Baire category

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino)

Baire category

AA 2024-2025

1 / 16

X a topological space, $A\subseteq X$ is **nowhere dense** if one of the following equivalent conditions hold:

- there is no open set $U \subseteq X$ such that $A \cap U$ is dense in U;
- ullet its closure $\mathrm{Cl}(A)$ has empty interior;
- it is disjoint from an open dense set.

A is nowhere dense if and only if Cl(A) is nowhere dense.

The collection of nowhere dense subsets of X is closed under subsets and finite unions, that is, it is an ideal of sets.

Definition 1.5.1

 $A \subseteq X$ is **meager** if it can be written as a countable union of nowhere dense sets.

A is **comeager** if its complement is meager; equivalently, A is comeager iff it contains the intersection of countably many open dense sets.

Older terminology: meager sets are called "sets of the first category", non-meager sets are called "sets of the second category", while comeager sets are called "residual sets".

A. Andretta (Torino) Baire category AA 2024–2025 2 / 1

The collection of meager subsets of X is a σ -ideal on X, that is, it is closed under subsets and countable unions.

Dually, the collection of comeager subsets of X is a σ -filter on X, i.e. it is closed under supersets and countable intersections.

Examples 1.5.2

- If $U \subseteq X$ is open, its boundary $\mathrm{Cl}(U) \setminus U$ is nowhere dense: every nonempty open set disjoint from U is contained in $X \setminus \mathrm{Cl}(U)$. Every second-countable space X can be written as a disjoint union $Z \cup F$ with Z a comeager zero-dimensional \mathbf{G}_{δ} set and F a meager \mathbf{F}_{σ} set. Indeed, it is enough to let $F = \bigcup_{n \in \omega} \mathrm{Cl}(U_n) \setminus U_n$ for $\{U_n \mid n \in \omega\}$ a countable basis for X, and $Z = X \setminus F$.
- Similarly, if $F \subseteq X$ is closed, then $F \setminus \operatorname{Int}(F)$ is nowhere dense.
- The set of rationals $\mathbb Q$ is a meager subsets or $\mathbb R$, and hence the irrationals are a comeager subset of $\mathbb R$. The set of positive reals is neither meager nor comeager in $\mathbb R$.

A. Andretta (Torino)

Baire category

AA 2024-2025

3 / 16

Examples 1.5.2

- More generally, a countable subset of a perfect space is always meager. On the other hand, if x is isolated in X then $\{x\}$ is not meager.
- Any dense G_{δ} set $G \subseteq X$ is comeager.

Meager sets are usually regarded as "topologically small sets". However, it might happen that a space is meager in itself, as in the case of the rationals \mathbb{Q} : in such spaces, the Baire category notions of meager and comeager are useless — all their subsets are meager.

Definition 1.5.3

A topological space X is **Baire** if it satisfies the following equivalent conditions:

- Every nonempty open subset of X is non-meager.
- \odot The intersection of countably many dense open subsets of X is dense.

A. Andretta (Torino) Baire category AA 2024–2025 4 / 16

If X is nonempty and Baire, then the intersection of any two dense G_{δ} subsets of X must be dense, and hence nonempty.

Lemma 1.5.4 [Kec95, Proposition 8.3]

If a topological space X is Baire, then so are all its open subspaces.

Proof.

Let $U\subseteq X$ be open, and let $\{U_n\mid n\in\omega\}$ be a family of open dense subsets of U. Then each $V_n=U_n\cup (X\setminus \mathrm{Cl}(U))$ is open dense in X. Therefore $\bigcap_{n\in\omega}V_n=(\bigcap_{n\in\omega}U_n)\cup (X\setminus \mathrm{Cl}(U))$ is dense in X, hence $\bigcap_{n\in\omega}U_n$ is dense in U.

Theorem 1.5.5 [Kec95, Theorem 8.4]

Every completely metrizable space X is Baire.

