МАШИНЕ НАВЧАННЯ

Класичне навчання. Навчання з вчителем

Лекція №**6**

Методи класифікації Метод опорних векторів (**SVM**)

Найбільш популярний метод класичної класифікації. Ним класифікували вже **все**: типи рослин, лиця на фотографіях, документи за тематиками. Багато років він був головною відповіддю на питання «який би мені взяти класифікатор».

Ідея SVM — провести полосу пряму між категоріями таким чином, що відстані від неї до граничного об'єкта кожного класу була максимальною.

Розглянемо задачу бінарної класифікації, в якій об'єктам з $X=\mathbb{R}^n$ (об'єкти описуються n числовими признаками) відповідає один з двох класів $Y=\{-1,+1\}$. Нехай задана навчальна вибірка пар "об'єкт-відповідь": $(x_i,yi), i=1\dots \ell$. Необхідно побудувати алгоритм класифікації $a(x):X\to Y$.

Розділяюча гіперплощина

У просторі \mathbb{R}^n рівняння $\langle w, x \rangle - b = 0$ при заданих w та b визначає гіперплощину, що розділяє \mathbb{R}^n на два класи: C_1 та C_2 :

$$\begin{cases} \langle w, x \rangle - b > 0, & \forall x \in C_1 \\ \langle w, x \rangle - b < 0, & \forall x \in C_2 \end{cases}$$
 або
$$\begin{cases} \langle w, x \rangle - b < 0, & \forall x \in C_1 \\ \langle w, x \rangle - b > 0, & \forall x \in C_2 \end{cases}$$
 w — вектор нормалі до гіперплощини $\frac{b}{\|w\|}$ — відстань від гіперплощини до початку координат

Метод опорних векторів (SVM) в задачах класифікації: Лінійно роздільна вибірка

Відступ (Margin) — характеристика, яка оцінює, наскільки об'єкт «занурений у свій клас, наскільки типовим представником свого класу він є. Чим менше значення відступа M_i , тим ближче об'єкт x_i підходе до границі класів і тим вище стає ймовірність помилки. Відступ M_i від'ємний лише тоді, коли алгоритм класифікації $a(x_i)$ допускає помилку на об'єкті x_i .

Для лінійного класифікатора відступ визначається рівнянням:

$$M_i(w, b) = y_i(\langle x_i, w \rangle - b)$$

Для **лінійно роздільної вибірки** існує така гіперплощина, відступ від якої до кожного об'єкта є позитивним:

$$\exists w, b: Mi(w, b) = yi(\langle x_i, w \rangle - b) > 0, \qquad i = 1 \dots \ell$$

Задача: поюудувати таку розділяючу гіперплощину, щоб об'єкти навчальної вибірки знаходились на найбільшій відстані від неї.

Нормування

При множенні w та b на константу $C \neq 0$ рівняння $\langle x_i, Cw \rangle - Cb = 0$ визначає ту ж саму гіперплощину, що й $\langle x_i, w \rangle - b = 0$.

Для зручності проведемо нормування: оберемо константу C таким чином, щоб $\min M_i(w,b)=1$.

Лінійно роздільна вибірка

В кожному з двох класів нзайдеться хоча б один "граничний" об'єкт навчальної вибірки, відступ якого дорівнює цьому мінімуму: в іншому випадку можна було б змістити гіперплощину в бік класу з більшим відступом, тим самим збільшити мінімальну відстанб від гіперплощини до об'єктів навчальної вибірки.

Позначимо "граничний" об'єкт з класа +1 як x_+ , а з класа -1 як x_- .

$$x_+$$
: $\langle x, w \rangle - b = +1$

$$x_-$$
: $\langle x, w \rangle - b = -1$

$$M_{+}(w, b) = (+1)(\langle x_{+}, w \rangle - b) = 1$$

$$M_{-}(w,b) = (-1)(\langle x_{-},w\rangle - b) = 1$$

Нормування дозволяє обмежити розділяючу полосу між класами:

$$x: \{-1 < \langle x, w \rangle - b < 1\}$$

Всередині якої не может лежати жоден об'єкт Навчальної вибікри.

