We have $V = \frac{2}{5} v_k y_k$ as the vecabulary and the unigram model $p_0 = \frac{2}{5} p_k y_k y_{k=0}$ Prove that: $\beta_k = n_k$ is optimal, where n_k : number of occurrence $\frac{1}{2}n_k$ observed. Proof:

For any model $\beta = \{ \beta_k \}_{k=0}^{|V|-1}$ used to model the vocabulary VWe know that $\sum_{k=0}^{N_i-1} \beta_k = 1$ —— 1 must be satisfied. We also have that the probability of the observations is: \$ obs = 11 (Bx) nK _____ (2) The most optimal model is one that maximizes the probability of observed data |v|-1That is, the model $p = \{ p_K \}_{g_K=0}$ where the assignment of probabilities $\{ p_K \}_{g_K=0}$ and maximizes eq. (2). max $\overline{11} (\beta_K)^{n_K}$ S.t $\beta = \{\beta_K\}_{K=0}$ and $\{\beta_K = 1\}_{K=0}$ This is equivalent to maximizing the log of pobs., since log is a monotonically increasing function $\approx \max_{p} \log \left[\frac{|V|-1}{|T|} (\beta x)^{n} \right] \qquad \text{S.t.} \qquad p = \left\{ \frac{1}{p} x \right\}_{R=0}^{|V|-1} \quad \text{and} \quad \left\{ \frac{1}{p} x = 1 \right\}_{R=0}^{|V|-1}$

$$= \max_{k=0}^{|V|-1} \sum_{k=0}^{|V|-1} \sum_{k=0}^{|V|-1} \beta_{k} = 1$$

$$= \max_{k=0}^{|V|-1} \beta_{k} = 1$$