Graduate Energy Informatics Project Group 2

Charlie McCollough

2024-04-15

Vehicle Emissions G/H Project

Energy Informatics

Group 2

```
suppressMessages(suppressWarnings({
   library(ggplot2)
   library(dplyr)
   library(rpart)
   library(rpart.plot)
   library(readxl)
   library(corrplot)
   library(fastDummies)
}))
```

Install Packages

```
# Load the data
fuel_data <- read_excel("FuelConsumption - IMPROVED.xlsx")
fuel_data <- subset(fuel_data, select = -Year)

fuel_data$MAKE <- factor(fuel_data$MAKE)
fuel_data$MODEL <- factor(fuel_data$MODEL)
fuel_data$`VEHICLE CLASS` <- factor(fuel_data$`VEHICLE CLASS`)
fuel_data$SIZE <- factor(fuel_data$SIZE)
fuel_data$TRANSMISSION <- factor(fuel_data$TRANSMISSION)
fuel_data$FUEL <- factor(fuel_data$FUEL)</pre>
```

Load Data

paste(colnames(fuel_data), collapse = ", ")

[1] "MAKE, MODEL, VEHICLE CLASS, SIZE, ENGINE SIZE, CYLINDERS, TRANSMISSION, NUMBER OF GEARS, FUEL,

```
#Im taking out Fuel as there isnt much of a distribution in the data set
#fuel_data_dummies <- dummy_cols(fuel_data, select_columns = c("VEHICLE CLASS", "SIZE", "FUEL"))
fuel_data_dummies <- dummy_cols(fuel_data, select_columns = c("VEHICLE CLASS", "SIZE"))
fuel_data_dummies <- subset(fuel_data_dummies, select = -c(MAKE, MODEL, `VEHICLE CLASS`, SIZE, TRANSMIS
#paste(colnames(fuel_data_dummies), collapse = ", ")
head(fuel_data)</pre>
```

Data Transform

```
## # A tibble: 6 x 13
    MAKE MODEL
                 'VEHICLE CLASS' SIZE
                                         'ENGINE SIZE' CYLINDERS TRANSMISSION
##
                                                 <dbl>
    <fct> <fct>
                  <fct>
                         <fct>
                                                           <dbl> <fct>
                                                               4 Automatic
## 1 ACURA 1.6EL COMPACT
                                  Small
                                                   1.6
## 2 ACURA 1.6EL
                 COMPACT
                                  Small
                                                   1.6
                                                               4 Manual
## 3 ACURA 3.2TL
                  SEDAN
                                  Medium
                                                   3.2
                                                               6 Automatic
## 4 ACURA 3.5RL
                                  Medium
                                                               6 Automatic
                  SEDAN
                                                   3.5
## 5 ACURA INTEGRA COMPACT
                                  Small
                                                   1.8
                                                               4 Automatic
## 6 ACURA INTEGRA COMPACT
                                  Small
                                                   1.8
                                                               4 Manual
## # i 6 more variables: 'NUMBER OF GEARS' <dbl>, FUEL <fct>,
      'FUEL CONSUMPTION' <dbl>, COEMISSIONS <dbl>, TURBO <dbl>,
## #
      SUPERCHARGED <dbl>
```

