Introduction to **Machine Learning and Data Mining**

(Học máy và Khai phá dữ liệu)

Khoat Than

School of Information and Communication Technology Hanoi University of Science and Technology

Content

- Introduction to Machine Learning & Data Mining
- Unsupervised learning
- Supervised learning
- Probabilistic modeling
- Practical advice

Why probabilistic modeling?

- Inferences from data are intrinsically uncertain.
 (suy diễn từ dữ liệu thường không chắc chắn)
- Probability theory: model uncertainty instead of ignoring it!
- Inference or prediction can be done by using probabilities.
- Applications: Machine Learning, Data Mining, Computer Vision, NLP, Bioinformatics, ...
- The goal of this lecture
 - Overview about probabilistic modeling
 - Key concepts
 - Application to classification & clustering

Data

- Let $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_M, \mathbf{y}_M)\}$ be a dataset with M instances.
 - □ Each \mathbf{x}_i is a vector in an *n*-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute.
 - □ y is the output (response), univariate
- Prediction: given data D, what can we say about y* at an unseen input x*?

- To make predictions, we need to make assumptions
- A model H (mô hình) encodes these assumptions, and often depends on some parameters θ, e.g.,

$$y = f(x|\theta)$$

Learning (estimation) is to find an $h \in H$ from a given **D**.

Uncertainty

- Uncertainty apprears in any step
 - Measurement uncertainty (D)
 - □ Parameter uncertainty (**0**)
 - Uncertainty regarding the correct model (H)
- Measurement uncertainty
 - Uncertainty can occur in both inputs and outputs.
- How to represent uncertainty?
- → Probability theory

The modeling process

Basics of Probability Theory

Basic concepts in Probability Theory

- Assume we do an experiment with random outcomes, e.g., tossing a die.
- Space S of outcomes: the set of all possible outcomes of an experiment
 - \Box Ex: S = {1, 2, 3, 4, 5, 6} for tossing a die
- Event E: a subset of the outcome space S.
 - \blacksquare Ex: E = {1} the event that the die appears 1.
 - \blacksquare Ex: E = {1, 3, 5} the event that the die appears odd.
- Space W of events: the space of all possible events
 - Ex: W contains all possible tosses
- Random variable: represents a random event, and has an associated probability of occurrence of that event.

Probability visualization

- Probability represents the likelihood/possibility that an event A occurs.
 - Denoted by P(A).
- P(A) is the proportion of the subspace that A is true.

Binary random variables

- A binary (boolean) random variable can receive only value of either True or False.
- Some axioms:
 - $0 \le P(A) \le 1$
 - P(true)= 1
 - □ P(false)= 0
 - P(A or B) = P(A) + P(B) P(A, B)
- Some consequences:
 - \neg P(not A) = P(\sim A) = 1 P(A)
 - \Box P(A)= P(A, B) + P(A, \sim B)

Multinomial random variables

• A multinomial random variable can receive one from K possible values of $\{v_1, v_2, ..., v_k\}$.

$$P(A = v_i, A = v_j) = 0 \text{ if } i \neq j$$

$$P\left(\bigcup_{n=1}^{m} (A = v_n)\right) = \sum_{n=1}^{m} P(A = v_n)$$

$$P\left(\bigcup_{n=1}^{k} (A = v_n)\right) = \sum_{n=1}^{k} P(A = v_n) = 1$$

Joint probability (1)

Joint probability:

The possibility of A and B that occur simutaneously.

P(A,B) is the proportion of the space in which both A and B are true.

Ex:

- A: I will play football tomorrow.
- B: John will not play football.
- P(A,B): the probability that
 I will but John will not play football tomorrow.

Joint probability (2)

- Denote S_A the space of A.
- \blacksquare Denote S_B the space of B.
- Denote S_{AB} the space of (A, B).

$$S_{AB} = S_A \times S_B$$

Then:

$$P(A,B) = |T_{AB}| / |S_{AB}|$$

- $_{\square}$ T_{AB} is the space in which both A and B are true.
- □ | X | denotes the volumn of the set X.

Conditional probability (1)

Conditional probability:

- P(A | B): the possibility that A happens given that B has already occurred.
- P(A|B) is the proportion of the space in which A occurs, knowing that B is true.

EX:

- A: I will play football tomorrow.
- □ B: it will not rain tomorrow.
- P(A | B): the probability that I will play football, provided that it will not rain tomorrow.
- What is different between joint and conditional probabilities?

