Théorie des catégories

 $Hugo \ SALOU$

9 avril 2025

Table des matières

1	Introduction aux catégories.		
	1.1	Propriétés des morphismes	4
	1.2	Caractérisation de l'équivalence	15
	1.3	Sous-catégories	19
2	2 Diagramme dans une catégorie.		22

1 Introduction aux catégories.

Définition 1.1. Une catégorie C est la donnée de

- \triangleright une collection $C_0 = \operatorname{obj}(\mathbf{C})$ « d'objets »,
- \triangleright une collection C_1 « de flèches ».
- \triangleright d'une loi de composition \circ_c , ou \circ , qui est associative et unitaire.

Une flèche f est muni d'un domaine dom(f) et d'un codomaine cod(f).

On dit que (f_1, \ldots, f_n) est dit composable si $\operatorname{cod}(f_i) = \operatorname{dom}(f_{i+1})$, pour $i \in [1, n-1]$.

On dit qu'elle est associative si pour tout (f, g, h) composable on a

$$(h \circ g) \circ f = h \circ (g \circ f).$$

On dit qu'elle est unitaire si, pour tout objet X, on a une flèche $1_X = \mathrm{id}_X$ telle que, pour $(f, 1_X)$ et $(1_X, g_X)$ composables, on ait

$$f \circ 1_X = f$$
 et $1_X \circ g = g$.

On appelle Hom(X,Y) la collection des f vérifiant dom(f) = X et cod(f) = Y.

- **Exemple 1.1.** \triangleright La catégorie **Set** est la catégories des ensembles, où les flèches sont des fonctions muni de la composition usuelle $f \circ g = x \mapsto f(g(x))$.
 - ▶ La catégorie Grp est la catégorie des groupes, où les flèches

correspond aux morphismes de groupes muni de la loi de composition usuelle.

- ▶ La catégorie Ann est la catégorie des anneaux, où les flèches correspond aux morphismes de anneaux muni de la loi de composition usuelle.
- ▶ La catégorie **Co** est la catégorie des corps, où les flèches correspond aux morphismes de anneaux.
- \triangleright La catégorie $\mathbf{Vect}_{\mathbb{K}}$ est la catégorie des \mathbb{K} -espaces vectoriels, où les flèches correspond aux applications linéaires.
- ▶ La catégorie **Top** est la catégorie des corps, où les flèches correspond aux fonctions continues.

Dans les exemples ci-dessus, les flèches sont des fonctions. Mais, ce n'est pas forcément le cas! On définit ci-dessous une catégorie où les flèches ne sont pas des fonctions, il n'y a pas de sens à « évaluer » une flèche dans les catégories.

Définition 1.2. Soit \leq un ordre partiel sur un ensemble X. On appelle $\mathbf{Poset}(X)$ la catégorie suivante :

- \triangleright les objets sont les éléments de X;
- \triangleright les flèches sont définies par : si $X \leq Y$, alors

$$\text{Hom}(X, Y) = \{u_{X,Y}\};$$

 \triangleright la loi de composition est : $u_{Y,Z} \circ u_{X,Y} = u_{X,Z}$.

1.1 Propriétés des morphismes.

Définition 1.3 (Isomorphisme). Deux objets x et y sont dits *isomorphes* dans une catégorie \mathbf{C} si on dispose de $x \xrightarrow{f} y$ et $y \xrightarrow{g} x$ telles que $g \circ f = 1_X$ et $f \circ g = 1_Y$. On note ainsi $x \cong y$.

Exemple 1.2. Dans \mathbf{Set} , X et Y sont isomorphes si on dispose

d'une bijection entre X et Y.

Dans **Top**, X et Y sont isomorphes s'il existe $f: X \to Y$ bijective et bicontinue (continue et réciproque f^{-1} continue).

Définition 1.4 (Monomorphisme). On dit que $Y \xrightarrow{f} Z$ est un monomorphisme si, pour tout (g, f) et (h, f) composables, on a

$$f \circ g = f \circ h \implies g = h.$$

$$X \xrightarrow{g} Y \xrightarrow{f} Z$$

Proposition 1.1. Dans **Set**, les monomorphismes correspondent aux fonctions injectives.

Preuve. Soit $f: Y \to Z$ un monomorphisme. Soient x et y tels que f(x) = f(y). On considère $X = \{*\}$, et on pose $g: * \mapsto x$ et $h: * \mapsto y$, et $f \circ g = f \circ h$, d'où f = h et donc x = y.

