برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
1	عا كنّ	1 بنیادی<
1	ينيادى اكائياں	1.1
1	غيرستى	1.2
2	سمتير	1.3
3		1.4
3	1.4.1 كار تىبى محددى نظام	
5	1.4.2 نگلی محددی نظام	
7	سمتيررقبر	1.5
9	ر قبه عمودی تراش	1.6
10	برقی اور مقناطیسی میدان	1.7
10	1.7.1 برقی میدان اور برقی میدان کی شدت	
11	1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

11	طحی اور حجمی کثاف ت	1.8	
11	. 8. المطحى كثافت	1	
12	ئى كثافت	1.9	
13	لىبى ضرب اور ضرب نقطه	1.10	
13		1	
15	نقطی ضرب	2	
18	نرق اور جزوی تفرق	" 1.11	
18	طى تىمل	³ 1.12	
19	هی تکمل	1.13	
21	رحلی سمتیه	1.14	
25	ار	مقناطيسي ادو	2
2525	ار احمت اور انچکچا بٹ	•	2
		2.1	2
25	ِ احمت اور ^{بيچ} کيا ب ^ٹ	· 2.1	2
2526	احمت اور نیچکواېث	2.1 2.2 2.3	2
252628	راحمت اور انچکچا پهٹ	2.1 2.2 2.3 2.4	2
25262830	راحمت اور نچکچا بت	2.1 2.2 2.3 2.4 2.5	2
25 26 28 30 31	را جمت اور انتجکیا پرٹ نافت برقی رواور برقی میدان کی شدت قی ادوار نناظیسی دور حصه اول نافت ِ مقناطیسی بهاواور مقناطیسی میدان کی شدت	2.1 2.2 2.3 2.4 2.5 2.6	2
25 26 28 30 31 34	راحمت اور نهجگها به شد نافت برقی رواور برقی میدان کی شدت قی اوروار نناطیسی دور حصه اول نافت ِ مقناطیسی بهاوادر مقناطیسی میدان کی شدت نناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6 2.7	2

عـــنوان

55	1	ٹرانسفار	3
56	ٹرانسفار مر کی اہمیت	3.1	
59	ٹرانسفار مرکے اقسام	3.2	
60	المالى برقى د باو	3.3	
62	هیجان انگیز برقی رواور قالبی ضیاع	3.4	
65	تبادله برقی د باواور تبادله برقی روکے خصوصیات	3.5	
68	ثانوى جانب بوجھ كاابتدائى جانب اثر	3.6	
69	ٹرانسفار مرکی علامت پر نقطوں کامطلب	3.7	
70	ر کاوٹ کا تیاد لد	3.8	
75	ٹرانسفار مر کے وولٹ -اہمپیئر	3.9	
77	﴾ ٹرانسفار مر کے امالہ اوراس کے مساوی دور	3.10	
77	3.10.1 کچھے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا		
78	3.10.2 رِسَالهاله		
79	3.10.3 ثانوى برقى رواور قالب كے اثرات		
80	3.10.4 ثانوى کچھے کی امالی برتی دباو		
81	3.10.5 ثانوى کچھے کی مزاحمت اور متعاملہ کے اثرات		
81	3.10.6 ركاوك كاابتدائي ياثانوى جانب تبادله		
84	3.10.7 ٹرانسفار مرکے سادہ ترین مساوی دور		
85	يُ کھلے دور معائنہ اور کسرِ دور معائنہ	3.11	
86	3.11.1 كطير دور معائنه		
88	3.11.2 كىردورمعائنە		
92	﴾ تنین مرحله ٹرانسفار مر	3.12	
99	ُ ٹرانسفار مریپالو کرتے لمحہ زیادہ محر کی برقی رو کا گزر	3.13	

vi

يكانى توانائى كا باجمى تبادله	برقی اور م	4
مقناطيسي نظام مين قوت اور قوت مر وڑ	4.1	
تبادله توانائی والدا یک کیچیے کا نظام	4.2	
توانائی اور کو-توانائی	4.3	
زياده کچھوں کامقناطیسی نظام	4.4	
ثین کے بنیاد کا صول 125	گو <u>مت</u> ے من	5
تانون فيرادُك	5.1	
معاصر مشین	5.2	
محرك برقی د باد	5.3	
کھیلے کیچھ اور سائن نمامقناطیسی دباو	5.4	
5.4.1 برلتي رووالے مشين		
مقناطيسي د باو کی گھومتی موجيس	5.5	
5.5.1 ایک دورکی کپٹی مشین		
5.5.2 تين دورکي کپڻي مشين کا تخليل تجربيه		
5.5.3 تين دور کي کپڻي مشين کاتر سيمي تجويه		
محرک برقی دباو	5.6	
5.6.1 برلتی روبرتی جزیئر		
5.6.2 کیک ستی روبر تی جزیئر		
هموار قطب مشينول ميں قوت مروڑ	5.7	
5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حماب		
5.7.2 مقاطيسي براد سرم كاني قوية مروز كاحباب		

vii

6

ى، بر قرار چالو معاصر مشين	يكسال حال
متعدد مرحله معاصر مشين	6.1
معاصر مشین کے امالہ	6.2
6.2.1 خوداماله	
6.2.2 مشتر كه اماله	
6.2.3 معاصراماله	
معاصر مشین کامساوی دوریاریاضی نمونه	6.3
ېرقى طاقت كى منتقلى	6.4
كيال حال، بر قرار چالومشين كے خصوصيات	6.5
192	
193	
کلیے دوراور کم ردور معائنہ	6.6
6.6.1 گطے دور معائنہ	
6.6.2 كر دور معائنة	

207	امالى مشيرز	7
ساكن كىچھوں كى گھومتى مقناطىيى موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تبھرہ	7.2	
ساكن كچھول ميں امالى برقى د باو	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی ہرقی دباو	7.4	
گھومتے کچھوں کی گھومتی متناطبی دباو کی موج	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موٹر كا مساوى برقى دور	7.7	
مساوی برقی و و ربی غور	7.8	
المالي موٹر كامساوى تھونن دوريارياضى نمونىد	7.9	
چنجرانمااملی موٹر	7.10	
بے پو چھ موٹراور جامد موٹر کے معاتند	7.11	
7.11.1 بے یوچھ موڑ کامعائنہ		
7.11.2 جايد موثر كامعائته		
رومشين 241	يك سمق	8
ميكانى ست كاركى بنيادى كاركردگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
يك ستى جزيثر كى برقى دباد	8.2	
قوت مرور الله الله الله الله الله الله الله الل	8.3	
بير وني بيجان اور خود بيجان يك سمتى جزير	8.4	
يك ستى مشين كى كاركر د گى كے خط	8.5	
8.5.1 حاصل برقی د باو بالنقابل برقی بوجھ		
8.5.2 رفتار بالمقابل قوت مرور شد		
265	ل	فرہنًا

ديباجيه

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکتان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے تابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پھھ کرنے کی نیت رکھنے کے باوجود پھھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ کلفے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں کھی گئی ہے۔کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکتیکی الفاظ میں استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی اصطلاحات کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا قوامی نظامِ اکائی استعال کی گئ ہے۔اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گ۔

یہ کتاب Ubuntu استعال کرتے ہوئے XeLatex میں تشکیل دی گئی۔ یہ کتاب خطِ جمیل نوری نستعلق میں ککھی گئی ہے۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیز نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیز نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری برقیاتی پنۃ

khalidyousafzai@comsats.edu.pk

پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

میں یہاں عائشہ فاروق اور ان کے والد فاروق اعظم کا شکریہ ادا کرنا چاہوں گا جنہوں نے اس کتاب کو بار بار پڑھا اور جھے مجبور کرتے رہے کہ میں اپنی اردو بہتر کروں۔ میں ڈاکٹر نعمان جعفری کا نہایت مشکور ہوں جنہوں نے کتاب کی تکنیکی اصطلاح کرنے میں مدد کی۔ حرا خان اور ان کی والدہ عزرا برلاس نے مل کے کتاب کو درست کرنے میں مدد کی۔ یہاں میں اپنے شاگرد فیصل خان کا بھی شکریہ ادا کرنا چاہوں گا جنہوں نے تکنیکی اصطلاحات چننے میں میری مدد کی۔

میں یہاں کامسیٹ یونیور سٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے الیمی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

2011 توبر 2011

باب1

بنيادي حقائق

اس کتاب میں مستعمل حقائق کو اس باب میں اکٹھے کرنے کی کوشش کی گئی ہے۔ توقع کی جاتی ہے کہ یوں کتاب پڑھتے وقت اصل مضمون پر توجہ رکھنا زیادہ آسان ہو گا۔

1.1 بنيادي اكائيال

اس كتاب ميں بين الاقوامي نظام اكائي استعال كيا گيا ہے جس ميں كميت 2 كى اكائى كلوگرام، لمبائى كى اكائى ميٹر اور وقت كى اكائى سيكنڈ ہے۔

1.2 غيرسمتي

وہ متغیر جس کی مقدار (مطلق قیمت) اس کو مکمل طور پر بیان کرتی ہو غیر سمتے c متغیر کہلاتا ہے۔ اس کتاب میں غیر سمتی متغیر کو سادہ طرز کی لکھائی میں انگریزی یا لاطینی زبان کے چھوٹے حروف لیعنی a,b,α,\cdots یا بڑے حروف لیعنی A,B,Ψ,\cdots یا بڑے حروف لیعنی A,B,Ψ,\cdots

International System Of Units, SI¹

 mass^2

scalar3

2 باب1. بنيادي حقائق

شكل 1.1: كارتيسي محد د

1.3 سمتير

وہ متغیر جس کو مکمل طور پر بیان کرنے کے لئے اس کی مقدار (طول یا مطلق قیمت) اور سمت جاننا ضروری ہو، سمتیہ کہ انگریزی یا لاطینی زبان کے چھوٹے یا بڑے حروف، جن کو موٹے طرز کی لکھائی میں لکھا گیا ہو، کا طول ایک کے برابر ہو، اکائی سمتیہ ⁵ کہلائے گا۔ یہاں شکل 1.1 سے رجوع کرنا بہتر ہو گا۔ وہ سمتیہ جس کا طول ایک کے برابر ہو، اکائی سمتیہ ⁵ کہلائے گا۔ اس کتاب میں اکائی سمتیہ کو انگریزی زبان کے پہلے حرف کو موٹے طرز کی لکھائی میں لکھا جائے گا، مثلاً اکائی سمتیہ و کہلائے گا۔ اس کتاب میں اکائی سمتیہ کو انگریزی زبان کے پہلے حرف کو موٹے لکھتے ہوئے، زیر نوشت میں x، اس بات کی نشاندہی کرتا ہے کہ یہ اکائی سمتیہ خلاء کی تین عبودی سمتیہ کو ظاہر کرتے ہیں۔ اگر کی لکھائی سمتیہ کا طول اور اس کی سمت کو علیحدہ علیحدہ کھنا ہو تو اس کے طول کو ظاہر کرنے کے لئے سادہ طرز کی لکھائی ہوں۔ میں وہی حرف استعال کیا جائے گا جو اس سمتیہ کو ظاہر کرنے کے لئے، موٹے طرز کی لکھائی میں، استعال کیا گیا ہو۔ یعنی سمتیہ کا طول F کے طول کو خاہر کریا جائے گا۔ شکل میں سمتیہ کا طول F، چار کے برابر ہے۔ اگر کی سمتیہ کی سمت میں ایک اکائی سمتیہ بنایا جائے تو یہ اکائی سمتیہ اس سمتیہ کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسی سمت کو ظاہر کرتا ہے۔ جیسے پہلے دیں، تو تو ہو کا رخ دائیں ہے اللہ سمتیہ کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے اللہ بات کی یاد دہائی کرتا ہے۔ میں گو سے گارخ دائیں ہے للہ کہ بابر ہوں گے۔

vector⁴ unit vector⁵ 1.4. محسد د

شكل 1.2: دائين ہاتھ كانظام۔

1.4 محدد

الیا طریقہ جس کے ذریعہ کسی نقطہ کا مقام متعین کیا جاسکے محدد کہلاتا ہے۔

خلاء تین بعدی (تین طرفہ) 6 ہے المذاکسی ایک نقطہ کے مقام کو تین محدد کی مدد سے ظاہر کیا جا سکتا ہے۔اسی طرح خلاء میں سمتیہ کو تین عمودی اکائی سمتیوں کی مدد سے لکھا جا سکتا ہے۔اب ہم ایسے چند محدد کے نظام دیکھتے ہیں۔

1.4.1 كار تيسى محددى نظام

شکل 1.1 میں خلاء کی دو سمتوں کو اکائی سمتیات $a_{\rm X}$ اور $a_{\rm y}$ سے ظاہر کیا گیا ہے جو آپس میں عمودی ہیں، لیعنی، ان کے بی 00° وزاویہ ہے۔خلاء تین بعدی ہے لہذا اسے تین آپس میں عمودی اکائی سمتیائے 00° سے ظاہر کیا جاتا ہے۔ ان سمتوں کے رخ، طول (لمبائیوں) کو x,y,z سے ظاہر کیا جاتا ہے۔ آپ ان سے بخوبی واقف ہیں۔

وائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{\rm x}$ اور بڑی انگلی $a_{\rm y}$ کے رخ ہول تب انگوٹھا $a_{\rm z}$ کے رخ ہوگا (شکل 1.2)۔ اس کئے تین اکائی سمتیات کا یہ نظام دائیں ہاتھ کا نظام 8 کہلاتا ہے۔

 $\begin{array}{c} {\rm three\ dimensional^6} \\ {\rm orthonormal\ vectors^7} \\ {\rm right\ handed\ coordinate\ system^8} \end{array}$

اب 1 بنيادي حسائق

شكل 1.3: كارتيسي محد د نظام ميں ايك سمتيه۔

مبدا سے نقطہ P(x,y,z) تک سمتیہ A کو شکل 1.3 میں دکھایا گیا ہے جس کو کارتیہ محدد میں تین محدد کمیں تین محدد کی مدد سے

$$(1.1) A = A_x + A_y + A_z$$

l

$$(1.2) A = xa_X + ya_Y + za_Z$$

لکھا جا سکتا ہے۔

1.3 کار تنیسی محددی نظام میں متغیر z صفر رکھتے ہوئے x,y تبدیل کرنے سے سطح xy ملتی ہے۔ یوں شکل xy میں محددی نظام میں متغیر xy کو زمین تصور کرتے ہوئے، ڈبے کی بالائی سطح xy جبکہ x کی قیمت صفر تا تین اور xy کی قیمت صفر تا جار ہو گی۔ اس طرح اس ڈبے کی بالائی سطح درج ذبل کھی جائے گی۔

متغیر z کو صفر اور تین کے درمیان ہر ممکن قیت پر رکھ کر x کو صفر اور دو جبکہ y کو صفر اور چار کے درمیان تبدیل کرنے سے شکل 1.3 میں دکھائے گئے ڈبے کا حجم حاصل ہو گا، للذا اس ڈبے کا حجم درج ذیل لکھا

cartesian coordinates⁹

5 1.4. محسد د

شكل 1.4: نلكي محد دې نظام

حائے گا۔

1.4.2 نلكي محددي نظام

مبدا سے نقطہ P(x,y,z) تک سمتیہ A کو شکل 1.4 میں دکھایا گیا ہے جس کو دو سمتیات کی مدد سے $A = \rho + A_z$ (1.5)

يا

(1.6)
$$A = \rho a_{\rho} + z a_{Z}$$

$$\lambda = \rho a_{\rho} + z a_{Z}$$

$$\lambda = \frac{2}{2} \sin \theta$$

$$\lambda = \rho \cos \theta, \quad y = \rho \sin \theta$$

ہے۔ یوں خلاء میں کسی بھی نقطہ کو اس کے تین متغیرات ho, heta, z سے ظاہر کیا جا سکتا ہے۔

وہ نظام جس میں متغیرات ho, heta, z کسی نقطہ کو متعین کرتے ہوں نلکھ محدد 10 کہلاتا ہے۔ یہاں شکل 20 سے cylindrical coordinates 10 باب ١. بنيادي حسائق

شكل 1.5: نلكي نمامحد د كي تعريف

رجوع کریں۔ نکی محددی نظام کے تین آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہیں۔ یہ نظام بھی دائیں ہاتھ کا نظام ہے لئیں آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہوئے اگر نظام ہے لہذا دائیں ہاتھ کا انگو ٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ $a_{
ho}$ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{
ho}$ کے رخ ہوں تب انگو ٹھا $a_{
ho}$ کے رخ ہوگا۔

سطے xy میں مبدا پر، محدد x کے ساتھ θ زاویہ پر اکائی سمتیہ a_{ρ} ہو گا۔ سطے xy میں مبدا پر اکائی سمتیہ a_{θ} معودی، بڑھتے θ رخ، اکائی سمتیہ a_{θ} ہو گا۔ کارتیسی محدد کی نظام کا اکائی سمتیہ a_{Z} بی نگی محدد کا اکائی سمتیہ a_{Z} ہے۔

واضح رہے کہ نکی محدد کے نظام میں $a_{
ho}$ اور $a_{ heta}$ کی سمتیں ہر نقطہ پر مختلف ہیں جیسا کہ شکل 1.6 میں دکھایا گیا ہے۔

مستوی xy میں (یعن z=0 لیتے ہوئے) مبدا پر مستقل رداس $\rho=\rho_0$ کے سمتیہ کو صفر زاویہ پر رکھ کر زاویہ بتدر تک z=0 تک بڑھانے سے سمتیہ کی چونج مستوی z=0 میں ایک دائرہ پر چلتی ہے (شکل 1.7)۔ اب اس سمتیہ کے متغیر z=0 و تبدیل کرنے سے، مثلاً ہر z=0 پر z=0 و صفر تا تین کرنے سے، یہ سمتیہ ایک نکلی بنائے گا۔ اسی وجہ سے اس نظام کو نکلی محدد کہتے ہیں۔ سمتیہ کے تینوں متغیرہ تبدیل کرنے سے نکلی کا حجم ملے گا۔ اگلی تین

7 1.5 سمتيەرقس

شكل $a_{
ho}$: نكى محد دمين اكائى سمتيات $a_{
ho}$ اور $a_{
ho}$ بر نقطه پر مختلف ہيں۔

مساوات ان حقائق کو پیش کرتی ہیں۔

(1.7)
$$\delta \dot{\beta} = \begin{cases} \rho = \rho_0 \\ 0 < \theta < 2\pi \\ z = 0 \end{cases}$$

سطح پر کھڑا اکائی سمتیہ سطح کا رخ دیتا ہے (شکل 1.8)۔ چونکہ کسی بھی سطح کے دواطراف ہوتے ہیں لہذا اس کے دو مخالف رخ بیان کیے جا سکتے ہیں۔عموماً مسلم کو مد نظر رکھتے ہوئے ان میں سے ایک رخ کو سطح کا رخ تصور کیا جاتا 8 باب، بنيادي حت أق

شکل 1.7: نلکی محد د میں دائر ہاور نلکی

$$\mathbf{A}_1 = A_1 \mathbf{a}_{A1} = wl\mathbf{a}_z$$
$$\mathbf{A}_2 = A_2 \mathbf{a}_{A2} = wh\mathbf{a}_y$$

شكل 1.8: سمتيه رقبه كاتعارف

ہے۔ البتہ بند سطح، مثلاً گیند، کے بیرونی رخ کو ہی سطح کا رخ تصور کیا جاتا ہے۔ شکل 1.8 میں بالائی سطح A_1 کا رقبہ A_2 اور اس کا رخ a_2 ہے لہذا A_1 سمتیہ کا طول A_1 اور رخ a_2 ہو گا:

$$A_1 = wl$$
$$a_{A1} = a_{Z}$$

يوں بالائي سطح کا سمتی رقبہ درج ذیل ہو گا۔

$$\mathbf{A_1} = A_1 \mathbf{a_{A1}} = w l \mathbf{a_z}$$

ای طرح دائیں سطح A_2 سمتیہ کا طول A_2 اور اس کا رخ a_{A2} ہے

$$A_2 = wh$$

$$a_{A2} = a_{y}$$

للذا درج ذيل هو گا۔

(1.11)
$$A_2 = A_2 a_{A1} = wha_y$$

1.6 رقب عب ودي تراسش

شكل 1.9:رقبه عمودي تراش

نجی سطح کا رقبہ $A_3=w$ اور اس کا رخ a_z کے مخالف ہے لہذا درج ذیل ہو گا۔

(1.12)
$$A_3 = A_3 a_{A3} = wl(-a_z) = -wla_z$$

دھیان رہے کہ رقبہ کی مقدار ہر صورت مثبت ہو گی البتہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔ یہ بات کسی بھی سمتیہ کے لئے درست ہے لہذا کسی بھی سمتیہ کا طول ہر صورت مثبت ہی ہو گا جبکہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔

1.6 رقبه عمودی تراش

سلاخ کی لمبائی کے ساتھ زاویہ قائمہ پر کٹائی کو عمودی تراثی 11 کہتے ہیں اور عمودی تراش کے رقبہ کو رقبہ عمودی تراثی 12 کہتے ہیں۔ شکل 1.9 میں سلاخ کی لمبائی 12 رخ ہے اور رقبہ عمودی تراش 12 کی مقدار 12 ہے

$$(1.13) A = wh$$

لهذا رقبه عمودی تراش کا رخ $a_{
m y}$ ہو گا:

$$a_A = a_y$$

شکل 1.9 میں اکائی سمتیات a_y اور a_z د کھائے گئے ہیں جن کے ابتدائی نقاط پر گول دائرہ میں بند ایک نقطہ د کھایا گیا ہے۔ گول دائرہ میں بند نقطہ صنحہ کے عمودی (کتاب سے باہر) رخ a_x ظاہر کرتا ہے جس کے مخالف رخ (صنحہ کے عمودی اندر) کو گول دائرہ میں بند صلیب کی نشان سے ظاہر کیا جائے گا۔

 $^{{\}rm cross\ section^{11}} \\ {\rm cross\ sectional\ area^{12}} \\$

با___1 بنسادی حتسائق 10

ىرقى اور مقناطىسى مىدان

1.7.1 ىرقى مىدان اورىرقى مىدان كى شدت

کولمھے کے قانور نے ¹³ کے تحت برقیر مار ¹⁴ سے لدے جسموں کے در میان قوت کشش ¹⁵ یا قوت دفع ¹⁶ ان اجسام پر q_1 بالا مرب کے راست متناسب اور باہمی فاصلہ کے مربع کے بالعکس متناسب ہوتی ہے۔ یوں بار q_1 اور q_2 جن کے درمیان فاصلہ r ہو کے نیچ قوت F درج ذیل ہو گا جہاں ϵ 18 برقی مستقل ہے۔

(1.15)
$$F = \frac{q_1 q_2}{4\pi \epsilon r^2}$$

ایک برقی بارے قریب دوسرا برقی بار لانے سے (پہلے اور) دوسرے برقی باریر کشش با دفع کی قوت عمل کرے گی جس کا تغین قانون کولمپ سے ہوتا ہے۔ دوسرے برقی بار کو پہلے برقی بار سے آہشہ آہشہ دور کرنے سے قوت کشش یا دفع بتدر تئے تم ہوتی ہے جو ایک خاص فاصلے کے بعد تقریباً صفر ہو حاتی ہے اور دوسرا باریہلے بار کے حلقہ اثر سے باہر ہو جاتا ہے۔ یہ حلقہ برقمہ میدارمز کہلاتا ہے۔ برقی میدان کسی ایک باریا متعدد باروں کی وجہ سے ہو سکتا ہے۔

تعریف: کسی بار کے برقی میدان سے مراد بار کے اِرد گرد وہ حلقہ ہے جس میں اس کا برقی اثر محسوس کیا جاتا

برتی میدان میں اکائی مثبت بار پر قوت اس مقام پر برقے میدال کی شدے E E کی مطلق قیت) دیگا جبکہ اکائی بارپر قوت کا رخ برقی میدان کا رخ دیگا۔ برقی میدان کی شدت کی اکائی وولئے فہر میڑ²⁰ ہے۔

Coulomb's law¹³

electric charge¹⁴

attractive force¹⁵ repulsive force¹⁶

 $^{{\}rm charge}^{17}$

electric constant, electric permittivity 18

electric field intensity¹⁹

 V/m^{20}

1.8. سطحي اور حجمي كثافت.

قانون کولمب (مساوات 1.15) سے Q بار کے برقی میدان کی شدت کی مطلق قی ت حاصل کرتے ہیں۔بار Q اور اکائی بار (ایک کولمب بار) کے چھ قوتِ کشش یا قوتِ د فع

$$(1.16) F = \frac{Q \times 1}{4\pi\epsilon r^2} = \frac{Q}{4\pi\epsilon r^2}$$

نیوٹن ہو گی۔ یہی برقی میدان کی شدت کی مطلق قیت ہو گی:

$$(1.17) E = \frac{Q}{4\pi\epsilon r^2}$$

دو باروں کے مابین قوت کشش یا قوت دفع کا رخ ان کے درمیان کھینچی گئی سیدھی کلیر پر ہو گا۔

1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت

متناطیعی میدان اور مقناطیسی میدان کی شدھے 21 بالترتیب بالکل برقی میدان اور برقی میدان کی شدت کی طرح ہیں۔ تعریف : کسی مقناطیس کے مقناطیسی میدان سے مراد مقناطیس کے اِرد گرد وہ علقہ ہے جس میں اس کا مقناطیسی اثر محسوس کیا جاتا ہو۔

1.8 سطحی اور حجمی کثافت

1.8.1 سطحي كثافت

اکائی رقبہ کی سطح پر کسی چیز کی کل مقدار کو اس چیز کی سطح کثافت 22 کہتے ہیں۔ یوں رقبہ A پر کسی چیز کی کل مقدار ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ

$$(1.18) B_{b-1} = \frac{\phi}{A}$$

 $\begin{array}{c} {\rm magnetic~field~intensity^{21}} \\ {\rm surface~density^{22}} \end{array}$

اب ابنيادي حسائق

اس مساوات سے

$$\phi = B_{\mathsf{level}} A$$

لکھا جا سکتا ہے جو کسی سطح پر ایک متغیرہ کی اوسط سطحی کثافت معلوم ہونے کی صورت میں سطح پر متغیرہ کی کل مقدار دیتی ہے۔

غیر یکسال متغیرہ کی صورت میں سطحی کثافت جگہ جگہ مختلف ہو گی۔ ایسی صورت میں اتنے جھوٹے رقبے پر، جس میں متغیرہ کو یکسال تصور کیا جا سکتا ہو، سطحی کثافت

$$(1.20) B = \frac{\Delta \phi}{\Delta A}$$

ہو گی جہاں ΔA چھوٹا رقبہ اور $\Delta \phi$ اس رقبے پر متغیرہ کی چھوٹی مقدار ہے۔ اس چھوٹے رقبہ کو نقطہ مانند کرنے سے نقطی کثافت

$$(1.21) B = \frac{\mathrm{d}\phi}{\mathrm{d}A}$$

حاصل ہو گی جس کو

$$d\phi = B \, dA$$

بھی لکھا جا سکتا ہے۔ یوں نقطی کثافت جانتے ہوئے ایک نقطہ کے چھوٹے رقبہ پر متغیرہ کی کل (چھوٹی) مقدار معلوم کی حاسکتی ہے۔

یوں ایک برتی تار جس کا رقبہ عمودی تراش A اور جس میں برتی روI کی اوسط کثافت ِ برتی رو درج ذیل ہوگی۔ $\rho_{bul} = \frac{I}{A}$ (1.23)

1.9 محجمي كثافت

m اکائی حجم میں کسی چیز کی کل مقدار کو اس چیز کی حجم کافٹ کہتے ہیں۔ یوں اگر کسی چیز کا حجم H اور اس کی کمیت H ہو تب اس کی اوسط (کمیت) حجمی کثافت درج ذیل ہو گی۔

$$\rho_{\text{local}} = \frac{m}{H}$$

غیر یکسال کمیت کی صورت میں جم میں مختلف مقامات پر کمیت مختلف ہو گا۔ ایک صورت میں اتنا جھوٹا جم لیتے ہوئے جس میں کمیت کو یکسال تصور کیا جا سکتا ہو، حجمی کثافت درج ذیل ہو گی۔

$$\rho = \frac{\Delta m}{\Delta H}$$

اس چھوٹے جم کو نقطہ مانند بنانے سے درج ذیل نقطی حجمی کثافت لکھی جا سکتی ہے۔

$$\rho = \frac{\mathrm{d}m}{\mathrm{d}H}$$

بول

$$dm = \rho \, dH$$

ہو گا للذا نقطی محجمی کثافت جانتے ہوئے ایک چھوٹے حجم کی (چھوٹی) کمیت حاصل کی جاستی ہے۔

1.10 صليبي ضرب اور ضرب نقطه

دو غیر سمتی متغیرات کا حاصل ضرب غیر سمتی متغیر ہوتا ہے جبکہ دو سمتیات کا حاصل ضرب سمتی یا غیر سمتی ہو سکتا ہے۔ان دواقسام کے ضرب پریہاں غور کیا جائے گا۔

1.10.1 صليبي ضرب

دو سمتی متغیرات کا ایسا ضرب جو سمتی متغیر دیتا ہو صلیبی ضربے 23 کہلاتا اور درج ذیل لکھا جاتا ہے۔

$$(1.28) C = A \times B$$

صلیبی ضرب میں ضرب کے نشان کو صلیب کی علامت سے ظاہر کیا جاتا ہے جس کی بنا اس کو صلیبی ضرب کہتے ہیں۔

 $[{]m cross\ product}^{23}$

اب ١٠ بنيادي حسائق

حاصل ضرب سمتیہ *C* کی مقدار

(1.29)
$$C = |C| = |A||B| \sin \theta_{AB}$$
$$= AB \sin \theta_{AB}$$

ہے جہاں θ_{AB} ان کے مابین زاویہ ہے۔اس حاصل سمتیہ کی سمت دائیں ہاتھ کے قانون سے حاصل کی جاتی ہے۔ یوں دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے، شہادت کی انگلی کو Aکی انگلی کو Aکی رخ رکھنے سے انگوٹھا Cکی انگلی کو سمتیہ A اور بڑی انگلی کو Aکے رخ رکھنے سے انگوٹھا Cکا رخ دیگا۔

مثال 1.1: درج ذیل ضرب صلیبی حاصل کریں۔

- $oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{Y}} = oldsymbol{a}_{ ext{Y}} imes oldsymbol{a}_{ ext{Z}} = oldsymbol{a}_{ ext{Z}} imes oldsymbol{a}_{ ext{X}} = oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{X}} o$
- $oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{ extsf{Y}} = oldsymbol{a}_{ extsf{Y}} imes oldsymbol{a}_{
 ho} imes oldsymbol{a}_{ heta} = oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{
 ho} oldsymbol{\bullet}$

حل: اس مثال میں سب سمتیات اکائی ہیں۔اکائی سمتیہ کا طول ایک کے برابر ہوتا ہے للذا درج ذیل ہوں گے۔

- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$
- $\boldsymbol{a}_{\mathrm{Y}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{X}} = \boldsymbol{a}_{\mathrm{X}}$
- $\boldsymbol{a}_{\text{Z}} \times \boldsymbol{a}_{\text{X}} = (1)(1)\sin 90\boldsymbol{a}_{\text{Y}} = \boldsymbol{a}_{\text{Y}}$ •
- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{Y}}) = -\boldsymbol{a}_{\mathrm{Y}}$
- $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{X}}) = -\boldsymbol{a}_{\mathrm{X}}$ •
- چونکہ دونوں سمتیات کے رخ ایک جیسے ہیں لہذا ان کے مابین زاویہ صفر ہو گا۔ صفر زاویہ کا سائن بھی صفر ہوتا ہے، $\sin 0 = 0$ ۔ یوں ان دو سمتیات کا ضرب صلیبی صفر ہو گا۔ $a_{\rm y} \times a_{\rm y} = (1)(1)\sin 0 = 0$
 - $\boldsymbol{a}_{\rho} \times \boldsymbol{a}_{\theta} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$ •
 - $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\rho} = (1)(1)\sin 90\boldsymbol{a}_{\theta} = \boldsymbol{a}_{\theta}$

مثال 1.12 شکل 1.10 میں چار نیوٹن کی قوت F محور سے تین میٹر کی سمتی فاصلہ L پر لاگو ہے جس کی مثال 1.2 شکل میں دی گئی ہے۔اس قوت کی قوت مروڑ حاصل کریں۔ حل: قوت مروڑ T کی تعریف درج ذیل ہے۔ $T = L \times F$

کار تیسی نظام میں بیہ سمتی فاصلہ

 $(1.31) L = L\sin\theta a_{X} - L\cos\theta a_{Y}$

ہو گا للذا

 $T = (L \sin \theta \mathbf{a}_{X} - L \cos \theta \mathbf{a}_{Y}) \times F \mathbf{a}_{Y}$ $= L \sin \theta \mathbf{a}_{X} \times F \mathbf{a}_{Y} - L \cos \theta \mathbf{a}_{Y} \times F \mathbf{a}_{Y}$ $= LF \sin \theta \mathbf{a}_{Z}$

ہو گا جہاں بچپلی مثال کی مدد سے $a_{
m z}=a_{
m z}$ اور $a_{
m y} imes a_{
m y}=a_{
m z}$ ہو گا جہاں بچپلی مثال کی مدد سے $a_{
m z}=a_{
m z}$ اور $a_{
m y} imes a_{
m y}=a_{
m z}$ اور $a_{
m z} imes a_{
m z}=12\sin\theta a_{
m z}$ N m

اس مثال میں $\theta - \sin \alpha = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا $\alpha = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا ہیں مثال میں کو درج ذیل بھی کھا جا سکتا ہے۔

 $T = LF \sin \theta \mathbf{a}_{\mathbf{Z}}$ $= LF \sin \theta_{LF} \mathbf{a}_{\mathbf{Z}}$

یمی جواب ضرب صلیبی کی تعریف یعنی مساوات 1.29 اور دائیں ہاتھ کے قانون کی مدد سے زیادہ آسانی سے حاصل ہوتا ہے۔

1.10.2 نقطی ضرب

رو سمتی متغیرات کا ایبا حاصل ضرب جو غیر سمتی متغیر ہو نقطی ضربے 24 کہلاتا ہے جو درج ذیل لکھا جاتا ہے۔ $C=A\cdot B$

 ${\rm dot\ product^{24}}$

ابب،بنيادي حتائق

شكل 1.10: كارتيسى نظام ميں قوت مروڑ كاحل

نقطی ضرب میں ضرب کے نشان کو نقطہ کی علامت سے ظاہر کیا جاتا ہے جس کی بنا پر اس کا نام نقطی ضرب ہے۔

نقطی ضرب کی مقدار درج ذیل ہو گی

(1.33)
$$\begin{aligned} \boldsymbol{C} &= \boldsymbol{A} \cdot \boldsymbol{B} \\ &= |\boldsymbol{A}| |\boldsymbol{B}| \cos \theta_{AB} \\ &= AB \cos \theta_{AB} \end{aligned}$$

جہال θ_{AB} ان سمتیات کے نیج زاویہ ہے۔

مثال 1.3: مندرجه ذیل نقطی ضرب حاصل کریں۔

$$a_{\mathrm{X}} \cdot a_{\mathrm{X}} - a_{\mathrm{y}} \cdot a_{\mathrm{y}} - a_{\mathrm{z}} \cdot a_{\mathrm{z}} \bullet$$

$$oldsymbol{a}_{ extsf{X}} \cdot oldsymbol{a}_{ extsf{Y}} = oldsymbol{a}_{ extsf{Y}} \cdot oldsymbol{a}_{ extsf{Z}} = oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} = oldsymbol{a}_{
ho$$

حل: اس مثال میں سب سمتیات اکائی ہیں۔ اکائی سمتیہ کا طول ایک (1) کے برابر ہوتا ہے:

$$a_{x} \cdot a_{x} = (1)(1)\cos 0 = 1$$
 •

$$a_{\rm V} \cdot a_{\rm V} = (1)(1)\cos 0 = 1$$
 •

$$a_z \cdot a_z = (1)(1)\cos 0 = 1$$
 •

$$a_{X} \cdot a_{V} = (1)(1)\cos 90^{\circ} = 0$$
 •

$$a_{\rm V} \cdot a_{\rm Z} = (1)(1)\cos 90^{\circ} = 0$$

$$\boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\rho} = (1)(1)\cos 0 = 1 \bullet$$

شكل 1.11: كارتيسي نظام ميں كام

 $a_{\rho} \cdot a_{\theta} = (1)(1)\cos 90^{\circ} = 0$

مثال 1.4: شکل 1.11 میں قوت F ایک بوجھ کو دھکیل رہی ہے۔ سمتی فاصلہ L طے کرنے پر قوت کتنا کام کر پکی ہوگی۔

حل: کام W کی تعریف درج ذیل ہے۔

$$(1.34) W = \mathbf{F} \cdot \mathbf{L}$$

كار تيسى نظام مين سمتى فاصله

$$(1.35) L = L\cos\theta a_{X} + L\sin\theta a_{Y}$$

ہو گا۔ یوں درج ذیل ہو گا

(1.36)
$$W = (F\boldsymbol{a}_{X}) \cdot (L\cos\theta\boldsymbol{a}_{X} + L\sin\theta\boldsymbol{a}_{y})$$
$$= FL\cos\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{X}) + FL\sin\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{y})$$
$$= FL\cos\theta$$

جہاں پچھلی مثال کی مدد سے $a_{\rm X}\cdot a_{\rm X}=0$ اور $a_{\rm X}\cdot a_{\rm Y}=0$ کے ہیں۔ یہی جواب نقطی ضرب کی تعریف، مثال کی مدد سے 1 $a_{\rm X}\cdot a_{\rm X}=1$ مساوات 1.33، سے با آسانی حاصل ہوتا ہے۔

اب.بنيادي حسّائق

1.11 تفرق اور جزوی تفرق

مساوات 1.37 میں ایک تفاعل کا تفرق 25 دیا گیا ہے، جس میں $_{0}$ ایک مستقل ہے، جبکہ مساوات 1.38 میں ایک تفاعل کا جوورہ تفرق 26 دیا گیا ہے۔

(1.37)
$$B(\theta) = B_0 \cos \theta$$
$$\frac{\mathrm{d}B}{\mathrm{d}\theta} = -B_0 \sin \theta$$

(1.38)
$$\partial W(x,\lambda) = \frac{\partial W}{\partial x} dx + \frac{\partial W}{\partial \lambda} d\lambda$$

1.12 خطى تكمل

 $2\pi^{27}$ مساوات 1.39 میں ایک تفاعل $B(\theta)$ دیا گیا ہے جے شکل 1.12 میں دکھایا گیا ہے۔ اس کی طول موج $2\pi^{27}$ ویا گیا ہے جے ایکن اس کا اوسط معلوم کرتے ہیں۔ یہ شکل $2\pi^{28}$ سے یوں ہو گا۔ $2\pi^{28}$ سے بیان اس کا اوسط معلوم کرتے ہیں۔ یہ شکل $2\pi^{28}$ سے یوں ہو گا۔

$$(1.39) B(\theta) = B_0 \cos \theta$$

(1.40)
$$B_{\nu,l} = \frac{B_0}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

اسی طرح اگر اسی خطہ پر تفاعل کے مربع لینی B2 کا اوسط در کار ہو تو ایسا کرنا مساوات 1.41 میں دکھایا گیا ہے۔

(1.41)
$$B_{\nu,l}^{2} = \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2}\theta \,d\theta$$
$$= \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \,d\theta$$
$$= \frac{B_{0}^{2}}{2}$$

 $\begin{array}{c} {\rm differentiation^{25}} \\ {\rm partial\ differentiation^{26}} \\ {\rm wavelength^{27}} \end{array}$

wavelength²/ integration²⁸ 1.1.3 سطحي تممل

شكل 1.12: كوسائن موج

تفاعل کے مربع کی اوسط کا جزر بہت اہمیت رکھتا ہے۔لمذا اس تفاعل کے مربع کی اوسط کا جزر موثB مساوات B کی مدد سے یوں حاصل ہوتا ہے۔

(1.42)
$$B_{\dot{z}_{s'}} = \sqrt{B_{\dot{z}_{s'}}^2} = \frac{B_0}{\sqrt{2}}$$

یہ ایک بہت اہم متیجہ ہے جو آپ کو زبانی یاد ہونا چاہئے۔ یہ مساوات ہر سائن نما تفاعل کے لئے درست ہے۔ کسی متغیرہ کے مربع کی اوسط کا جزر اس متغیرہ کی موڑ 30 20 قیمت کہلاتا ہے۔

1.13 سطح تكمل

مثال کے طور پر اگر مساوات 1.39 شکل 1.13 میں نکلی کے بیرونی سطح پر متغیرہ B کی مقدار بتلاتی ہے اور یہ متغیرہ سطح کثافت کو ظاہر کرے ہم آدھے بیرونی سطح مثلاً زاویہ $-\pi/2$ اور $\pi/2$ کے مابین اس کی کل مقدار ϕ معلوم کرتے ہیں۔اس سطح میں نکلی کے دونوں سرے شامل نہیں ہیں۔

 ${\it effective}^{29}$

root mean square, $\rm rms^{30}$

ياب، بنيادي حتائق

شکل 1.13: نکلی کی بیرونی سطح پر متغیرہ کا نکمل کل مقدار دے گی۔

ہم نکلی کے بیرونی سطح پر رقبہ ΔA لیتے ہیں جس کی چوڑائی $\rho\Delta\theta$ اور لمبائی l ہے۔یہ سطح $\Delta\theta$ ہے۔ $\Delta\theta$ ہے۔ $\Delta\theta$ کہ نہیں ہیں ہوئے سطح کا رقبہ $\Delta\theta$ کا رقبہ $\Delta\theta$ کہ اور کل $\Delta\theta$ کہ اس سطح پر $\Delta\theta$ کی مقدار محوری لمبائی کی جانب تبدیل نہیں ہو رہی۔ سطح $\Delta\theta$ ہو گا اور کل $\Delta\theta$ ہو گا اور کل $\Delta\theta$ مدد سے یوں حاصل ہو گا۔

(1.43)
$$\Delta \phi = B\Delta A = B_0 l \rho \cos \theta \, d\theta$$

$$\phi = B_0 l \rho \int_{-\pi/2}^{\pi/2} \cos \theta \, \mathrm{d}\theta = 2B_0 l \rho$$

اب ہم یہی مقدار نکلی کے آدھے بیرونی سطح پر کہیں پر بھی حاصل کرنا چاہیں تو ہمیں صرف کمل کے دو حد تبدیل کرنے ہوں گے۔ اگر ہم مساوات 1.44 میں نچلا حد $(-\pi/2-\alpha)$ اور اوپر کا حد $(\pi/2-\alpha)$ لیں تو یہ حاصل ہو گا۔

(1.45)
$$\phi(\alpha) = B_0 l \rho \int_{-\frac{\pi}{2} - \alpha}^{\frac{\pi}{2} - \alpha} \cos \theta \, d\theta = 2B_0 l \rho \cos \alpha$$

یہاں $\phi(\alpha)$ اس بات کو واضح کرتا ہے کہ نتیجہ α پر منحصر ہے۔ یہ ایک بہت اہم مساوات ہے۔ مساوات 1.45 میں اگر $\alpha=0$ ہو تو مساوات 1.44 ملتا ہے۔

.1.1 مسرحتان سمتير

شكل 1.14: مرحلي سمتيه

1.14 مرحلی سمتیه

 31 سائن نما موج جن کا تعدد معین ہو کو مرحلی سمتیہ سے ظاہر کرنا نہایت مفید ثابت ہوتا ہے۔ مساوات پولر $A_0e^{\mp j(\omega t + \phi)} = A_0\cos(\omega t + \phi) \mp j\sin(\omega t + \phi)$

کی مدد سے کوسائن موج بوں لکھی جاسکتی ہے

(1.47)
$$A_0 \cos(\omega t + \phi) = \frac{A_0}{2} \left(e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)} \right)$$

اس سے ثابت ہوتا ہے کہ کوسائن موج دراصل دو مخلوط اعداد کا مجموعہ ہے۔ مساوات پولر ایک مخلوط عدد کو ظاہر کرتا ہے جس کے دو جزو ہیں۔ اس کا ایک جزو حقیقی عدد ہے اور اس کا دوسرا جزو فرضی عدد ہے۔ اس کا حقیقی جزو کوسائن موج کو ظاہر کرتا ہے۔ لہٰذا ایک کوسائن موج کو ظاہر کرتا ہے۔ لہٰذا ایک کوسائن موج کو طاہر کیا جاتا ہے۔ مزید یہ کہ اس عدد کو چھوٹا کر کے صرف $A_0e^{j(\omega t+\phi)}$ یا پھر پر سائن نما موج کو وسائن موج کے اس طرح ظاہر کرنے کو مرطح سمتیہ 32 کہتے ہیں جہاں اس سمتیہ کا طول A_0 اور افقی کیر سے زاویہ ϕ ہے۔

Euler's equation³¹ phasor³²

22 باب، بنيادي حتائق

$$Z = R + jX$$

$$|Z| = \sqrt{R^2 + X^2}$$

$$\phi_Z = \tan^{-1} \frac{X}{R}$$

$$v(t) = V_0 \cos(\omega t + \alpha)$$

$$i(t) = \frac{V_0}{|Z|} \cos(\omega t + \alpha - \phi_Z)$$

$$= I_0 \cos(\omega t + \alpha - \phi_Z)$$

شکل 1.15:مر حلی سمتیه کی مدد ہےRL دور کاحل۔

 A_0 مرحلی سمتیہ استعال کرتے وقت آپ کو یہ ذہن میں رکھنا ہوتا ہے کہ یہ ایک کوسائن موج ہے جس کا حیطہ A_0 ، دوری زاویہ ϕ اور زاویائی تعدد ω ہے۔

اس کتاب میں مرحلی سمتیہ کو سادہ طرزِ لکھائی میں اگریزی کے بڑے حروف جن پر ٹوٹی کا نشان ہو سے ظاہر کیا جائے گا، یعنی \hat{I},\hat{V} وغیرہ اور ان کے طول کو بغیر ٹوٹی کے نشان کے اسی حرف سے ظاہر کیا جائے گا۔ مثلاً برتی دباو $v = 20\cos(\omega t + \frac{\pi}{2})$ بہن۔

$$v = 20\cos(\omega t + \frac{\pi}{3})$$

$$\hat{V} = 20e^{j\frac{\pi}{3}}$$

$$\hat{V} = 20/\frac{\pi}{3}$$

$$V = 20$$

اس مساوات میں پہلا جزو ایک عام کوسائن موج ہے۔ دوسرا جزو اِسی کو مرحلی سمتیہ سے ظاہر کر رہا ہے۔ تیسرا اس مرحلی سمتیہ کا طول اور چوتھا اس کا زاویہ بتلا رہا ہے۔ مرحلی سمتیہ کو عام سمتیوں کی طرح ہی تصور کیا جاتا ہے۔ اس مساوات میں \hat{V} کا طول 20 اور افقی کلیر سے زاویہ $\frac{\pi}{3}$ ریڈیئن ہے۔زاویہ افقی کلیر سے گھڑی کی الٹی سمت ناپا جاتا ہے۔ اس سمت میں زاویہ مثبت ہے۔ شکل 1.14 میں اس \hat{V} کے علاوہ چند اور مرحلی سمتیے دکھائے گئے ہیں۔

رتی ادوار میں عموماً برتی دباو \hat{V} کی نسبت سے برتی رو \hat{I} کا زاویہ بیان کیا جاتا ہے۔شکل 1.14 میں \hat{I} میں \hat{I} میں درجہ زاویہ برتی دباو کے پیچھے ہے۔اس حقیقت کو یوں بیان کیا جاتا ہے کہ \hat{I} میں درجہ پیڑھ زاویہ \hat{I} راجہ کیا ہے جبکہ \hat{I} بینتالیس درجہ مافیری زاویہ \hat{I} کو پیڑھ برتی جبکہ جاتا ہے کہ \hat{I} میں درجہ پیڑھ زاویہ \hat{I} کو پیڑھ برتی درجہ میں میں درجہ پیڑھ زاویہ درجہ بیٹر کی میں میں درجہ بیٹر کی درجہ کی درجہ بیٹر کی درجہ کی درجہ بیٹر کی درجہ کی درجہ بیٹر کی درجہ بیٹر کی درجہ بیٹر کی درجہ بیٹر کی درجہ کی درجہ کی درجہ کی درجہ بیٹر کی درجہ کی درجہ

leading angle³³ lagging angle³⁴

1.14. مبرحسلی سمتیه 23

رو جبکہ $\hat{I_2}$ کو تاخیر کے برقی رو کہا جاتا ہے۔دو مرحلی سمتیات کے آپس میں زاویے کو مرحلے فرق 35 کہتے ہیں للذا $\hat{I_1}$ اور میں °75 کا مرحلی فرق پایا جاتا ہے۔ یہاں یہ دھیان رہے کہ شکل میں °45 مثبت لکھا گیا ہے۔ چونکہ یہ افقی ککیر \hat{I}_2 سے زاویہ ناپنے کی الٹ سمت میں سے للذا یہ ایک منفی زاویہ ہے۔

 $p=V_0I_0\cos heta$ اور $v=V_0I_0\cos heta$ اور $i=I_0\cos(\omega t+ heta)$ اگر $v=V_0\cos\omega t$ گا جہاں $\cos\theta$ کو جزوطاقت 36 اور θ کو زاویہ جزوطاقت 37 کہتے ہیں۔ اسی طرح تانیری زاویہ کی صورت میں $\cos\theta$ کو جہاں $\cos\theta$ $\cos \theta$ افتری بروطاقت 38 اور پیژهر زاویه کی صورت میں $\cos \theta$ کو پیژهر بروطاقت 39 کہتے ہیں۔

یماں مرحلی سمتیوں کو استعال کر کے ایک سادہ برقی دور حل کرتے ہیں۔ یوں ان سے وابشگی پیدا ہو جائے گی اور ان کا استعال بھی سکھ لیں گے۔

شکل 1.15 ایک ساده R-L یک مرحله 40 برقی دور ہے جس پر لا گو برقی دباو

(1.49)
$$v(t) = V_0 \cos(\omega t + \alpha)$$

$$\hat{V} = V_0 \underline{\alpha}$$

ہے۔مرحلی سمتیہ کے استعال سے ہم اس میں برقی روi(t) معلوم کرنا جاہتے ہیں۔

(1.50)
$$\hat{I} = \frac{\hat{V}}{R + jX} = \frac{V_0 \underline{\alpha}}{|Z| \underline{\phi_Z}} \\ = \frac{V_0}{|Z|} \underline{\alpha - \phi_Z} = I_0 \underline{\alpha - \phi_Z}$$

جیاں ج 🛭 رکاوٹ کا زاویہ ہے۔للذا

$$i(t) = I_0 \cos(\omega t + \alpha - \phi_Z)$$

حاصل ہوتا ہے۔ یوں **تاخیر ک**ے زاور ہے۔

phase difference³⁵ power factor³⁶

power factor angle³⁷ lagging power factor 38 leading power factor³⁹

single phase⁴⁰

باب 1. بنيادي حت اَتَ باب 1. بنيادي حت اَتَ

إب2

مقناطيسى ادوار

2.1 مزاحمت اور ہچکچاہٹ

شکل 2.1 میں ایک سلاخ و کھائی گئی ہے جس کی لمبائی کی ست میں مزاحمہ

$$(2.1) R = \frac{l}{\sigma A}$$

ج جہاں σ موصلیتے 2 کو ظاہر کرتی ہے اور A=wh رقبہ عمودی تراش ہے۔ اس سلاخ کی ہیکھاہے 3 ورج

شكل 2.1:مزاحمت اور جيكيا ہٹ

resistance¹ conductivity²

26 باب_2. مقت طبیسی ادوار

 μ مقناطیسے متقالے μ کہلاتا ہے۔ μ

$$\Re = \frac{l}{\mu A}$$

مقناطیسی مستقل μ کو عموماً خلاء کی مقناطیسی مستقل $\mu_0=4\pi\,10^{-7}$ بین نسبت سے لکھا جاتا ہے لیننی

$$\mu = \mu_r \mu_0$$

جہاں μ_r جزومقناطیسے متقلے کہلاتا ہے۔ ہیکیاہٹ کی اکائی ایمپیر۔ چکر فیے ویبر ہے جس کی وضاحت جلد کی جائے گ

 $h=3\,\mathrm{cm}$ مثال $\mu_r=2000$ مثال $\mu_r=2000$ مثال الماخ کی انتیکی سلاخ کی انتیکی سلاخ کی انتیکی معلوم کریں $w=2.5\,\mathrm{cm}$ اور $w=2.5\,\mathrm{cm}$ مثال

عل:

$$\begin{split} \Re &= \frac{l}{\mu_r \mu_0 A} \\ &= \frac{10 \times 10^{-2}}{2000 \times 4\pi \times 10^{-7} \times 2.5 \times 10^{-2} \times 3 \times 10^{-2}} \\ &= 53\,044\,\mathrm{A}\cdot\mathrm{turns/Wb} \end{split}$$

2.2 کثافت برقی رواور برقی میدان کی شدت

اس سلاخ کے سروں پر برقی دباو v (شکل 2.2) لا گو کرنے سے اس میں برقی روi گزرے گا جس کو اوہم کے قانون v سے حاصل کرتے ہیں۔

$$(2.4) i = \frac{v}{R}$$

 $\begin{array}{c} {\rm reluctance^3} \\ {\rm permeability,\ magnetic\ constant^4} \\ {\rm Ohm's\ law^5} \end{array}$

شكل 2.2: كثافت برقى رواور برقى د باوكى شدت

درج بالا مساوات کو مساوات 2.1 کی مدد سے

$$(2.5) i = v\left(\frac{\sigma A}{l}\right)$$

يا

$$\frac{i}{A} = \sigma\left(\frac{v}{l}\right)$$

یا

$$(2.7) J = \sigma E$$

کھا جا سکتا ہے جہاں J اور E کی تعیرف درج ذیل ہے۔

$$(2.8) J = \frac{i}{4}$$

$$(2.9) E = \frac{v}{l}$$

شکل 2.2 میں سمتیہ J کی مقدار J ہو اور سمتیہ E کی مقدار E لیتے ہوئے مساوات 2.7 کو درج ذیل لکھا جا سکتا ہے

$$(2.10) J = \sigma E$$

جو قانون اوہم کی دوسری روپ ہے۔ J اور E دونوں کا رخ $a_{
m y}$ ہے۔

شکل 2.2 سے ظاہر ہے کہ برقی روi سلاخ کی رقبہ عمودی تراث A سے گزرتی ہے للذا مساوات 2.8 کے تحت J برقی رو کی کثافت کو ظاہر کرتی ہے للذا J کو کثافت برقی روJ کہتے ہیں۔ اس طرح مساوات 2.9 سے واضح ہے کہ

current density⁶

28 باب2. مقت طبیسی ادوار

برتی دباو فی اکائی لمبائی کو ظاہر کرتی ہے للذاE کو برقہ میدال کے شدھے 7 یا (جہاں متن سے مقناطیسی میدان واضح ہو) مخصراً میدانی شدھے کہتے ہیں۔

بالکل اسی طرح کی مساواتیں مقناطیسی متغیرات کے لئے حصہ 2.5 میں لکھی جائیں گی۔

2.3 برقی ادوار

 $\sigma=5.9\times10^7\,rac{\mathrm{S}}{\mathrm{m}}$ رقی دور میں برقی دباوہ v^8 وجہ سے برقی رو v^{11} انہیدا ہوتی ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے جو بہت بڑی مقدار ہے۔ $\frac{\mathrm{S}}{\mathrm{m}}$ موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے بنی تارکی مزاحمت v^{13} عموماً قابل نظر انداز ہو گی۔ تار میں برقی رو v^{13} گرزنے سے تارکے سروں کے آتی رباو کے گھڑاو میں میں ہوتی دباو کے گھڑاو کے میرا ہوگا جس کو v^{13} ہیں ہوتی دباو کے گھڑاو کو رد کیا جا سکتا ہے۔ یون تانبے کی تار میں برقی دباو کے گھڑاو کو رد کیا جا سکتا ہے۔ یعنی ہم v^{13} میں برقی دباو کے سکتے ہیں۔

شکل 2.3-الف میں ایک ایسا ہی برتی دور دکھایا گیا ہے جس میں تانبے کی تارکی مزاحمت کو اکٹھے کر کے ایک ہی جگہ ہر ہے دکھایا گیا ہے۔ اس دور کے لئے درج ذیل کھا جا سکتا ہے۔

$$(2.11) v = \Delta v + v_L$$

تار میں برقی گھٹاو Δv نظرانداز کرتے ہوئے

$$(2.12) v = v_I$$

حاصل ہوتا ہے۔اس کا مطلب ہے کہ اگر تار میں برقی دباو کا گھٹاو قابل نظرانداز ہو تب لا گو برقی دباو جوں کا توں مزاحمت R_L تک پنچتا ہے۔ برقی ادوار حل کرتے ہوئے یہی حقیقت بروئے کار لاتے ہوئے تار میں برقی دباو کے گھٹاو کو نظرانداز کیا جاتا ہے۔ شکل 2.3-الف میں ایبا کرنے سے شکل 2.3-ب حاصل ہوتا ہے۔ یہاں یہ سمجھ لینا ضروری ہے کہ برقی تارکو اس غرض سے استعال کیا جاتا ہے کہ لاگو برقی دباو کو مقام استعال تک بغیر گھٹائے پہنچایا حائے۔

electric field intensity⁷

electric voltage⁸

⁹ برتی د باوکی اکائی وولٹ ہے جو اٹلی کے الیانڈر ووولٹا کے نام ہے جنہوں نے برتی بیٹری ایجاد کی۔ electric current ¹⁰

¹¹ بر تی رو کی اکائی ایمپیئر ہے جو فرانس کے انڈر میر ایمپیئر کے نام ہے جن کا بر تی و مقناطیسی میدان میں اہم کر دار ہے۔

copper¹² 1³مز انست کی اکا گی او ہم ہے جو جر ممنی کے جارج سائنس او ہم کے نام ہے جنہوں نے قانون او ہم دریافت کیا۔

2.2. برتی ادوار

شکل 2.4: کم مزاحمتی راه میں برقی رو کی مقدار زیادہ ہو گی۔

عن طبیمی ادوار باب 2. مقت اطبیمی ادوار

شکل2.5: مقناطیسی دور

شکل 2.4 میں ایک اور مثال دی گئی ہے۔ یہاں ہم دیکھتے ہیں کہ برتی رو اس رائے زیادہ ہوتی ہے جس کی مزاحمت کم ہو۔ لہذا اگر $R_1 < R_2$ ہو تب $R_1 < R_2$ ہو گا۔

2.4 مقناطيسي دور حصه اول

ا گرے اگر نظرانداز کرنا ممکن نہ ہو تب بالکل سلسلہ وار مزاحمتوں کی طرح ہم دو سلسلہ وار بچکچاہٹوں کا مجموعی بچکچاہٹ & استعال کر کے برقی رو حاصل کریں گے، یعنی

$$\Re_s = \Re_a + \Re_c$$

magnetomotive force, $\mathrm{mmf^{14}}$

 $flux^{15}$

 $[\]rm reluctance^{16}$

2.5 كثافت مقناطيسي بهاواور مقناطيسي ميدان كي شدت

$$\Re_a = \frac{l_a}{\mu_0 A_a}$$

Henry per meter¹⁷

relative permeability, relative magnetic constant 18 magnetic core 19

laminations²⁰

با___2.مقن اطيسي ادوار 32

شکل 2.6: کثافت مقناطیسی بهاواور مقناطیسی میدان کی شد ت_

اگر خلائی درز کی لمبائی $l_a \ll b$ قالب کے رقبہ عمودی تراش کے اضلاع b اور w سے بہت کم ہوں، لینی $l_a \ll b$ اور تب خلائی درز کے رقبہ عمودی تراش A_a کو قالب کے رقبہ عمودی تراش \Re کے برابر لیا جاتا ہے، لیخی: $l_a\ll w$

$$(2.17) A_a = A_c = wb$$

اں کتاب میں جہاں بتلایا نہ گیا ہو وہاں $l_a \ll b$ اور $w \gg l_a \ll b$ کیا جائے گا۔

مقناطیسی دیاو 🕝 کی تعریف درج ذبل مساوات پیش کرتی ہے۔

یوں برقی تار کے چکر ضرب تارییں برقی رو کو مقطاطیسی دیاو کہتے ہیں۔ مقناطیسی دیاو کی اکائی ایمپییر- چکر²¹ ہے۔ بالکل حصه 2.2 كى طرح ہم مساوات 2.15 كو يوں لكھ سكتے ہیں۔

$$\phi_a = \frac{\tau}{\Re_a}$$

مقناطیسی بہاو کی اکائی 22 ویر 23 ہے اور بھی چاہٹ کی اکائی ایمپیر - چکر فرے ویر 24 ہے۔ اس سلسلہ وار دور کی خلائی درز میں مقناطیسی بہاو ϕ_a اور قالب میں مقناطیسی بہاو ϕ_c ایک دوسرے کے برابر ہوں گے۔درج بالا مساوات کو مساوات 2.2 کی مدد سے

$$\phi_a = \tau \left(\frac{\mu_0 A_a}{l_a} \right)$$

 $\rm ampere\text{-}turn^{21}$

²³ یہ اکائی جرمنی کے ولیم اڈور ڈویبر کے نام ہے جن کا برقی و مقناطیسی میدان میں اہم کر دار رہاہے ampere-turn per weber²⁴

یا

$$\frac{\phi_a}{A_a} = \mu_0 \left(\frac{\tau}{l_a}\right)$$

کھ سکتے ہیں جہاں درزکی نشاندہی زیر نوشت میں a کھ کرکی گئی ہے۔ اس مساوات میں بائیں ہاتھ مقناطیسی بہاو فی اکائی رقبہ کو کثافتے مقناطیسی بہاو²⁵ B_a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیسی میدالنے کی شدھے B_a کا کھا جا سکتا ہے، یعنی:

$$(2.21) B_a = \frac{\phi_a}{A_a}$$

$$(2.22) H_a = \frac{\tau}{l_a}$$

کثافتِ مقناطیسی بہاو کی اکائی ویبر فی مربع میٹر ہے جس کو ٹسلا²⁷ کا نام دیا گیا ہے۔مقناطیسی میدان کی شدت کی اکائی ایمپیئر فی میٹر²⁸ ہے۔ یوں مساوات 2.20 کو درج ذیل لکھا جا سکتا ہے۔

$$(2.23) B_a = \mu_0 H_a$$

جہاں متن سے واضح ہو کہ مقناطیسی میدان کی بات ہو رہی ہے وہاں مقناطیسی میدان کی شدت کو مختراً میدانہ شدہ ہوت کے ہے شکل 2.6 میں ہم و کیھتے ہیں کہ خلائی درز میں مقناطیسی بہاو کا رخ اکائی سمتیہ کہ خلائی درز میں مقناطیسی و باو اکائی سمتیہ للذا ہم کثافتِ مقناطیسی بہاو کو $B_a = -B_a a_z$ لکھ سکتے ہیں۔ اسی طرح خلائی درز میں مقناطیسی و باو کی شدت کو a_z کی الٹ رخ و باو ڈال رہا ہے للذا ہم مقناطیسی و باو کی شدت کو a_z کی الٹ رخ و باو ڈال رہا ہے للذا ہم مقناطیسی و باو کی شدت کو درج و ڈیل کھا جا سکتے ہیں۔ یوں درج بالا مساوات کو درج ذیل کھا جا سکتا ہے۔

$$(2.24) B_a = \mu_0 H_a$$

اگر خلاء کی جگه کوئی اور ماده ہو تب ہم اس مساوات کو درج ذیل لکھتے۔

$$(2.25) B = \mu H$$

مثال 2.2: شکل 2.6 میں خلائی ورز میں کثافت مقناطیسی بہاو 0.1 ٹسلا ورکار ہے۔ قالب کی $\mu_r = \infty$ ہثال 0.1: اور خلائی درز کی لمبائی 1 ملی میٹر ہے۔ اگر قالب کے گرد برقی تار کے 100 چکر ہوں تب درکار برقی رو i کتنا ہو گا۔

magnetic flux density²⁵

magnetic field intensity²⁶

Tesla:²⁷ یہ اکائی سربیا کے نکولاٹسلا کے نام ہے جنہوں نے بدلتی روبر قی طاقت عام کرنے میں اہم کر دارادا کیا

ampere per meter²⁸

field intensity²⁹

با___2.مقت طبيبي اووار

عل:

$$\tau = \phi \Re$$

$$Ni = \phi \left(\frac{l}{\mu_0 A}\right)$$

$$\frac{\phi}{A} = B = \frac{Ni\mu_0}{l}$$

للذا

$$0.1 = \frac{100 \times i \times 4\pi 10^{-7}}{0.001}$$
$$i = \frac{0.1 \times 0.001}{100 \times 4\pi 10^{-7}} = 0.79567 \,\text{A}$$

برقی رو خلائی درز میں $B=0.1\,\mathrm{T}$ کثافتِ مقناطیسی بہاو پیدا کرے گا۔ $i=0.795\,67\,\mathrm{A}$

2.6 مقناطیسی دور حصه دوم

شکل 2.7 میں ایک سادہ مقناطیسی نظام دکھایا گیا ہے جس میں قالب کی مقناطیسی مستقل کو محدود تصور کرتے ہیں۔ مقناطیسی دباو $\tau=Ni$ مقناطیسی قالب میں مقناطیسی بہاو ϕ_c پیدا کرتا ہے۔ قالب کا رقبہ عمود کی تراش $\tau=Ni$ ہیں۔ مقناطیسی بہاو کا رخ فلیمنگے $\tau=Ni$ واکس ہاتھ کے جگہ ایک کیساں ہے اور قالب کی اوسط لمبائی t_c ہاتوں کو دو طریقوں سے بیان کیا جا سکتا ہے۔ قالب میں عانون سے معلوم کیا جا سکتا ہے۔ اس قانون کو دو طریقوں سے بیان کیا جا سکتا ہے۔

- اگرایک لچھے کو دائیں ہاتھ سے یوں پکڑا جائے کہ ہاتھ کی چار انگلیاں کچھے میں برتی رو کے رخ لیٹی ہوں تب انگوٹھا اُس مقناطیسی بہاو کے رخ ہو گا جو اس برتی رو کی وجہ سے وجود میں آیا ہو۔
- اگرایک تارجس میں برقی رو کا گزر ہو کو دائیں ہاتھ سے بول پکڑا جائے کہ انگوٹھا برقی رو کے رخ ہو تب باقی چار انگلیاں اُس مقناطیسی بہاو کے رخ لیٹی ہوں گی جو اس برقی رو کی وجہ سے پیدا ہوگا۔

2.6. مقن طيسي دور حصبه دوم

شكل 2.7: ساده مقناطيسي دور ـ

ان دو بیانات میں پہلا بیان کچھے میں مقناطیسی بہاو کا رخمعلوم کرنے کے لئے زیادہ آسان ثابت ہوتا ہے جبکہ سید تھی تار کے گرد مقناطیسی بہاو کا رخ دوسرے بیان سے زیادہ آسانی سے معلوم کیا جا سکتا ہے۔

قالب میں مقناطیسی بہاو گھڑی کے ست میں ہے۔ مقناطیسی بہاو ہ کو شکل 2.7 میں تیر والے ہلکی سیابی کے کیر سے ظاہر کیا گیا ہے۔ قالب کی بھکیاہٹ

$$\Re_c = \frac{l_c}{\mu_c A_c}$$

لکھتے ہوئے مقناطیسی بہاو

$$\phi_c = \frac{\tau}{\Re_c} = Ni \left(\frac{\mu_c A_c}{l_c} \right)$$

ہو گا۔اس طرح ہم تمام نا معلوم متغیرات حاصل کر پائے ہیں۔

مثال 2.3: شکل 2.8 میں ایک مقناطیسی قالب و کھایا گیا ہے جس کی معلومات ورج ذیل ہے۔

(2.26)
$$\psi \mathbf{\ddot{v}} = \left\{ \begin{array}{ll} h = 20 \, \mathrm{cm} & m = 10 \, \mathrm{cm} \\ n = 8 \, \mathrm{cm} & w = 2 \, \mathrm{cm} \\ l_a = 1 \, \mathrm{mm} & \mu_r = 40 \, 000 \end{array} \right.$$

قالب اور خلائی درز کی ہیکیاہٹیں حاصل کریں۔

Fleming's right hand rule³⁰

اب 2. مقت طبیمی ادوار

شكل 2.8: خلائى در زاور قالب كے بچكچاہٹ۔

حل:

$$b = \frac{m-n}{2} = \frac{0.1 - 0.08}{2} = 0.01 \,\mathrm{m}$$

$$A_a = A_c = bw = 0.01 \times 0.02 = 0.0002 \,\mathrm{m}^2$$

$$l_c = 2(h+n) - l_a = 2(0.2 + 0.08) - 0.001 = 0.559 \,\mathrm{m}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.559}{40000 \times 4\pi 10^{-7} \times 0.0002} = 55\,598\,\text{A} \cdot \text{t/Wb}$$

$$\Re_a = \frac{l_a}{\mu_0 A_a} = \frac{0.001}{4\pi 10^{-7} \times 0.0002} = 3\,978\,358\,\text{A} \cdot \text{t/Wb}$$

ہم و کھتے ہیں اگرچہ قالب کی لمبائی خلائی ورز کی لمبائی سے 559 گنا زیادہ ہے تب بھی خلائی ورز کی انچکچاہٹ 71 گنا زیادہ ہے۔ یوں $\Re_a\gg\Re_c$ ہو گا۔

مثال 2.4: شکل 2.9 سے رجوع کریں۔خلائی درز 5 ملی میٹر لمبا ہے اور گھومتے حصہ پر 1000 چکر ہیں۔خلائی درز مثال کی درز میں۔ خلائی درز میں۔ درز میں کا 0.95 کثافتِ برقی بہاو حاصل کرنے کی خاطر درکار برقی رو معلوم کریں۔

حل: اس شکل میں گھومتے مشین، مثلاً موٹر، کی ایک سادہ صورت دکھائی گئی ہے۔ ایسی مشینوں کا ہیرونی حصہ ساکن رہتا ہے لہذا اس جصے کو مشین کا ساکھنے صعبہ 31 کہتے ہیں۔ ساکن حصے کے اندر مشین کا گھومتا حصہ پایا جاتا ہے لہذا اس جصے کو مشین کا گھومتا حصہ 32 کہتے ہیں۔ اس مثال میں ان دونوں حصوں کا $m_r = \infty$ ہے لہذا ان کی ہمچکچاہٹ صفر