Summary Statistics

```
##
         ENGINE SIZE CYLINDERS NUMBER OF GEARS FUEL CONSUMPTION COEMISSIONS
## mean
            3.265728 5.805947
                                      4.480438
                                                      14.713615
                                                                  296.80908
## sd
            1.231012 1.625588
                                      0.597153
                                                       3.307044
                                                                   65.50418
## min
            1.000000 3.000000
                                      3.000000
                                                       4.900000
                                                                  104.00000
## median
            3.000000 6.000000
                                      4.000000
                                                      14.400000
                                                                  288.00000
## max
            8.000000 12.000000
                                      6.000000
                                                      30.200000
                                                                  582.00000
##
              TURBO SUPERCHARGED
## mean 0.03755869 0.004694836
```

```
## sd
           0.19027530 0.068411390
## min
           0.00000000
                       0.000000000
## median 0.0000000
                       0.000000000
## max
           1.00000000
                       1.000000000
categorical_variables <- sapply(fuel_data, is.factor)</pre>
categorical variables["MODEL"] <- FALSE</pre>
categorical_summary <- sapply(fuel_data[, categorical_variables], table)</pre>
categorical_summary
## $MAKE
##
##
           ACURA
                            AUDI
                                             BMW
                                                          BUICK
                                                                      CADILLAC
##
                              22
                                              29
                                                                             5
##
       CHEVROLET
                        CHRYSLER
                                         DAEWOO
                                                          DODGE
                                                                       FERRARI
##
               63
                              19
                                              10
                                                             46
                                                                             7
##
             FORD
                             GMC
                                          HONDA
                                                        HYUNDAI
                                                                      INFINITI
##
               62
                              38
                                              17
                                                             10
                                                                             4
                                            JEEP
##
            ISUZU
                          JAGUAR
                                                            KIA
                                                                    LAND ROVER
##
                8
                              10
                                               8
                                                              4
                                                                             4
##
           LEXUS
                         LINCOLN
                                          MAZDA MERCEDES-BENZ
                                                                        NISSAN
##
                7
                               6
                                              20
                                                             22
                                                                            19
##
      OLDSMOBILE
                        PLYMOUTH
                                        PONTIAC
                                                        PORSCHE
                                                                          SAAB
##
                                              21
                                                                             9
                5
                               1
                                                              8
##
           SATURN
                          SUBARU
                                         SUZUKI
                                                        TOYOTA
                                                                    VOLKSWAGEN
               15
                              12
##
                                              13
                                                             43
                                                                            36
##
           VOLVO
##
               21
##
## $'VEHICLE CLASS'
##
   COMPACT
                                  SUV
##
              SEDAN
                      SPORT
                                        TRUCK
                                                   VAN
                105
##
       220
                          10
                                  161
                                          103
                                                    40
##
##
  $SIZE
##
##
    Large Medium Small
##
      283
              102
                     254
##
   $TRANSMISSION
##
## Automatic
                 Manual
         425
                    214
##
##
## $FUEL
##
                     GAS
##
      CNG DIESEL
##
                     632
        1
                6
# Descriptive Statistics Visualization
# Histograms for numerical variables
```

```
num_vars <- names(fuel_data[, sapply(fuel_data, is.numeric)])
par(mfrow=c(2, 2)) # Adjust the grid layout based on the number of variables
for (var in num_vars) {
   hist(fuel_data[[var]], main=paste("Histogram of", var), xlab=var)
}</pre>
```

Histogram of ENGINE SIZE

Histogram of CYLINDERS

Histogram of NUMBER OF GEARS

Histogram of FUEL CONSUMPTION

Histogram of COEMISSIONS

Histogram of TURBO

Histogram of SUPERCHARGED


```
# correlation Matrix
numeric_columns <- sapply(fuel_data, is.numeric)
cor_matrix <- cor(fuel_data[, numeric_columns & !names(fuel_data) %in% c("Year")])
corrplot(cor_matrix, method='number')</pre>
```


Correlation Matrix

Linear Regressions Simple Linear Regression

```
fuel_lm_model1 <- lm(COEMISSIONS ~ `ENGINE SIZE` + `NUMBER OF GEARS`, data=fuel_data)
summary(fuel_lm_model1)</pre>
```

```
##
## Call:
## lm(formula = COEMISSIONS ~ 'ENGINE SIZE' + 'NUMBER OF GEARS',
       data = fuel_data)
##
##
## Residuals:
##
       Min
                       Median
                  1Q
                                     3Q
                                             Max
                       -0.648
## -124.546 -18.321
                                18.871 188.473
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      161.437
                                  11.338
                                          14.238
                                                    <2e-16 ***
## 'ENGINE SIZE'
                       45.093
                                   1.116
                                          40.395
                                                    <2e-16 ***
##
  'NUMBER OF GEARS'
                       -2.654
                                   2.301
                                          -1.153
                                                     0.249
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
```

```
## Residual standard error: 34.55 on 636 degrees of freedom
## Multiple R-squared: 0.7226, Adjusted R-squared: 0.7217
## F-statistic: 828.3 on 2 and 636 DF, p-value: < 2.2e-16
```

