Package 'decone'

October 13, 2022

```
Type Package
Date 2022-09-18
Title Cell Type Deconvolution Evaluator
Version 1.0.0
Description The evaluation platform for cell type deconvolution. This platform
      provides multiple simulation and real mixture expression datasets for evaluate
      the performance of deconvlution tools. This toolkit also plots preety
      figure for the comparison of different deconvolution methods.
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Depends R (>= 4.1.0)
Imports Metrics,
      stats,
      utils,
      Matrix,
      tibble,
      data.table,
      tools,
      magrittr,
      ggplot2,
      pheatmap,
      reshape2,
      grDevices,
      forcats,
      stringr,
      R.utils,
      ggpubr,
      progress
Suggests knitr,
      rmarkdown
```

VignetteBuilder knitr

2 addNoise

R topics documented:

addNoise	- 2
addNoiseExpr	3
boxplot_multi	4
boxplot_NcrossCompare	4
boxplot_NGrad	5
boxplot_simple	6
cheatmap_NcrossCompare	7
cheatmap_RcrossCompare	7
CPM	8
exprSim	9
heatmap_NcrossCompare	10
heatmap_NGradCT	11
heatmap_RcrossCompare	12
pseudoData	13
pseudoExpr	13
rareExprSim	14
rarescExprSim	15
regMetrics	16
scatter_R	17
scatter_simple	17
scExprSim	18
TPM	19
unExprSim	20
unscExprSim	21
v_norm	22
	23

addNoise

Index

Add noise to gene expression data

Description

Add noise based on negtive bionomial distribution. Please see "A benchmark for RNA-seq deconvolution analysis under dynamic testing environments" in Genome Biology.

Usage

```
addNoise(x = NULL, pt = 0.1, type = "NB")
```

Arguments

x a gene expression numeric vector.

pt parameter to control noised level. Default: 0.1

type "NB", "N" or "LN". "NB" means Negative binomial model, "N" means normal

model, "LN" means Log-normal model. Default: "NB"

Value

the sample length vector.

addNoiseExpr 3

Examples

```
res <- addNoise(x = seq(100))
```

addNoiseExpr

Add noise to the simulated expression matrix

Description

Add different level noise to the simulated expression matrix based on the negative binomial distribution. The related model can be found in this paper (Jin, H., Liu, Z. A benchmark for RNA-seq deconvolution analysis under dynamic testing environments. Genome Biol 22, 102 (2021). https://doi.org/10.1186/s13059-021-02290-6).

Usage

```
addNoiseExpr(
  exprFile,
  outputPath = NULL,
  prefix = NULL,
  Pt = seq(0.1, 1, 0.1),
  type = "NB"
)
```

Arguments

exprFile The input expression file. Must be in csv format. Each row is a gene, each column is a sample. rownames and colnames are required. Please check the

output of the function ${\tt exprSim}.$

outputPath Output path, create if not exists. Default: a new folder based on the exprFile. For

example, if the exprFile is "/data/test.txt", the outputPath will be a new folder

"/data/test".

prefix The prefix of the output file. Note: the suffix will be added automatically based

on the noise level.

Pt Parameter to control noise level. Default: seq(0.1, 1, 0.1)

type "NB", "N" or "LN". Noise type. "NB" means Negative binomial model, "N"

means normal model, "LN" means Log-normal model. Default: "NB"

Value

All the information will be written in the output path, and each file is the generated data in a specific noise level.

```
res <- pseudoExpr()
write.csv(x = res$mix, file = "mix.csv", row.names = T, quote = F)
addNoiseExpr(exprFile = "mix.csv", Pt = seq(0.1, 1, 0.1), type = "NB")</pre>
```

boxplot_mult	i Boxplo	ot of deconvolution result	ts for multiple compa	rison.

Description

Boxplot for illustrating the deconvolution performance.

Usage

```
boxplot_multi(actual, predicted, label = NULL, method, title = "Boxplot")
```

Arguments

actual	The groundtruth proportion of cell types in matrix. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	a vector contains all the files with the predicted proportions from different methods. Must be in csv file with row and column names. row: cell types, column: samples. For example, c("method1.csv", "method2.csv", "method3.csv").
label	a vector contains the label corresponding to the predicted proportion file. Default: base file name in parameter 'predicted'. For example, $c("method1", "method2", "method3")$.
method	"rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types with read proportion 0 will be ignored.
title	Boxplot title in character.

