Listing of Claims

- 1. (Currently amended) A solid zeolite-like catalyst consisting of partially halogenated metal oxide or mixed metal oxide or zeolite or zeolite-like solid, represented by a general formula $X(a)/P_bMO_c(OH)_d$ wherein, X is halogen element selected from F, CL, Br and I; P is phosphorous element; M is at least one metallic element selected from alkaline earth metals, rare earth metals, group IIIa metals, non-noble transition metals, Sn, Sb, Bi, Si, thorium and uranium; O is oxygen; H is hydrogen; a is the concentration of halogen element X present in the catalyst in the range from 0.01 wt % to 50 wt %; b is the mole ratio of P to M in the range from zero to 1.0; c and d are the number of oxygen and OH groups, respectively, required to satisfy the valence requirement of the metallic and nonmetallic elements (M and P); and the ratio of d to c in the range from zero to about 1.0, with or without any catalyst support, useful for the Friedel-Crafts reactions.
- 2. (Previously presented) A catalyst as claimed in claim 1 wherein the halogen element is Cl.
- 3. (Previously presented) A catalyst as claimed in claim 1 wherein the metallic element (M) is Be, Mg, Ca, Si, B, Al, Ga, In, Tl, Cr, Fe, Cu, Ni, Y, Th, La, Ce, Pr, Bi or a mixture of two or more thereof.
- 4. (Previously presented) A catalyst as claimed in claim 1 wherein the concentration of halogen element in the catalyst (a) is between 0.1 wt % and 30 wt %.

5. (Currently amended) A process for the preparation of a solid zeolite-like catalyst, consisting of partially halogenated metal oxide or mixed metal oxide or zeolite or zeolite-like solid, represented by a general formula: X(a)/PbMOc(OH)d wherein X is halogen element selected from F. Cl. Br and I: P is phosphorous element; M is at least one metallic element selected from alkaline earth metals, rare earth metals, group IIIa metals, non-noble transition metals, Sn. Sb. Bi, Si, thorium and uranium; O is oxygen; H is hydrogen; a is the concentration of halogen element X present in the catalyst in the range from 0.01 wt % to 50 wt %; b is the mole ratio of P to M in the range from zero to 1.0; c and d are the number of oxygen and OH groups, respectively, required to satisfy the valence requirement of the metallic and nonmetallic elements (M and P); and the ratio of d to c in the range from zero to about 1.0, with or without any catalyst support, useful for the Friedal-Crafts reactions. which comprises the steps of; (i) contacting an inorganic solid comprising surface hydroxyl groups, represented by a general formula: PhMOn(OH)m wherein, P is phosphorous, M is at least one metallic element selected from alkaline earth metals, rare earth metals, group IIIa metals, non-noble transition metals, Sn, Sb, Bi, Si, thorium and uranium; O is oxygen; H is hydrogen; b is the mole ratio of P to M in the range from zero to 1.0; n and m are the number of oxygen and OH groups, respectively, required to satisfy the valence requirement of the metallic and nonmetallic elements (M and P), and the m to n ratio is above about 0.0001, with or without any catalyst support, with an halogenating agent selected from hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide or gaseous halogens in the presence or absence of moisture free non-agueous solvent and inert gas, such that the concentration of halogen in the catalyst is in the range from 0.01 wt % to 50 wt %; and (ii)

desorbing physically adsorbed halogen containing compound from the halogenated solid.

- 6. (Previously presented) A process as claimed in claim 5 wherein, the halogenating agent is anhydrous hydrogen chloride or Cl₂.
- 7. (Previously presented) A process as claimed in claim 5 wherein, the metallic element [M] in the inorganic solid is Be, Mg, Ca, Si, B, Al, Ga, In, Tl, Cr, Fe, Cu, Ni, Y, Th, La, Ce, Pr, Bi or a mixture of two or more thereof.
- (Previously presented) A process as claimed in claim 5 wherein the non-aqueous solvent is liquid hydrocarbon, carbon tetrachloride or dichloroethane.
- (Previously presented) A process as claimed in claim 5 wherein the concentration of halogen in the catalyst is between 0.1 wt % and 30 wt %.
- 10. (Previously presented) A process as claimed in claim 5 wherein in step ii the physically absorbed or adsorbed halogen or halogen containing compound from the halogenated inorganic solid is removed by desorption from the catalyst in a flow of inert gas such as nitrogen, helium or argon.
- 11. (Previously presented) A process as claimed in claim 5 wherein when an non-aqueous solvent is used in step-i, after the desorption of physically adsorbed or absorbed halogenating agent, the

resulting halogenated catalyst is filtered under moisture-free atmosphere and is dried under vacuum to remove the solvent from the catalyst.

- 12. (Withdrawn) A process for the benzylation of an aromatic compound comprising i) contacting a pretreated catalyst of claim 1 with 15 cm.sup.3 liquid reaction mixture containing aromatic compound and benzyl chloride or benzoyl chloride and optionally a solvent under vigorous stirring while bubbling moisture-free N.sub.2 gas through the reaction mixture ii) cooling the reaction mixture to room temperature, separating the solid catalyst from therefrom by filtration to obtain a benzoylated aromatic compound.
- 13. (Withdrawn) A process as claimed in claim 12 wherein the separated catalyst is washed with moisture-free solvent selected from benzene and toluene and recycled.
- 14. (Withdrawn-Currently amended) A process as claimed in claim 12 wherein the catalyst is of the general formula X(a)/P_bMO_c(OH)_d wherein, X is halogen element selected from F, Cl, Br and I; P is phosphorous element; M is at least one metallic element selected from alkaline earth metals, rare earth metals, group IIIa metals, non-noble transition metals, Sn, Sb, Bi, Si, thorium and uranium; O is oxygen; H is hydrogen; a is the concentration of halogen element X present in the catalyst in the range from 0.01 wt % to 50 wt %; b is the mole ratio of P to M in the range from zero to 1.0; c and d are the number of oxygen and OH groups, respectively, required to satisfy the valence requirement of the metallic and nonmetallic elements (M and P); and the ratio of d to c in the range from zero to about 1.0, with or without any catalyst support.

- 15. (Withdrawn) A process as claimed in claim 14 wherein, the halogenating agent is anhydrous hydrogen chloride or Cl_2 .
- 16. (Withdrawn) A process as claimed in claim 14 wherein, the metallic element [M] in the inorganic solid is Be, Mg, Ca, Si, B, Al, Ga, In, Tl, Cr, Fe, Cu, Ni, Y, Th, La, Ce, Pr, Bi or a mixture of two or more thereof.
- 17. (Withdrawn) A process as claimed in claim 14 wherein the non-aqueous solvent is liquid hydrocarbon, carbon tetrachloride or dichloroethane.
- 18. (Withdrawn) A process as claimed in claim 14 wherein the concentration of halogen in the catalyst is between 0.1 wt % and 30 wt %.