

PROGRAMAÇÃO DE INTERNET

Prof. Richard Brosler

E-mail: richard.brosler@sp.senai.br

Grupo WhatsApp: https://bit.ly/3K8jFIg

AGENDA

- Revisão da aula passada
 - Operadores matemáticos
- Operadores relacionais
- Operadores lógicos
- Operadores de bit-a-bit
- Estruturas condicionais
 - SE condição ENTÃO
- Exercícios

OPERADORES MATEMÁTICOS

- Soma +
- Subtração –
- Multiplicação *
- Divisão / (cuidado que em algumas linguagens se dividirmos 2 inteiros, o resultado será um inteiro, ou seja, divisão inteira)
- Operador div Divisão inteira (visualG)
- Resto da divisão % (no caso do visualG é o mod)
- Exponenciação ** ou ^ (não são todas as linguagens que possuem um operador de exponenciação)

OPERADORES RELACIONAIS

- Maior que >
- Menor que <
- Igual a == (no caso do visualg é somente =)
- Diferente != (no caso do visualg é <>)
- Maior igual a >=
- Menor igual a <=

OPERADORES LÓGICOS

- Operador Lógico E: && (visualG é o e)
- Tabela verdade para o operador Lógico && (E ou AND)

A	В	Resultado ($A \wedge B$)
True	True	True
True	False	False
False	True	False
False	False	False

OPERADORES LÓGICOS

- Operador Lógico OU: | | (visualG é o ou)
- Tabela verdade para o operador Lógico | | (Ou ou OR)

A	В	Resultado ($A \lor B$)
True	True	True
True	False	True
False	True	True
False	False	False

OPERADORES LÓGICOS

- Operador Lógico Negação: ! (visualG é o não)
- Tabela verdade para o operador Lógico! (Negação)

A	Resultado (\overline{A})
True	False
False	True

REPRESENTAÇÃO NUMÉRICA EM BINÁRIO

- Antes de conhecermos os operadores de bits, vamos conhecer um pouco mais sobre como o computador entende os números inteiros.
- Um número inteiro no computador internamente é visto no sistema binário, ou seja, temos que converter ele para base 2.
- 2 = 0010
- 3 = 0011
- 4 = 0100
- 5 = 0101

VAMOS CALCULAR

- Agora vamos calcular alguns números da base 10 para a base 2.
- Antes vamos entender a regra para conversão:
- Vamos converter o número 15 para binário:
- O resultado será 1111

VAMOS CALCULAR

- Se quisermos voltar da base 2 para a base 10, como temos que fazer?
- Vamos ao exemplo de 1110 para a base 10. Teremos o seguinte resultado:

1	1	1	0
*	*	*	*
2^{3}	2^2	2^1	2^0
<u></u>			
8	4	2	0

• Somando-se 8 + 4 + 2 + 0 = 14

- Operador AND : & (no visualG não temos)
- Vamos ao exemplo do operador & com 10 & 5. Primeiramente para entender, temos que converter os 2 números em binário para assim fazermos a conta:
- 10 em binário é 1010 e 5 em binário é 0101, logo, teremos a seguinte conta:

10	1	0	1	0
5	0	1	0	1
Resultado	0	0	0	0

O resultado da expressão 10 & 5 será 0 (zero)

- Operador AND: & (no visual Gnão temos)
- Vamos outro exemplo, agora vamos fazer com 10 & 3
- 10 em binário é 1010 e 3 em binário é 11, logo, teremos a seguinte conta:

10	1	0	1	0
3	0	0	1	1
Resultado	0	0	1	0

O resultado da expressão 10 & 3 será 2 (10 em binário)

- Operador OR : | (no visualG não temos)
- Vamos ao exemplo do operador | com 10 | 5 :
- 10 em binário é 1010 e 5 em binário é 0101, logo, teremos a seguinte conta:

10	1	0	1	0
5	0	1	0	1
Resultado	1	1	1	1

• O resultado da expressão 10 | 5 será 15 (15 em binário é 1111)

- Operador XOR (Ou exclusivo): ^ (2 iguais = falso, l diferente = true) (no visualG não temos)
- Vamos ao exemplo do operador ^ com 10 ^ 7 :
- 10 em binário é 1010 e 7 em binário é 0111, logo, teremos a seguinte conta:

10	1	0	1	0
7	0	1	1	1
Resultado	1	1	0	1

O resultado da expressão 10 ^ 7 será 13 (13 em binário é 1101)

- Operador Complemento : ~ (no visualG não temos)
- Vamos ao exemplo do operador ~ com ~10:
- 10 em binário é 1010, teremos a seguinte conta:

