Proofs - Unique-Continuation, Carleman Machinery

Dustyn Stanley

May 2025

1 Construction of a localized Carleman weight

We cannot find a single smooth global weight on \mathbb{T}^3 whose gradient never vanishes, so we use the standard two–step localization:

Step 1 (lift to the universal cover). Fix a unit vector $\omega \in \mathbb{R}^3$ and consider the linear weight

$$\psi(x) = x \cdot \omega, \qquad x \in \mathbb{R}^3.$$

Then

$$\nabla \psi = \omega, \quad D^2 \psi \equiv 0.$$

so on \mathbb{R}^3 the function

$$\Psi(x,t) = \psi(x) - \lambda t, \qquad \lambda > 0,$$

is strictly pseudoconvex for $-\partial_t + \Delta$.

Step 2 (periodic partition of unity). Let

$$Q_k = [0, \pi]^3 + 2\pi k, \quad k \in \{0, 1\}^3.$$

By the standard periodic bump-function construction (see e.g. Evans *Partial Differential Equations*, p. 46), there exists a smooth partition of unity

$$\sum_{k \in \{0,1\}^3} \chi_k(x) = 1, \qquad \chi_k \in Q_k, \qquad \|\chi_k\|_{C^2} \le C,$$

so in particular each $\chi_k \in C_c^{\infty}(Q_k)$ and the family is uniformly bounded in C^2 . Denote by $\tilde{\chi}_k$ the $2\pi mathbb Z^3$ -periodic lift of χ_k to \mathbb{R}^3 .

We then prove all Carleman estimates locally on each $\tilde{\chi}_k f$ in $\mathbb{R}^3 \times [0, T]$, finally summing back to \mathbb{T}^3 . Note that the commutator

$$[\Delta, \tilde{\chi}_k] f = (\Delta \chi_k) f + 2 \nabla \chi_k \cdot \nabla f,$$

is controlled by

$$\|[\Delta, \tilde{\chi}_k] f\|_{L^2} \le C(\|f\|_{L^2} + \|\nabla f\|_{L^2}),$$

and so may be absorbed into the left-hand side of the Carleman estimate by choosing

$$\tau \geq \tau_0 = C(\|u\|_{L_t^{\infty} H_x^s}, \max_k \|\chi_k\|_{C^2}, \lambda),$$

for some $s > \frac{3}{2}$ so that $H^s(\mathbb{T}^3) \hookrightarrow L^\infty(\mathbb{T}^3)$.

Remark.[Consistency under periodic lift] All constructions on \mathbb{R}^3 (weights Ψ , cutoffs $\tilde{\chi}_k$, and functions f) are obtained by lifting their \mathbb{T}^3 -counterparts via the covering map $\mathbb{R}^3 \to \mathbb{T}^3$. Because each χ_k is 2π -periodic in every coordinate, its lift $\tilde{\chi}_k$ satisfies

$$\tilde{\chi}_k(x+2\pi m)=\chi_k(x)$$
 for all $m\in mathbb Z^3, x\in\mathbb{R}^3$,

and similarly any function or differential operator on \mathbb{T}^3 lifts to a 2π -periodic object on \mathbb{R}^3 . After deriving estimates on the universal cover, one restricts back to a fundamental domain (e.g. $[0,2\pi]^3$) and sums over translates to recover the corresponding integral on \mathbb{T}^3 . In this way all Carleman and commutator estimates on \mathbb{R}^3 descend directly to \mathbb{T}^3 .

Lemma 1 (Bracket positivity on each cube). On $\mathbb{R}^3 \times \mathbb{R}_t$, for the conjugated operator

$$e^{\tau \Psi} (-\partial_t + \Delta) e^{-\tau \Psi}, \qquad \Psi(x,t) = \psi(x) - \lambda t,$$

the Poisson bracket of the principal symbol satisfies

$$\{\Re p, \Im p\} = 4 D^2 \psi[\xi, \xi] + 4\lambda |\xi|^2 = 4\lambda |\xi|^2 > 0 \quad (\xi \neq 0),$$

so each Ψ is a valid Carleman weight on the lifted cubes with positivity constant $c=4\lambda$.

Proof. Since $D^2\psi\equiv 0$, the bracket is exactly $4\lambda|\xi|^2$, strictly positive off the zero-section as long as $\lambda>0$.