Value

The computed metrics and plot data.

```
boxplot_NcrossCompare Comparing boxplot for noise testing.
```

Description

Boxplot for illustrating the deconvlition performance with the noised in silico data. this function is used for comparing multiple methods.

Usage

```
boxplot_NcrossCompare(actual, predicted, label = NULL, method, title = "")
```

boxplot_NGrad 5

Arguments

a list of vectors. Each vector contains all the files with the predicted proportion in different noise level. Must be in csv file with row and column names. To cell types, column: samples. For example, list(method1 = c("m1_noise0.csv"m1_noise1.csv", "m1_noise2.csv"), method2 = c("m2_noise0.csv", "m2_noise2.csv")). Note: names for each method will be used for assign column a vector contains the label corresponding to the predicted proportion file.	nn:
label a vector contains the label corresponding to the predicted proportion file. I	ow: v", ise1.csv",
fault: c("condition1", "condition2", "condition3",))e-
method "rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell ty with read proportion 0 will be ignored.	oes

Value

The computed metrics and plot data.

Examples

title

```
res <- pseudoData(type = 3, outputPath = "test_file")
res <- boxplot_NcrossCompare(actual = res$actual, predicted = res$predicted,
label = res$noise_level, method = "pearson", title = "pearson")</pre>
```

Boxplot title in character.

boxplot_NGrad Boxplot of deconvolution results for multiple test.

Description

Boxplot for illustrating the deconvolution performance with the noised in silico data.

Usage

```
boxplot_NGrad(actual, predicted, label = NULL, method, title = "Boxplot")
```

Arguments

actual	The groundtruth proportion of cell types in matrix. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	a vector contains all the files with the predicted proportions in different noise level. Must be in csv file with row and column names. row: cell types, column: samples. For example, c("noise0.csv", "noise1.csv", "noise2.csv").
label	a vector contains the label corresponding to the predicted proportion file. Default: base file name in parameter 'predicted'. For example, $c("noise0", "noise1", "noise2")$.
method	"rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types with read proportion 0 will be ignored.
title	Boxplot title in character.

6 boxplot_simple

Value

The computed metrics and plot data.

Examples

```
res <- pseudoData(type = 2)
res <-boxplot_NGrad(actual = res$actual, predicted = res$predicted,
label = res$noise_level, method = "rmse")</pre>
```

boxplot_simple

Boxplot of deconvolution results for a specific method.

Description

Boxplot for deconvolution results with multiple samples.

Usage

```
boxplot_simple(actual, predicted, method = NULL)
```

Arguments

actual The groundtruth proportion of cell types in matrix. row: cell types, column:

samples. Also can be a csv matrix with row and column names.

predicted The predicted proportion of cell types in matrix. row: cell types, column: sam-

ples. Also can be a csv matrix with row and column names.

method "rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types

with read proportion 0 will be ignored.

Value

The computed metrics and plot data.

```
res <- pseudoData(type = 1)
res <- boxplot_simple(actual = res$actual, predicted = res$predicted, method = "mape")</pre>
```

cheatmap_NcrossCompare

Plot circle heatmap for deconvolution results.

Description

Usually, only one metric cannot reveal the deconvolution performance well. Therefore, the circle heatmap which contains two different dimension information can be used for a better illustration.

Usage

```
cheatmap_NcrossCompare(actual, predicted, label = NULL, method1, method2)
```

Arguments

actual	The groundtruth proportion of cell types in matrix. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	a list of vectors. Each vector contains all the files with the predicted proportions in different noise level. Must be in csv file with row and column names. row: cell types, column: samples. For example, list(method1 = $c("m1_noise0.csv", "m1_noise1.csv", "m1_noise1.csv", "m1_noise2.csv")$, method2 = $c("m2_noise0.csv", "m2_noise1.csv", "m2_noise2.csv")$). Note: names for each method will be used for assign colors.
label	a vector contains the label corresponding to the predicted proportion file. Default: c("condition1", "condition2", "condition3",)
method1	"rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types with read proportion 0 will be ignored.
method2	"rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types with read proportion 0 will be ignored.

Value

The computed metrics and plot data.