Conditional probability (2)

We have:

$$P(A \mid B) = \frac{P(A,B)}{P(B)}$$

Some consequences:

$$P(A,B) = P(A | B) . P(B)$$

 $P(A | B) + P(\sim A | B) = 1$

$$\sum_{i=1}^{k} P(A = v_i \mid B) = 1$$

Conditional probability (3)

P(A | B, C) shows the probability of A given that B and C already has occurred.

EX:

- A: I will wander over the near river tomorrow morning.
- □ B: it will be very nice tomorrow morning.
- C: I will wake up early tomorrow morning.
- P(A | B, C): the probability that wander over the near river, provided that it will be very nice and I will wake up early tomorrow morning.

P(A|B,C)

Statistical independence (1)

- Two events A and B are called Statistically Independent if the the probability that A occurs does not change with respect to the occurrence of B.
 - \Box P(A|B) = P(A).
- **E**X:
 - A: I will play football tomorrow.
 - B: the pacific ocean contains many fishes.
 - P(A|B) = P(A): the fact that the pacific ocean contains many fishes does not affect my decision to play football tomorrow.

Statistical independence (2)

- Assume $P(A \mid B) = P(A)$, we have:
 - $P(\sim A \mid B) = P(\sim A)$
 - P(B | A) = P(B)
 - P(A,B) = P(A). P(B)
 - $P(\sim A,B) = P(\sim A). P(B)$
 - $P(A, \sim B) = P(A). P(\sim B)$
 - $P(\sim A, \sim B) = P(\sim A). P(\sim B).$

Conditional independence

- Two events A and C are called Conditionally Independent given B if P(A | B, C) = P(A | B).
- **E**X:
 - A: I will play football tomorrow.
 - B: the football match will happen in-house tomorrow.
 - C: it will not rain tomorrow.
 - \Box P(A|B,C) = P(A|B).

Some rules in probability theory

Chain rules:

- $\neg P(A,B) = P(A \mid B).P(B) = P(B \mid A).P(A) = P(B,A)$
- \Box P(A | B) = P(A,B)/P(B) = P(B | A).P(A)/P(B)
- P(A,B|C) = P(A,B,C)/P(C) = P(A|B,C).P(B,C)/P(C)= P(A|B,C).P(B|C).

Independence:

- P(A | B) = P(A)
 if A and B are statistically independent.
- P(A,B|C) = P(A|C).P(B|C)
 if A and B are statistically independent, conditioned on C.
- □ $P(A_1,...,A_n \mid C) = P(A_1 \mid C)...P(A_n \mid C)$ if $A_1,...,A_n$ are statistically independent, conditioned on C.

Product and sum rules

- Consider x and y are discrete random variables.
 Their domains are X and Y respectively
- Product rule:

$$P(x,y) = P(x|y)P(y)$$

Sum rule

$$P(x) = \sum_{y \in Y} P(x, y)$$

The summation (tổng) should be integration (tích phân) if y is continuous (tổng sẽ được thay bằng tích phân nếu biến y liên tục)

$$P(\boldsymbol{\theta}|\boldsymbol{D}) = \frac{P(\boldsymbol{D}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\boldsymbol{D})}$$

- \blacksquare P(θ): prior probability (xác suất tiên nghiệm) of the variable θ .
 - $_{\square}$ Our uncertainty about $oldsymbol{ heta}$ before observing data.
- \blacksquare P(**D**): prior probability that we can observe data **D**.
- $P(\mathbf{D} \mid \boldsymbol{\theta})$: probability (*likelihood*) that we can observe data \mathbf{D} provided that $\boldsymbol{\theta}$ is known.
- $P(\theta \mid \mathbf{D})$: posterior probability (xác suất hậu nghiệm) of θ if we already have observed data \mathbf{D} .
 - Bayesian approach bases on this quatity.

Probabilistic models

Model, inference, learning

Probabilistic model

- Our assumption on how the data were generated
 (giả thuyết của chúng ta về quá trình dữ liệu đã được sinh ra như thế nào)
- Example: how a sentence is generated?
 - We assume our brain does as follow:
 - First choose the topic of the sentence
 - Generate the words one-by-one to form the sentence
- How will TIM be drawn?