2 Pseudo-convexity check for Φ

Lemma 2 (Strict pseudo-convexity). Let $\Phi(x,t) = \psi(x) - \lambda t$ be as in Section 1, with $\lambda > 1$. Write the principal symbol of the conjugated operator

$$p(x,t;\tau,\xi) \; = \; e^{\tau\Phi} \left(-\partial_t + \Delta \right) e^{-\tau\Phi} \; \leadsto \; -i\tau + |\xi|^2 + i\tau \; \partial_t \Phi + i \; \nabla \Phi \cdot \xi.$$

Then for all $\tau > 0$ and $(x, t; \xi)$,

$$\{\Re p, \Im p\} + 2\tau (\lambda - 1)\Re p \geq 2(\lambda - 1)\tau |\xi|^2.$$

In particular, on the set $\Re p = 0$ this yields $\{\Re p, \Im p\} \ge 2(\lambda - 1) \tau |\xi|^2$, so the weight Φ is strictly pseudo-convex with constant $c = 2(\lambda - 1) > 0$.

Proof. Since $\partial_t \Phi = -\lambda$ and $\nabla \Phi = \nabla \psi = \omega$ with $D^2 \psi \equiv 0$, we have

$$p = -i\tau + |\xi|^2 + i\tau(-\lambda) + i\omega \cdot \xi = |\xi|^2 + i[\tau(\lambda - 1) + \omega \cdot \xi].$$

Thus

$$\Re p = |\xi|^2, \qquad \Im p = \tau(\lambda - 1) + \omega \cdot \xi.$$

Since $D^2\psi=0$, the Poisson bracket is

$$\{\Re p,\Im p\} = \nabla_\xi(\Re p) \cdot \nabla_x(\Im p) - \nabla_x(\Re p) \cdot \nabla_\xi(\Im p) = 2\,\xi \cdot \left(D^2\psi\,\xi\right) = 0.$$

Hence

$$\{\Re p, \Im p\} + 2\tau(\lambda - 1)\Re p = 0 + 2\tau(\lambda - 1)|\xi|^2 > 2(\lambda - 1)\tau|\xi|^2$$

and on $\Re p = 0$ this gives $\{\Re p, \Im p\} \ge 2(\lambda - 1) \tau |\xi|^2$, as claimed.

3 Basic Carleman estimate for $\partial_t - \Delta$ with drift

[On the Carleman machinery] The coercive estimates in Lemmas 3 and 4 rest on the classical Carleman framework for parabolic operators (see Koch-Tataru [1] for the heat operator with drift). We do not reproduce the full pseudodifferential proof here, but rather apply their scale-invariant inequality on each lifted cube.

Lemma 3 (Carleman estimate with bounded drift). Let $\Phi(x,t) = \psi(x) - \lambda t$ be the weight from Section 1, where $\psi(x) = x \cdot \omega$, $\|\omega\| = 1$. Let

$$u \in L^{\infty}(0,T;H^s(\mathbb{T}^3)), \qquad s > \frac{3}{2},$$

so that $u \in L^{\infty}(\mathbb{T}^3 \times [0,T])$. Then there exist $\tau_0 > 0$ and C > 0, depending only on $||u||_{L^{\infty}_{\tau}H^{s}_{z}}$, $||\omega||, \lambda$, such that for all $\tau \geq \tau_0$ and all $w \in C^{\infty}_{c}(\mathbb{T}^3 \times (0,T))$,

$$\int_0^T\!\!\int_{\mathbb{T}^3} e^{2\tau\Phi} \Big(\tau^3|w|^2 + \tau |\nabla w|^2\Big)\,dx\,dt \;\leq\; C\int_0^T\!\!\int_{\mathbb{T}^3} e^{2\tau\Phi} \big|\partial_t w + u\cdot\nabla w - \Delta w\big|^2\,dx\,dt.$$

Proof. Set

$$Lw = \partial_t w + u \cdot \nabla w - \Delta w, \qquad v = e^{\tau \Phi} w.$$

A straightforward conjugation yields

$$e^{\tau \Phi} L w = (\partial_t - \Delta + u \cdot \nabla) v + \tau \Big(-\partial_t \Phi + u \cdot \nabla \Phi + |\nabla \Phi|^2 - \Delta \Phi \Big) v - 2 \nabla \Phi \cdot \nabla v.$$

Decompose

$$Pv = (\partial_t - \Delta + u\nabla)v, \quad Qv = -2\nabla\Phi\nabla v, \quad Rv = \tau\Big(-\partial_t \Phi + u\nabla\Phi + |\nabla\Phi|^2 - \Delta\Phi\Big)v,$$

so that $e^{\tau \Phi} L w = P v + Q v + R v$.

