Mechanics and the Foundations of Modern Physics

T. Helliwell

V. Sahakian

Contents

1	Newtonian particle mechanics	3
	1.1 Inertial frames and the Galilean transformation	3
	1.2 Newton's laws of motion	6
	Example 1-1: A bacterium with a viscous drag force	
	Example 1-2: A linearly damped oscillator	
	1.3 Systems of particles	13
	1.4 Conservation laws	16
	Example 1-3: A wrench in space	
	Example 1-4: A particle moving in two dimensions with an attracti	ve
sp	ring force	
	Example 1-5: Particle in a magnetic field	
	Example 1-6: A child on a swing	
	Example 1-7: A particle attached to a spring revisited	
	Example 1-8: Newtonian central gravity and its potential energy	
	Example 1-9: Dropping a particle in spherical gravity	
	Example 1-10: Potential energies and turning points for positive power	er-
lav	w forces	
	·	33
	1.6 Dimensional analysis	35
	Example 1-11: Find the rate at which molasses flows through a narro	w
pip	pe	
	1.7 Synopsis	38
2	Relativity	19
	2.1 Foundations	49
	2.1.1 The Postulates	49
	2.1.2 The Lorentz transformation	51
	Example 2-1: Rotation and rapidity	

ii CONTENTS

	2.2 Relativistic kinematics
	2.2.1 Proper time
	2.2.2 Four-velocity
	Example 2-2: The transformation of ordinary velocity
	Example 2-3: Four-velocity invariant
	2.3 Relativistic dynamics
	2.3.1 Four-momentum
	Example 2-4: Relativistic dispersion relation
	Example 2-5: Decay into two particles
	2.3.2 Four-force
	2.3.3 Dynamics in practice
	Example 2-6: Uniformly accelerated motion
	Example 2-7: The Doppler effect
	2.3.4 Minkowski diagrams 80
	Example 2-8: Time dilation
	Example 2-9: Length contraction
	Example 2-10: The twin paradox
3	The Variational Principle 101
•	3.1 Fermat's principle
	3.2 The calculus of variations
	3.3 Geodesics
	Example 3-1: Geodesics on a plane
	Example 3-2: Geodesics on a sphere
	3.4 Brachistochrone
	Example 3-3: Fermat again
	3.5 Several Dependent Variables
	Example 3-4: Geodesics in three dimensions
	3.6 Mechanics from a variational principle
	3.7 Motion in a uniform gravitational field
	3.8 Summary
4	Lagrangian mechanics 139
_	4.1 The Lagrangian in Cartesian coordinates
	4.2 Hamilton's principle
	Example 4-1: A simple pendulum
	Example 4-2: A bead sliding on a vertical helix
	Example 4-3: Block on an inclined plane
	=r. r r r z r z r z r z r z r z r z

CONTENTS iii

	4.3 Generalized momenta and cyclic coordinates 149
	Example 4-4: Particle on a tabletop, with a central force
	Example 4-5: The spherical pendulum
	4.4 Systems of particles
	Example 4-6: Two interacting particles
	Example 4-7: Pulleys everywhere
	Example 4-8: A block on a movable inclined plane
	4.5 The Hamiltonian
	Example 4-9: Bead on a rotating parabolic wire
	4.6 The moral of constraints
	4.7 Small oscillations about equilibrium
	Example 4-10: Particle on a tabletop with a central spring force
	4.8 Relativistic generalization
	4.9 Summary
Ap	opendices 187
Αp	spendix A When is $H \neq E$?
5	Beyond The Basics I
	5.1 Classical waves
	Example 5-1: Two-slit interference of waves
	5.2 Two-slit experiments with light and atoms 199
	5.3 Feynman sum-over-paths
	5.4 Two slits and two paths
	5.5 No barriers at all
	Example 5-2: A class of paths near a straight-line path
	Example 5-3: How classical is the path?
	5.6 Path shapes for light rays and particles
	Example 5-4: Path shape for particles in uniform gravity
	5.7 Why Hamilton's principle?
	5.8 Conclusions
6	Symmetries and Conservation Laws 233
	6.1 Cyclic coordinates and generalized momenta 234
	Example 6-1: A star orbiting a spheroidal galaxy
	Example 6-2: A charged particle moving outside a charged rod
	6.2 A less straightforward example

