

BEST AVAILABLE COPY**POLARIZATION PLATE AND LIQUID CRYSTAL DISPLAY DEVICE**

Publication number: JP4371903

Publication date: 1992-12-24

Inventor: UMEMOTO SEIJI; YAMAMOTO SUGURU; NAKANO SHUSAKU; FUJIMURA YASUO

Applicant: NITTO DENKO CORP

Classification:

- **International:** G02B5/30; G02F1/1335; G02B5/30; G02F1/13; (IPC1-7): G02B5/30; G02F1/1335

- **european:**

Application number: JP19910174616 19910619

Priority number(s): JP19910174616 19910619

Report a data error here

Abstract of JP4371903

PURPOSE: To obtain the polarization plate which is hardly changed in polarization performance with inclination and to obtain a wide visual field angle by using a sealing film having the double refractiveness of a specific phase difference. **CONSTITUTION:** The sealing film 1 exhibiting 200 to 300nm double refractiveness of the phase difference is adhered to a polarizer 3. The phase advance axis of the sealing film 1 is disposed in parallel with the absorption axis of the polarizer 3. The phase difference is based on the product of the difference in the refractive index between the phase delay axis direction and phase advance axis direction of the sealing film 1 and the thickness of the sealing film 1. The sealing film 1 having the phase difference is obtd. as a double refractive film subjected to a uniaxial, biaxial or other axial stretch treatment. Namely, the phenomenon that the phase advance axis of even the sealing film 1 having the double refractiveness is changed by the angle of inclination is utilized and a combination that this change offsets the change in the transmission axis of the polarizer 3 is adopted to compensate the deviation in the transmission axis of the polarizer 3 by the angle of inclination.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-371903

(43)公開日 平成4年(1992)12月24日

(51) Int.Cl. ⁵	識別記号	府内整理番号	F I	技術表示箇所
G 02 B 5/30		7724-2K		
G 02 F 1/1335	5 1 0	7724-2K		

審査請求 未請求 請求項の数3(全4頁)

(21)出願番号	特願平3-174616	(71)出願人	000003964 日東电工株式会社 大阪府茨木市下穂積1丁目1番2号
(22)出願日	平成3年(1991)6月19日	(72)発明者	梅本 清司 大阪府茨木市下穂積1丁目1番2号 日東 电工株式会社内
		(72)発明者	山本 英 大阪府茨木市下穂積1丁目1番2号 日東 电工株式会社内
		(72)発明者	中野 秀作 大阪府茨木市下穂積1丁目1番2号 日東 电工株式会社内
		(74)代理人	弁理士 藤本 勉
			最終頁に続く

(54)【発明の名称】 偏光板及び液晶表示装置

(57)【要約】

【目的】方位角による偏光子の透過軸のズレが補償され
て、傾斜により偏向性能が変化しにくい偏光板、及び視
野角の広い液晶表示装置を得ること。

【構成】偏光子(3)に位相差が200～320nmの複
屈折性を示す封止フィルム(1)を接着してなり、その
封止フィルムの進相軸が偏光子の吸収軸に対して平行に
配置されてなる偏光板(4)、及びその偏光板を液晶セ
ルの少なくとも片側に配置してなる液晶表示装置。

1

2

【特許請求の範囲】

【請求項1】 偏光子に、位相差が200～320nmの複屈折性を示す封止フィルムを接着してなり、その封止フィルムの進相軸が偏光子の吸収軸に対して平行に配置されていることを特徴とする偏光板。

【請求項2】 封止フィルムが、その複屈折性における遅相軸方向、進相軸方向、及び厚さ方向の屈折率をそれぞれ n_x 、 n_y 、 n_z とした場合に、式： $Q = (n_x - n_z) / (n_y - n_z)$ で算出されるQ値が0.1～0.9のものである請求項1に記載の偏光板。

【請求項3】 請求項1に記載の偏光板を、液晶セルの少なくとも片側に配置してなることを特徴とする液晶表示装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、方位角による透過軸のズレを補償した偏光板、及びそれを用いた視野角の広さに優れる液晶表示装置に関する。

【0002】

【従来の技術】 画面の大型化や表示の高密度化など性能アップが著しい液晶ディスプレイにあって、視野角の狭さが依然として懸案のままであり、視野角の広い液晶表示装置を実現する偏光板が求められて久しい。従来、偏光板としては、二軸延伸トリアセチルセルロースフィルム等からなる等方性の、すなわち複屈折性を殆ど示さない封止フィルムを偏光子に接着したもののが知られていた。封止フィルムは、水分の侵入等を防止して偏光子の耐久性を向上させるためのものである。しかしながら前記したとおり、得られる液晶表示装置の視野角が狭い問題点があつた。

