2012-2013 学年第二学期《高等数学 (2-2)》期末考试 A 卷

一. (共3小题,每小题5分,共计15分)

1.
$$\exists \exists |\vec{a}| = 2, |\vec{b}| = \sqrt{2}, \exists \vec{a} \cdot \vec{b} = 2, \vec{x} | \vec{a} \times \vec{b}|.$$

解 设
$$\overrightarrow{a}$$
、 \overrightarrow{b} 的夹角为 φ ,则 $\cos \varphi = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$,∴ $\varphi = \frac{\pi}{4}$,

故
$$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \end{vmatrix} \sin \varphi = 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 2.$$

2. 求曲线
$$\Gamma$$
:
$$\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 + z^2 - y^2 = 0 \end{cases}$$
 在 yoz 坐标面上的投影曲线的方程.

解 从
$$\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 + z^2 - y^2 = 0 \end{cases}$$
 中消去 x 得投影柱面: $3y^2 - z^2 = 16$,

∴ Γ在
$$yoz$$
坐标面上的投影曲线的方程为:
$$\begin{cases} 3y^2 - z^2 = 16, \\ x = 0 \end{cases}$$

3. 设函数 $f(x,y,z) = x^3 + 2xy + y^3 + z^3$, 求函数 f 在点 M(1,1,1) 处的梯度,并问函数 f 在点 M(1,1,1) 处沿哪个方向的方向导数最大?最大的方向导数值是多少?

解 :
$$\frac{\partial f}{\partial x} = 3x^2 + 2y$$
, $\frac{\partial f}{\partial y} = 2x + 3y^2$, $\frac{\partial f}{\partial z} = 3z^2$,

$$\therefore grad f\big|_{M(1,1,1)} = \{ 3x^2 + 2y, 2x + 3y^2, 3z^2 \} \big|_{M(1,1,1)} = \{ 5, 5, 3 \},$$

根据梯度的定义,函数 f 在点 M(1,1,1) 处沿 $\{5,5,3\}$ 的方向导数最大,最大的方向导数

值是
$$|grad f|_{M(1,1)} = \sqrt{5^2 + 5^2 + 3^2} = \sqrt{59}$$
.

二. (共3小题,每小题7分,共计21分)

1. 设
$$z = f(ye^x, x^2 + y^2)$$
, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

$$\mathbf{R} \frac{\partial z}{\partial x} = ye^{x} f_{1}' + 2x f_{2}',$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = e^{x} f_{1}' + ye^{x} [f_{11}'' \cdot e^{x} + f_{12}'' \cdot 2y] + 2x [f_{21}'' \cdot e^{x} + f_{22}'' \cdot 2y]$$

$$= e^{x} f_{1}' + ye^{2x} f_{11}'' + 2e^{x} (x + y^{2}) f_{12}'' + 4xyf_{22}''.$$

2. 设曲面 z=z(x,y) 是由方程 $x^3y+xz=1$ 所确定,求该曲面在点 $M_0(1,2,-1)$ 处的切平面方程及全微分 $dz|_{(1,2)}$.

$$\mathbf{R} \Leftrightarrow F(x, y, z) = x^3 y + xz - 1, \quad F'_x = 3x^2 y + z, \quad F'_y = x^3, \quad F'_z = x,$$

所求切平面的法向量为: $\vec{n} = \{F'_x, F'_y, F'_z\}|_{M_0} = \{5,1,1\}$,

切平面方程为: 5(x-1)+(y-2)+(z+1)=0, 即 5x+y+z-6=0.

$$\therefore dz\Big|_{(1,2)} = \frac{\partial z}{\partial x}\Big|_{M_0} dx + \frac{\partial z}{\partial y}\Big|_{M_0} dy = -5dx - dy.$$

3. 计算
$$\iint_{x^2+y^2 \le 1} (x+y)^2 dxdy$$
.

