CS2031 Telecommunications II

UDP

Naming at the Link Layer

One direct link between two terminals

= Terminals or Stations
Data units = Frames

Naming at the Network Layer

= Nodes of a graph

Data units = Packets

Any number of edges between two nodes

Naming at the Transport Layer

4

Naming at the Transport Layer

Data units = Segments or Datagrams

Task of the Network Layer

Source

Protocols in the OSI Model

User Datagram Protocol (UDP)

- UDP is a connectionless, unreliable protocol
 - No flow and error control
 - Port numbers are used to multiplex data
- Calculation of checksum & its inclusion in datagram are optional.
- Convenient transport-layer protocol for applications that provide their own flow and error control
 - Also used by multimedia applications.

Pseudo-Header for Checksum

der	32-bit source IP address			
Pseudoheader	32-bit destination IP address			
Pse	All 0s 8-bit protocol (17)		16-bit UDP total length	
ıder	Source port address 16 bits		Destination port address 16 bits	
Header	UDP total length 16 bits		Checksum 16 bits	

Data

(Padding must be added to make the data a multiple of 16 bits)

Well-Known Port Numbers

- Assigned by Internet Assigned Numbers Authority (IANA)
- 3 Categories of Ports:
 - − Well-known Ports: 0 − 1023 (restricted access)
 - Registered Ports: 1024 49151
 - Dynamic/Private Ports: 49152 65535

IP Addresses & Port Numbers

 IP Addresses determine the host

 Port Numbers determine the application

Queuing in UDP

Processes and UDP Queues

UDP Queue Example I

State	Process ID	Port Number	Queue Number
IN-USE	2,345	52,010	34
IN-USE	3,422	52,011	
FREE			
IN-USE	4,652	52,012	38
FREE			

Socket is opened on port 52014

State	Process ID	Port Number	Queue Number
IN-USE	2,345	52,010	34
IN-USE	3,422	52,011	
IN-USE	4,978	52,014	
IN-USE	4,652	52,012	38
FREE			

UDP Queue Example II

State	Process ID	Port Number	Queue Number
IN-USE	2,345	52,010	34
IN-USE	3,422	52,011	43
IN-USE	4,978	52,014	
IN-USE	4,652	52,012	38
FREE			

- Packet for Port 52011 arrives
 - Queue is created and packet is queued
- Packet for Port 53255 arrives
 - Packet is dropped

User Datagram Protocol (UDP)

- Connectionless
- Unreliable
 - No flow or error control
- Small Header:

CS2031 Telecommunications II

DNS

Protocols in the OSI Model

URLs to Names to Addresses

*URL = Uniform Resource Locator

Domain Name Space

Association between names and IP addresses www.dsg.scss.tcd.ie - 134.226.36.14

Domain Name Space

- Association between names and IP addresses www.dsg.scss.tcd.ie - 134.226.36.14
- Each domain may contain a number of sub-domains e.g. tcd.ie contains cs.tcd.ie, mee.tcd.ie
 cs.tcd.ie contains dsg.cs.tcd.ie

Hierarchy of Name Servers

CS7002 Data Communications

 Every zone has a DNS server

- DNS server maintain lists of
 - Nodes in the zone
 - References to servers
 of zones underneath it

