

AD-A217 904

Nederlandse organisatie
voor toegepast
natuurwetenschappelijk
onderzoek

Fysisch en Elektronisch
Laboratorium TNO

0

DTIC FILE COPY

rapport no.
FEL 1989-64

exemplaar no.

14

Detectors en signaalbewerking voor
het snelheidsmeetstelsel 4-01

DTIC
ELECTE
FEB 12 1990
S C E D

90 02 09 092

Nederlandse organisatie
voor toegepast
natuurwetenschappelijk
onderzoek

TNO-rapport

Fysisch en Elektronisch
Laboratorium TNO

Postbus 96864
2509 JG 's-Gravenhage
Oude Waalsdorperweg 63
's-Gravenhage

Telefoon 070 - 26 42 21

rapport no.
FEL 1989-64

exemplaar no.

14

titel

Detectoren en signaalbewerking voor
het snelheidssysteem 4-01

89-2325

auteur(s):

J. van der Haven
G.J. Proper

Niets uit deze uitgave mag worden
vermenigvuldigd en of openbaar gemaakt
door middel van druk, fotokopie, microfilm
of op welke andere wijze dan ook, zonder
vooraafgaande toestemming van TNO.
Het ter inzage geven van het TNO-rapport
aan direct belanghebbenden is toegestaan

Indien dit rapport in opdracht werd
uitgebracht, wordt de rechten en
verplichtingen van opdrachtgever en
opdrachtnemer verwezen naar de
'Algemene Voorwaarden voor Onderzoeks-
opdrachten TNO', dan wel de betreffende
terzake tussen partijen gesloten
overeenkomst

TNO

rubricering

titel : Ongerubriceerd
samenvatting : Ongerubriceerd
rapport : Ongerubriceerd

oplage : 23
aantal bladzijden : 47
aantal bijlagen : 1

datum : maart 1989

DTIC

ELECTE

FEB 12 1990

rapport no. : FEL 1989-64
titel : Detectoren en signaalbewerking voor het snelheidsmetsysteem
4-01

auteur(s) : J. van der Haven, G.J. Proper
instituut : Fysisch en Elektronisch Laboratorium TNO

datum : maart 1989
hdo-opdr.no. : A79/KL/095
no. in mltp :

SAMENVATTING

Het optisch snelheidsmetsysteem 4-01 is bedoeld om de snelheid van klein kaliber projectielen te meten met een nauwkeurigheid van 1 promille.

De detectie van een projectiel kan zowel vlak voor de vuurmond als op grotere afstand hiervan plaatsvinden.

Een projectiel met een kaliber van 5.5 mm. kan op een hoogte van 6.5 m. gedetecteerd worden.

Het systeem funktionert nog bij een lichtsterkte van 500 lux.

In dit rapport worden de optronische detectoren beschreven alsmede de schakelingen voor de signaalverwerking in de centrale verwerkseenheid.

Accession For	A-1
NTIS GRA&I	<input type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
Avail and/or	
Di Special	

A-1

report no. : FEL 1989-64
title : Speed measuring system

author(s) : J. van der Haven, G.J. Proper
institute : TNO Physics and Electronics Laboratory

date : March 1989
NDRO no. : A79/KL/095
no. in pow. :

ABSTRACT

The optical speed measurement system intends to measure the speed of small caliber projectiles with a tolerance of one promille. The detection of a projectile can take place close to the gun as well at larger distances. A projectile with a caliber of 5.5 mm. can be detected at a height of 6.5 m. The measuring system can still be used when the intensity of radiation is 500 lux. In this report a description is given of the optronic detectors and the analog circuits in the central processing unit.

INHOUD

SAMENVATTING	1
ABSTRACT	2
INHOUDSOPGAVE	3
DEEL I	5
1 INLEIDING	5
2 SPECIFICATIES	7
3 ALGEMENE BESCHRIJVING	9
DEEL II	15
1 INLEIDING	15
2 BLOKSCHEMABESCHRIJVING DETECTOREN EN CENTRALE VERWERKINGSEENHEID	16
3 SCHEMABESCHRIJVING VAN DE DETECTOREN	22
4 SCHEMABESCHRIJVING VAN DE CENTRALE VERWERKINGSEENHEID	31
5 SCHEMA BESCHRIJVING MONDINGSVLAMDETECTOR, ONTVANGER EN AKOESTISCHE DRUKOPNEMER	37
6 AFREGELVOORSCHRIFT	39

7 METHODE VOOR HET EVENWIJDIG MAKEN VAN DE OPTISCHE
 SCHERMEN 46

APPENDIX A - FOTO'S EN TEKENINGEN

DEEL I

1 INLEIDING

Tot het ballistisch onderzoek dat door de Koninklijke Landmacht wordt uitgevoerd behoort het meten van de snelheid van projectielen in de vlucht.

Hiertoe werd een door het FEL-TNO ontworpen meetsysteem gebouwd.

Dit meetsysteem is speciaal bedoeld voor het meten van de snelheid van klein kaliber projectielen en lichtspoor munitie.

Het systeem werkt volgens het principe van de detectie van de verduistering van het hemellicht bij de passage van een projectiel door een spleetvormig gezichtsveld.

Het systeem bestaat uit twee detectoren die de verduistering bij de passage van het projectiel omzetten in elektrische signaalimpulsen die via een kabel naar de centrale verwerkseenheid worden gevoerd.

In de centrale verwerkseenheid wordt de tijd berekend die het projectiel nodig heeft om de meetbasis, gevormd door de afstand tussen de beide gezichtsvelden, te passeren.

Op de centrale verwerkseenheid zijn ook instelmogelijkheden aangebracht om de ruisdrempel en de ruisfiltertijd in te stellen.

Voorts is een toetsenbord en een display aangebracht om het kaliber, salvolengte of enkelschot in te stellen en af te lezen.

De resultaten van een schot of serie schoten worden ook op het display gepresenteerd, terwijl het tevens mogelijk is deze resultaten uit te printen.

Met dit meetsysteem is het mogelijk om in een overdekte schiettunnel metingen te doen.

Op elke detector moet dan een lichtbron worden geplaatst en boven de detectoren moeten reflectieschermen worden opgehangen.

Het teruggekaatste licht dient dan als achtergrondverlichting.

In deel 1 wordt in hoofdzaak de optronische detectie beschreven.

2 SPECIFICATIES

Objectief : $f=40$ mm achroaat
type: Spindler & Hoyer
nr. 322209

Openingshoek : 25 graden

Toelaatbare achtergrondverlichting : 500 - 150,000 lux

Maximale overschietehoogte-kaliber verhouding : H/K = 1200

Verlichting door lichtspoor : 20% verhoging van de achtergrondverlichting

Signaleren van de verhouding signaal/drempel : S/L = 0 - 20

Toegepaste meetmethode voor verduisteringssignalen : Meting op voor- en achterkant

Toegepaste meetmethode voor lichtspoorsignalen : Voorkantmetingen

Maximale vuursnelheid : 6000 schoten / min.

Automatische omschakeling 0 en 1/2 waarde detectie : S/L = 6

Meetvoorwaarde drempel
schakelaar stand aut. : S/L \rightarrow 4
stand 5-1 : S/L \leftarrow 4
stand hoog : H/K \leftarrow 125

Nauwkeurigheid bij 6000 lux : $3\mu\text{s} +/- 1\mu\text{s}$

Testmeting : display geeft 10.000 $+/- 5$

Spanning op testpluggen
op de detectoren : DC spanning als maat voor de
lichtwaarde: 300 mV/1000 lux
 $R_i=100\text{K}\Omega$

Basislengte van de gemon-
teerde fotobalk : 2000 m $+/- 0.5$ mm
(zie rapport IR 1987-21)

Nauwkeurigheid waterpas : 0.03 %

Werktemperatuur : -20 tot +50 graden Celcius
voor de detectoren
0 tot +70 graden Celcius voor
de centrale verwerkseenheid

3

ALGEMENE BESCHRIJVING

De werking van de detector berust op een stroomverandering in de fotocel, veroorzaakt door een voorwerp dat zich door het spleetvormig gezichtsveld van de fotocel beweegt.

Wanneer twee detectoren op een bekende afstand van elkaar (basislengte) onder de projectielbaan worden geplaatst, kan de projectielsnelheid worden berekend uit de tijd die gemeten wordt tussen de impulsen, die afkomstig zijn uit de beide detectoren.

Zodra een projectiel het gezichtsveld binnentreedt, veroorzaakt dit een fotostroomverandering t.g.v. de verduistering en evenzo zal bij het verlaten van dit gezichtsveld de fotostroom terugvallen naar de oude waarde.

Met deze twee veranderingen van de fotostroom kunnen dus twee metingen gedaan worden aan hetzelfde verschijnsel.

Elke impuls t.g.v. de passage van een projectiel heeft een voorflank en een achterflank, zodat per projectiel tweemaal de snelheid gemeten kan worden, de z.g. voor- en achterkantmeting.

Bij de hier beschreven meetmethode kunnen de detectoren naar keuze op een willekeurige afstand van elkaar worden geplaatst, of gemonteerd worden op een bijbehorend tussenstuk waardoor een z.g. fotobalk verkregen wordt met een geijkte basislengte van 2000 mm (zie specificatie) en evenwijdige optische gezichtsvelden.

Bij gebruik van losse detectoren dienen deze nauwkeurig te worden uitgericht met meetlint, richtkijkers en waterpassen.

De beide detectoren worden onderling met een kabel verbonden en via een kabel met een lengte van ca. 100 m verbonden met de centrale verwerkingseenheid, waar de snelheid van enkelschot of snelvuur wordt berekend en geregistreerd.

Om kleine projectielen te kunnen detecteren is een smal optisch gezichtsveld vereist.

De lengte van dit gezichtsveld t.o.v. de diameter van het projectiel bepaalt de procentuele verduistering en dus ook de amplitude van de signaalimpuls.

De gevoeligheid, uitgedrukt in de maximaal toepasbare hoogte/kaliber verhouding (H/K) is afhankelijk van de achtergrondverlichting en het contrast van het projectiel tegen die achtergrond.

Als vuistregel geldt: $H/K = 300 \times fk \times klux$

Waarbij:
fk = contrastfactor
klux = 1000 lux.

De maximale verhouding H/K= 1200 kan worden beperkt door een maximale overschiethoogte van ca. 6.5 m en een kaliber van 5.5 mm.

De maximale H/K is afhankelijk van de heersende lichtomstandigheden op grotere hoogte.

De optische gezichtsveldbreedte bedraagt op 0.5 m hoogte 4.5 mm oplopend tot 10 mm op 6 m hoogte.

De detectoren kunnen gebruikt worden bij een minimale achtergrondverlichting van 500 lux.

Bij een lage lichtsterkte oefent de versterkerruis een negatieve invloed uit op de gevoeligheid en de nauwkeurigheid van de meting.

De storende werking van ruisimpulsen die een vals meetsignaal kunnen veroorzaken, kan beperkt worden door het gebruik van een ruisfilter waarvan de ruisfiltertijd kan worden ingesteld met de knop "RUISFILTERTIJD" (6; 12; 24; 48 μ s).

Ruisimpulsen die korter zijn dan de ingestelde tijd zullen dan niet als meetimpulsen worden geaccepteerd.

Bij het gebruik van dit filter moet de passeertijd van het projectiel boven de detector langer zijn dan de ingestelde ruisfiltertijd. Deze passeertijd is af te lezen op het display van de centrale verwerkseenheid.

Wanneer de detectoren dichtbij de vuurmond zijn opgesteld zal de rookontwikkeling bij snelvuur de meting kunnen verstoren. De invloed van de overdrijvende rook is sterk te verminderen door gebruik te maken van een hoogdoorlaatfilter, dat kan worden ingeschakeld met een schakelaar op het bedieningspaneel van de centrale verwerkseenheid. Dit filter zal de signaalvorm aantasten en is alleen bruikbaar bij kleine kalibers en hoge projectielsnelheden. (bijv. kaliber .50 en 900 m /s). Bij langere verduisteringen kan t.g.v. dit filter de achterkantmeting onmogelijk worden.

In bovengenoemde situatie worden ook op onregelmatige tijdstippen valse meetimpulsen door de detectoren afgegeven. Deze impulsen kunnen uiteraard ook tussen de schoten door verschijnen, waardoor ten onrechte de vlucht van een projectiel gesigneerd zou worden. Dit effect is tegengegaan door een interschotblokkering in te bouwen. Deze blokkering is naar keuze in of uit te schakelen. De signalen uit de detectoren worden daarbij geblokkeerd vanaf het achterkantstopsignaal van een schot tot even voor het startsignaal van het volgende schot. De juiste blokkeertijd wordt door het apparaat zelf bepaald. Het gebruik van de mondingsvlamdetector is hierbij noodzakelijk.

Om een meetsignaal van een ruissignaal te kunnen onderscheiden moet de amplitude van het signaal een z.g.n. ruisdrempel overschrijden. Een grote signaal/drempel verhouding (hierna te noemen S/L) is van belang voor een nauwkeurige meting.

Deze verhouding is na iedere enkelschotmeting af te lezen op het display. Het display kan voor de verhouding S/L maximaal het getal 20 weergeven.

Bij snelvuurmetingen wordt de laagste S/L waarde van een serie schoten op het display weergegeven.

De S/L verhouding heeft ook konsequenties voor de wijze van detecteren. De voorkantmeting zal over het algemeen een nauwkeurig resultaat geven bij grote S/L verhoudingen. De achterkantmeting echter zal dan minder nauwkeurig zijn, aangezien aan de voet van de achterflank de flanksteilheid niet groot is.

Daarom wordt bij grote S/L verhoudingen (display: S/L > 6) op de halve amplitude gedetecteerd. De flanksteilheid is dan veel beter.

Bij kleinere waarden van S/L wordt de drempel door het ruisniveau bepaald (gelijkrichten van het ruissignaal) en wordt aan de voet van het signaal gedetecteerd.

Dit geldt ook voor de voorkantmeting bij grote S/L waarden.

Met behulp van de gemeten S/L waarde in de "stop"detector van het voorgaande schot kiest het systeem zelf of het een '0 waarde' of een '1/2 waarde' detectie moet zijn.

De schakelaar "signaaldrempel" moet dan wel in de stand "AUT" staan.

Als criterium voor het omschakelen van '0 waarde' naar '1/2 waarde' geldt de verhouding S/L = 6.

Op het bedieningspaneel wordt de keuze van de detectiemethode weergegeven door een tweetal lampjes met bijbehorende symbolen.

Aan het begin van een serie metingen wordt standaard begonnen met de instelling '0 waarde' detectie.

Dit wordt automatisch ingesteld bij het opstarten van het meetsysteem.

Naar believen kan op het 'keyboard' na het opstarten voor de '1/2 waarde' detectie worden gekozen.

Met het automatisch omschakelen van '0 waarde' naar '1/2 waarde' detectie wordt alleen de methode van detecteren gewijzigd.

Voor een gevoeliger instelling moet de knop "SIGNAALDREMPEL" linksom uit de stand "AUT" gedraaid worden en kan de drempelspanning in 5 stappen worden verlaagd.

Dit moet worden gedaan als de metingen in de stand "AUT" blijvend een S/L < 4 opleveren.

Bij een grote achtergrondverlichting is er weinig versterkerruis, waardoor een klein verduisteringssignaal een hoge S/L waarde kan opleveren.

Wanneer hierbij de absolute signaalamplitude te klein is om de drempel te overschrijden, kan er geen detectie plaatsvinden.

De schakelaar "SIGNAALDREMPEL" in stand "HOOG" geeft een verhoogde drempel ("0" waarde detectie) om grotere storingen b.v. door schokgolf-effecten, tegen te kunnen gaan.

Deze stand moet sterk worden aanbevolen bij het schieten in de tunnel, omdat daar over het algemeen met een lage overschiethoogte wordt gewerkt, zodat er een grote signaalamplitude optreedt.

In de tunnel treden ook gemakkelijk stoorsignalen op t.g.v. het trillen van de kunstverlichting door de schokgolven.

Voor de controle bij het instellen van het systeem op binnenkomende (eventueel storende) signalen, is op het bedieningspaneel een lampje aangebracht met daarbij de tekst: "VK-AK".

Vanuit de centrale verwerkingseenheid kan een test uitgevoerd worden op de goede werking van het gehele meetsysteem.

Door het indrukken van de knop "TESTMETING" krijgt de computer de opdracht een meting uit te voeren.

Op het display behoort dan het getal 10,000 +/- 5 te verschijnen.

Deze test kan tijdens een meting plaatshebben zonder het meetprogramma te verstören.

De snelheid van projectielen die lichtspoor bevatten kan niet worden gemeten op de in het voorgaande beschreven wijze.

Het lichtspoor zal het verduisteringseffect geheel tenietdoen, zodanig zelfs dat de detector een signaal met tegengestelde polariteit afgeeft.

Voor deze situatie is een apart lichtspoorkanaal ingebouwd, die de gemeten tijdsintervallen weergeeft op het display "LSP".

