Autoregressive Models for Tensor-Valued Time Series

Zebang Li Joint with Prof.Han Xiao

Rutgers, The State University of New Jersey zl326@stat.rutgers.edu; hxiao@stat.rutgers.edu

JSM 2020, Aug 03

Introduction

Figure 1: Matrix-valued time series.

Figure 2: Tensor-valued time series.

High dimensional time series observed in tensor form are becoming more and more commonly seen in various fields.

Introduction

For example, Average Value Weighted Returns of **Fama French portfolios** are allocated to

- Two Size groups (Small and Big) using NYSE median market cap breakpoint.
- Stocks in each Size group are allocated independently to four B/M groups (Book-to-Market, low B/M to High B/M)
- and four OP groups (Operating Profitability, Low OP to High OP) using NYSE quartile breakpoints specific to the Size group

which formed a $4 \times 4 \times 2$ tensor time series, from July 1963 to June 2020.

Zebang Li (Rutegrs) JSM 2020 3/34

Autoregressive Models for Tensor-Valued Time Series

At each time t, a matrix $\mathbf{X}_t \in \mathbb{R}^{d_1 \times d_2}$ is observed. Recall Matrix Autoregression Model, proposed by Chen, et al., 2020.

$$\mathbf{X}_t = \mathbf{A}\mathbf{X}_{t-1}\mathbf{B}' + \mathbf{E}_t, \ \mathbf{X}_t \in \mathbb{R}^{d_1 \times d_2}$$

Now at each time t, a mode-K tensor $\mathcal{X}_t \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_K}$ is observed. We proposed Tensor Autoregression Model (of order 1), in the form

$$\mathcal{X}_t = \mathcal{X}_{t-1} \times_1 \mathbf{A}_1 \times_2 \cdots \times_K \mathbf{A}_K + \mathcal{E}_t \tag{1}$$

4/34

where $\mathbf{A}_k \in \mathbb{R}^{d_k \times d_k}$, $1 \le k \le K$ are autoregressive coefficient matrices.

 \times_k is k-mode product and $\mathcal{E}_t \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is a tensor white_noise.

Autoregressive Models for Tensor-Valued Time Series

$$\mathcal{X}_t = \mathcal{X}_{t-1} \times_1 \mathbf{A}_1 \times_2 \cdots \times_K \mathbf{A}_K + \mathcal{E}_t$$

This model is consistent with vector and matrix AR model.

• when mode K = 1, it is the VAR(1) model.

$$\mathbf{X}_t = \mathbf{A}\mathbf{X}_{t-1} + \mathbf{E}_t, \ \mathbf{X}_t \in \mathbb{R}^{d_1}$$

• when mode K = 2, it is the MAR(1) model.

$$\mathbf{X}_t = \mathbf{A}\mathbf{X}_{t-1}\mathbf{B}' + \mathbf{E}_t, \ \mathbf{X}_t \in \mathbb{R}^{d_1 imes d_2}$$

Probabilistic Properties

When the condition of proposition 1 is fulfilled, the model has the following causal representation after vectorization:

$$\operatorname{vec}(\mathcal{X}_t) = \sum_{k=0}^{\infty} \left(\mathbf{A}_K^k \otimes \cdots \otimes \mathbf{A}_1^k \right) \operatorname{vec}(\mathcal{E}_{t-k}). \tag{2}$$

Proposition 1

If $\prod_{i=1}^K \rho(\mathbf{A}_i) < 1$, then the tensor autoregressive model is stationary and causal, where ρ denotes spectral radius.

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()

Multi-term Models

The model can be extended to have R terms. That is

$$\mathcal{X}_t = \sum_{i=1}^R \mathcal{X}_{t-1} imes_1 \mathbf{A}_1^{(i)} imes_2 \cdots imes_K \mathbf{A}_K^{(i)} + \mathcal{E}_t$$

This is still an order-1 autoregressive model, but with more parallel terms. Such a structure provides more flexibility to capture the different interactions among fibbers of the tensor.

Estimation

- Projection method.
- Iterated least squares.
- MLE under a structured covariance tensor.

