40 Cl $β^-$ decay (1.35 min) 1972Kl06,1970Ke12

Parent: ${}^{40}\text{Cl}$: E=0; J^{π}=2⁻; T_{1/2}=1.35 min 2; Q(β ⁻)=7482 32; % β ⁻ decay=100.0

 $^{40}\text{Cl-J}^{\pi}$, $T_{1/2}$: From Adopted Levels of ^{40}Cl .

⁴⁰Cl-Q(β^-): From 2012Wa38.

1972Kl06 (also 1973Kl02,1981HuZT): ⁴⁰Cl ions were produced via ⁴⁰Ar(n,p) reaction with E=14 MeV neutron beam on pure natural argon target. *γ* rays were detected with a Ge(Li) detector (FWHM=4 keV at 1.33 MeV) and a NaI(Tl) detector. Measured E*γ*, I*γ*, *γγ*-coin. Deduced levels, J, *π*, *γ*-ray branching ratios.

1970Ke12: ⁴⁰Cl sources were prepared via the ⁴⁰Ar(n,p) reaction with E=14.9 MeV neutron produced from the University of Kentucky neutron generator. *γ* rays were detected with Ge(Li) detectors and NaI(Tl) detectors. Measured E*γ*, I*γ*, *γγ*-coin, decay curve. Deduced levels, J, *π*, *γ*-ray branching ratios, parent T_{1/2}.

Others:

1989Mi03: Measured E β , $\beta\gamma$ -coin. Deduced mass excess.

1968Hu07, 1965Gr03, 1956Mo39: Measured Eγ, Iγ. Deduced levels.

Thesis (M.S.) by E.L. Robinson (Purdue, 1958). E γ , I γ data and level scheme from this work are quoted by 1970Ke12. This thesis was not available to the present evaluators.

⁴⁰Ar Levels

E(level) [†]	Jπ&	T _{1/2}
0	0_{+}	stable
1460.78 <i>5</i>	2+	
2120.82 19	0+	
2524.03 12	2 ⁺ 4 ⁺	
2892.70 22 3207.89 <i>14</i>	2 ⁺	
3511.18 <i>25</i>	2+	
3680.53 14	3-	
3918.82 <i>13</i>	2+	
3941.91? [‡] <i>20</i>		
4082.60 17	3-	
4178.9? [‡] <i>3</i>		
4301.01 <i>23</i>	$(1,3)^{-}$	
4324.5 3	2+	
4359.5?‡ 9		
4481.0? [‡] <i>3</i>	1-	
4562.28 17	$(1,3)^{-}$	
4582.0?‡ 8	(3^{-})	
4737.8? [‡] <i>4</i>		
4769.0 <i>3</i>	1-	
4943.3? [‡] 6		
5165.7 7	$(2)^{+}$	
5269.6 3	$(1^-,3^-)$	
5310.0? [#] <i>10</i>	(2 ⁺)	
5400.5 8	-	
5609.4 8	(1,2,3)	
5629.4? [#] 10 5717.8 10		
5880.1 <i>4</i>	1-	
5905.9 <i>7</i>	(1-)	
5950.5 10	(1,2)	
6053.6 8	1(-)	
6133.5? [@] 10		
6208.5 8	(1,2)	

$^{40}{\rm Cl}\,\beta^-$ decay (1.35 min) 1972Kl06,1970Ke12 (continued)

⁴⁰Ar Levels (continued)

E(level) [†]	Jπ&	Comments
6276.7? 10	(1-,2-,3-)	E(level): this level is constructed by 1972K106 only based on a 1333-keV transition to a level at 4943 which is considered as improbable by 1983Bi08 in $(\alpha, p\gamma)$. Therefore, the evaluators have considered this level as questionable as well.
6338.7 <i>11</i> 6476.1 <i>8</i> 6651.7? <i>8</i>	1 ⁽⁻⁾ 1 ⁽⁻⁾	

 $^{^\}dagger$ From a least-squares fit to $\gamma\text{-ray}$ energies.