$$\mathbf{PP} \iint_{x^2 + y^2 \le 1} (x + y)^2 dxdy = \iint_{x^2 + y^2 \le 1} (x^2 + y^2 + 2xy) dxdy$$

$$= \iint_{x^2 + y^2 \le 1} (x^2 + y^2) dxdy + 2 \iint_{x^2 + y^2 \le 1} xy dxdy$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} r^{2} r dr + 0 = 2\pi \cdot \frac{1}{4} = \frac{\pi}{2}.$$

三. (共3小题,每小题7分,共计21分)

1. 求上半球面 $z = \sqrt{4 - x^2 - y^2}$ 含在圆柱面 $x^2 + y^2 = 2x$ 内部的那部分面积 S.

β Σ:
$$z = \sqrt{4 - x^2 - y^2}$$
 D: $(x - 1)^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$.

$$dS = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dxdy = \frac{2dxdy}{\sqrt{4 - x^2 - y^2}},$$

由对称性,所求面积 $S=2\iint\limits_{\Sigma}dS=2\iint\limits_{D}\frac{2dxdy}{\sqrt{4-x^{2}-y^{2}}}$ (利用极坐标变换)

$$=4\int_{0}^{\frac{\pi}{2}}d\theta\int_{0}^{2\cos\theta}\frac{rdr}{\sqrt{4-r^{2}}}=4\pi-8.$$

2. 设函数 f(u) 具有连续的导数,且满足 f(0) = 0, f'(0) = 1, 求极限:

$$\lim_{t\to 0^+} \frac{1}{\pi t^4} \iiint_{x^2+y^2+z^2\leq t^2} f(\sqrt{x^2+y^2+z^2}) dv.$$

解
$$\Rightarrow$$

$$\begin{cases} x = \rho \cos \theta \sin \varphi \\ y = \rho \sin \theta \sin \varphi \\ z = \rho \cos \varphi \end{cases}$$
 則
$$\int_{x^2 + y^2 + z^2 \le t^2} f(\sqrt{x^2 + y^2 + z^2}) dv$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \varphi d\varphi \int_{0}^{t} f(\rho) \cdot \rho^2 d\rho$$

$$=4\pi\int_0^t f(\rho)\cdot\rho^2d\rho$$

$$\therefore \lim_{t \to 0^{+}} \frac{1}{\pi t^{4}} \iiint_{x^{2} + y^{2} + z^{2} \le t^{2}} f(\sqrt{x^{2} + y^{2} + z^{2}}) dv = \lim_{t \to 0^{+}} \frac{4\pi \int_{0}^{t} f(\rho) \cdot \rho^{2} d\rho}{\pi t^{4}} \quad (\frac{0}{0})$$

$$= \lim_{t \to 0^{+}} \frac{4 \pi f(t) \cdot t^{2}}{4 \pi t^{3}} = \lim_{t \to 0^{+}} \frac{f(t)}{t} \left(\frac{0}{0}\right) = \lim_{t \to 0^{+}} f'(t) = f'(0) = 1.$$

3. 计算
$$I = \oint_C \frac{x^2 dx + \sin(x^2 + y^2) dy}{x^2 + y^2 - 2y}$$
 , 其中 C 为圆周 $x^2 + y^2 - 2y = 1$ 的逆时针方向.

先用曲线 C 的方程 $x^2 + y^2 - 2y = 1$, $x^2 + y^2 = 1 + 2y$ 代换被积函数,

$$I = \oint_C \frac{x^2 dx + \sin(x^2 + y^2) dy}{x^2 + y^2 - 2y} = \oint_C x^2 dx + \sin(1 + 2y) dy \qquad (\quad \text{利} \quad \text{用} \quad \text{格} \quad \text{林} \quad \text{公} \quad \text{式} \quad ,$$

$$P = x^2, \quad Q = \sin(1+2y), \quad \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0) = \iint_{x^2 + (y-1)^2 \le 2} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = 0$$

另解
$$I = \oint_C \frac{x^2 dx + \sin(x^2 + y^2) dy}{x^2 + y^2 - 2y} = \oint_C x^2 dx + \sin(x^2 + y^2) dy$$

