Introduction to Optimization

Lecture 12: Duality and algorithms.

The Fenchel conjugate

The Fenchel conjugate of a closed convex function $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is the closed convex function $f^*: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f^*(x^*) = \sup_{x \in \mathbb{R}^N} \{x^* \cdot x - f(x)\}.$$

Fenchel-Young Inequality: $f(x) + f^*(x^*) \ge x^* \cdot x$.

There is equality if, and only if, $x^* \in \partial f(x)$.

Legendre-Fenchel Reciprocity Formula: $x^* \in \partial f(x) \iff x \in \partial f^*(x^*)$.

Juan PEYPOUQUET Optimization 2023-2024 2 / 10

Let $P \in \mathbb{R}^{M \times N}$, and let $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $g : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ be closed and convex.

Let $P \in \mathbb{R}^{M \times N}$, and let $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $g : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ be closed and convex.

The primal problem is $\inf_{x \in \mathbb{R}^N} \{f(x) + g(Px)\}$, with optimal value $v \in \mathbb{R}$, and set of primal solutions $S \subset \mathbb{R}^N$.

Juan PEYPOUQUET Optimization 2023-2024 3 / 10

Let $P \in \mathbb{R}^{M \times N}$, and let $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $g : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ be closed and convex.

The primal problem is $\inf_{x \in \mathbb{R}^N} \{f(x) + g(Px)\}$, with optimal value $v \in \mathbb{R}$, and set of primal solutions $S \subset \mathbb{R}^N$.

The dual problem is $\inf_{y \in \mathbb{R}^M} \{ f^*(-P^T y) + g^*(y) \}$, with optimal value $v^* \in \mathbb{R}$, and set of dual solutions $S^* \subset \mathbb{R}^M$.

4□ ト 4 昼 ト 4 差 ト ■ 9 4 ℃

Let $P \in \mathbb{R}^{M \times N}$, and let $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $g : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ be closed and convex.

The primal problem is $\inf_{x \in \mathbb{R}^N} \{f(x) + g(Px)\}$, with optimal value $v \in \mathbb{R}$, and set of primal solutions $S \subset \mathbb{R}^N$.

The dual problem is $\inf_{y \in \mathbb{R}^M} \{ f^*(-P^T y) + g^*(y) \}$, with optimal value $v^* \in \mathbb{R}$, and set of dual solutions $S^* \subset \mathbb{R}^M$.

Proposition

The duality gap $v + v^*$ is nonnegative.

Juan PEYPOUQUET Optimization 2023-2024 3 / 10

Characterization of the primal-dual solutions

Theorem

The following statements concerning $\hat{x} \in \mathbb{R}^N$ and $\hat{y} \in \mathbb{R}^M$ are equivalent:

i)
$$-P^T\hat{y} \in \partial f(\hat{x})$$
 and $\hat{y} \in \partial g(P\hat{x})$;

ii)
$$f(\hat{x}) + f^*(-P^T\hat{y}) = \langle -P^T\hat{y}, \hat{x} \rangle$$
 and $g(P\hat{x}) + g^*(\hat{y}) = \langle \hat{y}, P\hat{x} \rangle$;

iii)
$$f(\hat{x}) + g(P\hat{x}) + f^*(-P^T\hat{y}) + g^*(\hat{y}) = 0$$
; and

iv)
$$\hat{x} \in S$$
 and $\hat{y} \in S^*$ and $v + v^* = 0$.

Moreover, if $\hat{x} \in S$ and g is continuous, there exists $\hat{y} \in \mathbb{R}^M$ such that all four statements hold.

Structured optimization problem

We consider the problem

$$\min\left\{f(x)+g(Px)+h(x)\right\},\,$$

where

- $P \in \mathbb{R}^{M \times N}$;
- $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and $g: \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ are closed and convex; and
- $h: \mathbb{R}^N \to \mathbb{R}$ is ℓ -smooth and convex.

Juan PEYPOUQUET

Primal-dual algorithm

Chambolle-Pock (2011), Condat-Vũ, (2013):

$$\begin{cases} x_{k+1} = \operatorname{prox}_{\tau f} (x_k - \tau \nabla h(x_k) - \tau P^T y_k) \\ y_{k+1} = \operatorname{prox}_{\sigma g^*} (y_k + \sigma P(2x_{k+1} - x_k)), \end{cases}$$

with
$$\tau \sigma ||P||^2 + \frac{\tau \ell}{2} \le 1$$
.

Juan PEYPOUQUET

Primal-dual algorithm

Chambolle-Pock (2011), Condat-Vũ, (2013):

$$\begin{cases} x_{k+1} = \operatorname{prox}_{\tau f} (x_k - \tau \nabla h(x_k) - \tau P^T y_k) \\ y_{k+1} = \operatorname{prox}_{\sigma g^*} (y_k + \sigma P(2x_{k+1} - x_k)), \end{cases}$$

with
$$\tau \sigma ||P||^2 + \frac{\tau \ell}{2} \le 1$$
.

