Lecture 2 - Historical
Vision Problems
-Images as points
-Images as functions
- Convolution
-Filtering Tools -Blurring
-Blurring
- - 1
- Template matching
Cotegories:
Reduction Matching Fitting
$-X^* = \underset{\times}{\operatorname{argmin}} \underbrace{f(\mathbf{I}, \mathbf{X})} - X^* = \underset{\times}{\operatorname{argmin}} \underbrace{d(\mathbf{X}, \mathbf{X}_{\mathbf{I}})} - \Theta^* = \underset{\times}{\operatorname{argmin}} g(\mathbf{I}; \Theta)$
-T.) - M. 1 Cal:
-Indexing - Ingrearch - Model fitting
1-10-tree expression (ptical flow Neuva! nets
recognition - I'm registration - Structure from
-Featurization motion
\

-> Why categorize?

- Similar problems = similar solutions

Plan For lecture:

- Work through example problem: image registration - Learn about structure tensor - Learn about homographies

Image Registration

Uses!

- -Image stitching ->
 Comera stabilization
- Motion reconstruction

Goal!

- Find a transform T(-) that maps points in one image to the same real-world points in another.

How?

Idea 1: Direct fitting

-Pavametrize T by 0: T=0,0,0

-Q,0,1 - Define a loss: $f(I_1,I_2;\Theta) = (x,y) \in I(x,y) - I(I(x,y))$ - Find the 0 * that minimizes f! Intractable ?

Idea #2: Point Filling
-Identify unique or distinctive points in both images
Loentity unique or abtinative
points in both images
I VATCH UP Which ones correspond
to the same points - Fit the transform that maps
- Fit the transform that maps
these points to each other
J
* / la Clauri Lici
A Useful example of:
-Reduction - of points to descriptive features
Matching - those points to each other
- Matching - those points to each other - Fitting - the transform

* We want corners. Flat areas and long edges aren't unique enough.

Property of corners! Small shifts in any direction change the neighborhood.

Define a measure of the corner-ness of the neighborhood around a point by how much the neighborhood changes with a small shift [ax, by] $f(\Delta \times \Delta y) = \sum_{x,y \in W} \left[T(x,y) - T(x+\Delta x, y+\Delta y) \right]^2$ $I(x+ax,y+ay) \approx I(x,y)+ax\cdot I_x+ay\cdot I_y+$ f(DX DY) = Zyew ICAY - ICAY + CXIX + CYIY] = \(\sum_{\text{DX}} \sum_{\text{DX}}^2 \text{T}_2 + 2\delta \delta \delta \text{T}_x \text{T}_y + \delta y^2 \text{T}_y^2 \] = Z DX DY IX IX IX DY $T_{x}(x,y) = T_{x}(x,y) = T_{$ My = the structure tensor Flat: Any (ox, oy) -> low f Edges: One (ox, sy) -> high f

One (ox, sy) -> low f

(orners: Any(ox, sy) -> high f

Map of g(W) over both images:

Local maxima:

Want

Next: How do we compare points in the two images to see which ones match each other?

Haze: g(W): (m×m) \rightarrow LD

4) good for detection

4) bad for description

h(W): (M×n) H ND

Featurization

- A reduction process where we convert/compress
VIsual information into a uniform representation
for comparison or processing

> Representation is usually a vector, but sometimes a graph, string, or other object

-Simple example algorithm! HOG (Histogram of Oriented Gradients)

Next: Which features from image 1 match with which features from image 2? Options:
- Brute force search - Hungarian Algorithm $d(p_i, q_i) \ge 0$

Homography:

$$\begin{bmatrix} x_1 & a & b & c & x_2 \\ y_1 & g & h & 1 & 1 \end{bmatrix}$$
 $\begin{bmatrix} x_1 & a & b & c & x_2 \\ y_1 & g & h & 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} x_1 & a & h & h & h & h & h \\ y_2 & g & h & 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} x_1 & a & h & h & h & h & h \\ x_1 & a & h & h & h & h & h \\ y_2 & g & h & h & h & h & h & h \\ y_3 & g & h & h & h & h & h & h \\ y_4 & g & h & h & h & h & h & h \\ y_5 & g & h & h & h & h & h & h \\ y_6 & g & g & h & h & h & h \\ y_7 & g & h & h & h & h$

	D
	Recap: -Three broad categories of CV problem!
	-Three broad categories of CV problem!
	Reduction Matching Filing Corner Feature Homography Image Finding metching estimation Registration Feeturization
Eχ	Corner Feature Homography
•	Image Linding meetehna estimation
	Registration Featurization
	-Structure tensor + corner operator
	- Lash 1. 15 .: M HOG
	- Featurization with HOG
	- Feature matching with Hungarian Alg.
	- Homography estimation via OLS
	_