Teoria de Números Computacional 21/22

Trabalho Prático 2

Grupo:

- · Ivo Miguel Gomes Lima (A90214)
- Tiago dos Santos Silva Peixoto Carriço (A91695)

Contextualização

Para o segundo trabalho prático foi-nos pedido a implementação e explicação do <u>Algoritmo de Shanks (https://en.wikipedia.org/wiki/Baby-step_giant-step)</u>, baby-step giant-step, que permite resolver o Problema do Logaritmo Discreto, tendo em vista o caso de uma raiz primitiva r de \mathbb{Z}_{n}^{*} .

Tal como no primeiro trabalho prátrico foi necessário o uso do <u>SageMath (https://www.sagemath.org)</u> e a consulta da secção 3.6.2 (Cap 3) do *Handbook of Applied Cryptography*, *A. Menezes*, *P. van Oorschot*, *S. Vanstone*, *CRC Press*, 1996 disponibilizado pelo docente da cadeira.

Problema do Logaritmo Discreto

Existem muitos sistemas de criptografia cuja segurança é baseada na dificuldade em resolver logaritmos discretos. Algebricamente, o logaritmo é um expoente. Mais precisamente, se $1 \neq \alpha > 0$ é um número real, então para valores positivos de $\beta \in \mathbb{R}$, o logaritmo de β na base α deve ser elevado para produzir β .

Neste trabalho abordaremos um algoritmo para grupos arbitrários, isto é, aqueles que não exploram qualquer propriedade específica do grupo. Para tal apresentaremos um algoritmo característico denominado Algoritmo de *Shanks*.

Criação do Algoritmo de Shanks

 $\underline{\text{Daniel Shanks (https://en.wiki/paniel_Shanks)}}_{\text{Daniel Shanks (https://en.wiki/paniel_Shanks)}}_{\text{$

Tomando G como grupo e $\alpha \in G$ um elemento de ordem finita (gerador). Dado $\beta \in \langle \alpha \rangle$, existe um único natural $x, 0 \le x \le |\langle \alpha \rangle| - 1$ tal que $\beta = \alpha^x$, portanto, o logaritmo discreto de β na base α é bem definido.

Seja $n \in \mathbb{N}$, $n \ge |\langle \alpha \rangle|$ e $m = \lceil \sqrt{n} \rceil$. Dado $\beta \in G$, vamos calcular o logaritmo discreto isto é $x = log_{\alpha}\beta$.

Tomando as hipóteses acima, concluímos que para a elaboração do código devemos:

Calcular o $m = \lceil \sqrt{n} \rceil$, sendo n a ordem do grupo. De seguida fazemos a construção de pares (j, α^j) , com $0 \le j < m$ que serão inseridos numa tabela de Hash por forma a otimizar a pesquisa. Após essa construção computamos α^{-m} .

Por fim procuramos entre os pares aquele em que a segunda coordenada é igual a $(\beta \times (\alpha^{-m})^i) \mod p$, onde p é que caso apareça implica o calculo de $i \times m + j$, que é a solução de $x \equiv \log_\alpha \beta \mod n$.

Podemos então concluir que o Algoritmo de Shanks é determinístico, tendo um tempo de execução de $O(\sqrt{n})$.

```
In [1]: def shanks(a, b, n, p):
    Zn = IntegerModRing(p)
    m = ceil(sqrt(n))

    tabela = {}
    j = 0
    while j < m:
        tabela[Zn(a ^ j)] = j
        j += 1

    a_e_m = Zn(a ^ -m)

    for i in range(m):
        y = Zn(b * a_e_m^i)
        if y in tabela:
              j = tabela[y]
              return i * m + j</pre>
```

Exemplos

Exemplo 1

Imaginemos que queremos aplicar o Algoritmo de baby-step giant-step em \mathbb{Z}_{113}^* teremos então que p=113, sendo $\alpha=3$ um gerador do grupo cíclico G que possuí uma ordem n=112. Considerando $\beta=57$ significa que podemos determinar que o valor de $x\equiv\log_357\mod112$, que será:

```
In [2]: a = 3
b = 57
p = 113

Zn = IntegerModRing(p)
n = Zn(a).multiplicative_order()

Out[2]: 112

In [3]: x = shanks(a, b, n, p)
x

Out[3]: 100

In [4]: a^x % p == b

Out[4]: True
```

Exemplo 2

Neste segundo exemplo aplicamos o Algoritmo de Shanks com um p=53, um gerador $\alpha=2$, ordem n=52 e que tomando um $\beta=45$ fará o valor de $x\equiv log_245\mod 52$, ser:

```
In [5]: a = 2
b = 45
p = 53

Zn = IntegerModRing(p)
n = Zn(a).multiplicative_order()
n

Out[5]: 52

In [6]: x = shanks(a, b, n, p)
x

Out[6]: 29

In [7]: a^x % p == b

Out[7]: True
```

Exemplo 3

Para este último exemplo queremos usar o Algoritmo em \mathbb{Z}_{53}^* , isto é, p=53, com um gerador $\alpha=18$ e ordem n=52. O $\beta=12$ e queremos calcular o valor de $x\equiv log_{18}$ $12\mod 52$, que é:

Out[10]: True

In [10]: a^x % p == b