Linear Regressions with Dummy Vars

(Intercept)

```
I'm going to take out the 'NUMBER OF GEARS' variable as it is not significant, and add the categorical
variables that I made.
fuel_lm_model2 <- lm(COEMISSIONS ~ `ENGINE SIZE` + `VEHICLE CLASS`, data=fuel_data)</pre>
summary(fuel_lm_model2)
##
## Call:
## lm(formula = COEMISSIONS ~ 'ENGINE SIZE' + 'VEHICLE CLASS', data = fuel_data)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -98.407 -17.798 -1.848 16.516 213.494
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                      3.637 41.582 < 2e-16 ***
                         151.239
## 'ENGINE SIZE'
                          39.503
                                      1.147 34.444 < 2e-16 ***
## 'VEHICLE CLASS'SEDAN
                                      3.691 -0.363
                         -1.339
                                                        0.717
## 'VEHICLE CLASS'SPORT
                          59.086
                                      9.901
                                              5.968 4.01e-09 ***
## 'VEHICLE CLASS'SUV
                          30.109
                                      3.268
                                              9.213 < 2e-16 ***
## 'VEHICLE CLASS'TRUCK
                          35.874
                                      4.028
                                              8.907 < 2e-16 ***
## 'VEHICLE CLASS'VAN
                          39.780
                                      5.808 6.849 1.76e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 30.58 on 632 degrees of freedom
## Multiple R-squared: 0.7841, Adjusted R-squared: 0.7821
## F-statistic: 382.6 on 6 and 632 DF, p-value: < 2.2e-16
Now adding 'SIZE' also
fuel_lm_model2 <- lm(COEMISSIONS ~ `ENGINE SIZE` + `VEHICLE CLASS` + SIZE, data=fuel_data)
summary(fuel_lm_model2)
##
## Call:
  lm(formula = COEMISSIONS ~ 'ENGINE SIZE' + 'VEHICLE CLASS' +
##
       SIZE, data = fuel_data)
##
## Residuals:
       Min
                10 Median
                                3Q
                                       Max
## -94.484 -16.374 -1.489 16.749 217.162
##
## Coefficients:
```

8.086 23.129 < 2e-16 ***

Estimate Std. Error t value Pr(>|t|)