Projection Method: One-Term Models

Our first approach is to view it as the structured VAR(1) model.

$$\mathsf{vec}(\mathcal{X}_t) = (\mathbf{A}_{\mathcal{K}} \otimes \cdots \otimes \mathbf{A}_1) \mathsf{vec}(\mathcal{X}_t) + \mathsf{vec}(\mathcal{E}_t)$$

Let $\Phi = \mathbf{A}_K \otimes \cdots \otimes \mathbf{A}_1$. First obtain the maximum likelihood estimate or the least square estimate $\hat{\Phi}$ of Φ without the structure constraint then we find the estimators by projecting $\hat{\Phi}$ onto the space of Kronecker products under the Frobenius norm:

$$(\hat{\mathbf{A}}_1,\cdots,\hat{\mathbf{A}}_K) = \mathop{\mathsf{argmin}}_{A_1,\cdots,A_K} \|\hat{\mathbf{\Phi}} - \mathbf{A}_K \otimes \cdots \otimes \mathbf{A}_1\|_F^2$$

Projection Method: One-Term Models

Lemma 1

There exist a rearrangement operator $\mathcal{T}: \mathbb{R}^{d_1 \cdots d_K \times d_1 \cdots d_K} \to \mathbb{R}^{d_1^2 \times \cdots \times d_K^2}$ such that

$$\|\hat{\boldsymbol{\Phi}} - \boldsymbol{A}_K \otimes \cdots \otimes \boldsymbol{A}_1\|_F^2 = \|\mathcal{T}(\boldsymbol{\Phi}) - \boldsymbol{a}_K \circ \cdots \circ \boldsymbol{a}_1\|_F^2$$

where $\mathbf{a}_1 = \text{vec}(\mathbf{A}_1), \dots, \mathbf{a}_K = \text{vec}(\mathbf{A}_K)$ and \circ is outer product.

- When K = 2 this minimization problem is called *Nearest Kronecker Product* (NKP) problem in matrix computation (Van Loan, 2000).
- When K > 2, consider it as the best rank-1 approximation problem for tensor.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Iterated least squares

One-Term Models LSE estimators:

$$(\tilde{\mathbf{A}}_1, \cdots, \tilde{\mathbf{A}}_K) = \mathop{\mathsf{argmin}}_{\mathbf{A}_1, \cdots, \mathbf{A}_K} \sum_t \|\mathcal{X}_t - \mathcal{X}_{t-1} \times_1 \mathbf{A}_1 \times_2 \cdots \times_K \mathbf{A}_K\|_F^2$$

To solve it numerically, we can update the K matrices $\tilde{\mathbf{A}}_1, \cdots, \tilde{\mathbf{A}}_K$ iteratively. By gradient conditions, the iteration of updating \mathbf{A}_i given $\mathbf{A}_2, \cdots, \mathbf{A}_K$ is

$$\mathbf{A}_i \leftarrow \big(\sum_t \mathcal{X}_{t,(i)} \mathbf{W}_{t,(i)}\big) \big(\sum_t \mathbf{W}_{t,(i)}' \mathbf{W}_{t,(i)}\big)^{-1}$$

where $\mathbf{W}_{t,(i)} := (\mathcal{X}_{t-1} \times_1 \cdots \times_{i-1} \mathbf{A}_{i-1} \times_{i+1} \mathbf{A}_{i+1} \cdots \times_K \mathbf{A}_K)'_{(i)}$, and $\mathcal{X}_{t,(i)}$ is the i-th unfolding of tensor \mathcal{X}_t , $1 \leq i \leq K$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

11/34

MLE under a structured covariance tensor

We also consider a structured covariance matrix

$$\mathcal{E}_t = \mathcal{Z}_t \times_1 \mathbf{\Sigma}_1^{1/2} \cdots \times_K \mathbf{\Sigma}_K^{1/2}$$

where tensor \mathcal{Z}_t has iid standard normal entries,

$$\mathsf{cov}(\mathsf{vec}(\mathcal{E}_t)) = \mathbf{\Sigma}_{\mathcal{K}} \otimes \cdots \otimes \mathbf{\Sigma}_1$$