Het betreft in dit geval altijd een voorkantmeting.

Wanneer er geen verduistering optreedt, wordt er geen S/L waarde bepaald, werkt de keuze van de achterkantdetectie niet en is de signaaldrempel van geen belang.

Een lichtspoorsignaal is meestal groot en om het te onderscheiden van kleine verlichtingssignalen, die veroorzaakt kunnen worden door zonspiegelingen op het projectiel, is het lichtspoorkanaal minder gevoelig gemaakt.

Voor lichtspoormetingen moet er een normale achtergrondverlichting zijn. Om aan te geven dat er een lichtspoorsignaal gedetecteerd wordt zal op het bedieningspaneel een lampje met de tekst "LSP" oplichten.

De nauwkeurigheid van een meting is afhankelijk van de gekozen basislengte, de evenwijdigheid van de spleetvormige gezichtsvelden, de projectielvorm en de achtergrondverlichting.

Bij een juiste werkwijze is de nauwkeurigheid 0.1%.

DEEL II

1 INLEIDING

In hoofdstuk 2 wordt aan de hand van een blokschema de funktionele werking uiteengezet van de beide detectoren.

Daarna wordt de signaalverwerking van het analoge gedeelte in de centrale verwerkseenheid op dezelfde wijze behandeld.

In hoofdstuk 3 en hoofdstuk 4 wordt in detail ingegaan op de verschillende electronische schakelingen.

In hoofdstuk 5 zijn de afregelvoorschriften voor de beide detectoren opgenomen, terwijl in hoofdstuk 6 de methode om de evenwijdigheid van de gezichtsvelden af te regelen wordt gegeven.

2

BLOKSCHEMABESCHRIJVING DETECTOREN EN CENTRALE
VERWERKINGSEENHEID

2.1 Blokschema van de fotoceldetectoren

Zie fig. 1

Geheel links in het blokschema van de fotoceldetectoren is een fotocel weergegeven.

Hiermee wordt het hemellicht omgezet in een elektrische stroom.

De fotocel is verdeeld in tien naast elkaar liggende fotogevoelige elementen, geïsoleerd t.o.v. elkaar en elk voorzien van een eigen aansluiting.

Elk element neemt een tiende deel van het totale gezichtsveld waar. Verder is elk fotogevoelig element van een stroom/spanning omzetter voorzien en de uitgangen van die omzetters worden opgeteld.

Hierdoor ontstaat per element een tien maal betere procentuele verduistering dan met een enkelvoudige fotocel.

De ruis, door die tien stroom/spanning omzetters met hun fotocellen veroorzaakt, wordt echter ook opgeteld, zodat de effectieve ruisspanning aan de uitgang de wortel uit tien maal groter wordt.

Daar de signaalspanning tien maal beter wordt als alleen de signaalspanning tien maal versterkt wordt om het verlies van tien maal in de optelversterker te compenseren, is het netto resultaat een verbetering van ruim drie maal.

De opgewekte stroom in de fotocellen verandert lineair met een verandering van de verlichtingsomstandigheden.

In het blok "koppelversterker" worden de tien signalen die afkomstig zijn van de fotocelversterkers opgeteld.

Het resultaat van die optelling wordt naar het rookfilter geleid dat in- of uitgeschakeld kan worden met een knop op het bedieningspaneel.

Het opgetelde fotocelsignaal wordt opgesplitst in een LF deel dat de verlichtingsomstandigheden weergeeft en een deel dat de eigenlijke signaalimpuls bevat.

Het LF gedeelte wordt verkregen door het totale signaal een laagdoorlaatfilter met een kantelfrekentie van 8 Hz te laten doorlopen, waarna het versterkt wordt en gebruikt om de versterking van de regelversterker in te stellen.

Dit signaal is tevens via een coaxplug voor kontrolemetingen naar buiten uitgevoerd.

Het deel met de signaalimpuls wordt na het rookfilter gebufferd en daarna tien maal versterkt, waarbij tevens het LF deel weer wordt opgeteld.

De regelversterker zorgt er voor dat de signaalamplitude, ondanks variaties in de achtergrondverlichting, konstant blijft.

De signaalamplitude is dus alleen afhankelijk van de procentuele verduistering, dus van het kaliber, de overschiethoogte en de kontrastfactor.

In de niveaudetector heeft de eigenlijke detectie van het signaal plaats.

Deze heeft daar een drempelspanning voor nodig welke door de signaalimpuls overschreden moet worden, zodat de aanwezigheid van die impuls gedetecteerd kan worden.

De drempel wordt, afhankelijk van de instelling op de centrale verwerkingsseenheid, door de ruis bepaald en door een instelling op het bedieningspaneel.

De achterflank van een start- of stopsignaal kan, afhankelijk van de signaalgrootte, op de voet of halverwege gedetecteerd worden, al naar gelang de schakelaarstand voor instelling van de drempel.

De achtergrond hiervan is, dat bij grote signaalamplituden de flanksteilheid aan de voet van de impuls niet groot is als gevolg van de beperkte bandbreedte van het systeem.

Halverwege de flank is die steilheid groter en de meting nauwkeuriger.

Na deze bewerking wordt de impuls via een driver op TTL niveau naar de centrale verwerkingsseenheid gevoerd.

De uitgang van de regelversterker is ook naar een andere niveaudetector gevoerd om signalen met lichtspoor te detecteren.

Bij gebruik van lichtspoormunitie zal er bij het passeren van de detectoren niet alleen verduistering maar ook verlichting van de fotocel plaatshebben.

Aangezien de verlichting zeer veel groter is dan de verduistering, zal het signaal van polariteit omkeren.

Een signaal met omgekeerde polariteit zal door de detector voor verduistering niet als signaal worden herkend.

De lichtspoordetector daarentegen herkent dit signaal wel als het voldoende groot is om een ingebouwde drempel te overschrijden.

Lichtspoorsignalen zijn echter erg onnauwkeurig door de niet duidelijk te definiëren donker/licht overgangen.

Derhalve wordt bij deze metingen alleen op de voorflanken van de start- en stopimpulsen gemeten.

De uitgangen van beide niveaudetectoren worden via een buffer op de centrale verwerkingsseenheid aangesloten met een kabel.

In de stopdetector is nog een schakeling ondergebracht die de S/L verhouding bepaalt.

Deze verhouding wordt bepaald door de aangelegde drempel op de impulsformer te delen op de absolute signaalamplitude.

De S/L verhouding wordt op het bedieningspaneel van de centrale verwerkingsseenheid gepresenteerd en wordt gebruikt om de instelling van het meetsysteem te beoordelen.

In het voedingsblok is ook een circuit opgenomen waarmee de testsignalen worden gegenereerd op commando vanuit de centrale verwerkseenheid. Deze testsignalen worden in de optieversterker geïnjecteerd en doen zich daar voor als verduisteringssignalen.

De voeding van de detector is dubbel uitgevoerd en maakt van +24 V en -24 V die via de verbindingenkabel vanaf de centrale verwerkseenheid binnentrekken, +/-15 V t.b.v. de diverse printkaarten in de detector.

2.2 Blokschema centrale verwerkseenheid (optronisch gedeelte)

Zie fig. 28

De beschrijving betreft hier alleen dat gedeelte van de centrale verwerkseenheid waar de signaalverwerking plaatsheeft.

Geheel links zijn de kabelaansluitingen voor verbinding met de detectoren getekend.

De verduisteringssignalen die via de kabeladers B en C binnentrekken, worden via opto-couplers aan het ruisfilter toegevoerd.

De filtertijd is instelbaar op het bedieningspaneel d.m.v. de knop "RUISFILTERTIJD".

Na het ruisfilter komt de schakeling voor de flankdetectie.

Er zijn immers per schot twee metingen om de snelheid van het projectiel vast te stellen, zodat een nauwkeurig resultaat mogelijk is geworden.

Van zowel de voor- als achterflanken van de start- en stopimpulsen worden impulsen gemaakt met een breedte van 1.5 ms.

Deze worden aangeboden aan de rekeneenheid die de tijd berekent tussen de start en stoppulsen.

Van de flankdetector komen tevens de signalen om op de juiste tijdstippen de start- of stopdetector te blokkeren. Wanneer namelijk een startsignaal geweest is wordt de opto-coupler voor het startsignaal

a geschakeld en na 1 ms wordt de opto-coupler voor het stopsignaal ingeschakeld.

Dit om te voorkomen dat stoorsignalen tot foutieve meetresultaten aanleiding geven.

Bij het testen van snelvuur, waarbij een groot aantal schoten per seconde bemeten moet worden, worden de opto-couplers tussen de schoten ook geblokkeerd vanuit de schakeling voor de intershot blokkering. De tijd voor die blokkering wordt door de rekeneenheid bepaald uit de tijd die ligt tussen de mondingsvlam en het startsignaal van het voorgaande schot.

Met de impuls, gevormd uit de achterflank van het startsignaal, worden de S/L schakelingen in de detectoren gereset.

Het resetsignaal loopt via de kabelader L naar de detectoren.

Dezelfdeader wordt tevens gebruikt voor de overdracht van het schakelsignaal dat dient voor het in- of uitschakelen van de rookfilters.

Met de schakelaar "DREMPEL" die op het bedieningspaneel is aangebracht, wordt het detectieniveau ingesteld en via kabelader A naar de detectoren gevoerd.

Ook deze kabelader heeft een dubbele functie en dient tevens voor de overdracht van het testsignaal.

Dit testsignaal wordt in het blok "testmeting" gevormd als de schakelaar "TEST" wordt ingedrukt.

Om het testsignaal voldoende nauwkeurig te maken, wordt de frequentie ervan afgeleid van een kristaloscillatator met een frequentie van 1 MHz.

Wanneer een testmeting wordt gedaan, wordt dat aan de rekeneenheid kenbaar gemaakt, zodat deze de resultaten van de testmeting niet verwerkt in de tabel voor de meetresultaten.

Zo kan op ieder gewenst moment een testmeting worden gedaan.

De schakelaar "DREMPEL" kent twee standen.

Wanneer de schakelaar in de stand "AUT" staat zal de detectie van de start- en stopsignalen op de achterflank halverwege die flank plaatshebben i.p.v. aan de voet. Dit is mogelijk indien de S/L waarde > 6 is. Dit is gedaan om een hogere nauwkeurigheid te halen dan aan de voet van het signaal mogelijk is bij een grote signaalamplitude.

Wanneer de S/L < 6 is wordt de drempel uitsluitend door de ruis bepaald. Deze omschakeling wordt door de rekeneenheid bepaald, op grond van de aangeboden S/L waarde.

De manier van meten wordt d.m.v. het lampje "nul-waarde / halfwaarde" aangegeven.

Er is ook een stand "HOOG" waarbij een verhoogde drempel aangelegd wordt als de signalen erg groot zijn.

Dan wordt namelijk halverwege de voor- en achterflank gedetecteerd.

Ookader D voor de signaalnul heeft een dubbele functie.

Over dezeader wordt niet alleen de signaalnul vervoerd maar ook het S/L signaal.

Op de kabeladers E en F komen de lichtspoorsignalen binnen die direct via opto-couplers en de impulsformer aan de rekeneenheid aangeboden worden.

Omdat deze signalen altijd groot zijn en in de detectoren een grotere drempel moeten overschrijden, behoeven geen maatregelen te worden genomen om stoorsignalen te elimineren.

Er wordt ook niet apart op de voor- en achterflanken gemeten maar alleen op de voorflank.

Daardoor is dit circuit eenvoudiger van opzet.

Tenslotte wordt over de kabeladers H J en K de voedingsspanning voor de detectoren vervoerd.

3 SCHEMABESCHRIJVING DETECTOREN

3.1 Fotocelversterker

Zie fig. 2

De fotocel van de detector is samengesteld uit tien naast elkaar gelegen foto-elementen die elk een stroom/spanning omzetter aansturen.

Elk foto-element levert afhankelijk van de achtergrondverlichting een gelijkstroom ($0.5 \mu\text{A}$ tot $12 \mu\text{A}$).

De stroom/spanning omzetter zet deze stroom om in een spanning.

De grootte van die spanning wordt bepaald door het tegenkoppelnetwerk.

De terugkoppelimpedantie bedraagt $1.4 \text{ M}\Omega$ waardoor een uitgangsspanning wordt verkregen van 50 mV tot 12 V .

De opgewekte signaalamplitude is evenredig met de procentuele verduistering en de achtergrondverlichting.

De uitgangsspanning is afgeregeld op 200 mV per 1000 lux .

Op de koppelversterker worden de uitgangsignalen van de stroom/spanning omzetters opgeteld.

3.2 Koppelversterker

Zie fig. 7

De koppelversterker (IC1) heeft 10 ingangen waarop de signalen afkomstig van de fotocelversterkers binnenkomen en worden opgeteld.

Het ingangsnetwork bestaat uit tien weerstanden van $10 \text{ k}\Omega$.

IC1 versterkt de som van deze signalen met een factor 1.5 zodat op de uitgang van IC1 de gevoeligheid 300 mV per 1000 lux is.

Het rookfilter wordt gevormd door IC4, R23, R25, C6 en C7

Dit filter is een actief bandsperfilter met een frekwentiekarakteristiek zoals weergegeven in fig. 12.

Spanningsveranderingen met frekventies lager dan 0.1 Hz moet het filter kunnen doorlaten zodat de rustspanning t.g.v. de achtergrondverlichting kan worden aangeboden aan de regelversterker.

Met IC3 en TRL wordt het rookfilter in- of uitgeschakeld.

Via een laagdoorlaatfilter IC5 wordt het reeds versterkte fotocelsignaal aan een 8 Hz laagdoorlaatfilter toegevoerd (IC6 en IC7).

De uitgangsspanning regelt direct de versterking van de S/L versterker. Deze spanning is een maat voor de verlichting van de fotocel en wordt gedurende het passeren van een projectiel zoveel omlaag getrokken dat de amplitude van de zo onstaande impuls een maat is voor de verduistering, veroorzaakt door het passeren van het projectiel.

Deze impuls wordt via condensator C10 toegevoerd aan de spanningsvolger IC8 waarna begrenzing plaatsheeft met de dioden D2 en D3.

Versterker IC9 die een factor tien versterkt om de verzwakking van tien maal aan de ingang van de koppelversterker weer ongedaan te maken, kan aan de uitgang geen grotere signaalimpuls produceren dan de halve waarde van de voedingsspanning, dus 7.5 Volt.

De lichtwaardespanning die van IC7 komt wordt tien maal verzwakt en eveneens aan IC9 toegevoerd, zodat uiteindelijk aan de uitgang van IC9 de lichtwaardespanning samen met een tien maal versterkte signaalimpuls staat.

Met IC2 en TS2 wordt een test impuls gemaakt.

Als er op punt 'TST' een positieve TTL impuls verschijnt, wordt het fotocelsignaal in het optelpunt van R1 t/m R10, 1% omlaag getrokken en een verduisteringssignaal gesimuleerd.

3.3 S/L signaleering

Zie fig. 14

De signaal/drempel verhouding (S/L) zoals die optreedt tijdens een meting is een maat voor de detecteerbaarheid van een overkomend projectiel en geeft tevens aan welke achterkantdetectiemethode moet worden toegepast (nul-waarde/half-waarde).

De drempelspanning (DRNIV) wordt via een filter R1,C1 en verzwakker R3 en R4 via IC1 toegevoerd aan de geregelde versterker IC2.

De regelschakeling IC2-IC3-B1 zorgt er voor dat de uitgangsspanning van IC2 altijd -100 mV bedraagt.

Het signaal ondervindt een zelfde verzwakking als de drempelspanning en wordt eveneens toegevoerd aan IC2.

Omdat de wisselspanningsversterking van IC2 bepaald wordt door de drempelspanning, zal de signaalimpuls een versterking ondervinden volgens:

$$A_u = u(\text{impuls}) \times 0.1/U(\text{drempel}).$$

Hieruit blijkt dat bij toenemende drempelspanning de impulsversterking, dus de S/L waarde, evenredig afneemt.

Het programma in de centrale verwerkseenheid is zodanig ingesteld dat bij een $S/L > 6$ de achterkantdetectie op '1/2 waarde' plaatsheeft en bij $S/L < 6$ op '0 waarde'. Dit uiteraard alleen in de stand "AUT".

De spanning op de uitgang van IC2 stelt dus de S/L waarde voor in eenheden van 0.1 V.

De topwaarde van de amplitude wordt na gelijkrichting door IC4-TS2 opgeslagen in condensator C6 en via IC5 over kabelader D naar de centrale verwerkseenheid gestuurd.

Kabelader D doet tevens dienst als nul-lijn van de start en stop impulsen.

Dezeader is daarom aan de detectorzijde zwevend gehouden, waarbij de spanningswaarde begrensd wordt tot -2V.

Als nul-lijn voor de S/L waarde doet de voedingsnul dienst.

Hierdoor zou echter een belangrijk spanningsverschil t.o.v. S/L waarde ontstaan dat veroorzaakt wordt door de voedingsstroom.

