1 Funzioni e disequazioni

Sono date per note le nozioni fondamentali di logica, insiemistica, trigonometria, geometria analitica, nonché sulle funzioni potenze, esponenziali e logaritmiche.

Funzioni astratte

Una funzione $f: A \to B$ è una relazione "f(a) = b" tra gli insiemi $A \in B$, detti dominio e codominio, tale che la legge f verifica $\forall a \in A$, $\exists ! b \in B : b = f(a)$.

Per funzioni reali, i.e. tali che $A \subset \mathbb{R}$ e $B \subset \mathbb{R}$, si denota con dom f il dominio naturale.

La funzione immagine $f: \mathcal{P}(A) \to \mathcal{P}(B)$ è definita da $f(E) := \{f(a) \mid a \in E\}$, per ogni $E \subset A$, e si denota im f := f(A) l'insieme immagine.

Grafico di una funzione $f: A \to B$ è il sottinsieme $G_f \subset A \times B$ definito da $G_f := \{(a,b) \mid a \in A, b \in B, f(a) = b\}.$

La funzione controlmmagine $f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A)$ è definita da $f^{-1}(F) := \{a \in A \mid f(a) \in F\}$, per ogni $F \subset B$.

La restrizione di una funzione $f:A\to B$ ad un insieme $E\subset A$ è la funzione $f_{|E}:E\to B$ tale che $f_{|E}(a)=f(a)$ per ogni $a\in E$.

Una funzione $f:A\to B$ si dice *iniettiva* se $\forall a_1,a_2\in A,\ a_1\neq a_2\Longrightarrow f(a_1)\neq f(a_2)$ oppure, equivalentemente, se $\forall a_1,a_2\in A,\ f(a_1)=f(a_2)\Longrightarrow a_1=a_2.$

Una funzione $f: A \to B$ si dice suriettiva se $\forall b \in B, \exists a \in A: f(a) = b$.

Una funzione $f:A\to B$ si dice biiettiva o biunivoca se è sia iniettiva che suriettiva. Quindi f è biunivoca se $\forall\,b\in B,\,\exists\,!\,a\in A:\,f(a)=b.$

Se $f:A\to B'$ è iniettiva, allora è invertibile, i.e. la funzione $f:A\to B$, dove B=f(A), è biunivoca. In tal caso, la funzione inversa è la funzione biunivoca $f^{-1}:B\to A$ tale che $f^{-1}(b)=a$ se e solo se f(a)=b. Inoltre il grafico dell'inversa è $G_{f^{-1}}=\{(b,a)\mid b\in B,\,a\in A,\,f(a)=b\}$ e quindi $G_{f^{-1}}=\{(b,a)\mid (a,b)\in \mathcal{G}_f\}\subset B\times A$.

Composizione di funzioni

Date due funzioni $f: A \to B$ e $g: B' \to C$ tali che $f(A) \cap B' \neq \emptyset$, la funzione composta $g \circ f$ ha per dominio $f^{-1}(f(A) \cap B')$, codominio C e legge $(g \circ f)(a) = g(f(a))$.

La composizione di funzioni non è commutativa ma è associativa.

La funzione identità su un insieme A è definita da $i_A: A \to A$, $i_A(a) = a$ per ogni $a \in A$.

Se $f: A \to B$ è biunivoca, allora $f^{-1} \circ f = i_A$ e $f \circ f^{-1} = i_B$.

Proposizione 1.1 Date due funzioni $f: A \to B$ e $g: B \to A$ tali che $g \circ f = i_A$ e $f \circ g = i_B$, allora $f \in biunivoca$ e $g \in l'inversa$ di f.

Proposizione 1.2 Se $f: A \to B$ e $g: B \to C$ sono entrambe iniettive [[suriettive]] allora la funzione composta $g \circ f: A \to C$ è iniettiva [[suriettiva]]. Quindi, se f e g sono entrambe biunivoche anche la composizione è biunivoca e $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Funzioni reali

Sia $f:A\to\mathbb{R}$ una funzione reale, i.e. $A\subset\mathbb{R}$. Vediamo le proprietà di monotonia e simmetria.

