Prolegomena on (some) Abstact Algebra

Algebraic structures zoology

Tony

May 16, 2017

(molto basato su wiki)

Contents

1	Single Operation structures (Magmas)	2
2	Double Operation Structure (Rings)	4
3	Structures over a Field	6

1 Single Operation structures (Magmas)

Consider two set M, A and a binary operation, i.e. a function:

$$\otimes: M \times M \to A$$

Operation ⊗ is said:

• *Closed* if $ran(\otimes) \subset M$

$$(x \otimes y) \in M \qquad \forall x, y \in M$$
 (1)

• Associative

$$(x \otimes y) \otimes z = x \otimes (y \otimes z) \qquad \forall x, y, z \in M$$
 (2)

• Unital

$$\exists e \in M : e \otimes x = x \otimes e = x \quad \forall x \in M$$
 (3)

Such an element is unique, and thus one speaks of *identity element*.

• Exists Inverse:

$$\forall a \in M \quad \exists b \in M \quad : \quad a \otimes b = b \otimes a = e \tag{4}$$

where e is the identity element and thus one speaks of the identity element.

• Commutative

$$x \otimes y = y \otimes x \qquad \forall x, y \in M$$
 (5)

Depending on the properties satisfied by \otimes , the pair (M, \otimes) is called:				
Magma			SemiGroup	
Closure			Closure	
Associativity			Associativity	
Identity			Identity	
Inverse			Inverse	
Commutativity			Commutativity	
Mono	id		Commutative	e Monoid
Closure			Closure	
Associativity			Associativity	
Identity			Identity	
Inverse			Inverse	
Commutativity			Commutativity	
Grou	p		Abelian G	roup
Closure			Closure	
Associativity			Associativity	
Identity			Identity	
Inverse			Inverse	
Commutativity			Commutativity	

Observation 1

Another recurring magma is the *Quasi-Group*. https://it.wikipedia.org/wiki/Quasigruppo

2 Double Operation Structure (Rings)

Consider two set *R*, *A* and two binary operation as above:

$$\otimes: R \times R \to A \qquad \oplus: R \times R \to A$$

Are defined some basic compatibility relations:

• \otimes is *Left distributivite* with respect to \oplus

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) \qquad \forall a, b, c \in R$$
 (6)

• \otimes is *Right distributivite* with respect to \oplus

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c) \qquad \forall a, b, c \in R \tag{7}$$

Notation fixing			
		Identity	Inverse
Mimicking the numeric fields we denote	8	1	$(\cdot)^{-1}$
	0	0	$-(\cdot)$

Depending on the properties satisfied by \otimes , \oplus , the triple (M, \otimes, \oplus) is called:

Field		
Closure		
Associativity		
Identity	Abelian Group (⊕)	
Inverse		
Commutativity		
Closure		
Associativity		
Identity	Abelian Group (⊗)	
Inverse		
Commutativity		
Left Distributivity	Distributivity	
Right Distributivity	(⊗) w.r.t. (⊕)	

Ring		
Closure		
Associativity		
Identity	Abelian Group (⊕)	
Inverse		
Commutativity		
Closure		
Associativity		
Identity	Monoid (⊗)	
Inverse		
Commutativity		
Left Distributivity	Distributivity	
Right Distributivity	(⊗) w.r.t. (⊕)	

Pseudo-Ring		
Closure		
Associativity		
Identity	Abelian Group (⊕)	
Inverse		
Commutativity		
Closure		
Associativity		
Identity	SemiGroup(⊗)	
Inverse		
Commutativity		
Left Distributivity	Distributivity	
Right Distributivity	(⊗) w.r.t. (⊕)	

Commutative Ring			
Closure			
Associativity			
Identity	Abelian Group (⊕)		
Inverse			
Commutativity			
Closure			
Associativity			
Identity	Commutative Monoid (⊗)		
Inverse			
Commutativity			
Left Distributivity	Distributivity		
Right Distributivity	(⊗) w.r.t. (⊕)		

Semi-Ring		
Closure		
Associativity		
Identity	Commutative Monoid(⊕)	
Inverse		
Commutativity		
Closure		
Associativity		
Identity	$Monoid(\otimes)$	
Inverse		
Commutativity		
Left Distributivity	Distributivity	
Right Distributivity	(⊗) w.r.t. (⊕)	

