



US Army Corps of Engineers Fort Worth District

# ENERGY STUDY (EEAP)

# AT

# HELSTF

WHITE SANDS MISSILE RANGE, NEW MEXICO

FINAL REPORT VOLUME II

CONDUCTED BY:



# HUITT-ZOLLARS

512 MAIN STREET SUITE 1500 FORT WORTH, TEXAS 76102 (817) 335 - 3000 8/23/96

DTIC QUALITY INSPECTED 3

19971022 124

#### DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

#### DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

REPLY-70 ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

#### APPENDIX Ë SAMPLE PRODUCTS

# TABLE OF CONTENTS

| Fluorescent T8 Lamp Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fluorescent T8 Lamp Information  Fluorescent Electronic Ballast Information  Compact Fluorescent Lamp Information  E. L. F. D. F. D. F. L. F. D. F. L. F. D. |
| Compact Fluorescent Lamp Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LED Exit Sign Retrofit Kit Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Occupancy Sensor Lighting Controls Inc. F-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LSIC VAV Retrofit Terminal Information F.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| riigh Efficiency Motor Information F-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LSTC Recip. Chiller Manufacturers Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ESTC and TC-2 Screw Chiller Manufactures D. F-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IC-2 Diesel Fired Boiler Manufacturers Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STC Pump P-5 Manufacturers Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STC Pump P-7A Manufacturers Deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| STC Pump P-7B Manufacturers Data F_43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STC Pump P-10A Manufacturers Deta F-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| STC Pump P-10B Manufacturers Data F-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C-2 Pumps P-67 and P-68 Manufacturers Details F-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STC Propane Fired Boiler Manufacturers Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### OCTRON\*

#### Fluorescent Lamps



# The Widest Range of T8 Lamps Available

Through its OCTRON<sup>‡</sup> line OSRAM SYLVANIA offers more T8 lamp options than any other manufacturer. This gives architects, lighting designers, engineers, contractors and other specifiers the opportunity to select exactly the right mix of lamps to meet the precise requirements of an application.

All OCTRON lamps have a 20,000 hour average rated life when operated on rapid start ballasts. Lamps are rated at 15,000 hours when operated on instant start ballasts. (These figures are based on three hours of operation per start. Ratings will improve as burningcycles increase. In a typical 10 hour per day application, for example, life ratings on rapid start or instant start ballasts are increased by 35 percent.) Because long life means less frequent lamp replacement and smaller lamp inventories, maintenance costs can be substantially reduced.

#### OCTRON® Bipin Linear Lamps

OCTRON bipin linear fluorescent lamps are available in four length/wattage combinations-2-foot (17W), 3-foot (25W), 4-foot (32W) and 5foot (40W). This means there is an OCTRON T8 lamp to replace any commonly available bipin T12 lamp in any standard linear fluorescent fixture. OCTRON 700 Series lamps are available in four color temperatures - 3000K. 3500K, 4100K and 5000Kand have a color rendering index of 75. The 800 Series lamps come in 3000K, 3500K and 4100K colors and have an exceptional CRI of 85.

#### OCTRON® Single Pin Lamps

The OCTRON family includes an 8-foot single pin T8 lamp. When used in combination with an electronic ballast OCTRON FO96T8 lamps can replace F96T12 systemssaving over 90 watts per twolamp fixture. The 15,000 hour average rated life of this innovative lamp is 25 percent longer than ordinary F96T12 lamps. In addition, the argon fill gas in OCTRON FO96T8 lamps is less temperature sensitive than the krypton gas commonly used in F96T12/SS lamps. This improves light output in applications where cold air circulates. Available in 700 Series (75 CRI) and 800 Series (85 CRI) versions with a choice of 3000K. 3500K and 4100K colors

DTIC QUALITY INSPECTED 3

#### T8 Linear Fluorescent Lamps





OCTRON 900 Series lamps are the only T8 lamps available that are suitable for color critical applications

#### OCTRON® 900 Series Lamps

The OCTRON® 900 Series offers the industry's only full color spectrum T8 fluorescent lamps. These high performance lamps are designed for a wide variety of color critical applications. Their CRI of 90 is the highest of any fluorescent lamp and they feature a color temperature of 5000K. The American National Standards Institute has specified 5000K light sources for color evaluation

and comparisons, 5000K was chosen because it is the average color of daylight—an almost universal light source. OCTRON 900 Series lamps have a wide range of uses in graphic arts, textile and quality control applications where accurate color evaluation and comparisons are essential They are also ideal for backlighting displays and translucent signs. ÓCTRON 900 Series lamps are available in the standard 2-foot. 3-foot, 4-foot and 5-foot lamp lengths as well as special 20-nch, 30-inch and 40-inch versions. Wattages range from 14 to 40 watts. For increased flexibility, different sizes of OCTRON 900 Series lamps may be operated on a single multi-lamp instant. start electronic ballast with un form lamp life.

# Understanding OCTRON® T8 Technology

OCTRON T5 lamps can be operated effectively on rapid start magnetic and rapid start electronic ballasts. However, specific elements of OCTRON T8 technology are designed to achieve maximum performance on high frequency, instant start electronic ballasts.

The primary benefit of running OCTRON T3 lamps on electronic ballasts is the ability to use less energy to produce a given amount of light. The energy savings come from the fact that an electronic ballast drives OCTRON T8 lamps at high frequency—20,000 Hz—compared to 60 Hz for

a standard magnetic ballast. The increased frequency improves light output by up to 12 percent, allowing OCTRON lamps to provide dramatic energy cost savings while producing the same output as fluorescent T12 lamps. For even more savings. OCTRON fluorescent lamps may be operated with as little as 140 milliamps of current on instant start electronic ballasts.

# OCTRON' CURVALUME'

T8 Fluorescent Lamps

#### OCTRON® 700 Series Linear T8 Fluorescent Lamps

| Watts | Bulb | Nominal<br>Length (in.) | Base         | Item<br>Number | Ordering<br>Abbreviation | Average Rated<br>Life (hours) | Initial<br>Lumens | Color<br>Temp. | CRI |
|-------|------|-------------------------|--------------|----------------|--------------------------|-------------------------------|-------------------|----------------|-----|
| 17    | T-8  | 24                      | Medium Bioin | 21849          | F017/730                 | 20000                         | 1325              | 3000K          | 75  |
| 17    | T-8  | 24                      | Medium Bigin | 21832          | F017/735                 | 20000                         | 1325              | 3000K          | 75  |
| 17    | T-8  | 24                      | Medium Bipin | 21831          | F017/741                 | 20000                         | 1325              | 41C0K          | 75  |
| 25    | T-8  | 36                      | Medium Bipin | 21851          | F025/730                 | 20000                         | 2125              | 3000K          | 75  |
| 25    | T-8  | 36                      | Medium Bigin | 21817          | F025/735                 | 20000                         | 2125              | 3500K          | 75  |
| 25    | T-8  | : 36                    | Medium Bipin | 21829          | F025/741                 | 20000                         | 2125              | 4100K          | 75  |
| 32    | T-8  | 48                      | Medium Bigin | 21852          | F032/730                 | 20000                         | 2850              | 3000K          | 75  |
| 32    | T-8  | 48                      | Medium Bigin | 21823          | F032/735                 | 20000                         | 2850              | 350CK          | 75  |
| 32    | T-8  | 48                      | Medium Bigin | 21824          | F032/741                 | 200C0                         | 2850              | 4100K          | 75  |
| 32    | T-8  | 48                      | Medium Bipin | 21809          | F032/750                 | 20000                         | 2650              | 5000K          | 75  |
| 40    | T-8  | 60                      | Medium Bigin | 21853          | F040/730                 | 20000                         | 3600              | 3000K          | 75  |
| 40    | T-8  | 60                      | Medium Bigin | 21820          | F040/735                 | 20000                         | 3600              | 3500K          | 75  |
| 40    | T-8  | 60                      | Medium Bigin | 21827          | FO40/741                 | 20000                         | 3600              | 4100K          | 75  |
| 59    | T-8  | 96                      | Single P.n   | 21854          | F096/730                 | 15000                         | 5700              | 3000K          | 75  |
| 59    | T-8  | 96                      | Single Pin   | 21839          | F096/735                 | 15000                         | 5700              | 3500K          | 75  |
| 59    | T-8  | 96                      | Single Pin   | 21840          | F096/741                 | 15000                         | 5700              | 4100K          | 75  |

#### OCTRON® 800 Series Linear T8 Fluorescent Lamps

| Watts           | Bulb | Nominal<br>Length (in.) | Base         | ltem<br>Number | Ordering<br>Abbreviation | Average Rated<br>Life (hours) | Initial<br>Lumens | Color | CRI |
|-----------------|------|-------------------------|--------------|----------------|--------------------------|-------------------------------|-------------------|-------|-----|
| Service Service |      | congui (iii.)           | Dasc         | Muniper        | MUDICALOU                | Life (nours)                  | FOILIGH?          | Temp. | Uni |
| 17              | T-8  | 24                      | Medium Bipin | 21903          | F017/830                 | 20000                         | 1400              | 3000K | 85  |
| 17              | T-8  | 24                      | Medium Bigin | 21904          | F017/835                 | 20000                         | 1400              | 3500K | 85  |
| 17              | T-8  | 24                      | Medium Bipin | 21905          | F017/841                 | 20000                         | 1400              | 4100K | 85  |
| 25              | T-8  | 36                      | Medium Bigin | 21913          | F025/830                 | 20000                         | 2225              | 3000K | 85  |
| 25              | T-8  | 36                      | Medium Bigin | 21914          | F025/835                 | 20000                         | 2225              | 3500k | 85  |
| 25              | T-8  | 36                      | Medium Bigin | 21915          | F025/841                 | 20000                         | 2225              | 4100K | 85  |
| 32              | T-8  | 48                      | Medium Bipin | 21923          | F032/830                 | 20000                         | 3000              | 3000K | 85  |
| 32              | T-8  | 48                      | Medium Bipin | 21924          | F032/835                 | 20000                         | 3000              | 3500K | 85  |
| 32              | 7-3  | 48                      | Medium Bigin | 21925          | F032/841                 | 20000                         | 3000              | 4100K | 85  |
| 36              | T-8  | 48                      | Medium Bigin | 21930          | F036/830                 | 20000                         | 3450              | 3000K | 85  |
| 36              | T-8  | 48                      | Medium Bigin | 21931          | F036/835                 | 20000                         | 3450              | 3500K | 85  |
| 36              | T-8  | 48                      | Medium Bigin | 21932          | F036/841                 | 20000                         | 3450              | 4100K | 85  |
| 40              | T-8  | 60                      | Medium Bigin | 21938          | FO40/830                 | 20000                         | 3775              | 3000K | 85  |
| 40              | T-8  | 60                      | Medium Bigin | 21939          | FO40/835                 | 20000                         | 3775              | 3500K | 85  |
| 40              | T-8  | 60                      | Medium Bicin | 21940          | FO40/841                 | 20000                         | 3775              | 4100K | 85  |
| 59              | T-8  | 96                      | Single Pin   | 21897          | F096/830                 | 15000                         | 60G0              | 3000K | 85  |
| 59              | T-8  | 96                      | Single Pin   | 21898          | F096/835                 | 15000                         | 6000              | 3500K | 85  |
| 59              | T-8  | 96                      | Single Pin   | 21899          | F096/841                 | 15000                         | 6000              | 4100K | 85  |

#### OCTRON® 900 Series Linear T8 Fluorescent Lamps

| Watts | Bulb | Nominal<br>Length (in.) | Base         | ltem<br>Number | Ordering<br>Abbreviation | Average Rated<br>Life (hours) | Initial<br>Lumens | Color<br>Temp. | CRI |
|-------|------|-------------------------|--------------|----------------|--------------------------|-------------------------------|-------------------|----------------|-----|
| 14    | T-8  | 20                      | Medium Bidin | 21868          | F014/950/20              | 20000                         | 750               | 5000K          | 90  |
| 17    | T-8  | 24                      | Medium Bipin | 21871          | F017/950/24              | 20000                         | 800               | 5000K          | 90  |
| 21    | T-8  | 30                      | Medium Bigin | 21869          | F021/950/30              | 20000                         | 1000              | 5000K          | 90  |
| 25    | T-8  | 36                      | Medium Bidin | 21872          | F025/950/36              | 20000                         | 1250              | 5000K          | 90  |
| 28    | T-8  | 40                      | Medium Bloin | 21870          | F028/950/40              | 20000                         | 1400              | 5000K          | 90  |
| 32    | 5-T  | 48                      | Medium Bioin | 21880          | F032/950/48              | 20000                         | 1675              | 5000K          | 90  |
| 40    | 6-T  | 60                      | Medium Bicin | 21873          | F040/950/60              | 20000                         | 2200              | 50CCK          | 90  |

#### Ordering Information

#### OCTRON® CURVALUME® 700 Series T8 Fluorescent Lamps

| Watts   | Bulb         | Nominal<br>Length (in.) | Base         | ltem<br>Number | Ordering<br>Abbreviation | Average Rated<br>Life (hours) | Initial<br>Lumens | Color<br>Temp. | CRI |
|---------|--------------|-------------------------|--------------|----------------|--------------------------|-------------------------------|-------------------|----------------|-----|
| ******* | <b>D</b> 010 | Longin (m.)             |              | * * * * * * *  |                          |                               |                   | •              | _ : |
| 16      | T-8          | 10.5                    | Medium Bipin | 21792          | FB016/730                | 20000                         | 1225              | 3000K          | 75  |
| 16      | T-8          | 10.5                    | Medium Bigin | 21800          | F3016/735                | 20000                         | 1225              | 3500K          | 75  |
| 16      | T-8          | 10.5                    | Medium Bipin | 21802          | FB016/741                | 20000                         | 1225              | 4100K          | 75  |
| 24      | T-8          | 16.5                    | Medium Bigin | 21794          | FB024/730                | 20000                         | 2025              | 3000K          | 75  |
| 24      | T-8          | 16.5                    | Medium Bioin | 21810          | FB024/735                | 20000                         | 2025              | 3500K          | 75  |
| 24      | T-8          | 16.5                    | Medium Bipin | 21804          | FB024/741                | 20000                         | 2025              | 4100K          | 75  |
| 31      | T-8          | 22.5                    | Medium Bipin | 21796          | FB031/730                | 20000                         | 2750              | 3000K          | 75  |
| 31      | T-8          | 22.5                    | Medium Bipin | 21807          | FB031/735                | 20000                         | 2750              | 3500K          | 75  |
| 31      | T-8          | 22.5                    | Medium Bigin | 21806          | FB031/741                | 20000                         | 2750              | 4100K          | 75  |
| 31      | T-8          | 22.5                    | Medium Bipin | 21819          | F3031/750                | 20000                         | 2550              | 5000K          | 75  |
| 32      | T-8          | 22.5                    | Medium Bipin | 21967          | FB032/730/6              | 20000                         | 2850              | 3000K          | 75  |
| 32      | T-8          | 22.5                    | Medium Bigin | 21968          | FB032/735/6              | 20000                         | 2850              | 3000K          | 75  |
| 32      | T-8          | 22.5                    | Medium Bioin | 21969          | FB032/741/6              | 20000                         | 2850              | 4100K          | 75  |

#### OCTRON® CURVALUME® 800 Series T8 Fluorescent Lamps

| Watts | Bulb | Nominal<br>Length (in.) | Base         | item<br>Number | Ordering<br>Abbreviation | Average Rated<br>Life (hours) | Initial<br>Lumens | Color<br>Temp. | CRI |
|-------|------|-------------------------|--------------|----------------|--------------------------|-------------------------------|-------------------|----------------|-----|
| 16    | T-8  | 10.5                    | Medium Bioin | 21834          | F3016/830                | 20000                         | 1300              | 3000K          | 85  |
| 16    | T-8  | 10.5                    | Medium Bigin | 21835          | FB016/835                | 20000                         | 1300              | 3500K          | 85  |
| 16    | T-8  | 10.5                    | Medium Bigin | 21836          | FB016/841                | 20000                         | 1300              | 4100K          | 85  |
| 24    | T-8  | 16.5                    | Medium Bigin | 21874          | FB024/830                | 20000                         | <b>2</b> 125      | 300CK          | 85  |
| 24    | T-8  | 16.5                    | Medium Bipin | 21875          | F8024/835                | 20000                         | 2125              | 3500K          | 85  |
| 24    | T-8  | 16.5                    | Medium Bipin | 21876          | F8024/841                | 20000                         | 2125              | 4100K          | 85  |
| 31    | T-8  | 22.5                    | Medium Bigin | 21877          | FB031/830                | 20000                         | 2900              | 3000K          | 85  |
| 31    | Ť-8  | 22.5                    | Medium Bioin | 21878          | FB031/835                | 20000                         | 2900              | 3500K          | 85  |
| 31    | T-8  | 22.5                    | Medium Bipin | 21879          | FB031/841                | 20000                         | 2900              | 4100K          | 85  |
| 32    | Ť-8  | 22.5                    | Medium Bigin | 21970          | F2032/830/6              | 20000                         | 3000              | 300CK          | 85  |
| 32    | Ť-8  | 22.5                    | Medium Bipin | 21971          | FB032/835/6              | 20000                         | 3000              | 3500K          | 85  |
| 32    | Ť-8  | 22.5                    | Medium Bipin | 21972          | FB032/841/6              | 20000                         | 3000              | 4100K          | 85  |

#### Sample Specifications OCTRON<sup>®</sup>

Lamps shall be SYLVANIA OCTRON?

(FO17, FO25, FO32, FO36\*, FO40, FO96) having a T8 bulb and \_\_\_\_\_ (medium bipin, single pin\*\*) bases. Lamps shall have a correlated color temperature of \_\_\_\_\_ (300K, 3500K, 4100K, 5000K) and a color rendering index of \_\_\_\_\_ (75, 85). They are to be operated on \_\_\_\_\_ (magnetic rapid start, electronic instant start, electronic rapid start) ballasts.

\*Available only in 800 Series \*\*F096 only

#### OCTRON® CURVALUME®

Lamps shall be SYLVANIA OCTRON? CURVALUME' \_\_\_\_\_ (FBO FBO31, FBO32') having a \_\_\_ \_\_\_ (FBO16, FBO24. \_ (1½', 6') leg spacing and medium bipin bases. Lamps shall have a correlated color temperature of \_\_ (3000K, 3500K, 4100K, 5000K) and a color rendering index of \_\_\_\_\_ (75, 85). They are to be operated on \_\_\_\_\_ (magnetic rapid start, electronic instant start, electronic rapid

\*FBO32 is the only CURVALUME lamp with 6\* leg

#### For Orders And General Information

OSRAM SYLVANIA National Customer Support Center, 18725 N. Union Street, Westfield, IN 46074

OCTRON® 900 Series

ballasts.

Lamps shall be SYLVANIA OCTRON 900

Series fluorescent lamps having medium bipin

bases. Lamps shall have a correlated color

temperature of 5000K and a color rendering

index of 90. Lamp lengths shall be \_\_\_\_\_ (20\*, 24\*, 30\*, 36\*, 40\*, 48\*, 60\*). Lamps shall be operated on \_\_\_\_ (magnetic rapid start, electronic instant start, electronic rapid start)

Specialty Lamps Markets Phone: 800/762-7191 Industrial/Commercial Phone: 800/255-5042 Fax: 8C0/762-7192 Fax: 800/255-5043 **Consumer Products** Phone 800/842-7010 National Accounts: Phone 800/562-4671 Industrial Commercial Fax: 800/842-7011 Phone: 800/562-4672 Consumer Products 800/562-4674

## **Electronic Lighting Systems**

The System Solution



# A Complete Range of Fluorescent Systems

OSRAM SYLVANIA offers a QUICKTRONIC® system to provide optimum performance with every OCTRON® and OCTRON® CURVALUME® T8 lamp. There are also QUICKTRONIC systems for DULUX® L and F96T12 lamps. All QUICKTRONIC systems have a high ballast factor and high frequency circuitry for maximum light output and efficiency with minimal lamp flicker. Multi-lamp ballasts power up to four lamps with parallel circuitry that keeps remaining lamps lit when one or more fails. QUICKTRONIC systems are ideal for either retrofit or new installations.



#### QUICKTRONIC® SYSTEM 32

QUICKTRONIC SYSTEM 32 is designed to use OCTRON 32W T8 fluorescent lamps and provides illumination equal to an F40T12 system with 40 percent less energy usage. It can also operate 17W, 25W and 40W T8 lamps, OCTRON CURVALUME lamps and 40W T5 twin lamps. QUICKTRONIC SYSTEM 32 is available in 120V and 277V versions to drive one, two, three and four-lamp systems. OCTRON and OCTRON CURVALUME T8 lamps are available in 75, 85 and 90 CRI versions and provide energy savings, high luminous efficacy and excellent color rendition. The DULUX L 40W is a single ended twin tube lamp that provides nearly the same light output as a 4-foot linear lamp.

#### QUICKTRONIC® SYSTEM 36

QUICKTRONIC SYSTEM 36 is designed to operate OCTRON 36W T8 lamps. It provides up to 30 percent more lumen output than a standard 32W T8 system. It also operates DULUX L 39W twin tube fluorescent lamps. QUICKTRONIC SYSTEM 36 is a two-lamp system available in 120V and 277V versions. OCTRON 36W T8 lamps are available in 3000K, 3500K and 4100K versions and have a CRI of 85. They provide exceptional luminous efficacy and energy efficiency. The DULUX L 39W single ended twin tube lamp provides nearly the same light output as a 4-foot linear lamp and has an efficacy of up to 81 lumens per watt.

#### QUICKTRONIC® SYSTEM 59

QUICKTRONIC SYSTEM 59 is designed to operate OCTRON F096T8 lamps. It provides illumination equal to F96T12 lamps with 40 percent less energy usage. Because it is smaller and lighter than the F96T12 magnetic ballast it replaces, installation is easier and more flexible. QUICKTRONIC SYSTEM 59 is a two-lamp system available in 120V and 277V versions.

OCTRON FO96T8 lamps have a single pin base and are designed to replace F96T12 lamps. OCTRON FO96T8 lamps come in three color temperatures—3100K, 3500K and 4100K and are available in 75 CRI and 85 CRI versions.

#### QUICKTRONIC® SYSTEMS

#### QUICKTRONIC® SYSTEM 17

QUICKTRONIC® SYSTEM 17 is designed to operate OCTRON® 17W T8 and OCTRON® CURVALUME® 16W lamps with full energy efficiency, high lumen output and low harmonic distortion. QUICKTRONIC SYSTEM 17 is a three-lamp system available in 120V and 277V versions.

OCTRON 17W T8 and OCTRON CURVALUME 16W lamps are available in both 75 and 85 CRI versions. When used in OUICKTRONIC SYSTEM 17 they provide energy savings, high luminous efficacy and excellent color rendering.

#### QUICKTRONIC® SYSTEM 96

QUICKTRONIC SYSTEM 96 is designed to operate both standard and energy saving SYLVANIA F96T12 lamps and F96T12/HO lamps. It provides high lumen output, extremely efficient operation and up to 20 percent energy savings when compared to older magnetic ballasts. Other T12, SLIMLINE and H.O. lamps can also be driven. QUICKTRONIC SYSTEM 96 is a two-lamp system available in 120V and 277V versions. SYLVANIA F96T12 SLIMLINE and F96T12 High Output lamps are available in a range of colors with up to 80 CRI. Standard and energy saving versions are available.



Power Input vs. Light Output for QUICKTRONIC® System 32 Compared to F40T12 System.



10 Year Payback on QUICKTRONIC 1 System 32 vs. F40T12 System

#### QUICKTRONIC® SYSTEM 55

QUICKTRONIC SYSTEM 55 is designed to operate DULUX® L 55W twin tube fluorescent lamps. It provides up to 50 percent more lumen output than standard T5 twin lamps with no loss in system efficiency. This is the ideal system for high lumen indirect, cove and 2x2 fixtures.
QUICKTRONIC SYSTEM 55 is offered as a one or two-lamp system in 120V and 277V versions.

DULUX L 55W twin tube lamps provide up to 50 percent more light output than standard T5 twin lamps. DULUX L lamps offer an efficacy of up to 81 lumens per watt and are available in 3000K, 3500K and 4100K versions.

#### **OSRAM SYLVANIA**

#### System Solutions

# Ordering Information

#### QUICKTRONIC<sup>®</sup> Electronic Systems for Fluorescent Lamps

| ltem<br>Number | Ordering<br>Abbreviation | Voltage<br>(VAC) | Lamp Type   | No of<br>Lamps | Input<br>Wattage (W | Ballast<br>) Factor | %THD |
|----------------|--------------------------|------------------|-------------|----------------|---------------------|---------------------|------|
| 49256          | OT1X32/120IS             | 120              | 32W-T8      | 1              | 31                  | .93                 | <20  |
| 49257          | QT1X32/277IS             | 277              | 32W-T8      | 1              | 31                  | .93                 | <20  |
| 49270          | QT2X32/120IS             | 120              | 32W-T8      | 2              | 62                  | .95                 | ₹20  |
| 49268          | QT2X32/277IS             | 277              | 32W-T8      | 2              | 62                  | .95                 | <20  |
| 49258          | QT3X32/120IS             | 120              | 32W-T8      | 3              | 88                  | .93                 | <20  |
| 49260          | QT3X32/277IS             | 277              | 32W-T8      | 3              | 88                  | .93                 | <20  |
| 49265          | QT4X32/120IS             | 120              | 32W-T8      | . 4            | 110                 | .87                 | <20  |
| 49263          | QT4X32/277IS             | 277              | 32W-T8      | 4              | 110                 | .87                 | <20  |
| 49262          | QT2X36/120IS             | 120              | 36W-T8      | 2              | 78                  | 1.05                | <20  |
| 49257          | QT2X36/277IS             | 277              | 36W-T8      | 2              | 78                  | 1.05                | <20  |
| 49340          | QT2X59/120iS             | 120              | 59W-T8      | 2              | 105                 | .85                 | <20  |
| 49346          | QT2X59/2771S             | 277              | 59W-T8      | 2              | 105                 | .85                 | <20  |
| 49252          | QT3X17/120IS             | 120              | 17W-T8      | 3              | 50                  | .95                 | <20  |
| 49253          | QT3X17/277IS             | 277              | 17W-T8      | 3              | 50                  | .95                 | <20  |
| 49250          | QT2X96/120!S             | 120              | F96T12      | ž              | 135                 | .88                 | <20  |
| 49254          | QT2X96/277IS             | 277              | F96T12      | 2              | 135                 | .88                 | <20  |
| 49255          | QT2X96/120HQ             | 120              | F96T12/H0   | 5              | 210                 | .87                 | <20  |
| 49251          | QT2X95/277HQ             | 277              | F96T12/H0   | 5              | 210                 | .87                 | <20  |
| 49287          | QT2X55/120IS             | 120              | 55W Dulux L | 2              | 110                 | 1.00                | <20  |
| 49288          | QT2X55/277IS             | 277              | 55W Dulux L | 2              | 110                 | .91                 | <20  |

#### ACCUTRONIC™ Low Voltage DC Electronic Systems for Compact Fluorescent Lamps

|                |                          | •                | •                                        |                    |                   | ·1· -          |  |
|----------------|--------------------------|------------------|------------------------------------------|--------------------|-------------------|----------------|--|
|                | Ordering<br>Abbreviation | Voltage<br>(VAC) | Lamp Type                                | No of E<br>Lamps : | Input Wattage (W) | Ballast Factor |  |
| 49401<br>49400 | AT7-9/12<br>AT7-9/24     | 12<br>24         | 7-9W Dulux SE & DE<br>7-9W Dulux SE & DE | 1                  | 10<br>10          | 1.00           |  |

#### POWERTRONIC™ Electronic Systems for HID Lamps

| Item<br>Number | Abbreviation | Voltage<br>(VAC) | Lamp Type  | No of<br>Lamps | Input<br>Wattage (W) | Ballast<br>Factor | %THD |
|----------------|--------------|------------------|------------|----------------|----------------------|-------------------|------|
| 49300          | PT-DE 70/120 | 120              | 70W HQI-DE | 1              | 80                   | 1.00              | <10  |
| 49301          | PT-DE 70/277 | 277              | 70W HQI-DE |                | 80                   | 1.00              | <10  |

For Orders And General Information

OSRAM SYLVANIA National Customer Support Center, 18725 N. Union Street, Westfield, IN 46074

Industrial/Commercial Phone: 800/255-5042

Fax: 800/255-5043 Phone: 800/842-7010 Fax: 800/842-7011 Consumer Products

Specialty Lamps/Markets Phone: 800/762-7191 National Accounts:

Fax: 800/762-7192

Phone: 800/562-4671 Phone: 800/562-4672 Fax: 800/562-4674 Industrial/Commercial Consumer Products

## Product Information Bulletin

# DULUX® D Compact Fluorescent Lamps

DULUX® D fluorescent lamps are more compact, use 75% less energy than incandescent lamps

Available in a choice of 9,13, 18 or 26 watts, these energysaving lamps include sizes which operate on the same ballasts as DULUX S lamps and higher wattage options for more light output.

More compact than DULUX S, the 9 and 13 watt DULUX D lamps are ideal for retrofit and other energy-saving fixtures where a small overall length is required. DULUX D 18 and 26 watt lamps are used in dedicated fixture designs where high light output and maximum energy efficiency are required.

The full family of DULUX D lamps, including 9, 13, 18, and 26 watt sizes, features a complete range of lumen packages up to 1800 lumens. They provide an even light distribution and serve as energy-saving replacements for incandescent lamps of up to 100 watts.

- Up to 75% less power consumption compared to incandescent lamps
- Long life of up to 10,000 hours for increased replacement intervals
- High luminous efficacy of up to 69 lumens per watt
- Trichrome phosphors for color rendition of up to 85 C.R.I.

- Symmetrical luminous intensity.
- A choice of 2700K warm color temperature, 3000K incandescent-like light, 3500K white light, and 4100K cool color temperature.
- Plug-in base with integrated starter and interference suppressor
- DULUX D lamps in the 18 and 26 watt sizes are designed for use in dedicated fixtures
- Made in U.S.A.

#### Applications:

Downlights, sconces, wall washers, task lights and pendant fixtures.



osram **Sylvani**a

#### Specifications and Ordering Information



| Item<br>Number | Ordering<br>Abbreviation | Buib<br>Type | Base ' | Nominal<br>Watts | Initial<br>Lumens | Burning<br>Position | Max. Base<br>Temp. at<br>Point X (F/C) | Max. Bulb<br>Temp. at<br>Point Y (F/C |
|----------------|--------------------------|--------------|--------|------------------|-------------------|---------------------|----------------------------------------|---------------------------------------|
| 20689          | CF90D/827                | T-4          | G23-2  | 9                | 575               | Um versa            | 194 /901                               | 302, 150,                             |
| 20690          | CF9DD/835                | T-4          | G23-2  | 9                | 575               | ijn.versa           | 1941 90                                | 302 50                                |
| 20691          | CF13DD/827               | T-4          | GX23-2 | 13               | 860               | Universa            | 1947/901                               | 302 150                               |
| 20705          | CF13DD/830               | T-4          | GX23-2 | :3               | 860               | Universa            | 194190                                 | 302 150                               |
| 20692          | CF13DD/835               | T-4          | GX23-2 | 13               | 660               | Ur Lersa            | 1941/901                               | 302 - 150                             |
| 20092<br>20708 | CF13DD:341               | T-4          | GX23-2 | 13               | 260               | Unwersa             | 1943/90                                | 302 1501                              |
| 20676          | CF18DD/327               | T-4          | G24J-2 | 13               | 1250              | Unitersa            | 1947/901                               | 302:150:                              |
| 20709          | CF18DD/830               | T-4          | G24a-2 | 18               | 1250              | Unmarsa             | 1347.90                                | 302: 150:                             |
| 20677          | CF18DD/835               | T-4          | G24d-2 | 18               | 1250              | Un Jersa            | 1947-90.                               | 302: 150:                             |
| 20678          | CF18DD:841               | T-4          | G24d-3 | 13               | 1250              | Universa            | 1941/901                               | 302: 150:                             |
|                | CF26DD/827               | T-4          | G24d-3 | 26               | 1800              | Universa            | 1347,40                                | 302 - 150 -                           |
| 20679          | CF26DD/830               | T-4          | G24d-3 | 25               | 1300              | Universa            | 1947/901                               | 302, 150,                             |
| 20710          |                          | T-4          | G24d-3 | 25               | .300              | Universa            | 1947/901                               | 3021 1501                             |
| 20680<br>20681 | CF26DD/835<br>CF26DD/841 | T-4          | G24d-3 | 26               | 1300              | Universa            | 1947/90                                | 3021 1501                             |

<sup>1.</sup> The G23-2 and GX23-2 bases are not compatible with some existing G23 and GX23 lampholder designs

| Electrical and Photometric                                                     | Ordering<br>Abbreviation | Nominal<br>Lamp<br>Voltage (V) | Nominal<br>Lamp<br>Current (A) | Initial<br>Lumens<br>(Im) | Luminous<br>Efficacy<br>(Im/W) | Color<br>Temp. | CRI        | Average<br>Rated<br>Life (hrs.)* | Min.<br>Starting<br>Temp. (F/C)* |
|--------------------------------------------------------------------------------|--------------------------|--------------------------------|--------------------------------|---------------------------|--------------------------------|----------------|------------|----------------------------------|----------------------------------|
| Specifications                                                                 |                          |                                | .180                           | 575                       | 6≟                             | 27004          | 82         | 10000                            | 25: -4:                          |
| Specifications                                                                 | CF9DD-827                | 59                             |                                | 575                       | 61                             | 3501           | 85         | 100001                           | 25 4                             |
|                                                                                | CF9DD/835                | 59                             | .180                           |                           |                                |                | 32         | 10000                            | 32°.0°                           |
|                                                                                | CF13DD/827               | 59                             | .285                           | ೦ಕಿ                       | 66                             | 2700K          |            | :3000                            | 35,/0,                           |
|                                                                                | CF13DD/830               | 59                             | .235                           | 860                       | 66                             | 3000K          | 85         |                                  | 32 70                            |
|                                                                                | CF13DD/835               | . 59                           | .295                           | 860                       | 66                             | 3500K          | 85         | 1,000                            |                                  |
|                                                                                | CF13DD/841               | 59                             | .285                           | 860                       | 66                             | 41005          | 85         | 10000                            | 323/03                           |
|                                                                                | - CF18DD/827             | 100                            | .220                           | 1250                      | 69                             | 2700 K         | 82         | 10000                            | 15%-94                           |
|                                                                                |                          | 100                            | .220                           | 1250                      | 69                             | 3000K          | <b>8</b> 5 | 13000                            | 15%-9°                           |
|                                                                                | CF18DD/930               |                                | .220                           | 1250                      | 69                             | 3500K          | 85         | 10000                            | 151.91                           |
|                                                                                | CF13DD/335               | 100                            |                                |                           | 69                             | 4120K          | 95         | 10060                            | 153/-93                          |
|                                                                                | CF18DD/841               | 100                            | .220                           | 1250                      |                                |                | 82         | 13000                            | 15' -9'                          |
|                                                                                | · CF26DD/827             | 105                            | .315                           | 1300                      | 69                             | 2700K          |            | 10000                            | 151-91                           |
| NOTE: Equipment manufacturers are                                              | CF26DD/830               | 105                            | .315                           | 1800                      | 69                             | 3000K          | 85         |                                  | 157-93                           |
| advised to consult the relevant ANSI and                                       | CF26DD/835               | 105                            | .315                           | 1900                      | 69                             | 3500K          | 85         | 10000                            |                                  |
| EC standards for the maximum allowable                                         | CF26DD/841               | 105                            | .315                           | 1300                      | 69                             | 4100K          | 85         | 10000                            | 157-93                           |
| dimensions and temperature to insure com-<br>patibility with similar products. | *At 3 hours per start.   | "At rated line                 | voltage and correc             | tiamp current.            |                                |                |            |                                  |                                  |

#### Dimensions and **Performance Charts**

| Watts   | A. Max. Overall<br>Length<br>[in (mm)] | B. Base Face to<br>Top of Lamp<br>[in (mm)] | C. Width of<br>Lamp<br>[in (mm)] | D. Maximum<br>Base Width<br>[in (mm)] | E. Maximum<br>Base Length<br>[in (mm)] |
|---------|----------------------------------------|---------------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|
| ^       | 4.37 (111)                             | 3.46 (88 )                                  | 1.10 (28 )                       | - 38 ( <b>35</b> )                    | 1.38 (35)                              |
| 9<br>13 | 4.84 (123)                             | 3.90 (99)                                   | 1.10 (28)                        | 1,38 (35)                             | 1.38 (35)                              |
| 13      | 6.79 (172.5)                           | 5.91 (150)                                  | 1.10 (28)                        | 1 38 (35)                             | 1.38 (35)                              |
| 26      | 7.58 (192.5)                           | 6.69 (170)                                  | 1.10 (28)                        | 1.33 (35)                             | 1.38 (35)                              |







For Orders and General Information

OSRAM SYLVANIA National Customer Support Center, 18725 N. Union Street, Westfield, IN 46074

Industrial/Commercial Phone: 800-255-5042

Specialty Lamps/Markets Fax: 800-255-5043

Phone: 800-762-7191

Fax: 800-762-7192

**Consumer Products** 

Phone: 800-842-7010 Fax: 800-842-7011

**National Accounts** 

Industrial/Commercial Consumer Products

Phone: 800-562-4671 Phone: 800-562-4672

Fax: 800-562-4674





**Technology Brought to Light** 

# LED Exit Sign Retrofit Kits

- -1.8 3.6 Input Watts/Fixture. (Replaces standard 20-25 watt lamps.)
- · Convert existing incandescent EXIT signs to use energy efficient LED light strips.
- Each kit contains two LED light strips and a reflective backing to provide even light distribution and a new red lens for the fixture.
- Estimated life is 25 years.
- Complies with OSHA and NFPA requirements.
- Available in four base styles to fit existing sockets or as a hard wire kit.
- LED light strips emit a bright red light and are not recommended for use with green signs.
- In addition to DGSC standard warranty, manufacturer's 25 year warranty applies.
- UL approved.







| ı |       | <br> |              |
|---|-------|------|--------------|
|   | TOTAL |      | NATIONAL     |
|   | WAITS |      | STOCK NUMBER |

| SINGL                                     | SINGLE FACE KITS |     |                  |  |  |  |  |  |  |  |  |
|-------------------------------------------|------------------|-----|------------------|--|--|--|--|--|--|--|--|
| DIM: 6" H X 7/8" W X 3/4" D , each strip. |                  |     |                  |  |  |  |  |  |  |  |  |
| 1.8                                       | DC BAY           | 120 | 6240-01-381-1658 |  |  |  |  |  |  |  |  |
| 1.8                                       | INTERMEDIATE     | 120 | 6240-01-381-1702 |  |  |  |  |  |  |  |  |
| 1.8                                       | CANDELABRA       | 120 | 6240-01-381-1843 |  |  |  |  |  |  |  |  |
| 1.8                                       | MEDIUM           | 120 | 6240-01-381-1589 |  |  |  |  |  |  |  |  |
| 1.8                                       | HARD WIRE        | 120 | 6240-01-381-1957 |  |  |  |  |  |  |  |  |
| 1.8                                       | HARD WIRE        | 277 | 6240-01-381-2061 |  |  |  |  |  |  |  |  |

Information provided by Computer Power Inc. Astralite Divison.

|                | <br> |                          |
|----------------|------|--------------------------|
| TOTAL<br>WATTS |      | NATIONAL<br>STOCK NUMBER |

| DOUE | BLE FACE KITS      |            |                  |
|------|--------------------|------------|------------------|
|      | DIM: 6" H X 7/8" W | X 1 1/2" I | D , each strip.  |
| 3.6  | DC BAY             | 120        | 6240-01-381-1594 |
| 3.6  | INTERMEDIATE       | 120        | 6240-01-381-1633 |
| 3.6  | CANDELABRA         | 120        | 6240-01-381-1695 |
| 3.6  | MEDIUM             | 120        | 6240-01-381-1552 |
| 3.6  | HARD WIRE          | 120        | 6240-01-381-1818 |
| 3.6  | HARD WIRE          | 277        | 6240-01-381-1940 |

#### **APPLICATION - HALLWAYS**

#### Ultrasonic and PIR Sensors in Hallways

#### **Application**

| Hal  | lways, corridors, aisleways.                                      |   |                   | Hallway length = 80'                                             |
|------|-------------------------------------------------------------------|---|-------------------|------------------------------------------------------------------|
| 1.   | Check square footage and ceiling height of area.                  |   |                   |                                                                  |
| 2.   | Use coverage templates.                                           | 1 |                   |                                                                  |
|      | Do not use ultrasonic sensor if ceiling height exceeds 14 feet.   |   |                   | Payback/ROI                                                      |
| 4.   | CI-100's are recommended for aisleways – do not use ultrasonics.  |   | F                 | Ultrasonic sensor<br>& power pack = \$125.00                     |
| 5.   | installed 6 to 8 feet away from air                               |   |                   | Installation = \$60.00 Total Cost =\$185.00 Payback = 7.2 Months |
| _    | supply diffusers.                                                 | _ |                   | ROI - 166%                                                       |
| о.   | Point ultrasonic receiver openings down the hallway. Mount CI-100 |   |                   | CI-100 &                                                         |
|      | with lens facing down the hallway.                                |   | 0                 | power pack = \$100.00                                            |
| 7.   |                                                                   |   |                   | Installation = \$60.00<br>Total Cost = \$160.00                  |
|      | match activity level of the space.                                |   | با                | Payback = 6.2 Months<br>ROI = 193%                               |
|      | Savings                                                           |   | П                 |                                                                  |
| (S   | ee enclosed "Timer Test Study")                                   |   |                   |                                                                  |
| 8 -  | 80 Watt 2' x 2' Troffers                                          |   |                   |                                                                  |
|      | 64Kw x\$.10 per Kwh                                               | 1 |                   |                                                                  |
| - \$ | 3.064 cost per hour                                               |   |                   |                                                                  |
| Sa   | ve 12 hours per day Mon-Fri                                       |   |                   | L                                                                |
|      | ive 33 hours per weekend                                          |   |                   |                                                                  |
|      | no do mouno por mounome                                           | 1 | or bere           |                                                                  |
| To   | otal hours saved = 93 hours x 52 weeks                            | L |                   |                                                                  |
| -    | 4836 hours per year                                               | 0 | Ultrasonic Sensor | •                                                                |
|      | 836 hour x \$.064 per hour<br>\$309.50 ANNUAL SAVINGS             |   | CI-100 Passive In | frared Sensor                                                    |
|      | CDIII IAC JAURINA VU.EVUG                                         |   |                   |                                                                  |

039.JC.2 \*\*Sensor, power pack, and installation costs are approximate.

#### **APPLICATION - RESTROOMS**

# Ultrasonic Sensors in Restrooms

#### **Application**

Large restrooms (with or without partitions).

- 1. Check square footage of area.
- 2. Use coverage templates.
- Place sensor as close as possible to stalls. Ideally, over the top of stall entrance.
- Make sure ultrasonic sensors are installed 6 to 8 feet away from air supply diffusers.
- 5. Specify time-delay and sensitivity to match activity level of the space.

#### Savings

(See enclosed "Timer Test Study")

- 8 80 Watt 2' x 4' Fluorescent fixtures
- = .64Kw x .10 per Kwh
- \$.064 cost per hour (Consider exhaust fan and ballast load)

Save 8 hours per day Mon-Fri (Typically lights in bathrooms are on 16 to 24 hours a day.)

Save 27 hours per weekend

Total hours saved - 67 hours x 52 weeks

- 3,484 hours per year

3,484 hour x \$.064 per hour

- \$222.98 ANNUAL SAVINGS



Ultrasonic Sensor

#### Payback/ROI

Ultrasonic sensor & power pack = \$125.00

Installation - \$60.00

Total Cost =\$185.00

Payback = 9.9 Months

ROI = 121%

\*\*Sensor, power pack, and installation costs are approximate.

039 JC 2

#### **APPLICATION - AREAS UNDER 300 SQ FT**

#### PIR Sensors and PIR Automatic Wall Switches in Building Areas of Under 300 Square Feet

#### **Application**

Offices, computer rooms, maintenance areas, vending areas, copy rooms, utility rooms.

- 1. Check square footage of area.
- 2. Use coverage templates.
- 3. Make sure PIR sensors have clear view of the controlled area.
- 4. Place sensor or "mask" lens so it does not "see" outside the room.
- Specify time-delay and sensitivity to match activity level of the space.

#### Savings

- 3 176 Watt 2' x 4' Troffers
- = .528Kw x \$.10 per Kwh
- \$.053 cost per hour

Save 4 hours per day Mon-Fri Save 12 hours per weekend

Total hours saved - 32 hours x 52 weeks

- 1,664 hours per year
- 1,664 hour x \$.053 per hour
- \$88.19 ANNUAL SAVINGS





- W WI or WS Series
  Automatic Wall Switch
- WPIR Sensor
  For enclosed office, use placement A or B.
  If the wall on the right does not exist, use placement B.

#### Payback/ROI

WI or WS Wall Switch = \$60.00 Installation = \$20.00 Total Cost = \$80.00 Payback = 10.9 Months ROI = 110%

WPIR & power pack = \$80.00 Installation = \$60.00

Total Cost -\$140.00

Payback = 19 Months

ROI

**-** 63%

\*\*Sensor, power pack, and installation costs are approximate.

039.JC 2

#### **APPLICATION - COMMON AREA**

#### Ultrasonic, PIR, and Dual Technology Sensors in Common Building Areas Larger Than 300 sq ft

#### **Application**

Conference rooms, computer rooms, maintenance areas, classrooms, vending areas, lunch rooms, copy rooms

- 1. Check square footage of area.
- 2. Use coverage templates.
- 3. Make sure PIR sensors have clear view of the controlled area.
- Place sensor or "mask" lens so it does not "see" outside the room.
- Specify time-delay and sensitivity to match activity level of the space.

#### **Savings**

- 8 176 Watt 2' x 4' Troffers
- = 1.41Kw x \$.10 per Kwh
- = \$.141 cost per hour

Save 4 hours per day Mon-Fri Save 12 hours per weekend

Total hours saved - 32 hours x 52 weeks

- 1,664 hours per year
- 1,664 hour x \$.141 cost per hour
- \$234.62 ANNUAL SAVINGS



Ultrasonic Sensor

← Dual Technology Sensor

CI-100 Passive Infrared Sensor

#### Payback/R01

Ultrasonic sensor & power pack = \$125.00

Installation - \$60.00

Total Cost =\$185.00

Payback = 9.5 Months

ROI - 127%

DT-100L & power pack = \$160.00

Installation = \$60.00

Total Cost =\$220.00

Payback = 11.3 Months

ROI - 107%

CI-100 & power pack - \$100.00

Installation = \$60.00

Total Cost -\$160.00

Payback = 8.2 Months

ROI = 147%

\*\*Sensor, power pack, and installation costs are approximate.

039JC.2

# APPLICATION - OPEN OFFICE AREA

# Ultrasonic, PIR, and Dual Technology Sensors in Open Office Area & Partitioned Offices

#### Application

- 1. Check square footage of area.
- 2. Use coverage templates.
- 3. Designing for smaller zones results in greater energy savings.
- 4. Make sure PIR sensors have clear view of the controlled area.
- 5. Specify time-delay to match activity level of the space.

#### Savings

(See enclosed "Timer Test Study") For an open office area with 12 - 3 lamp fixtures = 1.44 Kw x \$.10 per Kwh = \$.144 cost per hour

Save 4 hours per day Mon-Fri Save 6.5 hours per weekend

Total hours saved = 26.5 hours x 52 weeks = 1,378 hours per year

1,378 hour x \$.144 cost per hour - \$198.43 ANNUAL SAVINGS



- Ultrasonic Sensor
- ✓ Dual Technology Sensor
  - CI-100 Passive Infrared Sensor

#### Payback/ROI

Ultrasonic sensor & power pack = \$125.00 Installation - \$60.00 Total Cost -\$185.00

Payback = 11.2 Months 107% ROI

DT-100L & power pack = \$160.00 Installation - \$60.00

Total Cost =\$220.00

Payback = 13.3 Months

- 90% ROI

2 - CI-100 sensors & power pack = \$180.00

Installation = \$90.00 Total Cost = \$270.00

Payback = 16.3 Months

74% ROI

\*\*Sensor, power pack, and installation costs are approximate.

039.JC.2



# **Applications**

Office

The Watt Stopper manufactures the most complete line of automatic lighting controls. A combination of Ultrasonic, Passive Infrared and Dual Technology sensors can be used to configure any application. For specific information on how the technologies work see "Passive Infrared Sensor Technology", "Ultrasonic Technology", and "Dual Technology" sections under 'technical data'. Some of the most common uses are described here.

The Watt Stopper occupancy sensors are the perfect product to control lighting in the office environment. With all three technologies, effective energy savings can be achieved in every space. Our recommendations are:

| OFFICES - WPIR, WI or WS series wall switches             | 20.00  | Savings            |
|-----------------------------------------------------------|--------|--------------------|
| SPEN OFFICE SPACES - CL100 CL200, W.1000A W2000A, D1-1002 | 5-25%  | Savings            |
| • CONFERENCE ROOMS - W500A, W1000A, DT-100L, CI-100       |        | Savings            |
| • COMPUTER ROOMS - DT-100L, WPIR, CI-100                  |        | Savings<br>Savings |
| • RESTROOMS - Ultrasonic sensors                          |        | Savings            |
| • CORRIDORS - CI-100-2, W2000H                            | 20-00% | Savings            |

# Colleges & Schools

Buildings

The Watt Stopper occupancy sensors have been very successful in elementary, secondary, and college applications. For schools we recommend:

| LARGE CLASSROOMS - DT-100L, W2000A, CI-100, CI-200     SMALL CLASSROOMS - W1000A, CI-100, WPIR     CORRIDORS - CI-100-2, W2000H     RESTROOMS - Ultrasonic sensors     TEACHERS OFFICES - WPIR, WI or WS series wall switches     GYM'S AND MULTIPURPOSE - DT-100L, CI-100 | 0-75%<br>30-60%<br>35-75%<br>30-50% | Savings<br>Savings<br>Savings<br>Savings<br>Savings<br>Savings |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|
|                                                                                                                                                                                                                                                                            |                                     |                                                                |

# Retail & Hotels

The Watt Stopper occupancy sensors help you reduce energy costs while still meeting the special needs of your customers. For the most dramatic savings we recommend:

| • STORAGE AREAS - DT-100L, Ultrasonic, WPIR, CI-100, CI-200<br>• MEETING ROOMS - DT-100L, W500A, W1000A, CI-100, CI-200<br>• WAREHOUSES - DT-100L, W2000A, CI-100, CI-200 | 4.0.0. | Savings<br>Savings<br>Savings |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|

#### HVAC, EMS, Light Level & Misc

HVAC and Energy Management Systems can be used in combination with any and all Watt Stopper products. Every sensor can be used to turn lighting on and off in addition to producing information or signals for the other systems.

- HVAC Use the DT-100L, CI-100 or CI-200 for independent "on" and/or independent "off" for any area.
- EMS The Watt Stopper sensors can be used to control lighting loads independently or in conjunction with EMS systems.
- Light Level The DT-100L, CI-100 and CI-200 have a separate output to isolate a circuit for light level control.
- Cold Storage, Outdoor applications: CB-100, CB-200

The Watt Stopper\*, Inc. 2800 De La Cruz Blvd

Santa Clara, CA 95050 Tel: (408) 988-5331 Fax: (408) 988-5373

National Technical Support Plano, Texas: (800) 879-8585

39 JC 4

# **TITUS®** Variable Volume Retrofit Terminals ➤ Description

#### External Retrofit - Slides into Duct

#### Models:

PQCV ■ Pressure Independent Control ■ Pneumatic

AQCV ■ Pressure Independent Control ■ Analog Electronic

DQCV ■ Pressure Independent Control ■ Digital Electronic



- ► Converts constant volume systems to variable air volume. The resulting control performance approaches that of the current TITUS ESV Series single duct terminals.
- ► Easy, low cost installation into rectangular duct. The installer simply cuts a rectangular hole in the side of the duct, cuts away the insulation (if present). slides the unit into the duct, and screws the mounting plate to the side of the duct. Reinforcing angles are screwed to the top and bottom edges (see the illustration on the facing page).
- ➤ Pressure independent controls. Choice of pneumatic, analog. or digital electronic.
- ➤ TITUS multi-point, center averaging velocity sensor for accurate control even when duct velocities are not uniform across the duct cross section.

- ➤ Damper position is indicated by an arrow formed into the end of the damper shaft.
- ► Damper is constructed of 16 gauge galvanized steel.
- ➤ Elastomer seals on the long edges of the damper blades. The short edges of the damper blades seal against flexible metal strips in the sides of the casing.
- ► Damper shaft is supported in a stainless steel bearing.
- ► Leakage is less than 2% at 1.0".
- ► Gaskets under the mounting plate and at the end of the orifice plate seal the unit to the sides of the duct (see the illustration on the facing page).
- ► Reinforcing angles provide added duct stiffness at the insertion point.

For further information on TITUS controls, please see the following pages in Catalog Section G:

Pneumatic:

G7 - G13

Analog electronic:

G15 - G17

Digital electronic:

G18 - G20

# TITUS<sup>®</sup> Variable Volume Retrofit Terminals ➤ Description

#### QCV Series - Dimensions



#### QCV Series ■ Available Duct Sizes

| Unit | CFM    | Max 🛦 |    |         |    |    | Avai | lable | Duct | Sizes |    |          |     |
|------|--------|-------|----|---------|----|----|------|-------|------|-------|----|----------|-----|
| Size | Range* | CFM   |    | Width W |    |    |      |       |      |       |    | Height H |     |
|      | 0      | 100   |    | 5       | 6  | 8  |      | 10    |      | 12    |    |          | 5   |
| A    | to     | to    |    |         | 6  | 8  |      | 10    |      | 12    |    |          | - 6 |
|      | 200    | 200   |    |         | 6  | 8  |      | 10    |      | 12    |    |          | 8   |
|      | 0      | 150   |    | _       | 6  | 8  |      | 10    |      | 12    |    | 14       | 6   |
| В    | to     | to    |    |         |    | 8  |      | 10    |      | 12    |    | 14       | 8   |
|      | 300    | 300   |    |         |    |    |      | 10    |      | 12    |    | 14       | 10  |
|      | 0      | 200   | 8  |         | 10 |    | 12   |       | 14   |       | 15 |          | 6   |
| С    | to     | to    | 8  |         | 10 |    | 12   |       | 14   |       | 16 |          | 8   |
|      | 400    | 400   | 8  |         | 10 |    | 12   |       | 14   |       | 16 |          | 10  |
|      |        |       | 10 |         | 12 |    | 14   |       | 16   |       | 18 |          | 8   |
| 1    | 0      | 350   | 10 |         | 12 |    | 14   |       | 16   |       | 18 |          | 9   |
| D    | to     | ta    | 10 |         | 12 |    | 14   |       | 16   |       | 18 |          | 10  |
|      | 700    | 700   | 10 |         | 12 |    | 14   |       | 16   |       | 18 |          | 12. |
|      |        |       |    |         | 12 |    | 14   |       | 16   |       |    |          | 14  |
|      | 0      | 500   |    |         | 14 | 16 |      | 18    |      | 20    | 22 | 24       | 8   |
| Ε    | to     | to    |    |         | 14 | 16 |      | 18    |      | 20    | 22 | 24       | 10  |
|      | 1000   | 1000  | ĺ  |         | 14 | 16 |      | 18    |      | 20    | 22 | 24       | 12  |
|      | 0      | 500   | 18 |         | 20 | 22 |      | 24    |      | 26    |    |          | 6   |
| F    | to     | to    | 18 |         | 20 | 22 |      | 24    |      | 26    |    |          | 8   |
|      | 1000   | 1000  | 18 |         | 20 | 22 |      | 24    |      | 26    |    |          | 10  |
|      |        |       | 12 |         | 14 |    | 16   |       | 18   |       | 20 | 22       | 10  |
| 1    | 0      | 600   | 12 |         | 14 |    | 16   |       | 18   |       | 20 | 22       | 12  |
| G    | to     | to    | 12 |         | 14 |    | 16   |       | 18   |       |    | 22       | 13  |
| 1    | 1100   | 1100  | 12 |         | 14 |    | 16   |       | 18   |       | 20 | 22       | 14  |

| U  | nit | CFM    | Max 🛦 |    |    |    |    | A1 | vailat | ele Du | ict Siz | es |    |          |
|----|-----|--------|-------|----|----|----|----|----|--------|--------|---------|----|----|----------|
| Si | ze_ | Range* | CFM   |    |    |    |    |    | Widt   | h W    |         |    |    | Height H |
| Г  |     | 0      | 800   | 18 |    | 20 |    | 22 |        | 24     | 26      | 28 | 30 | 10       |
| 1  | н   | to     | to    | 18 |    | 20 |    | 22 |        | 24     | 26      | 28 | 30 | 12       |
| L  |     | 190    | 1900  | 18 |    | 20 |    | 22 |        | 24     | 26      | 28 | 30 | 14       |
|    |     | 0      | 1000  | 18 | 20 | 22 | 24 |    | 26     |        | 28      |    |    | 12       |
| 1  | J   | to     | to    | 18 | 20 | 22 | 24 |    | 26     |        | 28      |    |    | 14       |
| L  |     | 2400   | 2400  | 18 | 20 | 22 | 24 |    | 26     |        | 28      |    |    | 16       |
|    |     | 0      | 1350  | 20 |    | 22 |    | 24 |        | 26     | 28      | 30 |    | 14       |
| 1  | ĸ   | to     | to    | 20 |    | 22 |    | 24 |        | 26     | 28      | 30 |    | 16       |
| l  |     | 3800   | 3800  | 20 |    | 22 |    | 24 |        | 26     | 28      | 30 |    | 18       |
| Г  |     | 0      | 1800  |    |    | 30 | 32 | 34 | 36     |        |         |    |    | 12       |
| ŀ  | L   | to     | to    |    |    | 30 | 32 | 34 | 36     |        |         |    |    | 14       |
| L  |     | 5400   | 5400  |    |    | 30 | 32 | 34 | 36     |        |         |    |    | 16       |
|    |     | 0      | 1750  | Г  | 22 | 24 | 26 | 28 | 30     | 32     | 34      | 36 |    | 16       |
| 1  | M   | to     | to    |    | 22 | 24 | 26 | 28 | 30     | 32     | 34      | 36 |    | 18       |
| 1  |     | 5400   | 5400  |    | 22 | 24 | 26 | 28 | 30     | 32     | 34      | 36 |    | 20       |
|    |     | 0      | 2300  |    | 24 | 25 | 28 | 30 | 32     | 34     | 36      |    |    | 18       |
|    | N   | to     | to    | l  | 24 | 26 | 28 | 30 | 32     | 34     | 36      |    |    | 20       |
| 1  |     | 6700   | 6700  | 1  | 24 | 25 | 28 | 30 | 32     | 34     | 36      |    |    | 24       |
| L  |     |        |       | l  | 24 | 26 | 26 | 30 | 32     | 34     | 36      |    |    | 26       |
|    |     | 0      | 4000- | 30 | 32 | 34 | 36 | 38 | 40     | 42     | 44      | 46 |    | 20       |
|    | Р   | to     | to    | 30 | 32 | 34 | 36 | 38 | 40     | 42     | 44      | 46 |    | 24       |
| L  |     | 10000  | 10000 | 30 | 32 | 34 | 36 | 38 | 40     | 42     | 44      | 46 |    | 26       |
|    |     | 0      | 5000  | Ī  | 40 | 42 | 44 | 46 | 48     | 50     | 52      |    |    | 20       |
|    | R   | to     | to    |    | 40 | 42 | 44 | 46 | 48     | 50     | 52      |    |    | 24       |
|    |     | 15000  | 15000 |    | 40 | 42 | 44 | 45 | 43     | 50     | 52      |    |    | 26       |

<sup>\*</sup> CFM range from zero minimum to the recommended maximum setting.

Note: See chart for flow ratings.

<sup>▲</sup> Range of maximum cfm settings.

# TITUS<sup>®</sup> Variable Volume Retrofit Terminals ➤ Performance Data

# Model: PQCV ■ Recommended CFM Ranges



- ► Total CFM Range refers to the overall range of adjustment of the pneumatic velocity controller, from the lowest MIN setting to the highest MAX setting.
- ► Minimum CFM Range refers to the range of adjustment of the MIN setting of the pneumatic velocity controller.
- ► Maximum CFM Range refers to the range of adjustment of the MAX setting of the pneumatic velocity controller.
- \*Note: Factory settings (except zero) will not be made below this range because control accuracy would be reduced.

| Inlet | Total    | CFM R        | anges of Minimu | m and Maximum              | Settings                   |  |  |
|-------|----------|--------------|-----------------|----------------------------|----------------------------|--|--|
| Size  | CFM      |              | Controller      | TITUS I Controller         |                            |  |  |
|       | Range    | Minimum      | Maximum         | Minimum                    | Maximum                    |  |  |
| A     | 0.200    | *55-200      | 100-200         | *75-200                    | 100-200                    |  |  |
| 8     | 0-300    | .80-300      | 150-300         | 105-300                    | 150-300                    |  |  |
| С     | 0-400    | 110-400      | 195-400         | 140-400                    | 195-400                    |  |  |
| D     | 0-700    | 180-700      | 320-700         | 230-700                    | 320-700                    |  |  |
| E     | 0-1000   | *260-1000    | 475-1000        | *335-1000                  | 475-1000                   |  |  |
| F     | 0-1000   | *250-1000    | 455-1000        | *325-1000                  | 455-1000                   |  |  |
| G     | 0-1100   | *280-1100    | 510-1200        | *360-1100                  | 510-1200                   |  |  |
| Н     | 0-1900   | *435-1775    | 795-2000        | *565-1775                  | 795-2000                   |  |  |
| J     | 0-2400   | *540-2180    | 980-2400        | *695-2180                  | 980-2400                   |  |  |
| к     | 0-3800   | *725-2945    | 1320-3800       | *935-2945                  | 1320-3800                  |  |  |
| L     | 0-5400   | 1980-3975    | 1780-5500       | 1260-3975                  | 1780-5500                  |  |  |
| М     | 0-5400   | 1970-3870    | 1735-5500       | 1225-3870                  |                            |  |  |
| N     | 0-6700   | 1220-4975    | 2225-6700       | 1575-4975                  | 1735-5500                  |  |  |
| P     | 0-10.000 | 1860-7500    | 3400-10.000     |                            | 2225-6700                  |  |  |
| R     | 0-15.000 | *2750-11.000 | 5000-15.000     | *2400-7500<br>*3500-11,000 | 3400-10,000<br>5000-15,000 |  |  |

## TITUS<sup>®</sup> Variable Volume Retrofit Terminals ➤ Performance Data

#### QCV Series - Application Data - NC Values

|      |      |                 |          |          | Room I | Voise C  | riterion | (NC) |        |      |
|------|------|-----------------|----------|----------|--------|----------|----------|------|--------|------|
| Unit | CFM  | Min.            | Min.     | 75°      | 7b² :  | 0.50     | JPs =    | 1.00 | 7b2 =  | 3.00 |
| Size | 0    | <sup>3P</sup> s | Disch.   | Rad.     | Disch. | Rad.     | Disch.   | Rad. | Disch. | Rad  |
|      | 100  | .10             | _        | _        | 27     | _        | 35       | 23   | 48     | 38   |
| Α    | 150  | .23             | -        | _        | 28     | _        | 36       | 24   | 49     | 39   |
| 100% | 200  | .40             | 17       | _        | *      | *        | 37       | 25   | 49     | ,40  |
|      | 100  | .05             | -        | _        | 24     | _        | 35       | 23   | 48     | 38   |
| В    | 200  | .17             | -        |          | 27     |          | 36       | 24   | 49     | 39   |
| 100% | 300  | .38             | 19       |          | *      | *        | 37       | 25   | 49     | 40   |
|      | 150  | .04             | _        | _        | 25     |          | 31       | 21   | 45     | 35   |
| С    | 200  | .07             | - '      | <b>–</b> | 27     | -        | 33       | 23   | 48     | 38   |
| 100% | 300  | .14             |          | -        | 28     |          | 34       | 24   | 49     | 39   |
|      | 400  | .25             | 19       |          | *      | *        | 35       | 25   | 49     | 39   |
|      | 200  | .05             | _        | _        | 21     | _        | 30       | 21   | 42     | 35   |
| ٥    | 400  | .20             |          |          | 24     |          | 33       | 24   | 49     | 39   |
| 50%  | 600  | .44             |          | _        | 25     | l —      | 34       | 24   | 46     | 40   |
|      | 700  | .60             | -        | _        | *      | *        | 34       | 25   | 46     | 41   |
|      | 500  | .14             | _        | _        | 23     | _        | 31       | 22   | 48     | 38   |
| Ε    | 800  | .36             | _        | 24       | -      | <b> </b> | 33       | 24   | 49     | 39   |
| 40%  | 1000 | .56             | -        | -        | *      | *        | 33       | 25   | 49     | 39   |
|      | 500  | .13             | _        | _        | 23     | _        | 31       | 22   | 48     | 38   |
| F    | 800  | .32             |          | -        | 24     |          | 33       | 24   | 49     | 39   |
| 40%  | 1000 | .50             | -        | -        | *      | *        | 33       | 25   | 49     | 39   |
|      | 400  | .08             |          | -        | 20     | _        | 29       | 19   | 40     | 36   |
| G    | 600  | .18             | 1 —      | -        | 23     | -        | 31       | 22   | 42     | 38   |
| 30%  | 900  | .39             | -        |          | 23     |          | 32       | 23   | 43     | 39   |
|      | 1100 | .58             | _        | -        | *      | *        | 32       | 2÷   | 43     | 39   |
|      | 800  | .11             | -        | _        | 20     | _        | 29       | 21   | 40     | 36   |
| н    | 1200 | .25             | -        | _        | 21     | —        | 29       | 22   | 41     | 39   |
| 20%  | 1600 | .44             |          | -        | 22     | _        | 30       | 23   | 41     | 39   |
|      | 1900 | .61             | _        | -        | *      | *        | 30       | 24   | 42     | 40   |
|      | 1000 | .10             | <b>-</b> | _        | 19     | T —      | 27       | 22   | 39     | 38   |
| J    | 1500 | .23             | -        | _        | 20     | _        | 27       | 23   | 40     | 38   |
| 15%  | 2000 | .41             |          | -        | 21     |          | 28       | 24   | 40     | 39   |
| 1    | 2400 | .59             | 19       |          | *      | *        | 28       | 25   | 41     | 40   |

|      |        |      |        |      | Room   | Noise C | riterion | (NC) |            |      |
|------|--------|------|--------|------|--------|---------|----------|------|------------|------|
| Unit | CFM    | Min. | Min.   | 75e  | 752 :  | = 0.50  | JPs =    | 1.00 | 752 :      | 3.00 |
| Size |        | ∆Ps  | Disch. | Rad. | Disch. | Rad.    | Disch.   | Rad. | Disch.     | Rad  |
|      | 2000   | .17  | -      | _    | _      | _       | 26       | 23   | 33         | 38   |
| ĸ    | 2700   | .30  |        | -    | 19     |         | 27       | 23   | 33         | 38   |
| 10%  | 3350   | .46  |        | -    | 19     | _       | 28       | 24   | 3.4        | 39   |
|      | 3800   | .59  | 21     | -    | *      | *       | 28       | 25   | 34         | 40   |
|      | 2750   | .05  | _      | _    | _      | _       | 26       | 23   | 38         | 38   |
| L    | 3700   | .17  | -      | _    | 13     | _       | 26       | 24   | 39         | 39   |
| 10%  | 4650   | .38  | -      |      | 19     |         | 27       | 21   | 39         | 40   |
| . 1  | 5400   | .29  | -      | _    | 19     | -       | 27       | 25   | 39         | 40   |
|      | 2700   | .10  | +      | _    | 18     | -       | 26       | 23   | 38         | 38   |
| M    | 3600   | .18  | -      |      | 19     | _       | 26       | 23   | 39         | 39   |
| 10%  | 4500   | .28  | -      | _    | 19     |         | 27       | 24   | 39         | 40   |
|      | 5400   | .40  | 19     | —    | 20     | -       | 27       | 25   | 39         | 41   |
|      | 2300   | .14  | _      |      | 13     | -       | 25       | 22   | 37         | 38   |
| N    | 3400   | .36  | l —    |      | 19     |         | 26       | 22   | 38         | 38   |
| 10%  | 45CO   | .56  |        | _    | 19     | l —     | 26       | 23   | <b>3</b> 9 | 39   |
| 1    | 5600   | .22  | -      |      | 19     | -       | 27       | 24   | 39         | 39   |
|      | .6700  | .31  | -      | —    | 20     |         | 27       | 25   | 39         | 41   |
|      | 3400   | .13  |        |      |        | _       | _        | 21   | 24         | 37   |
| P    | 5200   | .32  | _      | l —  | _      | l —     | -        | 22   | 25         | 38   |
| 5º%  | 7000   | .50  | l —    |      | -      | -       | -        | 23   | 26         | 39   |
|      | 8800   | .28  | -      |      |        | -       | -        | 24   | 26         | 40   |
|      | 10,000 | .36  | _      | _    |        | _       | _        | 25   | 27         | 41   |
|      | 7500   | .11  |        | _    | -      | _       |          | 21   | 25         | 34   |
| R    | 10.000 | .20  |        |      |        | -       |          | 22   | 26         | 35   |
| 5%   | 12.500 | .32  | _      | l —  | —      |         | -        | 23   | 26         | 35   |
|      | 15.0C0 | .45  | _      |      |        | _       | _        | 24   | 27         | 36   |

- $ightharpoonup \Delta P_{
  m S}$  is the difference in static pressure from inlet to discharge, in inches wg.
- ► Minimum △P<sub>S</sub> is the lowest inlet-todischarge static pressure difference (damper wide open).
- ► Dash (—) in a space indicates an NC value less than 18.
- ► Asterisk (\*) in a space indicates that the minimum  $\Delta P_S$  for that cfm is greater than 0.5" wg.
- ► Each NC value represents the noise criterion which will not be exceeded by

the sound pressure in any of the octave bands, 2 through 7, for the cfm shown.

- ► Discharge NC is the noise criterion which will not be exceeded by terminal-generated noise transmitted along the downstream duct. Based on:
  - a. 10 dB room absorption, re 10<sup>-12</sup> watts.
  - b. 10" diameter, internally insulated discharge duct, 10 long.
  - c. One outlet, handling the per cent total air flow shown in the Unit Size column.
- ► Radiated NC is the noise criterion which will not be exceeded by noise

transmitted through the terminal casing walls. Based on:

- a. 10 dB room absorption,
- re 10'12 watts.
- b. Ceiling sound transmission class 35-39.
- c. Duct constructed of 22 gauge galvanized steel lined with 1", 4 lb. density, matted fiberglass.

Note: If the terminal is exposed, add 13 NC.

For some typical applications, please see the next page.

## TITUS® Variable Volume Retrofit Terminals ➤ Applications

Model: PQCV ■ Applications

#### Low Pressure, Constant Volume Reheat System

Cold air from the central air handler is distributed through the original main trunk and branch ducts. The new TITUS PQCV retrofit terminals convert the system to variable air volume operation.

Each PQCV terminal is signaled by a direct acting thermostat. In the example shown in the diagram, the pressure independent minimum air flow is set at a thermostat output pressure of 8 psi or less, while the maximum is set at 13 psi or greater.

The existing reheat coil in each zone is actuated on a fall in room temperature, as the thermostat output decreases from 8 to 3 psi.

#### Multizone System

Hot or cold air from the central multizone air handler is distributed through the original zone ducts. The new TITUS PQCV retrofit terminals convert the system to variable air volume operation.

The multizone dampers provide a mixed air flow temperature of air at minimum air flow. The PQCV valves provide VAV and pressure independent flow. Very little work is required to convert a multizone pressure dependent set of zones to an energy saving series of VAV zones. Each zone now has fixed maximum and minimum air flow without system hunting.

#### **Dual Duct System**

Hot and cold air from the central air handler is distributed through the original supply ducts and terminals. The new TITUS PQCV retrofit terminals convert the system to variable air volume operation.

The mechanical constant volume regulator is removed from each existing terminal, while a PQCV is installed in the discharge duct. A direct acting thermostat controls both the PQCV and the modulating splitter damper in the existing terminal.

On a rise in room temperature, the PQCV reduces the hot air flow. At the minimum air flow setting, the damper in the existing unit, which in this example has an 8-13 psi actuator, begins to modulate, and some mixing occurs. A further temperature rise increases the cold air flow to the maximum.

Since the total air volume is reduced, the fan may need to be slowed down.







# TITUS<sup>®</sup> Variable Volume Retrofit Terminals ➤ Applications

# Dual Duct Applications ■ ECT-TI/TH, ECT-AN, ECT-BC, ECT-BU, ECT-CN, ECT-KR, ECT-TB

In Diagram A, the original dual duct terminal has been converted to single duct, cooling only, to serve an interior

Notice that the hot duct connection has been capped. The damper is normally closed with respect to the cold air duct. Since the main control air feeds directly into the existing damper actuator, the damper goes full open when the main control air is turned on. The TITUS ECT-3LS then provides pressure independent VAV control.

In Diagram B, the dual duct function is retained for use in an interior or exterior zone. The TITUS ECT-3LS provides pressure independent control for both cooling and heating. Cooling is variable air volume, while heating is constant air volume at the minimum cfm setting of the TITUS II controller. The original inlet damper modulates from 100% cold to 100% hot as the thermostat calls for more heat.

In Diagram C, the addition of a reversing relay and a high pressure selector allows pressure independent VAV control of heating, as well as cooling, in the dual duct unit.

In this example the reversing relay bias is set at 10.5 psi. The TITUS ECT-3LD is set for minimum cooling cfm at 13 psi thermostat output pressure. From 13 to 8 psi the original dual duct unit damper modulates from 100% cooling to 100% heating, so that there is mixing at the minimum cfm. From 8 to 3 psi the TITUS control modulates from minimum to maximum heating cfm.

In Diagram D, the physical hookup is the same as in C, except for the addition of a snap acting diverting relay with its own air supply.

Here both the reversing relay bias and the ECT-4LD start point are set at 8 psi. The ECT-4LD is also set for a minimum ofm of zero. The original dual duct unit damper snaps from 100% cooling to 100% heating at 8 psi. Below 8 psi this damper remains in full heating position, while the TITUS control modulates from minimum to maximum heating ofm.

Note: For a typical single duct application for any internal retrolit valve kit, see page J24.









# Century® Three Phase ● Integral Horsepower Motors

MagneTek

Squirrel Cage • Totally-Enclosed Fan-Cooled • Rigid Base • 3600, 1800 and 1200

1 thru 30 HP

"N" prefix motors manufactured in Lexington, Tennessee. "T" prefix catalog motors manufactured by MagneTek in Europe. Features: Ball Bearing • 60 HZ • 40° C Ambient • Class F Insulated • Service Factor 1.15 • Continuous Duty • NEMA Design B

Applications: Designed to stand up to abusive treatment . . . moist, dirty, dusty, and factory atmospheres.



#### DIMENSION DRAWING ON PAGE 69

| HP    | RPM  | Volts                  | Frame                   | Fuil Load<br>Amps                        | Power<br>Factor              | Efficiency                                   | Shpg.<br>Wt#                                                      | Cat.<br>No.                  | List Price<br>D-1                                        |
|-------|------|------------------------|-------------------------|------------------------------------------|------------------------------|----------------------------------------------|-------------------------------------------------------------------|------------------------------|----------------------------------------------------------|
| 1     | 1800 | 230/460<br>575         | 143T                    | 3.6/1.8                                  | 78.0                         | 68.0                                         | 45                                                                | T164                         | \$ 210.00                                                |
|       | 1200 | 230/460                | 143T<br>145T            | 1.4<br>5.2/2.6                           | 78.0<br>56.0                 | 68.0                                         | 45                                                                | T167                         | 210.00                                                   |
| 1 1/2 | 3600 | 230/460<br>575         | 143T                    | 5.0/2.5                                  |                              | 66.0<br>66.0                                 | 54<br>54                                                          | T198<br>T199                 | 259.00<br>216.00                                         |
|       | 1800 | 230/460                | 143T<br>145T            | 2.0<br>5.0/2.5                           | 87.0<br>87.0                 | 66.0                                         | 51                                                                | T196<br>T165                 | 216.00                                                   |
|       | 1200 | 575                    | 145T                    | 2.0                                      | 78.0<br>78.0                 | 74.0<br>74.0                                 | 58<br>50                                                          | T165<br>T168                 | 227.00                                                   |
|       | 1200 | 208-230/460<br>230/460 | S182T<br>182T           | 5.1-5.4/2.7<br>5.2/2.6                   | 72.0<br>70.0                 | 80.0                                         | 51<br>58<br>50<br>51<br>75                                        | (2) N204                     | 216.00<br>227.00<br>227.00<br>347.00<br>280.00           |
| 2     | 3600 | 230/460                | 145T                    | 6.0/3.0                                  | 85.0                         | 80.0<br>74.0                                 | - 75<br>- 55                                                      | T264<br>T129                 | 280.00                                                   |
|       | 1800 | 575<br>230/460         | 145T<br>145T            | 2.4<br>6.8/3.4                           | 85.0                         | 74.0                                         | 55<br>55                                                          | T197                         | 252.00                                                   |
|       | 1200 | 575                    | 145T                    | 2.7                                      | 75.0<br>75.0                 | 74.0<br>74.0                                 | 55<br>54<br>64                                                    | T166<br>T169                 | 246.00<br>246.00                                         |
|       | 1200 | 208-230/460<br>230/460 | S184T<br>184T           | 6.4-6.0/3.0<br>6.6/3.3                   | 78.0<br>72.0                 | 82.5<br>82.5                                 | 64<br>84                                                          | (2) N205                     | 252.00<br>252.00<br>246.00<br>246.00<br>368.00<br>311.00 |
| 3     | 3600 | 208-230/460            | \$182T<br>182T          | 8.6-8.0/4.0                              |                              | 80.0                                         | 61                                                                | T265<br>(2) N202             | 311.00                                                   |
|       |      | 230/460<br>575         | 1821<br>S182T           | 7.8/3.9<br>3.3                           | 90.5<br>90.0<br>90.5<br>90.0 | 82.5<br>80.0                                 | 88                                                                | T262                         | 288.00                                                   |
|       | 1800 | 575<br>575<br>200-208  | \$182T<br>182T          | 3.1                                      | 90.0                         | 82.5<br>84.0                                 | 60<br>88                                                          | (2) N247<br>T272             | 345.00<br>288.00                                         |
|       | 1000 | 208-230/460            | \$182T<br>\$182T        | 9.2<br>8.5-8.2/4.1                       | 84.0<br>84.0<br>73.0         | 84.0<br>84.0                                 | 88<br>60<br>88<br>61<br>61<br>77                                  | (2) N214                     | 320.00                                                   |
|       |      | 230/460<br>575         | 1821                    | 9.6/4.8                                  | 73.0                         | 82.5<br>84.0                                 | 77                                                                | (2) N200<br>T247             | 320.00<br>286.00                                         |
|       | 1000 | 575<br>575             | \$182T<br>182T<br>F213T | 3.3<br>3.8                               | 84.0<br>73.0                 | 84.0<br>82.5                                 | 60<br>77                                                          | T247<br>(2) N234<br>T270     | 320.00<br>286.00                                         |
|       | 1200 | 208-230/460<br>230/460 | F213T<br>213T           | 10.2-10.0/5.0<br>9.0/4.5                 | 84.0<br>73.0<br>67.0<br>78.0 | 82.5                                         | 83                                                                | N300                         | 466.00                                                   |
| 5     | 3600 | 208-230/460            | L184T                   | 13.2-12.0/6.0                            | 88.3                         | 84.0                                         | 119                                                               | T362<br>(2) N203             | 387.00                                                   |
|       |      | 230/460<br>575         | 184T<br>L184T           | 13.2-12.0/6.0<br>12.0/6.0<br>5.0         | 88.3<br>92.0                 | 85.5<br>85.5<br>85.5<br>86.5<br>86.5<br>84.0 | 79<br>99<br>79<br>99<br>84<br>84<br>90                            | (2) N203<br>T263<br>(2) N248 | 396.00<br>362.00<br>396.00                               |
|       | 1000 | 575                    | 184T                    | 4.8                                      | 88.3<br>92.0                 | 85.5<br>85.5                                 | 79<br><b>9</b> 9                                                  | (2) N248<br>T273             | 396.00                                                   |
|       | 1800 | 200-208<br>208-230/460 | 184T<br>L184T<br>L184T  | 15.0<br>14.3-13.0/6.5                    | 83.0<br>83.0                 | 86.5                                         | 84                                                                | (2) N215                     | 362.00<br>364.00                                         |
|       |      | 230/460<br>575         | 184T                    | 13 6/6 B                                 | 184.0                        | 84.0                                         | 90                                                                | (2) N201<br>T250             | 364.00<br>323.00                                         |
|       |      | 575                    | L184T<br>184T           | 5.2<br>5.3<br>17.5-17.0/8.5              | 83.0<br>84.0                 | 86.5                                         | 83<br>90                                                          | T250<br>(2) N235             | 364.00                                                   |
|       | 1200 | 208-230/460<br>230/460 | 184T<br>F215T<br>215T   | 17.5-17.0/8.5                            | 70.0                         | 85.5                                         | 106                                                               | T271<br>N301                 | 323.00<br>669.00                                         |
| 71/2  | 3600 | 208-230/460<br>230/460 | S213T                   | 15.0/7.5<br>20.5-18.6/9.3                | 77.0<br>89.0                 | 85.0                                         | 147                                                               | T363                         | 584.00                                                   |
|       |      | 230/460<br>575         | S213T<br>213T<br>F213T  | 18.0/9.0<br>8.5<br>7.0                   | 93.0<br>88.5<br>93.0         | 87.5<br>86.5                                 | 105<br>121                                                        | (2) N302<br>T360             | 561.00<br>457.00                                         |
| ·     | 4000 | 575                    | 2131                    | 8.5<br>7.0                               | 88.5<br>93.0                 | 80.0<br>86.5                                 | 93                                                                | T360<br>(1)(4) N333          | 561.00                                                   |
|       | 1800 | 200-208<br>230/460     | S213T<br>S213T          | 23.0-23.0<br>21.0/10.5                   | 81.2                         | 82.4                                         | 130                                                               | T366<br>(2) N316<br>(2) N303 | 457.00<br>479.00                                         |
|       |      | 230/460                | 213T                    | 18.6/9.3                                 | 79.0<br>84.0                 | 87.5 .<br>88.5                               | 100<br>128                                                        | (2) N303<br>T345             | 479.00<br>436.00                                         |
|       |      | 575<br>575             | S213T<br>213T           | 8.4<br>7.3                               | 79.0<br>84.0                 | 88.5                                         | 105                                                               | (2) N321                     | 479.00                                                   |
|       | 1200 | 230/460                | 213T<br>S254T           | 23.0/11.5                                | 73.0                         | 88.5<br>86.5                                 | 121<br>93<br>121<br>130<br>100<br>128<br>105<br>128<br>220<br>220 | T364<br>(2) N400             | 436.00<br>988.00                                         |
| 10    | 3600 | 230/460<br>208-230/460 | 254T<br>S215T           | 20.0/10.0<br>25.0-24.8/12.4              | 80.0                         | 88.5                                         | 220                                                               | (2) N400<br>T470             | 802.00                                                   |
|       |      | 230/460                | 215T                    | 24.0/12.0                                | 89.0<br>93.0                 | 87.5<br>86.5                                 | 121<br>139<br>112<br>139                                          | (2)(3) N304<br>T361          | 635.00<br>544.00                                         |
|       |      | 575<br>575             | F215T<br>215T           | 10.0                                     | 90.5<br>93.0                 | 86.5<br>85.5<br>86.5                         | 112                                                               | T361<br>(1)(4) N334          | 635.00                                                   |
|       | 1800 | 200-208<br>208-230/460 | F215T<br>F215T          | 29.0-29.0<br>28.0-25.6/12.8<br>24.8/12.4 | 85.5                         | 87.5                                         | 139<br>110                                                        | T367<br>(1)(4) N317          | 544.00<br>587.00                                         |
|       |      | 230/460                | 215T                    | 28.0-25.6/12.8<br>24.8/12.4              | 85.5<br>85.5<br>85.0         | 87.5<br>88.5                                 | 110<br>158                                                        | N305                         | 587.00                                                   |
|       |      | 575<br>575             | F215T<br>215T           | 10.2                                     | 85.5                         | 87.5                                         | 110                                                               | T348<br>(1)(4) N322<br>T365  | 519.00<br>587.00                                         |
|       | 1200 | . 230/460              | F256T                   | 9.9<br>28.0/14.0                         | 85.5<br>85.0<br>76.0<br>80.0 | 88.5<br>88.5                                 | 158<br>228                                                        | T365<br>N401                 | 519.00<br>1167.00                                        |
| 15    | 3600 | 230/460<br>230/460     | 2561                    | 27.0/13.5                                |                              | 88.5                                         | 264                                                               | T471                         | 986.00                                                   |
|       | 5500 | 230/460                | F254T<br>254T           | 34.8/17.4<br>36.0/18.0                   | 91.0<br>93.0                 | 85.7<br>86.5<br>87.5<br>88.5<br>89.5         | 187                                                               | N402                         | 944.00                                                   |
|       | 1800 | 575<br>230/460         | 254T<br>S254T           | 15.2                                     | 86.0                         | 87.5                                         | 209<br>209                                                        | T468<br>T474                 | 762.00<br>762.00                                         |
|       |      | 230/460                | 254T                    | 37.0/18 5<br>36.0/18.0                   | 86.0<br>89.0                 | 88.5<br>89.5                                 | 216<br>233                                                        | (2) N403<br>T445             | 879.00                                                   |
|       |      | 575<br>575             | F254T<br>254T •         | 16.0<br>14.0                             | 81.3<br>89.0                 | 86.4                                         | 193                                                               | (1)(4) N430                  | 751.00,<br>879.00                                        |
|       | 1200 | 230/460                | 284T                    | 38.0/19.0                                | 89.0<br>80.0                 | 89.5<br>89.5                                 | 233<br>374                                                        | T472<br>T562                 | 751.00<br>1349.00                                        |
|       |      |                        |                         | •                                        |                              |                                              |                                                                   |                              | 1349.00<br>00 page 13)                                   |

(continued on page 13)

# Louis Allis Pacemaker® Three Phase Integral Horsepower Motors



Squirrel Cage • Totally-Enclosed Fan-Cooled • Rigid Base • 3600, 1800 and 1200 RPM 11/2 thru 400 HP

Features: Ball Bearing • 60 HZ • 40° C Ambient • Class F Insulated • Service Factor 1.15 • Continuous Duty • NEMA Design B

Applications: Designed to stand up to abusive treatment . . moist, dirty, dusty, and factory atmospheres.



|      |              |                    | ום             | MENSION DRAWING ON PAG   | iE 69                |                      |                   | Cat.                    | List Price         |
|------|--------------|--------------------|----------------|--------------------------|----------------------|----------------------|-------------------|-------------------------|--------------------|
|      |              |                    |                | Full Load -<br>Amps      | Efficiency           | Power<br>Factor      | Shpg.<br>Wt.#     | No                      | S 417.00           |
| P    | RPM          | Volts              | Frame          | 5.2/2.6                  | 80.0                 | 67.5                 | 76                | N283                    | 465.00             |
| 1/2  | 1200         | 230/460            | 182T<br>184T   | 6 4/3.2                  | 82.5                 | 78.0                 | 94                | N274                    | 430.00             |
|      | 1200         | 230/460            |                | 8.2/4.1                  | 80.0                 | 90 5                 | 79<br>77          | N271                    | 405.00<br>405.00   |
|      | 3600         | 230/460<br>200-208 | 182T<br>182T   | 10.4/10.4                | 81.5<br>81.5<br>82.5 | 83.5<br>83.5         | 77                | N270                    | 536.00             |
|      | 1800         | 230/460            | 1827           | 8 8/4.4                  | 81.5<br>82.5         | 72.0                 | 140               | N373                    | 519.00             |
|      | 1200         | 230/460            | 182T<br>213T   | 9.6/4.8                  | 81.5                 | 920                  | 97                | N284<br>N281            | 451.00             |
|      | 3600         | 230/460            | 184T           | 13.4/6.7                 | 82.5                 | 83.5                 | 95<br>90          | N280                    | 451.00             |
|      | 1800         | 200-208            | 184 <u>T</u>   | 15.5/15.5<br>14.0/7.0    | 82.5<br>82.5<br>85.5 | 83.5<br>70.0         | 169               | N383                    | 771.00             |
|      |              | 230/460            | 184T<br>215T   | 17.0/8.5                 | 85.5                 | 700                  | 140               | N374                    | 713.00<br>646.00   |
| _    | 1200         | 230/460            | 2131           | 20 0/10.0                | 80.0                 | 88 5<br>83 0         | 130               | N371                    | 646.00             |
| 11/2 | 3600         | 230/460<br>200-208 | 213T ·         | 22.1/21.7                | 86.5<br>86.5<br>86.5 | 830                  | 130<br>130        | N370<br>N473            | 1147.00            |
|      | 1800         | 230/460            | 213Ť           | 19 6/9.8                 | 86.5                 | 72.0                 | 249               |                         | 780.00             |
|      | 1200         | 230/460            | 254T           | 24.0/12.0                | 95.5                 | 90.5                 | 171               | N384<br>N381            | 705.00             |
|      | 3600         | 230/460            | 215T           | 25 0/12.5                | 85.5<br>87.5         | 85.5<br>85.5         | 171               | N380                    | 705.00             |
| 10   | 1800         | 200-208            | 215T           | 29.0/29.0<br>25.6/12.8   | 87.5                 | 85.5                 | 171<br>287        | N483                    | 1402.00            |
|      |              | 230/460            | 215T           | 28.0/14.0                | 88 5                 | 76.0                 |                   | (4) N474                | 1088.00            |
|      | 1200         | 230/460            | 256T           | 36 0/18.0                | 87.5<br>87.5<br>88.5 | 90.0                 | 243<br>253<br>352 | N470                    | 1060.00<br>1866.00 |
| 15   | 3600         | 230/460            | 254T<br>254T   | 38 0/19.0                | 87.5                 | 85 0<br>75 0         | 352               | N573                    |                    |
|      | 1800         | 230/460<br>230/460 | -284T          | 44 0/22.0                | 88.5                 | 930                  | 266               | N484                    | 1269.00<br>1261.00 |
|      | 1200         | 230/460            | 256T           | 44.0/22.0                | 87.5<br>89.5<br>89.5 | 93 U<br>87.5         | 297               | N480                    | 2379.00            |
| 20   | 3600         | 230/460            | 256T           | 48.0/24.0                | 89.5                 | 790                  | 372               | N583                    | 1589.00            |
|      | 1800<br>1200 | 230/460            | 286T           | 55 0/27 5                | 07.5                 | 90.5                 | 346               | N574                    | 1470.00            |
|      | 3600         | 230/460            | 284TS          | 60 0/30 0                | 87.5<br>89.5<br>88.3 | 87.0                 | 344               | N570<br>N602            | 2448.00            |
| 25   | 1800         | 230/460            | 284 <u>T</u>   | 60 0/30 0<br>72 0/36 0   | 88.3                 | 73.6                 | 455               | N584                    | 1829.00            |
|      | 1200         | 230/460            | 324T           | 70.0/35.0                | 87.5                 | 93.0                 | 394<br>399        | N580                    | 1737.00            |
| 30   | 3600         | 230/460            | 286TS          | 70.0/35.0                | 90.2<br>90.2         | 88.5<br>77.0         | 550               | N603                    | 2701.00            |
| 30   | 1800         | 230/460            | 286T<br>326T   | 82 0/41 0                | 90.2                 | 17.0                 | 506               | N620                    | 2262.00            |
|      | 1200         | 230/460            |                | 94.0/47.0                | 87.5                 | 91.0<br>86.5<br>86.5 | 434               | N600                    | 2208.00<br>2208.00 |
| 40   | 3600         | 230/460            | 324TS<br>324T  | 97 0/47.5                | 91.7                 | 80.5<br>96.5         | 434               | N606                    | 4291.00            |
|      | 1800         | 230/460<br>575     | 324T           | 38.0                     | 91.7<br>89.1         | 87.6                 | 650               | N704                    | 2912.00            |
|      | 1200         | 230/460            | 364T           | 96.0/48.0                | 88.5                 | 940                  | 552               | (4) N621                | 2506.00            |
|      | 3600         | 230/460            | 326TS          | 116.0/58.0               | 92.4                 | 89.0<br>89.0         | 521               | N601<br>N607            | 2506.00            |
| 50   | 1800         | 230/460<br>575     | 326 <u>T</u>   | 120 0/60.0<br>46.0       | 92.4                 | 89.0                 | 521<br>690        | N705                    | 4683.00            |
|      | 1000         | 575                | 326 <u>T</u>   | 122.0/61.0               | 92.4                 | 83.0                 | 1245              | N757                    | 6968.00            |
|      | 1200         | 230/460            | 365T<br>404T   | 128.0/64.0               | 91.7                 | 82.0                 | 740               | N687                    | 4015.00            |
|      | 900_         | 230/460            | 22.70          | 136.0/68.0               | 90.2                 | 920                  | 770               | N700                    | 3851.00<br>3851.00 |
| 60   | 3600         | 230/460            |                | 140.0/70.0               | 91.0                 | 89.0<br>89.0         | 777               | N685                    | 5769.00            |
|      | 1800         | 230/460<br>575     | 364T           | 56.0                     | 91.0<br>89.3         | 85.0                 | 1213              | N752<br>N756 _          | 7198.00            |
|      | 1200         | 230/460            | 0 404T         | 150.0/75.0<br>150.0/75.0 | 91.7                 | 84.0                 | 1290              | N688                    | 5228.00            |
|      | 900          | 230/460            | 4051           |                          | 92.4                 | 930                  | 685               | N701                    | 4621.00            |
| 75   | 3600         | 230/460            | 365TS          | 164.0/82.0<br>168.0/84.0 | 93.0                 | 90.0                 | 865               | • N684                  | 4621.00            |
| 15   | 1800         | 230/469            | 3651           | 67.0                     | 93.0                 | 90.0                 | 887<br>1353       | N753                    | 6521.00<br>9746.00 |
|      |              | 575                | 365T<br>0 405T | 174.0/87.0               | 93 0                 | 89 0<br>83.0         | 1555              | (4) N849                |                    |
|      | 1200<br>900  | 230/46<br>230/46   | ~              | 182.0/91.0               | 93.6                 | 93.0                 | 1290              | N755                    | 6846.00<br>6234.00 |
|      |              |                    |                | 230 0/115.0              | 89.5                 | 930                  | 1132              | (4) N751                | 6234.00            |
| 100  | 3600         | 230/46<br>230/46   | n 405T         | 230.0/115.0              | 91.7<br>91.7         | 91.5<br>91.5         | 1132              | (4)∳ N750<br>N830       | 8697.0             |
|      | 1800         | 575                | 405T           | 92.0<br>224.0/112.0      | 93.0                 | 91.0                 | 1707              | (1)(4)• N848            | 12526.0            |
|      | 1200         | 230/46             | o 444T         | 1200                     | 93.0                 | 84.0                 | 1738              | (2)(4) N846             | 9217.0             |
|      | 900          | 460                | 4451           |                          | 89.5                 | 960                  | 1775              | (2)(4) N828<br>(2) N828 | 7980.0             |
| 125  |              | 460                | 444TS          | 140.0<br>142.0           | 91.7                 | 91.0                 | 1630<br>1605      | <ul><li>N850</li></ul>  | 7980.0             |
| 123  | 1800         | 460                | 444T           | 114.0                    | 91.7                 | 91.0                 | 1878              | (2) N832                | 10633.0            |
|      |              | 575                | 444T<br>445T   | 154.0                    | 94.1                 | 83.0                 | 1070              | lcon                    | tinued on page 15  |
|      | 1200         | 460                | 4471           |                          |                      |                      |                   | \co                     |                    |



Premium Efficiency Squirrel Cage • TEFC • Rigid Base • 3600, 1800 & 1200 RPM 1-400 HP

Features: Premium Efficiency • All Cast Iron Construction • 1.15 Service Factor • Class F Insulated • Continuous Duty • 60 HZ • Corrosion Resistant Fan • Multiple Dips and Bakes Non Hygroscopic varnish • Plated Hardware • Shielded Bearings • Shaft Slinger • Automatic Drain/ Breather • Fully Gasketed Conduit Box • Stainless Steel Nameplate • Regreasable While Running • Grease Fittings • Ground Lug in Conduit Box • Provision for mounting "Inproseal" (360 Frame and larger). 3 Year Warranty.





|           |               |                    | mounu<br>3 Year      | Warranty.              |              | ,               | MEE                |                             |                      |
|-----------|---------------|--------------------|----------------------|------------------------|--------------|-----------------|--------------------|-----------------------------|----------------------|
| MENSION E | DRAWING ON PA | GE 59              |                      | Full Load              | Efficiency   | Power<br>Factor | Shpg.<br>Wil #     | Cat.<br>No.                 | List Price<br>D-1    |
| 19        | RPM           | Volts              | Frame                | 3 2/1.6                | 78.5         | 78.0            | 49                 | (3) A S107<br>(3) A S110    | S 289.00<br>357.00   |
| 1         | 1800<br>1200  | 230/460<br>230/460 | 143T<br>145T         | 4 0/2.0                | 72.0<br>72.0 | 88 0            | <u>66</u><br>50    | A S111                      | 294.00<br>302.00     |
| 1/2       | 3600          | 230/460<br>230/460 | 143T<br>143T         | 4.4/2.2<br>4.4/2.2     | 81.5<br>800  | 80 0<br>62 0    | 50<br>60<br>100    | (3) A \$108<br>\$206        | 549.00<br>347.00     |
|           | 1800<br>1200  | 230/460            | 182T                 | 6.0/3.0<br>5.8/2.9     | 77 0         | 87.0            | 60<br>60           | ▲ \$112<br>▲ \$109          | 323.00               |
| 2         | 3600<br>1800  | 230/460<br>230/460 | 145T                 | 6 0/3 0<br>6.3/3 15    | 81.5<br>82.5 | 78.0<br>71.0    | 115                | \$207                       | 597.00<br>399.00     |
|           | 1200<br>3600  | 230/460<br>230/460 | 184T<br>182T         | 8 0/4 0                | 840          | 83.0<br>75.5    | 87<br>82           | ▲ \$208<br>▲ \$204<br>\$305 | 383.00<br>764.00     |
| 3         | 1800          | 230/460<br>230/460 | 182T<br>213T         | 8 8/4 4<br>9 0/4 5     | 85.5<br>86.5 | 69.7<br>90.5    | 172                | ▲ S209                      | 485.00<br>453.00     |
| 5         | 1200<br>3600  | 230/460            | 184T<br>184T         | 12 0/6 0<br>13 4/6 7   | 86 5<br>85 5 | 82.0<br>74.1    | 100<br>200         | ▲ \$205<br>\$306            | 919.00               |
| -         | 1800<br>1200  | 230/460<br>230/460 | 215T                 | 14 5/7 25<br>18 0/9 0  | 87.5<br>88.5 | 83.4            | :72<br>172         | \$307<br>\$303              | 919.00               |
| 71/2      | 3600<br>1800  | 230/460<br>230/460 | 213T<br>213T         | 19 0/9 5<br>22 0/11 0  | 87.5<br>90.2 | 82 1<br>71.0    | 296                | S442<br>S308                | 1416.00              |
|           | 1200          | 230/460<br>230/460 | 254T<br>215T         | 23.0/11.5              | 90.2<br>89.5 | 89.9<br>85.2    | 200<br>200         | \$304<br>\$443              | 1078.00<br>1729.00   |
| 10        | 3600<br>1800  | 230/460<br>230/460 | 215T<br>256T         | 25 0/12 5<br>28 0/14 0 | 90 2         | 85 2<br>74.5    | 383                | \$444                       | 1372.00<br>1350.00   |
| 15        | 1200<br>3600  | 230/460            | 254T<br>254T         | 35 0/17.5<br>36 0/18.0 | 91.7<br>91.0 | 88.3<br>87.0    | 296<br>296<br>451  | \$440<br>\$502              | 2408.00              |
| 13        | 1800<br>1200  | 230/460<br>460     | 284T                 | 200                    | 92.4<br>92.4 | 76.0<br>90.0    | 386                | \$445<br>\$441              | 1698.00<br>1682.00   |
| 20        | 3600          | 230/460<br>230/460 | 256T<br>256T         | 45 0/22 5<br>47.0/23 5 | 91.7<br>92.4 | 88.0<br>82.0    | 388<br>514         | \$503                       | 2795.00              |
|           | 1800<br>1200  | 460                | 286T<br>284TS        | 25 0<br>30 5           | 92.4<br>93.0 | 82.8            | 460<br>460         | S504<br>S500                | 2000.00<br>3406.00   |
| 25        | 3600<br>1800  | 460<br>460         | 284T<br>284T<br>324T | 28.5 ·<br>31.0         | 93.0<br>93.0 | 0.63<br>0.08    | 705<br>514         | \$602<br>\$505              | 2448.00              |
|           | 1200<br>3600  | 460<br>460         | 286TS                | 335                    | 93.0<br>93.0 | 91.0<br>89.0    | 51.4               | \$501<br>\$603              | 2325.00<br>3924.00   |
| 30        | 1800          | 460<br>460         | 286T<br>326T         | 38.0<br>34.0           | 93.0         | 79.4<br>84.2    | 756<br>705         | S604                        | 3244.00<br>3105.00   |
| 40        | 1200<br>3600  | 460                | 324TS<br>324T        | 43.5<br>47.0           | 94.1<br>93.6 | 80.1<br>82.0    | 705<br>8∔0         | \$600<br>• \$678            | 5318.00              |
|           | 1800<br>1200  | 460<br>460         | 364T                 | 50 0<br>59 0           | 93.6<br>94.1 | 84.2            | 756                | S605<br>S601                | 4196.00<br>3812.00   |
| 50        | 3600<br>1800  | 460<br>460         | 326TS<br>326T        | 61.0                   | 94.1<br>93.6 | 81.7<br>81.0    | 75ô<br>910         | • \$679<br>\$680            | 6105.00<br>5521.00   |
|           | 1200          | 460                | 365T<br>364TS        | 63 0<br>66 0           | 94.1         | 92.0<br>89.0    | 840<br>840         | (1) S676                    | 5472.00<br>7154.00   |
| 60        | 3600<br>1800  | 460<br>460         | 364T<br>404T         | 67.0<br>72.0           | 94.1<br>94.1 | 83.0            | 1120<br>910        | (1) S681                    | 6932.00              |
| 75        | 1200<br>3600  | 460<br>460         | 365TS                | 80 0<br>83 0           | 94.5<br>94.5 | 93.0<br>90.0    | 910<br>910<br>1403 | (i) \$677<br>• \$753        | 6936.00<br>8423.00   |
| 15        | 1800<br>1200  | 460<br>460         | 365T<br>405T         | 90.0                   | 94.1         | 84.0<br>93.5    | 1403               | S754                        | 9289.00<br>8572.00   |
| 100       | 3600          | 460                | 405TS<br>405T        | 109.0<br>114.0         | 95.0         | 83.0<br>84.0    | 1403<br>1760       | (1) \$751<br>• \$828        | 11511.00             |
|           | 1800<br>1200  | 460<br>460         | 444T<br>444TS        | 123.0                  | 95.0<br>95.0 | 93.0            | 1760<br>1760       | • S830<br>S826              | 11284.00             |
| 125       | 3600<br>1800  | 460<br>460         | 444T                 | 140.0<br>152.0         | 95.4<br>95.0 | 89.0<br>83.0    | 2050               | • \$829<br>• \$831          | 14139.00<br>14587.00 |
|           | 1200_         | 460<br>460         | 445TS                | 159.0                  | 95.0<br>95.4 | 96.0<br>90.0    | 2050<br>2050       | \$827<br>• \$881            | 12452.00<br>15817.00 |
| 150       | 3600<br>1800  | 460<br>460         | 445T<br>447T         | 165.0<br>177.0         | 95.0         | 84.0            | 2200<br>2200       | • S886                      | 18450.00<br>15954.00 |
| 200       | 1200<br>3600  | 460                | 447TS                | 212.0<br>220.0         | 95.0<br>95.4 | 95.0<br>90.0    | 2200<br>2500       | (1) \$876<br>• \$882        | 19364.00             |
| 200       | 1800<br>1200  | 460<br>460         | 447T<br>447T         | 232.0                  | 95.0<br>95.8 | 85.0<br>93.0    | 2200<br>2200       | • S887<br>• S877            | 23269.00<br>20015.00 |
| 250       |               | 460<br>460         | 447TS<br>447T        | 263.0<br>279.0         | 95.8         | 89.0<br>84.0    | 2200<br>2500_      | • S883                      | 22112.00             |
|           | 1200          | 460                | 449T<br>449TS        | <u>292.0</u><br>315.0  | 95.4<br>95.8 | 93.0            | 2500<br>2500       | • \$888<br>• \$878          | 22702.00             |
| 300       | 1800          | 460<br>460         | 449T                 | 325.0<br>340.0         | 95.8<br>95.0 | 91.0<br>85.0    | 2500               | • \$884<br>• \$889          | 26533.00<br>33870.00 |
|           | 1200          | 460<br>460         | 449T<br>449TS        | 368.0                  | 95.8<br>95.8 | 93.0<br>91.0    | 2500<br>2500       | • S879                      | 24731.00<br>33675.00 |
| 350       | 1800          | 460                | 449T<br>449T         | 375.0<br>410.0         | 95.0         | 85.0            | 2500<br>2500       | (2)• \$885<br>• \$890       | 38496.00             |
| 400       | 1200<br>3600  | 460                | 44915                |                        | 95.8<br>95.8 |                 | 2500               | (2)• \$880                  | 31555.00             |
| 400       | 1800          |                    | 4491                 | (3)—Totally Enclos     |              |                 | ally stocked A-    | Not domestically manufa     | actored              |

Notes: (1)—NEMA Design A. (2)—1.0 Service Factor. (3)—Totally Enclosed Non-Ventilated 

-Not normally stocked 
-Not domestically manufactured

Three Phase • TENV & TEFC • Rigid Base • 1800 & 1200 RPM

1/4 thru 5 HP

Features: Ball Bearing • 60 HZ • 40° C Ambient • Class B Insulated • Reversible • Energy Efficient • NEMA Design B

Applications: Especially designed for use with Adjustable Speed Controls



#### Fractional HP Inverter-Duty

#### DIMENSION DRAWING ON PAGE 70

| HP    | RPM                  | Volts                                     | Frame        | Enclosure    | Service<br>Factor | Full Load<br>Amps           | Shpg:<br>Wt# | Cat.<br>No.  | C-7A             |
|-------|----------------------|-------------------------------------------|--------------|--------------|-------------------|-----------------------------|--------------|--------------|------------------|
|       |                      |                                           | B56C         | TENV         | 1.00              | 1.2-1.1/.55                 | 20           | E183         | \$214.00         |
| · 1/4 | 1800<br>1200         | 208-230/460<br>208-230/460                | H56C         | TENV         | 1.00              | 1.3-1.2/.6                  | 21           | E184         | 330.00           |
| 1/3   | 1800<br>1200         | 208-230/460<br>208-230/460                | H56C<br>J56C | TENV<br>TENV | 1.00<br>1.00      | 1.2-1.2/.6<br>1.7-1.6/.8    | 22<br>25     | E182<br>E185 | 222.00<br>346.00 |
| 1/2   | 1800                 | 208-230/460                               | J56C<br>J56C | TENV<br>TENV | 1.00              | 1.6-1.8/.9<br>2.1-2.0/1.0   | 25<br>29     | E181<br>E186 | 268.00<br>374.00 |
| 3/4   | 1200<br>1800<br>1200 | 208-230/460<br>208-230/460<br>208-230/460 | K56C<br>J56C | TENV<br>TEFC | 1 00<br>1 00      | 2.3-2.2/1.1<br>3.1-3.1/1.55 | 30<br>33     | E180<br>E187 | 294.00<br>384.00 |

#### Integral HP Inverter-Duty

| HP     | RPM        | Volts   | Frame   | Enclosure | Service<br>Factor (1) | Full Load<br>Amps | Efficiency | Power<br>Factor | Shpg.<br>Wt# | Cat.<br>No. | List Price<br>D-1 |
|--------|------------|---------|---------|-----------|-----------------------|-------------------|------------|-----------------|--------------|-------------|-------------------|
|        | dard Brack |         |         |           |                       |                   |            |                 |              |             |                   |
| Stant  |            |         | LAADT   | TEFC      | 1.15                  | 2.7/1.35          | 82.5       | 84.0            | 38           | E120        | \$342.00          |
| 1      | 1800       | 230/460 | L143T   |           |                       | 5.58/2.79         | 84.0       | 80.0            | 49           | E116        | 446.00            |
| 2      | 1800       | 230/460 | P145T   | TEFC      | 1.15                  |                   |            |                 | 62           | E292        | 520.00            |
| 3      | 1800       | 230/460 | F182T   | TEFC      | 1.15                  | 7.6/3.8           | 86.5       | 85 5            |              |             |                   |
| 5      | 1800       | 230/460 | F184T   | TEFC      | 1.15                  | 12.4/6.2          | 87.5       | 86.5            | 72           | E293        | 594.00            |
| NEM    | A "C" Bra  | cket    | 7       |           |                       |                   |            |                 |              |             |                   |
| - INC. |            |         | M143TC  | TEFC      | 1.15                  | 2.7/1.35          | 82.5       | 84.0            | 39           | E140        | \$441.00          |
| 1      | 1800       | 230/460 |         |           |                       | 5.58/2.79         | 84.0       | 80 0            | 49           | E113        | 515.00            |
| 2      | 1800       | 230/460 | P145TC_ | TEFC      | 1.15                  |                   |            |                 |              | E236        | 687.00            |
| 3      | 1800       | 230/460 | F182TC  | TEFC      | 1.15                  | 7.6/3.8           | 86.5       | 85.5            | 73           |             |                   |
| 5      | 1800       | 230/460 | F184TC  | TEFC      | 1.15                  | 12.4/6.2          | 87.5       | 86.5            | 85           | E237        | 814.00            |

Notes: (1)—Service Factor 1 0 when used on non-sinusoidal voltage wave forms.

#### Variable Volume **Inverter-Duty Motors** Three Phase

Dripproof • Rigid Base • 1800 RPM

1 thru 150 HP





#### DIMENSION DRAWING ON PAGE 69

| HP   | RPM  | Volts       | Frame | Efficiency | Power<br>Factor | Full Load<br>Amps | Shpg.<br>Wt.≄ | Cat.<br>No. | List Price<br>D-1 |
|------|------|-------------|-------|------------|-----------------|-------------------|---------------|-------------|-------------------|
| -    | 1800 |             | N143T | 82.5       | 84.0            | 3.0-2.7/1.35      | 38            | (1)+ E188   |                   |
| 1    |      | 208-230/460 | P145T | 84.0       | 85.7            | 5.4-5.2/2.6       | 42            | (1)+ E190   | 431.00            |
| 2    | 1800 |             |       | 85.5       | 89.0            | 14.6-12.6/6.3     | 91            | E281        | 483.00            |
| 5    | 1800 | 208-230/460 | E184T |            |                 |                   | 132           | E380        |                   |
| 71/2 | 1800 | 208-230/460 | D213T | 89 5       | 86.5            | 21.0-18.8/9.4     |               |             |                   |
| 10   | 1800 | 208-230/460 | H215T | 89.5       | 85.0            | 28.0-25.0/12.5    | 147           | E38         |                   |
| 15   | 1800 | 208-230/460 |       | 91 7       | 880 .           | 40.0-36.0/18.0    | 230           | E480        |                   |
|      |      |             |       | 91.0       | 87.0            | 54.0-48.0/24.0    | 220           | E48         | 1402.00           |
| 20   | 1800 | 208-230/460 |       |            |                 |                   | 311           | E580        | 1647.00           |
| 25   | 1800 | 208-230/460 | E284T | 93.0       | 88 5            | 64.0-58.0/29.0    |               |             |                   |
| 30   | 1800 | 208-230/460 | S286T | 93.0       | 90.5            | 75.0-68.0/34.0    | 352           | E58         |                   |
| 40   | 1800 | 208-230/460 |       | 93 6       | 88.0            | 102.0-92.0/46.0   | 450           | E68         |                   |
|      | 1800 | 208-230/460 |       | 93.0       | 89.5            | 128.0-114.0/57.0  | 509           | E68         | 2966.00           |
| 50   |      |             |       | 94.1       | 90.5            | 67.0              | 796           | (2) E68     | 3720.00           |
| 60   | 1800 | 460         | 364T  |            |                 |                   |               | (2) E68     |                   |
| 75   | 1800 | 460         | 365T  | 94.5       | 900             | 83.9              | 825           |             |                   |
| 100  | 1800 | 460         | 404T  | 95.4       | 86.0            | 114.1             | 1000          | • (2) E78   |                   |
| 125  | 1800 | 460         | 405T  | 95.4       | 88.0            | 139.4             | 1153          | • (2) E78   |                   |
|      |      |             | 444T  | 95.0       | 87.5            | 172.0             | 1236          | • (2) E88   | 9232.00           |
| 150  | 1800 | 460         | 4441  | 930        | U1.J            | 112.0             |               | <u> </u>    |                   |

Notes: (1)—Class E insulated

(2)—Six lead motor suitable for part winding start

Not Normally Stocked.

+ —Item to be discontinued after present stock is depleted

# Energy Efficient • Three Phase

Dripproof & Totally-Enclosed Fan-Cooled • Rigid Base • 1800 RPM 3 thru 200 HP

Features: Ball Bearings • 60 HZ • 40° C Ambient • Service Factor 1.15 • NEMA Design B • 3 Year Warranty

Applications: Fans, Blowers, Pumps, etc. that require the highest values in Efficiency and Power Factor





**Dripproof • Class B Insulation** 

DIMENSION DRAWING ON PAGE 69

|         |             |                |                |              |                 |                    |            | • • •                   | <b>&gt;</b>         |
|---------|-------------|----------------|----------------|--------------|-----------------|--------------------|------------|-------------------------|---------------------|
| НР      | RPM         | Volts          | Frame          | Efficiency   | Power<br>Factor | Full Load          | Sapg.      | Cat.                    | List Price          |
| 3       | 1800        | 200            | E182T          | 89.5         | 85.5            | Amps<br>8.5        | ₩€#<br>84  | No.                     | D-1                 |
| 5       | 1800        | 230/460        | E182T          | 89.5         | 85.5            | 7.4/3.7            | 83         | (1) E216<br>(1) E217    | \$ 420.00<br>420.00 |
|         | 1000        | 230/460        | E184T<br>E184T | 89.5<br>89.5 | 88.0<br>88.0    | 136                | 93         | (1) E218                | 483.00              |
| 71/2    | 1800        | 200            | D213T          | 91.7         | 82.0            | 11.8/5.9<br>21.4   | 92         | (1) E219                | 483.00              |
| 10      | 1800        | 230/460        | D213T          | 91.7         | 82.0            | 18.6/9.3           | 141<br>135 | (1) E316<br>(1) E317    | 654.00<br>654.00    |
| 10      | 1800        | 200<br>230/460 | D215T<br>D215T | 91.0         | 85.0            | 27.8               | 155        | (1) E318                | 727.00              |
| 15      | 1800        | 200            | G254T          | 91.0         | 85.0            | 24.2/12.1          | 155        | (1) E319                | 727.00              |
|         |             | 230/460        | Ğ254T          | 91.7         | 86 0<br>86 0    | 41.0<br>36.0/18.0  | 209<br>217 | (1)(2) E450             | 1162.00             |
| 20      | 1800        | 200            | G256T          | 92.4         | 87.0            | 55.0               | 232        | (1) E451<br>(1)(2) E452 | 1162.00             |
| 25      | 1800        | 230/460        | G256T          | 92.4         | 87.0            | 48.0/24.0          | 245        | (1) E452<br>(1) E453    | 1318.00<br>1318.00  |
|         |             | 230/460        | 284T ·<br>284T | 93.6<br>93.6 | 87.5<br>87.5    | 65.8               | 310        | (1)(2) E513             | 1647.00             |
| 30      | 1800        | 200            | 286T           | 94.1         | 88.5            | 57.2/28.6          | 309        | (1) E514                | 1647.00             |
| 40      | 1000        | 230/460        | 286T           | 94.1         | 88.5            | 77.5<br>67.4/33.7  | 373<br>355 | (4) E515<br>E516        | 1934.00<br>1934.00  |
| 40      | 1800        | 200<br>230/460 | E324T<br>E324T | 94.5         | 89.0            | 102.4              | 410        | (1)(2) E624             | 2543.00             |
| 50      | 1800        | 200            | S326T          | 94.5         | 89.0            | 89.0/44.5          | 409        | (1) E625                | 2543.00             |
|         |             | 230/460        | S326T          | 94.5<br>94.5 | 88.5<br>88.5    | 130.0              | 414        | (2) E626                | 2966.00             |
| 30      | 1800        | 460            | - Y364T        | 95.4         | 87.0            | 112.0/56.0<br>67.0 | 411        | E627                    | 2966.00             |
| 75      | 1800        | 460            | Y365T          | 95.4         | 87.0            |                    | 550        | (1)(2) E716             | 3720.00             |
| 00      | 1800        | 460            | Y404T          | 95.4         | 87.0            | 84.6               | 838        | (1)(2) E717             | 4431.00             |
| 25      | 1800        | 460            | D405T          | 95.4         | 88.0            | 1140               | 1019       | (2) E751                | 5901.00             |
| 50      | 1800        | 460            | 444T           | 95.8         |                 | 1390               | 1105       | (2) E752                | 7004.00             |
| 200     | 1800        | 460            | 445T           | 96.2         | 85.5            | 171.5              | 1306       | • (2) E846              | 9232.00             |
| Cotally | -Enclosed F | an-Cooled • (  | Naac 5 1       | 30.2         | 86.0            | 226.0              | 1483       | • (2) E847              | 11470.00            |

sed Fan-Cooled • Class F Insulation

| НР         | RPM                    | Volts                 | Frame                        | Efficiency                   | Power<br>Factor              | Full Load<br>Amps         | Shpg.<br>Wt.#        | Cat.<br>No.                                 | Lis: Price                           |
|------------|------------------------|-----------------------|------------------------------|------------------------------|------------------------------|---------------------------|----------------------|---------------------------------------------|--------------------------------------|
| 3          | 1800                   | 200<br>230/460<br>575 | 182T<br>182T<br>182T         | 88.5<br>88.5<br>88.5         | 85.5<br>85.5                 | 9 0<br>7.8/3.9            | 91<br>89             | • E252<br>E253                              | S 477.00<br>477.00                   |
| 5          | 1800                   | 200<br>230/460<br>575 | 184T<br>184T<br>184T         | 89.5<br>89.5<br>89.5         | 85.5<br>88.0<br>88.0         | 3.1<br>13.8<br>12.0/6.0   | 92<br>99<br>107      | E254<br>• E255<br>E256                      | 477.00<br>550.00<br>550.00           |
| 71/2       | 1800                   | 200<br>230/460<br>575 | 213T<br>213T<br>213T<br>213T | 91.0<br>91.0<br>91.0         | 88.0<br>84.5<br>84.5         | 4.8<br>21.6<br>18.8/9.4   | 109<br>183<br>153    | • E350<br>• E350<br>E351<br>E352            | 550.00<br>748.00                     |
| 10         | 1800                   | 200<br>230/460<br>575 | 215T<br>215T<br>215T<br>215T | 91.0<br>91.0<br>91.0<br>91.0 | 84.5<br>85.0<br>85.0         | 7.5<br>27.8<br>24.8/12.4  | 168<br>180<br>189    | • E353<br>E354                              | 748.00<br>748.00<br>841.00<br>841.00 |
| 15         | 1800                   | 200<br>230/460<br>575 | 254T<br>254T<br>254T<br>254T | 91.7<br>91.7<br>91.7<br>91.7 | 85.0<br>86.0<br>86.0<br>86.0 | 9.7<br>41.0<br>36.0/18.0  | 280                  | •(1)(2) E460<br>(1) E461<br>(1) E462        | 841.00<br>1284.00<br>1284.00         |
| 20         | 1800                   | 200<br>230/460<br>575 | 256T<br>256T<br>256T         | 93.0<br>93.0<br>93.0         | 86.5<br>86.5<br>86.5         | 14.5<br>53.8<br>46.8/23.4 | 305                  | •(1)(2) E463<br>(1) E464                    | 1284.00<br>1455.00<br>1455.00        |
| 25         | 1800                   | 200<br>230/460<br>575 | 284T<br>284T<br>284T         | 93.0<br>93.0<br>93.0         | 88.0<br>88.0<br>88.0         | 18.7<br>65.5<br>57.0/28.5 | 366                  | (1) E465<br>•(1)(2) E549<br>(1) E550        | 1455.00<br>1905.00<br>1905.00        |
| 30         | 1800                   | 200<br>230/460<br>575 | 286T<br>286T<br>286T         | 93.6<br>93.6<br>93.6         | 89.0<br>89.0<br>89.0         | 22.8<br>74.0<br>67.4/33.7 | 366<br>429<br>429    | (1) E551<br>•(2) E556<br>E552               | 1905.00<br>2262.00<br>2262.00        |
| 40         | 1800                   | 230/460<br>575        | 324T<br>324T                 | 94.1<br>94.1                 | 89.0<br>89.0                 | 26.9<br>89.0/44.5<br>35.6 | 425<br>502<br>509    | E553<br>(1) E628<br>E629                    | 2262.00<br>2745.00<br>2746.00        |
| 50<br>60   | 1800                   | 230/460<br>575<br>460 | 326T<br>326T<br>364T         | 94.1<br>94.1                 | 89.0<br>89.0                 | 112.0/56.0<br>45.0        | 565<br>552           | E630<br>E631                                | 3381.00<br>3381.00                   |
| 75         | 1800                   | 575<br>460            | 364T<br>365T                 | 94.1<br>94.1<br>94.5         | 89.0<br>89.0<br>90.0         | 67.0<br>54.0<br>82.5      | 840<br>850<br>900    | (1)(2) E720<br>(1) E721<br>(1)(2) E722      | 5027.00<br>5027.00                   |
| 100        | 1800                   | 575<br>460<br>575     | 365T<br>405T ·-<br>405T      | 94.5<br>95.4<br>95.4         | 90.0<br>86.0<br>86.0         | 66.0<br>111.0             | 875<br>1391          | (1)(2) E722<br>(1) E723<br>(2) E753<br>E754 | 5760.00<br>5760.00<br>7951.00        |
| 125        | 1800                   | 460<br>575            | 444T<br>444T ·               | 95.4<br>95.4                 | 89.0<br>89.0                 | 91.0<br>139.5<br>111.6    | 1400<br>1709<br>1705 | (1)(2) E835                                 | 7951.00<br>10719.00                  |
| 150<br>200 | 1800                   | 460                   | 445T                         | 95.8                         | 90.0                         | 166.0                     |                      | (1) E836<br>(1)(2) E843                     | 10719.00                             |
|            | 1800<br>NEMA Design A. | 460                   | 447T                         | 95.8                         | 90.0                         | 215.5                     |                      | (1)(2) E845                                 | 15689.00                             |

es: (1)—NEMA Design A. (2)—Six lead motor suitable for part winding start. • —Not Normally Stocked.

#### Century E-plus® Motors

# Energy Efficient • Three Phase

Totally-Enclosed Fan-Cooled • Rigid Base • 3600, 1800 and 1200 RPM

1 thru 150 HP

Features: Ball Bearings • 60 HZ • 40° C Ambient • Class B Insulated • Service Factor 1.15 • NEMA Design B

Applications: Designed for continuous duty, constant torque applications such as fixed-speed fans, blowers, compressors, and conveyor motors that are fully loaded most of the day.



#### DIMENSION DRAWING ON PAGE 69

|          |              | · Contro              | DIMENS                 | ON DRAWING ON PAGE 6           | 9                                        |                                      |                                 |                                          |                      |
|----------|--------------|-----------------------|------------------------|--------------------------------|------------------------------------------|--------------------------------------|---------------------------------|------------------------------------------|----------------------|
|          | RPM          | Volts                 | Frame                  | Full Load<br>Amps              | Efficiency                               | Power<br>Factor                      | Shog.<br>Wt. =                  | Cat.<br>No.                              | List Price<br>D-1    |
| HP       | 1800         | 200                   | L143T                  | 31                             | 82.5                                     | 84.0                                 | 36                              | (1) E123<br>(1) E120                     | \$ 342.00<br>342.00  |
| 1        | 1800         | 230/460<br>575        | L143T<br>L143T         | 2.7/1.35<br>1.08               | 82.5<br>82.5                             | 84.0<br>84.0                         | 9666<br>9666                    | (1) 5126                                 | 342.00               |
| 11/2     | 1800         | 200                   | M145T                  | 4.5                            | 84.0                                     | 85.7<br>85.7                         | 43<br>46                        | (1) E124                                 | 374.00<br>374.00     |
| 1 72     | 1800         | 230/460               | M145T<br>M145T         | 3 9/1.95                       | 84.0<br>84.0                             | 85.7<br>85.7                         | 43                              | (1) E121<br>(1) E127                     | 374.00<br>374.00     |
|          | 1200         | 575<br>230/460        | 182T                   | 1.56<br>4.8/2.4                | 84.0                                     | 70.0                                 | 83                              | E244                                     | 525.00<br>408.00     |
| 2        | 1800         | 200                   | M145T                  | 61                             | 84.0<br>84.0                             | 84.1<br>84.1                         | 43<br>43                        | (1) E125<br>(1) E122                     | 408.00               |
| _        |              | 200<br>230/460<br>575 | M145T<br>M145T         | 5 3/2.65<br>2.12               | 84.0                                     | 84.1                                 | 43<br>42<br>45<br>96            | (1) E125<br>(1) E122<br>(1) E128<br>E245 | 408.00<br>586.00     |
|          | 1200         | 230/460               | 184T                   | 6.4/3.2                        | 85.5                                     | 68.4                                 |                                 | F240                                     | 482.00               |
| 3        | 3600         | 230/460               | 182T                   | 7.8/3.9<br>8.8                 | 82.5<br>86.5                             | 92.0<br>85.5                         | 83<br>69<br>70                  | (1) E222                                 | 443.00               |
|          | 1800         | 200<br>230/460        | \$182T<br>\$182T       | · 7.6/3.8                      | 86.5<br>86.5<br>88.5                     | 85.5                                 | 70                              | (1) E220<br>(3)(5) E253                  | 443.00°<br>477.00    |
|          |              | 230/460               | 182T                   | 7 8/3.9<br>10.6/5.3            | 88.5<br>86.5                             | 85.5<br>85.5<br>85.5<br>63.0         | é9<br>150                       | E342                                     | 717.00               |
|          | 1200         | 230/460.<br>230/460   | 213T<br>184T           | 12.4/6.2                       | 85.5                                     | 88.3<br>88.0                         | 97                              | E241<br>(1) E223<br>(1) E221             | 594.00<br>511.00     |
| 5        | 3600<br>1800 | 200                   | L184T                  | 147                            | 85.5<br>.86.5<br>.86.5<br>.89.5<br>.87.5 | 88 0<br>88.0                         | 85<br>86<br>107                 | (1) E223<br>(1) E221                     | 511.00               |
|          |              | 230/460<br>230/460    | L184T<br>184T          | 12.8/6.4<br>12.0/6.0           | 89.5<br>89.5                             | 88 0<br>66 8                         | 107                             | (3)(5) E256                              | 550.00<br>1001.00    |
|          | 1200         | 230/460               | 215T                   | 16 6/8.3                       | 87.5                                     |                                      | 133                             | E343<br>E336                             | 778.00               |
| 71/2     | 3600         | 230/460               | 213T<br>F213T<br>F213T | 18.9/9.4<br>21.4               | 86 5<br>88 5<br>88 5<br>91 0             | 86 4<br>85 3                         | 149<br>107                      | E322                                     | 696.00               |
|          | 1800         | 200<br>230/460        | F2131<br>F213T         | 18 6/9 3                       | 88.5                                     | 85.3<br>85.3<br>84.5                 | 105                             | E320<br>(3)(5) E351                      | 696.00<br>748.00     |
|          |              | 230/460               | 2131                   | 18 8/9 4<br>22 0/11.0          | 91.0<br>89.5                             | 84.5<br>74.0                         | 105<br>153<br>250               | (3)(5) E351<br>E442                      | 1378.00              |
|          | 1200         | 230/460               | 254T                   |                                | 87.5                                     | 90.0                                 | 188                             | E337                                     | 912.00               |
| լ10      | 3600<br>1800 | 230/460<br>200        | 215T<br>F215T<br>F215T | 24.2/12.1<br>29.0<br>25.0/12.5 | 89.5                                     | 88.0                                 | 186<br>124<br>124<br>189<br>310 | E323<br>E321                             | 782.00<br>782.00     |
|          | 1000         | 230/460               | F215T                  | 25.0/12.5<br>24.8/12.4         | 89.5<br>91.0                             | 83.8<br>85.0                         | 159                             | (3)(5) E354<br>• E443                    | 841.00               |
|          | 1200         | 230/460<br>230/460    | 215T<br>256T           | 28.0/14.0                      | 89.5                                     | 75.0                                 | 310                             | • E443<br>E436                           | 1697.00<br>1279.00   |
| 15       | 3600         | 230/460<br>200        | 254T<br>G254T<br>S254T | 34.8/17.4                      | 88.5<br>91.0                             | 91.2<br>86.2<br>88.5<br>86.0<br>72.8 | 251<br>225                      | E422                                     | 1194.00              |
|          | 1800         | 200<br>230/460        | G2541<br>S254T         | 41.2<br>36 0/18.0              | 90.2<br>91.7                             | 88.5                                 | 212                             | (1) Ē420<br>(3)(4)(5) Ē461               | 1194.00<br>1234.00   |
|          |              | 230/460               | 2541                   | 36.0/18.0                      | 91.7<br>90.2                             | 86.0<br>72.8                         | 212<br>230<br>353               | (3)(4)(5) E461<br>• E535                 | 2325.00              |
|          | 1200         | 230/460               | 284T<br>256T           | 42.8/21.4<br>45.0/22.5         |                                          | 93.5                                 | 293                             | E437                                     | 1582.00<br>1353.00   |
| 20       | 3600<br>1800 | 230/460<br>230/460    | S256T                  | 48.0/24.0                      | 90.2<br>91.7                             | 93.5<br>88.0<br>86.5                 | 254<br>205                      | (1) E421<br>(3)(4)(5) E464               | 1455.00              |
|          |              | 230/460               | 256T<br>286T           | 46.8/23.4<br>54.8/27.4         | 93.0<br>91.7                             | 76.0                                 | 298<br>254<br>305<br>404        | ```                                      | 2741.00              |
| <u> </u> | 1200<br>1800 | 230/460               | 284T                   | 60.0/30.0                      | 92.4<br>93.0                             | 85.0                                 | 332<br>366<br>501               | E554<br>(3)(4)(5) E550                   | 1715.00<br>1905.00   |
| 25       |              | 230/460<br>230/460    | 284T                   | 57.0/28.5                      | 93.0<br>91.7                             | 88.0<br>80.0                         | 300<br>501                      | • E614                                   | 3181.00              |
|          | 1200         | 230/460               | 324T<br>286T           | 64.0/32.0<br>69.0/34.5         | 924                                      | 88.5                                 | 384                             | E555<br>(3)(5) E552<br>• (4) E615        | 2039.00              |
| 30       | 1800         | 230/460<br>230/460    | 286T                   | 69.0/34.5<br>67.4/33.7         | 93.6<br>92.4                             | 89.0                                 | 429<br>539_                     | (3)(5) E552<br>• (4) E615                | 2262.00<br>3570.00   |
|          | 1200         | 230/460               | 326T                   | 76.0/38.0<br>91.0/45.5         | 93.0                                     | 80.0<br>89.5                         | 471                             | E620                                     | 2471.00              |
| 40       | 1800         | 230/460<br>230/460    | 324T<br>- 324T         | 91.0/45.5<br>89.0/44.5         | 94.1                                     | 89.0                                 | 502                             | (3)(4)(5) E628<br>• E710                 | 2746.00<br>4856.00   |
|          | 1200         | 230/460               | 364T                   | 101.0/50.5                     | 93.6                                     | 80.0                                 | 685<br>536                      | E622                                     | 3043.00              |
| 50       | 1800         | 230/460               | 326T                   | 113.0/56.5<br>112.0/56.0       | 93.0<br>94.1                             | 89.0<br>89.0                         | 565                             | (3)(5) E630                              | 3381.00              |
|          | 1200         | 230/460<br>230/460    | 326T<br>365T           | 126.0/63.0                     | 93.6                                     | 81.0                                 | 710_                            | • E711                                   | 5620.00<br>5027.00   |
| 60       | 1800         | 460                   | 364T                   | 67.0                           | 94.1                                     | 89.0<br>83.0                         | 840<br>1000                     | (2)(3)(4)(5) E720<br>• E747              | 6704.00              |
|          | 1200         | 230/460               | 404T                   | 148/74.0<br>82.5               | 93.6<br>94.5                             | 90.0                                 | 900                             | (2)(3)(4)(5) E722                        | 5760.00              |
| 75       | 1800<br>1200 | 460<br>230/460        | 365T<br>405T           | 178.0/89.0                     | 94.5                                     | 84.0                                 | 1359                            | (2)(3)(5) E753                           | 7825.00<br>7951.00   |
| 100      | 1800         | 460                   | 405T<br>444T           | 111.0<br>236.0/118.0           | 95.4<br>94.1                             | 86.0<br>86.0                         | 1391<br>1667                    | • E829                                   | 10971.00             |
| 125      | 1200<br>1800 | 230/460<br>460        | 444T                   | 139.5                          | 95.4                                     | 89.0                                 | 1709<br>1890                    | (2)(3)(4)(5) E835<br>• (2) E830          | 10719.00<br>13090.00 |
|          | 1200         | 460                   | 445T<br>445T           | 147.0<br>166.0                 | 95.0<br>95.8                             | 85.0<br>90.0                         | 1891                            | (2)(3)(4)(5) E843                        | 11966.00             |
| 150      | 1800<br>1200 | 460<br>460            | 4451<br>445T           | 175.0                          | 95.8<br>95.0                             | 86.0                                 | 1922                            | • (2) E844                               | 14418.00             |
|          |              |                       |                        |                                |                                          |                                      |                                 |                                          |                      |

Notes: (1)—Steel Frame design.

(2)—Six lead motor suitable for part winding start.

(3)—Class F Insulated—Cast Iron Motors only.

(4)—NEMA Design A.

(5)—E-plus III motors

— Not Normally Stocked.

# \*YORK®

# **RecipPak**™

# LIQUID CHILLERS WATER COOLED & REMOTE CONDENSER MODELS

R-22

60 TO 250 TONS (50 & 60 HZ.)









MODELS YCWZ33AB0—YCWZ99HD0 & YCRZ33A00—YCRZ99H00 (STYLE A)
MODELS YCWJ45EE0—YCWJ99MJ0 & YCRJ45E00—YCRJ99M00 (STYLE A)
ENGINEERING GUIDE



# Ratings - Part Load (YCWZ Models)

#### WATER COOLED - 60 HZ - STANDARD UNLOADING STEPS

|             | YCW                             | YCWZ33AB0 |      |      |  |  |
|-------------|---------------------------------|-----------|------|------|--|--|
| %<br>DISPL. | ENT, COND.<br>WATER<br>TEMP. °F | TONS      | ĸw   | EER  |  |  |
| 100.0       | 85.0                            | 59.1      | 49.6 | 14.3 |  |  |
| 75.0        | 79.7                            | 46.5      | 35.5 | 15.7 |  |  |
| 50.0        | 74.1                            | 33.4      | 22.5 | 17.8 |  |  |
| 50.0        | 73.1                            | 30.8      | 21.4 | 17.3 |  |  |
| 25.0        | 67.4                            | 17.4      | 10.2 | 20.5 |  |  |

| %<br>DISPL. | ENT. COND.<br>WATER<br>TEMP. °F | TONS | ĸw   | EER  |
|-------------|---------------------------------|------|------|------|
| 100.0       | 85.0                            | 65.9 | 56.2 | 14.1 |
| 75.0        | 79.8                            | 52.1 | 40.4 | 15.5 |
| 50.0        | 74.4                            | 37.9 | 25.6 | 17.8 |
| 50.0        | 73.0                            | 34.2 | 24.4 | 16.8 |
| 25.0        | 67.5                            | 19.7 | 11.6 | 20.4 |

| ENT. COND.        |                                                  |                                                      |                                                                                                                                                                    |  |  |  |  |  |
|-------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| WATER<br>TEMP. °F | TONS                                             | ĸw                                                   | EER                                                                                                                                                                |  |  |  |  |  |
| 85.0              | 78.7                                             | 66.0                                                 |                                                                                                                                                                    |  |  |  |  |  |
| 80.1              | 63.5                                             | 49.5                                                 | 15.4                                                                                                                                                               |  |  |  |  |  |
| 76.2              | 51.1                                             | 35.9                                                 | 17.1                                                                                                                                                               |  |  |  |  |  |
| 74.2              |                                                  |                                                      |                                                                                                                                                                    |  |  |  |  |  |
| 70.1              |                                                  |                                                      |                                                                                                                                                                    |  |  |  |  |  |
|                   | TEMP. °F<br>85.0<br>80.1<br>76.2<br>74.2<br>70.1 | TEMP. °F  85.0 78.7  80.1 63.5  76.2 51.1  74.2 44.7 | TEMP. °F     66.0       85.0     78.7     66.0       80.1     63.5     49.5       76.2     51.1     35.9       74.2     44.7     33.0       70.1     31.9     20.8 |  |  |  |  |  |

|             | YCW                             | Z77CC0   |      |              |  |
|-------------|---------------------------------|----------|------|--------------|--|
| %<br>DISPL. | ENT. COND.<br>WATER<br>TEMP. °F | TONS     | ĸw   | EER          |  |
| 100.0       | 85.0                            | 85.5     | 73.8 |              |  |
| 83.3        | 81.5                            | 73.7     | 59.5 | 14.9         |  |
| 66.7        | 78.0                            | 61.7     | 45.6 | 16.3         |  |
| 50.0        | 73.0                            | 44.4     | 32.1 | 16.6<br>19.0 |  |
| 33.3        | 69.4                            | 32.0     | 20.2 |              |  |
|             |                                 | 16.2 EER | ·    |              |  |

| YCWZ88CC0   |                                 |           |      |      |  |  |  |  |  |
|-------------|---------------------------------|-----------|------|------|--|--|--|--|--|
| %<br>DISPL. | ENT. COND.<br>WATER<br>TEMP. °F | TONS      | ĸw   | EER  |  |  |  |  |  |
| 100.0       | 85.0                            | 98.0      | 89.8 | 13.1 |  |  |  |  |  |
| 83.3        | 81.7                            | 81.7 85.1 |      | 14.1 |  |  |  |  |  |
| 66.7        | 78.4                            | 72.3      | 55.6 | 15.6 |  |  |  |  |  |
| 50.0        | 72.8                            | 50.2      | 39.8 | 15.1 |  |  |  |  |  |
| 33.3        | 69.5                            | 37.2      | 24.9 | 17.9 |  |  |  |  |  |
|             | IPLV                            | 15.2 EER  |      |      |  |  |  |  |  |

| YCWZ88HD <b>0</b> |                                 |          |      |              |  |  |  |  |  |
|-------------------|---------------------------------|----------|------|--------------|--|--|--|--|--|
| %<br>DISPL.       | ENT. COND.<br>WATER<br>TEMP. °F | TONS     | ĸw   | EER          |  |  |  |  |  |
| 100.0             | 85.0                            | 105.3    | 91.6 |              |  |  |  |  |  |
| 83.3              | 81.5                            | 90.6     | 73.6 | 14.8         |  |  |  |  |  |
| 66.7              | 78.0                            | 75.8     | 56.2 | 16.2         |  |  |  |  |  |
| 50.0              | 73.0                            | 54.7     | 39.9 | 16.5<br>19.0 |  |  |  |  |  |
| 33.3              | 69.4                            | 39.5     | 25.0 |              |  |  |  |  |  |
|                   | IPLV                            | 16.1 EER |      |              |  |  |  |  |  |

|             | YCW                             | Z89HD0   |      |                              |  |
|-------------|---------------------------------|----------|------|------------------------------|--|
| %<br>DISPL. | ENT. COND.<br>WATER<br>TEMP. °F | TONS     | кw   | 13.5<br>14.7<br>15.9<br>16.6 |  |
| 100.0       | 85.0                            | 111.1    | 98.8 |                              |  |
| 82.0        | 81.4                            | 95.2     | 77.9 |                              |  |
| 66.7        | 78.1                            | 80.4     | 60.7 |                              |  |
| 46.1        | 72.2                            | 54.4     | 39.4 |                              |  |
| 30.7        | 68.8                            | 39.2     | 24.6 |                              |  |
|             | IPLV                            | 15.9 EER |      |                              |  |

|             | YCW                             | Z99HD0   |       |             |  |
|-------------|---------------------------------|----------|-------|-------------|--|
| %<br>DISPL. | ENT. COND.<br>WATER<br>TEMP. °F | TONS     | кw    | EER<br>13.2 |  |
| 100.0       | 85.0                            | 116.9    | 106.4 |             |  |
| 83.3        | 81.6                            | 101.0    | 85.7  | 14.1        |  |
| 66.7        | 78.2                            | 85.2     | 65.4  | 15.6        |  |
| 50.0        | 72.9                            | 60.1     | 47.1  | 15.3        |  |
| 33.3        | 69.5                            | 44.2     | 29.2  | 18.1        |  |
| ·           | IPLV                            | 15.3 EER |       |             |  |

SHADED RATINGS CERTIFIED IN ACCORDANCE WITH ARI STANDARD 590-92.

Ratings for optional unloading steps can be obtained from your local York sales representative

# **Dimensions** (Water Cooled — YCWZ Models)





**VIBRATION ISOLATOR MOUNTING DETAILS** 

1. CLEARANCES - Minimum YORK Required Clearances to Service the Units as Follows:

Rear to Wall: 2'0" Front to Wall: 2'6"

Top: 2'0"
Tube Cleaning & Removal: 8'0" (Either End)

- 2. WEIGHTS (LBS.) See Physical Data Total Unit Weight Equally Distributed at 4 Mounting Holes
- 3. Vibration Isolators will Increase Overall Height of Unit by Approximately 3/8".



CONTROL PANEL



| MODEL     | Α           | В           | С        | D           | E             | F        | G        | н         | J            | K           | L           | M  | N  | Р           |
|-----------|-------------|-------------|----------|-------------|---------------|----------|----------|-----------|--------------|-------------|-------------|----|----|-------------|
| YCWZ33AB0 | 9' - 5-3/4" | 5'-0-3/8"   | 2'-11"   | 2' - 3-7/8" | 4' - 4-13/16" | 6 - 3/4" | 6 - 3/4" | 3'-7"     | 2'-2-3/4"    | 1' - 6-1/2" | 1'-3-1/2"   | 4" | 4" | 5' • 1-3/4" |
| YCWZ44AB0 | 9' - 5-3/4" | 5'-0-3/8"   | 2'-11"   | 2'-3-7/8"   | 4' - 4-13/16" | 6-3/4"   | 6 - 3/4" | 3'-7"     | 2' - 2-3/4"  | 1'-6-1/2"   | 1'-3-1/2"   | 4" | 4" | 5' - 1-3/4" |
| YCWZ47CC0 | 9' - 6-1/8" | 5'-2-3/8"   | 2'-11"   | 2'-4"       | 4' - 4-13/16" | 6-3/4"   | 6 - 3/4" | 3'-7"     | 2' - 4-7/8"  | 1'-6-1/2"   | 1' - 3-1/2" | 4" | 6" | 5' - 2-3/4" |
| YCWZ77CC0 | 9' - 6-1/8" | 5'-2-3/8"   | 2'-11"   | 2'-4"       | 4' - 4-13/16" | 6-3/4"   | 6 - 3/4" | 3'-7"     | 2'-4-7/8"    | 1'-6-1/2"   | 1' - 3-1/2" | 4" | 6" | 5' - 2-3/4" |
| YCWZ88CC0 | 9' - 6-1/8" | 5'-2-3/8"   | 2'-11"   | 2'-4-7/8"   | 4' - 4-13/16" | 6-3/4"   | 6 - 3/4" | 3'-7"     | 2'-4-7/8"    | 1'-6-1/2"   | 1' - 3-1/2" | 4" | 8" | 5' - 2-3/4" |
| YCWZ88HD0 | 9'-4-1/4"   | 5'-8-1/8"   | 2'-11"   | 2'-9"       | 4' - 7-1/4"   | 87       | 7-3/4"   | 3'-6-1/2" | 2'-10-3/4"   | 1'-6-1/2"   | 1'-3-1/2"   | 4" | 87 | 5'-2"       |
| YCWZ89HD0 | 9' - 4-1/4" | 5'-8-1/8"   | 2'-11"   | 2'-9"       | 4' - 7-1/4"   | 8"       | 7-3/4*   | 3'-6-1/2" | 2' - 10-3/4" | 1'-6-1/2"   | 1'-3-1/2"   | 4" | 8" | 5'-2"       |
| YCWZ99HD0 | 9' - 4-1/4" | 5' - 8-1/8" | 2' - 11" | 2'-9"       | 4' - 7-1/4"   | 8"       | 7 - 3/4" | 3'-6-1/2" | 2 - 10-3/4"  | 1' - 6-1/2" | 1'-3-1/2"   | 4" | 8~ | 5'-2"       |

YORK INTERNATIONAL



# No other screw chiller costs less to install



# Factory packaging reduces field labor costs.

YORK 6 CodePak 12 screw chillers are designed to keep installation costs low. Where installation access is not a problem, the unit can be shipped completely packaged, requiring only three field installation steps:

- Connect power leads to solidstate starter disconnect switch.
- Connect chilled and condenser water piping. Victaulic grooves require no on-site welding.
- Connect chilled water flow switch and pump interlocks to control panel.

That's it. No other screw chiller is quicker, easier, and less expensive to install. Most require additional field labor to complete the following extra steps:

\*\*YORK CODEPAK SCREW CHILLER SELECTION PROGRAM (AF0101) \*\*

ISSUE DATE: 8/95 REV. v1\_04.I.D.D

PROJECT - SALES ENGINEER -

Constant 80°F ECWT

DATE- 02/12/96 PAGE- 1 OF 1

CUSTOMER -

PART LOAD PERFORMANCE FOR:

OPEN SCREWPAK MODEL YSCBBBSO-CFBO REFRIG = 22 HERTZ = 60

COOLING DUTY - CWT IS WATER TEMP ENTERING CONDENSER

| PERCENT<br>LOAD | CAPACITY<br>(TONS) | PERCENT<br>POWER | INPUT POWER<br>(KW) | CWT<br>(F) | UNIT PERF (KW/TON) |
|-----------------|--------------------|------------------|---------------------|------------|--------------------|
| 100             | 180                | 100              | 106                 | 80.0       | .589               |
| 90              | 162                | 92               | 97                  | 80.0       | .599               |
| 80              | 144                | 80               | 85                  | 80.0       | .590               |
| 70              | 126                | 71               | 75                  | 80.0       | .595               |
| 60              | 108                | 61               | 65                  | 80.0       | .602               |
| 50              | 90                 | 49               | 53                  | 80.0       | .589               |
| 40              | 72                 | 45               | 49                  | 80.0       | .681               |
| 30              | 54                 | 40               | 43                  | 80.0       | .796               |
| 20              | 36                 | ·<br>35          | 38                  | 80.0       | 1.056              |
| 10              | 18                 | 32               | 35                  | 80.0       | 1.944              |

INPUT DATA - (0= NOT SPECIFIED)

CAPACITY (TONS) = 180 MOTOR CODE = CF VOLTS = 460

STARTER TYPE = 1 SSS INRUSH = 555 6 LEAD FLA 149 LRA 1230 STARTER NAME = SOLID STATE STARTER SSS FLA = 260 SSS LRA = 1556 SSS SIZE = 7L-46

EVAPORATOR - TUBE = 182

PASSES = 2 GPM = 432 FOULING FACTOR = .00025 LEAV TMP(F) = 44.0

CONDENSER - TUBE = 221

PASSES = 2 GPM = 540 FOULING FACTOR = .00025

MAX MOTOR KW = 124

CERTIFIED IN ACCORDANCE WITH ARI STANDARD 550~92

```
**YORK CODEPAK SCREW CHILLER SELECTION PROGRAM (AF0101) **
 ISSUE DATE: 8/95
                                                             REV. v1_04.I.D.D
 PROJECT
                                                             DATE- 02/12/96
 SALES ENGINEER -
                                                             PAGE- 1 OF 2
 CUSTOMER
 TYPE OF SELECTION= UNIT RATING
                                          REFRIGERANT=22
                                                               HERTZ= 60
 SELECTION NO.
 MODEL DESIGNATION YSCBCBSO-CFBO
 CAPACITY (TONS)
                     177
 INPUT POWER (KW)
                                              85°F ECWT
                          112
 UNIT PERF (KW/TON)
                         .630
 FLOW ORIFICE SIZE
                           K
 FLA
                          158
 LRA
                         1230
 INRUSH (AMPS)
                         555
 SSS SIZÈ
                       7L-46
 EVAPORATOR -
 PASSES
  FOUL FACTOR
                            .00025
 WATER ENT. TEMP (F)
WATER LVG. TEMP (F)
                        53.82
44.00
 WATER FLOW (GPM)
WATER VEL. (FPS)
                          432
                         3.9
 WATER PR. DROP (FT)
                           5.8
 CONDENSER -
 PASSES
 FOUL FACTOR
                            .00025
 WATER ENT. TEMP (F)
WATER LVG. TEMP (F)
                         85.00
                          94.17
 WATER FLOW (GPM)
                          540
 WATER VEL. (FPS)
                           4.0
 WATER PR. DROP (FT)
                           6.1
MAX MOTOR LOAD (KW)
                    124
CERTIFIED IN ACCORDANCE WITH ARI STANDARD 550-92
INPUT DATA - (0= NOT SPECIFIED)
   CAPACITY (TONS) = 180 MOTOR CODE = CF
   VOLTS = '460 STARTER TYPE = ( 1) SOLID STATE
   EVAPORATOR -
                    TUBE = 182
        PASSES = 2 GPM = 432 FOULING FACTOR = .00025
   CONDENSER - TUBE = 221
```

PASSES = 2 GPM = 540 FOULING FACTOR = .00025

\*\*YORK CODEPAK SCREW CHILLER SELECTION PROGRAM (AF0101) \*\*

REV. v1\_04.I.D.D ISSUE DATE: 8/95

PROJECT

DATE- 02/12/96

PAGE- 2 OF 2

SALES ENGINEER -CUSTOMER -

REFRIGERANT=22

MODEL YSCBCBSO-CFBO

IPLV / APLV CALCULATION

WHERE: A = KW/TON AT 100% CAPACITY

B = KW/TON AT 75% CAPACITY C = KW/TON AT 50% CAPACITY D = KW/TON AT 25% CAPACITY

| % LOAD | CAPACITY (TONS) | ECWT (F) | KW/TON | WEIGHT | WEIGHTED TONS/KW |
|--------|-----------------|----------|--------|--------|------------------|
| 100    | 177             | 85.000   | .633   | ,17    | .2687            |
| 75     | 133             | 78.750   | .564   | .39    | .6916            |
| 50     | 88              | 72.500   | .489   | .33    | .6753            |
| 25     | 44              | 66.250   | .614   | .11    | .1793            |
|        |                 |          |        |        |                  |
|        |                 |          |        |        | 1.8149           |

APLV = ----- = .5511.8149

CERTIFIED IN ACCORDANCE WITH ARI STANDARD 550-92

INPUT DATA - (0= NOT SPECIFIED)

CAPACITY (TONS) = 180 MOTOR = CF

VOLTAGE = 460 STARTER TYPE = (1) SOLID STATE STARTER EVAPORATOR -

PASSES = 2 LEAV. TEMP (F) = 44.00 GPM = 432 FOULING FACTOR = .00025 TUBE NO. = 182

CONDENSER -

PASSES = 2

GPM = 540 FOULING FACTOR = .00025 TUBE NO. = 221

# Forced Draft Gas, Oil or Dual Fuel Fired Flexible Tube Boilers

CL Series Hot Water Heating 750,000 to 3,000,000 BTU's



## BERVAN BOILERS

Featuring the exclusive Bryan "Flexible Water Tube" design





### Extra Value

#### 20 year warranty

Because of the proven effectiveness of the flexible water tube design in eliminating thermal shock damage, every Bryan Flexible Water Tube Boiler is warranted for 20 years, non-prorated, against pressure vessel damage due to thermal shock.

### Compact design requires minimum floor space

Due to the flexible water tube design, floor space requirements are minimized, while heating surface area per boiler HP is exceptionally high. The CL Series requires only 24" clearance for servicing the water tubes, only on one side of the boiler. Dramatically reduced space requirements in a boiler room mean considerable savings in building costs.

### Knockdown™ Boilers for Replacement Installations

CL Series Forced Draft Water Boilers are available as knockdown models which are shipped in sections, partially disassembled to pass through standard door size openings, and assembled at final location. There is no need to knock out walls, and assembly does not require expensive certified welding.

### Equipment furnished

#### Standard

- Forced draft design · Combination thermometer
- and altitude gauge · A.S.M.E. rated relief valve
- · Combustion safety control
- High limit control
- Low water cut-off
- Built-in combustion chamber
- · Flange-mounted burner
- · Delay oil valve
- · Water temperature control (standard is 240°F ma×mum)
- · Heavy gauge jacket with 11/2" insulation
- All controls mounted and wired
- 1. Combination water feeder and low water cut-off.
- 2. Electronic combustion safety control (standard with gas or dual fuel).
- 3. Induced draft fan.

### Optional

- 4. Boiler construction and controls for pressures exceeding 60 psi.
- 5. Heat exchanger coils for domestic water or other purposes. For storage tank or tankless applications.