Examples

```
res <- pseudoData(type = 3, outputPath = "test_file")
res <- cheatmap_NcrossCompare(actual = res$actual, predicted = res$predicted,
label = res$noise_level, method1 = "pearson", method2 = "rmse")</pre>
```

cheatmap_RcrossCompare

Plot circle heatmap for deconvolution results rare cell types.

Description

Generate circle heatmap for different rare cell type proportions. The dataset should be generated from the function rareExprSim.

8 CPM

Usage

```
cheatmap_RcrossCompare(
   actual,
   predicted,
   p_rare = c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05),
   label = NULL,
   method1,
   method2
)
```

Arguments

actual	The groundtruth proportion of cell types in matrix or csv file. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	a vector contains all the files with the predicted proportions in different method. Must be in csv file with row and column names. row: cell types, column: samples. For example, c("method1.csv", "method2.csv", "method3.csv").
p_rare	A vector of proportions. should be the same with function <code>rareExprSim</code> . Default: $c(0.001,0.003,0.005,0.008,0.01,0.03,0.05)$
label	a vector contains the label corresponding to the predicted proportion file. Default: $c("condition1", "condition2", "condition3",)$
method1	"rmse", "mape", "mae". Note: for mape, cell types with read proportion 0 will be ignored.
method2	"rmse", "mape", "mae". Note: for mape, cell types with read proportion 0 will be ignored.

Value

The plot data.

Examples

```
rareExprSim()
# after the simulation, just pass the predicted file
# to the parameter "actual" and "predicted"
```

CPM

Convert a gene expression count matrix into CPM matrix.

Description

Convert a gene expression count matrix into CPM matrix

Usage

```
CPM(data = NULL)
```

exprSim 9

Arguments

data

A dataframe or matrix object. Note: Must contain a column named "Length", "Length" means gene length.

Value

A dataframe or matrix object.

Examples

```
data <- data.frame(s1 = seq(100), Length = seq(100))
res <- CPM(data)</pre>
```

exprSim

Generate in silico mixture expression matrix

Description

Generate in silico mixture expression matrix based on the internal RNA-seq database. The internal RNA-seq database is collected from multiple studies. All the samples are passed the quality filter. This function is different from pseudoExpr. Counts in pseudoExpr is randomly generated from uniform distribution. This function use the real cell type specific expression data to generate mixture data. We provide two types of simulation called "coarse" and "fine". This idea is from DREAM Challenge Tumor Deconvolution problem. https://www.synapse.org/#! Synapse:syn15589870/wiki/.

Usage

```
exprSim(
  n_sample = 50,
  p = 2/3,
  type = "coarse",
  transform = "TPM",
  outputPath = NULL,
  mix_name = "coarse_gene_expr.csv",
  ref_name = "coarse_ref.csv",
  prop_name = "coarse_prop.csv",
  refVar_name = NULL,
  train_name = NULL
)
```

Arguments

n_sample

Sample number to be generated, default: 50.

р

Proportion of sample in train set, default: 0.6.

type

"coarse" or "fine". "coarse" means the simulation will be performed in a coarse level. Only 8 cell types will be used, including ("B.cells", "CD4.T.cells", "CD8.T.cells", "endothelial.cells", "macrophages", "monocytes", "neutrophils", "NK.cells"). "fine" means the simulation will be performed in a fine level. 14 cell types will be used, including ("memory.B.cells", "naive.B.cells", "memory.CD4.T.cells",

"naive.CD4.T.cells", "regulatory.T.cells", "memory.CD8.T.cells", "naive.CD8.T.cells", "NK.cells", "neutrophils", "monocytes", "myeloid.dendritic.cells", "macrophages",

"fibroblasts", "endothelial.cells")

transform "TPM", "CPM" or "NO". Transform the data into TPM, CPM or in counts.

outputPath output file save path.
mix_name mixture output file name.

ref_name reference output file name in csv.

prop_name simulated proportion file name in csv.

refVar_name reference variance file name in csv.

train_name file name for all data in train set in csv. This data can be used for differential

gene analysis.

Value

All the information will be written in the output path.

Examples

exprSim()

 $heatmap_NcrossCompare$ Plot heatmap for deconvolution results.

Description

Generate heatmap comparison for different methods.

