M. Morris Mano • Michael D. Ciletti Chapter 3
Gate-Level Minimization DIGITAL DESIGN Pearson

MINIMIZATION

II) Map (Karnaugh map, K-map)

aka. Graphical Manipulation

MINIMIZATION II) Map (Karnaugh map, K-map) aka. Graphical Manipulation

Algorithm; Straightforward, up to six variables

Result is always minimal

Maurice Karnaugh Physicist Mathematician Inventor

Bell Labs (1954)
"The Map Method for Synthesis of Combinational Logic Circuits"

KARNAUGH MAP

X	F
0	m_0
1	m_1

→	1	-
Υ	X	F
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= Y'X' + Y'X' + Y'X' + YX'$$

$$= Y'(X' + X) + Y'X' + YX'$$

$$= Y' + Y'X' + YX'$$

$$= Y' + X'(Y' + Y)$$

$$= Y' + X'$$

$$F(Y,X) = Y' + X'$$

Υ	X	F
0	0	0
0	1	1
1	0	1
1	1	0

XOR

$$F(Y,X) = m_1 + m_2$$

= Y'X + YX'

$$F(Y,X) = m_1 + m_2$$

$$= Y'X + YX'$$

Z	Y	(X)	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3 m_4
1	0	0	m_4
1	0	1	m_5
1	1	0	m ₆
1	1	1	m_7

		X		
		0	1	
	0	m_0	m_1	
Y	1	m_2	m_3	

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m ₆ m ₇
1	1	1	m_7

	Z	Υ	Χ	F	
	0	0	0	1	
	0	0	1	1 ~	YX
	0	1	0	1 ~	00 01 11 10
	0	1	1	1	
	1	0	0	0	Z
	1	0	1		M 5
	1	1	0	1	
	1	1	1	1	$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$
-(]	Z,Y,X) =	: ∑ m(0,	1,2,3,6,7	7)	= Z' + Y

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX' + ZYX' + ZYX'$
= ?

MAXTERMS

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F(Z,Y,X) = \Pi M(4,5)$$

$$F'Y = ?$$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F'(Z,Y,X) = \sum_{i=1}^{n} m(4,5)$$
$$= ZY'$$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \prod_{X} M(4,5)$$

= $(Z'+Y+X) \cdot (Z'+Y+X')$
= ?

$$F(Z,Y,X) = \prod_{i=1}^{n} M(4,5)$$

$$= (F')^{(i)}$$

$$= (ZY')^{(i)}$$

$$= (Z'+Y)$$

Z	Υ	Χ	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X)(Z'+Y+X')$
= ?

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$
$$= Z' + Y$$

	ΥX				
		00	01	11	10
Ζ	0	1	1	1	1
	1	0	0	1	1

$$F(Z,Y,X) = \prod M(4,5)$$

= $(F')'$
= $(ZY')'$
= $Z'+Y$

WHAT IF

Z	Υ	Χ	F
0	0	0	1 ~ 0
0	0	1	0
0	1	0	1 m2
0	1	1	0
1	0	0	1 m4
1	0	1	0
1	1	0	1 M
1	1	1	0

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,2,4,6)$$

= $Z'Y'X' + Z'YX' + ZY'X' + ZYX'$
= ?

Z	Υ	Х	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Z,Y,X) = \sum m(0,2,4,6)$$

= $Z'Y'X'+Z'YX'+ZY'X'+ZYX'$
= ?

$$F(Z,Y,X) = \sum m(0,2,4, 6)$$

= X'

MAXTERMS

Z	Υ	X	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Z,Y,X) = \prod M(1,3,5,7)$$

$$= (Z+Y+X')(Z+Y'+X')(Z'+Y+X')(Z'+Y'+X')$$

$$= ?$$

$$F(Z,Y,X) = \prod_{i=1}^{n} M(1,3,5,7)$$

= $(X)^{i}$
= X'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

		YX			
		00	01	11	10
	00	1 m _o	1 m ₁	$ \begin{array}{c} 0 \\ m_3 \end{array} $	1 m ₂
WZ	01	1 m ₄	1 m ₅	$_{m_7}^{O}$	1 m ₆
V V Z	11	1 m ₁₂	1 m ₁₃	0 m ₁₅	1 m ₁₄
	10	1 m ₈	1 m ₉	O m ₁₁	O m ₁₀