L'autre sens est laissé en exercice.

Définition 1.5. Une flèche f est dit un épimorphisme si

$$g \circ f = h \circ f \implies g = h.$$

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

Proposition 1.2. Dans **Set**, un épimorphisme correspond à une surjection.

Preuve. Laissé comme exercice au lecteur.

Définition 1.6. Un objet X est dit *initial* si, pour tout objet Y, la collection Hom(X,Y) ne contient qu'un seul élément.

Exemple 1.3. \triangleright Dans **Set**, l'ensemble vide \emptyset est initial.

- \triangleright Dans **Grp**, le groupe trivial $\{1\}$ est initial.
- ▷ Dans **Vect**_K, l'espace vectoriel trivial (0) est initial.
- ▷ Dans Co, il n'y a pas d'objet initial.

Proposition 1.3. Si X est initial, alors $\operatorname{Hom}(X,X) = \{1_X\}$. Les objets initiaux sont uniques à isomorphismes près.

Preuve. Soient X et Y deux objets initiaux. Ainsi, $\operatorname{Hom}(X,Y) = \{f\}$ et $\operatorname{Hom}(Y,X) = \{g\}$ ainsi $f \circ g = 1_Y$ et $g \circ f = 1_X$, d'où $X \cong Y$.

Définition 1.7. Un objet X est final ou terminal si pour tout objet Y, Hom(Y, X) est un singleton.

Proposition 1.4. Les objets terminaux sont uniques à isomorphisme près.

Preuve. Laissé comme exercice au lecteur.

Exemple 1.4. Dans **Set**, les éléments finaux sont les singletons.

▷ Dans Grp, l'élément final est le groupe trivial 1, à isomorphisme près.

Définition 1.8. Soient C et D deux catégories. On dit que F est

un foncteur de C vers D, qu'on note $f: C \to D$ la donnée

 \triangleright d'une correspondance de la collection C_0 vers D_0 :

$$F: C_0 \longrightarrow D_0$$

 $X \longmapsto F(X),$

ightharpoonup d'une collection de correspondances indexées par les (X,Y) de ${\bf C}$:

$$\operatorname{Hom}(X,Y) \longrightarrow \operatorname{Hom}(F(X),F(Y))$$

 $(u:X \to Y) \longmapsto (F(u):F(X) \to F(Y)),$

qui vérifie les conditions

- 1. pour tout objet X de C, on a $F(id_X) = id_{F(X)}$,
- 2. pour tous morphismes $u: X \to Y$ et $v: Y \to Z$, on a

$$F(v \circ u) = F(v) \circ F(u).$$

Remarque 1.1. Si $F: C \to D$ est un foncteur, et $f: X \to Y$ est un isomorphisme, alors F(f) est aussi un isomorphisme.

Définition 1.9. Soient \mathbf{C}, \mathbf{D} et \mathbf{E} trois catégories. Soient $F: \mathbf{C} \to \mathbf{D}$ et $G: \mathbf{D} \to \mathbf{E}$ deux foncteurs. On appelle *composée* $G \circ F$ la fonction $\mathbf{C} \to \mathbf{E}$ qui,

- \triangleright à tout objet X de \mathbb{C} , associe G(F(X));
- \triangleright et à tout morphisme $u:X\to Y,$ associe $G(F(u)):G(F(X))\to G(F(Y)).$

En effet, pour tout objet X de \mathbb{C} , on a $G(F(\mathrm{id}_X)) = G(\mathrm{id}_{F(X)}) = \mathrm{id}_{G(F(X))}$. Et, pour tous morphismes $u: X \to Y$ et $v: Y \to Z$,

on a

$$G(F(v \circ u)) = G(F(v) \circ F(u)) = G(F(v)) \circ G(F(u)).$$

Exemple 1.5.

Foncteurs d'oublis de structure. Soit **Top** la catégorie des espaces topologiques. Notons

- \triangleright les objets de **Top**, $(X, \mathfrak{G}(X))$;
- ▷ les morphismes de **Top**, $(X, \mathfrak{G}(X)) \xrightarrow{f} (Y, \mathfrak{G}(Y))$ avec $f: X \to Y$ et $f^{-1}: \mathfrak{G}(X) \to \mathfrak{G}(Y)$;

Le foncteur d'oubli $\mathcal{U}:\mathbf{Top}\to\mathbf{Ens}$ est définit comme suit :

- $\triangleright \mathcal{U}((X, \mathfrak{G}(X))) = X$ pour tout objet $(X, \mathfrak{G}(X))$ de **Top**;
- $> \mathcal{U}(f:(X,\mathbb{G}(X)) \to (Y,\mathbb{G}(Y))) = (f:X \to Y) \text{ pour tout morphisme de } \mathbf{Top}.$

Les fonctions croissantes entre deux catégories posétales sont des foncteurs. Soient (X, \leq) et (Y, \leq) deux catégories posétales et f une application croissante de (X, \leq) vers (Y, \leq) . Pour tous éléments x, y de (X, \leq) tels que $x \leq y$, on a $f(x) \leq f(y)$.