(利用格林公式,
$$P = x^2$$
, $Q = \sin(x^2 + y^2)$) =
$$\iint_{x^2 + (y-1)^2 \le 2} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$$

$$= \iint_{x^2 + (y-1)^2 \le 2} 2x \cos(x^2 + y^2) dx dy = 0.$$

$$(2x\cos(x^2+y^2)$$
是 x 的奇函数, $x^2+(y-1)^2 \le 2$ 关于 y 轴对称)

四. (共2小题,每小题7分,共计14分)

1. 建造一个表面积为 $108\,m^2$ 的长方体形敞口水池,问如何选择水池的尺寸,才能使其容

解 设水池的长宽高分别为x, y, z 则根据题意,其容积为:

$$V = xyz$$
 $\exists xy + 2zy + 2xz = 108$, $(x > 0, y > 0, z > 0)$

构造拉格朗日函数 $L(x, y, z, \lambda) = xyz + \lambda(xy + 2zy + 2xz - 108)$,

$$\int L_x' = yz + \lambda y + 2\lambda z = 0 \tag{1}$$

$$L_{y}' = xz + \lambda x + 2\lambda z = 0 \tag{2}$$

(3)

$$\begin{cases} L'_{x} = yz + \lambda y + 2\lambda z = 0 & (1) \\ L'_{y} = xz + \lambda x + 2\lambda z = 0 & (2) \\ L'_{z} = xy + 2\lambda y + 2\lambda x = 0 & (3) \\ L'_{\lambda} = xy + 2zy + 2zx - 108 = 0 & (4) \end{cases}$$

则

$$\begin{cases} (1) \times x \Rightarrow xyz + \lambda xy + 2\lambda xz = 0 \\ (2) \times y \Rightarrow xyz + \lambda xy + 2\lambda yz = 0 \\ (3) \times z \Rightarrow xyz + 2\lambda yz + 2\lambda xz = 0 \end{cases}$$
 (5)

$$\{(2) \times y \Rightarrow xyz + \lambda xy + 2\lambda yz = 0 \tag{6}$$

$$(3) \times z \Rightarrow xyz + 2\lambda yz + 2\lambda xz = 0 \tag{7}$$

(5)
$$-$$
 (6) 得 $x = y$, (6) $-$ (7) 得 $y = 2z$,代入 (4) 并注意到 $x > 0$, $y > 0$, $z > 0$ 得

符合实际意义唯一驻点: x = y = 6, z = 3即为所求的最大值点,

故水池的长宽高分别为6m, 6m, 3m 时,才能使其容积最大.

2. 计算
$$I = \iint_{\Sigma} \frac{y dy dz + x dz dx + z dx dy}{\sqrt{x^2 + y^2 + z^2}}$$
, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 的内侧.

解 设
$$\Omega$$
: $x^2 + y^2 + z^2 \le 1$,

$$I = \oiint_{\Sigma} \frac{ydydz + xdzdx + zdxdy}{\sqrt{x^2 + y^2 + z^2}} = \oiint_{\Sigma} ydydz + xdzdx + zdxdy$$

$$(P = y, Q = x, R = z, \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 1$$
 在Ω上连续,根据高斯公式)

$$=-\iiint_{\Omega}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dxdydz=-\iiint_{\Omega}dxdydz=-\frac{4\pi}{3}.$$

五. (共3小题,第1、2小题各5分,第3小题7分,共计17分)

1. 判别级数
$$\sum_{n=1}^{\infty} (-1)^n (1 + \frac{1}{n})^n$$
 的敛散性. (5 分)

$$\mathbf{f} : \lim_{n \to \infty} |u_n| = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \neq 0, \qquad \therefore \lim_{n \to \infty} u_n = \lim_{n \to \infty} (-1)^n (1 + \frac{1}{n})^n \neq 0,$$

$$\therefore \sum_{n=1}^{\infty} (-1)^n (1+\frac{1}{n})^n \ \text{ξ} \ \text{ξ}.$$