【0003】

【発明が解決しようとする課題】 本発明は、視野角の広い液晶表示装置を得ることができる偏光板の開発を課題とする。前記に鑑みて本発明者らは鋭意研究する中、偏光板の透過軸が視野角、特にその方位角によって変化し、これが液晶表示装置の視野角を狭くする原因であることを究明し、かかる問題を克服すべく更に研究を重ねて本発明をなすに至った。

【0004】

【課題を解決するための手段】 本発明は、偏光子に、位相差が200～320nmの複屈折性を示す封止フィルムを接着してなり、その封止フィルムの進相軸が偏光子の吸収軸に対して平行に配置されていることを特徴とする偏光板、及びその偏光板を、液晶セルの少なくとも片側に配置してなることを特徴とする液晶表示装置を提供するものである。

【0005】

【作用】 上記の構成により、方位角（傾斜角度）による偏光子の透過軸の変化を、封止フィルムによる位相差で補償することができる。すなわち、複屈折性の封止フィ

10

20

30

40

50

ルムにおいてもその進相軸が方位角によって変化することを利用して、その変化が偏光子の透過軸の変化を相殺する組合せとし、方位角による偏光子の透過軸のズレを補償する。

【0006】

【実施例】 図1に本発明の偏光板を例示した。1が封止フィルム、2が接着剤層、3が偏光子である。封止フィルム1には、200～320nmの位相差を有する複屈折性のものが用いられる。かかる位相差は、封止フィルムの複屈折性における遅相軸方向と進相軸方向との屈折率の差(Δn)と、封止フィルムの厚さ(d)との積($\Delta n \cdot d$)に基づく。

【0007】 位相差を有する封止フィルムは、例えば高分子フィルムを一軸、ないし二軸等で延伸処理してなる複屈折性フィルムなどとして得ることができる。また、複屈折性フィルムの積層体などとしても得ることができる。複屈折性フィルムを形成する高分子の種類については特に限定はないが、透明性に優れるものが好ましい。一般に用いられる高分子としては、例えばポリカーボネート、トリアセチルセルロース、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリアリレート、ポリイミドなどがあげられる。封止フィルムを種々のフィルムの積層体として形成する場合、その積層数について特に限定はないが、反射損の抑制等による透明性の点より少ないほど好ましい。

【0008】 本発明において好ましく用いられる封止フィルムは、その複屈折性における遅相軸方向、進相軸方向、及び厚さ方向の屈折率をそれぞれ n_x 、 n_y 、 n_z とした場合に、式： $Q = (n_x - n_z) / (n_y - n_z)$ で算出されるQ値(以下同じ)が、0.1～0.9、就中0.1～0.5のものである。

【0009】 かかるQ値を示す封止フィルム、就中、複屈折性フィルムの形成は、例えばポリカーボネートの如く正の複屈折性を示す高分子、すなわち分子の配向方向に遅相軸が表れるものを厚さ方向に電界を印加して配向を制御しつつ硬化させ、そのフィルムを延伸処理する方法などにより行うことができる。

【0010】 ちなみに前記において、正の複屈折性を示す高分子からなるフィルムでは完全一軸配向の場合、 n_x と n_z が等しくなってQ値が1となり、二軸配向の場合にはQ値が1より大きくなる。一方、ポリスチレンの如く負の複屈折性を示す高分子からなるフィルム、すなわち分子の配向方向に進相軸が表れるものでは完全一軸配向の場合、 n_x と n_z が等しくなってQ値が0となり、二軸配向の場合にはQ値が負(マイナス)となる。そのため、いずれの場合にも単層のフィルムとしては、視認性に優れる視野角の拡大に有効な補償効果を発現させにくい。

【0011】 すなわち、クロスニコルに配置した偏光子においてはその透過軸が傾斜軸(垂直立面からの傾き角

度)に対して垂直な方向に変化するが、前記した正の複屈折系の完全一軸配向フィルムではその進相軸の変化が偏光子の吸収軸の変化と逆方向となって複屈折による補償効果が現れない。また、正の複屈折系の二軸配向フィルムではその複屈折が逆効果となり、やはり補償効果が現れない。他方、負の複屈折系の完全一軸配向フィルムではその進相軸の変化と偏光子の吸収軸の変化がほぼ一致し、位相差による補償効果が発現しにくい。また負の複屈折系の二軸配向フィルムでは、その進相軸の変化が偏光子の吸収軸の変化より大きくなり、その複屈折が逆効果となる。

【0012】本発明においては適宜な偏光子を用いることができ、特に限定はない。一般には、ポリビニルアルコールの如き親水性高分子からなるフィルムをヨウ素の如き二色性染料で処理して延伸したものや、ポリ塩化ビニルの如きプラスチックフィルムを処理してポリエンを配向させたものなどからなる偏光フィルムが用いられる。

