

Interest Rate

高顿网校 www.gaodun.com

Example

- If the stated annual rate is 8%, compute the effective annual rate with quarterly compounding.
- Answer:
- EAR = $(1 + 8\%/4)^4 1 = 1.0824 1 = 8.24\%$

Summary

- ➤ Importance: ☆☆
- Content:
 - Interpretations of interest rate;
- · Components of interest rate;
- · Calculation of EAR.
- Exam tips:
- 常考点: 计算题,不同compounding frequency时名义利率 和有效利率之间的换算。

Time Value of Money Problem Tasks: Calculate and interpret future value (FV) and present value (PV) of different types of cash flows.

Present Value and Future Value

Relationship between PV and FV

- Present value (PV): the value of an initial investment.
- Future value (FV): the value of an initial investment would be worth n periods from today.
 - Present value and future value are equivalent measures separated in time.

$$FV = PV \times (1+r)^n \text{ or } PV = \frac{FV}{(1+r)^n}$$

where: r = periodic rate, n = number of periods.

高顿网校 www.gaodun.com

Relationships between PV and FV (Cont.)

- For a given interest rate, the FV increases with the number of periods;
- For a given number of periods, the FV increases with the interest rate;
- For a given interest rate, the farther in the future the amount to be received, the smaller that amount's PV;
- ➤ Holding time constant, the larger the interest rate, the smaller the PV of a future amount.

Present Value and Future Value

い 高 動 の 校 www.gaodun.com

Example

Suppose a \$10,000 investment and a stated annual interest rate of 8%, compute the future value with monthly compounding and continuous compounding in one year.

Answer:

> For monthly compounding:

$$FV = PV \times \left(1 + \frac{r_s}{m}\right)^m = 10,000 \times \left(1 + \frac{0.08}{12}\right)^{12} = $10,829.99$$

For continuous compounding: $FV = PV \times e^{t_s} = 10,000 \times e^{0.08} = $10,832.87$

Present Value and Future Value

Future value of a single cash flow

Example: what is the future value of \$200 invested today in two years when the interest rate is 10%?

- > Answer: FV=200×(1+10%)×(1+10%)=200 ×(1.1²)=242
 - Using financial calculator:

N=2; I/Y=10; PV=200; PMT=0; CPT: FV= -242

高顿网校 www.gaodun.com

Annuity

- > A finite set of constant sequential cash flows.
- Ordinary annuity: all constant cash flows occurring at the end of each period;
- Annuity due: all constant cash flows occurring at the beginning of each period.

Perpetuity

A set of constant never-ending sequential cash flows occurring at the end of each period.

Present Value and Future Value

高

Future value of an ordinary annuity

➤ Example: what is the value in 3 years time of \$200 to be received at the end of each year for three years when the interest rate is 10%?

- > Answer: FV=200×(1.1²)+200×(1.1)+200=662
 - · Using financial calculator:

N=3; I/Y=10; PV=0; PMT=200; CPT: FV= -662

Sa 顿网校 www.gaodun.com

Present value of an annuity due

Example: what is the present value of \$200 to be received at the start of each year for three years when the interest rate is 10%?

- Answer: PV = $200+200\div(1.1)+200\div(1.1^2) = 547.11$
 - Using financial calculator (BGN Mode):
 N=3; I/Y=10; FV=0; PMT=200; CPT: FV=-547.11

Present Value and Future Value

高顿网校 www.gaodun.coi

Present value of perpetuity

- > PV = $\frac{A}{r}$
 - A = the periodic payment to be received forever
- ➤ Example: a preferred stock will pay \$8 per year forever and the rate of return is 10%. What is its value?
- **Answer:** $PV = 8 \div 0.1 = 80$

Present Value and Future Value

Future value of a series of unequal cash flow

➤ Example: what is the total value in 3 years time of \$300 received at the end of 1st year, \$600 at the end of 2nd year, and \$200 at the end of 3nd year when the interest rate is

Answer: $FV = 200+600 \times (1.1)+300 \times (1.1^2) = 1233$

Present Value and Future Value

Present value of a series of unequal cash flow

➤ Example: what is the total present value of \$300 received at the end of 1st year, \$600 at the end of 2nd year, and \$200 at the end of 3rd year when the interest rate is 10%?