187.026

```
## 'ENGINE SIZE'
                         38.233
                                      1.175 32.548 < 2e-16 ***
## 'VEHICLE CLASS'SEDAN -29.977
                                      7.945 -3.773 0.000177 ***
## 'VEHICLE CLASS'SPORT
                         59.667
                                      9.732
                                              6.131 1.54e-09 ***
## 'VEHICLE CLASS'SUV
                          1.788
                                      6.704
                                              0.267 0.789780
## 'VEHICLE CLASS'TRUCK
                          8.759
                                      6.811
                                              1.286 0.198924
## 'VEHICLE CLASS'VAN
                         10.050
                                      8.349
                                              1.204 0.229159
## SIZEMedium
                          -4.184
                                      4.776 -0.876 0.381320
## SIZESmall
                         -32.467
                                      6.596 -4.922 1.09e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 30.05 on 630 degrees of freedom
## Multiple R-squared: 0.7922, Adjusted R-squared: 0.7895
## F-statistic: 300.2 on 8 and 630 DF, p-value: < 2.2e-16
Adding 'FUEL'
fuel_lm_model3 <- lm(COEMISSIONS ~ `ENGINE SIZE` + `VEHICLE CLASS` + SIZE + FUEL, data=fuel_data)
summary(fuel_lm_model3)
##
## Call:
## lm(formula = COEMISSIONS ~ 'ENGINE SIZE' + 'VEHICLE CLASS' +
       SIZE + FUEL, data = fuel_data)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -94.931 -16.266 -2.021 15.505 216.656
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
                                    31.1614
                                              4.675 3.60e-06 ***
## (Intercept)
                        145.6747
## 'ENGINE SIZE'
                         37.9330
                                     1.1622 32.639 < 2e-16 ***
## 'VEHICLE CLASS'SEDAN -31.3256
                                    7.8479 -3.992 7.34e-05 ***
## 'VEHICLE CLASS'SPORT 58.4328
                                              6.081 2.07e-09 ***
                                    9.6087
## 'VEHICLE CLASS'SUV
                                             0.052
                         0.3442
                                    6.6260
                                                       0.959
## 'VEHICLE CLASS'TRUCK
                         7.5216
                                    6.7283
                                              1.118
                                                       0.264
## 'VEHICLE CLASS'VAN
                        10.0736
                                    8.2763
                                             1.217
                                                       0.224
## SIZEMedium
                        -4.4438
                                    4.7143 -0.943
                                                       0.346
## SIZESmall
                        -32.8143
                                     6.5105 -5.040 6.09e-07 ***
## FUELDIESEL
                        -6.4332
                                    32.4762 -0.198
                                                       0.843
## FUELGAS
                                    30.0399
                         43.8523
                                              1.460
                                                       0.145
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 29.66 on 628 degrees of freedom
## Multiple R-squared: 0.7982, Adjusted R-squared: 0.795
## F-statistic: 248.4 on 10 and 628 DF, p-value: < 2.2e-16
```

Taking out FUEL as it was not statistically significant, doing what I want now

```
fuel_lm_model4 <- lm(COEMISSIONS ~ `ENGINE SIZE` + `VEHICLE CLASS` + SIZE + TRANSMISSION, data=fuel_dat
summary(fuel_lm_model4)
##
## Call:
## lm(formula = COEMISSIONS ~ 'ENGINE SIZE' + 'VEHICLE CLASS' +
      SIZE + TRANSMISSION, data = fuel_data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -91.444 -17.078 -1.292 18.073 220.139
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
                       189.499 8.257 22.950 < 2e-16 ***
## (Intercept)
## 'ENGINE SIZE'
                        37.918
                                   1.194 31.770 < 2e-16 ***
## 'VEHICLE CLASS'SEDAN -30.880
                                   7.963 -3.878 0.000116 ***
## 'VEHICLE CLASS'SPORT 60.703
                                    9.749 6.226 8.73e-10 ***
## 'VEHICLE CLASS'SUV
                        1.394
                                    6.704 0.208 0.835381
## 'VEHICLE CLASS'TRUCK
                        9.153
                                   6.810 1.344 0.179448
## 'VEHICLE CLASS'VAN
                        9.077
                                   8.369 1.085 0.278511
## SIZEMedium
                         -4.080
                                   4.773 -0.855 0.392901
## SIZESmall
                        -32.263
                                    6.592 -4.894 1.26e-06 ***
## TRANSMISSIONManual
                         -3.924
                                    2.707 -1.450 0.147617
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 30.03 on 629 degrees of freedom
## Multiple R-squared: 0.7929, Adjusted R-squared: 0.7899
## F-statistic: 267.5 on 9 and 629 DF, p-value: < 2.2e-16
library(modelsummary)
## Warning: package 'modelsummary' was built under R version 4.3.3
## Version 2.0.0 of 'modelsummary', to be released soon, will introduce a
##
    breaking change: The default table-drawing package will be 'tinytable'
    instead of 'kableExtra'. All currently supported table-drawing packages
##
##
    will continue to be supported for the foreseeable future, including
##
    'kableExtra', 'gt', 'huxtable', 'flextable, and 'DT'.
##
##
    You can always call the 'config_modelsummary()' function to change the
##
    default table-drawing package in persistent fashion. To try 'tinytable'
##
    now:
##
##
    config_modelsummary(factory_default = 'tinytable')
##
##
    To set the default back to 'kableExtra':
##
```

config_modelsummary(factory_default = 'kableExtra')