Probabilistic model

- A model sometimes consists of
 - Observed variable (e.g., x) which models the observation (data instance) (bién quan sát được)
 - Hidden variable which describes the hidden things (e.g., z, φ)
 (biến ẩn)

- ❖ Local variable (e.g., z, x) which associates with one data instance
- * Global variable (e.g., ϕ) which is shared across the data instances, and is the representative of the model
- Relations between the variables
- Each variable follows some probability distribution (mỗi biến tuân theo một phân bố xác suất nào đó)

Different types of models

 Probabilistic graphical model (PGM): Graph + Probability Theory (mô hình đồ thị xác suất)

- Each vertex represents a random variable, grey circle means "observed", white circle means "latent"
- Each edge represents the conditional dependence between two variables
- Directed graphical model: each edge has a direction
- Undirected graphical model: no direction in the edges
- Latent variable model: a PGM which has at least one latent variable
- Bayesian model: a PGM which has a prior distribution on its parameter

Ν

Univariate normal distribution

- We wish to model the height of a person
 - We had collected a dataset from 10 people in Hanoi:
 D={1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}
- Let x denote the random variable that represents the height of a person
- **Assumption:** x follows a Normal distribution (Gaussian) with the following *probability density function* (PDF)

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- \Box where $\{\mu, \sigma^2\}$ are the mean and variance
- Note:
 - $\neg \mathcal{N}(x|\mu,\sigma^2)$ represents the class of normal distributions
 - □ This class is parameterized by $\theta = (\mu, \sigma^2)$
- **Learning:** we need to know specific values of $\{\mu, \sigma^2\}$

Univariate Gaussian mixture model (1)

- We wish to model the height of a person
 - □ We had collected a dataset from 10 people in Hanoi + 10 people in Sydney **D**={1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62, 1.75, 1.80, 1.85, 1.65, 1.91, 1.78, 1.88, 1.79, 1.82, 1.81}
- Let x denote the random variable that represents the height
- If we use Normal distribution:
 - Blue curve models the height in Hanoi
 - Orange curve models the height in Sydney
 - Green curve models the whole D
- Univariate Gaussian does not model well the underlying distribution

Univariate Gaussian mixture model (2)

- Assumption: the data are generated from two different Gaussians, and each instance is generated from one of those two Gaussians.
 Generative process:
 - Pick the component index: $z \sim Multinomial(z|\phi)$
 - Generate sample: $x \sim Normal(x \mid \mu_z, \sigma_z^2)$
- This is Gaussian mixture model (GMM) (mô hình hỗn hợp Gauss)
 - \Box (μ_1, σ_1^2) represents the first Gaussian

 - $\phi \in [0,1]$ is the parameter of the Multinomial distribution, $P(z=1|\phi)=\phi=1-P(z=2|\phi)$
- Density function of the GMM:

$$\phi \mathcal{N}(x|\mu_1, \sigma_1^2) + (1 - \phi) \mathcal{N}(x|\mu_2, \sigma_2^2)$$

Note: "~" means "follows" (tuân theo)

GMM: Multivariate case

- Consider the case each **x** belongs to the *n*-dimensional space \mathbb{R}^n .
- GMM: we assume that the data are samples from K Gaussian distributions.
- Each instance **x** is generated from one of those K Gaussians by the following *generative process*:
 - Take the component index $z \sim Multinomial(z|\phi)$
 - Generate $x \sim Normal(x \mid \mu_z, \Sigma_z)$
- The density function is

$$p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\phi}) = \sum_{k=1}^{K} \phi_k \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

$$\Box \ \, \pmb{\phi} = (\phi_1, \dots, \phi_K) \text{ represents the weights of the Gaussians } \\ \sum\nolimits_{k=1}^K \phi_k = 1, \qquad \phi_j \geq 0, \qquad \forall j$$

Each multivariate Gaussian has density

$$\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right]$$

PGM: some well-known models

- Gaussian mixture model (GMM)
 - Modeling real-valued data
- Latent Dirichlet allocation (LDA)
 - Modeling the topics hidden in textual data
- Hidden Markov model (HMM)
 - Modeling time-series, i.e., data with time stamps or sequential nature
- Conditional Random Field (CRF)
 - for structured prediction
- Deep generative models
 - Modeling the hidden structures, generating artificial data

Probabilistic model: two problems

- **Inference** for a given instance x_n
 - * Recovery of the local variable (e.g., z_n), or
 - The distribution of the local variables (e.g., $P(z_n, x_n | \phi)$)
 - * Example: for GMM, we want to know z_n indicating which Gaussian did generate x_n

Learning (estimation)

- \bullet E.g., estimate $P(\phi, z_1, ..., z_n, x_1, ..., x_n | \alpha)$
- E.g., estimate $P(x_1, ..., x_n | \alpha)$
- E.g., estimate α
- Inference of local variables is often needed

