Data Science Bootcamp

Regis Obiang

Prédire une transaction financière frauduleuse via mobile money

Contexte

Live Deployments of Mobile Money, 2001-2013

Source: Groupe Speciale Mobile Association (2014).

Schéma des flux d'un service mobile money

Phases

I- Données Data preprocessing

IV- Creation des modèles ML

II- Analyse Exploratoire Données

V- Evaluation des modèles

III- Preparation des données: Train & Test

VI- Conclusions et perspectives

Données & Data preprocessing

- Source: https://www.kaggle.com/ntnu-testimon/paysim1
 - Données issues d'un simulateur de transactions des services de paiements mobiles
- ~6,4 Millions entrées
- 11 caractéristiques (variables)
- Pas de données manquantes

Variables clés

Variable à prédire

☐ Transaction frauduleuse

Covariables

- Type de transaction
- ☐ Montant de la transaction

Covariables

- Solde initial avant la transaction (D)
- Solde après la transaction (D)
- Solde initial avant la transaction (R)
- Solde après la transaction (R)

1

Analyse Exploratoire Données (1)

Solde après la transaction (D)

0.4

0.0 0.0

1e7

Groupe déséquilibrée (Trans. Frauduleuse)

6

2

Données asymétriques centrées vers la droite

3.5

Solde initial avant la transaction (R)

0.4

0.2

Solde après la transaction (R)

Solde initial avant la transaction (D)

Analyse Exploratoire Données (2)

Préparation des données: Train et Test

Création des modèles

Lill Évaluation des modèles

Conclusions et perspectives

- Les Scores des data (Train et Test) semblent excessivement élevés: **Overfitting**
- Modele ML avec Decision Trees semble donner des meilleurs résultats comparativement à la régression logistique
- ☐ Envisager plus tard, un modèle de ML plus robuste comme **XgBoost**

Data Science Bootcamp

Des questions?

