Présentation projet de recherche

Théodore CHAPUIS-CHKAIBAN

CentraleSupélec

Mars 2021

Page Rank: rappels

- Classer les noeuds d'un graphe par ordre d'importance
- Parcourir le graphe avec une **marche aléatoire** (chaîne de Markov) : selon le nombre de visites d'un noeud, on lui **attribue un score**
- Cela revient à diagonaliser la matrice d'occurrences A du graphe (si les sommets i et j sont connectés alors A[i][j] = 1, sinon 0)

FIGURE 1 – Exemple de Graphe sur lequel fonctionne le Page Rank.

Laplacien de graphe

Définition - Equation de la chaleur

On considère un système physique représenté ici par le **graphe** (V, E).

Soit $T:V\to\mathbb{R}^+$ la fonction de température sur les noeuds du graphe (à chaque noeud est associé une température donnée) et D une constante de diffusion thermique. L'équation qui régit la propagation de chaleur dans le milieu est donnée par :

$$\delta_t T - D\Delta T = 0$$

Interprétation

Définition : Laplacien de Graphe

On définit le Laplacien L du graphe (V, E) de la manière suivante :

$$L = D - A$$

Avec D la matrice des degrés entrant du graphe et A la matrice d'adjacence du graphe.

FIGURE 2 – Une diffusion de chaleur sur un graphe orienté

Laplacien normalisé de marche aléatoire.

L'intérêt principal du Laplacien de graphe se retrouve dans le Laplacien normalisé de Marche aléatoire

Définition - Laplacien normalisé de marche aléatoire.

Le la placien normalisé de marche aléatoire de graphe (V,E) est défini par :

$$L^{rw} := D^{-1}L = I - P$$

Avec P la matrice de probabilité de transition du graphe, Ou encore :

$$L_{i,j}^{rw} = \begin{cases} 1 & \text{si } i = j \\ -\frac{1}{outdeg(i)} & \text{si } (i,j) \in E \end{cases}$$

Laplacien de graphe
Problèmes et discussions liés aux graphes dirigés
Etapes de résolution

Interprétation de valeurs propres

Théorème - Valeurs propres du laplacien de marche aléatoire

Soit x un vecteur propre de L^{rw} associé à la valeur propre ρ .

$$L^{rw}x = \rho x$$
$$Px = (1 - \rho)x$$

- La distribution de **probabilité limite de la marche** aléatoire est reliée aux valeurs propres du Laplacien.
- Associer une énergie aux valeurs propres du Laplacien : quotient de Rayleigh.
- On souhaite trouver les valeurs propres associées aux énergies faibles / nulles : raisonnement en temps long

Problèmes liés aux graphes dirigés

- Graphes dirigés : La distribution de probabilité limite n'est pas nécessairement réelle.
- Cycles dans le graphe → valeurs propres complexes pour le laplacien = non convergence de P vers une vp réelle.
- Puits dans un graphe : marcheur aléatoire se retrouve bloqué et vecteur propre contient des valeurs égales à 0.
- Multiplicité des valeurs propres : composantes connexes dans le graphe.

Illustration

FIGURE 3 – Des exemples de graphe orientés

Etude des valeurs propres

- Les valeurs propres de P sont de multiplicité égales au nombre de composantes connexes du graphe.
- Les valeurs propres de P de module égal à 1 correspondent à la distribution limite de probabilité sur le graphe.
- Les valeurs propres de P d'argument non nul correspondent à des composantes connexes cycliques (la marche aléatoire ne converge pas).
- Les valeurs propres de P de module inférieur à 1 strictement correspondent à l'état de transition du marcheur aléatoire.

Preuve : si $\lambda e^{i\theta}\in\mathbb{C}$ est valeur propre de P et x vecteur propre associé, $k\in\mathbb{N}:P^kx=\lambda^ke^{ik\theta}x$

Graphe de Google

• Le graphe de Google fournit une solution aux problèmes ci-dessus : les valeurs propres de la matrice de transition sont réelles positives comprises entre 0 et 1.

