СОДЕРЖАНИЕ

введение

ОСНОВНЫЕ ЭТАПЫ

ОСНОВНЫЕ МОДЕЛИ

- КАСКАДНАЯ МОДЕЛЬ
- V-ОБРАЗНАЯ МОДЕЛЬ
- ИНКРЕМЕНТАЛЬНАЯ МОДЕЛЬ

ДОКУМЕНТАЦИЯ

ВВЕДЕНИЕ

Проектирование — процесс определения архитектуры, компонентов, интерфейсов и других характеристик системы управления или ее определенной части.

Результатом проектирования является **проект** — целостная совокупность моделей, свойств или характеристик, описанных в форме, пригодной для реализации системы (ISO 24765) — т. е. это чертежи, схемы, модели, алгоритмы, описания, перечни, листы технических данных.

Разработка — это процесс проектирования и непосредственного создания системы. Результатом разработки является готовая система «под ключ».

Проектирование является частью (одним из начальных этапов) разработки системы.

Модель описывает стадии (этапы) жизненного цикла разработки — что и когда происходит.

Методология включает в себя набор методов по управлению процессом разработки: это правила, техники и принципы, которые делают процесс разработки более эффективным.

ОСНОВНЫЕ ЭТАПЫ

ЗАДАНИЕ

получение технических условий

обследование объекта

НИР

разработка ТЗ

ПРОЕКТИРОВАНИЕ

предпроектное обследование

эскизный, технический проекты

РАЗРАБОТКА

приобретение оборудования

рабочий проект

- схемотехника
- программирование

тестирование

документирование

ИНТЕГРАЦИЯ

поставка оборудования

монтаж, шэф-монтаж

ПНР, испытания

обучение персонала

пробная эксплуатация

актирование

СОПРОВОЖДЕНИЕ

гарантийное обслуживание

постгарантийное обслуживание

модернизация

ОСНОВНЫЕ ЭТАПЫ

ЗАДАНИЕ

- 1. Получение технических условий (не всегда требуется)
- 2. Обследование объекта и формирование предоварительных требований
- 3. Проведение научно-исследовательских работ (не всегда требуется)
- 4. Разработка технического задания
 - на проектирование (если без разработки)
 - на разработку (если проектирование + разработка)

ПРОЕКТИРОВАНИЕ

- 1. Обследование объекта
- 2. Эскизный проект
 - наброски будущей системы
 - архитектура
 - структура
 - предварительный выбор аппаратно-программной базы
 - пояснительная записка
 - предварительное определение списка документов проекта
- 3. Технический проект
 - окончательный выбор оборудования
 - пояснительная записка, описание системы, общие данные по схемам и чертежам
 - структурная схема
 - схемы автоматизации
 - схемы принципиальные электрические
 - схемы принципиальные пневматические (если требуется)
 - схемы подключений, кабельные журналы
 - чертежи расположения оборудования и внешних проводок (если требуется)
 - ведомость оборудования и материалов

РАЗРАБОТКА

- 1. Приобретение оборудования
- 2. Рабочий проект
 - разработка аппаратной составляющей (схемотехника)
 - разработка программной составляющей (программирование, конфигурирование)
- 3. Заводские испытания (тестирование)
- 4. Документирование рабочего проекта
 - спецификация оборудования
 - ведомость потребности в материалах
 - технологическая инструкция (если требуется)
 - руководство пользователя
 - инструкция по эксплуатации системы
 - программа и методика испытаний

ОСНОВНЫЕ ЭТАПЫ

ИНТЕГРАЦИЯ / ВВОД В ЭКСПЛУАТАЦИЮ

- 1. Подготовительные мероприятия
 - план-график работ
 - программа работ
 - протокол испытаний
 - протокол согласования (если требуется)
 - приказ о проведении работ
 - приказ о составе приемочной комиссии
- 2. Поставка оборудования и передача его на хранение
 - акт приемо-передачи
- 3. Монтажные работы, Шэф-монтаж (авторский надзор)
- 4. Пуско-наладочные работы (ПНР)
- 5. Испытания
- 6. Обучение персонала
- 7. Пробная эксплуатация
- 8. Актирование
 - акт завершения работ
 - акт приемки в опытную эксплуатацию
 - акт приемки в промышленную эксплуатацию

СОПРОВОЖДЕНИЕ

- 1. Гарантийное сервисное обслужвание
- 2. Постгарантийное сервисное обслуживание
- 3. Модернизация

ОСНОВНЫЕ МОДЕЛИ

Waterfall Model

• каскадная модель, или «водопад»

V-model

• V-образная модель, разработка через тестирование

Incremental Model

• инкрементная / итеративная модель

Chaos Model

• модель хаоса

Prototype Model

• прототипная модель

КАСКАДНАЯ МОДЕЛЬ

Waterfall Model

• каскадная модель, или «водопад»

Особенности

- поэтапная разработка
- каждая последующая стадия начинается после того, как закончена предыдущая

Преимущества

- простой контроль разработки
 - + заказчик знает текущее состояние и может управлять сроками и стоимостью
- стоимость и сроки разработки известны (все шаги запланированы на этапе согласования)

Недостатки

- наличие ошибок / недочетов в задании (требованиях) влечет за собой:
 - увеличение сроков разработки
 - удорожание разработки
- велика вероятность того, что итоговый результат не устроит заказчика
 - заказчик видит общий результат только в конце разработки

Данная модель подходит для проектов отраслей, где сформирована обширная база знаний: технических заданий, решений, спецификаций, СНиП и т. п. (например, военно-промышленная, космичекская, медицинская отрасли) — на основе которых можно написать требования к новому проекту.

