8. gyakorlat

Monotonitás. Szélsőértékek

Szükséges ismeretek

- Milyen *elégséges* feltételt ismer differenciálható függvény *szigorú monoton* növekedésével kapcsolatban?
- Milyen szükséges és elégséges feltételt ismer differenciálható függvény monoton növekedésével kapcsolatban?
- Mit ért azon, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely helyen lokális minimuma van?
- Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?
- Hogyan szól a lokális maximumra vonatkozó elsőrendű elégséges feltétel?
- Írja le a lokális minimumra vonatkozó másodrendű elégséges feltételt.
- Hogyan szól a Weierstrass-tétel?

■ Feladatok

1. Vizsgálja meg monotonitás szempontjából az alábbi függvényeket:

(a)
$$f(x) := x^2(x-3) \ (x \in \mathbb{R}),$$

(b)
$$f(x) := \frac{x}{x^2 - 6x - 16}$$
 $(x \in \mathbb{R} \setminus \{-2, 8\}),$

(c)
$$f(x) := x \ln x \ (x \in (0, +\infty)),$$

(d)
$$f(x) := \frac{2}{x} - \frac{8}{1+x}$$
 $(x \in \mathbb{R}, x \neq 0, x \neq -1).$

- **2.** Mutassa meg, hogy ha az $f:(a,b)\to\mathbb{R}$ függvény szigorúan monoton csökkenő, akkor az inverze is szigorúan monoton csükkenő.
- 3. Határozza meg az f függvény
 - (a) a lokális szélsőértékeit,
 - (b) az abszolút szélsőértékeit az $A\subset\mathcal{D}_f$ halmazon, ha

(ii)
$$f(x) := x^4 - 4x^3 + 10 \ (x \in \mathbb{R})$$
, és $A = [-1, 4]$;

(iii)
$$f(x):=\frac{x}{x^2+1}$$
 $(x\in\mathbb{R}),$ és $A=\left[-\frac{3}{2},2\right];$

(iv)
$$f(x) := 2x + \frac{200}{x}$$
 (0 < x < +\infty), és $A = \mathcal{D}_f$.

4. Egységnyi kerületű téglalapok közül melyiknek legnagyobb, illetve legkisebb a területe?

15

■ Házi feladatok

- 1. Mutassa meg, hogy ha az $f:(a,b)\to\mathbb{R}$ függvény szigorúan monoton növekedő, akkor az inverze is szigorúan monoton növekedő.
- 2. Vizsgálja meg monotonitás szempontjából az

$$f(x) := \frac{e^x}{x} \ (x \in \mathbb{R} \setminus \{0\})$$

függvényt.

3. Határozza meg az

$$f(x) := \frac{x}{x^2 + x + 1} \qquad (x \in \mathbb{R})$$

függvénynek

- (a) a lokális szélsőértékeit,
- (b) az abszolút szélsőértékeit a [-2,0] halmazon.

■ Gyakorló feladatok

- 1. Mutassa meg, hogy ha $f \in D$ és f páros (páratlan, periodikus), akkor f' páratlan (páros, periodikus).
- 2. Milyen $p \in \mathbb{R}$ esetén van az $x^3 6x^2 + 9x + p = 0$ egyenletnek pontosan egy valós gyöke?
- 3. Az $\ln' 1 = 1$ egyenlőség alapján bizonyítsa be, hogy

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

4. Adjon meg olyan $H \subset \mathbb{R}$ nemüres nyílt halmazt és olyan $f: H \to \mathbb{R}$ differenciálható függvényt, amelyre f'(x) > 0 minden $x \in H$ esetén, de f nem szigorúan monoton növekedő H-n.

16

- 5. Vizsgálja meg monotonitás szempontjából az alábbi függvényeket:
 - (a) $f(x) := 2e^{x^2 4x} \ (x \in \mathbb{R}),$
 - (b) $f(x) := xe^{-x} \ (x \in \mathbb{R}),$
 - (c) $f(x) := xe^{-x^2} \ (x \in \mathbb{R}),$
 - (d) $f(x) := \ln \frac{x^2}{(1+x)^3}$ $(x > -1, x \neq 0),$
 - (e) $f(x) := (x-3)\sqrt{x} \ (x \in [0, +\infty)).$

- 6. Határozza meg az f függvény lokális szélsőértékhelyeit és lokális szélsőértékeit, ha
 - (a) $f(x) := x^3 3x^2 + 3x + 2 \ (x \in \mathbb{R}),$
 - (b) $f(x) := x^2 e^{-x} \ (x \in \mathbb{R}),$
 - (c) $f(x) := x \ln(1+x)$ $(x \in (-1, +\infty))$.
- 7. Számítsa ki az f függvény abszolút szélsőértékeit, ha
 - (a) $f(x) := 2x^3 + 3x^2 12x + 1 \ (x \in [-3, 3]),$
 - (b) $f(x) := x^2 e^{-x}$ $(x \in \mathbb{R}).$
- 8. A 6x+y=9 egyenletű egyenesen keressük meg a (-3,1)-hez legközelebbi pontot.
- 9. Az $y^2 x^2 = 4$ egyenletű hiperbolának mely pontja van legközelebb a (2,0) pothoz?
- 10. Határozza meg annak az egyenesnek az egyenletét, amelyik átmegy a (3,5) ponton és az első síknegyedből a legkisebb területű részt vágja le.
- 11. Legfeljebb mekkora lehet annak a gerendának a hossza, amelyet egy 4 m átmérőjű, kör keresztmetszetű toronyba, egy a torony falán vágott 2 m magas ajtón át bevihetünk?