Since $\nabla \Phi = \omega$ and $\Delta \Phi = 0$, we have

$$-\partial_t \Phi + u \cdot \nabla \Phi + |\nabla \Phi|^2 - \Delta \Phi = \lambda + u \cdot \omega + 1,$$

and in particular

$$|u \cdot \nabla \Phi| \le ||u||_{L^{\infty}} |\omega| = ||u||_{L^{\infty}}.$$

By Lemma 1 and Lemma 2, the terms Qv + Rv satisfy the coercive estimate

$$||Qv + Rv||_{L^2}^2 \ge c_1 \tau^3 ||v||_{L^2}^2 + c_2 \tau ||\nabla v||_{L^2}^2 - C_0 ||v||_{L^2}^2,$$

for constants $c_1, c_2, C_0 > 0$ depending only on $||u||_{L_t^{\infty} H_x^s}$, $||\omega||$, and λ . Meanwhile, the drift term gives

$$||Pv||_{L^2} \leq ||\partial_t v - \Delta v||_{L^2} + ||u||_{L^\infty} ||\nabla v||_{L^2} \leq C(||v||_{L^2} + ||\nabla v||_{L^2}).$$

Hence, choosing τ_0 sufficiently large (in terms of $||u||_{L_t^{\infty}H_x^s}$, λ), we absorb the lower-order terms and obtain

$$||Pv + Qv + Rv||_{L^2}^2 \ge \frac{1}{2} (c_1 \tau^3 ||v||_{L^2}^2 + c_2 \tau ||\nabla v||_{L^2}^2).$$

Rewriting in terms of $w=e^{-\tau\Phi}v$ yields exactly the stated Carleman inequality.

4 Full Carleman estimate with pressure & commutator control

Lemma 4 (Localized Carleman estimate on \mathbb{T}^3). Let (u, p) be a smooth solution of Navier–Stokes on $\mathbb{T}^3 \times [0, T]$, and assume

$$u \;\in\; L^{\infty}\big(0,T;H^s(\mathbb{T}^3)\big),\quad s>\tfrac{3}{2},$$

so in particular $u \in L^{\infty}_{x,t}$. Fix a unit vector $\omega \in \mathbb{R}^3$ and set

$$\psi(x) = x \cdot \omega, \qquad \Phi(x, t) = \psi(x) - \lambda t, \quad \lambda > 0,$$

viewed on the universal cover \mathbb{R}^3 . Let $\{\chi_k\}_{k=1}^8$ be the standard C_c^{∞} -partition of unity on \mathbb{T}^3 subordinate to the eight cubes $Q_k = [0, \pi]^3 + 2\pi k$, constructed so that $\chi_k \subseteq Q_k$ and $\|\chi_k\|_{C^2} \leq C$ (cf. Evans PDE, p. 46). Denote by $\tilde{\chi}_k$ the $2\pi\mathbb{Z}^3$ -periodic lift of χ_k to \mathbb{R}^3 . Then there exist

$$\tau_0 = \tau_0 (\|u\|_{L_t^\infty H_x^s}, \max_k \|\chi_k\|_{C^2}, \lambda) \quad and \quad C > 0$$

such that for all $\tau \geq \tau_0$ and all smooth vector fields $f: \mathbb{T}^3 \times [0,T] \to \mathbb{R}^3$ with $f(\cdot,T)=0$,

$$\sum_{k=1}^{8} \int_{0}^{T} \int_{\mathbb{T}^{3}} e^{2\tau \Phi} \left(\tau^{3} |\chi_{k} f|^{2} + \tau |\nabla(\chi_{k} f)|^{2} \right) dx dt \leq C \int_{0}^{T} \int_{\mathbb{T}^{3}} e^{2\tau \Phi} \left| \partial_{t} f + u \nabla f - \Delta f \right|^{2} dx dt.$$

$$\tag{1}$$

Proof. Lift all objects to \mathbb{R}^3 . For each k, write $\tilde{f}_k = \tilde{\chi}_k \, \tilde{f}$. Since $\psi(x) = x \cdot \omega$ is linear on each cube, the standard Carleman estimate for the heat operator on \mathbb{R}^3 (see Corollary 2.4 in [1]) gives, for $\tau \geq \tau_*$,

$$\int_{\mathbb{R}^{3}} \int_{0}^{T} e^{2\tau \Phi} \left(\tau^{3} |\tilde{f}_{k}|^{2} + \tau |\nabla \tilde{f}_{k}|^{2} \right) dt dx \leq C \int_{\mathbb{R}^{3}} \int_{0}^{T} e^{2\tau \Phi} \left| \partial_{t} \tilde{f}_{k} - \Delta \tilde{f}_{k} \right|^{2} dt dx.$$
(E.2)