 $^{{\}rm stator}^{31} \\ {\rm rotor}^{32}$

2.6 مقت طيسي دور حصب دوم

ہو گی۔ مقناطیسی بہاو کو ہلکی سیاہی کی کلیر سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو کی ایک مکمل چکر کے دوران مقناطیسی بہاو دو خلائی درزوں سے گزرتا ہے۔ یہ دو خلائی درز ہر لحاظ سے ایک جیسے ہیں لہذا ان دونوں خلائی درز کی انچکچاہٹ جس ایک دوسرے کے برابر ہوں گی۔ مزید دونوں خلائی درزوں کی انچکچاہٹ سلسلہ وار ہیں۔ شکل 2.9 میں مقناطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔خلائی درز کی لمبائی l_a بہت کم ہے لہذا خلائی درز کا عمودی رقبہ تراش l_a وہی ہو گا جو گھومتے حصہ کا ہے لیمنی l_a ہو گا۔

ایک خلائی درز کی ہیکھیاہٹ

$$\Re_a=rac{l_a}{\mu_0A_a}=rac{l_a}{\mu_0A_c}$$
 - پالمذا دو سلسله وار خلائی درزوں کی کل پنچکچاہٹ درج ذبیل ہو گ $\Re_s=\Re_a+\Re_a=rac{2l_a}{\mu_0A_c}$

خلائی درز میں مقناطیسی بہاو ϕ_a اور کثافتِ مقناطیسی بہاو B_a درج ذیل ہوں گے۔

$$\begin{split} \phi_a &= \frac{\tau}{\Re_s} = (Ni) \left(\frac{\mu_0 A_c}{2l_a} \right) \\ B_a &= \frac{\phi_a}{A_a} = \frac{\mu_0 Ni}{2l_a} \end{split}$$

اس مساوات میں اعداد استعال کرتے ہیں۔

$$0.95 = \frac{4\pi 10^{-7} \times 1000 \times i}{2 \times 0.005}$$
$$i = \frac{0.95 \times 2 \times 0.005}{4\pi 10^{-7} \times 1000} = 7.56 \,\text{A}$$

با___2.مقن اطيسي ادوار 38

شکل 2.10: قالب میں مقناطیسی بہاومیں تبدیلی کیچے میں برقی دباو پیدا کرتی ہے۔

موٹر اور جزیٹروں کی خلاء میں تقریباً ایک ٹسلا کثافت برقی بہاو ہوتی ہے۔

خوداماله، مشتر که اماله اور توانائی

مقناطیسی بہاو کی وقت کے ساتھ تبدیلی برقی دباو کو جنم دیتی ہے۔ للذا شکل 2.10-ا کے قالب میں مقناطیسی بہاو ϕ کی تبدیل کی بنا کیجے میں برقی دباو e پیدا ہو گا جو کیجے کے سروں پر نمودار ہو گا۔ اِس طرح پیدا ہونے والی برقی دباو کو امالی برقی دباو 33 کہتے ہیں۔ قانون فیراڈے 34 کے تحت 35 درج زیل ہو گا۔

$$(2.27) e = N \frac{\partial \phi}{\partial t} = \frac{\partial \lambda}{\partial t}$$

امالی برقی دیاو کو منبع برقی دیاو تصور کریں۔

امالی برقی دباو کی سمت کا تعین یوں کیا جاتا ہے کہ اگر دیئے گئے کچھے کی سروں کو کسر دور 36 کیا جائے تو اِس میں برقی رواُس رخ ہو گی جو مقناطیسی بہاو کی تبدیلی کو روئے۔ یوں اگر شکل 2.10-امیں بہاو کی سمت گھڑی کی سوئیوں . کے گھومنے کے رخ ہو اور اگر بہاو بڑھ رہا ہو تب بہاو کی تبدیلی کے مخالف بہاو پیدا کرنے کی خاطر کیجھے کا بالائی سر مثبت دباویر ہو گا۔شکل 2.10-ب میں لچھے کے سروں کے نیج مزاحمت نب کیا گیا ہے۔ لچھے کو منبع دباو تصور کرتے ہوئے آپ دیکھ سکتے ہیں کہ مزاحمت میں رو کی سمت قالب میں گھڑی کی الٹ رخ بہاو 🕜 پیدا کرے گا۔

induced voltage³³

Faraday's law³⁴

³⁵ مانکل فیر اڈے انگلتانی سائنسدان تھے جنہوں نے محرک برقی د باودریافت کی

short circuit³⁶

قالب میں مقناطیسی بہاو ϕ کچھے کے تمام چکروں کے اندر سے گزرتا ہے۔ $N\phi$ کو کچھے کی ارتباط بہاو λ^{37} ہیں جس کی اکائی ویبر جھر λ^{38} ہیں جس کی اکائی ویبر چکر λ^{38} ہیں جس کی اکائی ویبر جھر λ^{38}

$$(2.28) \lambda = N\phi$$

جن مقناطیسی ادوار میں مقناطیسی مستقل μ کو اٹل مقدار تصور کیا جا سکے یا جن میں خلائی درز کی آپکچاہٹ قالب کی آپکچاہٹ سے بہت زیادہ ہو $\Re_a\gg\Re_c$ ان میں لیھے کی امالہ L^{39} کی تعریف درج ذیل ہے۔

$$(2.29) L = \frac{\lambda}{i}$$

 $\phi = B_c A_c$ ، $\lambda = N \phi$ اوالہ کی اکائی و بیر - چکر فی ایمپیئر ہے جس کو ہیزی H^{40} کا نام H^{40} دیا گیا ہے۔ یوں $\phi = \frac{N c}{\Re c}$ اور $\phi = \frac{N i}{\Re c}$ پر کرتے ہوئے درجی ذیل حاصل ہوتا ہے

(2.30)
$$L = \frac{N\phi}{i} = \frac{NB_c A_c}{i} = \frac{N^2 \mu_0 A_a}{l_a}$$

جہاں قالب کا رقبہ عمودی تراش A_c اور درز کا رقبہ عمودی تراش A_a ایک دوسرے کے برابر لیے گئے ہیں۔ مثال 2.5 شکل 2.11 میں مشال 2.5 شکل 2.11 میں مشال 2.5 شکل 2.11 میں دو صور توں میں لیجھے کی امالہ تلاش کریں۔ اوسط لمبائی $l_c=30\,\mathrm{cm}$ نے بیل دو صور توں میں لیجھے کی امالہ تلاش کریں۔

- $\mu_r=\infty$ قالب کی •
- $\mu_r = 500$ قالب کی •

حل: (۱) قالب کی
$$\mu_r = \infty$$
 کی بنا قالب کی بنگچاہٹ نظرانداز کی جاسکتی ہے۔یوں امالہ درج ذیل ہو گئی۔

$$\begin{split} L &= \frac{N^2 \mu_0 w b}{l_a} \\ &= \frac{1000^2 \times 4 \pi 10^{-7} \times 0.04 \times 0.05}{0.003} \\ &= 0.838 \, \mathrm{H} \end{split}$$

flux linkage³⁷ weber-turn³⁸ inductance³⁹

⁴¹ مر کی سائنسدان جوزف بینری جنبول نے مانگل فیراڈے سے علیحدہ طور پر محرک برقی د باودریافت کی

40 پائے 2, مقت طبیمی ادوار

شكل 2.11: اماليه (مثال 2.5)

(+) کی صورت میں قالب کی بھیچاہٹ قابل نظر انداز نہیں ہو گی۔خلاء اور قالب کی ہیکچاہٹ دریافت کرتے ہیں۔

$$\Re_a = \frac{l_a}{\mu_0 w b} = \frac{0.003}{4\pi 10^{-7} \times 0.04 \times 0.05} = 1\,193\,507\,\text{A} \cdot \text{t/Wb}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 w b} = \frac{0.3}{500 \times 4\pi 10^{-7} \times 0.04 \times 0.05} = 238\,701\,\text{A} \cdot \text{t/Wb}$$

يوں درج ذيل ہو گا۔

$$\begin{split} \phi &= \frac{Ni}{\Re_a + \Re_c} \\ \lambda &= N\phi = \frac{N^2i}{\Re_a + \Re_c} \\ L &= \frac{\lambda}{i} = \frac{N^2}{\Re_a + \Re_c} = \frac{1000^2}{1\,193\,507 + 238\,701} = 0.698\,\mathrm{H} \end{split}$$

مثال 2.6: شکل 2.12 میں ایک پیچپرار گچھا 42 و کھایا گیا ہے جس کی جسامت درج ذیل ہے۔ $N=11, r=0.49~\mathrm{m}, l=0.94~\mathrm{m}$

یچپرار کچھے کے اندر مقناطیسی بہاو ϕ کا بیشتر حصہ محوری رخ ہوتا ہے۔ کچھے کے بار یہی بہاو پوری کا نئات سے گزرتے ہوئے واپس کچھے میں داخل ہوتا ہے۔ چونکہ پوری کا نئات کا رقبہ عمودی تراش A لا متناہی ہے للذا کچھے کے باہر کثافت مقناطیسی بہاو $B=\frac{\phi}{A}$ کی مقدار قابل نظرانداز ہوتی ہے۔ کچھے کے اندر محوری رخ مقناطیسی شدت

 $spiral coil^{42}$

درج ذیل ہو گی۔

$$H = \frac{Ni}{l}$$

اس کھیے کی خود امالہ حاصل کریں۔

عل:

$$B = \mu_0 H = \frac{\mu_0 Ni}{l}$$

$$\phi = B\pi r^2 = \frac{\mu_0 Ni\pi r^2}{l}$$

$$\lambda = N\phi = \frac{\mu_0 N^2 i\pi r^2}{l}$$

$$L = \frac{\lambda}{i} = \frac{\mu_0 N^2 \pi r^2}{l}$$

عددیr، اور l کی قیمتیں پر کرتے ہوئے درج ذیل امالہ حاصل ہو گا 43 L

$$L = \frac{4\pi 10^{-7} \times 11^2 \times \pi \times 0.49^2}{0.94} = 122 \,\mu\text{H}$$

 i_1 ور اس میں برقی رو رکھایا گیا ہے۔ ایک کچھے کے چکر N_1 اور اس میں برقی رو رکھایا گیا ہے۔ دونوں کچھوں میں مثبت برقی رو قالب میں ایک جیسے N_2 ور مرا کچھا کے اور اس میں برقی رو i_2 ہے۔ دونوں کچھوں میں مثبت برقی رو قالب میں ایک جیسے N_2 میں استعمال کیا ہے۔ N_2 میں استعمال کیا ہے۔ N_3 میں استعمال کیا ہے۔ N_3 میں استعمال کیا ہے۔ N_4 میں میں استعمال کیا ہے۔ N_4 میں میں میں میں کیا ہے۔ N_4 میں میں میں میں کیا ہے کہ ک

با___2.مقن طيسي ادوار 42

رخ مقناطیسی دیاویپدا کرتے ہیں۔ اگر قالب کا ہے۔ قابل نظرانداز ہو تب مقناطیسی بہاو &درج ذیل ہو گا۔

(2.31)
$$\phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_a}{l_a}$$

دونوں کیچھوں کے مجموعی مقناطیسی دباو یعنی $N_1 i_1 + N_2 i_2$ سے پیدا ہونے والا مقناطیسی بہاو ϕ ہے۔ اس مقناطیسی

شكل 2.13: د و لحصے والا مقناطيسي دور۔

بہاو کا پہلے کچھے کے ساتھ ارتباط

(2.32)
$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_a}{l_a} i_1 + N_1 N_2 \frac{\mu_0 A_a}{l_a} i_2$$

لعيني

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

ے جہاں L_{11} اور L_{12} سے مراد درج ذیل ہے۔

$$(2.34) L_{11} = N_1^2 \frac{\mu_0 A_a}{l_a}$$

$$(2.35) L_{12} = N_1 N_2 \frac{\mu_0 A_a}{l_a}$$

یہلے کچھے کی خودامالہ ⁴⁴ ہے اور $L_{11}i_1$ اس کچھے کی اپنے برقی رو i_1 سے پیدا مقناطیسی بہاو کے ساتھ ارتباط بہاو L_{11} $=i_2$ ساتھ i_2 المالہ 46 ہے اور $L_{12}i_2$ بین L_{12} ان دونوں کچھوں کا مشرکہ المالہ 46 ہے اور 45 کہتے ہیں L_{12} ان دونوں کجھوں کا مشرکہ المالہ 46

self inductance⁴⁴

 $[\]rm self~flux~linkage^{45}$ $\mathrm{mutual}\ \mathrm{inductance^{46}}$

پیدا بہاو کے ساتھ ارتباط بہاو ہے جسے مشترکہ ارتباط بہاو⁴⁷ کہتے ہیں ۔ بالکل ای طرح ہم دوسرے کیھے کے لئے درج ; مل لکھر سکتے ہیں

$$\lambda_2 = N_2 \phi = N_2 N_1 \frac{\mu_0 A_a}{l_a} i_1 + N_2^2 \frac{\mu_0 A_a}{l_a} i_2$$
 (2.36)
$$= L_{21} i_1 + L_{22} i_2$$

جہال L_{22} اور L_{21} سے مراد درج ذیل ہے۔

$$(2.37) L_{22} = N_2^2 \frac{\mu_0 A_a}{l_a}$$

(2.38)
$$L_{21} = L_{12} = N_2 N_1 \frac{\mu_0 A_a}{l_a}$$

ی خود امالہ اور $L_{21}=L_{12}$ دونوں کچھوں کی مشتر کہ امالہ ہے۔امالہ کا تصور اس وقت کار آمد ہوتا ہے L_{22} جب مقناطیسی مستقل μ کو اٹل تصور کرنا ممکن ہو۔

مباوات 2.29 کو مباوات 2.27 میں پر کرتے ہیں۔

(2.39)
$$e = \frac{\partial \lambda}{\partial t} = \frac{\partial (Li)}{\partial t}$$

اگر امالہ کی قیت اٹل ہو جیبا کہ ساکن مشینوں میں ہوتا ہے تب ہمیں امالہ کی جانی پیچانی مساوات

$$(2.40) e = L \frac{\partial i}{\partial t}$$

ملتی ہے۔ اگر امالہ بھی تبدیل ہو جیسا کہ موٹرول اور جزیٹرول میں ہوتا ہے تب درج ذیل ہو گا۔

(2.41)
$$e = L\frac{\partial i}{\partial t} + i\frac{\partial L}{\partial t}$$

تواما کر 48 کی اکائی جاوار 49 J 50 ہے اور طاقتے 51 کی اکائی 52 حاول فی سینڈ یا والے 53 W ہے۔

mutual flux linkage⁴⁷

⁵⁰ جیس پریسقوٹ جاول انگلتانی سائنسدان جنہوں نے حرارت اور میکانی کام کارشتہ دریافت کیا

⁵² کا ٹلینڈ کے جیمزواٹ جنہوں نے بخارات پر چلنے والے انجن پر کام کیا Watt⁵³

باب2. مقت طبيسي ادوار

اس کتاب میں توانائی یا کام کو W سے ظاہر کیا جائے لیکن طاقت کی اکائی واٹ W کے لئے بھی یہی علامت استعال ہوتی ہے۔امید کی جاتی ہے کہ متن سے اصل مطلب جاننا ممکن ہو گا۔

وقت کے ساتھ توانائی کی تبدیلی کی شرح کو طاقت کہتے ہیں۔اس طرح درج ذیل لکھا جا سکتا ہے۔

$$(2.42) p = \frac{\mathrm{d}W}{\mathrm{d}t} = ie = i\frac{\partial\lambda}{\partial t}$$

مقناطیسی دور میں لمحہ t_1 تا t_2 مقناطیسی توانائی کی تبدیلی کو تکمل کے ذریعہ حاصل کیا جا سکتا ہے:

(2.43)
$$\Delta W = \int_{t1}^{t2} p \, \mathrm{d}t = \int_{\lambda 1}^{\lambda 2} i \, \mathrm{d}\lambda$$

اگر مقناطیسی دور میں ایک ہی لیچھا ہو اور دور میں امالہ کی قیمت اٹل ہو تب درج ذیل ہو گا۔

(2.44)
$$\Delta W = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda = \int_{\lambda_1}^{\lambda_2} \frac{\lambda}{L} \, \mathrm{d}\lambda = \frac{1}{2L} \left(\lambda_2^2 - \lambda_1^2 \right)$$

ا گر لمحہ t_1 پر $t_1=0$ تصور کیا جائے تب کسی دیئے گئے کہ پر مقناطیسی توانائی درج ذیل ہو گی۔ $\Delta W = \frac{\lambda^2}{2L} = \frac{Li^2}{2}$ (2.45)

2.8 مقناطیسی مادہ کے خصوصیات

قالب کی استعال سے دو فوائد حاصل ہوتے ہیں۔ قالب کے استعال سے کم مقناطیسی دباو، زیادہ مقناطیسی بہاو پیدا کرتا ہے اور مقناطیسی بہاو کو پیند کی راہ پابند کیا جا سکتا ہے۔ ایک مرحلہ ٹرانسفار مروں میں قالب کی استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ تمام کچھوں میں یکسال بہاو پایا جاتا ہو۔ موٹروں میں قالب کی استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ زیادہ سے زیادہ قوت پیدا ہو جبکہ جزیئروں میں زیادہ سے زیادہ برقی دباو حاصل کرنے کی نیت سے بہاو کو پابند کیا جاتا ہے۔ مقناطیسی مواد کی B اور H کا تعلق ترسیم کی صورت میں پیش کیا جاتا ہے۔

شکل B-H:2.14 خطوط یا مقناطیسی چال کے دائرے

لوہا نما مقناطیسی مادے کی B-H ترسیم شکل 2.14-الف میں دکھائی گئی ہے۔ایک لوہا نما مقناطیسی مادہ جس میں مقناطیسی اثر نہیں یایا جاتا ہو کو نقطہ a سے ظاہر کیا گیا ہے۔اس نقطہ پر

$$H_a = 0$$

$$B_a = 0$$

ہیں۔

ایسے مادہ کو کچھ میں رکھ کر اس پر مقناطیسی دباو لا گو کی جاسکتی ہے۔ مقناطیسی میدان کی شدت H لا گو کرنے سے لوہ نما مقناطیسی مادے میں کثافت مقناطیسی بہاو B پیدا ہو گی۔میدانی شدت بڑھانے سے کثافت مقناطیسی بہاو a بیدا ہو گی۔اس عمل کو نقطہ a تک بڑھایا گیا ہے۔میدانی شدت کو نقطہ a تک بڑھایا گیا ہے جہاں یہ غیر سمتیں a اور a بیں۔

اگراس نقطہ تک پینچنے کے بعد میدانی شدت کم کی جائے تو دیکھا یہ گیا ہے کہ واپی کا خط مختلف راستہ اختیار کرتا ہے۔ یوں نقطہ b سے میدانی شدت کم کرتے ہوئے صفر کرنے سے لوہا نما مادہ کی کثافتِ مقناطیسی بہاہ کم ہو کر نقطہ ی پر آ پہنچتی ہے۔ نقطہ b سے نقطہ c تک نوکدار خط اس عمل کو ظاہر کرتا ہے۔ اس نقطہ پر بیرونی میدانی شدت صفر ہے لیکن لوہا نما مادے کی کثافتِ مقناطیسی بہاہ صفر نہیں ہے۔ یہ اب ایک مقناطیس بن گیا ہے جس کی کثافتِ مقناطیسی بہاہ صفر نہیں ہے۔ یہ اب ایک مقناطیس بن گیا ہے جس کی کثافتِ مقناطیسی بہاہ و مفر نہیں ہے۔ یہ اب ایک مقناطیس اس طرح بنایا جاتا ہے۔

magnetic flux!residual⁵⁴

46 باب_2 مقت طبيسي ادوار

شكل 5:2.15 كاسٹىل كى 0.3048 ملى مىٹر موٹى پترى كاخط-مىدانى شدت كاپياندلاگ ہے۔

یہاں سے میدانی شدت منفی رخ بڑھانے سے B کم ہوتے ہوتے آخر کار ایک مرتبہ دوبارہ صفر ہو جائے گی۔اس نقطہ کو d سے ظاہر کیا گیا ہے۔مقاطیسیت ختم کرنے کے لئے درکار میدانی شدت کی مقدار $|H_d|$ کو مقاطیسیت ختم کرنے والی شدت یا غاتم شدھے 55 کہتے ہیں۔

منفی رخ میدانی شدت بڑھانے سے نقطہ e حاصل ہوتا ہے جہاں سے منفی رخ کی میدانی شدت کی مقدار ایک مرتبہ پھر کم کی جاتی ہے۔ یوں نقطہ f حاصل ہوتا ہے جہاں میدانی شدت صفر ہونے کے باوجود کثافتِ مقناطیسی بہاو صفر نہیں۔اس نقطہ پر لوہا نما مادہ اُلٹ رخ مقناطیس بن چکا ہے اور B_f بقایا کثافتِ مقناطیسی بہاو ہے۔اس طرح اس رخ مقناطیسیت ختم کرنے کی شدت $|H_g|$ ہے۔میدانی شدت بڑھاتے ہوئے ہم نقطہ b کی بجائے نقطہ d پہنچتے ہیں۔

اگر برتی شدت کو متواتر اس طرح پہلے ایک رخ اور پھر اس کے الٹ رخ ایک خاص حد تک لے جایا جائے تو آخر کار B-H خط ایک بند دائرہ کی صورت اختیار کر لیتا ہے جے شکل B-H-ب میں دکھایا گیا ہے۔شکل B-H-ب کو مقناطیہ پالے کا دائرہ 56 کہتے ہیں۔

مختلف H کے لئے شکل L 2.14-ب حاصل کر کے ایک ہی کاغذ پر کھینچنے کے بعد ان تمام کے b نقطے جوڑنے سے شکل L 2.15 میں دکھایا L 4 خط حاصل ہوتا ہے۔ شکل L 2.15 میں ٹرانسفار مروں میں استعال ہونے والی L 6 خط حاصل ہوتا ہے۔ شکل L 2.15 میں موجود مواد جدول L 2 میں L 3.03048 میں میٹر موٹی L 6 قالب کی پتری کا L 4 خط دکھایا گیا ہے۔ اس خط میں موجود مواد جدول L 2 میں دیا گیا ہے۔ محوماً مقناطیسی مسائل حل کرتے ہوئے شکل L 2.14 کی جگہ شکل L 3 خط استعال کیا جاتا ہے۔ دھیان رہے کہ اس خط میں L 3 پیانہ لاگے L 3 میں دکھایا گیا ہے۔

 $\begin{array}{c} {\rm coercivity^{55}} \\ {\rm hysteresis~loop^{56}} \end{array}$

 $[\]log^{57}$

لوہا نما مقناطیسی مادے پر لا گو مقناطیسی شدت بڑھانے سے کثافتِ مقناطیسی بہاو بڑھنے کی شرح بتدر تکے کم ہوتی جاتی ہے حتی کہ آخر کار یہ شرح خلاء کی شرح میں رہ جاتی ہے یعنی

$$\frac{\Delta B}{\Delta H} = \mu_0$$

اس اثر کو سیرابیدے 58 کہتے ہیں جو شکل 2.15 میں واضح ہے۔

شکل 2.14 سے واضح ہے کہ H کی کسی بھی قیت پر B کے دو مکنہ قیمتیں ہوں گی۔ بڑھتے مقناطیسی بہاو کی صورت میں ترسیم میں نیچے سے اُوپر جانے والا خط B اور H کا تعلق پیش کرے گا جبکہ گھٹے ہوئے مقناطیسی بہاو کی صورت میں اوپر سے نیچے جانے والا خط B تعلق کو پیش کرے گا۔ چونکہ B/H ہے لہٰذا B کی مقدار تبدیل ہوئے سے وجود اِس کے ہم مقناطیسی ادوار میں μ کو ایک مستقل تصور کرتے ہیں۔ یہ تصور کر لینے سے عموماً جواب پر زیادہ اثر نہیں پڑتا۔

مثال 2.7: شکل 2.15 یا اس کے مساوی جدول 2.1 میں دیئے گئے مواد کو استعال کرتے ہوئے شکل 2.6 کی خلاء میں ایک ٹسلا اور دو ٹسلا کثافت ِ متناطیسی بہاو حاصل کرنے کے لئے درکار برقی رو معلوم کریں۔اس شکل میں

 $b = 5 \,\mathrm{cm}, w = 4 \,\mathrm{cm}, l_a = 3 \,\mathrm{mm}, l_c = 30 \,\mathrm{cm}, N = 1000$

ہیں۔ قالب اور خلاء کا رقبہ عمودی تراش ایک دوسرے جتنا لیں۔

حل: ایک ٹسلاکے لئے۔

جدول 2.1 سے ہم دیکھتے ہیں کہ قالب میں 1 ٹسلا حاصل کرنے کے لئے قالب کو 11.22 ایمپیئر - چکر فی H میٹر درکار ہوں گے۔ درکار ہے۔ یوں 30 سم لمبے قالب کو 3.366 عن 3.36 ایمپیئر چکر درکار ہوں گے۔

خلاء کو

$$H = \frac{B}{\mu_0} = \frac{1}{4\pi 10^{-7}} = 795\,671$$

ایمپیئر-چکر فی میٹر درکار ہیں۔المذا 3 ملی میٹر کمبی خلاء کو 2387 = 795671 × 0.003 ایمپیئر چکر درکار ہوں گے۔یوں کل ایمپیئر-چکر 2390.366 = 2387 + 3.366 ہیں جن سے

$$i = \frac{2390.366}{1000} = 2.39 \,\mathrm{A}$$

 ${\rm saturation}^{58}$

B	H	B	H	B	H	B	H	B	H	B	Н
0.000	0	0.700	9	1.480	30	1.720	200	1.852	1000	1.998	9000
0.040	2	0.835	10	1.540	40	1.752	300	1.900	2000	2.000	10000
0.095	3	1.000	11.22	1.580	50	1.780	400	1.936	3000	2.020	20000
0.160	4	1.100	12.59	1.601	60	1.800	500	1.952	4000	2.040	30000
0.240	5	1.200	14.96	1.626	70	1.810	600	1.968	5000	2.048	40000
0.330	6	1.300	17.78	1.640	80	1.824	700	1.975	6000	2.060	50000
0.440	7	1.340	20	1.655	90	1.835	800	1.980	7000	2.070	60000
0.560	8	1.400	23.77	1.662	100	1.846	900	1.985	8000	2.080	70000

جدول 2.1: مقناطيسي بهاو بالتقابل شدت

حاصل ہوتا ہے۔

حل: دو ٹسلا کے لئے۔

جدول 2.1 ہے ہم دیکھتے ہیں کہ قالب میں 2 ٹسلا حاصل کرنے کے لئے قالب کو 10000 ایمپیئر - چکر فی میٹر H درکار ہے۔یوں 30 سم لمبے قالب کو 3000 = 0.3×10000 ایمپیئر چکر درکار ہیں۔خلاء کو

$$H = \frac{B}{\mu_0} = \frac{2}{4\pi 10^{-7}} = 1591342$$

ایمپیئر- چکر فی میٹر درکار ہیں۔للذا 3 ملی میٹر کمبی خلاء کو 4774 = 1591342 × 0.003 ایمپیئر چکر درکار ہیں۔یوں کل دائمپیئر- چکر 7774 = 4774 + 3000 ہیں جن سے

$$i = \frac{7774}{1000} = 7.774 \,\mathrm{A}$$

حاصل ہوتا ہے۔

اس مثال میں مقاطیسی سیرابیت کے اثرات واضح ہیں۔

2.9. ہیجبان شدہ کچھ

2.9 ہیجان شدہ کیھا

عموماً بدلتی رو بجل میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں لینی یہ وقت کے ساتھ sin w یا sin w کا تعلق رکھتے ہیں۔ اِس سبق میں ہم بدلتی رو سے کچھے کو ہیجان کرنا اور اس سے نمودار ہونے والے برقی توانائی کے ضیاع کا تذکرہ کریں گے۔ ہم فرض کرتے ہیں کہ قالب میں کثافتِ مقناطیسی بہاو درج ذیل ہے۔

$$(2.48) B = B_0 \sin \omega t$$

یوں قالب میں بدلتا مقناطیسی بہاو $\,arphi$ درج ذیل ہو گا۔

(2.49)
$$\varphi = A_c B = A_c B_0 \sin \omega t = \phi_0 \sin \omega t$$

اس مساوات میں مقناطیسی بہاو کا حیطہ $+\phi_0$ اور $+\phi_0$ کا حیطہ $+\phi_0$ بیں۔ $+\phi_0$ قالب کا رقبہ عمودی تراش ہے جو ہر جگہ کیساں ہے $+\phi_0$ تعدد ہے۔

فیراڈے کے قانون لینی مساوات e(t) کے تحت اس مقناطیسی بہاو کی وجہ سے کچھے میں e(t) برقی دباہ پیدا ہو

(2.50)
$$e(t) = \frac{\partial \lambda}{\partial t}$$
$$= \omega N \phi_0 \cos \omega t$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= E_0 \cos \omega t$$

جس کا حیطہ

(2.51)
$$E_0 = \omega N \phi_0 = 2\pi f N A_c B_0$$

ے۔e(t) کو امالھ برقھ دباو e^{59} کہتے ہیں۔

ہم برلتی رو مقداروں کے مربع کی اوسط کے جذر میں ولچین رکھتے ہیں جو ان مقداروں کی موثر 60 قیت ہوتی $1/\sqrt{2}$ ہے۔ جیسا صفحہ 19 پر مساوات 1.42 میں دیکھا گیا ہے، ایک سائن نما موج کی موثر قیت اس کے حیطہ کے $1/\sqrt{2}$ گنا ہوتی ہے لہٰذا امالی برتی دباو کی موثر قیت E_{rms} درج ذیل ہو گی۔

(2.52)
$$E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N A_c B_0}{\sqrt{2}} = 4.44 f N A_c B_0$$

 $\begin{array}{c} \text{induced voltage}^{59} \\ \text{root mean square, rms}^{60} \end{array}$

باب_2.مقت طبيسي ادوار

یہ مساوات بہت اہمیت رکھتی ہے جس کو ہم بار بار استعال کریں گے۔بدلتی برقی دباویا بدلتی برقی رو کی مقدار کا جب بھی ذکر ہو، یہ ان کی مربع کی اوسط کے جذر یعنی اس کی موثر قیمت کا ذکر ہوتا ہے۔پاکستان میں گھر یلو برقی دباو کی موثر قیمت 220 وولٹ ہے۔ چونکہ یہ سائن نما ہے لہذا اس کی چوئی $\sqrt{2} \times 220 = 311$

مثال 2.8: شکل 2.7 میں 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 229.253 مربع سم ہے۔ کچھے میں گھریلو 220 وولٹ موثر برقی دباوسے پیجان پیدا کیا جاتا ہے۔جدول 2.1 کی مدد سے مختلف برقی دباو پر محرک برقی رو معلوم کریں اور اس کا خط کھیچیں۔

حل: گھر ملو برقی دباو 50 ہر ٹزکی سائن نما موج ہوتی ہے یعنی:

(2.53)
$$v = \sqrt{2} \times 220 \cos(2\pi 50t)$$

ماوات 2.52 کی مدد سے ہم کثافتِ مقناطیسی بہاو کی چوٹی حاصل کرتے ہیں:

(2.54)
$$B_0 = \frac{220}{4.44 \times 50 \times 27 \times 0.0229253} = 1.601 \,\mathrm{T}$$

یوں قالب میں کثافتِ مقناطیسی بہاو صفر تا 1.601∓ٹسلا تبدیل ہوتی رہتی ہے لہٰذا قالب میں کثافتِ مقناطیسی بہاو کی مساوات درج ذیل ہو گی۔

$$(2.55) B = 1.601 \sin \omega t$$

ہم فہرست کی مدد سے کثافتِ مقناطیسی بہاو کا 0 تا 1.601 ٹسلا مختلف قیمتوں پر درکار محرک برقی رو $_{i_{\phi}}$ معلوم کرنا چاہتے ہیں۔ہم مختلف B پر جدول 2.1 سے قالب کی H حاصل کریں گے جو کہ ایک میٹر لمبی قالب کے لئے درکار ایمپیئر-چکر دیتی ہے۔اس سے 30 سم لمبی قالب کے لئے درکار ایمپیئر-چکر حل کر کے برقی رو حاصل کریں گے۔

جدول 2.2 مختلف کثافتِ متناطیسی بہاو کے لئے درکار محرک برقی رو دیتی ہے۔جدول میں ہر B کی قیمت پر مساوات 2.5 کی مدد سے حاصل کی گئی ہے۔ ωt بالمقابل محرک برقی رو کا خط شکل Δt میں دیا گیا ہے۔ ωt

برتی کچھ میں برتی دباو سے بیجان پیدا کیا جاتا ہے۔ بیجان شدہ کچھ میں برتی رو کی بنا قالب میں مقناطیسی بہاو پیدا ہوتا ہے۔ اس برتی رو i_{φ} کو ہیجان انگیزبرتی رو i_{φ} کا میجان انگیزبرتی رو i_{φ} کا میکن کے میکن کرد ہوتا ہے۔ اس برتی رو i_{φ} کو ہیجان انگیزبرتی رو i_{φ} کا میکن کے میکن کے

excitation current⁶¹

2.9 ييجبان شده لچھ

ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$	ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$
0.675	1.000	11.22	3.366	0.125	0.000	0.000	0	0.000	0.000
0.757	1.100	12.59	3.777	0.140	0.025	0.040	2	0.600	0.022
0.847	1.200	14.96	4.488	0.166	0.059	0.095	3	0.900	0.033
0.948	1.300	17.78	5.334	0.198	0.100	0.160	4	1.200	0.044
0.992	1.340	20	6.000	0.222	0.150	0.240	5	1.500	0.056
1.064	1.400	23.77	7.131	0.264	0.208	0.330	6	1.800	0.067
1.180	1.480	30	9.000	0.333	0.278	0.440	7	2.100	0.078
1.294	1.540	40	12.000	0.444	0.357	0.560	8	2.400	0.089
1.409	1.580	50	15.000	0.556	0.453	0.700	9	2.700	0.100
1.571	1.601	60	18.000	0.667	0.549	0.835	10	3.000	0.111

جدول2.2: محرک برقی رو

شکل 5:2.16 میتری کے قالب میں 1.6 شلاتک پیجان پیدا کرنے کے لئے در کار بیجان انگیز برتی رو۔

52 باب_2,مقناطيسي ادوار

شكل 2.17: ہيجان انگيز برقى رو۔

مثال 2.8 میں بیجان انگیز برتی رو معلوم کی گئی جے شکل 2.16 میں دکھایا گیا۔اسے حاصل کرتے وقت مقناطیسی چالے 62 کو نظر انداز کیا گیا۔شکل 2.17 میں بیجان انگیز برتی رو ء دکھائی گئی ہے جو مقناطیسی چال کو مدِ نظر رکھ کر حاصل کی گئی ہے۔ اس کو سمجھنا نہایت ضروری ہے۔ شکل 2.17-الف میں مقناطیسی چال کا خط ہے۔چونکہ

(2.56)
$$Hl = Ni$$

$$\varphi = BA_c$$

ہیں للذا مقناطیسی چال کے خط کو $\varphi-i_{\varphi}$ کا خط کھا جا سکتا ہے۔ شکل 2.17ب قالب میں سائن نما مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتی ہے۔ لحمہ t_1 پر اس کی مقدار φ ہے۔ مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتی ہے۔ لحمہ t_1 پر اس کی مقدار ہجان انگیز برقی رو i_1 شکل-الف سے حاصل کی جا سکتی ہے۔ اسی بیجان انگیز برقی رو کھا یا گیا ہے۔ کو شکل-ب میں لمحہ t_1 پر دکھا یا گیا ہے۔

دھیان رہے کہ لمحہ t_1 پر مقناطیسی بہاو بڑھ رہا ہے لمذا مقناطیسی چال کے خط کا صحیح حصہ استعال کرنا ضروری ہے۔ شکل 2.17-الف میں $\varphi - i_{\varphi}$ کے خط میں گھڑی کی سوئیوں کے الٹ رخ گھومتے ہوئے یوں نیچے سے اوپر جاتا ہوا حصہ استعال کیا گیا ہے۔ مقناطیسی بہاو بڑھنے کی صورت میں شکل 2.14-ب میں نیچے سے اوپر جاتے ہوئے حصہ رہتا ہوا نشان صحیح حصہ دیتا ہے۔ ای طرح مقناطیسی بہاو گھنے کی صورت میں اوپر سے نیچے جاتے ہوئے حصے پر تیر کا نشان صحیح حصہ دیتا ہے۔ ای طرح مقناطیسی بہاو گھنے کی صورت میں اوپر سے نیچے جاتے ہوئے حصے پر تیر کا نشان صحیح حصہ دیتا ہے۔

 $\rm hysteres is^{62}$

2.9. بيجان شده لچھ

شکل 2.18: پیچاس ہرٹزیر 0.3 ملی میٹر موٹی پتری کے لئے در کار موثر وولٹ - امپیئر فی کلو گرام قالب

لمحہ t_2 پر مقناطیسی بہاو گھٹ رہا ہے۔اس لمحہ پر مقناطیسی بہاو φ_2 ہے اور اسے حاصل کرنے کے لئے درکار ہمجان انگیز برقی رو i_2 ہے۔

اسی طرح مختلف کمات پر درکار ہیجان انگیز برقی رو حاصل کرنے سے شکل 2.17ب میں دکھایا گیا i_{arphi} کا خط ماتا ہے۔ یہ ایک غیر سائن نما خط ہے۔

 $H_{c,rms}$ قالب میں $B=B_0\sin\omega t$ کی صورت میں B اور i_{arphi} غیر سائن نما ہوں گے جن کی موثر قیمتوں $B=B_0\sin\omega t$ اور $i_{arphi,rms}$ کا تعلق درج ذیل ہو گا۔

$$(2.57) Ni_{\varphi,rms} = l_c H_{c,rms}$$

مساوات 2.52 اور مساوات 2.57 سے درج ذیل ماتا ہے۔

$$(2.58) E_{rms}i_{\varphi,rms} = \sqrt{2}\pi f B_0 H_{c,rms} A_c l_c$$

باب 2. مقت طبيسي ادوار

یبان $A_c l_c$ قالب کا حجم ہے۔ لہذا یہ مساوات ہمیں $A_c l_c$ حجم کی قالب کو B_0 کثافت مقاطیسی بہاو تک بیجان کرنے میں مہاو تک ہیجان کرنے کے لئے درکار $E_{rms}i_{\varphi,rms}$ دیتی ہے۔ ایک مقاطیسی قالب جس کا حجم $A_c l_c$ اور میکانی کثافت $E_{rms}i_{\varphi,rms}$ ہو کی کمیت $m_c = \rho_c A_c l_c$ ہو گی۔ یوں ایک کلو گرام قالب کے لئے مساوات 2.58 درج ذیل کھی جا سکتی ہے۔

$$(2.59) P_a = \frac{E_{rms}i_{\varphi,rms}}{m_c} = \frac{\sqrt{2}\pi f}{\rho_c} B_0 H_{c,rms}$$

 $B_{c,rms}$ ویکھا جائے تو کسی ایک تعدد P_a پر P_a کی قیت صرف قالب اور اس میں B_0 یعنی چونی تعدد P_a پر P_a پر منحصر ہے۔ پہلی وجہ ہے کہ قالب بنانے والے اکائی کمیت کے قالب میں مختلف چونی B_0 پیدا کرنے کیلئے ورکار B_0 کی ترجیم مہیا کرتے ہیں۔ قالب کی B_0 میٹر موٹی پتری کے لئے ایسا ترجیم شکل B_0 میں دکھایا گیا ہے۔

باب3

ٹرانسفار مر

ٹرانسفار مر وہ آلہ ہے جو بدلتی برقی دباو تبدیل کرتا ہے۔ یہ دو یا دو سے زیادہ کچھوں پر مشتمل ہوتا ہے جو مقناطیسی قالب اپر لیلئے ہوتے ہیں۔ یہ کچھے عموماً آپس میں جُڑے ہوئے نہیں ہوتے۔ شکل 3.1-الف میں ٹرانسفار مرکی علامت د کھائی گئی ہے۔ دو کچھوں کے در میان متوازی کلیریں مقناطیسی قالب کو ظاہر کرتی ہیں۔

دستیاب برقی د باو² پر ٹرانسفار مر کے ایک کچھے کو برقی طاقت فراہم کی جاتی ہے اور باقی کچھوں سے مختلف برقی د باو پر یہی برقی طاقت حاصل کی جاتی ہے۔ جس کچھے پر برقی د باو لا گو کیا جائے اسے ابتدائی کچھا³ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو ابتدائی جانب⁴ کہتے ہیں۔اس طرح جس کچھے (کچھوں) سے برقی طاقت حاصل کی جاتی ہے اسے (انہیں) ثانوں کچھا³ (کچھے) کہتے ہیں اور اس جانب کو ٹانوں جانب⁶ کہتے ہیں۔ یہ شکل کے حصہ با میں دکھایا گیا ہے۔ٹرانسفار مرکی ابتدائی جانب کو ہائیں ہاتھ کی جانب اور ثانوی جانب کو دائیں ہاتھ کی جانب اور ثانوی جانب کو دائیں ہاتھ کی جانب بنایا جاتا ہے۔

بڑے ٹرانسفار مر عموماً دو ہی کچھوں پر مشتمل ہوتے ہیں۔اس کتاب میں ہم دو ہی کچھوں کے مقناطیسی قالب پر لیٹے قوی ٹرانسفار مر پر تبھرہ کریں گے۔

magnetic core¹

² بدلتی برتی د باوکی علامت میں مثبت اور منفی نشان وقت صفر پر برتی د باوکی مثبت اور منفی سرے ظاہر کرتے ہیں۔

primary coil³

primary side⁴

secondary coil⁵

secondary side⁶

56 باب. 3. ٹرانسفار مسم

شكل 3.1: ٹرانسفار مركى علامت۔

ٹرانسفار مر کے کم برقی دباو کے لچھے کو کم برقی دباو کا لچھا⁷ کہتے ہیں اور ٹرانسفار مر کی اس جانب کو کم برقی دباو والی جانب کو جانب کو جانب کو جانب کو جانب کو جانب کو زیادہ برقی دباو والی جانب کو زیادہ برقی دباو والی جانب کہتے ہیں اور ٹرانسفار مر کی اس جانب کو زیادہ برقی دباو والی جانب کہتے ہیں۔

یوں اگر ٹرانسفار مرکے کم برقی دباو کی جانب برقی دباو لا گو کیا جائے اور زیادہ برقی دباو کی جانب سے برقی دباو حاصل کیا جائے تو ٹرانسفار مرکی کم برقی دباو والی جانب کو ابتدائی جانب کہیں گے اور اس کی زیادہ برقی دباو والی جانب کو ٹانوی جانب کہیں گے۔

3.1 ٹرانسفار مرکی اہمیت

بدلتی روکی برقی طاقت اتنی مقبول اس لئے ہوئی ہے کہ یہ ایک جگہ سے دوسری جگہ با آسانی اور نہایت کم برقی طاقت کی ضیاع کے ساتھ منتقل کی جاسکتی ہے۔ٹرانسفار مرکی تبادلہ برقی دباو⁹ کی خصوصیت ایبا کرنے میں کلیدی کردہر ادا کرتی ہے۔ یہ ایک مثال سے بہتر سمجھا جا سکتا ہے۔

مثال 3.1: شکل 3.2 سے رجوع کریں۔ برقی دباو اور برقی روکی حاصلِ ضرب برقی طاقت ہوتی ہے لینی

low voltage coil⁷ high voltage coil⁸

voltage transformation property⁹

3.1. ٹرانسفار مسر کی اہمیت

شكل 3.2: برقى طاقت كى منتقلي ـ

$$p = v_1 i_1 = v_2 i_2$$

اب تصور کریں کہ تربیلا ڈیم 10,000,000,000,000 واٹ لیٹن دس گیگا واٹ ¹⁰ برقی طاقت پیدا کر رہا ہے اور اس طاقت کو لاہور ¹¹ شہر منتقل کرنا ہے جہال گھر ملیو صارفین کو بیہ 220 وولٹ پر مہیا کرنی ہے۔اگر ہم اس طاقت کو 220 وولٹ پر ہی منتقل کرنا چاہیں تو برتی رو

$$i = \frac{p}{v} = \frac{10\,000\,000\,000}{220} = 45\,454\,545\,\text{A}$$

ہو گی۔ برقی تار میں کثافتِ برقی رو J_{au} تقریباً 5 ایمپیئر فی مربع ملی میٹر $\frac{A}{mm^2}$ کمکن ہوتی ہے۔ یہ ایک مخفوظ کثافتِ برقی رو ہے۔ اگر برقی تار میں اس سے زیادہ برقی رو گزاری جائے تو اس کی مزاحمت میں برقی طاقت کے ضیاع سے یہ گرم ہو کر پگھل سکتی ہے۔ اس طرح صفحہ 12 پر مساوات 1.23 سے برقی تار کا رقبہ عمودی تراش

$$A = \frac{i}{J_{av}} = \frac{45454545}{5} = 9\,090\,909\,\text{mm}^2$$

ہو گا۔ گول تار تصور کریں تو اس کا رداس

$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{9090909}{\pi}} = 1701 \,\mathrm{mm} = 1.7 \,\mathrm{m}$$

Giga Watt¹⁰ 11 ضلع صوابی میں مجی لاہورا یک تحصیل ہے لیکن اس شہر کواتی طاقت نہیں در کار 58 باب. 3. ٹرانسفار مسر

حاصل ہوتی ہے۔آپ نے دیکھا کہ درکار برقی تار کا رداس 1.7 میٹر ہے۔اتی موٹی برقی تار کہیں نہیں پائی جاتی ہے $ho_v=2700~{
m kg}$ ہے تو ایک میٹر کمبی تار کی کمیت

$$m = 2700 \times \pi \times 1.7^2 \times 1 = 24513 \,\mathrm{kg}$$

یعنی 24 ٹن ہو گی۔المونیم اتنی مہنگی ہے کہ اس صورت میں اتنی برقی طاقت کو لاہور پہنچانا ممکن نہیں 13۔

ڈیم پر ایک ٹرانسفار مر نسب کیا جائے جو برقی دباو کو بڑھا کر 000 500 وولٹ لیعنی 500 کلو وولٹ کر دے تب صرف

$$i = \frac{p}{v} = \frac{10\,000\,000\,000}{500\,000} = 20\,000\,\text{A}$$

ایمپیئر در کار ہوں گے جس کے لئے در کار برقی تار

$$A = \frac{i}{J_{au}} = \frac{20\,000}{5} = 4000\,\text{mm}^2$$
$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{4000}{\pi}} = 35.7\,\text{mm}$$

صرف 35 ملی میٹر رداس کی ہو گی۔

اس مثال میں اگر تربیلا ڈیم میں نسب جزیٹر 11000 وولٹ برقی دباد پیدا کر رہا ہو تو تربیلا ڈیم پر نسب ٹرانسفار مر برقی دباو کو 11000 وولٹ سے بڑھا کر 500 کلو وولٹ کرے گا جبکہ لاہور شہر میں نسب ٹرانسفار مر اس برقی دباو کو 500 کلو وولٹ سے واپس 11000 وولٹ کر دے گا۔

اسی مثال کو مزید آگے لے جاتے ہیں۔ شہر میں 220 وولٹ کی بجائے 11000 وولٹ صارف تک پہنچائے جائیں گے اور۔وہیں نزدیک ایک اور ٹرانسفار مر 11000 وولٹ کو مزید گھٹا کر صارف کو 220 وولٹ فراہم کرے گی۔

شکل 3.2 میں ڈیم سے شہر تک کا نظام دکھایا گیا ہے جہاں ڈیم پر نسب ٹرانسفار مر کو برقجے دباو بڑھایا ٹرانسفار مر¹⁴ اور لاہور میں نسب ٹرانسفار مر کو برقجے دباو گھٹایا ٹرانسفار مر¹⁵ کہا گیا ہے۔

برتی طاقت عموماً 11 کلو وولٹ اور 25 کلو وولٹ کے مابین پیدا کی جاتی ہے۔اس کی منتقلی 110 کلو وولٹ اور 1000 کلو وولٹ کے مابین کی جاتی ہے جبکہ اس کا استعال 1000 وولٹ سے کم پر کیا جاتا ہے۔

¹² آپ مانیں بانہ مانیں، آپ نے بھی اتنی موٹی برقی تاریجھی نہیں ویکھی

ا ہے ہیں ہے۔ 13 آج کل لاہور میں لوڈشید نگ اس وجہ سے نہیں

step up transformer¹⁴

step down transformer¹⁵

3.2. ٹرانسفار مسرکے اتب م

3.2 ٹرانسفار مرکے اقسام

گھروں اور کارخانوں کو برقی طاقت فراہم کرنے والے ٹرانسفار مر مقناطیسی قالب پر لیٹے جاتے ہیں۔ یہ عموماً تاہین مرحلہ 16 ہوتے ہیں۔ اور انہیں لوہے کے قالب والے تاہین مرحلہ قوبی ٹرانسفار م¹⁷ کہتے ہیں۔

نہایت چھوٹے ٹرانسفار مر عموماً لوہے کے قالب اور ایک مرحلہ 18 ہوتے ہیں۔ یہ گھریلو استعال کے برقی مشین، مثلاً موبائل چارجر، میں گلے ہوتے ہیں اور 220 وولٹ سے برقی دباو مزید گھٹاتے ہیں۔

کچھ ٹرانسفار مر اس طرح بنائے جاتے ہیں کہ ان کی ثانوی جانب برقی دباو ان کی ابتدائی جانب برقی دباو کی خاص نبیت سے ہو۔ یہ نسبت سے ہو۔ یہ نسبت حاصل کرنے پر خاص توجہ دی جاتی ہے۔ انہیں دباو کے ٹرانسفار مر اس طرح بنائے جاتے ہیں کہ ان کی ثانوی جانب برقی رو، ابتدائی جانب برقی رو کی خاص نسبت سے ہو۔ یہ نسبت حاصل کرنے پر خاص توجہ دی جاتی ہے۔ ان کو رو کے ٹرانسفار مر برقی دباو اور برقی رو قسم کے ٹرانسفار مر برقی دباو اور برقی رو ناپنے کے لئے استعال ہوتے ہیں۔ ویسے تو ہر ٹرانسفار مرکسی نسبت سے ہی برقی دباویا برقی رو کم یا زیادہ کرتا ہے لیکن جیسا پہلے ذکر ہوا ان دو قسم کے ٹرانسفار مروں میں کم اور زیادہ کرنے کی نسبت پر خاص توجہ رکھی جاتی ہوتی ہے۔ ان دو اقسام کے ٹرانسفار مروں کی برقی سکت 21 نہایت کم 22 ہوتی ہے۔

ٹرانسفار مر کے لچھوں کے مابین مشتر کہ مقناطیسی بہاو خلاء کے ذریعہ بھی ممکن ہے۔انہیں ظلائھ قالب ٹرانسفار مروں کہتے ہیں۔ ایسے ٹرانسفار مر ذرائع ابلاغ²⁴ کے ادوار، یعنی ریڈیو، ٹی وی وغیرہ میں بائے جاتے ہیں۔ان ٹرانسفار مروں کی علامت شکل الف کی طرح ہوتی ہے گر اس میں مقناطیسی قالب ظاہر کرنے والی متوازی کیبریں نہیں ہوتیں۔

three $phase^{16}$

iron core, three phase power transformer 17

single phase¹⁸

potential transformer¹⁹

current transformer²⁰

 $^{{\}rm electrical\ rating^{21}}$

²² مية عموماً تقريباً بچيس وولٺ -ايمپيئر سکت رکھتے ہيں۔

air core transformer²³

communication transformer²⁴

60 باب 3. ٹرانسفار مسسر

شکل 3. 3: بير وني برقى د باواور اندر وني امالي برقى د باويين فرق۔

3.3 المالى برقى دباو

اس جصے کا بنیادی مقصد بیرونی برتی دباو v اور اندرونی امالی برتی دباو e میں فرق واضح کرنا اور اس سے تعلق رکھنے والی تکنیکی اصطلاح کا تعارف کرانا ہے۔

شکل 3.3 میں بے بوجھ 25 ٹرانسفار مر دکھایا گیا ہے یعنی اس کے ثانوی کچھے کو کھلے دور رکھا گیا ہے۔ابتدائی کچھ پر برقی دو سے پیدا پر برقی دباو لا گو کرنے سے ابتدائی کچھے میں بیجان انگیز برقی روسے پیدا مقاطیسی دباو لا گو کرنے سے ابتدائی کچھے میں امالی برقی دباو مقاطیسی دباو ابتدائی کچھے میں امالی برقی دباو و پیدا کرتی ہے جہاں e_1

(3.1)
$$e_1 = -\frac{\mathrm{d}\lambda}{\mathrm{d}t} = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

اس مساوات میں

- 🛽 ابتدائی کیچھے کی مقناطیسی بہاو کے ساتھ ارتباط بہاو ہے
- مقناطیسی قالب میں مقناطیسی بہاو جو دونوں کیھوں میں سے گزرتی ہے φ
 - ابتدائی کچھے کے چکر N_1 •

 $\begin{array}{c} \text{unloaded}^{25} \\ \text{excitation current}^{26} \end{array}$

3.3. امالى برقى دباو

اگر اس ابتدائی کچھے کی برقی تارکی مزاحمت
$$R_1$$
 ہو تب کرخوف کے قانون برائے برقی دباو سے $v_1=i_{\varphi}R_1+e_1$

شکل میں اس مزاحمت کو ٹرانسفار مر کے باہر دکھایا گیا ہے۔اس کچھے کی رِستا متعاملہ بھی ہوتی ہے لیکن اسے یہاں نظرانداز کیا گیا ہے۔عام تر طاقت کے ٹرانسفار مر اور موٹروں میں $i_{\varphi}R_1$ کی قیمت $i_{\varphi}R_1$ سے بہت کم ہوتی ہے لہٰذا اسے نظرانداز کیا جا سکتا ہے۔ ایبا کرنے سے ہم لکھ سکتے ہیں

$$(3.3) v_1 = e_1 = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

مساوات 3.2 سے یہ ثابت ہوتا ہے کہ بیرونی لا گو برقی دباو v_1 اور اندرونی امالی برقی دباو e_1 دو علیحدہ برقی دباو ہیں۔ یہ بات سمجھ لینا بہت ضروری ہے۔ مساوات 3.3 کے تحت ان دو برقی دباو کی غیر سمتیں عموماً برابر ہوتی ہیں۔ e_1 میں محتاب میں عموماً مساوات 3.3 کی طرح مساواتوں میں دائیں جانب منفی کی علامت نہیں کھی گئی ۔ عموماً برقی دباو کی قیت درکار ہوتی ہے نا کہ اس کی علامت۔

لچھا میجان ²⁸ کرنے سے مراد اس پر بیرونی برقی دباو لا گو کرنا جبکہ کچھے پر لا گو بیرونی برقی دباو کو ہیجان انگیزبرقی دباو²⁹ کہتے ہیں۔ کچھے کو ہیجان شدہ کچھا³⁰ جبکہ اس میں رواں برقی رو کو ہیجان انگیزبرقی رو³¹ کہتے ہیں۔

برقی دباو عموماً کچھے سے گزرتی مقناطیسی بہاو کی تبدیلی سے حاصل کی جاتی ہے۔اگر ایبا کرتے کچھا ساکن رہے، حبیبا کہ ٹرانسفار مر میں ہوتا ہے، تب حاصل برقی دباو کو امالی برقی دباو³² کہتے ہیں۔اگر برقی دباو کا حصول مقناطیسی میدان میں کچھے کی حرکت سے ممکن بنایا جائے تب اسے محرکھ برقی دباو³³ کہتے ہیں۔یاد رہے ان برقی دباو میں کسی قشم کا فرق نہیں ہوتا۔انہیں مختلف نام صرف پہچان کی خاطر دئے جاتے ہیں۔

27جس سے طلباء کو یہ غلط فنہی لاحق ہو جاتی ہے کہ یہ ایک ہی بر قی دیاوے دونام ہیں۔

excitation²⁸

excitation voltage 29

excited coil³⁰

excitation current³¹

induced voltage³²

electromotive force, emf^{33}

با___ 3. ٹرانسفار مس 62

شکل 3.4: قالبی پتری کے اشکال اوران کو تہہ در تہہ رکھنے کاطریقیہ۔

3.4 ميجان انگيزير قيرواور قالبي ضاع

جہاں مقناطیسی قالب میں بدلتی مقناطیسی بہاو ثانوی کچھوں میں فائدہ مند برقی دباو پیدا کرتی ہے وہاں پر مقناطیسی قالب میں نقصان دہ برقی دیاو کو بھی جنم دیتی ہے جس سے مقناطیسی قالب میں بھنو*ر نیا برقیر* رو³⁴ بیدا ہوتی ہے۔ اس بھنور نما برقی رو کی وجہ سے مقناطیسی قالب میں برقی طاقت کا ضاع ہوتا ہے جسے بھنورنما برقیر رو کا صناع ³⁵ یا قالپمہر ضارع³⁶ کہتے ہیں۔ اس برقی طاقت کے ضاع کو کم سے کم کرنے کیلئے مقناطیسی قالب کو باریک لوہے کی پ**یزال**یر³⁷ تہہ در تہہ رکھ کر بنایا جاتا ہے۔ان پتریوں پر غیر موصل روغن 38 کی تہہ لگائی جاتی ہے تا کہ بھنور نما برقی رو کو روکا جا سکے۔آپ دیکھیں گے کہ برقی مشین کا قالب عموماً اسی طرح بنایا جاتا ہے۔شکل 2.15 اور حدول 2.1 میں 0.3048 ملی میٹر موٹی M5 قالبی پتری کی B-H مواد دی گئی ہے۔

قالبی پتریاں عموماً دو اشکال کی ہوتی ہیں۔ یہ شکل 3.4-الف میں دکھایا گیا ہے۔ان کی شکل کی وجہ سے یہ ایکے۔ شکل اور تبین ³⁹ شکل کی پتریاں کہلاتے ہیں۔ شکل 3.4-ب میں ایک اور تبین کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریقوں سے انہیں تہہ در تہہ رکھا جاتا ہے۔للمذا اگر پہلی تہہ میں ایک دائیں جانب اور تنین بائیں جانب رکھا جائے تو اس کے اوپر دوسم کی تہہ میں ایک کو ہائیں جانب اور تین کو دائیں جانب رکھا جائے گا۔ تیسر کی تہہ میں پھر ایک کو دائیں اور تین کو بائیں جانب رکھا جائے گا۔اس طرح انہیں جوڑ کر شکل کے حصہ و میں دکھایا گیا قالب حاصل کیا جاتا

eddy currents³⁴

eddy current loss³⁵ $\rm core~loss^{36}$

 $laminations^{37}$

 $^{{\}rm enamel}^{38}$

 $E.I^{39}$

میجان انگیز برقی رو بے بوجھ اور بوجھ بردار ٹرانسفار مر میں میسال ہوتا ہے۔ جیسا کہ پہلے بھی ذکر کیا گیا ہے، قوی ٹرانسفار مر اور موٹروں میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں جبکہ بیجان انگیز برقی رو ان میں غیر سائن نما ہوتی ہے للذا اگر

(3.4)
$$\varphi = \phi_0 \sin \omega t = \phi_0 \cos (\omega t - 90^\circ)$$
$$\hat{\varphi} = \phi_0 / 90^\circ$$

ہو تو

(3.5)
$$e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega N_1 \phi_0 \cos \omega t$$

$$\hat{E_1} = \omega N_1 \phi_0 / 0$$

ہو 40 گی۔ یہاں ϕ_0 مقناطیسی بہاو کے حیطہ کو ظاہر کرتی ہے،اور ω زاویائی تعداد ارتعاش کو یعنی $2\pi f$ جہاں f تعداد ارتعاش ہے جسے ہرٹز f میں ناپا جاتا ہے۔ \hat{E}_1 اور $\hat{\varphi}$ کے مابین °90 کا زاویہ ہے۔یہ شکل 3.5 میں دکھایا گیا ہے۔ ارتعاش ہے جسے ہرٹز f بین دکھایا گیا ہے۔ f اور f کی موثر قیت f بین دکھایا گیا ہے۔ اور f بین دباو کی موثر قیت f

(3.6)
$$E_{rms} = \frac{\omega N_1 \phi_0}{\sqrt{2}} = 4.44 f N_1 \phi_0$$

ہے۔اس کو ہم یوں بھی لکھ سکتے ہیں

(3.7)
$$\phi_0 = \frac{E_{rms}}{4.44 f N_1 \phi_0}$$

یہاں رکھ کر دوبارہ نظر ثانی کرتے ہیں۔ اگر ایک کچھے پر E_{rms} موثر برقی دباو لاگو کی جائے تو یہ کچھا اتنی بیجان انگیز برقی رو i_{φ} گزرنے دیتی ہے جس سے نمودار ہونے والا مقناطیسی بہاو مساوات 3.7 میں دیئے گئے مقناطیسی بہاو ϕ_0 کے برابر ہو۔ یہ بات نہ صرف ٹرانسفار مر بلکہ کسی بھی مقناطیسی دور کے لئے درست اور لازم ہے۔ ϕ_0

نیر سائن نما بیجان انگیز برقی رو
$$i_{\varphi}$$
 کو فوریئر شلسل ⁴¹ سے یوں لکھ سکتے ہیں۔
$$i_{\varphi} = \sum_{n} (a_{n} \cos n\omega t + b_{n} \sin \omega t)$$
(3.8)

گان مساوات میں اور اس کے بعد پوری کتاب میں امالی برتی دیا ہے ساتھ منفی کی علامت نہیں لگائی جائے گ 40 Fourier series 41

64 باب 3. ٹرانسفار مسسر

شکل 3.5: مختلف مر حلی سمتیوں کے زاویے۔

ال میں $a_1 \cos \omega t + b_1 \sin \omega t$) کو بنیادی جرود a_2 ہیں اور باقی حصہ کو موسیقائی جرود a_3 ہیں۔ بنیادی جزو میں آنے والے امالی برتی دباو $a_1 \cos \omega t$ مساوات $a_2 \cos \omega t$ میں دی گئی ہے کے میں $a_3 \cos \omega t$ میں بہاو سے وجود میں آنے والے امالی برتی دباو $a_1 \cos \omega t$ نوبے $a_1 \cos \omega t$ نوبی $a_2 \cos \omega t$ ہم قدم ہے۔ یعنی یہ دونوں وقت کے ساتھ کیساں بڑھتے اور گھٹے ہیں جبکہ اس میں $a_1 \sin \omega t$ نوبے درجہ زاویہ اگلے اس کے پیچھے رہتا ہے۔ قالب میں مختلف وجوہات سے برقی طاقت کی ضائع کو منافع کو عام منفی کی جائے تو بقایا کو مقناطیس بنانے جزو کو جروقالبی ضیاع $a_1 \cos \omega t$ میں بنانے والا برتی رویا مقناطیسی برقی روگ کہتے ہیں۔ اس کی تیسری موسیقائی جزو سب سے زیادہ اہم ہے۔ قوی ٹرانسفار مروں میں یہ تیسری موسیقائی جزو سب سے زیادہ اہم ہے۔ قوی ٹرانسفار مروں میں یہ تیسری موسیقائی جرو سب سے زیادہ اہم ہے۔ قوی ٹرانسفار مروں میں یہ تیسری موسیقائی جرو موسیقائی جرو عموماً کل جو عموماً کل جیوان انگیز برتی روکے 40 فی صد ہوتی ہے۔

سوائے وہاں، جہاں بیجان انگیز برقی رو کے اثرات پر غور کیا جا رہا ہو، ہم بیجان انگیز برقی رو کے غیر سائن نما ہونے کو نظرانداز کرتے ہیں۔ قوی ٹرانسفار مرکی بیجان انگیز برقی رو اس کی کل پرتی رو 64 کے صرف 5 فی صد کے قریب ہوتی ہے۔ للذا اس کا اثر بہت کم ہوتا ہے۔ للذا ہم بیجان انگیز برقی رو کو سائن نما تصور کر کے اس کے اثرات پر غور کرتے ہیں۔ایسا کرنے سے مسلہ پر غور کرنا آسان ہو جاتا ہے۔ اس فرضی سائن نما بیجان انگیز برقی رو 47 ہی کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ θ_c یوں کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ θ_c یوں رکھا جاتا ہے کہ اس سے حاصل برقی ضیاع اصل برتی ضیاع کے برابر ہو۔ شکل 0.5 کی مدد سے یہ بات سمجھنی زیادہ آسان ہے۔ شکل میں اگر دیکھا جائے تو

 $(3.9) p_c = E_{rms} I_{\varphi,rms} \cos \theta_c$

fundamental component⁴²

harmonic components⁴³

core loss component⁴⁴

 $^{{\}rm magnetizing}\ {\rm current}^{45}$

⁴⁶کل برتی روسے مرادوہ برتی روہے جو کل برتی بوچھ لادنے سے حاصل ہو 47روز اور قب میں مطابقہ میں مثب کا ہماری کا ہماری

الکھتے ہیں \hat{I}_{\odot} کی مدد سے \hat{I}_{\odot} کواب مرحلٰی سمتیہ کی مدد سے \hat{I}_{\odot} کلھتے ہیں \hat{I}_{\odot}

 \hat{I}_{arphi} جہاں p_c قالبی ضیاع ہے۔ لہذا اگر \hat{I}_{arphi} اور \hat{E}_1 ما بین $heta_c$ کا زاویہ ہو تو اس سے قالبی ضیاع ہے۔ لہذا اگر وہتا ہے۔ اس اور دور ہے گئے ما میں زاویہ سے \hat{E}_1 کے پیچیے رہتا ہے۔

3.5 تبادله برقی د باواور تبادله برقی روکے خصوصیات

ہم شکل 3.6 کی مدد سے ٹرانسفار مرکا مطالعہ کرتے ہیں۔ ہم فرض کرتے ہیں کہ ابتدائی جانب کچھے کے N_1 اور ثانوی جانب کچھے کے N_2 چانوں جانب کھی میں رہتا ہے اور دونوں کچھوں سے گزرتا ہے۔ قالب میں برقی توانائی ضائع نہیں ہوتی اور اس کی مقناطیسی مستقل اتنی زیادہ ہے کہ بیجان انگیز برقی رو قابل نظر انداز ہے۔ برقی رو i_1 اور i_2 کی سمتیں یوں رکھی گئی ہیں کہ ان سے وجود میں آنے والے مقناطیسی بہاو ایک دوسرے کی اُلٹ سمتوں میں ہیں۔ اصل ٹرانسفار مر ان باتوں پر تقریباً پورے اترتے ہیں۔ ایسے ٹرانسفار مر کو کامل ٹرانسفار مر 48 کہتے ہیں۔

جب اس کامل ٹرانسفار مرکے ابتدائی کچھے پر بدلتی برقی دباو v_1 لا گو کیا جائے تو اس کے قالب میں بدلتا مقناطیسی بہاو φ_m وجود میں آئے گا جو ابتدائی کچھے میں لا گو برقی دباو v_1 کے برابر امالی برقی دباو e_1 کو جنم دے گا۔ لہذا

$$(3.10) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

یہ مقناطیسی بہاو دوسرے کچھے سے بھی گزرے گا اور اس میں e_2 امالی برقی دباو کو جنم دے گا جو ثانوی جانب کے سرول پر برقی دباو v_2 کی صورت میں حاصل ہو گا۔ یعنی

$$(3.11) v_2 = e_2 = N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

ideal transformer⁴⁸

66 باب. 3. ٹرانسفار مسر

ان دونول کی نسبت سے

$$\frac{v_1}{v_2} = \frac{N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

للذا ایک کامل ٹرانسفار مر دونوں لچھوں کے چکروں کی نسبت سے تبادلہ برقی دباو⁴⁹ کرتا ہے۔

چونکہ یہ ایک کامل ٹرانسفار مر ہے للذا اسے جتنی برقی طاقت ابتدائی جانب دی جائے اتنی ہی برقی طاقت اس سے ثانوی جانب حاصل ہو گی، یعنی

$$(3.13) p = v_1 i_1 = v_2 i_2$$

یا

$$\frac{v_1}{v_2} = \frac{i_2}{i_1}$$

مساوات 3.12 کی مدد سے

$$\frac{v_1}{v_2} = \frac{i_2}{i_1} = \frac{N_1}{N_2}$$

یہ ایک انتہائی اہم نتیجہ ہے جو ٹرانسفار مر کی تبادلہ برقی دباو اور تبادلہ برقی رو⁵⁰ کی خصوصیات بیان کرتا ہے۔اسے عموماً دو حصوں میں یوں لکھا جاتا ہے۔

(3.16)
$$\frac{v_1}{v_2} = \frac{N_1}{N_2}$$

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

اس مساوات کی پہلی جزو کہتی ہے کہ ٹرانسفار مر کی دونوں جانب برتی دباو ان کے چکروں کی راست متناسب ہو گا جبکہ مساوات کی دوسری جزو کہتی ہے کہ ٹرانسفار مر کے دونوں جانب برتی رو ان کے چکروں کے بالعکس متناسب ہو گا۔

مثال 3.2: شکل 3.6 میں اگر

$$\hat{V_1} = 220\underline{/0}$$
 $N_1: N_2 = 220: 22$
 $Z = R = 10 \Omega$

voltage transformation⁴⁹ current transformation⁵⁰

ہوں تو ٹرانسفار مرکی دونوں جانب برقی دباد اور برقی رو معلوم کریں۔

حل: ابتدائی جانب برقی دباو دیا گیا ہے یعنی 220 وولٹ جبکہ ثانوی جانب برقی دباو مساوات 3.16 کی پہلی جزو کی مدد سے حاصل کیا جاتا ہے یعنی

$$\hat{V}_2 = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 220 / 0 = 22 / 0$$

ٹانوی جانب 22 وولٹ ہیں جو ابتدائی جانب برقی دباو کے ہم قدم ہے۔ ٹانوی جانب یہ برقی دباو 10 اوہم کی مزاحمت میں برقی رو پیدا کرے گا جے اوہم کے قانون سے حاصل کیا جاتا ہے یعنی

$$\hat{I}_2 = \frac{22/0}{10} = 2.2/0$$

ثانوی جانب 2.2 ایمپیئر برقی رو ہے۔ ابتدائی جانب کی برقی رو مساوات 3.16 کی دوسری جزو کی مدد سے حاصل کی جاتی ہے لین

$$\hat{I}_1 = \frac{N_2}{N_1} \hat{I}_2 = \frac{22}{220} \times 2.2 / 0 = 0.22 / 0$$

