Árboles binarios de búsqueda

Clase 08

IIC 2133 - Sección 2

Prof. Mario Droguett

Sumario

Introducción

Árboles binarios de búsqueda

Operaciones

Cierre

- Hasta aquí, somos capaces de ordenar una secuencia usando diferentes algoritmos
- En determinados casos, alguno de ellos puede ser más adecuado
 - Por características del input
 - Por requisitos de memoria y tiempo

¿Cuál era el problema que motivó esta primera parte?

Dada una secuencia desordenada, nos interesa buscar un elemento

¿ Zallen Misterio ∈

Apellido	Nombre
Alen	Misterio
Misterio	Misterio
Zalen	Berenice
Gonzalópez	D
Turing	Alan
Misterio	Yadran
Zeta	Hache
Ararán	Jota
Alenn	Cristina
	pág. 1/376

2/50

Escogemos algún algoritmo de ordenación

```
QuickSort (A, i, f):

1 if i \le f:

2 p \leftarrow \text{Partition}(A, i, f)

3 Quicksort (A, i, p - 1)

4 Quicksort (A, p + 1, f)
```

Obtenemos la secuencia ordenada

¿ Zallen Misterio ∈

Apellido	Nombre
Abarca	Yadran
Abusleme	Nicole
Arenas	Camila
Arenas	D
Bañados	Richard
Beterraga	Brócoli
Blanco	Ximena
Brahms	Johannes
Castillo	Raquel
	pág. 1/376

?

Usamos algún algoritmo de búsqueda para encontrar el elemento

```
BinarySearch (A, x, i, f):

if f < i: return -1

m \leftarrow \left\lfloor \frac{i+f}{2} \right\rfloor

if A[m] = x: return m

if A[m] > x:

return BinarySearch (A, x, i, m-1)

return BinarySearch (A, x, m+1, f)
```

¿Habrá otra forma de combinar ordenación y búsqueda?

Objetivos de la clase

- ☐ Comprender la noción de diccionario y qué operaciones soporta
- Conocer los árboles binarios de búsqueda
- ☐ Comprender las propiedades básicas de un ABB
- ☐ Identificar la utilidad de los ABB
- ☐ Comprender los algoritmos que implementan sus operaciones básicas

Sumario

Introducción

Árboles binarios de búsqueda

Operaciones

Cierre

Una nueva estructura

Construiremos una estructura con nuevas características

- Dada una llave o clave, queremos asociarle un valor
- Si la llave no está en la EDD, lo sabemos de forma eficiente
- Si la llave está en la EDD, también lo sabemos de forma eficiente
- Podemos agregar, modificar y eliminar pares llave-valor de forma eficiente

Diccionarios

Definición

Un diccionario es una estructura de datos con las siguientes operaciones

- Asociar un valor a una llave
- Actualizar el valor asociado a una llave
- Obtener el valor asociado a una llave
- En ciertos casos, eliminar de la estructura una asociación llave-valor

Ejemplos

- RUT como llave y nombre como valor
- RUT como llave y (nombre, apellido, edad,...) como valor

Diccionarios

Uno de los objetivos centrales de un diccionario es facilitar la búsqueda

- Primero buscamos la llave (si está o no está)
- Buscar = buscar eficientemente

¿Cómo almacenamos las llaves para lograr búsqueda eficiente?

Hasta ahora tenemos dos opciones: **arreglos** y **listas**... ¿cumplen nuestro objetivo?

Limitaciones de arreglos y listas

En una listas ligada de llaves

- No tenemos acceso por índice de forma eficiente
- La búsqueda, incluso en el caso ordenado, es $\mathcal{O}(n)$

En un arreglo de llaves

- Hay acceso por índice en $\mathcal{O}(1)$
- La búsqueda en general es $\mathcal{O}(n)$
- Para el caso ordenado, podemos lograrla en $\mathcal{O}(\log(n))$

¿Qué punto débil tienen los arreglos comparados con las listas?

Limitaciones de arreglos y listas

En una **listas ligada** de llaves

- Para insertar solo necesitamos reasignar (pocos) punteros
- La inserción de un nuevo elemento es $\mathcal{O}(1)$

En un arreglo de llaves

- Insertar un elemento puede gatillar un desplazamiento de datos
- En promedio, la inserción es $\mathcal{O}(n)$

¿Podemos construir una EDD con buen desempeño en ambas operaciones?

