8. Gyógyszerbomlás sebességének hőmérsékletfüggése

8.1. Bevezetés

A gyakorlat során az *Aspirin* (acetilszalicilsav) hidrolízisének kinetikailag elsőrendű reakciójának hőmérsékletfüggését vizsgáljuk. A sebességi állandója a következőképpen adható meg:

$$k = \frac{1}{t} \ln \frac{z}{z - x} \tag{1}$$

ahol t az idő, z a reagens (jelen esetben a Aspirin) kezdeti koncentrációja, x pedig az elbomlott reagens koncentrációja.

A reakció sebessége vagy a sebességi állandó értéke függ a hőmérséklettől. A hőmérsékletfüggést az Arrhenius egyenlet írja le:

$$\frac{d\ln k}{dT} = \frac{E}{RT^2} \tag{2}$$

melynek integrált alakja:

$$k = Ae^{-E/(RT)} (3)$$

illetve

$$\lg k = \lg A - \frac{E}{2.303 \text{R}T} \tag{4}$$

Az egyenletben A a preexponenciális tényező, E az aktiválási energia, és R a gázállandó (R= 8.314 J/Kmol). Az aktiválási energia meghatározható grafikus úton, ha az lg k-1/T függvény meredekségét megmérjük és azt szorozzuk 2.303 × 8.314-el, amikor az E-t J/molban kapjuk meg. Ha két hőmérsékleten megmérjük a reakciósebességi együtthatót (k_1 -t és k_2 -t T_1 és T_2 hőmérsékleten) az aktiválási energia a következő képlettel számítható ki:

$$E = 2.303 \times 8.314 \lg \frac{k_1}{k_2} \frac{T_1 T_2}{T_1 - T_2}$$
 (5)

8.2. A gyakorlat kivitelezése

Az Aspirinhidrolízise kinetikailag elsőrendű folyamat és az alábbiak szerint játszódik le:

1. ábra. Az acetilszalicilsav lúgos hidrolízise.

A reakció szobahőmérsékleten igen lassú, ezért a méréseket magasabb hőmérsékleten végezzük. A reakció sebességi együtthatójának meghatározásához ismerni kell a reaktáns vagy a termék koncentrációjának változását a reakcióidővel. Jelen reakcióban a képződő szalicilsav Fe³⁺ ionokkal alkotott stabil ibolyaszínű komplexét határozzuk meg spektrofotometriás módszerrel. A lúgos közegben lejátszódó reakcióelegyből meghatározott reakcióidőnél ismert mennyiségű mintákat veszünk, a reakciót befagyasztjuk a hőmérséklet és a [OH⁻] hirtelen csökkentésével. Az előírt hígításokat követően a szalicilsav Fe(III)-komplexének koncentrációját spektrofotometriás úton meghatározzuk. Higításra lehet szükség, ha az abszorbancia 2 feletti, ekkor ugyanis a legtöbb műszer által mért érték nincs egyszerű egyenes arányosságban a koncentrációval, ami megbízhatatlan értéket eredményez. Célszerű ilyenkor a $5-10\times$ higítást végezni, és újramérni az abszorbanciát, majd megszorozni a higítással a koncentrációra kapott értéket. A $t=\infty$ reakcióidőhöz tartozó termékkoncentrációkat, amelyek megfelelnek az Aspirin kezdeti koncentrációjának, igen nagy reakcióidőnél vett mintából lehet meghatározni. A méréseket két hőmérsékleten kell végrehajtani, ezeket a gyakorlatvezető határozza meg a gyakorlat kezdetén. A reakció Arrhenius paramétereinek meghatározása érdekében ajánlott hőmérséklet 313 és 353 K.

1 db *Aspirin* tablettát dörzsmozsárban elporítunk, és főzőpohárban kevés desztillált vízben oldunk, majd 100 cm³-es mérőlombikokba szűrjük és jelig töltjük (törzsoldat). Az így kapott oldat telített lesz¹.