Ширина полоси це проекція вектора $(x_+ - x_-)$ на w:

$$\frac{\langle x_+ - x_-, w \rangle}{\|w\|} = \frac{M_+ + M_-}{\|w\|} = \frac{2}{\|w\|} \to \max \Longrightarrow \|w\| \to \min.$$

$$||w|| = \langle w, w \rangle -$$
 скалярний добуток

Лінійно роздільна вибірка

Максимальність ширини розділяючої полоси

$$\frac{2}{\|w\|} \to \max \Longrightarrow \|w\| \to \min.$$

$$||w|| = \langle w, w \rangle -$$
 скалярний добуток

Постановка задачи оптимизации в терминах квадратичного программирования:

$$\begin{cases} ||w|| \to \min_{w,b} \\ M_i(w,b) \ge 1, \quad i = 1 \dots \ell \end{cases}$$

Умови Каруша-Кунна-Таккера

задача нелінійного програмування з обмеженнями:

$$\begin{cases} f(x) \to \min_{x \in X} \\ g_i(x) \le 0, & i = 1 \dots m \\ h_j(x) = 0, & j = 1 \dots k \end{cases}$$

Якщо x — точка локального мінімума при накладених обмеженнях, то існують такі множники μ_i , $i=1\dots m$ та λ_j , $j=1\dots k$, що для функції Лагранжа $\mathcal{L}(x;\mu,\lambda)$ виконуються умови:

$$\begin{cases} \frac{d\mathcal{L}}{dx} = 0, \mathcal{L}(x; \mu, \lambda) = f(x) + \sum_{i=1}^{m} \mu_{i} g_{i}(x) + \sum_{j=1}^{k} \lambda_{j} h_{j}(x) \\ g_{i}(x) \leq 0, \qquad h_{j}(x) = 0 \qquad \text{(вихідні обмеження)} \\ \mu_{i} \geq 0 \qquad \qquad \text{(двійкові обмеження)} \\ \mu_{i} g_{i}(x) = 0 \qquad \text{(доповнюючі обмеження)} \end{cases}$$

При цьому шукана точка є сідловою точкою функції Лагранжа: мінімумом по x та максимумом по двійковим змінним μ .

Для нашої задачі оптимізації:

$$\begin{cases} ||w|| \to \min_{w,b} \\ M_i(w,b) \ge 1, \quad i = 1 \dots \ell \end{cases}$$

За теоремою ККТ маємо Лагранжиан

$$\mathcal{L}(w, b, \lambda_1, \dots, \lambda_{\ell}) = \frac{1}{2} \|w\| - \sum_{i=1}^{\ell} \lambda_i \{ y_i(\langle x_i, w \rangle - b) - 1 \}$$

Похідні від Лагранжиану за параметрами

$$\begin{cases} \frac{\partial \mathcal{L}(w,b,\lambda_1,\ldots,\lambda_\ell)}{\partial w} = 0; \\ \frac{\partial \mathcal{L}(w,b,\lambda_1,\ldots,\lambda_\ell)}{\partial b} = 0; \\ \lambda_i \geq 0; \\ \lambda_i = 0 \text{ ago } \{y_i(\langle x_i,w\rangle - b) - 1\} = 0 \end{cases}$$

3 перших двох рівнянь знаходимо:

$$\begin{cases} w = \sum_{i=1}^{\ell} \lambda_i y_i x_i; \\ \sum_{i=1}^{\ell} \lambda_i y_i = 0 \end{cases}$$

Підставляючи отримані обмеження в функцію Лагранжа отримуємо постановку двійкової задачі, яка залежить лише від двійкових змінних λ :

$$\begin{cases}
\mathcal{L}(\lambda) = \sum_{i=1}^{\ell} \lambda_i - \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle \\
0 \le \lambda_i \le C, & i = 1 \dots \ell \\
\sum_{i=1}^{\ell} \lambda_i y_i = 0
\end{cases}$$

$$\mathcal{L}(\lambda) = \sum_{i=1}^{\ell} \lambda_i - \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle = \begin{cases}
(H)_{ij} = y_i y_j \langle x_i, x_j \rangle \\
= \sum_{i=1}^{\ell} \lambda_i - \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j (H)_{ij} = \lambda + \frac{1}{2} \lambda^T H \lambda
\end{cases}$$

Це задача квадратичного програмування:

