

Linear predictors

Loss minimization

Stochastic gradient descent

Types of prediction tasks

Binary classification (e.g., email ⇒ spam/not spam):

True, Foller

$$x \longrightarrow h \longrightarrow y \in \{+1, -1\}$$

Regression (e.g., location, year ⇒ housing price):

Yooms Problem

(1200
(1200
(1800
(1800
(1800

_

Notations

Fraining Set (2C, 4)
In but / franture (2C)

oathut / tanget variable (g)

M = # Exaining Example.

Hypothesis/Model

Representation of Hypothesis

Job of Learning algorithm

Loss functions

Definition: loss function—

A loss function Loss (x, y, \mathbf{w}) quantifies how unhappy you would be if you used ${\bf w}$ to make a prediction on x when the correct output is y. It is the objective we want to minimize.

oss function

4-(7C)4

I mangin

-> 1 h(x)-y) > Lossabsalut

LGOS Squored logs - 2(S- 1504)

I grannd truth lariginal volus Mac) - bradicted value

Price

Siz

Regression loss functions

Learning as optimization

Learning algorithm: Gradient Descent 0.0 914 1 7 1 51 11