Inference and Learning

MLE, MAP

Some inference approaches (1)

- Let D be the data, and h be a hypothesis
 - hypothesis: unknown parameter, hidden variables, ...
- Maximum Likelihood Estimation (MLE, cực đại hoá khả năng)

$$h^* = \arg\max_{h \in \mathbf{H}} P(D|h)$$

- Finds h* (in the hypothesis space H) that maximizes the likelihood of the data.
- Other words: MLE makes inference about the model that is most likely to have generated the data.
- Bayesian inference (suy diễn Bayes) considers the transformation of our prior knowledge P(h), through the data D, into the posterior knowledge P(h|D).
 - \square Remember the Bayes'rule: P(h|D) = P(D|h)P(h)/P(D). So

$$P(h|D) \propto P(D|h) * P(h)$$

(Posterior ∝ Likelihood * Prior)

Some inference approaches (2)

- In some cases, we may know the prior distribution of h.
- Maximum a Posterior Estimation (MAP, cực đại hoá hậu nghiệm)

$$h^* = \arg \max_{h \in \mathbf{H}} P(h|\mathbf{D}) = \arg \max_{h \in \mathbf{H}} P(\mathbf{D}|h) P(h) / P(\mathbf{D})$$
$$= \arg \max_{h \in \mathbf{H}} P(\mathbf{D}|h) P(h)$$

- Finds h* that maximizes the posterior probability of h.
- □ MAP finds a point (posterior mode), not a distribution → point estimation
- MLE is a special case of MAP, when using uniform prior over h.
- Full Bayesian inference tries to estimate the full posterior distribution $P(h|\mathbf{D})$, not just a point h^* .
- Note:
 - MLE, MAP, or full Bayesian approaches can be applied to both learning and inference.

MLE: Gaussian example (1)

- We wish to model the height of a person, using the dataset
 D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}
 - Let x be the random variable representing the height of a person.
 - □ Model: assume that x follows a Gaussian distribution with *unknown* mean μ and variance σ^2
 - \Box **Learning:** estimate (μ, σ) from the given data $\mathbf{D} = \{x_1, \dots, x_{10}\}$.
- Let $f(x|\mu,\sigma)$ be the density function of the Gaussian family, parameterized by (μ,σ) .
 - $\neg f(x_n|\mu,\sigma)$ is the likelihood of instance x_n .
 - $\neg f(\mathbf{D}|\mu,\sigma)$ is the likelihood function of **D**.
- Using MLE, we will find

$$(\mu_*, \sigma_*) = \arg \max_{\mu, \sigma} f(\mathbf{D}|\mu, \sigma)$$

MLE: Gaussian example (2)

- i.i.d assumption: we assume that the data are independent and identically distributed (dữ liệu được sinh ra một cách độc lập)
 - □ As a result, we have $P(\mathbf{D}|\mu,\sigma) = P(x_1,...,x_{10}|\mu,\sigma) = \prod_{i=1}^{10} P(x_i|\mu,\sigma)$
- Using this assumption, MLE will be

$$(\mu_*, \sigma_*) = \arg \max_{\mu, \sigma} \prod_{i=1}^{10} f(x_i | \mu, \sigma) = \arg \max_{\mu, \sigma} \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

$$= \arg \max_{\mu, \sigma} \log \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

$$= \arg \max_{\mu, \sigma} \sum_{i=1}^{10} \left(-\frac{1}{2\sigma^2} (x_i - \mu)^2 - \log \sqrt{2\pi\sigma^2} \right)$$

$$= \arg \max_{\mu, \sigma} \sum_{i=1}^{10} \left(-\frac{1}{2\sigma^2} (x_i - \mu)^2 - \log \sqrt{2\pi\sigma^2} \right)$$

• Using gradients (w.r.t μ , σ), we can find

$$\mu_* = \frac{1}{10} \sum_{i=1}^{10} x_i = 1.683, \qquad \sigma_*^2 = \frac{1}{10} \sum_{i=1}^{10} (x_i - \mu_*)^2 \approx 0.0015$$

MAP: Gaussian Naïve Bayes (1)

