Лабораторная работа №4	2024				
Метод	Артемьев Иван Вадимович				
симуляции отжига	Никитин Михаил Алексеевич				
	Павлов Евгений Андреевич				

Цель работы: Реализация стохастического метода - имитации отжига для поиска минимумов функций на языке программирования Руthon и исследование полученных результатов

Инструментарий: Python 3.12 - библиотеки: NumPy, SciPy, MatPlotLib

Постановка задачи:

- 1. Разберите теоретическое описание и реализуйте метод стохастической оптимизации (к примеру, метод имитации отжига);
- 2. Сравните его эффективность на методах и примерах из лаб. 1 и/или лаб 2. Приведите примеры, иллюстрирующие разницу в результатах и эффективности (количество вызовов функции, скорости) применения методов из лаб. 1 и/или лаб 2 и методов стохастической оптимизации.

Описание метода отжига:

Метод имитации отжига — это вероятностная эвристическая техника для решения задач глобальной оптимизации, которая особенно эффективна в случаях, когда пространство поиска велико и содержит множество локальных экстремумов. Метод вдохновлен физическим процессом отжига, который заключается в нагреве и медленном

охлаждении материала для достижения его наиболее стабильного состояния.

Основные этапы метода имитации отжига

1. Инициализация:

• Выбирается начальное состояние (начальная точка поиска) и начальная температура.

2. Итерационный процесс:

- Генерация соседнего состояния: На каждом шаге выбирается новое состояние в окрестности текущего состояния путем небольшого изменения последнего.
- *Оценка состояния:* Вычисляется значение целевой функции для нового состояния.
- Принятие решения: Новое состояние принимается, если оно улучшает значение целевой функции. Если же новое состояние хуже текущего, оно может быть принято с некоторой вероятностью, зависящей от разницы значений целевой функции и текущей температуры. Вероятность принятия ухудшающего состояния определяется формулой:

$$P = exp(-\frac{\Delta E}{T})$$

где (ΔE) — разница значений целевой функции, а Т — текущая температура.

• Обновление температуры: Температура постепенно уменьшается согласно заданному правилу (например, экспоненциальное уменьшение: $T = T_0 * \alpha^{step}$, где $0 < \alpha < 1$ - cooling rate, step - номер итерации).

3. <u>Завершение процесса:</u> Алгоритм останавливается, когда достигается заданное число итераций или температура становится очень низкой.

Преимущества и особенности

- *Избежание локальных экстремумов*: Возможность принимать ухудшающие состояния позволяет алгоритму выходить из локальных минимумов и продолжать поиск глобального оптимума.
- *Гибкость*: Метод применим к широкому спектру задач оптимизации и может быть легко адаптирован под конкретную задачу путем выбора подходящих функций соседства и правил охлаждения.
- Параметры: Важными параметрами метода являются начальная температура, правило охлаждения и механизм генерации соседних состояний. Эти параметры могут существенно влиять на эффективность и результативность алгоритма.

<u>Сравнение метода имитации отжига с методами из первух</u> <u>двух лаб:</u>

Анализ сходимости:

	f_1	f_2	f_3	f_4	f_{5}	f_6
Градиентный спуск	90%	88%	7%	0%	0%	100%
Градиентный спуск с дихотомией	89%	87%	7%	0%	0%	100%
Нелдер-Мид	100%	100%	100%	91%	100%	99.7%
Покоординатный спуск	100%	100%	100%	10%	100%	100%
Метод Ньютона	100%	80%	0%	0%	100%	100%
Метод Ньютона с дихотомией	100%	80%	0%	0%	100%	100%
Newton-CG	100%	100%	28%	2%	84%	100%
scipy BFGS	100%	100%	16%	22%	100%	100%
JBFGS	82%	57%	0%	0%	25%	88%
имитация отжига	100%	100%	100%	100%	96%	100%

Количества вызовов:

	f_1	f_2	f_3	f_4	f_{5}	f_6
Градиентный спуск	263.55	150.7	314.3	-	-	563.568
Градиентный спуск с дихотомией	429.46	268.8	526.6	-	-	870.552
Нелдер-Мид	93.431	95.06	88.37	98.55	178.4	98.798
Покоординатный спуск	182.53	196.1	147.1	133.9	44626	235.699
Метод Ньютона	330.76	780.4	61.29	-	906.6	310.032
Метод Ньютона с дихотомией	427.48	1152	65.58	-	1001	408.052
Newton-CG	149.37	191.7	102.3	474.8	1924	102.694
scipy BFGS	30.048	50.78	8.364	257.1	249.4	17.7
JBFGS	121.80	174.6	21.62	-	723.3	50.585

ИМИТАЦИЯ ОТЖИГА	1502	7502	1502	6002	6502	1502
Время работы:						
	f_1	f_2	f_3	f_4	f_5	f_6
Градиентный спуск	0.33	0.25	0.06	_	-	0.67
Градиентный спуск с дихотомией	0.56	0.43	0.1	-	-	1.17
Нелдер-Мид	1.37	0.74	0.69	0.74	1.21	0.84
Покоординатный спуск	0.04	0.06	0.08	0.13	10.93	0.06
Метод Ньютона	0.28	0.91	0.07	-	0.67	0.27
Метод Ньютона с дихотомией	0.37	1.28	0.08	-	0.82	0.4
Newton-CG	0.38	0.5	0.39	1.12	4.76	0.28
scipy BFGS	1.03	1.7	0.25	8.22	9.51	0.61
JBFGS	0.21	0.42	0.02	-	1.52	0.08
имитация отжига	17.36	92.19	21.51	79.76	86.93	21.2

Вывод: как можно наблюдать: имитация отжига довольно довольно точна при правильно подобранных гиперпараметрах, однако за точность приходится платить большим количеством итераций, а следовательно большим количеством вызовов и временем работы.

Ссылка на репозиторий с кодом:

https://github.com/Sedromun/lab4-MetOpt