اس مثال کے نتائج ایک جگہ لکھ کر ان پر غور کرتے ہیں۔

$$\hat{V}_1 = 220/0, \quad \hat{V}_2 = 22/0, \quad \hat{I}_1 = 0.22/0, \quad \hat{I}_2 = 2.2/0$$

ہم دیکھتے ہیں ابتدائی جانب برقی دباو ثانوی جانب کی برقی دباو کے دس گنا ہے جبکہ برقی رو میں قصہ اُلٹ ہے۔ ثانوی جانب کی برقی رو ابتدائی جانب کی برقی رو ابتدائی جانب کی برقی رو کے دس گنا ہے۔ طاقت دونوں جانب برابر ہے۔ یہ نہایت اہم ہے کہ آپ اس بات کو اچھی طرح سمجھ لیں کہ جس جانب برقی دباو زیادہ ہوتا ہے اس جانب برقی رو کم ہوتی ہے۔ للذا زیادہ برقی دباو کی جانب کچھے کے چکر زیادہ ہوں گے اور اس کچھے میں نسبتاً باریک برقی تار استعال ہو گی جبکہ کم برقی دباو کا لچھا کم چکر کا ہو گا اور اس میں نسبتاً موٹی برقی تار استعال ہو گی۔

مثال 3.3: صفحہ 71 پر دکھائے گئے شکل 3.7-الف سے رجوع کریں۔ اس شکل میں رکاوٹ Z_2 کو ہرلتی برقی دباو \hat{V}_1 کے ساتھ ایک ٹرانسفار مرکے ذریعہ جوڑا گیا ہے۔ اگر

$$\hat{V}_1 = 110/0$$
, $Z_2 = R + jX = 3 + j2$, $N_1 : N_2 = 220 : 22$

68 باب 3. ٹرانسفار مسر

ہوں تو رکاوٹ میں برقی رو اور طاقت کا ضیاع معلوم کریں۔

حل: ٹرانسفار مرکی تبادلہ برقی دباوکی خصوصیت سے اس کے ابتدائی جانب 110 وولٹ برقی دباوٹرانسفار مرکی خانوی جانب تبدیل ہو کر \hat{V}_{s} ہو جائیں گے جہاں

$$\hat{V}_s = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 110 / 0 = 11 / 0$$

ہے للذا

$$\hat{I}_2 = \frac{\hat{V}_s}{Z} = \frac{11/0}{3+j2} = 3.05/33.69^{\circ}$$

 p_z اور برقی طاقت کا ضیاع

$$p_z = I_2^2 R = 3.05^2 \times 3 = 27.9 \,\mathrm{W}$$

 \neg

3.6 ثانوي جانب بوجھ كاابتدائي جانب اثر

یہاں صنحہ 65 پر دکھائے گئے شکل 3.6 سے رجوع کریں۔ہم حصہ 3.3 میں دیکھ بچے ہیں کہ اگر ایک بے بو بھے ٹرانسفار مرکی ابتدائی کچھے پر بدلتی برقی دباو v_1 لاگو کی جائے تو اس کچھے میں بیجان انگیز برقی رو v_1 گزرے گی۔اس برقی روکی مقناطیسی دباو v_1 قالب میں مقناطیسی بہاو v_2 کو جنم دے گی ۔اگر کچھے کی مزاحمت صفر ہو تو v_3 ابتدائی کچھے میں v_3 امالی برقی دباو پیدا کرے گی جہاں

$$(3.17) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

ہو گی۔

اب ہم ثانوی جانب برقی ہوجھ لادتے ہیں۔ ایبا کرنے سے ہوجھ بردار ٹرانسفار مر 52 کے ثانوی جانب برقی رو i_2 روال ہو گی جس کی وجہ سے i_2 مقناطیسی دباو وجود میں آئے گی۔ اس مقناطیسی دباو کی وجہ سے قالب میں i_2

^{2&}lt;sup>31</sup> ویہاں φ_m کہا گیا ہے۔ aded transformer ⁵²

مقناطیسی بہاو بوچہ پیدا ہو گا۔ اگر اس مقناطیسی بہاو کا کچھ نہ کیا جائے تو قالب میں پہلے سے موجود مقناطیسی بہاو تبدیل ہو کر بوچہ $\varphi_m - \varphi_m = \varphi_0$ ہو جائے گا اور یوں ابتدائی کچھے میں امالی دباو تبدیل ہو کر بی ہو جائے گا۔ للذا ابتدائی جانب پر اب امالی دباو اور اس پر لا گو برتی دباو برابر نہیں ہو گئے جو کہ مساوات 3.17 کی موجودگی میں ناممکن ہے۔ للذا اس مقناطیسی بہاو بوچہ کے اثر کو ختم کرنے کیلئے ابتدائی کچھے میں برقی رو i_1 نمودار ہو گی جو اس مقناطیسی دباو یعنی جائز کو ختم کر دے گی یعنی

$$(3.18) N_1 i_1 = N_2 i_2$$

یہ وہ ذریعہ ہے جس سے ابتدائی جانب معلوم ہوتا ہے کہ ثانوی جانب پر بوچھ لدا ہے۔ شکل میں دونوں کچھوں میں برقی رو کی سمتیں یوں ہیں کہ ان کے مقناطیسی بہاو آپس میں اُلٹ سمت میں ہیں لہذا قالب میں اب پھر مقناطیسی بہاو φ_m کے برابر ہے جیسا کہ ہونا چاہئے تھا۔ اس مساوات کو بوں لکھ سکتے ہیں

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

یہ وہی مساوات ہے جو کامل ٹرانسفار مر کے لئے ثابت کی گئی تھی۔

3.7 ٹرانسفار مرکی علامت پر نقطوں کا مطلب

شکل 3.6 میں ٹرانسفار مرکے لیجھوں پر نکتے لگائے گئے ہیں۔ یہ نکتے اس بات کو ظاہر کرتے ہیں کہ اگر ایک طرف v_2 پر برقی دباو v_1 پول ہو کہ نکتے والا سرا مثبت اور بغیر نکتے والا سرا منفی ہو تو دوسرے کیجے پر برقی دباو v_1 اس طرح ہو گاکہ اس کیجے کا بھی نکتے والا سرا منبی میٹے والا سرا منفی ہو گا۔

مزید یہ کہ ابتدائی جانب برقی روٹرانسفار مر کے نکتے والے سرے سے ٹرانسفار مرکی اندر جانب ہو گا جبکہ ثانوی جانب برقی رو نقطہ والے سرے سے ٹرانسفار مرسے باہر نکلے گا۔

یوں v_1 اور v_2 وقت کے ساتھ کیساں تبدیل ہوتے ہیں اور ان کے مابین صفر زاویہ ہے۔ للذا یہ دو برقی دباو ہم قدم v_2 بیں۔

 $in-phase^{53}$

70 باب 3. ٹرانسفار مسر

3.8 ركاوك كاتبادله

اس حصہ میں کامل ٹرانسفار مر میں رکاوٹ کے تباولہ پر غور کیا جائے گا۔ شکل 3.7-الف میں ایک ٹرانسفار مر و کھایا گیا ہے جس کی ابتدائی جانب سائن نما برتی دباو $\hat{V}_1 = V_1/\theta$ لا گو کیا گیا ہے۔یہاں مرحلی سمتیہ استعال کئے جائیں گے۔

جیسے اُوپر ذِکر ہوا، برتی دباو \hat{V}_1 اور \hat{V}_2 آپس میں ہم قدم ہیں اور اسی طرح برتی رو \hat{I}_1 اور \hat{I}_2 آپس میں ہم قدم ہیں۔ مساوات 3.12 اور مساوات 3.12 کو مرحلی سمتیہ کی مدد سے یوں لکھ سکتے ہیں

$$\hat{V_1} = \left(\frac{N_1}{N_2}\right)\hat{V_2}$$

$$\hat{I_1} = \left(\frac{N_2}{N_1}\right)\hat{I_2}$$

چونکه رکاوٹ

(3.21)
$$Z_2 = \frac{\hat{V}_2}{\hat{I}_2} = |Z_2| / \theta_z$$

کے برابر ہے للذا

(3.22)
$$\frac{\hat{V_1}}{\hat{I_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{\hat{V_2}}{\hat{I_2}} = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

اب اگر ہم ٹرانسفار مر بمع اس پر لدے رکاوٹ کی جگہ برقی دباو \hat{V}_1 کو رکاوٹ Z_1 پر لا گو کریں جہاں اس رکاوٹ کی قیت

(3.23)
$$Z_1 = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

ہو تو \hat{V}_1 سے حاصل برقی رو یا اس سے حاصل برقی طاقت تبدیل نہیں ہو گی۔ یہ شکل 3.7-ب میں دکھایا گیا ہے جہاں سے واضح ہے کہ

(3.24)
$$\frac{\hat{V_1}}{\hat{I_1}} = Z_1 = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

3.8 ر کاوٹ کاتب دلہ

شكل3.7: ٹرانسفار مركى خاصيت تبادلەر كاوك۔

للذا شکل کے الف اور ب دونوں حصول سے برتی دباو \hat{V}_1 کی برتی رو مساوات 3.22 اور مساوات 3.24 سے یکساں ماصل ہوتی ہے یعنی

(3.25)
$$\hat{I}_{1} = \frac{\hat{V}_{1}}{\left(\frac{N_{1}}{N_{2}}\right)^{2} Z_{2}}$$

اور یوں الف اور با دونوں حصول میں برقی دباہ \hat{V}_1 سے حاصل برقی طاقت برابر ہے لیعنی

(3.26)
$$p = \hat{V}_1 \cdot \hat{I}_1 = \frac{V_1^2 \cos \theta_z}{\left(\frac{N_1}{N_2}\right)^2 |Z_2|}$$

یوں اگرٹرانسفار مرکے ثانوی جانب رکاوٹ Z_2 کا بوجھ ہو تو حساب کرتے وقت ہم یہ اخذ کر سکتے ہیں کہ ٹرانسفار مر بہت رکاوٹ کا یوں بہت کی جگہ صرف Z_1 رکاوٹ گی ہے، جہاں Z_1 مساوات Z_2 کی جگہ صرف Z_1 رکاوٹ کا یوں ٹرانسفار مرکی ایک جانب سے دوسری جانب تبادلہ کیا جاسکتا ہے۔ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہ Z_1 فصوصیت کہتے ہیں۔

مثال 3.4: شکل 3.8-الف میں رکاوٹ Z_B کا برقی بوجھ ایک جزیٹر پر لدا ہے۔بوجھ تک برقی طاقت دو برقی تاروں کے ذریعہ منتقل کیا گیا ہے۔ان تاروں کی مجموعہ رکاوٹ Z_t ہے۔

impedance transformation 54

72 باب.3. ٹرانسفار م

شكل 3.8: برقى طاقت كى منتقلي ـ

3.8. ر کاوٹ کا تب دله

شکل-ب میں جزیٹر کے قریب نسب برقی دباو بڑھانے والا ٹرانسفار مر برقی دباو کو دس گنا بڑھاتا ہے اور برقی بوجھ کے قریب نسب برقی دباو گھٹانے والا ٹرانسفار مر برقی دباو کو دس گنا گھٹاتا ہے۔اس حصہ میں وہی برقی تار استعال کئے گئے ہیں للذا ان کی بھی مجموعہ رکاوٹ Z ہی ہے۔ اگر

$$Z_B = 2 + j4$$
, $Z_t = 0.1 + j0.15$, $\hat{V} = 415/0$

ہوں تو دونوں صورتوں میں

- برقی بوجھ پر برقی دباو معلوم کریں،
- برقی تارول میں برقی طاقت کی ضیاع معلوم کرین۔

حل الف:

$$\hat{I_G} = \hat{I_t} = \hat{I_B} = \frac{\hat{V}}{Z_t + Z_B} = \frac{415/0}{0.1 + j0.15 + 2 + j4}$$
$$= \frac{415/0}{2.1 + j4.15} = 89.23/-63.159^{\circ}$$
$$= 40.3 - j79.6$$

يوں رکاوٹ پر برقی د باو

$$\hat{V}_B = \hat{I}_B Z_B = (40.3 - j79.6) (2 + j4)$$

= 399 + j2 = 399/0.287°

اور برقی تاروں میں برقی طاقت کا ضیاع ہے

$$p_t = I_t^2 R_t = 89.23^2 \times 0.1 = 796 \,\mathrm{W}$$

حل ب: شکل 3.8 اور شکل 9.5 سے رجوع کریں۔شکل 3.8 میں ٹرانسفار مر T_2 کے ثانوی جانب رکاوٹ کا مساوات 3.2 کی مدد سے اس کی ابتدائی جانب تبادلہ سے ماتا ہے

$$Z'_B = Z_1 = \left(\frac{N_3}{N_4}\right)^2 Z_B = \left(\frac{10}{1}\right)^2 (2+j4) = 200 + j400$$

74 باب. 3. ٹرانسفار مسر

یوں شکل 3.9-الف حاصل ہوتا ہے۔اس شکل میں اب برقی تار کی رکاوٹ اور تبادلہ شدہ رکاوٹ سلسلہ وار جُڑے ہیں۔ان کے مجموعہ کو 'Z کہتے ہوئے

 $Z' = Z_t + Z_B' = 0.1 + j0.15 + 200 + j400 = 200.1 + j400.15$

يه شكل 3.9-ب مين وكھايا گيا ہے۔ايك مرتبه دوباره مساوات 3.23 استعال كرتے ہوئے

 $Z'' = \left(\frac{N_1}{N_2}\right)^2 Z' = \left(\frac{1}{10}\right)^2 (200.1 + j400.15) = 2.001 + j4.0015$

شكل 3.9- يمين وكهايا كيا ہے۔اب

$$\hat{I}_G = \frac{\hat{V}}{Z''} = \frac{415\underline{/0}}{2.001 + i4.0015} = 92.76\underline{/-63.432}^{\circ}$$

یہاں سے شکل 3.9-ب کی مدد سے اگر جزیئر کی برقی رو معلوم ہو تو تبادلہ برقی رو سے

$$\hat{I}_t = \left(\frac{N_1}{N_2}\right)\hat{I}_G = \left(\frac{1}{10}\right)92.76/-63.432^\circ = 9.276/-63.432^\circ$$

اس سے برقی تار میں طاقت کا ضیاع

$$p_t = I_t^2 R_t = 9.276^2 \times 0.1 = 8.6 \,\mathrm{W}$$

اسی طرح شکل 3.8 میں اگر \hat{I}_t معلوم ہو تو تبادلہ برقی روسے

$$\hat{I}_B = \left(\frac{N_3}{N_4}\right) \hat{I}_t = \left(\frac{10}{1}\right) 9.276 / -63.432^{\circ}$$
$$= 92.76 / -63.432^{\circ} = 41.5 - j82.9$$

اور رکاوٹ پر برقی دیاو

$$\hat{V}_B = \hat{I}_B Z_B = (41.5 - j82.9)(2 + j4) = 414 + j0.2$$

ہو گی۔

ٹر انسفار مر کے بغیر برقی طاقت کی منتقلی میں برقی تاروں میں طاقت کی ضیاع 796 واٹ ہے جبکہ ٹر انسفار مر کے استعال سے میہ صرف 8.6 واٹ ہے یعنی 92 گنا کم۔ یہی ٹر انسفار مر کی نہایت مقبولیت کی وجہ ہے۔

3.9 ٹرانسفار مرکے وولٹ-ایمبیئر

ٹرانسفار مرکی دونوں جانب برقی دباو ان کچھوں کے چکر پر منحصر ہوتا ہے۔ٹرانسفار مر ایک خاص برقی دباو اور برقی رو کے لئے بنائے جاتے ہیں۔ٹرانسفار مرجس برقی دباو پر بھی کے لئے بنائے جائیں ہیہ اس سے کم برقی دباو پر بھی استعال کئے جاسکتے ہیں۔اسی طرح ٹرانسفار مرجتنی برقی رو استعال کئے جاتے ہیں۔اسی طرح ٹرانسفار مرجتنی برقی رو پر استعال کیا جا سکتا ہے۔ حقیقت میں عموماً ٹرانسفار مرسے حاصل برقی رو اس حدسے کم بی رکھی جاتی ہے۔

ٹرانسفار مرکی ایک جانب کی برقی د ہاو اور برقی رو کا حاصل ضرب اس کی دوسری جانب کی برقی د ہاو اور برقی رو کے حاصل ضرب کے برابر ہوتا ہے لیعنی

$$(3.27) V_1 I_1 = V_2 I_2$$

برقی دباہ اور برقی رو کے حاصلِ ضرب لیعنی V_2I_2 یا V_2I_2 کو ٹرانسفار مرکی وولٹ ضربِ ایمپیئر کہتے ہیں جسے عموماً چھوٹا کر کے صرف وولٹے۔ایمپیئر 55 کہا جاتا ہے 56 یہ ٹرانسفار مرکی برقی سکت کی ناپ ہے جو اس پر لگی شختی پر لکھا جاتا ہے۔اس شختی پر ٹرانسفار مرکے برقی دباہ اور برقی تعداد ارتعاش بھی لکھے جاتے ہیں۔یوں ٹرانسفار مرکے وولٹ۔ایمپیئر

$$(3.28) V_1 I_1 = V_2 I_2$$

ہوں گے۔

ا گرچہ یہاں ذکر ٹرانسفار مر کا ہو رہا ہے دراصل برقی مشین لیعنی موٹر اور جزیٹر کی تختیوں پر بھی ان کے چالو حالت کے برقی دباو، ان کے وولٹ-ایمپیئر اور برقی تعداد ارتعاش کھھے جاتے ہیں۔اس کی وجہ یہ ہے کہ ان سب مشین کی کارکردگی کے بنیادی اصول ایک ہی طرح کے ہیں۔

مثال 3.5: ایک 25000 وولٹ-ایمپیئر اور 220: 11000 وولٹ برقی سکت کے ٹرانسفار مر کے زیادہ برقی دباو کی جانب 11000 وولٹ لا گو ہیں۔

• اس کی ثانوی جانب زیادہ سے زیادہ کتنی برقی بوجھ ڈالی جا سکتی ہے۔

volt-ampere, VA⁵⁵ 56واٹ-ایمپیئر کو عموماً کلووولٹ-ایمپیئر لینی kV Aمیں بیان کیاجاتا ہے 76 باب. 3. ٹرانسفار مسر

• اس زیادہ سے زیادہ برقی بوجھ پر اس کے ابتدائی کچھے میں برقی رو حاصل کریں۔

حل: اس ٹرانسفار مر کی معلومات پیہ ہیں

 $25 \,\mathrm{kV} \,\mathrm{A}, \quad 11000 : 220 \,\mathrm{V}$

اس کی ثانوی جانب برقی دباو تبادلہ برقی دباو کی مساوات سے 220 وولٹ حاصل ہوتا ہے۔یوں اس کی ثانوی جانب یعنی کم برقی دباو کی جانب زیادہ سے زیادہ برقی رو مساوات 3.28 سے حاصل کیا جاتا ہے۔

$$I_2 = \frac{25000}{220} = 113.636 \,\mathrm{A}$$

اسی طرح اس کی ابتدائی جانب زیادہ سے زیادہ برقی رواسی مساوات سے یوں حاصل ہوتی ہے

$$I_1 = \frac{25000}{11000} = 2.27 \,\mathrm{A}$$

ٹرانسفار مرکی دونوں جانب کچھوں میں استعال برقی تارکی موٹائی یوں رکھی جاتی ہے کہ ان میں کثافتِ برقی رو ⁵⁷ کیساں ہو۔ کچھوں کی مزاحمت میں برقی رو گزرنے سے برقی طاقت کا ضیاع ہوتا ہے جس سے بیہ گرم ہوتے ہیں۔ٹرانسفار مرکی برقی روکی حد کچھوں کی گرمائش پر منحصر ہوتی ہے۔ان کی زیادہ سے زیادہ حرارت کو محفوظ حد کے اندر رکھا جاتا ہے۔

ٹرانسفار مرجس برقی دباو کے لئے بنایا جائے یہ اس پر لگی شختی پر لکھا جاتا ہے۔اس سے حاصل برقی رو کی حد کو ایک مختلف طریقے سے لکھا جاتا ہے۔

¹⁰⁰⁰ kV A رانىغار مركى لچھوں ميں كثافت برقى روتقريباً A /mm² در كھي جاتى ہے

شكل3.10: كچھے كى مزاحمت اور متعامله۔

3.10 ٹرانسفار مرکے امالہ اور اس کے مساوی دور

3.10.1 کیھے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا

ٹرانسفار مرکی ابتدائی کچھے کی مزاحمت R_1 کو ہم نے حصہ 3.3 مساوات 3.2 میں دیکھا۔ کچھے کی مزاحمت کو کچھے سے باہر کچھے کے ساتھ سلسلہ وار جڑا دکھایا گیا تھا۔ دیکھتے ہیں یہ کیسے ممکن ہوتا ہے۔

شکل 3.10-الف میں ایک لچھے پر بدلتی برقی دباو لا گو کا گیا ہے۔اگر لچھے کی برقی تارکو نہایت چھوٹے ککروں میں تقسیم کیا جائے تو اس کے ہر ککڑے کی نہایت کم مزاحمت اور متعاملہ ہو گی۔اییا ایک ککڑا شکل-ب میں دکھایا گیا ہے۔چونکہ لچھا ان سب ککڑوں کے سلسلہ وار جڑنے سے بنا ہے لہذا شکل-الف کو ہم شکل-پ کی طرح بنا سکتے ہیں جہاں کچھے کے n ککڑے کیے ہیں۔

اس دور کی مساوات لکھ کر حل کرتے ہیں۔

$$\hat{V}_1 = \hat{I}_1 \left(\Delta R_1 + j \Delta X_1 + \Delta R_2 + j \Delta X_2 + \cdots \Delta R_n + j \Delta X_n \right)$$

$$= \hat{I}_1 \left(\Delta R_1 + \Delta R_2 + \cdots \Delta R_n \right) + \hat{I}_1 \left(j \Delta X_1 + j \Delta X_2 + \cdots j \Delta X_n \right)$$

$$= \hat{I}_1 \left(R + j X \right)$$

78 باب 3. ٹرانسفار مسسر

شكل 3.11: لحصے كى مزاحمت اور متعاملہ كى عليجد گا۔

جہاں

$$R = \Delta R_1 + \Delta R_2 + \dots \Delta R_n$$
$$X = \Delta X_1 + \Delta X_2 + \dots \Delta X_n$$

اس سے شکل 3.11 حاصل ہوتا ہے جس سے ثابت ہوتا ہے کہ حساب کتاب کی غرض سے کچھے کی مزاحمت اور متعاملہ علیحدہ کیے جاسکتے ہیں۔

3.10.2 رستااماله

اوپر ایک کامل ٹرانسفار مر زیر بحث رہا۔ اب ہم ٹرانسفار مر میں ان عناصر کا ذکر کرتے ہیں جن کی وجہ سے ٹرانسفار مر غیر کامل ہو جاتا ہے۔ بہت سی جگہوں پر ٹرانسفار مر استعال کرتے وقت ان عناصر کو مدِ نظر رکھ کر ہی اس کا صحیح استعال ممکن ہوتا ہے۔ ان عناصر کے اثر کو شامل کرنے کے لئے ہم ٹرانسفار مرکا مساوی دور بناتے ہیں۔

ابتدائی کچھے کے مقناطیسی بہاو کو دو حصوں میں تقسیم کیا جا سکتا ہے۔ پہلا حصہ وہ جو قالب سے گزر کر ابتدائی اور ثانوی کچھے کے مقناطیسی بہاو ہے اور دوسرا حصہ وہ جو صرف ابتدائی کچھے سے اور ثانوی کچھے دونوں سے گزرتا ہے۔ یہ ان کا مشتر کہ مقناطیسی بہاو 58 کہتے ہیں۔ یہ شکل میں دکھایا گیا گزرتا ہے اور زیادہ تر قالب کے باہر خلاء میں ہی رہتا ہے۔ اس کو رستا مقناطیسی بہاو 58 کہتے ہیں۔ یہ شکل میں دکھایا گیا ہے۔ چونکہ ہوا میں مقناطیسی مستقل μ_0 مقررہ ہے لہذا یہاں چکچاہٹ بھی مقررہ ہے۔ یوں رستا مقناطیسی بہاو ابتدائی کے برقی رو کے براہ راست متناسب ہوتی ہے۔

leakage magnetic flux⁵⁸

اس کے اثر کو بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ 59 L_1 یا رستا متعاملہ $X_1=2\pi f L_1$ کیا جاتا ہے۔ ظاہر کیا جاتا ہے۔

ٹرانسفار مر کے ابتدائی کچھے میں برقی رو \hat{I}_1 گزرنے سے رستا متعاملہ میں $\hat{V}_{X1}=j\hat{I}_1X_1$ برقی و باو اور کچھے کے تار کی مزاحمت R_1 میں $\hat{V}_{R1}=\hat{I}_1R_1$ برقی و باو گھٹتا ہے۔

یوں ابتدائی کچھے پر لاگو برتی دباو \hat{V}_1 میں سے کچھ برتی دباو R_1 میں کم ہو گا، کچھ متعاملہ X_1 میں کم ہو گا اور بقایا \hat{E}_1 بقایا \hat{E}_1 بقایا \hat{E}_2 میں دکھایا گیا ہے۔

3.10.3 ثانوى برقى رواور قالب كے اثرات

قالب میں دونوں کچھوں کا مشتر کہ مقناطیسی بہاو ان کے مجموعی مقناطیسی دباو کی وجہ سے وجود میں آتا ہے۔ البتہ اگر ہم کچھ یوں سوچیں تو یہ زیادہ بہتر ہو گا۔ ہم کہتے ہیں کہ ابتدائی برتی رو کو دو شرائط پوری کرنی ہو گی۔ پہلی یہ کہ اسے قالب میں بیجانی مقناطیسی بہاو ہو گا اور دوسری یہ کہ اسے ثانوی کچھے کے پیدا کردہ مقناطیسی بہاو کو ختم کرنا ہو گا۔ لہذا ابتدائی برتی رو کو ہم دو حصوں میں تقسیم کر سکتے ہیں۔ ایک حصہ i_{φ} جو بیجانی مقناطیسی بہاو پیدا کرے اور دوسرا \hat{I}'_2 جو ثانوی کچھے کے مقناطیسی دباو کے اثر کو ختم کرے۔ لہذا

$$\hat{I}_2' = \frac{N_2}{N_1} \hat{I}_2$$

leakage inductance⁵⁹ leakage reactance⁶⁰

80 باب. 3. ٹرانسفار مب

شکل 3.13: ٹرانسفار مر مساوی دور، حصه دوم۔

اس باب کے حصہ 3.6 میں اس پر تفصیل سے غور کیا گیا ہے۔ برقی رو i_{φ} غیر سائن نما ہوتی ہے لیکن پھر بھی ہم اس بائن نما \hat{I}_{φ} ہی تصور کرتے ہیں۔ اس کو ہم دو حصوں میں تقییم کر سکتے ہیں یعنی

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

جہاں کا وہ حصہ ہے جو ابتدائی کچھے کی امالی برقی دباو \hat{E}_1 کے ہم قدم ہے اور یہ قالب میں برقی توانائی کے ضیاع کو ظاہر کرتا ہے جبکہ سال اس کا وہ حصہ ہے جو \hat{E}_1 سے نوے درجہ زاویہ پیٹھے 62 ہے اور کچھے میں مقناطیسی بہاو کو جنم دیتا ہے۔ برقی رو کے ان حصول کو ہم ایک مزاحمت R_c اور ایک X_m اور ایک X_m سے پیش کرتے ہیں۔ یہ شکل میں دکھایا گیا ہے۔ برقی مقدار اتنی رکھی جاتی ہے کہ اس میں برقی طاقت کا ضیاع اصل قالبی ضیاع کے برابر ہو لیخی دکھایا گیا ہے۔ \hat{R}_c اس طرح \hat{R}_c کی مقدار اتنی رکھی جاتی ہی مقدار اتنی رکھی جاتی ہی مقدار اصل برقی دباو اور تعدد پر حاصل کئے جاتے ہیں۔ یہ شکل \hat{R}_c مقدار اصل برقی دباو اور تعدد پر حاصل کئے جاتے ہیں۔ یہ شکل \hat{R}_c میں دکھایا گیا ہے۔ \hat{R}_c

3.10.4 ثانوى لچھے كى امالى برقى دباو

قالب میں مشتر کہ مقناطیسی بہاو ثانوی کچھ میں امالی برقی دباو \hat{E}_2 پیدا کرے گی اور چونکہ یہی مقناطیسی بہاو ابتدائی کچھ میں ا \hat{E}_1 مالی پیدا کرتی ہے لہذا

(3.31)
$$\frac{\hat{E}_1}{\hat{E}_2} = \frac{N_1}{N_2}$$

⁶¹سائن نمابر قی روکومر حلی سمتیہ سے ظاہر کیاجاتاہے lagging⁶²

مساوات 3.30 اور مساوات 3.31 کو ایک کامل ٹرانسفار مرسے ظاہر کیا جا سکتا ہے۔ یہ شکل 3.14 میں دکھایا گیا ہے۔

3.10.5 ثانوی کیھے کی مزاحت اور متعاملہ کے اثرات

 R_2 ثانوی کچھے کے سروں پر البتہ \hat{E}_2 برتی دباو نہیں ہو گا چونکہ ثانوی کچھے کے ، بالکل ابتدائی کچھے کی طرح، مزاحمت واور متعاملہ j_{X_2} ہوں گے جن میں ثانوی برتی رو \hat{I}_2 کی وجہ سے برتی دباو گھٹے گا۔ للذا ثانوی کچھے کے سروں پر برتی دباو \hat{V}_2 قدر کم ہو گا۔ یعنی

$$\hat{V}_2 = \hat{E}_2 - \hat{I}_2 R_2 - j \hat{I}_2 X_2$$

یوں حاصل ٹرانسفار مر کا مکمل مساوی دور یا ریاضی نمونہ ^{63 شکل} 3.15 میں دکھایا گیا ہے۔

3.10.6 ركاوك كاابتدائي ياثانوي جانب تبادله

شکل 3.15 میں دکھائے دور کے سب جزو کا تبادلہ ایک جانب سے دوسری جانب کیا جا سکتا ہے۔ یہ کرنے سے کامل ٹرانسفار مر کو مساوی دور کی بائیں یا دائیں جانب لے جایا جا سکتا ہے۔ شکل 3.16 میں ثانوی جانب کی رکاوٹ کا ابتدائی جانب تبادلہ کیا گیا ہے۔اس کا ابتدائی جانب تبادلہ کیا گیا ہے۔اس طرح حاصل مساوی دور میں عموماً کامل ٹرانسفار مر بنایا ہی نہیں جاتا۔ یہی شکل 3.17 میں کیا گیا ہے۔

 $mathematical model^{63}$

82 باب. 3. ٹرانسفار مسم

شكل 3.15: ٹرانسفار مر كامكمل مساوى دوريارياضى نمونه۔

شكل 3.16. ثانوى جانب ر كاوٹ كاابتدائى جانب تبادله كيا گياہے۔

تبادلہ شدہ رکاوٹ Z کو Z' سے ظاہر کیا جاتا ہے۔ یوں R_2 کے ٹرانسفار مرکی ووسری جانب تبادلہ کے بعد اسے ظاہر کیا گیا ہے۔ R_2'

الیا دور استعال کرتے وقت ہے ذہن میں رکھنا ہوتا ہے کہ ٹرانسفار مر کے کس جانب دور حل کیا جا رہا ہے۔

مثال 3.6: ایک 50 کلو وولٹ-ایمبیئر اور 220: 2200 وولٹ برقی سکت کے ٹرانسفار مرکی زیادہ برقی دباو کی جانب کی رستار کاوٹ $Z_1=0.0089+j0.011$ وہام برقی دباو کی جانب کی رستار کاوٹ $Z_1=0.9+j1.2$ وہانب کی رستار کاوٹ $Z_1=0.9+j1.2$ میں استعال اوہم ہے۔اگر اس کی $Z_1=0.4$ اور $Z_1=0.4$ اور $Z_1=0.4$ ہو تو اس کی شکل 3.16 اور شکل 3.17 میں استعال ہونے والے جزو معلوم کریں۔

حل حصه اول: معلومات:

 $50 \,\mathrm{kV} \,\mathrm{A}$, $50 \,\mathrm{Hz}$, $2200 : 220 \,\mathrm{V}$

شكل 3.17: ابتدائي جانب ر كاوٹ كاثانوي جانب تبادله كيا گياہے۔

ٹرانسفار مر کے دونوں جانب کی برقی دباو کچھوں کے چکروں کی نسبت سے ہوتے ہیں للذا
$$\frac{N_1}{N_2} = \frac{2200}{220} = \frac{10}{1}$$
 یوں اگر ٹرانسفار مر کی رکاوٹ کا زیادہ برقی دباو کی جانب تبادلہ کیا جائے تو $\frac{N_1}{N_2} = \frac{N_1}{N_2}$

$$R'_{2} + jX'_{2} = \left(\frac{N_{1}}{N_{2}}\right)^{2} (R_{2} + jX_{2})$$

$$= \left(\frac{10}{1}\right)^{2} (0.0089 + j0.011)$$

$$= 0.89 + j1.1$$

جبکہ اس کی بقایار کاوٹ وہی رہیں گے۔یوں شکل 3.16 کے جزو حاصل ہوئے۔

حل حصه دوم: اگر مساوی دورکی رکاوٹ کا کم برقی دباوکی جانب تبادله کیا جائے تب

$$R'_1 + jX'_1 = \left(\frac{N_2}{N_1}\right)^2 (R_1 + jX_1)$$
$$= \left(\frac{1}{10}\right)^2 (0.9 + j1.2)$$
$$= 0.009 + j0.012$$

اسی طرح

$$R'_c = \left(\frac{N_2}{N_1}\right)^2 R_c = 64$$
$$X'_m = \left(\frac{N_2}{N_1}\right)^2 X_m = 470$$

84 باب. 3. ٹرانسفار مسسر

 \square جبکه Z_2 وبی رہے گا۔

3.10.7 ٹرانسفار مرکے سادہ ترین مساوی دور

ایک انجنیئر کو جب ایک ٹرانسفار مر استعال کرنا ہو تو وہ حساب کرتے وقت شکل 3.16 میں دیے گئے دور کو استعال کر سکتا ہے۔ یہ دور حقیقی ٹرانسفار مر کی بہت اچھی عکائی کرتا ہے۔ البتہ جہاں ہمیں نہایت صحیح جواب مطلوب نہ ہوں وہاں اس دور کی سادہ اشکال بھی استعال کی جا سکتیں ہیں۔ اس باب میں ہم ایسے ہی سادہ مساوی دوروں کا ذکر کریں گے۔

 a شکل 3.16 میں b اور b کو بائیں یا دائیں طرف لے جانے سے شکل 3.18 اور شکل 6 حاصل ہوتے ہیں۔ چونکہ 6 کی مقدار نہایت کم 64 ہوتی ہے اس لئے ایسا کرنے سے حاصل جواب پر کوئی خاص فرق نہیں پڑتا۔ 64 بازنادم کی برتی بوجے کے مرف دوجے پی فی مدود تھے۔

شکل3.20:ٹرانسفار مرکے سادہ مساوی ادوار۔

چونکہ اس شکل میں X_1 ، R_2 ، R_1 اور X_2 سلسلہ وار ہیں اس لئے ان کو جمع کیا جا سکتا ہے شکل میں ان کو مساوی مزاحمت R_m اور مساوی متعاملہ R_m کہا گیا ہے۔اسی قسم کے ادوار شکل R_m سے بھی حاصل ہوتے ہیں۔

ہم ایک قدم اور آگے جا سکتے ہیں اور \hat{I}_{φ} کو مکمل طور پر نظر انداز کر سکتے ہیں لیعنی اس کو ہم صفر تصور کر لیتے ہیں۔ اس کا مطلب ہے کہ مساوی دور میں R_c اور R_c دونوں کو کھلے دور کیا جاتا ہے لیعنی انہیں مساوی دور سے ہٹا دیا جاتا ہے۔ شکل 3.20-الف میں ایسا کیا گیا ہے۔ اس دور میں قالب کے اثرات کو مکمل طور پر نظر انداز کیا گیا ہے۔ سے ح

بیشتر وقت ہمیں اس سے بھی کم صحیح جواب مطلوب ہوتا ہے۔ چونکہ $X_m\gg R_c$ لہذا ہم وہ کو بھی نظر انداز کر سکتے ہیں۔ یوں شکل 3.20-ب حاصل ہوتا ہے۔

3.11 كطيح دور معائنه اور كسرِ دور معائنه

پچھلے جھے میں بیان کئے گئے ٹرانسفار مر کے مساوی دور کے جزو ٹرانسفار مر کے دو معائنوں سے حاصل کئے جا سکتے ہیں۔ ان معائنوں کو کھلے دور معائنہ اور کسرِ دور معائنہ کہتے ہیں۔اس جھے میں انہیں پر غور کیا جائے گا۔ 86 باب 3. ٹرانسفار مسسر

3.11.1 كطيح دورمعائنه

کھلے دور معائنہ 65 جیسا کہ نام سے واضح ہے، ٹرانسفار مرکی ایک جانب کچھے کے سروں کو آزاد رکھ کر کیا جاتا ہے۔ یہ معائنہ اتنی برتی دباو اور تعدد یا ان کے قریب ترین مقداروں پر کیا جاتا ہے جینے پر ٹرانسفار مرکی بناوٹ 66 ہو۔ اگرچہ یہ معائنہ ٹرانسفار مرکے کسی بھی جانب کے کچھے پر کیا جا سکتا ہے، حقیقت میں اسے کم برقی دباو والی جانب کے کچھے پر کرنا آسان ہوتا ہے۔ یہ بات ایک مثال سے زیادہ آسانی سے سمجھ آتی ہے۔

مثلاً ہم 4 4 5 اور V 220 V : 11000 کا 50 Hz پر چلنے والے ایک دور کے ٹرانسفار مرکا معائنہ کرنا چاہتے ہیں۔ اگر یہ معائنہ اس کے گیارہ ہزار کے لیجھے پر کیا جائے تو گیارہ ہزار برتی دباو کے لگ بھگ برتی دباو استعال کیا جائے گا اور اگر دو سو بیس برتی دباو والے لیجھے پر کیا جائے تو دو سو بیس برتی دباو کے لگ بھگ برتی دباو والے استعال کیا جائے گا۔ دونوں صورتوں میں تعدد 50 Hz کی گھگ رکھا جائے گا۔ 11 kV کی برتی دباو پر کام کرنا نہایت خطرناک ثابت ہو سکتا ہے۔ یہی وجہ ہے کہ اس معائنہ کو کم برتی دباو والے لیجھے پر ہی کیا جاتا ہے۔

جس برقی دباو پر ٹرانسفار مر عام حالات میں استعال ہوتا ہے اس معائنہ میں کم برقی دباو والی جانب کے لیجھے پر استے ہی یا اس کی قریب مقدار کی برقی دباو کو V_t لا گو کر کے کھے دور برقی طاقت p_t اور کھلے دور برقی رو I_t ناپی جاتے ہیں۔ معائنہ حقیقت میں استعال کے دوران برقی دباو کے جتنے قریب برقی دباو پر کیا جائے اتنا بہتر جواب حاصل ہوتا ہے۔ ٹرانسفار مر کی دوسری جانب لیجھ کے سرے چونکہ آزاد رکھے جاتے ہیں اس لئے اس میں برقی رو صفر ہو گا۔ لہذا ناپا گیا برقی رو صرف بیجان انگیز برقی رو $\hat{\rho}_t$ ہو گا۔ ٹرانسفار مر جتنی برقی رو کے لئے بنایا گیا ہو یہ برقی رو اس کے تقریباً دو سے چھ فی صد ہوتا ہے۔ شکل 3.16 کو مدِ نظر رکھتے ہوئے اگر ہم بائیں جانب کو کم برقی دباو والی جانب تصور کریں تو شکل میں V_t کو برگی جائہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t ہو گا۔ چونکہ V_t صفر کے برابر ہے لہذا V_t کی جگہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t کی جگہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t کی جگہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t کی جگہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t کی جگہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t کی جگہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی V_t کی جگہ کی تو کرنا ہو گا۔ یعنی اس طرح

$$I_t = I_1 = I_{\varphi}$$

اتنی کم برقی رو سے کچھے کی رکاوٹ میں نہایت کم برقی دباو گھٹتا ہے، لہذا اسے نظر انداز کیا جاتا ہے یعنی

$$V_{R1} = I_t R_1 = I_{\varphi} R_1 \approx 0$$

$$V_{X1} = I_1 X_1 = I_{\varphi} X_1 \approx 0$$

يوں R_c اور X_m پر تقريباً V_t برتی و باو پايا جائے گا۔ يہ شکل 0.16 سے ظاہر ہے۔ان حقائق کو مد نظر رکھتے ہوئے شکل 0.16 حاصل ہوتا ہے۔

open circuit $ext{test}^{65}$ $ext{design}^{66}$

scalar⁶⁷

چونکہ برقی طاقت کا ضیاع صرف مزاحمت میں ہی ممکن ہے لہذا p_t صرف R_c میں ہی ضائع ہو گی۔ یوں $p_t = \frac{V_t^2}{R_c}$

لکھا جائے گا۔ پوں

$$(3.33) R_c = \frac{V_t^2}{p_t}$$

حاصل ہوتا ہے۔

اسی طرح چونکہ برقی دباہ اور برقی رو کی مقداروں کے تناسب کو برقی رکاوٹ کی مقدار کہتے ہیں للذا $|Z_t|=rac{V_t}{I_t}$

مگر شکل 3.21 سے واضح ہے کہ

$$\frac{1}{Z_t} = \frac{1}{R_c} + \frac{1}{jX_m}$$

للذا

$$Z_t = \frac{jR_c X_m}{R_c + jX_m}$$
$$|Z_t| = \frac{R_c X_m}{\sqrt{R_c^2 + X_m^2}}$$

88 باب 3. ٹرانسفار مسسر

$$\begin{array}{c|c}
I_t & R_{ms} & jX_{ms} \\
+ & & \\
\hat{V}_t & R_{ms} = R'_1 + R_2 \\
- & & X_{ms} = X'_1 + X_2
\end{array}$$

شكل3.22: كسر دور معائنه به

جس سے حاصل ہوتا ہے

(3.34)
$$X_{m} = \frac{R_{c}|Z_{t}|}{\sqrt{R_{c}^{2} - |Z_{t}|^{2}}}$$

مساوات 3.33 سے R_c اور مساوات 3.34 سے X_m کا حساب لگایا جاتا ہے۔

یاد رہے کہ حاصل کردہ R_c اور X_m ٹرانسفار مر کے اس جانب کے لئے درست ہیں جس جانب انہیں حاصل کیا گیا ہو۔ا گران کی قیمتیں دوسری جانب درکار ہوں تب تبادلہ رکاوٹ کا استعال کرتے ہوئے اس جانب کی قیمتیں حاصل کی جاستی ہیں۔

3.11.2 كسر دور معائنه

یہ معائنہ بھی پچھلے معائنہ کی طرح ٹرانسفار مر کے کسی بھی طرف کیا جا سکتا ہے مگر حقیقت میں اسے زیادہ برقی دباو کے لیچے پر ہی کرنا زیادہ آسان ہوتا ہے۔ یہ معائنہ جینے برقی رو کے لئے ٹرانسفار مر بنایا گیا ہو اتنی برقی رو یا اس کے قریب مقدار پر کیا جاتا ہے۔ یعنی اس معائنہ میں کوشش ہوتی ہے کہ ٹرانسفار مر کے لیچے میں اتنی برقی رو گزرے جتنی کے لئے یہ بنایا گیا ہو۔ للذا اگر ہم پچھلے معائنہ میں استعال ہونے والے ٹرانسفار مرکی بات آگے بڑھا میں تو اس کا زیادہ برقی دباو کا لچھا A 113.63 کے لئے بنایا گیا ہے۔ للذا اگر یہ معائنہ کم برقی دباو کچھے پر کیا جائے تو صرف A 2.2727 کرنا ہو گا اور اگر زیادہ برقی دباو کچھے پر کیا جائے تو صرف A 2.2727 کرنا ہو گا اور اگر زیادہ برقی دباو کچھے پر کیا جائے تو صرف A 2.2727 کرنا ہو گا جو کہ زیادہ آسان ہے۔

اس معائنہ میں کم برقی دباو کچھے کے دونوں سروں کو آپس میں جوڑا جاتا ہے بعنی انہیں کسرِ دور کر لیا جاتا ہے اور زیادہ برقی دباو کچھے پر اس جانب کی ڈیزائن کردہ برقی دباو کے دو سے بارہ فی صد کا برقی دباو V_t لاگو کر کے کسرِ

دور برتی رو I_t اور کسرِ دور برتی طاقت p_t ناپے جاتے ہیں۔ جس کچھ کے سرے آپس میں کسرِ دور ہوتے ہیں اس میں سے برتی رو گزرتی ہے اور اس کا عکس دوسری جانب بھی موجود ہوتا ہے۔ یہ برتی رو ٹرانسفار مر کے ڈیزائن کردہ برتی رو گزرتی ہوتا ہے۔ اس معائنہ کا دور شکل 3.22 میں دکھایا گیا ہے۔ کھلے سرے معائنے کی طرح اگر کسر دور معائنے میں بھی شکل 3.16 کے بائیں جانب کو کم برتی د باو والی جانب تصور کریں تو V_t کو جگہ لاگو کرنا ہو گا۔

چونکہ یہ معائنہ بہت کم برقی دباو پر کیا جاتا ہے للذا اس معائنہ میں بیجان انگیز برقی رو کو مکمل طور پر نظر انداز کیا جا سکتا ہے۔ شکل سے ہم دیکھتے ہیں کہ چونکہ برقی طاقت صرف مزاحمت میں ہی ضائع ہو سکتی ہے المذا

$$p_t = I_t^2 \left(R_{ms} \right)$$

ہو گا جس سے

$$(3.35) R_{ms} = \frac{p_t}{I_t^2}$$

حاصل ہوتا ہے۔

سرِ دور برقی رو اور برقی دباوسے ہمیں ملتی ہے

$$|Z_t| = \frac{V_t}{I_t}$$

مگر شکل سے واضح ہے کہ

$$Z_t = R_{ms} + jX_{ms}$$
$$|Z_t| = \sqrt{R_{ms}^2 + X_{ms}^2}$$

للذا

$$(3.36) X_{ms} = \sqrt{|Z_t|^2 - R_{ms}^2}$$

مساوات 3.35 کل مزاحمت دیتا ہے البتہ اس سے R_1 یا R_2 حاصل نہیں کیا جا سکتا۔ اس طرح مساوات 3.36 کل مزاحمت دیتا ہے البتہ اس سے R_1 یا R_2 حاصل کرنا ممکن ہے۔ حقیقت میں سے R_2 اتنی معلومات کافی ہوتی ہے۔ اگر ان اجزاء ک علیحدہ علیحدہ قیمتیں در کار ہوں تو ایسی صورت میں تصور کیا جاتا ہے کہ

$$R_1' = R_2$$
$$X_1' = X_2$$

90 باب. 3. ٹرانسفار مسر

بيں_

چونکہ یہ معائنہ عموماً جہاں ٹرانسفار مر موجود ہو وہیں کرنا پڑتا ہے للذا یہ ممکن نہیں ہوتا کہ ٹرانسفار مر کو بالکل اتنا برقی دباو دیا جائے جتنا درکار ہو بلکہ جو برقی دباو موجود ہو اس سے کام چلانا پڑتا ہے۔ لیکن اس بات کا خیال بہت ضروری ہے کہ جو برقی دباو ٹرانسفار مر کو دیا جا رہا ہو وہ ڈیزائن کردہ برقی دباو کے دو سے بارہ فی صد ہو۔ مثلاً اگر اس کا 220 V اور 220 V وہ بات کی جائے تو اس کے زیادہ برقی دباو کچھے پر 20 V اور 20 V اور 20 V کے در میان کوئی بھی برقی دباو دیا جا سکتا ہے۔ چونکہ ہمارے ہاں 20 کو اور 440 V عام پائے جاتے ہیں للذا ہم 20 V میا ملاک ہی استعال کریں گے۔

یہاں یہ ایک مرتبہ دوبارہ یاد دھیانی کراتا جاول کہ ٹرانسفار مرکی ایک جانب کچھے کے سرے آپس میں جوڑ کر، ایعنی انہیں کسرِ دور کر کے، دوسری جانب کچھے پر کسی بھی صورت میں اس جانب کی پوری برقی دباو لا گو نہیں کرنا۔ ایسا کرنا شدید خطرناک اور جان لیوا ثابت ہو سکتا ہے۔

یاد رہے کہ حاصل کردہ R_c اور X_m اور X_m ٹرانسفار مر کے اس جانب کے لئے درست ہیں جس جانب انہیں حاصل کیا گیا ہو۔ا گر ان کی قیمتیں دوسری جانب در کار ہوں تب تبادلہ رکاوٹ کا استعال کرتے ہوئے اس جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

مثال 3.7: ایک 25 کلو وولٹ-ایمبیئر، 220 : 11000 وولٹ اور 50 ہر ٹز پر چلنے والے ٹرانسفار مر کے کھلے دور اور کسر دور معائنہ کئے جاتے ہیں جن کے نتائج ہیہ ہیں۔

- کھلے دور معائنہ کرتے وقت کم برقی دباوکی جانب V 220 لا گو کئے جاتے ہیں۔اسی جانب برقی رو 39.64 A اور طاقت کا ضیاع W 600 ناپے جاتے ہیں۔
- كسرٍ دور معائنه كرتے وقت زيادہ برقی دباوكی جانب V 440 لا گو كئے جاتے ہيں۔اسی جانب برقی رو A 2.27 A اور طاقت كا ضياع W 560 ناپے جاتے ہيں۔

کھلے دور حل:

$$\begin{split} |Z_t| &= \frac{220}{39.64} = 5.55 \, \Omega \\ R_c &= \frac{220^2}{600} = 80.67 \, \Omega \\ X_m &= \frac{80.67 \times 5.55}{\sqrt{80.67^2 - 5.55^2}} = 5.56 \, \Omega \end{split}$$

شکل 3.23: کھلے دوراور کسر دور معائنہ سے کم برقی دیاو جانب مساوی دور۔

کسر دور حل:

$$Z_t = \frac{440}{2.27} = 193.83 \,\Omega$$

$$R_{ms} = \frac{560}{2 \times 2.27^2} = 108.68 \,\Omega$$

$$X_{ms} = \sqrt{193.83^2 - 108.68^2} = 160 \,\Omega$$

ان نتائج کو تم برقی دباو جانب منتقل کرتے ہوئے

$$\left(\frac{220}{11000}\right)^2 \times 108.68 = 43.47 \,\mathrm{m}\Omega$$

$$\left(\frac{220}{11000}\right)^2 \times 160 = 64 \,\mathrm{m}\Omega$$

يعني

$$R_1 = R_2' = \frac{43.47 \,\mathrm{m}\Omega}{2} = 21.7 \,\mathrm{m}\Omega$$

 $X_1 = X_2' = \frac{64 \,\mathrm{m}\Omega}{2} = 32 \,\mathrm{m}\Omega$

حاصل ہوتا ہے۔ان نتائج سے حاصل کم برقی دباو جانب مساوی دور شکل 3.23 میں د کھایا گیا ہے۔

92 باب 3. ٹرانسفار مسر

شكل3.24: ايك ہى قالب پر تين ٹرانسفار مر۔

3.12 تين مرحله ٹرانسفار مر

اب تک ہم ایک مرحلہ 68 ٹرانسفار مر پر غور کرتے رہے ہیں۔ حقیقت میں برقی طاقت کی منتقلی میں عموماً تاہین مرحلہ و ٹرانسفار مر بیایا جا سکتا ٹرانسفار مر استعال ہوتے ہیں۔ تین مرحلہ ٹرانسفار مر خراب ہو جائے تو اس کو شحیک ہونے کے لئے ہٹا کر بقایا دو ٹرانسفار مر دوبارہ چالو کئے جا سکتے ہیں۔ تین مرحلہ ٹرانسفار مر بنانے کا اس سے بہتر طریقہ شکل 3.24 میں دکھایا گیا ہے جہاں ایک ہی مقناطیسی قالب پر تینوں ٹرانسفار مر کے لیچھے لیٹے گئے ہیں۔ اس شکل میں \hat{V}_{i1} پہلے ٹرانسفار مر کا ابتدائی لیچھا جبہ \hat{V}_{i1} اس کا خانوی لیچھا ہے۔ اس طرح کے تین مرحلہ ٹرانسفار مرستے، ملک اور چھوٹے ہونے کی وجہ سے عام ہو گئے ہیں اور آپ کو روز مرہ زندگی میں یہی نظر آئیں گے۔ ان میں برتی ضیاع بھی قدر کم ہوتی ہے۔

شکل 3.25-الف میں تین ٹرانسفار مر دکھائے گئے ہیں۔ان تین ٹرانسفار مر کے ابتدائی کچھے آپیں میں دو طریقوں سے جوڑے جا سکتے ہیں۔ای کو ستارہ نما جوڑ Y^{70} اور دوسرے کو تکونی جوڑے کے بیں۔ای طرح ان سینوں ٹرانسفار مرول کے ثانوی کچھے انہیں دو طریقوں سے جوڑے جا سکتے ہیں۔یوں انہیں جوڑنے کے چار ممکنہ طریقے ہیں یعنی

- $Y:\Delta$ ستاره: تکونی •
- Y:Y ستاره: ستاره •
- $\Delta:\Delta$ Ξ

single phase⁶⁸ three phase⁶⁹

star connected⁷⁰

 $delta\ connected^{71}$

شكل3.25: تين مر حله ستاره- تكوني ٹرانسفار مر

$\Delta: Y$ تکونی: ستاره $\Delta: Y$

شکل 3.25-الف میں ان تین ٹرانسفار مروں کے ابتدائی کچھوں کو سارہ نما جوڑا گیا ہے جبکہ ان کی ثانوی کچھوں کو تکونی جوڑا گیا ہے۔شکل-ب میں تینوں ٹرانسفار مرکی ابتدائی کچھوں کو سارہ نما دکھایا گیا ہے۔اسی طرح ثانوی کچھوں کو تکونی دکھایا گیا ہے۔انہی شکلوں کی وجہ سے ان کو سارہ نما جوڑ اور تکونی جوڑ کہتے ہیں۔

الیی شکل بناتے وقت تینوں ٹرانسفار مروں کے ابتدائی کچھے کو جس زاویہ پر بنایا جاتا ہے اس کے ثانوی کچھے کو بھی اُس زاویہ پر بنایا جاتا ہے۔ یوں شکل کے حصہ الف میں سب سے اوپر ٹرانسفار مرجس کے ابتدائی جانب کے سرے اُس اور ثانوی جانب کے سرے 'a'n ہیں کو حصہ با میں صفر زاویہ پر بنایا گیا ہے۔ تین مرحلہ ٹرانسفار مروں کو اس طرح کی علامتوں سے ظاہر کیا جاتا ہے اور ان میں قالب نہیں دکھایا جاتا۔

ٹرانسفار مر کے جوڑ بیان کرتے وقت بائیں جانب کے جوڑ کو پہلے اور دائیں جانب کی جوڑ کو بعد میں پکارتے ہیں۔ یوں شکل میں ٹرانسفار مر کو ستارہ۔ تکونی جُڑا ٹرانسفار مر کہیں گے۔اسی طرح ابتدائی جانب کو بائیں اور ثانوی جانب کو دائیں ہاتھ بنایا جاتا ہے۔یوں اس شکل میں ابتدائی جانب ستارہ نما ہے جبکہ ثانوی جانب شکونی ہے۔

سارہ نما جڑی جانب سے چار برقی تارین نکلتی ہیں۔اس جانب کچھوں کے مشتر کہ سرا n کو عموماً ٹرانسفار مر کے

94 باب. 3. ٹرانسفار مسر

نزدیک زمین میں گہرائی تک دھنسا دیا جاتا ہے۔اس تار کو زمین کے تا مرف زمین 73 کہتے ہیں۔عام فہم میں اسے ٹھنڈی آر 74 کہتے ہیں۔ باقی تین لیعن a,b,c گرم آر 75 کہلاتے ہیں۔

ٹرانسفار مرکی کچھے پر برقی دباو کو یکے مرطہ برقی دباو _{کیرطہ} $76\hat{V}$ کہتے ہیں اور کچھے میں برقی رو کو یکے مرطہ برقی رو 277 کہتے ہیں۔ جبکہ ٹرانسفار مرسے باہر نگلتی کسی دو گرم تاروں کے مابین برقی دباو کو تارکی برقی دباو $278\hat{V}$ کہتے ہیں۔ نینی تار میں برقی رو کو زمینی برقی رو کو آرکی بھی گرم تار میں برقی رو کو زمینی برقی رو کو آرکی کہتے ہیں۔ زمینی تار میں برقی رو کو زمینی برقی رو رہی $280\hat{I}$ کہتے ہیں۔ نمینی تار میں برقی رو کو زمینی برقی رو کو تارکی بھی گرم تار میں برقی رو کو زمینی برقی رو کو تارکی بھی گرم تار میں برقی رو کو تارکی بھی گرم تاریخ

ستارہ نما Y جانب یک مرحلہ مقداروں اور نار کی مقداروں کا آپس میں یوں رشتہ ہے

(3.37)
$$V_{\text{J}\text{T}} = \sqrt{3}V_{\text{J}\text{T}}$$

$$I_{\text{J}\text{T}} = I_{\text{J}\text{T}}$$

جبکہ تکونی ∆ جانب یک مرحلہ اور تار کی مقداروں کا آپس میں یوں رشتہ ہے

$$V_{jt} = V_{jt}$$
 (3.38) $I_{jt} = \sqrt{3}I_{jt}$

یہ مرحلی سمتیے کے رشتے نہیں بلکہ ان کی غیر سمتی قیمتوں کے رشتے ہیں۔ان دو مساواتوں سے حاصل ہوتا ہے

$$(3.39) V_{\text{NF}}I_{\text{NF}} = \sqrt{3}V_{\text{loc}}I_{\text{loc}}I_{\text{loc}}$$

چونکہ ایک مرحلہ ٹرانسفار مرکی وولٹ-ایمپیئر کیرطہ $I_{\lambda رطلہ}$ ہیں اور ایسے تین ٹرانسفار مر مل کر ایک تین مرحلہ ٹرانسفار مرکی وولٹ-ایمپیئر اس کے تین گنا ہوں گے یعنی ٹرانسفار مرکی وولٹ-ایمپیئر اس کے تین گنا ہوں گے یعنی

(3.40)
$$3V_{\rm JL}I_{\rm JL} = 3 \times \frac{V_{\rm JL}I_{\rm JL}}{\sqrt{3}} = \sqrt{3}V_{\rm JL}I_{\rm JL}$$

 $ground^{72}$

ground, earth, neutral⁷³

neutral⁷⁴

live wires⁷⁵

phase voltage⁷⁶

phase current⁷⁷

line to line voltage⁷⁸

line current⁷⁹

ground current 80

شکل 26. 3: ابتدائی اور ثانوی جانب تاراوریک مرحله مقداروں کے رشتے۔

یہ مساوات تاہین مرحلہ ادوار میں عام استعمال ہوتی ہے۔

ٹرانسفار مرکسی طرح بھی جوڑے جائیں وہ اپنی بنیادی کارکردگی تبدیل نہیں کرتے للذا انہیں سارہ نما یا تکونی جوڑنے کے بعد بھی ان میں ہر ایک ٹرانسفار مر انفرادی طور پر صفحہ 66 پر دئے مساوات 3.16 اور صفحہ 70 پر دئے مساوات 3.28 پر پورے اترے گا۔ انہیں استعال کر کے شکل 3.26 میں دیۓ گئے ٹرانسفار مرول کے ابتدائی اور ثانوی جانب کی یک مرحلہ اور تارکی مقداروں کے رشتے حاصل کئے جا سکتے ہیں۔اس شکل میں N_1/N_2 ہماں جہاں جہاں $N_1:N_2$ ان میں ایک مرحلہ ٹرانسفار مر کے چکر کی نسبت ہے۔ تین مرحلہ ٹرانسفار مر پر گئی شختی پر دونوں جانب تارکی برقی دباو کی نسبت کھی جاتی ہے۔

جیسے شکل 3.26 میں و کھایا گیا ہے سارہ- تکونی ٹرانسفار مرکی تاریر برقی وباوکی نسبت

(3.41)
$$\frac{V_{\dot{\mathcal{G}}|\mathcal{E}|}}{V_{\dot{\mathcal{G}}|\dot{\mathcal{E}}|}} = \sqrt{3}a = \sqrt{3}\left(\frac{N_1}{N_2}\right)$$

جبکه ستاره-ستاره کا

$$\frac{V_{\dot{\mathcal{S}}|\mathcal{E}|}}{V_{\dot{\mathcal{S}};\dot{\mathcal{E}}}} = a = \left(\frac{N_1}{N_2}\right)$$

تکونی-ستاره کا

$$\frac{V_{\mathcal{J}_{|\mathcal{L}|}}}{V_{\mathcal{C}\mathcal{J}^{\mu}}} = \frac{a}{\sqrt{3}} = \frac{1}{\sqrt{3}} \left(\frac{N_1}{N_2}\right)$$

96 باب. 3. ٹرانسفار مسر

اور تکونی- تکونی کا

$$\frac{V_{\acute{\mathcal{G}}, \breve{\mathcal{G}}}}{V_{\acute{\mathcal{G}}, \breve{\mathcal{G}}}} = a = \left(\frac{N_1}{N_2}\right)$$

-4

مثال 3.8: کی مرحله تین کیسال ٹرانسفار مروں کو ستارہ-تکونی کے $Y: \Delta$ جوڑ کر تین مرحلہ ٹرانسفار مربنایا گیا ہے۔ ایک مرحلہ ٹرانسفار مرکی برقی سکھے 8 درج ذیل ہے:

 $50\,\mathrm{kV\,A},\quad 6350:440\,V,\quad 50\,\mathrm{Hz}$

شارہ- تکونی ٹرانسفار مرکی ابتدائی جانب 11000 وولٹ کی تین مرحلہ تارکی برقی دباو لا گو کیا گیا۔اس تین مرحلہ ٹرانسفار مرکی ثانوی جانب تار کا برقی دباو معلوم کریں۔

حل: حل کرتے وقت ہم ایک عدد یک مرحلہ ٹرانسفار مر پر نظر رکھیں گے۔ ابتدائی جانب اگر یک مرحلہ ٹرانسفار مر پر غور کیا جائے تو

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{6350}{440}$$

اور اس پر لا گو برقی دباو مساوات 3.37 کی مدد سے

$$V_{\rm limit} = \frac{V_{\rm lt}}{\sqrt{3}} = \frac{11000}{\sqrt{3}} = 6350.85\,{\rm V}$$

ہے لہٰذا اس یک مرحلہ ٹرانسفار مرکی ثانوی جانب مساوات 3.16 کی مدد سے

$$V_{\mathcal{G}_{\mathcal{F}}} = \frac{N_2}{N_1} V_{\mathcal{G}_{\mathcal{F}}} = \frac{440}{6350} \times 6350.85 \approx 440 \,\text{V}$$

ہیں۔چونکہ ٹانوی جانب ان تین یک مرحلہ ٹرانسفار مرول کو تکونی جوڑا گیا ہے للذا مساوات 3.38 کی مدد سے اس جانب تارکی برقی دباویہی ہو گی۔اس تین مرحلہ ٹرانسفار مرکی تار پر برقی دباوکی نسبت

$$rac{V_{,i\vec{z},i\vec{b},\vec{z},i}}{V_{,i\vec{z},i}} = rac{11000}{440}$$

 ${\rm rating}^{81}$

ہے۔چونکہ یک مرحلہ ٹرانسفار مر 50 کلو وولٹ-ایمپیئر کا ہے لہذا یہ تین مرحلہ ٹرانسفار مر 150 کلو وولٹ-ایمپیئر کا ہو گا۔یوں اس تین مرحلہ ٹرانسفار مر کی سکت⁸²

 $150 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 440 \,\mathrm{V}$, $50 \,\mathrm{Hz}$

ہو گی۔

ٹرانسفار مر پر لگی شختی 83 پر اس کی سکت بیان ہوتی ہے جس میں ٹرانسفار مر کے دونوں جانب تار کے برقی دباو کھنے جاتے ہیں نہ کہ کچھوں کے چکر۔

ستارہ-ستارہ بڑے ٹرانسفار مر عام طور استعال نہیں ہوتے۔اس کی وجہ یہ ہے کہ اگرچہ ان کی تین مرحلہ برقی دباو کے بنیادی جزو آپس میں °120 زاویائی فاصلے پر ہوتے ہیں لیکن ان کی تیسری موسیقائی جزو آپس میں ہم قدم ہوتی ہیں۔ قالب کی غیر بتدر تج خصوصیات کی وجہ سے ٹرانسفار مر میں ہر صورت تیسری موسیقائی جزو پائے جاتے ہیں۔ تیسری موسیقائی جزو ہم قدم ہونے کی وجہ سے جمع ہوکر ایک نہایت بڑی برقی دباوکی موج پیدا کرتے ہیں جو کہی کبھی کبھی برقی دباوکی بنیادی جزو سے بھی زیادہ بڑھ جاتی ہے۔

بقایا تین قشم کے جڑے ٹرانسفار مرول میں برتی دباو کی تیسری موسیقائی جزو مسکلہ نہیں کرتیں چونکہ ان میں تکونی جُڑے لچھوں میں برتی رو گھومنے شروع ہو جاتی ہے جو ان کے اثر کو ختم کر دیتی ہے۔

تین مرحلہ ٹرانسفار مر کے متوازن دور حل کرتے وقت ہم تصور کرتے ہیں کہ ٹرانسفار مرستارہ نما جڑا ہے۔ یول اس کے ایک مرحلہ پر لا گو برقی دباو، یک مرحلہ برقی دباو ہو گا۔ای مرحلہ پر لا گو برقی دباو، یک مرحلہ برقی دباو ہو گا۔ای طرح ہم تصور کرتے ہیں کہ اس پر لدا برقی بوجھ بھی ستارہ نما بُڑا ہے۔ یوں تین مرحلہ کی جگہ ہم یک مرحلہ دور کا نسبتاً آسان مسئلہ حل کرتے ہیں۔ ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے۔ یہ ایک مثال سے زیادہ بہتر سمجھ آئے گا۔

مثال 3.9: ایک تین مرحلہ $Y:\Delta 0000$ کلو وولٹ-ایمپیئر، 600: 11000 وولٹ اور 50 ہر ٹز پر چلنے والا کامل ٹرانسفار مرتین مرحلہ کے متوازن برقی بوجھ کو طاقت مہیا کر رہا ہے۔ یہ بوجھ تکونی جڑا ہے جہال بوجھ کا ہر حصہ (0.504+j0.1917) کے برابر ہے۔ شکل 3.27 میں یہ دکھایا گیا ہے۔

• اس شکل میں ہر جگہ برقی رو معلوم کریں۔

98 باب. 3. ٹرانسفار مسسر

شكل 27.2: ٹرانسفار مر تكونی متوازن بوجھ كوطاقت فراہم كرر ہاہے۔

• برقی بوجه 84 کو در کار طاقت معلوم کریں

حل:

پہلے تکونی بوجھ کو ستارہ نما بوجھ میں تبدیل کرتے ہیں

$$Z_Y = \frac{Z_\Delta}{3} = \frac{0.504 + j0.1917}{3} = 0.168 + j0.0639$$

اس بوجھ کو سارہ نما جڑا شکل 3.28 میں دکھایا گیا ہے۔اس شکل میں ایک برتی تار جے نقطہ دار کئیر سے ظاہر کیا گیا ہے کو ٹرانسفار مرکی زمینی نقطہ سے بوجھ کے مشتر کہ سرے کے در میان جڑا دکھایا گیا ہے۔متوازن دور میں اس تار میں برقی رو صفر ہوگی۔ حل کرنے کی نیت سے ہم اس متوازن دور سے ایک مرحلہ لے کر حل کرتے ہیں۔

یوں مساوی برقی بوجھ میں برقی رو

$$I = \frac{346.41}{0.168 + j0.0639} = 1927.262 / -20.825^{\circ}$$

ہو گی اور اس ایک مرحلہ میں طاقت

 $p = 346.41 \times 1927.262 \times \cos(-20.825^{\circ}) = 624007 \,\mathrm{W}$

ہو گی۔ یوں برقی بوجھ کو پوری درکار برقی طاقت اس کے تین گنا ہو گی یعنی 1872 kW اس بوجھ کا جزو طاقت ⁸⁵

$$\cos(-20.825^{\circ}) = 0.93467$$

rating⁸²
name plate⁸³
lectrical load⁸⁴

electrical load⁸⁴ power factor⁸⁵

شكل 28. 3: تكونى بوجھ كومساوى ستاره بوجھ ميں تبديل كيا گياہے۔

ہ۔

میں برتی رو 1112.7
$$=\frac{1927.262}{\sqrt{3}}$$
 ایمپیئر ہو گی۔ ٹرانسفار مر کی ابتدائی جانب برتی تاروں میں برتی رو $\left(\frac{600}{11000}\right) imes 1927.262 = 105.12$

ايكييئ ہو گی۔

اس مثال میں جزو طاقت 0.93467 ہے۔اس کتاب کے لکھتے وقت پاکستان میں اگر صنعتی کارخانوں کی برقی بوجھ کی جزو طاقت 0.9 سے کم ہو جائے تو برقی طاقت فراہم کرنے والا ادارہ (واپڈا) جرمانہ نافذ کرتا ہے۔

3.13 ٹرانسفار مرچالو کرتے لمحہ زیادہ محرکی برقی روکا گزر

ہم دکھے چکے ہیں کہ اگر ٹرانسفار مرکے قالب میں کثافتِ مقناطیسی بہاو سائن نما ہو لیعنی $B=B_0\sin\omega t$ تو اس کے لئے ہم لکھ سکتے ہیں

$$v = e = N \frac{\partial \varphi}{\partial t} = N A_c \frac{\partial B}{\partial t}$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= V_0 \cos \omega t$$

