Module 5

(Connecting Device & VLAN)

(Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back — N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CD,CDMA/CA; Wired LAN, Wireless LANs, Connecting LANs and Virtual LANs)

Dr. Nirnay Ghosh

Assistant Professor

Department of Computer Science & Technology IIEST, Shibpur

Connecting Devices

- Connect hosts to make a network
- Connect networks to make an internet
- Operate in different layers of TCP/IP protocol suite
- Three types of devices:
 - Hub/Repeater
 - Link-layer Switch
 - Router

• Hub/Repeater

- Physical layer device
- Used to connect Ethernet LAN segments (for bus topology LANs)
- Regenerate corrupted bits
- Sends received frame out from every port (except the receiving port)
- No filtering capability

Function of a Repeater

4/22/2022

Connecting Devices (Contd...)

- Link-layer Switch/Bridge
 - Operates in: Physical, Data-link layers
 - Physical layer: regenerates received signal
 - Data-link layer: forwarding based on MAC address
 - Filtering

4/22/2022

- Does not send out to all outgoing ports
- Checks destination MAC address
- Outgoing port: refer to Switching table

- Learning Switch
 - Earlier switches static table
 - Manually updated: very inefficient
 - Dynamic table: maps addresses to ports (interfaces) automatically
 - Gradually learns from the frames' movements
 - Inspects both source and destination addresses
 - Destination address: used for forwarding decision (table lookup)
 - Source address: adding entries and updating

Connecting Devices (Contd...)

- Loop Problem
 - Occurs due to redundancy in switches between a pair of LANs
 - Redundancy: makes the system fault tolerant; creates loops in the system
 - Loops: created if two or more LANs (using hubs) are connected by more than one switch
 - a. Station A sends a frame to station D

- c. Both switches forward the frame
- c. Both switches forward the frame Computer Networks (Module
- **Loop Problem in a Learning Switch**

Spanning Tree Algorithm

- Switches use spanning tree algorithm to create loop-less topology (IEEE Specs)
 - Spanning tree: graph with no loops
- Objective: reach from one LAN to another through one path only (no loop)
- Logical topology an overlay over the actual physical one

Connecting Devices (contd...)

- Spanning Tree Algorithm
 - Physical topology modeled by graph
 - Nodes switches and LANs; edges connection between them
 - Generate minimal spanning tree from this graph
 - Assign cost (metric) to the edges
 - Potential candidate: minimum hop count
 - Switch-to-LAN: 1; LAN-to-switch:0
 - Three steps to find minimal spanning tree:
 - Find the root based on smallest switch ID
 - Find the shortest path from the root to every other switch or LAN
 - Combine the shortest paths to create the minimal spanning tree
 - Identify forwarding ports, blocking ports

Graphical Representation with Cost Assigned to each Edge

Minimal Spanning Tree in a System of Switches

- Advantages of Switches
 - Collision elimination increases the average bandwidth available to a host in the network
 - Connects heterogeneous devices devices that use different protocols at the physical layer (data rates) and different transmission media

Connecting Devices (Contd...)

- Routers
 - Internetworking device connects independent networks to form an internetwork
 - Operates in: Physical, Data-link, Network layers
 - Physical layer: regenerates received signal
 - Data-link layer: checks the physical addresses (source and destination) contained in the packet
 - Network Layer: checks the network-layer address

- Difference between Router and Repeater/Switch
 - Physical & logical addresses for each interface
 - Acts only on those packets in which the link-layer destination address matches the address of the interface at which the packet arrives
 - Changes the link-layer address of the packet (both source and destination) when it forwards the packet.

Virtual LAN (VLAN)

- Switched LAN: changes in the work group
 physical changes in the network
 configuration
- VLAN: configured by software and not by physical wiring
- VLAN software:
 - Divides a LAN into several logical LANs virtual LAN (VLAN)
 - Group membership defined by software any station can move across VLANs
 - All members belonging to a VLAN can receive broadcast messages sent to that particular VLAN
 - VLAN defines broadcast domains
 - Stations belonging to a VLAN communicate with one another similar to be in a same physical segment.

Switched LAN

A Switch using VLAN Software

Virtual LAN (VLAN)

- Membership characteristics in VLAN group
 - Interface number; MAC address; IP address; Multicast IP address
- Configuration
 - Manual: VLAN setup, migration of stations across VLANs done manually
 - Automatic: stations migrate across VLANs automatically based on predefined criteria
 - Semi-automatic: manual initialization; automatic migration
- Advantages
 - Cost and Time reduction: reduces migration cost; saves time of physical reconfiguration
 - Creating Virtual Work Groups
 - Security: broadcast messages within a group – cannot be received by users in other groups

Two Switches in a backbone using VLAN Software

- Communication between Switches: switches need to know the status of stations (VLAN) connected to other switches
 - Table maintenance: switch creates and shares table after recording membership from broadcast frame
 - Frame tagging: extra header added to MAC frame to define destination VLAN
 - Time Division Multiplexing (TDM): the connection divided into time-shared channels equal to number of VLANs.