Practical Machine Learning

Goals

High Level:

- Overview of a workflow
- Be aware of important Do's and Don'ts
- Some useful algorithms

In Practice:

- Where to start
- What works, what doesn't
- Stuff you can google / talk more about

Types of ML Tasks

Supervised

- Majority of ML projects
- Build model to predict Value or Label based on some known features
- Logistic Regression, Neural Nets, Dec Trees

Unsupervised

- Algorithmically exploring data to find underlying groups/clusters
- Harder to validate
- DBSCAN, K-Means

A Workflow Overview

- Data Exploration
- Feature engineering
- Modeling
- Evaluation

Grabbing Data and Exploring

```
query = """
SELECT DISTINCT ON (administrations.admin_id)
projects.*, administrations.admin_id, administrations.project_id,
administrations.created_at AS admin_created_at
FROM projects
JOIN administrations
ON projects.id = administrations.project_id
ORDER BY administrations.admin_id, projects.created_at, projects.id
"""
proj_admin = pd.read_sql_query(query, conn)
proj_admin = proj_admin[proj_admin.project_id != 14] # this is a test entry in the DB
```

Sanity Checks

Is my data weird?

- Histograms
- Impossible values
- Unique values
- IsNan, IsNA
- Missing data

Pre-model Hypotheses

- Plotting data by outcome variable
- Scatterplot matrix
- Are values missing at random?
 - How can I replace these intelligently?
 - Do I need to replace these?

Feature Engineering

Multilevel categorical features:

Very Skewed data:

- Clustering Data
- Feature reduction
 - o PCA
- Correlated Features?
- Treat IsNA as a category
- Feature Selection
 - Forward Selection
 - Backward Elimination
- NORMALIZATION

Split Data!

Training data

Validation data

Test data

OR
Cross Validation

Validation data

Validation data

Test data

Validation data

Test data

Test data should never be used for model selection!

Splitting Considerations and Tips

- Stratification?
 - o Is one class over-represented?
- Random Sampling
 - But use a random seed!
- 80/20 splits
- Leave-one out cross validation

```
# get positive and negative cases for stratification
paying = projects.loc[projects.is_paying, :]
notpaying = projects.loc[~projects.is_paying, :]
print(len(paying.index))
print(len(notpaying.index))

samp = np.random.rand(len(paying)) <= 0.8
payTrain = paying[samp]
payTest = paying[-samp]

samp = np.random.rand(len(notpaying)) <= 0.8
notpayTrain = notpaying[samp]
notpayTest = notpaying[samp]</pre>
```

The Bias-Variance Trade Off

Modeling in SKLearn

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n estimators=100, min samples leaf=1, random state=0)
rfc.fit(train X, train Y)
pred = rfc.predict(test X)
print("accuracy: " + str(sum(pred == test Y)/float(len(test Y))))
(tp,fp,tn,fn) = get pn rates(pred, test Y)
print("precision: " + str(float(tp)/(tp+fp)))
print("recall: " + str(float(tp)/(tp+fn)))
accuracy: 0.804222648752
precision: 0.434367541766
recall: 0.85046728972
```

Evaluation

- Know WHY you're evaluating with a particular metric
- Accuracy (correct # classifications, mean squared error)
- Precision: TP / (TP+FP)
 - Is the model just blindly labeling things as true?
 - Very deceptive in unbalanced datasets
- Recall: TP / (TP+FN)
 - Is the model capturing positive cases?
- Would you want to maximize Precision or Recall when making a classifier for identifying biopsy samples as cancerous?

Receiver-Operating Characteristic

Some Practical Advice

- Know why you're using a model before you try it
 - Strengths? Weaknesses? Be able to speak to tradeoffs
 - Does the model take a long time to train? To classify? Memory requirements?
- Try several models, and understand why they're performing differently
- Start very simple, and build up
 - This will help you start with the why
 - Finding unique tweaks on simple algorithms can be as impressive as making a complicated algorithm work
- Speak about models in plain english. Practice explaining on each other by teaching!

Quick Brainstorming Exercise

 Let's name some different algorithms, and talk about their strengths and weaknesses