Newtonian limits and the evolution of inhomogeneous universes

Calum Robertson

School of Mathematical Sciences, Monash University

Australia New Zealand Mathematics Convention, 2014

Outline

- Gravity on different scales
 - General Relativity & Newtonian Gravity
 - Relevance to cosmology
- Constructing inhomogeneous solutions
 - Background and foreground
 - Newtonian limits

Schematic of regimes

Gravitational field equations

Fundamental variable in GR is the metric \mathbf{g} , components g_{ij} .

Covariant derivative (Levi-Civita) operator ∇ is obtained from g.

GR's equations ("EFEs")

$$G^{ij} = \frac{8\pi G}{c^4} T^{ij} - \Lambda g^{ij}$$
 and $\nabla_i T^{ij} = 0$,

where $\nabla_i G^{ij} = 0$ and $\nabla_i g^{ij} = 0$ hold automatically. Given T^{ij} , solutions determined up to choice of coordinates/basis

Newtonian gravity (for comparison)

$$\triangle \Phi = (4\pi G) \rho$$

where \triangle is the (flat) spatial Laplacian operator. Linearised GR against a flat background recovers th

Gravitational field equations

Fundamental variable in GR is the metric \mathbf{g} , components g_{ij} .

Covariant derivative (Levi-Civita) operator ∇ is obtained from g.

GR's equations ("EFEs")

$$G^{ij} = \frac{8\pi G}{c^4} T^{ij} - \Lambda g^{ij}$$
 and $\nabla_i T^{ij} = 0$,

where $\nabla_i G^{ij} = 0$ and $\nabla_i g^{ij} = 0$ hold automatically. Given T^{ij} , solutions determined up to choice of coordinates/basis.

Newtonian gravity (for comparison)

$$\triangle \Phi = (4\pi G) \rho$$

where \triangle is the (flat) spatial Laplacian operator. Linearised GR against a flat background recovers this.

Gravitational field equations

Fundamental variable in GR is the metric \mathbf{g} , components g_{ij} .

Covariant derivative (Levi-Civita) operator ∇ is obtained from \mathbf{g} .

GR's equations ("EFEs")

$$G^{ij} = \frac{8\pi G}{c^4} T^{ij} - \Lambda g^{ij}$$
 and $\nabla_i T^{ij} = 0$,

where $\nabla_i G^{ij} = 0$ and $\nabla_i g^{ij} = 0$ hold automatically. Given T^{ij} , solutions determined up to choice of coordinates/basis.

Newtonian gravity (for comparison)

$$\triangle \Phi = (4\pi G) \rho$$

where \triangle is the (flat) spatial Laplacian operator. Linearised GR against a flat background recovers this.

Gravitational constraints: partial redundancy of Bianchi identity and EFEs

- Close look at EFEs: $G^{0j} = T^{0j}$ equations do not evolve second order initial data they constrain it instead.
- Constraints automatically propagate!

- Determine which member (or subclass) of g's isometry class we are looking at.
- Make evolution equations easier to use

Gravitational constraints: partial redundancy of Bianchi identity and EFEs

- Close look at EFEs: $G^{0j} = T^{0j}$ equations do not evolve second order initial data they constrain it instead.
- Constraints automatically propagate!

- Determine which member (or subclass) of g's isometry class we are looking at.
- Make evolution equations easier to use.

Gravitational constraints: partial redundancy of Bianchi identity and EFEs

- Close look at EFEs: $G^{0j} = T^{0j}$ equations do not evolve second order initial data they constrain it instead.
- Constraints automatically propagate!

- Determine which member (or subclass) of g's isometry classs we are looking at.
- Make evolution equations easier to use.

Gravitational constraints: partial redundancy of Bianchi identity and EFEs

- Close look at EFEs: $G^{0j} = T^{0j}$ equations do not evolve second order initial data they constrain it instead.
- Constraints automatically propagate!