Définition - Théorème; graphe de Google

Soit (V, E) un graphe orienté de matrice d'adjacence A. On définit la matrice de google G par :

$$G = \alpha A + \frac{(1 - \alpha)}{|V|} \Gamma$$

Avec Gamma une matrice ne comportant que des 1 et α donné. Les valeurs propres de la matrice de Google sont positives et comprises entre 0 et 1. La valeur propre maximale est égale à 1 et a une multiplicité unique.

Commentaire Graphe de Google

- Résolution classique s'appuie sur le théorème de Perron Frobenius pour approximer la valeur propre maximale.
- Avec la solution proposée (Transformée de Fourier sur les graphes), nous pouvons calculer des valeurs propres complexes de multiplicité > 1 → généralisation du pagerank classique.
- Transformée de Fourier : toujours le problème du puits, résout le problème des cycles et des composantes connexes
- Quelle nouvelle "matrice de google" choisir? Matrice de google avec des "composantes connexes" fortement connectées?

Description formelle du problème

- Entrée du problème : Graphe quelconque orienté.
- Sortie du problème : Classement des noeuds par ordre d'importance.
- Utilisation de la transformée de Fourier pour adapter le PageRank.

FIGURE 4 – Un Graphe orienté quelconque

Etapes de résolution

On nous fournit la matrice d'adjacence S du graphe orienté d'entrée stockée sur une mémoire d'ordinateur classique.

Etapes de résolution :

- Calcul du Laplacien de la matrice de google modifiée G, noté L.
- 2 Initialisation du système quantique dans un état initial superposé.
- Orientation du système quantique dans l'état superposé représentant la matrice du laplacien L.
- Effectuer une PCA / SVD quantique sur le laplacien pour récuperer (en mesurant le système en sortie) les vecteurs propres associées aux énergies les plus basses.
- 6 Evaluer un score à partir de ces données.

Outline

- Introduction
 - Formulation du problème
 - Laplacien de graphe
 - Problèmes et discussions liés aux graphes dirigés
 - Etapes de résolution
- 2 Traitement pré-algorithmique
 - Calcul du Laplacien
 - Initialisation du système
 - Recours à une qRAM
- 3 Traitement des données
 - SVD Quantique
 - Grandes étapes
 - Conclusion

Calcul du Laplacien

Définition - Laplacien d'un graphe, BAU2011

Soit (V, E) un graphe orienté. On définit L, le la placien de (V,E) par la formule suivante :

$$L = I - D^{-1}A$$

Avec I la matrice identité, D la matrice des degrés de (V, E), A est la matrice d'adjacence du graphe (non symétrique). (On confond donc le Laplacien classique avec celui de la marche aléatoire)

Premières remarques

- Comme C est algébriquement clos, L admet des valeurs propres **complexes**. Il faudra bien prendre cela en compte par la suite.
- Dans le cas d'un graphe orienté, la matrice des degrés peut être la matrice des degrés des arêtes entrantes ou des arêtes sortantes. Le choix est arbitraire et les 2 cas seront étudiés.
- Peut on simuler le Laplacien efficacement sur un système quantique, ou faut-il faire le calcul classique?

Simulation du Laplacien dans un système quantique

- Sujet très vaste : simuler un vecteur donné quelconque sur un ordinateur quantique.
- Exploiter les symétries du Laplacien pour diminuer la complexité : Anupam Prakash (soutenance de thèse 2014) permet de représenter un Laplacien associé à un graphe en $\mathcal{O}(\log n)$. Source sûre?
- On sait déjà exploiter les portes quantiques pour représenter n'importe quel système (Phillip Kaye, 2004)
 - → inconvénient : n'est pas une structure de donnée modifiable type RAM : l'article utilise implicitement une RAM pour faire des portes dans le cas général (on accepte le Laplacien classique en entrée de l'algorithme).

Solution idéale : qRAM

- La **qRAM règle le problème**, énormément d'articles sur le sujet du Quantum ML utilisent une structure de QRAM pour initialiser leur algorithme.
- Plusieurs types de QRAM avec plusieurs problèmes classiques en Calcul Quantique : perte de cohérence, contraintes sur l'erreur maximale de l'output.
- La qRAM est un sujet à part entière : on peut travailler et obtenir des résultats sans l'avoir résolu.