The log likelihood under normality can be written as, for any $1 \le k \le K$,

$$-\sum_{i}^{K}(T-1)\prod_{l\neq i}d_{l}\log|\mathbf{\Sigma}_{i}|-\sum_{t}\mathrm{tr}[\mathbf{\Sigma}_{k}^{-1}\mathcal{R}_{t,(1)}\mathbf{S}_{k}^{-1}\mathcal{R}_{t,(1)}']$$

where

$$\mathsf{S}_i = \mathbf{\Sigma}_{\mathcal{K}} \otimes \cdots \otimes \mathbf{\Sigma}_{i+1} \otimes \mathbf{\Sigma}_{i-1} \otimes \cdots \otimes \mathbf{\Sigma}_1$$

$$\mathcal{R}_t = \mathcal{X}_t - \sum_{i=1}^R \mathcal{X}_{t-1} imes_1 \mathbf{A}_1^{(j)} imes_2 \cdots imes_K \mathbf{A}_K^{(j)}$$

Asymptotics: Some Notations

- Let $\mathbf{a}_i := \text{vec}(\mathbf{A}_i)$.
- $\gamma_i := (0', \mathbf{a}_i', 0')'$ be a vector in $\mathbb{R}^{d_1^2 + \dots + d_K^2}$ for $1 \le i \le K$.
- Σ is the covariance matrix of $\text{vec}(\mathcal{E}_t)$.
- Permutation matrix \mathbf{Q}_i are such that: for tensor $\mathcal{X} \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_n}$,

$$\text{vec}(\mathcal{X}_{(i)}) = \mathbf{Q}_i \text{vec}(\mathcal{X})$$

where $\mathcal{X}_{(i)}$ is *i*-th unfolding of tensor \mathcal{X} .

Asymptotics: Least Squares Estimators

Theorem 1 (CLT for One-Term Model Least Squares Estimators)

Define $\mathbf{H} := \mathbb{E}(\mathbf{W}_t \mathbf{W}_t') + \sum_{i=1}^{K-1} \gamma_i \gamma_i', \; \Xi_2 =: \mathbf{H}^{-1} \mathbb{E}(\mathbf{W}_t \Sigma \mathbf{W}_t') \mathbf{H}^{-1}$ where

$$\mathbf{W}_t = \begin{pmatrix} (((\mathcal{X}_t)_{(1)}\mathbf{\Phi}_1') \otimes \mathbf{I}_{d_1})\mathbf{Q}_1 \\ \cdots \\ (((\mathcal{X}_t)_{(K)}\mathbf{\Phi}_K') \otimes \mathbf{I}_{d_K})\mathbf{Q}_K \end{pmatrix}$$

 $\mathbf{\Phi}_i = \mathbf{A}_K \otimes \cdots \otimes \mathbf{A}_1$. Assume that \mathcal{E}_t , $1 \leq t \leq T$, are iid with mean zero and finite second moments. Also assume the causality condition, and \mathbf{A}_k , $1 \le k \le K$, Σ are nonsigular. Then it holds that

$$\sqrt{\mathcal{T}} \left(egin{array}{c} ext{vec}(ilde{f A}_1 - {f A}_1) \ & \ddots \ & \ ext{vec}(ilde{f A}_K - {f A}_K) \end{array}
ight)
ightarrow \mathcal{N}(0,\Xi_2)$$

14 / 34

Asymptotics: Least Squares Estimators

Theorem 2 (CLT for Multi-Term Model Least Squares Estimators)

Define
$$\mathbf{H} := \mathbb{E}(\mathbf{W}_t \mathbf{W}_t') + \sum_{j=1}^r \sum_{i=1}^{K-1} \gamma_{ij} \gamma_{ij}', \ \Xi_2 =: \mathbf{H}^{-1} \mathbb{E}(\mathbf{W}_t \mathbf{\Sigma} \mathbf{W}_t') \mathbf{H}^{-1}$$
,

$$\mathbf{W}_{t} = \begin{pmatrix} \mathbf{W}_{t}^{(1)} \\ \cdots \\ \mathbf{W}_{t}^{(R)} \end{pmatrix}, \ \mathbf{W}_{t}^{(i)} = \begin{pmatrix} (((\mathcal{X}_{t})_{(1)} \mathbf{\Phi}_{1}^{(i)'}) \otimes \mathbf{I}_{d_{1}}) \mathbf{Q}_{1} \\ \cdots \\ (((\mathcal{X}_{t})_{(K)} \mathbf{\Phi}_{K}^{(i)'}) \otimes \mathbf{I}_{d_{K}}) \mathbf{Q}_{K} \end{pmatrix}, \ 1 \leq i \leq R$$