##

(Intercept)	161.437			
•		187.026	145.675	189.499
	(11.338)	(8.086)	(31.161)	(8.257)
ENGINE SIZE	45.093	38.233	37.933	37.918
	(1.116)	(1.175)	(1.162)	(1.194)
NUMBER OF GEARS	-2.654	,	,	,
	(2.301)			
VEHICLE CLASSSEDAN	,	-29.977	-31.326	-30.880
		(7.945)	(7.848)	(7.963)
VEHICLE CLASSSPORT		59.667	58.433	60.703
		(9.732)	(9.609)	(9.749)
VEHICLE CLASSSUV		1.788	0.344	1.394
		(6.704)	(6.626)	(6.704)
VEHICLE CLASSTRUCK		8.759	7.522	9.153
		(6.811)	(6.728)	(6.810)
VEHICLE CLASSVAN		10.050	10.074	9.077
		(8.349)	(8.276)	(8.369)
SIZEMedium		-4.184	-4.444	-4.080
		(4.776)	(4.714)	(4.773)
SIZESmall		-32.467	-32.814	-32.263
		(6.596)	(6.511)	(6.592)
FUELDIESEL			-6.433	
			(32.476)	
FUELGAS			43.852	
			(30.040)	
TRANSMISSIONManual				-3.924
				(2.707)
Num.Obs.	639	639	639	639
R2	0.723	0.792	0.798	0.793
R2 Adj.	0.722	0.790	0.795	0.790
AIC	6345.8	6173.3	6158.4	6173.1
BIC	6363.6	6217.9	6211.9	6222.2
Log.Lik. –	-3168.886	-3076.631	-3067.185	-3075.565
\mathbf{F}	828.333	300.160	248.432	267.509
RMSE	34.47	29.84	29.40	29.79

```
model_list <- list(
   "Model 1" = fuel_lm_model1,
   "Model 2" = fuel_lm_model2,
   "Model 3" = fuel_lm_model3,
   "Model 4" = fuel_lm_model4
)

summary_table <- modelsummary(model_list)

summary_table</pre>
```

library(stargazer)

##
Please cite as:

- ## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
- ## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer

	Dependent variable:				
		COEMISSIONS			
	(1)	(2)	(3)		
	45.093***	38.233***	37.933***		
	(1.116)	(1.175)	(1.162)		
NUMBER OF GEARG	0.054				
NUMBER OF GEARS'	-2.654 (2.301)				
	(2.001)				
VEHICLE CLASS'SEDAN		-29.977***	-31.326***		
		(7.945)	(7.848)		
VEHICLE CLASS'SPORT		59.667***	58.433***		
APHILOPE OPWOO DLOUI		(9.732)	(9.609)		
		(3.1.32)	(0.000)		
VEHICLE CLASS'SUV		1.788	0.344		
		(6.704)	(6.626)		
VEHICLE CLASS'TRUCK		8.759	7.522		
APHILOPP OPPOSITION		(6.811)	(6.728)		
		• •			
VEHICLE CLASS'VAN		10.050	10.074		
		(8.349)	(8.276)		
IZEMedium		-4.184	-4.444		
		(4.776)	(4.714)		
			•		
SIZESmall		-32.467***	-32.814***		
		(6.596)	(6.511)		
FUELDIESEL			-6.433		
. ♥====================================			(32.476)		
UELGAS			43.852		
			(30.040)		
RANSMISSIONManual					
TPHIPLIMITCOTLICHT					
onstant	161.437***	187.026***	145.675***		

```
##
                              (11.338)
                                                     (8.086)
                                                                             (31.161)
##
                               639
## Observations
                                                       639
                                                                                639
## R2
                               0.723
                                                      0.792
                                                                               0.798
## Adjusted R2
                              0.722
                                                      0.790
                                                                               0.795
                                               30.052 (df = 630)
## Residual Std. Error
                        34.555 (df = 636)
                                                                       29.658 (df = 628)
## F Statistic
               828.333*** (df = 2; 636) 300.160*** (df = 8; 630) 248.432*** (df = 10; 628) 267
## Note:
Ridge Regression
#str(fuel_data_dummies)
#install.packages("glmnet")
library(glmnet)
## Warning: package 'glmnet' was built under R version 4.3.3
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 4.3.3
## Loaded glmnet 4.1-8
y <- fuel_data_dummies$COEMISSIONS
lambda_values <- 10^seq(10, -2, length = 100)</pre>
ridge_model <- glmnet(fuel_data_dummies, y, alpha = 0, lambda = lambda_values)
#This will spit out all of the coefficients
\#coef(ridge\_model, s = 0.01)
coef_matrix <- as.matrix(coef(ridge_model, s = 0.01))</pre>
coef_df <- as.data.frame(coef_matrix, stringsAsFactors = FALSE)</pre>
names(coef_df) <- "Coefficient"</pre>
coef_df$Variable <- rownames(coef_df)</pre>
coef_df <- coef_df[order(-abs(coef_df$Coefficient)), ]</pre>
top_10_coef <- head(coef_df, 10)</pre>
```