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

 $F(W,Z,Y,X) = \sum_{i=1}^{n} m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' +

$$F(W,Z,Y,X) = \sum_{i=1}^{n} m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

$$= Y' + \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}$$

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX' + WZYX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX' + ZYX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'X' + WYX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'X' + ZX'

MAXTERMS

Click to Play!

https://en.wikipedia.org/wiki/Karnaugh_map#/media/File:Torus_from_rectangle.gif

$$F(W,Z,Y,X) = \sum m(0, 2, 8, 10)$$

= $Z'X'$

MAXTERMS

(X+Z) = XZ

$$F(W,Z,Y,X) = \sum m(0, 2, 8, 10)$$

$$= Z'X'$$

$$= \prod M(1,3-7,9,11-15)$$

$$= (X)'(Z)'$$

$$= X'Z'$$

Given two unsigned numbers x and y, design a logic circuit to see

 $x \geq ? y$

Y2	Y1	X2	X1	$F(Y2,Y1,X2,X1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	О
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	О
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

			X ₂	$_{2}X_{1}$	
, in the second		00	01	11	10
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂
VV	01	O m ₄	1 m ₅	1 m ₇	1 m ₆
Y ₂ Y ₁	11	O m ₁₂	O m ₁₃	1 m ₁₅	O m ₁₄
	10	${\displaystyle 0 \atop {{\sf m}_{\sf 8}}}$	O m ₉	1 m ₁₁	1 m ₁₀

 $F(Y_2, Y_1, X_2, X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ $F(Y_2, Y_1, X_2, X_1) = \Pi M(4,8,9,12,13,14)$

				2X ₁	
		00	01	11	10
	00	$\begin{bmatrix} 1 \\ m_0 \end{bmatrix}$	1 m ₁	1 m ₃	1 m ₂
VV	01	$_{m_{_{4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆
Y_2Y_1	11	O m ₁₂	0 m ₁₃	1 m ₁₅	O m ₁₄
	10	$_{\rm m_8}^{ m O}$	O m ₉	1 m ₁₁	1 m ₁₀

 $F(Y_2, Y_1, X_2, X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2 Y'_1 +$

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Sigma} \ m(0, 1, 2, 3, 5, 6, 7, 10, 11, 15)$ $= Y'_2 Y'_1 + X_2 X_1$

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Sigma} \ m(0, 1, 2, 3, 5, 6, 7, 10, 11, 15)$ $= Y'_2 Y'_1 + X_2 X_1 + Y'_2 X_1$

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Sigma} \ m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2Y'_1 + X_2X_1 + Y'_2X_1 + Y'_2X_2$

$$F(Y_2, Y_1, X_2, X_1) = \sum m(0, 1, 2, 3, 5, 6, 7, 10, 11, 15)$$

$$= (Y'_2Y'_1) + (X_2X_1) + (Y'_2X_1) + (Y'_2X_2) + (Y'_1X_2)$$

C 50P

Canonical SoP

Minimized SoP

MAXTERMS

 $F(Y_2, Y_1, X_2, X_1) = \Pi M(4, 8, 9, 12, 13, 14)$

Change of Variable:

 $X1 \rightarrow X$

 $X2 \rightarrow Y$

 $Y1 \rightarrow Z$

 $Y2 \rightarrow W$

$$F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$$

 $F(W, Z, Y, X) = ?$

			Υ	Χ	
		00	01	11	10
	00	1 m ₀	1 m ₁	1 m ₃	1 m ₂
\ <i>\\</i> 7	01	$_{m_{\scriptscriptstyle{4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆
WZ	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	O m ₁₄
	10	0 m ₈	0 m ₉	1 m ₁₁	1 m ₁₀

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$ F(W, Z, Y, X) = (WY' +)'