β^- radiations

E(decay)	E(level)	Ι <i>β</i> ^{-†‡}	Log ft	Comments
$(8.3 \times 10^{2\#} 3)$	6651.7?	0.49 17	4.8 2	
(0.5×10^{-5}) $(1.01 \times 10^{3} 3)$	6476.1	0.49 17	5.6 <i>1</i>	
(1.01×10^{-3}) $(1.14 \times 10^{3} 3)$	6338.7	0.16 8	5.6 2	
$(1.21 \times 10^{3})^{3}$	6276.7?	0.32 6	5.6 <i>1</i>	
$(1.27 \times 10^3 \ 3)$	6208.5	0.32 0	6.6 <i>3</i>	
$(1.27 \times 10^{3} 3)$	6133.5?	≈0.041 23	≈6.7	$I\beta^-$: from 1981HuZT.
$(1.43 \times 10^3 \ 3)$	6053.6	0.32 6	5.9 1	D. Hom Donazi.
$(1.53 \times 10^3 \ 3)$	5950.5	0.041 25	6.9 3	
$(1.58 \times 10^3 \ 3)$	5905.9	0.65 9	5.8 1	
$(1.60 \times 10^3 \ 3)$	5880.1	5.2 5	4.9 <i>1</i>	
$(1.76 \times 10^3 \ 3)$	5717.8	0.08 4	6.9 2	
$(1.85 \times 10^{3} $ 3 3 3	5629.4?	0.08 4	7.0 2	
$(1.87 \times 10^3 \ 3)$	5609.4	0.41 19	6.3 2	
$(2.08 \times 10^3 \ 3)$	5400.5	0.16 7	6.9 2	
$(2.17 \times 10^{3} $ 3)	5310.0?	0.16 9	7.0 3	
$(2.21 \times 10^3 \ 3)$	5269.6	2.1 3	5.9 <i>1</i>	
$(2.32 \times 10^3 \ 3)$	5165.7	0.9 1	6.3 <i>1</i>	
$(2.71 \times 10^3 \ 3)$	4769.0	0.49 9	6.9 <i>1</i>	
$(2.74 \times 10^{3} $ 3 3	4737.8?	0.41 9	7.0 1	
$(2.90 \times 10^{3} $ 3)	4582.0?	0.17 7	7.5 2	
$(2.92 \times 10^3 \ 3)$	4562.28	22.6 21	5.4 1	E(decay): 2729 145 (1989Mi03) from β (3101 γ).
$(3.00\times10^{3}$ 3 3 3	4481.0?	0.24 6	7.4 1	
$(3.12 \times 10^{3} \text{# } 3)$	4359.5?	0.24 8	7.5 2	
$(3.16 \times 10^3 \ 3)$	4324.5	0.16 5	7.7 2	
$(3.18 \times 10^3 \ 3)$	4301.01	27 5	5.5 1	E(decay): 3086 75 (1989Mi03) from β (2840 γ).
$(3.30 \times 10^{3} $ 3 3 3	4178.9?	0.24 6	7.6 <i>1</i>	
$(3.40 \times 10^3 \ 3)$	4082.60	13.8 15	5.9 1	E(decay): 3070 100 (1989Mi03) from β (2622 γ).
$(3.54 \times 10^{3} $ 4 $^{3})$	3941.91?	0.16 5	7.9 2	
$(3.56 \times 10^3 \ 3)$	3918.82	5.5 12	6.4 <i>1</i>	
$(3.80 \times 10^3 \ 3)$	3680.53	4.6 11	6.6 <i>1</i>	
$(3.97 \times 10^3 \ 3)$	3511.18	0.9 2	7.4 1	
$(4.27 \times 10^3 \ 3)$	3207.89	2.1 4	7.2 1	

[‡] Level considered as improbable based on results of $(\alpha, p\gamma)$ study of 1983Bi08. # Level considered as improbable since the decay mode is very different from that in $(\alpha, p\gamma)$ (1983Bi08) from a level near the same energy.

[©] From 1981HuZT only. & From Adopted Levels.

40 Cl $β^-$ decay (1.35 min) 1972Kl06,1970Ke12 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger \ddagger}$	Log ft
$(4.59 \times 10^3 \ 3)$	2892.70	0.7 2	9.5 ¹ <i>u</i> 1
$(4.96 \times 10^3 \ 3)$	2524.03	1.7 5	7.5 1
$(6.02 \times 10^{3} $ 3 3 3	1460.78	4 4	>7.2
$(7.48 \times 10^3 \ 3)$	0	<9	$>9.8^{1u}$

Comments

E(decay): 7390 118 (1989Mi03).

 $I\beta^-$: only available experimental value is 9% from E.L. Robinson (M.S. thesis, Purdue, 1958). This value has been quoted in several papers (1989Mi03,1981HuZT,1972Kl06,1970Ke12) and in Endt's compilations. 1970Ke12 quoted $I\beta$ =9-18%, again based on Robinson's data, suggesting equal feedings to the ground state and the first excited state. The singles β spectrum of 1989Mi03 does show that there is a direct feeding to the ground state, but in the opinion of the evaluators, precise feeding is not known. $\log f^{1u}t > 8.5$ expected for first-forbidden unique transition allows up to 100% feeding.

 $^{^{\}dagger}$ Deduced by evaluators from imbalance of γ -ray intensities at each level using the GTOL program.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}$ † b	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{c}	Comments
222.5 ^e 5	0.20 6	4582.0?	(3-)	4359.5?					
239.0 [§] 3	0.28 [§] 13	3918.82	2+	3680.53	3-	[E1]		1.13×10^{-3}	
261.2 [§] 7	1.0 [§] 1	4562.28	$(1,3)^{-}$	4301.01	$(1,3)^{-}$				
270 [‡]		5880.1	1-	5609.4					
303.0 6	0.07 4	3511.18	2+	3207.89					
315.0 5	0.03 1	3207.89	2+	2892.70	4+	[E2]		0.00249	
361.3 ^e 5	0.09 2	4943.3?		4582.0?	(3^{-})				
369.0 <i>6</i>	0.02 1	2892.70	4+	2524.03		[E2]		1.41×10^{-3}	
381.0 ^e 5	0.10 4	4943.3?		4562.28				,	
472.0 4	0.3 1	3680.53	3-	3207.89	2+	[E1]		1.64×10^{-4}	
479.9 <mark>\$</mark> 4	1.1 8 2	4562.28	$(1,3)^{-}$	4082.60	3-				
621.1 ^d 6	<0.3 ^d	3511.18	2+	2892.70	4+	[E2]		2.51×10^{-4}	
621.1 <mark>d</mark> 6	<0.3 ^d	4301.01	$(1,3)^{-}$	3680.53	3-				
643.6 [§] 3	8.3 [§] 6	4562.28	$(1,3)^{-}$	3918.82	2+				
660.1 [§] 4	3.1 [§] 3	2120.82	0^{+}	1460.78	2+	[E2]		2.09×10^{-4}	
788.1 [§] <i>3</i>	1.0 [§] 1	3680.53	3-	2892.70	4+	[E1]			
881.3 [§] <i>3</i>	3.2 [§] 3	4562.28	$(1,3)^{-}$	3680.53	3-				
1042.3 ^e 3	0.6 2	6651.7?	() /	5609.4					
1051.1 5	0.6 <i>I</i>	4562.28	$(1,3)^{-}$	3511.18					
1063.1 [§] 2	2.9 <mark>\$</mark> 3	2524.03	2+	1460.78	2+	M1+E2	-0.41 + 6 - 13		
1087.6 <i>4</i>	0.10 5	3207.89	2+	2120.82	0_{+}	[E2]			
1092.9 <mark>\$</mark> 8	0.33 <mark>\$</mark> 7	4301.01	$(1,3)^{-}$	3207.89	2+	[E1]			
1156.2 4	0.6 <i>1</i>	3680.53	3-	2524.03	2+	[E1]		$5.43 \times 10^{-5} 8$	
1186.7 <i>4</i>	0.9 1	5269.6	$(1^-,3^-)$	4082.60					
1317.2 5	0.50 6	5880.1	1-	4562.28	$(1,3)^{-}$				
1333.4 ^e 8	0.40 7	6276.7?	$(1^-, 2^-, 3^-)$	4943.3?					E_{γ} : this transition connects to a level at 4943
									which is considered as improbable by 1983Bi08 in $(\alpha, p\gamma)$. Therefore, the evaluators have
									considered it as questionable as well.
1353.7 5	0.25 10	4562.28	$(1,3)^{-}$	3207.89	2+				to as questionable as from
1394.7 <i>3</i>	1.5 2	3918.82	2+	2524.03					
1432.1 [§] 4	2.0 [§] 2	2892.70	4+	1460.78	2+	E2		9.45×10^{-5} 14	
1460.73 [§] 5	100 [§]	1460.78	2+	0	0^{+}	E2		1.03×10^{-4}	

NUCLEAR DATA SHEETS

γ (40Ar) (continued)

