

Figure 1

Role of HWP1 in health of mice orally colonized with C. albicans.

1				
Number of mice given C. albicans strains of HWP1 type	II. HWP1 REVERTANT	3	total 7 11 4 4 5 0.05 compared to the heterozygote, P = .058 compared to the revertant. P < .05 compared to combined heterozygote and revertant groups. Survival differences between other groups were not significant.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
of mice given C. a	hwp1/hwp1* homozygote	9	11 zygote, P = .058 c jote and revertant	5 5 to the heterozygo s were not significa
Number	I. HWP1 HETEROZY GOTE	2	ompared to the hetero to combined heterosty were not significant.	5 0 5 mpared to individually between other groups
Health		iii not iii	total *P < 0.05 c compared t other group	ill Not ill total *P < .01 co
Mouse type		Beige nude		Epsilon 26

Figure 2

Figure 3

GGATCTTTCTTTTCATTTCCCTTAAAACCGATCAAGAAAGA
A DAATA A TTAADAA AAAAAAAAAAAAAAAAAAAAA
AATCAACTAAGCACGTTTGACAGTTAAAAAGTACGTTGTTGTTCCTCGTCTCGTCTAATTTCTTGTTGTCGTCTTAATTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTT
TO LO V V V V V V V V V V V V V V V V V V
AGAAATACAGGAAACCCTCCAAAAAAAAAATTTTGGACCTTACACGCACATAAATTGCGGATAAAATTGCGGAAAACTTGCCAATAAAATTGCGAAAAAAAA
A SACT CANDERS AND A ACT AND A ACT AND A ACT AND A A A A A A A A A A A A A A A A A A
TTGAAACATACGATATGTTATTCTTTTCATAACTGGAATATTTTTGCTTTTTTTAACATTATGAAAAAAAA
ATGAAAAGGTAAGAGTTGCCTAACCATTGAAAATAATAGGCTAAGGTTTTTCCTGATGCGTTTAACTAAAAAGGAAATAACAAAA
GTTATTAGCGATAACCTGCGTAAGGTGTCAACAAAATATATTTGCACGTTAGCTCTATAGAAAATATACAAACTAAATICCTTAA

GGAATTTCCTCTATATATAGGAAATCCCTCTCACAGTGAACTGAATTATCCATCTGAATTATCAGTCCACTAATTCCATCAA	AAAAATATTTGAAAAAACACATAACACTTTGAGTATGATAATATCAACTATTGACTTGTTTTGAAAGTAAAGAATCAAATTTTT	TCTAACTCGACTAATGCACTTTACATCAACTGGATGTTATTTGCATCTACTACTATAAGCTCAAAACAAATTTATCTTTCAAAAATG
		AAAAATATTTGAAAAAACACATAACACTTTGAGTATGATAATATCAACTATTGACTTGTTTTGAAAGTAAAGAATCAAATTTTT

99/

CAACTCTTGTAAAGTCCCTTTCTTTTCCCACTATTTTATCATTCTTGAAATATGTAATCAGAATAGTTTTTCAAAAAACTATAAAT
TATA box
CATTITGITICACTITITGITGCGACTITAATACCGITTITGCAACTICTCTTTGTATCACCTGTATCCGCCTTTTTTAACATAG
•
AACCTATAATAATAACCCTAATGGCTCACAACCGGGATAAGTTAGTT
Poull
ATTGTAAAAAGGGAGAGTTTTGGTAGGCTCATAATCGCTTATAATGTACCTCTAAAGGTAATCTAAAAAGGGAGAGTTTTGGTAGCTAAAAAAGGGAAAGGGAAAAAAAA
TTATAACAAGTCATCTATAATTCTTTGGATCCAAAAACAAGGAATTCGGAAATTCTTAAA

TTATAATTAACAAGTCATCTATAATTCTTTGGATCCAAAAACAAGGAATTCGGAAATTCTGACGATAAATGTCGACTCACAATTC

EcoRI

BamHI

AACGGTCAAAATAACCGGCTATTTTCAATTTCCATTCAACTTGTTTTCTCAACAATATCAAAACACAACAGGAATCTCCTATAGTC

ACTCGCTTTTAGTTTCGTCAATATG [SEQ ID. NO: 1]

