Computergraphik TutorIn: Prof. G. Zachmann $\begin{array}{l} {\rm WS~15/16} \\ {\rm Tutorium:~Do.~12\text{-}14~Uhr} \end{array}$

Marvin Becker Melanie van Eikeren Jens Rahjes Luca Raimondo

Übungsblatt

Aufgabenlösung Abgabe: 10.11.2015

Aufgabe 1 Baryzentrische Koordinaten

(5 Punkte)

Aufgabe 1.a) (3 Punkte)

Aufgabe 1.b) (2 Punkte)

Wir geben die Dreier-Tupel aus α , β und γ im folgenden so an: $\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$.

Sektor1
$$\begin{pmatrix} \leq 0 \\ \leq 0 \\ \geq 1 \end{pmatrix}$$
 Sektor2 $\begin{pmatrix} \leq 0 \\ \geq 0 \\ \geq 0 \end{pmatrix}$ Sektor3 $\begin{pmatrix} \leq 0 \\ \geq 1 \\ \leq 0 \end{pmatrix}$
Sektor4 $\begin{pmatrix} \geq 0 \\ \leq 0 \\ \geq 0 \end{pmatrix}$ Sektor5 $\begin{pmatrix} [0,1] \\ [0,1] \\ [0,1] \end{pmatrix}$ Sektor6 $\begin{pmatrix} \geq 0 \\ \geq 0 \\ \leq 0 \end{pmatrix}$
Sektor7 $\begin{pmatrix} \geq 1 \\ \leq 0 \\ \geq 0 \end{pmatrix}$

Auffällig ist bei diesen sehr genauen Angaben, dass man diese Informationen noch weiter vereinfachen kann und trotzdem immer noch klar unterscheidbare Informationen hat. So ist Beispielsweise der Sektor 5 der einzige Sektor, in dem alle Werte positiv sind, weshalb man nicht darauf testen müsste, ob wirklich alle Werte im Bereich von 0 bis 1 liegen.

Ähnlich kann man auch die anderen Sektoren leichter angeben, indem man nur noch auf < 0 oder > 0 schaut. Diese Informationen sind dann binär (bool), wobei wir kleiner als 0 auf '-' und größer als 0 auf '+' abbilden werden. Punkte, die exakt auf den Linien a, b oder c liegen würden, werden ebenfalls gegenwärtig nicht betrachtet.

Sektor7
$$\begin{pmatrix} < 0 \\ > 0 \\ < 0 \end{pmatrix} \mapsto \begin{pmatrix} - \\ + \\ - \end{pmatrix}$$

Aufgabe 2 Rasterisierung

(3 Punkte)

Var	Wert
x	0
y	5
d	1 - 5 = -4
$\triangle R$	3
$\triangle RU$	-2r + 5 = -5

1. Iteration: y=5<0=x

$$3. d=-4<0$$

2. Iteration: y=5<1=x

3. Iteration: y=5<2=x

1. drawCirclePixel(2,5)

- 2. x+=1=2+1=3
- 3. d=4>0
 - d+=△RU=4+(-1)=3
 - △RU+=4=-1+4=3
 - y-=1
- 4. △R+=2=7+2=9

4. Iteration: y=4<3=x

drawCirclePixel(3,4)

2. ...