where $\mathbf{\Phi}_{i}^{(j)} = \mathbf{A}_{K}^{(j)} \otimes \cdots \otimes \mathbf{A}_{1}^{(j)}$, $1 \leq i \leq K$, $1 \leq j \leq R$. Then it holds that

$$\sqrt{T} \begin{pmatrix} \textit{vec}(\hat{\textbf{A}}_1^{(1)} - \textbf{A}_1) \\ \cdots \\ \textit{vec}(\hat{\textbf{A}}_{\kappa}^{(R)} - \textbf{A}_{\kappa}) \end{pmatrix} \rightarrow \mathcal{N}(0, \Xi_2)$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

15/34

Asymptotics: MLE under Kronecker Structured Covariance

Theorem 3 (CLT for One-Term Model MLE Estimators)

Under the same condition of Theorem 1, and the additional assumption (12). Define $\bar{\mathbf{H}} := \mathbb{E}(\mathbf{W}_t \Sigma^{-1} \mathbf{W}_t') + \sum_{i=1}^{K-1} \gamma_i \gamma_i'$, $\bar{\Xi}_3 := \bar{\mathbf{H}}^{-1} \mathbb{E}(\mathbf{W}_t \Sigma^{-1} \mathbf{W}_t') \bar{\mathbf{H}}^{-1}$. Then it holds that

$$\sqrt{\mathcal{T}} \begin{pmatrix} \textit{vec}(\bar{\boldsymbol{A}}_1 - \boldsymbol{A}_1) \\ \cdots \\ \textit{vec}(\bar{\boldsymbol{A}}_K - \boldsymbol{A}_K) \end{pmatrix} \rightarrow \mathcal{N}(0, \Xi_3)$$

There are similar results for Muti-term Model MLE estimators.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Determining The Number of Terms

Multi-term model with *R* terms:

$$\mathcal{X}_{t} = \sum_{i=1}^{R} \mathcal{X}_{t-1} \times_{1} \mathbf{A}_{1}^{(i)} \times_{2} \mathbf{A}_{2}^{(i)} \times_{3} \cdots \times_{K} \mathbf{A}_{K}^{(i)} + \mathcal{E}_{t}$$
(3)

We discussed the information criteria about determining the number of terms.

$$\mathsf{CP}(k) = \frac{1}{NT} \sum_{t} \|\mathsf{vec}(\mathcal{X}_t) - \mathbf{\Phi}\mathsf{vec}(\mathcal{X}_{t-1})\|_F^2 + k \cdot g(N, T) \tag{4}$$

where $\Phi = \sum_{i=1}^R \mathbf{A}_K^{(i)} \otimes \mathbf{A}_{K-1}^{(i)} \otimes \cdots \otimes \mathbf{A}_1^{(i)}$, $N = d_1 d_2 \cdots d_K$, and g(N, T) controls the weight of penalty.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

17/34

Determining The Number of Terms

Assumption 1

Assume that $N/T \to 0$, as $N, T \to \infty$.

Assumption 2

Under Assumption 1. Assume that $\liminf_{T,N\to\infty}\lambda_{min}(\frac{\mathbf{x}'\mathbf{x}}{T})\overset{a.s.}{\longrightarrow}c>0$, where the columns of the matrix $\mathbf{X}\in\mathbb{R}^{T\times N}$ are those $vec[(\mathcal{X}_t)]$

Assumption 3

Consider the model (3). Assume that for $1 \le r \le R$, there esists some consitant $\eta > 0$ such that $\|\mathbf{A}_K^{(r)} \otimes \cdots \otimes \mathbf{A}_1^{(r)}\|_F^2 > \eta N$.

Assumption 3 is mild and can be often satisfied by generic $\mathbf{A}_1, \cdots, \mathbf{A}_K$.

