Worksheet: hypothesis tests

Joaquin Rapela

February 7, 2024

1. Detailed hypothesis test for example 2 in discussion notes

Identify the null hypothesis \mathcal{H}_0 : the mean peak visual ERP in medicated subjects is 2 mV

Identify the alternative hypothesis \mathcal{H}_a : the mean peak visual ERP in medicated subjects is different from 2 mV.

Select a test statistic: standarized sample mean Z.

Calculate the observed value of the test statistic: $z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{1.3 - 2}{2.6/\sqrt{50}} = -1.9$

Calculate the p-value: $p_{value} = P(-|z| > Z) + P(Z > |z|) = 2P(Z > |z|) = 0.057.$

Draw our conclusion: p_value = 0.057 > 0.05 then do not reject \mathcal{H}_0 .

A Python script to solve this exercise can be found here and a shell script with the corresponding parameters can be found here.

- 2. (a) \mathcal{H}_0 : the population mean is $\mu_0 = 2.3$ \mathcal{H}_a : the population mean is $\mu_0 > 2.3$
 - (b) Because n > 30 it is reasonable to assume that $Z \sim \mathcal{N}(0,1)$. Then the rejection region is $z > z_{\alpha}$, with $\alpha = 0.05$.
 - (c) Roughly, for $Y \sim \mathcal{N}(\mu, \sigma^2)$ there is a considerable probability of obtaining a sample in the range $[\mu, \mu + 2\sigma]$. Because under the null hypothesis $\bar{X} \sim \mathcal{N}(\mu_0, s/\sqrt{n})$, there is a considerable probability of obtaining a sample of \bar{X} in the range $[\mu_0, \mu_0 + 2s/\sqrt{n}]$. $s/\sqrt{n} \sim 0.3/6 \sim 0.05$. Thus, there is a considerable probability of obtaining by chance a sample of \bar{X} in the range $[2.3, 2.3+2\ 0.05] = [2.3, 2.4]$. Because 2.4 is in the boundary of this interval, it is not obvious if a hypothesis test will reject or not the null hypothesis. Lets do the test. We first compute the observed test statistic:

$$z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{2.4 - 2.3}{0.29/\sqrt{35}} = 2.04$$

The p-value corresponding to this observed statistic is p = 0.02, so we reject the null hypothesis with a confidence level $\alpha = 0.05$.

A Python script to solve this exercise can be found here and a shell script with the corresponding parameters can be found here.

3. Potency of an antibiotic

- (a) \mathcal{H}_0 : the mean potency of the antibiotic is $\mu_0 = 80\%$.
- (b) \mathcal{H}_a : the mean potency of the antibiotic is $\mu_0 \neq 80\%$.
- (c) because n = 100 it is sensible to assume $Z \sim \mathcal{N}(0, 1)$. I will perform a two-tailed z-test with $\bar{x} = 79.7\%$, $\mu_0 = 80.0\%$, n = 100, s = 0.8 and $\alpha = .05$. Lets compute the observed statistic.

$$z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{29.7 - 80}{0.8/\sqrt{100}} = -3.75$$

The p-value corresponding to this observed statistic is p < 0.0002, so we reject the null hypothesis with a confidence level $\alpha = 0.05$.

A Python script to solve this exercise can be found here and a shell script with the corresponding parameters can be found here.

4. Smoking and lung capacity Because n = 20 it is not safe to assume $\bar{Z} \mathcal{N}(0,1)$. We will perform a right-tailed t-test instead. Lets compute the observed statistic.

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{89.85 - 100}{14.53/\sqrt{20}} = -3.12$$

The p-value corresponding to this observed statistic is p < 0.003, so we reject the null hypothesis with a confidence level $\alpha = 0.01$.

A Python script to solve this exercise can be found here and a shell script with the corresponding parameters can be found here.

5. Power of a test

The power of a statistical test is $1 - \beta$, where β is the probability of type II error (i.e., the probability that the null hypothesis is not rejected given that an alternative hypothesis is true).

To calculate β for a right-tailed test, I first find the critical value of the sample mean, \bar{x}_c , such that $P(\bar{X} > \bar{x}_c | \mathcal{H}_0) = \alpha$ (note that for a right-tailed test $\alpha = P(Z > z_\alpha | \mathcal{H}_0) = P(\frac{\bar{X} - \mu_0}{s/\sqrt{n}} > z_\alpha | \mathcal{H}_0) = P(\bar{X} > \mu_0 + z_\alpha s/\sqrt{n} | \mathcal{H}_0)$, so that $\bar{x}_c = \mu_0 + z_\alpha s/\sqrt{n}$. Then $\beta = P(\bar{X} < \bar{x}_c | \mathcal{H}_a) = P(\frac{\bar{X} - \mu_a}{s/\sqrt{n}} < \frac{\bar{x}_c - \mu_a}{s/\sqrt{n}} | \mathcal{H}_a) = P(Z < \frac{\bar{x}_c - \mu_a}{s/\sqrt{n}}) = \Phi(\frac{\bar{x}_c - \mu_a}{s/\sqrt{n}})$, where $\Phi(x) = P(Z < x)$ is the standard normal cumulative distribution function. The power of the test is $1 - \beta$. β is the the red area under in Figure 2 of the discussion slides. Code to compute β is given in the listing below.

- def compute_beta(mu_Ha, critical_value, ste_mean):
 beta = scipy.stats.norm.cdf((critical_value mu_Ha) / ste_mean)
 return beta
- (a) the calculated powers are:

Figure 1: Power versus effect size.

 $\mu_{Ha} = 108$: power=0.37 $\mu_{Ha} = 112$: power=0.75 $\mu_{Ha} = 116$: power=0.95

Power versus effect size is shown in Figure 1.

A Python script solving this item appears here.

(b) Figure 2 shows power plots for $\alpha = 0.01$ and $\alpha = 0.05$.

A Python script solving this item appears here.

- (c) Figure 3 shows power plots for n = 16 and n = 65. A Python script solving this item appears here.
- (d) following the exercise hints I first derived an expression for the critical value of the sample mean only considering the type I error, as we did above.

$$\alpha = P(Z > z_{\alpha} | \mathcal{H}_0) = P(\frac{\bar{X} - \mu_0}{s/\sqrt{n}} > z_{\alpha} | \mathcal{H}_0) = P(\bar{X} > \mu_0 + z_{\alpha} \ s/\sqrt{n} | \mathcal{H}_0)$$
then $\bar{x}_{c0} = \mu_0 + z_{\alpha} \ s/\sqrt{n}$ (1)

then I derived another expression for the critical value of the sample mean only considering the type II error

$$\beta = P(Z < -z_{\beta}|\mathcal{H}_a) = P(\frac{\bar{X} - \mu_a}{s/\sqrt{n}} < -z_{\beta}|\mathcal{H}_a) = P(\bar{X} < \mu_a - z_{\beta} s/\sqrt{n}|\mathcal{H}_a)$$
then $\bar{x}_{ca} = \mu_a - z_{\beta} s/\sqrt{n}$ (2)

Finally I equate \bar{x}_{c0} in Eq. 1 with \bar{x}_{ca} in Eq. 2 and solve for n

Figure 2: Power plots for significance levels $\alpha=0.01$ and $\alpha=0.05$.

Figure 3: Power plots for n = 16 and n = 65.

Figure 4: Power plots for n = 11, $\alpha = 0.05$, and $\beta = 0.2$. As required for $\mu_a = 112$ the power of the test is $1 - \beta = 0.8$.

$$\bar{x}_{c0} = \bar{x}_{ca} \quad \text{iff}$$

$$\mu_0 + z_{\alpha} \ s / \sqrt{n} = \mu_a - z_{\beta} \ s / \sqrt{n} \quad \text{iff}$$

$$n = \left(s \frac{z_{\beta} + z_{\alpha}}{\mu_a - \mu_0} \right)^2$$

the minimum sample size to achieve significance level of $\alpha = 0.05$ and power of $1 - \beta = 0.8$ for \mathcal{H}_a : $\mu_a = 112$ is n = 11. Figure 4 shows the power plot for this sample size. As required for $\mu_a = 112$ the power of the test is $1 - \beta = 0.8$.

A Python script solving this item appears here.