A reakció indítása és nyomon követése:

(a) Az Aspirin kezdeti koncentrációjának (z) meghatározása. A törzsoldatból 2-2 cm³ mintát csiszolatos dugós Erlenmeyer lombikokba (alacsony és magas hőmérséklet) pipettázunk, hozzáadunk 3-3 cm³ 0.25 M NaOH oldatot és a lombi-

 $^{^1{\}rm Az}$ Aszpirinoldhatósága vízben ~ 2 - 4 g / L, hőmérséklettől függően. Egy tabletta hatóanyagtartalma 500 mg.

kokat belehelyezzük a választott hőmérsékletű termosztátokba. A 60. percben a reakciót mindkét lombikban befagyasztjuk (a lombikokat jeges vízbe állítjuk, 2-2 cm³ 0.25 M sósavoldatot és 3-3 cm³ FeCl₃ oldatot pipettázunk beléjük, majd desztillált vízzel 100 cm³-re hígítjuk őket.)

(b) A t időpillanatig elbomlott Aspirin (x) koncentrációjának meghatározása. A törzsoldat maradékát a mérőlombikból két csiszolatos dugós Erlenmeyer lombikba töltjük át, kb. fele-fele térfogatban (nem mossuk!), termosztátba helyezzükőket, és hozzájuk pipettázunk 5 cm³ pufferoldatot (t = 0). A lombik kivétele nélkül a bomlás 15, 20, 25, 30 és 35. percében 2 cm³-es mintákat veszünk mindkét lombikból, amelyet az előkészített 25 cm³-es mérőlombikokba töltünk. A lombikokat úgy készítjük elő, hogy belemérünk 0.5 cm³ 0.25 M sósavoldatot, 0.5 cm³ 0.1 M FeCl₃-at. Így a minta vételekor a lúgos hidrolízis leáll. Ne felejtsük el előzetesen feliratozni a lombikokat! A minta hozzáadását követően 25 cm³ össztérfogatra hígítjuk őket desztillált vízzel. Érdemes egymáshoz képest 1 – 2 perc eltolással indítani a két hőmérsékleten vizsgált bomlási reakciót, hogy ne kelljen egyszerre mintát venni a két lombikból.

Fényabszorpció mérése és koncentráció számolása. Mind a kezdeti, mind a t időpillanatban lévő koncentráció meghatározása spektrofotometriásan történik. A spektrofotométer kezelési leírása a készülék mellett megtalálható. A 2-es abszorbanciaérték felett a mintát higítani, és a számítások során a kapott eredményt korrigálni kell. (Pl. ha higítás után a számolt koncentráció 0.1 M, és a higítás $2 \times$ volt, akkor az eredeti koncentráció 0.2 M.) A minta Aszpirin-koncentrációját úgy számítjuk ki, hogy a kapott abszorbaciaértéket megszorozzuk $b=8.3 \ (mol/dm^3)/AU$ arányossági tényezővel. Ez annak a hipotetikus Aszpirin-oldatnak a koncentrációja, melynek abszorbanciája egységnyi, ha d=1 cm, ahol d a rétegvastagság.

8.3. Beadandó eredmények

- 1. A mérési és számított adatok táblázatosan (1. táblázat).
- 2. A sebességi állandók számítása (2. táblázat)².
- 3. A sebességi állandó hőmérsékletfüggéséből határozzuk meg a sebességi állandó értékét 20 °C-on (293 K) grafikusan, ábrázolva a lg k-t az 1/T függvényében.

 $^{^2}$ Standard deviáció, $s = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n-1}}$

- 4. Az Arrhenius egyenlet integrált alakjába történő behelyettesítéssel számítsuk ki az E aktiválási energiát és a preexponciális tényezőt:
 - (a) $E [kJ \text{ mol}^{-1}]$
 - (b) $\lg A [s^{-1}]$
 - (c) $A [s^{-1}]$
 - 1. táblázat. A mérési és számított adatok táblázatosan.

$$T = ... K, z = ... mg/100 cm^3$$

Reakcióidő, s	Hígítás	A	$x, mg / 100 cm^3$	$(z-x), mg / 100 cm^3$	k, s^{-1}
			•••	•••	•••

2. táblázat. A sebességi állandó hőmérsékletfüggése.

2. (0001002000 11 000 0000001 0110111010 11101110							
Hőmérséklet, K	1/T	\overline{k} (átlag), s ⁻¹	$\lg k$	standard deviáció			
•••				•••			