### **SPECIFICATIONS**

|          |                        | Firing            | Rate                    | Gross             | Output               | Net Load Re       | commendation (EDR)             |                                |
|----------|------------------------|-------------------|-------------------------|-------------------|----------------------|-------------------|--------------------------------|--------------------------------|
| В        | loiler Model<br>Number | BTU's<br>per Hour | Oil Gallons<br>per Hour | BTU's<br>per Hour | Boiler<br>Horsepower | BTU's<br>per Hour | Hot Water<br>Radiation Sq. Ft. | Approximate<br>Shipping Weight |
|          | CL-75                  | 750.000           | 5.3                     | 600,000           | 18                   | 522.000           | 3,480                          | 1,830                          |
| ┝        | CL-90                  | 900.000           | 6.4                     | 720,000           | 21                   | 626.000           | 4,180                          | 2,150                          |
| $\vdash$ | CL-120                 | 1,200,000         | 86                      | 960,000           | 29                   | 835,000           | 5,560                          | 2,400                          |
| <u> </u> | CL-150                 | 1.500.000         | 10.7                    | 1,200,000         | 36                   | 1,042,000         | 6,870                          | 2,700                          |
| _        | CL-130                 | 1.800.000         | 12.9                    | 1,440,000         | 43                   | 1,250.000         | 8,350                          | 3,000                          |
| ┝        | CL-210                 | 2 100 000         | 150                     | 1.680.000         | 50                   | 1,460.000         | 9.750                          | 3,400                          |
|          | CL-240                 | 2.400.000         | 17.1                    | 1 920 000         | 57                   | 1,670,000         | 11,120                         | 3,600                          |
| ┞        | CL-270                 | 2 700.000         | 19.3                    | 2 160,000         | 64                   | 1.880.000         | 12,500                         | 3.900                          |
| ┡        | CL-270                 | 3,000,000         | 21.4                    | 2 400.000         | 72                   | 2.087.000         | 13,920                         | 4,200                          |

us de la sudivistica il Electric disperi cora perar difequency (115 vot. 60 Hertz is standard). (2) Relief valve En male colori entroni diecia realizza desizza NOTE:

### Bryan CL Series Gas, Oil, or Dual Fuel Fired Flexible Tube Boilers





P.O. Box 27, Peru, Indiana 46970 / Telephone: 317-473-6651 FAX: 317-473-3074

orm No. 1910-3

Printed in US 71-41-



# The Extra Quiet In-Line Mounted Pump

### **Applications**

- Hydronic Heating & Cooling Systems
- Domestic Water
- Fluid Transfer
- Industrial Process

### **Advantages**

- Compact Design
- Quiet Operation
- Easy Installation
- Easy Maintenance
- Wide Range of Standard Sizes





© COPYRIGHT 1966, 1987 BY ITT CORPORATION







### In-Line Mounted Centrifugal Pumps

### **Applications**

- Hydronic Heating & Cooling Systems
- Industrial Process
- General Service
- Pressure Boosting

### Advantages

- Close Coupled
- Space Saving
- Long Life
- Low Maintenance
- Horizontal or Vertical Installation
- Several Seal Options





& COPYRIGHT 1970, 1986 BY ITT CORPORATION





## Centrifugal Pumps

### **Applications**

- Hydronic Heating & Cooling Systems
- Industrial
- Pressure Boosting
- General Pumping Requirements

### Advantages

- High Efficiency Low Operating Costs
- Modern Designs
- Easy Maintenance
- Several Seal Options
- Broad Range of Application





© COPYRIGHT 1973, 1988 BY ITT CORPORATION





### Centrifugal Pumps

### **Applications**

- Hydronic Heating & Cooling Systems
- Industrial
- Pressure Boosting
- General Pumping Requirements

### **Advantages**

- High Efficiency Low Operating Costs
- Modern Designs
- Easy Maintenance
- Several Seal Options
- Broad Range of Application





© COPYRIGHT 1973 1988 BY ITT CORPORATION







### Centrifugal Pumps

### **Applications**

- Hydronic Heating & Cooling Systems
- Industrial
- Pressure Boosting
- General Pumping Requirements

### **Advantages**

- High Efficiency Low Operating Costs
- Modern Designs
- Easy Maintenance
- Several Seal Options
- Broad Range of Application





© COPYRIGHT 1973, 1988 BY ITT CORPORATION









### MODEL KC-1000 GWB

**TECHNICAL DATA** 

### **AERCO KC Gas Fired Hot Water Boiler System**

The AERCO KC Water Boiler is a true industry advance that meets the needs of today's energy and environmental concerns. Designed for application in any closed loop hydronic system, it relates energy input directly to fluctuating system load, yielding seasonal efficiencies as high as 95%. The boiler can be used singly or in modular arrangements for inherent standby with minimum space requirements. Venting flexibility permits installation without normal restrictions.

The advanced electronics of each boiler module offer selectable modes of operation. The options available include:

> Constant Temperature Internal Setpoint Indoor/Outdoor Reset 4-20ma Linear Signal Response AERCO Boiler Management System Integration AERCO Combination Domestic Water/Boiler Plant

Regardless of the mode of operation, the load tracking capability of every unit delivers the ultimate in energy control through energy input modulation with a 14:1 ratio while meeting all load demands.

With condensing capability, the KC Boiler is ideally suited for modern low temperature as well as conventional heating systems. Because of the compact design with direct or conventional venting, the KC Boiler system is applicable to either new construction or retrofit application with the same excellent results. Efficiently, reliability, and longevity make the KC Boiler System a true step forward in heating system design.

### KC1000 FEATURES

- · Natural Gas or Propane
- 14:1 Turndown Ratio
- Direct Vent or Conventional Vent Capabilities
- ASME 150 PSIG Working Pressure Certified
- UL, ULC Listed, FM Approved, ASME Coded
- UL, ULC Listed for Alcove Installation on Combustible Flooring
- · Quiet Operation throughout Firing Range
- Internal Low Water Cutoff and Dual Over Temperature Protection
- · Compact Space Efficient Design
- Precise Temperature Control +/- 2F



### KC-1000 Specifications

| BTU Input               | 1,000,000 BTU/Hr                                 |
|-------------------------|--------------------------------------------------|
| Net Output @ full input | 860,000-915,000 BTU/Hp                           |
| ASME Working Pressure   | 150 PSIG                                         |
| Electrical Requirement  | 120/1/60 20 Amp                                  |
| Gas Requirements        | 8.5" W.C. Minimum @Full Load<br>14" W.C. Maximum |
| Vent Size               | 6" Diameter                                      |
| Water Connections       | 4" Flanged 150 lb. ANSI                          |
| Gas Connection          | 1-1/4" NPT                                       |
|                         |                                                  |

| Minimum Water Flow             | 25 GPM           |
|--------------------------------|------------------|
| Maximum Water Flow             | 150 GPM          |
| Water Pressure Drop            | 0.23 Ft. 100 GPM |
| Water Volume                   | 23 Gallons       |
| Control Range                  | 50F to 220F      |
| Standard Listings & ApprovalsU | L, ULC, FM, ASME |
| Optional Approval              | IRI              |
| Weight, Installed              | 1200 lbs.        |

\*Output is dependent upon return water temp, and firing ratesee efficiency curves on reverse.

†Up to 2000 Altitude.









### Dimensions KC-1000 Boiler



### **Ratings and Dimensions**

| Modules   | Model     | Mbh Input | MBH Output      | Length | Depth | Height | Weight   |
|-----------|-----------|-----------|-----------------|--------|-------|--------|----------|
|           | (a)       | (b)       | (b) (c)         |        |       |        |          |
| One (1)   | KC-1000   | 1000mbh   | 860mbh-915mbh   | 1′10″  | 4′9″  | 6'8"   | 1200lbs. |
| Two (2)   | KC-1000-2 | 2000mbh   | 1720mbh-1830mbh | 5′10″  | 4′9″  | 6′8″   | 2400lbs. |
| Three (3) | KC-1000-3 | 3000mbh   | 2580mbh-2745mbh | 9'8"   | 4′9″  | 6′8″   | 3600lbs. |
| Four (4)  | KC-1000-4 | 4000mbh   | 3440mbh-3660mbh | 13'6"  | 4′9″  | 6′8″   | 4800lbs. |
| Five (5)  | KC-1000-5 | 5000mbh   | 4300mbh-4575mbh | 17'4"  | 4′9″  | 6'8"   | 6000lbs  |
| Six (6)   | KC-1000-6 | 6000mbh   | 5160mbh-5490mbh | 21'2"  | 4′9″  | 6′8″   | 7200ibs  |
| Seven (7) | KC-1000-7 | 7000mbh   | 6020mbh-6405mbh | 25′    | 4′9″  | 6′8″   | 8400lbs  |
| Eight (8) | KC-1000-8 | 8000mbh   | 6880mbh-7320mbh | 28'10" | 4'9"  | 6′8″   | 9600lbs  |

<sup>(</sup>a) Style to be Determined by Individual Application Requirement

- (b) Altitude below 2,000°. Apply Altitude Correction Factor above 2,000. (c) Output dependent upon application-see efficiency curves.

### **Efficiency Curves**



### **Programmable Modes of Operation**



Represented by:

GFB-1 BBC 08/93 5M

**HEAT EXCHANGES • WATER HEATERS • BOILERS** CONTROL VALVES . STEAM GENERATORS



AERCO INTERNATIONAL, INC. • 159 PARIS AVE., P.O. BOX 128 NORTHVALE, N.J. 07647-0128 • (201) 768-2400 • FAX 201-768-7789

### APPENDIX F BUILDING AND EQUIPMENT DATA FORMS

### TABLE OF CONTENTS

### **BUILDING DESCRIPTION**

NAME: Building 26129 (LSTC)

<u>USE:</u> Laser Systems Test Center, administration, offices and control rooms.

GROSS AREA (SQ.FT.): 89,400 STORIES: 4 DATE OF SURVEY: 10/10/95

DATE OF CONSTRUCTION: 1963, major remodel in 1982

STRUCTURE: Steel and concrete

EXTERIOR WALLS: 24" thick structural concrete, un-insulated.

ROOF: Reinforced 24" concrete deck and domes with 2" polyurethane foam insulation sprayed on.

<u>FLOOR CONSTRUCTION</u>: Concrete basement slab on piers, concrete on metal deck for all upper floors.

FLOOR FINISH: Sealed concrete in basement, mostly asphalt tile and raised computer floors elsewhere.

<u>CEILINGS</u>: Lay-in acoustical 2x4 tile.

WINDOWS: None

<u>COOLING EQUIP</u>: Single and multizone air handling units in basement. Units are served by two R-11 chillers in basement mechanical room.

<u>HEATING EQUIP</u>: See cooling equipment above. Hot water heating coils are mounted in supply air ductwork to serve individual zones. Coils served by heat reclaim heat exchangers on both building chillers.

<u>LIGHTING</u>: Generally fluorescent fixtures of various types installed throughout building. All fixtures have F-40CW lamps and standard magnetic ballasts..

<u>DOMESTIC WATER HEATING:</u> Single electric water heater in basement to serve building restrooms.

OTHER: Electronic test monitoring and control equipment, as well as personal computers scattered throughout building.

<u>REMARKS</u>: Poor temperature control, generally cold (67°F to 70°F) inside building during field survey. All electronics equipment and most lighting appears to be left on 24 hours a day. Some areas unoccupied but still conditioned and lighted.

















|                            |              | HVAC EQUIPMENT                 | HVAC EQUIPMENT LIST FOR: HELSTF Facility, LSTC Building January 2, 1996 | y, LSTC Building           |          |                   |          |            |       |
|----------------------------|--------------|--------------------------------|-------------------------------------------------------------------------|----------------------------|----------|-------------------|----------|------------|-------|
| ITEM                       | QTY.         | DESCRIPTION                    | AREA SERVED                                                             | FULL                       | OPER/    | OPERATING TIMES   | IMES     | ANNUAL USE | USE   |
|                            | ,            | 2                              | טובע פרועבה                                                             | LOAD                       | HRS      | DAYS              | WKS      | KWH        | GAL   |
| Water Chiller              |              | York OTA1M1B1-OGB, R-11        | 7                                                                       | 0 077                      |          |                   |          |            |       |
| CH-1                       | -            | heat recovery mode = 91.7 tons | chilled water<br>heating water (95F)                                    | 142.0 KW<br>88.0 KW (rec.) | os<br>g  | by computer model | lepo     | 771,420    |       |
|                            |              | Hermetic Centr.                |                                                                         |                            |          |                   |          |            |       |
| Water Chiller              | -            | 265 tons                       | Decommisioned                                                           |                            | 0        | 0                 | 0        | 0          |       |
| CH-2                       |              | 7.5 degree delta T             |                                                                         |                            |          |                   |          | ı          |       |
|                            |              | York OTA1M1B1-OGB, R-11        |                                                                         |                            |          |                   |          |            |       |
| Water Chiller              | _            | cooling only mode = 153.5 tons | chilled water                                                           | 142.0 KW                   | by cor   | by computer model | odel     | 514.776    |       |
| CH-3                       |              | heat recovery mode = 91.7 tons | heating water (95F)                                                     | 88.0 KW (rec.)             | •        |                   |          |            |       |
|                            |              |                                |                                                                         |                            |          |                   |          |            |       |
| Fump - P3A, P3B            | N            | 10 hp                          | domsetic water                                                          | 7.0 KW                     | 7        | 7                 | 25       | 20,384     |       |
| Domestic Water             |              |                                | pressure                                                                |                            |          |                   |          |            |       |
|                            |              | Daco - 25 hp                   |                                                                         |                            |          |                   |          |            |       |
| Pump - P5                  | -            | horizontal splitcase           | heat recovery water                                                     | 16.6 KW                    | by cor   | by computer model | labo     | 145,416    |       |
| Heating Water              |              | 300 gpm, 155°                  | from CH-1 & CH-3                                                        |                            |          |                   |          |            |       |
|                            |              | Daco - 60 hp                   |                                                                         |                            |          |                   |          |            |       |
| Pump - P7                  | _            | horizontal splitcase           | chilled water                                                           | 39.3 KW                    | by con   | by computer model | lapo     | 344,268    |       |
| Chilled Water              | -            | 900 gpm, 163' head             | CH-1 and CH-3                                                           |                            |          |                   |          |            |       |
|                            |              | Daco - 60 hp                   |                                                                         |                            |          |                   |          |            |       |
| Pump - P8                  | _            | horizontal splitcase           | standby for P7                                                          | 47.6 KW                    | 0        | 0                 | 0        | . 0        |       |
| Chilled Water              |              | 870 gpm, 161'                  |                                                                         |                            |          |                   |          |            |       |
| į                          |              | GE                             |                                                                         |                            | :        |                   |          |            |       |
| Pump - 10A                 | <del>-</del> | 30 hp                          | condenser water                                                         | 27.5 KW                    | by con   | by computer model | ode!     | 240,900    |       |
| Condenser water            |              |                                | CH-1                                                                    |                            |          |                   |          |            |       |
| Pump - 10B                 | -            | GE<br>30 ho                    | reference water                                                         | 700                        | 200      | 40                | -        | 000        |       |
| Condenser Water            | •            |                                | CH-3                                                                    | 200                        | jo<br>Ka | oy computer model | <u> </u> | 900,300    |       |
|                            |              |                                |                                                                         |                            |          |                   | -        |            |       |
| Sump Pump                  | 7            | 10 HP                          | sump water                                                              | 6.6 KW                     | 2        | 7                 | 25       | 19,219     |       |
|                            |              |                                |                                                                         |                            |          |                   |          |            |       |
| Cooling Tower Fan<br>CT-1A | -            | BAC model CFT-2420C            | condenser water                                                         | 12.5 KW                    | by con   | by computer model | lebo     | 29,539     | ***** |
| Cooling Tower Fan          | _            | BAC model CFT-2420C            | condenser water                                                         | 10.8 KW                    | by com   | by computer model | labo     | 64,841     |       |
| -in                        |              |                                |                                                                         |                            | j        |                   |          |            |       |

| 377                                         |             | HVAC EQUIPMENT LIST FOR:<br>January                               | LIST FOR: HELSTF Facili<br>January 2, 1996 | HELS1F Facility, LS1C Building 2, 1996 |        |                   |      |            |     |
|---------------------------------------------|-------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------|--------|-------------------|------|------------|-----|
| ITEM                                        | OTY         | DESCRIPTION                                                       | ARFA SFRVED                                | FULL                                   | OPER/  | OPERATING TIMES   | IMES | ANNUAL USE | Е   |
|                                             | ;           |                                                                   | אויבא טבוועבם                              | LOAD                                   | HRS    | DAYS              | WKS  | KWH        | GAL |
| Steam Boiler                                | -           | Kewanee Scotch Marine<br>Model LS150-0<br>5023 MBH, 150 BHP       | Decommisioned                              |                                        | 0      | 0                 | 0    |            | 0   |
| Air Compressor<br>AC # 1A                   | <b>-</b>    | Quincy<br>15 HP - Reciprocating<br>Tank #3 - 134 gallons          | lab and control air                        | 21.0 A<br>440.0 V - 3 ph.<br>16.0 KVA  | ω      | 7                 | 52   | 38,671     |     |
| Air Compressor<br>AC # 1B                   | 1           | Quincy<br>15 HP - Reciprocating<br>Tank #3 - 134 gallons          | lab and control air                        | 18.5 A<br>440.0 V - 3 ph.<br>14.1 KVA  | - ∞    | 7                 | 52   | 34,079     |     |
| Exhaust Fan<br>EF -1                        | -           | Centrifugal<br>790 cfm                                            | battery room                               | 1.2 KW                                 | by cor | by computer model | lebo | 10,512     |     |
| Exhaust Fan<br>EF -2                        | 1           | Amer. Standard - Centrifugal<br>3769 cfm                          | general exhaust                            | 2.7 KW                                 | by cor | by computer model | lebo | 23,652     |     |
| Water Heater<br>Electric                    | -           | A.O. Smith<br>model DUE - 80<br>80 gallon                         | domestic hot water restrooms               | 24 KW                                  | က      | 2                 | 52   | 26,208     |     |
| Air Handling Unit - AHU-1<br>Hot Water Heat | <del></del> | American Standard<br>multi-zone, 10 hp<br>16,770 cfm              | basement                                   | 6.5 KW                                 | by cor | by computer model | odei | 56,940     | -   |
| Air Handling Unit - AHU-2<br>Hot Water Heat | 1           | American Standard<br>multi-zone, 15 hp<br>22,620 cfm              | basement                                   | 10.2 KW                                | by cor | by computer model | lapo | 89,352     |     |
| Air Handling Unit - AHU-3<br>Hot Water Heat | 1           | American Standard<br>multi-zone, 10 hp, spray coil<br>9060 cfm    | optical areas                              | 6.5 KW                                 | by con | by computer model | lebo | 56,940     |     |
| Air Handling Unit - AHU-5<br>Hot Water Heat | -           | American Standard<br>single-zone, 25 hp, spray coil<br>17,400 cfm | main floor                                 | 17.3 KW                                | by con | by computer model | lebo | 151,548    |     |
| Air Handling Unit - AHU-6<br>Hot Water Heat | -           | American Standard<br>single-zone, 25 hp, spray coil<br>16,383 cfm | main floor domes                           | 13.9 KW                                | by con | by computer model | labo | 121,764    |     |
| Air Handling Unit - AHU-7<br>Hot Water Heat | +           | American Standard<br>multi-zone, 15 hp, spray coil<br>12,518 cfm  | main floor dome<br>3 way control           | 7.4 KW                                 | ру соп | by computer model | lebo | 64,824     |     |

|                                          |            | HVAC EQUIPMENT                                                    | HVAC EQUIPMENT LIST FOR: HELSTF Facility, LSTC Building January 2, 1996 | y, LSTC Building          |                   |        |         |
|------------------------------------------|------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|-------------------|--------|---------|
|                                          | >10        | NCIFGIGOGIA                                                       | ABEA SEBIVED                                                            | FULL                      | ATING T           |        | VUAL U  |
| I EIV                                    |            | DESCRIPTION                                                       | אוובא פרווע בס                                                          | LOAD                      | HRS DAYS WKS      | _      | KWH GAL |
| Computer Room Unit<br>AHU-8              | -          | Liebert FD305C<br>8643 cfm, 11 KW elect. heat                     | room 119                                                                | 3.3 KW<br>11.0 KW         | by computer model |        | 28,908  |
| Computer Room Unit<br>AHU-9              | <b></b>    | Liebert FD411C<br>11,962 cfm, 15 KW elect. heat                   | room 119A                                                               | 5.6 KW<br>15.0 KW         | by computer model |        | 49,056  |
| Computer Room Unit<br>AHU-10             | <b>-</b> - | Liebert FD139C<br>4,780 cfm, 6 KW elect. heat                     | room 123                                                                | 1.8 KW<br>6.0 KW          | by computer model |        | 15,768  |
| Computer Room Unit<br>AHU-11A            | 1          | Liebert FD280C<br>7526 cfm, 10 KW elect. heat                     | room 127A                                                               | 3.7 KW<br>10.0 KW         | by computer model |        | 32,412  |
| Computer Room Unit<br>AHU-11B            | -          | Liebert FD280C<br>7467 cfm, 10 KW elect. heat                     | room 127A                                                               | 4.7 KW<br>10.0 KW         | by computer model |        | 41,172  |
| Computer Room Unit<br>AHU-12             | -          | Liebert FD305C<br>8800 cfm, 11.4 KW elect. heat                   | room 127                                                                | 3.3 KW<br>11.4 KW         | by computer model |        | 28,908  |
| Computer Room Unit<br>AHU-14             | ν-         | Liebert FD488C<br>11,513 cfm, 15 KW elect. heat                   | room 128                                                                | 5.6 KW<br>15.0 KW         | by computer model |        | 49,056  |
| AHU-S1 Air Handling Unit Hot Water Heat  | -          | American Standard<br>single-zone, 7-1/2 hp<br>7846 cfm, 100% O.A. | 100% O.A.                                                               | 4.0 KW                    | by computer model |        | 29,779  |
| AHU-S4 Air Handling Unit Hot Water Heat  | -          | American Standard<br>single-zone, 40 hp<br>47,933 cfm             | computer rooms<br>under floor                                           | 22.7 KW                   | by computer model |        | 198,852 |
| Electronics Equipment<br>Data Collection | ~          | all electronics equipment on UPS feeder.                          | data collection,<br>instrumentation                                     | 60.20 A<br>480 V<br>50 KW | 24 7 55           | 52 436 | 436,800 |
|                                          |            |                                                                   |                                                                         |                           |                   |        |         |
| TOTAL HEATING                            |            |                                                                   |                                                                         |                           |                   |        | 0       |

| ANNUAL USE              | 1.380.576        | 26,208        | 1,049,443 | 930,495    | 509,550     |            |
|-------------------------|------------------|---------------|-----------|------------|-------------|------------|
| OPERATING T             | HRS DAYS WKS     |               |           |            |             |            |
| acility, LS             | AREA SERVED LOAD |               |           |            |             |            |
| HVAC EQUIPMENT LIST FOI | DESCRIPTION AR   |               |           |            |             |            |
|                         | ατγ.             |               |           |            |             |            |
|                         | ITEM             | TOTAL COOLING | TOTAL DHW | TOTAL FANS | TOTAL PUMPS | TOTAL MISC |

|                               | ΚVΑ                                  |             | 19.9               | 49.4               | 31.1                 | 20.7                 | 14.7           | 12.7          | 9.           | 3.2         | 7.6                                            | 12.0                                           | 7.6                                            | 19.9                                           | 15.9                                           | 8.8                                            | 4.8                                            | 26.3                                           | 4.0               | 6.8               | 2.4               |
|-------------------------------|--------------------------------------|-------------|--------------------|--------------------|----------------------|----------------------|----------------|---------------|--------------|-------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------|-------------------|-------------------|
|                               | KW                                   | DEMAND      | 16.6               | 39.3               | 27.5                 | 18.3                 | 12.5           | 10.8          | 1.2          | 2.7         | 6.5                                            | 10.2                                           | 6.5                                            | 17.3                                           | 13.9                                           | 7.4                                            | 4.0                                            | 22.7                                           | 3.3               | 5.6               | 1.8               |
|                               | %                                    | LOAD DE     | 76.9%              | 80.5%              | 101.3%               | 72.2%                | 94.9%          | 82.1%         | 80.0%        | %6:06       | 70.9%                                          | 76.9%                                          | 70.9%                                          | 80.9%                                          | 64.7%                                          | 27.0%                                          | %0.09                                          | %8.89                                          | 70.4%             | 77.3%             | 96.8%             |
|                               |                                      | PS          | 25 7               | 62 8               | 39                   | 26 7                 | 18.5           | 16            | 2            | 4           | S.S.                                           | 15                                             | 9.5                                            | 25                                             | 50                                             | =                                              | 9                                              | 33                                             | ro.               | 8.5               | m                 |
|                               | ACTUA                                | VOLTS AN    | 460                | 460                | 460                  | 460                  | 460            | 460           | 460          | 460         | 460                                            | 460                                            | 460                                            | 460                                            | 460                                            | 460                                            | 460                                            | 460                                            | 460               | 460               | 460               |
|                               |                                      | EFF         | 86.5%              | 91.7%              | 82.4%                | 88.2%                | 84.7%          | 84.7%         | 74.0%        | 81.5%       | 0.854                                          | 0.847                                          | 0.854                                          | 0.91                                           | 0.91                                           | 0.895                                          | 88.5%                                          | 94.3%                                          | 79.0%             | 76.9%             | 80.5%             |
|                               | N ATF                                | 14          | 0.833              | 0.796              | 0.885                | 0.885                | 0.850          | 0.850         | 0.780        | 0.835       | 0.855                                          | 0.850                                          | 0.855                                          | 0.870                                          | 0.870                                          | 0.850                                          | 0.830                                          | 0.865                                          | 0.835             | 0.830             | 0.750             |
| l g                           | HA INTERIOR                          | 151         | 32.5               | 0.77               | 38.5                 | 36.0                 | 19.5           | 19.5          | 2.5          | 4.4         | 13.4                                           | 19.5                                           | 13.4                                           | 30.9                                           | 30.9                                           | 19.3                                           | 10.0                                           | 48.0                                           | 7.1               | 11.0              | 3.1               |
| MOTOR LIST FOR: HELSTF - LSTC | DATE SURVEYED: October 10 - 13, 1995 | VOLTS       | 460                | 460                | 460                  | 460                  | 460            | 460           | 460          | 460         | 440                                            | 440                                            | 440                                            | 440                                            | 440                                            | 440                                            | 440                                            | 440                                            | 460               | 460               | 460               |
| T FOR: HE                     | VED: Octor                           | 100         | က                  | ო                  | 6                    | п                    | e e            | ю             | п            | г           | n                                              | က                                              | ю                                              | r                                              | п                                              | က                                              | က                                              | ဧ                                              | က                 | n                 | က                 |
| STOR LIS                      | SURVE                                | È           | 25                 | 99                 | 30                   | 8                    | 51             | 51            | 1.5          | က           | 5                                              | 51                                             | 5                                              | 55                                             | 55                                             | 15                                             | 7.5                                            | 04                                             | vo                | 7.5               | 2                 |
| W                             | DATE                                 | AREA SERVED | LSTC               | LSTC               | CH-1                 | CH-3                 | 9 <del>.</del> | CH-3          | Battery Room | LSTC        | Basement                                       | Basement                                       | Optical Areas                                  | Main Floor                                     | Main Floor Domes                               | Main Floor Dome                                | LSTC - Outside Air                             | Computer Room Under<br>Floor                   | Room 119          | 900 t mood        | Room 123          |
|                               |                                      | DESCRIPTION | Heating Water Pump | Chilled Water Pump | Condenser Water Pump | Condenser Water Pump | Cooling Tower  | Cooling Tower | Exhaust Fan  | Exhaust Fan | Air Handling Unit w/ Hot Water<br>Heating Coil | Air Handling Unit w/ Hot Water<br>Heating Coll | Air Handling Unit w/ Hot Water<br>Heating Coil | Air Handling Unit | Air Handling Unit | Air Handling Unit |
|                               |                                      | Σ           | -                  | -                  | -                    | -                    | -              | -             | -            | -           | -                                              | -                                              | -                                              | -                                              | -                                              | -                                              | -                                              | -                                              | -                 | -                 | -                 |
|                               |                                      | ITEM        | P-5                | P-7                | P-10A                | P-10B                | CT-1A          | CT-1B         | EF-1         | EF-2        | AHU-1                                          | AHU-2                                          | AHU-3                                          | AHU-5                                          | AHU-6                                          | AHU-7                                          | AHU-S1                                         | AHU-S4                                         | AHU-8             | AHU-9             | AHU-10            |

|           | KVA                                                                     | _           | 4.4         |                   | 0.00      |                      | 0.4       |        | 8.9               |       | 0 0 0             | 290:2    |         |       |
|-----------|-------------------------------------------------------------------------|-------------|-------------|-------------------|-----------|----------------------|-----------|--------|-------------------|-------|-------------------|----------|---------|-------|
|           | KW                                                                      |             | 3.7         |                   | 4.7       |                      | 3.3       |        | 5.6               |       | _                 | 245.4    |         |       |
|           | % 6                                                                     | 3           | 77.5%       |                   | %9.86     |                      | 70.4%     |        | 77 3%             | 20.77 |                   |          |         |       |
|           | N N                                                                     | AMPS        | 5.5         |                   | ^         |                      | ĸ         |        |                   |       |                   |          |         |       |
|           | ACTUAL                                                                  | VOLTS       | 460         |                   | 460       |                      | 460       |        |                   | 460   |                   |          |         |       |
|           |                                                                         | FFF         | 79.0%       |                   | 79.0%     |                      | %0.62     |        |                   | %6.97 |                   |          |         |       |
|           | ATE                                                                     | 4           | 0.835       |                   | 0.835     | 200.0                | 78.0      | 3      |                   | 0.830 |                   | 0.846    |         |       |
|           | 995<br>NAMEDIATE                                                        | AMPS        | 1.          |                   |           |                      | ;         | [:<br> |                   | 11.0  |                   |          |         |       |
| OTC   CIT | er 10 - 13, 19                                                          | STION       | 300         | 004               |           | 460                  |           | 460    |                   | 460   |                   |          |         |       |
|           | MOTOR LIST FOR: HELS IT - LS 15<br>DATE SURVEYED: October 10 - 13, 1995 | HP PHASE    |             | ო                 |           | <sub>ლ</sub>         | -         | e      |                   | ~     | ,                 |          |         |       |
|           | MOTOR LIS<br>TE SURVE                                                   | 윺           | -           | <u>د</u>          | -         | ιΩ                   | 1         | S.     |                   | -     |                   | -        |         |       |
| ,         | AO                                                                      | AREA SERVED |             | į                 | Room 12/A |                      | Room 127A |        | Room 127          |       | !                 | Room 128 |         |       |
|           |                                                                         | NOITGIGGGGG | DESCRIPTION | Air Handling Unit |           | #CI   College   1.14 |           |        | Air Handling Unit |       | Air Handling Unit | 0        |         |       |
|           |                                                                         |             | ΔTY         |                   | -         |                      | -         |        | -                 |       |                   | -        | <u></u> |       |
|           |                                                                         |             | ITEM        |                   | AHU-11A   |                      | AHU-11B   |        | AHII-12           |       |                   | AHU-14   |         | Total |

|                                         |      | LIG                                                                                 | HING EQ | I 등 이            | OR: HELST    | F - LSTC    |              |      | Fallo               | ů.         | INIX   |            |
|-----------------------------------------|------|-------------------------------------------------------------------------------------|---------|------------------|--------------|-------------|--------------|------|---------------------|------------|--------|------------|
| AREA SERVED                             | QTY. | FIXTURE DESCRIPTION                                                                 | FIXTURE | CONTROL          | ACTUAL<br>FC | 유<br>교<br>교 | AREA<br>LOAD | HRS  | OPER TIMES S DAYS V | MES<br>WKS | KWH    | JAL<br>MCF |
| Stairs - East and West                  | 18   | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    | Λ 96    | W Breakers       | 30           | 20          | 1,728        | W 24 | 7                   | 52         | 15,096 |            |
| Communications - B-8                    | 34   | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    | Λ 96    | W Breakers       | 43           | 50          | 3,264        | W 24 |                     | 52         | 28,514 |            |
| Mech. Room - B-27                       | 31   | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    | Λ 96    | W Breakers       | 20           | 15          | 2,976        | W 24 |                     | 52         | 25,998 |            |
| Battery Room - B-29                     | 4    | Explosion Proof Lampholder, 1-150W/A<br>Lamp                                        | 150 V   | W Local Switch   | 10           | 15          | 009          | W 24 |                     | 52         | 5,242  |            |
| Corridor - B-1                          | 6    | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    | ۸ 96    | W Breakers       | 26           | 10          | 864          | W 24 |                     | 52         | 7,548  | 110.1      |
| Janitor Supplies / Break<br>Room - B-18 | 12   | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 3-F40/T12/RS/CW<br>Lamps    | 151 V   | W Local Switches | \$ 40        | 30          | 1,812        | W 24 |                     | 52         | 15,830 |            |
| Elec/HVAC Control Room -<br>B-32        | 9    | 4' Surface Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    | Λ 96    | W Local Switches | 9 60         | 50          | 576          | W 24 |                     | 52         | 5,032  |            |
| Janitor Closet                          | -    | Lampholder, 1-100W/A Lamp                                                           | 100 V   | W Local Switch   | 12           | 5           | 100          | W 24 | 4 2                 | 52         | 874    |            |
| Restroom                                | -    | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Λ 96    | W Local Switch   | 55           | 20          | 96           | W 24 | 2                   | 52         | 839    |            |
| AHU Vestibule                           | 7    | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    | Λ 96    | W Breakers       | 23           | 15          | 1,056        | W 24 | 1 7                 | 52         | 9,225  |            |

|                                            |                  | MCF                 |                                                                                  |                                                                         |                                                                         |                                                                            |                                                                            |        |                                                                         |                                                                      |                                                                             |                                         |                                         |                                                                         |        |
|--------------------------------------------|------------------|---------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|--------|
|                                            | NNCAL            | KWH                 | 5,032                                                                            | 8,387                                                                   | 2,516                                                                   | 2,516                                                                      | 839                                                                        | 100    | /0/-                                                                    | 30,340                                                               | 449                                                                         | 10,064                                  |                                         | 3,355                                                                   |        |
|                                            |                  | WKS                 | 52                                                                               | - 25                                                                    | 52                                                                      | 52                                                                         | 52                                                                         |        | 52                                                                      | 52                                                                   | 52                                                                          | 52                                      |                                         | 52                                                                      |        |
|                                            | OPER. TIMES      | DAYS                | 7                                                                                | 7                                                                       | 7                                                                       | 7                                                                          | ^                                                                          |        | 2                                                                       | 2                                                                    | Ŋ                                                                           | 7                                       |                                         | 7                                                                       |        |
|                                            | OPE              | HRS D               | 24                                                                               | 24                                                                      | 24                                                                      | 24                                                                         | 24                                                                         |        | 6                                                                       | 24                                                                   | 6                                                                           | 24                                      |                                         | 24                                                                      |        |
|                                            | $\vdash$         | 4                   |                                                                                  | >                                                                       | 3                                                                       | 3                                                                          | 3                                                                          | -      | >                                                                       | 3                                                                    | 3                                                                           | 3                                       | \$                                      | >                                                                       |        |
| I                                          | AREA             | LOAD                | 576                                                                              | 096                                                                     | 288                                                                     | 288                                                                        | 96                                                                         |        | 302                                                                     | 3,473                                                                | 192                                                                         | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 701,-                                   | 384                                                                     |        |
| -LSTC                                      | 14 J             | 를 만<br>-            | S                                                                                | 30                                                                      | 50                                                                      | 20                                                                         | 15                                                                         |        | 20                                                                      | 20                                                                   | 50                                                                          |                                         | 2                                       | 10                                                                      |        |
| HELSTF                                     | 1982<br>V T1 1/1 | - L                 | 10                                                                               | 24                                                                      | 72                                                                      | 15                                                                         | 10                                                                         |        | 34                                                                      | 20                                                                   | 65                                                                          |                                         | 25                                      | 27                                                                      |        |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC | 5                | CONTROL             | Local Switch                                                                     | Local Switch                                                            | Local Switch                                                            | Local Switch                                                               | Breaker                                                                    |        | Local Switch                                                            | Local Switch                                                         | Local Switch                                                                |                                         | Breakers                                | Breakers                                                                |        |
| UIPM                                       | ఠ                |                     |                                                                                  |                                                                         | 3                                                                       | 3                                                                          |                                                                            | +      |                                                                         |                                                                      | 3                                                                           | +                                       | ≥                                       | 3                                                                       |        |
| TING EQ                                    |                  | FIXTURE<br>LOAD     | 96                                                                               | 96                                                                      | 96                                                                      | 96                                                                         | 96                                                                         |        | 151                                                                     | 151                                                                  | 96                                                                          |                                         | 96                                      | 96                                                                      |        |
| HOIT                                       |                  | FIXTURE DESCRIPTION | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW | 1'x4' Surface Wraparound Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW | Lamps 4: Pendent Industrial Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | Lamps  | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 3-F40/T12/RS/CW | 4' Pendent Industrial Fluorescent, Standard Ballast, 3-F40/T12/RS/CW | Lamps 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 2-F40/T12/RS/CW | Lamps                                   | Standard Ballast, 2-F40/T12/RS/CW Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW | rainba |
|                                            |                  | QTY.                | ဖ                                                                                | 9                                                                       | m                                                                       | က                                                                          | -                                                                          |        | 2                                                                       | 23                                                                   | 2                                                                           |                                         |                                         | 4                                                                       |        |
|                                            |                  | AREA SERVED (       | Magnetic Tape Storage - B-                                                       | Aerobics Room                                                           | Men's Restroom                                                          | Momen's Restroom                                                           | olivita A                                                                  | o none | Office                                                                  | Library                                                              | Office, B.17R                                                               |                                         | Corridor - B-3                          | Corridor - B-2                                                          |        |

| T                                                                   |                     |                                                                                  |                                                                          |                                                                      |                                                                            |                                                                            |                                             |                                            |                                                                            |                                                                         |                                            |                                 |                                                                                   |
|---------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|
| <u> </u>                                                            | MCF                 |                                                                                  |                                                                          |                                                                      |                                                                            |                                                                            |                                             | -                                          |                                                                            |                                                                         |                                            | -                               |                                                                                   |
| ANNIA                                                               | KWH                 | 20,128                                                                           | 899                                                                      | 3,355                                                                | 3,355                                                                      | 3,355                                                                      | 1,677                                       |                                            | 1,677                                                                      | 2,516                                                                   | 5,032                                      |                                 | 2,516                                                                             |
|                                                                     | WKS                 | 52                                                                               | 52                                                                       | 52                                                                   | 52                                                                         | 52                                                                         | 52                                          |                                            | 52                                                                         | 52                                                                      | 52                                         |                                 | 52                                                                                |
|                                                                     | OPER. IIMES         | 7                                                                                | Ŋ                                                                        | 7                                                                    | 7                                                                          | 2                                                                          | 7                                           |                                            | 7                                                                          | 7                                                                       |                                            |                                 | 7                                                                                 |
| i                                                                   | HRS C               | 24                                                                               | ნ                                                                        | 24                                                                   | 24                                                                         | 24                                                                         | 24                                          |                                            | 24                                                                         | 24                                                                      | 24                                         |                                 | 24                                                                                |
| ŀ                                                                   | 1                   | 3                                                                                |                                                                          | 3                                                                    | 3                                                                          | 3                                                                          | 3                                           |                                            | 3                                                                          | 3                                                                       | >                                          |                                 | 3                                                                                 |
|                                                                     | AREA<br>LOAD        | 2,304                                                                            | 384                                                                      | 384                                                                  | 384                                                                        | 384                                                                        | 192                                         |                                            | 192                                                                        | 288                                                                     | 576                                        |                                 | 288                                                                               |
| -LSTC                                                               | SoE<br>FC           | 50                                                                               | 20                                                                       | ις                                                                   | 2                                                                          | ις                                                                         | 15                                          |                                            | 15                                                                         | 15                                                                      | 30                                         |                                 | 30                                                                                |
| HELSTF<br>95                                                        | ACTUAL<br>FC        | 04                                                                               | 42                                                                       | 30                                                                   | 30                                                                         | 21                                                                         | 15                                          |                                            | 15                                                                         | 56                                                                      | 35                                         |                                 | 40                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             | W Local Switches                                                                 | Local Switch                                                             | Local Switch                                                         | Local Switch                                                               | Local Switch                                                               | Breaker                                     |                                            | Local Switch                                                               | Local Switch                                                            | Local Switch                               |                                 | Local Switch                                                                      |
| UIPM                                                                |                     | N S                                                                              | ×                                                                        | 3                                                                    |                                                                            |                                                                            | }                                           | :                                          | 3                                                                          | 3                                                                       | 3                                          |                                 | 3                                                                                 |
| TING EC                                                             | FIXTURE             | 96                                                                               | 192                                                                      | 96                                                                   | 96                                                                         | 96                                                                         | 8                                           | 8                                          | 96<br>                                                                     | 96                                                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \      | }                               | 96                                                                                |
| LIGH                                                                | FIXTURE DESCRIPTION | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW | 4' Pendent Industrial Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | Lamps 4' Pendent Industrial Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | Lamps 4' Pendent Industrial Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | Lamps 1'x4' Surface Wraparound Fluorescent, | Standard Ballast, 2-F40/112/KS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW | 1'x4' Surface Wraparound Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | Lamps  2'x4' Recessed Fluorescent Troffer, | Standard ballast, 2-140/11/2000 | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                     | QTY.                | 24                                                                               | 2                                                                        | 4                                                                    | 4                                                                          | 4                                                                          |                                             | 2                                          | 2                                                                          | 8                                                                       |                                            | ဖ                               | က                                                                                 |
|                                                                     | AREA SERVED G       | I&C Electrical Shop - B-17D                                                      | Office - B-17C                                                           | Storage - B-19                                                       | Ctorage B.20                                                               |                                                                            | Storage - 5-21                              | Vestibule                                  | Vestibule - B-5                                                            | Air Diret - B-30                                                        |                                            | Break Room - B-12               | Kitchen - B-12A                                                                   |

|                                                                     | UAL                 | MCF      |                                                                                   |                                                                                  |                                                                                  |                                                                                   |                                                                                   |                                                                                   |                                                                                  |                                                                                   |                                                                                  |                                                                                   |
|---------------------------------------------------------------------|---------------------|----------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                     | ANNUA               | KWH      | 1,677                                                                             | 11,741                                                                           | 3,355                                                                            | 10,064                                                                            | 20,128                                                                            | 30,192                                                                            | 12,580                                                                           | 26,837                                                                            | 2,516                                                                            | 10,064                                                                            |
|                                                                     | ES                  | WKS      | 52                                                                                | 52                                                                               | 52                                                                               | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                               | 52                                                                                | 52                                                                               | 52                                                                                |
|                                                                     | OPER. TIMES         | DAYS     | 7                                                                                 | 7                                                                                | 7                                                                                | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                | 7                                                                                 | 7                                                                                | 7                                                                                 |
|                                                                     | Q                   | HRS      | 24                                                                                | 24                                                                               | 24                                                                               | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                               | 24                                                                                | 24                                                                               | 24                                                                                |
|                                                                     |                     |          | >                                                                                 | ≥                                                                                | >                                                                                | ≥                                                                                 | >                                                                                 | ≥                                                                                 | >                                                                                | >                                                                                 | ≥                                                                                | >                                                                                 |
|                                                                     | AREA                | LOAD     | 192                                                                               | 1,344                                                                            | 384                                                                              | 1,152                                                                             | 2,304                                                                             | 3,456                                                                             | 1,440                                                                            | 3,072                                                                             | 288                                                                              | 1,152                                                                             |
| F-LSTC                                                              | CoE                 | <u>ნ</u> | 30                                                                                | 15                                                                               | 15                                                                               | 50                                                                                | 50                                                                                | 50                                                                                | 10                                                                               | 20                                                                                | 15                                                                               | 30                                                                                |
| JR: HELST<br>1995                                                   | ACTUAL              | 5        | Locked                                                                            | 30                                                                               | 30                                                                               | 120                                                                               | 55                                                                                | 50                                                                                | 15                                                                               | 45                                                                                | 15                                                                               | 09                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             |          | Local Switch                                                                      | Breakers                                                                         | Local Switch                                                                     | Local Switch                                                                      | Local Switches                                                                    | W Local Switches                                                                  | Breakers                                                                         | Local Switches                                                                    | Local Switch                                                                     | Local Switch                                                                      |
| au o                                                                |                     |          | >                                                                                 | 8                                                                                | >                                                                                | >                                                                                 | 3                                                                                 | M N                                                                               | 8                                                                                |                                                                                   | 3                                                                                | 3                                                                                 |
| HTING                                                               | FIXTURE             | LOAD     | 192                                                                               | 96                                                                               | 96                                                                               | 192                                                                               | 192                                                                               | 192                                                                               | 96                                                                               | 96                                                                                | 96                                                                               | 192                                                                               |
| PIO                                                                 | FIXTURE DESCRIPTION |          | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Baliast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps |
|                                                                     | QTY.                |          | 1                                                                                 | 4                                                                                | 4                                                                                | ဖ                                                                                 | 12                                                                                | 18                                                                                | 15                                                                               | 32                                                                                | ო                                                                                | 9                                                                                 |
|                                                                     | AREA SERVED         |          | Conference - B-13                                                                 | Electrical Equipment - B-24                                                      | Fallout Shelter Supply - B-<br>22                                                | Hughes - B-9                                                                      | Hughes O&M Test Cell B<br>Group - B-10                                            | Hughes O&M Camera Lab -<br>B-11                                                   | Corridor - B-4                                                                   | Hughes SLBD Optics Lab                                                            | Equipment Room - B-28                                                            | US Navy Library - B-11A                                                           |

|                                            |             | MCF                 |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                     |                                                                                  |
|--------------------------------------------|-------------|---------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                            | ANNUAL      | KWH                 | 3,355                                                                            | 4,193                                                                            | 3,355                                                                            | 1,677                                                                            | 7,548                                                                            | 480                                                                              | 839                                                                              | 868                                                                              | 9,225                                                                               | 668                                                                              |
|                                            | S           | WKS                 | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                                  | 52                                                                               |
|                                            | OPER. TIMES | DAYS                | 7                                                                                | 7                                                                                | 7                                                                                | 7                                                                                | 7                                                                                | 7                                                                                | 7                                                                                | ιΩ                                                                               | 7                                                                                   | 2                                                                                |
|                                            | P           | HRS                 | 24                                                                               | 24                                                                               | 24                                                                               | 24                                                                               | 24                                                                               | 24                                                                               | 24                                                                               | 6                                                                                | 24                                                                                  | თ                                                                                |
|                                            |             |                     | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                | >                                                                                | W                                                                                | ≯                                                                                   | 3                                                                                |
|                                            | AREA        | LOAD                | 384                                                                              | 480                                                                              | 384                                                                              | 192                                                                              | 864                                                                              | 55                                                                               | 96                                                                               | 384                                                                              | 1,056                                                                               | 384                                                                              |
| LSTC                                       | I O         | 3 단                 | 15                                                                               | 15                                                                               | .c                                                                               | Ŋ                                                                                | 70                                                                               | 10                                                                               | 5                                                                                | 50                                                                               | 20                                                                                  | 20                                                                               |
| R: HELSTE                                  | ACTIAI      | 7<br>2<br>2         | 50                                                                               | 25                                                                               | 25                                                                               | 20                                                                               | 20                                                                               | 23                                                                               | 30                                                                               | 63                                                                               | 62                                                                                  | 95                                                                               |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC | TOPEL 13, 1 |                     | Breaker                                                                          | Local Switch                                                                     | Local Switch                                                                     | Local Switch                                                                     | Local Switch                                                                     | Breaker                                                                          | Local Switch                                                                     | Local Switch                                                                     | Local Switch                                                                        | Local Switch                                                                     |
| OUP!                                       |             | ų _                 | >                                                                                | 3                                                                                | 3                                                                                | *                                                                                | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                   | 3                                                                                |
| HING E                                     | TOTILIA     | LOAD                | 96                                                                               | 96                                                                               | 96                                                                               | 96                                                                               | 96                                                                               | 55                                                                               | 96                                                                               | 96                                                                               | 96                                                                                  | 96                                                                               |
| 911                                        |             | FIXTURE DESCRIPTION | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 1-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
| ļ                                          |             | ΩT.<br>∵            | 4                                                                                | ro.                                                                              | 4                                                                                | 2                                                                                | 6                                                                                | -                                                                                | -                                                                                | 4                                                                                | -                                                                                   | 4                                                                                |
|                                            |             | AREA SERVED         | Vestibule - B-4A                                                                 | Boiler Room - B-26                                                               | Storage - B-25                                                                   | Storage - B-25A                                                                  | Basement Mezzanine                                                               | Vestibule - 102                                                                  | Closet - 105                                                                     | Office - 105A                                                                    | Reception - 105                                                                     | Office - 105B                                                                    |

|                                            |                                        |             | MCF                                                                              |                                                                                  |                                                                                  |                                                                                  |                                                                                     |                                                                                     |                                                                                   |                                                                                  |                                                                                     | <del></del>                                                                         |
|--------------------------------------------|----------------------------------------|-------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                            |                                        | ANNUAL      |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                     |                                                                                     | -                                                                                 |                                                                                  |                                                                                     |                                                                                     |
|                                            |                                        |             | KWH 899                                                                          | 1,348                                                                            | 899                                                                              | 899                                                                              | 3,355                                                                               | 899                                                                                 | 1,677                                                                             | 1,677                                                                            | 839                                                                                 | 13,418                                                                              |
|                                            |                                        | MES         | WKS                                                                              | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                                  | 52                                                                                  | 52                                                                                | 52                                                                               | 52                                                                                  | 52                                                                                  |
|                                            | j                                      | ድԻ          | DAYS.                                                                            | ιΩ                                                                               | 5                                                                                | 5                                                                                | 7                                                                                   | r.                                                                                  |                                                                                   | ^                                                                                | 7                                                                                   |                                                                                     |
|                                            |                                        |             | 6                                                                                | თ                                                                                | 6                                                                                | 6                                                                                | 24                                                                                  | 0                                                                                   | 24                                                                                | 24                                                                               | 24                                                                                  | 24                                                                                  |
|                                            | Š                                      | AREA<br>CAD | }                                                                                | >                                                                                | 3                                                                                | 3                                                                                | 3                                                                                   | 3                                                                                   | 3                                                                                 |                                                                                  |                                                                                     | ≥                                                                                   |
| ပ္                                         |                                        |             | 384                                                                              | 576                                                                              | 384                                                                              | 384                                                                              | 384                                                                                 | 384                                                                                 | 192                                                                               | 192                                                                              | 96                                                                                  | 1,536                                                                               |
| STF - LS                                   | -<br>1                                 |             | 22                                                                               | 20                                                                               | 20                                                                               | 90                                                                               | 50                                                                                  | 90                                                                                  | 50                                                                                | 0                                                                                | 22                                                                                  | 10                                                                                  |
| OR: HEL                                    | 1995<br>ACTUAL                         | -<br>5      | 25                                                                               | 20                                                                               | 80                                                                               | 75                                                                               | 65                                                                                  | 88                                                                                  | 110                                                                               | 83                                                                               | 30                                                                                  | 4                                                                                   |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC | October 10 - 13, 1995<br>CONTROL   ACT |             | Local Switch                                                                        | Local Switch                                                                        | Local Switch                                                                      | Local Switch                                                                     | Local Switch                                                                        | Breaker                                                                             |
| 3 EQU                                      | FIXTURE                                | LOAD        | 8                                                                                | ≥                                                                                | ≷                                                                                | 3                                                                                | 3                                                                                   | 3                                                                                   | 3                                                                                 |                                                                                  | <u> </u>                                                                            | 3                                                                                   |
| GHTIN                                      | FE                                     |             | 96                                                                               | 96                                                                               | 96                                                                               | 96                                                                               | 96                                                                                  | 96                                                                                  | 96                                                                                | 96                                                                               | 96                                                                                  | 96                                                                                  |
|                                            | FIXTURE DESCRIPTION                    |             | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                            | QTY.                                   |             | 4                                                                                | O                                                                                | 4                                                                                | 4                                                                                | 4                                                                                   | 4                                                                                   | 7                                                                                 | 7                                                                                | + "                                                                                 | 6<br>t. s                                                                           |
|                                            | AREA SERVED                            |             | Office - 105C                                                                    | Office - 105F                                                                    | Office - 105E                                                                    | Office - 105D                                                                    | Office - 107A                                                                       | Office - 107C                                                                       | Office - 107                                                                      | Vault - 107B                                                                     | Janitor                                                                             | Corridor - 112                                                                      |

|                                            | \<br>                                 | MCF                 |                                                                                     |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                   |                                                                                   |                                                                                  |                                                                                   |                                                                                   |
|--------------------------------------------|---------------------------------------|---------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                            | ANNOAL                                | KWH                 | 1,677                                                                               | 1,677                                                                            | 1,677                                                                            | 2,516                                                                            | 1,677                                                                            | 23,482                                                                            | 46,965                                                                            | 6,709                                                                            | 3,355                                                                             | 17,612                                                                            |
|                                            | S                                     | WKS                 | 52                                                                                  | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                               | 52                                                                                | 52                                                                                | 52                                                                               | 52                                                                                | 52                                                                                |
|                                            | OPER. TIMES                           | DAYS                | 7                                                                                   | 7                                                                                | 7                                                                                | 7                                                                                | 7                                                                                | 7                                                                                 | 7                                                                                 | 2                                                                                |                                                                                   | 2                                                                                 |
|                                            | OP                                    | HRS                 | 24                                                                                  | 24                                                                               | 24                                                                               | 24                                                                               | 24                                                                               | 24                                                                                | 24                                                                                | 24                                                                               | 24                                                                                | 24                                                                                |
|                                            | -                                     |                     | 3                                                                                   | 3                                                                                | 3                                                                                | 3                                                                                | >                                                                                | 3                                                                                 | 3                                                                                 | >                                                                                | 3                                                                                 | ≯                                                                                 |
|                                            | AREA                                  | LOAD                | 192                                                                                 | 192                                                                              | 192                                                                              | 288                                                                              | 192                                                                              | 2,688                                                                             | 5,376                                                                             | 768                                                                              | 384                                                                               | 2,016                                                                             |
| LSTC                                       | Soe                                   | 윤                   | 10                                                                                  | 20                                                                               | 50                                                                               | 50                                                                               | 6                                                                                | 20                                                                                | 20                                                                                | 10                                                                               | 50                                                                                | 90                                                                                |
| R: HELSTE                                  | ACTUAL                                | Б                   | 27                                                                                  | 80                                                                               | 75                                                                               | 70                                                                               | 10                                                                               | 45                                                                                | 85                                                                                | 27                                                                               | 64                                                                                | 40                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC | A LONTROL                             |                     | Breaker                                                                             | Local Switch                                                                     | Local Switch                                                                     | Local Switch                                                                     | Local Switch                                                                     | W Local Switches                                                                  | W Local Switches                                                                  | Local Switch                                                                     | Local Switch                                                                      | W Local Switches                                                                  |
| au S                                       |                                       | ָ עַ                | >                                                                                   | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                | 3                                                                                 | 3                                                                                 | 3                                                                                | 3                                                                                 | 3                                                                                 |
| TING E                                     | I I I I I I I I I I I I I I I I I I I | LOAD                | 96                                                                                  | 96                                                                               | 96                                                                               | 96                                                                               | 96                                                                               | 96                                                                                | 192                                                                               | 96                                                                               | 96                                                                                | 96                                                                                |
| 19I7                                       | NOITE COLUMN                          | FIXTURE DESCRIPTION | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Baliast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                            |                                       | ΩTζ.                | 2                                                                                   | 2                                                                                | 2                                                                                | ю                                                                                | 2                                                                                | 28                                                                                | 28                                                                                | ω                                                                                | 4                                                                                 | 21                                                                                |
|                                            |                                       | AREA SERVED         | Corridor - 104                                                                      | Women's Restroom                                                                 | Men's Restroom                                                                   | Women's Restroom                                                                 | Cable/Power Terminals                                                            | 1 & C shop - 119                                                                  | Test Cell 4 Control Room -                                                        | Cable Transition Room - 119B                                                     | Observation - 121                                                                 | Site control Room - 123                                                           |

| <del></del>                                                      | _                     |                                              |                                                                                   | ····                                                                              |                                                                                   |                                                                                   | Г                                                                                 | ——                                                                                | т                                                                                 |                                                                                   | T                                                                                |                                                                                   |
|------------------------------------------------------------------|-----------------------|----------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                  | UAL                   | MCF                                          |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                  |                                                                                   |
|                                                                  | ANNUAL                | KWH                                          | 449                                                                               | 839                                                                               | 2,516                                                                             | 3,355                                                                             | 6',109                                                                            | 33,546                                                                            | 20,128                                                                            | 25,998                                                                            | 1,677                                                                            | 449                                                                               |
|                                                                  | ES                    | WKS                                          | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                               | 52                                                                                |
|                                                                  | OPER. TIMES           | DAYS                                         | 5                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 2                                                                                 | 2                                                                                 | 7                                                                                 | 7                                                                                | 5                                                                                 |
|                                                                  | PO                    | HRS                                          | 6                                                                                 | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                               | 6                                                                                 |
|                                                                  |                       |                                              | 3                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                 | ≯                                                                                 | 3                                                                                 | 3                                                                                 | >                                                                                 | >                                                                                | 3                                                                                 |
|                                                                  | AREA                  | LOAD                                         | 192                                                                               | 96                                                                                | 288                                                                               | 384                                                                               | 768                                                                               | 3,840                                                                             | 2,304                                                                             | 2,976                                                                             | 192                                                                              | 192                                                                               |
| F-LSTC                                                           | Sof                   | 요                                            | 50                                                                                | 10                                                                                | 30                                                                                | 10                                                                                | 10                                                                                | 50                                                                                | 50                                                                                | 20                                                                                | 19                                                                               | 20                                                                                |
| R: HELST<br>1995                                                 | ACTUAL                | ည                                            | 75                                                                                | 23                                                                                | 20                                                                                | 108                                                                               | 108                                                                               | 70                                                                                | 33                                                                                | 37                                                                                | 10                                                                               | 37                                                                                |
| ITING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL               |                                              | Local Switch                                                                      | W Local Switches                                                                  | Local Switches                                                                    | Local Switches                                                                    | Local Switch                                                                     | Local Switch                                                                      |
| all o                                                            |                       | <u>,                                    </u> | 3                                                                                 | 3                                                                                 |                                                                                   | }                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                 |                                                                                   | ≥                                                                                | ≥                                                                                 |
| HING E                                                           | FIXTURE               | LOAD                                         | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 192                                                                               | 192                                                                               | 96                                                                                | 96                                                                                | 96                                                                               | 96                                                                                |
| ПСН                                                              | NOITGIACOST SELECTION | TINIONE DESCRIPTION                          | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                  | 7                     | -<br>-<br>-                                  | 2                                                                                 | -                                                                                 | ю                                                                                 | 4                                                                                 | 4                                                                                 | 20                                                                                | 24                                                                                | 31                                                                                | 2                                                                                | 2                                                                                 |
|                                                                  | מניים ביים            | AKEA SEKVED                                  | Site Control Office - 123A                                                        | Vestibule                                                                         | Observation - 125                                                                 | Corridor - 124                                                                    |                                                                                   | Auxiliary Control Room -                                                          | Operational Controllers<br>Computer Room - 127A                                   | MTIR & Vacuum Chamber<br>control Room - 127                                       | Cable/Power Terminals                                                            | Office - 135                                                                      |

|                                  |     | TIGH                                                                              | HING EQ | ITING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | OR: HELS1 | TF - LSTC |      |   |     |             |     |        |     |
|----------------------------------|-----|-----------------------------------------------------------------------------------|---------|------------------------------------------------------------------|-----------|-----------|------|---|-----|-------------|-----|--------|-----|
| AREA SERVED                      | YTO | FIXTURE DESCRIPTION                                                               | FIXTURE |                                                                  | ACTUAL    | Se        | AREA | H | OPE | OPER. TIMES | SE  | ANNOAL | JAL |
|                                  |     |                                                                                   | LOAD    |                                                                  | 5         | 5         | LOAD |   | HRS | DAYS        | WKS | KWH    | MCF |
| Conference Room - 135A           | 5   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | M 96    | / Local Switch                                                   | 30        | 30        | 480  | 3 | 24  | 7           | 52  | 4,193  |     |
| Office - 137A                    | 2   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 192 W   | / Local Switch                                                   | 52        | 50        | 384  | 3 | თ   | r,          | 52  | 899    |     |
| Office - 137B                    | 2   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 192 W   | / Local Switch                                                   | 53        | 50        | 384  | 3 | თ   | ιΩ          | 52  | 899    |     |
| Office - 137C                    | 2   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 192 W   | / Local Switch                                                   | 62        | 50        | 384  | 3 | თ   | r.          | 52  | 899    |     |
| Office - 137D                    | 2   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 192 W   | / Local Switch                                                   | 52        | 50        | 384  | 3 | თ   | r,          | 52  | 668    |     |
| Office - 137E                    | 2   | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps  | 192 W   | / Local Switch                                                   | 65        | 50        | 384  | 3 | თ   | S.          | 52  | 668-   |     |
| Office - 137F                    | 2   | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps  | 192 W   | / Local Switch                                                   | 78        | 50        | 384  | 3 | თ   | 5           | 52  | 899    |     |
| Office - 137G                    | 2   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 192 W   | / Local Switch                                                   | 80        | 50        | 384  | 3 | თ   | Ŋ           | 52  | 899    |     |
| Corridor & Coffee Room -<br>137H | 7   | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | M 96    | / Local Switch                                                   | 37        | 15        | 672  | 3 | 24  | 7           | 52  | 5,871  |     |
| Projection Room - 139            | 2   | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps  | 192 W   | V Local Switch                                                   | 99        | 30        | 384  | > | 24  |             | 52  | 3,355  |     |

|                                                                    | Т                   | Т    | Τ"                                                                                | T                                                                                 | <del></del>                                                                       | <del></del>                                                                       | T                                                                                 | <del></del>                                                                         |                                                                                   |                                                                                   |                                                                                   |                                                                                   |
|--------------------------------------------------------------------|---------------------|------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                    | ANNUAL              | MCF  |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                     |                                                                                   |                                                                                   |                                                                                   |                                                                                   |
|                                                                    | ANA                 | KWH  | 10,064                                                                            | 449                                                                               | 899                                                                               | 899                                                                               | 899                                                                               | 6,709                                                                               | 1,797                                                                             | 899                                                                               | 1,797                                                                             | 899                                                                               |
|                                                                    | ES                  | WKS  | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                  | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                |
|                                                                    | OPER. TIMES         | DAYS | 7                                                                                 | r2                                                                                | 5                                                                                 | 2                                                                                 | 5                                                                                 | 7                                                                                   | 5                                                                                 | 2                                                                                 | ည                                                                                 | 3                                                                                 |
|                                                                    | Ö                   | HRS  | 24                                                                                | 6                                                                                 | 6                                                                                 | 6                                                                                 | 6                                                                                 | 24                                                                                  | 6                                                                                 | 6                                                                                 | 6                                                                                 | 6                                                                                 |
|                                                                    |                     |      | >                                                                                 | ≥                                                                                 | ≥                                                                                 | >                                                                                 | 3                                                                                 | 3                                                                                   | 3                                                                                 | >                                                                                 | 3                                                                                 | 3                                                                                 |
| 0                                                                  | AREA                | LOAD | 1,152                                                                             | 192                                                                               | 384                                                                               | 384                                                                               | 384                                                                               | 768                                                                                 | 768                                                                               | 384                                                                               | 768                                                                               | 384                                                                               |
| TF - LST                                                           | SOE                 | 5    | 30                                                                                | 20                                                                                | 20                                                                                | 50                                                                                | 50                                                                                | 10                                                                                  | 20                                                                                | 20                                                                                | 20                                                                                | 50                                                                                |
| OR: HELS                                                           | ACTUAL              | ပ်   | 40                                                                                | 47                                                                                | 50                                                                                | 47                                                                                | 43                                                                                | 20                                                                                  | 43                                                                                | 57                                                                                | 54                                                                                | 80                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13 1995 | CONTROL             |      | Local Switch                                                                      | Breaker                                                                             | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      |
| INO.                                                               | RE                  |      | 3                                                                                 | 3                                                                                 | ≥                                                                                 | 3                                                                                 | }                                                                                 | 3                                                                                   | 3                                                                                 | >                                                                                 | >                                                                                 | 3                                                                                 |
| SHTING                                                             | FIXTURE             | LOAD | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                  | 96                                                                                | 96                                                                                | 192                                                                               | 96                                                                                |
| רופ                                                                | FIXTURE DESCRIPTION |      | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                    | QTY.                |      | 12                                                                                | 2                                                                                 | 4                                                                                 | 4                                                                                 | 4                                                                                 | 8                                                                                   | æ                                                                                 | 4                                                                                 | 4                                                                                 | 4                                                                                 |
|                                                                    | AREA SERVED         |      | Conference Room "A" - 141                                                         | Office - 147C                                                                     | Office - 147                                                                      | Office - 147A                                                                     | Office - 147B                                                                     | Corridor - 150                                                                      | Office - 149                                                                      | Office - 149A                                                                     | Office - 149B                                                                     | Office - 151                                                                      |

|                                                                     | UAL                 | MCF  |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                     |                                                                                  |                                                                                   |                                                                                     |                                                                                   |                                                                                   |
|---------------------------------------------------------------------|---------------------|------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                     | ANNOAL              | KWH  | 1,797                                                                             | 899                                                                               | 899                                                                               | 13,418                                                                            | 1,677                                                                               | 839                                                                              | 1,797                                                                             | 839                                                                                 | 2,516                                                                             | 19,289                                                                            |
|                                                                     | ES                  | WKS  | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                  | 52                                                                               | 52                                                                                | 52                                                                                  | 52                                                                                | 52                                                                                |
|                                                                     | OPER. TIMES         | DAYS | ĸ                                                                                 | S                                                                                 | 5                                                                                 | 7                                                                                 | 7                                                                                   | 7                                                                                | 5                                                                                 | 7                                                                                   | 7                                                                                 | 2                                                                                 |
|                                                                     | Ö                   | HRS  | <b>o</b>                                                                          | <b>o</b>                                                                          | 6                                                                                 | 24                                                                                | 24                                                                                  | 24                                                                               | თ                                                                                 | 24                                                                                  | 24                                                                                | 24                                                                                |
|                                                                     |                     |      | ≥                                                                                 | 3                                                                                 | >                                                                                 | ≯                                                                                 | ≥                                                                                   | ≥                                                                                | 3                                                                                 | ≯                                                                                   | 3                                                                                 | ≥                                                                                 |
|                                                                     | AREA                | LOAD | 768                                                                               | 384                                                                               | 384                                                                               | 1,536                                                                             | 192                                                                                 | 96                                                                               | 768                                                                               | 96                                                                                  | 288                                                                               | 2,208                                                                             |
| F-LSTC                                                              | COE                 | 5    | 50                                                                                | 50                                                                                | 20                                                                                | 30                                                                                | 15                                                                                  | 15                                                                               | 50                                                                                | 10                                                                                  | 30                                                                                | 50                                                                                |
| JR: HELST<br>1995                                                   | ACTUAL              | FC   | 36                                                                                | 76                                                                                | 78                                                                                | 83                                                                                | Closed                                                                              | Closed                                                                           | 65                                                                                | 41                                                                                  | Closed                                                                            | 45                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             |      | Local Switch                                                                        | Local Switch                                                                     | Local Switch                                                                      | Breaker                                                                             | Local Switch                                                                      | Local Switches                                                                    |
|                                                                     |                     |      | >                                                                                 | 8                                                                                 | 8                                                                                 | 8                                                                                 | 8                                                                                   | 8                                                                                | 8                                                                                 | 3                                                                                   | 8                                                                                 | × ×                                                                               |
| HTING E                                                             | FIXTURE             | LOAD | 96                                                                                | 192                                                                               | 192                                                                               | 192                                                                               | 96                                                                                  | 96                                                                               | 96                                                                                | 96                                                                                  | 96                                                                                | 96                                                                                |
| 017                                                                 | FIXTURE DESCRIPTION |      | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                     | OTY.                |      | 8                                                                                 | 2                                                                                 | 2                                                                                 | ω                                                                                 | 74                                                                                  | -                                                                                | 80                                                                                | -                                                                                   | ю                                                                                 | 23                                                                                |
|                                                                     | AREA SERVED         |      | Office - 153                                                                      | Office - 153A                                                                     | Office - 153B                                                                     | Conference Room "B" - 155                                                         | Electrical Chase - 106A                                                             | Communication Room -<br>106B                                                     | Office - 106                                                                      | Vestibule - 108                                                                     | Observation Room - 159                                                            | User's Control Room - 110                                                         |

|                                                                     | T                   | Ī                                                                                 |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                  |                                                                                  |                                                                                   |                                                                                   |                                                                                   |
|---------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                     | UAL                 | 2                                                                                 |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                  |                                                                                  |                                                                                   |                                                                                   |                                                                                   |
|                                                                     | ANNUAL              | 15,096                                                                            | 3,355                                                                             | 3,355                                                                             | 20,128                                                                            | 35,224                                                                            | 6,709                                                                            | 6,709                                                                            | 25,160                                                                            | 3,355                                                                             | 449                                                                               |
|                                                                     | ES                  | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                               | 52                                                                               | 52                                                                                | 52                                                                                | 52                                                                                |
|                                                                     | OPER. TIMES         | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                | 7                                                                                | 7                                                                                 | 7                                                                                 | 5                                                                                 |
|                                                                     | Ö                   | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                               | 24                                                                               | 24                                                                                | 24                                                                                | 6                                                                                 |
|                                                                     |                     | 3                                                                                 | 3                                                                                 | ≥                                                                                 | >                                                                                 | 3                                                                                 | ≥                                                                                | }                                                                                | 3                                                                                 | >                                                                                 | >                                                                                 |
|                                                                     | AREA                | 1,728                                                                             | 384                                                                               | 384                                                                               | 2,304                                                                             | 4,032                                                                             | 768                                                                              | 768                                                                              | 2,880                                                                             | 384                                                                               | 192                                                                               |
| F-LSTC                                                              | Se                  | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 15                                                                               | 5                                                                                | 50                                                                                | 50                                                                                | 50                                                                                |
| IS: HELS1                                                           | ACTUAL              | 5 8                                                                               | 45                                                                                | 50                                                                                | 62                                                                                | 71                                                                                | 63                                                                               | 70                                                                               | 86                                                                                | 36                                                                                | 26                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             | Local Switches                                                                    | Local Switch                                                                      | Local Switch                                                                      | Local Switches                                                                    | Local Switches                                                                    | Local Switch                                                                     | Local Switch                                                                     | W Local Switches                                                                  | Local Switch                                                                      | Local Switch                                                                      |
| our o                                                               | 끭                   | >                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                | >                                                                                | <u> </u>                                                                          | >                                                                                 | 3                                                                                 |
| HTING E                                                             | FIXTURE             | N 96                                                                              | 96                                                                                | 96                                                                                | 192                                                                               | 192                                                                               | 96                                                                               | 96                                                                               | 192                                                                               | 96                                                                                | 96                                                                                |
| PIO TIE                                                             | FIXTURE DESCRIPTION | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                     | QTY.                | 18                                                                                | 4                                                                                 | 4                                                                                 | 12                                                                                | 21                                                                                | ω                                                                                | 8                                                                                | 15                                                                                | 4                                                                                 | 2                                                                                 |
|                                                                     | AREA SERVED         | CCTV Equipment Room -                                                             | Timing Station Room -<br>116A                                                     | Office - 120                                                                      | MET Room - 120A                                                                   | Data Processing Computer<br>Room - 122                                            | HELDPS Break Room                                                                | Tape Library                                                                     | Telemetry Room - 148A                                                             | Office 148                                                                        | Office 148B                                                                       |

|                                                                     |                     |      | <del></del>                                                                       |                                                                                   |                                                                                   |                                                                                   | · · · · · · · · · · · · · · · · · · ·                                            |                                                                                   |                                                                                   |                                                                                   |                                                                                     |                                                                                     |
|---------------------------------------------------------------------|---------------------|------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                     | ANNUAL              | MCF  |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                  | - %                                                                               |                                                                                   |                                                                                   |                                                                                     |                                                                                     |
|                                                                     | ANN                 | KWH  | 8,387                                                                             | 839                                                                               | 4,193                                                                             | 3,355                                                                             | 2,516                                                                            | 225                                                                               | 899                                                                               | 839                                                                               | 4,193                                                                               | 4,193                                                                               |
|                                                                     | ES                  | WKS  | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                               | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                  | 52                                                                                  |
|                                                                     | OPER. TIMES         | DAYS | 2                                                                                 | 7                                                                                 | 7                                                                                 | 2                                                                                 | 7                                                                                | 5                                                                                 | 5                                                                                 | 2                                                                                 | 7                                                                                   | 2                                                                                   |
|                                                                     | Ö                   | HRS  | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                               | თ                                                                                 | თ                                                                                 | 24                                                                                | 24                                                                                  | 24                                                                                  |
|                                                                     |                     |      | ×                                                                                 | 3                                                                                 | >                                                                                 | ≥                                                                                 | 3                                                                                | 3                                                                                 | 3                                                                                 | ≥                                                                                 | 3                                                                                   | ≥                                                                                   |
|                                                                     | AREA                | LOAD | 096                                                                               | 96                                                                                | 480                                                                               | 384                                                                               | 288                                                                              | 96                                                                                | 384                                                                               | 96                                                                                | 480                                                                                 | 480                                                                                 |
| TF - LST(                                                           | COE                 | FC   | 90                                                                                | ĸ                                                                                 | 20                                                                                | 10                                                                                | 10                                                                               | 50                                                                                | 20                                                                                | 5                                                                                 | 20                                                                                  | 20                                                                                  |
| OR: HELS                                                            | ACTUAL              | FC   | 30                                                                                | 50                                                                                | 38                                                                                | 20                                                                                | 40                                                                               | 20                                                                                | 09                                                                                | Closed                                                                            | 12                                                                                  | 12                                                                                  |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             |      | Local Switches                                                                    | Local Switch                                                                      | Local Switch                                                                      | Breaker                                                                           | Breaker                                                                          | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Breaker                                                                             | Breaker                                                                             |
|                                                                     |                     | 0    | 3                                                                                 | >                                                                                 | >                                                                                 | >                                                                                 | 3                                                                                | 3                                                                                 | 8                                                                                 |                                                                                   |                                                                                     | 3                                                                                   |
| HTING                                                               | FIXTURE             | LOAD | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                               | 96                                                                                | 192                                                                               | 96                                                                                | 96                                                                                  | 96                                                                                  |
| רופ                                                                 | FIXTURE DESCRIPTION |      | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                     | QTY.                |      | 10                                                                                | 1                                                                                 | 5                                                                                 | . 4                                                                               | 3                                                                                | 1                                                                                 | 2                                                                                 | 1                                                                                 | 2                                                                                   | 5                                                                                   |
|                                                                     | AREA SERVED         |      | Image Analysis Room -<br>146A                                                     | Storage - 146B                                                                    | Office - 146                                                                      | Corridor - 157                                                                    |                                                                                  | Office - 157                                                                      | Office - 156                                                                      | Storage - 156A                                                                    | Main Stairs - 201                                                                   | East Stairs - 209                                                                   |

|                                                                     |                     | MCF  |                                                                                     |                                                   |                                                                                  |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                           |
|---------------------------------------------------------------------|---------------------|------|-------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|
|                                                                     | ANNUAL              | 2    |                                                                                     |                                                   |                                                                                  |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   | · · · · · · · · · · · · · · · · · · ·                                             |                           |
|                                                                     | AN                  | KWH  | 3,355                                                                               | 1,747                                             | 5,032                                                                            | 18,450                                                                            | 2,516                                                                             | 3,355                                                                             | 18,450                                                                            | 1,677                                                                             | 21,805                                                                            | 1,310                     |
|                                                                     | ES                  | WKS  | 52                                                                                  | 52                                                | 52                                                                               | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                        |
|                                                                     | OPER. TIMES         | DAYS | 7                                                                                   | 7                                                 | 7                                                                                | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                         |
|                                                                     | Ö                   | HRS  | 24                                                                                  | 24                                                | 24                                                                               | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                        |
|                                                                     |                     |      | ≥                                                                                   | ≥                                                 | *                                                                                | >                                                                                 | >                                                                                 | 8                                                                                 | 3                                                                                 | >                                                                                 | >                                                                                 | ≥                         |
|                                                                     | AREA                | LOAD | 384                                                                                 | 200                                               | 576                                                                              | 2,112                                                                             | 288                                                                               | 384                                                                               | 2,112                                                                             | 192                                                                               | 2,496                                                                             | 150                       |
| F-LSTC                                                              | CoE                 | 5    | 10                                                                                  | 5                                                 | . 50                                                                             | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 5                         |
| R: HELS-<br>1995                                                    | ACTUAL              | 5    | 1                                                                                   | 6                                                 | 82                                                                               | 99                                                                                | 99                                                                                | 55                                                                                | 54                                                                                | 27                                                                                | 46                                                                                | 15                        |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             |      | Local Switch                                                                        | Local Switch                                      | Local Switch                                                                     | Local Switches                                                                    | Local Switch                                                                      | Local Switch                                                                      | Local Switches                                                                    | Local Switch                                                                      | Local Switches                                                                    | Local Switch              |
| SOUR O                                                              | RE                  |      | }                                                                                   | 3                                                 | >                                                                                | M                                                                                 | 8                                                                                 | 8                                                                                 | W                                                                                 | 8                                                                                 | M                                                                                 | >                         |
| HTING                                                               | FIXTURE             | LOA  | 96                                                                                  | 200                                               | 192                                                                              | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 96                                                                                | 150                       |
| PIO                                                                 | FIXTURE DESCRIPTION |      | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Surface Incandescent Downlight, 2-<br>100W/A Lamp | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Lampholder, 1-150W/A Lamp |
|                                                                     | QTY.                |      | 4                                                                                   | 1                                                 | 3                                                                                | 22                                                                                | 3                                                                                 | 4                                                                                 | 22                                                                                | 2                                                                                 | 26                                                                                | -                         |
|                                                                     | AREA SERVED         |      | Corridor - 203                                                                      | Storage - 225                                     | Computer Room - 205                                                              | Test Cell #3 Control - 206                                                        | Office - 206A                                                                     | Office - 206B                                                                     | Test Cell #3A<br>Instrumentaion - 204                                             | Office - 206C                                                                     | Test Cell #3B<br>Instrumentaion - 207                                             | Storage - 208             |

|                                            | MCF                 |                                                            |                                                                       |                                                                          |                                                                             |                                                                            |                                                                 |                                   |                                                                       |                                                                       |                                                                       |                                                                                   |
|--------------------------------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| IALIMINA                                   | KWH                 | 8,387                                                      | 1,348                                                                 | 1,348                                                                    | 3,145                                                                       | 1,348                                                                      | 868                                                             |                                   | 899                                                                   | 1,123                                                                 | 868                                                                   | 1,123                                                                             |
| <br> -<br>                                 | WKS                 | - 25                                                       | 52                                                                    | 52                                                                       | 52                                                                          | 52                                                                         | 52                                                              | -                                 | 52                                                                    | 52                                                                    | 52                                                                    | 52                                                                                |
|                                            | OPER. TIMES         |                                                            | S.                                                                    | 2                                                                        | S.                                                                          | S                                                                          | ιΩ                                                              |                                   | r.                                                                    | လ                                                                     | 5                                                                     | ĸ                                                                                 |
|                                            | OPER<br>HRS D       | 24                                                         |                                                                       | <b>о</b>                                                                 | 6                                                                           | 6                                                                          | თ                                                               |                                   | 6                                                                     | თ                                                                     | თ                                                                     | o l                                                                               |
|                                            | ]=                  |                                                            | 3                                                                     | 3                                                                        | 3                                                                           | 3                                                                          |                                                                 |                                   | 3                                                                     | >                                                                     | 8                                                                     | >                                                                                 |
|                                            | AREA<br>LOAD        | 096                                                        | 576                                                                   | 576                                                                      | 1,344                                                                       | 576                                                                        | 384                                                             |                                   | 384                                                                   | 480                                                                   | 384                                                                   | 480                                                                               |
| -LSTC                                      | 등은                  |                                                            | S <sub>S</sub>                                                        | 20                                                                       | 20                                                                          | 20                                                                         | 20                                                              |                                   | 90                                                                    | 50                                                                    | 20                                                                    | 20                                                                                |
| HELSTF -                                   | C UAL               | 11                                                         | 20                                                                    | 45                                                                       | 06                                                                          | 99                                                                         | 02                                                              |                                   | 52                                                                    | 55                                                                    | 80                                                                    | 31                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC | CONTROL             | Breaker                                                    | Local Switch                                                          | Local Switch                                                             | Local Switch                                                                | Local Switch                                                               | ocal Switch                                                     |                                   | Local Switch                                                          | Local Switch                                                          | Local Switch                                                          | Local Switch                                                                      |
| UIPMI                                      |                     | 3                                                          | 3                                                                     |                                                                          | 3                                                                           | 3                                                                          | 3                                                               |                                   | ≥                                                                     | 3                                                                     | 3                                                                     | 3                                                                                 |
| TING EQ                                    | FIXTURE             | 98                                                         | 96                                                                    | 96                                                                       | 192                                                                         | 96                                                                         | 9                                                               | 30                                | 96<br>                                                                | 96                                                                    | 192                                                                   | 96                                                                                |
| LIGHT                                      | FIXTURE DESCRIPTION | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, | 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 2-F40/T12/RS/CW | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW | Lamps 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 4-F40/T12/RS/CW | Lamps  2x4' Recessed Fluorescent Troffer,  condend Ballast 2-F40/T12/RS/CW | Standard believe, E. Lamps  Z'x4' Recessed Fluorescent Troffer, | Standard Ballast, 4-F40/112/ห3/CW | 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 2-F40/T12/RS/CW | 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 2-F40/T12/RS/CW | 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 4-F40/T12/RS/CW | Lamps 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 2-F40/T12/RS/CW Lamps |
|                                            | OTY.                |                                                            | 9                                                                     | 9                                                                        |                                                                             |                                                                            | ٥                                                               | 2                                 | 4                                                                     | 2                                                                     | 2                                                                     | ις                                                                                |
|                                            | ) LOEV SEBVED       |                                                            | Office - 210                                                          | Office - 210A                                                            | 100                                                                         |                                                                            | Office - 211A                                                   | Reception - 212                   | Office - 212A                                                         | Office - 212B                                                         | Office 212C                                                           | Office - 213                                                                      |

|                                                                     |                     | Т           |                                                                                  |                           | <u> </u>                                                                          |                                                                                   |                                                                                   |                                                                                   | ·- I                                                                              | <u>-</u>                                                                          |                                                                                   |                                                                                   |
|---------------------------------------------------------------------|---------------------|-------------|----------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                     | UAL                 | MCF         |                                                                                  |                           |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |
|                                                                     | ANNUAL              | KWH         | 674                                                                              | 874                       | 899                                                                               | 1,677                                                                             | 839                                                                               | . 899                                                                             | 899                                                                               | 899                                                                               | 899                                                                               | 5,032                                                                             |
|                                                                     | ES                  | WKS         | 52                                                                               | 52                        | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                |
|                                                                     | OPER. TIMES         | DAYS        | ıΩ                                                                               | 7                         | 5                                                                                 | 7                                                                                 | 7                                                                                 | 5                                                                                 | 5                                                                                 | 5                                                                                 | 5                                                                                 | 7                                                                                 |
|                                                                     | Ö                   | HRS         | თ                                                                                | 24                        | б                                                                                 | 24                                                                                | 24                                                                                | 6                                                                                 | 6                                                                                 | 6                                                                                 | 9                                                                                 | 24                                                                                |
|                                                                     |                     |             | } -                                                                              | ≥                         | ≥                                                                                 | >                                                                                 | *                                                                                 | W                                                                                 | 3                                                                                 | ≯                                                                                 | >                                                                                 | 3                                                                                 |
|                                                                     | AREA                | LOAD        | 288                                                                              | 100                       | 384                                                                               | 192                                                                               | 96                                                                                | 384                                                                               | 384                                                                               | 384                                                                               | 384                                                                               | 576                                                                               |
| TF-LSTC                                                             | CoE                 | <sub></sub> | 20                                                                               | 5                         | 50                                                                                | 20                                                                                | 20                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 10                                                                                |
| DR: HELST<br>1995                                                   | ACTUAL              | <u>ნ</u>    | 29                                                                               | 10                        | 82                                                                                | 23                                                                                | 40                                                                                | 97                                                                                | 76                                                                                | 82                                                                                | 80                                                                                | 26                                                                                |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL             |             | Local Switch                                                                     | Local Switch              | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Local Switch                                                                      | Breaker                                                                           |
|                                                                     | 끭                   |             | 3                                                                                | >                         | >                                                                                 | >                                                                                 | 3                                                                                 | 3                                                                                 | >                                                                                 | >                                                                                 | 3                                                                                 | >                                                                                 |
| HTING                                                               | FIXTURE             | LOA         | 96                                                                               | 100                       | 96                                                                                | 96                                                                                | 96                                                                                | 192                                                                               | 192                                                                               | 192                                                                               | 192                                                                               | 96                                                                                |
| DIT                                                                 | FIXTURE DESCRIPTION |             | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Lampholder, 1-100W/A Lamp | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps |
|                                                                     | QTY.                |             | က                                                                                | -                         | 4                                                                                 | 2                                                                                 | -                                                                                 | 7                                                                                 | 2                                                                                 | 2                                                                                 | 2                                                                                 | ဖ                                                                                 |
|                                                                     | AREA SERVED         |             | Office - 215                                                                     | Janitor - 214             | Office - 217                                                                      | Mens Restroom - 216                                                               | Womens Restroom - 218                                                             | Office - 219                                                                      | Office - 221                                                                      | Office - 222                                                                      | Office - 220                                                                      | Corridor - 300                                                                    |

|                                                                     |                      |                                                                                   |                                                                                   |                                                                                   |                                                                                   | Т                                                                                 | I                                                                                 |                                                                                   |                                                                                   |                                                                                  |                                                                                  |
|---------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                     | MCF                  | :                                                                                 |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                   |                                                                                  | ·                                                                                |
|                                                                     | KWH                  | 839                                                                               | 6,709                                                                             | 3,355                                                                             | 4,193                                                                             | 6,709                                                                             | 5,032                                                                             | 50,319                                                                            | 6,709                                                                             | 3,355                                                                            | 6,709                                                                            |
|                                                                     | WKS                  | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                                | 52                                                                               | 52                                                                               |
|                                                                     | OPER. TIMES S DAYS V | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 7                                                                                 | 2                                                                                 | 7                                                                                 | 7                                                                                | 7                                                                                |
|                                                                     | RS A                 | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                                | 24                                                                               | 24                                                                               |
|                                                                     |                      | >                                                                                 | >                                                                                 | ≥                                                                                 | 3                                                                                 | ×                                                                                 | ×                                                                                 | 3                                                                                 | ≯                                                                                 | 8                                                                                | 8                                                                                |
|                                                                     | AREA<br>LOAD         | 96                                                                                | 768                                                                               | 384                                                                               | 480                                                                               | 768                                                                               | 576                                                                               | 5,760                                                                             | 768                                                                               | 384                                                                              | 768                                                                              |
| F-LSTC                                                              | CoE<br>FC            | 30                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 50                                                                                | 20                                                                               | 20                                                                               |
| R: HELST<br>1995                                                    | ACTUAL<br>FC         | Light Out                                                                         | 52                                                                                | 38                                                                                | 65                                                                                | 65                                                                                | 40                                                                                | 61                                                                                | 92                                                                                | 40                                                                               | 9/                                                                               |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC<br>October 10 - 13, 1995 | CONTROL              | Local Switch                                                                      | Local Switches                                                                    | Local Switch                                                                      | Local Switch                                                                     | Local Switch                                                                     |
|                                                                     |                      | 3                                                                                 |                                                                                   | 8                                                                                 | 3                                                                                 | >                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                 | 3                                                                                | 3                                                                                |
| HTING E                                                             | FIXTURE              | 96                                                                                | 192                                                                               | 192                                                                               | 96                                                                                | 192                                                                               | 192                                                                               | 192                                                                               | 192                                                                               | 192                                                                              | 192                                                                              |
| ĐIT                                                                 | FIXTURE DESCRIPTION  | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW<br>Lamps |
|                                                                     | QTY.                 | -                                                                                 | 4                                                                                 | 8                                                                                 | က                                                                                 | 4                                                                                 | е                                                                                 | 30                                                                                | 4                                                                                 | 2                                                                                | 4                                                                                |
|                                                                     | AREA SERVED          | Copy Room - 308                                                                   | Office - 312                                                                      | Office - 309                                                                      | Office - 307                                                                      | Office - 305                                                                      | Office - 304                                                                      | VAX - 301                                                                         | Office - 306                                                                      | Office - 303                                                                     | Office - 302                                                                     |

|                |       | -                                                                          | INC FOLLIS | E FOLIIPMENT LIST FOR: HELSTF - LSTC | R: HELSTF    | LSTC |            |          |                  |      |        |     |
|----------------|-------|----------------------------------------------------------------------------|------------|--------------------------------------|--------------|------|------------|----------|------------------|------|--------|-----|
|                |       |                                                                            |            | October 10 - 13, 1995                | 995          |      |            | 10       | OPER TIMES       | S    | ANNOAL |     |
|                | OTY.  | FIXTURE DESCRIPTION                                                        | FIXTURE    | CONTROL                              | ACTUAL<br>FC | 병요   | AREA       | HRS C    | DAYS             | WKS  | KWH    | MCF |
|                | ,     | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW   | 192 W      | Local Switch                         | 53           | 20   | 384 W      | 24       | 7                | 52   | 3,355  |     |
| Office - 310   | '     | Lamps                                                                      | i          | w.                                   | 62           | 50   | 1,728 V    | W 24     | 7                | 52   | 15,096 |     |
| Office - 311   | თ     | Standard Ballast, 4-F40/T12/RS/CW                                          | 761        |                                      |              |      | \          |          |                  | 53   | 3,355  |     |
| Office - 313   | 2     | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW   | 192 W      | Local Switch                         | 33           | 20   | 384        | W 24     | \<br><del></del> | 3    |        |     |
|                |       | 2'x4' Recessed Fluorescent Troffer,                                        | 192 W      | Local Switch                         | 74           | 20   | 576        | W 24     |                  | 52   | 5,032  |     |
| Office - 314   | က     | Standard paliast, 1 to 1                     |            |                                      |              |      |            | <u> </u> |                  | 5    | 1,677  |     |
| 340 5.50       | -     | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 4-F40/T12/RS/CW   | 192 W      | / Local Switch                       | 4            | 20   | 192        | W 24     | <u> </u>         | 3    | -      |     |
| CIC - acid     |       | Lamps                                                                      |            | -                                    | \<br>\       |      | 9          | 24       |                  | 52   | 2,516  | -   |
|                | er.   | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW | 96         | W Breaker                            | 28           | 20   | 788<br>788 | <b>N</b> |                  |      |        |     |
| Stairs - 223   | ,     | Lamps                                                                      |            |                                      |              |      | ,          |          | 7                | - 52 | 10,064 |     |
| Oseridor - 230 | 12    | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW   | 96         | *                                    |              | 9    | 1,132      |          |                  | _    |        |     |
|                | _     | 2x4' Recessed Fluorescent Troffer,                                         | 9          | T 3                                  | 9            | 20   | 480        | 3        | 24 7             | 25   | 4,193  |     |
| Office - 230A  | ۍ<br> | Standard Ballast, 2-F40/T12/RS/CW<br>Lamps                                 |            | -                                    |              |      |            | -        | -                | -    | 2 255  |     |
|                | -     | 2'x4' Recessed Fluorescent Troffer,                                        | 96         | *                                    | 09<br>       | 20   | 384        | 3        | 24 7             | 52   | 000,0  |     |
| Office - 230B  |       | Standard barrest, E. T. Lamps                                              | -          | $\neg$                               |              | -    | -          | -        | 7                | 52   | 2,516  |     |
|                | -     | 2'x4' Recessed Fluorescent Troffer,                                        | 96<br>×    | 8                                    | 09           | 20   | <br>       | <br>}    | <del>7</del> 7   |      |        |     |
| Office - 230C  | ო     | Lamps                                                                      | -          | 7                                    |              | _    | -          |          | <u> </u>         |      |        |     |
|                |       |                                                                            |            |                                      |              |      |            |          |                  |      |        |     |

| Т                | $\top$                  |                                                                                                                                        |                                                                                                                                                                                 |                                                                                               |                                                                                                                                                                                                                                                       | T                                            |                                                                          |                                                                                                               |                          |                                                                                              |                                                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL<br>::         | MC<br>D                 |                                                                                                                                        |                                                                                                                                                                                 |                                                                                               |                                                                                                                                                                                                                                                       |                                              |                                                                          |                                                                                                               |                          |                                                                                              |                                                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANNO             | KWH                     | 2,516                                                                                                                                  | 3,355                                                                                                                                                                           | 2,516                                                                                         | 2,516                                                                                                                                                                                                                                                 | 2 7.16                                       | 21.7                                                                     | 2,516                                                                                                         |                          | 2,516                                                                                        | 15,934                                                               |                                   | 2,516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,7                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | NKS                     | 52                                                                                                                                     | 52                                                                                                                                                                              | 52                                                                                            | 52                                                                                                                                                                                                                                                    | 5                                            | 76                                                                       | 52                                                                                                            |                          | 52                                                                                           | 52                                                                   |                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7c                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2. TIMES         | AYS                     |                                                                                                                                        |                                                                                                                                                                                 | 7                                                                                             | 7                                                                                                                                                                                                                                                     |                                              | ~                                                                        | 7                                                                                                             |                          | 7                                                                                            | 7                                                                    |                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OPEF             | 4RS D                   | 24                                                                                                                                     | 24                                                                                                                                                                              | 24                                                                                            | 24                                                                                                                                                                                                                                                    |                                              | 24                                                                       | 24                                                                                                            |                          | 24                                                                                           | 24                                                                   |                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                | 1                       | >                                                                                                                                      | ~                                                                                                                                                                               | 3                                                                                             | 3                                                                                                                                                                                                                                                     |                                              |                                                                          | M                                                                                                             |                          | ≥                                                                                            | ≥                                                                    |                                   | ≯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ARFA             | LOAD                    | 288 \                                                                                                                                  | 384                                                                                                                                                                             | 288                                                                                           | 288                                                                                                                                                                                                                                                   |                                              | 288                                                                      | 288                                                                                                           |                          | 288                                                                                          | 1.824                                                                |                                   | 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1000             | 를 C                     | 20                                                                                                                                     | 20                                                                                                                                                                              | 20                                                                                            | 20                                                                                                                                                                                                                                                    |                                              | 20                                                                       | 50                                                                                                            |                          | 50                                                                                           | 05                                                                   | }                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                | FC AL                   | 09                                                                                                                                     | 09                                                                                                                                                                              | 09                                                                                            | 08                                                                                                                                                                                                                                                    |                                              | 09                                                                       | 09                                                                                                            |                          | 09                                                                                           | 2                                                                    | F                                 | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| per 10 - 13, 199 |                         |                                                                                                                                        | al Switches                                                                                                                                                                     | 1                                                                                             |                                                                                                                                                                                                                                                       |                                              |                                                                          |                                                                                                               | . — <del>— —</del>       |                                                                                              | 3                                                                    | Local Switch                      | Breaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Breaker                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 톙                |                         |                                                                                                                                        |                                                                                                                                                                                 |                                                                                               |                                                                                                                                                                                                                                                       |                                              |                                                                          | T >                                                                                                           |                          |                                                                                              |                                                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\top$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | IXTURE<br>LOAD          | M 96                                                                                                                                   | M 96                                                                                                                                                                            | M 96                                                                                          |                                                                                                                                                                                                                                                       |                                              | N<br>96                                                                  |                                                                                                               |                          | 96                                                                                           | -                                                                    | ļ                                 | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | FIXTURE DESCRIPTION F   | scent Troffer,<br>0/T12/RS/CW                                                                                                          | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW                                                                                                        | Lamps  2'x4' Recessed Fluorescent Troffer,  chandart Ballast, 2-F40/T12/RS/CW                 | Lamps 2'x4' Recessed Fluorescent Troffer,                                                                                                                                                                                                             | Standard Ballast, 2-F40/ 172/KS/CVV<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW | 2x4' Recessed Fluorescent Troffer,                                                                            | Standard Damas, 21 12 15 | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW                     | Lamps  Lamps  Lamps  Lamps  Lamps  Lamps  Lamps  Lamps  Lamps  Lamps | Standard Ballast, 2-F40/T12/RS/CW | 1'x4' Surface Wraparound Fluorescent.<br>Standard Ballast, 2-F40/T12/RS/CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lamps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2'x4' Recessed Fluorescent Troffer, Standard Ballast, 2-F40/T12/RS/CW | Lamps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | ату.                    | п                                                                                                                                      | 4                                                                                                                                                                               |                                                                                               | ,                                                                                                                                                                                                                                                     | ი                                            | ო                                                                        |                                                                                                               | m                        | 6.                                                                                           |                                                                      | 19                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | AREA SERVED             | Office - 230D                                                                                                                          | OHICE - 230F                                                                                                                                                                    | 3                                                                                             | Office - 230F                                                                                                                                                                                                                                         | Office - 230G                                | Office - 230H                                                            |                                                                                                               | Office - 2301            | 1066 55330                                                                                   | Office - 2000                                                        | Storage - 330                     | XCC :: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stalf - 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Corridor - 231                                                        | 22.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | AREA OPER, TIMES ANNUAL | October 10 - 13, 1995  OCTOBER TIMES  OTY. FIXTURE DESCRIPTION FIXTURE CONTROL ACTUAL COE AREA OPER TIMES  FC FC LOAD HRS DAYS WKS KWI | October 10 - 13, 1995  QTY. FIXTURE DESCRIPTION FIXTURE CONTROL ACTUAL CoE AREA OPER. TIMES ANNUAL LOAD  LOAD  2'x4' Recessed Fluorescent Troffer, 96 W 96 W 96 W 24 7 52 2,516 | October 10 - 13, 1995  QTY. FIXTURE DESCRIPTION  LOAD  2.x4' Recessed Fluorescent Troffer,  2 | October 10 - 13, 1995   ANNUAL ACTUAL   CoE   AREA   OPER. TIMES   ANNUAL ANNUAL ACTUAL   CoE   LOAD   HRS   DAYS   WKS   KWH   KWH   Lamps   Standard Ballast, 2-F40/T12/RS/CW   96 W   Local Switches   60   50   288 W   24   7   52   2,516     2 | October 10 - 13, 1950                        | October 10 - 13, 1950                                                    | October 10 - 13, 1950   ANNUAL COF   AREA   OPER, TIMES   ANNUAL ACTUAL   COF   LOAD   HRS   DAYS   WKS   KWH | Coctober 10 - 13, 1950   | Coclober 10 - 13, 1950   AND LANDAR   CONTROL   ACTUAL   CoE   LOAD   HRS   DAYS   WKS   NWH | Ottober 10 - 15, 1930                                                | ATTIVITE DESCRIPTION              | Colorer 10 - 13   Searched Ballest, 2-4-OfT-2RSCW   Searched Ballest, 2- | Control of the cont | OTTY                                                                  | Control   Cont |

|                                            |                       | ANNUAL              | KWH   |                                                                                  |                                                                          | 19,289         | 13,418                                                                            | ွှ                                 |           | 0 626            |  |
|--------------------------------------------|-----------------------|---------------------|-------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|------------------------------------|-----------|------------------|--|
|                                            |                       | -                   | _     | <del> </del>                                                                     | -                                                                        |                | <u> </u>                                                                          | 3,276                              |           | 1,188,959        |  |
|                                            |                       | MES                 | S WKS |                                                                                  |                                                                          | Z<br>          | 52                                                                                | - 52                               |           |                  |  |
|                                            |                       | OPER. TIMES         | DAYS  |                                                                                  | ŀ                                                                        | `              | 7                                                                                 | 2                                  |           |                  |  |
|                                            |                       | 0                   | HRS   | 24                                                                               | 5                                                                        | <del>7</del> 7 | 24                                                                                | 24                                 |           |                  |  |
|                                            |                       | Α.                  | ۵     | ≯                                                                                | 747                                                                      |                | ≥                                                                                 | 3                                  | $\dagger$ |                  |  |
| O                                          |                       | AREA                | LOAD  | 929                                                                              | 000                                                                      | 7,200          | 1,536                                                                             | 375                                |           | 151,359 W        |  |
| TF - LST                                   |                       | L.                  | FC    | 20                                                                               | 0,5                                                                      | 3              | . 50                                                                              | N/A                                |           |                  |  |
| OR: HELS                                   | 1995                  | ACTUAL              | Ξ.    | Closed                                                                           | 08                                                                       | 3              | Closed                                                                            | N/A                                |           |                  |  |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - LSTC | October 10 - 13, 1995 | CONTROL             |       | Local Switch                                                                     | Local Switch                                                             |                | Local Switch                                                                      | Breaker                            |           |                  |  |
| HTING EQU                                  |                       | FIXTURE             | LOAD  | М<br>96                                                                          | M 96                                                                     | 1              | M 96                                                                              | 25 W                               |           |                  |  |
| PIO                                        |                       | FIX ORE DESCRIPTION |       | 2x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW | Lamps          | 2'x4' Recessed Fluorescent Troffer,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Wall Exit Sign, Incandescent Lamps |           |                  |  |
|                                            | À                     |                     |       | 6                                                                                | 23                                                                       |                | 16                                                                                | 5                                  |           | -                |  |
|                                            | APEA SEBVED           | ONE OF VED          |       | Office - 231A                                                                    | Office - 231B                                                            |                | Microvax - 231C                                                                   | Exits                              |           | TOTAL ENERGY USE |  |

### **BUILDING DESCRIPTION**

NAME: Test Cell 1 (TC-1)

USE: Laser systems testing facility.

GROSS AREA (SQ.FT.): 19,329 STORIES: 4 DATE OF SURVEY: 10/10/95

**DATE OF CONSTRUCTION:** 1982

STRUCTURE: Steel and masonry

EXTERIOR WALLS: Concrete masonry units with 3" fiberglass batt insulation on first and second levels, un-insulated steel siding on third and fourth (PT tower).

<u>ROOF:</u> Flat built-up roof with 6" rigid insulation over second level, steel panels over fourth level (PT tower).

FLOOR CONSTRUCTION: 6" slab on grade, concrete on metal deck for all upper floors.

FLOOR FINISH: Sealed concrete and asphalt tile.

CEILINGS: None.

WINDOWS: None.

<u>COOLING EQUIP</u>: Multiple single zone air handling units, all served by two central water chillers in Test Cell 2 building.

<u>HEATING EQUIP:</u> See cooling equipment above. All units are served by two central boilers in Test Cell 2 building.

<u>LIGHTING</u>: Mainly high pressure sodium fixtures with some fluorescent lighting in control rooms and other areas.

DOMESTIC WATER HEATING: None.

OTHER: Electronic test monitoring and control equipment, as well as personal computers scattered throughout building. Also various laser systems equipment in many areas of building.

<u>REMARKS</u>: Attempts to maintain precise temperature and humidity conditions 24 hours a day add to excessive energy consumption in building.







F-34





F-35

|                                           |             | HVAC EQUIPMEN                                              | HVAC EQUIPMENT LIST FOR: HELSTF Facility, Test Cell #1 | acility, Test Cell | #1                               |                      |                       |    |
|-------------------------------------------|-------------|------------------------------------------------------------|--------------------------------------------------------|--------------------|----------------------------------|----------------------|-----------------------|----|
| ITEM                                      | QTY.        | DESCRIPTION                                                | AREA SERVED `                                          | FULL               | OPERATION TIMES HRS   DAYS   WKS | ATION TIMES DAYS WKS | ANNUAL USE<br>KWH GAI | SE |
| Air Handling Unit AH-1<br>Hot Water Heat  | <del></del> | McQuay RD5802BY<br>10 hp<br>single zone                    | Optics Room                                            | 8.7 KW             | by computer model                | model                | 76,212                |    |
| Air Handling Unit AH-2<br>Hot Water Heat  | 1           | McQuay RD5708BY<br>3 hp<br>single zone                     | P.T. tower                                             | 2.1 KW             | by computer model                | model                | 18,396                |    |
| Air Handling Unit AH-3<br>Hot Water Heat  | 1           | McQuay RD5800BY<br>10 hp S.fan, 5 hp R. fan<br>single zone | P.T. tower<br>204, 301, 401                            | 10.3 KW            | by computer model                | model                | 90,228                |    |
| Air Handling Unit AH-4<br>Hot Water Heat  | 1           | Carrier<br>5 hp S.fan, 2 hp R. fan<br>single zone          | N & S Optics Room<br>101 & 102                         | 4.9 KW             | by computer model                | model                | 42,924                |    |
| Air Handling Unit AH-5<br>Hot Water Heat  | _           | Trane<br>7.5 hp<br>single zone                             | BTA Room 105                                           | 4.1 KW             | by computer model                | model                | 35,916                |    |
| Air Handling Unit AH-51<br>Hot Water Heat | -           | York<br>7.5 hp, 5892 cfm<br>single zone                    | Device Room 104                                        | 4.9 KW             | by computer model                | model                | 42,924                |    |
| Air Handling Unit AH-52<br>Hot Water Heat | ~           | York<br>3 hp, 3344 cfm<br>single zone                      | ETA Control Room                                       | 1.7 KW             | by computer model                | model                | 14,892                | -• |
| Air Handling Unit AH-53<br>Hot Water Heat | +           | York<br>15 hp, 10,758 cfm<br>single zone                   | Optics Room 102                                        | 8.6 KW             | by computer model                | model                | 75,336                |    |
| Electric Humidifier<br>EH - 53            | 1           | Carnes HCJD<br>138 lbs/hr.                                 | Optics Room 102<br>AH-53                               | 22.4 KW            | 8 7                              | 52                   | 65,229                |    |
| Air Handling Unit AH-54<br>Hot Water Heat | ~           | York C53365HFCLD-Y<br>7.5 hp, 15,667 cfm<br>single zone    | Optics Electr. Rm. 109                                 | 4.4 KW             | by computer model                | model                | 38,544                |    |
| Air Handling Unit AH-55<br>Hot Water Heat | <b>-</b>    | York C52175HFCLP-Y<br>7.5 hp, 10,386 cfm<br>single zone    | Optics Equip. Rm. 201                                  | 4.1 KW             | by computer model                | model                | 35,916                |    |
| Evap. Cooler<br>EC-51                     | -           | Sun #E63022<br>5 hp, 15,700 cfm                            | room 107, PT service                                   | 3.0 KW             | 24 7                             | 26                   | 13,104                |    |

| Cell # 1 OPERATION TIMES ANNUAL L | OTY. DESCRIPTION AREA SERVED LOAD HRS DAYS WKS | W uns | 2 Ton 2 Ton 2 Ton 2 2 | 1 2 ton HPOC Enclosure 10 KW 8 7 | data collection, 480 V 24 7 52 | on UPS feeder.                           | 14,560 0 | HEATING 3,494 0 | COOLING 93,242 | FANS      | 192,192 | AL MISC    |  |
|-----------------------------------|------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|------------------------------------------|----------|-----------------|----------------|-----------|---------|------------|--|
|                                   |                                                |       | Evap. Cooler<br>EC-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Packaged Rooftop Unit            | Heat Pump                      | Electronics Equipment<br>Data Collection |          | TOTAL HEATING   | TOTAL COOLING  | SAPA FANS |         | TOTAL MISC |  |

| KVA                                  |             |          | 6.6               | 2.8               | 8.1                            | 3.9                            | 4.3                            | <b>6</b> .                    | 5.0               | 6.0               | 2.0               | 11.2              | 5.4                    | 5.0                    | 65.5        |       |
|--------------------------------------|-------------|----------|-------------------|-------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|------------------------|------------------------|-------------|-------|
| KW                                   | <u> </u>    |          | 8.7               | 2.1               | 7.1                            | 3.2                            | 3.5                            | 1.4                           | 4.1               | 4.9               | 1.7               | 8.6               | 4.4                    | 4.1                    | 53.8        |       |
|                                      | _           | ╁        |                   |                   |                                |                                |                                | 71.9%                         | 61.2%             | 75.0%             | 55.6%             | 64.3%             | %0.59                  | 54.5%                  | <del></del> |       |
| %                                    | :<br>T      | +        | 91.7%             | 77.8%             | 78.0%                          | 65.3%                          | 72.2%                          | 71.5                          | 61.               | 75.               | 55.               |                   | 65                     | 54                     |             |       |
| IAI                                  |             | AMPS     | 27.5              | 3.5               | 9.75                           | 4.7                            | 5.2                            | 2.3                           | و                 | 7.5               | 2.5               | 13.5              | 6.5                    | g                      |             |       |
| ACTUAL                               | 2           | VOLTS    | 208               | 460               | 480                            | 480                            | 480                            | 480                           | 480               | 460               | 460               | 480               | 480                    | 480                    |             |       |
|                                      |             |          | 85.6%             | 81.5%             | 85.6%                          | 84.0%                          | 84.0%                          | 78.0%                         | 86.5%             | 85.5%             | 74.7%             | 87.5%             | 85.5%                  | 76.9%                  |             |       |
| 746                                  |             | ᇤ        | 0.875             | 0.770             | 0.875                          | 0.820                          | 0.820                          | 0.750                         | 0.830             | 0.821             | 0.835             | 0.764             | 0.821                  | 0.830                  | 0.821       |       |
|                                      | NAMEPLATE   | AMPS     | 30.0              | 5.4               | 12.5                           | 7.2                            | 7.2                            | 3.2                           | 9.8               | 10.0              | 4.5               | 21.0              | 10.0                   | 11.0                   |             |       |
| DATE SURVEYED: October 10 - 13, 1995 |             | VOLTS    | 500               | 460               | 460                            | 460                            | 460                            | 460                           | 460               | 460               | 460               | 460               | 460                    | 460                    |             |       |
| D. October                           | HASE        |          | m                 | က                 | e e                            | 6                              | 6                              | 6                             | 8                 | 6                 | m                 | e e               | en en                  | 6                      |             |       |
| DATE SURVEYED: October 10 - 13, 1995 | 웊           |          | 5                 | n                 | 5                              | S.                             | 5                              | 2                             | 7.5               | 7.5               | 6                 | 15                | 7.5                    | 7.5                    |             |       |
| DATE                                 | AREA SERVED |          | Optics Room       | P.T. Tower        | 700                            | P.I. Tower, 201, 301,          |                                | South Optics - 102            | BTA Room 105      | Device Room 104   | ETA Control Room  | Optics Room 102   | Optics Elect. Room 109 | Optics Elect. Room 201 |             |       |
|                                      | NOITGIACOST |          | Air Handling Unit | Air Handling Unit | Air Handling Unit - Supply Fan | Air Handling Unit - Return Fan | Air Handling Unit - Supply Fan | Air Handling Unit - Retum Fan | Air Handling Unit      | Air Handling Unit      |             |       |
|                                      | 250         | <u>.</u> | -                 | -                 | -                              | -                              | -                              | -                             | -                 | -                 | -                 | -                 | -                      | -                      |             |       |
|                                      | 440         | LEM      | AH-1              | AH-2              |                                | AH-3                           |                                | AH-4                          | AH-5              | AH-51             | AH-52             | AH-53             | AH-54                  | AH-55                  | TOTAL       | #<br> |

| [                                                 | T              | П                   |                                                                                     | T.                                                                                   |                                    |                                                                                     |                                                                                     |                                                                                     | -                                               |                                          |                                                  |                                                 |
|---------------------------------------------------|----------------|---------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------|
|                                                   | UAL            | MCF                 |                                                                                     |                                                                                      |                                    |                                                                                     | ì                                                                                   |                                                                                     |                                                 |                                          |                                                  |                                                 |
|                                                   | ANNOAL         | KWH                 | 37,740                                                                              | 25,160                                                                               | 3,494                              | 7,548                                                                               | 839                                                                                 | 839                                                                                 | 874                                             | 48,223                                   | 5,242                                            | 1,747                                           |
|                                                   | S              | WKS                 | 52                                                                                  | 52                                                                                   | 52                                 | 52                                                                                  | 52                                                                                  | 52                                                                                  | 52                                              | 52                                       | 52                                               | 25                                              |
|                                                   | OPER TIMES     | DAYS                | 7                                                                                   | 7                                                                                    | 2                                  | 7                                                                                   | 7                                                                                   | 7                                                                                   | 7                                               | 7                                        | 7                                                | 7                                               |
|                                                   | Ğ              | HRS                 | 24                                                                                  | 24                                                                                   | 24                                 | 24                                                                                  | 24                                                                                  | 24                                                                                  | 24                                              | 24                                       | 24                                               | 24                                              |
|                                                   |                |                     | 3                                                                                   | >                                                                                    | ≥                                  | 3                                                                                   | W                                                                                   | 8                                                                                   | >                                               | >                                        | ≥                                                | ≥                                               |
| L 1                                               | ABEA           | LOAD                | 4,320                                                                               | 2,880                                                                                | 400                                | 864                                                                                 | 96                                                                                  | 96                                                                                  | 100                                             | 5,520                                    | 009                                              | 200                                             |
| EST CEL                                           | 190            | 불                   | 50                                                                                  | 20                                                                                   | 50                                 | 50                                                                                  | 5                                                                                   | 10                                                                                  | 10                                              | 90                                       | 20                                               | 10                                              |
| IELSTF - T                                        | 995<br>VCT-171 | AC UAL              | 92                                                                                  | 43                                                                                   | 43                                 | 89                                                                                  | Closed                                                                              | 25                                                                                  | 20                                              | 8                                        | 81                                               | 29                                              |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - TEST CELL 1 | _ -            | CONTROL             | Local Switches                                                                      | Local Switches                                                                       | Local Switch                       | Local Switch                                                                        | Local Switch                                                                        | Local Switch                                                                        | Local Switch                                    | Breakers                                 | Breakers                                         | Breaker                                         |
| MEN                                               | 하              | щ                   | >                                                                                   | 3                                                                                    | 3                                  | 3                                                                                   | 3                                                                                   | >                                                                                   | ≥                                               | 3                                        | 3                                                | 3                                               |
| G EQUIP                                           | į              | FIXTURE             | 96                                                                                  | 96                                                                                   | 200                                | 96                                                                                  | 96                                                                                  | 96                                                                                  | 100                                             | 460                                      | 100                                              | 200                                             |
| LIGHTIN                                           |                | FIXTURE DESCRIPTION | 1'x4' Pendent Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Pendent Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/C/W<br>Lamps | 2'x2' Surface HID, 1-150W/HPS Lamp | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Enclosed/Gasketed Lampholder, 1-<br>100W/A Lamp | Pendent High-Bay HID, 1-400W/HPS<br>Lamp | Pendent High-Bay Incandescent, 1-<br>100W/A Lamp | Enclosed/Gasketed Lampholder, 1-<br>200W/A Lamp |
|                                                   |                | QTY.                | 45                                                                                  | 30                                                                                   | 2                                  | 6                                                                                   | -                                                                                   | -                                                                                   | _                                               | 12                                       | ø                                                | -                                               |
|                                                   |                | AREA SERVED         | North Optics Room - 101                                                             | 900 G 900 M                                                                          | 30din Opics Nooii -                | ETA Control Room - 103                                                              | Storage - 104                                                                       | Vestibule - 105                                                                     | Vestibule - 101                                 |                                          | Optics Koom -                                    | Vestibule - 103                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | LIGHTING                                                                | EQUIPIV | EQUIPMENT LIST FOR: HE | HELSTF - TEST CELL | T CELL    | <b>←</b>     |      |                         | i i    | ANNA    | IA. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|---------|------------------------|--------------------|-----------|--------------|------|-------------------------|--------|---------|-----|
| OB/VOID ATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OTY.      | FIXTURE DESCRIPTION                                                     |         | CONTROL ACT            | C CAL              | SoE<br>FC | AREA<br>LOAD | HRS  | OPER. IIMES<br>S DAYS V | WKS    | KWH     | MCF |
| ANEX CENTER OF THE CENTER OF T | 30        | Pendent High-Bay HID, 1-400W/HPS                                        | 460 W   | Breakers               | 15                 | 20        | 13,800 V     | W 24 |                         | - 25   | 120,557 |     |
| Device Room -<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ဖ         | Pendent High-Bay Incandescent, 1-                                       | 200 W   | Breaker                | 15                 | 20        | 1,200 \      | W 24 | 7                       | - 25   | 10,483  |     |
| Local Loop Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6         | 4' Pendent Industrial Fluorescent,<br>Standard Ballast, 4-F40/T12/RS/CW | 192 W   | W Local Switches       | 86                 | 50        | 1,920        | W 24 |                         | - 25   | 16,773  |     |
| Room - 104A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | Lamps Lamps Pendent High-Bay HID, 1-400W/HPS                            | 460 W   | Breakers               | 0                  | 20        | 7,360        |      | 24 7                    | - 52   | 64,297  |     |
| та Вост -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>9<br> | Lamp                                                                    |         |                        |                    |           |              | +-   | -                       | -      | 200     |     |
| 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2         | Pendent High-Bay Incandescent, 1-<br>200W/A Lamp                        | 200 W   | Breaker                | 9                  | 20        | 400          | 3    | 24 7                    | 25     | 484.0   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1- Tabledder 1-                                                         | 3       | Broaker                | 29                 | 10        | 200          | 3    | 24 7                    | - 52   | 1,747   |     |
| Vestibule - 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | τ-        | Enclosed/Gasketor Lamp<br>200W/A Lamp                                   | 007     |                        |                    |           |              |      | -                       | -      | -       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Pendent High-Bay HID, 1-250W/HPS                                        | 300 W   |                        | 99                 | 20        | 1,200        |      | 24 7                    | 52     | 10,483  |     |
| et Service Room -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Lamp                                                                    |         | Local                  |                    |           |              | +    |                         |        | 1 747   |     |
| 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | Pendent High-Bay Incandescent, 1-                                       | 7 200   | M                      | 20                 | 20        | 200          |      | 24                      | 79 - 2 |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .         |                                                                         | -       |                        |                    | {         | 0            | 3    | 24                      | 7 52   | 5,242   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         | Pendent High-Bay HID, 1-250W/HPS<br>Lamp                                | 300     | M                      | <br>20             | ი<br>     | 8            | :    |                         |        | _       | -   |
| Mechanical Equipment-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | Dandent High-Bay Incandescent, 1-                                       | 000     | Switch                 | 20                 | 20        | 200          | 3    | 24                      | 7   52 | 2 1,747 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 200W/A Lamp                                                             |         |                        |                    |           |              |      | _                       | -      |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                         |         |                        |                    |           |              |      |                         |        |         |     |

| FIX LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |      | lE i                                                                                | G EQUIPMI | اتمننا         | HELSTF - TEST CELL 1<br>1995 | EST CEL | L 1<br>ARFA |     | OPER. TIMES | ES  | ANNUA  | UAL |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|-------------------------------------------------------------------------------------|-----------|----------------|------------------------------|---------|-------------|-----|-------------|-----|--------|-----|
| 21 Standard Ballast, 3-F40/T12/RS/CW 151 W Local Switch 40 50 3,171 W 24 7 5 5 Standard Ballast, 3-F40/T12/RS/CW 96 W Local Switch 22 10 192 W 24 7 5 5 Standard Ballast, 2-f40/T12/RS/CW Lamp 8 W Local Switch 8 8 50 1,800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 300 W Local Switch 30 15 1,200 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 300 W Local Switch 30 15 1,200 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 300 W Local Switch 30 15 1,200 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 300 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 300 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 5 5 Fendent High-Bay Hich 1-400WHPS 460 W Local Switch 30 15 800 W 24 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA SERVED                         | QTY. | FIXTURE DESCRIPTION                                                                 | FIXTURE   | CONIROL        | AC OAL                       | 3 단     | LOAD        | HRS | DAYS        | WKS | KWH    | MCF |
| 4 Standard Ballast, 2-FagrTr2/R3CW 96 W Local Switch 40 50 384 W 24 7 5 5 Standard Ballast, 2-FagrTr2/R3CW 96 W Local Switch 22 10 192 W 24 7 5 Standard Ballast, 2-FagrTr2/R3CW Lamps  6 1'x4' Surface Wiraparound Fluorescent, Standard Ballast, 96 W Local Switches 15 15 576 W 24 7 5 Standard Ballast, 2-FagrTr2/R3/CW Lamp  2 Pendent High-Bay HID, 1-250W/HPS 300 W Local Switch 88 50 1,800 W 24 7 5 Standard High-Bay HID, 1-250W/HPS 300 W Local Switch 30 15 1,200 W 24 7 5 Standard High-Bay HID, 1-250W/HPS 460 W Local Switch 30 15 1000 W 24 7 5 Standard High-Bay HID, 1-250W/HPS 460 W Local Switch 30 15 800 W 24 7 5 Standard High-Bay HID, 1-200W/HPS 460 W Local Switch 30 15 800 W 24 7 5 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 5 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 5 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 5 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 15 800 W 24 7 7 Standard High-Bay Incandescent, 1 200 W Local Switch 30 20 20 20 20 20 20 20 20 20 20 20 20 20 |                                     | 21   | 4' Surface Industrial Fluorescent,<br>Standard Ballast, 3-F40/T12/RS/CW<br>Lamps    | ł         |                | 40                           | 50      |             |     | 7           | 52  | 27,702 |     |
| 2 Standard Ballast, 2-F40/T12/RS/CW   6 1'x4' Wall Fluorescent, Standard Ballast, 2-F40/T12/RS/CW Lamp  6 1'x4' Wall Fluorescent, Standard Ballast, 96 W Local Switches 15 15 576 W 24 7 6  6 Pendent High-Bay HID, 1-250WiHPS 300 W Local Switch 88 50 1,800 W 24 7 6  2 Pendent High-Bay HID, 1-250WiHPS 300 W Local Switch 30 15 1200 W 24 7 8  4 Pendent High-Bay HID, 1-400WiHPS 460 W Local Switch 30 15 820 W 24 7 8  4 Pendent High-Bay HID, 1-400WiHPS 460 W Local Switch 30 15 800 W 24 7 8  4 Pendent High-Bay HID, 1-400WiHPS 460 W Local Switch 30 15 800 W 24 7 8  5 Pendent High-Bay HID, 1-200WiHPS 460 W Local Switch 30 15 800 W 24 7 8  6 Pendent High-Bay HID, 1-400WiHPS 460 W Local Switch 30 15 800 W 24 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optics Electronics Room - 109       | 4    | 4' Surface Industrial Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps    |           | l              | 40                           | 50      | ļ           |     | 7           | 52  | 3,355  |     |
| 6 1'x4' Wall Fluorescent, Standard Ballast, 96 W Local Switches 15 15 576 W 24 7 5 5 Pendent High-Bay HID, 1-250W/HPS 300 W Local Switch 88 50 1,800 W 24 7 5 5 Pendent High-Bay HID, 1-250W/HPS 300 W Local Switch 30 15 1,200 W 24 7 5 5 Pendent High-Bay HID, 1-400W/HPS 300 W Local Switch 30 15 920 W 24 7 5 5 Pendent High-Bay HID, 1-400W/HPS 460 W Local Switch 30 15 920 W 24 7 5 5 5 Pendent High-Bay Incandescent, 1- 200 W Local Switch 30 15 920 W 24 7 5 5 5 5 Pendent High-Bay Incandescent, 1- 200 W Local Switch 30 15 920 W 24 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elevator Vestibule - 110            | 7    | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1         | i              | 22                           | 10      |             |     | 7           | 52  | 1,677  |     |
| 6         Pendent High-Bay HID, 1-250W/HPS         300         W         Local Switches         88         50         1,800         W         24         7         4           2         Pendent High-Bay Incandescent, 1- 200 W         Local Switch         88         50         400         W         24         7         4           4         Pendent High-Bay HID, 1-250W/HPS         300         W         Local Switch         30         15         1,200         W         24         7         4           2         Pendent High-Bay HID, 1-400W/HPS         460         W         Local Switch         30         15         920         W         24         7         4           4         Pendent High-Bay Incandescent, 1- Lamp         200         W         Local Switch         30         15         920         W         24         7           4         Pendent High-Bay Incandescent, 1- 200         W         Local Switch         30         15         800         W         24         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stairs                              | ø    | 1'x4' Wall Fluorescent, Standard Ballast,<br>2-F40/T12/RS/CW Lamp                   | 96        | Local Switches |                              | 15      |             |     | 7           | 52  | 5,032  | ļ   |
| 2 Pendent High-Bay Incandescent, 1- 200 W Local Switch 88 50 400 W 24 7 5 5 200 W Local Switch 30 15 1,200 W 24 7 5 5 9 5 6 6 6 6 6 6 6 7 5 5 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | ဖ    | Pendent High-Bay HID, 1-250W/HPS<br>Lamp                                            | 1         | Local Switches |                              | 50      | !           |     | 7           | 52  | 15,725 |     |
| 4 Pendent High-Bay HID, 1-250W/HPS 300 W Local Switch 30 15 1,200 W 24 7  Pendent High-Bay HID, 1-400W/HPS 460 W Local Switch 30 15 920 W 24 7  4 Pendent High-Bay Incandescent, 1- 200 W Local Switch 30 15 800 W 24 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Electronics Equipment<br>Room - 201 | 2    | Pendent High-Bay Incandescent, 1-<br>200W/A Lamp                                    | 1         |                | 88                           | 90      |             |     | 7           | 52  | 3,494  |     |
| 2 Pendent High-Bay HID, 1-400W/HPS 460 W Local Switch 30 15 920 W 24 7 460 W Local Switch 30 15 800 W 24 7 4 Pendent High-Bay Incandescent, 1- 200 W Local Switch 30 15 800 W 24 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | 4    | Pendent High-Bay HID, 1-250W/HPS<br>Lamp                                            |           |                | 30                           | 15      | İ           |     | 7           | 52  | 10,483 |     |
| Pendent High-Bay Incandescent, 1- 200 W Local Switch 30 15 800 W 24 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mechanical Room - 203               | 7    | Pendent High-Bay HID, 1-400W/HPS<br>Lamp                                            | Į.        | <u> </u>       | 30                           | 15      |             |     | 7           | 52  | 8,037  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 4    | Pendent High-Bay Incandescent, 1-<br>200W/A Lamp                                    |           | <u> </u>       | 30                           | 15      |             |     | 7           | 52  | 6,989  | ·   |

| $\neg \top$                       | $\prod$             |                                                                                     |                           |                                                                                     |                                                                         |                                                                         |                                                                         | 1                                                                       |                                                                         |                           |                                    |    |
|-----------------------------------|---------------------|-------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------------|----|
| 3                                 | MCF                 |                                                                                     |                           |                                                                                     |                                                                         |                                                                         |                                                                         |                                                                         | ·                                                                       |                           |                                    |    |
|                                   | KWH N               | 8,387                                                                               | 3,494                     | 1,677                                                                               | 10,064                                                                  | 1,677                                                                   | 9,225                                                                   | 1,677                                                                   | 6,709                                                                   | 16,074                    | 3,931                              |    |
|                                   | WKS                 | 52                                                                                  | 52                        | 52                                                                                  | 52                                                                      | 52                                                                      | 52                                                                      | 52                                                                      | 52                                                                      | 52                        | 52                                 |    |
|                                   | OPER. TIMES         | 7                                                                                   | 7                         | 7                                                                                   | 7                                                                       | 7                                                                       | 7                                                                       | 7                                                                       | 7                                                                       | 7                         |                                    |    |
|                                   | OPE<br>HRS          | 24                                                                                  | 24                        | 24                                                                                  | 24                                                                      | 24                                                                      | 24                                                                      | 24                                                                      | 24                                                                      | 24                        | 12                                 |    |
|                                   | L_                  | >                                                                                   | 3                         | }                                                                                   | 3                                                                       | 3                                                                       | 3                                                                       | ≥                                                                       | ≥                                                                       | >                         | 3                                  |    |
| <b>-</b>                          | AREA                | 096                                                                                 | 400                       | 192                                                                                 | 1,152                                                                   | 192                                                                     | 1,056                                                                   | 192                                                                     | 168                                                                     | 1,840                     | 006                                |    |
| ST CELL                           | S 22                | 30                                                                                  | 30                        | .0                                                                                  | 30                                                                      | 10                                                                      | 30                                                                      | 10                                                                      | 90                                                                      | 30                        | N/A                                |    |
| HELSTF - TEST CELL<br>1995        | ACTUAL              | 9                                                                                   | ω                         | 20                                                                                  | 23                                                                      | 20                                                                      | 40                                                                      | 50                                                                      | 20                                                                      | Open                      | N/A                                |    |
| LIGHTING EQUIPMENT LIST FOR: HELS | CONTROL             | Local Switch                                                                        | Local Switch              | Local Switch                                                                        | Local Switch                                                            | Local Switch                                                            | Local Switch                                                            | Local Switch                                                            | Local Switch                                                            | Local Switch              | Photocell                          |    |
| AENT<br>Ogg                       | <u></u>             |                                                                                     | 3                         | 3                                                                                   | 3                                                                       |                                                                         | 3                                                                       | 3                                                                       |                                                                         | 3                         | 3                                  | ٦, |
| EQUIPA                            | FIXTURE             | N 96                                                                                | V 001                     | 7 96                                                                                | 96                                                                      | 96                                                                      | 96                                                                      | 96                                                                      | 192                                                                     | 460                       | 150                                |    |
| LIGHTING                          | FIXTURE DESCRIPTION | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | Lampholder, 1-100W/A Lamp | 1'x4' Surface Wraparound Fluorescent,<br>Standard Ballast, 2-F40/T12/RS/CW<br>Lamps | 1'x4' Surface Wraparound Fluorescent, Standard Ballast, 2-F40/T12/RS/CW | 2'x4' Surface Fluorescent Wraparound, Standard Ballast, 4-F40/T12/RS/CW | Wall HID, 1-400W/HPS Lamp | Wall Incandescent, 1-150W/HPS Lamp |    |
|                                   | OTY.                | 10                                                                                  | 4                         | 2                                                                                   | 12                                                                      | 2                                                                       | 7                                                                       | 2                                                                       | 4                                                                       | 4                         | ø                                  |    |
|                                   | AREA SERVED         |                                                                                     | P.T. Tower -<br>204       | Elevator Vestibule - 205                                                            | P.T. Tower - 301                                                        | Elevator Vestibule - 302                                                | P.T. Tower - 401                                                        | Elevator Vestibule - 402                                                | HPOC Enclosure                                                          | P.T. Tower - 501          | Building Exterior                  |    |

|                                                   |                       | T                   | $\Box$  |                           | T                        |                                    |                  |
|---------------------------------------------------|-----------------------|---------------------|---------|---------------------------|--------------------------|------------------------------------|------------------|
|                                                   |                       | ANNUAL              | MCF     |                           |                          |                                    | 0                |
|                                                   |                       | AN                  | KWH     | 9,610                     | 2,490                    | 4,805                              | 530,590          |
|                                                   |                       | ES                  | WKS     | 52                        | 52                       | 52                                 |                  |
|                                                   |                       | OPER. TIMES         | DAYS    | 2                         | 7                        | 7                                  |                  |
|                                                   |                       | Ō                   | HRS     | 12                        | 12                       | 24                                 |                  |
|                                                   |                       | _                   | )       | W                         | 3                        | ≥                                  | ≥                |
| 11.1                                              |                       | AREA                | LOAD    | 2,200 W                   | 570 W                    | 550                                | 62,571 W         |
| TEST CE                                           |                       | CoE                 | <u></u> | A/N                       | N/A                      | N/A                                |                  |
| HELSTF -                                          | 1995                  | ACTUAL              | 은       | N/A                       | N/A                      | N/A                                |                  |
| LIGHTING EQUIPMENT LIST FOR: HELSTF - TEST CELL 1 | October 10 - 13, 1995 | CONTROL ACTUAL      |         | Photocell                 | Photocell                | Breaker                            |                  |
| PME                                               | Ŏ                     | RE                  |         | 3                         | 3                        | >                                  |                  |
| NG EQUI                                           |                       | FIXTURE             | LOAD    | 200 W                     | 92                       | 25                                 |                  |
| LIGHTII                                           |                       | FIXTURE DESCRIPTION |         | Wall HID, 1-150W/HPS Lamp | Wall HID, 1-70W/HPS Lamp | Wall Exit Sign, incandescent Lamps |                  |
|                                                   |                       | QTY.                |         | 7                         | 9                        | 22                                 |                  |
|                                                   |                       | AREA SERVED         |         | Building Exterior         | Building Exterior        | Exits                              | TOTAL ENERGY USE |

#### **BUILDING DESCRIPTION**

NAME: Test Cell 2 (TC-2)

<u>USE</u>: Central thermal energy plant for test cell area buildings.

GROSS AREA (SQ.FT.): 5,133 STORIES: 2 DATE OF SURVEY: 10/10/95

DATE OF CONSTRUCTION: 1982

STRUCTURE: Steel and masonry.

**EXTERIOR WALLS:** Concrete masonry units

ROOF: Flat built-up roof with 6" rigid insulation.

FLOOR CONSTRUCTION: 6" concrete slab on grade.

FLOOR FINISH: Sealed concrete.

**CEILINGS**: Open beams.

WINDOWS: None.

COOLING EQUIP: None.

HEATING EQUIP: None.

<u>LIGHTING</u>: Mostly high pressure sodium fixtures with some fluorescent lighting in areas.

**<u>DOMESTIC WATER HEATING:</u>** Small residential electric water heater for restrooms only.

OTHER: Central chiller and boiler equipment, see HVAC Equipment List for descriptions. Also houses process water production equipment which is operated periodically.

<u>REMARKS</u>: This building is included in the study because the central plant equipment inside is used to serve the heating and cooling requirements of Test Cell 1. Therefore, only ECOs which are related to this central plant equipment will be considered in the study.



| CTV. DESCRIPTION AREA SERVED   FULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              | HVAC EQUIPME                  | EQUIPMENT LIST FOR: HELSTF Facility, Test Cell #2 January 2, 1996 | acility, Test Cell #2 |                   |         |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------------------------------|-------------------------------------------------------------------|-----------------------|-------------------|---------|-----|
| York OT A2A181-OGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ITEM            | aty.         |                               | AREA SERVED                                                       | FULL                  | AATION T          | MAL     | USE |
| 1   York OT AZAB1-OGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |                               |                                                                   | LOAD                  | $\dashv$          | KWH     | GAL |
| 1   LTJ compr., R-11, 150.8 tons   TC-1 building   TC-1 buil |                 |              | York OT A2A1B1-OGB            |                                                                   |                       |                   |         |     |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Chiller   | -            | LTJ compr. , R-11, 150.8 tons | chilled water                                                     | 141.0 KW              | by computer model | 486,281 |     |
| York OT A2A181-OGB   Chilled water   141.0 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH - 51         |              | 25% ethylene glycol sol.      | TC-1 building                                                     |                       |                   |         |     |
| 1   LTH comptr. R-11, 150.8 tons   Chilled water   141.0 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              | York OT A2A1B1-OGB            |                                                                   |                       |                   |         |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Water Chiller   | -            | LTH compr., R-11, 150.8 tons  | chilled water                                                     | 141.0 KW              | by computer model | 0       |     |
| Lincoln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH - 52         |              | 25% ethylene glycol sol.      | TC-1 building                                                     |                       |                   |         |     |
| 1 40 hp Chilled water 27.3 KW 1 410 gpm, 200' hd CH-51 1 40 hp CH-51 1 410 gpm, 200' hd CH-52 1 U.S. Electric motor Condenser water 13.2 KW 525 gpm, 70' hd CH-52 1 U.S. Electric Motor CH-52 1 T.5 HP TC-1 building Water 6.4 KW 80 gpm, 110' hd TC-1 building water 7.2 KW 1 T.5 HP TC-1 building water 22.3 KW 1 T.5 HP TC-1 building water 27.5 KW                                                                                                                                                     |                 |              | Lincoln                       |                                                                   |                       |                   |         |     |
| 10 gpm, 200 hd   CH-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pump P-51       | -            | 40 hp                         | chilled water                                                     | 27.3 KW               | by computer model | 239,148 |     |
| Lincoln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chilled Water   |              | 410 gpm, 200 ' hd             | CH-51                                                             |                       |                   |         |     |
| 1 40 hp chilled water 28.7 KW 410 gpm, 200' hd CH-52 U.S. Electric motor condenser water 13.2 KW 525 gpm, 70' hd CH-51 Leeson 1 15 hp CH-51 U.S. Electric Motor heating water 6.4 KW 80 gpm, 110' hd TC-1 building U.S. Electric Motor heating water 7.2 KW 80 gpm, 110' hd TC-1 building U.S. Electric Motor heating water 7.2 KW 1425 gpm, 60' hd CT-51AB CONDENSER water 22.3 KW 1425 gpm, 60' hd CT-51AB Reliance Motor heating water 2.7 KW 1 3 HP Reliance Motor heating water 2.7 KW 80 gpm, 60' hd heating water 8.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              | Lincoln                       |                                                                   |                       |                   |         |     |
| 10 gpm, 200 'hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pump P-52       | -            | 40 hp                         | chilled water                                                     | 28.7 KW               | by computer model | 0       |     |
| 1 S. Electric motor         condenser water         13.2 KW           525 gpm, 70' hd         CH-51           Leeson         CH-52           1 15 hp         CH-52           255 gpm, 70' hd         CH-52           U.S. Electric Motor         CH-52           U.S. Electric Motor         TC-1 building           U.S. Electric Motor         heating water           1 7.5 HP         TC-1 building           Vertical Turbine         condenser water           Vertical Turbine         CT-51AB           Reliance Motor         Heating water         2.7 KW           Reliance Motor         Heating water         2.7 KW           Reliance Motor         Heating water         2.7 KW           Reliance Motor         Hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chilled Water   |              | 410 gpm, 200 ' hd             | CH-52                                                             |                       |                   |         |     |
| 1 15 hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              | U.S. Electric motor           |                                                                   |                       |                   |         |     |
| 1 525 gpm, 70' hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pump P-60       | _            | 15 hp                         | condenser water                                                   | 13.2 KW               | by computer model | 115,632 |     |
| Leeson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condenser Water |              | 525 gpm, 70' hd               | CH-51                                                             |                       |                   |         |     |
| 1 15 hp condenser water 10.5 KW 525 gpm, 70' hd CH-52  U.S. Electric Motor heating water 8.4 KW 80 gpm, 110' hd TC-1 building 1.5. Electric Motor Nertical Turbine 130 hp, 1st in cycle CT-51AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              | Leeson                        |                                                                   |                       |                   |         |     |
| 525 gpm, 70' hd       CH-52         U.S. Electric Motor       heating water       6.4 KW         1 7.5 HP       TC-1 building       7.2 KW         1 7.5 HP       TC-1 building       7.2 KW         1 30 hp, 110' hd       TC-1 building       7.2 KW         1 30 hp, 110' hd       TC-1 building       7.2 KW         1 30 hp, 110' hd       TC-1 building       7.2 KW         1 30 hp, 110' hd       TC-1 building       7.2 KW         1 30 hp, 12 in cycle       CT-51AB       CT-51AB         Vertical Turbine       CT-51AB       CT-51AB         Netrical Turbine       CT-51AB       CT-51AB         Netrical Turbine       CT-51AB       CT-51AB         Reliance Motor       B-51       CT-51AB         Reliance Motor       B-51       Reliance Motor         Reliance Motor       B-52       Reliance Motor         1 3 HP       Heating water       2.7 KW         1 3 HP <td>Pump P-61</td> <td>-</td> <td>15 hp</td> <td>condenser water</td> <td>10.5 KW</td> <td>by computer model</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump P-61       | -            | 15 hp                         | condenser water                                                   | 10.5 KW               | by computer model | 0       |     |
| 1 7.5 HP       heating water       6.4 KW         80 gpm, 110' hd       TC-1 building       7.2 KW         1 7.5 HP       TC-1 building       7.2 KW         1 7.5 HP       TC-1 building       7.2 KW         1 30 pp, 110' hd       TC-1 building       7.2 KW         1 30 hp, 1st in cycle       condenser water       22.3 KW         1 425 gpm, 60' hd       CT-51AB       CT-51AB         1 30 hp, 2nd in cycle       CT-51AB       22.3 KW         Reliance Motor       Reliance Motor       B-51         1 3 HP       Reliance Motor       B-51         1 3 HP       Reliance Motor       B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Condenser Water |              | 525 gpm, 70' hd               | CH-52                                                             |                       |                   |         |     |
| 1 7.5 HP heating water 6.4 KW B0 gpm, 110' hd TC-1 building Water 7.2 KW 80 gpm, 110' hd TC-1 building Wertical Turbine 130 hp, 1st in cycle CT-51AB Vertical Turbine 130 hp, 2nd in cycle CT-51AB CT-51AB CT-51AB Reliance Motor Heating water 2.7 KW B0 gpm, 60' hd B-51 B-51 Reliance Motor Heating water 2.7 KW B0 gpm, 60' hd B-51 B-51 Reliance Motor Heating water 2.7 KW B0 gpm, 60' hd B-52 B-51 Reliance Motor Heating water 2.7 KW B0 gpm, 60' hd B-52 B-52 B-52 B-53 B-54 B-55 B-55 B-55 B-55 B-55 B-55 B-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              | U.S. Electric Motor           |                                                                   |                       |                   |         |     |
| 80 gpm, 110' hd         TC-1 building           1 7.5 HP         heating water         7.2 KW           80 gpm, 110' hd         TC-1 building         7.2 KW           1 30 hp, 1st in cycle         condenser water         22.3 KW           1 425 gpm, 60' hd         CT-51AB         CT-51AB           1 30 hp, 2nd in cycle         condenser water         22.3 KW           1 30 hp, 2nd in cycle         CT-51AB         CT-51AB           Reliance Motor         heating water         2.7 KW           80 gpm, 60' hd         B-51         B-51           Reliance Motor         heating water         2.7 KW           1 3 HP         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pump P-63       | <b>-</b>     | 7.5 HP                        | heating water                                                     | 6.4 KW                | by computer model | 56,064  | -   |
| 1 7.5 HP       heating water       7.2 KW         80 gpm, 110' hd       TC-1 building       7.2 KW         Vertical Turbine       condenser water       22.3 KW         1 425 gpm, 60' hd       CT-51AB         Vertical Turbine       condenser water       22.3 KW         1 30 hp, 2nd in cycle       condenser water       22.3 KW         1 30 hp, 2nd in cycle       CT-51AB       CT-51AB         Reliance Motor       heating water       22.3 KW         1 3 HP       B-51       Reliance Motor         1 3 HP       heating water       2.7 KW         1 3 HP       B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heating Water   | ;            | 80 gpm, 110° hd               | TC-1 building                                                     |                       | •                 |         | •   |
| 1         7.5 HP         heating water         7.2 KW           80 gpm, 110' hd         TC-1 building         7.2 KW           1         30 hp, 1st in cycle         condenser water         22.3 KW           1         30 hp, 2nd in cycle         condenser water         22.3 KW           1         30 hp, 2nd in cycle         CT-51AB         22.3 KW           1         30 hp, 2nd in cycle         CT-51AB         22.3 KW           1         3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-51         B-51           Reliance Motor         heating water         2.7 KW           1         3 HP         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              | U.S. Electric Motor           |                                                                   |                       |                   |         |     |
| 80 gpm, 110' hd         TC-1 building           1 30 hp, 1st in cycle         condenser water         22.3 KW           1425 gpm, 60' hd         CT-51AB         22.3 KW           1 30 hp, 2nd in cycle         condenser water         22.3 KW           1 30 hp, 2nd in cycle         CT-51AB         22.3 KW           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-51         2.7 KW           Reliance Motor         heating water         2.7 KW           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pump P-64       | <del>-</del> | 7.5 HP                        | heating water                                                     | 7.2 KW                | by computer model | 0       | -   |
| 1 30 hp, 1st in cycle         condenser water         22.3 KW           1425 gpm, 60' hd         CT-51AB           1 425 gpm, 60' hd         condenser water         22.3 KW           1 425 gpm, 60' hd         CT-51AB         22.3 KW           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-51         2.7 KW           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Heating Water   |              | 80 gpm, 110' hd               | TC-1 building                                                     |                       |                   |         |     |
| 1 30 hp, 1st in cycle         condenser water         22.3 KW           1425 gpm, 60' hd         CT-51AB         22.3 KW           1 30 hp, 2nd in cycle         condenser water         22.3 KW           1 425 gpm, 60' hd         CT-51AB         22.3 KW           1 3 HP         heating water         2.7 KW           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         heating water         2.7 KW           80 gpm, 60' hd         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              | Vertical Turbine              |                                                                   |                       |                   |         |     |
| 1425 gpm, 60' hd     CT-51AB       Vertical Turbine     condenser water       1 30 hp, 2nd in cycle     CT-51AB       1425 gpm, 60' hd     CT-51AB       1 3 HP     heating water       2.7 KW       Reliance Motor     B-51       Reliance Motor     heating water       1 3 HP     heating water       2.7 KW       80 gpm, 60' hd     B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump P-65       | -            | 30 hp, 1st in cycle           | condenser water                                                   | 22.3 KW               | by computer model | 195,348 |     |
| 1 30 hp, 2nd in cycle         condenser water         22.3 KW           1425 gpm, 60' hd         CT-51AB           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-51           1 3 HP         heating water         2.7 KW           1 3 HP         heating water         2.7 KW           1 3 HP         heating water         2.7 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condenser Water |              | 1425 gpm, 60' hd              | CT-51AB                                                           |                       |                   |         |     |
| 1         30 hp, 2nd in cycle         condenser water         22.3 KW           1425 gpm, 60' hd         CT-51AB         CT-51AB           1         3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-51         heating water         2.7 KW           1         3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-52         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              | Vertical Turbine              |                                                                   |                       |                   |         |     |
| 1425 gpm, 60' hd         CT-51AB           Reliance Motor         heating water         2.7 KW           80 gpm, 60' hd         B-51           Reliance Motor         heating water         2.7 KW           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pump P-66       | <del>-</del> | 30 hp, 2nd in cycle           | condenser water                                                   | 22.3 KW               | by computer model | 0       |     |
| Reliance Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Condenser Water |              | 1425 gpm, 60' hd              | CT-51AB                                                           |                       |                   |         |     |
| 1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-51         B-51           1 3 HP         heating water         2.7 KW           80 gpm, 60' hd         B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              | Reliance Motor                |                                                                   |                       |                   |         |     |
| 80 gpm, 60' hd B-51 Reliance Motor heating water 2.7 KW 80 gpm, 60' hd B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump P-70       | -            | 3 HP                          | heating water                                                     | 2.7 KW                | by computer model | 23,652  |     |
| Reliance Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heating Water   |              | 80 gpm, 60' hd                | B-51                                                              |                       |                   |         |     |
| 1 3 HP heating water 2.7 KW 80 gpm, 60' hd B-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              | Reliance Motor                |                                                                   |                       |                   |         |     |
| . 80 gpm, 60' hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump P-71       | -            | 3 HP                          | heating water                                                     | 2.7 KW                | by computer model | 0       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Heating Water   |              | 80 gpm, 60' hd                | B-52                                                              |                       |                   |         |     |

|                             |          | HVAC EQUIPMEN                                                               | QUIPMENT LIST FOR: HELSTF Facility, Test Cell #2 | cility, Test Cell #2              |           |                   |         | !              |             |
|-----------------------------|----------|-----------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|-----------|-------------------|---------|----------------|-------------|
|                             |          |                                                                             | January 2, 1996                                  |                                   | OPERATION | OPERATION TIMES   | AN      | ANNUAL USE     |             |
| ITEM                        | αTY.     | DESCRIPTION                                                                 | AREA SERVED                                      | LOAD                              | HRS DA    | DAYS WKS          | KWH     | GAL            |             |
| Cooling Tower Fan           | -        | BAC model CFT-2420C                                                         | condenser water<br>CH-51                         | 5.3 KW                            | ру сотр   | by computer model | 30,475  | 2              |             |
| CT-51A<br>Cooling Tower Fan | -        | BAC model CFT-2420C                                                         | condenser water<br>CH-52                         | 5.3 KW                            | ру сотр   | by computer model | 0       |                |             |
| CT-51B<br>Hot Water Boiler  | -        | Weil - Mclain model 786<br>forced draft firebox                             | heating water                                    | 12.15 GPH<br>0.82 KVA-475V        | by comp   | by computer model |         | 18,771         |             |
| B-51<br>Hot Water Boiler    | -        | 1104 MBH out Weil - Mclain model 786 forced draft firebox                   | heating water                                    | 12.15 GPH<br>0.82 KVA-475V        | by comp   | by computer model | _       | 0              | <del></del> |
| B-52                        |          | 1104 MBH out<br>B & G WU-125-43, 80 gpm<br>lube- 150 F in, 180 F out, bldg. | heating water                                    | 0 GPH                             | ру сотр   | by computer model |         | 0              | — т         |
| HX-54                       |          | shell- 220 F in, 190 F out, boiler                                          | B-51, B-52                                       | 50.0 A                            |           | -                 |         |                |             |
| Air Compressor              | <b>~</b> | Sullair model 12B - 60<br>125 psig max.                                     | Test Cell 1 & 2                                  | 475.0 V - 3 ph.<br>41.1 KVA       | 4         | 7 52              | 59,842  | 42             |             |
| AC - 1                      |          | 2nd on line                                                                 |                                                  | 61.0 A                            |           |                   | 146 182 | 182            |             |
| Air Compressor              |          | Sullair Model 125 - 55<br>125 psig max.                                     | Test Cell 1 & 2                                  | 475.0 V - 3 ph.<br>50.2 KVA       | ∞         | 76                | -+-     |                |             |
| AC - 2                      |          | Ingersol Rand                                                               |                                                  | N/A A<br>N/A V-3 ph               | 0         | -<br>-            | o<br>   |                |             |
| Air Compressor              |          | 240 scfm<br>150 HP                                                          | Test Cell 1 & 2<br>Stand-by .                    | N/A KVA                           |           |                   |         |                | $\neg \top$ |
| AC - 51<br>Air Compressor   | -        | Ingersol Rand<br>240 scfm                                                   | Test Cell 1 & 2                                  | N/A A<br>N/A V - 3 ph.<br>N/A KVA | 0         | 0                 | 0       |                |             |
| AC - 52                     |          | 150 HP                                                                      | Statio-by                                        | 7.5 A                             |           |                   |         | 7 <i>6</i> 0 6 |             |
| Air Dryer                   |          | Floneer model ring 500 scfm                                                 | AC-1 & AC-2                                      | 475.0 V - 3 ph.<br>6.2 KVA        | 4         | ,                 | _       |                | $\top$      |
| Air Dryer                   | -        | Tub psig<br>Pall<br>model 400DHA4-4000BS                                    | AC-51 & AC-52                                    | N/A A<br>N/A V - 3 ph.<br>N/A KVA | 0         | 0                 | 0       | 0              |             |
| Hot Water Unit Heater       | -        | Horizontal<br>1000 cfm                                                      | Test Cell # 2                                    | N/A HP                            | 0         | 0                 | 0       | 0 0            |             |
| UH - 54                     |          |                                                                             |                                                  |                                   |           |                   |         |                |             |

| Facility, Test Cell #2 | January Z, 1930 FULL OPERATION TIMES ANNUAL U | HRS DAYS WKS | fm Test Cell # 2 1.6 KW 24 7 26 6,989 | mith model DSE-20-6         Test Cell # 2         6 KW         2         7         52         4,368           Ion         restrooms |          | 0 18,771      | 516,756  |               | 4,368     | 686'9      | 770 844 |             | 215,051     |  |
|------------------------|-----------------------------------------------|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|----------|---------------|-----------|------------|---------|-------------|-------------|--|
| HVAC EQUIPMENT LIS     |                                               | DESCRIPTION  | 4000 cfm                              | A.O. Smith model DSE-20-6<br>15 gallon                                                                                              |          |               |          |               |           |            |         |             |             |  |
|                        |                                               | QTY.         | -                                     | 1-51                                                                                                                                |          | 9             | <u> </u> | 5             | ,         | · ·        |         | <br>S       | G           |  |
|                        |                                               | ITEM         | Evap. Cooler                          | EC-51<br>Water Heater WH-51                                                                                                         | Electric | TOTAL HEATING |          | IOIAL COULING | TOTAL DHW | TOTAL FANS |         | TOTAL PUMPS | TOTAL MISC. |  |

|        |       |                      | MOTOR         | LIST FO | R: HELSTF<br>ED: Octob | MOTOR LIST FOR: HELSTF - TEST CELL #2<br>DATE SURVEYED: October 10 - 13, 1995 | .L #2<br>995 |       |       | i i   |             | %      | KW     | KVA   |
|--------|-------|----------------------|---------------|---------|------------------------|-------------------------------------------------------------------------------|--------------|-------|-------|-------|-------------|--------|--------|-------|
|        |       |                      | ABEA SERVED   | 유       | PHASE                  |                                                                               | NAMEPLATE    | YATE  |       | ACTOR | JAL<br>AMOO | 2 0    | DEMAND |       |
| ITEM   | αTY   | DESCRIPTION          | AKEA SERVED   |         |                        | VOLTS                                                                         | AMPS         | 占     | ᇤ     | VOLTS | AMPO        | 3      |        |       |
| CT-51A | -     | Cooling Tower        | CH-51 & CH-52 | 7.5     | 3                      | 460                                                                           | 11.0         | 0.830 | 76.9% | 460   | 8.0         | 72.7%  | 5.3    | 6.4   |
| CT-518 | -     | Cooling Tower        | CH-51 & CH-52 | 7.5     | 8                      | 460                                                                           | 11.0         | 0.830 | 76.9% | 460   | 8.0         | 72.7%  | 5.3    | 6.4   |
|        |       | Chilled Water Pump   | CH-51         | 40      | 6                      | 460                                                                           | 50.0         | 0.830 | 90.2% | 475   | 40.0        | 80.0%  | 27.3   | 32.9  |
| ō      |       | Chilled Water Pump   | CH-52         | 04      | က                      | 460                                                                           | 50.0         | 0.830 | 90.2% | 475   | 42.0        | 84.0%  | 28.7   | 34.6  |
| P-52   | - \   | Condenser Water Pump | CH-51         | 15      | п                      | 460                                                                           | 21.0         | 0.764 | 87.5% | 475   | 21.0        | 100.0% | 13.2   | 17.3  |
| 09-4   |       | Condenser Water Pump | CH-52         | 5       | е                      | 460                                                                           | 18.5         | 0.850 | 92.4% | 475   | 15.0        | 81.1%  | 10.5   | 12.3  |
| F9-d   | -   , | October Dimo         | B-51          | 7.5     | ь                      | 460                                                                           | 10.0         | 0.821 | 85.5% | 475   | 9.5         | 95.0%  | 6.4    | 7.8   |
| p-63   | -     |                      |               |         | ,                      | 460                                                                           | 10.3         | 0.797 | 85.5% | 475   | 11.0        | 106.8% | 7.2    | 0.6   |
| P-64   | -     | Heating Water Pump   | B-52          |         | ,                      | }                                                                             |              |       |       |       |             |        |        |       |
| P-65   | -     | Condenser Water Pump | CT-51A/B      | 8       | e<br>e                 | 460                                                                           | 38.6         | 0.822 | 88.5% | 460   | 34.0        | 88.1%  | 22.3   | 27.1  |
|        | -     | Condenser Water Pump | CT-51A/B      | 8       | 6                      | 460                                                                           | 38.6         | 0.822 | 88.5% | 460   | 34.0        | 88.1%  | 22.3   | 27.1  |
| 86     | -     |                      |               | , "     | -                      | 460                                                                           | 9.4          | 0.835 | 73.1% | 475   | 4.0         | 87.0%  | 2.7    | 3.3   |
| P-70   | -     | Heating Water Pump   | r-a           | ,       | ,                      |                                                                               |              |       |       |       |             |        |        | ,     |
| P-71   | -     | Heating Water Pump   | B-52          |         | ო<br>                  | 460                                                                           | 4.6          | 0.835 | 73.1% | 475   | 4.0         | 87.0%  | 2.7    | 5.6   |
|        | _     |                      |               |         |                        |                                                                               |              | 0.821 |       |       |             |        | 153.9  | 187.5 |
| TOTAL  |       |                      |               |         |                        |                                                                               |              |       |       |       |             |        |        |       |

# $\begin{array}{c} \text{APPENDIX } \tilde{G} \\ \text{COMPUTER MODELING OF BUILDING SYSTEMS} \end{array}$

### TABLE OF CONTENTS

|       |                                                                                                                                 | G-1          |
|-------|---------------------------------------------------------------------------------------------------------------------------------|--------------|
| A.    | General Parameters  People, Lights and Miscellaneous Equipment Schedules                                                        | G-2          |
| B.    | People, Lights and Miscellaneous Equipment Schedules                                                                            | G-3          |
| C.    | HVAC Equipment Schedules                                                                                                        | G-3          |
| D.    | Building HVAC Systems                                                                                                           | G-4          |
| E.    | Boiler & Chiller Systems.                                                                                                       | G-7          |
| Trace | 600 Input Data - LSTC Building, Existing Conditions                                                                             | G-19         |
| Trace | 600 Input Data - LSTC Building, Existing Conditions 600 Input Data - LSTC Building, ECO-A 600 Input Data - LSTC Building, ECO-B | G-30         |
| Trace | 600 Input Data - LSTC Building, ECO-B                                                                                           | <b>G-4</b> 1 |
| Trace | 600 Input Data - LSTC Building, ECO-C                                                                                           | G-53         |
| Trace | e 600 Input Data - LSTC Building, ECO-D                                                                                         | G-64         |
| Trace | e 600 Input Data - LSTC Building, ECO-E                                                                                         | <b>G-</b> 66 |
| Trace | e 600 Input Data - LSTC Building, ECO-F                                                                                         | G-71         |
| Trace | e 600 Output Data - LSTC Building, Existing Conditions                                                                          | G-78         |
| Trac  | e 600 Output Data - LSTC Building, ECO-A                                                                                        | G-84         |
| Trac  | e 600 Output Data - LSTC Building, ECO-B                                                                                        | G-90         |
| Trac  | ce 600 Output Data - LSTC Building, ECO-C                                                                                       | G-96         |
| Trac  | ce 600 Output Data - LSTC Building, ECO-D                                                                                       | G-103        |
| Trac  | ce 600 Output Data - LSTC Building, ECO-E                                                                                       | G-109        |
| Tra   | ce 600 Output Data - LSTC Building, ECO-T                                                                                       | G-115        |
| Tra   | ce 600 Input Data - TC-1 and TC-2 Buildings, Existing Contains                                                                  | G-123        |
| Tra   | ice 600 Input Data - TC-1 and TC-2 Buildings, ECO-1                                                                             | G-131        |
| Tra   | ace 600 Input Data - TC-1 and TC-2 Buildings, ECO 5                                                                             | G-138        |
| Tra   | ace 600 Input Data - TC-1 and TC-2 Buildings, ECO-C                                                                             | G-147        |
| Tra   | ace 600 Input Data - TC-1 and TC-2 Buildings, ECO 2                                                                             | G-155        |
| Tr    | ace 600 Input Data - TC-1 and TC-2 Buildings, ECO-U                                                                             | G-157        |
| Tr    | ace 600 Input Data - TC-1 and 1C-2 Buildings, ECO 17                                                                            | G-160        |
| Tr    | race 600 Output Data -TC-1 and TC-2 Buildings, Existing Condition                                                               | G-166        |
| Tı    | race 600 Output Data -TC-1 and TC-2 Buildings, ECO-T                                                                            | G-171        |
| Tı    | race 600 Output Data -TC-1 and TC-2 Buildings, ECO-B                                                                            | G-176        |
| T     | race 600 Output Data -TC-1 and TC-2 Buildings, ECO-C                                                                            | G-181        |
| Т     | race 600 Output Data -TC-1 and TC-2 Buildings, ECO-E                                                                            | G-186        |
| Т     | Frace 600 Output Data -TC-1 and TC-2 Buildings, ECO-E                                                                           | G-191        |
| Τ     | Frace 600 Output Data -TC-1 and TC-2 Buildings, ECO-G                                                                           | G-196        |
| 7     | Frace 600 Output Data -TC-1 and TC-2 Buildings, ECO-H  Frace 600 Utility Schedules - LSTC Building,                             | G-234        |
| 7     | Frace 600 Utility Schedules - LSTC Building,                                                                                    |              |

## APPENDIX Ğ COMPUTER MODELING OF BUILDING SYSTEMS

- A. General Parameters. The following assumptions and estimates were used in the modeling of the existing building systems included in this study.
  - 1. The Trace 600 weather data for Holloman AFB, New Mexico was used in all of the computer simulations.
  - 2. The Trace 600 computer simulations were performed for the months of January through December to determine annual lighting and HVAC equipment energy consumptions.
  - 3. The Trace 600 default calender and holiday schedules were used for this model. The holiday schedule includes the seven standard holidays: New Years Day, President's Day, Memorial Day, Fourth of July, Labor Day, Thanksgiving, and Christmas.
  - 4. All building dimensions and construction data were determined from as-built drawings when available, or from field measurements taken during the site visit.
  - 5. Design room temperatures (thermostat setpoints) were obtained from CEMP-E (9 December 1991) Chapter 13, Section 3. These temperatures were 75°F for cooling in comfort conditions, 70°F, 45% or 50% relative humidity for cooling in areas housing computer type equipment, and 70°F for heating.
  - 6. The number of people in each building or room was estimated from field notes taken during the site visit. The sensible and latent heat gain rates used for the people in each room were taken from ASHRAE data.
  - 7. Building and room lighting loads were obtained from as-built drawings when available, or from field notes taken during the site visit.
  - 8. Building and room miscellaneous equipment loads were estimated from field notes taken during the site visit. These loads represent the internal heat gains generated from equipment in the rooms, such as computers, office equipment, test equipment, etc. Heat gain data for the various types of internal loads was taken from ASHRAE or estimated from the power supplied by the Uninterruptible Power Source (UPS) feeders, which was measured during the site visit.
  - 9. It was assumed that ½ of the equipment being served by the UPS feeders was operating at the time that the amperes and voltage were measured on the system, and this was assumed typical for all times other than testing periods.
  - 10. For all building areas with forced ventilation, the rates were taken from schedule data on the existing air handlers. Data from ASHRAE Standard 62-1989 was used to verify ventilation requirements and implemented, where applicable, in the analysis for proposed ECO's.
  - 11. Building and room exhaust rates were taken from as-built drawings.
  - 12. Lighting operational times were estimated from field notes taken during the site visit.
  - 13. The exterior walls and portions of the roof which are below grade in the LSTC building were modeled as partitions with a constant adjacent space temperature. These soil temperatures were

- obtained from The International Ground Source Heat Pump Association (IGSHPA) for the areas surrounding Roswell, N.M.
- The U-value for the exterior walls, roof, and domes of the LSTC building was estimated at 0.18 BTUH/sqft/°F for a masonry wall of 24" concrete.
- The ballast factor for all fluorescent fixtures was included in the power supplied to each fixture rather than a separate input into TRACE 600.
- No cooling or heating temperature setback controls were included in the simulations for the existing conditions, as none are currently in place.
- B. People, Lights and Miscellaneous Equipment Schedules. The following assumptions and estimates were used in the modeling of the existing LSTC and TC-1 buildings included in this study.
  - 1. In modeling the existing building operation, all people were scheduled at 100% from 7 am until 12 pm, and from 1 pm until 4 pm during the weekdays. During the lunch hour, from 12 pm until 1 pm, all people were scheduled at 10%. On the weekends and holidays, all people were scheduled at 0%.
  - 2. In modeling the proposed variable air volume system for the LSTC building (ECO-D), the number of people in a particular zone at any one time varied to more accurately account for the change in load that actually occurs during the period of a day. Three separate schedules, all with the same amount of total occupied hours for the people, were used to simulate people entering and leaving the zone during the day. For example, all people for a particular zone were scheduled at 100% from 7am to 9 am, 10 am to 12 pm, 1 pm to 2 pm, and 3 pm to 4 pm. At other times, besides the lunch hour, during the hours of 7 am to 4 pm, the people were scheduled at 50 %. During the lunch hour, all people were scheduled at 10%. All other times the people were scheduled at 0%.
    - Several schedules were used to simulate the existing and proposed operation of the interior lighting in the buildings. In all cases, the lights were scheduled at 100% from 7am until 4 pm. The schedules then differed according to the unoccupied building hours between 4 pm to 7am. Typically, the lights were scheduled at 100%, 75%, 50%, 40%, 25%, 10%, or 0% for the unoccupied times, according to existing or proposed conditions.
    - 4. All miscellaneous equipment that is used for normal day to day operation (personal computers, copiers, fax machines, etc.) was scheduled at 100% from 7 am until 4 pm. On the weekends and holidays, all equipment was scheduled at 0%.
    - All electronic equipment used for laser systems testing in the LSTC and TC-1 buildings are powered through UPS systems. The main electrical feeders to these two UPS systems were measured to determine the power consumption of this electronic equipment. It was assumed that approximately 50% of the total equipment was on during the power measurements, and that this is the equipment left on year round. The other 50% of the electronic equipment was assumed to be turned on only during the infrequent testing. The computer simulations approximated these conditions.