Zebang Li (Rutegrs) JSM 2020 18/34

Determining The Number of Terms

Theorem 4

Suppose Assumption 1 to 3 holds. Set R be the true number of terms and $\hat{k} = \operatorname{argmin} CP(k)$. If

- $g(N,T) \rightarrow 0$;
- $T \cdot g(N, T) \rightarrow \infty$, as $N, T \rightarrow \infty$.

Then $\lim_{N,T\to\infty} P(\hat{k}=R)=1$

Corollary 1

Under the Assumptions of Theorem 4, the class of criteria defined by

$$IC(k) := \log(\frac{1}{NT} \| \operatorname{vec}(\mathcal{X}_t) - \Phi \operatorname{vec}(\mathcal{X}_{t-1}) \|_F^2) + k \cdot g(N, T)$$
 (5)

will also consistently estimate R.

- Experiment I: Comparison of estimators PROJ, LSE, MLE and VAR.
 - Setting I: $cov(vec(\mathcal{E}_t)) = \mathbf{\Sigma} = \mathbf{I}$.
 - Setting II: $cov(vec(\mathcal{E}_t)) = \Sigma$ is arbitrary.
 - Setting III: $cov(vec(\mathcal{E}_t))$ takes the kronecker product form.

We repeat the simulation 1000 times and show a box plot of

$$\log \|\hat{\mathbf{A}}_1 \otimes \hat{\mathbf{A}}_2 \otimes \hat{\mathbf{A}}_3 - \mathbf{A}_1 \otimes \mathbf{A}_2 \otimes \mathbf{A}_3\|_F^2 \tag{6}$$

- Experiment II: Percentage of Coverages of Confidence Interval.
- Experiment III: Determine the number of terms.

ロト (個) (重) (重) (重) の(で

Figure 3: In one-term model, comparison of four estimators, PROJ, LSE, MLEs and VAR, under setting I.

Zebang Li (Rutegrs) JSM 2020 21/34

Figure 4: In one-term model, comparison of four estimators, PROJ, LSE, MLEs and VAR, under setting II.

Zebang Li (Rutegrs) JSM 2020 22 / 34

Figure 5: In one-term model, comparison of four estimators, PROJ, LSE, MLEs and VAR, under setting III.

Zebang Li (Rutegrs) JSM 2020 23 / 34

Figure 6: In two-term model, comparison of four estimators, LSE1, LSE2, MLE2, VAR, and PROJ, under setting I.

Zebang Li (Rutegrs) JSM 2020 24 / 34

Figure 7: In two-term model, comparison of four estimators, LSE1, LSE2, MLE2, VAR, and PROJ, under setting II.

Zebang Li (Rutegrs) JSM 2020 25 / 34

Figure 8: In two-term model, comparison of four estimators, LSE1, LSE2, MLE2, VAR, and PROJ, under setting III.

Zebang Li (Rutegrs) JSM 2020 26 / 34

Experiment II: Percentage of coverages

	Setting	I		II		Ш	
	Estimator	LSE	MLEs	LSE	MLEs	LSE	MLEs
R=1	T=100	0.945	0.941	0.940	0.771	0.937	0.944
	T=200	0.951	0.950	0.941	0.774	0.946	0.948
	T=1000	0.953	0.952	0.951	0.776	0.955	0.956
R = 2	T=500	0.937	0.937	0.934	0.706	0.907	0.933
	T=1000	0.943	0.942	0.941	0.726	0.906	0.935
	T=2000	0.950	0.950	0.943	0.724	0.920	0.936

Table 1: Percentage of coverages of 95% confidence intervals.

Experiment III: Determine the number of terms

Consider the following criteria:

$$\begin{split} &\mathsf{IC}_{1}(k) = \log(\frac{1}{NT} \| \mathbf{Y}' - \Phi \mathbf{X}' \|_{F}^{2}) + 2k \frac{\log(T)}{T} \\ &\mathsf{IC}_{2}(k) = \log(\frac{1}{NT} \| \mathbf{Y}' - \Phi \mathbf{X}' \|_{F}^{2}) + 2k \frac{\log(N)}{T} \\ &\mathsf{IC}_{3}(k) = \log(\frac{1}{NT} \| \mathbf{Y}' - \Phi \mathbf{X}' \|_{F}^{2}) + 2k \frac{\log(d_{1}^{2} + d_{2}^{2} + d_{3}^{2})}{T} \end{split}$$

The experiments shows that above three criteria can choose the true number of terms 100%, out of 100 repetitions, under different tensor size $3 \times 3 \times 3$, $5 \times 5 \times 5$ and different true number of terms R = 1, 2, 3.