Notons $\operatorname{Hom}(x,y) = \{u_{x,y}\}$. Dire que $f(x) \leq f(y)$ si $x \leq y$; c'est se donner une application $u_{x,y} \to u_{f(x),f(y)}$. On a

$$f(id_x) = f(u_{x,x}) = u_{f(x),f(x)} = id_{f(X)}.$$

Si on a $u_{x,y}$ et $u_{y,z}$, alors $u_{x,z}$, c'est-à-dire

$$f(u_{x,z}) = u_{f(x),f(z)} = f(u_{y,z} \circ u_{x,y}) = u_{f(y),f(z)} \circ u_{f(x),f(y)}.$$

Définition 1.10. Soient \mathbf{C} une catégorie, on définit la catégorie opposée de \mathbf{C} , qu'on note \mathbf{C}^{op} . C'est la catégorie dont les objets sont ceux des \mathbf{C} , et les morphismes de la forme suivante $f^{\mathrm{op}}: Y \to X$ avec $f: X \to Y$ un morphisme de \mathbf{C} .

La loi de composition est $f^{\mathrm{op}} \circ g^{\mathrm{op}} : Z \to X$ avec $g: Y \to Z$ et

 $f: X \to Y$.

- **Exemple 1.6.** \triangleright Foncteur contravariant. Soient \mathbf{C} et \mathbf{D} deux catégories. On dit que F est un foncteur contravariant de \mathbf{C} vers \mathbf{D} s'il est la donnée
 - d'une correspondance $C_0 \to D_0; X \mapsto F(X);$
 - d'une collection de correspondances

$$\operatorname{Hom}(X,Y) \longrightarrow \operatorname{Hom}(F(X),F(Y))$$

 $(u:X \to Y) \longmapsto (F(u):F(Y) \to F(X)),$

pour tous objets X, Y de \mathbb{C} , tels que

- pour tout objet $X \text{ de } \mathbf{C}$, $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$;
- pour tous morphismes $u: X \to Y$ et $v: Y \to Z$, on ait $F(v \circ u) = F(u) \circ F(v)$.

Remarque 1.2. Un foncteur contravariant $F: \mathbf{C} \to \mathbf{D}$ est un foncteur $F: \mathbf{C}^{\mathrm{op}} \to \mathbf{D}$ ou $F: \mathbf{C} \to \mathbf{D}^{\mathrm{op}}$.

Exemple 1.7. 1. Un foncteur de dualité de la catégorie $\mathbf{Vect}_{\mathbb{K}}$.

Soit $(-)^*$ définie comme suit

$$(-)^* : (\operatorname{Vect}_{\mathbb{K}})_0 \longrightarrow (\operatorname{Vect}_{\mathbb{K}})_0$$

$$V \longmapsto V^* = \operatorname{Hom}_{\mathbb{K}}(V, \mathbb{K})$$

où $\operatorname{Hom}_{\mathbb K}(V,W)$ est l'ensemble des applications $\mathbb K$ -linéaires de V vers W.

Montrons que $(-)^*$ est un foncteur contravariant. Soit X un \mathbb{K} espace vectoriel. Ainsi, $(\mathrm{id}_X)^*$

On définit l'application

$$(-)^{t}: (\operatorname{Vect}_{\mathbb{K}})_{1} \longrightarrow (\operatorname{Vect}_{\mathbb{K}})_{1}$$
$$(u: V \to W) \longmapsto \begin{pmatrix} {}^{t}u: W^{\star} & \to U^{\star} \\ \alpha & \mapsto \alpha \circ u \end{pmatrix}.$$

$$V \\ \downarrow u \\ M \xrightarrow{\alpha \circ u = {}^{\mathsf{t}} u(\alpha)} .$$

$$W \xrightarrow{\alpha} \mathbb{K}$$

Soient u et v deux applications \mathbb{K} -linéaires.