Answer: PV = $300 \div (1.1) + 600 \div (1.1^2) + 200 \div (1.1^3) = 918.86$

三高顿网校

多高顿网校

Discount rate or growth rate

- > Example: Elmer has won his \$4 million state lottery and has been offered 20 annual payments of \$200,000 each beginning today or a single payment of \$2,267,000. What is the annual discount rate used to calculate the lump-sum pay-out amount?
- > Answer: using financial calculator (BGN Mode): N=20; FV=0; PV=2,267,000; PMT=-200,000; CPT: I/Y= 7%.

Present Value and Future Value

Number of periods

- Example: Elmer has won his \$4 million state lottery and has been offered 20 annual payments of \$200,000 each beginning today or a single payment of \$2,267,000. If Elmer can choose the amount of his annual pay-out, based on a 7% discount rate, how many payments of \$232,631 could Elmer receive if his first payment were today?
- Answer: using financial calculator (BGN Mode): FV=0; PV=2,267,000; PMT=-232,631; I/Y= 7%; CPT: N=15.

Present Value and Future Value

- Example: what is the monthly payment on a \$100K, 30year home loan with stated rate of 6%?
- > Answer: using financial calculator: N=30×12=360; I/Y=6/12=0.5; PV=100,000; FV=0; CPT: PMT= -599.55.

- ➤ Importance: ☆☆
- Content:
 - · Calculation of PV and FV of single cash flows, annuity, perpetuity, unequal cash flows;
 - · Calculation of discount rate, number of periods, size of payment.
- Exam tips:
- 考计算题。

Evaluation of Cash Flow Streams

Evaluation of Cash Flow Streams

Tasks:

- Calculate and interpret net present value (NPV) and internal rate of return (IRR) of an investment;
- Contrast the NPV rule to the IRR rule, and identify problems associated with the IRR rule.

Net Present Value (NPV)

- > The present value of its cash inflows(benefits) minus the present value of its cash outflows(costs).
- Calculation of NPV:
 - Identify all cash flows;
 - · Determine the discount rate or opportunity cost (r);
 - Find the present value of each cash flow;
 - · Sum up all present value to get NPV.

$$NPV = CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + ... + \frac{CF_n}{(1+r)^n}$$

Evaluation of Cash Flow Streams

- Apply the NPV rules:
- If NPV > 0, undertake the project;
- If NPV ≤ 0, should not undertake the project;
- For mutually exclusive projects (can only invest in one), choose the one with higher positive NPV.

Evaluation of Cash Flow Streams

Example:

A project requires an initial outlay of \$2 million, cash flows at end of year 1, 2, 3 are \$0.5 million, \$0.75 million, \$1.35 million, respectively. If the discount rate is 10% per year, calculate the net present value.

Answer:

NPV =
$$-2 + 0.5/(1.10) + 0.75/(1.10)^2 + 1.35/(1.10)^3$$

= \$0.089 mil.

高顿网校

多高顿网校

Evaluation of Cash Flow Streams

彩高顿网校 www.gaodun.com

Internal rate of return (IRR):

The discount rate that makes net present value equal to zero.

$$NPV = 0 = CF_0 + \frac{CF_1}{\left(1 + IRR\right)^1} + \frac{CF_2}{\left(1 + IRR\right)^2} + ... + \frac{CF_n}{\left(1 + IRR\right)^n}$$

- Apply the IRR rules:
 - IRR > opportunity cost of capital, undertake the project
 - IRR ≤ opportunity cost of capital, should not undertake the project.

Evaluation of Cash Flow Streams

Example

A project requires an initial outlay of \$2 million, cash flows at end of year 1, 2, 3 are \$0.5 million, \$0.75 million, \$1.35 million, respectively. If the discount rate is 10% per year, calculate the IRR.

Answer:

 $0 = -2 + 0.5/(1+IRR) + 0.75/(1+IRR)^2 + 1.35/(1+IRR)^3$ IRR = 12.13%

Evaluation of Cash Flow Streams

Problems with IRR rules

- NPV and IRR rules give the same accept or reject decision when projects are independent, but may rank projects differently if projects are mutually exclusive when:
 - The size or scale of the projects differs;
 - The timing of the projects' cash flows differs.

Evaluation of Cash Flow Streams

Problems with IRR rules (Cont.)

- Stick to the NPV rule when NPV's and IRR's suggestions are conflict.
- When the signs of cash flows change more than once, there can be more than one IRR.

