2009.10.14(担当:佐藤)

□ キーワード:1次独立,1次従属

以下では、ベクトルの成分を縦に並べて記述する。m 個の成分を持つベクトルを m 項数ベクトルとよぶ(平面ベクトルは 2 項数ベクトル、空間ベクトルは 3 項数ベクトル)。

- 1 次独立の同値条件

$$m{a}_1 = \left(egin{array}{c} a_{11} \ a_{21} \ dots \ a_{m1} \end{array}
ight), m{a}_2 = \left(egin{array}{c} a_{12} \ a_{22} \ dots \ a_{m2} \end{array}
ight), \ldots, m{a}_n = \left(egin{array}{c} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{array}
ight)$$
を m 項数ベクトルとす

る. また、ベクトル a_1, \ldots, a_n を並べてできる (m, n) 行列を A とおく;

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

このとき,

$$a_1, \dots, a_n$$
が 1 次独立
 $\iff x_1a_1 + x_2a_2 + \dots + x_na_n = \mathbf{0}$
を満たす実数は $x_1 = x_2 = \dots = x_n = 0$ のみ

 \iff 連立方程式
$$\begin{cases} x_1a_{11} + x_2a_{12} + \dots + x_na_{1n} = 0 \\ x_1a_{21} + x_2a_{22} + \dots + x_na_{2n} = 0 \end{cases}$$
 \vdots
 $x_1a_{m1} + x_2a_{m2} + \dots + x_na_{mn} = 0$
の解は $x_1 = x_2 = \dots = x_n = 0$ のみ。
 $(つまり, Ax = \mathbf{0}$ は非自明解を持たない)
 \iff rank $A = n$
 $(m = n \text{ obs})$
 $\iff A$ は正則 $(つまり, A \text{ o}逆行列 A^{-1} \text{ が存在する})$
 \iff det $A \neq 0$

問題 **1.10.** 次のベクトルが 1 次従属か 1 次独立か調べなさい.

$$(1) \left(\begin{array}{c} 1 \\ -2 \end{array}\right), \ \left(\begin{array}{c} -3 \\ 6 \end{array}\right) \qquad (2) \left(\begin{array}{c} 1 \\ -2 \end{array}\right), \ \left(\begin{array}{c} -3 \\ -6 \end{array}\right)$$

$$(3) \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -3 \\ -6 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad (4) \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 6 \end{pmatrix}$$

$$(5) \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$$