Part III

RATIONAL AND ALGEBRAIC NUMBERS

Definition 3.1.1

A fraction is an expression of the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$. A rational number is a number which can be expressed as a fraction.

Example 3.1.2

 $\frac{5}{3}$ and $\frac{15}{9}$ are two distinct fractions, but they express the same rational number. " $\frac{5}{3} = \frac{15}{9}$ ".

Definition 3.1.1

A fraction is an expression of the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$. A rational number is a number which can be expressed as a fraction.

Definition 3.1.2

A fraction $\frac{a}{b}$ is reduced if a, b are coprime and b > 0.

Example 3.1.3

 $\frac{-5}{3}$ is reduced, $\frac{5}{-3}$ is not reduced, and $\frac{-15}{9}$ is not reduced.

Definition 3.1.1

A fraction is an expression of the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$. A rational number is a number which can be expressed as a fraction.

Definition 3.1.2

A fraction $\frac{a}{b}$ is reduced if a, b are coprime and b > 0.

Example 3.1.3

 $\frac{-5}{3}$ is reduced, $\frac{5}{-3}$ is not reduced, and $\frac{-15}{9}$ is not reduced.

Theorem 3.1.4

Any rational number can be uniquely expressed as a reduced fraction.

Theorem 3.1.4

Any rational number can be uniquely expressed as a reduced fraction.

Proof. Let's assume our rational number is expressed as $\frac{a}{b}$. Since $\frac{a}{b} = \frac{-a}{-b}$, we may assume b > 0. Let $c = \frac{a}{\gcd(a,b)}$ and $d = \frac{b}{\gcd(a,b)}$. Then $\gcd(c,d) = 1$ and we have $\frac{a}{b} = \frac{c}{d}$.

Theorem 3.1.4

Any rational number can be uniquely expressed as a reduced fraction.

Proof. Let's assume our rational number is expressed as $\frac{a}{b}$. Since $\frac{a}{b} = \frac{-a}{-b}$, we may assume b > 0. Let $c = \frac{a}{\gcd(a,b)}$ and $d = \frac{b}{\gcd(a,b)}$. Then $\gcd(c,d) = 1$ and we have $\frac{a}{b} = \frac{c}{d}$.

Now, suppose $\frac{c'}{d'}$ is another reduced fraction such that $\frac{a}{b} = \frac{c'}{d'}$. Then we have c'd = cd'. Hence, $d \mid cd'$ and $d' \mid c'd$. Since $\gcd(c,d) = 1$ and $\gcd(c',d') = 1$, we have $d \mid d'$ and $d' \mid d$. Since both d,d' are positive, by the antisymmetry of divisibility, d = d'. Then c = c' and thus $\frac{c}{d}$ and $\frac{c'}{d'}$ are the same fraction.

We can extend prime factorization from to rational numbers.

Theorem 3.1.5 (Prime factorization)

Let α be a positive rational number.

1. (existence) α admits a prime factorization, i.e. there exist integers e_p for each prime p such that

$$\alpha = \prod_{p \text{ is prime}} p^{e_p}$$

2. (uniqueness) Suppose α admits another prime factorization, say

$$\alpha = \prod_{p \text{ is prime}} p^{f_p}.$$

Then, for every prime p, we have $e_p = f_p$.

PROOF OF THE THEOREM

Proof. (existence) Let $\frac{a}{b}$ be any fraction expressing α . We may assume a, b are positive. Then by the fundamental theorem of arithmetic,

$$a = \prod_{p \text{ is prime}} p^{\nu_p(a)}, \qquad b = \prod_{p \text{ is prime}} p^{\nu_p(b)}.$$

Proof. (existence) Let $\frac{a}{b}$ be any fraction expressing α . We may assume a, b are positive. Then by the fundamental theorem of arithmetic,

$$a = \prod_{\substack{p \text{ is prime}}} p^{\nu_p(a)}, \qquad b = \prod_{\substack{p \text{ is prime}}} p^{\nu_p(b)}.$$
Hence, $\alpha = \frac{a}{b} = \frac{\prod_{\substack{p \text{ is prime}}} p^{\nu_p(a)}}{\prod_{\substack{p \text{ is prime}}} p^{\nu_p(b)}} = \prod_{\substack{p \text{ is prime}}} p^{\nu_p(a) - \nu_p(b)}.$

Note that the integer $v_p(a) - v_p(b)$ does not depend on the choice of the fraction $\frac{a}{b}$. We will denote this integer by $v_p(\alpha)$.

$$\frac{a}{b} = \frac{c}{d} \qquad \forall p(a) + \forall p(d) = \forall p(c) + \forall p(b) \\ \forall p(a) - \forall p(b) = \forall p(c) - \forall p(d)$$

PROOF OF THE THEOREM

(uniqueness) Suppose
$$\alpha = \prod_{p \text{ is prime}} p^{f_p}$$
. Let

$$c = \prod_{\substack{p \text{ is prime}, f_p > 0}} p^{f_p}, \qquad d = \prod_{\substack{p \text{ is prime}, f_p < 0}} p^{-f_p}.$$

Then $\frac{c}{d}$ is a reduced fraction expressing α . Note that we always have $v_p(c) - v_p(d) = f_p$. Hence, $f_p = v_p(\alpha)$.

Example 3.1.6

Find the reduced fraction expression of the following rational number and give its prime factorization:

$$-1.56$$

$$\frac{-156}{100} = \frac{-39}{25}$$

$$\frac{39}{25} = \frac{3 \times 13}{25}$$

$$\frac{25}{25} = \frac{5^2}{25}$$

$$-1.56 = \frac{-39}{25} = -3 \times 5^{-2} \times 13$$