Modifiquemos las listas

Árboles binarios de búsqueda

Definición

Un árbol binario de búsqueda (ABB) es una estructura de datos que almacena pares (llave, valor) asociándolos mediante punteros según una estrategia recursiva

- 1. Un ABB tiene un **nodo** que contiene una tupla (llave, valor)
- 2. El nodo puede tener hasta dos ABB's asociados mediante punteros
 - Hijo izquierdo
 - · Hijo derecho

y que además, satisface la **propiedad ABB**: las llaves menores que la llave del nodo están en el sub-árbol izquierdo, y las llaves mayores, en el sub-árbol derecho.

La estrategia dividir para conquistar aplicada a una EDD

Árboles binarios

Un árbol binario (de búsqueda o no) cumple que

- Cada nodo x tiene a lo más un padre x.p
- El nodo sin padre se conoce como raíz
- Cada nodo x tiene hasta dos punteros que (apuntan) a sub-árboles
 - x.left es un puntero al hijo izquierdo
 - x.right es un puntero al hijo derecho
 - x.p es puntero al padre (si tiene)
- Un nodo sin punteros descendentes, i.e. sin hijos, se conoce como hoja

¿Necesariamente un árbol binario tiene nodos con la misma cantidad de hijos?

Árboles binarios

Por simplicidad, representaremos solo las llaves de los árboles

Notemos que ir de una hoja a la raíz toma tiempo $\mathcal{O}(\textit{altura})$

No olvidemos la estructura recursiva: los hijos son ABB's

No olvidemos la estructura recursiva: los hijos son ABB's

No olvidemos la estructura recursiva: los hijos son ABB's

Sumario

Introducción

Árboles binarios de búsqueda

Operaciones

Cierre

Operaciones de un ABB

Recordemos nuestro objetivo al definir esta nueva estructura

- Queremos búsqueda rápida
- Para esto buscamos lograr un diccionario
- Queremos garantizar operaciones eficientes para búsqueda, inserción, modificación y eliminación
- A través de la definición concreta de estas operaciones para un ABB mostraremos que un ABB nos sirve como diccionario

Operaciones de un ABB

Completamos las definiciones de atributos de un nodo x en un ABB

- x.key es la llave del nodo
- x.value es su valor
- x.left el puntero a su hijo izquierdo
- x.right el puntero a su hijo derecho
- x.p el puntero al padre

En general no incluiremos *x.value* en los algoritmos. Solo será un espacio de almacenamiento

Nos interesa encontrar el nodo con llave 7. Solo conocemos el nodo raíz

Comparamos con la llave raíz y sabemos que, si está, debe estarlo en el sub-árbol derecho

Recursivamente, repetimos para la raíz del sub-árbol detectado y determinamos que hay que revisar el sub-árbol izquierdo

Al revisar la raíz de este nuevo sub-árbol, encontramos la llave buscada

Operación de búsqueda

Proponemos el siguiente algoritmo de búsqueda en ABB's

```
input : Árbol binario de búsqueda A, llave buscada k
output: Árbol binario de búsqueda, o Ø si no se encuentra
Search (A, k):

if A = Ø ∨ A.key = k:

return A

if k < A.key:

return Search(A.left, k)

return Search(A.right, k)</pre>
```

El llamado inicial es Search(root, k) para la raíz root del árbol

Operaciones para modificar un ABB

Pensemos ahora en modificar el árbol

- Insertar un nodo con una nueva llave produce un cambio en la estructura del árbol
- De igual forma, eliminar un nodo también lo hace
- Ambas operaciones pueden afectar la propiedad ABB
- Nuestra propuesta de algoritmos para estar operaciones debe restaurar la propiedad ABB si se incumple

Insertemos un nodo con llave 4

Comparamos llaves para determinar en qué posición debe ser insertado

Comparamos llaves para determinar en qué posición debe ser insertado

Dado que, para x.key = 5 se tiene $x.left = \emptyset$, lo reemplazamos con la llave indicada