Funzioni monotone

Definizione 1.3 La funzione f è monotona debolmente crescente se $\forall a_1, a_2 \in A, a_1 < a_2 \Longrightarrow f(a_1) \leq f(a_2)$, è strettamente crescente se $\forall a_1, a_2 \in A, a_1 < a_2 \Longrightarrow f(a_1) < f(a_2)$. Analogamente, f è debolmente [[strettamente]] decrescente se $\forall a_1, a_2 \in A, a_1 < a_2 \Longrightarrow f(a_1) \geq f(a_2)$ [[$f(a_1) > f(a_2)$]].

La funzione f si dice strettamente monotona se è strettamente crescente o decrescente.

Le funzioni costanti sono le uniche funzioni sia debolmente crescenti che debolmente crescenti.

Proposizione 1.4 Se f è strettamente monotona, allora è anche iniettiva. Inoltre, la sua inversa è monotona dello stesso tipo.

Osservazione 1.5 Il viceversa è falso, come si vede considerando ad esempio la funzione $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da f(x) = 1/x, che è iniettiva ma non è monotona su $\mathbb{R} \setminus \{0\}$.

Proposizione 1.6 Se f e g sono funzioni monotone, allora anche la loro composizione è monotona. Se f e g sono entrambe crescenti o entrambe decrescenti, la loro composizione è crescente. Se invece f e g sono una crescente e l'altra decrescente, la loro composizione è decrescente.

Funzioni simmetriche

Definizione 1.7 Sia $A \subset \mathbb{R}$ simmetrico, i.e. $\forall x \in A, -x \in A$. In tal caso, una funzione $f: A \to \mathbb{R}$ si dice pari se $\forall x \in A, f(-x) = f(x)$, si dice dispari se $\forall x \in A, f(-x) = -f(x)$.

Osservazione 1.8 Se f è pari, allora $(x,y) \in \mathcal{G}_f \iff (-x,y) \in \mathcal{G}_f$, quindi il grafico di f è simmetrico rispetto all'asse delle ordinate. Se invece f è dispari, allora $(x,y) \in \mathcal{G}_f \iff (-x,-y) \in \mathcal{G}_f$, quindi il grafico di f è simmetrico rispetto all'origine. La funzione potenza x^n di esponente $n \in \mathbb{N}$ è pari se n è pari, è dispari se n è dispari. La funzione $\cos x$ è pari, mentre le funzioni sen x e tan x sono dispari.

Qui di seguito, la suriettività delle funzioni potenze segue dal teorema dei valori intermedi, cf. l'osservazione 5.45.

Osservazione 1.9 Se $n \in \mathbb{N}^+$ è pari, la funzione potenza $x^n : [0, +\infty) \to [0, +\infty)$ è biunivoca e strettamente crescente. Quindi la sua inversa $x^{1/n} : [0, +\infty) \to [0, +\infty)$ è biunivoca e strettamente crescente. Se invece $n \in \mathbb{N}^+$ è dispari, la funzione potenza $x^n : \mathbb{R} \to \mathbb{R}$ è biunivoca e strettamente crescente, per cui la sua inversa $x^{1/n} : \mathbb{R} \to \mathbb{R}$ è biunivoca e strettamente crescente su tutto \mathbb{R} .

Osservazione 1.10 Il prodotto di funzioni simmetriche (i.e. pari o dispari) è una funzione simmetrica. Il tipo di parità del prodotto dipende dalla parità dei fattori, in base alla regola dei segni.

Equazioni e disequazioni irrazionali

Esempio 1.11 Consideriamo l'equazione irrazionale del tipo

$$\sqrt{f(x)} = g(x) ,$$

dove f e g sono due funzioni reali date. Per risolvere tale equazione, per prima cosa ne troviamo il campo di esistenza. Ovviamente devono essere definite le funzioni f e g, quindi occorre che $x \in \text{dom } f$ e $x \in \text{dom } g$. Inoltre, poiché la funzione $t \mapsto \sqrt{t}$ è definita per $t \geq 0$, occorre imporre che l'argomento della radice sia non negativo, i.e. che $f(x) \geq 0$. A questo punto, per "togliere" la radice vorremmo elevare al quadrato ambo i membri. Prima però ricordiamo che l'equazione a = b è equivalente all'equazione $a^2 = b^2$ se e solo se i numeri a e b sono di segno concorde. Quindi, dal momento che al primo membro dell'equazione considerata abbiamo una quantità non negativa, essendo una radice quadrata, è sufficiente imporre che il secondo membro sia non negativo, i.e. che $g(x) \geq 0$. Infine, elevando al quadrato troviamo l'equazione equivalente $f(x) = [g(x)]^2$. Riassumendo, dobbiamo risolvere il seguente sistema misto

$$x \in \operatorname{dom} f$$
 e $x \in \operatorname{dom} g$ e $f(x) \ge 0$ e $g(x) \ge 0$ e $f(x) = [g(x)]^2$.

Esempio 1.12 Consideriamo una disequazione irrazionale del tipo

$$\sqrt{f(x)} \leq g(x)$$
,

dove f e g sono due funzioni reali date. Per risolvere tale disequazione, per prima cosa troviamo il campo di esistenza. Dobbiamo ancora imporre $x \in \text{dom } f$ e $x \in \text{dom } g$. Inoltre, poiché la funzione $t \mapsto \sqrt{t}$ è definita per $t \geq 0$, occorre che l'argomento della radice sia non negativo, i.e. che $f(x) \geq 0$. A questo punto, per elevare al quadrato ambo i membri, occorre che questi siano di segno concorde. Al primo membro della disequazione abbiamo una quantità non negativa, essendo una radice quadrata. Quindi è sufficiente imporre che il secondo membro sia non negativo, i.e. che $g(x) \geq 0$. Si noti che se g(x) < 0, allora la disequazione data non è verificata. Infatti, in tal caso avremmo una quantità non negativa a primo membro minore o uguale di una quantità negativa a secondo membro, il che non è possibile. Posto quindi $g(x) \geq 0$, poiché la funzione t^2 è strettamente crescente su \mathbb{R}^+_0 possiamo infine elevare ambo i membri al quadrato e risolvere la disequazione $f(x) \leq [g(x)]^2$. Concludendo, la nostra disequazione è equivalente al sistema

$$x \in \operatorname{dom} f$$
 \mathbf{e} $x \in \operatorname{dom} g$ \mathbf{e} $f(x) \ge 0$ \mathbf{e} $g(x) \ge 0$ \mathbf{e} $f(x) \le [g(x)]^2$.

Esempio 1.13 Consideriamo ora il caso

$$\sqrt{f(x)} \ge g(x)$$
.

Posto come sopra $x \in \text{dom } f$ e $x \in \text{dom } g$, occorre che l'argomento della radice sia non negativo, i.e. che $f(x) \geq 0$. A questo punto osserviamo che se g(x) < 0, allora la disequazione è verificata e, quindi, otteniamo un primo gruppo di soluzioni dato dal sistema

$$x \in \text{dom } f$$
 e $x \in \text{dom } g$ **e** $f(x) \ge 0$ **e** $g(x) < 0$.

Se invece $g(x) \ge 0$, poiché la funzione t^2 è strettamente crescente su \mathbb{R}_0^+ possiamo elevare al quadrato e risolvere la disequazione $f(x) \ge [g(x)]^2$. Quindi abbiamo un secondo gruppo di soluzioni dato dal sistema

$$x \in \operatorname{dom} f$$
 e $x \in \operatorname{dom} g$ **e** $f(x) \ge 0$ **e** $g(x) \ge 0$ **e** $f(x) \ge [g(x)]^2$

dove la disequazione $f(x) \ge 0$ può essere omessa, essendo una conseguenza della quinta.

