考试科目: 半导体物理 A 考试形式: 闭卷 考试日期: 2022 年 6 月 日 本试卷由 四 部分构成, 共 8 页。考试时长: 120分钟 注: 可使用非存储功能的计算器 成绩构成比例:平时成绩 35%,期末 65%

题号	_	11	111	四	合计
得分					

得	分	

一、选择题(共30分,每空1分)

1. Ge 的晶体结构为 (); 下列晶体结构为闪锌矿型的半导体材料为 ()。

← A. 金刚石B. 纤锌矿型

答案: A, D 2

2. ()对应共价键的成键电子。禁带宽度为()与()之间的能量差,表示价 云 电子脱离共价键所需的最小能量。

: A. 导带电子 B. 价带电子

C. E_t

D. E_c

 $E. E_v$ $F. E_D$

. 答案: B, D, E 5

3. 未填满电子的能带()导电。空穴是(),具有()的有效质量。

B. 不能

C. 粒子 D. 准粒子

C. 闪锌矿型 D. GaAs E. ZnO

E. 正 F. 负

答案: A, D, E

·· 4. 位于() 附近的能级是有效的复合中心;而位于() 附近的能级是有效的陷阱。

 $\mathrm{B.}\,E_{\mathrm{v}}$ A. $E_{\rm c}$

C. E_i D. E_D

 $F. E_F$

答案: C, F 10

5. 在 Si 材料中掺入下列 () 杂质,能够形成 n 型半导体,其少子为 ()。

i A. B B. Ge C. P D. Al 型 E. 空穴 F. 电子

答案: C, E 12

6. 如果需要将一块 p 型半导体变为 n 型导电类型,应该掺入()杂质。 A. p 型 B. n 型

孙

答案: B 13

7. 室温时,对非简并 p 型 度以上,其空穴浓度由(则空穴浓度越位	低;在高温本	征温				
A. 小 B. 大 答案: B, C		D. 非	本征						
8. 施主激发发生在能级)与()	之间;最有效的	电子陷阱发生	在能级() 与				
()之间。									
A. $E_{\rm c}$ B. $E_{\rm v}$ C.	$E_{\rm t} \approx E_{\rm i}$	D. $E_{t} \approx E_{F}$	E. $E_{\rm g}$	F. $E_{\rm D}$	G.				
$E_{ m A}$									
答案: A, F, A, D	19								
9. 对于 p-Si, 在温度从 1	00K 升高到 500K	(的过程中,多子	()的浓质	度基本不变,	而本				
征载流子浓度随温度升	·高而(),所	以,少子()	的浓度将随之	而 ()。					
A. 电子 B. 空穴		D. 降低	E.不变						
答案: B, C, A, C	23								
10. 以下几种 Si 材料中,	电导率最小的是	()。							
A. $N_{\rm D}=10^{15}{\rm cm}^{-3}$	B. $N_{\rm D}=10^{17}{\rm cm}$	m ⁻³	C. 本征半导位	本					
答案: C 24									
11. Ge 半导体材料中,载流子的扩散系数与以下()因素有关。									
A. 复合机构 F	. 掺杂浓度	C. 温度	D. 掺杂	类型					
答案: BCD 25									
12. 以下四种 GaAs 材料,载流子寿命最长的是()材料。									
A. n 型	B. p 型	C. 本征	D	. 高度补偿					
答案: C 26									
13. 以下四种材料中,功	函数最大的是()。							
A. $N_{\rm A}=10^{17}{\rm cm}^{-3}$ B.	$N_{\rm D} = 10^{17} {\rm cm}^{-3}$	C. $N_{\rm A}=10^{17}{\rm cm}^{-3}$	$+N_{\rm D}=10^{17}{\rm cm}^{-3}$	D. 本征	半导				
体									
答案: A 27									
14. 在不含表面态的中等)。				
A. $W_{Al} = 4.18 \text{eV}$	$.W_{Au} = 5.20 eV$	$C.W_{Pt} = 5.6$	5eV D.V	$W_{\rm Cr} = 4.6 \mathrm{eV}$					
答案: A 28									

釥

载流子迁移率分别为 μ_n 和 μ_p ,扩散系数分别为 D_n 和 D_p ,少子浓度随x的变化情况为:

$$(\Delta p)(x) = [(\Delta p)|_{x=0}] \cdot e^{-\frac{x}{\sqrt{D_n \tau}}}$$

在 x=0 处, 试求:

- (1) $(\Delta p)_{x=0}$ 、载流子浓度 n 和 p 的表达式。(4分)
- (2) 表面处电导率 σ 的表达式。(4%)
- (3) Si 棒中表面处的漂移电流密度 J票的表达式。(4分)
- (4) Si 棒中表面处的扩散电流密度 $J_{\mathbb{F}}$ 的表达式。(4分)'
- (5) Si 棒中表面处总电流密度 J 的表达式,并在图二中示意标明 4 种电流的方向。(7分)解:

孙

得 分

四、综合题

1.(15分)PtSi 肖特基二极管在 T=300K 时生长在掺杂浓度为 $N_{\rm D}$ =10¹⁶cm⁻³的 n 型<100>Si 上。肖特基势垒高度为 0.89eV。已知: $N_{\rm c}$ =2.8×10¹⁹cm⁻³, $k_0 T$ =0.026eV, A^* =2.1×120A/(cm²·K²,ln(2800)=7.937,exp(-34.2308)=1.361 × 10⁻¹⁵,ln(64724920)=17.986,

 $\chi_{\text{Si}} = 4.05 \text{eV}$ 。试计算:

- (1) 半导体的功函数 W_s 。(3分)
- (2) 半导体一侧的势垒高度 qV_D 。(3分)
- (3) 理想情况下的反向饱和 J_{ST} 。(3分)
- (4) 使 $J=2A/cm^2$ 时的外加偏压 V,同时画出该偏压下的能带图(要求在图中标出半导体一侧的势垒高度和金属一侧的势垒高度)。(6分)

解: (1)

1)
$$n_0 = N_D = N_c \exp(-\frac{E_c - E_F}{k_0 T})$$

$$\Rightarrow E_c - E_F = 0.026 \times \ln \frac{2.8 \times 10^{19}}{10^{16}} = 0.206 eV$$
(1 分)

$$W_s = \chi_{Si} + E_c - E_F = 4.05 + 0.206 = 4.256eV$$

(1分)

(0.5分)(0.5分)

(2)
$$qV_D = q\varphi_{ns} - E_n = 0.89 - 0.206 = 0.684eV$$

(2分)

(0.5分)(0.5分)

(3)

$$J_{ST} = A^* T^2 \exp(-\frac{q\varphi_{ns}}{k_0 T})$$

$$= 2.1 \times 120 \times 300^2 \exp(-\frac{0.89}{0.026}) = 3.09 \times 10^{-8} \, A/cm^2$$
(2 分+1 分)

(4)

座位号

考场教室

任课教师

叩

孙

益

孙

 $J = J_{ST} \left[\exp\left(\frac{qV}{k_0 T}\right) - 1 \right] \Rightarrow V = \frac{k_0 T}{q} \ln\left(\frac{J}{J_{ST}} + 1\right)$ (2 \(\frac{\psi}{t} + 1 \(\frac{\psi}{t}\)\) $= 0.026 \times \ln \left(\frac{2}{3.09 \times 10^{-8}} + 1 \right) = 0.467V$ 能帶图(略)(3 分)

2. T=300 K 下, 理想 MOS 电容, 所施加的栅极偏压使得能带弯曲所施加的栅极偏压使得能 片 带弯曲 (如图三所示),在 Si-SiO₂界面 $E_{Fs}=E_i$ 。Si 的电子亲合势为 4.0 eV。利用耗尽近似,

回答下列问题: (4+4+6=14分)

1.半导体表面处于什么状态? 绘出与该能带图对应的定性电荷块图。(4分)

半导体表面处于表面耗尽或临界反型。(2分)

(1分)(1分)

2. 求出该 MIS 结构临界强反型时半导体的表面势 $V_{\rm S}$? (4分)解:

$$V_{\rm S}$$
= 2($E_{\rm i}$ - $E_{\rm Fs}$)= 2 $V_{\rm B}$ =2×(-0.29)=- 0.58 (V)
(2分) (1分) (1分)

3.如果绝缘层中存在正电荷,画出该 MIS 结构的高频、低频和深耗尽的 C-V 曲线(要求同时画出理想的高频、低频和深耗尽的 C-V 曲线)。(6 分)

图略(C-V 曲线相对于理想曲线向负栅压方向平移) 共6分,每条 CV 各1分。