Основная задача при работе с данной моделью — это написать подробные требования к разработке (задание). На этапах интеграции и сопровождения не должно выясниться, что в них есть ошибки, влияющие на весь проект.

Если все делать правильно, то данная модель является наиболее быстрой и простой. Применяется уже почти полвека, с 1970-х годов.

V-ОБРАЗНАЯ МОДЕЛЬ

V-model

• V-образная модель, разработка через тестирование (верификация / валидация)

Особенности

- усовершенствованная каскадная модель
- на каждом этапе проектирования составляется отдельный план тестирования (при разработке планов тестирования могут проводиться исследования, опросы и т.п.)
- после окончания проектирования начинается разработка
- после разработки начинается тестирование:
 - модульное (проверка каждого модуля отдельно)
 - интеграционное (проверка работы отдельных групп модулей и комплекса вцелом)
 - приемостадаточное (проверка работы проекта в соответствие с заданием)

Преимущества

- наследуются от каскадной модели
- выявление отклонений и рисков в проекте на ранних стадиях (при проектировании)
- уменьшение времени и стоимости разработки
- повышение качества коммуникаций между участниками проекта (в проектировании задействованы специалисты тестировщики, наладчики)

Недостатки

• наследуются от каскадной модели

Данная модель требует высокого уровня подготовки сотрудников и подходит для проектов, в которых важна надежность и цена ошибки очень высока.

Концепция V-образной модели была разработана в 1980-х годах.

ИНКРЕМЕНТАЛЬНАЯ МОДЕЛЬ

Incremental Model

• инкрементная / итеративная модель

начало

Особенности

- модель работает по частям
- начинается с задания (начальное задание)
- проект разрабатывается по частям (версиям, итерациям)
- переход от одной версии к другой можно трактовать как модернизацию
- модернизация может выполняться на этапе сопровождения (заказчику сдается стартовый рабочий проект, который эксплуатируется N-количество времени; далее заказчик принимает решение — развиваить / модернизировать проект далее или оставить все как есть и завершить разработку)

Преимущества

- возможны малые вложения на каждой итерации
- возможно быстрая обратная связь по результатам эксплуатации (можно оперативно обновить задание и доработать проект)
- ошибки обходятся дешевле
- эффективное использование накопленного опыта
- модернизация может выполняться без остановки эксплуатации

Данная модель подходит для проектов, которые необходимо быстро запустить и для которых допускается модернизация (например, для устранения ошибок).

Концепция инкременальной модели была разработана в 1930-х годах.

ДОКУМЕНТАЦИЯ

- ГОСТы
- Правила
- Законы
- Технические условия
- Руководства

Для разработчиков электрической части системы (схемы и т. п.)

• Правила Устройства Электроустановок (ПУЭ)

Для разработчиков системы взрывоопасного объекта

• Соответствующие ГОСТы, законы и правила для проектирования таких объектов

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

ГОСТ 21.1101-2013

- ИОС (РАЗДЕЛ 5)

Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

-- ATX

Автоматизация технологических процессов ГОСТ 34.201-2020

Шифр документа

А-Б-В-Г.Д

- А номер договора (контракта) или шифр объекта строительства
- Б номер здания или сооружения по генеральному плану
- В шифр раздела проектной документации
- Г код документа
- Д порядковый номер документа

пример

OPF-002-ATX-C3.1

ОРГ — шифр объекта строительства

002 — номер цеха

ATX — проектная документация / раздел 5 — ИОС

С3 — схема автоматизации

1 — порядковый номер документа

ДОКУМЕНТАЦИЯ

W	
Комплекс стандартов на автоматизированные системы	
ГОСТ 34.003-90	Автоматизированные системы. Термины и определения.
ГОСТ 34.201-2020	Виды, комплектность и обозначение документов при создании автоматизированные систем.
ГОСТ 34.601-90	Автоматизированные системы. Стадии создания.
ГОСТ 34.602-2020	Техническое задание на создание автоматизированной системы.
ГОСТ 34.603-92	Виды испытаний автоматизированных систем.
Методические указания	
РД 50-34.698-90	Автоматизированные системы. Требования к содержанию документов.
Система проектной документации для строительства	
ГОСТ 21.1101-2013	Основные требования к проектной и рабочей документации.
ГОСТ 21.408-2013	Создание Автоматизированных систем Правила выполнения документации
ГОСТ 21.208-2013	Обозначения приборов и средств автоматизации в схемах
ГОСТ 02.702-2011	Правила выполнения электрических схем
FOCT 21.614-1988	Изображения электрооборудования и проводок на планах
Единая система программной документации	
ГОСТ 19.101-77	Виды программ и программных документов.
Единая система конструкторской документации	
ГОСТ 02.102-2013	Виды и комплектность конструкторских документов.
FOCT 02.601-2013	Эксплуатационные документы.