Débruitage de signaux aléatoires par filtrage de Wiener

Dans ce mini-projet, on s'intéresse au débruitage de signaux aléatoires en utilisant un filtre de Wiener de type RIF.

Partie préliminaire

Rappelons qu'un filtre de Wiener à RIF $H(z) = \sum_{l=0}^{L-1} h_l z^{-l}$ a pour but la poursuite d'un certain signal de référence inconnu d(n) en filtrant un signal observable x(n), lié statistiquement à d(n). Les coefficients du filtre de Wiener optimal sont choisis de façon à minimiser l'Erreur Quadratique Moyenne (EQM).

$$J(h) = E[e^{2}(n)] = E\left[\left(d(n) - \hat{d}(n)\right)^{2}\right]$$

Ainsi, a-t-on montre, dans le cours, que le vecteur des coefficients de la RI du filtre de Wiener noté h_{opt} obéit aux équations de Wiener-Hopf comme suit :

$$Rh_{opt} = p$$

où R est la matrice d'autocorrélation de x(n) et p est le vecteur d'intercorrélation du couple (d(n), x(n)).

- 1. Rappeler la forme de \mathbf{R} et \mathbf{p} .
- 2. Ecrire la sortie du filtre de Wiener optimal $\hat{d}(n)$ en fonction de h_{opt} et $\mathbf{x}(n) = [x, ..., x(n-L+1)]^T$
- 3. Pour l'application du filtrage de Wiener en débruitage, il est clair que le signal à traiter n'est que x(n) = d(n) + u(n) avec u(n) un bruit blanc, centré, décorrélé de d(n) et de variance σ_u^2 .
 - Expliciter dans ce cas \mathbf{R} en fonction de \mathbf{R}_d et \mathbf{R}_u , les matrices d'autocorrélation respectives de d(n) et u(n), ainsi que le vecteur d'intercorrélation \mathbf{p} . on notera $r_d(l)$ l'autocorrélation du signal de référence et on précisera la valeur de \mathbf{R}_u .
- 4. On appelle Rapport Signal à Bruit (RSB) avant débruitage le rapport de puissance du signal utile (de référence donc) et de celle du bruit qui l'a entaché (u(n)) en dB calculé comme suit

$$RSB_{dB} = 10 \log_{10} \frac{E[d^2(n)]}{E[u^2(n)]}$$

Après débruitage, d(n) et u(n) auront subi le filtrage deWiener pour se transformer en respectivement, $d'(n) = h_{opt}(n) * d(n)$ et $u'(n) = h_{opt}(n) * u(n)$. Ainsi, le RSB après débruitage devient

$$RSB'_{dB} = 10 \log_{10} \frac{E[d'^{2}(n)]}{E[u'^{2}(n)]}$$

Exprimer RSB' en fonction de h_{opt} , R_d et R_u .

5. Montrer que la valeur de l'EQM minimale atteinte par le filtre de Wiener est

$$J_{min} = r_d(0) - \boldsymbol{h}_{opt}^T \boldsymbol{p}$$

Implémentation

1. Générer $N = 10^3$ échantillons d'un signal de référence

$$d(n)=\sin\bigl(\omega_0n+\phi(n)\bigr), \qquad n=1,\ldots,N, \qquad \omega_0=0.05\pi \qquad \qquad {\rm où} \qquad \phi(n)\sim U([0,2\pi])$$

- 2. Générer le signal bruité x(n) en utilisant un bruit blanc du type gaussien centré de puissance $\sigma_u^2 = 0.1$. Stocker le dans un vecteur x. 3. Déterminer le vecteur des coefficients de la RI du filtre de Wiener d'ordre L = 3, \boldsymbol{h}_{opt} .
- 4. Générer la sortie du filtre de Wiener $\hat{d}(n)$ qu'on stockera dans un vecteur dhat.
- 5. Afficher le signal de référence, celui bruité et le signal ainsi débruité sur le même graphe. Qu'est ce que vous remarquez?
- 6. Déterminer ainsi les valeurs des RSB avant et après débruitage ainsi que la valeur de
- 7. Afin d'étudier l'effet de l'ordre L du filtre de Wiener sur la performance de l'opération de débruitage ainsi menée, visualiser les variations de RSB' et J_{min} en fonction de L. Interpréter.
 - Maintenant, nous allons considérer un signal de r'ef'erence de type audio.
- 8. Ouvrir un fichier audio *.wav sous MATLAB avec la commande wavread et reprendre les mêmes étapes (2)-(7). Essayer plusieurs fichiers.
- 9. Afin de tenir compte de la non stationnarité du signal audio, faites un découpage de ce signal en fenêtres d'analyses de durée 3ms et refaire le débruitage par fenêtre.
- 10. Comparer ainsi les deux procédés de débruitage.