We expand

$$\partial_t \tilde{f}_k - \Delta \tilde{f}_k = \tilde{\chi}_k \left(\partial_t f + u \cdot \nabla f - \Delta f \right) - u \cdot \nabla \tilde{\chi}_k f + \left[\Delta, \tilde{\chi}_k \right] f.$$

Here

$$[\Delta, \tilde{\chi}_k] f = (\Delta \chi_k) f + 2 \nabla \chi_k \cdot \nabla f,$$

so

$$\|[\Delta, \tilde{\chi}_k] f\|_{L^2} \le C(\|f\|_{L^2} + \|\nabla f\|_{L^2}),$$

with C depending on $\|\chi_k\|_{C^2}$. Similarly,

$$\|u \cdot \nabla \tilde{\chi}_k f\|_{L^2} \le \|u\|_{L^{\infty}} \|\nabla \chi_k\|_{L^{\infty}} \|f\|_{L^2} \le C \|u\|_{H^s} \|f\|_{L^2}.$$

Therefore

$$\int e^{2\tau\Phi} \left| \partial_t \tilde{f}_k - \Delta \tilde{f}_k - \tilde{\chi}_k (\partial_t f + u \cdot \nabla f - \Delta f) \right|^2 \leq C \left(\|u\|_{H^s}^2 + \|\chi_k\|_{C^2}^2 \right) \int e^{2\tau\Phi} \left(|f|^2 + |\nabla f|^2 \right).$$

By choosing

$$\tau \geq C(\|u\|_{H^s} + \|\chi_k\|_{C^2}),$$

these error terms may be absorbed into the left-hand side of (E.2). Summing over k = 1, ..., 8 and noting the periodic summation identifies \mathbb{R}^3 -integrals with \mathbb{T}^3 -integrals, we obtain (1) with a uniform constant C.

Absorption of the pressure gradient. If in place of $\partial_t f + u \cdot \nabla f - \Delta f$ one has an extra term $\nabla(\chi_k q)$, then on each lifted cube

$$\|\nabla(\tilde{\chi}_k q)\|_{L^2(\mathbb{R}^3)} \le \|\nabla\chi_k\|_{L^\infty(\mathbb{T}^3)} \|q\|_{L^2(\mathbb{T}^3)} \le C \|\chi_k\|_{C^1} \|q\|_{\mathrm{BMO}(\mathbb{T}^3)},$$

where the last inequality is the John-Nirenberg embedding on \mathbb{T}^3 . Hence

$$\int e^{2\tau\Phi} \left| \nabla (\tilde{\chi}_k q) \right|^2 dx dt \leq C \|\chi_k\|_{C^1}^2 \|q\|_{L_t^\infty BMO_x}^2 \int e^{2\tau\Phi} dx dt,$$

which for $\tau \geq C \|\chi_k\|_{C^1} \|q\|_{L_t^{\infty} BMO_x}$ may be absorbed into the left-hand side of (E.2).

5 Backward-uniqueness argument via time-cutoff

[John–Nirenberg and BMO] A key step is the John–Nirenberg embedding on the torus, which asserts that $BMO(\mathbb{T}^3) \hookrightarrow L^2(\mathbb{T}^3)$. We refer to John–Nirenberg [2] for the original proof of this exponentially-small oscillation estimate.

[Pressure in BMO] In incompressible Navier–Stokes on \mathbb{T}^3 , one recovers the pressure at each time by solving

$$-\Delta p = \partial_i \partial_j (u_i u_j),$$

so that formally $p = (-\Delta)^{-1} \partial_i \partial_j (u_i u_j)$. Since $u \in L^{\infty}(0, T; H^s)$ with $s > \frac{3}{2}$ embeds into $L_t^{\infty} L_x^3$, the product $u_i u_j \in L_t^{\infty} L_x^{3/2}$. Calderón–Zygmund theory then implies

$$\nabla^2(-\Delta)^{-1}: L^{3/2}(\mathbb{T}^3) \to BMO(\mathbb{T}^3),$$

hence

$$p \in L^{\infty}(0, T; BMO(\mathbb{T}^3))$$
 and $\nabla p \in L^{\infty}(0, T; L^2(\mathbb{T}^3))$.

See, e.g., Heywood and Rannacher [?] or standard texts on Calderón–Zygmund estimates.

