

CP8319/CPS824 Lecture 9

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Review of Previous Lectures

2. Model-Free Control (Monte Carlo)

Markov Decision Process (MDP)

A Markov decision process (MDP) is a Markov reward process with decisions/actions

Definition

A *Markov Decision Process* is a tuple $\langle S, A, P, R, \gamma \rangle$

- \mathcal{S} is a (finite) set of states
- \mathcal{A} is a finite set of actions
- P is dynamics/transition model for each action,

$$P_{s,s'}^{a} = P(S_{t+1} = s' | S_{t} = s, A_{t} = a)$$

- R is the reward function, $R(s, a) = \mathbb{E}[r_t | S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0, 1]$

What we have learned up to now?

So far we have learned:

- Solve a *known* MDP, i.e., dynamics $\bf P$ and the reward function R are *known*
- Estimate the value function of an unknown MDP. i.e., dynamics ${\bf P}$ and the reward function R are unknown

Moving forward:

Optimize the value function of an unknown MDP

Incremental MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1}r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state *s* visited in episode *i*:
 - For every time *t* that state *s* is visited in episode *i*:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate $v^{\pi}(s) = v^{\pi}(s) + \alpha(G_{i,t} v^{\pi}(s))$
- $\alpha = \frac{1}{N(s)}$: Identical to first/every visit MC
- $\alpha > \frac{1}{N(s)}$: forget older data, helpful for non-stationary domains

TD(0) Policy Evaluation

- Aim: estimate $v^{\pi}(s)$ given episodes generated under policy π
- $G_t = rt + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$ under policy π
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $v^{\pi}(s_t)$ toward estimated return $r_t + \gamma v^{\pi}(s_{t+1})$

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

- $r_t + \gamma v^{\pi}(s_{t+1})$ is called the <u>TD target</u>
- $\delta_t = r_t + \gamma v^{\pi}(s_{t+1}) v^{\pi}(s_t)$ is called the <u>TD error</u>
- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

TD vs MC

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

TD vs MC: Bias and Variance

- MC has high variance, zero bias (first-visit)
 - Good convergence properties (even with function approximation)
 - Function approximation: used in infinite state MDPs. We will learn about it later
 - Not very sensitive to initial values used in the initialization
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges (but not always with function approximation)
 - More sensitive to initial values used in the initialization

Today's Agenda

1. Review of Previous Lectures

2. Model-Free Control (Monte Carlo)

Where is model-free control used?

Many applications can be modeled as MDPs:

- Backgammon
- Go
- Robot locomotion
- Helicopter flight
- Robocup soccer
- Autonomous driving
- Customer ad selection
- Invasive species management

- Patient treatment
- Ship steering
- Airplane logistics
- Portfolio management
- Protein folding
- Elevator
- Store inventory management
- Video games

For many of these and other problems either:

- MDP model is unknown but can be sampled
- MDP model is known but it is computationally infeasible to use directly, except through sampling

Model-free control can solve these problems.

On-Policy and Off Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ (another policy)

Policy Iteration: Known Model

```
Set i=0
Initialize \pi_0(s) randomly for all states s
While i=0 or \parallel \pi_i - \pi_{i-1} \parallel_1 > 0 (L1-norm, measures if the policy changed for any state):
```

- $v^{\pi_i} \leftarrow \text{MDP}$ value function policy evaluation of π_i
- $\pi_{i+1} \leftarrow$ Policy improvement on v^{π_i}
- i = i + 1

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Evaluation: Known Model

Initialize $v_0(s) = 0$ for all s

For k = 1 until convergence:

For all $s \in S$:

Action Chosen Randomly, e.g.:
$$v_{k+1}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^{a} v_k^{\pi}(s') \right) \xrightarrow{\text{Action Chosen Randomly, e.g.:}} \bullet \text{ Go right if head} \bullet \bullet \text{ Go left if tail}$$

$$v_{k+1}^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P_{s,s'}^{\pi(s)} v_k^{\pi}(s') \longrightarrow \text{One action is performed deterministically:} \\ \bullet \text{ Always go left}$$

This is known as Bellman expectation backup

Policy Improvement: Known Model

Compute state-action value of a policy π_i For $s \in S$ and $a \in A$:

•
$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{s,s'} v^{\pi_i}(s')$$

Compute new policy π_{i+1} , for all $s \in \mathcal{S}$

•
$$\pi_{i+1}(s) = \arg \max_{a \in \mathcal{A}} Q^{\pi_i}(s, a)$$

With probability 1 choose an action that maximizes Q (i.e., a deterministic policy) Hence greedy update

How can we extend to unknown models?

Set i=0 Initialize $\pi_0(s)$ randomly for all states s While i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $v^{\pi_i} \leftarrow \text{MDP}$ value function policy evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement on } v^{\pi_i}$
- i = i + 1

Last lecture we have learned about modelfree policy evaluation. Any ideas?

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Iteration with MC Policy Evaluations

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $v^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement on } v^{\pi_i}$
- i = i + 1

Do you see any problems with this?

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

Policy Improvement

Compute state-action value of a policy π_i For $s \in S$ and $a \in A$:

•
$$Q^{\pi_i}(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{s,s'} v^{\pi_i}(s')$$

Calculating Q from v requires the model to be known

Compute new policy π_{i+1} , for all $s \in \mathcal{S}$

•
$$\pi_{i+1}(s) = \arg \max_{a \in \mathcal{A}} Q^{\pi_i}(s, a)$$

How can we fix this?