Метод градієнтного спуску:

$$\mathcal{L}(\lambda) = \lambda + \frac{1}{2} \lambda^T H \lambda$$

Невідомі параметри Лагранжа:

$$\boldsymbol{\lambda}^{t+1} = \boldsymbol{\lambda}^t + \eta \, \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}}$$

Навчальна вибірка

За отриманими λ_i розв'язок прямої задачі:

$$\begin{cases} w = \sum_{i=1}^{\ell} \lambda_i y_i x_i; \\ b = \begin{cases} \overline{(\langle w, x_i \rangle - y_i)} \\ med(\langle w, x_i \rangle - y_i) \end{cases} \forall i: \lambda_i > 0, M_i = 1 \end{cases}$$

Лінійний класифікатор

$$a(x) = sign\left(\sum_{i=1}^{\ell} \lambda_i y_i \langle x_i, x \rangle - b\right)$$

Метод опорних векторів (SVM) в задачах класифікації: Лінійно не роздільна вибірка

В даних можуть бути певні викиди, що приводить до нечітких меж між класами. Необхідно послабити обмеження, дозволяючи де-яким об'єктам попадати в середину розділяючої полоси та на "територію" іншого класу.

Відступ

$$M_i(w,b) = yi(\langle x_i, w \rangle - b)$$

Функція втрат (Loss function)

$$L = \max(0, 1 - Mi)$$

Інакше всі помилки рівноправні

Неперервні апроксимації порогової функції втрат

Часто використовувані неперервні функції втрат L(M)

$$V(M) = (1 - M)_{+}$$
 $H(M) = (-M)_{+}$
 $L(M) = \log_{2}(1 + e^{-M})$
 $Q(M) = (1 - M)^{2}$
 $S(M) = 2(1 + e^{M})^{-1}$
 $E(M) = e^{-M}$
 $[M < 0]$

- кусочно-лінійна (SVM);
- кусочно-лінійна (Hebb's rule);
- логарифмічна (LR);
 - квадратична (FLD);
 - сигмоїдна (ANN);
 - експоненціальна (AdaBoost);
 - порогова функція втрат

Лінійно не роздільна вибірка

• Для кожного об'єкта віднімемо від відступа позитивну величину ξ_i , яле будемо вимагати, що ці уведені поправки були мінімальними. Це приведе до задачі, що має назву SVM з м'яким відступом (англ. soft-margin SVM):

$$\begin{cases} \frac{1}{2} ||w|| + C \sum_{i=1}^{\ell} \xi_i \to \min_{w,b,\xi} \\ M_i(w,b) \ge 1 - \xi_i, & i = 1 \dots \ell \\ \xi_i \ge 0, & i = 1 \dots \ell \end{cases}$$

• Еквівалентна задача безумовної мінімізації:

$$\frac{1}{2}||w|| + C\sum_{i=1}^{\ell} (1 - M_i(w, b))_+ \to \min_{w, b}$$

За теоремою Каруша—Куна—Таккера, поставлена задача мінімізації еквівалентна двійковій задачі пошуку сідлової точки функції Лагранжа:

$$\mathcal{L}(w,b,\xi;\lambda,\eta) = \frac{1}{2}\|w\| - \sum\nolimits_{i=1}^{\ell} \lambda_i (M_i(w,b) - 1) - \sum\nolimits_{i=1}^{\ell} \xi_i \left(\lambda_i + \eta_i - C\right)$$

 λ_i — змінні, двійкові до обмежень $M_i \geq 1 - \xi_i$ η_i — змінні, двійкові до обмежень $\xi_i \geq 0$

Необхідні умови існування сідлової точки функції Лагранжа:

$$\begin{cases} \frac{d\mathcal{L}}{dw} = 0, & \frac{d\mathcal{L}}{db} = 0, \\ \xi_i \geq 0, & \lambda_i \geq 0, \\ \lambda_i M_i(w,b) = 0 \implies \lambda_i = 0 \text{ afo } M_i(w,b) = 1 - \xi_i, \\ \eta_i \xi_i = 0 \implies \eta_i = 0 \text{ afo } \xi_i = 0, \end{cases} \qquad i = 1 \dots \ell$$