Figure 4

Figure 5

GATTGTTTTCAATTTTGGGTTTTCAATATTATTGACAAGAGTCATTTTATTGAATATTTGT TTTGTTTACTACATTAAAGGTGATAGGTACTTTTAGTTTTTAAAAAATTGTTTTGTTCAAATT GTTTATCTTTTTCTTCTTCTTCTTCTTGCTTTGTTTTCTGTTTTCGGTTCATAGTTGATAGCTT TT<u>AATAAA</u>TACCCCTTTTTTTTACAATAGTTAGTTCTAAGCTTATTCAGTGGTTTAATTGG TAGAAAATGTGAGCTCTGTAGCTTATGGTATCTTCTATAGCAATATATTTAACTTGGACAT AGTTCATTATTCTGGACGCATGAAGGTGCAAAGTCAAAAAGTGAGAATATGCAAAGAGGT ${\tt AATTAGATTTCTGTCCTATTAATTAACAAAAAATC} \underline{{\tt TATATATA}} {\tt GACTGCAATATTTAATAC}$ CCCCCAAGTTTGATTCTATAATCCTTCGATTTCTATAAAGATATAACCATGAATCATGAGT AAATACCAAATAGATTAATAGTAGAATCTGTATGGTCGTGTAAAGCTGTTCATTAAAAAC ATAAAAGATTGAAAAATTATTAAACAAAACAACAAAACGGGAAACCGGAAACCTGAGAAA **AAGAAAGAAAGAA**GGAAAACTTTTGTTAAGATATTAAATTTTACGAAGCAAATTTAAAAT AATCTCTTTATTCCTTTCTTTTATTATTATTTACCCTTAATATAAAATGTCAAAACAAGA TCCACCTCCAGATTATACAAATAGGACATCAGATAATTATAACCCAGATACAACTGATAATCA TAATATTCCTCCACCTTTCACTACTCATCCTATAGAGGTTCATCCACCACCATTCTCCTCTTC TACTTCACCTAATATCCGTGTGCCAGCATATTTTCAAAATCAAACTACTTCAGGATGGACAAT AGTAATAAATAATCGATTTTGGACTGATGGATTCAGGATATTTGTTTCCGAAGATGCATCTAA TAAGTTTGATGCCTTCAAAAAAGTAAAAATCCCGAAATAATACAATTACAAGAACAAGGTA TTGGAGTACCGTTATTTAAAGCTGTCACGTCATATATTCCCTTAGCAACAAAATTTATAACGT TTAGAAGATATGTCCCTACTAATTTACATCCATTTGATATTGATAAAGATTATTATGATTATT GTATTGTTAAACGGAAATTACACGTTGGATATGATAGTTATATTTTGAATTTACTCCTGATC GAGAATTCGGATCC [SEQ ID. NO: 4]

Figure 6

Figure 7

Figure 8

Integration of pHWP1GFP1 into the chromosome of *C.albicans* at the enolase locus.

Integration of construct at the enolase locus.

Figure 9

Figure 10

Figure 12

Figure 13A

Figure 13B

Figure 14B

Figure 14A

 $\int_{\mathbb{S}^{0}}$

interest.

Identification of virulence and morphogenesis factors in C. albicans

I. STEP 1: CREATE A GENOMIC LIBRARY FOR MICROARRAY CONSTRUCTION

Prepare C. albicans genomic DNA. Sau 3A partial digest. Size selection of 0.5 to 2.0 kb fragments. Clone genomic fragments into plasmid vector (pBluescript). A. STEP 2: Create Microarray 00000000 000000000 Transfer transformants to 000000000 96-well plates. Perform colony PCR using universal primers. Check PCR rxns on gels and rearray positives on 96-well Spot productive rxns on membranes. Labeled cDNA from strain; dnabpg null mutant with DNABPG Labeled Prepare and label cDNA from mRNA of cDNA. strains with and without DNABPG mutant wild type Hybridize labeled cDNA to 0000 0000 duplicate membranes. 0000 0000 0000 0000 Go back to 96-well plates and In vivo analysis of genes. sequence the clones of