

VOLEitH-based Signatures from Restricted Decoding Problems

<u>Sebastian Bitzer</u> Violetta Weger

Tun Uhrenturan

CBC25

Sebastian Bitzer (TUM)

Introduction to VOLE(itH)

- Thibauld Feneuil, Polynomial-IOP Vision of MPCitH
- Carsten Baum, VOLE-in-the-head and FAEST

Introduction to VOLE(itH)

- Thibauld Feneuil, Polynomial-IOP Vision of MPCitH
- Carsten Baum, VOLE-in-the-head and FAEST

R-SDP signatures

- Simple VOLEitH modeling
- Competitive performance

→ Hiding & binding commitment to u

→ Hiding & binding commitment to u

→ Add:
$$Q_1 + Q_2 = (u_1 + u_2)X + \dots + (Q_1 + Q_2)(\Delta) = q_1 + q_2$$

- → Hiding & binding commitment to u
- → Add: $Q_1 + Q_2 = (u_1 + u_2)X + \dots + (Q_1 + Q_2)(\Delta) = q_1 + q_2$
- → Multiply: $Q_1 \cdot Q_2 = (u_1 \cdot u_2)X^2 + \dots$ $(Q_1 \cdot Q_2)(\Delta) = q_1 \cdot q_2$

- → Hiding & binding commitment to u
- → Add: $Q_1 + Q_2 = (u_1 + u_2)X + \dots + (Q_1 + Q_2)(\Delta) = q_1 + q_2$
- → Multiply: $Q_1 \cdot Q_2 = (u_1 \cdot u_2)X^2 + \dots$ $(Q_1 \cdot Q_2)(\Delta) = q_1 \cdot q_2$

$$Q_1(X) = u_1 X + v_1$$

$$Q_2(X) = u_2 X + v_2$$

$$Q_1(X) = u_2 X + v_2$$

$$Q_2(X) = u_2 X + v_2$$

- → Hiding & binding commitment to u

Prover

 u_i, v_i

VOLE $\rightarrow \Delta, \tilde{q}_i = u_i \Delta + v_i$

Prover

 \longrightarrow $\Delta, \tilde{q}_i = u_i \Delta + v_i$

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

Prover

 u_i, v_i

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$\begin{split} P_1(X) &= \mathsf{eval}(f_1; Q_1, \dots, Q_n) \\ & \vdots \\ P_m(X) &= \mathsf{eval}(f_m; Q_1, \dots, Q_n) \end{split}$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

Prover

 u_i, v_i

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$\begin{split} P_1(X) &= \mathsf{eval}(f_1; Q_1, \dots, Q_n) \\ & \vdots \\ P_m(X) &= \mathsf{eval}(f_m; Q_1, \dots, Q_n) \end{split}$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

Prover

 u_i, v_i

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

 \vdots
 $P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n)$

$$\begin{array}{c}
t_1, \dots, t_n \\
P_1, \dots, P_m
\end{array}$$

$$\begin{array}{c}
deg I \\
P_i(\Delta)
\end{array}$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$\deg P_j(X) \stackrel{?}{=} d-1$$
 $P_j(\Delta) \stackrel{?}{=} \operatorname{eval}(f_j;q_1,\ldots,q_n)$

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

Prover

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

 \vdots
 $P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n)$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$P_1, \dots, P_m \longrightarrow \deg P_j(X) \stackrel{?}{=} d - 1$$

$$P_j(\Delta) \stackrel{?}{=} \operatorname{eval}(f_j; q_1, \dots, q_n)$$

Correctness

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

Prover

$$u_i, v_i$$

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

$$P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n)$$

$$t_1,\ldots,t_n$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$P_1,\ldots,P_m$$

$$\deg P_j(X) \stackrel{?}{=} d - 1$$

$$\deg P_j(X) \stackrel{?}{=} d-1$$
 $P_j(\Delta) \stackrel{?}{=} \operatorname{eval}(f_j;q_1,\ldots,q_n)$

