CMPE 130 Midterm Exam #2 Fall 2015

15:00—16:15 Tuesday, November 3, 2015

Student Name	(print
Student ID_	· ·

Problem 1: For the set of {1,4, 5, 10, 16, 17, 21} of keys, draw binary search trees of height 2, 3, 4, 5 and 6. (10 points) see extra paper

Problem 2: Write the adjacency-matrix representation of Graph (a) and Graph (b) below. (10 points)

		1	2	3
a. 11-12-15		0	1	0
12-11-13-79-75	2	1	0	1
	3	0	1	Q
13/12/14]	4	0	1	1
472-73-75	5	1	1	0
B-71-72-74				

_	11	2	3	4	5
1	0	1	0	0	1
2	0	0	1	1	0
3	0	0	0	0	0
4	0	0	1	0	1
5	0	1	Q	0	0

Problem 3: Show the step-by-step result of running BFS on the graph below using y as the source. (20 points)

See extra paper

Problem 4: Given a graph G(V, E) consisting of a set of vertices V and a set of edges E, algorithms are designed to find Minimum Spanning Tree (MST).

(a) Explain what a Minimum Spanning Tree is. (10 points)

(-3)

MST is connecting all nodes with out any loops and you have E = V - 1

· undirected

(b) Draw all minimum spanning trees of the graph below Assuming weight of all edges is "1" (10 points)

Problem 5: The B-tree below is of order m. The root node has two children and the non-leaf nodes have m childrens.

Problem 6: Use the graph below to find a Minimum Spanning Tree by

(a) Prim's Algorithm (10 points) and

start anywhere

(b) Kruskal Algorithm (10 points)

short from least

a. Prim: Choose "a" as clarting node

Problem 1:

set { 1, 4, 5, 10, 16, 17, 213 height: 2,3,4,5,6

height 2:

height 3:

height4:

height 5:

height 6:

T V W U Y r t/x y source

Q: y, u, x, t, w, s, r, V

take y as source, you visit it and add it to Queue

you then visit x and add to Queue

then visit t which is 2 hops away add to Quee

From either x or t you visit w and add it to Quee

then visit s, then r, then Finally v