$$\begin{array}{c} X \stackrel{u}{\longrightarrow} Y \\ \downarrow^{v} \\ Z \end{array}$$

Montrons que ${}^{\mathrm{t}}(v \circ u) = {}^{\mathrm{t}}u \circ {}^{\mathrm{t}}v$. On a

$${}^{\mathbf{t}}(v \circ u) : \alpha \mapsto \alpha \circ v \circ u = (\alpha \circ v) \circ u$$

$$= {}^{\mathbf{t}}u(\alpha \circ v)$$

$$= {}^{\mathbf{t}}u({}^{\mathbf{t}}v(\alpha))$$

donc on a bien ${}^{\mathrm{t}}(v \circ u) = {}^{\mathrm{t}}u \circ {}^{\mathrm{t}}v.$

Définition 1.11. On dit qu'une catégorie \mathbb{C} est localement petite si, pour tous objets X et Y de \mathbb{C} , la collection des morphismes entre X et Y forme un ensemble qu'on va noter $\mathrm{Hom}_{\mathbb{C}}(X,Y)$.

On dit qu'ne catégorie est petite si la collection des objets C_0 et des morphismes C_1 forment des ensembles.

Exemple 1.8. Les catégories $\mathbf{Grp}, \mathbf{Top}, \mathbf{Ens}, \mathbf{Vect}_{\mathbb{K}}$ et \mathbf{Ann} sont localement petites.

Les catégories posétales, et les topologies munies de l'inclusion sont des catégories petites.

Exemple 1.9. Soit ${\bf C}$ une catégorie localement petite. Pour tout objet Y de ${\bf C}$, on pose

$$\operatorname{Hom}_{\mathbf{C}}(-,Y): \mathbf{C}^{\operatorname{op}} \to \mathbf{Ens}$$

le foncteur défini par :

 $\vdash \operatorname{Hom}(-,X)(Y) = \operatorname{Hom}_{\mathbf{C}}(X,Y);$

notations!

 $\vdash \operatorname{Hom}(-,Y)(f) = \operatorname{Hom}(f,Y) = - \circ f \text{ pour } f: A \to B.$

Définition 1.12 (Rappel : isomorphismes de catégories). Pour un foncteur $f: \mathbf{C} \to \mathbf{D}$, on dit que F est un isomorphisme de catégories s'il existe $G: \mathbf{D} \to \mathbf{C}$ un foncteur tel que $F \circ G = \mathrm{id}_{\mathbf{D}}$ et $G \circ F = \mathrm{id}_{\mathbf{C}}$.

La notion d'égalité de foncteurs est trop *stricte*. On définit donc la notion de *transformation naturelle*.

Définition 1.13. Soient C et D deux catégories. Soient F et G deux foncteurs de C vers D.

On appelle transformation naturelle η de F vers G, que l'on note $\eta: F \Rightarrow G$, une famille de morphismes $(\eta_A: F(A) \to G(A))_{A \in \mathbf{C}}$ tel que, quel que soit $f: A \to B$ dans \mathbf{C} , le diagramme suivant commute :

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow^{\eta_A} \qquad \qquad \downarrow^{\eta_B} .$$

$$G(A) \xrightarrow{G(f)} G(B)$$

On dit alors que η est un isomorphisme naturel si, quel que soit $A \in \mathbf{C}$, η_A soit un isomorphisme.

Si F et G sont contravariants, on a les mêmes définitions en retournant les flèches horizontales.

Exemple 1.10. On construit des foncteurs $Ann \rightarrow Grp$.

1. On définit le foncteur

$$(-)^{\times}:$$
 Ann \longrightarrow Grp
 $A \longmapsto A^{\times} = \{a \in A \mid a \text{inversible}\}\$
 $(f: A \to B) \longmapsto f^{\star} = f_{|A}: A^{\times} \to B^{\times}.$

2. On définit ensuite le second foncteur, pour $n \in \mathbb{N}^*$ fixé

$$\operatorname{GL}_n: \operatorname{\mathbf{Ann}} \longrightarrow \operatorname{\mathbf{Grp}}$$

$$A \longmapsto \operatorname{GL}_n A$$

$$(f: A \to B) \longmapsto \begin{pmatrix} \operatorname{GL}_n(A) & \to \operatorname{GL}_n(B) \\ (m_{i,j})_{i,j} & \mapsto (f(m_{i,j}))_{i,j} \end{pmatrix}.$$

On pourra démontrer que les deux applications ci-dessus sont des foncteurs.

