

Neuroanatomy

Alejandra Sierra López, Ph.D.

Multiscale Imaging Group
A. I. Virtanen Institute
University of Eastern Finland

Kubiac May 24, 2022

alejandra.sierralopez@uef.fi

Complex

THE BRAIN

Oversimplify

OUTLINE

- Basics of neuroanatomy
- What do we see in MRI?
- Guidelines to analyze MR images of the brain

ANATOMICAL REFERENCES

Warning:

Anatomical planes match in clinical scanners, but not in small animal scanners

ANATOMICAL PLANES

ANATOMICAL REFERENCES

ANATOMICAL COORDINATES

Ventral posteromedial thalamic nucleus (VPM)

AP -3.80 mm from bregma ML 2.90 mm from midline DV - 6.60 mm from dura

ATLASES

Brain atlases can help to navigate through the brain

ATLASES

ATLASES

Online atlases for 3D navigation

https://kimlab.io/

https://ebrains.eu/service/rat-brain-atlas/

https://mouse.brain-map.org/

- Choose an atlas based on mouse/rat strain, age, or technique
- Use the atlas!

GROSS ANATOMY OF THE BRAIN

INTO THE ANATOMY OF THE BRAIN

WHITE AND GREY MATTER

Tip: Use the white/grey matter contrast and other anatomical landmarks to navigate in the brain

A VOXEL IN MRI

THE COMPLEXITY OF THE MRI VOXEL

Each imaging voxel provides information of highly complex microstructural environment

SPATIAL RESOLUTION IN MRI

Warning: Take into account the resolution and partical volume effect

ANALYSIS OF MR IMAGES

The goal of MR image analyses is to extract quantitative information of the healthy and diseased brain

Whole-brain analysis: voxel-wise or voxel-based morphometry

Meyer et al (2017) Neurolmage 163, 197-205

San Martin Molina et al (2020) *ENEURO*.0476-19.2020

ANALYSIS OF MR IMAGES

• Region-of-interest (ROI)-based analysis:

Andtomatal

A) High-resolution anatomical MR images C) Manual segmented ROIs

Sarabdjitsingh et al (2017) *PLoS One* 25;12(9):e0185061

Sierra et al (2015) Brain Structure and Function 220:781–801

ARegionald

Valverde et al (2020) *Front Neurosci* 22;14:610239

- Plan your analysis based on the scientific question
- Consult an atlas (or expert) to outline ROIs or name highlighted areas
- Be consistent!

Warnings:

- Be careful when outlining what it is not visible
- Not two people outline ROIs in the same way
- Partial volume effect can introduce errors in the analysis

SUMMARY

Basic knowledge in brain anatomy can guide an MRI analysis

The atlas is a useful tool to navigate throughout the brain

There is multiple ways to perform analysis on MR images:

design the analysis based on the scientific question, but....

....keep in mind the complexity of the brain