10	1	0	1	0
Resultado	0	1	0	1

• O resultado da expressão ~10 será 5 (5 em binário é 0101)

- Operador Deslocamento de bit à esquerda: << (no visualG n\u00e3o temos)
- Vamos ao exemplo do operador << com 6 << 2 :
- 6 em binário é 0110, e vamos deslocar 2 bits à esquerda. logo, teremos a seguinte conta:

6	0	0	0	0	0	1	1	0
Resultado	0	0	0	1	1	0	0	0

O resultado da expressão 6 << 2 será 24 (24 em binário é 0001 1000)

- Operador Deslocamento de bit à direita: >> (no visualG n\u00e3o temos)
- Vamos ao exemplo do operador >> com 12 >> 2 :
- 12 em binário é 1100, e vamos deslocar 2 bits à direita. logo, teremos a seguinte conta:

12	0	0	0	0	1	1	0	0
Resultado	0	0	0	0	0	0	1	1

O resultado da expressão 12 >> 2 será 3 (3 em binário é 0011)

HIERARQUIA DOS OPERADORES

- Separadores
- Operadores unários
- Pré-incremento e pré-decremento
- Expoente
- Multiplicação / divisão
- Adição e subtração
- Deslocamento de bit
- Relacional exceto igualdade e diferente
- Igualdade e diferente

- Operador & (bit a bit)
- Operador ^ (bit a bit)
- Operador | (bit a bit)
- Operador lógico &&
- Operador Lógico | |
- Condicional ternário ? : (iremos ver)
- Atribuição = += -= *= /= %=
- Pós-incremento e pós-decremento

ESTRUTURAS CONDICIONAIS SE condição ENTAO

- Quando desejamos condicionar o nosso programa para que em determinada situação seja executada, temos que utilizar uma estrutura condicional simples, composta ou aninhada. Nesse caso iremos ver ao simples.
- A estrutura do comando "Se" é a seguinte:
- SE condição ENTÃO
- Comandosl
- Comandos2
- ComandoN
- Fimse

EXERCICIOS

- 1) Desenvolva um algoritmo em visualG que solicite ao usuário o nome, o ano atual e o ano do nascimento. Você deverá mostrar a idade do usuário e se ele for maior que 18 anos, mostrar a mensagem "Você é maior, já possui carteira de motorista?"
- 2) Desenvolva um algoritmo em visualG que solicite ao usuário um número inteiro, após digitar, informar se o número é par ou impar.
- 3) Desenvolva um algoritmo em visualG que solicite ao usuário um número inteiro, após digitar, informar se o número é divisível por 3.
- 4) Desenvolva um algoritmo em visualG que solicite ao usuário um número inteiro, após digitar, informar se o número é divisível por 5.

EXERCÍCIOS

• 5) Desenvolva um algoritmo em visualG que solicite ao usuário um número inteiro, após digitar, informar se o número é divisível por 5 e por 3.

ESTRUTURAS CONDICIONAIS SE condição ENTÃO SENÃO

- A estrutura do comando "Se" é a seguinte:
- SE condição ENTÃO
- Comandosl
- Comandos2
- ComandoN
- SENÃO
- comando 4
- comando5
- Fimse

ESTRUTURAS CONDICIONAIS SE condição ENTÃO SENÃO SE

- A estrutura do comando "Se" é a seguinte:
- SE condição ENTÃO
- Comandosl
- Comandos2
- ComandoN

- SENÃO
- SE condicao2 ENTAO
- comando 4
- comando 5
- FIMSE
- FIMSE

ESTRUTURAS CONDICIONAIS SELEÇÃO .. CASO

- A estrutura do comando "seleção" é a seguinte:
- Escolha (variável)
- caso valor1
- Comandos
- caso valor2
- comandos

- outrocaso
- comandos
- Fimescolha

 Veja exemplo na página 51 do livro de lógica

EXERCÍCIOS

• Vamos refazer os exercícios, porém sem o outro se, usando o senão

VAMOS EXERCITAR ©

 6) Escrever um programa que leia um peso na Terra e o número de um planeta. O programa deverá calcular o peso no planeta escolhido e mostrar quanto será o peso naquele planeta. O programa deverá mostrar a relação de planetas disponíveis para o usuário antes de solicitar o número do planeta. Abaixo a tabela dos planetas e o valor da sua gravidade em relação a Terra.

#	Gravidade relativa	Planeta
1	0,37	Mercúrio
2	0,88	Vênus
3	0,38	Marte
4	2,64	Júpiter
5	1,15	Saturno
6	1,17	Urano

Fórmula para calcular o peso:
$$PesoPlaneta = \frac{PesoNaTerra}{10} \times gravPlaneta$$