Генеративный причинно-следственный подход к анализу данных ИМК

Владимиров Э.А.

Московский физико-технический институт

Научный руководитель: д. ф.-м. н. В. В. Стрижов

2023

Причинно-следственный анализ

Проблема

- ▶ Традиционные методы (корреляция, линейная регрессия) неадекватны для сложных нелинейных связей
- Данные имеют высокую размерность, что усложняет поиск причинно-следственных связей
- ▶ Зависимости между переменными могут изменяться во времени

Решение

Построить устойчивую и интерпретируемую форму вероятностного анализа причинного влияния $\mathbf{X} \to \mathbf{Y}$

Различные подходы к поиску связей

Постановка задачи

Пусть $\mathbf{X}(t) = \{X_1(t), X_2(t), \dots, X_{n_x}(t)\}$ и $\mathbf{Y}(t) = \{Y_1(t), Y_2(t), \dots, Y_{n_y}(t)\}$ — два набора многомерных временных рядов, наблюдаемых в моменты времени $t=1,\dots,T$.

Необходимо определить направленные причинные связи:

- $1. \;\; X_i(t- au)
 ightarrow Y_i(t)$ для $i=1,\ldots,n_{\mathsf{x}}, \, j=1,\ldots,n_{\mathsf{y}}, \,$ и лагов $au\geqslant 0$,
- 2. $Y_j(t- au) o X_i(t)$ для $i=1,\ldots,n_{\mathsf{x}},\,j=1,\ldots,n_{\mathsf{y}},$ и лагов $au\geqslant 0.$

Предполагаем, что многомерные временные ряды $\mathbf{X}(t)$ и $\mathbf{Y}(t)$ генерируются следующим образом:

$$X_i(t) = f_i(\mathsf{Pa}_{X_i}(t), \varepsilon_{X_i}(t)),$$

$$Y_j(t) = g_j(\mathsf{Pa}_{Y_j}(t), \varepsilon_{Y_j}(t)),$$

где:

- ightharpoonup Ра $_{X_i}(t)\subseteq \{Y_1(t- au),\ldots,Y_{n_y}(t- au)\}$ множество родителей переменной $X_i(t)$ из ${f Y}$,
- ightharpoonup $ext{Pa}_{Y_j}(t) \subseteq \{X_1(t- au), \dots, X_{n_x}(t- au)\}$ множество родителей переменной $Y_i(t)$ из \mathbf{X} ,
- $ightharpoonup f_i$ и g_i детерминированные функции, описывающие зависимость,
- $ightharpoonup arepsilon_{X_i}(t)$ и $arepsilon_{Y_j}(t)$ шумовые компоненты.

Оптимизационная задача:

$$\min_{G_{XY},G_{YX}} \mathcal{L}(\mathbf{X},\mathbf{Y} \mid G_{XY},G_{YX}) + \lambda_1 \mathcal{R}(G_{XY},G_{YX}) + \lambda_2 \mathcal{T}(G_{XY},G_{YX}),$$

где:

- lackbox G_{XY} граф зависимостей $X_i o Y_j$,
- $ightharpoonup G_{YX}$ граф зависимостей $Y_j o X_i$,
- $ightharpoonup \mathcal{L}(\mathbf{X},\mathbf{Y}\mid G_{XY},G_{YX})$ правдоподобие наблюдаемых данных с учетом графов G_{XY} и G_{YX} ,
- ightharpoons $\mathcal{R}(G_{XY},G_{YX})$ регуляризатор, штрафующий за сложность графов,
- $ightharpoonup \mathcal{T}(\mathit{G}_{\mathit{XY}},\mathit{G}_{\mathit{YX}})$ штраф за избыточную изменчивость графов во времени.

Independent Component Analysis

Предположим, что $\mathbf{X}(t)$ образуется из нескольких скрытых источников $\mathbf{S}(t) \in \mathbb{R}^{d_S}$:

$$\mathbf{X}(t) = A\mathbf{S}(t), \quad A \in \mathbb{R}^{d_X \times d_S}.$$

Каждая компонента $S_k(t)$ предполагается статистически независимой от других:

$$p(\mathbf{S}) = \prod_{k=1}^{d_{S}} p(S_{k}).$$

Задача оптимизации: Найти обратную матрицу \widehat{A}^{-1} , дающую

$$\widehat{\mathbf{S}}(t) = \widehat{A}^{-1} \mathbf{X}(t),$$

чтобы минимизировать взаимную информацию между компонентами $\widehat{S}_k(t)$.