De plus, in définit, pour tout anneau A,

$$\det_{A} : \operatorname{GL}_{n}(A) \longrightarrow A^{*}$$
$$M \longmapsto \det_{A} M.$$

Si $f: A \to B$, alors le diagramme

$$GL_n(A) \xrightarrow{GL_n(f)} GL_n(B)$$

$$\downarrow^{\det_A} \qquad \qquad \downarrow^{\det_B}$$

$$A^* \xrightarrow{f^*} B^{\times}$$

commute. En effet, soit $M = (m_{i,j})_{i,j} \in GL_n(A)$, alors

$$\det ((f(m_{i,j}))_{i,j}) = f^*(\det M).$$

Ainsi, det : $GL_n \to (-)^*$ est une transformation naturelle.

- **Remarque 1.3.** 1. Les transformations naturelles se composent. Si \mathbf{C} et \mathbf{D} sont deux catégories, $F, G, H : \mathbf{C} \to \mathbf{D}$ trois foncteurs, et deux transformations naturelles $\eta : F \Rightarrow G$ et $\varepsilon : G \Rightarrow H$, alors on pose $(\varepsilon \circ \eta)_A = \varepsilon_A \circ \eta_A$. Alors, $\varepsilon \circ \eta : G \Rightarrow H$ est une transformation naturelle. En effet, si $f : A \to B$ est dans \mathbf{C} , alors le diagramme ...commute.
 - 2. Si $F: \mathbf{C} \to \mathbf{D}$ est un foncteur, alors on définit $1_F: F \Rightarrow F$, avec $(1_F)_A = \mathrm{id}_{F(A)}$.

Définition 1.14. Soit $F: \mathbf{C} \to \mathbf{D}$ un foncteur entre deux catégories \mathbf{C} et \mathbf{D} . On dit que F est une équivalence de catégories s'il existe $G: \mathbf{D} \to \mathbf{C}$ et deux isomorphismes naturels

 $\, \triangleright \, \eta : F \circ G \Rightarrow \mathrm{id}_{\mathbf{D}} \, ;$

 $\triangleright \ \varepsilon : G \circ F \Rightarrow \mathrm{id}_{\mathbf{C}}.$

On appelle dans cas G un $quasi\ inverse\ de\ F.$

Si F est un isomorphisme de catégories, alors F est une équivalence $(1_{\mathrm{id}_F}: F \circ F^{-1} \Rightarrow \mathrm{id}_{\mathbf{C}})$.

Exemple 1.11 (bidualité). Soit $\mathbf{fdVect}_{\mathbb{K}}$ la catégorie des \mathbb{K} -espaces vectoriels de dimension finie.

On définit le foncteur bidual $(-)^{vv} = \text{Hom}(-, \mathbb{K}) \circ \text{Hom}(-, \mathbb{K})$.

 \triangleright Pour $A \in (\text{fdVect})_0$, on a :

$$A^{vv} = \text{Hom}(\text{Hom}(A, \mathbb{K}), \mathbb{K}).$$

 \triangleright Pour $(f:A\rightarrow B)$ une application linéaire, alors

$$f^{\mathrm{vv}}: \mathrm{Hom}(\mathrm{Hom}(A, \mathbb{K}), \mathbb{K}) \longrightarrow \mathrm{Hom}(\mathrm{Hom}(B, \mathbb{K}), \mathbb{K})$$

$$\varphi \longmapsto \varphi(-\circ f).$$

Si $E \in \mathbf{fdVect}_{\mathbb{K}}$, alors on définit

$$\operatorname{eval}_E : E \longrightarrow E^{\star\star}$$

 $x \longmapsto (f \mapsto f(x)).$

Soit E un espace vectoriel de dimension finie. Montrons que $eval_E$ est un isomorphisme.

- \triangleright injectivité. Si $\operatorname{eval}_E(x) = 0$ alors $\forall f \in E^{\mathrm{v}}$, f(x) = 0. Si $x \neq 0$, alors il existe H tel que $E = H \oplus \langle x \rangle$ et il existe $\varphi \in E^{\mathrm{v}}$ tel que $\varphi(x) = 1$. D'où, x = 0 et eval_E est injective.
- \triangleright dimension. De plus, dim $E=\dim E^{\mathbf{v}}$ donc eval_E est un isomorphisme.