Domain Names and Labels

A domain name consist of a number of labels

Name Resolution

CS7002 Data Communications

Recursive resolution

Iterative resolution

DNS Root Servers - Anycast

root.zone file

```
e.dns.id.
                         172800
                                 ΙN
                                                  103.19.177.177
e.dns.id.
                         172800
                                 ΙN
                                         AAAA
                                                  2001:df5:4000:4:0:0:0:4
                                         NS
ie.
                         172800
                                                  a.ns.ie.
                                 ΙN
ie.
                                                  b.ns.ie.
                         172800
                                 ΙN
                                         NS
ie.
                         172800
                                 ΙN
                                         NS
                                                  c.ns.ie.
ie.
                         172800
                                 ΙN
                                         NS
                                                  d.ns.ie.
ie.
                         172800
                                         NS
                                                  e.ns.ie.
                                 ΙN
ie.
                         172800
                                 ΙN
                                         NS
                                                  f.ns.ie.
ie.
                                 ΙN
                                         NS
                                                  g.ns.ie.
                         172800
ie.
                                 ΙN
                                         NS
                                                  h.ns.ie.
                         172800
IE.
                                         DS
                                                  25105 8 2 3883D06014FA40518A53C70442C3601A271C0F96
                         86400
IE.
                         86400
                                 ΙN
                                         RRSIG
                                                  DS 8 1 86400 20151206050000 20151126040000 62530
hHchxthV1+mIjN7sPVl27PSK040Jkegzc2Pib9+4q6bXYU3L6JPS4oXhsBqhSEA/WP7MvWemL0hSiETvuo3b8CAoMr0oTQnspl
ie.
                                         NSEC
                                                  ifm. NS DS RRSIG NSEC
                         86400
                                 ΙN
ie.
                         86400
                                         RRSIG
                                 ΙN
                                                  NSEC 8 1 86400 20151206050000 20151126040000 62536
QXF51Quk4H1casAa0GTKv2Mueizyb8p06x3RU2BtQBG6O9nhU9dPHIN8AA6NTQaUTleBBwAaAF3aUh37Q6r2K6+x8gsj46nxs\
a.ns.ie.
                         172800
                                 ΙN
                                                  77.72.72.44
a.ns.ie.
                         172800
                                 ΙN
                                         ΑΑΑΑ
                                                  2a01:4b0:0:0:0:0:0:3
b.ns.ie.
                         172800
                                                  77.72.72.34
                                 ΙN
b.ns.ie.
                         172800
                                 ΙN
                                         AAAA
                                                  2a01:4b0:0:0:0:0:0:2
c.ns.ie.
                         172800
                                 ΙN
                                                  194.146.106.98
c.ns.ie.
                         172800
                                         AAAA
                                                  2001:67c:1010:25:0:0:0:53
                                 ΙN
d.ns.ie.
                         172800
                                                  77.72.229.245
                                 ΙN
d.ns.ie.
                        172800
                                         AAAA
                                                  2a01:3f0:0:309:0:0:0:53
                         172800
                                                  199.19.2.1
e.ns.ie.
e.ns.ie.
                         172800
                                          ΑΑΑΑ
                                                  2001:500:93:0:0:0:0:1
f.ns.ie.
                         172800
                                                  199.19.3.1
```

.ie Servers

Name Servers

Host Name	IP Address(es)
e.ns.ie	199.19.2.1 2001:500:93:0:0:0:1
b.ns.ie	77.72.72.34 2a01:4b0:0:0:0:0:2
g.ns.ie	192.111.39.100 2001:7c8:2:a:0:0:64
c.ns.ie	194.146.106.98 2001:67c:1010:25:0:0:53
d.ns.ie	77.72.229.245 2a01:3f0:0:309:0:0:53
f.ns.ie	199.19.3.1 2001:500:95:0:0:0:1
a.ns.ie	77.72.72.44 2a01:4b0:0:0:0:0:3
h.ns.ie	192.93.0.4 2001:660:3005:1:0:0:1:2

ipconfig /all

```
Wireless LAN adapter WiFi:
  Connection-specific DNS Suffix . : scss.tcd.ie
  Description . . . . . . . . . : Intel(R) Dual Band Wireless-AC 7260
  DHCP Enabled. . . . . . . . . . .
                                : Yes
  Autoconfiguration Enabled . . . .
                                 Yes
                                 2001:770:10:203:c018:a372:1daa:424f(Prefe
  IPv6 Address. . . .
rred)
  Temporary IPv6 Address. . . . . . : 2001:770:10:203:f0c0:4f35:6fd5:90d4(Prefe
rred)
  Link-local IPv6 Address . . . . . : fe80::c018:a372:1daa:424f%3(Preferred)
  Subnet Mask . . . . . . . . . .
                            . . : 255.255.255.0
  Lease Obtained. . . . . . . . . . . 26 November 2015 11:11:18
  Lease Expires . . . . . . . . . . . . 26 November 2015 14:26:16
                                 fe80::c664:13ff:fe42:7a42%3
  134.226.62.254
  DHCP Server . . . . . . .
  DHCPv6 IAID . . . . . . . . . . . . . . . . 52998845
  DHCPv6 Client DUID. . . . . . .
                                : 00-01-00-01-1B-DD-F3-17-28-B2-BD-A0-C0-A3
                          . . . : 134.226.32.57
  DNS Servers
                                 134.226.56.13
```

nslookup

```
C:\Users\sweber>nslookup
Default Server: challenger.cs.tcd.ie
Address: 134.226.32.57
 set type=NS
 tcd.ie
Server: challenger.cs.tcd.ie
Address: 134.226.32.57
Non-authoritative answer:
tcd.ie nameserver = int-ns1.tcd.ie
tcd.ie nameserver = int-ns2.tcd.ie
int-ns1.tcd.ie internet address = 134.226.251.108
int-ns2.tcd.ie internet address = 134.226.251.109
> scss.tcd.1e
Server: challenger.cs.tcd.ie
Address: 134.226.32.57
                 nameserver = ns2.scss.tcd.ie
scss.tcd.ie
scss.tcd.ie
                nameserver = ns.scss.tcd.ie
ns.scss.tcd.ie internet address = 134.226.32.58
                AAAA IPv6 address = 2001:770:10:200:e8e0:c8ff:fec5:6b63
ns.scss.tcd.ie
ns2.scss.tcd.ie internet address = 134.226.56.13
ns2.scss.tcd.ie AAAA IPv6 address = 2001:770:10:200:a0dd:c1ff:fe89:ed50
```

