Trustworthy Boolean Reasoning 1A: (Un)Satisfiability

Randal E. Bryant

Carnegie Mellon University

June, 2022

Important Ideas for These Lectures

- SAT solvers are useful tools
 - Many practical problems reducible to SAT
 - Need to learn effective encoding techniques
- ▶ For many applications, formulas should be unsatisfiable
 - Program should generate a checkable proof
 - ► There is a well-developed proof infrastructure
- ▶ Binary Decision Diagrams (BDDs) can play important role
 - In supplementing current SAT algorithms
 - In proof generation

SAT Application: Bit-Level Program Verification

Are these functions equivalent?

```
int abs_new(int x) {
  int m = x>>31;
  return (x^m) + ~m + 1;
}
int abs_ref(int x) {
  return x < 0 ? -x : x;
}</pre>
```

Assume for int:

- ▶ 32-bit word
- ► Two's complement representation

SAT Application: Bit-Level Program Verification

Can this program call ERROR?

```
int abs_new(int x) {
   int m = x>>31;
   return (x^m) + ~m + 1;
}
   int t = random();
   int vn = abs_new(t);
   int vr = abs_ref(t);
   int abs_ref(int x) {
    return x < 0 ? -x : x;
   if (err != 0)
        ERROR();
}</pre>
```

Assume for int:

- ▶ 32-bit word
- ► Two's complement representation

Application: Bit-Level Program Verification

C Bounded Model Checker (CBMC)

► Clarke, Kroening, Lerda TACAS 2004

Reduces Program Verification to SAT

- Unroll loops by bounded amount
- ► Encode arithmetic and logical operations at Boolean level
- Formula satisfied if err can be nonzero
 - ► Unsatisfiable when no error can occur

Widely Used in Industry

- Accurately models low-level program behavior
- Good for short, but tricky programs

SAT Application: Coloring Pythagorean Triples

Pythagorean Triple (P-Triple)

- ▶ Positive integers a, b, c such that $a^2 + b^2 = c^2$
- ► E.g., a = 3, b = 4, c = 5.

Two-Coloring

- ▶ For integers $i \in \{1, 2, ..., n\}$, assign $C_i \in \{\text{red}, \text{blue}\}$
- ▶ For every P-Triple a, b, c, cannot have $C_a = C_b = C_c$.

Question

- ▶ What is the maximum *n* for which a two-coloring exists?
- Answer unknown until 2016

SAT Application: Coloring Pythagorean Triples

Pythagorean Triple (P-Triple)

- ▶ Positive integers a, b, c such that $a^2 + b^2 = c^2$
- ► E.g., a = 3, b = 4, c = 5.

Two-Coloring

- ▶ For integers $i \in \{1, 2, ..., n\}$, assign $C_i \in \{\text{red}, \text{blue}\}$
- ▶ For every P-Triple a, b, c, cannot have $C_a = C_b = C_c$.

SAT Encoding PTC(n)

- n Boolean variables
- ▶ Variable $x_a = 1$ if a colored red, = 0 if colored blue
- ▶ Clauses for each P-Triple a, b, c, such that $1 \le a < b < c \le n$: $x_a \lor x_b \lor x_c$ At least one colored red $\overline{x}_a \lor \overline{x}_b \lor \overline{x}_c$ At least one colored blue

SAT Application: Coloring Pythagorean Triples, n = 7824

SAT Application: Coloring Pythagorean Triples, $n \ge 7825$

Formula PTN(7825) unsatisfiable

- ► Heule, Kullmann, Marek, SAT 2016
- ► Partitioned into 10⁶ subproblems
 - ▶ By enumerating assignments for some of the variables
- ▶ Ran on 800-core supercomputer for two days
- Generated 10⁶ proofs of unsatisfiability
 - 200 Terabytes total
 - Validated with proof checker
 - A very long and very tedious collection of proofs!
- Unsatisfiability proof provides mathematical rigor

SAT Solvers Useful

- Optimization
- Formal verification
- Mathematical proofs

SAT Solvers Useful

- Optimization
- Formal verification
- Mathematical proofs

SAT Solvers Useful

- Optimization
- Formal verification
- Mathematical proofs

SAT Solvers Useful

- Optimization
- Formal verification
- Mathematical proofs

SAT Solvers Useful

- Optimization
- Formal verification
- ► Mathematical proofs

Can We Trust Them?