Usage

heatmap_NcrossCompare(actual, predicted, label = NULL, method)

Arguments

actual The groundtruth proportion of cell types in matrix. row: cell types, column:

samples. Also can be a csv matrix with row and column names.

predicted a list of vectors. Each vector contains all the files with the predicted proportions

in different noise level. Must be in csv file with row and column names. row: cell types, column: samples. For example, list(method1 = c("m1_noise0.csv", "m1_noise1.csv", "m1_noise2.csv"), method2 = c("m2_noise0.csv", "m2_noise1.csv",

"m2_noise2.csv")). Note: names for each method will be used for assign colors.

label a vector contains the label corresponding to the predicted proportion file. De-

fault: c("condition1", "condition2", "condition3", ...)

method "rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types

with read proportion 0 will be ignored.

Value

The computed metrics and plot data.

heatmap_NGradCT 11

Examples

```
res <- pseudoData(type = 3, outputPath = "test_file")
res <- heatmap_NcrossCompare(actual = res$actual, predicted = res$predicted,
label = res$noise_level, method = "mape")</pre>
```

heatmap_NGradCT

Plot heatmap for different cell types.

Description

Generate heatmap comparison for different cell types.

Usage

```
heatmap_NGradCT(actual, predicted, label = NULL, method)
```

Arguments

actual	The groundtruth proportion of cell types in matrix. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	a vector contains all the files with the predicted proportions in different noise level. Must be in csv file with row and column names. row: cell types, column: samples. For example, c("noise0.csv", "noise1.csv", "noise2.csv").
label	a vector contains the label corresponding to the predicted proportion file. Default: $c("condition1", "condition2", "condition3",)$
method	"rmse", "mape", "mae", "pearson" or "spearman". Note: for mape, cell types with read proportion 0 will be ignored.

Value

The computed metrics and plot data.

```
res <- pseudoData(type = 2)
res <- heatmap_NGradCT(actual = res$actual, predicted = res$predicted,
label = res$noise_level, method = "rmse")</pre>
```

heatmap_RcrossCompare Plot heatmap for deconvolution results.

Description

Generate heatmap comparison for different methods.

Usage

```
heatmap_RcrossCompare(
  actual,
  predicted,
  p_rare = c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05),
  label = NULL,
  method
)
```

Arguments

actual	The groundtruth proportion of cell types in matrix. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	a vector contains all the files with the predicted proportions in different method. Must be in csv file with row and column names. row: cell types, column: samples. For example, c("method1.csv", "method2.csv", "method3.csv").
p_rare	A vector of proportions. should be the same with function <code>rareExprSim</code> . Default: $c(0.001,0.003,0.005,0.008,0.01,0.03,0.05)$
label	a vector contains the label corresponding to the predicted proportion file. Default: $c("condition1", "condition2", "condition3",)$
method	"rmse", "mape", "mae". Note: for mape, cell types with read proportion 0 will be ignored.

Value

The computed metrics and plot data.

```
rareExprSim()
# after the simulation, just pass the predicted file
# to the parameter "actual" and "predicted"
```

pseudoData 13

pseudoData

Generate pseudo data for plotting

Description

Generate pseudo data (prediction values) for plotting

Usage

```
pseudoData(type = 1, outputPath = "test_file")
```

Arguments

type 1, 2 or 3 for different usage outputPath path to save tmp file

Value

The pseudo data

Examples

```
res <- pseudoData(type = 1)</pre>
```

pseudoExpr

Generate pseudo mixture expression matrix

Description

Generate pseudo mixture expression matrix based on uniform distribution, without any noise.

Usage

```
pseudoExpr(n_sample = 50, n_gene = 1000, n_ct = 10)
```

Arguments

n_sample
 n_gene
 Gene number to be generated, default: 1000
 n_ct
 Cell type number to be generated, default: 10

Value

a list, prop means the pseudo proportion, ref means the pseudo external reference, mix is the output of ref

```
res <- pseudoExpr()
```

14 rareExprSim

rareExprSim

Generate in silico expression dataset with rare component.

Description

Generate in silico mixture expression matrix based on the internal RNA-seq database. This function is different from the function exprSim. exprSim generates all the proportion randomly, while this function takes one cell type as rare component and all Other cell type proportion will be set randomly from the uniform distribution. The internal RNA-seq database is collected from multiple studies. All the samples are passed the quality filter. We provide two types of simulation called "coarse" and "fine". This idea is from DREAM Challenge Tumor Deconvolution problem. https://www.synapse.org/#!Synapse:syn15589870/wiki/.