- Consider the classification problem
 - □ Training data $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$ with M instances, C classes.
 - □ Each \mathbf{x}_i is a vector in the *n*-dimensional space \mathbb{R}^n , e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$.
- Model assumption: we assume there are C different Gaussian distributions that generate the data in \mathbf{D} , and the data with label c are generated from a Gaussian distribution parameterized by (μ_c, Σ_c)
 - \square μ_c is the mean vector, Σ_c is the covariance matrix of size $n \times n$.
- Learning: we consider $P(\mu, \Sigma, c|D)$, where $(\mu, \Sigma) = (\mu_1, \Sigma_1, ..., \mu_C, \Sigma_C)$

$$(\boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*) \stackrel{\text{def}}{=} \arg \max_{\boldsymbol{\mu}, \boldsymbol{\Sigma}, c} P(\boldsymbol{\mu}, \boldsymbol{\Sigma}, c | \boldsymbol{D}) = \arg \max_{\boldsymbol{\mu}, \boldsymbol{\Sigma}, c} P(\boldsymbol{D} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, c) P(c)$$

Bayes' rule, removing $P(\mathbf{D})$, assuming uniform prior over μ , Σ

- □ We estimate P(c) to be the proportion of class c in \mathbf{D} : $P(c) = |\mathbf{D}_c|/|\mathbf{D}| \text{ where } \mathbf{D}_c \text{ contains all instances with label } c \text{ in } \mathbf{D}.$
- Since the C classes are independent, we can do learning for each class $(\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}) \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}} P(\boldsymbol{D}_{c} | \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}) P(c) = \arg\max_{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}} P(\boldsymbol{D}_{c} | \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$

MAP: Gaussian Naïve Bayes (2)

Assuming the samples are i.i.d, we have

$$(\mu_{c*}, \Sigma_{c*}) = \arg\max_{\mu_c, \Sigma_c} \prod_{x \in D_c} P(x|\mu_c, \Sigma_c) = \arg\max_{\mu_c, \Sigma_c} \sum_{x \in D_c} \log P(x|\mu_c, \Sigma_c)$$

$$= \arg\max_{\mu_c, \Sigma_c} \sum_{x \in D_c} \log \left[\frac{1}{\sqrt{\det(2\pi\Sigma_c)}} \exp\left(-\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c)\right) \right]$$

$$= \arg\max_{\mu_c, \Sigma_c} \sum_{x \in D_c} -\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c) - \log\sqrt{\det(2\pi\Sigma_c)}$$

■ Using gradients (w.r.t μ_c , Σ_c), we can arrive at

$$\mu_{c*} = \frac{1}{|D_c|} \sum_{x \in D_c} x, \qquad \Sigma_{c*} = \frac{1}{|D_c|} \sum_{x \in D_c} (x - \mu_{c*}) (x - \mu_{c*})^T$$

■ So, after training we obtain the $(\mu_{c*}, \Sigma_{c*}, P(c))$ for each class c.

MAP: Gaussian Naïve Bayes (3)

- Trained model: $(\mu_{c*}, \Sigma_{c*}, P(c))$ for each class c
- Prediction for a new instance z by finding the class label that has the highest posterior probability:

$$c_{z} = \arg \max_{c \in \{1,...,C\}} P(c|\mathbf{z}, \boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}) = \arg \max_{c \in \{1,...,C\}} P(\mathbf{z}|\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}, c) P(c)$$

$$= \arg \max_{c \in \{1,...,C\}} \log P(\mathbf{z}|\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}, c) + \log P(c)$$

$$= \arg \max_{c \in \{1,...,C\}} -\frac{1}{2} (\mathbf{z} - \boldsymbol{\mu}_{c*})^{T} \boldsymbol{\Sigma}_{c*}^{-1} (\mathbf{z} - \boldsymbol{\mu}_{c*}) - \log \sqrt{\det(2\pi \boldsymbol{\Sigma}_{c*})} + \log P(c)$$

If using MLE, we do not need to use/estimate the prior P(c).

MAP: Multinomial Naïve Bayes (1)

- Consider the text classification problem (dữ liệu có thuộc tính rời rạc)
 - □ Training data $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_M, \mathbf{y}_M)\}$ with M documents, C classes.
 - □ TF: each document \mathbf{x}_i is represented by a vector of V dimensions, e.g., $\mathbf{x}_i = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{in})^T$, each \mathbf{x}_{ij} is the *frequency* of term j in document \mathbf{x}_i
- Model assumption: we assume there are C different multinomial distributions that generate the data in \mathbf{D} , and the data with label c are generated from a multinomial distribution which is parameterized by $\boldsymbol{\theta}_c$ and has probability mass function

$$f(x_1, ..., x_V | \theta_{c1}, ..., \theta_{cV}) = \frac{\Gamma(\sum_{j=1}^V x_j + 1)}{\prod_{j=1}^V \Gamma(x_j + 1)} \prod_{k=1}^V \theta_{ck}^{x_k}$$

- $\theta_{cj} = P(x = j | \theta_{cj})$ is the probability that term $j \in \{1, ..., V\}$ appears, satisfying $\sum_{k=1}^{V} \theta_{ck} = 1$. Γ is the gamma function.
- Learning: we can do similarly with Gaussian Naïve Bayes to estimate $\theta_c = (\theta_{c1}, ..., \theta_{cV})$ and P(c) for each class c.