- C. HVAC Equipment Schedules. The following assumptions and estimates were used in the modeling of the existing buildings included in this study.
  - 1. All air handler fans, cooling coils, and heating coils were scheduled to operate 100% of the day, 12 months of the year, as required by room thermostats to maintain building setpoint temperatures.
  - All building infiltration and ventilation air is scheduled to be introduced into the buildings at a fixed rate 100% of the day, 12 months per year.
  - 3. All building and room thermostats were scheduled to maintain the design setpoints 24 hours per day, 12 months per year with no setback periods.
- D. Building HVAC Systems. The following assumptions and estimates were used in the modeling of the existing building HVAC systems included in this study.
  - HVAC air system types were taken from building as-built drawings when available, or from field notes taken during the site visit.
  - 2. Buildings were zoned as shown on as-built drawings and served by individual HVAC air systems in order to generate a more realistic load profile for the boilers and chillers.
  - 3. The controls for all of the primary and secondary equipment was modeled as indicated on the as-built control drawings for each piece of equipment, and from recorded measurements obtained from base personnel.
  - 4. In order to simplify the model, similarly loaded rooms that were served by the same AHU were combined and modeled as one room.
  - 5. With the exception of ESH-53, the original building humidification equipment was not modeled because it has all been disconnected.
  - 6. Some areas were served by both computer room units and central air systems. In order to simplify the model, the computer room units were modeled to handle the computer room equipment load while the other AHU serving the space conditioned the remainder of the loads.
  - 7. Forward curved fans were used in modeling all of the air handling units.
  - 8. ECO-C (Install EMS Systems) involved the repair or retrofit of the existing controls for the air systems. To simplify the analysis, there were four control strategies that were proposed in the model. The following are a list of the proposed air system control strategies:

<u>Cold deck reset:</u> the CHW coil is modulated to maintain minimum reheat or cooling coil bypass according to the fluctuation of space (zone) temperatures.

Optimum Start/Stop (LSTC only): the air system fan is energized at a certain time before occupancy which is calculated by multiplying the number of minutes required to change the space temperature one degree by the number of degrees away from the space temperature setpoint.

Outside Air Economizer: When the ambient temperature falls below 65°F, the OA, return, and

exhaust dampers are modulated between a maximum OA intake and the minimum required for IAQ standards to maintain a mixed air temperature setpoint.

Outside Air scheduling (TC-1 only): At periods of 0% occupancy, OA supply will be 0%.

- E. Boiler & Chiller Systems. The following assumptions and estimates were used in the modeling of the boiler and chiller systems included in this study.
  - 1. Boiler and chiller systems types, full load capacity, and energy consumption were identified during the field inspection and used in the computer simulations for modeling the existing equipment. The Trace 600 models were used for part load performance of these boilers and chillers.
  - 2. The chillers serving the LSTC building were modeled with a double bundle heat recovery condenser section that supplies heating water at 95°F to reheat coils.
  - 3. It was assumed that all existing chillers had a full load KW/ton increase of 1% over their original rating for each year of service up to ten years. For all service over ten years, 0.25% per year was added to the full load KW/ton rating. This was done to account for natural efficiency losses due to tube fouling and compressor wear.
  - 4. It was assumed that all existing boilers had a full load efficiency decrease of 1% under their original rating for each year of service up to ten years. For all service over ten years, 0.25% per year was deducted from the full load efficiency rating. This was done to account for natural efficiency losses due to tube fouling and burner wear.
  - 5. New pumps were selected for all proposed boilers and chillers when required and input to simulate the new systems.
  - 6. Existing cooling tower types and their fan horsepowers were identified during the field inspection and used in the existing and proposed computer simulations.
  - 7. In all areas, a base load was estimated and added to the existing and proposed chillers and boilers to account for heat loss or gain from piping insulation and pumps. This base load increased the required capacity of the boilers and chillers and shows up as 'base utility' in the equipment energy consumption output sheets.
  - 8. The age of the equipment, if not available from as-built drawings, was estimated from field notes taken during the site visit.
  - 9. The evaporative coolers serving the unconditioned areas in Test Cell #1 were not modeled because the only energy consumed by these units is the fractional HP pump and fan.
  - 10. New boiler and chiller alternatives were selected for the ECO evaluations. Full load capacity and energy consumption rates were obtained from manufacturer's data and input into the computer simulations. Part load energy consumption data was modeled using Trace 600 part load curves for similar equipment.
  - All proposed chillers were selected from the top 25% of their class in terms of efficiency (KW/ton), and also were at least 10% more efficient than current design standards.
  - 12. For ECO-C (Install EMS Systems), the boiler and chiller equipment was modeled with new

control strategies as applicable. The following are a list of the water system control strategies used in the computer models:

<u>Chiller Sequencing</u>: In areas where more than one chiller was selected to handle the cooling load, chiller sequencing was modeled to obtain the optimum efficiency at all part load conditions. This also required selecting the chillers to operate at the best efficiency points for the greatest percentage of operation time.

<u>CHW/HW Temperature Reset:</u> The chilled/heating water supply temperature was reset according to the part load ratio of the chiller/boiler. At 80% part load, the chilled/heating water supply temperature was reset to 2°F above/below design temperature. At 40% part load, the chilled/heating water temperature was reset to a maximum value of 4°F above/below design temperature.

<u>CND Water Reset (TC-1only)</u>: Whenever possible, the condenser water supply temperature is reset to a temperature below 85°F to decease the amount of work that the compressor is required to accomplish.

13. The chillers and boilers in TC-2 serve other equipment besides TC-1. These other loads, including piping and pumping heat input and loses, were estimated from field notes or as-built drawings and input as a base load on the chillers and boilers.

This Page Reserved For Future Use

01 1 - Job Information

Project: EEAP ENERGY STUDY - HELSTF

Location: WHITE SANDS - ALAMOGORDO, NEW MEXICO

Client: FORT WORTH CORPS OF ENGINEERS
Program User: HUITT-ZOLLARS, INC.

Comments: LSTC BUILDING

## **EXISTING LSTC BUILDING**

| Weather<br>Code<br>HOLLOMAN | Number | Winter<br>Clearness<br>Number |            |             | Winter<br>Design<br>Dry Bulb | Building<br>Orientation | Summer<br>Ground<br>Reflect | Winter<br>Ground<br>Reflect |
|-----------------------------|--------|-------------------------------|------------|-------------|------------------------------|-------------------------|-----------------------------|-----------------------------|
|                             |        | · Load Sec                    | ction Alte | ernative #1 | ١                            |                         |                             |                             |

Card 19- Load Alternative Number Description
1 EXISTING BUILDING

| Card 20 |           |                   |        | Gener | al Room | Paramete | rs         |          |            |           |       |
|---------|-----------|-------------------|--------|-------|---------|----------|------------|----------|------------|-----------|-------|
| Cura Lo | Zone      |                   |        |       |         |          | Acoustic   | Floor to | Duplicate  | Duplicate |       |
| Room    | Reference | Room              | Floor  | Floor | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth |
| Number  | Number    | Descrip           | Length | Width | Туре    | Height   | Resistance | Height   | Multiplier | Zone      |       |
| 5       | 1         | 8-17 B,C,& D      | 25.5   | 59.5  | 10      | 2        |            | 10       |            |           |       |
| 10      | 2         | B-17,18,AEROBICS  | 59     | 59.5  | 10      | 2        |            | 10       |            |           |       |
| 15      | 3         | B-8,16,27-32      | 80.5   | 80.5  | 10      | 2        |            | 10       |            |           |       |
| 20      | 4         | B-25,25A          | 22     | 15    | 10      | 2        |            | 10       |            |           |       |
| 25      | 5         | B-4               | 27     | 27.5  | 10      | 2        |            | 10       |            |           |       |
| 30      | 6         | B-12,12A          | 55.5   | 55.5  | 10      | 2        |            | 10       |            |           |       |
| 35      | 7         | B-2,13,19,20-22   | 45.5   | 45.5  | 10      | 2        |            | 10       |            |           |       |
| 40      | 8         | B-1,3,24          | 81     | 81    | 10      | 2        |            | 10       |            |           |       |
| 45      | 9         | B-9,10,11,11A     | 111.5  | 20    | 10      | 2        |            | 10       |            |           |       |
| 50      | 10        | DOMES, MAIN WINGS | 40     | 40.5  | 10      | 2        |            | 10       |            |           |       |
| 55      | 11 .      | SW LOWER DOME     | 48     | 48    | 10      | 2        |            | 10       |            |           |       |
| 60      | 12        | NE LOWER DOME     | 48     | 48    | 10      | 2        |            | 10       |            | -         | •     |
| 65      | 13        | MAIN FLR WEST     | 89.5   | 37    | 10      | 2        |            | 10       |            | ٠.        |       |
| 70      | 14        | MAIN FLR EAST     | 61     | 61    | 10      | 2        |            | 10       |            |           | •     |
| 75      | 15        | 112,119A,123A,    | 94.5   | 95    | 10      | 2        |            | 10       |            |           |       |
| 80      | 16        | MAIN FLOOR CENTR  | 93     | 93.5  | 10      | 2        |            | 10       |            |           |       |
| 85      | 17        | MAIN FLOOR SOUTH  | 51     | 51    | 10      | 2        |            | 10       |            |           |       |

| ard 20                     |                                         |                                               |                               | dellel                       | at Room                   | Paramete                   | Acoustic | Floor to | Duplicate            | Duplicate         | Perimete |
|----------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------|------------------------------|---------------------------|----------------------------|----------|----------|----------------------|-------------------|----------|
| Room<br>Number<br>90<br>95 | Zone<br>Reference<br>Number<br>18<br>19 | Room Descrip L.DOME COMP. RMS. L.DOME OFFICES | Floor<br>Length<br>63.5<br>71 | Floor<br>Width<br>63.5<br>71 | Const<br>Type<br>10<br>10 | Plenum<br>Height<br>2<br>2 |          | Floor    | Floors<br>Multiplier | Rooms per<br>Zone | Depth    |
| 100                        | 20                                      | U.DOME                                        | 88.5                          | 88.5                         | 10                        | 2                          |          | 10       |                      |                   |          |
| 105                        | 21                                      | RM 119, AH-8                                  | 1                             | 1                            | •                         |                            | 4        |          |                      |                   |          |
| 110                        | 22                                      | RM 119A, AH-9                                 | 1                             | 1                            |                           |                            |          |          |                      |                   |          |
| 115                        | 23                                      | RM 123, AH-10                                 | 1                             | 1                            |                           |                            |          |          |                      |                   |          |
| 120                        | 24                                      | RM 127A, AH-11A                               | 1                             | 1                            |                           |                            |          |          |                      |                   |          |
| 125                        | 25                                      | RM 127A, AH-11B                               | 1                             | 1                            |                           |                            |          |          |                      |                   |          |
| 130                        | 26                                      | RM 127, AH-12                                 | 1                             | 1                            |                           |                            |          |          |                      |                   |          |
| 135                        | 27                                      | AUX CNTRL, AH-14                              | 1                             | 1                            |                           | _                          |          | 10       |                      |                   |          |
| 140                        | 28                                      | RM 110 UNDERFLOR                              | 33                            | . 34                         | 10                        | 2                          |          | 10       |                      |                   |          |
| 145                        | 29                                      | RM 120A,122,126A                              | 50                            | 50                           | 10                        | 2                          |          |          |                      |                   |          |
| 150                        | 30                                      | RM 146A,148,148A                              | 32                            | 32                           | 10                        | 2                          |          | 10<br>10 |                      |                   |          |
| 155                        | 31                                      | 204,205,206,207                               | 63.5                          | 63.5                         | 10                        | 2                          |          | 10       |                      |                   |          |

|         |                 |        |            | Therm   | ostat Param | eters      |          |          |          |        |
|---------|-----------------|--------|------------|---------|-------------|------------|----------|----------|----------|--------|
| Card 21 |                 | Room   | Cooling    | Cooling | Heating     | Heating    | Heating  | T'stat   |          | Carpet |
|         | Cooling         | Design | T'stat     | T'stat  | Room        | T'stat     | T'stat   | Location |          |        |
| Room    | Room            | RH     | Driftpoint |         |             | Driftpoint | Schedule | Flag     | Average  |        |
| Number  | Design DB<br>75 | 50     | 75         | •••••   | 70          | 70         |          |          | HEAVY130 |        |
| 5<br>10 | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 15      | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 20      | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 25      | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 30      | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 35      | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 40      | 75<br>75        | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 45      | 70              | 45     | 70         |         | 70          | 70         |          |          | HEAVY130 |        |
| 50      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 55      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 60      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 65      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY130 |        |
| 70      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY13  |        |
| 75      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY13  |        |
| 80      | 70              | 45     | 70         |         | 70          | 70         |          |          | HEAVY13  |        |
| 85      | 75              | 50     | 75         |         | 70          | 70         |          |          | HEAVY13  |        |
| 90      | 70              | 45     | 70         |         | 70          | 70         |          |          | HEAVY13  |        |
| 95      | 75              | 50     | 75         |         | 70 ´        | 70         | •        |          | HEAVY13  |        |
| 100     | 75              | 50     | <b>7</b> 5 |         | 70          | 70         |          |          | HEAVY13  | טא טו  |
| 105     | 70              | 45     | 70         |         | 70          | <b>7</b> 0 |          |          |          |        |
| 110     | 70              | 45     | 70         |         | 70          | 70         |          |          |          |        |
| 115     | 70              | 45     | 70         |         | 70          | 70         |          |          |          |        |
| 120     | 70              | 45     | 70         |         | 70          | 70         |          |          |          |        |
| 125     | 70              | 45     | 70         |         | 70 .        | 70         |          |          |          |        |
| 130     | 70              | 45     | 70         |         | 70          | 70         |          |          |          |        |

|        | Cooling   | Room   | Cooling    | Cooling  |           | neters<br>Heating | Heating |          | Mass /  | Carpet |
|--------|-----------|--------|------------|----------|-----------|-------------------|---------|----------|---------|--------|
| Room   | Room      | Design | T'stat     | T'stat   | Room      | T'stat            | _       | Location | •       | •      |
| Number | Design DB | RH     | Driftpoint | Schedule | Design DB | Driftpoint        |         |          | Average |        |
| 135    | 70        | 45     | 70         |          | 70        | 70                |         |          |         | 1 1001 |
| 140    | 70        | 45     | 70         |          | 70        | 70                |         |          |         |        |
| 145    | 70        | 45     | 70         |          | 70        | 70                |         |          |         |        |
| 150    | 70        | 45     | 70         |          | 70        | 70 .              |         |          |         |        |
| 155    | 70        | 45     | 70         |          | 70        | 70                |         |          |         |        |

| Card 22 | !      |          |        | Roof Par | ameters |       |           |      |      |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|------|
|         |        | Roof     |        |          |         |       |           |      |      |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof |
| Number  | Number | Floor?   | Length | Width    |         |       | Direction |      |      |
| 50      | 1 .    | YES      |        |          | 0.18    | 19    |           |      | .4   |
| 100     | 1      | NO       | 88     | 88       | 0.18    | 19    |           |      | .4   |

| Card 24 |        |        |        | Wall P  | arameters |                 |      |      |             |
|---------|--------|--------|--------|---------|-----------|-----------------|------|------|-------------|
|         |        |        | •      |         | Wall      |                 |      |      | Ground      |
| Room    | Wall   | Wall   | Wall   | Wall    | Constuc   | Wall            | Wall | Wall | Reflectance |
| Number  | Number | Length | Height | U-Value | Type      | Direction       | Tilt |      |             |
| 50      | 1      | 26.5   | 31     | 0.18    | 94        | 0               |      | .4   |             |
| 50      | 2      | 26.5   | 31     | 0.18    | 94        | 90              |      | .4   |             |
| 50      | 3      | 26.5   | 31     | 0.18    | 94        | 180             |      | .4   |             |
| 50      | 4      | 26.5   | 31     | 0.18    | 94        | 270             |      | .4   |             |
| 55      | 1      | 42     | 15     | 0.18    | 94        | 0               |      | .4   |             |
| 55      | 2      | 42     | 15     | 0.18    | 94        | 90              |      | .4   |             |
| 55      | 3      | 42     | 15     | 0.18    | 94        | 180             |      | .4   |             |
| 55      | 4      | 42     | 15     | 0.18    | 94        | 270             |      | .4   |             |
| 60      | 1      | 42     | 15     | 0.18    | 94        | 0               |      | .4   |             |
| 60      | 2      | 42     | 15     | 0.18    | 94        | 90              |      | .4   |             |
| 60      | 3      | 42     | 15     | 0.18    | 94        | 180             |      | .4   |             |
| 60      | 4      | 42     | 15     | 0.18    | 94        | 270             |      | .4   |             |
| 90      | 1      | 37.5   | 10     | 0.18    | 94        | 0               |      | .4   |             |
| 90      | 2      | 37.5   | 10     | 0.18    | 94        | 90              |      | .4   |             |
| 90      | 3      | 37.5   | 10     | 0.18    | 94        | 180             |      | .4   |             |
| 90      | 4      | 37.5   | 10     | 0.18    | 94        | 270             |      | .4   |             |
| 95      | 1 .    | 47     | 10     | 0.18    | 94        | 0               | ~    | .4   |             |
| 95      | 2      | 47.5   | 10     | 0.18    | 94        | 90              |      | -4   |             |
| 95      | 3      | 47     | 10     | 0.18    | 94        | 180             | •    | .4   |             |
| 95      | 4      | 47.5   | 10     | 0.18    | 94        | 270             |      | .4   |             |
| 100     | 1      | 78     | 29     | 0.18    | 94        | 0               |      | .4   |             |
| 100     | 2      | 78.5   | 29     | 0.18    | 94        | 90              |      | .4   |             |
| 100     | 3      | 78     | 29     | 0.18    | 94        | 180             |      | .4   |             |
| 100     | 4      | 78.5   | 29     | 0.18    | 94        | 270             |      | .4   |             |
|         |        |        |        |         |           | -· <del>-</del> |      |      |             |

| Card 26 |          |          |             | s            | chedules - |         |         |           |         |             |
|---------|----------|----------|-------------|--------------|------------|---------|---------|-----------|---------|-------------|
| Room    |          |          |             |              | Reheat     | Cooling | Heating | Auxiliary |         | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum    | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | OFICEL25 |             |              |            | ,       |         |           |         |             |
| 10      | OFFICEP1 | OFICEL26 |             |              |            |         |         |           |         |             |
| 15      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 20      |          | CLGONLY  |             |              |            |         |         |           |         |             |
| 25      |          | CLGONLY  |             |              |            | •       | :       |           |         |             |
| 30      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 35      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 40      |          | CLGONLY  |             |              |            |         |         |           |         |             |
| 45      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 50      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 55      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 60      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 65      | OFFICEP1 | OFICEL27 |             |              |            |         |         |           |         |             |
| 70      | OFFICEP1 | OFFICEL6 |             |              |            |         |         |           |         |             |
| 75      | OFFICEP1 |          |             |              |            |         |         |           |         |             |
| 80      | OFFICEP1 |          |             |              |            |         | *       |           |         |             |
| 85      | OFFICEP1 |          |             |              |            |         |         |           |         |             |
| 90      | OFFICEP1 |          |             |              |            |         |         |           |         |             |
| 95      | OFFICEP1 |          |             |              |            |         |         |           |         |             |
| 100     | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 105     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 110     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 115     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 120     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 125     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 130     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 135     | CLGONLY  |          |             |              |            |         |         |           |         |             |
| 140     | CLGONLY  |          |             |              |            |         |         |           |         |             |
|         |          |          |             |              |            |         |         |           |         |             |

| Card 27 |        |        |          |        | , 00,    | e and Ligh | Lighting |         | Percent  | Daylig    | hting     |
|---------|--------|--------|----------|--------|----------|------------|----------|---------|----------|-----------|-----------|
| Room    | People | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | -        | Reference | Reference |
| Number  | Value  | Units  | Sensible | Latent | Value    | Units      | Туре     | Factor  | Ret. Air | Point 1   | Point 2   |
| 5 .     | 7      | PEOPLE | 250      | 200    | 2880     | WATTS      | ASHRAE1  |         |          |           |           |
| 10      | 3      | PEOPLE | 250      | 200    | 5311     | WATTS      | SUSFLUOR |         |          |           |           |
| 15      | 2      | PEOPLE | 250      | 200    | 11728    | WATTS      | SUSFLUOR |         |          |           |           |
| 20      |        | -      |          |        | 576      | WATTS      | SUSFLUOR |         |          |           |           |
| 25      |        |        |          |        | 3193     | WATTS      | SUSFLUOR |         |          |           |           |
| 30      | 2      | PEOPLE | 250      | 200    | 4128     | WATTS      | ASHRAE1  | •       |          |           |           |
| 35      |        |        |          |        | 1728     | WATTS      | ASHRAE1  |         |          |           |           |
| 40      |        |        |          |        | 5664     | WATTS      | ASHRAE1  |         |          |           |           |
| 45      | 3      | PEOPLE | 250      | 200    | 8064     | WATTS      | ASHRAE1  |         |          |           |           |
| 50      | 1      | PEOPLE | 250      | 200    | 576      | WATTS      | ASHRAE1  |         |          |           |           |
| 55      | 1      | PEOPLE | 250      | 200    | 4416     | WATTS      | ASHRAE1  |         |          |           |           |
| 60      | 3      | PEOPLE | 250      | 200    | 4983     | WATTS      | ASHRAE1  |         |          |           |           |
| 65      | 7      | PEOPLE | 250      | 200    | 9175     | WATTS      | SUSFLUOR |         |          |           |           |
| 70      | 13     | PEOPLE | 250      | 200    | 5568     | WATTS      | ASHRAE1  |         |          |           |           |
| 75      | 15     | PEOPLE | 250      | 200    | 22272    | WATTS      | ASHRAE1  |         |          |           |           |

| Card 27                                                            | '                                                  |                                                                                                 |                                                                                   |     | Peopl                                                        | e and Ligh                                                     | ts<br>Lighting |                   | Percent | Daylig                          |  |
|--------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|--------------------------------------------------------------|----------------------------------------------------------------|----------------|-------------------|---------|---------------------------------|--|
| Room<br>Number<br>80<br>85<br>90<br>95<br>100<br>105<br>110<br>115 | People<br>Value<br>12<br>11<br>16<br>18<br>19<br>1 | People<br>Units<br>PEOPLE<br>PEOPLE<br>PEOPLE<br>PEOPLE<br>PEOPLE<br>PEOPLE<br>PEOPLE<br>PEOPLE | People<br>Sensible<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250 |     | Lighting<br>Value<br>19104<br>7008<br>8310<br>10284<br>16416 | Lighting<br>Units<br>WATTS<br>WATTS<br>WATTS<br>WATTS<br>WATTS |                | Ballast<br>Factor |         | Daylig<br>Reference.<br>Point 1 |  |
| 125<br>130                                                         | 1<br>1                                             | PEOPLE<br>PEOPLE                                                                                | 250<br>250                                                                        | 200 |                                                              |                                                                |                |                   |         |                                 |  |
| 135                                                                | 4                                                  | PEOPLE                                                                                          | 250                                                                               | 200 |                                                              |                                                                |                |                   |         |                                 |  |
| 140                                                                | .1                                                 | PEOPLE                                                                                          | 250                                                                               | 200 |                                                              |                                                                |                |                   |         |                                 |  |

| Card 28 | }         |                  |         | Mis     | cel l'aneous | Equipment |          |         |             |          |          |
|---------|-----------|------------------|---------|---------|--------------|-----------|----------|---------|-------------|----------|----------|
| Caro Ec | ,<br>Misc |                  | Energy  | Energy  |              | Energy    | Percent  | Percent | Percent     |          |          |
| Room    | Equipment | Equipment        | Consump | Consump | Schedule     | Meter     | of Load  |         | Misc. Sens  | Radiant  | •        |
| Number  | - 1 1     | Descrip          | Value   | Units   | Code         | Code      | Sensible | to Room | to Ret. Air | Fraction | Air Patn |
| 5       | 1         | TYP. OFFICE EQ.  | 8500    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 10      | 1         | TYP. OFFICE EQ.  | 1430    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 15      | 1         | TYP. OFFICE EQ.  | 13814   | WATTS   | CLGONLY      |           |          |         |             |          |          |
| 20      | 1         | ELEV. MOTOR      | 6230    | WATTS   | CLGONLY      |           |          |         |             |          |          |
| 30      | 1         | OFFICE, LIGHT EQ | 4636    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 40      | 1         | MISC. EQ.        | 13132   | WATTS   | CLGONLY      |           |          |         |             |          |          |
| 45      | 1         | TYP OFFICE EQ    | 4250    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 55      | 1         | TYP OFFICE EQ    | 830     | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 60      | 1         | TYP OFFICE EQ    | 7140    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 65      | 1         | TYP OFFICE EQ    | 9040    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 70      | 1         | TYP OFFICE EQ    | 12445   | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 85      | 1         | TYP OFFICE EQ    | 9220    | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 90      | 1         | TYP OFFICE EQ    | 4980    | WATTS   | CLGONLY      |           |          |         |             |          |          |
| 95      | 1         | TYP OFFICE EQ    | 23580   | WATTS   | OFFICEL1     |           |          |         |             |          |          |
| 100     | 1         | MISC. OFFICE EQ  | 32541   | WATTS   | OFFICEL2     |           |          |         |             |          |          |
| 105     | 1         | COMPUTERS - UPS  | 5995    | WATTS   | OFFICEM1     |           |          |         |             |          |          |
| 110     | 1         | COMPUTERS - UPS  | 7194    | WATTS   | OFFICEM1     |           |          |         | -           |          |          |
| 115     | . 1       | COMPUTERS - UPS  | 4700    | WATTS   | OFFICEM1     |           |          |         | •           |          |          |
| 120     | 1         | COMPUTERS - UPS  | 3561    | WATTS   | OFFICEM)     |           |          |         |             | •        |          |
| 125     | 1         | COMPUTERS - UPS  | 3561    | WATTS   |              |           |          |         |             |          |          |
| 130     | 1         | COMPUTERS - UPS  | 7320    | WATTS   | OFFICEM1     |           |          |         |             |          |          |
| 135     | 1         | COMPUTERS - UPS  | 2214    | WATTS   | OFFICEM'     |           |          |         |             |          |          |
| 140     | 1         | COMPUTERS - UPS  | 4892    | WATTS   | OFFICEM'     |           |          |         |             |          |          |
| 145     | 1         | COMPUTERS - UPS  | 10978   | WATTS   | OFFICEM      |           |          |         |             |          |          |
| 150     | 1         | COMPUTERS - UPS  | 4434    | WATTS   | OFFICEM      |           |          |         |             |          |          |
| 155     | 1         | COMPLITERS - UPS | 17545   | WATTS   | OFFICEM      | 1 ELEC    |          |         |             |          |          |

|        |       | Venti | lation |       |       | Infil |       |       |       |      |
|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|------|
| Room   |       | ling  |        | ing   |       | ling  | Hea   | ting  |       |      |
| Number | Value | Units | Value  | Units | Value | Units | Value | Units | Value | Unit |
| 5      | 163   | CFM   | 163    | CFM   |       |       |       |       |       |      |
| 10     | 163   | CFM   | 163    | CFM   |       |       |       |       |       |      |
| 15     | 164   | CFM   | 164    | CFM   |       |       |       |       |       |      |
| 20     | 251   | CFM   | 251    | CFM   |       | •     | :     |       |       |      |
| 25     | 251   | CFM   | 251    | CFM   |       |       |       |       |       |      |
| 30     | 251   | CFM   | 251    | CFM   |       |       |       |       |       |      |
| 35     | 251   | CFM   | 251    | CFM   |       |       |       |       |       |      |
| 40     | 251   | CFM   | 251    | CFM   |       |       |       |       |       |      |
| 45     | 800   | CFM   | 800    | CFM   |       |       |       |       |       |      |
| 50     | 393   | CFM   | 393    | CFM   |       |       |       |       |       |      |
| 55     | 393   | CFM   | 393    | CFM   |       |       |       |       |       |      |
| 60     | 393   | CFM   | 393    | CFM   | •     |       |       |       |       |      |
| 65     | 393   | CFM   | 393    | CFM   |       |       |       |       |       |      |
| 70     | 394   | CFM   | 394    | CFM   |       |       |       |       |       |      |
| 75     | 394   | CFM   | 394    | CFM   |       |       | :     |       |       |      |
| 80     | 375   | CFM   | 375    | CFM   |       |       |       |       |       |      |
| 85     | 375   | CFM   | 375    | CFM   |       |       |       |       |       |      |
| 90     | 375   | CFM   | 375    | CFM   |       |       |       |       |       |      |
| 95     | 375   | CFM   | 375    | CFM   |       |       |       |       |       |      |
| 100    | 1000  | CFM   | 1000   | CFM   |       |       |       |       |       |      |
| 135    | 300   | CFM   | 300    | CFM   |       |       |       |       |       |      |

|        |       | Ma    | in    |       |       | Auxi  | liary |       |        |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| Room   | Cool  | ing   | Heat  | ing   | Coo   | ling  | Hea   | ting  | Room E |       |
| Number | Value | Units | Value | Units | Value | Units | Value | Units | Value  | Units |
| 5      | 2675  | CFM   | 2675  | CFM   |       |       |       |       |        |       |
| 10     | 3180  | CFM   | 3180  | CFM   |       |       |       |       |        |       |
| 15     | 10917 | CFM   | 10917 | CFM   |       |       |       |       | 790    | CFM   |
| 20     | 700   | CFM   | 700   | CFM   |       |       |       |       |        |       |
| 25     | 800   | CFM   | 800   | CFM   |       |       |       |       |        |       |
| 30     | 3025  | CFM   | 3025  | CFM   |       |       |       |       |        |       |
| 35     | 845   | CFM   | 845   | CFM   |       |       |       |       |        |       |
| 40     | 17300 | CFM   | 17300 | CFM   |       |       |       |       |        |       |
| 45     | 9060  | CFM   | 9060  | CFM   |       |       |       |       |        | •     |
| 50     | 1100  | CFM   | 1100  | CFM   |       |       |       |       |        |       |
| 55     | 1570  | CFM   | 1570  | CFM   |       |       |       |       |        |       |
| 60     | 1910  | CFM   | 1910  | CFM   |       | .• `  |       |       |        |       |
| 65     | 2905  | CFM   | 2905  | CFM   |       |       |       |       |        |       |
| 70     | 3075  | CFM   | 3075  | CFM   |       |       |       |       |        |       |
| 75     | 6840  | CFM   | 6840  | CFM   |       |       |       |       |        |       |
| 80     | 5952  | CFM   | 5952  | CFM   |       |       |       |       | 3769   | CFM   |
| 85     | 2339  | CFM   | 2339  | CFM   |       |       |       |       |        |       |
| 90     | 4268  | CFM   | 4268  | CFM   |       | •     |       |       |        |       |
| 95     | 3824  | CFM   | 3824  | CFM   |       |       |       |       |        |       |
| 100    | 12518 | CFM   | 12518 | CFM   |       |       |       |       |        |       |

|        |       | Ma    | in    |       |     | Aux i | liary |      |        |        |
|--------|-------|-------|-------|-------|-----|-------|-------|------|--------|--------|
| Room   | Coo   | ling  | Hea   | ting  | Coo | ing   | Hea   | ting | Room E | xhaust |
| Number | Value | Units |       | Units |     |       | Value | -    |        | Units  |
| 105    | 8643  | CFM   | 8643  | CFM   |     |       |       |      |        |        |
| 110    | 11962 | CFM   | 11962 | CFM   |     |       |       |      |        |        |
| 115    | 4780  | CFM   | 4780  | CFM   |     |       |       |      |        |        |
| 120    | 7526  | CFM   | 7526  | CFM   |     |       |       |      |        |        |
| 125    | 7467  | CFM   | 7467  | CFM   |     | •     | •     |      |        |        |
| 130    | 8800  | CFM   | 8800  | CFM   |     |       |       |      |        |        |
| 135    | 11513 | CFM   | 11513 | CFM   |     |       |       |      |        |        |
| 140    | 5409  | CFM   | 5409  | CFM   |     |       |       |      |        |        |
| 145    | 10620 | CFM   | 10620 | CFM   |     |       |       |      |        |        |
| 150    | 8893  | CFM   | 8893  | CFM   |     |       |       |      |        |        |
| 155    | 23005 | CFM   | 23005 | CFM   |     |       |       |      |        |        |

| Card 31 |           |           | Part      | ition Param | neters - |          |         |      |          |
|---------|-----------|-----------|-----------|-------------|----------|----------|---------|------|----------|
| Room    | Partition | Partition | Partition | Partition   | Const    | Тетр     | Cooling |      | Adjacent |
| Number  | Number    | Length    | Height    | U-Value     | Type     | Flag     | Temp    | Temp | Room No  |
| 5       | 1         | 43        | 43        | .18         | 110      | CONSTANT | 63      | 63   |          |
| 10      | 1         | 68.5      | 68.5      | .18         | 110      | CONSTANT | 63      | 63   |          |
| 15      | 1         | 92.5      | 93        | .18         | 110      | CONSTANT | 63      | 63   |          |
| 20      | 1         | 26.5      | 26.5      | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 25      | 1         | 27.5      | 27        | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 30      | 1         | 55.5      | 55.5      | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 35      | 1         | 64        | 10        | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 40      | 1         | 50        | 10        | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 45      | 1         | 111.5     | 10        | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 60      | 1         | 45        | 45        | 0.18        | 110      | CONSTANT | 63      | 63   |          |
| 65      | 1         | 89.5      | 37        | 0.18        | 110      | CONSTANT | 71      | 55   |          |
| 70      | 1         | 89.5      | 37        | 0.18        | 110      | CONSTANT | 71      | 55   |          |
| 75      | 1         | 87        | 87        | 0.18        | 110      | CONSTANT | 71      | 55   |          |
| 85      | 1         | 60        | 60        | 0.18        | 110      | CONSTANT | 71      | 55   |          |

------ System Section Alternative #1 ------

```
Card 39- System Alternative
Number Description
```

1 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

| Card 40     |              |                   | Syste   | m Type    |            |          |          |
|-------------|--------------|-------------------|---------|-----------|------------|----------|----------|
|             |              |                   | OPTION  | AL VENTIL | ATION SYST | EM       |          |
| System      |              | Ventil            |         |           | •          |          | Fan      |
| Set         | System       | Deck              | Cooling | Heating   | Cooling    | Heating  | Static   |
| Number<br>1 | Type<br>BPMZ | Location<br>ROADK | SADBVh  | SADBVh    | Schedule   | Schedule | Pressure |

| Card 40 |        |          | Syste   | m Type  |            |          |          |
|---------|--------|----------|---------|---------|------------|----------|----------|
|         |        |          |         |         | ATION SYST | EM       |          |
| System  |        | Ventil   |         |         |            |          | Fan      |
| Set     | System | Deck     | Cooling | Heating | Cooling    | Heating  | Static   |
| Number  | Type   | Location | SADBVh  | SADBVh  | Schedule   | Schedule | Pressure |
| 2       | BPMZ   |          |         |         |            |          |          |
| 3       | TRH    |          |         |         |            |          |          |
| 4       | TRH    |          |         |         |            |          | :        |
| 5       | TRH    | ROADK    |         |         |            |          | .389     |
| 6       | BPMZ   |          |         |         |            |          |          |
| 7       | COMP   |          |         |         |            |          |          |
| 8       | COMP   |          |         |         |            |          |          |
| 9       | COMP   |          |         |         |            |          |          |
| 10      | COMP   |          |         |         |            |          |          |
| 11      | COMP   |          |         |         |            |          |          |
| 12      | COMP   |          |         |         | •          |          |          |
| 13      | COMP   |          |         |         |            |          |          |
| 14      | TRH    |          |         |         |            |          |          |
|         |        |          |         |         |            |          |          |

| Card 41 |       |     |       | ·   | Zone A | ssignmer | nt    |     |       |     |       |     |
|---------|-------|-----|-------|-----|--------|----------|-------|-----|-------|-----|-------|-----|
| System  |       |     |       |     |        | -        |       |     |       |     |       |     |
| Set     | Ref   | #1  | Ref   | #2  | Ref    | #3       | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Number  | Begin | End | Begin | End | Begin  | End      | Begin | End | Begin | End | Begin | End |
| 1       | 1     | 3   |       |     |        |          | •     |     |       |     |       |     |
| 2       | 4     | 8   |       |     |        |          |       |     |       |     |       |     |
| 3       | 9     | 9   |       |     |        |          |       |     |       |     |       |     |
| 4       | 10    | 15  |       |     |        |          |       |     |       |     |       |     |
| 5       | 16    | 19  |       |     |        |          |       |     |       |     |       |     |
| 6       | 20    | 20  |       |     |        |          |       |     |       |     |       |     |
| 7       | 21    | 21  |       |     |        |          |       |     |       |     |       |     |
| 8       | 22    | 22  |       |     |        |          |       |     |       |     |       |     |
| 9       | 23    | 23  |       |     |        |          |       |     |       |     |       |     |
| 10      | 24    | 24  |       |     |        |          |       |     |       |     | *     |     |
| 11      | 25    | 25  |       |     |        |          |       |     |       |     |       |     |
| 12      | 26    | 26  |       |     |        |          |       |     |       |     |       |     |
| 13      | 27    | 27  |       |     |        |          |       |     |       |     |       |     |
| 14      | 28    | 31  |       |     |        |          |       |     |       |     |       |     |

| Card 42       | !           |             |               | Fan           | SP ar      | nd Duct P     | arameters              | ,                 |                |                |               |
|---------------|-------------|-------------|---------------|---------------|------------|---------------|------------------------|-------------------|----------------|----------------|---------------|
| System<br>Set | Cool<br>Fan | Heat<br>Fan | Return<br>Fan | Mn Exh<br>Fan | Aux<br>Fan | Rm Exh<br>Fan | Cool<br>Fan Mtr<br>Loc | Return<br>Fan Mtr | Supply<br>Duct | Supply<br>Duct | Return<br>Air |
| 1<br>2        | 1.75        |             |               |               | 0,         | 1.0           | Loc                    | Loc               | ne un          | LOC            | Path          |
| 3             |             |             |               | .326<br>.208  |            |               |                        |                   |                |                |               |

| Card 42 | !    |      |     | Far    | SP ar | nd Duct P | arameters | ;       |        |      |        |
|---------|------|------|-----|--------|-------|-----------|-----------|---------|--------|------|--------|
| System  | Cool | Heat |     | Mn Exh |       |           | Cool      | Return  | Supply |      | Return |
| Set     | Fan  | Fan  | Fan | Fan    | Fan   | Fan       | Fan Mtr   | Fan Mtr | Duct   | Duct | Air    |
| Number  | SP   | SP   | SP  | SP     | SP    | SP        | Loc       | Loc     | Ht Gn  | Loc  | Path   |
| 4       | 2.5  |      |     | .613   |       |           |           |         |        |      | . =    |
| 5       | 3.45 |      |     |        |       | 1.5       |           |         |        |      |        |
| 6       | 2.1  |      |     | .26    |       |           |           |         |        |      |        |
| 7       | 0.92 |      |     |        |       |           |           |         |        |      |        |
| 8       | 1.67 |      |     |        |       |           |           | •       |        |      | ,      |
| 9       | 0.64 |      |     |        |       |           |           |         |        |      |        |
| 10      | 1.39 |      |     |        |       |           |           |         |        |      |        |
| 11      | 1.54 |      |     |        |       |           |           |         |        |      |        |
| 12      | 1.04 |      |     |        |       |           |           |         |        |      |        |
| 13      | 1.64 |      |     | .077   |       |           |           |         |        |      |        |
| 14      | 3.25 |      |     |        |       |           |           |         |        |      |        |

| Card 43<br>System<br>Set<br>Number<br>1<br>2<br>3<br>4<br>5<br>6 | Minimum<br>Cooling | Maximum | Minimum | Maximum | Minimum | Maximum<br>Cooling | Minimum | Maximum | Minimum | Design<br>Ht Rec<br>Diff |
|------------------------------------------------------------------|--------------------|---------|---------|---------|---------|--------------------|---------|---------|---------|--------------------------|
|------------------------------------------------------------------|--------------------|---------|---------|---------|---------|--------------------|---------|---------|---------|--------------------------|

| System<br>Set | Main<br>Cooling |            | Direct<br>Evap |      | Auxiliary |      | Main<br>Preheat | Reheat | Mech.    | Auxiliary<br>Heating |
|---------------|-----------------|------------|----------------|------|-----------|------|-----------------|--------|----------|----------------------|
| Number        | Coil            | Economizer | Coil           | Coil | Coil      | Coil | Coil            | Coil   | Humidity | Coil                 |
| 1             |                 |            |                |      |           | OFF  | OFF             | OFF    |          |                      |
| 2             |                 |            |                |      |           | OFF  | OFF             | OFF    |          |                      |
| 6             |                 |            |                |      |           | OFF  | OFF             | OFF    |          |                      |

| Card     | 47  |     |     |        |     |        | Fan Overr | ides |       |         |            | <b>⊁</b> . |
|----------|-----|-----|-----|--------|-----|--------|-----------|------|-------|---------|------------|------------|
| Sys      | Clg | Htg | Ret | Mn Exh | Aux | Rm Exh | Opt Vnt   |      |       | MAIN CO | OLING FAN- |            |
|          |     |     |     |        |     |        |           |      | Air   | Air     | Size       |            |
| Num<br>3 | Eff | Eff | Eff | Eff    | Eff | Eff    | Eff       | Eff  | Value | Units   | Meth       | Confg      |
| 3<br>4   |     |     |     |        |     |        |           |      |       |         |            | BLOW       |
| 5        |     |     |     |        |     |        |           |      |       |         |            | BLOW       |
| _        |     |     |     |        |     |        |           |      |       |         |            | BLOW       |
| 14       |     |     |     |        |     |        |           | •    |       |         |            | BLOW       |

----- Equipment Section Alternative #1 -----Card 59----- Equipment Description / TOD Schedules -----Elec Consump Elec Demand Demand ---- Demand Limit ---Alternative Time of Day Time of Day Limit Temperature Number Schedule Schedule Max KW Alternative Description Schedule Drift 1 EXISTING PRIMARY EQUIPMENT Card 60------Cooling Load Assignment------Load All Coil Cooling Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Ref Cool Ref Sizing Begin End PKPLANT Card 62----- Cooling Equipment Parameters Cool Equip Num ------COOLING-------Ref Code Of --Capacity-- ----Energy------Capacity-- ----Energy----Order Seq Limit Num Name Units Value Units Value Units Value Units Value Units Num Type Number 1 EQ1010S 1 154 TONS 142 KW 91 TONS 88 KW 1 2 EQ1010S 1 154 TONS 91 TONS 142 KW 88 KW 2 Card 63----- Cooling Pumps and References -----Cool ---CHILLED WATER---- ----CONDENSER----- ---HT REC or AUX---- Switch-Ref Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc. Units Value Units Value Units Control Storage Tower Access. 1 39.3 KW 27.5 KW 1 1 KW 18.3 KU 2 Card 64----- Cooling Equipment Options -----Cool Max Load Free Cond Cond Cond Rej Cond Rej Shed Evap Cooling Heat Entering Min Oper To Ref To Ref a HW Num Reset Economizer Precool Type Source Temp Temp -Type Number Temp 1 85 65 HEATING 1 95 2 65, 85 HEATING 2 95 Card 65------ Heating Load Assignment All Coil Assignment Loads To -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Reference Heating Ref Begin End 3 5 14 14 2 3 7 13

| Card 67<br>Heat<br>Ref<br>Number<br>1 | Equip<br>Code<br>Name<br>EQ2002 | Number<br>Of<br>Units | HW Pmp<br>Full Ld<br>Value<br>O | Units<br>KW | Cap'y | ting Equi | ipment Par<br>Energy<br>Rate<br>Value<br>100 | Units PCTEFF PCTEFF | Seq<br>Order<br>Number | Switch<br>over<br>Control | Hot<br>Strg | Misc.<br>Acc. | Cogen | Demand<br>Limit<br>Number |
|---------------------------------------|---------------------------------|-----------------------|---------------------------------|-------------|-------|-----------|----------------------------------------------|---------------------|------------------------|---------------------------|-------------|---------------|-------|---------------------------|
| 2                                     | EQ2002<br>EQ2263                | 1                     | 0                               | KW          |       |           | 100                                          |                     |                        |                           |             |               |       |                           |

| System<br>Set<br>Number | Cooling<br>Fan | Heating<br>Fan | Return<br>Fan | Exhaust<br>Fan | Auxiliary<br>Supply | Room<br>Exhaust | Optional<br>Ventilation |
|-------------------------|----------------|----------------|---------------|----------------|---------------------|-----------------|-------------------------|
| 1                       | EQ4003         |                |               |                |                     | EQ4003          | EQ4003                  |
| 2                       | EQ4003         |                |               | EQ4003         |                     |                 |                         |
| 3                       | EQ4003         |                |               | EQ4003         |                     |                 |                         |
| 4                       | EQ4003         |                |               | EQ4003         |                     | /007            | EQ4003                  |
| 5                       | EQ4003         |                |               |                |                     | EQ4003          | 544003                  |
| 6                       | EQ4003         |                |               | EQ4003         |                     |                 |                         |
| 7                       | EQ4003         |                |               |                |                     |                 |                         |
| 8                       | EQ4003         |                |               |                |                     |                 |                         |
| 9                       | EQ4003         |                |               |                |                     |                 |                         |
| 10                      | EQ4003         |                |               |                |                     |                 |                         |
| 11                      | EQ4003         |                |               |                |                     |                 |                         |
| 12                      | EQ4003         |                |               |                |                     |                 |                         |
| 13                      | EQ4003         |                |               | EQ4003         |                     |                 |                         |
| 14                      | EQ4003         |                |               |                |                     |                 |                         |

|                              | 1                        | MAIN S            | YSTEM-           |                          | OT               | IER SYS                  |                          |             | LIMA        |            | PRIORI<br>Room | Opt        |
|------------------------------|--------------------------|-------------------|------------------|--------------------------|------------------|--------------------------|--------------------------|-------------|-------------|------------|----------------|------------|
| System<br>Set<br>Number<br>1 | Cool<br>Fan<br>KW<br>6.5 | Heat<br>Fan<br>KW | Ret<br>Fan<br>KW | Exh<br>Fan<br>KW<br>.652 | Aux<br>Sup<br>KW | Room<br>Exh<br>KW<br>1.2 | Opt<br>Vent<br>KW<br>.25 | Cool<br>Fan | Heat<br>Fan | Aux<br>Fan | Exh<br>Fan     | Ven<br>Fan |
| 2<br>3<br>4                  | 10.2<br>6.5<br>17.3      |                   |                  | .415<br>1.22             |                  |                          |                          |             |             |            |                |            |
| 5<br>6                       | 13.9<br>7.4<br>3.3       |                   |                  | .519                     | )                | 2.7                      | .779 <sub>.</sub>        | -           |             | •          |                |            |
| 7<br>8<br>9                  | 5.6<br>1.8               | ٠                 |                  |                          |                  |                          |                          |             |             |            |                |            |
| 10<br>11                     | 3.7<br>4.7               |                   |                  |                          |                  |                          |                          |             |             |            |                |            |
| 12<br>13<br>14               | 3.3<br>5.6<br>22.        |                   |                  | .15                      | 6                |                          |                          |             |             |            |                |            |

| Card 71<br>Base<br>Utility<br>Number<br>1 | Base<br>Utility<br>Descrip<br>CHW PIP        |                         | Hourly<br>Demand<br>Value<br>4.64<br>77.4 | Hourly               |                                              | Energy<br>Type<br>CHILL-LD    | Equip<br>Refere<br>Number | Dem<br>nce Lim             |                     | ntering l                  | Leaving<br>Temp |               |
|-------------------------------------------|----------------------------------------------|-------------------------|-------------------------------------------|----------------------|----------------------------------------------|-------------------------------|---------------------------|----------------------------|---------------------|----------------------------|-----------------|---------------|
| Card 74<br>Tower<br>Ref<br>1<br>2         | Cooling<br>Tower<br>Code<br>Ea5100<br>EQ5100 |                         | Capacity<br>Units                         | Energy               | / Coolin<br>Energy<br>Consump<br>Units<br>KW |                               | Tower<br>Type<br>CTOWER   | Number<br>Of<br>Cells<br>1 | Percent<br>Airflow  | Low Spd<br>Energy<br>Value | Energy          |               |
|                                           | #1<br>Equip<br>Code<br>EQ5020                | Energy<br>Value<br>16.6 | Energy S<br>Units C<br>KW                 | #<br>ched E<br>ode C | 2<br>quip<br>code                            | aneous Aco<br>Energy<br>Value | Energy<br>Units           | Sched<br>Code              | #3<br>Equip<br>Code | Energ<br>Value             |                 | Sched<br>Code |

Card 19- Load Alternative Number Description
2 ECO A - LIGHTING FIXTURE UPGRADE

|         |           |                   |        | Genera | l Room | Paramete | rs         |                   |                     |                        |   |
|---------|-----------|-------------------|--------|--------|--------|----------|------------|-------------------|---------------------|------------------------|---|
| Card 20 | Zone      |                   |        |        |        |          | Acoustic   | Floor to<br>Floor | Duplicate<br>Floors | Duplicate<br>Rooms per |   |
| Room    | Reference | Room              | Floor  | Floor  | Const  |          | Ceiling    | Height            | Multiplier          | •                      | • |
| Number  | Number    | Descrip           | Length | Width  | Type   | Height   | Resistance | <del>-</del>      | Materpero.          |                        |   |
| 5       | 1         | B-17 B,C,& D      | 25.5   | 59.5   | 10     | 2        |            | 10                |                     |                        |   |
| 10      | 2         | B-17,18,AEROBICS  | 59     | 59.5   | 10     | 2        |            | 10 _              |                     |                        |   |
| 15      | 3         | B-8,16,27-32      | 80.5   | 80.5   | 10     | 2        |            | 10                |                     |                        |   |
| 20      | 4         | B-25,25A          | 22     | 15     | 10,    | 2        |            | 10                |                     |                        |   |
| 25      | 5         | B-4               | 27     | 27.5   | 10     | 2        |            | 10                |                     |                        |   |
| 30      | 6         | B-12,12A          | 55.5   | 55.5   | 10     | 2        |            | 10                |                     |                        |   |
| 35      | 7         | B-2,13,19,20-22   | 45.5   | 45.5   | 10     | 2        |            | 10                |                     |                        |   |
|         | 8         | B-1,3,24          | 81     | 81     | 10     | 2        |            | 10                |                     |                        |   |
| 40      | -         | B-9,10,11,11A     | 111.5  | 20     | 10     | 2        |            | 10                |                     |                        |   |
| 45      | 9         | DOMES, MAIN WINGS | 40     | 40.5   | 10     | 2        |            | 10                |                     |                        |   |
| 50      | 10        |                   | 48     | 48     | 10     | 2        |            | 10                |                     |                        |   |
| 55      | 11        | SW LOWER DOME     | 48     | 48     | 10     | 2        |            | 10                |                     |                        |   |
| 60      | 12        | NE LOWER DOME     |        | 37     | 10     | 2        |            | 10                |                     |                        |   |
| 65      | 13        | MAIN FLR WEST     | 89.5   | ٠,     | .0     | -        |            |                   |                     |                        |   |

## ECO-A, LSTC BUILDING

|        | Zone      |                   |        |       |       | Paramete | Acoustic   | El    | D                   |           |       |
|--------|-----------|-------------------|--------|-------|-------|----------|------------|-------|---------------------|-----------|-------|
| Room   | Reference | Room              | Floor  | Floor | Const | Plenum   |            | Floor | Duplicate<br>Floors | Duplicate |       |
| Number | Number    | Descrip           | Length | Width | Type  | Height   | •          |       |                     | Rooms per | Depth |
| 70     | 14        | MAIN FLR EAST     | 61     | 61    | 10    | 2        | Resistance | 10    | Multiplier          | Zone      |       |
| 75     | 15        | 112,119A,123A,    | 94.5   | 95    | 10    | 2        |            | 10    |                     |           |       |
| B0     | 16        | MAIN FLOOR CENTR  | 93     | 93.5  | 10    | 2        |            | 10    |                     |           |       |
| B5     | 17        | MAIN FLOOR SOUTH  | 51     | 51    | 10.   | 2        |            | 10    |                     |           |       |
| 90     | 18        | L.DOME COMP. RMS. | 63.5   | 63.5  | 10    | 2        |            | 10    |                     | 1         |       |
| 95     | 19        | L.DOME OFFICES    | 71     | 71    | 10    | 2        |            | 10    |                     |           |       |
| 100    | 20        | U.DOME            | 88.5   | 88.5  | 10    | 2        |            | 10    |                     |           |       |
| 105    | 21        | RM 119, AH-8      | 1      | 1     | .•    | -        |            | 10    |                     |           |       |
| 110    | 22        | RM 119A, AH-9     | 1      | 1     |       |          |            |       |                     |           |       |
| 115    | 23        | RM 123, AH-10     | 1      | 1     |       |          |            |       |                     |           |       |
| 120    | 24        | RM 127A, AH-11A   | 1      | 1     |       |          |            |       |                     |           |       |
| 125    | 25        | RM 127A, AH-11B   | 1 .    | 1     |       |          |            |       |                     |           |       |
| 130    | 26        | RM 127, AH-12     | 1      | 1     |       |          |            |       |                     |           |       |
| 135    | 27        | AUX CNTRL, AH-14  | 1      | 1     |       |          |            |       |                     |           |       |
| 140    | 28        | RM 110 UNDERFLOR  | 33     | 34    | 10    | 2        |            | 10    |                     |           |       |
| 145    | 29        | RM 120A,122,126A  | 50     | 50    | 10    | 2        |            | 10    | •                   |           |       |
| 150    | 30        | RM 146A,148,148A  | 32     | 32    | 10    | 2        |            | 10    |                     |           |       |
| 155    | 31        | 204,205,206,207   | 63.5   | 63.5  | 10    | 2        |            | 10    |                     |           |       |

| Card 21 | Cooling    | Room   |            |          |           | meters     |          |          |           |        |
|---------|------------|--------|------------|----------|-----------|------------|----------|----------|-----------|--------|
| Room    | Room       | Design | Cooling    | Cooling  |           | Heating    | Heating  | T'stat   | Mass /    | Carpet |
| lumber  | Design DB  | -      |            | T'stat   | Room      | T'stat     | T'stat   | Location | No. Hrs   | 0n     |
|         | _          | RH     | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average   | Floor  |
|         | 75<br>     | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 0       | 75<br>     | 50     | <b>7</b> 5 |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 5       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 0       | <b>7</b> 5 | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 5       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  |        |
| 0       | <b>7</b> 5 | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  |        |
| 5       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  |        |
| 0       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY 130 |        |
| ;       | 70         | 45     | 70         |          | 70        | 70         |          |          | HEAVY 130 |        |
| )       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  |        |
| 5       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  |        |
| )       | 75         | 50     | <b>7</b> 5 |          | 70        | 70         |          |          |           |        |
| ;       | 75         | 50     | 75         | *        | 70        | 70         |          |          | HEAVY130  |        |
|         | 75         | 50     | 75         |          | 70        |            |          | *        | HEAVY130  |        |
| 5       | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  |        |
| )       | 70         | 45     | 70         |          |           | 70         |          |          | HEAVY130  |        |
| 5       | 75         | 50     | 75<br>75   |          | 70<br>70  | 70         |          |          | HEAVY130  | NO     |
| 0       | 70         |        |            |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 5       | 75         | 45     | 70         |          | 70        | 70         |          |          | HEAVY130  | NO     |
|         |            | 50     | 75<br>     |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 00      | 75<br>     | 50     | 75         |          | 70        | 70         |          |          | HEAVY130  | NO     |
| 05      | 70         | 45     | 70         |          | 70 ·      | 70         |          |          |           |        |
| 10      | 70         | 45     | 70         |          | 70        | 70         |          |          |           |        |

| Card 21 |           |        |            | Therm    | ostat Param | eters         |          |          |         |        |
|---------|-----------|--------|------------|----------|-------------|---------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | Heating       | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat        | T'stat   | Location | No. Hrs | 0n     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint    | Schedule | Flag     | Average | Floor  |
| 115     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 120     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 125     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 130     | 70        | 45     | 70         |          | 70          | , <b>70</b> • |          |          |         |        |
| 135     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 140     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 145     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 150     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |
| 155     | 70        | 45     | 70         |          | 70          | 70            |          |          |         |        |

| Card 22 | !      |          |        | Roof Par | ameters |       |           |      |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |          |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt | Alpha |
| 50      | 1      | YES      |        |          | 0.18    | 19    |           |      | .4    |
| 100     | 1      | NO       | 88     | 88       | 0.18    | 19    |           |      | .4    |

| Card 24 | ,      |        |        | · Wall P | arameters |           |      |       |             |
|---------|--------|--------|--------|----------|-----------|-----------|------|-------|-------------|
|         |        |        |        |          | Wall      |           |      |       | Ground      |
| Room    | Wall   | Wall   | Wall   | Wall     | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number  | Number | Length | Height | U-Value  | Type      | Direction | Tilt | Alpha | Multiplier  |
| 50      | 1      | 26.5   | 31     | 0.18     | 94        | 0         |      | .4    |             |
| 50      | 2      | 26.5   | 31     | 0.18     | 94        | 90        |      | .4    |             |
| 50      | 3      | 26.5   | 31     | 0.18     | 94        | 180       |      | .4    |             |
| 50      | 4      | 26.5   | 31     | 0.18     | 94        | 270       |      | .4    |             |
| 55      | 1      | 42     | 15     | 0.18     | 94        | 0         |      | .4    |             |
| 55      | 2      | 42     | 15     | 0.18     | 94        | 90        |      | .4    |             |
| 55      | 3      | 42     | 15     | 0.18     | 94        | 180       |      | .4    |             |
| 55      | 4      | 42     | 15     | 0.18     | 94        | 270       |      | .4    |             |
| 60      | 1      | 42     | 15     | 0.18     | 94        | 0         |      | .4    |             |
| 60      | 2      | 42     | 15     | 0.18     | 94        | 90        |      | .4    |             |
| 60      | 3      | 42     | 15     | 0.18     | 94        | 180       |      | .4    |             |
| 60      | 4      | 42     | 15     | 0.18     | 94        | 270       |      | .4    |             |
| 90      | 1      | 37.5   | 10     | 0.18     | 94        | 0         |      | .4    |             |
| 90      | 2      | 37.5   | 10     | 0.18     | 94        | 90        |      | .4    |             |
| 90      | 3      | 37.5   | 10     | 0.18     | 94        | 180       |      | .4    |             |
| 90      | 4      | 37.5   | 10     | 0.18     | 94        | 270       |      | .4    |             |
| 95      | 1      | 47     | 10     | 0.18     | 94        | 0         |      | .4    |             |
| 95      | 2      | 47.5   | 10     | 0.18     | 94        | 90        |      | .4    |             |
| 95      | 3      | 47     | 10     | 0.18     | 94        | 180       |      | .4    |             |
| 95      | 4      | 47.5   | 10     | 0.18     | 94        | 270       |      | .4    |             |
| 100     | 1      | 78     | 29     | 0.18     | 94        | Ò         |      | .4    |             |
| 100     | 2      | 78.5   | 29     | 0.18     | 94        | 90        |      | .4    |             |
|         |        |        |        |          |           |           |      |       |             |

| Card 24                      |                          |                              |                            | Wall P                          | arameters<br>Wall |                                 |              |      | Ground<br>Reflectance |
|------------------------------|--------------------------|------------------------------|----------------------------|---------------------------------|-------------------|---------------------------------|--------------|------|-----------------------|
| Room<br>Number<br>100<br>100 | Wall<br>Number<br>3<br>4 | Wall<br>Length<br>78<br>78.5 | Wall<br>Height<br>29<br>29 | Wall<br>U-Value<br>0.18<br>0.18 | COMPLET           | Wall<br>Direction<br>180<br>270 | Wall<br>Tilt | **** | Multiplier            |

| ard 26- |          |           |             | S            | chedules -<br>Reheat | Cooling | Heating | Auxiliary | Room    | Daylightin<br>Controls |
|---------|----------|-----------|-------------|--------------|----------------------|---------|---------|-----------|---------|------------------------|
| oom     |          | Lights    | Ventilation | Infiltration | Minimum              | Fans    | Fan     | Fan       | EXHAUST |                        |
|         |          | OFICEL25  |             |              |                      |         |         |           |         |                        |
|         | OFFICEP1 | OFICEL26  |             |              |                      |         |         |           |         |                        |
| 15      | OFFICEP1 | CLGONLY   |             |              |                      |         |         |           |         |                        |
| 20      | •        | CLGONLY   |             |              |                      |         |         |           |         |                        |
| 25      |          | CLGONLY   |             |              |                      |         |         |           |         | :                      |
| 30      | OFFICEP1 | CLGONLY   |             |              |                      |         |         |           |         | •                      |
| 35      | OFFICEP1 | CLGONLY   |             |              |                      |         |         |           |         |                        |
| 40      |          | CLGONLY   |             |              |                      |         |         |           |         |                        |
| 45      | OFFICEP1 | CLGONLY   |             |              |                      |         |         |           |         |                        |
| 50      | OFFICEP1 |           |             |              |                      |         |         |           |         |                        |
| 55      | OFFICEP1 |           |             |              |                      |         |         |           |         |                        |
| 60      | OFFICEP1 | CLGONLY   |             |              |                      |         |         |           |         |                        |
| 65      | OFFICEP1 | OF I CEL2 |             |              |                      |         |         |           |         |                        |
| 70      | OFFICEP' | OFFICEL   |             |              |                      |         |         |           |         |                        |
| 75      | OFFICEP  |           |             |              |                      |         |         |           |         |                        |
| 80      | OFFICEP  | 1 OFICEL2 |             |              |                      |         |         |           |         |                        |
| 85      | OFFICEP  | 1 OFFICE  |             |              |                      |         |         |           |         |                        |
| 90      | OFFICEP  |           |             |              |                      |         |         |           |         |                        |
| 95      | OFF1CEF  |           |             |              |                      |         |         |           |         |                        |
| 100     | OFFICE   |           | Y           |              |                      |         |         |           |         |                        |
| 105     | CLGONL'  | Y         |             |              |                      |         |         |           |         |                        |
| 110     | CLGONL   | Y         |             |              |                      |         |         |           |         |                        |
| 115     | CLGONL   |           |             |              |                      |         |         |           |         |                        |
| 120     | CLGONL   |           |             |              |                      |         |         |           |         |                        |
| 125     | CLGON    |           |             |              |                      |         |         |           |         |                        |
| 130     | CLGONI   | _Y        |             |              |                      |         |         |           |         |                        |
| 135     | CLGON    | LY        |             |              |                      |         |         |           |         |                        |
| 140     | CLGON    | LY        |             |              |                      |         |         |           |         |                        |

|                                       |                                               |                        |        |  | •        |        | <br> |                               |
|---------------------------------------|-----------------------------------------------|------------------------|--------|--|----------|--------|------|-------------------------------|
| Room<br>Number<br>5<br>10<br>15<br>20 | People<br>Units<br>PEOPLE<br>PEOPLE<br>PEOPLE | Sensible<br>250<br>250 | people |  | Lighting | Factor |      | hting<br>Reference<br>Point 2 |

|                                                                                                                       |                                                                           |                                                                                                                                                                                |                                                      |                                                                    | Peopl                                                                                         | e and Ligh                                                              | ts                                                                                               |                   | Percent | Daylig               | hting                |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|---------|----------------------|----------------------|
| Card 27-<br>Room<br>Number                                                                                            | People<br>Value                                                           | People<br>Units                                                                                                                                                                | People<br>Sensible                                   | People<br>Latent                                                   | Lighting<br>Value<br>2060                                                                     | Lighting<br>Units<br>WATTS                                              | Fixture<br>Type<br>SUSFLUOR                                                                      | Ballast<br>Factor |         | Reference<br>Point 1 | Reference<br>Point 2 |
| 25<br>30<br>35                                                                                                        | 2                                                                         | PEOPLE                                                                                                                                                                         | 250                                                  | 200                                                                | 2683<br>1115<br>3683                                                                          | WATTS<br>WATTS<br>WATTS                                                 | ASHRAE1<br>ASHRAE1<br>ASHRAE1                                                                    |                   |         |                      |                      |
| 40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80<br>85<br>90<br>95<br>100<br>105<br>110<br>115<br>120<br>125<br>130 | 3<br>1<br>1<br>3<br>7<br>13<br>15<br>12<br>11<br>16<br>18<br>19<br>1<br>1 | PEOPLE | 250<br>250<br>250<br>250<br>250<br>250<br>250<br>250 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 4838<br>374<br>2870<br>3024<br>5967<br>3463<br>13978<br>11936<br>4403<br>5302<br>6382<br>9998 | WATTS | ASHRAE1 ASHRAE1 ASHRAE1 SUSFLUOR ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 |                   |         |                      |                      |

| Misc |                                                      |                                                 |                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                   |                                                        |         |                       |            |   |  |
|------|------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|-----------------------|------------|---|--|
|      | Room Number 5 10 15 20 30 40 45 55 60 65 70 85 90 95 | Misc<br>Equipment<br>Number<br>1<br>1<br>1<br>1 | Descrip TYP. OFFICE EQ. TYP. OFFICE EQ. TYP. OFFICE EQ. ELEV. MOTOR OFFICE, LIGHT EQ MISC. EQ. TYP OFFICE EQ | Consump<br>Value<br>8500<br>1430<br>13814<br>6230<br>4636<br>13132<br>4250<br>830<br>7140<br>9040<br>12445<br>9220<br>4980<br>23580<br>32541 | Energy Consump Units WATTS | Schedule Code OFFICEL1 OFFICEL1 CLGONLY OFFICEL1 OFFICEL1 OFFICEL OFFICEL OFFICEL CLGONLY OFFICEL OFFICEL OFFICEL OFFICEL OFFICEL OFFICEL OFFICEL | Energy Meter Code  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | of Load | Misc. Load<br>to Room | Misc. Sens | _ |  |

| Equipment Descrip COMPUTERS - U C COMPUTERS - U C COMPUTERS - U C C C C C C C C C C C | Va PS 71' PS 47 PS 35 PS 35 PS 35 PS 26 PS 41 PS 41 PS 41 PS 41 PS 41                           | Lue Unit 94 WAT1 700 WAT1 661 WAT3 661 WAT3 320 WAT2 214 WAT8 892 WAT 0978 WAT4 434 WAT8 435 WAT8 435 WAT8 436 WAT8 436 WAT8 436 WAT8 436 WAT8 436 WAT8 437 WAT8 447 | OFFICEM1                                                                                                                                                                                                             | Code ELEC ELEC ELEC ELEC ELEC ELEC ELEC ELE                                                                                                                                                                                                                                                                                                                                                                                         | of Load<br>Sensible                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     | Misc. Sens<br>to Ret. Air                                                                                                                                                                                                                                                                                                                                                                       | Fraction                                                                                                                                                                                                                                                                                                                                                    | AIT Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descrip COMPUTERS - U C COMPUTERS - U C COMPUTERS - U C COMPUTERS - U C | PS 711 PS 47 PS 35 PS 35 PS 35 PS 26 PS 26 PS 41 PS 41 PS 41 PS 41 PS 41 PS 41                  | 94 WAT1 661 WAT 661 WAT 661 WAT 320 WAT 214 WAT 892 WAT 0978 WAT 434 WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OFFICEM1                                                                                                                                                                                                             | ELEC ELEC ELEC ELEC ELEC ELEC ELEC ELEC                                                                                                                                                                                                                                                                                                                                                                                             | 36131044                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - U C COMPUTERS - U | 19PS 47<br>19PS 35<br>19PS 35<br>19PS 73<br>19PS 27<br>19PS 41<br>19PS 41<br>19PS 41<br>19PS 41 | 700 WAT' 661 WAT' 661 WAT 320 WAT 214 WAT 892 WAT 0978 WAT 434 WA'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TTS OFFICEM1 TTS OFFICEM1 TTS OFFICEM1                                                                                                                                                                                                 | ELEC ELEC ELEC ELEC ELEC ELEC ELEC                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - U C COMPUTERS - U C COMPUTERS - U C C C C C C C C C C C C C C C C C C C                 | IPS 47 IPS 35 IPS 35 IPS 35 IPS 22 IPS 24 IPS 41 IPS 41 IPS 41 IPS 4                            | 661 WAT<br>661 WAT<br>320 WAT<br>214 WAT<br>892 WAT<br>0978 WAI<br>434 WA'<br>17545 WA'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TTS OFFICEM1 TTS OFFICEM1                                                                                                                                                                                                                       | ELEC ELEC ELEC ELEC ELEC ELEC                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     | ÷                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - L C COMPUTERS - L C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                     | UPS 35 UPS 35 UPS 73 UPS 26 UPS 46 UPS 41 UPS 4 UPS 4                                           | 561 WAT<br>320 WAT<br>214 WAT<br>892 WAT<br>0978 WAT<br>434 WA'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TTS OFFICEM1 TTS OFFICEM1                                                                                                                                                                                                                                   | ELEC<br>ELEC<br>ELEC<br>ELEC<br>ELEC                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - L C COMPUTERS - L C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                             | UPS 35 UPS 73 UPS 26 UPS 46 UPS 41 UPS 49 UPS 4                                                 | 320 WAT<br>214 WAT<br>892 WAT<br>0978 WAT<br>434 WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TTS OFFICEM1 TTS OFFICEM1                                                                                                                                                                                                                                               | ELEC<br>ELEC<br>ELEC<br>ELEC                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UPS 73<br>UPS 26<br>UPS 44<br>UPS 19<br>UPS 4<br>UPS 1                                          | 214 WAT<br>892 WAT<br>0978 WAT<br>.434 WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS OFFICEM1 TS OFFICEM1 TS OFFICEM1 TTS OFFICEM1 TTS OFFICEM                                                                                                                                                                                                                                                            | ELEC<br>ELEC<br>ELEC                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - COMPUTERS - COMPUTERS - COMPUTERS - COMPUTERS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UPS 22<br>UPS 44<br>UPS 11<br>UPS 4<br>UPS 1                                                    | 892 WAT<br>0978 WAT<br>.434 WA<br>17545 WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS OFFICEM1 TTS OFFICEM1 TTS OFFICEM1 TTS OFFICEM                                                                                                                                                                                                                                                                       | ELEC<br>ELEC                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - COMPUTERS - COMPUTERS - COMPUTERS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UPS 41<br>UPS 11<br>UPS 4<br>UPS 1                                                              | 0978 WAT<br>.434 WAT<br>17545 WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TTS OFFICEM <sup>1</sup> TTS OFFICEM <sup>2</sup> TTS OFFICEM <sup>3</sup>                                                                                                                                                                                                                                              | ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - COMPUTERS - COMPUTERS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ups 1<br>ups 4<br>ups 1                                                                         | .434 WA<br>17545 WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTS OFFICEM' TTS OFFICEM'                                                                                                                                                                                                                                                                                               | ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS - COMPUTERSVentilat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UPS 4<br>UPS 1                                                                                  | 7545 WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rts OFFICEM'                                                                                                                                                                                                                                                                                                            | ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMPUTERS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ups 1                                                                                           | 7545 WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                         | 1 ELEC                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ventilat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ventilat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Boom Airflow                                                                                                                                                                                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ventilat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - ROOM ATTITUE                                                                                                                                                                                                                                                                                                          | Infiltr                                                                                                                                                                                                                                                                                                                                                                                                                             | ation                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     | Reheat Mini                                                                                                                                                                                                                                                                                                                                                                                     | imum                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10n                                                                                             | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         | j                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heati                                                                                                                                                                                                                                                                                                       | ng                                                                                                                                                                                                                                                                                                                                                                                  | Keneat min                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 011113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value                                                                                                                                                                                                                                                                                                                   | Units                                                                                                                                                                                                                                                                                                                                                                                                                               | Value                                                                                                                                                                                                                                                                                                       | Units                                                                                                                                                                                                                                                                                                                                                                               | Value                                                                                                                                                                                                                                                                                                                                                                                           | 0,11,10                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 393                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 393                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 393                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 394                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 394                                                                                             | CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 375                                                                                             | CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 375                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 375                                                                                             | CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 375                                                                                             | CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000                                                                                            | CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                             | CFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CFM                                                         | CFM 163 CFM 163 CFM 164 CFM 251 CFM 251 CFM 251 CFM 251 CFM 251 CFM 393 CFM 393 CFM 393 CFM 393 CFM 394 CFM 375 CFM 375 CFM 375 CFM 375 CFM 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CFM 163 CFM CFM 163 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 395 CFM CFM 395 CFM CFM 375 CFM | CFM 163 CFM CFM 163 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 395 CFM CFM 395 CFM CFM 397 CFM CFM 397 CFM CFM 398 CFM CFM 399 CFM CFM 375 CFM | CFM 163 CFM CFM 163 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 394 CFM CFM 394 CFM CFM 395 CFM CFM 375 CFM | CFM 163 CFM CFM 163 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 395 CFM CFM 396 CFM CFM 397 CFM CFM 375 CFM | CFM 163 CFM CFM 163 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 395 CFM CFM 396 CFM CFM 397 CFM CFM 397 CFM CFM 398 CFM CFM 399 CFM | CFM 163 CFM CFM 164 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 395 CFM CFM 395 CFM CFM 397 CFM CFM 398 CFM CFM 399 CFM | CFM 163 CFM CFM 164 CFM CFM 251 CFM CFM 393 CFM CFM 395 CFM CFM 395 CFM CFM 396 CFM CFM 397 CFM CFM 397 CFM CFM 398 CFM CFM 399 CFM CFM 399 CFM CFM 399 CFM CFM 399 CFM CFM 390 CFM CFM 391 CFM CFM 395 CFM CFM 396 CFM CFM 397 CFM CFM 375 CFM |

| card 30 |       |       |       |       | Fan Airflo | ws    |       |       |              |              |
|---------|-------|-------|-------|-------|------------|-------|-------|-------|--------------|--------------|
| Cara 30 |       | Ma    | in    |       |            |       | liary |       |              |              |
| Room    | Cool  |       |       | ing   | Cool       | ling  |       | ting  | Room E       | Units        |
| Number  | Value | Units | Value | Units | Value      | Units | Value | Units | Value<br>790 | CFM          |
| 15      | 10917 | CFM   | 10917 | CFM   |            |       |       |       | 790          | Crn          |
| 20      | 700   | CFM   | 700   | CFM   |            |       |       |       |              |              |
| 25      | 800   | CFM   | 800   | CFM   |            |       |       |       |              |              |
| 30      | 3025  | CFM   | 3025  | CFM   |            |       | •     |       |              |              |
| 35      | 845   | CFM   | 845   | CFM   |            |       |       |       |              |              |
| 40      | 17300 | CFM   | 17300 | CFM   |            |       |       |       |              |              |
| 45      | 9060  | CFM   | 9060  | CFM   |            |       |       |       |              |              |
| 50      | 1100  | CFM   | 1100  | CFM   |            |       |       |       |              |              |
| 55      | 1570  | CFM   | 1570  | CFM   |            |       |       |       |              |              |
| 60      | 1910  | CFM   | 1910  | CFM   |            |       |       |       |              |              |
| 65      | 2905  | CFM   | 2905  | CFM   |            |       |       |       |              |              |
| 70      | 3075  | CFM   | 3075  | CFM   |            |       |       |       |              |              |
| 75      | 6840  | CFM   | 6840  | CFM   |            |       |       |       | 3769         | CFM          |
| 80      | 5952  | CFM   | 5952  | CFM   |            |       |       |       | 3,07         | <del>-</del> |
| 85      | 2339  | CFM   | 2339  | CFM   | :          |       |       |       | ,            |              |
| 90      | 4268  | CFM   | 4268  | CFM   |            |       |       |       |              |              |
| 95      | 3824  | CFM   | 3824  | CFM   |            |       |       |       |              |              |
| 100     | 12518 | CFM   | 12518 | CFM   |            |       |       |       |              |              |
| 105     | 8643  | CFM   | 8643  | CFM   |            |       |       |       |              |              |
| 110     | 11962 | CFM   | 11962 | CFM   |            |       |       |       |              |              |
| 115     | 4780  | CFM   | 4780  | CFM   |            |       |       |       |              |              |
| 120     | 7526  | CFM   | 7526  | CFM   |            |       |       |       |              |              |
| 125     | 7467  | CFM   | 7467  | CFM   |            |       |       |       |              |              |
| 130     | 8800  | CFM   | 8800  | CFM   |            |       |       |       |              |              |
| 135     | 11513 | CFM   | 11513 | CFM   |            |       |       |       |              |              |
| 140     | 5409  | CFM   | 5409  | CFM   |            |       |       |       |              |              |
| 145     | 10620 | CFM   | 10620 | CFM   |            |       |       |       |              |              |
| 150     | 8893  | CFM   | 8893  | CFM   |            |       |       |       |              |              |
| 155     | 23005 | CFM   | 23005 | CFM   |            |       |       |       |              |              |
|         |       |       |       |       |            |       |       |       | -            |              |

| ion Partition<br>Length<br>43<br>68.5<br>92.5<br>26.5<br>27.5 | Height<br>43<br>68.5<br>93<br>26.5      | Partition<br>U-Value<br>.18<br>.18<br>.18 | Type<br>110<br>110<br>110<br>110                          | Flag<br>CONSTANT<br>CONSTANT<br>CONSTANT                                  | Temp<br>63<br>63<br>63<br>63                                                                         | Temp 63 63 63 63                                                                                                 | Room No                                                                                                                       |
|---------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 43<br>68.5<br>92.5<br>26.5                                    | 43<br>68.5<br>93<br>26.5                | .18<br>.18                                | 110<br>110                                                | CONSTANT<br>CONSTANT                                                      | 63<br>63                                                                                             | 63<br>63                                                                                                         |                                                                                                                               |
| 68.5<br>92.5<br>26.5                                          | 68.5<br>93<br>26.5                      | .18                                       | 110                                                       | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
| 92.5<br>26.5                                                  | 93<br>26.5                              | .18                                       |                                                           |                                                                           |                                                                                                      |                                                                                                                  |                                                                                                                               |
| 26.5                                                          | 26.5                                    | 0.18                                      | 110                                                       | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
|                                                               |                                         |                                           |                                                           |                                                                           |                                                                                                      |                                                                                                                  |                                                                                                                               |
|                                                               | 27                                      | 0.18                                      | 110                                                       | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
| 55.5                                                          | 55.5                                    | 0.18                                      | 110                                                       | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
|                                                               | -                                       |                                           | 110                                                       | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
| -                                                             |                                         |                                           | 110                                                       | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
| -                                                             |                                         |                                           |                                                           | CONSTANT                                                                  | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
|                                                               |                                         |                                           |                                                           |                                                                           | 63                                                                                                   | 63                                                                                                               |                                                                                                                               |
|                                                               |                                         |                                           | -                                                         |                                                                           | 71                                                                                                   | <b>5</b> 5                                                                                                       |                                                                                                                               |
| 89.5                                                          |                                         |                                           |                                                           |                                                                           |                                                                                                      | h.                                                                                                               |                                                                                                                               |
|                                                               | 64<br>50<br>111.5<br>45<br>89.5<br>89.5 | 50 10<br>111.5 10<br>45 45<br>89.5 37     | 50 10 0.18<br>111.5 10 0.18<br>45 45 0.18<br>89.5 37 0.18 | 50 10 0.18 110<br>111.5 10 0.18 110<br>45 45 0.18 110<br>89.5 37 0.18 110 | 50 10 0.18 110 CONSTANT 111.5 10 0.18 110 CONSTANT 45 45 0.18 110 CONSTANT 89.5 37 0.18 110 CONSTANT | 50 10 0.18 110 CONSTANT 63 111.5 10 0.18 110 CONSTANT 63 45 45 0.18 110 CONSTANT 63 89.5 37 0.18 110 CONSTANT 71 | 64 10 0.18 110 CONSTANT 63 63 111.5 10 0.18 110 CONSTANT 63 63 115 45 0.18 110 CONSTANT 63 63 89.5 37 0.18 110 CONSTANT 71 55 |

| KOOM          | Partition | Partition | Partition | ition Param<br>Partition | Const | Temp     |      | Heating |         |
|---------------|-----------|-----------|-----------|--------------------------|-------|----------|------|---------|---------|
| <b>Number</b> | Number    | Length    | Height    | ป-Value                  | Type  | Flag     | Temp | Temp    | Room No |
| 75            | 1         | 87        | 87        | 0.18                     | 110   | CONSTANT | 71   | 55      |         |
| 35            | 1         | 60        | 60        | 0.18                     | 110   | CONSTANT | 71   | 55      |         |

System Section Alternative #2 -----

Card 39- System Alternative Description

EXISTING SECONDARY EQUIPMENT AND SYSTEMS

Card 40----- System Type -----------OPTIONAL VENTILATION SYSTEM-----System Ventil Set System Cooling Heating Cooling Heating Static Number Type Location SADByh SADByh Schedule Schedule Pressure 1 BPMZ 2 BPMZ 3 TRH 4 TRH 5 TRH ROADK .389 BPMZ COMP COMP COMP 10 COMP 11 COMP 12 COMP 13 COMP 14 TRH

| Set    | Ref   | #1  | Ref   | #2  | Ref   | #3  | Ref     | #4   | Ref   | #5   | Ref   | #6  |
|--------|-------|-----|-------|-----|-------|-----|---------|------|-------|------|-------|-----|
| Number | Begin | End | Begin | End | Begin | End | . Begin | End  | Begin | End  | Begin | End |
| 1      | 1     | 3   |       |     |       |     | , 203,  | 2170 | begin | LIIG | begin | End |
| 2      | 4     | 8   |       |     |       |     |         |      |       |      |       |     |
| 3      | 9     | 9   |       |     |       |     |         |      |       |      |       |     |
| 4      | 10    | 15  |       |     |       |     |         |      |       |      |       |     |
| 5      | 16    | 19  |       |     |       |     |         |      |       |      |       |     |
| 6 -    | 20    | 20  |       |     |       |     |         |      |       |      |       |     |
| 7      | 21    | 21  |       |     |       |     |         |      |       |      |       |     |
| 8      | 22    | 22  |       |     |       |     |         |      |       |      |       |     |

| Card 41        |                |                |       |     | Zone A | ssignme | nt     |     |       |     |       |     |
|----------------|----------------|----------------|-------|-----|--------|---------|--------|-----|-------|-----|-------|-----|
| System<br>Set  | Ref            | #1             | Ref   | #2  | Ref    | #3      | Ref    | #4  | Ref   | #5  | Ref   | #6  |
| Number         | Begin          | End            | Begin | End | Begin  | End     | `Begin | End | Begin | End | Begin | End |
| 9              | 23             | 23             |       |     |        |         |        |     |       |     |       |     |
| 10             | 24             | 24             |       |     |        |         |        |     |       |     |       |     |
| 11             | 25             | 25             |       |     |        |         |        |     |       |     |       |     |
| 12             | 26             | 26             |       |     | +      |         | •      |     |       |     |       |     |
| 13             | 27             | 27             |       |     |        |         |        |     |       |     |       |     |
| 14             | 28             | 31             |       |     |        |         |        |     |       |     |       |     |
| 11<br>12<br>13 | 25<br>26<br>27 | 25<br>26<br>27 |       |     | ÷      |         |        |     |       |     |       |     |

| System | Cool | Heat | Return | Mn Exh | Aux | Rm Exh | Cool | Return  | Supply | Supply | Return |
|--------|------|------|--------|--------|-----|--------|------|---------|--------|--------|--------|
| Set    | Fan  | Fan  | Fan    | Fan    | Fan | Fan    |      | Fan Mtr | Duct   | Duct   | Air    |
| Number | SP   | SP   | SP     | SP     | SP  | SP     | Loc  | Loc     | Ht Gn  | Loc    | Path   |
| 1      | 1.75 |      |        |        |     | 1.0    |      |         |        |        |        |
| 2      | 1.5  |      |        | .326   |     |        |      |         |        |        |        |
| 3      | 2.4  |      |        | .208   |     |        |      |         |        |        |        |
| 4      | 2.5  |      |        | .613   |     |        |      |         |        |        |        |
| 5      | 3.45 |      |        |        |     | 1.5    |      |         |        |        |        |
| 6      | 2.1  |      |        | .26    |     |        |      |         |        |        |        |
| 7      | 0.92 |      |        |        |     |        |      |         |        |        |        |
| 8      | 1.67 |      |        |        |     |        |      |         |        |        |        |
| 9      | 0.64 |      |        |        |     |        |      |         |        |        |        |
| 10     | 1.39 |      |        |        |     |        |      |         |        |        |        |
| 11     | 1.54 |      |        |        |     |        |      |         |        |        |        |
| 12     | 1.04 |      |        |        |     |        |      |         |        |        |        |
| 13     | 1.64 |      |        | .077   |     |        |      |         |        |        |        |
| 14     | 3.25 |      |        |        |     |        |      |         |        |        |        |

| Card 43 |         |         |         | Airflow D | esign Tem | peratures |         |         |         |        |
|---------|---------|---------|---------|-----------|-----------|-----------|---------|---------|---------|--------|
| System  | Minimum | Maximum | Minimum | Maximum   | Minimum   | Maximum   | Minimum | Maximum | Minimum | Design |
| Set     | Cooling | Cooling | Heating | Heating   | Cooling   | Cooling   | Preheat | Preheat | Room    | Ht Rec |
| Number  | SADB    | SADB    | SADB    | SADB      | Lv DB     | Lv DB     | Lv DB   | Lv DB   | RH      | Diff   |
| 1       |         |         |         |           | 63        | 63        |         |         |         |        |
| 2       |         |         |         |           | 63        | 63        |         |         |         |        |
| 3       |         |         |         |           | 54 -      | 54        |         |         | ~       |        |
| 4       |         |         |         |           | 49.5      | 49.5      |         |         |         |        |
| 5       |         |         |         |           | 50        | 50        |         |         |         |        |
| 6       |         |         |         | •         | 62        | 62        |         |         |         |        |
| 14      |         |         |         |           | 54        | 54        |         |         |         |        |

| Card 45 |         |            |        | Equ      | ipment Sche | dules   |         |        |          |           |
|---------|---------|------------|--------|----------|-------------|---------|---------|--------|----------|-----------|
| System  | Main    |            | Direct | Indirect | Auxiliary   | Main    | Main    |        |          | Auxiliary |
| Set     | Cooling |            | Evap   | Evap     | Cooling     | Heating | Preheat | Reheat | Mech.    | Heating   |
| Number  | Coil    | Economizer | Coil   | Coil     | Coil        | Coil    | Coil    | Coil   | Humidity | Coil      |
| 1       |         |            |        |          |             | OFF     | OFF     | OFF    |          |           |

| ard 45 <sup>.</sup><br>ystem<br>et                   | Main<br>Cooling                                                     |                                                                       | Direct<br>Evap                                                   | Indirect<br>Evap                           | Auxiliary<br>Cooling                        | Main<br>Heating                                                | Main<br>Preheat                           | Reheat                                            | Mech.                                  | Auxiliary<br>Heating                                  |                                  |
|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|----------------------------------------|-------------------------------------------------------|----------------------------------|
|                                                      | Coil                                                                |                                                                       | •                                                                | Coil                                       | Coil                                        | Coil                                                           | Coil                                      | Coil                                              | Humidity                               | _                                                     |                                  |
|                                                      |                                                                     | 200110                                                                |                                                                  | •••                                        |                                             | OFF                                                            | OFF                                       | OFF                                               |                                        |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            |                                             | OFF                                                            | OFF                                       | OFF                                               |                                        |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            |                                             | 011                                                            | 011                                       | OII                                               |                                        |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            |                                             | •                                                              |                                           |                                                   | ÷                                      |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            |                                             |                                                                |                                           |                                                   |                                        |                                                       |                                  |
|                                                      |                                                                     | Ret Mn Exh                                                            |                                                                  |                                            |                                             |                                                                |                                           | .ING FAN                                          |                                        |                                                       |                                  |
|                                                      | an Fan I                                                            |                                                                       | Fan Fan                                                          |                                            |                                             | Air                                                            | Air                                       | Size                                              | 0                                      |                                                       |                                  |
| um Ef                                                | ff Eff I                                                            | Eff Eff                                                               | Eff Eff                                                          | Eff                                        | Eff                                         | Value                                                          | Units                                     | Meth                                              | Confg                                  |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            |                                             |                                                                |                                           |                                                   | BLOW                                   |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            | •                                           |                                                                |                                           |                                                   | BLOW                                   |                                                       |                                  |
| ,                                                    |                                                                     |                                                                       |                                                                  |                                            |                                             |                                                                |                                           |                                                   | BLOW                                   |                                                       |                                  |
| 4                                                    |                                                                     |                                                                       |                                                                  |                                            |                                             |                                                                |                                           |                                                   | BLOW                                   |                                                       |                                  |
|                                                      |                                                                     |                                                                       |                                                                  |                                            |                                             |                                                                |                                           |                                                   |                                        |                                                       |                                  |
| ard 59                                               |                                                                     |                                                                       |                                                                  |                                            | escription ,                                | / TOD Sche                                                     | edules                                    |                                                   |                                        |                                                       |                                  |
|                                                      | El                                                                  | ec Consump E                                                          | lec Demand                                                       | Demand                                     | escription                                  | / TOD Sche                                                     | edules                                    |                                                   |                                        | nd Limit                                              |                                  |
| lterna                                               | El<br>ative Ti                                                      | ec Consump E<br>me of Day 1                                           | lec Demand<br>ime of Day                                         | Demand<br>Limit                            |                                             |                                                                |                                           |                                                   | Demai                                  | nd Limit<br>Temperature                               |                                  |
| lterna<br>umber                                      | El<br>ative Ti                                                      | ec Consump E<br>me of Day 1                                           | lec Demand                                                       | Demand<br>Limit<br>Max KW A                | lternative                                  | Descripti                                                      | on                                        |                                                   |                                        | nd Limit<br>Temperature                               |                                  |
| terna                                                | El<br>ative Ti                                                      | ec Consump E<br>me of Day 1                                           | lec Demand<br>ime of Day                                         | Demand<br>Limit<br>Max KW A                |                                             | Descripti                                                      | on                                        |                                                   | Demai                                  | nd Limit<br>Temperature                               |                                  |
| lterna<br>umber<br>ard 60                            | El<br>ative Ti<br>Sc                                                | ec Consump E<br>me of Day 1<br>hedule 5                               | lec Demand<br>ime of Day<br>Schedule                             | Demand<br>Limit<br>Max KW A                | ulternative<br>EXISTING PR                  | Descripti<br>IMARY EQUI                                        | ON<br>PMENT                               |                                                   | Demai                                  | nd Limit<br>Temperature                               |                                  |
| terna<br>umber<br>ard 60<br>pad A                    | El<br>ative Tin<br>Sc<br>O                                          | ec Consump E me of Day 1 hedule 5 Cooling                             | lec Demand<br>ime of Day<br>Schedule                             | Demand<br>Limit<br>Max KW A                | ulternative<br>EXISTING PR                  | Descripti<br>IMARY EQUI<br>Load Assig                          | on<br>PMENT                               |                                                   | Schedule                               | nd Limit<br>Temperature<br>Drift                      |                                  |
| lterna<br>umber<br>ard 60<br>oad A                   | El<br>ative Ti<br>Sc<br>O<br>All Coil<br>Loads To                   | ec Consump E me of Day 1 hedule 5  Cooling Equipment                  | lec Demand<br>ime of Day<br>Schedule                             | Demand<br>Limit<br>Max KW A<br>E           | Alternative EXISTING PR - Cooling -Group 3- | Descripti<br>IMARY EQUI<br>Load Assig                          | on PMENT gnment                           | <br>5Group                                        | Schedule                               | nd Limit Temperature Drift  7Group 8-                 | -Group                           |
| lterna<br>umber<br>ard 60<br>oad A<br>sgn L<br>ef C  | El<br>ative Ti<br>Sc<br>O<br>All Coil<br>Loads To<br>Cool Ref       | ec Consump E me of Day 1 hedule S  Cooling Equipment Sizing E         | Elec Demand Time of Day Schedule Group 1- Begin End              | Demand<br>Limit<br>Max KW A<br>E           | Alternative EXISTING PR - Cooling -Group 3- | Descripti<br>IMARY EQUI<br>Load Assig                          | on PMENT gnment                           | <br>5Group                                        | Schedule                               | nd Limit<br>Temperature<br>Drift                      | -Group                           |
| terna<br>mber<br>ard 60<br>pad A<br>sgn L            | El<br>ative Ti<br>Sc<br>O<br>All Coil<br>Loads To                   | ec Consump E me of Day 1 hedule S  Cooling Equipment S Sizing E       | lec Demand<br>ime of Day<br>Schedule                             | Demand<br>Limit<br>Max KW A<br>E           | Alternative EXISTING PR - Cooling -Group 3- | Descripti<br>IMARY EQUI<br>Load Assig                          | on PMENT gnment                           | <br>5Group                                        | Schedule                               | nd Limit Temperature Drift  7Group 8-                 | -Group                           |
| terna<br>mber<br>ard 60<br>pad A<br>sgn L<br>ef C    | El<br>ative Ti<br>Sc<br>O<br>All Coil<br>Loads To<br>Cool Ref<br>1  | ec Consump E me of Day 1 hedule S  Cooling Equipment Sizing E PKPLANT | Elec Demand Time of Day Schedule Group 1- Begin End The Segin 14 | Demand Limit Max KW A E Group 2- Begin End | Ling Equipm                                 | Descripti<br>IMARY EQUI<br>Load Assig<br>-Group 4<br>Begin End | on PMENT  gnment Group ! d Begin E        | 5Group<br>nd Begin                                | Schedule  Schedule  6Group End Begin   | nd Limit Temperature Drift  7Group 8- End Begin End E | -Group<br>Begin !                |
| ard 60<br>pad A<br>sgn L<br>ef 0                     | El<br>ative Ti<br>Sc<br>O<br>All Coil<br>Loads To<br>Cool Ref<br>1  | ec Consump E me of Day 1 hedule S  Cooling Equipment Sizing E PKPLANT | lec Demand ime of Day Schedule  Group 1- Begin End 1 14          | Demand Limit Max KW A E Group 2- Begin End | Ling Equipm                                 | Descripti IMARY EQUI Load Assig -Group 4- Begin End            | on PMENT  Gnment Group ! Begin E          | 5Group<br>nd Begin                                | Schedule  6- Group End Begin           | nd Limit Temperature Drift  7Group 8- End Begin End E | -Group<br>Begin :                |
| ard 60<br>pad A<br>sgn L<br>ef C<br>ard 62<br>ool Ec | El<br>ative Tin<br>Sc<br>O<br>All Coil<br>Loads To<br>Cool Ref<br>1 | ec Consump E me of Day 1 hedule S  Cooling Equipment Sizing E PKPLANT | lec Demand ime of Day Schedule  Group 1- Begin End 1 14          | Demand Limit Max KW A E Group 2- Begin End | Ling Equipm                                 | Descripti<br>IMARY EQUI<br>Load Assig<br>-Group 4<br>Begin End | on PMENT  Gnment Group ! Begin E          | 5Group<br>nd Begin                                | Schedule  6- Group End Begin  S        | nd Limit Temperature Drift  7Group 8- End Begin End E | -Group<br>Begin :                |
| ard 60<br>oad A<br>sgn L<br>ef C<br>ard 62<br>ool Ec | Elative Tin Sc  O All Coil Loads To Cool Ref 1  2 quip              | ec Consump E me of Day 1 hedule S  Cooling Equipment Sizing E PKPLANT | lec Demand ime of Day Schedule  Group 1- Gegin End 1 14          | Demand Limit Max KW A  Group 2- Begin End  | Ling Equipm                                 | Descripti IMARY EQUI Load Assig -Group 4- Begin End            | on PMENTGroup : Begin E                   | 5Group<br>nd Begin<br><br>VERY                    | Schedule  6- Group End Begin  S        | nd Limit Temperature Drift  7Group 8- End Begin End E | -Group<br>Begin  <br><br>nd<br>t |
| ard 60 oad A sgn L ef C cool Ec cool Ec              | Elative Tin Sc  O All Coil Loads To Cool Ref 1  2                   | ec Consump E me of Day 1 hedule S  Cooling Equipment Sizing E PKPLANT | lec Demand ime of Day Schedule  Group 1- Gegin End 1 14          | Demand Limit Max KW A  Group 2- Begin End  | Ling Equipm                                 | Descripti IMARY EQUI Load Assis -Group 4- Begin End ent Parame | on PMENTGroup : Begin Ed  Sters HEAT RECO | 5Group<br>nd Begin<br><br>VERY<br>VERY<br>Value U | Schedule  6Group End Begin  S S nits N | nd Limit Temperature Drift  7Group 8- End Begin End E | -Group<br>Begin I<br><br>nd<br>t |

| Car | a 63      |           |           | Cooling Pu | mps and ker | erences   |         |         |         |         |
|-----|-----------|-----------|-----------|------------|-------------|-----------|---------|---------|---------|---------|
| Coo | lCHILLED  | WATER     | CONDE     | NSER       | HT REC      | or AUX    | Switch- |         |         |         |
| Ref | Full Load | full Load | Full Load | Full Load  | Full Load   | Full Load | over    | Cold    | Cooling | Misc.   |
| Num | Value     | Units     | Value     | Units      | Value       | Units `   | Control | Storage | Tower   | Access. |
| 1   | 39.3      | KW        | 27.5      | KW         |             |           |         |         | 1       | 1       |
| 2   | 0         | KW        | 18.3      | KW         |             |           |         |         | 2       |         |
|     |           |           |           |            |             |           |         |         |         |         |

| Card | 64    |            |         | Cooli   | ng Equip | ment Optio | ns       |          |          |          |
|------|-------|------------|---------|---------|----------|------------|----------|----------|----------|----------|
| Cool | Max   | Load       |         | Free    |          | Cond       | Cond     | Cond Rej | Cond Rej | Cond Rej |
| Ref  | CM    | Shed       | Evap    | Cooling | Heat     | Entering   | Min Oper | To Ref   | To Ref   | a HW     |
| Num  | Reset | Economizer | Precool | Type    | Source   | Temp       | Temp     | Type     | Number   | Temp     |
| 1    |       |            |         |         |          | 85         | 65       | HEATING  | 1        | 95       |
| 2    |       |            |         |         |          | 85         | 65       | HEATING  | 2        | 95       |

| Card 65    |                    |       |       |       |      | Heating   | Load Assign | ment      |           |           |           |           |
|------------|--------------------|-------|-------|-------|------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|
| Load       | All Coil           |       |       |       |      |           |             |           |           |           |           |           |
| Assignment | Loads To           | -Grou | up 1- | -Grou | p 2- | -Group 3- | -Group 4-   | -Group 5- | -Group 6- | -Group 7- | -Group 8- | -Group 9- |
| Reference  | <b>Heating Ref</b> | Begir | n End | Begin | End  | Begin End | Begin End   | Begin End | Begin End | Begin End | Begin End | Begin End |
| 1          | 1                  | 3     | 5     | 14    | 14   |           |             |           |           |           |           |           |
| 2          | 3                  | 7     | 13    |       |      |           |             |           |           |           |           |           |

| Card 67 | ' <i>-</i> |        |         |       | Неа   | iting Equ | ipment Pa | rameters - |        |         |      |       |       |        |
|---------|------------|--------|---------|-------|-------|-----------|-----------|------------|--------|---------|------|-------|-------|--------|
| Heat    | Equip      | Number | HW Pmp  |       |       |           | Energy    |            | Seq    | Switch  |      |       |       | Demand |
| Ref     | Code       | Of     | Full Ld |       | Cap'y |           | Rate      |            | Order  | over    | Hot  | Misc. |       | Limit  |
| Number  | Name       | Units  | Value   | Units | Value | Units     | Value     | Units      | Number | Control | Strg | Acc.  | Cogen | Number |
| 1       | EQ2002     | 1      | 0       | KW    |       |           | 100       | PCTEFF     |        |         |      |       |       |        |
| 2       | EQ2002     | 1      | 0       | KW    |       |           | 100       | PCTEFF     |        |         |      |       |       |        |
| 3       | EQ2263     | 1      |         |       |       |           |           | -          |        |         |      |       |       |        |

| Card 69<br>System |         |         | Fan Equip | ment Parame | eters     |         |                      |
|-------------------|---------|---------|-----------|-------------|-----------|---------|----------------------|
| Set               | Cooling | Heating | Return    | Exhaust     | Auxiliary | Room    | Optional             |
| Number            | Fan     | Fan     | Fan       | Fan         | Supply    | Exhaust | Vent <u>i</u> lation |
| 1                 | EQ4003  |         |           |             |           | EQ4003  | EQ4003               |
| 2                 | EQ4003  |         |           | EQ4003      |           |         |                      |
| 3                 | EQ4003  |         | •         | EQ4003      | •         |         |                      |
| 4                 | EQ4003  |         |           | EQ4003      |           |         |                      |
| 5                 | EQ4003  |         |           |             |           | EQ4003  | EQ4003               |
| 6                 | EQ4003  |         |           | EQ4003      |           |         |                      |
| 7                 | EQ4003  |         |           |             |           |         |                      |
| 8                 | EQ4003  |         |           |             |           |         |                      |
| 9                 | EQ4003  |         |           |             | •         |         | **                   |
| 10                | EQ4003  |         |           |             |           |         |                      |
| 11                | EQ4003  |         |           |             |           |         |                      |
| 12                | EQ4003  |         |           |             |           |         |                      |
| 13                | EQ4003  |         |           | EQ4003      |           |         |                      |
| 14                | EQ4003  |         |           |             |           |         |                      |

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAIN S                                               | YSTEM-               |          | UINER                                                          | 31311                                                                       | -11                                                               | DEINA                                                                               | ND LIMIT                                                                   | Room C                                                               |                                      |                |                               |                            |                            |               |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|----------|----------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|----------------|-------------------------------|----------------------------|----------------------------|---------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heat                                                 |                      | Exh      | Aux F                                                          | Room (                                                                      | 0pt                                                               |                                                                                     |                                                                            |                                                                      | ent                                  |                |                               |                            |                            |               |
|                                                         | Fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fan                                                  | Fan                  | Fan      | Sup 1                                                          | Exh \                                                                       | Vent                                                              | Cool He                                                                             |                                                                            |                                                                      | an                                   |                |                               |                            |                            |               |
| <b></b>                                                 | K₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KW                                                   | KW                   | KW       | KW 1                                                           |                                                                             | KW                                                                | Fan Fa                                                                              | n Fan                                                                      | Fan                                                                  | gi i                                 |                |                               |                            |                            |               |
| ber                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | κ.,                                                  |                      |          |                                                                | 1.2                                                                         | .25                                                               |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                      | .652     |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                      | .415     |                                                                |                                                                             |                                                                   |                                                                                     | •                                                                          |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      | 1.225    | 5                                                              |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                      |          |                                                                | 2.7                                                                         | .779                                                              |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                      | .519     |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      | .517     |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      |          |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      |          |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
|                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      |          |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
| }                                                       | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      |          |                                                                |                                                                             |                                                                   | •                                                                                   |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
| i                                                       | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      |          |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
| 2                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      | 45       | ,                                                              |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
| 3                                                       | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                      | .156     | •                                                              |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                | :                             |                            |                            |               |
| 4                                                       | 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                    |                      |          |                                                                |                                                                             |                                                                   |                                                                                     |                                                                            |                                                                      |                                      |                |                               |                            |                            |               |
| Base                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                      |          | Hourly                                                         | Hou                                                                         | ırly                                                              |                                                                                     |                                                                            | Equip<br>Refer                                                       | ence                                 | Limit          | ing Ent                       | ering Lea                  | aving                      |               |
| Base                                                    | Bi<br>ity U<br>er D<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ase<br>tility<br>escrip<br>:HW PIP                   |                      | ss       |                                                                | Hou                                                                         | urly<br>mand<br>its<br>NS                                         | Utility Schedule Code AVAIL                                                         |                                                                            | Refer<br>Numbe                                                       | ence                                 |                | ing Ent                       | ering Lea<br>p Ter         | aving<br>mp                |               |
| Base<br>Utili<br>Numbe<br>1<br>2                        | Bity U er D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ase<br>tility<br>escrip<br>:HW PIP                   | ING LOS              | ss<br>ss | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Den<br>Uni<br>TOH<br>MBI                                             | urly<br>mand<br>its<br>NS<br>H<br>dense                           | Schedule<br>Code<br>AVAIL<br>AVAIL                                                  | Energy Type CHILL- HOT-LD                                                  | Refer<br>Numbe<br>LD 1<br>1                                          | ence<br>r<br>rs<br>Num<br>Of         | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Base<br>Utili<br>Numbe<br>1<br>2<br>Card                | Bity U er D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ase tility escrip HW PIPI W PIPI                     | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Den<br>Uni<br>TOP<br>MBI                                             | urly<br>mand<br>its<br>NS<br>H<br>dense                           | Schedule<br>Code<br>AVAIL<br>AVAIL<br>r / Cooli<br>Energy<br>Consump                | Energy Type CHILL-I HOT-LD                                                 | Refer<br>Numbe<br>LD 1<br>1                                          | ence<br>r<br>rs<br>Num<br>Of         | Limit<br>Numbe | ring Ent                      | Low Spd<br>Energy          | Low Spd                    |               |
| Base<br>Utili<br>Numbe<br>1<br>2<br>Card                | Bity U cr D Cr H d 74 Co er To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase tility escrip HW PIPI W PIPI                     | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Den<br>Uni<br>TOM<br>MBI                                             | urly nand its NS H dense                                          | Schedule<br>Code<br>AVAIL<br>AVAIL<br>- / Cooli<br>Energy<br>Consump<br>Units       | Energy Type CHILL- HOT-LD  ng Tower Fluid Type                             | Refer<br>Numbe<br>LD 1<br>1<br>Paramete<br>Tower                     | ence<br>r<br>rs<br>Num<br>Of<br>Cel  | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Base<br>Utili<br>Numbe<br>1<br>2<br>Card                | Bity U er D C H 3 74 Co er To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ase tility escrip HW PIPI W PIPI oling wer           | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Dem<br>Uni<br>TOP<br>MBI                                             | urly<br>mand<br>its<br>NS<br>H<br>dense<br>rgy<br>sump<br>ue<br>5 | Schedule<br>Code<br>AVAIL<br>AVAIL<br>r / Cooli<br>Energy<br>Consump<br>Units<br>KW | Energy Type CHILL- HOT-LD  ng Tower Fluid Type T-WATE                      | Refer<br>Numbe<br>LD 1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOW   | ence r Num Of Cel                    | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Base<br>Utili<br>Numbe<br>1<br>2<br>Card<br>Towe<br>Ref | Bity U er D H H 74 Co er To EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase tility escrip HW PIPI Oling ouer                 | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Den<br>Uni<br>TOM<br>MBI                                             | urly<br>mand<br>its<br>NS<br>H<br>dense<br>rgy<br>sump<br>ue<br>5 | Schedule<br>Code<br>AVAIL<br>AVAIL<br>- / Cooli<br>Energy<br>Consump<br>Units       | Energy Type CHILL- HOT-LD  ng Tower Fluid Type                             | Refer<br>Numbe<br>LD 1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOW   | ence r Num Of Cel                    | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Base Jtili Numbe  1  Card  Towe Ref                     | Bity U er D H H 74 Co er To EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase tility escrip HW PIPI Oling wer ode              | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Dem<br>Uni<br>TOP<br>MBI                                             | urly<br>mand<br>its<br>NS<br>H<br>dense<br>rgy<br>sump<br>ue<br>5 | Schedule<br>Code<br>AVAIL<br>AVAIL<br>r / Cooli<br>Energy<br>Consump<br>Units<br>KW | Energy Type CHILL- HOT-LD  ng Tower Fluid Type T-WATE                      | Refer<br>Numbe<br>LD 1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOW   | ence r Num Of Cel                    | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Base Jtili Numbe  1  Card  Towe Ref                     | Bity U er D H H 74 Co er To EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase tility escrip HW PIPI Oling wer ode              | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Dem<br>Uni<br>TOP<br>MBI                                             | urly<br>mand<br>its<br>NS<br>H<br>dense<br>rgy<br>sump<br>ue<br>5 | Schedule<br>Code<br>AVAIL<br>AVAIL<br>r / Cooli<br>Energy<br>Consump<br>Units<br>KW | Energy Type CHILL- HOT-LD  ng Tower Fluid Type T-WATE                      | Refer<br>Numbe<br>LD 1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOW   | ence r Num Of Cel                    | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Base Jtili Numbe  1  Card  Towe Ref                     | Bity U er D H H 74 Co er To EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase tility escrip HW PIPI Oling wer ode              | ING LOS              | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Dem<br>Uni<br>TOM<br>MBI<br>- Cond<br>Ener<br>/ Cons<br>Valu<br>12.1 | urly mand its NS H  densei rgy sump ue 5                          | Schedule<br>Code<br>AVAIL<br>AVAIL<br>- / Cooli<br>Energy<br>Consump<br>Units<br>KW | Energy<br>Type<br>CHILL-I<br>HOT-LD<br>ng Tower<br>Fluid<br>Type<br>T-WATE | Refer<br>Number<br>1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOWN    | ence<br>r<br>Num<br>Of<br>Cel<br>R 1 | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy          | Low Spd<br>Energy          |               |
| Jtili Numbe  Towe Ref  1                                | ity U er D C H 174 Co er To Cc EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ase tility escrip EHW PIPI Oling ouer ode 25100      | Capa                 | ss<br>s  | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Dem<br>Uni<br>TOM<br>MBI<br>- Cond<br>Ener<br>/ Cons<br>Valu<br>12.1 | urly mand its NS H densel rgy sump ue 5                           | Schedule Code AVAIL AVAIL  T / Cooli Energy Consump Units KW KW                     | Energy<br>Type<br>CHILL-I<br>HOT-LD<br>ng Tower<br>Fluid<br>Type<br>T-WATE | Refer<br>Number<br>1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOWN    | ence<br>r<br>Num<br>Of<br>Cel<br>R 1 | Limit<br>Numbe | er Tem Percent                | Low Spd<br>Energy<br>Value | Low Spd<br>Energy<br>Units |               |
| Jtili Numbe  Towe Ref  1                                | ity U er D C H 174 Co er To Cc EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ase tility escrip thw PIPI oling wer ode a5100       | Capa                 | city (   | Hourly<br>Demand<br>Value<br>4.64<br>77.4<br>Capacity<br>Units | Hou<br>Dem<br>Uni<br>TOP<br>MBI<br>Cond<br>Ener<br>/ Cons<br>Valu<br>12.    | urly mand its NS H densel rgy sump ue 5                           | Schedule Code AVAIL AVAIL  / Cooli Energy Consump Units KW KW                       | Energy Type CHILL- HOT-LD  Ing Tower Fluid Type T-WATE T-WATE              | Refer Number 1 1 Paramete Tower Type R CTOWN                         | ence<br>r<br>Num<br>Of<br>Cel<br>R 1 | Limit          | Percent<br>Airflow<br>Low Spd | Low Spd<br>Energy          | Low Spd<br>Energy<br>Units | Sched         |
| Base Utili Numbe 1 2 Card Towe Ref 1 2                  | 8:<br>ity U<br>cr D<br>Co<br>Co<br>EC<br>EC<br>rd 75-<br>#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ase tility escrip EHW PIPI oling over ode a5100      | Capa                 | city (   | Hourly<br>Demand<br>Value<br>4.64<br>77.4                      | Hou<br>Dem<br>Uni<br>TOM<br>MBI<br>- Cond<br>Ener<br>/ Cons<br>Valu<br>12.1 | urly mand its NS H densel rgy sump ue 5                           | Schedule Code AVAIL AVAIL  T / Cooli Energy Consump Units KW KW  Miscel #2 Equip    | Energy Type CHILL- HOT-LD  Ing Tower Fluid Type T-WATE T-WATE              | Refer<br>Number<br>LD 1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOWN | ence r Num Of Cel R 1                | Limit<br>Numbe | Percent Airflow Low Spd       | Low Spd<br>Energy<br>Value | Low Spd<br>Energy<br>Units | Sched<br>Code |
| Base Utili Numbe 1 2 Card Towe Ref 1 2 Car              | Barty U  Proper To  Co  Ecc  Frd 75-  #1  sc Ecc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ase tility escrip thw PIPI oling wer ade a5100 a5100 | ING LOS  Capae  Valu | city (   | Hourly<br>Demand<br>Value<br>4.64<br>77.4<br>Capacity<br>Units | Hou<br>Dem<br>Uni<br>TOP<br>MBI<br>Cond<br>Ener<br>/ Cons<br>Valu<br>12.    | urly mand its NS H densel rgy sump ue 5                           | Schedule Code AVAIL AVAIL  / Cooli Energy Consump Units KW KW                       | Energy Type CHILL- HOT-LD  Ing Tower Fluid Type T-WATE T-WATE              | Refer Number 1 1 Paramete Tower Type R CTOWN                         | ence r Num Of Cel R 1                | Limit<br>Numbe | Percent Airflow Low Spd       | Low Spd<br>Energy<br>Value | Low Spd<br>Energy<br>Units | Sched<br>Code |
| Base Utili Numbe 1 2 Card Towe Ref 1 2 Car              | ity U  T Co   ase tility escrip EHW PIPI oling over ode a5100      | Capar<br>Valu        | city (   | Hourly Demand Value 4.64 77.4  Capacity Units                  | Hou<br>Dem<br>Uni<br>TOM<br>MBI<br>- Cond<br>Ener<br>/ Cons<br>Valu<br>12.1 | urly mand its NS H densel rgy sump ue 5                           | Schedule Code AVAIL AVAIL  T / Cooli Energy Consump Units KW KW  Miscel #2 Equip    | Energy Type CHILL- HOT-LD  Ing Tower Fluid Type T-WATE T-WATE              | Refer<br>Number<br>LD 1<br>1<br>Paramete<br>Tower<br>Type<br>R CTOWN | ence r Num Of Cel R 1                | Limit<br>Numbe | Percent Airflow Low Spd       | Low Spd<br>Energy<br>Value | Low Spd<br>Energy<br>Units | Sched<br>Code |

Card 19- Load Alternative -

Number Description

3

ECO B - OCCUPANCY SENSORS

## ECO-B, LSTC BUILDING

| Card 20  |           |                   |        | GCITE | 4     | Paramete | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
|----------|-----------|-------------------|--------|-------|-------|----------|------------|----------|------------|-----------|-----------|
|          | Zone      | Room              | Floor  | Floor | Const | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Room     | Reference | Descrip           | Length | Width | Туре  | Height   | Resistance | Height   | Multiplier | Zone      |           |
| Number   | Number    | B-17 B,C,& D      | 25.5   | 59.5  | 10    | 2        |            | 10       |            |           |           |
| 5        | 1         | B-17,18,AEROBICS  | 59     | 59.5  | 10    | 2        |            | 10       |            |           |           |
| 10       | 2<br>3    | B-8,16,27-32      | 80.5   | 80.5  | 10    | 2        |            | 10       |            |           |           |
| 15       | 4         | B-25,25A          | 22     | 15    | 10    | 2        |            | 10       |            |           |           |
| 20<br>25 | 5         | B-4               | 27     | 27.5  | 10    | 2        |            | 10       |            |           |           |
|          | 6         | B-12,12A          | 55.5   | 55.5  | 10    | 2        |            | 10       |            |           |           |
| 30<br>35 | 7         | B-2,13,19,20-22   | 45.5   | 45.5  | 10    | 2        |            | 10       |            |           |           |
| 40       | 8         | B-1,3,24          | 81     | 81    | 10    | 2        |            | 10       |            |           |           |
| 45       | 9         | B-9,10,11,11A     | 111.5  | 20    | 10    | 2        |            | 10       |            |           |           |
| 50       | 10        | DOMES, MAIN WINGS | 40     | 40.5  | 10    | 2        |            | 10       |            |           |           |
| 55       | 11        | SW LOWER DOME     | 48     | 48    | 10    | 2        |            | 10       |            |           |           |
| 60       | 12        | NE LOWER DOME     | 48     | 48    | 10    | 2        |            | 10       |            |           |           |
| 65       | 13        | MAIN FLR WEST     | 89.5   | 37    | 10    | 2        |            | 10       |            |           |           |
| 70       | 14        | MAIN FLR EAST     | 61     | 61    | 10    | 2        |            | 10       |            |           |           |
| 75       | 15        | 112,119A,123A,    | 94.5   | 95    | 10    | 2        |            | 10       |            |           |           |
| 80       | 16        | MAIN FLOOR CENTR  | 93     | 93.5  | 10    | 2        |            | 10       |            |           |           |
| 85       | 17        | MAIN FLOOR SOUTH  | 51     | 51    | 10    | 2        |            | 10       |            |           |           |
| 90       | 18        | L.DOME COMP. RMS. | 63.5   | 63.5  | 10    | 2        |            | 10       |            |           |           |
| 95       | 19        | L.DOME OFFICES    | 71     | 71    | 10    | 2        |            | 10       |            |           |           |
| 100      | 20        | U.DOME            | 88.5   | 88.5  | 10    | 2        |            | 10       |            |           |           |
| 105      | 21        | RM 119, AH-8      | 1      | 1     |       |          |            |          |            |           |           |
| 110      | 22        | RM 119A, AH-9     | 1      | 1     |       |          |            |          |            |           |           |
| 115      | 23        | RM 123, AH-10     | 1      | 1     |       |          |            |          |            |           |           |
| 120      | 24        | RM 127A, AH-11A   | 1      | 1     |       |          |            |          |            |           |           |
| 125      | 25        | RM 127A, AH-11B   | 1      | 1     |       |          |            |          |            |           |           |
| 130      | 26        | RM 127, AH-12     | 1      | 1     |       |          |            |          |            |           |           |
| 135      | 27        | AUX CNTRL, AH-14  | 1      | 1     |       |          |            |          |            |           |           |
| 140      | 28        | RM 110 UNDERFLOR  | 33     | 34    | 10    | 2 .      |            | 10       |            |           |           |
| 145      | 29        | RM 120A,122,126A  | 50     | 50    | 10    | 2        |            | . 10     |            |           |           |
| 150      | 30        | RM 146A,148,148A  | 32     | 32    | 10    | 2        |            | 10       |            |           |           |
| 155      | 31        | 204,205,206,207   | 63.5   | 63.5  | 10    | 2        |            | 10       |            |           |           |

| -      | Cooling   | Room | Cooling    | Cooling  | Heating   | Heating    | Heating  | T'stat   | Mass /   | Carpet |
|--------|-----------|------|------------|----------|-----------|------------|----------|----------|----------|--------|
| Room   | Room      |      | T'stat     | T'stat   | Room      | T'stat     | T'stat   | Location | No. Hrs  | 0n     |
| Number | Design DB | RH   | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average  |        |
| 5      | 75        | 50   | 75         |          | 70        | 70         |          |          | HEAVY130 |        |
| 10     | 75        | 50   | 75         |          | 70 ·      | 70         |          |          | HEAVY130 | NO     |
| 15     | 75        | 50   | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 20     | 75        | 50   | 75         |          | 70        | 70         |          |          | HEAVY130 |        |
| 25     | 75        | 50   | 75         |          | 70        | 70         |          |          | HEAVY130 |        |
| 70     | 75        | 50   | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |

| Card 21 |           | • • • • • • • • | ·          | Therm    | ostat Param | neters  |         |          |           |        |
|---------|-----------|-----------------|------------|----------|-------------|---------|---------|----------|-----------|--------|
|         | Cooling   | Room            | Cooling    | Cooling  | Heating     | Heating | Heating | T'stat   | Mass /    | Carpet |
| Room    | Room      | Design          | T'stat     | T'stat   | Room        | T'stat  | T'stat  | Location | •         |        |
| Number  | Design DB | RH              | Driftpoint | Schedule | Design DB   |         |         |          | Average   |        |
| 35      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY130  |        |
| 40      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY 130 |        |
| 45      | 70        | 45              | 70         |          | 70          | 70      |         |          | HEAVY130  |        |
| 50      | 75        | 50              | 75         |          | 70          | 70 .    |         |          | HEAVY130  |        |
| 55      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY130  |        |
| 60      | 75        | 50              | <b>7</b> 5 |          | 70          | 70      |         |          | HEAVY130  |        |
| 65      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY130  |        |
| 70      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY 130 |        |
| 75      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY 130 |        |
| 80      | 70        | 45              | 70         |          | 70          | 70      |         |          | HEAVY130  |        |
| 85      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY130  |        |
| 90      | 70        | 45              | 70         |          | 70          | 70      |         |          | HEAVY130  |        |
| 95      | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY130  |        |
| 100     | 75        | 50              | 75         |          | 70          | 70      |         |          | HEAVY130  |        |
| 105     | 70        | 45              | 70         |          | 70          | 70      |         |          | UENAL 120 | NO.    |
| 110     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 115     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 120     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 125     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 130     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 135     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 140     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 145     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 150     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
| 155     | 70        | 45              | 70         |          | 70          | 70      |         |          |           |        |
|         |           |                 |            |          |             |         |         |          |           |        |

| Card 22 | ?      |          |        | Roof Par | ameters |       |           |      |      |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|------|
|         |        | Roof     |        |          |         |       |           |      |      |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof |
| Number  | Number | Floor?   | Length | Width    | U-Value |       | Direction |      |      |
| 50      | 1      | YES      |        |          | 0.18    | 19    |           |      | .4   |
| 100     | 1      | NO       | 88     | 88       | 0.18    | 19    |           |      | .4   |

| Card 24    | ,      |        | • • • • • • • • • • • • • • • • • • • • | · Wall P | arameters       | ;         |           |      | -                     |
|------------|--------|--------|-----------------------------------------|----------|-----------------|-----------|-----------|------|-----------------------|
| Room       | Wall   | Wall   | Wall                                    | Wall     | Wall<br>Constuc | Wall      | ,<br>Wall | Wall | Ground<br>Reflectance |
| Number     | Number | Length | Height                                  | U-Value  | Type            | Direction | Tilt      |      | Multiplier            |
| 50         | 1      | 26.5   | 31                                      | 0.18     | 94              | 0         |           | .4   | nattipe (c)           |
| 50         | 2      | 26.5   | 31                                      | 0.18     | 94              | 90        |           | .4   |                       |
| 50         | 3      | 26.5   | 31                                      | 0.18     | 94              | 180       |           | .4   |                       |
| 50         | 4      | 26.5   | 31                                      | 0.18     | 94              | 270       |           | .4   |                       |
| <b>5</b> 5 | 1      | 42     | 15                                      | 0.18     | 94              | 0         |           | .4   |                       |
| 55         | 2      | 42     | 15                                      | 0.18     | 94              | 90        |           | .4   |                       |

|                |        |        |        |         | Wall    |           |      |       | Ground      |
|----------------|--------|--------|--------|---------|---------|-----------|------|-------|-------------|
| Room           | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |
| Number         | Number | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |
| 55             | 3      | 42     | 15     | 0.18    | 94      | 180       |      | .4    |             |
| 55             | 4      | 42     | 15     | 0.18    | 94      | 270       |      | .4    |             |
| 60             | 1      | 42     | 15     | 0.18    | 94      | 0         |      | .4    |             |
| 60             | 2      | 42     | 15     | 0.18    | 94      | 90        |      | .4    |             |
| 60             | 3      | 42     | 15     | 0.18    | 94      | 180       |      | -4    |             |
| 60             | 4      | 42     | 15     | 0.18    | 94      | 270       |      | .4    |             |
| 90             | 1      | 37.5   | 10     | 0.18    | 94      | 0         |      | .4    |             |
| 90             | 2      | 37.5   | 10     | 0.18    | 94      | 90        |      | .4    |             |
| 90             | 3      | 37.5   | 10     | 0.18    | 94      | 180       |      | .4    |             |
| <del>9</del> 0 | 4      | 37.5   | 10     | 0.18    | 94      | 270       |      | .4    |             |
| 95             | 1      | 47     | 10     | 0.18    | 94      | 0         |      | .4    |             |
| 95             | 2      | 47.5   | 10     | 0.18    | 94      | 90        |      | .4    |             |
| 95             | 3      | 47     | 10     | 0.18    | 94      | 180       |      | .4    |             |
| 95             | 4      | 47.5   | 10     | 0.18    | 94 .    | 270       |      | .4    |             |
| 100            | 1      | 78     | 29     | 0.18    | 94      | 0         |      | .4    |             |
| 100            | 2      | 78.5   | 29     | 0.18    | 94      | 90        |      | .4    |             |
| 100            | 3      | 78     | 29     | 0.18    | 94      | 180       |      | .4    |             |
| 100            | 4      | 78.5   | 29     | 0.18    | 94      | 270       |      | .4    |             |

| Card 26 |          |             | <b></b>     | S            | chedules · |         |           |           |         |             |
|---------|----------|-------------|-------------|--------------|------------|---------|-----------|-----------|---------|-------------|
| Room    |          |             |             |              | Reheat     | Cooling | Heating   | Auxiliary |         | Daylighting |
| Number  | People   | Lights      | Ventilation | Infiltration | Minimum    | Fans    | Fan       | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | OFFICEL7    |             |              |            |         |           |           |         |             |
| 10      | OFFICEP1 | OFFICEL8    |             |              |            |         |           |           |         |             |
| 15      | OFFICEP1 | OFFICEL9    |             |              |            |         |           |           |         |             |
| 20      |          | OFICEL10    |             |              |            |         |           |           |         |             |
| 25      |          | OFICEL11    |             |              |            |         |           |           |         |             |
| 30      | OFFICEP1 | OFICEL12    |             |              |            |         | -         |           |         |             |
| 35      | OFFICEP1 | OFICEL13    |             |              |            |         |           |           |         |             |
| 40      |          | CLGONLY     |             |              |            |         |           |           |         |             |
| 45      | OFFICEP1 | OFICEL14    |             |              |            |         |           |           |         |             |
| 50      | OFFICEP1 | CLGONLY     |             |              |            |         |           |           |         |             |
| 55      | OFFICEP1 | OFICEL15    |             |              |            |         |           |           |         |             |
| 60      | OFFICEP1 | OFICEL16    |             |              |            |         |           |           |         |             |
| 65      | OFFICEP1 | OFICEL17    | -           | •            |            |         | ,-        |           |         |             |
| 70      | OFFICEP1 | OF I CEL 18 | •           |              |            |         |           |           |         |             |
| 75      | OFFICEP1 | OFICEL19    |             | •            |            | ,       |           |           |         |             |
| 80      | OFFICEP1 | OFICEL20    | •           |              | •          |         |           |           |         |             |
| 85      | OFFICEP1 | OFICEL21    |             |              |            |         |           |           |         |             |
| 90      | OFFICEP1 | OFFICEL7    |             |              |            |         |           |           |         |             |
| 95      | OFFICEP1 | OF I CEL 22 |             |              |            |         |           |           |         |             |
| 100     | OFFICEP1 | OFICEL23    |             |              |            |         |           |           |         |             |
| 105     | CLGONLY  |             |             |              |            |         |           |           |         |             |
| 110     | CLGONLY  |             |             | •            |            |         | <b>6.</b> |           |         |             |
| 115     | CLGONLY  |             |             |              |            |         |           |           |         |             |
|         |          |             |             |              |            |         |           |           |         |             |

|        |          |        |                    |            | \$         | ichedul es |           |           | Auxiliar  | v Room    | Daylighting |          |          |
|--------|----------|--------|--------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-------------|----------|----------|
|        |          |        |                    |            |            | Reheat     | Cooling   |           |           | Fyhaust   | Controls    |          |          |
| Room   |          |        |                    | tion In    | filtration | Minimum    | 'Fans     | Fan       | Fan       | EXIIDOG   |             |          |          |
| Number | People   | Lights | ventita            | (1011 2111 |            |            |           |           |           |           |             |          |          |
| 120    | CLGONLY  |        |                    |            |            |            |           |           |           |           |             |          |          |
| 125    | CLGONLY  |        |                    |            |            |            |           |           |           |           |             |          |          |
| 130    | CLGONLY  |        |                    |            |            |            |           |           |           |           |             |          |          |
| 135    | CLGONLY  |        |                    |            |            |            |           |           |           |           |             |          |          |
| 140    | CLGONLY  |        |                    |            |            |            | •         |           |           |           |             |          |          |
| 140    | CEGGIII  |        |                    |            |            |            |           |           |           |           |             |          |          |
|        |          |        |                    |            |            |            |           |           |           |           |             |          |          |
|        |          |        |                    |            |            |            |           |           |           |           |             |          |          |
|        | _        |        |                    |            | Peopl      | e and Ligh | its       | <br>:     | Percent   | Daylig    | ghting      |          |          |
| Card 2 | 7        |        |                    |            |            |            |           |           | percent   | peference | Reference   |          |          |
|        |          |        | nml n              | People.    | Lighting   | Lighting   | Fixture   | Ballast   | Lights to | Point 1   | Point 2     |          |          |
| Room   | People   | People | People<br>Sensible | Latent     | Value      | Units      | Type      | Factor    | Ret. Air  | Politic   |             |          |          |
| Number | Value    | Units  |                    |            | 1876       | WATTS      | ASHRAE1   |           |           |           |             |          |          |
| 5      | 7        | PEOPLE | 250                | 200        |            | WATTS      | SUSFLUOF  | ₹         |           |           |             |          |          |
| 10     | 3        | PEOPLE | 250                | 200        | 3263       | WATTS      | SUSFLUO   |           | :         |           |             |          |          |
| 15     | 2        | PEOPLE | 250                | 200        | 7204       |            | SUSFLUO   |           |           |           |             |          |          |
| 20     |          |        |                    |            | 375        | WATTS      | SUSFLUO   |           |           |           |             |          |          |
| 25     |          |        |                    |            | 2060       | WATTS      | ASHRAE1   |           |           |           |             |          |          |
|        | 2        | PEOPLE | 250                | 200        | 2683       | WATTS      | -         |           |           |           |             |          |          |
| 30     | ٤        | . ••   |                    |            | 1115       | WATTS      | ASHRAE1   |           |           |           |             |          |          |
| 35     |          |        |                    |            | 3683       | WATTS      | ASHRAE1   |           |           |           |             |          |          |
| 40     | _        | 250015 | 250                | 200        | 4838       | WATTS      | ASHRAE1   | ı         |           |           |             |          |          |
| 45     | 3        | PEOPLE |                    | 200        | 374        | WATTS      | ASHRAE'   | 1         |           |           |             |          |          |
| 50     | 1        | PEOPLE | 250                | 200        | 2870       | WATTS      | ASHRAE    | 1         |           |           |             |          |          |
| 55     | 1        | PEOPLE | 250                |            | 3024       | WATTS      | ASHRAE    | 1         |           |           |             |          |          |
| 60     | 3        | PEOPLE |                    | 200        | 5967       | WATTS      | SUSFLU    | OR        |           |           |             |          |          |
| 65     | 7        | PEOPLE |                    | 200        |            | WATTS      | ASHRAE    | .1        |           |           |             |          |          |
| 70     | 13       | PEOPLE | 250                | 200        | 3463       | WATTS      | ASHRAE    |           |           |           |             |          |          |
| 75     | 15       | PEOPLE | 250                | 200        | 13978      |            | ASHRAE    |           |           |           |             |          |          |
| 80     | 12       | PEOPLE | 250                | 200        | 11936      | WATTS      | ASHRAE    |           |           |           |             |          |          |
|        | 11       | PEOPLE |                    | 200        | 4403       | WATTS      |           |           |           |           |             | -        |          |
| 85     | 16       | PEOPL  |                    | 200        | 5302       | WATTS      | ASHRA     |           |           |           |             |          |          |
| 90     |          | PEOPL  |                    | 200        | 6382       | WATTS      | ASHRA     |           |           |           |             |          |          |
| 95     | 18       | PEOPL  |                    | 200        | 9998       | WATTS      | ASHRA     | ΕΊ        |           |           |             |          |          |
| 100    |          |        |                    | 200        |            |            |           |           |           |           |             |          |          |
| 105    |          | PEOPL  |                    | 200        |            |            |           |           |           |           |             |          |          |
| 110    | 1        | PEOPL  |                    |            |            |            |           |           |           |           |             |          |          |
| 115    | 1        | PEOPL  |                    | 200        |            |            |           |           |           |           |             |          |          |
| 120    | 1        | PEOPL  |                    | 200        |            |            |           |           |           |           |             |          |          |
| 125    | 5 1      | PEOP   |                    | 200        |            |            | _         | •         |           |           |             |          |          |
| 13     | _        | PEOP   | LE 250             | 200        |            |            |           |           |           |           |             |          |          |
| 13     | -        | PEOP   | LE 250             | 200        |            |            |           |           |           |           |             |          |          |
| 14     | •        | PEOP   |                    | 200        |            |            | •         |           |           |           |             |          |          |
| 14     |          |        |                    |            |            |            |           |           |           |           |             |          |          |
|        |          |        |                    |            |            |            |           |           |           |           |             |          |          |
|        |          |        |                    |            |            |            |           | m         |           |           |             |          |          |
|        | ,        |        |                    |            |            | Misc       | ellaneous | Equipment | Denocat   | Percent   | Percent     |          |          |
| Ca     | ard 28   |        |                    |            | Energy     | Energy     |           | Energy    |           | Micc Inad | Misc Sens   |          | Optional |
|        | Mi       |        | e! a+              |            | Consump    | Consump    | Schedule  | Meter     |           |           | to Ret. Air | Fraction | Air Path |
|        |          |        | Equipment          |            | Value      | Units      | Code      | Code      | Sensible  | to Koom   |             |          |          |
| N      | umber Nu |        | Descrip            |            | 8500       | WATTS      | OFFICEL1  |           |           |           |             |          |          |
| 5      | . 1      |        | TYP. OFFIC         | E EQ.      | טטנס       | ,          |           |           |           |           |             |          |          |
|        |          |        |                    |            |            |            |           |           |           |           |             |          |          |

| Card 28 | ,         |                  | <i></i> | Mis     | cellaneous | Equipment |          |         |             |          |          |
|---------|-----------|------------------|---------|---------|------------|-----------|----------|---------|-------------|----------|----------|
|         | Misc      |                  | Energy  | Energy  |            | Energy    | Percent  |         | Percent     |          |          |
| Room    | Equipment | Equipment        | Consump | Consump | Schedule   | Meter     | of Load  |         | Misc. Sens  |          |          |
| Number  | Number    | Descrip          | Value   | Units   | Code       | Code      | Sensible | to Room | to Ret. Air | Fraction | Air Path |
| 10      | 1         | TYP. OFFICE EQ.  | 1430    | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 15      | 1         | TYP. OFFICE EQ.  | 13814   | WATTS   | CLGONLY    |           |          |         |             |          |          |
| 20      | 1         | ELEV. MOTOR      | 6230    | WATTS   | CLGONLY    |           |          |         |             |          |          |
| 30      | 1         | OFFICE, LIGHT EQ | 4636    | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 40      | 1         | MISC. EQ.        | 13132   | WATTS   | CLGONLY    |           |          |         |             |          |          |
| 45      | 1         | TYP OFFICE EQ    | 4250    | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 55      | 1         | TYP OFFICE EQ    | 830     | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 60      | 1         | TYP OFFICE EQ    | 7140    | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 65      | 1         | TYP OFFICE EQ    | 9040    | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 70      | 1         | TYP OFFICE EQ    | 12445   | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 85      | 1         | TYP OFFICE EQ    | 9220    | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 90      | 1         | TYP OFFICE EQ    | 4980    | WATTS   | CLGONLY    |           |          |         |             |          |          |
| 95      | 1         | TYP OFFICE EQ    | 23580   | WATTS   | OFFICEL1   |           |          |         |             |          |          |
| 100     | 1         | MISC. OFFICE EQ  | 32541   | WATTS   | OFFICEL2   |           |          |         |             |          |          |
| 105     | 1         | COMPUTERS - UPS  | 5995    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 110     | 1         | COMPUTERS - UPS  | 7194    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 115     | 1         | COMPUTERS - UPS  | 4700    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 120     | 1         | COMPUTERS - UPS  | 3561    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 125     | 1         | COMPUTERS - UPS  | 3561    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 130     | 1         | COMPUTERS - UPS  | 7320    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 135     | 1         | COMPUTERS - UPS  | 2214    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 140     | 1         | COMPUTERS - UPS  | 4892    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 145     | 1         | COMPUTERS - UPS  | 10978   | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 150     | 1         | COMPUTERS - UPS  | 4434    | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |
| 155     | 1         | COMPUTERS - UPS  | 17545   | WATTS   | OFFICEM1   | ELEC      |          |         |             |          |          |

| )     |                                                               |                                                                                                                                                  |                                   | - Room Airt | flows   |         |       |          |           |
|-------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|---------|---------|-------|----------|-----------|
|       |                                                               |                                                                                                                                                  |                                   |             | Infil   | tration |       |          |           |
|       |                                                               |                                                                                                                                                  |                                   |             | ling    | Неа     | ting  | Reheat 1 | Minimum-− |
| Value | Units                                                         | Value                                                                                                                                            | Units                             | Value       | Units   | Value   | Units | Value    | Units     |
| 163   | CFM                                                           | 163                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 163   | CFM                                                           | 163                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 164   | CFM                                                           | 164                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 251   | CFM                                                           | . 251                                                                                                                                            | CFM                               |             |         |         |       |          |           |
| 251   | CFM                                                           | 251                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 251   | CFM                                                           | 251                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 251   | ĊFM                                                           | 251                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 251   | CFM                                                           | 251                                                                                                                                              | CFM                               | •           |         |         |       |          |           |
| 800   | CFM                                                           | 800                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 393   | CFM                                                           | 393                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 393   | CFM                                                           | 393                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 393   | CFM                                                           | 393                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 393   | CFM                                                           | 393                                                                                                                                              | CFM                               |             |         |         |       |          |           |
| 394   | CFM                                                           | 394                                                                                                                                              | CFM                               | •           | h.      |         |       |          |           |
| 394   | CFM                                                           | 394                                                                                                                                              | CFM                               |             |         |         |       |          |           |
|       | Value 163 163 164 251 251 251 251 251 800 393 393 393 393 394 | VentiCooling Value Units 163 CFM 163 CFM 164 CFM 251 CFM 251 CFM 251 CFM 251 CFM 251 CFM 393 CFM 393 CFM 393 CFM 393 CFM 393 CFM 393 CFM 394 CFM | CoolingHear Value Units Value 163 | Cooling     | Cooling |         |       |          |           |

| Card 29 |       |       |       |       |       |       |       |       |        |         |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|
| Room    |       |       |       |       |       |       |       | ting  | Reheat | Minimum |
| Number  | Value | Units | Value | Units | Value | Units | Value | Units | Value  | Units   |
| 80      | 375   | CFM   | 375   | CFM   |       |       |       |       |        |         |
| 85      | 375   | CFM   | 375   | CFM   |       |       |       |       |        |         |
| 90      | 375   | CFM   | 375   | CFM   |       |       |       |       |        |         |
| 95      | 375   | CFM   | 375   | CFM   |       |       |       |       |        |         |
| 100     | 1000  | CFM   | 1000  | CFM   |       |       |       |       |        |         |
| 135     | 300   | CFM   | 300   | CFM   |       |       |       |       |        |         |

|        |       | Ma    | in    |       |       | Auxi  |       |       |        |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| Room   | Cool  | ling  | Heat  | ing   | Coo   | ling  | Hea   | ting  | Room E |       |
| Number | Value | Units | Value | Units | Value | Units | Value | Units | Value  | Units |
| 5      | 2675  | CFM   | 2675  | CFM   |       |       |       |       |        |       |
| 10     | 3180  | CFM   | 3180  | CFM   |       |       |       |       |        |       |
| 15     | 10917 | CFM   | 10917 | CFM   |       |       |       |       | 790    | CFM   |
| 20     | 700   | CFM   | 700   | CFM   |       |       |       |       |        |       |
| 25     | 800   | CFM   | 800   | CFM   |       |       |       |       |        |       |
| 30     | 3025  | CFM   | 3025  | CFM   |       |       |       |       |        |       |
| 35     | 845   | CFM   | 845   | CFM   |       |       |       |       |        |       |
| 40     | 17300 | CFM   | 17300 | CFM   |       |       |       |       |        |       |
| 45     | 9060  | CFM   | 9060  | ÇFM   |       |       |       |       |        |       |
| 50     | 1100  | CFM   | 1100  | CFM   |       |       |       |       |        |       |
| 55     | 1570  | CFM   | 1570  | CFM   |       |       |       |       |        |       |
| 60     | 1910  | CFM   | 1910  | CFM   |       |       |       |       |        |       |
| 65     | 2905  | CFM   | 2905  | CFM   |       |       |       |       |        |       |
| 70     | 3075  | CFM   | 3075  | CFM   |       |       |       |       |        |       |
| 75     | 6840  | CFM   | 6840  | CFM   |       |       |       |       |        |       |
| 80     | 5952  | CFM   | 5952  | CFM   |       |       |       |       | 3769   | CFM   |
| 85     | 2339  | CFM   | 2339  | CFM   |       |       |       |       |        |       |
| 90     | 4268  | CFM   | 4268  | CFM   |       |       |       |       |        |       |
| 95     | 3824  | CFM   | 3824  | CFM   |       |       |       |       |        |       |
| 100    | 12518 | CFM   | 12518 | CFM   |       |       |       |       |        |       |
| 105    | 8643  | CFM   | 8643  | CFM   |       |       |       |       |        |       |
| 110    | 11962 | CFM   | 11962 | CFM   |       |       |       |       |        |       |
| 115    | 4780  | CFM   | 4780  | CFM   |       |       |       |       |        |       |
| 120    | 7526  | CFM   | 7526  | CFM   | •     |       |       |       |        |       |
| 125    | 7467  | CFM   | 7467  | CFM   | ,     |       |       |       |        |       |
| 130    | 8800  | CFM   | 8800  | CFM   |       |       | ,     |       |        |       |
| 135    | 11513 | CFM   | 11513 | CFM   |       | •     |       |       |        |       |
| 140    | 5409  | CFM   | 5409  | CFM   |       |       |       |       |        |       |
| 145    | 10620 | CFM   | 10620 | CFM   |       |       |       |       |        |       |
| 150    | 8893  | CFM   | 8893  | CFM   |       |       |       |       |        |       |
| 155    | 23005 | CFM   | 23005 | CFM   |       |       |       |       |        |       |

| Room       | Partition | Partition | Par       | tition Para | neters |          |      | · · · · · · · · · · · · · · · · · · · |          |
|------------|-----------|-----------|-----------|-------------|--------|----------|------|---------------------------------------|----------|
| Number     | Number    |           | raitition | Partition   | Const  | Temp     |      | Heating                               | Adjacent |
| 5          | 1         | Length    | Height    | U-Value     | Type   | Flag     | Temp | Temp                                  | Room No  |
| 10         | 1         | 43        | 43        | .18         | 110    | CONSTANT | 63   | 63                                    | KOOM NO  |
| 15         | 1         | 68.5      | 68.5      | .18         | 110    | CONSTANT | 63   | 63                                    |          |
| 20         | 1         | 92.5      | 93        | .18         | 110    | CONSTANT | 63   | 63                                    |          |
|            | 1         | 26.5      | 26.5      | 0.18        | 110    | CONSTANT | 63   |                                       |          |
| 25         | 1         | 27.5      | 27        | 0.18        | 110    | CONSTANT | 63   | 63                                    |          |
| 30         | 1         | 55.5      | 55.5      | 0.18        | 110    | CONSTANT |      | 63                                    |          |
| <b>3</b> 5 | 1         | 64        | 10        | 0.18        | 110    |          | 63   | 63                                    |          |
| 40         | 1         | 50        | 10        | 0.18        | 110    | CONSTANT | 63   | 63                                    |          |
| 45         | 1         | 111.5     | 10        | 0.18        |        | CONSTANT | 63   | 63                                    |          |
| 60         | 1         | 45        | 45        | 0.18        | 110    | CONSTANT | 63   | 63                                    |          |
| 65         | 1         | 89.5      | 37        | 0.18        | 110    | CONSTANT | 63   | 63                                    |          |
| 70         | 1         | 89.5      | 37        |             | 110    | CONSTANT | 71   | 55                                    |          |
| 75         | 1         | 87        | 87        | 0.18        | 110    | CONSTANT | 71   | 55                                    |          |
| 85         | 1         | 60        |           | 0.18        | 110    | CONSTANT | 71   | 55                                    |          |
|            |           | 00        | 60        | 0.18        | 110    | CONSTANT | 71   | 55                                    |          |