100 باب 3. ٹرانسفار مسر

لعني

$$(3.45) B_0 = \frac{V_0}{\omega N A_c}$$

یہ مساوات بر قرار چالو⁸⁶ ٹرانسفار مر کے لئے درست ہے۔

تصور کریں کہ ایک ٹرانسفار مر کو چالو کیا جا رہا ہے۔ چالو ہونے سے پہلے قالب میں مقناطیسی بہاو صفر ہے اور جس لمحہ اسے چالو کیا جائے اس لمحہ بھی یہ صفر ہی رہتا ہے۔

جس لمحه ٹرانسفار مر کو چالو کیا جائے اس لمحہ لا گو برقی دباو

 $v = V_0 \cos(\omega t + \theta)$

ہے۔اگر $\pi/2$ ہیں کھہ ہو تو آدھے دوری عرصہ 87 کے بعد قالب میں کثافتِ مقناطیسی بہاو heta

$$B = \frac{1}{NA_c} \int_0^{\pi/\omega} V_0 \cos(\omega t + \pi/2) dt$$
$$= \frac{V_0}{\omega NA_c} \sin(\omega t + \pi/2)_0^{\pi/\omega}$$
$$= -\left(\frac{2V_0}{\omega NA_c}\right)$$

ینی کثافتِ مقناطیسی بہاو کا طول معمول سے دگنا ہو گا۔ اگر یہی حساب $\theta=\theta$ لمحہ کے لئے کیا جائے تو زیادہ سے زیادہ کثافتِ مقناطیسی بہاو بالکل مساوات 3.45 کے عین مطابق ہو گا۔ ان دو زاویوں کے مابین زیادہ سے زیادہ کثافتِ مقناطیسی بہاو ان دو حدوں کے در میان رہتا ہے۔

قالب کی B-H خط غیر بندر تنج بڑھتا ہے۔المذا B دگنا کرنے کی خاطر H کو کئی گنا بڑھانا ہو گا جو کچھے میں محرک برتی رو بڑھانے سے ہوتا ہے 88 یہاں صنحہ 51 پر دکھائے شکل 2.16 سے رجوع کریں۔ قوی ٹرانسفار مروں میں بیجانی کثافتِ مقناطیسی بہاو کی چوٹی 1.3 $B_0 \leq 1.3$ ہماؤ کے ہے۔ٹرانسفار مرچالو کرتے لمحہ یوں کثافتِ مقناطیسی بہاو کے ہوتی ہے۔ٹرانسفار مرچالی انگیز برتی رو نہایت زیادہ ہو گی۔

steady state⁸⁶ time period⁸⁷

^{2000&}lt;sup>88</sup> کلووولٹ-ایمپیئرٹرانسفار مرسے چالو کرتے وقت تھر تھراہٹ کی آواز آتی ہے

باب4

برقی اور میکانی توانائی کا باہمی تبادلہ

برتی رو یا مقناطیسی بہاو کی مدد سے برتی توانائی کو میکانی توانائی یا میکانی توانائی کو برتی توانائی میں تبدیل کیا جاتا ہے۔ مختلف مشین میں یہ عمل ہوتا ہے۔ ناپنے کے مشین نہایت کم طاقت کا تبادلہ کرتے ہیں۔ ان میں لاؤڈ سپیکر، ما مگروفون وغیرہ شامل ہیں۔ ان میں برقی مقناطیس، ریلے اوغیرہ شامل ہیں۔ ان میں برقی مقناطیس، ریلے اوغیرہ شامل ہیں، لگاتار توانائی کو ایک شکل سے دوسری شکل میں تبدیل کرتے ہیں۔

اس باب میں مقناطیسی بہاو کی مدد سے توانائی کے تبادلہ پر غور کیا جائے گا۔ برقی رو کی مدد سے توانائی کے تبادلہ کو انہیں طرح کے طریقوں سے حل کیا جاتا ہے اگرچہ ان کا تذکرہ اس کتاب میں نہیں کیا جائے گا۔

اس باب میں جو تراکیب ہم سیکھیں گے وہ بہت اہمیت رکھتے ہیں اور انجنیر نگ میں بہت سے مسائل حل کرنے میں مدد گار ثابت ہوتے ہیں۔

 $relay^1$

4.1 مقناطیسی نظام میں قوت اور قوت مروڑ

اگرایک برقی میدان میں برقی بار q رکھا جائے تو اس پر قوت

$$(4.1) F = qE$$

پائی جاتی ہے۔اگر برتی بار مثبت ہو تو یہ قوت برتی شدت E کی سمت میں ہوتی ہے اور اگر برتی بار منفی ہو تو یہ قوت E کی الٹ سمت میں ہوتی ہے۔ اس طرح اگر ایک برتی بار مقناطیسی میدان میں حرکت کر رہا ہو اور اس کی سمتھ رفتارv ہو تو اس پر قوت

$$\mathbf{F} = q\left(\mathbf{v} \times \mathbf{B}\right)$$

پائی جاتی ہے۔ اس مرتبہ مثبت برقی بار پر قوت کی سمت دائیرے ہاتھ کے قانونے 6 سے معلوم کی جاتی ہے۔ اگر دائیں ہاتھ کی چار انگلیاں 9 کی سمت میں رکھ کر انہیں 9 کی سمت میں موڑا جائے تو انگوٹھا 7 کی سمت میں ہوگا۔ منفی برقی بار پر قوت اس کے مخالف سمت میں ہوگا۔ یہاں سمتی رفتار 9 اور 9 کے مابین ہے۔ اگر ایک برقی بار بیک وقت متناطیسی اور برقی میدان میں حرکت کر رہا ہو تب اس پر قوت ہمیں گزشتہ دو قوانین ملاکر یعنی مساوات لورینز 4 سے متناطیسی اور برقی میدان میں حرکت کر رہا ہو تب اس پر قوت ہمیں گزشتہ دو قوانین ملاکر یعنی مساوات لورینز 4 سے متناطیسی ہو گرد ہو ہو تب اس کر گرد ہو تب اس پر قوت ہمیں گزشتہ دو قوانین ملاکر یعنی مساوات لورینز 4 ہو تب اس پر قوت ہمیں گزشتہ دو قوانین ملاکر یعنی مساوات لورینز 4

$$\mathbf{F} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

ماوات 4.2 میں اگر $v = \mathrm{d} L/\mathrm{d} t$ کی جائے تو اسے یوں لکھا جا سکتا ہے۔

(4.4)
$$\begin{aligned} \boldsymbol{F} &= q \left(\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t} \times \boldsymbol{B} \right) \\ &= \frac{q}{\mathrm{d} t} \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \\ &= i \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \end{aligned}$$

مثال 4.1: شکل 4.1 میں ایک لچھا مقناطیسی میدان میں دکھایا گیا ہے۔ لچھے کی رداس 15 سم، محوری لمبائی 50 سم اور اس میں برقی رو 5 ایمپیئر ہے۔ کثافت مقناطیسی بہاو کو نقطہ دار نوک والی لکیروں سے شالی قطب سے جنوبی قطب کی جانب دکھایا گیا ہے۔اگر کثافت مقناطیسی بہاو 0.55 ٹیسلہ ہو تو

velocity² right hand rule³

Lorenz equation⁴

شكل 4.1: ايك چكرك لحصير قوت اور قوت مرور ا

- کچھے کے اطراف پر قوت معلوم کریں اور
 - کچھے پر قوت مروڑ _۲ معلوم کریں

حل: شکل-الف اور ب میں کار تیسی اکائی سمتیہ دیئے گئے ہیں۔اگر برقی تار کے سروں کو نظر انداز کیا جائے اور اسے ایک بند دائرہ سمجھا جائے تو شکل-الف میں برقی رو کی سمت میں تار کے اطراف کی لمبائیاں

$$egin{aligned} oldsymbol{L}_{bc} &= loldsymbol{a}_{
m y} \ oldsymbol{L}_{cd} &= -2roldsymbol{a}_{
m y} \ oldsymbol{L}_{de} &= -loldsymbol{a}_{
m y} \ oldsymbol{L}_{eb} &= 2roldsymbol{a}_{
m x} \end{aligned}$$

ہیں جبکہ $oldsymbol{B} = B_0 oldsymbol{a}_{ exttt{X}}$ بین جبکہ $oldsymbol{B} = B_0 oldsymbol{a}_{ exttt{X}}$

$$egin{aligned} m{F}_{bc} &= i \left(m{L}_{bc} imes B_0 m{a}_{
m X}
ight) \ &= 5 \left(0.5 m{a}_{
m Y} imes 0.55 m{a}_{
m X}
ight) \ &= -1.375 m{a}_{
m Z} \ m{F}_{cd} &= 5 \left(-0.3 m{a}_{
m X} imes 0.55 m{a}_{
m X}
ight) \ &= 0 \ m{F}_{de} &= 5 \left(-0.5 m{a}_{
m Y} imes 0.55 m{a}_{
m X}
ight) \ &= 1.375 m{a}_{
m Z} \ m{F}_{ea} &= 0 \end{aligned}$$

نیوٹن ہو گی۔ہم دیکھتے ہیں کہ قوت محوری لمبائی کی جانب اطراف پر ہی لا گو ہے۔یہ دو قوت حصہ بامیں دکھائے گئے ہیں جہاں سے بیہ واضح ہے کہ یہ قوت مروڑ پیدا کریں گی۔ اس قوت مروڑ کی سمت داعیں ہاتھ کے قانون سے بھی باآسانی معلوم کی جاسکتی ہے۔قوت مروڑ

 $\tau = -1.375 \times 2 \times 0.15 \times \sin \theta \mathbf{a}_{y}$ $= -0.4125 \sin \theta \mathbf{a}_{y}$

نیوٹن- میٹر ہے۔

ان مساوات کا استعال صرف سادہ ترین جگہوں ممکن ہوتا ہے۔ استعال میں آنے والی مشین میں ان مساوات سے قوت کا تعین کرنا نہایت مشکل ثابت ہوتا ہے۔ اب ہم وہ طریقہ سیکھتے ہیں جس کی مدد سے ہم مختلف مشین میں قوت کا تعین کر سکیں گے۔ اس طریقہ کو توانائی کا طریقہ کہتے ہیں اور یہ توانائی کے اٹل ہونے پر مبنی ہے۔

گومتی برقی مشین میں عموماً دو کچھے ہوتے ہیں۔ ان میں ایک کچھا مشین کے ساکن حصہ پہ لپٹا ہوتا ہے اور اسی لئے ساکن رہتا ہے۔ لہذا اس کو ساکن کچھا کہتے ہیں۔ دوسرا لچھا مشین کے گھومنے والے حصہ پہ لپٹا ہوتا ہے اور مشین گھومنے سے یہ بھی گھومتا ہے۔ لہذا اس کو گھومتا کچھا کہتے ہیں۔ ایسے مشین کو اس طرح سمجھنا نہایت آسان ہے کہ ہم ان دو لچھوں کو دو مقناطیس سمجھیں۔ جس طرح دو مقناطیس اگر قریب لائے جائیں تو یہ کوشش کرتے ہیں کہ ایک کا شال N دوسرے کے جنوب کی کی سمت ہو۔

موٹر میں دونوں کچھے مقاطیس پیدا کرتے ہیں۔ ساکن کچھے کا مقناطیسی بہاو، گھومتے کچھے کے مقناطیسی بہاوسے کچھے آگے رہتا ہے اور اسے کھنچتا رہتا ہے۔ ایسا کرنے سے یہ کام کرتا ہے۔ جزیٹر میں اس کے برعکس گھومتا کچھا، ساکن کچھے پر کام کرتے ہوئے اس میں برقی دباو پیدا کرتا ہے۔

توانائی کے طریقے کو شکل 4.2 کی مدد سے سمجھا جا سکتا ہے۔ یہاں مقناطیسی نظام کو ایک ڈبہ کی شکل میں و کھایا گیا ہے۔ اس کو برقی توانائی مہیا کی جاتی ہے جس سے یہ میکائی توانائی پیدا کرتا ہے۔ یہاں برقی توانائی کے دو متغیرہ و میدائی قوت F_m بیں۔ اس شکل میں بائیں جانب یعنی ابتدائی یا و لوگین جانب i کا رُخ باہر سے اندر کی طرف ہے اور دائیں جانب یعنی ثانوی جانب F_m کا رُخ اندر سے باہر کی جانب اولین جانب i کا رُخ باہر سے اندر کی مانند ہے۔ سے اندر کی مانند ہے۔

stator coil⁵

rotor coil⁶

میدانی قوت F_m میں جھوٹی کھا ئی میں mلفظ میدانی کو ظاہر کررہاہے۔

شکل 4.2: برتی توانائی سے میکانی توانائی کے تبادلہ کا نظام۔

شكل 4.3: قوت يبدا كرنے والا آلا۔

اگر نظام میں توانائی کی ضیاع کو توانائی کے ذخیرہ ہونے سے علیحدہ کرنا ممکن ہو تو ایسی صورت میں توانائی کے ضیاع کو بیرونی رکن سے پیش کیا جاتا ہے۔ شکل 4.3 میں ایک ایسا ہی نظام دکھایا گیا ہے جس میں لچھا برتی نظام کو پیش کرتا ہے۔ یہاں کچھے میں توانائی کے ضیاع کو، بیرونی مزاحمت R سے ظاہر کیا گیا ہے۔

توانائی کا بنیادی اصول کہتا ہے کہ توانائی نا تو پیدا کی جاستی ہے اور نا ہی اسے تباہ کیا جا سکتا ہے۔ اس کو صرف ایک قسم سے دوسرے قسم کی توانائی میں تبدیل کیا جا سکتا ہے۔ المذا اس نظام کو جو برتی توانائی بن قسم کی توانائی میں تبدیل ہو گی، پچھ مقناطیسی میدان میں ذخیرہ ہو گی یعنی مینا ور اور بنایا مختلف طریقوں سے ضائع بنا کی ہوگی جو ہمارے کسی کام نہ آ سکے گی۔ یعنی بنایا مختلف طریقوں سے ضائع بنا کسی کام نہ آ سکے گی۔ یعنی

(4.5)
$$\partial W_{\ddot{i}} = \partial W_{\dot{i}} + \partial W_{\dot{i}} + \partial W_{\dot{i}} + \partial W_{\dot{i}} + \partial W_{\dot{i}}$$

اگر برقی توانائی کے ضیاع کو نظرانداز کیا جائے تو

$$\partial W_{\vec{i}} = \partial W_{\vec{i}} + \partial W_{\vec{i}} + \partial W_{\vec{i}}$$

اس مساوات کو ∂t سے تقسیم کرنے سے حاصل ہوتا ہے

شکل 4.4: توانائی کی شکل تبدیل کرنے والاایک نظام۔

(4.7)
$$\frac{\partial W_{\ddot{\mathbf{J}}, \mathbf{J}}}{\partial t} = \frac{\partial W_{\dot{\mathbf{J}}, \mathbf{J}}}{\partial t} + \frac{\partial W_{\dot{\mathbf{J}}, \mathbf{J}}}{\partial t}$$

یہ مساوات توانائی کی بجائے طاقت کی بات کرتا ہے۔ اگر ہم بائیں ہاتھ کی جانب لیعنی برقی طاقت کو ei کھیں اور دائیں ہاتھ کی جانب میکانی حصہ میں $\partial W_{\dot{b}} = F_m \partial x$ کھیں تو

(4.8)
$$ei = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

حاصل ہوتا ہے جہاں مقاطبی W_m کو W_m کھا گیا ہے۔ مساوات 2.27 کے استعمال سے اسے یوں کھا جا سکتا ہے۔

$$i\frac{\partial \lambda}{\partial t} = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

١

$$\partial W_m = i\partial\lambda - F_m\partial x$$

مساوات 4.10 توانائی کے طریقہ کی بنیاد ہے۔ یہ مساوات استعال کرتے وقت یاد رہے کہ قوت بنیادی طور پر لورینز کے قانون⁸ سے ہی پیدا ہوتی ہے۔مساوات 4.10 میں برقی متغیرہ i اور e کی بجائے i اور k ہیں۔ لہذا شکل 4.2 کو شکل 4.4 کی طرح بھی بنایا جا سکتا ہے۔

$$\partial z(x,y) = \frac{\partial z}{\partial x} \, dx + \frac{\partial z}{\partial y} \, dy$$
 (4.11)

Lorenz equation⁸ function⁹

اسی طرح ہم $W_m(x,\lambda)$ کے لئے لکھ سکتے ہیں۔

(4.12)
$$\partial W_m(x,\lambda) = \frac{\partial W_m}{\partial x} dx + \frac{\partial W_m}{\partial \lambda} d\lambda$$

اس مساوات اور مساوات 4.10 سے ہم اخذ کر سکتے ہیں کہ

(4.13)
$$F_m(x,\lambda) = -\left. \frac{\partial W_m(x,\lambda)}{\partial x} \right|_{\lambda_0}$$

(4.14)
$$i(x,\lambda) = \left. \frac{\partial W_m(x,\lambda)}{\partial \lambda} \right|_{x_0}$$

اگر ہم مقناطیسی میدان میں مقناطیسی توانائی $W_m(x,\lambda)$ معلوم کر سکیں تو مساوات 4.13 کو استعال کر کے ہم قوت کا حساب لگا سکتے ہیں۔ ہم اگلے حصہ میں یہی کرتے ہیں۔

4.2 تبادله توانائی والاایک کھیے کا نظام

شکل 4.3 میں ایک کچھے کا سادہ نظام دکھایا گیا ہے۔ کچھے میں برقی ضیاع کو بیرونی مزاحمت سے پیش کیا گیا ہے۔ میکانی نظام میں حرکت کرنے والے حصہ کے کمیت کو نظرانداز کیا گیا ہے۔ اگر اس کمیت کے اثر کا بھی حساب لگانا ہو تو اس کمیت کو ایک بیرونی کمیت تصور کیا جا سکتا ہے۔ اس طرح تبادلہ توانائی کے نظام پر غور کرنا آسان ہو جاتا ہے۔

قوت پیدا کرنے والے مشین میں حرکت ناگزیر ہے۔ عمواً حرکت تب ممکن ہوتی ہے جب مقناطیسی قالب میں خلاء ہو جو کم اور زیادہ ہو سکے۔ عمواً $\Re_a \gg \Re_c$ ہوتا ہے۔ للذا جب بھی خلائی درز رکنے والی مقناطیسی دور حل کرنی ہو، ہم \Re_c کو نظرانداز کر سکتے ہیں۔ ایبا کرنے ہے، جبیا مساوات 2.19 میں دیا گیا ہے، ہم مقناطیسی دباو τ اور مقناطیسی بہاو ϕ کو براہ راست متناسب ککھ سکتے ہیں۔ اسی طرح مساوات 2.29 کو اب ہم یوں ککھ سکتے ہیں۔

$$(4.15) \lambda = L(x)i$$

اس مساوات میں امالہ کو L(x) کھے کر اس بات کی نشاندہی کی گئی ہے کہ یہ صرف اور صرف شکل 4.3 میں خلاء کی لمبائی x پر منحصر ہے۔

(4.16)
$$\int \partial W_m = \int i(x,\lambda) \, d\lambda - \int F_m(x,\lambda) \, dx$$

اس تمل کا حصول شکل 4.5 سے واضح ہو گا۔ابتدائی نقطے پر مقناطیسی نظام کو کوئی برقی توانائی نہیں دی گئ۔ اس لئے اس میں برقی رو صفر ہے۔ برقی رو صفر ہونے کی وجہ سے مقناطیسی بہاو اور ارتباط بہاو بھی صفر ہے۔اسی وجہ سے مقناطیسی میدان میں مقناطیسی قوانائی بھی صفر ہے۔یوں قوت اور حرکت بھی صفر ہے۔یعنی ابتدائی نقطہ پر

$$i = \phi = \lambda = W_m = F_m = x = 0$$

ہے۔ابتدائی نقطہ شکل 4.5 میں دکھایا گیا ہے۔ ہم اب کچھے کو برتی توانائی فراہم کرتے ہیں۔ کچھے میں برتی رو رواں ہوتی ہے جس سے قوت اور حرکت پیدا ہوتی ہے۔ ہم آخر کار اختتامی نقطہ پر پہنچ جاتے ہیں۔اختتامی نقطہ بھی شکل میں دکھایا گیا ہے۔ اس نقطہ پہ $\lambda = \lambda$ اور λ

ہم اس حقیقت سے فائدہ اٹھاتے ہیں کہ مقناطیسی میدان ایک قدامتے پیند میدان x_0 جس کا مطلب ہے کہ مقناطیسی میدان میں مقناطیسی توانائی صرف اور صرف اختیامی نقطہ کے x_0 اور x_0 کی مقدار پر منحصر ہے x_0 اس کا مقاطیسی میدان میں مقناطیسی توانائی کیسال ملے مطلب سے ہے کہ ہم جس راستے سے بھی آخری نقطہ تک پنچیں ہمیں مقناطیسی میدان میں مقناطیسی توانائی کیسال ملے گی۔ لہذا ہم تکمل کرتے وقت شکل 4.5 میں ابتدائی نقطہ سے پہلے راستے چلتے ہیں اور جب ہم فاصلہ x_0 میں ابتدائی نقطہ x_0 کیس کے راستے جلتے ہیں اور جب ہم ماوات 4.16 کو اب دو کھڑوں تو یہاں سے دوسرا راستہ اختیار کر کے اختیار کی خواد و کھڑوں کے بیٹھے ہیں۔ لہذا ہم مساوات 4.16 کو اب دو کھڑوں

integral¹⁰

conservative field¹¹

mبوگی۔ میدان بھی قدامت پیندمیدان ہے ای لئے اگر کمیت m کو کسی بھی راتے h کی بلندی تک لے جایاجائے تواس کی توانائی m ہوگی۔ m

شكل 4.5: مقناطيسي ميدان ميں توانائي۔

(4.17)
$$\frac{\partial W_m}{\partial w_m} = \int_{0}^{\infty} \frac{\partial W_m}{\partial w_m} + \int_{0}^{\infty} \frac{\partial W_m}{\partial w_m} dw_m$$

$$\frac{\partial W_m}{\partial w_m} = \int_{0}^{\infty} \frac{\partial W_m}{\partial w_m} + \int_{0}^{\infty} \frac{\partial W_m}{\partial w_m} dw_m$$

اس مساوات کی دائیں جانب جزو کو باری باری دیکھتے ہیں۔ پہلے رائے تکمل کو یوں لکھا جا سکتا ہے۔

$$\int_{\mathcal{Y}} \partial W_m = \int_0^0 i(x,0) \, \mathrm{d}\lambda - \int_0^{x_0} F_m(x,0) \, \mathrm{d}x$$

اں راستے جیسے شکل 4.5 سے ظاہر ہے اگر ہم $x=x_0$ سے $x=x_0$ تک چلیں تو اس پورے راستے پر λ صفر کے برابر ہی رہتا ہے۔ مساوات 4.18 میں اس بات کو برقی رو i(x,0) اور قوت $F_m(x,0)$ کھ کر واضح کیا گیا ہے۔ چونکہ λ کثر وع اور آخری مقدار برابر ہیں لہذا اس مساوات میں $\lambda=0$ فیر $\lambda=0$ ہے۔

اگر $0=\lambda$ ہو تو مقناطیسی بہاو بھی صفر ہو گا۔ مقناطیسی بہاو کے صفر ہونے کا مطلب ہے کہ کوئی مقناطیسی اثر موجود نہیں لہذا توت F_m بھی صفر ہو گا۔ اور ہم جانتے ہیں کہ صفر کا تکمل صفر ہی ہوتا ہے۔ لہذا اس مساوات میں $\int_0^{x_0} F_m(x,0) \, \mathrm{d}x = 0$

(4.19)
$$\int_{\mathcal{L}_{u}} \partial W_{m} = \int_{0}^{0} i(x,0) \, d\lambda - \int_{0}^{x_{0}} F_{m}(x,0) \, dx = 0$$

اسی طرح مساوات 4.17 کی دوسرے رائے کے تکمل کے جزو کو یوں لکھا جا سکتا ہے۔

(4.20)
$$\int_{z \to y/2} \partial W_m = \int_0^{\lambda_0} i(x_0, \lambda) \, \mathrm{d}\lambda - \int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x$$

اس میں ہم دیکھتے ہیں کہ پورے رائے $x=x_0$ رہتا ہے۔ قوت کا تکمل صفر ہے چونکہ x کے ابتدائی اور اختتامی قیمتیں برابر ہیں۔ یعنی

(4.21)
$$\int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x = 0$$

آخر میں رہ گیا برتی رو کا تکمل۔ مساوات 4.15 کو استعال کرتے ہوئے

(4.22)
$$\int_0^{\lambda_0} i(x_0, \lambda) \, \mathrm{d}\lambda = \frac{1}{L(x_0)} \int_0^{\lambda_0} \lambda \, \mathrm{d}\lambda = \frac{\lambda_0^2}{2L(x_0)}$$

اس طرح ہمیں آخر کار مقناطیسی میدان میں توانائی کی مساوات حاصل ہو گئی۔

$$(4.23) W = \frac{\lambda_0^2}{2L(x_0)}$$

اس مساوات کی مدد سے مساوات 4.14 کے ذریعہ قوت $F_m(x,\lambda)$ اور مساوات 4.14 کے ذریعہ برقی رو $i(x,\lambda)$ کا حساب اب ممکن ہے۔

مثال 4.2: شکل 4.6 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکت کرنے والے جھے اور ساکن $i=30~\mathrm{A}$ میں خال کی درز g ہے۔ اگر $w=0.4~\mathrm{m}$ ہول تو اس خلائی درز میں توانائی $w=0.4~\mathrm{m}$ معلوم کریں۔

$$W_m = \frac{1}{2} \frac{N^2 \mu_0 A_g}{2g} i^2$$

$$= \frac{1}{2} \times \frac{500^2 \times 4\pi 10^{-7} \times 0.4(0.2 - x)}{2 \times 0.001} \times 30^2$$

$$= 28278(0.2 - x)$$

شكل 4.6: حركت اور توانائي _

جاول کے برابر ہے۔

مثال 4.3: شکل 4.6 میں توانائی کے طریقہ سے قوت F_m معلوم کریں۔

x منغیرہ x منٹیرہ $F_m = -\left. rac{\partial W_m(x,\lambda)}{\partial x} \right|_{\lambda_0}$ منٹیرہ x اور x ہونے چاہئے۔

مثال 4.2 میں ہم نے توانائی معلوم کی۔البتہ یہ معلوم کرنے کے لئے ہم نے کہ کی بجائے $\lambda=Li$ استعال مثال 4.2 میں ہم نے ہوں توانائی کے متغیرہ x اور i بن گئے۔ ہم سکتے۔ ہمیں $W_m(x,i)=28278(0.2-x)$ کیا۔ یوں توانائی کے متغیرہ x اور x بن گئے۔ ہمیں کر سکتے۔ ہمیں $w_m(x,\lambda)$ جا جا ہے۔ ورست طریقہ یہ ہے

$$W_m(x,\lambda) = \frac{\lambda^2}{2L} = \frac{\lambda^2}{2\left(\frac{N^2\mu_0A_g}{2g}\right)} = \frac{g\lambda^2}{N^2\mu_0w(b-x)}$$

اب اسے مساوات 4.13 میں استعال کرتے ہوئے

$$F_m = -\frac{\partial W_m(x,\lambda)}{\partial x}$$
$$= -\frac{g\lambda^2}{N^2\mu_0 w(b-x)^2}$$

شكل 4.7: كو-توانائي كي تعريف.

تفرق لینے کے بعد λ کی جگہ Li یُر کیا جا سکتا ہے۔ یوں قوت

$$\begin{split} F_m &= -\frac{gL^2i^2}{N^2\mu_0w(b-x)^2} \\ &= -\frac{N^2\mu_0wi^2}{4g} \\ &= -28\,278 \end{split}$$

نیوٹن حاصل ہوتا ہے۔ منفی قوت کا مطلب ہے کہ قوت x کی اُلٹ جانب ہے لیعنی حرکت کرنے والا حصہ اس جانب حرکت کرے گا جس جانب فاصلہ کم ہوتا ہو۔

4.3 توانائی اور کو-توانائی

شکل 4.7 میں λ اور i کے مابین تر سیم و کھایا گیا ہے۔ جیبیا آپ و کھ سکتے ہیں کہ کئیر کے نیچے رقبہ دراصل توانائی ہی ہے۔ اگر ہم اس تر سیم پر کوئی ایک نقطہ (λ,i) لیں اور اس نکتے سے ایک کئیر نیچے کی طرف اور دوسری کئیر بائیں جانب کھنچے تو ہمیں ایک مستطیل ماتا ہے جس کا رقبہ λ کے برابر ہو گا۔ اگر اس میں سے ہم توانائی W_m منفی کر لیں تو جو مقدار ملتی ہے اس کو کو-توانائی W'_m کہتے ہیں یعنی

$$(4.24) W_m' = \lambda i - W_m$$

4.3. توانائي اور كو- توانائي

اس مساوات کے تدریجی تفرق 13

$$\partial W'_m = \partial(\lambda i) - \partial W_m$$
$$= \lambda \partial i + i \partial \lambda - \partial W_m$$

میں مساوات 4.10 کے استعال سے

$$\partial W'_m = \lambda \partial i + i \partial \lambda - (i \partial \lambda - F_m \partial x)$$

لعيني

$$\partial W'_m = \lambda \partial i + F_m \partial x$$

حاصل ہوتا ہے۔

مساوات 4.11، 4.12، 4.12، اور 4.14 کی طرح بیهاں بھی کسی جھی تفاعل z(x,y) کا تدریجی فرق

$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

ہے۔ یوں ہم کو-توانائی $W'_m(x,i)$ کے لئے لکھ سکتے ہیں

(4.26)
$$\partial W'_m(x,i) = \frac{\partial W'_m}{\partial x} dx + \frac{\partial W'_m}{\partial i} di$$

اس مباوات کو مباوات 4.25 کے سات دیکھیں تو

$$\lambda = \left. \frac{\partial W_m'}{\partial i} \right|_{T_0}$$

أور

$$(4.28) F_m = \frac{\partial W_m'}{\partial x} \bigg|_{i_0}$$

حاصل ہوتے ہیں۔ قوت معلوم کرنے کی یہ دوسری مساوات ہے۔ اس مساوات میں کو-توانائی استعال ہوتی ہے جبکہ مساوات 4.13 میں توانائی کے ذریعہ قوت حاصل کی گئی۔

بالكل توانائي كے طريقه سے ان مساوات كے تكمل سے حاصل ہوتا ہے

(4.29)
$$W'_m(i_0, x_0) = \int_0^{i_0} \lambda(i, x_0) \, \mathrm{d}i$$

partial differential¹³

جن نظام میں λ اور i تغیر راست ہوں اور جنہیں مساوات 2.29 کے تعلق سے پیش کیا جا سکے ان کے لئے اس مساوات کو مزید یوں حل کیا جا سکتا ہے۔

(4.30)
$$W'_m(i,x) = \int_0^i L(x)i \, \mathrm{d}i = \frac{L(x)i^2}{2}$$

کچھ مسائل میں توانائی اور کچھ میں کو-توانائی کا استعال زیادہ آسان ہوتا ہے۔

مثال 4.4: شکل 4.8 میں ایک پیچدار لچھا 14 دکھایا گیا ہے جس کی محوری لمبائی 1 ، رداس 7 اور چکر 7 ہیں۔ایسے پیچدار کچھے کی مقاطیسی بہاو محوری سمت میں کچھے کے اندر ہی رہتی ہے۔ کچھے کے باہر مقناطیسی بہاو کی مقدار قابل نظر انداز ہوتی ہے۔یوں کچھے کے اندر محوری لمبائی کی سمت میں میدانی شدت 7 7 7 ہوتی ہے۔

ایسے پیچدار کچھے موصل دھاتوں کو امالی برقی توانائی کے ذریعہ پکھلانے کے لئے استعال کئے جاتے ہیں۔ میں اس طرح کی 100 کلوواٹ سے 1500 کلو واٹ برقی طاقت کی 100 کلو گرام سے 3000 کلو گرام لوہا پکھلانے کی امالی برقی بعثیال 15 بناتا رہا ہوں جو 500 ہرٹز سے 1200 ہرٹز کے درمیاں کام کرتی ہیں۔اس طرح کے پیچیدار کچھے میں غیر موصل پیالے میں موصل دھات کے کلڑے ڈالے جاتے ہیں اور اس کچھے میں بدلتی رو گزاری جاتی ہے۔دھات میں بینور نما امالی برقی رو اسے گرم کر کے پھلا دیتی ہے۔لوہے کو یوں 1650 ڈگری ٹلمنکس 16 کی گرم کیا جاتا ہے۔

• اس پیچدار کچھ پر معین برتی رو I_0 گزرنے کی صورت میں ردائی سمت میں میکانی دباو یعنی قوت فی مربع رقبہ معلوم کریں۔

spiral coil¹⁴

high frequency, induction furnaces¹⁵

Celsius, Centigrade¹⁶

4.3. توانائي اور كو- توانائي

• میری 3000 کلو گرام لوہا پگھلانے کی بھٹی کے پیچیدار کچھے کی تفصیل کچھ یوں ہے۔
$$N=11, \quad I_0=10\,000\,\mathrm{A}, \quad l=0.94\,\mathrm{m}, \quad r=0.49\,\mathrm{m}$$
 اس پر رداسی سمت میں مکانی و ماو، نیوٹن فی مربع میٹر، میں حاصل کرس۔

حل الف:

ہم کو-توانائی کا طریقہ استعال کرتے ہیں۔

$$\begin{split} L &= \frac{\mu_0 N^2 \pi r^2}{l} \\ W'_m(r,i) &= \frac{L i^2}{2} = \frac{\mu_0 N^2 \pi r^2 I_0^2}{2l} \\ F &= \frac{\partial W'_m}{\partial r} = \frac{\mu_0 N^2 \pi r I_0^2}{l} \end{split}$$

یہ مثبت قوت رداسی سمت میں باہر کی جانب ہے۔ کچھے کی گول سطح $A=2\pi r l$ ہے۔یوں میکانی دباو

$$\frac{F}{A} = \frac{\mu_0 N^2 \pi r I_0^2}{2\pi r l^2} = \frac{\mu_0 N^2 I_0^2}{2l^2}$$

-4

حل ب:

$$\frac{F}{A} = \frac{4\pi 10^{-7} \times 11^2 \times 10000^2}{2 \times 0.94^2} = 8605 \,\frac{\text{N}}{\text{m}^2}$$

مثال 4.5: 2000 کلوواٹ سے 3000 کلوواٹ کی لوہا پھلانے کی بھٹیاں 30 ٹن 1⁷ سے 70 ٹن لوہاروزانہ پھلاتی ہیں۔ 18 تنا وزن ایک جگہ سے دوسری جگہ منتقل کرنے کی خاطر عموماً برقی مقناطیس استعال ہوتا ہے۔ شکل 4.9-الف میں ایک ایسا ہی برقی مقناطیس د کھایا گیا ہے جس کی تفصیل کچھ یوں ہے۔

$$N = 300, \quad A = 0.8 \,\mathrm{m}^2, \quad I = 30 \,\mathrm{A}$$

شكل 4.9: برقى مقناطيس ـ

اگر برقی مقناطیسی اور لوہے کے در میان اوسط فاصلہ 2.5 سٹی میٹر لیا جائے تو یہ برقی مقناطیسی کتنی کمیت لوہا اٹھا سکتی ہے۔

ل:

مثال 4.6: مثال 4.3 کو کو-توانائی کے طریقہ سے حل کریں۔

حل: مساوات 4.30 سے

$$W'_m = \frac{L(x)i^2}{2} = \frac{N^2 \mu_0 w(b-x)i^2}{4g}$$

اور مساوات 4.28 سے

$$F_m = \frac{\partial W_m}{\partial x} = -\frac{N^2 \mu_0 w i^2}{4g} = -28278 \,\mathrm{N}$$

یہ اتنی ہی قوت ہے۔ہونا بھی ایسا ہی چاہئے۔

شكل4.10: دولچھوں كانظام۔

4.4 زياده لجھوں كامقناطيسي نظام

ا بھی تک صرف ایک کچھے کے نظام کا مطالعہ کیا گیا ہے۔ اس حصہ میں ایک سے زیادہ کچھوں کے نظام کا مطالعہ کیا جائے گا۔ زیادہ کچھوں کا نظام بھی بالکل ایک کچھے کے نظام کی طرح حمل ہوتے ہیں۔ شکل 4.10 میں بائیں جانب ایک کچھے کا برقی رو i_2 اور دوسرے کچھے کا برقی رو i_2 ہے۔ لہذا

$$\partial W_{\mathbf{\ddot{\mathbf{J}}}_{\checkmark}} = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2$$

$$\partial W_{\mathbf{j}} = \partial W_{\mathbf{j}} + \partial W_{m}$$

$$(4.33) i_1 d\lambda_1 + i_2 d\lambda_2 = F_m dx + \partial W_m$$

لکھا جا سکتا ہے جہاں پہلی مساوات کو دوسری میں پُر کرتے ہوئے تیسری مساوات حاصل کی گئی جسے مزید یوں لکھ سکتے ہیں۔

$$\partial W_m(\lambda_1, \lambda_2, x) = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2 - F_m \, \mathrm{d}x$$

اب بالكل مساوات 4.11 كى طرح

(4.35)
$$\partial W_m(\lambda_1, \lambda_2, x) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial x} dx$$

شکل 4.11: دولچھوں کے نظام میں مقناطیسی میدان میں توانائی۔

اس مساوات میں ہم نے دائیں طرف کی جگه لکھا ہے۔ مساوات 4.34 اور 4.35 سے حاصل ہوتا ہے

(4.36)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_1} \right|_{\lambda_2, x}$$

(4.37)
$$i_2 = \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_2} \Big|_{\lambda_1, x}$$

(4.38)
$$F_m = \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial x} \Big|_{\lambda_1, \lambda_2}$$

یه مساوات تب استعال ہو سکتے ہیں جب ہمیں توانائی W_m معلوم ہو للذا ہم پہلے اس کو معلوم کرتے ہیں۔

شکل 4.10 میں دونوں کچھوں کو اس طرح طاقت دی جاتی ہے کہ λ_1 اور λ_2 آہتہ آہتہ صفر سے بڑھتے ہوئے اور λ_2 اور λ_2 تک پہنچ جاتے ہیں اور سات ہی سات x صفر سے تبدیل ہو کر λ_2 ہو جاتا ہے۔ اس اصل رائے کو شکل 4.11 میں موٹی کلیر سے ظاہر کیا گیا ہے۔ بالکل مساوات 4.11 کی طرح ہم لکھ سکتے ہیں۔

(4.39)
$$\int\limits_{\mathbb{T}_{m}/l_{l}/l_{m}} \partial W_{m} = \int\limits_{\mathbb{T}_{m}/l_{l}/l_{m}} \partial W_{m} + \int\limits_{\mathbb{T}_{m}/l_{l}/l_{m}} \partial W_{m} + \int\limits_{\mathbb{T}_{m}/l_{l}/l_{m}} \partial W_{m} + \int\limits_{\mathbb{T}_{m}/l_{l}/l_{m}} \partial W_{m}$$

ہم دائیں جانب کے تکمل کو باری باری حل کرتے ہیں۔

(4.40)
$$\int_{\mathcal{L}_{2}} \partial W_{m} = \int_{0}^{0} i_{1} d\lambda_{1} + \int_{0}^{0} i_{2} d\lambda_{2} - \int_{0}^{x_{0}} F_{m} dx$$

اگر تکمل کے ابتدائی اور اختیامی نقطے ایک ہی ہوں تو تکمل صفر کے برابر ہوتا ہے للذا

(4.41)
$$\int_0^0 i_1 \, \mathrm{d}\lambda_1 = \int_0^0 i_2 \, \mathrm{d}\lambda_2 = 0$$

ہوں گے۔ پہلے راتے λ_1 اور λ_2 دونوں صفر ہیں۔ اس کا مطلب ہے کہ دونوں کچھوں میں برقی رو صفر ہے، للذا مقاطیسی بہاو کی غیر موجود گی میں قوت $F_m=0$ ہو گا اور صفر کا کمل صفر ہی ہوتا ہے لیعنی

(4.42)
$$\int_0^{x_0} F_m \, \mathrm{d}x = \int_0^{x_0} 0 \, \mathrm{d}x = 0$$

اس طرح

$$\int_{\mathbb{R}^n} \partial W_m = 0$$
 پيلا راسة

حاصل ہوتا ہے۔دوسرے راستے پر

(4.44)
$$\int_{\mathcal{U}(x,y)} \partial W_m = \int_0^{\lambda_{1_0}} i_1 \, d\lambda_1 + \int_0^0 i_2 \, d\lambda_2 - \int_{x_0}^{x_0} F_m \, dx$$

جیسا پہلے ذکر کیا گیا کہ اگر تکمل کے ابتدائی اور اختتامی نقطے ایک ہی ہوں تو تکمل صفر کے برابر ہوتا ہے للذا

(4.45)
$$\int_0^0 i_2 \, \mathrm{d}\lambda_2 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

ہول گے جس سے

$$\int_{\mathcal{Z}/\mathcal{U}(2)} \partial W_m = \int_0^{\lambda_{1_0}} i_1 \, \mathrm{d}\lambda_1$$

رہ جاتا ہے۔ یہاں ہمیں مساوات 2.33 ، 2.36 اور 2.38 کی ضرورت پڑتی ہے۔ یہ تین مساوات مندرجہ ذیل ہیں

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

$$\lambda_2 = L_{21}i_1 + L_{22}i_2$$

$$(4.49) L_{12} = L_{21}$$

ان مساواتوں کو ہم i_1 اور i_2 کے لئے حل کریں تو حاصل ہوتا ہے۔

$$(4.50) i_1 = \frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D}$$

$$(4.51) i_2 = \frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D}$$

جہاں

$$(4.52) D = L_{11}L_{22} - L_{12}L_{21}$$

کے برابر ہے۔اب ہم مساوات 4.46 میں مساوات 4.50 پُر کرتے ہیں۔ چونکہ دوسرے راستے یہ λ_2 صفر ہے لہذا

(4.53)
$$\int_0^{\lambda_{1_0}} \left(\frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D} \right) d\lambda_1 = \frac{L_{22}}{D} \int_0^{\lambda_{1_0}} \lambda_1 d\lambda_1 = \frac{L_{22}\lambda_{1_0}^2}{2D}$$

کے برابر ہے۔یوں

$$\int_{\mathcal{U}_{m}} \partial W_{m} = \frac{L_{22}\lambda_{1_{0}}^{2}}{2D}$$

حاصل ہوتا ہے۔

اسی طرح تیسرے راستے پر

(4.55)
$$\int_{\lambda_{1_0}} \partial W_m = \int_{\lambda_{1_0}}^{\lambda_{1_0}} i_1 \, d\lambda_1 + \int_0^{\lambda_{2_0}} i_2 \, d\lambda_2 - \int_{x_0}^{x_0} F_m \, dx$$

جیسا پہلے ذکر کیا گیا کہ اگر تکمل کے ابتدائی اور اختتامی نقطے ایک ہی ہوں تو تکمل صفر کے برابر ہوتا ہے للذا

(4.56)
$$\int_{\lambda_{1_0}}^{\lambda_{1_0}} i_1 \, \mathrm{d}\lambda_1 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

ہوں گے اور بقایا تھے میں i_2 پُر کرتے ہوئے

(4.57)
$$\int_0^{\lambda_{2_0}} i_2 \, d\lambda_2 = \int_0^{\lambda_{2_0}} \left(\frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D} \right) d\lambda_2$$
$$= \frac{L_{11}\lambda_{2_0}}{2D} - \frac{L_{21}\lambda_{10}\lambda_{20}}{D}$$

4.4. زياده لچھوں كامقت طيسي نظام

(4.58)
$$\int_{z_{1/2}/z_{1}^{2}} \partial W_{m} = \frac{L_{11}\lambda_{20}^{2}}{2D} - \frac{L_{21}\lambda_{10}\lambda_{20}}{D}$$

ملتا ہے۔

مساوات 4.43 ،4.54 اور 4.58 کو جمع کر کے مساوات 4.39 کا حل ماتا ہے۔

(4.59)
$$\int \partial W_m = \frac{L_{22}\lambda_{1_0}^2}{2D} + \frac{L_{11}\lambda_{2_0}^2}{2D} - \frac{L_{21}\lambda_{1_0}\lambda_{2_0}}{D}$$

اسی طرح اگر ہم کو-توانائی سے حل کرتے تو

(4.60)
$$\partial W'_m(x, i_1, i_2) = \lambda_1 di_1 + \lambda_2 di_2 + F_m dx$$

جہاں

(4.61)
$$\lambda_1 = \left. \frac{\partial W'_m(x, i_1, i_2)}{\partial i_1} \right|_{x, i_2}$$

(4.62)
$$\lambda_2 = \frac{\partial W'_m(x, i_1, i_2)}{\partial i_2} \bigg|_{x, i_1}$$

$$(4.63) F_m = \left. \frac{\partial W'_m(x, i_1, i_2)}{\partial x} \right|_{i_1, i_2}$$

اس طرح مساوات 4.59 کی جگہ کو-توانائی کے لئے حاصل ہوتا ہے

(4.64)
$$W'_m(x, i_1, i_2) = \frac{1}{2}L_{11}(x)i_1^2 + \frac{1}{2}L_{22}(x)i_2^2 + L_{12}(x)i_1i_2$$

جس سے قوت کی مساوات

(4.65)
$$F_m = \frac{i_1^2}{2} \frac{\mathrm{d}L_{11}(x)}{\mathrm{d}x} + \frac{i_2^2}{2} \frac{\mathrm{d}L_{22}(x)}{\mathrm{d}x} + i_1 i_2 \frac{\mathrm{d}L_{12}(x)}{\mathrm{d}x}$$

حاصل ہوتی ہے۔

مثال 4.7: شکل 4.10 میں میکانی کام کو $heta = T_m \, \mathrm{d} heta$ کو کام کو $\partial W_{\dot{b}} = T_m \, \mathrm{d} heta$

حل:

$$\partial W_{\mathbf{\bar{\mathbf{\mathcal{J}}}}_{\mathcal{J}}} = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2$$

$$\partial W_{\dot{\mathfrak{z}}} = T_m \,\mathrm{d} heta$$
 اور

$$\partial W$$
ن بریان ∂W ن برین ∂W ن برین ∂W

میں پُر کرنے سے

(4.66)
$$\partial W_m = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2 - T_m \, \mathrm{d}\theta$$

حاصل ہوتا ہے۔ W_m کے جزوی تفرق

$$\partial W_m(\lambda_1, \lambda_2, \theta) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial \theta} d\theta$$

کا مباوات 4.66 کے ساتھ موازنہ کرنے سے

(4.67)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_1} \right|_{\lambda_2, \theta}$$

(4.68)
$$i_2 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_2} \right|_{\lambda_1, \theta}$$

(4.69)
$$T_m = -\left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \theta} \right|_{\lambda_1, \lambda_2}$$

حاصل ہوتے ہیں۔ان مساوات کا آخری جزو بالکل مساوات 4.34 کی طرح ہے۔اس کو حل کرنے کا ایک ایک قدم بالکل مساوات 4.34 کو حل کرنے کی طرح ہو گا بس فاصلہ x کی جگہ زاویہ θ آئے گا۔یوں جواب میں میدانی توانائی کے متغیرات $\lambda_1, \lambda_2, \theta$ ہوں گے یعنی۔

$$(4.70) W_m(\lambda_{1_0}, \lambda_{2_0}, \theta_0) = \int W_m = \frac{L_{22}\lambda_{1_0}^2}{2D} + \frac{L_{11}\lambda_{2_0}^2}{2D} - \frac{L_{21}\lambda_{1_0}\lambda_{2_0}}{D}$$

اسی طرح کو-توانائی کے لئے جواب یہ ہے

$$\partial W'_m(i_1, i_2, \theta) = \lambda_1 \operatorname{d} i_1 + \lambda_2 \operatorname{d} i_2 + T_m \operatorname{d} \theta$$

(4.72)
$$\lambda_{1} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{1}} \Big|_{i_{2}, \theta}$$

$$\lambda_{2} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{2}} \Big|_{i_{1}, \theta}$$

$$T_{m} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial \theta} \Big|_{i_{1}, i_{2}}$$

شکل4.12: دولچھوں کے نظام میں قوت مروڑ۔

جہاں

(4.73)
$$W'_m(i_1, i_2, \theta) = \frac{1}{2}L_{11}i_1^2 + \frac{1}{2}L_{22}i_2^2 + L_{12}i_1i_2$$

مثال 4.8: شکل 4.12 میں دو کچھوں کا نظام د کھایا گیا ہے۔اس نظام کا ایک حصد ساکن رہتا ہے اور دوسرا گھوم سکتا ہے۔افقی لکیر سے گھڑی کی اُلٹی جانب زاویہ θ ناپا جاتا ہے۔ کچھوں کی خود امالہ اور مشتر کہ امالہ مندرجہ ذیل ہیں۔

$$L_{11} = 20 + 30\cos 2\theta$$

$$L_{22} = (20 + 30\cos 2\theta) \times 10^{-3}$$

$$L_{12} = 0.15\cos \theta$$

برتی رو T_m معلوم کریں۔ $i_1=0.02\,\mathrm{A},i_2=5\,\mathrm{A}$ معلوم کریں۔

حل: مساوات 4.73 سے کو-توانائی حاصل ہوتی ہے اور مساوات 4.72 کے آخری جزو سے قوت مروڑ یعنی

$$T_m = \frac{\partial W'_m}{\partial \theta} = -30i_1^2 \sin 2\theta - 30 \times 10^{-3}i_2^2 \sin 2\theta - 0.15i_1i_2 \sin \theta$$
$$= -0.012 \sin 2\theta - 0.75 \sin 2\theta - 0.015 \sin \theta$$
$$= -0.762 \sin 2\theta - 0.015 \sin \theta$$

قوت مروڑ منفی ہونے کا مطلب ہے کہ یہ زادیہ کی اُلٹ سمت میں ہے۔یوں اگر آپ زادیہ بڑھائیں گے تو یہ نظام اسے کم کرنے کی کوشش کریں تو یہ زادیہ بڑھانے کی اسے کم کرنے کی کوشش کریں تو یہ زادیہ بڑھانے کی جانب قوت مروڑ پیدا کرے گا۔ سادہ زبان میں گھومتا حصہ اُفقی لکیر پر رہنے کی کوشش کرے گا۔

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشین کے بنیادی اصول پر غور کیا جائے گا۔ ظاہری طور پر مختلف مشین ایک ہی قسم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيرادُك

فیراڈے کے قانون ¹ کے تحت جب بھی ایک کچھے کا ارتباط بہاو \ وقت کے ساتھ تبدیل ہو تو اس کچھے میں برقی دباو پیدا ہوتا ہے۔ یعنی

(5.1)
$$e = -\frac{\partial \lambda}{\partial t} = -N\frac{\partial \phi}{\partial t}$$

گھو متے مشین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے لائی جاتی ہے۔ یا تو کچھے کو ساکن مقناطیسی بہاو میں گھمایا جاتا ہے، یا پھر ساکن کچھے میں مقناطیس گھمایا جاتا ہے، وغیرہ وغیرہ۔

Faraday's law¹

لی بہاو سے دیادہ سے زیادہ مقناطیسی قالب 2 پر لیٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زیادہ سے زیادہ مقناطیسی بہاو عاصل کیا جاتا ہے۔ دیگر رہے کہ قالب کی شکل تبدیل کر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ دیگر رہے کہ قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کی جگہ پہنچایا جاتا ہے۔

چونکہ ایسے مشین کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو³ پیدا ہوتا ہے۔ ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر، قالب کو باریک لوہے کی پتری⁴ تہہ در تہہ رکھ کر بنایا جاتا ہے ۔ یہ بالکل اسی طرح ہے جیسے ٹرانسفار مروں میں کیا جاتا ہے۔

5.2 معاصر مشين

شکل 5.1 میں معاصر برتی جزیٹر کا ایک بنیادی شکل دکھایا گیا ہے۔ اس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ مقناطیس کا مقام اس کے میکانی زاویہ θ_m سے بتلائی جاتی ہے۔ افقی کلیر سے گھڑی کے الٹ سمت زاویہ θ_m نایا جاتا ہے۔

n یہاں کچھ باتیں وضاحت طلب ہیں۔ اگر مقناطیس ایک مقررہ رفتار سے یوں گھوم رہا ہو کہ یہ ہر سینڈ میں n مکمل چکر لگائے تو ہم کہتے ہیں کہ مقناطیس کے گھومنے کی تعدد n ہر ٹڑ⁵ ہے۔اس بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیس 60n چکر فی منٹ 6 کی رفتار سے گھوم رہا ہے۔ آپ جانتے ہیں کہ ایک چکر 60n زاویہ یا 2π ریڈیئن 7 پہم مشتمل ہوتا ہے۔ الہذا اس گھومنے کی رفتار کو 2π ریڈیئن فی سینڈ بھی کہا جا سکتا ہے۔اس بات کو اب ہم یوں بیان کر سکتے ہیں۔ اگر مقناطیس کے گھومنے کی تعدد 7 ہر ٹر ہو تو یہ ω ریڈیئن فی سینڈ کی رفتار سے گھومتا ہے۔ جہاں 0 0 عدد 0 0 عدد 0 ہر ٹر ہو تو یہ 0 ریڈیئن فی سینڈ کی رفتار سے گھومتا ہے۔ جہاں 0 مقاطیس کے گھومنے کی تعدد 0 جہاں میں بیٹ ہیں۔ اگر مقناطیس کے گھومنے کی تعدد 0 ہر ٹر ہو تو یہ 0 ریڈیئن فی سینڈ کی رفتار سے گھومتا ہے۔ جہاں

اس کتاب میں گھومنے کی رفتار عموماً ریڈیٹن فی سینڈ میں ہی بیان کی جائے گی۔

شکل 5.1 میں دکھائے گئے مثین میں مقناطیس کے دو قطب ہیں، اس لئے اس کو دو قطب والا مثین کہتے ہیں۔ اس مثین میں ایک ساکن لچھا استعال ہوا ہے جس کی وجہ سے اس کو ایک لچھے کا مثین بھی کہتے ہیں۔ اس کے باہر

 $\begin{array}{c} {\rm magnetic~core^2} \\ {\rm eddy~currents^3} \\ {\rm laminations^4} \\ {\rm Hertz^5} \\ {\rm rounds~per~minute,~rpm^6} \end{array}$

radians⁷

5.2 معاصر مشين

شكل 5.1: دوقطب،ايك دور كامعاصر جزيير ـ

a' مقناطیسی قالب ہے۔ قالب میں، اندرکی جانب دو شکاف ہیں، جن میں N چکر کا لچھا موجود ہے۔ لچھے کو a اور a اور a وجہ سے واضح کیا گیا ہے۔ چونکہ یہ لچھا جزیٹر کے ساکن حصہ یہ پایا جاتا ہے لہذا یہ بھی ساکن رہتا ہے اور اسی وجہ سے اسے ساکھ لچھا a کہتے ہیں۔

متناطیس کا مقناطیس بہاو اس کے شالی قطب N^9 سے نکل کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر اور ایک مرتبہ پھر خلائی درز میں سے ہوتا ہوا مقناطیس کے جنوبی قطب S^{-10} میں داخل ہوتا ہے۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کبیروں سے دکھایا گیا ہے۔ اگر غور کیا جائے تو یہ مقناطیسی بہاو، سارا کا سارا، ساکن کھیے میں سے بھی گزرتا ہے۔

شکل 5.1 میں مقناطیس سیدھے سلاخ کی مانند دکھایا گیا ہے۔ شکل 5.2 میں اس مقناطیس کو تقریباً گول دکھایا گیا ہے۔ یہاں مقناطیس کے محور کا زاویہ θ_m صفر کے برابر ہے۔مقناطیس اور ساکن قالب کے در میان صفر زاویہ، لینی $\theta=\theta$ ، پر خلائی درزکی لمبائی کم سے کم اور نوے زاویہ، لینی $90=|\theta|$ ، پہ زیادہ سے زیادہ ہے۔کم خلائی درزکو بول تبدیل کیا جاتا ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو سے زیادہ مقناطیسی بہاو ممکن ہوتا ہے۔خلائی درزکو بول تبدیل کیا جاتا ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو میناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پہ داخل ہوتا ہے۔ اگر مقناطیس اور قالب کے در میان خلائی درز میں B سائن نما ہو، لینی

$$(5.3) B = B_0 \cos \theta_p$$

 $heta_p = 3$ تو خلائی در زمیں مقناطیسی بہاو B کی مقدار B کے ساتھ تبدیل ہو گی۔یہ کثافتِ مقناطیسی بہاو صفر زاویہ، لینی مقدار B ساتھ تبدیل ہو گی۔یہ کثافت مقناطیس کے شالی قطب سے B0 پہر زیادہ سے زیادہ ہو گی۔وہ کی اور نوے زاویہ، لینی B0 نالی قطب سے مقابلی مقابلی کے شالی قطب سے بیادہ میں مقابلی مقابلی کے شالی قطب سے B1 میں مقابلی کے شالی مقابلی مقابلی مقابلی مقابلی مقابلی کے شالی مقابلی مقاب

stator coil⁸ north pole⁹ south pole¹⁰

شکل 5.2: کثافت مقناطیسی بہاو کی زاویہ کے ساتھ تبدیلی۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

للذا

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس سے پیدا سائن نما مقناطیسی دباو د کھایا گیا ہے۔ ایسے مقناطیسی دباو کو ہم عموماً ایک

5.2 معاصر شين

شكل 5.3:جب مقناطيس كسى زاويد بيه موتو كثافت مقناطيسي بهاويوں موگا

شكل 5.4: مقناطيسي دباوكوسمتييسے ظاہر كياجاتاہے۔

سمتیے سے ظاہر کرتے ہیں جہاں سمتیہ کا طول مقناطیسی دباو کے حیطہ کے برابر ہوتا ہے اور اس کی سمت مقناطیس کی شال کو ظاہر کرتا ہے۔ شکل 5.4 میں ایبا ہی د کھایا گیا ہے۔ یہ سمجھ لینا ضروری ہے کہ اس سمتیہ کی ست سائن نما مقناطیسی دباو کے حیطہ کو واضح کرتا ہے۔

 λ_{θ} کیل 5.3 میں مقناطیس کو کسی ایک لمحہ t_1 زاویہ $\theta_m(t_1)$ پہ دکھایا گیا ہے۔ یہاں ساکن کچھے کا ارتباط بہاو e(t) بر تی e(t) مقناطیس، گھڑی کے الٹی سمت، ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تو ساکن کچھے میں اس لمحہ e(t) برتی دباو پیدا ہو گا جہاں

$$(5.6) e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

شكل 5.5: چار قطب والاا يك دور معاصر جنريٹر۔

کے برابر ہے۔چونکہ ہمیں برقی و باو کی قیمت نا کہ اس کے \mp ہونے سے ولچین ہے لہذا اس مساوات میں منفی کی علامت کو نظر انداز کیا گیا ہے۔

جب مقناطیس آدھا چکر، یعنی π ریڈیئن، گھوے تو اس کے دونوں قطب آپس میں جگہیں تبدیل کر لیں گے۔ لیجے میں مقناطیس بہاو کی سمت اُلٹی ہو جائے گی۔ ساکن لیجے میں ارتباط بہاو اب $-\lambda_0$ ہو جائے گا اور اس میں امالی برقی دباو -e(t) ہو جائیں گے۔ اور جب مقناطیس ایک مکمل چکر کاٹے تو مقناطیس ایک مرتبہ پھر اس جگہ ہو گا جہاں ہے شکل میں دکھایا گیا ہے۔ ساکن لیجے کا ارتباط بہاو ایک مرتبہ پھر λ_0 ہی ہو گا اور اس میں امالی برقی دباو بھی ایک مرتبہ پھر λ_0 ہی ہو گا اور اس میں امالی برقی دباو بھی ایک مرتبہ پھر λ_0 ہی ہوں گے۔ لیعنی مقناطیس اگر λ_0 ہی اور اس میں امالی برقی دباو کے زاویہ میں مرتبہ پھر λ_0 کا زاویہ طے کرے تو امالی برقی دباو کے زاویہ میں λ_0 کی تبدیلی آتی ہے۔ لہذا دو قطب کی مشین میں میکانی زاویہ λ_0 اور برقی زاویہ λ_0 برابر ہوتے ہیں، یعنی λ_0

 $\theta_e = \theta_m$

n اس مشین میں اگر مقناطیس n چکر فی سینڈ کی رفتار سے گھوے تو لیچھ میں امالی برقی دباو e(t) بھی ایک سینڈ میں $f_e=n$ کمل چکر کاٹے گی۔ ہم کہتے ہیں کہ e(t) کے تعدد f_e^{11} کی مقدار n ہر ٹرن¹² ہے۔ لیخی اس صورت میں e(t) کی سکتے ہیں ہر ٹرن¹³ یا ہم کسی تعدد کے لئے لکھ سکتے ہیں

 $f_e = f_m$

چونکہ اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے سات تبدیل ہوتے بھی آپس میں ایک نسبت رکھتے ہیں للذا ایسے مشین کو معاصر مشین 14 کہتے ہیں۔ یہاں یہ نسبت ایک کی ہے۔

frequency¹¹

 $Hertz^{12}$

 $[\]mathrm{Hertz},\,\mathrm{Hz^{13}}$

synchronous machine¹⁴

5.2. معاصر مشين

شکل 5.5 میں چار قطب، ایک دور کا معاصر جزیٹر دکھایا گیا ہے۔ چھوٹے مثین میں عموماً مقناطیس ہی استعال ہوتے ہیں۔ البتہ بڑے مثین میں برقمے مقناطیس 15 استعال ہوتے ہیں۔ شکل 5.5 میں ایسا ہی دکھایا گیا ہے۔ دو سے زیادہ قطب والے مثین میں کی ایک شالی قطب کو حوالہ متن بنایا جاتا ہے۔ شکل میں اس قطب کو θ_m پہ دکھایا گیا ہے اور یوں دوسرا شالی قطب $(\theta_m+\pi)$ کے زاویہ یہ ہے۔

جیسا کہ نام سے واضح ہے، اس مشین میں موجود مقناطیس کے چار قطب ہیں۔ ہر ایک ثالی قطب کے بعد ایک جونی قطب آتا ہے۔ ایک دور کی آلوں میں مقناطیس کے جتنے قطب کے جوڑے ہوتے ہیں، اس میں اسے ہی ساکن کچھے ہوتے ہیں۔ چونکہ شکل میں دیۓ گئے مشین کے چار قطب بعنی دو جوڑے قطب ہیں، لہٰذااس مشین کے ساکن حصہ یہ دو ساکن کچھے لیٹے گئے ہیں۔ ایک کچھے کو a_1 سے واضح کیا گیا ہے اور دو سرے کو 2 سے۔ کچھے ایک قالب مصہ یہ دو ساکن کچھے لیٹے گئے ہیں۔ ایک کچھے کو a_1 سے واضح کیا گیا ہے اور دو شکاف a_2 اور کھا گیا ہے۔ ان میں موجود دو شکاف a_1 اور گئا ہوتا ہے۔ اس طرح جزیئر کی میں موجود دو شکاف بیا برقی دباو پیدا ہوتی ہے۔ ان دونوں کچھوں کو سلسلہ وار 16 جوڑا جاتا ہے۔ اس طرح جزیئر کی کل برقی دباو ایک کچھے میں پیدا برقی دباو کے دگنا ہوتا ہے۔ ایک دور کے آلوں میں اگر قالب کو، مقناطیس کے جنے قطب ہوں اسے حصوں میں تقسیم کر لیا جائے، تو اس مشین کا ہر ایک ساکن کچھا ایسا ایک حصہ گھرتا ہے۔ شکل میں چوا قطب ہیں لہٰذا اس کا ایک لچھا نوے میکانی زاویہ کے اصاطے کو گھر رہا ہے۔

اب تک ہم نے گھومتے کچھے اور ساکن کچھے کی بات کی ہے۔ یہ دو کچھے دراصل دو بالکل مختلف کار کردگی کے حامل ہوتے ہیں۔اس بات کی یہاں وضاحت کرتے ہیں۔

جیسا پہلے بھی ذکر ہوا چھوٹی گھومتی آلوں میں مقناطیسی میدان ایک مقناطیس ہی فراہم کرتی ہے جبکہ بڑے آلوں میں برقی مقناطیس ہو میدان فراہم کرتی ہے۔ اگرچہ اب تک کی شکلوں میں مقناطیس کو گھومتے حصہ کے طور پر دکھایا گیا ہے مگر حقیقت میں ہی بھی مشین کا گھومتا حصہ اور بھی ہیہ اس کا ساکن حصہ ہوتا ہے۔ میدان فراہم کرنے والا لچھا مشین کے کل برتی طاقت کے چند فی صد برابر برتی طاقت استعال کرتا ہے۔ اس میدان فراہم کرنے والے لچھے کو میدانی لچھا¹⁸ کہتے ہیں۔ اس کے برعکس مشین میں موجود دوسری نوعیت کے لچھے کو قورے لچھا¹⁸ کہتے ہیں۔ برتی جزیر سے حاصل برتی طاقت اس قوی لچھے کہ ہی حاصل برتی مورد کی طاقت اس قوری کھے کو ہی فراہم کیا جاتا ہے۔

electromagnet¹⁵

series connected¹⁶

field coil¹⁷

armature $coil^{18}$

شكل 5.6: چار قطب اور دولچھے والے مثین میں مقناطیسی بہاو۔

شكل 5.7: سائن نما كثافت مقناطيسي بهاويه

اب اگر ہم، گھومتے اور ساکن حصہ کے در میان، خلائی در زمیں B کو دیکھیں تو شالی قطب سے مقناطیسی بہاو باہر کی جانب نکل کر جنوبی قطب میں داخل ہوتا ہے جبکہ جنوبی قطب میں مقناطیسی بباو قالب سے نکل کر جنوبی قطب میں اندر کی جانب داخل ہوتا ہے۔ یہ شکل 5.6 میں دکھایا گیا ہے۔ یوں اگر ہم اس خلائی در زمیں ایک گول چکر کا ٹیں تو مقناطیسی بباو کی سمت دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گی۔ مزید یہ کہ آلوں میں کوشش کی جاتی ہے کہ خلائی در زمیں B سائن نما ہو۔ یہ کیے کیا جاتا ہے، اس کو جم آگے پڑھیں گے۔ لہذا اگر یہ تصور کر لیا جاتا ہے، اس کو جم آگے پڑھیں گے۔ لہذا اگر یہ تصور کر لیا جاتا کہ B سائن نما ہی ہے تب خلائی در زمیں B کی مقدار، شکل 5.7 کی طرح ہو گی۔ اس شکل میں برتی زاویہ θ استعال کیا گیا ہے۔

یوں ہم ایک ایس معاصر مشین جس میں P قطب مقناطیس پایا جاتا ہو کے لئے لکھ سکتے ہیں

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

اس صورت میں میکانی اور برقی تعدد ایک مرتبہ پھر آپس میں ایک نسبت رکتے ہیں۔

5.2 معاصر مشين

مثال 5.1: پاکستان میں گھروں اور کارخانوں میں Hz کی برقی طاقت فراہم کی جاتی ہے لیعنی ہمارے ہاں $f_e=50$

- اگریہ برقی طاقت دو قطب کے جزیٹر سے حاصل کی جائے تو یہ جزیٹر کس رفتار سے تھمایا جائے گا۔
 - اگر جزیٹر کے بیں قطب ہوں تب یہ جزیٹر کس رفار سے گھمایا جائے گا۔

حل:

- مساوات 5.8 سے ہم دیکھتے ہیں کہ اگر یہ برقی طاقت دو قطب، P=2، والے جزیڑ سے حاصل کی جائے تو اس جزیڑ کو $f_m=50$ چکر فی سکنڈ لیعنی 000 چکر فی منٹ 19 گھمانا ہو گا۔
- $f_m = 5$ واگر یہی برقی طاقت ہیں قطب، P = 20، والے جزیڑ سے حاصل کی جائے تو پھر اس جزیڑ کو P = 5 والے جزیر فی منٹ کی رفتار سے گھمانا ہو گا۔

اب یہ فیصلہ کس طرح کیا جائے کہ جزیر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیر سست رفتار جبکہ ٹربائن سے چلنے والے جزیر تیز رفتار ہوتے ہیں، المذا پانی سے چلنے والے جزیر زیادہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیر آپ کو دو قطب کے ہی ملیں گے۔

شکل 5.8 میں دو قطب والا تین دور کا معاصر مشین دکھایا گیا ہے۔اس میں تین ساکن کچھے ہیں۔ان میں ایک کچھ میں دیا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تو یہ بالکل شکل کچھ میں دیا گیا مشین ہی تھا۔البتہ دیئے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

اگر a کچھا میں برقی رویوں ہو کہ شگاف a میں برقی رو ، کتاب کے صفحہ سے عمودی رُخ میں باہر کی جانب ہو اور 'a میں برقی رو کا رخ اس کے بالکل الٹ سمت میں ہو تو ہم کچھے کی سمت کا تعین دائیں ہاتھ کے ذریعہ یوں کرتے ہیں۔

rpm, rounds per minute¹⁹

شكل 5.8: دوقطب، تين دور معاصر مشين ـ

• اگر ہم دائیں ہاتھ کی چار انگلیوں کو دونوں شگافوں میں برقی رو کی جانب لیٹیں تو اسی ہاتھ کا انگوٹھا کچھے کی سمت متعین کرتا ہے۔

شکل 5.8 میں کچھ a کی سمت تیر والی لکیر سے دکھائی گئی ہے۔ اس سمت کو ہم صفر زاویہ تصور کرتے ہیں۔ لہذا شکل میں a کچھا صفر زاویہ پر لپٹا گیا ہے، لیعن a و a ہے۔ باتی کچھوں کے زاویہ ، کچھا a کی سمت سے، گھڑی کی اُٹی رُخ، ناپے جاتے ہیں۔

شکل 5.8 میں کچھا b کو شگاف b اور b' میں رکھا گیا ہے اور کچھا c کو شگاف c اور c' میں رکھا گیا ہے۔ مزید سے کہ کچھا d کو d اور d وادر d کو d وادر d واد

$$\lambda_b(t_2) = \lambda_a(t_1)$$

ای طرح اگر مقناطیس مزید °120 زاویہ طے کرے تو اس لمحہ t_3 پر لچھا c کا ارتباط بہاو (t_3) ہو گا اور مزید یہ کہ یہ $\lambda_c(t_3)$ ہو گا۔ یوں $\lambda_c(t_3)$ ہو گا۔ یوں

