LECTURE #8

1.060 ENGINEERING MECHANICS I

To solve simple fluid mechanics problems we have established:

Conservation of Mass

Isin in - Esout Quit = at

Conservation of Volume (Continuity)

Discharge - Velocity Relationship

Conservation of Momeratum

Example of Mass & Volume Conservation

Bank Account Analogy: Mass

Mass in - Mass out = Change of Mass

Zgin Qin - Zgout Qout = 2M/at = 2(9 %) = 40 at

ZMin - ZMout = 2M/at

= 2M/at

Bank Account Analogy: Volume

ZQin - ZQout = 24/2t = 0 = ZQin = ZQout = Q

Volume in - Volume out = 2+/2t = 2to/2t =0 incompressible

Combining (single in flow & outflow)

Sin Qin - Sout Qout = Sin Q - Sout Q = 4 38 dt but Sout = 9, so

Sin Q - 9 Q = 40 20 = 30 + 9 = Sin(Q/40)

Q. Tr = to: Time it takes to replace fluid in mixing chamber by new fluid coming in = Residence time = time fluid spends in the mixing chamber = to/Q

3/at + 9/Tr = 9in/Tr

How does p vary with time?

Say, $g = g_0 \otimes t = 0$, and $g_{in} = constant$: $t \to \infty = g$ doesn't change any more - all flivid in mixing chamber replaced by incoming fluid $g \to g_{in}$ $g = Ce^{-t/T_r} + g_{in}$. $\Rightarrow g = g_0 \otimes t = 0 \Rightarrow C = -(g_{in} - g_0)$

Response time scaled by residence time: T= 1/0 Makes sense: It to is large, and Q is small, it will take a long time to replace original fluid (90) by new fluid (9m)

Note: For an incompressible fluid we can split volume conservation (continuity) - in this case a steady problem Qin = Qout = Q - and mass conservation - in This case an unsteady problem.

WELLBEHAVED FLOW

for away from changes in flow area

In conduit h = 2 p + 992 = constant along h : p+992 = Pca + 992ca @ CG of A.

In particular, $P_{R} + gg Z_{R} = P_{CG} + gg Z_{CG}$, at top of conduit. If a standpipe were attached to conduit at R, fluid would flow into stands pipe until a pressure was established at R equal to pressure inside conduit at R. The fluid in the standpipe would now be at nest - so $p + gg Z = P_{R} + gg Z_{R}$ inside standpipe [Hydrostatics]. At top of standpipe $p = P_{R} + gg Z_{R}$ inside nise to a level of $p + gg Z_{R} + gg Z_{R}$ inside $p + gg Z_{R} + gg Z_{R}$ inside $p + gg Z_{R} + gg Z_{R}$ inside $p + gg Z_{R} + gg Z_{R}$

7 7 6 11

Zp = Piezometric Head.

For sections where flow is WELLBEHAVED

V = VA is the velocity for any h"
so if Q and A are known, we know V
everywhere across A. We also have that

p+992 is the same everywhere a crossA

Since any streamline of interest crosses through onea A, we have for any streamline that

ÉgV2+ p+ pg2 = BERNOULLI CONSTANT

is the same

Identifying sections where flow is WELLBEHAUED = STRIGHT (NOT (DRUED) STREAMLINES is the clue to obtaining the BERNOULLI CONSTANT

Special case: Region of LARGE Flow AREA

Since V. ~ Q/A, having large A means small V

\(\frac{1}{2} \text{SV}^2 \) here is much smaller than where A = R,

is amaller, e.g. if A, /A, ~ 0.1 then (V/V)=0.01

and $V^2 \sim 0.01 V_c^2$ is negligible => $V \approx 0.21$ $V_0 = 0$ we have hydrostatics, so $P_0 + pq Z_0 = Const.$

At Stagnation point: Pstag + 992stag + 0

Along stream live from "O" to Stagnation Point use Bernoulli:

Inside tube: q=0 = p+pq2=Pstag+992stag

At free surface in tube: p+pg2=0+pgf+

Combining we get

H = Bernoulli Head =
$$\left(\frac{\rho_0}{\rho g} + Z_0\right) + \frac{\sqrt{6}}{2g} = \frac{\rho_0}{\rho g}$$
Piezometric Head + Velocity Head