Usage

```
rareExprSim(
   p_rare = c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05),
   p = 0.6,
   type = "coarse",
   transform = "TPM",
   outputPath = NULL,
   mix_name = "coarse_gene_expr.csv",
   ref_name = "coarse_ref.csv",
   prop_name = "coarse_prop.csv",
   refVar_name = NULL,
   train_name = NULL
)
```

reference output file name in csv. simulated proportion file name in csv.

reference variance file name in csv.

Arguments

ref_name

prop_name

refVar_name

p_rare	A vector of proportions. Default: $c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05)$ Note: Every cell type will be treated as rare component. For example, if 8 cell types need to be tested, this function will generate $7*8 = 56$ samples. 7 mean 7 rare proportions and 8 means 8 cell types.
p	Proportion of sample in train set, default: 0.6.
type	"coarse" or "fine". "coarse" means the simulation will be performed in a coarse level. Only 8 cell types will be used, including ("B.cells", "CD4.T.cells", "CD8.T.cells", "endothelial.cells", "macrophages", "monocytes", "neutrophils", "NK.cells"). "fine" means the simulation will be performed in a fine level. 14 cell types will be used, including ("memory.B.cells", "naive.B.cells", "memory.CD4.T.cells", "naive.CD4.T.cells", "regulatory.T.cells", "memory.CD8.T.cells", "naive.CD8.T.cells", "NK.cells", "neutrophils", "monocytes", "myeloid.dendritic.cells", "macrophages", "fibroblasts", "endothelial.cells")
transform	"TPM", "CPM" or "NO". Transform the data into TPM, CPM or in counts.
outputPath	output file save path.
mix_name	mixture output file name.

rarescExprSim 15

train_name file name for all data in train set in csv. This data can be used for differential gene analysis.

Value

All the information will be written in the output path.

Examples

```
rareExprSim()
```

rarescExprSim

Generate in silico mixture expression matrix based on scRNA-seq with rare component.

Description

Generate in silico mixture expression matrix based on the internal scRNA-seq database. The internal RNA-seq database is collected from PMID:29474909. All the samples are passed the quality filter. This function use the real cell type specific expression data to generate mixture data. The cell type include c("FetalStomach", "FetalLung", "FetalLiver", "FetalKidney", "FetalIntestine", "FetalBrain", "Female.fetal.Gonad")

Usage

```
rarescExprSim(
  p_rare = c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05),
  p = 2/3,
  transform = "TPM",
  outputPath = NULL,
  mix_name = "scMouse_gene_expr.csv",
  ref_name = "scMouse_ref.csv",
  prop_name = "scMouse_prop.csv",
  train_name = "scMouse_ref_rawCount.csv"
)
```

Arguments

p_rare	A vector of proportions. Default: $c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05)$ Note: Every cell type will be treated as rare component. For example, if 8 cell types need to be tested, this function will generate $7*8 = 56$ samples. 7 mean 7 rare proportions and 8 means 8 cell types.
р	Proportion of sample in train set, default: 2 / 3.
transform	"TPM", "CPM" or "NO". Transform the data into TPM, CPM or in counts.
outputPath	output file save path.
mix_name	mixture output file name.
ref_name	reference output file name in csv.
prop_name	simulated proportion file name in csv.
train_name	file name for all data in train set in csv. This data can be used for differential gene analysis.

16 regMetrics

Value

All the information will be written in the output path.

Examples

```
rarescExprSim()
```

regMetrics

Compute regression Metrics for matrix results.

Description

Compute several regression Metrics for cell type deconcolution.

Usage

```
regMetrics(actual, predicted, method = NULL)
```

Arguments

actual The groundcloth proportion of cell types in matrix. row: cell types, column:

samples.

predicted The predicted proportion of cell types in matrix. row: cell types, column: sam-

ples.

method "rmse", "mape", "mae", "pearson", "spearman", "pearson2", "spearman2". Note:

for mape, cell types with read proportion 0 will be ignored. For pearson2 and spearman2, all data in matrix will be taken into consideration, which mean only

one number will be reported.

Value

a vector with the value for each sample.

scatter_R 17

		_
SCA	itter	. к

Scatter plot for rare component.

Description

Generate scatter plot for rare component.