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

.5. معاصر مثين 5. 5. معاصر مثين

شكل 5.9: دوقطب تين دور مشين ـ

ہیں۔ان کمحات پر ان کیھوں میں

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

(5.12)
$$e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

$$(5.13) e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔مساوات 5.10 کی روشنی میں

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگر شکل 5.9 میں صرف کچھ a پیا جاتا تو یہ بالکل شکل 5.1 کی طرح ہوتا اور اب اگر اس میں مقناطیں کو گھڑی کی اُلٹی سمت ایک مقررہ رفتار ω سے گھمایا جاتا تو، جیسے پہلے تذکرہ کیا گیا ہے، کچھے a میں سائن نما برقی دباو پیدا ہوتی۔ شکل 5.9 میں کی ایک کچھے کو کسی دوسرے کچھے پر کوئی برتری حاصل نہیں۔ للذا اب شکل 5.9 میں اگر مقناطیس اسی طرح گھمایا جائے تو اس میں موجود تینوں سائن کچھوں میں سائن نما برقی دباو پیدا ہو گی البتہ مساوات d 5.14 کے تحت یہ برقی دباو آپس میں d 120 کے زاویہ پر ہوں گے۔

شكل5.10: چار قطب، تين دور معاصر مشين ـ

میں دو قطبین کے احاطے لیعنی °180 میکانی زاویہ میں آپ کو بالکل اسی طرح تین دور کے 61، 180° 180° اور 22′ 180° اور 22′ اور 23′ نظر آتے ہیں۔ کسی بھی لمحہ 1 ہو اور 22 کیمیاں کیچھوں میں بالکل کیمیاں برتی دباو پیدا ہو گی۔ تین دور کے دو کیمیاں کیچھوں کو سلسلہ وار یا متوازی جوڑ کر دکھایا گیا ہے کو سلسلہ وار یا متوازی جوڑ کر دکھایا گیا ہے۔ جہاں کہ کچھے کو صفر زاویہ پر تصور کیا گیا ہے۔

5.3 محرك برقى دباو

قانونِ لوریز 20 کے تحت اگر برقی بار 21 q مقناطیسی میدان B میں سمتی رفتار v سے حرکت کر رہا ہو تو اس پر قوت F اثر کرے گی جہال

$$(5.15) F = q(\boldsymbol{v} \times \boldsymbol{B})$$

کے برابر ہے۔

 $\begin{array}{c} {\rm Lorentz~law^{20}} \\ {\rm charge^{21}} \end{array}$

5.3. محسر ك_بر قي دباو

شكل 5.11: ابك چيكر كالجھامقناطيسي ميدان ميں گھوم رہاہے۔

یہاں سمتی رفتار سے مراد برقی بارکی سمتی رفتار ہے للذا مقناطیسی میدان کو ساکن تصور کر کے اس میں برقی بار کی سمتی رفتار وہ ہو گی۔

اس قوت کی سمت دائیں ہاتھ کے قانون سے معلوم کی جاتی ہے۔اگرید برقی بار شروع کے نقطہ سے آخری نقطہ تک سمتی فاصلہ 1 طے کرے تو اس پر W کام ہو گا جہال

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

اکائی مثبت برقی بار کو ایک نقطہ سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے مابین برقی دباو²² کہتے ہیں اور اس کی اکائی وولئے۔ V سے بیوں اس مساوات سے ان دو نقطوں کے مابین حاصل برقی دباو

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

وولٹ ہو گی۔

اس طرح حرکت کی مدد سے حاصل برتی دباو کو محرکے برتی دباو²⁴ کہتے ہیں۔ روایتی طور پر کسی بھی طریقہ سے حاصل برتی دباو کھ کرک برتی دباو کھی دباو کھی دباو کہاتی ہے۔

اس مساوات کو شکل 5.11 میں استعال کرتے ہیں۔ گھومتے حصہ پر ایک چکر کا لچھا نسب ہے۔ بائیں جانب خلاء میں لچھے کی برتی تارپر غور کریں۔ مساوات 5.15 کے تحت اس تار میں موجود مثبت برتی بارپر صفحہ کی عمودی سمت میں باہر کی جانب قوت اثر انداز ہو گی اور اس میں موجود منفی برتی بارپر اس کی اُلٹ سمت قوت عمل کرے گی۔ اس طرح مساوات 5.17 کے تحت صفحہ سے باہر جانب برتی تارکا سرا برتی دباو e کا مثبت سرا ہو گا اور صفحہ کی اندر جانب برتی تارکا سرا برتی دباو e کا مثبت سرا ہو گا اور صفحہ کی اندر جانب برتی تارکا سرا برتی دباو e کا منفی سرا ہو گا۔

potential difference, voltage²²

electromotive force, emf^{24}

اگر گھومتے حصہ کی محور پر نکلی محدد قائم کی جائے تو جنوبی مقناطیسی قطب کے سامنے خلاء میں B رداس کی سمت میں ہے جبکہ شالی مقناطیسی قطب کے سامنے خلاء میں B رداس کی اُلٹ سمت میں ہے۔یوں جنوبی قطب کے سامنے شگاف میں برتی تار b کے لئے ہم لکھ سکتے ہیں شگاف میں برتی تار b کے لئے ہم لکھ سکتے ہیں

(5.18)
$$\begin{aligned} \boldsymbol{v}_S &= v \boldsymbol{a}_\theta = \omega r \boldsymbol{a}_\theta \\ \boldsymbol{B}_S &= B \boldsymbol{a}_{\mathtt{T}} \\ \boldsymbol{l}_S &= l \boldsymbol{a}_{\mathtt{Z}} \end{aligned}$$

للذااس جانب لحجهے كى ايك تاريس پيدا محرك برقى دباو

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

ہو گی۔

جنوبی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کی سمت a_Z کی گئی ہے۔اس مساوات میں برقی دباو کے منفی ہونے کا مطلب ہے کہ برقی تارکا مثبت سرا a_Z کی سمت میں ہے لینی اس کا نجلا سرا مثبت اور اوپر والا سرا منفی ہے۔ یوں اگر اس برقی تارمیں برقی روگزر سکے تو اس کی سمت a_Z لینی صفحہ کی عمودی سمت میں اندرکی جانب ہوگی جے شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

اس طرح شال مقناطیس قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم لکھ سکتے ہیں

(5.20)
$$\begin{aligned} \boldsymbol{v}_N &= v\boldsymbol{a}_\theta = \omega r\boldsymbol{a}_\theta \\ \boldsymbol{B}_N &= -B\boldsymbol{a}_{\mathrm{r}} \\ \boldsymbol{l}_N &= l\boldsymbol{a}_{\mathrm{z}} \end{aligned}$$

اور يول

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N}$$
$$= -\omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$
$$= -\omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$
$$= \omega r B l$$

5.3. محسر ك_ برقى دباو

شالی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کی سمت a_z لی گئی ہے۔اس مساوات میں برقی دباو کے مثبت ہونے کا مطلب ہے کہ برقی تارکا مثبت سرا a_z کی سمت میں ہے بینی اس کا اوپر والا سرا مثبت اور نجلا سرا منفی ہے۔ یوں اگر اس برقی تار میں برقی روگزر سکے تو اس کی سمت a_z بینی صفحہ کی عمودی سمت میں باہر کی جانب ہوگی جسے شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دو برقی تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان دونوں کے نچلے سرے سلسلہ وار جڑے ہیں جو شکل میں نہیں دکھایا گیا۔ یوں اس کچھے کے اوپر نظر آنے والے سروں پر کل برقی دباو e ان دو برقی تاروں میں پیدا برقی دباو کا مجموعہ ہو گا یعنی

(5.22)
$$e = 2rlB\omega$$
$$= AB\omega$$

یہاں کچھے کا رقبہ N ہوتی ہے تو N کھر کے کچھ سے اتن برقی دباہ حاصل ہوتی ہے تو N کھر کے کچھ سے

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

حاصل ہو گا۔

گومتی آلوں میں خلائی درز میں B اور v ہر لمحہ عمودی ہوتے ہیں۔ مساوات 5.17 سے ظاہر ہے کہ اگر گھومنے کی رفتار اور محوری لمبائی معین ہوں تو پیدا کردہ برقی دباو ہر لمحہ B کے براہِ راست متناسب ہو گا۔لہذا اگر خلائی درز میں زاویہ کے ساتھ تبدیل ہو گا۔یوں جس شکل میں زاویہ کے ساتھ تبدیل ہو گا۔یوں جس شکل کی برقی دباو خلائی درز میں پیدا کرنی ہو گی۔اگر سائن نما برقی دباو پیدا کرنی مقصد ہو تو خلائی درز میں محیط پر سائن نما کثافتِ مقناطیسی بہاو ضروری ہے۔

اگلے جھے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گا۔

5.4 تھیلے کچھے اور سائن نمامقناطیسی دیاو

ہم نے اب تک جینے مثین دیکھے ان سب میں گھو 25 کھے دکھائے گئے۔ مزید یہ کہ ان آلوں میں گھومتے تھے پہ موجود متناطیس کے ابھرے قطبے 26 تھے۔ در حقیقت آلوں کے عموماً ہموار قطبے 27 ہوتے ہیں اور ان میں پھیلے کچھے 28 پائے جاتے ہیں۔ ایبا کرنے سے ہم ساکن اور گھومتے حصوں کے در میان خلائی درز میں سائن نما مقناطیسی دباو اور سائن نما کتافت متناطیسی بہاو پیدا کر سکتے ہیں۔

شکل 5.12 میں ایک لچھا گچھ کی شکل کا دکھایا گیا ہے۔اس کے گھومنے والا حصہ گول شکل کا ہے اور اس کا $\mu_r \to \infty$ کی شکل کا دکھایا گیا ہے۔ $\mu_r \to \infty$ کہ مقناطیسی دباو $\mu_r \to \infty$ کے مقناطیسی دباو $\mu_r \to \infty$ کہ مقناطیسی دباو کو جنم دیتا ہے جس کو ہلکی سیاہی کی کلیروں سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو کو کچھ کے گرد ایک چکر کا شخے خلائی درز میں سے دو مرتبہ گزرنا پڑتا ہے۔ لہذا

$$\tau = Ni = 2Hl_a$$

non-distributed $coils^{25}$

salient poles²⁶ non-salient poles²⁷

distributed winding²⁸

یوں ساکن کچھے کا آدھا مقناطیسی دباو ایک خلائی درز اور آدھا دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید ہے کہ خلائی درز میں کہیں پہ مقناطیسی دباو (اور مقناطیسی دباو)، رداس کی اسمت میں بیں۔ اگر ہم رداس کی سمت میں بیں اور کہیں پہ خلائی درز میں مقناطیسی دباو (اور مقناطیسی دباو) ہرداس کی اُلٹی سمت میں بیں۔ اگر ہم رداس کی سمت کو مثبت لیں تو مقناطیسی بہاو (اور مقناطیسی دباو (اور مقناطیسی دباو) رداس کی اُلٹ سمت میں بیں لہذا یہاں ہے مثبت بیں جبکہ بی جگہ مقناطیسی دباو (اور مقناطیسی بہاو) رداس کی اُلٹ سمت میں بیں لہذا یہاں ہے منفی بیں۔ ایسا ہی شکل 5.13 میں دکھایا گیا ہے۔ اس شکل میں خلائی درز میں مقناطیسی دباو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ $\frac{\pi}{2} > \theta > \frac{\pi}{2} > 0$ در میان خلائی درز میں مقناطیسی دباو کو زاویہ کے مقناطیسی دباو کے آدھا ہے اور اس کی سمت مثنیت ہے جبکہ کے در میان خلائی درز میں مقناطیسی دباو لیھے کے مقناطیسی دباو کے آدھا ہے اور اس کی سمت مثنی سمت مثنی ہے۔ یاد رہے کہ مقناطیسی دباو کی سمت کیا جاتا ہے۔

5.4.1 بدلتی رووالے مشین

بدلتی رو (اے سی) مشین بناتے وقت یہ کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دباو سائن نما ہو۔ایہا کرنے کی خاطر کچھوں کو ایک سے زیادہ شکافوں میں تقسیم کیا جاتا ہے۔ اس سے سائن نما مقناطیسی دباو کیسے حاصل ہوتی ہے، اس بات کی یہاں وضاحت کی جائے گی۔

 ${\rm radius}^{29}$

وریئر تسلسل 30 کے تحت ہم کسی بھی تفاعل 31
$$f(\theta_p)$$
 کو یوں لکھ سکتے ہیں۔

(5.25)
$$f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$$

اگر اس تفاعل کا دوری عرصه T^{32} ہو تب

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

کے برابر ہوں گے۔

مثال 5.2: شكل 5.13 مين ديئ كئ مقناطيسي دباوكا

- فوريئر تسلسل حاصل كريي_
- تيسري موسيقائي جز 33 اور بنيادي جز 34 کي نسبت معلوم کريں۔

حل:

• مساوات 5.26 کی مدد سے

$$a_0 = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_p + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_p + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_p \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

Fourier series³⁰

function³¹

time period³²

third harmonic component³³

fundamental component³⁴

اسی طرح

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

اس مساوات میں n کی قیمت ایک، دو، تین وغیرہ کے لئے ماتا ہے $a_1=\left(\frac{4}{\pi}\right)\left(\frac{Ni}{2}\right), \quad a_3=-\left(\frac{4}{3\pi}\right)\left(\frac{Ni}{2}\right), \quad a_5=\left(\frac{4}{5\pi}\right)\left(\frac{Ni}{2}\right)$

$$a_2 = a_4 = a_6 = 0$$

اسی طرح

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= 0$$

• ان جوابات سے

$$\left|\frac{a_3}{a_1}\right| = \frac{\left(\frac{4}{3\pi}\right)\left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right)\left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

حاصل ہوتا ہے۔للذا تیسری موسیقائی جزو بنیادی جزو کے تیسرے جھے یعنی 33.33 فی صد کے برابر ہے۔

مثال 5.2 میں حاصل کئے گئے a_1, a_2, \cdots استعال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباوau فوریئر شلسل یوں کھھ سکتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

مثال 5.2 سے ظاہر ہے کہ مقناطیسی دباو کے موسیقائی اجزاء کی قیمتیں اتنی کم نہیں کہ انہیں رد کیا جا سکے۔ جیسا آپ اس باب میں آگے دیکھیں گے کہ حقیقت میں استعال ہونے والے مقناطیسی دباو میں موسیقائی اجزاء قابل نظر انداز ہوں گے اور ہمیں صرف بنیادی جزو سے غرض ہو گا۔اسی حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے اسی مساوات کو یوں لکھتے ہیں۔

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

جہاں

$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

 $\frac{1}{2}$ برابر ہے۔ اس مساوات سے ہم و کھتے ہیں کہ شکل 5.12 میں کچھے سے حاصل مقناطیسی دباو بالکل اس طرح ہے جیسے شکل 5.2 میں سلاخ نما مقناطیس صفر زاویہ پر رکھے حالت میں دیتا۔ اگر یہاں یہ لچھا کسی ایسے زاویہ پر رکھا گیا ہوتا کہ اس سے حاصل مقناطیسی دباو زاویہ θ_m پر زیادہ سے زیادہ ہوتا تو یہ بالکل شکل 0.5 میں موجود مقناطیس کی طرح کا ہوتا۔ شکل 0.5 ایک ایسی ہی مثال ہے۔ ہم بالکل مساوات 0.5 کی طرح اس شکل میں لچھا 0.5 کے لئے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

اسی طرح کچھا b اور c کے چونکہ $\theta_{m_b}=120^\circ$ اور $\theta_{m_b}=120^\circ$ اہذا ان کے لئے ہم لکھ سکتے ہیں۔

(5.31)
$$\tau_b = \tau_0 \cos \theta_{p_b}$$

$$\theta_{p_b} = \theta - \theta_{m_b} = \theta - 120^{\circ}$$

$$\tau_b = \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ})$$

(5.32)
$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^{\circ} \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^{\circ}) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقناطیسی دباو سائن نما ہر گر نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض آئکھوں کا دھوکہ ہے۔ اس مقناطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اب اگر ہم کسی طرح مساوات کہ یہ محض آئکھوں کا دھوکہ ہے۔ اس مقناطیسی دباو صاصل کر سکتے ہیں۔ 5.27 میں پہلے رکن کے علاوہ باقی سب رکن کو صفر کر سکیں تو ہم بالکل سائن نما مقناطیسی دباو حاصل کر سکتے ہیں۔

شكل 5.14: كيسيلا ليجهابه

شکل 5.14 میں تقسیم شدہ کچھا دکھایا گیا ہے۔ یہاں شکل 5.12 میں دکھائے گئے N چکر کے کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کیا گیا ہے۔لہذا ان میں ہر چھوٹا کچھا کچھوں کا ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا $\frac{N}{3}$ جاتا ہے اور یوں ان میں کیساں برقی رو i گزرے گی۔ ان تین کچھوں کو تین مختلف شکافوں میں رکھا گیا ہے۔ یوسرے کچھے کو شکاف a_{90} اور a_{135} میں اور تیسرے کچھے کو شکاف a_{135} اور a_{135} میں رکھا گیا ہے۔

شگافوں کے ایک جوڑے کو ایک ہی طرح کے نام دیے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} اور a_{45} ہوں گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} اور a_{90} نوے درجہ زاویہ پر اور شگاف a_{135} ایک سو پینیس درجہ زاویہ پر ہے۔ درجہ زاویہ پر ہے۔

چونکہ ہر کچھا $\frac{N}{8}$ چکر کا ہے اور ان سب میں کیساں برتی روi ہے، لہذا شکل 5.14 میں دیۓ گئے پھیلے کچھے سے حاصل مقناطیسی دباو کا زاویہ کے ساتھ ترسیم شکل 5.15 کے نچلے ترسیم کی طرح ہو گا۔اس شکل میں سب سے اُوپر کچھا کچھا کے مقناطیسی دباو کا ترسیم ہے۔ یہ بالکل شکل 5.15 میں دیۓ ترسیم کی طرح ہے البتہ یہ صفر زاویہ سے -45 ہے جو ہو بہو شکل کی طرح ہے جبکہ اس سے نیچ کچھا a_{135} کا ترسیم ہے جو صفر زاویہ سے -45 ہے۔ کہ ہے۔ ان تینوں ترسیمات میں طول -15 ہے۔

ان تینوں ترسیمات سے کل مقناطیسی دباو کا ترسیم یوں حاصل ہوتا ہے۔اس شکل میں عمودی نقطہ دار کیبریں لگائی گئ ہیں۔ بائیں جانب پہلی کلیر کی بائیں طرف علاقے کو الف کہا گیا ہے۔اس علاقے میں پہلے تینوں ترسیمات کی مقدار

series connected 35

شكل 5.15: تصليح لحصے كاكل مقناطيسي دباو۔

 $\frac{Ni}{6}$ ہے لہذا ان کا مجموعہ $\frac{Ni}{2}$ ہو گا۔ یہی سب سے نچلے کل مقناطیسی دباو کی ترسیم میں دکھایا گیا ہے۔ اس طرح علاقہ ب میں پہلے ترسیم کی مقدار $\frac{Ni}{6}$ ، دوسری ترسیم کی $\frac{Ni}{6}$ اور تیسری کی بھی $\frac{Ni}{6}$ ہے۔ ان کا مجموعہ $\frac{Ni}{6}$ ہنتا ہے جو کل مقناطیسی دباو ہے۔ علاقہ ج میں $\frac{Ni}{6}$ ہیں $\frac{Ni}{6}$ ہور $\frac{Ni}{6}$ ہیں جن کا مخموعہ $\frac{Ni}{6}$ ہیں کل مقناطیسی دباو ہے جو سب سے نچلے ترسیم میں دکھایا گیا ہے۔ اس طرح آپ پورا ترسیم تھینج سکتے ہیں۔

شكل 5.15 كے نچلے ترسيم كو شكل 5.16 ميں دوبارہ و كھايا گيا ہے۔

شکل 5.16 کا اگر شکل 5.15 کے ساتھ نقابل کیا جائے تو محض دیکھنے سے بھی یہ ظاہر ہے کہ شکل 5.16 زیادہ سائن نما موج کے نوعیت کا ہے۔ ہمیں فور بیرُ تسلسل حل کرنے سے بھی بہی نتیجہ ملتا ہے۔ ہم دیکھ سکتے ہیں کہ شکافوں کی جگہ اور ان میں کچھوں کے چکر کو یوں رکھا جا سکتا ہے کہ ان سے پیدا کردہ مقناطیسی دباو سائن نما کے زیادہ قریب ہو۔

چونکہ کھیے گجھ کے مختلف مصے ایک ہی زاویہ پہ مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ ایک کچھ کچھ کے حیطہ سے قدرِ کم ہوتا ہے۔اس اثر کو مساوات 5.29 میں جزو k_w کے ذریعہ یوں ظاہر کیا

شكل 5.16: تھلے لیھے كامقناطیسی د باو۔

شكل5.17: ئىليالچىچ كاجزو ئىمىلاو_

جاتا ہے۔

(5.33)
$$\tau_0 = k_w \frac{4}{\pi} \frac{Ni}{2}$$
$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

اس مساوات میں
$$k_w$$
 کو جزو پھیلاو³⁶ کہتے ہیں۔ یہ اکائی سے قدرِ کم ہوتا ہے لیعنی $0 < k_w < 1$

مثال 5.3: شكل 5.14 مين ديئ گئے تھيلے لچھے كے لئے k_w معلوم كريں۔

П

مجموعی مقناطیسی دباو $_{ au}$ معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

لعني

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

لنذا 0.8047 کے برابر ہے۔

مثال 5.4: ایک تین دور 50 ہرٹز پر چلنے والا ستارہ نما جڑے جزیٹر کو 3000 چکر ٹی منٹ کی رفتار سے چلایا جا رہا $k_{w,q}=0.833$ جب پندرہ چکر تو کی گجھے کا جزو کچھلاو 0.9 $k_{w,m}=0.9$ جبکہ پندرہ چکر تو کی گجھے کا جزو کچھلاو 0.833 جب اگر تا ہیں۔ مثین کا رداس 0.7495 میٹر اور اس کی لمبائی $l_k=0.04$ میٹر ہیں۔ خلائی درز $l_k=0.04$ میٹر ہے۔اگر اس کے میدانی گجھے میں 1000 ایمبیئر برقی رو ہے تو معلوم کریں

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ مقدار۔
 - خلائی درز میں کثافت مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بهاو
 - محرک تار پر برقی د باو۔

حل:

$$\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$$

 $B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_L} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$

 $\phi_0 = 2B_0 lr = 2 \times 0.54 \times 2.828 \times 0.7495 = 2.28915 \text{ Wb}$

$$\begin{split} E_{rms} &= 4.44 f k_{w,q} N_q \phi_0 \\ &= 4.44 \times 50 \times 0.833 \times 15 \times 2.28915 \\ &= 6349.85 \, \mathrm{V} \end{split}$$

للذا ستاره جڑی جزیٹر کی تار کی برقی دباو

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

٦ - ا

جیسا پہلے ذکر ہوا ہم چاہتے ہیں کہ سائن نما مقناطیسی دباو حاصل کر سکیں۔ چھوٹے کچھوں کے چکر اور شگافوں کی جگہ یوں چنے جاتے ہیں کہ یہ بنیادی مقصد پورا ہو۔ شکل 5.16 میں ہم دیکھتے ہیں کہ صفر زاویہ کی دونوں جانب مقناطیسی دباو کی موج کیساں طور پر گھٹی یا بڑھتی ہے۔ لیمی جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{N}{3}$ گھٹ جاتی ہے۔ اس طرح جمع اور منفی نوے زاویہ پر یہ کیسال طور پر مزید گھٹی ہے، وغیرہ وغیرہ۔ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

جھوٹے لیجھوں کے چکر اور شگافوں کی جگہوں کا فیصلہ فوریئر تسلسل کی مدد سے کیا جاتا ہے۔فوریئر تسلسل میں موسیقائی جزو کم سے کم اور اس میں بنیادی جزو زیادہ سے زیادہ رکھے جاتے ہیں۔

ساکن کچھوں کی طرح حرکت کرتے کچھوں کو بھی ایک سے زیادہ حچھوٹے کچھوں میں تقسیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطیسی د باو کی گھومتی موجیں

گھومتے آلوں میں کچھوں کو برقی دباو دیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ یہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 ایک دورکی لپٹی مشین

مساوات 5.33 میں ایک لیھے کی مقناطیسی دباویوں دی گئی ہے۔

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

اگراس کچھے میں مقناطیسی بہاو بھی سائن نما ہو یعنی

$$(5.36) i_a = I_0 \cos \omega t$$

تو

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

ہو گا جہاں

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

ے برابر ہے۔ مساوات 5.37 کہتا ہے کہ یہ مقناطیسی دباو زاویہ θ اور لمحہ t کے ساتھ تبدیل ہوتا ہے۔ اس مساوات کو ہم مندرجہ ذیل قلیہ سے دو گلڑوں میں توڑ سکتے ہیں۔

$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

للذا

(5.39)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

لکھا جا سکتا ہے۔ یوں

$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

(5.41)
$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

ہیں۔اس مساوات سے یہ بات سامنے آتی ہے کہ در حقیقت یہ مقناطیسی دباو دو اُلٹ سمتوں میں گھومنے والے مقناطیسی دباو کی موجیس ہیں۔ اس کا پہلا جزو τ_a زاویہ θ گھنے کی جانب گھومتا ہے یعنی گھڑی کی سمت میں اور اس کا دوسرا جزو τ_a گھڑی کی اُلٹی سمت گھومتا ہے یعنی یہ زاویہ بڑھنے کی جانب گھومتا ہے۔

شكل 5.18: تين دوركي لپڻي مشين ـ

ایک دورکی لیٹی آلوں میں یہ کوشش کی جاتی ہے کہ ان دو گھومتے متناطیسی دباو میں سے ایک کو بالکل ختم یا کم سے کم کیا جائے۔ اس طرح کرنے سے ایک ہے سمت میں کل مقناطیسی دباو گھومتا ملتا ہے جو بالکل اس طرح کا ہوتا ہے جیسے ایک مقناطیس گھمایا جا رہا ہو۔ تین دور کے آلوں میں یہ کرنا نہایت آسان ہوتا ہے لہذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

5.5.2 تين دور کي لپڻي مشين کا تحليلي تجزيه

شکل 5.18 میں تین دور کی لپٹی مثین دکھائی گئی ہے۔ مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کچھوں کی فور بیر تسلسل کی بنیادی جزو دیئے گئے ہیں جو کے یہ ہیں۔

(5.42)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} i_{a}}{2} \cos \theta$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} i_{b}}{2} \cos(\theta - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} i_{c}}{2} \cos(\theta + 120^{\circ})$$

اگر ان تین کچھول میں تین دوری برقی رو ہو یعنی

(5.43)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

تو بالكل مساوات 5.47 كى طرح بهم مساوات 5.43 كى مدد سے مساوات 5.42 كو يوں لكھ سكتے ہيں۔

(5.44)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

اگر

$$N_a = N_b = N_c = N$$

ہو تو انہیں

(5.45)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$
$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$
$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

لکھ سکتے ہیں جہاں

(5.46)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

ہے۔ کل مقناطیسی دباو 7 ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم ثابت کرتے ہیں کہ

$$\cos\gamma + \cos(\gamma - 240^{\circ}) + \cos(\gamma + 240^{\circ}) = 0$$

کے برابر ہے۔ ہمیں معلوم ہے کہ

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

اگر ہم
$$lpha=\gamma$$
 اور $eta=240^\circ$ کیں تو

$$\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$$
$$\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$$

پونکہ $\sin 240^\circ = -rac{\sqrt{3}}{2}$ اور $\cos 240^\circ = -rac{1}{2}$ کہذا

$$\cos(\gamma + 240^{\circ}) = -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma$$
$$\cos(\gamma - 240^{\circ}) = -\frac{1}{2}\cos\gamma - \frac{\sqrt{3}}{2}\sin\gamma$$

اب اس مساوات کو اگر ہم ہر دردہ کے ساتھ جمع کریں تو جواب صفر ملتا ہے، یعنی

$$\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$$

ے لئے اس مساوات کو یوں لکھ سکتے ہیں۔ $\gamma= heta+\omega t+lpha$

(5.47)
$$\cos(\theta + \omega t + \alpha) + \cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta + \omega t + \alpha - 240^{\circ}) = 0$$

اب ہم اگر مساوات 5.45 میں دیئے au_b ، au_c اور au_c کو جمع کریں اور ان میں مساوات 5.45 کا استعمال کریں تو ملتا ہے

(5.48)
$$\tau^{+} = \tau_a + \tau_b + \tau_c = \frac{3\tau_0}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.48 کہتا ہے کہ کل مقناطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کے 3 گنا ہے۔ مزید بیہ کہ بیہ مقناطیسی دباو کی موج گھڑی کی اُلٹی سمت گھوم رہی ہے۔ لہذا تین کچھوں کو 120° زاویہ پر رکھنے اور انہیں تین دور کی برقی رو، جو آپس میں 120° پر ہوں، سے بیجان کرنے سے ایک ہی گھومتی مقناطیسی دباو کی موج وجود میں آتی ہے۔ یہاں اس بات کا ذکر کرنا ضروری ہے کہ اگر کوئی دو برقی رو آپس میں تبدیل کئے جائیں تو مقناطیسی موج کے گھومنے کی سمت تبدیل ہو جاتی ہو جاتی میں واضح کیا گیا ہے۔

اب ہم و کھتے ہیں کہ مساوات 5.48 ایک گھومتے موج کو ظاہر کرتی ہے۔ یہ کرنے کے لئے ہمیں اس موج کی چوٹی کو و کھنا ہو گا۔ ہم اپنی آسانی کے لئے α کو صفر لیتے ہیں۔ اس مثال میں ہم برتی رو کی تعدد $50\,\mathrm{Hz}$ لیتے ہیں۔ اس موج کی چوٹی و رحقیقت $\cos(\theta-\omega t)$ کی چوٹی ہی ہے لہٰذا ہم اس کی چوٹی کو مد نظر رکھتے ہیں۔ ہمیں معلوم ہے کہ $\cos\alpha$ کی زیادہ سے زیادہ مقدار ایک کے برابر ہے لیخی اس کی چوٹی ایک کے برابر ہے اور یہ اس مقام پر پائی جاتی ہے جہاں α صفر کے برابر ہو لیخی جب $\cos 0 = 1$ برابر ہو گا۔ اس طرح $\cos 0 = 1$ کی چوٹی وہیں ہو گی جہاں $\cos 0 = 1$ مفر کے برابر ہو لیخی $\cos 0 = 1$ کے برابر ہو گا۔ اس طرح $\cos 0 = 1$ کی جوٹی وہیں ہو گی جہاں $\cos 0 = 1$ مفر کے برابر ہو لیخی $\cos 0 = 1$

اب ابتدائی کچہ لیعنی t=0 پر ہو گل۔ اس کو حل کرتے ہیں۔ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega\times 0=0$

ہم دکھتے ہیں کہ موج کی چوٹی صفر برتی زاویہ پر ہے۔اسے شکل 5.19 میں بلکی سیاہی میں نقطہ داو لکیر سے دکھایا گیا ہے۔ہم اس چوٹی کو کچھ وقفے کے بعد دوبارہ دکھتے ہیں مثلاً t=0.001 سیکنڈ کے بعد۔

$$\theta - \omega t = 0$$

$$\theta - \omega \times 0.001 = 0$$

$$\theta = 0.001\omega = 0.001 \times 2 \times \pi \times 50 = 0.3142 \, \text{rad}$$

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برقی ریڈیئن لیعن 18° کے برقی زاویہ پر ہے۔اسے شکل میں ہلکی سابی کے شوس لکیر سے دکھایا گیا ہے۔ یہ بات واضح ہے کہ مقناطیسی دباوکی موج گھڑی کی اُلٹی سمت بینی زاویہ بڑھنے کی سمت میں گھوم گئ ہے۔ اسی طرح 0.002 بریہ چوٹی 0.36 برقی زاویہ پر نظر آئے گی۔ کسی بھی لمحہ t پر بالکل اسی طرح چوٹی کا مقام معلوم کیا جا سکتا ہے جسے شکل میں تیز سابی کے ٹھوس لکیر سے دکھایا گیا ہے۔

$$\theta - \omega t' = 0$$
$$\theta = \omega t'$$

اس مساوات سے یہ واضح ہے کہ چوٹی کا مقام متعین کرنے والا زاویہ بتدر تکح بڑھتا رہتا ہے۔اس مساوات سے ہم ایک مکمل 2π برقی زاویہ کے چکر کا وقت T حاصل کر سکتے ہیں یعنی

(5.49)
$$t = \frac{\theta}{\omega}$$

$$T = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

اگر برقی روکی تعدد 50 ہو تو یہ مقناطیسی دباوکی موج ہر $\frac{1}{50}=0.02$ سینڈ میں ایک مکمل برقی چکر کا ٹتی ہے۔ ایک سینڈ میں 50 برقی چکر کا ٹتی ہے۔

اس مثال میں برقی زاویہ کی بات ہوتی رہی۔ دو قطب کی آلوں میں برقی زاویہ θ_e اور میکانی زاویہ θ_m برابر ہوتے ہیں۔ المذا اگر دو قطب کی آلوں کی بات کی جائے تو مساوات 5.49 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کاٹے گی جہاں f برقی روکی تعدد ہے اور اگر f قطب رکھنے والی آلوں کی بات کی جائے تو چونکہ

$$\theta_e = \frac{P}{2}\theta_m$$

للذا ایسے آلوں میں یہ مقناطیسی دباوکی موج ایک سینڈ میں f مقناطیسی چکر یعنی $\frac{2}{P}$ میکانی شکر کاٹے گ۔

اگر ہم برقی رو کی تعدد کو f_e سے ظاہر کریں، مقناطیسی دباو کی موج کی چوٹی کے برقی زاویہ کو θ_e اور اس کے میکانی زاویہ کو θ_m سے ظاہر کریں اور اس طرح اس مقناطیسی دباو کی موج کے گھومنے کی رفتار کو θ_m یا θ_m سے ظاہر کریں تو

(5.51)
$$\omega_{m} = \frac{2}{P}\omega_{e} \quad \text{rad/s}$$

$$f_{m} = \frac{2}{P}f_{e} \quad \text{Hz}$$

$$n = \frac{120f_{e}}{P} \quad \text{rpm}$$

 ω_e اس موج کی معاصر رفتار برقی زاویہ فی سینڈ میں ہے جبکہ ω_m بہی معاصر رفتار میکانی زاویہ فی سینڈ میں ہے۔ اس طرح ω_e اس موج کی برقی معاصر رفتار برقی ہرٹز میں اور ω_e اس کی میکانی معاصر رفتار ω_e میکانی ہرٹز میں ہے۔ برقی معاصر رفتار ω_e برٹز ہونے کا مطلب یہ ہے کہ ایک سینڈ میں یہ موج ω_e برقی چکر کا فاصلہ طے کرے گی جہاں ایک برقی چکر دو قطب کا فاصلہ لیعن ω_e ریڈ بیکن کا زاویہ ہے۔ اس طرح میکانی معاصر رفتار ω_e ہرٹز ہونے کا مطلب ہے کہ یہ موج ایک سینڈ میں ایک چکر کو ہی کہتے کہ یہ موج ایک سینڈ میں ایک چکر کا فاصلہ طے کرے گی۔ ایک میکانی چکر عام زندگی میں ایک چکر کو ہی کہتے ہیں۔ اس مساوات معاصر رفتار کی مساوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ ہم q دور کی لیٹی مثین جس کے کچھ $\frac{2\pi}{q}$ برقی زاویہ پر رکھے گئے ہوں اور جن میں q دور کی برقی رو ہو، ایک ہی ست میں گھومتی مقناطیسی دباو کی موج کو جنم دیتی ہے جیسے ہم نے تین

synchronous speed³⁷ rpm, rounds per minute³⁸

دور کی مثین کے لئے دیکھا۔ مزید یہ کہ اس موج کا حیطہ کسی ایک کچھے سے پیدا مقناطیسی دباو کے حیطہ کے $\frac{q}{2}$ گنا ہو گا اور اس کے گھومنے کی رفتار $\omega_e=2\pi f$ برقی ریڈیئن فی سینڈ ہو گی۔

5.5.3 تين دور کي کپڻي مشين کاتر سيمي تجزيه

شکل 5.18 میں تین دور کی لیٹی مشین دکھائی گئی ہے۔ اس میں مثبت برتی رو کی سمتیں بھی دکھائی گئی ہیں، مثلاً α شگاف میں برتی رو صفحہ سے عمود کی سمت میں باہر جانب کو ہے اور یہ بات نقطہ سے واضح کی گئی ہے۔ اس طرح α شگاف میں برتی دباو صفحہ سے عمود کی سمت میں اندر کی جانب کو ہے اور یہ بات صلیب کے نشان سے واضح کی گئی ہے۔ اگر برتی رو مثبت ہو تو اس کی بہی سمت ہو گی اور اس سے پیدا مقناطیسی دباو α صفر زاویہ کی جانب ہو گا جیسے شکل میں دکھایا گیا ہے۔ لیچھے میں برتی رو سے پیدا مقناطیسی دباو کی سمت دائیں ہاتھ کے قانون سے معلوم کی جا سکتی ہو تو اس کا مطلب ہے کہ برتی رو اُلٹ سمت میں ہے۔ یعنی اب برتی رو مینی ہو تو اس کا مطلب ہے کہ برتی رو اُلٹ سمت میں ہے۔ یعنی اب برکی جانب شگاف میں صفحہ کے عمود کی سمت میں باہر کی جانب کو ہے۔ لہذا اس برتی رو سے پیدا مقناطیسی دباو بھی پہلے سے اُلٹ سمت میں ہو گی یعنی یہ شکل میں دیے گئے α کو ہے۔ لہذا اس برتی رو سے پیدا مقناطیسی دباو بھی پہلے سے اُلٹ سمت میں ہو گی یعنی یہ شکل میں دو کے منفی بالکل اُلٹ سمت میں ہو گی۔ اس تذکرہ کا بنیادی مقصد سے تھا کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بالکل اُلٹ سمت میں ہو گی۔ اس تذکرہ کا بنیادی مقصد سے تھا کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بونے سے اس سے پیدا مقناطیسی دباو کی سمت اُلٹ ہو جاتی ہے۔

اس شکل میں کیچھوں میں برتی رو اور مقناطیسی دباویہ ہیں

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

(5.53)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

جبکہ ان کے مثبت سمتیں شکل میں دیئے گئے ہیں۔ اب ہم مختلف او قات پر ان مقداروں کا حساب لگاتے ہیں اور ان کا کل مجموعی مقناطیسی دباو حل کرتے ہیں۔

شكل5.20: لمحه $t_0=0$ يربر قى رواور مقناطيسى د باوـ $t_0=0$

t=0 پر ان مساوات سے ملتا ہے۔

(5.54)
$$i_a = I_0 \cos 0 = I_0$$

$$i_b = I_0 \cos(0 - 120^\circ) = -0.5I_0$$

$$i_c = I_0 \cos(0 + 120^\circ) = -0.5I_0$$

(5.55)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos (0 - 120^\circ) = -0.5\tau_0 \\ \tau_c &= \tau_0 \cos (0 + 120^\circ) = -0.5\tau_0 \end{aligned}$$

5.18 یہاں رکھ کر ذرا غور کریں۔اس لمحہ پر i_a مثبت ہے جبکہ i_b اور i_c منفی ہیں۔ للذا i_a ای سمت میں ہے جو شکل i_c میں i_b میں ویے گئے سمتوں کے اُلٹ میں i_c میں i_c میں اور i_c شکل میں ویے گئے سمتوں کے اُلٹ میں ان تینوں برقی روکی اس لمحہ پر درست سمتیں شکل 5.20 میں وکھائی گئی ہیں۔اس شکل میں تینوں مقاطیسی وباو مجھی و کھائے گئے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم، مجموعہ سمتیات سے معلوم کیا جا سکتا ہے یا پھر الجبرا کے ذریعہ ایسا کیا جا سکتا ہے۔

(5.56)
$$\begin{aligned} \boldsymbol{\tau}_{a} &= \tau_{0} \boldsymbol{a}_{\mathbf{X}} \\ \boldsymbol{\tau}_{b} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} - \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \\ \boldsymbol{\tau}_{c} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} + \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \end{aligned}$$

شكل 5.21: لحمه $\omega t_1 = 30^\circ$ لحمه $\omega t_1 = 30^\circ$

$$\tau = \tau_a + \tau_b + \tau_c = \frac{3}{2}\tau_0 a_{\mathrm{X}}$$

کل مقناطیسی دباو ایک کچھ کے مقناطیسی دباو کے ڈیڑھ گنا ہے اور یہ صفر زاویہ پر ہے۔ اب ہم گھڑی کو چلنے دیتے ہیں اور کچھ کمیے بعد t_1 پر دوبارہ بہی سب حساب لگاتے ہیں۔ چونکہ مساوات 5.52 اور مساوات 5.53 میں متغیرہ کے بجائے سے استعال زیادہ آسان ہے لہذا ہم کھہ t_1 کو یوں چنتے ہیں کہ $\omega t_1 = 30^\circ$ کے برابر ہو۔ ایسا کرنے سے ہمیں یہ دو مساواتوں سے حاصل ہوتا ہے۔

(5.58)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.59)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$
$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$
$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

یہ شکل 5.21 میں دکھایا گیا ہے۔کل مقناطیسی دباو کا طول ⊤ کو تکون کے ذریعہ یوں حل کیا جا سکتا ہے۔ اسی طرح اس کا زاویہ بھی اسی سے حاصل ہوتا ہے۔ یعنی

(5.60)
$$\tau = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a\tau_c\cos 120^\circ} = \frac{3}{2}\tau_0$$

5.6. محسر ك_بر قي دباو

اور چونکہ اس تکون کے دو اطراف برابر ہیں للذا اس کے باقی دو زاویہ بھی برابر اور °30 ہیں۔

ہم دیکھتے ہیں کہ کل مقاطیسی دباو جو پہلے صفر زاویہ پر تھا اب وہ 30° کے زاویہ پر ہے بعنی وہ گھڑی کے اُلٹ سمت گھوم گیا ہے۔ اگر ہم ای طرح 40° 40° پر دیکھیں تو ہمیں کل مقناطیسی دباو اب بھی $\frac{3}{2} \tau_0$ کے زاویہ پر ہو گا۔ اگر کسی لمحہ جب 00° ہم ہیں کے برابر ہو یہ سارا حساب کیا جائے تو کل مقناطیسی دباو اب بھی $\frac{3}{2} \tau_0$ کی گا البتہ یہ 00° کے زاویہ پر ہو گا۔ اگر کسی کے گا البتہ یہ 00° کے زاویہ پر ہو گا۔

5.6 محرك برقى دباو

یہاں محرک برقی دباو³⁹ کو ایک اور زاویہ سے پیش کیا جاتا ہے۔

5.6.1 بدلتی روبر قی جزیٹر

شکل 5.22 میں ایک بنیادی بدلتی روجنہ پڑ⁴⁰ د کھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی دباو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتی ہے، یعنی

$$(5.61) B = B_0 \cos \theta_p$$

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔یوں اگر ابتدائی لمحہ t=0 پریہ یہ لیچھے کی سمت یعنی ہلکی سیاہی کی افقی کیسر کی سمت میں ہو تو لمحہ t پریہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح یہی مساوات یوں بھی کھھا جا سکتا ہے۔

(5.62)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 5.23 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے۔ اسی ترسیم میں کچھا کہ بھی دکھایا گیا ہے۔اس شکل 3.23 میں B میں مبکی سیابی سے کمور اور اس کچھے کا محور ایک ہی سمت میں مبکی سیابی سے کمور ایک ہی سمت سیابی سے کمور ایک ہی سمت میں مبکی سیابی سے کمور ایک ہی کو کمور ایک ہی سیابی سے کمور ایک ہی سیابی سیابی سے کمور ایک ہی سیابی سیاب

⁸⁹ہتداء میں حرکت سے پیدا ہونے والی برتی دیاو کو محرک برتی دیاو کہتے تھے۔اب روا بی طور پر کسی مجمی طرح پیدا کردو برتی دیاو کو محرک برتی دیاو کہتے ہیں۔ ac generator ⁴⁰

$$B = B_0 \cos \theta_p$$

$$= B_0 \cos(\theta - \theta_m)$$

$$= B_0 \cos(\theta - \omega t)$$

$$B = B_0 \cos(\theta - \omega t)$$

$$B = B_0 \cos(\theta - \omega t)$$

5.6. محسر ك برقى دباد

میں ہوتے ہیں جبکہ کالی سیابی میں اس B کو کسی بھی کھہ t پر دکھایا گیا ہے۔اس کھہ پر برقی مقناطیس کے محور اور کچھے کے محور کے مابین θ زاویہ ہے۔ یہ زاویہ برقی مقناطیس کے گھومنے کی رفتار ω پر منحصر ہے لیمنی

$$(5.63) \theta = \omega t$$

(5.64)
$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

جہاں آخر میں $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب اگر لمحہ t پر کی جائے تو کچھ یوں ہو گا۔

$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

axle⁴¹ axial length⁴² جہاں $\theta=\omega t$ لیا گیا ہے۔اسی مساوات کو یوں بھی حل کیا جا سکتا ہے

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t)|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ تکمل زاویہ 6 کے ساتھ کیا گیا ہے۔ انہیں مساوات 5.64 کی مدد سے یوں کھا جا سکتا ہے۔

(5.67)
$$\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$$

بالکل مساوات 5.66 کی طرح ہم b اور c کچھوں کے لئے بھی مقناطیسی بہاو کی مساواتیں حل کر سکتے ہیں۔ شکل مساوات 5.22 میں d کچھے میں زاویہ d ناویہ d کے سے d کے حک کا مقناطیسی بہاو گزرتا ہے۔ اس لئے d معلوم کرنے کے لئے مساوات 5.20 میں مکمل کے حدود یہی رکھے گئے تھے۔ اسی شکل سے واضح ہے کہ d کچھے کے حکمل کے حدود d کو میں میں رکھے گئے تھے۔ اسی شکل سے واضح ہے کہ d کچھے کے حکمل کے حدود d اور d بیں۔ یہ زاویے ریڈیٹن میں دیئے گئے ہیں۔ یوں

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos(\omega t - \frac{2\pi}{3})$$

5.6. محسر كب بر قي دباو

اور

$$\phi_{c}(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} B \cdot dS$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{11\pi}{6}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos(\omega t + \frac{2\pi}{3})$$

$$= 2B_{0}l\rho \cos(\omega t + \frac{2\pi}{3})$$

$$- \mathcal{L}_{c} = \mathcal{L}_{c} =$$

ان مساوات میں $\frac{2\pi}{3}$ ریڈیٹن کو °120 کھا گیا ہے۔ان سے کچھوں میں پیدا امالی برقی دباو کا حساب یوں لگایا جا سکتا ہے۔

(5.71)
$$e_a(t) = -\frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = \omega N \phi_0 \sin \omega t$$
$$e_b(t) = -\frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = -\frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو یوں بھی لکھ سکتے ہیں

(5.72)
$$\begin{aligned} e_a(t) &= \omega N \phi_0 \cos(\omega t - 90^\circ) \\ e_b(t) &= \omega N \phi_0 \cos(\omega t + 150^\circ) \\ e_c(t) &= \omega N \phi_0 \cos(\omega t + 30^\circ) \end{aligned}$$

یہ مساوات تین دوری محرک برقی دباو کو ظاہر کرتے ہیں جو آپس میں °120 زاویہ پر ہیں۔ان سب کا حیطہ E_0 کیسال ہے جہال

$$(5.73) E_0 = \omega N \phi_0$$

اور ان برقی دباو کی موثر قیمت⁴³

(5.74)
$$E_{\dot{\tau}} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

ہو گا۔ چونکہ $\phi = BA$ ہوتا ہے لہذا ہیہ مساوات بالکل صفحہ 49 پر دئے مساوات 2.52 کی طرح ہے۔

مساوات 5.72 سائن نما برقی دباو کو ظاہر کرتا ہے۔ اگرچہ اسے بیہ سوچ کر حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیس کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو جزیئر کے بہاو کس طرح وجود میں آئی اور بیہ مساوات ان حالات کے لئے بھی درست ہے جہاں بیہ مقناطیسی بہاو جزیئر کے ساکن چیدا ہوئی ہو۔

مساوات 5.74 ہمیں ایک گیھ لیچھ میں پیدا برقی دباو دیتی ہے۔ اگر لیھا تقسیم شدہ ہو تو اس کے مختلف شکافوں میں موجود اس لیچھ کے حصوں میں برقی دباو ہم مرحلہ نہیں ہول گے لہذا ان سب کا مجموعی برقی دباو ان سب کا حاصل جمع نہیں ہوگا بلکہ اس سے قدرِ کم ہوگا۔ اس مساوات کو ہم ایک تھیلے کیھے کے لئے یوں لکھ سکتے ہیں۔

(5.75)
$$E_{z, r} = 4.44 k_w f N \phi_0$$

تین دور برقی جزیٹروں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات ہمیں ایک دور کی برقی دباو دیتی ہے۔ تین دور برقی جزیٹروں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی شارہ نما یا Δ یعنی شکونی جوڑا جاتا ہے۔

5.6.2 يک سمتی روبر قی جزيٹر

ہر گھومنے والا برقی جزیٹر بنیادی طور پر بدلتی رو جزیٹر ہی ہوتا ہے۔ البتہ جہاں یک سمتی برقی دباو⁴⁴ کی ضرورت ہو وہاں مختلف طریقوں سے بدلتی برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جاتا ہے۔ ایسا الیکٹر انکس کے ذریعہ جزیٹر کے باہر برقیاتی سمتے کار⁴⁵ کی مدد سے جزیٹر کے باہر برقیاتی سمتے کار⁴⁵ کی مدد سے جزیٹر کے اندر ہی کیا جا سکتا ہے۔ مساوات 5.71 میں دیئے گئے برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جائے تو یہ شکل 5.24 کی طرح ہو گا۔

rms4

DC voltage⁴⁴

rectifier⁴⁵

 $commutator^{46}$

مثال 5.5: شکل 5.24 میں یک سمتی برقی دہاو دکھائی گئی ہے۔اس یک سمتی برقی دہاو کی اوسط قیت حاصل کریں۔

ىل:

$$E_{ extsf{Lost}} = rac{1}{\pi} \int_0^{\pi} \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = rac{2\omega N \phi_0}{\pi}$$

یک سمتی برقی جزیٹر پر باقاعدہ تصرہ کتاب کے باب میں کیا جائے گا۔

5.7 مهوار قطب مشينول مين قوت مرورً

اس جھے ہیں ہم ایک کامل مشین ہیں قوتے مرور 47 کا حساب لگائیں گے۔ ایسا دو طریقوں سے کیا جا سکتا ہے۔ ہم مشین کو دو مقناطیس سمجھ کر ان کے مابین قوتِ کشش، قوتِ دفع اور قوت مروڑ کا حساب لگا سکتے ہیں یا پھر اس میں ساکن اور گھومتے کچھوں کو امالہ سمجھ کر باب چار کی طرح توانائی اور کو توانائی کے استعمال سے اس کا حساب لگائیں۔ پہلے توانائی کا طریقہ استعمال کرتے ہیں۔

شكل 5.25: ساكن اماليه اور گھومتااماليه۔

5.7.1 توانائی کے طریقے سے مکانی قوت مروڑ کا حساب

یہاں ہم ایک دور کی مشین کی بات کریں گے۔ اس سے حاصل جوابات کو با آسانی زیادہ دور کی آلوں پر لا گو کیا جا سکتا ہے۔ شکل 5.25 میں ایک دور کی کامل مشین دکھائی گئی ہے۔ کسی بھی لمحہ اس کی دو کچھوں میں کچھ زاویہ ہو گا جے θ سے ظاہر کیا گیا ہے۔ خلائی درز ہر جگہ کیسال ہے لہذا یہاں اُبھرے قطب کے اثرات کو نظر انداز کیا جائے گا۔ مزید سے کہ قالب کی حمل ہے۔ سقور کی گئی ہے لہذا کچھوں کی امالہ صرف خلائی درز کی مقناطیسی مستقل 48 میں جے۔ پر منحصر ہے۔ پر منحصر ہے۔

 $L_{ar}(\theta)$ ال مشتر کہ امالہ $L_{ar}(\theta)$ اور گھوے کچھے کی امالہ L_{rr} مقررہ ہیں جبکہ ان کا مشتر کہ امالہ $L_{ar}(\theta)$ زاویہ θ پر منحصر ہو گا۔ جب $\theta=0$ یا $\theta=\pm 2\pi$ یا $\theta=0$ یا $\theta=\pm 180$ نراز ہو تو ایک لیجھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے۔ ایسے حالت میں ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے بھی گزرتا ہے البتہ اس کھے اس کی سمت ہو اس کھے ایک مرتبہ پھر ایک کچھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے البتہ اس کھے اس کی سمت اُلٹ ہوتی ہے لہذا اب ان کا مشتر کہ منفی ہو گا یعنی $-L_{ar0}$ اور جب $-L_{ar0}$ ہو تب ان کا مشتر کہ اللہ صفر ہو گا۔ اگر ہم یہ ذہن میں رکھیں کہ خلائی درز میں مقناطیسی بہاو سائن نما ہے تب

$$(5.76) L_{ar} = L_{ar0}\cos\theta$$

ہو گا۔ ہم ساکن اور گھومتے کچھوں کی ارتباط بہاو کو یوں لکھ سکتے ہیں

(5.77)
$$\lambda_a = L_{aa}i_a + L_{ar}(\theta)i_r = L_{aa}i_a + L_{ar0}\cos(\theta)i_r$$
$$\lambda_r = L_{ar}(\theta)i_a + L_{rr}i_r = L_{ar0}\cos(\theta)i_a + L_{rr}i_r$$

magnetic constant, permeability⁴⁸

ا گر ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r ہو تو ہم ان کچھوں کے سروں پر دیئے گئے برقی دباو کو یوں لکھ سکتے ہیں۔

$$(5.78) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0}i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$
$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0}i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں θ برقی زاویہ ہے اور وقت کے ساتھ اس کی تبدیلی رفتار ω کو ظاہر کرتی ہے یعنی

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ کو توانائی حاصل کی جا سکتی ہے۔ کو توانائی صفحہ 123 پر مساوات 4.73 سے حاصل ہوتی ہے۔ بیر مساوات موجودہ استعال کے لئے یوں لکھا جا سکتا ہے۔

(5.80)
$$W'_{m} = \frac{1}{2} L_{aa} i_{a}^{2} + \frac{1}{2} L_{rr} i_{r}^{2} + L_{ar0} i_{a} i_{r} \cos \theta$$

اس سے میکانی قوت مروڑ T_m یوں حاصل ہوتا ہے۔

(5.81)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے

$$\theta = \frac{P}{2}\theta_m$$

للذا ہمیں مساوات 5.81 سے ملتا ہے

(5.83)
$$T_m = -\frac{P}{2} L_{ar0} i_a i_r \sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m منتی ہے۔ اس کا مطلب ہے کہ اگر کسی لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کو ایک بہاو کے در میان زاویہ مثبت ہو تو ان کے مابین قوت مروڑ منتی ہو گا یعنی قوت مروڑ ان دونوں مقناطیسی بہاو کو ایک سمت میں رکھنے کی کوشش کرے گا۔

شکل5.26: کچھوں کے قطبین۔

5.7.2 مقناطيسي بهاوسے ميكاني قوت مر وڑ كاحساب

شکل 5.26 میں دو قطب والی ایک دور کی مشین دکھائی گئی ہے۔ اس شکل میں بائیں جانب صرف گھومتے کچھے میں برقی رو ہے۔ اس کچھے کا مقاطیسی بہاو تیر کے نشان سے دکھایا گیا ہے، یعنی تیر اس مقاطیس کے محور کو ظاہر کرتا ہے۔ یہاں اگر صرف گھومتے جھے پر توجہ دی جائے تو یہ واضح ہے کہ گھومتا حصہ ایک مقاطیس کی مانند ہے جس کے شالی اور جنوبی قطبین شکل میں دیئے گئے ہیں۔ اس طرح شکل میں دائیں جانب صرف ساکن کچھے میں برقی رو ہے۔ اگر اس مرتبہ صرف ساکن حھے پر توجہ دی جائے تو اس کے بائیں جانب سے مقناطیسی بہاو نکل کر خلائی درز میں داخل ہوتی ہے، لہذا یہی اس کا شالی قطب ہے اور اس مقاطیس کا محور بھی اسی تیر کی سمت میں ہے۔ داخل ہوتی ہے۔

یبال بیہ واضح رہے کہ اگرچہ کچھ لیچھ دکھائے گئے ہیں لیکن در حقیقت دونوں کچھوں کے مقناطیسی دباو سائن-نما ہی ہیں اور تیر کے نشان ان مقناطیسی دباوکی موج کے چوٹی کو ظاہر کرتے ہیں۔

شکل 5.27 میں اب دونوں کچھوں میں برقی رو ہے۔ یہ واضح ہے کہ یہ بالکل دو مقناطیسوں کی طرح ہے اور ان کے اُلٹ قطبین کے مابین قوتِ کشش ہو گا، یعنی یہ دونوں کچھے ایک ہی سمت میں ہونے کی کوشش کریں گے۔

یہاں بیہ زیادہ واضح ہے کہ بیہ دو مقناطیس کوشش کریں گے کہ $heta_{ar}$ صفر کے برابر ہو یعنی ان کا میکانی قوت مروڑ $heta_{ar}$ کے اُلٹ سمت میں ہو گا۔ یہی کچھ مساوات 5.83 کہتا ہے ۔

ان برقی مقناطیسوں کے مقناطیسی دباو کو اگر ان کے مقناطیسی محور کی سمت میں au_a اور au_r سے ظاہر کیا جائے جہاں ہوں تو خلاء میں کل مقناطیسی دباو au_a ان کا جمع سمتیات ہو گا جیسے جہاں au_a

شكل5.27: خلا كي در زمين مجموعي مقناطيسي دباو_

(5.84)
$$au_{ar} = au_a^2 + au_r^2 - 2 au_a au_r \cos(180^\circ - heta_{ar})$$
 $au_a^2 = au_a^2 + au_r^2 - 2 au_a au_r \cos(180^\circ - heta_{ar})$ $au_a^2 + au_r^2 + 2 au_a au_r \cos heta_{ar}$

خلائی ورز میں یہ کل مقناطیسی دباو، مقناطیسی شدت H_{ar} کو جنم دے گا جو اس قلیہ سے حاصل ہوتا ہے۔ $au_{ar} = H_{ar} l_g$ (5.85)

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ اب جہاں خلاء میں مقناطیسی شدت H ہو وہاں مقناطیسی کو-توانائی کی کثافت H_{ar} ہوتی ہے۔ خلائی درز میں اوسط خربِ $\frac{\mu_0}{2}$ کی کثافت اس خلائی درز میں H^2 کی اوسط خربِ H^2 کی اوسط خربِ H^2 ہوگی۔ کسی بھی سائن نما موح H^2 ہوگی۔ کسی بھی سائن نما موح H^2 ہوگی۔ کسی بھی سائن نما موح H^2 کا اوسط H^2 کا اوسط H^2 یوں حاصل کیا جاتا ہے۔

(5.86)
$$H_{b,l}^{2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^{2} d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_{0}^{2} \cos^{2}\theta d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \frac{\theta + \frac{\sin 2\theta}{2}}{2} \bigg|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{H_{0}^{2}}{2}$$

 $\cos \text{law}^{49}$

لہذا خلائی درز میں اوسط کو-توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی اور اس خلاء میں کل کو-توانائی اس اوسط کو-توانائی ضربِ خلاء کی حجم کے برابر ہو گا یعنی

(5.87)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2 l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درز کی رداسی لمبائی l_g ہے اور اس کی دھرے 50 کی سمت میں محوری لمبائی 51 ہے۔ محور سے خلاء کی اوسط رداسی فاصلہ r ہے۔ مزید میہ کہ l_g ہے۔ اس طرح خلاء میں رداسی سمت میں کثافتِ مقناطیسی بہاو کی تبدیلی کو نظر انداز کیا جا سکتا ہے۔ اس مساوات کو ہم مساوات کی حدد سے یوں کھھ سکتے ہیں۔

(5.88)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{g}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

اس سے میکانی توت مروڑ یوں حاصل کیا جا سکتا ہے

(5.89)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_q} \tau_a \tau_r \sin \theta_{ar}$$

یہ حساب دو قطب والی مشین کے لئے لگایا گیا ہے۔ P قطب والے مشین کے لئے یہ مساوات ہر جوڑی قطب کا میکانی توت مروڑ دیتا ہے للمذا ایسے مشین کے لئے ہم لکھ سکتے ہیں

$$(5.90) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

یہ ایک بہت اہم مساوات ہے۔ اس کے مطابق مشین کا میکانی قوت مروڑ اس کے ساکن اور گھومتے لیجھوں کے مقاطیسی دباو کے چوٹی کے براہ راست متناسب ہے۔ اس طرح یہ ان دونوں کے درمیان برقی زاویہ θ_{ar} کے سائن کے بھی براہ راست متناسب ہے۔ منفی میکانی قوت مروڑ کا مطلب ہے کہ یہ زاویہ θ_{ar} کے الٹ جانب ہے لیعنی یہ میکانی قوت مروڑ اس زاویہ کو کم کرنے کی جانب کو ہے۔ مثین کے ساکن اور گھومتے حصوں پر ایک برابر گر الٹ ستوں میں میکانی قوت مروڑ ہوتا ہے البتہ ساکن حصے کا قوت مروڑ مثین کے وجود کے ذریعہ زمین تک منتقل ہو جاتا ہے جبکہ گھومتے حصے کا میکانی قوت مروڑ اس حصے کو گھمانا ہے۔

چونکہ مقناطیسی و باو برقی رو کے براہ راست متناسب ہے للذا au_a اور i_a آپس میں براہ راست متناسب ہیں جبکہ اور au_r اور i_r آپس میں براہ راست متناسب ہیں۔ اس سے یہ ظاہر ہوتا ہے کہ مساوات 5.83 اور 5.90 ایک جیسے au_r اور حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل برابر ہیں۔

axis

axial length⁵¹

شکل 5.28: مقناطیسی بہاواوران کے زاویے۔

شکل 5.28 میں ایک مرتبہ پھر ساکن اور گھومتے کچھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل میں بائیں جانب تکون ΔAEC اور ΔBEC میں ΔCE مشتر کہ ہے اور ان دو تکونوں سے واضح ہے کہ

$$(5.91) CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.90 یوں لکھا جا سکتا ہے۔

$$(5.92) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_{ar} \sin \theta_a$$

ای طرح شکل WQ کی دائیں جانب تکون ΔMWQ اور تکون ΔSWQ میں WQ کا طرف مشتر کہ ہے اور ان دو تکونوں سے واضح ہے کہ

$$(5.93) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اب اس مساوات کی مدد سے مساوات 5.90 یوں لکھا جا سکتا ہے۔

$$(5.94) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_r \tau_{ar} \sin \theta_r$$

مهاوات 5.90 مهاوات 5.92 اور مهاوات 5.94 كو ايك جبكه لكھتے ہيں۔

(5.95)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

ان مساوات سے یہ واضح ہے کہ میکانی توت مروڑ کو دونوں کچھوں کے مقناطیسی دباو اور ان کے مابین زاویہ کی شکل میں لکھا جا سکتا ہے یا پھر ایک کچھے کی مقناطیسی دباو اور کل مقناطیسی دباو اور ان دو کے مابین زاویہ کی شکل میں لکھا جا سکتا ہے۔

اس بات کو یول بیان کیا جاسکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کے آپس میں رد عمل کی وجہ سے وجود میں آتا ہے اور یہ ان مقناطیسی دباو کی چوٹی اور ان کے مابین زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بہاو اور مقناطیسی بہاو سب کا آپس میں تعلق رکھتے ہیں للذا ان مساوات کو کئی مختلف طریقوں سے لکھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور وہاں کثافت مقناطیسی بہاو B_{ar} کا تعلق

$$(5.96) B_{ar} = \frac{\mu_0 \tau_{ar}}{l_q}$$

استعال کر کے مساوات 5.95 کے آخری جزو کو یوں لکھا جا سکتا ہے

$$(5.97) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی آلوں میں مقناطیسی قالب کی مقناطیسی مستقل μ کی محدود صلاحیت کی وجہ سے قالب میں کثافت مقناطیسی بہاو تقریباً ایک ٹسلا تک ہی بڑھائی جا سکتی ہے۔ لہذا مثین بناتے وقت اس حد کو مد نظر رکھنا پڑتا ہے۔ اس طرح گھومتے کچھے کا مقناطیسی دباو اس کچھے میں برتی رو پر مخصر ہوتا ہے۔ اس برتی رو سے کچھے کی مزاحمت میں برتی توانائی ضائع ہوتی ہے جس سے یہ لچھا گرم ہوتا ہے۔ برتی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک اس کچھے کو ٹھنڈا کرنا ممکن ہو۔ لہذا مقناطیسی دباو کو اس حد کے اندر رکھنا پڑتا ہے۔ چونکہ اس مساوات میں یہ دو بہت ضروری حدیں واضح طور پر سامنے ہیں اس لئے یہ مساوات مثین بنانے کی غرض سے بہت اہم ہے۔

اس مساوات کی ایک اور بہت اہم شکل اب دیکھتے ہیں۔ ایک قطب پر مقناطیسی بہاو ϕ_P ایک قطب پر اوسط کا رقبہ A_P ہوتا ہے۔ جہاں کثافت مقناطیسی بہاو اوسطB ضرب ایک قطب کا رقبہ A_P ہوتا ہے۔ جہاں

(5.98)
$$B_{\nu,l} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

$$(5.99) A_P = \frac{2\pi rl}{P}$$

للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

أور

(5.101)
$$T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

یہ مساوات معاصر مشینوں کے لئے بہت کار آمد ہے۔

باب6

يكسال حال، بر قرار جالو معاصر مشين

جیسا کہ نام سے واضح ہے یہ وہ گھومنے والی مثین ہے جو ایک ہی رفتار سے گھومتی ہے اور یہ رفتار اس کو دیئے گئے برقی دباو کے تعدد پر منحصر ہوتی ہے۔

جب کسی جزیٹر پر بوجھ تبدیل کیا جائے یا اسے فراہم میکانی طاقت فراہم کرنے والے کی رفتار تبدیل کی جائے تو جزیٹر نئی صورتِ حال کے مطابق چند ہی کھات میں دوبارہ برقرار صورت اختیار کر لیتا ہے۔اس برقرار چالو صورت میں اس کی رفتار، برقی دباو، برقی رو، درجہ حرارت وغیرہ مقررہ رہتے ہیں۔اس طرح اگر موٹر پر بوجھ تبدیل ہو تو اسے درکار طاقت اور برقی رو تبدیل ہول گے۔بوجھ تبدیل ہونے سے پہلے موٹر برقرار مقررہ برقی رو حاصل کرتا رہتا ہے اس طرح بوجھ تبدیل ہونے کے چند ہی کھات میں یہ دوبارہ ایک ذرجہ حرارت ایک مقررہ قیت پر رہتا ہے۔اس طرح بوجھ تبدیل ہونے کے چند ہی کھات میں یہ دوبارہ ایک نئی جمار چالو صورت اختیار کر لیتا ہے۔دو مخلف برقرار چالو، یکسال صور توں کے در میان چند کھات کے درجہ حرارت میں ہوتا ہے۔اس باب میں یکسال حال، برقرار چالو² مثین پر تبصرہ کیا جائے گا۔

معاصر آلوں میں عموماً قوی لچھا ساکن رہتا ہے جبکہ میدانی لچھا معاصر رفتار سے گھومتا ہے۔ قوی لچھوں کی برقی رو میدانی لچھوں کی برقی رو کی نسبت بہت زیادہ ہوتی ہے اور اسے سرک چھلوں کے ذریعہ گزارنا نہایت مشکل ہوتا ہے المذا قوی لچھوں کو ساکن رکھا جاتا ہے جبکہ میدانی لچھوں کو گھمایا جاتا ہے۔

transient state¹ steady state²

ہم یہ دیکھ بچکے ہیں کہ تین مرحلہ لیٹے ساکن لچھوں میں اگر متوازن تین مرحلہ برقی رو ہو تو یہ ایک گھومتے مقاطیسی دباوکی موج کو جنم دیتی ہے۔اس گھومتا موج کی رفتار کو معاصر رفتار ³ کہتے ہیں۔ معاصر مثین کا گھومتا حصہ اسی رفتار سے گھومتا ہے۔

معاصر مشین کے میدانی کچھے کو یک سمتی برقی رو درکار ہوتی ہے جو یا تو سرک چھلوں کے ذریعہ اس تک باہر سے پہنچائی جاتی ہے یا پھر مشین کے دھرے پر ہی نسب ایک چھوٹی یک سمتی جزیٹر سے اسے فراہم کی جاتی ہے۔

میدانی لچھا ایک میدانی مقناطیسی دباو کو جنم دیتی ہے جو اس کچھے کے ساتھ ساتھ معاصر رفتار سے گھومتی ہے۔ لہذا معاصر مشین کے گھومتے اور ساکن کچھوں کے مقناطیسی دباو معاصر رفتار سے ہی گھومتے ہیں۔ اسی وجہ سے انہیں معاصر مشین کہتے ہیں۔

6.1 متعدد مرحله معاصر مثين

معاصر مشین عموماً تین مرحلہ ہوتے ہیں۔ان کے تین مرحلہ ساکن قوی کچھے خلاء میں °120 برقی زاویہ پر نسب ہوتے ہیں جبکہ اس کے میدانی کچھے گھومتے جھے پر نسب ہوتے ہیں اور ان میں یک سمتی برقی رو ہوتی ہے۔