Model Free Policy Iteration

```
Set i=0
Initialize \pi_0(s) randomly for all states s
While i==0 or \parallel \pi_i - \pi_{i-1} \parallel_1 > 0 (L1-norm, measures if the policy changed for any state):
```

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement on } Q^{\pi_i}$
- i = i + 1

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

MC for On Policy Q Evaluation

Initialize N(s,a) = 0, G(s,a) = 0, $Q^{\pi}(s,a) \ \forall s \in \mathcal{S}$, $\forall a \in \mathcal{A}$ Loop:

- Using policy π Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, ..., s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T-1} r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state, action pair (s, a) visited in episode i:
 - For first or every time t that state (s, a) is visited in episode i:
 - Increment counter of total visits: N(s, a) = N(s, a) + 1
 - Update estimate $Q^{\pi}(s, a) = Q^{\pi}(s, a) + \frac{1}{N(s, a)} (G_{i,t} Q^{\pi}(s, a))$

Model Free Policy Iteration

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i==0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement on } Q^{\pi_i}$
- i = i + 1

Would this work? What happens when π is deterministic?

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

Model Free Policy Iteration

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement}$ on Q^{π_i}
- i = i + 1

Would this work? What happens when π is deterministic?

- If π is deterministic, policy Q evaluation can't compute Q(s,a) for any $a \neq \pi(s)$
- May not converge to optimal policy

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

Policy Evaluation with Exploration

- Want to compute a model-free estimate of Q^{π}
- In general, seems subtle
 - Need to try all (s, a) pairs but then follow π
 - Want to ensure resulting estimate Q^{π} is good enough so that policy improvement is a monotonic operator
- For certain classes of policies can ensure all (s,a) pairs are tried such that asymptotically Q^{π} converges to the true value

ϵ -greedy Policies

- Simple idea to balance exploration and exploitation
- Let $m = |\mathcal{A}|$ be the number of actions
- Then an ϵ -greedy policy w.r.t. a state-action value Q(s,a) is

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a) \\ \epsilon/m, & \text{otherwise} \end{cases}$$

- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

Model Free Policy Iteration

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \epsilon$ -greedy Policy improvement on Q^{π_i}
- i = i + 1

greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} 1, & \text{if } a = \operatorname*{argmax}_{a' \in \mathcal{A}} Q^{\pi_i}(s, a') \\ 0, & \text{otherwise} \end{cases}$$

ϵ -greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi_i}(s, a') \\ \epsilon/m, & \text{otherwise} \end{cases}$$

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

ϵ -Greedy MC for On Policy Q Evaluation

s_1	s_2	s_3	S_4	<i>S</i> ₅	s ₆	S ₇

- Robot with two actions
 - $R(-, a_1) = [100000+10]$ and $R(-, a_2) = [000000+5]$
- $\pi(s) = a_1 \, \forall s, \gamma = 1, \epsilon = 0.5$. Any action from s1 and s7 terminates episode
- Sample episode = $(s_3, a_1, 0, s_2, a_2, 0, s_3, a_1, 0, s_2, a_2, 0, s_1, a_1, 1 \text{ terminal})$
- First visit MC estimate of Q of each (s, a) pair?

Monotonic ϵ -Greedy Policy Improvement

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi_i}$

$$Q^{\pi_{i}}(s, \pi_{i+1}(s)) = \sum_{a \in A} \pi_{i+1}(a|s)Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a) \frac{1 - \epsilon}{1 - \epsilon}$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a) \sum_{a \in A} \frac{\pi_{i}(a|s) - \frac{\epsilon}{|A|}}{1 - \epsilon}$$

$$\geq \frac{\epsilon}{|A|} \left[\sum_{a \in A} Q^{\pi_{i}}(s, a) \right] + (1 - \epsilon) \sum_{a \in A} \frac{\pi_{i}(a|s) - \frac{\epsilon}{|A|}}{1 - \epsilon} Q^{\pi_{i}}(s, a)$$

$$= \sum_{a \in A} \pi_{i}(a|s)Q^{\pi_{i}}(s, a) = V^{\pi_{i}}(s)$$

Each step of policy improvement improves policy or keeps it the same

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty} N_i(s,a)\to\infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

• A simple GLIE strategy is ϵ -greedy where ϵ is reduced to 0 with the following rate: $\epsilon_i = 1/i$

Monte Carlo Online Control/On Policy Improvement

```
1: Initialize Q(s,a)=0, N(s,a)=0 \forall (s,a), Set \epsilon=1, k=1
2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,T}) given \pi_k
       G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_{k,T_i}
 4:
       for t = 1, \ldots, T do
 5:
          if First visit to (s, a) in episode k then
 6:
             N(s, a) = N(s, a) + 1
             Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s,a)}(G_{k,t} - Q(s_t, a_t))
 8:
          end if
 9:
       end for
10:
     k = k + 1, \epsilon = 1/k
11:
       \pi_k = \epsilon-greedy(Q) // Policy improvement
12:
13: end loop
```

MC for On Policy Control Example

- Robot with two actions
 - \cdot R(-, a_1) = [100000+10] and R(-, a_2) = [000000+5]

s_1	s_2	s_3	S_4	s_5	s ₆	S ₇

- $\pi(s) = a_1 \, \forall s, \gamma = 1, \epsilon = 0.5$. Any action from s1 and s7 terminates episode
- Sample episode = $(s_3, a_1, 0, s_2, a_2, 0, s_3, a_1, 0, s_2, a_2, 0, s_1, a_1, 1 \text{ terminal})$
- First visit MC estimate of Q of each (s, a) pair?
 - $Q^{\pi}(-, a_1) = [1\ 0\ 1\ 0\ 0\ 0\ 0], \ Q^{\pi}(-, a_2) = [0\ 1\ 0\ 0\ 0\ 0]$
- What is $\pi(s) = \arg \max_a Q^{\pi}(s, a) \ \forall S$?

• What is new ϵ -greedy policy, if k=3, $\epsilon=1/k$? Give an example for $\pi(s_1)$.