## 2021-Aug-26 Shift-2

## AI24BTECH11002 - K. Akshay Teja

1) Let [t] denote the greatest integer less than or equal to t. Let f(x) = x - [x], g(x) = 1 - x + [x],

and  $h(x) = \min\{f(x), g(x)\}, x \in (-2, 2)$ . Then h is:

| a) continuous in $(-2, 2)$ but not differentiable at more than four points in $(-2, 2)$ .<br>b) not continuous at exactly three points in $(-2, 2)$ .<br>c) continuous in $(-2, 2)$ but not differentiable at exactly three points in $(-2, 2)$ .<br>d) not continuous at exactly four points in $(-2, 2)$ .<br>2) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ . Then $A^{2025} - A^{2020}$ is equal to: |                                                    |                        |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|
| a) $A^6 - A$                                                                                                                                                                                                                                                                                                                                                                                                                             | b) A <sup>5</sup>                                  | c) $A^5 - A$           | d) A <sup>6</sup> |
| 3) The local maximum value of the function $f(x) = \left(\frac{2}{x}\right)^{x^2}$ , $x > 0$ is:                                                                                                                                                                                                                                                                                                                                         |                                                    |                        |                   |
| a) $\left(2\sqrt{e}\right)^{\frac{1}{e}}$                                                                                                                                                                                                                                                                                                                                                                                                | b) $\left(\frac{4}{\sqrt{e}}\right)^{\frac{e}{4}}$ | c) $(e)^{\frac{2}{e}}$ | d) 1              |
| 4) If the value of the integral $\int_0^5 \frac{x+[x]}{e^{x-[x]}} dx = \alpha e^{-1} + \beta$ , where $\alpha, \beta \in \mathbb{R}$ , and $5\alpha + 6\beta = 0$ , and $[x]$ denotes the greatest integer less than or equal to $x$ ; then the value of $(\alpha + \beta)^2$ is equal to:                                                                                                                                               |                                                    |                        |                   |
| a) 100                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) 25                                              | c) 16                  | d) 36             |
| 5) The point $P\left(-2\sqrt{6}, \sqrt{3}\right)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ having eccentricity $\frac{\sqrt{5}}{2}$ . If the tangent and normal at $P$ to the hyperbola intersect its conjugate axis at the points $Q$ and $R$ respectively, then $QR$ is equal to:                                                                                                                                 |                                                    |                        |                   |
| a) $4\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                           | b) 6                                               | c) $6\sqrt{3}$         | d) $3\sqrt{6}$    |

6) Let y(x) be the solution of the differential equation  $2x^2dy + (e^y - 2x)dx = 0$ , x > 0. If y(e) = 1,

7) Consider the two statements:

then y(1) is equal to:

(S1):  $(p \to q) \lor (\neg q \to p)$  is a tautology. (S2):  $(p \land \neg q) \land (\neg p \lor q)$  is a fallacy. Then:

b) 2

a) 0

a) only (S1) is true.

c) both (S1) and (S2) are true.

d)  $\log_{a}(2e)$ 

b) both (S1) and (S2) are false.

d) only (S2) is true.

c)  $\log_a 2$ 

8) The domain of the function  $\csc^{-1}\left(\frac{1+x}{x}\right)$  is:

$$a) \ \left(-1,-\frac{1}{2}\right] \cup (0,\infty) \qquad b) \ \left[-\frac{1}{2},0\right) \cup \left[1,\infty\right) \qquad c) \ \left(-\frac{1}{2},\infty\right) - \left\{0\right\} \qquad \qquad d) \ \left[-\frac{1}{2},\infty\right) - \left\{0\right\}$$

b) 
$$\left[-\frac{1}{2}, 0\right] \cup [1, \infty]$$

c) 
$$\left(-\frac{1}{2}, \infty\right) - \{0\}$$

d) 
$$\left[-\frac{1}{2}, \infty\right) - \{0\}$$

9) A fair die is tossed until a six is obtained. Let X be the number of required tosses. Then the conditional probability  $P(X \ge 5 \mid X > 2)$  is:

a) 
$$\frac{125}{216}$$

b) 
$$\frac{11}{36}$$

c) 
$$\frac{5}{6}$$

d) 
$$\frac{25}{36}$$

10) If  $\sum_{r=1}^{50} \tan^{-1} \frac{1}{2r^2} = p$ , then the value of  $\tan p$  is:

a) 
$$\frac{101}{102}$$

b) 
$$\frac{50}{51}$$

d) 
$$\frac{51}{50}$$

11) Two fair dice are thrown. The numbers on them are taken as  $\lambda$  and  $\mu$ , and a system of linear equations is constructed as: x+y+z=5,  $x+2y+3z=\mu$ ,  $x+3y+\lambda z=1$ . If p is the probability that the system has a unique solution and q is the probability that the system has no solution, then:

a) 
$$p = \frac{1}{6}$$
 and  $q = \frac{1}{36}$ 

a) 
$$p = \frac{1}{6}$$
 and  $q = \frac{1}{36}$  b)  $p = \frac{5}{6}$  and  $q = \frac{5}{36}$  c)  $p = \frac{5}{6}$  and  $q = \frac{1}{36}$  d)  $p = \frac{1}{6}$  and  $q = \frac{5}{36}$ 

c) 
$$p = \frac{5}{6}$$
 and  $q = \frac{1}{36}$ 

d) 
$$p = \frac{1}{6}$$
 and  $q = \frac{5}{36}$ 

12) The locus of the midpoints of the chords of the hyperbola  $x^2 - y^2 = 4$ , which touch the parabola  $v^2 = 8x$ , is:

a) 
$$y^3(x-2) = x^2$$

b) 
$$x^3(x-2) = y^2$$

a) 
$$y^3(x-2) = x^2$$
 b)  $x^3(x-2) = y^2$  c)  $y^2(x-2) = x^3$  d)  $x^2(x-2) = y^3$ 

d) 
$$x^2(x-2) = y^3$$

13) The value of  $2\sin\left(\frac{\pi}{8}\right)\sin\left(\frac{3\pi}{8}\right)\sin\left(\frac{5\pi}{8}\right)\sin\left(\frac{6\pi}{8}\right)\sin\left(\frac{7\pi}{8}\right)$  is:

a) 
$$\frac{1}{4\sqrt{2}}$$

b) 
$$\frac{1}{4}$$

c) 
$$\frac{1}{8}$$

d) 
$$\frac{1}{8\sqrt{2}}$$

14) If  $(\sqrt{3} + i)^{100} = 2(p + iq)^{99}$ , then p and q are roots of the equation:

a) 
$$x^2 - (\sqrt{3} - 1)x - \sqrt{3} = 0$$
  
b)  $x^2 + (\sqrt{3} + 1)x + \sqrt{3} = 0$ 

c) 
$$x^2 + (\sqrt{3} - 1)x - \sqrt{3} = 0$$
  
d)  $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$ 

b) 
$$x^2 + (\sqrt{3} + 1)x + \sqrt{3} = 0$$

d) 
$$x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$$

15) A hall has a square floor of dimension 10m ×10m (see the figure) and vertical walls. If the angle  $\angle GPH$  between the diagonals AG and BH is  $\cos^{-1}\left(\frac{1}{5}\right)$ , then the height of the hall (in meters) is:



b) 
$$2\sqrt{10}$$

c) 
$$5\sqrt{3}$$

d) 
$$5\sqrt{2}$$