System Section Alternative #3 -----

Card 39- System Alternative

Number

Description

1 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

| System                       |             | 1/                                  |                   | IAL VENTIL | ATION SYST          | EM                  |               |
|------------------------------|-------------|-------------------------------------|-------------------|------------|---------------------|---------------------|---------------|
| Set<br>Number<br>1<br>2<br>3 | System      | Ventil<br>Deck<br>Location<br>ROADK | Cooling<br>SADBVh |            | Cooling<br>Schedule | Heating<br>Schedule | Fan<br>Static |
| 5<br>6                       | TRH<br>BPMZ | ROADK                               |                   |            |                     |                     | .389          |
| 7<br>8                       | COMP        |                                     |                   |            | -                   |                     |               |
| 9                            | COMP        |                                     |                   |            |                     |                     |               |
| 10                           | COMP        |                                     |                   |            |                     |                     |               |
| 11                           | COMP        |                                     |                   |            |                     |                     |               |
| 12                           | COMP        |                                     |                   |            |                     |                     |               |
| 13                           | COMP        |                                     |                   |            |                     |                     |               |
| 14                           | TRH         |                                     |                   |            |                     |                     |               |

| Card 41<br>System |              | <br>         | <br>· Zone / | Assignment | :            | <br>         | <br>•••••    |  |
|-------------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--|
| Set<br>Number     | Ref<br>Begin | Ref<br>Begin | Ref<br>Begin |            | Ref<br>Begin | Ref<br>Begin | Ref<br>Begin |  |

| Set    | Ref   | #1  | Ref   | #2 . | Ref    | #3  | ` Ref | 41/ |       |     |       |     |
|--------|-------|-----|-------|------|--------|-----|-------|-----|-------|-----|-------|-----|
| Number | Begin | End | Begin | End  | Begin  | End |       |     | Ref   | #5  | Ref   | #6  |
| 2      | 4     | 8   | •     |      | begini | End | Begin | End | Begin | End | Begin | End |
| 3      | 9     | 9   |       |      |        |     |       |     |       |     |       |     |
| 4      | 10    | 15  |       |      |        |     |       |     |       |     |       |     |
| 5      | 16    | 19  |       |      |        |     |       |     |       |     |       |     |
| 5      | 20    | 20  |       |      |        | •   |       |     |       |     |       |     |
| 7      | 21    | 21  |       |      |        |     |       |     |       |     |       |     |
| 3      | 22    | 22  |       |      |        |     |       |     |       |     |       |     |
| )      | 23    | 23  |       |      |        |     |       |     |       |     |       |     |
| 0      | 24    | 24  |       |      |        |     |       |     |       |     |       |     |
| 1      | 25    | 25  |       |      |        |     |       |     |       |     |       |     |
| 2      | 26    | 26  |       |      |        |     |       |     |       |     |       |     |
| 3      | 27    | 27  |       |      | •      |     |       |     |       |     |       |     |
| 4      | 28    | 31  |       |      |        |     |       |     |       |     |       |     |

| System | Cool | Heat | Return | Mn Exh | Aux | Rm Exh |         | 3      |        |      |        |
|--------|------|------|--------|--------|-----|--------|---------|--------|--------|------|--------|
| Set    | Fan  | Fan  | Fan    | Fan    | Fan | Fan    | Fan Mtr | Return | Supply |      | Return |
| Number | SP   | SP   | SP     | SP     | SP  | SP     | Loc     |        | Duct   | Duct | Air    |
| 1      | 1.75 |      |        |        | ۷.  | 1.0    | LOC     | Loc    | Ht Gn  | Loc  | Path   |
| 2      | 1.5  |      |        | .326   |     | 1.0    |         |        |        |      |        |
| 3      | 2.4  |      |        | .208   |     |        |         |        |        |      |        |
| 4      | 2.5  |      |        | .613   |     |        |         |        |        |      |        |
| 5      | 3.45 |      |        |        |     | 1.5    |         |        |        |      |        |
| 6      | 2.1  |      |        | .26    |     | 1.5    |         |        |        |      |        |
| 7      | 0.92 |      |        |        |     |        |         |        |        |      |        |
| 8      | 1.67 |      |        |        |     |        |         |        |        |      |        |
| 9      | 0.64 |      |        |        |     |        |         |        |        |      |        |
| 10     | 1.39 |      |        |        |     |        |         |        |        |      | _      |
| 11     | 1.54 |      |        |        |     |        |         |        |        |      |        |
| 12     | 1.04 |      |        |        |     |        |         |        |        |      |        |
| 13     | 1.64 |      |        | .077   |     |        |         |        |        |      |        |
| 14     | 3.25 |      |        |        |     |        |         |        |        |      |        |

| Card 43<br>System M<br>Set C |          |                 |                 | riax iiiulii | חמותותות | Mayimum                                    | Windows |         |            |                          |
|------------------------------|----------|-----------------|-----------------|--------------|----------|--------------------------------------------|---------|---------|------------|--------------------------|
| Number S<br>1<br>2<br>3      | <b>-</b> | Cooling<br>SADB | Heating<br>SADB | neating      | Cooling  | Cooling<br>Lv DB<br>63<br>63<br>54<br>49.5 | Preheat | Preheat | Room<br>RH | Design<br>Ht Rec<br>Diff |

| System<br>Set<br>Number<br>5<br>6 | Cooli            | ng<br>ng   | Maximum<br>Cooling<br>SADB | MIL          | imum<br>ting   | Maxin  | num         | Minin       | num<br>ng     | Maximum            | Minimum         | Maximum<br>Preheat<br>Lv DB | Minimum        | Design<br>Ht Rec<br>Diff                |                               |
|-----------------------------------|------------------|------------|----------------------------|--------------|----------------|--------|-------------|-------------|---------------|--------------------|-----------------|-----------------------------|----------------|-----------------------------------------|-------------------------------|
| Card (5                           | . <b></b>        |            |                            |              |                |        |             |             |               |                    |                 |                             |                |                                         |                               |
| System                            | Main             | •••        |                            |              | Dire           | <br>:t | Indi        | - Equ       | ipme          | nt Sched<br>iliary | dules           |                             |                |                                         | •                             |
| Set                               | Coolir           | g          |                            |              | Evap           |        | Evap        |             |               | ling               | Main<br>Heating | Main                        | Dahasa         |                                         | Auxiliary                     |
| Number                            | Coil             |            | Economiz                   | er           | •              |        | Coil        |             | Coi           | -                  | Coil            | Preheat<br>Coil             | Reheat<br>Coil | Mech.                                   | Heating                       |
| 1                                 |                  |            |                            |              |                |        |             |             |               |                    | OFF             | OFF                         | OFF            | Humidity                                | COIL                          |
| 2                                 |                  |            |                            |              |                |        |             |             |               |                    | OFF             | OFF                         | OFF            |                                         |                               |
| 5                                 |                  |            |                            |              |                |        |             |             |               |                    | OFF             | OFF                         | OFF            |                                         |                               |
| •                                 |                  |            |                            |              |                |        |             |             |               |                    |                 | ,                           |                |                                         |                               |
| ard 47                            | <br>a Hta        | <br>Pot    | Mn Exh                     |              |                |        | Fan         | Over        | rides         |                    |                 |                             |                | •••••                                   |                               |
|                                   | n Fan            |            |                            |              |                |        |             | t Vnt       |               |                    |                 | MAIN COOL                   | ING FAN        | • • • • • • • • • • • • • • • • • • • • |                               |
|                                   | f Eff            |            |                            |              | n Fa<br>f Ef   |        |             | Fan         |               |                    |                 | Air                         | Size           |                                         |                               |
| }                                 |                  |            |                            | ۲.           |                | ı      | Ef.         | r           | Eff           | v                  | alue            | Units                       | Meth           | Confg                                   |                               |
|                                   |                  |            |                            |              |                |        |             |             |               |                    |                 |                             |                | BLOW                                    |                               |
| i                                 |                  |            |                            |              |                |        |             |             |               |                    |                 |                             |                | BLOW                                    |                               |
| 4                                 |                  |            |                            |              |                |        |             |             |               |                    |                 |                             |                | BLOW<br>BLOW                            |                               |
|                                   |                  |            |                            |              |                |        |             |             |               |                    |                 |                             |                | 520#                                    |                               |
|                                   | •                |            | Equi                       | omen         | t Sec          | tion   | Alte        | rnat i      | ve #          | 3                  |                 |                             |                |                                         |                               |
|                                   |                  |            |                            |              | •              |        |             |             |               |                    |                 |                             |                |                                         |                               |
| aru by.                           | <br>F1           | ec '       | <br>Cons.——                |              |                | - Equi | pmer        | t Des       | crip          | tion /             | TOD Schedu      | ıles                        |                |                                         |                               |
|                                   | ive Ti           |            | oo, is diip                | cre          | - Delli        | and D  | emar        | a           |               |                    |                 |                             |                | Demand                                  |                               |
| umber                             |                  | hedu       |                            |              | edule          | Day L  |             |             | •-            |                    |                 |                             |                | Т                                       | emperature                    |
|                                   | ٠,               |            |                            | JUITE        | .uute          | M      | ax K        |             |               |                    | escription      |                             |                | Schedule                                | Drift                         |
|                                   |                  |            |                            |              | -              |        |             | EX          | 1211          | NG PRIMA           | ARY EQUIPA      | IENT                        |                |                                         |                               |
|                                   |                  |            |                            |              | -              |        |             |             |               |                    |                 |                             |                | -                                       |                               |
| ard 60-                           |                  |            |                            |              | ·              |        |             | ••••        | Coc           | ina ta             | - ـ ه اس        |                             |                |                                         |                               |
| الماسمه                           | l Coil           | Coc        | oling                      |              |                |        |             |             | ,<br>000      | ing Loa            | ia Assigni      | ent                         |                |                                         |                               |
| Dad At                            |                  |            |                            |              |                |        |             |             |               |                    |                 |                             |                |                                         |                               |
|                                   | ads To           | Equ        | ıi pment                   | -Gra         | up 1-          | -Gr    | oun         | 2           | Grou :        | 3                  | roup 4-         | -Cna                        | •              |                                         |                               |
| sgn Lo                            | ads To<br>ol Ref | Equ<br>Siz | uipment<br>ing             | -Gro<br>Begi | up 1-<br>n End | -Gr    | oup<br>in E | 2 (<br>nd R | Group<br>eair | 30                 | iroup 4-        | -Group 5-                   | -Group         | 6Group 7                                | Group 8Gro<br>d Begin End Beg |

| 4 62                                                                                                       |                                                                                                             |                                            |                                                                  |                                                                           | Cooting                                          | Equipme                                              | ent Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HFAT                                                   | RECOVER'                                                       | (                                      |            | Sec             | 4         |       | Demand            |                    |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|------------|-----------------|-----------|-------|-------------------|--------------------|
| l Equip                                                                                                    | Num                                                                                                         |                                            | C                                                                | JUE :                                                                     |                                                  |                                                      | Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | city                                                   |                                                                | Energy-                                |            | Ord             | der       | Seq   | Limit             |                    |
| Code                                                                                                       | Of                                                                                                          | Capa                                       | city                                                             | E                                                                         | nergy                                            |                                                      | Capac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unite                                                  | Val                                                            |                                        | its        | Nu              | m         | Type  | Number            |                    |
|                                                                                                            |                                                                                                             |                                            | Units                                                            | Value                                                                     | e Uni                                            | ts                                                   | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | 88                                                             | KW                                     |            | 1               |           | SER   |                   |                    |
| Name                                                                                                       | 1                                                                                                           | 154                                        | TONS                                                             | 142                                                                       | KW                                               |                                                      | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TONS                                                   | 88                                                             | Kh                                     |            | 2               |           | SER   |                   |                    |
| EQ1010S                                                                                                    | 1                                                                                                           | 154                                        | TONS                                                             | 142                                                                       | KW                                               |                                                      | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TONS                                                   | •                                                              |                                        |            |                 |           |       |                   |                    |
| EQ1010S                                                                                                    | •                                                                                                           |                                            |                                                                  |                                                                           |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        |            |                 |           |       |                   |                    |
|                                                                                                            |                                                                                                             |                                            |                                                                  |                                                                           |                                                  |                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                |                                        |            |                 |           |       |                   |                    |
|                                                                                                            |                                                                                                             |                                            |                                                                  |                                                                           |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        |            |                 | <b>-</b>  |       |                   |                    |
| rd 63                                                                                                      |                                                                                                             | . <b></b> -                                |                                                                  | Coolir                                                                    | ng Pumps                                         | and Re                                               | ference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s Si                                                   | witch-                                                         |                                        |            |                 |           |       |                   |                    |
| rd 63<br>olCHILLI                                                                                          | ED WATE                                                                                                     | ₹                                          | CO                                                               | NDENSER                                                                   |                                                  | -HT REC                                              | . or AUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load 0                                                 | ver                                                            | Cold                                   | Cooli      |                 |           |       |                   |                    |
| olCHILLI<br>of Full Loa                                                                                    | d Full                                                                                                      | Load                                       | Full Lo                                                          | ad ruce                                                                   |                                                  |                                                      | l rull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . C                                                    | ontrol                                                         | Storage                                | Tower      | · A             | ccess     |       |                   |                    |
| ım Value                                                                                                   | Unit                                                                                                        | s                                          | Value                                                            | Units                                                                     | Va                                               | lue                                                  | Unites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , -                                                    |                                                                |                                        | 1          | 1               |           |       |                   |                    |
| 39.3                                                                                                       | KW                                                                                                          |                                            | 27.5                                                             | KW                                                                        |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        | 2          |                 |           |       |                   |                    |
| 0                                                                                                          | KW                                                                                                          |                                            | 18.3                                                             | KW                                                                        |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        |            |                 |           |       |                   |                    |
| U                                                                                                          | •••                                                                                                         |                                            |                                                                  |                                                                           |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        |            |                 |           |       |                   |                    |
|                                                                                                            |                                                                                                             |                                            |                                                                  |                                                                           |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        |            |                 |           |       |                   |                    |
| ard 64                                                                                                     |                                                                                                             |                                            |                                                                  | Cooli                                                                     | na Eauip                                         | ment Op                                              | tions -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                |                                        | <br>-:     | and Re          | -<br>·i   |       |                   |                    |
| ard 64                                                                                                     |                                                                                                             |                                            |                                                                  | Free                                                                      | .g -qF                                           | Cond                                                 | Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd                                                     | Cond Rej                                                       | Cond R                                 | ej co      | אוט גכ<br>שט    | J         |       |                   |                    |
| ool Max                                                                                                    | Load                                                                                                        |                                            |                                                                  | Cooling                                                                   |                                                  | Enteri                                               | ing Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oper                                                   | To Ref                                                         | To Ret                                 |            | II.M            |           |       |                   |                    |
| of CV                                                                                                      | Shed                                                                                                        |                                            |                                                                  |                                                                           | Source                                           |                                                      | Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | Type                                                           | Number                                 |            | emp<br>e        |           |       |                   |                    |
| lum Reset                                                                                                  | Econom                                                                                                      | izer                                       | Precool                                                          | iype                                                                      | 300,00                                           | 85                                                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | HEATING                                                        | 1                                      | 95         |                 |           |       |                   |                    |
| 1                                                                                                          |                                                                                                             |                                            |                                                                  |                                                                           |                                                  | 85                                                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | HEATING                                                        | 2                                      | 95         | •               |           |       |                   |                    |
| 2                                                                                                          |                                                                                                             |                                            |                                                                  |                                                                           |                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                |                                        |            |                 |           |       |                   |                    |
| Card 65<br>Load<br>Assignment                                                                              | All Co<br>Loads                                                                                             | il<br>To                                   | -Group                                                           | 1Grou                                                                     | p 2(                                             | Heating                                              | g Load A<br>Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Assignme<br>up 4<br>n End E                            | ent<br>-Group 5<br>Begin En                                    | -Group                                 | 6<br>End [ | -Group<br>Begin | 7-<br>End | -Grou | up 8G<br>n End Be | roup 9-            |
| Load<br>Assignment<br>Reference<br>1                                                                       | All Co<br>Loads<br>Heatir<br>1                                                                              | il<br>To<br>ng Ref                         | -Group<br>Begin 1                                                | 1Grou<br>End Begir<br>5 14                                                | p 20<br>a End Be<br>14                           | Heating<br>Group 3<br>Egin En                        | g Load A<br>Grou<br>d Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assignme<br>up 4<br>n End E                            | ent<br>-Group 5-<br>Begin End                                  | -Group                                 | 6<br>End [ | -Group<br>Begin | 7-<br>End | -Grou | up 80<br>n End Be | roup 9-<br>gin End |
| Load<br>Assignment<br>Reference<br>1<br>2                                                                  | All Co<br>Loads<br>Heatin<br>1                                                                              | il<br>To<br>ng Ref                         | -Group<br>Begin 8<br>3                                           | 1Grou<br>End Begir<br>5 14<br>13                                          | p 20<br>1 End B0<br>14                           | iroup 3<br>egin En                                   | Grou<br>d Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | up 4<br>n End E                                        | -Group 5<br>Begin End                                          | -Group                                 | End i      |                 |           |       | up 8G             | roup 9-<br>gin End |
| Load<br>Assignment<br>Reference<br>1<br>2                                                                  | All Co<br>Loads<br>Heatin<br>1                                                                              | il<br>To<br>ng Ref                         | -Group<br>Begin 8<br>3                                           | 1Grou<br>End Begir<br>5 14<br>13                                          | p 20<br>1 End B0<br>14                           | iroup 3<br>egin En                                   | Grou<br>d Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | up 4<br>n End E                                        | -Group 5<br>Begin End                                          | -Group                                 | End i      |                 |           |       | up 8G             | Dema               |
| Load Assignment Reference 1 2 Card 67                                                                      | All Co<br>Loads<br>Heatin<br>1<br>3                                                                         | il<br>To<br>ng Ref                         | -Group<br>Begin 8<br>3 5                                         | 1Grou<br>End Begin<br>5 14<br>13                                          | p 20<br>1 End B0<br>14                           | iroup 3<br>egin En                                   | Grou<br>d Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | up 4<br>n End E<br>ment Par<br>Energy                  | -Group 5<br>Begin End                                          | -Group<br>Begin                        | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2 Card 67 Heat Ed                                                              | All Co<br>Loads<br>Heatin<br>1<br>3                                                                         | il<br>To<br>ng Ref<br>Numbe                | -Group<br>Begin I<br>3 '<br>7                                    | 1Grou<br>End Begin<br>5 14<br>13                                          | p 2 (<br>a End Be<br>14                          | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | up 4 n End E ment Par Energy Rate                      | -Group 5<br>Begin End<br>Begin End                             | -Group<br>Begin                        | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2 Card 67 Heat Ed Ref Co                                                       | All Co<br>Loads<br>Heatin<br>1<br>3                                                                         | il<br>To<br>ng Ref<br>Numbe                | -Group<br>Begin I<br>3<br>7                                      | 1Grou<br>End Begir<br>5 14<br>13                                          | p 20<br>End B6<br>14                             | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | up 4<br>n End E<br>ment Par<br>Energy<br>Rate<br>Value | -Group 5<br>Begin End<br>rameters<br>Units                     | -Group Begin Seq Orde Numb             | End E      | itch            |           |       |                   | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N                                             | All Co<br>Loads<br>Heatin<br>1<br>3                                                                         | il<br>To<br>ng Ref<br>Numbe<br>Of<br>Units | -Group<br>Begin I<br>3 '<br>7                                    | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld                        | p 20<br>End B6<br>14                             | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment Par<br>Energy<br>Rate<br>Value                    | -Group 5<br>Begin End<br>Prameters<br>Units<br>PCTEFF          | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Card 67 Heat Ed Ref Co Number N 1 E                                                                        | All Co<br>Loads<br>Heatin<br>1<br>3                                                                         | To T   | -Group<br>Begin I<br>3 '<br>7                                    | 1Grou<br>End Begir<br>5 14<br>13                                          | p 20<br>End B6<br>14                             | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | up 4<br>n End E<br>ment Par<br>Energy<br>Rate<br>Value | -Group 5<br>Begin End<br>rameters<br>Units                     | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N 1 E 2 E                                     | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002                                          | To ng Ref  Numbe Of Units 1                | -Group<br>Begin I<br>3<br>7<br>7<br>HW Pr<br>Full                | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unite             | p 20<br>End B6<br>14                             | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment Par<br>Energy<br>Rate<br>Value                    | -Group 5<br>Begin End<br>Prameters<br>Units<br>PCTEFF          | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ec Ref Co Number N 1 E 2 E                                     | All Co<br>Loads<br>Heatin<br>1<br>3                                                                         | To T   | -Group<br>Begin I<br>3 '<br>7                                    | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unite             | p 20<br>End B6<br>14                             | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment Par<br>Energy<br>Rate<br>Value                    | -Group 5<br>Begin End<br>Prameters<br>Units<br>PCTEFF          | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N 1 E 2 E                                     | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002                                          | To ng Ref  Numbe Of Units 1                | -Group<br>Begin I<br>3 '<br>7                                    | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unite             | p 20<br>End B6<br>14                             | egin En                                              | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment Par<br>Energy<br>Rate<br>Value                    | -Group 5<br>Begin End<br>Prameters<br>Units<br>PCTEFF          | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N 1 E 2 E 3 E                                 | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002<br>Q2002                                 | To ng Ref  Numbe Of Units 1                | -Group<br>Begin I<br>3 '<br>7<br>7<br>HW Pr<br>Full<br>Valu<br>0 | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Units<br>KW       | p 2 Ca<br>End Ba<br>14<br>Caj<br>S Va            | aroup 3<br>egin En<br>Heating<br>P'y<br>Lue Un       | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment Par<br>Energy<br>Rate<br>Value<br>100             | -Group 5<br>Begin End<br>Prameters<br>Units<br>PCTEFF          | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N 1 E 2 E 3 E                                 | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002<br>Q2002                                 | To ng Ref  Numbe Of Units 1                | -Group<br>Begin I<br>3 '<br>7<br>7<br>HW Pr<br>Full<br>Valu<br>0 | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unite             | p 2 Ca<br>End Ba<br>14<br>Caj<br>S Va            | aroup 3<br>egin En<br>Heating<br>P'y<br>Lue Un       | Grou<br>d Begin<br>g Equipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment Par<br>Energy<br>Rate<br>Value<br>100             | -Group 5<br>Begin End<br>-ameters<br>Units<br>PCTEFF<br>PCTEFF | -Group<br>Begin<br>Seq<br>Orde<br>Numb | End E      | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N 1 E 2 E 3 E                                 | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>oode<br>ame<br>Q2002<br>Q2002                                | To ng Ref  Numbe Of Units 1 1              | -Group<br>Begin I<br>3 '<br>7<br>7<br>HW Pr<br>Full<br>Valu<br>O | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>mp<br>Ld<br>e Unit:<br>KW       | p 2 Ca<br>End Ba<br>14<br>Caj<br>S Va            | Group 3 Group 3 Heating P'Y Lue Un                   | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100             | -Group 5 Begin End -Grameters                                  | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ed Ref Co Number N 1 E 2 E 3 E                                 | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002<br>Q2002                                 | To ng Ref  Numbe Of Units 1 1              | -Group Begin 1 3 7 7                                             | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unit:<br>KW<br>KW | p 2 Ca<br>End Ba<br>14<br>Caj<br>S Va            | egin End<br>Heating<br>P'y<br>Lue Un                 | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100             | -Group 5 Begin End -ameters Units PCTEFF PCTEFF                | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ec Ref C Number N 1 E 2 E 3 E  Card 69- System                 | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>oode<br>ame<br>Q2002<br>Q2002                                | To ng Ref  Numbe Of Units 1 1              | -Group<br>Begin I<br>3 '<br>7<br>7<br>HW Pr<br>Full<br>Valu<br>O | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>mp<br>Ld<br>e Unit:<br>KW       | p 2 Ca<br>End Ba<br>14<br>Caj<br>S Va            | egin End<br>Heating<br>P'y<br>Lue Un                 | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100             | -Group 5- Begin End Frameters Units PCTEFF PCTEFF              | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ec Ref C Number N 1 E 2 E 3 E  Card 69- System Set             | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>q2002<br>c02263                                | ill To ng Ref  Numbe Of Units 1 1          | -Group Begin 1 3 7 7                                             | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unit:<br>KW<br>KW | p 20 End Be 14  Cal Salament Pa  Exhau Fan       | Group 3 Pegin End Heating P'Y Lue Und rameter Ist Au | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100<br>100      | -Group 5- Begin End Frameters Units PCTEFF PCTEFF              | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ec Ref Co Number N 1 E 2 E 3 E  Card 69- System Set Number     | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002<br>Q2002<br>Q2002                        | To ng Ref  Numbe Of Units 1 1 1 ing        | -Group Begin 1 3 7 7                                             | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unit:<br>KW<br>KW | p 20 a End Be 14  Cal b Va  coment Pa  Exhau Fan | egin End<br>Heating<br>P'y<br>Lue Un<br>rameter      | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100<br>100      | -Group 5- Begin End Frameters Units PCTEFF PCTEFF              | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ec Ref Co Number N 1 E 2 E 3 E  Card 69- System Set Number 1 2 | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002<br>Q2002<br>Q2002<br>Cool<br>Fan<br>EQ40 | Ing 103                                    | -Group Begin 1 3 7 7                                             | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unit:<br>KW<br>KW | p 20 End Be 14  Cal Sument Pa Exhau Fan Eq400    | Heating P'y Lue Un rameter St At St 03               | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100<br>100      | -Group 5- Begin End Frameters Units PCTEFF PCTEFF              | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |
| Load Assignment Reference 1 2  Card 67 Heat Ec Ref Co Number N 1 E 2 E 3 E  Card 69- System Set Number 1   | All Co<br>Loads<br>Heatin<br>1<br>3<br>quip<br>ode<br>ame<br>Q2002<br>Q2002<br>Q2002<br>Cool<br>Fan<br>EQ40 | Ing 103                                    | -Group Begin 1 3 7 7                                             | 1Grou<br>End Begin<br>5 14<br>13<br>13<br>np<br>Ld<br>e Unit:<br>KW<br>KW | p 20 a End Be 14  Cal b Va  coment Pa  Exhau Fan | Heating P'y Lue Un rameter St At St 03               | Groud Begind | ment Par<br>Energy<br>Rate<br>Value<br>100<br>100      | Group 5- Begin End Frameters  Units PCTEFF PCTEFF  Opt ust Ver | -Group<br>Begin<br>Seq<br>Orde<br>Numb | Swir over  | itch            |           |       | sc.               | Dema<br>Lim        |

| Set    | Cooling | Heating | Return | Exhaust | Auxiliary | Room     | Optional    |
|--------|---------|---------|--------|---------|-----------|----------|-------------|
| Number | Fan     | Fan     | Fan    | Fan     | Supply    | Exhaust  | Ventilation |
| 6      | EQ4003  |         |        | E94003  | oupp.,    | Exiloust | ventitation |
| 7      | EQ4003  |         |        |         |           |          |             |
| 8      | EQ4003  |         |        |         |           |          |             |
| 9      | EQ4003  |         |        |         |           |          |             |
| 10     | EQ4003  |         |        |         |           | -        |             |
| 11     | EQ4003  |         |        |         |           |          |             |
| 12     | EQ4003  |         |        |         |           |          |             |
| 13     | EQ4003  |         |        | EQ4003  |           |          |             |
| 14     | EQ4003  |         |        |         |           |          |             |

| Card 70 | ) <b></b> |        |     | Fan   | Equip | oment K | W Over | rides |      |     |        |      |
|---------|-----------|--------|-----|-------|-------|---------|--------|-------|------|-----|--------|------|
|         |           | MAIN S |     |       |       | ER SYS  |        |       |      |     | PRIORI |      |
| System  | Cool      | Heat   | Ret | Exh   | Aux   | Room    | 0pt    |       |      |     | Room   | Opt  |
| Set     | Fan       | Fan    | Fan | Fan   | Sup   | Exh     | Vent   | Cool  | Heat | Aux | Exh    | Vent |
| Number  | KW        | KW     | KW  | KW    | KW    | KW      | KW     | Fan   | Fan  | Fan | Fan    | Fan  |
| 1       | 6.5       |        |     |       | •     | 1.2     | .25    |       |      |     |        |      |
| 2       | 10.2      |        |     | .652  |       |         |        |       |      |     |        |      |
| 3       | 6.5       |        |     | .415  |       |         |        |       |      |     |        |      |
| 4       | 17.3      |        |     | 1.225 |       |         |        |       |      |     |        |      |
| 5       | 13.9      |        |     |       |       | 2.7     | .779   |       |      |     |        |      |
| 6       | 7.4       |        |     | .519  |       |         |        |       |      |     |        |      |
| 7       | 3.3       |        |     |       |       |         |        |       |      |     |        |      |
| 8       | 5.6       |        |     |       |       |         |        |       |      |     |        |      |
| 9       | 1.8       |        |     |       |       |         |        |       |      |     |        |      |
| 10      | 3.7       |        |     |       |       |         |        |       |      |     |        |      |
| 11      | 4.7       |        |     |       |       |         |        |       |      |     |        |      |
| 12      | 3.3       |        |     |       |       |         |        |       |      |     |        |      |
| 13      | 5.6       |        |     | .156  |       |         |        |       |      |     |        |      |
| 14      | 22.7      |        |     |       |       |         |        |       |      |     |        |      |

| Card 71- |                 |        | Base   | Utility P | arameters |           |        |          |         |
|----------|-----------------|--------|--------|-----------|-----------|-----------|--------|----------|---------|
| Base     | Base            | Hourly | Hourly |           |           | Equip     | Demand |          |         |
| Utility  | Utility         | Demand | Demand | Schedule  | Energy    | Reference |        | Entering | Leaving |
| Number   | Descrip         | Value  | Units  | Code      | Type      | Number    | Number | Temp     | Temp    |
| 1        | CHW PIPING LOSS | 4.64   | TONS   | AVAIL     | CHILL-LD  | 1         |        |          | · cmp   |
| 2        | HW PIPING LOSS  | 77.4   | M8H    | AVAIL 1   | HOT-LD    | 1         |        |          |         |

| Card 7       | 4                                  | <br>              | Condenser | / Coolin                         | g Tower | Parameters    |        | <br>              |  |
|--------------|------------------------------------|-------------------|-----------|----------------------------------|---------|---------------|--------|-------------------|--|
| Tower<br>Ref | Cooling<br>Tower<br>Code<br>EQ5100 | Capacity<br>Units | Energy    | Energy<br>Consump<br>Units<br>KW |         | Tower<br>Type | Number | Low Spd<br>Energy |  |

| rd 74<br>ower<br>ef | Cooling<br>Tower<br>Code<br>EQ5100 | Capacity<br>Value       | Capacity<br>Units     | - Condenser<br>Energy<br>Consump<br>Value<br>10.8 | Energy<br>Consump<br>Units<br>KW | Fluid<br>Type<br>T-WATER | Tower<br>Type<br>CTOWER | Of<br>Cells   | Percent<br>Airflow<br>Low Spd | Energy          | Low Spd<br>Energy<br>Units |               |
|---------------------|------------------------------------|-------------------------|-----------------------|---------------------------------------------------|----------------------------------|--------------------------|-------------------------|---------------|-------------------------------|-----------------|----------------------------|---------------|
|                     |                                    | ā.                      |                       |                                                   | - Miscell                        | aneous Ac                | cessory -               |               | <br>#3                        |                 |                            |               |
| ard<br>Misc<br>Ref  | #1                                 | Energy<br>Value<br>16.6 | Energy<br>Units<br>KW | #<br>Sched E                                      | 2                                | Energy<br>Value          | Energy<br>Units         | Sched<br>Code | #3<br>Equip<br>Code           | Energy<br>Value | Energy<br>Units            | Sched<br>Code |

Card 19- Load Alternative -Number Description 4 ECO C -

# ECO-C, LSTC BUILDING

|          |                   |                             |                 |                          |            |                              |                     | _               |                                   |                                |                    |
|----------|-------------------|-----------------------------|-----------------|--------------------------|------------|------------------------------|---------------------|-----------------|-----------------------------------|--------------------------------|--------------------|
| Card 20  | Zone<br>Reference | Room                        | Floor<br>Length | Genera<br>Floor<br>Width | Room Const | Paramete<br>Plenum<br>Height | Acoustic<br>Ceiling | Floor<br>Height | Duplicate<br>Floors<br>Multiplier | Duplicate<br>Rooms per<br>Zone | Perimeter<br>Depth |
| Number   | Number            | Descrip                     | 25.5            | 59.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 5        | 1                 | B-17 B,C,& D                | 59              | 59.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 10       | 2                 | B-17,18,AEROBICS            | 80.5            | 80.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 15       | 3                 | B-8,16,27-32                | 22              | 15                       | 10         | 2                            |                     | 10<br>10        |                                   |                                |                    |
| 20       | 4                 | B-25,25A                    | 27              | 27.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 25       | 5                 | B-4                         | 55.5            | 55.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 30       | 6                 | B-12,12A<br>B-2,13,19,20-22 | 45.5            | 45.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 35       | 7                 | B-1,3,24                    | 81              | 81                       | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 40       | 8                 | B-9,10,11,11A               | 111.5           | 20                       | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 45       | 9                 | DOMES, MAIN WINGS           | 40              | 40.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 50       | 10                | SW LOWER DOME               | 48              | <b>_ 48</b>              | 10         | 2<br>2                       |                     | 10              |                                   |                                |                    |
| 55       | 11 .<br>12        | NE LOWER DOME               | 48              | 48                       | 10         | 2                            |                     | 10              |                                   |                                |                    |
| - 60     | 13                | MAIN FLR WEST               | 89.5            | 37                       | 10         | . 2                          |                     | 10              |                                   |                                |                    |
| 65       | 14                | MAIN FLR EAST               | 61              | 61                       | 10<br>10   | . 2                          |                     | 10              |                                   |                                |                    |
| 70<br>75 | 15                | 112,119A,123A,              | 94.5            | 95 <sup>^</sup>          | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 80       | 16                | MAIN FLOOR CENTR            | 93              | 93.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 85       | 17                | MAIN FLOOR SOUTH            | 51              | 51<br>47 E               | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 90       | 18                | L.DOME COMP. RMS.           | 63.5            | 63.5<br>71               | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 95       | 19                | L.DOME OFFICES              | 71              | 88.5                     | 10         | 2                            |                     | 10              |                                   |                                |                    |
| 100      | 20                | U.DOME                      | 88.5            | ر.۵۵                     |            | _                            |                     |                 |                                   |                                |                    |
| 105      | 21                | RM 119, AH-8                | 1               | '                        |            |                              |                     |                 |                                   |                                |                    |

| Card 20 |           |                  |        | Gener | al Room | Paramete | rs         |          |            |           |           |
|---------|-----------|------------------|--------|-------|---------|----------|------------|----------|------------|-----------|-----------|
|         | Zone      |                  |        |       |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference | Room             | Floor  | Floor | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number    | Descrip          | Length | Width | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 110     | 22        | RM 119A, AH-9    | 1      | 1     |         |          |            |          |            |           |           |
| 115     | 23        | RM 123, AH-10    | 1      | 1     |         |          |            |          |            |           |           |
| 120     | 24        | RM 127A, AH-11A  | 1      | 1     |         |          |            |          |            |           |           |
| 125     | 25        | RM 127A, AH-11B  | 1      | 1     | •       |          |            |          |            |           |           |
| 130     | 26        | RM 127, AH-12    | 1      | 1     |         |          |            |          |            |           |           |
| 135     | 27        | AUX CNTRL, AH-14 | 1      | 1     |         |          |            |          |            |           |           |
| 140     | 28        | RM 110 UNDERFLOR | 33     | 34    | 10      | 2        |            | 10       |            |           |           |
| 145     | 29        | RM 120A,122,126A | 50     | 50    | 10      | 2        |            | 10       |            |           |           |
| 150     | 30        | RM 146A,148,148A | 32     | 32    | 10      | 2        |            | 10       |            |           |           |
| 155     | 31        | 204,205,206,207  | 63.5   | 63.5  | 10      | 2        |            | 10       |            |           |           |

| Card 21    |            |        |            | Therm    | ostat Param | eters       |          |          |          |        |
|------------|------------|--------|------------|----------|-------------|-------------|----------|----------|----------|--------|
|            | Cooling    | Room   | Cooling    | Cooling  | Heating     | Heating     | Heating  |          | Mass /   | Carpet |
| Room       | Room       | Design | T'stat     | T'stat   | Room        | T'stat      | T'stat   | Location |          |        |
| Number     | Design DB  | RH     | Driftpoint | Schedule | Design DB   | Driftpoint  | Schedule | Flag     | Average  |        |
| 5          | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 10         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 |        |
| 15         | <b>7</b> 5 | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 20         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 |        |
| 25         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 |        |
| 30         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 |        |
| 35         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 |        |
| 40         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 45         | 70         | 45     | 70         |          | 70          | 70          |          |          | HEAVY130 |        |
| 50         | <b>7</b> 5 | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 55         | <b>7</b> 5 | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 60         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 65         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 70         | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| <b>7</b> 5 | 75         | 50     | <b>7</b> 5 |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 180        | 70         | 45     | 70         |          | <b>7</b> 0  | 70          |          |          | HEAVY130 | NO     |
| 85         | 75         | 50     | <b>7</b> 5 |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 90         | 70         | 45     | 70         |          | 70          | 70          |          |          | HEAVY130 | NO     |
| 95         | 75         | 50     | 75         |          | 70          | <b>70</b> . |          |          | HEAVY130 | ) NO   |
| 100        | 75         | 50     | 75         |          | 70          | 70          |          |          | HEAVY130 | ) NO   |
| 105        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |
| 110        | 70         | 45     | 70         |          | 70          | 70 .        |          |          |          |        |
| 115        | 70         | 45     | 70         |          | 70 -        | 70          |          |          |          |        |
| 120        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |
| 125        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |
| 130        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |
| 135        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |
| 140        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |
| 145        | 70         | 45     | 70         |          | 70 .        | 70          |          |          |          |        |
| 150        | 70         | 45     | 70         |          | 70          | 70          |          |          |          |        |

| Card 21 |           |        |            | Therπ    | ostat Param | neters     |          |      |                                        |        |
|---------|-----------|--------|------------|----------|-------------|------------|----------|------|----------------------------------------|--------|
| ,       | Cooling   | Room   | Cooling    | Cooling  | Heating     |            | Heating  |      | Mass /                                 | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        |            | T'stat   |      | •                                      |        |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint | Schedule | Flag | Average                                |        |
| 155     | 70        | 45     | 70         |          | 70          | 70 ·       |          |      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 1001 |

| Card 22 |        |          |        | Roof Par | ameters |       |           |      |      |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|------|
|         |        | Roof     |        |          |         |       |           |      |      |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof |
| Number  | Number | Floor?   | Length | Width    | U-Value |       | Direction |      |      |
| 50      | 1      | YES      |        |          | 0.18    | 19    |           |      | .4   |
| 100     | 1      | NO       | 88     | 88       | 0.18    | 19    |           |      | .4   |

|            |        |        |        | wattr   | Wall    |           |      |      | Ground      |
|------------|--------|--------|--------|---------|---------|-----------|------|------|-------------|
| Room       | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall | Reflectance |
| Number     | Number | Length | Height | U-Value | Type    | Direction | Tilt |      |             |
| 50         | 1      | 26.5   | 31     | 0.18    | 94      | 0         |      | .4   |             |
| 50         | 2      | 26.5   | 31     | 0.18    | 94      | 90        |      | .4   |             |
| 50         | 3      | 26.5   | 31     | 0.18    | 94      | 180       |      | .4   |             |
| 50         | 4      | 26.5   | 31     | 0.18    | 94      | 270       |      | .4   |             |
| 55         | 1      | 42     | 15     | 0.18    | 94      | 0         |      | .4   |             |
| 55         | 2      | 42     | 15     | 0.18    | 94      | 90        |      | .4   |             |
| 55         | 3      | 42     | 15     | 0.18    | 94      | 180       |      | .4   |             |
| <b>5</b> 5 | 4      | 42     | 15     | 0.18    | 94      | 270       |      | .4   |             |
| 60         | 1      | 42     | 15     | 0.18    | 94      | 0         |      | .4   |             |
| 60         | 2      | 42     | 15     | 0.18    | 94      | 90        |      | .4   |             |
| 60         | 3      | 42     | 15     | 0.18    | 94      | 180       |      | .4   |             |
| 60         | 4      | 42     | 15     | 0.18    | 94      | 270       |      | .4   |             |
| 90         | 1      | 37.5   | 10     | 0.18    | 94      | 0         |      | .4   |             |
| 90         | 2      | 37.5   | 10     | 0.18    | 94      | 90        |      | .4   |             |
| 90         | 3      | 37.5   | 10     | 0.18    | 94      | 180       |      | .4   |             |
| 90         | 4      | 37.5   | 10     | 0.18    | 94      | 270       |      | .4   |             |
| 95         | 1      | 47     | 10     | 0.18    | 94      | 0         |      | .4   |             |
| 95         | 2      | 47.5   | 10     | 0.18    | 94      | 90        |      | .4   |             |
| . 95       | 3      | 47     | 10     | 0.18    | 94      | 180       |      | .4   |             |
| 95         | 4      | 47.5   | 10     | 0.18    | 94      | 270       |      | .4   |             |
| 100        | 1      | 78     | 29     | 0.18    | 94      | 0         |      | .4   |             |
| 100        | 2      | 78.5   | 29     | 0.18    | 94      | 90        |      | .4   |             |
| 100        | 3      | 78     | 29     | 0.18    | 94      | 180       |      | .4   |             |
| 100        | 4      | 78.5   | 29     | 0.18    | 94      | 270       |      | .4   |             |

| Card 26        |        | <br>        | §            | Schedules - | • • • • • • • • • • • • • • • • • • • • | <br>      |      | ••••••                  |
|----------------|--------|-------------|--------------|-------------|-----------------------------------------|-----------|------|-------------------------|
| Koom<br>Number | People | Ventilation | Infiltration | Reheat      | Cooling                                 | Auxiliary | Room | Daylighting<br>Controls |

| a              |          |            |             | S            |         |                  | Heating | Auxiliary | Room    | Daylighting |
|----------------|----------|------------|-------------|--------------|---------|------------------|---------|-----------|---------|-------------|
| Card 26        | •••      |            |             |              | Reheat  | Cooling          |         | Fan       | Exhaust | Controls    |
| Room<br>Number | People   | Lights     | Ventilation | Infiltration | Minimum | Fans<br>DAYSCHED | Fan     | , an      | _       |             |
| 10             |          | OFFICEL8   |             |              |         | DAYSCHED         |         |           | DAYSCHE | )           |
| 15             | OFFICEP1 | OFFICEL9   |             |              |         | DAYSCHED         |         |           |         |             |
| 20             |          | OFICEL10   |             |              |         | DAYSCHED         |         |           |         |             |
| 25             |          | OFICEL11   |             |              |         | . DAYSCHED       |         |           |         |             |
| 30             | OFFICEP1 | OFICEL12   |             |              |         | DAYSCHED         |         |           |         |             |
| 35             | OFFICEP1 | OFICEL13   |             |              |         | DAYSCHED         |         |           |         |             |
| 40             |          | CLGONLY    |             |              |         | DAYSCHED         |         |           |         |             |
| 45             | OFFICEP1 | OFICEL14   |             |              |         | DAYSCHED         |         |           |         |             |
| 50             | OFFICEP1 |            |             |              |         | DAYSCHE          |         |           |         |             |
| 55             | OFFICEP1 |            |             |              |         | DAYSCHE          |         |           |         |             |
| 60             | OFFICEP1 | OFICEL16   | •           |              |         | DAYSCHE          |         |           |         |             |
| 65             | OFFICEP1 | OFICEL17   | ,           |              |         | DAYSCHE          |         |           |         |             |
| 70             | OFFICEP1 | OFICEL18   | 3           |              |         | DAYSCHE          |         |           |         |             |
| 75             | OFFICEP1 | OFICEL19   | 9           |              |         | DAYSCHE          | D       |           | DAYSCH  | IED         |
| 80             | OFFICEP1 | OF I CEL 2 | 0           |              |         | DAYSCHE          | D       |           |         |             |
| 85             | OFFICEP' | 1 OFICEL2  | 1           |              |         | DAYSCHE          | ED      |           |         |             |
| 90             | OFFICEP  |            |             |              |         | DAYSCHE          | ED      |           |         |             |
| 95             | OFFICEP  |            |             |              |         | DAYSCH           | ED      |           |         |             |
| 100            | OFFICEP  | 1 OFICEL2  | 23          |              |         |                  |         |           |         |             |
| 105            | CLGONLY  |            |             |              |         |                  |         |           |         |             |
| 110            | CLGONLY  | '          |             |              |         |                  |         |           |         |             |
| 115            | CLGONLY  | 1          |             |              |         |                  |         |           |         |             |
| 120            | CLGONLY  | 1          |             |              |         |                  |         |           |         |             |
| 125            | CLGONL'  |            |             |              |         |                  |         |           |         |             |
| 130            | CLGONL   | Y          |             |              |         |                  |         |           |         |             |
| 135            | CLGONL   |            |             |              |         |                  |         |           |         |             |
| 140            | CLGONL   | Y          |             |              |         |                  |         |           |         |             |

|                                          |                                |                                                         |                                                |                                              |                                                                                                 |                                                                         | <b>.</b>                                                                                         | <br>                  |                      |                      |
|------------------------------------------|--------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|
| Card 27                                  | '                              |                                                         |                                                |                                              | Peopl                                                                                           | e and Ligh                                                              | Lighting                                                                                         | <br>Percent           | Daylig               | hting<br>Reference   |
| Room Number 5 10 15 20 25 30 35 40 45 50 | People<br>Value<br>7<br>3<br>2 | People<br>Units<br>PEOPLE<br>PEOPLE<br>PEOPLE<br>PEOPLE | People<br>Sensible<br>250<br>250<br>250<br>250 | People<br>Latent<br>200<br>200<br>200<br>200 | Lighting<br>Value<br>1876<br>3263<br>7204<br>375<br>2060<br>2683<br>1115<br>3683<br>4838<br>374 | Units WATTS | Fixture Type ASHRAE1 SUSFLUOR SUSFLUOR SUSFLUOR SUSFLUOR ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 | Lights to<br>Ret. Air | Reference<br>Point 1 | Reference<br>Point 2 |
| 55<br>60<br>65                           | 1<br>3<br>7                    | PEOPLE<br>PEOPLE<br>PEOPLE                              | 250<br>250<br>250                              | 200<br>200<br>200                            | 2870<br>3024<br>5967                                                                            | WATTS<br>WATTS<br>WATTS                                                 | ASHRAE1<br>ASHRAE1<br>SUSFLUO                                                                    |                       |                      |                      |

| Room Number 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 | People Value 13 15 12 11 16 18 19 1 1 1 1 1 1 | People Units PEOPLE | People Sensible 250 250 250 250 250 250 250 250 250 250 |  | Lighting<br>Value<br>3463<br>13978<br>11936<br>4403<br>5302<br>6382<br>9998 | e and Ligh Lighting Units WATTS WATTS WATTS WATTS WATTS WATTS WATTS WATTS WATTS | Lighting Fixture Type ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 ASHRAE1 | Ballast<br>Factor | Percent<br>Lights to<br>Ret. Air | Daylig<br>Reference<br>Point 1 |  |  |
|-------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|----------------------------------|--------------------------------|--|--|
|-------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|----------------------------------|--------------------------------|--|--|

| 0       |           |                 |         | Mis     | cellaneous                              | Equipment |          |         |             |          |          |
|---------|-----------|-----------------|---------|---------|-----------------------------------------|-----------|----------|---------|-------------|----------|----------|
| Card 20 |           |                 |         | _       | • • • • • • • • • • • • • • • • • • • • | Energy    | Percent  | Percent | Percent     |          |          |
|         | Misc      |                 | Energy  |         |                                         |           |          |         |             | Dadiant  | Ontional |
| Room    | Equipment | Equipment       | Consump | Consump | Schedule`                               | Meter     | of Load  |         | Misc. Sens  |          |          |
| Number  | Number    | Descrip         | Value   | Units   | Code                                    | Code      | Sensible | to Room | to Ret. Air | Fraction | Air Path |
| 155     | 1         | COMPUTERS - UPS | 17545   | WATTS   | OFFICEM1                                | ELEC      |          |         |             |          |          |

| Card 29 |    |        |       |       | Room Airflows |        |         |       |        |         |
|---------|----|--------|-------|-------|---------------|--------|---------|-------|--------|---------|
| cara cz |    | Ventil | ation |       |               | Infili | tration |       |        |         |
| Room    |    | ing    | Hea   | ting  |               | ling   |         | ting  | Reheat | Minimum |
| Number  |    | Units  | Value | Units | Value         | Units  |         | Units | Value  | Units   |
| 5       | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 10      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 20      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 25      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 30      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 35      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 40      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 45      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 50      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 55      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 60      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 65      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 70      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 75      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 80      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 85      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 90      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 95      | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 100     | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
| 135     | 20 | CFM-P  | 20    | CFM-P |               |        |         |       |        |         |
|         |    |        |       |       |               |        |         |       |        |         |

| Card 30    |       |       |       |       | - Fan Airflows |       |       |       |        |        |  |  |  |
|------------|-------|-------|-------|-------|----------------|-------|-------|-------|--------|--------|--|--|--|
|            |       | Ma    | in    |       | Auxiliary      |       |       |       |        |        |  |  |  |
| Room       | Cool  |       | Heat  | ting  | Coo            | ling  | Hea   | ting  | Room E | xhaust |  |  |  |
| Number     | Value | Units | Value | Units | Value          | Units | Value | Units | Value  | Units  |  |  |  |
| 5          | 2675  | CFM   | 2675  | CFM   |                |       |       |       |        | -      |  |  |  |
| 10         | 3180  | CFM   | 3180  | CFM   |                |       |       |       |        |        |  |  |  |
| 15         | 10917 | CFM   | 10917 | CFM   |                |       |       |       | 790    | CFM    |  |  |  |
| 20         | 700   | CFM   | 700   | CFM   |                |       | •     |       |        |        |  |  |  |
| 25         | 800   | CFM   | 800   | CFM   |                | •     |       |       |        |        |  |  |  |
| 30         | 3025  | CFM   | 3025  | CFM   |                |       |       |       |        |        |  |  |  |
| 35         | 845   | CFM   | 845   | CFM   |                |       |       |       |        |        |  |  |  |
| 40         | 17300 | CFM   | 17300 | CFM   |                |       |       |       |        |        |  |  |  |
| 45         | 9060  | CFM   | 9060  | CFM   |                |       |       |       |        |        |  |  |  |
| 50         | 1100  | CFM   | 1100  | CFM   |                | _     |       |       |        |        |  |  |  |
| <b>5</b> 5 | 1570  | CFM   | 1570  | CFM   |                | •     |       |       |        |        |  |  |  |
| 60         | 1910  | CFM   | 1910  | CFM   |                |       |       |       |        |        |  |  |  |
|            |       |       |       |       |                |       |       |       |        |        |  |  |  |

|        |       | Ma    | in    |       |       | Auxi  | liary |       |        |         |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|
| Room   | Coo   | ling  | Hea   | ting  | Coo   | ling  | Hea   | ting  | Room E | xhaust- |
| Number | Value | Units | Value | Units | Value | Units | Value | Units | Value  | Units   |
| 65     | 2905  | CFM   | 2905  | CFM   |       |       |       |       |        |         |
| 70     | 3075  | CFM   | 3075  | CFM   |       |       |       |       |        |         |
| 75     | 6840  | CFM   | 6840  | CFM   |       |       |       |       |        |         |
| 80     | 5952  | CFM   | 5952  | CFM   |       |       | •     |       | 3769   | CFM     |
| 85     | 2339  | CFM   | 2339  | CFM   |       |       |       |       |        |         |
| 90     | 4268  | CFM   | 4268  | CFM   |       |       |       |       |        |         |
| 95     | 3824  | CFM   | 3824  | CFM   |       |       |       |       |        |         |
| 100    | 12518 | CFM   | 12518 | CFM   |       |       |       |       |        |         |
| 105    | 8643  | CFM   | 8643  | CFM   |       |       |       |       |        |         |
| 110    | 11962 | CFM   | 11962 | CFM   |       |       |       |       |        |         |
| 115    | 4780  | CFM   | 4780  | CFM   |       |       |       |       |        |         |
| 120    | 7526  | CFM   | 7526  | CFM   | •     |       |       |       |        |         |
| 125    | 7467  | CFM   | 7467  | CFM   |       |       |       |       |        |         |
| 130    | 8800  | CFM   | 8800  | CFM   |       |       |       |       |        |         |
| 135    | 11513 | CFM   | 11513 | CFM   |       |       |       |       |        |         |
| 140    | 5409  | CFM   | 5409  | CFM   |       |       |       |       |        |         |
| 145    | 10620 | CFM   | 10620 | CFM   |       |       |       |       |        |         |
| 150    | 8893  | CFM   | 8893  | CFM   |       |       |       |       |        |         |
| 155    | 23005 | CFM   | 23005 | CFM   |       |       |       |       |        |         |

| Card 31 Partition Parameters |           |           |           |           |       |          |         |         |          |
|------------------------------|-----------|-----------|-----------|-----------|-------|----------|---------|---------|----------|
| Room                         | Partition | Partition | Partition | Partition | Const | Temp     | Cooling | Heating | Adjacent |
| Number                       | Number    | Length    | Height    | U-Value   | Type  | Flag     | Temp    | Temp    | Room No  |
| 5                            | 1         | 43        | 43        | .18       | 110   | CONSTANT | 63      | 63      |          |
| 10                           | 1         | 68.5      | 68.5      | .18       | 110   | CONSTANT | 63      | 63      |          |
| 15                           | 1         | 92.5      | 93        | .18       | 110   | CONSTANT | 63      | 63      |          |
| 20                           | 1         | 26.5      | 26.5      | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 25                           | 1         | 27.5      | 27        | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 30                           | 1         | 55.5      | 55.5      | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 35                           | 1         | 64        | 10        | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 40                           | 1         | 50        | 10        | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 45                           | 1         | 111.5     | 10        | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 60                           | 1         | 45        | 45        | 0.18      | 110   | CONSTANT | 63      | 63      |          |
| 65                           | 1         | 89.5      | 37        | 0.18      | 110   | CONSTANT | 71      | 55      |          |
| 70                           | 1         | 89.5      | 37        | 0.18      | 110   | CONSTANT | 71 -    | 55      |          |
| 75                           | 1         | 87        | 87        | 0.18      | 110   | CONSTANT | 71      | 55      |          |
| 85                           | 1         | 60        | 60        | 0.18      | 110   | CONSTANT | 71      | 55      |          |
|                              |           |           |           |           |       |          |         |         |          |

------ System Section Alternative #4 ------

Card 39- System Alternative Number Description

1 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

| Card 40 | )      |          | Syste   | m Type  |            |          |          |
|---------|--------|----------|---------|---------|------------|----------|----------|
|         |        |          |         |         | ATION SYST |          |          |
| System  |        | Ventil   |         |         |            |          | Fan      |
| Set     | System | Deck     | Cooling | Heating | Cooling    | Heating  | Static   |
| Number  | Type   | Location | SADBVh  | SADBVh  | Schedule   | Schedule | Pressure |
| 1       | BPMZ   |          |         |         |            |          |          |
| 2       | BPMZ   |          |         |         |            |          |          |
| 3       | TRH    |          |         |         |            |          |          |
| 4       | TRH    |          |         |         |            |          |          |
| 5       | TRH    |          |         |         | ,          |          |          |
| 6       | BPMZ   |          |         |         |            |          |          |
| 7       | COMP   |          |         |         |            |          |          |
| 8       | COMP   |          |         |         |            |          |          |
| 9       | COMP   |          |         |         |            |          |          |
| 10      | COMP   |          |         |         |            |          |          |
| 11      | COMP   |          |         |         |            |          |          |
| 12      | COMP   |          |         |         |            |          |          |
| 13      | COMP   |          |         |         |            |          |          |
| 14      | TRH    |          |         |         |            |          |          |
|         |        |          |         |         |            |          |          |

| Set<br>Number | Ref   | #1  | Ref   | #2  | Ref   | #3  | Ref   | #4  | Ref   | #5  | Ref   | #6  |
|---------------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
| Number        | Begin | End |
| 1             | 1     | 3   |       |     |       |     |       |     | •     |     | 5     |     |
| 2             | 4     | 8   |       |     |       |     |       |     |       |     |       |     |
| 3             | 9     | 9   |       |     |       |     |       |     |       |     |       |     |
| 4             | 10    | 15  |       |     |       |     |       |     |       |     |       |     |
| 5             | 16    | 19  |       |     |       |     |       |     |       |     |       |     |
| 6             | 20    | 20  |       |     |       |     |       |     |       |     |       |     |
| 7             | 21    | 21  |       |     |       |     |       |     |       |     |       |     |
| 8 .           | 22    | 22  |       |     |       |     |       |     |       |     |       |     |
| 9             | 23    | 23  |       |     |       |     |       | *   |       |     |       |     |
| 10            | 24    | 24  |       |     |       |     |       |     |       |     |       |     |
| 11            | 25    | 25  |       |     |       |     |       |     |       |     |       |     |
| 12            | 26    | 26  |       |     |       | Υ.  |       |     |       |     |       |     |
| 13            | 27    | 27  |       |     |       |     |       |     |       |     |       |     |
| 14            | 28    | 31  |       |     |       |     |       |     |       |     |       |     |

| Card 42       |             |             |               | Fan          | SP ar      | nd Duct P     | arameters       |                   |                |                |               |
|---------------|-------------|-------------|---------------|--------------|------------|---------------|-----------------|-------------------|----------------|----------------|---------------|
| System<br>Set | Cool<br>Fan | Heat<br>Fan | Return<br>Fan | Mn Exh       | Aux<br>Fan | Rm Exh<br>Fan | Cool<br>Fan Mtr | Return<br>Fan Mtr | Supply<br>Duct | Supply<br>Duct | Return<br>Air |
| 1             | 1.75        | 3r          | 3F            | .127<br>.326 |            | 1.0           | Loc             | Loc               | Ht Gn          | Loc            | Path          |
| 3             | 2.4         |             |               | .208         |            |               |                 |                   |                |                |               |

| system<br>Set | COOL      | neat | Keturn | Mn Exh     | Aux | Rm Exh | Cool    | Return  | Supply |      | Return |
|---------------|-----------|------|--------|------------|-----|--------|---------|---------|--------|------|--------|
| Number        | Fan<br>SP | Fan  | Fan    | Fan        | Fan | Fan    | Fan Mtr | Fan Mtr | Duct   | Duct | Air    |
| 4             | 2.5       | SP   | SP     | SP<br>.613 | SP  | SP     | Loc     | Loc     | Ht Gn  | Loc  | Path   |
| 5             | 3.45      |      |        | .389       |     | 1.5    |         |         |        |      |        |
| 6             | 2.1       |      |        | .26        |     |        |         |         |        |      |        |
| 7             | 0.92      |      |        |            |     |        |         |         |        |      |        |
| 8             | 1.67      |      |        |            |     |        |         |         |        |      |        |
| 9             | 0.64      |      |        |            |     |        |         |         |        |      |        |
| 10            | 1.39      |      |        |            |     |        |         |         |        |      |        |
| 11            | 1.54      |      |        |            |     |        |         |         |        |      |        |
| 12            | 1.04      |      |        |            |     |        |         |         |        |      |        |
| 13            | 1.64      |      |        | .077       |     |        |         |         |        |      |        |
| 14            | 3.25      |      |        |            |     |        |         |         |        |      |        |

| ystem  | Econ     | Econ  | Max Pct | Direct  | Indirect | 1st Stage | your opt | ions     |         |             |           |          |        |
|--------|----------|-------|---------|---------|----------|-----------|----------|----------|---------|-------------|-----------|----------|--------|
| et     | Type     | 0n    | Outside | Evap    | Evap     | Evap      | Fan      | 544      | Ех      | naust Air H | eat Recov | ery      |        |
| lumber | Flag     | Point | Air     | Cooling | •        |           |          | Effectiv | eness   | Control     | Type      | Exh-Side | Deck - |
|        | DRY-BULB |       | 3       | obot mg | cooting  | Cooling   | Cycling  | Stage 1  | Stage 2 | Stage 1     | Stage 2   | Stage 1  | Stage  |
|        | DRY-BULB | 65    | 5.5     |         |          |           |          |          |         |             |           |          |        |
|        | DRY-BULB | 65    | 8.8     |         |          |           |          |          |         |             |           |          |        |
|        | DRY-BULB | 65    | 14      |         |          |           |          |          |         |             |           |          |        |
|        | DRY-BULB | 65    | 9       |         |          |           |          |          |         |             |           |          |        |
|        | DRY-BULB | 65    | 8       |         |          |           |          |          |         |             |           |          |        |
|        | DRY-BULB | 65    | 2.4     |         |          |           |          |          |         |             |           |          |        |

| Set<br>Number<br>1<br>2<br>3 | Cooling<br>Coil<br>AVAIL<br>AVAIL<br>AVAIL | Economizer<br>AVAIL<br>AVAIL<br>AVAIL<br>AVAIL | Direct<br>Evap | Indirect<br>Evap<br>Coil | Auxiliary<br>Cooling<br>Coil | Main<br>Heating<br>Coil<br>OFF<br>OFF | Main<br>Preheat<br>Coil<br>OFF<br>OFF | Reheat<br>Coil<br>OFF | Mech.<br>Humidity | Auxiliar<br>Heating<br>Coil |
|------------------------------|--------------------------------------------|------------------------------------------------|----------------|--------------------------|------------------------------|---------------------------------------|---------------------------------------|-----------------------|-------------------|-----------------------------|
| 5                            | AVAIL                                      | AVAIL                                          |                |                          |                              |                                       |                                       |                       |                   | *                           |
| 5                            | AVAIL                                      | AVAIL                                          |                |                          |                              | OFF                                   | OFF                                   |                       |                   |                             |
| 13                           | AVAIL                                      | AVAIL                                          |                |                          |                              | <b>0</b> 1.                           | OFF                                   | OFF                   |                   |                             |

| Card 46 |         |       |                   | - FMS/RAS       | Schedules -           |           |   |           |         |
|---------|---------|-------|-------------------|-----------------|-----------------------|-----------|---|-----------|---------|
| Set     | Control | Purge | Start<br>Schedule | Optimum<br>Stop | On Period<br>Schedule | TY CYCLIN | G | System HR | Room HR |

Card 46----- EMS/BAS Schedules ------

| alu                                                            |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ontin                 |                                                      |                                              |                                                      | DI 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LA CACITM                                               | C                                                                             | Cuntom UD                                        | Poom HP                       |                                                         |                                     |                                     |       |
|----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------|-------|
|                                                                | m Dis                                             |                                                | Nigh                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      | ptimum                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               | System HR                                        |                               |                                                         |                                     |                                     |       |
| t                                                              | Cor                                               | ntrol                                          | Purg                                                      | ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Start                 | t S                                                  | top                                          | On Pe                                                | eriod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pattern                                                 | Maximum                                                                       | Exhaust                                          | Exhaust                       |                                                         |                                     |                                     |       |
| mbe                                                            | r Sch                                             | hedul e                                        | Sche                                                      | edul e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sched                 | dule S                                               | chedule                                      | Sched                                                | dule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Length                                                  | Off Time                                                                      | Schedule                                         | Schedule                      | ;                                                       |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OPSTA                 | ART C                                                | PSTOP                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OPST/                 | ART C                                                | PSTOP                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OPST/                 | ART C                                                | PSTOP                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OPST                  | ART C                                                | PSTOP                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                       |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OPST/                 | ART C                                                | PSTOP                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Rm Ext                                               |                                              | verrid<br>Vnt                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               | OLING FAN-                                       |                               |                                                         |                                     |                                     |       |
| -                                                              | _                                                 | Fan F                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Fan                                                  | •                                            | Fan Me                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Air                                                     |                                                                               | Size                                             |                               |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  | Confa                         |                                                         |                                     |                                     |       |
| um                                                             | eif l                                             | Eff E                                          |                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eff                   | C I I                                                | Eff                                          | E.                                                   | ff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Value                                                   | Units                                                                         | Meth                                             | Confg<br>BLOW                 |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  | BLOW                          |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  | BLOW                          |                                                         |                                     |                                     |       |
| 4                                                              |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  | BLOW                          |                                                         |                                     |                                     |       |
| +                                                              |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                               |                                                  | DEUW                          |                                                         |                                     |                                     |       |
|                                                                |                                                   |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                      |                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | chedules -                                                                    |                                                  |                               |                                                         |                                     |                                     |       |
| ard<br>Iter                                                    | 59                                                | Ele<br>re Tin                                  | ec Con                                                    | sump (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elec                  | Ed<br>Demand                                         | quipment<br>Demand<br>Limit                  | : Descr<br>i<br>V Alte                               | iption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | chedules                                                                      |                                                  |                               | emand L<br>Temp                                         | imit<br>perature<br>Orift           | •                                   |       |
| ard<br>lter                                                    | 59<br>rnativ                                      | Ele<br>re Tin<br>Sch                           | ec Con<br>ne of<br>nedule                                 | sump  <br>Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule                       | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>i<br>V Alte<br>EXIS                       | iption<br>ernativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / TOD So<br>e Descrip<br>RIMARY EC                      | chedules<br>otion<br>QUIPMENT                                                 |                                                  | D                             | emand L<br>Temp<br>le f                                 | imit<br>perature<br>Drift           |                                     |       |
| ard<br>Iter<br>Tumbe                                           | 59<br>rnativ<br>er<br>60                          | Ele<br>ve Tin<br>Sch                           | ec Conne of                                               | sump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule                       | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>i<br>V Alte<br>EXIS                       | iption<br>ernativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / TOD So<br>e Descrip<br>RIMARY EC                      | chedules<br>otion<br>QUIPMENT                                                 |                                                  | D                             | emand L<br>Temp<br>le f                                 | imit<br>perature<br>Drift           |                                     |       |
| ard<br>(ter<br>umbe                                            | 59<br>rnativ<br>er<br>60<br>All                   | Ele<br>ve Tin<br>Sch                           | ec Conne of nedule                                        | sump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule                       | quipment<br>Demanc<br>Limit<br>Max KV        | : Descr<br>d<br>N Alte<br>EXIS                       | iption<br>ernativ<br>STING P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / TOD So<br>e Descrip<br>RIMARY EC                      | chedules cotion auIPMENT signment                                             |                                                  | Schedu                        | emand L<br>Temp<br>le f                                 | imit<br>perature<br>Drift           |                                     |       |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn                       | 59 rnativer  60 All Load                          | Ele<br>ye Tin<br>Sch<br>Coil                   | ec Conne of<br>nedule<br>Cooli                            | sump (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule                       | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>d<br>N Alte<br>EXIS                       | iption<br>ernative<br>ETING P<br>Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P Descrip<br>RIMARY EC<br>Load Ass                      | chedules cotion QUIPMENT signment                                             | 5Grou                                            | Do<br>Schedu<br><br>p 6Gr     | emand L<br>Temp<br>le f                                 | imit perature prift                 | 8Gro                                | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn<br>ef                 | 59 rnativ er  60 All Load                         | Ele<br>ve Tin<br>Sch                           | ec Con<br>ne of<br>nedule<br>Cooli<br>Equip<br>Sizin      | sump (Day :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule<br><br>up 1-<br>n End | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>d<br>N Alte<br>EXIS                       | iption<br>ernative<br>ETING P<br>Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P Descrip<br>RIMARY EC<br>Load Ass                      | chedules cotion QUIPMENT signment                                             |                                                  | Do<br>Schedu<br><br>p 6Gr     | emand L<br>Temp<br>le f                                 | imit perature prift                 | 8Gro                                | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn<br>ef                 | 59 rnativ er  60 All Load Cool                    | Ele<br>ye Tin<br>Sch<br>Coil                   | ec Conne of<br>nedule<br>Cooli                            | sump (Day :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule<br><br>up 1-<br>n End | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>d<br>N Alte<br>EXIS                       | iption<br>ernative<br>ETING P<br>Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P Descrip<br>RIMARY EC<br>Load Ass                      | chedules cotion QUIPMENT signment                                             | 5Grou                                            | Do<br>Schedu<br><br>p 6Gr     | emand L<br>Temp<br>le f                                 | imit perature prift                 | 8Gro                                | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn<br>ef                 | 59 rnativ er  60 All Load                         | Ele<br>ye Tin<br>Sch<br>Coil                   | ec Con<br>ne of<br>nedule<br>Cooli<br>Equip<br>Sizin      | sump (Day :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule<br><br>up 1-<br>n End | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>d<br>N Alte<br>EXIS                       | iption<br>ernative<br>ETING P<br>Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P Descrip<br>RIMARY EC<br>Load Ass                      | chedules cotion QUIPMENT signment                                             | 5Grou                                            | Do<br>Schedu<br><br>p 6Gr     | emand L<br>Temp<br>le f                                 | imit perature prift                 | 8Gro                                | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn<br>ef                 | 59 rnativ er  60 All Load                         | Ele<br>ye Tin<br>Sch<br>Coil                   | ec Con<br>ne of<br>nedule<br>Cooli<br>Equip<br>Sizin      | sump (Day :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elec<br>Time<br>Sched | Ed<br>Demand<br>of Day<br>Jule<br><br>up 1-<br>n End | quipment<br>Demand<br>Limit<br>Max KV        | : Descr<br>d<br>N Alte<br>EXIS                       | iption<br>ernative<br>ETING P<br>Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P Descrip<br>RIMARY EC<br>Load Ass                      | chedules cotion QUIPMENT signment                                             | 5Grou                                            | Do<br>Schedu<br><br>p 6Gr     | emand L<br>Temp<br>le f                                 | imit perature prift                 | 8Gro                                | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn<br>ef                 | 59<br>rnativer<br>60<br>All<br>Load<br>Cool       | Ele<br>ve Tin<br>Sch<br>Coil<br>ds To          | ec Conne of<br>nedule<br>Cooli<br>Equip<br>Sizin<br>PKPLA | sump ! Day  ng ment ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elec : Time Sched     | Ed<br>Demand<br>of Day<br>Jule<br><br>up 1-<br>n End | quipment<br>Demand<br>Limit<br>Max Ku        | : Descr<br>d<br>V Alte<br>EXIS<br>C                  | iption<br>ernative<br>ETING P<br>Cooling<br>coup 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Descrip<br>RIMARY Ed<br>Load Ass<br>-Group<br>Begin 1 | chedules cotion CUIPMENT signment 4Grou                                       | o 5Grou<br>End Begin                             | Schedu Schedu p 6Gr           | emand L<br>Temple 1<br>le 1<br>oup 7-<br>in End         | imit perature Drift  -Group Begin ! | 8Gro                                | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>oad<br>sgn<br>ef          | 59 rnativer 60 All Load Cool 1                    | Ele<br>ve Tin<br>Sch<br>Coil<br>ds To<br>L Ref | ec Conne of<br>nedule<br>Cooli<br>Equip<br>Sizin<br>PKPLA | sump  <br>Day<br>ng<br>ment<br>ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Grou<br>Begin        | Demand of Day lule                                   | Quipment Demanc Limit Max Ku Group           | : Descr<br>d<br>V Alte<br>EXIS<br>C<br>2Gr<br>nd Beg | iption crnative cooling coup 3- gin End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Descrip<br>RIMARY EC<br>Load Ass<br>-Group<br>Begin 1 | chedules cotion CUIPMENT signment 4Group End Begin                            | o 5Grou<br>End Begin                             | Schedu Schedu p 6Gr           | emand L<br>Temple 1<br>le 1                             | imit perature Drift  -Group Begin ! | 8Gro<br>End Begi                    | up 9  |
| ard<br>lter<br>umbe<br>ard<br>oad<br>sgn<br>ef                 | 59 rnativer  60 All Load Cool 1                   | Ele<br>ye Tin<br>Sch<br>Coil<br>ds To<br>L Ref | c Conne of<br>nedule<br>Cooli<br>Equip<br>Sizin<br>PKPLA  | sump   Day   Day | Elec<br>Time<br>Sched | Demand of Day dule                                   | quipment Demanc Limit Max KV                 | : Descr<br>d<br>V Alte<br>EXIS<br>C<br>2Gr<br>nd Beg | iption ernativ ETING P Cooling roup 3- gin End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Descrip<br>RIMARY Ed<br>Load Ass<br>-Group<br>Begin 1 | chedules cotion CUIPMENT signment 4Group End Begin ametersHEAT RE             | o 5Grou<br>End Begin                             | Schedu Schedu p 6Gr End Beg   | emand L<br>Temple 1<br>Oup 7-<br>in End                 | orift  -Group Begin I               | 8Gro<br>End Begi                    | up 9  |
| ard<br>liter<br>lumbe<br>card<br>load<br>lsgn<br>lcard<br>Cool | 59 rnativer 60 All Load Cool 1 62 Equip           | Ele<br>ye Tin<br>Sch<br>Coil<br>ds To<br>L Ref | cooli<br>Equip<br>Sizin<br>PKPLA                          | sump   Day  ng ment ig NT Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elec Time Sched       | Demand of Day lule  up 1- n End 14                   | quipment Demanc Limit Max KV Group G Begin E | : Descri                                             | iption ernative ernat | e Descrip<br>RIMARY EC<br>Load Ass<br>Group<br>Begin I  | chedules cotion coulpment signment 4Group End Begin ametersHEAT RE city       | o 5Grou<br>End Begin<br>COVERY                   | Schedu  Schedu  p 6Gr End Beg | emand L<br>Temple 1<br>Oup 7-<br>in End<br>Seq<br>Order | -Group<br>Begin I                   | 8Gro<br>End Begi<br>Demand<br>Limit | up 9. |
| Card<br>Card<br>Card<br>Segn<br>Cool<br>Ref<br>Num             | 59 rnativer 60 All Load Cool 1 62 Equip Code Name | Ele<br>ye Tin<br>Sch<br>Coil<br>ds To<br>L Ref | cooli<br>Cooli<br>Equip<br>Sizin<br>PKPLA                 | sump   Day  ng ment ng MT  Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elec<br>Time<br>Sched | Demand of Day lule  up 1- n End 14                   | quipment Demanc Limit Max KV Group G Begin E | : Descri                                             | iption ernative ernat | e Descrip<br>RIMARY EC<br>Load Ass<br>Group<br>Begin 1  | chedules cotion aUIPMENT signment 4Group End Begin ammetersHEAT RE city Units | o 5Grou<br>End Begin<br>COVERY<br>Energ<br>Value | Schedu  Schedu  p 6Gr End Beg | emand L Temple E Outp 7- in End Seq Order Num           | -Group Begin I                      | 8Gro<br>End Begi                    | up 9. |
| Card<br>Card<br>Load<br>Asgn<br>Ref<br>Cool                    | 59 rnativer 60 All Load Cool 1 62 Equip Code Name | Coil ds To                                     | cooli<br>Equip<br>Sizin<br>PKPLA                          | sump   Day  ng ment ig NT Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elec Time Sched       | Demand of Day lule  up 1- n End 14 cool              | quipment Demanc Limit Max KV Group G Begin E | : Descri                                             | iption ernative ernat | e Descrip<br>RIMARY EC<br>Load Ass<br>Group<br>Begin I  | chedules cotion coulpment signment 4Group End Begin ametersHEAT RE city       | covery Covery Value 88                           | Schedu  Schedu  p 6Gr End Beg | emand L<br>Temple 1<br>Oup 7-<br>in End<br>Seq<br>Order | -Group<br>Begin I                   | 8Gro<br>End Begi<br>Demand<br>Limit | up 9  |

| Card | 1 63      |           |           | Cooling Pu | mps and Ref | erences   |         |         |         |         |
|------|-----------|-----------|-----------|------------|-------------|-----------|---------|---------|---------|---------|
| Cool | CHILLED   | WATER     | CONDE     | NSER       | HT REC      | or AUX    | Switch- |         |         |         |
| Ref  | Full Load | Full Load | Full Load | Full Load  | Full Load   | Full Load | over    | Cold    | Cooling | Misc.   |
| Num  | Value     | Units     | Value     | Units      | Value       | Units     | Control | Storage | Tower   | Access. |
| 1    | 39.3      | KW        | 27.5      | KW         |             |           |         |         | 1       | 1       |
| 2    | 0         | KW        | 18.3      | KW         |             |           |         |         | 2       |         |

| Card | 64    |            |         | Cooli   | ng Equip | ment Optic | ns       |          |          |          |
|------|-------|------------|---------|---------|----------|------------|----------|----------|----------|----------|
| Cool | Max   | Load       |         | Free    |          | Cond       | Cond     | Cond Rej | Cond Rej | Cond Rej |
| Ref  | CW    | Shed       | Evap    | Cooling | Heat     | Entering   | Min Oper | To Ref   | To Ref   | ани      |
| Num  | Reset | Economizer | Precool | Type    | Source   | Тетр       | Temp     | Type     | Number   | Temp     |
| 1    |       |            |         |         |          | 85         | 65       | HEATING  | 1        | 95       |
| 2    |       |            |         |         | ,        | 85         | 65       | HEATING  | 2        | 95       |

| Card 67 | <b>'</b> |        |         |       | Неа   | iting Equ | ipment Pa | rameters - |        |         |      |       |       |        |
|---------|----------|--------|---------|-------|-------|-----------|-----------|------------|--------|---------|------|-------|-------|--------|
| Heat    | Equip    | Number | HW Pmp  |       |       |           | Energy    |            | Seq    | Switch  |      |       |       | Demand |
| Ref     | Code     | Of     | Full Ld |       | Cap'y |           | Rate      |            | Order  | over    | Hot  | Misc. |       | Limit  |
| Number  | Name     | Units  | Value   | Units | Value | Units     | Value     | Units      | Number | Control | Strg | Acc.  | Cogen | Number |
| 1       | EQ2002   | 1      | 0       | KW    |       |           | 100       | PCTEFF     |        |         |      |       |       |        |
| 2       | EQ2002   | 1      | 0       | KW    |       |           | 100       | PCTEFF     |        |         |      |       |       |        |
| 3       | EQ2263   | 1      |         |       |       |           |           |            |        |         |      |       |       |        |

| Card 69 | • • • • • • • • • • • • • • • • • • • • | •••••   | Fan Equip | ment Paramo | eters     |         |             |
|---------|-----------------------------------------|---------|-----------|-------------|-----------|---------|-------------|
| Set     | Cooling                                 | Heating | Return    | Exhaust     | Auxiliary | Room    | Optional    |
| Number  | Fan                                     | Fan     | Fan       | Fan         | Supply    | Exhaust | Ventilation |
| 1       | EQ4003                                  |         |           | EQ4223      |           | EQ4003  |             |
| 2       | EQ4003                                  |         |           | EQ4223      |           | ,       |             |
| 3       | EQ4003                                  |         |           | EQ4223      | •         |         |             |
| 4       | EQ4003                                  |         |           | EQ4223      |           |         |             |
| 5       | EQ4003                                  |         |           | EQ4223      |           | EQ4003  |             |
| 6       | EQ4003                                  |         |           | EQ4223      |           |         |             |
| 7       | EQ4003                                  |         |           |             |           |         |             |
| 8       | EQ4003                                  |         |           |             |           |         |             |
| 9       | EQ4003                                  |         |           |             | •         |         |             |
| 10      | EQ4003                                  |         |           |             |           |         |             |
| 11      | EQ4003                                  |         |           |             |           |         |             |
| 12      | EQ4003                                  |         |           |             |           |         |             |
| 13      | EQ4003                                  |         |           | EQ4223      |           |         |             |

| Card 69      |               |         | Fan Equipm | ent Parame | ters      |         |             |
|--------------|---------------|---------|------------|------------|-----------|---------|-------------|
| System       |               |         |            |            |           |         |             |
| Set          | Cooling       | Heating | Return     | Exhaust    | Auxiliary | Room    | Optional    |
| Number<br>14 | Fan<br>EQ4003 | Fan     | Fan        | Fan        | Supply    | Exhaust | Ventilation |

| Card 70 | )    |      |     | Fan   | Equip | oment K | W Over | rides |      |     |      |      |  |
|---------|------|------|-----|-------|-------|---------|--------|-------|------|-----|------|------|--|
|         |      |      |     |       |       |         |        |       |      |     |      |      |  |
| System  | Cool | Heat | Ret | Exh   | Aux   | Room    | 0pt    |       |      |     | Room | 0pt  |  |
| Set     | Fan  | Fan  | Fan | Fan   | Sup   | Exh     | Vent   | Cool  | Heat | Aux | Exh  | Vent |  |
| Number  | KW   | KW   | KW  | KW    | KW    | KW      | KW     | Fan   | Fan  | Fan | Fan  | Fan  |  |
| 1       | 6.5  |      |     | .25   |       | 1.2     |        |       |      |     |      |      |  |
| 2       | 10.2 |      |     | .652  |       |         |        |       |      |     |      |      |  |
| 3       | 6.5  |      |     | .415  |       |         |        |       |      |     |      |      |  |
| 4       | 17.3 |      |     | 1.225 |       |         |        |       |      |     |      |      |  |
| 5       | 13.9 |      |     | .779  |       | 2.7     |        |       |      |     |      |      |  |
| 6       | 7.4  |      |     | .519  |       |         |        |       |      |     |      |      |  |
| 7       | 3.3  |      |     |       |       |         |        |       |      |     |      |      |  |
| 8       | 5.6  |      |     |       |       |         |        |       |      |     |      |      |  |
| 9       | 1.8  |      |     |       |       |         |        |       |      |     |      |      |  |
| 10      | 3.7  |      |     |       |       |         |        |       |      |     |      |      |  |
| 11      | 4.7  |      |     |       |       |         |        |       |      |     |      |      |  |
| 12      | 3.3  |      |     |       |       |         |        |       |      |     |      |      |  |
| 13      | 5.6  |      |     | .156  |       |         |        |       |      |     |      |      |  |
| 14      | 22.7 |      |     |       |       |         |        |       |      |     |      |      |  |

| Card 71 |                 |        | Base   | Utility P | arameters |           |          |          |         |
|---------|-----------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base    | Base            | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility | Utility         | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number  | Descrip         | Value  | Units  | Code      | Type      | Number    | Number   | Temp     | Тетр    |
| 1       | CHW PIPING LOSS | 4.64   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          | ·       |
| 2       | HW PIPING LOSS  | 77.4   | MBH    | AVAIL     | HOT-LD    | 1         |          |          |         |

| Card 7 | <b>'</b> 4 |          |          | Condenser | /_Coolin | g Tower Pa | rameters |        |          |         |         |
|--------|------------|----------|----------|-----------|----------|------------|----------|--------|----------|---------|---------|
|        | Cooling    |          |          | Energy    | Energy   |            |          | Number | Percent. | Low Spd | Low Spd |
| Tower  | Tower      | Capacity | Capacity | Consump   | Consump  | Fluid      | Tower    | Of     | Airflow  | Energy  | Energy  |
| Ref    | Code       | Value    | Units    | Value     | Units    | Type -     | Type     | Cells  | Low Spd  | Value   | Units   |
| 1      | EQ5100     |          |          | 12.5      | KW       | T-WATER    | CTOWER   | 1      |          |         |         |
| 2      | EQ5100     |          |          | 10.8      | K₩       | T-WATER    | CTOWER   | 1      |          |         |         |

| Card | 75     |        |        |          | Misc  | ellaneous A | ccessory |       |       | •      |        |       |
|------|--------|--------|--------|----------|-------|-------------|----------|-------|-------|--------|--------|-------|
|      | #1     |        | •      |          | #2    | •           | •        |       | #3    |        |        |       |
| Misc | Equip  | Energy | Energy | Sched    | Equip | Energy      | Energy   | Sched | Equip | Energy | Energy | Sched |
| Ref  | Code   | Value  | Units  | Code     | Code  | Value       | Units    | Code  | Code  | Value  | Units  | Code  |
| 1    | EQ5020 | 16.6   | KW     | DAYSCHED |       |             |          |       |       |        |        |       |

01 Card - Job Information

Project: EEAP ENERGY STUDY - HELSTF

Location: WHITE SANDS - ALAMOGORDO, NEW MEXICO

Client: FORT WORTH CORPS OF ENGINEERS Program User: HUITT-ZOLLARS, INC.

Comments: LSTC BUILDING

Weather Clearness Clearness Design Design Design Building Ground Ground Code Number Number Dry Bulb Wet Bulb Dry Bulb Orientation Reflect Reflect

HOLLOMAN

----- Load Section Alternative #1 -----

## ECO-D, LSTC BUILDING

Card 19- Load Alternative -

Number

Description

1

ECO D - VAV RETROFIT

| Card 20 | )         |                   |        | Gener | al Room | Paramete | ers        |          |            |           |           |
|---------|-----------|-------------------|--------|-------|---------|----------|------------|----------|------------|-----------|-----------|
|         | Zone      |                   |        |       |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference | Room              | Floor  | Floor | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number    | Descrip           | Length | Width | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 5       | 1         | B-17 B,C,& D      | 25.5   | 59.5  | 10      | 2        |            | 10       |            |           |           |
| 10      | 2         | B-17,18,AEROBICS  | 59     | 59.5  | 10      | 2        |            | 10       |            |           |           |
| 15      | 3         | B-8,16,27-32      | 80.5   | 80.5  | 10      | 2        |            | 10       |            |           |           |
| 20      | 4         | B-25,25A          | 22     | 15    | 10      | 2        |            | 10       |            |           |           |
| 25      | 5         | B-4               | 27     | 27.5  | 10      | 2        |            | 10       |            |           |           |
| 30      | 6         | B-12,12A          | 55.5   | 55.5  | 10      | 2        |            | 10       |            |           |           |
| 35      | 7         | B-2,13,19,20-22   | 45.5   | 45.5  | 10      | 2        |            | 10       |            |           |           |
| 40      | 8         | B-1,3,24          | 81     | 81    | 10      | 2        |            | 10       |            |           |           |
| 45      | 9         | B-9,10,11,11A     | 111.5  | 20    | 10      | 2        |            | 10       |            |           |           |
| 50      | 10        | DOMES, MAIN WINGS | 40     | 40.5  | 10      | 2        | ~          | 10       |            |           | ~         |
| 55      | 11        | SW LOWER DOME     | 48     | 48    | 10      | 2        |            | 10       |            |           | *         |
| 60      | 12        | NE LOWER DOME     | 48     | 48    | 10      | 2        |            | 10       |            |           |           |
| 65      | 13        | MAIN FLR WEST     | 89.5   | 37    | 10      | 2        |            | 10       |            |           |           |
| 70      | 14        | MAIN FLR EAST     | 61     | 61    | 10      | 2        |            | 10       |            |           |           |
| 75      | 15        | 112,119A,123A,    | 94.5   | 95    | 10      | 2        |            | 10       |            |           |           |
| 80      | 16        | MAIN FLOOR CENTR  | 93     | 93.5  | 10      | 2        |            | 10       |            |           |           |
| 85      | 17        | MAIN FLOOR SOUTH  | 51     | 51    | 10      | 2        |            | 10       |            |           |           |
|         |           |                   |        |       |         |          |            |          |            |           |           |

| Card 20 |            |                   | ·      | Genera | al Room | Paramete | rs         |          |            |           |           |
|---------|------------|-------------------|--------|--------|---------|----------|------------|----------|------------|-----------|-----------|
|         | Zone       |                   |        |        |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference  | Room              | Floor  | Floor  | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number     | Descrip           | Length | Width  | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 90      | 18         | L.DOME COMP. RMS. | 63.5   | 63.5   | 10      | 2        |            | 10       |            |           |           |
| 95      | 19         | L.DOME OFFICES    | 71     | 71     | 10      | 2        |            | 10       |            |           |           |
| 100     | 20         | U.DOME            | 88.5   | 88.5   | 10      | 2        |            | 10       |            |           |           |
| 105     | 21         | RM 119, AH-8      | 1      | 1      | •       |          |            |          |            |           |           |
| 110     | 22         | RM 119A, AH-9     | 1      | 1      |         |          |            |          |            |           |           |
| 115     | 23         | RM 123, AH-10     | 1      | 1      |         |          |            |          |            |           |           |
| 120     | 24         | RM 127A, AH-11A   | 1      | 1      |         |          |            |          |            |           |           |
| 125     | 25         | RM 127A, AH-11B   | 1      | 1      |         |          |            |          |            |           |           |
| 130     | 26         | RM 127, AH-12     | 1      | 1      |         |          |            |          |            |           |           |
| 135     | 27         | AUX CNTRL, AH-14  | 1      | 1      |         |          |            |          |            |           |           |
| 140     | 28         | RM 110 UNDERFLOR  | 33     | 34     | 10      | 2        |            | 10       |            |           |           |
| 145     | 29         | RM 120A,122,126A  | 50     | 50     | 10      | 2        |            | 10       |            |           |           |
| 150     | <b>3</b> 0 | RM 146A,148,148A  | 32     | 32     | 10      | 2        |            | 10       |            |           |           |
| 155     | 31         | 204,205,206,207   | 63.5   | 63.5   | 10      | 2        |            | ុ10      |            |           |           |

|        | Cooling    | Room   | Cooling    | Cooling  | Heating   | Heating    | Heating  | T'stat   | Mass /   | Carpet |
|--------|------------|--------|------------|----------|-----------|------------|----------|----------|----------|--------|
| Room   | Room       | Design | T'stat     | T'stat   | Room      | T'stat     | T'stat   | Location | No. Hrs  | 0n     |
| Number | Design DB  | RH     | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average  |        |
| 5      | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 10     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 15     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 20     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 25     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 30     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 35     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 40     | <b>7</b> 5 | 50     | 75         |          | 70        | <b>7</b> 0 |          |          | HEAVY130 | NO     |
| 45     | 70         | 45     | 70         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 50     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 55     | 75         | 50     | 75         |          | 70        | <b>7</b> 0 |          |          | HEAVY130 | NO     |
| 60     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 65     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 70     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 75     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 80     | 70         | 45     | 70         |          | 70        | 70         |          |          | HEAVY130 | NO     |
| 85     | 75         | 50     | 75         |          | 70        | 70 ′       |          |          | HEAVY130 | NO     |
| 90     | 70         | 45     | 70         |          | 70        | 70 -       |          |          | HEAVY130 | NO     |
| 95     | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | ) NO   |
| 100    | 75         | 50     | 75         |          | 70        | 70         |          |          | HEAVY130 | ) NO   |
| 105    | 70         | 45     | 70         |          | 70        | 70         |          |          |          |        |
| 110    | 70         | 45     | 70         |          | 70        | 70         |          |          |          |        |
| 115    | 70         | 45     | 70         |          | 70        | 70         |          |          |          |        |
| 120    | 70         | 45     | 70         |          | 70        | 70         |          |          |          |        |
| 125    | 70 ,.      | 45     | 70         |          | 70        | 70         |          |          |          |        |
| 130    | 70         | 45     | 70         |          | 70        | 70         |          |          |          |        |

| Card 21 |           |        |            | Therm    | ostat Param | eters      |          |          |         |        |
|---------|-----------|--------|------------|----------|-------------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat     | T'stat   | Location | No. Hrs | 0n     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint | Schedule | Flag     | Average | Floor  |
| 135     | 70        | 45     | 70         |          | 70          | 70         |          |          |         |        |
| 140     | 70        | 45     | 70         |          | 70          | 70         |          |          |         |        |
| 145     | 70        | 45     | 70         |          | 70          | 70         |          |          |         |        |
| 150     | 70        | 45     | 70         |          | 70          | 70 '       |          |          |         |        |
| 155     | 70        | 45     | 70         |          | 70          | 70         |          |          |         |        |

| Card 22 | ·      |          |        | Roof Par | ameters |       |           |      |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |          |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt | Alpha |
| 50      | 1      | YES      |        |          | 0.18    | 19    |           |      | .4    |
| 100     | 1      | NO       | 88     | 88       | 0.18    | 19    |           |      | -4    |

|        |        |        |        |         | Wall    |           |            |       | Ground      |   |
|--------|--------|--------|--------|---------|---------|-----------|------------|-------|-------------|---|
| Room   | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall       | Wall  | Reflectance |   |
| Number | Number | Length | Height | U-Value | Type    | Direction | Tilt       | Alpha | Multiplier  |   |
| 50     | 1      | 26.5   | 31     | 0.18    | 94      | 0         |            | .4    |             |   |
| 50     | 2      | 26.5   | 31     | 0.18    | 94      | 90        |            | .4    |             |   |
| 50     | 3      | 26.5   | 31     | 0.18    | 94      | 180       |            | .4    |             |   |
| 50     | 4      | 26.5   | 31     | 0.18    | 94      | 270       |            | .4    |             |   |
| 5      | 1      | 42     | 15     | 0.18    | 94      | 0         |            | .4    |             |   |
| 5      | 2      | 42     | 15     | 0.18    | 94      | 90        |            | .4    |             |   |
| 5      | 3      | 42     | 15     | 0.18    | 94      | 180       |            | .4    |             |   |
| 5      | 4      | 42     | 15     | 0.18    | 94      | 270       |            | .4    |             |   |
| 0      | 1      | 42     | 15     | 0.18    | 94      | 0         |            | .4    |             |   |
| 0      | 2      | 42     | 15     | 0.18    | 94      | 90        |            | .4    |             |   |
| 0      | 3      | 42     | 15     | 0.18    | 94      | 180       |            | .4    |             |   |
| 0      | 4      | 42     | 15     | 0.18    | 94      | 270       |            | .4    |             |   |
| 0      | 1      | 37.5   | 10     | 0.18    | 94      | 0         |            | .4    |             |   |
| 0      | 2      | 37.5   | 10     | 0.18    | 94      | 90        |            | .4    |             |   |
| 0 -    | 3      | 37.5   | 10     | 0.18    | 94      | 180       |            | .4    |             |   |
| 0      | 4      | 37.5   | 10     | 0.18    | 94      | 270       |            | .4    |             |   |
| 5      | 1      | 47     | 10     | 0.18    | 94      | 0         |            | .4    |             | ٠ |
| 5      | 2      | 47.5   | 10     | 0.18    | 94      | 90        | . <u>.</u> | .4    |             |   |
| 95     | 3      | 47     | 10     | 0.18    | 94      | 180       |            | .4    |             |   |
| 5      | 4      | 47.5   | 10     | 0.18    | 94      | 270       |            | .4    |             |   |
| 00     | 1      | 78     | 29     | 0.18    | 94      | 0         |            | .4    |             |   |
| 00     | 2      | 78.5   | 29     | 0.18    | 94      | 90        |            | -4    |             |   |
| 100    | 3      | 78     | 29     | 0.18    | 94      | 180       |            | -4    |             |   |
| 100    | 4      | 78.5   | 29     | 0.18    | 94      | 270       |            | .4    |             |   |

| Card 26 | ,        |          |             | S            | ichedules |          |         |           |          |             |
|---------|----------|----------|-------------|--------------|-----------|----------|---------|-----------|----------|-------------|
| Room    |          |          |             |              | Reheat    | Cooling  | Heating | Auxiliary | Room     | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum   | Fans     | Fan     | Fan       | Exhaust  | Controls    |
| 5       | OFFICEP1 | OFFICEL7 |             |              |           | DAYSCHED |         |           |          |             |
| 10      | OFFICEP1 | OFFICEL8 |             |              |           | DAYSCHED |         |           |          |             |
| 15      | OFFICEP1 | OFFICEL9 |             |              |           | DAYSCHED |         |           | DAYSCHED | 1           |
| 20      |          | OFICEL10 |             |              |           | DAYSCHED |         |           |          |             |
| 25      |          | OFICEL11 |             |              |           | DAYSCHED |         |           |          |             |
| 30      | OFFICEP1 | OFICEL12 |             |              |           | DAYSCHED |         |           |          |             |
| 35      | OFFICEP1 | OFICEL13 |             |              |           | DAYSCHED |         |           |          |             |
| 40      |          | CLGONLY  |             |              |           | DAYSCHED |         |           |          |             |
| 45      | OFFICEP1 | OFICEL14 |             |              |           | DAYSCHED |         |           |          |             |
| 50      | OFFICEP1 | CLGONLY  |             |              |           | DAYSCHED |         |           |          |             |
| 55      | OFFICEP1 | OFICEL15 |             |              |           | DAYSCHED |         |           |          |             |
| 60      | OFFICEP1 | OFICEL16 |             |              |           | DAYSCHED |         |           |          |             |
| 65      | OFFICEP1 | OFICEL17 |             |              |           | DAYSCHED |         |           |          |             |
| 70      | OFFICEP1 | OFICEL18 |             |              |           | DAYSCHED |         |           |          |             |
| 75      | OFFICEP1 | OFICEL19 |             |              |           | DAYSCHED |         |           |          |             |
| 80      | OFFICEP1 | OFICEL20 |             |              |           | DAYSCHED |         |           | DAYSCHED | )           |
| 85      | OFFICEP1 | OFICEL21 |             |              |           | DAYSCHED |         |           |          |             |
| 90      | OFFICEP1 | OFFICEL7 |             |              |           | DAYSCHED |         |           |          |             |
| 95      | OFFICEP1 | OFICEL22 | •           |              |           | DAYSCHED |         |           |          |             |
| 100     | OFFICEP1 | OFICEL23 |             |              |           | DAYSCHED |         |           |          |             |
| 105     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 110     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 115     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 120     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 125     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 130     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 135     | CLGONLY  |          |             |              |           |          |         |           |          |             |
| 140     | CLGONLY  |          |             |              |           |          |         |           |          |             |

| Card 27 | '        |        |          |        | Peopl        | e and Ligh | ts       |         |           |           |           |
|---------|----------|--------|----------|--------|--------------|------------|----------|---------|-----------|-----------|-----------|
|         |          |        |          |        |              |            | Lighting |         | Percent   | Daylig    | hting     |
| Room    | People   | People | People   | People | Lighting     | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |
| Number  | Value    | Units  | Sensible | Latent | Value        | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |
| 5       | 7        | PEOPLE | 250      | 200    | 1876         | WATTS      | ASHRAE1  |         |           |           |           |
| 10      | 3        | PEOPLE | 250      | 200    | 3263         | WATTS      | SUSFLUOR |         |           |           |           |
| 15      | <b>2</b> | PEOPLE | 250      | 200    | 7204         | WATTS      | SUSFLUOR |         |           |           | -         |
| 20      |          |        |          |        | <b>375</b> ' | WATTS      | SUSFLUOR |         |           |           |           |
| 25      |          |        |          |        | 2060         | WATTS      | SUSFLUOR |         |           |           |           |
| 30      | 2        | PEOPLE | 250      | 200    | 2683         | WATTS      | ASHRAE1  |         |           |           |           |
| 35      |          |        |          |        | 1115         | WATTS      | ASHRAE1  |         |           |           |           |
| 40      |          |        |          |        | 3683         | WATTS      | ASHRAE1  |         |           |           |           |
| 45      | 3        | PEOPLE | 250      | 200    | 4838         | WATTS      | ASHRAE1  |         |           |           |           |
| 50      | 1        | PEOPLE | 250      | 200    | 374          | WATTS      | ASHRAE1  |         |           |           |           |
| 55      | 1        | PEOPLE | 250      | 200    | 2870         | WATTS      | ASHRAE1  |         |           |           |           |
| 60      | 3 ,.     | PEOPLE | 250      | 200    | 3024         | WATTS      | ASHRAE1  |         |           | ••        |           |
| 65      | 7        | PEOPLE | 250      | 200    | 5967         | WATTS      | SUSFLUOR |         |           |           |           |
| 70      | 13       | PEOPLE | 250      | 200    | 3463         | WATTS      | ASHRAE1  |         |           |           |           |
| 75      | 15       | PEOPLE | 250      | 200    | 13978        | WATTS      | ASHRAE1  |         |           |           |           |

| Card 27    | ' <b></b> |        |          |        | Peopl    | e and Ligh | its      |         |           |           |           |
|------------|-----------|--------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------|
|            |           |        |          |        |          |            | Lighting |         | Percent   | Daylig    | hting     |
| Room       | People    | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |
| Number     | Value     | Units  | Sensible | Latent | Value    | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |
| 80         | 12        | PEOPLE | 250      | 200    | 11936    | WATTS      | ASHRAE1  |         |           |           |           |
| 85         | 11        | PEOPLE | 250      | 200    | 4403     | WATTS      | ASHRAE1  |         |           |           |           |
| 90         | 16        | PEOPLE | 250      | 200    | 5302     | WATTS      | ASHRAE1  |         |           | :         |           |
| <b>9</b> 5 | 18        | PEOPLE | 250      | 200    | 6382     | WATTS      | ASHRAE1  |         |           |           |           |
| 100        | 19        | PEOPLE | 250      | 200    | 9998     | WATTS      | ASHRAE1  |         |           |           |           |
| 105        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 110        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 115        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 120        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 125        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 130        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 135        | 4         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |
| 140        | 1         | PEOPLE | 250      | 200    |          |            |          |         |           |           |           |

| Card 28 |           |                  |         |         |          |        |          |            |             |          |          |
|---------|-----------|------------------|---------|---------|----------|--------|----------|------------|-------------|----------|----------|
|         | Misc      | *                | Energy  | Energy  |          | Energy | Percent  | Percent    | Percent     |          |          |
| Room    | Equipment | Equipment        | Consump | Consump | Schedule | Meter  | of Load  | Misc. Load |             | Radiant  | Optional |
| łumber  | Number    | Descrip          | Value   | Units   | Code     | Code   | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5       | 1         | TYP. OFFICE EQ.  | 8500    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 10      | 1         | TYP. OFFICE EQ.  | 1430    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 15      | 1         | TYP. OFFICE EQ.  | 13814   | WATTS   | CLGONLY  |        |          |            |             |          |          |
| 20      | 1         | ELEV. MOTOR      | 6230    | WATTS   | CLGONLY  |        |          |            |             |          |          |
| 30      | 1         | OFFICE, LIGHT EQ | 4636    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 40      | 1         | MISC. EQ.        | 13132   | WATTS   | CLGONLY  |        |          |            |             |          |          |
| 45      | 1         | TYP OFFICE EQ    | 4250    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 55      | 1         | TYP OFFICE EQ    | 830     | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 60      | 1         | TYP OFFICE EQ    | 7140    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 65      | 1         | TYP OFFICE EQ    | 9040    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 70      | 1         | TYP OFFICE EQ    | 12445   | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 85      | 1         | TYP OFFICE EQ    | 9220    | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 90      | 1         | TYP OFFICE EQ    | 4980    | WATTS   | CLGONLY  |        |          |            |             |          |          |
| 95      | 1         | TYP OFFICE EQ    | 23580   | WATTS   | OFFICEL1 |        |          |            |             |          |          |
| 100     | 1         | MISC. OFFICE EQ  | 32541   | WATTS   | OFFICEL2 |        |          |            |             |          |          |
| 105     | 1         | COMPUTERS - UPS  | 5995    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 110     | 1         | COMPUTERS - UPS  | 7194    | WATTS   | OFFICEM1 | ELEC   | -        | •          |             |          |          |
| 115     | 1         | COMPUTERS - UPS  | 4700    | WATTS   | OFFICEM1 | ELEC   | ٠        |            |             |          |          |
| 120     | 1         | COMPUTERS - UPS  | 3561    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 125     | 1         | COMPUTERS - UPS  | 3561    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 130     | 1         | COMPUTERS - UPS  | 7320    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 135     | 1         | COMPUTERS - UPS  | 2214    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 140     | 1         | COMPUTERS - UPS  | 4892    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 145     | 1         | COMPUTERS - UPS  | 10978   | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 150     | 1         | COMPUTERS - UPS  | 4434    | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |
| 155     | 1 ,.      | COMPUTERS - UPS  | 17545   | WATTS   | OFFICEM1 | ELEC   |          |            |             |          |          |

| Card 29 |       |       |        |       | Room Air | flows |         | • • • • • • • • • • • • • • • • • • • • |        |         |
|---------|-------|-------|--------|-------|----------|-------|---------|-----------------------------------------|--------|---------|
|         |       | Venti | lation |       |          | Infil | tration |                                         |        |         |
| Room    | Coo   | ling  | Hea    | ting  | Coo      | ling  | Неа     | ting                                    | Reheat | Minimum |
| Number  | Value | Units | Value  | Units | Value    | Units | Value   | Units                                   | Value  | Units   |
| 5       | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 10      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 20      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 25      | 20    | CFM-P | 20     | CFM-P |          | •     |         |                                         |        |         |
| 30      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 35      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 40      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 45      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 50      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 55      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 60      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 65      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 70      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 75      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 80      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 85      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 90      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 95      | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 100     | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
| 135     | 20    | CFM-P | 20     | CFM-P |          |       |         |                                         |        |         |
|         |       |       |        |       |          |       |         |                                         |        |         |

| Card 30 |       |       |       |       | Fan Airflo | ows   |       |       |        |        |
|---------|-------|-------|-------|-------|------------|-------|-------|-------|--------|--------|
|         |       | Ma    | in    |       |            | Auxi  | liary |       |        |        |
| Room    | Coo   | ling  | Hea   | ting  | Coo        | ling  | Hea   | ting  | Room E | xhaust |
| Number  | Value | Units | Value | Units | Value      | Units | Value | Units | Value  | Units  |
| 15      |       |       |       |       |            |       |       |       | 790    | CFM    |
| 80      |       |       |       |       |            |       |       |       | 3769   | CFM    |
| 105     | 8643  | CFM   | 8643  | CFM   |            |       |       | -     |        |        |
| 110     | 11962 | CFM   | 11962 | CFM   |            |       |       |       |        |        |
| 115     | 4780  | CFM   | 4780  | CFM   |            |       |       |       |        |        |
| 120     | 7526  | CFM   | 7526  | CFM   |            |       |       |       |        |        |
| 125     | 7467  | CFM   | 7467  | CFM   |            |       |       |       |        |        |
| 130     | 8800  | CFM   | 8800  | CFM   |            |       |       |       |        |        |
| 135     | 11513 | CFM   | 11513 | CFM   |            |       |       | _     |        |        |

| Card 31 |           |           | Part      | ition Param | eters - |          |         |         |          |
|---------|-----------|-----------|-----------|-------------|---------|----------|---------|---------|----------|
| Room    | Partition | Partition | Partition | Partition   | Const   | Temp     | Cooling | Heating | Adjacent |
| Number  | Number    | Length    | Height    | U-Value     | Type    | Flag     | Тетр    | Temp    | Room No  |
| 5       | 1         | 43        | 43        | .18         | 110     | CONSTANT | 63      | 63      |          |
| 10      | 1         | 68.5      | 68.5      | .18         | 110     | CONSTANT | 63      | 63      |          |
| 15      | 1         | 92.5      | 93        | .18         | 110     | CONSTANT | 63      | 63      |          |
| 20      | 1 ,       | 26.5      | 26.5      | 0.18        | 110     | CONSTANT | 63      | 63      |          |
| 25      | 1         | 27.5      | 27        | 0.18        | 110     | CONSTANT | 63      | 63      |          |
| 30      | 1         | 55.5      | 55.5      | 0.18        | 110     | CONSTANT | 63      | 63      |          |

| Card 31 |           |           | Part      | ition Param | eters - |          |         |         |          |
|---------|-----------|-----------|-----------|-------------|---------|----------|---------|---------|----------|
| Room    | Partition | Partition | Partition | Partition   | Const   | Temp     | Cooling | Heating | Adjacent |
| Number  | Number    | Length    | Height    | U-Value     | Type    | Flag     | , Temp  | Temp    | Room No  |
| 35      | 1         | 64        | 10        | 0.18        | 110     | CONSTANT | 63      | 63      |          |
| 40      | 1         | 50        | 10        | 0.18        | 110     | CONSTANT | 63      | 63      |          |
| 45      | 1         | 111.5     | 10        | 0.18        | 110     | CONSTANT | 63      | 63      |          |
| 60      | 1         | 45        | 45        | 0.18        | 110     | CONSTANT | 63      | 63      |          |
| 65      | 1         | 89.5      | 37        | 0.18        | 110     | CONSTANT | 71      | 55      |          |
| 70      | 1         | 89.5      | 37        | 0.18        | 110     | CONSTANT | 71      | 55      |          |
| 75      | 1         | 87        | 87        | 0.18        | 110     | CONSTANT | 71      | 55      |          |
| 85      | 1         | 60        | 60        | 0.18        | 110     | CONSTANT | 71      | 55      |          |

----- System Section Alternative #1 ------

Card 39- System Alternative Description

Number

EXISTING SECONDARY EQUIPMENT AND SYSTEMS

| Card 40 |        |          | Syste   | т Туре    |            |          |          |
|---------|--------|----------|---------|-----------|------------|----------|----------|
|         |        |          | OPTION  | AL VENTIL | ATION SYST | EM       |          |
| System  |        | Ventil   |         |           |            |          | Fan      |
| Set     | System | Deck     | Cooling | Heating   | Cooling    | Heating  | Static   |
| Number  | Туре   | Location | SADBVh  | SADBVh    | Schedule   | Schedule | Pressure |
| 1       | BPMZ   |          |         |           |            |          |          |
| 2       | BPMZ   |          |         |           |            |          |          |
| 3       | VRH    |          |         |           |            |          |          |
| 4       | VRH    |          |         |           |            |          |          |
| 5       | VRH    |          |         |           |            |          |          |
| 6       | BPMZ   |          |         |           |            |          |          |
| 7       | COMP   |          |         |           |            |          |          |
| 8       | COMP   |          |         |           |            |          |          |
| 9       | COMP   |          |         |           |            |          |          |
| 10      | COMP   |          |         |           |            |          |          |
| 11      | COMP   |          |         |           |            |          |          |
| 12      | COMP   |          |         |           |            |          |          |
| 13      | COMP   | -        |         |           |            |          | •        |
| 14      | VRH    |          |         |           |            | •        |          |
|         |        |          |         |           |            |          |          |

| Card 41       |              |           |       |           | Zone A | ssignmer | nt    |     |       |     |       |     |
|---------------|--------------|-----------|-------|-----------|--------|----------|-------|-----|-------|-----|-------|-----|
| System        | Ref          | ш4        | Ref   | #2        | Ref    | #7       | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Set<br>Number | Ref<br>Begin | #1<br>End | Begin | #4<br>End | Begin  | End      | Begin | End | Begin | End | Begin | End |
| 1             | 1            | 3         |       |           |        |          |       |     |       |     |       | ٠.  |
| 2             | 4            | 8         |       |           |        |          |       |     |       |     |       |     |

| Card 41 |       |     |       |     | Zone A | ssignme | nt    |     |       |     |       |     |
|---------|-------|-----|-------|-----|--------|---------|-------|-----|-------|-----|-------|-----|
| System  |       |     |       |     |        |         |       |     |       |     |       |     |
| Set     | Ref   | #1  | Ref   | #2  | Ref    | #3      | , Ref | #4  | Ref   | #5  | Ref   | #6  |
| Number  | Begin | End | Begin | End | Begin  | End     | Begin | End | Begin | End | Begin | End |
| 3       | 9     | 9   |       |     |        |         |       |     |       |     |       |     |
| 4       | 10    | 15  |       |     |        |         |       |     |       |     |       |     |
| 5       | 16    | 19  |       |     |        |         |       |     |       |     |       |     |
| 6       | 20    | 20  | 1     |     |        |         | •     |     |       |     |       |     |
| 7       | 21    | 21  |       |     |        |         |       |     |       |     |       |     |
| 8       | 22    | 22  |       |     |        |         |       |     |       |     |       |     |
| 9       | 23    | 23  |       |     |        |         |       |     |       |     |       |     |
| 10      | 24    | 24  |       |     |        |         |       |     |       |     |       |     |
| 11      | 25    | 25  |       |     |        |         |       |     |       |     |       |     |
| 12      | 26    | 26  |       |     |        |         |       |     |       |     |       |     |
| 13      | 27    | 27  |       |     |        |         |       |     |       |     |       |     |
| 14      | 28    | 31  |       |     |        |         |       |     |       |     |       |     |

|        |      |     |     | Mn Exh |     |     | Cool | Return  |       | Supply | Return |
|--------|------|-----|-----|--------|-----|-----|------|---------|-------|--------|--------|
| Set    | Fan  | Fan | Fan | Fan    | Fan | Fan |      | Fan Mtr | Duct  | Duct   | Air    |
| Number | SP   | SP  | SP  | SP     | SP  | SP  | Loc  | Loc     | Ht Gn | Loc    | Path   |
| 1      | 1.75 |     |     | .127   |     | 1.0 |      |         |       |        |        |
| 2      | 1.5  |     |     | .326   |     |     |      |         |       |        |        |
| 3      | 2.4  |     |     | .208   |     |     |      |         |       |        |        |
| 4      | 2.5  |     |     | .613   |     |     |      |         |       |        |        |
| 5      | 3.45 |     |     | .389   |     | 1.5 |      |         |       |        |        |
| 6      | 2.1  |     |     | .26    |     |     |      |         |       |        |        |
| 7      | 0.92 |     |     |        |     |     |      |         |       |        |        |
| 8      | 1.67 |     |     |        |     |     |      |         |       |        |        |
| 9      | 0.64 |     |     |        |     |     |      |         |       |        |        |
| 10     | 1.39 |     |     |        |     |     |      |         |       |        |        |
| 11     | 1.54 |     |     |        |     |     |      | -       |       |        |        |
| 12     | 1.04 |     |     |        |     |     |      |         |       |        |        |
| 13     | 1.64 |     |     | .077   |     |     |      |         |       |        |        |
| 14     | 3.25 |     |     |        |     |     |      |         |       |        |        |

| Card 4 | 4        |       |           |         |          | s         | ystem Opt | ions    |         |             |           |          |         |
|--------|----------|-------|-----------|---------|----------|-----------|-----------|---------|---------|-------------|-----------|----------|---------|
| System | Econ     | Econ  | Max Pct   | Direct  | Indirect | 1st Stage |           |         | Ex      | haust Air H | eat Recov | ery      |         |
| Set    | Type     | 0n    | · Outside | Evap    | Evap     | Evap      | Fan       | Effecti | veness  | Control     | Type      | Exh-Side | Deck    |
| Number | Flag     | Point | Air       | Cooling | Cooling  | Cooling   | Cycling   | Stage 1 | Stage 2 | Stage 1     | Stage 2   | Stage 1  | Stage 2 |
| 1      | DRY-BULB | 65    | 3         |         |          |           |           |         |         |             |           |          |         |
| 2      | DRY-BULB | 65    | 5.5       |         |          |           |           |         |         |             |           |          |         |
| 3      | DRY-BULB | 65    | 8.8       |         |          |           |           |         |         |             |           |          |         |
| 4      | DRY-BULB | 65    | 14        |         |          |           |           |         |         |             |           |          |         |
| 5      | DRY-BULB | 65    | 9         |         |          |           |           |         |         |             |           |          |         |
| 6      | DRY-BULB | 65    | 8         |         |          |           | ٠.        |         |         |             |           |          |         |
| 7      | DRY-BULB | 65    | 2.4       |         |          |           |           |         |         |             |           |          |         |

| Vet on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . Ma                                                               | in                                       |                                                                 | n.i               | rect                             | Indirect                                              | Auvilian                      | , Main                 | Main                     |                          |                                       | Auvilianu            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|-------------------|----------------------------------|-------------------------------------------------------|-------------------------------|------------------------|--------------------------|--------------------------|---------------------------------------|----------------------|
| iysten<br>let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | oling                                    |                                                                 |                   | ap                               | Evap                                                  | Auxiliary<br>Cooling          | Heating                | Main<br>Preheat          | Reheat                   | Mech.                                 | Auxiliary<br>Heating |
| umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | -                                        | Economize                                                       |                   | •                                | Coil                                                  | Coil                          | Coil                   | Coil                     | Coil                     | Humidity                              |                      |
| unber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  | 0011                                                  | 0011                          | OFF                    | OFF                      | OFF                      | полтитер                              | 5011                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  |                                                       |                               | OFF                    | OFF                      | OFF                      |                                       |                      |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  |                                                       |                               | 011                    | 011                      | Off                      |                                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  |                                                       |                               |                        | 1                        |                          |                                       |                      |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  |                                                       |                               |                        |                          |                          |                                       |                      |
| ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  |                                                       |                               | OFF                    | OFF                      | OFF                      |                                       |                      |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | AIL                                      | AVAIL                                                           |                   |                                  |                                                       |                               | 011                    | 0.1                      | 011                      |                                       |                      |
| Systen<br>Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Di:<br>Co                                                        | scrim<br>ntrol                           | Night<br>Purge<br>Schedule                                      | Opti<br>Star      | mum<br>dule<br>ART<br>ART<br>ART | Optimum ·                                             | DUT<br>On Period              | የ CYCLING<br>Pattern እ | Maximum                  | System HR<br>Exhaust     | Room HR<br>Exhaust                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                          |                                                                 | OPST              | ART                              | OPSTOP                                                |                               |                        |                          |                          |                                       |                      |
| ard 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lg                                                                 | Htg R                                    | et Mn Exh                                                       |                   |                                  | Fan Over                                              |                               |                        |                          | LING FAN                 |                                       |                      |
| ard 4<br>ys (<br>et !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lg<br>an                                                           | Htg R<br>Fan F                           | et Mn Exh<br>an Fan                                             | Aux<br>Fan        | Rm Ex<br>Fan                     | Fan Ove<br>h Opt Vn<br>Sys Far                        | t<br>n Mech                   | Air                    |                          |                          |                                       |                      |
| ys (<br>et l<br>um E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lg<br>an                                                           | Htg R<br>Fan F                           | et Mn Exh                                                       | Aux<br>Fan        | Rm Ex                            | Fan Ove<br>th Opt Vn                                  | t                             |                        | MAIN COO                 | LING FAN                 | Confg                                 |                      |
| ard 4<br>ys (<br>et 1<br>um E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lg<br>an                                                           | Htg R<br>Fan F                           | et Mn Exh<br>an Fan                                             | Aux<br>Fan        | Rm Ex<br>Fan                     | Fan Ove<br>h Opt Vn<br>Sys Far                        | t<br>n Mech                   | Air                    | MAIN COO<br>Air          | LING FAN<br>Size         | Confg<br>BLOW                         |                      |
| ard 4<br>ys (<br>et !<br>um E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lg<br>an                                                           | Htg R<br>Fan F                           | et Mn Exh<br>an Fan                                             | Aux<br>Fan        | Rm Ex<br>Fan                     | Fan Ove<br>h Opt Vn<br>Sys Far                        | t<br>n Mech                   | Air                    | MAIN COO<br>Air          | LING FAN<br>Size         | Confg<br>BLOW<br>BLOW                 |                      |
| ard 4<br>ys (<br>et 1<br>um E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lg<br>an                                                           | Htg R<br>Fan F                           | et Mn Exh<br>an Fan                                             | Aux<br>Fan        | Rm Ex<br>Fan                     | Fan Ove<br>h Opt Vn<br>Sys Far                        | t<br>n Mech                   | Air                    | MAIN COO<br>Air          | LING FAN<br>Size         | Confg<br>BLOW<br>BLOW<br>BLOW         | -                    |
| ard 4<br>lys (<br>let f<br>lum E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clg<br>Fan<br>Eff                                                  | Htg R<br>Fan F<br>Eff E                  | et Mn Exh<br>an Fan<br>ff Eff                                   | Aux<br>Fan<br>Eff | Rm Ex<br>Fan<br>Eff              | Fan Over<br>th Opt Vn<br>Sys Far<br>Eff               | t<br>n Mech<br>Eff            | Air<br>Value           | MAIN COO<br>Air<br>Units | LING FAN<br>Size         | Confg<br>BLOW<br>BLOW                 |                      |
| ard 4<br>lys (<br>let f<br>lum E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clg<br>Fan<br>Eff                                                  | Htg R<br>Fan F<br>Eff E                  | et Mn Exh<br>an Fan                                             | Aux<br>Fan<br>Eff | Rm Ex<br>Fan<br>Eff              | Fan Over<br>th Opt Vn<br>Sys Far<br>Eff               | t<br>n Mech<br>Eff            | Air<br>Value           | MAIN COO<br>Air<br>Units | LING FAN<br>Size         | Confg<br>BLOW<br>BLOW<br>BLOW         |                      |
| ard 4 ys ( in the second of th | elg<br>Fan<br>Eff                                                  | Htg R<br>Fan F<br>Eff E                  | et Mn Exh<br>an Fan<br>ff Eff<br>Equip                          | Aux<br>Fan<br>Eff | Rm Ex<br>Fan<br>Eff              | Fan Over<br>ch Opt Vn<br>Sys Far<br>Eff               | t<br>n Mech<br>Eff<br>tive #1 | Air<br>Value           | MAIN COO<br>Air<br>Units | LING FAN<br>Size<br>Meth | Confg<br>BLOW<br>BLOW<br>BLOW<br>BLOW | -                    |
| ard 4 ys ( et 1 um E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elg<br>Fan<br>Eff                                                  | Htg R<br>Fan F<br>Eff E                  | et Mn Exh<br>an Fan<br>ff Eff<br>Equip                          | Aux<br>Fan<br>Eff | Rm Ex<br>Fan<br>Eff<br>Sectio    | Fan Over<br>th Opt Vn<br>Sys Far<br>Eff               | t n Mech Eff  tive #1         | Air<br>Value           | MAIN COO<br>Air<br>Units | LING FAN<br>Size<br>Meth | Confg<br>BLOW<br>BLOW<br>BLOW<br>BLOW |                      |
| dard 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fan<br>Fan<br>Fan<br>Fan<br>Fan<br>Fan<br>Fan<br>Fan<br>Fan<br>Fan | Htg R<br>Fan F<br>Eff E                  | et Mn Exh<br>an Fan<br>ff Eff<br>Equip<br>c Consump             | Aux<br>Fan<br>Eff | Rm Ex<br>Fan<br>Eff<br>Section   | Fan Over<br>th Opt Vn<br>Sys Far<br>Eff<br>on Alterna | t<br>n Mech<br>Eff<br>tive #1 | Air<br>Value           | MAIN COO<br>Air<br>Units | LING FAN<br>Size<br>Meth | Confg<br>BLOW<br>BLOW<br>BLOW<br>BLOW | nd Limit -           |
| Sys (<br>Set A<br>Lum E<br>i<br>i<br>i<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fan<br>Eff                                                         | Htg R<br>Fan F<br>Eff E<br>Ele<br>'e Tim | et Mn Exh<br>an Fan<br>ff Eff<br>Equip<br>c Consump<br>e of Day | Aux<br>Fan<br>Eff | Rm Ex<br>Fan<br>Eff<br>Section   | Fan Over th Opt Vn Sys Far Eff on Alterna             | t n Mech Eff  tive #1         | Air<br>Value           | MAIN COO<br>Air<br>Units | LING FAN<br>Size<br>Meth | Confg<br>BLOW<br>BLOW<br>BLOW<br>BLOW |                      |

Card 45----- Equipment Schedules -----

| Loads                        |             |                    | •••••                             | Cooling                      | ı Load Assig                      | nment                     |                                  |          |          |           | • • • • • • • • • • • • • • • • • • • • |
|------------------------------|-------------|--------------------|-----------------------------------|------------------------------|-----------------------------------|---------------------------|----------------------------------|----------|----------|-----------|-----------------------------------------|
|                              | Coil Coolir | ıg                 |                                   |                              |                                   |                           |                                  |          |          |           |                                         |
|                              | s To Equip  | ent -Group         | 1Group 2-                         | -Group 3-                    | -Group 4-                         | -Group 5                  | Group                            | 6Gr      | oup 7-   | -Group 8  | 3Group 9                                |
| Cool                         | Ref Sizing  | Begin E            | End Begin End                     | Begin End                    | l Begin End                       | Begin En                  | d Begin I                        | End Begi | in End   | Begin Er  | nd Begin Er                             |
| 1                            | PKPLA       | T 1 1              | 14                                |                              |                                   |                           |                                  |          |          |           |                                         |
|                              |             |                    |                                   |                              |                                   |                           |                                  |          |          |           |                                         |
| 62                           |             |                    | Co                                | olina Equir                  | vment Darame                      | tors                      |                                  |          |          |           |                                         |
| Equip                        |             |                    |                                   |                              |                                   |                           |                                  |          |          |           |                                         |
| Code                         |             | Capacity-          | -COOLING                          | rgy                          | Capacit                           |                           | Energy                           |          | Seq      |           | emand                                   |
| Name                         |             | Value Units        | s Value                           |                              | Value Un                          |                           |                                  | nits     |          | •         | .imit                                   |
| EQ1010                       |             | 154 TONS           |                                   | KW                           |                                   |                           |                                  |          | Num<br>1 | Type N    | umber                                   |
| EQ1010                       |             | 154 TONS           |                                   |                              |                                   |                           |                                  |          | 1        | SER       |                                         |
| E@1010                       | )3 I        | 104                | 142                               | KW .                         | 91 10                             | NS 8                      | 8 K                              | M        | 2        | SER       |                                         |
|                              |             |                    |                                   |                              |                                   |                           |                                  |          |          |           |                                         |
|                              |             |                    | Cooling P<br>ONDENSER             |                              |                                   |                           |                                  |          |          | -         |                                         |
|                              |             |                    | oad Full Load                     |                              |                                   |                           | Cald                             | Cooling  | u:       |           |                                         |
| Value                        |             | Value              |                                   |                              |                                   |                           | Cold                             | •        |          |           |                                         |
| 39.3                         | KW          | 27.5               | Units                             | Value                        | Units                             | controt                   | Storage                          |          | Acces    | ss.       |                                         |
| 0                            | KW          |                    |                                   |                              |                                   |                           |                                  | 1        | 1        |           |                                         |
| U                            | NW.         | 18.3               | KW                                |                              |                                   |                           |                                  | 2        |          |           |                                         |
| Max<br>CW<br>Reset           | Shed        | Evap<br>er Precool | Free<br>Cooling Heat<br>Type Sour | Cond<br>Enterince Temp<br>85 | Cond<br>ng Min Oper<br>Temp<br>65 |                           | Cond Re<br>To Ref<br>Number<br>1 |          | (e)      |           |                                         |
|                              |             |                    | •                                 | 85                           | 65                                | HEATING                   |                                  | 95       |          |           |                                         |
|                              |             |                    |                                   | -                            |                                   |                           |                                  |          |          |           |                                         |
|                              |             |                    |                                   | - Heating L                  | oad Assign.                       | ent                       |                                  |          |          |           |                                         |
|                              | All Coil    | C 1                | 2                                 | A 7                          |                                   |                           |                                  | _        | -        |           | _                                       |
|                              |             |                    | Group 2-                          |                              |                                   |                           |                                  |          |          |           |                                         |
| rence                        |             |                    | d Begin End                       | Begin End                    | Regin Fud                         | Begin End                 | Begin En                         | d Begin  | End I    | Begin End | Begin End                               |
|                              | 1           | 3 5                |                                   | _                            |                                   |                           |                                  |          |          |           |                                         |
| ·                            | 3           | / 13               |                                   |                              |                                   |                           |                                  |          |          |           |                                         |
|                              |             |                    |                                   |                              | 2-                                |                           |                                  |          |          |           |                                         |
|                              |             |                    |                                   | Heating Ed                   | uipment Par                       | ameters                   |                                  |          |          |           |                                         |
| I 67                         | uip Numl    | er HW Pmp          |                                   | -                            | <br>Energy                        |                           |                                  | Switch   |          |           | Demand                                  |
| l 67<br>: Equ                |             | •                  | Са                                | p'y                          | Rate                              |                           | •                                |          | Hot      | Misc.     | Limit                                   |
|                              | de Of       | Full Ld            |                                   |                              |                                   |                           |                                  | - /      |          |           |                                         |
| Equ                          |             | Full Ld<br>s Value |                                   | lue Units                    | Value                             | Units                     | Number                           | Control  | Stra     | Acc. Co   | gen Numbe                               |
| Equ<br>Cod<br>er Nam         | me Uni      |                    | Units Va                          | lue Units                    | Value<br>100                      | Units<br>PCTEFF           | Number                           | Control  | Strg     | Acc. Co   | ogen Numbe                              |
| Equ<br>Cod<br>per Nam<br>EQ2 | me Uni      | s Value            |                                   | lue Units                    | Value<br>100<br>100               | Units<br>PCTEFF<br>PCTEFF | Number                           | Control  | Strg     | Acc. Co   | ogen Numbe                              |
|                              | 3           | 7 13               |                                   | Heating Ec                   | quipment Par<br>Energy            | ameters                   | Seq                              | Switch   | Hot      | м         | isc.                                    |

|        |         |         | Fan Equip | ment Parame | eters     |         |             |
|--------|---------|---------|-----------|-------------|-----------|---------|-------------|
| System |         | _       |           | <b>.</b>    |           |         | 0-6:1       |
| Set    | Cooling | Heating | Return    | Exhaust     | Auxiliary | Room    | Optional    |
| Number | Fan     | Fan     | Fan       | Fan         | Supply    | Exhaust | Ventilation |
| 1      | EQ4223  |         |           | EQ4223      |           | EQ4003  |             |
| 2      | EQ4223  |         |           | EQ4223      |           |         |             |
| 3      | EQ4223  |         |           | EQ4223      |           |         |             |
| 4      | EQ4223  |         |           | EQ4223      |           | •       |             |
| 5      | EQ4223  |         |           | EQ4223      |           | EQ4003  |             |
| 6      | EQ4223  |         |           | EQ4223      |           |         |             |
| 7      | EQ4003  |         |           |             |           |         |             |
| 8      | EQ4003  |         |           |             |           |         |             |
| 9      | EQ4003  |         |           |             |           |         |             |
| 10     | EQ4003  |         |           |             |           |         |             |
| 11     | EQ4003  |         |           |             |           |         |             |
| 12     | EQ4003  |         |           |             |           |         |             |
| 13     | EQ4003  |         |           | EQ4223      |           |         |             |
| 14     | EQ4223  |         |           |             |           |         |             |

| Card 70 | )    |      |         | Fan  | Equip | oment K | W Over | rides  |      |     |      |      |
|---------|------|------|---------|------|-------|---------|--------|--------|------|-----|------|------|
|         |      |      | IER SYS |      |       |         |        | PRIORI |      |     |      |      |
| System  | Cool | Heat | Ret     | Exh  | Aux   | Room    | 0pt    |        |      |     | Room | 0pt  |
| Set     | Fan  | Fan  | Fan     | Fan  | Sup   | Exh     | Vent   | Cool   | Heat | Aux | Exh  | Vent |
| Number  | K₩   | KW   | KW      | KW   | KW    | KW      | KW     | Fan    | Fan  | Fan | Fan  | Fan  |
| 1       | 6.5  |      |         | .246 |       | 1.2     |        |        |      |     |      |      |
| 2       | 10.2 |      |         | .635 |       |         |        |        |      |     |      |      |
| 3       | 6.5  |      |         | .405 |       |         |        |        |      |     |      |      |
| 4       | 17.3 |      |         | 1.19 |       |         |        |        |      |     |      |      |
| 5       | 13.9 |      |         | .759 |       | 2.7     |        |        |      |     |      |      |
| 6       | 7.4  |      |         | .506 |       |         |        |        |      |     |      |      |
| 7       | 3.3  |      |         |      |       |         |        |        |      |     |      |      |
| 8       | 5.6  |      |         |      | -     |         |        |        |      |     |      |      |
| 9       | 1.8  |      |         |      |       |         |        |        |      |     |      |      |
| 10      | 3.7  |      |         |      |       |         |        |        |      |     |      |      |
| 11      | 4.7  |      |         |      |       |         |        |        |      |     |      |      |
| 12      | 3.3  |      |         |      |       |         |        |        |      |     |      |      |
| 13      | 5.6  |      |         | .15  |       |         |        |        |      |     |      |      |
| 14      | 22.7 |      |         |      | _     |         |        |        |      |     |      |      |
|         |      |      |         |      |       |         |        |        |      |     |      |      |

| Card 71- |                 |        | Base   | Utility P | arameters |           |          |          |         |
|----------|-----------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base            | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility         | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip         | Value  | Units  | Code      | Type      | Number    | Number   | Temp     | Temp    |
| 1        | CHW PIPING LOSS | 4.64   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          |         |
| 2        | HW PIPING LOSS  | 77.4   | MBH    | AVAIL     | HOT-LD    | 1         |          |          |         |

| Card 7 | 4       |          |          | Condenser | / Coolin | g Tower Pa | arameters |        |         |         |         |
|--------|---------|----------|----------|-----------|----------|------------|-----------|--------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy   |            |           | Number | Percent | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump  | Fluid      | Tower     | Of     | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units    | Туре       | Type      | Cells  |         |         |         |
| 1      | EQ5100  |          |          | 12.5      | K₩       | T-WATER    | CTOWER    | 1      |         |         |         |

|                                                                          |                                                                                         |                                                                 |                                | • • • • • • • • • • • • • • • • • • • •                             | ,                                                       |                                               | ar ame c                                   | . •                                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|-------------------|
|                                                                          | Cooling                                                                                 |                                                                 |                                | Energy                                                              | Energy                                                  |                                               |                                            | Number                                        | Percent                                      | Low Spd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low Sp                                                     | xd                                         |                   |
| ower                                                                     | Tower                                                                                   | Capacity                                                        | Capacity                       | Consump                                                             | Consump                                                 | Fluid                                         | Tower                                      | Of                                            | Airflow                                      | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energy                                                     | /                                          |                   |
| ≀ef                                                                      | Code                                                                                    | Value                                                           | Units                          | Value                                                               | Units                                                   | Type                                          | Type                                       | Cells                                         | Low Spd                                      | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                      |                                            |                   |
| 2                                                                        | EQ5100                                                                                  |                                                                 |                                | 10.8                                                                | KW                                                      | T-WATER                                       | CTOWE                                      | R 1                                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|                                                                          |                                                                                         |                                                                 |                                |                                                                     |                                                         |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|                                                                          |                                                                                         |                                                                 |                                |                                                                     | w: 1 f -                                                |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
| ard                                                                      | /5<br>#1                                                                                |                                                                 |                                | #2                                                                  |                                                         | aneous Aco                                    | essory                                     |                                               | #3                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
| lisc                                                                     | Equip                                                                                   | Energy                                                          | Energy So                      |                                                                     |                                                         | Energy                                        | Energy                                     | Sched                                         | Equip                                        | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energ                                                      | y Sched                                    |                   |
|                                                                          | Code                                                                                    | Value                                                           | Units Co                       |                                                                     |                                                         | Value                                         | Units                                      | Code                                          | Code                                         | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit                                                       | s Code                                     |                   |
|                                                                          | EQ5020                                                                                  | 16.6                                                            | KW DA                          | AYSCHED                                                             |                                                         |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|                                                                          | •••••                                                                                   | Equ                                                             | ipment Sect                    |                                                                     |                                                         |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|                                                                          |                                                                                         | LO                                                              | O-L, LC                        | ,,,,,,                                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                 |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
| Card                                                                     |                                                                                         |                                                                 |                                |                                                                     |                                                         | tion / TO                                     | ) Sched                                    | ıles                                          | · • • • • • • • • • • • • • • • • • • •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|                                                                          |                                                                                         | lec Consump                                                     |                                |                                                                     | 4                                                       |                                               |                                            |                                               |                                              | Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nand Limi<br>-                                             |                                            |                   |
| lter                                                                     | native Ti                                                                               | ime of Day                                                      | Time of i                      |                                                                     |                                                         |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Temper                                                     |                                            |                   |
| lumbe                                                                    | er So                                                                                   | chedul e                                                        | Schedule                       | Max K                                                               |                                                         | ative Des                                     |                                            | า                                             |                                              | Schedul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Dri                                                      | ft                                         |                   |
| 2                                                                        |                                                                                         |                                                                 |                                |                                                                     | ECO E                                                   | MOTOR REP                                     | LMNT                                       |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
|                                                                          |                                                                                         |                                                                 |                                |                                                                     |                                                         |                                               |                                            |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                            |                   |
| .oad<br>Asgn<br>Ref                                                      | All Coil<br>Loads To                                                                    |                                                                 | -Group 1                       | Group :<br>d Begin E                                                | 2Grou                                                   | ıp 3Gr                                        | oup 4-                                     | -Group 5                                      | Group<br>d Begin E                           | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uр 7G                                                      | roup 8-                                    | -Group            |
| load<br>Asgn<br>Ref<br>I                                                 | All Coil<br>Loads To<br>Cool Ref<br>1                                                   | Cooling Equipment Sizing PKPLANT                                | -Group 1 Begin En 1 14         | Group : d Begin E                                                   | 2Grou<br>nd Begin<br>Cooling E                          | up 3Gr<br>n End Beg<br>Equipment              | oup 4-<br>in End<br>Paramet                | -Group 5<br>Begin End<br>ers                  | Group<br>d Begin E                           | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be                                          | roup 8-<br>gin End<br>Dema                 | -Group<br>Begin E |
| Load<br>Asgn<br>Ref<br>I<br>Card<br>Cool<br>Ref                          | All Coil<br>Loads To<br>Cool Ref<br>1<br>62<br>Equip<br>Code                            | Cooling Equipment Sizing PKPLANT  Num OfC                       | -Group 1 Begin En 1 14Capacity | Group d<br>d Begin E                                                | 2Ground Begin Cooling E                                 | up 3Gr<br>n End Beg<br>Equipment<br>          | oup 4- in End  ParametH apacity            | -Group 5<br>Begin End<br>ers<br>EAT RECOV     | Group<br>d Begin E                           | 6Groi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | up 7G<br>n End Be<br><br>Seq<br>Order S                    | roup 8-<br>gin End<br><br>Dema<br>ieq Limi | -Group<br>Begin E |
| Load<br>Asgn<br>Ref<br>I<br>Card<br>Cool<br>Ref                          | All Coil<br>Loads To<br>Cool Ref<br>1<br>62<br>Equip<br>Code<br>Name                    | Cooling Equipment Sizing PKPLANT  Num OfC Units Val             | -Group 1 Begin En 1 14         | Group E d Begin E                                                   | 2Ground Begin<br>Cooling E                              | up 3Gr<br>n End Beg<br>Equipment<br><br>s Val | oup 4- in End  ParametH apacity ue Uni     | -Group 5 Begin End ers EAT RECOV ts V         | Group d Begin E ERYEnergy atue Ur            | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T               | roup 8-<br>gin End  Dema Geq Limi          | -Group<br>Begin E |
| oad<br>Asgn<br>Ref<br>I<br>Card<br>Cool<br>Ref<br>Num                    | All Coil<br>Loads To<br>Cool Ref<br>1<br>62<br>Equip<br>Code<br>Name<br>Eq1010S         | Cooling Equipment Sizing PKPLANT  Num OfC Units Val             | -Group 1 Begin En 1 14         | Group d<br>d Begin E                                                | 2Ground Begin<br>Cooling E<br><br>nergy<br>Units<br>KW  | ep 3Gr<br>Equipment<br><br>S Val              | oup 4- in End  ParametH apacity ue Uni     | -Group 5 Begin End ers EAT RECOV ts V S 8     | Group d Begin E  ERY ERY Salue Ur 8 K        | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T<br>1 S        | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| oad<br>sgn<br>lef<br>Card<br>Cool<br>Ref                                 | All Coil<br>Loads To<br>Cool Ref<br>1<br>62<br>Equip<br>Code<br>Name                    | Cooling Equipment Sizing PKPLANT  Num OfC Units Val             | -Group 1 Begin En 1 14         | Group E d Begin E                                                   | 2Ground Begin<br>Cooling E                              | up 3Gr<br>n End Beg<br>Equipment<br><br>s Val | oup 4- in End  ParametH apacity ue Uni     | -Group 5 Begin End ers EAT RECOV ts V S 8     | Group d Begin E ERYEnergy atue Ur            | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T<br>1 S        | roup 8-<br>gin End  Dema Geq Limi          | -Group<br>Begin E |
| oad<br>sgn<br>ef<br>Card<br>Cool<br>Ref                                  | All Coil<br>Loads To<br>Cool Ref<br>1<br>62<br>Equip<br>Code<br>Name<br>Eq1010S         | Cooling Equipment Sizing PKPLANT  Num OfC Units Val             | -Group 1 Begin En 1 14         | Group d<br>d Begin E                                                | 2Ground Begin<br>Cooling E<br><br>nergy<br>Units<br>KW  | ep 3Gr<br>Equipment<br><br>S Val              | oup 4- in End  ParametH apacity ue Uni     | -Group 5 Begin End ers EAT RECOV ts V S 8     | Group d Begin E  ERY ERY Salue Ur 8 K        | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T<br>1 S        | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| coad<br>lasgn<br>def<br>l<br>Card<br>Cool<br>Ref<br>Hum<br>1             | All Coil<br>Loads To<br>Cool Ref<br>1 62<br>Equip<br>Code<br>Name<br>Eq1010S<br>Eq1010S | Cooling Equipment Sizing PKPLANT  Num OfC Units Val 1 154       | -Group 1 Begin En 1 14         | Group d<br>d Begin E                                                | 2Ground Begin<br>Cooling E<br><br>Units<br>KW<br>KW     | equipment                                     | oup 4- in End  ParametH apacity ue Uni TON | -Group 5 Begin End ers EAT RECOV ts V S 8 S 8 | Group d Begin E  ERY ERY Salue Ur 8 K        | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T<br>1 S        | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| oad<br>Asgn<br>Ref<br>I<br>Card<br>Cool<br>Ref<br>Num<br>1               | All Coil<br>Loads To<br>Cool Ref<br>1 62Equip<br>Code<br>Name<br>Eq1010S<br>Eq1010S     | Cooling Equipment Sizing PKPLANT  Num OfC Units Val 1 154       | -Group 1 Begin En 1 14         | Group d Begin E  OOLING Value 142 142                               | 2Ground Begin<br>Cooling E<br><br>Units<br>KW<br>KW     | equipment s Val 91                            | oup 4- in End  ParametH apacity ue Uni TON | -Group 5 Begin End ers EAT RECOV ts V S 8 S 8 | Group d Begin E  ERY ERY Salue Ur 8 K        | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T<br>1 S        | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| Load<br>Asgn<br>Ref<br>I<br>Cool<br>Ref<br>Num<br>1<br>2<br>Card<br>Cool | All Coil Loads To Cool Ref 1 62 Equip Code Name Eq1010S Eq1010S                         | Cooling Equipment Sizing PKPLANT  Num OfC Units Val 1 154       | -Group 1 Begin En 1 14         | Group d  d Begin E  COOLING Value 142 142                           | 2Ground Begind Cooling E                                | equipment s Val 91 91 TREC or A               | ParametH capacity ue Uni TON               | -Group 5 Begin End ers EAT RECOV ts V S 8 S 8 | Group d Begin E  ERY ERY alue Ur 8 KV 8 KV   | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G<br>n End Be<br>Seq<br>Order S<br>Num T<br>1 S<br>2 S | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| Load<br>Asgn<br>Ref<br>I<br>Cool<br>Ref<br>Num<br>1<br>2<br>Card<br>Cool | All Coil Loads To Cool Ref 1 62 Equip Code Name Eq1010S Eq1010S                         | Cooling Equipment Sizing PKPLANT  Num OfC Units Val 1 154       | -Group 1 Begin En 1 14         | Group d  d Begin E  COOLING Value 142 142 Cooling                   | 2Ground Begind Cooling E Units KW KW Pumps arHi ad Full | equipment                                     | oup 4- in End  ParametH apacity ue Uni TON | -Group 5 Begin End ers EAT RECOV ts V S 8 S 8 | Group d Begin E  ERYEnergy alue Ur 8 KV 8 KV | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G n End Be Seq Order S Num T 1 S 2 S                   | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| Load Asgn Ref I Card Cool Ref Num 1 Cool Ref Ref Ref Ref Ref Ref         | All Coil Loads To Cool Ref 1 62 Equip Code Name Eq1010S Eq1010S                         | Cooling Equipment Sizing PKPLANT  Num OfC Units Val 1 154       | -Group 1 Begin En 1 14         | Group : d Begin E. COOLING Value 142 142 Cooling IDENSER ad Full Lo | 2Ground Begind Cooling E                                | equipment                                     | oup 4- in End  ParametH apacity ue Uni TON | -Group 5 Begin End ers EAT RECOV ts V S 8 S 8 | Group d Begin E  ERYEnergy alue Ur 8 KV 8 KV | 6Grown Begin Be | Seq Order S Num T 1 S 2 S                                  | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |
| Load Asgn Ref 1 Card Cool Ref Num 1 2 Card Cool                          | All Coil Loads To Cool Ref 1 62 Equip Code Name Eq1010S Eq1010S                         | Cooling Equipment Sizing PKPLANT  Num OfC Units Val 1 154 1 154 | -Group 1 Begin En 1 14         | Group d  d Begin E  COOLING Value 142 142 Cooling                   | 2Ground Begind Cooling E Units KW KW Pumps arHi ad Full | equipment                                     | oup 4- in End  ParametH apacity ue Uni TON | -Group 5 Begin End ers EAT RECOV ts V S 8 S 8 | Group d Begin E  ERYEnergy alue Ur 8 KV 8 KV | 6Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up 7G n End Be Seq Order S Num T 1 S 2 S                   | roup 8- gin End  Dema seq Limi ype Numb    | -Group<br>Begin E |

| Card | 64    |            |         | Cooli   | ng Equip | ment Optic | ns       |          |          |          |
|------|-------|------------|---------|---------|----------|------------|----------|----------|----------|----------|
| Cool | Max   | Load       |         | Free    |          | Cond       | Cond     | Cond Rej | Cond Rej | Cond Rej |
| Ref  | CM    | Shed       | Evap    | Cooling | Heat     | Entering   | Min.Oper | To Ref   | To Ref   | a HM     |
| Num  | Reset | Economizer | Precool | Type    | Source   | Тетр       | Temp     | Type     | Number   | Temp     |
| 1    |       |            |         |         |          | 85         | 65       | HEATING  | 1        | 95       |
| 2    |       |            |         |         |          | 85         | 65       | HEATING  | 2        | 95       |
|      |       |            |         |         |          |            |          |          |          |          |

| Card 67 Heating Equipment Parameters |        |        |         |       |       |       |        |        |        |         |      |       |       |        |
|--------------------------------------|--------|--------|---------|-------|-------|-------|--------|--------|--------|---------|------|-------|-------|--------|
| Heat                                 | Equip  | Number | HW Pmp  |       |       |       | Energy |        | Seq    | Switch  |      |       |       | Demand |
| Ref                                  | Code   | Of     | Full Ld |       | Cap'y |       | Rate   |        | Order  | over    | Hot  | Misc. |       | Limit  |
| Number                               | Name   | Units  | Value   | Units | Value | Units | Value  | Units  | Number | Control | Strg | Acc.  | Cogen | Number |
| 1                                    | EQ2002 | 1      | 0       | KW    |       |       | 100    | PCTEFF |        |         |      |       |       |        |
| 2                                    | EQ2002 | 1      | 0       | KW    |       |       | 100    | PCTEFF |        |         |      |       |       |        |
| 3                                    | EQ2263 | 1      |         |       |       |       |        |        |        |         |      |       |       |        |

| Card 69 |         |         | Fan Equip | ment Parame | eters     |         |             |
|---------|---------|---------|-----------|-------------|-----------|---------|-------------|
| System  |         |         |           |             |           |         |             |
| Set     | Cooling | Heating | Return    | Exhaust     | Auxiliary | Room    | Optional    |
| Number  | Fan     | Fan     | Fan       | Fan         | Supply    | Exhaust | Ventilation |
| 1       | EQ4223  |         |           | EQ4223      |           | EQ4003  |             |
| 2       | EQ4223  |         | -         | EQ4223      |           |         |             |
| 3       | EQ4223  |         |           | EQ4223      |           |         |             |
| 4       | EQ4223  |         |           | EQ4223      |           |         |             |
| 5       | EQ4223  |         |           | EQ4223      |           | EQ4003  |             |
| 6       | EQ4223  |         |           | EQ4223      |           |         |             |
| 7       | EQ4003  |         |           |             |           |         |             |
| 8       | EQ4003  |         |           |             |           |         |             |
| 9       | EQ4003  |         | -         |             |           |         |             |
| 10      | EQ4003  |         |           |             |           |         |             |
| .11     | EQ4003  |         |           |             |           | 4-      |             |
| 12      | EQ4003  |         |           |             |           |         |             |
| 13      | EQ4003  |         |           | EQ4223      |           |         |             |
| 14      | EQ4223  |         |           |             |           |         |             |

| Card 7                     |             |                       | SYSTEM-     |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
|----------------------------|-------------|-----------------------|-------------|------------------------|------------|-----------------------------------------|-------------------------------------------------|------------------------------|---------|----------------------------|-----------------|-------------------------|-------------|-------------------------------|-----------|------|
| Svetom                     |             |                       |             |                        |            | HER SYS                                 |                                                 | ,                            | DEMAND  |                            |                 |                         |             |                               |           |      |
| •                          | Cool<br>Fan | Fan                   | Fan         | Exh<br>Fan             | Aux<br>Sup | Room<br>Exh                             |                                                 | Cool                         | Heat    | Aus                        | Exh             | Opt<br>Vent             |             |                               |           |      |
| Set                        |             | KW                    | KW          | KW                     | KW         | KW                                      | KW                                              |                              |         |                            |                 |                         |             |                               |           |      |
| Number<br>4                |             | KW                    | KW          | .25                    | KW.        |                                         | KW                                              | Fan                          | Fan     | Fan                        | Fan             | Fan                     |             |                               |           |      |
| 1                          | 6.0         |                       |             |                        |            | 1.1                                     |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 2                          | 9.7         |                       |             | .652                   |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 3                          | 6.0         |                       |             | .415                   |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 4                          | 16.6        |                       |             | 1.225                  |            | 2 /                                     |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 5                          | 13.3        |                       |             | .779                   |            | 2.4                                     |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 6                          | 7.2         |                       |             | .519                   |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 7                          | 3.1         |                       |             |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 8                          | 5.0         |                       |             |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 9                          | 1.7         |                       |             |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 10                         | 3.5         |                       |             |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 11                         | 4.4         |                       |             |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 12                         | 3.1         |                       |             | 15/                    |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 13                         | 5.0         |                       |             | .156                   |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| 14                         | 22.3        |                       |             |                        |            |                                         |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
| Number<br>1<br>2<br>Card 7 | HW E        | crip PIPING PIPING CO |             | Der<br>Va<br>4.6<br>77 | .4         | Unit<br>TONS<br>MBH<br>Conder<br>Energy | and Sis C A A A A A A A A A A A A A A A A A A A | ode<br>VAIL<br>VAIL<br>Cooli | нот     | e<br>LL-LD<br>-LD<br>er Pa | Numbe<br>1<br>1 | s<br>Numb<br>Of<br>Cell | per Percen  | Temp<br>t Low Spd<br>w Energy | Temp      |      |
| Misc                       | #1<br>Equip | En                    | ergy        | Energ                  | y Sc       | ched                                    | #2<br>Equi                                      | p                            | Energy  | "E                         | nergy           | Sched                   | #3<br>Equip | Energy                        |           |      |
| Ref                        | Code        |                       | lue         | Units                  | Co         | ode                                     | Code                                            | :                            | Value   | U                          | nits            | Code                    | Code        | Value                         | Units     | Code |
| 1                          | EQ5020      | 15                    | .7          | KW                     | DA         | YSCHED                                  |                                                 |                              |         |                            |                 |                         |             |                               |           |      |
|                            |             |                       | Equ         |                        |            | ion A                                   |                                                 |                              |         | ••••                       |                 |                         |             |                               |           |      |
| Card :                     | ,.<br>59    |                       |             |                        |            |                                         |                                                 | escrip                       | otion / | TOD                        | Schedul         | es                      |             |                               |           |      |
| Card :                     |             |                       | <br>Consump |                        |            |                                         |                                                 | escrip)                      | otion / | TOD                        | Schedul         | .es                     | •••••       |                               | and Limit |      |
|                            | 59          | Elec                  |             | Elec                   | Dema       |                                         | nand                                            | escrip                       | otion / | TOD                        | Schedul         | es                      | •••••       |                               |           |      |

| Card 6                                                             | 0                                                           |                                            |                                                           |                                             |                                                            | Cooling                                                                               | g coud Assign                                            | MICTIC                                     |                                                |                                     |        |                        |                                    |
|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------|--------|------------------------|------------------------------------|
|                                                                    | All Coil                                                    |                                            |                                                           |                                             |                                                            |                                                                                       |                                                          |                                            |                                                |                                     |        |                        | _                                  |
| sgn                                                                | Loads To                                                    | Equipm                                     |                                                           |                                             |                                                            |                                                                                       | Group 4-                                                 |                                            |                                                |                                     |        |                        |                                    |
| ef                                                                 | Cool Ref                                                    | Sizing                                     |                                                           | Begin Er                                    | nd Begin En                                                | d Begin En                                                                            | d Begin End                                              | Begin End                                  | Begin                                          | End Beg                             | in End | Begin E                | nd Begin                           |
|                                                                    | 1                                                           | PKPLAN                                     | Τ ΄                                                       | 1 14                                        | •                                                          |                                                                                       |                                                          |                                            |                                                |                                     |        |                        |                                    |
|                                                                    |                                                             |                                            |                                                           |                                             | (                                                          | coling Equi                                                                           | pment Parame                                             | tore                                       |                                                |                                     |        |                        |                                    |
|                                                                    | guip                                                        |                                            |                                                           |                                             |                                                            |                                                                                       |                                                          |                                            |                                                |                                     |        |                        | Demand                             |
|                                                                    | Code                                                        |                                            |                                                           |                                             |                                                            | ergy                                                                                  |                                                          |                                            |                                                |                                     |        | Seq                    |                                    |
|                                                                    | lame                                                        | Units                                      | •                                                         | -                                           |                                                            | Units                                                                                 | Value Un                                                 |                                            |                                                |                                     | Num    | •                      |                                    |
|                                                                    | WCRECIP                                                     |                                            | 59                                                        | TONS                                        | 50                                                         |                                                                                       |                                                          |                                            |                                                |                                     | 1      | PAR                    |                                    |
|                                                                    | CENT123                                                     |                                            |                                                           |                                             | 122                                                        | KW                                                                                    |                                                          |                                            |                                                |                                     | 2      | PAR                    |                                    |
|                                                                    |                                                             |                                            |                                                           |                                             |                                                            |                                                                                       |                                                          |                                            |                                                |                                     |        |                        |                                    |
|                                                                    |                                                             |                                            |                                                           |                                             |                                                            |                                                                                       | eferences                                                |                                            |                                                |                                     |        | -                      |                                    |
|                                                                    |                                                             |                                            |                                                           |                                             |                                                            |                                                                                       | C or AUX                                                 |                                            | Cold                                           | Cooling                             | Misc   |                        |                                    |
|                                                                    |                                                             | Units                                      |                                                           | Value                                       | units                                                      | Value                                                                                 | d Full Load<br>Units                                     | Control                                    |                                                | _                                   |        |                        |                                    |
|                                                                    | Value<br>3.23                                               | KW                                         |                                                           | 5.58                                        | KW                                                         | vatue                                                                                 | OHITES                                                   | 1                                          | a cor age                                      | 1                                   | Acce.  |                        |                                    |
|                                                                    | 9.35                                                        | KW                                         |                                                           | 12.2                                        | KW                                                         |                                                                                       |                                                          | 1                                          |                                                | 2                                   |        |                        |                                    |
|                                                                    | ,                                                           | 14                                         |                                                           |                                             |                                                            |                                                                                       |                                                          | •                                          |                                                | _                                   |        |                        |                                    |
|                                                                    |                                                             |                                            |                                                           |                                             |                                                            | Heating                                                                               | Load Assignm                                             | ent                                        |                                                |                                     |        |                        |                                    |
| oad<br>Assign<br>Refer                                             | Al<br>nment Lo<br>ence He<br>1                              | l Coil<br>ads To<br>ating Re               | -G<br>ef Be                                               | roup 1-<br>gin End<br>5                     | -Group 2-<br>Begin End                                     | -Group 3-                                                                             | Load Assignm<br>-Group 4-<br>Begin End                   | -Group 5-                                  | -Group 6                                       | 5Grou                               | ıp 7-  | -Group 8-              | -Group 9                           |
| ∟oad<br>Assign<br>Refero<br>N                                      | Al<br>nment Lo<br>ence He                                   | l Coil<br>ads To<br>ating Re               | -G<br>ef Be                                               | roup 1-<br>gin End                          | -Group 2-<br>Begin End                                     | -Group 3-                                                                             | -Group 4-                                                | -Group 5-                                  | -Group 6                                       | 5Grou                               | ıp 7-  | -Group 8-              | -Group 9                           |
| oad<br>Assign<br>Refer                                             | Al<br>nment Lo<br>ence He<br>1                              | l Coil<br>ads To<br>ating Re               | -G<br>ef Be                                               | roup 1-<br>gin End<br>5                     | -Group 2-<br>Begin End                                     | -Group 3-                                                                             | -Group 4-                                                | -Group 5-                                  | -Group 6                                       | 5Grou                               | ıp 7-  | -Group 8-              | -Group 9                           |
| oad<br>Assign<br>Refero                                            | Allnment Loence He                                          | l Coil<br>ads To<br>ating Re               | -G<br>ef Be<br>3<br>7                                     | roup 1-<br>gin End<br>5<br>13               | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End                                                                | -Group 4-<br>Begin End                                   | -Group 5-<br>Begin End                     | -Group 6<br>Begin Er                           | 6Grou                               | p 7-   | -Group 8-<br>Begin Enc | -Group <sup>(</sup>                |
| oad<br>Assign<br>Refero<br>P<br>Card                               | All nment Lo ence He 1 2 67                                 | l Coil<br>ads To<br>ating Re               | -Gef Bee 3 7                                              | roup 1-gin End 5 13                         | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End                                                                | -Group 4-<br>Begin End<br>Guipment Par<br>Energy         | -Group 5-<br>Begin End                     | -Group 6<br>Begin Er                           | 5Grou<br>nd Begin                   | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup><br>I Begin En  |
| oad<br>Issign<br>Refero<br>Refero<br>Refero                        | Allnment Loence He                                          | l Coil<br>ads To<br>ating Re<br>Numb<br>Of | -Gef Bee 3 7                                              | roup 1-<br>gin End<br>5<br>13<br>           | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End<br>Heating E                                                   | -Group 4-<br>Begin End<br>quipment Par<br>Energy<br>Rate | -Group 5-<br>Begin End<br>ameters          | -Group 6<br>Begin Er<br>Seq<br>Order           | 5Grou<br>nd Begin<br>Switch<br>over | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad<br>Assign<br>Refer<br>Refer<br>Card                            | All nment Lo ence He 1 2 67                                 | l Coil ads To ating Re Numb                | -Gef Be<br>3<br>7                                         | roup 1- gin End 5 13 W Pmp full Ld          | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units                           | -Group 4- Begin End  quipment Par Energy Rate Value      | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order           | 5Grou<br>nd Begin<br>Switch<br>over | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup><br>I Begin En  |
| oad<br>Assign<br>Refero<br>Refero<br>Heat<br>Ref                   | All nment Lo ence He 1 2 67 Equip Code r Name OILBLR        | l Coil ads To ating Re Numb Of Unit        | -Gef Be<br>3<br>7                                         | roup 1- gin End 5 13 W Pmp full Ld ralue 51 | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End<br>Heating E                                                   | -Group 4-<br>Begin End<br>quipment Par<br>Energy<br>Rate | -Group 5-<br>Begin End<br>ameters          | -Group 6<br>Begin Er<br>Seq<br>Order           | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad<br>Issign<br>Refero<br>Refeat<br>Ref                           | All nment Lo ence He 1 2 67 Equip Code r Name               | l Coil ads To ating Re Numb Of Unit        | -Gef Be<br>3<br>7                                         | roup 1- gin End 5 13 W Pmp full Ld          | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units                           | -Group 4- Begin End  quipment Par Energy Rate Value      | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order           | 5Grou<br>nd Begin<br>Switch<br>over | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| Load<br>Assign<br>Referd<br>Card<br>Heat<br>Ref                    | All nment Lo ence He 1 2 67 Equip Code r Name OILBLR        | l Coil ads To ating Re Numb Of Unit        | -Gef Be<br>3<br>7                                         | roup 1- gin End 5 13 W Pmp full Ld ralue 51 | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units                           | -Group 4- Begin End  quipment Par Energy Rate Value      | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order           | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad<br>Issign<br>Refero<br>Refeat<br>Ref                           | All nment Lo ence He 1 2 67 Equip Code r Name OILBLR        | l Coil ads To ating Re Numb Of Unit        | -Gef Be<br>3<br>7                                         | roup 1- gin End 5 13 W Pmp full Ld ralue 51 | -Group 2-<br>Begin End<br>14 14                            | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units                           | -Group 4- Begin End  quipment Par Energy Rate Value      | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order           | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad<br>ssign<br>efer<br>eard<br>deat<br>def<br>lumbe               | All nment Lo ence He 1 2 67 Equip Code r Name OILBLR        | l Coil ads To ating Re  Numb Of Unit 1     | -GPF Be 3 7 7 Per H F F F F F V V V V V V V V V V V V V V | roup 1- gin End 5 13 W Pmp full Ld falue 51 | -Group 2-<br>Begin End<br>14 14<br>Units                   | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units                           | -Group 4- Begin End  quipment Par Energy Rate Value 900  | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order           | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad ssign efer efer eleat ef lumbe                                 | All nment Lo ence He 1 2 67 Equip Code r Name OILBLE EQ2263 | l Coil ads To ating Re  Numb Of Unit 1     | -GPF Be 3 7 7 Per H F F F F F V V V V V V V V V V V V V V | roup 1- gin End 5 13 W Pmp full Ld falue 51 | -Group 2-<br>Begin End<br>14 14<br>Units                   | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units<br>720 MBH                | -Group 4- Begin End  quipment Par Energy Rate Value 900  | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order           | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad ssign sefer card deat sef sumbe                                | All nment Lo ence He 1 2 67 Equip Code r Name OILBLE EQ2263 | l Coil ads To ating Re Numb Of Unit        | -GPF Be 3 7 7 Per H F F F F F V V V V V V V V V V V V V V | gin End 5 13 13 W Pmp Gull Ld /alue 51      | -Group 2-<br>Begin End<br>14 14<br>Units                   | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units<br>720 MBH                | -Group 4- Begin End  quipment Par Energy Rate Value 900  | -Group 5-<br>Begin End<br>ameters<br>Units | -Group 6<br>Begin Er<br>Seq<br>Order<br>Number | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| oad Assign Refer  Card Heat Ref Lumbe 1 2 Card Syste               | All nment Lo ence He 1 2 67 Equip Code r Name OILBLE EQ2263 | l Coil ads To ating Re Numb Of Unit 1 1    | -G<br>ef Be<br>3<br>7<br>7                                | gin End 5 13 13 W Pmp Gull Ld /alue 51      | -Group 2- Begin End 14 14  Units KW  Equipment P           | -Group 3-<br>Begin End<br>Heating E<br>Cap'y<br>Value Units<br>720 MBH                | -Group 4- Begin End  quipment Par Energy Rate Value 900  | -Group 5- Begin End  ameters Units MBH     | -Group 6<br>Begin Er<br>Seq<br>Order<br>Number | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| _oad _oad Assign Refer 1 2 Card Ref Numbe 1 2 Card Syste Set Numbe | All nment Lo ence He 1 2 67 Equip Code r Name OILBLE EQ2263 | l Coil ads To ating Re Numb Of Unit 1 1    | -G<br>ef Bee<br>3<br>7<br>7                               | roup 1- gin End 5 13 W Pmp Full Ld ralue 51 | -Group 2- Begin End 14 14  Units KW  Equipment P           | -Group 3- Begin End  Heating E Cap'y Value Units 720 MBH  arameters ust Auxili Supply | -Group 4- Begin End  quipment Par Energy Rate Value 900  | -Group 5- Begin End  ameters Units MBH     | -Group 6<br>Begin Er<br>Seq<br>Order<br>Number | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |
| Load Assign Refer 1 2 Card Heat Ref Numbe                          | All nment Lo ence He 1 2 67 Equip Code r Name OILBLE EQ2263 | Coil ads To ating Re Numb Of Unit 1 1      | -G<br>ef Bee<br>3<br>7<br>7                               | roup 1- gin End 5 13 W Pmp Full Ld ralue 51 | -Group 2- Begin End 14 14  Units KW  Equipment P  urn Exha | -Group 3- Begin End  Heating E Cap'y Value Units 720 MBH  arameters ust Auxili Supply | -Group 4- Begin End  quipment Par Energy Rate Value 900  | -Group 5- Begin End  ameters Units MBH     | -Group 6<br>Begin Er<br>Seq<br>Order<br>Number | Switch over Control                 | p 7-   | -Group 8-<br>Begin End | -Group <sup>9</sup> I Begin En Dem |

| Card 69 |         | ·       | Fan Equip | ment Parame | eters     |         |             |
|---------|---------|---------|-----------|-------------|-----------|---------|-------------|
| System  |         |         |           |             |           |         |             |
| Set     | Cooling | Heating | Return    | Exhaust     | Auxiliary | Room    | Optional    |
| Number  | Fan     | Fan     | Fan       | Fan         | Supply    | Exhaust | Ventilation |
| 4       | EQ4223  |         |           | EQ4223      |           |         |             |
| 5       | EQ4223  |         |           | EQ4223      |           | EQ4003  |             |
| 6       | EQ4223  |         |           | EQ4223      |           |         |             |
| 7       | EQ4003  |         |           |             |           | •       |             |
| 8       | EQ4003  |         |           |             |           |         |             |
| 9       | EQ4003  |         |           |             |           |         |             |
| 10      | EQ4003  |         |           |             |           |         |             |
| 11      | EQ4003  |         |           |             |           |         |             |
| 12      | EQ4003  |         |           |             |           |         |             |
| 13      | EQ4003  |         |           | EQ4223      |           |         |             |
| 14      | EQ4223  |         |           |             |           |         |             |
|         |         |         |           |             |           |         |             |

| Card 70     |      |      |     | Fan   | Equip | quipment KW Overrides |          |      |       |          |      |      |  |  |
|-------------|------|------|-----|-------|-------|-----------------------|----------|------|-------|----------|------|------|--|--|
| MAIN SYSTEM |      |      |     |       | OT    | IER SYS               | TEM      | D    | EMAND | PRIORITY |      |      |  |  |
| System      | Cool | Heat | Ret | Exh   | Aux   | Room                  | Room Opt |      |       |          | Room | 0pt  |  |  |
| Set         | Fan  | Fan  | Fan | Fan   | Sup   | Exh                   | Vent     | Cool | Heat  | Aux      | Exh  | Vent |  |  |
| Number      | KW   | KW   | KW  | KW    | KW    | KW                    | KW       | Fan  | Fan   | Fan      | Fan  | Fan  |  |  |
| 1           | 6.0  |      |     | .25   |       | 1.1                   |          |      |       |          |      |      |  |  |
| 2           | 9.7  |      |     | .652  |       |                       |          |      |       |          |      |      |  |  |
| 3           | 6.0  |      |     | .415  |       |                       |          |      |       |          |      |      |  |  |
| 4           | 16.6 |      |     | 1.225 |       |                       |          |      |       |          |      |      |  |  |
| 5           | 13.3 |      |     | .779  |       | 2.4                   |          |      |       |          |      |      |  |  |
| 6           | 7.2  |      |     | .519  |       |                       |          |      |       |          |      |      |  |  |
| 7           | 3.1  |      |     |       |       |                       |          |      |       |          |      |      |  |  |
| 8           | 5.0  |      |     |       |       |                       |          |      |       |          |      |      |  |  |
| 9           | 1.7  |      |     |       |       |                       |          |      |       |          |      |      |  |  |
| 10          | 3.5  |      |     |       |       |                       |          |      |       |          |      |      |  |  |
| 11          | 4.4  |      |     |       |       |                       |          |      |       |          |      |      |  |  |
| 12          | 3.1  |      |     |       |       |                       |          |      |       |          |      |      |  |  |
| 13          | 5.0  |      |     | .156  |       |                       |          |      |       |          |      |      |  |  |
| 14          | 22.3 |      |     |       |       |                       |          |      |       |          |      |      |  |  |

| Card 71- |                 |        | Base   | Utility P | arameters |           |          |          |         |
|----------|-----------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base            | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility         | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip         | Value  | Units  | Code      | Type      | Number    | Number   | Temp     | Тетр    |
| 1        | CHW PIPING LOSS | 4.64   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          |         |
| 2        | HW PIPING LOSS  | 77.4   | MRH    | AVAIL     | HOT-LD    | 1         |          |          |         |

