SEQUENCE LISTING

<110>	KANG, Hyun-Ah RHEE, Sang-Ki SOHN, Min-Jeong KIM, Jeong-Yoon			
<120>	HANSENULA POLYMORPHA YAPSIN DEFICIENT MUTANT STRAIN AND PFOR THE PREPARATION OF THE RECOMBINANT PROTEINS USING THE			
<130>	P26459			
<140> <141>	· · ·			
<150> <151>	· · ·			
<160>	16			
<170>	PatentIn version 3.3			
<210> <211> <212> <213>	DNA			
	1 agtog caatagtgtg gogaacttoa aatgoootta otgtoogoga acaaccaco	a 60		
ttgccc	cagge tgtgcaggee agatttgtta atttgtgaaa agtggaaaaa atttattee	g 120		
ctatgc	cctaa ccgaagagcc cgcaagaaga ggcggacaga agacttttcc agctcttcg	g 180		
catctg	gaaaa cgatagtgac tccgagagcg tgaccagtgt acaggaagag cagccggat	g 240		
cgcccg	gaaac atacacaata gatggcctgg acacgcaaga ggtgtctgac agcacacag	g 300		
tgagac	ctcca acagctgaac gcagacaggt tggccagcat agagcaaagc ctttcaggc	a 360		
acctca	aaact ggacataaac gcagtacgcc agatagatga tgtgcgtgag cagctgcag	a 420		
acgagt	attt gaagaaattg cttgtcacat attctgagga cctggatgcg ctgcgtcag	a 480		
aaaccg	gattt caaggaaaac tcactcaaaa ccctcgcccg tcttctcaaa gagagcgga	a 540		
acatat	ttga tgatggaact ctcaagtcgc tagttgagtg atgtatatga taatgtcta	a 600		
ttttaa	atttt catcagtgtg caagatctgg gcttagccgt tctaaatggt atattcagg	660		

tgtgcaagcc	acatttaaaa	ttaccccatc	ggtttttaaa	ttctattgtt	agaaattagg	720
atctacatag	aggtagagtg	agcaacagaa	cattgtttgc	tatccgggcc	ctccgactgg	780
aacgtcttac	cttcagctac	tatttattca	gaaaaaagag	tgcattttca	tctatcaagg	840
tctcaaagtg	tcgaatcaaa	tcactagtat	tttttccgag	actaaaaaaa	agttgacaca	900
atgaaagttg	ctacactgtt	tttcttggct	tcgagtgtct	gtgtgctggg	agacccacag	960
ttcgtgaaac	tggaggcctc	tgttcttcgg	ggatccactt	acaaggattc	ccagaagggg	1020
gccaagccgt	tcatgttgga	aaagagggct	gatgacggct	cggtcacgat	ggaattgcag	1080
aacgcccagt	ctttctacca	agtcgagatc	gagataggat	ctgataagca	gaaggtgggg	1140
gttttgattg	ataccggttc	ctcggac,ttg	tgggtgatga	actcgaataa	ctcttactgt	1200
tcgtcttcca	gcactaaaaa	attgaaacgg	gacggaccgg	ccgatgcgct	acaaaaagga	1260
cgcgatcttt	ccgacctgta	caatttcaac	tctccaaacg	aagacaacaa	tgcaaaagga	1320
ttcttgggtg	gctggggaga	cttgaccaca	gtagagactg	caacccagga	tgagacacag	1380
acggctctcg	ctgcgcaggc	caccgtggac	tgctcgctat	acggaacgtt	caatccttca	1440
acgtccaatt	cgttccacaa	caacggcacc	acatttgaga	tttcgtacgc	ggaccgcact	1500
tttgcccgtg	gaacctgggg	ctacgatgat	gtcactttca	atggtgtcac	ggttaacgat	1560
ctctcgttgg	ccgtggcaga	tgaaacagat	tcttcgactg	gtgtttttgg	tatcggattg	1620
agggaattgg	aaaccacata	ctcaggaggc	ggaccacagc	attacatcta	cgacaactta	1680
cctttcaaaa	tggtcgacca	gggactcatc	aatagagccg	cctattccgt	ctacctgaac	1740
tcaactgagt	ccagcactgc	ctcgatcctc	ttcggtgcgg	ttgaccaaag	caaatatacc	1800
ggaagtcttg	gcttgcttcc	tatcatcaac	acggctgctt	cctacggtta	ccaaaagcct	1860
ctaaggctcc	aaatcaccct	gtctgccatt	acggtcagcg	actccagagg	acagcaagca	1920
agcattggtt	caggagctgc	tgctgcactt	cttgataccg	gaacgacttt	gacgtatgct	1980
ccaagcgaga	ttgtcgagaa	acttgctgaa	accctaggct	tcgactacag	cagctctgtc	2040
ggggcctacg	tggcaagatg	cagggacgtt	gatagctacg	ctgtcaactt	cgacttccag	2100

