# WeightWatcher: A Diagnostic Tool for Deep Neural Networks

Charles H. Martin PhD, Calculation Consulting

(in joint with Michael Mahoney, UC Berkeley)
pip install weightwatcher

 Martin
 WeightWatcher
 June 2021
 1 / 15

# Open source tool: weightwatcher

https://github.com/CalculatedContent/WeightWatcher

Martin

**WeightWatcher (WW)**: is an open-source, diagnostic tool for analyzing Deep Neural Networks (DNN), without needing access to training or even test data. It can be used to:

- analyze pre/trained pyTorch and keras models
- inspect models that are difficult to train
- gauge improvements in model performance
- predict test accuracies across different models
- detect potential problems when compressing or fine-tuning pretrained models

It is based on theoretical research (done injoint with UC Berkeley) into Why Deep Learning Works, using ideas from Random Matrix Theory (RMT), Statistical Mechanics, and Strongly Correlated Systems.

#### pip install weightwatcher

WeightWatcher June 2021 2 / 15

## Shape and Scale Metrics

**WeightWatcher (WW)**: analyzes the shape and scale of the correlations in the layer weight matrices:



**WW**: extracts, plots, and fits the Empirical Spectral Density (ESD, or eigenvalues) for each layer weight matrix (or tensor slice).

The tail of the ESD contains the most informative components.

Martin WeightWatcher June 2021 3 / 15

## WeightWatcher: Usage

#### **Usage**

```
import weightwatcher as ww watcher = ww.WeightWatcher(model=model) details = watcher.analyze(plot=True) summary = watcher.get_summary(details)
```

|    | layer_id | name | D        | м      | N       | alpha    | alpha_weighted | has_esd | lambda_max | layer_type        | _ | rand_num_spikes | rand_sigma_mp | ra |
|----|----------|------|----------|--------|---------|----------|----------------|---------|------------|-------------------|---|-----------------|---------------|----|
| 0  | 2        | None | 0.240111 | 3.0    | 64.0    | 2.400712 | 2.627967       | 1.0     | 12.435451  | LAYER_TYPE.CONV2D |   | 135.0           | 1.000000      | П  |
| 1  | 5        | None | 0.112669 | 64.0   | 128.0   | 7.116304 | 4.721276       | 1.0     | 4.607285   | LAYER_TYPE.CONV2D | _ | 25.0            | 0.551250      |    |
| 2  | 8        | None | 0.076209 | 128.0  | 256.0   | 2.981087 | 1.739893       | 1.0     | 3.833927   | LAYER_TYPE.CONV2D |   | 17.0            | 0.451562      |    |
| 3  | 10       | None | 0.068890 | 256.0  | 256.0   | 5.667264 | 2.600458       | 1.0     | 2.876445   | LAYER_TYPE.CONV2D |   | 0.0             | 0.935068      |    |
| 4  | 13       | None | 0.084938 | 256.0  | 512.0   | 2.593428 | 1.432684       | 1.0     | 3.568032   | LAYER_TYPE.CONV2D |   | 8.0             | 0.431523      |    |
| 5  | 15       | None | 0.038416 | 512.0  | 512.0   | 3.309962 | 2.216486       | 1.0     | 4.673487   | LAYER_TYPE.CONV2D |   | 0.0             | 0.939111      |    |
| 6  | 18       | None | 0.052924 | 512.0  | 512.0   | 3.446656 | 1.859810       | 1.0     | 3.464163   | LAYER_TYPE.CONV2D |   | 0.0             | 0.888574      |    |
| 7  | 20       | None | 0.034290 | 512.0  | 512.0   | 3.261262 | 2.524426       | 1.0     | 5.943799   | LAYER_TYPE.CONV2D |   | 0.0             | 0.942012      |    |
| 8  | 25       | None | 0.032563 | 4096.0 | 25088.0 | 2.325065 | 3.583809       | 1.0     | 34.784030  | LAYER_TYPE.DENSE  |   | 1.0             | 0.898506      |    |
| 9  | 28       | None | 0.030891 | 4096.0 | 4096.0  | 2.167513 | 3.858526       | 1.0     | 60.278519  | LAYER_TYPE.DENSE  |   | 1.0             | 0.959863      |    |
| 10 | 31       | None | 0.039773 | 1000.0 | 4096.0  | 2.825653 | 4.999373       | 1.0     | 58.786867  | LAYER_TYPE.DENSE  |   | 206.0           | 1.000000      |    |
|    |          |      |          |        |         |          |                |         |            |                   |   |                 |               |    |