iv CONTENTS

	6.3 Infinitesimal transformations	 . 238
	Example 6-3: Translations	
	Example 6-4: Rotations	
	Example 6-5: Lorentz transformations	
	6.4 Symmetry	. 242
	6.5 Noether's theorem	. 244
	Example 6-6: Space translations and momentum	
	Example 6-7: Time translation and the Hamiltonian	
	Example 6-8: Rotations and angular momentum	
	Example 6-9: Galilean Boosts	
	Example 6-10: Lorentz invariance	
	Example 6-11: Sculpting Lagrangians from symmetry	
	6.6 Some comments on symmetries	 256
7	Gravitation and Central-force motion	263
	7.1 Central forces	. 263
	7.2 The two-body problem	266
	7.3 The effective potential energy	269
	7.3.1 Radial motion for the central-spring problem	271
	7.3.2 Radial motion in central gravity	272
	7.4 The <i>shape</i> of central-force orbits	. 274
	7.4.1 Central spring-force orbits	 . 274
	7.4.2 The shape of gravitational orbits	 276
	Example 7-1: Orbital geometry and orbital physics	
	7.5 Bertrand's Theorem	 . 282
	7.6 Orbital dynamics	 . 284
	7.6.1 Kepler's second law	. 284
	7.6.2 Kepler's third law	. 285
	Example 7-2: Halley's Comet	
	7.6.3 Minimum-energy transfer orbits	 . 287
	Example 7-3: A voyage to Mars	
	Example 7-4: Gravitational assists	
8	Electromagnetism	303
	8.1 Gravitation, revisited	303
	Example 8-1: Gravitostatic field of a point mass	
	Example 8-2: Gravity inside the body of a star	
	8.2 The Lorentz force law	. 307

CONTENTS v

	Example 8-3: Potentials of a point charge	
	Example 8-4: Vector potential for a uniform magnetic field	
	8.3 The Lagrangian for electromagnetism	312
	8.4 The two-body problem, once again	
	8.5 Coulomb scattering	
	Example 8-5: Snell scattering	
	8.6 Uniform magnetic field	321
	Example 8-6: Crossed electric and magnetic fields	
	Example 8-7: Mirror mirror on the wall	
	Example 8-8: Ion trapping	
	8.7 Contact forces	337
	Example 8-9: Rolling down the plane	
	Example 8-10: Stacking barrels	
	Example 8-11: On the rope	
	Example 8-12: A rubber wheel on a road	
Λ	A applicanting frames	0 E 7
9	8	357 357
	v G	337
	Example 9-1: Pendulum in an accelerating spaceship 9.2 Rotating frames	261
	<u> </u>	901
	Example 9-2: Throwing a ball in a rotating space colony	
	Example 9-3: Polar orbits around the Earth	265
	9.3 Pseudoforces in rotating frames	
	9.4 Centrifugal and Coriolis pseudoforces	309
	Example 9-4: Rotating space colonies revisited 9.5 Pseudoforces on Earth	279
		312
	Example 9-5: Coriolis pseudoforces in airflow Example 9-6: Foucault's pendulum	
		380
	9.6 Spacecraft rendezvous and docking	300
	Example 9-8: Losing a wrench?	
10	Beyond The Basics II	
	v	396
	Example 10-1: A thought experiment	
	Example 10-2: Another thought experiment	
	Example 10-3: The precession of Mercury's perihelion	
	Example 10-4: Magnetic gravity	

