Escalabilidad en grandes conjuntos de datos

Ignacio Cordón Castillo

Características del ordenador

- SO: Linux Ubuntu 15.04, 64 bits con núcleo 4.4.0-040400-generic
- Procesador: Intel Core i7-4700HQ CPU, 2.40GHz × 8
- RAM: 11.6 GiB
- Versión de Java 64 bits: openjdk version "1.8.0_45-internal"
- Versión de Weka: 3.6.11
- Versión de R: 3.2.3, Wooden Christmas-Tree
- Versión de RWeka: 0.4.27

Datasets

Para el desarrollo de la práctica se han empleado 4 datasets:

Covertype

581012 instancias, 12 características y 7 categorías.

Kddcup99

4898431 instancias, 41 características y 23 categorías.

Protein

1000000 instancias, 20 características y 2 categorías.

Pokerhand

1025010 instancias, 10 características y 10 categorías.

Estudio de escalabilidad

Consistía en dividir cada conjunto de datos en 20% de test y otro 80% de training. Se estudia la escalabilidad entrenando clasificadores J48 y Random Forest con 50 árboles, sobre particiones del train del 20%, 40%, 60%, 80% y 100% para evaluar los resultados obtenidos sobre test, y efectuar una comparación en cuanto precisión, ejecución y tamaño del train.

Se ha usado como semilla aleatoria 12345678

Se ha programado una función de R, disponible en ./bin/partitioning.R que efectúa la división de un dataset parado como parámetro data al 20% test y 80% training, dividiendo a su vez training en 5 particiones disjuntas y estratificadas (test también se ha extraído con muestreo estratificado, conservando la distribución

de clases original). Para ello se han empleado las funciones createDataPartition y createFolds del paquete caret de R.

```
make.partition <- function(data, name) {
   train.index <- createDataPartition(data$class, p = 0.8, list = F, times = 1)
   train <- data[ train.index, ]
   test <- data[-train.index, ]

   folds <- createFolds(train$class, 5)

# Returns map of folds to the original data
   partition <- list(
      train = lapply(folds, function(selected) {
        train[selected, ]
      }),
      test = test)

save (list = c('partition'), file = paste(name, ".RData", sep = ""))
}</pre>
```

Se han leído los datasets y se ha aplicado la función anterior.

```
covertype <- read.arff("../data/covertype.arff")
kddcup <- read.arff("../data/kddcup99.arff")
protein <- read.arff("../data/protein.arff")
pokerhand <- read.arff("../data/pokerhand.arff")

datasets <- c(covertype, kddcup, protein, pokerhand)
datasets.names <- c("covertype", "kddcup", "protein", "pokerhand")

partitions <- lapply(1:length(datasets), function(i) {
   make.partition(datasets[i], datasets.names[i])
})</pre>
```

Una vez obtenidas las particiones, se han fusionado las dos primeras para obtener una con el 40% de train, las tres primeras para obtener otra con el 60% de train y se han escrito cada una de las particiones para cada dataset con la función write.arff del paquete RWeka en un dataset de nombre ./data/train{porcentaje}-{nombre-dataset} o ./data/test-{nombre-dataset} (p.e. train20-covertype, test-covertype).

A su vez, se han guardado las particiones correspondientes a un dataset en un archivo de la forma {nombre-dataset}.RData para liberar toda la memoria RAM posible y disponer de la mayor cantidad posible para la ejecución de algoritmos.

Se ha automatizado la ejecución de Weka sobre cada una de las particiones, con un script bash para obtener los resultados en ficheros homónimos en la carpeta results

```
#!/bin/bash

training=(train20 train40 train60 train80 train100)
datasets=(covertype kddcup protein pokerhand)
```

