Material Teórico - Módulo de Expressões Algébricas e Polinômios

Parte 2 - Resolução de exercícios

Oitavo Ano

Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Nesta aula, resolveremos alguns exercícios envolvendo expressões algébricas, empregando o material discutido na aula anterior.

Exemplo 1 (Banco de questões OBMEP). O que representam, na figura abaixo, as expressões $a^2 + 1,5a e 4a + 3$?

Solução. Observe que a figura é um retângulo formado por um quadrado de lado a e um outro retângulo menor, de lados a e 1,5cm. Logo, a área do retângulo é igual à soma das áreas do quadrado e do retângulo menor, de forma que vale $a^2 + 1,5a$. Por outro lado, o perímetro do retângulo é dado por $2 \cdot (a+1,5+a) = 4a+3$. Portanto, as expressões $a^2+1,5a$ e 4a+3 representam, respectivamente, a área e o perímetro do retângulo dado na figura.

Exemplo 2. Determine o valor numérico da expressão algébrica

$$\frac{x^2y^3 - xz^2}{x^3y^2 + yz}$$

 $para \ x = -1, \ y = 1 \ e \ z = 2.$

Solução. Atribuindo os valores $x=-1,\ y=1$ e z=2 à expressão algébrica do enunciado, obtemos a expressão numérica

$$\frac{(-1)^2 \cdot 1^3 - (-1) \cdot 2^2}{(-1)^3 \cdot 1^2 + 1 \cdot 2} = \frac{1+4}{-1+2} = 5.$$

Exemplo 3 (OBM 2010). Os números reais x e y são distintos de zero, distintos entre si e satisfazem a igualdade

$$x - \frac{1}{x} = y - \frac{1}{y}.$$

Então, o valor de xy é igual a:

- (a) 4.
- (b) 1
- (c) -1.
- (d) -4.
- (e) é preciso de mais dados.

Solução. Temos

$$x - \frac{1}{x} = y - \frac{1}{y} \Leftrightarrow x - y = \frac{1}{x} - \frac{1}{y}$$
$$\Leftrightarrow x - y = \frac{y - x}{xy}$$
$$\Leftrightarrow x - y = -\frac{x - y}{xy}.$$

Mas, como $x \neq y$, podemos cancelar a diferença x - y nos dois membros da última igualdade. Assim fazendo, obtemos $1 = -\frac{1}{xy}$ ou, o que é o mesmo, xy = -1. Portanto, a alternativa correta é o item (c).

Exemplo 4. Determine o polinômio P(x), de grau 2, tal que P(1) = 3, P(-2) = 9 e P(x) = P(-x), para todo $x \in \mathbb{R}$.

Solução. Como P(x) é um polinômio de grau 2, podemos escrever

$$P(x) = ax^2 + bx + c,$$

em que a, b e c são números reais, sendo $a \neq 0$. Utilizando a hipótese P(x) = P(-x) para todo $x \in \mathbb{R}$, obtemos

$$P(x) = P(-x) \Rightarrow ax^2 + bx + c = a \cdot (-x)^2 + b \cdot (-x) + c$$
$$\Rightarrow ax^2 + bx + c = ax^2 - bx + c.$$

Agora, utilizando o fato que dois polinômios são iguais se, e somente se, eles possuem os mesmos coeficientes (ou simplesmente cancelando as parcelas ax^2 e c em ambos os membros da última igualdade acima), concluímos que b=-b, ou seja, b=0. Então, $P(x)=ax^2+c$. Por outro lado.

$$P(1) = a \cdot 1^2 + c = a + c = 3$$

е

$$P(-2) = a \cdot (-2)^2 + c = 4a + c = 9.$$

Finalmente, resolvendo o sistema

$$\begin{cases} a+c=3\\ 4a+c=9 \end{cases},$$

obtemos a=2 e c=1, donde concluímos que $P(x)=2x^2+1$.

Exemplo 5. Sejam a, b e c números reais não nulos, tais que a+b+c=0. Observe que $a+b=-c\neq 0$, $b+c=-a\neq 0$ e $a+c=-b\neq 0$. Agora, calcule o valor de cada uma das expressões abaixo:

(a)
$$\frac{a^2}{(b+c)^2} + \frac{b^2}{(a+c)^2} + \frac{c^2}{(a+b)^2}$$
.

(b)
$$\frac{a^3}{(b+c)^3} + \frac{b^3}{(a+c)^3} + \frac{c^3}{(a+b)^3}$$
.

