Arithmetic Circuits: Adders

Becker/Molitor, Chapter 9.2

Jan Reineke Universität des Saarlandes

Roadmap: Computer architecture

- 1. Combinatorial circuits: Boolean Algebra/Functions/Expressions/Synthesis
- 2. Number representations
- 3. Arithmetic Circuits:
 Addition, Multiplication, Division, ALU
- 4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
- 5. Verilog
- 6. Instruction Set Architecture
- 7. Data path & Control path
- 8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Representation of natural numbers

Let $a = a_{n-1}...a_1a_0$ be a sequence of numerals from the positional numeral system $(b, Z, \delta)=(2,\{0,1\},id)$.

(We call such numbers binary numbers.)

Then the value $\langle a \rangle$ of a is:

$$==\sum_{i=0}^{n-1}b^i\cdot\delta\(a_i\)$$

Adders

Adders

Adder (with carry-in)

Given: 2 positive binary numbers

$$\langle a \rangle = \langle a_{n-1} \dots a_0 \rangle,$$

 $\langle b \rangle = \langle b_{n-1} \dots b_0 \rangle,$

and a carry-in $c \in \{0,1\}$.

Wanted: Circuit computing the binary representation of $\langle s \rangle = \langle a \rangle + \langle b \rangle + c$.

How many bits do we need to represent s?

Because $\langle a \rangle + \langle b \rangle + c \leq 2 \cdot (2^n - 1) + 1 = 2^{n+1} \cdot 1$ n+1 bits suffice for s, i.e., a circuit with n+1 outputs.

Adders

Definition: Adder

Definition (Adder):

An **n-bit adder** is a circuit that computes the following Boolean function:

```
+_{n}: \mathbf{B}^{2n+1} \to \mathbf{B}^{n+1},
(a_{n-1}, ..., a_{0}, b_{n-1}, ..., b_{0}, c) \to (s_{n}, ..., s_{0}) with <_{s}> = <_{s_{n}} ... s_{0}> = <_{a_{n-1}} ... a_{0}> + <_{b_{n-1}} ... b_{0}> + c
```

Schematic of an n-bit adder

Back to the basics: Grade school addition

Adding as you learned it in grade school:

Half adder (HA)

Half adders may be used to sum up two 1-Bit numbers *without* carry-in: It computes the following function:

ha:
$$B^2 \to B^2$$

with $ha(a_0, b_0) = (s_1, s_0)$
with $\langle s_1 s_0 \rangle = 2s_1 + s_0$
 $= a_0 + b_0 = \langle a_0 \rangle + \langle b_0 \rangle$

Truth table of the HA

a_0	b_0	ha ₁	ha_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Thus:

$$ha_0 = a_0 \oplus b_0$$
 $ha_1 = a_0 \wedge b_0$

Half adder circuit

Cost and depth of a half adder:

$$C(HA) = 2$$
, $depth(HA) = 1$

Full adder (FA)

a_0	b_0	c	fa_1	fa_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

From the table we can derive:

$$fa_{0} = a_{0} \oplus b_{0} \oplus c = ha_{0}(c, ha_{0}(a_{0}, b_{0}))$$

$$fa_{1} = a_{0} \wedge b_{0} \vee c \wedge (a_{0} \oplus b_{0})$$

$$= ha_{1}(a_{0}, b_{0}) \vee ha_{1}(c, ha_{0}(a_{0}, b_{0}))$$

Full adder composed from HAs

From the table we can derive:

$$fa_0 = a_0 \oplus b_0 \oplus c = ha_0(c, ha_0(a_0, b_0))$$

$$fa_1 = a_0 \wedge b_0 \vee c \wedge (a_0 \oplus b_0)$$

=
$$ha_1(a_0, b_0) \vee ha_1(c, ha_0(a_0, b_0))$$

Cost and depth of a FA:

$$C(FA) = 5$$
, $depth(FA) = 3$

Implementing the "school method": Ripple-carry adder (RC)

(also called Carry-chain adder)

Implementing the "school method": Ripple-carry adder (RC)

Hierarchical construction:

(inductive definition)

For n=1: $RC_1 = FA$

For n>1: Circuit RC_n is defined as follows

Notation:

We refer to the carry-in with c_{-1} , and the carry from position i to i+1 with c_i .

Recursive construction of an n-bit Ripple-carry adder (RC_n)

Correctness of the RC_n

Theorem: The RC_n circuit is an n-bit adder.

I.e., it computes the function

$$+_n : \mathbf{B}^{2n+1} \to \mathbf{B}^{n+1},$$
 $(a_{n-1}, ..., a_0, b_{n-1}, ..., b_0, c) \to (s_n, ..., s_0)$ with $<_s> = <_s ... s_0> = <_{a_{n-1}} ... a_0> + <_{b_{n-1}} ... b_0> + c$

Correctness of the RC_n: Proof

Proof by induction:

- n=1: ✓
- $n-1 \rightarrow n$:

Input to RC_n:
$$(a_{n-1}, ..., a_0, b_{n-1}, ... b_0, c_{-1})$$

Show that the output $(s_n, ..., s_0)$ of RC_n satisfies $\langle s \rangle = \langle s_n ... s_0 \rangle = \langle a_{n-1} ... a_0 \rangle + \langle b_{n-1} ... b_0 \rangle + c_{-1}$

We know that: $\langle c_0, s_0 \rangle = a_0 + b_0 + c_{.1}$ (FA) And by inductive hypothesis: For RC_{p.1}: $\langle s_p ... s_1 \rangle = \langle a_{p.1} ... a_1 \rangle + \langle b_{p.1} ... b_1 \rangle + c_0$

Putting it all together:

$$\langle s_n ... s_0 \rangle$$
 = 2 · $\langle s_n ... s_1 \rangle + s_0$
(I.H.) = 2 · $(\langle a_{n-1} ... a_1 \rangle + \langle b_{n-1} ... b_1 \rangle + c_0) + s_0$
(FA) = 2 · $\langle a_{n-1} ... a_1 \rangle + a_0 + 2 · \langle b_{n-1} ... b_1 \rangle + b_0 + c_1$
= $\langle a \rangle + \langle b \rangle + c_1$

Cost and depth of Ripple-carry adders

Cost of RC_n?

Depth of RC_n?

$$C(RC_n) = n \cdot C(FA) = 5n$$

$$depth(RC_n) = 3 + 2(n-1) < 3n \text{ (for } n > 1)$$

Cost and depth of Ripple-carry adders (recursive)

Cost of RC_n:
$$C(RC_n) = C(FA) + C(RC_{n-1}) = 5 + C(RC_{n-1})$$

Depth of RC_n : depth(RC_n) = 3 + depth(RC_{n-1})-1 = 3 + 2(n-1)

Some more important circuits

- n-bit incrementer
- n-bit multiplexer

Definition: n-bit incrementer

An **n-bit incrementer** computes the following function:

Incrementer

An Incrementer is an adder with $b_i=0$ for all i.

 \rightarrow Replaces the FAs in RC_n by HAs.

Cost and depth:

$$C(INC_n) = n \cdot C(HA) = 2n$$

$$depth(INC_n) = n \cdot depth(HA) = n$$

Definition: n-bit multiplexer

An n-bit multiplexer (MUX_n) is a circuit that computes the following function:

$$sel_{n}: \mathbf{B}^{2n+1} \to \mathbf{B}^{n} \quad \text{with}$$

$$sel_{n}(a_{n-1}, ..., b_{n-1}, ..., b_{0}, s)$$

$$= \begin{cases} (a_{n-1}, ..., a_{0}) : if \ s = 1 \\ (b_{n-1}, ..., b_{0}) : if \ s = 0 \end{cases}$$

$$(sel_{n})_{i} = s \cdot \mathbf{a}_{i} + \overline{s} \cdot \mathbf{b}_{i}$$

Schematic of an n-bit multiplexer

Based on the equation: $(sel_n)_i = s \cdot a_i + \overline{s} \cdot b_i$

Adders

Back to adders

Brainstorming:

- Are there cheaper and faster adders than RC_n?
- Can we construct a constant-depth adder, independently of n?

Adders 26

Back to adders

Brainstorming:

- Are there cheaper and faster adders than RC_n?
- Can we construct a constant-depth adder, independently of n?

Lower bounds!

$$C(+n) \geq 0 \geq 0$$
 $c = \frac{1}{2} = \frac{1}{2}$

Observation: Output s_n depends on all 2n+1 inputs!

We use gates with at most 2 inputs.

Binary trees with 2n+1 leaves have 2n inner nodes.

Binary trees with n leaves have depth > \[\log n \].

In the following, let $n = 2^k$.

Brainstorming: Faster adders

Adders 28

Idea: "Divide and Conquer": Employ parallel processing to reduce the depth!

More precisely:

Compute **upper** and **lower** half of result in **parallel**.

Problem:

Dependency of the upper half of the result on carry from lower half.

Solution:

Computer upper half for both possible values of the carry and pick the correct one later.