Un cambio a la búsqueda

Modificaremos la búsqueda para saber quién es el padre del nodo encontrado

```
input : ABB A, ABB padre p, llave buscada k
output: Tupla con ABB encontrado y su padre
Search(A, p, k):

if A = Ø \ A.key = k:

return (A, p)

if k < A.key:

return Search(A.left, A, k)

return Search(A.right, A, k)</pre>
```

Si retorna (A, \emptyset) , sabemos que A es la raíz

Operación de inserción

Proponemos el siguiente algoritmo de inserción de valores según llave ABB's

```
input : Árbol binario de búsqueda A, llave k, valor v
Insert (A, k, v):
1    (B, p) \leftarrow \operatorname{Search}(A, \emptyset, k) \triangleright \operatorname{versión} que indica el padre
2    if B = \emptyset:
3    B \leftarrow \operatorname{nodo} \operatorname{vacío}
4    B.\ker \leftarrow k
5    Conectar B al padre p en la posición adecuada
6    B.\operatorname{value} \leftarrow v
```

Este algoritmo mantiene la propiedad ABB al insertar

Operación de eliminación

La eliminación es un poco más compleja

Si el nodo a eliminar es hoja o tiene solo un hijo

- Lo borramos
- Si tenía un hijo, el hijo lo reemplaza
- Es claro que se mantiene la propiedad ABB

En caso contrario...

¿Se puede reemplazar por otro árbol?

Si queremos eliminar el nodo con llave 4

Simplemente se elimina y se preserva la propiedad ABB

Si queremos eliminar el nodo con llave 5

Se reemplaza por su único hijo y se preserva la propiedad ABB

Si queremos eliminar el nodo con llave 6, estamos en problemas

Podemos reemplazarlo por el nodo con llave 7 (su sucesor)

Y dado que no tenía hijos, no hay que hacer más modificaciones

De forma alternativa, podemos reemplazarlo por el nodo con llave $5 \ (\mathbf{su} \ \mathbf{antecesor})$

Y reubicamos su hijo con llave 4

Operación de eliminación

Nos interesa encontrar el sucesor/antecesor del nodo extraído


```
\begin{array}{llll} & \text{Min } (A): & \text{Max } (A): \\ & \text{1} & \text{if } A.left = \varnothing: & \text{1} & \text{if } A.right = \varnothing: \\ & \text{2} & \text{return } A & & \text{2} & \text{return } A \\ & & \text{3} & \text{return } \text{Min}(A.left) & & \text{3} & \text{return } \text{Max}(A.right) \end{array}
```

Operación de eliminación

Proponemos el siguiente algoritmo que preserva la propiedad ABB

```
Delete (A, k):
         (D,p) \leftarrow \operatorname{Search}(A,\emptyset,k) \quad \triangleright \text{ Permite saber el padre de } D
        if D \neq \emptyset:
 2
              if D es hoja: D \leftarrow \emptyset y se elimina la referencia en p
 3
              elif D tiene un solo hijo H: D \leftarrow H y se actualiza p
              else:
                   R \leftarrow \text{Min}(D.right)
 6
                   t \leftarrow R.right
                   D.key \leftarrow R.key
 8
                  D.value \leftarrow R.value
               R \leftarrow t
10
```

Notemos que al borrar un nodo, se debe eliminar la referencia desde su padre

Antecesor y sucesor en general

¿Qué tan fácil es determinar el sucesor y antecesor de un nodo?

Ya tenemos algoritmos recursivos para esto

¿Y si los tuviéramos en una lista ordenados?

Antecesor y sucesor en general

Ya sabemos que es fácil encontrarlos preguntando por la raíz

Antecesor y sucesor en general

Pero ya no tenemos acceso a Min y Max si preguntamos por un nodo no raíz

Sumario

Introducción

Árboles binarios de búsqueda

Operaciones

Cierre

Objetivos de la clase

- ☐ Comprender la noción de diccionario y qué operaciones soporta
- Conocer los árboles binarios de búsqueda
- ☐ Comprender las propiedades básicas de un ABB
- ☐ Identificar la utilidad de los ABB
- ☐ Comprender los algoritmos que implementan sus operaciones básicas