Adding Categorical Predictors

Stat 230: Applied Regression Analysis

Example

Goal: investigate the association between smoking and lung capacity

using data from 345 adolescents between the ages of 10 and 19

Wrinkle: Lung function is expected to increase during adolescence, but

smoking may slow it's progression

Data: Variable Description

FEV	forced expiratory volume (in liters per second)
Age	age in years
Smoke	Smoker or Nonsmoker

EDA

EDA

EDA

Indicator variable

Regression requires a numeric representation of all variables

Create a Smoker indicator variable:

- Smoker = 1
- Nonsmoker = 0

Example 1

- For each regression model on the handout, sketch the fitted model on the whiteboard
- Each fitted model will have two lines: one for smokers, one for nonsmokers
- Work with your neighbors

 $\mu(y|x) = 10 + 1age - 2smoker$

 $\mu(y|x) = 5 + 1$ age -0.5age \times smoker

 $\mu(y|x) = 4 + 0.5$ age + 3smoker – 0.5age × smoker

Parallel lines model

Lung function develops at the same pace, but always lower for smokers

Different slopes model

Adolescents start with similar lung capacity, but smokers develop at a slower rate

Separate lines model

The smokers/non-smokers have different starting lung capacities and develop at different rates

Parallel lines model

$$\mu(y|x) = \beta_0 + \beta_1 \operatorname{smoker} + \beta_2 \operatorname{age}$$

i Interpretations

 β_0 = y-intercept for non-smokers

 $\beta_0 + \beta_1 = y$ -intercept for smokers

 β_2 = expected rate of change for both groups

Different slopes model

$$\mu(y|x) = \beta_0 + \beta_1 \text{age} + \beta_2 \text{age} \times \text{smoker}$$

i Interpretations

 β_0 = y-intercept for both groups

 β_1 = expected rate of change (slope) for non-smokers

 $\beta_1 + \beta_2 =$ expected rate of change (slope) for smokers

Separate lines model

$$\mu(y|x) = \beta_0 + \beta_1 \operatorname{smoker} + \beta_2 \operatorname{age} + \beta_3 \operatorname{age} \times \operatorname{smoker}$$

i Interpretations

 β_0 = y-intercept for non-smokers

 $\beta_0 + \beta_1 = y$ -intercept for smokers

 β_2 = expected rate of change (slope) for non-smokers

 $\beta_2 + \beta_3 =$ expected rate of change (slope) for smokers

More than 3 categories

Suppose we have student survey data and one of the columns records the year in school:

• First year, Sophomore, Junior, and Senior.

How can we include this variable in a multiple regression model?

A potentially bad idea

We could convert the column to numeric

- First year $\rightarrow 1$
- Sophomore $\rightarrow 2$
- Junior $\rightarrow 3$
- Senior $\rightarrow 4$

$$\mu(Y|\text{classyear}) = \beta_0 + \beta_1 \text{classyear}$$

Original
First year
Sophomore
Senior
Senior
Junior

Original	FY
First year	1
Sophomore	0
Senior	0
Senior	0
Junior	0
Sophomore	0

Original	FY	Soph
First year	1	0
Sophomore	0	1
Senior	0	0
Senior	0	0
Junior	0	0
Sophomore	0	1

Original	FY	So	Ju
First year	1	0	0
Sophomore	0	1	0
Senior	0	0	0
Senior	0	0	0
Junior	0	0	1
Sophomore	0	1	0

Key idea

For a categorical variable with k levels, k-1 indicator variables are needed.

Example 2

- For each sketched regression model, write the mean function for a regression model that matches on the whiteboard
- Note that line type = education level
- Work with your neighbors