- Determine which member (or subclass) of g's isometry class we are looking at.
- Make evolution equations easier to use.

Gravitational constraints: partial redundancy of Bianchi identity and EFEs

- Close look at EFEs: $G^{0j} = T^{0j}$ equations do not evolve second order initial data they constrain it instead.
- Constraints automatically propagate!

- Determine which member (or subclass) of **g**'s isometry class we are looking at.
- Make evolution equations easier to use.

Gravitational constraints: partial redundancy of Bianchi identity and EFEs

- Close look at EFEs: $G^{0j} = T^{0j}$ equations do not evolve second order initial data they constrain it instead.
- Constraints automatically propagate!

- Determine which member (or subclass) of **g**'s isometry class we are looking at.
- Make evolution equations easier to use.

- Newtonian gravity still easy to use without symmetry
 → use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate "Post-Newtonian" corrections to approximate relativity
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

- Newtonian gravity still easy to use without symmetry
 - \rightarrow use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate "Post-Newtonian" corrections to approximate relativity
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

- Newtonian gravity still easy to use without symmetry
 - \rightarrow use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate Post-Newtonian corrections to approximate relativity
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

- Newtonian gravity still easy to use without symmetry
 - \rightarrow use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate "Post-Newtonian" corrections to approximate
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

- Newtonian gravity still easy to use without symmetry
 - \rightarrow use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate "Post-Newtonian" corrections to approximate
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

- Newtonian gravity still easy to use without symmetry
 - \rightarrow use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate "Post-Newtonian" corrections to approximate relativity
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

- Newtonian gravity still easy to use without symmetry
 - \rightarrow use this to build inhomogeneous model.
- Inhomogeneous structure formation
 - Millennium (2005-2010, dark matter only)
 - Illustris (current, baryonic matter included)
- Incorporate "Post-Newtonian" corrections to approximate relativity
- Obtain these by limiting GR into Newtonian physics (base: FLRW exact solution)

• Stress-energy tensor for perfect Euler fluid, equation of state $p = f(\rho)$ controls speed of sound:

$$T^{ij} = (\rho + f(\rho)) v^{i} v^{j} + (f(\rho) - \Lambda) g^{ij}$$

Variables of Einstein-Euler system:

$$\{g,v,\rho\}$$

• Newtonian limit exists \iff family of solns limit to Poisson-Euler equations as $\varepsilon \searrow 0$, where $\varepsilon \sim \frac{v_T}{c}$:

$$\{{f g}_{arepsilon},{f v}_{arepsilon},{f
ho}_{arepsilon}\}$$

ullet FLRW has "cosmic time" o Newtonian universal time.

• Stress-energy tensor for perfect Euler fluid, equation of state $p = f(\rho)$ controls speed of sound:

$$T^{ij} = (\rho + f(\rho)) v^{i} v^{j} + (f(\rho) - \Lambda) g^{ij}$$

Variables of Einstein-Euler system:

$$\{\mathsf{g},\mathsf{v},
ho\}$$

• Newtonian limit exists \iff family of solns limit to Poisson-Euler equations as $\varepsilon \searrow 0$, where $\varepsilon \sim \frac{v_T}{c}$:

$$\{{f g}_{arepsilon},{f v}_{arepsilon},{f
ho}_{arepsilon}\}$$

ullet FLRW has "cosmic time" o Newtonian universal time.

• Stress-energy tensor for perfect Euler fluid, equation of state $p = f(\rho)$ controls speed of sound:

$$T^{ij} = (\rho + f(\rho)) v^{i} v^{j} + (f(\rho) - \Lambda) g^{ij}$$

Variables of Einstein-Euler system:

$$\{\mathsf{g},\mathsf{v},
ho\}$$

• Newtonian limit exists \iff family of solns limit to Poisson-Euler equations as $\varepsilon \searrow 0$, where $\varepsilon \sim \frac{v_T}{c}$:

$$\{\mathsf{g}_{arepsilon},\mathsf{v}_{arepsilon},
ho_{arepsilon}\}$$

FLRW has "cosmic time" → Newtonian universal time.