	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger b}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{c}	Comments
1	1558.7 <i>4</i>	0.60 7	4082.60	3-	2524.03	2+	[E1]		3.25×10^{-4}	
١	1579.9 8	0.4 1	5880.1	1-	4301.01					
١	1589.0 [§] 3	1.2 [§] 2	5269.6	$(1^-,3^-)$	3680.53	3-				
	1746.5 [§] 2	3.3 [§] 3	3207.89	2+	1460.78		M1+E2	+0.11 7	1.65×10^{-4} 3	
١	1776.9 8	0.020 3	4301.01	$(1,3)^{-}$	2524.03		[E1]		4.91×10^{-4}	
١	1797.8 <mark>\$</mark> 2	2.7 [§] 4	3918.82	2+	2120.82		[E2]		2.36×10^{-4}	
١	2050.5 4	1.3 2	3511.18	2 ⁺	1460.78		M1(+E2)	-0.05 11	2.82×10^{-4} 5	
١	2063.0 10	0.5 2	5269.6	$(1^-,3^-)$	3207.89		,			
	2220.0 [§] 2	8.6 [§] 12	3680.53	3-	1460.78	2+	E1(+M2)	-0.07 + 5 - 11	7.97×10 ⁻⁴ 19	
١	2457.7 [§] 4	5.8 [§] 10	3918.82	2+	1460.78		M1+E2		0.00050 5	δ : <-0.3 or>+6 from (p,p' γ).
	2524.1 § 2	2.5 [§] 3	2524.03	2 ⁺	0	0+	E2		5.79×10^{-4}	4 1 17.
	2621.7 [§] 2	18.1 [§] 16	4082.60	3-	1460.78		[E1]		1.04×10^{-3}	
	2840.1 [§] 3	34 [§] 5	4301.01	$(1,3)^{-}$	1460.78		[E1]		1.17×10^{-3}	
١	3101.7 [§] 4	14.0 [@] 20	4562.28		1460.78		[13]		1.17×10	
	3193.7 10	0.10 5	4362.28 5717.8	$(1,3)^{-}$	2524.03					
1	3208.2 3	0.6 1	3207.89	2+	0	0+	[E2]		8.79×10^{-4}	
	3356.6 8	0.4 1	5880.1	1-	2524.03		[22]		0.77/10	
Ì	3511.0 5	0.20 8	3511.18	2+	0	0^{+}	[E2]		1.00×10^{-3}	
	3704.6 8	1.0 <i>I</i>	5165.7	$(2)^{+}$	1460.78					
	3759.9 10	0.10 3	5880.1	1-	2120.82					
	3784.9 6	0.8 1	5905.9	(1-)	2120.82				2	
	3918.6 [§] 2	4.8 [§] 5	3918.82	2+	0	0_{+}	E2		1.15×10^{-3}	
١	3941.7 ^{&} e 2	0.20 5	3941.91?		0	0_{+}				
	4082.1 8	0.30 6	4082.60	3-	0	0+	[E3]		9.21×10^{-4}	
	4147.7 10	1.1 <i>I</i>	5609.4	(1,2,3)	1460.78					
	4178.7 ^{&e} 3	0.30 7	4178.9?	-	0	0+			1.00 10-3	
	4324.2 3	0.20 5	4324.5	2+	0	0+	[E2]		1.29×10^{-3}	
	4357.6 ^{&e} 3	0.50 7	4359.5?		0	0+	_			
١	4480.7 ^{&e} 3	0.30 7	4481.0?	1-	0	0+	D		2	
١	4580.1 ^{&e} 5	0.10 4	4582.0?	(3 ⁻)	0	0_{+}	[E3]		1.07×10^{-3}	
	4737.5 <mark>&e</mark> 4	0.5 1	4737.8?	_	0	0+				
١	4768.7 3	0.6 1	4769.0	1-	0	0 ⁺				
	5165.5 <i>10</i> 5309.6 ^e <i>10</i>	0.10 <i>5</i> 0.2 <i>I</i>	5165.7 5310.0?	$(2)^+$ (2^+)	0	0+				
	5400.1 8	0.20 8	5400.5	1-	0	0+				
	5629.0 ^e 10	0.10 5	5629.4?	-	0	0+				
	5879.6 [§] 12	5.0 [§] 4	5880.1	1-	0	0^{+}				
	5950.0 10	0.05 3	5950.5	(1,2)	0	0+				
	6053.1 8	0.40 6	6053.6	1(-)	0	0_{+}				
- 1										

NUCLEAR DATA SHEETS

NUCLEAR DATA SHEETS

[†] From 1972K106, unless otherwise noted. ‡ From 1981HuZT only, intensity is not available.

[§] Weighted average from 1972Kl06 and 1970Ke12.

[&]amp; Placement questioned by 1983Bi08 based on their $(\alpha, p\gamma)$ study.

[@] From 1972Kl06, obtained in indirect method. Other: 5 3 in 1970Ke12.

[#] From β feeding quoted by 1981HuZT.

^a If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b For absolute intensity per 100 decays, multiply by 0.81 4.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

$^{40}{\rm Cl}~\beta^-$ decay (1.35 min) 1972Kl06,1970Ke12

$^{40}{\rm Cl}~\beta^-$ decay (1.35 min) 1972Kl06,1970Ke12

Decay Scheme (continued)

$^{40}{\rm Cl}\,\beta^-$ decay (1.35 min) 1972Kl06,1970Ke12

Decay Scheme (continued)

