Deep Learning and Practice

Lab5 - Conditional VAE For Video Prediction

310605009

吳公耀

A. Introduction

1. Lab Objective

- 以 conditional VAE 來對影片作預測,透過前兩張預測接下來的十張
- 實作出 conditional VAE model
- 使用 teacher forcing, KL annealing

2. Dataset

每個 sequence 裡包含連續的 30 張照片

Condition 為當下 30 張圖片的 action 以及 endeffector_positions

分別為4個以及3個元素總共7個元數

B. Derivation of CVAE (Please use the same notation in

Fig.1a)

由 L13, P.23 EM 開始做推導

• To see how the EM works, the chain rule of probability suggests

$$\log p(\boldsymbol{X}; \boldsymbol{\theta}) = \log p(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta}) - \log p(\boldsymbol{Z}|\boldsymbol{X}; \boldsymbol{\theta})$$

 \bullet We next introduce an arbitrary distribution $q(\boldsymbol{Z})$ on both sides and integrate over \boldsymbol{Z}

$$\int q(\mathbf{Z}) \log p(\mathbf{X}; \boldsymbol{\theta}) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}; \boldsymbol{\theta}) d\mathbf{Z} - \int q(\mathbf{Z}) \log p(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}) d\mathbf{Z}$$

$$= \underbrace{\int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}; \boldsymbol{\theta}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}}_{+ \underbrace{\int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log p(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}) d\mathbf{Z}}_{-}$$

to arrive at

VAE PR
$$\underline{A}_{i} := l = \sum_{\alpha} l_{\alpha \beta} P(\alpha)$$

$$l_{\alpha \beta} P(\alpha) = \int_{Q} (z_{1}|\alpha) l_{\alpha \beta} p_{\alpha}(z_{1}|\alpha) dz .$$

$$= \int_{Q} (z_{2}|\alpha) l_{\alpha \beta} \frac{p_{\alpha}(z_{2}|\alpha)}{p_{\alpha}(z_{2}|\alpha)} dz .$$

$$= \int_{Q} (z_{2}|\alpha) l_{\alpha \beta} \frac{p_{\alpha}(z_{2}|\alpha)}{p_{\alpha}(z_{2}|\alpha)} dz .$$

$$= \int_{Q} (z_{2}|\alpha) l_{\alpha \beta} \frac{p_{\alpha}(z_{2}|\alpha)}{p_{\alpha}(z_{2}|\alpha)} dz + \int_{Q} (z_{2}|\alpha) l_{\alpha \beta} \frac{p_{\alpha}(z_{2}|\alpha)}{p_{\alpha}(z_{2}|\alpha)} dz .$$

$$= \int_{Q} (z_{2}|\alpha) l_{\alpha \beta} \frac{p_{\alpha}(z_{2}|\alpha)}{q_{\alpha}(z_{2}|\alpha)} dz + \left[l_{\alpha} l_{\alpha}$$