Commutative Semi-Ring		
Closure		
Associativity		
Identity	Commutative Monoid(⊕)	
Inverse		
Commutativity		
Closure		
Associativity		
Identity	Commutative Monoid (\otimes)	
Inverse		
Commutativity		
Left Distributivity	Distributivity	
Right Distributivity	(⊗) w.r.t. (⊕)	

3 Structures over a Field

Be \mathbb{K} a field, we call a *scalar multiplication* over the set V the function:

$$: \mathbb{K} \cdot V \to V \qquad (\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v} \quad \forall \lambda \in \mathbb{K}, \ \forall \mathbf{v} \in V$$

Let be (V, \clubsuit) a magma endowed with a scalar multiplication over field \mathbb{K} . Are defined some basic compatibility Relation:

• Compatibility of scalar multiplication:

$$a(b\mathbf{v}) = ab(\mathbf{v}) \quad \forall a, b \in \mathbb{K}, \forall \mathbf{v} \in V$$
 (8)

• *Compatibility of scalar multiplication* w.r.t. ⊗:

$$(a\mathbf{v}) \otimes (b\mathbf{u}) = (ab)(\mathbf{v} \otimes \mathbf{u}) \qquad \forall a, b \in \mathbb{K}, \ \forall \mathbf{v}, \mathbf{u} \in V \tag{9}$$

• *Identity element of scalar multiplication*:

$$1\mathbf{v} = \mathbf{v}$$
 lidentity element in \mathbb{K} (10)

• Distributivity of scalar multiplication w.r.t \oplus :

$$a(\mathbf{u} \oplus \mathbf{v}) = a\mathbf{u} \oplus a\mathbf{v} \qquad \forall a \in \mathbb{K}, \ \forall \mathbf{u}, \mathbf{v} \in V$$
 (11)

• Distributivity of scalar multiplication with respect to field addition:

$$(a+b)\mathbf{v} = a\mathbf{v} \oplus b\mathbf{v} \tag{12}$$

Depending on the properties satisfied by \otimes , \oplus , the triple (M, \otimes, \oplus) is called:

Vector Space		
Closure		
Associativity		
Identity	Abelian Group(⊕)	
Inverse		
Commutativity		
Closure		
Associativity		
Identity	No (&)	
Inverse		
Commutativity		
Left Distributivity	Distributivity	
Right Distributivity	(⊗) w.r.t. (⊕)	
SP Multiplication (8)	Scalar Product	
SP Identity(10)	Compatibility	
Distributivity w.r.t. ⊗ (11)	Scalar Product	
Distributivity w.r.t.⊕ (12)	distributivity w.r.t. (⊕)	
Scalar Multiplication Compatibility w.r.t (\otimes) (9)		

Algebra over Field K			
Closure			
Associativity			
Identity	Abelian Group(⊕)		
Inverse			
Commutativity			
Closure			
Associativity			
Identity	Magma (⊗)		
Inverse			
Commutativity			
Left Distributivity	Distributivity		
Right Distributivity	(⊗) w.r.t. (⊕)		
SP Multiplication (8)	Scalar Product		
SP Identity(10)	Compatibility		
Distributivity w.r.t. ⊗ (11)	Scalar Product		
Distributivity w.r.t.⊕ (12)	distributivity w.r.t. (+)		
Scalar Multiplication Compatibility w.r.t (\otimes) (9)			

Associative Algebra over K			
Closure			
Associativity			
Identity	Abelian Group(⊕)		
Inverse			
Commutativity			
Closure			
Associativity			
Identity	SemiGroup (⊗)		
Inverse			
Commutativity			
Left Distributivity	Distributivity		
Right Distributivity	(⊗) w.r.t. (⊕)		
SP Multiplication (8)	Scalar Product		
SP Identity(10)	Compatibility		
Distributivity w.r.t. ⊗ (11)	Scalar Product		
Distributivity w.r.t.⊕ (12)	distributivity w.r.t. (\oplus)		
Scalar Multiplication Compatibility w.r.t (\otimes) (9)			

Unital Algebra over K	
Closure	
Associativity	
Identity	Abelian Group(⊕)
Inverse	
Commutativity	
Closure	
Associativity	
Identity	Monoid (⊗)
Inverse	
Commutativity	
Left Distributivity	Distributivity
Right Distributivity	(⊗) w.r.t. (⊕)
SP Multiplication (8)	Scalar Product
SP Identity(10)	Compatibility
Distributivity w.r.t.⊗ (11)	Scalar Product
Distributivity w.r.t.⊕ (12)	distributivity w.r.t. (⊕)
Scalar Multiplication Compatibility w.r.t (\otimes) (9)	