SOA

Туре	Meaning	Value	
SOA	Start of Authority	Parameters for this zone	
A IP address of a host		32-Bit integer	
MX Mail exchange		Priority, domain willing to accept e-mail	
NS Name Server		Name of a server for this domain	
CNAME	Canonical name	Domain name	

134.226.36.3

@	IN	J	SOA	ns1.dsg.cs.tcd.ie. dsgadmin.cs.tcd.ie. (
			2003100801	; Serial yearmonthdayversion
			7200	; Refresh 2 hours
			1800	; Retry 1/2 hour
			86400	; Expire 1 day
			10800)	; Minimum 3 hours
	M	Χ	10	relay.cs.tcd.ie.
	IN	1	NS	ns1.dsg.cs.tcd.ie.
	IN	1	NS	ns2.dsg.cs.tcd.ie.
dsg.cs.tcd.ie	IN	J	Α	134.226.36.0
3 11 11 1	M	Χ	10	relay.cs.tcd.ie.
computerA IN	А		134.226.36.	1
dilbert	IN	1	CNAME	computerA
dogbert	IN		A	134.226.36.2
5				

IN

Query and Response Messages

- Two types of replies:
 - Authoritive answers
 - Cached or unauthoritive answers

6-byte header

✓ 2 bytes →	✓ 2 bytes →	
Identification	Flags	
Number of question records	Number of answer records (All 0s in query message)	
Number of authoritative records (All 0s in query message)	Number of additional records (All 0s in query message)	

DNS Request

IP Packet

UDP Datagram

DNS Request

DNS Request

UDP Datagram **IP Packet**

Lookup of www.dsg.scss.tcd.ie.

NSTX

NSTX

www.nstx.scss.tcd.ie?

IP Packet **DNS** Request **UDP** Datagram **IP Packet**

.scss DNS

www.nstx.scss.tcd.ie?

IP Packet DNS Request UDP Datagram IP Packet

.nstx DNS

Our Implementation; not a standard DNS implementation

IP-over-DNS II

- Laptop with limited access at airport
- Encapsulate IP packet into DNS query
 - Example: NSTX, Iodine

IP-over-DNS II

- Laptop with limited access at airport
- Encapsulate IP packet into DNS query
 - Example: NSTX, Iodine

IP-over-DNS III

- Laptop with limited access at airport
- Encapsulate IP packet into DNS query
 - Example: NSTX, Iodine

43

IP-over-DNS IV

- Laptop with limited access at airport
- Encapsulate IP packet into DNS query
 - Example: NSTX, Iodine

Tunnelling I

- Machine with access to Internet
- Machine with restricted access
- Both run programs that can pack and unpack data to be tunnelled

Tunnelling II

- Same process: Tunnel runs on both machines to pack and unpack data
- HTTP Request can transverse proxies etc

Tunnelling III

- Same process: Client and gateway should know how to pack and unpack data
- Gateway could be any machine in College with access to machines outside

CS2031 Telecommunications II

CDN

CDN - Motivation

Fixed Latency

Content-Distribution Networks

Akamai Scenario

Communications and Control

CS2031 Telecommunications II

DNS redirection

Clusters of servers at points of presence

Replication

The Usual Case

Asking for www.whitehouse.gov

Redirection of DNS

Asking for www.whitehouse.gov

Mirai Bot & The Attack on Dyn

- Mirai Bot Source published (Sept 30th)
- Attack on Dyn (Oct 21st)
- From one manufacturer:

"username: root" and "password: xc3511" hardcoded into the device firmware of a number of devices

Cloud-based **DNS Services**

URLs to Names to Addresses

*URL = Uniform Resource Locator

Protocols in the OSI Model

CS Predictions

 "I think there is a world market for maybe five computers."

Thomas Watson, President of IBM, 1943

 "There is no reason anyone would want a computer in their home."

Ken Olsen, Founder of Digital Equipment Corporation, 1977

 "I predict the Internet in 1996 will catastrophically collapse."

Robert Metcalfe, 1995

"IPv6 is dead."

David Cheriton, 1999

Traditional Logical Internet Topology

Emerging Logical Internet Topology

- According to a statement by Craig Labovitz in 2014:
 - 30 Entities created 50% of the traffic in the US at peak time

Hyper-Giants

Google

Akamai

Google's B4 to Jupiter

networking My view of "future"*

 Sets of **Datacentres**

Traditional

Internet

Edge networks

Overview

- Link Layer
- Network Layer
 - Addressing
 - Address Resolution (ARP)
 - Fragmentation
 - Intra-AS Routing
 - Distance Vector
 - Link State
 - Multicast Routing
 - IPv6
- Transport Layer
 - UDP
 - DNS
- Software-Defined Networking / Openflow
- Google Infrastructure CLOS / Fat-tree / Peering

