_1-C_6 -alkynyl, or C_1-C_4 -alkoxy,

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , and R^4 and R^5 may form together one or two aliphatic or aromatic rings, these rings may optionally contain substituted or unsubstituted C_1 - C_4 -alkyl, C_1 - C_4 -alkenyl or C_1 - C_4 -alkynyl residues, and may comprise one or more oxygen atoms,

 R^6 and R^7 are independently H, linear or branched C_1 - C_6 -alkyl, C_1 - C_6 -alkenyl, C_1 - C_6 -alkynyl, and R^6 or R^7 may form with either R^1 or R^5 a substituted or unsubstituted carbocyclic ring,

n is either 0 or 1,

 R^8 to R^{15} are independently H, branched or linear C_1 - C_{15} -alkyl, C_1 - C_{15} -alkenyl, C_1 - C_{15} -alkynyl or C_1 - C_4 -alkoxy,they may form together one ore more aliphatic or aromatic rings, these rings may optionally contain branched or linear C_1 - C_{10} -alkyl, C_1 - C_{10} -alkenyl or C_1 - C_{10} -alkynyl residues, and the above rings and residues may comprise one or more oxygen atoms,

and the cyclic acetal portion of the compound of formula (I), represented by formula Ib:

--- the lactone of formula III

which contains not more than 20 carbon atoms.

Claim 19 (currently amended)

19. A compound of formula Ia: formula I:

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{15}
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{10}

wherein

the ring of the acetal is saturated,

 R^1 to R^5 represent independently H, $-NO_2$, linear or branched C_1-C_6 -alkyl, C_1-C_6 -alkenyl, C_1-C_6 -alkynyl, or C_1-C_4 -alkoxy,

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 and R^4 , and R^5 may form together one or two aliphatic or aromatic rings, these rings may optionally contain substituted or unsubstituted C_1 - C_4 -alkyl, C_1 - C_4 -alkenyl or C_1 - C_4 -alkynyl residues, and may comprise one or more oxygen atoms,

 R^6 and R^7 are independently H, linear or branched $C_1\text{-}C_6\text{-}alkyl$, $C_1\text{-}C_6\text{-}alkenyl$, $C_1\text{-}C_6\text{-}alkynyl$, and R^6 or R^7 may form with either R^1 or R^5 a substituted or unsubstituted carbocyclic ring,

n is 0,

 R^8 to R^{15} are independently H, branched or linear C_1 - C_{15} -alkyl, C_1 - C_{15} -alkenyl, C_1 - C_{15} -alkynyl or C_1 - C_4 -alkoxy, they may form together one aliphatic or aromatic ring, and the ring may optionally contain branched or linear C_1 - C_{10} -alkyl, C_1 - C_{10} -alkenyl or C_1 - C_{10} -alkynyl residues, and the above rings and residues may comprise one or more oxygen atoms,

and the cyclic acetal portion of the compound of formula (I), represented by formula Ib:

the lactone of formula III

$$R^{15}$$
 R^{15} R^{13} R^{12} R^{13} R^{12} R^{13} R^{12} R^{13} R^{12}

which contains not more than 20 carbon atoms.

Claim 20 (currently amended)

20. A compound of formula Ia: formula I:

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{15}
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{10}

wherein

the ring of the acetal is saturated,

 R^1 to R^5 represent independently H, $-NO_2$, linear or branched C_1-C_6 -alkyl, C_1-C_6 -alkenyl, C_1-C_6 -alkynyl, or C_1-C_4 -alkoxy,

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , and R^4 and R^5 may form together one or two aliphatic or aromatic rings, these rings may optionally contain substituted or unsubstituted C_1 - C_4 -alkyl, C_1 - C_4 -alkenyl or C_1 - C_4 -alkynyl residues, and may comprise one or more oxygen atoms,