اگر مشین کے گھومتے جھے کو بیرونی میکانی طاقت سے گھمایا جائے تو یہ مشین ایک معاصر جزیئر کے طور پر کام کرتی ہے اور اس کے تین مر حلہ ساکن قوی کچھوں میں تین مر حلہ برتی دباو پیدا ہوتی ہے جس کا برتی تعدد گھومنے کے رفتار پر منحصر ہوتا ہے۔ اس کے برعکس اگر مشین کے تین مر حلہ ساکن قوی کچھوں کو تین مر حلہ برقی طاقت مہیا کیا جائے تو یہ ایک معاصر موٹر کے طور کام کرتی ہے جو معاصر رفتار سے گھومتی ہے۔ مشین کی کل برتی قوت کے چند فی صد برابر برتی قوت اس کے میدان کچھے کو درکار ہوتی ہے۔ گھومتے کچھے تک برقی دباو مختلف طریقوں سے پہنچائی جاتی ہے۔ شکل 6.1 میں گھومتے کچھے تک موصل سرکے چھلے 4 کی مدد سے یک سمتی برقی رو پہنچانے کا طریقہ دکھایا گیا ہے۔ یہ سرک چھلے اُسی دھرے پر نسب ہوتے ہیں جس پر گھومتا کچھا نسب ہوتا ہے اور یہ اس کچھے کے ساتھ کیساں طور پر گھومتے ہیں۔ سرک چھلوں کے بیرونی سطح پر کاربن کے ساکن کبش، اسپر نگ کی مدد سے ان کے ساتھ دباک طریقہ کیاں سرک چھلوں پر سرکتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی دباو ان کا

synchronous speed³ slip rings⁴

شكل 6.1: كاربن بُش اور سرك چھلوں سے لچھے تك برقی رو پہنچا يا گياہے۔

برقی جوڑ مضبوط رکھتا ہے اور ان کے مابین چنگاریال نہیں نکلتی۔ کاربن کُش کے ساتھ برقی تار لگی ہے۔ اس طرح یک سمتی برقی رو ،I ، کاربن کُش 5 سے سرک چھلول اور یہال سے گھومتے کچھے تک پہنچتی ہے۔

بڑے معاصر مثین میں میدانی یک سمتی برتی رو عموماً ایک بدلتی رو برتی جزیٹر سے حاصل کی جاتی ہے جو معاصر مثین کے دھرے پر ہی نسب ہوتی ہے اور اس کے ساتھ کیسال طور پر گھومتی ہے۔اس چھوٹے جزیٹر کی برتی دباو کو دھرے پر ہی نسب الیکٹرائنس کی مدد سے یک سمتی برتی دباو میں تبدیل کیا جاتا ہے۔ یوں سرک چھلے کی ضرورت نہیں رہتی۔سرک چھلے رگڑ کی وجہ سے خراب ہوتے ہیں جس کی وجہ سے معاصر مثین کو مرمت کی خاطر بند کرنا پڑتا ہے جو بہت مہنگا پڑتا ہے۔

اُبھرے قطب⁶ مشین پانی سے چلنے والے ست رفتار جزیٹر اور عام استعال کے موٹروں کے لئے موزوں ہوتے ہیں جبکہ ہموار قطب⁷ مشین تیز رفتار دو یا چار قطب والے ٹربائن جزیٹروں کے لئے موزوں ہوتے ہیں۔

کسی بھی مملکت کو درکار برقی توانائی ایک برقی جزیٹر سے دینا ممکن نہیں، المذا حقیقت میں کچھ در جنوں سے لیکر کئی سو برقی جزیٹر بیک وقت بید فرکضہ سر انجام دے رہے ہوتے ہیں۔ ایک سے زیادہ جزیٹر استعال کرنا فائدہ مند ثابت ہوتا ہے۔ اوّل تو برقی توانائی کی ضرورت کے مطابق جزیٹر چالو کئے جا سکتے ہیں اور پھر ان جزیٹر وال کو ضرورت کی مطابق جزیٹر چالو کئے جا سکتے ہیں اور پھر ان جزیٹر ولی حیثیت کی جگہ کے ممکنہ طور پر قریب نب کیا جا سکتا ہے۔ کسی بھی اس طرح کے بڑے نظام میں ایک جزیٹر کی حیثیت بہت کم ہو جاتی ہے۔ ایک جزیٹر چالو یا بند کرنے سے پورے نظام پر کوئی خاص فرق نہیں پڑتا۔ اس صورت میں ہم

carbon bush⁵ salient poles⁶

non-salient poles⁷

اس نظام کو ایک مقررہ برقی دباو اور ایک مقررہ برقی تعدد رکھنے والا نظام تصور کر سکتے ہیں۔ معاصر جنریٹرول کے کئی اہم پہلو با آسانی سمجھے جا سکتے ہیں اگر یہ تصور کر لیا جائے کہ یہ ایک ایسے ہی نظام سے جوڑا گیا ہے۔

مساوات 5.101 ایک معاصر مثین کا قوت مروڑ بتلاتا ہے۔ اس مساوات کے مطابق برقی مقناطیسی قوت مروڑ کی کوشش ہوتی ہے کہ وہ مثین میں موجود عمل کرنے والے مقناطیسی دباو کو سیدھ میں لائے۔ برقرار چالو مثین کا برقی مقناطیسی قوت مروڑ برابر ہوتے ہیں۔ جب مثین ایک جزیڑ کی حیثیت سے استعال ہو تب میکانی طاقت دھرے کو گھماتا ہے اور گھومتے لچھے کا مقناطیسی دباو کل مقناطیسی دباو سے گھومنے کی سمت میں آگے ہوتا ہے۔ مساوات 5.101 سے حاصل قوت مروڑ اس صورت میں گھومنے کو روکنے کی کوشش کرتا ہے۔ میکانی طاقت چلتے پانی، ایندھن سے چلتے انجن وغیرہ سے حاصل ہو سکتا ہے۔ اس طرح اگر مثین ایک موٹر کی حیثیت سے استعال ہو رہا ہو، تب صورت اس کے بالکل اُلٹ ہو گی۔

اگر کل مقناطیسی بہاو ϕ_{ar} اور گھو متے لیچھے کا مقناطیسی دباو τ_r تبدیل نہ ہو تب اسی مساوات کے مطابق مشین کا قوت مروڑ ہی صفر ہو گا۔ اب تصور کریں قوت مروڑ ہی صفر ہو گا۔ اب تصور کریں کہ یہی مشین ایک موٹر کے طور پر استعال ہو رہی ہو۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جائے ولیے ولیے اس کے دھرے پر میکانی قوت مروڑ بڑھے گی۔ موٹر کو برابر کا برقی مقناطیسی قوت مروڑ پیدا کرنا ہو گا جو یہ زاویہ بڑھا کر کرتا ہے۔ یہاں یہ سمجھنا ضروری ہے کہ موٹر ہر وقت معاصر رفتار سے ہی گھومتا ہے اور وہ یہ زاویہ پل بھر کے لئے آہتہ ہو کر ضرورت کے مطابق درست کرتا ہے۔ یعنی موٹر کا زاویہ ہم ہو قت میکانی قوت مروڑ کا تعقب 8 کرتی ہے۔

اگر موٹر پر لدا میکانی بوجھ بندر تک بڑھایا جائے تو ایک لمحہ آئے گا جب زاویہ θ_r نوے درجہ لینی $\frac{\pi}{2}$ ریڈیئن تک پہنچ جائے گا۔ اس لمحہ موٹر اپنی انتہائی قوت مروڑ ⁹ پیدا کر رہی ہو گی۔ اگر بوجھ مزید بڑھایا جائے تو موٹر کسی بھی صورت میں اس کے مقابلے کا قوت مروڑ نہیں پیدا کر سکتی اور یہ موٹر رکھ جائے گی۔ ہم کہتے ہیں کہ موٹر نے غیر معاصر 10 صورت اختیار کر لی ہے۔ مساوات سے یہ ظاہر ہے کہ کل مقناطیسی بہاو یا گھومتے کچھے کا مقناطیسی دباو بڑھا کر اس انتہائی قوت مروڑ کی مقدار بڑھائی جا سکتی ہے۔

یمی صورت اگر مشین برقی جزیر کے طور پر استعال کی جائے سامنے آتی ہے۔ جب بھی مشین غیر معاصر صورت اختیار کرے اسے جلد خود کار دور شکن 11 کی مدد سے برقی بھم رسانی سے الگ کر دیا جاتا ہے۔

hunting⁸

pull out torque⁹

lost synchronism¹⁰ circuit breaker¹¹

6.2. معاصر مشين کے امالہ

ہم نے دیکھا کہ ایک معاصر موٹر صرف اور صرف معاصر رفار سے ہی گھوم سکتی ہے اور صرف اسی رفار پر گھومتی صورت میں قوت مروڑ پیدا کر سکتی ہے للذا اگر اسے ساکن حالت سے چالو کرنے کی کوشش کی جائے تو یہ کوشش ناکام رہے گی۔ ایسے موٹر کو پہلے کسے اور طریقے سے معاصر رفار تک لایا جاتا ہے اور پھر اسے چالو کیا جاتا ہے۔ ایسا عموماً ایک چھوٹی امالی موڑ ¹² کی مدد سے کیا جاتا ہے جو بے بوجھ معاصر موٹر کو، اس کے معاصر رفار تک لے آتا ہے ایسی معاصر موٹر کو چالو کیا جاتا ہے۔ ایسی امالہ موٹر معاصر موٹر کے دھرے پر ہی نسب ہوتی ہے۔

6.2 معاصر مشين كے اماليہ

ہم تصور کرتے ہیں کہ مشین دو قطب اور تین مرحلہ ہے اور اس کے کیھے سارہ نما جڑے ہیں۔اس طرح کیھوں میں برقی رو، تار برقی رو 13 ہی ہو گی اور ان پر لاگو برقی دباو، یک مرحلہ برقی دباو ہو گی۔ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے جبکہ نتیجہ کسی بھی موٹر کے لئے درست ہوتا ہے۔

شکل 6.2 میں ایک ایبا تین مرحلہ دو قطب معاصر مشین دکھایا گیا ہے۔ اس کا گھومتا حصہ نکلی نما ہے۔اس کو دو قطب کا مشین یا پھر P قطب کے مشین کا دو قطب کا حصہ سمجھا جا سکتا ہے۔

یہاں پچھ کچھ دکھائے گئے ہیں لیکن حقیقت میں پھیلے کچھے ہی استعال ہوتے ہیں اور انہیں در حقیقت پھیلے کچھے ہی سمجھا جائے۔ اس طرح ہر کچھا سائن نما برتی دباو پیدا کرتا ہے جس کی چوٹی کچھے کی مقناطیسی محور کی سمت میں ہوتی ہے۔ چونکہ معاصر مشین میں گھومتے کچھے میں یک سمتی رو ہی ہوتا ہے للذا اس کا مقناطیسی دباو ہر لمحہ گھومتے جھے کی مقناطیسی محور کی سمت میں ہی رہتا ہے۔ یہ شکل میں دکھایا گیا ہے۔ اس طرح گھومتے کچھے کا مقناطیسی دباو گھومتے جھے کے ساتھ ساتھ معاصر رفتار سے گھومتا ہے۔

 a^{-14} ہم فرض کرتے ہیں کہ مثین معاصر رفتار ω سے گھوم رہی ہے۔ اس طرح اگر لمحہ t=0 پر مرحلہ a^{-14} اور گھومتے کچھ کے مقناطیسی محور ایک ہی سمت میں ہوں تب کسی بھی لمحہ پر ان کے مابین زاویہ $\theta=\omega t$ ہو گا۔ امالہ کے حساب لگانے کے لئے شکل 0.2 سے رجوع کریں۔ شکل میں محیط پر خلائی درزیکساں ہے اور اس کی ردائی سمت

induction motor¹² line current¹³

phase¹⁴

شكل 6.2: تين مرحله ، دوقطب معاصر مثين ـ

میں لمبائی l_g ہے۔ساکن جصے میں شگافوں کے اثر کو نظرانداز کیا گیا ہے۔محور سے خلائی درز تک کا اوسط رداسی فاصلہ ho ہے اور مثین کی دھرے کی ست میں محوری لمبائی l_g ہے۔

کسی بھی کچھے کے خود امالہ کا حساب کرتے وقت باتی سب کچھوں کو نظرانداز کریں۔ اس کا مطلب ہے کہ آپ تضور کریں کہ باتی سب کچھوں میں برقی رو صفر ہے یعنی ان کچھوں کے سرے آزاد رکھے گئے ہیں۔ حقیقت میں اگر آپ کبھی کچھوں کے خود امالہ کو مشین کی مدد سے ناپنا چاہیں تو آپ باتی سب کچھوں کے سرے آزاد ہی رکھیں گے۔

6.2.1 خوداماله

au گھو متے یا ساکن کچھے کی خود امالہ L زاویہ θ پر منحصر نہیں۔ ان میں سے کسی مجھی کچھے کی مقناطیسی دباو ہ $au=k_w rac{4}{\pi} rac{Ni}{2}\cos\theta_p$

سے خلائی درز میں کثافت مقناطیسی بہاو B پیدا ہو گی جہاں

(6.2)
$$B = \mu_0 H = \mu_0 \frac{\tau}{l_q} = \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_q} \cos \theta_p$$

6.2. معاصر مشین کے امالہ

یہ مساوات زاویہ θ_p کے ساتھ برلتی کثافتِ مقناطیسی دباو B بتلاتی ہے۔ اس کچھے کا ایک قطب پر کل مقناطیسی بہاو ϕ کا حساب کرنے کے لئے ہمیں اس مساوات کا سطحی تکمل 15 یوں لینا ہو گا۔

(6.3)
$$\phi = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} Bl\rho \, d\theta_p$$

$$= \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} l\rho \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos \theta_p \, d\theta_p$$

$$= \frac{4\mu_0 k_w Nil\rho}{\pi l_g}$$

اب ہم اس کیجے کی خود امالہ L مساوات 2.29 میں جزو کھیلاد k_w کا اثر شامل کرتے ہوئے حاصل کر سکتے ہیں۔

$$(6.4) L = \frac{\lambda}{i} = \frac{k_w N \phi}{i} = \frac{4\mu_0 k_w^2 N^2 l \rho}{\pi l_q}$$

یہ مساوات اس شکل میں کسی بھی کچھے کی خود امالہ دیتا ہے۔ یعنی

(6.5)
$$L_{aa0} = L_{bb0} = L_{cc0} = \frac{4\mu_0 k_{wa}^2 N_a^2 l\rho}{\pi l_g}$$

اور

(6.6)
$$L_{mm0} = \frac{4\mu_0 k_{wm}^2 N_m^2 l \rho}{\pi l_q}$$

6.2.2 مشتركه اماله

اب ہم دو کچھوں کا مشتر کہ امالہ حاصل کرتے ہیں۔ تصور کریں کہ صرف گھومتا کچھا مقناطیسی بہاو پیدا کر رہا ہے۔ ہم اس کا وہ حصہ جو a کچھے سے گزرے کا حساب لگا کر ان کا مشتر کہ امالہ حاصل کریں گے۔شکل a میں گھومتے اور a کچھے کے مابین کا زاویہ a ہے۔اس صورت میں وہ مقناطیسی بہاو جو a کو جا بین کا زاویہ a ہے۔اس صورت میں وہ مقناطیسی بہاو جو a کے مابین کا زاویہ a ہے۔اس صورت میں وہ مقناطیسی بہاو جو کہ ایک کا زاویہ کے ایک کا زاویہ کا میں میں میں مقناطیسی کے مابین کا زاویہ کے سابین کا زاویہ کا جا بین کا زاویہ کا میں میں میں میں کو مقناطیسی کے مابین کا کہ کا بین کا زاویہ کی کا بین کا کہ کہ کر بین کا زاویہ کی کا کہ کی کے مابین کا کر بین کے مابین کا زاویہ کی کا بین کی کر بین کے مابین کی کہ کر بین کی کر بین کے کہ کر بین کی کر بین کے کہ کر بین کی کر بین کی کر بین کر بین کی کر بین کر بین کی کر بین کی کر بین کی کر بین کر بین کر بین کی کر بین کر بین کی کر بین کی کر بین کر بین کر بین کی کر بین کا زاویہ کر بین کا کر بین کر بیان کر بین ک

 $surface integral^{15}$

ہو، a کچھے سے گزرے گا۔ اس مقناطیسی بہاو کا حساب مساوات 6.3 میں تکمل کے حدود تبدیل کر کے بول حاصل ہو گا۔

$$\phi_{am} = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} B l \rho \, d\theta_{p}$$

$$= \mu_{0} k_{wm} \frac{4}{\pi} \frac{N_{m} i_{m}}{2 l_{g}} l \rho \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} \cos \theta_{p} \, d\theta_{p}$$

$$= \frac{4\mu_{0} k_{wm} N_{m} i_{m} l \rho}{\pi l_{g}} \cos \theta$$

اس مساوات سے ان کا مشتر کہ امالہ میہ ہے

(6.8)
$$L_{am} = \frac{\lambda_{am}}{i_m} = \frac{k_{wa}N_a\phi_{am}}{i_m} = \frac{4\mu_0k_{wa}k_{wm}N_aN_ml\rho}{\pi l_q}\cos\theta$$

اس کو یول لکھ سکتے ہیں

$$(6.9) L_{am} = L_{am0}\cos\theta$$

جہال جیسے پہلے ذکر ہوا زاویہ heta گھومنے کی رفتار پر منحصر ہے لیعنی heta=0 اور L_{am0} یہ ہے

$$(6.10) L_{am0} = \frac{4\mu_0 k_{wa} k_{wm} N_a N_m l \rho}{\pi l_g}$$

ا گرچہ یہ مساوات ایک گھومتے اور ایک ساکن کچھ کے لئے نکالا گیا ہے در حقیقت یہ اس شکل میں کسی بھی دو کچھوں کے لئے درست ہے۔ یہ دونوں کچھے ساکن ہوتے تب بھی جواب یہی آتا۔ اگر یہ دونوں گھومتے ہوتے تب بھی جواب یہی آتا۔ لہذا دو ساکن یکسال کچھے مثلاً a اور b جن کے مابین °120 کا زاویہ ہے کا آپس کا مشتر کہ امالہ یہ ہو گا

(6.11)
$$L_{ab} = \frac{4\mu_0 k_{wa} k_{wb} N_a N_b l \rho}{\pi l_g} \cos 120^\circ = -\frac{2\mu_0 k_{wa}^2 N_a^2 l \rho}{\pi l_g}$$

جہاں دونوں کچھے بالکل کیساں ہونے کی بدولت $k_{wb}=k_{wa}$ اور $N_b=N_a$ کئے ہیں۔اگر تینوں ساکن کچھے بالکل کیسال ہو تب ہم اس مساوات اور مساوات 6.5 کی مدد سے یہ لکھ سکتے ہیں۔

(6.12)
$$L_{ab} = L_{bc} = L_{ca} = -\frac{L_{aa0}}{2}$$

6.2. معاصر مشين ك اماله

6.2.3 معاصراماله

مشین پر لا گو برقی دباو کو مشین کے لیچھوں کی خود امالہ، مشتر کہ امالہ اور لیجھوں میں برقی رو کی مدد سے لکھا جا سکتا ہے۔ یہ کرنے کے لئے ہم پہلے لیجھوں کی ارتباط بہاو \(کو ان کے امالہ اور ان میں برقی رو کی مدد سے یوں لکھتے ہیں۔

(6.13)
$$\lambda_{a} = L_{aa}i_{a} + L_{ab}i_{b} + L_{ac}i_{c} + L_{am}I_{m}$$

$$\lambda_{b} = L_{ba}i_{a} + L_{bb}i_{b} + L_{bc}i_{c} + L_{bm}I_{m}$$

$$\lambda_{c} = L_{ca}i_{a} + L_{cb}i_{b} + L_{cc}i_{c} + L_{cm}I_{m}$$

$$\lambda_{m} = L_{ma}i_{a} + L_{mb}i_{b} + L_{mc}i_{c} + L_{mm}I_{m}$$

ان مساوات میں ساکن کچھوں کے بدلتی برقی رو کو چھوٹے حروف یعنی i_a,i_b,i_c سے ظاہر کیا گیا ہے جبکہ گھومتے میدانی کچھے کے یک سمتی برقی رو کو بڑے حرف I_m سے ظاہر کیا گیا ہے۔

ان چار مساوات میں سے ہم کسی ایک کو پُٹنتے ہیں اور اسے حل کرتے ہیں۔ چونکہ یہ چاروں مساوات ایک طرح کے ہیں اس لئے باقی بھی ایسے ہی حل ہول گے۔ ہم ان میں سے پہلے مساوات لیتے ہیں لینی

$$\lambda_a = L_{aa}i_a + L_{ab}i_b + L_{ac}i_c + L_{am}I_m$$

مساوات 6.5 ہمیں a کچھے کا خود امالہ دیتا ہے۔ یہ مساوات یہ تصور کر کے نکالا گیا تھا کہ اس کچھے کا پورا مقناطیسی بہاو خلائی درز سے گزرتا ہے۔ حقیقت میں ایسا نہیں ہوتا اور کچھ مقناطیسی بہاو اس خلائی درز میں سے گزر کر دوسری جانب نہیں پنچتا۔ ایسے مقناطیسی بہاو کی وجہ سے رستا امالہ L_{al} وجود میں آتا ہے۔ یہ بالکل ٹرانسفار مر کے رستا امالہ کی طرح ہے۔ یوں اس کچھے کا کل خود امالہ میں ہے۔

$$(6.15) L_{aa} = L_{aa0} + L_{al}$$

ہم مساوات 6.5، مساوات 6.9، مساوات 6.12 اور مساوات 6.15 کی مدد سے مساوات 6.14 کو یوں لکھتے ہیں۔

(6.16)
$$\lambda_{a} = (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} i_{b} - \frac{L_{aa0}}{2} i_{c} + L_{am0} I_{m} \cos \omega t$$
$$= (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} (i_{b} + i_{c}) + L_{am0} I_{m} \cos \omega t$$

اب تین مرحلہ برقی رو مجموعہ صفر ہوتا ہے لیتی

$$(6.17) i_a + i_b + i_c = 0$$

للذا مساوات 6.16 میں اس کو استعال کرتے ماتا ہے

(6.18)
$$\lambda_a = (L_{aa0} + L_{al}) i_a - \frac{L_{aa0}}{2} (-i_a) + L_{am0} I_m \cos \omega t$$
$$= \left(\frac{3}{2} L_{aa0} + L_{al}\right) i_a + L_{am0} I_m \cos \omega t$$
$$= L_s i_a + L_{am0} I_m \cos \omega t$$

جہاں

$$(6.19) L_s = \frac{3}{2}L_{aa0} + L_{al}$$

کو معاصراماله ¹⁶ کہتے ہیں۔

اس مساوات اور مساوات 5.48 پر ایک مرتبہ دوبارہ غور کریں۔ یہ دونوں ملتے جلتے ہیں۔ وہاں کل گھومتا مقناطیسی دباو ایک کچھے کی امالہ کے $\frac{3}{2}$ گھنا ہے۔ یہ دو مساوات در حقیقت ایک ہی حقیقت کے دو پہلو ہیں۔

معاصر امالہ تین حصوں پر مشتمل ہے۔ پہلا حصہ L_{aa0} ہے جو a کچھے کا خود امالہ ہے۔ دوسرا حصہ $\frac{L_{aa0}}{2}$ اس کچھے یعنی a کچھے کا باقی دو کچھوں کے ساتھ اُس صورت میں مشتر کہ امالہ ہے جب مشین میں تین مرحلہ متوازن برتی رو ہو۔ تیسرا حصہ a کے کے کا رستا امالہ ہے۔ اس طرح معاصر امالہ مشین کے ایک کچھے کا ظاہری امالہ ہوتا ہے جب مشین متوازن برتی رو ہو۔

مثال 6.1: ایک معاصر جزیٹر کی یک مرحله کل خود اماله 2.2 mH اور رستا اماله 0.2 mH بیں۔اس مشین کے دو مرحلوں کا آپس میں مشتر کہ امالہ اور مشین کا معاصر امالہ حاصل کریں۔

synchronous inductance¹⁶

6.3 معاصر مثين كامساوي دوريار ماضي نمونه

کے ہوتی دباو کے برابر ہو گا، لیتی R_a میں برتی دباو کے گھنے اور λ_a کے برتی دباو کے برابر ہو گا، لیتی R_a

$$(6.20) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t}$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} - \omega L_{am0} I_m \sin \omega t$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + e_{am}$$

يہال

(6.21)
$$e_{am} = -\omega L_{am0} I_m \sin \omega t$$
$$= \omega L_{am0} I_m \cos \left(\omega t + \frac{\pi}{2}\right)$$

کو پیجانی برقی دباو یا اندرونی پیدا برقی دباو کہتے ہیں جو گھومتے کچھے سے پیدا مقناطیسی بہاو کی وجہ سے وجود میں آتی ہے۔ اس کے موثر قیت $E_{am,rms}$ مساوات 1.42 کی مدد سے حاصل ہوتا ہے۔

(6.22)
$$E_{am,rms} = \frac{\omega L_{am0} I_m}{\sqrt{2}} = 4.44 f L_{am0} I_m$$

مساوات 6.20 کو ایک برتی دور سے ظاہر کیا جا سکتا ہے جے شکل 6.3 میں دکھایا گیا ہے۔ کسی بھی برتی آلہ پر جب برتی دباو لا گو کیا جائے تو برتی روکی مثبت سمت لا گو برتی دباو کے مثبت سرے سے باہر کی جانب کو ہوتی ہے۔ المذا اس شکل میں برتی رو i_a لا گو برتی دباو v_a کی مثبت سرے سے باہر کی جانب کو ہے۔ یہ شکل ایک موٹر کو ظاہر کرتی ہے جہاں موٹر کے مثبت سرے پر برتی رو اندر کی جانب کو ہوتا ہے۔ اگر موٹر کی بجائے ایک معاصر جزیئر کی بات

شکل 6.4: معاصر جزیٹر کامساوی دوریاریاضی نمونه۔

شکل 6.5: معاصر جنریٹر کے مساوی ادوار۔

ہوتی تو یہ جزیر برقی دباو پیدا کرتا اور برقی رو اس جزیر کی مثبت سرے سے باہر کی جانب کو ہوتی۔ اس صورت میں ہمیں شکل 6.3 کی جگہ شکل 6.4 ملے گا۔اس شکل کی مساوات اسی شکل سے یوں حاصل ہوتی ہے۔

$$(6.23) e_{am} = i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + v_a$$

یہاں بید دھیان رہے کہ جزیٹر کے مساوی دور میں برقی روکی مثبت سمت موٹر کے مساوی دور میں برقی روکی مثبت سمت کے اُلٹ ہے۔اس کا مرحلی سمتیہ مساوات یوں لکھا جائے گا۔

(6.24)
$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s + \hat{V}_a$$

اس مر حلی سمتیہ کے مساوات کو شکل 6.5-الف میں دکھایا گیا ہے۔عام حالات میں X_s کی مقدار R_a سے سو سے دو سو گنا زیادہ ہوتی ہے۔

مثال 6.2: دو قطب 50 ہرٹز کا ایک معاصر جزیٹر 40 ایمپیئر میدانی برقی روپر 2100 وولٹ یک مرحلہ موثر برقی دباو پیدا کرتی ہے۔اس مثنین کی قوی اور میدانی کچھوں کے مابین مثتر کہ امالہ حاصل کریں۔ 6.4 برقى طب قىية كى منتقلى 6.4

حل: مساوات 6.22 سے

(6.25)
$$L_{am} = \frac{\sqrt{2}E_{am}}{\omega I_m} = \frac{\sqrt{2} \times 2100}{2 \times \pi \times 50 \times 40} = 0.2363 \,\text{H}$$

 \Box

6.4 برقی طاقت کی منتقلی

شکل 3.20 ٹرانسفار مر کا مساوی دور (ریاضی نمونہ) اور شکل 6.5 معاصر جزیٹر کا مساوی دور (ریاضی نمونہ) ہے۔ دونوں بالکل ایک طرح کے ہیں، للذا مندرجہ ذیل بیان دونوں کے لئے درست ہو گا، اگرچہ یہاں ہمیں صرف معاصر آلوں سے دلچیسی ہے۔

معاصر آلوں میں معاصر متعاملہ کچھے کی مزاحمت سے بہت زیادہ ہوتا ہے للذا اس کے مزاحمت کو نظرانداز کیا جا سکتا۔ ایبا ہی شکل کے حصہ بامیں کیا گیا ہے۔

شکل 6.5ب کو اگر ہم ایک کھے کے لئے ایک سادہ برقی دور سمجھیں جس کے بائیں جانب \hat{E}_{am} اور دائیں جانب \hat{V}_a جانب \hat{V}_a برقی دباو ہے جن کے مابین ایک متعاملہ $\hat{J}X_s$ جڑا ہے۔ اس برقی دور میں برقی طاقت کے منتقلی کا حساب یوں ممکن ہے۔

شکل 6.5-ب کی مرحلی سمتیہ شکل 6.6 میں دی گئی ہے۔ شکل 6.6-الف میں برقی رو \hat{I}_a برقی دو او \hat{V}_a سے ϕ زاویہ بچھے ہے اور شکل 6.6-ب میں برقی رو ϕ زاویہ برقی دواو سے آگے ہے۔ چونکہ زاویہ اُفقی سمت سے گھڑی کی اُلٹی سمت ناپا جاتا ہے لہذا شکل-الف میں ϕ منفی زاویہ ہے اور σ مثبت زاویہ ہے جبکہ شکل-ب میں دونوں زاویہ مثبت ہیں۔ مثبت ہیں۔

دائیں جانب طاقت p_v منتقل ہو رہی ہے جہاں

$$(6.26) p_v = V_a I_a \cos \phi$$

نگل 6.6: معاصر جنریٹر کامر حلی سمتیہ۔

کے برابر ہے۔شکل 6.6-الف سے

(6.27)
$$\hat{I}_{a} = I_{a} \underline{/\phi_{a}} = \frac{\hat{E}_{am} - \hat{V}_{a}}{jX_{s}}$$

$$= \frac{E_{am}\underline{/\sigma} - V_{a}\underline{/0}}{X_{s}\underline{/\frac{\pi}{2}}}$$

$$= \frac{E_{am}\underline{/\sigma - \pi/2 - V_{a}\underline{/-\pi/2}}}{X_{s}}$$

(6.28)
$$I_a \cos \phi_a = \frac{E_{am}}{X_s} \cos \left(\sigma - \frac{\pi}{2}\right) - \frac{V_a}{X_s} \cos \left(-\frac{\pi}{2}\right)$$
$$= \frac{E_{am}}{X_s} \sin \sigma$$

اس مساوات اور مساوات 6.26 سے حاصل ہوتا ہے

$$(6.29) p_v = \frac{V_a E_{am}}{X_s} \sin \sigma$$

تین مرحلہ معاصر مشین کے لئے اس مساوات کو تین سے ضرب دیں لینی

$$(6.30) p_v = \frac{3V_a E_{am}}{X_s} \sin \sigma$$

 E_{am} یہ طاقت بالمقابل زاویہ 17 کا قانون ہے۔اگر V_a معین ہو تو جزیٹر E_{am} یا σ بڑھا کر طاقت بڑھا سکتا ہے۔اگر معین ہو تو جزیٹر کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی گھومتے کچھے میں برقی رو بڑھا کر بڑھائی جاتی ہے۔البتہ یہ ایک حد تک کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی

power-angle law¹⁷

6.4. برقى طب قت كى منتقلى

ضائع ہونے سے یہ گرم ہوتا ہے اور اس کی حرارت کو خطرناک حد تک پہنچنے نہیں دیا جا سکتا۔ دوسری جانب σ کو نوے زاویہ تک بڑھایا جا سکتا ہے اور اس صورت میں جزیٹر زیادہ سے زیادہ طاقت مہیا کرے گا۔

$$p_{v, ; z_i} = \frac{3V_a E_{am}}{X_s}$$

حقیقت میں جزیٹر کو اس طرح بنایا جاتا ہے کہ اس کی زیادہ سے زیادہ قابل استعال طاقت نوے درجے سے کافی کم زاویہ پر ہو۔ نوے درجے پر جزیٹر کو قابور کھنا مشکل ہو جاتا ہے۔

مثال 6.3: ایک 50 قطب ستارہ جڑی تین مرحلہ 50 ہرٹز 2300 وولٹ تار کی برقی دباو پر چلنے والی 1800 کلو وولٹ-ایمپیئر کی معاصر مشین کی یک مرحلہ معاصر امالہ 2.1 اوہم ہے۔

- مثین کے برتی سروں پر 2300 وولٹ تارکی برتی دباو مہیا کرتے ہوئے اگر اس کی میدانی برتی رواتنی رکھی جائے کہ پورے بوجھ پر مثین کا جزو طاقت ایک کے برابر ہو تو اس سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جاسکتی ہے۔
- اگر اسے 2 قطب 3000 چکر فی منٹ تین مرحلہ سارہ جڑی 2300 وولٹ تارکی برقی دباو پیدا کرنے والی 2200 کلو وولٹ اللہ 2.3 اوہم ہو۔ موٹر 2200 کلو وولٹ ایمبیئر کی معاصر جزیئر سے چلایا جائے جس کی یک مرحلہ معاصر امالہ 2.3 اوہم ہو۔ موٹر پر اس کا پورا برقی بوجھ لاد کر جزیئر کو معاصر رفتار پر چلاتے ہوئے دونوں مشینوں کی میدانی برقی رو یہاں برقرار رکھ کر کی جاتی ہے حتی کہ موٹر ایک جزو طاقت پر چلنے لگے۔دونوں مشینوں کی میدانی برقی رو یہاں برقرار رکھ کر موٹر پر بوجھ آہستہ آہستہ بڑھائی جاتی ہے۔اس صورت میں موٹر سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جا علی ہے اور اس کی سروں پر تارکی برقی دباو کتنی ہو گی۔

عل:

• شكل 6.7-الف اور 6.7-ب سے رجوع كريں۔ يك مرحله برقى دباو اور كل برقى رويه بين

$$\frac{2300}{\sqrt{3}} = 1327.9 \,\text{V}$$
$$\frac{1800000}{\sqrt{3} \times 2300} = 451.84 \,\text{A}$$

للذا

$$\begin{split} \hat{E}_{am,m} &= \hat{V}_a - j\hat{I}_a X_{s,m} \\ &= 1327.9 \underline{/0^{\circ}} - j451.84 \underline{/0^{\circ}} \times 2.1 \\ &= 1327.9 - j948.864 \\ &= 1632 \underline{/-35.548^{\circ}} \end{split}$$

ہے۔یوں مساوات 6.31 سے ایک مرطلے کی زیادہ سے زیادہ برقی طاقت

$$p_{\xi^{\prime\prime}} = \frac{1327.9 \times 1632}{2.1} = 1\,031\,968\,\mathrm{W}$$

ہے۔ یوں تین مرحلوں کی زیادہ سے زیادہ طاقت 904 3095 واٹ ہوگی۔ 50 ہرٹز اور 50 قطب سے مشین کی معاصر میکانی رفتار مساوات 5.51 کی مدد سے دو چکر فی سیکنڈ حاصل ہوتی ہے لیعنی $f_m=2$ یوں مشین سے زیادہ سے زیادہ قوت مروڑ

$$T_{\mathcal{F}^{\dagger}} = \frac{p_{\mathcal{F}^{\dagger}}}{2\pi f_m} = \frac{3095904}{2 \times \pi \times 2} = 246364 \,\mathrm{N\,m}$$

حاصل ہو گی۔

• شکل 6.7-پ سے رجوع کریں۔ پہلی جزو کی طرح یہاں بھی موٹر کی برقی سروں پر تار کی برقی دباو 2300 وولٹ اور اس کی محرک برقی دباو 1632 وولٹ ہے۔ جزیئر کی محرک برقی دباو

$$\begin{split} \hat{E}_{am,g} &= \hat{V}_a + j\hat{I}_a X_{s,g} \\ &= 1327.9 / 0^{\circ} + j451.84 / 0^{\circ} \times 2.3 \\ &= 1327.9 + j1039.233 \\ &= 1686 / 38.047^{\circ} \end{split}$$

ہے۔ یہ صورت شکل 6.7-ت میں دکھائی گئی ہے۔

معاصر موٹر اس وقت زیادہ سے زیادہ طاقت پیدا کرے گی جب $\hat{E}_{am,m}$ اور $\hat{E}_{am,m}$ آپس میں $\hat{E}_{am,m}$ زاویہ پر ہوں۔ ایسا شکل $\hat{E}_{am,m}$ میں دکھایا گیا ہے ۔

اب مساوات 6.31 میں ایک معاصر امالہ کی جگہ سلسلہ وار جڑی موٹر اور جزیئر کی امالہ ہیں اور دو برقی دباو اب موٹر اور جزیئر کی محرک برقی دباو ہیں۔یوں موٹر کی یک مرحلہ زیادہ سے زیادہ طاقت

$$p_{\xi^{\prime}} = \frac{1686 \times 1632}{2.3 + 2.1} = 625352 \,\mathrm{W}$$

ماصل ہوں گے۔ تین مرحلوں سے یوں $1\,876\,056$ واٹ حاصل ہوں گے اور زیادہ سے زیادہ قوت مروڑ $T_{;;;}=rac{1876056}{2 imes\pi imes2}=149\,291\,\mathrm{N}\,\mathrm{m}$

ہو گی۔

П

معاصر جنریٹر: برقی بوجھ بالقابل I_m خطوط 6.5.1

شکل 6.5-ب کے لئے مرحلی سمتیوں کا مساوات یہ ہے

$$\hat{E}_{am} = \hat{V}_a + j\hat{I}_a X_s$$

اسے یوں لکھ سکتے ہیں

(6.33)
$$E_{am}\underline{\sigma} = V_a\underline{0} + I_aX_s\underline{\frac{\pi}{2} + \phi}$$

اس مساوات کو مخلوط عدد 18 کے طور پر یوں لکھ سکتے ہیں۔

$$E_{am}\cos\sigma + jE_{am}\sin\sigma = V_a\cos0 + jV_a\sin0 + I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) + jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right)$$
$$= E_{am,x} + jE_{am,y}$$

اس مساوات سے $\left|\hat{E}_{am}
ight|$ یعنی $\left|\hat{E}_{am}
ight|$ کی مقدار یوں حاصل ہوتی ہے۔

(6.34)
$$\begin{aligned} \left| \hat{E}_{am} \right| &= E_{am} = \sqrt{E_{am,x}^2 + E_{am,y}^2} \\ &= \sqrt{V_a^2 + (I_a X_s)^2 + 2V_a I_a X_s \sin \phi} \end{aligned}$$

جزیڑ کے سروں پر معین V_a رکھتے ہوئے مختلف ϕ کے لئے E_{am} بالقابل I_a خط شکل I_a میں دکھائے گئے ہیں۔ چونکہ I_a اور I_m براہِ راست متناسب ہیں اور اسی طرح کسی ایک مخصوص جزو طاقت اور معین V_a کیا جزیڑ کا طاقت I_a کے جزیڑ کا طاقت I_a کرتا ہوتا ہے المذا یہی ترسیم I_a بالمقابل جزیڑ کے طاقت کو بھی ظاہر کرتا ہے۔

complex number¹⁸

 I_a بر تی باریا قوی کیھے کی بر تی رو

شکل 6.8: جزیڑ: برقی بوجھ بالمقابل I_m خط

معاصر موٹر: I_n بالقابل معاصر موٹر: I_m

معاصر موٹر کا مساوی دور (ریاضی نمونہ) شکل 6.3 میں دکھایا گیا ہے اور اس کا مرحلی سمتیہ شکل 6.9 میں دکھایا گیا ہے۔ اس میں مزاحمت نظرانداز کرنے سے اس کی مساوات یوں ہو گی۔

(6.35)
$$\begin{split} \hat{V}_{a} &= \hat{E}_{am} + j\hat{I}_{a}X_{s} \\ V_{a}\underline{/0} &= E_{am}\underline{/\sigma} + jI_{a}\underline{/\phi}X_{s} \\ &= E_{am}\underline{/\sigma} + I_{a}X_{s}\underline{/\frac{\pi}{2} + \phi} \end{split}$$

اس مساوات میں زاویے موٹر پر لاگو برقی دباوہ \hat{V}_a کے حوالہ سے ہیں، لیعنی \hat{V}_a کا زاویہ صفر لیا گیا ہے۔یاد رہے کہ زاویہ ناپنے کی مثبت سمت اُفقی کیبر سے گھڑی کی اُلٹی سمت ہے الہذا پیر زاویہ 19 مثنی ہیں۔ اس مساوات سے امالی دباو E_{am} کی مقدار یوں حاصل ہو گی۔

$$\begin{split} E_{am}\underline{/\sigma} &= V_a\underline{/0} - I_aX_s\underline{/\frac{\pi}{2} + \phi} \\ &= V_a - I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) - jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right) \\ &= V_a + I_aX_s\sin\phi - jI_aX_s\cos\phi \end{split}$$

leading angle¹⁹ lagging angle²⁰

نگل 6.9:موٹر کامر حلی سمتیہ۔ ح

للذا

(6.36)
$$|E_{am}| = \sqrt{(V_a + I_a X_s \sin \phi)^2 + (I_a X_s \cos \phi)^2}$$
$$= \sqrt{V_a^2 + I_a^2 X_s^2 + 2V_a I_a X_s \sin \phi}$$

موٹر پر لاگو برقی دباہ اور اس پر میکانی بوجھ کو 0%، 0% اور 75% پر رکھ کر اس مساوات کو شکل 6.10 میں ترسیم کیا گیا ہے۔ یہ موٹر کے E_{am} بالمقابل I_a بالمقابل I_a بالمقابل I_a بالمقابل میں سے ہر خط ایک معین میکانی بوجھ I_a کے لئے ہے جہاں I_a

$$(6.37) p = V_a I_a \cos \phi$$

اس مساوات سے واضح ہے کہ اگر q اور V_a معین ہوں تو جزو طاقت تبدیل کر کے I_a تبدیل کیا جا سکتا ہے۔لہذا مساوت 6.36 کو مساوات 6.37 کی مدو سے ترسیم کیا جاتا ہے۔ یہ کچھ یوں کیا جاتا ہے۔معین V_a اور Q کے لئے مختلف I_a پر مساوات 0.36 سے Q حاصل کریں۔ ان Q اور Q و مساوات Q میں استعال کر کے Q عاصل کریں۔ محتاب لگائیں اور Q بالمقابل Q ترسیم کریں۔

موٹر کی ان خطوط سے واضح ہے کہ I_m کو تبدیل کر کے موٹر کی جزو طاقت تبدیل کی جا سکتی ہے۔ للذا موٹر کو پیاچ زاویہ یا آخیر کے زاویہ پر چلایا جا سکتا ہے۔ اگر اسے پیش زاویہ پر رکھا جائے تو یہ ایک کپیسٹر 21 کے طور پر استعال ہو سکتا ہے اگرچہ ایسا کیا نہیں جاتا چونکہ کپیسٹر از خود زیادہ سستا ہوتا ہے۔

 ${\rm capacitor}^{21}$

 I_m میدانی کچھے کی برقی رو

شکل I_a : موٹر: I_m بالمقابل I_a خط

6.6 کھلے دوراور کسرِ دور معائنہ

معاصر مشین کے مساوی دور بنانے کے لئے اس کے جزو معلوم کرنا لازم ہے۔ یہ دو قشم کے معائنوں سے کیا جاتا ہے۔ انہیں کھلے دور معائنہ اور کسرِ دور معائنہ کہتے ہیں۔ان معائنوں سے قالب کے سیر اب ہونے کے اثرات بھی سامنے آتے ہیں۔ہم نے ٹرانسفار مر کے لئے بھی اسی قشم کے معائنے کیے تھے۔وہاں ہم نے دیکھا تھا کہ کھلے دور معائنہ اس برقی دباو پر کیا جاتا ہے جتنے کے لئے مثین بنائی 22 گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جتنے کے لئے مثین بنائی 22 گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جتنے کے لئے مثین بنائی گئی ہو۔ یہاں بھی ایسا ہی کیا جائے گا۔

6.6.1 گطے دور معائنہ

معاصر مثنین کے برقی سرے کھلے رکھ کر اور اسے معاصر رفتار پر گھماتے ہوئے مختلف I_m پر مثنین کے سروں پر پیدا برقی دباو V_a ناپی جاتی ہے ۔ ان دو کا ترسیم شکل 6.11-الف میں دکھایا گیا ہے۔ یہ خط مثنین کے گھلے دور خاصیت ظاہر کرتا ہے۔ یہی خط مثنین بنانے والے بھی مہیا کر سکتے ہیں۔

design²²

شكل 6.11: گھلے دور خطاور قالبی ضیاع۔

اس کتاب کے حصہ 2.8 میں بتلایا گیا تھا کہ قالب پر لاگو مقناطیسی دباوا گر بڑھایا جائے تو اس میں مقناطیسی بہاو بڑھتی ہے البتہ جلد ہی قالب سیر اب ہونے لگتا ہے۔اس کا اثر شکل-الف میں خط کے جھننے سے واضح ہے۔اگر قالب سیر اب نہ ہوتا تو یہ خط شکل میں دیئے سیدھی ککیر کی پیروی کرتا۔شکل میں مشین کا پورا برقی دباو اور اس پر درکار برقی رو I_{m0} دکھلایا گیا ہے۔

یہ معائمہ کرتے وقت اگر وھرے پر میکانی طاقت p_1 ناپی جائے تو ہہ ہے ہو جھ مثین کی طاقت کے ضیاع کے برابر ہو گی۔ اس کا بیشتر حصہ رگڑ کی وجہ ہے ، پچھ حصہ قالب میں ضیاع کی وجہ ہے اور پچھ گھومتے لچھے میں ضیاع کی وجہ ہے ہو گا۔ یاد رہے کہ عموماً گھومتے لچھے کو یک سمتی جزیئر سے بر تی توانائی دی جاتی ہے اور بہ جزیئر بھی مثین کی وجہ سے کے دھرے پر ہی نسب ہوتا ہے للذا اسے طاقت محرک 23 سے ہی ملتی ہے۔ بے بوجھ مثین اور بوجھ بردار مثین دونوں کا رگڑ سے طاقت کے ضیاع کا مثین پر لدے بوجھ سے دونوں کا رگڑ سے طاقت کے ضیاع کو یکساں سمجھا جاتا ہے چو نکہ رگڑ سے طاقت کے ضیاع کا مثین پر لدے بوجھ سے کوئی خاص تعلی نہیں۔ اب اگر یہی معائمہ دوبارہ کیا جائے لیکن اس مرتبہ I_m بھی صفر رکھا جائے تو اس مرتبہ ناپا گیا طاقت کا فرق یعنی روب ہو گا۔ ان دو ناپے گئے طاقت کا فرق یعنی بہت کم ہوتا قالب میں طاقت کے ضیاع اور گھومتے لچھے میں برتی ضیاع کا ایک خط شکل تا اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے۔ اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے۔

6.6.2 كسرٍ دور معائنه

 I_m معاصر مثین کو معاصر رفتار پر جزیئر کے طور چلاتے ہوئے اس کے ساکن کچھے کے سرے کسرِ دور کر کے مختلف I_m پر کسرِ دور برقی رو I_a ناپی جاتی ہے۔ ان دو کا ترسیم شکل I_a -الف میں دکھایا گیا ہے۔ یہ خط کسرِ دور مشین کی I_a -دور برقی رو I_a -تاتیہ کے کوتانائی کا سی جزیئر ہے آتیہ دراں جزیئر کودھ ہے تاتیہ ہے۔

شكل 6.12: كسرٍ دور خطاور كطلے دور خط۔

خاصیت دکھلاتا ہے۔ یہ معائنہ کرتے وقت یہ دھیان رکھنا بہت اہم ہے کہ I_a کی مقدار کہیں خطرناک حد تک نہ بڑھ جائے للذا اسے جزیئر کے پورے برقی بوجھ 24 پر I_a کی مقدار یا اس کی دگنی مقدار سے کم رکھنا ضروری ہے ورنہ مثین گرم ہو کر تباہ ہو سکتی ہے۔ کسرِ دور مثین میں، ڈیزائن کردہ برقی دباو کے، صرف دس سے پندرہ فی صد برقی دباو پر ہی اس میں سو فی صد برقی رو شروع ہو جاتی ہے۔ اتنا کم برقی دباو حاصل کرنے کے لئے خلائی درز میں اس تناسب سے کم مقناطیسی بہاو درکار ہوتا ہے۔

شکل 6.5 میں جزیٹر کے مساوی برقی دور دکھائے گئے ہیں۔ اسے شکل 6.13 میں کسر دور کر کے دکھایا گیا ہے۔ یہاں سے واضح ہے کہ

$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s$$

کو نظر انداز کر کے اس مساوات سے معاصر امالہ یوں حاصل کیا جا سکتا ہے۔ R_a

(6.39)
$$X_s = \frac{\left|\hat{E}_{am}\right|}{\left|\hat{I}_a\right|} = \frac{E_{am}}{I_a}$$

اس مساوات میں \hat{I}_a کسرِ دور مشین کی برقی رو اور \hat{E}_{am} اس کی اسی حال میں ایک دور کی امالہ برقی دباو ہے۔ کھلے دور مشین میں \hat{I}_a صفر ہو تو \hat{E}_{am} اور مشین میں \hat{I}_a صفر ہوتا ہے ۔مساوات \hat{E}_{am} ہول گے۔ لہذا ہم کسی معین \hat{I}_a پر شکل \hat{I}_a -الف سے \hat{I}_a اور شکل \hat{I}_a -ب سے \hat{I}_a معلوم کرتے ہیں اور ان سے \hat{I}_a کا حساب لگاتے ہیں، یعنی \hat{I}_a

$$(6.40) X_s = \frac{V_{a0}}{I_{a0}}$$

 $full\ load^{24}$

$$\begin{split} \hat{E}_{am} &= \hat{I}_a R_a + j \hat{I}_a X_s \\ &\approx j \hat{I}_a X_s \qquad X_s \gg R_a \\ X_s &= \frac{|\hat{E}_{am}|}{|\hat{I}_a|} \end{split}$$

شكل 6.13: معاصراماليه

معاصر امالہ عموماً مشین کے بورے برقی دباو پر معلوم کی جاتی ہے تاکہ قالب سیر اب ہونے کے اثر کو بھی شامل کیا جائے۔شکل میں ایسا ہی کیا گیا ہے۔

معاصر امالہ مشین کو ستارہ نما تصور کر کے اس کا یک مرحلہ X_s حاصل کیا جاتا ہے۔للذا اگر معائنہ کرتے وقت مشین کی تار برقی دباو 25 ناپے گئے ہوں تو انہیں $\sqrt{3}$ سے تقسیم کر کے مشین کے یک مرحلہ برقی دباو حاصل کر کے مساوات میں استعال کریں، لیخی

$$V_{\rm pl} = \frac{V_{\rm N}}{\sqrt{3}}$$

مثال 6.4: ایک 75 کلو وولٹ-ایمپیئر ستارہ جڑی 415 وولٹ پر چلنے والی تنین مرحلہ معاصر مشین کے کھلے دور اور کسرِ دور معائنے کئے گئے۔حاصل نتائج یہ ہیں۔

- کھلے دور معائنہ: $I_m = 3.2\,\mathrm{A}$ اور $I_m = 3.2\,\mathrm{A}$ بیں۔
- کسر دور معائنه: جب قوی کچھے کی برتی رو A 104 کھی تب میدانی کچھے کی برتی رو A 2.48 کھی اور جب قوی کچھے کی برقی رو A 126 کھی تب میدانی کچھے کی برقی رو A 3.2 کھی۔

اس مشین کی معاصر امالہ حاصل کریں۔

حل: یک مرحله برقی د باو

$$V_{\rm loc} = rac{V_{
m loc}}{\sqrt{3}} = rac{415}{\sqrt{3}} = 239.6\,{
m V}$$

line $voltage^{25}$

شكل 6.14: كسر دور معاصر مشين ميں طاقت كاضياع_

ہے۔ یہ کھلے دور برقی دباو 3.2 ایمپیئر میدانی برقی رو پر حاصل ہوتی ہے۔ اتنی میدانی برقی رو پر کسرِ دور برقی رو 126 ایمپیئر ہیں للذا یک مرحلہ معاصر امالہ

$$X_s = \frac{239.6}{126} = 1.901\,\Omega$$

ہو گی۔

کسر دور معائد کرتے وقت اگر دھرے پر لاگو میکانی طاقت p_3 ناپی جائے تو یہ کسر دور مشین کی کل ضیاع ہو گی۔ p_3 ناپ لیں۔اس کا کچھ حصہ قالب کی برتی ضیاع، کچھ دونوں لچھوں میں برتی ضیاع اور کچھ رگڑ سے میکانی ضیاع سے ہے۔اب اگر اس سے پچھلے معائنہ میں ناپی گئی رگڑ کی ضیاع p_2 منفی کی جائے تو ہمیں کچھوں کی ضیاع اور قالب کی ضیاع ملا ہے۔ جیسا اُوپر عرض کیا گیا کہ کسر دور مشین میں پورا برتی رو، پورے برتی دباوے و مرف دس تا ہیں فی صد پر حاصل ہو جاتا ہے اور اتنا کم برتی دباو حاصل کرنے کے لئے درکار مقاطیسی بہاو اتنا ہی کم ہوتا ہے۔ اسی طرح کسی بہاو پر قالب میں ضیاع کو نظر انداز کیا جا سکتا ہے۔ اسی طرح کسی بھی نظر انداز کیا جا سکتا ہے۔ اسی طرح کسی بھی نظر انداز کیا جا سکتا ہے۔ اسی طرح کسی بھی نظر انداز کیا جا سکتا ہے۔ اسی طرح کسی بھی نظر انداز کیا جا سکتا ہے۔لہذا ور $p_3 - p_3$ کو ساکن کچھے میں برتی ضیاع کے برابر لیا جاتا ہے۔شکل 6.14 میں بھی نظر انداز کیا جا سکتا ہے۔لہذا

$$p_3 - p_2 = I_{a,3}^2 R_a$$

اس مساوات سے معاصر مشین کی مساوی مزاحمت یوں حاصل ہوتی ہے۔

(6.42)
$$R_a = \frac{p_3 - p_2}{I_{a,3}^2}$$

مثال 6.5: ایک 75 کلو وولٹ-ایمپیئر 415 وولٹ پر چلنے والی تین مرحلہ معاصر مشین کے پورے برقی رو پر کل کر ہے۔ اس مشین کی یک مرحلہ موثر مزاحمت حاصل کریں۔

$$733.33\,\mathrm{W}$$
 کوری برقی رو $\frac{2200}{3}=733.33\,\mathrm{W}$ کوری برقی رو $\frac{75000}{\sqrt{3}V_{\mathrm{JU}}}=104.34\,\mathrm{A}$

ہے۔للذا

$$R_a = \frac{733.33}{104.34^2} = 0.067\,\Omega$$

مثال 6.6: شکل 6.15 میں 500 وولٹ، 50 ہر ٹز، 4 قطب ستارہ جڑی معاصر جزیٹر کا کھلے دور خط دکھایا گیا ہے۔ اس جزیٹر کا معاصر امالہ 0.1 اوہم اور قوی کچھے کی مزاحمت 0.01 اوہم ہے۔ پورے برقی بوجھ پر جزیٹر 0.92 تاخیری جزو طاقت²⁶ پر 1000 ایمپیئر فراہم کرتا ہے۔ پورے بوجھ پر رگڑ کے ضیاع اور کچھے کی مزاحمت میں ضیاع کا مجموعہ 30 کلو واٹ جبکہ قالب کی ضیاع 25 کلو واٹ ہے۔

- جزیٹر کی رفتار معلوم کریں۔
- بے بوجھ جزیٹر کی سرول پر 500 وولٹ برقی دباو کتنی میدانی برقی رو پر حاصل ہو گا۔
- اگر جزیٹر پر 9.92 تاخیر ی جزو طاقت، 1000 ایمپیئر کا برقی بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو در کار ہو گی۔
- جزیٹر پورے بوجھ پر کتنی طاقت فراہم کر رہا ہے جبکہ اس کو محرک کتنی میکانی طاقت فراہم کر رہا ہے۔ان دو سے جزیٹر کی فی صد کارگزار کھے 27 حاصل کریں۔
 - اگر جزیٹر سے یک دم برقی بوجھ ہٹایا جائے تواس لحہ اس کے برقی سروں پر کتنا برقی دباو ہو گا۔
- اگر جزیٹر پر 1000 ایمپیئر 0.92 پیش جزو طاقت والا بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو درکار ہو گی۔

lagging power factor²⁶ efficiency²⁷

شكل 6.15: كطير دور خطيه

• ان دو 1000 ایمپیئر تاخیری جزو طاقت اور پیش جزو طاقت بو جھوں میں کو نمی بوجھ زیادہ میدانی برقی رو پر حاصل ہوتی ہے۔ جزیٹر کس بوجھ سے زیادہ گرم ہو گا۔

حل:

- $f_{e}=rac{2}{2}$ چکر فی منٹ ہے۔ $f_{e}=rac{P}{2}$ منٹ ہے۔ $f_{e}=rac{P}{2}$ منٹ ہے۔ جہوں کی منٹ ہے۔ کی منٹ ہے۔ جہوں کی منٹ ہے۔ کی منٹ ہے کی منٹ ہے۔ کی منٹ
 - شكل 6.15 سے 500 وولٹ كے لئے دركار ميداني برقى رو تقريباً 2.86 ايمپيئر ہے۔
- ستارہ برقی دباو کے تعلق سیر طلہ برقی رو اور تار برقی رو برابر ہوتے ہیں۔ جزو طاقت ستارہ یک مرحلہ برقی دباو کے نسبت جوڑ میں یک مرحلہ برقی رو اور تار برقی رو برابر ہوتے ہیں۔ جزو طاقت ستارہ یک مرحلہ برقی دباو کے نسبت سے بیان کیا جاتا ہے۔ چو نکہ $\cos^{-1}0.92 = 23.07$ کھا جائے تا ہے۔ یان کیا جاتا ہے۔ چو نکہ $\cos^{-1}0.92 = 23.07$ کھی جائے گی۔ یول شکل 6.4 یا مساوات 6.24 سے اندرونی تو تاخیری دوری برقی رو $\frac{6.24 1000}{289}$ کھی جائے گی۔ یول شکل 6.4 یا مساوات 6.24 سے اندرونی پیدا یک مرحلہ برقی دباو

$$\begin{split} \hat{E}_a &= \hat{V}_a + \hat{I}_a \left(R_a + j X_s \right) \\ &= 289 \underline{/0^\circ} + 1000 \underline{/-23.07^\circ} (0.01 + j0.1) \\ &= 349 \underline{/14.6^\circ} \end{split}$$

ہو گا جس سے اندرونی پیدا تار برتی دباہ $604=604 imes\sqrt{3} imes0$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتن دباہ کے لئے $4.1\,\mathrm{A}$ میدانی برتی رو درکار ہے۔

• جزیٹر اس صورت میں

$$p = \sqrt{3}\hat{V}_a \cdot \hat{I}_a$$
$$= \sqrt{3} \times 500 \times 1000 \times 0.92$$
$$= 796743 \text{ W}$$

فراہم کر رہاہے جبکہ محرک

$$p_m = 796.743 + 30 + 25 = 851.74 \,\text{kW}$$

$$\eta=rac{796.743}{851.74} imes100=93.54\%$$
 فراہم کر رہا ہے للذا اس جزیٹر کی کار گزاری

• اگر جزیٹر سے یک دم برتی بوجھ ہٹایا جائے تو اس لحہ اس کے برتی سرول پر 604 وولٹ برتی دباو ہو گا۔

• پیش جزو طاقت کی صورت میں

$$\hat{E}_a = \hat{V}_a + \hat{I}_a (R_a + jX_s)$$

$$= 289/0^{\circ} + 1000/23.07^{\circ} (0.01 + j0.1)$$

$$= 276/20.32^{\circ}$$

در کار ہو گی جس سے اندرونی پیدا تار برتی دباو 478 $= 478 imes \sqrt{3} imes 276$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتنی دباو کے لئے 2.7 A میدانی برتی رو در کار ہے۔

• تاخیری جزو طاقت کے بوجھ پر جزیٹر کو زیادہ میدانی برقی رو درکار ہے۔میدانی کچھے کی مزاحمت میں اس کی وجہ سے زیادہ برقی طاقت ضائع ہوگی اور جزیئر یوں زیادہ گرم ہوگا۔

П

مثال 6.7: ایک 415 دولٹ، 40 کلو دولٹ-ایمپیئر ستارہ جڑی 0.8 جزو طاقت، 50 ہرٹز پر چلنی والی معاصر موٹر کا معاصر اللہ 2.2 اوہم ہے جبکہ اس کی مزاحمت قابل نظرانداز ہے۔اس کی رگڑ اور کچھوں کی مزاحمت میں طاقت کا ضیاع ایک کلو واٹ جبکہ قالبی ضیاع 800 واٹ ہے۔ یہ موٹر 12.2 کلوواٹ میکانی بوجھ سے لدی ہے اور یہ 0.8 پیش جزو طاقت پر چل رہی ہے۔یاد رہے کہ معاصر امالہ مشین کو ستارہ نما تصور کرتے ہوئے حاصل کی جاتی ہے۔

اس کی مرحلی سمتیہ بنائیں۔تار کی برتی رو \hat{I}_t اور توی کیچھے کی برتی رو \hat{I}_a حاصل کریں۔موٹر کی اندرونی ہیجانی برقی دباو \hat{E}_a حاصل کریں۔

- میدانی برقی رو کو بغیر تبدیل کئے میکانی بوجھ آہتہ آہتہ بڑھا کر دگنی کی جاتی ہے۔اس صورت میں موٹر کی رو عمل مرحلی سمتیہ سے واضح کریں۔
- اس د گنی میکانی بوجھ پر قوی کچھے کی برتی رو، تارکی برقی رواور موٹر کی اندرونی پیجانی برقی د باو حاصل کریں۔موٹر کی جزو طاقت بھی حاصل کریں۔

حل:

• سارہ جڑی موٹر کے سروں پر یک مرحلہ برتی دباو $239.6\,\mathrm{V}$ ہوگا جسے صفر زاوبیہ پر تصور کرتے ہوئی رو کا زاوبیہ بیان کیا جاتا ہے۔یوں $239.6/0^\circ$ کیھا جائے گا۔ جزو طاقت $0.8\,\mathrm{cm}$ ناوبیہ $\hat{V}_{sa}=239.6/0^\circ$ کو ظاہر کرتا ہے۔ یوں تارکی برتی روکا پیڑھے زاوبیہ یہی ہو گا۔موٹر کو مہیا برتی طاقت اس کی میکانی طاقت اور طاقت کے ضیاع کے برابر ہوگی لیعنی

12200 W + 1000 W + 800 W = 14000 W

جس کے لئے در کار تار کی برقی رو

$$I_t = \frac{p}{\sqrt{3}V_t \cos \theta}$$
$$= \frac{14\,000}{\sqrt{3} \times 415 \times 0.8}$$
$$= 24.346 \,\text{A}$$

ہو گی۔ستارہ جڑی موٹر کے قوی کچھے کی برقی رو تار کے برقی رو کے برابر ہو گی۔یوں برقی رو کا زاویہ شامل کرتے ہوئے اسے

$$\hat{I}_a = \hat{I}_t = 24.346/36.87^{\circ}$$

لکھا جا سکتا ہے۔

موٹر کا اندرونی یک مرحلہ بیجانی برقی دباو موٹر کی مساوی دور شکل 6.3 کی مدد سے

$$\begin{split} \hat{E}_a &= \hat{V}_{a,s} - jX_s\hat{I}_a \\ &= 239.6/0^{\circ} - j2.2 \times 24.346/36.87^{\circ} \\ &= 276/-8.96^{\circ} \end{split}$$

ہو گی۔یہ تمام صورت حال شکل 6.16 میں مرحلی سمتیات کی مدد سے دکھایا گیا ہے۔

شکل6.16: بوجھ بر دار معاصر موٹر۔

شكل 6.17: يوجه رڻينے كااثر ـ

میکانی بوجھ بڑھنے سے موٹر کو زیادہ برقی طاقت درکار ہوگی۔ یہ اس صورت ممکن ہوگا جب موٹر کے قوی لیجھے کی برقی رو بڑھ سکے۔ میدانی برقی رو معین ہونے کی وجہ سے موٹر کی اندرونی بیجانی برقی دباو \hat{E}_a کی مقدار تبدیل نہیں ہو سکتی البتہ اس کا زاویہ تبدیل ہو سکتا ہے۔ موٹر \hat{E}_a کی مقدار تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو \hat{V}_a کی مقدار تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو دائی داوی ہو گا۔ ایسا شکل 17 میں دکھایا گیا ہے۔ شکل میں فرائی میں دکھایا گیا ہے۔ شکل میں میں دکھایا گیا ہے۔ شکل میں ہوتا۔ زاویہ بڑھنے سے $|\hat{j}\hat{I}_aX_s|$ بڑھتا ہے۔ چونکہ $|\hat{J}_aX_s|$ میں دکھایا گیا ہے۔ نیادہ بوجھ کے متغیرات کو ہلکی سابی میں دکھایا گیا ہے۔

• دگنی میکانی بوجھ پر موٹر کو کل 26200 = 26200 + 800 + 800 واٹ یا 26.2 کلو واٹ برتی طاقت در کار ہے۔مساوات 6.29 کی مدد سے

$$\sigma = \sin^{-1}\left(\frac{pX_s}{3V_aE_a}\right) = \sin^{-1}\left(\frac{26200 \times 2.2}{3 \times 239.6 \times 276}\right) = 16.89^{\circ}$$

یوں موٹر کی اندرونی ہیجانی برتی دباو <u>°16.89 – 27</u>6 ہو گی اور قوی کچھے کی برتی رو

$$\begin{split} \hat{I}_a &= \frac{\hat{V}_a - \hat{E}_a}{jX_s} \\ &= \frac{239 / 0^{\circ} - 276 / -16.89^{\circ}}{j2.2} \\ &= 38 / 17.4^{\circ} \end{split}$$

ہو گی۔تارہ جوڑ کی وجہ سے \hat{I}_t بھی اتنا ہی ہو گا۔ پیش جزو طاقت $\cos 17.4^\circ = 0.954$ ہے۔

ياب7

امالی مشین

گزشتہ برسوں میں قومے الیکڑانکرے 1 کی میدان میں بہت ترقی ہوئی۔اس کا ایک نتیجہ یہ نکلا کہ امالی موٹروں کی رفتار پر قابو رکھنا ممکن ہوا اور یوں ان موٹروں نے کارخانوں میں یک سمتی رو موٹروں کی جگہ لینی نثر وع کی۔ یہاں یہ جلاتا چلوں کہ اس سے پہلے جہاں بھی موٹر کی رفتار اہمیت رکھتی وہاں یک سمتی رو موٹر ہی استعال ہوتی جن کی رفتار پر قابو رکھنا نہایت آسان ہوتا ہے۔ پچاس سال پہلے ترقی یافتہ ممالک میں یک سمتی سے امالی آلوں کی جانب تبدیلی نثر وع تھی۔ آج میں یہی تبدیلی پاکستان میں دکھے رہا ہوں۔ امالی موٹروں کی مضبوطی اور دیریا کام کرنے کی صلاحیت مثالی ہے۔ قوی الیکٹرانکس نے ان کی بے قابو رفتار کو قابو کر کے انہیں بلا مقابلہ بنا دیا۔

امالی موٹر ٹرانسفار مرکی ایک اور شکل ہے یا یوں کہنا بہتر ہو گاکہ یہ ایک ایسا ٹرانسفار مر ہے جس میں ثانوی لچھا حرکت بھی کرتا ہے۔یوں امالی موٹر کے ساکن کچھے ٹرانسفار مر کے ابتدائی کچھے اور موٹر کے گھومتے کچھے ٹرانسفار مرک ثانوی کچھوں کی جگہ ہوتے ہیں۔موٹر کے ساکن کچھوں کو بیرونی برقی طاقت دی جاتی ہے جبکہ اس کے گھومتے کچھوں میں خلاء میں گھومتے مقناطیسی موج سے پیدا امالی برقی دباو ہی کام آتی ہے۔اسی سے اس کا نام امالی موٹر نکلا ہے۔

اس باب کا مقصد امالی موٹر کی مساوی دور لیعنی ریاضی نمونہ ² بنا کر اس کی خصوصیات پر غور کرنا ہے۔ہم دیکھیں گے کہ ان کا مساوی دور ٹرانسفار مر کے مساوی دور کی طرح کا ہے۔

 $\begin{array}{c} power \ electronics^1 \\ mathematical \ model^2 \end{array}$

یہاں بھی ہم تصور کرتے ہیں کہ موٹر دو قطب اور تین مرحلہ ہے اور اس کے کیجے ستارہ نما جڑے ہیں۔اس طرح یک مرحلہ کچھوں میں برقی رو، تارکی برقی رو ہی ہوگی اور ان پر لا گو برقی دباو، یک مرحلہ برقی دباو ہوگی۔ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے جبکہ نتیجہ کسی بھی موٹر کے لئے درست ہوتا ہے۔

7.1 ساكن لچھوں كى گھومتى مقناطيسى موج

امالی مشین کے ساکن کچھے بالکل معاصر مشین کے ساکن کچھوں کی طرح ہوتے ہیں۔مزید یہ کہ اس کے گھومتے جھے کے اتنے ہی قطب ہوتے ہیں جتنے اس کے ساکن کچھوں کے ہوتے ہیں ۔اگر ان ساکن کچھوں کو متوازن تین مرحلہ برقی روسے ہیجان کیا جائے تو یہ ایک گھومتے مقناطیسی دباو کی موج کو جنم دیں گے جے مساوات 5.48 میں دکھایا گیا ہے۔مساوات بہاں یاد دھیانی کے لئے دوبارہ دیئے گیا ہے۔مساوات بہاں یاد دھیانی کے لئے دوبارہ دیئے جاتے ہیں۔ یہاں ساکن کچھوں میں برقی روکی تعدد ω تعدد ω تکھی گئی ہے اور ω کو صفر لیا گیا ہے۔

(7.1)
$$\tau_s^+(\theta, t) = \frac{3\tau_0}{2}\cos(\theta - \omega_t)$$
$$f_m = \frac{2}{P}f_e$$

