

Ain Shams University
Faculty Of Computer & Information Sciences

Ontology-Based Knowledge Representation for Liver Cancer

Marco Alfonse, Mostafa M. Aref, Abdel-Badeeh M. Salem

Computer Science Department
Faculty of Computer & Information Sciences
Ain Shams University

marco_alfonse@cis.asu.edu.eg, aref_99@yahoo.com, abmsalem@yahoo.com

Agenda

- Goal
- Ontology Approach.
- Medical Ontologies.
- O The Liver Cancer.
- Developing Web-Based Liver Cancer Ontology.
- Conclusions.

© Society of Interventional Radiology, www.SIRweb.org

Goal

- This paper presents the process of developing a webbased liver cancer ontology.
- The importance of this ontology is:
 - O To find and locate information about liver cancer needed for interested users and domain experts.
 - O To provide a semantic representation of liver cancer information over the web.

Ontology Approach

- Ontology, from philospical point of view, deals with the nature and the organisation of reality.
- It is science of Being and tries to answer the questions:
 - What is Being?
 - What does characterize Being?
- From AI point of view ontology is a shared and common understanding of some domain that can be communicated between people and application systems.

- An Ontology is a representation vocabulary, often specialized to some domain or subject matter.
- It is a representation of a set of concepts within a domain and the relationships between those concepts.
- Its main components are:
 - Classes represent concepts, which are taken in a broad sense
 - Attributes represent properties of each concept.
 - Relations represent a type of association between concepts of the domain.
- An ontology together with a set of individual instances of classes constitutes a knowledge base of any knowledge base system.

Ontologies are now:

- ubiquitous in many information-systems enterprises:
- constitute the backbone for the Semantic Web;
- o used in e-health
- used in various application of bioinformatics and medicine.

Ontologies are built to:

- Share common understanding of the structure of information among people or software agents,
- Enable reuse of domain knowledge,
- Make domain assumptions explicit,
- Separate domain knowledge from the operational knowledge
- Analyze domain knowledge.

Types of Ontologies

Describe very general concepts

e.g. space, time, event, which are independent of a particular problem or domain.

Describe the vocabulary related to a **generic domain** e.g. Biology, medicine,....

Describe the vocabulary related to a generic task or activity e.g. Diagnosing, selling,....

Describe concepts depending both on a particular **domain and task**.

Medical Ontologies

Ontology Name	Site	Purpose	Implementation Language
(1) GALEN	OpenGALEN Foundation	To allow clinical information to be captured, represented, manipulated, and displayed in a radically more powerful way. Support re-use of information to integrate medical records, decision support and other clinical systems.	GRAIL
(2) UMLS	U.S. National Library of Medicine, 22 March 2004	To link biomedical vocabularies together from disparate sources such as clinical terminologies, drug sources, vocabularies in different languages. To provide a unified terminology that can be used across multiple medical information sources.	
(3) MeSH	U.S. National Library of Medicine, 01 September 1999	Designed to show the relationship between related terms	Unknown
(4) ON9		ON9 define the ontologies: "etaontology", "semantic-fieldontology" and "structuring- concepts" in order to link the representation ontologies with the generic ontology library.	GRAIL, Ontolingua, Loom, OCML Using ONIONS methodology

	Tambis	Designed to provide an infrastructure that		
	(Transparent Access to	allows researchers in Bioinformatics to access	DAML+OIL	
(5) Tambis	Bioinformatics Information	multiple sources of biomedical resources in a		
	Sources) Project	single interface		
(6) The		Designed to advance excellence in patient		
Systematized	the College of American	care by making health care knowledge usable		
Nomenclature	Pathologists (CAP)	and accessible wherever and whenever it is	XML	
of Medicine		needed.		
	Structural Informatics Group	Makes available anatomical information in	Developed using	
	at the University of	symbolic form to knowledge modelers and	Protege-3.0 (which	
(7)	Washington, Dept. of	other developers of applications for	allows the user to	
Foundational	Biological Structure	education, clinical medicine, electronic health	develop ontologies	
Model of	& Biomedical and Health	record, biomedical research and all areas of	without knowing any	
Anatomy	Informatics, Dept. of Medical	health care delivery and management.	ontology language and	
	Education and Biomedical		export it to any	
	Informatics.		language)	
(O) NATINEL AC	European Union project,	Designed to allow accessing medical records	11	
(8) MENELAS	1992-1994	in several European languages.	Unknown	
	C (CO)	Designed to provide a common terminology		
(9) Gene	Gene Ontology (GO)	for functional annotation of genes and	RDF(S), XML.	
Ontology	Consortium, 2004	gene products in biological databases		
		Designed to provide conceptual computer-		
(10) LinKBase	Language & Computing	understandable representation of medicine in	Unknown	
		general		
(1) http://www.on	engalen org/ (2) http://www.nlm.nih.g	ov/research/umls/ (3) http://www.nlm.nih.gov/mesh/me	shhome html	