 R^6 and R^7 are independently H, linear or branched C_1 - C_6 -alkyl, C_1 - C_6 -alkenyl, C_1 - C_6 -alkynyl, and R^6 or R^7 may form with either R^1 or R^5 a substituted or unsubstituted carbocyclic ring,

n is 1,

 R^8 to R^{15} are independently H, branched or linear $C_1\text{-}C_{15}\text{-}alkyl$, $C_1\text{-}C_{15}\text{-}alkynyl$ or $C_1\text{-}C_4\text{-}alkoxy$, they may form together one or more aliphatic or aromatic rings, these rings may optionally contain branched or linear $C_1\text{-}C_{10}\text{-}alkyl$, $C_1\text{-}C_{10}\text{-}alkenyl$ or $C_1\text{-}C_{10}\text{-}alkynyl$ residues, and the above rings and residues may comprise one or more oxygen atoms,

with the proviso that compounds

wherein

all of R⁸ to R¹⁵ are H,

or

all of \mbox{R}^{10} to \mbox{R}^{15} are H and either \mbox{R}^{8} is C_{6} and \mbox{R}^{9} is H or \mbox{R}^{9} is C_{6} and \mbox{R}^{8} is H

are excluded,

and the cyclic acetal portion of the compound of formula (I), represented by formula Ib:

the lactone of formula III

$$R_{R_{13}}^{15}$$
 $R_{R_{13}}^{10}$ $R_{R_{13}}^{10}$ $R_{R_{13}}^{10}$ $R_{R_{13}}^{10}$ $R_{R_{13}}^{10}$

which contains not more than 20 carbon atoms.

Claim 21 (currently amended)

21. A perfumed product comprising the fragrance precursor of claim

1 a fragrance precursor of formula I:

wherein the dotted lines indicating one or two optional double bonds in the cyclic acetal,

- that forms a fragrant ketone of formula II:

$$\begin{array}{c|c}
R^1 & O \\
\hline
R^2 & R^5 \\
\hline
R^3 & R^6
\end{array}$$
(II)

and a fragrant lactone of formula III

-- containing not more than 20 carbon atoms,

---wherein

 R^{1} to R^{5} -represent independently H, NO₂, linear or branched C_{1} - C_{6} -alkyl, C_{1} - C_{6} -alkenyl, C_{1} - C_{6} -alkynyl or C_{1} - C_{4} -alkoxy,

 R^1 -and R^2 , R^2 -and R^3 , R^3 -and R^4 , and R^4 -and R^5 -may form together one or two aliphatic or aromatic rings, these rings may optionally contain linear or branched C_1 - C_4 -alkyl, C_1 - C_4 -alkenyl or C_1 - C_4 -alkynyl residues, and these rings and residues may comprise one or more oxygen atoms,

 R^{6-} and R^{7-} are independently H, linear or branched C_{1} - C_{6} -alkyl-, C_{1} - C_{6} -alkenyl, C_{1} - C_{6} -alkynyl, and R^{6} -or R^{7-} may form with either R^{1-} or R^{5-} a carbocyclic ring optionally substituted by an aliphatic residue,

n is either 0 or 1,

 R^8 -to R^{15} are independently-H, branched or linear C_1 - C_{15} -alkyl, C_1 - C_{15} -alkenyl, C_1 - C_{15} -alkynyl-or- C_1 - C_4 -alkoxy, they may form together one or more aliphatic or aromatic rings, these rings may optionally contain branched or linear C_1 - C_{10} -alkyl, C_1 - C_{10} -alkynyl residues, and these rings and residues may comprise one or more oxygen atoms.

Claim 22 (original)

22. A perfumed product according to claim 21 wherein the perfumed product is selected from the group consisting of laundry compositions, cleaning products, body care products, and personal care products.