A. Andretta (Torino)

Baire category

AA 2024-2025

5 / 16

Proof.

Let d be a compatible complete metric on X, and let $U\subseteq X$ be any nonempty open set: we want to show that $U\cap\bigcap_{n\in\omega}U_n\neq\emptyset$. To this aim, we recursively build a sequence of open balls $B_n=\mathrm{B}_d(x_n,\varepsilon_n)$ such that $\mathrm{Cl}(B_n)\subseteq\mathrm{B}_d^{\mathrm{cl}}(x_n,\varepsilon_n)\subseteq U\cap U_n\cap\mathrm{B}_{n-1}$ (where $B_{-1}=X$) and $\varepsilon_n\leq 2^{-n}$. This implies that $(x_n)_{n\in\omega}$ is a Cauchy sequence in (X,d), and thus $\lim_n x_n\in\bigcap_{n\in\omega}\mathrm{Cl}(B_n)\subseteq U\cap\bigcap_{n\in\omega}U_n$.

We define the open balls B_n by recursion on $n \in \omega$. Since U_0 is open dense, the set $U \cap U_0$ is open and nonempty: pick any $x_0 \in U \cap U_0$, and let ε_0 be small enough so that $\varepsilon_0 \leq 2^{-0}$ and $\mathrm{B}^{\mathrm{cl}}_d(x_0,\varepsilon_0) \subseteq U \cap U_0$. Set $B_0 = \mathrm{B}_d(x_0,\varepsilon_0)$. Now suppose that n>0, so that by inductive hypothesis B_{n-1} is a nonempty open subset of U. By density, $B_{n-1} \cap U_n$ is open and nonempty. Pick any $x_n \in B_{n-1} \cap U_n$, let ε_n be small enough so that $\varepsilon_n \leq 2^{-n}$ and $\mathrm{B}^{\mathrm{cl}}_d(x_n,\varepsilon_n) \subseteq B_{n-1} \cap U_n = U \cap U_n \cap B_{n-1}$, and set $B_n = \mathrm{B}_d(x_n,\varepsilon_n)$. This concludes the construction and the proof.

Similarly, every locally compact T_2 space is Baire [Kec95, Theorem 8.4].

A. Andretta (Torino) Baire category AA 2024–2025 6 / 1

Corollary 1.5.6

Let X be a nonempty completely metrizable space. If an \mathbf{F}_{σ} set $A \subseteq X$ is both dense and codense, then it is not \mathbf{G}_{δ} .

Proof.

If A, $X \setminus A$ were dense G_{δ} , their intersection should be dense because X is Baire, a contradiction.

Given $A, B \subseteq X$, write A = B if $A \triangle B$ is meager in X.

The relation =* is reflexive, symmetric, and transitive:

If
$$A,B,C\subseteq X$$
 then $A\setminus C\subseteq (A\setminus B)\cup (B\setminus C)$ and $C\setminus A\subseteq (C\setminus B)\cup (B\setminus A)$: thus if $A=^*B$ and $B=^*C$, then also $A=^*C$.

Thus

=* is an equivalence relation.

A. Andretta (Torino)

Baire category

AA 2024-2025

7 / 16

Definition 1.5.7

Let X be a topological space. A set $A\subseteq X$ has the **Baire Property** BP if $A=^*U$ for some open set $U\subseteq X$.

 $\mathsf{BP}(X)$ be the collection of all subsets of X with the Baire property.

If $A \in BP(X)$ and A = B, then $B \in BP(X)$.

Remark

 \mathcal{I} a σ -ideal on X, its elements are called \mathcal{I} -small.

 $A \subseteq X$ is \mathcal{I} -regular if $A \triangle U \in \mathcal{I}$ for some open $U \subseteq X$.

For example, fix a measure μ on X, and consider the σ -ideal $\mathcal I$ of all subsets of X with measure 0.