Met een brug gevormd door R16, R17, R18 en de beide kabeladers voor de beide voedingsspanningen, wordt het spanningsverschil op de voedingsnul geëlimineerd.

De regelbare weerstand R17 behoeft slechts eenmaal afgeregeld te worden.

De afregeling is altijd geldig, ongeacht de kabellengte.

De S/L waarde wordt bepaald in de stopdetector.

Door het 'start ak' signaal wordt via TS2 de spanning op de condensator C6, die tijdens de vorige meting op de toen geldende S/L waarde stond, weer op nul gebracht.

Na de 'stop-ak' impuls tussen de kabeladers D en J van de verbindingskabel is de S/L waarde gedurende 3 ms beschikbaar.

3.4 Regelversterker

Zie fig. 19

Met de regelversterker (IC1-IC2) wordt de variatie in de gelijkspanning t.g.v. de veranderingen in de achtergrondverlichting tot een constante waarde van -5 V herleid.

De wisselspanningsversterking van IC1 wordt bepaald door de tegenkoppelweerstand, bestaande uit een lichtgevoelige weerstand die verlicht wordt door een ingebouwde led (licht emitterende diode) en R1. De stroom door de led is afhankelijk van de gelijkspanning op de ingang van IC1.

De versterkingsregeling is zodanig traag dat frekwenties boven ca. 10 Hz geen invloed hebben op de versterkingsregeling

Bij lage achtergrondverlichting (lager dan 1000lux) neemt de versterkerruis door de toegenomen versterking toe.

Hierdoor zal de maximaal haalbare hoogte/kaliberverhouding (H/K) begrensd zijn.

De bandbreedte van de regelversterker hangt af van de ingestelde versterking en dus van de achtergrondverlichting.

De maximale flanksteilheid die de versterker kan verwerken is bij 500 lux 12 μ s Bij 1500 lux 10 μ s en groter dan 6000 lux 8 μ s.

Met ingeschakeld rookfilter zullen tragere lichtvariaties de versterkingsregeling niet kunnen beïnvloeden.

Bij grote projectielen kan echter de signaalvorm ook worden aangetast en kan niet worden gemeten.

De fotoceldetector moet geschikt zijn voor kleine verduisterings-signalen.

Een verduistering van b.v. 1% zal aan de uitgang van de regelversterker een signaalamplitude van 50 mV veroorzaken.

Dit signaal wordt met IC3 tien maal versterkt tot een meer bruikbaar niveau.

Een zenerdiode van 10 V (D2), opgenomen in het tegenkoppelcircuit voorkomt oversturing en daarmee extra onnauwkeurigheid in de uiteindelijk gemeten projectielsnelheid.

Het signaal dat boven de ruisspanning uitkomt, wordt m.b.v. niveaudetector IC6 gedetecteerd en verder verwerkt.

Op de min-ingang van IC6 wordt het totaal signaal aangeboden terwijl op de plus-ingang de drempelspanning staat, afkomstig van IC5.

De uitgangsspanning van IC5 wordt hoofdzakelijk bepaald door de met de knop "SIGNAALDREMPEL" ingestelde waarde en in mindere mate door de ruisspanning uit IC3.

Bij de 'nul-waarde' instelling kan de drempelspanning worden gevarieerd tussen -350 mV en -80 mV (schakelaarstand 5 tot 1), overeenkomend met een spanningsvariatie op de lijn voor de drempelininstelling van +12 V tot +1 V.

Bij de instelling "HOOG" van de schakelaar is de drempelspanning -700 mV. en op de lijn voor de drempelininstelling is de spanning dan +21.5 V.

Door het overschrijden van de drempelspanning door een signaal (IC6) worden de uitgangen van IC6 en IC11 hoog.

Om te voorkomen dat de drempelspanning met het signaal meeloopt, wordt IC4 tijdens de signaalduur afgeschakeld (als de uitgang van IC11 hoog is), door de positieve spanning via zenerdiode D6 toe te laten aan de plus-ingang van IC4.

Dit toelaten gebeurt onder voorwaarde dat IC11 hoog is via diode D7.

Hierdoor komt de uitgang van IC4 hoog te staan en spert de gelijkrichtdiode D4.

De uitgangsspanning van IC11 zet tegelijkertijd de transistor TS5 dicht. Hierdoor zal de $10 \text{ M}\Omega$ weerstand R35 gedurende de signaalimpulsen niet meer kortgesloten zijn en zal de spanning op condensator C10 nagenoeg konstant blijven.

Wanneer de signaalspanning weer nul wordt, zal de uitgangsspanning van IC11 laag worden waardoor de drempelspanning weer zijn oorspronkelijke waarde aanneemt.

De uitgang van IC8 geeft de gedetecteerde signaalimpuls op TTL niveau door aan de centrale verwerkseenheid via de verbindingenkabel.

Bij de detectie van grote signalen (1/2 waarde instelling) is de gelijkspanning op de lijn voor de drempelininstelling nul (zie tek. 6; 13; 14 en 23) met als gevolg dat bij hoog worden van IC11 de versterker IC4 niet meer afgeschakeld kan worden (diode D7 blijft dicht).

De drempelspanning volgt nu de signaalspanning zodanig dat de drempelspanning ongeveer de halve waarde van de signaalspanning bereikt. De uitgangsspanning van IC11 schakelt wel TS5 dicht, zodat de halfwaarde op de condensator C10 blijft staan tot de uitgangsspanning van IC11 weer laag wordt.

Door het nul worden van de spanning op de lijn voor de drempelinstelling is transistor TS9 niet meer geleidend.

De drempelinstelling (IC7) krijgt dan een vaste waarde via weerstand R27 en de diode D10. Deze spanning is gelijk aan de maximale waarde van de '0 waarde' instelling (-350 mV).

Voor het detecteren van een verlichtingssignaal (omgekeerde polariteit) is een tweede nivaudetecteur ingebouwd.

Dit signaal, verkregen bij lichtspoortprojectielen is meestal groot en om het te onderscheiden van kleine verlichtingsignalen, b.v. door zonspiegelingen op het projectiel tijdens verduisteringsmetingen, wordt het signaal na verzwakking toegevoerd aan de ingang van IC7 terwijl de uitgang van IC9 dit signaal weer doorgeeft naar de kabel.

3.5 Testmeting

Zie fig. 24

Om een testmeting te kunnen uitvoeren worden er vanuit de centrale verwerkseenheid twee impulsen met een lengte van 180 μ s en een onderlinge tijdsafstand van 10.000 μ s over kabelader A naar de beide detectoren gezonden.

Deze impulsen worden eerst naar een schakeling op de voedingsprint geleid en daar voor aansturing geschikt gemaakt.

Aangezien in beide detectoren dezelfde voedingsprinten zitten, is op die printen een draadbrug aangebracht.

Dit maakt het mogelijk, afhankelijk van de detector waarin de print is opgenomen, dat men kan kiezen tussen een start testimpuls of een stop testimpuls.

De testmeting wordt met kleine signalen uitgevoerd (overeenkomend met 1% verduistering) en kan in een van de standen 1 t/m 5 van de schakelaar "SIGNAALDREMPEL" plaatshebben.

3.6 Voeding

Zie fig 24

De detectoren worden gevoed met + en - 15 V.

Via de kabel wordt + en - 24 V toegevoerd en d.m.v. IC1 en IC2 wordt hieruit + en - 15 V gemaakt.

Op de -24 V ingang van de voedingsprint is een weerstand van 680Ω aangebracht naar aarde om de voedingstromen van +24V en -24 V gelijk te maken.

3.7 De kabel

Om de kabel zo eenvoudig en licht mogelijk te houden zijn de aders A, D en L voor meer functies gebruikt.

De kabel heeft geen afscherming.

Een overzicht van het gebruik van de aders wordt hier gegeven.

Ader A: Instelling signaaldrempel

Instelling AK detectie.(0 waarde - 1/2 waarde)

Testimpulsen

Ader B: Startimpulsen verduistering

Ader C: Stopimpulsen verduistering

Ader D: Signaal aarde

S/L waarde

Ader E: startimpulsen lichtspoor

Ader F: stopimpulsen lichtspoor

Ader H: +24 V voeding

Ader J: Voedingsnul

Ader K: -24 V voeding

Ader L: Rookfilterbediening
Resetimpuls voor S/L versterker.

3.8 Kunstlichtbron

Voor verlichting van een retroschermer in een schiettunnel kan op de detector een lichtbron geplaatst worden.

De lamp wordt gevoed uit een gestabiliseerde gelijkstroomvoeding en levert een constante verlichting zonder brom.

De kast waarin de lamp zich bevindt is op de lichtnetaarde geaard en geïsoleerd van de detector aarde op de detectoren gemonteerd.

Om de vereiste achtergrondverlichting in een tunnel te verkrijgen kunnen ook z.g. "Philinea" buizen boven de detectoren worden gemonteerd.

4. SCHEMABESCHRIJVING CENTRALE VERWERKINGSEENHEID
(OPTRONISCH GEDEELTE)

4.1 Print OSM3

Zie fig 29

De start- en stopsignalen worden via de verbindingenkabel naar de centrale verwerkingsseenheid gevoerd (print OSM3).

De beide ingangschakelingen voor de start- en stopverduisteringsignalen bestaan uit opto-couplers IC1 en IC2.

Bij een gevoelige instelling zullen de grootste ruisimpulsen boven het drempelniveau uitslaan en kunnen 'gezien' worden als meetimpulsen. Ze zijn echter te onderscheiden van normale meetimpulsen door de korte duur.

De binnenvloeiende ruisimpulsen worden geblokkeerd door het ruisfilter dat gevormd wordt door de nand-gates IC5a en IC5b.

Deze worden gedurende de op het bedieningspaneel ingestelde ruisfiltertijd (6-12-24-48 μ s) dichtgehouden door de monostabiele multivibrator IC4.

Alleen signalen die langer zijn dan de ingestelde filtertijd worden geaccepteerd en verder verwerkt.

De voorflanken van die signalen sturen IC8a en IC8b aan, waarna IC10a en IC10b de impulsen 'start VK' en 'stop VK' leveren.

De achterflanken sturen IC9a en IC9b aan, waarna IC10c en IC10d resp. de 'start AK' en de 'stop AK' leveren.

Komen deze impulsen voor dan wordt dat aangegeven door een lampje 'VK-AK'. (IC4b)

In de beginstand staat van de ingangen alleen de startingang doorgeschakeld d.m.v. flip-flop IC6 en nand-poort IC3d.

Tijdens een meting wordt, m.b.v. het 'start ak' signaal, flip-flop D6 omgezet, zodat daardoor de startingang geblokkeerd en de stoppingang doorgeschakeld wordt. (IC3c)

Na de meting wordt IC6 weer teruggezet d.m.v. de impuls 'stop ak' via de nand-gate IC3b.

Wordt door het systeem alleen een startsignaal 'gezien', dan blijft IC6 in de verkeerde stand staan.

In dat geval zal de monostabiele multivibrator IC4b er voor zorgen dat IC6 alsnog in de goede stand gezet wordt.

Bij snelvuurmetingen gebeurt dit alleen na het laatste schot.

Print OSM4

Zie fig. 33

De 'lichtspoor' signalen komen binnen via de opto-couplers IC1 en IC2.

Van deze impulsen worden alleen de voorflanken gebruikt voor het opwekken van de start en stop impulsen.

IC3a levert via buffer IC4a de 'start lsp' en IC3b levert via IC4b de 'stop lsp'.

Wegens de minder gevoelige instelling voor lichtspoorsignalen zullen hier geen stoormpulse optreden en is een ruisfilter overbodig.

Worden 'lichtspoor' signalen gedetecteerd dan wordt dit aangegeven door het door de monostabiele multivibrator IC6b aangestuurde lampje "LSP".

4.2 Testgenerator

Zie fig. 33

De testimpulsen worden afgeleid van de 1 MHz. kristaloscillatator IC13.

Na de start-test gaat flip-flop IC7a om, waardoor IC9 getriggerd wordt die een impuls van 180 μ s geeft. Deze impuls zal via de transistoren TS1, TS2 en TS3 de spanning op kabelader A via de schakelaar "SIGNAALDREMPEL", laag trekken en zo de eerste testimpuls naar de led bij de fotocel op de startdetector leveren. IC7a schakelt via de nand-gate IC5c tegelijkertijd de testoscillatator aan de counter.

De counter bestaat uit vier in cascade geschakelde tien-delers, zodat de clock van 1 MHz door 10000 gedeeld wordt.

Tussen test/start en test/stop ligt dus een tijd van 10000 μ s, hetgeen op het bedieningspaneel wordt aangegeven.

De laatste telimpuls veroorzaakt via or-poort IC8c en monostabiele multivibrator IC9 een stopimpuls en tegelijkertijd wordt via IC5b de flip-flop IC7a weer teruggezet.

Alleen in de stand '0 waarde' detectie is het uitvoeren van een test mogelijk.

Alleen in dat geval staat er spanning op kabelader A.

Print OSM5

Zie fig.36

Wanneer er een testmeting moet worden uitgevoerd, kan dit d.m.v. het indrukken van de knop "TESTMETING".

De rekeneenheid reageert hierop met een impulstrein die op punt c12 binnentkomt en de monostabiele multivibrator IC5b triggert via de poorten IC11 en IC6d.

IC5b blokkeert gedurende het schakelen de opto-couplers IC1 en IC2. Dit gebeurt om de stooringpulsen t.g.v. het schakelen te onderdrukken (6 ms).

Tegelijkertijd zal D3a met de achterflank de Q uitgang van IC4a hoog maken waardoor de transistoren TS2 en TS3 geleidend worden, en de schakelaar "SIGNAALDREMPEL" een positieve spanning krijgt toegevoerd.

De detectoren staan tijdens de testmeting in de stand '0 waarde' meting.

De Q* uitgang van IC4a blokkeert tijdens de testmeting via de nand-gate IC7a het wijzigen van de oorspronkelijke schakelaarstand van de voorgaande meting.

De achterflank van de impuls op de uitgang van IC5b geeft via IC4b een startimpuls aan de testgenerator.

De 'stop-ak' impuls die binnenkomt op connectorpunt a2 stuurt IC3a en IC5b.

IC5b blokkeert opnieuw de opto-couplers tijdens het terug schakelen van IC4a.

De testmeting kan, onafhankelijk van de computerprogrammering, uitgevoerd worden door het indrukken de schakelaar op de print.

4.3 Schakelen van 0 waarde - 1/2 waarde

Zie fig. 39

Aan de hand van het tijdvolgordediagram van fig 42 volgt nu een beschrijving van de schakelfunctie '0 waarde' - '1/2 waarde' detectie tijdens een serie metingen.

De schakelaar "SIGNAAL DREMPEL" staat dan in de stand "AUT".

Wanneer er een meting plaatsvindt zal de 'start ak' impuls de S/L waarde nul maken.

Het signaal dat van de stop detector komt laadt de condensator C6 tot een spanning die overeenkomt met de S/L waarde en voert deze via IC5 toe aan de comparator IC1.

De min-ingang van IC1 heeft een drempelspanning van -600 mV.

Wanneer door de S/L waarde deze spanning overschreden wordt, betekent dit dat omgeschakeld moet worden van '0 waarde' naar '1/2 waarde' meting.

De uitgang van IC1 wordt daardoor laag en dit wordt met de impuls 'stop ak' via IC3a, IC7a en IC5a overgenomen op de Q uitgang van flip-flop IC2a waardoor TS1 dicht gezet wordt.

Hierdoor krijgt de schakelaar "SIGNAAL DREMPEL" geen spanning meer, waardoor de detectoren in de stand '1/2 waarde' gaan staan.

Door de impuls 'start ak' worden tijdens het omschakelen d.m.v. de monostabiele multivibrator IC14a en via de and gate IC8b, de opto-couplers IC1 en IC2 gedurende 1 ms geblokkeerd.

Is de S/L waarde positiever dan -600 mV, dan wordt flip-flop IC2a teruggezet door de 'stop ak' van het vorige schot en gaan de detectoren via de schakelaar "SIGNAAL DREMPEL" weer in de '0 waarde' staan. De beide schakelaarstanden worden m.b.v. lampjes aangegeven op het bedieningspaneel.

Deze lampjes worden aangestuurd door de transistoren TS1 en TS2 en TS3.

4.4 Blokkering tussen de schoten

Zie fig. 39

Om bij snelvuurmetingen stoorsignalen te vermijden, worden de ingangskanalen (IC1 en IC2 in fig. 29) gedurende de tijd tussen de schoten geblokkeerd.

De blokkeertijd wordt bepaald door een monostabiele multivibrator die ingesteld is op een tijd van 135 ms.

De multivibrator wordt gestart met de 'stop ak' impuls en wordt teruggezet met de reset impuls voordat de ingestelde tijd is verstreken. Hiermee is voorkomen dat de ingangskanalen geblokkeerd zouden blijven als het 'stop'signaal zou worden gemist.

