	Utech
Name:	
Roll No.:	As Planton (1/8 Samplings 2nd Explicited
Invigilator's Signature :	

CS/B.TECH (EEE/ICE/PWE) (OLD)/SEM-4/EC-402/2012 2012

DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) The binary equivalent number of (25.75) $_{10}$ is
 - a) 11001.110
- b) 11001.011
- c) 11001.111
- d) 11001.000.
- ii) The hexadecimal equivalent number of (348.35) $_{10}$ is
 - a) 15C.688
- b) 15C.599
- c) 15B.599
- d) 15A.599.
- iii) The decimal equivalent number of (1101.11) $_2$ is
 - a) 13.25

b) 13.75

c) 13.5

d) 13.00

4209 (O) [Turn over

CS/B.TECH (EEE/ICE/PWE) (OLD)/SEM-4/EC-402/2012

iv)	The decimal equivalent number of (427.35) $_8$ is								
	a)	279.456732		b)	279	0.4567	7789	suffered .	
	c)	279.432167		d)	279	0.453 1	125		
v)	The	decimal equiv	of (6	SABC.	2A) ₁₆ is				
	a)	27324.125		b)	273	325.67	78		
	c)	27324.164		d)	273	324.65	54.		
vi)	The binary equivalent number of (155.52) $_{8}$ is								
	a)	001101101.1	101010	b)	001	1011	01.1011	01	
	c)	001101101.1	10000	d)	001	1011	01.1100	11	
vii)	vii) The binary equivalent number of (1CEF.2B) $_{16}$ is								
	a) 1110011101111.00101011								
	b) 1110011101111.00111011								
	c) 1110011101111.1101011								
	d) 1110011101111.1001001								
viii)	The hexadecimal equivalent number of (7324.456) $_{8}$ is								
	a)	ED4.87		b)	ED	4.47			
	c)	ED4.57		d)	ED	4.97.			
ix)	The 111	result of 01 - 1101 is	subtract	ion	of	the	binary	bits	
	a)	00001		b)	100	000			
	c)	10001		d)	100)11.			
x)	The result of addition of the binary bits 1101 + 11101								
	is								
	a)	00001		b)	100	000			
	c)	10001		d)	100)11.			
4209 (O)			2						

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Simplify the Boolean function $F(A, B, C, D) = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$ using *K*-map.
- 3. What are meant by SOP and POS from Boolean expression? Give examples.
- 4. Design a 4 bit binary adder / subtractor using IC 7483.
- 5. Design a full adder circuit using two half adder circuits.
- 6. Design a binary full adder using a few 4 : 1 MUX and other necessary logic gates.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Define universal gate. Explain how the basic gates can be realized using NAND gates.
 - b) State and explain De Morgan's theorems which convert a sum into a product form and vice versa.
 - c) If $A^{T}B + CD^{T} = 0$, then prove that $AB + C^{T}(A^{T} + D^{T}) = AB + BD + B^{T}D^{T} + A^{T}C^{T}D$.

6 + 4 + 5

- 8. a) Design 5 : 32 decoder using one 2 : 4 and four 3 : 8 decoder ICs.
 - b) Design the logic circuitry for the A and C output of a BCD-to-7 segment decoder with active low outputs.
 - c) Implement the following function using IC 74138 and gates :

$$F(A, B, C) = \prod (0, 1, 3, 7)$$
 5 + 6 + 4

4209 (O)

3

[Turn over

- 9. a) Explain the function of basic flip-flop. Draw and explain the logic diagram of Master slave *D* flip-flop using NAND gates.
 - b) Show how SR flip-flop can be converted into a D flip-flop.
 - c) Give the difference between edge triggering and level triggering. 5+6+4
- 10. a) What is modulus counter? Design MOD 10 synchronous counter using JK flip-flop and implement it.
 - b) Design a 4-bit unit distance Up-Down counter.
 - c) Explain the working of serial-in-parallel-out shift register with logic diagram and waveforms. 5 + 5 + 5
- 11. a) Describe the operation of successive approximation type analog to digital converter. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type analog to digital converter. Define quantizing error for an analog to digital converter.
 - b) Draw a neat diagram for a R-2R ladder type digital to analog converter and explain its operation.
 - c) Explain the working of a shift register. 6 + 5 + 4
- 12. Write short notes on any three from the following: 3×5
 - a) EEPROM
 - b) Odd parity generator
 - c) Quine McCluskey method
 - d) Johnson counter
 - e) Serial-in-parallel-out shift register.