Usage

```
scatter_R(
   actual,
   predicted,
   p_rare = c(0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05),
   celltype = TRUE
)
```

Arguments

actual	The groundtruth proportion of cell types in matrix or csv file. row: cell types, column: samples. Also can be a csv matrix with row and column names.
predicted	The predicted proportion of cell types in matrix or csv file. row: cell types, column: samples. Also can be a csv matrix with row and column names.
p_rare	A vector of proportions. should be the same with function <code>rareExprSim</code> . Default: $c(0.001,0.003,0.005,0.008,0.01,0.03,0.05)$
celltype	TRUE or FALSE. Assign different type and color for different cell types. Default: TRUE.

Value

The plot data.

Examples

```
rareExprSim()
# after the simulation, just pass the predicted file
# to the parameter "actual" and "predicted"
```

scatter_simple

Scatter plot for proportion prediction.

Description

Generate scatter plot comparison for different cell types.

Usage

```
scatter_simple(actual, predicted, method, celltype = TRUE)
```

18 scExprSim

Arguments

actual The groundtruth proportion of cell types in matrix or csv file. row: cell types,

column: samples. Also can be a csv matrix with row and column names.

predicted The predicted proportion of cell types in matrix or csv file. row: cell types,

column: samples. Also can be a csv matrix with row and column names.

method "pearson" (default), "kendall", or "spearman".

celltype TRUE or FALSE. Assign different type and color for different cell types.

Value

The plot data.

Examples

```
res <- pseudoData(type = 1)
res <- scatter_simple(actual = res$actual, predicted = res$predicted, method = "pearson")</pre>
```

scExprSim

Generate in silico mixture expression matrix based on scRNA-seq

Description

Generate in silico mixture expression matrix based on the internal scRNA-seq database. The internal RNA-seq database is collected from PMID:29474909. All the samples are passed the quality filter. This function use the real cell type specific expression data to generate mixture data. The cell type include c("FetalStomach", "FetalLung", "FetalLiver", "FetalKidney", "FetalIntestine", "FetalBrain", "Female.fetal.Gonad")

Usage

```
scExprSim(
   n_sample = 50,
   p = 2/3,
   transform = "TPM",
   outputPath = NULL,
   mix_name = "scMouse_gene_expr.csv",
   ref_name = "scMouse_ref.csv",
   prop_name = "scMouse_prop.csv",
   train_name = "scMouse_ref_rawCount.csv")
```

Arguments

n_sample Sample number to be generated, default: 50.
p Proportion of sample in train set, default: 2 / 3.

transform "TPM", "CPM" or "NO". Transform the data into TPM, CPM or in counts.

outputPath output file save path.
mix_name mixture output file name.

TPM 19

ref_name reference output file name in csv.

prop_name simulated proportion file name in csv.

train_name file name for all data in train set in csv. This data can be used for differential

gene analysis.

Value

All the information will be written in the output path.

Examples

```
res <- scExprSim()</pre>
```

 TPM

Convert a gene expression count matrix into TPM matrix.

Description

Convert a gene expression count matrix into TPM matrix

Usage

```
TPM(data = NULL)
```

Arguments

data

A dataframe or matrix object. Note: Must contain a column named "Length", "Length" means gene length.

Value

A dataframe or matrix object.

```
data <- data.frame(s1 = seq(100), Length = seq(100)) res <- TPM(data)
```

20 unExprSim

unExprSim

Generate in silico expression dataset with unknown component.

Description

Generate in silico mixture expression matrix based on the internal RNA-seq database. This function is different from the function exprSim. exprSim generates all the proportion randomly, while this function takes one cell type as unknown component. The internal RNA-seq database is collected from multiple studies. All the samples are passed the quality filter. We provide two types of simulation called "coarse" and "fine". This idea is from DREAM Challenge Tumor Deconvolution problem. https://www.synapse.org/#!Synapse:syn15589870/wiki/.

