

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Ecuaciones Diferenciales Ordinarias - MAT2500 Fecha de Entrega: 2019-08-30 Agradecimientos a las siguientes personas:

Maximiliano Norbu, Agustín Oyarce, Paulina Vega, Luciano Sciaraffia

${\bf \acute{I}ndice}$

Problema 1	1
Problema 2	1
Problema 3	1
Problema 4	2
Problema 5	2
Problema 6	3
Problema 7	3
Problema 8	4

Problema 1:

Sean $\phi_1(t), \phi_2(t), \dots, \phi_{n-1}(t)$ soluciones del sistema homogéneo $\dot{x} = A(t)x$, y sea x una solución del sistema no homogéneo $\dot{x} = A(t)x + g(t)$, donde A(t) y g(t) son continuas sobre el intervalo I. Pruebe que $Z = \det(\phi_1, \phi_2, \dots, \phi_{n-1}, x)$ satisface la Formula no homogénea de Abel

$$\dot{Z} = \operatorname{tr}(A(t))Z + \det\left(\phi_1, \phi_2, \dots, \phi_{n-1}, q\right)$$

Solución problema 1:

Problema 2:

Sea A la matriz constante asociada a la EDO homogénea de orden n:

$$x^{(n)} + q_{n-1}x^{(n-1)} + \dots + q_1\dot{x} + q_0x = 0$$

(tal que el sistema equivalente de primer orden es $\dot{y} = Ay$, donde $y = (x, \dot{x}, \dots, x^{(n-1)})^T$).

(a) Demuestre que el polinomio característico de A es

$$\chi(z) := \det(zI - A) = z^n + q_{n-1}z^{n-1} + \dots + q_1z + q_0$$

- (b) Pruebe que la multiplicidad geométrica de cada valor propio de A es 1, i.e. cada valor propio de A es asociado con sólo un bloque de Jordan.
- (c) Demuestre que la ecuación, o equivalentemente, el sistema $\dot{y} = Ay$ es estable si y sólo si todos los valores propios tienen parte real no positiva, y todos los valores propios imaginarios son simples.

Solución problema 2:

Problema 3:

Considere el sistema lineal homogéneo $\dot{x} = A_b x$, donde $A_b = \begin{pmatrix} b & 3 \\ -3 & 2 \end{pmatrix}$.

(a) Encuentre la solución general del sistema cuando b = -4 y dibuje el retrato de fase.

(b) Determine los valores de b para los cuales el origen es, respectivamente, una fuente, una fuente espiral, un sumidero, un sumidero espiral, una silla y un centro.

Solución problema 3:

Problema 4:

Encuentre la solución general de

(a) $\dot{x} = Ax$, donde $A = \begin{pmatrix} 5 & 2 & 4 \\ 0 & 1 & 0 \\ -8 & -1 & -7 \end{pmatrix}$;

- (b) $\ddot{x} + x = 2\sin(2t)$
- (c) $\ddot{x} 2\dot{x} = -x + t 1 + 2\exp(t)$
- (d) $t\ddot{x} 2(t+1)\dot{x} + (t+2)x = 0$, $\phi_1(t) = \exp(t)$

Solución problema 4:

Problema 5:

Considere el sistema lineal homogéneo $\dot{x} = A(t)x$, para t > 0, donde

$$A(t) = \begin{pmatrix} 3/t & -1\\ 2/t^2 & -1/t \end{pmatrix}$$

(a) Verifique que

$$x_1(t) = \begin{pmatrix} t^2 \\ t \end{pmatrix}$$

resuelve el sistema para t > 0.

- (b) Sea $x_2(t)$ otra solución, tal que el Wronskiano $W(t) := \det(x_1, x_2)$ satisface W(1) = 1. Encuentre W(t).
- (c) Use el de conocimiento de W(t) para determinar una posible solución x_2 .

(d) Resuelva el problema de valor inicial

$$\dot{x} = A(t)x + \begin{pmatrix} 0 \\ -2t \end{pmatrix}, \quad t > 0 \quad \text{con} \quad x(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Solución problema 5:

Problema 6:

(a) Dado el sistema $\dot{x} = A(t)x$, donde A(t) es continua y periódica con periodo T. Demuestre que la transformación $y(t) = P(t, t_0)^{-1}x(t)$ traduce el sistema a uno con coeficientes constantes:

$$\dot{y} = Q(t_0)y$$

Donde $\Pi(t, t_0) = P(t, t_0) \exp((t - t_0)Q(t_0)),$

(b) Considere la EDO no homogénea

$$\dot{x} = A(t)x + q(t)$$

donde A(t) y g(t) son periódicas de periodo T. Muestre que esta EDO tiene una solución periódica única de periodo T si y solo si 1 no es un valor propio de la matriz de monodronía $M(t_0)$.

Solución problema 6:

Problema 7:

Considere el sistema homogéneo $\dot{x} = A(t)x$, donde

$$A(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$$

y a, b, c, d son funciones reales continuas con periodo 1. Suponga que a(t) > 0 y d(t) > 0. Demuestre que para todo entero k > 2 el sistema no puede tener una solución periódica x(t) con periodo mínimo igual a k.

Solución problema 7:

Problema 8:

Demuestre que la ecuación lineal

$$\ddot{x} + (1 + \exp(-t))x = 0$$

es estable, es decir, que todas sus soluciones permanecen acotadas para $t \geq 0$

Solución problema 8: