

Bolighed - powered by Python

A real life case study

About me

- Mathematician by education
- After some years in research I have since worked as a Python developer, primarily in data processing at:
 - Danish Geodata Agency, now called SDFE
 - Danish Meteorological Institute
 - And now, Bolighed A/S

About Bolighed

- Bolighed is a website aimed at house owners and hunters as well.
- Collects and presents information from a lot of public data sources:
 - BBR (basic information about buildings, dwellings and ownership).
 - Tinglysning (loans, entitlements etc.)
 - Energy marks
 - 0 ...
- Also a lot of "closed" non-public sources:
 - Price estimate models (machine learning)
 - Sales data
 - 0 ..

The stack at Bolighed

Advanced setup with a *lot* of components:

- Amazon EC2
- Docker
- Redis
- Eleasticsearch
- Cloudflare
- Postgres / Postgis (databases)
- Nginx
- Tornado (to be phased out...)
- ... and a whole lot more ...

Where is Python used?

The frontend is using AngularJS (soon - preact) and Python takes care of the rest:

- Data import
- Infrastructure
 - Deployment / configuration via ansible
- Backend api
 - Flask
 - Django
- Data analysis
 - Numpy, scipy, pandas, matplotlib, scikit-learn, SQL via SQLAlchemy.

A deeper look into some of the use cases

Backend:

def hello world():

return 'Hello, World!'

Flask with SQLAlchemy

```
    Super simple and very flexible setup:
    from flask import Flask
    app = Flask(__name__)
    @app.route('/')
```

Backend

Why Python and not PHP, C, C# or Java (or Ruby)? Is performance OK??

- Much, much nicer and more maintainable than PHP!
- Very high level interface to various services / infrastructure
 - Elasticsearch, Redis, Postgres (SQLAlchemy), Datadog, Amazon EC2 / S3.
- Lot's of caching mechanisms and load balancing in place very few actual database calls...

Backend

We also have some api's running in Django:

- More structured than Flask + SQLAlchemy
- Includes it's own ORM (Object-relational mapping) as a high level interface to the database.
- Lot's of extensions, e.g.
- Used by many *huge* web applications out there:
 - Instagram
 - Pinterest
 - 0 ..

Django's ORM

```
class CustomerType(models.Model):
   created = models.DateTimeField(auto_now_add=True)
   modified = models.DateTimeField(auto_now=True)
   name = models.CharField(max length=255, unique=True)
   def str (self):
       return self.name
class PropertyData(models.Model):
   0.00
   Models any kind of property
   0.00
   bbr_property_data = models.ForeignKey('BBRPropertyData', null=True)
   address = models.ForeignKey('Address', null=True)
```

Django's ORM

```
(venv_bm) Simons-MacBook-Pro:business_manager simonkokkendorff$ python manage.py shell Python 3.6.0 (default, Dec 24 2016, 08:01:42)

Type "copyright", "credits" or "license" for more information.
...

In [1]: from business_manager.leads import models
In [2]: for obj in models.Address.objects.all().filter(street__startswith="Åsvej")[:2]:
...: print(obj)
...:

Åsvejen 4 , 4330

Åsvejen 6 , 4330
```

- Specific database is 'abstracted away'
- No explicit SQL queries
- However, in some cases the high level ORM is too rigid and one must resolve to plain old SQL...

Data import

We use a lot of different python libraries and protocols for fetching data from various sources:

- Boto / boto3 for talking to Amazon EC2 and S3
- Requests for REST-interfaces / scraping
- Pysimplesoap / Requests for SOAP (XML) interfaces (sigh....)

For example there is a great API for all danish addresses at http://dawa.aws.dk/

```
In [14]: import requests
In [15]: r = requests.get("http://dawa.aws.dk/adresser", params={"vejnavn":"Fasanvej", "postnr": 8210, "husnr":15, "struktur":"mini"})
In [16]: r.json()
Out[16]:
[{'adgangsadresseid': '0a3f5096-212e-32b8-e044-0003ba298018',
 'dør': None.
 'etage': None,
 'husnr': '15'.
 'id': '19910d90-1d47-41c9-e044-0003ba298018'.
 'kommunekode': '0751',
 'postnr': '8210',
 'postnrnavn': 'Aarhus V',
 'status': 1.
 'supplerendebynavn': None,
 'vejkode': '2032',
 'vejnavn': 'Fasanvej',
 'x': 10.1787079932534.
 'y': 56.1647588529531}]
```

Addresses, postal districts and various other data are imported from this endpoint on a regular basis.

Data analysis

Case:

Examine the relation between house prices and travel time to Copenhagen.

Plan:

- Fetch sales data + geographic location from database (Postgis) via SQLAlchemy.
- Use googlemaps Python API to query travel times to Copenhagen Central station for these locations.
- Do some analysis and plotting with numpy (linear regression, filtering) and matplotlib

Something else that I've been working on...

- Mapping value increases for houses the next year:
 - https://s3.bolighed.dk/static/stories/prisprognose/index.html#7/56.188/11.646
- And something completely different a fancy map:
 - http://gittebach.dk/case/story.html
- How does house prices depend on various parameters?
 - o For example energy marks?
 - Create models using scikit-learn...
 - o ...or tensorflow ... or...

Work in progress - analysis of price versus energy mark

Try to analyse if energy mark has a significant influence on sales price?

- Prices are very different across the country, so don't do this in an absolute scale (kr.)
- We know that location is actually the most important parameter for the price of a house (location, location, location...), so try to factor this out somehow.
- Hmm, make a price model and look at deviations from this instead.

Linear regression analysis with statsmodels

OLS Regression Results

Dep. Variable: 0.100 R-squared: anoma 0LS Adj. R-squared: 0.100 Model: F-statistic: 952.8 Method: Least Squares Date: Wed. 21 Jun 2017 Prob (F-statistic): 0.00 Time: 14:43:57 Log-Likelihood: -2.0021e+05No. Observations: 42858 ATC: 4.004e+05Df Residuals: 42852 BIC: 4.005e+05 Df Model:

Covariance Type: nonrobust

=======================================	coef	std err	t	======== P> t	[0.025	0.975]
Intercept C(em)[T.2] C(em)[T.3] C(em)[T.4] C(em)[T.5] C(em)[T.5]	19.6552 -11.4971 -19.8643 -25.5576 -29.9923 -38.2364	0.628 0.678 0.663 0.687 0.734 0.775	31.320 -16.945 -29.973 -37.187 -40.846 -49.366	0.000 0.000 0.000 0.000 0.000 0.000	18.425 -12.827 -21.163 -26.905 -31.431 -39.755	20.885 -10.167 -18.565 -24.211 -28.553 -36.718
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.	1279.801 Durbir 0.000 Jarque 0.330 Prob(3 3.745 Cond.			1.984 1767.298 0.00 14.0

Price "anomaly" versus energy mark.
Significant dependency?
Yes - but only explains a small part of the variation.

Thank you for your attention!

Some links:

- https://bolighed.dk/
- https://da-dk.facebook.com/bolighed/
- https://twitter.com/bolighed