Usage

```
unExprSim(
  unknown = NULL,
  n_sample = 50,
  p = 0.6,
  type = "coarse",
  transform = "TPM",
  outputPath = NULL,
  mix_name = "coarse_gene_expr.csv",
  ref_name = "coarse_ref.csv",
  prop_name = "coarse_prop.csv",
  ref_total_name = NULL,
  prop_total_name = NULL,
  train_name = NULL)
```

Arguments

	unknown	Character to select one cell type as unknown component.	Default: NULL, mean
--	---------	---	---------------------

randomly select one cell type to drop.

n_sample Sample number to be generated, default: 50.
p Proportion of sample in train set, default: 0.6.

type "coarse" or "fine". "coarse" means the simulation will be performed in a coarse

level. Only 8 cell types will be used, including ("B.cells", "CD4.T.cells", "CD8.T.cells", "endothelial.cells", "macrophages", "monocytes", "neutrophils", "NK.cells"). "fine" means the simulation will be performed in a fine level. 14 cell types will be used, including ("memory.B.cells", "naive.B.cells", "memory.CD4.T.cells", "naive.CD4.T.cells", "regulatory.T.cells", "memory.CD8.T.cells", "naive.CD8.T.cells", "NK.cells", "neutrophils", "monocytes", "myeloid.dendritic.cells", "macrophages",

"fibroblasts", "endothelial.cells")

transform "TPM", "CPM" or "NO". Transform the data into TPM, CPM or in counts.

outputPath output file save path.
mix_name mixture output file name.

ref_name reference output file name in csv.

prop_name simulated proportion file name in csv, unknown component will be removed.

unscExprSim 21

```
ref_total_name simulated reference file name in csv, unknown component is contained.

prop_total_name simulated proportion file name in csv, unknown component is contained.

refVar_name reference variance file name in csv.

train_name file name for all data in train set in csv. This data can be used for differential gene analysis.
```

Value

All the information will be written in the output path.

Examples

```
res <- unExprSim()</pre>
```

unscExprSim

Generate in silico mixture expression matrix based on scRNA-seq

Description

Generate in silico mixture expression matrix based on the internal scRNA-seq database. The internal RNA-seq database is collected from PMID:29474909. All the samples are passed the quality filter. This function use the real cell type specific expression data to generate mixture data. The cell type include c("FetalStomach", "FetalLung", "FetalLiver", "FetalKidney", "FetalIntestine", "FetalBrain", "Female.fetal.Gonad")

Usage

```
unscExprSim(
  unknown = NULL,
  n_sample = 50,
  p = 2/3,
  transform = "TPM",
  outputPath = NULL,
  mix_name = "scMouse_gene_expr.csv",
  ref_name = "scMouse_ref.csv",
  prop_name = "scMouse_prop.csv",
  train_name = "scMouse_ref_rawCount.csv",
  ref_total_name = NULL,
  prop_total_name = NULL
)
```

Arguments

unknown	Character to select one cell type as unknown component. Default: NULL, mean randomly select one cell type to drop.
n_sample	Sample number to be generated, default: 50.
p	Proportion of sample in train set, default: 2 / 3.
transform	"TPM", "CPM" or "NO". Transform the data into TPM, CPM or in counts.

v_norm

outputPath output file save path.

mix_name mixture output file name.

ref_name reference output file name in csv.

prop_name simulated proportion file name in csv.

train_name file name for all data in train set in csv. This data can be used for differential

gene analysis.

ref_total_name simulated reference file name in csv, unknown component is contained.

prop_total_name

simulated proportion file name in csv, unknown component is contained.

Value

All the information will be written in the output path.

Examples

```
res <- unscExprSim()</pre>
```

v_norm

Normalize a vector

Description

Normalize a vector

Usage

```
v_norm(x = NULL)
```

Arguments

Χ

a numeric vector

Value

Normalized numeric vector

```
res <- v_norm(seq(100))
```

Index

```
addNoise, 2
addNoiseExpr, 3
boxplot_multi, 4
{\tt boxplot\_NcrossCompare, 4}
boxplot_NGrad, 5
boxplot_simple, 6
cheatmap_NcrossCompare, 7
{\tt cheatmap\_RcrossCompare, 7}
CPM, 8
exprSim, 3, 9, 14, 20
heatmap_NcrossCompare, 10
heatmap_NGradCT, 11
\verb|heatmap_RcrossCompare|, 12|
pseudoData, 13
pseudoExpr, 9, 13
rareExprSim, 7, 8, 12, 14, 17
{\tt rarescExprSim}, {\tt 15}
regMetrics, 16
scatter_R, 17
scatter_simple, 17
scExprSim, 18
TPM, 19
unExprSim, 20
unscExprSim, 21
v_norm, 22
```