Correctness

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

Soundness

Prover

$$v_i, v_i \longrightarrow \Delta, \tilde{q}_i = u_i \Delta + v_i$$

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

 \vdots
 $P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n)$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$\deg P_j(X) \stackrel{?}{=} d - 1$$

$$P_j(\Delta) \stackrel{?}{=} \operatorname{eval}(f_j; q_1, \dots, q_n)$$

$$P_j(\Delta) \stackrel{?}{=} \mathsf{eval}(f_j; q_1, \dots, q_n)$$

Correctness

$$P_{j}(X) = \underbrace{f_{j}(w_{1}, ..., w_{n})}_{=0} X^{d} + ...$$

$$\Pr[P'_{j}(\Delta) = P_{j}(\Delta)] \leq \frac{d}{|\mathbb{F}|}$$

$$\Pr[P'_j(\Delta) = P_j(\Delta)] \le \frac{d}{|\mathbb{F}|}$$

Prover

$$u_i, v_i$$

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

 \vdots
 $P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n)$

$$t_1,\ldots,t_n$$

$$P_1,\ldots,P_m$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$\deg P_j(X) \stackrel{?}{=} d - 1$$

$$\deg P_j(X) \stackrel{?}{=} d-1$$
 $P_j(\Delta) \stackrel{?}{=} \operatorname{eval}(f_j;q_1,\ldots,q_n)$

Correctness

$$P_{j}(X) = \underbrace{f_{j}(w_{1}, ..., w_{n})}_{=0} X^{d} + ...$$

$$\Pr[P'_{j}(\Delta) = P_{j}(\Delta)] \leq \frac{d}{|\mathbb{F}|}$$

$$\Pr[P'_j(\Delta) = P_j(\Delta)] \le \frac{d}{|\mathbb{F}|}$$

Prover

$$u_i, v_i \longleftrightarrow Q'_j(X)$$

 $q_i = \tilde{q}_i + t_i \cdot \Delta$

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n) + Q_1'$$

$$\vdots$$

$$P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n) + Q_m'$$

$$\deg P_j(X) \stackrel{?}{=} d-1$$

$$P_j(\Delta) \stackrel{?}{=} \mathsf{eval}(f_j; q_1, \dots, q_n) + q_j'$$

$$P_{j}(X) = \underbrace{f_{j}(w_{1}, ..., w_{n})}_{=0} X^{d} + ...$$

$$\Pr[P'_{j}(\Delta) = P_{j}(\Delta)] \leq \frac{d}{|\mathbb{F}|}$$

$$\Pr[P'_j(\Delta) = P_j(\Delta)] \le \frac{d}{|\mathbb{F}|}$$

Prover

$$u_i, v_i$$
 $Q'_j(X)$

$$(x, v_i)$$
 \leftarrow $(VOLE)$ \rightarrow

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$\begin{split} P_1(X) &= \mathsf{eval}(f_1; Q_1, \dots, Q_n) + Q_1' \\ & \vdots \\ P_m(X) &= \mathsf{eval}(f_m; Q_1, \dots, Q_n) + Q_m' \end{split}$$

$$P_1,\ldots,P_m$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$\deg P_j(X) \stackrel{?}{=} d - 1$$

$$P_j(\Delta) \stackrel{?}{=} \operatorname{eval}(f_j; q_1, \dots, q_n) + q_j'$$

Correctness

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

$$\Pr[P'_j(\Delta) = P_j(\Delta)] \le \frac{d}{|\mathbb{F}|}$$

Prover

$$u_i, v_i$$
$$Q'(X)$$

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$ $q' = Q'(\Delta)$

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

:

$$P_m(X)$$
 = eval $(f_m;Q_1,\ldots,Q_n)$

$$P(X) = \sum_{j} \chi_{j} \cdot P_{j}(X) + Q'(X)$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$P(\Delta) \stackrel{?}{=} \sum_{j} \chi_{j} \cdot \text{eval}(f_{j}; q_{1}, \dots, q_{n}) + q'$$

Correctness

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

Soundness

$$\Pr[P'_j(\Delta) = P_j(\Delta)] \le \frac{d}{|\mathbb{F}|}$$

ZKnowledge

Mask via $Q_j'(X)$

Size

- 1

Prover

$$u_i, v_i$$
$$Q'(X)$$

 $\Delta, \tilde{q}_i = u_i \Delta + v_i$ $q' = Q'(\Delta)$

Verifier

$$t_i = w_i - u_i$$
$$Q_i(X) = w_i \cdot X + v_i$$

$$P_1(X) = \operatorname{eval}(f_1; Q_1, \dots, Q_n)$$

:

$$P_m(X) = \operatorname{eval}(f_m; Q_1, \dots, Q_n)$$

$$P(X) = \sum_{j} \chi_{j} \cdot P_{j}(X) + Q'(X)$$

$$q_i = \tilde{q}_i + t_i \cdot \Delta$$

$$\deg P(X) \stackrel{?}{=} d - 1$$

$$P(\Delta) \stackrel{?}{=} \sum_{j} \chi_{j} \cdot \text{eval}(f_{j}; q_{1}, \dots, q_{n}) + q'$$