CVAE -[

$$Z_{ij}^{(k)}$$
, $p(x|y)$, $i(t)$, $i(t)$ model

 $L_{ij}^{(k)}$, $p(x|y)$, $i(t)$, $i(t)$ model

 $L_{ij}^{(k)}$, $p(x|y)$, $i(t)$, i

$$\begin{aligned} & \text{CVAF} = -2 \\ & \text{Po(2iy)} - \text{Po(2i)} \\ & \text{L(o, ϕ i x, y)} = -\text{KL}(\text{q} \phi(\text{2}|\text{x,y}) \| \text{po(2i)}) + \text{Exp(2ix x,y) Logpo}(\text{x}|\text{y,z}) \\ & \text{CVAFS } -3 \\ & \text{Log } \text{P(y|x)} & \text{Bid } \text{CVAF} - 1 & \text{AB} \text{x,y} \text{Log} \\ & \text{Log } \text{P(y|x)} - \text{Se(2|x,y)} \text{Log } \frac{\text{P(2i,2i)}}{\text{q(2i,2i)}} \text{dz} + \text{KL}(\text{q(2i,2i)}) \| \text{P(2i,2i)}) \\ & \text{Lelbo} = \int \text{q(2i,2i)} \text{Log} \frac{\text{P(2i,2i)}}{\text{q(2i,2i)}} \text{dz} \\ & = \int \text{q(2i,2i)} \text{Log} \frac{\text{P(2i,2i)}}{\text{q(2i,2i)}} \text{dz} + \int \text{q(2i,2i)} \text{LogP(y|2i,x)} \\ & = \int \text{q(2i,2i)} \text{log} \frac{\text{P(2i,2i)}}{\text{q(2i,2i)}} \text{dz} + \int \text{q(2i,2i)} \text{LogP(y|2i,x)} \\ & = -\text{KL}(\text{q(2i,2i)}) \| \text{P(2i,2i)}) + \int \text{q(2i,2i,2i)} \text{Logp(y|2i,2i,x)} \\ & \text{CVAF} = -\text{4} \\ & \text{PP} \hat{\text{SP}} \text{P(x,1y,2i)} = \text{P(x,12i)} \\ & \text{Lelbo} = \int \text{q(2i,2i,2i)} \text{Log} \frac{\text{P(2i,2i,2i)}}{\text{q(2i,2i,2i)}} + \int \text{q(2i,2i,2i)} \text{Logp(x,12i)} \end{aligned}$$

C. Implementation details

VAE

VAE 與 AutoEncoder 不同之處在於 VAE 在編碼過程增加了一些限制,迫使生成的向量遵從高斯分佈。由於高斯分佈可以通過其 mean 和 standard deviation 進行參數化。

VAE 的內部做法:

- 1. 先輸出兩個向量:mean 和 standard deviation
- 2. 用 normal distribution 產生第三個向量
- 3. 把第二個向量做 exponential, 之後跟第三個向量做相乘後, 把它跟第一個向量相加, 即成為中間層的隱含向量

CVAE

整體結構和 VAE 差不多,區別是在將數據輸入 encoder 時把 input 與其 label 合併一起輸入,將編碼(Z)輸入 decoder 時把編碼內容與數據 label 合併一起輸入,且 label 並不參與 Loss 計算,CVAE 的 Loss 和 VAE 的 Loss 計算方式相同。生成數據時,可以先從正態分佈採樣,然後 cat 上你想生成的數據的 label,一起送入 Decoder,就能生成和 label 類似的數據。

1. Describe how you implement your model (encoder, decoder, reparameterization trick, dataloader, etc.)

因為助教已經在 sample code 裡把大部分的 VAE 的部分做完了,主要寫的 地方就是把 condition 加入原本的 VAE,以及把缺的 reparameterization 部分補上。

輸入的圖片 Xt 以及 Xt-1 frame 經過 sample code 裡面的 vgg encoder 之後,產生 latent vector ht-1 以及 ht 後分進入 lstm 以及 gaussian_lstm 。

ht 透過 gaussian_lstm 中的 mu_net 以及 logvar_net 得到 mu 和 logvar 之 後再由 reparameterize 透過將 logvar 做 exponential 然後 normal distribution 產生第三個向量 eps 之後跟第三個向量做相乘後,把它跟第一個向量相加,即成為中間層的隱含向量。

而目前要預測的 frame 透過 lstm 來將 action 以及 endeffector_positions 組成的 conditional 加入 VAE 模型由條件部分與潛在向量 z 連接起來作為解碼器的輸入也就是 input 為原本的 latent vector 與 prior 計算出的 z 做 concate, condition 透過過 linear 之後直接跟 input concate。最後再由 sample code 提供的 vgg decoder 解碼產生最後的 predict frame。剛開始有嘗試將 condtion 直接與 input concate 直接進到 LSTM 可是那樣學習的狀況不是很好。

Dataloader 的部分跟之前的作業差不多都是先將 train / validate / test 讀去各自的資料夾裡所有的 sequence 並且存於 dirs,所以__len__也可以直接取裡面的長度。之後再讀去取 sequence 裡面的 frame 並且需要依序從 0 開始拿再將圖片轉成[C, H, W]最後在做 reshape 方便之後轉乘需要的格式。然後再取各個 sequence 中的 condition 並將其 concate 成 7 個元素,最後再依序 index 取 sequence 以及 condition。

