n a contract of the contract o	Nombre:				Nota
	Curso:	4° ESO A	Examen III		
	Fecha:	18 de diciembre de 2023	Final 1ª evaluación		

La no explicación clara y concisa de cada uno de los ejercicios implica una penalización del 25% de la nota

1.— He repartido mi colección de poliedros entre mis amigos matemáticos. A Tales le he dado 1/5 del total, a Hipatia 1/3 del resto, a Arquímedes la mitad de lo que quedaba, y, por último, a Pitágoras le he regalado los 16 poliedros que me quedaban. ¿Cuántos poliedros tenía? ¿Cuántos poliedros he dado a cada uno? (1,5 puntos)

2.— Calcula y simplifica todo lo que puedas: (1,5 puntos)
$$\frac{\chi^2 - \chi + 9}{\chi^3 - 9\chi} + \frac{1}{\chi^2 - 9} - \frac{1}{\chi - 3} + \frac{1}{\chi} =$$

3. - Sea Considera los siguientes polinomios: (1,5 puntos)

$$P(x) = 3x^4 - 6x^3 + 4x - 2$$
 $Q(x) = x^3 - 2x^2 - 3x + 1$ $R(x) = 2x^2 + 4x - 5$ $S(x) = x^2 + 1$

Calcula: a)
$$3 \cdot P(x) - 2 \cdot Q(x) + R(x)$$
 b) $P(x) \cdot Q(x) - 3 \cdot S(X)$ c) $P(x) : S(x)$

4.— Calcula el valor de la siguiente expresión: (1,5 puntos)
$$\left(\frac{\left(2\sqrt{45} + \frac{3}{2}\sqrt{72}\right) \cdot \left(2\sqrt{5} - 3\sqrt{2}\right) \cdot 10\sqrt{5}}{2\sqrt{180}} \right)^4 =$$

5.- Sabiendo que $\log a = \frac{3}{5}$ y que $\log b = -\frac{3}{2}$, calculad el valor de estos logaritmos aplicando sus propiedades: (2 puntos)

a)
$$\log \left[\sqrt[3]{b} \cdot \sqrt{10a^5} \right] = b) \log_b \frac{10^3}{a^5 \cdot b^3} = b$$

6.— Con una cartulina rectangular de $40 \text{ cm} \times 50 \text{ cm}$ se quiere construir una caja sin tapa recortando cuatro cuadrados iguales en cada una de las esquinas. Escribe la expresión algebraica del volumen de la caja en función del lado del cuadrado x. ¿Cuánto vale su volumen para x=1 cm? (2 puntos)

BONUS. – Halla el valor de k para que el resto de la división $x^4 + kx^3 - kx + 5$ x - 2 sea – 3

B C D	Nombre:	Soluciones		1ª Evaluación	Nota
	Curso:	4° ESO A	Examen III		
	Fecha:	18 de diciembre de 2023	Final 1ª evaluación		

La no explicación clara y concisa de cada uno de los ejercicios implica una penalización del 25% de la nota

1.— He repartido mi colección de poliedros entre mis amigos matemáticos. A Tales le he dado 1/5 del total, a Hipatia 1/3 del resto, a Arquímedes la mitad de lo que quedaba, y, por último, a Pitágoras le he regalado los 16 poliedros que me quedaban. ¿Cuántos poliedros tenía? ¿Cuántos poliedros he dado a cada uno?

Vamos a ir viendo qué damos a cada uno:

A Tales: $\frac{1}{5}$ de los poliedros, por lo que me quedan $\frac{4}{5}$ de los poliedros

A Hipatia: $\frac{1}{3}$ del resto, $\frac{1}{3}$ de $\frac{4}{5} = \frac{1}{3} \cdot \frac{4}{5} = \frac{4}{15}$ de los poliedros

Por lo que hasta ahora he regalado: $\frac{1}{5} + \frac{4}{15} = \frac{3+4}{15} = \frac{7}{15}$

Así que aún me quedan $\frac{8}{15}$ de los poliedros.

