

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии

Отчет по лабораторной работе №6

По курсу "Экономика программной инженерии"

Тема: "Предварительная оценка параметров программного проекта"

Студент Лучина Е.Д (№ в списке 13 - вариант 1)

Группа ИУ7-81Б

Преподаватель Барышникова М.Ю.

Москва

2021 г.

Краткое описание методики СОСОМО

COnstructive COst MOdel — конструктивная модель стоимости. Основные формулы модели:

Трудозатраты=С1*ЕАF*(Размер)^р1

Время=С2*(Трудозатраты)^р2

Трудозатраты — количество человеко-месяцев;

Время — общее количество месяцев;

С1, С2 — масштабирующие коэффициенты;

EAF — уточняющий фактор, характеризующий предметную область, персонал, среду и инструментарий, используемый для создания рабочих продуктов процесса; рассчитывается как произведение 15 факторов (cost drivers), значения факторов берутся из таблицы, в которой указаны рейтинги для каждого фактора по его значению или по его важности;

Размер — число исходных инструкций конечного продукта, измеряемое в тысячах строк кода - KLOC.

p1 — показатель степени, характеризующий экономию при больших масштабах, присущую тому процессу, который используется для создания конечного продукта; в частности, способность процесса избегать непроизводительных видов деятельности.

p2 — показатель степени, который характеризует инерцию и распараллеливание, присущие управлению разработкой ПО.

Коэффициенты C1,C2, P1,P2 зависят от режима проекта - обычный, промежуточный, встроенный:

Название режима	Размер проекта, KLOC	Описание	Среда разработки	c1	p1	c2	p2
обычный	До 50	Некрупный проект разрабатывается небольшой командой, для которой нехарактерны нововведения, разработчики знакомы с инструментами и языком программирования	стабильная	3.2	1.05	2.5	0.38

промежут очный	50-500	Относительно небольшая команда занимается проектом среднего размера, в процессе разработки необходимы определенные инновации	Среда характеризует ся незначительн ой нестабильнос тью	2.0	1.12	2.5	0.35
встроенн ый	500	Большая команда разработчиков трудится над крупным проектом, необходим значительный объем инноваций	Среда состоит из множества нестабильных элементов	2.8	1.2	2.5	0.32

Задание 1

Исследовать влияние квалификационных характеристик членов команды (АСАР, АЕХР, РСАР, LEXP) программного проекта на трудоемкость (РМ) и время разработки проекта (ТМ) для базового уровня модели СОСОМО и разных типов проектов (обычного, встроенного, промежуточного). Для этого получить значения РМ и ТМ по всем типам проектов для одного и того же значения параметра SIZE (размера программного кода), выбрав номинальный (средний) уровень сложности продукта (СРLX) и изменяя значения характеристик персонала от низких до высоких. Повторить расчеты для проекта, предусматривающего создание продукта очень низкого и очень высокого уровня сложности.

Самое большое влияние на трудоемкость среди квалификационных характеристик членов команды имеет способности аналитика. Немногим меньше - способности программиста. Далее - знания приложений, виртуальной машины и языка программирования. Распределения влияния этих характеристик на время разработки соответствующее.

РМ трудоемкость проекта

ТМ время разработки проекта

- 1: changing ACAP, 100 KLOC, Обычный вариант
- 2: changing AEXP, 100 KLOC, Обычный вариант
- 3: changing PCAP, 100 KLOC, Обычный вариант
- 4: changing VEXP, 100 KLOC, Обычный вариант
- 5: changing LEXP, 100 KLOC, Обычный вариант

РМ трудоемкость проекта

ТМ время разработки проекта

- 1: changing ACAP, 100 KLOC, Промежуточный вариант
- 2: changing AEXP, 100 KLOC, Промежуточный вариант
- 3: changing PCAP, 100 KLOC, Промежуточный вариант
- 4: changing VEXP, 100 KLOC, Промежуточный вариант
- 5: changing LEXP, 100 KLOC, Промежуточный вариант

Обычный, промежуточный и встроенный варианты дают одинаковый вид зависимости значений, однако при уменьшении стабильности среды разработки увеличивается трудоемкость, но уменьшается общее время разработки продукта (ниже на примере изменения ACAP).