Als het 'stop'signaal wordt gemist, dan wordt de blokkering na de ingestelde 135 ms alsnog opgeheven.

Het moment waarop de reset moet komen wordt bepaald door van het voorgaande schot de tijd te meten tussen de mondingsvlam en de 'start vk', de gemeten tijd met 20 % te verminderen en dan te onthouden tot het volgende schot.

Vanaf de mondingsvlam volgt daaruit het moment waarop de reset moet komen.

Op deze wijze wordt de blokkeringstijd gerefereerd aan het voorgaande schot en stelt zich automatisch in.

Uit het voorgaande blijkt dat de blokkering pas vanaf het tweede schot aanwezig is.

Zoals weergegeven in het schema van de print OSM6 (fig.39), wordt de tijd tussen de mondingsvlam en de 'start vk' omgezet in een spanning op condensator C1.

IC6 zorgt er voor dat gedurende die tijd transistor TS1 niet geleidend is en C1 via R1 wordt geladen tot het moment dat de 'start vk' komt. Door de 'start vk' wordt IC6 weer teruggezet en het laden van C1 wordt afgebroken. De spanning die op dat moment op C1 staat is representatief voor de tijdsduur tussen mondingsvlam en 'start vk'.

De spanning wordt m.b.v. de 'start vk' overgenomen op C2 en daar bewaard tot het volgende schot.

Met een spanningsdeler, bestaande uit R7 en R8 wordt de spanning met 20% verlaagd en toegevoerd aan de plus ingang van IC3.

Bij het volgende schot zal het laden van C1 opnieuw beginnen. De spanning op C1 staat op de min-ingang van IC3.

Zodra beide spanningen elkaar passeren zal de uitgang van IC3 laag worden.

Dit is dan de reset voor IC4, die vervolgens de monostabiele multivibrator reset.

De uitgang van IC4 zet de opto-couplers van de ingangskanalen open of dicht.

Wanneer aan het begin van een meting de uitgang van IC3 laag is, dan zullen de condensatoren C1 en C2 door de mondingsvlam van het eerste schot altijd op nul worden gebracht.

De blokkeertijd van mondingsvlam tot 'start vk' is begrensd tot 12 ms, hetgeen overeenkomt met een spanning op de condensator C1 van 8 V.

De blokkering wordt uitgeschakeld door op ingang A van IC4 een spanning van +5 V te zetten, waardoor het triggeren van deze monostabiele multivibrator onmogelijk gemaakt wordt.

De inschakeling van de blokkering wordt door de rekeneenheid bestuurd.

5 SCHEMA BESCHRIJVING MONDINGSVLAMDETECTOR, ONTVANGER EN AKOESTISCHE DRUKOPNEMER

5.1 Mondingsvlamopnemer

Zie fig. 44

Geheel links in het schema is de fotodiode D1 getekend.

Voor deze diode is een filter geplaatst dat alleen licht met een golflengte groter dan 1 μm doorlaat.

Na deze diode komt een spanningsvolger IC1 die het signaal buffert.

Het signaal uit IC1 wordt met IC2 versterkt.

IC2 is een wisselspannings gekoppelde versterker die tevens het signaal begrenst tot ca. 1 V.

Na versterking met IC2 wordt van het signaal een blokspanning gemaakt met behulp van comparator IC3 en het via transistor TS1 over de kabel naar de centrale verwerkingseenheid gebracht.

De twee-adige verbindingskabel wordt voor zowel de voeding als het signaaltransport gebruikt.

Het signaal wordt achter diode D8 via diode D9 op de kabel gezet.

Diode D8 blokkeert de signaalspanning zodat deze de schakeling niet kan beïnvloeden via de voedingsspanning.

5.2 Ontvanger voor de mondingsvlamopnemer

Zie fig. 48

IC1 is een serie regulator die de mondingsvlamdetector voedt vanuit de - 36V op connectorpunt 16.

Met TS3 en TS4 wordt de voedingstroom voor de mondingsvlamdetector begrensd.

Als t.g.v. een mondingsvlam een grotere stroom gevraagd wordt, zal de voedingsspanning door de stroombegrenzing lager worden.

Dit zal net zolang duren als de duur van het gedetecteerde vlamverschijnsel.

Comparator IC2 dient er voor om deze impuls op TTL niveau te brengen. Met een monostabiele multivibrator in IC3 wordt hiervan een impuls van 180 μ s gemaakt en via een buffer in IC4 naar de rekeneenheid gezonden. Met de andere monostabiele multivibrator in IC3 en een led op het bedieningspaneel wordt aangegeven dat een mondingsvlam wordt gedetecteerd.

Transistor TS1 zorgt er voor dat een led op het bedieningspaneel oplicht als de kabel goed is aangesloten.

5.3 Akoestische drukopnemer

Zie fig. 50

Het piezoelectrisch element ZP 94 veroorzaakt bij het optreden van een akoestische schokgolf een elektrische impuls.

Om te voorkomen dat allerlei storende geluiden impulsen aan de uitgang van de opnemer veroorzaken, wordt met IC1, diode D3 en transistor TS1 een gelijkspanning gemaakt die representatief is voor het gemiddelde geluidsniveau.

Een plotseling optredende schokgolf die veroorzaakt wordt door het afvuren van het kanon zal een impuls geven op de ingang van comparator IC2.

De comparator vergelijkt deze impuls tegen het gemiddeld stoorspannings-niveau en heeft een impuls aan zijn uitgang tot gevolg.

Via transistor TS2 wordt deze impuls op de kabel gezet.

Diode D5 beschermt de schakeling tegen terugkoppeling van het signaal aan de uitgang via de voedingsspanning.

6 AFREGELVOORSCHRIFT

Dit afregelvoorschrift betreft alleen de detectoren.

Fotocelversterkers: (zie fig. 3)

Offset:

Bij elk van de 5 versterkers per print de ingang met $R = 100 \text{ k}\Omega$ met aarde verbinden en daarna de offset afregelen van elk van de 5 versterkers per print.

De weerstand R is een afregelweerstand om de gevoeligheid van de versterkers op 200 mV per 1000 lux te brengen.

Deze weerstand is voor alle versterkers gelijk.

Wanneer achteraf blijkt dat deze afregeling niet geheel juist is dan kan in de optelversterker nog een correctie worden aangebracht door de tegenkoppelweerstand iets te wijzigen.

Koppelversterker: (zie fig. 7)

Op de connector aansluiten:

conn.punt	signaal
4	-15 V
6-8-21	- aarde
20	+15 V
22	-15 V (rookfilter uit)
9 t/m 18	doorverbinden

Offset afregelen:

De ingangen aan aarde en offset IC1 weggregelen. ($U_o < 5 \text{ mV}$)

Kontrole 8 Hz filter:

Een spanning van - 5 V op de tien ingangen aanbrengen.

Daarna een sinusvormige wisselspanning van 1 V top-top inkoppelen en diode D1 kortsluiten.

Door de frekventie van de ingekoppelde wisselspanning te variëren, kan op de uitgang van IC9 de doorlaatkarakteristiek van het filter bepaald worden.

De amplitude van het uitgangsignaal moet bij 8 Hz tot de helft van het maximum afgenumen zijn.

Kontrole rookfilter:

Rookfilter inschakelen (conn.punten 21 en 22 doorverbinden).

Ingangspanningen dezelfde als bij de kontrole van het 8 Hz filter en diode D1 kortsluiten.

Op de uitgang van IC4 is de doorlaatkarakteristiek van het rookfilter te bepalen.

De halfwaarde moet liggen op 0.3 Hz en 600 Hz. Binnen deze grenzen mag het filter niet doorlaten.

Total impulsversterking:

Rookfilter uitschakelen (conn.punt 22 aan -5 V).

Op de ingangen een gelijkspanning samen met een positief gaande testimpuls aanbrengen, waarbij de amplitude van deze impuls < 5% van de gelijkspanning moet zijn.

Aan de uitgang van IC12 moet een tien maal versterkte signaalimpuls staan.

Ook bij impulstreinen met een impulsherhalingstijd van 10 ms moet de versterking tien maal zijn en mag de gelijkspanningscomponent niet verlopen.

Dit moet gekontroleerd worden voor diverse signaalimpulsamplituden en impulsherhalingstijden.

De storing t.g.v. het resetten van het 8Hz. filter mag op de uitgang van IC12 niet groter zijn dan 10 mV.

De begrenzingschakeling (D2 en D3) moet de uitgangspanning begrenzen tot 50% van de uitgangsgelijkspanning.

Door de testimpuls aan de ingang negatief gaand te maken, wordt hierdoor een lichtspoorsignaal gesimuleerd en moet deze impuls door de versterker op gelijke wijze verwerkt worden met inbegrip van de 50 % begrenzing.

Testimpuls:

Gelijkspanning van -100 mV op de ingangen aansluiten en op de testingang (conn.punt 1) een positief gaand TTL signaal aanbieden.

Aan de uitgang van IC12 moet nu een impuls met een amplitude van 10 mV verschijnen.

Met potentiometer P3 kunnen deze testsignalen voor beide detectoren dezelfde vorm gegeven worden.

Regelversterker: (zie fig. 19)

Op de connector aansluiten:

conn.aansl.	signaal
8 en 9	- +15 V
1,10,19,20	- aarde
12 en 13	- -15 V

Controle en afregeling van de regelversterker:

Tijdelijk tussen de offsetingangen 1 en 5 van IC1 een potentiometer van 20 kΩ aanbrengen, waarvan de loper wordt aangesloten op -15 V.

Tussen de pinnen 2 en 6 van IC1 een weerstand van 100 kΩ aanbrengen en de ingang (conn.punt 5) aan aarde leggen.

Na een opwarmtijd van ca. twee minuten de potentiometer zodanig draaien dat de uitgangsspanning van IC1 zo goed mogelijk nul is.

Daarna de weerstand van 100 kΩ losnemen en op de ingang (conn.punten 5 en 1) een gelijkspanning die gevareerd kan worden van 10 mV tot 12 V aanbieden.

Wanneer deze spanning wordt gevareerd over het genoemde bereik moet de uitgangsspanning van IC1 konstant -5 V blijven.

Wanneer niet het hele bereik gehaald wordt, moet de potentiometer de offset iets corrigeren.

Hierna de potentiometer vervangen door twee vaste weerstanden.

De versterker (IC1) heeft een karakteristiek volgens: $A_u = 1/U_i$.

Hierin stelt A_u de wisselspanningsversterking voor en U_i de ingangsgelijkspanning.

Wordt nu een impuls op de ingang gezet, samen met de regelbare gelijkspanning dan moet op de uitgang een impuls te zien zijn waarvan de flanksteilheid afhankelijk is van de ingangsgelijkspanning volgens onderstaande tabel.

Ing. spanning(DC)	flanksteilheid
50 mV	14 μ s
100 mV	10 μ s
200 mV	7 μ s
500 mV	5 μ s

De amplitude van de ingangsimpuls 5% maken van de ingangsgelijkspanning. In het gehele regelgebied (100 mV - 12 V) moet, als de ingangsspanning veranderd wordt, de signaalamplitude aan de uitgang van IC3 gelijk blijven.

Op de ingang (conn.punt 5) een sinusvormige wisselspanning aanbieden, waarvan de amplitude gelijktijdig en in steeds dezelfde verhouding tot de gelijkspanning regelbaar is.

Door nu de frekventie van de sinusvormige spanning van nul af op te voeren, kan de doorlaatkarakteristiek bepaald worden.

Deze moet lopen van ca. 8 Hz tot 40 KHz (3 dB).

Drempelinstelling:

Met de spanning op het conn. punt 15 is de drempel instelling te regelen. Voor beide detectoren moet de drempelspanning zo goed mogelijk gelijk zijn.

Deze drempelspanning is beschikbaar op de uitgang van IC5 (conn.punt 6). In de onderstaande tabel worden verschillende drempelspanningen gegeven t.g.v. diverse spanningen op conn.punt 15.

spanning (V)	drempel (mV)
0	-690
2.7	-160
7	-430
12	-735
21.5	-1320

Op de ingang (conn.punt 5) +1.2 V aanbieden en op conn.punt 15 +2.7 V. Op de uitgang van IC8 mogen dan geen ruispieken staan.

Zonodig met een weerstand van b.v. 1 MΩ ingang pin 4 van IC6 naar +15 V de drempel verhogen tot de uitgang van IC6 stil is.
Deze weerstand moet dan wel in beide detectoren aangebracht worden en even groot zijn.

Op de ingang (conn.punt 5) een positieve spanning aanleggen van 1.2 V tezamen met een negatief gaande impuls.
De amplitude van deze impuls nu zodanig klein maken dat de positief gaande impuls op de uitgang van IC8 nog net betrouwbaar doorkomt.
Door nu de verhouding tussen amplitude van de aangeboden impuls en de gelijkspanning aan de ingang te berekenen, volgt hier de maximaal haalbare procentuele verduistering uit. Deze mag maximaal 0.2% zijn.

Conn.punt 15 aan aarde verbinden. (1/2 waarde instelling)
Een spanning van 1.2 V tezamen met een negatief gaande impuls met een amplitude van 0.3 V op de ingang (conn.punt 5) aanbrengen.
Aan de uitgang van IC5 is nu het drempelverloop te zien waarmee de '1/2 waarde' detectie wordt gerealiseerd.

Door tegelijkertijd de aangeboden impuls en de drempelspanning te bekijken op de oscilloscoop, kan worden nagegaan of het detectiepunt ook werkelijk op de halve amplitude ligt.

De aangeboden negatieve impuls aan de ingang nu positief maken.
Aan de uitgang van IC9 moet nu een positief gaande TTL impuls staan.

S/L versterker: (zie fig. 14)

Conn. aansluitingen:

conn.punt		signaal
2	-	+15 V
4	-	-15 V
14	-	aarde

Met weerstanden R7 en R8 de offset wegregelen.

Op conn. punt 20 een regelbare gelijkspanning aansluiten en het gebied bepalen waarin die spanning gevarieerd kan worden waarbij de uitgangsspanning van IC2 op -100 mV blijft staan. (> 50 mV en < 750 mV)

Op conn. punt 22 een negatief gaande impuls aanbieden direct gevuld door een negatieve impuls op conn. punt 6.

De verhouding impulsamplitude - gelijkspanning resp. op de conn. punten 20 en 22, is terug te vinden in de impulsamplitude op de uitgang van IC2.

Deze amplitude is dus een maat voor de verhouding signaalamplitude/drempelspanning (S/L) en wordt gemeten in tienden van volts.

Met de schakeling rond de IC4 en IC5 wordt van de impulsamplitude een gelijkspanning gemaakt die na elke resetimpuls op conn. punt 6 de dan actuele waarde krijgt.

Een paar voorbeelden:

impulsampl.	drempefsp.	uitg. IC5	S/L
3000 mV	200 mV	1500 mV	15
3000 mV	600 mV	500 mV	5

Voeding (zie fig. 24):

Connector aansluitingen:

conn.punt	signaal
8 en 18	- +24 V
5 en 15	- -24 V
10 en 22	- aarde

Per voeding moet een stroom van 50 mA geleverd kunnen worden waarbij de uitgangsspanning 15 V blijft.

Dit geldt voor zowel de positieve als de negatieve voedingsspanningen.

Testsignaalgenerator: (zie fig. 24)

Op conn. punt 23 twee positief gaande impulsen toevoeren, ca. 10 ms na elkaar.

De printkaarten zijn voor beide detectoren nagenoeg gelijk, met dit verschil dat voor de startdetector de doorverbinding IC1 pin 10 - IC2 pin 9 en voor de stopdetector de doorverbinding IC1 pin 9 - IC2 pin 9 gelegd moet worden.

De startdetectorkaart zal dan alleen de eerste impuls doorgeven naar conn. punt 2, terwijl de stopdetectorkaart alleen de tweede impuls naar conn. punt 2 doorgeeft.

7

EVENWIJDIG MAKEN VAN DE OPTISCHE SCHERMEN

Voor de eisen, te gebruiken meetinstrumenten en situatietekeningen wordt verwezen naar het FEL-TNO rapport no. IR 1987-21.

Periodiek moet worden nagegaan of de optische schermen voldoende evenwijdig zijn om aan de nauwkeurigheidseisen te blijven voldoen. Deze controle kan op de hier beschreven wijze uitgevoerd worden.

De fotobalk met de daaraan bevestigde detectoren dient geheel waterpas horizontaal opgesteld te worden, zodat de optische schermen verticaal staan.

Op een afstand van 4 m van de fotobalk moet een metalen maatlat met voldoende nauwkeurigheid en een lengte van minimaal 2 m, eveneens waterpas worden opgesteld.

Op deze maatlat moet een verschuifbare ruiter met een nauwkeurige aflezing d.m.v. een nonius aanwezig zijn.

Door een oscilloscoop achter de maatlat op te stellen, waarbij zowel het scherm van de oscilloscoop als de ruiter op de maatlat zich in het gezichtsveld van de start- of stopdetector bevinden, kan met een tweede oscilloscoop de beweging van de lichtstip over het scherm van de oscilloscoop worden waargenomen op de analoge uitgang van de start- of stopdetector.

