Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет компьютерных технологий и управления Кафедра информатики и прикладной математики

Теория информации Лабораторная работа №3

«Помехоустойчивое кодирование двоичных сообщений с использованием кодов Хемминга»

Вариант 7

Группа: Р3218

Студент: Петкевич Константин

Преподаватель: Тропченко А. А.

1. Постановка задачи

Двоичное дискретное сообщение с числом информационных символов n_{μ} =5 закодировано кодами Хемминга (d=3 и 4) и передано по каналу связи. Известно, что в канале действуют помехи, приводящие к искажению одного или двух передаваемых символов.

2. Расчет числа контрольных символов, обеспечивающих заданные требования по помехозащищенности (для d=3 и 4).

При d = 3

$$n_k = \left[lb(n_u + 1 +]lb(n_u + 1)[) \right] = \left[lb(6 +]lb(6)[) \right] = \left[lb(9)[= 4 \right]$$

При d = 4

$$n_k = \int lb(n_u + 1 + \int lb(n_u + 1)[)[+ 1 = \int lb(6 + \int lb(6)[)[+ 1 = \int lb(9)[+ 1 = 5]]$$
Соответственно n = 10

3. Номера позиций контрольных символов в результирующей комбинации кодов Хемминга для d=3 и 4.

При d = 3 и n = 9 первый контрольный символ контролирует первый, третий, пятый, седьмой и девятый символы сообщения; второй контрольный - второй, третий, шестой, седьмой; третий контрольный - четвертый, пятый, шестой и седьмой; четвертый контрольный - восьмой и девятый. Соответственно, контрольные символы будут занимать первую, вторую, четвертую и восьмую позиции в сообщении.

При d = 4 и n = 10 добавится еще один бит (для контроля четности), который займет 10 позицию в сообщении.

4. Номера позиций информационных символов в результирующей комбинации кодов Хемминга для d=3 и 4.

Информационные символы будут располагаться на оставшихся позициях сообщения при d=3 и 4. Поскольку их нумерация будет происходить противоположно нумерации контрольных символов, они займут места 9, 7, 6, 5, 3.

5. Синдромы ошибок для кода Хемминга, исправляющего одиночную ошибку (d=3).

Синдромы ошибок представляют собой возможные результаты четырех проверок, указывающие номер позиции в сообщении, где обнаружена одиночная ошибка:

Номер позиции	Синдром ошибки
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Так, номера позиции совпадают с десятичными эквивалентами синдромов ошибки - это сделано специально и становится возможным благодаря тому, что одна и та же позиция контролируется определенными контрольными символами, выбранными так, что при общем анализе можно однозначно выявить ошибочную позицию.

6. Макеты кодов Хемминга для d=3 и 4.

При d = 3

i ipri u – J														
Номер позиции	1	2	3	4		5		6		7		8	•	9
Символ	K1	K2	И5	K3		И4		И3		И2		K4		И1
При d = 4														
Номер позиции	1	2	3	4	5		6		7		8	9		10
Символ	K1	K2	И5	K3	И4		И3		И2		K4	И1		К5

7. Алгоритм определения контрольных символов для кодов Хемминга c d=3 и 4.

Алгоритм интуитивно понятен и определяется четырьмя логическими выражениями (для d = 3):

$$K_1 = U_5 U_4 U_2 U_1$$

 $K_2 = U_5 U_3 U_2$
 $K_3 = U_4 U_3 U_2$
 $K_4 = U_1$

При d = 4 формулы остаются те же, а добавочный контрольный символ будет равен

$$K_5 = K_1 K_2 U_5 K_3 U_4 U_3 U_2 K_4 U_1$$

8. Все возможные комбинации кодов Хемминга для d=3 и 4, включающие как контрольные, так и информационные символы.

