Buzatu-Pahontu Mihnea-Nicolae 324CB

HR username: mihnea_buzatu

Tema 4 A A – kVertexCover to SAT

Fie un graf neorientat cu N noduri si M muchii.

Pentru ca o multime X de noduri sa fie o solutie pentru kVertexCover trebuie ca:

- 1) X sa aiba exact k elemente
- 2) pentru fiecare muchie m din M, m trebuie sa aiba cel putin un nod in X

Am asignat cate o variabila pentru fiecare nod din graf astfel:

- 1 daca este in X
- 0 altfel

Conditiile:

- 1) X sa aiba exact k elemente. Aceasta se poate descompune in:
 - X sa aiba cel mult k elemente
 - X sa aiba cel putin k elemente

In cazul nostru, este suficient sa o demonstram pe prima deoarece restul de noduri pot fi alese aleator. Astfel trebuie sa rezolvam o problema de tip "at most k-out-of-n". O solutie simpla este cea binomiala, care nu foloseste variabile in plus, insa aceasta ar adauga un numar de clauze O(2^n) in worst case, iar noi cautam o trasformare polinomiala.

De aceea am ales sa folosesc un Sequential Counter^[1]. Acesta necesita variabile suplimentare, mai exact $K^*(N-1)$, pentru a crea N-1 registre de lungime K care numara elementele gasite (Registrul i retine cate din primele i noduri sunt in X). Avantajul acestei metode este ca scade numarul de clauze la $O(K^*N)$, iar performantele sunt in general mai bune^[2].

2) Aceasta conditie este triviala de transformat, trebuie creata cate o clauza disjunctiva pentru fiecare muchie care contine nodurile pe care le leaga.

Numarul de clauze este cosntant si egal cu M.

Ex: Muchia m cu nodurile n1, n2 => clauza (n1 V n2)

In final vom avea $K^*(N-1)$ variabile si $O(K^*N)$ clauze.

^[1] Carsten Sinz - "Towards an Optimal CNF Encoding of Boolean Cardinality Constraints"

^[2] Alan M. Frisch and Paul A. Giannaros - "SAT Encodings of the At-Most-kConstraint"