- ► No!
- Complex software
- e.g., KISSAT: 35K lines of code

Unsatisfiability Proof

 Step-by-step proof in some logical framework

Proof Checker

- Simple program
- May be formally verified

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
 - Conflict-Driven Clause Learning (CDCL)
 - Search for solution, but learn conflicts
- Other powerful solution methods have languished.

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
 - Conflict-Driven Clause Learning (CDCL)
 - Search for solution, but learn conflicts
- Other powerful solution methods have languished.

My Long-Term Goals

- Enable proof generation for other SAT algorithms
- Develop checkable proof infrastructure for other domains

Conjunctive Normal Form (CNF) Formulas

Variables

- ▶ Input: $X = \{x_1, x_2, ..., x_n\}$
- ▶ Informally: a, b, c, ...

Literals

- ▶ Variable *x*
- ▶ Complemented variable \overline{x} .

Clauses

- $ightharpoonup C = \{\ell_1, \ell_2, \dots, \ell_k\}$ Set of literals
- $ightharpoonup oxedsymbol{oxedsymbol{oxedsymbol{eta}}} oxedsymbol{oxedsymbol{eta}}$ Empty clause (False)

Formula

- $\phi = \{C_1, C_2, \dots, C_m\}$
- $ightharpoonup C_1 \wedge C_2 \wedge \cdots \wedge C_m$ Conjunction of clauses

Clausal Thinking

Useful tricks when writing CNF

Boolean Formula	CNF
$a \wedge b \rightarrow c$	$\overline{a} \lor \overline{b} \lor c$
$a o b \lor c$	$\overline{a} \lor b \lor c$
$(a \lor b) \to c$	$(\overline{a} \lor c) \land (\overline{b} \lor c)$
$a o (b\wedge c)$	$(\overline{a} \lor b) \land (\overline{a} \lor c)$
ITE(a,b,c)	$(\overline{a} \lor b) \land (a \lor c)$

Advice: think in terms of implication.

▶ E.g., $ITE(a, b, c) = (a \rightarrow b) \land (\overline{a} \rightarrow c)$

Clausal Thinking: Parity Encodings

Boolean Formula	CNF	Explanation
OddParity(a,b,c)	$egin{array}{ccc} (\overline{a}ee \overline{b}ee c) & \wedge & \ (\overline{a}ee bee \overline{c}) & \wedge & \ (aee \overline{b}ee \overline{c}) & \wedge & \ (aee bee c) & \end{array}$	Even number of negations
EvenParity(a, b, c)	$egin{array}{ccc} (\overline{a}ee \overline{b}ee \overline{c}) & \wedge & \\ (aee bee \overline{c}) & \wedge & \\ (aee \overline{b}ee c) & \wedge & \\ (\overline{a}ee bee c) & \end{array}$	Odd number of negations

Clausal Thinking: Parity Encodings

Boolean Formula	CNF
OddParity(a,b,c)	$egin{array}{ccc} (\overline{a}ee \overline{b}ee c) & \wedge & \ (\overline{a}ee bee \overline{c}) & \wedge & \ (aee \overline{b}ee \overline{c}) & \wedge & \ (aee bee c) & \end{array}$
OddParity(a,b,c,d)	$(\overline{a} \vee \overline{b} \vee \overline{c} \vee \overline{d}) \wedge \\ (a \vee b \vee \overline{c} \vee \overline{d}) \wedge \\ (a \vee \overline{b} \vee c \vee \overline{d}) \wedge \\ (\overline{a} \vee \overline{b} \vee c \vee \overline{d}) \wedge \\ (\overline{a} \vee \overline{b} \vee c \vee d) \wedge \\ (\overline{a} \vee \overline{b} \vee \overline{c} \vee d) \wedge \\ (a \vee \overline{b} \vee \overline{c} \vee d) \wedge \\ (a \vee \overline{b} \vee \overline{c} \vee d) \wedge \\ (a \vee \overline{b} \vee \overline{c} \vee d) \end{pmatrix}$

Bryant: SSFT22 $15 \ / \ 24$

Parity Encoding with Intermediate Variables

Task

- ▶ Encode *OddParity*($x_1, x_2, ..., x_n$)
- ▶ Direct encoding requires 2^{n-1} clauses
- ▶ All combinations with even number of negative literals

Decomposition

- Introduce new variable z
- ▶ Directly encode *EvenParity*(x_1, x_2, z)
- ▶ Recursively encode *OddParity*($z, x_3, x_4, ..., x_n$):
 - ▶ If $x_1 \oplus x_2 = 0$, then z = 0 and $OddParity(x_3, x_4, ..., x_n)$
 - ▶ If $x_1 \oplus x_2 = 1$, then z = 1 and $EvenParity(x_3, x_4, \dots, x_n)$

