Previsão do Tempo de Sobrevivência de Pacientes Pós-Transplante

Análise Preditiva com Modelagem de Dados Clínicos

Desafio de Negócio

Precisamos prever o tempo de sobrevivência dos pacientes após o transplante.

Com objetivo de ajudar na personalização do tratamento e otimização do acompanhamento.

Análise Exploratória

Análise da distribuição de variáveis

Distribuição da Idade dos Doadores

Análise Exploratória

Análise da distribuição de variáveis

Tempo de Sobrevivência dos Pacientes

Análise Exploratória

Análise da distribuição de variáveis

Correlação entre as variáveis numéricas

Preparação para Modelagem

Filtragem de sobreviventes > 365 dias e <= 1095 dias

Conversão de variáveis categóricas em fatores

Padronização de variáveis numéricas

Separação entre variáveis numéricas e categóricas

Filtragem dos dados 2001 e 2002

Modelo de Regressão Linear

Predição do tempo de sobrevivência baseado em variáveis como

PTIME

FINAL_MELD_SCORE

REGION

AGE

GENDER

GENDER_DON

LiverSize

LiverSizeDon

MALIG

TX_Year

Resultados do modelo de regressão linear

Modelo de XGBoost

Etapas de Preparação dos Dados

Divisão dos dados (70%/30%)

Remoção dos anos de 2001 e 2002

Padronização das variáveis numéricas

Separação das variáveis numéricas e categóricas

Parâmetros

Utilização do booster gbtree com regressão quadrática

Parâmetros ajustados

Early Stopping

Divisão dos Dados em Treino e Teste

Modelo de XGBoost

Resultados - Treinamento / Teste

RMSE: 0.0068 / 0.0039

MAE: 0.0057 / 0.0031

R²: 0.99995 / 0.99998

Comparação de Métricas: Regressão Linear vs. XGBoost

Conclusões e Próximos Passos

O modelo XGBoost apresentou resultados superiores, com menor RMSE e MAE nos dados de teste

O R² próximo de 1 para o XGBoost indica uma previsão muito precisa

A regressão linear, embora eficaz, mostrou um desempenho inferior quando comparado ao XGBoost

Com o modelo escolhido, agora podemos colocar em produção em um ambiente real para otimização de processos