A. Andretta (Torino) Baire category AA 2024–2025 8 / 16

Proposition 1.5.9 [Kec95, Proposition 8.22]

Let X be a topological space. Then BP(X) is the smallest σ -algebra containing all open sets and all meager sets.

Proof.

Every open and every meager is in BP(X).

Suppose A = U and $U \subseteq X$ open.

Then $(X\setminus A)\setminus (X\setminus U)=U\setminus A$ and $(X\setminus U)\setminus (X\setminus A)=A\setminus U$, so $X\setminus A=^*X\setminus U$. But $X\setminus U$ is closed, hence $X\setminus U=^*\operatorname{Int}(X\setminus U)$. Thus $X\setminus A=^*\operatorname{Int}(X\setminus U)$. Thus $X\setminus A=^*\operatorname{Int}(X\setminus U)$. Thus $X\setminus A=^*\operatorname{Int}(X\setminus U)$.

Suppose that $A_n =^* U_n$. Since $\bigcup_n A_n \setminus \bigcup_n U_n \subseteq \bigcup_n (A_n \setminus U_n)$ and $\bigcup_n U_n \setminus \bigcup_n A_n \subseteq \bigcup_n (U_n \setminus A_n)$, it follows that $\bigcup_n A_n =^* V \coloneqq \bigcup_n U_n$. Thus $\mathsf{BP}(X)$ is also closed under countable unions.

Conversely, every set A with the BP is a Boolean combination of an open set and meager set: if $A=^*U$ for $U\subseteq X$ open and $M=A\bigtriangleup U$, so that M is meager, then $A=M\bigtriangleup U$.

A. Andretta (Torino)

Baire category

AA 2024-2025

9/16

Remark

The above proof actually shows that the smallest algebra on X containing all open sets and all meager sets is actually a σ -algebra, and it coincides with $\mathsf{BP}(X)$.

Sets with the Baire property can be approximated internally by a G_{δ} set, and externally by an F_{σ} set (modulo meager sets).

Proposition 1.5.11 [Kec95, Proposition 8.23]

Let X be a topological space and $A \subseteq X$. Then the following are equivalent:

- 2 $A = G \cup M$ for some G_{δ} set G and some meager set M;
- **3** $A = F \setminus M$ for some \mathbf{F}_{σ} set F and some meager set M.

A. Andretta (Torino) Baire category AA 2024–2025 10 / 16

1 $A \in \mathsf{BP}(X)$ implies **2** $A = G \cup M$ with $G \in \mathbf{G}_{\delta}$ and M meager

Pick any open set $U\subseteq X$ such that $A=^*U$. Write $A\mathrel{\Delta} U$ as $\bigcup_{n\in\omega} D_n$ with each D_n nowhere dense, and set $F=\bigcup_{n\in\omega}\operatorname{Cl}(D_n)$. Then F is a meager \mathbf{F}_σ set with $A\mathrel{\Delta} U\subseteq F$. Set $G=U\setminus F$ and $M=A\setminus G$. Since $G\subseteq A$, we have $A=G\cup M$. Moreover, the set G is \mathbf{G}_δ by definition, and M is meager because $M\subseteq F$, hence we are done.

1 $A \in \mathsf{BP}(X)$ implies **3** $A = F \setminus M$ with $F \in \mathbf{F}_{\sigma}$ and M meager

The proof in the previous paragraph works for every set with the BP: in particular, it can be applied to $X\setminus A$ because $X\setminus A\in \mathsf{BP}(X)$ by 1 and Proposition 1.5.9. Therefore $X\setminus A=G\cup M$ with M meager and G a \mathbf{G}_δ set. Then $F\coloneqq X\setminus G\in \mathbf{F}_\sigma$ so $A=F\cap (X\setminus M)=F\setminus M$.

The implications $\mathbf{2} \Rightarrow \mathbf{0}$ and $\mathbf{3} \Rightarrow \mathbf{0}$ follow from Proposition 1.5.9.