• Stress-energy tensor for perfect Euler fluid, equation of state $p = f(\rho)$ controls speed of sound:

$$T^{ij} = (\rho + f(\rho)) v^{i} v^{j} + (f(\rho) - \Lambda) g^{ij}$$

Variables of Einstein-Euler system:

$$\{\mathsf{g},\mathsf{v},
ho\}$$

• Newtonian limit exists \iff family of solns limit to Poisson-Euler equations as $\varepsilon \searrow 0$, where $\varepsilon \sim \frac{v_T}{c}$:

$$\{\mathsf{g}_{arepsilon},\mathsf{v}_{arepsilon},
ho_{arepsilon}\}$$

ullet FLRW has "cosmic time" o Newtonian universal time.

Conformal transformations & perturbations

• "Background" h and its connection \bar{D} used as reference point for:

$$\mathbf{g}^{ij} = \Omega^2 \bar{\mathbf{g}}^{ij} = \Omega^2 \left(\mathbf{h}^{ij} + \varepsilon \mathbf{u}^{ij} \right)$$

• Main grav variable: "foreground" u. Auxiliary variable Ω .

Gravity

- Generalised harmonic coordinate conditions: $\bar{g}^{pq}\bar{\nabla}_p\bar{\nabla}_a x^k = \beta^k$
- Effectively, β constrains relationship between full connection ∇ , and \vec{D} .
- Dynamics: $G_{\mathbf{u}}^{ij} = \bar{G}^{ij} G_{\mathbf{k}}^{ij}$

Matter

- $\begin{array}{ccc} \bullet \ \bar{\mathcal{T}}^{ij} & \text{now depends} \\ \text{on} \ \left\{ \bar{\mathbf{g}}, \bar{\mathbf{v}}, \bar{\rho}, \Omega, \bar{\nabla}\Omega, \bar{\nabla}^2\Omega \right\} \end{array}$
- $\bar{p} = \varepsilon^2 f(\bar{p})$ keeps sound non-relativistic
- $\bar{\nabla}^2 \Omega$ conformal evolution, free to specify

Conformal transformations & perturbations

• "Background" h and its connection \bar{D} used as reference point for:

$$\mathbf{g}^{ij} = \Omega^2 \bar{\mathbf{g}}^{ij} = \Omega^2 \left(\mathbf{h}^{ij} + \varepsilon \mathbf{u}^{ij} \right)$$

• Main grav variable: "foreground" \mathbf{u} . Auxiliary variable Ω .

Gravity

- Generalised harmonic coordinate conditions: $\bar{g}^{pq}\bar{\nabla}_p\bar{\nabla}_qx^k=\beta^k$
- Effectively, β constrains relationship between full connection $\bar{\nabla}$, and \bar{D} .
- Dynamics: $G_{\mathbf{u}}^{ij} = \bar{G}^{ij} G_{\mathbf{h}}^{ij}$

Matter

- $\begin{array}{ccc} \bullet \ \bar{\mathcal{T}}^{ij} & \text{now depends} \\ \text{on} \ \left\{ \bar{\mathbf{g}}, \bar{\mathbf{v}}, \bar{\rho}, \Omega, \bar{\nabla}\Omega, \bar{\nabla}^2\Omega \right\} \end{array}$
- $\bar{p} = \varepsilon^2 f(\bar{p})$ keeps sound non-relativistic
- $\bar{\nabla}^2\Omega$ conformal evolution, free to specify

Conformal transformations & perturbations

• "Background" h and its connection \bar{D} used as reference point for:

$$\mathbf{g}^{ij} = \Omega^2 \bar{\mathbf{g}}^{ij} = \Omega^2 \left(\mathbf{h}^{ij} + \varepsilon \mathbf{u}^{ij} \right)$$

• Main grav variable: "foreground" u. Auxiliary variable Ω .