Control Load Load Air Sched
Reference Value Units DB Code
1 60 TONS

| Card 7 | 4       |          |          | Condenser | / Coolin | g Tower | Parameters |       |         |         |         |
|--------|---------|----------|----------|-----------|----------|---------|------------|-------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy   |         |            |       |         | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump  | Fluid   |            | Of    | Airflow | •       | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units    | Туре    | Type       | Cells | Low Spd | ٠,      | Units   |
| 1      | EQ5100  |          |          | 12.0      | KW       | T-WATER | CTOWER     | 1     | ·       |         |         |
| 2      | EQ5100  |          |          | 10.4      | KW       | T-WATER | CTOWER     | 1     |         |         |         |

## Utility Description Reference Table

```
Schedules:
     AVAIL AVAILABLE (100%)
     CLGONLY COOLING ONLY (DESIGN)
     DAYSCHED COOLING FAN SCHEDULE CODE
     OFF ALWAYS OFF
     OFFICEL1 TYPICAL OFFICE SCHEDULE FOR LIGHTING
     OFFICEL2 TYPICAL OFFICE SCHEDULE 1 LIGHTING-25%
     OFFICEL7 TYPICAL OFFICE SCHEDULE 1-OCC. SEN ECO
     OFFICEL8 TYPICAL OFFICE SCHEDULE 2-OCC. SEN ECO
     OFFICEL9 TYPICAL OFFICE SCHEDULE 3-OCC. SEN ECO
     OFFICEM1 TYPICAL UPS MISCELLANEOUS EQ. SCHEDULE
     OFFICEP1 TYPICAL OFFICE SCHEDULE FOR PEOPLE
     OFICEL10 TYPICAL OFFICE SCHEDULE 4-OCC. SEN ECO
     OFICEL11 TYPICAL OFFICE SCHEDULE 5-OCC. SEN ECO
     OFICEL12 TYPICAL OFFICE SCHEDULE 6-OCC. SEN ECO
     OFICEL13 TYPICAL OFFICE SCHEDULE 6-OCC. SEN ECO
    OFICEL14 TYPICAL OFFICE SCHEDULE 7-OCC. SEN ECO
    OFICEL15 TYPICAL OFFICE SCHEDULE 8-OCC. SEN ECO
    OFICEL16 TYPICAL OFFICE SCHEDULE 9-OCC. SEN ECO
    OFICEL17 TYPICAL OFFICE SCHEDULE 100CC, SEN ECO
    OFICEL18 TYPICAL OFFICE SCHEDULE 110CC. SEN ECO
    OFICEL19 TYPICAL OFFICE SCHEDULE 120CC. SEN ECO
    OFICEL20 TYPICAL OFFICE SCHEDULE 13OCC. SEN ECO
    OFICEL21 TYPICAL OFFICE SCHEDULE 140CC. SEN ECO
    OFICEL22 TYPICAL OFFICE SCHEDULE 15OCC. SEN ECO
    OFICEL23 TYPICAL OFFICE SCHEDULE 160CC. SEN ECO
    OPSTART OPTIMUM START COOLING FAN SCHED. CODE
    OPSTOP OPTIMUM STOP COOLING FAN SCHED. CODE
System:
    BPMZ BYPASS MULTIZONE
    COMP COMPUTER ROOM UNIT
    VRH VARIABLE VOLUME REHEAT
Equipment:
    Cooling:
         EQ1010S 2-STG CTV<190 TONS W\HT REC(95 DEG HW)
         YCENT123 YORK CENT. R-123 CHILLER
         YWCRECIP YORK W.C. RECIP. CHILL.
    Heating:
         EQ2002 GAS FIRED STEAM BOILER
         EQ2263 ELECTRIC RESISTANCE HEAT WITH FAN
         OILBLR OIL FIRED HOT WATER BOILER
    Fan:
         EQ4003 FC CENTRIFUGAL - CONSTANT VOLUME
         EQ4223 FC FAN WARIABLE SPEED DRIVE
         Tower:
              EQ5100 COOLING TOWER FANS
     . Misc:
          EQ5020 HEATING WATER CIRCULATION PUMP
```

EEAP ENERGY STUDY - HELSTF
WHITE SANDS - ALAMOGORDO, NEW MEXICO
FORT WORTH CORPS OF ENGINEERS
HUITT-ZOLLARS, INC.
LSTC BUILDING

#### **EXISTING LSTC BUILDING**

Weather File Code:

Location: HOLLOMAN AFB; ALAMAGORDO, N.M. Latitude: 33.0 (deg)

Latitude: 33.0 (deg)
Longitude: 106.0 (deg)
Time Zone: 7

Elevation: 4,093 (ft)
Barometric Pressure: 25.6 (in. Hg)

Summer Clearness Number: 1.05
Winter Clearness Number: 1.00
Summer Design Dry Bulb: 96 (F)
Summer Design Wet Bulb: 68 (F)
Winter Design Dry Bulb: 19 (F)
Summer Ground Relectance: 0.20
Winter Ground Relectance: 0.20

Air Density: 0.0648 (Lbm/cuft)
Air Specific Heat: 0.2444 (Btu/lbm/F)
Density-Specific Heat Prod: 0.9511 (Btu-min./hr/cuft/F)

Latent Heat Factor: 4,186.5 (Btu-min./hr/cuft)
Enthalpy Factor: 3.8908 (Lb-min./hr/cuft)

Design Simulation Period: June To November
System Simulation Period: January To December
Cooling Load Methodology: TETD/Time Averaging

Time/Date Program was Run: 17:15: 0 1/ 2/96

Dataset Name: LSTC .TM

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1
EXISTING SECONDARY EQUIPMENT AND SYSTEMS

#### System Totals

| Percent   | Cooling Load |       | Heatin | ng Load    |       | Cooling | Airflow   |       | Heating Airflow |       |       |       |  |
|-----------|--------------|-------|--------|------------|-------|---------|-----------|-------|-----------------|-------|-------|-------|--|
| Design    | Cap.         | Hours | Hours  | Capacity   | Hours | Hours   | Cap.      | Hours | Hours           | Cap.  | Hours | Hours |  |
| Load      | (Ton)        | (%)   |        | (Btuh)     | (%)   |         | (Cfm)     | (%)   |                 | (Cfm) | (%)   |       |  |
| 0 - 5     | 11.5         | 0     | 0      | -169,241   | 0     | 0       | 10,171.0  | 0     | 0               | 0.0   | n     | n     |  |
| 5 - 10    | 23.1         | 0     | 0      | -338,482   | 0     | 0       | 20,342.1  | 0     | 0               | 0.0   | 0     | n     |  |
| 10 - 15   | 34.6         | 0     | 0      | -507,723   | 0     | 0       | 30,513.2  | 0     | 0               | 0.0   | 0     | n     |  |
| 15 - 20   | 46.2         | 0     | 0      | -676,964   | 0     | 0       | 40,684.2  | 0     | 0               | 0.0   | 0     | 0     |  |
| 20 - 25   | 57.7         | 0     | 0      | -846,205   | 16    | 1,415   | 50,855.3  | 0     | 0               | 0.0   | 0     | 0     |  |
| 25 - 30   | 69.3         | 0     | 0      | -1,015,446 | 57    | 4,968   | 61,026.3  | 0     | 0               | 0.0   | 0     | 0     |  |
| 30 - 35   | 80.8         | 0     | 0      | -1,184,687 | 27    | 2,377   | 71,197.4  | 0     | 0               | 0.0   | 0     | 0     |  |
| 35 - 40   | 92.4         | 0     | 0      | -1,353,928 | 0     | 0       | 81,368.4  | 0     | 0               | 0.0   | 0     | 0     |  |
| 40 - 45   | 103.9        | 0     | 0      | -1,523,169 | 0     | 0       | 91,539.5  | 0     | 0               | 0.0   | 0     | 0     |  |
| 45 - 50   | 115.5        | 0     | 0      | -1,692,410 | 0     | 0       | 101,710.5 | 0     | 0               | 0.0   | 0     | 0     |  |
| 50 - 55   | 127.0        | 0     | 0      | -1,861,651 | 0     | 0       | 111,881.6 | 0     | 0               | 0.0   | 0     | 0     |  |
| 55 - 60   | 138.5        | 3     | 227    | -2,030,892 | 0     | 0       | 122,052.6 | 0     | 0               | 0.0   | 0     | 0     |  |
| 60 - 65   | 150.1        | 22    | 1,900  | -2,200,133 | 0     | 0       | 132,223.7 | 0     | 0               | 0.0   | 0     | ٥     |  |
| 65 - 70   | 161.6        | 19    | 1,647  | -2,369,374 | 0     | 0       | 142,394.7 | 0     | 0               | 0.0   | 0     | 0     |  |
| 70 - 75   | 173.2        | 19    | 1,682  | -2,538,615 | 0     | 0       | 152,565.8 | 0     | 0               | 0.0   | 0     | 0     |  |
| 75 - 80   | 184.7        | 21    | 1,801  | -2,707,856 | 0     | 0       | 162,736.8 | 0     | 0               | 0.0   | 0     | 0     |  |
| 80 - 85   | 196.3        | 14    | 1,241  | -2,877,097 | 0     | 0       | 172,907.9 | . 0   | 0               | 0.0   | 0     | 0     |  |
| 85 - 90   | 207.8        | 3     | 262    | -3,046,339 | 0     | 0       | 183,078.9 | 0     | 0               | 0.0   | 0     | 0     |  |
| 90 - 95   | 219.4        | 0     | 0      | -3,215,579 | 0     | C       | 193,250.0 | 0     | 0               | 0.0   | 0     | 0     |  |
| 95 - 100  | 230.9        | 0     | 0      | -3,384,820 | 0     | 0       | 203,421.0 | 100   | 8,760           | 0.0   | 0     | 0     |  |
| Hours Off | 0.0          | 0     | 0      | 0          | 0     | 0       | 0.0       | 0     | 0               | 0.0   | 0     | 8,760 |  |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 EXISTING PRIMARY EQUIPMENT

|     |                |            |            | E (                                   | UIP        | MENT       | ENE        | RGY        | CONSI      | JMPT            | I O N      |            |            |              |
|-----|----------------|------------|------------|---------------------------------------|------------|------------|------------|------------|------------|-----------------|------------|------------|------------|--------------|
| Ref | Equip          |            |            |                                       |            | Mon        | thly Con   | sumption   |            |                 |            |            |            |              |
| Num | Code           | Jan        | Feb        | Mar                                   | Apr        | May        | June       | July       | Aug        | Sep             | Oct        | Nov        | Dec        | Total        |
|     |                | Lighting   | Systems    |                                       |            |            |            |            |            |                 |            |            |            |              |
| U   | LIGHTS<br>ELEC | 100893     | 91135      | 101273                                | 97577      | 101083     | 97957      | 100702     | 101273     | 97577           | 101083     | 97577      | 100702     | 1,188,832    |
|     | PK             | 151.4      | 151.4      | 151.4                                 | 151.4      | 151.4      | 151.4      | 151.4      | 151.4      | 151.4           | 151.4      | 151.4      | 151.4      | 151.4        |
|     |                | <b>I</b>   |            |                                       |            |            |            | -          |            |                 |            |            |            |              |
| 1   | MISC LD        |            |            |                                       |            |            |            |            |            |                 |            |            |            |              |
|     | ELEC           | 26931      | 24324      | 26931                                 | 26062      | 26931      | 26062      | 26931      | 26931      | 26062           | 26931      | 26062      | 26931      | 317,085      |
|     | PK             | 72.4       | 72.4       | 72.4                                  | 72.4       | 72.4       | 72.4       | 72.4       | 72.4       | 72.4            | 72.4       | 72.4       | 72.4       | 72.4         |
| 2   | MISC LD        |            |            |                                       |            |            |            |            |            |                 |            |            |            | 2            |
| _   | GAS            | 0          | 0          | 0                                     | 0          | 0          | 0          | 0          | 0          | 0               | 0          | 0          | 0          | 0            |
|     | PK             | 0.0        | 0.0        | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0             | 0.0        | 0.0        | 0.0        | 0.0          |
|     |                |            |            |                                       |            |            |            |            |            |                 |            |            |            |              |
| 3   | MISC LD        |            |            | _                                     | _          | _          | _          | ٠.         |            | _               |            | _          | _          |              |
|     | OIL<br>PK      | 0.0        | 0.0        | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0             | 0.0        | 0.0        | 0<br>0.0   | 0            |
|     | FK             | 0.0        |            | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0             | 0.0        | 0.0        | 0.0        | 0.0          |
| 4   | MISC LD        |            | *          |                                       |            |            |            |            |            |                 |            |            |            |              |
|     | P STEAM        | 0          | 0          | 0                                     | 0          | 0          | 0          | 0          | 0          | 0               | 0          | 0          | 0          | 0            |
|     | PK             | 0.0        | 0.0        | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0             | 0.0        | 0.0        | 0.0        | 0.0          |
| 5   | MISC LD        |            |            |                                       |            |            |            |            |            |                 |            |            |            |              |
| •   | P HOTH20       | 0          | 0          | 0                                     | 0          | 0          | 0          | 0          | 0          | 0               | 0          | 0          | 0          | 0            |
|     | PK             | 0.0        | 0.0        | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0             | 0.0        | 0.0        | 0.0        | 0.0          |
|     |                |            |            |                                       |            |            |            |            |            |                 |            |            |            |              |
| 6   | MISC FD        |            |            |                                       |            |            |            |            |            |                 |            |            |            |              |
|     | P CHILL        | 0          | 0          | 0                                     | 0          | 0          | 0          | 0          | 0          | 0               | 0          | 0          | 0          | 0            |
|     | PK             | 0.0        | 0.0        | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0             | 0.0        | 0.0        | 0.0        | 0.0          |
| 1   |                |            | BAS        | E UTILIT                              | 1          |            |            |            |            |                 |            |            |            |              |
|     | CHILLD         | 3452       | 3118       | 3452                                  | 3341       | 3452       | 3341       | 3452       | 3452       | 3341            | 3452       | 3341       | 3452       | 40,646       |
|     | PK             | 4.6        | 4.6        | 4.6                                   | 4.6        | 4.6        | 4.6        | 4.6        | 4.6        | 4.6             | 4.6        | 4.6        | 4.6        | 4.6          |
| _   |                |            |            |                                       |            |            |            |            |            |                 |            |            |            |              |
| 2   | UOTI D         | F7/        |            | E UTILIT'<br>576                      |            | 57/        | 557        | F7/        | F7/        |                 | F7/        |            | F74        | 4 700        |
|     | HOTLD<br>PK    | 576<br>0.8 | 520<br>0.8 | 0.8                                   | 557<br>0.8 | 576<br>0.8 | 557<br>0.8 | 576<br>0.8 | 576<br>0.8 | 557<br>0.8      | 576<br>0.8 | 557<br>0,8 | 576<br>0.8 | 6,780<br>0.8 |
|     | 1.             | 0.0        | 0.0        | 0.0                                   | -          | 0.0        | .0.0       |            |            |                 | 0.0        | 0,0        | 0.0        | 0.0          |
| 1   | EQ1010S        |            | 2-9        | TG CTV<1                              | O TONS     | W\HT REC   | (95 DEG    | HW)        | Chiller Ch | <del>1</del> -1 |            |            |            |              |
|     | ELEC           | 65518      | 59177      | 65518                                 | 63404      | 65518      | 63404      | 65518      | 65518      | 63404           | 65518      | 63404      | 65518      | 771,420      |
|     | PK             | 88.1       | 88.1       | 88.1                                  | 88.1       | 88.1       | 88.1       | 88.1       | 88.1       | 88.1            | 88.1       | 88.1       | 88.1       | 88.1         |
| 4   | E0E100         |            |            | N INC TOU                             | TD CANO    | Twr.       | Fan CT-1   | A          |            |                 |            |            |            |              |
| 1   | EQ5100<br>ELEC | 44         | 26         | LING TOWN<br>42                       | 227        | 1482       | 5184       | 8151       | 8142       | 5449            | 740        | 20         | 33         | 29,539       |
|     | PK             | 2.0        | 2.1        | 2.2                                   | 4.3        | .8.1       | 12.5       | 12.5       | 12.5       | 12.5            | 5.7        | 2.1        | 2.0        | 12.5         |
|     |                | <b>†</b>   |            | · · · · · · · · · · · · · · · · · · · |            |            |            |            |            |                 |            |            |            |              |

|     |                |       |                  | E 0              | UIPI             | MENT           | ENEI      | RGY      | CONSI      | UMPT      | I O N |       |       |         |
|-----|----------------|-------|------------------|------------------|------------------|----------------|-----------|----------|------------|-----------|-------|-------|-------|---------|
| Ref | Equip          |       | <b></b>          |                  |                  | Mont           | thly Cons | sumption |            | - <b></b> |       |       |       |         |
| Num | Code           | Jan   | Feb              | Mar              | Арг              | May            | June      | July     | Aug        | Sep       | Oct   | Nov   | Dec   | Total   |
| 1   | EQ5100         |       | cool             | ING TOWE         | R FANS           |                |           |          |            |           |       |       |       |         |
|     | WATER          | 65    | 61               | 72               | 71               | 78             | 79        | 80       | 82         | 74        | 74    | 65    | 65    | 867     |
|     | PK             | 0.1   | 0.2              | 0.2              | 0.2              | 0.2            | 0.2       | 0.2      | 0.2        | 0.2       | 0.2   | 0.1   | 0.1   | 0.2     |
| 1   | EQ5001         |       | CHIL             | LED WATE         | R PUMP           | - CONSTA       | ANT VOLU  | ME C     | HW Pum     | p P-7     |       |       |       | r       |
|     | ELEC           | 29239 | 26410            | 29239            | 28296            | 29239          | 28296     | 29239    | 29239      | 28296     | 29239 | 28296 | 29239 | 344,268 |
|     | PK             | 39.3  | 39.3             | 39.3             | 39.3             | 39.3           | 39.3      | 39.3     | 39.3       | 39.3      | 39.3  | 39.3  | 39.3  | 39.3    |
| 1   | EQ5010         | ·     | CONL             | ENSER WA         | TER PLIM         | P-CV(HIGI      | I FFFIC   | CN       | ID Pump 1  | IOA       |       |       |       |         |
| ·   | ELEC           | 20460 | 18480            | 20460            | 19800            | 20460          | 19800     | 20460    | 20460      | 19800     | 20460 | 19800 | 20460 | 240,900 |
|     | PK             | 27.5  | 27.5             | 27.5             | 27.5             | 27.5           | 27.5      | 27.5     | 27.5       | 27.5      | 27.5  | 27.5  | 27.5  | 27.5    |
|     | EQ5300         |       | CONT             | COOL DANG        | . 0 1117         | EDI OCKC       |           |          |            |           |       |       |       |         |
| 1   | ELEC           | 744   | 672              | FROL PANE<br>744 | .L & INII<br>720 | 744            | 720       | 744      | 744        | 720       | 744   | 720   | 7//   | 0 7/0   |
|     | PK             | 1.0   | 1.0              | 1.0              |                  |                |           |          |            | 720       |       |       | 744   | 8,760   |
|     | PK             | 1.0   | 1.0              | 1.0              | 1.0              | 1.0            | 1.0       | 1.0      | 1.0        | 1.0       | 1.0   | 1.0   | 1.0   | 1.0     |
| 1   | EQ5020         |       | HEAT             | TING WATE        | R CIRCU          | LATION PL      | JMP       | HW pump  | P-5        |           |       |       |       |         |
|     | ELEC           | 12350 | 11155            | 12350            | 11952            | 12350          | 11952     | 12350    | 12350      | 11952     | 12350 | 11952 | 12350 | 145,416 |
|     | PK             | 16.6  | 16.6             | 16.6             | 16.6             | 16.6           | 16.6      | 16.6     | 16.6       | 16.6      | 16.6  | 16.6  | 16.6  | 16.6    |
| 2   | EQ1010S        |       | 2-5              | rg ctv<19        | O TONS I         | J∖HT REC       | (95 DEG   | HW)      | Chiller Ch | 1-3       |       |       |       |         |
|     | ELEC           | 33193 | 32202            | 38611            | 41043            | 47302          | 51004     | 56556    | 56313      | 47456     | 42616 | 34370 | 34111 | 514,778 |
|     | PK             | 54.9  | 62.8             | 66.2             | 72.3             | 79.7           | 90.9      | 98.4     | 96.3       | 86.3      | 72.5  | 61.8  | 59.5  | 98.4    |
| 2   | EQ5100         |       | COOL             | ING TOW          | R FANS           | Twr.           | Fan CT-1  | В        |            |           |       |       |       | <u></u> |
| _   | ELEC           | 3470  | 3499             | 4308             | 4811             | 5960           | 7122      | 8035     | 8031       | 7072      | 5262  | 3662  | 3608  | 64,84   |
|     | PK             | 6.5   | 7.3              | 7.5              | 9.1              | 10.8           | 10.8      | 10.8     | 10.8       | 10.8      | 9.7   | 6.9   | 7.0   | 10.8    |
| 2   | EQ5100         |       | COO              | LING TOW         | D FANS           | -              |           |          |            |           |       | •     |       |         |
| -   | WATER          | 169   | 167              | 203              | 218              | 254            | 269       | 292      | 291        | 251       | 227   | 178   | 175   | 2,694   |
|     | PK             | 0.3   | 0.3              | 0.4              | 0.4              | 0.4            | 0.5       | 0.5      | 0.5        | 0.4       | 0.4   | 0.3   | 0.3   | 0.9     |
| 2   | EQ5001         |       | CHII             | LLED WATE        | D DIIMO          | - CONST        | ANT VOLU  | uc       |            |           |       |       |       |         |
| -   | ELEC           | 0     | 0                | O WATE           | 0                | 0              | 0         | ייב<br>0 | 0          | 0         | 0     | 0     | 0     | (       |
|     | PK             | 0.0   | 0.0              | 0.0              | 0.0              | 0.0            | 0.0       | 0.0      | 0.0        | 0.0       | 0.0   | 0.0   | 0.0   | . 0.0   |
| _   |                |       |                  |                  | -                |                |           | CN       | ID Pump 1  | IOB       |       |       | -     |         |
| 2   | EQ5010         | 4=    |                  |                  |                  | P-CV(HIG       |           | ,        |            |           |       |       |       |         |
|     | ELEC           | 13615 | 12298            | 13615            | 13176            | 13615          | 13176     | 13615    | 13615      | 13176     | 13615 | 13176 | 13615 | 160,30  |
|     | PK             | 18.3  | 18.3             | 18.3             | 18.3             | 18.3           | 18.3      | 18.3     | 18.3       | 18.3      | 18.3  | 18.3  | 18.3  | 18.3    |
|     |                |       |                  |                  |                  |                |           |          |            |           |       |       |       |         |
| 2   | EQ5300         |       | CON.             | TROL PANE        | EL & INT         | ERLOCKS        |           |          |            |           |       |       |       |         |
| 2   | EQ5300<br>ELEC | 744   | CON <sup>-</sup> | TROL PANE        | EL & INT<br>720  | ERLOCKS<br>744 | 720       | 744      | 744        | 720       | 744   | 720   | 744   | 8,760   |

| 1   EQUOUS   FC   CENTRIFUGAL - CONSTANT VOLUME   Fan AHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er | Equip  | - <b></b> |             |             |           | Mont      | hly Cons    | sumption |       |       |       |       |               |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|-----------|-------------|-------------|-----------|-----------|-------------|----------|-------|-------|-------|-------|---------------|--------|
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m  | Code   | Jan       | Feb         | Mar         | Apr       | May       | June        | July     | Aug   | Sep   | Oct   | Nov   | Dec           | Total  |
| PK 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  | EQ4003 |           | FC C        | ENTR I FUG  | AL - CON  | ISTANT VO | LUME        | Fan AH1  |       |       |       |       |               | i      |
| ELEC   893   806   893   864   893   864   893   893   864   893   893   864   893   893   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   864   893   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   895   |    | ELEC   | 4836      | 4368        | 4836        | 4680      | 4836      | 4680        | 4836     | 4836  | 4680  | 4836  | 4680  | 4836          | 56,940 |
| ELEC 893 806 693 864 893 864 893 864 893 864 893 864 893 10,5 PK 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | PK     | 6.5       | 6.5         | 6.5         | 6.5       | 6.5       | 6.5         | 6.5      | 6.5   | 6.5   | 6.5   | 6.5   | 6.5           | 6.5    |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  | EQ4003 |           | FC C        | ENTR I FUG  | AL - CON  | ISTANT VO | LUME        | Fan EF   | -1    |       |       |       | •             | ſ      |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | ELEC   | 893       | 806         | 893         | 864       | 893       | 864         | · 893    | 893   | 864   | 893   | 864   | 893           | 10,512 |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | PK     | 1.2       | 1.2         | 1.2         | 1.2       | 1.2       | 1.2         | 1.2      | 1.2   | 1.2   | 1.2   | 1.2   | 1.2           | 1.2    |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  | EQ4003 |           | FC C        | ENTR I FUG  | AL - CON  | ISTANT VO | LUME        | Fan AH   | S1    |       |       |       |               |        |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | ELEC   | 186       | 168         | 186         | 180       | 186       | 180         | 186      | 186   | 180   | 186   | 180   | 186           | 2,190  |
| ELEC 7589 6854 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7589 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7349 7344 7344                                                                                                                                                                                                                                                                                                                              |    | PK     | 0.3       | 0.3         | 0.3         | 0.3       | 0.3       | 0.3         | 0.3      | 0.3   | 0.3   | 0.3   | 0.3   | 0.3           | 0.3    |
| ELEC 7589 6854 7589 7344 7589 7344 7589 7389 7344 7589 7389 7344 7589 7389 7344 7589 89,3  PK 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2  | EQ4003 |           | FC C        | ENTR I FUG  | AL - CON  | ISTANT VO | DLUME       | Fan AH   | 2     |       |       |       |               |        |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _  |        | 7589      |             |             |           |           |             | 7589     | 7589  | 7344  | 7589  | 7344  | 7589          | 89,352 |
| ELEC 485 438 485 469 485 469 485 469 485 469 485 469 485 5,7  PK 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |        | ·         | <del></del> |             |           |           | <del></del> |          |       |       |       |       |               | 10.7   |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2  | EQ4003 |           | ,<br>FC C   | ENTRIFUG    | AL - CON  | ISTANT VO | DLUME       | Fan AHS  | 61    |       |       |       |               |        |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -  |        | 485       |             |             |           |           |             | 485      | 485   | 469   | 485   | 469   | 485           | 5,71   |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |        |           |             | <del></del> |           |           |             |          |       |       |       |       |               | 0.     |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  | FQ4003 |           | FC C        | ENTRIEUG    | AL - CON  | ISTANT VO | OLUMF.      | Fan AH   | 3     |       |       |       |               |        |
| PK 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _  |        | 4836      |             |             |           |           |             | 4836     | 4836  | 4680  | 4836  | 4680  | 4836          | 56,94  |
| ELEC 309 279 309 299 309 299 309 299 309 299 309 299 309 299 309 299 309 309 299 309 309 309 299 309 309 309 309 299 309 309 309 309 309 309 309 309 309 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |           |             |             |           |           |             |          |       |       |       |       | <del></del>   | 6.     |
| ELEC 309 279 309 299 309 299 309 309 299 309 299 309 299 309 299 309 299 309 3,6  PK 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3  | FQ4003 |           | FC (        | ENTRIFUC    | AL - CON  | ISTANT VO | OLUMF       | Fan AH   | S1    |       |       |       |               |        |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _  |        | 309       |             |             |           |           |             | 309      | 309   | 299   | 309   | 299   | 309           | 3,63   |
| ELEC 12871 11626 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 1 |    |        | <b>——</b> |             |             |           |           |             |          |       |       |       |       | <del></del> ; | 0.     |
| ELEC 12871 11626 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 12456 12871 1 | 4  | FOANN  |           | FC (        | FNTRIFIIC   | :AI - CON | JSTANT VI | N UMF       | Fan AH   | 5     |       |       |       |               |        |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •  |        | 12871     |             |             |           |           |             | 12871    | 12871 | 12456 | 12871 | 12456 | 12871         | 151.54 |
| 4 EQ4003 FC CENTRIFUGAL - CONSTANT VOLUME Fan AHS1  ELEC 911 823 911 882 911 882 911 911 882 911 882 911 10,7  PK 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |        |           |             |             |           |           |             |          |       |       |       |       |               | 17.    |
| ELEC 911 823 911 882 911 882 911 911 882 911 882 911 10,7  PK 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | E04003 |           | FC (        | ENTRIFU     | :         | ISTANT VI | OLUMF       | Fan AH   | S1    |       |       |       |               |        |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •  |        | 911       |             |             |           |           |             | 911      | 911   | 882   | 911   | 882   | 911           | 10,73  |
| ELEC 10342 9341 10342 10008 10342 10008 10342 10008 10342 10008 10342 10008 10342 10008 10342 10008 10342 121,7  PK 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |        |           |             |             |           |           |             |          |       |       |       |       |               | 1.     |
| ELEC 10342 9341 10342 10008 10342 10008 10342 10008 10342 10008 10342 10008 10342 121,7 PK 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | F04003 | •         | FC (        | CENTRIFILE  | AL - CO   | ISTANT V  | OLUME       | Fan AH   | 3     |       |       |       | <del></del>   | r      |
| PK 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  |        | 10342     |             |             |           |           |             | 10342    | 10342 | 10008 | 10342 | 10008 | 10342         | 121,76 |
| ELEC 2009 1814 2009 1944 2009 1944 2009 2009 1944 2009 1944 2009 23,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |        |           |             |             |           |           |             |          |       |       |       |       |               | 13.    |
| ELEC 2009 1814 2009 1944 2009 1944 2009 2009 1944 2009 1944 2009 23,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | FOADO3 |           | FC (        | FNTPIFII    | AI - 101  | USTANT W  | 11 UMF      | Fan EF   | -2    |       |       |       |               |        |
| And the second s | ,  |        | 2000      |             |             |           |           |             | 2000     | 2000  | 1047  | 2000  | 1944  | 2000          | 23 45  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | PK     | 2.7       | 2.7         | 2.7         | 2.7       | .2.7      | 2.7         | 2.7      | 2.7   | 2.7   | 2.7   | 2.7   | 2.7           | 23,65  |

|    | F             |      |      |             |          | N           |                  |                  |      |      |      |      |      |       |
|----|---------------|------|------|-------------|----------|-------------|------------------|------------------|------|------|------|------|------|-------|
|    | Equip<br>Code | Jan  | Feb  | Mar         | Apr      | Mont<br>May | nty Cons<br>June | sumption<br>July | Aug  | Sep  | Oct  | Nov  | Dec  | Tota  |
| um | Code          | Jan  | 1 60 | nai         | vhi      | Hay         | a di ie          | July             | Aug  | зер  | 001  | NOV  | Dec  | 1018  |
| 5  | EQ4003        |      | FC C | ENTR I FUG. | AL - CON | STANT VO    | LUME             | Fan AHS          | 31   |      |      |      |      |       |
| -  | ELEC          | 136  | 123  | 136         | 131      | 136         | 131              | 136              | 136  | 131  | 136  | 131  | 136  | 1,59  |
|    | PK            | 0.2  | 0.2  | 0.2         | 0.2      | 0.2         | 0.2              | 0.2              | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.    |
| 6  | EQ4003        |      | FC C | ENTR I FUG. | AL - CON | STANT VO    | LUME             | Fan AH7          |      |      |      |      |      |       |
|    | ELEC          | 5506 | 4973 | 5506        | 5328     | 5506        | 5328             | 5506             | 5506 | 5328 | 5506 | 5328 | 5506 | 64,82 |
|    | PK            | 7.4  | 7.4  | 7.4         | 7.4      | 7.4         | 7.4              | 7.4              | 7.4  | 7.4  | 7.4  | 7.4  | 7.4  | 7.    |
| 6  | EQ4003        |      | FC C | ENTR I FUG  | AL - CON | STANT VO    | LUME             | Fan AHS          | S1   |      |      |      |      |       |
| •  | ELEC          | 386  | 349  | 386         | 374      | 386         | 374              | 386              | 386  | 374  | 386  | 374  | 386  | 4,54  |
|    | PK            | 0.5  | 0.5  | 0.5         | 0.5      | 0.5         | 0.5              | 0.5              | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.    |
| 7  | EQ4003        |      | FC C | ENTR I FUG  | AI - CON | STANT VO    | LUME             | Fan AH-          | -8   |      |      |      |      |       |
| •  | ELEC          | 2455 | 2218 | 2455        | 2376     | 2455        | 2376             | 2455             | 2455 | 2376 | 2455 | 2376 | 2455 | 28,90 |
|    | PK            | 3.3  | 3.3  | 3.3         | 3.3      | 3.3         | 3.3              | 3.3              | 3.3  | 3.3  | 3.3  | 3.3  | 3.3  | 3.    |
| 8  | EQ4003        |      | EC C | ENTRIFUG    | AI - CON | STANT VO    | LIME             | Fan AH-          | 9    |      |      |      |      |       |
| Ū  | ELEC          | 4166 | 3763 | 4166        | 4032     | 4166        | 4032             | 4166             | 4166 | 4032 | 4166 | 4032 | 4166 | 49,05 |
|    | PK            | 5.6  | 5.6  | 5.6         | 5.6      | 5.6         | 5.6              | 5.6              | 5.6  | 5.6  | 5.6  | 5.6  | 5.6  | 5.    |
| 9  | EQ4003        |      | FC C | ENTRIFUG    | AL - CON | STANT VO    | LUME             | Fan AH-          | 10   |      |      |      |      |       |
|    | ELEC          | 1339 | 1210 | 1339        | 1296     | 1339        | 1296             | 1339             | 1339 | 1296 | 1339 | 1296 | 1339 | 15,76 |
|    | PK            | 1.8  | 1.8  | 1.8         | 1.8      | 1.8         | 1.8              | 1.8              | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 1.    |
| 10 | EQ4003        |      | FC C | ENTR I FUG  | AL - CON | STANT VO    | LUME             | Fan AH-          | 11A  |      |      |      |      |       |
|    | ELEC          | 2753 | 2486 | 2753        | 2664     | 2753        | 2664             | 2753             | 2753 | 2664 | 2753 | 2664 | 2753 | 32,41 |
|    | PK            | 3.7  | 3.7  | 3.7         | 3.7      | 3.7         | 3.7              | 3.7              | 3.7  | 3.7  | 3.7  | 3.7  | 3.7  | 3.    |
| 11 | EQ4003        | -    | FC C | ENTRIFUG    | AL - CON | STANT VO    | LUME             | Fan AH-          | -11B |      |      |      |      |       |
|    | ELEC          | 3497 | 3158 | 3497        | 3384     | 3497        | 3384             | 3497             | 3497 | 3384 | 3497 | 3384 | 3497 | 41,17 |
|    | PK            | 4.7  | 4.7  | 4.7         | 4.7      | 4.7         | 4.7              | 4.7              | 4.7  | 4.7  | 4.7  | 4.7  | 4.7  | 4.    |
| 12 | EQ4003        |      | FC C | ENTR I FUG  | AL - CON | STANT VO    | LUME             | Fan AH-          | 12   |      |      |      |      |       |
|    | ELEC          | 2455 | 2218 | 2455        | 2376     | 2455        | 2376             | 2455             | 2455 | 2376 | 2455 | 2376 | 2455 | 28,90 |
|    | PK            | 3.3  | 3.3  | 3.3         | 3.3      | 3.3         | 3.3              | 3.3              | 3.3  | 3.3  | 3.3  | 3.3  | 3.3  | 3     |
| 13 | EQ4003        |      | FC C | ENTR I FUG  | AL - CON | STANT VO    | DLUME            | Fan AH-          | -14  |      |      |      |      |       |
|    | ELEC          | 4166 | 3763 | 4166        | 4032     | 4166        | 4032             | 4166             | 4166 | 4032 | 4166 | 4032 | 4166 | 49,0  |
|    | PK            | 5.6  | 5.6  | 5.6         | 5.6      | 5.6         | 5.6              | 5.6              | 5.6  | 5.6  | 5.6  | 5.6  | 5.6  | 5     |
| 13 | EQ4003        | •    | FC ( | ENTRIFUG    | AL - CON | STANT VC    | LUME             | Fan AHS          | S1   |      |      |      |      |       |
| -  | ELEC          | 116  | 105  | 116         | 112      | 116         | 112              | 116              | 116  | 112  | 116  | 112  | 116  | 1,3   |
|    |               |      |      |             |          |             |                  |                  |      |      |      |      |      |       |

|    | Equip<br>Cođe | Jan   | Feb           | Mar       | Apr           | Mont<br>May   | June          |        | Aug           | Sep           | Oct   | Nov   | Dec   | Tota  |
|----|---------------|-------|---------------|-----------|---------------|---------------|---------------|--------|---------------|---------------|-------|-------|-------|-------|
|    |               |       |               |           | ·             | •             |               | Fan AH | -             | •             |       |       |       |       |
| 14 | EQ4003        | 44000 |               | ENTRIFUC  |               |               |               |        |               | 4/7//         | 14000 | 16344 | 16889 | 198,8 |
|    | ELEC<br>PK    | 16889 | 15254<br>22.7 | 16889     | 16344<br>22.7 | 16889<br>22.7 | 16344<br>22.7 | 16889  | 16889<br>22.7 | 16344<br>22.7 | 16889 | 22.7  | 22.7  | 22    |
| 1  | EQ2002        | 1     | GAS           | FIRED S   | FAM BOLL      | FR            |               |        |               |               |       |       |       |       |
| •  | GAS           | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | 0     |
| 1  | EQ5020        |       | HEAT          | TING WATE | ER CIRCU      | LATION P      | JMP           |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | . 0   |
| 1  | EQ5240        |       | BOIL          | LER FORCE | ED DRAFT      | FAN           |               |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | 0     |
| 1  | EQ5307        |       | CON           | TROLS     |               |               |               |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | 0     |
| 1  | EQ5061        |       |               | DENSATE   |               |               |               |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | (     |
| 1  | EQ5406        |       | MAK           | E-UP WAT  | ER            |               |               |        |               |               |       |       |       |       |
|    | WATER         | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     | _     |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | C     |
| 2  | EQ2002        |       | GAS           | FIRED S   | TEAM BOI      | LER           |               |        |               |               |       |       |       |       |
|    | GAS           | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | C     |
| 2  | EQ5020        |       | HEA           | TING WAT  | ER CIRCU      | LATION P      | UMP           |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | .PK           | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | . 0.0 | 0.0   |       |
| 2  | EQ5240        |       | BOI           | LER FORC  |               | FAN           |               |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | 0.0           | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   | (     |
| 2  | EQ5307        |       | CON           | TROLS     |               |               |               |        |               |               |       |       |       |       |
|    | ELEC          | 0     | 0             | 0         | 0             | 0             | 0             | 0      | 0             | 0             | 0     | 0     | 0     |       |
|    | PK            | 0.0   | 0.0           | 0.0       | 0.0           | . 0.0         | 0.0           | 0.0    | 0.0           | 0.0           | 0.0   | 0.0   | 0.0   |       |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 2 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

### ECO-A, LSTC BUILDING

System Totals

| Percent   | Cool  | ing Loa | d     | Heati      | ng Load |       | Cooling   | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|------------|---------|-------|-----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours | Cap.      | Hours   |       | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)     |       | (Cfm)     | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 11.5  | 0       | 0     | -169,241   | 0       | 0     | 10,171.0  | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 23.1  | 0       | 0     | -338,482   | 0       | 0     | 20,342.1  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 34.6  | 0       | 0     | -507,723   | 0       | 0     | 30,513.2  | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 46.2  | 0       | 0     | -676,964   | 0       | 0     | 40,684.2  | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 57.7  | 0       | 0     | -846,205   | . 0     | 0     | 50,855.3  | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 69.3  | 0       | 0     | -1,015,446 | 35      | 3,053 | 61,026.3  | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 80.8  | 0       | 0     | -1,184,687 | 60      | 5,246 | 71,197.4  | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 92.3  | 0       | 0     | -1,353,928 | 5       | 461   | 81,368.4  | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 103.9 | 0       | 0     | -1,523,169 | 0       | 0     | 91,539.5  | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 115.4 | 0       | 0     | -1,692,410 | 0       | 0     | 101,710.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55   | 127.0 | 0       | 0     | -1,861,651 | 0       | 0     | 111,881.6 | 0       | 0     | 0.0     | 0       | 0     |
| 55 - 60   | 138.5 | 10      | 853   | -2,030,892 | 0       | 0     | 122,052.6 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65   | 150.0 | 27      | 2,404 | -2,200,133 | 0       | 0     | 132,223.7 | 0       | 0     | 0.0     | 0       | 0     |
| 65 - 70   | 161.6 | 17      | 1,504 | -2,369,374 | 0       | 0     | 142,394.7 | 0       | 0     | 0.0     | 0       | 0     |
| 70 - 75   | 173.1 | 21      | 1,837 | -2,538,615 | 0       | 0     | 152,565.8 | 0       | 0     | 0.0     | 0       | 0     |
| 75 - 80   | 184.7 | 17      | 1,513 | -2,707,856 | 0       | 0     | 162,736.8 | 0       | 0     | 0.0     | 0       | 0     |
| 80 - 85   | 196.2 | 7       | 629   | -2,877,097 | 0       | 0     | 172,907.9 | 0       | 0     | 0.0     | 0       | 0     |
| 85 - 90   | 207.8 | 0       | 20    | -3,046,339 | 0       | 0     | 183,078.9 | 0       | 0     | 0.0     | 0       | 0     |
| 90 - 95   | 219.3 | 0       | 0     | -3,215,579 | 0       | 0     | 193,250.0 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100  | 230.8 | 0       | 0     | -3,384,820 | 0       | 0     | 203,421.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0          | 0       | 0     | 0.0       | 0       | 0     | 0.0     | 0       | 8,760 |

|     |          |             |       | E 0       | UIPI    | MENT     | ENE      | RGY      | CONSI      | JMPT: | I O N |       |       | • • • • • • • • • • • • • • • • • • • • |
|-----|----------|-------------|-------|-----------|---------|----------|----------|----------|------------|-------|-------|-------|-------|-----------------------------------------|
| Ref | Equip    |             |       |           |         | Mon      | thly Con | sumption |            |       |       |       |       |                                         |
| Num | Code     | Jan         | Feb   | Mar       | Apr     | May      | June     | July     | Aug        | Sep   | Oct   | Nov   | Dec   | Total                                   |
| ٥   | LIGHTS   | Lighting Sy | stems |           |         |          |          |          |            |       |       |       |       | -                                       |
| ·   | ELEC     | 63144       | 57037 | 63383     | 61068   | 63263    | 61308    | 63024    | 63383      | 61068 | 63263 | 61068 | 63024 | 744,034                                 |
|     | PK       | 94.8        | 94.8  | 94.8      | 94.8    | 94.8     | 94.8     | 94.8     | 94.8       | 94.8  | 94.8  | 94.8  | 94.8  | 94.8                                    |
| 1   | MISC LD  |             |       |           |         |          |          |          |            |       |       |       |       |                                         |
|     | ELEC     | 26931       | 24324 | 26931     | 26062   | 26931    | 26062    | 26931    | 26931      | 26062 | 26931 | 26062 | 26931 | 317,085                                 |
|     | PK       | 72.4        | 72.4  | 72.4      | 72.4    | 72.4     | 72.4     | 72.4     | 72.4       | 72.4  | 72.4  | 72.4  | 72.4  | 72.4                                    |
| 2   | MISC LD  |             |       |           |         |          |          |          |            |       |       |       |       |                                         |
|     | GAS      | 0           | 0     | 0         | 0       | 0        | 0        | 0        | 0          | 0     | 0     | 0     | 0     | 0                                       |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     |
| 3   | MISC LD  |             |       |           |         |          |          |          |            |       |       |       |       |                                         |
|     | OIL      | 0           | 0     | 0         | 0       | 0        | 0        | 0        | 0          | 0     | 0     | 0     | 0     | 0                                       |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     |
| 4   | MISC LD  |             |       |           |         |          |          |          |            |       |       |       |       |                                         |
|     | P STEAM  | 0           | 0     | 0         | 0       | 0        | 0        | 0        | 0          | 0     | 0     | 0     | 0     | 0                                       |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     |
| 5   | MISC LD  |             |       |           |         |          |          |          |            |       |       |       |       |                                         |
|     | P HOTH20 | 0           | 0     | 0         | 0       | 0        | 0        | 0        | 0          | 0     | 0     | 0     | 0     | 0                                       |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     |
| 6   | MISC LD  |             |       |           |         |          |          |          |            |       |       |       |       |                                         |
|     | P CHILL  | 0           | 0     | 0         | 0       | 0        | 0        | 0        | 0          | 0     | 0     | 0     | 0     | 0                                       |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     |
| 1   |          |             | DAG   | E UTILIT  |         |          |          |          |            |       |       |       |       |                                         |
| •   | CHILLD   | 3452        | 3118  | 3452      | 3341    | 3452     | 3341     | 3452     | 3452       | 3341  | 3452  | 3341  | 3452  | 40,646                                  |
|     | PK       | 4.6         | 4.6   | 4.6       | 4.6     | 4.6      | 4.6      | 4.6      | 4.6        | 4.6   | 4.6   | 4.6   | 4.6   | 4.6                                     |
| 2   |          |             | BAS   | E UTILIT  | Y       |          |          |          |            |       |       |       |       |                                         |
| _   | HOTLD    | 576         | 520   | 576       | 557     | 576      | 557      | 576      | 576        | 557   | 576   | 557   | 576   | 6,780                                   |
| -   | PK       | 0.8         | 0.8   | 0.8       | 0.8     | 0.8      | 0.8      | 0.8      | 0.8        | 0.8   | 0.8   | 0.8   | 0.8   | 0.8                                     |
| 1   | EQ1010S  |             | 2-8   | TG CTV<19 | 90 TONS | W\HT RFC | (95 DEG  | HWD      | Chiller Cl | H-1   |       |       |       |                                         |
|     | ELEC     | 65518       | 59177 | 65518     | 63404   | 65518    | 63404    | 65518    | 65518      | 63404 | 65518 | 63404 | 65518 | 771,420                                 |
|     | PK       | 88.1        | 88.1  | 88.1      | 88.1    | 88.1     | 88.1     | 88.1     | 88.1       | 88.1  | 88.1  | 88.1  | 88.1  | 88.1                                    |
| 1   | EQ5100   |             | con   | LING TOW  | ER FANS | Twr.     | Fan CT-1 | Α        |            |       |       |       |       |                                         |
| •   | ELEC     | 0           | 0     | 0         | 49      | 999      | 4581     | 7862     | 7845       | 4871  | 358   | 0     | 0     | 26,565                                  |
| ~   | PK       | 0.6         | 0.8   | 1.0       | 3.2     | 7.4      | 12.5     | 12.5     | 12.5       | 12.5  | 4.8   | 0.7   | 0.6   | 12.5                                    |

|     |         |       | • • • • • • • • • • • • • • • • • • • • | E G       | UIPI      | MENT               | ENER      | G Y C   | ONSt      | JMPT:  | I O N |       | • • • • • • • • • • • • • • • • • • • • | •••••   |
|-----|---------|-------|-----------------------------------------|-----------|-----------|--------------------|-----------|---------|-----------|--------|-------|-------|-----------------------------------------|---------|
| Ref | Equip   |       |                                         |           |           | Mont               | hiv Cons  | umption |           |        |       |       |                                         |         |
| Num | Code    | Jan   | Feb                                     | Mar       | Apr       | May                | June      | July    | Aug       | Sep    | Oct   | Nov   | Dec                                     | Total   |
| 1   | EQ5100  |       | COOL                                    | ING TOWE  | R FANS    |                    |           |         |           |        |       |       |                                         |         |
|     | WATER   | 43    | 41                                      | 49        | 49        | 56                 | 58        | 58      | 60        | 53     | 52    | 43    | 43                                      | 605     |
|     | PK      | 0.1   | 0.1                                     | 0.1       | 0.1       | 0.1                | 0.1       | 0.1     | 0.1       | 0.1    | 0.1   | 0.1   | 0.1                                     | 0.1     |
| 1   | EQ5001  |       | CHIL                                    | LED WATE  | R PUMP    | - CONSTA           | NT VOLU   | CHV     | V Pump P  | -7     |       |       |                                         |         |
|     | ELEC    | 29239 | 26410                                   | 29239     | 28296     | 29239              | 28296     | 29239   | 29239     | 28296  | 29239 | 28296 | 29239                                   | 344,268 |
|     | PK      | 39.3  | 39.3                                    | 39.3      | 39.3      | 39.3               | 39.3      | 39.3    | 39.3      | 39.3   | 39.3  | 39.3  | 39.3                                    | 39.3    |
| 1   | EQ5010  |       | CONE                                    | DENSER WA | TER PUMI  | P-CV(HIGH          | EFFIC.    | CNDF    | ump 10A   |        |       |       |                                         |         |
|     | ELEC    | 20460 | 18480                                   | 20460     | 19800     | 20460              | 19800     | 20460   | 20460     | 19800  | 20460 | 19800 | 20460                                   | 240,900 |
|     | PK      | 27.5  | 27.5                                    | 27.5      | 27.5      | 27.5               | 27.5      | 27.5    | 27.5      | 27.5   | 27.5  | 27.5  | 27.5                                    | 27.5    |
| 1   | EQ5300  | ł     | CONT                                    | ROL PANE  | EL & INTI | ERLOCKS            |           | w. mm   |           | 1.0000 |       |       |                                         |         |
|     | ELEC    | 744   | 672                                     | 744       | 720       | 744                | 720       | 744     | 744       | 720    | 744   | 720   | 744                                     | 8,760   |
|     | PK      | 1.0   | 1.0                                     | 1.0       | 1.0       | 1.0                | 1.0       | 1.0     | 1.0       | 1.0    | 1.0   | 1.0   | 1.0                                     | 1.0     |
| 1   | EQ5020  |       | HFA1                                    | TING WATE | R CIRCU   | LATION PL          | IMP       | HW pump | P-5       |        |       |       |                                         |         |
| •   | ELEC    | 12350 | 11155                                   | 12350     | 11952     | 12350              | 11952     | 12350   | 12350     | 11952  | 12350 | 11952 | 12350                                   | 145,416 |
|     | PK      | 16.6  | 16.6                                    | 16.6      | 16.6      | 16.6               | 16.6      | 16.6    | 16.6      | 16.6   | 16.6  | 16.6  | 16.6                                    | 16.6    |
| 3   | EQ1010S |       | 2 6                                     | FC CTV-10 | O TONE    | IN UT DEC          | OF DEC. 1 | Chi     | ller CH-3 |        |       |       | L                                       |         |
| 2   | ELEC    | 31096 | 30001                                   | 35815     | 38216     | W\HT REC(<br>44162 | 47699     | 53101   | 52555     | 44221  | 39656 | 32051 | 31977                                   | 480,549 |
|     | PK      | 48.4  | 57.7                                    | 62.7      | 68.6      | 75.3               | 86.7      | 94.0    | 92.0      | 81.6   | 68.9  | 57.6  | 55.5                                    | 94.0    |
|     |         | 1     |                                         |           |           |                    | an CT-18  |         |           |        |       |       |                                         | ,,,,    |
| 2   | EQ5100  |       | COOL                                    | ING TOW   | R FANS    | 1 441. [           | an C1-16  | •       |           |        |       |       |                                         | ,       |
|     | ELEC    | 3028  | 3088                                    | 3838      | 4417      | 5630               | 6985      | 8018    | 7973      | 6912   | 4873  | 3221  | 3182                                    | 61,165  |
|     | PK      | 5.4   | 6.9                                     | 7.1       | 8.8       | 10.8               | 10.8      | 10.8    | 10.8      | 10.8   | 9.4   | 6.4   | 6.5                                     | 10.8    |
| 2   | EQ5100  |       | COOL                                    | LING TOWE | R FANS    |                    |           |         |           |        |       |       |                                         |         |
|     | WATER   | 155   | 153                                     | 186       | 201       | 236                | 252       | 274     | 272       | 233    | 209   | 163   | 161                                     | 2,496   |
|     | PK      | 0.3   | 0.3                                     | 0.3       | 0.4       | 0.4                | 0.4       | 0.5     | 0.5       | 0.4    | 0.4   | 0.3   | 0.3                                     | 0.5     |
| 2   | EQ5001  |       | CHI                                     | LLED WATE | ER PUMP   | - CONST            | ANT VOLU  | 1E      |           |        |       |       |                                         |         |
|     | ELEC    | 0     | 0                                       | 0         | 0         | 0                  | 0         | 0       | 0         | 0      | 0     | 0     | 0                                       | 0       |
|     | PK:     | 0.0   | 0.0                                     | 0.0       | 0.0       | 0.0                | 0.0       | 0.0     | 0.0       | 0.0    | 0.0   | 0.0   | 0.0                                     | 0.0     |
|     |         |       |                                         |           |           |                    |           | CND     | Pump 10   | В      |       |       |                                         | •       |
| 2   | EQ5010  | 47/45 |                                         |           |           | P-CV(HIG           |           | ,       |           |        | 47.4- |       |                                         | 140 700 |
|     | ELEC    | 13615 | 12298                                   | 13615     | 13176     | 13615              | 13176     | 13615   | 13615     | 13176  | 13615 | 13176 | 13615                                   | 160,308 |
|     | PK      | 18.3  | 18.3                                    | 18.3      | 18.3      | 18.3               | 18.3      | 18.3    | 18.3      | 18.3   | 18.3  | 18.3  | 18.3                                    | 18.3    |
| 2   | EQ5300  |       | CON                                     | TROL PANE | EL & INT  | ERLOCKS            |           |         |           |        |       |       |                                         |         |
|     | ELEC    | 744   | 672                                     | 744       | 720       | 744                | 720       | 744     | 744       | 720    | 744   | 720   | 744                                     | 8,760   |
| **  | PK      | 1.0   | 1.0                                     | 1.0       | 1.0       | 1.0                | 1.0       | 1.0     | 1.0       | 1.0    | 1.0   | 1.0   | 1.0                                     | 1.0     |

|     |        |          |       | E C        | UIPN      | 1 E N T   | ENE      | RGY (    | ONSU  | JMPTI | ON    |          |       |               |
|-----|--------|----------|-------|------------|-----------|-----------|----------|----------|-------|-------|-------|----------|-------|---------------|
| Ref | Equip  |          |       |            |           | · Moni    | thly Con | sumption |       |       |       |          |       |               |
|     | Code   | Jan      | Feb   | Mar        | Apr       | May       | June     | July     | Aug   | Sep   | Oct   | Nov      | Dec   | Total         |
| 1   | EQ4003 |          | FC C  | ENTRIFUG   | AL - CON  | ISTANT VO | OLUME    | Fan AH1  |       |       |       |          |       | 3             |
|     | ELEC   | 4836     | 4368  | 4836       | 4680      | 4836      | 468đ     | 4836     | 4836  | 4680  | 4836  | 4680     | 4836  | 56,940        |
|     | PK     | 6.5      | 6.5   | 6.5        | 6.5       | 6.5       | 6.5      | 6.5      | 6.5   | 6.5   | 6.5   | 6.5      | 6.5   | 6.5           |
| 1   | EQ4003 |          | FC (  | ENTR I FUO | GAL - CON | ISTANT VO | OLUME    | Fan EF-  | 1     |       |       |          |       | <del></del>   |
|     | ELEC   | 893      | 806   | 893        | 864       | 893       | 864      | 893      | 893   | 864   | 893   | 864      | 893   | 10,512        |
|     | PK     | 1.2      | 1.2   | 1.2        | 1.2       | 1.2       | 1.2      | 1.2      | 1.2   | 1.2   | 1.2   | 1.2      | 1.2   | 1.2           |
| 1   | EQ4003 |          | FC (  | ENTRI FUO  | AL - CON  | STANT V   | OLUME    | Fan AHS1 |       |       |       |          |       | <del></del> , |
|     | ELEC   | 186      | 168   | 186        | 180       | 186       | 180      | 186      | 186   | 180   | 186   | 180      | 186   | 2,190         |
|     | PK     | 0.3      | 0.3   | 0.3        | 0.3       | 0.3       | 0.3      | 0.3      | 0.3   | 0.3   | 0.3   | 0.3      | 0.3   | 0.3           |
| 2   | EQ4003 |          | FC (  | ENTRI FUO  | GAL - COM | STANT V   | OLUME    | Fan Al   | 12    |       |       |          |       |               |
|     | ELEC   | 7589     | 6854  | 7589       | 7344      | 7589      | 7344     | 7589     | 7589  | 7344  | 7589  | 7344     | 7589  | 89,352        |
|     | PK     | 10.2     | 10.2  | 10.2       | 10.2      | 10.2      | 10.2     | 10.2     | 10.2  | 10.2  | 10.2  | 10.2     | 10.2  | 10.2          |
| 2   | EQ4003 |          | FC (  | ENTR I FUC | GAL - CON | STANT V   | OLUME    | Fan Al   | HS1   |       |       |          |       |               |
|     | ELEC   | 485      | 438   | 485        | 469       | 485       | 469      | 485      | 485   | 469   | 485   | 469      | 485   | 5,712         |
|     | PK     | 0.7      | 0.7   | 0.7        | 0.7       | 0.7       | 0.7      | 0.7      | 0.7   | 0.7   | 0.7   | 0.7      | 0.7   | 0.7           |
| 3   | EQ4003 |          | FC (  | CENTRIFUC  | SAL - CON | STANT V   | OLUME    | Fan AH   | 13    |       |       |          |       | <del></del>   |
|     | ELEC   | 4836     | 4368  | 4836       | 4680      | 4836      | 4680     | 4836     | 4836  | 4680  | 4836  | 4680     | 4836  | 56,940        |
|     | PK     | 6.5      | 6.5   | 6.5        | 6.5       | 6.5       | 6.5      | 6.5      | 6.5   | 6.5   | 6.5   | 6.5      | 6.5   | 6.5           |
| 3   | EQ4003 |          | FC (  | CENTRIFUC  | SAL - CO  | NSTANT V  | OLUME    | Fan Al-  | IS1   |       |       |          |       |               |
|     | ELEC   | 309      | 279   | 309        | 299       | 309       | , 299    | 309      | 309   | 299   | 309   | 299      | 309   | 3,635         |
|     | PK     | 0.4      | 0.4   | 0.4        | 0.4       | 0.4       | 0.4      | 0.4      | 0.4   | 0.4   | 0.4   | 0.4      | 0.4   | 0.4           |
| 4   | EQ4003 | ,        | FC (  | CENTRIFUC  | GAL - CO  | NSTANT V  | OLUME    | Fan Al-  | 15    |       |       |          |       | ,             |
|     | ELEC   | 12871    | 11626 | 12871      | 12456     | 12871     | 12456    | 12871    | 12871 | 12456 | 12871 | 12456    | 12871 | 151,548       |
|     | PK     | 17.3     | 17.3  | 17.3       | 17.3      | 17.3      | 17.3     | 17.3     | 17.3  | 17.3  | 17.3  | 17.3     | 17.3  | 17.3          |
| 4   | EQ4003 |          | FC (  | CENTRI FU  | SAL - CO  | NSTANT V  | OLUME    | Fan Al   | HS1   |       |       |          |       |               |
| •   | ELEC   | 911      | 823   | 911        | 882       | 911       | 882      | 911      | 911   | 882   | 911   | 882      | 911   | 10,731        |
|     | PK     | 1.2      | 1.2   | 1.2        | 1.2       | 1.2       | 1.2      | 1.2      | 1.2   | 1.2   | 1.2   | 1.2      | 1.2   | 1.2           |
| 5   | EQ4003 |          | FC (  | CENTRIFU   | SAL - COL | USTANT V  | OLLIME   | Fan A    | H6    |       | ***   | <u>i</u> |       |               |
| ,   | ELEC   | 10342    | 9341  | 10342      | 10008     | 10342     | 10008    | 10342    | 10342 | 10008 | 10342 | 10008    | 10342 | 121,764       |
|     | PK     | 13.9     | 13.9  | 13.9       | 13.9      | 13.9      | 13.9     | 13.9     | 13.9  | 13.9  | 13.9  | 13.9     | 13.9  | 13.9          |
| 5   | EQ4003 |          | EC /  | CENTRIFU   | CAL - CO  | NCTANT W  | OLUME    | Fan El   |       |       |       |          |       |               |
| ر   | ELEC   | 2009     | 1814  | 2009       | 1944      | 2009      | 1944     | 2009     | 2009  | 1944  | 2009  | 1944     | 2009  | 23,652        |
| -   | PK     | 2.7      | 2.7   | 2.7        | 2.7       | 2.7       | 2.7      | 2.7      | 2.7   | 2.7   | 2.7   | 2.7      | 2.7   | 2.7           |
|     |        | <u> </u> |       |            |           |           |          |          |       |       |       |          |       |               |

|     |        |       |      | E Q        | UIPN             | 1 E N T   | ENEF     | RGY C    | 0 N S L | IMPTI       | ON    | • • • • • • • • • • • • • • • • • • • • | ·     |              |
|-----|--------|-------|------|------------|------------------|-----------|----------|----------|---------|-------------|-------|-----------------------------------------|-------|--------------|
| Ref | Equip  |       | ·    |            |                  | Mont      | hly Cons | sumption |         |             |       |                                         |       |              |
| Num | Code   | Jan   | Feb  | Mar        | Apr              | May       | June     | July     | Aug     | Sep         | Oct   | Nov                                     | Dec   | Total        |
| 5   | EQ4003 |       | FC ( | ENTR I FUG | AL - CON         | ISTANT VO | DLUME    | Fan      | AHS1    |             |       |                                         |       |              |
|     | ELEC   | 136   | 123  | 136        | 131              | 136       | 131      | 136      | 136     | 131         | 136   | 131                                     | 136   | 1,598        |
|     | PK     | 0.2   | 0.2  | 0.2        | 0.2              | 0.2       | 0.2      | 0.2      | 0.2     | 0.2         | 0.2   | 0.2                                     | 0.2   | 0.2          |
| 6   | EQ4003 | -     | FC ( | CENTRIFUG  | AL - CON         | ISTANT VO | DLUME    | Fan      | AH7     |             |       |                                         |       |              |
|     | ELEC   | 5506  | 4973 | 5506       | 5328             | 5506      | 5328     | 5506     | 5506    | 5328        | 5506  | 5328                                    | 5506  | 64,824       |
|     | PK     | 7.4   | 7.4  | 7.4        | 7.4              | 7.4       | 7.4      | 7.4      | 7.4     | 7.4         | 7.4   | 7.4                                     | 7.4   | 7.4          |
| 6   | EQ4003 |       | FC C | ENTR I FUG | AL - CON         | ISTANT VO | DLUME    | Fan      | AHS1    |             |       |                                         |       | <u> </u>     |
|     | ELEC   | . 386 | 349  | 386        | 374              | 386       | 374      | 386      | 386     | 374         | 386   | 374                                     | 386   | 4,546        |
|     | PK     | 0.5   | 0.5  | 0.5        | 0.5              | 0.5       | 0.5      | 0.5      | 0.5     | 0.5         | 0.5   | 0.5                                     | 0.5   | 0.5          |
| 7   | EQ4003 | 1     | FC C | ENTRIFUG   | AL - CON         | STANT VO  | LUME     | Fan A    | N-8     |             |       |                                         |       | _1           |
|     | ELEC   | 2455  | 2218 | 2455       | 2376             | 2455      | 2376     | 2455     | 2455    | 2376        | 2455  | 2376                                    | 2455  | 28,908       |
|     | PK     | 3.3   | 3.3  | 3.3        | 3.3              | 3.3       | 3.3      | 3.3      | 3.3     | 3.3         | 3.3   | 3.3                                     | 3.3   | 3.3          |
| 8   | EQ4003 |       | FC C | ENTRIFUG   | AL - CON         | STANT VO  | LUME     | Fan A    | NH-9    |             |       |                                         |       |              |
|     | ELEC   | 4166  | 3763 | 4166       | 4032             | 4166      | 4032     | 4166     | 4166    | 4032        | 4166  | 4032                                    | 4166  | 49,056       |
|     | PK     | 5.6   | 5.6  | 5.6        | 5.6              | 5.6       | 5.6      | 5.6      | 5.6     | 5.6         | 5.6   | 5.6                                     | 5.6   | 5.6          |
| o   | EQ4003 |       | rc r | ENTRIFUG   |                  |           |          | Fan AH   | -10     |             |       |                                         |       |              |
| ,   | ELEC   | 1339  | 1210 | 1339       | AL - CON<br>1296 |           |          | 1770     | 1770    | 4207        | 4770  | 4507                                    | 477-4 |              |
|     | PK     | 1.8   | 1.8  | 1.8        | 1.8              | 1339      | 1296     | 1339     | 1339    | 1296<br>1.8 | 1339  | 1296                                    | 1339  | 15,768       |
|     |        | 1     |      |            |                  |           | 1.0      |          |         | 1.0         | 1.0   | 1.0                                     | 1.8   | 1.8          |
| 10  | EQ4003 |       | FC C | ENTRIFUG   | AL - CON         | STANT VO  | LUME     | Fan A    | H-11A   |             |       |                                         |       | <del> </del> |
|     | ELEC   | 2753  | 2486 | 2753       | 2664             | 2753      | 2664     | 2753     | 2753    | 2664        | 2753  | 2664                                    | 2753  | 32,412       |
|     | PK     | 3.7   | 3.7  | 3.7        | 3.7              | 3.7       | 3.7      | 3.7      | 3.7     | 3.7         | 3.7   | 3.7                                     | 3.7   | 3.7          |
| 11  | EQ4003 |       | FC C | ENTR I FUG | AL - CON         | STANT VO  | LUME     | Fan AF   | I-11B   |             |       |                                         |       |              |
|     | ELEC   | 3497  | 3158 | 3497       | 3384             | 3497      | 3384     | 3497     | 3497    | 3384        | 3497  | 3384                                    | 3497  | 41,172       |
|     | PK     | 4.7   | 4.7  | 4.7        | 4.7              | 4.7       | 4.7      | 4.7      | 4.7     | 4.7         | 4.7   | 4.7                                     | 4.7   | 4.7          |
| 12  | EQ4003 |       | FC C | ENTRIFUG   | AL - CON         | STANT VO  | LUME     | Fan AH   | -12     |             |       |                                         |       |              |
|     | ELEC   | 2455  | 2218 | 2455       | 2376             | 2455      | 2376     | 2455     | 2455    | 2376        | 2455  | 2376                                    | 2455  | 28,908       |
|     | PK     | 3.3   | 3.3  | 3.3        | 3.3              | 3.3       | 3.3      | 3.3      | 3.3     | 3.3         | . 3.3 | 3.3                                     | 3.3   | 3.3          |
| 13  | EQ4003 |       | FC C | ENTRI FUG  | AL - CON         | STANT VO  | LUME -   | Fan AH-  | 14      | _           |       |                                         | I     | <b>,</b>     |
|     | ELEC   | 4166  | 3763 | 4166       | 4032             | 4166      | 4032     | 4166     | 4166    | 4032        | 4166  | 4032                                    | 4166  | 49,056       |
|     | PK     | 5.6   | 5.6  | 5.6        | 5.6              | 5.6       | 5.6      | 5.6      | 5.6     | 5.6         | 5.6   | 5.6                                     | 5.6   | 5.6          |
| 13  | EQ4003 |       | FC C | ENTRIFUG.  | AL - CON         | STANT VO  | LUME     | Fan A    | HS1     |             |       |                                         |       | _            |
|     | ELEC   | 116   | 105  | 116        | 112              | 116       | 112      | 116      | 116     | 112         | 116   | 112                                     | 116   | 1,367        |
|     | PK     | 0.2   | 0.2  | 0.2        | 0.2              | .0.2      | 0.2      | 0.2      | 0.2     | 0.2         | 0.2   | 0.2                                     | 0.2   | 0.2          |
|     |        |       |      |            |                  |           |          |          |         |             |       |                                         |       |              |

| lef | Equip      |       |       |           |          | Mont      | hly Cons      | sumption |       | · • • • • • • • • • • • • • • • • • • • |       |       |       |         |
|-----|------------|-------|-------|-----------|----------|-----------|---------------|----------|-------|-----------------------------------------|-------|-------|-------|---------|
| łum | Code       | Jan   | Feb   | Mar       | Apr      | May       | June          | July     | Aug   | Sep                                     | Oct   | Nov   | Dec   | Total   |
|     |            |       |       |           |          |           |               | Fan AH   | IS4   |                                         |       |       |       |         |
| 14  | EQ4003     | 44000 |       | ENTRI FUG |          |           |               | 4/000    | 44000 |                                         | 4/000 | 4/7// | 1/000 | 100.053 |
|     | ELEC<br>PK | 16889 | 15254 | 16889     | 16344    | 16889     | 16344<br>22.7 | 16889    | 16889 | 16344                                   | 16889 | 16344 | 16889 | 198,852 |
|     | r K        |       |       |           |          |           |               |          |       |                                         |       |       |       | 22.1    |
| 1   | E02002     |       | GAS   | FIRED ST  | EAM BOIL | ER        |               |          |       |                                         |       |       |       |         |
|     | GAS        | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5020     |       | HFAT  | ING WATE  | R CIRCUI | ATION PL  | IMP           |          |       |                                         |       |       |       |         |
| •   | ELEC       | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5240     |       | ROIL  | ER FORCE  | D DRAFT  | FAN       |               |          |       |                                         |       |       |       |         |
| •   | ELEC       | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5307     |       | CONT  | ROLS      |          |           |               |          |       |                                         |       |       |       |         |
|     | ELEC       | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5061     |       | COND  | ENSATE R  | ETURN PL | IMP (HIGH | H EFFICII     | ENCY)    |       |                                         |       |       |       |         |
|     | ELEC       | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5406     |       | MAKE  | -UP WATE  | R        |           |               |          |       |                                         |       |       |       |         |
|     | WATER      | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ2002     |       | GAS   | FIRED ST  | EAM BOIL | .ER       |               |          |       |                                         |       |       |       |         |
|     | GAS        | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ5020     |       | HEAT  | TING WATE | R CIRCUL | ATION P   | UMP           |          |       |                                         |       |       |       |         |
|     | ELEC       | 0.    | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | . 0.0   |
| 2   | EQ5240     |       | BOIL  | ER FORCE  | D DRAFT  | FAN       | ~             |          |       |                                         |       |       |       | •       |
|     | ELEC       | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
|     | PK         | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ5307     |       | CONT  | TROLS     |          |           |               |          |       |                                         |       |       |       |         |
| _   | ELEC       | 0     | 0     | 0         | 0        | 0         | 0             | 0        | 0     | 0                                       | 0     | 0     | 0     | 0       |
| •   | PK         | 0.0   | 0.0   | 0.0       | 0.0      | .0.0      | 0.0           | 0.0      | 0.0   | 0.0                                     | 0.0   | 0.0   | 0.0   | 0.0     |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 3 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

------SYSTEM LOAD PROFILE------

### ECO-B, LSTC BUILDING

#### System Totals

| Perce | ent | Cool  | ing Loa | d     | Heatin     | ng Load |       | Cooling   | Airflow |       | Heating | Airflow |       |
|-------|-----|-------|---------|-------|------------|---------|-------|-----------|---------|-------|---------|---------|-------|
| Desi  | gn  | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours | Cap.      | Hours   | Hours | Cap.    | Hours   | Hours |
| Lo    | ad  | (Ton) | (%)     |       | (Btuh)     | (%)     |       | (Cfm)     | (%)     |       | (Cfm)   | (%)     |       |
| 0 -   | 5   | 11.5  | 0       | 0     | -169,241   | 0       | 0     | 10,171.0  | 0       | 0     | 0.0     | 0       | 0     |
| 5 -   | 10  | 23.1  | 0       | 0     | -338,482   | 0       | 0     | 20,342.1  | 0       | 0     | 0.0     | 0       | 0     |
| 10 -  | 15  | 34.6  | 0       | 0     | -507,723   | 0       | 0     | 30,513.2  | 0       | 0     | 0.0     | 0       | 0     |
| 15 -  | 20  | 46.2  | 0       | 0     | -676,964   | 0       | 0     | 40,684.2  | 0       | 0     | 0.0     | 0       | 0     |
| 20 -  | 25  | 57.7  | 0       | 0     | -846,205   | . 0     | 0     | 50,855.3  | 0       | 0     | 0.0     | 0       | 0     |
| 25 -  | 30  | 69.3  | 0       | 0     | -1,015,446 | 19      | 1,684 | 61,026.3  | 0       | 0     | 0.0     | 0       | 0     |
| 30 -  | 35  | 80.8  | 0       | 0     | -1,184,687 | 39      | 3,419 | 71,197.4  | 0       | 0     | 0.0     | 0       | 0     |
| 35 -  | 40  | 92.3  | 0       | 0     | -1,353,928 | 42      | 3,657 | 81,368.4  | 0       | 0     | 0.0     | 0       | 0     |
| 40 -  | 45  | 103.9 | 0       | 0     | -1,523,169 | 0       | 0     | 91,539.5  | O       | 0     | 0.0     | 0       | 0     |
| 45 -  | 50  | 115.4 | 0       | 0     | -1,692,410 | 0       | 0     | 101,710.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 -  | 55  | 127.0 | 0       | 0     | -1,861,651 | 0       | 0     | 111,881.6 | 0       | 0     | 0.0     | 0       | 0     |
| 55 -  | 60  | 138.5 | 17      | 1,513 | -2,030,892 | 0       | 0     | 122,052.6 | 0       | 0     | 0.0     | 0       | 0     |
| 60 -  | 65  | 150.0 | 29      | 2,523 | -2,200,133 | 0       | 0     | 132,223.7 | 0       | 0     | 0.0     | 0       | 0     |
| 65 -  | 70  | 161.6 | 17      | 1,469 | -2,369,374 | 0       | 0     | 142,394.7 | 0       | 0     | 0.0     | 0       | 0     |
| 70 -  | 75  | 173.1 | 21      | 1,797 | -2,538,615 | 0       | 0     | 152,565.8 | 0       | 0     | 0.0     | 0       | 0     |
| 75 -  | 80  | 184.7 | 12      | 1,093 | -2,707,856 | 0       | 0     | 162,736.8 | 0       | 0     | 0.0     | 0       | . 0   |
| 80 -  | 85  | 196.2 | 4       | 365   | -2,877,097 | 0       | 0     | 172,907.9 | 0       | 0     | 0.0     | 0       | 0     |
| 85 -  | 90  | 207.8 | 0       | 0     | -3,046,339 | 0       | 0     | 183,078.9 | 0       | 0     | 0.0     | 0       | 0     |
| 90 -  | 95  | 219.3 | 0       | 0     | -3,215,579 | 0       | 0     | 193,250.0 | 0       | 0     | 0.0     | 0       | 0     |
| 95 -  | 100 | 230.8 | 0       | 0     | -3,384,820 | 0       | 0     | 203,421.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours | off | 0.0   | 0       | 0     | 0          | 0       | 0     | 0.0       | 0       | 0     | 0.0     | 0       | 8,760 |

|     |          | ·        |         | E             | QUIP      | MENT     | ENE      | RGY                                   | CONS   | UMPT      | I O N    |       |          |                 |
|-----|----------|----------|---------|---------------|-----------|----------|----------|---------------------------------------|--------|-----------|----------|-------|----------|-----------------|
| Ref | Equip    |          |         |               |           | Mon      | thly Con | sumption                              |        | <b></b> - | <b></b>  |       |          |                 |
| Num | Code     | Jan      | Feb     | Mar           | Apr       | May      | June     | July                                  | Aug    | Sep       | Oct      | Nov   | Dec      | Total           |
| 0   | LIGHTS   | Lighting | Systems |               |           |          |          |                                       |        |           |          |       |          |                 |
|     | ELEC     | 31826    | 28759   | 32604         | 30674     | 32215    | 31452    | 31437                                 | 32604  | 30674     | 32215    | 30674 | 31437    | 376,570         |
|     | PK       | 94.8     | 94.8    | 94.8          | 94.8      | 94.8     | 94.8     | 94.8                                  | 94.8   | 94.8      | 94.8     | 94.8  | 94.8     | 94.8            |
| 1   | MISC LD  |          |         |               |           |          |          |                                       |        |           |          |       |          |                 |
| ·   | ELEC     | 26931    | 24324   | 26931         | 26062     | 26931    | 26062    | 26931                                 | 26931  | 26062     | 26931    | 26062 | 26931    | 717 005         |
|     | PK       | 72.4     | 72.4    | 72.4          | 72.4      | 72.4     | 72.4     | 72.4                                  | 72.4   | 72.4      | 72.4     | 72.4  | 72.4     | 317,085<br>72.4 |
|     |          |          |         |               |           |          |          |                                       |        |           |          |       | 16.4     | , 2, 4          |
| 2   | MISC LD  |          |         |               |           | •        |          |                                       |        |           |          |       |          | .*              |
|     | GAS      | 0        | 0       | 0             | 0         | 0        | 0        | 0                                     | 0      | 0         | 0        | 0     | 0        | 0               |
|     | PK       | 0.0      | 0.0     | 0.0           | 0.0       | 0.0      | 0.0      | 0.0                                   | 0.0    | 0.0       | 0.0      | 0.0   | 0.0      | 0.0             |
| 3   | MISC LD  |          |         |               |           |          |          |                                       |        |           |          |       |          |                 |
|     | OIL      | 0        | 0       | 0             | 0         | 0        | 0        | 0                                     | 0      | 0         | 0        | 0     | 0        | 0               |
|     | PK       | 0.0      | 0.0     | 0.0           | 0.0       | 0.0      | 0.0      | 0.0                                   | 0.0    | 0.0       | 0.0      | 0.0   | 0.0      | 0.0             |
|     | MISC LD  |          |         |               |           |          |          |                                       |        |           |          |       |          |                 |
| 7   | P STEAM  | 0        | 0       | 0             | 0         | 0        | 0        | 0                                     | 0      | 0         | •        |       | •        | •               |
|     | PK       | 0.0      | 0.0     | 0.0           | 0.0       | 0.0      | 0.0      | 0.0                                   | 0.0    | 0.0       | 0<br>0.0 | 0.0   | 0<br>0.0 | 0<br>0.0        |
|     |          |          |         |               |           |          |          | 0.0                                   | 0.0    | 0.0       | 0.0      | 0.0   | 0.0      | 0.0             |
| 5   | MISC LD  |          |         |               |           |          |          |                                       |        |           |          |       |          |                 |
|     | P HOTH20 | 0        | 0       | 0             | 0         | 0        | 0        | 0                                     | 0      | 0         | 0        | 0     | 0        | 0               |
|     | PK       | 0.0      | 0.0     | 0.0           | 0.0       | 0.0      | 0.0      | 0.0                                   | 0.0    | 0.0       | 0.0      | 0.0   | 0.0      | 0.0             |
| 6   | MISC LD  |          |         |               |           |          |          |                                       |        |           |          |       |          |                 |
|     | P CHILL  | 0        | 0       | 0             | 0         | 0        | 0        | 0                                     | 0      | 0         | 0        | 0     | 0        | 0               |
|     | PK       | 0.0      | 0.0     | 0.0           | 0.0       | 0.0      | 0.0      | 0.0                                   | 0.0    | 0.0       | 0.0      | 0.0   | 0.0      | 0.0             |
| 1   |          |          | BASE    | E UTILIT      | ŕ         |          |          |                                       |        |           |          |       |          |                 |
| •   | CHILLD   | 3452     | 3118    | 3452          | 3341      | 3452     | 3341     | 3452                                  | 3452   | 3341      | 3452     | 3341  | 3452     | 40,646          |
|     | PK       | 4.6      | 4.6     | 4.6           | 4.6       | 4.6      | 4.6      | 4.6                                   | 4.6    | 4.6       | 4.6      | 4.6   | 4.6      | 4.6             |
| 2   |          |          | BASE    | E UTILIT      | ,         |          |          |                                       |        |           |          |       |          |                 |
| _   | HOTLD    | 576      | 520     | 576           | 557       | 576      | 557      | 576                                   | 576    | 557       | 576      | 557   | 576      | 6,780           |
|     | PK       | 0.8      | 0.8     | 8.0           | 0.8       | 8.0      | 0.8      | 0.8                                   | 0.8    | 0.8       | 0.8      | 0.8   | 0.8      | 0.8             |
| 1   | EQ1010S  |          | 2-61    | [G   CTV < 10 | י פעחד חכ | J/HI DEC | 95 DEG 1 | Chille                                | r CH-1 |           |          |       |          |                 |
| •   | ELEC     | 65518    | 59177   | 65518         | 63404     | 65518    | 63404    | 65518                                 | 65518  | 63404     | 65518    | 63404 | 65518    | 771 /20         |
|     | PK       | 88.1     | 88.1    | 88.1          | 88.1      | 88.1     | 88.1     | 88.1                                  | 88.1   | 88.1      | 88.1     | 88.1  | 88.1     | 771,420<br>88.1 |
| 1   | EQ5100   |          | COOL    | ING TOW       | ER FANS   | Twr. Far | CT-1A    | · · · · · · · · · · · · · · · · · · · |        |           |          |       |          |                 |
|     | ELEC     | 0        | 0       | 0             | 19        | 688      | 4288     | 7648                                  | 7643   | 4593      | 180      | 0     | 0        | 25,060          |
|     | PK       | 0.6      | 0.8     | 1.0           | 3.2       | 7.4      | 12.5     | 12.5                                  | 12.5   | 12.5      | 4.8      | 0.7   | 0.6      | 12.5            |

|     |         |       |       | E G       | UIPI     | MENT      | ENER      | RGY (    | CONSU     | ЈМРТ: | 1 O N |       |       | • • • • • • • • • • • • • • • • • • • • |
|-----|---------|-------|-------|-----------|----------|-----------|-----------|----------|-----------|-------|-------|-------|-------|-----------------------------------------|
| Ref | Equip   |       |       |           |          | Mon1      | thly Cons | sumption |           |       |       |       |       |                                         |
| lum | Code    | Jan   | Feb   | Mar       | Арг      | May       | June      | July     | Aug       | Sep   | 0ct   | Nov   | Dec   | Total                                   |
| 1   | EQ5100  |       | COOL  | ING TOWE  | R FANS   |           |           |          |           |       |       |       |       |                                         |
|     | WATER   | 27    | 27    | 34        | 35       | 41        | 44        | 43       | 45        | 38    | 37    | 28    | 27    | 427                                     |
|     | PK      | 0.1   | 0.1   | 0.1       | 0.1      | 0.1       | 0.1       | 0.1      | 0.1       | 0.1   | 0.1   | 0.1   | 0.1   | 0.1                                     |
| 1   | EQ5001  |       | CHII  | LLED WATE | R PUMP   | - CONST   | ANT VOLUM | 1E CHW   | / Pump P- | 7     |       |       |       |                                         |
|     | ELEC    | 29239 | 26410 | 29239     | 28296    | 29239     | 28296     | 29239    | 29239     | 28296 | 29239 | 28296 | 29239 | 344,268                                 |
|     | PK      | 39.3  | 39.3  | 39.3      | 39.3     | 39.3      | 39.3      | 39.3     | 39.3      | 39.3  | 39.3  | 39.3  | 39.3  | 39.3                                    |
| 1   | EQ5010  |       | CONI  | DENSER WA | ATER PUM | P-CV(HIGI | H EFFIC.  | CNDF     | ump 10A   |       |       |       |       | r                                       |
|     | ELEC    | 20460 | 18480 | 20460     | 19800    | 20460     | 19800     | 20460    | 20460     | 19800 | 20460 | 19800 | 20460 | 240,90                                  |
|     | PK      | 27.5  | 27.5  | 27.5      | 27.5     | 27.5      | 27.5      | 27.5     | 27.5      | 27.5  | 27.5  | 27.5  | 27.5  | 27.                                     |
| 1   | EQ5300  |       | CON.  | TROL PANE | : 8: INT | EDI UCKS  |           |          |           |       |       |       |       |                                         |
| •   | ELEC    | 744   | 672   | 744       | 720      | 744       | 720       | 744      | 744       | 720   | 744   | 720   | 744   | 8,76                                    |
|     | PK      | 1.0   | 1.0   | 1.0       | 1.0      | 1.0       | 1.0       | 1.0      | 1.0       | 1.0   | 1.0   | 1.0   | 1.0   | 1.                                      |
|     | FK      | 1.0   |       |           |          |           |           |          |           | 1.0   | 1.0   | 1.0   | 1.0   |                                         |
| 1   | EQ5020  | 40750 |       |           |          | LATION PO |           |          |           |       |       |       |       | 1                                       |
|     | ELEC    | 12350 | 11155 | 12350     | 11952    | 12350     | 11952     | 12350    | 12350     | 11952 | 12350 | 11952 | 12350 | 145,41                                  |
|     | PK      | 16.6  | 16.6  | 16.6      | 16.6     | 16.6      | 16.6      | 16.6     | 16.6      | 16.6  | 16.6  | 16.6  | 16.6  | 16.                                     |
| 2   | EQ1010S |       | 2-5   | TG CTV<19 | O TONS   | W\HT REC  | (95 DEG 1 | נאר      | er CH-3   |       |       |       |       | ſ <del></del>                           |
|     | ELEC    | 29769 | 28492 | 33642     | 35825    | 41578     | 44948     | 49987    | 49537     | 41532 | 37184 | 30454 | 30582 | 453,52                                  |
|     | PK      | 47.6  | 54.3  | 62.7      | 68.6     | 75.3      | 86.7      | 94.0     | 92.0      | 81.6  | 68.9  | 57.6  | 52.0  | 94.                                     |
| 2   | EQ5100  |       | coo   | LING TOW  | ER FANS  | Twr. Far  | CT-1B     |          |           |       |       |       |       | r                                       |
|     | ELEC    | 2717  | 2778  | 3432      | 4037     | 5322      | 6860      | 7975     | 7929      | 6760  | 4504  | 2884  | 2868  | 58,06                                   |
|     | PK      | 5.3   | 6.2   | 7.1       | 8.8      | 10.8      | 10.8      | 10.8     | 10.8      | 10.8  | 9.4   | 6.4   | 6.0   | 10.                                     |
| 2   | EQ5100  |       | C00   | LING TOW  | ER FANS  |           |           |          | -         |       |       |       |       |                                         |
|     | WATER   | 147   | 143   | 172       | 187      | 221       | 237       | 258      | 256       | 218   | 194   | 153   | 152   | 2,33                                    |
|     | PK      | 0.2   | 0.3   | 0.3       | 0.4      | 0.4       | 0.4       | 0.5      | 0.5       | 0.4   | 0.4   | 0.3   | 0.3   | 0.                                      |
| 2   | EQ5001  |       | CHI   | LLED WATE | ER PUMP  | - CONST.  | ANT VOLUI | ME       |           |       |       |       |       |                                         |
|     | ELEC    | 0     | 0     | 0         | 0        | 0         | 0         | 0        | 0         | 0     | 0     | 0     | 0     |                                         |
|     | PK      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0       | 0.0      | ~0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.                                      |
|     |         |       |       | •         |          |           | •••       |          |           |       |       |       |       |                                         |
| 2   | EQ5010  |       | CON   | DENSER W  | ATER PUM | P-CV(HIG  | H EFFIC.  | ) CND    | Pump 10B  | 5     |       |       |       |                                         |
|     | ELEC    | 13615 | 12298 | 13615     | 13176    | 13615     | 13176     | 13615    | 13615     | 13176 | 13615 | 13176 | 13615 | 160,30                                  |
|     | PK      | 18.3  | 18.3  | 18.3      | 18.3     | 18.3      | 18.3      | 18.3     | 18.3      | 18.3  | 18.3  | 18.3  | 18.3  | 18.                                     |
| 2   | EQ5300  |       | CON   | TROL PAN  | EL & INT | ERLOCKS   |           |          |           |       |       |       |       |                                         |
|     | ELEC    | 744   | 672   | 744       | 720      | 744       | 720       | 744      | 744       | 720   | 744   | 720   | 744   | 8,76                                    |
| -   | PK      | 1.0   | 1.0   | 1.0       | 1.0      | .1.0      | 1.0       | 1.0      | 1.0       | 1.0   | 1.0   | 1.0   | 1.0   | 1.                                      |
|     |         |       |       |           |          |           |           |          |           |       |       |       |       |                                         |

|     |            |             |             | · E 0        | UIPI        | 4 E N T     | ENE      | RGY C       | оиѕи    | MPTI        | O N                                   |       | • • • • • • • • • • • • • • • • • • • • |                 |
|-----|------------|-------------|-------------|--------------|-------------|-------------|----------|-------------|---------|-------------|---------------------------------------|-------|-----------------------------------------|-----------------|
| Ref | Equip      |             |             |              |             | Mont        | thly Con | sumption    | <b></b> |             |                                       |       |                                         |                 |
|     | Code       | Jan         | Feb         | Mar          | Арг         | May         | June     | July        | Aug     | Sep         | Oct                                   | Nov   | Dec                                     | Total           |
| 1   | EQ4003     |             | EC (        | ENTRIFIE     | או - רחי    | NSTANT VO   | NILIME F | an AH1      |         |             |                                       |       |                                         |                 |
| •   | ELEC       | 4836        | 4368        | 4836         | 4680        | 4836        | 4680     | 4836        | 4836    | 4680        | 4836                                  | 4680  | 4836                                    | 56,940          |
|     | PK         | 6.5         | 6.5         | 6.5          | 6.5         | 6.5         | 6.5      | 6.5         | 6.5     | 6.5         | 6.5                                   | 6.5   | 6.5                                     | 6.5             |
| 1   | EQ4003     |             | FC (        | ENTRIFU      | :AI - COI   | NSTANT VO   | HUME F   | an EF-1     |         |             |                                       |       |                                         |                 |
| •   | ELEC       | 893         | 806         | 893          | 864         | 893         | 864      | 893         | 893     | 864         | 893                                   | 864   | 893                                     | 10,512          |
|     | PK         | 1.2         | 1.2         | 1.2          | 1.2         | 1.2         | 1.2      | 1.2         | 1.2     | 1.2         | 1.2                                   | 1.2   | 1.2                                     | 1.2             |
|     |            | L           |             |              |             |             |          | Fan AHS1    |         |             |                                       |       |                                         |                 |
| 1   | EQ4003     | 404         |             |              |             | NSTANT VO   |          |             |         |             |                                       |       |                                         | <u> </u>        |
|     | ELEC       | 186         | 168         | 186          | 180         | 186         | 180      | 186         | 186     | 180         | 186                                   | 180   | 186                                     | 2,190           |
|     | PK         | 0.3         | 0.3         | 0.3          | 0.3         | 0.3         | 0.3      | 0.3         | 0.3     | 0.3         | 0.3                                   | 0.3   | 0.3                                     | 0.3             |
| 2   | EQ4003     |             | FC (        | CENTRIFUC    | SAL - CO    | NSTANT VO   | DLUME F  | an AH2      |         |             |                                       |       |                                         | [ <del></del> ] |
|     | ELEC       | 7589        | 6854        | 7589         | 7344        | 7589        | 7344     | 7589        | 7589    | 7344        | 7589                                  | 7344  | 7589                                    | 89,352          |
|     | PK         | 10.2        | 10.2        | 10.2         | 10.2        | 10.2        | 10.2     | 10.2        | 10.2    | 10.2        | 10.2                                  | 10.2  | 10.2                                    | 10.2            |
| 2   | EQ4003     |             | FC (        | CENTRIFUC    | SAL - CO    | NSTANT VO   | OLUME    | Fan AHS1    |         |             |                                       |       |                                         |                 |
|     | ELEC       | 485         | 438         | 485          | 469         | 485         | 469      | 485         | 485     | 469         | 485                                   | 469   | 485                                     | 5,712           |
|     | PK         | 0.7         | 0.7         | 0.7          | 0.7         | 0.7         | 0.7      | 0.7         | 0.7     | 0.7         | 0.7                                   | 0.7   | 0.7                                     | 0.7             |
| -   | 50/007     | +           |             |              |             |             | F        | an AH3      |         | •           | · · · · · · · · · · · · · · · · · · · |       |                                         |                 |
| 3   | EQ4003     | 1074        |             |              |             | NSTANT VO   |          | /07/        | /07/    |             | /07/                                  | //00  |                                         | F( 0(0          |
|     | ELEC<br>PK | 4836        | 4368<br>6.5 | 4836<br>6.5  | 4680<br>6.5 | 4836<br>6.5 | 4680     | 4836<br>6.5 | 4836    | 4680<br>6.5 | 4836<br>6.5                           | 4680  | 4836<br>6.5                             | 56,940          |
|     | r K        | 1 0.5       |             |              | 0.5         |             |          |             | .0.5    |             | 0.5                                   | 0.5   |                                         | 6.3             |
| 3   | EQ4003     |             | FC (        | CENTRIFUC    | GAL - CO    | NSTANT VO   | DLUME F  | an AHS1     |         |             |                                       |       |                                         | [ <u>1</u>      |
|     | ELEC       | 309         | 279         | 309          | 299         | 309         | 299      | _309        | 309     | 299         | 309                                   | 299   | 309                                     | 3,635           |
|     | PK         | 0.4         | 0.4         | 0.4          | 0.4         | 0.4         | 0.4      | 0.4         | 0.4     | 0.4         | 0.4                                   | 0.4   | 0.4                                     | 0.4             |
| 4   | EQ4003     |             | FC (        | CENTRIFUC    | SAL - CO    | NSTANT VO   | DLUME F  | an AH5      |         |             |                                       |       |                                         |                 |
| •   | ELEC       | 12871       | 11626       | 12871        | 12456       |             | · 12456  | 12871       | 12871   | 12456       | 12871                                 | 12456 | 12871                                   | 151,548         |
|     | PK         | 17.3        | 17.3        | 17.3         | 17.3        | 17.3        | 17.3     | 17.3        | 17.3    | 17.3        | 17.3                                  | 17.3  | 17.3                                    | 17.3            |
|     |            | <del></del> |             |              |             |             |          | Fan AHS1    |         |             |                                       |       |                                         |                 |
| 4   | EQ4003     | 011         |             |              |             | NSTANT VO   | DEGINE   |             | 044     |             | 044                                   |       | 244                                     | 40 774          |
| -   | ELEC       | 911         | 823         | 911          | 882         | 911         | 882      | 911         | 911     | 882         | 911                                   | 882   | 911                                     | 10,731          |
|     | PK         | 1.2         | 1.2         | 1.2          | 1.2         | 1.2         | 1.2      | 1.2         | 1.2     | 1.2         | 1.2                                   | 1.2   | 1.2                                     | 1.2             |
| 5   | EQ4003     |             | FC (        | CENTRI FUO   | GAL - CO    | NSTANT VO   | OLUME F  | an AH6      |         |             |                                       |       |                                         | <del></del>     |
|     | ELEC       | 10342       | 9341        | 10342        | 10008       | 10342       | 10008    | 10342       | 10342   | 10008       | 10342                                 | 10008 | 10342                                   | 121,764         |
|     | PK         | 13.9        | 13.9        | 13.9         | 13.9        | 13.9        | 13.9     | 13.9        | 13.9    | 13.9        | 13.9                                  | 13.9  | 13.9                                    | 13.9            |
| 5   | EQ4003     |             | FC (        | PENTE ! FILE | :ΔI - CO    | NSTANT V    | OI UME   | Fan EF-2    |         |             |                                       |       |                                         |                 |
| ,   | ELEC       | 2009        | 1814        | 2009         | 1944        | 2009        | 1944     | 2009        | 2009    | 1944        | 2009                                  | 1944  | 2009                                    | 23,652          |
| **  | PK         | 2.7         | 2.7         | 2.7          | 2.7         | 2.7         | 2.7      | 2.7         | 2.7     | 2.7         | 2.7                                   | 2.7   | 2.7                                     | 2.7             |
|     |            |             |             |              |             |             |          |             |         |             |                                       |       |                                         |                 |

|     |            | ·        |             | E Q                                   | UIPM            | ENT         | ENER        | G Y C       | ONSU        | MPTI        | O N         |             |             |             |
|-----|------------|----------|-------------|---------------------------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ≀ef | Equip -    |          |             |                                       | • • • • • • • • | Mont        | hly Cons    | umption     | <b></b>     |             |             |             |             |             |
| ium | Code       | Jan      | Feb         | Mar                                   | Apr             | May         | June        | July        | Aug         | Sep         | Oct         | Nov         | Dec         | Total       |
| 5   | EQ4003     |          | FC C        | ENTRIFUG.                             | AL - CON        | STANT VO    | LUME F      | an AHS1     |             |             |             |             |             |             |
|     | ELEC       | 136      | 123         | 136                                   | 131             | 136         | 131         | 136         | 136         | 131         | 136         | 131         | 136         | 1,598       |
|     | PK         | 0.2      | 0.2         | 0.2                                   | 0.2             | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         |
| 6   | EQ4003     |          | FC C        | ENTRIFUG.                             | AI - CON        | STANT VO    | IIIME F     | an AH7      |             |             |             |             |             |             |
| Ī   | ELEC       | 5506     | 4973        | 5506                                  | 5328            | 5506        | 5328        | 5506        | 5506        | 5328        | 5506        | 5328        | 5506        | 64,824      |
|     | PK         | 7.4      | 7.4         | 7.4                                   | 7.4             | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         |
| 4   | EQ4003     |          | EC C        | ENTRIFUG.                             | AI - CON        | STANT VO    | iline F     | an AHS1     |             |             |             |             |             |             |
| O   | ELEC       | 386      | 349         | 386                                   | AL - CON<br>374 | 386         | 374         | 386         | 386         | 374         | 386         | 374         | 386         | 4,546       |
|     | PK         | 0.5      | 0.5         | 0.5                                   | 0.5             | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         |
|     |            | <u></u>  |             |                                       |                 |             |             | <del></del> |             |             |             |             |             |             |
| 7   | EQ4003     |          |             | ENTRIFUG.                             | AL - CON        | STANT VO    | LUME '      | Fan AH-8    |             |             |             |             |             |             |
|     | ELEC       | 2455     | 2218        | 2455                                  | 2376            | 2455        | 2376        | 2455        | 2455        | 2376        | 2455        | 2376        | 2455        | 28,908      |
|     | PK         | 3.3      | 3.3         | 3.3                                   | 3.3             | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         |
| 8   | EQ4003     |          | FC C        | ENTRIFUG                              | AL - CON        | STANT VO    | LUME F      | an AH-9     |             |             |             |             |             | <del></del> |
|     | ELEC       | 4166     | 3763        | 4166                                  | 4032            | 4166        | 4032        | 4166        | 4166        | 4032        | 4166        | 4032        | 4166        | 49,056      |
|     | PK         | 5.6      | 5.6         | 5.6                                   | 5.6             | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         |
| 0   | EQ4003     | ŕ        | FC C        | ENTR I FUG.                           | AI - CON        | STANT VO    | ILUME F     | an AH-10    |             |             |             |             |             |             |
| •   | ELEC       | 1339     | 1210        | 1339                                  | 1296            | 1339        | 1296        | 1339        | 1339        | 1296        | 1339        | 1296        | 1339        | 15,768      |
|     | PK         | 1.8      | 1.8         | 1.8                                   | 1.8             | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         |
| 10  | 50/007     | 1        | F0 0        |                                       | N. 0011         |             | F           | an AH-11    | <del></del> | *           |             |             | <del></del> |             |
| 10  | EQ4003     | 2757     |             | ENTRIFUG.                             |                 |             | LUME        |             |             | 2444        | 2757        | 2///        | 2757        | 72 /42      |
|     | ELEC<br>PK | 2753     | 2486<br>3.7 | 2753<br>3.7                           | 3.7             | 2753<br>3.7 | 2664<br>3.7 | 2753        | 2753        | 2664<br>3.7 | 2753<br>3.7 | 2664<br>3.7 | 2753<br>3.7 | 32,412      |
|     |            | 1        |             | · · · · · · · · · · · · · · · · · · · |                 |             |             |             |             |             |             |             |             |             |
| 11  | EQ4003     |          | FC C        | ENTRIFUG.                             | AL - CON        | STANT VO    | LUME F      | an AH-11    | Б           |             |             |             |             |             |
|     | ELEC       | 3497     | 3158        | 3497                                  | 3384            | 3497        | 3384        | 3497        | 3497        | 3384        | 3497        | 3384        | 3497        | 41,172      |
|     | PK         | 4.7      | 4.7         | 4.7                                   | 4.7             | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         |
| 12  | EQ4003     |          | FC C        | ENTRIFUG                              | AL - CON        | STANT VO    | LUME F      | an AH-12    |             |             |             |             |             |             |
|     | ELEC       | 2455     | 2218        | 2455                                  | 2376            | 2455        | 2376        | 2455        | 2455        | 2376        | 2455        | 2376        | 2455        | 28,908      |
|     | PK         | 3.3      | 3.3         | 3.3                                   | 3.3             | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         |
| 17  | EQ4003     |          | בר ר        | ENTRIFUG                              | ۸۱ - ۲۵۰        | STANT VO    | ILLIME E    | an ΔЫ 14    |             |             |             |             |             |             |
|     | ELEC       | 4166     | 3763        | 4166                                  | 4032            | 4166        | 4032        | 4166        | 4166        | 4032        | 4166        | 4032        | 4166        | 49,056      |
|     | PK         | 5.6      | 5.6         | 5.6                                   | 5.6             | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         |
|     |            | <u> </u> |             |                                       |                 |             |             | an AHS1     |             |             |             |             |             |             |
| 13  | EQ4003     |          |             | ENTR I FUG                            |                 |             | LUME        |             |             |             |             |             |             |             |
| ٠.  | ELEC       | 116      | 105         | 116                                   | 112             | 116         | 112         | 116         | 116         | 112         | 116         | 112         | 116         | 1,367       |
|     | PK         | 0.2      | 0.2         | 0.2                                   | 0.2             | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         |

| Ref | Equip  |       |       |             |          | Mon1      | thly Cons | sumption |       | · · · · · · · · |       |       |       |         |
|-----|--------|-------|-------|-------------|----------|-----------|-----------|----------|-------|-----------------|-------|-------|-------|---------|
| Num | Code   | Jan   | Feb   | Mar         | Apr      | May       | June      | July     | Aug   | Sep             | Oct   | Nov   | Dec   | Total   |
| 14  | EQ4003 |       | FC (  | CENTR I FUG | AL - CON | ISTANT VO | DLUME !   | Fan AHS4 | •     |                 |       |       |       |         |
| •   | ELEC   | 16889 | 15254 | 16889       | 16344    | 16889     | 16344     | 16889    | 16889 | 16344           | 16889 | 16344 | 16889 | 198,852 |
|     | PK     | 22.7  | 22.7  | 22.7        | 22.7     | 22.7      | 22.7      | 22.7     | 22.7  | 22.7            | 22.7  | 22.7  | 22.7  | 22.7    |
| 1   | EQ2002 |       | GAS   | FIRED ST    | EAM BOIL | .ER       |           |          |       |                 |       |       |       |         |
|     | GAS    | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | 0       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5020 |       | HEA.  | TING WATE   | R CIRCUL | ATION PL  | JMP       |          |       |                 |       |       |       |         |
|     | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | 0       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5240 |       | BOI   | LER FORCE   | D DRAFT  | FAN       |           |          |       |                 |       |       |       |         |
|     | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | 0       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5307 |       | CON.  | TROLS       |          |           |           |          |       |                 |       |       |       |         |
|     | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | C       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5061 |       | CONI  | DENSATE R   | ETURN PL | JMP (HIG  | H EFFICI  | ENCY)    |       |                 |       |       |       |         |
|     | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | C       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   | EQ5406 |       | MAK   | E-UP WATE   | R        |           |           |          |       |                 |       |       |       |         |
|     | WATER  | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | O       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ2002 |       | GAS   | FIRED ST    | EAM BOIL | .ER       |           |          |       |                 |       |       |       |         |
|     | GAS    | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | C       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ5020 |       | HEA   | TING WATE   | R CIRCU  | ATION P   | UMP       |          |       |                 |       |       |       |         |
|     | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | C       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ5240 |       | BOI   | LER FORCE   | D DRAFT  | FAN       |           |          |       |                 |       |       |       |         |
|     | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | C       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |
| 2   | EQ5307 |       | CON   | TROLS       |          |           |           |          |       |                 |       |       |       |         |
| ,   | ELEC   | 0     | 0     | 0           | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0     | 0     | (       |
|     | PK     | 0.0   | 0.0   | 0.0         | 0.0      | .0.0      | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0     |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 4 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

## ECO-C, LSTC BUILDING

System Totals

| Percent         | Cool  | ing Loa | d     | Heatin                         | ng Load |       | Cooling   | Airflow |       | Heating | Airflow |       |
|-----------------|-------|---------|-------|--------------------------------|---------|-------|-----------|---------|-------|---------|---------|-------|
| Design          | Cap.  | Hours   | Hours | Capacity                       | Hours   | Hours | Cap.      | Hours   | Hours | Cap.    | Hours   | Hours |
| Load            | (Ton) | (%)     |       | (Btuh)                         | (%)     |       | (Cfm)     | (%)     |       | (Cfm)   | (%)     |       |
| ۰               |       | ^       | ^     | 70.040                         | 77      | / 710 | 40 474 0  |         | •     | 0.0     | •       | •     |
| 0 - 5           | 6.5   | 0       | 0     | -79,960                        | 77      | 6,718 | 10,171.0  | 0       | 0     | 0.0     | 0       | U     |
| 5 - 10          | 12.9  | 0       | 0     | -159,919                       | 19      | 1,678 | 20,342.1  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15         | 19.4  | 0       | 0     | -239,879                       | 4       | 316   | 30,513.2  | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20         | 25.9  | 0       | 0     | -319,838                       | 1       | 48    | 40,684.2  | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25         | 32.3  | 55      | 4,792 | -399 <b>,</b> 798 <sup>-</sup> | 0       | 0     | 50,855.3  | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30         | 38.8  | 1       | 47    | -479,757                       | 0       | 0     | 61,026.3  | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35         | 45.3  | 3       | 305   | -559,717                       | 0       | 0     | 71,197.4  | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40         | 51.8  | 0       | 35    | -639,677                       | 0       | 0     | 81,368.4  | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45         | 58.2  | 0       | 12    | -719,636                       | 0       | 0     | 91,539.5  | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50         | 64.7  | 1       | 61    | -799,596                       | 0       | 0     | 101,710.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55         | 71.2  | 1       | 64    | -879,555                       | 0       | 0     | 111,881.6 | 54      | 4,771 | 0.0     | 0       | 0     |
| 55 - 60         | 77.6  | 2       | 133   | -959,515                       | 0       | 0     | 122,052.6 | 1       | 64    | 0.0     | 0       | 0     |
| 60 - 65         | 84.1  | 3       | 306   | -1,039,475                     | 0       | 0     | 132,223.7 | 2       | 175   | 0.0     | 0       | 0     |
| 65 - 70         | 90.6  | 3       | 293   | -1,119,434                     | 0       | 0     | 142,394.7 | 2       | 173   | 0.0     | 0       | 0     |
| 70 - 75         | 97.0  | 3       | 295   | -1,199,394                     | 0       | 0     | 152,565.8 | 1       | 90    | 0.0     | 0       | 0     |
| <b>75 - 8</b> 0 | 103.5 | - 5     | 447   | -1,279,353                     | 0       | 0     | 162,736.8 | 1       | 61    | 0.0     | 0       | 0     |
| 80 - 85         | 110.0 | 3       | 282   | -1,359,313                     | 0       | 0     | 172,907.9 | 0       | 38    | 0.0     | 0       | 0     |
| 85 - 90         | 116.5 | 4       | 361   | -1,439,272                     | 0       | 0     | 183,078.9 | 1       | 103   | 0.0     | 0       | 0     |
| 90 - 95         | 122.9 | 6       | 523   | -1,519,232                     | 0       | 0     | 193,250.0 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100        | 129.4 | 9       | 804   | -1,599,192                     | 0       | 0     | 203,421.0 | 38      | 3,285 | 0.0     | 0       | 0     |
| Hours Off       | 0.0   | 0       | 0     | 0                              | 0       | 0     | 0.0       | 0       | 0     | 0.0     | 0       | 8,760 |

|   | Equip ·  |          | rah              |          | ۸       |          | -        | •        |           |       | 0-+   | Nav   | Dag   | Tabal   |
|---|----------|----------|------------------|----------|---------|----------|----------|----------|-----------|-------|-------|-------|-------|---------|
| m | Code     | Jan      | Feb              | Mar      | Apr     | May      | June     | July     | Aug       | Sep   | Oct   | Nov   | Dec   | Total   |
| 0 | LIGHTS   | Lighting | Systems          |          |         |          |          |          |           |       |       |       |       |         |
|   | ELEC     | 31826    | 28759            | 32604    | 30674   | 32215    | 31452    | 31437    | 32604     | 30674 | 32215 | 30674 | 31437 | 376,570 |
|   | PK       | 94.8     | 94.8             | 94.8     | 94.8    | 94.8     | 94.8     | 94.8     | 94.8      | 94.8  | 94.8  | 94.8  | 94.8  | 94.8    |
| 1 | MISC LD  |          |                  |          |         |          |          |          |           |       |       |       |       |         |
|   | ELEC     | 26931    | 24324            | 26931    | 26062   | 26931    | 26062    | 26931    | 26931     | 26062 | 26931 | 26062 | 26931 | 317,085 |
|   | PK       | 72.4     | 72.4             | 72.4     | 72.4    | 72.4     | 72.4     | 72.4     | 72.4      | 72.4  | 72.4  | 72.4  | 72.4  | 72.4    |
| 2 | MISC LD  |          |                  |          |         |          |          |          |           |       |       |       |       |         |
|   | GAS      | 0        | 0                | 0        | 0       | 0        | 0        | 0        | 0         | 0     | 0     | 0     | 0     | (       |
|   | PK       | 0.0      | 0.0              | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 3 | MISC LD  |          |                  |          |         |          |          |          |           |       |       |       |       |         |
|   | OIL      | 0        | 0                | 0        | 0       | 0        | 0        | 0        | 0         | 0     | 0     | 0     | 0     | (       |
|   | PK       | 0.0      | 0.0              | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 4 | MISC LD  |          |                  |          |         |          |          |          |           |       |       |       |       |         |
|   | P STEAM  | 0        | 0                | 0        | 0       | 0        | 0        | 0        | 0         | 0     | 0     | 0     | 0     | (       |
|   | PK       | 0.0      | 0.0              | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 5 | MISC LD  |          |                  |          | •       |          |          |          |           |       |       |       |       |         |
|   | Р НОТН2О | 0        | 0                | 0        | 0       | 0        | 0        | 0        | O         | 0     | 0     | 0     | 0     | (       |
|   | PK       | 0.0      | 0.0              | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 6 | MISC LD  |          |                  |          |         |          |          |          |           |       |       |       |       |         |
|   | P CHILL  | 0        | 0                | 0        | 0       | 0        | 0        | 0        | 0         | 0     | 0     | 0     | 0     | (       |
|   | PK       | 0.0      | 0.0              | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 1 |          |          | BASE             | E UTILIT | Y       |          |          |          |           |       |       |       |       |         |
|   | CHILLD   | 3452     | 3118             | 3452     | 3341    | 3452     | 3341     | 3452     | 3452      | 3341  | 3452  | 3341  | 3452  | 40,64   |
|   | PK       | 4.6      | 4.6              | 4.6      | 4.6     | 4.6      | 4.6      | 4.6      | 4.6       | 4.6   | 4.6   | 4.6   | 4.6   | 4.0     |
| 2 |          |          | BASE             | E UTILIT | Y       |          |          |          |           |       |       |       |       |         |
|   | HOTLD    | 576      | 520              | 576      | 557     | 576      | 557      | 576      | 576       | 557   | 576   | 557   | 576   | 6,78    |
|   | PK       | 0.8      | 0.8              | 0.8      | 0.8     | 0.8      | 0.8      | 8.0      | 0.8       | 8.0   | 8.0   | 0.8   | 0.8   | 0.      |
| 1 | EQ1010S  |          | 2-s <sup>-</sup> | TG CTV<1 | 90 TONS | W\HT REC | (95 DEG  | HW) Chil | ller CH-1 |       |       |       |       |         |
|   | ELEC     | 39290    | 37012            | 41568    | 40819   | 42332    | 41343    | 42697    | 42831     | 41029 | 42189 | 39846 | 40952 | 491,90  |
|   | PK       | 88.1     | 88.1             | 88.1     | 88.1    | 88.1     | 88.1     | 88.1     | 88.1      | 88.1  | 88.1  | 88.1  | 88.1  | 88.     |
| 1 | EQ5100   |          | C00              | LING TOW | ER FANS | Twr. Fa  | ın CT-1A |          |           |       |       |       |       |         |
| _ | ELEC     | 2074     | 2106             | 2442     | 2592    | 3689     | 5873     | 8577     | 8693      | 6878  | 3225  | 2264  | 2349  | 50,76   |
|   | PK       | 8.3      | 8.6              | 8.6      | 9.8     | 1.1.7    | 12.5     | 12.5     | 12.5      | 12.5  | 10.5  | 8.7   | 8.6   | 12.     |

| Ref   Equip   Num   Code   Jan   Feb   Mar   Apr   May   June   Jule     |     | • • • • • • • • • • • • • • • • • • • • |                 |       | E          | qıuq      | MENT      | ENE        | RGY        | CONS       | UMPT  | I O N |       |               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------|-----------------|-------|------------|-----------|-----------|------------|------------|------------|-------|-------|-------|---------------|-------------|
| Num   Code   Jan   Feb   Mar   Apr   May   June   July     | Ref | Equip                                   | • • • • • • • • |       |            |           | Mon       | thiv Con   | sumntion   |            |       |       |       |               |             |
| MATER   130   126   143   142   148   745   150   151   144   147   135   138   1,701   PK   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0   | Num |                                         | Jan             | Feb   | Mar        |           |           |            |            |            |       | 0ct   | Nov   | Dec           | Total       |
| PK 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | EQ5100                                  |                 | COO   | LING TOW   | ER FANS   |           |            |            |            |       |       |       |               |             |
| PK   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3     |     | WATER                                   | 130             | 126   | 143        | 142       | 148       | 145        | 150        | 151        | 144   | 147   | 135   | 138           | 1 701       |
| ELEC 29239 26410 29239 28296 29239 28296 29239 28296 29239 28296 29239 39.3 39.3 39.3 39.3 39.3 39.3 39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | PK                                      | 0.3             | 0.3   | 0.3        | 0.3       | 0.3       | 0.3        | 0.3        | 0.3        |       |       |       |               | •           |
| PK 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | EQ5001                                  |                 | CHI   | LLED WATE  | ER PUMP   | - CONST   | ANT VOLU   | HE CHV     | √ Pump P-  | -7    |       |       |               |             |
| PK   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39.3   39   |     | ELEC                                    | 29239           | 26410 | 29239      | 28296     | 29239     | 28296      | 29239      | 29239      | 28296 | 29239 | 28296 | 29239         | 344.268     |
| ELEC   20460   19480   20460   19800   20460   19800   20460   20460   19800   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   20460   |     | PK                                      | 39.3            | 39.3  | 39.3       | 39.3      | 39.3      | 39.3       | 39.3       | 39.3       | 39.3  |       |       |               |             |
| ELEC 20460 18480 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 20460 19800 20460 20460 19800 20460 19800 20460 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 19800 20460 1 | 1   | EQ5010                                  |                 | CON   | DENSER W   | ATER PUMI | P-CV(HIG  | H EFFIC.   | CNDF       | Pump 10A   |       |       |       |               |             |
| PK   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5   27.5 |     | ELEC                                    | 20460           | 18480 | 20460      | 19800     | 20460     | 19800      | 20460      | 20460      | 19800 | 20460 | 19800 | 20460         | 240 900     |
| ELEC   744   672   744   720   744   720   744   720   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   744   740   740   744   740   740   744   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   740   |     | PK                                      | 27.5            | 27.5  | 27.5       | 27.5      | 27.5      | 27.5       | 27.5       | 27.5       |       |       |       |               |             |
| ELEC 744 672 744 720 744 720 744 720 744 74 720 744 744 720 744 720 744 8,760 PK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1   | EQ5300                                  |                 | CONT  | FROL PANE  | L & INTE  | ERLOCKS   |            |            |            |       |       |       | <del></del>   |             |
| PK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | ELEC                                    | 744             |       |            |           |           | 720        | 744        | 744        | 720   | 744   | 720   | 744           | 8 760       |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | PK                                      | 1.0             | 1.0   | 1.0        | 1.0       | 1.0       | 1.0        | 1.0        |            |       |       |       |               | · ·         |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | EQ5020                                  |                 | HEAT  | ING WATE   | R CIRCUI  | ATION PI  | IMP HW     | pump P-    | 5          |       |       |       |               |             |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | ELEC                                    | 5661            |       |            |           |           |            | 5661       | 5661       | 5478  | 5661  | 5/.78 | 5441          | 44.440      |
| ELEC 620 2622 4756 6180 8648 9406 9892 9999 8505 6867 3175 2541 73,212 22.5 23.5 27.9 32.3 34.5 37.0 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 2.9 29.1 286 35.4 3.6 27.1 39.3 39.3 39.1 36.3 39.3 39.1 36.9 33.1 27.9 25.4 28.5 28.0 39.3 29.1 28.6 36.0 30.0 30.0 30.0 30.0 30.0 30.0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | PK                                      | 16.6            | 16.6  |            |           |           |            |            |            |       |       |       |               |             |
| ELEC 620 2622 4756 6180 8648 9406 9892 9999 8505 6867 3175 2541 73,212 22.5 23.5 27.9 32.3 34.5 37.0 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.3 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 39.1 36.9 33.1 27.9 23.6 39.9 39.3 2.9 29.1 286 35.4 3.6 27.1 39.3 39.3 39.1 36.3 39.3 39.1 36.9 33.1 27.9 25.4 28.5 28.0 39.3 29.1 28.6 36.0 30.0 30.0 30.0 30.0 30.0 30.0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2   | EQ1010S                                 |                 | 2-51  | 'G CTV<10  | O TONS I  | IVUT DECA | 05 DEC 1   | Ch         | iller CH-3 |       |       | -     |               |             |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                         | 620             |       |            |           |           |            | IW /       |            | 8505  | 4847  | 7175  | 25/1          | 77, 242     |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | PK                                      | 22.5            |       |            |           |           |            |            |            |       |       |       |               |             |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2   | EQ5100                                  |                 | COOL  | ING TOWE   | P FANS    | Twr. Far  | CT-1B      |            |            |       |       |       |               |             |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                         | 0               |       |            |           | 665       | 2578       | 2968       | 2880       | 1821  | 100   | 0     | 0             | 11 212      |
| WATER 2 8 18 24 36 41 43 43 36 27 10 8 295 PK 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1  2 EQ5001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | PK                                      | 0.0             | 0.0   | 0.0        |           |           |            |            |            |       |       |       |               | <del></del> |
| WATER         2         8         18         24         36         41         43         43         36         27         10         8         295           PK         0.1         0.1         0.1         0.1         0.2         0.2         0.2         0.2         0.1         0.1         0.1         0.1         0.2           2         EQ5001         CHILLED WATER PUMP - CONSTANT VOLUME         CHILLED WATER PUMP - CONSTANT VOLUME         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>2</td> <td>EQ5100</td> <td></td> <td>0001</td> <td>ING TOWE</td> <td>R FANS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><del></del>}</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2   | EQ5100                                  |                 | 0001  | ING TOWE   | R FANS    |           |            |            |            |       |       |       | <del></del> } |             |
| PK 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2  2 EQ5001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | WATER                                   | 2               |       |            |           | 36        | 41         | 43         | 43         | 36    | 27    | 10    | Ω             | 205         |
| ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | PK                                      | 0.1             | 0.1   |            |           |           |            |            |            |       |       |       |               |             |
| ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2   | EQ5001                                  |                 | CHII  | IFD WATE   | R PUMP -  | CONSTA    | אוד ערוויש | ı <u> </u> |            |       |       |       |               |             |
| PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                         | 0               |       |            |           |           |            |            | n          | n     | 0     | 0     | 0             | •           |
| ELEC       933       2855       3861       5051       5435       5344       5472       5527       5325       5234       2855       2800       50,691         PK       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | PK                                      | 0.0             | 0.0   |            |           |           |            |            |            |       |       |       |               |             |
| ELEC       933       2855       3861       5051       5435       5344       5472       5527       5325       5234       2855       2800       50,691         PK       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       18.3       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2   | EQ5010                                  |                 | СОИО  | ENSER WA   | TER PIIMO | -CV(N164  | FEETC >    | CND P      | ump 10B    |       |       |       |               |             |
| PK 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                         | 933             |       |            |           |           |            |            |            | 5325  | 523/  | 2955  | 2800          | 50,401      |
| 2 EQ5300 CONTROL PANEL & INTERLOCKS ELEC 51 156 211 276 297 292 299 302 291 286 156 153 2,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                         |                 |       |            |           |           |            |            |            |       |       |       |               |             |
| ELEC 51 156 211 276 297 292 299 302 291 286 156 153 2,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2   | £05300                                  |                 | CONT  | ם חו חויים | 1 9 11175 | DI OCKO   |            |            |            |       |       |       |               |             |
| 27 20 130 133 2,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   |                                         | 51              |       |            |           |           | ວດວ        | 200        | 700        | 204   | 201   | 454   | 45~           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |                                         |                 |       |            |           |           |            |            |            |       |       |       |               |             |

|     |            |              |      | E Q               | UIPM     | ENT       | ENER              | R G Y C  | ONSU        | мрт 1 | O N  |      |      |          |
|-----|------------|--------------|------|-------------------|----------|-----------|-------------------|----------|-------------|-------|------|------|------|----------|
| Ref | Equip      |              |      |                   |          | Mont      | hly Cons          | sumption |             |       |      |      |      |          |
|     | Code       | Jan          | Feb  | Mar               | Apr      | May       | June              | July     | Aug         | Sep   | Oct  | Nov  | Dec  | Total    |
| 1   | EQ4003     |              | FC C | ENTRIFUG          | AL - CON | STANT VO  | LUME              | Fan AH1  |             |       |      |      |      | 7        |
|     | ELEC       | 1849         | 1744 | 1947              | 1882     | 1948      | 1890              | 1934     | 1954        | 1882  | 1942 | 1863 | 1927 | 22,762   |
|     | PK         | 6.5          | 6.5  | 6.5               | 6.5      | 6.5       | 6.5               | 6.5      | 6.5         | 6.5   | 6.5  | 6.5  | 6.5  | 6.5      |
| 1   | EQ4223     |              | FC F | AN W\VAR          | IABLE SP | EED DRIV  | E Fan             | AHS1     |             |       |      |      |      | r        |
|     | ELEC       | 1            | 0    | 0                 | 0        | 0         | 0                 | 0        | 0           | 0     | 0    | 0    | 0    | 3        |
|     | PK         | 0.0          | 0.0  | 0.0               | 0.0      | 0.0       | 0.0               | 0.0      | 0.0         | 0.0   | 0.0  | 0.0  | 0.0  | 0.0      |
| 1   | EQ4003     | ı            | FC C | ENTR I FUG        | AL - CON | STANT VO  | LUME F            | an EF-1  |             |       |      |      |      | ·        |
|     | ELEC       | 335          | 326  | 362               | 349      | 361       | 350               | 359      | 362         | 349   | 360  | 347  | 361  | 4,223    |
|     | PK         | 1.2          | 1.2  | 1.2               | 1.2      | 1.2       | 1.2               | 1.2      | 1.2         | 1.2   | 1.2  | 1.2  | 1.2  | 1.2      |
| 2   | EQ4003     | •            | FC C | CENTRIFUG         | AL - CON | STANT VO  | LUME F            | an AH2   |             |       |      |      |      |          |
|     | ELEC       | 2910         | 2821 | 3395              | 3335     | 3466      | 3355              | 3463     | 3467        | 3349  | 3461 | 3341 | 3444 | 39,807   |
|     | PK         | 10.2         | 10.2 | 10.2              | 10.2     | 10.2      | 10.2              | 10.2     | 10.2        | 10.2  | 10.2 | 10.2 | 10.2 | 10.2     |
| 2   | EQ4223     | <u> </u>     | EC E | AN W\VAR          | TARLE SD | EED DOIN  | Fan               | AHS1     |             |       |      |      |      |          |
| _   | ELEC       | 182          | 172  | 175               | 95       | 61        | 1                 | 1        | 1           | 59    | 101  | 209  | 214  | 1,270    |
|     | PK         | 0.6          | 0.6  | 0.6               | 0.6      | 0.6       | 0.0               | 0.0      | 0.0         | 0.6   | 0.6  | 0.6  | 0.6  | 0.6      |
| 7   | EQ4003     | <del>}</del> | 50.0 | ENTR I FUG        | AL - CON | CTANT VO  | Fa                | an AH3   | <del></del> |       |      |      |      |          |
| 3   | ELEC       | 1814         | 1638 | .ENIK1FUG<br>1814 | 1755     | 1814      | 1,755             | 1814     | 1814        | 1755  | 1814 | 1755 | 1814 | 21,352   |
|     | PK         | 6.5          | 6.5  | 6.5               | 6.5      | 6.5       | 6.5               | 6.5      | 6.5         | 6.5   | 6.5  | 6.5  | 6.5  | 6.5      |
| _   |            | <del> </del> |      |                   |          |           | Fan               | AH\$1    |             |       |      |      |      |          |
| 3   | EQ4223     | 115          |      | AN W\VAR          |          |           | 'E                |          |             | 27    | 50   | 442  | 445  | 700      |
|     | ELEC<br>PK | 0.4          | 0.4  | 0,4               | 0.4      | 0.4       | 0.0               | 0.0      | 0.0         | 0.4   | 0.4  | 0.4  | 0.4  | 708      |
|     | -          |              | ,    |                   |          |           |                   |          |             |       |      |      |      | <b></b>  |
| 4   | EQ4003     |              |      | CENTRIFUG         | AL - CON | STANT VO  | DLUME F           | an AH5   |             |       |      |      |      |          |
|     | ELEC       | 4827         | 4360 | 4843              | 4714     | 4928      | 4812              | 4944     | 4976        | 4789  | 4928 | 4696 | 4828 | 57,644   |
|     | PK         | 17.3         | 17.3 | 17.3              | 17.3     | 17.3      | 17.3              | 17.3     | 17.3        | 17.3  | 17.3 | 17.3 | 17.3 | 17.3     |
| 4   | EQ4223     |              | FC F | FAN W\VAR         | IABLE SP | EED DRIV  | /ε Fan            | AHS1     |             |       |      |      |      | <u> </u> |
|     | ELEC       | 341          | 308  | 305               | 156      | 89        | 17 ·              | 17       | 17          | 105   | 161  | 330  | 341  | 2,186    |
|     | PK         | 1.2          | 1.2  | 1.2               | 1.2      | 1.2       | 0.1               | 0.1      | 0.1         | 1.2   | 1.2  | 1.2  | 1.2  | 1.2      |
| 5   | EQ4003     |              | FC ( | CENTRIFUG         | AL - CON | STANT VO  | DLUME F           | an AH6   |             | •     |      |      |      |          |
|     | ELEC       | 3933         | 3670 | 4079              | 3952     | 4142      | 4077              | 4200     | 4225        | 4069  | 4178 | 3929 | 4063 | 48,515   |
|     | PK         | 13.9         | 13.9 | 13.9              | 13.9     | 13.9      | 13.9              | 13.9     | 13.9        | 13.9  | 13.9 | 13.9 | 13.9 | 13.9     |
| 5   | EQ4223     |              | FC I | FAN W\VAR         | TARLE SE | PEED DRIV | <sub>/F</sub> Fan | AHS1     |             |       |      |      |      |          |
| ,   | ELEC       | 4            | 70   | 102               | 53       | 72        |                   | 2        | 2           | 70    | 50   | 47   | 6    | 480      |
| -   | PK         | 0.2          | 0.8  | 0.8               | 0.8      | .0.8      | 0.3               | 0.3      | 0.3         | 0.8   | 0.8  | 0.8  | 0.8  | 0.8      |
|     |            | 1            |      |                   |          |           |                   |          |             |       |      |      |      |          |

| Ref | Equip          |       |      | <b></b> .        |          | Mont            | hly Cons    | umption     |             |             |             |            |      |      |
|-----|----------------|-------|------|------------------|----------|-----------------|-------------|-------------|-------------|-------------|-------------|------------|------|------|
|     | Code           | Jan   | Feb  | Mar              | Арг      | May             | June        | July        | Aug         | Sep         | Oct         | Nov        | Dec  | Tota |
|     |                |       |      |                  |          |                 |             | an EF-2     |             |             |             |            |      |      |
| 5   | EQ4003         | 77.7  |      | ENTRIFUG         |          |                 | LUME        |             |             |             | •••         | 710        | 767  |      |
|     | ELEC           | 753   | 680  | 753              | 729      | 791             | 788         | 807         | 815         | 786         | 804         | 740        | 753  | 9,2  |
|     | PK             | 2.7   | 2.7  | 2.7              | 2.7      | 2.7             | 2.7         | 2.7         | 2.7         | 2.7         | 2.7         | 2.7        | 2.7  | 2    |
| 6   | EQ4003         |       | FC C | ENTRIFUG         | AL - CON | STANT VO        | LUME F      | an AH7      |             |             |             |            |      |      |
|     | ELEC           | 2094  | 1865 | 2065             | 2116     | 2217            | 2294        | 2368        | 2405        | 2153        | 2190        | 1998       | 2065 | 25,8 |
|     | PK             | 7.4   | 7.4  | 7.4              | 7.4      | 7.4             | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4        | 7.4  | 7    |
| ,   | F0/337         | ,     | 50.5 | AH 13337AG       | 14015.00 | 550 00111       | - Fan       | 4HS1        |             |             |             |            |      |      |
| 0   | EQ4223<br>ELEC | 146   | 130  | AN W\VAR<br>129  | 75       | יבצט טאוע<br>50 | 9           | 9           | 10          | / 0         | 77          | 140        | 1//  |      |
|     | PK             | 0.5   | 0.5  | 0.5              | 0.5      | 0.5             | 0.0         | 0.0         | 0.0         | 0.5         | 77<br>0.5   | 140<br>0.5 | 0.5  | 0    |
|     | r K            | [ 0.5 |      |                  |          | 0.5             | 0.0         |             |             | 0.5         |             | 0.5        | 0.5  | v    |
| 7   | EQ4003         |       | FC C | ENTRIFUG         | AL - CON | ISTANT VO       | LUME        | Fan AH-8    |             |             |             |            |      | r    |
|     | ELEC           | 2455  | 2218 | 2455             | 2376     | 2455            | 2376        | 2455        | 2455        | 2376        | 2455        | 2376       | 2455 | 28,9 |
|     | PK             | 3.3   | 3.3  | 3.3              | 3.3      | 3.3             | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3        | 3.3  | 3    |
|     | 50/007         | ,     |      |                  |          |                 | 6           | an AH-9     |             |             |             |            |      |      |
| 8   | EQ4003<br>ELEC | 4166  | 3763 | ENTRIFUG<br>4166 | 4032     |                 |             |             | /144        | /072        | /144        | 4032       | 4166 | 49,0 |
|     | PK             | 5.6   | 5.6  | 5.6              | 5.6      | 4166<br>5.6     | 4032<br>5.6 | 4166<br>5.6 | 4166<br>5.6 | 4032<br>5.6 | 4166<br>5.6 | 5.6        | 5.6  | 5    |
|     |                | 1 3.0 |      |                  |          |                 |             |             |             |             |             |            |      | ,    |
| 9   | EQ4003         |       | FC C | ENTR I FUG       | AL - CON | STANT VO        | LUME F      | an AH-10    |             |             |             |            |      |      |
|     | ELEC           | 1339  | 1210 | 1339             | 1296     | 1339            | 1296        | 1339        | 1339        | 1296        | 1339        | 1296       | 1339 | 15,7 |
|     | PK             | 1.8   | 1.8  | 1.8              | 1.8      | 1.8             | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8        | 1.8  | 1    |
| 10  | EQ4003         |       | EC C | ENTRIFUG         | A! - CON | ISTANT VO       | HIME F      | an AH-11A   |             |             |             |            |      |      |
|     | ELEC           | 2753  | 2486 | 2753             | 2664     | 2753            | 2664        | 2753        | 2753        | 2664        | 2753        | 2664       | 2753 | 32,4 |
|     | PK             | 3.7   | 3.7  | 3.7              | 3.7      | 3.7             | 3.7         | 3.7         | 3.7         | 3.7         | 3.7         | 3.7        | 3.7  | 3    |
|     |                |       |      |                  |          |                 |             | F Att 44    |             |             |             |            |      |      |
| 11  | EQ4003         |       |      | ENTR I FUG       |          |                 | LOME        | Fan AH-11   |             |             |             |            |      |      |
|     | ELEC           | 3497  | 3158 | 3497             | 3384     | 3497            | 3384        | 3497        | 3497        | 3384        | 3497        | 3384       | 3497 | 41,1 |
|     | PK             | 4.7   | 4.7  | 4.7              | 4.7      | 4.7             | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7        | 4.7  | 4    |
| 12  | EQ4003         |       | FC C | ENTR I FUG       | AL - CON | ISTANT VO       | LUME F      | an AH-12    |             |             |             |            |      |      |
|     | ELEC           | 2455  | 2218 | 2455             | 2376     | 2455            | 2376        | 2455        | 2455        | 2376        | 2455        | 2376       | 2455 | 28,9 |
|     | PK ·           | 3.3   | 3.3  | 3.3              | 3.3      | 3.3             | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3        | 3.3  | 3    |
|     | ==100=         |       |      |                  |          |                 |             |             |             |             |             |            |      | •    |
| 13  | EQ4003         |       |      | ENTRIFUG         |          |                 |             | an AH-14    |             | 4675        |             | 4070       | 14/1 | /0.0 |
|     | ELEC           | 4166  | 3763 | 4166             | 4032     | 4166            | 4032        | 4166        | 4166        | 4032        | 4166        | 4032       | 4166 | 49,0 |
|     | PK             | [ 3.8 | 5.6  | 5.6              | 5.6      | 5.6             | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6        | 5.6  | 5    |
| 13  | EQ4223         |       | FC F | AN W\VAR         | IABLE SP | EED DRIV        | E Fan A     | AHS1        |             |             |             |            |      |      |
|     | ELEC           | 116   | 104  | 116              | 112      | 116             | 112         | 116         | 116         | 112         | 116         | 112        | 116  | 1,3  |
| -   | PK             | 0.2   | 0.2  | 0.2              | 0.2      | , 0.2           | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2        | 0.2  | 0    |

|       | Equip  | lon   |       |           |           |          | •        | sumption<br>July |       |       | 0ct   | Nov   | Dec   | Total   |
|-------|--------|-------|-------|-----------|-----------|----------|----------|------------------|-------|-------|-------|-------|-------|---------|
| NUIII | Code   | Jan   | Feb   | Mar       | Apr       | May      | June     | •                | Aug   | Sep   | 000   | NOV   | Dec   | Totat   |
| 14    | EQ4003 |       | FC (  | CENTRIFUC | GAL - CO  | ISTANT V | OLUME F  | an AHS4          |       |       |       |       |       |         |
|       | ELEC   | 16889 | 15254 | 16889     | 16344     | 16889    | 16344    | 16889            | 16889 | 16344 | 16889 | 16344 | 16889 | 198,852 |
|       | PK     | 22.7  | 22.7  | 22.7      | 22.7      | 22.7     | 22.7     | 22.7             | 22.7  | 22.7  | 22.7  | 22.7  | 22.7  | 22.7    |
| 1     | EQ2002 |       | GAS   | FIRED S   | TEAM BOII | LER      |          |                  |       |       |       |       |       |         |
|       | GAS    | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 1     | EQ5020 |       | HEA.  | TING WATE | ER CIRCU  | LATION P | UMP      |                  |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 1     | EQ5240 |       | BOII  | LER FORCE | ED DRAFT  | FAN      |          |                  |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 1     | EQ5307 |       | CON   | TROLS     |           |          |          |                  |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 1     | EQ5061 |       | CON   | DENSATE   | RETURN P  | UMP (HIG | H EFFICI | ENCY)            |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 1     | EQ5406 |       | MAK   | E-UP WAT  | ER        |          |          |                  |       |       |       |       |       |         |
|       | WATER  | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 2     | EQ2002 |       | GAS   | FIRED S   | TEAM BOI  | LER      |          |                  |       |       |       |       |       |         |
|       | GAS    | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 2     | EQ5020 |       |       | TING WAT  |           |          |          |                  |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | . 0      | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 2     | EQ5240 |       | BOI   | LER FORC  | ED DRAFT  | FAN      |          |                  |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | 0       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 2     | EQ5307 |       | CON   | TROLS     |           |          |          |                  |       |       |       |       |       |         |
|       | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0                | 0     | 0     | 0     | 0     | 0     | C       |
|       | PK     | 0.0   | 0.0   | 0.0       | 0.0       | . 0.0    | 0.0      | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