ggtaaagtga	ttgaagctcc	tttgagttcc	ttcctgattg	ctctgcaaac	caactccgga	2160
gaagtttcct	cctactgcgc	attgggtatt	ttctcctctg	gagacgaatc	cttcacgctc	2220
ggcgatactt	tcctgcgaaa	cgcctacttt	gtggctgacc	tcgagggata	tcaaatcgct	2280
atagctaacg	tgaacctgaa	tcctggagcc	gagcaaattg	aggtcatctc	aggcaactcc	2340
attccttctg	cttcgtcggt	ttccgattac	tccaatacct	ggggcgcctc	tgccaccgct	2400
ttggacactg	acaggcctac	tactctggga	tctgtgactg	ctgtgggcga	tgaaagagtg	2460
acctcgacca	agaaggtttc	gagtgtgaag	acaagcactt	cgtccgggtc	cgggtccact	2520
tcggagtcgt	ctacgtccag	ttcgcattcc	agcaatggcc	caaggacagt	aggctttagt	2580
ttgtgtgccg	ttttgtgcgc	attcttgatt	tctatactag	ttgtttgcta	gatctgaagt	2640
tctaaggggc	tttagtcttc	atttatgatt	tttttttatt	tggaccgcct	cgaattgttt	2700
ttccgacggg	tctactttaa	agctgcaaga	tctcgtttag	cgtcgtttat	ttctcgttcg	2760
tttagtgaca	aaaaaacaga	aaaaaaaact	ataaaaagcg	gtatataacc	tttatatttt	2820
gataaacatg	agcagcgaaa	ttaagctagc	accaaaggat	tacgagaagg	acaaggagtt	2880
cgccaaggct	ctgcatggca	aggacgccgc	gagcgctaca	ggaatgagtg	cttgggtgaa	2940
gaaggacaag	gaagctcaaa	aagtcgcgat	ggaaggatat	ttcaagcact	gggacgggaa	3000
aaccgacgag	gagactgaaa	agtcgagact	cgaggactac	tcgacgctca	ccaagcacta	3060
ctacaacctg	gtgacggatt	tctacgagta	tggatgggga	tcctcgttcc	acttttccag	3120
atactacaag	ggagagccat	ttagacaagc	t			3151

