1	.a 2a	3a	13a	6a	3b	39a	13b	6b	39b	39c	13c	39d	39e	13 <i>d</i>	39 <i>f</i>	39g	13e	39h	39i	13f	39 <i>j</i>	39k	39 <i>l</i>
χ_1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi_2 \mid 1$	1 - 1	1	1	-1	1	1	1	-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1 - 1	$E(3)^{2}$	1	$-E(3)^2$	E(3)	$E(3)^{2}$	1	-E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)
$\chi_4 \mid 1$	1 - 1	E(3)	1	-E(3)	$E(3)^{2}$	E(3)	1	$-E(3)^2$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^2$
$\chi_5 \mid 1$	1 1	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)
	1 1		1	E(3)	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$
	2 0		$E(13)^3 + E(13)^{10}$	0	$\overline{2}$	$E(13)^3 + E(13)^{10}$	$E(13)^6 + E(13)^7$	0	$E(13)^3 + E(13)^{10}$	$E(13)^6 + E(13)^7$	$E(13)^4 + E(13)^9$	$E(13)^6 + E(13)^7$	$E(13)^4 + E(13)^9$	$E(13) + E(13)^{12}$	$E(13)^4 + E(13)^9$	$E(13) + E(13)^{12}$	$E(13)^2 + E(13)^{11}$	$E(13) + E(13)^{12}$	$E(13)^2 + E(13)^{11}$	$E(13)^5 + E(13)^8$	$E(13)^2 + E(13)^{11}$	$E(13)^5 + E(13)^8$	$E(13)^5 + E(13)^8$
	2 0	2	$E(13)^4 + E(13)^9$	0	2	$E(13)^4 + E(13)^9$	$E(13)^5 + E(13)^8$	0	$E(13)^4 + E(13)^9$	$E(13)^5 + E(13)^8$	$E(13) + E(13)^{12}$	$E(13)^5 + E(13)^8$	$E(13) + E(13)^{12}$	$E(13)^3 + E(13)^{10}$	$E(13) + E(13)^{12}$	$E(13)^3 + E(13)^{10}$	$E(13)^6 + E(13)^7$	$E(13)^3 + E(13)^{10}$	$E(13)^6 + E(13)^7$	$E(13)^2 + E(13)^{11}$	$E(13)^6 + E(13)^7$	$E(13)^2 + E(13)^{11}$	$E(13)^2 + E(13)^{11}$
	2 0	2	$E(13)^2 + E(13)^{11}$	0	2	$E(13)^2 + E(13)^{11}$	$E(13)^4 + E(13)^9$	0	$E(13)^2 + E(13)^{11}$	$E(13)^4 + E(13)^9$	$E(13)^6 + E(13)^7$	$E(13)^4 + E(13)^9$	$E(13)^6 + E(13)^7$	$E(13)^5 + E(13)^8$	$E(13)^6 + E(13)^7$	$E(13)^5 + E(13)^8$	$E(13)^3 + E(13)^{10}$	$E(13)^5 + E(13)^8$	$E(13)^3 + E(13)^{10}$	$E(13) + E(13)^{12}$	$E(13)^3 + E(13)^{10}$	$E(13) + E(13)^{12}$	$E(13) + E(13)^{12}$
	2 0	2	$E(13)^5 + E(13)^8$	0	2	$E(13)^5 + E(13)^8$	$E(13)^3 + E(13)^{10}$	0	$E(13)^5 + E(13)^8$	$E(13)^3 + E(13)^{10}$	$E(13)^2 + E(13)^{11}$	$E(13)^3 + E(13)^{10}$	$E(13)^2 + E(13)^{11}$	$E(13)^6 + E(13)^7$	$E(13)^2 + E(13)^{11}$	$E(13)^6 + E(13)^7$	$E(13) + E(13)^{12}$	$E(13)^6 + E(13)^7$	$E(13) + E(13)^{12}$	$E(13)^4 + E(13)^9$	$E(13) + E(13)^{12}$	$E(13)^4 + E(13)^9$	$E(13)^4 + E(13)^9$
	2 0	2	$E(13)^6 + E(13)^7$	0	2	$E(13)^6 + E(13)^7$	$E(13) + E(13)^{12}$	0	$E(13)^6 + E(13)^7$	$E(13) + E(13)^{12}$	$E(13)^5 + E(13)^8$	$E(13) + E(13)^{12}$	$E(13)^5 + E(13)^8$	$E(13)^2 + E(13)^{11}$	$E(13)^5 + E(13)^8$	$E(13)^2 + E(13)^{11}$	$E(13)^4 + E(13)^9$	$E(13)^2 + E(13)^{11}$	$E(13)^4 + E(13)^9$	$E(13)^3 + E(13)^{10}$	$E(13)^4 + E(13)^9$	$E(13)^3 + E(13)^{10}$	$E(13)^3 + E(13)^{10}$