Summary

彩高顿网校 www.gaodun.com

- ➤ Importance: ☆☆
- Content:
- · Calculation of NPV and IRR of an investment;
- · Apply the NPV and IRR rules;
- · Problems with IRR rules.
- Exam tips:
- 考计算题。

Portfolio Return Measurement

Tasks:

- Calculate and compare the holding period return, money-weighted and time-weighted rates of return;
- Calculate and interpret, and convert among the bank discount yield, effective annual yield, and money market yield for money market instruments.

高顿网校 www.gaodun.cor

Portfolio Return Measurement

Holding period return

The return that an investor earns over a specified holding period.

$$HPR = \frac{P_1 - P_0 + D_1}{P_0}$$

Example

Stock purchased nine months ago for \$29 just paid a dividend of \$1.30 and is valued at \$30.50. Calculate the nine-month holding period return.

Answer: HPR = (30.50 + 1.30 - 29)/29 = 9.66%

Portfolio Return Measurement

Time-weighted return (TWR)

- The compound return that \$1 initially invested in the portfolio over a stated measurement period.
- Calculation of TWR:
 - Break the overall evaluation period into sub-periods based on the dates of significant cash inflows and outflows:
 - · Calculate the HPRs for each sub-periods;
 - Link or compound HPRs to obtain an annual rate of return.

Portfolio Return Measurement

高顿网校 www.gaodun.com

Time-weighted return (Cont.)

$$TWR = \left[\left(\frac{End Value_1}{Begin Value_1} \right) \left(\frac{End Value_2}{Begin Value_2} \right) \left(\frac{End Value_n}{Begin Value_n} \right) \right]^{\frac{1}{N}} - 1$$

Portfolio Return Measurement

Money-weighted return (MWR)

- MWR accounts for the timing and amount of all cash flows into and out of the portfolio.
- If more funds to invest at an unfavorable time, MWR will tend to be depressed;
- If more funds to invest at a favorable time, MWR will tend to be elevated.
- Calculation of MWR: similar to IRR.

$$CF_0 + \frac{CF_1}{1 + MWR} + ... + \frac{CF_N}{(1 + MWR)^N} = 0$$

Portfolio Return Measurement

TWR vs. MWR

- > Time weighted return:
 - · Not affected by cash withdrawals or additions;
- Periods can be any length between significant cash flows.
- Money weighted return:
 - · Assign more weights to the return of larger cash flows;
 - · Affected by cash withdrawals or additions;
 - · Periods must be equal length.
 - ✓ Use shortest period with no significant cash flows.

Portfolio Return Measurement

TWR vs. MWR (Cont.)

➤ Example: Eric invests \$1,000 in an account. After one year, the value of his investment is \$1,200 and Eric adds another \$800 into the account. At the end of Year 2, the total value of the investment is \$2,200. Calculate the annual TWR and MWR.

Answer:

TWR = $[(1.2)(1.1)]^{1/2} - 1 = 14.89\%$; MWR = 13.623%.

Using your calculator to calculate MWR:

$$CF_0 = -1,000$$
; $CF_1 = -800$; $CF_2 = 2,200$; CPT : $IRR = 13.623\%$.

Money Market Yields

高顿网校 www.gaodun.com

多高顿网校

Holding period yield (HPY)

> HPY = (Ending Value/Beginning Value) - 1

Bank discount yield (BDY)

- BDY = (Discount/Face Value) × (360/Days to maturity)
 - Discount rate, simple interest, 360-day annualized.

Money Market Yield (MMY)

- MMY = (Discount/Price) × (360/Days to maturity)
 - · Add-on rate, simple interest, 360-day annualized.

Money Market Yields

Bond Equivalent Yield (BEY)

- BEY = (Discount/Price) × (365/Days to maturity)
 - · Add-on rate, simple interest, 365-day annualized;
 - Only for money market, not available for capital market.

Effective annual yield (EAY)

- EAY = (1+HPY)^{365/Days} -1
 - Add-on rate, compound interest, 365-day annualized.

Money Market Yields

A 90-day T-bill is purchased for \$997.40. What are the bank discount yield, holding period yield, money market yield, and the effective yield?

Answer:

Bank discount yield: $[(1,000-997.40)/1,000] \times 4 = 1.04\%$; 90-day holding period return: 1,000/997.4 - 1 = 0.2607%; Money market yield: $0.2607 \times (360/90) = 1.0428\%$; Effective annual yield: $(1,000/997.4)^{365/90} - 1 = 1.0614\%$.