MAP: Multinomial Naïve Bayes (2)

- Trained model: $(\theta_{c*}, P(c))$ for each class c
- Prediction for a new instance $\mathbf{z} = (z_1, ..., z_V)^T$ by

$$c_{z} = \arg \max_{c \in \{1, \dots, C\}} P(c | \mathbf{z}, \boldsymbol{\theta}_{c*}) = \arg \max_{c \in \{1, \dots, C\}} P(\mathbf{z} | \boldsymbol{\theta}_{c*}, c) P(c)$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \frac{P(\mathbf{z} | \boldsymbol{\theta}_{c*}) + \log P(c)}{\prod_{j=1}^{V} \Gamma(z_{j} + 1)} \prod_{k=1}^{V} \theta_{ck*}^{z_{k}} + \log P(c)$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \frac{\Gamma(\sum_{j=1}^{V} z_{j} + 1)}{\prod_{j=1}^{V} \Gamma(z_{j} + 1)} \prod_{k=1}^{V} \theta_{ck*}^{z_{k}} + \log P(c)$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \prod_{k=1}^{V} \theta_{ck*}^{z_{k}} + \log P(c)$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \prod_{k=1}^{V} \frac{P(z_{k} | \theta_{ck*}) + \log P(c)}{\operatorname{MNB.2}}$$

- The label that gives the highest posterior probability
- Note: we implicitly assume that the attributes are conditionally independent, as shown in equations (MNB.1) and (MNB.2). (ta ngầm giả thuyết rằng các thuộc tính độc lập với nhau)

A revisit to GMM

- Consider learning GMM, with K Gaussian distributions, from the training data $\mathbf{D} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_M\}$.
- The density function is $p(x|\mu, \Sigma, \phi) = \sum_{k=1}^{K} \phi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$
 - $\phi = (\phi_1, ..., \phi_K)$ represents the weights of the Gaussians
 - □ Each multivariate Gaussian has density $\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma}_k)}} \exp\left[-\frac{1}{2}(\boldsymbol{x} \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} \boldsymbol{\mu}_k)\right]$
- MLE tries to maximize the following log-likelihood function

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\phi}) = \sum_{i=1}^{M} \log \sum_{k=1}^{K} \phi_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- We cannot find a closed-form solution!
 - Approximation and iterative algorithms are needed.

Difficult situations

- No closed-form solution for the learning/inference problem?
 (không tìm được ngay công thức nghiệm)
 - The examples before are easy cases, as we can find solutions in a closed form by using gradient.
 - Many models (e.g., GMM) do not admit a closed-form solution.
- No explicit expression of the density/mass function?
 (không có công thức tường minh để tính toán)
- Intractable inference (bài toán suy diễn không khả thi)
 - Inference in many probabilistic models is NP-hard.
 [Sontag & Roy, 2011; Tosh & Dasgupta, 2019]

Reference

- Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for statisticians." Journal of the American Statistical Association 112, no. 518 (2017): 859-877.
- Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. "Weight Uncertainty in Neural Network." In International Conference on Machine Learning (ICML), pp. 1613-1622. 2015.
- Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." In *International Conference on Machine Learning*, pp. 1050-1059. 2016.
- Ghahramani, Zoubin. "Probabilistic machine learning and artificial intelligence." Nature 521, no. 7553 (2015): 452-459.
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." In International Conference on Learning Representations (ICLR), 2014.
- Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260.
- Tosh, Christopher, and Sanjoy Dasgupta. "The Relative Complexity of Maximum Likelihood Estimation, MAP Estimation, and Sampling." In Proceedings of the 32nd Conference on Learning Theory, in PMLR 99:2993-3035, 2019.
- Sontag, David, and Daniel Roy, "Complexity of inference in latent dirichlet allocation" in: Proceedings of Advances in Neural Information Processing System, 2011.