	2 0	2	$E(13) + E(13)^{12}$	0	2	$E(13) + E(13)^{12}$	$E(13)^2 + E(13)^{11}$	0	$E(13) + E(13)^{12}$	$E(13)^2 + E(13)^{11}$	$E(13)^3 + E(13)^{10}$	$E(13)^2 + E(13)^{11}$	$E(13)^3 + E(13)^{10}$	$E(13)^4 + E(13)^9$	$E(13)^3 + E(13)^{10}$	$E(13)^4 + E(13)^9$	$E(13)^5 + E(13)^8$	$E(13)^4 + E(13)^9$	$E(13)^5 + E(13)^8$	$E(13)^6 + E(13)^7$	$E(13)^5 + E(13)^8$	$E(13)^6 + E(13)^7$	$E(13)^6 + E(13)^7$
$_{.3}$ 2	2 0 2	$2*E(3)^2$	$E(13)^3 + E(13)^{10}$	0	2 * E(3)	$E(39)^{17} + E(39)^{35}$	$E(13)^6 + E(13)^7$	0	$E(39)^4 + E(39)^{22}$	$E(39)^5 + E(39)^8$	$E(13)^4 + E(13)^9$	$E(39)^{31} + E(39)^{34}$	$E(39)^{14} + E(39)^{38}$	$E(13) + E(13)^{12}$	$E(39) + E(39)^{25}$	$E(39)^{23} + E(39)^{29}$	$E(13)^2 + E(13)^{11}$	$E(39)^{10} + E(39)^{16}$	$E(39)^{20} + E(39)^{32}$	$E(13)^5 + E(13)^8$	$E(39)^7 + E(39)^{19}$	$E(39)^2 + E(39)^{11}$	$E(39)^{28} + E(39)^{37}$
			$E(13)^4 + E(13)^9$		2 * E(3)	$E(39)^{14} + E(39)^{38}$	$E(13)^5 + E(13)^8$	0	$E(39) + E(39)^{25}$	$E(39)^2 + E(39)^{11}$	$E(13) + E(13)^{12}$	$E(39)^{28} + E(39)^{37}$	$E(39)^{23} + E(39)^{29}$	$E(13)^3 + E(13)^{10}$	$E(39)^{10} + E(39)^{16}$	$E(39)^{17} + E(39)^{35}$	$E(13)^6 + E(13)^7$	$E(39)^4 + E(39)^{22}$	$E(39)^5 + E(39)^8$	$E(13)^2 + E(13)^{11}$	$E(39)^{31} + E(39)^{34}$	$E(39)^{20} + E(39)^{32}$	$E(39)^7 + E(39)^{19}$
			$E(13)^2 + E(13)^{11}$		2 * E(3)	$E(39)^{20} + E(39)^{32}$	$E(13)^4 + E(13)^9$	0	$E(39)^7 + E(39)^{19}$	$E(39)^{14} + E(39)^{38}$	$E(13)^6 + E(13)^7$	$E(39) + E(39)^{25}$	$E(39)^5 + E(39)^8$	$E(13)^5 + E(13)^8$	$E(39)^{31} + E(39)^{34}$	$E(39)^2 + E(39)^{11}$	$E(13)^3 + E(13)^{10}$	$E(39)^{28} + E(39)^{37}$	$E(39)^{17} + E(39)^{35}$	$E(13) + E(13)^{12}$	$E(39)^4 + E(39)^{22}$	$E(39)^{23} + E(39)^{29}$	$E(39)^{10} + E(39)^{16}$
			$E(13)^5 + E(13)^8$			$E(39)^2 + E(39)^{11}$			$E(39)^{28} + E(39)^{37}$	$E(39)^{17} + E(39)^{35}$	$E(13)^2 + E(13)^{11}$	$E(39)^4 + E(39)^{22}$	$E(39)^{20} + E(39)^{32}$	$E(13)^{6} + E(13)^{7}$	$E(39)^7 + E(39)^{19}$	$E(39)^5 + E(39)^8$	$E(13) + E(13)^{12}$	$E(39)^{31} + E(39)^{34}$	$E(39)^{23} + E(39)^{29}$	$E(13)^4 + E(13)^9$	$E(39)^{10} + E(39)^{16}$	$E(39)^{14} + E(39)^{38}$	$E(39) + E(39)^{25}$
			$E(13)^6 + E(13)^7$		` '	$E(39)^5 + E(39)^8$			$E(39)^{31} + E(39)^{34}$	$E(39)^{23} + E(39)^{29}$	$E(13)^5 + E(13)^8$	$E(39)^{10} + E(39)^{16}$	$E(39)^2 + E(39)^{11}$	$E(13)^2 + E(13)^{11}$	$E(39)^{28} + E(39)^{37}$	$E(39)^{20} + E(39)^{32}$	$E(13)^4 + E(13)^9$	$E(39)^7 + E(39)^{19}$	$E(39)^{14} + E(39)^{38}$	$E(13)^3 + E(13)^{10}$	$E(39) + E(39)^{25}$	$E(39)^{17} + E(39)^{35}$	$E(39)^4 + E(39)^{22}$
			$E(13) + E(13)^{12}$			$E(39)^{23} + E(39)^{29}$												$E(39) + E(39)^{25}$					
			$E(13)^3 + E(13)^{10}$		` /_	$E(39)^4 + E(39)^{22}$												$E(39)^{23} + E(39)^{29}$					
