GATE QUESTION

August 30, 2024

Question

1. Let $\rho(x,y,z,t)$ and $\mathbf{u}(x,y,z,t)$ represent density and velocity,respectively,at a point (x,y,z) and time t. Assume $\frac{\partial \rho}{\partial t}$ is continuos. Let V be an arbitrary volume in space enclosed by the close surface S and \hat{n} be the outward unit normal of S.

Which of the following equations is/are equivalent to $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$?

- (A) $\int_{V} \frac{\partial \rho}{\partial t} dv = \oiint_{S} \rho \mathbf{u} \cdot \hat{n} ds$
- (B) $\int_{V} \frac{\partial \rho}{\partial t} dv = \iint_{S} \rho \mathbf{u} \cdot \hat{n} ds$
- (C) $\int_{V} \frac{\partial \rho}{\partial t} dv = -\int_{V} \nabla \cdot (\rho \mathbf{u}) dv$
- (D) $\int_{V} \frac{\partial \rho}{\partial t} dv = \int_{V} \nabla \cdot (\rho \mathbf{u}) dv$