北京工业大学 2019-2020 学年第二学期期末 线性代数(工) 课程试卷(A)

4/ 1-D-2		677	MA.
考试方	IL:	闭	在

考试方式: 闭卷 考试时间: 2020 年 7 月 2 日

学号	姓名	成绩	
17			44

注:本试卷共8大题,满分100分.

得分登记(由阅卷教师填写)

题 号	<u>12-28</u> 3		=	四	Ŧī.	六	七	八
得 分		50						

一. 填空题(每小题 3 分, 共 30 分. 注意: 所有题目需给出计算结果; a = a型答案无效)

1. 5阶行列式 $(a_{ii})_{s \times s}$ 的完全展开式中, $a_{21}a_{32}a_{55}a_{43}a_{14}$ 前的正负号是<u>负号</u>

$$A_{12} - 2A_{22} + 4A_{32} - 8A_{42} = 0$$
, $\emptyset a^2 = 3$

3.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 & -3 \\ 3 & 5 & 0 & 1 \\ -3 & 5 & -6 & 7 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 & -3 \\ 3 & 5 & 0 & 1 \\ -1 & 3 & -2 & 1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ -2 & -1 & 1 & 1 \\ -1 & 1 & 8 & -1 \end{pmatrix}$$
. 齐次线性方程组 $AX = 0$ 的基础解系中含有解向量

的个数是 2

5. 若3阶方阵
$$A$$
和 B 的乘积 $AB = \begin{pmatrix} 1 & 2 & 3 \\ -5 & 1 & -2 \\ -1 & 9 & 10 \end{pmatrix}$,且 A 不可逆,则 A 的伴随矩阵 A^* 的秩 $R(A^*) = \underline{\qquad 1}$

- A 是 2 阶实方阵. 若齐次线性方程组 (2A-E)X=0 和 (3A+2E)X=0 均有 非零解,则行列式 $|3A^* + 2A^{-1} - E| = -\frac{5}{2}$
- 7. 若 A 是 2 阶实方阵, α_1 , α_2 是 线性无关的 2 维实列向量,满足 $A\alpha_1 = \alpha_1 + 4\alpha_2$,
- 8. 若 3 阶实方阵 $A=(\alpha,\alpha,\alpha,\alpha)$ 的列向量组 $\{\alpha,\alpha,\alpha,\alpha,\beta\}$ 与线性无关向量组

$$\{\beta_1,\beta_2\} 满足 \begin{cases} \alpha_1 = \beta_1 + 2\beta_2 \\ \alpha_2 = -\beta_1 + \beta_2 \end{cases} , 则 A* 的阶梯化矩阵中零行的行数是 ____2 \\ \alpha_3 = \beta_1 - 5\beta_2 \end{cases}$$

- 若实矩阵 $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_2 & b_1 & b_2 & b_3 \\ a_3 & b_2 & c_1 & c_2 \end{bmatrix}$ 满足 $A^7 3A^6 + 5A^5 A^2 = 2E$,则 A 的正

特征值的个数是____4

得分

三. 用初等变换的方法,解方程
$$X$$
 $\begin{pmatrix} 1 & 0 & 2 \\ -2 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$.

得分

四. a取何值时,线性方程组 $\begin{cases} x_1-3x_2+x_3+x_4=-1\\ 2x_1+x_2-3x_3+5x_4=3\\ x_1+18x_2-14x_3+10x_4=a \end{cases}$ 有解?

有解时,写出其通解.

得分

五. 己知 $A = \begin{pmatrix} -1 & 5 & 5 \\ 5 & -1 & 5 \\ 5 & 5 & -1 \end{pmatrix}$. 求一个可逆矩阵P,使得 $P^{-1}AP$

是对角矩阵: 并求出这一对角矩阵.

得分

六. 给定列向量组

$$\alpha_1 = (0, -1, 1, 1)^T, \alpha_2 = (-1, 1, -1, 0)^T, \alpha_3 = (1, -1, 1, 2)^T,$$

 $\alpha_4 = (2, -3, 3, 11)^T, \alpha_5 = (2, -3, 3, 3)^T.$

- 1 求该向量组的秩;
- 2 求该向量组的一个极大线性无关组;
- 3 把其余向量用问题 2 中求出的极大线性无关组线性表出.

得分

七. 证明: 如果A既是正交矩阵,又是正定矩阵,则|A|=1.

证明: 记方阵 A 的阶数为n, 其特征值为 λ , λ , ..., λ _n.

由于A是正交矩阵,所以, $|A|=\pm 1$; (1)

由于4是正定矩阵,所以,

 $\lambda_k > 0 \ (k = 1, 2, \dots, n) \Rightarrow |A| = \lambda_1 \lambda_2 \dots \lambda_n > 0.$ (2)

结合(1)、(2)可知, |A|=1.

对角线上元素的乘积是奇数外,其余乘积项皆为偶数,这些偶数乘积项的代数和自然还是偶数。因此,原行列式是一个奇数与一个偶数的代数和,当然它不等于 0.