Contents

- Project overview
- Refactored design
- Spark performance tuning and optimization
 - Spark properties and Spark application architecture
 - Spark UI
 - Code-level design choices
- Optimization checklist
- Q&A

Introduction to Spark Performance Optimization

Project Overview

- Environment: Spark on EMR Cluster
- Input: 100G CSV; Output: 5B rows in Redshift, ~10T storage
- Functionality: Calculate history & daily inventory and other metrics
- Challenge:
 - Calculated metrics take sequential computation each day
 - Calculation based on big-sized Item Level tables
- Legacy Implementation:
 - Multiple table join
 - Fulfill and expand raw data as

No. of Location * No. of Item * No. of Date * No. of Metrics

Refactored design

Index	Legacy code	Refactored design	Benefits
data size/shuffle key	>>129416i * 365d * 27m * 200l	129416i * 28d * 27m	>24000x
I/O	500T	10T	50x
exec time	8 hours	6 hours	1.2x
total cost (USD/month)	350k	10k	35x

Legacy code	Refactored design	Benefits
8 EMR Notebooks	Packaged Spark app with CICD and tests	Automation and collaboration
Default Spark properties	Fine-tuned Spark properties	Reduced cost
Excessive IO and checkpoints	End to end script with reusable components	Development velocity
Monolithic CSV as input	Partitioned CSV as input	Parallelism and scalability
Mysterious code, redundant logic	Refactored code and logic	Code efficiency

Spark performance tuning and optimization

Spark properties and Spark application architecture

Learning Spark - Lightning-Fast Data Analytics, 2nd Edition, page 50

- Default Spark properties
- EMR default Spark properties
- Best practices for successfully managing memory for Apache Spark applications on Amazon EMR
 - EMR memory calculation helper program

Spark performance tuning and optimization Spark UI: Jobs

Mind the usage of Spark actions and thus the number of jobs

Learning Spark - Lightning-Fast Data Analytics, 2nd Edition, page 51

Spark performance tuning and optimization Spark UI: Stage and Task

- Take shuffle action as little as possible. E.g., Broadcast Join
- spark.sql.autoBroadcastJoinThreshold
- Shuffle data as few as possible
- E.g., The order of joins
- The number of tasks: shouldn't < or >> max tasks in parallel
- To adjust the number of tasks:
- Coalesce / Repartition
- spark.sql.shuffle.partitions
- spark.sql.adaptive.coalescePartitions.parallelismFirst
- The running time of tasks: should be balanced
- To rebalance skewed partitions: repartition (max tasks in parallel)
- GC, Memory spill
- To manage memory:
- Adjust partition size
- spark.executor.memory
- df.unpersist()

Summary Metrics for 200 Completed Tasks

Metric	Min	25th percentile	Median	75th percentile	Max
Duration	20 s	42 s	45 s	48 s	1.1 min
GC Time	0.0 ms	0.1 s	0.3 s	0.7 s	2 s
Spill (memory)	0.0 B	5.3 GiB	5.3 GiB	5.3 GiB	6.4 GiB
Spill (disk)	0.0 B	184.3 MiB	184.4 MiB	184.5 MiB	325.3 MiB
Shuffle Read Size / Records	195.3 MiB / 7772955	195.5 MiB / 7777916	195.5 MiB / 7779894	195.6 MiB / 7781707	195.7 MiB / 7787165
Shuffle Write Size / Records	205 MiB / 7289074	205.1 MiB / 7292929	205.1 MiB / 7294761	205.2 MiB / 7296306	225.9 MiB / 7300972

Showing 1 to 6 of 6 entries

Aggregated Merics by Executor

Tasks (200)

Spark performance tuning and optimization

Code-level design choices

- I/O Parallelization
 - Use parquet. Partition size: ~ tens of MB
 - EMR cluster IP = Number of nodes + 1
- Filter as early as possible
- Use API; avoid UDF
- Cache

```
joined_df = df1.join(df2, 'join_key', 'left')
# joined_df.cache()
# joined_df.count()
new_df_1 = joined_df.withColumn('new_column_1', F.lit(1))
new_df_2 = joined_df.withColumn('new_column_2', F.lit(2))
new_df_1.count(), new_df_2.count()
```


Optimization checklist

- Designing stage
 - Partition IO; adopt parquet if possible
 - Streamline code logic: transformations and actions
 - Calculate Spark properties based on estimated workload
- Building stage
 - Filter as early as possible
 - Shuffle as few as possible
 - Use API; avoid UDF
 - Cache if needed
- Testing stage
 - Fine-tune Spark properties
 - The number of tasks: shouldn't < or >> max tasks in parallel
 - The size of partitions: ~ tens of MB output partition
 - The running time of tasks: should be balanced
 - Look for GC or memory spill
- Other optimization techniques such as AQE, Bucketing, Checkpoint

Introduction to Spark Performance Optimization

References

Spark - The Definitive Guide, Chapter 19: Performance Tuning Learning Spark - Lightning-Fast Data Analytics, Chapter 7: Optimizing and Tuning Spark Applications