Arquímedes: $\frac{1}{2}$ de lo que quedaba, $\frac{1}{2}$ de $\frac{8}{15} = \frac{1}{2}$ de $\frac{8}{15} = \frac{1}{2} \cdot \frac{8}{15} = \frac{8}{30} = \frac{4}{15}$ de los poliedros

Así que ya he dado: $\frac{1}{5} + \frac{4}{15} + \frac{4}{15} = \frac{3+4+4}{15} = \frac{11}{15}$

Por lo que quedan $1 - \frac{11}{15} = \frac{4}{15}$ de los poliedros.

Si dice que a Pitágoras le regalo los 16 poliedros que quedaban, entonces:

 $\frac{4}{15}$ son 16 poliedros $\rightarrow \frac{1}{15}$ son 4 poliedros y $\frac{15}{15}$ son $4 \cdot 15 = 60$ poliedros

Por tanto, tenía 60 poliedros y he dado 12 a Tales y 16 a Hipatia, Arquímedes y Pitágoras.

2. – Calcula y simplifica todo lo que puedas: (1,5 puntos) $\frac{x^2-x+9}{x^3-9x}+\frac{1}{x^2-9}-\frac{1}{x-3}+\frac{1}{x}=$

$$\frac{x^{2}-x+9}{x^{3}-9x} + \frac{1}{x^{2}-9} - \frac{1}{x-3} + \frac{1}{x} = \frac{x^{2}-x+9}{x\cdot(x-3)\cdot(x+3)} + \frac{1}{(x-3)\cdot(x+3)} - \frac{1}{x-3} + \frac{1}{x} = \frac{x^{2}-x+9}{x\cdot(x-3)\cdot(x+3)} + \frac{x}{x\cdot(x-3)\cdot(x+3)} + \frac{x^{2}-9}{x\cdot(x-3)\cdot(x+3)} = \frac{x^{2}-x+9+x-x^{2}-3x+x^{2}-9}{x\cdot(x-3)\cdot(x+3)} = \frac{x^{2}-3x}{x\cdot(x-3)\cdot(x+3)} = \frac{1}{x+3}$$

3. - Sea Considera los siguientes polinomios: (1,5 puntos)

$$P(x) = 3x^4 - 6x^3 + 4x - 2$$
 $Q(x) = x^3 - 2x^2 - 3x + 1$ $R(x) = 2x^2 + 4x - 5$ $S(x) = x^2 + 1$

Calcula:

a)
$$3 \cdot P(x) - 2 \cdot Q(x) + R(x) = 3 \cdot (3x^4 - 6x^3 + 4x - 2) - 2 \cdot (x^3 - 2x^2 - 3x + 1) + 2x^2 + 4x - 5 = 9x^4 - 18x^3 + 12x - 6 - 2x^3 + 4x^2 + 6x - 2 + 2x^2 + 4x - 5 = 9x^4 - 20x^3 + 6x^2 + 22x - 13$$

b)
$$P(x)\cdot Q(x) - 3\cdot S(X) = (3x^4 - 6x^3 + 4x - 2)\cdot (x^3 - 2x^2 - 3x + 1) - 3(x^2 + 1) = 3x^7 - 6x^6 - 9x^5 + 3x^4 - 6x^6 + 12x^5 + 18x^4 - 6x^3 + 4x^4 - 8x^3 - 12x^2 + 4x - 2x^3 + 4x^2 + 6x - 2 - 3x^2 - 3 = 3x^7 - 12x^6 + 3x^5 + 25x^4 - 16x^3 - 11x^2 + 10x - 5$$

c)
$$P(x): S(x)$$

$$\frac{\left(2\sqrt{45} + \frac{3}{2}\sqrt{72}\right)\cdot\left(2\sqrt{5} - 3\sqrt{2}\right)\cdot10\sqrt{5}}{2\sqrt{180}} =$$

$$\frac{\left(\frac{2\sqrt{45} + \frac{3}{2}\sqrt{72}\right)\cdot\left(2\sqrt{5} - 3\sqrt{2}\right)\cdot10\sqrt{5}}{2\sqrt{180}}\right)^{4} = \left(\frac{\left(6\sqrt{5} + 9\sqrt{2}\right)\cdot\left(2\sqrt{5} - 3\sqrt{2}\right)\cdot10\sqrt{5}}{12\sqrt{5}}\right)^{4} = \left(\frac{\left(60 - 18\sqrt{10} + 18\sqrt{10} - 54\right)\cdot10\sqrt{5}}{12\sqrt{5}}\right)^{4} = \left(\frac{6\cdot10\sqrt{5}}{12\sqrt{5}}\right)^{4} = 5^{4} = 625$$

Donde hemos descompuesto en factores primos los radicandos y hemos extraído fuera todos los factores posibles, hemos operado y simplificado al final.

