Secure Infrastructure Access Protocol: SATP

SIAP Executive Summary July 19, 2025

1 Introduction

Public-key lifecycles, certificate sprawl and looming quantum attacks are an awkward fit for devices that must log-in, unlock data or sign transactions while offline. SIAP discards trap-door mathematics and builds an authentication layer entirely from SHA-3-family hashes and a memory-hard KDF. The result is a two-factor, post-quantum system that

- yields a fresh, single-use 256-bit secret in constant time;
- burns that secret immediately, providing deterministic forward secrecy;
- needs **no** PKI, CA, OCSP or epoch-sync;
- fits inside ≤ 30 kB of flash on a smart-card-class MCU.

The protocol's identity hierarchy; domain / server-group / server, and user-group / user / card-ID, lets operators revoke any scope with one database edit, while its plaintext header enables early rejection of stale or cloned cards before expending KDF cycles.

2 Cryptographic Foundation (Recap)

Primitive	Role	PQ margin*
SHAKE-256	All derivations, UID & key generation	$\geq 2^{128}$
KMAC-256	Optional MAC / signature adapter	Forgery $\leq 2^{-128}$
SCB-KDF	Pass-phrase hardening	≥ 2 ²⁰ CPU-MiB per guess
RCS-256†	Down-stream AEAD / storage cipher	$\geq 2^{128}$

^{*} Grover-bounded. † Optional—SIAP itself is cipher-agnostic.

3 Protocol Walk-Through (10 ms on 100 MHz Cortex-M4)

- 1. Card Insert & Header Read 64 bytes
- 2. Pass-Phrase Prompt & SCB Decrypt variable ($\approx 4 \text{ kB}$)
- 3. Leaf Key Compare & Burn 32 bytes

Total traffic < 200 bytes; ~1.1 M cycles including SCB under default cost.

4 Performance & Cost Metrics

Metric	FIDO2 + ECC	Kyber-PSK	SIAP
Flash code (server)	240 kB	380 kB	28 kB

RAM at login	16 kB	32 kB	5 kB
Login energy (coin-cell)	0.17 mWh	0.28 mWh	0.012 mWh
Annual cert upkeep (10 k tokens)	US \$18 k	US \$14 k	US \$0

5 Expanded Use-Case Catalogue & Business Value

#	Domain	Headline benefit	Illustrative value
5.1	PCI-DSS 4.0 jump-	MFA without PKI; ≤ 12	Saves US \$320 k / yr in cert & HSM
	hosts	ms login	licenses across 50 hosts
5.2	Offline CBDC	100% hash-based; no	BOM < US \$1.50; meets BIS "week-
	wallets	cert inject	long offline" target
5.3	Technician tokens	Local auth; self-destruct	Reduces truck-rolls; passes PCI
	(ATM / PLC)	after 5 bad PINs	device-tamper clause
5.4	Cold-wallet custody	One-leaf-per-	Cuts signing latency 95%; audit-ready
		withdrawal; PQ safe	forward secrecy
5.5	OEM firmware	One card per tester; no	Halts line automatically when Kidx
	unlock	internet	== Kn, preventing rogue flashing
5.6	TLS/IKE PSK	Drop-in 256-bit PSK per	Removes static keys, saves US \$1.2
	refresh	session	M cloud CPU in API mesh
5.7	High-freq trading	1.2 μs leaf derivation	Shaves 90 µs vs TLS, adding 6 bps
			P&L per engine
5.8	SCADA kiosks	Works air-gapped; 10-	Avoids US \$4.6 M RSA-HSM
		year tokens	upgrade across 3,000 substations

6 Security Recap & Economic Impact

- **PQ Resilience** Every operation reduces to SHA-3 capacity; Grover search cost $\geq 2^{128}$.
- **Zero-Standing-Privilege** Burn-after-use removes latent credentials; blast-radius = one server host's Kbase key.
- **Regulatory fit** Two-factor replay-proof log lines simplify PCI DSS, SOX 404 & PSD2 audits.
- Lifecycle savings Eliminating cert issuance, renewal and CRL push removes ≈ US \$18 per token over 10 years; at 1 M CBDC cards that is US \$18 M OPEX saved.

7 Adoption Path & Interoperability

- 1. **PAM / SSH plug-in** authenticate shell access with SIAP leaf before existing password flow
- 2. **Proxy-side PSK mode** reverse proxies call SIAP, inject leaf into TLS-1.3 or QUIC binder.
- 3. **Firmware-only upgrade** 100-line stub adds SIAP to legacy UART bootloaders.
- 4. **CBOR & WebAuthn adapters** draft mappings allow browsers or COSE messages to carry SIAP proofs unchanged.

8 Strategic Roadmap (2025 \rightarrow 2030)

Year	Milestone	Stakeholder benefit
2025	SCB reference audited / open-sourced	Developer trust, bug bounty
2026	FIPS 140-3 validation of SCB & SHAKE	Federal & payment-terminal
	profile	procurement
2027	IETF "SIAP-Auth" PSK draft	Multi-vendor interop
2028	Secure-Element profile (JavaCard & eSIM)	Transit & banking smart-card roll-
		outs
2029	CBDC national pilot (offline retail)	Ensures week-long spend resilience
2030	Fully PQ stack: SIAP + PQ-MAC + RCS-256	Space, medical, automotive
	ASIC	certification

9 Extended Conclusion

SIAP demonstrates that strong two-factor, forward-secret authentication need not wait for lattice or code-based standards, nor suffer the drag of certificate logistics. By relying solely on SHA-3-family primitives and a memory-hard transform, it delivers a future-proof root of trust that executes in microseconds, survives week-long offline gaps, and fits into the smallest secure hardware. Whether guarding card-data jump-hosts, powering million-card offline-payment schemes, or unlocking firmware in a no-internet factory, SIAP converts a trivial flash footprint into a cryptographic posture sturdy enough to outlast both cloud-scale attackers and quantum harvesters. Organizations that adopt SIAP between now and the end of the decade secure an immediate cut in operational overhead and a clear migration path away from brittle public-key stacks, without rewiring the protocols they already run.