Soit $f: E \to F$ une forme linéaire. Le diagramme

$$E \xrightarrow{f} F$$

$$\downarrow^{\text{eval}_E} \qquad \downarrow^{\text{eval}_F}$$

$$E^{\text{vv}} \xrightarrow{f^{\text{vv}}} F^{\text{vv}}$$

commute. Ainsi $(-)^{vv}$ est équivalent à 1_{fdVect_K} .

1.2 Caractérisation de l'équivalence.

Définition 1.15. Soit $F: \mathbf{C} \to \mathbf{D}$ un foncteur, où \mathbf{C} et \mathbf{D} sont deux catégories. On dit que

 $\triangleright F$ est $fid\`{e}le$ si l'application

$$\operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(F(A),F(B))$$

 $f \longmapsto F(f)$

est injective, quels que soient A et B;

 \triangleright F est plein si l'application

$$\operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(F(A),F(B))$$

 $f \longmapsto F(f)$

est surjective, quels que soient A et B;

- \triangleright F est pleinement fidèle si F est plein et fidèle;
- ightharpoonup F est essentiellement surjectif si, pour tout $Y \in \mathbf{D}$, il existe $X \in \mathbf{C}$ tel que F(X) et Y sont isomorphes dans \mathbf{D} .

Proposition 1.5. Soient $F: \mathbf{C} \to \mathbf{D}$ et $G: \mathbf{D} \to \mathbf{E}$ des foncteurs.

- 1. Si $G \circ F$ est fidèle, alors F est fidèle.
- 2. Si $G \circ F$ est plein et F est fidèle, alors G est plein.

Preuve. Complétée plus tard...

Théorème 1.1. Soient \mathbf{C} et \mathbf{D} deux catégories. Un foncteur $F: \mathbf{C} \to \mathbf{D}$ est une équivalence $ssi\ F$ est pleinement fidèle et essentiellement surjective.

Preuve. \rhd « \Longrightarrow ». Soit $F: \mathbf{C} \to \mathbf{D}$ une équivalence. On dispose d'un quasi-inverse $G: \mathbf{D} \to \mathbf{C}$ et de deux isomor-

phismes naturels $\eta: G \circ F \Rightarrow 1_{\mathbf{C}}$ et $\varepsilon: F \circ G \Rightarrow 1_{\mathbf{D}}$.

- F est essentiellement surjectif. En effet, soit $Y \in \text{obj}(\mathbf{D})$, on a

$$\varepsilon_Y: F \circ G(Y) \xrightarrow{\sim} Y$$

– F est pleinement fidèle. En effet, si $f:A\to B$ est un morphisme de ${\bf C}$, alors le diagramme suivant commute :

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
 & & \eta_{A} \uparrow & \uparrow & \uparrow & \uparrow \\
G \circ F(A) & \xrightarrow{G \circ F \circ f} & G \circ F(B)
\end{array}$$

Ainsi, l'application

$$\operatorname{Hom}_{\mathbf{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathbf{C}}(GFA,GFB)$$
 $f \longmapsto GFf$

est bijective d'inverse

$$g \mapsto \eta_B \circ g \circ \eta_A^{-1}$$
.

Ainsi, GF est pleinement fidèle, donc F est fidèle et G est plein. De même, FG est pleinement fidèle, donc G est fidèle et F est plein.

- \triangleright « \iff ». Soit $F: \mathbf{C} \to \mathbf{D}$ pleinement fidèle et essentiellement surjectif. On va construire $G: \mathbf{D} \to \mathbf{C}$ tel que
 - $\eta: F \circ G \Rightarrow \mathrm{id}_{\mathbf{D}};$
 - $-\varepsilon: G \circ F \Rightarrow \mathrm{id}_{\mathbf{C}}.$
 - Construction de $G: \mathbf{D} \to \mathbf{C}$. Soit $Y \in \text{obj}(\mathbf{D})$ alors il existe $X \in \text{obj}(\mathbf{C})$ tel que $FX \cong Y$. On note cet isomorphisme $\varepsilon_Y : FGY \to Y$. Pour que la famille des $(\varepsilon_Y)_Y$ définisse une transformation naturelle, il faut

que, pour toute flèche $f:A\to B$ dans ${\bf D},$ le diagramme

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
 & & & \varepsilon_{A} \\
 & & & & \varepsilon_{B} \\
FGA & \xrightarrow{FGf} & FGB
\end{array}$$

commute $ssi \ \varepsilon_B FGf = f\varepsilon_A$, $ssi \ FGf = \varepsilon_B^{-1} f\varepsilon_A$. On a $\varepsilon_B^{-1} f\varepsilon_A \in \text{Hom}(FGA, FGB)$.

