第四章数据流挖掘(下)

主讲: 陈爱国

大数据分析与挖掘

Today's Lecture

- More algorithms for streams:
 - 4.3 Filtering a data stream: Bloom filters
 - Select elements with property x from stream
 - 4.4 Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last k elements of the stream
 - 4.5 Estimating moments: AMS method
 - Estimate std. dev. of last k elements
 - 4.7 Counting frequent items

4.3 流过滤

Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

Example: Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam

Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution (1)

Given a set of keys S that we want to filter

- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

First Cut Solution (3)

- |S| = 1 billion email addresses|B| = 1GB = 8 billion bits
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (false positives)
 - Actually, less than 1/8th, because more than one address might hash to the same bit

<u>Analysis:</u> Throwing Darts (1)

- 现在,我们来更精准的分析假阳性问题
- 想象一个投飞镖游戏,如果m个飞镖,n个概率相等的目标,一个目标被射中至少一个飞镖的概率是多少呢?
- 在上面的例子中:
 - 目标 = bits/buckets
 - 飞镖 = hash values of items

<u>Analysis:</u> Throwing Darts (2)

- ■m个飞镖,n个目标
- ■1个目标至少被1个飞镖命中的概率:

Analysis: Throwing Darts (3)

- Fraction of 1s in the array B =
 probability of false positive = 1 e^{-m/n}
- Example: 10⁹ darts, 8·10⁹ targets
 - Fraction of 1s in $B = 1 e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: 1/8 = 0.125

Bloom Filter

- Consider: |S| = m, |B| = n
- Use k independent hash functions $h_1, ..., h_k$
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k) (note: we have a single array B!)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function h;(x)
 - Otherwise discard the element x

Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = (1 − e^{-km/n})^k

Bloom Filter – Analysis (2)

- = m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - k = 2: $(1 e^{-1/4})^2 = 0.0493$

What happens as we keep increasing k?

- "Optimal" value of k: n/m In(2)
 - In our case: Optimal k = 8 In(2) = 5.54 ≈ 6
 - Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: 总结

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler

4.4 流中独立元素的数目统计

(2) Counting Distinct Elements

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far
- Obvious approach:

Maintain the set of elements seen so far

 That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error,
 but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least log, N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - r(a) = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $\mathbf{R} = \mathbf{max}_{\mathbf{a}} \mathbf{r(a)}$, over all the items \mathbf{a} seen so far
- Estimated number of distinct elements = 2^R

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - 假设hash函数是纯随机的,等概率将a映射到N的值
 - 因此 h(a)就是编码为log2 N bits的序列
 - 末尾r个0的a占 2-r
 - 末尾1个0的a占 50% ***0
 - 末尾2个0的a占 25% **00
 - 所以,看到末尾最长0的个数 *r=2* (*100) ,可以估计大概有 4 个独立的元素②
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if m >> 2^r如果m远大于2^r则,发现r个 零的概率约接近1
 - Goes to 0 if $m \ll 2^r$ 如果m远小于 2^r 则,发现r个零的概率约接近0

其中,m是流中独立元素的数量

Thus, 2^R will almost always be around m!

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros is 2^{-r}
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2-r
- Then, the probability of NOT seeing a tail of length r among m elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of NOT finding a tail of length r is:
 - If $m \ll 2^r$, then prob. tends to 1
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
 - If *m* >> 2^r, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1
- Thus, 2^R will almost always be around m!

Why It Doesn't Work

- E[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i} ?
 - Median? All estimates are a power of 2
 - Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

4.5 矩估计

Estimating Moments

矩 (moment) 是对变量分布和形态特点的一组度量, 将流中独立元素的计数问题推广到更一般的情况

Generalization: Moments

 Suppose a stream has elements chosen from a set A of N values

全集A,有N个不同的值元素。现实中,即使全集中元素不是数值型,我们也可以将元素排序,并用整数i来标记每个元素

- Let m_i be the number of times value i occurs in the stream (m_i是元素i出现的次数)
- The kth moment (K 阶矩) is

$$\sum_{i \in A} (m_i)^k$$

Special Cases

$$\sum_{i \in A} (m_i)^k$$

- Othmoment = number of distinct elements
 - The problem just considered 独立元素的数量
- 1st moment = count of the numbers of elements = length of the stream 所有元素数量,等价于流的总长度
 - Easy to compute
- 2nd moment = surprise number S =
 a measure of how uneven the distribution is
 奇异数,可以用于刻画流中元素的分布不均匀性

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise S = 8,110

每个独立元素,出现次数越均匀,奇异数越 小,越不均匀,奇异数越大

AMS Method

- AMS method works for all moments
- Gives an unbiased estimate (无偏估计)
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory,
 so number of Xs is limited 不用记录流中每个元素
- Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

