A07-SOLARPY

Maran Christian

TGM 5BHITM

Inhalt

ufgabenstellung	2
eitaufwandsaufzeichnung	3
esignüberlegung	4
Notwendige Libraries	4
Überlegungen	4
Codedesign	4
GUI-Design	5
V1	5
Splashscreen	5
uellen	7

Aufgabenstellung

Wir wollen nun unser Wissen aus Medientechnik und SEW nützen um eine etwas kreativere Applikation zu erstellen.

Eine wichtige Library zur Erstellung von Games mit 3D-Grafik ist Pygame. Die 3D-Unterstützung wird mittels PyOpenGL erreicht.

Die Kombination ermöglicht eine einfache und schnelle Entwicklung.

Während pygame sich um Fensteraufbau, Kollisionen und Events kümmert, sind grafische Objekte mittel OpenGL möglich.

Die Aufgabenstellung:

Erstellen Sie eine einfache Animation unseres Sonnensystems:

In einem Team (2) sind folgende Anforderungen zu erfüllen.

- o Ein zentraler Stern
- Zumindest 2 Planeten, die sich um die eigene Achse und in elliptischen Bahnen um den Zentralstern drehen
- Ein Planet hat zumindest einen Mond, der sich zusätzlich um seinen Planeten bewegt
- o Kreativität ist gefragt: Weitere Planeten, Asteroiden, Galaxien,...
- Zumindest ein Planet wird mit einer Textur belegt (Erde, Mars,... sind im Netz verfügbar)

Events:

- Mittels Maus kann die Kameraposition angepasst werden: Zumindest eine Überkopf-Sicht und parallel der Planentenbahnen
- Da es sich um eine Animation handelt, kann diese auch gestoppt werden.
 Mittels Tasten kann die Geschwindigkeit gedrosselt und beschleunigt werden.
- Mittels Mausklick kann eine Punktlichtquelle und die Textierung ein- und ausgeschaltet werden.
- o Schatten: Auch Monde und Planeten werfen Schatten.

Hinweise:

- Ein Objekt kann einfach mittels glutSolidSphere() erstellt werden.
- Die Planten werden mittels Modelkommandos bewegt: glRotate(), glTranslate()
- Die Kameraposition wird mittels gluLookAt() gesetzt
- Bedenken Sie bei der Perspektive, dass entfernte Objekte kleiner nahe entsprechende größer darzustellen sind.
 Wichtig ist dabei auch eine möglichst glaubhafte Darstellung. gluPerspective(), glFrustum()
- Für das Einbetten einer Textur wird die Library Pillow benötigt! Die Community unterstützt Sie bei der Verwendung.

Zeitaufwandsaufzeichnung

Arbeitspakete	Geschätzte Zeit	Tatsächliche Zeit	Status
1 Libraries-Recherche	00h 30min	00h 35min	Done
1.1 Evaluierung der Libraries	00h 30min	00h 35min	Done
2 Anlernen der Libraries	04h 00min	03h 30min	In progress
2.1 Pygame	01h 30min	01h 00min	Done
2.1.1 Darstellung	00h 30min	00h 30min	Done
2.1. 2 Steuerung	01h 00min	00h 30min	Done
2.2 OpenGL	02h 30min	02h 00min	In progress
2.2.1 Erzeugen von Objekten	00h 30min	00h 45min	Done
2.2.2 Translation von Objekten	00h 30min	00h 30min	Done
2.2.3 Rotation von Objekten	01h 00min	00h 30min	In progress
2.2.4 Buffering	00h 30min	00h 15min	In progress
2.3 Pillow	00h 30min	00h 30min	Done
2.3.1 Texturierung von Objekten	00h 30min	00h 30min	Done
3 Backend-Design	02h 00min	01h 30min	In progress
3.1 UML erstellen	02h 00min	01h 30min	In progress
4 GUI-Design	01h 30min	01h 00min	In progress
4.1 GUI-Prototypen erstellen	01h 30min	01h 00min	In progress
5 3D-Objekte erstellen	02h 00min	01h 00min	Done
5.1 Fixstern erstellen	00h 30min	00h 15min	Done
5.2 Planet 1 erstellen	00h 30min	00h 15min	Done
5.3 Planet 2 erstellen	00h 30min	00h 15min	Done
5.4 Mond erstellen	00h 30min	00h 15min	Done
6 Texturen zuweisen	01h 00min	01h 00min	Done
6.1 Fixstern Textur zuweisen	00h 15min	00h 30min	Done
6.2 Planet 1 Textur zuweisen	00h 15min	00h 10min	Done
6.3 Planet 2 Textur zuweisen	00h 15min	00h 10min	Done
6.4 Mond Textur zuweisen	00h 15min	00h 10min	Done
7 Animationssteurung	05h 00min	04h 30min	In progress
7.1 Rotation um ein Objekt	01h 30min	01h 30min	In progress
7.2 Rotation um die eigene Achse	00h 45min	00h 30min	Done
7.3 Rotation von mehreren Objekten	02h 00min	01h 30min	In progress
7.4 Geschwindigkeit einstellen	00h 15min		In progress
7.5 Rotation starten	01h 00min	00h 30min	Done
8 Kamera	02h 00min		
8.1 Kameraview erzeugen	01h 00min		
8.2 Postionsänderung mittels Maus	01h 00min		In proges
9 Lichtquelle 9.1 Lichtquelle erzeugen	02h 00min	01h 30min	In progess Done
9.2 Lichtquelle positionieren	01h 00min	00h 45min	Done
9.3 Lichtquelle an-/ausschalten	01h 00min	וווווועד ווטט	Done
10 Dokumentation	04h 30min		
10.1 Code dokumentieren	01h 30min		
10.2 Sphinx Doku erzeugen(rst-File etc)	01h 00min		
10.3 Protokoll	02h 00min	02h 00min	In progress
Summe	24h 30min	10h 50min	

Designüberlegung

Notwendige Libraries

- PyQt
- PyGame
- PyOpenGL
- Pillow/Pyglet -> wird sich dann bei der Recherche der beiden Libraries zeigen, welche schlussendlich verwendet wird

Überlegungen

Splashscreen wird mittels Pygame eingebunden.

Der OpenGL-Teil wird mit PyOpenGL implementiert und dann mittels PyGame eingebunden.

Rotationsgeschwindigkeit soll mit den Pfeiltasten verändert werden können \rightarrow weitere Konfiguration womöglich mittels ausklappbaren Optionsinterface

Etwaige GUI-Komponenten mit PyQt umsetzen → Anpassungsmöglichkeit mittels Stylesheet

Codedesign

MVC für die Grundstruktur des Projektes um eine gute Trennung der Komponenten zu gewährleisten. Strategy-Pattern für die Drehung?

V1

Splashscreen

Aktuell wird an einem Splashscreen mit Animation gearbeitet, welche schon funktionieren würde, allerdings werden bei dieser Version die Lichter nicht vernünftig abgespeichert

Quellen

- [1] thenewboston, Pygame (Python Game Development) Tutorial 1 Introduction, 10.11.2014, https://www.youtube.com/watch?v=K5F-aGDIYaM (zuletzt aufgerufen 23.02.2014)
- [2] Rick Muller, Open a GLUT window and draw a sphere using Python/OpenGL (Python recipe), 27.10.2004, http://code.activestate.com/recipes/325391-open-a-glut-window-and-draw-a-sphere-using-pythono/ (zuletzt aufgerufen 28.02.2014)