材料力学3:せん断力、曲げモーメント機械工学概論第5回

クイズ:曲げ変形

下図のように力を加えると、ど のように変形するでしょう?

クイズ:曲げ変形 正解

曲げモーメント=作用力×モーメントアーム

大きな曲げモーメント **→**大きく曲がる

小さな曲げモーメント **→**小さく曲がる

曲げモーメント図

曲げモーメントの符号(正と負)

※書籍により定義は異なる。

復習:断面2次モーメントと断面係数

断面形状	断面2次モーメント <i>I</i> [m ⁴]	断面係数 <i>Z</i> [m³]
	$rac{bh^3}{12}$	$\frac{bh^2}{6}$
- d	$\frac{\pi d^4}{64}$	$\frac{\pi d^3}{32}$
	$\frac{\pi(d_2^{\ 4}-d_1^{\ 4})}{64}$	$\frac{\pi(d_2^{\ 4}-d_1^{\ 4})}{32d_2}$

幅dx,高さdyの微小な矩形について 断面全体で積分する。

$$I = \int_A y^2 dA$$
 $\frac{1}{\rho} = \frac{M}{EI} \quad \rho$: 曲率半径, $\frac{1}{\rho}$: 曲率

断面係数Z

中立面から最も遠い 距離を e_1 (凸側), e_2 (凹側)とすると、

$$Z_1 = \frac{I}{e_1}, Z_2 = \frac{I}{e_2}$$

$$Z_1 = \frac{I}{e_1}, Z_2 = \frac{I}{e_2}$$
 $\sigma_{max} = \frac{M}{I} e_1, \sigma_{min} = \frac{M}{I} e_2$ となる。

固定端と自由端

固定端 壁に埋め込まれている

両端支持梁 (単純支持梁) ■

自由端 支持台に乗った状態で 自由に回転する

※梁:建物の水平方向に架けられる材のこと。

力の釣り合い

静止物体に加わる力は釣り合っている。

モーメントの釣り合い

静止物体に加わるモーメントは,各場所で釣り合っている。

黒点位置での曲げ モーメント **M** = - **F** × **L**

黒点位置での曲げモーメント $M+F \times (L-x) = -F \times x$

両端支持梁における曲げモーメント

3つの力それぞれがモーメントを発生する。

左側から作用する

モーメント

 $F/2 \times x' = -F \times x'' + F/2 \times x''' + F/2 \times x'''' + F/2 \times x''' + F/2 \times x'' + F/2$

両端支持梁における曲げモーメント

3つの力それぞれが曲げモーメントを発生する。

左側から作用する 右側から作用する モーメント $F/2 \times x' - F \times x'' = F/2 \times x''$ モーメント

両端支持梁の曲げモーメント図

曲げによる破壊

せん断

物体のある断面に平行に、互いに反対向きの一対の力がかかることで、断面がすべる作用

せん断力の符号 (正と負)

※書籍により定義は異なる。

両端支持梁のせん断力図

(例題1)

手順

- 1. 支持台からの力(Ra, Rb)を求める。
 - 1.1 力のつり合いの式
 - 1.2 モーメントのつり合いの式 二つを連立する。
- 2. 支持台の力から、せん断力と曲げモーメントを求める。

$$Ra+Rb=2000$$
 $Ra=1400$
 $2000\times0.6=Rb\times2.0$ \Rightarrow $Rb=600$

(例題2)

手順

- 1. 支持台からの力(Ra, Rb)を求める。
 - 1.1 力のつり合いの式
 - **1.2** モーメントのつり合いの式 二つを連立する。
- 2. 支持台の力から、せん断力と曲げモーメントを求める。

Ra = 2300

$$2000 \times 0.2 + 2000 \times 1.5 = \text{Rb} \times 2.0 \Rightarrow \text{Rb} = 1700$$

Ra + Rb =
$$2000+4000$$

 $2000 \times 0.5 + 4000 \times 1.5 = Rb \times 2$

$$Ra = 2500$$

$$Rb = 3500$$

等分布荷重 200 N/m 1.0 m $\mathbf{x} \, d\mathbf{x}$ 左端からの距離x,幅dxの Rb Ra 微小領域(黄色四角形) にかかる荷重は200dx

Ra + Rb = 200
Rb × 1.0
=
$$\int_0^{1.0} 200x dx = [100x^2]_0^{1.0} = 100$$

上2式を連立して、 Ra=100 (N), Rb=100 (N)

この荷重による左端における曲げモーメントは、200xdx

等分布荷重 200 N/m

左端からの距離xの点における曲げモーメントM(x)は、

M(x)

$$= 100x - \int_0^x 200t dt$$

$$= 100x - [100t^2]_0^x$$

$$= 100x - 100x^2$$

$$=-100(x-0.5)^2+25$$

左端からの距離x-t,幅dtの 微小領域(黄色四角形) にかかる荷重は200dt

左端からの距離x の点における この荷重により生じる曲げモーメントは 200tdt

等分布荷重 200N/m

左端よりXの点における せん断力Fは、

F(X)

= 100 - 200x

片持ち梁のせん断力図

問題 右図のように力を加えたときは?

問題 右図のように力を加えたときは?

曲げモーメント図

壁からの モーメント M [Nm]

曲げモーメントの符号(正と負)

※書籍により定義は異なる。

 $M = F \times x$

問題 右図のように力を加えたときは?

問題 右図のように力を加えたときは?

疲労

物体が力学的応力を継続的に、あるいは繰り返し受けた場合に その物体の機械材料としての強度が低下する現象。

• 振動が疲労破壊の原因となりうることに注意が必要。

自転車のフレーム の破損例

座屈

大きな力

↓

応力集中

物体内部の応力分布は一様ではなく、 孔や溝といった形状が変化する部分 では応力分布が乱れて、局所的に応 力が増大する。

円孔の応力集中

