SEMAINE DU 01/02 AU 05/02

1 Cours

Espaces vectoriels

Définition et exemples fondamentaux Définition d'un \mathbb{K} -espace vectoriel. Exemples. Si X est un ensemble, on peut munir \mathbb{K}^X d'une struture de \mathbb{K} -espace vectoriel. Conséquence : \mathbb{K}^n , $\mathbb{K}^\mathbb{N}$, $\mathbb{K}^\mathbb{K}$ sont des \mathbb{K} -espaces vectoriels.

Sous-espaces vectoriels Définition. Intersection de sous-espaces vectoriels. Combinaisons linéaires d'une famille de vecteurs. Espace vectoriel engendré par une partie ou une famille.

Somme de sous-espaces vectoriels Somme de deux sous-espaces vectoriels. Somme directe de deux sous-espaces vectoriels. Sous-espaces supplémentaires. Si $E = F \oplus G$, définition du projeté de $x \in E$ sur F parallèlement à G. Somme d'un nombre fini de sous-espaces vectoriels. Somme directe d'un nombre fini de sous-espaces vectoriels.

Espace vectoriel produit Si $E_1, ..., E_n$ sont des \mathbb{K} -espaces vectoriels, on peut munir $\prod_{i=1}^n E_i$ d'une structure de \mathbb{K} -espace vectoriel.

Espace vectoriel d'applications Si E est un \mathbb{K} -espace vectoriel et X un ensemble, on peut munir E^X d'une structure de \mathbb{K} -espace vectoriel.

2 Méthodes à maîtriser

- Savoir montrer qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.
- Savoir déterminer une partie génératrice d'une partie de Kⁿ définie par des équations linéaires.
- Savoir montrer que deux sous-espaces sont supplémentaires (utiliser éventuellement une méthode par analyse/synthèse).
- Savoir montrer qu'un nombre fini de sous-espaces vectoriels sont en somme directe (somme nulle \implies termes nuls).

3 Questions de cours

Retour sur le DS n°06 On définit deux suites d'entiers (a_n) et (b_n) en posant $\begin{cases} a_0 = 1 \\ b_0 = 0 \end{cases}$ et

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = a_n + 2b_n \\ b_{n+1} = a_n + b_n \end{cases}$$

- 1. Prouver avec soin que $\forall n \in \mathbb{N}, b_n \geq n$.
- 2. Etablir que $\forall n \in \mathbb{N}, \ a_n^2 2b_n^2 = (-1)^n$.
- 3. Montrer que

$$\forall n \in \mathbb{N}^*, \left| \frac{a_n}{b_n} - \sqrt{2} \right| \le \frac{1}{b_n^2}$$

4. En déduire que la suite $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}^*}$ converge vers $\sqrt{2}$.

Retour sur le DS n°06 On définit une suite (u_n) en posant $u_0 = 2$ et $u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}$ pour tout $n \in \mathbb{N}^*$.

- 1. Montrer que la suite (u_n) est strictement positive.
- 2. Montrer que la suite (u_n) est minorée par $\sqrt{2}$.
- 3. Déterminer le sens de variation de la suite (u_n) .
- 4. En déduire la convergence et la limite de la suite (u_n) .

Supplémentarité Soit P l'ensemble des applications paires de \mathbb{R} dans \mathbb{R} et I l'ensemble des applications impaires de \mathbb{R} dans \mathbb{R} . Montrer que P et I sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$ et que P et I sont supplémentaires dans $\mathbb{R}^{\mathbb{R}}$.

Supplémentarité Soit $H = \left\{ (x_1, \dots, x_n) \in \mathbb{K}^n, \sum_{i=1}^n x_i = 0 \right\}$ et $D = \text{vect}((1, \dots, 1))$. Montrer que H et D sont supplémentaires dans \mathbb{K}^n .

Récurrences linéaires On note F l'ensembles des suites réelles vérifiant une relation de récurrence linéaire homogène d'ordre 2 à coefficients constants **au choix de l'examinateur**. Déterminer une famille génératrice de F («mettre sous forme d'un vect»).

Equations différentielles On note F l'ensemble des solutions à valeurs réelles d'une équation différentielle d'ordre 2 homogène à coefficients constants **au choix de l'examinateur**. Déterminer une famille génératrice de F («mettre sous forme d'un vect»).