Summary

Content:

- TWR vs. MWR of portfolios;
- . HPY, BDY, MMY, BEY, and EAY of money instrument.

Exam tips:

· 常考点: TWR和MWR的计算与大小关系比较。

Quantitative Description of Distribution

高顿网校 www.gaodun.com

Quantitative descriptions of return distribution

- Central tendency: where returns are centered;
- Quantiles: how return located (location);
- Dispersion: how far returns are dispersed from center;
- Skewness: whether the distribution of returns is symmetrically shaped;
- Kurtosis: whether extreme outcomes are likely or whether fatty tails exist.

Measures of Central Tendency

高顿网 www.gaodun.c

Central tendency

- Mean
- Arithmetic mean
- Geometric mean
- · Weighted mean
- · Harmonic mean
- Median
- Mode

Measures of Central Tendency

Arithmetic mean

- Equal to the sum of the observations divided by the number of the observations.
- Population Mean

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

Measures of Central Tendency

- Advantage:
- · Easy to work with mathematically;
- Uses all the information about the size and magnitude of the observations.
- Disadvantage:
 - · Sensitive to extreme values.

Measures of Central Tendency

三高顿网校

Geometric mean

- > The nth root of a set of observations. $G = \sqrt[n]{X_1 X_2 X_3 ... X_n}$ with $X_i \ge 0$ for i = 1, 2, 3, ..., n.
 - · Used to calculate average periodic compound rate of return on investment Periodic return = $\sqrt[n]{(1+R_1)(1+R_2)....(1+R_n)} - 1$
 - ✓ Geometric mean return focus on the profitability of an investment over a multi-period horizon

Measures of Central Tendency

Harmonic mean

Calculation method:

$$\overline{X}_{\text{Harmonic}} = \frac{N}{\sum_{i=1}^{N} \frac{1}{X_i}}$$

where: N = number of purchases (equal \$ amounts) X, = share price for each purchase

· Used to find the average cost per share of stock purchased over time in constant dollar amounts.

Measures of Central Tendency

Comparison among different means

- Harmonic Mean ≤ Geometric Mean ≤ Arithmetic Mean
- · The equal sign will only be valid given all the observations are same:
- · Greater variability of the different observation, the more the arithmetic mean will exceed the geometric mean and harmonic mean as well.

Measures of Central Tendency

Comparison among different means (Cont.)

Example: please calculate the arithmetic mean, geometric mean and harmonic mean of 2, 3, 4.

Arithmetic Mean =
$$\frac{2+3+4}{3}$$
 = 3 (largest)
Geometric Mean = $\sqrt[3]{2\times3\times4}$ = 2.88
Harmonic Mean = $\frac{3}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}$ = 2.77 (smallest)

Measures of Central Tendency

彩高顿网校 www.gaodun.com

Weighted mean

➤ A mean in which different observations have different proportional influence on the mean.

$$\overline{X}_W = \sum_{i=1}^{n} w_i R_i = w_1 R_1 + w_2 R_2 + \dots w_n R_n$$

Where:

- R₁,R₂,.....R_n are the returns for assets 1,2,.....,n;
- w₁,w₂,.....,w_n are the portfolio weights.

$$\checkmark$$
 $w_1 + w_2 + \dots + w_n = 1$.

Measures of Central Tendency

Weighted mean (Cont.)

- Weighted mean are mostly used to calculate the portfolio return, or the expected value based on probabilities.
- Arithmetic mean is a special case of weighted mean as the weight for each observation are equally assigned.

Measures of Central Tendency

Weighted mean (Cont.)

- Example: an investor has a \$12,000 portfolio consisting of \$7,000 in stock A with an expected return of 20% and \$5,000 in stock B with an expected return of 10%. What is the investors expected return on the portfolio?
- > Answer:

$$R_{portfolio} = \frac{7000}{12000} \times 20\% + \frac{5000}{12000} \times 10\% = 15.8\%$$

Summary

➤ Importance: ☆☆

Content:

- Measures of central tendency: arithmetic means, geometric means, weighted means, and harmonic means.
- Exam tips:
- 常考点: 考概念题,几种均值的适用场合和优缺点。

Measures of Central Tendency Median The value of the middle item of a set of items sorted into ascending or descending order. Odd number of n items, median occupies the (n+1)/2 position; even number of n items, median is equal to the mean of the items occupying the n/2 and (n+2)/2 positions.