^{(1) &}lt;a href="http://www.opengalen.org/">http://www.nlm.nih.gov/research/umls/ (3) http://www.nlm.nih.gov/mesh/meshhome.html

^{(4) &}lt;a href="http://www.ontologos.org/OML/..%5COntology%5CTAMBIS.htm">http://www.ontologos.org/OML/..%5COntology%5CTAMBIS.htm (5) http://www.snomed.org/ (6) http://sig.biostr.washington.edu/projects/fm/ (7) http://www.snomed.org/ (9) http://www.geneontology.org/

^{(9) &}lt;a href="http://www.landcglobal.com/pages/linkbase.php0">http://www.landcglobal.com/pages/linkbase.php0

The Liver Cancer (hepatoma)

- Liver cancer is the third most common cancer in the world.
- Liver cancer is much more common in developing countries within Africa and East Asia.

Estimated New Cancer Cases and Deaths Worldwide for Leading Cancer Sites by Level of Economic Development, 2008. Source: GLOBOCAN 2008.

Worldwide

Estimated New Cases

Male	Female
Lung & bronchus	Breast
1,095,200	1,383,500
Prostate	Colon & rectum
903,500	570,100
Colon & rectum	Cervix Uteri
663,600	529,800
Stomach	Lung & bronchus
640,600	513,600
Liver	Stomach
522,400	349,000
Esophagus	Corpus uteri
326,600	287,100
Urinary bladder	Liver
297,300	225,900
Ion-Hodgkin lymphoma 199,600	Ovary 225,500
Leukemia	Thyroid
195,900	163,000
Oral Cavity	Non-Hodgkin lymphoma
170,900	156,300
All sites but skin	All sites but skin
6,629,100	6,038,400

Estimated Deaths

Male	Female
Lung & bronchus	Breast
951,000	458,400
Liver	Lung & bronchus
478,300	427,400
Stomach	Colon & rectum
464,400	288,100
Colon & rectum	Cervix Uteri
320,600	275,100
Esophagus	Stomach
276,100	273,600
Prostate	Liver
258,400	217,600
Leukemia	Ovary
143,700	140,200
Pancreas	Esophagus
138,100	130,700
Urinary bladder	Pancreas
112,300	127,900
Non-Hodgkin lymphoma	Leukemia
109,500	113,800
All sites but skin	All sites but skin
4,225,700	3,345,800

Developed Countries

Estimated New Cases

Male	Female
Prostate	Breast
648,400	692,200
Lung & bronchus	Colon & rectum
482,600	337,700
Colon & rectum	Lung & bronchus
389,700	241,700
Urinary bladder	Corpus uteri
177,800	142,200
Stomach	Stomach
173,700	102,000
Kidney	Ovary
111,100	100,300
on-Hodgkin lymphoma	Non-Hodgkin lymphoma
95,700	84,800
Melanoma of skin	Melanoma of the skin
85,300	81,600
Pancreas	Pancreas
84,200	80,900
Liver	Cervix Uteri
81,700	76,500
All sites but skin	All sites but skin
2,975,200	2,584,800

Estimated Deaths

Male	Female	
Lung & bronchus	Breast	
412,000	189,500	
Colon & rectum	Lung & bronchus	
166,200	188,400	
Prostate	Colon & rectum	
136,500	153,900	
Stomach	Pancreas	
110,900	79,100	
Pancreas	Stomach	
82,700	70,800	
Liver	Ovary	
75,400	64,500	
Urinary bladder	Liver	
55,000	39,900	
Esophagus	Leukemia	
53,100	38,700	
Leukemia	Non-Hodgkin lymphoma	
48,600	33,500	
Kidney	Corpus uteri	
43,000	33,200	
All sites but skin	All sites but skin	
1,528,200	1,223,200	

Developing Countries

Estimated New Cases

Male	Female
Lung & bronchus	Breast
612,500	691,300
Stomach	Cervix uteri
466,900	453,300
Liver	Lung & bronchus
440,700	272,000
Colon & rectum	Stomach
274,000	247,000
Esophagus	Colon & rectum
262,600	232,400
Prostate	Liver
255,000	186,000
Urinary bladder	Corpus uteri
119,500	144,900
Leukemia	Esophagus
116,500	137,900
Oral Cavity	Ovary
107,700	125,200
Non-Hodgkin lymphoma	Leukemia
103,800	93,400
All sites but skin	All sites but skin
3,654,000	3,453,600