Resultados

Los resultados obtenidos han sido:

dataset	algoritmo	tamaño train(%)	tiempo entrenamiento	precisión train	precisión test
covertype	RF	20	16.05	99.9935	92.6110
covertype	RF	40	32.98	99.9941	94.8141
covertype	RF	60	50.05	99.9964	95.8184
covertype	RF	80	69.84	99.9954	96.3339
covertype	RF	100	93.01	99.9983	96.7702
covertype	J48	20	12.00	96.3921	87.8494
covertype	J48	40	30.30	97.7572	91.1566
covertype	J48	60	61.09	98.2534	92.8150
covertype	J48	80	108.84	98.5220	93.6979
covertype	J48	100	130.39	98.7092	94.4673
kddcup	RF	20	110.71	99.9999	99.9909
kddcup	RF	40	244.92	99.9998	99.9934
kddcup	RF	60	362.33	99.9999	99.9941
kddcup	RF	80	680.16	99.9998	99.9950
kddcup	RF	100	920.44	99.9997	99.9956
kddcup	J48	20	46.22	99.9915	99.9821
kddcup	J48	40	100.85	99.9943	99.9883
kddcup	J48	60	176.34	99.9949	99.989
kddcup	J48	80	383.98	99.9959	99.9914
kddcup	J48	100	523.17	99.9967	99.9929
protein	RF	20	23.27	99.9788	79.7699
protein	RF	40	51.79	99.9819	80.1199
protein	RF	60	84.38	99.9821	80.4864
protein	RF	80	126.86	99.9817	80.7054
protein	RF	100	155.67	99.9836	80.9169
protein	J48	20	31.69	86.7400	77.6864
protein	J48	40	131.82	86.8900	78.0069
protein	J48	60	315.34	87.0554	78.1179
protein	J48	80	473.00	87.0181	78.3539
protein	J48	100	690.56	87.1009	78.1604

dataset	algoritmo	tamaño train(%)	tiempo entrenamiento	precisión train	precisión test
pokerhand	RF	20	24.68	99.9939	54.9810
pokerhand	RF	40	60.27	99.9957	59.2869
pokerhand	RF	60	104.05	99.9982	61.6060
pokerhand	RF	80	139.21	99.9957	61.9616
pokerhand	RF	100	178.17	99.9962	62.9918
pokerhand	J48	20	49.31	75.1479	61.5162
pokerhand	J48	40	189.50	76.4880	66.7367
pokerhand	J48	60	398.14	75.3603	64.9401
pokerhand	J48	80	835.26	76.0268	65.0894
pokerhand	J48	100	1446.76	76.0282	66.0865

Técnica de estratificación

Se pretende reducir el tiempo de entrenamiento de los clasificadores entrenando el clasificador correspondiente (J48 o Random Forest) sobre cada uno de las cinco particiones de entrenamiento de tamaño 16% (20% del

80% que representaba el total del training) obtenidas en el estudio de la escalabilidad y efecuando una predicción sobre el test.

Para fusionar las predicciones hechas sobre test, se emplea una estrategia de voto:

- Voto simple: se toma la clase mayoritaria de entre la predicha por los cinco modelos entrenados.
- Voto ponderado: se obtiene la confianza de la predicción de cada clasificador para todas las clases, se suman las confianzas para cada clase de los cinco clasificadores, y se toma la clase que tenga mayor suma de confianzas.

En caso de empate en ambos modos de voto, se toma como clase la de aquel clasificador que prediciendo alguna de las clases empatadas, más confianza ha obtenido en el total del train.

Esta parte de la práctica se ha hecho enteramente con R y RWeka, programando:

• Una función para obtener las predicciones sobre las 5 particiones para cada dataset. Nótese que en el caso de RandomForest se ha empleado la opción I=50 para ejecutar el algoritmo con 50 árboles.

```
get.predictions <- function(algorithm, param){
    result <- lapply(1:length(datasets.names), function(n.index){
        name <- datasets.names[n.index]
        load(file=paste(name, ".RData", sep=""))

    current.pred <- lapply(1:5, function(i){
        train.model <- algorithm(class ~ ., data = partition$train[[i]], control = param)
        predict(train.model, newdata = partition$test, type = c("probability"))
    })

# Force R's garbage collector
    gc()
    current.pred
})

names(result) <- datasets.names
    result
}</pre>
```

```
J48.predictions <- get.predictions(J48, Weka_control())

# Random Forest with 50 trees

RF.predictions <- get.predictions(RF, Weka_control(I=50))
```