vi *CONTENTS*

	Example 10-5: Cosmic string	
	10.2 Relativistic effects and the electromagnetic force	111
	Example 10-6: Probe in a uniform magnetic field	
	Example 10-7: Probe in crossed uniform electric and magnetic field	ds
	10.3 Gauge symmetry	
	Example 10-8: Fixing a gauge	
	10.4 Stochastic forces	116
11	Hamiltonian formulation 4	25
	11.1 Legendre transformations	125
	Example 11-1: A simple Legendre transform	
	11.2 Hamilton's equations	130
	11.3 Phase Space	134
	Example 11-2: The simple harmonic oscillator	
	Example 11-3: A bead on a parabolic wire	
	Example 11-4: A charged particle in a uniform magnetic field	
	11.4 Canonical transformations	140
	Example 11-5: Transforming the simple harmonic oscillator	
	Example 11-6: Identities	
	Example 11-7: Infinitesimal transformations and the Hamiltonian	
	Example 11-8: Point transformations	
	11.5 Poisson brackets	148
	Example 11-9: Position and momenta	
	Example 11-10: The simple harmonic oscillator once again	
	11.6 Liouville's theorem	154
12	Rigid Body Dynamics 4	63
	12.1 Rigid Bodies	163
	12.2 Rotations	
	12.3 Infinitesimal Rotations	
	Example 12-1: Rotations in higher dimensions	
	12.4 The Euler Angles	172
	Example 12-2: Angular velocity transformation	
	12.5 Rotational kinetic energy	177
	Example 12-3: A hoop	
	Example 12-4: Kinetic energy of a hoop	
	12.6 Potential Energy	186
	Example 12-5: A hoop hanging by a spring	

	••
CONTENTS	3711
CONTENIO	V 11

12.7 Angular Momentum	489
12.8 Torque	492
12.9 Principal Axes	
Example 12-7: Symmetry and principal axes	100
Example 12-8: Fixed Axis Rotation	
Example 12-9: Translating the hoop	
12.10Torque Free Dynamics	400
Example 12-10: A graphical picture of torque-free motion	499
12.11Gyroscopes	506
12.11Gyroscopes	500
3 Coupled oscillators	517
13.1 Linear systems of masses and springs	517
Example 13-1: Weak coupling and strong coupling	
Example 13-2: Coupled pendulums	
Example 13-3: Three blocks and four springs	
Example 13-4: Tear down the walls	
13.2 The carbon dioxide molecule	531
13.3 Degrees of freedom	
Example 13-5: A planar system: masses in an equilateral trian	
1 Complex systems	
and numerical techniques	547
14.1 Chaos	
14.2 Runge-Kutta	
14.3 Monte-Carlo	
14.4 Parallelization	
14.4 1 aranchization	041
5 Beyond The Basics III	
15.1 Hamilton-Jacobi theory and quantum mechanics	548
15.1 Hamilton-Jacobi theory and quantum mechanics	

viii *CONTENTS*

Isaac Newton (1642-1727)

Isaac Newton was arguably the most brilliant intellect of all time, enhanced by his curiosity, ambition, and an ability to concentrate on a problem for days at a time without food or sleep.

Born in Woolsthorpe, England, Newton was admitted to Cambridge University in 1661, where his mathematics professor was Isaac Barrow, the first holder of the Lucasian Chair in Mathematics. The university closed during the plague years 1664-65, and students were sent home. During that time Newton invented calculus, discovered the law of universal gravitation, and showed by experiment

that white light consists of light of all colors. Returning to Cambridge, Newton continued to excel, so that in 1669 Barrow resigned his chair in favor of Newton.

Many of his discoveries were unknown to his contemporaries, until his friend Sir Edmund Halley finally convinced him to publish. Newton spent the years 1684-86 writing his masterpiece, the *Principia*, a task he made especially challenging by reproving all his results without calculus, so readers could understand them. Newton presented his laws of motion, derived Kepler's laws, calculated the mass of the Sun, explained the precession of the equinoxes, and much else.

Newton ultimately became Warden of the Mint, President of the Royal Society, a member of Parliament, and was knighted. Toward the end of his life he wrote: "I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me." Nevertheless, Newton changed the world. He died in 1727 and is buried in Westminster Abbey.

CONTENTS