Phrasenstruktur Sprachen

Weiterführende Literatur:

- Hoffmann, Theoretische Informatik, Seite 191-192

Grammatik Phrasenstruktur Sprachen

Sei Σ ein Alphabet. Eine formale Sprache L ist eine Teilmenge aller Wörter über

 $L \subset \Sigma^*$

Eine Grammatik ist ein 4-Tupel mit $G = (V, \Sigma, P, S)$ und besteht aus:

- Einer endlichen Menge V von Variablen (Nonterminale)

Variablen

- Dem endlichen *Terminalalphabet* Σ mit $\Sigma \cap V = \emptyset$

Terminalalphabet

- Der endlichen Menge an Produktionen

Produktionen

- Und einer *Startvariablen S* mit $S \in V$

Startvariablen

Eine Typ-0-Sprache wird durch eine Phrasenstrukturgrammatik erzeugt. Die Produktionsregeln dieser haben nur noch folgende Einschränkungen:

linke Seite: mindestens ein Nonterminal

rechte Seite: ε , Terminale, Nonterminale

Die Produktionsregeln dürfen hierbei die linke Seite auch verkürzen. Das heißt, es darf bei einer Typ-0-Grammatik auch jedes Nonterminal auf ε abbil den^1

Phrasenstrukturgrammatik (Typ 0)

Phrasenstrukturgrammatiken werden auch unbeschränkte Grammatiken genannt. Jede Grammatik ist von Typ 0. Diese Sprachen werden auf rekursiv aufzählbar genannt. Jede von einer Grammatik von Typ-0 erzeugte Sprache ist semi-rekursiv aufzählbar entscheidbar. Es gibt eine Turingmaschine, die diese Sprache akzeptiert. Für ein semi-entscheidbar Wort, dass nicht in der Sprache liegt, muss die Turingmaschine nicht terminieren.²

Die Produktionsregeln dürfen hierbei die linke Seite allerdings nicht verkürzen (Ausnahme $S \to \varepsilon$).³

¹Theoretische Informatik – Typ-1- und Typ-0-Sprachen, Seite 13-14.

²Theoretische Informatik – Typ-1- und Typ-0-Sprachen, Seite 13-14.

³Theoretische Informatik – Typ-1- und Typ-0-Sprachen.

In der theoretischen Informatik ist eine rekursiv aufzählbare Sprache (auch bekannt als semientscheidbare oder erkennbare Sprache) L dadurch definiert, dass es eine Turingmaschine gibt, die alle Wörter aus L akzeptiert, aber keine Wörter, die nicht in L liegen. Im Unterschied zu rekursiven Sprachen (entscheidbare Sprachen) muss bei den rekursiv aufzählbaren Sprachen die Turingmaschine nicht halten, wenn ein Wort nicht in L liegt. Das heißt, unter Umständen muss man auf die Lösung unendlich lange warten. Alle rekursiven Sprachen sind deshalb auch rekursiv aufzählbar.

Rekursiv aufzählbare Sprachen bilden die oberste Stufe der Chomsky-Hierarchie und heißen deshalb auch Typ-0-Sprachen; die entsprechenden Grammatiken sind die Typ-0-Grammatiken. Sie können somit auch als all die Sprachen definiert werden, deren Wörter sich durch eine beliebige formale Grammatik ableiten lassen.⁴

Literatur

- [1] Dirk W. Hoffmann. Theoretische Informatik. 2018.
- [2] Theoretische Informatik Typ-1- und Typ-0-Sprachen.
- [3] Wikipedia-Artikel "Rekursiv aufzählbare Sprache". https://de.wikipedia.org/wiki/Rekursiv_aufzählbare_Sprache.

⁴Wikipedia-Artikel "Rekursiv aufzählbare Sprache".