Відступ (margin) об'єкта x_i від розділяючої гіперплощини :

$$M_i(w, b) = y_i(\langle x_i, w \rangle - b)$$

Функція Лагранжа:

$$\mathcal{L}(w, b, \xi; \lambda, \eta) = \frac{1}{2} \|w\| - \sum_{i=1}^{\ell} \lambda_i (M_i(w, b) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C)$$

Необхідні умови існування сідлової точки фугкції Лагранжа:

$$\begin{cases} \frac{d\mathcal{L}}{dw} = w - \sum_{i=1}^{\ell} \lambda_i y_i x_i = 0 \implies w = \sum_{i=1}^{\ell} \lambda_i y_i x_i \\ \frac{d\mathcal{L}}{db} = \sum_{i=1}^{\ell} \lambda_i y_i = 0 \implies \sum_{i=1}^{\ell} \lambda_i y_i = 0 \\ \frac{d\mathcal{L}}{d\xi_i} = -\lambda_i - \eta_i + C = 0 \implies \eta_i + \lambda_i = C, \qquad i = 1 \dots \ell \end{cases}$$

Зауважимо, що $\eta_i \geq 0$, $\lambda_i \geq 0$, C > 0, тому, з останнього обмеження отримуємо $0 \leq \eta_i \leq C$, $0 \leq \lambda_i \leq C$.

Система умов Каруша-Куна-Таккера:

$$\begin{cases} w = \sum_{i=1}^{\ell} \lambda_i y_i x_i; \sum_{i=1}^{\ell} \lambda_i y_i = 0; & Mi(w, b) \ge 1 - \xi_i \\ \xi_i \ge 0, & \eta_i \ge 0, & \lambda_i \ge 0, & \eta_i + \lambda_i = C \\ \lambda_i M_i(w, b) = 0 \implies \lambda_i = 0 \text{ afo } M_i(w, b) = 1 - \xi_i, & i = 1 \dots \ell \\ \eta_i \xi_i = 0 \implies \eta_i = 0 \text{ afo } \xi_i = 0, & i = 1 \dots \ell \end{cases}$$

Діапазон значень λ_i які відповідають обмеженням на величину відступа дозволяють поділити об'єкти навчальної вибірки на три типи:

- 1. $\lambda_i = 0 \implies \eta_i = C; \; \xi_i = 0; \; M_i \ge 1$ периферійні (неінформативні) об'єкти: вони знаходяться в своєму класі, класифікуються вірно та не впливають на вибір розділяючої гіперплощини;
- 2. $0 < \lambda_i < C \implies 0 < \eta_i < C; \ \xi_i = 0; \ M_i = 1$ опорні граничні об'єкти: знаходяться чітко на границі розділяючої полоси на стороні свого класу;
- $\lambda_i = C \implies \eta_i = 0; \; \xi_i > 0; 0 < M_i < 1$ об'єкти-порушники: знаходяться всередині розділяючої полоси;
- 4. $\lambda_i = C \implies \eta_i = 0; \; \xi_i > 0; \; M_i < 0$ помилки: не вірно класифіковані об'єкти, які знаходяться на боці не свого класу

Перехід до більш зручного опису

$$x_{n+1} = 1; w_0 = -b$$

$$[\langle x_i, w \rangle - b]_{i=1} \xrightarrow{n} [\langle x_i, w \rangle]_{i=1} \xrightarrow{n+1}$$

Відступ

$$M_i(w) = yi\langle x_i, w \rangle$$

Задача оптимізації

$$\frac{1}{2}||w|| + C\sum_{i=1}^{\ell} (1 - M_i(w))_+ \to \min_{w}$$

Розв'язується методом градієнтного спуску

Метод градієнтного спуску в задачах машинного навчання

Функціонал якості $f(w) \to \min_{w}$

$$f(w) = \frac{1}{2} \|w\| + C \frac{1}{\ell} \sum_{i=1}^{\ell} (1 - M_i(w))_+$$

Для всіх об'єктів навчальної вибірки

$$f(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left[\frac{1}{2} \|w\| + C(1 - y_i \langle w, x_i \rangle)_+ \right]$$