			$E(13)^4 + E(13)^9$		\ /	$E(39) + E(39)^{25}$. , , , , ,											$E(39)^{17} + E(39)^{35}$					
			$E(13)^2 + E(13)^{11}$		` '	$E(39)^7 + E(39)^{19}$	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '											$E(39)^2 + E(39)^{11}$					
			$E(13)^5 + E(13)^8$		(/	$E(39)^{28} + E(39)^{37}$	(/ /											$E(39)^5 + E(39)^8$					
			$E(13)^6 + E(13)^7$		` ' .	$E(39)^{31} + E(39)^{34}$			` / ` /	` / ` /		. , ,	()	()	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	. , ,	() ()	$E(39)^{20} + E(39)^{32}$	()	()	. , , , , ,	` / ` /	` / ` /
			$E(13) + E(13)^{12}$		` ' .	$E(39)^{10} + E(39)^{16}$												$E(39)^{14} + E(39)^{38}$					

Trivial source character table of $G \cong C3 \times D26$ at $p = 13$:											
Normalisers N_i			N_1						N_2		
p-subgroups of G up to conjugacy in G			P_1						P_2		
Representatives $n_j \in N_i$	1a	2a $3a$	6a	3b	6b	1a	3a	2a	3b	6a	6b
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	13	-1 13	-1	13	-1	0	0	0	0	0	0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 1 \cdot \chi_{8} + 1 \cdot \chi_{9} + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	13	1 13	1	13	1	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	1 $13 * E($	$E(3)^2 = E(3)^2$	13 * E(3)	E(3)	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	-1 13 * E($-E(3)^2 - E(3)^2$	13 * E(3)	-E(3)	0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	13	1 $13 * E$	E(3)	$13 * E(3)^2$	$E(3)^{2}$	0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	13	-1 13 * E	3) -E(3)	$13 * E(3)^2$	$-E(3)^{2}$	0	0	0	0	0	0
$\boxed{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{25}$	1	1 1	1	1	1	1	1	1	1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	1	1 $E(3)$	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	1	1 $E(3)^2$	$E(3)^2$	E(3)	E(3)	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	1	-1 1	-1	1	-1	1	1	-1	1	-1	-1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	1	-1 $E(3)$	-E(3)	$E(3)^{2}$	$-E(3)^2$	1	E(3)	-1	$E(3)^{2}$	-E(3)	$-E(3)^2$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	$-1 E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	1	$E(3)^{2}$	-1	E(3)	$-E(3)^2$	-E(3)

 $P_2 = Group([(1, 45, 15, 63, 33, 4, 51, 21, 69, 39, 9, 57, 27)(2, 48, 18, 66, 36, 6, 54, 24, 72, 42, 12, 60, 30)(3, 50, 20, 68, 38, 8, 56, 26, 74, 44, 14, 62, 32)(5, 53, 23, 71, 41, 11, 59, 29, 76, 47, 17, 65, 35)(7, 55, 25, 73, 43, 13, 61, 31, 77, 49, 19, 67, 37)(10, 58, 28, 75, 46, 16, 64, 34, 78, 52, 22, 70, 40)]) \cong C13$

 $N_1 = Group([(1,2)(3,5)(4,72)(6,69)(7,10)(8,73)(4,72)(6,69)(7,10)(8,73)(4,72)(6,69)(7,10)(8,73)(3,42)(3,44)(4,45)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(3,44,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53)(3,42)(4,49)(4,47,52)(4,53$