Gravity

- Generalised harmonic coordinate conditions: $\bar{g}^{pq}\bar{\nabla}_p\bar{\nabla}_qx^k=\beta^k$
- Effectively, β constrains relationship between full connection $\bar{\nabla}$, and \bar{D} .
- Dynamics: $G_{\mathbf{u}}^{ij} = \bar{G}^{ij} G_{\mathbf{h}}^{ij}$

Matter

- $\bar{\mathcal{T}}^{ij}$ now depends on $\left\{ \bar{\mathbf{g}}, \bar{\mathbf{v}}, \bar{\rho}, \Omega, \bar{\nabla}\Omega, \bar{\nabla}^2\Omega \right\}$
- $\bar{p} = \varepsilon^2 f(\bar{p})$ keeps sound non-relativistic
- $\bar{\nabla}^2\Omega$ conformal evolution, free to specify

- Specify h including coordinate representation \to gauge constraints transfer coordinate choice to \bar{g}
- Initial data: $\{\mathbf{u}(0), D_0\mathbf{u}(0), \bar{\mathbf{v}}(0), \bar{\rho}(0), \Omega(0), \bar{\nabla}_0\Omega(0)\}.$
- Partially constrained by $\bar{G}^{0j} = \bar{T}^{0j}$, $\beta^k = g^{ab} \left(\Gamma(\bar{\mathbf{g}})_{ab}^k \Gamma(\mathbf{h})_{ab}^k \right)$.
 - Gauge condition automatically propagates!
- Choice of $\{\beta,\Omega\}$: what makes sense for our $\{\mathbf{h},\bar{\mathbf{v}}(0),\bar{\rho}(0)\}$?

- Specify h including coordinate representation \to gauge constraints transfer coordinate choice to \bar{g}
- Initial data: $\{\mathbf{u}(0), D_0\mathbf{u}(0), \bar{\mathbf{v}}(0), \bar{\rho}(0), \Omega(0), \bar{\nabla}_0\Omega(0)\}.$
- Partially constrained by $\bar{G}^{0j} = \bar{T}^{0j}$, $\beta^k = g^{ab} \left(\Gamma(\bar{\mathbf{g}})_{ab}^k \Gamma(\mathbf{h})_{ab}^k \right)$.
 - Gauge condition automatically propagates!
- Choice of $\{\beta,\Omega\}$: what makes sense for our $\{\mathbf{h},\bar{\mathbf{v}}(0),\bar{\rho}(0)\}$?

- Specify h including coordinate representation \to gauge constraints transfer coordinate choice to \bar{g}
- Initial data: $\{\mathbf{u}(0), D_0\mathbf{u}(0), \bar{\mathbf{v}}(0), \bar{\rho}(0), \Omega(0), \bar{\nabla}_0\Omega(0)\}.$
- Partially constrained by $\bar{G}^{0j} = \bar{T}^{0j}$, $\beta^k = g^{ab} \left(\Gamma(\bar{\mathbf{g}})_{ab}^k \Gamma(\mathbf{h})_{ab}^k \right)$.
 - Gauge condition automatically propagates!
- Choice of $\{\beta,\Omega\}$: what makes sense for our $\{\mathbf{h},\bar{\mathbf{v}}(0),\bar{\rho}(0)\}$?

- Specify h including coordinate representation \to gauge constraints transfer coordinate choice to \bar{g}
- Initial data: $\{\mathbf{u}(0), D_0\mathbf{u}(0), \bar{\mathbf{v}}(0), \bar{\rho}(0), \Omega(0), \bar{\nabla}_0\Omega(0)\}.$
- Partially constrained by $\bar{G}^{0j} = \bar{T}^{0j}$, $\beta^k = g^{ab} \left(\Gamma(\bar{\mathbf{g}})_{ab}^k \Gamma(\mathbf{h})_{ab}^k \right)$.
 - Gauge condition automatically propagates!
- Choice of $\{\beta,\Omega\}$: what makes sense for our $\{\mathbf{h},\bar{\mathbf{v}}(0),\bar{\rho}(0)\}$?

