11.7 MAXIMUM AND MINIMUM VALUES

To a local man/new paints

tangent plans will

be horizontal

$$Z - Z = f(\alpha, b) (x - a) + f_y(a, b) (y - b)$$
 $Z - Z = f(\alpha, b)$ is a point of absolute minimum minimum

 $Z - Z = f(\alpha, b) = f_y(\alpha, b) = 0$

Recall questions like $f(x) = x^2 + \sin(x) + 2$ find the max/min

-1

10 \Rightarrow solve f'(x) = 0, $\Rightarrow x = x_1, x_2, x_3, x_4$ max value = max $f(x_1), f(x_2), f(x_3), f(x_4), f(x_5), f(x_5)$ min value = min $\{f(x_i), f(x_2), f(x_3), f(x_4), f(a), f(b)\}$

f(n) f'(a) = 0 identify a a a alocal man or alocal min a

critical points in the domain, where $f_{x} = 0$ $f_{y} = 0$

EXAMPLE 1 Let $f(x, y) = x^2 + y^2 - 2x - 6y + 14$. If it is find points of beal Shing - find critical fn = 0 fu = 0 2x-2=0 2y-6=0now check if it is a point of max/ niv/ neither $\frac{1}{y} = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

 $det(H) = 4 \qquad \text{Af}_{xx} = 2 \quad \text{70}$ (153) is a point 4 local win

psints Classification critical f" = 0 ۲" ۲۵ f" >0

Hessian Matrix $I \rightarrow = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$ local mox local min del (H) >0 neithey det (H) > 0 det (x) 40

psints Classification critical neither fis whiche f is woncove

$$D = D(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^{2}$$

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (c) If D < 0, then f(a, b) is not a local maximum or minimum.

Hessian matrix $D = | f_{xx} |$ max neither MIN neither Concave down concare up \mathcal{D} < 0 1xx CD 1xx > 0

EXAMPLE 1 Let $f(x, y) = x^2 + y^2 - 2x - 6y + 14$. If find points of local min or max

about
$$f$$
?

(a) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$

(b)
$$f_{xx}(1,1) = 4$$
, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(b) $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(c) $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(d) $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(e) $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$

(for $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, f

$$f(x,y) = x^{2} - y^{2}$$
find & classify
$$f(x) = 0$$

$$f$$

33. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4, 2, 0).

s.t. (x,y,z) belongs to the surface $z^2 = x^2 + y^2$

minimize $f = (x-4)^2 + (y-2)^2 + x^2 + y^2$

find critical points

$$f_{x} = \lambda(x-4) + 2x = 0$$
 | $f_{y} = 2(x-2) + 2y = 0$
=) $x = 2$ | $y = 1$
(2.1): exitical point
check for mox/min $|H| = |4| = 16 > 0$
| 0 4 | $x = 4 > 0$

(2,1) is a point of local min but also absolute min (why??) Aux: The point on the cone $Z^2 = X^2 + y^2$ closest to (4,2,0) is $(2,1,\sqrt{5})$ & $(2,1,-\sqrt{5})$ Find the absolute maximum and minimum values of f on the set D. $f(x, y) = 1 + 4x^2 - 5y, \quad D \text{ is the closed triangular region}$ with vertices (0, 0), (2, 0), and (0, 3)

Find the absolute maximum and minimum values of f on the set D.

$$f(x, y) = xy^2$$
, $D = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

LAGRANGE MULTIPLIERS

f(x,y) = x + yfind point on the Curve $x^2 + y^3 = 5$ where f(x,y) = x + yis lowest.

EXAMPLE 2 Find the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

EXAMPLE 4 Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).

EXAMPLE 4 Find the points on the sphere $x^2 + y^2 = 4$ that are closest to and farthest from the point (3, 1).

TWO CONSTRAINTS

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu \nabla h(x_0, y_0, z_0)$$

EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x - y + z = 1 and the cylinder $x^2 + y^2 = 1$.

I-15 ■ Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).

$$f(x, y, z) = 2x + 6y + 10z;$$
 $x^2 + y^2 + z^2 = 35$

I-15 ■ Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).

$$f(x, y, z) = x + 2y$$
; $x + y + z = 1$, $y^2 + z^2 = 4$