(ロト 4回 ト 4 至 ト 4 巨) 9 Q (^)

28 / 34

Data from Fama-French Factor Model

We are using the 32 Portfolios Formed on Size, Book-to-Market, and Operating Profitability, from Fama-French Data Library, which formed a $4 \times 4 \times 2$ tensor time series, from July 1963 to October 2019.

- Determine the number of terms by IC_1, IC_2, IC_3 . $(\hat{R} = 1)$
- Estimate the coefficient matrices.
- Obtain out-sample rolling forecast performances.

Fama-French Factor Model: Coefficient Matrices

	LoOP	50%OP	75%OP	HiOP	LoOP	50%OP	75%OP	HiOP
LoOP	-0.100	-0.080	0.463	-0.483	0	0	+	-
	(0.112)	(0.195)	(0.126)	(0.083)	0			
50%OP	0.015	-0.033	0.202	-0.368		Λ	Λ	
50%OP	(0.089)	(0.164)	(0.137)	(0.065)	0	U	U	-
75%OP	0.069	-0.047	0.151	-0.382	0	0	0	-
	(0.097)	(0.162)	(0.150)	(0.069)				
HiOP	0.079	0.047	0.116	-0.490		Λ	Λ	
	(0.111)	(0.179)	(0.189)	(0.091)		J	U	-

Table 2: Estimated coefficient matrix \mathbf{A}_1 using LSE method. Standard errors are shown in the parentheses. The right panel indicates the positively significant, negatively significant and insignificant parameters at 5% level using symbols (+,-,0), respectively.

Fama-French Factor Model: Coefficient Matrices

	LoBM	50%BM	75%BM	HiBM	LoBM	50%BM	75%BM	HiBM
LoBM	0.428	0.173	-0.362	0.226		0		
LODIVI	(0.186)	(0.222)	(0.148)	(0.111)		U	-	+
50%BM	0.331	0.148	-0.171	0.171		0	0	1
30%DIVI	(0.162)	(0.189)	(0.125)	(0.089)	+	U	U	+
75%BM	0.265	0.145	-0.138	0.192	0	0	0	
75%DIVI	(0.159)	(0.183)	(0.125)	(0.092)	0	U	U	+
HiBM	0.293	0.315	-0.231	0.251	0	0	0	1
ПІВІИ	(0.196)	(0.208)	(0.144)	(0.114)		U	U	T

Table 3: Estimated coefficient matrix \mathbf{A}_2 using LSE method. Standard errors are shown in the parentheses. The right panel indicates the positively significant, negatively significant and insignificant parameters at 5% level using symbols (+,-,0), respectively.

31/34

Fama-French Factor Model: Coefficient Matrices

Small	Big	Small	Big	
-1.211	-0.508		0	
0.579)	(0.335)	_		
-0.470 0.307)	-0.380 (0.254)	0	0	
	-1.211 0.579)	-1.211 -0.508	-1.211 -0.508 0.579) (0.335)	

Table 4: Estimated coefficient matrix \mathbf{A}_3 using LSE method. Standard errors are shown in the parentheses. The right panel indicates the positively significant, negatively significant and insignificant parameters at 5% level using symbols (+,-,0), respectively.

Fama-French Factor Model: Rolling Forecast

LSE1	MLE1	LSE2	MLE2	LSE3	MLE3	iAR(1)	iAR(2)	VAR(1)
1195.36	1202.44	1208.87	1177.74	1198.54	1181.89	1197.11	1204.31	1247.88

Table 5: Rolling forecast mean square errors of LSE, MLE with R=1,2,3 as well as univariate AR(1) and AR(2), vector AR(1) models for comparison. Starting from 2013 May (t=600) to 2019 Oct (t=677).

Thanks for listening!