`MAT143 Brief Calculus Midterm Exam #3

Friday, 6/20/2023

Time: 50 minutes

Name:		WCU-ID	
	(Please print)		

Instructions: This is a closed-book exam. No notes, books, or a computer should be used for the exam. However, you can use a calculator (TI or scientific calculator) for the exam. The first part consists of 6 multiple-choice problems and the 2nd part consists of 3 show-your-work problems.

Part I: Multiple-choice problems. (50 points)

1. Which of the following functions is increasing $(0, \infty)$?

2. Let $f(x) = x^3 + 3x^2 - 45x + 4$.

Then the local extrema of f(x) are

A). A local minimum of -179 at x = 5 and a local maximum of 77 at x = -3.

(B)). A local minimum of -77 at x = 3 and a local maximum of 179 at x = -5.

 \mathbb{C}). A local minimum of -179 at x=-5 and a local maximum of -77 at x=3.

D). A local minimum of -77 at x = 3 and a local maximum of 77 at x = 5.

3. Which of the following statements is true based on the given figure?

- A) A, B, and C are critical points.
 - B) C and A are inflection points.
 - C) A, B, and C are relative extrema.
 - D) Only A and C are critical points.
- 4. Find the relative extrema for the following function by (1) determining the critical value(s) and (2) determining whether at these critical values, the function is a relative maximum or minimum (or possible inflection point).

$$f(x) = (x - 1)^3$$

- (A) x = 1, an inflection point
 - B) x = 1, relative minimum
 - C) x = 1, relative maximum
 - D) x = 1 is not a critical value
- 5. For what value of x does the function $y = x^3 6x$ have a local minimum?

A) 0
B)
$$\sqrt{2}$$
C) $-\sqrt{2}$
D) 6

- $x^3 6x$ have a local minimum: $y' = 3x^2 - 6$ | y'' = 6x $\Rightarrow x = 2$ | $y''(12) > 0 \Rightarrow min$ $x = \pm 12$ | $y''(-12) < 0 \Rightarrow max$
- 6. The function $f(x) = x^2 + 2x^3$ has
 - A) no relative extrema
 - B) two relative extrema and one inflection point
 - C) one relative extremum and two inflection points
- Done relative extremum and one inflection point
 - E) three relative extrema and two inflection point

$$f'(x) = 2\chi + 6\chi^{2}$$

$$2\chi(1+3\chi^{2}) \Rightarrow \chi = 0$$

$$f''(\chi) = 2 + 12\chi \Rightarrow f''(0) = 2 > 0 \rightarrow min$$

7. Find the x-coordinate(s) of the inflection point(s) of the curve of the following function

- B) 0, 2
- C) 0, 1
- D) 1, 2

$$y = \frac{x^3}{3} - x^2$$

$$y' = \chi^2 - 2\chi$$

$$y'' = 2\chi - 2 = 2(\chi - 1)$$

8. Given revenue function $R(x) = -0.03x - 3x^3$, find the marginal revenue function.

R(X) = -0,03-9x2

A).
$$-0.03 - 3x^2$$

B).
$$-0.03 - 3x^2$$

$$C$$
). $-0.03 - 9x^2$

D).
$$-0.03x + 9x^2$$

9. Assume that the graph of function f(x) is given below.

Which of the following statement is true about the sign of f''(x) at $x = \alpha$?

- B). Negative because it is a relative minimum.
- C). Positive because it is an absolute minimum.
- D). Negative because it is an inflection point.
- 10. Which of the following x values can be found from f'(x) = 0?

- A) x_2, x_3, x_4, x_5
- B) x_3, x_4
- $CY x_2, x_5$
 - D) x_2

Part I: Show your work to receive credit. (50 points).

Problem 1. (20 points)

Using the following steps to find the absolute extreme values of the function $g(x) = x^3 - 3$ on the interval [-2, 2].

1. Find all critical value(s) of
$$g(x)$$
.

$$g'(x) = (x^3 - 3)^3 = 3x^2$$

Set $g'(x) = 0$, $3x^2 = 0 \implies x = 0$

$$\Rightarrow \text{ There is only one critical value}$$
2. Identify relative maxima and minima.

$$g'(x) = 6x$$

 $g'(0) = 6(0) = 0$, $x = 0$ is neither
local maximum nor minimum

3. Find the inflection point.

set
$$g''(x) = 0 \rightarrow 6x = 0$$

 $\Rightarrow x = 0$, $g(0) = 0 - 3x0 = 0$
 $\Rightarrow \text{ The inflection point is } (0, -3)$.

4. Find the absolute maximum and minimum of g(x) on [-2, 2]

$$g(-2) = (-2)^3 - 3 = -11$$

 $g(2) = (2)^3 - 3 = 5$
The absolute max; man is 5 When $x = 2$.
The absolute minimum is -11 when $x = -2$.

Problem 2. (15 points) The cost of materials, C, in dollars, to produce x dozen birthday cakes at Yum's Bakery is given by

$$C(x) = x^2 + 40x + 200$$

1. Find the average cost function
$$\overline{C(x)} = \frac{C(x)}{x}$$

1. Find the average cost function
$$\overline{C(x)} = \frac{c(x)}{x}$$
.
$$\overline{C(x)} = \frac{x^2 + 40 \times + 200}{x} = x + 40 + \frac{200}{x} = x + 40 + 200x^{-1}$$

2. Find the minimum average cost based on
$$\overline{C(x)}$$
 obtained in the above part 1.

2. Find the minimum average cost based on
$$\overline{C(x)}$$
 obtained in the above part 1. $\overline{C(x)} = [x + 40 + 200 \ x^{-1}] = 1 + 0 + 200 \ (-1) \cdot \pi = \frac{x^{2}}{200} = 10\sqrt{2}$

Since $x \neq 0 \Rightarrow [\overline{C(x)}] = 0$ has only one root; $x = \sqrt{200} = 10\sqrt{2}$

3. Find the marginal cost function
$$C'(x)$$

Problem 3. (5 points). Find the inflection point of
$$f(x) = \frac{x^3}{3} + 5x^2 + 24$$
.

Problem 3. (5 points). Find the inflection point of
$$f(x) = \frac{x^3}{3} + 5x^2 + 24$$
.

$$f'(x) = x^2 + 10x , f'(x) = 2x + 10$$

$$f'(x) = 6 \Rightarrow 2x + 10 = -5$$

$$f(-5) = \frac{(-5)^3}{3} + 5x(-5)^2 + 24$$

$$= -\frac{125}{3} + 125 + 24 = \frac{2}{3}x_{125} + 24 = \frac{250 + 72}{3}$$

$$\Rightarrow \text{ in Fleetign Point is } (-5, 107.3). = \frac{322}{3} \approx 107.3$$