Calcul Numeric Octombrie, 2025 Seminar 1 - bis

Cristian Rusu

1 Scopul seminarului

În acest seminar vom rezolva probleme de tipul cele mai mici pătrate:

- exemple de calcul pentru cazurile 2×2 și 3×2 ;
- rezolvarea sistemelor;
- rezolvarea sistemelor regularizate.

2 Exerciții

1. Potriviți dreptele $y_i = ax_i$ și $y_i = ax_i + b$ în sensul celor mai mici pătrate pentru perechile de puncte din setul de date $\{(x_i, y_i)\}$:

$$\{(0,1), (1,2), (2,2)\}.$$
 (1)

Determinați a și (a,b) și suma pătratelor reziduurilor pentru:

$$\underset{a}{\text{minimizează}} \sum_{i=1}^{3} (y_i - ax_i)^2.$$
(2)

minimizează
$$\sum_{i=1}^{3} (y_i - (ax_i + b))^2$$
. (3)

- 2. Se dau matricea $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ și vectorul $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ (de discutat puțin de ce se schimbă notația).
 - (a) Aplicați Gram-Schmidt pentru a scrie $\mathbf{A} = \mathbf{Q}\mathbf{R}$, cu $\mathbf{Q} \in \mathbb{R}^{3\times 2}$ având coloane ortonormate. Folosiți $\mathbf{Q}\mathbf{R}$ pentru a obține soluția de cele mai mici pătrate \mathbf{x}^{\star} .
 - (b) Calculați factorizarea QR cu reflector Householder $\mathbf{A} = \mathbf{Q}\mathbf{R}$, cu $\mathbf{Q} \in \mathbb{R}^{3\times 2}$ având coloane ortonormate. Folosiți $\mathbf{Q}\mathbf{R}$ pentru a obține soluția de cele mai mici pătrate \mathbf{x}^{\star} .
- 3. Se dau matricea $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ și vectorul $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ (de discutat puțin de ce se schimbă notația).
 - (a) Aplicați Gram-Schmidt pentru a scrie $\mathbf{A} = \mathbf{Q}\mathbf{R}$, cu $\mathbf{Q} \in \mathbb{R}^{3\times 2}$ având coloane ortonormate. Folosiți $\mathbf{Q}\mathbf{R}$ pentru a obține soluția de cele mai mici pătrate \mathbf{x}^{\star} .
 - (b) Calculați factorizarea QR cu reflector Householder $\mathbf{A} = \mathbf{Q}\mathbf{R}$, cu $\mathbf{Q} \in \mathbb{R}^{3\times 2}$ având coloane ortonormate. Folosiți $\mathbf{Q}\mathbf{R}$ pentru a obține soluția de cele mai mici pătrate \mathbf{x}^* .
- 4. Cu aceleași A și b din Problema 2, calculați soluția ridge se notează

$$\mathbf{x}_{\lambda} = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{2}^{2}. \tag{4}$$

Găsiți \mathbf{x}_{λ} , ca formulă, comparați cu soluția clasică la problema celor mai mici pătrate (soluția ne-regularizată).

5. Luând în considerare modelul regresiei liniare simple unde $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ cu $\varepsilon \in \mathcal{N}(0, \sigma^2)$, calculați regresia liniară pentru modelele de la punctul 1. Dar pentru

$$\{(1,5), (2,7), (3,9), (4,11)\}.$$
 (5)

.