RAF201G – Miðmisserispróf 1

11. febrúar, 8:20-9:50

Prófið inniheldur fjögur dæmi sem hver um sig gilda 25 prósent. Setjið inn lausnir og útreikninga á Gradescope. Gangi ykkur vel!

Lausnir 9. febrier 2021 leitrétt 11. Jebrier 2021

Dæmi 1 – Jafngildisrás. Óháðar lindir

Finnið tómgangsspennu $v_{\rm oc}$, skammhlaupsstraum $i_{\rm sc}$ og jafngildisviðnám $R_{\rm eq}$ á milli póla a og b. Teiknið Thévenin jafngildisrásina.

Breyta	Gildi
$\overline{V_1}$	5 V
I_{\perp}	$2\mathrm{A}$
R_1, R_2	5Ω

(3) Rth =
$$\frac{V_{oc}}{I_{sc}} = \frac{-5/2}{-1} = \frac{5}{2}\Omega$$

Må lilea millstilla linder & setja 1A prufustram

Dæmi 2 – Jafngildisrás. Spennustýrð spennulind

Finnið tómgangsspennu $v_{\rm oc}$, skammhlaupsstraum $i_{\rm sc}$ og jafngildisviðnám $R_{\rm eq}$ á milli póla a og b. Teiknið Thévenin jafngildisrásina.

Breyta	Gildi
I_1	1 A
μ	4
R_1	4Ω
R_2	6Ω
R_3	10Ω

1) Tomganys spemm Noc

$$p_{\alpha} \vee I_{SC} = \frac{N_b - 0}{R_3} = -\frac{8}{5}A$$

$$\begin{array}{c}
3 \\
\text{Reg} = \frac{V_{\text{oc}}}{I_{\text{Sc}}} = \frac{-16V}{-8/5A} = 10 \text{ }\Omega
\end{array}$$

Dæmi 3 – Fullkominn aðgerðarmagnari

Hvaða nálgunum gerum við ráð fyrir varðandi straum og spennu $(v_{+/-}, i_{+/-})$ við plús/mínus póla fullkomins aðgerðarmagnara? Notið nálganirnar til að finna hlutfallið $v_{\rm out}/v_{\rm in}$.

Breyta	Gildi
R_1	6Ω
R_2	42Ω
R_3	32Ω
R_4, R_5	16Ω

Het
$$N_t = N_t = N$$
 in $N_t = N_t =$

$$\dot{\rho} \dot{a} \quad e' \quad \dot{v}_{out} = \frac{N_0 - 0}{R_4 + R_5} \quad ? \quad N_{out} = \dot{v}_{out} R_5 = \left(\frac{N_0}{R_4 + R_5}\right) R_5$$

eta Nont =
$$\left(\frac{RS}{R_1 + RS}\right) \left(\frac{R_1 + R_2}{R_1}\right) V_{in}$$

Svo
$$\frac{N_{\text{ont}}}{N_{\text{in}}} = \frac{N_{\text{d}}}{N_{\text{u}}} = \frac{4V_{\text{in}}}{V_{\text{in}}} = 4$$

Dæmi 4 – Hnútpunktagreining (MNA)

Ritið KCL og KVL jöfnur sem duga til að leysa rásina hér að neðan. Setjið jöfnurnar upp í fylki. Athugið að ekki þarf að leysa fylkið.

Ábending: Hvað eru margir hnútpunktar og spennulindir? Hvað eru þá margar óþekktar breytur/jöfnur sem þarf að leysa?

Breyta	Gildi
μ	3
I_1	$6\mathrm{A}$
R_1	$\frac{1}{6}\Omega$
R_2	$\frac{1}{3}\Omega$
R_3	$\frac{1}{2}\Omega$
R_4	$\frac{1}{30} \Omega$

$$N_{j}\ddot{o}h = N_{hmitpmuller} + N_{spendindir} - 1$$

$$= 4 + 1 - 1 = 4$$

$$a = b + V_{c}(\mu - 1) - \nu A + V_{b} = 0$$

$$a = b + V_{c}(\mu - 1) - \nu A + V_{b} = 0$$

$$a = b + V_{c}(\mu - 1) - \nu A + V_{b} = 0$$

$$a = b + V_{c}(\mu - 1) - \nu A + V_{b} = 0$$

$$b = a_{2} + a_{2} + a_{3} + a_{4} + a_{5} + a_{5} + a_{4} + a_{5} + a_{5}$$