2: changing ACAP, 100 KLOC, Промежуточный вариант

3: changing ACAP, 100 KLOC, Встроенный вариант

Повторить расчеты для проекта, предусматривающего создание продукта очень низкого и очень высокого уровня сложности.

Изменение сложности проекта при остальных номинальных параметрах дает нам следующую кривую. И трудоемкость и время увеличиваются как и ожидалось (при этом практически линейно).

Вид кривых зависимостей pm и tm от квалификационных характеристик членов команды сохраняются при разной сложности проекта.

2: changing AEXP, CPLX = 0.7, 100 KLOC, Обычный вариант 3: changing PCAP, CPLX = 0.7, 100 KLOC, Обычный вариант 4: changing VEXP, CPLX = 0.7, 100 KLOC, Обычный вариант 5: changing LEXP, CPLX = 0.7, 100 KLOC, Обычный вариант

Применение модели СОСОМО для своего варианта задания

По предварительным оценкам размер проекта составит порядка 25 000 строк исходного кода (KLOC). Для реализации проекта планируется привлечь высококвалифицированную команду программистов (PCAP) с высоким знанием языков программирования (LEXP). В проекте будут использованы самые современные методы программирования (MODP). Также планируется высокий уровень автоматизации процесса разработки за счет использования эффективных программных инструментов (TOOL). Произвести оценку по методике СОСОМО для обычного режима.

Значение драйверов затрат в модели СОСОМО

Идентификатор	Уточняющий фактор работ	Диапазон изменения параметра	Очень низкий	Низкий	Номинальный	Высокий	Очень высокий
Атрибуты программно	ого продукта						
RELY	Требуемая надежность	0,75-1,40	0,75	0,86	1,0	1,15	1,4
DATA	Размер базы данных	0,94-1,16		0,94	1,0	1,08	1,16
CPLX	Сложность продукта	0,70-1,65	0,7	0,85	1,0	1,15	1,3
Атрибуты компьютер	a						
TIME	Ограничение времени выполнения	1,00-1,66			1,0	1,11	1,50,
STOR	Ограничение объема основной памяти	1,00-1,56			1,0	1,06	1,21
VIRT	Изменчивость виртуальной машины	0,87-1,30		0,87	1,0	1,15	1,30
TURN	Время реакции компьютера	0,87-1,15		0,87	1,0	1,07	1,15
Атрибуты персонала							
ACAP	Способности аналитика	1,46-0,71	1,46	1,19	1,0	0,86	0,71
AEXP	Знание приложений	1,29-0,82	1,29	1,15,	1,0	0,91	0,82
PCAP	Способности программиста	1,42-0,70	1,42	1,17	1,00	0,86	0,7
VEXP	Знание виртуальной машины	1,21-0,90	1,21	1,1	1,0	0,9	
LEXP	Знание языка программирования	1,14-0,95	1,14	1,07	1,0	0,95	
Атрибуты проекта							
MODP	Использование современных методов	1,24-0,82	1,24	1,1	1,0	0,91	0,82
TOOL	Использование программных инструментов	1,24-0,83	1,24	1,1	1,0	0,91	0,82
SCED	Требуемые сроки разработки	1,23-1,10	1,23	1,08	1,0	1,04	1,1

Идентификатор	Значение	Значение параметра		
SIZE	25 KLOC			
PCAP	высокий	0.86		
LEXP	высокий	0.95		
MODP	очень высокий	0.82		
TOOL	высокий	0.91		
остальное	номинальный	1		

Значение коэффициента EAF рассчитывается как произведение значений всех драйверов стоимости: EAF = $(1^1) * 0.86 * 0.95 * 0.82 * 0.91 = 0.6096454$

Тогда, для обычного режима работы:

Трудозатраты= $3.2*0.6096454*25^1.05 = 57.2881$ (человеко-месяцев)

Время= $2.5*57.2881^{0.38} = 11.6414$ (месяцев).

