and affine alg. sets $V(A)$ A $ck[X_1,,X_n]$
Topology - Zanski topology.
thopology on a set S is specified by open sets or closed sets.
① Φ, S are open ① Φ, S are closed ② Unions of opens are open ② Finite unions. ③ Finite unions.
Zariski topology - Closed sets are V(A) A C R[x1,, xn].
Ex. $t_R = C$ (or R) then $A_C = C^n$ has the Std Every Zanski closed/open is closed/open in Std top.
n=1: Zanski - closed subsets of A/R.
open sets = ϕ , A_{k} , or complements of finite sets.
P. X. 19 P.C
Non-Hausdooff!
Prop. $f \in k[x_1, -, x_n]$ $f = k - k = A_k$ is continuous in Zanski topology.

The Null stellensatz Ideal of k[x1, xn] - Subset of $I(S) = \{f \mid f = 0 \text{ on } \}$ An ideal. Def: (Radical ideal) An ideal ICR is radical if: for every $f \in R$ such that $f^n \in I$ for some n>0 we have $f \in I$. Example: (a) C le[x] is radical. (i.e. if $f^{\gamma} \in (a)$ i.e. $x \mid f^{\gamma}$)

Then $f \in (a)$ i.e. $x \mid f^{\gamma}$) (x^2) $\in k[x]$ is not radical. f=2 n=2 $f\in I$ but $f\notin J$. Equivalent - ICR is radial iff R/I has no non-zero nilpotents.

(an element f such that In>0 why?

why? take $f \in R$, consider $f \in R/I$. F=0 in R/I if $f\in I$. F'=F'=0 in RE iff $f'\in I$. I is nilpotent of RFI (-) I'E I for some not. + nilp => F=0 No non zero nilp. $f^n \in I$ for some n>0 \iff $f \in I$.

Observe: Given $S \subset \mathbb{A}^n_k$.

Consider $I(S) = f + c k[X_1, ..., X_n]$ f=0 on S} I(s) is radical. (,) If $f^{\gamma} \in I(s)$ for some not then $f \in I(s)$ $f'' \equiv 0$ on $S \Rightarrow f \equiv 0$ on S. Zanski closed Geom

Subsets of ety Aberra Radical

Aberra Subsets of Subsets of R[x,,...,xn] = I Are Thm (Nullstellensatz) If k is also braically closed, then V & I are mutually inverse bijections.
The resulting 1-1 corresp. is in clusion reversity. エCユ (エ) つ V(エ) つ V(ス) I(S) > I(T) (= S C T Thm: Let $I \subset k[x_1,...,x_n]$. Then $V(I) = \emptyset$ iff I = (i). (k. alg. closed). I < system of poly egs. Then IE I. f=0 feI $V(I) = \phi$

Suppose
$$T = \langle f_1, ..., f_m \rangle$$

$$\begin{cases} f_1 = 0 \\ f_2 = 0 \end{cases} \quad V(T) \implies \frac{1}{ie. a} \quad \frac{1}{\text{withres}} \quad \frac{1}{ie. a} \quad \frac{1$$

on Wed /Thu

- 1) Verity the axioms of a topology for the Zanski top.
- 2) Proof of Nullstellensetz.