Homework #3*

4.1 (a) We are given
$$p = 2$$
, $\mu = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2 & -.8 \times \sqrt{2} \\ -.8 \times \sqrt{2} & 1 \end{bmatrix}$ so $\mid \Sigma \mid = .72$ and
$$\Sigma^{-1} = \begin{bmatrix} \frac{1}{.72} & \frac{\sqrt{2}}{.9} \\ \frac{\sqrt{2}}{.9} & \frac{2}{.72} \end{bmatrix}$$

$$f(x) = \frac{1}{(2\pi)\sqrt{.72}} \exp\left(-\frac{1}{2} \left[\frac{1}{.72} (x_1 - 1)^2 + \frac{2\sqrt{2}}{.9} (x_1 - 1)(x_2 - 3) + \frac{2}{.72} (x_2 - 3)^2 \right] \right)$$
 (b)

- We apply Result 4.5 that relates zero covariance to statistical in-4.3 dependence
 - a) No, $\sigma_{12} \neq 0$
 - b) Yes, $\sigma_{23} = 0$
 - c) Yes, $\sigma_{13} = \sigma_{23} = 0$
 - d) Yes, by Result 4.3, $(X_1+X_2)/2$ and X_3 are jointly normal and
 - their covariance is $\frac{1}{2}\sigma_{13} + \frac{1}{2}\sigma_{23} = 0$. No, by Result 4.3 with $A = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{5}{2} & 1 & -1 \end{bmatrix}$, form $A \ddagger A'$ e) No, by Result 4.3 with to see that the covariance is 10 and not
- a) $3X_1 2X_2 + X_3$ is N(13,9) 4.4
 - b) Require Cov $(X_2, X_2 a_1 X_1 a_3 X_3) = 3 a_1 2a_3 = 0$. Thus any $\underline{a}' = [a_1, a_3]$ of the form $\underline{a}' = [3-2a_3, a_3]$ will meet the requirement. As an example, $\underline{a}' = [1,1]$.
- a) $X_1 | X_2$ is $N(\frac{1}{\sqrt{2}}(X_2-2), \frac{3}{2})$
 - b) $x_2|x_1,x_3$ is $N(-2x_1-5, 1)$
 - c) $x_3|x_1,x_2$ is $N(\frac{1}{2}(x_1+x_2+3),\frac{1}{2})$

- 4.6 (a) X_1 and X_2 are independent since they have a bivariate normal distribution with covariance $\sigma_{12} = 0$.
 - (b) X_1 and X_3 are dependent since they have nonzero covariance $\sigma_{13} = -1$.
 - (c) X_2 and X_3 are independent since they have a bivariate normal distribution with covariance $\sigma_{23} = 0$.
 - (d) X_1, X_3 and X_2 are independent since they have a trivariate normal distribution where $\sigma_{12} = 0$ and $\sigma_{32} = 0$.
 - (e) X_1 and $X_1 + 2X_2 3X_3$ are dependent since they have nonzero covariance

$$\sigma_{11} + 2\sigma_{12} - 3\sigma_{13} = 4 + 2(0) - 3(-1) = 7$$

- 4.7 (a) $X_1|x_3$ is $N(1+.5(x_3-2),3.5)$
 - (b) $X_1|x_2, x_3$ is $N(1+.5(x_3-2), 3.5)$. Since X_2 is independent of X_1 , conditioning further on x_2 does not change the answer from Part a).
 - 4.15 First,

$$= (\tilde{x} - \tilde{n})(u\tilde{x} - u\tilde{x}), = 0$$

$$= (\tilde{x} - \tilde{n})(\tilde{u}\tilde{x} - u\tilde{x}), = 0$$

$$= (\tilde{x} - \tilde{n})(\tilde{u}\tilde{x} - u\tilde{x}), = 0$$

$$\tilde{u} = (\tilde{x} - \tilde{n})(\tilde{u}\tilde{x} - u\tilde{x}), = 0$$

$$\tilde{u} = (\tilde{x} - \tilde{n})(\tilde{u}\tilde{x} - u\tilde{x}), = 0$$

Also.

$$\sum_{u}^{j=1} (\bar{x}^{j} - \bar{x})(\bar{x} - \bar{n})_{i} = [\sum_{u}^{j=1} (\bar{x} - \bar{n})(\bar{x}^{j} - \bar{x})_{i}]_{i} = 0_{i} = 0.$$

- 4.16 (a) By Result 4.8, with $c_1 = c_3 = 1/4$, $c_2 = c_4 = -1/4$ and $\mu_j = \mu$ for j = 1, ..., 4 we have $\sum_{j=1}^4 c_j \mu_j = 0$ and $(\sum_{j=1}^4 c_j^2) \sum_{j=1}^4 \sum_{j=1}^4$
 - (b) Again by Result 4.8, we know that V_1 and V_2 are jointly multivariate normal with covariance

$$\left(\sum_{j=1}^{4} b_{j} c_{j}\right) \Sigma = \left(\frac{1}{4} \left(\frac{1}{4}\right) + \frac{-1}{4} \left(\frac{1}{4}\right) + \frac{1}{4} \left(\frac{-1}{4}\right) + \frac{-1}{4} \left(\frac{-1}{4}\right)\right) \Sigma = 0$$

That is,

$$\left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] \quad \text{is distributed} \quad N_{2p} \left(0, \left[\begin{array}{cc} \frac{1}{4}\Sigma & 0 \\ 0 & \frac{1}{4}\Sigma \end{array}\right] \right)$$

so the joint density of the 2p variables is

$$f(v_1, v_2) = \frac{1}{(2\pi)^p \left| \frac{1}{4}\Sigma \right|} \exp \left(-\frac{1}{2} \begin{bmatrix} v_1', v_2' \end{bmatrix} \begin{bmatrix} \frac{1}{4}\Sigma & 0 \\ 0 & \frac{1}{4}\Sigma \end{bmatrix}^{-1} \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \right)$$

$$= \frac{1}{(2\pi)^p \left| \frac{1}{4}\Sigma \right|} \exp \left(-\frac{1}{8} (v_1' \Sigma^{-1}v_1 + v_2' \Sigma^{-1}v_2) \right)$$