De rookfilters in beide detectoren mogen hierbij niet ingeschakeld zijn.

Omdat het hier gaat om verlichtingssignalen met lage intensiteit, moet de diode D1 op de koppelversterker worden kortgesloten.

De lichtstip op het scherm van de eerste oscilloscoop dient zich met een eenparige snelheid in horizontale zin over het scherm te bewegen met een frekwentie van ca. 10 tot 20 Hz.

Bij een goede opstelling, zal de lichtstip in zijn heen en weer gaande beweging het optische scherm passeren.

De tweede oscilloscoop die aangesloten is op de betreffende detector moet via een laagdoorlaatfilter aangesloten worden op de analoge uitgang van de detector.

Dit filter kan uit een eenvoudige R-C sectie bestaan en opgebouwd zijn als aangegeven in fig. 52.

Wanneer de ruiter zich precies in het midden van het optische scherm bevindt, zal er een symmetrische figuur op de tweede oscilloscoop te zien zijn.

Door dit bij beide detectoren te doen en daarbij de posities van de ruiter op de maatlat af te lezen, kan de afstand tussen de optische schermen worden bepaald.

Is er een afwijking die groter is dan in de specificaties is opgegeven dan kan de positie van de schermen gewijzigd worden met mechanische fijninstellingen in de detectoren.

Deze controle moet op diverse afstanden enige malen herhaald worden om tot een nauwkeurige afstelling te komen.

APPENDIX A - FOTO'S EN TEKENINGEN

Foto 1 en 2: Detectoren gemonteerd als fotobalk

Bijlage

Pagina
A.2

Foto 3 en 4: Opstelling van detectoren met variabele meetbasislengte

Foto 5: Detectoren met gemonteerde verlichtingseenheid

Foto 6: Detector zonder behuizing

W12 Par
 W12 dd Omschr
 W12 Par
 W12 dd Omschr
 W12 Par

FEL		Normalisatie ISO/NEN	formaat A3	project SNEL
schaal	getek	datum		onderdeel Blo
gezien				
gecontr				
auteursrecht voorbehouden - onbevoegd gebruik verboden				

DIENSTGEHEIM

Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01 onderdeel Blokschema FOTOCELDETECTOREN	ex nr	TNO
schaal	datum		tek nr	
getek			KE 1008/Z 2-1	
gezien			behand	
geconfr		aantal pag	wijz A	
auteursrecht voorbehouden - onbevoegd gebruik verboden		rap	fig 1	pag

ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
C 1	MONOLITISCHE CONDENSATOR	0,1μF		0,1μF	0,11μF	10	100		LM256		
C 2	MONOLITISCHE CONDENSATOR	27pF		27pF	27pF	10	100		LM256		
C 3	MONOLITISCHE CONDENSATOR	27pF		27pF	27pF	10	200		LM256		
C 4	MONOLITISCHE CONDENSATOR	27pF		27pF	27pF	10	200		LM256		
C 5	MONOLITISCHE CONDENSATOR	27pF		27pF	27pF	10	200		LM256		
C 6	MONOLITISCHE CONDENSATOR	27pF		27pF	27pF	10	200		LM256		
C 7	MONOLITISCHE CONDENSATOR	27pF		27pF	27pF	10	200		LM256		
IC 1	OPAMP							NSC			
IC 2	OPAMP							NSC			
IC 3	OPAMP							NSC			
IC 4	OPAMP							NSC			
IC 5	OPAMP							NSC			
R 1	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 2	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 3	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 4	METAALFILM WEEERSTAND	3k32	0,1					PHILLIPS	MBB0207-50-3k32		
R 5	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 6	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-100k		
R 7	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 8	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 9	METAALFILM WEEERSTAND	3k32	0,1					PHILLIPS	MBB0207-50-3k32		
R 10	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 11	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-100k		
R 12	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 13	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 14	METAALFILM WEEERSTAND	3k32	0,1					PHILLIPS	MBB0207-50-3k32		
R 15	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 16	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 17	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 18	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 19	METAALFILM WEEERSTAND	3k32	0,1					PHILLIPS	MBB0207-50-3k32		
R 20	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 21	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 22	METAALFILM WEEERSTAND	N.T.B.	0,1					PHILLIPS	MBB0207-50-		
R 23	METAALFILM WEEERSTAND	100k	0,1					PHILLIPS	MBB0207-50-100k		
R 24	METAALFILM WEEERSTAND	3k32	0,1					PHILLIPS	MBB0207-50-3k32		
FEL		Normalisatie ISO/NEN	formaat A4	project	SNELHEIDSMEETSSTEE 4-01						
		schaal	datum								
		getek									
		gezien									
		geconfr									

Wiz omschr.	dd	Par	Par	Par	Par	Par	Par	Par	Par	Wiz omschr.																																			
<table border="1"> <tr> <td>ref. design</td> <td>description</td> <td>value</td> <td>power (W)</td> <td>toler. (%)</td> <td>voltage (V)</td> <td>manufacturer</td> <td>type-number</td> <td>nato-stocknumber</td> <td>FEL-numb.</td> </tr> <tr> <td>PL 1</td> <td>DIL PLUG 16P.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>PL 2</td> <td>FLATCABLE PLUG 20P.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </table>											ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.	PL 1	DIL PLUG 16P.									PL 2	FLATCABLE PLUG 20P.													
ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.																																				
PL 1	DIL PLUG 16P.																																												
PL 2	FLATCABLE PLUG 20P.																																												
<table border="1"> <tr> <td colspan="2">Normalisatie ISO/NEN</td> <td>formaat A4</td> <td>project SNELHEIDSMEETSystEEM 4-01</td> <td>ex nr</td> </tr> <tr> <td>schaal</td> <td>getek</td> <td>dalum</td> <td colspan="2"></td> </tr> <tr> <td>gezien</td> <td></td> <td></td> <td colspan="2"></td> </tr> <tr> <td>gecontr</td> <td></td> <td></td> <td colspan="2"></td> </tr> <tr> <td colspan="5">onderdeel FOTOCELVERSTERKER 035 E 057</td> </tr> <tr> <td colspan="5">auteursrecht voorbehouden - onbevoegd gebruik verboden</td> <td>DIENSTGEHEIM</td> <td>fig 5</td> <td>pag 2</td> <td>aantal pag 2</td> <td>wiz</td> </tr> </table>											Normalisatie ISO/NEN		formaat A4	project SNELHEIDSMEETSystEEM 4-01	ex nr	schaal	getek	dalum			gezien					gecontr					onderdeel FOTOCELVERSTERKER 035 E 057					auteursrecht voorbehouden - onbevoegd gebruik verboden					DIENSTGEHEIM	fig 5	pag 2	aantal pag 2	wiz
Normalisatie ISO/NEN		formaat A4	project SNELHEIDSMEETSystEEM 4-01	ex nr																																									
schaal	getek	dalum																																											
gezien																																													
gecontr																																													
onderdeel FOTOCELVERSTERKER 035 E 057																																													
auteursrecht voorbehouden - onbevoegd gebruik verboden					DIENSTGEHEIM	fig 5	pag 2	aantal pag 2	wiz																																				
 Fysisch en Elektronisch Laboratorium Den Haag								tek nr																																					
								KE 1008/Z2-5																																					
								beh bij																																					

FEL	Normalisatie ISO/NEN	formaat A3	project SNEL
schaal 2 : 1	datum		
getek.			onderdeel
gezien			
gecontr.			
auteursrecht voorbehouden - onbevoegd gebruik verboden			

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01 onderdeel FOTOCELVERSTERKER 035E057	ex nr	
	schaal 2 : 1	datum			
	getek				
	gezien				
	gecontr				
	auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	

DIENSTGEHEIM

FEL			SNELHEIDSMEETSYSTEEM 4-01 KOPPEL VERSTERKER	9Q-042	KE 1008/Z2-7
		Febr '88			

ref. design		description		value	power (W)	voltage (V)	toler. (%)	manufacturer	type-number	nato-stocknumber	FEL-numb.
C 1	MONOLITISCHE CONDENSATOR	27pF	10	200	20	25					
C 2	ELECTROLYTISCHE CONDEN.	1.5µF		20	50						
C 3	MONOLITISCHE CONDENSATOR	680pF	10	200							
C 4	MONOLITISCHE CONDENSATOR	68pF	10	200							
C 5	MONOLITISCHE CONDENSATOR	150pF	10	200							
C 6	MONOLITISCHE CONDENSATOR	100nF	10	100							
C 7	MONOLITISCHE CONDENSATOR	10nF	10	100							
C 8	MONOLITISCHE CONDENSATOR	1µF	10	50							
C 9	MONOLITISCHE CONDENSATOR	470nF	10	50							
C10	MONOLITISCHE CONDENSATOR	1µF	10	50							
C11	MONOLITISCHE CONDENSATOR	100nF	10	100							
C12	MONOLITISCHE CONDENSATOR	47nF	10	100							
C13	MONOLITISCHE CONDENSATOR	100nF	10	100							
C14	MONOLITISCHE CONDENSATOR	47nF	10	100							
C15	MONOLITISCHE CONDENSATOR	1µF	10	50							
C16	MONOLITISCHE CONDENSATOR	10pF	10	200							
C17	MONOLITISCHE CONDENSATOR	100nF	10	100							
C18	MONOLITISCHE CONDENSATOR	10nF	10	50							
C19	ELECTROLYTISCHE CONDEN.	10µF	20	25							
C20	ELECTROLYTISCHE CONDEN.	10µF	20	25							
D 1	SILICIUM DIODE							BAV21			
D 2	SILICIUM DIODE							IN4148			
D 3	SILICIUM DIODE							IN4148			
R 1	METAALFILM WERSTAND		10k					PHILIPS			
R 2	METAALFILM WERSTAND		10k					PHILIPS			
R 3	METAALFILM WERSTAND		10k					PHILIPS			
R 4	METAALFILM WERSTAND		10k					PHILIPS			
R 5	METAALFILM WERSTAND		10k					PHILIPS			
R 6	METAALFILM WERSTAND		10k					PHILIPS			
R 7	METAALFILM WERSTAND		10k					PHILIPS			
R 8	METAALFILM WERSTAND		10k					PHILIPS			
R 9	METAALFILM WERSTAND		10k					PHILIPS			
R 10	METAALFILM WERSTAND		10k					PHILIPS			
R 11	METAALFILM WERSTAND		100k					PHILIPS			
R 12	METAALFILM WERSTAND		N.T.B.					PHILIPS			
R 13	METAALFILM WERSTAND		N.T.B.					PHILIPS			
R 14	METAALFILM WERSTAND		100k					PHILIPS			

Wijz:
unitschf

Fysisch en
Elektronisch
Laboratorium
Den Haag

Normalisatie
ISO/NEN

schaal	datum
getek	
gezien	
geconfr	

project
SNELHEIDSMEETSYSTEEM 4-01

onderdeel
KOPPELVERSTERKER

9Q-042

auteursrecht voorbehouden onbevoegd gebruik verboden DIENSTGEHEIM fig 8 pag 1

tek nr KE 1008 / Z2-8 beh bij

santai pag 2 wijz

FEL		ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
R15	METAALFILM WEERSTAND	4.7k	1	PHILLIPS	MBB0207-50-47k								
R16	METAALFILM WEERSTAND	2.2k	1	PHILLIPS	MBB0207-50-22k								
R17	METAALFILM WEERSTAND	15k	1	PHILLIPS	MBB0207-50-15k								
R18	METAALFILM WEERSTAND	100k	1	PHILLIPS	MBB0207-50-100k								
R19	METAALFILM WEERSTAND	100k	1	PHILLIPS	MBB0207-50-100k								
R20	METAALFILM WEERSTAND	2k2	1	PHILLIPS	MBB0207-50-2k2								
R21	METAALFILM WEERSTAND	1k5	1	PHILLIPS	MBB0207-50-1k5								
R22	METAALFILM WEERSTAND	147k	1	PHILLIPS	MBB0207-50-147k								
R23	METAALFILM WEERSTAND	56k2	1	PHILLIPS	MBB0207-50-56k2								
R24	METAALFILM WEERSTAND	27k	1	PHILLIPS	MBB0207-50-27k								
R25	METAALFILM WEERSTAND	4k64	1	PHILLIPS	MBB0207-50-4k64								
R26	METAALFILM WEERSTAND	1MQ1	1	PHILLIPS	MBB0207-50-1M								
R27	METAALFILM WEERSTAND	1MQ1	1	PHILLIPS	MBB0207-50-1M								
R33	METAALFILM WEERSTAND	464k	1	PHILLIPS	MBB0207-50-464k								
R34	METAALFILM WEERSTAND	464k	1	PHILLIPS	MBB0207-50-464k								
R35	METAALFILM WEERSTAND	4M7	5	PHILLIPS	MBB0207-50-4k64								
R36	METAALFILM WEERSTAND	4k64	1	PHILLIPS	MBB0207-50-464k								
R37	METAALFILM WEERSTAND	464k	1	PHILLIPS	MBB0207-50-10k								
R38	METAALFILM WEERSTAND	10k	1	PHILLIPS	MBB0207-50-511								
R39	METAALFILM WEERSTAND	511Q	1	PHILLIPS	MBB0207-50-1k								
R40	METAALFILM WEERSTAND	1k	1	PHILLIPS	MBB0207-50-100k								
R41	METAALFILM WEERSTAND	100k	1	PHILLIPS	MBB0207-50-1k								
R42	METAALFILM WEERSTAND	1k	1	PHILLIPS	MBB0207-50-910k								
R43	METAALFILM WEERSTAND	910k	1	PHILLIPS	MBB0207-50-100k								
R44	METAALFILM WEERSTAND	100k	1	PHILLIPS	MBB0207-50-10k								
R45	METAALFILM WEERSTAND	10k	1	PHILLIPS	MBB0207-50-91k								
R46	METAALFILM WEERSTAND	91k	1	PHILLIPS	MBB0207-50-91k								
P 1	VAR. WEERSTAND									TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										TEXAS INSTR.	TEXAS INSTR.	CLM6500	
										TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										TEXAS INSTR.	TEXAS INSTR.	TL071MJG	
										CONTELEC			183WV-10k

ONDERDELENZIJDE

FEL		2:1	SNELH. MEET
+	-		
R18			
R17			
C9			
R19			
R15			
R12			
C1			
R25			
R23			
R27			
R26			
P1			
R35			
C8			
R34			
R40			
R10			
D1			
R24			
IC4			
C7			
C6			
C12			
C11			
C14			
IC6			
IC7			
C13			
R38			
R37			
R36			
R39			
R43			
P2			
R14			
C15			
D2			
D3			
IC8			
IC9			
IC5			
R42			
R46			
C16			

KOPPELV

ONDERDELENZUDE

DIENSTGEHEIM

Wijz Par
 Wijz dd
 Wijz Omschr
 Wijz Par
 Wijz dd
 Wijz Omschr
 Par
 dd
 Wijz Omschr

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSM
schaal	datum		
getek	84	05-06-85	onderdeel ROOKF
gezien			
geconfr			
auteursrecht voorbehouden - onbevoegd gebruik verboden			

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01 onderdeel ROOKFILTER	ex. nr.	
	schaal	datum			
	getek.	05-06-85			
	gezien				
	gecontr.				
	auteursrecht voorbehouden onbevoegd gebruik verboden			rap	
			aantal pag	wijz	

Par
 dd
 Wijz
 Omschr
 Par
 dd
 Wijz
 Omschr
 Par
 dd
 Wijz
 Omschr

Fysisch en
Elektronisch
Laboratorium
Den Haag

Normalisatie
ISO/NEN

formaat
A3

project
SNELH

schaal

datum

onderdeel

getek

05-06-'85

SIGNA

gezien

gecontr

auteursrecht voorbehouden - onbevoegd gebruik verboden

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01	ex nr	TNO
	schaal	datum	onderdeel	tek nr	
	getek	85 . 05-06-85	SIGNAAL UITGANGSSPANNING IC.4	KE 1008 / Z2-13	
	gezien		na diode D1	ben bij	
	gecontr			aantal pag	wijz
auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	fig 13	pag

ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
C 1	MONOLITISCHE CONDENSAATOR	1µF									
C 2	MONOLITISCHE CONDENSAATOR	12pF					50	PHILIPS			
C 3	MONOLITISCHE CONDENSAATOR	1µF					200	PHILIPS			
C 4	MONOLITISCHE CONDENSAATOR	1µF					50	PHILIPS			
C 5	MONOLITISCHE CONDENSAATOR	100nF					50	PHILIPS			
C 6	MONOLITISCHE CONDENSAATOR	100nF					100	PHILIPS			
C 7	MONOLITISCHE CONDENSAATOR	100nF					100	PHILIPS			
C 8	ELECTROLITISCHE CONDEN.	10µF					20	PHILIPS			
C 9	ELECTROLITISCHE CONDEN.	10µF					25	PHILIPS			
C10	MONOLITISCHE CONDENSAATOR	1nF					25	PHILIPS			
							100	PHILIPS			
R 1	METALFILM WERSTAND	820k					1	PHILIPS	MBB0207-50-820k		
R 2	KOOL WERSTAND	1M					5	ALLEN BRADLEY	RCR07G155JS		
R 3	METALFILM WERSTAND	680k					1	PHILIPS	RCR07G-50-680k		
R 4	METALFILM WERSTAND	22k6					1	PHILIPS	RCR07G-50-22k6		
R 5	METALFILM WERSTAND	4k64					1	PHILIPS	RCR07G-50-4k64		
R 6	METALFILM WERSTAND	10k					1	PHILIPS	RCR07G-50-10k		
R 7	METALFILM WERSTAND	N.T.B.					1	PHILIPS	RCR07G-50-		
R 8	METALFILM WERSTAND	N.T.B.					1	PHILIPS	RCR07G-50-		
R 9	METALFILM WERSTAND	1k					1	PHILIPS	RCR07G-50-1k		
R10	METALFILM WERSTAND	147k					1	PHILIPS	RCR07G-50-147k		
R11	METALFILM WERSTAND	1k					1	PHILIPS	RCR07G-50-1k		
R12	METALFILM WERSTAND	100k					1	PHILIPS	RCR07G-50-100k		
R13	METALFILM WERSTAND	4k64					1	PHILIPS	RCR07G-50-4k64		
R14	KOOL WERSTAND	1M					5	ALLEN BRADLEY	MBB0207-50-10k		
R15	METALFILM WERSTAND	10k					1	PHILIPS	MBB0207-50-10k		
R16	METALFILM WERSTAND	10k					1	CONTELEC	183WV-1k		
R17	VAR. WERSTAND	1k					1	PHILIPS	MBB0207-50-9k53		
R18	VAR. WERSTAND	9k53					1	PHILIPS	MBB0207-50-100k		
R19	VAR. WERSTAND	100k					1	PHILIPS	MBB0207-50-110		
R20	VAR. WERSTAND	110Ω					1	PHILIPS	MBB0207-50-4k64		
R21	VAR. WERSTAND	4k64					1	PHILIPS	MBB0207-50-10k		
R22	VAR. WERSTAND	10k					1	PHILIPS	MBB0207-50-33E2		
R23	VAR. WERSTAND	33,2Ω					1	PHILIPS			
IC 1	OPAMP							NSC	LF256		
IC 2	OPAMP							NSC	LF256		
IC 3	OPAMP							NSC	LF256		
IC 4	OPAMP							NSC	LF256		

Fysisch en
Elektronisch
Laboratorium
Den Haag

auteursrecht voorbehouden. Onbevoegd gebruik verboden.

DIENSTGEHEIM

fig 15

pag 1

aantal pag 2 wiz

onderdeel
**S/L SIGNALERING
(STOPDET.)**

ex nr
tek nr
beh bij

KE 1008/Z2-15

FEL		description		ref. design	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
Wijz.	da	IC 5	OPAMP						NSC MORICA	LF256 MCD735		
Wijz.	da	IC 6	OPTO COUPLER							BC107 2N2907		
Wijz.	da	TS 1	TRANSISTOR							BAV21		
Wijz.	da	TS 2	TRANSISTOR								M21097/5-03	
Wijz.	da	D 1	DIODE						ELCO			
Wijz.	da	PL 1	PRINTCONNECTOR 23P.									
FEL		Normalisatie ISO/NEN		formaat A4		project SNELHEIDSMEETSYSTEEM 4-01		ex nr				
Fysisch en Elektronisch Laboratorium Den Haag		schaal		onderdeel S/L SIGNALERING (STOPDET.)		tek. nr						
		getek						tek. nr				
		gezien						KE 1008/Z2-16				
		gecontr						beh. bij				
auteursrecht voorbehouden onbevoegd gebruik verboden				DIENSTGEHEIM		fig 16	pag 1	aantal pag 2		wijz		

d1
 '112
 Omschr
 +
 tar
 W
 Omschr
 dd
 Omschr

FEL	Normalisatie ISO/NEN	formaat A3	project
schaal 2:1	datum	SNELHEIDS	
getek		onderdeel	
gezien		S/L SIC	
geconfr		rap	
auteursrecht voorbehouden - onbevoegd gebruik verboden			

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01	ex nr	TNO
	schaal 2:1	datum		tek nr	
getek			onderdeel S/L SIGNALERING	KE 1008/Z2-17	
gezien			(STOPDET.)	beh bij	
gecontr					
auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	fig 17	pag
					santai pag
					wnz

I Par
VK
Umschr

I Par
VK
Omschr

I P...
dd
Omschr

0-WAARDE DETECTIE

1/2-WAARDE DETECTIE

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A4	project SNELHEIDSMEETSSTEE M 4-01 onderdeel	ex nr	
	schaal	datum			
getek	5-06-85			tek nr	
gezien				KE 1008/Z2-18	
gecontir				beh bij	
auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	fig 18	pag
				aantal pag	wijz

FEL			SNELHEIDSMEETSYSTEEM 4-01 REGELVERST. / IMP. VORMER 906E002 In Start en Stop kop	9Q-043	TNO
RH - 31-05-85				KE 1008/Z2-19	

FEL		ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
W?	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Wiz	Umschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
dd	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
da	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par	Par
Par	Omschr.	Par	Par	Par	Par								

ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	ratio-stocknumber	FEL-numb.
IC12	OPTO COUPLER	1k47	1	1	PHILIPS	CLM6500	MBB0207-50-1k47		
R 1	METAALFILM WEERSTAND	N.T.B.	1	1	PHILIPS		MBB0207-50-		
R 2	METAALFILM WEERSTAND	N.T.B.	2M2	5	PHILIPS		RCR07G25JS		
R 3	METAALFILM WEERSTAND	5k11	1	1	ALLEN BRADLEY		MBB0207-50-5k11		
R 4	METAALFILM WEERSTAND	10k	1	1	PHILIPS		MBB0207-50-10k		
R 5	METAALFILM WEERSTAND	1k	1	1	PHILIPS		MBB0207-50-1k		
R 6	METAALFILM WEERSTAND	100k	1	1	PHILIPS		MBB0207-50-100k		
R 7	METAALFILM WEERSTAND	100k	1	1	PHILIPS		MBB0207-50-100k		
R 8	METAALFILM WEERSTAND	10k	1	1	PHILIPS		MBB0207-50-10k		
R 9	METAALFILM WEERSTAND	1M	1	1	PHILIPS		MBB0207-50-1M		
R10	METAALFILM WEERSTAND	N.T.B.	1	1	PHILIPS		MBB0207-50-50		
R11	METAALFILM WEERSTAND	N.T.B.	1	1	PHILIPS		MBB0207-50		
R12	METAALFILM WEERSTAND	N.T.B.	1	1	PHILIPS		MBB0207-50		
R13	METAALFILM WEERSTAND	33k2	1	1	PHILIPS		MBB0207-50-33k2		
R14	METAALFILM WEERSTAND	1k	1	1	PHILIPS		MBB0207-50-1k		
R15	METAALFILM WEERSTAND	2k26	0,1	1	PHILIPS		MBB0207-50-2k26		
R16	METAALFILM WEERSTAND	4k64	0,1	1	PHILIPS		MBB0207-50-4k64		
R17	METAALFILM WEERSTAND	4k64	0,1	1	PHILIPS		MBB0207-50-4k64		
R18	METAALFILM WEERSTAND	1M	0,1	1	PHILIPS		MBB0207-50-1M		
R19	METAALFILM WEERSTAND	215k	0,1	1	PHILIPS		MBB0207-50-215k		
R20	METAALFILM WEERSTAND	46k4	0,1	1	PHILIPS		MBB0207-50-46k4		
R21	METAALFILM WEERSTAND	N.V.T.	1	1	PHILIPS		MBB0207-50		
R22	METAALFILM WEERSTAND	470k	0,1	1	PHILIPS		MBB0207-50-470k		
R23	METAALFILM WEERSTAND	670k	0,1	1	PHILIPS		MBB0207-50-670k		
R24	METAALFILM WEERSTAND	22k6	0,1	1	PHILIPS		MBB0207-50-22k6		
R25	METAALFILM WEERSTAND	100k	0,1	1	PHILIPS		MBB0207-50-100k		
R26	METAALFILM WEERSTAND	147k	0,1	1	PHILIPS		MBB0207-50-147k		
R27	METAALFILM WEERSTAND	10k	0,1	1	PHILIPS		MBB0207-50-1k		
R28	METAALFILM WEERSTAND	7k5	0,1	1	PHILIPS		MBB0207-50-7k5		
R29	METAALFILM WEERSTAND	1k	0,1	1	PHILIPS		MBB0207-50-1k		
R30	METAALFILM WEERSTAND	226Ω	0,1	1	PHILIPS		MBB0207-50-226		
R31	METAALFILM WEERSTAND	14k7	0,1	1	PHILIPS		MBB0207-50-14k7		
R32	METAALFILM WEERSTAND	4k64	0,1	1	PHILIPS		MBB0207-50-4k64		
R33	METAALFILM WEERSTAND	10k	0,1	1	PHILIPS		MBB0207-50-10k		
R34	METAALFILM WEERSTAND	10M	0,25	5	ALLEN BRADLEY		RCR07G106JS		
R35	KOOL WEERSTAND	2k26	0,1	1	PHILIPS		MBB0207-50-2k26		
R36	METAALFILM WEERSTAND	82k5	0,1	1	PHILIPS		MBB0207-50-82k5		
R37	METAALFILM WEERSTAND								

Wijz —————— Par —————— Pa —————— da —————— Umschr

Omschr —————— Par —————— Pa —————— da —————— Wijz

Omschr —————— Pa —————— Pa —————— da —————— Wijz

FEL
Fysisch en
Elektronisch
Laboratorium
Den Haag

Normalisatie
ISO/NEN

schaal

gezetk

gezien

gecontr

formaat
A4

datum

project

SNELHEIDSMEETSYSTEEM 4-01

onderdeel REGELVERST./IMP.VORMER 906E002

In Start- en Stop kap 9Q-043

auteursrecht voorbehouden onbevoegd gebruik verboden

DIENSTGEHEIM

dag 21

pag 2

ex nr

tek nr

beh bl

KE 1008/Z2-21

ref. design		description		value	power (W)	toler (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
R38	METAALFILM WEERSTAND	22k6	0,1	1				PHILLIPS	MBB0207-50-22k6		
R39	METAALFILM WEERSTAND	22k6	0,1	1				PHILLIPS	MBB0207-50-22k6		
R40	METAALFILM WEERSTAND	82k5	0,1	1				PHILLIPS	MBB0207-50-82k5		
R41	METAALFILM WEERSTAND	46k4	0,1	1				PHILLIPS	MBB0207-50-46k4		
R42	METAALFILM WEERSTAND	46k4	0,1	1				PHILLIPS	MBB0207-50-46k4		
R43	METAALFILM WEERSTAND	1M	0,1	1				PHILLIPS	MBB0207-50-1M		
R44	METAALFILM WEERSTAND	1M	0,1	1				PHILLIPS	MBB0207-50-1M		
R45	METAALFILM WEERSTAND	1k	0,1	1				PHILLIPS	MBB0207-50-1k		
R46	METAALFILM WEERSTAND	46,4Ω	0,1	1				PHILLIPS	MBB0207-50-46E4		
R47	METAALFILM WEERSTAND	46,4Ω	0,1	1				PHILLIPS	MBB0207-50-46E4		
R48	METAALFILM WEERSTAND	46,4Ω	0,1	1				PHILLIPS	MBB0207-50-46E4		
										2N930	
										2N2907	
										M21097/5-03	
										ELCO	

A
Druv comp overgenummerd
F51, D51 en C6 by

ONDERDELENZIJDE

2 : 1	2 : 1	2 : 1	2 : 1

SNELH

RE

ONDERDELENZIJDE

FEL Fachberatung für Emissions und Sicherheit Technik Gesellschaft mbH	2:1	SNELH. MEETSY . 4-01	DIENSTGEHEIM		
			REGELVERST./IMP.VORMER 906 E002 In Start en Stop kop	9Q-043	KE 1008 / Z2-23

SNEL

Febr. 68

ref. design		description		value	power (W)	voltage (V)	toler. (%)	manufacturer	type-number	nato-stocknumber	FEL-numb.
C 1	ELEKTR. CONDENSATOR	100µF	20	40							
C 2	ELEKTR. CONDENSATOR	100µF	20	40							
C 3	MONOLITISCHE CONDENSATOR	10nF	50	50							
C 4	MONOLITISCHE CONDENSATOR	10nF	50	50							
C 5	ELEKTR. CONDENSATOR	150µF	20	40							
C 6	ELEKTR. CONDENSATOR	150µF	20	40							
C 7	ELEKTR. CONDENSATOR	100µF	20	40							
C 8	ELEKTR. CONDENSATOR	100µF	20	40							
C 9	MONOLITISCHE CONDENSATOR	10nF	100	100							
C 10	MONOLITISCHE CONDENSATOR	10nF	100	100							
C11	ELEKTR. CONDENSATOR	150µF	20	25							
C12	ELEKTR. CONDENSATOR	150µF	25	25							
C13	MONOLITISCHE CONDENSATOR	47nF	100	100							
C14	MONOLITISCHE CONDENSATOR	22pF	200	200							
C15	ELEKTR. CONDENSATOR	4,7µF	25	25							
D 1	SILICIUM DIODE							BAV21			
D 2	SILICIUM DIODE							BAV21			
IC 1	REG POWER SUPPLY							MC1568L			
IC 2	REG POWER SUPPLY							MC1568L			
IC 3	DUAL MONOSTABLE MULTI VIB							MM4011			
R 1	KOOL WERSTAND	33Ω	0,25	5				RCR07G330JG			
R 2	KOOL WERSTAND	68Ω	0,25	5				RCR07G680JG			
R 3	KOOL WERSTAND	680Ω	1	5				RWR69V681			
R 4	METAALFILM WERSTAND	2,15Ω	0,1	1				MBB0207-50-2E15			
R 5	METAALFILM WERSTAND	2,15Ω	0,1	1				MBB0207-50-2E15			
R 6	METAALFILM WERSTAND	1k	0,1	1				MBB0207-50-1k			
R 7	METAALFILM WERSTAND	1k	0,1	1				MBB0207-50-1k			
R 8	METAALFILM WERSTAND	1,5k	0,1	1				MBB0207-50-15k			
R 9	METAALFILM WERSTAND	1,5k	0,1	1				MBB0207-50-15k			
R10	KOOL WERSTAND	33Ω	0,25	5				RCR07G330JG			
R11	KOOL WERSTAND	68Ω	0,25	5				RCR07G680JG			
R12	METAALFILM WERSTAND	2,15Ω	0,1	1				MBB0207-50-2E15			
R13	METAALFILM WERSTAND	2,15Ω	0,1	1				MBB0207-50-2E15			
R14	METAALFILM WERSTAND	1k	0,1	1				MBB0207-50-1k			
R15	METAALFILM WERSTAND	1k	0,1	1				MBB0207-50-1k			
R16	METAALFILM WERSTAND	15k	0,1	1				MBB0207-50-15k			

Fysisch en
Elektronisch:
Laboratorium
Den Haag

SNELHEIDSMEETSYSTEEM 4-01

VOEDING +15V/-15V

9Q-041

tek nr
KE 1008/Z2-25

beh bij

auteursrecht voorbehouden onbevoegd gebruik verboden

DIENSTGEHEIM

fig

25

pag

1

aantal pag

2

wijz

FEL		ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
Fysisch en Elektronisch Laboratorium Den Haag	Wijz Onschr.	R17		METAALFILM WEEERSTAND		15k	0,1	1		PHILLIPS	MBB0207-50-15k		
		R18		METAALFILM WEEERSTAND		3k32	0,1	1		PHILLIPS	MBB0207-50-3k32		
		R19		METAALFILM WEEERSTAND		46k4	0,1	1		PHILLIPS	MBB0207-50-46k4		
		R20		METAALFILM WEEERSTAND		1k	0,1	1		PHILLIPS	MBB0207-50-1k		
		R21		METAALFILM WEEERSTAND		10k	0,1	1		PHILLIPS	MBB0207-50-10k		
		R22		METAALFILM WEEERSTAND		33k2	0,1	1		PHILLIPS	MBB0207-50-33k2		
		R23		METAALFILM WEEERSTAND		100k	0,1	1		PHILLIPS	MBB0207-50-100k		
		R24		METAALFILM WEEERSTAND		14k7	0,1	1		PHILLIPS	MBB0207-50-14k7		
		R25		METAALFILM WEEERSTAND		10k	0,1	1		PHILLIPS	MBB0207-50-10k		
		TS 1		TRANSISTOR							2N2222		
		TS 2		TRANSISTOR							2N2907		
		PL 1		PRINTCONNECTOR						ELCO	M21097/5-03		
FEL		Normalisatie ISO NEN		formaat A4		project		SNELHEIDSMEETSYSTEEM 4-01		ex nr		tek nr	
		schaal		datum									
		getek											
		gezien											
		gecont:											