7.2 مشین کی سر کنے اور گھومتی موجوں پر تبسرہ

ہم دو قطب کے مثین پر غور کر رہے ہیں۔P قطب کا تذکرہ بھی بالکل اسی طرح ہے۔ساکن کیجھوں میں تین مرحلہ برتی رو کی تعدد f_e ہے۔مساوات f_e کہتا ہے کہ دو قطب کی مثین میں موج کی معاصر رفتار بھی f_e چکر فی سکنڈ ہے۔ اب نصور کریں کہ مثین کا گھومتا حصہ f میکانی چکر فی سکنڈ سے موج کی سمت میں گھوم رہا ہے جہاں $f < f_e$ مہار کے اس صورت میں ہر سکنڈ گھومتا حصہ مقناطیسی بہاو کی موج سے پیچھے سرک جائے گا۔اس سر کنے کو موج کی معاصر رفتار کی نسبت سے یوں لکھا جاتا ہے۔

$$(7.2) s = \frac{f_s - f}{f_s} = \frac{f_e - f}{f_e}$$

یہاں s مشین کے سرک 2 کی ناپ ہے۔اس مساوات سے حاصل ہوتا ہے۔

(7.3)
$$f = f_s(1-s) = f_e(1-s)$$
$$\omega = \omega_s(1-s) = \omega_e(1-s)$$

یہاں غور کریں۔ مقناطیسی بہاو کی موج f_e زاویائی رفتار سے گھوم رہی ہے جبکہ گھومتے کچھے کی زاویائی رفتار f_e ہے۔ گھومتے کچھے کے حوالہ سے مقناطیسی بہاو کی موج (f_e-f) رفتار سے گھوم رہی ہے۔ یعنی اگر گھومتے کچھے کو ساکن تصور کیا جائے تو گھومتے مقناطیسی بہاو کی موج (f_e-f) اضافی رفتار سے گھوم رہی ہو گی۔ یوں گھومتے کچھے میں امالی برقی دباو کی تعدد f_r کو یوں کھا جاسکتا ہے۔ جاسکتا ہے۔

(7.4)
$$f_r = f_e - f = f_e - f_e(1 - s) = sf_e$$

اگر مشین کو ایک امالی موٹر کے طور پر استعال کیا جا رہا ہو تو اس کے گھومتے کچھے کسر دور رکھے جاتے ہیں۔یوں ان کچھوں میں برقی رو کی تعدد sf_e اور ان کی مقدار کچھوں میں پیدا امالی برقی دباو اور کچھوں کی رکاوٹ پر منحصر ہوتی ہے۔ کچھوں کی رکاوٹ برقی رو کی تعدد پر منحصر ہوتی ہے۔

ساکن موٹر جب چالو کی جائے تو اس کے سرک s کی قیمت ایک ہوتی ہے لین 1=s اور لوں اس کے گھومتے لیجھوں میں برقی رو ایک گھومتی مقناطیسی دباو کی موج کو جنم دے گی جو معاصر رفار سے گھوے گی۔ یہ بالکل اس طرح ہے جیسے ساکن لیجھوں میں برقی رو سے گھومتا مقناطیسی دباو کا موج وجود میں آتا ہے۔ للذا ساکن اور گھومتے لیچے دونوں کے گھومتے مقناطیسی دباو کی موج ایک ہی رفار سے گھومتے ہیں۔ یہ دو مقناطیسی دباو کی موجیں دو گھومتے مقناطیسوں کی طرح ہیں جو کوشش کریں گے کہ ان کے مابین زاویہ صفر ہو۔ یوں موٹر قوضے مروڈ 4 پیدا ہوتا ہے جس کا حساب مساوات 5.90 سے لگیا جا سکتا ہے۔ اگر موٹر کو دھرے پر لدے ہو جھ کو مشین کا پیدا کردہ قوت مروڈ گھما سکے تو مشین گھومے گی۔ اس کی رفار پر اس کے گھومتے دیر پر لدے ہو جھ کو مشین کا پیدا کردہ قوت مروڈ گھما سکے تو مشین گھومے گی۔ اس کی رفار پر اس کے گھومتے حد تک پہنچ جائے گی۔ امالی موٹر کی رفار کبھی بھی معاصر رفار تک نہیں پہنچ سکتی چونکہ اس رفار پر اس کے گھومتے لیجھوں کی نسبت سے ساکن لیجھوں کی گھومتی مقناطیسی دباو کی موج ساکن ہو گی اور گھومتے لیجھوں میں کوئی امالی برقی دباو پیرا نہیں ہو گا۔

جب موٹر چل پڑتی ہے تو اس کے گھومتے کچھوں میں برقی رو کی تعدد sf_e ہوتی ہے۔ ان برقی رو سے پیدا مقاطیسی دباو کی موج گھومتے کچھے کے حوالہ سے sf_e رفتار سے گھومے گی چونکہ معاصر رفتار برقی رو کی تعدد کے

slip³ torque⁴

 $(f+sf_e)$ ہوتی ہے۔اب گھومتا کچھا از خود f رفتار سے گھوم رہا ہوتا ہے لہذا یہ موج در حقیقت خلاء میں رفتار سے گھومتی ہے۔مساوات f. 7 سے

$$(7.5) f + sf_e = f + f_e - f = f_e$$

یہ ایک بہت اہم منتیجہ ہے۔ یہ مساوات کہتا ہے کہ موٹر کسی بھی رفتار سے گھوم رہی ہو، گھومتے کچھول سے پیدا مقناطیسی دباو کی موج ساکن کچھول سے پیدا مقناطیسی دباو کی موج کی رفتار سے ہی گھومتی ہے۔

مثال 7.1: ایک چار قطب کی ستارہ جڑی 50 ہر ٹرن 415 وولٹ پر چلنے والی امالی موٹر 15 کلو واٹ کی اپنی پوری بوجھ پر یانچ فی صد سرک پر چلتی ہے۔

- اس موٹر کی معاصر رفتار کیا ہے۔
- پورے بوجھ پر اس کی کیا رفتار ہے۔
- يورے بوجھ پر گھومتے لچھے ميں برقی تعداد ارتعاش كيا ہے۔
- پورے بوجھ سے لدے موٹر کی دھرے پر قوت مروڑ حاصل کریں۔

حل:

- مساوات 7.1 کی مدو سے معاصر رفتار $f_m = \frac{2}{4} \times 50 = 25$ کی مدو سے معاصر رفتار $f_m = \frac{2}{4} \times 50 = 25$ کیکر نی سیات ہے۔
- پورے بوجھ سے لدا موٹر پانچ فی صد سرک پر چلتا ہے لہذا اس کی رفتار معاصر رفتار سے قدرِ کم ہو گی۔موٹر کی رفتار مساوات 7.3 کی مدد سے 23.75 = 25(1-0.05) = 25 کی رفتار مساوات 7.3 کی مدد سے 23.75 گیا۔ گیا۔
 - $f_r = 0.05 imes 50 = 2.5$ ہر ٹر ہے۔
 - اس کے وحرے پر قوت مروڑ $T_m=rac{p}{\omega_m}=rac{15000}{2 imes\pi imes2.75}=100.5\,\mathrm{N}\,\mathrm{m}$ ہوگی۔

7.3 ساكن لچھوں ميں امالى برقى دباو

مساوات 7.1 کا پہلا جزو ساکن کچھوں کی پیدا کردہ مقناطیسی دباو کی موج کو ظاہر کرتی ہے۔ یہ مقناطیسی دباو مثنین کی خلائی درز میں مقناطیسی شدت $H^+(\theta)$ پیدا ہو گا۔ اگر اس خلائی درز میں مقناطیس بہاو $B^+(\theta)$ پیدا ہو گا۔ اگر اس خلائی درز کی رداس کی سمت میں لمبائی B ہو تو

(7.6)
$$B^{+}(\theta) = \mu_0 H^{+}(\theta) = \mu_0 \frac{\tau^{+}(\theta)}{l_g}$$
$$= \frac{3\mu_0 \tau_0}{2l_g} \cos(\theta - \omega_e t)$$
$$= B_0 \cos(\theta - \omega_e t)$$

یہ مساوات بالکل مساوات $B^+(\theta)$ کی طرح ہے۔ یوں مساوات 5.72 اس مقناطیسی موج $B^+(\theta)$ کی ساکن کچھوں میں پیدا کردہ امالی برقی دباو کو ظاہر کرے گی ۔ یہ مساوات یہاں دوبارہ دیا جا رہا ہے۔

(7.7)
$$e_{as}(t) = \omega_e N_s \phi_0 \cos(\omega_t - 90^\circ) = E_s \cos(\omega_t - 90^\circ)$$
$$e_{bs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 150^\circ) = E_s \cos(\omega_t + 150^\circ)$$
$$e_{cs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 30^\circ) = E_s \cos(\omega_t + 30^\circ)$$

جہال N_s ساکن کھھے کے چکر ہیں اور

$$(7.8) E_s = \omega_e N_s \phi_0$$

a یہاں $e_{as}(t)$ کا گھتے ہوئے زیر نوشت میں a ، مرحلہ a کو ظاہر کرتا ہے اور a ، ساکن b کو ظاہر کرتا ہے لیخ ہوتی اس کی موج اس کی کے کا امالی برقی دباو ہے۔ امالی موٹر کے a مرحلے کی بات ہی آگے کرتے ہیں۔ گھومتی مقناطیسی دباو کی موج اس کی میں امالی برقی دباو $e_{as}(t)$ ہیں امالی برقی دباو $e_{as}(t)$ ہیں امالی برقی دباو کر میں امالی برقی دباو کی موج اس کے میں امالی برقی دباو کا موج اس کے میں امالی برقی دباو کر میں امالی برقی دباو کا موج اس کی موج اس کی موج اس کے میں امالی برقی دباو کی موج اس کے میں امالی برقی دباو کی موج اس کی موج اس کے میں امالی برقی دباو کی موج اس کی کرد اس کی موج اس کی

7.4 ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیداامالی برقی دباو

مساوات 7.1 کا پہلا بُڑن ساکن کچھوں کی پیدا کردہ، گھومتے مقناطیسی دباو کی موج کو ظاہر کرتا ہے۔اس موج کی چوٹی 7.1 اس مقام پر ہوتی ہے جہال $(\theta-\omega_e t)$ صفر کے برابر ہو۔ یوں لمحہ صفر پر اس کی چوٹی صفر زاویہ پر ہو گی اور لمحہ t پر

انظ ساکن میں حرف س کے آواز کوsے ظاہر کیا گیاہے۔ $ext{peak}^6$

شکل 7.1: امالی موٹراوراس کے گھومتے مقناطیسی دباو کی موجیں۔

اس موج کی چوٹی زاویہ $\omega_e t$ پر ہو گی۔ ساکن کچھوں کی مقناطیسی دباو کی موج کا زاویہ کسی بھی نقطہ کے حوالے سے کیا جا سکتا ہے۔ اس کتاب میں صفر زاویہ ساکن کچھا a کو لیا جاتا ہے۔ اس طرح یہ زاویہ نقطہ دار اُفقی لکیر سے ناپا جاتا ہے۔ اس طرح یہ زاویہ نقطہ دار اُفقی لکیر سے ناپا جاتا ہے۔ شکل 7.1 میں ایبا ہی دکھایا گیا ہے۔ اس شکل میں ایک امالی موٹر دکھائی گئی ہے جس کے تین مرحلہ ساکن کچھے ہیں۔ ہیں۔

f شین f گومتے کچھے بھی بالکل اسی طرح ہوتے ہیں اگرچہ شکل میں صرف ایک ہی گومتا کچھا دکھایا گیا ہے۔ مشین f زاویائی رفتار سے گھوم رہی ہے۔ تصور کریں کہ لمحہ صفر یعنی f یعنی f گومتے حصہ کا g کچھا صفر زاویہ پر ہے، یعنی یہ نقطہ دار اُفقی کلیر پر ہے مزید ہے کہ اس لمحہ ساکن کچھوں کی گھومتی مقناطیسی دباو کی موت بھی اسی اُفقی کلیر پر ہے۔ اب نقطہ دار اُفقی کلیر پر ہے موج زاویہ g بر موج زاویہ g بر موج ناویہ g بر موج ناویہ گھومتا حصہ گھوم کر زاویہ g بر موج اور گھومتے کچھے جہاں g ہم مشین کی زاویائی میکانی رفتار ہے۔ یہ سب شکل میں دکھایا گیا ہے۔ لہذا لمحہ g بر موج اور گھومتے کچھے کے در میان زاویہ g ہم ہو گا

$$\theta_z = \omega_e t - \omega t$$

 $(\omega_e t - \omega t)$ اگرچہ مقناطیسی موج نے $\omega_e t$ زاویہ طے کیا لیکن گھومتے کچھے کے حوالے سے اس نے صرف زاویہ $\omega_e t = \omega_e$ کیا۔اسی طرح گھومتے کچھے کے حوالے سے اس موج کی اضافی σ زاویائی رفتار $\omega_e t = \omega_e$ سے ہوگی۔

(7.10)
$$\omega_z = \frac{\mathrm{d}\theta_z}{\mathrm{d}t} = \omega_e - \omega$$

یں لکھے ہوئے زیر نوشت میں 2، لفظا ضافی کے حرف ض کی آواز کو ظاہر کر تا ہے۔ relative angular speed 8

اس کو مساوات 7.4 کی مدد سے یوں لکھ سکتے ہیں۔

(7.11)
$$\omega_z = 2\pi (f_e - f) = 2\pi s f_e = s\omega_e$$

یہ مساوات کہتا ہے کہ گھومتے کچھے کے حوالے سے مقناطیسی موج کی رفتار سرک s پر منحصر ہے۔اس موج کا حیطہ البتہ تبدیل نہیں ہوا۔ اس طرح گھومتے کچھے کے حوالے سے مقناطیسی موج کی مساوات جو کہ مساوات 7.4 میں دی گئ ہے تبدیل ہو کر یہ بن جائے گی۔

(7.12)
$$B_{s,rz}^{+}(\theta,t) = B_0 \cos(\theta - \omega_z t) = B_0 \cos(\theta - s\omega_e t)$$

یں + کا نشان گھڑی کی اُلٹی سمت گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں s,rz اس بات کی یاد دھیانی کرتا ہے کہ یہ موج ساکن کچھوں کی وجہ سے وجود میں آیا اور اسے گھومتے یعنی روال کچھوں کے حوالے سے دیکھا جا رہا ہے۔مزید ہیں کہ اس مساوات کی تعدد اضافی تعدد $s\omega$ کے برابر ہے۔

یوں گھومتے کچھوں میں امالی برقی دباو مساوات 7.7 کی طرح ہی ہو گی مگر ان کی تعدد $\omega_z=s\omega_e t$ ہو گی $\omega_z=s\omega_e t$ ہو گی

(7.13)
$$e_{arz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t - 90^\circ) = sE_r \cos(s\omega_e t - 90^\circ)$$
$$e_{brz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 150^\circ) = sE_r \cos(s\omega_e t + 150^\circ)$$
$$e_{crz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 30^\circ) = sE_r \cos(s\omega_e t + 30^\circ)$$

ان مساوات میں N_r گھومتے کچھے کے چکر ہیں اور

$$(7.14) E_r = \omega_e N_r \phi_0$$

 $^{11}i_{arz}$ اب نصور کریں کہ گھومتے کچھوں کو کسرِ دور کر دیا کیا گیا ہے۔ یہ امالی برقی دباہ گھومتے کچھوں میں برقی رو $^{12}R_r$ اور اس کی وغیرہ پیدا کرے گی جس کی تعدد $^{12}R_r$ ہو گی۔ بالکل ساکن کچھے کی طرح، گھومتے کچھے کی مزاحمت $^{12}R_r$ اور اس کی امالیت $^{12}R_r$ ہو گی۔ اسے ہم یوں ککھ سکتے ہیں۔

$$(7.15) js\omega_e L_r = jsX_r$$

جہاں jX_r کو $j\omega_e L_r$ کے برابر لیا گیا ہے، لینی jX_r اس کچھے کی ساکن حالت میں متعاملیت ہے جب سرک ایک کے برابر ہو۔ گھومتے کچھوں میں برتی رو i_{arz} شکل 7.2 کی مدد سے حاصل کی جا عتی ہے جہاں گھومتے کچھے میں امالی برتی دباو $e_{arz}(t)$ مساوات 7.13 میں دیا گیا ہے۔

انظر ماکن کے س کو ظاہر کرتا ہے،rلفظ روال کے رکو ظاہر کرتا ہے اور پر لفظ اضافی کے ض کو ظاہر کرتا ہے۔ e^{10} میں مر حلہ a ہے۔ گھوٹے گھے کو اور اصافی کو پر ظاہر کرتا ہے۔

¹¹ یبان 7 گلومتے کچھے کو ظاہر کرتا ہے اور چاس بات کی یاد دھیانی کرتا ہے کہ اس بر قی رو کی تعدد ،اضافی تعدد ہے۔ 12 آرانسفار مر کیا صطلاح میں ٹانو کی کچھے کوزیر نوشت میں 2 سے ظاہر کرتے ہیں۔ یہاں اے ۲ سے ظاہر کیا جاتا ہے۔

$$Z_r = R_r + jsX_r$$

$$+$$

$$e_{arz}$$

$$-$$

$$\hat{I}_{arz} = \frac{\hat{E}_{arz}}{Z_r}$$

$$i_{arz}(t) = \frac{sE_r}{|Z|} \cos(s\omega_e t - 90^\circ - \phi_z)$$
$$= I_{0r} \cos(s\omega_e t - 90^\circ - \phi_z)$$

شكل 7.2: گھومتے لیچھے كی مساوى دوراوراس میں اضافی تعدد كی رو۔

یہ شکل بالکل شکل 1.15 کی طرح ہے المذا مساوات 1.51 اس میں برتی رو دے گی یعنی

(7.16)
$$i_{arz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t - 90^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + \theta_0)$$

$$i_{brz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 150^\circ - \phi_z) = I_{0r} \cos(s\omega_e t - 120^\circ + \theta_0)$$

$$i_{crz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 30^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + 120^\circ + \theta_0)$$

یہ تین مرحلہ برقی رو ہیں جو آپس میں °120 کا زاویہ رکھتے ہیں۔ یہاں ϕ رکاوٹ کا زاویہ 13 ہے۔امید کی جاتی ہے کہ اسے آپ مقناطیسی بہاو نہیں سمجھیں گے۔ یہاں

(7.17)
$$\theta_0 = -90 - \phi_z$$

$$I_{0r} = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

شكل 7.2 سے واضح ہے كه ايك گھومتے لچھے كى مزاحمت ميں

$$(7.18) p_r = I_{or}^2 R_r$$

برقی طاقت کا ضیاع ہو گا۔ یہ طاقت حرارت میں تبدیل ہو کر اس مزاحمت کو گرم کرے گ۔

13 تکنیکی دنیامیں رکاوٹ کے زاویہ کے لئے چر ϕ استعمال ہوتاہے۔ یہاں یہی کیا گیاہے۔

7.5 گھومتے کیچھوں کی گھومتی مقناطیسی دیاو کی موج

ہم جانتے ہیں کہ ساکن تین مرحلہ کچھوں میں f_e تعدد کی برقی رو گھومتے مقناطیسی دباو کی موج کو جنم دیتی ہے جو sf_e اس ساکن کچھے کے حوالے سے f_e معاصر زاویائی رفتار سے گھومتی ہے۔ اس طرح گھومتے تین دور کچھوں میں sf_e ناویائی تعدد کی برقی روایک گھومتی مقناطیسی دباو کی موج t_{rz}^+ کو جنم دیتی ہے جو اس گھومتے کچھے کے حوالے سے sf_e زاویائی رفتار سے گھومتی ہے۔

(7.19)
$$\tau_{rz}^{+}(\theta, t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - s\omega_e t - \theta_0)$$

یہاں I_{0r} اور θ_0 مساوات 7.17 میں دیئے گئے ہیں۔اب چونکہ گھومتا کچھا از خود f زاویائی رفتار سے گھوم رہا ہے لہذا اس کی پیدا کردہ مقاطیسی دباو کی موج خلاء میں $(f+sf_e)$ زاویائی رفتار سے گھومتی ہے۔ اس رفتار کو مساوات 7.3 کی مدد سے یوں لکھ سکتے ہیں۔

$$(7.20) f + sf_e = f_e(1-s) + sf_e = f_e$$

للذا گھومتے کچھوں کی مقناطیسی دباو کی موج کو ساکن کچھوں کے حوالے سے یوں لکھا جا سکتا ہے۔

(7.21)
$$\tau_{r,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

 $au_{r,s}$ میں + کا نشان گھڑی کی اُلٹی سمت گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں r,s اس بات کی وضاحت کرتا ہے کہ یہ موج گھومتے یعنی رواں کچھوں کی وجہ سے وجود میں آیا ہے مگر اسے ساکن کچھوں کے حوالے سے دیکھا جا رہا ہے۔

یہاں وقفہ لے کر ذرا غور کرتے ہیں۔ مساوات 7.21 کے مطابق گومتا لچھا خود کسی بھی رفتار سے گوم رہا ہو،
اس کی پیدا کردہ گھومتی مقناطیسی دباو کی موج ساکن لچھے کے پیدا کردہ موج کی رفتار سے ہی گھومے گی۔للذا مشین میں دو گھومتی مقناطیسی دباو کی موجیں ہیں جو ایک ہی معاصر رفتار سے گھوم رہی ہیں۔ مساوات 5.89 میں کہا گیا ہے کہ دو مقناطیسی دباو کی موجود گی پیدا کرتی ہیں جو ان کے مابین زاویہ پر منحصر ہے۔للذا امالی مشین میں موجود دو مقناطیسی موجیس پیدا کرتی ہیں اور اس کی مقدار ان دو موجوں کے مابین زاویہ پر منحصر ہوتی ہے۔امالی موٹر اس پر لدے بوجھ کے مطابق ان دو موجوں کے مابین زاویہ رکھتی ہے اور یوں درکار پیدا کرتی ہے۔

شكل 7.3: گھومتے کچھوں كى جلّه فرضى ساكن کچھے كادور۔

7.6 گھومتے کچھوں کے مساوی فرضی ساکن کچھے

اب دوبارہ اصل موضوع پر آتے ہیں۔اگر گھومتے کچھوں کی جگہہ N_r چکر کے تین مرحلہ فرضی ساکن کچھے ہوں تو مساوات 7.7 کی طرح ان میں امالی برقی دباویہ یہدا ہوگی لیعنی 14

(7.22)
$$e_{afs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t - 90^\circ) = E_r \cos(\omega_e t - 90^\circ)$$
$$e_{bfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 150^\circ) = E_r \cos(\omega_e t + 150^\circ)$$
$$e_{cfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 30^\circ) = E_r \cos(\omega_e t + 30^\circ)$$

وزید فرض کریں کہ ان فرضی ساکن کچھوں کی مزاحمت
$$rac{R_r}{s}$$
 اور متعاملیت jX_r ہیں یعنی $Z_{fs}=rac{R_r}{s}+jX_r$

اگران پر مساوات 7.22 میں دیئے گئے برتی دباو لا گو کی جائے جیسے شکل 7.3 میں دکھایا گیا ہے تو ان میں برتی رو

بیہ ہو گی۔

$$(7.24) i_{afs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t - 90^\circ - \phi_Z) = I_{or} \cos(\omega_e t + \theta_0)$$

$$i_{bfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t + 150^\circ - \phi_Z) = I_{or} \cos(\omega_e t - 120^\circ + \theta_0)$$

$$i_{cfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t + 300^\circ - \phi_Z) = I_{or} \cos(\omega_e t + 120^\circ + \theta_0)$$

یہاں مساوات 7.17 استعال کی گئی ہے۔اس مساوات میں دھیان رہے کہ رکاوٹ کا زاویہ ϕ_Z وہی ہے جو گھومتے لیھے کا تھا یعنی

(7.25)
$$\phi_{fZ} = \tan^{-1} \frac{X}{\left(\frac{R}{s}\right)} = \tan^{-1} \frac{sX}{R} = \phi_Z$$

ان برتی رو کی تعدد ω_e ہے اور ان کا پیدا کردہ گھومتا مقناطیسی موج ہیہ ہو گا۔

(7.26)
$$\tau_{fs,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

یہ مقناطیسی موج ہو بہو گھومتے کچھے کی موج $au_{r,s}^+(heta,t)$ ہے۔

7.7 امالي موٹر كامساوي برقى دور

ہم ٹرانسفار مرکی ابتدائی جانب کچھے کی برقی دور پہلے بنا چکے ہیں جہاں کچھے کی مزاحمت R_1 اور اس کی رستا متعاملیت E_1 متحال میں امالی برقی د باو E_1 پیدا کرتی۔ E_2 میں امالی برقی د باو E_1 پیدا کرتی۔ پول

$$\hat{V}_1 = \hat{I}_1 \left(R_1 + j X_1 \right) + \hat{E}_1$$

شکل 7.4: امالی موٹر کے ساکن کیچھوں کامساوی برقی دور۔

کھا جا سکتا ہے جہاں \hat{V}_1 ابتدائی کچھے پر لاگو بیرونی برتی دباو ہے۔ہم دیکھیں گے کہ امالی موٹر کے ساکن کچھے کے لئے بھی یہی مساوات حاصل ہو گی۔

تصور کریں کہ مثین کے گھومتے کچھے کھلے دور ہیں اور اس کے ساکن کچھوں پر تین مرحلہ برقی دباو لا گو ہے۔ اس صورت میں ساکن کچھوں میں روال برقی رو ایک گھومتے مقناطیسی دباو کی موج $au_s^+(heta,t)$ پیدا کرے گی جو مساوات 7.1 میں دی گئی ہے۔

باب کے اس حصہ میں ہم مشین کے ایک مر طلے کو مدِ نظر رکھیں گے، مثلاً مرحلہ a یہاں شکل 7.4 سے رجوع $v_s(t)$ ہو اور اس پر لاگو بیرونی برقی دباو $v_s(t)$ ہو تو کر نوف $v_s(t)$ ہو در قبی دباو کے قانون کے تحت

$$(7.28) v_s(t) = i_s R_s + L_s \frac{\mathrm{d}i_s}{\mathrm{d}t} + e_s(t)$$

مساوات 7.7 میں دی گئی اس موج کی ساکن کیھے میں پیدا امالی برتی دباو ہے ۔اسی کو مرحلی سمتیہ کے طور پر $e_s(t)$ یوں لکھ سکتے ہیں۔

(7.29)
$$\hat{V}_{s} = \hat{I}_{s} (R_{s} + jX_{s}) + \hat{E}_{s}$$

ٹرانسفار مر کی مثال آگے بڑھاتے ہیں۔اگر موٹر کا گھومتا لچھا کھلے دور 17 رکھا جائے تو قالب میں ایک ہی گھومتی مقاطیسی دباو کی موج au_s ہو گی۔ساکن لچھے میں صرف برقی رو \hat{I}_{arphi} ہو گا جو قالب میں مقاطیسی بہاو φ_s کو

leakage reactance¹⁵

Kirchoff's voltage law¹⁶

open circuited¹⁷

7.7. امالي موٹر کامپ وي رور 7.7.

جنم دے گی۔ یہ برقی رو \hat{I}_{φ} غیر سائن نما ہوتی ہے۔ فورئیر شلسل 18 سے اس کے بنیاد کی جزو اور ہار مونی جزو معلوم کئے جا سکتے ہیں۔ اس کے بنیاد کی جزو کے دو جے ہوتے ہیں۔ ایک حصہ \hat{I}_c الا گو بیرونی برقی دباو \hat{V}_s ہم قدم ہوتا ہے اور یہ قالب میں طاقت کے ضیاع کو ظاہر کرتا ہے اور دو سرا حصہ \hat{V} سے نوے درجہ بیچھے زاویہ پر رہتا ہے۔ \hat{I}_a میں \hat{I}_c سے فاہر کرتے ہیں۔ یوں مقناطیسی جزو بنیاد کی جزو کہتے ہیں اسے \hat{I}_m سے ظاہر کرتے ہیں۔ یوں مقناطیسی جزو بنیاد کی جزو کے بیچھے جے اور باقی سارے ہار مونی جزو کے مجموعے پر مشتمل ہوتا ہے اور یہ قالب میں مقناطیسی بہاو \hat{I}_c پیدا کرتا ہے۔ \hat{I}_c \hat{I}_c

 $(7.30) I_{\varphi} = I_c + I_m$

امالی موٹر کے مساوی دور میں \hat{I}_c کو مزاحمت R_c سے اور \hat{I}_m کو مزاحمت \hat{I}_c سے خاہر کیا جاتا ہے۔ ان دونوں کا حساب چلتے موٹر میں متوقع برقی تعدد اور امالی برقی دباو \hat{E}_s پر کیا جاتا ہے یعنی

(7.31)
$$R_c = \frac{\hat{E}_s}{\hat{I}_c} = \frac{E_s}{I_c}$$

$$X_{\varphi} = \frac{\left|\hat{E}_s\right|}{\left|\hat{I}_m\right|} = \frac{E_s}{I_m}$$

مقناطیسی دباوکی موج $\tau_s^+(\theta,t)$ گھومتے کچھ میں بھی امالی برقی دباو پیدا کرے گ۔مساوات 7.29 میں اگر رکاوٹ میں برقی دباو کے گھٹے کو نظر انداز کیا جائے تو لا گو بیرونی برقی دباو اور کچھے کی اندرونی امالی برقی دباو جرحالت میں برابر بھول گے۔اب تصور کریں کہ گھومتے کچھے کسرِ دور کر دیے جائیں۔ ایسا کرتے ہی ان میں برقی روگزرنے لگے گا جو مقناطیسی دباوکی موج موج مساوات 7.21 میں دی گئی ہے کو جنم دے گی۔ اس موج سے ساکن کچھے میں امالی برقی دباو کی موج شبطی ہو جائے گی اور یوں سے لا گو برقی دباو کے برابر نہیں رہے گی۔ یہ ایک نا مکنہ صورتِ حال ہے۔

ساکن کچھ میں امالی برتی دباو، لاگو برتی دباو کے برابر تب رہے گی کہ قالب میں مقناطیسی دباو تبدیل نہ ہو۔ مثین کے قالب میں مقناطیسی دباو برقرار یوں رہتی ہے کہ ساکن کچھے مقناطیسی دباو $au_{r,s}(\theta,t)$ کی متفاد مقناطیسی دباو کی ایک موج پیدا کرتی ہے جو اس کے اثر کو مکمل طور پر ختم کر دیتی ہے۔ یہ موج پیدا کرنے کے لئے ساکن کچھوں میں برتی رویہ ہیں۔ کچھوں میں برتی رویہ ہیں۔

(7.32)
$$i'_{ar}(t) = I'_{or}\cos(\omega_{e}t + \theta_{0})$$
$$i'_{br}(t) = I'_{or}\cos(\omega_{e}t - 120^{\circ} + \theta_{0})$$
$$i'_{cr}(t) = I'_{or}\cos(\omega_{e}t + 120^{\circ} + \theta_{0})$$

Fourier series¹⁸

ان اضافی برتی رو کی متضاد مقناطیسی دباو کی موج بیر ہے

(7.33)
$$\tau_{(r)}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_s I'_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

ساکن کچھوں میں اضافی برقی رونے ہر لمحہ گھومتے کچھوں کی برقی رو کے اثر کو ختم کرنا ہے لہذا ہے دونوں برقی رو ہم قدم ¹⁹ ہی ہوں گے۔چونکہ بیہ مساوات اور مساوات 7.21 برابر ہیں

$$(7.34) N_s I'_{0r} = N_r I_{0r}$$

للذا ان سے حاصل ہوتا ہے۔

(7.35)
$$I'_{0r} = \left(\frac{N_r}{N_s}\right) I_{0r} = \left(\frac{N_r}{N_s}\right) \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

آپ نے دیکھا کہ گھومتے کچھے مقناطیس دباو کی موج پیدا کرتے ہیں جن کے ذریعہ ساکن کچھوں کو معلوم ہوتا ہے کہ موٹر پر بوجھ لدا ہے اور وہ اس کے مطابق لا گو برقی دباوسے برقی رولیتی ہیں۔ یہاں تک امالی موٹر کی مساوی برقی دور شکل 7.5 میں دکھائی گئی ہے۔

یہاں ذرہ شکل 7.6 سے رجوع کریں۔ اس شکل میں

(7.36)
$$R'_r = \left(\frac{N_s}{N_r}\right)^2 R_r$$

$$X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r$$

 $in-phase^{19}$

7.7. امالي موٹر کامپ وي بر تي دور

$$\hat{I}'_r \qquad \frac{\hat{R}'_r}{s} \qquad jX'_r \\ + \qquad \qquad \hat{E}_s \qquad \qquad X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r \\ - \qquad \qquad \circ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r$$

$$i_a'(t) = \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} \cos(s\omega_e t - \theta_0 - \phi_z)$$

شكل 7.6: گھومتے لچھے كاايك اور مساوى دور

یر ساکن لچھوں کی امالی برقی دباہ \hat{E}_s لاگو ہے الہذا ان میں برقی روبیہ ہوں گی۔

(7.37)
$$i'_{a}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t - 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 150^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 30^{\circ} - \phi_{Z})$$

ان سب مساوات کا حیطہ برابر ہے۔اس حیطے کو یوں لکھا جا سکتا ہے۔

$$(7.38) \qquad \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} = \frac{s\omega_e N_s \phi_0}{\sqrt{\left(\frac{N_s}{N_r}\right)^2 \left(R_r^2 + s^2 X_r^2\right)}} = \left(\frac{N_r}{N_s}\right) I_{0r} = I_{0r}'$$

للذا مساوات 7.37 اس طرح لكھا جاسكتا ہے۔

(7.39)
$$i'_{a}(t) = I'_{0r}\cos(\omega_{e}t - 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = I'_{0r}\cos(\omega_{e}t + 150^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = I'_{0r}\cos(\omega_{e}t + 30^{\circ} - \phi_{Z})$$

یہ مساوات ہالکل مساوات 9.32 کی طرح ہے۔ لہٰذا اگر شکل 7.5 میں ساکن کچھوں کی امالی برتی دباو \hat{E}_s کے متوازی شکل 7.6 جوڑا جائے تو ایبا کرنے سے ساکن کچھوں میں اُتنا ہی اضافی برتی رو رواں ہو گا جو اصل موٹر میں گھومتے کچھوں کی وجہ سے ہوتا ہے۔ شکل 7.7 میں ایبا ہی کیا گیا ہے لہٰذا شکل میں دیا برتی دور، امالی موٹر کی صحیح عکاسی کرتی ہے۔ یہی امالی موٹر کی مساوی برتی دور ہے۔

7.8 مساوی برقی دوریر غور

مساوات 7.18 ایک گھومتے کچھے میں برقی طاقت کے ضیاع کو ظاہر کرتا ہے۔مساوات 7.36 اور 7.38 کی مدد سے اسے یوں لکھا جا سکتا ہے۔

(7.40)
$$p_{\zeta_{1};} = I_{0r}^{2} R_{r} = \left(\frac{N_{s}^{2}}{N_{r}^{2}} I_{0r}^{\prime 2}\right) \left(\frac{N_{r}^{2}}{N_{s}^{2}} R_{r}^{\prime}\right) = I_{0r}^{\prime 2} R_{r}^{\prime}$$

$$\hat{Z}_{0r} = \frac{1}{2} I_{0r}^{\prime 2} R_{r} + \frac{1}{2} I_{0r}^{\prime 2} R_{r}^{\prime}$$

$$(7.41) p_r = I_{0r}^{\prime 2} \frac{R_r'}{s}$$

برقی طاقت دی جاتی ہے جس میں سے خاور میکانی طاقت میں ضائع ہو جاتی ہے اور بقایا بطور میکانی طاقت مشین کے دھرے پر پائی جاتی ہے یعنی

(7.42)
$$p = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} - I_{0r}^{\prime 2} R_r^{\prime} = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} (1 - s) = p_r (1 - s)$$

یوں تین مرحلہ مشین جس میں تین لچھے ہوتے ہیں اس کے تین گنا میکانی طاقت فراہم کر سکتی ہے یعنی

$$p_{\mbox{is}} = 3I_{0r}^{\prime 2} \frac{R_r^\prime}{s} (1-s) = 3p_r (1-s)$$

اس مساوات سے واضح ہے کہ اگر سرک ایک کے برابر ہو تو موٹر کوئی میکانی طاقت فراہم نہیں کرے گی اور گھومتے مصلے کو جتنی برتی توانائی مل رہی ہو وہ ساری کی ساری اس میں ضائع ہو کر اسے گرم کرے گی۔ یوں موٹر کے گرم

ہو کر جل جانے کا امکان ہوتا ہے۔ آپ اس مساوات سے دیکھ سکتے ہیں کہ امالی موٹر کی سرک صفر کے قریب رہنی چاہئے ورنہ یہ نا قابل قبول حد تک برقی توانائی ضائع کرے گا۔ ہم امالی موٹر کی مساوی برقی دور کو شکل 7.8 کی طرح بھی بنا سکتے ہیں۔ اس شکل میں شکل میں شکل 7.7 میں دیئے مزاحمت $\frac{R'}{s}$ کو دو حصوں میں لکھا گیا ہے یعنی

$$\frac{R_r'}{s} = R_r' + R_r' \left(\frac{1-s}{s}\right)$$

 $R'_r\left(\frac{1-s}{s}\right)$ میں مزاحت R'_r میں برقی طاقت کی ضیاع $I'^2_{0r}R'_r$ گھومتے کچھے کی ضیاع ہے جبکہ مزاحمت $R'_r\left(\frac{1-s}{s}\right)$ میں برقی طاقت کی ضیاع $I'^2_{0r}R'_r\left(\frac{1-s}{s}\right)$ دراصل میکانی طاقت ہے۔ یاد رہے کہ تین مرحلہ مشین کے لئے یہاں سے حاصل نتائج کو تین سے ضرب دینا ہو گا۔

میکانی طاقت، قوت مروڑ ضربِ میکانی زاویائی رفتار ہوتی ہے۔ امالی موٹر کی میکانی زاویائی رفتار مساوات 7.3 میں دی گئی ہے۔ یوں دی گئی ہے۔ یوں

(7.44)
$$p = T_m \omega = T_m \times 2\pi f = T_m \times 2\pi (1 - s) f_s = T_m (1 - s) \omega_{sm}$$

للذا

(7.45)
$$T_m = \frac{p}{(1-s)\omega_{sm}} = \frac{3I_{0r}^{\prime 2}}{\omega_{sm}} \frac{R_r^{\prime}}{s}$$

اصل موٹر میں رگڑ، قالبی ضیاع، لچھوں میں ضیاع اور دیگر وجوہات کی بنا پر دھرے پر طاقت یا توت مروڑ اس سے قدرِ کم ہوگی۔ باب. ١ مالي مشين

اس کامساوی تھونن دور بنائیں

شکل 7.9: امالی موٹر کاسادہ دور۔ قالبی ضیاع کو نظر انداز کیا گیاہے۔

ٹرانسفار مر کے سادہ ترین مساوی دور بناتے وقت R_c اور K_m کو نظرانداز کیا گیا تھا۔ امالی موٹر میں ایسا کرنا ممکن نہیں ہوتا چونکہ موٹروں میں خلائی درز ہوتی ہے جس میں مقناطیسی بہاو پیدا کرنے کے لئے بہت زیادہ مقناطیسی دباو درکار ہوتی ہے۔ حقیقت میں بے بوجھ امالی موٹر کو اپنے پورے برقی رو کے تیس سے بچاس فی صد برقی رو قالب کو جہان کرنے کے لئے درکار ہوتی ہے۔ مزید سے کہ خلائی درزکی وجہ سے اس کی رِستا امالہ بھی زیادہ ہوتی ہے اور اسے نظر انداز کرنا ممکن نہیں ہوتا۔ البتہ مساوی دور میں کہ و نظر انداز کرنا جا سکتا ہے جیسے شکل 7.9 میں دکھایا گیا ہے۔ اس شکل میں نقطہ دار کلیر کی بائیں جانب کا مساوی تھونن دور بنایا جا سکتا ہے۔ایسا کرنے سے امالی موٹر پر غور کرنا نہیں آمان ہو جاتا ہے۔ اب ہم ایسا ہی کرتے ہیں۔

مثال 7.2: ستارہ بڑی چھ قطب بچاس ہر ٹز اور 415 وولٹ پر چلنے والی 15 کلو واٹ امالی موٹر کے مساوی دور کے ابزاء یہ بین

$$R_s = 0.5 \,\Omega$$
, $R'_r = 0.31 \,\Omega$, $X_s = 0.9 \,\Omega$, $X'_r = 0.34 \,\Omega$, $X_m = 0.22 \,\Omega$

موٹر میں رگڑ سے طاقت کا ضیاع 600 واٹ ہے۔ قالبی ضیاع کو اس کا حصہ تصور کیا گیا ہے۔ اس کو اٹل تصور کیا جائے۔ یہ موٹر کی رفتار، اس جائے۔ یہ موٹر درکار وولٹ اور تعداد ارتعاش پر دو فی صد سرک پر چل رہی ہے۔اس حالت میں موٹر کی رفتار، اس کے دھرے پر پیدا قوت مروڑ اور طاقت، اس کے ساکن کیچھے کی برقی رو اور اس کی فی صد کار گزاری حاصل کریں۔

عل: موٹر کی معاصر رفتار $6.66 \times 60 = 16.66$ چکر ٹی سیکنڈ یا $16.66 \times 60 = 16.66$ چکر ٹی منٹ۔ دو $0.33 \times 60 = 979.8$ ٹی صد سرک پر موٹر کی رفتار $0.33 \times 60 = 979.8$ پیکر ٹی سیکنڈ یا $0.33 \times 60 = 979.8$ پیکر ٹی منٹ ہے۔

شكل 7.9 مين دائين جانب

$$jX'_r + R'_r + R'_r \frac{1-s}{s} = jX'_r + \frac{R'_r}{s} = j0.34 + \frac{0.31}{0.02} = j0.34 + 15.5$$

7.8 مساوي پر تي دور پر غور

اور jX_m متوازی جڑے ہیں۔ان کی مساوی رکاوٹ یہ ہے

$$\begin{split} \frac{1}{Z} &= \frac{1}{15.5 + j0.34} + \frac{1}{j22} \\ Z &= 10.147 + j7.375 = R + jX \end{split}$$

موٹر پر لا گو یک مرحلہ برقی دباو $\frac{415}{\sqrt{3}} = 239.6$ وولٹ ہے۔ یوں ساکن کچھے کی برقی رو

$$\begin{split} \hat{I}_s &= \frac{\hat{V}_s}{R_s + jX_s + Z} \\ &= \frac{239.6}{0.5 + j0.99 + 10.147 + j7.375} \\ &= 17.6956 /\!\!\!-\!38.155^\circ \end{split}$$

ہے۔اس موٹر کے گھومتے حصہ کو وہی طاقت منتقل ہو رہی ہے جو رکاوٹ Z کو منتقل ہو رہی ہے۔یعنی مساوات 7.41 کو ہم یوں بھی لکھ سکتے ہیں۔

$$p = I_{or}^{\prime 2} \frac{R_r^{\prime}}{s} = I_s^2 R = 17.6956^2 \times 10.147 = 3177.37 \,\text{W}$$

تین مراحل کے لئے یہ مقدار 9532 = 3177.37 × 3 واٹ ہو گی۔مساوات 7.43 موٹر کی اندرونی میکانی طاقت ویتی ہے یعنی

$$p_{\rm ibs} = 9532 \times (1 - 0.02) = 9341 \, \mathrm{W}$$

اس سے طاقت کا ضیاع منفی کر کے 8741 = 600 – 9341 واٹ رہ جاتا ہے۔ یہ موٹر کے دھرے پر میکانی طاقت ہو گی جس سے دھرے پر قوت مروڑ

$$T = \frac{8741}{2 \times \pi \times 16.33} = 85.1 \,\mathrm{Nm}$$

ہو گی۔

موٹر کو کل مہیا برقی طاقت
$$\sqrt{3} \times 415 \times 17.6956 \times \cos(-38.155) = 10001.97$$
 واٹ ہے۔ ایول موٹر کی کار گزاری $\sqrt{3} \times 415 \times 100 = 87.39$ ہے۔

ياب. امالي شين

شكل 7.10: تھوِنن ركاوٹ اور تھوِنن برتى د باوحاصل كرنے كے دور۔

7.9 امالي موٹر کا مساوي تھونن دوريارياضي نمونه

مسئلہ تھونونے ²⁰ کے مطابق کسی بھی سادہ خطی برتی دور ²¹ کو اس کے دو برتی سرول کے مابین ایک رکاوٹ اور ایک برقی دباو کی مساوی دور سے ظاہر کیا جا سکتا ہے۔اس مساوی دور کو مساوی تھوِنن دور کہتے ہیں جبکہ اس مساوی تھوِنن دور کی رکاوٹ کو تھوِنن رکاوٹ اور برتی دباو کو تھوِنن برتی دباو کہتے ہیں۔

برقی دور کے دو برقی سروں کے مابین تھونن رکاوٹ حاصل کرنے کے لئے اس برقی دور کے اندرونی برقی دباو کسرِ دور کر کے ان دو برقی سروں کے مابین رکاوٹ معلوم کی جاتی ہے۔ یہی رکاوٹ، تھونن رکاوٹ ہے۔انہیں برقی سروں پر تھونن برقی دباو برقرار رکھ کر ان دو سروں سروں پر تھونن برقی دباو برقرار رکھ کر ان دو سروں پر بھونن برقی دباو معلوم کی جاتی ہے۔ یہی برقی دباو در حقیقت تھونن برقی دباو ہے۔ بعض او قات ہم ایک برقی دور کے ایک خاص ھے کا مساوی تھونن دور بنانا چاہتے ہیں۔ایسا کرتے وقت بقایا برقی دور کو اس ھے سے مکمل طور پر منقطع کیا جاتا ہے۔ یوں شکل 7.10 سے واضح ہے کہ دو سرول الف اور باکے مابین مساوی تھونن رکاوٹ اور تھونن برقی دباو ہہ ہیں۔

(7.46)
$$Z_t = \frac{(R_s + jX_s)jX_m}{R_s + jX_s + jX_m} = R_t + jX_t$$

$$\hat{V}_t = \frac{jX_m\hat{V}_s}{R_s + jX_s + jX_m} = V_t/\underline{\theta_t}$$

کسی بھی مخلوط عدو 22 کی طرح Z_t کو ایک حقیقی عدو R_t اور ایک فرضی عدد jX_t کا مجموعہ لکھا جا سکتا ہے۔ یہی اس مساوات میں کیا گیا ہے۔

The venin theorem²⁰ linear circuit²¹ complex number²²

شکل 7.11: تھونن دوراستعال کرنے کے بعد امالی موٹر کامساوی دور۔

ہم یوں امالی موٹر کی مساوی برقی دور کو شکل 7.11 کی طرح بنا سکتے ہیں جہاں سے مرحلی سمتیہ کی استعال سے مندرجہ ذیل برقی رو \hat{I}'_{r} عاصل ہوتی ہے۔

(7.47)
$$\hat{I}'_r = \frac{\hat{V}_t}{R_t + jX_t + \frac{R'_r}{s} + jX'_r} \\ \left|\hat{I}'_r\right| = I'_r = \frac{V_t}{\sqrt{\left(R_t + \frac{R'_r}{s}\right)^2 + \left(X_t + X'_r\right)^2}}$$

چونکہ V_t کی قیمت پر \hat{V}_t کے زاویے کا کوئی اثر نہیں للذا مساوی تھونن دور میں \hat{V}_t کی جگہ V_t استعال کیا جا سکتا ہے۔ بقایا کتاب میں ایبا ہی کیا جائے گا۔

ماوات 7.45 سے یوں تین مرحله مشین کی قوت مروڑ یہ ہو گی

(7.48)
$$T = \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\left(R_t + \frac{R_r'}{s}\right)^2 + \left(X_t + X_r'\right)^2}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\frac{R_r'^2}{s^2} + 2R_t \frac{R_r'}{s} + R_t^2 + \left(X_t + X_r'\right)^2}$$

اس مساوات کو شکل 7.12 میں دکھایا گیا ہے۔ اس شکل میں موٹر کی رفتار کو معاصر رفتار کی نسبت سے دکھایا گیا ہے۔موٹر ازخود گھومتے مقناطیسی موج کی سمت میں گھومتی ہے اور اس کی رفتار معاصر رفتار سے قدرِ کم رہتی ہے۔زیادہ سرک پر موٹر کی کار گزاری نہایت خراب ہو جاتی ہے۔اسی لئے لگاٹار استعال کے وقت اسے تقریباً پانچ فی

شكل 7.12: امالي موٹر كي قوت مر وڙ بالقابل سرك۔

صد سے کم سرک پر چلایا جاتا ہے بلکہ ان کی تخلیق یوں کی جاتی ہے کہ امالی موٹر اپنی پوری طاقت تقریباً پانچ فی صد سے کم سرک پر حاصل کرتی ہے۔

اگر موٹر کو زبردستی ساکن کیجھوں کی گھومتے مقناطیسی موج کی ست میں معاصر رفتار سے زیادہ رفتار پر گھمایا جائے تو یہ ایک جزیئر کے طور پر کام کرنے شروع ہو جائے گی۔اییا کرنے کے لئے بیرونی میکانی طاقت درکار ہو گی ۔اگرچہ امالی مشین عام طور پر جزیئر کے طور پر استعال نہیں ہوتے البتہ ہوا سے برقی طاقت پیدا کرنے میں یہ جزیئر کے طور پر کار آمد ثابت ہوتے ہیں۔

شکل 7.12 میں منفی رفتار بھی دکھائی گئی ہے جہاں سرک ایک سے زیادہ ہے۔ ایسا تب ہوتا ہے جب موٹر کو ساکن کچھوں کی گھومتی مقناطیسی دباوکی موج کی اُلٹ سمت میں گھمایا جائے۔موٹر کو جلد ساکن حالت میں لانے کے لئے یوں کیا جاتا ہے۔ تین مرحلہ موٹر پر لاگو برقی دباوکی کسی دو مرحلوں کو آپس میں اُلٹا دیا جاتا ہے۔ اس طرح موٹر کی ساکن کچھوں کی گھومتی مقناطیسی موج کیدم اُلٹ سمت میں گھومنے شروع ہو جاتی ہے جبکہ موٹر ابھی پہلی سمت میں ہی گھوم رہی ہوتی ہے۔اس طرح موٹر جلد آہستہ ہوتی ہے اور جیسے ہی موٹر رکھ کر دوسری جانب گھومنا چاہتی ہے اس پر لاگو برتی دباو منقطع کر دی جاتی ہے۔اسال کی جاتی ہے۔

یوں امالی مشین s < 0 کی صورت میں بطور جزیٹر ، 1 < s < 0 کی صورت میں بطور موٹر اور s < 0 کی صورت میں بطور بریک کام کرتا ہے۔

امالی موٹر کی زیادہ سے زیادہ قوت مروڑ مساوات 7.48 سے یوں حاصل کی جاسکتی ہے۔ قوت مروڑ اُسی لمحہ زیادہ سے زیادہ ہو گی جب گھومتے ھے کو زیادہ سے زیادہ طاقت میسر ہو۔زیادہ سے زیادہ طاقت منتقل کرنے کے مسئلہ 24

 $brake^{23}$

maximum power theorem 24

کے مطابق مزاحمت $\frac{R'_r}{s}$ میں طاقت کا ضیاع اس وقت زیادہ سے زیادہ ہو گا جب

(7.49)
$$\frac{R'_r}{s} = \left| R_t + jX_t + jX'_r \right| = \sqrt{R_t^2 + (X_t + X'_r)^2}$$

ہو۔اس مساوات سے زیادہ سے زیادہ طاقت پر سرک s_z کو بوں لکھ سکتے ہیں۔

(7.50)
$$s_z = \frac{R_r'}{\sqrt{R_t^2 + (X_t + X_r')^2}}$$

مساوات 7.48 میں کسر کے نچلے جصے میں $R_t^2 + (X_t + X_r')^2$ کی جگہ مساوات 7.48 کا مربع استعال کرتے ہوئے زیادہ سے زیادہ قوت مروڑ یوں حاصل کی جا کتی ہے

(7.51)
$$T_{z} = \frac{1}{\omega_{sm}} \frac{3V_{t}^{2} \left(\frac{R'_{r}}{s}\right)}{\frac{R'_{r}^{2}}{s^{2}} + 2R_{t} \frac{R'_{r}}{s} + \frac{R'_{r}^{2}}{s^{2}}}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \frac{R'_{r}}{s}\right)}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \sqrt{R_{t}^{2} + (X_{t} + X'_{r})^{2}}\right)}$$

جہاں آخری قدم پر مساوات کا استعال دوبارہ کیا گیا۔

اس مساوات کے مطابق امالی موٹر کی زیادہ سے زیادہ قوت مروڑ اس کے گھومتے کچھوں کی مزاحمت پر منحصر نہیں۔ یہ ایک اہم معلومات ہے جسے استعال کر کے امالی موٹر کی زیادہ سے زیادہ قوت مروڑ درکار رفتار پر حاصل کی جا سکتی ہے۔آئیں دیکھیں کہ یہ کیسا کیا جاتا ہے۔

امالی موٹر کے گھومتے کچھوں کے برتی سروں کو سرکے چھوں کے ذریعہ باہر نکالا جاتا ہے 26 جہاں ان کے ساتھ سلسلہ وار بیرونی مزاحمت جوڑی جاتی ہے۔اس طرح گھومتے کچھوں کی کل مزاحمت بڑھ کر پیرونی مزاحمت جو جاتی ہے۔ ایسا کرنے سے مساوات 7.49 کے مطابق زیادہ سے زیادہ قوت مروڑ نسبتاً زیادہ سرک یعنی کم زاویائی رفتار پر حاصل کی جا سکتی ہے۔ شکل 7.13 میں مزاحمت پر R_r کے ساتھ ساکن موٹر کو چالو کرتے وقت زیادہ سے زیادہ

slip rings²⁵ 26شکل کے نمونے پر۔

شکل 7.13: بیر ونی مزاحت لگانے کے قوت مر وڑ بالقابل سرک کے خطوط پراثرات۔

قوت مروڑ حاصل ہو سکتی ہے۔اس طرح بوجھ بردار موٹر ساکن حالت سے ہی زیادہ بوجھ اٹھانے کے قابل ہوتا ہے۔ چونکہ زیادہ سرک پر موٹر کی کار گزاری خراب ہوتی ہے للذااس طرح موٹر کو زیادہ دیر نہیں چلایا جاتا اور جیسے ہی اس کی رفتار بڑھ جاتی ہے، اس سے جُڑے بیرونی مزاحمتیں منقطع کر کے گھومتے کچھوں کے برقی سرے کسرِ دور کر دیئے حاتے ہیں۔

مثال 7.3: صفحہ 224 پر مثال 7.2 میں دی گئ امالی موٹر اس مثال میں استعال کریں۔رگڑ سے طاقت کی ضیاع کو نظر انداز کریں۔

- اگر موٹر در کار وولٹ اور تعداد ارتعاش پر تین فی صد سرک پر چل رہی ہو تو ساکن کچھے میں گھومتے کچھ کے حصہ کی برقی رو ''ا اور مشین کی اندرونی میکانی طاقت اور قوت مروڑ حاصل کریں۔
 - موٹر کی زیادہ سے زیادہ اندرونی پیدا قوت مروڑ اور اس قوت مروڑ پر موٹر کی رفتار حاصل کریں۔
 - موٹر کی چالو ہونے کے لمحہ پر قوت مروڑ اور اس لمحہ اس کی I'_r حاصل کریں۔

حل:

• 2 کے مرحلہ برقی دباو $\frac{415}{\sqrt{3}} = 239.6$ استعال کرتے ہوئے مساوات

$$Z_t = \frac{(0.5 + j0.99) j22}{0.5 + j0.99 + j22} = 0.4576 + j0.9573$$

$$\hat{V}_t = \frac{j22 \times 239.6 / 0^{\circ}}{0.5 + j0.99 + j22} = 229.2 / 1.246^{\circ}$$

مساوات 7.47 میں تین فی صد سرک پر 10.3333 مساوات 7.47 میں تین فی صد سرک پر

$$\begin{split} \hat{I}'_r &= \frac{229.2 / 1.246^\circ}{0.4576 + j0.9573 + 10.3333 + j0.34} = 21.1 / -5.6^\circ\\ I'_r &= \left| \hat{I}'_r \right| = 21.1\,\text{A} \end{split}$$

یہاں رک کر تسلی کر لیں کہ مندرجہ بالا مساوات میں <u>°229.2/1.246</u> کی جگہہ <u>°229.2/0</u> استعال کرنے سے I'_r کی یہی قیمت حاصل ہوتی۔ مساوات 7.43 اور 7.44 کی مدد سے

$$p_m = \frac{3 \times 21.1^2 \times 0.31}{0.03} \times (1 - 0.03) = 13387.46 \,\text{W}$$
$$T = \frac{13387.46}{(1 - 0.03) \times 2 \times \pi \times 16.66} = 131.83 \,\text{N m}$$

• مساوات 7.50 سے زیادہ سے زیادہ طاقت پر سرک

$$s_z = \frac{0.31}{\sqrt{0.4576^2 + (0.9573 + 0.34)^2}} = 0.1638$$

اور اس پر موٹر کی رفمار 836.2 = 836.2 اور اس پر موٹر کی رفمار 836.2 ہوگی۔

و چالو کرتے کھے پر سرک ایک ہو گی لہذا $\frac{R'_r}{s} = 0.31$ ہو گا اور یوں

$$\hat{I}'_r = \frac{229.2 / 1.246^\circ}{0.4576 + j0.9573 + 0.31 + j0.34} = 152.07 / -58.14^\circ$$

$$I'_r = 152 \, \mathrm{A}$$

اس لمحه قوت مرورٌ

$$T = \frac{3 \times 152.07^2 \times 0.31}{2 \times \pi \times 16.66} = 205 \,\mathrm{N}\,\mathrm{m}$$

مثال 7.4: دو قطب ستارہ جڑا پچاس ہر ٹز پر چلنے والا تین مرحلہ امالی موٹر 2975 چکر فی منٹ کی رفتار پر بارہ کلوواٹ کے میکانی بوجھ سے لدا ہے۔موٹر کی سرک اور دھرے پر قوت مروڑ حاصل کریں۔

 $50 \times 60 = 3000$ کی سینٹر یا $50 \times 60 = 3000$ کی سینٹر یا $\frac{2}{P}f_e = \frac{2}{2} \times 50 = 50$ کی منٹ ہے۔ یوں سرک $\frac{2}{P}f_e = \frac{2}{2} \times 50 = 50$ کی منٹ ہے۔ لیذا $s = \frac{3000 - 2975}{3000} = 0.00833$ کی منٹ ہے لیذا $s = \frac{3000 - 2975}{3000} = 0.00833$ کی سینٹر ہے لیذا $s = \frac{12000}{3000} = 38 \, \mathrm{Nm}$ کی دھرے پر قوت مروڑ ہو گی۔

7.10 پنجرانمالمالی موٹر

گومتے کچھوں کی ساخت پر ذرا غور کرتے ہیں۔ گومتے کچھوں کے N_r چکر ہوتے ہیں جہاں N_r کوئی بھی عدد ہو سکتا ہے۔ سادہ ترین صورت میں N_r ایک کے برابر ہو سکتا ہے بعنی ایک ہی چکر کا گھومتا کچھا۔ اب بجائے اس کے کہ قالب میں کچھوں کے لئے شگاف بنائے جائیں اور ہر شگاف میں تانبے کی تار کا ایک چکر لیٹا جائے ہم یوں بھی کر سکتے ہیں کہ ہر شگاف میں سیدھا تانبے کا ایک سلاخ رکھ دیں اور اس طرح کے سب سلاخوں کی ایک جانب کے سروں کو تانبے کی ایک دائرہ نما سلاخ سے کسر دور کر دیں اور اس طرح دوسری جانب کے سب سروں کو بھی ایک تانبے کی دائرہ نما سلاخ سے کسر دور کر دیں۔ اس طرح تانبے کی سلاخوں کا پنجرا بن جاتا ہے۔ اس لئے ایسے امالی موٹروں کو پنجرا نما امالی موٹر کتے ہیں۔

حقیقت میں شگافوں میں پگھلا تانبا یا سلور 27 ڈالا جاتا ہے جو ٹھنڈا ہو کر ٹھوس ہو جاتا ہے اور قالب کو جھکڑ لیتا ہے۔ دونوں اطراف کے دائرہ نما کسرِ دور کرنے والے چھلے بھی اِسی طرح اور اِسی وقت بنائے جاتے ہیں۔ اس طرح یہ ایک مضبوط گھومتا حصہ بن جاتا ہے۔ اسی مضبوطی کی وجہ سے پنجرا نما امالی موٹر نہایت مقبول ہوا ہے۔ ایسے موٹر سالوں تک بغیر دیکھ بال کے کام کرتے ہیں اور عام زندگی میں ہر جگہ بائے جاتے ہیں۔ گھروں میں پانی کے پہپ اور پیکھے اِنہیں سے چلتے ہیں۔ گھروں میں پانی کے پہپ اور پیکھے اِنہیں سے چلتے ہیں۔

copper, aluminium²⁷

7.11 بي بوجھ موٹراور جامد موٹر کے معائنہ

امالی موٹر کی کارکردگی دو معائنوں سے معلوم کی جاتی ہے۔ انہی سے اس کے مساوی برقی دور کے جزو بھی حاصل کئے جاتے ہیں۔ہم تین دور کی امالی موٹر کی مثال سے ان معائنوں کا تذکرہ کرتے ہیں۔

7.11.1 ي بوجھ موٹر کامعائنہ

یہ معائنہ بالکل ٹرانسفار مر کے بے بوجھ معائنہ کی طرح ہے۔اس میں موٹر کی ہیجان انگیز برقی رو اور بے بوجھ موٹر میں طاقت کے ضیاع کی معلومات حاصل ہوتی ہیں۔

اس میں بے بوجھ امالی موٹر پر تین مرحلہ مساوی برقی و ہاو 28 لاگو کر کے بے بوجھ موٹر کی برقی طاقت کا ضیاع p_{bb} اور اس کے ساکن کچھے کی بیجان انگیز برقی رو $I_{s,bb}$ ناپی جاتی ہے۔یہ معائنہ امالی موٹر کی پورے برقی و باو اور برقی تعدد پر کیا جاتا ہے۔

ہو۔ اور دیگر طاقت کے ضیاع کی وجہ سے درکار I'_r ہو جاتی رگڑ اور دیگر طاقت کے ضیاع کی وجہ سے درکار I'_r ہو۔ اتن کم قوت مروڑ بہت کم سرک پر حاصل ہو جاتی ہے۔ مساوات 7.47 سے ظاہر ہے کہ بہت کم سرک پر I'_r بھی نہایت کم ہو گی اور اس سے گھومتے کچھوں میں برقی طاقت کے ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس بات کو صفحہ 222 پر شکل 7.7 کی مدد سے بھی سمجھا جا سکتا ہے جہاں ہیہ واضح ہے کہ بہت کم سرک پر مزاحمت $\frac{R'_r}{s}$ کی قیمت بہت زیادہ ہو جاتی ہے اور اس کو گھلے دور سمجھا جا سکتا ہے۔ ایسا کرنے سے شکل 7.14-الف ملتا ہے۔

شکل 7.14-الف میں R_c اور jX_m کے متوازی دور کا مساوی سلسلہ وار دور شکل 7.14-ب میں دکھایا گیا Z_m کی تیمت سے بہت زیادہ ہوتی ہے۔متوازی دور کی رکاوٹ X_m

شکل 7.14: بے بوجھ امالی موٹر کا معائنہ۔

سے مساوی سلسلہ وار رکاوٹ Z_s یوں حال ہوتی ہے۔

$$Z_{m} = \frac{R_{c}jX_{m}}{R_{c} + jX_{m}}$$

$$= \frac{R_{c}jX_{m}}{R_{c} + jX_{m}} \frac{R_{c} - jX_{m}}{R_{c} - jX_{m}}$$

$$= \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2} + X_{m}^{2}}$$

$$\approx \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2}} \qquad \text{if } R_{c} \gg X_{m}$$

$$= jX_{m} + \frac{X_{m}^{2}}{R_{c}} = jX_{m} + R_{c}^{*} = Z_{s}$$

بے بوجھ ٹرانسفار مروں میں ابتدائی کچھوں کے برقی طاقت کے ضیاع کو بھی نظر انداز کیا جاتا ہے۔ بے بوجھ امالی موٹروں کی چھان انگیز برقی روکافی زیادہ ہوتی ہے لہذا ان کے ساکن کچھوں کی برقی طاقت کے ضیاع کو نظر انداز نہیں کیا جا سکتا۔ بے بوجھ امالی موٹر کی pbb سے اگر تین ساکن کچھوں کی برقی ضیاع منفی کی جائے تو اس میں میکافی طاقت کے ضیاع کا حساب لگایا جا سکتا ہے یعنی

$$(7.53) p_{bb} - 3I_{s,bb}^2 R_s$$

میکانی طاقت کا ضیاع بے بوجھ اور بوجھ بردار موٹر کے لئے کیساں تصور کیا جاتا ہے۔

شكل 7.14-ب سے ہم لكھ سكتے ہيں۔

(7.54)
$$R_{bb} = \frac{p_{bb}}{3I_{s,bb}^2}$$

$$Z_{bb} = \frac{V_{bb}}{I_{s,bb}}$$

$$X_{bb} = \sqrt{|Z_{bb}|^2 - R_{bb}^2}$$

$$X_{bb} = X_s + X_m$$

 X_s یوں اس معائنہ سے موٹر کی بے بوجھ متعاملیت X_{bb} عاصل ہوتی ہے۔اگر کسی طرح ساکن کچھے کی متعاملیت معلوم ہو تب اس مساوات سے X_m عاصل کی جا سکتی ہے۔انگلے معائنہ میں ہم X_s کا اندازہ لگا سکیں گے۔

7.11.2 حامد موٹر کامعائنہ

یہ معائد ٹرانسفار مر کے کسرِ دور معائد کی طرح ہے۔ اس میں مشین کے بِستا امالوں کی معلومات حاصل ہوتی ہے۔ البتہ امالی موٹر کا مسئلہ ذرا زیادہ پیچیدہ ہے۔ امالی موٹر کی بِستا امالہ گھومتے کچھوں میں برقی تعدد اور قالب کے سیر اب ہونے پر مخصر ہوتے ہیں۔

اس معائنہ میں امالی موٹر کے گھومتے جھے کو حرکت کرنے سے زبردستی روک دیا جاتا ہے جبکہ ساکن کچھوں پر بیرونی برقی دباو V_{rk} لاگو کر کے برقی طاقت p_{rk} اور ساکن کچھوں کی برقی رو $I_{s,rk}$ ناپی جاتی ہیں۔ اصولی طور پر بیہ معائنہ اُن حالات کو مدِ نظر رکھ کر کیا جاتا ہے جن پر موٹر کی معلومات درکار ہوں۔

جس لمحہ ایک موٹر کو ساکن حالت سے چالو کیا جائے اس لمحہ موٹر کی سرک ایک کے برابر ہوتی ہے اور اس کے گھومتے کچھوں میں عام تعدد f_e کی برقی رو f_e ہوتی ہے، للذا اگر اس لمحہ کے نتائج درکار ہوں تو موٹر کے ساکن کچھوں پر عام تعدد لیعنی f_e کی اتنی برقی دباو لا گو کی جائے گی جتنی سے اس کے گھومتے کچھوں میں برقی رو f_e کی دباو لا گو کی جائے گی جتنی سے اس کے گھومتے کچھوں میں بوجھ بردار موٹر کے نتائج درکار ہوں جب موٹر کی سرک f_e اور اس کے گھومتے لکچھوں میں برقی دباو استعال کی جائے گی اور اس کی مقدار اتن کی مقدار اتن کے مقدار اتن کی مقدار اتن کی مقدار اتن کی مقدار اتن کی حدار اتن کے مقدار اتن کی مقدار اتن کی جائے گی اور اس کی مقدار اتن کی مقدار اتن کی حدار اس کی حدار کی برق کی حدار اس کی حدار کی

در یوشت میں $t o\infty$ اس بات کو ظاہر کر تی ہے کہ موٹر کا فی ذیرے چالو ہے اور یہ ایک بر قرار رفتار تک پینی گئی ہے۔

t=0کی لیجہ کے برتی رو کو چھوٹی کھائی میں وقت صفر سے منسلک کیا گیا ہے بینی t=0

شکل7.15:رکےامالی موٹر کامعا ئنہ۔

ر کھی جائے گی جتنی سے گھومتے کچھوں میں $I_{t\to\infty}$ برقی رو وجود میں آئے۔تقریباً $20\,\mathrm{kV}$ سے حچوٹی موٹروں میں برقی تعدد کے اثرات قابل نظر انداز ہوتے ہیں لہذا ان کا معائنہ f_e تعدد کی برقی دباو پر ہی کیا جاتا ہے۔

یہاں صفحہ 222 پر دکھائے شکل 7.7 کو رکے موٹر کے معائنہ کی نقطہ نظر سے دوبارہ بناتے ہیں۔رکے موٹر کی سرک ایک کے برابر ہوتی ہے۔مزید ہے کہ اس معائنہ میں لاگو برقی دباو عام چالو موٹر پر لاگو برقی دباو سے خاصی کم ہوتی ہے۔اتی کم لاگو برقی دباو پر قالبی ضیاع کو نظرانداز کیا جا سکتا ہے۔شکل میں R_c کو کھلے دور کرنا قالبی ضیاع کو نظرانداز کرنے کے مترادف ہے۔الیما کرنے سے شکل 7.15-الف ملتا ہے۔چونکہ S=1 ہے لہذا اس شکل میں S=1 کو نظرانداز کرنے کے مترادف ہے۔الیما کرنے سے شکل 7.15-الف ملتا ہے۔چونکہ S=1 ہے لہذا اس شکل میں S=1 کو نظرانداز کرنے ہے۔

-7.15 فیل 7.15-الف میں jX_m اور $(R'_r+jX'_r)$ متوازی جڑے ہیں۔ ان کا مساوی سلسلہ وار دور شکل 7.15- بیل دکھایا گیا ہے۔اس متوازی دور کی مزاحمت Z_m سے سلسلہ وار مزاحمت Z_s یوں حاصل ہوتی ہے۔

$$Z_{m} = \frac{jX_{m}(R'_{r} + jX'_{r})}{R'_{r} + j(X_{m} + X'_{r})}$$

$$= \left(\frac{jX_{m}R'_{r} - X_{m}X'_{r}}{R'_{r} + j(X_{m} + X'_{r})}\right) \left(\frac{R'_{r} - j(X_{m} + X'_{r})}{R'_{r} - j(X_{m} + X'_{r})}\right)$$

$$= \frac{jX_{m}R'_{r}^{2} + X_{m}R'_{r}(X_{m} + X'_{r}) - X_{m}X'_{r}R'_{r} + jX_{m}X'_{r}(X_{m} + X'_{r})}{R'_{r}^{2} + (X_{m} + X'_{r})^{2}}$$

$$= \frac{X_{m}^{2}R'_{r}}{R'_{r}^{2} + (X_{m} + X'_{r})^{2}} + \frac{j(X_{m}R'_{r}^{2} + X_{m}^{2}X'_{r} + X_{m}X'_{r}^{2})}{R'_{r}^{2} + (X_{m} + X'_{r})^{2}}$$

$$= R_{*}^{*} + jX_{*}^{*} = Z_{s}$$

اگر ان مساوات میں $X_m\gg X_r'$ اور $X_m\gg X_r'$ لیا جائے تو حاصل ہوتا ہے۔

$$(7.56) R_s^* \approx R_r' \left(\frac{X_m}{X_m + X_r'}\right)^2$$

(7.57)
$$X_s^* = \approx \frac{X_m R_r'^2}{X_m^2} + \frac{X_m^2 X_r'}{X_m^2} + \frac{X_m X_r'^2}{X_m^2} \approx X_r'$$