Trovati gli insiemi delle soluzioni dei due sistemi, la loro unione ci dà la soluzione cercata.

Valore assoluto

Definizione 1.14 La funzione valore assoluto ha dominio e codominio uguali ad \mathbb{R} ed è definita dalla legge che ad ogni numero $a \in \mathbb{R}$ associa $|a| := \max\{a, -a\}$.

Proposizione 1.15 Per ogni $a, b \in \mathbb{R}$ risulta

- 1) $a \leq |a|$
- 2) |a| = a se $a \ge 0$, mentre |a| = -a se $a \le 0$
- 3) |a| > 0
- 4) $|a| = 0 \iff a = 0$
- 5) |a| = |-a|
- 6) $-|a| \le a \le |a|$.
- 7) $|a| \le b \iff -b \le a \le b$
- 8) $|a| < b \iff -b < a < b$
- 9) $|a| \ge b \iff [(a \ge b) \ \mathbf{o} \ (a \le -b)]$
- 10) $|a| > b \iff [(a > b) \ \mathbf{o} \ (a < -b)].$

DIMOSTRAZIONE: Le prime sei proprietà sono di verifica elementare. Per provare la 7), osserviamo che

$$|a| \le b \iff \max\{a, -a\} \le b \iff a \le b \ \mathbf{e} \ -a \le b \iff a \le b \ \mathbf{e} \ -b \le a \iff -b \le a \le b \,.$$

La 8) si prova in maniera analoga. La 9) si ottiene negando la 8) e la 10) negando la 7).

Valgono poi le importanti diseguaglianze triangolari:

Proposizione 1.16 Se $A, B \in \mathbb{R}$, allora

$$(I) |A + B| < |A| + |B|$$

$$(II) ||A| - |B|| \le |A - B|.$$

DIMOSTRAZIONE: Scrivendo la proprietà 6) per A e per B, e sommando membro a membro, si ottiene $-(|A|+|B|) \le A+B \le (|A|+|B|)$. Applicando quindi la 7), con a=A+B e b=|A|+|B|, si ottiene la (I). Per provare la (II), dalla prima diseguaglianza triangolare abbiamo

$$|A| = |(A - B) + B| \le |A - B| + |B|$$

da cui, confrontando il primo e l'ultimo membro,

$$|A| - |B| \le |A - B|.$$

Prendendo poi B al posto di A ed A al posto di B, otteniamo in modo analogo che

$$|B| - |A| \le |B - A|$$

da cui, essendo |B - A| = |A - B| per la 5), e moltiplicando ambo i membri per -1,

$$-|A-B| \le |A| - |B|.$$

Abbiamo quindi ottenuto che

$$-|A - B| \le |A| - |B| \le |A - B|$$
,

il che è equivalente a $||A| - |B|| \le |A - B|$, per la proprietà 7) del valore assoluto applicata questa volta con a = |A| - |B| e b = |A - B|.

Osservazione 1.17 Per ogni $x \in \mathbb{R}$ risulta $\sqrt{x^2} = |x|$, mentre ricordiamo che l'equazione $(\sqrt{x})^2 = x$ ha senso ed è verificata se e solo se $x \ge 0$. Quindi, il valore assoluto esprime la distanza tra punti. Posto $\operatorname{dist}(x,y) := |x-y|$ per $x,y \in \mathbb{R}$, si deduce che fissati $x_0 \in \mathbb{R}$ e $x_0 > 0$, soluzione della disequazione $|x-x_0| < x$ sono i punti che distano da x_0 per meno di \mathbb{R} , i.e. l'intervallo $|x_0-x_0| < x$.

Ricordiamo inoltre che una funzione del tipo $x \mapsto f(|x|)$ è pari, quindi l'insieme S delle soluzioni di f(|x|) > 0 è simmetrico. Inoltre si ha

$$|f(x)| = \begin{cases} f(x) & \text{se } f(x) \ge 0 \\ -f(x) & \text{se } f(x) \le 0 \end{cases} \quad \forall x \in \text{dom } f.$$