【0013】本発明の偏光板は、偏光子3に封止フィルム1をその進相軸が偏光子の吸収軸に対して平行となるよう接着したものである。封止フィルムは偏光子の両側に設ける方式が一般的であるが、これに限定されない。前記の進相軸と吸収軸の平行状態は、作業精度等の点より完全な平行状態を意味するものではないが、補償効果の点よりは交差角度が少ないほど好ましい。なおその場合の封止フィルムの進相軸、偏光子の吸収軸は正面(方位角: 0°)に基づく。

【0014】封止フィルム1と偏光子3の接着(2)は、例えば透明な接着剤、ないし粘着剤を用いて行うことができる。その接着剤等の種類については特に限定はない。偏光子や封止フィルムの光学特性の変化防止の点より、硬化や乾燥の際に高温のプロセスを要しないものが好ましく、長時間の硬化処理や乾燥時間を要しないものが望ましい。

【0015】本発明の液晶表示装置は、上記の偏光板を液晶セルの片側、又は両側に配置したものである。かかる液晶表示装置を図2に例示した。4が偏光板、5が液晶セルである。用いる液晶セルは任意である。例えば、薄膜トランジスタ型に代表されるアクティブラチクス駆動型のもの、ツイストネマチック型やスーパーツイ

10

20

30

40

トネマチック型に代表される単純マトリクス駆動型のものなどがあげられる。

【0016】実施例1

15kvの電界を印加しながら硬化させた後、155°Cで10%延伸させた一軸延伸ポリカーボネートフィルム(厚さ約50μm, n₁: 1.5869, n₂: 1.5824, n₃: 1.5858, Q値: 0.247)を、ポリビニルアルコールフィルムをヨウ素で染色したのち延伸処理してなる偏光子の両側にアクリル系粘着剤を介し接着して偏光板を得た。なお、一軸延伸ポリカーボネートフィルムはその進相軸(延伸軸に垂直な方向)が偏光子の吸収軸と平行になるよう配置した。

【0017】比較例1

封止フィルムを接着せずに実施例1の偏光子をそのまま偏光板として用いた。

【0018】比較例2

一軸延伸ポリカーボネートフィルムに代えて、二軸延伸トリアセチルセルロースフィルム(厚さ約80μm, n₁: 1.5303, n₂: 1.5302, n₃: 1.5295, Q値: 8.000)を用いたほかは、実施例1に準じて偏光板を得た。

【0019】比較例3

電界を印加せずに硬化させた後、155°Cで15%延伸させた一軸延伸ポリカーボネートフィルム(厚さ約50μm, n₁: 1.5890, n₂: 1.5834, n₃: 1.5826, Q値: 1.131)を用いたほかは、実施例1に準じて偏光板を得た。

【0020】評価試験

透過率の変化

実施例、比較例で得た偏光板を傾斜軸に対して45度傾けて置き、クロスニコルに配置した検光子に対する透過率の測定において、偏光板を光軸に対し60度傾斜させた場合における、傾斜させない場合に対する透過率の割合を求め、これを偏光性能の変化として評価した。従って、値が小さいほど偏光板の透過軸の変化に対する補償効果の大きいことを意味する。

【0021】前記の結果を表1に示した。なお、表1には偏光板に使用した封止フィルムの位相差(フィルム厚と屈折率差の積)を併記した。

【表1】

(4)

特開平4-371903

5

6

	位相差 (nm)	透過率の変化 (%)
実施例 1	226	0.102
比較例 1	0	0.551
比較例 2	8	1.589
比較例 3	281	2.692

【0022】視野角

ツイストネマチック型液晶セルの両側に、実施例 1 又は比較例 2 で得た偏光板を接着して表示装置を形成し、左右（水平）方向と上下（垂直）方向についてコントラスト比が 10 : 1 以上である範囲を調べた。

【0023】前記の結果、実施例 1 の偏光板を用いた液晶表示装置にあっては左右方向で +65 度から -60 度の範囲、上下方向で +35 度から -55 度の範囲であった。これに対し、比較例 2 の偏光板を用いた液晶表示装置にあっては左右方向で +55 度から -50 度の範囲、上下方向で +25 度から -40 度の範囲であった。

【0024】

【発明の効果】本発明によれば、封止フィルムに特定の位相差を示す複屈折性を有するものを用いたので、方位

角による偏光子の透過軸の変化を補償でき、傾斜によって偏向性能が変化しにくい偏光板を得ることができる。その結果、かかる偏光板を液晶セルに適用して良好なコントラストを示す視野角の広さに優れる液晶表示装置を得ることができる。

【図面の簡単な説明】

【図 1】偏光板の実施例の断面図。

【図 2】液晶表示装置の実施例の断面図。

20 【符号の説明】

1：封止フィルム

3：偏光子

4：偏光板

5：液晶セル

【図 1】

【図 2】

フロントページの続き

(72) 発明者 藤村 保夫

大阪府茨木市下穂積 1 丁目 1 番 2 号 日東
電工株式会社内