- How to set X.val and X.el?
 - Assume stream has length n (实际n不断增长,后面介绍处理方法)
 - Pick some random time *t* (*t<n*) to start, so that any time is equally likely (选择了一组t)
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t

将每个t时刻的元素记为X.el,并从t到n,对X.el的 X.val进行计数

One Random Variable (X)

• Then the estimate of the 2^{nd} moment ($\sum_i m_i^2$) is:

$$S = f(X) = n(2 \cdot c - 1)$$

- Where, c = X.val
- Note, we will keep track of multiple Xs, (X₁,

 $X_2,...X_k$), and our final estimate will be

$$S = 1/k \sum_{j=1}^{k} f(X_j)$$
 最终估值

K个变量的计数,是内存可以计算的,不是全部独立元素

Expectation Analysis 期望

- 2nd moment is $S = \sum_i m_i^2$
- c_t ... number of times item at time t appears from time **t** onwards $(c_1=m_a, c_2=m_a+1, c_3=m_b)$
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1)$ $= \frac{1}{n} \sum_{i} n \left(1 + 3 + 5 + \dots + 2m_i - 1 \right)$

Group times by the value seen

Time t when the last *i* is seen (*c*,=1)

Time **t** when the penultimate i is seen (c_t =2)

Time **t** when the first *i* is seen ($c_t = m_i$)

 m_i ... total count of item *i* in the stream

(we are assuming stream has length **n**)

Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$
 - $\sharp \psi (1+3+5+\dots+2m_i-1) = \sum_{i=1}^{m_i} (2i-1) = \frac{m_i(1+2m_i-1)}{2} = m_i^2$
- Then $E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2$
- So, $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c-1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms **2c-1** (for **c=1,...,m**) sum to m^2

 - So: $2c 1 = c^2 (c 1)^2$
 - For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

4.7 基于衰减窗口的计数问题

Counting Itemsets

Counting Itemsets

- New Problem: Given a stream, which items appear more than s times in the window?
- Possible solution: Think of the stream of baskets as one binary stream per item
 - 1 = item present; 0 = not present
 - Use DGIM to estimate counts of 1s for all items

Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset
- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big

Exponentially Decaying Windows指数衰减窗口

- Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)
 - What are "currently" most popular movies?
 - Instead of computing the raw count in last **N** elements
 - Compute a smooth aggregation over the whole stream
- If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be:

$$=\sum_{i=1}^{t}a_{i}(1-c)^{t-i}$$

- c is a constant, presumably tiny, like 10⁻⁶ or 10⁻⁹
- When new a_{t+1} arrives:
 Multiply current sum by (1-c) and add a_{t+1}

Example: Counting Items

- If each a_i is an "item" we can compute the characteristic function of each possible item x as an Exponentially Decaying Window
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1-c)^{t-i}$ where δ_i =1 if a_i =x, and 0 otherwise
 - Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
 - New item x arrives:
 - Multiply all counts by (1-c)
 - Add +1 to count for element x
- Call this sum the "weight" of item x

Sliding Versus Decaying Windows

"权重的和"相同的情况下: 滑动窗口,1/c大小的窗口内,权重都为1 衰减窗口,参与计算的流元素更多,权重取决于出现时间

Important property: Sum over all weights $\sum_{t} (1-c)^{t}$ is 1/[1-(1-c)] = 1/c

Example: Counting Items

- What are "currently" most popular movies?
- Suppose we want to find movies of score > ½
 - Important property: Sum over all weights $\sum_t (1-c)^t$ is 1/[1-(1-c)] = 1/c
- Thus:
 - There cannot be more than **2/c** movies with score of ½ or more 权重(得分)为1/2或更高的,不超过2/c
- So, 2/c is a limit on the number of movies being counted at any time

Extension to Itemsets

- Count (some) itemsets in an E.D.W. (指数衰减窗口)
 - What are currently "hot" itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory
- When a basket B comes in:
 - Multiply all counts by (1-c)
 - For uncounted items in B, create new count
 - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
 - Drop counts < ½</p>
 - Initiate new counts (next slide)

Initiation of New Counts

- Start a count for an itemset S ⊆ B if every proper subset of S had a count prior to arrival of basket B
 - Intuitively: If all subsets of S are being counted this means they are "frequent/hot" and thus S has a potential to be "hot"

Example:

- Start counting S={i, j} iff both i and j were counted prior to seeing B
- Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all counted prior to seeing B

How many counts do we need?

- Counts for single items < (2/c)·(avg. number of items in a basket)
- Counts for larger itemsets = ??
- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts