

[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 , 148]
[102, 780]	[83, 163.1]	[97,182]
[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 <i>,</i> 188]
[90, 168]	[83, 163.1]	[87,182]
[55, 161.8]	[84, 162.6]	[62, 181.2]
[88,172]	[90, 157.5]	[69,170]
[57, 169]	[62, 149.7]	[63 , 142]
[102, 178]	[83, 173.1]	[97,181]
[53, 168]	[84, 162.6]	[62, 179.2]
[88,170]	[90, 177.5]	[105,174]
[57, 175]	[62, 169.7]	[53 , 146]
[102, 168]	[83, 168.1]	[97,180]

[55, 16		162.6] [62, 1	
[88,172] [90, 157	7.5] [105,1	L72]
[57, 169	[62, 149	9.7] [53 , 1	.48]
[102, 78	[83 <i>,</i> 163	3.1] [97 <i>,</i> 18	32]
[55, 16:	1.8] [84, 162	2.6] [62, 159	9.2]
[88,172] [90, 157	7.5] [105,1	L72]
[57, 169	[62, 149	9.7] [53 , 1	.88]
[90, 168	[83, 163	3.1] [87,18	32]
[55, 161	.8] [84, 16	2.6] [62, 18	81.2]
[88,172] [90, 157	7.5] [69,17	70]
[57, 169	[62, 149	9.7] [63 , 1	.42]
[102, 17	⁷ 8] [83, 173	3.1] [97,18	31]
[53, 168	8] [84, 162	2.6] [62 <i>,</i> 1	79.2]
[88,170] [90, 177	7.5] [105,1	L 74]
[57, 175	[62, 169	9.7] [53 , 1	.46]
[102, 16	[83, 168	3.1] [97,18	30]

[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 , 148]
[102, 780]	[83, 163.1]	[97,182]
[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57 <i>,</i> 169]	[62, 149.7]	[53 , 188]
[90, 168]	[83, 163.1]	[87,182]
[55, 161.8]	[84, 162.6]	[62, 181.2]
[88,172]	[90, 157.5]	[69,170]
[57 <i>,</i> 169]	[62, 149.7]	[63 , 142]
[102, 178]	[83, 173.1]	[97,181]
[53, 168]	[84, 162.6]	[62, 179.2]
[88,170]	[90, 177.5]	[105,174]
[57 <i>,</i> 175]	[62, 169.7]	[53 , 146]
[102, 168]	[83, 168.1]	[97,180]

$$\frac{1}{n} \leq |x_i - y_i|$$

[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 <i>,</i> 148]
[102, 780]	[83, 163.1]	[97,182]
[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 <i>,</i> 188]
[90, 168]	[83, 163.1]	[87,182]
[55, 161.8]	[84, 162.6]	[62, 181.2]
[88,172]	[90, 157.5]	[69,170]
[57, 169]	[62, 149.7]	[63 , 142]
[102, 178]	[83, 173.1]	[97,181]
[53, 168]	[84, 162.6]	[62, 179.2]
[88,170]	[90, 177.5]	[105,174]
[57, 175]	[62, 169.7]	[53 <i>,</i> 146]
[102, 168]	[83, 168.1]	[97,180]

$$\sum_{i=1}^{T} (x_i - C)^{T} (x_i - c)$$

Mean??

$$\sum_{i=1}^{n} ||X_i - C_i||^2$$

$$||X_i - C_i||^2$$

Noon of a rector

$$x \in \mathbb{R}^{n}$$
 $||x||_{2} = ||x_{1}|^{2} + x_{2}|^{2} + \dots + x_{n}|^{2}$
 $||x||_{1} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x_{1}||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x_{1}||_{p} = ||x_{1}|| + ||x_{2}|| + \dots + ||x_{n}||$
 $||x_{1}||_{p} = ||x_{1}|| + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} = ||x_{1}||_{p} + ||x_{2}||_{p} + \dots + ||x_{n}||_{p}$
 $||x_{1}||_{p} + ||x_{1}||_{p} + ||x_{1}||_{p}$
 $||x_{1}||_{p} + ||x_{1}||_{p} + ||x_{1}||_{p}$

