MTH 100: Worksheet 13

1. Find a diagonal matrix D and an orthogonal matrix P such that $A = PDP^T$ for the following matrix :

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

2. Find a singular value decomposition (SVD) for the matrix A given below.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$$

3. Find a singular value decomposition (SVD) for the matrix A given below.

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

- 4. Let A be an $n \times n$ invertible square matrix.
 - (a) Show that the eigen values of A^{-1} are the reciprocals of the eigen values of A.
 - (b) Find a singular value decomposition of A^{-1} , assuming that you already have an SVD of A.
- 5. Let U be an $m \times n$ matrix with orthonormal columns, and suppose ${\bf x}$ and ${\bf y}$ are vectors in ${\bf R^n}$. Show that :
 - (a) $U\mathbf{x} \cdot U\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$
 - (b) $||U\mathbf{x}|| = ||\mathbf{x}||$
 - (c) $U\mathbf{x} \cdot U\mathbf{y} = \mathbf{0}$ if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$