Schematic of a conditional-sum adder (CSA_n)

On the complexity of the CSA_n

- We have: $CSA_1 = FA$.
- A CSA_n consists of 3 CSA_{n/2}.

Brainstorming: Depth of the CSA_n

How does depth(CSA_n) evolve depending on n?

```
depth(CSA_n) = depth(CSA_{n/2}) + depth(MUX_{(n/2)+1})
               = depth(CSA<sub>n/2</sub>) + 3
               = depth(CSA_{n/4}) + 3 + 3
               = depth(CSA_{n/8}) + 3 + 3 + 3
               = depth(CSA<sub>n/2^k</sub>) + 3k
               = depth(CSA<sub>1</sub>) + 3k   (n = 2^k, k = \log_2 n)
               = depth(FA) + 3k
               = 3(k+1)
               = 3 \log_2 n + 3
```

Adders

Depth of the CSA_n

Theorem (Depth of the
$$CSA_n$$
):
 $depth(CSA_n) = 3 log_2 n + 3$

Proof:

By induction over n.

- Induction base (n=1):
 - $depth(CSA_1) = depth(FA) = 3.$
- Induction step (n>1):

$$\begin{aligned} \text{depth}(CSA_n) &= \text{depth}(CSA_{n/2}) + \text{depth}(MUX_{(n/2)+1}) \\ &= 3 \log_2 (n/2) + 3 + \text{depth}(MUX_{(n/2)+1}) \quad (\text{inductive hypothesis}) \\ &= 3 \log_2 (n/2) + 3 + 3 \qquad \qquad (\text{depth of the multiplexen}) \\ &= 3 \left((\log_2 n) \cdot (\log_2 2) \right) + 3 + 3 \\ &= 3 ((\log_2 n) \cdot 1) + 3 + 3 \\ &= 3 \log_2 n + 3 \end{aligned}$$

Reminder:

We assume that n is a power of two.

(depth of the multiplexer)

Remember:

Adders

$$\log (a/b) = (\log a) - (\log b)$$

Lower bound on the cost of the CSA_n

How does the cost $C(CSA_n)$ evolve depending on n?

$$C(CSA_{1}) = C(FA) = 5$$

$$C(CSA_{n}) = 3 \cdot C(CSA_{n/2}) + C(MUX_{(n/2)+1})$$

$$= 3 \cdot C(CSA_{n/2}) + 3 \cdot n/2 + 4 \xrightarrow{Reminder: C(MUX_{n}) = 3n + 1}$$

$$\stackrel{(*)}{\geq} 3 \cdot C(CSA_{n/2})$$

$$\geq 3 \cdot 3 \cdot C(CSA_{n/2})$$

$$\geq 3^{k} \cdot C(CSA_{n/2})$$

Adders

 $(k = \log_2 n)$

 $= 3^k \cdot C(CSA_1)$

 $= 5 \cdot 3^{\log n}$

Lower bound on the cost of the CSA_n

Theorem (Cost of the CSA_n):
$$C(CSA_n) \ge 5 \cdot 3^{\log n}$$

```
Proof (by induction over n): Induction base (n = 1): C(CSA_1) = C(FA) = 5 \ge 5 = 5 \cdot 3^{\log 1} Induction step (n > 1): C(CSA_n) = 3 \cdot C(CSA_{n/2}) + C(MUX_{(n/2)+1}) \ge 3 \cdot C(CSA_{n/2}) \ge 3 \cdot 5 \cdot 3^{\log (n/2)} (inductive hypothesis) = 5 \cdot 3 \cdot 3^{\log n}
```

Lower bound on the cost of the CSA_n

What is $3^{\log n}$?

$$3^{\log n} = (2^{\log 3})^{\log n} = 2^{\log 3 \cdot \log n} = (2^{\log n})^{\log 3} = n^{\log 3}$$

$$n^{\log 3} \approx n^{1.58}$$

For example:

$$64^{\log 3} = 3^{\log 64} = 3^6 = 729$$

Exact cost of the CSA_n

Taking into account the cost of the multiplexer, the exact cost of the CSA_n is:

$$C(CSA_n) = 10n^{\log 3} - 3n - 2$$

Thus, the conditional-sum adder is very fast, but also pretty expensive!

Questions: Are there adders with

- linear cost (like the ripple-carry adder), and
- logarithmic depth (like the conditional-sum adder)?

Addition of numbers in two's complement

Can we use **n-bit adders** for numbers in two's complement?