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$ F(W, Z, Y, X) = (WY' + ZY'X' +)'

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$ $F(W, Z, Y, X) = (WY' + ZY'X' + WZX')^{(1)}$

		YX				
		00	01	11	10	
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂	
WZ	01	0 m ₄	1 m ₅	1 m ₇	1 m ₆	
V V <u>Z</u>	11	0	0 m ₁₃	1 m ₁₅	0 m ₁₄	
	10	0 m ₈	0 m ₉	1 m ₁₁	1 m ₁₀	

$$F(Y_{2},Y_{1},X_{2},X_{1}) = \mathbf{\Pi} M(4,8,9,12,13,14)$$

$$F(W,Z,Y,X) = (WY' + ZY'X' + WZX')'$$

$$= (WY')' (ZY'X')' (WZX')'$$

$$= (W'+Y) (Z'+Y+X)'_{e}(W'+Z'+X)$$

Minimized PoS

Question

If |Canonical SoP| > |Canonical PoS| then |Minimized SoP| > |Minimized PoS|?

If no, bring a counter-example.

5-Variable KARNAUGH MAP

F(T,W,Z,Y,X)

n-Variable KARNAUGH MAP

Willard Van Orman Quine (/kwaɪn/; known to intimates as "Van"; 1908 – 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century."

Quine-McCluskey Algorithm

https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm

1878 ← 1937 ← 1952 ← 1956

Demo Quine—McCluskey Algorithm https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/

Don't Care Conditions

In practice, in some applications the function is not specified for certain combinations of the variables.

Z	Y	Χ	F=if input is positive(2's comp.) then 1 else 0
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Z	Y	Χ	$F=\sum m(1,2,3)=\prod M(0,4,5,6,7)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$F(Z,Y,X) = \sum m(1, 2, 3)$$

= $Z'X + Z'Y$

Boolean algebra \rightarrow Z'(X+Y)

MAXTERMS

$$F(Z,Y,X) = \prod M(0,4,5,6,7)$$

= $(Z + Y'X')'$
= $Z' (Y+X)$

Z	Y	Χ	F=if positive(2's comp.) then 1 if negative 0
0	0	0	
0	0	1	1
0	1	0	1
0	1	1	1 In math, 0 is not
1	0	0	0 positive neither
1	0	1	negative!
1	1	0	0
1	1	1	0

Z	Y	X	F=if positive(2's comp.) then 1 if negative 0
0	0	0	
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

		YX					
	\setminus	00	01	11	10		
7	0	m _o	1 m ₁	$\begin{pmatrix} 1 \\ m_3 \end{pmatrix}$	1 m ₂		
Ζ	1	O m ₄	O_{m_5}	O _{m₇}	O_{m_6}		

$$F(Z,Y,X) = \sum_{i=1}^{n} (1, 2, 3) + \sum_{i=1}^{n} d(0)$$
$$= Z'X + Z'Y$$

In this case, the don't care condition help to more simplification

MAXTERMS

$$F(Z,Y,X) = \prod M(4,5,6,7) + \sum D(0)$$

= $(Z)'$
= Z'

$$F(Z,Y,X) = \prod M(0,4,5,6,7) + \sum M(0)$$

= $(Z + Y'X')'$
= $Z' (Y+X)$

In this case, the don't care condition does NOT help to more simplification

Don't Care Conditions

Functions that have unspecified outputs for some input combinations are called *incompletely specified functions*.

Don't-care conditions can be used on a map to provide further simplification of the Boolean expression.

Don't Care Conditions

To distinguish the don't-care condition from 1's and 0's, an (π) s used.

		YX					
		00	01	11	10		
7	0	\mathcal{X}_{m_0}	1 m ₁	1 m ₃	1 m ₂		
Ζ	1	O_{m_4}	O_{m_5}	O m ₇	O_{m_6}		

$$F(Z,Y,X) = \sum m(1, 2, 3) + \sum d(0)$$

$$F(Z,Y,X) = \prod M(4,5,6,7) + \sum D(0)$$