Claim 23 (currently amended)

23. A process for providing a fragrance to a substrate comprising:

(a) treating a substrate with the perfumed product of claim

21 a perfumed product comprising a fragrance precursor of formula I:

the dotted lines indicating one or two optional double bonds in the cyclic acetal,

---wherein

 R^{1} to R^{5} represent independently H, NO_{2} , linear or branched C_{1} - C_{6} -alkyl, C_{1} - C_{6} -alkenyl, C_{1} - C_{2} - C_{3} - C_{4} -alkenyl,

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , and R^4 and R^5 may form together one or two aliphatic or aromatic rings, these rings may optionally contain linear or branched C_1 C_4 alkynyl residues, and these rings and residues may comprise one or more oxygen atoms,

 R^6 -and R^7 -are independently H, linear or branched C_1 - C_6 -alkyl, C_1 - C_6 -alkenyl, C_1 - C_6 -alkynyl, and R^6 -or R^7 -may-form with-either R^1 -or R^5 -a carbocyclic ring optionally substituted by an aliphatic residue,

n is either 0 or 1,

- R⁸-to R¹⁵ are independently H, branched or linear C₁-C₁₅-alkyl, C₁-C₁₅-alkenyl, C₁-C₁₅-alkynyl or C₁-C₄-alkoxy, they may form together one or more aliphatic or aromatic rings, these rings may optionally contain branched or linear C₁-C₁₀-alkyl, C₁-C₁₀-alkenyl or C₁-C₁₀-alkynyl residues, and these rings and residues may comprise one or more oxygen atoms; and
 - (b) allowing the compound of formula I to be cleaved to form a fragrant ketone of formula II:

$$R^2$$
 R^3
 R^4
 R^5
 R^6
(III)

and a fragrant lactone of formula III

containing not more than 20 carbon atoms.

Claim 24 (original)

24. A process according to claim 23 wherein the compound of formula I is cleaved by exposure to light.

Claim 25 (currently amended)

25. A process for providing a perfumed product comprising:

(a) forming a mixture by combining a base material with a fragrance precursor of claim 1 compound according to formula
(I):

wherein the dotted lines indicating one or two optional double bonds in the cyclic acetal,

- that forms a fragrant ketone of formula II:

$$\begin{array}{c|c}
R^1 & O \\
\hline
R^2 & R^7 \\
\hline
R^3 & R^5 & R^6
\end{array}$$
(II)

and a fragrant lactone of formula III

-- containing not more than 20 carbon atoms,

---wherein

 R^{1} -to- R^{5} -represent-independently H, NO₂, linear-or branched C_{1} - C_{6} -alkyl, C_{1} - C_{6} -alkenyl, C_{1} - C_{1} - C_{2} - C_{3} - C_{4} -alkenyl, C_{1} - C_{2} - C_{3} - C_{4} -alkenyl, C_{1} - C_{5} -C

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , and R^4 and R^5 may form together one or two aliphatic or aromatic rings, these rings may optionally contain linear or branched C_1 C_4 alkyl, C_1 C_4 alkenyl or C_1 C_4 alkynyl residues, and these rings and residues may comprise one or more oxygen atoms,

 R^6 and R^7 are independently H, linear or branched C_1 — C_6 —alkyl—, C_1 — C_6 —alkenyl, C_1 — C_6 —alkynyl, and R^6 —or R^7 —may form with either R^1 —or R^5 —a carbocyclic—ring optionally substituted by an aliphatic residue,

n is either 0 or 1,

 R^8 -to R^{15} -are independently H, branched or linear C_1 - C_{15} -alkyl, C_1 - C_{15} -alkenyl, C_1 - C_{15} -alkynyl or C_1 - C_4 -alkoxy, they may form together one or more aliphatic or aromatic rings, these-rings may optionally contain branched or linear C_1 - C_{10} -alkyl, C_1 - C_{10} -alkenyl or C_1 - C_{10} -alkynyl residues, and these rings and residues may comprise one or more oxygen atoms; and

(b) forming a perfumed product from the mixture.

Claim 26 (original)

26. A process according to claim 25 wherein the perfumed product is selected from the group consisting of laundry compositions, cleaning products, body care products, and personal care products.