

PROGRAM BIO Leap UP FOR Excellence 3 (BLUE 3) SEMESTER 1 SESSION 2023/2024

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO

Instructions:

- 1. This question booklet consists of 7 questions.
- 2. Answer all questions in the space provided in the question paper.

Name:	Class:

For examiner use only	
QUESTION	MARK
1	/7
2	/13
3	/6
4	/14
5	/11
6	/13
7	/16
TOTAL	/80

1 **FIGURE 1** shows meiosis of a diploid cell in cell division.

FIGURE 1

(a)		Name X and Y	[2 marks] -
(b)	(i)	State $\mathbf{stage}\ \mathbf{M}$ and briefly explain the chromosomal behavior in the stage	[2 marks]
	(ii)	State the importance of stage M in meiosis	[1 mark]
(c)	(i)	Explain how genetic materials are exchanged between homologous chromosomes	[2 marks]
			.

2	(a)	State	e two Mendel's Laws.	[2 marks]
	(b)	(i)	In monohybrid cross, Mendel cross pea plant true breeding tall (TT) with true breeding short (tt). For the first generation (F1), it was found that all offspring were tall. Draw the genetic diagram completely up to F1.	[4 marks]
		(ii)	Mendel crossed F_1 with F_1 to get the second generation (F_2). Name the cross.	[1 mark]
	(c)	Diffe	erentiate between multiple allele and polygene.	[2 marks]

(d) In fruit flies, eye colour is a sex-linked trait. Red eye is dominant (R) to white eye (r). Show the cross of a white-eyed female with a red-eyed male

In ladybug population, the spot color of yellow ladybug was controlled by two alleles. The black spot (B) is dominant over red spot (b). In a population of 600 ladybugs, the following data is recorded in **TABLE 3**.

Phenotypes	Genotypes	Number of individuals
Black spot ladybugs	BB	350
Black spot ladybugs	Bb	130
Red spot ladybugs	bb	120

TABLE 3

(a)	What is the gene pool size for spot color of the ladybug population?	[1 mark]
	-	<u> </u>
(b)	What is the frequency of dominant allele, B?	[1 mark]

			4 1
(c)	Wha	at is the frequency of recessive allele, b?	[1 mark]
(d)	equi	e ladybugs were left to breed randomly and the population remain in librium, how many individuals are expected to be heterozygous in the generation of 1500 ladybugs?	[3 marks]
(a)		FIGURE 4 shows a process that occur before a cell divides. Strand J Strand L H Strand L Strand L	
	(i)	FIGURE 4 Suggest a model that best describe the process shown in FIGURE 4.	[1 <i>mark</i>]
	(ii)	Give TWO differences between the synthesis of strand J and strand L in FIGURE 4 .	[2 marks]

4

	(iii)	Briefly describe the function of enzyme K in the synthesis of strand J and L.	[2 marks]
			· ·
	(iv)	Identify enzyme B and predict what happen if the gene encoded for the synthesis of enzyme B is exposed to a mutagen.	[2 marks]
(b)		Explain transcription and the stages involved in the formation of mRNA strand.	[7 marks]

5	(a)	soun Leul Both	nts with <i>Cri du chat</i> syndrome often have a high-pitched cry that ads like that of a cat while patients with Chronic Myelogenous kemia have their bone marrow producing too many white blood cells. In <i>Cri du chat</i> syndrome and Chronic Myelogenous Leukemia are ed by chromosomal aberration mutation.	
		(i)	State the type of chromosomal aberration that cause:	[2 marks]
			Cri du chat:	
			Chronic Myelogenous Leukemia:	
		(ii)	Give ONE difference between chromosomal aberrations that caused <i>Cri du chat</i> and Chronic Myelogenous Leukemia.	[1 <i>mark</i>]
	b)		w a meiotic diagram to show how nondisjunction in meiosis I during matogenesis can cause Turner Syndrome.	[4 marks]

(c) Hybrid <u>Triticum aestivum</u> evolved from hybrid <u>Triticum turgidum</u> through polyploidization. Interbred between <u>Triticum monococcum</u> (2n=14) and <u>Triticum searsii</u> (2n=14) produces hybrid <u>Triticum turgidum</u> which is sterile.

(i)	State the chromosome number of <u>Triticum</u> <u>aestivum</u> .	[1 mark]
(ii)	Explain why hybrid <u>Triticum aestivum</u> has become a fertile plant.	[2 marks]
		- - -
(iii)	Name the type of reproduction carried out by <u>Triticum turgidum</u> .	[1 <i>mark</i>]

6

The diagram in **FIGURE 6** above is a simplified method used in gene cloning

(a) Give **ONE** example of enzyme A used above [1 *mark*]

(b)	Explain why the same enzyme A is used to cut both plasmid and cDNA?	[3 marks]
(c)	Name and explain the function of enzyme B. Enzyme B: Function:	[2 marks]
(d)	Bacterial cell with molecule C might be identified as white colonies during screening technique. Describe how white colonies can be form in a medium containing ampicillin and X-gal.	[3 marks]
e)	Plasmid in FIGURE 6 above are accidently modified so that foreign DNA are inserted to ampicillin resistance gene. Predict what happen to bacterial cell in FIGURE 6 above when exposed to medium containing ampicillin?	[1 mark]
f)	cDNA also can be amplify using PCR technique. Briefly explain this technique.	[3 marks]

7 (a) **FIGURE 7.1** shows a cross section of an embryo sac in a flowering plant

FIGURE 7.1

(1)	what type of centialvision that produce 8 nuclei of an emoryo sac?	[1 <i>mark</i>] -
(ii)	Name the structure that will be formed after fertilization between a. Male gamete and nucleus of P:	[2 marks]
(iii)	b. Male gamete and nucleus of R:	[1 mark]
(iv)	State the function of cell Q in double fertilization	[1 mark]

(b) Various stages of the ovarian cycle are shown in **FIGURE 7.2** below.

FIGURE 7.2

Name the phase and describe the hormonal control that occur during day 1 to day 13 of the ovarian cycle.	[7 marks]

(c) In **FIGURE 7.3** below, M, N and O represent the growth curves of specific human organs and tissues while P represents the growth curve of the human body as a whole.

FIGURE 7.3

(i)	Name the type of growth pattern shown.	[1 <i>mark</i>]

- (ii) Which parts of the body, organs or tissues have the growth pattern shown by [2 marks]
 - a. Curve M:
 - b. Curve N:
- (iii) Why will the growth rate of a boy slow down and finally become constant after 20 years? [1 mark]

-END OF QUSTION PAPER-