Observation:

$$[d_{n-1}...d_0]_2 = \langle d_{n-2}...d_0 \rangle - d_{n-1} \cdot 2^{n-1}$$
 and $\langle d_{n-1}...d_0 \rangle = \langle d_{n-2}...d_0 \rangle + d_{n-1} \cdot 2^{n-1}$

So
$$\{d_{n-1}...d_0\}$$
 - $[d_{n-1}...d_0]_2 = d_{n-1}(2^{n-1}+2^{n-1}) = d_{n-1}2^n$.

I.e.
$$\langle d_{n-1}...d_0 \rangle \equiv [d_{n-1}...d_0]_2 \pmod{2^n}$$
.

Addition of numbers in two's complement

Theorem:

Let a, b \in Bⁿ, c_{n-1}, c₋₁ \in B and s \in Bⁿ, such that $\langle c_{n-1}, s \rangle = \langle a \rangle + \langle b \rangle + c_{-1}$.

Then: $[s]_2 \equiv [a]_2 + [b]_2 + c_1 \pmod{2^n}$.

Proof:

- 1. $[a]_2 \equiv \langle a \rangle \pmod{2^n}, [b]_2 \equiv \langle b \rangle \pmod{2^n}, [s]_2 \equiv \langle s \rangle \pmod{2^n}$
- 2. $\langle a \rangle + \langle b \rangle + c_1 = \langle c_{n-1}, s \rangle \equiv \langle s \rangle \pmod{2^n}$
 - (1.) (2.) (1.)
- 3. $[a]_2+[b]_2+c_1\equiv \langle a\rangle + \langle b\rangle + c_1\equiv \langle s\rangle \equiv [s]_2 \pmod{2^n}$

Addition of numbers in two's complement

Observation:

The range of numbers covered by n-bit two's complement is $R_n = \{-2^{n-1}, ..., 2^{n-1}-1\}$

 \rightarrow There are no two different values in R_n that are equal modulo 2^n .

Thus:

If the result of the addition is representable in n-bit two's complement, then it is computed correctly by an n-bit adder.

Addition of numbers in two's complement

Question: When is the result of the addition of two n-bit two's complement numbers not representable in n-bit two's complement?

Discovering an overflow of an n-bit adder

42

Addition of numbers in two's complement

Theorem:

Let $a,b \in B^n$, c_{n-1} , $c_{-1} \in B$ and $s \in B^n$, such that $\langle c_{n-1}, s \rangle = \langle a \rangle + \langle b \rangle + c_{-1}$.

Then:

1.
$$[a]_2 + [b]_2 + c_{-1} \notin R_n \Leftrightarrow (a_{n-1} = b_{n-1} \neq s_{n-1})$$

2.
$$[a]_2+[b]_2+c_{-1} \in R_n \Rightarrow [a]_2+[b]_2+c_{-1} = [s]_2$$

Proof of 1. via case distinction [a]₂, [b]₂ both positive, both negative, [a]₂ negative [b]₂ positive, [a]₂ positive [b]₂ negative.

Proof of 2. follows from the previous theorem.

Alternatively one can use the following overflow test: $[a]_2+[b]_2+c_1 \notin R_n \Leftrightarrow c_{n-1} \neq c_{n-2}$

Carry-lookahead adder

Adder with

linear cost and logarithmic depth!

Approach: Fast precomputation of the carries c_i.

If the carries c_i are known, then s_i is simply $a_i \oplus b_i \oplus c_{i-1}$.

Computation of c_i via parallel prefix computation.

Parallel prefix computation

Definition:

Let M be a set and $o: M \times M \to M$ an associative operation. The parallel prefix sum PPⁿ: $M^n \to M^n$ is defined as follows:

$$PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, ..., x_{1} o x_{0}, x_{0})$$

Parallel prefix computation: Recursive construction: Base case

$$PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, ..., x_{1} o x_{0}, x_{0})$$

Base case: $PP^1(x_0) = (x_0)$

Parallel prefix computation: PPn based on PPn/2

$$PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, x_{n-2} o x_{n-3} o ... o x_{0}, ..., x_{0})$$

Parallel prefix computation: Correctness (for n = 2ⁱ)

Induction base (i=0, n=1): \checkmark Induction step (n/2 \rightarrow n):
Inductive hypothesis: $y'_i = x'_i o x'_{i-1} o ... o x'_0$

$$y_{2i+1} = y'_{i} = x'_{i} o x'_{i-1} o ... o x'_{0}$$
 (inductive hypothesis)
= $(x_{2i+1} o x_{2i}) o ... o (x_{1} o x_{0})$
= $x_{2i+1} o x_{2i} o ... o x_{1} o x_{0}$ (associativity)

