Frühjahr 24 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Zeigen Sie, dass die Funktion

$$f_a: \mathbb{R} \to \mathbb{R}, \quad x_a(t) = \begin{cases} 3e^{-t} + t - 1 & \text{für } t \ge 0 \\ e^{-t} + 1 - t & \text{für } t < 0 \end{cases}$$

eine Lösung des Anfangswertproblems

$$\begin{cases} \dot{x}(t) + x(t) = |t| \\ x(0) = 2 \end{cases}$$

ist.

b) Bestimmen Sie eine Lösung des Anfangswertproblems

$$\begin{cases} \dot{x}(t) + x(t) = t^2 \\ x(0) = 2. \end{cases}$$

c) Zeigen Sie, dass es eine reelle Zahl $c \in [0,1]$ gibt, sodass das Anfangswertproblem

$$\begin{cases} \dot{x}(t) + x(t) = \sqrt{ct^2 + (1-c)t^4} \\ x(0) = 2 \end{cases}$$

eine auf ganz \mathbb{R} existierende Lösung $x_c : \mathbb{R} \to \mathbb{R}$ hat, für die $x_c(4) = 7$ ist.

Lösungsvorschlag:

- a) Zunächst gilt $x_a(0) = 3 + 0 1 = 2$, die Anfangsbedingung ist also erfüllt. Für t > 0 ist $\dot{x_a}(t) + x_a(t) = -3e^{-t} + 1 + 3e^{-t} + t 1 = t = |t|$ und für t < 0 ist $\dot{x_a}(t) + x_a(t) = -e^{-t} 1 + e^{-t} + 1 t = -t = |t|$. Wir müssen noch die Differenzierbarkeit von x_a in 0 zeigen. Die einseitigen Differentialquotienten stimmen mit den obigen Ableitungen überein, weil $x_a(0) = 2 = e^0 + 1 0$ gilt, x_a also stetig ist. Daher ist $\dot{x_a}^+(0) = -3 + 1 = -2$ und $\dot{x_a}^-(0) = -1 1 = -2$. Beide stimmen überein, daher ist x_a auch bei t = 0 differenzierbar und $\dot{x_a}(0) + x_a(0) = -2 + 2 = |0|$ ist erfüllt. Also löst x_a das Anfangswertproblem.
- b) Man kann die Lösung mithilfe des Frobeniusansatzes, einem quadratisch polynomiellen Ansatz oder dem Standardvorgehen bei linearen Differentialgleichungen erster Ordnung finden. Wir sehen hier aber sofort eine Lösung durch $x_b(t) = t^2 - 2t + 2$ gegeben, denn dann ist $\dot{x}_b(t) + x_b(t) = 2t - 2 + t^2 - 2t + 2 = t^2$ für alle $t \in \mathbb{R}$ und $x_b(0) = 0^2 - 2 \cdot 0 + 2 = 2$.
- c) Für c=0 erhalten wir genau das Anfangswertproblem aus b) und für c=1 erhalten wir das Anfangswertproblem aus a). Es gilt $x_a(4)=3e^{-4}+4-1=3(e^{-4}+1)<3(1+1)=3\cdot 2=6$ und $x_b(4)=4^2-2\cdot 4+2=16-8+2=10$. Für jedes $c\in[0,1]$ besitzt

das hier gegebene Anfangswertproblem eine eindeutige, global existierende Lösung x_c , weil die Differentialgleichung eine lineare Gleichung erster Ordnung mit stetiger Inhomogenität ist. Wegen der stetigen Abhängigkeit von den Anfangsdaten erhalten wir weiterhin, dass für $c \to c_0$ auch die Lösungen x_c auf [3,5] gleichmäßig und damit auch punktweise gegen x_{c_0} konvergieren. Die Abbildung $A: [0,1] \to \mathbb{R}, A(c) := x_c(4)$ ist also stetig, erfüllt A(0) = 10 und $A(1) = 3(e^{-4} + 1) < 6$. Damit folgt wegen A(1) < 6 < 7 < 10 = A(0) nach dem Zwischenwertsatz die Existenz eines $\tilde{c} \in [0,1]$ mit $A(\tilde{c}) = 7$. Die Lösung des Anfangswertproblems zu \tilde{c} hat nun alle geforderten Eigenschaften.

Etwas genauer zur Konvergenz der Lösungen: Wir definieren für $c \in [0,1]$ die Lösung des Anfangswertproblems $x' = f_c(t,x), x(0) = 2$ mit $f_c(t,x) = \sqrt{ct^2 + (1-c)t^4} - x$ eingeschränkt auf das kompakte Intervall als $x_c(t)$ und möchten zeigen, dass aus $c \to c_0$ die gleichmäßige Konvergenz von $x_c \to x_{c_0}$ auf [3,5] folgt. Man beachte, dass die auftretenden Strukturfunktionen lokal Lipschitzstetig bezüglich x sind und für die zulässigen Wahlen von c auch auf \mathbb{R}^2 definiert sind. Für alle $\varepsilon > 0$ gibt es ein $\delta > 0$ mit $|u_c(t) - u_{c_0}(t)| \le \varepsilon$ für alle $t \in [3,5]$, also $||x_c - x_{c_0}||_{\infty} \le \varepsilon$ vorausgesetzt, dass $||f_c - f_{c_0}|| \le \delta$ gilt, was wir jetzt noch nachrechnen werden. Es gilt für alle $x \in \mathbb{R}$ und $t \in [3,5]$:

$$|f_c(t,x) - f_{c_0}(t,x)| = \frac{|c - c_0||t^2 - t^4|}{\sqrt{ct^2 + (1 - c)t^4} + \sqrt{c_0t^2 + (1 - c_0)t^4}}$$

$$\leq \frac{600|c - c_0|}{\sqrt{81 - 72c} + \sqrt{81 - 72c_0}}$$

$$\leq \frac{600|c - c_0|}{\sqrt{9} + \sqrt{9}} = 100|c - c_0| \leq \delta$$

für $|c-c_0| \leq \frac{\delta}{100}$. Dabei wurde in der ersten Abschätzung die Extrema der Funktionen t^2, t^4 und t^2-t^4 benutzt und in der zweiten Abschätzung wurde $0 \leq c, c_0 \leq 1$ verwendet. Daher ist $||x_c-x_{c_0}||_{\infty} \leq \varepsilon$ für $|c-c_0| < \frac{\delta}{100}$ und wir erhalten per definitionem die Grenzwertaussage $c \to c_0 \implies x_c \to x_{c_0}$ gleichmäßig auf [3,5], insbesondere also punktweise Konvergenz und $c \to c_0 \implies x_c(4) \to x_{c_0}(4)$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$