*p<0.1

print(top_10_coef)

```
Variable
##
                          Coefficient
                                                COEMISSIONS
## COEMISSIONS
                            0.9985245
                                                 SIZE Small
## SIZE Small
                           -0.8193850
## SIZE_Medium
                           -0.7640605
                                                SIZE_Medium
## SIZE_Large
                           -0.7468186
                                                 SIZE_Large
## VEHICLE CLASS_SPORT
                           0.5543246
                                        VEHICLE CLASS SPORT
## VEHICLE CLASS_VAN
                            0.5062250
                                          VEHICLE CLASS VAN
                                        VEHICLE CLASS_TRUCK
## VEHICLE CLASS_TRUCK
                            0.4997911
## (Intercept)
                            0.4907870
                                                 (Intercept)
## VEHICLE CLASS_COMPACT
                            0.4845282 VEHICLE CLASS_COMPACT
## VEHICLE CLASS_SUV
                            0.4731350
                                          VEHICLE CLASS_SUV
x <- as.matrix(fuel_data_dummies %>% dplyr::select(-c(COEMISSIONS)))
y <- fuel_data_dummies$COEMISSIONS
cv_ridge <- cv.glmnet(x, y, alpha = 0)</pre>
plot(cv_ridge)
```



```
best_lambda <- cv_ridge$lambda.min

final_model <- glmnet(fuel_data_dummies, y, alpha = 0, lambda = best_lambda)

final_coef <- coef(final_model, s = best_lambda)

final_coef_matrix <- as.matrix(final_coef)</pre>
```

```
final_coef_df <- as.data.frame(final_coef_matrix, stringsAsFactors = FALSE)
names(final_coef_df) <- "Coefficient"
final_coef_df$Variable <- rownames(final_coef_df)

final_coef_df <- final_coef_df[order(-abs(final_coef_df$Coefficient)), ]
top_10_final_coef <- head(final_coef_df, 10)
print(top_10_final_coef)</pre>
```

##		${\tt Coefficient}$	Variable
##	(Intercept)	44.339824	(Intercept)
##	VEHICLE CLASS_SPORT	12.301270	VEHICLE CLASS_SPORT
##	VEHICLE CLASS_SEDAN	-7.636590	VEHICLE CLASS_SEDAN
##	VEHICLE CLASS_VAN	6.942059	VEHICLE CLASS_VAN
##	TURBO	5.719083	TURB0
##	VEHICLE CLASS_TRUCK	5.101337	VEHICLE CLASS_TRUCK
##	ENGINE SIZE	4.925938	ENGINE SIZE
##	CYLINDERS	4.609454	CYLINDERS
##	SIZE_Large	4.247873	SIZE_Large
##	SIZE_Small	-4.020796	SIZE_Small