Operating Systems

Lecture 3

Operating system structure

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection and security.
 - UI and system programs

Operating system services

Source: Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

Process management

- PROGRAM: a piece of code stored on external memory.
 Program is a passive entity.
- PROCESS: a program, which is running. Processes are active and there can be several processes at a time, which are created from the same program code.
- TASK: can be one or more processes.

Process management

- Process management subsystem is responsible for:
 - Creation and termination of processes.
 - Scheduling (processor assignment), freezing and resuming of processes.
 - Mechanisms for synchronization and communication between processes.
 - Lock avoidance and recovery (may be not implemented).
- Depending on implementation, it may be also responsible for threads mamagement.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

Memory managment

- Memory managment subsystem tracks which areas of the memory space are free, which are busy and who owns them.
- It is responsible for allocating/deallocating memory for processes.
- It also takes care of a virtual memory.
- In a multiprogram environment it decides, which programs should be loaded into memory at a given time.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

File management

- Operating system performs:
 - Basic operations on files and directories.
 - File access operations.
 - File content placement in the memory.
 - Content storage on attached, non volatile memory.
- It hides implementation details from the user.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

I/O subsystem

- It consists of:
 - Modules tor managing particular devices, hiding their implementation details
 - Unified interface for accessing such modules
 - Module for buffering and reading in advance from the cache memory.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

Attached memory subsystem

- Responsible for managing attached memory devices (usually disk drives).
- It tracks available and occupied areas, assigns memory and schedules attached memory calls.
- It is used by file subsystem and virtual memory.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

Communication and networking

- Communication subsystem allows two or more processes to exchange data.
 - It includes communication in both a single machine or between different machines.
- Exemplary communication methods for processes on the same machine (UNIX):
 - Message queues
 - Pipes
 - Shared memory

Communication and networking

- Networking subsystem is used for communication between computers connetcted with a network.
 - Although networking itself consists in sending/receiving data, some higher-level OS synctions can be implemented on top of it, for instance networked distributed filesystems.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

Protection

- Multi-user operating system must manages users.
- It includes policies, which describe which users can use certain computer system resources and how they are allowed to do it.

- This lecture shows services of an operating system:
 - Process management.
 - Memory management.
 - File management subsystem.
 - I/O subsystem.
 - Attached memory subsystem.
 - Communication nad networking services.
 - Protection.
 - UI and system programs

UI and system programs

- Operating system must provide a way to communicate with a user.
 - An UI environment
 - Command Line Interface (CLI)
 - Usuallu supported by additional system programs, which allow for instance file manipulation.
 - Graphical User Interface (GUI)
 - May be implemented as a part of operating system (Windows, MacOS) or as an additional service (X-Window System in Unixes).

Standard library and system calls

- It also must provide a library of functions, which allow user programs to use its features (standard system function library):
 - Process manipulation (creation, running, interruption of othe process, process status detection, resuming a process, memory assignment and deallocation, ...).
 - File manipulation (dreate, delete, open for read or write, read from file, write to a file, operations on file attributes, ...).
 - Device manipulation (logically connect/disconnect a device, write/read to/from device, operations on attributes, ...).
 - System information.
 - Communication (between processes on one machine, between processes on different machines, etc.).

Standard C library

API – System Call – OS Relationship

Implementations

 All the subsystems may be included and implemented in a different way.

Simple structure: MS DOS

Traditional UNIX scheme

(the users) shells and commands compilers and interpreters system libraries system-call interface to the kernel signals terminal **CPU** scheduling file system Kernel swapping block I/O handling page replacement character I/O system demand paging system terminal drivers disk and tape drivers virtual memory kernel interface to the hardware terminal controllers memory controllers device controllers physical memory terminals disks and tapes

Layered approach

Microkernel architecture

Microkernel architecture

Benefits:

- Easier to extend a microkernel
- Easier to port the operating system to new architectures
- More reliable (less code is running in kernel mode)
- More secure
- Detriments:
 - Performance overhead of user space to kernel space communication

Solris modular approach

Hybrid solutions: Mac OS X

Hybrid solutions: Android

Applications

Application Framework

Libraries

SQLite

openGL

surface manager media framework

webkit

libc

Android runtime

Core Libraries

Dalvik virtual machine

Linux kernel

Thank You