

Departamento de Matemáticas 4º Académicas

Recuperación de 3^a evaluación

Nombre:	Fecha:		
Tiempo: 50 minutos	Tipo: A		

Esta prueba tiene 4 ejercicios. La puntuación máxima es de 11. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	Total
Puntos:	3	1	4	3	11

ACLARACIÓN: Los ejercicios de geometría se han de resolver de manera analítica (no gráfica). Los ejercicios de funciones deberán estar justificados con los cálculos que sean necesarios para su resolución.

- 1. Resuelve las siguientes cuestiones relacionadas con combinatoria. Indicando previamente **el tipo de agrupación que calculas** a partir de si importa el orden dentro de la agrupación y si los elementos se pueden repetir:
 - (a) ¿De cuántas formas podrán distribuirse 2 premios iguales entre diez aspirantes?

(1 punto)

Solución:
$$C_{10}^2 = \frac{10!}{8! \cdot 2!} = 45$$

(b) ¿Y si los premios fueran diferentes?

(1 punto)

Solución:
$$V_{10}^2 = \frac{10!}{8!} = 90$$

(c) ¿Cuántas palabras se pueden formar con las letras de la palabra AMBROSI de forma que comiencen y terminen por vocal?

(1 punto)

Solución:
$$V_3^2 \cdot P_5 = 3 * 2 \cdot 5! = 6 \cdot 120 = 720$$

- 2. De una baraja de 40 cartas se extraen dos **sin** remplazamiento. Halla la probabilidad de cada apartado de dos formas: Sin reducir el experimento compuesto (**combinatoria**) y reduciéndolo (**probabilidad condicionada**)
 - (a) de que sean un rey y una sota (o al revés).

(1 punto)

Solución:
$$\frac{V_8^{1} \cdot V_4^{1}}{V_{40}^{2}} = \frac{8 \cdot 4}{40 \cdot 39} = \frac{4}{195}$$
 ó $2 \cdot P(R_1 \cap S_2) = 2 \cdot P(R_1) \cdot P(S_2|R_1) = 2 \cdot \frac{4}{40} \cdot \frac{4}{39}$

3. Dados el triángulo de vértices A(3,-1) , B(5,3) y ${\cal C}(-1,3),$ determina:

(a) si están alineados

(1 punto)

Solución: (False, Point2D(2, 4), Point2D(-6, 0))

(b) La recta que contiene a la altura que pasa por A

(1 punto)

Solución: x = 3

(c) La recta que contiene a la altura que pasa por C

(1 punto)

Solución: (-2*x - 4*y + 10 = 0)

(d) El punto donde se cortan ambas rectas.

(1 punto)

Solución: x: 3, y: 1

4. Dada la siguiente función a trozos:

(a) Indica el dominio y el recorrido de la función utilizando la notación de conjuntos de números reales

(1 punto)

Solución: $Dom(f) = (-\infty, 2) \cup (3, +\infty)$ $Im(f) = (-\infty, 1)$

(b) Calcula las ecuaciones explícitas de las rectas que contienen a cada trozo de la función.

(1 punto)

Solución: y = 2x + 3, $y = -\frac{1}{3}x - \frac{1}{3}$, y = -x + 2

(c) Da la expresión analítica de la función a trozos

(1 punto)

Solución:
$$f(x) = \begin{cases} 2x+3 & \text{si} & x < -1 \\ -\frac{1}{3}x - \frac{1}{3} & \text{si} & -1 \le x < 2 \\ -x+2 & \text{si} & x > 3 \end{cases}$$