Or, F est pleinement fidèle, il existe donc une unique flèche $u: GA \to GB$ telle que $Fu = \varepsilon_B^{-1} f \varepsilon_A$. On pose Gf = u. Montrons que ceci définit bien un foncteur.

• Soit $A \in obj(\mathbf{D})$. Le diagramme

$$A \xrightarrow{1_A} A$$

$$\varepsilon_A \uparrow \qquad \qquad \varepsilon_A \downarrow \varepsilon_A^{-1}$$

$$FGA \xrightarrow{F(1_{GA})} FGA$$

commute. Par unicité, $G1_A = 1_{GA}$.

• Soient $A, B, C \in \text{obj}(\mathbf{D})$ et $f: A \to B$ et $g: B \to C$ deux foncteurs. Le diagramme

commute. Par unicité, $Gg \circ Gf = G(g \circ f)$ donc G est un foncteur, et $\varepsilon : FG \Rightarrow 1_{\mathbf{D}}$ est un isomorphisme naturel par construction.

– Il nous reste à construire $\eta: GF \Rightarrow 1_{\mathbf{C}}$. Soit $X \in \operatorname{obj}(\mathbf{C})$. On dispose d'un isomorphisme $(\varepsilon_{FX}: FGFX \rightarrow$

 $FX) \in \operatorname{Hom}_{\mathbf{D}}(F(GFX), F(X))$. Or, F est pleinement fidèle, il existe alors une unique flèche $\eta_X : GFX \to X$ telle que $F\eta_X = \varepsilon_{FX}$. On a que ε_{FX} est un isomorphisme et F pleinement fidèle, d'où η_X est un isomorphisme.

De plus,

$$\varepsilon_{FX} \circ \varepsilon_{FX}^{-1} = \mathrm{id}_{FX} = F(\mathrm{id}_X)$$
$$= F\eta_X \circ Fy$$
$$= F(\eta_X \circ g)$$
$$= \eta_X \circ g = \mathrm{id}_X.$$

Soit $f:A\to B$ dans ${\bf C}.$ On veut que que le diagramme suivant commute. Le diagramme

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\eta_A \uparrow & & \eta_B \uparrow \\
GFA & \xrightarrow{GFf} & GFB
\end{array}$$

commute $ssi \eta_B \circ GFf = f \circ \eta_A ssi F(\eta_B \circ GFf) = F(f \circ \eta_A)$, qui, après calcul donne $\eta_{FB} \circ FGFf = Ff \circ \varepsilon_{FA}$. Or, le diagramme suivant commute :

$$FA \xrightarrow{Ff} FB$$

$$\downarrow^{\varepsilon_{FA}} \qquad \downarrow^{\varepsilon_{FB}} \qquad \downarrow^{\varepsilon_{FB}}$$

$$FGFA \xrightarrow{FGFf} FGFB$$

Ainsi, $\eta: GF \Rightarrow 1_{\mathbf{C}}$ est un isomorphisme naturel.

Remarque 1.4. Un foncteur préserve les diagrammes commutatifs

1.3 Sous-catégories.

Définition 1.16. Soit ${\bf C}$ une catégorie. Une sous-catégorie ${\bf C}'$ de ${\bf C}$ est une catégorie telle que

- 1. $obj(\mathbf{C}') \subseteq obj(\mathbf{C})$;
- 2. $\forall A, B \in \text{obj}(\mathbf{C}'), \text{Hom}_{\mathbf{C}'}(A, B) \subseteq \text{Hom}_{\mathbf{C}}(A, B);$
- 3. $\forall A \in \text{obj}(\mathbf{C}'), 1_A \in \text{Hom}_{\mathbf{C}'}(A, A)$;
- 4. $\forall (f: A \to B), (g: B \to C) \in C'_1, g \circ_{\mathbf{C}'} f = g \circ_{\mathbf{C}} f$.

Note 1.1. On dit que \mathbf{C}' est une sous-catégorie pleine si on a l'égalité dans 2. Il suffit donc de préciser les objets de \mathbf{C}' pour définir les flèches. On note alors $\mathbf{C}' \subseteq \mathbf{C}$.

Définition 1.17 (Squelette). Soit \mathbf{C} une catégorie. Un squelette \mathbf{S} de \mathbf{C} est une sous-catégorie pleine telle que obj (\mathbf{S}) contient un et un seul objet de chaque classe d'isomorphisme de \mathbf{C} .

Exemple 1.12. Avec $\mathbf{fdVect}_{\mathbb{K}}$, un squelette peut être définir par les objets \mathbb{K}^n pour $n \in \mathbb{N}$.

Exemple 1.13. Si on admet l'axiome du choix pour les catégories, toute catégorie admet un squelette.

Proposition 1.6. Soient ${\bf C}$ une catégorie et ${\bf S}\subseteq {\bf C}$ un squelette. Alors ${\bf S}$ et ${\bf C}$ sont équivalentes.

Preuve. On considère le foncteur d'inclusion

$$F: \mathbf{S} \longrightarrow \mathbf{C}$$

$$A \longmapsto A$$

$$f \longmapsto f$$

On sait que F est pleinement fidèle (car il induit l'identité sur les flèches et \mathbf{S} pour sous-catégorie pleine, *i.e.* $\mathrm{Hom}_{\mathbf{C}'}(A,B)=\mathrm{Hom}_{\mathbf{C}}(A,B)$). Soit $Y\in\mathrm{obj}(\mathbf{C})$, alors, par définition d'un squelette, il existe $X\in\mathrm{obj}(\mathbf{S})$ tel que $X\cong Y$ avec $F:X\to Y$ l'isomorphisme, d'où F est essentiellement surjective et F équivalence (par le théorème).

Définition 1.18. Une catégorie **C** est dite *essentiellement petite* si elle est équivalente à une petite catégorie.

Remarque 1.5. Ça équivaut à dire que C admet un squelette qui est une petite catégorie.

Exemple 1.14. La catégorie $\mathbf{fdVect}_{\mathbb{K}}$ est essentiellement petite. En effet, le squelette $\{\mathbb{K}^n \mid n \in \mathbb{N}\}$ est une petite catégorie.

La catégorie **fGroup** des groupes finis est essentiellement petite. En effet, tout groupe fini est isomorphe à un sous-groupe de \mathfrak{S}_n où $n \in \mathbb{N}$. Ainsi, obj $(\mathbf{S}) = \bigcup_{n \in \mathbb{N}} \{G \mid G$ sous-groupe de $\mathfrak{S}_n\}$.

Définition 1.19. Deux catégories \mathbf{C} et \mathbf{D} sont dites duales si \mathbf{C}^{op} et \mathbf{D} sont équivalentes : il existe $F: \mathbf{C} \to \mathbf{D}$ et $G: \mathbf{D} \to \mathbf{C}$ deux foncteurs contravariants, et deux isomorphismes naturels $\eta: FG \Rightarrow 1_{\mathbf{D}}$ et $\varepsilon: GF \Rightarrow 1_{\mathbf{C}}$.

On dit alors que F est une dualité et que G est une dualité quasi inverse.

Exemple 1.15. \triangleright **C** est toujours duale à \mathbf{C}^{op} ;

- $\,\,\vartriangleright\,\,$ la composé de deux équivalences est une équivalence ;
- ▷ la composée de deux dualités est une équivalence;
- $\,\triangleright\,$ la composée d'une dualité et d'une équivalence est une dualité ;
- $\,\triangleright\,$ la composée d'une équivalence et d'une dualité est une dualité ;

2 Diagramme dans une catégorie.

Définition 2.1. Soit **J** une petite catégorie, on appelle **J**-diagramme dans une catégorie **C** tout foncteur $F : \mathbf{J} \to \mathbf{C}$.

Exemple 2.1. \triangleright Le diagramme

est défini par : $J_0 = \{1,2\}$ et $J_1 = \{\operatorname{id}_1,\operatorname{id}_2\}$ avec

$$F: \mathbf{J} \longrightarrow \mathbf{C}$$
$$i \longmapsto A_i$$
$$\mathrm{id}_i \longmapsto \mathrm{id}_{A_i}.$$

 \triangleright

$$A_1 \longrightarrow A_2 \longrightarrow A_3$$
.

Définition 2.2. On dit qu'un diagramme $F : \mathbf{J} \to \mathbf{C}$ est *commutatif* si pour tous F(L) et F(K) avec L et K deux objets de \mathbf{J} , tous les morphismes de source F(L) et de but F(K) sont égaux.

Références

- \triangleright Categories for the working mathematician Mac Lane
- ▷ The Joy of abstractation Eugenia Chen
- ▷ Algèbre et théories galoisiennes Adrien Douady
- $\,\,\vartriangleright\,$ Cours de Ralph Sarkis