	1 0 0 1 1 1 1	Die, iai	7171140		онные с					
					Символы	сооощени	Я			
	1	2	3	4	5	6	7	8	9	10
	K1	K2	И5	К3	И4	И3	И2	K4	И1	K5
1	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	1	1	1
3	1	1	0	1	0	0	1	0	0	0
4	0	1	0	1	0	0	1	1	1	1
5	0	1	0	1	0	1	0	0	0	1
6	1	1	0	1	0	1	0	1	1	0
7	1	0	0	0	0	1	1	0	0	1
8	0	0	0	0	0	1	1	1	1	0
9	1	0	0	1	1	0	0	0	0	1
10	0	0	0	1	1	0	0	1	1	0
11	0	1	0	0	1	0	1	0	0	1
12	1	1	0	0	1	0	1	1	1	0
13	1	1	0	0	1	1	0	0	0	0
14	0	1	0	0	1	1	0	1	1	1
15	0	0	0	1	1	1	1	0	0	0
16	1	0	0	1	1	1	1	1	1	1
17	1	1	1	0	0	0	0	0	0	1
18	0	1	1	0	0	0	0	1	1	0

19	0	0	1	1	0	0	1	0	0	1
20	1	0	1	1	0	0	1	1	1	0
21	1	0	1	1	0	1	0	0	0	0
22	0	0	1	1	0	1	0	1	1	1
23	0	1	1	0	0	1	1	0	0	0
24	1	1	1	0	0	1	1	1	1	1
25	0	1	1	1	1	0	0	0	0	0
26	1	1	1	1	1	0	0	1	1	1
27	1	0	1	0	1	0	1	0	0	0
28	0	0	1	0	1	0	1	1	1	1
29	0	0	1	0	1	1	0	0	0	1
30	1	0	1	0	1	1	0	1	1	0
31	1	1	1	1	1	1	1	0	0	1
32	0	1	1	1	1	1	1	1	1	0

9. Результаты проверки принятой кодовой комбинации, закодированной кодом Хемминга с d=3, на отсутствие ошибок.

Возьмем произвольную комбинацию кода Хемминга из таблицы предыдущего задания - скажем, под номером 13: 110011000

В соответствии с алгоритмом декодирования кода Хемминга вычислим синдром:

Номер позиции	1	2	3	4	5	6	7	8	9
Символ	K1	K2	И5	K3	И4	И3	И2	K4	И1
Сообщени е	1	1	0	0	1	1	0	0	0

$$S_1 = K_1 U_5 U_4 U_2 U_1 = 10100 = 0$$

 $S_2 = K_2 U_5 U_3 U_2 = 1010 = 0$
 $S_3 = K_3 U_4 U_3 U_2 = 0110 = 0$
 $S_4 = K_4 U_1 = 00 = 0$

Итак, $S = S_4S_3S_2S_1 = 0000 = 0$, значит, ошибки нет и переданная информационная кодовая комбинация корректна: I = 01100

10. Результаты проверки принятой кодовой комбинации, закодированной кодом Хемминга с d=3, на наличие одиночной ошибки.

Возьмем произвольную комбинацию кода Хемминга из таблицы 8 задания - скажем, под номером 17: 111000000. Внесем одиночную ошибку в произвольный бит: 111000100.

В соответствии с алгоритмом декодирования кода Хемминга вычислим синдром:

Номер позиции	1	2	3	4	5	6	7	8	9
Символ	K1	K2	И5	K3	И4	И3	И2	K4	И1
Сообщени е	1	1	1	0	0	0	1	0	0

$$S_1 = K_1 M_5 M_4 M_2 M_1 = 1 \ 1 \ 0 \ 1 \ 0 = 1$$

 $S_2 = K_2 M_5 M_3 M_2 = 1 \ 1 \ 0 \ 1 = 1$
 $S_3 = K_3 M_4 M_3 M_2 = 0 \ 0 \ 0 \ 1 = 1$

$$S_4 = K_4 \ \mathcal{U}_1 = 0 \ 0 = 0$$

Итак, $S = S_4S_3S_2S_1 = 0111 = 7$, значит, сделана ошибка в позиции 7 (И2). Действительно, это та самая позиция, в которую мы внесли ошибку в начале задания. Для исправления инвертируем указанный бит и выявляем передаваемое информационное сообщение I = 10000.