<210> 2

Met Lys Val Ala Thr Leu Phe Phe Leu Ala Ser Ser Val Cys Val Leu 1 5 10 15

Gly Asp Pro Gln Phe Val Lys Leu Glu Ala Ser Val Leu Arg Gly Ser

<211> 576

<212> PRT

<213> Hansenula polymorpha

<400> 2

20 25 30

Thr Tyr Lys Asp Ser Gln Lys Gly Ala Lys Pro Phe Met Leu Glu Lys 35 40 45

Arg Ala Asp Asp Gly Ser Val Thr Met Glu Leu Gln Asn Ala Gln Ser 50 55 60

Phe Tyr Gln Val Glu Ile Glu Ile Gly Ser Asp Lys Gln Lys Val Gly 65 70 75 80

Val Leu Ile Asp Thr Gly Ser Ser Asp Leu Trp Val Met Asn Ser Asn 85 90 95

Asn Ser Tyr Cys Ser Ser Ser Ser Thr Lys Lys Leu Lys Arg Asp Gly
100 105 110

Pro Ala Asp Ala Leu Gln Lys Gly Arg Asp Leu Ser Asp Leu Tyr Asn 115 120 125

Phe Asn Ser Pro Asn Glu Asp Asn Asn Ala Lys Gly Phe Leu Gly Gly 130 135 140

Trp Gly Asp Leu Thr Thr Val Glu Thr Ala Thr Gln Asp Glu Thr Gln 145 150 155 160

Thr Ala Leu Ala Ala Gln Ala Thr Val Asp Cys Ser Leu Tyr Gly Thr
165 170 175

Phe Asn Pro Ser Thr Ser Asn Ser Phe His Asn Asn Gly Thr Thr Phe 180 185 190

Glu Ile Ser Tyr Ala Asp Arg Thr Phe Ala Arg Gly Thr Trp Gly Tyr 195 200 205

Asp Asp Val Thr Phe Asn Gly Val Thr Val Asn Asp Leu Ser Leu Ala 210 215 220

Val Ala Asp Glu Thr Asp Ser Ser Thr Gly Val Phe Gly Ile Gly Leu Arg Glu Leu Glu Thr Thr Tyr Ser Gly Gly Gly Pro Gln His Tyr Ile Tyr Asp Asn Leu Pro Phe Lys Met Val Asp Gln Gly Leu Ile Asn Arg Ala Ala Tyr Ser Val Tyr Leu Asn Ser Thr Glu Ser Ser Thr Ala Ser Ile Leu Phe Gly Ala Val Asp Gln Ser Lys Tyr Thr Gly Ser Leu Gly Leu Leu Pro Ile Ile Asn Thr Ala Ala Ser Tyr Gly Tyr Gln Lys Pro Leu Arg Leu Gln Ile Thr Leu Ser Ala Ile Thr Val Ser Asp Ser Arg Gly Gln Gln Ala Ser Ile Gly Ser Gly Ala Ala Ala Leu Leu Asp Thr Gly Thr Thr Leu Thr Tyr Ala Pro Ser Glu Ile Val Glu Lys Leu Ala Glu Thr Leu Gly Phe Asp Tyr Ser Ser Ser Val Gly Ala Tyr Val Ala Arg Cys Arg Asp Val Asp Ser Tyr Ala Val Asn Phe Asp Phe Gln Gly Lys Val Ile Glu Ala Pro Leu Ser Ser Phe Leu Ile Ala Leu Gln

P26459.ST25.txt

Thr Asn Ser Gly Glu Val Ser Ser Tyr Cys Ala Leu Gly Ile Phe Ser 420 Ser Gly Asp Glu Ser Phe Thr Leu Gly Asp Thr Phe Leu Arg Asn Ala 435 440 Tyr Phe Val Ala Asp Leu Glu Gly Tyr Gln Ile Ala Ile Ala Asn Val 450 Asn Leu Asn Pro Gly Ala Glu Gln Ile Glu Val Ile Ser Gly Asn Ser 465 470 475 480 Ile Pro Ser Ala Ser Ser Val Ser Asp Tyr Ser Asn Thr Trp Gly Ala 485 490 495 Ser Ala Thr Ala Leu Asp Thr Asp Arg Pro Thr Thr Leu Gly Ser Val 500 505 510 Thr Ala Val Gly Asp Glu Arg Val Thr Ser Thr Lys Lys Val Ser Ser 515 520 525 Val Lys Thr Ser Thr Ser Ser Gly Ser Gly Ser Thr Ser Glu Ser Ser 530 Thr Ser Ser Ser His Ser Ser Asn Gly Pro Arg Thr Val Gly Phe Ser 545 550 555 560 Leu Cys Ala Val Leu Cys Ala Phe Leu Ile Ser Ile Leu Val Val Cys 565 570 575 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer

```
<400> 3
gaagtgcagc agcagctcct gaacc
                                                                      25
<210>
       4
<211>
      26
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
     primer
<400>. 4
ggctgatgac ggctcggtca cgatgg
                                                                      26
<210>
       5
<211> 20
<212> DNA
<213>
      Artificial Sequence
<220>
<223>
      primer
<400>
                                                                      20
ggacacgcaa gaggtgtctg
<210> 6
<211> 40
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      primer
<400>
                                                                      40
agctcgctac ccggggatcc gcaactttca ttgtgtcaac
<210> 7
<211>
      40
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
     primer
<400> 7
```

gcacat	cccc ctttcgccag cctcttcggt gcggttgacc	40
<210><211><211><212><213>		
<220> <223>	primer	
<400> gctcgg	8 ctcc aggattcagg	20
<210> <211> <212> <213>		
<220> <223>	primer	
	9 ccgg gtaccgagct	20
<210><211><211><212><213>	10 20 DNA Artificial Sequence	
<220> <223>	primer	
<400> caccgg	10 tagc taatgatccc	20
<210> <211> <212> <213>	11 20 DNA Artificial Sequence	
<220> <223>	primer	
<400>	11 tcca agtgggccga	20

P26459.ST25.txt

<210> <211>	12 20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	12	
ctggcg	aaag ggggatgtgc	20
<210>	13	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	13	
gaattc	atga agtgggtaac cttt	24
<210>	14	
	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	14	
taagcc	taag gcagcttgac	20
<210>	15	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	primer	
<400>	15	
caaget	geet taggettatg cagetgetee eeggtg	36

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 16
actagtgatt tatgggtcct cgatg

25