Haynes Mu Alpha Theta 2019

SET 1

Toss-up 1: If $f(x) = 2 - x^2$, what is f(x - 4)?

Bonus 1: If $f(x) = x^3 - 6x^2 + 11x - 6$ and one of the roots of f(x) is x = 1, what are the remaining roots?

Toss-up 2: What is the domain of $f(x) = 4x(2x + 1)^{-1}$?

Bonus 2: Solve the inequality: $\sqrt[3]{x} < x$

Toss-up 3: Let $f(x) = \sqrt{x}$. Find a formula for a function g whose graph is obtained from f by reflecting across the x-axis, and then shifting up 1 unit.

Bonus 3: Solve the equation: $log_3(t-4) + log_3(t+4) = 2$

Toss-up 4: Find the center of the following circle:

$$(x+e)^2 + (y-\sqrt{2})^2 = \pi^2$$

Bonus 4: Suppose you have the following sequence: $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{24}$, ...

If $\frac{1}{3}$ was the 1st term in this sequence, what is the 6th term of this sequence?

Toss-up 5: Suppose $A = \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & -2 \\ 4 & 8 \end{bmatrix}$. What is A - 2B?

Bonus 5: Find the determinant of the given matrix: $\begin{bmatrix} 12 & -7 \\ -5 & 3 \end{bmatrix}$

Toss-up 6: Convert the angle π^o from degree measure into radian measure, giving the exact value in terms of π .

Bonus 6: Find two angles that are coterminal to the angle $-\frac{\pi}{4}$ that lie in the interval $[0, 4\pi]$.

Toss-up 7: Compute the area of the circular sector with the given central angle and radius:

$$\theta = 240^{\circ}, r = 5$$

Bonus 7: For how many values of x does $sin(100x) = \frac{3}{7}$ on the interval $[0, 2\pi]$?

Toss-up 8: If $sin(\theta) = -\frac{7}{25}$ with θ in Quadrant IV, what is $cos(\theta)$?

Bonus 8: What is the period of the function $h(t) = sin(2t - \pi)$?

Toss-up 9: Solve $\ln x + \ln(x + 2) = \ln(x + 6)$.

Bonus 9: Solve $6(5^{2x-9}) = 24$ in terms of natural logarithms.

Toss-up 10: Find sin75°

Bonus 10: Find the smallest *positive* angle (in degrees) between the lines with equations $y = \frac{3}{2}x + 8$ and $y = \frac{1}{5}x - 6$.

SET 2

Toss-up 1: Find $\sin(tan^{-1}(4/3))$.

Bonus 1: Find $\sin 2\theta$ if $\sin \theta = 3/5$ and θ is in Quadrant II.

Toss-up 2: If a given rectangular coordinates are $(5, 5\sqrt{3})$, find the set of polar coordinates for this point.

Bonus 2: Find the polar equation for the line with equation x = 4 in rectangular coordinates.

Toss-up 3: If an angle θ in standard position with the point (6, -8) is on its terminal side, find $\cos\theta$.

Bonus 3: Bruce Banner was experimenting with radioactive isotopes. A specific radioactive isotope labeled "Isotope Hulk" has a half-life of 450 years. How long will it take for a sample of this isotope to decrease from 6 mg to 2 mg? Leave answers in exact form. (Hint: $y = Ce^{kt}$)

Toss-up 4: Find the maximum value of the function $f(x) = -x^2 - 5x + 9$.

Bonus 4: Find an equation of the non-vertical line which intersects the parabola $y = x^2$ only at the point (3,9).

Toss-up 5: Find $\sec\theta$ if $\tan\theta = \frac{3}{4}$ and $\pi < \theta < 3\pi/2$

Bonus 5: Solve the equation $x - 5\sqrt{x} = -6$

Toss-up 6: Solve the inequality $\frac{x^2 - 2x - 24}{x^2 - 8x - 20} \ge 0$.

Bonus 6: Simplify the expression $\ln(\frac{x^4}{(2x-1)^3(7x-5)^8})$

Toss-up 7: Solve for x in the equation $(\sin x + \cos x)^2 = 1$ over the interval $[0, 2\pi]$.

Bonus 7: Find the area of a right triangle with integer side lengths and hypotenuse 17.

Toss-up 8: If $b \oplus a = ln(ab)$ and $c \star d = e^{cd}$ then what is the value of $(e \oplus e) \star (1 \oplus \sqrt{e})$?

Bonus 8: Solve for x: $log_2 \frac{5x+7}{x} = 4$

Toss-up 9: Find the maximum value of f(x) = 2019cos(2019x + 2019) + 2019.

Bonus 9: Compute the value of $\sqrt{10201}$.

Toss-up 10: Given that tan x = 2018/2019, compute the value of cos x csc x.

Bonus 10: What polar curve represents a symbol of an important day this past week?

Tiebreaker Toss-up: Chuck the woodchuck devours wood at a rate of 42 pieces per minute. In one hour, how much wood could Chuck the woodchuck chuck if a woodchuck could chuck wood?

Tiebreaker Bonus: Compute $i^{2019} + i^{2018} + i^{2017} + i^{2016}$.

Answer Key

SET 1

T1: $-x^2 + 8x - 14$

B1: x = 2 and x = 3

T2: $(-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, \infty)$

B2: $[-1,0] \cup [1,\infty)$

T3: $g(x) = -\sqrt{x} + 1$

B3: t = 5

T4: $(-e, \sqrt{2})$

B4: $\frac{1}{720}$

T5: $\begin{bmatrix} -8 & 1 \\ -7 & -12 \end{bmatrix}$

B5: 1

T6: $\frac{\pi^2}{180}$

B6: $\frac{7\pi}{4}$, $\frac{15\pi}{4}$ or 315° , 675°

T7: $\frac{50\pi}{3}$ square units

B7: 200

T8: $\frac{24}{25}$ ($\sqrt{\frac{576}{625}}$ is acceptable)

B8: π

T9: x = 2

B9: $x = \frac{9ln5 + ln4}{2 ln5} (x = \frac{9}{2} + \frac{ln2}{ln5} \text{ is acceptable})$

T10: $\frac{\sqrt{5} + \sqrt{2}}{4}$

B10: 45° (do not accept $\pi/4$; form was specified)

SET 2

T1: 4/5

B1: -24/25

T2: $(10, \frac{\pi}{3})$

B2: $r = 4\sec\theta$ (accept $r = \frac{4}{\cos\theta}$)

T3: 3/5

B3: $\frac{450 ln3}{ln2}$ years

T4: 61/4

B4: y = 6x - 9 (accept y - 9 = 6(x - 3))

T5: $\sec \theta = -5/4$

B5: x = 9, x = 4

T6: $(-\infty, -4] \cup (-2, 6] \cup (10, \infty)$

B6: $4\ln x - 3\ln(2x - 1) - 8\ln(7x - 5)$

T7: $0, \pi, 2\pi$

B7: 60

T8: e

B8: x = 7/11

T9: 4038

B9: 101

T10: 2019/2018

Haynes Academy MAO Tournament 2019

Precalculus Math Bowl

B10: Cardioid (Valentine's Day)

TXX: 2520 pieces

TXX: 0