Estimated Deaths

Male	Female
Lung & bronchu	Breast
539,000	268,900
Liver	Cervix uteri
402,900	242,000
Stomach	Lung & bronchus
353,500	239,000
Esophagus	Stomach
223,000	202,900
Colon & rectum	Liver
154,400	177,700
Prostate	Colon & rectum
121,900	134,100
Leukemia	Esophagus
95,100	115,900
Non-Hodgkin lympl	Ovary
71,600	75,700
Brain, nervous sys 63,700	
Oral cavity	Brain, nervous system
61,200	50,300
All sites but skir	All sites but skin
2,697,500	2,122,600

Age-Standardized Liver Cancer Incidence Rates by Sex and World Area. Source: GLOBOCAN2008

Deaths Associated With Liver Cancer On Rise In Egypt THURSDAY, 14 JANUARY 2010

- President of Egypt's Liver Cancer Association Ashraf Omar reported that the number of deaths resultant from liver cancer in Egypt had risen from 4 percent in 1993 to 11 percent last year
- Omar said that "Liver cancer now has one of the highest death rates in the world"
- At a press conference following the launch of a national campaign aimed at combating liver cancer, Omar partially attributed the rise in liver cancer-associated fatalities to the lack of early detection.
- For his part, Egypt's Health Minister Assistant Abdel Hamid Abaza said the ministry was currently building a new facility for the treatment of tumors, to be equipped with the latest technology.
- Abaza said "The ministry has allocated LE400 million for tumor treatment, whether by surgery or by chemotherapy," adding that "And in the public medical insurance system, liver cancer is covered by a further LE100 million."
- Or. Hussein Khaled, professor of tumor medicine, called for the formation of a national council mandated with fighting the scourge of cancer.
- "Smoking, drinking, pollution and fast food are among the many causes of liver cancer in Egypt," Khaled explained. "Vegetables and green tea, meanwhile, can reduce the probability of getting the disease."

• The subtypes of primary liver cancer are named for the type of cell from which they develop.

Type of Liver Cancer	Description	How Common	
Hepatocellular carcinoma	Hepatocellular carcinoma can have different growth patterns. Some spread tentacle-like growths through the liver. Some start as a single tumor that spreads to other parts of the liver later, as the disease develops. Others develop as nodules at several different places in the liver. Occasionally, a pattern isn't clear.	Most (about 90%) primaryliver cancers are hepatocellular	
Cholangiocarcinoma	Cholangiocarcinomas grow from cells in the bile duct of the liver. The bile duct is a thin tube that extends from the liver to the small intestine. The bile duct starts inside the liver as several smaller tubes that join together.	primary livercancers are	
Angiosarcoma starts in the blood vessels of the liver and grows very quickly.		About 1% of primary livercancers are angiosarcomas.	

The liver cancer is described in terms of its risk factors, symptoms, diagnosis, staging and treatment.

Staging

- O Staging is a way of describing a cancer, such as where it is located, if or where it has spread, and whether it is affecting the functions of other organs in the body.
- One tool that doctors use to describe the stage is the TNM system. **TNM** is an abbreviation for tumor (T), node (N), and metastasis (M).
- O Doctors look at these three factors to determine the stage of cancer:
 - How large is the primary tumor and where is it located? (Tumor, T)
 - Has the tumor spread to the lymph nodes? (Node, N)
 - Has the cancer metastasized to other parts of the body? (Metastasis, M)

TNM classification of Liver Cancer

TX The primary tumor cannot be evaluated. T0 There is no evidence of a primary tumor.
To There is no evidence of a primary tumor.
T1 The tumor is 2 centimeters (cm) or smaller. It does not involve nearby blood vessels.
T2 Either of these:
Any tumor that involves nearby blood vessels.
More than one tumor, but none larger than 5 cm.
T3a There is more than one tumor, and at least one is larger than 5 cm.
T3b The tumor (of any size) involves the major veins around the liver.
T4 Either of these:
The tumor has spread to the organs near the liver (except the gallbladder).
The tumor has broken through the visceral peritoneum (layer of tissue that lines the abdomen).
Node (N)
NX The regional lymph nodes cannot be evaluated.
NO Cancer has not spread to the regional lymph nodes.
N1 The cancer has spread to the regional lymph nodes.
Distant Metastasis (M)
MX The tumor cannot be evaluated.
M0 The cancer has not spread to other parts of the body.
M1 The tumor has spread to another part of the body.