11. Результаты проверки принятой кодовой комбинации, закодированной кодом Хемминга с d=4, на отсутствие ошибок.

Возьмем произвольную комбинацию кода Хемминга из таблицы предыдущего задания - скажем, под номером 22: 0011010111

В соответствии с алгоритмом декодирования кода Хемминга вычислим синдром:

								1 11		
Номер позиции	1	2	3	4	5	6	7	8	9	10
Символ	K1	K2	И5	K3	И4	И3	И2	K4	И1	K5
Сообщени е	0	0	1	1	0	1	0	1	1	1

$$S_1 = K_1 M_5 M_4 M_2 M_1 = 0 \ 1 \ 0 \ 0 \ 1 = 0$$

 $S_2 = K_2 M_5 M_3 M_2 = 0 \ 1 \ 1 \ 0 = 0$
 $S_3 = K_3 M_4 M_3 M_2 = 1 \ 0 \ 1 \ 0 = 0$
 $S_4 = K_4 M_1 = 1 \ 1 = 0$

Проведем общую проверку на четность:

$$P = K_1 K_2 H_5 K_3 H_4 H_3 H_2 K_4 H_1 K_5 = 00110101111 = 0$$

 $P=K_1\,K_2\,U_5\,K_3\,U_4\,U_3\,U_2\,K_4\,U_1\,K_5=0011010111=0$ Итак, S = S₄S₃S₂S₁ = 0000 = 0, и P = 0, значит, ошибки нет и переданная информационная кодовая комбинация корректна: І = 10101

12. Результаты проверки принятой кодовой комбинации, закодированной кодом Хемминга с d=4, на наличие двух ошибок.

Возьмем произвольную комбинацию кода Хемминга из таблицы предыдущего задания - скажем, под номером 22: 0011010111. Внесем ошибки в два произвольных бита: 0111011111.

В соответствии с алгоритмом декодирования кода Хемминга вычислим синдром:

Номер позиции	1	2	3	4	5	6	7	8	9	10
Символ	K1	K2	И5	K3	И4	И3	И2	K4	И1	K5
Сообщени е	0	1	1	1	0	1	1	1	1	1

$$S_1 = K_1 M_5 M_4 M_2 M_1 = 0 \ 1 \ 0 \ 1 \ 1 = 1$$

 $S_2 = K_2 M_5 M_3 M_2 = 1 \ 1 \ 1 \ 1 = 0$
 $S_3 = K_3 M_4 M_3 M_2 = 1 \ 0 \ 1 \ 1 = 1$
 $S_4 = K_4 M_1 = 1 \ 1 = 0$

Проведем общую проверку на четность:

$$P = K_1 K_2 U_5 K_3 U_4 U_3 U_2 K_4 U_1 K_5 = 0111011111 = 0$$

Итак, $S = S_4S_3S_2S_1 = 0101 = 5$, и P = 0, значит, возникла двойная ошибка и потребуется повторная передача информации, так как исправление в данном случае не представляется возможным.

13. Выводы по работе

В ходе лабораторной работы был рассмотрен способ помехоустойчивого кодирования с использованием кодов Хемминга. В результате был сделан вывод о том, что изученный метод обладает высокой эффективностью только в том случае, если требуется обнаружение одиночной ошибки - в случае же возникновения двойной представляется возможным её обнаружить, но не исправить, поскольку не существует способа определения ошибочных позиций - для этого потребуется либо использование большего количества контрольных символов, либо усложнение структуры информационного сообщения с соответствующей модификацией алгоритмов кодирования и декодирования. Таким образом, использование кодов Хемминга (в силу своей большой простоты и малой эффективности) в ряд ли подходит для практического применения в современной действительности и скорее служит для обучающих целей.