5.- Sabiendo que $\log a = \frac{3}{5}$ y que $\log b = -\frac{3}{2}$, calculad el valor de estos logaritmos aplicando sus propiedades: (2 puntos)

a)
$$\log \left[\sqrt[3]{b} \cdot \sqrt{10a^5} \right] = b) \log_b \frac{10^3}{a^5 \cdot b^3} =$$

a)
$$\log\left[\sqrt[3]{b} \cdot \sqrt{10 \cdot a^5}\right] = \log\left[\sqrt[3]{b}\right] + \log\left[\sqrt{10}\right] + \log\left[\sqrt{a^5}\right] = \log\left[b^{\frac{1}{3}}\right] + \log\left[10^{\frac{1}{2}}\right] + \log\left[a^{\frac{5}{2}}\right]$$

El logaritmo del producto es la suma de logarimos

1 1 2 5 6 1 + 1 1 2 5 7 2 1 1 1 3 3

$$= \int_{\text{En el logaritmo de ona potencia, el exponente}} \frac{1}{3} \log[b] + \frac{1}{2} \log[10] + \frac{5}{2} \log[a]$$

$$= \frac{1}{3}\log[b] + \frac{1}{2}\log[10] + \frac{5}{2}\log[a] = \frac{1}{3}\left(-\frac{3}{2}\right) + \frac{1}{2}\cdot 1 + \frac{5}{2}\cdot \frac{3}{5} = \frac{1}{2}$$
En el logaritmo de una potencia, el exponente conso delpunte conso del conso del

$$b) \log_b \frac{10^3}{a^5 \cdot b^3} \stackrel{=}{\underset{\substack{\text{El logaritmo del cociente es la resta de logarimos}}}{=}} \log_b \left[10^3 \right] - \log_b \left[a^5 \right] - \log_b \left[b^3 \right] \stackrel{=}{\underset{\substack{\text{En el logaritmo de una potencia, el exponente pasa delante}}}} 3\log_b \left[10 \right] - 5\log_b \left[a \right] - 3\log_b \left[b \right]$$

$$=3\log_{b}[10]-5\log_{b}[a]-3 \underset{\substack{\text{Cambiamos} \\ \text{a base} \\ \text{decimal}}}{=} 3 \cdot \frac{\log[10]}{\log[b]} - 5 \cdot \frac{\log[a]}{\log[b]} - 3 = \underset{\substack{\text{Sustituimos} \\ \text{cada uno} \\ \text{por su valor}}}{=} 3 \cdot \frac{1}{2} - 5 \cdot \frac{\frac{3}{5}}{2} - 3 = -3$$

6. - Con una cartulina rectangular de 40 cm × 50 cm se quiere construir una caja sin tapa recortando cuatro cuadrados iguales en cada una de las esquinas. Escribe la expresión algebraica del volumen de la caja en función del lado del cuadrado x. ¿Cuánto vale su volumen en litros para x=10 cm? (2 puntos)

Si llamamos x al lado de cada uno de los cuadrados que recortamos, el volumen de la caja formada recortando

los 4 cuadrados la calcularemos multiplicando largo por ancho y por alto:

$$V(x) = (40-2x)(50-2x)x = 4x^3-180x^2+2000x$$

Si x=10 cm, bastaría con sustituir:

$$V(x) = 4.10^3 - 180.10^2 + 2000.10 = 6.000 \text{ cm}^3$$

Y en litros dividimos por 1.000, por tanto, el volumen de la caja es de 6 litros.

BONUS. – Halla el valor de k para que el resto de la división $x^4 + kx^3 - kx + 5$ | x - 2 sea – 3: (1 punto)

Como se trata de una división por un binomio de la forma x-a, podemos utilizar la regla de Ruffini:

Como dicen en el enunciado que el resto es igual a -3, igualaremos nuestro resto a -3 y despejaremos k:

$$6k+21=-3$$
 \rightarrow $6k=-24$ \rightarrow $k=\frac{-24}{6}$ \rightarrow $k=-4$