For the even outputs (except i = 0) we have:

$$y_{2i} = x_{2i} o y'_{i-1} = x_{2i} o (x'_{i-1} o ... o x'_{0})$$
 (inductive hypothesis)
$$= x_{2i} o ((x_{2i-1} o x_{2i-2}) o ... o (x_{1} o x_{0}))$$

$$= x_{2i} o x_{2i-1} o ... o x_{1} o x_{0}$$
 (associativity)

49

Cost of parallel prefix computation (for $n = 2^{i}$)

Cost:
$$C(PP^n) < 2n \cdot C(o)$$

Proof by induction over i:

•
$$i=0, n=1$$
:
 $C(PP^1) = 0 < 2 \cdot C(o)$

• $n \rightarrow 2n$:

$$C(PP^{2n}) = C(PP^n) + (2n-1) \cdot C(o)$$

 $< 2n \cdot C(o) + (2n-1) \cdot C(o)$
 $< 2(2n) \cdot C(o)$ (I.H.)

Depth of parallel prefix computation (for $n = 2^{i}$)

Depth: depth(PPn)
$$\leq (2 \cdot \log_2 n) \cdot depth(o)$$

Proof by induction over i:

• i=0, n=1: depth(PP1) = 0 < 2
=
$$(2 \cdot \log_2 2) \cdot \text{depth}(o)$$

• n
$$\rightarrow$$
 2n: depth(PP²ⁿ) = depth(PPⁿ) + 2 · depth(o)
 $\leq^{(I.H.)} (2 \cdot \log n + 2) \cdot depth(o)$
= $(2 \cdot (\log n + 1)) \cdot depth(o)$
= $(2 \cdot \log (2n)) \cdot depth(o)$

Adders 51

Back to the adder: Precomputation of the carries

Distinguish generated and propagated carries:

$$a_{n-1} \dots a_{j} \dots a_{i} \dots a_{0}$$
 $b_{n-1} \dots b_{j} \dots b_{i} \dots b_{0}$
 $\dots c_{j} c_{j-1} \dots c_{i-1} \dots c_{-1}$

Generated carry $g_{i,i}$ from i to j:

$$c_j = 1$$
 independently of c_{i-1} .

Propagated carry p_{i,i} from i to j:

$$c_i = 1$$
 if and only if also $c_{i-1} = 1$

Examples:

Properties of generated and propagated carries

Carry c_i is obtained as follows:

$$c_j = g_{j,0} + p_{j,0} \cdot c_{-1}$$

For i = j we have:

$$p_{i,i} = \underline{a_i \otimes b_i},$$

$$g_{i,i} = \overline{a_i \cdot b_i}.$$

For $i \neq j$ with $i \leq k \leq j$ we have:

$$g_{j,i} = g_{j,k+1} + p_{j,k+1} \cdot g_{k,i},$$
 $p_{j,i} = p_{j,k+1} \cdot p_{k,i}.$

Associative operator for the computation of $g_{i,i}$ and $p_{i,i}$

Define operator o as follows

$$(g, p) \circ (g', p') = (g+p \cdot g', p \cdot p'),$$

so that

$$(g_{j,i}, p_{j,i}) = (g_{j,k+1}, p_{j,k+1}) o (g_{k,i}, p_{k,i}).$$

Then we have:

$$(g_{j,0},p_{j,0}) = (g_{j,j},p_{j,j}) o \dots o (g_{1,1}, p_{1,1}) o (g_{0,0}, p_{0,0})$$

The operator o is associative.

 \rightarrow Parallel prefix computation to determine $(g_{j,0}, p_{j,0})$

Adders

Carry-lookahead adder

Adders

Cost and depth of the CLAⁿ

Cost:
$$C(CLA^n) = C(PP^n) + 5n$$

 $\leq 2n \cdot C(o) + 5n$
 $= 11n$

Depth: depth(CLAⁿ) = depth(PPⁿ) + 4

$$\leq (2 \cdot \log n \cdot 1) \cdot depth(o) + 4$$

= $4 \cdot \log n + 2$

Summary: Circuits and their complexity

	Half adder	Full adder	Ripple-carry adder	Conditional- sum adder	Carry-lookahead adder
Cost	2	5	5•n	10·n ^{log 3} -3·n-2	11·n
Depth	1	3	3+2·(n-1)	$3 \cdot \log n + 3$	4·log n + 2

	Incrementer	Multiplexer	arbitrary n-bit adder	Parallel prefix computation
Cost	2•n	3•n+1	≥ 2·n	< 2·n·C(o)
Depth	n	3	$\geq \log n + 1$	(2·log n -1) · depth(o)