 $summary = watcher.get\_summary(details)$ 

```
{'log_norm': 2.11,
  'alpha': 3.06,
  'alpha_weighted': 2.78,
  'log_alpha_norm': 3.21,
  'log_spectral_norm': 0.89,
  'stable_rank': 20.90,
  'mp_softrank': 0.52}]
```

## $\alpha$ : a Regularization / Shape metric

The WW  $\langle \alpha \rangle$  metric: predicts test accuracy for a model when varying the regularization hyper-parameters (such as batch size, weight decay, momentum, etc.)—without access to the test or training data.



It fits tail of the ESD to a Truncated Power Law (PL):  $\rho(\lambda) = \lambda^{-\alpha}$ 

Martin WeightWatcher June 2021 5 / 15

# $\log \lambda^{max}$ : $\log$ Spectral Norm / Scale metric

**The WW**  $\langle \log \lambda^{max} \rangle$  **metric**: also predicts test accuracies, but has the oppostie behavior than expected–larger norms give better results!



This is a classic Simpson's Paradox

Martin WeightWatcher June 2021 6/15

### $\hat{\alpha}$ : a multi-purpose metric

**The WW**  $\hat{\alpha}$  **metric**: predicts test accuracy for models in the same architecture series across varying *both* depth and regularization hyper-parameters—*without access to the test or training data.* 



The  $\hat{\alpha} = \sum \alpha_l \log \lambda_l^{max}$  metric is a weighted average of **shape**  $(\alpha)$  and **scale**  $(\lambda_{max})$  metrics. ... from Statistical Mechanics (see blog, in press)

Martin WeightWatcher June 2021 7/15

# https://CalculatedContent.com



TOWARDS A NEW THEORY OF LEARNING: STATISTICAL MECHANICS OF DEEP NEURAL NETWORKS

# $\hat{\alpha}$ : a multi-purpose metric

**The WW**  $\hat{\alpha}$  **metric**: predicts test accuracy for models in the same architecture series across varying *both* depth and regularization hyper-parameters—*without access to the test or training data.* 



We have studied 100s of pre-trained CV (and NLP) models; featured in our latest paper in **Nature Communications** 

Martin WeightWatcher June 2021 9 / 15

Article Open Access | Published: 05 July 2021

#### Predicting trends in the quality of state-ofthe-art neural networks without access to training or testing data

Charles H. Martin, Tongsu (Serena) Peng & Michael W. Mahoney

Nature Communications 12, Article number: 4122 (2021) | Cite this article 8164 Accesses | 48 Altmetric | Metrics

#### **Abstract**

In many applications, one works with neural network models trained by someone else. For such pretrained models, one may not have access to training data or test data. Moreover, one may not know details about the model, e.g., the specifics of the training data, the loss function, the hyperparameter values, etc. Given one or many pretrained models, it is a challenge to say anything about the expected performance or quality of

 Martin
 WeightWatcher
 June 2021
 10 / 15

# Research Update: Heavy Tails in W and X

**Correlation Traps** We *conjecture* that when the unusually large elements  $W_{i,j}$  arise in the weight matrices, these act like traps (in the ESD of **X** that prevent good generalization.



(a) ESD of W and randomized W.



(b) ESD of W and randomized W.

These can be seen using the [randomize] option in **weightwatcher**. We believe we can use this to detect overfitting and are investigating this.

Martin WeightWatcher June 2021 11/15

# Research Update: Sharpness Transform



12 / 15

# Research Update: SVD Smoothing

