3.6.8
$$\frac{\chi^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$
. Deriverer begge sider:

 $\frac{2x}{a^{2}} + \frac{2yy'(x)}{b^{2}} = 0$ Sett inn (X_{0}, y_{0})
 $\frac{2x_{0}}{a^{2}} + \frac{2y_{0}y'(X_{0})}{b^{2}} = 0$ Sett inn (X_{0}, y_{0})

Tangent: $y - y_{0} = y'(X_{0})(X - X_{0}) = -\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}(X - X_{0})$
 $y = -\frac{b^{2}}{a^{2}} \frac{x_{0}x}{y_{0}} + \frac{b^{2}x_{0}^{2}}{a^{2}y_{0}} + y_{0}$
 $= -\frac{b^{2}}{a^{2}} \frac{x_{0}x}{y_{0}} + \frac{b^{2}}{y_{0}}$
 $= -\frac{b^{2}}{a^{2}} \frac{x_{0}x}{y_{0}} + \frac{b^{2}}{y_{0}}$
 $y + \frac{b^{2}}{a^{2}} \frac{x_{0}x}{y_{0}} = \frac{b^{2}}{y_{0}} \implies \frac{yy_{0}}{b^{2}} + \frac{xx_{0}}{a^{2}} = 1$

3.6.9
$$y'' = 4ax$$
, so $pa''(x), y_o)$ (ext: $2yy'(x) = 4a$)

 $y = \pm \sqrt{4ax}$. And $forest$ $y_o > 0$, $a > O$ ($\Rightarrow x_o > 0$)

 $\Rightarrow y_o = \sqrt{4ax_o}$ $\Rightarrow y_o'(x_o) = \frac{4a}{2\sqrt{4ax_o}} = \frac{2a}{\sqrt{4ax_o}}$

Tongert: $y - y_o = \frac{2a}{\sqrt{4ax_o}}(x - x_o)$
 $y = \frac{2a}{\sqrt{4ax_o}}(x - x_o) + \sqrt{4ax_o}$

Shijoring $x - abce$: Soft in $y = 0$
 $\frac{2a}{\sqrt{4ax_o}}(x - x_o) + \sqrt{4ax_o} = 0$
 $\frac{2a}{\sqrt{4ax_o}}(x - x_o) + \sqrt{4ax_o} = 0$
 $x - x_o = -\frac{4ax_o}{2a} = -2x_o$
 $x - x_o = -2x_o$
 $\Rightarrow (-x_o, 0)$ or skijoringspunkt med $x - akce$

De patre tilfellene $(a < 0, y < 0)$ for $y = 0$

Samme mate

For hvilken Q er 1PQ/+/QF/ minst? IImed likhet his og bare hvis PQ, QL ligger på Samme vette linje.
V: mi velge Q slik at den ligger på normalen nef på L.

3.6.6
$$x^2+4x+2y-4=0$$
 $(y^2=\pm 4ax)$ begins $(x^2+4x+4+2y-4-4)=0$ $(x+2)^2+2y-8=0$ $(x+2)^2=-2y+8=-2(y-4)=-4\pm(y-4)$ parabel med toppunkt $(-2,4)$, brennidde \pm hulning vedover $(-2,4)+(0,-\frac{1}{2})=(-2,\frac{7}{2})$ brennpunkt:

3.7.1

a)
$$f(x,g) = 4x^2 + 3y^2$$

nivahurer: $4x^2 + 3y^2 = c \Leftrightarrow \frac{x^2}{4} + \frac{y^2}{5} = 1$
 $\frac{x^2}{(\frac{y^2}{2})^2} + \frac{y^2}{(\frac{y^2}{3})^2} = 1$

Short haliakese: $\sqrt{\frac{x^2}{3}}$

(Me halvakese: $\sqrt{\frac{x^2}{2}}$
 $c < 0$: Ingen punkter i nivakuren

 $c = 0$: nivakuren er $(0,0)$

Shjoring med $x \ge -$ planet: $y = 0 \Rightarrow \frac{4x^2 - c = z}{3y^2 - c = z}$

Skjoring med $y \ne -$ planet: $x = 0 \Rightarrow \frac{3y^2 - c = z}{3y^2 - c = z}$
 $\frac{2-3y^2}{2-4x^2}$
 $\frac{2-3y^2}{2-4x^2}$
 $\frac{2-3y^2}{2-4x^2}$

x2-y= (nc

y= x2-6c

C≤O: Inger purter

Occ1: lnc <09-lac>0

C31 : 60 70 -6000

Skjæringmed xz-planet: y=0Skjæringmed yz-planet: x=0 $f(x_1y)=e^{x^2-y}$ $y=0 \Rightarrow 2$ y=0 => 2=ex x=0 =2=e=9

3.7.2 e) f(x,y) = ln(xy) = c $xy = e^c \Rightarrow y = \frac{e^c}{x}$ shy oring the $x \ge -ahsen$ y = 0 er ikke i hx = 0 er ikke i h

3.7.3e)
$$f(x,y) = e^{xy} = c \qquad xy = ln c \qquad y = \frac{ln c}{x}$$

$$= e^{r\cos\theta r\sin\theta} = e^{r^2\sin\theta\cos\theta}$$

$$= e^{r^2\sin\theta}$$

$$= e^{r^2\sin\theta}$$