由於輸入的格式為 get_seq: [batch size, frame num, 3, 64, 64]和 get_csv: [batch size, frame num, 7]因此在拿到資料後轉換格式在開始訓練。

```
newseq = seq.permute(1,0,2,3,4)
newcond = cond.permute(1,0,2)
loss, mse, kld, kld_weight= train(newseq, newcond, modules, optimizer, kl_anneal, args, device)
```

2. Describe the teacher forcing (including main idea, benefits and drawbacks.)

RNN 存在着兩種訓練模式,1. free-running mode 2. teacher-forcing free-running mode 就是大江上一個 state 的輸入作爲下一個 state 的輸出。而 Teacher Forcing 是一種快速有效地訓練循環神經網絡模型的方法,該模型使用來自先驗時間步長的輸出作爲輸入,訓練的時候不使用上一個 state 的輸出作爲下一個 state 的輸入,而是直接使用訓練數據的標準答案 (ground truth)的對應上一項作爲下一個 state 的輸入。

Teacher-Forcing 可以是一個很好的訓練模式是因為:

- (1) Teacher-Forcing 能夠在訓練的時候矯正模型的預測,避免在序列生成 的過程中誤差進一步放大。
- (2) Teacher-Forcing 能夠極大的加快模型的收斂速度,令模型訓練過程更加快&平穩。
- (3) Teacher-Forcing 技術是保證 Transformer 模型能夠在訓練過程中完全並行計算所有 token 的關鍵技術。

但相對的也存在著問題

- (1) Exposure Bias,也就是訓練和預測的時候 decode 行為的不一致, 導致預測在訓練和預測的時候是從不同的分佈中推斷出來的。而這種不一致導致訓練模型和預測模型直接的 Gap。
- (2) Teacher-Forcing 技術在解碼的時候生成的字符都受到了 Ground-Truth 的約束,希望模型生成的結果都必須和參考句一一對應。這種約束在訓練過程中減少模型發散,加快收斂速度。但是一方面也扼殺了翻譯多樣性的可能。
- (3) Teacher-Forcing 技術在這種約束下,還會導致一種叫做 Overcorrect(矯枉過正) 的問題。

由於上述的優點以及缺點,這次訓練剛開始用 Teacher-Forcing 避免剛開始訓練往錯誤的方向,之後再透過 non Teacher-Forcing 減少 Teacher-Forcing 可能會產生的問題,且隨著次數增加 non Teacher-Forcing 的訓練模式也更常被使用。

```
if epoch >= args.tfr_start_decay_epoch:
    ### Update teacher forcing ratio ###
    if args.tfr > args.tfr_lower_bound:
        args.tfr -= args.tfr_decay_step
```

先將所有的 frame 都先 encode 成 h_seq 的 array 後如果是 Teacher-Forcing 則使用 h_seq 裡面的當下 frame 作為 ht-1,反之 non Teacher-Forcing 用 decode 出來的解果作為當下的輸入。之後根據上述的 CVAE 進行訓練

```
for i in range(1, args.n_past + args.n_future):
    if use_teacher_forcing:
         h target = h seq[i][0]
         if args.last_frame_skip or i < args.n_past:"
             h, skip = h_seq[i-1]
             h = h_seq[i-1][0]
         z_t, mu, logvar = modules['posterior'](h_target)
        h = h.to(device)
         z_t = z_t.to(device)
         h_pred = modules['frame_predictor'](torch.cat([h, z_t], 1),cond[i-1])
x_pred = modules['decoder']([h_pred, skip])
    else:
         h_target = h_seq[i][0]
         if args.last_frame_skip or i < args.n_past:
             h, skip = tmp
         else:
             h = modules['encoder'](tmp)
             h = h[0]
         z_t, mu, logvar = modules['posterior'](h_target)
         h = h.to(device)
         z_t = z_t.to(device)
         h_pred = modules['frame_predictor'](torch.cat([h, z_t], 1),cond[i-1])
x_pred = modules['decoder']([h_pred, skip])
         tmp = x pred
```