Correctness

$$P_j(X) = \underbrace{f_j(w_1, ..., w_n)}_{=0} X^d + ...$$

Soundness

$$\Pr[P_j'(\Delta) = P_j(\Delta)] \le \frac{d}{|\mathbb{F}|}$$

ZKnowledge -

 $\mathsf{Mask}\;\mathsf{via}\;Q_j'(X)$

- Size

Witness size + degree

 f_1, \ldots, f_m : small witness, low degree

 f_1, \ldots, f_m : small witness, low degree & hard to invert

 f_1, \ldots, f_m : small witness, low degree & hard to invert

Finding w_1, \ldots, w_n s.t.:

$$f_1(w_1,\ldots,w_n)$$
 = 0 \leftarrow equivalent \rightarrow $f_m(w_1,\ldots,w_n)$ = 0

Solving a hard problem

- → Breaking AES
- Multivariate quadratic

 f_1, \ldots, f_m : small witness, low degree & hard to invert

Finding w_1, \ldots, w_n s.t.:

 $f_m(w_1,\ldots,w_n)=0$

$$f_1(w_1,\ldots,w_n)$$
 = 0 \leftarrow equivalent \rightarrow \vdots

Solving a hard problem

- → Breaking AES
- → Multivariate quadratic
- Hamming-metric SDP

 f_1, \ldots, f_m : small witness, low degree & hard to invert

Finding w_1, \ldots, w_n s.t.:

$$f_1(w_1,\ldots,w_n)=0$$

$$f_m(w_1,\ldots,w_n)=0$$

← equivalent →

Solving a hard problem

- Breaking AES
- → Multivariate quadratic
- → Hamming-metric SDP
- → Restricted SDP

R-SDPs and Where to Find Them

Restricted SDP (R-SDP) —

Given: $\mathcal{E} \subset \mathbb{F}, \ s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

R-SDPs and Where to Find Them

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $\boldsymbol{e} \in \mathcal{E}^n$ s.t. $\boldsymbol{e} \boldsymbol{H}^{\scriptscriptstyle \top} = \boldsymbol{s}$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}, \ s \in \mathbb{F}^{n-k} \ \text{and} \ H \in \mathbb{F}^{(n-k) \times n}$

Find: $e \in \mathcal{E}^n$ s.t. $e H^{\top} = s$

CROSS:

$$\rightarrow \mathbb{F}_{127}, \mathcal{E} = \{1, 2, 4, \dots, 64\}$$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $\boldsymbol{e} \in \mathcal{E}^n$ s.t. $\boldsymbol{e}\boldsymbol{H}^{\scriptscriptstyle \top}$ = \boldsymbol{s}

CROSS:

→
$$\mathbb{F}_{127}$$
, $\mathcal{E} = \{1, 2, 4, \dots, 64\}$

→
$$\mathbb{F}_3$$
, $\mathcal{E} = \{1, 2\}$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $\boldsymbol{e} \in \mathcal{E}^n$ s.t. $\boldsymbol{e}\boldsymbol{H}^{\scriptscriptstyle \intercal}$ = \boldsymbol{s}

CROSS:

- $\rightarrow \mathbb{F}_{127}, \mathcal{E} = \{1, 2, 4, \dots, 64\}$
- → CVE-like ID protocol

WAVE-like:

- → \mathbb{F}_3 , $\mathcal{E} = \{1, 2\}$
- → hash-&-sign

no MPCitH

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $\boldsymbol{e} \in \mathcal{E}^n$ s.t. $\boldsymbol{e}\boldsymbol{H}^{\scriptscriptstyle \intercal}$ = \boldsymbol{s}

CROSS:

- $\rightarrow \mathbb{F}_{127}, \mathcal{E} = \{1, 2, 4, \dots, 64\}$
- → CVE-like ID protocol

