Johannes Herrmann 3935819 Tabet Ehsainieh 4363468

6. November 2017

Lösungen zum Übungsblatt Nr. 4

Aufgabe 1

a) Sei G von der Form $a \longrightarrow 1 \longrightarrow b$, d.h.

$$\begin{array}{c|c} Von & Nach \\ \hline a & 1 \\ 1 & b \end{array}$$

dann folgt: $\delta[Nach \to A]g \bowtie \delta[Von \to A]g$

$$\begin{array}{c|cccc} Von & A & Nach \\ \hline a & 1 & b \end{array}$$

ex 1) total points 4/6 (b) -1 points for no derivation of the query. you must also notice that the point of this exercise was to use the nested joins although the answer that you are

und: $\pi[Von, Nach](\delta[Nach \rightarrow A]g \bowtie \delta[Von \rightarrow A]g)$ given provides the correct result.

(c) -1 points for the wrong answer. the answer is NO because the number of required joins are proportional to

- b) $Q = \pi[Von, Nach](\delta[Nach \rightarrow B](\delta[Von \rightarrow A]g \bowtie \delta[Nach \rightarrow A]g) \bowtie$ $\delta[Von \to A, A \to B](\delta[Von \to A]g \bowtie \delta[Nach \to A]g))$
- c) Man kann solch einen Anfrageausdruck Q angeben. Q hat die Form:

$$Q = \pi[Von, Nach](q_n)$$
, wobei:

$$q_n = \delta[Nach \rightarrow n](q_{n-1}) \bowtie \delta[Nach \rightarrow 1, 1 \rightarrow 2, ..., n-2 \rightarrow n-1, n-1 \rightarrow n](q_{n-1})$$

und
$$q_1 = \delta[Nach \to 1]g \bowtie \delta[Von \to 1]g$$

Aufgabe 2

Seien X_1, X_2 Formate, $X_2 \subset X_1, Z = X_1 - X_2$ und r_1, r_2 Relationen über X_1 , bzw. X_2 , wobei $r_2 = \emptyset$.

$$r_1 \div r_2 = \pi[Z]r_1 - \pi[Z](((\pi[Z]r_1) \times r_2) - r_1), \text{ aber:}$$

ex 2) Total points 4/4

$$\pi[Z]r_1 \times r_2 = \emptyset$$
, da $r_2 = \emptyset$

$$\Rightarrow r_1 \div r_2 = \pi[Z]r_1 - \pi[Z]((\emptyset) - r_1)$$
$$= \pi[Z]r_1 - \pi[Z]\emptyset$$
$$= \pi[Z]r_1$$

Aufgabe 3

ex 3) total points 4/4

Definition eines Verbundes:

$$Q_1\bowtie Q_2:=\{\mu\in Tup(X_1X_2)|\mu[X_1]\in Q_1\wedge\mu[X_2]\in Q_2\}$$
 Sei $X=X_1=X_2$

 $\Rightarrow Q_1 \bowtie Q_2 := \{ \mu \in Tup(X) | \mu[X] \in Q_1 \land \mu[X] \in Q_2 \}$, also alle Zeilen aus Q_1, Q_2 , die übereinstimmen.

Das entspricht dem Ausdruck Q_1 ohne die Zeilen die in Q_1 , aber nicht in Q_2 enthalten sind: $Q_1-(Q_1-Q_2)=Q_1\cap Q_2$

$$\Rightarrow Q_1 \bowtie Q_2 \equiv Q_1 \cap Q_2$$

Aufgabe 4

a)
$$X \cap Y = \emptyset \Rightarrow R \bowtie S = R \times S$$

Da die Division die inverse Operation zum Skalarprodukt ist, gilt:

$$(R \times S) \div S = R$$

$$\Rightarrow (R \bowtie S) \div S \equiv R$$

b) Sei R(X):

und S(Y) = S(X):

A	В
2	1
3	2
1	3

Dann ist $\pi[A](R-S)$:

aber
$$\pi[A]R - \pi[A]S = \emptyset$$

 $\Rightarrow \pi[Z](R - S) \not\equiv \pi[Z]R - \pi[Z]S$

ex 4) total points 5.5/6

(a) -0.5 point \ast It is really important that you prove it through the definition of division.

(X U Y) - Y = X

by defining the division, you can get the result so that:

 $\Pi[X](RxS) = R$