最後算出 mse 以及 kld 再透過 kl_annealing 更新 kld 再根據 loss 進行 back propagation,計算 gradient 更新。

```
mse += mse_criterion(x_pred,x[i])
   kld += kl_criterion(mu, logvar,args)

beta = kl_anneal.get_beta()
loss = mse + (kld * beta)
loss.backward()

optimizer.step()
```

D. Results and discussion

下面的圖表為使用 spec 的 Hyper-parameters and model setting 但是 kl_annealing 分別用 monotonic 以及 cyclical,kl_annealing 都是以 linear 的 方式改變。

	monotonic	cyclical
validate	epoch: 300 100% ave_psnr: 27.368320529134085 best_val_psnr: 28.418320428503307	epoch: 300 100% it]ave_psnr: 26.975537725035604 best_val_psnr: 28.54475736409921
test	psnr: 26.656277810776807	psnr: 26.8535115524642

1. Show your results of video prediction

(a) Make videos or gif images for test result (select one sequence)

上面的 sequence 為 ground truth 下圖為預測結果

Monotonic(demo_monotonic.png)

Cyclical(demo_cyclical.png)

(b) Output the prediction at each time step (select one sequence)

此影片查看檔案 demo_ monotonic.gif 以及 demo_ cyclical.gif

2. Plot the KL loss and PSNR curves during training

Monotonic

此圖為 Monotonic 以及使用 spec 上的 Hyper-parameter 產生的訓練解果 KL loss、CE_Loss、KL_weight 以及 teacher forcing ratio。KL_weight 上升至 1 就不會再上升,且 teacher forcing ratio 從 epoch 20 開始 -0.01 至 0 為止。可以看出 CE_Loss 也有穩定的在下降,原本以為 KL loss 會像助教的圖片一樣先上升在穩定下降,可是去看 training 過程紀錄好像值都非常小。

PSNR 解果也有穩定慢慢提升,應該是因為 Monotonic 到了模型訓練較穩定時, KL 都設為 1,讓其有更好的訓練結果

本來以為 cyclicalc 會因為 cycle 變成 0 時,KLD loss 也會隨著 weight 變 0 跟著變大,可是 CE loss 好像比 KLD loss 大太多,所以整個都變成以 CE loss 為 主了。而且,收斂的感覺也比 Monotonic 慢。

PSNR 較 Monotonic 來的更動盪,但卻有產生最好 PSNR 得結果。但卻可以解決可能產生 KL 消失的問題

3. Discuss the results according to your setting of teacher forcing ratio, KL weight, and learning rate

Teacher forcing ratio

在 teacher forcing 一開始設置較高,讓模型能盡量避免在錯誤中學習,接著逐漸將他調低,才能夠讓學習更為完整。上面也已經講了 teacher forcing 的重要性了,自己也有跑過訓練的,如果都使用 teacher forcing 沒有回歸原本的預測方式,納到後面不會有很好的進步,反之如果都使用 non teacher forcing 剛開始結果就會沒有那麼理想了。

KL weight

Monotonic 方法

Cyclicl 方法

結果得知, KL 使用 Cyclicl 方法比 Monotonic 方法效果可以得到更好的 PSNR, 因為當模型訓練較穩定時, KL 都設為 1, 會有更好的訓練結果。但後來在做報告去查才更了解因為: KL 會隨著訓練消失趨近 0 這樣學習到的特徵將不再能夠表達觀測到的數據,也就是透過 Cyclicl 去解決 KL 消失問題,讓訓練中的表現,週期性調節 beta 可以循序漸進地讓結果變好。

learning rate

learning rate 一直以來都是訓練很大的關鍵因素,因為 learning rate 太低,損失函數的變化速度就越慢,容易過擬合。雖然使用低 learning rate 可以確保我們不會錯過任何局部極小值,但也意味著我們將花費更長的時間來進行收斂,特別是在被困在局部最優點的時候。而學習率過高容易發生梯度爆炸,loss 振動幅度較大,模型難以收斂。這次有用比較大的 learning rate 0.01 訓練,但是spec 給的 0.002 有比較好的解果,也有試過更小的但學習得太慢效果沒有比較好,原本要試試動態調整 learning rate 但是這次訊連平均 300epoch 600 batch size 完成時間需要 2 天左右,所以還沒來的及嘗試。