- O Doctors assign the stage of the hepatocellular carcinoma by combining the T, N, and M classifications as follows:
 - Stage I: The tumor has not spread to the blood vessels, lymph nodes, or other parts of the body (T1, N0, M0).
 - Stage II: The tumor involves nearby blood vessels, but it has not spread to the regional lymph nodes or other parts of the body (T2, N0, M0).
 - Stage IIIA: The cancer has not spread beyond the liver, but the area of the cancer is larger than stage I or II (T3a, N0, M0).
 - Stage IIIB: The cancer involves a major vein around the liver, but it has not spread to nearby lymph nodes or other parts of the body (T3b, N0, M0).
 - Stage IIIC: Any tumor that has spread to the organs near the liver (except the gallbladder), or if the tumor has broken through the visceral peritoneum. There is no spread to nearby lymph nodes or other parts of the body (T4, N0, M0).
 - Stage IVA: Any tumor that has spread to the regional lymph nodes but not to other parts of the body (any T, N1, M0).
 - Stage IVB: Any tumor that has spread to other parts of the body (any T, any N, M1).

Developing Web-Based Liver Cancer Ontology

1. Organizing and Scoping

- •Determining the objectives.
- •Defining the boundaries of the ontology.

2. Data Collection

The raw data needed for ontology development is acquired.

- MedicineNet
- Cancer.Net
- •The National Cancer Institute (NCI)

3. Data Analysis

- •Define the classes and class hierarchy.
- •Define the properties of classes (slots)
- •Define the facets of the slots

(e.g. domain and range of a slot, cardinality, slot-value type)

•Create individual instances of classes.

With the help of expert physician in that domain

4. Initial Ontology Development

A preliminary ontology is developed (initial implementation)

•Language: OWL-DL

http://www.w3.org/TR/OWL-ref/

- •Tool: Protégé-OWL
- •Approach: Top-Down

5. Ontology Refinement

The initial development is iteratively refined.

Results: The Liver Cancer Ontology Classes

The liver cancer ontology has three main classes;

Angiosarcoma

- O Disease: contains the LiverCancer class with its types.
- Medical_Intervention: contains the Staging, Diagnosis and Treatment classes.
- References: the contains Symptoms, Stage, Risk_Facors and TNM_System classes
- Each one of these classes may have its own subclasses according to the structure of the liver cancer.

The Object Properties of Liver Cancer Ontology

Property	Domain	Range	Type
hasCauses	Hepatocellular	Risk_Factors	
	Carcinoma		
hasSymptoms	Hepatocellular	Symptoms	
	Carcinoma		
hasStage	Hepatocellular	Stage	Functional
	Carcinoma		
diagnosedBy	Hepatocellular	Diagnosis	
	Carcinoma		
treatedBy	Hepatocellular	Treatment	
	Carcinoma		
stagedBy	Hepatocellular	Staging	
	Carcinoma		
has_T	Stage	T	Functional
has_N	Stage	N	Functional
has_M	Stage	M	Functional

The Instances of the Classes of the Liver Cancer Ontology

Class	Instances
Diagnosis	Angiogram, Biopsy, Blood_tests, CT_scan, MRI, Physical_exam, Ultrasound_test
Staging	Bone_scan, CT_scan_of_the_chest, PET_scan
Treatment	Ablation, Chemoembolization, Chemotherapy, Cryoablation, Hepatectomy, Hepatic_arterial_infusion, Targeted_Therapy, Immunotherapy_therapy, Liver_transplant, Proton_beam_therapy, Radiation_Therapy, Radioembolization, Stereotactic_radiosurgery, Surgery
Risk_Factors	Aflatoxin, Alcohol, Cirrhosis, Hemochromatosis, Hepatitis_B, Hepatitis_C, Iron_storage_disease, Obesity_and_diabetes
Symptoms	A_lump_or_a_feeling_of_heaviness_in_the_upper_abdomen, Fever, Loss_of_appetite_and_feelings_of_fullness, Nausea_and_vomiting, Weight_loss, Pain_in_the_upper_abdomen_on_the_right_side, Swollen_abdomen, Weakness_or_feeling_very_tired,
Т	TX, T0, T1, T2, T3a, T3b, T4
N	NX, N0, N1
M	MX, M0, M1

Conclusions

- O This paper presents the process of developing a liver cancer ontology.
- This ontology was built using the Protégé-OWL editing environment and encoded in OWL-DL format.
- O This ontology can be used by experts or medical researchers who want the liver cancer knowledge to be represented in a semantic way that allows reasoning capabilities.

Thank You