WAVE-like:

- → \mathbb{F}_3 , $\mathcal{E} = \{1, 2\}$
- → hash-&-sign

no MPCitH, until now;)

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $\boldsymbol{e} \in \mathcal{E}^n$ s.t. $\boldsymbol{e}\boldsymbol{H}^{\scriptscriptstyle \top} = \boldsymbol{s}$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $\boldsymbol{e} \in \mathcal{E}^n$ s.t. $\boldsymbol{e} \boldsymbol{H}^{\scriptscriptstyle \intercal} = \boldsymbol{s}$

Restriction:

Parity checks:

$$f_i = \prod_{\alpha \in \mathcal{E}} (x_i - \alpha), i \in [n]$$

$$f_{n+i} = s_i - \langle (x_1, \dots, x_n), \mathbf{h}_i \rangle, i \in [n-k]$$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$

Find: $e \in \mathcal{E}^n$ s.t. $eH^{\top} = s$

Restriction:

Parity checks:

$$f_i = \prod_{\alpha \in \mathcal{E}} (x_i - \alpha), i \in [n]$$
 $f_{n+i} = s_i - \langle (x_1, \dots, x_n), \mathbf{h}_i \rangle, i \in [n-k]$

length n, degree $|\mathcal{E}|$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}, \ s \in \mathbb{F}^{n-k} \ \text{and} \ A \in \mathbb{F}^{(n-k) \times k}$

Find: $e \in \mathcal{E}^n$ s.t. $e(A \mid \mathbf{1})^{\mathsf{T}} = s$

Restriction:

Parity checks:

$$f_i = \prod_{\alpha \in \mathcal{E}} (x_i - \alpha), i \in [n]$$

$$f_{n+i} = s_i - \langle (x_1, \dots, x_n), \boldsymbol{h}_i \rangle, i \in [n-k]$$

length n, degree $|\mathcal{E}|$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $A \in \mathbb{F}^{(n-k) \times k}$ Find: $e' \in \mathcal{E}^k$ s.t. $s - e' A^{\top} \in \mathcal{E}^{n-k}$

Restriction:

Parity checks:

$$f_i = \prod_{\alpha \in \mathcal{E}} (x_i - \alpha), i \in [n]$$

$$f_{n+i} = s_i - \langle (x_1, \dots, x_n), \boldsymbol{h}_i \rangle, i \in [n-k]$$

length n, degree $|\mathcal{E}|$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $A \in \mathbb{F}^{(n-k) \times k}$ Find: $e' \in \mathcal{E}^k$ s.t. $s - e'A^\top \in \mathcal{E}^{n-k}$

Restriction:

$$f_i = \prod_{\alpha \in \mathcal{E}} (x_i - \alpha), i \in [k]$$

$$f_{k+i} = \prod_{\alpha \in \mathcal{E}} (x'_i - \alpha), i \in [n - k]$$

Parity checks:

$$f_{i} = \prod_{\alpha \in \mathcal{E}} (x_{i} - \alpha), i \in [k]$$

$$f_{n+i} = s_{i} - \langle (x_{1}, \dots, x_{n}), \mathbf{h}_{i} \rangle, i \in [n-k]$$

$$f_{k+i} = \prod_{\alpha \in \mathcal{E}} (x'_{i} - \alpha), i \in [n-k]$$

$$x'_{i} = s_{i} - \langle (x_{1}, \dots, x_{k}), \mathbf{a}_{i} \rangle, i \in [n-k]$$

length n, degree $|\mathcal{E}|$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $A \in \mathbb{F}^{(n-k) \times k}$ Find: $e' \in \mathcal{E}^k$ s.t. $s - e'A^\top \in \mathcal{E}^{n-k}$

Restriction:

Parity checks:

$$f_{i} = \prod_{\alpha \in \mathcal{E}} (x_{i} - \alpha), i \in [k]$$

$$f_{n+i} = s_{i} - \langle (x_{1}, \dots, x_{n}), \mathbf{h}_{i} \rangle, i \in [n-k]$$

$$f_{k+i} = \prod_{\alpha \in \mathcal{E}} (x'_{i} - \alpha), i \in [n-k]$$

$$x'_{i} = s_{i} - \langle (x_{1}, \dots, x_{k}), \mathbf{a}_{i} \rangle, i \in [n-k]$$

length k, degree $|\mathcal{E}|$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $A \in \mathbb{F}^{(n-k) \times k}$ Find: $e' \in \mathcal{E}^k$ s.t. $s - e' A^{\top} \in \mathcal{E}^{n-k}$