A. Andretta (Torino)

Baire category

AA 2024-2025

11 / 16

Corollary 1.5.12

Let X be a nonempty perfect Polish space, and $A \in \mathsf{BP}(X)$ non-meager. Then there is an embedding of 2^ω into A.

Proof.

By Proposition 1.5.11, A contains a non-meager G_{δ} set G. In particular, G is Polish, and it is uncountable (Exercise 1.5.24).

Therefore 2^{ω} embeds into $G \subseteq A$ by Corollary 1.4.9.

Working in ZFC, it is possible to show that there are sets without the Baire property.

A. Andretta (Torino) Baire category AA 2024–2025 12 / 16

Proposition see [Kec95, Example 8.24]

If X is a nonempty perfect Polish space, then $BP(X) \neq \mathscr{P}(X)$.

Proof.

Let $A\subseteq X$ be a Bernstein set (Proposition 1.4.14). We claim that $A\notin \mathsf{BP}(X)$. If not, since either A or $X\setminus A$ is non-meager (because X is Baire by Theorem 1.5.5), the Cantor space would embed in one of A or $X\setminus A$ by Corollary 1.5.12, contradicting the fact that A is a Bernstein set.

 $D \subseteq U$ is nowhere dense in U iff it is nowhere dense in X.

Proof.

If $V\subseteq U$ is open dense in U and such that $V\cap D=\emptyset$, then $W=V\cup (X\setminus \operatorname{Cl}(U))$ is open dense in X and such that $W\cap D=\emptyset$. Conversely, if $W\subseteq X$ is open dense in X and such that $W\cap D=\emptyset$, then $V=W\cap U$ is open dense in U and such that $V\cap D=\emptyset$.

A. Andretta (Torino)

Baire category

AA 2024-2025

13 / 16

Therefore

 $M \subseteq U$ is meager in U iff it is meager in X.

Definition

X a topological space, $U \subseteq X$ open.

 $A\subseteq X$ is **meager in** U if $A\cap U$ is meager in U or, equivalently, in X.

A is **comeager in** U if $U \setminus A$ is meager.

If A is (co)meager in some open $U \subseteq X$, then A is (co)meager in every open $V \subseteq U$.

Proposition 1.5.15 [Kec95, Proposition 8.26]

If $A \in \mathsf{BP}(X)$, then either A is meager, or else it is comeager in some nonempty open $U \subseteq X$. If X is Baire, then exactly one of these holds.

Proof.

Let $U\subseteq X$ be an open set such that $A=^*U$. If $U=\emptyset$, then A is meager, otherwise, it is comeager in U. \square

Recall that if $A\subseteq X\times Y$ and $\bar{x}\in X$ and $\bar{y}\in Y$ then

$$A_{(\bar{x})} = \{ y \in Y \mid (\bar{x}, y) \in A \}$$
 $A^{(\bar{y})} = \{ x \in X \mid (x, \bar{y}) \in A \}$

Theorem [Kec95, Theorem 8.4]

Let X,Y be second countable topological spaces, and suppose $A \in \mathsf{BP}(X \times Y).$

- ② A is meager iff $\{x \in X \mid A_{(x)} \text{ is meager in } Y\}$ is comeager in X, iff $\{y \in Y \mid A^{(y)} \text{ is meager in } X\}$ is comeager in Y.
- $\textbf{3} \ \, A \text{ is comeager iff } \{x \in X \mid A_{(x)} \text{ is comeager in } Y\} \text{ is comeager in } X, \\ \text{iff } \{y \in Y \mid A^{(y)} \text{ is comeager in } X\} \text{ is comeager in } Y.$

If X, Y are second-countable and Baire, then $X\times Y$ is Baire. By the Kuratowski-Ulam Theorem no well-ordering of X, a non-empty perfect Polish space, has the BP as a subset of X^2 .

A. Andretta (Torino)

Baire category

AA 2024-2025

15 / 16