Measures of Central Tendency Median (Cont.) The value of the middle item of a set of items sorted into ascending or descending order. Advantage: not affected by extreme values (a.k.a., outliers) as arithmetic mean. Disadvantage: only one or two numbers considered, rest is to be ignored.

Measures of Central Tendency

三高顿网校

Mode

- Most frequently occurring value of the distribution.
- · The distribution could have more than one mode, or even no mode (bimodal, trimodal, etc.);
- · Mostly used with nominal data.
- **Example**: please find out the mode of following set of items: 2, 4, 5, 5, 7, 8, 8, 8, 10, 12. Answer: mode = 8.

Measures of Location

Quantile

- A value at or below which a stated fraction of the data lies.
 - Quartiles: the distribution divided into quarters;
 - Quintiles: the distribution divided into the fifths;
 - Deciles: the distribution divided into the tenths
 - Percentiles: the distribution divided into the hundredths.
- Quantiles are often used to rank performance and investment research.

Measures of Location

Quantile (Cont.)

> Formula for Location of data in ascending order:

$$L_y = (n+1)\frac{y}{100}$$

Where: n=the number of data y=the yth percentile

Measures of Location

Quantile (Cont.)

> Example:

For data with 17 observations, find out the location of 3rd quintile.

Answer: $L_v = (17+1) \times 0.60 = 10.8$

For ascending ordered observations, this is eight-tenths of the way from the 10^{th} observation to the 11^{th} observation.

Measures of Dispersion

高顿网校 www.gaodun.com

Dispersion (Cont.)

➤ Variance: equal to average of the sum of squared deviations around the mean.

Population Variance:
$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

Where: μ is the population mean, N is the size of population.

Sample Variance:
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Where: \overline{X} is the sample mean, n is the sample size.

Measures of Dispersion

Dispersion (Cont.)

> Standard deviation: positive squared root of variance.

Population Standard Deviation:
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Where: μ is the population mean, N is the size of population.

Sample Standard Deviation:
$$s = \sqrt{\frac{\sum_{i=1}^{n} \left(X_i \text{-} \overrightarrow{X}\right)}{n \text{-} 1}}$$

Where: \overline{X} is the sample mean, n is the sample size.

Measures of Dispersion

Chebyshev's inequality

- ➤ For any distribution with finite variance, the minimum percentage of observations that lie within k standard deviations of the mean would be 1-1/k², given k>1.
- > Example:

According to Chebyshev's inequality, what is the minimum percentage of observations lie within 2 standard deviations of the mean?

Answer: 1-1/22=75%.

Measures of Dispersion

Coefficient of variation (CV)

The ratio of the standard deviation of a set of observations to their mean value.

$$CV = \frac{s}{\overline{X}}$$

- CV has no units of measurement, so permits direct comparisons of dispersions across different data sets;
- A measure of risk per unit of mean return, thus the lower is better.

Measures of Dispersion

高顿网校 www.gaodun.com

Sharpe ratio

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
 - No units of measurement, so permits direct comparisons of dispersions across different data sets.
 - A measure of excess return per unit of risk, thus the higher is better (only valid for positive Sharpe ratio).

Summary

- ► Importance: ☆☆☆
- Content:
 - Measures of dispersion: range, MAD, variance and standard deviation;
 - · Chebyshev's inequality;
 - · CV & Sharpe ratio.
- > Exam tips:
- 常考点: Chebyshev's inequality 和 CV & Sharpe ratio, 可能出计算题。

高顿网校 www.gaodun.com

Skewness & Kurtosis

Tasks:

- Explain measures of sample skewness and kurtosis;
- Describe the relative locations of the mean, median, and mode for a unimodal, nonsymmetrical distribution.

Skewness

> Indicating the degree of symmetry of return distributions.

Sample skewness
$$(S_k) = \left[\frac{n}{(n-1)(n-2)}\right] \frac{\sum_{i=1}^{n} (X_i - \overline{X})^3}{s^3}$$

Where: n is the sample size;

s is the sample standard deviation.

- S_k = 0 → Symmetrical distribution;
- $S_k > 0 \rightarrow Positively (right) skewed distribution;$
- $S_k < 0 \rightarrow Negatively$ (left) skewed distribution.