В модели СОСОМО не учитываются затраты на планирование и определение требований, поэтому к полученному значению для трудозатрат следует добавить 8%, а ко времени 36%.

Итого, суммарные трудозатраты на проект - 1.08 * 57.2881 = 61.871148, суммарное время - 1.36 * 11.6414 = 15.832304

Программное решение:

Распределение работ и времени по стадиям жизненного цикла

Вид деятельности	Трудозатраты (чм)	Время (м)	Кол-во сотрудников (Work/Time)
Планирование и определение требований	4.5830466266014245	4.190896535408378	1
Проектирование продукта	10.311854909853205	4.190896535408378	2
Детальное проектирование	14.322020708129452	2.095448267704189	7
Кодирование и тестирование отдельных модулей	14.89490153645463	2.095448267704189	7
Интеграция и тестирование	17.75930567808052	3.2595861942065163	5
Итого	61.87112945911924	15.832275800431647	

Предположительный бюджет

Анализ требований (4%)	324273
Проектирование продукта (12%)	972820
Программирование (44%)	3567008
Тестирование (6%)	486410
Верификация и аттестация (14%)	1134957
Канцелярия проекта (7%)	5674786
Управление конфигурацией и обеспечение качества (7%)	567479
Создание руководств (6%)	486410
Непредвиденные риски(+20%)	1621367
Итого	9728204

Предварительная оценка бюджета может быть произведена по формуле:

$$B = Pay * Work,$$

где Рау — стоимость человеко-месяца. Возьмем стоимость человека-месяца с сайта habr.com по Москве и Санкт-Петербургу за 2020 год на каждом этапе разработки для разных разработчиков, тогда:

- 1. Системный аналитик 100000 рублей
- 2. Архитектор ПО 192 000 рублей
- 3. Главный разработчик 140 000 рублей, Продуктовый менеджер 150 000 (трудозатраты разделить поровну)
- 4. Разработчик 120 000 рублей QA инженер 100 000 рублей (трудозатраты разделить поровну)
- 5. Разработчик 120 000 рублей QA инженер 100 000 рублей (трудозатраты разделить поровну

Вывод

Достоинства модели СОСОМО

- Метод является достаточно универсальным и может поддерживать различные режимы и уровни программных разработок
- При расчетах используются множители и показатели степени, полученные на основе анализа данных большого количества практически реализованных проектов

- Предложенные драйверы затрат хорошо подгоняются под специфику конкретной организации
- Точность оценок повышается по мере накопления в организации опыта применения модели
- Метод снабжен обширной документацией и прост в применении

Недостатки модели СОСОМО

- Все уровни зависят от оценки размера точность оценки размера оказывает влияние на точность оценки трудозатрат, времени разработки, подбор персонала и оценку производительности
- Метод основан на каскадной модели жизненного цикла и прежде всего не учитывает изменяемость требований
- Слишком поверхностное внимание уделено вопросам обеспечения безопасности и надежности
- Модель не учитывает возможности повторного использования кода, итерационные возвраты по этапам жизненного цикла, объектноориентированные технологии разработки ПО

Методика оценки СОСОМО пригодна для общей первоначальной оценки всего проекта: оценке затрат человеко-месяцев и времени на каждый этап жизненного цикла ПО. Однако для более детального планирования затрат и оценки соблюдения временных ограничений по ходу проекта, необходимо применять другие методики и инструменты (например, использовать специализированное ПО, такое как MS Project), позволяющие планировать выполнение отдельных задач, а также учитывать затраты, отличные от оплаты трудозатрат, актуализировать данные во времени.