- Specify h including coordinate representation \to gauge constraints transfer coordinate choice to \bar{g}
- Initial data: $\{\mathbf{u}(0), D_0\mathbf{u}(0), \bar{\mathbf{v}}(0), \bar{\rho}(0), \Omega(0), \bar{\nabla}_0\Omega(0)\}.$
- Partially constrained by $\bar{G}^{0j} = \bar{T}^{0j}$, $\beta^k = g^{ab} \left(\Gamma(\bar{\mathbf{g}})_{ab}^k \Gamma(\mathbf{h})_{ab}^k \right)$.
 - Gauge condition automatically propagates!
- Choice of $\{\beta,\Omega\}$: what makes sense for our $\{\mathbf{h},\bar{\mathbf{v}}(0),\bar{\rho}(0)\}$?

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon u \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- Classical linearised gravity recoverable from $\bar{G}^{ij} = \bar{T}^{ij}$, when:
 - $h^{ij} = n^{ij}$
 - \circ B=0
 - ullet $\mathcal{O}(1)$ part of $T^{ar{y}}$ vanishes

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon \mathbf{u} \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- Classical linearised gravity recoverable from $\bar{G}^{ij} = \bar{T}^{ij}$, when:
 - $ah^{ij}=n^{ij}$
 - \circ $\beta = 0$
 - ullet $\mathcal{O}(1)$ part of T^{ij} vanishes

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon \mathbf{u} \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- Classical linearised gravity recoverable from $\bar{G}^{ij}=\bar{T}^{ij}$, when:
 - $\bullet h^{ij} = n^{ij}$
 - \circ $\beta = 0$
 - ullet $\mathcal{O}(1)$ part of T^y vanishes

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon \mathbf{u} \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- ullet Classical linearised gravity recoverable from $ar{G}^{ij}=ar{\mathcal{T}}^{ij}$, when:
 - $h^{ij} = n^{ij}$
 - $\beta = 0$
 - ullet $\mathcal{O}(1)$ part of $ar{\mathcal{T}}^{ij}$ vanishes

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon \mathbf{u} \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- ullet Classical linearised gravity recoverable from $ar{G}^{ij}=ar{\mathcal{T}}^{ij}$, when:
 - $h^{ij} = \eta^{ij}$
 - $\beta = 0$
 - ullet $\mathcal{O}(1)$ part of $ar{\mathcal{T}}^{ij}$ vanishes

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon \mathbf{u} \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- ullet Classical linearised gravity recoverable from $ar{G}^{ij}=ar{\mathcal{T}}^{ij}$, when:
 - $h^{ij} = \eta^{ij}$
 - $\beta = 0$
 - ullet $\mathcal{O}(1)$ part of $ar{\mathcal{T}}^{ij}$ vanishes

- Not so much the $\varepsilon \searrow 0$ limit as it is the $\varepsilon \mathbf{u} \searrow 0$ limit.
- Geometry should approach background geometry
 - Light cone structure approaches that of background
- ullet Classical linearised gravity recoverable from $ar{G}^{ij}=ar{\mathcal{T}}^{ij}$, when:
 - $h^{ij} = \eta^{ij}$
 - $\beta = 0$
 - ullet $\mathcal{O}(1)$ part of $ar{\mathcal{T}}^{ij}$ vanishes