Розрахунок наступного значення ваг w за методом градієнтного спуску:

$$w_i = w_i - \eta \frac{1}{\ell} \nabla f(w)$$

 η — крок навчання

$$\nabla f(w) = \frac{df}{dw} = \frac{1}{\ell} \sum_{i=1}^{\ell} \begin{cases} w, & if \max(1 - y_i \langle w, x_i \rangle)_+ = 0 \\ w - Cy_i x_i, & otherwise \end{cases}$$

Розрахунок наступного значення ваг w за методом градієнтного спуску

$$w_i = w_i - \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \begin{cases} w, & if \max(1 - y_i \langle w, x_i \rangle)_+ = 0 \\ w - Cy_i x_i, & otherwise \end{cases}$$

Вплив параметра ${\mathcal C}$

Велике значення параметра C слабка регуляризація

Мале значення параметра C сильна регуляризація

Розрахунок наступного значення вагw за методом градієнтного спуску

$$w_i = w_i - \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \begin{cases} w, & if \max(1 - y_i \langle w, x_i \rangle)_+ = 0 \\ w - Cy_i x_i, & otherwise \end{cases}$$

Вплив швидкості навчання η

Нелінійне узагальнення (kernel trick)

- Для лінійно нероздільної вибірки $X = \mathbb{R}^n$ існує спрямляючий простір \mathcal{H} (більшої розмірності) з функцією переходу $\psi : X \to \mathcal{H}$
- Скалярний добуток $\langle x_1, x_2 \rangle$ у прострорі X замінінюється скалярним добутком $\langle \psi(x_1), \psi(x_2) \rangle$ у гільбертовому просторі $\mathcal H$ з визначеним скалярним добутком.
- Це надає можливість замінити скалярний добуток у просторі X на <u>ядро</u> функцію, що є скалярним добутком у де-якому просторі \mathcal{H} . Замість підбору ψ можна підбирати безпосередньо ядро $K(x_i, x_j) = \langle \psi(x_1), \psi(x_2) \rangle$.

Постановка задачі з застосуванням ядер приймає вигляд

$$\begin{cases} -\mathcal{L}(\lambda) = -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j K(x_i, x_j) \to \min_{\lambda} \\ 0 \le \lambda_i \le C, & i = 1 \dots \ell \\ \sum_{i=1}^{\ell} \lambda_i y_i = 0 \end{cases}$$

Лінійний класифікатор з ознаками $f_i(x) = K(x, x_i)$:

$$a(x) = sign\left(\sum_{i=1}^{\ell} \lambda_i y_i K(x, x_i)\right)$$

Приклади ядер

1. Квадратичне ядро dim $\mathcal{H} = \frac{1}{2}n(n+1)$:

$$K(x, x') = \langle x, x' \rangle^2$$

2. Поліноміальне ядро, $\dim \mathcal{H} = \mathcal{C}_{n+d-1}^d$:

$$K(x, x') = \langle x, x' \rangle^d$$

Поліноміальне ядро:

$$K(x, x') = (\langle x, x' \rangle + 1)^d$$

Сигноідне ядро:

$$K(x, x') = th(k_1 \langle x, x' \rangle - k_0), \qquad k_0, k_1 > 0$$

5. Гаусове ядро (RBF ядро):

$$K(x, x') = \exp(-\gamma ||x - x'||^2)$$

линейное

$$\langle x, x' \rangle$$

полиномиальное

полиномиальное гауссовское (RBF)
$$\left(\langle x,x'\rangle+1\right)^d,\ d{=}3$$
 $\exp\left(-\gamma\|x-x'\|^2\right)$

Переваги та недоліки **SVM**

Переваги класичного SVM:

- Завдання опуклого квадратичного програмування добре вивчене і має єдине рішення.
- Метод опорних векторів еквівалентний двошарової нейронної мережі, де число нейронів на прихованому шарі визначається автоматично як число опорних векторів.
- Принцип оптимальної роздільної гіперплощини призводить до максимізації ширини смуги, що розділяє, а отже, до більш впевненої класифікації.

Недоліки класичного SVM:

- Нестійкість до шуму: викиди у вихідних даних стають опорними об'єктамипорушниками та безпосередньо впливають на побудову роздільної гіперплощини.
- Не описані загальні методи побудови ядер та спрямовуючих просторів, що найбільш підходять для конкретного завдання.
- Немає відбору ознак.
- Необхідно підбирати константу С за допомогою крос-валідації.

Дякую за увагу