• Funciones de cálculo de las predicciones hechas, a través de las cuales hemos obtenido para cada dataset, y cada *chunk* del 20% del training, la precisión obtenida por el clasificador, tanto J48, como Random Forest.

```
### Get class with more confidence for each dataset
get.classes <- function(predictions) {
    lapply(predictions, function(set.pred) {
        columns <- colnames(set.pred[[1]])

        lapply(set.pred, function(prob.matrix) {
            apply(prob.matrix, 1, function(x) { columns[ which.max(x) ] })
        })</pre>
```

```
})
}
acc.rate <- function(true, calculated){</pre>
  length( which(calculated == true) ) / length(calculated)
}
get.accuracies <- function(algorithm.class){</pre>
  result <- lapply( 1:length(datasets.names), function(n.index){</pre>
    name <- datasets.names[ n.index ]</pre>
    load(file=paste(name, ".RData", sep=""))
    true.class <- partition$test$class</pre>
    ifelse (length(algorithm.class[n.index]) > 1,
             sapply( 1:length(algorithm.class[[n.index]]), function(i){
               calculated.class <- algorithm.class[[ n.index ]][[ i ]]</pre>
               acc.rate( true.class, calculated.class )
             }),
             acc.rate( true.class, algorithm.class[[ n.index ]] ))
  })
  names(result) <- datasets.names</pre>
  result
}
```

```
RF.class <- get.classes(RF.predictions)

J48.class <- get.classes(J48.predictions)

J48.accuracies <- get.accuracies(J48.class)

RF.accuracies <- get.accuracies(RF.class)
```

• Función de cálculo de votos simples y ponderados, a partir de la cual obtenemos posteriormente los correspondientes *accuracies*.

```
ncol = ncol(m), byrow=T)
      })
    }else{
      votes <- dataset.pred
    # Sum predictions probabilities row by row for each of the five matrixes
    sum.votes <- Reduce('+', votes)</pre>
    categories <- colnames(dataset.pred[[1]])</pre>
    sapply( seq_len( nrow(sum.votes) ), function(row.index){
      row <- sum.votes[row.index,]</pre>
      index.max <- which(row == max(row))</pre>
      if(length(index.max) == 1){
        categories [ index.max ]
       }else{
         pred.categories <- sapply(votes, function(m){</pre>
           categories[ which.max(m[row.index, ]) ]
         pred.indexes <- which(pred.categories %in% categories[ index.max ])</pre>
         categories[ which.max( accuracies[[i]][ pred.indexes ] ) ]
      }
    })
  })
  names(result) <- datasets.names</pre>
  result
}
J48.simple.vote.preds <- vote.prediction(J48.predictions, J48.accuracies, ponderate=F)
J48.simple.vote.acc <- get.accuracies(J48.simple.vote.preds)
RF.simple.vote.preds <- vote.prediction(RF.predictions, RF.accuracies, ponderate=F)
RF.simple.vote.acc <- get.accuracies(RF.simple.vote.preds)</pre>
J48.ponderate.vote.preds <- vote.prediction(J48.predictions, J48.accuracies, ponderate=T)
J48.ponderate.vote.acc <- get.accuracies(J48.ponderate.vote.preds)
RF.ponderate.vote.preds <- vote.prediction(RF.predictions, RF.accuracies, ponderate=T)
RF.ponderate.vote.acc <- get.accuracies(RF.ponderate.vote.preds)</pre>
```

Resultados

Los resultados en cuanto a precisión obtenidos han sido:

algoritmo	covertype	kddcup	protein	pokerhand
J48 voto simple	0.9224010	0.9998540	0.792659	0.6852799
J48 voto ponderado	0.9244406	0.9998591	0.790864	0.6994361
RF voto simple	0.9362651	0.9999173	0.801899	0.5903277
RF voto ponderado	0.9379346	0.9999204	0.803174	0.6028937