[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 , 148]
[102, 780]	[83, 163.1]	[97,182]
[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 , 188]
[90, 168]	[83, 163.1]	[87,182]
[55, 161.8]	[84, 162.6]	[62, 181.2]
[88,172]	[90, 157.5]	[69,170]
[57, 169]	[62, 149.7]	[63 , 142]
[102, 178]	[83, 173.1]	[97,181]
[53, 168]	[84, 162.6]	[62, 179.2]
[88,170]	[90, 177.5]	[105,174]
[57, 175]	[62, 169.7]	[53 , 146]
[102, 168]	[83, 168.1]	[97,180]

$$||X||_2 = ||\widehat{\sum_{i=1}^n X_i^2}|$$

[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 , 148]
[102, 780]	[83, 163.1]	[97,182]
[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57 <i>,</i> 169]	[62, 149.7]	[53 , 188]
[90, 168]	[83, 163.1]	[87,182]
[55, 161.8]	[84, 162.6]	[62, 181.2]
[88,172]	[90, 157.5]	[69,170]
[57, 169]	[62, 149.7]	[63 , 142]
[102, 178]	[83, 173.1]	[97,181]
[53, 168]	[84, 162.6]	[62, 179.2]
[88,170]	[90, 177.5]	[105,174]
[57, 175]	[62, 169.7]	[53 , 146]
[102, 168]	[83, 168.1]	[97,180]

Median ??

Project data

[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57 <i>,</i> 169]	[62, 149.7]	[53 <i>,</i> 148]
[102, 780]	[83, 163.1]	[97,182]
[55, 161.8]	[84, 162.6]	[62, 159.2]
[88,172]	[90, 157.5]	[105,172]
[57, 169]	[62, 149.7]	[53 , 188]
[90, 168]	[83, 163.1]	[87,182]
[55, 161.8]	[84, 162.6]	[62, 181.2]
[88,172]	[90, 157.5]	[69,170]
[57, 169]	[62, 149.7]	[63 , 142]
[102, 178]	[83, 173.1]	[97,181]
[53, 168]	[84, 162.6]	[62, 179.2]
[88,170]	[90, 177.5]	[105,174]
[57, 175]	[62, 169.7]	[53 , 146]
[102, 168]	[83, 168.1]	[97,180]

d GRm

Projected data

Xi 2

$$\frac{1}{w}\left(d^{T}x_{1}+d^{T}x_{2}+\cdots d^{T}x_{N}\right)=$$

h

$$\frac{d^{7}x_{1}}{d^{7}u} = \frac{d^{7}x_{2}}{d^{7}u} = \frac{d^{7}x_{1}}{d^{7}x_{2}} = \frac{d^{7}x_{2}}{d^{7}x_{1}} = \frac{d^{7}x_{2}}{d^{7}x_{2}} = \frac{d^{7}$$

Mean of Projected data

$$\frac{1}{N^{-1}} \underbrace{\sum_{j=1}^{N} (X_{j} - u_{j})(X_{j} - u_{j})}_{X_{11}} \underbrace{X_{11} - u_{1}}_{X_{11}} \underbrace{X_{11} - u_{1}}_{X_{12} - u_{2}} \underbrace{X_{11} - u_{1}}_{X_{21}} \underbrace{X_{11} - u_{1}}_{X_{21}} \underbrace{X_{11} - u_{1}}_{X_{21}} \underbrace{X_{11} - u_{1}}_{X_{21} - u_{2}} \underbrace{X_{21} - u_{2}}_{X_{21} - u_{2}} \underbrace{X_{21} - u_$$

$$\frac{1}{N-1} = \frac{X_{11} - U_1}{X_{12} - Y_2}$$

 $\frac{1}{\sqrt{11}} \left[\frac{(x_{11} - u_{1})^{2} + (x_{21} - u_{1})^{2}}{\sqrt{16}} + \frac{(x_{21} - u_{1})^{2}}{\sqrt{16}} \right] = \sqrt{12}$ $\sqrt{21}$ $\sqrt{21}$ $\sqrt{22}$ $\sqrt{22}$ $\sqrt{22}$ Oni Onz , -... On w

-1 (Xi-4)2 e

Variance of Projected data

