8 APLICAÇÕES DO CÁLCULO INTEGRAL

8.1. Determine a área dos seguintes subconjuntos de \mathbb{R}^2 :

a)
$$\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, \ x^2 \le y \le x\};$$

b)
$$\{(x,y) \in \mathbb{R}^2 : x \le y \le -x^2 + 2\};$$

c)
$$\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, \ x^2 - 2x \le y \le \frac{x}{2} \};$$

d)
$$\{(x,y) \in \mathbb{R}^2 : y \le 5, y \ge -5x + 5, y \ge \ln x \}$$
.

8.2. Calcule a área do plano limitada pelo gráfico de $f(x) = x^3 - 6x^2 + 8x$ e pelo eixo dos xx.

8.3. Determine a área do plano limitada pelas linhas:

a)
$$x = 0$$
, $x = 4$, $y = \sqrt{x}$, $y = x^2$, $y = -\frac{x}{3} + \frac{4}{3}$;

b)
$$y = x$$
, $y = \frac{3}{x^2 + 2}$, $y = \frac{x}{2} - \frac{1}{2}$;

c)
$$x = 0$$
, $x = \pi$, $y = sen x$, $y = cos x$;

d)
$$x = -5$$
, $x = 0$, $y = e^x$, $y = arctg x$.

8.4. Determine o comprimento dos arcos de curva definidos por:

a)
$$y = \frac{2}{3}\sqrt{(x+2)^3}$$
, entre $x = -2$ e $x = 1$;

b)
$$y = \ln(\cos x)$$
, entre $x = 0$ e $x = \frac{\pi}{4}$;

c)
$$y = \cosh x$$
, entre $x = 0$ e $x = 1$;

8.5. Considere a região A limitada pelas linhas de equação $0 \le y \le \ln x$ e x < a, com a > 1.

a) Calcule a área da região A;

- b) Calcule o comprimento da linha (formada por um arco de curva e dois segmentos de recta) que "limita" o conjunto A.
- **8.6.** Calcule o volume da esfera de centro na origem e raio r.
- 8.7. Considere a região do plano definida pelo conjunto

$$A = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le \frac{\pi}{2}, \quad 0 \le y \le \operatorname{sen} x \cos x \right\}.$$

- a) Determine a área desta região;
- b) Calcule o volume do sólido de revolução gerado pela rotação de A em torno do eixo das abcissas.
- **8.8.** Calcule o volume do sólido de revolução que se obtém rodando a figura limitada pelas curvas $x = y^2$ e $x = -y^2 + 3$ em torno do eixo dos xx.
- **8.9.** Calcule o volume do sólido de revolução que se obtém rodando a figura limitada pelas curvas $y = e^x$, $y = 1 x^2$, x = 0 e x = 1 em torno do eixo dos yy.
- **8.10.** Calcule a área da superfície esférica de raio r.
- **8.11.** Determine a área da superfície obtida rodando, em torno do eixo dos xx, as seguintes linhas:
 - a) $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, y = x^3\};$
 - b) $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, \ y = 5x\};$
 - c) $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le \pi, y = sen x\};$
 - $d) \ \left\{ (x,y) \in \mathbb{R}^2 : 1 \leq x \leq 4, \ y = \sqrt{x} \right\}$