- Background coords: $x^0 = \bar{x}^0$, $x' = \frac{1}{\varepsilon}\bar{x}'$
- ullet Spatial derivatives pick up negative power of arepsilon
- ullet Variables have $oldsymbol{arepsilon}$ -expansions: iterative solution
- Before applying scaling (Ω incorporates trace reversal):

$$\begin{split} &\varepsilon\left(\bar{g}^{kl}\bar{\partial}_{k}\bar{\partial}_{l}\bar{u}^{ij}+\bar{g}^{ij}\bar{\partial}_{k}\bar{\beta}^{k}-2\bar{g}^{k(i}\bar{\partial}_{k}\bar{\beta}^{j)}\right)+\varepsilon^{2}Q\left(\partial\mathbf{u}\right)\\ &=\tau^{ij}-\frac{2}{\Omega}\left(\bar{g}^{ik}\bar{g}^{jl}-\bar{g}^{ij}\bar{g}^{kl}\right)\bar{\nabla}_{k}\bar{\nabla}_{l}\Omega-\frac{3}{\Omega^{2}}\bar{g}^{ij}\bar{g}^{kl}\left(\bar{\nabla}_{k}\Omega\right)\left(\bar{\nabla}_{l}\Omega\right) \end{split}$$

• "xPert" (in "xAct"): useful for general background, any order of ε

- Background coords: $x^0 = \bar{x}^0$, $x' = \frac{1}{\varepsilon} \bar{x}'$
- ullet Spatial derivatives pick up negative power of arepsilon
- ullet Variables have $oldsymbol{arepsilon}$ -expansions: iterative solution
- Before applying scaling (Ω incorporates trace reversal):

$$\varepsilon \left(\bar{g}^{kl} \bar{\partial}_{k} \bar{\partial}_{l} \bar{u}^{ij} + \bar{g}^{ij} \bar{\partial}_{k} \bar{\beta}^{k} - 2 \bar{g}^{k(i} \bar{\partial}_{k} \bar{\beta}^{j)} \right) + \varepsilon^{2} Q \left(\partial \mathbf{u} \right) \\
= \tau^{ij} - \frac{2}{\Omega} \left(\bar{g}^{ik} \bar{g}^{jl} - \bar{g}^{ij} \bar{g}^{kl} \right) \bar{\nabla}_{k} \bar{\nabla}_{l} \Omega - \frac{3}{\Omega^{2}} \bar{g}^{ij} \bar{g}^{kl} \left(\bar{\nabla}_{k} \Omega \right) \left(\bar{\nabla}_{l} \Omega \right) \right)$$

• "xPert" (in "xAct"): useful for general background, any order of &

- Background coords: $x^0 = \bar{x}^0$, $x' = \frac{1}{\varepsilon} \bar{x}'$
- ullet Spatial derivatives pick up negative power of arepsilon
- ullet Variables have $\, {f arepsilon}$ -expansions: iterative solution
- Before applying scaling (Ω incorporates trace reversal):

$$\varepsilon \left(\bar{g}^{kl} \bar{\partial}_{k} \bar{\partial}_{l} \bar{u}^{ij} + \bar{g}^{ij} \bar{\partial}_{k} \bar{\beta}^{k} - 2 \bar{g}^{k(i} \bar{\partial}_{k} \bar{\beta}^{j)} \right) + \varepsilon^{2} Q (\partial \mathbf{u})
= \tau^{ij} - \frac{2}{\Omega} \left(\bar{g}^{ik} \bar{g}^{jl} - \bar{g}^{ij} \bar{g}^{kl} \right) \bar{\nabla}_{k} \bar{\nabla}_{l} \Omega - \frac{3}{\Omega^{2}} \bar{g}^{ij} \bar{g}^{kl} \left(\bar{\nabla}_{k} \Omega \right) (\bar{\nabla}_{l} \Omega)$$