Principe d'une qRAM

- Idée : transposer une donnée classique dans un ordinateur quantique.
- Avantage : système quantique universel qu'on peut utiliser pour des imputs variables.

Théorème - Transformation d'une qRAM, Llyod

Une qRAM opère la transformation suivante :

$$\sum_{j} \psi_{j} |j\rangle_{a} |0\rangle \xrightarrow{qRAM} \sum_{j} \psi_{j} |j\rangle_{a} |D_{j}\rangle_{j}$$

Avec D_j le contenu de l'adresse mémoire j de la qRAM.

Bucket Brigade

- Llyod et Rebentrost ont proposé une solution efficace pour implémenter une qRAM en Calcul Quantique
- Utilise des qTrits : système à 3 états avec $E_1 E_{fonda} << E_2 E_1$: pas de perturbation de la part des qTrits à l'état fondamental.

FIGURE 5 – Le fonctionnement d'une qRAM type Bucket-Brigade

Bucket Brigade : analyse de l'erreur

- La méthode Bucket Brigade a été analysée et critiquée dans "On the robustness of bucket brigade quantum RAM".
- Problème d'erreur de prédiction incompatible avec certains algos type Grover
- Est-ce toujours valable pour les algo en log(n)? Question ouverte

FIGURE 6 – Plusieurs erreurs pouvant apparaı̂tre sur une Bucket Brigade

Analyse de l'erreur du Bucket Brigade.

Théorème - Estimation de l'erreur Bucket Brigade

- L'erreur ϵ_p du Bucket Brigade par porte doit satisfaire : $\epsilon_p = \mathcal{O}(\frac{1}{n^2})$ pour que le Bucket Brigade conserve sa cohérence.
- Si $\epsilon_p = \mathcal{O}(\frac{1}{n^2})$, alors $\epsilon_{global} = \mathcal{O}(1)$.
- Pour l'algorithme de Grover, l'erreur par oracle doit croître en $\mathcal{O}(2^{-n/2})$ pour conserver sa cohérence.

Alternatives pour le Bucket brigade.

- En 2019, Flip Flop qRAM pour essayer de corriger les erreurs du Bucket Brigade (Park, Petruccione, Rhee).
- Sinon cluster states : se limiter à des graphes de plus petites taille mais système très fiable et peu d'erreurs. Permet de simuler directement un graphe dans ordinateur quantique.

FIGURE 7 — Une flip-flop qRAM

SVD Quantique

- Plusieurs algos de SVD quantique qui dépendent du graphe considéré (et donc de l'état quantique en entrée).
- Le laplacien du graphe n'est **pas symétrique** (graphe non orienté), on n'a pas d'information très précises sur le **rang de la matrice** : on suppose **qu'il n'est pas très élevé** dans un premier temps (les pages internet se regroupent en clusters : on peut découper le laplacien en sous-matrices).
- Principe et avantage principal de la SVD quantique : complexité en log(n) opérations.
- Par la suite on assimilera souvent SVD et PCA: le but ici est d'estimer les k plus faibles valeurs propres du laplacien du graphe du Web.

Algorithmes de SVD Quantique

- Algorithme de Lloyd et Rebentrost : trouver une SVD en utilisant la tomographie Quantique.
- Tomographie quantique : agir sur plusieurs copies d'un même état quantique, et le mesurer indépendamment pour obtenir un résultat.
- Entrée : matrice dense, à rang faible => utiliser directement la matrice de transition plutôt que le Laplacien.
- Sortie : (Vecteurs propres, valeur propre) en superposition.
- Complexité : $\mathcal{O}(log(RN))$ avec R la dimension de l'espace d'arrivée (le nombre de valeurs propres pour l'estimation) et N la dimension de la matrice de départ.
- Erreur : $\mathcal{O}(\frac{1}{\sqrt{n}})$ avec n le nombre de copies de l'état de départ.