Restriction:

Parity checks:

$$f_{i} = \prod_{\alpha \in \mathcal{E}} (x_{i} - \alpha), i \in [k]$$

$$f_{n+i} = s_{i} - \langle (x_{1}, \dots, x_{n}), h_{i} \rangle, i \in [n-k]$$

$$f_{k+i} = \prod_{\alpha \in \mathcal{E}} (x'_{i} - \alpha), i \in [n-k]$$

$$x'_{i} = s_{i} - \langle (x_{1}, \dots, x_{k}), a_{i} \rangle, i \in [n-k]$$

Restricted SDP (R-SDP) -

Given: $\mathcal{E} \subset \mathbb{F}$, $s \in \mathbb{F}^{n-k}$ and $A \in \mathbb{F}^{(n-k) \times k}$ Find: $e' \in \mathcal{E}^k$ s.t. $s - e' A^{\top} \in \mathcal{E}^{n-k}$

Restriction:

Parity checks:

$$f_i = \prod_{\alpha \in \mathcal{E}} (x_i - \alpha), i \in [k]$$

$$f_{k+i} = \prod_{\alpha \in \mathcal{E}} (x'_i - \alpha), i \in [n - k]$$

$$f_{i} = \prod_{\alpha \in \mathcal{E}} (x_{i} - \alpha), i \in [k]$$

$$f_{n+i} = s_{i} - \langle (x_{1}, \dots, x_{n}), \mathbf{h}_{i} \rangle, i \in [n-k]$$

$$f_{k+i} = \prod_{\alpha \in \mathcal{E}} (x'_{i} - \alpha), i \in [n-k]$$

$$x'_{i} = s_{i} - \langle (x_{1}, \dots, x_{k}), \mathbf{a}_{i} \rangle, i \in [n-k]$$

Numbers Don't Lie

Assumption	R-S	Size			
	\overline{n}	k	p	$ \mathcal{E} $	[kB]
WAVE-like	518	191	3	2	~2.9
CROSS	127	76	127	7	~4.9

Rémi Bricout et al., Ternary Syndrome Decoding with Large Weight

Marco Baldi et al., CROSS: Codes and Restricted Objects Signature Scheme

Numbers Don't Lie

Assumption	R-S	Size			
	\overline{n}	k	p	$ \mathcal{E} $	[kB]
WAVE-like	518	191	3	2	~2.9
CROSS	127	76	127	7	~4.9

Rémi Bricout et al., Ternary Syndrome Decoding with Large Weight

Marco Baldi et al., CROSS: Codes and Restricted Objects Signature Scheme

Vu Nguyen et al., A BKW-Style Solver for the Restricted Decoding Problem

Numbers Don't Lie

Assumption	R-S	Size			
, 100ampuo	\overline{n}	k	p	$ \mathcal{E} $	[kB]
WAVE-like CROSS	518 127	191 76	3 127	2 7	~2.9 ~4.9
Regular SDP Rank-SDP PKP					~3.7 ~2.9 ~3.9

Rémi Bricout et al., Ternary Syndrome Decoding with Large Weight

Marco Baldi et al., CROSS: Codes and Restricted Objects Signature Scheme

Vu Nguyen et al., A BKW-Style Solver for the Restricted Decoding Problem

Conclusion

VOLEitH-based Signatures from R-SDP

- © Recap of VOLEitH & R-SDP
- © Simple Modeling of R-SDP
- © Competitive performance

Conclusion

VOLEitH-based Signatures from R-SDP

- Recap of VOLEitH & R-SDP
- © Simple Modeling of R-SDP
- © Competitive performance

Research questions:

- TCitH Merkle trees or other optimizations?
- Concrete hardness of generic R-SDP

Conclusion

VOLEitH-based Signatures from R-SDP

- © Recap of VOLEitH & R-SDP
- © Simple Modeling of R-SDP
- © Competitive performance

Research questions:

- TCitH Merkle trees or other optimizations?
- Oncrete hardness of generic R-SDP

Thank you!

Questions?