• "xPert" (in "xAct"): useful for general background, any order of ε

- Background coords: $x^0 = \bar{x}^0$, $x^I = \frac{1}{\varepsilon} \bar{x}^I$
- ullet Spatial derivatives pick up negative power of arepsilon
- ullet Variables have $oldsymbol{arepsilon}$ -expansions: iterative solution
- ullet Before applying scaling (Ω incorporates trace reversal):

$$\begin{split} & \varepsilon \left(\bar{g}^{kl} \bar{\partial}_k \bar{\partial}_l \bar{u}^{ij} + \bar{g}^{ij} \bar{\partial}_k \bar{\beta}^k - 2 \bar{g}^{k(i} \bar{\partial}_k \bar{\beta}^{j)} \right) + \varepsilon^2 Q \left(\partial \mathbf{u} \right) \\ & = \tau^{ij} - \frac{2}{\Omega} \left(\bar{g}^{ik} \bar{g}^{jl} - \bar{g}^{ij} \bar{g}^{kl} \right) \bar{\nabla}_k \bar{\nabla}_l \Omega - \frac{3}{\Omega^2} \bar{g}^{ij} \bar{g}^{kl} \left(\bar{\nabla}_k \Omega \right) \left(\bar{\nabla}_l \Omega \right) \end{split}$$

• "xPert" (in "xAct"): useful for general background, any order of ε

- Background coords: $x^0 = \bar{x}^0$, $x' = \frac{1}{\varepsilon} \bar{x}'$
- ullet Spatial derivatives pick up negative power of arepsilon
- ullet Variables have $oldsymbol{arepsilon}$ -expansions: iterative solution
- ullet Before applying scaling (Ω incorporates trace reversal):

$$\begin{split} & \varepsilon \left(\bar{\boldsymbol{g}}^{kl} \bar{\boldsymbol{\partial}}_{k} \bar{\boldsymbol{\partial}}_{l} \bar{\boldsymbol{u}}^{ij} + \bar{\boldsymbol{g}}^{ij} \bar{\boldsymbol{\partial}}_{k} \bar{\boldsymbol{\beta}}^{k} - 2 \bar{\boldsymbol{g}}^{k(i} \bar{\boldsymbol{\partial}}_{k} \bar{\boldsymbol{\beta}}^{j)} \right) + \varepsilon^{2} \, Q \left(\boldsymbol{\partial} \mathbf{u} \right) \\ & = \tau^{ij} - \frac{2}{\Omega} \left(\bar{\boldsymbol{g}}^{ik} \bar{\boldsymbol{g}}^{jl} - \bar{\boldsymbol{g}}^{ij} \bar{\boldsymbol{g}}^{kl} \right) \bar{\nabla}_{k} \bar{\nabla}_{l} \Omega - \frac{3}{\Omega^{2}} \bar{\boldsymbol{g}}^{ij} \bar{\boldsymbol{g}}^{kl} \left(\bar{\nabla}_{k} \Omega \right) \left(\bar{\nabla}_{l} \Omega \right) \end{split}$$

• "xPert" (in "xAct"): useful for general background, any order of arepsilon

(Simplified) summary: singular $arepsilon \searrow 0$ limit

- Structure of gravitational dynamics generically given as per prev calculations
- ② Apply Newtonian scaling to \bar{T}^{ij} & cancel out background dynamics $(G_{\mathbf{h}}^{ij})$
- **3** Expand $\nabla_i \bar{T}^{ij} = 0$, expand matter variables as appropriate (case by case!)
- lacktriangle Use Ω -freedom to control remaining singular behaviour
- ullet Use eta-freedom to modify evolution equations as needed
- Oefine initial data & enforce constraints
- Obtain conditions upon free initial data for limit to exist
- ...compare simulations of relativistic & PN solutions

References & Acknowledgments

D. Wiltshire

What is dust? Physical foundations of the averaging problem in cosmology. Classical and Quantum Gravity, 28(164006): August 2011.

D. Brizuela, J. M. Martín-García, G. A. Mena Marugán. xPert: computer algebra for metric perturbation theory General Relativity and Gravitation, 41(10): February 2009.

T. A. Oliynyk.

Cosmological Newtonian limit Physical Review D, 89(124002): June 2014.

S. R. Green & R. M. Wald.

How well is our universe described by an FLRW model? Classical and Quantum Gravity, 31(234003): December 2014.