Solução. Temos:

$$\frac{a^2}{(b+c)^2} + \frac{b^2}{(a+c)^2} + \frac{c^2}{(a+b)^2} =$$

$$= \frac{a^2}{(-a)^2} + \frac{b^2}{(-b)^2} + \frac{c^2}{(-c)^2} = 1 + 1 + 1 = 3$$

$$\frac{a^3}{(b+c)^3} + \frac{b^3}{(a+c)^3} + \frac{c^3}{(a+b)^3} =$$

$$= \frac{a^3}{(-a)^3} + \frac{b^3}{(-b)^3} + \frac{c^3}{(-c)^3} = -1 - 1 - 1 = -3.$$

Exemplo 6. Sejam a, b e c números reais tais que a+b+c=0. Mostre que $a^3+b^3+c^3=3abc$.

Solução. Observe que

$$a + b + c = 0 \Rightarrow a + b = -c \Rightarrow (a + b)^3 = (-c)^3.$$
 (1)

Mas, por outro lado,

$$(a+b)^{3} = (a+b) \cdot (a+b) \cdot (a+b)$$

$$= (a^{2} + ab + ab + b^{2}) \cdot (a+b)$$

$$= (a^{2} + 2ab + b^{2}) \cdot (a+b)$$

$$= a^{3} + 2a^{2}b + ab^{2} + a^{2}b + 2ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}.$$
(2)

Comparando (1) e (2), obtemos

$$a^3 + 3a^2b + 3ab^2 + b^3 = -c^3$$
,

e daí,

$$a^3 + b^3 + c^3 = -3a^2b - 3ab^2 = 3ab \cdot (-a - b) = 3abc.$$

Exemplo 7. Quais são o quociente e o resto da divisão de $A(x) = x^4 - x^2 + 2$ por $B(x) = x^2 + 2x - 1$?

Solução. Utilizando o método estudado na aula anterior para determinar o resto e o quociente da divisão de dois polinômios, obtemos:

1	0	-1	0	2	1	2	-1
-1	-2	1/			1	-2	4
	-2	0	0	2			
	2	4	-2				
		4	-2	2			
		-4	-8	4			
			-10	6			

Portanto, o quociente e o resto da divisão de A(x) por B(x) são, respectivamente, $Q(x) = x^2 - 2x + 4$ e R(x) = -10x + 6.

Exemplo 8. Determine a e b de modo que a divisão de $A(x) = x^3 - ax + b$ por $B(x) = x^2 - x + 2$ seja exata.

Solução. Efetuando a divisão entre os dois polinômios, obtemos:

	1	0	-a	b	1 -1 2
	-1	1	-2		1 1
		1	-a-2	b	
		-1	1	-2	
,			-a - 1	b-2	

Daí, segue que o quociente e o resto da divisão de A(x) por B(x) são, respectivamente, Q(x) = x + 1 e R(x) = (-a-1)x + (b-2). Portanto, para que a divisão seja exata, isto é, para que tenhamos R(x) = 0, devemos ter -a-1=0 e b-2=0, de forma que a=-1 e b=2. \square

Exemplo 9. Ao dividirmos um polinômio qualquer A(x) por um polinômio B(x), mônico e cujo grau é igual a 1, digamos, B(x) = x - m, obtemos

$$A(x) = Q(x) \cdot (x - m) + R(x),$$

em que $R(x) = r \in \mathbb{R}$, pois devemos ter $\partial R < 1$ ou R = 0. Calculando o valor numérico do polinômio A(x) em x = m, obtemos

$$A(m) = Q(m) \cdot (m - m) + r,$$

donde concluímos que A(m) = r. De outra forma, o resto é o polinômio constante e igual ao valor numérico de A(x) em m.

Exemplo 10. Determine α de modo que a divisão de $A(x) = 2x^3 - 5x^2 + 7x - \alpha$ por B(x) = x - 2 deixe resto 9.

Solução. De acordo com o exemplo 9, o resto da divisão de $A(x) = 2x^3 - 5x^2 + 7x - \alpha$ por B(x) = x - 2 é o polinômio constante e igual a A(2).

Agora, por um lado, temos

$$A(2) = 2 \cdot 2^3 - 5 \cdot 2^2 + 7 \cdot 2 - \alpha$$

= 16 - 20 + 14 - \alpha = 10 - \alpha.

Por outro, o resto deve ser igual a 9, o que acarreta a igualdade

$$10 - \alpha = 9,$$

de sorte que $\alpha = 1$.

П

Dicas para o Professor

Duas sessões de 50min são suficientes para resolver os exemplos que compõem este material.

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matemática Elementar, Volume 1: Números Reais. Rio de Janeiro, Editora S.B.M., 2012.
- G. Iezzi. Os Fundamentos da Matemática Elementar, Volume 6: Complexos, Polinômios, Equações. São Paulo, Atual Editora, 2012.