$$\mathrm{MI}(\widehat{\mathbf{S}}(t)) \ pprox \ \sum_{k=1}^{d_S} H(S_k) - H(\sum_k S_k),$$

Convergent Cross Mapping

Теневое вложение (delay embedding):

$$M_{X,t} = (X_t, X_{t-\tau}, \ldots, X_{t-(E-1)\tau}) \in \mathbb{R}^E,$$

где E — размерность вложения, au — временной лаг. Аналогично задаётся $M_{Y,t} = ig(Y_t,\ Y_{t- au},\ \ldotsig).$

Реконструкция:

$$\widehat{Y}_t = \sum_{i=1}^{\kappa} w_i \, Y_{n_i},$$

здесь n_i — индексы ближайших соседей точки $M_{X,t}$ в пространстве M_X , а w_i — веса, зависящие от расстояния до $M_{X,t}$.

Критерий причинности:

$$\rho_{X\to Y} = \operatorname{corr}\left(\{\widehat{Y}_t\}, \{Y_t\}\right).$$

Если при увеличении размера "библиотеки" (количества доступных точек) значение $ho_{X o Y}$ возрастает, считается, что $\mathbf{X}(t)$ действительно влияет на $\mathbf{Y}(t)$.

Probabilistic CCM

Идея: Вместо единственного прогноза \widehat{Y}_t рассматривается *полное условное распределение*

$$p_L(Y_t \mid M_{X,t}),$$

оценённое по выборке размера L. Ближайшие соседи в пространстве M_X позволяют построить вероятностную аппроксимацию (например, ядерным методом):

$$\rho_L(y \mid M_{X,t}) = \frac{1}{Z_t} \sum_{i \in N_L(t)} K(y - Y_{n_i}),$$

где $K(\cdot)$ — ядро (например, гауссово), $N_L(t)$ — множество соседей точки $M_{X,t}$, а Z_t — нормировочная константа.

Оценка причинности как МІ:

$$\textit{I}_{\textit{L}}\big(X \to Y\big) \; = \; \mathbb{E}_{\textit{M}_{X,t}} \textit{D}_{\text{KL}}\Big(\textit{p}_{\textit{L}}\big(\textit{Y}_{t} \mid \textit{M}_{X,t}^{\hat{}}\big) \; \big\| \; \textit{p}\big(\textit{Y}_{t}\big)\Big),$$

Сходящееся свойство: При $L \to \infty$ (при достаточно плотном покрытии пространства)

$$p_L(Y_t \mid M_{X,t}) \rightarrow p(Y_t \mid M_{X,t}),$$

Предлагаемый метод

1. Независимый анализ компонент (ICA).

Для исходных ЭЭГ-данных $\mathbf{X}_{\mathrm{raw}}(t) \in \mathbb{R}^{d_X}$ получаем независимые компоненты:

$$\widehat{\mathsf{S}}(t) = \widehat{A}^{-1} \, \mathsf{X}_{\mathrm{raw}}(t).$$

2. Построение эмбеддингов.

Для каждого времени t формируем вектор:

$$M_{X,t} = (\widehat{\mathbf{S}}(t), \widehat{\mathbf{S}}(t-\tau), \dots, \widehat{\mathbf{S}}(t-(E-1)\tau)),$$

3. Оценка причинно-следственных связей.

В полученном пространстве $(M_{X,t},\,M_{Y,t})$ определяем меру влияния ${f X} o {f Y}$, вычисляя:

$$\gamma(t) = \text{Prob} - \text{CCM}(M_{X,t}, M_{Y,t}).$$

Результат — временной ряд $\{\gamma(t)\}$, отражающий динамику влияния X o Y.

Риманова постановка задачи

Причинно-следственная связь — вероятность push-forward-а или диффеоморфизма.

Основная проблема — построение многообразий Возможные варианты:

- ► PINN
- ▶ Riemannian space of covariance matrices

Вычислительный эксперимент на данных ЭЭГ - ИИМ

Данные

У 25 участников были записаны показания ЭЭГ, ИИМ, МРТ во время игры в настольный теннис. С каждым участником было сыграно 4 сессии, длительность каждой из них составляет 7-10 минут.

Block 1		Block 2		Block 3		Block 4	
Machine Rally	Cooperative	Machine Serve	Competitive	Cooperative	Machine Serve	Competitive	Machine Rally
230 230 230	7:30						