Crypto_P3

P3 调整说明

为了准备 mst, 最近课程优先讲解往年 mst 考察内容。

按照经验,往年 mst 重点:

- 概念等基础知识
- 分组加密模式
- 扩展欧几里得
- RSA

数学基础

- 整数与可除性
- GCD
- EGCD
- 欧拉定理
- 费马小定理

整除相关计算

- $a \mid b$ 读作a整除b, 这时 b = k*a, 那么有以下结论
 - 如果a | 1那么 a = 1 或 a = -1
 - 任意a, 满足a | 0
 - 如果a|b,b|c 那么 a|c
 - 如果a|b,a|c 那么 a|(sb+tc)

\$\$ a\ \equiv \ b \ (mod\ c) \$\$

- n|(a-b) -> a=b mod n
 - \circ b = k1*n + c a = (k1+(a-b)/n)*n + c
- a = b mod n, b=c mod n -> a=c mod n
- a+b mod n = ((a mod n) + (b mod n)) mod n

上面这个性质对加、减、乘均成立,但是:

```
18 = 48 mod 10
3 != 8 mod 10
```

对于除法:

```
ac = bc mod m
a = b mod (m/gcd(c,m))
```

例题: 计算 3 ^ 123456789 mod 80

```
3^4 = 81

3^4 = 1 (mod 80)

3^4 * 3^123456785 (mod 80)

1 * 3^123456785 (mod 80)

3^(123456789 % 4) (mod 80)

---

关注点转移到: 123456789 % 4

1234567*100 + 89 % 4

20 * 4 + 9 % 4

2*4 + 1 % 4

---

3 ^ 1 % 80 = 3
```

算数基本定理

- 任意正整数可以表示成若干个1的加法,因此1是加法的基本单位。
- 素数则是乘法的基本单位,任意正整数可以分解成若干素数的乘积。

```
m = p1^a1 * p2^a2 ... pn^an
```

任意正整数都可以得到这样的分解,并且已知正整数的分解后,恢复这个整数是容易的。 但是如果只知道整数,要得到它的分解,这是一个数学上的困难问题。

欧拉定理

```
如果 gcd(a, n) == 1:
```

 $\ a^{\langle n} \$

其中 \$\varphi\$ 称为欧拉函数。

欧拉函数

- 定义欧拉函数 phi(n) 为小于n且和n互素的整数数量
- 7: 123456 phi(7) = 6
- 6:15 phi(6) = 2
- 如果p是素数, phi(p) = p-1
- 如果n = p1*p2, phi(n) = (p1-1)(p2-1)
- 如果n = p1*p2..., phi(n) = (p1-1)....
- 如果存在相同的, n = (p1^i)*p1, f(n) = (p1^i)*(p1-1)

也可以直接使用下面的计算方式:

\$\$ \varphi(m) \equiv m\prod_{i=1}^n (1-\frac{1}{p_i}) \$\$ 其中p为m的分解: m = p1^a1 p2^a2 ... pn^an

例题: n = 72283 求 phi(n)?

```
显然: 72283 = 41*41*43
phi(72283) = (41-1)*41*(43-1) = 68880
```

证明

如果 a 和 p1 ... pn 均和 m 互素,那么 ap1 ... apn 均和 m 互素。 如果 p1 ... pn 恰好覆盖了 0-m 之间所有和 m 互素的数,则ap1 ... apn 对m取余后同样完成覆盖。 反证法,如果 api1 = api2 mod m,那么pi1 = pi2 mod m,这与前提矛盾。

```
api1 = k1m+b
api2 = k2m+b
a(pi1 - pi2) = (k2-k1)m
```

那么

\$\$ \prod_{i=1}^npi \equiv \prod_{i=1}^n a\ p_i (mod \ m) \$\$

\$\$ \prod_{i=1}^np_i \equiv a^{\varphi(n)} \prod_{i=1}^n p_i (mod \ m) \$\$

\$\$ a^{\varphi(m)} \equiv 1 (mod \ m) \$\$

费马小定理

- 费马小定理为欧拉定理特殊形式
 - 若m为素数,则phi(m) = m-1
 - \circ p = m
 - \circ pow(a, p-1, p) = 1

欧几里得算法

欧几里得算法

- 对于 A、B,要求 GCD(A, B)
- 考虑 A = k*B + R
- GCD(A, B) = GCD(k*B + R, B) = GCD(B, R)

扩展欧几里得算法

gcd(a, b) == gcd(b, a%b)

假设a,b最大公因数为T,gcd递归下降的终点为(1*T+y*0 == T) 1 * T+ y * 0 == T, 在gcd算法向上回溯的过程中总有:

a 和 b 是每一次调用 gcd 时的入参

x 和 y 为对应系数

T = nx*a + ny*b

T = x*b + y*(a%b)

这里 a%b 写成 a-k*b, 其中 k = a//b,则

T = b*x + a*y - k*b*y

T = [y]*a + [(x-k*y)]*b

那么 nx, ny = y, (x-a//b*y), 由此递推计算x, y

例题: a = 96 b = 35, 应用 XGCD

а	b	X	У	等式
96	35			
35	26			
26	9			
9	8	1	-1	9*1+8*(-1) == 1
8	1	0	1	8*0+1*1 == 1
1	0	1	0	1*1+0*0 == 1
а	b	X	у	_
a 96	b 35	x -4	у 11	_
				- -
96	35	-4	11	-
96	35 26	-4 3	11 -4	- - -
96 35 26	35 26 9	-4 3 -1	11 -4 3	- - -

求逆元

我们的目标是对于 A 和 N 找到 A 的逆元 B,使得 $A*B = 1 \pmod{N}$ 。 扩展欧几里得算法对于给定 (a,b) 扩展欧几里得算法可以计算出 $a*x + b*y = \gcd(a, b)$,那么,只要 $\gcd(A, N) == 1$,令 (a,b) 为 (A, N),可以计算 A*x + b*N = 1,则 $A*x = 1 \pmod{N}$,x 即为一个满足条件的 B。

代码实现

```
def XGCD(a, b):
    if (b == 0):
        return a, 1, 0
    gcd, x, y = XGCD(b, a%b)
    return gcd, y, x-a//b*y

def inverse(a, n):
    gcd, x, y = XGCD(a, n)
    return x%n if gcd == 1 else None
```

非对称

- 1. 密钥配送问题
- 2. 共享密钥数量爆炸
- 3. 需要签名机制

RSA

- RSA介绍
- RSA计算
- RSA证明
- RSA攻击

RSA介绍

• 利用了大数分解的困难性

流程

- 1. 生成 p, q
- 2. 计算 n = p*q
- 3. 计算 n 的欧拉函数, phin = (p-1)*(q-1)
- 4. 生成公钥 e, 和 phin 互素即可
- 5. 计算私钥 d, 满足 e*d % phin = 1, 例如 d = inverse(e, phin)
- 6. 丢弃 phin p q
- 7. 保留 e, n 作为公钥, d 作为私钥
- 加密: C = pow(P, e, n)
- 解密: P = pow(C, d, n)
- P2 = pow(pow(P, e, n), d, n)
- P2 = pow(P, e*d, n)

- P2 = pow(P, k*phin + 1, n)
- P2 = pow(pow(P, phin, n), k, n)*pow(P, 1, n)
- P2 = 1*P

(P ^ e % n) ^d %n (P ^ e) ^ d % n (P ^ e*d) % n