Grandes étapes

Entrée : matrice de google G.

Réaliser n copies de $e^{-i\hat{G}t}$ avec $\hat{G} = \begin{pmatrix} 0 & G \\ G^{\dagger} & 0 \end{pmatrix}$. On retiendra

la formule suivante :

$$tr_1\{e^{-iS_G\Delta t}\rho\otimes\sigma e^{iS_G\Delta t}\}$$

$$=\sigma - i \ tr_1\{S_G\rho\otimes\sigma\} + i \ tr_1\{\rho\otimes\sigma S_G\}\Delta t + \mathcal{O}(\Delta t^2)$$

$$= e^{-i\hat{G}t}\sigma e^{i\hat{G}t}$$

avec ρ la superposition uniforme : $\rho = |1\rangle \langle 1|$ où $|1\rangle = \frac{1}{\sqrt{N}} \sum |k\rangle$ et $S_G = \sum_{j,k} \hat{G}_{j,k}(|k\rangle \langle j| \otimes |j\rangle \langle k|)$

Pour la 2ème égalité, on utilise que $tr_1\{S_G \ \rho \otimes \sigma\} = \sigma \frac{A}{N}$

Grandes étapes

- Lloyd précise qu'il est facile de simuler $e^{-iS_G\Delta t}$ comme S_G est une matrice creuse.
- Alors, cette simulation de $e^{-i\hat{G}t}$ sera utilisée dans l'algorithme de l'estimation de la phase pour déterminer les valeurs propres et vecteurs propres de G
- En fixant l'erreur ϵ et le temps de simulation (temps de cohérence) $t = n\Delta t$, on a $n = \mathcal{O}(\frac{t^2}{\epsilon} ||\hat{G}||_{max}^2)$ opérations pour simuler $e^{-i\hat{G}t}$
- Ici $\|\hat{G}_{max}^2\| = \mathcal{O}(1)$ et on souhaite $\frac{1}{\epsilon} = O(poly \log(n))$ et $t = poly \log(n)$. Ce qui nous donne bien un nombre de copies à effectuer en $O(poly \log(n))$

Estimation de la phase

• En 2009, Lloyd propose une version améliorée l'algorithme de l'estimation de la phase qui utilise les portes $C - e^{-i\hat{G}nt_0}$. Cela permet d'exploiter complètement la puissance de l'estimation de la phase.

FIGURE 8 – Èstimation de la phase classique

Obtention du résultat final : Procrustes problem

Si $G=U\Sigma V^\dagger$ alors en sortie on obtient l'état (à normalisation près) :

$$|\psi_{out}\rangle \simeq \sum_{\frac{\sigma_j}{M+N} \ge \epsilon} \beta_j^{\pm} |u_j, \pm v_j\rangle \left| \pm \frac{\sigma_j}{M+N} \right\rangle$$

Avec $\beta_j^{\pm} = \pm \left\langle v_j | \psi_{in} \right\rangle / \sqrt{2}$.

On applique alors σ_z sur le qBit le plus à droite, puis on projette sur les valeurs singulières et puis sur u_j et on obtient :

$$|\psi_{final}\rangle \simeq \sum_{\substack{\sigma_{j} \\ M+N} \geq \epsilon} |u_{j}\rangle \langle v_{j}|\psi\rangle \simeq UV^{\dagger} |\psi\rangle$$

Conclusion

- On a alors accès aux colonnes de U (vecteurs singuliers) qui correspondent aux vecteurs propres de G associés à une valeur propre élevé (donc proche de 1). Il faut donc mesurer l'un des u_i pour avoir accès au PageRank.
- Prochaine étape : implémentation et test avec une matrice de petite taille. Comparaison avec le PageRank quantique classique.
- Questions en suspens : graphe de google? Algorithmes adaptés? En pratique, est-ce un gain de temps?

Remerciements

Pour finir, je souhaite remercier tout particulièrement Zeno Toffano et Benoit Valiron, chargés de l'encadrement de notre projet, pour leur présence et implication tout au long de cette étude.