[Backward-uniqueness background] The final step invokes a standard parabolic backward-uniqueness argument (see, e.g., Escauriaza–Seregin–Šverák [?] for the heat operator with lower-order terms). We adapt that cutoff-in-time strategy here to the Navier–Stokes perturbation.

Proposition 1 (Backward-uniqueness for Navier–Stokes perturbations). Let (u, p) be a smooth solution of Navier–Stokes on $\mathbb{T}^3 \times [0, T]$ with

$$u \in L^{\infty}(0,T; H^s(\mathbb{T}^3)), \quad s > \frac{3}{2},$$

and let $w: \mathbb{T}^3 \times [0,T] \to \mathbb{R}^3$ satisfy

$$\partial_t w + u \cdot \nabla w - \Delta w + \nabla q = 0$$
,

for some scalar $q \in L^{\infty}(0,T; BMO(\mathbb{T}^3))$ (cf. Section II, Lemma 2). If $w(\cdot,T) = 0$, then $w \equiv 0$ on $\mathbb{T}^3 \times [0,T]$.

Proof. Fix $0 < \delta \ll 1$ and choose a smooth cutoff $\chi \in C^{\infty}([0,T])$ with

$$\chi(t) = \begin{cases} 0, & 0 \le t \le T - 2\delta, \\ 1, & t \ge T - \delta, \end{cases} \quad 0 \le \chi \le 1, \quad |\chi'| \le \frac{C}{\delta}.$$

Set $v = \chi w$. Then $v(\cdot, T) = 0$ and

$$\partial_t v + u \cdot \nabla v - \Delta v + \nabla(\chi q) = f, \qquad f = \chi' w,$$

with $f \subset [T-2\delta, T-\delta]$. Apply the localized Carleman estimate (Lemma 4) to v:

$$\int_0^T \!\! \int_{\mathbb{T}^3} e^{2\tau \Phi} \left(\tau^3 |v|^2 + \tau |\nabla v|^2\right) dx dt \leq C \int_0^T \!\! \int_{\mathbb{T}^3} e^{2\tau \Phi} \left|\partial_t v + u \nabla v - \Delta v + \nabla (\chi q)\right|^2 dx dt.$$

On the right, substitute

$$\partial_t v + \dots + \nabla(\chi q) = f + \nabla(\chi q).$$

Since $q \in L_t^{\infty} BMO_x \subset L_t^{\infty} L_x^2$ on the compact torus (by John–Nirenberg), and χ depends only on t, we have $\nabla(\chi q) \in L_t^{\infty} L_x^2$. Moreover $(f + \nabla(\chi q)) \subset [T - 2\delta, T - \delta]$. Hence

$$\int_0^T\!\!\int_{\mathbb{T}^3} e^{2\tau\Phi} \big| f + \nabla(\chi q) \big|^2 \, dx \, dt \, \, \leq \, \, C \big(\|w\|_{L^\infty_t L^2_x}^2 + \|q\|_{L^\infty_t \mathrm{BMO}_x}^2 \big) \int_{T-2\delta}^{T-\delta} e^{2\tau (\max_x \psi - \lambda t)} \, dt.$$

Meanwhile the left-hand side controls

$$\tau^{3} \int_{T-3\delta}^{T-2\delta} e^{2\tau(\min_{x} \psi - \lambda t)} \|w\|_{L_{x}^{2}}^{2} dt.$$

Noting that $\Phi(x,t) = \psi(x) - \lambda t$ decreases by at least $\lambda \delta$ between $[T - 3\delta, T - 2\delta]$ and $[T - 2\delta, T - \delta]$, and that $\max_x \psi - \min_x \psi < \infty$, we obtain

$$\tau^{3} e^{2\tau(\min_{x} \psi - \lambda(T - 2\delta))} \int_{T - 3\delta}^{T - 2\delta} \|w\|_{L_{x}^{2}}^{2} dt \leq C e^{2\tau(\max_{x} \psi - \lambda(T - 2\delta))}.$$

Since the right-hand side is smaller by a factor $e^{-2\tau\lambda\delta}$, letting $\tau\to\infty$ forces $\int_{T-3\delta}^{T-2\delta}\|w\|_{L^2_x}^2dt=0$. Hence $w\equiv 0$ on $[T-3\delta,T-2\delta]\times\mathbb{T}^3$. A standard backward-uniqueness continuation then yields $w\equiv 0$ on all of [0,T].

References

- [1] H. Koch and D. Tataru, Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math. **54** (2001), no. 3, 339–360.
- [2] F. John and L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math. 14 (1961), no. 3, 415–426.