2. 将函数 $f(x) = a^x$ $(a > 0, a \ne 1)$ 展开成 x 的幂级数. (5分)

$$\mathbf{p} \quad \therefore \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad , \quad -\infty < x < +\infty .$$

$$\therefore f(x) = a^{-x} = e^{x \ln a} = \sum_{n=0}^{\infty} \frac{(x \ln a)^n}{n!} = \sum_{n=0}^{\infty} \frac{\ln^n a}{n!} x^n - \infty < x < +\infty.$$

3. 设函数 $f(x) = \begin{cases} x, & 0 \le x \le \pi, \\ 1, & -\pi < x < 0 \end{cases}$ 以 2π 为周期的傅里叶级数的和函数为 S(x), 求其傅

里叶系数
$$a_3$$
 及 $S(2\pi)$, $S(\frac{3\pi}{2})$ 的值. (7分)

$$\mathbf{PF} \quad a_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos 3x dx = \frac{1}{\pi} \int_{-\pi}^{0} \cos 3x dx + \frac{1}{\pi} \int_{0}^{\pi} x \cos 3x dx + \frac{1}{\pi} \int_{0}^{\pi} x \cos 3x dx + \frac{1}{\pi} \left[\frac{\sin 3x}{3} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[\frac{x \sin 3x}{3} + \frac{\cos 3x}{9} \right]_{0}^{\pi} = -\frac{2}{9\pi}.$$

$$S(2\pi) = S(0) = \frac{f(0+0) + f(0-0)}{2} = \frac{0+1}{2} = \frac{1}{2},$$

$$S(\frac{3\pi}{2}) = S(2\pi - \frac{\pi}{2}) = S(-\frac{\pi}{2}) = f(-\frac{\pi}{2}) = 1.$$

六. (共2小题,第1小题8分,第2小题4分,共计12分)

1. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ 的收敛半径、收敛域及其和函数.

$$\mathbf{F}$$
 : $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n+1}{n+2} = 1$, : 收敛半径为1,

当 x = 1时,级数 $\sum_{n=0}^{\infty} \frac{1}{n+1}$ 发散,当 x = -1时,级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ 收敛,

故所求的收敛域为[-1,1);

$$\Leftrightarrow S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1,1);$$

于是
$$x S(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$
, $|x| < 1$. 逐项求导,得

$$[x \ S(x)]' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} , \quad |x| < 1.$$

$$\therefore xS(x) = \int_0^x [tS(t)]' dt = \int_0^x \frac{dt}{1-t} = -\ln(1-x), \qquad |x| < 1.$$

$$\therefore S(x) = -\frac{1}{x} \ln(1-x) , |x| < 1 \perp x \neq 0.$$

$$\overline{\text{m}} S(-1) = \lim_{x \to -1^+} S(x) = -\lim_{x \to -1^+} \frac{1}{x} \ln(1-x) = \ln 2, \qquad S(0) = 1,$$

2. (4分) 证明不等式: $\iint_{D} \frac{e^{y}}{e^{x}} dx dy \ge 1 \text{ 成立, } 其中 D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}.$

证
$$\therefore D$$
 关于直线 $y = x$ 对称, $\therefore \iint_D \frac{e^y}{e^x} dx dy = \iint_D \frac{e^x}{e^y} dx dy$

$$\therefore \iint_{D} \frac{e^{y}}{e^{x}} dxdy = \frac{1}{2} \iint_{D} \frac{e^{y}}{e^{x}} dxdy + \iint_{D} \frac{e^{x}}{e^{y}} dxdy$$

$$= \frac{1}{2} \iint_{D} (\frac{e^{y}}{e^{x}} + \frac{e^{x}}{e^{y}}) dx dy = \iint_{D} \frac{e^{2y} + e^{2x}}{2e^{x}e^{y}} dx dy \ge \iint_{D} dx dy = 1.$$