## ECO-D, LSTC BUILDING

System Totals

| Percent   | Cool  | ing Loa | d     | Heati      | ng Load |       | Cooling   | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|------------|---------|-------|-----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours | Cap.      | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)     |       | (Cfm)     | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 5.9   | 0       | 0     | -54,281    | 88      | 1,668 | 6,618.8   | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 11.9  | 0       | 0     | -108,562   | 12      | 221   | 13,237.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 17.8  | 54      | 4,740 | -162,843   | 0       | 0     | 19,856.5  | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 23.7  | 0       | 30    | -217,124   | 0       | 0     | 26,475.3  | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 29.7  | 3       | 250   | -271,405   | . 0     | 0     | 33,094.2  | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 35.6  | 1       | 69    | -325,686   | 0       | 0     | 39,713.0  | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 41.5  | 1       | 46    | -379,967   | 0       | 0     | 46,331.8  | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 47.5  | 1       | 123   | -434,248   | 0       | 0     | 52,950.7  | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 53.4  | 4       | 343   | -488,529   | 0       | 0     | 59,569.5  | 0       | 0     | 0.0     | . 0     | 0     |
| 45 - 50   | 59.4  | 2       | 147   | -542,810   | 0       | 0     | 66,188.3  | 54      | 4,745 | 0.0     | 0       | 0     |
| 50 - 55   | 65.3  | 2       | 175   | -597,091   | 0       | 0     | 72,807.2  | 3       | 267   | 0.0     | 0       | 0     |
| 55 - 60   | 71.2  | 3       | 305   | -651,373   | 0       | 0     | 79,426.0  | 1       | 99    | 0.0     | 0       | 0     |
| 60 - 65   | 77.2  | 2       | 177   | -705,654   | 0       | 0     | 86,044.8  | 1       | 93    | 0.0     | 0       | 0     |
| 65 - 70   | 83.1  | 3       | 259   | -759,935   | 0       | 0     | 92,663.7  | 0       | 18    | 0.0     | 0       | 0     |
| 70 - 75   | 89.0  | 4       | 348   | -814,216   | 0       | 0     | 99,282.5  | 1       | 53    | 0.0     | 0       | 0     |
| 75 - 80   | 95.0  | 4       | 356   | -868,497   | 0       | 0     | 105,901.3 | 1       | 46    | 0.0     | 0       | 0     |
| 80 - 85   | 100.9 | 2       | 200   | -922,778   | 0       | 0     | 112,520.2 | 10      | 889   | 0.0     | 0       | 0     |
| 85 - 90   | 106.8 | 4       | 354   | -977,059   | 0       | 0     | 119,139.0 | 3       | 271   | 0.0     | 0       | 0     |
| 90 - 95   | 112.8 | 10      | 838   | -1,031,340 | 0       | 0     | 125,757.8 | 11      | 998   | 0.0     | 0       | 0     |
| 95 - 100  | 118.7 | 0       | 0     | -1,085,621 | 0       | 0     | 132,376.7 | 15      | 1,281 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0          | 0       | 6,871 | 0.0       | 0       | 0     | 0.0     | 0       | 8,760 |

|     |          |       |             | E C      | UIPN    | 1 E N T    | ENEF      | RGYO     | ONSU       | JMPTI | O N   |       |          |               |
|-----|----------|-------|-------------|----------|---------|------------|-----------|----------|------------|-------|-------|-------|----------|---------------|
| Ref | Equip    |       |             |          |         | Mon1       | thly Cons | sumption |            |       |       |       | ·        |               |
| Num | Code     | Jan   | Feb         | Mar      | Apr     | May        | June      | July     | Aug        | Sep   | Oct   | Nov   | Dec      | Total         |
| 0   | LIGHTS   |       |             |          |         | Lighting S | Systems   |          |            |       |       |       |          |               |
| ·   | ELEC     | 31826 | 28759       | 32604    | 30674   | 32215      | 31452     | 31437    | 32604      | 30674 | 32215 | 30674 | 31437    | 376,570       |
|     | PK       | 94.8  | 94.8        | 94.8     | 94.8    | 94.8       | 94.8      | 94.8     | 94.8       | 94.8  | 94.8  | 94.8  | 94.8     | 94.8          |
| 1   | MISC LD  |       |             |          |         |            |           |          |            |       |       |       |          |               |
|     | ELEC     | 26931 | 24324       | 26931    | 26062   | 26931      | 26062     | 26931    | 26931      | 26062 | 26931 | 26062 | 26931    | 317,085       |
|     | PK       | 72.4  | 72.4        | 72.4     | 72.4    | 72.4       | 72.4      | 72.4     | 72.4       | 72.4  | 72.4  | 72.4  | 72.4     | 72.4          |
| 2   | MISC LD  |       |             |          |         | ,          |           |          |            |       |       |       |          |               |
|     | GAS      | 0     | 0           | 0        | 0       | 0          | 0         | 0        | 0          | 0     | 0     | 0     | 0        | 0             |
|     | PK       | 0.0   | 0.0         | 0.0      | 0.0     | 0.0        | 0.0       | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0           |
| 3   | MISC LD  |       |             |          |         |            |           |          |            |       |       |       |          |               |
|     | OIL      | 0     | 0           | 0        | 0       | 0          | 0         | 0        | 0          | 0     | 0     | 0     | 0        | 0             |
|     | PK       | 0.0   | 0.0         | 0.0      | 0.0     | 0.0        | 0.0       | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0           |
| 4   | MISC LD  |       | ,           |          |         |            |           |          |            |       |       |       |          |               |
|     | P STEAM  | 0     | 0           | 0        | 0       | 0          | 0         | 0        | 0          | 0     | 0     | 0     | 0        | 0             |
|     | PK       | 0.0   | 0.0         | 0.0      | 0.0     | 0.0        | 0.0       | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0           |
| 5   | MISC LD  |       |             |          |         | _          |           |          |            |       |       | •     | •        | •             |
|     | P HOTH20 | 0     | 0           | 0        | 0       | 0          | 0         | 0        | 0          | 0     | 0     | 0.0   | 0<br>0.0 | 0<br>0.0      |
|     | PK       | 0.0   | 0.0         | 0.0      | 0.0     | 0.0        | 0.0       | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0           |
| 6   | MISC LD  |       |             |          |         | _          |           |          | _          | _     |       | •     | •        | •             |
|     | P CHILL  | 0     | 0           | 0        | 0       | 0          | 0         | 0        | 0          | 0     | 0     | 0     | 0<br>0.0 | 0<br>0.0      |
|     | PK       | 0.0   | 0.0         | 0.0      | 0.0     | 0.0        | 0.0       | 0.0      | 0.0        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0           |
| 1   |          |       |             | E UTILIT |         |            |           |          |            |       |       |       | 7.50     | 10.444        |
| -   | CHILLD   | 3452  | 3118        | 3452     | 3341    | 3452       | 3341      | 3452     | 3452       | 3341  | 3452  | 3341  | 3452     | 40,646<br>4.6 |
|     | PK       | 4.6   | 4.6         | 4.6      | 4.6     | 4.6        | 4.6       | 4.6      | 4.6        | 4.6   | 4.6   | 4.6   | 4.6      | 4.0           |
| 2   |          | *     |             | E UTILIT |         |            |           |          |            |       |       |       | P. 1     | . 700         |
|     | HOTLD    | 576   | 520         | 576      | 557     | 576        | 557       | 576      | 576        | 557   | 576   | 557   | 576      | 6,780         |
|     | PK ·     | 0.8   | 8.0         | 8.0      | 0.8     | 0.8        | 0.8       | 0.8      | 8.0        | . 0.8 | 0.8   | 8.0   | 0.8      | 0.8           |
| 1   | EQ1010S  |       | <b>2</b> -S | TG CTV<1 | 90 TONS |            |           | HW) C    | hiller CH- |       |       |       |          |               |
|     | ELEC     | 29182 | 29595       | 34278    | 34049   | 36892      | 36951     | 38363    | 38476      | 35653 | 35366 | 31788 | 32142    | 412,735       |
|     | PK       | 84.7  | 88.1        | 88.1     | 88.1    | 88.1       | 88.1      | 88.1     | 88.1       | 88.1  | 88.1  | 88.1  | 88.1     | 88.1          |
| 1   | EQ5100   |       | coc         | LING TOW | ER FANS |            |           | T        | wr. Fan C  | T-1A  |       |       |          |               |
|     | ELEC     | 1545  | 1825        | 2220     | 2372    | 3350       | 5375      | 8377     | 8552       | 6499  | 2753  | 1914  | 1945     | 46,726        |
| -   | PK       | 8.5   | 8.7         | 8.9      | 9.9     | 11.8       | 12.5      | 12.5     | 12.5       | 12.5  | 10.6  | 8.8   | 8.7      | 12.5          |

| f | Equip       |            |            |                  |          | Mont      | hly Cons | umption |            |       |       |       |       |          |
|---|-------------|------------|------------|------------------|----------|-----------|----------|---------|------------|-------|-------|-------|-------|----------|
| m | Code        | Jan        | Feb        | Mar              | Apr      | May       | June     | July    | Aug        | Sep   | Oct   | Nov   | Dec   | Total    |
| 1 | EQ5100      |            | COOL       | ING TOWE         | R FANS   |           |          |         |            |       |       |       |       |          |
|   | WATER       | . 99       | 104        | 123              | 123      | 134       | 135      | 140     | 141        | 130   | 128   | 112   | 112   | 1,481    |
|   | PK          | 0.3        | 0.3        | 0.4              | 0.4      | 0.4       | 0.4      | 0.4     | 0.4        | 0.4   | 0.4   | 0.3   | 0.3   | 0.4      |
| 1 | EQ5001      |            | CHIL       | LED WATE         | R PUMP - | CONSTA    | NT VOLUM | IE CH   | W Pump     | P-7   |       |       |       |          |
|   | ELEC        | 29239      | 26410      | 29239            | 28296    | 29239     | 28296    | 29239   | 29239      | 28296 | 29239 | 28296 | 29239 | 344,268  |
|   | PK          | 39.3       | 39.3       | 39.3             | 39.3     | 39.3      | 39.3     | 39.3    | 39.3       | 39.3  | 39.3  | 39.3  | 39.3  | 39.3     |
| • | EQ5010      |            | COND       | ENSER WA         | TED DIME | 2-CV(H1CH | FEETC '  |         | ID Pump    | 10A   |       |       |       |          |
| 1 | ELEC        | 20460      | 18480      | 20460            | 19800    | 20460     | 19800    | 20460   | 20460      | 19800 | 20460 | 19800 | 20460 | 240,900  |
|   | PK          | 27.5       | 27.5       | 27.5             | 27.5     | 27.5      | 27.5     | 27.5    | 27.5       | 27.5  | 27.5  | 27.5  | 27.5  | 27.5     |
| _ |             | \ <u></u>  |            |                  |          | -DI OCKO  |          |         |            |       |       |       |       |          |
| 1 | EQ5300      | 7//        |            | ROL PANE<br>744  | 720      | 744       | 720      | 744     | 744        | 720   | 744   | 720   | 744   | 8,760    |
|   | EFEC        | 744<br>1.0 | 672<br>1.0 | 1.0              | 1.0      | 1.0       | 1.0      | 1.0     | 1.0        | 1.0   | 1.0   | 1.0   | 1.0   | 1.0      |
|   | PK          | 1.0        | 1.0        | 1.0              | 1.0      | 1.0       | 1.0      |         |            |       |       |       |       |          |
| 1 | EQ5020      |            | HEAT       | TING WATE        | R CIRCU  | LATION PL | JMP      | HV      | V pump P   | -5    |       |       |       | Γ        |
|   | ELEC        | 5661       | 5113       | 5661             | 5478     | 5661      | 5478     | 5661    | 5661       | 5478  | 5661  | 5478  | 5661  | 66,64    |
|   | PK          | 16.6       | 16.6       | 16.6             | 16.6     | 16.6      | 16.6     | 16.6    | 16.6       | 16.6  | 16.6  | 16.6  | 16.6  | 16.      |
| 2 | EQ1010S     |            | 2-S        | TG CTV<19        | O TONS   | W\HT REC  | (95 DEG  | Chi     | ller CH-3  |       |       |       |       | <b>_</b> |
| _ | ELEC        | 0          | 94         | 1717             | 3285     | 4934      | 5901     | 5783    | 6321       | 4669  | 3725  | 253   | 94    | 36,77    |
|   | PK          | 0.0        | 22.5       | 23.5             | 27.4     | 30.4      | 32.0     | 33.4    | 33.2       | 31.6  | 29.4  | 23.3  | 22.5  | 33.      |
| 2 | EQ5100      |            | roo        | LING TOWE        | P FANS   |           |          | Tv      | vr. Fan CT | -1B   |       |       |       |          |
| ~ | ELEC        | 0          | 0          | 0                | 0        | 256       | 1934     | 2246    | 2253       | 1001  | 15    | 0     | 0     | 7,70     |
|   | PK          | 0.0        | 0.0        | 0.0              | 1.8      | 6.3       | 10.8     | 10.8    | 10.8       | 10.8  | 3.7   | 0.0   | 0.0   | 10.      |
| _ |             |            |            |                  | TD FANC  |           |          |         | -          |       |       |       |       | •        |
| 2 | EQ5100      | 0          | .0         | LING TOWN        | 10       | 17        | 20       | 20      | 22         | 16    | 12    | 1     | 0     | 12       |
| - | WATER<br>PK | 0.0        | 0.0        | 0.1              | 0.1      | 0.1       | 0.1      | 0.1     | 0.1        | 0.1   | 0.1   | 0.1   | 0.0   | 0.       |
|   |             |            |            |                  |          |           |          |         |            |       |       |       |       |          |
| 2 | EQ5001      | _          |            | LLED WAT         |          |           | ANT VOLU |         | •          | •     | 0     | 0     | 0     |          |
|   | ELEC        | 0          | 0          | 0                | 0        | 0         | 0        | 0       | 0          | 0     | 0.0   | 0.0   | 0.0   | ·= 0.    |
|   | PK          | 0.0        | - 0.0      | 0.0              | 0.0      | 0.0       | 0.0      | 0.0     | 0.0        |       | 0.0   | 0.0   | 0.0   | 0.       |
| 2 | EQ5010      |            | CON        | DENSER W         | ATER PUM | P-CV(HIG  | H EFFIC. | , c     | ND Pump    | 10B   |       |       |       | 1        |
|   | ELEC        | 0          | 293        | 3129             | 3111     | 4026      | 4538     | 4429    | 4721       | 3678  | 3257  | 586   | 311   | 32,08    |
|   | PK          | 0.0        | 18.3       | 18.3             | 18.3     | 18.3      | 18.3     | 18.3    | 18.3       | 18.3  | 18.3  | 18.3  | 18.3  | 18.      |
|   |             |            |            |                  | 0 7.11   | ובטו טכאנ |          |         |            |       |       |       |       |          |
| 2 | EQ5300      |            | CON        | ITROL PAN        | EL & IN! | EKLOCKS   |          |         |            |       |       |       |       |          |
| 2 | EQ5300      | 0          | 16         | ITROL PAN<br>171 | EL & IN: | 220       | 248      | 242     | 258        | 201   | 178   | 32    | 17    | 1,75     |

|     |        |             |      | E Q        | Mqiu      | ENT         | ENER           | G Y C       | омѕи        | MPTI | O N  |      |      | •••••••        |
|-----|--------|-------------|------|------------|-----------|-------------|----------------|-------------|-------------|------|------|------|------|----------------|
| Ref | Equip  |             |      | <b></b>    | . <b></b> | Month       | Ily Consi      | umption .   |             |      |      |      |      |                |
|     | Code   | Jan         | Feb  | Mar        | Apr       | May         | June           | July        | Aug         | Sep  | 0ct  | Nov  | Dec  | Total          |
|     |        |             |      |            |           | 550 BD1115  | _              | Fan AH      | 1           |      |      |      |      |                |
| 1   | EQ4223 | 4040        |      |            |           | EED DRIVE   |                | 1000        | 1919        | 1845 | 1894 | 1831 | 1895 | 22,280         |
|     | ELEC   | 1810        | 1713 | 1902       | 1831      | 1898<br>6.5 | 6.5            | 1900<br>6.5 | 6.5         | 6.5  | 6.5  | 6.5  | 6.5  | 6.5            |
|     | PK     | 6.5         | 6.5  | 6.5        | 6.5       | 0.3         |                |             |             | 6.2  |      | 0.5  |      | 0.5            |
| 1   | EQ4223 |             | FC F | AN WIVAR   | TARLE SP  | EED DRIVE   | =              | Far         | AHSI        |      |      |      |      | <u> </u>       |
|     | ELEC   | 0           | 0    | 15         | 0         | 8           | 0              | 0           | 0           | 7    | 0    | 0    | 0    | 31             |
|     | PK     | 0.0         | 0.0  | 0.2        | 0.2       | 0.2         | 0.0            | 0.0         | 0.0         | 0.2  | 0.2  | 0.0  | 0.0  | 0.2            |
|     |        |             |      |            |           |             |                | l Fan       | EE_1        |      |      |      | r    |                |
| 1   | EQ4003 |             | FC C | ENTR I FUG | AL - CON  | STANT VOL   | LUME           | · I all     | Ľ! -1       |      |      |      |      |                |
|     | ELEC   | <b>33</b> 5 | 335  | 372        | 360       | 372         | 382            | 390         | 395         | 379  | 372  | 360  | 372  | 4,423          |
|     | PK     | 1.2         | 1.2  | 1.2        | 1.2       | 1.2         | 1.2            | 1.2         | 1.2         | 1.2  | 1.2  | 1.2  | 1.2  | 1.2            |
|     |        |             |      |            |           |             |                | Fan Al      | 12          |      |      |      | ·    |                |
| 2   | EQ4223 |             |      |            |           | EED DRIVE   |                |             |             |      | 7.05 | 7707 | 7/25 | 70 777         |
|     | ELEC   | 2927        | 2908 | 3467       | 3355      | 3443        | 3331           | 3437        | 3419        | 3292 | 3405 | 3323 | 3425 | 39,733<br>10.2 |
|     | PK     | 10.2        | 10.2 | 10.2       | 10.2      | 10.2        | 10.2           | 10.2        | 10.2        | 10.2 | 10.2 | 10.2 | 10.2 | 10.2           |
| 2   | EQ4223 |             | EC E | AN LIVVAR  | TARLE SE  | EED DRIV    | F              | Fan Al      | iS1         |      |      |      |      |                |
| ۷   | ELEC   | 187         | 195  | 182        | 100       | 63          | 4              | 4           | 4           | 61   | 103  | 213  | 219  | 1,336          |
|     | PK     | 0.6         | 0.6  | 0.6        | 0.6       | 0.6         | 0.0            | 0.0         | 0.0         | 0.6  | 0.6  | 0.6  | 0.6  | 0.6            |
|     | 1 K    |             |      |            |           |             |                | Fan Al-     |             |      |      |      |      |                |
| 3   | EQ4223 |             | FC F | AN W\VAR   | IABLE SF  | EED DRIV    | E              | 1 Gil 7 tr  |             |      |      |      |      |                |
|     | ELEC   | 1262        | 1186 | 1387       | 1223      | 1325        | 1322           | 1169        | 1387        | 1223 | 1269 | 1173 | 1281 | 15,207         |
|     | PK     | 6.5         | 6.5  | 6.5        | 6.5       | 6.5         | 6.5            | 6.5         | 6.5         | 6.5  | 6.5  | 6.5  | 6.5  | 6.5            |
|     |        |             |      |            |           |             |                | Fan Al      |             |      |      |      |      |                |
| 3   | EQ4223 |             |      |            |           | PEED DRIV   |                |             |             |      |      | -00  | 00   | 450            |
|     | ELEC   | 81          | 94   | 98         | 52        | 37          | 5              | 6           | 6           | 35   | 53   | 90   | 92   | 0.4            |
|     | PK     | 0.4         | 0.4  | 0.4        | 0.4       | 0.4         | 0.0            | 0.0         | 0.0         | 0.4  | 0.4  | 0.4  | 0.4  | 0.4            |
|     | E04223 |             | EC E | EAN UNVAR  | TARIF S   | PEED DRIV   | r <del>E</del> | Fan A       | H5          |      |      |      |      |                |
| 4   | ELEC   | 566         | 1148 | 1554       | 1730      | 2681        | 3468           | 3301        | 3642        | 2708 | 2152 | 1189 | 1179 | 25,319         |
| -   | PK     | 5.0         | 10.1 | 10.1       | 14.1      | 17.2        | 17.2           | 17.2        | 17.2        | 17.2 | 14.1 | 10.1 | 10.1 | 17.2           |
|     |        | 1           |      |            |           |             |                | F== A1      | 104         |      |      |      |      |                |
| 4   | EQ4223 |             | FC I | FAN W\VAR  | RIABLE SI | PEED DRIV   | /E             | Fan A       | 151         |      |      |      |      | <del></del>    |
|     | ELEC   | 40          | 81   | 158        | 74        | 74          | 14             | 14          | 15          | 75   | 87   | 84   | 83   | 802            |
|     | PK     | 0.4         | 0.7  | 1.2        | 1.2       | 1.2         | -0.0           | 0.0         | 0.0         | 1.2  | 1.2  | 0.7  | 0.7  | 1.2            |
|     |        |             |      |            |           |             |                | Fan Al      | <del></del> |      |      | ,    |      |                |
| 5   | EQ4223 |             |      |            |           | PEED DRIV   |                |             |             |      |      |      |      | 70.570         |
|     | ELEC   | 2646        | 2813 | 3334       | 3148      | 3471        | 3523           | 3451        | 3671        | 3287 | 3310 | 2873 | 3013 | 38,539         |
|     | PK     | 13.9        | 13.9 | 13.9       | 13.9      | 13.9        | 13.9           | 13.9        | 13.9        | 13.9 | 13.9 | 13.9 | 13.9 | 13.9           |
|     | EQ4223 |             | EC.  | FAN UNNA   | PIARIF C  | PEED DRI\   | /F             | Fan A       | HS1         |      |      |      |      |                |
| 2   | ELEC   | 0           | 87   | 74N W (VAI | 48        | 65          | 0              | 0           | 0           | 63   | 49   | 47   | 0    | 455            |
| _   | CLCL   |             |      |            |           |             |                |             |             |      |      |      |      | 0.8            |
|     | PK     | 0.0         | 0.8  | 0.8        | 0.8       | 0.8         | 0.1            | 0.2         | 0.0         | 0.8  | 0.8  | 0.8  | 0.8  | 0,0            |

|     |                |         |             | E Q         | UIPM        | ENT         | ENER        | G Y C       | ONSU          | MPTI        | O N         |             | •••• |          |
|-----|----------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|------|----------|
| Ref | Equip          |         |             |             |             | Mont        | hly Cons    | umption     |               |             |             |             |      |          |
| Num | Code           | Jan     | Feb         | Mar         | Apr         | May         | June        | July        | Aug           | Sep         | Oct         | Nov         | Dec  | Total    |
| _   |                |         |             |             |             |             |             | an EF-2     |               |             |             |             |      |          |
| 5   | EQ4003         |         |             | ENTRIFUG    |             |             |             |             |               |             | 242         |             |      | 1        |
|     | ELEC           | 753     | 739         | 826         | 830         | 878         | 858         | 878         | 888           | 848         | 869         | 840         | 823  | 10,03    |
|     | PK             | 2.7     | 2.7         | 2.7         | 2.7         | 2.7         | 2.7         | 2.7         | 2.7           | 2.7         | 2.7         | 2.7         | 2.7  | 2.1      |
| 6   | EQ4223         |         | FC F        | AN W\VAR    | TARLE SP    | FED DRIV    |             | an AH7      |               |             |             |             |      |          |
| Ŭ   | ELEC           | 2087    | 1859        | 2058        | 2110        | 2220        | 2287        | 2360        | 2397          | 2147        | 2183        | 1992        | 2058 | 25,759   |
|     | PK             | 7.4     | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4         | 7.4           | 7.4         | 7.4         | 7.4         | 7.4  | 7.       |
|     |                | 1       |             |             |             |             |             |             |               |             |             |             | l    |          |
| 6   | EQ4223         |         | FC F        | AN W\VAR    | IABLE SP    | EED DRIV    | E           | an AHS1     |               |             |             |             |      |          |
|     | ELEC           | 146     | 130         | 130         | 77          | 53          | 14          | 14          | 14            | 51          | 80          | 140         | 144  | 993      |
|     | PK             | 0.5     | 0.5         | 0.5         | 0.5         | 0.5         | 0.0         | 0.0         | 0.0           | 0.5         | 0.5         | 0.5         | 0.5  | 0.       |
|     |                |         |             |             |             |             | F           | an AH-8     |               |             |             |             |      |          |
| 7   | EQ4003         |         |             | ENTRIFUG    |             |             | LUME        | •           |               |             |             |             |      |          |
|     | ELEC           | 2455    | 2218        | 2455        | 2376        | 2455        | 2376        | 2455        | 2455          | 2376        | 2455        | 2376        | 2455 | 28,90    |
|     | PK             | 3.3     | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3           | 3.3         | 3.3         | 3.3         | 3.3  | 3.       |
|     | F0/007         |         |             |             |             |             |             | an AH-9     |               |             |             |             |      |          |
| ٥   | EQ4003<br>ELEC | 4166    |             | ENTRIFUG    |             |             |             | /1//        | /1//          | (072        | 1111        | 4072        | /1// | 10.05    |
|     | PK             | 5.6     | 3763<br>5.6 | 4166<br>5.6 | 4032<br>5.6 | 4166<br>5.6 | 4032<br>5.6 | 4166<br>5.6 | 4166<br>5.6   | 4032<br>5.6 | 4166<br>5.6 | 4032<br>5.6 | 5.6  | 49,05    |
|     | T K            | 7.5     |             |             |             |             | 7.0         |             |               |             |             |             |      | ٦.       |
| 9   | EQ4003         |         | FC C        | ENTRIFUG    | AL - CON    | STANT VO    | LUME        | Fan AH-1    | 0             |             |             |             |      |          |
|     | ELEC           | 1339    | 1210        | 1339        | 1296        | 1339        | 1296        | 1339        | 1339          | 1296        | 1339        | 1296        | 1339 | 15,76    |
|     | PK             | 1.8     | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8         | 1.8           | 1.8         | 1.8         | 1.8         | 1.8  | 1.       |
|     |                | *       |             |             |             |             |             | Fan AH-1    | I1A           |             |             |             |      |          |
| 10  | EQ4003         |         | FC C        | ENTRIFUG    | AL - CON    | STANT VO    | LUME        | ( 4.17.1.1  |               |             |             |             |      |          |
|     | ELEC           | 2753    | 2486        | 2753        | 2664        | 2753        | 2664        | 2753        | 2753          | 2664        | 2753        | 2664        | 2753 | 32,41    |
|     | PK             | 3.7     | 3.7         | 3.7         | 3.7         | 3.7         | 3.7         | 3.7         | 3.7           | 3.7         | 3.7         | 3.7         | 3.7  | 3.       |
|     |                |         |             |             |             |             |             | Fan AH-     | 11B           |             |             |             |      |          |
| 11  | EQ4003         |         |             | ENTRIFUG    |             |             |             |             |               |             |             |             |      | <u> </u> |
| -   | ELEC           | 3497    | 3158        | 3497        | 3384        | 3497        | 3384        | 3497        | 3497          | 3384        | 3497        | 3384        | 3497 | 41,17    |
|     | PK             | 4.7     | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7         | 4.7           | 4.7         | 4.7         | 4.7         | 4.7  | 4.       |
| 12  | EQ4003         |         | EC C        | ENTRIFUG    | 'AI - CON   | ISTANT NO   | N PME       | Fan Al-     | I- <b>1</b> 2 |             |             |             |      |          |
| 12  | ELEC           | 2455    | 2218        | 2455        | 2376        | 2455        | 2376        | 2455        | 2455          | 2376        | 2455        | 2376        | 2455 | 28,90    |
|     | -PK            | 3.3     | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3         | 3.3           | 3.3         | 3.3         | 3.3         | 3.3  | 3.       |
|     | ,              | 1       |             |             |             |             |             |             |               |             |             |             |      | ٥.       |
| 13  | EQ4003         |         | FC 0        | CENTRIFUG   | AL - CON    | STANT VO    | LUME        | Fan Al      | 1-14          |             |             |             |      |          |
|     | ELEC           | 4166    | 3763        | 4166        | 4032        | 4166        | 4032        | 4166        | 4166          | 4032        | 4166        | 4032        | 4166 | 49,05    |
|     | PK             | 5.6     | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6         | 5.6           | 5.6         | 5.6         | 5.6         | 5.6  | 5.       |
|     |                | <b></b> |             |             |             |             |             |             |               |             |             |             |      |          |
| 13  | EQ4223         |         | FC F        | AN W\VAR    | IABLE SP    | EED DRIV    | Æ           | ran         | AHS1          |             |             |             |      |          |
|     | ELEC           | 116     | 104         | 116         | 112         | 116         | 112         | 116         | 116           | 112         | 116         | 112         | 116  | 1,36     |
| -   | PK             | 0.2     | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2           | 0.2         | 0.2         | 0.2         | 0.2  | 0.       |

| PK                                                                                 |     |        |      |      | E Q       | UIPM      | ENT      | ENER      | G Y C   | ONSU | MPTI | O N   |        | •••• |        |
|------------------------------------------------------------------------------------|-----|--------|------|------|-----------|-----------|----------|-----------|---------|------|------|-------|--------|------|--------|
| Num Code                                                                           | Ref | Equip  |      |      |           |           | Mont     | hly Cons  | umption |      |      |       |        |      |        |
| 14   E04223   F.                               |     |        | Jan  | Feb  |           |           |          | •         | •       |      |      | Oct   | Nov    | Dec  | Total  |
| ELEC                                                                               |     |        |      |      |           |           |          | Fai       | n AHS4  |      |      |       |        |      |        |
| PK                                                                                 | 14  |        | 4577 |      |           |           |          |           | 1577    | 1577 | 1/8/ | 1577  | 1/:8/. | 1533 | 18 054 |
| GAS                                                                                |     |        | f    |      |           |           |          |           |         |      |      |       |        |      |        |
| GAS                                                                                |     |        |      |      | ELDED CT  | SAN BOLL  |          |           |         |      |      |       |        |      |        |
| PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                          | 1   |        | 0    |      |           |           |          | n         | n       | n    | n    | 0     | 0      | 0    | 0      |
| 1 E05020 HEATING WATER CIRCULATION PUMP ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |     |        |      |      |           |           |          |           |         |      |      |       |        |      |        |
| 1 E05020                                                                           |     | 71     | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  |       |        |      |        |
| E                                                                                  | 1   | EQ5020 |      | HEAT | ING WATE  | R CIRCUL  | ATION PL | IMP       |         |      |      |       |        |      |        |
| 1 E03240 BOILER FORCED DRAFT FAN ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        |     | ELEC   | 0    | 0    | 0         | 0         | 0        | 0         | 0       | 0    |      | 0     | 0      |      | · -    |
| ELEC                                                                               |     | PK     | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |
| ELEC                                                                               | 1   | EQ5240 |      | BOIL | ER FORCE  | D DRAFT   | FAN      |           |         |      |      |       |        |      |        |
| 1 EQ5307                                                                           |     |        | 0    |      |           |           |          | 0         | 0       | 0    | 0    | 0     | 0      | 0    | 0      |
| ELEC                                                                               |     | PK     | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |
| ELEC                                                                               | 1   | F05307 |      | CONT | ROLS      |           |          |           |         |      |      |       |        |      |        |
| PK                                                                                 | •   | -      | 0    |      |           | 0         | 0        | 0         | 0       | 0    | 0    | 0     | 0      | 0    | 0      |
| ELEC                                                                               |     |        |      | 0.0  | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |
| ELEC                                                                               | 1   | FQ5061 |      | CON  | DENSATE F | RETURN PU | IMP (HIG | H EFFICII | ENCY)   |      |      |       |        |      |        |
| PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                          |     |        | 0    | 0    | 0         | 0         | 0        | 0         | 0       | 0    | 0    | 0     | 0      | 0    | . 0    |
| WATER                                                                              |     |        | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |
| WATER                                                                              | 1   | EQ5406 |      | MAKE | E-UP WATE | ER .      |          |           |         |      |      |       |        |      |        |
| PK                                                                                 | •   |        | 0    |      |           |           | ٥        | 0         | 0       | 0    | 0    | 0     | 0      | 0    | 0      |
| GAS                                                                                |     |        |      |      | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |
| GAS                                                                                | 2   | E02002 |      | GAS  | FIRED S   | TEAM ROII | FR       |           |         |      |      |       |        |      |        |
| PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                          |     |        | 0    |      |           |           |          | 0         | 0       | 0    | 0    | 0     | 0      | 0    | 0      |
| ELEC                                                                               | -   |        |      |      |           |           |          |           |         |      | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |
| ELEC                                                                               | 2   | E05020 |      | HFA  | TING WAT  | FR CIRCUI | ATION P  | UMP       |         |      |      |       |        |      |        |
| PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                          | _   |        | 0    |      |           |           |          |           | 0       | 0    | 0    | 0     | 0      | 0    | 0      |
| ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                         |     |        |      |      |           |           |          |           |         |      | 0.0  | . 0.0 | 0.0    | 0.0  | 0.0    |
| ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                         | 2   | F05240 |      | ROI  | IER FORC  | FD DRAFT  | FAN      |           |         |      |      |       |        |      |        |
| PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                          |     |        | n    |      |           |           |          | 0         | 0       | 0    | 0    | . 0   | 0      | 0    | 0      |
| ELEC 0 0 0 0 0 0 0 0 0 0 0                                                         |     |        |      |      |           |           |          |           |         |      |      |       |        |      | 0.0    |
| ELEC 0 0 0 0 0 0 0 0 0 0 0                                                         | _   | F0E707 |      | CON  | TDOLS     |           |          |           |         |      |      |       |        |      |        |
| 4666                                                                               | 2   |        | n    |      |           | n         | n        | n         | n       | n    | n    | 0     | ٥      | 0    | 0      |
|                                                                                    | -   | PK     | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0       | 0.0     | 0.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0    |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

|     |        |     |      | E Q      | UIPM      | ENT      | ENER     | G Y C   | ONSU | MPTI | O N | <del></del> |     |       |
|-----|--------|-----|------|----------|-----------|----------|----------|---------|------|------|-----|-------------|-----|-------|
| Ref | Equip  |     |      |          |           | Mont     | hly Cons | umption |      |      |     |             |     |       |
| Num | Code   | Jan | Feb  | Mar      | Apr       | May      | June     | July    | Aug  | Sep  | Oct | Nov         | Dec | Total |
| 2   | EQ5061 |     | COND | ENSATE R | ETURN PUN | 4P (HIGH | EFFICIE  | NCY)    |      |      |     |             |     |       |
|     | ELEC   | 0   | 0    | 0        | 0 :       | 0        | .0       | 0       | 0    | 0    | 0   | 0           | 0   | 0     |
|     | PK     | 0.0 | 0.0  | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0  | 0.0  | 0.0 | 0.0         | 0.0 | 0.0   |
| 2   | EQ5406 |     | MAKE | -UP WATE | R         |          |          |         |      |      |     |             |     |       |
|     | WATER  | 0   | 0    | 0        | 0         | 0        | 0        | 0       | 0    | 0    | 0   | 0           | 0   | 0     |
|     | PK     | 0.0 | 0.0  | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0  | 0.0  | 0.0 | 0.0         | 0.0 | 0.0   |
| 3   | EQ2263 |     | ELEC | TRIC RES | ISTANCE I | HEAT WIT | H FAN    |         |      |      |     |             |     |       |
|     | ELEC   | 0   | 0    | 0        | 0         | 0        | 0        | 0       | 0    | 0    | 0   | 0           | 0   | 0     |
|     | PK     | 0.0 | 0.0  | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0  | 0.0  | 0.0 | 0.0         | 0.0 | 0.0   |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1 EXISTING SECONDARY EQUIPMENT AND SYSTEMS

### ECO-E, LSTC BUILDING

System Totals

| Percent   | Cool  | ing Loa | d     | Heati      | ng Load |       | Cooling   | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|------------|---------|-------|-----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours | Cap.      | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)     |       | (Cfm)     | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 5.9   | 0       | 0     | -54,281    | 88      | 1,668 | 6,618.8   | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 11.9  | 0       | 0     | -108,562   | 12      | 221   | 13,237.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 17.8  | 54      | 4,740 | -162,843   | 0       | 0     | 19,856.5  | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 23.7  | 0       | 30    | -217,124   | 0       | 0     | 26,475.3  | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 29.7  | 3       | 250   | -271,405   | 0       | 0     | 33,094.2  | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 35.6  | 1       | 69    | -325,686   | 0       | 0     | 39,713.0  | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 41.5  | 1       | 46    | -379,967   | 0       | 0     | 46,331.8  | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 47.5  | 1       | 123   | -434,248   | 0       | 0     | 52,950.7  | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 53.4  | 4       | 343   | -488,529   | 0       | 0     | 59,569.5  | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 59.4  | 2       | 147   | -542,810   | 0       | 0     | 66,188.3  | 54      | 4,745 | 0.0     | 0       | 0     |
| 50 - 55   | 65.3  | 2       | 175   | -597,091   | 0       | 0     | 72,807.2  | 3       | 267   | 0.0     | 0       | 0     |
| 55 - 60   | 71.2  | 3       | 305   | -651,373   | 0       | 0     | 79,426.0  | 1       | 99    | 0.0     | 0       | 0     |
| 60 - 65   | 77.2  | 2       | 177   | -705,654   | 0       | 0     | 86,044.8  | 1       | 93    | 0.0     | 0       | 0     |
| 65 - 70   | 83.1  | 3       | 259   | -759,935   | 0       | 0     | 92,663.7  | 0       | 18    | 0.0     | 0       | 0     |
| 70 - 75   | 89.0  | 4       | 348   | -814,216   | 0       | 0     | 99,282.5  | 1       | 53    | 0.0     | 0       | . 0   |
| 75 - 80   | 95.0  | 4       | 356   | -868,497   | 0       | 0     | 105,901.3 | 1       | 46    | 0.0     | 0       | . 0   |
| 80 - 85   | 100.9 | 2       | 200   | -922,778   | 0       | 0     | 112,520.2 | 10      | 889   | 0.0     | 0       | 0     |
| 85 - 90   | 106.8 | 4       | 354   | -977,059   | 0       | 0     | 119,139.0 | 3       | 271   | 0.0     | 0       | 0     |
| 90 - 95   | 112.8 | 10      | 838   | -1,031,340 | 0       | 0     | 125,757.8 | 11      | 998   | 0.0     | 0       | 0     |
| 95 - 100  | 118.7 | 0       | 0     | -1,085,621 | 0       | 0     | 132,376.7 | 15      | 1,281 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0          | 0       | 6,871 | 0.0       | 0       | 0     | 0.0     | 0       | 8,760 |

| ef | Equip        |             |             |                 |             | Mont        | thly Cons   | sumption    |             | <del></del> - |       |          | ·             |         |
|----|--------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|---------------|-------|----------|---------------|---------|
| m  | Code         | Jan         | Feb         | Mar             | Apr         | May         | June        | July        | Aug         | Sep           | Oct   | Nov      | Dес           | Total   |
| 0  | LIGHTS       | Lightin     | g Systems   | ;               |             |             |             |             |             |               |       |          |               |         |
| •  | ELEC         | 31826       | 28759       | 32604           | 30674       | 32215       | 31452       | 31437       | 32604       | 30674         | 32215 | 30674    | 31437         | 376,570 |
|    | PK           | 94.8        | 94.8        | 94.8            | 94.8        | 94.8        | 94.8        | 94.8        | 94.8        | 94.8          | 94.8  | 94.8     | 94.8          | 94.8    |
| 1  | MISC LD      |             |             |                 |             |             |             |             |             |               |       |          |               |         |
|    | ELEC         | 26931       | 24324       | 26931           | 26062       | 26931       | 26062       | 26931       | 26931       | 26062         | 26931 | 26062    | 26931         | 317,08  |
|    | PK           | 72.4        | 72.4        | 72.4            | 72.4        | 72.4        | 72.4        | 72.4        | 72.4        | 72.4          | 72.4  | 72.4     | 72.4          | 72.     |
| 2  | MISC LD      |             |             |                 |             |             |             |             |             |               |       |          |               |         |
|    | GAS          | 0           | 0           | 0               | 0           | 0           | 0           | 0           | 0           | 0             | 0     | 0        | 0             |         |
|    | PK           | 0.0         | 0.0         | 0.0             | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0   | 0.0      | 0.0           | 0.      |
| 3  | MISC LD      |             |             |                 |             |             |             |             |             |               |       |          |               |         |
|    | OIL          | . 0         | 0           | 0               | 0           | 0           | 0           | 0           | 0           | 0             | 0     | 0        | 0             | _       |
|    | PK           | 0.0         | 0.0         | 0.0             | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0   | 0.0      | 0.0           | 0.      |
| 4  | MISC LD      |             |             |                 |             |             | _           |             |             |               |       | _        | _             |         |
|    | P STEAM      | 0           | 0           | 0               | 0           | 0           | 0           | 0           | 0           | 0             | 0     | 0        | 0             | •       |
|    | PK           | 0.0         | 0.0         | 0.0             | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0   | 0.0      | 0.0           | 0.      |
| 5  | MISC LD      |             |             | •               |             |             | _           | •           |             | •             | •     | 0        | 0             |         |
|    | P HOTHZO     | 0           | 0           | 0               | 0           | . 0         | 0           | 0           | 0           | 0.0           | 0.0   | 0<br>0.0 | 0<br>0.0      | 0.      |
|    | PK           | 0.0         | 0.0         | 0.0             | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0   | 0.0      | 0.0           | υ.      |
| 6  | MISC LD      | •           | •           | •               |             | •           | ^           |             | •           | •             | •     | 0        | 0             |         |
|    | P CHILL      | 0           | 0           | 0               | 0           | 0           | 0           | 0           | 0           | 0.0           | 0.0   | 0.0      | 0<br>0.0      | 0.      |
|    | PK           | 0.0         | 0.0         | 0.0             | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0   | 0.0      | 0.0           | 0.      |
| 1  |              | 7/50        |             | E UTILIT        |             | 7/50        | 77/1        | 7/53        | 7/50        | 3341          | 3452  | 3341     | 3452          | 40,64   |
|    | CHILLD<br>PK | 3452<br>4.6 | 3118<br>4.6 | 3452<br>4.6     | 3341<br>4.6 | 3452<br>4.6 | 3341<br>4.6 | 3452<br>4.6 | 3452<br>4.6 | 4.6           | 4.6   | 4.6      | 4.6           | 40,64   |
|    |              | 4.0         | 4.0         | 4.0             | 4.0         | 4.0         | 4.0         | 4.0         | 4.0         | 4.0           | 7.0   | 7.0      | 4.0           | 4       |
| 2  |              | 576         | BAS<br>520  | E UTILIT<br>576 | Y<br>557    | 576         | 557         | 576         | 576         | 557           | 576   | 557      | 576           | 6,78    |
|    | HOTLD<br>PK  | 0.8         |             | 0.8             | 0.8         | 0.8         | 0.8         | - 0.8       | 0.8         | 0.8           | 0.8   | 0.8      | 0.8           | 0,70    |
|    | PK ,         | 0.8         | . 0.0       | 0.0             | 0.0         | 0.0         | 0.0         |             | iller CH-1  |               | 0.0   | 0.0      | 0.0           | v       |
| 1  | EQ1010S      | 20462       |             |                 |             | W\HT REC    |             | HW)         |             |               | 75744 | 71700    | 721/2         | 412.7   |
|    | ELEC         | 29182       | 29595       | 34278           | 34049       | 36892       | 36951       | 38363       | 38476       | 35653         | 35366 | 31788    | 32142<br>88.1 | 412,7   |
|    | PK           | 84.7        | 88.1        | 88.1            | 88.1        | 88.1        | 88.1        | 88.1        | 88.1        | 88.1          | 88.1  | 88.1     | 00.1          | 00      |
| 1  | EQ5100       |             | COO         | LING TOW        | ER FANS     | ıwr. Fa     | n CT-1A     |             |             |               |       |          |               |         |
|    | ELEC         | 1483        | 1752        | 2131            | 2277        | 3216        | 5160        | 8042        | 8210        | 6239          | 2643  | 1837     | 1867          | 44,8    |
|    | PK           | 8.1         | 8.4         | 8.5             | 9.5         | 11.3        | 12.0        | 12.0        | 12.0        | 12.0          | 10.2  | 8.5      | 8.4           | 12      |

|     |         |       |       | E Q       | UIPM     | IENT      | ENER     | GY C      | ONSL      | MPTI     | O N   | · • • • • • • • |       | •••••       |
|-----|---------|-------|-------|-----------|----------|-----------|----------|-----------|-----------|----------|-------|-----------------|-------|-------------|
| Ref | Equip   |       |       |           |          | Mont      | hly Cons | umption   |           |          |       |                 |       |             |
|     | Code    | Jan   | Feb   | Mar       | Арг      | May       | June     | July      | Aug       | Sep      | Oct   | Nov             | Dec   | Total       |
| 1   | EQ5100  |       | COOL  | ING TOWE  | R FANS   |           |          |           |           |          |       |                 |       |             |
|     | WATER   | 99    | 104   | 123       | 123      | 134       | 135      | 140       | 141       | 130      | 128   | 112             | 112   | 1,481       |
|     | PK      | 0.3   | 0.3   | 0.4       | 0.4      | 0.4       | 0.4      | 0.4       | 0.4       | 0.4      | 0.4   | 0.3             | 0.3   | 0.4         |
| 1   | EQ5001  |       | CHIL  | LED WATE  | R PUMP - | · CONSTA  | NT VOLUM | 1E CHW    | / Pump P  | -7       |       |                 |       |             |
|     | ELEC    | 28942 | 26141 | 28942     | 28008    | 28942     | 28008    | 28942     | 28942     | 28008    | 28942 | 28008           | 28942 | 340,764     |
|     | PK      | 38.9  | 38.9  | 38.9      | 38.9     | 38.9      | 38.9     | 38.9      | 38.9      | 38.9     | 38.9  | 38.9            | 38.9  | 38.9        |
| 1   | EQ5010  |       | COND  | ENSER WA  | TER PUM  | P-CV(HIG  | EFFIC.   | CND       | Pump 10A  | <b>\</b> |       |                 |       |             |
| •   | ELEC    | 18451 | 16666 | 18451     | 17856    | 18451     | 17856    | 18451     | 18451     | 17856    | 18451 | 17856           | 18451 | 217,248     |
|     | PK      | 24.8  | 24.8  | 24.8      | 24.8     | 24.8      | 24.8     | 24.8      | 24.8      | 24.8     | 24.8  | 24.8            | 24.8  | 24.8        |
| 1   | EQ5300  |       | CONT  | ROL PANE  | L & INTI | ERLOCKS   |          |           |           |          |       |                 |       |             |
|     | ELEC    | 744   | 672   | 744       | 720      | 744       | 720      | 744       | 744       | 720      | 744   | 720             | 744   | 8,760       |
|     | PK      | 1.0   | 1.0   | 1.0       | 1.0      | 1.0       | 1.0      | 1.0       | 1.0       | 1.0      | 1.0   | 1.0             | 1.0   | 1.0         |
| 1   | EQ5020  |       | HEAT  | ING WATE  | R CIRCU  | LATION PU | MP HV    | V pump P- | 5         |          |       |                 |       |             |
|     | ELEC    | 5354  | 4836  | 5354      | 5181     | 5354      | 5181     | 5354      | 5354      | 5181     | 5354  | 5181            | 5354  | 63,035      |
|     | PK      | 15.7  | 15.7  | 15.7      | 15.7     | 15.7      | 15.7     | 15.7      | 15.7      | 15.7     | 15.7  | 15.7            | 15.7  | 15.7        |
| 2   | EQ1010S |       | 2-\$1 | rg CTV<19 | O TONS   | W\HT REC  | (95 DEG  | HW) Chi   | ller CH-3 |          |       |                 |       |             |
|     | ELEC    | 0     | 94    | 1717      | 3285     | 4934      | 5901     | 5783      | 6321      | 4669     | 3725  | 253             | 94    | 36,776      |
|     | PK      | 0.0   | 22.5  | 23.5      | 27.4     | 30.4      | 32.0     | 33.4      | 33.2      | 31.6     | 29.4  | 23.3            | 22.5  | 33.4        |
| 2   | EQ5100  |       | COOL  | ING TOWE  | R FANS   | Twr. Fan  | CT-1B    |           |           |          |       |                 |       |             |
|     | ELEC    | 0     | 0     | 0         | 0        | 246       | 1863     | 2163      | 2169      | 963      | 15    | 0               | 0     | 7,419       |
|     | PK      | 0.0   | 0.0   | 0.0       | 1.7      | 6.1       | 10.4     | 10.4      | 10.4      | 10.4     | 3.6   | 0.0             | 0.0   | 10.4        |
| 2   | EQ5100  |       | COOI  | LING TOW  | R FANS   |           |          |           |           |          |       |                 |       |             |
|     | WATER   | 0     | 0     | 5         | 10       | 17        | 20       | 20        | 22        | 16       | 12    | 1               | 0     | 124         |
|     | PK      | 0.0   | 0.0   | 0.1       | 0.1      | 0.1       | 0.1      | 0.1       | 0.1       | 0.1      | 0.1   | 0.1             | 0.0   | 0.1         |
| 2   | EQ5001  |       | CHI   | LLED WATE | ER PUMP  | - CONST   | ANT VOLU | ME        |           |          |       |                 |       |             |
|     | ELEC    | 0     | 0     | 0         | 0        | 0         | 0        | 0         | 0         | 0        | 0     | 0               | 0     | 0           |
|     | PK      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0       | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0             | 0.0   | . 0.0       |
| 2   | EQ5010  |       | CON   | DENSER W  | ATER PUM | P-CV(HIG  | H EFFIC. | ) CND     | Pump 10   | В        |       |                 |       | <del></del> |
| -   | ELEC    | 0     | 283   | 3027      | 3009     | 3894      | 4390     | 4283      | 4567      | 3558     | 3151  | 566             | 301   | 31,028      |
|     | PK      | 0.0   | 17.7  | 17.7      | 17.7     | 17.7      | 17.7     | 17.7      | 17.7      | 17.7     | 17.7  | 17.7            | 17.7  | 17.7        |
| 2   | EQ5300  |       | СОИ   | TROL PAN  | EL & INT | ERLOCKS   |          |           |           |          |       |                 |       |             |
| -   | ELEC    | 0     | 16    | 171       | 170      | 220       | 248      | 242       | 258       | 201      | 178   | 32              | 17    | 1,753       |
|     | PK      | 0.0   | 1.0   | 1.0       | 1.0      | 1.0       | 1.0      | 1.0       | 1.0       | 1.0      | 1.0   | 1.0             | 1.0   | 1.0         |
|     |         |       |       |           |          | -         |          |           |           |          |       |                 |       |             |

|    |                |              |                                         | E Q         | UIPM     | ENT         | ENER             | G Y C       | ONSU        | MPTI                                  | o N         |      |             |         |
|----|----------------|--------------|-----------------------------------------|-------------|----------|-------------|------------------|-------------|-------------|---------------------------------------|-------------|------|-------------|---------|
| ef | Equip          |              |                                         |             |          | Monti       | nlv Cons         | umption     |             | <b></b>                               |             |      |             |         |
|    | Code           | Jan          | Feb                                     | Mar         | Apr      | May         | June             | July        | Aug         | Sep                                   | Oct         | Nov  | Dec         | Total   |
|    |                |              |                                         |             |          |             | _ Fan /          | ΔH1         |             |                                       |             |      |             |         |
| 1  | EQ4223         | 4.74         |                                         | AN W\VAR    |          |             | =                |             | 4770        | 4707                                  | 47/0        | 1/00 | 17/0        | 20.547  |
|    | ELEC<br>PK     | 1671         | 1581<br>6.0                             | 1755<br>6.0 | 6.0      | 1752<br>6.0 | 1709<br>6.0      | 1754<br>6.0 | 1772<br>6.0 | 1703<br>6.0                           | 1748<br>6.0 | 1690 | 6.0         | 20,567  |
|    | rk             | 1 0.0        | 0.0                                     |             |          |             |                  |             |             |                                       |             |      |             | 5.0     |
| 1  | EQ4223         |              | FC F                                    | AN W\VAR    | IABLE SP | EED DRIV    | Fan<br>E         | AHS1        |             |                                       |             |      |             |         |
|    | ELEC           | 0            | 0                                       | 15          | 0        | 8           | 0                | 0           | 0           | 7                                     | 0           | 0    | 0           | 31      |
|    | PK             | 0.0          | 0.0                                     | 0.2         | 0.2      | 0.2         | 0.0              | 0.0         | 0.0         | 0.2                                   | 0.2         | 0.0  | 0.0         | 0.2     |
|    |                | <del></del>  | *************************************** |             |          |             |                  | 55 4        |             |                                       |             |      |             |         |
| 1  | EQ4003         |              | FC C                                    | ENTRIFUG.   |          |             | LUME F           | an EF-1     |             |                                       |             |      |             |         |
|    | ELEC           | 307          | 307                                     | 341         | 330      | 341         | 350              | 358         | 362         | 348                                   | 341         | 330  | 341         | 4,055   |
|    | PK             | 1.1          | 1.1                                     | 1.1         | 1.1      | 1.1         | 1.1              | 1.1         | 1.1         | 1.1                                   | 1.1         | 1.1  | 1.1         | 1.1     |
| 2  | EQ4223         |              | EC E                                    | AN W\VAR    | TARIE CD | EED DRIV    | F Fan            | AH2         |             |                                       |             |      |             |         |
| ۷  | ELEC           | 2784         | 2766                                    | 3297        | 3191     | 3274        | 3168             | 3268        | 3251        | 3131                                  | 3238        | 3161 | 3257        | 37,785  |
|    | PK             | 9.7          | 9.7                                     | 9.7         | 9.7      | 9.7         | 9.7              | 9.7         | 9.7         | 9.7                                   | 9.7         | 9.7  | 9.7         | 9.7     |
|    |                | 1            |                                         |             |          |             |                  | 41104       |             | ·                                     |             |      | <del></del> |         |
| 2  | EQ4223         |              | FC F                                    | AN W\VAR    | IABLE SP | EED DRIV    | E Fan            | AHS1        |             |                                       |             |      |             |         |
|    | ELEC           | 187          | 195                                     | 182         | 100      | 63          | 4                | 4           | 4           | 61                                    | 103         | 213  | 219         | 1,336   |
|    | PK             | 0.6          | 0.6                                     | 0.6         | 0.6      | 0.6         | 0.0              | 0.0         | 0.0         | 0.6                                   | 0.6         | 0.6  | 0.6         | 0.6     |
| _  |                | 1            |                                         |             |          |             | Fan A            | нз          |             |                                       |             |      |             |         |
| 3  | EQ4223         | 11/5         |                                         | AN W\VAR    |          |             | -                |             | 1200        | 1120                                  | 1171        | 1007 | 1102        | 14,037  |
|    | ELEC<br>PK     | 6.0          | 1095<br>6.0                             | 1280<br>6.0 | 6.0      | 6.0         | 6.0              | 6.0         | 1280<br>6.0 | 1129<br>6.0                           | 6.0         | 1083 | 6.0         | 6.0     |
|    | PK             | 0.0          | 0.0                                     | 0.0         | 0.0      |             | 0.0              |             | 0.0         |                                       |             |      |             | 0.0     |
| 3  | EQ4223         |              | FC F                                    | AN W\VAR    | IABLE SP | EED DRIV    | E Fan            | AHS1        |             |                                       |             |      |             |         |
| _  | ELEC           | 81           | 94                                      | 98          | 52       | 37          | 5                | 6           | 6           | 35                                    | 53          | 90   | 92          | 650     |
|    | PK             | 0.4          | 0.4                                     | 0.4         | 0.4      | 0.4         | 0.0              | 0.0         | 0.0         | 0.4                                   | 0.4         | 0.4  | 0.4         | 0.4     |
|    |                | <del>}</del> |                                         |             |          |             | _ Fan            | AUE         |             |                                       |             |      |             |         |
| 4  | EQ4223         |              | FC F                                    | FAN W\VAR   |          |             | E                |             |             |                                       |             |      |             |         |
|    | ELEC           | 543          | 1102                                    | 1491        | 1660     | 2572        | 3327             | 3167        | 3494        | 2598                                  | 2065        | 1141 | 1131        | 24,294  |
|    | PK             | 4.8          | 9.7                                     | 9.7         | 13.5     | 16.5        | 16.5             | 16.5        | 16.5        | 16.5                                  | 13.5        | 9.7  | 9.7         | 16.5    |
| ,  | E0/227         |              | EC 5                                    | FAN W\VAR   | TADIE CO | CEN NOT     | <sub>c</sub> Fan | AHS1        |             |                                       |             |      |             |         |
| 4  | EQ4223<br>ELEC | 40           | 81                                      | 158         | 74       | 74          | 14               | 14          | 15          | 75                                    | 87          | 84   | 83          | 802     |
| ,  | PK             | 0.4          | 0.7                                     | 1.2         | 1.2      | 1.2         | 0.0              | 0.0         | 0.0         | 1.2                                   | 1.2         | 0.7  | 0.7         | 1.2     |
| •  | . 13           | 1,0,4        | J.,                                     |             |          |             |                  |             |             |                                       |             |      |             | * * * - |
| 5  | EQ4223         |              | FC F                                    | FAN W\VAR   | IABLE SF | EED DRIV    | E Fa             | n AH6       |             |                                       |             |      | •           |         |
|    | ELEC           | 2532         | 2691                                    | 3190        | 3012     | 3321        | 3371             | 3302        | 3512        | 3145                                  | 3167        | 2749 | 2883        | 36,876  |
|    | PK             | 13.3         | 13.3                                    | 13.3        | 13.3     | 13.3        | 13.3             | 13.3        | 13.3        | 13.3                                  | 13.3        | 13.3 | 13.3        | 13.3    |
|    |                |              |                                         |             |          | ,           | F                | AUC4        |             | · · · · · · · · · · · · · · · · · · · |             |      |             |         |
| 5  | EQ4223         |              |                                         | FAN W\VAR   |          |             |                  | AHS1        |             |                                       |             |      | _           |         |
|    | ELEC           | 0            | 87                                      | 96          | 48       | 65          | 0                | 0           | 0           | 63                                    | 49          | 47   | 0           | 455     |
|    | PK             | 0.0          | 0.8                                     | 0.8         | 8.0      | 0.8         | 0.1              | 0.2         | 0.0         | 0.8                                   | 8.0         | 8.0  | 8.0         | 0.8     |

|      |                |              |                                        |                  |          | Manel       | du cada      | umption -   |             |             |             |             |              |         |
|------|----------------|--------------|----------------------------------------|------------------|----------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|---------|
|      | Equip<br>Code  | Jan          | Feb                                    | Mar              | Apr      | May         | June         | July        | Aug         | Sep         | Oct         | Nov         | Dec          | Total   |
| 1611 | Code           | Jan          | 165                                    | riai             | Λþ.      | Huy         | barre        | uuty        | ,,ug        | ٩٥٥         | •••         |             |              | • • •   |
| 5    | EQ4003         |              | FC C                                   | ENTR I FUGA      | AL - CON | STANT VOI   | .UME F       | an EF-2     |             |             |             |             |              | <u></u> |
| •    | ELEC           | 670          | 657                                    | <i>7</i> 34      | 738      | 780         | 7 <i>6</i> 3 | 780         | 790         | 753         | 773         | 747         | 732_         | 8,916   |
|      | PK             | 2.4          | 2.4                                    | 2.4              | 2.4      | 2.4         | 2.4          | 2.4         | 2.4         | 2.4         | 2.4         | 2.4         | 2.4          | 2.4     |
|      |                | <del> </del> | ······································ |                  |          |             | Fan          | ДН7         |             |             |             |             |              |         |
| 6    | EQ4223         |              | FC F                                   | AN W\VAR         | ABLE SP  | EED DRIV    | Ē            |             |             |             |             |             |              |         |
|      | ELEC           | 2031         | 1809                                   | 2002             | 2053     | 2160        | 2225         | 2297        | 2333        | 2088        | 2124        | 1938        | 2002         | 25,062  |
|      | PK             | 7.2          | 7.2                                    | 7.2              | 7.2      | 7.2         | 7.2          | 7.2         | 7.2         | 7.2         | 7.2         | 7.2         | 7.2          | 7.2     |
| ,    | F0/337         |              | FC 5                                   | AN W∖VAR         | TABLE CD | EED DOIN    | _ Fan A      | AHS1        |             |             |             |             |              |         |
| 6    | EQ4223<br>ELEC | 146          | 130                                    | 4N W VAK         | 77       | 53          | 14           | 14          | 14          | 51          | 80          | 140         | 144          | 993     |
|      | PK             | 0.5          | 0.5                                    | 0.5              | 0.5      | 0.5         | 0.0          | 0.0         | 0.0         | 0.5         | 0.5         | 0.5         | 0.5          | 0.5     |
|      |                | ļ            |                                        |                  |          |             |              |             | :           |             |             |             |              |         |
| 7    | EQ4003         |              | FC C                                   | ENTR I FUG       | AL - CON | STANT VO    | LUME I       | Fan AH-8    |             |             |             |             |              |         |
|      | ELEC           | 2306         | 2083                                   | 2306             | 2232     | 2306        | 2232         | 2306        | 2306        | 2232        | 2306        | 2232        | 2306         | 27,156  |
|      | PK             | 3.1          | 3.1                                    | 3.1              | 3.1      | 3.1         | 3.1          | 3.1         | 3.1         | 3.1         | 3.1         | 3.1         | 3.1          | 3.1     |
|      |                | +            |                                        |                  |          |             |              | an AH-9     |             |             |             |             |              | _       |
| 8    | EQ4003         | 7700         |                                        | ENTRIFUG         |          |             |              | 7720        | 7700        | 7400        | 7720        | 7400        | <b>37</b> 20 | 43,800  |
|      | ELEC           | 3720         | 3360                                   | 3720             | 3600     | 3720<br>5.0 | 3600<br>5.0  | 3720<br>5.0 | 3720<br>5.0 | 3600<br>5.0 | 3720<br>5.0 | 3600<br>5.0 | 5.0          | 5.0     |
|      | PK             | 5.0          | 5.0                                    | 5.0              | 5.0      | 5.0         |              |             |             |             | J.0         |             |              | 3.0     |
| 0    | EQ4003         |              | FC C                                   | ENTR I FUG.      | At - CON | STANT VO    | LUME F       | an AH-10    |             |             |             |             |              |         |
| •    | ELEC           | 1265         | 1142                                   | 1265             | 1224     | 1265        | 1224         | 1265        | 1265        | 1224        | 1265        | 1224        | 1265         | 14,892  |
|      | PK             | 1.7          | 1.7                                    | 1.7              | 1.7      | 1.7         | 1.7          | 1.7         | 1.7         | 1.7         | 1.7         | 1.7         | 1.7          | 1.7     |
|      |                | 1            |                                        |                  |          |             |              | an AH-11.   | Α           |             |             |             | <del></del>  |         |
| 10   | EQ4003         |              | FC C                                   | ENTR I FUG       | AL - CON | ISTANT VO   |              | <b></b>     | ,           |             |             |             |              |         |
|      | ELEC           | 2604         | 2352                                   | 2604             | 2520     | 2604        | 2520         | 2604        | 2604        | 2520        | 2604        | 2520        | 2604         | 30,660  |
|      | PK             | 3.5          | 3.5                                    | 3.5              | 3.5      | 3.5         | 3.5          | 3.5         | 3.5         | 3.5         | 3.5         | 3.5         | 3.5          | 3.5     |
|      |                |              |                                        |                  |          |             | LUME         | Fan AH-1    | 18          |             |             |             |              |         |
| 11   | EQ4003         | 777/         |                                        | ENTRIFUG<br>3274 |          | 3274        | 3168         | 3274        | 3274        | 3168        | 3274        | 3168        | 3274         | 38,544  |
|      | ELEC<br>PK     | 3274         | 2957                                   | 4.4              | 3168     | 4.4         | 4.4          | 4.4         | 4.4         | 4.4         | 4.4         | 4.4         | 4.4          | 4.4     |
|      | PK             | 1 4.4        |                                        | 7.7              | 7.7      |             |              | 7.7         |             |             |             |             |              |         |
| 12   | EQ4003         |              | FC (                                   | CENTR1FUG        | AL - CO  | ISTANT VO   | LUME         | Fan AH-12   | 2           |             |             |             |              | <u></u> |
|      | ELEC           | 2306         | 2083                                   | 2306             | 2232     | 2306        | 2232         | 2306        | 2306        | 2232        | 2306        | 2232        | 2306         | 27,156  |
|      | PK             | 3.1          | 3.1                                    | 3.1              | 3.1      | 3.1         | 3.1          | 3.1         | 3.1         | 3.1         | 3.1         | 3.1         | 3.1          | 3.1     |
|      |                | 1            |                                        |                  |          |             |              | San AU 44   |             |             |             |             |              |         |
| 13   | EQ4003         |              | FC (                                   | CENTRIFUG        | AL - CO  | STANT VO    | LUME '       | an AH-14    |             |             |             |             |              |         |
|      | ELEC           | 3720         | 3360                                   | 3720             | 3600     | 3720        | 3600         | 3720        | 3720        | 3600        | 3720        | 3600        | 3720         | 43,800  |
|      | PK             | 5.0          | 5.0                                    | 5.0              | 5.0      | 5.0         | 5.0          | 5.0         | 5.0         | 5.0         | 5.0         | 5.0         | 5.0          | 5.0     |
|      |                |              |                                        |                  |          |             | Ess          | AHS1        |             |             |             |             |              |         |
| 13   | EQ4223         |              |                                        | FAN W\VAR        |          |             |              |             | 441         | 440         | 447         | 412         | 114          | 1 742   |
|      | ELEC           | 116          | 104                                    | 116              | 112      | 116         | 112          | 116         | 116         | 112         | 116         | 112         | 0.2          | 1,362   |
|      | PK             | 0.2          | 0.2                                    | 0.2              | 0.2      | 0.2         | 0.2          | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2          | ٠.٤     |

| ef | Equip  |      |      |           |          |           |           |       |      |      |      |      |      |             |
|----|--------|------|------|-----------|----------|-----------|-----------|-------|------|------|------|------|------|-------------|
| ım | Code   | Jan  | Feb  | Mar       | Apr      | May       | June      | July  | Aug  | Sep  | Oct  | Nov  | Dec  | Tota        |
| 4  | EQ4223 |      | FC F | AN W\VAR  | IABLE SP | EED DRIV  | E Fan /   | AHS4  |      |      |      |      |      | <del></del> |
|    | ELEC   | 1506 | 1361 | 1506      | 1458     | 1506      | 1458      | 1506  | 1506 | 1458 | 1506 | 1458 | 1506 | 17,7        |
|    | PK     | 21.5 | 21.5 | 21.5      | 21.5     | 21.5      | 21.5      | 21.5  | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21          |
| 1  | EQ2002 |      | GAS  | FIRED ST  | EAM BOIL | ER        |           |       |      |      |      |      |      |             |
|    | GAS    | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | C           |
| 1  | £Q5020 |      | HEAT | ING WATE  | R CIRCUL | ATION PU  | IMP       |       |      |      |      |      |      |             |
|    | ELEC   | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | (           |
| 1  | EQ5240 |      | BOIL | ER FORCE  | D DRAFT  | FAN       |           |       |      |      |      |      |      |             |
|    | ELEC   | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | (           |
| 1  | EQ5307 |      | CON1 | rrols     |          |           |           |       |      |      |      |      |      |             |
|    | ELEC   | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | (           |
| 1  | EQ5061 |      | CON  | ENSATE R  | ETURN PL | JMP (HIGH | H EFFICIE | ENCY) |      |      |      |      |      |             |
|    | ELEC   | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | O    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |             |
| 1  | EQ5406 |      | MAK  | E-UP WATE | ER .     |           |           |       |      |      |      |      |      |             |
|    | WATER  | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |             |
| 2  | EQ2002 |      | GAS  | FIRED ST  | TEAM BOI | LER       |           |       |      |      |      |      |      |             |
|    | GAS    | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | C    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |             |
| 2  | EQ5020 |      | HEA  | TING WATE | ER CIRCU | LATION P  | UMP       |       |      |      |      |      |      |             |
|    | ELEC   | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | . 0.0     | 0.0       | . 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |             |
| 2  | EQ5240 |      | воі  | LER FORCE | ED DRAFT | FAN       |           |       |      |      |      |      | ÷    |             |
|    | ELEC   | 0    | 0    | 0         | 0        | ´ 0       | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |             |
| 2  | EQ5307 |      | CON  | TROLS     |          |           |           |       |      |      |      |      |      |             |
|    | ELEC   | 0    | 0    | 0         | 0        | 0         | 0         | 0     | 0    | 0    | 0    | 0    | 0    |             |
|    | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |             |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1
EXISTING SECONDARY EQUIPMENT AND SYSTEMS

### ECO-F, LSTC BUILDING

#### System Totals

| Percent   | Cool  | ing Loa | d     | Heatir            | ng Load |       | Cooling   | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|-------------------|---------|-------|-----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity          | Hours   | Hours | Cap.      | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)            | (%)     |       | (Cfm)     | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 5.9   | 0       | 0     | -54,281           | 88      | 1,668 | 6,618.8   | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 11.9  | 0       | 0     | -108,562          | 12      | 221   | 13,237.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 17.8  | 54      | 4,740 | -162,843          | 0       | 0     | 19,856.5  | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 23.7  | 0       | 30    | -217,124          | 0       | 0     | 26,475.3  | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 29.7  | 3       | 250   | -271,405          | . 0     | 0     | 33,094.2  | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 35.6  | 1       | 69    | -325,686          | 0       | 0     | 39,713.0  | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 41.5  | 1       | 46    | -379,967          | 0       | 0     | 46,331.8  | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 47.5  | 1       | 123   | -434,248          | 0       | 0     | 52,950.7  | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 53.4  | 4       | 343   | -488,529          | 0       | 0     | 59,569.5  | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 59.4  | 2       | 147   | -542,810          | 0       | 0     | 66,188.3  | 54      | 4,745 | 0.0     | 0       | 0     |
| 50 - 55   | 65.3  | 2       | 175   | -597,091          | 0       | 0     | 72,807.2  | 3       | 267   | 0.0     | 0       | 0     |
| 55 - 60   | 71.2  | 3       | 305   | -651,373          | 0       | 0     | 79,426.0  | 1       | 99    | 0.0     | 0       | 0     |
| 60 - 65   | 77.2  | 2       | 177   | -705,654          | 0       | 0     | 86,044.8  | 1       | 93    | 0.0     | 0       | 0     |
| 65 - 70   | 83.1  | 3       | 259   | -759 <b>,93</b> 5 | 0       | 0     | 92,663.7  | 0       | 18    | 0.0     | 0       | 0     |
| 70 - 75   | 89.0  | 4       | 348   | -814,216          | 0       | 0     | 99,282.5  | 1       | 53    | 0.0     | 0       | 0     |
| 75 - 80   | 95.0  | 4       | 356   | -868,497          | 0       | 0     | 105,901.3 | 1       | 46    | 0.0     | 0       | 0     |
| 80 - 85   | 100.9 | 2       | 200   | -922,778          | 0       | 0     | 112,520.2 | 10      | 889   | 0.0     | 0       | 0     |
| 85 - 90   | 106.8 | 4       | 354   | -977,059          | 0       | 0     | 119,139.0 | 3       | 271   | 0.0     | 0       | 0     |
| 90 - 95   | 112.8 | 10      | 838   | -1,031,340        | 0       | 0     | 125,757.8 | 11      | 998   | 0.0     | 0       | 0     |
| 95 - 100  | 118.7 | 0       | 0     | -1,085,621        | 0       | 0     | 132,376.7 | 15      | 1,281 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0                 | 0       | 6,871 | 0.0       | 0       | 0     | 0.0     | 0       | 8,760 |

| f        | Equip -  |          |           |          |          | Mon     | thly Cons  | sumption     |       |              |              |               |               |       |
|----------|----------|----------|-----------|----------|----------|---------|------------|--------------|-------|--------------|--------------|---------------|---------------|-------|
| m        | Code     | Jan      | Feb       | Mar      | Apr      | May     | June       | July         | Aug   | Sep          | Oct          | Nov           | Dec           | Tot   |
| D        | LIGHTS   | Lighting | 3 Systems |          |          |         |            |              |       |              |              |               |               |       |
| •        | ELEC     | 31826    | 28759     | 32604    | 30674    | 32215   | 31452      | 31437        | 32604 | 30674        | 32215        | 30674         | 31437         | 376,5 |
|          | PK       | 94.8     | 94.8      | 94.8     | 94.8     | 94.8    | 94.8       | 94.8         | 94.8  | 94.8         | 94.8         | 94.8          | 94.8          | 94    |
| 1        | MISC LD  |          |           |          |          |         |            |              |       |              |              |               |               |       |
|          | ELEC     | 26931    | 24324     | 26931    | 26062    | 26931   | 26062      | 26931        | 26931 | 26062        | 26931        | 26062         | 26931         | 317,0 |
|          | PK       | 72.4     | 72.4      | 72.4     | 72.4     | 72.4    | 72.4       | 72.4         | 72.4  | 72.4         | 72.4         | 72.4          | 72.4          | 72    |
| 2        | MISC LD  |          |           |          |          |         |            |              |       |              |              |               |               |       |
|          | GAS      | 0        | 0         | 0        | 0        | 0       | 0          | 0            | 0     | 0            | 0            | 0             | 0             |       |
|          | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0        | 0.0          | 0.0   | 0.0          | 0.0          | 0.0           | 0.0           | C     |
| 3        | MISC LD  |          |           |          |          |         |            |              |       |              |              |               |               |       |
|          | OIL      | 0        | 0         | 0        | 0        | 0       | 0          | 0            | 0     | 0            | 0            | 0             | 0             |       |
|          | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0        | 0.0          | 0.0   | 0.0          | 0.0          | 0.0           | 0.0           | C     |
| <b>,</b> | MISC LD  |          |           |          |          |         |            |              |       |              |              |               |               |       |
|          | P STEAM  | 0        | 0         | 0        | 0        | 0       | 0          | 0            | 0     | 0            | .0           | 0             | 0             | ,     |
|          | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0        | 0.0          | 0.0   | 0.0          | 0.0          | 0.0           | 0.0           | (     |
| 5        | MISC LD  | •        |           | •        | •        |         | •          |              | 0     | 0            | 0            | 0             | 0             |       |
|          | P HOTH20 | 0.0      | 0<br>0.0  | 0.0      | 0.0      | 0.0     | 0.0        | 0.0          | 0.0   | 0.0          | 0.0          | 0.0           | 0.0           | (     |
|          | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0        | 0.0          | 0.0   | 0.0          | 0.0          | 0.0           | 0.0           | ·     |
| 6        | MISC LD  |          |           |          |          |         |            |              |       |              |              |               |               |       |
|          | P CHILL  | 0        | 0         | 0        | 0        | 0       | 0          | 0            | 0     | 0            | 0            | 0             | 0             |       |
|          | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0     | 0.0        | 0.0          | 0.0   | 0.0          | 0.0          | 0.0           | 0.0           | (     |
| 1        |          |          |           | E UTILIT |          |         |            |              |       |              |              |               | 2470          |       |
|          | CHILLD   | 3452     | 3118      | 3452     | 3341     | 3452    | 3341       | 3452         | 3452  | 3341         | 3452         | 3341          | 3452          | 40,6  |
|          | PK       | 4.6      | 4.6       | 4.6      | 4.6      | 4.6     | 4.6        | 4.6          | 4.6   | 4.6          | 4.6          | 4.6           | 4.6           | 4     |
| 2        |          |          |           | E UTILIT |          |         |            | ,            |       |              |              | rr <b>7</b>   | F7/           |       |
|          | HOTLD    | 576      | 520       | 576      | 557      | 576     | 557        | 576          | 576   | 557          | 576<br>0.8   | 557<br>0.8    | 576<br>0.8    | 6,    |
|          | PK .     | 0.8      | 0.8       | 0.8      | 8.0      | 0.8     | 0.8        | 0.8          | 8.0   | 8.0          | 0.6          | 0.6           |               | •     |
| 1        |          | 40000    |           |          | ECIP. CH |         | New Chille |              | 47//  | 75/0         | 0557         | 11/43         | 11517         | 107,  |
|          | ELEC     | 12288    | 10170     | 9846     | 8097     | 7651    | 6732       | 6922<br>50.0 | 6766  | 7549<br>50.0 | 8552<br>50.0 | 11462<br>50.0 | 11513<br>50.0 | 5     |
|          | PK       | 50.0     | 50.0      | 50.0     | 50.0     | 50.0    | 50.0       | 50.0         | 50.0  |              | 0.0          | ٠.٠٠          |               | ,     |
| 1        | EQ5100   |          | coo       | LING TOW | ER FANS  | Twr. Fa | in CT-1A   |              |       |              |              |               |               |       |
|          | ELEC     | 3509     | 2862      | 2732     | 2417     | 2771    | 3435       | 4804         | 4797  | 4312         | 2886         | 3131          | 3210          | 40,   |
|          | PK       | 11.5     | 11.6      | 11.5     | 11.6     | 12.0    | 12.0       | 12.0         | 12.0  | 12.0         | 11.5         | 11.5          | 11.6          | 1     |

| Red   Equip   Num   Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |        |       |         | E Q      | UIPM     | ENT          | ENEF      | RGY C    | ONSU     | JMPTI    | O N  |       |             |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------|---------|----------|----------|--------------|-----------|----------|----------|----------|------|-------|-------------|---------|
| Rum   Code   Jan   Feb   Mar   Apr   May   June   July   Aug   Sep   Oct   Mov   Dec   Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Do.f | Sauin  |       | <b></b> | <b></b>  |          | Mont         | hlv Cons  | sumption |          |          |      |       |             |         |
| MATER   61   51   50   61   39   35   36   35   39   43   57   57   574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |        | Jan   | Feb     | Mar      |          |              |           | •        |          |          | Oct  | Nov   | Dec         | Total   |
| MATER   61   51   50   61   39   35   36   35   39   43   57   57   57   57   57   57   57   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    | EQ5100 |       | COOL    | ING TOWE | R FANS   |              |           |          |          |          |      |       |             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    |        | 61    | 51      | 50       | 41       | 39           | 35        | 36       | 35       | 39       | 43   | 57    | 57          | 544     |
| 1 E05001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | PK     | 0.2   | 0.2     | 0.2      | 0.2      | 0.2          | 0.2       | 0.2      | 0.2      | 0.2      | 0.2  | 0.2   | 0.2         | 0.2     |
| ELEC   1857   1550   1634   1483   1431   1324   1370   1333   1386   1528   1699   1744   18,359   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2   3.2      | _    |        |       | 61171   | . 50     | D. DUMD  | COUCTA       | NT VOLUE  | New      | CHW Pu   | ımp P-7A |      |       |             |         |
| Second   S   | 1    |        | 1057  |         |          |          |              |           |          | 1757     | 1796     | 1528 | 1600  | 1744        | 18 359  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |       |         |          |          |              |           |          |          |          |      |       |             | L       |
| RESO11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | PK     | 1 3.2 | 3.2     | 3.2      | 3.2      | 3.2          |           |          |          |          |      |       |             | 3.2     |
| ELEC RY STATES AND STA | 1    | EQ5011 |       | COND    | ENSER WA | TER PUMP | -CV(MEDI     | UM EFFI   | C.)      | ew CND P | ump IOA  |      |       |             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        | 3208  | 2678    | 2823     | 2561     | 2472         | 2288      | 2366     | 2338     | 2394     | 2639 | 2935  | 3013        | 31,717  |
| ELEC   575   480   506   459   443   410   424   419   429   473   526   540   5,684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        | 5.6   | 5.6     | 5.6      | 5.6      | 5.6          | 5.6       | 5.6      | 5.6      | 5.6      | 5.6  | 5.6   | 5.6         | 5.6     |
| ELEC   575   480   506   459   443   410   424   419   429   473   526   540   5,684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | F05300 |       | CONT    | ROL PANE | L & INTE | RLOCKS       |           |          |          |          |      |       |             |         |
| PK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •    |        | 575   |         |          |          |              | 410       | 424      | 419      | 429      | 473  | 526   | 540         | 5,684   |
| New Chiller CH-3   Page   Pa   |      |        |       | 1.0     | 1.0      | 1.0      | 1.0          | 1.0       | 1.0      | 1.0      | 1.0      | 1.0  | 1.0   | 1.0         | 1.0     |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |       |         |          |          |              | New Chill | er CH-3  |          |          |      |       |             |         |
| PK   53.2   56.1   61.9   65.4   68.9   73.5   76.1   75.8   72.8   67.2   61.7   57.6   76.1    2 E05100   COOLING TOWER FANS   TWIK. FAN CT-1B   ELEC   916   1149   1537   1786   2326   3134   3319   3365   2710   1926   1179   1212   24,557    2 E05100   COOLING TOWER FANS   10.4   10.4   10.4   10.4   10.4   9.4   7.6   6.9    2 E05100   COOLING TOWER FANS   113   120   124   127   108   98   63   64   1,105    PK   0.3   0.4   0.4   0.5   0.5   0.5   0.5   0.5   0.4   0.4   0.4   0.5    2 E05001   CHILLED WATER PUMP - CONSTANT VOLUME   New CHW Pump P-7B    ELEC   1618   1823   2337   2581   2814   2898   2992   3039   2721   2627   1851   1935   29,237    PK   9.4   9.4   9.4   9.4   9.4   9.4   9.4   9.4   9.4   9.4   9.4   9.4    2 E05011   CONDENSER WATER PUMP-CV(MEDIUM EFFIC.)   New CND Pump 10B    ELEC   2111   2379   3050   3367   3672   3782   3904   3965   3550   3428   2416   2525    PK   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2    2 E05300   CONTROL PANEL & INTERLOCKS    ELEC   173   195   250   276   301   310   320   325   291   281   198   207   3,127    PK   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    1 E04223   FC FAN M\VARIABLE SPEED DRIVE   FAN AH1    ELEC   1671   1581   1755   1691   1752   1700   1754   1772   1703   1748   1690   1749    2 E0557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2    |        |       | YORK    | CENT. R  | R-123 CH |              |           |          |          |          |      |       |             | r       |
| 2 EQ5100 ELEC PK  916 1149 1537 1786 2326 3134 3319 3365 2710 1926 1179 1212  24,557 PK  6.4 6.9 7.3 8.8 10.4 10.4 10.4 10.4 10.4 9.4 7.6 6.9  2 EQ5100 WATER PK  0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.5  ELEC PK  1618 1823 2337 2581 2814 2898 2992 3039 2721 2627 1851 1935 PK  9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | ELEC   | 8289  | 9991    | 13385    | 15089    | 17630        | 19163     |          | -        |          |      |       |             | L       |
| ELEC 916 1149 1537 1786 2326 3134 3319 3365 2710 1926 1179 1212 24,557 PK 6.4 6.9 7.3 8.8 10.4 10.4 10.4 10.4 10.4 10.4 9.4 7.6 6.9 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | PK     | 53.2  | 56.1    | 61.9     | 65.4     | 68.9         | 73.5      | 76.1     | 75.8     | 72.8     | 67.2 | 61.7  | 57.6        | 76.1    |
| PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    | EQ5100 |       | COOL    | ING TOWE | R FANS   | Twr. Fan     | CT-1B     |          |          |          |      |       |             |         |
| 2 EQ5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | ELEC   | 916   | 1149    | 1537     | 1786     | 2326         | 3134      | 3319     | 3365     | 2710     | 1926 | 1179  | 1212        | 24,557  |
| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | PK     | 6.4   | 6.9     | 7.3      | 8.8      | 10.4         | 10.4      | 10.4     | 10.4     | 10.4     | 9.4  | 7.6   | 6.9         | 10.4    |
| WATER PK 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2    | EQ5100 |       | COOL    | ING TOW  | ER FANS  |              |           |          |          |          |      |       |             |         |
| 2 EQ5001 CHILLED WATER PUMP - CONSTANT VOLUME  PK 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        | 49    | 61      | 83       | 94       | 113          | 120       | 124      | 127      | 108      | 98   | 63    | 64          | 1,105   |
| 2 EQ5001 ELEC 1618 1823 2337 2581 2814 2898 2992 3039 2721 2627 1851 1935 29,237  PK 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | PK     | 0.3   | 0.4     | 0.4      | 0.4      | 0.5          | 0.5       | 0.5      | 0.5      | 0.5      | 0.4  | 0.4   | 0.4         | 0.5     |
| ELEC 1618 1823 2337 2581 2814 2898 2992 3039 2721 2627 1851 1935 29,237 PK 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    | E05001 |       | CUII    | IED UATE | ED DIMD  | - CONST      | ANT VOLU  | ME Nev   | v CHW P  | ump P-7B |      |       |             |         |
| PK 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2    |        | 1618  |         |          |          |              |           |          | 3039     | 2721     | 2627 | 1851  | 1935        | 29,237  |
| ELEC 2111 2379 3050 3367 3672 3782 3904 3965 3550 3428 2416 2525 38,149  PK 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |       |         |          |          |              |           |          |          |          |      |       |             |         |
| ELEC 2111 2379 3050 3367 3672 3782 3904 3965 3550 3428 2416 2525 38,149  PK 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        | 1     |         |          |          |              |           | . N      | lew CND  | Pump 10B |      |       |             |         |
| PK 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2    |        | 2444  |         |          |          | -            |           |          |          |          |      | 2/.16 | 2525        | 38 149  |
| 2 EQ5300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |        |       |         |          |          |              |           |          |          |          |      |       | <del></del> | لسسنسيا |
| ELEC 173 195 250 276 301 310 320 325 291 281 198 207 3,127 PK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | PK     | 12.2  | 12.2    | 12.2     | 12.6     | 12.6.        | 12.2      | 12.2     | 12.2     | 12.2     |      |       | 12.2        | 1       |
| PK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2    | EQ5300 |       |         |          |          | ERLOCKS      |           |          |          |          |      |       |             | - 48-   |
| 1 EQ4223 FC FAN W\VARIABLE SPEED DRIVE Fan AH1 ELEC 1671 1581 1755 1691 1752 1700 1754 1772 1703 1748 1690 1749 20,567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |        |       |         |          |          |              |           |          |          |          |      |       |             |         |
| ELEC 1671 1581 1755 1691 1752 1700 1754 1772 1703 1748 1690 1749 20,567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | PK     | 1.0   | 1.0     | 1.0      | 1.0      | 1.0          | 1.0       | 1.0      | 1.0      | 1.0      | 1.0  | 1.0   | 1.0         | 1.0     |
| ELEC 1671 1581 1755 1691 1752 1700 1754 1772 1703 1748 1690 1749 20,567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    | F04223 |       | FC      | FAN W\VA | RIABLE S | PEED DRI     | VE Fan    | AH1      |          |          |      |       |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •    |        | 1671  |         |          |          |              |           | 1754     | 1772     | 1703     | 1748 | 1690  | 1749        | 20,567  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |       |         |          |          | <del> </del> |           |          |          |          | 6.0  | 6.0   |             |         |

|        | Equip          |              |       |            |                  | MOITCI           | •            | umption  |      |      |             |      |          |              |
|--------|----------------|--------------|-------|------------|------------------|------------------|--------------|----------|------|------|-------------|------|----------|--------------|
| JITH . | Code           | Jan          | Feb   | Mar        | Apr              | May              | June         | July     | Aug  | Sep  | <b>O</b> ct | Nov  | Dec      | Total        |
| 1      | EQ4223         |              | FC F  | AN W\VARI  | IABLE SP         | EED DRIV         | E Fan /      | AHS1     |      |      |             |      |          | <del></del>  |
| •      | ELEC           | 0            | 0     | 15         | 0                | 8                | 0            | C        | 0    | 7    | 0           | 0    | 0 _      | 3            |
|        | PK             | 0.0          | 0.0   | 0.2        | 0.2              | 0.2              | 0.0          | 0.0      | 0.0  | 0.2  | 0.2         | 0.0  | 0.0      | 0.           |
| 1      | EQ4003         |              | FC C  | ENTR I FUG | AL - CON         | STANT VO         | LUME Far     | EF-1     |      |      |             |      |          |              |
|        | ELEC           | 307          | 307   | 341        | 330              | 341              | 350          | 358      | 362  | 348  | 341         | 330  | 341      | 4,05         |
|        | PK             | 1.1          | 1.1   | 1.1        | 1.1              | 1.1              | 1.1          | 1.1      | 1.1  | 1.1  | 1.1         | 1.1  | 1.1      | . 1.         |
| ,      | EQ4223         |              | FC F  | AN W∖VAR   | IABLE SP         | EED DRIV         | Fan A        | .H2      |      |      |             |      |          |              |
| •      | ELEC           | 2784         | 2766  | 3297       | 3191             | 3274             | 3168         | 3268     | 3251 | 3131 | 3238        | 3161 | 3257     | 37,78        |
|        | PK             | 9.7          | 9.7   | 9.7        | 9.7              | 9.7              | 9.7          | 9.7      | 9.7  | 9.7  | 9.7         | 9.7  | 9.7      | 9.           |
| ,      | EQ4223         | 7            | FC F  | AN W\VAR   | IARIF SP         | FED DRIV         | F Fan A      | HS1      |      |      |             |      |          | <u> </u>     |
| -      | ELEC           | 187          | 195   | 182        | 100              | 63               | 4            | 4        | 4    | 61   | 103         | 213  | 219      | 1,33         |
|        | PK             | 0.6          | 0.6   | 0.6        | 0.6              | 0.6              | 0.0          | 0.0      | 0.0  | 0.6  | 0.6         | 0.6  | 0.6      | 0.           |
| 7      | EQ4223         | <del></del>  | EC- E | AN W\VAR   | IARIE CD         | EED DOIN         | F Fan A      | λН3      |      |      |             |      |          |              |
| •      | ELEC           | 1165         | 1095  | 1280       | 1129             | 1223             | 1221         | 1079     | 1280 | 1129 | 1171        | 1083 | 1182     | 14,0         |
|        | PK             | 6.0          | 6.0   | 6.0        | 6.0              | 6.0              | 6.0          | 6.0      | 6.0  | 6.0  | 6.0         | 6.0  | 6.0      | 6.           |
|        |                | <del> </del> |       |            |                  |                  | Fan 4        |          |      |      |             |      | <u>.</u> |              |
| 3      | EQ4223         |              |       | AN W\VAR   |                  |                  | Έ            |          |      |      |             |      | -00      |              |
|        | ELEC           | 81           | 94    | 98         | 52               | 37               | 5            | 6        | 6    | 35   | 53          | 90   | 92       | 65           |
|        | PK             | 0.4          | 0.4   | 0.4        | 0.4              | 0.4              | 0.0          | 0.0      | 0.0  | 0.4  | 0.4         | 0.4  | 0.4      | 0.           |
| 4      | EQ4223         |              | FC F  | AN W\VAR   | IABLE SP         | EED DRIV         | Æ Fan        | AH5      |      |      |             |      |          | <del></del>  |
|        | ELEC           | 543          | 1102  | 1491       | 1660             | 2572             | 3327         | 3167     | 3494 | 2598 | 2065        | 1141 | 1131     | 24,29        |
|        | PK             | 4.8          | 9.7   | 9.7        | 13.5             | 16.5             | 16.5         | 16.5     | 16.5 | 16.5 | 13.5        | 9.7  | 9.7      | 16           |
| 4      | EQ4223         |              | FC F  | AN W\VAR   | IABLE SF         | PEED DRIV        | /E Fan       | AHS1     |      |      |             |      |          | <b>}</b>     |
|        | ELEC           | 40           | 81    | 158        | 74               | 74               | 14           | 14       | 15   | 75   | 87          | 84   | 83       | 8            |
|        | PK             | 0.4          | 0.7   | 1.2        | 1.2              | 1.2              | 0.0          | 0.0      | 0.0  | 1.2  | 1.2         | 0.7  | 0.7      | 1            |
| 5      | EQ4223         |              | FC F  | AN W\VAR   | IABLE SF         | PEED DRIV        | /E Fan       | AH6      |      |      |             |      |          | <del> </del> |
|        | ELEC           | 2532         | 2691  | 3190       | 3012             | 3321             | 3371         | 3302     | 3512 | 3145 | 3167        | 2749 | 2883     | 36,8         |
|        | PK             | 13.3         | 13.3  | 13.3       | 13.3             | 13.3             | 13.3         | 13.3     | 13.3 | 13.3 | 13.3        | 13.3 | 13.3     | 13           |
| 5      | EQ4223         |              | FC I  | AN W\VAR   | RIABLE SE        | PEED DRIV        | /E Fan       | AHS1     |      |      |             | •    | •        | <del></del>  |
|        | ELEC           | 0            | 87    | 96         | 48               | 65               | 0            | 0        | 0    | 63   | 49          | 47   | 0 -      | 4            |
|        | PK             | 0.0          | 8.0   | 0.8        | 0.8              | 8.0              | 0.1          | 0.2      | 0.0  | 0.8  | 0.8         | 0.8  | 0.8      | 0            |
|        |                | 4            |       |            |                  |                  |              |          |      |      |             |      | 4        |              |
| 5      | FOADOZ         |              | FC (  | ENTRIFIE   | GAL - COL        | NSTANT V         | OLUME        | Fan EF-2 |      |      |             |      |          |              |
| 5      | EQ4003<br>ELEC | 670          | FC (  | CENTRIFUC  | GAL - COI<br>738 | NSTANT VO<br>780 | OLUME<br>763 | 780 780  | 790  | 753  | 773         | 747  | 732      | 8,9          |

|     |            |             |             | E Q         | UIPM              | ENT       | ENER       | G Y C       | ONSU         | MPTI         | O N                                   | <b></b>      |              |               |
|-----|------------|-------------|-------------|-------------|-------------------|-----------|------------|-------------|--------------|--------------|---------------------------------------|--------------|--------------|---------------|
| Ref | Equip -    |             |             |             |                   | Montl     | hly Cons   | umption     |              |              |                                       |              |              |               |
|     | Code       | Jan         | Feb         | Mar         | Apr               | May       | June       | July        | Aug          | Sep          | Oct                                   | Nov          | Dec          | Total         |
|     |            |             |             |             | 7.4.D. E. C.D.    |           | Fan A      | <b>A</b> H7 |              |              |                                       |              |              |               |
| 6   | EQ4223     | 2031        | 1809        | 2002        | IABLE SPE<br>2053 | 2160      | 2225       | 2297        | 2333         | 2088         | 2124                                  | 1938         | 2002         | 25,062        |
|     | ELEC<br>PK | 7.2         | 7.2         | 7.2         | 7.2               | 7.2       | 7.2        | 7.2         | 7.2          | 7.2          | 7.2                                   | 7.2          | 7.2          | 7.2           |
|     | PK         | 1 /         | 7           |             |                   |           |            |             |              |              |                                       |              |              |               |
| 6   | EQ4223     |             | FC F        | AN W\VAR    | IABLE SPE         | EED DRIV  | Fan A<br>E | (H51        |              |              |                                       |              |              | []            |
|     | ELEC       | 146         | 130         | 130         | 77                | 53        | 14         | 14          | 14           | 51           | 80                                    | 140          | 144          | 993           |
|     | PK         | 0.5         | 0.5         | 0.5         | 0.5               | 0.5       | 0.0        | 0.0         | 0.0          | 0.5          | 0.5                                   | 0.5          | 0.5          | 0.5           |
| _   |            | -           | 50.0        | ENTO LEUC   | AL - CON          | CTANT VO  | we Fa      | an AH-8     |              |              |                                       |              |              |               |
| 1   | EQ4003     | , 2306      | 2083        | 2306        | 2232              | 2306      | 2232       | 2306        | 2306         | 2232         | 2306                                  | 2232         | 2306         | 27,156        |
|     | ELEC<br>PK | 3.1         | 3.1         | 3.1         | 3.1               | 3.1       | 3.1        | 3.1         | 3.1          | 3.1          | 3.1                                   | 3.1          | 3.1          | 3.1           |
|     | r K        | 1           |             |             |                   | ,         |            | an AH-9     |              |              |                                       |              |              |               |
| 8   | EQ4003     |             | FC C        | ENTRIFUG    | AL - CON          | STANT VO  | LUME       | an A: 1-5   |              |              |                                       |              |              | <del></del> 1 |
|     | ELEC       | 3720        | 3360        | 3720        | 3600              | 3720      | 3600       | 3720        | 3720         | 3600         | 3720                                  | 3600         | 3720         | 43,800        |
|     | PK         | 5.0         | 5.0         | 5.0         | 5.0               | 5.0       | 5.0        | 5.0         | 5.0          | 5.0          | 5.0                                   | 5.0          | 5.0          | 5.0           |
| _   |            |             | F'C 6       |             | AL - CON          | CTANT VC  | IIIME F    | Fan AH-10   | )            |              |                                       |              |              |               |
| 9   | EQ4003     | 1265        | 1142        | 1265        | 1224              | 1265      | 1224       | 1265        | 1265         | 1224         | 1265                                  | 1224         | 1265         | 14,892        |
|     | ELEC<br>PK | 1.7         | 1.7         | 1.7         | 1.7               | 1.7       | 1.7        | 1.7         | 1.7          | 1.7          | 1.7                                   | 1.7          | 1.7          | 1.7           |
|     | FK         | 1           |             |             |                   |           |            |             | ^            |              |                                       |              |              |               |
| 10  | EQ4003     |             | FC (        | ENTRIFUC    | AL - CON          | STANT VO  | OLUME "    | an AH-11    | A            |              |                                       |              |              | r             |
|     | ELEC       | 2604        | 2352        | 2604        | 2520              | 2604      | 2520       | 2604        | 2604         | 2520         | 2604                                  | 2520         | 2604         | 30,660        |
|     | PK         | 3.5         | 3.5         | 3.5         | 3.5               | 3.5       | 3.5        | 3.5         | 3.5          | 3.5          | 3.5                                   | 3.5          | 3.5          | 3.5           |
|     |            | 7           |             |             |                   | CTANT V   | , I WE F   | an AH-11    | В            |              |                                       |              |              |               |
| 11  | EQ4003     | 727/        | 2957        | 3274        | AL - CON<br>3168  | 3274      | 3168       | 3274        | <b>3</b> 274 | 3168         | 3274                                  | 3168         | 3274         | 38,544        |
|     | ELEC<br>PK | 3274        | 4.4         | 4.4         | 4.4               | 4.4       | 4.4        | 4.4         | 4.4          | 4.4          | 4.4                                   | 4,4          | 4.4          | 4.4           |
|     | PK.        | 1 4.4       |             |             |                   |           |            |             |              |              | · · · · · · · · · · · · · · · · · · · |              |              |               |
| 12  | EQ4003     |             | FC (        | CENTRIFU    | GAL - CON         | ISTANT VO | DLUME F    | an AH-12    | <u>'</u>     |              |                                       |              |              | <del> </del>  |
|     | ELEC       | 2306        | 2083        | 2306        | 2232              | 2306      | 2232       | 2306        | 2306         | 2232         | 2306                                  | 2232         | 2306         | 27,156        |
|     | PK         | 3.1         | 3.1         | 3.1         | 3.1               | 3.1       | 3.1        | 3.1         | 3.1          | 3.1          | 3.1                                   | 3.1          | 3.1          | 3.1           |
|     |            |             |             |             |                   |           | Fi         | an AH-14    |              |              |                                       |              |              |               |
| 13  | EQ4003     | 7720        |             |             | 3600 - 3600       | 3720      | 3600       | 3720        | 3720         | 3600         | 3720                                  | 3600         | 3720         | 43,800        |
|     | ELEC       | 3720<br>5.0 | 3360<br>5.0 | 3720<br>5.0 | 5.0               | 5.0       | 5.0        | 5.0         | 5.0          | 5.0          | 5.0                                   | 5.0          | 5.0          | 5.0           |
|     | PK         | 1 3.0       | J.0         | J.0         |                   |           | <u> </u>   |             |              |              |                                       |              |              |               |
| 13  | EQ4223     |             | FC          | FAN W\VA    | RIABLE SE         | PEED DRI  | VE         | AHS1        |              |              |                                       |              |              | <del> </del>  |
|     | ELEC       | 116         | 104         | 116         | 112               | 116       | 112        | 116         | . 116        | 112          | 116                                   | 112          | 116          | 1,362         |
|     | PK         | 0.2         | 0.2         | 0.2         | 0.2               | 0.2       | 0.2        | 0.2         | 0.2          | 0.2          | 0.2                                   | 0.2          | 0.2          | 0.2           |
|     |            | <u> </u>    |             |             |                   |           | Fan        | AHS4        |              |              |                                       |              |              |               |
| 14  | EQ4223     |             |             |             | RIABLE SI         |           |            | 4===        |              | 4.55         | 450/                                  | 4/50         | 150/         | 17 774        |
|     | ELEC       | 1506        | 1361        | 1506        | 1458              | 1506      | 1458       | 1506        | 1506         | 1458<br>21.5 | 1506<br>21.5                          | 1458<br>21.5 | 1506<br>21.5 | 17,736        |
|     | PK         | 21.5        | 21.5        | 21.5        | 21.5              | 21.5      | 21.5       | 21.5        | 21.5         | ۷۱.۵         | ۷۱.۵                                  | 21.5         | 21.3         | 21.3          |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

| Ref | Equip  |              |      |          |           | Mont    | hly Cons | umption ·  |        |     |     |     |     |          |
|-----|--------|--------------|------|----------|-----------|---------|----------|------------|--------|-----|-----|-----|-----|----------|
| Num | Code   | Jan          | Feb  | Mar      | Apr       | May     | June     | July       | Aug    | Sep | Oct | Nov | Dec | Total    |
| 1   | OILBLR |              | OIL  | FIRED HO | T WATER 8 | BOILER  | New HW   | Boiler B-1 |        |     |     |     |     |          |
| •   | OIL    | 873          | 742  | 766      | 707       | 729     | 704      | 731        | 727    | 706 | 729 | 795 | 848 | 9,058    |
|     | PK     | 2.1          | 2.1  | 1.6      | 1.2       | 1.1     | 1.1      | 1.1        | 1.1    | 1.1 | 1.1 | 2.1 | 2.1 | 2.1      |
|     |        | <del> </del> | -    |          |           |         | Ne       | w HW pur   | np P-5 |     |     |     |     |          |
| 1   | EQ5020 |              | HEAT | ING WATE | R CIRCUL  | ATION P | JMP      |            |        |     |     |     |     | <u>`</u> |
|     | ELEC   | 379          | 343  | 379      | 367       | 379     | 367      | 379        | 379    | 367 | 379 | 367 | 379 | 4,468    |
|     | PK     | 0.5          | 0.5  | 0.5      | 0.5       | 0.5     | 0.5      | 0.5        | 0.5    | 0.5 | 0.5 | 0.5 | 0.5 | 0.5      |
| 1   | EQ5307 |              | CONT | ROLS     |           |         |          |            |        |     |     |     |     |          |
| •   | ELEC   | 372          | 336  | 372      | 360       | 372     | 360      | 372        | 372    | 360 | 372 | 360 | 372 | 4,380    |
|     | PK     | 0.5          | 0.5  | 0.5      | 0.5       | 0.5     | 0.5      | 0.5        | 0.5    | 0.5 | 0.5 | 0.5 | 0.5 | 0.5      |
| 2   | EQ2263 |              | ELEC | TRIC RES | ISTANCE   | HEAT WI | TH FAN   |            |        |     |     |     |     |          |
| _   | ELEC   | 0            | 0    | 0        | 0         | 0       | 0        | 0          | 0      | 0   | 0   | 0   | 0   | . 0      |
|     | PK     | 0.0          | 0.0  | 0.0      | 0.0       | 0.0     | 0.0      | 0.0        | 0.0    | 0.0 | 0.0 | 0.0 | 0.0 | 0.0      |

01 Card - Job Information ......

Project: EEAP ENERGY STUDY - HELSTF

Location: WHITE SANDS - ALAMOGORDO, NEW MEXICO

Client: FORT WORTH CORPS OF ENGINEERS Program User: HUITT-ZOLLARS, INC.

Comments: TEST CELL # 1 AND TEST CELL # 2

**EXISTING TEST CELLS 1 & 2** 

| Card 08- | Card 08 Climatic Information |           |          |          |          |             |         |         |  |  |  |  |  |
|----------|------------------------------|-----------|----------|----------|----------|-------------|---------|---------|--|--|--|--|--|
|          | Summer                       | Winter    | Summer   | Summer   | Winter   |             | Summer  | Winter  |  |  |  |  |  |
| Weather  | Clearness                    | Clearness | Design   | Design   | Design   | Building    | Ground  | Ground  |  |  |  |  |  |
| Code     | Number                       | Number    | Dry Bulb | Wet Bulb | Dry Bulb | Orientation | Reflect | Reflect |  |  |  |  |  |
| HOLLOMAN | •                            |           |          |          |          |             |         |         |  |  |  |  |  |

----- Load Section Alternative #1 -----

Card 19- Load Alternative -

Number Description

EXISTING CONDITIONS

| Card 20 |           |                  |        |       |       |        |            |          |            |           |           |  |  |  |
|---------|-----------|------------------|--------|-------|-------|--------|------------|----------|------------|-----------|-----------|--|--|--|
|         | Zone      |                  |        |       |       |        | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |  |  |  |
| Room    | Reference | Room             | Floor  | Floor | Const | Plenum | Ceiling    | Floor    | Floors     | Rooms per | Depth     |  |  |  |
| Number  | Number    | Descrip          | Length | Width | Туре  | Height | Resistance | Height   | Multiplier | Zone      |           |  |  |  |
| 5       | 1         | DEVICE RM. A-104 | 69     | 33    | 8     | 0      | 1          | 32       |            |           |           |  |  |  |
| 10      | 2         | DEVICE RM B-105  | 32     | 41    | 8     | 0      | 1          | 29       |            |           |           |  |  |  |
| 15      | 3         | RM 102, 103      | 59     | 36    | 8     | 0      | 1          | 32       |            |           |           |  |  |  |
| 20      | 4         | RM 109           | 26     | 44    | 8     | 0      | 1          | 16       |            |           |           |  |  |  |
| 25      | 5         | PT ELEC RM 201   | 27     | 37    | 8     | 0      | 1          | 17       |            |           |           |  |  |  |
| 30      | 6         | RM. 101,102,105  | 46     | 46    | 8     | 0      | 1          | 15       |            |           |           |  |  |  |
| 35      | 7         | RM 102           | 24     | 30    | 8     | 0      | 1          | 15       |            |           |           |  |  |  |
| 40      | 8         | RM 204,301,401   | 57     | 57    | 8     | 0      | 1          | 15       |            |           |           |  |  |  |
| 45      | 9         | HPOC, 501        | 25     | 24    | 8     | 0      | 1          | 15       |            |           |           |  |  |  |
| 50      | 10        | ETA CNTRL RM 103 | 25.5   | 13    | 8     | 0      | 1          | 15       | =          |           |           |  |  |  |

| Card 21 |           |        |            | Therm    | ostat Param | eters      |          |          |         |        |
|---------|-----------|--------|------------|----------|-------------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5       | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |

| Card 2 | Card 21 Thermostat Parameters |        |            |          |           |            |          |          |         |        |  |  |  |  |
|--------|-------------------------------|--------|------------|----------|-----------|------------|----------|----------|---------|--------|--|--|--|--|
|        | Cooling                       | Room   | Cooling    | Cooling  | Heating   | Heating    | Heating  | T'stat   | Mass /  | Carpet |  |  |  |  |
| Room   | Room                          | Design | T'stat     | T'stat   | Room      | T'stat     | T'stat   | Location | No. Hrs | On     |  |  |  |  |
| Number | Design DB                     | RH     | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average | Floor  |  |  |  |  |
| 10     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 15     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 20     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 25     | 70                            | 50     | 70         |          | 70        | 70 *       |          |          |         | NO     |  |  |  |  |
| 30     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 35     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 40     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 45     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |
| 50     | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |  |  |  |  |

| Card 22 |        |          |        | Roof Para | meters  |       |           |      |       |
|---------|--------|----------|--------|-----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |           |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof      | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width     | U-Value | Type  | Direction | Tilt | Alpha |
| 5       | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 10      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 15      | 1      |          | 69     | 36        | 0.1     | 23    |           |      |       |
| 25      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 30      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 45      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |
| 50      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |

| Card 24 | Card 24 Wall Parameters |        |        |         |         |           |      |       |             |  |  |  |  |
|---------|-------------------------|--------|--------|---------|---------|-----------|------|-------|-------------|--|--|--|--|
|         |                         |        |        |         | Wall    |           |      |       | Ground      |  |  |  |  |
| Room    | Wall                    | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |  |  |  |  |
| Number  | Number                  | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |  |  |  |  |
| 5       | 1                       | 33     | 32     | 0.32    | 58      | 315       |      |       |             |  |  |  |  |
| 5       | 2                       | 69     | 32     | 0.32    | 58      | 45        |      |       |             |  |  |  |  |
| 10      | 1                       | 32     | 29     | 0.32    | 58      | 315       |      |       |             |  |  |  |  |
| 10      | 2                       | 29.5   | 29.5   | 0.32    | 58      | 225       |      |       |             |  |  |  |  |
| 15      | 1                       | 38     | 32     | 0.32    | 58      | 315       |      |       |             |  |  |  |  |
| 15      | 2                       | 38     | 32     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |
| 20      | 1                       | 27     | 16     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |
| 25      | 1                       | 27     | 17     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |
| 30      | 1                       | 78.    | 15     | 0.32    | 58      | 315       |      |       |             |  |  |  |  |
| 30      | 2                       | 43     | 15     | 0.32    | 58      | 45        |      |       |             |  |  |  |  |
| 30      | 3                       | 42     | 15     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |
| 30      | 4                       | 30     | 15     | 0.32    | 58      | 225       |      |       |             |  |  |  |  |
| 40      | 1                       | 75     | 15     | 0.32    | 58      | 315       |      |       |             |  |  |  |  |
| 40      | 2                       | 75     | 15     | 0.32    | 58      | 45        |      |       |             |  |  |  |  |
| 40      | 3                       | 75     | 15     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |
| 40      | 4 ,                     | 75     | 15     | 0.32    | 58      | 225       |      |       |             |  |  |  |  |
|         |                         |        |        |         |         |           |      |       |             |  |  |  |  |

| Card 24 | Card 24 Wall Parameters |        |        |         |         |           |      |       |             |  |  |  |  |  |  |
|---------|-------------------------|--------|--------|---------|---------|-----------|------|-------|-------------|--|--|--|--|--|--|
|         |                         |        |        |         | Wall    |           |      |       | Ground      |  |  |  |  |  |  |
| Room    | Wall                    | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |  |  |  |  |  |  |
| Number  | Number                  | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |  |  |  |  |  |  |
| 45      | 1                       | 25     | 15     | 0.32    | 58      | 315       |      |       |             |  |  |  |  |  |  |
| 45      | 2                       | 24     | 15     | 0.32    | 58      | 45        |      |       |             |  |  |  |  |  |  |
| 45      | 3                       | 25     | 15     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |  |  |
| 45      | 4                       | 24     | 15     | 0.32    | 58      | 225       | •    |       |             |  |  |  |  |  |  |
| 50      | 1                       | 13     | 15     | 0.32    | 58      | 45        |      |       |             |  |  |  |  |  |  |
| 50      | 2                       | 25.5   | 15     | 0.32    | 58      | 135       |      |       |             |  |  |  |  |  |  |
| 50      | 3                       | 8      | 15     | 0.32    | 58      | 225       |      |       |             |  |  |  |  |  |  |

| Card 26 |          |         |             | S            | chedules - |         |         |           |         |             |
|---------|----------|---------|-------------|--------------|------------|---------|---------|-----------|---------|-------------|
| Room    |          |         |             |              | Reheat     | Cooling | Heating | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights  | Ventilation | Infiltration | Minimum    | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 10      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 15      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 20      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 25      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 30      | OFFICEP1 | CLGONLY | •           |              |            |         |         |           |         |             |
| 35      | OFFICEP1 | CLGONLY |             | -            |            |         |         |           |         |             |
| 40      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 45      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |
| 50      | OFFICEP1 | CLGONLY |             |              |            |         |         |           |         |             |

| Card 27 | Card 27 People and Lights |        |          |        |          |          |          |         |           |           |           |  |
|---------|---------------------------|--------|----------|--------|----------|----------|----------|---------|-----------|-----------|-----------|--|
|         |                           |        |          |        |          |          | Lighting |         | Percent   | Daylig    | hting     |  |
| Room    | People                    | People | People   | People | Lighting | Lighting | Fixture  | Ballast | Lights to | Reference | Reference |  |
| Number  | Value                     | Units  | Sensible | Latent | Value    | Units    | Туре     | Factor  | Ret. Air  | Point 1   | Point 2   |  |
| 5       | 2                         | PEOPLE | 250      | 200    | 17058    | WATTS    | INCAND   |         |           |           |           |  |
| 10      | 2                         | PEOPLE | 250      | 200    | 8098     | WATTS    | INCAND   |         |           |           |           |  |
| 15      | 4                         | PEOPLE | 250      | 200    | 5768     | WATTS    | INCAND   |         |           |           |           |  |
| 20      | 2                         | PEOPLE | 250      | 200    | 3693     | WATTS    | INCAND   |         |           |           |           |  |
| 25      | 5                         | PEOPLE | 250      | 200    | 2200     | WATTS    | INCAND   |         |           |           |           |  |
| 30      | 3                         | PEOPLE | 250      | 200    | 7892     | WATTS    | INCAND   |         |           |           |           |  |
| 35      | 5                         | PEOPLE | 250      | 200    | 690      | WATTS    | INCAND   |         |           |           |           |  |
| 40      | 10                        | PEOPLE | 250      | 200    | 4912     | WATTS    | ASHRAE1  |         |           |           |           |  |
| 45      | 4                         | PEOPLE | 250      | 200    | 2608     | WATTS    | INCAND   |         |           |           |           |  |
| 50      | 1                         | PEOPLE | 250      | 200    | 864      | WATTS    | ASHRAE1  |         |           |           |           |  |
|         |                           |        |          |        |          |          |          |         |           |           |           |  |

| Card 2 | Card 28 Miscellaneo |                   |         |         |          |        |          |            |             |          |          |
|--------|---------------------|-------------------|---------|---------|----------|--------|----------|------------|-------------|----------|----------|
|        | Misc                |                   | Energy  | Energy  |          | Energy | Percent  | Percent    | Percent     |          |          |
| Room   | Equipment           | Equipment         | Consump | Consump | Schedule | Meter  | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number | Number              | Descrip           | Value   | Units   | Code     | Code   | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5      | 1                   | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |

| Card 28 Miscella |           |                   |         |         |          | Equipment | ent      |            |             |          |          |
|------------------|-----------|-------------------|---------|---------|----------|-----------|----------|------------|-------------|----------|----------|
| Mis              | sc        |                   | Energy  | Energy  |          | Energy    | Percent  | Percent    | Percent     |          |          |
| Room Equ         | uipment : | Equipment         | Consump | Consump | Schedule | Meter     | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number Num       | mber      | Descrip           | Value   | Units   | Code '   | Code      | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 10 1             |           | TESTING EQ,COMP.  | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 15 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 20 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 25 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 30 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 35 1             |           | TESTING EQ,COMP.  | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 40 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 45 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |
| 50 1             |           | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |

|        |       | Venti | lation |       |       | Infil | tration |       |        |          |
|--------|-------|-------|--------|-------|-------|-------|---------|-------|--------|----------|
| Room   | Coo   | ling  | Heat   | ting  | Coo   | ling  | Hea     | ting  | Reheat | Minimum- |
| Number | Value | Units | Value  | Units | Value | Units | Value   | Units | Value  | Units    |
| 5      | 280   | CFM   | 280    | CFM   |       |       |         |       |        |          |
| 10     | 100   | CFM   | 100    | CFM   |       |       |         |       |        |          |
| 15     | 4700  | CFM   | 4700   | CFM   |       |       |         |       |        |          |
| 20     | 0     | CFM   | 0      | CFM   |       |       |         |       |        |          |
| 25     | 0     | CFM   | 0      | CFM   |       |       |         |       |        |          |
| 30     | 285   | CFM   | 285    | CFM   |       |       |         |       |        |          |
| 35     | 790   | CFM   | 790    | CFM   |       |       |         |       |        |          |
| 40     | 750   | CFM   | 750    | CFM   |       |       |         |       |        |          |
| 45     | 3600  | CFM   | 3600   | CFM   |       |       |         |       |        |          |
| 50     | 360   | CFM   | 360    | CFM   |       |       |         |       |        |          |

| Card 30 | )     |       |       |       | Fan Airflo | ows   |       |       |        |        |
|---------|-------|-------|-------|-------|------------|-------|-------|-------|--------|--------|
|         |       | Ma    | in    |       |            | Auxi  | liary |       |        |        |
| Room    | Cool  | ling  | Heat  | ing   | Coo        | ling  | Hea   | ting  | Room E | xhaust |
| Number  | Value | Units | Value | Units | Value      | Units | Value | Units | Value  | Units  |
| 5       | 5892  | CFM   | 5892  | CFM   |            |       |       |       |        |        |
| 10      | 3344  | CFM   | 3344  | CFM   |            |       |       |       |        |        |
| 15      | 10758 | CFM   | 10758 | CFM   |            |       |       |       | 600    | CFM    |
| 20      | 15667 | CFM   | 15667 | CFM   |            |       |       |       |        |        |
| 25      | 10386 | CFM   | 10386 | CFM   |            |       |       |       | ,      |        |
| 30      | 2850  | CFM   | 2850  | CFM   |            |       | *     |       |        |        |
| 35      | 4080  | CFM   | 4080  | CFM   |            |       |       |       |        |        |
| 40      | 12510 | CFM   | 12510 | CFM   |            |       |       |       |        |        |
| 45      | 3600  | CFM   | 3600  | CFM   |            |       |       |       |        |        |
| 50      | 1880  | CFM   | 1880  | CFM   |            |       |       |       |        |        |

----- System Section Alternative #1 -----

Card 39- System Alternative

Number Description

10

VTCV

EXISTING AIRSIDE EQUIPMENT

Card 40----- System Type ----------OPTIONAL VENTILATION SYSTEM------Ventil Set System Deck Cooling Heating Cooling Heating Static Number Type Location SADBVh SADBVh Schedule Schedule Pressure 1 TRH 2 TRH TRH 3 4 VTCV VTCV 5 VTCV 6 VTCV 8 VTCV VTCV

| Card 41       |       |     |       |     | Zone A | ssignmen | t     |     |       |     |       |     |
|---------------|-------|-----|-------|-----|--------|----------|-------|-----|-------|-----|-------|-----|
| System<br>Set | Ref   | #1  | Ref   | #2  | Ref    | #3       | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Number        | Begin | End | Begin | End | Begin  | End      | Begin | End | Begin | End | Begin | End |
| 1             | 1     | 1   |       |     |        |          |       |     |       |     |       |     |
| 2             | 2     | 2   |       |     |        |          |       |     |       |     |       |     |
| 3             | 3     | 3   |       |     |        |          |       |     |       |     |       |     |
| 4             | 4     | 4   |       |     |        |          |       |     |       |     |       |     |
| 5             | 5     | 5   |       |     |        |          |       |     |       |     |       |     |
| 6             | 6     | 6   |       |     |        |          |       |     |       |     |       |     |
| 7             | 7     | 7   |       |     |        |          |       |     |       |     |       |     |
| 8             | 8     | 8   |       |     |        |          |       |     |       |     |       |     |
| 9             | 9     | 9   |       |     |        |          |       |     |       |     |       |     |
| 10            | 10    | 10  |       |     |        |          |       |     |       |     |       |     |

| Card 42 Fan SP and Duct Parameters |      |      |        |        |     |        |         |         |        |        |        |
|------------------------------------|------|------|--------|--------|-----|--------|---------|---------|--------|--------|--------|
| System                             | Cool | Heat | Return | Mn Exh | Aux | Rm Exh | Cool    | Return  | Supply | Supply | Return |
| Set                                | Fan  | Fan  | Fan    | Fan    | Fan | Fan    | Fan Mtr | Fan Mtr | Duct   | Duct   | Air    |
| Number                             | SP   | SP   | SP     | SP     | SP  | SP     | Loc     | Loc     | Ht Gn  | Loc    | Path   |
| 1                                  | 1.5  |      |        |        |     |        |         | *       |        |        |        |
| 2                                  | 1.6  |      |        |        |     |        |         |         |        |        |        |
| 3                                  | 1.9  |      |        |        |     | . 5    |         |         |        |        |        |
| 4                                  | 1.6  |      |        |        |     |        |         |         |        |        |        |
| 5                                  | 1.6  |      |        |        |     |        |         |         |        |        |        |
| 6                                  | 4.6  |      |        |        |     |        |         |         |        |        |        |

| _                                      | Cool H                                                                          | eat     | Return                     | Mn Ex          | h Aux                                       | Rm Exh                                  | Cool       | Return     | Supply   | Supply  | Retur     | n        |            |
|----------------------------------------|---------------------------------------------------------------------------------|---------|----------------------------|----------------|---------------------------------------------|-----------------------------------------|------------|------------|----------|---------|-----------|----------|------------|
| et                                     |                                                                                 | an      | Fan                        | Fan            |                                             | Fan                                     |            | Fan Mtr    |          | Duct    | Air       |          |            |
| lumber                                 |                                                                                 | P       | SP                         | SP             | SP                                          | SP                                      | Loc        | Loc        | Ht Gn    | Loc     | Path      |          |            |
| '                                      | 2.0                                                                             |         |                            |                |                                             |                                         |            |            |          |         |           |          |            |
| 3                                      | 2.0                                                                             |         |                            |                |                                             |                                         |            |            |          |         |           |          |            |
| <del>)</del>                           | 1.5                                                                             |         |                            |                |                                             |                                         |            | ,          |          |         |           |          |            |
| 10                                     | 2.0                                                                             |         |                            |                |                                             | •                                       |            | •          |          |         |           |          | ŧ          |
|                                        |                                                                                 |         |                            |                |                                             |                                         |            |            |          |         |           |          |            |
| Card 43                                | <b>-</b>                                                                        |         |                            |                | Airflo                                      | w Design                                | Temperatu  | res        |          |         |           |          |            |
| System                                 | Minimum                                                                         | ı Ma    | ximum                      | Minimum        | Maxim                                       | um Mini                                 | mum Maxim  | um Minim   | um Maxi  | num Min | imum      | Design   |            |
| Set                                    | Cooling                                                                         | ; Co    | oling                      | Heating        | Heati                                       | ng Cool                                 | ing Cooli  | ng Prehe   | at Preh  | eat Roo | m         | Ht Rec   |            |
|                                        | SADB                                                                            | SA      |                            | SADB           | SADB                                        | Lv D                                    | B Lv DB    | Lv DB      | Lv D     | B RH    |           | Diff     |            |
| 1                                      | 48.4                                                                            | 48      |                            |                |                                             |                                         |            |            |          |         |           |          |            |
| 2                                      | 48.4                                                                            |         |                            |                |                                             |                                         |            |            |          |         |           |          |            |
| 3                                      | 47.4                                                                            | 47      | . 4                        |                |                                             |                                         |            |            |          |         |           |          |            |
|                                        |                                                                                 |         |                            |                |                                             |                                         |            |            |          |         |           |          | •          |
| ard 45                                 | ;                                                                               |         |                            |                |                                             | Eq                                      | uipment Sc | hedules -  |          |         |           |          |            |
| System                                 |                                                                                 |         |                            |                |                                             |                                         | Auxiliar   | _          | Main     |         |           |          | Auxiliar   |
| Set                                    | Cooling                                                                         | -       |                            | Eva            | -                                           | Evap                                    | Cooling    |            | _        |         | heat      |          | Heating    |
|                                        | Coil                                                                            | Ε       | conomiz                    | er Coi         | Ţ                                           | Coil                                    | Coil       | Coil       | Coil     | Co      | il        | Humidity | Coil       |
| 1                                      |                                                                                 |         |                            |                |                                             |                                         |            | OFF        |          |         |           |          |            |
| 2                                      |                                                                                 |         |                            |                |                                             |                                         |            | OFF<br>OFF |          |         |           |          |            |
| 3<br>4                                 |                                                                                 |         |                            |                |                                             |                                         |            | OFF        |          |         |           |          |            |
| <del>4</del><br>5                      |                                                                                 |         |                            |                |                                             |                                         |            | OFF        |          |         |           |          |            |
|                                        |                                                                                 |         |                            |                |                                             |                                         |            |            |          |         |           |          |            |
|                                        |                                                                                 |         |                            |                |                                             |                                         | chedules - |            |          |         |           |          |            |
|                                        |                                                                                 | g %1    | -411L                      | Obcie          | um Op                                       |                                         |            | Pattern    |          |         |           | Exhaust  |            |
| System                                 | Discri                                                                          |         |                            | Start          | St                                          |                                         |            |            |          |         |           |          |            |
| System<br>Set                          | Discrin                                                                         | l P     | urge                       | Start<br>Sched |                                             | -                                       | Schedule   |            | Off Tim  | e Sched | lule      | Schedule |            |
| System<br>Set                          | Discrin                                                                         | l P     | urge                       |                |                                             | -                                       |            |            | Off Tim  | e Sched | lule      | Schedule |            |
| System<br>Set<br>Number                | Discrin<br>Contro<br>Schedu                                                     | l P     | urge                       |                |                                             | -                                       |            |            | Off Tim  | e Sched | lule      | Schedule |            |
| System<br>Set<br>Number<br>1           | Discrin<br>Control<br>Schedul<br>AVAIL                                          | l P     | urge                       |                |                                             | -                                       |            |            | Off Tim  | e Sched | lule      | Schedule |            |
| System<br>Set<br>Number<br>1<br>2      | Discrin<br>Control<br>Schedul<br>AVAIL<br>AVAIL                                 | l P     | urge                       |                |                                             | -                                       |            |            | Off Tim  | e Sched | lule      | Schedule |            |
| System<br>Set<br>Wumber<br>1           | Discrin<br>Control<br>Schedul<br>AVAIL<br>AVAIL                                 | l P     | urge                       |                |                                             | -                                       |            |            | Off Tim  | e Sched | lule      | Schedule |            |
| System<br>Set<br>Wumber<br>L<br>2      | Discrin<br>Control<br>Schedu<br>AVAIL<br>AVAIL<br>AVAIL                         | l P     | urge<br>schedule           | e Sched        | dule So                                     | chedule                                 |            | Length     |          |         | lule      | Schedule |            |
| System<br>Set<br>Number<br>1<br>2      | Discrin<br>Control<br>Schedu<br>AVAIL<br>AVAIL<br>AVAIL                         | l P     | urge<br>schedule           | e Sched        | dule So                                     | chedule                                 | Schedule   | Length     |          |         | dule<br>, | Schedule |            |
| System<br>Set<br>Number<br>1<br>2<br>3 | Discrin<br>Contro<br>Schedu<br>AVAIL<br>AVAIL<br>AVAIL                          | l P     | rurge<br>chedule           | e Sched        | ule So                                      | -<br>hedule<br>-<br>Alterna             | Schedule   | Length     |          |         | ·         |          |            |
| System<br>Set<br>Number<br>1<br>2<br>3 | Discrin<br>Control<br>Schedul<br>AVAIL<br>AVAIL<br>AVAIL                        | l P     | urge<br>ichedule           | e Sched        | ule So                                      | chedule  Alterna                        | Schedule   | Length     |          |         | ·         |          |            |
| System Set Number 1 2 3                | Discrin<br>Control<br>Schedul<br>AVAIL<br>AVAIL<br>AVAIL                        | l Fle S | rurge chedule              | e Sched        | ule So<br>Section<br>Equ                    | Alterna<br>aipment D<br>Demand          | Schedule   | Length     |          |         | ·         |          | nd Limit - |
| System Set Number 1 2 3                | Discrin Control Schedul AVAIL AVAIL AVAIL E B B B B B B B B B B B B B B B B B B | l Fle S | chedule<br>chedule<br>Equi | e Sched        | Section  Certion  Certion  Certion  Certion | Alterna<br>Lipment D<br>Demand<br>Limit | Schedule   | Length     | rhedules |         | ·         |          |            |

Page #7

Load All Coil Cooling Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Ref Cool Ref Sizing Begin End 1 10 Card 62----- Cooling Equipment Parameters -------Capacity-- ----Energy---- Order Seq Limit Of --Capacity-- ---Energy----Ref Code Num Type Number Num Name Units Value Units Value Units Value Units Value Units 1 1 EQ1001S 1 151 TONS 141 KW PAR TONS 141 KW 2 PAR 2 EQ1001S 1 151 Card 63----- Cooling Pumps and References ------Cool ---CHILLED WATER---- ----CONDENSER----- ---HT REC or AUX---- Switch-Ref Full Load Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc. Num Value Units Value Units Value Units Control Storage Tower Access. 3 13.2 ĸw 1 27.3 KW 2 28.7 KW 10.5 KW Card 65----- Heating Load Assignment Load All Coil Assignment Loads To -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Reference Heating Ref Begin End 1 3 6 10 1 Card 67------ Heating Equipment Parameters Energy Seq Switch Heat Equip Number HW Pmp Order over Hot Misc. Code Of Full Ld Cap'y Rate Units Value Units Value Units Number Control Strg Acc. Cogen Number Number Name Value Units 1 1060 MBH BLR51 2.7 KW 1683 MBH 1 2.7 KW 1060 MBH 1683 MBH 2 BLR51 Card 69----- Fan Equipment Parameters System Exhaust Auxiliary Room Set Cooling Heating Return Fan Supply Exhaust Ventilation Fan Fan Number Fan E04003 E04003 3 EQ4003 EQ4003

Card 60------ Cooling Load Assignment------

| Card 69 Fan Equipment Parameters |         |         |        |         |           |         |             |  |  |  |  |  |
|----------------------------------|---------|---------|--------|---------|-----------|---------|-------------|--|--|--|--|--|
| System                           |         |         |        |         |           |         |             |  |  |  |  |  |
| Set                              | Cooling | Heating | Return | Exhaust | Auxiliary | Room    | Optional    |  |  |  |  |  |
| Number                           | Fan     | Fan     | Fan    | Fan     | Supply    | Exhaust | Ventilation |  |  |  |  |  |
| 5                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |  |
| 6                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |  |
| 7                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |  |
| 8                                | EQ4003  |         |        |         |           | •       |             |  |  |  |  |  |
| 9                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |  |
| 10                               | EQ4003  |         |        |         |           |         |             |  |  |  |  |  |
|                                  |         |         |        |         |           |         |             |  |  |  |  |  |

| Card 70 | Card 70 Fan Equipment KW Overrides |        |        |     |     |        |      |      |       |       |        |      |
|---------|------------------------------------|--------|--------|-----|-----|--------|------|------|-------|-------|--------|------|
|         |                                    | MAIN S | YSTEM- |     | OTH | ER SYS | TEM  | D    | EMAND | LIMIT | PRIORI | TY   |
| System  | Cool                               | Heat   | Ret    | Exh | Aux | Room   | Opt  |      |       |       | Room   | Opt  |
| Set     | Fan                                | Fan    | Fan    | Fan | Sup | Exh    | Vent | Cool | Heat  | Aux   | Exh    | Vent |
| Number  | KW                                 | KW     | KW     | KW  | KW  | KW     | KW   | Fan  | Fan   | Fan   | Fan    | Fan  |
| 1       | 4.9                                |        |        |     |     |        |      |      |       |       |        |      |
| 2       | 1.7                                |        |        |     |     |        |      |      |       |       |        | •    |
| 3       | 8.6                                |        |        |     |     |        |      |      |       |       |        |      |
| 4       | 4.4                                |        |        |     |     |        |      |      |       |       |        |      |
| 5       | 4.1                                |        |        |     | •   |        |      |      |       |       |        |      |
| 6       | 4.9                                |        |        |     |     |        |      |      |       |       |        |      |
| 7       | 8.7                                |        |        |     |     |        |      |      |       |       |        |      |
| 8       | 10.3                               |        |        |     |     |        |      |      |       |       |        |      |
| 9       | 2.1                                |        |        |     |     |        |      |      |       |       |        |      |
| 10      | 4.1                                |        |        |     |     |        |      |      |       |       |        |      |
|         |                                    |        |        |     |     |        |      |      |       |       |        |      |

| Card 71- |                  |        | Base   | Utility P | arameters |           |          |          |         |
|----------|------------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base             | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility          | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip          | Value  | Units  | Code      | Туре      | Number    | Number   | Temp     | Temp    |
| 1        | CHW LOADS        | 45.6   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          |         |
| 2        | HW LOADS         | 90.9   | MBH    | AVAIL     | HOT-LD    | 1         |          |          |         |
| 3        | ALL OTHER LIGHTS | 8.79   | KW     | OFICEL24  | ELEC      |           |          |          |         |
| 4        | ESH-53           | 22.4   | KM     | ESH53     | ELEC      |           |          |          |         |
|          |                  |        |        |           |           |           |          |          |         |

| Card 74 | 4       |          |          | Condenser | / Cooling | g Tower 1 | Parameters |        |         |         |         |
|---------|---------|----------|----------|-----------|-----------|-----------|------------|--------|---------|---------|---------|
|         | Cooling |          |          | Energy    | Energy    |           |            | Number | Percent | Low Spd | Low Spd |
| Tower   | Tower   | Capacity | Capacity | Consump   | Consump   | Fluid     | Tower      | Of     | Airflow | Energy  | Energy  |
| Ref     | Code    | Value    | Units    | Value     | Units     | Type      | Type       | Cells  | Low Spd | Value   | Units   |
| 1       | EQ5100  |          |          | 5.3       | KW        | T-WATER   | CTOWER     | 1      |         |         |         |
| 2       | E05100  |          |          | 5.3       | KW        | T-WATER   | CTOWER     | 1      |         |         |         |

| Card | 75     |        |        |       | Misce | ellaneous A | ccessory |       |       |        |        |       |
|------|--------|--------|--------|-------|-------|-------------|----------|-------|-------|--------|--------|-------|
|      | #1     |        |        |       | #2    |             |          |       | #3    |        |        |       |
| Misc | Equip  | Energy | Energy | Sched | Equip | Energy      | Energy   | Sched | Equip | Energy | Energy | Sched |
| Ref  | Code   | Value  | Units  | Code  | Code  | Value       | Units    | Code  | Code  | Value  | Units  | Code  |
| 1    | EQ5013 | 22.3   | KM     |       |       |             |          |       |       |        |        |       |
| 2    | EQ5013 | 22.3   | KM     |       |       |             |          |       |       |        |        |       |
| 3    | EQ5020 | 6.4    | KM     |       |       |             | a ·      |       |       |        |        |       |
| 4    | EQ5020 | 7.2    | KW     |       |       |             |          |       |       |        |        |       |

----- Load Section Alternative #2 -----

## ECO-A, TEST CELLS 1 & 2

Card 19- Load Alternative -

Number Description
2 ECO A - LIGHT FIXTURE UPGRADE

| Card 20 |           |                  |        | Genera | al Room | Paramete | rs         |          |            |           |           |
|---------|-----------|------------------|--------|--------|---------|----------|------------|----------|------------|-----------|-----------|
|         | Zone      |                  |        |        |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference | Room             | Floor  | Floor  | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number    | Descrip          | Length | Width  | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 5       | 1         | DEVICE RM. A-104 | 69     | 33     | 8       | 0        | 1          | 32       |            |           |           |
| 10      | 2         | DEVICE RM B-105  | 32     | 41     | 8       | 0        | 1          | 29       |            |           |           |
| 15      | 3         | RM 102, 103      | 59     | 36     | 8       | 0        | 1          | 32       |            |           |           |
| 20      | 4         | RM 109           | 26     | 44     | 8       | 0        | 1          | 16       |            |           |           |
| 25      | 5         | PT ELEC RM 201   | 27     | 37     | 8       | 0        | 1          | 17       |            |           |           |
| 30      | 6         | RM. 101,102,105  | 46     | 46     | 8       | 0        | 1          | 15       |            |           |           |
| 35      | 7         | RM 102           | 24     | 30     | 8       | 0        | 1          | 15       |            |           |           |
| 40      | 8         | RM 204,301,401   | 57     | 57     | 8       | 0        | 1          | 15       |            |           |           |
| 45      | 9         | HPOC, 501        | 25     | 24     | 8       | 0        | 1          | 15       |            |           |           |
| 50      | 10        | ETA CNTRL RM 103 | 25.5   | 13     | 8       | 0        | 1          | 15       |            |           |           |

| Card 21 |           |        |            | Therm    | ostat Param | eters      |          |          |         |        |
|---------|-----------|--------|------------|----------|-------------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5       | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 10      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | МО     |
| 15      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 20      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 25      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 30      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | ио     |
| 35      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 40      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | МО     |
| 45      | 70 ~      | 50     | 70         |          | 70          | 70         |          |          |         | МО     |
| 50      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |

| Card 22 |        |          |        | Roof Para | meters  |       |           |      |       |
|---------|--------|----------|--------|-----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |           |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof      | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width     | U-Value | Type  | Direction | Tilt | Alpha |
| 5       | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 10      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 15      | 1      |          | 69     | 36        | 0.1     | 23    |           |      |       |
| 25      | 1      | YES      |        |           | 0.1     | 23    | •         |      |       |
| 30      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 45      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |
| 50      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |

| Card 24 |        | <b></b> |        | Wall P  | arameters |           |      |       |             |
|---------|--------|---------|--------|---------|-----------|-----------|------|-------|-------------|
|         |        |         |        |         | Wall      |           |      |       | Ground      |
| Room    | Wall   | Wall    | Wall   | Wall    | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number  | Number | Length  | Height | U-Value | Type      | Direction | Tilt | Alpha | Multiplier  |
| 5       | 1      | 33      | 32     | 0.32    | 58        | 315       |      |       |             |
| 5       | 2      | 69      | 32     | 0.32    | 58        | 45        |      |       |             |
| 10      | 1      | 32      | 29     | 0.32    | 58        | 315       |      |       |             |
| 10      | 2      | 29.5    | 29.5   | 0.32    | 58        | 225       |      |       |             |
| 15      | 1      | 38      | 32 .   | 0.32    | 58        | 315       |      |       |             |
| 15      | 2      | 38      | 32     | 0.32    | 58        | 135       |      |       |             |
| 20      | 1      | 27      | 16     | 0.32    | 58        | 135       |      |       |             |
| 25      | 1      | 27      | 17     | 0.32    | 58        | 135       |      |       |             |
| 30      | 1      | 78      | 15     | 0.32    | 58        | 315       |      |       |             |
| 30      | 2      | 43      | 15     | 0.32    | 58        | 45        |      |       |             |
| 30      | 3      | 42      | 15     | 0.32    | 58        | 135       |      |       |             |
| 30      | 4      | 30      | 15     | 0.32    | 58        | 225       |      |       |             |
| 40      | 1      | 75      | 15     | 0.32    | 58        | 315       |      |       |             |
| 40      | 2      | 75      | 15     | 0.32    | 58        | 45        |      |       |             |
| 40      | 3      | 75      | 15     | 0.32    | 58        | 135       |      |       |             |
| 40      | 4      | 75      | 15     | 0.32    | 58        | 225       |      |       |             |
| 45      | 1      | 25      | 15     | 0.32    | 58        | 315       |      |       |             |
| 45      | 2      | 24      | 15     | 0.32    | 58        | 45        |      |       |             |
| 45      | 3      | 25      | 15     | 0.32    | 58        | 135       |      |       |             |
| 45      | 4      | 24      | 15     | 0.32    | 58        | 225       |      |       |             |
| 50      | 1      | 13      | 15     | 0.32    | 58        | 45        |      |       |             |
| 50      | 2      | 25.5    | 15     | 0.32    | 58        | 135       |      |       |             |
| 50      | 3      | 8       | 15     | 0.32    | 58        | 225       |      |       |             |

|         |          |         |             |              |           |         |         | •         |         |             |
|---------|----------|---------|-------------|--------------|-----------|---------|---------|-----------|---------|-------------|
| Card 26 |          |         |             | S            | Schedules |         |         |           |         |             |
| Room    |          |         |             |              | Reheat    | Cooling | Heating | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights  | Ventilation | Infiltration | Minimum   | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |
| 10      | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |
| 15      | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |
| 20      | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |
| 25      | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |
| 30      | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |
| 35      | OFFICEP1 | CLGONLY |             |              |           |         |         |           |         |             |

| Room    |         |       |                |          |             | Rehe    | at C    | ooling | Heating | g Auxil  | iary  | Room    | Daylig  | hting    |          |
|---------|---------|-------|----------------|----------|-------------|---------|---------|--------|---------|----------|-------|---------|---------|----------|----------|
| Number  | People  | Lig   | hts Ventil     | lation   | Infiltratio | n Mini  | mum F   | ans    | Fan     | Fan      |       | Exhaust | Contro  | ols      |          |
| 40      | OFFICEP | 1 CLC | ONLY           |          |             |         | *       |        |         |          |       |         |         |          |          |
| 45      | OFFICEP | 1 CLC | ONLY           |          |             |         |         |        |         |          |       |         |         |          |          |
| 50      | OFFICEP | 1 CLC | ONLY           |          |             |         |         |        |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         |         |        |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         | •       |        |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         |         |        |         |          |       |         |         |          |          |
| Card 27 | '       |       |                | <b>-</b> | Peopl       | e and L | ights - |        |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         | Lig     | hting  |         | Percent  |       | Daylig  | hting   |          |          |
| Room    | People  | Peopl | e People       | People   | ≥ Lighting  | Lighti  | ng Fix  | ture   | Ballast | Lights t | o Ref | erence  | Referer | ice      |          |
| Number  | Value   | Units | Sensible       | Latent   | . Value     | Units   | тур     | e      | Factor  | Ret. Air | Poi   | nt 1    | Point 2 | !        |          |
| 5       | 2       | PEOPI | E 250          | 200      | 15118       | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 10      | 2       | PEOPI | E 250          | 200      | 7454        | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 15      | 4       | PEOPI | E 250          | 200      | 5084        | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 20      | 2       | PEOPI | E 250          | 200      | 2148        | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 25      | 5       | PEOPI | E 250          | 200      | 1856        | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 30      | 3       | PEOPI | E 250          | 200      | 5202        | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 35      | 5       | PEOPI | E 250          | 200      | 642         | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 40      | 10      | PEOPI | E 250          | 200      | 3026        | WATTS   | ASH     | RAE1   |         |          |       |         |         |          |          |
| 45      | 4       | PEOPI | E 250          | 200      | 2296        | WATTS   | INC     | AND    |         |          |       |         |         |          |          |
| 50      | 1       | PEOPI | E 250          | 200      | 558         | WATTS   | ASH     | RAE1   |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         |         |        |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         |         |        |         |          |       |         |         |          |          |
|         |         |       |                |          |             |         |         |        |         |          |       |         |         |          |          |
| Card 28 |         |       |                |          |             |         | laneous | Equip  | ment    |          |       |         |         |          |          |
|         | Misc    |       |                |          | nergy Ener  |         |         | Energy |         | ent Per  |       | Perc    |         |          |          |
| Room    |         |       | quipment       |          | onsump Cons | -       | hedule  |        |         |          |       |         | . Sens  |          | _        |
|         | Number  |       | escrip         |          | alue Unit   |         | de      | Code   | Sens    | ible to  | Room  | to R    | et. Air | Fraction | Air Path |
| 5       | 1       | T     | ESTING EQ, COM | P. 2     | .46 WATI    | -SF OF  | FICEM1  | ELEC   |         |          |       |         |         |          |          |

Card 26----- Schedules -----

|        | Misc      |                   | Energy  | Energy  |          | Energy | Percent  | Percent    | Percent     |          |          |
|--------|-----------|-------------------|---------|---------|----------|--------|----------|------------|-------------|----------|----------|
| Room   | Equipment | Equipment         | Consump | Consump | Schedule | Meter  | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number | Number    | Descrip           | Value   | Units   | Code     | Code   | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 10     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 15     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 20     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 25     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 30     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 35     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 40     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 45     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
| 50     | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1 | ELEC   |          |            |             |          |          |
|        |           |                   |         |         |          |        |          |            |             |          |          |

| Card 29 |        | ·       |        |       | Room Airfl | ows    |        |       |            |       |
|---------|--------|---------|--------|-------|------------|--------|--------|-------|------------|-------|
|         |        | Ventila | tion   |       |            | Infilt | ration |       |            |       |
| Room    | Coolir | 1g      | Heatin | g     | Cooli      | ng     | Heati  | ng    | Reheat Min | imum  |
| Number  | Value  | Units   | Value  | Units | Value      | Units  | Value  | Units | Value      | Units |
| 5       | 280    | CFM     | 280    | CFM   |            |        |        |       |            |       |
| 10      | 100    | CFM     | 100    | CFM   |            |        |        |       |            |       |
| 15      | 4700   | CFM     | 4700   | CFM   |            |        |        |       |            |       |
| 20      | 0      | CFM     | 0      | CFM   |            |        |        |       |            |       |

| Card 29 |        |         |        |       | - Room Airf | lows   |        |       |          |         |
|---------|--------|---------|--------|-------|-------------|--------|--------|-------|----------|---------|
|         |        | Ventila | ation  |       |             | Infilt | ration |       |          |         |
| Room    | Coolir | ng      | Heatin | ıg    | Cool        | ing    | Heat:  | ing   | Reheat N | linimum |
| Number  | Value  | Units   | Value  | Units | Value       | Units  | Value  | Units | Value    | Units   |
| 25      | 0      | CFM     | 0      | CFM   |             |        |        |       |          |         |
| 30      | 285    | CFM     | 285    | CFM   |             |        |        |       |          |         |
| 35      | 790    | CFM     | 790    | CFM   |             |        |        |       |          |         |
| 40      | 750    | CFM     | 750    | CFM   |             | •      |        |       |          |         |
| 45      | 3600   | CFM     | 3600   | CFM   |             |        |        |       |          |         |
| 50      | 360    | CFM     | 360    | CFM   |             |        |        |       |          |         |
|         |        |         |        |       |             |        |        |       |          |         |

| Card 3 | )     |       |       |       | Fan Airflo | ows   |       |       |        |        |
|--------|-------|-------|-------|-------|------------|-------|-------|-------|--------|--------|
|        |       | Ma    | in    |       |            | Auxi  | liary |       |        |        |
| Room   | Cool  | ling  | Heat  | ing   | Coo        | ling  | Hea   | ing   | Room E | xhaust |
| Number | Value | Units | Value | Units | Value      | Units | Value | Units | Value  | Units  |
| 5      | 5892  | CFM   | 5892  | CFM   |            |       |       |       |        |        |
| 10     | 3344  | CFM   | 3344  | CFM   |            |       |       |       |        |        |
| 15     | 10758 | CFM   | 10758 | CFM   |            |       |       |       | 600    | CFM    |
| 20     | 15667 | CFM   | 15667 | CFM   |            |       |       |       |        |        |
| 25     | 10386 | CFM   | 10386 | CFM   |            |       |       |       |        |        |
| 30     | 2850  | CFM   | 2850  | CFM   |            |       |       |       |        |        |
| 35     | 4080  | CFM   | 4080  | CFM   |            |       |       |       |        |        |
| 40     | 12510 | CFM   | 12510 | CFM   |            |       |       |       |        |        |
| 45     | 3600  | CFM   | 3600  | CFM   |            |       |       |       |        |        |
| 50     | 1880  | CFM   | 1880  | CFM   |            |       |       |       |        |        |

----- System Section Alternative #2 ------

Card 39- System Alternative Number Description

2 EXISTING AIRSIDE EQUIPMENT

| Card 40 System Type |        |          |         |           |            |          |          |  |  |
|---------------------|--------|----------|---------|-----------|------------|----------|----------|--|--|
|                     |        |          | OPTION  | AL VENTIL | ATION SYST | EM       |          |  |  |
| System              |        | Ventil ~ |         |           |            |          | Fan      |  |  |
| Set                 | System | Deck     | Cooling | Heating   | Cooling    | Heating. | Static   |  |  |
| Number              | Type   | Location | SADBVh  | SADBVh    | Schedule   | Schedule | Pressure |  |  |
| 1                   | TRH    |          |         |           |            |          |          |  |  |
| 2                   | TRH    |          |         |           |            |          |          |  |  |
| 3                   | TRH    |          |         |           |            |          |          |  |  |
| 4                   | VTCV   |          |         |           |            |          |          |  |  |
| 5                   | VTCV   |          |         |           |            |          |          |  |  |
| 6                   | VTCV   |          |         |           |            |          |          |  |  |
| 7                   | VTCV   |          |         |           |            |          |          |  |  |

| Card 40 | Card 40 System Type |          |         |           |            |          |          |  |  |  |
|---------|---------------------|----------|---------|-----------|------------|----------|----------|--|--|--|
|         |                     |          | OPTION  | AL VENTIL | ATION SYST | EM       |          |  |  |  |
| System  |                     | Ventil   |         |           |            |          | Fan      |  |  |  |
| Set     | System              | Deck     | Cooling | Heating   | Cooling    | Heating  | Static   |  |  |  |
| Number  | Type                | Location | SADBVh  | SADBVh    | Schedule   | Schedule | Pressure |  |  |  |
| 8       | VTCV                |          |         |           |            |          |          |  |  |  |
| 9       | VTCV                |          |         |           |            |          |          |  |  |  |
| 10      | VTCV                |          |         |           |            | •        |          |  |  |  |
|         |                     |          |         |           |            |          |          |  |  |  |

| Card 41 |       |     |       |     | Zone A | ssignmen | t     |     |       |     |       |     |
|---------|-------|-----|-------|-----|--------|----------|-------|-----|-------|-----|-------|-----|
| System  |       |     |       |     |        |          |       |     |       |     |       |     |
| Set     | Ref   | #1  | Ref   | #2  | Ref    | #3       | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Number  | Begin | End | Begin | End | Begin  | End      | Begin | End | Begin | End | Begin | End |
| 1       | 1     | 1   |       |     |        |          |       |     |       |     |       |     |
| 2       | 2     | 2   |       |     |        |          |       |     |       |     |       |     |
| 3       | 3     | 3   |       |     |        |          |       |     |       |     |       |     |
| 4       | 4     | 4   |       |     |        |          |       |     |       |     |       |     |
| 5       | 5     | 5   |       |     |        |          |       |     |       |     |       |     |
| 6       | 6     | 6   |       |     |        |          |       |     |       |     |       |     |
| 7       | 7     | 7   |       |     |        |          |       |     |       |     |       |     |
| 8       | 8     | 8   |       |     |        |          |       |     |       |     |       |     |
| 9       | 9     | 9   |       |     |        |          |       |     |       |     |       |     |
| 10      | 10    | 10  |       |     |        |          |       |     |       |     |       |     |

| Card 42 |      |      |        | Fan    | SP ar | nd Duct F | arameters |         |        |        |        |
|---------|------|------|--------|--------|-------|-----------|-----------|---------|--------|--------|--------|
| System  | Cool | Heat | Return | Mn Exh | Aux   | Rm Exh    | Cool      | Return  | Supply | Supply | Return |
| Set     | Fan  | Fan  | Fan    | Fan    | Fan   | Fan       | Fan Mtr   | Fan Mtr | Duct   | Duct   | Air    |
| Number  | SP   | SP   | SP     | SP     | SP    | SP        | Loc       | Loc     | Ht Gn  | Loc    | Path   |
| 1       | 1.5  |      |        |        |       |           |           |         |        |        |        |
| 2       | 1.6  |      |        |        |       |           |           |         |        |        |        |
| 3       | 1.9  |      |        |        |       | .5        |           |         |        |        |        |
| 4       | 1.6  |      |        |        |       |           |           |         |        |        |        |
| 5       | 1.6  |      |        |        |       |           |           |         |        |        |        |
| 6       | 4.6  |      |        |        |       |           |           |         |        |        |        |
| 7       | 2.0  |      |        |        |       |           |           |         |        |        |        |
| 8       | 2.0  |      |        |        |       |           |           |         |        |        |        |
| 9       | 1.5  |      |        |        |       |           |           | •       |        |        |        |
| 10      | 2.0  |      |        |        |       |           |           |         |        |        |        |

| Card 43 |         |         |         |         |         |         |         |         |         |        |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| System  | Minimum | Maximum | Minimum | Maximum | Minimum | Maximum | Minimum | Maximum | Minimum | Design |
| Set     | Cooling | Cooling | Heating | Heating | Cooling | Cooling | Preheat | Preheat | Room    | Ht Rec |
| Number  | SADB    | SADB    | SADB    | SADB    | Lv DB   | Lv DB   | Lv DB   | Lv DB   | RH      | Diff   |
| 1       | 48.4    | 48.4    |         |         |         |         |         |         |         |        |
| 2       | 40 4    | 10 1    |         |         |         |         |         |         |         |        |

Card 43------ Airflow Design Temperatures ------System Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum Design Set Cooling Cooling Heating Heating Cooling Cooling Preheat Preheat Room Ht Rec Number SADB SADB SADB Lv DB Lv DB Lv DB Lv DB RH 3 47.4 47.4 Card 45----- Equipment Schedules -----System Main Direct Indirect Auxiliary Main Main Set Cooling Evap Evap Cooling Heating Preheat Reheat Mech. Heating Number Coil Economizer Coil Coil Coil Coil Coil Coil Humidity Coil OFF OFF OFF OFF OFF Card 46----- EMS/BAS Schedules ------ ${\tt System} \quad {\tt Discrim} \quad {\tt Night} \qquad {\tt Optimum} \quad {\tt Optimum} \quad {\tt -------DUTY} \; {\tt CYCLING------} \quad {\tt System} \; {\tt HR} \quad {\tt Room} \; {\tt HR}$ Set Control Purge Start Stop On Period Pattern Maximum Exhaust Number Schedule Schedule Schedule Schedule Length Off Time Schedule Schedule AVAIL AVAIL 2 AVAIL ----- Equipment Section Alternative #2 -----Card 59----- Equipment Description / TOD Schedules -----Elec Consump Elec Demand Demand ---- Demand Limit ---Alternative Time of Day Time of Day Limit Temperature Number Schedule Schedule Max KW Alternative Description Schedule Drift EXISTING PRIMARY EQUIPMENT Card 60------Cooling Load Assignment------Load All Coil Cooling Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Ref Cool Ref Sizing Begin End 1 10

| OOT F                                          | Equip                                                                              | Num                                                           |                     |                                            | COOLING                  |                             |                                                           |                                         | HEAT RECOV                    | ERY                              |                | Seq   |               | Demand | 1          |
|------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|--------------------------------------------|--------------------------|-----------------------------|-----------------------------------------------------------|-----------------------------------------|-------------------------------|----------------------------------|----------------|-------|---------------|--------|------------|
| ef (                                           | Code                                                                               | Of                                                            |                     | pacity                                     |                          |                             |                                                           | Capacit                                 | у                             | Energy                           | /              | Order | Seq           | Limit  |            |
| ım î                                           | Name                                                                               | Units                                                         | Value               | e Units                                    | s V                      | alue                        | Units                                                     | Value, Un                               | its \                         | /alue (                          | Jnits          | Num   | Type          | Number | r          |
|                                                | EQ1001S                                                                            | 1                                                             | 151                 | TONS                                       | 1.                       | 41                          | KW                                                        |                                         |                               |                                  |                | 1     | PAR           |        |            |
| 1                                              | EQ1001S                                                                            | 1                                                             | 151                 | TONS                                       | 1.                       | 41                          | KW                                                        |                                         |                               |                                  |                | 2     | PAR           |        |            |
|                                                |                                                                                    |                                                               |                     |                                            |                          |                             |                                                           |                                         |                               |                                  |                |       |               |        |            |
|                                                |                                                                                    |                                                               |                     |                                            |                          |                             |                                                           | eferences                               |                               |                                  |                |       | -             |        |            |
|                                                |                                                                                    |                                                               |                     |                                            |                          |                             |                                                           | d Full Load                             |                               | Cold                             | Cooling        | Misc  |               |        |            |
|                                                | Value                                                                              | Units                                                         |                     | Value                                      | Uni                      |                             | Value                                                     | Units                                   |                               | Storage                          | Tower          | Acces | ss.           |        |            |
|                                                | 27.3                                                                               | KW                                                            | -                   | 13.2                                       | KW                       |                             |                                                           |                                         |                               |                                  | 1              | 1     |               |        |            |
|                                                | 28.7                                                                               | KW                                                            |                     | 10.5                                       |                          |                             |                                                           |                                         |                               |                                  | 2              | 2     |               |        |            |
|                                                |                                                                                    |                                                               |                     |                                            |                          |                             |                                                           |                                         |                               |                                  |                |       |               |        |            |
| rd                                             |                                                                                    | ll Coil                                                       |                     |                                            |                          |                             |                                                           | Load Assignm                            |                               |                                  |                |       |               |        |            |
|                                                | nment Lo                                                                           |                                                               |                     |                                            |                          |                             |                                                           | -Group 4-                               |                               |                                  |                |       |               |        |            |
| efer                                           | ence He                                                                            | eating D                                                      | Ref B               | egin En                                    | d Begin                  | End                         | Begin End                                                 | Begin End                               | Begin End                     | Begin E                          | nd Begin       | End   | Begin E       | nd Beg | in E       |
|                                                | 1                                                                                  |                                                               | 1                   | . 3                                        | 6                        | 10                          |                                                           |                                         |                               |                                  |                |       |               |        |            |
| eat                                            | Equip                                                                              | Nu                                                            | mber                | HW Pmp                                     |                          |                             |                                                           | quipment Par<br>Energy<br>Rate          |                               | Seq<br>Order                     | Switch         | Hot   | Misc.         |        | Den        |
| eat<br>ef<br>umbe                              | Equip<br>Code<br>r Name<br>BLR51                                                   | Nu<br>Of<br>Un<br>1                                           | mber<br>its         | HW Pmp<br>Full Ld<br>Value<br>2.7          | Units<br>KW              | Co<br>V                     | ap'y<br>alue Units<br>060 MBH                             | Energy<br>Rate<br>Value<br>1683         | Units<br>MBH                  | Seq<br>Order                     | Switch         | Hot   | Misc.         |        | Dem<br>Lim |
| eat<br>ef<br>umbe                              | Equip<br>Code<br>r Name<br>BLR51<br>BLR51                                          | Nu<br>Of<br>Un<br>1                                           | mber                | HW Pmp<br>Full Ld<br>Value<br>2.7<br>2.7   | Units<br>KW<br>KW        | C:<br>V:<br>1               | ap'y<br>alue Units<br>060 MBH<br>060 MBH                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1      | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe                              | Equip<br>Code<br>r Name<br>BLR51<br>BLR51                                          | Nu<br>Of<br>Un<br>1                                           | mber                | HW Pmp<br>Full Ld<br>Value<br>2.7<br>2.7   | Units<br>KW<br>KW        | C.V. 1 1 1                  | ap'y alue Units 050 MBH 060 MBH                           | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe<br>ard<br>yste               | Equip<br>Code<br>er Name<br>BLR51<br>BLR51                                         | Nu Of Un 1 1                                                  | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef ard yste et umbe                        | Equip<br>Code<br>er Name<br>BLR51<br>BLR51                                         | Nu Of Un 1 1 1 oling n                                        | mber                | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units<br>KW<br>KW        | C.V. 1 1 1                  | ap'y alue Units 050 MBH 060 MBH                           | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef ard yste et umbe                        | Equip<br>Code<br>Fr Name<br>BLR51<br>BLR51<br>69em<br>Co                           | Nu Off Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef ard yste                                | Equip<br>Code<br>Fr Name<br>BLR51<br>BLR51<br>69em<br>Co<br>Er Fa                  | Nu Off Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe<br>ard<br>yste<br>et         | Equip<br>Code<br>Fr Name<br>BLR51<br>BLR51<br>69em<br>Co<br>Er Fa<br>EQ            | Nu Off Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe<br>yste<br>et<br>umbe        | Equip<br>Code<br>F Name<br>BLR51<br>BLR51<br>69em<br>Co<br>EY Fa<br>EQ<br>EQ       | Oling n 4003 44003 44003                                      | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe<br>ard<br>yste<br>et<br>umbe | Equip<br>Code<br>F Name<br>BLR51<br>BLR51<br>69em<br>Co<br>EY Fa<br>EQ<br>EQ<br>EQ | Oling  01  04  03  40  40  40  40  40  40  40  40             | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe<br>ard<br>yste<br>et<br>umbe | Equip<br>Code<br>F Name<br>BLR51<br>BLR51<br>69em<br>Co<br>EY Fa<br>EQ<br>EQ<br>EQ | Nu Off Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef ard yste et umbe                        | Equip Code T Name BLR51 BLR51  69 em Co er Fa EQ EQ EQ EQ EQ EQ EQ                 | oling n 4003 4003 4003 4003 4003 4003                         | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef umbe ard yste et umbe                   | Equip Code T Name BLR51 BLR51  69 em Co er Fa EQ        | oling n 4003 44003 44003 44003 44003 44003 44003              | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef ard yste et umbe                        | Equip Code Pr Name BLR51 BLR51  69 em Co Pr Fa EQ    | Oling n 44003 44003 44003 44003 44003 44003 44003 44003 44003 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef ard yste et umbe                        | Equip Code Pr Name BLR51 BLR51  69 em Co Pr Fa EQ | oling n 4003 44003 44003 44003 44003 44003 44003              | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat<br>ef<br>umbe                              | Equip Code Pr Name BLR51 BLR51  69 em Co Pr Fa EQ | Oling n 44003 44003 44003 44003 44003 44003 44003 44003 44003 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef  ard yste et umbe                       | Equip Code Fr Name BLR51 BLR51  69 Em Co Er EQ | Oling n 44003 44003 44003 44003 44003 44003 44003 44003 44003 | mber<br>its<br>Heat | HW Pmp Full Ld Value 2.7 2.7 Fan           | Units KW KW a Equipment  | CC<br>V<br>1<br>1<br>ent Pa | ap'y alue Units 060 MBH 060 MBH rameters                  | Energy<br>Rate<br>Value<br>1683<br>1683 | Units<br>MBH<br>MBH           | Seq<br>Order<br>Number<br>1<br>2 | Switch<br>over | Hot   | Misc.<br>Acc. |        | Dem<br>Lim |
| eat ef umbe ard yste et umbe                   | Equip Code IN Name BLR51 BLR51  69 EM Co EY EQ | Nu Off Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | its<br>its<br>Heat: | HW Pmp Full Id Value 2.7 2.7 Fan ing Re Fa | Units KW KW  a Equipment | C.V. 1 1 ent Pa Exhau Fan   | ap'y alue Units 060 MBH 060 MBH rameters st Auxili Supply | Energy<br>Rate<br>Value<br>1683<br>1683 | Units MBH MBH  Option t Venti | Seq Order Number 1 2             | Switch<br>over | Hot   | Misc.<br>Acc. |        | Den<br>Lim |

