Работа 4.17

Определение угла Брюстера и диэлектрической проницаемости стекла

Оборудование: гониометр с поляроидом-анализатором, поляризатордиэлектрик, источник света, фотоэлемент, микроамперметр.

Введение

Явление поляризации имеет место при отражении и преломлении света на границе двух изотропных диэлектриков. В отраженном луче преобладают колебания, перпендикулярные к плоскости падения (на рис. 4.37 они обозначены точками), в преломленном луче — колебания, параллельные плоскости падения (на рис. 4.37 они показаны двусторонними стрелками).

Рис. 4.37

Степень поляризации отраженного луча зависит от угла падения его на поверхность диэлектрика. С возрастанием угла $^{\varphi}$ доля поляризованного света растет так, что при определенном угле $^{\varphi}$ отраженный свет оказывается полностью поляризованным (он содержит только колебания, перпендикулярные к плоскости падения). Этот угол $^{\varphi}$ в называется углом полной поляризации или углом Брюстера. Степень поляризации преломленного луча при угле падения $^{\varphi}$ в достигает наибольшего значения, однако этот луч остается поляризованным только частично.

Величина угла полной поляризации зависит от относительного показателя преломления n и определяется соотношением

$$tg\phi_{B} = n. \tag{1}$$

Это соотношение называется *законом Брюстера*. При дальнейшем увеличении угла падения доля поляризованного света в отраженном луче вновь уменьшается.

Диэлектрическая проницаемость вещества связана с показателем преломления соотношением

$$\varepsilon = n^2. (2)$$

Поэтому представляется возможным по величине угла Брюстера определить показатель преломления и диэлектрическую проницаемость диэлектрика:

$$\varepsilon = n^2 = \operatorname{tg}^2 \varphi_{\,\mathrm{B}}.\tag{3}$$

Описание установки и метода. Схема экспериментальной установки показана на рисунке 4.38.

Луч света, отразившись от стеклянной пластинки, проходит через анализатор и попадает в зрительную трубу. Вращая столик гониометра, на котором установлена пластинка, можно изменять угол падения луча на диэлектрик. Если произвольный угол β , то отраженный повернуть на поворачивается на удвоенный угол (рис. 4.38) $\alpha = 2\beta$. Поскольку $\varphi + \beta = 90^{\circ}$, то по углу поворота α отраженного луча можно определить угол падения луча на пластинку:

$$\varphi = 90^{\circ} - \frac{\alpha}{2}. \tag{4}$$

Порядок выполнения работы

Брюстера и Задание 1. Определение диэлектрической угла проницаемости стекла.

- 1. Включите источник света 1.
- 2. Поверните зрительную трубу 7 на угол 30° .
- 3. Вращая столик 4, на котором установлена стеклянная пластинка 5, добейтесь максимального показания микроамперметра. При таком положении отраженный пучок света попадает в зрительную трубу и на фотоэлемент 8.

Рис. 4.38

- 4. Установите поляроид 6, укрепленный перед зрительной трубой, на минимум. Для этого поверните его вокруг оси и наблюдайте за показаниями микроамперметра. Эти показания должны быть наименьшими. Поляроид 6 оставьте в протяжении таком положении последующих измерений.
- 5. Снимите показания микроамперметра (i)(как указано в пп. 3 и 4) для различных углов

падения луча на стеклянную пластинку. Для этого поворачивайте зрительную трубу на 10° при каждом последующем измерении в интервале $30^{\circ} - 90^{\circ}$ (в пределах от 50° до 75° измерения проводите через 5°).

- 6. Постройте график зависимости i (α).
- 7. Определите по графику угол α_{\min} , которому соответствует наименьшее показание микроамперметра.
 - 8. Зная α_{\min} , определите угол Брюстера по формуле (4).
 - 9. По формулам (1) и (3) определите n и ε .
 - 10. Результаты измерений и вычислений запишите в таблицу:

N_{Ω} Π/Π	α	i	$lpha_{ m min}$	ФБ	n	$\mathcal E$

ЗАДАНИЯ ДЛЯ УИР

- 1. Определите показатель преломления различных диэлектриков и получите для них зависимость показателя преломления от плотности $n(\rho)$.
- 2. Проведите исследование зависимости показателя преломления данного диэлектрика от длины волны света.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

- 1. Какой угол называют углом Брюстера?
- 2.Запишите закон Брюстера.
- 3.В какой плоскости поляризованы отраженный и преломленный лучи?
- 4. Для чего в работе необходим поляроид?
- 5. Как изменяется степень поляризации преломленного луча с возрастанием угла падения?
 - 6.Объясните явление поляризации света при отражении.
 - 7. Продольными или поперечными являются световые волны?
 - 8. Для каких волн должна наблюдаться поляризация? Почему?
- 9.Запишите выражение для закона Брюстера в случае, если показатель преломления среды, в которой находится диэлектрик, больше единицы.
- 10. Чему равен угол между отраженным и преломленным лучами, если угол падения света на поверхность диэлектрика равен углу Брюстера?