Proposition

Limit points are solutions of the problem.

Primal-dual algorithm

Chambolle-Pock (2011), Condat-Vũ, (2013):

$$\begin{cases} x_{k+1} = \operatorname{prox}_{\tau f} (x_k - \tau \nabla h(x_k) - \tau P^T y_k) \\ y_{k+1} = \operatorname{prox}_{\sigma g^*} (y_k + \sigma P(2x_{k+1} - x_k)), \end{cases}$$

with
$$\tau \sigma ||P||^2 + \frac{\tau \ell}{2} \le 1$$
.

Proposition

Limit points are solutions of the problem.

Implementation trick: Moreau's Identity

$$\operatorname{prox}_{\sigma g^*}(y) = y - \sigma \operatorname{prox}_{\sigma^{-1}g}(\sigma^{-1}y).$$

TV Regularization

The Total Variation Regularization Problem is

$$\min_{x \in \mathbb{R}^{N_1 \times N_2}} \left\{ \frac{1}{2} \| Fx - b \|^2 + \rho \| Dx \|_1 \right\},\,$$

where F models or approximates the process by which an image x has been modified (usually deteriorated) to produce b, and D is the discrete gradient.

Juan PEYPOUQUET Optimization 2023-2024 7 / 10

TV Regularization

The Total Variation Regularization Problem is

$$\min_{x \in \mathbb{R}^{N_1 \times N_2}} \left\{ \frac{1}{2} \| Fx - b \|^2 + \rho \| Dx \|_1 \right\},\,$$

where F models or approximates the process by which an image x has been modified (usually deteriorated) to produce b, and D is the discrete gradient.

Question

Can we apply the primal-dual algorithm to this problem?

Juan PEYPOUQUET Optimization 2023-2024 7

Break

The linear programming problem is

(LP)
$$\min_{x \in \mathbb{R}^N} \{ c \cdot x : Ax \le b \},$$

where $c \in \mathbb{R}^N$, A is a matrix of size $M \times N$, and $b \in \mathbb{R}^M$.

The linear programming problem is

(LP)
$$\min_{x \in \mathbb{R}^N} \{ c \cdot x : Ax \le b \},$$

where $c \in \mathbb{R}^N$, A is a matrix of size $M \times N$, and $b \in \mathbb{R}^M$.

It is a primal problem with $f(x) = c \cdot x$ and $g(z) = \iota_{R_+^M}(b-z)$.

The linear programming problem is

(LP)
$$\min_{x \in \mathbb{R}^N} \{ c \cdot x : Ax \le b \},$$

where $c \in \mathbb{R}^N$, A is a matrix of size $M \times N$, and $b \in \mathbb{R}^M$.

It is a primal problem with $f(x) = c \cdot x$ and $g(z) = \iota_{R_{\perp}^{M}}(b - z)$.

Dual problem

(DLP)
$$\min_{y \in \mathbb{R}^M} \{ b \cdot y : A^T y + c = 0, \text{ and } y \ge 0 \}.$$

The linear programming problem is

(LP)
$$\min_{x \in \mathbb{R}^N} \{ c \cdot x : Ax \le b \},$$

where $c \in \mathbb{R}^N$. A is a matrix of size $M \times N$, and $b \in \mathbb{R}^M$.

It is a primal problem with $f(x) = c \cdot x$ and $g(z) = \iota_{RM}(b-z)$.

Dual problem

(DLP)
$$\min_{y \in \mathbb{R}^M} \{ b \cdot y : A^T y + c = 0, \text{ and } y \ge 0 \}.$$

Exercise

Compute the dual of the dual.

Juan PEYPOUQUET Optimization

Slack variables and optimality conditions

We have

(LP)
$$\min_{x \in \mathbb{R}^N} \{ c \cdot x : Ax \le b \}$$
(DLP)
$$\min_{y \in \mathbb{R}^M} \{ b \cdot y : A^T y + c = 0, \text{ and } y \ge 0 \}.$$

Slack variables and optimality conditions

We have

$$\begin{aligned} \text{(LP)} & & \min_{x \in \mathbb{R}^N} \{ \ c \cdot x \ : \ Ax \le b \, \} \\ \text{(DLP)} & & \min_{y \in \mathbb{R}^M} \{ \ b \cdot y \ : \ A^T y + c = 0, \ \text{and} \ y \ge 0 \, \}. \end{aligned}$$

The primal problem can be rewritten, using a slack variable $s \in \mathbb{R}^M$, as

(LP)
$$\min_{x \in \mathbb{R}^N} \{ c \cdot x : Ax + s = b, \text{ and } s \ge 0 \}.$$

Primal-dual optimality conditions

Primal feasibility: Ax + s = b and $s \ge 0$.

Dual feasibility: $A^T y + c = 0$ and $y \ge 0$.

Complementarity: $y_i s_i = 0$ for i = 1, ..., M.

4 ロ ト 4 昼 ト 4 豆 ト 1 豆 ・ りへで

10 / 10