Relacje i funkcje

Niech dane beda niepuste zbiory X i Y.

Iloczynem kartezjańskim zbiorów X i Y nazywamy zbiór wszystkich par uporządkowanych (x,y) takich, że $x \in X$, $y \in Y$,

czyli:
$$(x, y) \in X \times Y \Leftrightarrow (x \in X \land y \in Y)$$

Relacia

Niech dane będą niepuste zbiory X i Y . Relacją w zbiorze $X \times Y$ nazywamy każdy podzbiór iloczynu kartezjańskiego $X \times Y$.

4 główne własności relacji

Relacja zwrotna $\forall_{x \in X} xRx$

Relacja symetryczna $\forall_{x,y \in X} (xRy \Rightarrow yRx)$

Relacja przechodnia $\forall_{x,y,z\in X} (xRy \land yRz) \Rightarrow xRz$

Relacja antysymetryczna $\forall_{x,y \in X} (xRy \land yRx) \Rightarrow x = y$

Relacja równoważności

Relację R CX ×X nazywamy relacją równoważności, jeśli jest zwrotna, symetryczna i przechodnia.

Przykład: Sprawdź czy relacja jest relacją równoważności

$$x R y \Leftrightarrow x = y \mid x, y \in R$$

Relacja jest zwrotna, ponieważ $\forall_{x \in \mathbb{R}} x = x$

Relacja jest symetryczna, ponieważ $\forall_{x,y \in \mathbb{R}} x = y \Rightarrow y = x$

Relacja jest przechodnia, ponieważ $\forall_{x,y,z \in \mathbb{R}} x = y \land y = z \Rightarrow x = z$

<u>Funkcje</u>

Funkcją nazywamy przyporządkowanie każdemu elementowi jednego zbioru dokładnie jednego elementu drugiego zbioru.

$$\forall x \in X \exists ! y \in y(x, y) \in f$$

f: $X \rightarrow Y$, X-dziedzina funkcji f, y- przeciwdziedzina funkcji f.

Zbiorem wartości funkcji $f: X \rightarrow Y$ nazywamy zbiór

$$f(X) = \{f(x); x \in X\} = \{y \in Y : \exists x \in X \ y = f(x)\}\$$

Niech f:X -> Y

obrazem zbioru A \subset X przez f jest zbiór f(A) = { y: y=f(x) dla pewnego x \in A}

przeciwobrazem zbioru BCY przez f jest zbiór $f-1(B) = \{x: f(x) \in B\}$

Klasyfikacja funkcji:

Niech f: X → Y będzie dowolną funkcją

-f jest funkcją $r\acute{o}$ żnowartościową(injekcją) jeżeli przeciwobraz każdego elementu $y \in Y$ ma co najwyżej jeden element (tzn może być psuty lub jednoelementowy)

-f jest funkcją "na"(surjekcją) jeżeli przeciwobraz każdego elementu $y \in Y$ ma conajmniej jeden element (tzn jest niepusty)

-f jest bijekcjq jeżeli przeciwobraz każdego elementu z przeciwdziedziny ma dokładnie jeden element

Funkcja f: $X \to Y$ jest bijekcją dokładnie wtedy, gdy jest jednocześnie funkcja różnowartościową i funkcją "na"