

José Antonio Pozo Núñez Técnicas Inteligentes en Bioinformática Máster Universitario en Lógica, Computación e Inteligencia Artificial

- Enmarcado dentro del proyecto El Atlas del Genoma del Cáncer.
- Pretende analizar miles de genomas de pacientes de todo el mundo con diferentes tipos de tumores, con el fin de identificar diferencias y similitudes a nivel genético e identificar terapias más efectivas.

Expresión Génica

- Dogma central de la biología molecular.
- Proceso por el cual las instrucciones genéticas son utilizadas para sintetizar productos del gen.
- Es posible medirlo.

Clustering

 Utilizaremos técnicas Clustering, con R y Weka, para obtener agrupaciones y analizar sus diferencias y similitudes.

Dataset (1)

- 801 Ejemplos (Distintos pacientes con cáncer).
- 20531 Atributos genéticos (Mediciones de las expresión génica de distintos genes).
- 1 Atributo con la clase de tumor (Usado para validar el modelo):
 - BRCA: Cáncer de mama.
 - COAD: Cáncer de colon.
 - KIRC: Cáncer de células renales.
 - LUAD: Cáncer de pulmón.
 - PRAD: Cáncer de próstata.

Dataset (2)

Preprocesado

Comprobación de valores vacíos

```
> #Comprobamos que no haya valores vacíos, si es así, los informamos con la media de la columna
> genes.cancer.dataset.omit <- na.omit(genes.cancer.dataset)
> porcentaje.valores.vacios <- (1-(nrow(genes.cancer.dataset.omit)/nrow(genes.cancer.dataset)))
> print(paste("Porcentaje de valores vacíos:",porcentaje.valores.vacios))
[1] "Porcentaje de valores vacíos: 0"
```

Eliminamos los atributos cuyos valores sean todos cero

```
> #Eliminamos los Genes (atributos) que tengan todos sus valores a cero
> genes.valores.cero <- obtener_genes_a_cero(genes.cancer.dataset)
> genes.cancer.dataset <- eliminar_atributos(genes.cancer.dataset,genes.valores.cero)
> print(paste("Numero de atributos después de la eliminación:",length(genes.cancer.dataset)))
[1] "Numero de atributos después de la eliminación: 20264"
```

Normalización

Eliminación de outliers

```
> mvOutlier(genes.cancer.dataset)
Error in covMcd(data, alpha = alpha) : n <= p -- you can't be serious!</pre>
```

Construcción del modelo y análisis (1)

- Algoritmo Jerárquico (distintas configuraciones)
- > #Calculamos la matriz de distancia, utilizando la distancia euclidea
- > genes.cancer.dist<-dist(genes.cancer.dataset,method = "euclidean")
- > #Construimos el modelo de clustering jerárquico, con distancia completa
- > genes.cancer.modelo.hclust<-hclust(genes.cancer.dist,method = "complete")
- > #Pintamos el árbol jerárquico
- > plot(genes.cancer.modelo.hclust, hang = -1, cex = 0.6)
- > #Dividimos el árbol en 5 clústers, como el número de clases
- > rect.hclust(genes.cancer.modelo.hclust, k = 5, border = "red")

Cluster Dendrogram

Construcción del modelo y análisis (2)

> barplot(table(genes.cancer.dataset.groups\$Class, genes.cancer.dataset.groups\$groups)
,col = c("red","green","blue","yellow","black"))

[1] "Porcentaje de elementos bien agrupados con la distancias Euclidea y Completa: 0.931335830212235"

Construcción del modelo y análisis (3)

Distancia Euclídea y enlace War.D

[1] "Porcentaje de elementos bien agrupados con la distancias Euclidea y Ward.D: 0.995006242197253"

Construcción del modelo y análisis (4)

Distancia Manhattan y enlace Completo

[1] "Porcentaje de elementos bien agrupados con la distancias Manhattan y Completa: 0.722846441947566"

Construcción del modelo y análisis (5)

Algoritmo K-Medias

- > #Construimos el modelo kmeans
- > genes.cancer.modelo.kmeans <- kmeans(genes.cancer.dataset,5)</pre>
- > table(genes.cancer.modelo.kmeans\$cluster, as.vector(t(genes.cancer.dataset.class)))

	BRCA	COAD	KIRC	LUAD	PRAD
1	0	75	0	0	0
2	48	3	1	141	0
3	0	0	0	0	136
4	0	0	145	0	0
5	252	0	0	0	0

^{[1] &}quot;Porcentaje de elementos bien agrupados con k-medias: 0.935081148564295"

Construcción del modelo y análisis (6)

Centroides (Genes más dispares)

Construcción del modelo y análisis (6)

Centroides (Genes más similares)

Construcción del modelo y análisis (7)

Weka (K-Medias)

```
Cluster 0 <-- LUAD 0 1 2 3 4 <-- assigned to cluster Cluster 1 <-- KIRC 141 0 0 0 0 | PRAD Cluster 2 <-- PRAD 41 0 0 0 259 | BRCA Cluster 3 <-- COAD 1 145 0 0 0 | KIRC Cluster 4 <-- BRCA 4 0 0 74 0 | COAD Incorrectly clustered instances : 46.0 5.7428 %
```

Classes to Clusters:

Conclusiones

- Se hace evidente que existen diferencias y similitudes a nivel génico entre los distintos tipos de tumores.
- Los tumores BRCA, LUAD y COAD parecen más similares, sin embargo, KIRC y PRAD, parecen diferenciarse de los demás.
- Información valiosa para los expertos en el dominio del problema.
- A nivel personal:
 - Complejidad a la hora de tratar con un dataset tan grande.
 - Difícil visualización.
 - Curva de aprendizaje de R.

GRACIAS!

ANÁLISIS DE EXPRESIONES DE GENES DE TUMORES CANCERÍGENOS MEDIANTE TÉNCIAS DE CLUSTERING

José Antonio Pozo Núñez Técnicas Inteligentes en Bioinformática Máster Universitario en Lógica, Computación e Inteligencia Artificial