FEL

2:1	2:1	2:1
Apr. 80		

SNELH ME

VOEDIN

DIENSTGEHEIM

FEL	2:1	Ap. 88	SNELH. MEETSYST 4-01	VOEDING +15V / -15V	9Q-041	27	KE 1008/Z2-27
------------	-----	--------	----------------------	---------------------	--------	----	---------------

FEL		Normalisatie ISO/NEN	formaat A3	project SNELH MEI
schaal	datum			
getek	SvL	FEBR 88		
gezien				onderdeel
geconfr				CENTR
auteursrecht voorbehouden - onbevoegd gebruik verboden				

DIENSTGEHEIM

FEL Fysisch en Electronisch Laboratorium Den Haag	Normalisatie ISO-NEN	formaat A3	project SNELH. MEETSYSTEEM 4-01 onderdeel CENTR. VERW. EENHEID Blokschema signaalverw.	ex nr	 tek nr KE 1008/Z2-28 beh bij aantal pag wijz
	schaal	datum			
	getek	SvL		FEBR 88	
	gezien				
	geconstr				
	auteursrecht voorbehouden	onbevoegd gebruik verboden		rap	

906E004

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEID
	schaal	datum	onderdeel KA
	getek.	<u>81</u> - 04-06-85	
	gezien		
	gecontr.		
	auteursrecht voorbehouden - onbevoegd gebruik verboden		

DIENSTGEHEIM

FEL		Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01	ex. nr.	
		schaal	datum			
		getek.	04-06-85		tek. nr.	
		gezien			KE 1008/Z2-29	
		geconstr.			beh. bij	
auteursrecht voorbehouden: onbevoegd gebruik verboden				rap	fig. 29	pag
					aantal pag	wijz A

W _{HZ}	dd	Par				
Omschr						
W _I	n _I					
Omschr						
P _A						
ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer
C 1	ELEKTR. CONDENSATOR	4.7µF	2.0	25	PHILLIPS	
C 2	ELEKTR. CONDENSATOR	4.7µF	2.0	25	PHILLIPS	
C 3	MONOLITISCHE CONDENSATOR	2n2	100			
C 4	MONOLITISCHE CONDENSATOR	2n2	100			
C 5	MONOLITISCHE CONDENSATOR	2n2	100			
C 6	MONOLITISCHE CONDENSATOR	2n2	100			
C 7	MONOLITISCHE CONDENSATOR	2n2	100			
C 8	MONOLITISCHE CONDENSATOR	2n2	100			
C 9	MONOLITISCHE CONDENSATOR	2n2	100			
C10	MONOLITISCHE CONDENSATOR	2n2	100			
C11	ELEKTR. CONDENSATOR	4.7µF	25		PHILLIPS	
C12	MONOLITISCHE CONDENSATOR	100nF				
D 1	SILICIUM DIODE				BAV21	
D 2	SILICIUM DIODE				BAV21	
D 3	SILICIUM DIODE				BAV21	
D 4	SILICIUM DIODE				BAV21	
IC 1	OPTO COUPLER				IL.100	
IC 2	OPTO COUPLER				IL.100	
IC 3	QUAD NOR GATE				74LS02	
IC 4	DUAL MONOSTABLE MULTIVIB				74LS123	
IC 5	QUAD AND GATE				74LS00	
IC 6	DUAL J-K FLIP-FLOP				74LS76	
IC 7	QUAD NAND BUFFER				7437	
IC 8	DUAL MONOSTABLE MULTIVIB				74LS123	
IC 9	DUAL MONOSTABLE MULTIVIB				7437	
IC10	QUAD NAND BUFFER				7437	
IC11	DUAL MONOSTABLE MULTIVIB				74LS123	
R 1	METAALFILM WEESTAND	1.000Ω		1	PHILLIPS	MBB0207-50-100
R 2	METAALFILM WEESTAND	1.000Ω		1	PHILLIPS	MBB0207-50-100
R 3	METAALFILM WEESTAND	10k		1	PHILLIPS	MBB0207-50-10k
R 4	METAALFILM WEESTAND	10k		1	PHILLIPS	MBB0207-50-10k
R 5	METAALFILM WEESTAND	1.000Ω		1	PHILLIPS	MBB0207-50-100
R 6	METAALFILM WEESTAND	1.000Ω		1	PHILLIPS	MBB0207-50-100
R 7	METAALFILM WEESTAND	100k		1	PHILLIPS	MBB0207-50-100k
R 8	METAALFILM WEESTAND	2.7k4		1	PHILLIPS	MBB0207-50-27k4
R 9	METAALFILM WEESTAND	42,2Ω		1	PHILLIPS	MBB0207-50-42E2
	ex nr					
	tek nr					
	beh bil					
auteursrecht voorbehouden onbevoegd gebruik verboden	DIENST GEHEIM	taq 30	pag 1	aantal pag 2	wlz	

Fysisch en
Elektronisch
Laboratorium
Den Haag

SNELHEIDSMEETSYSTEEM 4-01

KAART OSM.3

KE.1008/Z2-30

ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
R10	METAALFILM WEERSTAND	22k6	1	1		PHILLIPS		MBB0207-50-22k6	
R11	METAALFILM WEERSTAND	22k6	1	1		PHILLIPS		MBB0207-50-22k6	
R12	METAALFILM WEERSTAND	4,64	1	1		PHILLIPS		MBB0207-50-4k64	
R13	METAALFILM WEERSTAND	100k	1	1		PHILLIPS		MBB0207-50-100k	
R14	METAALFILM WEERSTAND	100k	1	1		PHILLIPS		MBB0207-50-100k	
R15	METAALFILM WEERSTAND	100k	1	1		PHILLIPS		MBB0207-50-100k	
R16	METAALFILM WEERSTAND	100k	1	1		PHILLIPS		MBB0207-50-100k	
R17	METAALFILM WEERSTAND	1k	1	1		PHILLIPS		MBB0207-50-1k	
R18	METAALFILM WEERSTAND	464Ω	1	1		PHILLIPS		MBB0207-50-464	
							2N930		
							2N930		
							M21097/5-03		
PL 1 TS 1 TRANSISTOR TS 2 TRANSISTOR PRINTCONNECTOR									
FEL		Normalisatie ISO/NEN	formaat A4	project SNELHEIDSMEETSYSTEEM 4-01		ex nr	FEL		
Fysisch en Elektronisch Laboratorium Den Haag		schaal	datum			tek nr			
		getek				KE 1008/Z2-31			
		gezien				bev bij			
		gecontr							
auteursrecht voorbehouden onbevoegd gebruik verboden									
DIENSTGEHEIM				fig 31	pag 2	aantal pag 2	wijz		

906E005

DIENSTGEHEIM

 FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSSTEE M 4-01 onderdeel KAART OSM -4	ex nr			
	schaal	datum					
	getekn.	05-06-'81					
	gezien			tek nr			
	geconfr.			KE 1008 / Z2- 33			
				beh bil			
auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	fig 33	pag	aantal pag	wijz A

Wijz		Par		Par		Par		Par		Par		Par		Par	
Wijz		Omschr		Omschr		Omschr		Omschr		Omschr		Omschr		Omschr	
ref. design	description	value	power (W)	voltage (V)	toler. (%)	type-number	manufacturer	nato-stocknumber	FEL-numb.						
C 1	MONOLITISCHE CONDENSATOR	2n2		100											
C 2	MONOLITISCHE CONDENSATOR	2n2		100											
C 3	TRIM CONDENSATOR	2-18pF													
C 4	ELEKTR. CONDENSATOR	4,7µF		20	25	PHILIPS									
C 5	MONOLITISCHE CONDENSATOR	4n7		100											
C 6	MONOLITISCHE CONDENSATOR	1nF		100											
C 7	MONOLITISCHE CONDENSATOR	4n7		100											
C 8	MONOLITISCHE CONDENSATOR	4n7		100											
C 9	MONOLITISCHE CONDENSATOR	4n7		100											
C 10															
D 1	SILICON DIODE								BAV21						
D 2	SILICON DIODE								BAV21						
IC 1	OPTO COUPLER								IL.100						
IC 2	OPTO COUPLER								IL.100						
IC 3	DUAL MONOSTABLE MULTIVIB								74LS123						
IC 4	QUAD NAND BUFFER								7437						
IC 5	QUAD NAND GATE								74LS00						
IC 6	DUAL MONOSTABLE MULTIVIB								74LS123						
IC 7	DUAL R-S FLIP-FLOP								74LS74						
IC 8	QUAD NOR GATE								74LS02						
IC 9	DUAL MONOSTABLE MULTIVIB								74LS123						
IC10	QUAD AND GATE								74LS08						
IC11	DUAL DECADE COUNTERS								74LS390						
IC12	DUAL DECADE COUNTERS								74LS390						
KR 1	KRISTAL														
R 1	METAALFILM WEEERSTAND	100Ω						1	PHILIPS	MBB0207-50-100					
R 2	METAALFILM WEEERSTAND	100Ω						1	PHILIPS	MBB0207-50-100					
R 3	METAALFILM WEEERSTAND	10k						1	PHILIPS	MBB0207-50-10k					
R 4	METAALFILM WEEERSTAND	10k						1	PHILIPS	MBB0207-50-10k					
R 5	METAALFILM WEEERSTAND	10k						1	PHILIPS	MBB0207-50-10k					
R 6	METAALFILM WEEERSTAND	10k						1	PHILIPS	MBB0207-50-10k					
R 7	METAALFILM WEEERSTAND	10k						1	PHILIPS	MBB0207-50-10k					
R 8	METAALFILM WEEERSTAND	22k6						1	PHILIPS	MBB0207-50-22k6					
R 9	METAALFILM WEEERSTAND	22k6						1	PHILIPS	MBB0207-50-22k6					
R10	METAALFILM WEEERSTAND	22k6						1	PHILIPS	MBB0207-50-22k6					
FEL		Normalisatie ISO/NEN	A4	project SNELHEIDSMEETSYSTEEM 4-01		onderdeel KAART OSM.4		ex nr				tek nr KE 1008/Z2-34		beh bij	
auteursrecht voorbehouden - onbevoegd gebruik verboden								DIENSTGEHEIM	fig 34	pag 1	aantal pag 2	wijz			

Wijz verschil		Par		Par		Par		Wijz verschil		Par		Par		Wijz verschil	
ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.						
R11	METALFILM WERSTAND	42,2Ω		1		PHILLIPS	MBB0207-50-42E2								
R12	METALFILM WERSTAND	27k4		1		PHILLIPS	MBB0207-50-27k4								
R13	METALFILM WERSTAND	100k		1		PHILLIPS	MBB0207-50-100k								
R14	METALFILM WERSTAND	4k64		1		PHILLIPS	MBB0207-50-4k64								
R15	METALFILM WERSTAND	464Ω		1		PHILLIPS	MBB0207-50-464								
R16	METALFILM WERSTAND	22,6Ω		1		PHILLIPS	MBB0207-50-22E6								
R17	METALFILM WERSTAND	2k26		1		PHILLIPS	MBB0207-50-2k26								
TS 1	TRANSISTOR														
TS 2	TRANSISTOR														
TS 3	TRANSISTOR														
TS 4	TRANSISTOR														
PL 1		PRINTCONNECTOR 64P.													
FEL		Normalisatie ISO/NEN		formaat A4		project		SNELHEIDSMEETSSTEE 4-01		ex nr					
Fysisch en Elektronisch Laboratorium Den Haag		schaal		datum		onderdeel		KAART OSM.4		tek nr					
gerek										KE 1008/Z2-35					
gezien										beh bij					
geconfr										aantal pag					
auteursrecht voorbehouden - onbevoegd gebruik verboden		DIENSTGEHEIM		fig 35		pag 2		wijz							

 Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat 32	project
	schaal	datum	SNELHEIDSMEETSYSTEEM onderdeel SCHAKELEN O-WI STURING TESTMET
	getek	14-10-85	
	gezen		
	gecont		

auteursrecht voorbehouden - ontbrekende gebruik verboden

rap

DIENSTGEHEIM

ex nr	[Redacted]
tek nr	[Redacted]
beh by	[Redacted]
datum pag	[Redacted]

Fysisch en
Elektrotechnisch
Laboratorium
Den Haag

Normatieve
ISO/NEN

formaat

32

project

32

scheer

open

getek

45-00000000

onderdeel

SNELHEIDSMEETSYSTEEM 6-01

SCHAKelen 0-W/ 0,5-W
STURING TESTMETING OSM-5

afzienachtig voorbehouden, ontwerpgegeven verboden /rap

dag

36

pag

seantie pag

verg. 30

Wijz	oef	Par	Par	Wijz	oef	Par
Umschr.	Onsl III			Umschr.		

ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
									Wijz
C 1	MONOLITISCHE CONDENSATOR	100nF			100				LM. 311
C 2	MONOLITISCHE CONDENSATOR	100nF			100				74LS109
C 3	MONOLITISCHE CONDENSATOR	100nF			100				74LS123
C 4	MONOLITISCHE CONDENSATOR	10nF			100				74LS123
C 5	MONOLITISCHE CONDENSATOR	100nF			100				74LS123
C 6	MONOLITISCHE CONDENSATOR	2n2			100				74LS123
C 7	MONOLITISCHE CONDENSATOR	100nF			100				74LS32
C 8	MONOLITISCHE CONDENSATOR	1nF			50				74LS00
C 9	MONOLITISCHE CONDENSATOR	2n2			100				CD4040BR
C10	MONOLITISCHE CONDENSATOR	100nF			100				CD4049
C11	MONOLITISCHE CONDENSATOR	100nF			100				CD4071
D 1	SILICIUM DIODE								CD4047
									CD4528
									74LS123
IC 1	COMPARATOR								PHILLIPS
IC 2	DUAL J-K FLIP-FLOP								PHILLIPS
IC 3	DUAL MONOSTABLE MULTIVIB								PHILLIPS
IC 4	DUAL MONOSTABLE MULTIVIB								PHILLIPS
IC 5	DUAL MONOSTABLE MULTIVIB								PHILLIPS
IC 6	QUAD 2 INPUT OP GATE								PHILLIPS
IC 7	QUAD 2 INPUT NAND GATE								PHILLIPS
IC 8	QUAD 2 INPUT AND GATE								PHILLIPS
IC 9	12 STAGE BINARY COUNTER								PHILLIPS
IC10	QUAD CMOS INV. BUFFER								PHILLIPS
IC11	QUAD CHOS 2 INPUT OR GATE								PHILLIPS
IC12	MONOSTABLE MULTIVIB								PHILLIPS
IC13	DUAL MONOSTABLE MULTIVIB								PHILLIPS
IC14	DUAL MONOSTABLE MULTIVIB								PHILLIPS
R 1	METAALFILM WEESTAND				1k				MBB0207-50-1k
R 2	METAALFILM WEESTAND				1k				MBB0207-50-1k
R 3	METAALFILM WEESTAND				205Q				MBB0207-50-205
R 4	METAALFILM WEESTAND				10k				MBB0207-50-10k
R 5	METAALFILM WEESTAND				68kΩ				MBB0207-50-681
R 6	METAALFILM WEESTAND				27k4				MBB0207-50-27k4
R 7	METAALFILM WEESTAND				1M				MBB0207-50-1M
R 8	METAALFILM WEESTAND				1k				MBB0207-50-1k
R 9	METAALFILM WEESTAND				100k				MBB0207-50-100k
R10	METAALFILM WEESTAND				1k				MBB0207-50-1k
autorsrecht voorbehouden onbevoegd gebruik verboden		DIENSTGEHEIM		fig 37		pag 1		aantal pag 2	
						wijz			
SNELHEIDSMEETSYSTEEM 4-01		KAART OSM.5		ex nr		tek nr		TNO	

Wijz	dra	Par
Wijz	dra	Par
Omschr.		

ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
R11	METAALFILM WEEQRSTAND	1k				PHILLIPS	MBB0207-50-1k		
R12	METAALFILM WEEQRSTAND	100k				PHILLIPS	MBB0207-50-100k		
R13	METAALFILM WEEQRSTAND	56k2				PHILLIPS	MBB0207-50-56k2		
R14	METAALFILM WEEQRSTAND	187k				PHILLIPS	MBB0207-50-187k		
R15	METAALFILM WEEQRSTAND	14k7				PHILLIPS	MBB0207-50-14k7		
R16	METAALFILM WEEQRSTAND	14k7				PHILLIPS	MBB0207-50-14k4		
R17	METAALFILM WEEQRSTAND	2k26				PHILLIPS	MBB0207-50-2k26		
R18	METAALFILM WEEQRSTAND	2k26				PHILLIPS	MBB0207-50-2k26		
R19	METAALFILM WEEQRSTAND	2.7k4				PHILLIPS	MBB0207-50-2.7k4		
R20	METAALFILM WEEQRSTAND	6k81				PHILLIPS	MBB0207-50-6k81		
R21	METAALFILM WEEQRSTAND	46k4				PHILLIPS	MBB0207-50-46k4		
R22	METAALFILM WEEQRSTAND	1k4				PHILLIPS	MBB0207-50-1k4		
R23	METAALFILM WEEQRSTAND	750Q				PHILLIPS	MBB0207-50-750		
R24	METAALFILM WEEQRSTAND	1k5				PHILLIPS	MBB0207-50-1k5		
R25	METAALFILM WEEQRSTAND	1k				PHILLIPS	MBB0207-50-1k		
R26	METAALFILM WEEQRSTAND	10k				PHILLIPS	MBB0207-50-10k		
TS 1	TRANSISTOR						2N2907		
TS 2	TRANSISTOR						2N930		
TS 3	TRANSISTOR						2N930		
PL 1	PRINTCONNECTOR								
Fysisch en Elektronisch Laboratorium Den Haag		Normalisatie ISO/NEN	formaat A4	project SNELHEIDSMEETSSTEE 4-01		onderdeel KAART OSM.5		ex nr	
		schaal	datum					tek nr	
		getek						KE 1008/ Z2-38	
		gezien						behandel	
		gecontr							
auteursrecht voorbehouden - onbevoegd gebruik verboden									
DIENSTGEHEIM				fig 38	pag 2	aantal pag 2	wijz		

FEL	Normalisatie ISO/NEN	formaat A3	project
	schaal	datum	SNELHEIDSME
getek		onderdeel	
gezien			
gecont			
auteursrecht voorbehouden - onbevoegd gebruik verboden /rap			

DIENSTGEHEIM

FEL	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01	ex nr	TNO
Fysisch en Elektronisch Laboratorium Den Haag	schaal	datum	onderdeel OSM. 6	tek nr	KE 1008/Z2-39
	getek		Schakeling voor blokkering tussen de schoten	ben bij	
	gezien			aantal pag	
	geconstr			wijz	A
auteursrecht voorbehouden onbevoegd gebruik verboden rap			fig 39	pag	

Wijz
Umschr.
Par
dd
Par
Omst.nr

Wijz
Umschr.
Par
da
Par
da
Umschr.

ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEL-numb.
C 1		MONOLITISCHE CONDENSATOR	1µF		10	50					
C 2		MONOLITISCHE CONDENSATOR	1µF		10	50					
C 3		MONOLITISCHE CONDENSATOR	1µF		10	50					
C 4		MONOLITISCHE CONDENSATOR	1µF		10	50					
C 5		MONOLITISCHE CONDENSATOR	1µF		10	50					
C 6		MONOLITISCHE CONDENSATOR	1µF		10	50					
D 1		SILICIUM DIODE									
D 2		SILICIUM DIODE									
D 3		ZENERDIODE									
D 4		SILICIUM DIODE									
D 5		SILICIUM DIODE									
D 6		SILICIUM DIODE									
D 7		SILICIUM DIODE									
D 8		SILICIUM DIODE									
D 9		ZENERDIODE									
D10		ZENERDIODE									
IC 1		OPAMP									
IC 2		OPAMP									
IC 3		COMPARATOR									
IC 4		DUAL MONOSTABLE MULTIVIB									
IC 5		QUAD NOR GATE									
IC 6		DUAL R-S FLIP-FLOP									
R 1		METAALFILM WEEERSTAND	22k6								
R 2		METAALFILM WEEERSTAND	2k26								
R 3		METAALFILM WEEERSTAND	560Ω								
R 4		METAALFILM WEEERSTAND	10k								
R 5		METAALFILM WEEERSTAND	560Ω								
R 6		METAALFILM WEEERSTAND	10k								
R 7		VAR. WEEERSTAND	4k64								
R 8		METAALFILM WEEERSTAND	10k								
R 9		METAALFILM WEEERSTAND	1k								
R10		METAALFILM WEEERSTAND	205k								
TS 1		TRANSISTOR									
TS 2		TRANSISTOR									

FEL

Fysisch en
Elektronisch
Laboratorium
Den Haag

auteursrecht voorbehouden onbevoegd gebruik verboden

DIENSTGEHEIM

fig 40

pag 1

aantal pag 2

wijz

Wijz
Umschr.

Par
da

Par
da

Par
da

Waiz	dd	Par		Waiz	dd	Par	
Waiz	dd	Par		Waiz	dd	Par	
Waiz	dd	Par		Waiz	dd	Par	
ref. design	description	value	power (W)	toler. (%)	voltage (V)	manufacturer	FEI-number
PL 1	TRANSISTOR PRINTCONNECTOR						
TS 3							
Normalisatie ISO /NEN formaat A4 project SNELHEIDSMEETSYSTEEM 4-01 schaal datum getek gezien geconfr							
onderdeel KAART OSM.6							
auteursrecht voorbehouden onbevoegd gebruik verboden DIENSTGEHEIM fig 41 pag 2 aantal pag 2 waiz							

FEL	Normalisatie ISO/NEN	formaat A3	project SNELHEID
schaal	datum	onderdeel	
getek			
gezien			
geconfr			
auteursrecht voorbehouden - onbevoegd gebruik verboden			

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSystEEM 4-01 onderdeel OSM.6	ex nr	
	schaal	datum			
	getek				
	gezien				
	gecont				
	auteursrecht voorbehouden - onbevoegd gebruik verboden				
			rap	fig 42	pag
				aantal pag	wijz

STAND 0-W +35.5 → +12V
AUT +12V
HOOG +23V
A
KABEL

KAART OSM 4

Fysisch en
Elektronisch
Laboratorium
Den Haag

Normalisatie ISO/NEN		formaat A3	project
schaal		datum	
getek	✓	17-06-85	onderdeel
gezien			OVER
gecontr			

auteursrecht voorbehouden - onbevoegd gebruik verboden

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01 onderdeel OVERZICHT SCHAKELAAR SIGNAALDREMPEL	ex nr	
	schaal	datum			
	getek	17-06-85			
	gezien				
	gecont				
	auteursrecht voorbehouden - onbevoegd gebruik verboden				
		rap	fig 43	pag	
				aantal pag	
				wijz	

Wuz
 Omschr
 Par
 dd
 Wuz
 Omschr
 Par
 dd
 Wuz
 Omschr

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO-NEN	formaat A3	project SNELHEID
	schaal	datum	onderdeel
getek		M0	
gezien			
gecontr			
auteursrecht voorbehouden - onbevoegd gebruik verboden			

035E060

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSystEEM 4-01 onderdeel MONDINGSVLAM OPNEMER	ex nr	TNO KE 1008/Z2-44 beh. nr
	schaal	datum			
	getek				
	gezien				
	gecontr				
	auteursrecht voorbehouden - onbevoegd gebruik verboden				
		rap	fig 64	pag	aantal pag
					wijz

ref. design		description		value	power (W)	toler. (%)	voltage (V)	manufacturer	type-number	nato-stocknumber	FEI-numb.
C 1	MONOLITISCHE CONDENSATOR	1 μ F		50							
C 2	MONOLITISCHE CONDENSATOR	0,1 μ F		100							
C 3	MONOLITISCHE CONDENSATOR	0,1 μ F		100							
C 4	MONOLITISCHE CONDENSATOR	10nF		0,1 μ F							
C 5	MONOLITISCHE CONDENSATOR	4n7		0,1 μ F							
C 6	MONOLITISCHE CONDENSATOR	0,1 μ F		100							
C 7	MONOLITISCHE CONDENSATOR	1nF		1000 μ F							
C 8	ELECTR. CONDENSATOR	10nF		40				PHILLIPS			
C 9	MONOLITISCHE CONDENSATOR	10nF		100							
C10	MONOLITISCHE CONDENSATOR	10nF		100							
D 1	FOTODIODE								APY13		
D 2	DIODE								CQU11		
D 3	ZENERDIODE								BZX79C10V		
D 4	DIODE SILICIUM								BAV21		
D 5	DIODE SILICIUM								BAV21		
D 6	DIODE SILICIUM								BYW56		
D 7	DIODE SILICIUM								BYW56		
D 8	DIODE SILICIUM										
IC 1	OPAMP							N.S.C.	LP256		
IC 2	OPAMP							N.S.C.	LP256		
IC 3	OPAMP							N.S.C.	LP256		
R 1	METAALFILM WERSTAND			100 Ω	0,33	1					
R 2	METAALFILM WERSTAND	100k	0,33	1				BEYSCHLAG			
R 3	METAALFILM WERSTAND	2k74	0,33	1				BEYSCHLAG			
R 4	METAALFILM WERSTAND	27k4	0,33	1				BEYSCHLAG			
R 5	METAALFILM WERSTAND	100k	0,33	1				BEYSCHLAG			
R 6	METAALFILM WERSTAND	1k	0,33	1				BEYSCHLAG			
R 7	METAALFILM WERSTAND	1M	0,33	1				BEYSCHLAG			
R 8	METAALFILM WERSTAND	46k4	0,33	1				BEYSCHLAG			
R 9	METAALFILM WERSTAND	10k	0,33	1				BEYSCHLAG			
R10	METAALFILM WERSTAND	27k4	0,33	1				BEYSCHLAG			
R11	METAALFILM WERSTAND	464k0	0,33	1				BEYSCHLAG			
R12	METAALFILM WERSTAND	22k6	0,33	1				BEYSCHLAG			
R13	METAALFILM WERSTAND	2M2	0,33	1				BEYSCHLAG			
R14	METAALFILM WERSTAND	3k32	0,33	1				BEYSCHLAG			
R15	METAALFILM WERSTAND	100k	0,33	1				BEYSCHLAG			
W12 C... W12 Par Par Par Par Par Par W12 C... W12 Par Par Par Par Par Par Par Par W12 Jmsci..		SNELHEIDSMEETSYSTEEM 4 - 01 onderdeel MONDINGSVLAM OPNEMER		ex nr tek nr ber bil		 KE 1008/Z2-45					
auteursrecht voorbehouden onbevoegd gebruik verboden				DIENSTGEHEIM		fig 65	pag 1	aantal pag 2	wijz		

FEL-numb.				
			nato-stocknumber	
		type-number	manufacturer	
			BEYSCHLAG ALLEN BRADLEY	MBA0204-50-46E4 RCR20G122JS 2N2907
description	value	voltage (V)	toler. (%)	power (W)
R16	46,4Ω	0,33	1	1m2
R17	1k2	0,5	5	
TS 1	TRANZISTOR NPN			
ref. design				
R16	METALFILM WEERSTAND			
R17	KOOL WEERSTAND			
TS 1	TRANZISTOR NPN			
project	ex nr			
SNELHEIDSMEETSYSTEEM 4-01				
onderdeel	tek nr			
MONDINGSVLAM OPNEMER	KE 1008/22-46			
gecont	beh bij			
Fysiech en Elektronisch Laboratorium Den Haag				
autorisatie voorbehouden - onvervoegd gebruik verboden	DIENSTGEHEIM	pag 2	aantal pag 2	wn12

DIENSTGEHEIM

FEL	Normalisatie ISO/NEN	formaat A4	project SNELHEIDSMEETSSTEEEM 4-01	ex nr	TNO		
Fysisch en Elektronisch Laboratorium Den Haag	schaal	datum	onderdeel ONTVANGER	tek nr			
	gefek	29-05-85	MONDINGSVLAM / DRUKOPNEUMER	KE 1008/Z2-47			
	gezien			beh bij			
	gecontr			aantal pag	wijz		
	auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	fig 47	pag	

FEL

Fysisch en
Elektronisch
Laboratorium
Den Haag

Normalisatie
ISO/NEN

formaat
A3

project
SNELHEIDSMI

onderdeel **ONTVAN**
MONDINGSVLAM

schaal	datum
getek	
gezien	
gecontroleerd	

auteursrecht voorbehouden - onbevoegd gebruik verboden

906 E 006

DIENSTGEHEIM

FEL Physisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSYSTEEM 4-01 onderdeel ONTVANGER MONDINGSVLAMOPNEMER / AC.DRUKOPNEMER AD.2	ex. nr.	TNO tek. nr. KE 1008/Z2-48
	schaal	datum			
	gelekt				
	gezien				
	gecontr				
	auteursrecht voorbehouden onbevoegd gebruik verboden			rap	

FEL	Normalisatie 'ISO-NEN'	formaat A3	project! SNELHE
	schaal	datum	onderdeel
getek			
gezen			
gecontr			
auteursrecht voorbehouden - onbevoegd gebruik verboden			

906 E 007

DIENSTGEHEIM

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A3	project SNELHEIDSMEETSystEEM 4-01 onderdeel ACOUSTISCHE DRUKOPNEMER AD.2	ex nr	
	schaal	datum			
	getek				
	gezien				
	gecontr				
	auteursrecht voorbehouden onbevoegd gebruik verboden			rap	
			aantal pag	wiz	

ref. design		description		value	power (W)	voltage (V)	toler. (%)	manufacturer	type-number	nato-stocknumber	FEL-numb.
C 1	CONDENSATOR	C 2	CONDENSATOR	0,1µF		100					
C 3	CONDENSATOR	C 4	CONDENSATOR	0,1µF		100					
C 5	CONDENSATOR	C 6	CONDENSATOR	1µF		100					
C 7	CONDENSATOR	D 1	ZENERDIODE	47nF		100					
		D 2	ZENERDIODE	47nF		35					
		D 3	DIODE	10nF		100					
		D 4	ZENERDIODE	8V2				BAV21			
		D 5	DIODE	4V7				BAV21			
		D 6	DIODE	18V				BAV21			
		IC 1	OPAMP					IP256			
		IC 2	OPAMP					LM211			
		R 1	WERSTAND	10k 0,33				MBA0204-50-10k			
		R 2	WERSTAND	2M2				MBA0204-50-2M2			
		R 3	WERSTAND	100k				MBA0204-50-100k			
		R 4	WERSTAND	5k6				MBA0204-50-5k6			
		R 5	WERSTAND	10M				MBA0204-50-10M			
		R 6	WERSTAND	562k				MBA0204-50-562k			
		R 7	WERSTAND	22k				MBA0204-50-22k			
		R 8	WERSTAND	48k7				MBA0204-50-48k7			
		R 9	WERSTAND	21k5				MBA0204-50-21k5			
		R10	WERSTAND	4,7Ω				MBA0204-50-47			
		R11	WERSTAND	2k2				MBA0204-50-2k2			
		R12	WERSTAND	2k7				MBA0204-50-2k7			
		R13	WERSTAND	3k3				MBA0204-50-3k3			
		T 1	TRANSISTOR					2N2907			
		T 2	TRANSISTOR					2N2907			
		X-TAL	DRUKOPNEMER								
FEL		Normalisatie ISO/NEN		formaat A4	project	SNELHEIDSMEETSYSTEEM 4 - 01					
Fysisch en Elektronisch Laboratorium Den Haag		schaal		datum		ACOUSTISCHE DRUKOPNEMER AD. 2					
auteursrecht voorbehouden - onbevoegd gebruik verboden		getek				ex nr					
		gezien				tek nr					
		geconfr				KE 1008/Z2-51					
						beh bij					
						aantal pag /					
						wijz					

FEL Fysisch en Elektronisch Laboratorium Den Haag	Normalisatie ISO/NEN	formaat A4	project SNELHEIDSMEETSYSTEEM 4-01 onderdeel Aanpassing SCOPE-DETECTOR	ex nr	
	schaal	datum			
	getek				
	gezien				
	geconfr				
	auteursrecht voorbehouden - onbevoegd gebruik verboden			rap	
				aantal pag	wijz

Distributielijst

1. Hoofddirecteur van de Hoofdgroep Defensieonderzoek TNO
2. Directeur Wetenschappelijk Onderzoek en Ontwikkeling
3. HWO-KL
- 4+5. HWO-KLu
6. HWO-KM
- 7 t/m 8. DMKL/Hoofd MBA-1
- 9 t/m 12. DMKL/MVA-2/ST/BIR
- 13 t/m 15. Hoofd TDCK
16. Directie FEL-TNO, daarna reserve
17. Archief FEL-TNO, in bruikleen aan Ir. G.H. Heebels
18. Archief FEL-TNO, in bruikleen aan Ir. A.C. Tuinenburg
19. Archief FEL-TNO, in bruikleen aan Ir. A.W.M. van der Voort
20. Archief FEL-TNO, in bruikleen aan Hr. J. van der Haven
21. Archief FEL-TNO, in bruikleen aan Hr. A.J. van der Lugt
22. Archief FEL-TNO, in bruikleen aan Hr. H.C.A. Romijn
23. Documentatie FEL-TNO

Indien binnen de krijgsmacht extra exemplaren van dit rapport worden gewenst door personen of instanties die niet op de verzendlijst voorkomen, dan dienen deze aangevraagd te worden bij het betreffende Hoofd Wetenschappelijk Onderzoek of, indien het een K-opdracht betreft, bij de Directeur Wetenschappelijk Onderzoek en Ontwikkeling.