اس معائنہ میں ناپے مقداروں اور شکل 7.15-ب سے

(7.58)
$$Z_{rk} = \frac{V_{rk}}{I_{s,rk}}$$

$$R_{rk} = \frac{p_{rk}}{3I_{s,rk}^2}$$

$$X_{rk} = \sqrt{|Z_{rk}|^2 - R_{rk}^2}$$

حاصل ہوتے ہیں۔ اس مساوات کے پہلے جزو میں ناپے برقی دباو اور برقی روسے رکاوٹ حاصل کی گئی ہے، اس کے دوسرے جزوسے مزاحمت اور تیسرے میں متعاملیت۔

اب شکل 7.15-ب سے واضح ہے کہ

$$(7.59) X_{rk} = X_s + X_r'$$

امالی مشین مختلف خصوصیات کو مد نظر رکھ کر بنائے جاتے ہیں۔ عام آدمی کے آسانی کے لئے ایسے مشینوں کی درجہ بندی کی جاتی ہیں۔ A,B,C,D اور الیمی مشین جن کا گھمتا حصہ بندی کی جاتی ہے۔ جدول 1.7 میں پنجرا نما امالی موٹر کے مختلف اقسام 1.7 اور الیمی مشین جن کا گھمتا حصہ کچھے پر مشتمل ہو، کے رستا متعاملیت 1.7 کو ساکن اور گھومتے کچھوں میں تقسیم کرنا دکھایا گیا ہے۔ اس جدول کے مطابق، گھومتے کچھے والی مشین میں ساکن اور گھومتے متعاملیت برابر ہوتے ہیں۔ اسی طرح شکل 1.7-ب سے واضح ہے کہ 1.7 ہوتے ہیں۔ اسی طرح شکل 1.7-ب سے واضح ہے کہ مزاحمت میں المذا اگر ساکن کچھے کی مزاحمت 1.7 براہِ راست مزاحمت ناپنے کے آلہ لیعنی اوہم میڑ 1.7 سے نابی جائے تو

$$(7.60) R^* = R_{rk} - R_s$$

ہو گا اور اب R'_r کو مساوات $7.56 سے حاصل کیا جا سکتا ہے جہاں <math>X_m$ بوجھ امالی موٹر کے معائنہ میں حاصل کیا جاتی ہے۔

Ohm $meter^{31}$

X'_r	X_s	خاصيت	كفومتاحصه
$0.5X_{rk}$	$0.5X_{rk}$	کار کرد گی گھومتے ھے کی مزاحمت پر منحصر	ليثاهوا
$0.5X_{rk}$	$0.5X_{rk}$	عام ابتدائی قوت مر وڑ،عام ابتدائی رو	A بناو Δ
$0.6X_{rk}$	$0.4X_{rk}$	عام ابتدائی قوت مر وڑ، کم ابتدائی رو	Bبناوٹ,
$0.7X_{rk}$	$0.3X_{rk}$	زیادُ ہابتدائی قوت مر وڑ ، کم ابتدائی رو	C بناو $^{\!$
$0.5X_{rk}$	$0.5X_{rk}$	زیادهابتدائی قوت مر وژ،زیاده سر ک	D بناو Δ

جدول 7.1: متعامليت كي ساكن اور گھومتے حصوں ميں تقسيم ـ

شکل 7.16: ستارہ اور تکونی جڑی موٹروں کی ساکن کیچھوں کی مزاحت کااوہم میٹر کی مدد سے حصول۔

اوہم میٹر کی مدد سے ساکن کچھے کی مزاحمت ناپتے وقت یہ جاننا ضروری ہے کہ موٹر ستارہ یا تکونی جڑی ہے۔ شکل R_s میں کچھے کو دونوں طرح جڑا دکھایا گیا ہے۔ اگر یک مرحلہ مزاحمت R_s ہو تو ستارہ جڑی موٹر میں اوہم میٹر $2R_s$ مزاحمت دے گی۔ $2R_s$ مزاحمت دے گی۔

مثال 7.5: ستارہ جڑی چار قطب پچاس ہر ٹز اور 415 وولٹ پر چلنے والی موٹر کے معائنہ کئے جاتے ہیں۔ موٹر کی بناوٹ درجہ بندی A کے مطابق ہے۔اوہم میٹر کسی بھی دو برتی سروں کے مابین 0.55 اوہم جواب دیتا ہے۔ب بوجھ معائنہ Hz اور طاقت کا ضیاع W 906 ناپے جاتے ہیں۔جامد موٹر معائنہ Hz اور کا 30 اور کا 35 ہوئے برقی رو A 1.9 اور طاقت کا ضیاع W 850 ناپے جاتے ہیں۔اس موٹر معائنہ Hz اور کا 30 پر کرتے ہوئے برقی رو A 13.9 اور طاقت کا ضیاع W 850 ناپے جاتے ہیں۔اس موٹر کی مساوی برقی دو ر بنائیں اور پانچ فی صد سرک پر اس کی اندرونی میکانی طاقت عاصل کریں۔

 $R_s = rac{0.55}{2} = 0.275\,\Omega$ حاصل کے جواب سے ستارہ بڑی موٹر کے ساکن کچھے کی مزاحمت کا جواب سے ستارہ بڑی موٹر کے ساکن کتھے کی مزاحمت کا ہوتہ

ساکن کچھے کی مزاحت میں اس برقی رو پر کل

 $R_{bb} = rac{415}{\sqrt{3}} = 239.6 \, \mathrm{V}$ ہوتی ہے۔ بے بو چھ معائنہ میں یک مرحلہ برتی دباو $R_{bb} = rac{906}{3 imes 4.1^2} = 17.965 \, \Omega$ $|Z_B| = rac{239.6}{4.1} = 58.439 \, \Omega$ $X_{bb} = \sqrt{58.439^2 - 17.965^2} = 55.609 \, \Omega = X_s + X_m$ لہذا رکے موٹر معائنہ کے نتائج سے $X_s = \sqrt{58.439^2 - 17.965^2}$ بلذا رکے موٹر معائنہ کے نتائج سے $X_s = \sqrt{58.439^2 - 17.965^2}$ بالدا رکے موٹر معائنہ کے نتائج سے $X_s = \sqrt{58.439^2 - 17.965^2}$

 $3I_{bb}^2R_s = 3 \times 4.1^2 \times 0.275 = 13.87 \,\mathrm{W}$

برتی طاقت کا ضیاع ہو گا لہذا رگڑ اور دیگر طاقت کا ضیاع 892 = 13.86 - 906 واٹ ہو گا۔

رکے موٹر کے معائنہ میں یک مرحلہ برتی دیاو $\frac{50}{\sqrt{3}} = 28.9$ وولٹ ہیں یوں اس معائنہ سے $R_{rk} = \frac{850}{3 \times 13.91^2} = 1.464 \, \Omega$ $|Z_{rk}| = \frac{28.9}{13.91} = 2.07 \, \Omega$ $X_{rk,15} = \sqrt{2.07^2 - 1.464^2} = 1.46 \, \Omega$

 $X_{rk,50}=rac{50}{15}$ ماصل ہوتے ہیں۔ اس معائنہ میں برقی تعدد 15 ہرٹز تھی للذا 50 ہرٹز پر متعاملیت $X_{rk,50}=rac{50}{15} imes X_{rk,15}pprox 4.9\,$

ہوتی ہے لہذا A کی امالی موٹر کے لئے یہ متعاملت ساکن اور گھومتے کچھے میں بکسال تقسیم ہوتی ہے لہذا $X_s=X_r'=rac{4.9}{2}=2.45\,\Omega$

نوں

 $X_m = X_{bb} - X_s = 55.609 - 2.45 = 53\,\Omega$

چونکہ $R_s=0.275$ اوہم ہے للذا

 $R'_r = R_{rk} - R_s = 1.464 - 0.275 = 1.189 \,\Omega$

ہو گا۔ یہ مساوی برقی دور شکل 7.17 میں دکھایا گیا ہے۔

پانچ فی صد سرک پر اندرونی میکانی طاقت کی خاطر بائیں جانب کا تھوِنن مساوی دور استعال کرتے ہوئے

$$\begin{split} V_t &= 229 \underline{/0.2833^\circ} \\ Z_t &= 0.251 + j2.343 \\ \left| \hat{I}'_r \right| &= 11.8 \, \mathrm{A} \\ p_m &= \frac{3 \times 11.8^2 \times 0.974 \times (1 - 0.05)}{0.05} = 7730 \, \mathrm{W} \end{split}$$

باب8

یک سمتی رومشین

کے سمتے رومشین یا تو یک سمتی روا برقی طاقت پیدا کرتے ہیں یا پھر یہ یک سمتی رو برقی طاقت سے چلتے ہیں۔ یک سمتی رو مشین یا تو یک سمتی رومشین یا تو یک ہوتی جا رہی ہے اور ان کی جگہ امالی موٹر استعال ہونے گئے ہیں جو جدید طرز کے قورے الیکڑانگرے 2 سے قابو کئے جاتے ہیں۔موجودہ دور میں گاڑیوں میں گئے یک سمتی جزیر بھی دراصل سادہ بدلتی رو جزیر ہوتے ہیں جن کے اندر نب ڈالوؤڈ ان کی بدلتی محرک برقی دباو کو یک سمتی محرک برقی دباو میں تبدیل کر د بی ہے۔

اس باب میں دو قطب کے یک سمتی آلوں کا مطالعہ کیا جائے گا۔میکانی سمت کار رکھنے والے یک سمتی آلوں میں میدانی کچھا ساکن ہوتا ہے جبکہ قوی کچھا گھومتا ہے۔

8.1 ميکانی سمت کار کې بنياد ي کار کردگي

جزیٹر بنیادی طور پر بدلتی رو برقی دباو ہی پیدا کرتا ہے۔ یک سمتی جزیٹر کے اندر نسب سمھے کار4 میکانی طریقہ سے اس بدلتی رو کو یک سمتی برقی دباو حاصل ہوتا ہے۔ اس بدلتی رو کو یک سمتی برقی دباو حاصل ہوتا ہے۔

dc, direct current¹ power electronics² diode³ commutator⁴

شكل 8.1: ميكاني ست كار

سمت کار کو شکل 8.1 میں دکھایا گیا ہے۔ اس شکل میں جزیٹر کے قوی کچھے کو ایک چکر کا دکھایا گیا ہے اگرچہ حقیقت میں ایسا نہیں ہوتا۔ قوی کچھے کے برقی سروں کو د اور ڈسے ظاہر کیا گیا ہے جو سمت کار کے د اور ڈسھوں کے ساتھ جُڑے ہیں۔ قوی کچھا اور سمت کار ایک ہی دھرے پر نسب ہوتے ہیں اور یوں یہ ایک ساتھ حرکت کرتے ہیں۔ نصور کریں کہ یہ دونوں گھڑی کی اُلٹی سمت مقناطیسی میدان میں گھوم رہے ہیں۔ مقناطیسی میدان اُفقی سطح میں S کی جانب ہے جے نوکدار لکیروں سے دکھایا گیا ہے۔ سمت کار کے ساتھ کار بن کے ساکن اُبٹن، اسپر نگ کی مدد سے دبا کر رکھے جاتے ہیں۔ ان کاربن کے اُبٹوں سے برقی دباو بیرونِ جزیٹر موصل برقی تاروں کے ذریعہ منتقل کی جاتی ہیں۔ ان اُبٹوں کو مثبت نشان لیغن ہے۔ اور منفی نشان لیغن سے سے ظاہر کیا گیا ہے۔

د کھائے گئے لمحہ پر لچھے میں پیدا برتی دباو e کی وجہ سے لحجھے کا برتی سراد مثبت اور اس کا برتی سرا ڈ منفی ہے۔ یوں سست کار کا حصہ د مثبت اور اس کا حصہ ڈ منفی ہے جس سے کاربن کے + نشان والا بُش مثبت اور – نشان والا بُش منفی ہے۔ آدھے چکر بعد خلاء میں لحجھے کی د اور ڈ اطراف آپس میں جگہیں تبدیل کر لیں گی۔ یہ شکل 8.2 میں د کھایا گیا ہے۔ لحجھ پر برتی گیا ہے۔ لحجھ کے د اور ڈ اطراف اب بھی سمت کار کے د اور ڈ حصول کے ساتھ جُڑے ہیں۔ اس لمحہ پر لحجھ پر برتی دباو اُلٹ ہو گی اور اب اس کا د طرف منفی اور ڈ طرف مثبت ہو گا جیسے شکل میں دکھایا گیا ہے۔ یہاں سمت کارکی کارکردگی سامنے آتی ہے اور ہم دیکھتے ہیں کہ کاربن کا + نشان والا بُش اب بھی مثبت اور – نشان والا بُش اب بھی منفی ہے۔ یوں جزیئر کے بیرونی برقی سرول پر اب بھی برقی دباو پہلے کی سمت میں ہی ہے۔ سمت کاری کے دانتوں کے مابین برقی دباو ہوتا ہے لہذا ان کو غیر موصل شہ کی مدد ایک دونوں سے اور دھرے سے دور رکھا جاتا ہے۔

گھومتے وقت ایک ایسالمحہ آتا ہے جب سمت کار کے دونوں دانت کاربن کے دونوں بُثوں کے ساتھ جُڑے ہوتے ہیں لیعنی اس لمحہ کاربن کے بُش لیجھے کو کسرِ دور کرتے ہیں۔ کاربن کے بُش محیط پر اس طرح رکھے جاتے ہیں کہ جس

شکل 8.2: آدھے چکر کے بعد بھی بالائی بُش مثبت ہی ہے۔

لمحہ کچھے میں برقی دباو مثبت سے منفی یا منفی سے مثبت ہونے گئے اسی لمحہ کاربن کے بُش کچھے کو کسرِ دور کرے۔ چونکہ اس لمحہ کچھے کے پیدا کردہ برقی دباو صفر ہوتی ہے لہذا اسے کسرِ دور کرنے سے کوئی نقصان نہیں ہوتا۔اس طرح حاصل برقی دباو شکل 8.3 میں دکھایا گیا ہے۔

یہاں دو دندوں والا سمت کار اور دو مقناطیسی قطب کے در میان گھومتا ایک ہی قوی کچھا دکھایا گیا ہے۔ حقیقت میں جزیئر کے بہت سارے قطب ہوں گے۔ مزید سے کیس جزیئر کے بہت سارے قطب ہوں گے۔ مزید سے کہ نہایت چھوٹی آلوں میں مقناطیسی میدان مقناطیس ہی فراہم کرتا ہے جبکہ بڑی آلوں میں مقناطیسی میدان ساکن میدانی کچھے فراہم کرتے ہیں۔ مشین کے دونوں قتم کے کچھے تقسیم شدہ ہوتے ہیں۔

اب ہم زیادہ دندول کے ایک سمت کار کو دیکھتے ہیں۔

8.1.1 ميكاني سمت كاركي تفصيل

پچھلے حصہ میں سمت کار کی بنیادی کار کردگی سمجھائی گئی۔ اس حصہ میں اس پر تفصیلاً غور کیا جائے گا۔ یہاں شکل 8.4 سے رجوع کریں۔اس شکل میں اندر کی جانب دکھائے گئے سمت کار کے دندوں کو ہندسوں سے ظاہر کیا گیا ہے۔سمت

باب.8. يك تى روشىين

شکل 4.8: کاربن بُش سمتکار کے دندوں کو کسرِ دور نہیں کررہا۔

کار کی اندر جانب کاربن بُش دکھائے گئے ہیں جبکہ بیرونِ جزیٹر برقی رو کو ظاہر کرتی ہے۔ شگافوں کو بھی ہندسوں سے ظاہر کیا گیا ہے۔اس جزیٹر کے دو قطب ہیں جبکہ اس میں کل آٹھ شگاف ہیں۔اس طرح اگر ایک شگاف ایک قطب کے سامنے ہو تو تین شگاف چھوڑ کر موجود شگاف دوسرے قطب کے سامنے ہو گا۔ہم کہتے ہیں کہ ایسے دو شگاف ایک قطب فاصلے پر ہیں۔

شگافوں میں موجود کچھوں میں برتی رو کی سمتیں نقطہ اور صلیب سے ظاہر کئے گئے ہیں۔ نقطہ صفحہ سے عمودی طور پر باہر جانب کی سمت کو ظاہر کرتی ہے جبکہ صلیب کے نشان اس کی اُلٹ سمت کو ظاہر کرتی ہے۔یوں پہلی شگاف میں برتی رو کی سمت عمودی طور پر صفحہ کی اندر جانب کو ہے۔

ہر شگاف میں دو لیچے دکھائے گئے ہیں۔ پہلی شگاف کی اندر جانب موجود لیجھا، سمت کار کی پہلی دانت سے جُڑا ہے۔ یہ جوڑ موٹی لکیر سے ظاہر کی گئی ہے۔ شگاف کے نیلے سرے سے نکل کر یہ لیجھا پانچ نمبر شگاف کے نیلے سرے میں باہر جانب کو داخل ہوتا ہے۔ اس بات کو نقطہ دار لکیر سے دکھایا گیا ہے۔ اس طرح دو لیجھے دوسرے اور چیئے شگافوں میں بیر۔ ان میں ایک لیجھا دوسرے شگاف میں اندر کی جانب اور چیئے شگاف میں اندر کی جانب ہے جبکہ دوسرا لیجھا دوسرے شگاف میں باہر کی جانب اور چیئے شگاف میں باہر کی جانب ہے دوسرا کیا ہی ہیں۔ ہر لیجھے کی ایک طرف شگاف میں اندر کی جانب ہے لئے دکھائے گئے ہیں۔ آپ خود باتی شگاف میں باہر جانب کو ہوتی ہے۔ سمت کار کا یہی پہلا اندر جانب اور اس کی دوسری طرف آیک قطب دور موجود شگاف میں باہر جانب کو ہوتی ہے۔ سمت کار کا یہی پہلا اندر جانب اور اس کی دوسری طرف آیک قطب دور موجود شگاف میں باہر جانب کو ہوتی ہے۔ سمت کار کا یہی پہلا

شكل 8.5: ست كارسے جڑے كچھے۔

دانت چوتے شگاف کی باہر جانب موجود کچھے سے بھی جُڑا ہے۔آپ یہاں رکھ کر شکل 8.5 کی مدد سے مشین میں برقی رو کی سمتیں سمجھیں اور تیلی کر لیں کہ بید درست دکھائے گئے ہیں۔اس شکل میں کچھوں کو الف، ب، پ وغیرہ نام دیئے گئے ہیں جبکہ سمت کار کے دندوں کو ہندسوں سے ظاہر کیا گیا ہے۔کاربن کے کُش پہلے اور پانچویں دانت سے جڑے دکھائے گئے ہیں۔

اس شکل میں کاربن بُش سے برتی رو سمت کار کی پہلے دانت سے ہوتے ہوئے دو برابر مقداروں میں تقسیم ہو کر دو کیساں متوازی راستوں گزرے گی۔ایک راستہ سلسلہ وار جڑے الف، ب، پ اور ت کچھوں سے بنتا ہے جبکہ دوسرا راستہ سلسلہ وار جڑے ہے، ث، ج اور چ کچھوں سے بنتا ہے۔ یہ دو سلسلہ وار راستے آپس میں متوازی جڑے ہیں۔ برتی رو کی سمت نقطہ دار چونچ والی کئیر سے ظاہر کی گئی ہے۔ دو متوازی راستوں سے گزرتا برتی رو ایک مر تبہ دوبارہ مل کر ایک ہو جاتا ہے اور سمت کار کے پانچویں دانت سے جڑے کاربن کش کے ذریعہ مشین سے باہر نکل جاتا ہے۔ آپ دکھ سکتے ہیں کہ گھومتے ھے کی شکافوں میں موجود کچھوں میں برتی رو مقناطیسی دباو کو جنم دے گی جو ساکن مقناطیسی دباو کو جنم دے گی جو ساکن مقناطیسی دباو کو جنم دے پر گھڑی کی سمت میں تو قو سے گھوم کے بیوں اگر مشین موٹر کے طور پر استعال کی جا رہی ہو تو یہ گھڑی کی سمت میں قوت مروڑ پیدا کریں گے۔ یوں اگر مشین موٹر کے طور پر استعال کی جا رہی ہو تو یہ گھڑی کی سمت میں برتی دباو اس سمت میں لاگو کی جائے گی کہ اس میں برتی دو دکھائی گئی سمت میں ہو۔

اب یہ تصور کریں کہ مشین ایک جزیٹر کے طور پر استعال کی جارہی ہو اور اسے گھڑی کی اُلٹی سمت بیرونی میکانی طاقت سے گھمایا جا رہا ہو۔یوں سمت کار کے آدھے دانت برابر حرکت کرنے کے بعد یہ شکل 8.6 میں دکھلائے

باب.8. يك تى روشىين

شكل 8.6: كاربن كبش سمت كاركے دندوں كوكسرِ دور كررہاہے۔

حالت اختیار کرلے گی۔اس شکل میں دائیاں کاربن ابُش سمت کار کے پہلے اور دوسرے دانت کے ساتھ جبکہ بائیاں کاربن ابُش اس کے پانچویں شکافوں میں موجود کچھے کسرِ دور کاربن ابُش اس کے پانچویں اور چھٹے دانت کے ساتھ ابُڑ گئے ہیں۔یوں پہلے اور پانچویں شکافوں میں موجود کچھوں میں حسبِ معمول برقی رو ہو گا جن سے مقاطیسی دباو اب بھی پہلے کی طرح ساکن مقاطیسی کی دباو کی عمودی سمت میں ہو گا۔اس لمحہ کی صورت شکل 8.7 میں زیادہ واضح ہے۔

مشین جب سمت کار کے ایک دانت برابر حرکت کر لے تو کاربن کے کُش دوسرے اور چھٹے دانت سے جُڑ جائیں گے۔ پہلے اور پانچویں شگافوں میں برقی رو کی سمت پہلی سے اُلٹ ہو جائے گی جبکہ باقی شگافوں میں برقی رو کی سمتیں برقرار رہیں گی۔ گھوشتے کچھوں کا برقی دباواب بھی اُسی سمت میں ہو گا۔

جتنے لمحے کے لئے کاربن کے بُش دو کچھوں کو کسرِ دور کرتے ہیں اپنے وقت میں ان کچھوں میں برقی روکی سمت اُلٹ ہو جاتی ہے۔ کو شش کی جاتی ہے کہ اس دوران برقی رو وقت کے ساتھ بتدر تے تبدیل ہو۔ایسا نہ ہونے سے کاربن کے کُش سے چنگاریاں نکلتی ہیں جن سے یہ بُش جلد ناکارہ ہو جاتے ہیں۔ جزیٹر کے کسر دور کچھوں میں پیدا برقی دباو انہیں کچھوں میں گھومتی برقی رو پیدا کرتی ہے جو ہمارے کسی کام کی نہیں۔ کچھے اور کاربن بش کے برقی مزاحمت اس برقی روکی قیت کا تعین کرتے ہیں۔

حقیقت میں یک سمتی جزیٹر میں در جن دانت فی قطب والا سمت کار استعال ہو گا اور اگر مشین نہایت مچھوٹی نہ ہو تو اس میں دو سے زیادہ قطب ہول گے۔

شکل 8.7: کاربن بش دودندوں کو کسر دور کررہے ہیں۔

8.2 كى سىتى جزيىر كى برقى د باو

گزشتہ حصہ میں شکل 8.5 کے الف، ب، پ اور ت کچھے سلسلہ وار جڑے ہیں۔ اس طرح ٹ، ث، ج اور ج کچھے سلسلہ وار جڑے ہیں۔ وہ وہ وہ وہ وہ وہ وہ وہ اسلہ وار جڑے ہیں۔ حصہ 5.3 میں مساوات 5.23 ایک کچھے کی یک سمتی جزیڑ کی محرک برتی دباو وہ وہ وہ اسے یہاں یاد دھیانی کی خاطر دوبارہ دیا جاتا ہے۔

$$(8.1) e_1 = \omega N \phi_m = \omega N A B_m$$

8.4 اگر خلائی درز میں B_m کی مقدار ہر جگہ کیساں ہو تو سب کچھوں میں برابر محرک برقی دباو پیدا ہو گا۔یوں شکل B_m میں دکھائے کہے پر جزیٹر کی کل محرک برقی دباو B_m ایک کچھے کی محرک برقی دباو کی چار گنا ہو گی لیعنی

(8.2)
$$e = e_{\downarrow\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= e_{\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= 4\omega NAB_{m}$$

جبه شکل 8.6 میں و کھائے لمحہ پر صرف تین لچھوں کی محرکی برقی دباو زیر استعال آتی ہے لینی

(8.3)
$$\begin{aligned} e &= e_{\downarrow} + e_{\downarrow} + e_{\ddot{\downarrow}} \\ &= e_{\ddot{\downarrow}} + e_{\ddot{\downarrow}} + e_{\ddot{\downarrow}} \\ &= 3\omega NAB_m \end{aligned}$$

شکل8.8: آٹھ دندوں کی میکانی سمت کارسے حاصل برقی دیاو۔

شکل 8.8 میں اس آٹھ وندوں والے میکانی سمت کارسے حاصل برتی وباو وکھائی گئی ہے۔اس شکل میں یک سمتی برقی وباو پر مطلوبہ اہریں نظر آ رہی ہیں۔اگر جزیٹر میں ایک جوڑی قطب پر کل n کچھے ہوں تو شکل 8.5 کی طرح ہیدوں ہو سے سلسلہ وار کچھوں جتنی محرکی برقی وباو پیدا کرے گی۔

(8.4)
$$e = \frac{n}{2}\omega N\phi_m = \frac{n}{2}\omega NAB_m$$

اس صورت میں یہ غیر مطلوبہ اہریں کل یک سمتی برقی دباو کی تقریباً

$$\frac{\omega N \phi_m}{\frac{n}{2} \omega N \phi_m} \times 100 = \frac{2}{n} \times 100$$

فی صد ہو گی۔آپ دیکھ سکتے ہیں کہ اگر فی قطب دندوں کی تعداد بڑھائی جائے تو حاصل برتی دباو زیادہ ہموار ہو گی اور یہ غیر مطلوبہ لہریں قابل نظر انداز ہوں گے۔

اب تصور کریں کہ شکل 8.4 میں دیئے مشین کی خلائی درز میں B_m کی مقدار ہر جگہ کیساں نہیں ہے۔اس صورت میں کچھوں میں محرک برقی دباو مساوات 8.1 کے تحت مختلف زاویوں پر مختلف ہو گی۔اس طرح مشین سے حاصل کل برقی دباو چار سلسلہ وار کچھوں کی مختلف محرک برقی دباو کے مجموعہ کے برابر ہوگی لیخی

$$(8.6) e = e_1 + e_2 + e_3 + e_4$$

جہاں e_1, e_2, \cdots مختلف کچھوں کی محرک برقی دباو کو ظاہر کرتے ہیں۔

اب شکل 8.4 پر غور کریں۔اگر گھومتا حصہ صرف ایک دندے برابر حرکت کرے تو اس شکل کی حالت دوبارہ حاصل ہوتی ہے اور اس سے حاصل برتی دباو بھی دوبارہ وہی ملتی ہے۔اگر میکانی سمت کارکی فی قطب دندوں کی تعداد زیادہ کر دی جائے تو یہ حرکت قابل نظر انداز ہو جاتی ہے۔ اب اگر خلائی درز میں کثافتِ متناطیسی بہاو ہمواری کے ساتھ تبدیل ہو تو آتی کم حرکت کے احاطے میں B_m کی مقدار میں کوئی خاص تبدیلی نہیں آئے گی اور اس احاطے

8.3. قوت سرور أ

شكل8.9: آرى دندون نما كثافت مقناطيسي دباو ـ

میں اسے یکساں تصور کیا جا سکتا ہے۔ یوں اگر لچھا اس احاطے میں حرکت کرے تو اس میں محرک برقی دباو تبدیل نہیں ہو گی۔ یعنی جس لچھے کی محرکی برقی دباو e_1 ہے اُس کی اس احاطے میں محرکی برقی دباو یہی رہے گی۔ یوں اگرچہ نہیں ہو گی۔ یعنی جس محلف ہو سکتے ہیں مگر ان کی مقدار قطعی ہے، لہذا اس صورت میں مساوات e_1, e_2, \dots گئی محرکی برقی دباوکی مقدار مجمی قطعی ہو گی۔

ہم نے دیکھا کہ اگر خلائی درز میں B_m ہمواری کے ساتھ تبدیل ہو تو جزیٹر سے معیاری یک سمتی محرک برقی دباو حاصل ہوتی ہے۔ نہایت چھوٹی یک سمتی آلوں میں دباو حاصل ہوتی ہے۔ نہایت چھوٹی یک سمتی آلوں میں خلائی درز میں B_m یکساں رکھا جاتا ہے جبلہ بڑی آلوں میں اسے ہمواری کے ساتھ تبدیل کیا جاتا ہے۔ جیسا اوپر ذکر ہوا عملاً میکانی سمت کار کے دندوں تک لچھوں کے سروں کی رسائی ممکن تب ہوتی ہے جب ہر شگاف میں دو لچھے مرکھ جائیں۔ اس طرح رکھے لچھوں کی خلائی درز میں مقناطیسی دباو آری کے دندوں کی مانند ہوتا ہے۔ یہ شکل 8.9 میں دکھایا گیا ہے۔

زیادہ قطب کے مشین میں شالی اور جنوبی قطب کے ایک جوڑے کی پیدا یک سمتی برقی دباو مساوات 8.4 سے حاصل ہو گی جہال n ایک قطبین کے جوڑے پر میکانی سمت کار کے دندول کی تعداد ہو گی۔یوں زیادہ قطبین کے جوڑیوں سے حاصل یک سمتی برقی دباو کو سلسلہ وار یا متوازی جوڑا جا سکتا ہے۔

8.3 قوت مروڑ

یک سمتی آلول کی امالی برقی دباو اور قوت مرور خلائی درز میں مقناطیسی دباو کی شکل پر منحصر نہیں۔اپنی سہولت کے لئے ہم ان کی خلائی درز میں مقناطیسی دباو سائن نما تصور کرتے ہیں۔شکل 8.9 میں دکھائے گئے قوی کچھے کی مقناطیسی

با__8. يك___تن رومثين

د باو کی بنیادی فوریئر جزو⁵

$$\tau_q = \frac{8}{\pi^2} \frac{NI}{2}$$

ہے۔یوں چونکہ یک سمتی مشین میں ساکن اور گھومتے کچھوں کی مقناطیسی دباو عمودی ہیں لہذا ان میں قوت مروڑ مساوات 5.101 کی طرح

(8.8)
$$T = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_m \tau_q$$

ہو گی۔

مثال 8.1: دو قطب بارہ دندوں کے میکانی سمت کار کے یک سمتی جزیٹر میں ہر قوی کچھا بیس چکر کا ہے۔ایک کھھے سے گزرتی مقناطیسی بہاو 0.0442 ویبر ہے۔جزیئر 3600 چکر فی منٹ کی رفتار سے گھوم رہا ہے۔

- اس کی پیدا یک سمتی برقی دباو میں غیر مطلوبہ لہرس کل برقی دباو کے کتنے فی صد ہیں۔
 - یک سمتی برقی دباو حاصل کریں۔

حل:

مساوات
$$8.5$$
 سے غیر مطلوبہ لہریں $\frac{2}{n} \times 100 = \frac{2}{12} \times 100 = 16.66$ صد ہیں۔

• جزیٹر کی رفتار
$$60=\frac{3600}{60}$$
 ہر ٹز ہے یوں مساوات 8.4 کی مدد سے حاصل یک سمتی برقی دباو

$$e = \frac{12}{2} \times 2 \times \pi \times 60 \times 20 \times 0.0442 = 1999.82 \,\mathrm{V}$$

-4

شكل8.10: بير وني هيجان اور خود هيجان يك سمتي جزيرً بـ

بیر ونی ہیجان اور خود ہیجان یک سمتی جزیٹر

ہروز پیجارہ 6 یک سمتی جزیٹر کے میدانی کچھے کو بیرونی یک سمتی برقی دباو مہیا کی جاتی ہے جبکہ نود پیجارہ 7 یک سمتی جزیر کے میدانی کچھے کو اس جزیر کی اپنی پیدا کردہ محرک برقی دباو ہی مہیا کی جاتی ہے۔ یک سمتی جزیر کی کارکردگی اس کو ہیجان کرنے کے طریقے پر منحصر ہے۔

شکل 8.10-الف میں قوی کچھے 8 اور میدانی کچھے 9 کو آپس میں عمودی بنایا گیا ہے۔ یہ ایک سادہ طریقہ ہے جس سے یہ یاد رہتا ہے کہ ان کچھوں کی پیدا کردہ مقناطیسی دباو عمودی ہیں۔ یہاں قوی کیچھے کی شکل میکانی سمت کار کی طرح بنائی گئی ہے۔

چونکہ میدانی اور قوی کچھوں کی مقناطیسی دباو عمودی ہیں ہم اس سے یہ اغذ کرتے ہیں کہ ایک کچھے کی برقی دباو دوسرے کیجھے کی برقی دباویر اثر انداز نہیں ہوتی۔اس کا مطلب ہے کہ مقناطیسی قالب کی کسی ایک سمت میں سیرابیت اس ست کی عمودی ست میں سیر ابیت یر اثر انداز نہیں ہوتی۔

شکل 8.10-الف میں بیرونی بیجان مشین کی میدانی کھیے کو بیرونی یک سمتی برقی طاقت مہیا کی گئی ہے۔یوں میدانی کیجھے کی برقی رو تبدیل کر کے اس کی میدانی مقناطیسی دباو au_m ، میدانی مقناطیسی بہاو ϕ_m اور کثافت مقناطیسی

> separately excited⁶ self excited⁷ armature coil⁸

filed coil⁹

شکل 8.11: میدانی برتی روسے محرکی برتی دباو قابو کی جاتی ہے۔

بہاو B_m تبدیل کی جا سکتی ہے۔یوں جزیٹر کی محرک برقی دباو مساوات 8.1 کے تحت تبدیل کی جا سکتی ہے یا پھر موٹر کی قوت مروڑ مساوات 8.8 کے تحت تبدیل کی جا سکتی ہے۔

برتی رو بڑھانے سے قالب کا سیر اب ہونا شکل 8.11 میں واضح ہے۔ یوں برتی رو بڑھاتے ہوئے شروع میں محرک برتی دباو اور میدانی کچھے کی برتی رو براہِ راست متناسب ہو گی جبکہ زیادہ برتی رو پر ایسا نہیں۔ شکل میں خط ب مشین کے کھلے سرے معائنہ سے حاصل کی جاستی ہے۔ اس شکل میں محرکی برتی دباو کو e_{q0} کی بجائے e_{q0} کھ کر اس بات کی یاد دھیانی کرائی گئ ہے کہ یہ محرکی دباو قوی کچھے سے حاصل کی گئ ہے اور یہ ایک معین رفتار ω_0 برق دباو e_q ماصل کرتی ہو تو مساوات 8.4 کی مدد سے کی گئ ہے۔ اگر کسی اور رفتار س پر اس خط سے محرکی برتی دباو e_q حاصل کرتی ہو تو مساوات 8.4 کی مدد سے

(8.9)
$$\frac{e_q}{e_{q0}} = \frac{\frac{n}{2}\omega NAB_m}{\frac{n}{2}\omega_0 NAB_m} = \frac{\omega}{\omega_0}$$

لعيني

$$(8.10) e_q = \frac{rpm}{rpm_0} e_{q0}$$

جہال رفتار کو چکر فی منٹ ¹⁰ میں بھی لیا گیا ہے۔یاد رہے کہ یہ مساوات صرف اُس صورت میں درست ہے جب مقناطیسی میدان تبدیل نہ ہو۔

مقناطیسی قالب اگر مقناطیس بنائی جائے تو اس میں بقایا مقناطیسی بہاو رہتی ہے۔یہ شکل کے حصہ الف میں دکھائی گئ ہے۔یوں اگر میدانی کچھے کو بیجان نہ بھی کیا جائے تو جزیئر کچھ محرکی برقی دباو پیدا کرے گی ا۔ یہ بقایا محرکی برقی دباو شکل ب میں صفر میدانی برقی رو پر دکھائی گئی ہے۔

rpm, rounds per minute¹⁰

¹¹ آپ ٹھیک سوچ رہے ہیں۔جزیٹر بنانے والے کارخانے میں قالب کو پہلی مرتبہ مقناطیس بناناپڑتا ہے

شكل 8.12: سلسله واراور مركب جڙي خو د ٻيجان جزيڙ په

اگر خود ہیجان جزیر کو ساکن حال سے چالو کیا جائے تو بقایا محرکی برتی دباہ پیدا ہو گی۔اس محرک برتی دباہ سے میدانی کچھے میں برقی رو روال ہو گا اور بول مقناطیسی میدان پیدا ہو گا جس سے مشین ذرا زیادہ ہیجان ہو جائے گا اور یول اس کی محرک برقی دباہ بھی کچھ بڑھ جائے گی۔اس طرح کرتے کشین جلد پوری محرک برقی دباہ پیدا کرنے مشین جلد پوری محرک برقی دباہ پیدا کرنے مشین کی رفتار بڑھ رہی ہوتی ہے۔

شکل 8.10-ب میں خود بیجان مشین دکھائی گئی ہے جس کے میدانی اور قوی کچھے متوازی بُوئے ہیں۔ اس طرح بڑی جزیر کو خود بیجان متوازی جزئی کہتے ہیں۔اس شکل میں میدانی کچھ کے ساتھ ایک مزاحمت سلسلہ وار برٹی ہے۔اس مزاحمت کو تبدیل کر کے میدانی برقی رو تبدیل کی جاتی ہے جس سے بالکل بیرونی بیجان مشین کی طرح جزیر کی محرکی برقی دباویا موٹر کی قوت مروڑ تبدیل کی جاتی ہے۔

شکل 8.12 میں خود بیجان جزیر کی دو اور قسمیں دکھائی گئی ہیں۔ ایک خود بیجائے سلملہ وار بڑئے جزیر اور دوسری خود بیجائے سلملہ وار بڑئے جزیر اور دوسری خود بیجائے مرکب جنریر میں میدانی اور قوی کچھ سلسلہ وار بجڑے ہوتے ہیں۔مرکب جنریر میں میدانی اور دوسرا اس کے سلسلہ وار بجڑے ہوتے میں میدانی کچھ کے متوازی اور دوسرا اس کے سلسلہ وار بجڑے ہوتے ہیں۔مزید میہ کہ متوازی بجڑا حصہ قوی کچھ کے قریب ہو سکتا ہے یا پھر یہ سلسلہ وار کچھ کے دوسری جانب یعنی دور بین صورت میں دور بڑئی مرکب جزیر کہیں بھڑا ہو سکتا ہے۔ پہلی صورت میں اس قریب جزیر کہیں اگئے ہیں۔

یک سمتی موٹر بھی اسی طرح رپارے جاتے ہیں۔ یعنی شکل 8.10 کی طرح بڑی دو موٹروں کو بیرونی ہیجان موٹر اور خود ہیجان متوازی بڑی موٹر کہیں گے۔موٹر میں قوی کیچھے کی برقی رو کی سمت جزیئر کے برقی رو کی سمت کے اُلٹ ہوتی ہے۔ اُلٹ ہوتی ہے۔

parallel connected 12

4_8. ي مشين

شکل 8.13: مر کب قریب جڑی اور مر کب دور جڑی خو دہیجان جزیٹر

ہر طرح جڑی یک سمتی جزیٹر کی میدانی مقناطیسی دباواس کے میدانی کچھے کے چکر ضرب برقی رو کے برابر ہوتی سے یعنی

شکل 8.10 میں خود بیجان متوازی بڑی جزیٹر کی میدانی کیھے میں برتی رو اس کیھے اور اس کے ساتھ بڑی مزاحمت $R=R_m+R_m'$ مخصر ہوگی یعنی $I_m=rac{V}{R}$ یوں خود بیجان متوازی بڑی جزیئر کے لئے اس مساوات کو یوں کھیا جائے گا۔

$$\tau_{m,m} = \frac{I_m V}{R_m + R'_m}$$

سلسلہ وار جڑی جزیٹر میں میدانی برقی رو جزیٹر کے قوی کچھے کی برقی رو کے برابر ہوتی ہے للذا اس صورت میں اس مساوات کو یوں لکھا جا سکتا ہے۔

$$\tau_{m,s} = N_m I_q$$

شکل 8.13 میں مرکب جزیر میں میدانی مقناطیسی دباو کے دو جصے ہیں۔اس میں N_{mm} چکر کے متوازی جڑے میدانی کچھے میں برقی رو I_{ms} اور N_{ms} چکر کے سلسلہ وار جڑے میدانی کچھے میں برقی رو N_{ms} ہے لہذا

(8.14)
$$\tau_{m,mk} = N_{ms}I_{ms} + N_{mm}I_{mm}$$

شکل 8.14: یک سمتی جزیٹر کی محرک برقی د باوبمقابلہ برقی بوجھ کے خط۔

8.5 کیک سمتی مشین کی کار کردگی کے خط

8.5.1 حاصل برقى دياو بالتقابل برقى بوجھ

مختلف طریقوں سے بُڑے یک سمتی جزیٹر وں سے حاصل برقی دباو بمقابلہ ان پر لدے برقی بوجھ کے خط شکل 8.14 میں دکھائے گئے۔ گھومتی رفتار معین تصور کی گئی ہے۔ دھرے پر لاگو بیرونی میکانی طاقت جزیئر کی قوت مروڑ کے خلاف اسے گھمائے گی۔

ان خط کو سیجھنے کی خاطر پہلے ہیرونی بیجان جزیٹر پر غور کرتے ہیں جس کی مساوی برقی دور شکل 8.15-الف میں دی گئی ہے۔ ہیرونی بیجان جزیٹر پر برقی بوجھ لادنے سے اس کے قوی کچھے کی مزاحت R_q^{13} میں برقی رو I_q گزرنے سے اس میں برقی دباو گھٹی ہے۔ لہذا جزیٹر سے حاصل برقی دباو V، جزیٹر کی اندرونی محرک برقی دباو E_q سے قدرِ کم ہوتی ہے بیعنی

$$(8.15) V = E_q - I_q R_q$$

برقی بوجھ I_q بڑھانے سے جزیٹر سے حاصل برقی دباو کم ہو گی۔شکل میں بیرونی بیجان جزیٹر کی خط ایبا ہی رجمان ظاہر کرتی ہے۔ حقیقت میں کچھ اور وجوہات بھی کار آمد ہوتے ہیں جن سے یہ خط سید تھی نہیں بلکہ جھکی ہوتی ہے۔

متوازی جڑی جزیٹر کے خط کا یمی رجمان ہے۔ متوازی جڑی جزیٹر پر بھی برتی بوجھ لادنے سے قوی کچھے کی مزاحمت میں برتی دباو گھٹی ہے ۔یوں اس کے میدانی کچھے پر لاگو برتی دباو کم ہو جاتی ہے جس سے میدانی کچھے میں برتی رو

شکل 8.15: بیرونی ہیجان اور متوازی جڑی جزیٹر کی مساوی برتی دور۔

شكل 8.16: سلسله واراور مركب جزييرك مساوى برقى دور

بھی گھٹی ہے۔ اس سے محرک برقی دباو مزید کم ہوتی ہے۔اس طرح ان جزیٹر سے حاصل برقی دباو بمقابلہ برقی بوجھ کے خط کی ڈھلان بیرونی بیجان جزیٹر کی خط سے زیادہ ہوتی ہے۔

شکل 8.16 میں سلسلہ وار اور مرکب جزیئر کی مساوی برقی داو دکھائے گئے ہیں۔سلسلہ وار جڑی جزیئر کے میدانی کچھے میں لدے بوجھ کی برقی رو ہی گزرتی ہے۔اس طرح بوجھ بڑھانے سے میدانی مقناطیس وباو بھی بڑھتی ہے۔اس طرح بڑس سے محرک برقی دباو بڑھتی ہے۔اس کا خط یہی دکھا رہا ہے۔اس طرح بڑٹے جزیئر عموماً استعال نہیں ہوتے چونکہ ان سے حاصل برقی دباو، بوجھ کے ساتھ بہت زیادہ تبدیل ہوتی ہے۔

مرکب جڑی جزیر کی کارکردگی سلسلہ وار اور متوازی جڑی جزیر ول کے مابین ہے۔ مرکب جزیر میں بوجھ بڑھانے سے قوی کچھے کی وجہ سے حاصل برقی دباو میں کمی کو میدانی کچھے کی بڑھتی مقناطیسی دباو پورا کرتی ہے۔ یوں مرکب جزیر سے حاصل برقی دباواس پر لدے بوجھ کے ساتھ بہت کم تبدیل ہوتی ہے۔

بیرونی بیجان، متوازی اور مرکب جڑی جزیر ول سے حاصل برقی دباو کو متوازی جڑی کچھے میں برقی روکی مدد سے وسیع حد تک تبدیل کیا جا سکتا ہے۔

قوی لچھا چونکہ برتی بوجھ کو درکار برتی رو فراہم کرتی ہے لہذا ہے موٹی موصل تارکی بنی ہوتی ہے اور اس کے عموماً کم چکر ہوتے ہیں۔سلسلہ وار جزیٹر کے میدانی کچھے سے چونکہ مشین کا پوری برتی رو ہی گزرتا ہے للذا یہ بھی موٹی موصل تارکی بنی ہوتی ہے۔باقی آلوں میں میدانی کچھے میں پورے برقی بوجھ کے چند ہی فی صد برقی رو گزرتی ہے للذا یہ بادیک موصل تارکی بنائی جاتی ہے اور اس کے عموماً زیادہ چکر ہوتے ہیں۔

8.5.2 رفتار بالمقابل قوت مرورُ

یہاں بھی شکل 8.15 اور شکل 8.16 سے رجوع کریں البتہ شکل میں برقی رو کی سمتیں اُلٹ کر دیں۔ یک سمتی موٹر بھی جزیٹروں کی طرح مختلف طریقوں سے بڑے جاتے ہیں۔موٹر کو معین بیرونی برقی دباو دی جاتی ہے جہاں سے یہ برقی رو حاصل کرتی ہے۔ برقی رو باہر سے قوی کیچے کی جانب چلتی ہے للذا موٹر کے لئے کھا جائے گا

$$V = E_q + I_q R_q$$

$$I = \frac{V - E_q}{R_q}$$

13 علامتRq کے زیر نوشت میں q لفظ قوی کے پہلی حرف ق کو ظاہر کرتی ہے۔

258

شکل 8.17: یک سمتی موٹر کی میکانی بوجھ بمقابلہ رفتار کے خط۔

بیرونی بیجان اور متوازی جڑی موٹروں میں میدانی کیچھ کو بر قرار معین بیرونی برقی دباو فراہم کی جاتی ہے للذا میدانی متناطیسی بہاو پر میکانی بوجھ کا کوئی اثر نہیں۔ بڑھتی میکانی بوجھ اٹھانے کی خاطر مساوات 8.8 کے تحت قوی کیچھ کی متناطیسی بہاو بڑھنی ہو گی۔ بیہ تب ممکن ہو گا کہ اس میں برقی رو بڑھے۔ مساوات سے ہم دیکھتے ہیں کہ قوی کیچھ کی محرکی برقی دباو E_q گئے سے ہی ایبا ممکن ہے۔ E_q موٹر کی رفتار پر منحصر ہے للذا موٹر کی رفتار کم ہو جائے گی۔ یوں میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہو جائے گی۔ یوں میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہوتی ہے۔ شکل 8.17 میں بید دکھایا گیا ہے۔

متوازی جڑی یا بیرونی بیجان موٹر تقریباً معین رفتار ہی برقرار رکھتی ہے۔اس کی رفتار بے بوجھ حالت سے پوری طرح بوجھ بردار حالت تک تقریباً صرف پانچ فی صد کھنتی ہے۔ان موٹروں کی رفتار نہایت آسانی سے میدانی کچھے کی برقی رو تبدیل کر کے تبدیل کی جاتی ہے۔اییا میدانی کچھے کے ساتھ سلسلہ وار جڑی مزاحمت کی تبدیلی سے کیا جاتا ہے۔ان کی رفتار یوں وسیع حدوں کے مابین تبدیل کرنا ممکن ہوتا ہے۔موٹر پر لاگو بیرونی برقی دباو تبدیل کر کے بھی رفتار قابو کی جاسکتی ہے۔اییا عموماً قوی الیکٹرائنس کی مدد سے کیا جاتا ہے۔

ان موٹر کی ساکن حال سے چالو کرتے کھے کی قوت مروڑ اور ان کی زیادہ سے زیادہ قوت مروڑ قوی کچھے تک برقی رو پہنچانے کی صلاحت پر منحصر ہے یعنی یہ میکانی سمت کار پر منحصر ہے۔

سلسلہ وار جڑی موٹر پر لدی میکانی بوجھ بڑھانے سے اس کے قوی اور میدانی کچھوں میں برقی رو بڑھے گا۔ میدانی مقناطیسی بہاو بڑھے گی اور مساوات 8.16 کے تحت E_q کم ہو گی جو موٹر کی رفتار کم ہونے سے ہوتی ہے۔ بوجھ بڑھانے سے ان موٹر کی رفتار کافی زیادہ کم ہوتی ہے۔ایسے موٹر ان جگہوں بہتر ثابت ہوتے ہیں جہاں زیادہ قوت مروڑ درکار ہو۔بڑھی قوت مروڑ کے ساتھ ان کی رفتار کم ہونے سے ان کو درکار برقی طاقت قوت مروڑ کے ساتھ زیادہ تبدیل نہیں ہوتا۔

یبال اس بات کا ذکر ضروری ہے کہ بے بوجھ سلسلہ وار جڑی موٹر کی رفتار خطرناک حد تک بڑھ سکتی ہے۔ایسے موٹر کو استعال کرتے وقت اس بات کا خاص خیال رکھنا ضروری ہے کہ موٹر ہر لمحہ بوجھ بردار رہے۔

ساکن حالت سے موٹر چالو کرتے وقت I_q کی قیت زیادہ ہوتی ہے جس سے زیادہ مقناطیسی بہاو پیدا ہوتا ہے۔ یوں چالو کرتے وقت موٹر کی قوت مروڑ خاصی زیادہ ہوتی ہے۔ یہ ایک اچھی خوبی ہے جس سے بوجھ بردار ساکن موٹر کو چالو کرنا آسان ہوتا ہے۔

مر کب موٹروں میں ان دو قسموں کی موٹروں کے خصوصیات پائے جاتے ہیں۔جہاں بوجھ بردار موٹر چالو کرنا ضروری ہو لیکن رفتار میں سلسلہ وار موٹر جتنی تبدیلی منظور نہ ہو وہاں مر کب موٹر کارآمد ثابت ہوتے ہیں۔

مثال 8.2: ایک 75 کلو واٹ 415 وولٹ اور 1200 چکر فی منٹ کی رفتار سے چلنے والے متوازی جڑی یک سمتی مثال 2.2: اور 75 کلو واٹ واٹ 415 وولٹ اور 1200 چکھ کی مزاحمت 83.2 اوہم ہے۔موٹر جس بوجھ سے موٹر کے قوی کچھے کی مزاحمت 1123 وہم ہے۔موٹر جس بوجھ سے لدا ہے اس پر موٹر 1123 چکر فی منٹ کی رفتار سے چلتے ہوئے 112 ایمپیئر لے رہی ہے۔

- میدانی برقی رو اور توی کیھے کی برقی رو حاصل کریں۔
 - موٹر کی اندرونی پیدا کردہ برقی دباو حاصل کریں۔
- اگر میدانی کچھے کی مزاحمت 100.2 اوہم کر دی جائے مگر قوی کچھے کی برقی رو تبدیل نہ ہو تو موٹر کی رفتار حاصل کریں۔ قالب کی سیراییت کو نظرانداز کریں۔

حل:

• شكل 8.18 سے رجوع كريں-415 وولٹ پر ميدانی کچھے كى برقی رو

$$I_m = \frac{V}{R_m + R'_m} = \frac{415}{83.2} = 4.988 \,\mathrm{A}$$

 $I_q = I_b - I_m = 112 - 4.988 = 107.012 \, \mathrm{A}$ ہو گی۔ یوں قوی کچھے کی برقی رو

• يول يك سمتى موٹر كى اندروني پيدا كرده برقى دباو

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

• اگر میدانی کچھے کی مزاحمت 100.2 اوہم کر دی جائے تب

$$I_m = \frac{V}{R_m + R_m'} = \frac{415}{100.2} = 4.1417\,\mathrm{A}$$

ہو گی ۔

• اگر قوی کچھے کی برقی رو 107.012 ایمپیئر ہی رکھی جائے تب

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

ہی رہے گی۔

• مساوات 8.4 کی مدد سے چونکہ اندرونی پیدا کردہ برقی دباو تبدیل نہیں ہوئی گر مقناطیسی بہاو تبدیل ہوا ہے لہذا موٹر کی رفتار تبدیل ہوگی۔ان دو مقناطیسی بہاو اور رفتاروں پر اس مساوات کی نسبت

$$\frac{E_{q1}}{E_{q2}} = \frac{\frac{n}{2}\omega_1 N\phi_{m1}}{\frac{n}{2}\omega_2 N\phi_{m2}}$$

میں چونکہ $E_{q1}=E_{q2}$ للذا $E_{q1}=\omega_2\phi_{m1}=\omega_2\phi_{m2}$ ہو گا۔ قالبی سیر ابیت کو نظر انداز کرتے ہوئے چونکہ مقاطیسی بہاد میدانی دباو پر منحصر ہے جو از خود میدانی برقی رو پر منحصر ہے۔ للذا اس آخری مساوات کو یوں کمچھ سے ہیں۔

$$\frac{\omega_1}{\omega_2} = \frac{rpm_1}{rpm_2} = \frac{\phi_{m2}}{\phi_{m1}} = \frac{I_{m2}}{I_{m1}}$$

جس سے نئی رفتار

$$rpm_2 = \frac{I_{m1}}{I_{m2}} \times rpm_1 = \frac{4.988}{4.1417} \times 1123 = 1352.47$$

چکر فی منٹ حاصل ہوتی ہے۔اس مثال میں ہم دیکھتے ہیں کہ میدانی برقی رو کم کرنے سے موٹر کی رفتار بڑھتی ہے۔

مثال 8.3: ایک 60 کلو واٹ، 415 وولٹ، 1000 چکر فی منٹ متوازی بڑی یک سمتی موٹر کی قوی کچھے کی مزاحمت 0.05 اوہم اوہم اوہم ہے۔بے بوجھ موٹر کی رفتار 1000 چکر فی منٹ ہے۔میدانی کچھا 1000 چکر کا ہے۔

1000 چکر کا ہے۔

- جب یه موٹر ایمپیئر لے رہی ہو اس وقت اس کی رفتار معلوم کریں۔
 - 140 ایمبیئر پر اس کی رفتار معلوم کرین۔
 - 210 ایمپیئر پر اس کی رفتار معلوم کرین۔
 - اس موٹر کی رفتار بالقابل قوت مروڑ ترسیم کریں۔

حل:

شكل8.20: ر فتار بالمقابل قوت م وڑ ـ

• شکل 8.19 میں یہ موٹر دکھائی گئی ہے۔ متوازی میدانی کچھے کی برقی رو پر بوجھ لادنے سے کوئی فرق نہیں پڑتا۔ لہذا میدانی مقناطیسی بہاو بے بوجھ اور بوجھ بردار موٹر میں یکسال ہے۔ بے باریک سمتی موٹر کی قوی کچھے کی برقی رو I_q قابل نظر انداز ہوتی ہے۔ اس طرح مساوات 8.16 اور مساوات 8.10 سے

$$E_q = V - I_q R_q = 415 - 0 \times R_q = 415 \text{ V}$$

$$I_m = \frac{V}{R_m} = \frac{415}{60} = 6.916 \text{ A}$$

یعن 415 وولٹ محرکی برقی دباو پر رفتار 1000 چکر فی منٹ یا 16.66 چکر فی سیکنڈ ہے۔70 ایمپیئر برقی بوجھ پر بھی $I_m = 6.916$ می ہے جبکہ

$$I_q = I_b - I_m = 70 - 6.916 = 63.086 \,\mathrm{A}$$

للذا مساوات 8.16 سے اس صورت میں

$$E_q = V - I_q R_q = 415 - 63.086 \times 0.05 = 411.8458 \, \mathrm{V}$$

اور مساوات 8.10 سے رفار (چکر فی منٹ) یوں حاصل ہوتا ہے

$$rpm = \frac{e_q}{e_{q0}} rpm_0 = \frac{411.8458}{415} \times 1000 = 991.95$$

 $I_b = 140 \, \text{A}$ بین کچھ دوبارہ کرتے ہیں۔ یہاں $I_b = 140 \, \text{A}$

$$I_q = I_b - I_m = 140 - 6.916 = 133.084 \text{ A}$$

$$E_q = 415 - 133.084 \times 0.05 = 408.3458 \text{ V}$$

$$rpm = \frac{408.3458}{415} \times 1000 = 983.96$$

 $_{-}$ يبال $I_b = 210 \, \mathrm{A}$ يبال •

$$I_q = I_b - I_m = 210 - 6.916 = 203.084 \text{ A}$$

$$E_q = 415 - 203.084 \times 0.05 = 404.8458 \text{ V}$$

$$rpm = \frac{404.8458}{415} \times 1000 = 975.83$$

• موٹر میں طاقت کے ضیاع کو نظر انداز کرتے ہیں۔ یوں اس کی میکانی طاقت اسے فراہم کی گئی برقی طاقت کے برابر ہو گی یعنی

$$(8.17) e_q I_q = T\omega$$

 $T_0 = 0 \, \mathrm{Nm}$ یوں پیچیلے جزوسے حاصل جوابات کی مدد سے بے بوجھ موٹر کی قوت مروڑ صفر ہوگی لینی مدد سے جبہہ $70 \, \mathrm{mm}$ جبکہہ $70 \, \mathrm{mm}$ ہوگا ہے۔

$$T_{70} = \frac{e_q I_q}{\omega} = \frac{411.8458 \times 63.086}{2 \times \pi \times 16.5325} = 250 \,\mathrm{N}\,\mathrm{m}$$

ہو گی۔ یہاں 991.95 چکر فی منٹ کی رفتار کو 16.5325 ہرٹز لکھا گیا ہے۔ اس طرح

$$\begin{split} T_{140} &= \frac{e_q I_q}{\omega} = \frac{408.3458 \times 133.084}{2 \times \pi \times 16.399} = 527 \, \text{N m} \\ T_{210} &= \frac{e_q I_q}{\omega} = \frac{404.8458 \times 203.084}{2 \times \pi \times 16.26} = 805 \, \text{N m} \end{split}$$

يه نتائج شكل 8.20 ميں ترسيم كئے گئے ہيں۔

 \Box

فرہنگ

94 earth. 32 ampere-turn, 62 loss, current eddy 251,131 coil, armature 161 axle, 126,62 currents, eddy field electric 177 bush, carbon 10 intensity, 4 system, cartesian 59 rating, electrical 136,10 charge, 131 electromagnet, 178 breaker, circuit 137,61 force, electromotive 46 coercivity, 137 emf. 62 enamel. 56 voltage, high 43 energy, 56 voltage, low 21 Euler. 55 primary, 61 excitation. 55 secondary, 61,60,50 current, excitation 241,164 commutator, 61 voltage, excitation 25 conductivity, 61 coil, excited 108 field, conservative 126,55 core, 125,38 law, Faraday's 62 loss, core 251,131 coil, field 64 component, loss core 30 flux, 10 law, Coulomb's 142,63 series, Fourier 13 product, cross 130 frequency, 9 section, cross 142 fundamental. current 64 component, fundamental 66 transformation. 5 coordinates, cylindrical generator 159 ac, 92 connected, delta 94 current, ground 195 design, 94 wire, ground 18 differentiation. 15 product, dot 142 harmonic, 64 components, harmonic 62 E,I, 266 منرہنگ

39 Henry, 253 connected, parallel 178 hunting, 26 permeability, 26 relative, 46 loop, hysteresis 94 current, phase 23 difference, phase 71 transformation, impedance 69 in-phase, 94 voltage, phase 61,49,38 voltage, induced 21 phasor, pole 39 inductance. 140 non-salient, 43 Joule, 140 salient, 43 power, 22 lagging, 23 factor, power 126,62,31 laminations, 23 lagging, 22 leading, 23 leading, 79 inductance, leakage 23 angle, factor power 79 reactance, leakage 188 law, power-angle 94 current, line primary 94 voltage, line 55 side. 226 circuit, linear 97,96 rating, 98 load, 164 rectifier, 136 law, Lorentz 26 permeability, relative 102 equation, Lorenz 101 relay, 25 reluctance, 26 constant, magnetic 45 flux, magnetic residual 31 core, magnetic field magnetic 25 resistance, 164,49 rms, 33,11 intensity, flux magnetic 36 rotor, 104 coli, rotor 33 density. 78 leakage, 155 rpm, 64 current, magnetizing 47 saturation. 30 mmf, 1 scalar, 207,81 model, 251 excited, self 43 linkage, flux mutual 42 linkage, flux self 42 inductance, mutual 42 inductance, self 251 excited, separately 97 plate, name side 177 poles, non-salient 55 secondary, 26 law, Ohm's 59,23 phase, single 209 slip, 86 test, circuit open 229,176 rings, slip 3 orthonormal, ف بریگ

جانب, 55	92 connected, star
لچھا, 55	36 stator,
ار تباط بهاو, 39	127,104 coil, stator
اضافی	175 state, steady
اصاق	58 transformer, down step
زاویائی رفتار, 212	58 transformer, up step
اماليه, 39	11 density, surface
امالى برقى دباو, 38, 49, 61	130 synchronous,
اوہم میٹر, 237	184 inductance, synchronous
اکائیٰ سمتیہ, 2	176,155 speed, synchronous
ايمپيئر-چکر, 32	33 Tesla,
ایک مُرحلہ, 59	theorem
ایک، تین پُریاں, 62	229 transfer, power maximum
بر 136	226 theorem, Thevenin
بار, 190 بر قرار حيالو, 100, 175	92,59 phase, three
*	142,100 period, time
برتي بار, 10, 136	209,165 torque,
برقی د باو, 28, 137	178 out, pull
تبادله, 56, 66	transformer
محرك, 137	59 core, air
بيجاني, 185	59 communication,
يبان, 165 يك سمتى, 164	65 ideal,
يد ن, 104	175 state, transient
برتی رو, 28 بهنور نما, 126	2 vector, unit
تبادله, 66 تبادله, 66	75314
پيجان اُنگيز, 50	75 VA,
	2 vector,
برقي سکت, 59	137 volt,
برقی میدان, 10	75 volt-ampere,
شدت, 10, 28	137 voltage, 164 DC,
بش, 177	66 transformation,
بناوك, 86	oo transformation,
بنیادی جزو, 64, 142	43 Watt,
بوجھ. 98 بھنور نما	32 Weber,
بھنور نما یہ	winding
برقی رو, 62	140 distributed,
ضياغ, 62	147 factor, winding
بھنور نما برقی رو, 126	, ,
بھٹی, 114	ابتدائی

عنربنگ _____

مرکب, 253	بے بوجھ, 60
دور جڑی مرکب, 253	تاخیری زاوییه, 22
دور شکن, 178	تار کی برقی دباو, 94
دوری عرصه, 100, 142 تابیا 201	تار کی برقی رو, 94
د هرا, 161 رستا	تانبا, 28
رس اماليه, 79	تبادله رکاوٹ, 71
متعاملُه, 79	ر الأوت, 1 م شختی, 97
رىتا متعامليت, 217	ی, ۱۶ تدریجی تفرق, 113
ر فتار اضافی زاویائی, 212	ندر بی سرن, ۱۱۶ تعدد, 130
اصان راویان, 212 روغن, 62	تعقب, 178
رو ن, 62 ریلے, 101	تفرق, 18
ریاضی نمونه, 207,81	جزوی, 18
رثيا من وحدة 1,47,700 زاويه جزو طاقت, 23 زمين, 94	توانائی, 43
	كىل, 18
زييني برقى رو, 94	تكونى جوڙ, 92
زمینی تار, 94	تينِ مرحله, 59, 92
ساڪن حصه, 36	نانوی جانب, 55 مانوی جانب
ساكن لچها, 104, 127	جاول, 43 جزو
ىتارە نمأ جوڭر 92 سرك, 209	برو پیمیلاو, 147
سر ب 209 سرك چيله, 176, 229	جزو طاقت, 23
	تا <i>خير</i> ي, 23
سطحي ^{تک} مل, 181	ىي <i>ڭ</i> , 23
سطی کثافت, 11	جزير ا
سلسکه وار, 145 مسلسکه عالم 241	بدلتی رو, 159 چه پل
سمت کار, 241 . تاریم 164	جوڑ نکونی, 92
برقیاتی, 164 ماند می	نون, 92 ستاره نما, 92
ميكائى, 164 سىتى رفقار, 102	خطی
ن رفتار, 102 سمتیه, 2	برتی دور, 226
ييرد – عمودي اکائي, 3	خود ارتباط بهاو, 42
سکت, 96, 97	خود اماليه, 42
سير ابيت, 47	داخلی میجان
ضرب نور ۱۶۰	سلسله وار _{د 25} 3 د د 253
نقطه, 15	متوازی, 253

غر_انگ ____ __

توي, 131	ضرب صلیبی, 13
ميداني, 131	طاقت, 43
چیکے, 140	طاقت بالتقابل زاويه, 188
ييخپدار, 40	طولِ موج, 18
تم برقی دباو, 56	عارضی صورت, 175
گھومتا, 104	عمودی تراش که 9
محد د نگلی _د 5	رقبه, 9 غ. سمة 1.
تىكى, 5	غير سمتی, 1 غير سمتی
کار میسی, 4	غير معاصر, 178
محرک برتی دباو, 61	فورئير, 250
محور, 161	نوريئر نسلسل, 63, 142 فوريئر نسلسل, 63, 142
مخلوط عدد, 192	توريبر عن, 03, 142 في ط
مر حلى سمتىيە, 21, 186	فیراڈے قانون, 38, 125 قالب, 126
مرحلی فرق, 23	قالب, 126
	قالبي ضياع, 62
مر کب جزیئر, 253 مزاحمت, 25	جرد. 64
مسئلہ تعرف نے 22	قانون - " عندي عندي المارية المارية عندي المارية عندي المارية المارية المارية المارية المارية المارية المارية
تھونی, 226	او ټم, 26 ا په نه 126
زیادہ سے زیادہ طاقت کی منتقلی, 228	لورينز, 136 كال ما
مساوات لورینز, 102 مشتر که ار تباط اماله, 43	کولمب, 10 قدامت پیند میدان, 108
ستر کہ ارتباط امالہ, 45 مشتر کہ امالہ, 42	کداخت چند مشیدان, 108 قریب جڑی مر کب, 253
مسر که امالیه, 42 معالئه	تریب برق تر بب, 255 قطب
م محطح دور, 86	· ا بھرے, 140, 177
معاصر, 130	ي مموار, 140, 177
معاصر آماليه, 184	قوت مرورْ, 165, 209
معاصر رفتار, 155, 176	انتہائي, 178
مقناطيس	قوی البیگرانکس, 207, 241
برقی, 131	قوى كچيے, 251
خاتم شدت, 46	ليجا
چال کا دائرہ, 46	پ ساكن, 104
مقناطیسی بر قی رو _د 64	ئ ن, 104 ابتدائی, 55
مقناطیسی بہاو, 30	ابندان, 55 ثانوی, 55
ريتا, 78	ناده برقی دباو, 56
كثافت, 33	سمت, 133

(1
چِوڻي, 211	مقناطیسی د باو _د 30 مقاطیسی د باو
چکر فی منٹ _. 126	سمت, 141
کار بن بش, 177	مقناطیسی قالب, 31, 55
کار گزاری, 200 ت	مقناطیسی مستقل, 26, 166
کثافت برقی رو, 27	31,26, 32,
برق رود 12 سنن من طبس	مقناطيسي ميدان
کثافت مقناطیسی بہاو بقایا, 45	شدت, 11, 33
مبير دور, 38	مقناطیسی حال, 52
ر سرر بردون کپیسٹر, 194	موثر, 19, 49
گرم تار, 94	موثر قيت, 164
ر _ا باد. عرب گومتا حصه, 36	موسيقائی جزو, 64, 142
ھومتا حصہ, 30 گھ ہالجی 104	موصليت, 25
گھومتا کیجھا, 104	ميدانی کچھے, 251
^ہ م قدم, 69	واٹ, 43
هچکیاہٹ, 25, 30	وولٺ, 137 مريم
. په ۱۳۰ و ۶۵ و ۶	وولٹ-ایمپیئر, 75 د د
بيروني, 251	ويبر, 32 ع 20
خود, 251	و يېر - چکر _و 39 گرانسفار مر
لِچِھا, 61	
ہیجان انگیز	برقی دباو، میٹر, 59 بوجھ بردار, 68
برقي دباو, 61	بر جيم برترارو 60 خلائی قالب _د 59
ېرتی رو, 61	د باو بر مطاتار 58
ہیجانِ انگیز برقی رو, 60	د باو گھٹاتا. 58
هیجاتی برقی دباو, 185	ذرائع ابلاغُ, 59
يوكر مساوات, 21 سيمة	رو، میٹر, 59
یک سمتی رو مثنه مده	كائل, 65
مثین, 241 یک مرحله, 23	ئىلا. 33
یک سر حکه, دیر یک مرحله برقی دباو, 94	ځهند کې تار, 94 - تار کال ۱۵ سام
یک سر حکه بری دباد, 44 یک مر حکه برقی رو, 94	پتر ی, 31, 126 پتریاں, 62
یک سر سه برن رو, ۴۰	پريان, 20 پورا بوجھ, 197
	پیش زاوری _د , 22