Parity Encoding with Intermediate Variables

Decomposition

- ▶ Directly encode *EvenParity*(x_1, x_2, z)
- ▶ Recursively encode *OddParity*($z, x_3, x_4, ..., x_n$):

General Form

$$z_{2} = x_{1} \oplus x_{2}$$

$$z_{3} = z_{2} \oplus x_{3}$$

$$\cdots$$

$$z_{n-2} = x_{n-2} \oplus x_{n-3}$$

$$z_{n-2} \oplus x_{n-1} \oplus x_{n} = 1$$

Complexity

- \triangleright n-3 additional variables
- ▶ 4(n-2) clauses

Clausal Thinking: Cardinality Constraints

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n \geq t$$

Constraint $a_i t$

At Least One $\{0,1\}$ 1

At Most One $\{0,-1\}$ -1

Boolean Formula	CNF
AtLeastOne(a, b, c)	$a \lor b \lor c$
AtMostOne(a, b, c)	$\left(\overline{a}\vee\overline{b}\right)\wedge\left(\overline{a}\vee\overline{c}\right)\wedge\left(\overline{b}\vee\overline{c}\right)$
AtMostOne(a, b, c, d)	$(\overline{a} \lor \overline{b}) \land (\overline{a} \lor \overline{c}) \land (\overline{a} \lor \overline{d}) \land (\overline{b} \lor \overline{c}) \land (\overline{b} \lor \overline{d}) \land (\overline{c} \lor \overline{d})$

Encoding Arbitrary Formulas / Circuits

	Encode NAND gate	Encode OR gate
Formula	$\overline{t}_1 \leftrightarrow x_1 \wedge x_2$	$z \leftrightarrow t_1 \lor x_3$
	$t_1 \vee x_1$	$\overline{z} \lor t_1 \lor x_3$
Clauses	$t_1 \vee x_2$	$z ee \overline{t}_1$
	$\overline{t}_1 \vee \overline{x}_1 \vee \overline{x}_2$	$z \vee \overline{x}_3$

Tseitin Encoding

- ▶ Introduce variables for intermediate values
- ► Linear complexity

Proof Rules: Resolution

▶ Robinson, 1965

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee c \vee \overline{d}}{(\overline{a} \vee b) \vee (c \vee \overline{d})}$$

- ► Generalization of implication
- ► See https://en.wikipedia.org/wiki/Resolution_(logic)

Proof Rules: Resolution

▶ Robinson, 1965

$$(a \wedge \overline{b}) \to x \qquad x \to (c \vee \overline{d})$$

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee c \vee \overline{d}}{(\overline{a} \vee b) \vee (c \vee \overline{d})}$$

- ► Generalization of implication
- ► See https://en.wikipedia.org/wiki/Resolution_(logic)

Proof Rules: Resolution

▶ Robinson, 1965

$$(a \wedge \overline{b}) \to x \qquad x \to (c \vee \overline{d})$$

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee c \vee \overline{d}}{(\overline{a} \vee b) \vee (c \vee \overline{d})}$$

$$(a \wedge \overline{b}) \to (c \vee \overline{d})$$

- Generalization of implication
- ► See https://en.wikipedia.org/wiki/Resolution_(logic)

Resolution Principle Nuances

OK To Have Repeated Literal

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee b \vee \overline{d}}{\overline{a} \vee b \vee \overline{d}}$$

Not OK to Have Multiple Resolution Variables

$$\begin{array}{c|cccc}
\overline{a} \lor d \lor x & \overline{x} \lor c \lor \overline{d} \\
\hline
\end{array}$$

Proof Rules: Subsumption

$$\frac{\overline{a} \lor b \lor \overline{c}}{\overline{a} \lor b \lor \overline{c} \lor d}$$

▶ General Principle: $F \rightarrow F \lor d$

Example Formula

DIMACS Format

- Standard for all solvers
- Positive integers for variables
- Negative integers for their negations
- Lists terminated with 0

ID	Clause	DIMACS Encoding
		p cnf 4 6
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	-1 -2 -3 0
2	$\overline{a} \lor \overline{b} \lor c$	-1 -2 3 0
3	$a ee \overline{d}$	1 -4 0
4	$a \lor d$	1 4 0
5	$b ee \overline{d}$	2 -4 0
6	$b \lor d$	2 4 0

Example Proof

▶ Derive empty clause ⊥ through set of resolution steps

But how can a program find such a proof?