System Cool Heat Ret Exh Aux Room Opt Room Opt Set Fan Fan Fan Sup Exh Vent Cool Heat Aux Exh Vent Number KW KW KW KW KW KW KW Fan Fan Fan Fan Fan

1 4.9

| Card 70 | Card 70 Fa |        |        |     |     | ment K | W Over | rides |       |       |        |      |  |
|---------|------------|--------|--------|-----|-----|--------|--------|-------|-------|-------|--------|------|--|
|         |            | MAIN S | YSTEM- |     | OTH | ER SYS | TEM    | D     | EMAND | LIMIT | PRIORI | TY   |  |
| System  | Cool       | Heat   | Ret    | Exh | Aux | Room   | Opt    |       |       |       | Room   | 0pt  |  |
| Set     | Fan        | Fan    | Fan    | Fan | Sup | Exh    | Vent   | Cool  | Heat  | Aux   | Exh    | Vent |  |
| Number  | KW         | KW     | KW     | KW  | KM  | KW     | KW     | Fan   | Fan   | Fan   | Fan    | Fan  |  |
| 2       | 1.7        |        |        |     |     |        |        |       |       |       |        |      |  |
| 3       | 8.6        |        |        |     |     |        |        |       |       |       |        |      |  |
| 4       | 4.4        |        |        |     |     |        |        |       |       | •     |        |      |  |
| 5       | 4.1        |        |        |     |     |        |        |       |       |       |        |      |  |
| 6       | 4.9        |        |        |     |     |        |        |       |       |       |        |      |  |
| 7       | 8.7        |        |        |     |     |        |        |       |       |       |        |      |  |
| 8       | 10.3       |        |        |     |     |        |        |       |       |       |        |      |  |
| 9       | 2.1        |        |        |     |     |        |        |       |       |       |        |      |  |
| 10      | 4.1        |        |        |     |     |        |        |       |       |       |        |      |  |
|         |            |        |        |     |     |        |        |       |       |       |        | •    |  |

| Card 71- |                  |        | Base   | Utility P | arameters |           |          |          |         |  |
|----------|------------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|--|
| Base     | Base             | Hourly | Hourly |           |           | Equip     | Demand   |          |         |  |
| Utility  | Utility          | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |  |
| Number   | Descrip          | Value  | Units  | Code      | Type      | Number    | Number   | Temp     | Temp    |  |
| 1        | CHW LOADS        | 45.6   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          |         |  |
| 2        | HW LOADS         | 90.9   | MBH    | AVAIL     | HOT-LD    | 1         |          |          |         |  |
| 3        | ALL OTHER LIGHTS | 7.026  | KW     | OFICEL24  | ELEC      |           |          |          |         |  |
| 4        | ESH-53           | 22.4   | KW     | ESH53     | ELEC      |           |          |          |         |  |

| Card 7 | 4       |          |          | Condenser | / Cooling | g Tower Par | rameters |        |         |         |         |
|--------|---------|----------|----------|-----------|-----------|-------------|----------|--------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy    |             |          | Number | Percent | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump   | Fluid       | Tower    | Of     | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units     | Туре        | Type     | Cells  | Low Spd | Value   | Units   |
| 1      | EQ5100  |          |          | 5.3       | KM        | T-WATER     | CTOWER   | 1      |         |         |         |
| 2      | EQ5100  |          |          | 5.3       | KW        | T-WATER     | CTOWER   | 1      |         |         |         |
|        |         |          |          |           |           |             |          |        |         |         |         |

| Card | 75     |        |        |       | Misc  | ellaneous A | ccessory |       |       |        |        |       |
|------|--------|--------|--------|-------|-------|-------------|----------|-------|-------|--------|--------|-------|
|      | #1     |        |        |       | #2    |             |          |       | #3    |        |        |       |
| Misc | Equip  | Energy | Energy | Sched | Equip | Energy      | Energy   | Sched | Equip | Energy | Energy | Sched |
| Ref  | Code   | Value  | Units  | Code  | Code  | Value       | Units    | Code  | Code  | Value  | Units  | Code  |
| 1    | EQ5013 | 22.3   | KW     |       |       | ,           |          |       |       |        |        |       |
| 2    | EQ5013 | 22.3   | KW     |       |       | •           |          |       |       |        |        |       |
| 3    | EQ5020 | 6.4    | KW     |       |       |             |          |       |       |        |        |       |
| 4    | E05020 | 7.2    | KW     |       |       |             |          |       |       |        |        |       |

----- Load Section Alternative #3 -----

Card 19- Load Alternative -

Number Description
3 ECO B - OCCUPANCY SENSOR UPGRADE

## ECO-B, TEST CELLS 1 & 2

| Card 2 | ard 20 General Room Parameters |                  |        |       |       |        |            |          |            |           |           |
|--------|--------------------------------|------------------|--------|-------|-------|--------|------------|----------|------------|-----------|-----------|
|        | Zone                           |                  |        |       |       |        | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room   | Reference                      | Room             | Floor  | Floor | Const | Plenum | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number | Number                         | Descrip          | Length | Width | Type  | Height | Resistance | Height   | Multiplier | Zone      |           |
| 5      | 1                              | DEVICE RM. A-104 | 69     | 33    | 8     | 0      | 1          | 32       |            |           |           |
| 10     | 2                              | DEVICE RM B-105  | 32     | 41    | 8     | 0      | 1          | 29       |            |           |           |
| 15     | 3                              | RM 102, 103      | 59     | 36    | 8     | 0      | 1          | 32       |            |           |           |
| 20     | 4                              | RM 109           | 26     | 44    | 8     | 0      | 1          | 16       |            |           |           |
| 25     | 5                              | PT ELEC RM 201   | 27     | 37    | 8     | 0      | 1          | 17       |            |           |           |
| 30     | 6                              | RM. 101,102,105  | 46     | 46    | 8     | 0      | 1          | 15       |            |           |           |
| 35     | 7                              | RM 102           | 24     | 30    | 8     | 0      | 1          | 15       |            |           |           |
| 40     | 8                              | RM 204,301,401   | 57     | 57    | 8     | 0      | 1          | 15       |            |           |           |
| 45     | 9                              | HPOC, 501        | 25     | 24    | 8     | 0      | 1          | 15       |            |           |           |
| 50     | 10                             | ETA CNTRL RM 103 | 25.5   | 13    | 8     | 0      | 1          | 15       |            |           |           |

| Card 21 |           |        |            | eters    |           |            |          |          |         |        |
|---------|-----------|--------|------------|----------|-----------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating   | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room      | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH .   | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5       | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 10      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 15      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 20      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 25      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 30      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 35      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 40      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 45      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 50      | 70        | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
|         |           |        |            |          |           |            |          |          |         |        |

| Card 22 |        |          |        | Roof Para | meters  |       |           |      |       |
|---------|--------|----------|--------|-----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |           |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof      | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width     | U-Value | Type  | Direction | Tilt | Alpha |
| 5       | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 10      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 15      | 1      |          | 69     | 36        | 0.1     | 23    |           |      |       |
| 25      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 30      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 45      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |
| 50      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |
|         |        |          |        |           |         |       |           |      |       |

| Card 2 | 24       |        |        | Wall P  | arameters |           |      |       |             |
|--------|----------|--------|--------|---------|-----------|-----------|------|-------|-------------|
|        |          |        |        |         | Wall      |           |      |       | Ground      |
| Room   | Wall     | Wall   | Wall   | Wall    | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number | . Number | Length | Height | U-Value | Туре      | Direction | Tilt | Alpha | Multiplier  |
| 5      | 1        | 33     | 32     | 0.32    | 58        | 315       |      |       |             |
| 5      | 2        | 69     | 32     | 0.32    | 58        | 45        |      |       |             |
| 10     | 1        | 32     | 29     | 0.32    | 58        | 315       |      |       |             |
| 10     | 2        | 29.5   | 29.5   | 0.32    | 58        | 225       | •    |       |             |
| 15     | 1        | 38     | 32     | 0.32    | 58        | 315       |      |       |             |
| 15     | 2        | 38     | 32     | 0.32    | 58        | 135       |      |       |             |
| 20     | 1        | 27     | 16     | 0.32    | 58        | 135       |      |       |             |
| 25     | 1        | 27     | 17     | 0.32    | 58        | 135       |      |       |             |
| 30     | 1        | 78     | 15     | 0.32    | 58        | 315       |      |       |             |
| 30     | 2        | 43     | 15     | 0.32    | 58        | 45        |      |       |             |
| 30     | 3        | 42     | 15     | 0.32    | 58        | 135       |      |       |             |
| 30     | 4        | 30     | 15     | 0.32    | 58        | 225       |      |       |             |
| 40     | 1        | 75     | 15     | 0.32    | 58        | 315       |      |       |             |
| 40     | 2        | 75     | 15     | 0.32    | 58        | 45        |      |       |             |
| 40     | 3        | 75     | 15     | 0.32    | 58        | 135       |      |       |             |
| 40     | 4        | 75     | 15     | 0.32    | 58        | 225       |      |       |             |
| 45     | 1        | 25     | 15     | 0.32    | 58        | 315       |      |       |             |
| 45     | 2        | 24     | 15     | 0.32    | 58        | 45        |      |       |             |
| 45     | 3        | 25     | 15     | 0.32    | 58        | 135       |      |       |             |
| 45     | 4        | 24     | 15     | 0.32    | 58        | 225       |      |       |             |
| 50     | 1        | 13     | 15     | 0.32    | 58        | 45        |      |       |             |
| 50     | 2        | 25.5   | 15     | 0.32    | 58        | 135       |      |       |             |
| 50     | 3        | 8      | 15     | 0.32    | 58        | 225       |      |       |             |

| Card 26 |          |          |             | S            | Chedules · |         |         |           |         |             |
|---------|----------|----------|-------------|--------------|------------|---------|---------|-----------|---------|-------------|
| Room    |          |          |             |              | Reheat     | Cooling | Heating | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum    | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | OFICEL30 |             |              |            |         |         |           |         | -           |
| 10      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 15      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 20      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 25      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| .30     | OFFICEP1 | OFICEL31 |             |              |            |         |         |           |         |             |
| 35      | OFFICEP1 | CLGONLY  |             |              |            |         |         |           |         |             |
| 40      | OFFICEP1 | OFICEL32 |             |              |            |         |         |           |         | -           |
| 45      | OFFICEP1 | OFICEL33 |             |              |            | ·       |         |           |         |             |
| 50      | OFFICEP1 | OFICEL35 |             |              |            | ••      |         |           |         |             |
|         |          |          |             |              |            |         |         |           |         |             |

| Card 27 |        |        |          |        | Peopl    | e and Ligh | ts       |         |           |           |           |
|---------|--------|--------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------|
|         |        |        |          |        |          |            | Lighting |         | Percent   | Daylig    | hting     |
| Room    | People | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |
| Number  | Value  | Units  | Sensible | Latent | Value    | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |
| 5       | 2      | PEOPLE | 250      | 200    | 15118    | WATTS      | INCAND   |         |           |           | -         |
| 10      | 2      | PEOPLE | 250      | 200    | 7454     | WATTS      | INCAND   |         |           |           |           |

| Card 27 |        |        |          |        | Peopl    | e and Ligh | ts       |         |           |           |           |
|---------|--------|--------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------|
|         |        |        |          |        |          |            | Lighting |         | Percent   | Daylig    | hting     |
| Room    | People | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |
| Number  | Value  | Units  | Sensible | Latent | Value    | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |
| 15      | 4      | PEOPLE | 250      | 200    | 5084     | WATTS      | INCAND   |         |           |           |           |
| 20      | 2      | PEOPLE | 250      | 200    | 2148     | WATTS      | INCAND   |         |           |           |           |
| 25      | 5      | PEOPLE | 250      | 200    | 1856     | WATTS      | INCAND   |         |           |           |           |
| 30      | 3      | PEOPLE | 250      | 200    | 5202     | WATTS      | INCAND   |         |           |           |           |
| 35      | 5      | PEOPLE | 250      | 200    | 642      | WATTS      | INCAND   |         |           |           |           |
| 40      | 10     | PEOPLE | 250      | 200    | 3026     | WATTS      | ASHRAE1  |         |           |           |           |
| 45      | 4      | PEOPLE | 250      | 200    | 2296     | WATTS      | INCAND   |         |           |           |           |
| 50      | 1      | PEOPLE | 250      | 200    | 558      | WATTS      | ASHRAE1  |         |           |           |           |
|         |        |        |          |        |          |            |          |         |           |           |           |

| Card 28 |           |                   |         | Mis     | cellaneous | Equipment |          |            |             |          |          |
|---------|-----------|-------------------|---------|---------|------------|-----------|----------|------------|-------------|----------|----------|
|         | Misc      |                   | Energy  | Energy  |            | Energy    | Percent  | Percent    | Percent     |          |          |
| Room    | Equipment | Equipment         | Consump | Consump | Schedule   | Meter     | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number  | Number    | Descrip           | Value   | Units   | Code       | Code      | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5       | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 10      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 15      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 20      | 1         | TESTING EQ.COMP.  | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 25      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 30      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 35      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 40      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 45      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 50      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |

| Card 29 | ) <b></b> |        |        |       | Room Air | flows |         |       |        |         |
|---------|-----------|--------|--------|-------|----------|-------|---------|-------|--------|---------|
|         |           | Ventil | lation |       |          | Infil | tration |       |        |         |
| Room    | Coo       | ling   | Heat   | ing   | Coo      | ling  | Неа     | ting  | Reheat | Minimum |
| Number  | Value     | Units  | Value  | Units | Value    | Units | Value   | Units | Value  | Units   |
| 5       | 280       | CFM    | 280    | CFM   |          |       |         |       |        |         |
| 10      | 100       | CFM    | 100    | CFM   |          |       |         |       |        |         |
| 15      | 4700      | CFM    | 4700   | CFM   |          |       |         |       |        |         |
| 20      | 0         | CFM    | 0      | CFM   |          |       |         |       |        |         |
| 25      | · o       | CFM    | 0      | CFM   |          |       |         |       |        |         |
| 30      | - 285     | CFM    | 285    | CFM   |          |       |         |       |        |         |
| 35      | 790       | CFM    | 790    | CFM   |          |       |         |       |        |         |
| 40      | 750       | CFM    | 750    | CFM   |          |       |         |       |        | ·       |
| 45      | 3600      | CFM    | 3600   | CFM   |          |       |         |       |        |         |
| 50      | 360       | CFM    | 360    | CFM   |          |       |         |       |        |         |

| Card 30 | ) <u>-</u> |       |       |       | Fan Airflo | ows   |        |       |        |        |
|---------|------------|-------|-------|-------|------------|-------|--------|-------|--------|--------|
|         |            | Ma    | in    |       |            | Auxi  | lliary |       |        |        |
| Room    | Coo        | ling  | Heat  | ing   | Coo        | ling+ | Hea    | ting  | Room E | xhaust |
| Number  | Value      | Units | Value | Units | Value      | Units | Value  | Units | Value  | Units  |
| 5       | 5892       | CFM   | 5892  | CFM   |            |       |        |       |        |        |
| 10      | 3344       | CFM   | 3344  | CFM   |            |       |        |       |        |        |
| 15      | 10758      | CFM   | 10758 | CFM   |            |       |        |       | 600    | CFM    |
| 20      | 15667      | CFM   | 15667 | CFM   |            |       | •      | :     |        |        |
| 25      | 10386      | CFM   | 10386 | CFM   |            |       |        |       |        |        |
| 30      | 2850       | CFM   | 2850  | CFM   |            |       |        |       |        |        |
| 35      | 4080       | CFM   | 4080  | CFM   |            |       |        |       |        |        |
| 40      | 12510      | CFM   | 12510 | CFM   |            |       |        |       |        |        |
| 45      | 3600       | CFM   | 3600  | CFM   |            |       |        |       |        |        |
| 50      | 1880       | CFM   | 1880  | CFM   |            |       |        |       |        |        |
|         |            |       |       |       |            |       |        |       |        |        |

----- System Section Alternative #3 -----

Card 39- System Alternative

Number Description
3 EXISTING AIRSIDE EQUIPMENT

| Card 40 |        |          | Syste   | т Туре    |            |          |          |  |
|---------|--------|----------|---------|-----------|------------|----------|----------|--|
|         |        |          | OPTION  | AL VENTIL | ATION SYST | EM       |          |  |
| System  |        | Ventil   |         |           |            |          | Fan      |  |
| Set     | System | Deck     | Cooling | Heating   | Cooling    | Heating  | Static   |  |
| Number  | Type   | Location | SADBVh  | SADBVh    | Schedule   | Schedule | Pressure |  |
| 1       | TRH    |          |         |           |            |          |          |  |
| 2       | TRH    |          |         |           |            |          |          |  |
| 3       | TRH    |          |         |           |            |          |          |  |
| 4       | VTCV   |          |         |           |            |          |          |  |
| 5       | VTCV   |          |         |           |            |          |          |  |
| 6       | VICV   |          |         |           |            |          |          |  |
| 7       | VTCV   |          |         |           |            |          |          |  |
| 8       | VTCV   |          |         |           |            |          |          |  |
| 9       | VTCV   |          |         |           |            |          |          |  |
| 10      | VTCV   |          |         |           |            |          |          |  |
|         | _      |          |         |           |            |          |          |  |

| Card 41 |          |     |       |     | Zone A | ssignmen | t     |     |       |     |       |     |
|---------|----------|-----|-------|-----|--------|----------|-------|-----|-------|-----|-------|-----|
| System  |          |     |       |     |        |          |       |     |       |     |       |     |
| Set     | Ref      | #1  | Ref   | #2  | Ref    | #3       | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Number  | Begin    | End | Begin | End | Begin  | End      | Begin | End | Begin | End | Begin | End |
| 1       | 1        | 1   |       |     |        |          |       |     |       |     |       |     |
| 2       | <b>2</b> | 2   |       |     |        |          |       |     |       |     |       |     |
| 3       | 3        | 3   |       |     |        |          |       |     |       |     | ٠.    |     |
| 4       | 4        | 4   |       |     |        |          |       |     |       |     |       |     |
| 5       | 5        | 5   |       |     |        |          |       |     |       |     |       |     |
| 6       | 6        | 6   |       |     |        |          |       |     |       |     |       |     |
| 7       | 7        | 7   |       |     |        |          |       |     |       |     |       |     |

| Card 41 |       |     |       |     | Zone A | issignmen | 10    |     |       |     |       |     |
|---------|-------|-----|-------|-----|--------|-----------|-------|-----|-------|-----|-------|-----|
| System  |       |     |       |     |        |           |       |     |       |     |       |     |
| Set     | Ref   | #1  | Ref   | #2  | Ref    | #3        | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Number  | Begin | End | Begin | End | Begin  | End       | Begin | End | Begin | End | Begin | End |
| 9       | 9     | 9   |       |     |        |           |       |     |       |     |       |     |
| 10      | 10    | 10  |       |     |        |           |       |     |       |     |       |     |
|         |       |     |       |     |        |           |       |     |       |     |       |     |

| Card 42 |      |      |        | Fan    | . SP an | d Duct P | arameters | ;       |        |        |        |
|---------|------|------|--------|--------|---------|----------|-----------|---------|--------|--------|--------|
| System  | Cool | Heat | Return | Mn Exh | Aux     | Rm Exh   | Cool      | Return  | Supply | Supply | Return |
| Set     | Fan  | Fan  | Fan    | Fan    | Fan     | Fan      | Fan Mtr   | Fan Mtr | Duct   | Duct   | Air    |
| Number  | SP   | SP   | SP     | SP     | SP      | SP       | Loc       | Loc     | Ht Gn  | Loc    | Path   |
| 1       | 1.5  |      |        |        |         |          |           |         |        |        |        |
| 2       | 1.6  |      |        |        |         |          |           |         |        |        |        |
| 3       | 1.9  |      |        |        |         | .5       |           |         |        |        |        |
| 4       | 1.6  |      |        |        |         |          |           |         |        |        |        |
| 5       | 1.6  |      |        |        |         |          |           |         |        |        |        |
| 6       | 4.6  |      |        |        |         |          |           |         |        |        |        |
| 7       | 2.0  |      |        |        |         |          |           |         |        |        |        |
| 8       | 2.0  |      |        |        |         |          |           |         |        |        |        |
| 9       | 1.5  |      |        |        |         |          |           |         |        |        |        |
| 10      | 2.0  |      |        |        |         |          |           |         |        |        |        |

| Card 43 |         |         |         | Airflow D | esign Tem | peratures | 3       |         |         |        |  |
|---------|---------|---------|---------|-----------|-----------|-----------|---------|---------|---------|--------|--|
| System  | Minimum | Maximum | Minimum | Maximum   | Minimum   | Maximum   | Minimum | Maximum | Minimum | Design |  |
| Set     | Cooling | Cooling | Heating | Heating   | Cooling   | Cooling   | Preheat | Preheat | Room    | Ht Rec |  |
| Number  | SADB    | SADB    | SADB    | SADB      | Lv DB     | Lv DB     | Lv DB   | Lv DB   | RH      | Diff   |  |
| 1       | 48.4    | 48.4    |         |           |           |           |         |         |         |        |  |
| 2       | 48.4    | 48.4    |         |           |           |           |         |         |         |        |  |
| 3       | 47.4    | 47.4    |         |           |           |           |         |         |         |        |  |

| Card 45 |         |            |        | Equ      | ipment Sche | dules   |         |        |          |           |  |
|---------|---------|------------|--------|----------|-------------|---------|---------|--------|----------|-----------|--|
| System  | Main    |            | Direct | Indirect | Auxiliary   | Main    | Main    |        |          | Auxiliary |  |
| Set     | Cooling |            | Evap   | Evap     | Cooling     | Heating | Preheat | Reheat | Mech.    | Heating   |  |
| Number  | Coil    | Economizer | Coil   | Coil     | Coil        | Coil    | Coil    | Coil   | Humidity | Coil      |  |
| 1 .     |         |            |        |          |             | OFF     |         |        |          |           |  |
| 2       |         |            |        |          | *           | OFF     |         |        |          |           |  |
| 3       |         |            |        |          |             | OFF     |         |        | •        |           |  |
| 4       |         |            |        |          |             | OFF     |         |        |          |           |  |
| 5       |         |            |        |          |             | OFF     |         |        |          |           |  |

| Card 46 |          |          |          | - EMS/BAS | Schedules - |           |          |           |          |
|---------|----------|----------|----------|-----------|-------------|-----------|----------|-----------|----------|
| System  | Discrim  | Night    | Optimum  | Optimum   | DU          | TY CYCLIN | G        | System HR | Room HR  |
| Set     | Control  | Purge    | Start    | Stop      | On Period   | Pattern   | Maximum  | Exhaust   | Exhaust  |
| Number  | Schedule | Schedule | Schedule | Schedule  | Schedule    | Length    | Off Time | Schedule  | Schedule |
| 1       | AVAIL    |          |          |           |             |           |          |           |          |

```
Card 46----- EMS/BAS Schedules -----
Set Control Purge Start Stop On Period Pattern Maximum Exhaust Exhaust
Number Schedule Schedule Schedule Schedule Length Off Time Schedule Schedule
   AVAIL
   AVAIL
----- Equipment Section Alternative #3 -----
Card 59----- Equipment Description / TOD Schedules ------
       Elec Consump Elec Demand Demand
                                                     ---- Demand Limit ---
Alternative Time of Day Time of Day Limit
                                                        Temperature
Number Schedule Schedule Max KW Alternative Description
                                                    Schedule Drift
                            EXISTING PRIMARY EQUIPMENT
Card 60----- Cooling Load Assignment-----
Load All Coil Cooling
Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End               1 10
Card 62----- Cooling Equipment Parameters ------
Of --Capacity-- ----Energy---- --Capacity-- ----Energy---- Order Seq Limit
Ref Code
Num Name
        Units Value Units Value Units Value Units
                                              Value Units Num Type Number
1 EQ1001S 1 151 TONS
                      141 KW
                                                         1 PAR
2 EQ1001S 1 151 TONS 141 KW
                                                          2 PAR
Card 63------ Cooling Pumps and References ------
Cool ---CHILLED WATER---- ----CONDENSER----- ---HT REC or AUX---- Switch-
Ref Full Load Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc.
Num Value Units Value Units Value Units Control Storage Tower Access.
1 27.3 KW 13.2 KW
2 28.7 KW 10.5 KW
                                                1 1
2 2
Assignment Loads To Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Reference Heating Ref Begin End 1 1 1 3 6 10
```

| Card 67 | ard 67 Heating Equipment Parameters |        |         |       |       |       |        |       |        |         |      |       |       |        |
|---------|-------------------------------------|--------|---------|-------|-------|-------|--------|-------|--------|---------|------|-------|-------|--------|
| Heat    | Equip                               | Number | HW Pmp  |       |       |       | Energy |       | Seq    | Switch  |      |       |       | Demand |
| Ref     | Code                                | Of     | Full Ld |       | Cap'y |       | Rate   |       | Order  | over    | Hot  | Misc. |       | Limit  |
| Number  | Name                                | Units  | Value   | Units | Value | Units | Value  | Units | Number | Control | Strg | Acc.  | Cogen | Number |
| 1       | BLR51                               | 1      | 2.7     | KW    | 1060  | MBH   | 1683   | MBH   | 1      |         |      | 3     |       |        |
| 2       | BLR51                               | 1      | 2.7     | KW    | 1060  | MBH   | 1683   | MBH   | 2      |         |      | 4     |       |        |

| Card 69 |         |         | Fan Equipm | ent Parame | ters      |         |             |
|---------|---------|---------|------------|------------|-----------|---------|-------------|
| System  |         |         |            |            |           |         |             |
| Set     | Cooling | Heating | Return     | Exhaust    | Auxiliary | Room    | Optional    |
| Number  | Fan     | Fan     | Fan        | Fan        | Supply    | Exhaust | Ventilation |
| 1       | EQ4003  |         |            |            |           |         |             |
| 2       | EQ4003  |         |            |            |           |         |             |
| 3       | EQ4003  |         |            |            |           |         |             |
| 4       | EQ4003  |         |            |            |           |         |             |
| 5       | EQ4003  |         |            |            |           |         |             |
| 6       | EQ4003  |         |            |            |           |         |             |
| 7       | EQ4003  |         |            |            |           |         |             |
| 8       | EQ4003  |         |            |            |           |         |             |
| 9       | EQ4003  |         |            |            |           |         |             |
| 10      | EQ4003  |         |            |            |           |         |             |
|         |         |         |            |            |           |         |             |

| Card 70 | Card 70 Far |        |        |     |     | ment K | W Over | rides |       |       |        |      |
|---------|-------------|--------|--------|-----|-----|--------|--------|-------|-------|-------|--------|------|
|         |             | MAIN S | YSTEM- |     | OTH | ER SYS | TEM    | D     | EMAND | LIMIT | PRIORI | TY   |
| System  | Cool        | Heat   | Ret    | Exh | Aux | Room   | Opt    |       |       |       | Room   | Opt  |
| Set     | Fan         | Fan    | Fan    | Fan | Sup | Exh    | Vent   | Cool  | Heat  | Aux   | Exh    | Vent |
| Number  | KW          | KW     | KW     | KW  | KW  | KW     | KW     | Fan   | Fan   | Fan   | Fan    | Fan  |
| 1       | 4.9         |        |        |     |     |        |        |       |       |       |        |      |
| 2       | 1.7         |        |        |     |     |        |        |       |       |       |        |      |
| 3       | 8.6         |        |        |     |     |        |        |       |       |       |        |      |
| 4       | 4.4         |        |        |     |     |        |        |       |       |       |        |      |
| 5       | 4.1         |        |        |     |     |        |        |       |       |       |        |      |
| 6       | 4.9         |        |        |     |     |        |        |       |       |       |        |      |
| 7       | 8.7         |        |        |     |     |        |        |       |       |       |        |      |
| 8       | 10.3        |        |        |     |     |        |        |       |       |       |        |      |
| 9       | 2.1         |        |        |     |     |        |        |       |       |       |        |      |
| 10      | 4.1         |        |        |     |     |        |        |       |       |       |        |      |

| Card 71- | •••••     |        | Base   | Utility P | arameters |           |          |          |         |
|----------|-----------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base      | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility   | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip   | Value  | Units  | Code      | Type      | Number    | Number   | Temp     | Temp    |
| 1        | CHW LOADS | 45.6   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          |         |

| Card 71- |                  |        | arameters | ;        |        |           |          |          |         |
|----------|------------------|--------|-----------|----------|--------|-----------|----------|----------|---------|
| Base     | Base             | Hourly | Hourly    |          |        | Equip     | Demand   |          |         |
| Utility  | Utility          | Demand | Demand    | Schedule | Energy | Reference | Limiting | Entering | Leaving |
| Number   | Descrip          | Value  | Units     | Code     | Туре   | 'Number   | Number   | Temp     | Temp    |
| 2        | HW LOADS         | 90.9   | MBH       | AVAIL    | HOT-LD | 1         |          |          |         |
| 3        | ALL OTHER LIGHTS | 7.026  | KW        | OFICEL34 | ELEC   |           |          |          |         |
| 4        | ESH-53           | 22.4   | KW        | ESH53    | ELEC   |           |          |          |         |
|          |                  |        |           |          | •      |           |          |          |         |
|          |                  |        |           |          |        |           |          |          |         |
|          |                  |        |           |          |        |           |          |          |         |

| Card 7 | 4       |          |          | Condenser | / Coolin | g Tower Pa | arameters |        |         |         |         |
|--------|---------|----------|----------|-----------|----------|------------|-----------|--------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy   |            |           | Number | Percent | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump  | Fluid      | Tower     | Of     | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units    | Type       | Type      | Cells  | Low Spd | Value   | Units   |
| 1      | EQ5100  |          |          | 5.3       | KW       | T-WATER    | CTOWER    | 1      |         |         |         |
| 2      | EQ5100  |          |          | 5.3       | KW       | T-WATER    | CTOWER    | 1      |         |         |         |

| Card | 75     |        |        | - <b></b> | Misce | ellaneous A | ccessory |       |       |        |        |       |
|------|--------|--------|--------|-----------|-------|-------------|----------|-------|-------|--------|--------|-------|
|      | #1     |        |        |           | #2    |             |          |       | #3    |        |        |       |
| Misc | Equip  | Energy | Energy | Sched     | Equip | Energy      | Energy   | Sched | Equip | Energy | Energy | Sched |
| Ref  | Code   | Value  | Units  | Code      | Code  | Value       | Units    | Code  | Code  | Value  | Units  | Code  |
| 1    | EQ5013 | 22.3   | KW     |           |       |             |          |       |       |        |        |       |
| 2    | EQ5013 | 22.3   | KW     |           |       |             |          |       |       |        |        |       |
| 3    | EQ5020 | 6.4    | KW     |           |       |             |          |       |       |        |        |       |
| 4    | EQ5020 | 7.2    | KW     |           |       |             |          |       |       |        |        |       |

----- Load Section Alternative #4 ------

## ECO-C, TEST CELLS 1 & 2

Card 19- Load Alternative -Number Description

4 ECO C - ENERGY MANAGEMENT SYSTEM

|        | Zone      |                  |        |       |       |        | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
|--------|-----------|------------------|--------|-------|-------|--------|------------|----------|------------|-----------|-----------|
| Room   | Reference | Room             | Floor  | Floor | Const | Plenum | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number | Number    | Descrip          | Length | Width | Type  | Height | Resistance | Height   | Multiplier | Zone      |           |
| 5      | 1         | DEVICE RM. A-104 | 69     | 33    | 8     | 0      | 1          | 32       |            |           |           |
| 10     | 2         | DEVICE RM B-105  | 32     | 41    | 8     | 0      | 1          | 29       |            |           |           |
| 15     | 3         | RM 102, 103      | 59     | 36    | 8     | 0      | 1          | 32       |            |           |           |
| 20     | 4         | RM 109           | 26     | 44    | 8     | 0      | 1          | 16       |            |           |           |
| 25     | 5         | PT ELEC RM 201   | 27     | 37    | 8     | 0      | 1          | 17       |            |           |           |
| 30     | 6         | RM. 101,102,105  | 46     | 46    | 8     | 0      | 1          | 15       |            |           |           |
| 35     | 7 ,       | RM 102           | 24     | 30    | 8     | 0      | 1          | 15       |            |           |           |
| 40     | 8         | RM 204,301,401   | 57     | 57    | 8     | 0      | ī          | 15       |            |           |           |

| Card 20 |           |                  |        | Genera | l Room | Paramete | rs         |          |            |           |           |
|---------|-----------|------------------|--------|--------|--------|----------|------------|----------|------------|-----------|-----------|
|         | Zone      |                  |        |        |        |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference | Room             | Floor  | Floor  | Const  | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number    | Descrip          | Length | Width  | Type ' | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 45      | 9         | HPOC, 501        | 25     | 24     | 8      | 0        | 1          | 15       |            |           |           |
| 50      | 10        | ETA CNTRL RM 103 | 25.5   | 13     | 8      | 0        | 1          | 15       |            |           |           |

| Card 21 |           |        |            | Therm    | ostat Param | eters      |          |          |         |        |
|---------|-----------|--------|------------|----------|-------------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5       | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 10      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 15      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 20      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 25      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 30      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 35      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 40      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 45      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |
| 50      | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |

| Card 22 |        |          |        | Roof Para | meters  |       |           |      |       |
|---------|--------|----------|--------|-----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |           |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof      | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width     | U-Value | Туре  | Direction | Tilt | Alpha |
| 5       | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 10      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 15      | 1      |          | 69     | 36        | 0.1     | 23    |           |      |       |
| 25      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 30      | 1      | YES      |        |           | 0.1     | 23    |           |      |       |
| 45      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |
| 50      | 1      | YES      |        |           | 0.32    | 23    |           |      |       |
|         |        |          |        |           |         |       |           |      |       |

| Card 24 |        |        |        | Wall Pa | arameters<br>Wall |           |      |       | Ground      |
|---------|--------|--------|--------|---------|-------------------|-----------|------|-------|-------------|
| Room    | Wall   | Wall   | Wall   | Wall    | Constuc           | Wall      | Wall | Wall  | Reflectance |
| Number  | Number | Length | Height | U-Value | Type              | Direction | Tilt | Alpha | Multiplier  |
| 5       | 1      | 33     | 32     | 0.32    | 58                | 315       |      |       |             |
| 5       | 2      | 69     | 32     | 0.32    | 58                | 45        |      |       |             |
| 10      | 1      | 32     | 29     | 0.32    | 58                | 315       |      |       |             |
| 10      | 2      | 29.5   | 29.5   | 0.32    | 58                | 225       |      |       |             |
| 15      | 1      | 38     | 32     | 0.32    | 58                | 315       |      |       |             |
| 15      | 2      | 38     | 32     | 0.32    | 58                | 135       |      |       |             |
| 20      | 1      | 27     | 16     | 0.32    | 58                | 135       |      |       |             |

| Card 24- |        |        |        | - Wall Pa | arameters |           |      |       |             |
|----------|--------|--------|--------|-----------|-----------|-----------|------|-------|-------------|
|          |        |        |        |           | Wall      |           |      |       | Ground      |
| Room     | Wall   | Wall   | Wall   | Wall      | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number   | Number | Length | Height | U-Value   | Туре      | Direction | Tilt | Alpha | Multiplier  |
| 25       | 1      | 27     | 17     | 0.32      | 58        | 135       |      |       |             |
| 30       | 1      | 78     | 15     | 0.32      | 58        | 315       |      |       |             |
| 30       | 2      | 43     | 15     | 0.32      | 58        | 45        |      |       |             |
| 30       | 3      | 42     | 15     | 0.32      | 58        | 135       | •    |       |             |
| 30       | 4      | 30     | 15     | 0.32      | 58        | 225       |      |       |             |
| 40       | 1      | 75     | 15     | 0.32      | 58        | 315       |      |       |             |
| 40       | 2      | 75     | 15     | 0.32      | 58        | 45        |      |       |             |
| 40       | 3      | 75     | 15     | 0.32      | 58        | 135       |      |       |             |
| 40       | 4      | 75     | 15     | 0.32      | 58        | 225       |      |       |             |
| 45       | 1      | 25     | 15     | 0.32      | 58        | 315       |      |       |             |
| 45       | 2      | 24     | 15     | 0.32      | 58        | 45        |      |       |             |
| 45       | 3      | 25     | 15     | 0.32      | 58        | 135       |      |       |             |
| 45       | 4      | 24     | 15     | 0.32      | 58        | 225       |      |       | ÷           |
| 50       | 1      | 13     | 15     | 0.32      | 58        | 45        |      |       |             |
| 50       | 2      | 25.5   | 15     | 0.32      | 58        | 135       |      |       |             |
| 50       | 3      | 8      | 15     | 0.32      | 58        | 225       |      |       |             |
|          |        |        |        |           |           |           |      |       |             |

| Card 26 |          |          |             | S            | chedules - |         |         |           |         |             |
|---------|----------|----------|-------------|--------------|------------|---------|---------|-----------|---------|-------------|
| Room    |          |          |             |              | Reheat     | Cooling | Heating | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum    | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | OFICEL30 | OFFICEP1    |              |            |         |         |           |         |             |
| 10      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 15      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 20      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 25      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 30      | OFFICEP1 | OFICEL31 | OFFICEP1    |              |            |         |         |           |         |             |
| 35      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 40      | OFFICEP1 | OFICEL32 | OFFICEP1    |              |            |         |         |           |         |             |
| 45      | OFFICEP1 | OFICEL33 | OFFICEP1    |              |            |         |         |           |         |             |
| 50      | OFFICEP1 | OFICEL35 | OFFICEP1    |              |            |         |         |           |         |             |

| Card 27 |        |        |          |        | Peopl    | e and Ligh | ts       |         |           |           |           |
|---------|--------|--------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------|
| _       |        |        |          |        |          |            | Lighting |         | Percent   | Daylig    | hting     |
| Room    | People | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |
| Number  | Value  | Units  | Sensible | Latent | Value    | Units      | Туре     | Factor  | Ret. Air  | Point 1   | Point 2   |
| 5       | 2      | PEOPLE | 250      | 200    | 15118    | WATTS      | INCAND   |         |           |           |           |
| 10      | 2      | PEOPLE | 250      | 200    | 7454     | WATTS      | INCAND   |         |           |           |           |
| 15      | 4      | PEOPLE | 250      | 200    | 5084     | WATTS      | INCAND   |         |           |           |           |
| 20      | 2      | PEOPLE | 250      | 200    | 2148     | WATTS      | INCAND   |         |           |           |           |
| 25      | 5      | PEOPLE | 250      | 200    | 1856     | WATTS      | INCAND   |         |           |           |           |
| 30      | 3      | PEOPLE | 250      | 200    | 5202     | WATTS      | INCAND   |         |           |           |           |
| 35      | 5 ,    | PEOPLE | 250      | 200    | 642      | WATTS      | INCAND   |         |           |           |           |
| 40      | 10     | PEOPLE | 250      | 200    | 3026     | WATTS      | ASHRAE1  |         |           |           |           |

| Card 27 |        |        |          |        | Peopl    | e and Ligh | nts      |         |           |           |           |
|---------|--------|--------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------|
|         |        |        |          |        |          |            | Lighting |         | Percent   | Daylig    | hting     |
| Room    | People | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |
| Number  | Value  | Units  | Sensible | Latent | Value    | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |
| 45      | 4      | PEOPLE | 250      | 200    | 2296     | WATTS      | INCAND   |         |           |           |           |
| 50      | 1      | PEOPLE | 250      | 200    | 558      | WATTS      | ASHRAE1  |         |           |           |           |

| Card 28 |           |                   |         | Mis     | cellaneous | Equipment |          |            |             |          |          |
|---------|-----------|-------------------|---------|---------|------------|-----------|----------|------------|-------------|----------|----------|
|         | Misc      |                   | Energy  | Energy  |            | Energy    | Percent  | Percent    | Percent     |          |          |
| Room    | Equipment | Equipment         | Consump | Consump | Schedule   | Meter     | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number  | Number    | Descrip           | Value   | Units   | Code       | Code      | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5       | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 10      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 15      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 20      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 25      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 30      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 35      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 40      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 45      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |
| 50      | 1         | TESTING EQ, COMP. | 2,46    | WATT-SF | OFFICEM1   | ELEC      |          |            |             |          |          |

| Card 29 |        |         |        |       | Room Airflo | ows     |        |       |            |       |
|---------|--------|---------|--------|-------|-------------|---------|--------|-------|------------|-------|
|         |        | Ventila | tion   |       |             | Infiltr | ration |       |            |       |
| Room    | Coolin | g       | Heatin | g     | Coolir      | 1g      | Heati  | ng    | Reheat Mir | nimum |
| Number  | Value  | Units   | Value  | Units | Value       | Units   | Value  | Units | Value      | Units |
| 5       | 20     | CFM-P   | 20     | CFM-P |             |         |        |       |            |       |
| 10      | 20     | CFM-P   | 20     | CFM-P |             |         |        |       |            |       |
| 15      | 20     | CFM-P   | 20     | CFM-P |             |         |        |       |            |       |
| 20      | 0      | CFM     | 0      | CFM   |             |         |        |       |            |       |
| 25      | 0      | CFM     | 0      | CFM   |             |         |        |       |            |       |
| 30      | 160    | CFM     | 160    | CFM   |             |         |        |       |            |       |
| 35      | 140    | CFM     | 140    | CFM   |             |         |        |       |            |       |
| 40      | 20     | CFM-P   | 20     | CFM-P |             |         |        |       |            |       |
| 45      | 3600   | CFM     | 3600   | CFM   |             |         |        |       |            |       |
| 50      | 20     | CFM-P   | 20     | CFM-P |             |         |        |       |            |       |
|         |        |         |        |       |             |         |        |       |            |       |

| Card 30 | 1     |       |       |       | Fan Airfl | ows   |       |       |        |        |
|---------|-------|-------|-------|-------|-----------|-------|-------|-------|--------|--------|
|         |       | Ma    | in    |       |           | Auxi  | liary |       |        |        |
| Room    | Coo   | ling  | Hea   | ting  | Coo       | ling  | Hea   | ting  | Room E | xhaust |
| Number  | Value | Units | Value | Units | Value     | Units | Value | Units | Value  | Units  |
| 5       | 5892  | CFM   | 5892  | CFM   |           |       |       |       |        |        |
| 10      | 3344  | CFM   | 3344  | CFM   |           |       |       |       |        |        |
| 15      | 10758 | CFM   | 10758 | CFM   |           |       |       |       | 600    | CFM    |
| 20      | 15667 | CFM   | 15667 | CFM   |           |       |       |       |        |        |

| Card 30 |       |       |       |       | Fan Airflo | ws    |        |       |        |        |
|---------|-------|-------|-------|-------|------------|-------|--------|-------|--------|--------|
|         |       | Ma    | in    |       |            | Aux   | iliary |       |        |        |
| Room    | Cool  | ing   | Heat  | ing   | Coo        | ling  | Hea    | ing   | Room E | xhaust |
| Number  | Value | Units | Value | Units | Value      | Units | Value  | Units | Value  | Units  |
| 25      | 10386 | CFM   | 10386 | CFM   |            |       |        |       |        |        |
| 30      | 2850  | CFM   | 2850  | CFM   |            |       |        |       |        |        |
| 35      | 4080  | CFM   | 4080  | CFM   |            |       |        |       |        |        |
| 40      | 12510 | CFM   | 12510 | CFM   |            |       | •      |       |        |        |
| 45      | 3600  | CFM   | 3600  | CFM   |            |       |        |       |        |        |
| 50      | 1880  | CFM   | 1880  | CFM   |            |       |        |       |        |        |
|         |       |       |       |       |            |       |        |       |        |        |

------ System Section Alternative #4 ------

Card 39- System Alternative Number Description

AIRSIDE EQ WITH NEW CONTROLS

Card 40----- System Type -----OPTIONAL VENTILATION SYSTEM-----Ventil System System Deck Cooling Heating Cooling Heating Static Set Location SADBVh SADBVh Schedule Schedule Pressure Number Type TRH 2 TRH TRH 3 4 VTCV 5 VTCV 6 VTCV VTCV 8 9 VTCV 10 VTCV

| System |       |     |       |     |       |     |       |     |       |     |       |     |
|--------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
| Set    | Ref   | #1  | Ref   | #2  | Ref   | #3  | - Ref | #4  | Ref   | #5  | Ref   | #6  |
| Number | Begin | End |
| 1      | 1     | 1   |       |     |       |     |       |     |       |     |       |     |
| 2      | 2     | 2   |       |     |       |     |       |     |       |     |       |     |
| 3      | 3     | 3   |       |     |       |     |       |     |       |     |       |     |
| 4      | 4     | 4   |       |     |       |     |       |     |       |     |       |     |
| 5      | 5     | 5   |       |     |       |     |       |     |       |     |       |     |
| 6      | _6    | 6   |       |     |       |     |       |     |       |     |       |     |
| 7      | 7     | 7   |       |     |       |     |       |     |       |     |       |     |

| Card 41 Zone Ass |        |     |        |     |        |     | ıt     |     |        |     |        |     |
|------------------|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|
| System           |        |     |        |     |        |     |        |     |        |     |        |     |
| Set              | Ref #1 |     | Ref #2 |     | Ref #3 |     | Ref #4 |     | Ref #5 |     | Ref #6 |     |
| Number           | Begin  | End |
| 8                | 8      | 8   |        |     |        |     |        |     |        |     |        |     |
| 9                | 9      | 9   |        |     |        |     |        |     |        |     |        |     |
| 10               | 10     | 10  |        |     |        |     |        |     |        |     |        |     |

| Card 42 | !    | <b>-</b> |        | Fan    | SP an | d Duct P | arameters |         |        |        |        |
|---------|------|----------|--------|--------|-------|----------|-----------|---------|--------|--------|--------|
| System  | Cool | Heat     | Return | Mn Exh | Aux   | Rm Exh   | Cool      | Return  | Supply | Supply | Return |
| Set     | Fan  | Fan      | Fan    | Fan    | Fan   | Fan      | Fan Mtr   | Fan Mtr | Duct   | Duct   | Air    |
| Number  | SP   | SP       | SP     | SP     | SP    | SP       | Loc       | Loc     | Ht Gn  | Loc    | Path   |
| 1       | 1.5  |          |        |        |       |          |           |         |        |        |        |
| 2       | 1.6  |          |        |        |       |          |           |         |        |        |        |
| 3       | 1.9  |          |        |        |       | .5       |           |         |        |        |        |
| 4       | 1.6  |          |        |        |       |          |           |         |        |        |        |
| 5       | 1.6  |          |        |        |       |          |           |         |        |        |        |
| 6       | 4.6  |          |        |        |       |          |           |         |        |        |        |
| 7       | 2.0  |          |        |        |       |          |           |         |        |        |        |
| 8       | 2.0  |          |        |        |       |          |           |         |        |        |        |
| 9       | 1.5  |          |        |        |       |          |           |         |        |        |        |
| 10      | 2.0  |          |        |        |       |          |           |         |        |        |        |

| Card 4 | 4        |       |         |         |          | S         | ystem Opt                 | ions     |         |         |         |          |         |
|--------|----------|-------|---------|---------|----------|-----------|---------------------------|----------|---------|---------|---------|----------|---------|
| System | Econ     | Econ  | Max Pct | Direct  | Indirect | 1st Stage | Exhaust Air Heat Recovery |          |         |         |         |          |         |
| Set    | Туре     | On    | Outside | Evap    | Evap     | Evap      | Fan                       | Effectiv | reness  | Control | Type    | Exh-Side | Deck    |
| Number | Flag     | Point | Air     | Cooling | Cooling  | Cooling   | Cycling                   | Stage 1  | Stage 2 | Stage 1 | Stage 2 | Stage 1  | Stage 2 |
| 1      | DRY-BULB | 65    | 100     |         |          |           |                           |          |         |         |         |          |         |
| 2      | DRY-BULB | 65    | 100     |         |          |           |                           |          |         |         |         |          |         |
| 3      | DRY-BULB | 65    | 100     |         |          |           |                           |          |         |         |         |          |         |
| 8      | DRY-BULB | 65    | 100     |         |          |           |                           |          |         |         |         |          |         |

| Card 45 Equipment Schedules |         |            |        |          |           |         |         |        |          |           |  |  |
|-----------------------------|---------|------------|--------|----------|-----------|---------|---------|--------|----------|-----------|--|--|
| System                      | Main    |            | Direct | Indirect | Auxiliary | Main    | Main    |        |          | Auxiliary |  |  |
| Set                         | Cooling |            | Evap   | Evap     | Cooling   | Heating | Preheat | Reheat | Mech.    | Heating _ |  |  |
| Number                      | Coil    | Economizer | Coil   | Coil     | Coil      | Coil    | Coil    | Coil   | Humidity | Coil      |  |  |
| 1                           | AVAIL   | AVAIL      |        |          |           | OFF'    |         |        |          |           |  |  |
| 2                           | AVAIL   | AVAIL      |        |          |           | OFF     | •       |        |          |           |  |  |
| 3                           | AVAIL   | AVAIL      |        |          |           | OFF     |         |        |          |           |  |  |
| 4                           |         |            |        |          |           | OFF     |         |        |          |           |  |  |
| 5                           |         |            |        |          |           | OFF     |         |        |          |           |  |  |
| 8                           | AVAIL   | AVAIL      |        |          |           |         |         |        |          |           |  |  |
|                             |         |            |        |          |           |         |         |        |          |           |  |  |

| System<br>Set<br>Number<br>1<br>2    | Conti<br>Conti<br>r Sched<br>AVAII<br>AVAII                     | rim Nigh<br>rol Purg<br>dule Sche                              | t Optin<br>e Stari<br>dule Sched                              | mum Optimu<br>t Stop<br>dule Schedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mDM On Period le Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JTY CYCLING<br>Pattern Max<br>Length Off                                | Sy<br>simum Ex<br>Time Sc | stem HR<br>haust               |                       |                                                            |                           |                            |
|--------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|--------------------------------|-----------------------|------------------------------------------------------------|---------------------------|----------------------------|
| Card                                 | 59                                                              |                                                                |                                                               | Equipme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt Descriptio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n / TOD Schedu                                                          | ıles                      |                                |                       | <b></b>                                                    | <b></b> -                 | -                          |
|                                      |                                                                 | Elec Cons                                                      | ump Elec                                                      | Demand Dema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                           |                                | Det                   | mand Li                                                    | mit                       | -                          |
| Alter                                | native                                                          |                                                                |                                                               | of Day Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                           |                                |                       | -                                                          | eratur                    | e                          |
| Numbe<br>4                           | r                                                               | Schedule                                                       | Sched                                                         | ule Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve Description<br>Q WITH NEW COM                                        |                           |                                | Schedul               | e D                                                        | rift                      |                            |
| Load                                 | All Co<br>Loads<br>Cool R                                       | il Coolin                                                      | ig<br>Nent -Grou                                              | p 1Group<br>End Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2Group 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Group 4-                                                                | -Group 5                  | Group                          | 6Gro                  | up 7-                                                      | -Group                    | 8Group 9-<br>End Begin End |
|                                      |                                                                 |                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                           |                                |                       |                                                            |                           |                            |
| Cool                                 | Equip                                                           | Num                                                            |                                                               | COOLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pment Paramet                                                           | EAT RECOV                 | ERY                            |                       | Seq                                                        |                           | Demand                     |
| Cool<br>Ref                          | Equip<br>Code                                                   | Num<br>Of                                                      |                                                               | COOLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         | EAT RECOV                 |                                |                       |                                                            | Seq                       | Demand                     |
| Cool<br>Ref<br>Num                   | Equip                                                           | Num<br>Of<br>Units                                             | Capacity<br>Value Uni                                         | COOLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Energy<br>ue Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H                                                                       | EAT RECOV                 | ERY<br>Energy                  |                       | Seq<br>Order                                               | Seq                       | Demand<br>Limit            |
| Cool<br>Ref<br>Num<br>1              | Equip<br>Code<br>Name<br>EQ1001S                                | Num<br>Of<br>Units                                             | Capacity<br>Value Uni                                         | COOLING<br>ts Valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Energy<br>ne Units<br>KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H                                                                       | EAT RECOV                 | ERY<br>Energy                  |                       | Seq<br>Order<br>Num                                        | Seq<br>Type               | Demand<br>Limit            |
| Cool Ref Num 1 2 Card Cool Ref       | Equip Code Name EQ1001S EQ1001S                                 | Num Of Units 1 1 1                                             | Capacity<br>Value Uni<br>151 TON<br>151 TON                   | ts Valu S 141 S 141 C Coolin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Energy  Energy  KW  KW  KW  THE PUMPS and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H                                                                       | EAT RECOVI                | ERYEnergy                      | cooling               | Seq<br>Order<br>Num<br>1<br>2                              | Seq<br>Type<br>PAR<br>PAR | Demand<br>Limit            |
| Cool Ref Num 1 2 Card Cool Ref Num 1 | Equip Code Name EQ1001S EQ1001S  63CHII Full Lc Value 27.3 28.7 | Num Of Units 1 1 1 LED WATER- AND Full I Units KW KW Load Shed | Capacity Value Uni 151 TON 151 TON  Coad Full Value 13.2 10.5 | ts Values | Energy  ENERGY  ENERGY  ENERGY  TO SEE THE SEE | HCapacity Value Uni References RC or AUX Rd Full Load Units Otions Cond | EAT RECOVI                | ERYEnergy alue Un Cold Storage | Cooling<br>Tower<br>1 | Seq<br>Order<br>Num<br>1<br>2<br>Misc.<br>Access<br>1<br>2 | Seq<br>Type<br>PAR<br>PAR | Demand<br>Limit            |

BLR51 1 2.7 KW 1060 MBH

Number Name Units Value Units

BLR51 1 2.7 KW

Value Units Number Control Strg Acc. Cogen Number

1

2

3

```
Card 65----- Heating Load Assignment
Load All Coil
Assignment Loads To Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Reference Heating Ref Begin End 1 1 3 6 10
Card 67----- Heating Equipment Parameters -----
                                  Energy Seq Switch
Heat Equip Number HW Pmp
                                             Order over Hot Misc.
                                    Rate
Ref Code Of Full Ld
                         Cap'y
```

1683

1683

MBH

MBH

Value Units

1060 MBH

| Card 69 |         |         | Fan Equip | ment Parame | eters     |         |             |
|---------|---------|---------|-----------|-------------|-----------|---------|-------------|
| Set     | Cooling | Heating | Return    | Exhaust     | Auxiliary | Room    | Optional    |
| Number  | Fan     | Fan     | Fan       | Fan         | Supply    | Exhaust | Ventilation |
| 1       | EQ4003  |         | •         |             |           |         |             |
| 2       | EQ4003  |         |           |             |           |         |             |
| 3       | EQ4003  |         |           |             |           |         |             |
| 4       | EQ4003  |         |           |             |           |         |             |
| 5       | EQ4003  |         |           |             |           |         |             |
| 6       | EQ4003  |         |           |             |           |         |             |
| 7       | EQ4003  |         |           |             |           |         |             |
| 8       | EQ4003  |         |           |             |           |         |             |
| 9       | EQ4003  |         |           |             |           |         |             |
| 10      | EQ4003  |         |           |             |           |         |             |
|         |         |         |           |             |           |         |             |

| MAIN SYSTEM OTHER SYSTEM DEMAND LIMIT PRIORITY-   |    |
|---------------------------------------------------|----|
|                                                   |    |
| System Cool Heat Ret Exh Aux Room Opt Room Op     | t  |
| Set Fan Fan Fan Sup Exh Vent Cool Heat Aux Exh Ve | nt |
| Number KW KW KW KW KW KW Fan Fan Fan Fan Fa       | n  |
| 1 4.9                                             |    |
| 2 1.7                                             |    |
| 3 8.6                                             |    |
| 4. 4.4                                            |    |
| 5 4.1                                             |    |
| 6 4.9                                             |    |
| 7 8.7                                             |    |
| 8 10.3                                            |    |
| 9 2.1                                             |    |
| 10 4.1                                            |    |

| Card 71- |                  |        | Base   | Utility P | arameters |           |          |          |         |
|----------|------------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base             | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility          | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip          | Value  | Units  | Code      | Туре      | Number    | Number   | Temp     | Temp    |
| 1        | CHW LOADS        | 45.6   | TONS   | AVAIL     | CHILL-LD  | 1         |          |          |         |
| 2        | HW LOADS         | 90.9   | MBH    | AVAIL     | HOT-LD    | 1         |          |          |         |
| 3        | ALL OTHER LIGHTS | 7.026  | KW     | OFICEL34  | ELEC      |           |          |          |         |

| Card 7 | 4       |          |          | Condenser | / Coolin | g Tower P | arameters |        |         |         |         |
|--------|---------|----------|----------|-----------|----------|-----------|-----------|--------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy   |           |           | Number | Percent | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump  | Fluid     | Tower     | Of     | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units    | Туре      | Туре      | Cells  | Low Spd | Value   | Units   |
| 1      | EQ5100  |          |          | 5.3       | KW       | T-WATER   | CTOWER    | 1      |         |         |         |
| 2      | EQ5100  |          |          | 5.3       | KW       | T-WATER   | CTOWER    | 1      |         |         |         |

| Card | 75     |        |        |       | Misc  | ellaneous A | ccessory |       |       |        |        |       |
|------|--------|--------|--------|-------|-------|-------------|----------|-------|-------|--------|--------|-------|
|      | #1     |        |        |       | #2    |             |          |       | #3    |        |        |       |
| Misc | Equip  | Energy | Energy | Sched | Equip | Energy      | Energy   | Sched | Equip | Energy | Energy | Sched |
| Ref  | Code   | Value  | Units  | Code  | Code  | Value       | Units    | Code  | Code  | Value  | Units  | Code  |
| 1    | EQ5013 | 22.3   | KW     |       |       |             |          |       |       |        |        |       |
| 2    | EQ5013 | 22.3   | KW     |       |       |             |          |       |       |        |        |       |
| 3    | EQ5020 | 6.4    | KW     |       |       |             |          |       |       |        |        |       |
| 4    | E05020 | 7 2    | ĸw     |       |       |             |          |       |       |        |        |       |

01 Card - Job Information \_\_\_\_\_

Project: EEAP ENERGY STUDY - HELSTF

Location: WHITE SANDS - ALAMOGORDO, NEW MEXICO

Client: FORT WORTH CORPS OF ENGINEERS Program User: HUITT-ZOLLARS, INC.

Comments: TEST CELL # 1 AND TEST CELL # 2

Card 08------ Climatic Information ------

Summer Winter Summer Summer Winter Summer Winter Weather Clearness Clearness Design Design Design Building Ground Ground Code Number Number Dry Bulb Wet Bulb Dry Bulb Orientation Reflect Reflect

HOLLOMAN

----- Load Section Alternative #1 ------

ECO-E, TEST CELLS 1 & 2

Card 19- Load Alternative -

Number Description

ECO E - HIGH EFFICIENCY MOTORS

| Card 2 | )         |                  |        | Genera | al Room | Paramete | rs         |          |            |           |           |
|--------|-----------|------------------|--------|--------|---------|----------|------------|----------|------------|-----------|-----------|
|        | Zone      |                  |        |        |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room   | Reference | Room             | Floor  | Floor  | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number | Number    | Descrip          | Length | Width  | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 5      | 1         | DEVICE RM. A-104 | 69     | 33     | 8       | 0        | 1          | 32       |            |           |           |
| 10     | 2         | DEVICE RM B-105  | 32     | 41     | 8       | 0        | 1          | 29       |            |           |           |
| 15     | 3         | RM 102, 103      | 59     | 36     | 8       | 0        | 1          | 32       |            |           |           |
| 20     | 4         | RM 109           | 26     | 44     | 8       | 0        | 1          | 16       |            |           |           |
| 25     | 5         | PT ELEC RM 201   | 27     | 37     | 8       | 0        | 1          | 17       |            |           |           |
| 30     | 6         | RM. 101,102,105  | 46     | 46     | 8       | 0        | 1          | 15       |            |           |           |
| 35     | 7         | RM 102           | 24     | 30     | 8       | 0        | 1          | 15       |            |           |           |
| 40     | 8         | RM 204,301,401   | 57     | 57     | 8       | 0        | 1          | 15       |            |           |           |
| 45     | 9         | HPOC, 501        | 25     | 24     | 8       | 0 .      | 1          | 15       |            |           |           |
| 50     | 10        | ETA CNTRL RM 103 | 25.5   | 13     | 8       | 0        | 1          | 15       |            |           |           |

| Card 21 |           |        |            | Therm    | ostat Param | eters      |          |          |         |        |
|---------|-----------|--------|------------|----------|-------------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5       | 70        | 50     | 70         |          | 70          | 70         |          |          |         | NO     |

| Card 21 | Card 21 Thermostat Parameters |        |            |          |           |            |          |          |         |        |
|---------|-------------------------------|--------|------------|----------|-----------|------------|----------|----------|---------|--------|
|         | Cooling                       | Room   | Cooling    | Cooling  | Heating   | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room                          | Design | T'stat     | T'stat   | Room      | T'staț     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB                     | RH     | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average | Floor  |
| 10      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 15      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 20      | 70                            | 50     | 70         |          | 70        | 70 ,       |          |          |         | NO     |
| 25      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO :   |
| 30      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 35      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 40      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 45      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |
| 50      | 70                            | 50     | 70         |          | 70        | 70         |          |          |         | NO     |

| Card 22 | ard 22 Roof Parameters |          |        |       |         |       |           |      |       |  |  |  |  |
|---------|------------------------|----------|--------|-------|---------|-------|-----------|------|-------|--|--|--|--|
|         |                        | Roof     |        |       |         |       |           |      |       |  |  |  |  |
| Room    | Roof                   | Equal to | Roof   | Roof  | Roof    | Const | Roof      | Roof | Roof  |  |  |  |  |
| Number  | Number                 | Floor?   | Length | Width | U-Value | Type  | Direction | Tilt | Alpha |  |  |  |  |
| 5       | 1                      | YES      |        |       | 0.1     | 23    |           |      |       |  |  |  |  |
| 10      | 1                      | YES      | •      |       | 0.1     | 23    |           |      |       |  |  |  |  |
| 15      | 1                      |          | 69     | 36    | 0.1     | 23    |           |      |       |  |  |  |  |
| 25      | 1                      | YES      |        |       | 0.1     | 23    |           |      |       |  |  |  |  |
| 30      | 1                      | YES      |        |       | 0.1     | 23    |           |      |       |  |  |  |  |
| 45      | 1                      | YES      |        |       | 0.32    | 23    |           |      |       |  |  |  |  |
| 50      | 1                      | YES      |        |       | 0.32    | 23    |           |      |       |  |  |  |  |
|         |                        |          |        |       |         |       |           |      |       |  |  |  |  |

| Card 24 |        |        |        | Wall Pa        | arameters |           |      |       |             |
|---------|--------|--------|--------|----------------|-----------|-----------|------|-------|-------------|
|         |        |        |        |                | Wall      |           |      |       | Ground      |
| Room    | Wall   | Wall   | Wall   | Wall           | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number  | Number | Length | Height | <b>U-Value</b> | Туре      | Direction | Tilt | Alpha | Multiplier  |
| 5       | 1      | 33     | 32     | 0.32           | 58        | 315       |      |       |             |
| 5       | 2      | 69     | 32     | 0.32           | 58        | 45        |      |       |             |
| 10      | 1      | 32     | 29     | 0.32           | 58        | 315       |      |       |             |
| 10      | 2      | 29.5   | 29.5   | 0.32           | 58        | 225       |      |       |             |
| 15      | 1      | 38     | 32     | 0.32           | 58        | 315       |      |       |             |
| 15      | 2      | 38     | 32     | 0.32           | 58        | 135       |      |       |             |
| 20      | 1      | 27     | 16     | 0.32           | -58       | 135       |      |       |             |
| 25      | 1      | 27     | 17     | 0.32           | 58        | 135       |      |       | •           |
| 30      | 1      | 78     | 1.5    | 0.32           | 58        | 315       |      |       |             |
| 30      | 2      | 43     | 15     | 0.32           | 58        | 45        |      |       |             |
| 30      | 3      | 42     | 15     | 0.32           | 58        | 135       |      |       |             |
| 30      | 4      | 30     | 15     | 0.32           | 58        | 225       |      |       |             |
| 40      | 1      | 75     | 15     | 0.32           | 58        | 315       |      |       |             |
| 40      | 2      | 75     | 15     | 0.32           | 58        | 45        |      |       |             |
| 40      | 3      | 75     | 15     | 0.32           | 58        | 135       |      |       |             |
| 40      | 4      | 75     | 15     | 0.32           | 58        | 225       |      |       |             |
|         |        |        |        |                |           |           |      |       |             |

| Card 24 | Card 24 Wall Parameters Ground |        |        |         |         |           |        |       |             |  |  |  |  |
|---------|--------------------------------|--------|--------|---------|---------|-----------|--------|-------|-------------|--|--|--|--|
|         |                                |        |        |         |         |           | Ground |       |             |  |  |  |  |
| Room    | Wall                           | Wall   | Wall   | Wall    | Constuc | Wall      | Wall   | Wall  | Reflectance |  |  |  |  |
| Number  | Number                         | Length | Height | U-Value | Туре    | Direction | Tilt   | Alpha | Multiplier  |  |  |  |  |
| 45      | 1                              | 25     | 15     | 0.32    | 58      | 315       |        |       |             |  |  |  |  |
| 45      | 2                              | 24     | 15     | 0.32    | 58      | 45        |        |       |             |  |  |  |  |
| 45      | 3                              | 25     | 15     | 0.32    | 58      | 135       |        |       |             |  |  |  |  |
| 45      | 4                              | 24     | 15     | 0.32    | 58      | 225       |        |       |             |  |  |  |  |
| 50      | 1                              | 13     | 15     | 0.32    | 58      | 45        |        |       |             |  |  |  |  |
| 50      | 2                              | 25.5   | 15     | 0.32    | 58      | 135       |        |       |             |  |  |  |  |
| 50      | 3                              | 8      | 15     | 0.32    | 58      | 225       |        |       |             |  |  |  |  |

| Card 26 |          |          |             | S            | chedules - |         |         |           |         |             |
|---------|----------|----------|-------------|--------------|------------|---------|---------|-----------|---------|-------------|
| Room    |          |          |             |              | Reheat     | Cooling | Heating | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum    | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | OFFICEP1 | OFICEL30 | OFFICEP1    |              |            |         |         |           |         |             |
| 10      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 15      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 20      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 25      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 30      | OFFICEP1 | OFICEL31 | OFFICEP1    |              |            |         |         |           |         |             |
| 35      | OFFICEP1 | CLGONLY  | OFFICEP1    |              |            |         |         |           |         |             |
| 40      | OFFICEP1 | OFICEL32 | OFFICEP1    |              |            |         |         |           |         |             |
| 45      | OFFICEP1 | OFICEL33 | OFFICEP1    |              |            |         |         |           |         |             |
| 50      | OFFICEP1 | OFICEL35 | OFFICEP1    |              |            |         |         |           |         |             |

| Card 27 | · · · · · · · · · · · · · · · · · · · |        |          |        |          |          |          |         |           |           |           |  |  |
|---------|---------------------------------------|--------|----------|--------|----------|----------|----------|---------|-----------|-----------|-----------|--|--|
|         |                                       |        |          |        |          |          | Lighting |         | Percent   | Daylig    | hting     |  |  |
| Room    | People                                | People | People   | People | Lighting | Lighting | Fixture  | Ballast | Lights to | Reference | Reference |  |  |
| Number  | Value                                 | Units  | Sensible | Latent | Value    | Units    | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |  |  |
| 5       | 2                                     | PEOPLE | 250      | 200    | 15118    | WATTS    | INCAND   |         |           |           |           |  |  |
| 10      | 2                                     | PEOPLE | 250      | 200    | 7454     | WATTS    | INCAND   |         |           |           |           |  |  |
| 15      | 4                                     | PEOPLE | 250      | 200    | 5084     | WATTS    | INCAND   |         |           |           |           |  |  |
| 20      | 2                                     | PEOPLE | 250      | 200    | 2148     | WATTS    | INCAND   |         |           |           |           |  |  |
| 25      | 5                                     | PEOPLE | 250      | 200    | 1856     | WATTS    | INCAND   |         |           |           |           |  |  |
| 30      | 3                                     | PEOPLE | 250      | 200    | 5202     | WATTS    | INCAND   |         |           |           |           |  |  |
| 35      | 5                                     | PEOPLE | 250      | 200    | 642      | WATTS    | INCAND   |         |           |           |           |  |  |
| 40      | 10                                    | PEOPLE | 250      | 200    | 3026     | WATTS    | ASHRAE1  |         |           |           |           |  |  |
| 45      | 4                                     | PEOPLE | 250      | 200    | 2296     | WATTS    | INCAND   |         |           |           |           |  |  |
| 50      | 1                                     | PEOPLE | 250      | 200    | 558      | WATTS    | ASHRAE1  |         |           |           |           |  |  |
|         |                                       |        |          |        |          |          |          |         |           |           |           |  |  |

| Card 28 |           |                  | Miscellaneous Equi |         |          | Equipment |          |            |             |          |          |
|---------|-----------|------------------|--------------------|---------|----------|-----------|----------|------------|-------------|----------|----------|
|         | Misc      |                  | Energy             | Energy  |          | Energy    | Percent  | Percent    | Percent     |          |          |
| Room    | Equipment | Equipment        | Consump            | Consump | Schedule | Meter     | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number  | Number    | Descrip          | Value              | Units   | Code     | Code      | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5       | 1         | TESTING EO.COMP. | 2.46               | WATT-SF | OFFICEM1 | ELEC      |          |            |             |          |          |

| Card 28 | }         |                   |         | Mis     | cellaneous | : Equipment |          |            |             |          |          |
|---------|-----------|-------------------|---------|---------|------------|-------------|----------|------------|-------------|----------|----------|
|         | Misc      |                   | Energy  | Energy  |            | Energy      | Percent  | Percent    | Percent     |          |          |
| Room    | Equipment | Equipment         | Consump | Consump | Schedule   | Meter       | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number  | Number    | Descrip           | Value   | Units   | Code       | Code        | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 10      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 15      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 20      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 25      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            | 4           |          |          |
| 30      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 35      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 40      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 45      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |
| 50      | 1         | TESTING EQ, COMP. | 2.46    | WATT-SF | OFFICEM1   | ELEC        |          |            |             |          |          |

| Card 29 | rd 29 |       |        |       | Room Air | flows |         |       |        |         |
|---------|-------|-------|--------|-------|----------|-------|---------|-------|--------|---------|
|         |       | Venti | lation |       |          | Infil | tration |       |        |         |
| Room    | Cool  | ing   | Hea    | ting  | Coo      | ling  | Hea     | ting  | Reheat | Minimum |
| Number  | Value | Units | Value  | Units | Value    | Units | Value   | Units | Value  | Units   |
| 5       | 20    | CFM-P | 20     | CFM-P |          |       |         |       |        |         |
| 10      | 20    | CFM-P | 20     | CFM-P |          |       |         |       |        |         |
| 15      | 20    | CFM-P | 20     | CFM-P |          |       |         |       |        |         |
| 20      | 0     | CFM   | 0      | CFM   |          |       |         |       |        |         |
| 25      | 0     | CFM   | 0      | CFM   |          |       |         |       |        |         |
| 30      | 160   | CFM   | 160    | CFM   |          |       |         |       |        |         |
| 35      | 140   | CFM   | 140    | CFM   |          |       |         |       |        |         |
| 40      | 20    | CFM-P | 20     | CFM-P |          |       |         |       |        |         |
| 45      | 3600  | CFM   | 3600   | CFM   |          |       |         |       |        |         |
| 50      | 20    | CFM-P | 20     | CFM-P |          |       |         |       |        |         |
|         |       |       |        |       |          |       |         |       |        |         |

| Card 30 |       |       |       | 1     | Fan Airflo | ws    |       |       |         |       |
|---------|-------|-------|-------|-------|------------|-------|-------|-------|---------|-------|
|         |       |       | .n    |       |            |       |       |       |         |       |
| Room    | Cooli | .ng   | Heati | ng    | Cool       | ing   | Heat  | ing   | Room Ex | haust |
| Number  | Value | Units | Value | Units | Value      | Units | Value | Units | Value   | Units |
| 5       | 5892  | CFM   | 5892  | CFM   |            |       |       |       |         |       |
| 10      | 3344  | CFM   | 3344  | CFM   |            |       |       |       |         |       |
| 15      | 10758 | CFM   | 10758 | CFM   |            |       |       |       | 600     | CFM   |
| 20      | 15667 | CFM   | 15667 | CFM - |            |       |       |       |         |       |
| 25      | 10386 | CFM   | 10386 | CFM   |            |       |       |       |         |       |
| 30      | 2850  | CFM   | 2850  | CFM   |            |       | •     |       |         |       |
| 35      | 4080  | CFM   | 4080  | CFM   |            |       |       |       |         |       |
| 40      | 12510 | CFM   | 12510 | CFM   |            |       |       |       |         |       |
| 45      | 3600  | CFM   | 3600  | CFM   |            |       |       |       |         |       |
| 50      | 1880  | CFM   | 1880  | CFM   |            |       |       |       |         |       |

----- System Section Alternative #1 -----

Card 39- System Alternative Number Description

1 AIRSIDE EQ WITH NEW MOTORS

Card 40----- System Type -----------OPTIONAL VENTILATION SYSTEM-----System Ventil Set System Deck Cooling Heating Cooling Heating Static Location SADBVh SADBVh Schedule Schedule Pressure Number Type 1 TRH TRH TRH 3 VTCV 4 VTCV VTCV 6 VTCV VTCV VTCV VTCV

| Card 41 |       |     |       |     | Zone A | Assignmer | nt    |     |       |     |       |     |
|---------|-------|-----|-------|-----|--------|-----------|-------|-----|-------|-----|-------|-----|
| System  |       |     |       |     |        |           |       |     |       |     |       |     |
| Set     | Ref   | #1  | Ref   | #2  | Ref    | #3        | Ref   | #4  | Ref   | #5  | Ref   | #6  |
| Number  | Begin | End | Begin | End | Begin  | End       | Begin | End | Begin | End | Begin | End |
| 1       | 1     | 1   |       |     |        |           |       |     |       |     |       |     |
| 2       | 2     | 2   |       |     |        |           |       |     |       |     |       |     |
| 3       | 3     | 3   |       |     |        |           |       |     |       |     |       |     |
| 4       | 4     | 4   |       |     |        |           |       |     |       |     |       |     |
| 5       | 5     | 5   |       |     |        |           |       |     |       |     |       |     |
| 6       | 6     | 6   |       |     |        |           |       |     |       |     |       |     |
| 7       | 7     | 7   |       |     |        |           |       |     |       |     |       |     |
| 8       | 8     | 8   |       |     |        |           |       |     |       |     |       |     |
| 9       | 9     | 9   |       |     |        |           |       |     |       |     |       |     |
| 10      | 10    | 10  |       |     | •      |           |       |     |       |     |       |     |

| Card 42 Fan SP and Duct Parameters |      |      |        |        |     |        |         |         |        |        |        |  |
|------------------------------------|------|------|--------|--------|-----|--------|---------|---------|--------|--------|--------|--|
| System                             | Cool | Heat | Return | Mn Exh | Aux | Rm Exh | Cool    | Return  | Supply | Supply | Return |  |
| Set                                | Fan  | Fan  | Fan    | Fan    | Fan | Fan    | Fan Mtr | Fan Mtr | Duct   | Duct   | Air    |  |
| Number                             | SP   | SP   | SP     | SP     | SP  | SP     | Loc     | Loc     | Ht Gn  | Loc    | Path   |  |
| 1                                  | 1.5  |      |        |        |     |        |         |         |        |        |        |  |
| 2                                  | 1.6  |      |        |        |     |        |         |         |        |        |        |  |
| 3                                  | 1.9  |      |        |        |     | .5     |         |         |        |        |        |  |
| 4                                  | 1.6  |      |        |        |     |        |         |         |        |        |        |  |
| 5                                  | 1.6  |      |        |        |     |        |         |         |        |        |        |  |
| 6                                  | 4.6  |      |        |        |     |        |         |         |        |        |        |  |

```
Card 42----- Fan SP and Duct Parameters-----
 System Cool Heat Return Mn Exh Aux Rm Exh Cool Return Supply Supply Return
    Fan Fan Fan Fan Fan Mtr Fan Mtr Duct Duct Air
 Number SP SP SP SP SP
                               Loc Loc
                                          Ht Gn Loc
     2.0
     2.0
     1.5
 10 2.0
 Card 44----- System Options -----
 System Econ Econ Max Pct Direct Indirect 1st Stage ---------- Exhaust Air Heat Recovery -------
         On Outside Evap Evap Evap Fan -- Effectiveness -- -- Control Type -- -- Exh-Side Deck --
 Set Type
         Point Air Cooling Cooling Cooling Cycling Stage 1 Stage 2 Stage 2 Stage 2 Stage 2
 Number Flag
   DRY-BULB 65 100
    DRY-BULB 65
             100
    DRY-BULB 65 100
   DRY-BULB 65 100
Card 45----- Equipment Schedules -----
System Main
           Direct Indirect Auxiliary Main
                                          Main
Set Cooling
                 Evap
                               Cooling Heating Preheat Reheat Mech. Heating
                        Evap
Number Coil Economizer Coil
                      Coil
                               Coil
                                     Coil
                                          Coil Coil Humidity Coil
   AVAIL AVAIL
1
                                      OFF
2
     AVAIL AVAIL
                                      OFF
     AVAIL AVAIL
3
                                      OFF
4
                                      OFF
5
                                      OFF
     AVAIL
          AVAIL
Card 46----- EMS/BAS Schedules -----
Control Purge Start Stop
                            On Period Pattern Maximum Exhaust
Number Schedule Schedule Schedule Schedule Length Off Time Schedule Schedule
1
     AVAIL
2
     AVAIL
     AVAIL
----- Equipment Section Alternative #1 -----
Card 59----- Equipment Description / TOD Schedules -----
       Elec Consump Elec Demand Demand
                                                       ---- Demand Limit ---
Alternative Time of Day Time of Day Limit
                                                          Temperature
      Schedule Schedule Max KW Alternative Description
                                                       Schedule Drift
                             PRIMARY EQ WITH NEW MOTORS
```

| G3    |           |           |           |          |          |            |            |            |          |          |        |          |              |
|-------|-----------|-----------|-----------|----------|----------|------------|------------|------------|----------|----------|--------|----------|--------------|
|       |           |           |           |          |          | - Cooling  | Load Assig | nment      |          |          |        |          |              |
|       |           | Cooling   |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          | 8Group 9-    |
| Ref   |           | Sizing    |           |          | n End    | Begin End  | Begin End  | l Begin Er | nd Begin | End Beg  | in End | Begin E  | nd Begin End |
| 1     | 1         |           | 1         | 10       |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
| S3    |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            | ent Parame |            |          |          |        |          |              |
|       | Equip     |           |           |          |          |            |            | HEAT RECOV | ÆRY      |          | Seq    | 1        | Demand       |
|       | Code      |           | Capacity- |          |          |            | Capacit    | у          | Energy   | /        | Order  | Seq :    | Limit        |
|       | Name      |           | lue Unit  |          |          | Units      | Value Un   | its \      | /alue (  | Jnits    | Num    | Type 1   | Number       |
|       | EQ1001S   |           |           |          |          | KW         |            |            |          |          | 1      | PAR      |              |
| 2     | EQ1001S   | 1 15      | ons Tons  | 14       | 1 1      | KW         |            |            |          |          | 2      | PAR      |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
| Card  | 63        |           |           | Cool     | ing Pump | s and Ref  | erences    |            |          |          |        |          |              |
|       |           |           |           |          |          |            | or AUX     |            |          |          |        |          |              |
|       |           |           | d Full L  | oad Full | Load I   | Full Load  | Full Load  | over       | Cold     | Cooling  | Misc.  |          |              |
|       | Value     | Units     | Value     | Unit     | s 1      | /alue      | Units      | Control    | Storage  | Tower    | Access | s.       |              |
|       | 26.8      | KW        | 13.0      |          |          |            |            |            |          | 1        | 1      |          |              |
| 2     | 28.1      | KW        | 10.6      | KW       |          |            |            |            |          | 2        | 2      |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
| Card  | 64        |           |           | Cooli    | ng Equip | ment Opti  | ons        |            |          |          |        |          |              |
| Cool  | Max Lo    | oad       |           | Free     |          | Cond       | Cond       | Cond Rej   | Cond Re  | j Cond F | Rej    |          |              |
| Ref   | CW SI     | ned       | Evap      | Cooling  | Heat     | Entering   | Min Oper   | To Ref     | To Ref   | @ HW     |        |          |              |
| Num   | Reset E   | conomizer | Precool   | Type     | Source   | Temp       | Temp       | Туре       | Number   | Temp     |        |          |              |
| 1     | 10        |           |           |          |          | 85         | 55         |            |          |          |        |          |              |
| 2     | 10        |           |           |          |          | 85         | 55         |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
| Card  | 65        |           |           |          | I        | leating Lo | ad Assignm | ent        |          |          |        | ·        |              |
| Load  | Al:       | l Coil    |           |          |          |            |            |            |          |          |        |          |              |
| Assig | nment Loa | ads To    | -Group 1  | Group    | 2Gr      | oup 36     | Group 4-   | -Group 5-  | -Group 6 | Group    | 70     | Froup 8- | -Group 9-    |
| Refer | ence Hea  | ating Ref | Begin En  | d Begin  | End Beg  | in End B   | egin End   | Begin End  | Begin En | d Begin  | End Be | gin End  | Begin End    |
| 1     | 1         |           | 1 3       |          | 10       |            |            |            |          |          |        |          | -            |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |
|       |           |           |           |          |          |            |            | ,          |          |          |        |          |              |
|       |           |           |           |          |          |            | •          |            |          |          |        |          | •            |
| Card  | 67        |           |           |          | Н∈       | ating Equ  | ipment Par | ameters    |          |          |        |          |              |
| Heat  | Equip     |           | HW Pmp    |          |          | 2 240.     | Energy     |            |          | Switch   |        |          | Domand       |
| Ref   | Code      | Of        | Full Ld   |          | Cap'y    | •          | Rate       |            |          |          | Uot :  | (i.a.a   | Demand       |
|       | r Name    | Units     |           | Units    |          | Units      | Value      | Ilnit -    |          |          |        | lisc.    | Limit        |
| 1     | BLR51     | 1         | 2.3       | KW       | 1060     | MBH        |            | Units      |          | Control  | _      |          | gen Number   |
| 2     | BLR51     | 1         | 2.3       | KW       | 1060     | мвн        | 1683       | MBH        | 1        |          | 3      |          |              |
| _     |           | •         | ٠. ٠      | 1517     | 1000     | riori      | 1683       | MBH        | 2        |          | 4      | :        |              |
|       |           |           |           |          |          |            |            |            |          |          |        |          |              |

```
Card 69----- Fan Equipment Parameters -----
System
        Cooling Heating Return
Set
                                Exhaust Auxiliary Room
                                                        Optional
Number
        Fan
                Fan
                        Fan
                                        Supply
                                                 Exhaust Ventilation
1
        EQ4003
2
        EQ4003
3
        EQ4003
4
        EQ4003
5
        EQ4003
        EQ4003
        EQ4003
        EQ4003
        EQ4003
10
        EQ4003
```

| Card 70 | an Equipment KW Overrides |        |        |     |     |        |      |      |       |       |        |      |  |
|---------|---------------------------|--------|--------|-----|-----|--------|------|------|-------|-------|--------|------|--|
|         |                           | MAIN S | YSTEM- |     | OTE | ER SYS | TEM  | E    | EMAND | LIMIT | PRIORI | TY   |  |
| System  | Cool                      | Heat   | Ret    | Exh | Aux | Room   | Opt  |      |       |       | Room   | Opt  |  |
| Set     | Fan                       | Fan    | Fan    | Fan | Sup | Exh    | Vent | Cool | Heat  | Aux   | Exh    | Vent |  |
| Number  | KW                        | KW     | KW     | KW  | KW  | KW     | KW   | Fan  | Fan   | Fan   | Fan    | Fan  |  |
| 1       | 4.9                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 2       | 1.4                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 3       | 8.5                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 4       | 4.4                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 5       | 3.7                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 6       | 4.7                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 7       | 7.8                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 8       | 9.9                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 9       | 2.0                       |        |        |     |     |        |      |      |       |       |        |      |  |
| 10      | 4.2                       |        |        |     |     |        |      |      |       |       |        |      |  |
|         |                           |        |        |     |     |        |      |      |       |       |        |      |  |

| Card 71- |                  |        |        |          |          |           |          |          |         |
|----------|------------------|--------|--------|----------|----------|-----------|----------|----------|---------|
| Base     | Base             | Hourly | Hourly |          |          | Equip     | Demand   |          |         |
| Utility  | Utility          | Demand | Demand | Schedule | Energy   | Reference | Limiting | Entering | Leaving |
| Number   | Descrip          | Value  | Units  | Code     | Туре     | Number    | Number   | Temp     | Temp    |
| 1        | CHW LOADS        | 45.6   | TONS   | AVAIL    | CHILL-LD | 1         |          | •        |         |
| 2 .      | HW LOADS         | 90.9   | MBH -  | AVAIL    | HOT-LD   | 1         |          |          |         |
| 3        | ALL OTHER LIGHTS | 7.026  | KW     | OFICEL34 | ELEC     |           |          |          |         |

| Card 7 |         |          | - Condenser / Cooling Tower Parameters |         |         |         |        |       |         |         |         |
|--------|---------|----------|----------------------------------------|---------|---------|---------|--------|-------|---------|---------|---------|
|        | Cooling |          |                                        | Energy  | Energy  |         |        |       |         | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity                               | Consump | Consump | Fluid   | Tower  | Of    | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units                                  | Value   | Units   | Туре    | Туре   | Cells | Low Spd | Value   | Units   |
| 1      | EQ5100  |          |                                        | 4.7     | KW      | T-WATER | CTOWER | 1     | •       |         |         |
| 2      | EQ5100  |          |                                        | 4.7     | KW      | T-WATER | CTOWER | 1     |         |         |         |

```
Card 75----- Miscellaneous Accessory
    #1
                           #2
                                                   #3
Misc Equip
         Energy Energy Sched Equip Energy Energy Sched Equip Energy Energy Sched
Ref Code
         Value Units Code Code Value Units Code Code Value Units Code
1
   EQ5013
         21.6
                KW
2
   EQ5013 21.6
                KW
   EQ5020 6.3 KW
3
   EQ5020 7.1
------ Equipment Section Alternative #2 -----
            ECO-G, TEST CELLS 1 & 2
Card 59----- Equipment Description / TOD Schedules -----
       Elec Consump Elec Demand Demand
                                                       ---- Demand Limit ---
Alternative Time of Day Time of Day Limit
Number Schedule Schedule Max KW Alternative Description
                             NEW CHW & CND SYSTEM
Card 60----- Cooling Load Assignment-----
Load All Coil Cooling
Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End                1 10
Card 62----- Cooling Equipment Parameters -----
Cool Equip Num ------COOLING------- Seq
Ref Code Of --Capacity-- ----Energy----
                                    --Capacity-- ----Energy---- Order Seq Limit
Num Name Units Value Units Value Units Value Units
                                                Value Units Num Type Number
1 YCENT123 1 180 TONS 106 KW
                                                             1
                                                                 PAR
2 EQ1001S 1 151 TONS
                       141
                                                             2
                                                                 PAR
Card 63----- Cooling Pumps and References -----
Cool ---CHILLED WATER---- ----CONDENSER----- ---HT REC or AUX---- Switch-
Ref Full Load Full Load Full Load Full Load Full Load Full Load over Cold
                                                      Cooling Misc.
Num Value Units Value Units Value Units Control Storage Tower Access.
1 22.8
               10.33
         KW
                       KW
        KW
 28.7
                12.0
Card 64----- Cooling Equipment Options -----
Cool Max Load
                   Free Cond Cond Cond Rej Cond Rej
Ref CW Shed
             Evap Cooling Heat Entering Min Oper To Ref To Ref @ HW
Num Reset Economizer Precool Type Source Temp Temp
                                            Type Number
                                                        Temp
```

```
Card 64------ Cooling Equipment Options ------
             Free Cond Cond Cond Rej Cond Rej
Cool Max Load
Ref CW Shed Evap Cooling Heat Entering Min Oper To Ref @ HW
Num Reset Economizer Precool Type Source Temp Temp Type Number Temp
                              85
                                   55
Card 65----- Heating Load Assignment
Load All Coil
Assignment Loads To Group 1- Group 2- Group 3- Group 4- Group 5- Group 6- Group 7- Group 8- Group 9-
Reference Heating Ref Begin End       1 1 3 6 10
Card 67------ Heating Equipment Parameters
Heat Equip Number HW Pmp
                                     Energy Seq Switch
                                                                      Demand
        Of Full Ld
                                                                     Limit
Ref
    Code
                          Cap'y
                                     Rate
                                               Order over Hot Misc.
        Units Value Units Value Units
                                     Value Units Number Control Strg Acc. Cogen Number
Number Name
1 BLR51 1 2.3 KW
                          1060 MBH
                                     1683 MBH 1
                                                     1
   BLR51 1 2.3 KW
                           1060 MBH
                                     1683 MBH
                                               2
Card 69----- Fan Equipment Parameters ------
      Cooling Heating Return Exhaust Auxiliary Room Optional
Set
Number
     Fan
                 Fan Fan Supply Exhaust Ventilation
1
      EQ4003
2
      EQ4003
      EQ4003
3
      EQ4003
5
     E04003
     EQ4003
6
     EQ4003
     EQ4003
8
     EQ4003
9
```

| Card 70     |      |      |     | Fan | Equip | ment K | W Over | rides |       | <del></del> |          |      |  |
|-------------|------|------|-----|-----|-------|--------|--------|-------|-------|-------------|----------|------|--|
| MAIN SYSTEM |      |      |     |     | OTH   | ER SYS | TEM    | D     | EMAND | LIMIT       | PRIORITY |      |  |
| System      | Cool | Heat | Ret | Exh | Aux   | Room   | Opt    |       |       |             | Room     | Opt  |  |
| Set         | Fan  | Fan  | Fan | Fan | Sup   | Exh    | Vent   | Cool  | Heat  | Aux         | Exh      | Vent |  |
| Number      | KW   | KW   | KW  | KW  | KW    | KW     | KW     | Fan   | Fan   | Fan         | Fan      | Fan  |  |
| 1           | 4.9  |      |     |     |       |        |        |       |       |             |          |      |  |
| 2           | 1.4  |      |     |     |       |        |        |       |       |             |          |      |  |

EQ4003

10

```
Card 70----- Fan Equipment KW Overrides -----
    -----MAIN SYSTEM-----
                    --OTHER SYSTEM-- ----DEMAND LIMIT PRIORITY---
                                          Room Opt
System Cool Heat Ret Exh Aux Room Opt
Set Fan Fan Fan Sup Exh Vent Cool Heat Aux Exh Vent
Number KW KW
            KW KW
                    KW KW KW Fan Fan Fan Fan
3 8.5
    4.4
   3.7
   4.7
6
    7.8
   9.9
8
    2.0
9
10
    4.2
Card 71----- Base Utility Parameters -----
                Hourly Hourly
Base Base
                                          Equip Demand
Utility Utility
                 Demand Demand Schedule Energy Reference Limiting Entering Leaving
                 Value Units Code Type Number Number Temp
Number Descrip
                                                              Temp
1 CHW LOADS
                 45.6 TONS AVAIL
                                  CHILL-LD 1
    HW LOADS
2
                 90.9
                        MBH AVAIL HOT-LD 1
    ALL OTHER LIGHTS 7.026
                            OFICEL34 ELEC
                        KW
Card 74----- Condenser / Cooling Tower Parameters ------
  Cooling
                      Energy Energy Number Percent Low Spd Low Spd
Tower Tower Capacity Capacity Consump Consump Fluid Tower Of Airflow Energy Energy
Ref Code
         Value Units Value Units Type Type Cells Low Spd Value Units
1 EQ5100
                 4.7 KW T-WATER CTOWER 1
    EQ5100
                       4.7
                              KW T-WATER CTOWER 1
Card 75----- Miscellaneous Accessory
   #1
                          #2
                                                    #3
Misc Equip Energy Energy Sched Equip Energy Energy Sched
                                                           Energy Energy Sched
                                                    Equip
Ref Code
                           Code Value Units Code
               Units Code
                                                                Units Code
         Value
                                                    Code
                                                           Value
1 EQ5020 6.3
                KW
  EQ5020 7.1
2
                KW
----- Equipment Section Alternative #3 -----
             ECO-H, TEST CELLS 1 & 2
Card 59----- Equipment Description / TOD Schedules ------
       Elec Consump Elec Demand Demand
Alternative Time of Day Time of Day Limit
                                                            Temperature
Number Schedule
                 Schedule Max KW Alternative Description
                                                         Schedule Drift
                               NEW HW SYSTEM
```

Card 60----- Cooling Load Assignment------Load All Coil Cooling Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Ref Cool Ref Sizing Begin End 1 10 Card 62----- Cooling Equipment Parameters ------Cool Equip Num ------COOLING-----Demand ---Energy------Capacity-- ---Energy----Order Seq Limit Ref Code Of Num Name Units Value Units Value Units Value Units Value Units Num Type Number 1 YCENT123 1 180 TONS 106 KW 1 PAR PAR 2 EQ1001S 1 151 TONS 141 KW 2 Card 63----- Cooling Pumps and References ------. Cool ---CHILLED WATER---- ----CONDENSER----- ---HT REC or AUX---- Switch-Ref Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc. Units Value Units Control Storage Tower Access. Num Value Units Value 1 22.8 10.33 KW KW 1 2 28.7 12.0 KW KW Card 64------ Cooling Equipment Options Free Cond Cond Cond Rej Cond Rej Cool Max Load Shed Cooling Heat Entering Min Oper To Ref To Ref Evap Num Reset Economizer Precool Type Source Temp Temp Type Number 1 10 85 55 85 55 10 Card 65------All Coil Assignment Loads To -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Reference Heating Ref Begin End 1 1 3 6 10 Card 67------ Heating Equipment Parameters Seq Switch Demand Heat Equip Number HW Pmp Energy Order over Hot Misc. Limit Ref Code Of Full Ld Cap'y Rate Number Control Strg Acc. Cogen Number Units Value Units Value Units Value Units Number Name KW 720 MBH 900 MBH 1 OILBLR 1 6.3 1 BLR51 1 7.1 KW 1060 MBH 1683 2

| Card 69 Fan Equipment Parameters |         |         |        |         |           |         |             |  |  |  |  |
|----------------------------------|---------|---------|--------|---------|-----------|---------|-------------|--|--|--|--|
| System                           |         |         |        |         |           |         |             |  |  |  |  |
| Set                              | Cooling | Heating | Return | Exhaust | Auxiliary | Room    | Optional    |  |  |  |  |
| Number                           | Fan     | Fan     | Fan    | Fan     | Supply    | Exhaust | Ventilation |  |  |  |  |
| 1                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 2                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 3                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 4                                | EQ4003  |         |        |         |           | •       | :           |  |  |  |  |
| 5                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 6                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 7                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 8                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 9                                | EQ4003  |         |        |         |           |         |             |  |  |  |  |
| 10                               | EQ4003  |         |        |         |           |         |             |  |  |  |  |
|                                  |         |         |        |         |           |         |             |  |  |  |  |

Card 70----- Fan Equipment KW Overrides ----------MAIN SYSTEM---- ----DEMAND LIMIT PRIORITY---System Cool Heat Ret Exh Aux Room Opt Room Opt Set Fan Fan Fan Sup Exh Vent Cool Heat Aux Exh Vent KW KW KW KW KW Fan Fan Fan Fan Fan Number KW 1 4.9 2 1.4 8.5 3 4.4 3.7 6 4.7 7.8 8 9.9 9 2.0 10 4.2

| Card 71- | Card 71 Base Utility Parameters |        |        |          |          |           |          |          |         |  |  |  |  |
|----------|---------------------------------|--------|--------|----------|----------|-----------|----------|----------|---------|--|--|--|--|
| Base     | Base                            | Hourly | Hourly |          |          | Equip     | Demand   |          |         |  |  |  |  |
| Utility  | Utility                         | Demand | Demand | Schedule | Energy   | Reference | Limiting | Entering | Leaving |  |  |  |  |
| Number   | Descrip                         | Value  | Units  | Cođe     | Type     | Number    | Number   | Temp     | Temp    |  |  |  |  |
| 1        | CHW LOADS                       | 45.6   | TONS   | AVAIL    | CHILL-LD | 1         |          |          |         |  |  |  |  |
| 2        | HW LOADS                        | 90.9   | MBH    | AVAIL    | HOT-LD   | -1        |          |          |         |  |  |  |  |
| 3        | ALL OTHER LIGHTS                | 7.026  | KW     | OFICEL34 | ELEC     |           |          |          |         |  |  |  |  |

| Card 7 | 4       |          |          | Condenser | / Coolin | g Tower Pa | rameters |        |         |         |         |
|--------|---------|----------|----------|-----------|----------|------------|----------|--------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy   |            |          | Number | Percent | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump  | Fluid      | Tower    | Of     | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units    | Туре       | Type     | Cells  | Low Spd | Value   | Units   |
| 1      | EQ5100  |          |          | 4.7       | KW       | T-WATER    | CTOWER   | 1      |         |         |         |
| 2      | EQ5100  |          |          | 4.7       | KW       | T-WATER    | CTOWER   | 1      |         |         |         |

1

By: HUITT & ZOLLARS

TRACE 600 ANALYSIS by HUITT & ZOLLARS

> EEAP ENERGY STUDY - HELSTF WHITE SANDS - ALAMOGORDO, NEW MEXICO FORT WORTH CORPS OF ENGINEERS HUITT-ZOLLARS, INC. TEST CELL # 1 AND TEST CELL # 2

### **EXISTING TEST CELLS 1 & 2**

Weather File Code:

HOLLOMAN AFB, ALAMOGORDO N.M. Location: Latitude: 33.0 (deg) Longitude: 106.0 (deg) Time Zone: 7 4,093 (ft) Elevation: Barometric Pressure: 25.6 (in. Hg)

1.05 Summer Clearness Number: Winter Clearness Number: 1.00 Summer Design Dry Bulb: 96 (F) Summer Design Wet Bulb: 68 (F) 19 (F) Winter Design Dry Bulb: 0.20 Summer Ground Relectance: 0.20 Winter Ground Relectance:

0.0648 (Lbm/cuft) Air Density: Air Specific Heat: 0.2444 (Btu/lbm/F) Density-Specific Heat Prod: 0.9511 (8tu-min./hr/cuft/F) Latent Heat Factor: 4,186.5 (Btu-min./hr/cuft) Enthalpy Factor: 3.8908 (Lb-min./hr/cuft)

Design Simulation Period: June To November System Simulation Period: January To December

TETD/Time Averaging Cooling Load Methodology:

14:49: 8 1/ 5/96 Time/Date Program was Run: TESTCELL .TM ' Dataset Name:

G-160

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1
EXISTING AIRSIDE EQUIPMENT

#### System Totals

| Percent         | Cool  | ing Loa | d          | Heatir     | ng Load |       | Cooling  | Airflow |       | Heating | Airflow |       |
|-----------------|-------|---------|------------|------------|---------|-------|----------|---------|-------|---------|---------|-------|
| Design          | Cap.  | Hours   | Hours      | Capacity   | Hours   | Hours | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours |
| Load            | (Ton) | (%)     |            | (Btuh)     | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5           | 4.6   | 0       | 0          | -81,354    | 56      | 2,642 | 3,548.4  | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10          | 9.3   | 6       | 551        | -162,709   | 36      | 1,708 | 7,096.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15         | 13.9  | 21      | 1,830      | -244,063   | 8       | 379   | 10,645.1 | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20         | 18.5  | 14      | 1,258      | -325,418   | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25         | 23.1  | 9       | 788        | -406,772   | 0       | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30         | 27.8  | 6       | 539        | -488,127   | 0       | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35         | 32.4  | 5       | 395        | -569,481   | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40         | 37.0  | 10      | 877        | -650,836   | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45         | 41.6  | 6       | 491        | -732,190   | 0       | 0     | 31,935.2 | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50         | 46.3  | 5       | 450        | -813,545   | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0     |
|                 | 50.9  | 5       | 481        | -894,900   | 0       | 0     | 39,031.9 | 0       | n     | 0.0     | 0       | 0     |
| 50 - 55         |       |         | 333        | -976,254   | 0       | 0     | 42,580.2 | 0       | n     | 0.0     | 0       | 0     |
| 55 - 60         | 55.5  | 4<br>5  | 438        |            | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65         | 60.1  |         | 430<br>309 | -1,057,608 | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | n     |
| 65 - 70         | 64.8  | 4       |            | -1,138,963 | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | n     |
| 70 - 75         | 69.4  | 0       | 20         | -1,220,317 |         | =     |          | 0       | 0     | 0.0     | 0       | n     |
| 75 - 80         | 74.0  | 0       | 0          | -1,301,672 | 0       | 0     | 56,773.6 |         | -     |         | 0       | 0     |
| 80 - 85         | 78.7  | 0       | 0          | -1,383,026 | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | _       | 0     |
| 85 - 90         | 83.3  | 0       | 0          | -1,464,381 | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | 0       | U     |
| 90 <b>- 9</b> 5 | 87.9  | 0       | 0          | -1,545,735 | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | Ü     |
| 95 - 100        | 92.5  | 0       | 0          | -1,627,090 | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off       | 0.0   | 0       | 0          | 0          | 0       | 4,031 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760 |

|     |          |         |           | E (      | UIPI  | 4 E N T | ENE      | RGY      | CONSI | JMPT  | I O N |       | • • • • • • • • • • • • • • • • • • • • |         |
|-----|----------|---------|-----------|----------|-------|---------|----------|----------|-------|-------|-------|-------|-----------------------------------------|---------|
| Ref | Equip -  |         |           |          |       | Mon     | thly Con | sumption |       |       |       |       |                                         |         |
| Num | Code     | Jan     | Feb       | Mar      | Apr   | May     | June     | July     | Aug   | Sep   | 0ct   | Nov   | Dec                                     | Total   |
| 0   | LIGHTS   | Lightin | g Systems |          |       |         |          |          |       |       |       |       |                                         |         |
| _   | ELEC     | 40015   | 36142     | 40015    | 38724 | 40015   | 38724    | 40014    | 40015 | 38724 | 40015 | 38724 | 40014                                   | 471,139 |
|     | PK       | 53.8    | 53.8      | 53.8     | 53.8  | 53.8    | 53.8     | 53.8     | 53.8  | 53.8  | 53.8  | 53.8  | 53.8                                    | 53.8    |
| 1   | MISC LD  |         |           |          |       |         |          |          |       |       |       |       |                                         |         |
|     | ELEC     | 13610   | 12293     | 13610    | 13171 | 13610   | 13171    | 13610    | 13610 | 13171 | 13610 | 13171 | 13610                                   | 160,248 |
|     | PK       | 36.6    | 36.6      | 36.6     | 36.6  | 36.6    | 36.6     | 36.6     | 36.6  | 36.6  | 36.6  | 36.6  | 36.6                                    | 36.6    |
| 2   | MISC LD  |         |           |          |       |         |          |          |       |       |       |       |                                         |         |
|     | GAS      | 0       | 0         | 0        | 0     | 0       | 0        | 0        | 0     | 0     | 0     | 0     | 0                                       | 0       |
|     | PK       | 0.0     | 0.0       | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | . 0.0 | 0.0                                     | 0.0     |
| 3   | MISC LD  |         |           |          |       |         |          |          |       |       |       |       |                                         |         |
|     | OIL      | 0       | 0         | 0        | 0     | 0       | 0        | 0        | 0     | 0     | 0     | 0     | 0                                       | 0       |
|     | PK       | 0.0     | 0.0       | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     | 0.0     |
| 4   | MISC LD  |         | •         |          |       |         |          |          |       |       |       |       |                                         |         |
|     | P STEAM  | 0       | 0         | 0        | 0     | 0       | 0        | 0        | 0     | 0     | 0     | 0     | 0                                       | 0       |
|     | PK       | 0.0     | 0.0       | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     | 0.0     |
| 5   | MISC LD  |         |           |          |       |         |          |          |       |       |       |       |                                         |         |
|     | P HOTH20 | 0       | 0         | 0        | 0     | 0       | 0        | 0        | 0     | 0     | 0     | 0     | 0                                       | 0       |
|     | PK       | 0.0     | 0.0       | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     | 0.0     |
| 6   | MISC LD  |         |           |          |       |         |          |          |       |       |       |       |                                         |         |
|     | P CHILL  | 0       | 0         | 0        | 0     | 0       | 0        | 0        | 0     | 0     | 0     | 0     | 0                                       | 0       |
|     | PK       | 0.0     | 0.0       | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                     | 0.0     |
| 1   |          | -       | BAS       | E UTILIT | Y     |         |          |          |       |       |       |       |                                         |         |
|     | CHILLD   | 33926   | 30643     | 33926    | 32832 | 33926   | 32832    | 33926    | 33926 | 32832 | 33926 | 32832 | 33926                                   | 399,456 |
|     | PK       | 45.6    | 45.6      | 45.6     | 45.6  | 45.6    | 45.6     | 45.6     | 45.6  | 45.6  | 45.6  | 45.6  | 45.6                                    | 45.6    |
| 2   |          |         | BAS       | E UTILIT | Y     |         |          |          |       |       |       |       |                                         |         |
|     | HOTLD    | 676     | 611       | 676      | 654   | 676     | 654      | 676      | 676   | 654   | 676   | 654   | <b>67</b> 6                             | 7,963   |
|     | PK       | _ 0.9   | 0.9       | 0.9      | 0.9   | 0.9     | 0.9      | 0.9      | 0.9   | 0.9   | 0.9   | 0.9   | 0.9                                     | 0.9     |
| 3   |          |         | BAS       | E UTILIT | Y     |         | •        |          |       |       |       | •     |                                         |         |
|     | ELEC     | 4832    | 4366      | 4888     | 4667  | 4860    | 4723     | 4805     | 4888  | 4667  | 4860  | 4667  | 4805                                    | 57,028  |
|     | PK       | 8.8     | 8.8       | 8.8      | 8.8   | 8.8     | 8.8      | 8.8      | 8.8   | 8.8   | 8.8   | 8.8   | 8.8                                     | 8.8     |
| 4   |          |         | BAS       | E UTILIT | Y     |         |          |          |       |       |       |       |                                         |         |
|     | ELEC     | 11805   | 10662     | 11805    | 14112 | 11110   | 7392     | 4861     | 694   | 672   | 6944  | 11424 | 9027                                    | 100,509 |
|     | PK       | 22.4    | 22.4      | 22.4     | 22.4  | 22.4    | 22.4     | 22.4     | 22.4  | 22.4  | 22.4  | 22.4  | 22.4                                    | 22.4    |

|     |         |       |       | E 0               | UIPI      | MENT     | ENEF       | RGY      | CONSI       | JM P T 1 | 1 O N                      |       |       |          |
|-----|---------|-------|-------|-------------------|-----------|----------|------------|----------|-------------|----------|----------------------------|-------|-------|----------|
| Ref | Equip   |       |       | · · · · · · · · · |           | Mon      | thly Con   | sumption |             | <b></b>  |                            |       |       |          |
| Num | Code    | Jan   | Feb   | Mar               | Apr       | May      | June       | July     | Aug         | Sep      | Oct                        | Nov   | Dec   | Tota     |
| 1   | EQ1001S |       | 2-9   | STG CENTE         | RIFUGAL ( | CHILLER  | <550 TON:  | s C      | hiller CH-5 | 1        |                            |       |       | •        |
|     | ELEC    | 32292 | 30365 | 35523             | 38281     | 44990    | 49765      | 54811    | 52701       | 43132    | 39270                      | 32599 | 32552 | 486,28   |
|     | PK      | 47.7  | 50.4  | 56.3              | 66.0      | 76.7     | 89.3       | 95.3     | 91.3        | 76.7     | 64.9                       | 50.4  | 48.6  | 95.      |
| 1   | EQ5100  | •     | COOL  | ING TOWE          | R FANS    | Tw       | r. Fan CT- | 51A      |             |          |                            |       |       | ,        |
|     | ELEC    | 1648  | 1588  | 1899              | 2198      | 2798     | 3445       | 3943     | 3897        | 3348     | 2389                       | 1668  | 1654  | 30,47    |
|     | PK      | 2.7   | 2.9   | 3.1               | 4.2       | 5.3      | 5.3        | 5.3      | 5.3         | 5.3      | 4.5                        | 2.8   | 2.7   | 5.       |
| 1   | EQ5100  |       | COOL  | LING TOWE         | R FANS    |          |            |          |             |          |                            |       |       |          |
|     | WATER   | 162   | 154   | 182               | 200       | 238      | 260        | 279      | 269         | 225      | 205                        | 165   | 164   | 2,50     |
|     | PK      | 0.2   | 0.3   | 0.3               | 0.4       | 0.4      | 0.4        | 0.5      | 0.4         | 0.4      | 0.3                        | 0.3   | 0.3   | 0.       |
| 1   | EQ5001  |       | CHII  | LLED WATE         | R PUMP    | - CONST. | ANT VOLUI  | ME       | CHW Pun     | 1p P-51  |                            |       |       |          |
|     | ELEC    | 20311 | 18346 | 20311             | 19656     | 20311    | 19656      | 20311    | 20311       | 19656    | 20311                      | 19656 | 20311 | 239,14   |
|     | PK      | 27.3  | 27.3  | 27.3              | 27.3      | 27.3     | 27.3       | 27.3     | 27.3        | 27.3     | 27.3                       | 27.3  | 27.3  | 27.      |
| 1   | EQ5010  | ·     | CON   | DENSER W          | ATER PUM  | P-CV(HIG | H EFFIC.   | , с      | ND Pump     | P-60     |                            |       | ·     |          |
|     | ELEC    | 9821  | 8870  | 9821              | 9504      | 9821     | 9504       | 9821     | 9821        | 9504     | 9821                       | 9504  | 9821  | 115,63   |
|     | PK      | 13.2  | 13.2  | 13.2              | 13.2      | 13.2     | 13.2       | 13.2     | 13.2        | 13.2     | 13.2                       | 13.2  | 13.2  | 13.      |
| 1   | EQ5300  |       | CON.  | TROL PANE         | EL & INT  | ERLOCKS  |            |          |             |          |                            |       |       |          |
|     | ELEC    | 744   | 672   | 744               | 720       | 744      | 720        | 744      | 744         | 720      | 744                        | 720   | 744   | 8,76     |
|     | PK      | 1.0   | 1.0   | 1.0               | 1.0       | 1.0      | 1.0        | 1.0      | 1.0         | 1.0      | 1.0                        | 1.0   | 1.0   | 1.       |
| 1   | EQ5013  |       | WATI  | ER CIRCU          | LATING P  | UMP - CO | NSTANT V   | OLUME    | CND F       | ump P-65 | i                          |       |       | <u> </u> |
|     | ELEC    | 16591 | 14986 | 16591             | 16056     | 16591    | 16056      | 16591    | 16591       | 16056    | 16591                      | 16056 | 16591 | 195,34   |
|     | PK      | 22.3  | 22.3  | 22.3              | 22.3      | 22.3     | 22.3       | 22.3     | 22.3        | 22.3     | 22.3                       | 22.3  | 22.3  | 22.      |
| 2   | EQ1001S |       | 2-:   | STG CENTI         | RIFUGAL   | CHILLER  | <550 TON   | s c      | hiller CH-  | 52       |                            |       |       |          |
|     | ELEC    | 0     | 0     | 0                 | 0         | 0        | 0          | 0        | 0           | 0        | 0                          | 0     | 0     |          |
|     | PK      | 0.0   | 0.0   | 0.0               | 0.0       | 0.0      | . 0.0      | 0.0      | 0.0         | 0.0      | 0.0                        | 0.0   | 0.0   | - 0.     |
| 2   | EQ5100  |       | COO   | LING TOW          | ER FANS   | Tw       | r. Fan CT- | 51B      |             |          |                            |       |       |          |
| -   | ELEC    | 0     | 0     | 0                 | 0         | 0        | 0          | 0        | 0           | 0        | 0                          | 0     | 0     |          |
|     | PK      | 0.0   | 0.0   | 0.0               | 0.0       | 0.0      | 0.0        | 0.0      | 0.0         | 0.0      | $\mathbf{0.\widetilde{o}}$ | 0.0   | 0.0   | 0.       |
| 2   | EQ5100  |       | COO   | LING TOW          | ER FANS   |          |            |          |             |          |                            |       |       |          |
|     | WATER   | 0     | 0     | 0                 | 0         | 0        | 0          | 0        | . 0         | 0        | 0                          | 0     | 0     |          |
|     | PK      | 0.0   | 0.0   | 0.0               | 0.0       | 0.0      | 0.0        | 0.0      | 0.0         | 0.0      | 0.0                        | 0.0   | 0.0   | 0.       |
| 2   | EQ5001  |       | CHI   | LLED WAT          | ER PUMP   | - CONST  | ANT VOLU   | ME       | CHW Pur     | mp P-52  |                            |       |       |          |
| _   | ELEC    | 0     | 0     | 0                 | 0         | 0        | 0          | 0        | 0           | 0        | 0                          | 0     | 0     |          |
|     | PK      | 0.0   | 0.0   | 0.0               | 0.0       | 0.0      | 0.0        | 0.0      | 0.0         | 0.0      | 0.0                        | 0.0   | 0.0   | 0.       |

|   | Equip<br>Code  | Jan  | Feb  | Mar        | Apr       | Month<br>May | ily Consi<br>June | umption<br>July | Aug              | Sep      | Oct   | Nov          | Dec  | Total  |
|---|----------------|------|------|------------|-----------|--------------|-------------------|-----------------|------------------|----------|-------|--------------|------|--------|
|   |                |      |      |            |           |              |                   | CN              | ND Pump F        | P-61     |       |              |      |        |
| 2 | EQ5010         |      |      |            | TER PUMP- |              |                   |                 | •                | 0        | 0     | 0            | 0    | 0      |
|   | ELEC           | 0    | 0    | 0          | 0         | 0            | 0                 | 0               | 0                |          | 0.0   | 0.0          | 0.0  | 0.0    |
|   | PK             | 0.0  | 0.0  | 0.0        | 0.0       | 0.0          | 0.0               | 0.0             | 0.0              | 0.0      | 0.0   | 0.0          | 0.0  | 0.0    |
| 2 | EQ5300         |      | CONT | ROL PANE   | L & INTER | RLOCKS       |                   |                 |                  |          |       |              |      |        |
|   | ELEC           | 0    | 0    | 0          | 0         | 0            | 0                 | 0               | 0                | 0        | 0     | 0            | 0    | 0      |
|   | PK             | 0.0  | 0.0  | 0.0        | 0.0       | 0.0          | 0.0               | 0.0             | 0.0              | 0.0      | 0.0   | 0.0          | 0.0  | 0.0    |
| 2 | EQ5013         |      | WATE | R CIRCUL   | ATING PU  | MP - CON     | STANT VO          | LUME            | CND P            | ump P-66 |       |              |      |        |
| _ | ELEC           | 0    | 0    | 0          | 0         | 0            | 0                 | 0               | 0                | 0        | 0     | 0            | 0    | C      |
|   | PK             | 0.0  | 0.0  | 0.0        | 0.0       | 0.0          | 0.0               | 0.0             | 0.0              | 0.0      | 0.0   | 0.0          | 0.0  | 0.0    |
|   | 504007         |      | 50.0 | CNITOICUC  | AL - CON: | CTANT VO     | LIME              | Fan Al-         | 1-51             |          |       |              |      |        |
| 1 | EQ4003<br>ELEC | 3646 | 3293 | 3646       | 3528      | 3646         | 3528              | 3646            | 3646             | 3528     | 3646  | <b>3</b> 528 | 3646 | 42,924 |
|   | PK             | 4.9  | 4.9  | 4.9        | 4.9       | 4.9          | 4.9               | 4.9             | 4.9              | 4.9      | 4.9   | 4.9          | 4.9  | 4.     |
|   | r K            | 1    |      |            |           |              |                   | Fan AH          | 1.52             |          |       |              |      |        |
| 2 | EQ4003         |      | FC C | ENTRIFUG   | AL - CON  | STANT VO     | LUME              | rallAn          | -52              |          |       |              |      |        |
|   | ELEC           | 1265 | 1142 | 1265       | 1224      | 1265         | 1224              | 1265            | 1265             | 1224     | 1265  | 1224         | 1265 | 14,89  |
|   | PK             | 1.7  | 1.7  | 1.7        | 1.7       | 1.7          | 1.7               | 1.7             | 1.7              | 1.7      | 1.7   | 1.7          | 1.7  | 1.     |
| 3 | EQ4003         |      | FC C | ENTRIFUG   | AL - CON  | STANT VO     | LUME              | Fan Al          | H-53             |          |       |              |      | ,      |
| ٠ | ELEC           | 6398 | 5779 | 6398       | 6192      | 6398         | 6192              | 6398            | 6398             | 6192     | 6398  | 6192         | 6398 | 75,33  |
|   | PK             | 8.6  | 8.6  | 8.6        | 8.6       | 8.6          | 8.6               | 8.6             | 8.6              | 8.6      | 8.6   | 8.6          | 8.6  | 8.     |
|   |                |      |      |            |           |              |                   | Fan Al-         | 1-54             |          |       |              |      |        |
| 4 | EQ4003         | ~~~  |      |            | AL - CON  |              |                   | 3274            | - 3274           | 3168     | 3274  | 3168         | 3274 | 38,54  |
|   | ELEC           | 3274 | 2957 | 3274       | 3168      | 3274         | 3168<br>4.4       | 4.4             | 4.4              | 4.4      | 4.4   | 4.4          | 4.4  | 4.     |
|   | PK<br>-        | 4.4  | 4.4  | 4.4        | 4.4       | 4.4          |                   | 7.7             | 7.7              | 7.7      |       |              |      |        |
| 5 | EQ4003         |      | FC ( | CENTR I FU | GAL - CON | STANT VO     | LUME              | Fan Al          | <del>1-</del> 55 |          |       |              |      | T      |
|   | ELEC           | 3050 | 2755 | 3050       | 2952      | 3050         | 2952              | 3050            | 3050             | 2952     | 3050  | 2952         | 3050 | 35,91  |
|   | PK             | 4.1  | 4.1  | 4.1        | 4.1       | 4.1          | 4.1               | 4.1             | 4.1              | 4.1      | 4.1   | 4.1          | 4.1  | 4.     |
| , | EQ4003         | ,    | בר ו | CHTD ( FIN | GAL - CON | STANT V      | NUME F            | an AH-4         |                  |          |       |              |      |        |
| 0 | ELEC           | 3646 | 3293 | 3646       | 3528      | 3646         | 3528              | 3646            | 3646             | 3528     | 3646  | 3528         | 3646 | 42,92  |
|   | PK -           | 4.9  | 4.9  | 4.9        | 4.9       | 4.9          | 4.9               | 4.9             | 4.9              | 4.9      | 4.9   | 4.9          | 4.9  | 4.     |
|   |                | +    |      |            |           |              |                   | Fan Al          | 4_1              |          |       |              |      |        |
| 7 | EQ4003         | i    | FC ( | CENTRIFU   | GAL - CON |              |                   |                 |                  |          |       |              |      | 17/ 0  |
|   | ELEC           | 6473 | 5846 | 6473       | 6264      | 6473         | 6264              | 6473            | 6473             | 6264     | 6473  | 6264         | 6473 | 76,2   |
|   | PK             | 8.7  | 8.7  | 8.7        | 8.7       | 8.7          | 8.7               | 8.7             | 8.7              | 8.7      | 8.7   | 8.7          | 8.7  | 8      |
| Ω | EQ4003         |      | FC : | CENTRIEU   | GAL - CON | NSTANT V     | OLUME             | Fan Al          | H-3              | •        |       |              |      |        |
| 0 |                | 7663 | 6922 |            | 7416      | 7663         | 7416              | 7663            | 7663             | 7416     | 7663  | 7416         | 7663 | 90,2   |
|   | ELEC           | //// | 04// | 7663       | (410      | 1003         | (410              | 1002            | , 003            | 1710     | , 003 | 1710         | ,    | L ·    |

|     |                | •           |          | E Q        | UIPM      | ENT      | ENER     | GY C    | ONSU  | MPTI         | O N  |             |      |              |
|-----|----------------|-------------|----------|------------|-----------|----------|----------|---------|-------|--------------|------|-------------|------|--------------|
| Ref | Equip          |             |          |            |           | Mont     | hly Cons | umption |       | <del></del>  |      | <b></b>     |      |              |
| lum | Code           | Jan         | Feb      | Mar        | Apr       | May      | June     | July    | Aug   | Sep          | Oct  | Nov         | Dec  | Total        |
| 9   | EQ4003         |             | FC C     | ENTRI FUG  | AL - CON  | STANT VO | LUME     | Fan AH  | -2    |              |      |             |      |              |
| -   | ELEC           | 1562        | 1411     | 1562       | 1512      | 1562     | 1512     | 1562    | 1562  | 1512         | 1562 | 1512        | 1562 | 18,396       |
|     | PK             | 2.1         | 2.1      | 2.1        | 2.1       | 2.1      | 2.1      | 2.1     | 2.1   | 2.1          | 2.1  | 2.1         | 2.1  | 2.1          |
| 10  | EQ4003         | •           | EC C     | ENTR I FUG | AI - CON  | STANT VO | ILIME    | Fan AH- | 5     | •            |      |             |      |              |
| 10  | ELEC           | 3050        | 2755     | 3050       | 2952      | 3050     | 2952     | 3050    | 3050  | <b>2</b> 952 | 3050 | 2952        | 3050 | 35,916       |
|     | PK             | 4.1         | 4.1      | 4.1        | 4.1       | 4.1      | 4.1      | 4.1     | 4.1   | 4.1          | 4.1  | 4.1         | 4.1  | 4.1          |
|     |                | <del></del> |          |            |           |          | Boile    | r B-51  |       | · ·          |      |             |      |              |
| 1   | BLR51          |             |          | FIRED HO   |           |          | 4070     | 407/    | 407/  | 407/         | 47/5 | 2078        | 2207 | 10. 77       |
|     | OIL            | 2632        | 1946     | 1706       | 1307      | 1119     | 1039     | 1074    | 1074  | 1074         | 1345 | 2068<br>3.8 | 4.2  | 18,77        |
|     | PK             | 4.7         | 4.0      | 3.3        | 2.6       | 1.8      | 1.4      | 1.4     | 1.4   | 1.7          | 2.0  | 3.0         | 4.2  | 4.1          |
| 1   | EQ5020         |             | HEAT     | ING WATE   | R CIRCUL  | ATION PU | IMP      | HW pump | P-70  |              |      |             |      | <del>,</del> |
|     | ELEC           | 2009        | 1814     | 2009       | 1944      | 2009     | 1944     | 2009    | 2009  | 1944         | 2009 | 1944        | 2009 | 23,65        |
|     | PK             | 2.7         | 2.7      | 2.7        | 2.7       | 2.7      | 2.7      | 2.7     | 2.7   | 2.7          | 2.7  | 2.7         | 2.7  | 2.           |
| 1   | EQ5307         |             | CONT     | ROLS       |           |          |          |         |       |              |      |             |      |              |
| •   | ELEC           | 372         | 336      | 372        | 360       | 372      | 360      | 372     | 372   | 360          | 372  | 360         | 372  | 4,380        |
|     | PK             | 0.5         | 0.5      | 0.5        | 0.5       | 0.5      | 0.5      | 0.5     | 0.5   | 0.5          | 0.5  | 0.5         | 0.5  | 0.5          |
|     | T05030         |             |          | TING WATE  |           | ATTON DI | ino.     | HW pump | P-63  |              |      |             |      |              |
| 1   | EQ5020<br>ELEC | 4762        | 4301     | 4762       | 4608      | 4762     | 4608     | 4762    | 4762  | 4608         | 4762 | 4608        | 4762 | 56,06        |
|     | PK             | 6.4         | 6.4      | 6.4        | 6.4       | 6.4      | 6.4      | 6.4     | 6.4   | 6.4          | 6.4  | 6.4         | 6.4  | 6.4          |
|     |                | 1           |          |            |           |          |          |         |       |              |      |             |      |              |
| 2   | BLR51          |             | OIL      | FIRED HO   |           |          |          | r B-52  |       |              |      |             |      |              |
|     | OIL            | 0           | 0        | 0          | 0         | 0        | 0        | 0       | 0     | 0            | 0    | 0           | 0    | -            |
|     | PK             | 0.0         | 0.0      | 0.0        | 0.0       | 0.0      | 0.0      | 0.0     | 0.0   | 0.0          | 0.0  | 0.0         | 0.0  | 0.0          |
| 2   | EQ5020         |             | HEAT     | TING WATE  | R CIRCUL  | ATION P  | JMP      | HW pump | P-71  |              |      |             |      |              |
|     | ELEC           | 0           | 0        | 0          | 0         | 0        | 0        | 0       | 0     | 0            | 0    | 0           | 0    | 1            |
|     | PK             | 0.0         | 0.0      | 0.0        | 0.0       | 0.0      | 0.0      | 0.0     | 0.0   | 0.0          | 0.0  | 0.0         | 0.0  | 0.           |
| 2   | EQ5307         |             | CON      | TROLS      |           |          |          |         |       |              |      |             |      |              |
| _   | ELEC           | 0           | 0        | 0          | 0         | 0        | 0        | 0       | 0     | 0            | 0    | 0           | 0    |              |
|     | PK             | 0.0         | 0.0      |            | 0.0       | 0.0      | 0.0      | 0.0     | - 0.0 | 0.0          | 0.0  | 0.0         | 0.0  | 0.           |
| 2   | EQ5020         | ,           | NE V.    | TING WATE  | ם רופרויו | ATION D  | JMP -    | HW pump | P-64  |              |      |             |      |              |
| ۷   | ELEC           | 0           | nea<br>0 | IING WAII  | 0         | O O      | ) NP 0   | 0       | 0     | 0            | 0    | 0           | 0    |              |
|     | PK             | 0.0         | 0.0      | 0.0        | 0.0       | 0.0      | 0.0      | 0.0     | 0.0   | 0.0          | 0.0  | 0.0         | 0.0  | 0.           |
|     | FN             | 0.0         | 0.0      | 0.0        | 0.0       | 0.0      | 0.0      | ٠.٠     | ~.0   | 0.0          |      |             |      | •            |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 2
EXISTING AIRSIDE EQUIPMENT

# ECO-A, TEST CELLS 1 & 2

### System Totals

| Percent   | Cool  | ing Loa | d     | Heatir     | ng Load |       | Cooling  | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|------------|---------|-------|----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 4.6   | 0       | 0     | -81,416    | 54      | 2,573 | 3,548.4  | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 9.1   | 16      | 1,419 | -162,832   | 35      | 1,647 | 7,096.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 13.7  | 18      | 1,601 | -244,248   | 11      | 532   | 10,645.1 | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 18.2  | 11      | 937   | -325,664   | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 22.8  | 8       | 743   | -407,080   | 0       | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 27.3  | 4       | 368   | -488,496   | 0       | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 31.9  | 7       | 588   | -569,911   | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 36.4  | 9       | 821   | -651,327   | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 41.0  | 5       | 433   | -732,743   | 0       | 0     | 31,935.2 | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 45.6  | 6       | 514   | -814,159   | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55   | 50.1  | 5       | 415   | -895,575   | 0       | 0     | 39,031.9 | 0       | 0     | 0.0     | 0       | 0     |
| 55 - 60   | 54.7  | 3       | 223   | -976,991   | 0       | 0     | 42,580.2 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65   | 59.2  | 5       | 449   | -1,058,407 | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0     |
| 65 - 70   | 63.8  | 3       | 249   | -1,139,823 | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | 0     |
| 70 - 75   | 68.3  | 0       | 0     | -1,221,239 | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | 0     |
| 75 - 80   | 72.9  | 0       | 0     | -1,302,655 | 0       | 0     | 56,773.6 | 0       | 0     | 0.0     | 0       | 0     |
| 80 - 85   | 77.5  | 0       | 0     | -1,384,071 | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | 0       | 0     |
| 85 - 90   | 82.0  | 0       | 0     | -1,465,487 | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | 0       | 0     |
| 90 - 95   | 86.6  | 0       | 0     | -1,546,903 | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100  | 91.1  | 0       | 0     | -1,628,319 | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0          | 0       | 4,008 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760 |

|     |          |            |         | E G      | UIPM  | ENT   | ENER     | GY (    | ONS   | JMPT! | O N   |       | · · · · · · · · · · · · · · · · · · · |                   |
|-----|----------|------------|---------|----------|-------|-------|----------|---------|-------|-------|-------|-------|---------------------------------------|-------------------|
| Ref | Equip    |            |         |          |       | Mont  | hly Cons | umption |       |       |       |       |                                       |                   |
|     | Code     | Jan        | Feb     | Mar      | Apr   | May   | June     | July    | Aug   | Sep   | Oct   | Nov   | Dec                                   | Total             |
| 0   | LIGHTS   | Lighting 5 | Systems |          |       |       |          |         |       |       |       |       |                                       |                   |
| -   | ELEC     | 32278      | 29154   | 32278    | 31236 | 32278 | 31236    | 32278   | 32278 | 31236 | 32278 | 31236 | 32278                                 | 380,044           |
|     | PK       | 43.4       | 43.4    | 43.4     | 43.4  | 43.4  | 43.4     | 43.4    | 43.4  | 43.4  | 43.4  | 43.4  | 43.4                                  | 43.4              |
| 1   | MISC LD  |            |         |          |       |       |          |         |       |       |       |       |                                       |                   |
|     | ELEC     | 13610      | 12293   | 13610    | 13171 | 13610 | 13171    | 13610   | 13610 | 13171 | 13610 | 13171 | 13610                                 | 160,248           |
|     | PK       | 36.6       | 36.6    | 36.6     | 36.6  | 36.6  | 36.6     | 36.6    | 36.6  | 36.6  | 36.6  | 36.6  | 36.6                                  | 36.6              |
| 2   | MISC LD  |            |         |          |       |       |          |         |       |       |       |       |                                       |                   |
|     | GAS      | 0          | 0       | 0        | 0     | 0     | 0        | 0       | 0     | 0     | 0     | 0     | 0                                     | 0                 |
|     | PK       | 0.0        | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                   | 0.0               |
| 3   | MISC LD  |            |         | ÷        |       |       |          |         |       |       |       |       |                                       | _                 |
|     | OIL      | 0          | 0       | 0        | 0     | 0     | 0        | 0       | 0     | 0     | 0     | 0     | 0                                     | 0                 |
|     | PK       | 0.0        | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                   | 0.0               |
| 4   | MISC LD  |            |         |          |       |       |          |         |       | _     | _     | _     |                                       | •                 |
|     | P STEAM  | 0          | 0       | 0        | 0     | 0     | 0        | 0       | 0     | 0     | 0     | 0     | 0                                     | 0.0               |
|     | PK       | 0.0        | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                   | 0.0               |
| 5   | MISC LD  |            |         |          |       | _     |          |         | •     | •     | •     | 0     | 0                                     | 0                 |
|     | P HOTH20 | 0          | 0       | 0        | 0     | 0     | 0        | 0       | 0     | 0     | 0.0   | 0.0   | 0<br>0.0                              | 0.0               |
|     | PK       | 0.0        | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                   | 0.0               |
| 6   | MISC LD  |            |         |          |       |       | _        | _       |       |       | •     | •     | •                                     | 0                 |
|     | P CHILL  | 0          | 0       | 0        | 0     | 0     | 0        | 0       | 0     | 0     | 0     | 0     | 0<br>0.0                              | 0<br>0.0          |
|     | PK .     | 0.0        | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0                                   | 0.0               |
| 1   |          |            |         | E UTILIT |       |       |          |         |       |       |       | 70070 | 7700/                                 | 700 /5/           |
|     | CHILLD   | 33926      | 30643   | 33926    | 32832 | 33926 | 32832    | 33926   | 33926 | 32832 | 33926 | 32832 | 33926                                 | 399,456<br>- 45.6 |
|     | PK       | 45.6       | 45.6    | 45.6     | 45.6  | 45.6  | 45.6     | 45.6    | 45.6  | 45.6  | 45.6  | 45.6  | 45.6                                  | - 45.6            |
| 2   |          |            |         | E UTILIT |       |       |          |         |       |       |       |       | 474                                   | 7.0/7             |
|     | HOTLD    | 676        | 611     | 676      | 654   | 676   | 654      | 676     | 676   | 654   | 676   | 654   | 676                                   | 7,963<br>0.9      |
|     | PK -     | 0.9        | 0.9     | 0.9      | 0.9   | 0.9   | 0.9      | _ 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 0.9                                   | 0.9               |
| 3   | •        |            | BAS     | E UTILIT |       |       |          |         |       |       |       |       |                                       | ,,                |
|     | ELEC     | 3863       | 3489    | 3907     | 3731  | 3885  | 3775     | 3840    | 3907  | 3731  | 3885  | 3731  | 3840                                  | 45,583            |
|     | PK       | 7.0        | 7.0     | 7.0      | 7.0   | 7.0   | 7.0      | 7.0     | 7.0   | 7.0   | 7.0   | 7.0   | 7.0                                   | 7.0               |
| 4   |          |            |         | E UTILIT |       |       |          |         |       |       |       |       |                                       |                   |
|     | ELEC     | 11805      | 10662   | 11805    | 14112 | 11110 | 7392     | 4861    | 694   | 672   | 6944  | 11424 | 9027                                  | 100,509           |
|     | PK       | 22.4       | 22.4    | 22.4     | 22.4  | 22.4  | 22.4     | 22.4    | 22.4  | 22.4  | 22.4  | 22.4  | 22.4                                  | 22.4              |

|    |            |       |               | £ Q              | UIPI          | MENT     | ENER          | RGY (   | CONSI    | UMPTI         | I O N | ·             | · • • • • • • • • • • • • • • • • • • • |       |
|----|------------|-------|---------------|------------------|---------------|----------|---------------|---------|----------|---------------|-------|---------------|-----------------------------------------|-------|
| ef | Equip      |       | - <i>-</i>    |                  |               | Man      | thly Cons     | umotion |          |               |       |               |                                         |       |
| um | Code       | Jan   | Feb           | Mar              | Арг           | May      | June          | July    | Aug      | Sep           | Oct   | Nov           | Dec                                     | Tot   |
| 1  | EQ1001S    |       | 2-9           | STG CENTR        | IFUGAL (      | CHILLER  | <550 TONS     | Chill   | er CH-51 |               |       |               |                                         |       |
|    | ELEC       | 31361 | 29397         | 34464            | 37307         | 43942    | 48575         | 53438   | 51390    | 42057         | 38329 | 31407         | 31547                                   | 473,2 |
|    | PK         | 46.6  | 49.2          | 54.7             | 64.5          | 74.9     | 87.3          | 93.5    | 89.1     | 74.8          | 63.3  | 48.9          | 47.4                                    | 93    |
| 1  | EQ5100     |       | COOL          | LING TOWE        | R FANS        | Twr. Fa  | n CT-51A      |         |          |               |       |               |                                         |       |
| •  | ELEC       | 1550  | 1491          | 1802             | 2126          | 2742     | 3423          | 3935    | 3890     | 3323          | 2324  | 1547          | 1548                                    | 29,7  |
|    | PK         | 2.6   | 2.8           | 3.0              | 4.2           | 5.3      | 5.3           | 5.3     | 5.3      | 5.3           | 4.4   | 2.7           | 2.6                                     | 5     |
| •  | EQ5100     |       | COOL          | INC TOUS         | D EANS        |          |               |         |          |               |       |               |                                         |       |
| 1  | WATER      | 156   | 148           | LING TOWE<br>176 | 194           | . 232    | 253           | 273     | 263      | 219           | 199   | 158           | 157                                     | 2,4   |
|    | PK         | 0.2   | 0.3           | 0.3              | 0.3           | 0.4      | 0.4           | 0.5     | 0.4      | 0.4           | 0.3   | 0.3           | 0.2                                     | (     |
|    |            |       |               |                  |               |          |               | CH\     | N Pump P | -51           |       |               |                                         |       |
| 1  | EQ5001     | 20744 |               | LLED WATE        |               |          | ANT VOLUM     |         | 20744    | 10/5/         | 20744 | 10/5/         | 20711                                   | 270   |
|    | ELEC<br>PK | 20311 | 18346<br>27.3 | 20311            | 19656<br>27.3 | 20311    | 19656<br>27.3 | 20311   | 20311    | 19656<br>27.3 | 20311 | 19656<br>27.3 | 20311                                   | 239,  |
|    | 7.         | 127.3 |               |                  |               |          |               |         |          |               |       |               |                                         | _     |
| 1  | EQ5010     |       | CON           | DENSER WA        | ATER PUM      | P-CV(HIG | H EFFIC.      | ) CND   | Pump P-6 | 0             |       |               |                                         |       |
|    | ELEC       | 9821  | 8870          | 9821             | 9504          | 9821     | 9504          | 9821    | 9821     | 9504          | 9821  | 9504          | 9821                                    | 115,  |
|    | PK         | 13.2  | 13.2          | 13.2             | 13.2          | 13.2     | 13.2          | 13.2    | 13.2     | 13.2          | 13.2  | 13.2          | 13.2                                    | 13    |
| 1  | EQ5300     |       | CON           | TROL PANE        | L & INT       | ERLOCKS  |               |         |          |               |       |               |                                         |       |
|    | ELEC       | 744   | 672           | 744              | 720           | 744      | 720           | 744     | 744      | 720           | 744   | 720           | 744                                     | 8,    |
|    | PK         | 1.0   | 1.0           | 1.0              | 1.0           | 1.0      | 1.0           | 1.0     | 1.0      | 1.0           | 1.0   | 1.0           | 1.0                                     |       |
| 1  | EQ5013     |       | WAT           | ER CIRCUI        | ATING P       | UMP - CO | NSTANT V      | OI UMF  | CND Pun  | np P-65       |       |               |                                         |       |
| •  | ELEC       | 16591 | 14986         | 16591            | 16056         | 16591    | 16056         | 16591   | 16591    | 16056         | 16591 | 16056         | 16591                                   | 195,  |
|    | PK         | 22.3  | 22.3          | 22.3             | 22.3          | 22.3     | 22.3          | 22.3    | 22.3     | 22.3          | 22.3  | 22.3          | 22.3                                    | 2:    |
| ,  | EQ1001S    |       | 2-            | STG CENTS        | T FLIGAT      | CHILLER  | <550 TON:     | \$      |          |               |       |               |                                         |       |
| -  | ELEC       | 0     | 0             | 0                | 0             | 0        | 0             | 0       | 0        | 0             | . 0   | 0             | 0                                       |       |
|    | PK         | 0.0   | 0.0           | 0.0              | 0.0           | 0.0      | 0.0           | 0.0     | 0.0      | 0.0           | 0.0   | 0.0           | 0.0                                     |       |
| 2  | EQ5100     |       | COO           | LING TOW         | ED EANS       |          |               |         |          |               |       |               |                                         |       |
| 2  | ELEC       | 0     | 0             | 0                | 0             | 0        | 0             | 0       | 0        | 0             | 0     | 0             | 0                                       |       |
|    | PK         | 0.0   | 0.0           | 0.0,             |               | 0.0      | 0.0           | 0.0     | 0.0      | 0.0           | 0.0   | 0.0           | 0.0                                     |       |
|    |            |       |               |                  |               |          |               |         |          |               |       |               |                                         |       |
| 2  | EQ5100     |       |               | LING TOW         |               |          | •             | -       | -        |               | _     |               | _                                       |       |
|    | WATER      | 0     | 0             | 0                | 0             | 0        | 0             | 0       | 0        | 0             | 0     | 0             | 0                                       |       |
|    | PK         | 0.0   | 0.0           | 0.0              | 0.0           | 0.0      | 0.0           | 0.0     | 0.0      | 0.0           | 0.0   | 0.0           | 0.0                                     |       |
| 2  | EQ5001     |       | CHI           | LLED WAT         | ER PUMP       | - CONST  | ANT VOLU      | ME      |          |               |       |               |                                         |       |
|    | ELEC       | 0     | 0             | 0                | 0             | 0        | 0             | 0       | 0        | 0             | 0     | 0             | 0                                       |       |
|    | PK         | 0.0   | 0.0           | 0.0              | 0.0           | 0.0      | 0.0           | 0.0     | 0.0      | 0.0           | 0.0   | 0.0           | 0.0                                     |       |

|     |                |      |       | E Q        | UIPM      | ENT       | ENER      | G Y C     | 0 N S U | MPTI | O N  |      |             |         |
|-----|----------------|------|-------|------------|-----------|-----------|-----------|-----------|---------|------|------|------|-------------|---------|
| Pof | Equip          |      |       |            |           | Mont      | hly Conši | umption · |         |      |      |      |             |         |
|     | Code           | Jan  | Feb   | Mar        | Apr       | May       | June      | July      | Aug     | Sep  | Oct  | Nov  | Dec         | Total   |
| 2   | EQ5010         |      | CONDI | ENSER WA   | TER PUMP  | -CV(HIGH  | EFFIC.)   |           |         |      |      |      |             |         |
| _   | ELEC           | :0   | 0     | 0          | 0         | 0         | 0         | 0         | 0       | 0    | 0    | 0    | 0           | 0       |
|     | PK             | 0.0  | 0.0   | 0.0        | 0.0       | 0.0       | 0.0       | 0.0       | 0.0     | 0.0  | 0.0  | 0.0  | 0.0         | 0.0     |
| 2   | EQ5300         |      | CONT  | ROL PANE   | L & INTE  | RLOCKS    |           |           |         |      |      |      |             |         |
|     | ELEC           | 0    | 0     | 0          | 0         | 0         | 0         | 0         | 0       | 0    | 0    | 0    | 0           | 0       |
|     | PK             | 0.0  | 0.0   | 0.0        | 0.0       | 0.0       | 0.0       | 0.0       | 0.0     | 0.0  | 0.0  | 0.0  | 0.0         | 0.0     |
| 2   | EQ5013         |      | WATE  | R CIRCUL   | ATING PU  | MP - CON  | STANT VO  | LUME      |         |      |      |      |             |         |
|     | ELEC           | 0    | 0     | 0          | 0         | 0         | 0         | 0         | 0       | 0    | 0    | 0    | 0           | 0       |
|     | PK             | 0.0  | 0.0   | 0.0        | 0.0       | 0.0       | 0.0       | 0.0       | 0.0     | 0.0  | 0.0  | 0.0  | 0.0         | 0.0     |
| 1   | EQ4003         |      | FC C  | ENTRIFUG   | AL - CON  | STANT VO  | LUME F    | an AH-51  |         |      |      |      |             |         |
|     | ELEC           | 3646 | 3293  | 3646       | 3528      | 3646      | 3528      | 3646      | 3646    | 3528 | 3646 | 3528 | 3646        | 42,924  |
|     | PK             | 4.9  | 4.9   | 4.9        | 4.9       | 4.9       | 4.9       | 4.9       | 4.9     | 4.9  | 4.9  | 4.9  | 4.9         | 4.9     |
| 2   | EQ4003         |      | FC C  | ENTR I FUG | AL - CON  | STANT VO  | LUME Fai  | n AH-52   |         |      |      |      |             |         |
|     | ELEC           | 1265 | 1142  | 1265       | 1224      | 1265      | 1224      | 1265      | 1265    | 1224 | 1265 | 1224 | 1265        | 14,892  |
|     | PK             | 1.7  | 1.7   | 1.7        | 1.7       | 1.7       | 1.7       | 1.7       | 1.7     | 1.7  | 1.7  | 1.7  | 1.7         | 1.7     |
| 3   | EQ4003         |      | FC C  | ENTR I FUG | AL - CON  | ISTANT VO | LUME F    | an AH-53  |         |      |      |      |             | <u></u> |
| _   | ELEC           | 6398 | 5779  | 6398       | 6192      | 6398      | 6192      | 6398      | 6398    | 6192 | 6398 | 6192 | 6398        | 75,336  |
|     | PK             | 8.6  | 8.6   | 8.6        | 8.6       | 8.6       | 8.6       | 8.6       | 8.6     | 8.6  | 8.6  | 8.6  | 8.6         | 8.6     |
| 4   | EQ4003         |      | FC C  | ENTRIFUG   | AL - CON  | ISTANT VO | DLUME F   | an AH-54  |         |      |      |      |             |         |
| •   | ELEC           | 3274 | 2957  | 3274       | 3168      | 3274      | 3168      | 3274      | 3274    | 3168 | 3274 | 3168 | 3274        | 38,544  |
|     | PK             | 4.4  | 4.4   | 4.4        | 4.4       | 4.4       | 4.4       | 4.4       | 4.4     | 4.4  | 4.4  | 4.4  | 4.4         | 4.4     |
| 5   | EQ4003         |      | EC C  | ENTRIFUC   | AL - CON  | ISTANT VO | DLUME F   | an AH-55  |         |      |      |      |             |         |
| ,   | ELEC           | 3050 | 2755  | 3050       | 2952      | 3050      | 2952      | 3050      | 3050    | 2952 | 3050 | 2952 | 3050        | 35,916  |
|     | PK             | 4.1  | 4.1   | 4.1        | 4.1       | 4.1       | 4.1       | 4.1       | 4.1     | 4.1  | 4.1  | 4.1  | 4.1         | - 4.1   |
| 6   | E04003         |      | EC. C | ENTRIFU    | GAL - CON | ISTANT VO | DLUME (   | Fan AH-4  |         |      |      |      |             |         |
| Ü   | ELEC           | 3646 | 3293  | 3646       | 3528      | 3646      | 3528      | 3646      | 3646    | 3528 | 3646 | 3528 | 3646        | 42,924  |
|     | PK             | 4.9  | 4.9   | 4.9        | 4.9       | 4.9       | 4.9       | 4.9       | 4.9     | 4.9  | 4.9  | 4.9  | 4.9         | 4.9     |
| . 7 | E07.003        |      | EC 1  | ENTRIEU    | GAL - COM | USTANT VI | OLUME -   | an AH-1   |         |      |      |      | - 1         |         |
| ,   | EQ4003<br>ELEC | 6473 | 5846  | 6473       | 6264      | 6473      | 6264      | 6473      | 6473    | 6264 | 6473 | 6264 | 6473        | 76,212  |
|     | PK             | 8.7  | 8.7   | 8.7        | 8.7       | 8.7       | 8.7       | 8.7       | 8.7     | 8.7  | 8.7  | 8.7  | 8.7         | 8.7     |
| _   | EQ4003         | 1    | FC /  | CNTDIELL   | GAL - CO  | USTANT W  | OLUME F   | an AH-3   |         |      |      |      | <del></del> |         |
| ٥   | EU4003<br>ELEC | 7663 | 6922  | 7663       | 7416      | 7663      | 7416      | 7663      | 7663    | 7416 | 7663 | 7416 | 7663        | 90,228  |
|     | PK             | 10.3 | 10.3  | 10.3       | 10.3      | 10.3      | 10.3      | 10.3      | 10.3    | 10.3 | 10.3 | 10.3 | 10.3        | 10.3    |
|     |                | 1    |       |            |           |           |           |           |         |      |      |      |             |         |

|     |                                         |      |      | E Q         | UIPM          | ENT      | ENER      | G Y C     | ONSU | MPTI      | O N  |      |       |        |
|-----|-----------------------------------------|------|------|-------------|---------------|----------|-----------|-----------|------|-----------|------|------|-------|--------|
| Ref | Equip                                   |      |      |             | <del></del> - | Mont     | :hly Cons | umption   |      | - <b></b> |      |      |       |        |
| Num | Code                                    | Jan  | Feb  | Mar         | Арг           | May      | June      | July      | Aug  | Sep       | Oct  | Nov  | Dec   | Total  |
| 0   | EQ4003                                  |      | EC C | ENTR I FUG. | Δ! - C∩N      | STANT VO | NUME F    | an AH-2   |      |           |      |      |       |        |
| ,   | ELEC                                    | 1562 | 1411 | 1562        | 1512          | 1562     | 1512      | 1562      | 1562 | 1512      | 1562 | 1512 | 1562  | 18,396 |
|     | PK                                      | 2.1  | 2.1  | 2.1         | 2.1           | 2.1      | 2.1       | 2.1       | 2.1  | 2.1       | 2.1  | 2.1  | 2.1 - | 2.1    |
|     |                                         | 1    |      |             |               |          |           |           |      |           |      |      |       |        |
| 10  | EQ4003                                  |      | FC C | ENTR I FUG  | AL - CON      | STANT VO | OLUME F   | an AH-5   |      |           |      |      |       | ,      |
|     | ELEC                                    | 3050 | 2755 | 3050        | 2952          | 3050     | 2952      | 3050      | 3050 | 2952      | 3050 | 2952 | 3050  | 35,916 |
|     | PK                                      | 4.1  | 4.1  | 4.1         | 4.1           | 4.1      | 4.1       | 4.1       | 4.1  | 4.1       | 4.1  | 4.1  | 4.1   | 4.1    |
|     | BLR51                                   |      | 011  | FIRED HO    | T DATED       | BO11 ED  | Boiler B- | 51        |      |           |      |      |       |        |
| 1   | OIL                                     | 2732 | 1989 | 1725        | 1317          | 1123     | 1039      | 1074      | 1074 | 1077      | 1356 | 2112 | 2466  | 19,084 |
|     | PK                                      | 5.1  | 4.1  | 3.3         | 2.6           | 1.8      | 1.4       | 1.4       | 1.4  | 1.7       | 2.6  | 4.0  | 4.4   | 5.1    |
|     | • • •                                   | 1    |      |             |               |          |           |           |      |           |      |      |       |        |
| 1   | EQ5020                                  |      | HEAT | ING WATE    | R CIRCUL      | ATION PL | JMP       | V pump P- | .70  |           |      |      |       |        |
|     | ELEC                                    | 2009 | 1814 | 2009        | 1944          | 2009     | 1944      | 2009      | 2009 | 1944      | 2009 | 1944 | 2009  | 23,652 |
|     | PK                                      | 2.7  | 2.7  | 2.7         | 2.7           | 2.7      | 2.7       | 2.7       | 2.7  | 2.7       | 2.7  | 2.7  | 2.7   | 2.7    |
| 4   | EQ5307                                  |      | CONT | ROLS        |               |          |           |           |      |           |      |      | •     |        |
| '   | ELEC                                    | 372  | 336  | 372         | 360           | 372      | 360       | 372       | 372  | 360       | 372  | 360  | 372   | 4,380  |
|     | PK                                      | 0.5  | 0.5  | 0.5         | 0.5           | 0.5      | 0.5       | 0.5       | 0.5  | 0.5       | 0.5  | 0.5  | 0.5   | 0.5    |
|     | • • • • • • • • • • • • • • • • • • • • |      |      |             |               |          |           |           |      |           |      |      |       |        |
| 1   | EQ5020                                  |      | HEAT | ING WATE    | R CIRCUL      | ATION P  | JMP HV    | V pump P- | 63   |           |      |      |       |        |
|     | ELEC                                    | 4762 | 4301 | 4762        | 4608          | 4762     | 4608      | 4762      | 4762 | 4608      | 4762 | 4608 | 4762  | 56,064 |
|     | PK                                      | 6.4  | 6.4  | 6.4         | 6.4           | 6.4      | 6.4       | 6.4       | 6.4  | 6.4       | 6.4  | 6.4  | 6.4   | 6.4    |
| 2   | BLR51                                   |      | וזח  | FIRED HO    | T WATER       | ROII FR  |           |           |      |           |      |      |       |        |
| _   | OIL                                     | 0    | 0    | 0           | 0             | 0        | 0         | 0         | 0    | 0         | 0    | 0    | 0     | 0      |
|     | PK                                      | 0.0  | 0.0  | 0.0         | 0.0           | 0.0      | 0.0       | 0.0       | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0    |
|     |                                         |      |      |             |               |          |           |           |      |           |      |      |       |        |
| 2   | EQ5020                                  |      | HEAT | TING WATE   |               | ATION P  |           |           |      |           |      |      |       |        |
|     | ELEC                                    | 0    | 0    | 0           | 0             | 0        | 0         | 0         | 0    | 0         | 0    | 0    | 0     | 0      |
|     | PK                                      | 0.0  | 0.0  | 0.0         | 0.0           | 0.0      | 0.0       | 0.0       | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | - 0.0  |
| 2   | EQ5307                                  |      | CONT | TROLS       |               |          |           |           |      |           |      |      |       |        |
| -   | ELEC                                    | 0    | 0    | 0           | 0             | 0        | 0         | 0         | 0    | 0         | 0    | 0    | 0     | 0      |
|     | PK                                      | 0.0  | 0,0  | 0.0         | 0.0           | 0.0      | 0.0       | 0.0       | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0    |
|     |                                         |      |      |             | •             |          |           |           |      |           |      | -    |       |        |
| 2   | EQ5020                                  |      | HEA' | TING WATE   | R CIRCUI      | LATION P | UMP -     |           |      |           |      |      |       |        |
|     | ELEC                                    | 0    | 0    | 0           | 0             | 0        | 0         | 0         | 0    | 0         | 0    | 0    | 0     | 0      |
|     | PK                                      | 0.0  | 0.0  | 0.0         | 0.0           | 0.0      | 0.0       | 0.0       | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0    |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 3 EXISTING AIRSIDE EQUIPMENT

