Differential: Function of one variable

Differential: Function of two variables

$$dz = f_x(x, y) dx + f_y(x, y) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

The Chain Rule

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

3 The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

4 The Chain Rule (General Version) Suppose that u is a differentiable function of the n variables x_1, x_2, \ldots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \ldots, t_m . Then u is a function of t_1, t_2, \ldots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial X_1} \frac{\partial X_1}{\partial t_i} + \frac{\partial u}{\partial X_2} \frac{\partial X_2}{\partial t_i} + \cdots + \frac{\partial u}{\partial X_n} \frac{\partial X_n}{\partial t_i}$$

for each i = 1, 2, ..., m.

2. If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

3. If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\frac{\partial u}{\partial s}$ when r = 2, s = 1 and t = 0.

4. If $g(s,t)=f(s^2-t^2,t^2-s^2)$ and f is differentiable, show that g satisfies the equation $t\frac{\partial g}{\partial s}+s\frac{\partial g}{\partial t}=0.$

5. If z = f(x, y) has continuous second order partial derivatives and $x = r^2 + s^2$ and y = 2rs, find (a) $\frac{\partial z}{\partial r}$ and (b) $\frac{\partial^2 z}{\partial r^2}$.

DIRECTIONAL DERIVATIVE

2 Definition The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}} f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

$$D_{\mathbf{u}} f(x, y) = f_{x}(x, y) a + f_{y}(x, y) b$$

$$f(x, y) = x^3 - 3xy + 4y^2$$

and **u** is the unit vector given by angle $\theta = \pi/6$. What is $D_{\mathbf{u}} f(1, 2)$?

8 Definition If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

$$D_{\mathbf{u}} f(x, y) = \nabla f(x, y) \cdot \mathbf{u}$$

10 Definition The **directional derivative** of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}} f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the directional derivative in the compact form

$$D_{\mathbf{u}} f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h}$$

where $\mathbf{x}_0 = \langle x_0, y_0 \rangle$ if n = 2 and $\mathbf{x}_0 = \langle x_0, y_0, z_0 \rangle$ if n = 3. This is reasonable because the vector equation of the line through \mathbf{x}_0 in the direction of the vector \mathbf{u} is given by $\mathbf{x} = \mathbf{x}_0 + t\mathbf{u}$ (Equation 12.5.1) and so $f(\mathbf{x}_0 + h\mathbf{u})$ represents the value of f at a point on this line.

Show that the operation of taking the gradient of a function has the given property. Assume that u and v are differentiable functions of x and y and that a, b are constants.

(a)
$$\nabla (au + bv) = a \nabla u + b \nabla v$$
 (b) $\nabla (uv) = u \nabla v + v \nabla u$

(b)
$$\nabla(uv) = u \nabla v + v \nabla u$$

(c)
$$\nabla \left(\frac{u}{v}\right) = \frac{v \nabla u - u \nabla v}{v^2}$$
 (d) $\nabla u^n = nu^{n-1} \nabla u$

(d)
$$\nabla u^n = nu^{n-1} \nabla u$$

EXAMPLE 4 Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ at the point (2, -1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

Show that if z = f(x, y) is differentiable at $\mathbf{x}_0 = \langle x_0, y_0 \rangle$, then

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{f(\mathbf{x}) - f(\mathbf{x}_0) - \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)}{\left| \mathbf{x} - \mathbf{x}_0 \right|} = 0$$

Maximizing the directional derivative

Suppose we have a function f of two or three variables and we consider all possible directional derivatives of f at a given point. These give the rates of change of f in all possible directions.

Q1: In which of these directions does *f* change fastest?

Q2: What is the maximum rate of change?

Theorem Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Tangent planes to level surfaces

$$\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$$

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

What is its equivalent for the surface z=f(x, y)?

The **normal line** to S at P is the line passing through P and perpendicular to the tangent plane. The direction of the normal line is therefore given by the gradient vector $\nabla F(x_0, y_0, z_0)$ and its symmetric equations are

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

Example: Show that $\nabla \phi$ is a vector normal to the surface $\phi(x, y, z) = c$.

The significance of the above example is that if you are seeking a normal to a surface at a point, you have to simply find out the gradient vector of the surface at that point.

Example 1

EXAMPLE 8 Find the equations of the tangent plane and normal line at the point (-2, 1, -3) to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$

Suppose you are climbing a hill whose shape is given by the equation $z = \frac{10}{1+x^2+2y^2}$

And you are standing at a point with coordinates (1,2,1).

- In which direction should you proceed initially in order to reach the top of the hill fastest?
- ➤ If you climb in that direction, at what angle above the horizon will you be climbing initially?

FIGURE 11

FIGURE 12