------SYSTEM LOAD PROFILE------

# ECO-B, TEST CELLS 1 & 2

### System Totals

| Percent   | Cool  | ing Loa | d     | Heati      | ng Load | ;     | Cooling  | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|------------|---------|-------|----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 4.6   | 0       | 0     | -81,416    | 55      | 2,717 | 3,548.4  | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 9.1   | 19      | 1,625 | -162,832   | 30      | 1,499 | 7,096.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 13.7  | 17      | 1,512 | -244,248   | 14      | 699   | 10,645.1 | 0       | . 0   | 0.0     | 0       | 0     |
| 15 - 20   | 18.2  | 10      | 889   | -325,664   | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 22.8  | 8       | 684   | -407,080   | . 0     | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 27.3  | 5       | 478   | -488,496   | 0       | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 31.9  | 6       | 536   | -569,911   | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 36.4  | 9       | 832   | -651,327   | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 41.0  | 5       | 403   | -732,743   | 0       | 0     | 31,935.2 | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 45.6  | 6       | 503   | -814,159   | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55   | 50.1  | 5       | 439   | -895,575   | 0       | 0     | 39,031.9 | 0       | 0     | 0.0     | 0       | 0     |
| 55 - 60   | 54.7  | 3       | 276   | -976,991   | 0       | 0     | 42,580.2 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65   | 59.2  | 5       | 437   | -1,058,407 | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0     |
| 65 - 70   | 63.8  | 2       | 146   | -1,139,823 | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | 0     |
| 70 - 75   | 68.3  | 0       | 0     | -1,221,239 | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | 0     |
| 75 - 80   | 72.9  | 0       | 0     | -1,302,655 | 0       | 0     | 56,773.6 | 0       | 0     | 0.0     | 0       | 0     |
| 80 - 85   | 77.5  | 0       | 0     | -1,384,071 | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | 0       | 0     |
| 85 - 90   | 82.0  | 0       | 0     | -1,465,487 | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | 0       | 0     |
| 90 - 95   | 86.6  | 0       | 0     | -1,546,903 | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100  | 91.1  | 0       | 0     | -1,628,319 | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0          | 0       | 3,845 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760 |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

|     |          |          |         | E (      | וקוטם | MENT  | ENEI     | RGY (    | CONSI | JMPT: | I O N | - <i></i> |       |         |
|-----|----------|----------|---------|----------|-------|-------|----------|----------|-------|-------|-------|-----------|-------|---------|
| Pef | Eguip    |          |         |          |       | Mon   | thly Com | sumntion |       |       |       |           |       |         |
| Num |          | Jan      | Feb     | Mar      | Apr   | May   | June     | July     | Aug   | Sep   | Oct   | Nov       | Dec   | Total   |
| 0   | LIGHTS   | Lighting | Systems |          |       |       |          |          |       |       |       |           |       |         |
| •   | ELEC     | 30290    | 27359   | 30302    | 29311 | 30296 | 29323    | 30284    | 30302 | 29311 | 30296 | 29311     | 30284 | 356,670 |
|     | PK       | 43.4     | 43.4    | 43.4     | 43.4  | 43.4  | 43.4     | 43.4     | 43.4  | 43.4  | 43.4  | 43.4      | 43.4  | 43.4    |
| 1   | MISC LD  |          |         |          |       |       |          |          |       |       |       |           |       |         |
|     | ELEC     | 13610    | 12293   | 13610    | 13171 | 13610 | 13171    | 13610    | 13610 | 13171 | 13610 | 13171     | 13610 | 160,248 |
|     | PK       | 36.6     | 36.6    | 36.6     | 36.6  | 36.6  | 36.6     | 36.6     | 36.6  | 36.6  | 36.6  | 36.6      | 36.6  | 36.6    |
| 2   | MISC LD  |          |         |          |       |       |          |          |       |       |       |           |       |         |
|     | GAS      | 0        | 0       | 0        | 0     | 0     | 0        | 0        | 0     | 0     | 0     | 0         | 0     | 0       |
|     | PK       | 0.0      | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0       | 0.0   | 0.0     |
| 3   | MISC LD  |          |         |          |       |       |          |          |       |       |       |           |       |         |
|     | OIL      | 0        | 0       | 0        | 0     | 0     | 0        | 0        | 0     | 0     | 0     | 0         | 0     | 0       |
|     | PK       | 0.0      | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0       | 0.0   | 0.0     |
| 4   | MISC LD  |          |         |          |       |       |          |          |       |       |       |           |       |         |
|     | P STEAM  | 0        | 0       | 0        | 0     | 0     | 0        | 0        | 0     | 0     | 0     | 0         | 0     | 0       |
|     | PK       | 0.0      | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0       | 0.0   | 0.0     |
| 5   | MISC LD  |          |         |          |       |       |          |          |       |       |       |           |       |         |
|     | P HOTH20 | 0        | 0       | 0        | 0     | 0     | 0        | 0        | 0     | 0     | 0     | 0         | 0     | 0       |
|     | PK       | 0.0      | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0       | 0.0   | 0.0     |
| 6   | MISC LD  |          |         |          |       |       |          |          |       |       |       |           |       |         |
|     | P CHILL  | 0        | 0       | 0        | 0     | 0     | 0        | 0        | 0     | 0     | 0     | 0         | 0     | 0       |
|     | PK       | 0.0      | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | , 0.0 | 0.0   | 0.0   | 0.0       | 0.0   | 0.0     |
| 1   |          |          |         | E UTILIT |       |       |          |          |       |       |       |           |       |         |
|     | CHILLD   | 33926    | 30643   | 33926    | 32832 | 33926 | 32832    | 33926    | 33926 | 32832 | 33926 | 32832     | 33926 | 399,456 |
|     | PK       | 45.6     | 45.6    | 45.6     | 45.6  | 45.6  | 45.6     | 45.6     | 45.6  | 45.6  | 45.6  | 45.6      | 45.6  | 45.6    |
| 2   |          |          |         | E UTILIT |       |       |          |          |       |       |       |           |       |         |
|     | HOTLD    | 676      | 611     | 676      | 654   | 676   | 654      | 676      | 676   | 654   | 676   | 654       | 676   | 7,963   |
|     | PK       | 0.9      | 0.9     | 0.9      | 0.9   | 0.9   | 0.9      | 0.9      | 0.9   | 0.9   | 0.9   | 0.9       | 0.9   | 0.9     |
| 3   |          |          |         | E UTILIT |       |       | •        |          |       |       |       |           |       |         |
|     | ELEC     | 1727     | 1561    | 1802     | 1660  | 1765  | 1734     | 1690     | 1802  | 1660  | 1765  | 1660      | 1690  | 20,516  |
|     | PK       | 7.0      | 7.0     | 7.0      | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   | 7.0   | 7.0   | 7.0       | 7.0   | 7.0     |
| 4   |          |          |         | E UTILIT |       |       |          |          |       |       |       |           |       |         |
|     | ELEC     | 11805    | 10662   | 11805    | 14112 | 11110 | 7392     | 4861     | 694   | 672   | 6944  | 11424     | 9027  | 100,509 |
|     | PK       | 22.4     | 22.4    | 22.4     | 22.4  | 22.4  | 22.4     | 22.4     | 22.4  | 22.4  | 22.4  | 22.4      | 22.4  | 22.4    |

|      |            |             |              | E (          | וקוטנ    | MENT         | ENEF         | RGY          | CONS         | UMPT         | I O N        |              |              |   |      |     |
|------|------------|-------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---|------|-----|
| Ref  | Eguip      |             |              |              |          | Mon          | thly Cons    | mntion       |              |              |              |              |              |   |      |     |
| Num  |            | Jan         | Feb          | Mar          | Apr      | May          | June         | July         | Aug          | Sep          | Oct          | Nov          | Dec          |   | To   | tal |
| Hall | COGC       | 0011        | 100          | 1101         | ΛÞι      | nay          | o di te      | daty         | Aug          | зер          | 001          | NOV          | Dec          |   | 10   | tat |
| 1    | EQ1001S    |             | 2-:          | STG CENTE    | RIFUGAL  | CHILLER      | <550 TQNS    | S Chille     | er CH-51     |              |              |              |              |   |      |     |
|      | ELEC       | 31196       | 29224        | 34226        | 37021    | 43606        | 48189        | 52975        | 50929        | 41710        | 38037        | 31219        | 31377        |   | 469, | 708 |
|      | PK         | 46.6        | 49.2         | 54.7         | 64.5     | 74.9         | 87.3         | 93.5         | 89.1         | 74.8         | 63.3         | 48.8         | 47.4         |   |      | 3.5 |
|      |            | *********** |              |              |          | Twr. Fan     | CT-51A       |              |              | <del></del>  |              |              |              |   |      |     |
| 1    |            |             |              | LING TOW     |          |              |              |              |              |              |              |              |              |   |      |     |
|      | ELEC       | 1532        | 1473         | 1779         | 2105     | 2725         | 3415         | 3934         | 3888         | 3308         | 2303         | 1527         | 1530         |   | 29,  |     |
|      | PK         | 2.6         | 2.8          | 3.0          | 4.2      | 5.3          | 5.3          | 5.3          | 5.3          | 5.3          | 4.4          | 2.7          | 2.6          |   |      | 5.3 |
| 1    | EQ5100     |             | cool         | LING TOW     | ED EANS  |              |              |              |              |              |              |              |              |   |      |     |
| '    | WATER      | 155         | 147          | 174          | 193      | 230          | 251          | 270          | 260          | 217          | 198          | 157          | 156          |   | 2    | 408 |
|      | PK         | 0.2         | 0.3          | 0.3          | 0.3      | 0.4          | 0.4          | 0.5          | 0.4          | 0.4          | 0.3          | 0.3          | 0.2          | • | -    | 0.5 |
|      |            |             |              |              |          |              |              |              |              |              |              |              |              |   |      |     |
| 1    | EQ5001     |             | CHI          | LLED WATE    | ER PUMP  | - CONST.     | ANT VOLUM    | ME CHW       | / Pump P-    | 51           |              |              |              |   |      |     |
|      | ELEC       | 20311       | 18346        | 20311        | 19656    | 20311        | 19656        | 20311        | 20311        | 19656        | 20311        | 19656        | 20311        |   | 239, | 148 |
|      | PK         | 27.3        | 27.3         | 27.3         | 27.3     | 27.3         | 27.3         | 27.3         | 27.3         | 27.3         | 27.3         | 27.3         | 27.3         |   | 2    | 7.3 |
| _    |            |             |              |              |          |              |              | CND          | Pump P-6     | 0            |              |              |              |   |      |     |
| 1    | EQ5010     | 0024        |              |              |          |              | H EFFIC.     | )            | •            |              | 0004         | 0501         | 0004         |   | [    | 470 |
|      | ELEC<br>PK | 9821        | 8870<br>13.2 | 9821<br>13.2 | 9504     | 9821<br>13.2 | 9504<br>13.2 | 9821<br>13.2 | 9821<br>13.2 | 9504<br>13.2 | 9821<br>13.2 | 9504<br>13.2 | 9821<br>13.2 | - | 115, | 3.2 |
|      | r K        | 13.2        | 13.2         | 13.2         |          | 13.2         | 13.2         | 13.2         | 13.2         | 13.2         | 13.2         | 13.2         | 13.2         |   |      | 3.2 |
| 1    | EQ5300     |             | CON          | TROL PANE    | EL & INT | ERLOCKS      |              |              |              |              |              |              |              |   |      |     |
|      | ELEC       | 744         | 672          | 744          | 720      | 744          | 720          | 744          | 744          | 720          | 744          | 720          | 744          |   | 8,   | 760 |
|      | PK         | 1.0         | 1.0          | 1.0          | 1.0      | 1.0          | 1.0          | 1.0          | 1.0          | 1.0          | 1.0          | 1.0          | 1.0          |   |      | 1.0 |
|      |            |             |              |              |          |              |              |              |              |              |              |              |              |   |      |     |
| 1    | EQ5013     |             | WAT          | ER CIRCUI    | LATING P | UMP - CO     | NSTANT VO    | OLUME C      | OND Pump     | ) P-65       |              |              |              |   |      |     |
|      | ELEC       | 16591       | 14986        | 16591        | 16056    | 16591        | 16056        | 16591        | 16591        | 16056        | 16591        | 16056        | 16591        |   | 195, |     |
|      | PK         | 22.3        | 22.3         | 22.3         | 22.3     | 22.3         | 22.3         | 22.3         | 22.3         | 22.3         | 22.3         | 22.3         | 22.3         |   | 2    | 2.3 |
| 2    | EQ1001S    |             | 2.           | STC CENTS    | PIENCAL  | CUILLED      | <550 TONS    | •            |              |              |              |              |              |   |      |     |
| . ~  | ELEC       | 0           | 0            | 0            | 0        | 0            | טכני)<br>0   | 0            | 0            | 0            | 0            | 0            | 0            |   |      | 0   |
|      | PK         | 0.0         | 0.0          | 0.0          | 0.0      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          |   |      | 0.0 |
|      |            |             |              |              |          | ***          |              |              |              | •••          | •••          | •••          | •••          |   |      |     |
| 2    | EQ5100     |             | coo          | LING TOW     | ER FANS  |              |              |              |              |              |              |              |              |   |      |     |
|      | ELEC       | 0           | 0            | 0            | 0        | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |   |      | 0   |
|      | PK         | 0.0         | 0.0          | 0.0          | 0.0      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          |   |      | 0.0 |
|      |            |             |              |              |          |              |              |              |              |              |              |              |              |   |      |     |
| 2    | EQ5100     |             |              | LING TOW     |          |              | _            | _            |              |              | _            | _            |              |   |      |     |
|      | WATER      | 0           | 0            | 0            | 0        | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |   |      | 0   |
|      | PK         | 0.0         | 0.0          | 0.0          | 0.0      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          |   |      | 0.0 |
| າ    | EQ5001     |             | CUT          | LLED WAT     | משום פ   | - CONST      | ANT VOLUM    | uc           |              |              |              |              |              |   |      |     |
| _    | ELEC       | 0           | 0            | CLED WAT     | 0        | 0            | ANT VOLUM    | me 0         | 0            | 0            | 0            | 0            | 0            |   |      | 0   |
|      | PK         | 0.0         | 0.0          | 0.0          | 0.0      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          |   |      | 0.0 |
|      | -          |             |              |              |          |              |              |              |              |              |              |              |              |   |      |     |

|     |        |             |      | · E 0     | UIPM      | ENT       | ENER      | RGYC        | ONSU | IMPT I | O N   |      |      |        |
|-----|--------|-------------|------|-----------|-----------|-----------|-----------|-------------|------|--------|-------|------|------|--------|
| Ref | Equip  |             |      |           |           | Mont      | thly Cons | sumption    |      |        |       |      |      |        |
|     | Code   | Jan         | Feb  | Mar       | Apr       | May       | June      | July        | Aug  | Sep    | Oct   | Nov  | Dec  | Total  |
| 2   | EQ5010 |             | COND | ENSER WA  | TER PUMP  | -CV(HIGH  | i EFFIC.) | )           |      |        |       |      |      |        |
|     | ELEC   | 0           | 0    | 0         | 0         | 0         | 0         | 0           | 0    | 0      | 0     | 0    | 0    | 0      |
|     | PK     | 0.0         | 0.0  | 0.0       | 0.0       | 0.0       | 0.0       | 0.0         | 0.0  | 0.0    | 0.0   | 0.0  | 0.0  | 0.0    |
| 2   | EQ5300 |             | CONT | ROL PANE  | L & INTE  | RLOCKS    |           |             |      |        |       |      |      |        |
|     | ELEC   | 0           | 0    | 0         | 0         | 0         | 0         | 0           | 0    | 0      | 0     | 0    | 0    | 0      |
|     | PK     | . 0.0       | 0.0  | 0.0       | 0.0       | 0.0       | 0.0       | 0.0         | 0.0  | 0.0    | 0.0   | 0.0  | 0.0  | 0.0    |
| 2   | EQ5013 |             | WATE | R CIRCUL  | ATING PU  | IMP - CON | ISTANT VO | DLUME       |      |        |       |      |      |        |
|     | ELEC   | 0           | 0    | 0         | 0         | 0         | 0         | 0           | 0    | 0      | 0     | 0    | 0    | 0      |
|     | PK     | 0.0         | 0.0  | 0.0       | 0.0       | 0.0       | 0.0       | 0.0         | 0.0  | 0.0    | 0.0   | 0.0  | 0.0  | 0.0    |
| 1   | EQ4003 |             | FC C | ENTRI FUO | AL - CON  | ISTANT VO | DLUME F   | Fan AH-51   |      |        |       |      |      |        |
|     | ELEC   | 3646        | 3293 | 3646      | 3528      | 3646      | 3528      | 3646        | 3646 | 3528   | 3646  | 3528 | 3646 | 42,924 |
|     | PK     | 4.9         | 4.9  | 4.9       | 4.9       | 4.9       | 4.9       | 4.9         | 4.9  | 4.9    | 4.9   | 4.9  | 4.9  | 4.9    |
| 2   | EQ4003 | ,           | FC C | ENTRI FUO | AL - CON  | ISTANT VO | OLUME I   | Fan AH-52   | !    |        |       |      |      |        |
|     | ELEC   | 1265        | 1142 | 1265      | 1224      | 1265      | 1224      | 1265        | 1265 | 1224   | 1265  | 1224 | 1265 | 14,892 |
|     | PK     | 1.7         | 1.7  | 1.7       | 1.7       | 1.7       | 1.7       | 1.7         | 1.7  | 1.7    | 1.7   | 1.7  | 1.7  | 1.7    |
| 3   | EQ4003 |             | FC C | ENTRIFUC  | SAL - CON | ISTANT VO | DLUME F   | Fan AH-53   |      |        |       |      |      |        |
|     | ELEC   | 6398        | 5779 | 6398      | 6192      | 6398      | 6192      | 6398        | 6398 | 6192   | 6398  | 6192 | 6398 | 75,336 |
|     | PK     | 8.6         | 8.6  | 8.6       | 8.6       | 8.6       | 8.6       | 8.6         | 8.6  | 8.6    | . 8.6 | 8.6  | 8.6  | 8.6    |
| 4   | EQ4003 |             | FC C | ENTRIFUC  | AL - CON  | ISTANT VO | DLUME F   | an AH-54    |      |        |       |      | ·    |        |
|     | ELEC   | 3274        | 2957 | 3274      | 3168      | 3274      | 3168      | 3274        | 3274 | 3168   | 3274  | 3168 | 3274 | 38,544 |
|     | PK     | 4.4         | 4.4  | 4.4       | 4.4       | 4.4       | 4.4       | 4.4         | 4.4  | 4.4    | 4.4   | 4.4  | 4.4  | 4.4    |
| 5   | EQ4003 |             | FC C | ENTRIFUC  | AL - CON  | ISTANT VO | DLUME     | Fan AH-55   | 5    |        |       |      |      |        |
|     | ELEC   | 3050        | 2755 | 3050      | 2952      | 3050      | 2952      | 3050        | 3050 | 2952   | 3050  | 2952 | 3050 | 35,916 |
|     | PK     | 4.1         | 4.1  | 4.1       | 4.1       | 4.1       | 4.1       | 4.1         | 4.1  | 4.1    | 4.1   | 4.1  | 4.1  | 4.1    |
| 6   | EQ4003 |             | FC C | ENTRIFUC  | AL - CON  | ISTANT VO | DLUME F   | Fan AH-4    |      |        |       |      | •    |        |
|     | ELEC   | 3646        | 3293 | 3646      | 3528      | 3646      | 3528      | 3646        | 3646 | 3528   | 3646  | 3528 | 3646 | 42,924 |
|     | PK     | 4.9         | 4.9  | 4.9       | 4.9       | 4.9       | 4.9       | 4.9         | 4.9  | 4.9    | 4.9   | 4.9  | 4.9  | 4.9    |
| 7   | EQ4003 |             | FC C | ENTRIFUC  | AL - CON  | ISTANT VO | DLUME     | Fan AH-1    |      |        |       |      |      | •      |
|     | ELEC   | 6473        | 5846 | 6473      | 6264      | 6473      | 6264      | 6473        | 6473 | 6264   | 6473  | 6264 | 6473 | 76,212 |
|     | PK     | 8.7         | 8.7  | 8.7       | 8.7       | 8.7       | 8.7       | 8.7         | 8.7  | 8.7    | 8.7   | 8.7  | 8.7  | 8.7    |
| 8   | EQ4003 |             | FC C | ENTRIFUG  | AL - CON  | ISTANT VO | DLUMF     | Fan AH-3    |      |        |       |      |      |        |
| _   | ELEC   | 7663        | 6922 | 7663      | 7416      | 7663      | 7416      | 7663        | 7663 | 7416   | 7663  | 7416 | 7663 | 90,228 |
|     | PK     | 10.3        | 10.3 | 10.3      | 10.3      | 10.3      | 10.3      | 10.3        | 10.3 | 10.3   | 10.3  | 10.3 | 10.3 | 10.3   |
|     |        | <del></del> | ·    |           |           |           |           | <del></del> |      |        |       |      |      |        |

| <b>-</b> |        |              |      | E Q         | UIPM                | ENT         | ENER        | G Y C       | ONSU        | MPTI        | O N         |             |      |          |
|----------|--------|--------------|------|-------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|----------|
| Ref      | Equip  |              |      |             |                     | Mont        | hly Cons    | umption     |             |             | <b></b>     |             |      |          |
| lum      | Code   | Jan          | Feb  | Mar         | Apr                 | May         | June        | July        | Aug         | Sep         | Oct         | Nov         | Dec  | Tota     |
|          |        |              |      |             |                     |             | F           | an AH-2     |             |             |             |             | •    |          |
| 9        | EQ4003 | 4572         |      | ENTRIFUG    |                     |             | •           | 15/2        | 45/2        | 1510        | 15(2        | 1510        | 1540 | 1 10 70  |
|          | ELEC   | 1562         | 2.1  | 1562<br>2.1 | 1512<br>2.1         | 1562<br>2,1 | 1512<br>2.1 | 1562<br>2.1 | 1562<br>2.1 | 1512<br>2.1 | 1562<br>2,1 | 1512<br>2.1 | 2.1  | 18,39    |
|          | PK     | 2.1          | 2.1  | 2.1         | 2.1                 | 2.1         | 2.1         | 2.1         | 2.1         | 2.1         | 2,1         | 2.1         | 2.1  | ۷.       |
| 10       | EQ4003 |              | FC C | ENTR I FUG  | AL - CON            | STANT VO    | DLUME F     | an AH-5     |             |             |             |             |      |          |
|          | ELEC   | 3050         | 2755 | 3050        | 2952                | 3050        | 2952        | 3050        | 3050        | 2952        | 3050        | 2952        | 3050 | 35,91    |
|          | PK     | 4.1          | 4.1  | 4.1         | 4.1                 | 4.1         | 4.1         | 4.1         | 4.1         | 4.1         | 4.1         | 4.1         | 4.1  | 4.       |
| 1        | BLR51  | ,            | 110  | FIRED HO    | T WATER             | ROTLER      | Boiler B-   | 51          |             |             |             |             |      |          |
| •        | OIL    | 2784         | 2027 | 1752        | 1330                | 1128        | 1039        | 1074        | 1074        | 1082        | 1370        | 2153        | 2518 | 19,33    |
|          | PK     | 5.1          | 4.2  | 3.4         | 2.7                 | 1.8         | 1.4         | 1.4         | 1.4         | 1.8         | 2.6         | 4.0         | 4.4  | 5        |
|          |        | <del>1</del> |      |             |                     |             | HV          | V pump P    | 70          |             |             |             |      |          |
| 1        | EQ5020 |              |      | ING WATE    |                     |             | אר          |             |             |             |             |             |      | <u> </u> |
|          | ELEC   | 2009         | 1814 | 2009        | 1944                | 2009        | 1944        | 2009        | 2009        | 1944        | 2009        | 1944        | 2009 | 23,6     |
|          | PK     | 2.7          | 2.7  | 2.7         | 2.7                 | 2.7         | 2.7         | 2.7         | 2.7         | 2.7         | 2.7         | 2.7         | 2.7  | 2        |
| 1        | EQ5307 |              | CONT | ROLS        |                     |             |             |             |             |             |             |             |      |          |
|          | ELEC   | 372          | 336  | 372         | 360                 | 372         | 360         | 372         | 372         | 360         | 372         | 360         | 372  | 4,3      |
|          | PK     | 0.5          | 0.5  | 0.5         | 0.5                 | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5  | 0        |
| 1        | EQ5020 |              | HFA1 | TING WATE   | פ כופכווו           | ATION PI    | IMP HV      | / pump P-   | 63          |             |             |             |      |          |
| •        | ELEC   | 4762         | 4301 | 4762        | 4608                | 4762        | 4608        | 4762        | 4762        | 4608        | 4762        | 4608        | 4762 | 56,0     |
|          | PK     | 6.4          | 6.4  | 6.4         | 6.4                 | 6.4         | 6.4         | 6.4         | 6.4         | 6.4         | 6.4         | 6.4         | 6.4  | 6        |
| 2        | BLR51  |              | 011  | FIRED HO    | T LIATED            | POTI ED     |             |             |             | -           |             |             |      |          |
| _        | OIL    | 0            | 0    | 0           | 0                   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0    |          |
|          | PK     | 0.0          | 0.0  | 0.0         | 0.0                 | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0  | 0        |
|          |        | -            |      |             |                     |             |             |             |             |             |             |             |      |          |
| 2        | EQ5020 | _            |      | TING WATE   |                     |             |             | _           | _           |             | _           | _           | •    |          |
|          | ELEC   | 0            | 0    | 0           | 0                   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0    | -        |
|          | PK     | 0.0          | 0.0  | 0.0         | 0.0                 | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0  | 0        |
| 2        | EQ5307 |              | CON. | TROLS       |                     |             |             |             |             |             |             |             |      |          |
|          | ELEC   | 0            | 0    | 0           | 0                   | 0           | 0           | 0           | 0           | 0           | 0           | . 0         | 0    |          |
|          | PK     | 0.0          | 0.0  | 0.0         | 0.0                 | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0  | 0        |
| 2        | EQ5020 |              | HEV. | TING WATE   | ם רופרו <b>י</b> יי | ΔΤΙΩΝ ΡΙ    |             |             |             |             |             |             | •    |          |
| -        | ELEC   | 0            | 0    | 0           | 0                   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0    |          |
|          | PK     | 0.0          | 0.0  | 0.0         | 0.0                 | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0  | 0        |
|          | r 15   | 0.0          | 0.0  | 0.0         | 3.0                 | 0.0         | 5.0         | 0.0         | 5.0         | 0.0         | 5.0         | 5.0         | 0.0  | ,        |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 4
AIRSIDE EQ WITH NEW CONTROLS

------SYSTEM LOAD PROFILE -----

# ECO-C, TEST CELLS 1 & 2

#### System Totals

| Percent   | Cool  | ling Loa | id    | Heatir   | ng Load |       | Cooling  | Airflow |       | Heating | Airflow |       |
|-----------|-------|----------|-------|----------|---------|-------|----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours    | Hours | Capacity | Hours   | Hours | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)      |       | (Btuh)   | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |       |
| ۰ .       | 2.0   | 0        | 0     | /7 077   | 99      | 2 700 | 7 5/0 /  | ^       | 0     | 0.0     | 0       | 0     |
| 0 - 5     | 2.8   | _        | -     | -43,973  |         | 2,799 | 3,548.4  | 0       | _     |         | _       | -     |
| 5 - 10    | 5.5   | 10       | 884   | -87,947  | 1       | 42    | 7,096.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 8.3   | 28       | 2,466 | -131,920 | 0       | 0     | 10,645.1 | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 11.1  | 8        | 661   | -175,893 | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 13.8  | 4        | 316   | -219,867 | . 0     | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 16.6  | 4        | 312   | -263,840 | 0       | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 19.4  | . 1      | 127   | -307,813 | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 22.1  | 2        | 139   | -351,787 | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 24.9  | 1        | 131   | -395,760 | 0       | 0     | 31,935.2 | 0       | C     | 0.0     | 0       | 0     |
| 45 - 50   | 27.6  | 1        | 88    | -439,733 | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55   | 30.4  | 6        | 527   | -483,707 | 0       | 0     | 39,031.9 | 0       | 0     | 0.0     | 0       | 0     |
| 55 - 60   | 33.2  | 4        | 347   | -527,680 | 0       | 0     | 42,580.2 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65   | 35.9  | 13       | 1,132 | -571,653 | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0     |
| 65 - 70   | 38.7  | 7        | 651   | -615,627 | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | 0     |
| 70 - 75   | 41.5  | 9        | 784   | -659,600 | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | 0     |
| 75 - 80   | 44.2  | 0        | 0     | -703,573 | 0       | 0     | 56,773.6 | 0       | 0     | 0.0     | 0       | 0     |
| 80 - 85   | 47.0  | 2        | 175   | -747,547 | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | .0      | 0     |
| 85 - 90   | 49.8  | 0        | 20    | -791,520 | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | 0       | 0     |
| 90 - 95   | 52.5  | 0        | 0     | -835,493 | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100  | 55.3  | 0        | 0     | -879,467 | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0        | 0     | 0        | 0       | 5,919 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760 |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 PRIMARY EQ WITH NEW CONTROLS

|     | _             |          |         |          |         |             |                   | . •              |         |       |       |       |       |           |
|-----|---------------|----------|---------|----------|---------|-------------|-------------------|------------------|---------|-------|-------|-------|-------|-----------|
| Ref | Equip<br>Code | Jan      | Feb     | Mar      | Apr     | Mont<br>May | thly Cons<br>June | sumption<br>July | Aug     | Sep   | Oct   | Nov   | Dec   | Total     |
| Num | Code          |          |         | Mai      | Λþι     | nay         | June              | 0017             | Aug     | ССР   | 001   |       | 200   | , , , , , |
| 0   | LIGHTS        | Lighting | Systems |          |         |             |                   |                  |         |       |       |       |       |           |
|     | ELEC          | 30290    | 27359   | 30302    | 29311   | 30296       | 29323             | 30284            | 30302   | 29311 | 30296 | 29311 | 30284 | 356,670   |
|     | PK            | 43.4     | 43.4    | 43.4     | 43.4    | 43.4        | 43.4              | 43.4             | 43.4    | 43.4  | 43.4  | 43.4  | 43.4  | 43.4      |
| 1   | MISC LD       |          |         |          |         |             |                   |                  |         |       |       |       |       |           |
|     | ELEC          | 13610    | 12293   | 13610    | 13171   | 13610       | 13171             | 13610            | 13610   | 13171 | 13610 | 13171 | 13610 | 160,248   |
|     | PK            | 36.6     | 36.6    | 36.6     | 36.6    | 36.6        | 36.6              | 36.6             | 36.6    | 36.6  | 36.6  | 36.6  | 36.6  | 36.6      |
| 2   | MISC LD       |          |         |          |         |             |                   |                  |         |       |       |       |       |           |
|     | GAS           | 0        | 0       | 0        | 0       | 0           | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0         |
|     | PK            | 0.0      | 0.0     | 0.0      | 0.0     | 0.0         | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 3   | MISC LD       |          |         |          |         |             |                   |                  |         |       |       |       |       |           |
|     | OIL           | 0        | 0       | 0        | 0       | 0           | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0         |
|     | PK            | 0.0      | 0.0     | 0.0      | 0.0     | 0.0         | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 4   | MISC LD       |          | 4       |          |         |             |                   |                  |         |       |       |       |       |           |
|     | P STEAM       | 0        | 0       | 0        | 0       | 0           | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0         |
|     | PK            | 0.0      | 0.0     | 0.0      | 0.0     | 0.0         | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 5   | MISC LD       |          |         |          |         |             |                   |                  |         |       |       |       |       |           |
|     | P HOTH20      | 0        | . 0     | 0        | 0       | 0           | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0         |
|     | PK            | 0.0      | 0.0     | 0.0      | 0.0     | 0.0         | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 6   | MISC LD       |          |         |          |         |             |                   |                  |         |       |       |       |       |           |
|     | P CHILL       | 0        | 0       | 0        | 0       | 0           | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0         |
|     | PK            | 0.0      | 0.0     | 0.0      | 0.0     | 0.0         | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 1   |               | -        | BAS     | E UTILIT | Y       |             |                   |                  |         |       |       |       |       |           |
|     | CHILLD        | 33926    | 30643   | 33926    | 32832   | 33926       | 32832             | 33926            | 33926   | 32832 | 33926 | 32832 | 33926 | 399,456   |
|     | PK            | 45.6     | 45.6    | 45.6     | 45.6    | 45.6        | 45.6              | 45.6             | 45.6    | 45.6  | 45.6  | 45.6  | 45.6  | 45.6      |
| 2   |               |          | BAS     | E UTILIT | Y       |             |                   |                  |         |       |       |       |       |           |
|     | HOTLD         | 676      | 611     | 676      | 654     | 676         | 654               | 676              | 676     | 654   | 676   | 654   | 676   | 7,963     |
|     | PK            | _ 0.9    | 0.9     | 0.9      | 0.9     | 0.9         | 0.9               | 0.9              | 0.9     | 0.9   | 0.9   | 0.9   | 0.9   | 0.9       |
| 3   |               |          | BAS     | E UTILIT | Y       |             | 24                |                  |         |       |       |       |       |           |
|     | ELEC          | 1727     | 1561    | 1802     | 1660    | 1765        | 1734              | 1690             | 1802    | 1660  | 1765  | 1660  | 1690  | 20,516    |
|     | PK            | 7.0      | 7.0     | 7.0      | 7.0     | 7.0         | 7.0               | 7.0              | 7.0     | 7,0   | 7.0   | 7.0   | 7.0   | 7.0       |
| 1   | EQ1001S       |          | 2-      | STG CENT | RIFUGAL | CHILLER     | <550 TON          | S Chille         | r CH-51 |       |       |       |       |           |
|     | ELEC          | 26842    | 24579   | 28464    | 30850   | 36612       | 41381             | 45383            | 44838   | 36881 | 31884 | 26274 | 26863 | 400,851   |
|     | PK            | 37.7     | 38.7    | 49.6     | 56.2    | 63.9        | 71.5              | 76.0             | 74.3    | 66.1  | 56.2  | 38.4  | 38.0  | 76.0      |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 PRIMARY EQ WITH NEW CONTROLS

|     |         |       | ·     | · E G     | UIPI     | 4 E N T  | ENER      | RGY      | CONSU     | JMPT 1 | O N       |       |       |         |
|-----|---------|-------|-------|-----------|----------|----------|-----------|----------|-----------|--------|-----------|-------|-------|---------|
| Ref | Equip   |       |       |           |          | Mon      | thly Cons | sumption |           |        | . <b></b> |       |       |         |
| Num | Code    | Jan   | Feb   | Mar       | Apr      | May      | June      | July     | Aug       | Sep    | Oct       | Nov   | Dec   | Total   |
| 1   | EQ5100  |       | COOL  | ING TOWE  | R FANS   | Twr. Fa  | n CT-51A  |          |           |        |           |       |       |         |
| ·   | ELEC    | 3114  | 2861  | 3393      | 3466     | 3851     | 3816      | 3943     | 3943      | 3816   | 3639      | 3160  | 3142  | 42,143  |
|     | PK      | 4.5   | 4.7   | 5.3       | 5.3      | 5.3      | 5.3       | 5.3      | 5.3       | 5.3    | 5.3       | 5.0   | 4.6   | 5.3     |
| 1   | EQ5100  |       | COOL  | ING TOWE  | R FANS   |          |           |          |           |        |           |       |       |         |
|     | WATER   | 147   | 135   | 158       | 176      | 209      | 228       | 241      | 239       | 203    | 180       | 144   | 147   | 2,208   |
|     | PK      | 0.2   | 0.2   | 0.3       | 0.3      | 0.4      | 0.4       | 0.4      | 0.4       | 0.4    | 0.3       | 0.2   | 0.2   | 0.4     |
| 1   | EQ5001  |       | CHI   | LED WATE  | R PUMP   | CONST    | ANT VOLU  | HE CHW   | Pump P-5  | 51     |           |       |       |         |
|     | ELEC    | 20311 | 18346 | 20311     | 19656    | 20311    | 19656     | 20311    | 20311     | 19656  | 20311     | 19656 | 20311 | 239,148 |
|     | PK -    | 27.3  | 27.3  | 27.3      | 27.3     | 27.3     | 27.3      | 27.3     | 27.3      | 27.3   | 27.3      | 27.3  | 27.3  | 27.3    |
| 1   | EQ5010  |       | CONI  | DENSER WA | ATER PUM | P-CV(HIG | H EFFIC.  | CND      | Pump P-60 | )      |           |       |       |         |
|     | ELEC    | 9821  | 8870  | 9821      | 9504     | 9821     | 9504      | 9821     | 9821      | 9504   | 9821      | 9504  | 9821  | 115,632 |
|     | PK      | 13.2  | 13.2  | 13.2      | 13.2     | 13.2     | 13.2      | 13.2     | 13.2      | 13.2   | 13.2      | 13.2  | 13.2  | 13.2    |
| 1   | EQ5300  |       | CON   | TROL PANE | EL & INT | ERLOCKS  |           |          |           |        |           |       |       |         |
|     | ELEC    | 744   | 672   | 744       | 720      | 744      | 720       | 744      | 744       | 720    | 744       | 720   | 744   | 8,760   |
|     | PK      | 1.0   | 1.0   | 1.0       | 1.0      | 1.0      | 1.0       | 1.0      | 1.0       | 1.0    | 1.0       | 1.0   | 1.0   | 1.0     |
| 1   | EQ5013  |       | WATI  | ER CIRCUI | LATING P | UMP - CO | NSTANT V  | OLUME C  | ND Pump   | P-65   |           |       |       |         |
|     | ELEC    | 16591 | 14986 | 16591     | 16056    | 16591    | 16056     | 16591    | 16591     | 16056  | 16591     | 16056 | 16591 | 195,348 |
|     | PK      | 22.3  | 22.3  | 22.3      | 22.3     | 22.3     | 22.3      | 22.3     | 22.3      | 22.3   | 22.3      | 22.3  | 22.3  | 22.3    |
| 2   | EQ1001S |       | 2-:   | STG CENT  | RIFUGAL  | CHILLER  | <550 TON  | S        |           |        |           |       |       |         |
|     | ELEC    | 0     | 0     | 0         | 0        | 0        | 0         | 0        | 0         | 0      | 0         | 0     | 0     | 0       |
|     | PK      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0       | 0.0    | 0.0       | 0.0   | 0.0   | 0.0     |
| 2   | EQ5100  |       | C00   | LING TOW  | ER FANS  |          |           |          |           |        |           |       |       |         |
|     | ELEC    | 0     | 0     | 0         | 0        | 0        | 0         | 0        | 0         | 0      | 0         | 0     | 0     | 0       |
|     | PK      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0       | 0.0    | 0.0       | 0.0   | 0.0   | 0.0     |
| 2   | EQ5100  |       | coo   | LING TOW  | ER FANS  |          |           |          |           |        |           |       |       |         |
|     | WATER   | 0     | 0     | 0         | 0        | 0        | 0         | 0        | 0         | 0      | 0         | 0     | 0     | 0       |
|     | PK .    | 0.0   | 0.0   | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0       | 0.0    | 0.0       | 0.0   | 0.0   | 0.0     |
| 2   | E05001  |       | CHI   | LLED WAT  | ER PUMP  | - CONST  | ANT VOLU  | ME       |           |        |           |       |       |         |
|     | ELEC    | 0     | 0     | 0         | 0        | . 0      | 0         | 0        | 0         | 0      | 0         | 0     | 0     | . 0     |
|     | PK      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0       | 0.0    | 0.0       | 0.0   | 0.0   | 0.0     |
| 2   | EQ5010  |       | CON   | DENSER W  | ATER PUM | P-CV(HIG | H EFFIC.  | )        |           |        |           |       |       |         |
| _   | ELEC    | 0     | 0     | 0         | 0        | 0        | 0         | 0        | 0         | 0      | 0         | 0     | 0     | 0       |
|     | PK      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0      | 0.0       | 0.0      | 0.0       | 0.0    | 0.0       | 0.0   | 0.0   | 0.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4
PRIMARY EQ WITH NEW CONTROLS

| f | Equip  |      |      |            |           | Mont      | hly Cons | umption   |      |      |      |      |      |              |
|---|--------|------|------|------------|-----------|-----------|----------|-----------|------|------|------|------|------|--------------|
|   | Code   | Jan  | Feb  | Mar        | Apr       | May       | June     | July      | Aug  | Sep  | Oct  | Nov  | Dec  | Tota         |
| 2 | EQ5300 |      | CONT | ROL PANE   | L & INTE  | RLOCKS    |          |           |      |      |      |      |      |              |
|   | ELEC   | 0    | 0    | 0          | 0         | 0         | 0        | 0         | 0    | 0    | 0    | 0    | 0    |              |
|   | PK     | 0.0  | 0.0  | 0.0        | 0.0       | 0.0       | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.           |
| 2 | EQ5013 |      | WATE | R CIRCUL   | ATING PU  | MP - CON  | STANT VO | LUME      |      |      |      |      |      |              |
|   | ELEC   | 0    | 0    | 0          | 0         | 0         | 0        | 0         | 0    | 0    | 0    | 0    | 0    |              |
|   | PK     | 0.0  | 0.0  | 0.0        | 0.0       | 0.0       | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.           |
| 1 | EQ4003 |      | FC C | ENTR I FUG | AL - CON  | STANT VO  | LUME     | Fan AH-51 |      |      |      |      |      | <del>}</del> |
|   | ELEC   | 3646 | 3293 | 3646       | 3528      | 3646      | 3528     | 3646      | 3646 | 3528 | 3646 | 3528 | 3646 | 42,92        |
|   | PK     | 4.9  | 4.9  | 4.9        | 4.9       | 4.9       | 4.9      | 4.9       | 4.9  | 4.9  | 4.9  | 4.9  | 4.9  | 4.           |
| 2 | EQ4003 | ,    | FC C | ENTR I FUG | AL - CON  | STANT VO  | LUME     | Fan AH-52 | 2    |      |      |      |      |              |
|   | ELEC   | 1265 | 1142 | 1265       | 1224      | 1265      | 1224     | 1265      | 1265 | 1224 | 1265 | 1224 | 1265 | 14,89        |
|   | PK     | 1.7  | 1.7  | 1.7        | 1.7       | 1.7       | 1.7      | 1.7       | 1.7  | 1.7  | 1.7  | 1.7  | 1.7  | 1.           |
| 3 | EQ4003 |      | FC C | ENTR I FUG | AL - CON  | STANT VO  | LUME     | Fan AH-53 |      |      |      |      |      | <b>,</b>     |
|   | ELEC   | 6398 | 5779 | 6398       | 6192      | 6398      | 6192     | 6398      | 6398 | 6192 | 6398 | 6192 | 6398 | 75,33        |
|   | PK     | 8.6  | 8.6  | 8.6        | 8.6       | 8.6       | 8.6      | 8.6       | 8.6  | 8.6  | 8.6  | 8.6  | 8.6  | 8            |
| 4 | EQ4003 |      | FC C | ENTRIFUG   | AL - CON  | STANT VO  | LUME     | Fan AH-54 | ;    |      |      |      |      | ,            |
|   | ELEC   | 3274 | 2957 | 3274       | 3168      | 3274      | 3168     | 3274      | 3274 | 3168 | 3274 | 3168 | 3274 | 38,54        |
|   | PK     | 4.4  | 4.4  | 4.4        | 4.4       | 4.4       | 4.4      | 4.4       | 4.4  | 4.4  | 4.4  | 4.4  | 4.4  | 4.           |
| 5 | EQ4003 |      | FC C | ENTR! FUG  | AL - CON  | ISTANT VO | DLUME    | Fan AH-5  | 5    |      |      |      |      | <b></b>      |
|   | ELEC   | 3050 | 2755 | 3050       | 2952      | 3050      | 2952     | 3050      | 3050 | 2952 | 3050 | 2952 | 3050 | 35,9         |
|   | PK     | 4.1  | 4.1  | 4.1        | 4.1       | 4.1       | 4.1      | 4.1       | 4.1  | 4.1  | 4.1  | 4.1  | 4.1  | 4            |
| 6 | EQ4003 |      | FC ( | CENTRIFUC  | SAL - CON | ISTANT VO | DLUME    | Fan AH-4  |      |      |      |      |      | <b>,</b>     |
|   | ELEC   | 3646 | 3293 | 3646       | 3528      | 3646      | 3528     | 3646      | 3646 | 3528 | 3646 | 3528 | 3646 | 42,9         |
|   | PK     | 4.9  | 4.9  | 4.9        | 4.9       | 4.9       | 4.9      | 4.9       | 4.9  | 4.9  | 4.9  | 4.9  | 4.9  | 4            |
| 7 | EQ4003 |      | FC ( | CENTRIFUC  | AL - CON  | ISTANT VO | OLUME    | Fan AH-1  |      |      |      |      |      |              |
|   | ELEC   | 6473 | 5846 | 6473       | 6264      | 6473      | 6264     | 6473      | 6473 | 6264 | 6473 | 6264 | 6473 | 76,2         |
| _ | PK     | 8.7  | 8.7  | 8.7        | 8.7       | 8.7       | 8.7      | 8.7       | 8.7  | 8.7  | 8.7  | 8.7  | 8.7  | 8            |
| 8 | EQ4003 |      | FC ( | CENTRIFUC  | GAL - CON | ISTANT V  | OLUME -  | Fan AH-3  | 3    |      |      |      |      | ,            |
| _ | ELEC   | 7663 | 6922 | 7663       | 7416      | 7663      | 7416     | 7663      | 7663 | 7416 | 7663 | 7416 | 7663 | 90,2         |
|   | PK     | 10.3 | 10.3 | 10.3       | 10.3      | 10.3      | 10.3     | 10.3      | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10           |
| Q | EQ4003 |      | FC ( | CENTR! FU  | GAL - COM | STANT V   | OLUME    | Fan AH-2  |      |      |      |      |      |              |
| • | ELEC   | 1562 | 1411 | 1562       | 1512      | 1562      | 1512     | 1562      | 1562 | 1512 | 1562 | 1512 | 1562 | 18,3         |
|   | PK     | 2.1  | 2.1  | 2.1        | 2.1       | 2.1       | 2.1      | 2.1       | 2.1  | 2.1  | 2.1  | 2.1  | 2.1  |              |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 PRIMARY EQ WITH NEW CONTROLS

|     | ·          |       | <b></b>     | E Q        | UIPM        | ENT      | ENER        | G Y C    | ONSU | MPTI         | O N     |              |      |          |
|-----|------------|-------|-------------|------------|-------------|----------|-------------|----------|------|--------------|---------|--------------|------|----------|
| lef | Equip      |       |             |            |             | Mont     | hly Cons    | umption  |      | <del>-</del> | <b></b> | <del>-</del> |      |          |
| ium | Code       | Jan   | Feb         | Mar        | Apr         | May      | June        | July     | Aug  | Sep          | Oct     | Nov          | Dec  | Tot      |
| 10  | EQ4003     |       | FC C        | ENTR I FUG | AI - CON    | STANT VO | OLUME F     | an AH-5  |      |              |         |              |      | <b>.</b> |
| 10  | ELEC       | ,3050 | 2755        | 3050       | 2952        | 3050     | 2952        | 3050     | 3050 | 2952         | 3050    | 2952         | 3050 | 35,9     |
|     | PK         | 4.1   | 4.1         | 4.1        | 4.1         | 4.1      | 4.1         | 4.1      | 4.1  | 4.1          | 4.1     | 4.1          | 4.1  |          |
| 1   | BLR51      |       | 011         | FIRED HO   | T WATER     | BOLLER   | Boiler B-   | 51       |      |              |         |              |      |          |
| '   | OIL        | 1386  | 1172        | 1197       | 1093        | 1081     | 1039        | 1074     | 1074 | 1048         | 1133    | 1262         | 1355 | 13,9     |
|     | PK         | 2.2   | 2.0         | 2.0        | 2.0         | 1.7      | 1.4         | 1.4      | 1.4  | 1.7          | 2.0     | 2.0          | 2.1  |          |
|     |            | 1     |             |            |             | 4710V D  | HV          | V pump P | 70   |              |         |              |      |          |
| 1   |            | 2000  |             | ING WATE   |             |          | ארי<br>1944 | 2009     | 2009 | 1944         | 2009    | 1944         | 2009 | 23,0     |
|     | ELEC<br>PK | 2009  | 1814<br>2.7 | 2009       | 1944<br>2.7 | 2009     | 2.7         | 2.7      | 2.7  | 2.7          | 2.7     | 2.7          | 2.7  |          |
|     | PK .       | 2.7   |             |            |             |          |             |          |      |              |         |              |      |          |
| 1   | EQ5307     |       | CONT        | ROLS       |             |          |             |          |      |              |         |              |      |          |
|     | ELEC       | 372   | 336         | 372        | 360         | 372      | 360         | 372      | 372  | 360          | 372     | 360          | 372  | 4,       |
|     | PK         | 0.5   | 0.5         | 0.5        | 0.5         | 0.5      | 0.5         | 0.5      | 0.5  | 0.5          | 0.5     | 0.5          | 0.5  | 1        |
| 1   | EQ5020     |       | ĤΕΑΊ        | TING WATE  | R CIRCUI    | LATION P | UMP HV      | V pump P | -63  |              |         |              |      | ٠        |
| •   | ELEC       | 4762  | 4301        | 4762       | 4608        | 4762     | 4608        | 4762     | 4762 | 4608         | 4762    | 4608         | 4762 | 56,      |
|     | PK         | 6.4   | 6.4         | 6.4        | 6.4         | 6.4      | 6.4         | 6.4      | 6.4  | 6.4          | 6.4     | 6.4          | 6.4  | •        |
| 2   | BLR51      | 4     | 011         | FIRED HO   | T WATER     | BOLLER   |             |          |      |              |         |              |      |          |
| 2   | OIL        | 0     | 0           | 0          | 0           | 0        | 0           | 0        | 0    | 0            | 0       | 0            | 0    |          |
|     | PK         | 0.0   | 0.0         | 0.0        | 0.0         | 0.0      | 0.0         | 0.0      | 0.0  | 0.0          | 0.0     | 0.0          | 0.0  |          |
| 2   | EQ5020     |       | UE A        | TING WATI  | בם כופכוו   | ם ערודאו | LIMD        |          |      |              |         |              |      |          |
| ۷   | ELEC       | 0     | 0           | 0          | 0           | 0        | 0           | 0        | 0    | 0            | 0       | 0            | 0    |          |
|     | PK         | 0.0   | 0.0         | 0.0        | 0.0         | 0.0      | 0.0         | 0.0      | 0.0  | 0.0          | 0.0     | 0.0          | 0.0  |          |
| _   |            |       | covi        | TDOL C     |             |          |             |          |      |              |         |              |      |          |
| 2   | EQ5307     | 0     | 0           | TROLS<br>0 | 0           | 0        | 0           | 0        | 0    | 0            | 0       | 0            | 0    |          |
|     | ELEC<br>PK | 0.0   | 0.0         | 0.0        | 0.0         | 0.0      | 0.0         | 0.0      | 0.0  | 0.0          | 0.0     | 0.0          | 0.0  |          |
|     | 78         | 0.0   | 0.0         | 0.0        | 0.0         | 0.0      | 0.0         | 0.0      | •••  |              | •       |              |      |          |
| 2   | EQ5020     |       | HEA         | TING WAT   | ER CIRCU    | LATION P | UMP         |          |      |              |         |              |      |          |
|     | ELEC       | 0     | 0           | 0          | 0           | 0        | 0           | 0        | 0    | 0            | 0       | 0            | 0    |          |
|     | PK         | 0.0   | 0.0         | 0.0        | 0.0         | 0.0      | 0.0         | 0.0      | 0.0  | 0.0          | 0.0     | 0.0          | 0.0  |          |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1
AIRSIDE EQ WITH NEW MOTORS

### ECO-E, TEST CELLS 1 & 2

System Totals

| Percent         | Coo   | ling Loa | d     | Heati    | ng Load |       | Cooling  | Airflow |       | Heating | Airflow | • • • • • • |
|-----------------|-------|----------|-------|----------|---------|-------|----------|---------|-------|---------|---------|-------------|
| Design          | Cap.  | Hours    | Hours | Capacity | Hours   | Hours | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours       |
| Load            | (Ton) | (%)      |       | (Btuh)   | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |             |
| 0 - 5           | 2.8   | 0        | 0     | -43,973  | 99      | 2,799 | 3,548.4  | 0       | 0     | 0.0     | 0       | 0           |
| 5 - 10          | 5.5   | 10       | 884   | -87,947  | 1       | 42    | 7,096.7  | 0       | 0     | 0.0     | 0       | 0           |
| 10 - 15         | 8.3   | 28       | 2,466 | -131,920 | 0       | 0     | 10,645.1 | 0       | 0     | 0.0     | 0       | 0           |
| 15 - 20         | 11.1  | 8        | 661   | -175,893 | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0           |
| 20 - 25         | 13.8  | 4        | 316   | -219,867 | 0       | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0           |
| 25 - <b>3</b> 0 | 16.6  | 4        | 312   | -263,840 | 0       | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0           |
| 30 - 35         | 19.4  | 1        | 127   | -307,813 | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0           |
| 35 - 40         | 22.1  | 2        | 139   | -351,787 | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0           |
| 40 - 45         | 24.9  | 1        | 131   | -395,760 | 0       | 0     | 31,935.2 | 0       | 0     | 0.0     | 0       | 0           |
| 45 - 50         | 27.6  | 1        | 88    | -439,733 | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0           |
| 50 - 55         | 30.4  | 6        | 527   | -483,707 | 0       | 0     | 39,031.9 | 0       | 0     | 0.0     | 0       | 0           |
| 55 - 60         | 33.2  | 4        | 347   | -527,680 | 0       | 0     | 42,580.2 | 0       | 0     | 0.0     | 0       | 0           |
| 60 - 65         | 35.9  | 13       | 1,132 | -571,653 | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0           |
| 65 - 70         | 38.7  | 7        | 651   | -615,627 | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | 0           |
| 70 - 75         | 41.5  | 9        | 784   | -659,600 | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | 0           |
| 75 - 80         | 44.2  | 0        | 0     | -703,573 | 0       | 0     | 56,773.6 | 0       | 0     | 0.0     | 0       | 0           |
| 80 - 85         | 47.0  | 2        | 175   | -747,547 | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | 0       | 0           |
| 85 - 90         | 49.8  | 0        | 20    | -791,520 | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | 0       | 0           |
| 90 - 95         | 52.5  | 0        | 0     | -835,493 | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | 0           |
| 95 - 100        | 55.3  | 0        | 0     | -879,467 | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0           |
| Hours Off       | 0.0   | 0        | 0     | 0        | 0       | 5.919 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760       |

|            |                    |          |         | E (      | UIP   | MENT       | ENE               | RGY              | ONSU    | UMPT: | I O N |       |       |          |
|------------|--------------------|----------|---------|----------|-------|------------|-------------------|------------------|---------|-------|-------|-------|-------|----------|
| _ ,        |                    |          |         |          |       |            |                   | <b>-</b>         |         |       |       |       |       |          |
| Ref<br>Num | Equip -            | Jan      | Feb     | Mar      | Apr   | Mon<br>May | thly Con:<br>June | sumption<br>July | Aug     | Sep   | Oct   | Nov   | Dec   | Total    |
| NGIII      | Code               |          |         | ina.     | Vb.   | nay        | <b>b</b> anc      | outy             | Adg     | Jep   | 001   | NOV   | 000   | 10181    |
| 0          | LIGHTS             | Lighting | Systems |          |       |            |                   |                  |         |       |       |       |       |          |
|            | ELEC               | 30290    | 27359   | 30302    | 29311 | 30296      | 29323             | 30284            | 30302   | 29311 | 30296 | 29311 | 30284 | 356,670  |
|            | PK                 | 43.4     | 43.4    | 43.4     | 43.4  | 43.4       | 43.4              | 43.4             | 43.4    | 43.4  | 43.4  | 43.4  | 43.4  | 43.4     |
| 1          | MISC LD            |          |         |          |       |            |                   |                  |         |       |       |       |       |          |
| •          | ELEC               | 13610    | 12293   | 13610    | 13171 | 13610      | 13171             | 13610            | 13610   | 13171 | 13610 | 13171 | 13610 | 160,248  |
|            | PK                 | 36.6     | 36.6    | 36.6     | 36.6  | 36.6       | 36.6              | 36.6             | 36.6    | 36.6  | 36.6  | 36.6  | 36.6  | 36.6     |
|            |                    |          |         |          |       |            |                   |                  |         |       |       |       |       |          |
| 2          | MISC LD            | •        | •       | •        | _     | •          | •                 | •                |         | •     |       | •     | •     | •        |
|            | GAS                | 0        | 0       | 0        | 0     | 0          | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0        |
|            | PK                 | 0.0      | 0.0     | 0.0      | 0.0   | 0.0        | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
| 3          | MISC LD            |          |         |          |       |            |                   |                  |         |       |       |       | •     |          |
|            | OIL                | 0        | 0       | 0        | 0     | 0          | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0        |
|            | PK                 | 0.0      | 0.0     | 0.0      | 0.0   | 0.0        | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
| 4          | MISC LD            |          | ,       |          |       |            |                   |                  |         |       |       |       |       |          |
|            | P STEAM            | 0        | 0       | 0        | 0     | 0          | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0        |
|            | PK                 | 0.0      | 0.0     | 0.0      | 0.0   | 0.0        | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
| 5          | MISC LD            |          |         |          |       |            |                   |                  |         |       |       |       |       |          |
|            | P HOTH20           | 0        | 0       | 0        | 0     | 0          | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | . 0      |
|            | PK                 | 0.0      | 0.0     | 0.0      | 0.0   | 0.0        | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
|            |                    |          |         |          |       |            |                   |                  |         |       |       |       |       |          |
| ٥          | MISC LD<br>P CHILL | 0        | 0       | 0        | 0     | 0          | 0                 | 0                | 0       | 0     | 0     | 0     | 0     | 0        |
|            | PK                 | 0.0      | 0.0     | 0.0      | 0.0   | 0.0        | 0.0               | 0.0              | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
|            | • ••               |          |         |          |       |            |                   | ***              | •       | •••   |       |       |       | •        |
| 1          |                    |          |         | E UTILIT |       |            |                   |                  |         |       |       |       |       |          |
|            | CHILLD             | 33926    | 30643   | 33926    | 32832 | 33926      | 32832             | 33926            | 33926   | 32832 | 33926 | 32832 | 33926 | 399,456  |
|            | PK                 | 45.6     | 45.6    | 45.6     | 45.6  | 45.6       | 45.6              | 45.6             | 45.6    | 45.6  | 45.6  | 45.6  | 45.6  | 45.6     |
| 2          |                    |          | BAS     | E UTILIT | Y     |            |                   |                  |         |       |       |       |       |          |
|            | HOTLD              | 676      | 611     | 676      | 654   | 676        | 654               | 676              | 676     | 654   | 676   | 654   | 676   | 7,963    |
|            | PK                 | 0.9      | 0.9     | 0.9      | - 0.9 | 0.9        | 0.9               | 0.9              | 0.9     | 0.9   | 0.9   | 0.9   | 0.9   | 0.9      |
| 3          |                    |          | · DAC   | E UTILIT | Y     |            | <i>.</i> -        |                  |         | *     |       |       |       |          |
| د          | ELEC               | 1727     | 1561    | 1802     | 1660  | 1765       | 1734              | 1690             | 1802    | 1660  | 1765  | 1660  | 1690  | 20,516   |
|            | PK                 | 7.0      | 7.0     | 7.0      | 7.0   | 7.0        | 7.0               | 7.0              | 7.0     | 7.0   | 7.0   | 7.0   | 7.0   | 7.0      |
|            |                    |          |         |          |       |            |                   | Chillo           | r CH-51 |       |       |       |       |          |
| 1          | EQ1001S            |          |         |          |       | CHILLER    |                   | 3                |         |       |       |       |       | <u> </u> |
|            | ELEC               | 26842    | 24579   | 28464    | 30850 | 36612      | 41381             | 45383            | 44838   | 36881 | 31884 | 26274 | 26863 | 400,851  |
|            | PK                 | 37.7     | 38.7    | 49.6     | 56.2  | 63.9       | 71.5              | 76.0             | 74.3    | 66.1  | 56.2  | 38.4  | 38.0  | 76.0     |

|     |                |             |             | E C        | UIPI     | MENT        | ENER        | e G Y (     | CONSI       | JMPT:       | I O N  |       |          |         |
|-----|----------------|-------------|-------------|------------|----------|-------------|-------------|-------------|-------------|-------------|--------|-------|----------|---------|
| Ref | Equip          |             |             |            |          | Mont        | thly Cons   | sumption    |             |             |        |       |          |         |
| Num | Code           | Jan         | Feb         | Mar        | Арг      | May         | June        | July        | Aug         | Sep         | Oct    | Nov   | Dec      | Tota    |
|     |                |             |             |            |          | Twr. Far    | 1 CT-51A    |             |             |             |        |       |          |         |
| 1   | EQ5100         | 27/4        |             | LING TOWE  |          |             |             | 7/07        | 7/07        | 770/        | 3227   | 2802  | 2786     | 77.77   |
|     | ELEC           | 2761<br>4.0 | 2537<br>4.2 | 3008       | 3073     | 3415<br>4.7 | 3384<br>4.7 | 3497<br>4.7 | 3497<br>4.7 | 3384<br>4.7 | 4.7    | 4.4   | 4.1      | 37,37   |
|     | PK             | 4.0         | 4.2         | 4.1        | 4.7      |             | 4.7         |             | 4.7         | 4.7         |        |       | 4.1      | 7.      |
| 1   | EQ5100         |             | coot        | LING TOWE  | R FANS   |             |             |             |             |             |        |       |          |         |
|     | WATER          | 147         | 135         | 158        | 176      | 209         | 228         | 241         | 239         | 203         | 180    | 144   | 147      | 2,20    |
|     | PK             | 0.2         | 0.2         | 0.3        | 0.3      | 0.4         | 0.4         | 0.4         | 0.4         | 0.4         | 0.3    | 0.2   | 0.2      | 0.      |
| 1   | EQ5001         |             | CHI         | LLED WATE  | D DIIMD  | - CONST     | ANT VOLUM   | √E CHV      | √ Pump P-   | -51         |        |       |          |         |
| '   | EFEC           | 19939       | 18010       | 19939      | 19296    | 19939       | 19296       | 19939       | 19939       | 19296       | 19939  | 19296 | 19939    | 234,76  |
|     | PK             | 26.8        | 26.8        | 26.8       | 26.8     | 26.8        | 26.8        | 26.8        | 26.8        | 26.8        | 26.8   | 26.8  | 26.8     | 26.     |
|     |                | <u> </u>    |             |            |          |             |             | CND         | Pump P-6    |             |        | ·     | <u></u>  |         |
| 1   | EQ5010         |             |             |            |          |             | H EFFIC.    | ,           | •           |             | e / 70 | 07/0  | 0470     | [447.00 |
|     | ELEC           | 9672        | 8736        | 9672       | 9360     | 9672        | 9360        | 9672        | 9672        | 9360        | 9672   | 9360  | 9672     | 113,88  |
|     | PK             | 13.0        | 13.0        | 13.0       | 13.0     | 13.0        | 13.0        | 13.0        | 13.0        | 13.0        | 13.0   | 13.0  | 13.0     | 13.     |
| 1   | EQ5300         |             |             | TROL PANÉ  | EL & INT | ERLOCKS     |             |             |             |             |        |       |          |         |
|     | ELEC           | 744         | 672         | 744        | 720      | 744         | 720         | 744         | 744         | 720         | 744    | 720   | 744      | 8,76    |
|     | PK             | 1.0         | 1.0         | 1.0        | 1.0      | 1.0         | 1.0         | 1.0         | 1.0         | 1.0         | 1.0    | 1.0   | 1.0      | 1.      |
|     | EQ5013         |             | LIAT        | ED CIDCIII | LATING D | IIND - CO   | NSTANT V    | 0111ME (    | CND Pump    | p P-65      |        |       |          |         |
| 1   | ELEC           | 16070       | 14515       | 16070      | 15552    | 16070       | 15552       | 16070       | 16070       | 15552       | 16070  | 15552 | 16070    | 189,21  |
|     | PK             | 21.6        | 21.6        | 21.6       | 21.6     | 21.6        | 21.6        | 21.6        | 21.6        | 21.6        | 21.6   | 21.6  | 21.6     | 21.     |
|     |                | L           |             |            |          | <del></del> |             |             |             |             |        |       | <u>_</u> |         |
| 2   | EQ1001S        |             |             |            |          |             | <550 TON:   |             |             |             |        |       |          |         |
|     | ELEC           | 0           | 0           | 0          | 0        | 0           | 0           | 0           | 0           | 0           | 0      | 0     | 0        | _       |
|     | PK             | 0.0         | 0.0         | 0.0        | 0.0      | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0    | 0.0   | 0.0      | 0.      |
| 2   | EQ5100         |             | coo         | LING TOW   | ER FANS  |             |             |             |             |             |        |       |          |         |
|     | ELEC           | 0           | 0           | 0          | 0        | 0           | 0           | 0           | 0           | 0           | 0      | 0     | 0        |         |
|     | PK             | 0.0         | 0.0         | 0.0        | 0.0      | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0    | 0.0   | 0.0      | 0.      |
| ,   | EQ5100         |             | rno         | LING TOW   | FR FANC  |             |             |             |             |             |        |       |          |         |
| ۷   | WATER          | 0           | 0           | 0          | 0        | 0           | 0           | 0           | 0           | 0           | 0      | 0     | 0        |         |
|     | PK             | 0.0         | 0.0         | 0.0        | 0.0      | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0    | 0.0   | 0.0      | ~ 0.    |
| _   | F0E004         |             |             |            | בט טושים | cove        | ANT VÕLU    | ue.         |             |             |        |       |          |         |
| 2   | EQ5001<br>ELEC | 0           | CHI         | LLED WAT   | ER PUMP  | - LONSI     | ANT VOLU    | ME 0        | 0           | 0           | 0      | 0     | 0        |         |
|     | PK             | 0.0         | 0.0         | 0.0        | 0.0      | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0    | 0.0   | 0.0      | 0.      |
|     | i is           | 0.0         | 0.0         | 0.0        | 0.0      |             |             | 0.0         | 3.0         |             |        |       |          |         |
| 2   | EQ5010         |             | CON         | IDENSER W  | ATER PUN | IP-CV(HIG   | H EFFIC.    | )           |             |             |        |       |          |         |
|     | ELEC           | 0           | 0           | 0          | 0        | 0           | 0           | 0           | 0           | 0           | 0      | 0     | 0        |         |
|     | PK             | 0.0         | 0.0         | 0.0        | 0.0      | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0    | 0.0   | 0.0      | 0.      |

|    |        |      |      | E U        | UIPM      | LENI      | ENER      | . G Y C   | ONSU     | IMPTI | O N   |      |        |        |
|----|--------|------|------|------------|-----------|-----------|-----------|-----------|----------|-------|-------|------|--------|--------|
| ef | Equip  |      |      |            |           | Mont      | hly Cons  | umption   |          |       |       |      |        |        |
| um | Code   | Jan  | Feb  | Mar        | Apr       | May       | June      | July      | Aug      | Sep   | Oct   | Nov  | Dec    | Total  |
| 2  | EQ5300 |      | CONT | ROL PANE   | L & INTE  | RLOCKS    |           |           |          |       |       |      |        |        |
|    | ELEC   | 0    | 0    | 0          | 0         | 0         | , 0       | 0         | 0        | 0     | 0     | . 0  | 0      | 0      |
|    | PK     | 0.0  | 0.0  | 0.0        | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0  | 0.0    | 0.0    |
| 2  | EQ5013 |      | WATE | R CIRCUL   | ATING PU  | IMP - CON | ISTANT VO | LUME      |          |       |       |      |        |        |
|    | ELEC   | 0    | 0    | 0          | 0         | 0         | 0         | 0         | 0        | 0     | 0     | 0    | 0      | 0      |
|    | PK     | 0.0  | 0.0  | 0.0        | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0  | 0.0    | 0.0    |
| 1  | EQ4003 |      | FC C | ENTR I FUG | AL - CON  | ISTANT VO | LUME      | Fan AH-51 | 1        |       |       |      |        |        |
|    | ELEC   | 3646 | 3293 | 3646       | 3528      | 3646      | 3528      | 3646      | 3646     | 3528  | 3646  | 3528 | 3646   | 42,924 |
|    | PK     | 4.9  | 4.9  | 4.9        | 4.9       | 4.9       | 4.9       | 4.9       | 4.9      | 4.9   | 4.9   | 4.9  | 4.9    | 4.9    |
| 2  | EQ4003 |      | FC C | ENTR I FUG | AL - CON  | ISTANT VO | DLUME 1   | Fan AH-52 | 2        |       |       |      |        |        |
|    | ELEC   | 1042 | 941  | 1042       | 1008      | 1042      | 1008      | 1042      | 1042     | 1008  | 1042  | 1008 | 1042   | 12,264 |
|    | PK     | 1.4  | 1.4  | 1.4        | 1.4       | 1.4       | 1.4       | 1.4       | 1.4      | 1.4   | 1.4   | 1.4  | 1.4    | 1.4    |
| 3  | EQ4003 |      | FC C | ENTRIFUG   | AL - CON  | ISTANT VO | DLUME     | Fan AH-5  | 3        |       |       |      |        |        |
|    | ELEC   | 6324 | 5712 | 6324       | 6120      | 6324      | 6120      | 6324      | 6324     | 6120  | 6324  | 6120 | 6324   | 74,460 |
|    | PK     | 8.5  | 8.5  | 8.5        | 8.5       | 8.5       | 8.5       | 8.5       | 8.5      | 8.5   | 8.5   | 8.5  | 8.5    | 8.5    |
| 4  | EQ4003 |      | FC C | ENTR I FUG | AL - CON  | ISTANT VO | DLUME F   | an AH-54  | <b>.</b> |       |       |      |        |        |
|    | ELEC   | 3274 | 2957 | 3274       | 3168      | 3274      | 3168      | 3274      | 3274     | 3168  | 3274  | 3168 | 3274   | 38,54  |
|    | PK     | 4.4  | 4.4  | 4.4        | 4.4       | 4.4       | 4.4       | 4.4       | 4.4      | 4.4   | 4.4   | 4.4  | 4.4    | 4.     |
| 5  | EQ4003 |      | FC C | ENTR I FUG | AL - CON  | ISTANT VO | DLUME     | Fan AH-55 | 5        |       |       |      |        | _      |
|    | ELEC   | 2753 | 2486 | 2753       | 2664      | 2753      | 2664      | 2753      | 2753     | 2664  | 2753  | 2664 | 2753   | 32,41  |
|    | PK     | 3.7  | 3.7  | 3.7        | 3.7       | 3.7       | 3.7       | 3.7       | 3.7      | 3.7   | 3.7   | 3.7  | 3.7    | 3.     |
| 6  | EQ4003 |      | FC C | ENTRIFUG   | AL - CON  | STANT VO  | DLUME I   | Fan AH-4  |          |       |       |      | •      |        |
|    | ELEC   | 3497 | 3158 | 3497       | 3384      | 3497      | 3384      | 3497      | 3497     | 3384  | 3497  | 3384 | 3497   | 41,17  |
|    | PK     | 4.7  | 4.7  | 4.7        | 4.7       | 4.7       | 4.7       | 4.7       | 4.7      | 4.7   | 4.7   | 4.7  | 4.7    | 4.     |
| 7  | EQ4003 | -    | FC C | ENTRIFUG   | AL - CON  | ISTANT VO | DLUME F   | an AH-1   | •        |       |       |      |        |        |
|    | ELEC   | 5803 | 5242 | 5803       | 5616      | 5803      | 5616      | 5803      | 5803     | 5616  | 5803  | 5616 | 5803   | 68,32  |
|    | PK     | 7.8  | 7.8  | 7.8        | 7.8       | 7.8       | 7.8       | 7.8       | 7.8      | 7.8   | . 7.8 | 7.8  | 7.8    | 7.     |
| 8  | EQ4003 |      | FC C | ENTRIFUG   | SAL - CON | ISTANT VO | DLUME F   | an AH-3   | •        |       |       |      |        |        |
| -  | ELEC   | 7366 | 6653 | 7366       | 7128      | 7366      | 7128      | 7366      | 7366     | 7128  | 7366  | 7128 | 7366   | 86,72  |
|    | PK     | 9.9  | 9.9  | 9.9        | 9.9       | 9.9       | 9.9       | 9.9       | 9.9      | 9.9   | 9.9   | 9.9  | 9.9    | 9.     |
| 9  | EQ4003 |      | FC C | ENTRIFUG   | AL - CON  | ISTANT V  | OLUME F   | an AH-2   |          |       |       |      |        |        |
|    |        | 4400 |      |            |           |           |           | 4400      |          | 4440  | 4/00  | 4440 |        | 47.50  |
|    | ELEC   | 1488 | 1344 | 1488       | 1440      | 1488      | 1440      | 1488      | 1488     | 1440  | 1488  | 1440 | 1488 . | 17,52  |

| • • • • |        |      | ****** | E Q       | UIPM     | IENT      | ENER      | GY C      | ONSU | MPTI | O N  |      |      |       |
|---------|--------|------|--------|-----------|----------|-----------|-----------|-----------|------|------|------|------|------|-------|
| Ref     | Equip  |      |        |           |          | Mont      | hly Cons  | umption   |      |      |      |      |      |       |
| Num     | Code   | Jan  | Feb    | Mar       | Apr      | May       | June      | July      | Aug  | Sep  | Oct  | Nov  | Dec  | Tota  |
| 10      | EQ4003 |      | FC C   | ENTRIFUG  | AL - CON | ISTANT VO | DLUME F   | an AH-5   |      |      |      |      |      |       |
|         | ELEC   | 3125 | 2822   | 3125      | 3024     | 3125      | 3024      | 3125      | 3125 | 3024 | 3125 | 3024 | 3125 | 36,79 |
|         | PK     | 4.2  | 4.2    | 4.2       | 4.2      | 4.2       | 4.2       | 4.2       | 4,2  | 4.2  | 4.2  | 4.2  | 4.2  | 4.    |
| 1       | BLR51  |      | 011    | FIRED HO  | T WATER  | BOLLER    | Boiler B- | 51        |      |      |      |      |      |       |
| •       | OIL    | 1386 | 1172   | 1197      | 1093     | 1081      | 1039      | 1074      | 1074 | 1048 | 1133 | 1262 | 1355 | 13,91 |
|         | PK     | 2.2  | 2.0    | 2.0       | 2.0      | 1.7       | 1.4       | 1.4       | 1.4  | 1.7  | 2.0  | 2.0  | 2.1  | 2.    |
|         | EQ5020 | +    | UEAT   | THE HATE  | R CIRCUL | ATION D   | шь ну     | / pump P- | 70   |      |      |      |      |       |
| 1       | ELEC   | 1711 | 1546   | 1711      | 1656     | 1711      | 1656      | 1711      | 1711 | 1656 | 1711 | 1656 | 1711 | 20,14 |
|         | PK     | 2.3  | 2.3    | 2.3       | 2.3      | 2.3       | 2.3       | 2.3       | 2.3  | 2.3  | 2.3  | 2.3  | 2.3  | 2.    |
|         | , ,    | 1    |        |           |          |           |           |           |      |      |      |      |      |       |
| 1       | EQ5307 | •    | CONT   | ROLS      |          |           |           |           |      |      |      |      |      |       |
|         | ELEC   | 372  | 336    | 372       | 360      | 372       | 360       | 372       | 372  | 360  | 372  | 360  | 372  | 4,38  |
|         | PK     | 0.5  | 0.5    | 0.5       | 0.5      | 0.5       | 0.5       | 0.5       | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.    |
|         |        |      |        |           |          |           | HW        | pump P-6  | 3    |      |      |      |      |       |
| 1       | EQ5020 |      |        |           | R CIRCUL |           | JMP       |           |      |      |      |      |      | F     |
|         | ELEC   | 4687 | 4234   | 4687      | 4536     | 4687      | 4536      | 4687      | 4687 | 4536 | 4687 | 4536 | 4687 | 55,18 |
|         | PK     | 6.3  | 6.3    | 6.3       | 6.3      | 6.3       | 6.3       | 6.3       | 6.3  | 6.3  | 6.3  | 6.3  | 6.3  | 6.    |
| 2       | BLR51  |      | OIL    | FIRED HO  | T WATER  | BOILER    |           |           |      |      |      |      |      |       |
|         | OIL    | 0    | 0      | 0         | 0        | 0         | 0         | 0         | 0    | 0    | 0    | 0    | 0    |       |
|         | PK     | 0.0  | 0.0    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.    |
| 2       | EQ5020 |      | HEAT   | ING WATE  | R CIRCUI | ATION P   | JMP       |           |      |      |      |      |      |       |
|         | ELEC   | 0    | 0      | 0         | 0        | 0         | 0         | 0         | 0    | 0    | 0    | 0    | 0    |       |
|         | PK     | 0.0  | 0.0    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.    |
| 2       | EQ5307 |      | CONT   | rols      |          |           |           |           |      |      |      |      |      |       |
| -       | ELEC   | 0    | 0      | 0         | 0        | 0         | 0         | 0         | 0    | 0    | 0    | 0    | 0    |       |
|         | PK     | 0.0  | 0.0    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.    |
| 2       | EQ5020 |      | HFAT   | TING WATE | R CIRCU  | LATION P  | UMP       |           |      |      |      |      |      |       |
| -       | ELEC   | 0    | 0      | 0         | 0        | 0         | 0         | 0         | 0    | 0    | 0    | 0    | 0    |       |
|         | PK     | 0.0  | 0.0    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.    |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1 AIRSIDE EQ WITH NEW MOTORS

## ECO-G, TEST CELLS 1 & 2

#### System Totals

| Percent   | Cool  | ling Loa | d     | Heatir            | ng Load |       | Cooling  | Airflow |       | Heating | Airflow |       |
|-----------|-------|----------|-------|-------------------|---------|-------|----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours    | Hours | Capacity          | Hours   | #our  | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)      |       | (Btuh)            | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 2.8   | 0        | 0     | -43,973           | 99      | 2,799 | 3,548.4  | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 5.5   | 10       | 884   | -87,947           | 1       | 42    | 7,096.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 8.3   | 28       | 2,466 | -131,920          | 0       | 0     | 10,645.1 | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 11.1  | 8        | 661   | -175,893          | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 13.8  | 4        | 316   | -219,867          | 0       | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 16.6  | 4        | 312   | -263,840          | 0       | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 19.4  | 1        | 127   | -307,813          | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 22.1  | 2        | 139   | - <b>3</b> 51,787 | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 24.9  | 1        | 131   | - <b>3</b> 95,760 | 0       | 0     | 31,935.2 | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 27.6  | 1        | 88    | -439,733          | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55   | 30.4  | 6        | 527   | -483,707          | 0       | 0     | 39,031.9 | 0       | 0     | 0.0     | 0       | 0     |
| 55 - 60   | 33.2  | 4        | 347   | -527,680          | 0       | 0     | 42,580.2 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65   | 35.9  | 13       | 1,132 | -571,653          | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0     |
| 65 - 70   | 38.7  | 7        | 651   | -615,627          | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | 0     |
| 70 - 75   | 41.5  | 9        | 784   | -659,600          | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | 0     |
| 75 - 80   | 44.2  | 0        | 0     | -703,573          | 0       | 0     | 56,773.6 | 0       | 0     | 0.0     | 0       | 0     |
| 80 - 85   | 47.0  | 2        | 175   | -747,547          | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | 0.      | 0     |
| 85 - 90   | 49.8  | 0        | 20    | -791,520          | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | . 0     | 0     |
| 90 - 95   | 52.5  | 0        | 0     | -835,493          | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100  | 55.3  | 0        | 0     | -879,467          | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0        | 0     | 0                 | 0       | 5,919 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760 |

|     | •••••    |          |           | E (      | UIPI     | MENT  | ENE           | RGY      | CONSI | UMPT  | I O N |       |       |         |
|-----|----------|----------|-----------|----------|----------|-------|---------------|----------|-------|-------|-------|-------|-------|---------|
| Ref | Equip -  |          |           |          |          | Mon   | thly Con      | sumption |       |       |       |       |       |         |
| Num | Code     | Jan      | Feb       | Mar      | Apr      | May   | June          | July     | Aug   | Sep   | Oct   | Nov   | Dec   | Total   |
| 0   | LIGHTS   | Lighting | g Systems |          |          |       |               |          |       |       |       |       |       |         |
|     | ELEC     | 30290    | 27359     | 30302    | 29311    | 30296 | 29323         | 30284    | 30302 | 29311 | 30296 | 29311 | 30284 | 356,670 |
|     | PK       | 43.4     | 43.4      | 43.4     | 43.4     | 43.4  | 43.4          | 43.4     | 43.4  | 43.4  | 43.4  | 43.4  | 43.4  | 43.4    |
| 1   | MISC LD  |          |           |          |          |       |               |          |       |       |       |       |       |         |
|     | ELEC     | 13610    | 12293     | 13610    | 13171    | 13610 | 13171         | 13610    | 13610 | 13171 | 13610 | 13171 | 13610 | 160,248 |
|     | PK       | 36.6     | 36.6      | 36.6     | 36.6     | 36.6  | 36.6          | 36.6     | 36.6  | 36.6  | 36.6  | 36.6  | 36.6  | 36.6    |
| 2   | MISC LD  |          |           |          |          |       |               |          |       |       |       |       |       |         |
|     | GAS      | 0        | 0         | 0        | 0        | 0     | 0             | 0        | 0     | 0     | 0     | 0     | 0     | 0       |
|     | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0   | 0.0           | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 3   | MISC LD  |          |           |          |          |       |               |          |       |       |       |       |       |         |
|     | OIL      | 0        | 0         | 0        | 0        | 0     | 0             | 0        | 0     | 0     | 0     | 0     | 0     | 0       |
|     | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0   | 0.0           | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 4   | MISC LD  |          |           |          |          |       |               |          |       |       |       |       |       |         |
|     | P STEAM  | 0        | 0         | 0        | 0        | 0     | 0             | 0        | 0     | 0     | 0     | 0     | 0     | 0       |
|     | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0   | 0.0           | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 5   | MISC LD  |          |           |          |          |       |               |          |       |       |       |       |       |         |
|     | P HOTH20 | 0        | 0         | 0        | 0        | 0     | 0             | 0        | 0     | 0     | 0     | 0     | 0     | 0       |
|     | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0   | 0.0           | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 6   | MISC LD  |          |           |          |          |       |               |          |       |       |       |       |       |         |
|     | P CHILL  | 0        | 0         | 0        | 0        | 0     | 0             | 0        | 0     | 0     | 0     | 0     | 0     | 0       |
|     | PK       | 0.0      | 0.0       | 0.0      | 0.0      | 0.0   | 0.0           | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 1   |          |          | BAS       | E UTILIT | Y        |       |               |          |       |       |       |       |       |         |
|     | CHILLD   | 33926    | 30643     | 33926    | 32832    | 33926 | 32832         | 33926    | 33926 | 32832 | 33926 | 32832 | 33926 | 399,456 |
|     | PK       | 45.6     | 45.6      | 45.6     | 45.6     | 45.6  | 45.6          | 45.6     | 45.6  | 45.6  | 45.6  | 45.6  | 45.6  | 45.6    |
| 2   |          |          | BAS       | E UTILIT | Y        |       |               |          |       |       |       |       |       |         |
|     | HOTLD    | 676      | 611       | 676      | 654      | 676   | 654           | 676      | 676   | 654   | 676   | 654   | 676   | 7,963   |
|     | PK       | 0.9      | 0.9       | 0.9      | 0.9      | 0.9   | 0.9           | 0.9      | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 0.9     |
| 3   |          |          | BAS       | E UTILIT | Y        |       |               |          |       |       |       |       |       |         |
|     | ELEC     | 1727     | 1561      | 1802     | 1660     | 1765  | 1734          | 1690     | 1802  | 1660  | 1765  | 1660  | 1690  | 20,516  |
|     | PK       | 7.0      | 7.0       | 7.0      | 7.0      | 7.0   | 7.0           | 7.0      | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0     |
| 1   |          |          | YOR       | K CENT.  | R-123 CH | ILLER | New Chille    | er CH-51 |       |       |       |       |       |         |
|     | ELEC     | 29154    | 26644     | 30638    | 32520    | 36738 | <b>3</b> 5005 | 35282    | 34655 | 32492 | 33381 | 28491 | 29173 | 384,173 |
|     | PK       | 40.7     | 41.6      | 50.9     | 54.5     | 57.8  | 59.0          | 56.3     | 55.1  | 56.3  | 54.0  | 41.3  | 41.0  | 59.0    |

|   | Equip   |       |       |           |           | · Mon1    | thly Cons | sumption |          |          |       |       |       |      |
|---|---------|-------|-------|-----------|-----------|-----------|-----------|----------|----------|----------|-------|-------|-------|------|
| m | Code    | Jan   | Feb   | Mar       | Apr       | May       | June      | July     | Aug      | Sep      | Oct   | Nov   | Dec   | To   |
| 1 | EQ5100  |       | COOL  | ING TOWE  | R FANS    | Twr. Far  | CT-51A    |          |          |          |       |       |       |      |
|   | ELEC    | 2663  | 2449  | 2922      | 3018      | 3387      | 3384      | 3497     | 3497     | 3384     | 3178  | 2714  | 2690  | 36,  |
|   | PK      | 3.8   | 4.0   | 4.7       | 4.7       | 4.7       | 4.7       | 4.7      | 4.7      | 4.7      | 4.7   | 4.3   | 3.9   |      |
| 1 | EQ5100  |       | COOL  | ING TOWE  | ER FANS   |           |           |          |          |          |       |       |       |      |
|   | WATER   | 149   | 137   | 160       | 178       | 209       | 223       | 232      | 230      | 199      | 182   | 146   | 149   | 2,   |
|   | PK      | 0.2   | 0.2   | 0.3       | 0.3       | 0.3       | 0.4       | 0.4      | 0.4      | 0.3      | 0.3   | 0.2   | 0.2   | (    |
| 1 | EQ5001  |       | CHII  | LED WATE  | ER PUMP · | - CONST   | ANT VOLUM | E CH     | N Pump P | -51      |       |       |       |      |
|   | ELEC    | 16963 | 15322 | 16963     | 16416     | 16963     | 16416     | 16963    | 16963    | 16416    | 16963 | 16416 | 16963 | 199, |
|   | PK      | 22.8  | 22.8  | 22.8      | 22.8      | 22.8      | 22.8      | 22.8     | 22.8     | 22.8     | 22.8  | 22.8  | 22.8  | 2    |
| 1 | EQ5011  |       | CONI  | DENSER WA | ATER PUM  | P-CV(MED  | IUM EFFI  | N        | ew CND P | ump P-66 | ,     |       |       |      |
|   | ELEC    | 7686  | 6942  | 7686      | 7438      | 7686      | 7438      | 7686     | 7686     | 7438     | 7686  | 7438  | 7686  | 90,  |
|   | PK      | 10.3  | 10.3  | 10.3      | 10.3      | 10.3      | 10.3      | 10.3     | 10.3     | 10.3     | 10.3  | 10.3  | 10.3  | 1    |
| 1 | EQ5300  |       | CON   | TROL PANE | EL & INTE | ERLOCKS   |           |          |          |          |       |       |       | *    |
|   | ELEC    | 744   | 672   | 744       | 720       | 744       | 720       | 744      | 744      | 720      | 744   | 720   | 744   | 8,   |
|   | PK      | 1.0   | 1.0   | 1.0       | 1.0       | 1.0       | 1.0       | 1.0      | 1.0      | 1.0      | 1.0   | 1.0   | 1.0   |      |
| 2 | EQ1001S |       | 2-:   | STG CENT  | RIFUGAL ( | CHILLER - | <550 TON: | S        |          |          |       |       |       |      |
|   | ELEC    | 0     | 0     | 0         | 0         | 0         | 0         | 0        | 0        | 0        | 0     | 0     | 0     |      |
|   | PK      | 0.0   | 0.0   | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      |
| 2 | EQ5100  |       | COO   | LING TOW  | ER FANS   |           |           |          |          |          |       |       |       |      |
|   | ELEC    | 0     | 0     | 0         | 0         | 0         | 0         | 0        | 0        | 0        | 0     | 0     | 0     |      |
|   | PK      | 0.0   | 0.0   | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      |
| 2 | EQ5100  |       | COO   | LING TOW  | ER FANS   |           |           |          |          |          |       |       |       |      |
|   | WATER   | 0     | 0     | 0         | 0         | 0         | 0         | 0        | 0        | 0        | 0     | 0     | 0     |      |
|   | PK      | 0.0   | 0.0   | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      |
| 2 | EQ5001  |       | CHI   | LLED WATI | ER PUMP   | - CONST   | ANT VOLU  | ME       |          |          |       |       |       |      |
|   | ELEC    | 0     | 0     | 0         | 0         | 0         | 0         | 0        | 0        | 0        | 0     | 0     | 0     |      |
|   | PK      | 0.0   | 0.0   | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      |
| ) | EQ5010  |       | CON   | DENSER W  | ATER PUM  | P-CV(HIG  | H EFFIC.  | ·<br>>   |          | -        |       |       |       |      |
|   | ELEC    | 0     | 0     | 0         | 0         | 0         | 0         | 0        | 0        | 0        | 0     | 0     | 0     |      |
|   | PK      | 0.0   | 0.0   | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      |
| 2 | EQ5300  |       | CON   | TROL PAN  | EL & INT  | ERLOCKS   |           |          |          |          |       |       |       |      |
| _ | ELEC    | 0     | 0     | 0         | 0         | 0         | 0         | 0        | 0        | 0        | 0     | 0     | ď     |      |
|   | PK      | 0.0   | 0.0   | 0.0       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      |

|     |        |                                          |      | E Q         | UIPM     | ENT       | ENER       | G Y C    | ONSU | MPII | O N  |      |      |                    |
|-----|--------|------------------------------------------|------|-------------|----------|-----------|------------|----------|------|------|------|------|------|--------------------|
| Ref | Equip  |                                          |      |             |          | Mont      | hly Cons   | umption  |      |      |      |      |      |                    |
| Num | Code   | Jan                                      | Feb  | Mar         | Арг      | May       | June       | July     | Aug  | Sep  | Oct  | Nov  | Dec  | Total              |
| 1   | EQ4003 |                                          | FC ( | CENTR I FUG | AL - CON | STANT VO  | DLUME F    | an AH-51 |      |      |      |      |      | 1                  |
|     | ELEC   | 3646                                     | 3293 | 3646        | 3528     | 3646      | 3528       | 3646     | 3646 | 3528 | 3646 | 3528 | 3646 | 42,924             |
|     | PK     | 4.9                                      | 4.9  | 4.9         | 4.9      | 4.9       | 4.9        | 4.9      | 4.9  | 4.9  | 4.9  | 4.9  | 4.9  | 4.9                |
| 2   | EQ4003 |                                          | FC ( | CENTR I FUG | AL - CON | STANT VO  | )<br>LUME  | an AH-52 |      |      |      |      |      |                    |
|     | ELEC   | 1042                                     | 941  | 1042        | 1008     | 1042      | 1008       | 1042     | 1042 | 1008 | 1042 | 1008 | 1042 | 12,264             |
|     | PK     | 1.4                                      | 1.4  | 1.4         | 1.4      | 1.4       | 1.4        | 1.4      | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  | 1.4                |
| 3   | EQ4003 | Ŧ                                        | FC ( | CENTR I FUG | AL - CON | STANT VO  | LUME F     | an AH-53 |      |      |      |      |      |                    |
|     | ELEC   | 6324                                     | 5712 | 6324        | 6120     | 6324      | 6120       | 6324     | 6324 | 6120 | 6324 | 6120 | 6324 | 74,460             |
|     | PK     | 8.5                                      | 8.5  | 8.5         | 8.5      | 8.5       | 8.5        | 8.5      | 8.5  | 8.5  | 8.5  | 8.5  | 8.5  | 8.5                |
| 4   | EQ4003 |                                          | FC ( | CENTRIFUG   | AL - CON | STANT VO  | DLUME F    | n AH-54  |      |      |      |      |      | <b></b>            |
|     | ELEC   | 3274                                     | 2957 | 3274        | 3168     | 3274      | 3168       | 3274     | 3274 | 3168 | 3274 | 3168 | 3274 | 38,544             |
|     | PK     | 4.4                                      | 4.4  | 4.4         | 4.4      | 4.4       | 4.4        | 4.4      | 4.4  | 4.4  | 4.4  | 4.4  | 4.4  | 4.4                |
| 5   | EQ4003 | <u> </u>                                 | FC ( | CENTRIFUG   | AL - CON | ISTANT VO | DLUME F    | an AH-55 |      |      |      |      |      | -<br>, <del></del> |
|     | ELEC   | 2753                                     | 2486 | 2753        | 2664     | 2753      | 2664       | 2753     | 2753 | 2664 | 2753 | 2664 | 2753 | 32,412             |
|     | PK     | 3.7                                      | 3.7  | 3.7         | 3.7      | 3.7       | 3.7        | 3.7      | 3.7  | 3.7  | 3.7  | 3.7  | 3.7  | 3.7                |
| 6   | EQ4003 | 1                                        | FC ( | CENTRIFUG   | AL - CON | ISTANT VO | DLUME F    | an AH-4  |      |      |      |      | ,    |                    |
|     | ELEC   | 3497                                     | 3158 | 3497        | 3384     | 3497      | 3384       | 3497     | 3497 | 3384 | 3497 | 3384 | 3497 | 41,172             |
|     | PK     | 4.7                                      | 4.7  | 4.7         | 4.7      | 4.7       | 4.7        | 4.7      | 4.7  | 4.7  | 4.7  | 4.7  | 4.7  | 4.7                |
| 7   | EQ4003 |                                          | FC ( | CENTRIFUG   | AL - CON | ISTANT VO | DLUME Fa   | an AH-1  |      |      |      |      |      |                    |
|     | ELEC   | 5803                                     | 5242 | 5803        | 5616     | 5803      | 5616       | 5803     | 5803 | 5616 | 5803 | 5616 | 5803 | 68,328             |
|     | PK     | 7.8                                      | 7.8  | 7.8         | 7.8      | 7.8       | 7.8        | 7.8      | 7.8  | 7.8  | 7.8  | 7.8  | 7.8  | 7.8                |
| 8   | EQ4003 |                                          | FC ( | CENTRIFUC   | AL - CON | ISTANT VO | DLUME F    | an AH-3  |      |      |      |      |      |                    |
|     | ELEC   | 7366                                     | 6653 | 7366        | 7128     | 7366      | 7128       | 7366     | 7366 | 7128 | 7366 | 7128 | 7366 | 86,724             |
|     | PK     | 9.9                                      | 9.9  | 9.9         | 9.9      | 9.9       | 9.9        | 9.9      | 9.9  | 9.9  | 9.9  | 9.9  | 9.9  | 9.9                |
| 9   | EQ4003 | 1                                        | FC ( | CENTRIFUG   | AL - CON | ISTANT VO | F<br>DLUME | an AH-2  |      |      |      |      |      |                    |
|     | ELEC   | 1488                                     | 1344 | 1488        | 1440     | 1488      | 1440       | 1488     | 1488 | 1440 | 1488 | 1440 | 1488 | 17,520             |
|     | PK     | 2.0                                      | 2.0  | 2.0         | 2.0      | 2.0       | 2.0        | 2.0      | 2.0  | 2.0  | 2.0  | 2.0  | 2.0  | 2.0                |
| 10  | EQ4003 | •                                        | FC ( | CENTRIFUG   | AL - CON | ISTANT VO | OLUME F    | an AH-5  |      |      |      |      |      |                    |
|     | ELEC   | 3125                                     | 2822 | 3125        | 3024     | 3125      | 3024       | 3125     | 3125 | 3024 | 3125 | 3024 | 3125 | 36,792             |
|     | PK     | 4.2                                      | 4.2  | 4.2         | 4.2      | 4.2       | 4.2        | 4.2      | 4.2  | 4.2  | 4.2  | 4.2  | 4.2  | 4.2                |
| 1   | BLR51  | -, -, -, -, -, -, -, -, -, -, -, -, -, - | OIL  | FIRED HO    | T WATER  | BOILER    | Boiler B-5 | 51       |      |      |      |      |      |                    |
|     | OIL    | 1386                                     | 1172 | 1197        | 1093     | 1081      | 1039       | 1074     | 1074 | 1048 | 1133 | 1262 | 1355 | 13,913             |
|     | PK     | 2.2                                      | 2.0  | 2.0         | 2.0      | 1.7       | 1.4        | 1.4      | 1.4  | 1.7  | 2.0  | 2.0  | 2.1  | 2.2                |
|     |        |                                          |      |             |          |           |            |          |      |      |      |      |      |                    |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

| f | Equip        |      |      |           |           | Mont     | hly Cons | umption   |      |      |      |      |      |       |
|---|--------------|------|------|-----------|-----------|----------|----------|-----------|------|------|------|------|------|-------|
| m | Code         | Jan  | Feb  | Mar       | Apr       | May      | June     | July      | Aug  | Sep  | Oct  | Nov  | Dec  | Tota  |
|   |              |      |      |           |           |          |          | pump P-70 | 0    |      |      |      |      |       |
| 1 | EQ5020       |      |      | ING WATE  |           |          |          |           |      |      |      |      |      | 1     |
|   | ELEC         | 1711 | 1546 | 1711      | 1656      | 1711     | 1656     | 1711      | 1711 | 1656 | 1711 | 1656 | 1711 | 20,14 |
|   | PK           | 2.3  | 2.3  | 2.3       | 2.3       | 2.3      | 2.3      | 2.3       | 2.3  | 2.3  | 2.3  | 2.3  | 2.3  | 2.    |
| 1 | EQ5307       |      | CONT | ROLS      |           |          |          |           |      |      |      |      |      |       |
|   | ELEC         | 372  | 336  | 372       | 360       | 372      | 360      | 372       | 372  | 360  | 372  | 360  | 372  | 4,38  |
|   | PK           | 0.5  | 0.5  | 0.5       | 0.5       | 0.5      | 0.5      | 0.5       | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0     |
| 1 | EQ5020       |      | UEAT | ING WATE  | ם כזפכווו | ATION DI | MD HW    | pump P-6  | 3    |      |      |      |      |       |
| 1 | ELEC         | 4687 | 4234 | 4687      | 4536      | 4687     | 4536     | 4687      | 4687 | 4536 | 4687 | 4536 | 4687 | 55,18 |
|   | PK           | 6.3  | 6.3  | 6.3       | 6.3       | 6.3      | 6.3      | 6.3       | 6.3  | 6.3  | 6.3  | 6.3  | 6.3  | 6     |
| _ | D) DE4       | -1   | 071  | FIRED HO  | T LIATED  | 001150   |          |           |      |      |      |      |      |       |
| 2 | BLR51<br>OIL | 0    | 011  | LIKED HO  | 1 WATER   | 0        | 0        | 0         | 0    | 0    | 0    | 0    | 0    |       |
|   | PK           | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | , 0   |
|   |              |      |      |           |           |          |          |           |      |      |      |      |      |       |
| 2 | EQ5020       | _    |      | ING WATE  |           |          |          | _         | •    | •    | •    | •    | •    |       |
|   | ELEC         | 0    | 0    | 0         | 0         | 0        | 0        | 0         | 0    | 0    | 0    | 0    | 0    |       |
|   | PK           | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | C     |
| 2 | EQ5307       |      | CONT | rols      |           |          |          |           |      |      |      |      |      |       |
|   | ELEC         | 0    | 0    | 0         | 0         | 0        | 0        | 0         | 0    | 0    | 0    | 0    | 0    |       |
|   | PK           | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | C     |
| 2 | EQ5020       |      | HEAT | TING WATE | R CIRCUL  | ATION PL | JMP      |           |      |      |      |      |      |       |
|   | ELEC         | 0    | 0    | 0         | 0         | 0        | 0        | 0         | 0    | 0    | 0    | 0    | 0 .  |       |
|   | PK           | 0.0  | 0.0  | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0     |

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1 AIRSIDE EQ WITH NEW MOTORS

SYSTEM LOAD PROFILE -----

### ECO-H, TEST CELLS 1 & 2

#### System Totals

| Percent   | Cool  | ing Loa | d     | Heatin   | ng Load |       | Cooling  | Airflow |       | Heating | Airflow |       |
|-----------|-------|---------|-------|----------|---------|-------|----------|---------|-------|---------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity | Hours   | Hours | Cap.     | Hours   | Hours | Cap.    | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)   | (%)     |       | (Cfm)    | (%)     |       | (Cfm)   | (%)     |       |
| 0 - 5     | 2.8   | 0       | 0     | -43,973  | 99      | 2,799 | 3,548.4  | 0       | 0     | 0.0     | 0       | 0     |
| 5 - 10    | 5.5   | 10      | 884   | -87,947  | 1       | 42    | 7,096.7  | 0       | 0     | 0.0     | 0       | 0     |
| 10 - 15   | 8.3   | 28      | 2,466 | -131,920 | 0       | 0     | 10,645.1 | 0       | 0     | 0.0     | 0       | 0     |
| 15 - 20   | 11.1  | 8       | 661   | -175,893 | 0       | 0     | 14,193.4 | 0       | 0     | 0.0     | 0       | 0     |
| 20 - 25   | 13.8  | 4       | 316   | -219,867 | 0       | 0     | 17,741.8 | 0       | 0     | 0.0     | 0       | 0     |
| 25 - 30   | 16.6  | 4       | 312   | -263,840 | . 0     | 0     | 21,290.1 | 0       | 0     | 0.0     | 0       | 0     |
| 30 - 35   | 19.4  | 1       | 127   | -307,813 | 0       | 0     | 24,838.5 | 0       | 0     | 0.0     | 0       | 0     |
| 35 - 40   | 22.1  | 2       | 139   | -351,787 | 0       | 0     | 28,386.8 | 0       | 0     | 0.0     | 0       | 0     |
| 40 - 45   | 24.9  | 1       | 131   | -395,760 | 0       | 0     | 31,935.2 | 0       | 0     | 0.0     | 0       | 0     |
| 45 - 50   | 27.6  | 1       | 88    | -439,733 | 0       | 0     | 35,483.5 | 0       | 0     | 0.0     | 0       | 0     |
| 50 - 55   | 30.4  | 6       | 527   | -483,707 | 0       | 0     | 39,031.9 | 0       | 0     | 0.0     | 0       | 0     |
| 55 - 60   | 33.2  | 4       | 347   | -527,680 | 0       | 0     | 42,580.2 | 0       | 0     | 0.0     | 0       | 0     |
| 60 - 65   | 35.9  | 13      | 1,132 | -571,653 | 0       | 0     | 46,128.6 | 0       | 0     | 0.0     | 0       | 0     |
| 65 - 70   | 38.7  | 7       | 651   | -615,627 | 0       | 0     | 49,676.9 | 0       | 0     | 0.0     | 0       | 0     |
| 70 - 75   | 41.5  | 9       | 784   | -659,600 | 0       | 0     | 53,225.3 | 0       | 0     | 0.0     | 0       | 0     |
| 75 - 80   | 44.2  | 0       | 0     | -703,573 | 0       | 0     | 56,773.6 | 0       | 0     | 0.0     | 0       | 0     |
| 80 - 85   | 47.0  | 2       | 175   | -747,547 | 0       | 0     | 60,322.0 | 0       | 0     | 0.0     | 0       | 0     |
| 85 - 90   | 49.8  | 0       | 20    | -791,520 | 0       | 0     | 63,870.3 | 0       | 0     | 0.0     | 0       | 0     |
| 90 - 95   | 52.5  | 0       | 0     | -835,493 | 0       | 0     | 67,418.7 | 0       | 0     | 0.0     | 0       | 0     |
| 95 - 100  | 55.3  | 0       | 0     | -879,467 | 0       | 0     | 70,967.0 | 100     | 8,760 | 0.0     | 0       | 0     |
| Hours Off | 0.0   | 0       | 0     | 0        | 0       | 5,919 | 0.0      | 0       | 0     | 0.0     | 0       | 8,760 |

|     |          |       |            | E (       | UIPI     | HENT  | ENE       | R G Y    | CONSI | JMPT: | I O N |       | • • • • • • • • • |         |
|-----|----------|-------|------------|-----------|----------|-------|-----------|----------|-------|-------|-------|-------|-------------------|---------|
| Ref | Equip    |       |            |           |          | Mon   | thly Con  | sumption |       |       |       |       |                   |         |
|     | Code     | Jan   | Feb        | Mar       | Apr      | May   | June      | July     | Aug   | Sep   | Oct   | Nov   | Dec               | Total   |
| 0   | LIGHTS   | Light | ing Systen | ns        | ,        |       | 4         |          |       |       |       |       |                   |         |
|     | ELEC     | 30290 | 27359      | 30302     | 29311    | 30296 | 29323     | 30284    | 30302 | 29311 | 30296 | 29311 | 30284             | 356,670 |
|     | PK       | 43.4  | 43.4       | 43.4      | 43.4     | 43.4  | 43.4      | 43.4     | 43.4  | 43.4  | 43.4  | 43.4  | 43.4              | 43.4    |
| 1   | MISC LD  |       |            |           |          |       |           |          |       |       |       |       |                   |         |
|     | ELEC     | 13610 | 12293      | 13610     | 13171    | 13610 | 13171     | 13610    | 13610 | 13171 | 13610 | 13171 | 13610             | 160,248 |
|     | PK       | 36.6  | 36.6       | 36.6      | 36.6     | 36.6  | 36.6      | 36.6     | 36.6  | 36.6  | 36.6  | 36.6  | 36.6              | 36.6    |
| 2   | MISC LD  |       |            |           |          |       |           |          |       |       |       |       |                   |         |
| _   | GAS      | 0     | 0          | . 0       | 0        | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0                 | 0       |
|     | PK       | 0.0   | 0.0        | 0.0       | 0.0      | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0               | 0.0     |
| 3   | MISC LD  |       |            |           |          |       |           |          |       | •     |       |       |                   |         |
|     | OIL      | 0     | 0          | 0         | 0        | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0                 | 0       |
|     | PK       | 0.0   | 0.0        | 0.0       | 0.0      | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0               | 0.0     |
| 4   | MISC LD  |       |            |           |          |       |           |          |       |       |       |       |                   |         |
|     | P STEAM  | 0     | 0          | 0         | 0        | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0                 | 0       |
|     | PK       | 0.0   | 0.0        | 0.0       | 0.0      | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0               | 0.0     |
| 5   | MISC LD  |       |            |           |          |       |           |          |       |       |       |       |                   |         |
|     | P HOTH20 | 0     | 0          | 0         | 0        | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0                 | 0       |
|     | PK       | 0.0   | 0.0        | 0.0       | 0.0      | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0               | 0.0     |
| 6   | MISC LD  |       |            |           |          |       |           |          |       |       |       |       |                   |         |
|     | P CHILL  | 0     | 0          | 0         | 0        | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0                 | 0       |
|     | PK       | 0.0   | 0.0        | 0.0       | 0.0      | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0               | 0.0     |
| 1   |          |       | BAS        | E UTILITY | ſ        |       |           |          |       |       |       |       |                   |         |
|     | CHILLD   | 33926 | 30643      | 33926     | 32832    | 33926 | 32832     | 33926    | 33926 | 32832 | 33926 | 32832 | 33926             | 399,456 |
|     | PK       | 45.6  | 45.6       | 45.6      | 45.6     | 45.6  | 45.6      | 45.6     | 45.6  | 45.6  | 45.6  | 45.6  | 45.6              | 45.6    |
| 2   |          |       | BAS        | E UTILIT  | ť        |       |           |          |       |       |       |       |                   |         |
|     | HOTLD    | 676   | 611        | 676       | 654      | 676   | 654       | 676      | 676   | 654   | 676   | 654   | 676               | - 7,963 |
|     | PK       | 0.9   | 0.9        | 0.9       | 0.9      | 0.9   | 0.9       | 0.9      | 0.9   | 0.9   | 0.9   | 0.9   | 0.9               | 0.9     |
| . 3 |          |       | BAS        | E UTILIT  | r        |       | -         |          |       |       |       |       |                   |         |
|     | ELEC     | 1727  | 1561       | 1802      | 1660     | 1765  | 1734      | 1690     | 1802  | 1660  | 1765  | 1660  | 1690              | 20,516  |
|     | PK       | 7.0   | 7.0        | 7.0       | 7.0      | 7.0   | 7.0       | 7.0      | 7.0   | 7.0   | 7.0   | 7.0   | 7.0               | 7.0     |
| 1   |          |       | YOR        | K CENT. I | R-123 CH | ILLER | New Chill | er CH-51 |       |       |       |       |                   |         |
| -   | ELEC     | 29154 | 26644      | 30638     | 32520    | 36738 | 35005     | 35282    | 34655 | 32492 | 33381 | 28491 | 29173             | 384,173 |
|     | PK       | 40.7  | 41.6       | 50.9      | 54.5     | 57.8  | 59.0      | 56.3     | 55.1  | 56.3  | 54.0  | 41.3  | 41.0              | 59.0    |

|     |         |       |       | E C              | UIPI       | MENT      | ENER         | R G Y   | CONSI    | UMPT     | I O N    |            |            |          |
|-----|---------|-------|-------|------------------|------------|-----------|--------------|---------|----------|----------|----------|------------|------------|----------|
| Ref | Equip   |       |       |                  |            | Mont      | this Conc    | umntion |          |          |          |            |            |          |
|     | Code    | Jan   | Feb   | Mar              | Apr        | May       | June         | July    | Aug      | San      | 00+      | Nav        | D          |          |
|     |         |       |       |                  | 1,10.      | •         |              | •       | Aug      | Sep      | Oct      | Nov        | Dec        | Total    |
| 1   | EQ5100  |       | C00   | LING TOWE        | R FANS     | Twr. Fa   | n CT-51A     |         |          |          |          |            |            |          |
|     | ELEC    | 2663  | 2449  | 2922             | 3018       | 3387      | 3384         | 3497    | 3497     | 3384     | 3178     | 2714       | 2690       | 36,782   |
|     | PK      | 3.8   | 4.0   | 4.7              | 4.7        | 4.7       | 4.7          | 4.7     | 4.7      | 4.7      | 4.7      | 4.3        | 3.9        | 4.7      |
| 1   | EQ5100  |       | COO   | LING TOWE        | P FANS     |           |              |         |          |          |          |            |            |          |
|     | WATER   | 149   | 137   | 160              | 178        | 209       | 223          | 232     | 230      | 199      | 182      | 1//        | 1/0        | 2 407    |
|     | PK      | 0.2   | 0.2   | 0.3              | 0.3        | 0.3       | 0.4          | 0.4     | 0.4      | 0.3      | 0.3      | 146<br>0.2 | 149<br>0.2 | 2,193    |
|     |         |       |       |                  |            | • • • •   | 0.4          |         |          |          | 0.5      | 0.2        | 0.2        | 0.4      |
| 1   | EQ5001  |       | CHI   | LLED WATE        | R PUMP -   | CONSTA    | NT VOLUM     | E CHV   | V Pump P | -51      |          |            |            |          |
|     | ELEC    | 16963 | 15322 | 16963            | 16416      | 16963     | 16416        | 16963   | 16963    | 16416    | 16963    | 16416      | 16963      | 199,728  |
|     | PK      | 22.8  | 22.8  | 22.8             | 22.8       | 22.8      | 22.8         | 22.8    | 22.8     | 22.8     | 22.8     | 22.8       | 22.8       | 22.8     |
| 1   | EQ5011  | ,     | COM   |                  | 750 Billio |           |              | Ne      | w CND PL | ımn P.66 |          |            | <u></u>    |          |
| ,   | ELEC    | 7686  | 6942  | ENSER WA<br>7686 | 7438       | 7686      |              | • ,     |          |          | 7/0/     | 7.70       |            | C        |
|     | PK      | 10.3  | 10.3  | 10.3             | 10.3       | 10.3      | 7438<br>10.3 | 7686    | 7686     | 7438     | 7686     | 7438       | 7686       | 90,491   |
|     |         |       |       |                  |            |           |              | 10.5    | 10.3     | 10.3     | 10.3     | 10.3       | 10.3       | 10.3     |
| 1   | EQ5300  |       | CONT  | TROL PANE        | L & INTE   | RLOCKS    |              |         |          |          |          |            |            |          |
|     | ELEC    | 744   | 672   | 744              | 720        | 744       | 720          | 744     | 744      | 720      | 744      | 720        | 744        | 8,760    |
|     | PK      | 1.0   | 1.0   | 1.0              | 1.0        | 1.0       | 1.0          | 1.0     | 1.0      | 1.0      | 1.0      | 1.0        | 1.0        | 1.0      |
| 2   | EQ1001S |       | 2-5   | STG CENTR        | TEHIGAL C  | 'HILLED & | 550 TONG     |         |          |          |          |            |            |          |
|     | ELEC    | 0     | 0     | 0                | 0          | 0         | 0            | 0       | 0        | 0        | 0        | 0          | 0          | •        |
|     | PK      | 0.0   | 0.0   | 0.0              | 0.0        | 0.0       | 0.0          | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0<br>0.0 |
|     |         |       |       |                  |            |           |              |         |          |          | •••      | 0.0        | 0.0        | 0.0      |
| 2   | EQ5100  |       |       | ING TOWE         |            |           |              |         |          |          |          |            |            |          |
|     | ELEC    | 0     | 0     | 0                | 0          | 0         | 0            | 0       | 0        | 0        | 0        | 0          | 0          | 0        |
|     | PK      | 0.0   | 0.0   | 0.0              | 0.0        | 0.0       | 0.0          | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |
| 2   | EQ5100  |       | COOL  | ING TOWE         | R FANS     |           |              |         |          |          |          |            |            |          |
|     | WATER   | 0     | 0     | 0                | 0          | 0         | 0            | 0       | 0        | 0        | 0        | 0          | 0          | 0        |
|     | PK      | 0.0   | 0.0   | 0.0              | 0.0        | 0.0       | 0.0          | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |
| 2   | EQ5001  |       | CHTI  | LED WATE         | DIIMD -    | CONSTA    | NT VOLUMI    | -       |          |          |          |            |            |          |
| _   | ELEC    | 0     | 0     | 0                | 0          | 0         | 0            | =<br>0  | 0        | 0        | •        | 0          | •          | •        |
|     | PK      | 0.0   | 0.0   | 0.0              | 0.0        | 0.0       | 0.0          | 0.0     | 0.0      | 0.0      | 0<br>0.0 | 0.0        | 0<br>0.0   | 0.0      |
| _   |         |       |       |                  |            |           |              |         |          |          |          |            |            |          |
| 2   | EQ5010  |       |       | ENSER WAT        |            |           |              |         |          |          |          |            |            |          |
|     | ELEC    | 0     | 0     | 0                | 0          | 0         | 0            | 0       | 0        | 0        | 0        | 0          | 0          | 0        |
|     |         |       | 0.0   |                  | 0.0        | 00        | ~ ~          | ~ ~     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |
|     | PK      | 0.0   | 0.0   | 0.0              | 0.0        | 0.0       | 0.0          | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |
| 2   | EQ5300  | 0.0   |       | ROL PANEL        |            |           | 0.0          | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |
|     |         | 0.0   |       |                  |            |           | 0.0          | 0.0     | 0.0      | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |

|     |                |          |              | E Q         | UIPM        | IENT         | ENEI      | RGY C       | 0 N S U     | IMPTI        | O N         |             |        |               |
|-----|----------------|----------|--------------|-------------|-------------|--------------|-----------|-------------|-------------|--------------|-------------|-------------|--------|---------------|
| Pef | Equip -        |          |              | <b></b>     |             | Mon!         | thly Con  | sumption ·  |             | ٠            |             |             |        |               |
| Num | Code           | Jan      | Feb          | Mar         | Apr         | May          | June      | July        | Aug         | Sep          | Oct         | Nov         | Dec    | ;:<br>Total   |
|     |                |          |              |             | •           | •            |           | •           | ,           | CCP          | 001         | 1101        | 500    | 10181         |
| 1   | EQ4003         |          | FC (         | CENTRIFUG   | AL - CON    | STANT VO     | DLUME .   | Fan AH-51   |             | i            |             |             |        | <b></b>       |
|     | ELEC           | 3646     | 3293         | 3646        | 3528        | 3646         | 3528      | 3646        | 3646        | 3528         | 3646        | 3528        | 3646   | 42,924        |
|     | PK             | 4.9      | 4.9          | 4.9         | 4.9         | 4.9          | 4.9       | 4.9         | 4.9         | 4.9          | 4.9         | 4.9         | 4.9    | 4.9           |
| 2   | EQ4003         |          | 50           | CENTR I FUG | AL - CON    | CTANT NO     | N I I I I | Fan AH-52   |             |              |             |             |        |               |
| ٤   | ELEC           | 1042     | 941          | 1042        | 1008        | 1042         | 1008      | 1042        | 1042        | 1008         | 10/2        | 1008        | 10/3   | 12 24         |
|     | PK             | 1.4      | 1.4          | 1.4         | 1.4         | 1.4          | 1.4       | 1.4         | 1.4         | 1.4          | 1042        | 1.4         | 1.4    | 12,264        |
|     |                | <u> </u> |              |             |             |              |           |             |             |              |             |             | 1.7    | 1.4           |
| 3   | EQ4003         |          | FC (         | CENTR I FUG | AL - CON    | STANT VO     | DLUME I   | Fan AH-53   |             |              |             |             |        |               |
|     | ELEC           | 6324     | 5712         | 6324        | 6120        | 6324         | 6120      | 6324        | 6324        | 6120         | 6324        | 6120        | 6324   | 74,460        |
|     | PK             | 8.5      | 8.5          | 8.5         | 8.5         | 8.5          | 8.5       | 8.5         | 8.5         | 8.5          | 8.5         | 8.5         | 8.5    | 8.5           |
|     |                |          |              |             |             |              |           | Fan AH-54   | <del></del> |              |             |             |        |               |
| 4   | EQ4003<br>ELEC | 3274     | 2957         | CENTRIFUG   |             |              | JLUME     |             | 227/        | 7440         | 707/        | 7440        | 707/   |               |
|     | PK             | 4.4      | 4.4          | 3274        | 3168<br>4.4 | 327 <u>4</u> | 3168      | 3274<br>4.4 | 3274        | 3168<br>4.4  | 3274<br>4.4 | 3168<br>4.4 | 4.4    | 38,544        |
|     | • • •          | 1        |              |             |             |              |           |             |             |              | 4.4         |             |        | 4.4           |
| 5   | EQ4003         |          | FC (         | CENTRIFUG   | AL - CON    | STANT VO     | DLUME     | Fan AH-55   |             |              |             |             |        |               |
|     | ELEC           | 2753     | 2486         | 2753        | 2664        | 2753         | 2664      | 2753        | 2753        | 2664         | 2753        | 2664        | 2753   | 32,412        |
|     | PK             | 3.7      | 3.7          | 3.7         | 3.7         | 3.7          | 3.7       | 3.7         | 3.7         | 3.7          | 3.7         | 3.7         | 3.7    | 3.7           |
| ,   | E01007         |          |              |             |             |              | F         | an AH-4     |             |              |             |             |        |               |
| 6   | EQ4003<br>ELEC | 3497     |              | CENTRIFUG   |             |              | COME      |             | 7/07        | 770/         | 7/07        | ~~~         | 7407   | 14 472        |
|     | PK             | 4.7      | 3158<br>4.7  | 3497<br>4.7 | 3384<br>4.7 | 3497<br>4.7  | 3384      | 3497<br>4.7 | 3497<br>4.7 | 3384<br>4.7  | 3497<br>4.7 | 3384<br>4.7 | 4.7    | 41,172        |
|     |                | 1        |              | 7.1         | 7.1         | 7.,          |           |             | 4.7         | 4.1          | 4.7         | 4.7         | 4.7    | 4.7           |
| 7   | EQ4003         |          | FC (         | CENTRIFUG   | AL - CON    | STANT VO     | DLUME F   | an AH-1     |             |              |             |             |        | t             |
|     | ELEC           | 5803     | 5242         | 5803        | 5616        | 5803         | 5616      | 5803        | 5803        | 5616         | 5803        | 5616        | 5803   | 68,328        |
|     | PK             | 7.8      | 7.8          | 7.8         | 7.8         | 7.8          | 7.8       | 7.8         | 7.8         | 7.8          | 7.8         | 7.8         | 7.8    | 7.8           |
|     | <b>201007</b>  |          |              |             |             |              | F         | an AH-3     |             |              |             |             |        |               |
| 8   | EQ4003<br>ELEC | 7366     | 665 <b>3</b> | CENTRIFUG   |             |              | JLUME     |             | 77//        | 7400         |             | 7400        |        | [             |
|     | PK             | 9.9      | 9.9          | 7366<br>9.9 | 7128        | 7366         | 7128      | 7366        | 7366        | 7128         | 7366<br>9.9 | 7128        | 7366   | 86,724        |
|     |                | . 1      |              | 7.7         | 7.7         | 7.7          |           |             | 7.9         | 9.9          | 9.9         | 9.9         | 9.9    | 9.9           |
| 9   | EQ4003         |          | FC (         | CENTRIFUG   | AL - CON    | STANT VO     | LUME F    | an AH-2     |             |              |             |             |        |               |
|     | ELEC           | 1488     | 1344         | 1488        | 1440        | 1488         | 1440      | 1488        | 1488        | 1440         | 1488        | 1440        | 1488 - | 17,520        |
|     | PK             | 2.0      | 2.0          | 2.0         | 2.0         | 2.0          | 2.0       | 2.0         | 2.0         | 2.0          | 2.0         | 2.0         | 2.0    | 2.0           |
|     |                |          |              |             | ····        |              |           | on AU E     |             | <del> </del> |             |             |        |               |
| 10  | EQ4003         |          |              | CENTRIFUG   |             |              | COME      | an AH-5     |             |              |             |             |        | <del></del> 1 |
|     | ELEC           | 3125     | 2822         | 3125        | 3024        | 3125         | 3024      | 3125        | 3125        | 3024         | 3125        | 3024        | 3125   | 36,792        |
|     | PK             | 4.2      | 4.2          | 4.2         | 4.2         | 4.2          | 4.2       | 4.2         | 4.2         | 4.2          | 4.2         | 4.2         | 4.2    | 4.2           |
| 1   | OILBLR         |          | וזח          | FIRED HO    | T WATER     | ROTLEP       | New Bo    | iler B-51   |             |              |             |             |        |               |
| •   | OIL            | 1091     | 923          | 942         | 860         | 851          | 818       | 845         | 845         | 825          | 892         | 994         | 1067   | 10,954        |
|     | PK             | 1.7      | 1.6          | 1.6         | 1.6         | 1.3          | 1.1       | 1.1         | 1.1         | 1.4          | 1.6         | 1.6         | 1.6    | 1.7           |
|     |                | 1        |              |             |             |              |           |             |             | ·            |             |             |        | • • • •       |

| Ref |        |      |      |           |          | Mont     | hly Cons | umption  |      |            | ·    |      |          |        |
|-----|--------|------|------|-----------|----------|----------|----------|----------|------|------------|------|------|----------|--------|
| Num | Code   | Jan  | Feb  | Mar       | Арг      | May      | June     | July     | Aug  | Sep        | 0ct  | Nov  | Dec      | Total  |
| 1   | EQ5020 |      | HEAT | ING WATE  | R CIRCUL | ATION PU | IMP HW   | pump P-6 | 3    |            |      |      |          |        |
|     | ELEC   | 4687 | 4234 | 4687      | 4536     | 4687     | 4536     | 4687     | 4687 | 4536       | 4687 | 4536 | 4687     | FE 100 |
|     | PK     | 6.3  | 6.3  | 6.3       | 6.3      | 6.3      | 6.3      | 6.3      | 6.3  | 6.3        | 6.3  | 6.3  | 6.3      | 55,188 |
| 1   | EQ5307 |      | CONT | ROLS      |          |          |          |          |      |            |      |      |          |        |
|     | ELEC   | 372  | 336  | 372       | 360      | 372      | 360      | 372      | 372  | 7/0        | 770  |      |          |        |
|     | PK     | 0.5  | 0.5  | 0.5       | 0.5      | 0.5      | 0.5      | 0.5      | 0.5  | 360<br>0.5 | 372  | 360  | 372      | 4,380  |
|     |        |      |      |           |          |          |          | 0.5      | 0.5  | 0.5        | 0.5  | 0.5  | 0.5      | 0.5    |
| 2   | BLR51  |      | OIL  | FIRED HO  | T WATER  | BOILER   |          |          |      |            |      |      |          |        |
|     | OIL    | 0    | 0    | 0         | 0        | 0        | 0        | 0        | 0    | 0          | 0    | 0    | 0        | _      |
|     | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  | 0.0        | 0.0  | 0.0  | 0<br>0.0 | 0.0    |
| 2   | EQ5020 |      | HEAT | ING WATER | CIRCUL   | ATION PU | MD.      |          |      |            |      |      |          |        |
|     | ELEC   | 0    | 0    | 0         | 0        | 0        | 0        | 0        | 0    | •          |      |      |          |        |
|     | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  | 0<br>0.0   | 0    | 0    | 0        | 0      |
|     |        |      |      |           |          |          | •••      | 0.0      | 0.0  | 0.0        | 0.0  | 0.0  | 0.0      | 0.0    |
|     | EQ5307 |      | CONT | ROLS      |          |          |          |          |      |            |      |      |          |        |
|     | ELEC   | 0    | 0    | 0         | 0        | 0        | 0        | 0        | 0    | 0          | 0    | 0    | •        | _      |
|     | PK     | 0.0  | 0.0  | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  | 0.0        | 0.0  | 0.0  | 0<br>0.0 | 0.0    |

### Uti...y Description Reference Table

#### LSTC BUILDING SCHEDULES

```
Schedules:
    AVAIL AVAILABLE (100%)
    CLGONLY COOLING ONLY (DESIGN)
    DAYSCHED COOLING FAN SCHEDULE CODE
    OFF ALWAYS OFF
    OFFICEL1 TYPICAL OFFICE SCHEDULE FOR LIGHTING
    OFFICEL2 TYPICAL OFFICE SCHEDULE 1 LIGHTING-25%
    OFFICEL6 TYPICAL OFFICE SCHEDULE 5 LIGHTING-50%
    OFFICEL7 TYPICAL OFFICE SCHEDULE 1-OCC. SEN ECO
    OFFICEL8 TYPICAL OFFICE SCHEDULE 2-OCC. SEN ECO
    OFFICEL9 TYPICAL OFFICE SCHEDULE 3-OCC. SEN ECO
    OFFICEM1 TYPICAL UPS MISCELLANEOUS EQ. SCHEDULE
    OFFICEP1 TYPICAL OFFICE SCHEDULE FOR PEOPLE
    OFICEL10 TYPICAL OFFICE SCHEDULE 4-OCC. SEN ECO
    OFICEL11 TYPICAL OFFICE SCHEDULE 5-OCC. SEN ECO
    OFICEL12 TYPICAL OFFICE SCHEDULE 6-OCC. SEN ECO
    OFICEL13 TYPICAL OFFICE SCHEDULE 6-OCC. SEN ECO
    OFICEL14 TYPICAL OFFICE SCHEDULE 7-OCC. SEN ECO
    OFICEL15 TYPICAL OFFICE SCHEDULE 8-OCC. SEN ECO
    OFICEL16 TYPICAL OFFICE SCHEDULE 9-OCC. SEN ECO
    OFICEL17 TYPICAL OFFICE SCHEDULE 100CC. SEN ECO
    OFICEL18 TYPICAL OFFICE SCHEDULE 110CC. SEN ECO
    OFICEL19 TYPICAL OFFICE SCHEDULE 120CC. SEN ECO
    OFICEL20 TYPICAL OFFICE SCHEDULE 130CC. SEN ECO
    OFICEL21 TYPICAL OFFICE SCHEDULE 140CC. SEN ECO
    OFICEL22 TYPICAL OFFICE SCHEDULE 150CC. SEN ECO
    OFICEL23 TYPICAL OFFICE SCHEDULE 160CC. SEN ECO
    OFICEL25 TYPICAL OFFICE SCHEDULE LIGHTING-80%
    OFICEL26 TYPICAL OFFICE SCHEDULE 1 LIGHTING-94%
    OFICEL27 TYPICAL OFFICE SCHEDULE LIGHTING-58%
     OFICEL28 TYPICAL OFFICE SCHEDULE LIGHTING-95%
     OFICEL29 TYPICAL OFFICE SCHEDULE LIGHTING-28%
     OPSTART OPTIMUM START COOLING FAN SCHED. CODE
     OPSTOP OPTIMUM STOP COOLING FAN SCHED. CODE
System:
     BPMZ BYPASS MULTIZONE
     COMP COMPUTER ROOM UNIT
     TRH TERMINAL REHEAT
Equipment:
     Cooling:
          EQ1010S 2-STG CTV<190 TONS W\HT REC(95 DEG HW)
     Heating:
          EQ2002 GAS FIRED STEAM BOILER
          EQ2263 ELECTRIC RESISTANCE HEAT WITH FAN
     Fan:
          EQ4003 FC CENTRIFUGAL - CONSTANT VOLUME
          EQ4223 FC FAN W\VARIABLE SPEED DRIVE
          Tower:
               EQ5100 COOLING TOWER FANS
        Misc:
           EQ5020 HEATING WATER CIRCULATION PUMP
```

Sc' le Name: AVAIL Project: AVAILABLE (100)

Location:

Client: VERSION 3.0

Program User: C.D.S. MARKETING
Comments: BUILDING TEMPLATE SERIES

Starting Month: JAN Ending Month: HTG

Starting Day Type: DSGN Ending Day Type: SUN

```
Sc' 'e Name: CLGONLY
```

Project: COOLING ONLY (DESIGN)

Location: Client: Program User:

Comments: COOLING ONLY SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent
0 100
24

Starting Month: HTG Ending Month: HTG Starting Day Type: DSGN Ending Day Type: SUN

Sc' 'e Name: DAYSCHED

Project: COOLING FAN SCHEDULE CODE

Location: Client:

Program User: HUITT ZOLLARS, INC.

Comments: FAN CODE IN MODELING OPTIMUM S

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: SUN

| lour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 6    | 100          |
| 17   | 0            |
| 24   |              |

Sc' le Name: OFF Project: ALWAYS OFF

Location: Client: Program User: Comments:

Starting Month: JAN Ending Month: HTG

Starting Day Type: DSGN Ending Day Type: SUN

Sc' 'e Name: OFFICEL1 Project: TYPICAL OFFICE SCHEDULE FOR LIG Location: Client: Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: DSGN Hour Util Percent 0 100 24 Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY Hour Util Percent ----0 0 100 7 0 16 24 Starting Month: JAN Ending Month: DEC

St. ng Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0

0

```
Sc' 'e Name: OFFICEL2
Project: TYPICAL OFFICE SCHEDULE 1 LIGHT
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE
Starting Month: JAN Ending Month: DEC
Starting Day Type: DSGN Ending Day Type: DSGN
Hour Util Percent
----
  0
       100
Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY
Hour Util Percent
----
  0
        25
  7
        100
 16
         25
 24
Sterring Month: JAN Ending Month: DEC
St. .ng Day Type: SAT Ending Day Type: SUN
Hour Util Percent
  0
         25
```

Project: TYPICAL OFFICE SCHEDULE 5 LIGHT

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100
24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 50
7 100
16 50
24

Sterring Month: JAN Ending Month: DEC St and Day Type: SAT Ending Day Type: SUN

Pro, Lat: TYPICAL OFFICE SCHEDULE 1-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100
24

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util | Percent |
|------|------|---------|
|      |      |         |
| 0    |      | 81      |
| 7    |      | 100     |
| 12   |      | 81      |
| 24   |      |         |

Starring Month: JAN Ending Month: DEC
St. 19 Day Type: SAT Ending Day Type: SUN

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 81           |
| 24   |              |

Project: TYPICAL OFFICE SCHEDULE 2-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100
24

Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 0

7 100

8 6

12 0

24

St. .ng Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Project: TYPICAL OFFICE SCHEDULE 3-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100
24

Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Sc' !e Name: OFFICEM1

Project: TYPICAL UPS MISCELLANEOUS EQ. S

Location: Client:

Program User: HUITT ZOLLARS, INC.
Comments: MISC. LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 50
24

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Ho. Jtil Percent

0 50
24

Project: TYPICAL OFFICE SCHEDULE FOR PEO

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: PEOPLE LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100
24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 7    | 100          |
| 12   | 10           |
| 13   | 100          |
| 16   | 0            |
| 2/   |              |

Starting Month: JAN Ending Month: DEC
Starting Day Type: SAT Ending Day Type: SUN

Sc !e Name: OFICEL10 Project: TYPICAL OFFICE SCHEDULE 4-OCC. Location: Client: Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: DSGN Hour Util Percent 0 100 24 Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY Hour Util Percent ----0 0 13 100 14 0 24 Str ing Month: JAN Ending Month: DEC St ng Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0

0

```
Sc' !e Name: OFICEL11
Project: TYPICAL OFFICE SCHEDULE 5-OCC.
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE
Starting Month: JAN Ending Month: DEC
Starting Day Type: DSGN Ending Day Type: DSGN
Hour Util Percent
----
 0
       100
 24
Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY
Hour Util Percent
----
  0
        85
       100
  7
        85
  8
 24
Starling Month: JAN Ending Month: DEC
St og Day Type: SAT Ending Day Type: SUN
Hour Util Percent
```

0

24

Pro, ...t: TYPICAL OFFICE SCHEDULE 6-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent 0 100 24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

| Hour      | Util Percent |
|-----------|--------------|
| - <i></i> |              |
| 0         | 5            |
| 7         | 80           |
| 10        | 93           |
| 11        | 5            |
| 13        | 100          |
| 1′        | 5            |

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 5            |
| 24   |              |

Project: TYPICAL OFFICE SCHEDULE 6-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100
24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 7    | 10           |
| 8    | 100          |
| 9    | 0            |
| 24   |              |

St. ng Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Project: TYPICAL OFFICE SCHEDULE 7-OCC.

Location:

Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util Percen |
|------|-------------|
|      |             |
| 0    | 0           |
| 7    | 86          |
| 9    | 0           |
| 13   | 100         |
| 14   | 86          |
| 1/   | n           |

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 24   |              |

Project: TYPICAL OFFICE SCHEDULE 8-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 25 10 100

11 25

24

Sterring Month: JAN Ending Month: DEC

St. ig Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 25

Project: TYPICAL OFFICE SCHEDULE 9-OCC.

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 88

13 100

14 88

24

Str ing Month: JAN Ending Month: DEC

St. ong Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 88

Sc 'e Name: OFICEL17 Project: TYPICAL OFFICE SCHEDULE 100CC. Location: Client: Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: DSGN Hour Util Percent ----0 100 24 Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY Hour Util Percent 0 40 7 94 9 86 11 40

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

| Hour | Util | Percent |
|------|------|---------|
|      |      |         |
| 0    |      | 40      |
| 24   |      |         |

100 40

Project: TYPICAL OFFICE SCHEDULE 110CC.

Location:

Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100
24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 7    | 93           |
| 8    | 50           |
| 10   | 0            |
| 13   | 100          |
| 1'   | 50           |
|      | 0            |
| 24   |              |

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 24   | -            |

Sc' le Name: OFICEL19

Project: TYPICAL OFFICE SCHEDULE 120CC.

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent
0 100

24

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 47           |
| 7    | 92           |
| 11   | 100          |
| 12   | 47           |
| 13   | 92           |
| 11   | 47           |

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 6            |
| 24   |              |

Sc' le Name: OFICEL20

Project: TYPICAL OFFICE SCHEDULE 130CC.

Location:

Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent
---0 77
24

```
Sc 'e Name: OFICEL21
```

Project: TYPICAL OFFICE SCHEDULE 140CC.

Location:

Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

2′

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 0
11 96
12 75
15 100
16 0

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 0
24

Sc le Name: OFICEL22
Project: TYPICAL OFFICE SCHEDULE 15OCC.
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100
24

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent
0 23
24

```
Sc' !e Name: OFICEL23

Pro, Let: TYPICAL OFFICE SCHEDULE 160CC.
Location:
Client:
Program User: HUITT ZOLLARS, INC.
```

Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100
24

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

| Hour | Util Percen |
|------|-------------|
|      |             |
| 0    | 4           |
| 8    | 100         |
| 12   | 4           |
| 13   | 100         |
| 16   | 4           |
| 2/   |             |

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

| Hour | Util | Percent |
|------|------|---------|
|      |      |         |
| 0    |      | 4       |
| 24   |      |         |

```
Sc' le Name: OFICEL25
Project: TYPICAL OFFICE SCHEDULE LIGHTIN
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE
Starting Month: JAN Ending Month: DEC
Starting Day Type: DSGN Ending Day Type: DSGN
Hour Util Percent
----
  0
      100
 24
Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY
Hour Util Percent
----
  0
         80
  7
       100
 16
         80
 24
Sterring Month: JAN Ending Month: DEC
St. and Day Type: SAT Ending Day Type: SUN
Hour Util Percent
```

24

```
Sc' le Name: OFICEL26
 Project: TYPICAL OFFICE SCHEDULE 1 LIGHT
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE
Starting Month: JAN Ending Month: DEC
Starting Day Type: DSGN Ending Day Type: DSGN
Hour Util Percent
----
  0
      100
  24
Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY
Hour Util Percent
----
  0
         94
  7
        100
 16
         94
 24
Starring Month: JAN Ending Month: DEC
St. .ng Day Type: SAT Ending Day Type: SUN
Hour Util Percent
```

24

```
Sc' le Name: OFICEL27
Project: TYPICAL OFFICE SCHEDULE LIGHTIN
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE
Starting Month: JAN Ending Month: DEC
Starting Day Type: DSGN Ending Day Type: DSGN
Hour Util Percent
  0
      100
 24
Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY
Hour Util Percent
----
  0
         58
  7
        100
 16
        58
Starring Month: JAN Ending Month: DEC
St. ng Day Type: SAT Ending Day Type: SUN
Hour Util Percent
----
 0
```

Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 95
7 100
16 95
24

24

Starring Month: JAN Ending Month: DEC St. 19 Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 95
24

```
Sc le Name: OFICEL29
Project: TYPICAL OFFICE SCHEDULE LIGHTIN
Location:
Client:
Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE
Starting Month: JAN Ending Month: DEC
Starting Day Type: DSGN Ending Day Type: DSGN
Hour Util Percent
----
  0
       100
 24
Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY
Hour Util Percent
  0
        28
  7
        100
 16
       28
 24
Starting Month: JAN Ending Month: DEC
Hour Util Percent
----
```

24

Sc' 'e Name: OPSTART

Pro, Lat: OPTIMUM START COOLING FAN SCHED

Location: Client:

Program User: HUITT ZOLLARS, INC.

Comments: DETERMINE AMOUNT OF TIME TO CY

Reset utilization percent to : 0

whenever any of the following conditions are true.

| Sensor |    |       |            | Optional | Offset  |
|--------|----|-------|------------|----------|---------|
| Type   | 0p | Value | Type/Units | Value    | Units   |
| RMDB   | >  | 0     | CSTAT      | 5        | DEG-F   |
| RMDB   | <  | 0     | HSTAT      | -5       | DEG-F   |
| RMRH   | >  | 0     | DSRMRH     | 10       | PERCENT |

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: SUN

| Hour | Util Percent |
|------|--------------|
|      |              |
| 0    | 0            |
| 6    | 100          |
| 7    | 0            |
| 2'   |              |

Sc !e Name: OPSTOP

Project: OPTIMUM STOP COOLING FAN SCHED.

Location: Client:

Program User: HUITT ZOLLARS, INC.

Comments: DETERMINE AMOUNT OF TIME TO CY

Reset utilization percent to : 0

whenever any of the following conditions are true.

| Sensor |    |       |            | Optional | Offset  |
|--------|----|-------|------------|----------|---------|
| Type   | 0p | Value | Type/Units | Value    | Units   |
| RMDB   | >  | 0     | CSTAT      | 5        | DEG-F   |
| RMDB   | <  | 0     | HSTAT      | -5       | DEG-F   |
| RMRH   | >  | 0     | DSRMRH     | 10       | PERCENT |

Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: SUN

| our | Util Percent |
|-----|--------------|
|     |              |
| 0   | 0            |
| 16  | 100          |
| 17  | 0            |
| 2.  |              |

# Utility Description Reference Table

```
Schedules:
     AVAIL AVAILABLE (100%)
     CLGONLY COOLING ONLY (DESIGN)
     DAYSCHED COOLING FAN SCHEDULE CODE
     OFF ALWAYS OFF
     OFFICEL1 TYPICAL OFFICE SCHEDULE FOR LIGHTING
     OFFICEL2 TYPICAL OFFICE SCHEDULE 1 LIGHTING-25%
     OFFICEL7 TYPICAL OFFICE SCHEDULE 1-OCC. SEN ECO
     OFFICEL8 TYPICAL OFFICE SCHEDULE 2-OCC. SEN ECO
     OFFICEL9 TYPICAL OFFICE SCHEDULE 3-OCC. SEN ECO
     OFFICEM1 TYPICAL UPS MISCELLANEOUS EQ. SCHEDULE
     OFFICEP1 TYPICAL OFFICE SCHEDULE FOR PEOPLE
     OFICEL10 TYPICAL OFFICE SCHEDULE 4-OCC. SEN ECO
     OFICEL11 TYPICAL OFFICE SCHEDULE 5-OCC. SEN ECO
     OFICEL12 TYPICAL OFFICE SCHEDULE 6-OCC. SEN ECO
     OFICEL13 TYPICAL OFFICE SCHEDULE 6-OCC. SEN ECO
     OFICEL14 TYPICAL OFFICE SCHEDULE 7-OCC. SEN ECO
     OFICEL15 TYPICAL OFFICE SCHEDULE 8-OCC. SEN ECO
     OFICEL16 TYPICAL OFFICE SCHEDULE 9-OCC. SEN ECO
     OFICEL17 TYPICAL OFFICE SCHEDULE 100CC. SEN ECO
     OFICEL18 TYPICAL OFFICE SCHEDULE 110CC. SEN ECO
     OFICEL19 TYPICAL OFFICE SCHEDULE 120CC. SEN ECO
     OFICEL20 TYPICAL OFFICE SCHEDULE 130CC. SEN ECO
    OFICEL21 TYPICAL OFFICE SCHEDULE 140CC. SEN ECO
    OFICEL22 TYPICAL OFFICE SCHEDULE 150CC. SEN ECO
    OFICEL23 TYPICAL OFFICE SCHEDULE 160CC. SEN ECO
    OPSTART OPTIMUM START COOLING FAN SCHED. CODE
    OPSTOP OPTIMUM STOP COOLING FAN SCHED. CODE
System:
    BPMZ BYPASS MULTIZONE
    COMP COMPUTER ROOM UNIT
    VRH VARIABLE VOLUME REHEAT
Equipment:
    Cooling:
         EQ1010S 2-STG CTV<190 TONS W\HT REC(95 DEG HW)
         YCENT123 YORK CENT. R-123 CHILLER
         YWCRECIP YORK W.C. RECIP. CHILL.
    Heating:
         EQ2002 GAS FIRED STEAM BOILER
         EQ2263 ELECTRIC RESISTANCE HEAT WITH FAN
         OILBLR OIL FIRED HOT WATER BOILER
    Fan:
         EQ4003 FC CENTRIFUGAL - CONSTANT VOLUME
         EQ4223 FC FAN W\VARIABLE SPEED DRIVE
         Tower:
              EQ5100 COOLING TOWER FANS
       Misc:
          EQ5020 HEATING WATER CIRCULATION PUMP
```

#### CONTENTS OF : C:\CDS\TULTRA\CLG\YWCRECIP.CLG

- 1 JOB 1
- 2 01/YORK W.C. RECIP. CHILL.
- 3 O1/RECIPOCATING CHILLER WATER COOLED
- 4 01/YORK MODEL YCWZ CHILLER
- 5 01/HUITT ZOLLARS, INC.
- 6 01/
- 7 02/YORK WAT. COOLED RECIP MOD. YCWZ CHILLER/RECIP///TONS/.848/KW-TON
- 8 03/EQ5001///EQ5011
- 9 04////EQ5300
- 10 05/0/NO/NO/NONE//85/65////44//ELEC
- 11 06/7/15/PERCENT/100/82/67/48/46/30/15
- 12 07/PERCENT/100/80.4/66.9/47.0/40.7/26.2/14.3
- 13 08/H2OCOOL/PCTHTSNK/0/0
- 14 09/8/17
- 15 10/YES
- 16 12/NONE

#### CONTENTS OF : C:\CDS\TULTRA\CLG\YCENT123.CLG

- 1 JOB 1
- 2 01/YORK CENT. R-123 CHILLER
- 3 O1/CENTRIFUGAL CHILLER
- 4 01/1 STAGE 330 TON YORK MODEL YT
- 5 01/HUITT-ZOLLARS, INC.
- 6 01/NEW R-123 CHILLER
- 7 02/1-STAGE 330 TON YORK MODEL YK/CENTRIF///TONS/.59/KW-TON
- 8 03/EQ5001///EQ5011
- 9 04////EQ5300
- 10 05/0/NO/NO/NONE//85/65////44//ELEC
- 11 06/10/10/PERCENT/100/90/80/70/60/50/40/30/20/10
- 12 07/PERCENT/100/90/80/72/64/56/49/41/33/24
- 13 08/H2OCOOL/PCTHTSNK/10.8/21.1
- 14 09/10/20
- 15 10/YES
- 16 12/NONE

## CONTENTS OF : C:\CDS\TULTRA\HTG\OILBLR.HTG

- 1 JOB 1
- 2 O1/OIL FIRED HOT WATER BOILER
- 3 01/OIL FIRED HOT WATER BOILER
- 4 01/EXISTING BOILERS
- 5 01/HUITT-ZOLLARS, INC.
- 6 01/
- 7 02/HOT H20 BOILER, OIL/OIL//EQ5020///MBH/83.3/PCTEFF
- 8 03////EQ5307
- 9 04/2/0/CURVE/0/1.0

# Utility Description Reference Table

# TC-1 & TC-2 BUILDINGS SCHEDULES

```
Schedules:
    AVAIL AVAILABLE (100%)
    CLGONLY COOLING ONLY (DESIGN)
    ESH53 HELSTF ENERGY STUDY WHITE SANDS
    OFF ALWAYS OFF
    OFFICEM1 TYPICAL UPS MISCELLANEOUS EQ. SCHEDULE
    OFFICEP1 TYPICAL OFFICE SCHEDULE FOR PEOPLE
    OFICEL24 TYPICAL OFFICE SCHD LIGHTING 58%
    OFICEL30 TYPICAL OFFICE SCHEDULE LIGHTING-92%
    OFICEL31 TYPICAL OFFICE SCHEDULE LIGHTING-98%
    OFICEL32 TYPICAL OFFICE SCHEDULE LIGHTING-83%
    OFICEL33 TYPICAL OFFICE SCHEDULE LIGHTING-80%
    OFICEL34 TYPICAL OFFICE SCHEDULE LIGHTING-59%
     OFICEL35 TYPICAL OFFICE SCHEDULE LIGHTING-3 HR
     TRH TERMINAL REHEAT
     VTCV VARIABLE TEMP CONSTANT VOL
         EQ1001S 2-STG CENTRIFUGAL CHILLER <550 TONS
         BLR51 OIL FIRED HOT WATER BOILER
     Fan:
          EQ4003 FC CENTRIFUGAL - CONSTANT VOLUME
              EQ5100 COOLING TOWER FANS
        Misc:
          EQ5013 WATER CIRCULATING PUMP - CONSTANT VOLUME
```

EQ5020 HEATING WATER CIRCULATION PUMP

Schedule Name: AVAIL
Project: AVAILABLE (100)

Location:

Client: VERSION 3.0

Program User: C.D.S. MARKETING
Comments: BUILDING TEMPLATE SERIES

Starting Month: JAN Ending Month: HTG

Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0 100

Schedule Name: CLGONLY

Project: COOLING ONLY (DESIGN)

Location:

Client:

Program User:

Comments: COOLING ONLY SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

••••

0 100

24

Starting Month: HTG Ending Month: HTG

Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0 0

```
Sc' .e Name: ESH53
Project: HELSTF ENERGY STUDY WHITE SANDS
Location: ALAMOGORDO, N.M.
Client: CORP OF ENGINEERS - FORT WORTH,
Program User: HUITT ZOLLARS, INC.
Comments: ELECTRIC HUMIDIFIER SCHEDULE
Starting Month: JAN Ending Month: MAR
Starting Day Type: DSGN Ending Day Type: SUN
Hour Util Percent
----
  0
      100
 17
         0
 24
Starting Month: APR Ending Month: APR
Starting Day Type: DSGN Ending Day Type: SUN
Hour Util Percent
      100
  0
 21
        0
 24
Str ing Month: MAY Ending Month: MAY
Sti ng Day Type: DSGN Ending Day Type: SUN
Hour Util Percent
       100
  0
         0
  16
  24
Starting Month: JUN Ending Month: JUN
Starting Day Type: DSGN Ending Day Type: SUN
Hour Util Percent
----
      100
 11
  24
Starting Month: JUL Ending Month: JUL
Starting Day Type: DSGN Ending Day Type: SUN
Hour Util Percent
       100
   0
         0
   7
  24
Starting Month: AUG Ending Month: SEP
Starting Day Type: DSGN Ending Day Type: SUN
```

Hour Util Percent

Schedule Name: OFF Project: ALWAYS OFF

Location: Client:

Program User: Comments:

Starting Month: JAN Ending Month: HTG
Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent
--- 0 0
24

Schedule Name: OFFICEM1 Project: TYPICAL UPS MISCELLANEOUS EQ. S Location: Client: Program User: HUITT ZOLLARS, INC. Comments: MISC. LOAD SCHEDULE Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: DSGN Hour Util Percent ----100 0 24 Starting Month: JAN Ending Month: DEC Starting Day Type: WKDY Ending Day Type: WKDY Hour Util Percent 0 50 24 Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 50
24

```
Schedule Name: OFFICEP1
```

Project: TYPICAL OFFICE SCHEDULE FOR PEO

Location:

Program User: HUITT ZOLLARS, INC.
Comments: PEOPLE LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 0

7 100

12 10 13 100

16 0

24

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 0

Sc e Name: OFICEL24

Project: TYPICAL OFFICE SCHD LIGHTING 58

Location: Client:

Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 65

7 100

16 65

24

Str 'ng Month: JAN Ending Month: DEC

St. ng Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 65

Project: TYPICAL OFFICE SCHEDULE LIGHTIN

Location:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

----

0 92

7 100 9 92

24

Starting Month: JAN Ending Month: DEC
Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 92

```
Schedule Name: OFICEL31
```

Project: TYPICAL OFFICE SCHEDULE LIGHTIN

Client:

Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

----

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

----

0 98

10 100

11 98

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

--- -----

0 98

Project: TYPICAL OFFICE SCHEDULE LIGHTIN

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

----

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

0 93

9 100

1 83

24

Starting Month: JAN Ending Month: DEC
Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

----

0 83

Project: TYPICAL OFFICE SCHEDULE LIGHTIN

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

----

0 100

24

Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

----

0 80

9 100

11 80

24

Starting Month: JAN Ending Month: DEC
Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

--- ------

Project: TYPICAL OFFICE SCHEDULE LIGHTIN

Location: Client:

Program User: HUITT ZOLLARS, INC.
Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC
Starting Day Type: WKDY Ending Day Type: WKDY

Starting Month: JAN Ending Month: DEC
Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 18
24

Project: TYPICAL OFFICE SCHEDULE LIGHTIN

Location: Client:

Program User: HUITT ZOLLARS, INC. Comments: LIGHTING LOAD SCHEDULE

Starting Month: JAN Ending Month: DEC

Starting Day Type: DSGN Ending Day Type: DSGN

Hour Util Percent

0 100

24

Starting Month: JAN Ending Month: DEC

Starting Day Type: WKDY Ending Day Type: WKDY

Hour Util Percent

----0 0

100

0 10

24

Starting Month: JAN Ending Month: DEC Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0 0

# Utility Description Reference Table

#### Schedules:

AVAIL AVAILABLE (100%)

CLGONLY COOLING ONLY (DESIGN)

OFF ALWAYS OFF

OFFICEM1 TYPICAL UPS MISCELLANEOUS EQ. SCHEDULE

OFFICEP1 TYPICAL OFFICE SCHEDULE FOR PEOPLE

OFICEL30 TYPICAL OFFICE SCHEDULE LIGHTING-92%

OFICEL31 TYPICAL OFFICE SCHEDULE LIGHTING-98%

OFICEL32 TYPICAL OFFICE SCHEDULE LIGHTING-83%

OFICEL33 TYPICAL OFFICE SCHEDULE LIGHTING-80%

OFICEL34 TYPICAL OFFICE SCHEDULE LIGHTING-59%

OFICEL35 TYPICAL OFFICE SCHEDULE LIGHTING-3 HR

#### System:

TRH TERMINAL REHEAT

VTCV VARIABLE TEMP CONSTANT VOL

#### Equipment:

#### Cooling:

EQ1001S 2-STG CENTRIFUGAL CHILLER <550 TONS

YCENT123 YORK CENT. R-123 CHILLER

#### Heating:

BLR51 OIL FIRED HOT WATER BOILER

OILBLR OIL FIRED HOT WATER BOILER

#### Fan:

EQ4003 FC CENTRIFUGAL - CONSTANT VOLUME

Tower:

EQ5100 COOLING TOWER FANS

#### Misc:

EQ5013 WATER CIRCULATING PUMP - CONSTANT VOLUME

EQ5020 HEATING WATER CIRCULATION PUMP

#### CONTENTS OF : C:\CDS\TULTRA\CLG\YCENT123.CLG

- 1 JOB 1
- 2 01/YORK CENT. R-123 CHILLER
- 3 O1/CENTRIFUGAL CHILLER
- 4 01/1 STAGE 330 TON YORK MODEL YT
- 5 01/HUITT-ZOLLARS, INC.
- 6 01/NEW R-123 CHILLER
- 7 02/1-STAGE 330 TON YORK MODEL YK/CENTRIF///TONS/.59/KW-TON
- 8 03/EQ5001///EQ5011
- 9 04////EQ5300
- 10 05/0/NO/NO/NONE//85/65////44//ELEC
- 11 06/10/10/PERCENT/100/90/80/70/60/50/40/30/20/10
- 12 07/PERCENT/100/90/80/72/64/56/49/41/33/24
- 13 08/H2OCOOL/PCTHTSNK/10.8/21.1
- 14 09/10/20
- 15 10/YES
- 16 12/NONE

#### CONTENTS OF : C:\CDS\TULTRA\HTG\BLR51.HTG

- 1 JOB 1
- 2 01/OIL FIRED HOT WATER BOILER
- 3 01/OIL FIRED HOT WATER BOILER
- 4 01/EXISTING BOILERS
- 5 01/HUITT-ZOLLARS, INC.
- 6 01/
- 7 02/HOT H2O BOILER, OIL/OIL//EQ5020///MBH/83.3/PCTEFF
- 8 03////EQ5307
- 9 04/2/0/CURVE/0/1.0

## CONTENTS OF : C:\CDS\TULTRA\HTG\OILBLR.HTG

- 1 JOB 1
- 2 01/OIL FIRED HOT WATER BOILER
- 3 O1/OIL FIRED HOT WATER BOILER
- 4 01/EXISTING BOILERS
- 5 01/HUITT-ZOLLARS, INC.
- 6 01/
- 7 02/HOT H2O BOILER, OIL/OIL//EQ5020///MBH/83.3/PCTEFF
- 8 03////EQ5307
- 9 04/2/0/CURVE/0/1.0