TESIS CARRERA DE DOCTORADO EN CIENCIAS DE LA INGENIERÍA

SIMULACIÓN NUMÉRICA DEL FENÓMENO DE EBULLICIÓN EMPLEANDO EL MÉTODO DE LATTICE BOLTZMANN

Ezequiel O. Fogliatto Doctorando

Dr. Federico E. Teruel

Dr. Alejandro Clausse

Director

Co-director

Miembros del Jurado

Dr. J. J. Jurado (Instituto Balseiro)
Dr. Segundo Jurado (Universidad Nacional de Cuyo)
Dr. J. Otro Jurado (Univ. Nac. de LaCalle)
Dr. J. López Jurado (Univ. Nac. de Mar del Plata)

Dr. U. Amigo (Instituto Balseiro, Centro Atómico Bariloche)

30 de Noviembre de 2020

Departamento de Mecánica Computacional – Centro Atómico Bariloche

Instituto Balseiro
Universidad Nacional de Cuyo
Comisión Nacional de Energía Atómica
Argentina

A mi familia

Definiciones, acrónimos y símbolos

Acrónimos

LBE Lattice Boltzmann Equation

Símbolos

 ρ Densidad

Índice de contenidos

D	efinic	iones,	acrónimos y símbolos	v
Ín	dice	de con	ntenidos	vii
Ín	dice	de figi	ıras	ix
Ín	dice	de tab	olas	xv
1.	\mathbf{Intr}	oducc	ión	1
2.	Fun	damer	ntos de lattice Boltzmann	3
	2.1.	Natur	aleza cinética del método	3
		2.1.1.	Función de distribución de equilibrio	4
		2.1.2.	La ecuación de Boltzmann	5
		2.1.3.	Ecuaciones de conservación macroscópicas	5
	2.2.	Discre	tización del espacio de velocidades	7
		2.2.1.	Adimensionalización	8
		2.2.2.	Expansión en series de Hermite	8
		2.2.3.	Discretización de la función de distribución de equilibrio	11
		2.2.4.	Discretización de la función de distribución	12
		2.2.5.	Conjunto discreto de velocidades	12
	2.3.	Discre	tización del espacio y tiempo	13
	2.4.	Opera	dores de colisión	15
	2.5.	La exp	oansión de Chapman-Enskog	15
	2.6.		iew de LBM	15
Ri	hling	rafía		17

Índice de figuras

Índice de tablas

2.1. Ejemplos de conjuntos de velocidades				14
---	--	--	--	----

Capítulo 1

Introducción

Sarasa

Capítulo 2

Fundamentos de lattice Boltzmann

En este capítulo se describirán los fundamentos necesarios y la sarasa obligatoria para más o menos entender el detalle de un modelo de lattice Boltzmann. Poner acá la idea de mostrar este camino para llegar a lo que nos interesa de LB. Se puede comenzar mencionando el origen como autómatas celulares, y el posterior descubrimiento como forma discreta de la ecuación de Boltzmann. En definitiva, ésta última es la que abre el camino a usarlo como método de resolución de PDE's. Ver rápido en Huang, Sukop, Lu.

2.1. Naturaleza cinética del método

La descripción matemática de la dinámica de fluidos se basa en la hipótesis de un medio continuo, con escalas temporales y espaciales suficientemente mayores que las asociadas a la naturaleza atomística subyacente. En este contexto, suelen encontrarse referencias a descripciones microscópicas, mesoscópicas o macroscópicas. La descripción microscópica, por un lado, hace referencia a una descripción molecular, mientras que la macroscópica involucra una visión continua completa, con cantidades tangibles como densidad o velocidad del fluido. Por otro lado, entre ambas aproximaciones se encuentra la teoría cinética mesoscópica, la cuál no describe el movimiento de partículas individuales, sino de distribuciones o colecciones representativas de dichas partículas.

La variable fundamental de la teoría cinética se conoce como función de distribución de partículas (particle distribution function, o pdf por sus siglas en inglés), que puede verse como una generalización de la densidad ρ y que a su vez tiene en cuenta la velocidad microscópica de las partículas $\boldsymbol{\xi}$. Por lo tanto, mientras que $\rho(\boldsymbol{x},t)$ representa la densidad de masa en el espacio físico, la función de distribución $f(\boldsymbol{x},\boldsymbol{\xi},t)$ corresponde a la densidad de masa tanto en el espacio físico como en el espacio de velocidades.

La función de distribución f se relaciona con variables macroscópicas como densidad ρ y velocidad u a través de momentos, es decir, integrales de f con funciones de peso

dependientes de ξ sobre todo el espacio de velocidades. En particular, la densidad de masa macroscópica puede obtenerse como el momento

$$\rho(\boldsymbol{x},t) = \int f(\boldsymbol{x},\boldsymbol{\xi},t) d^3\xi, \qquad (2.1)$$

en el cual se considera la contribución de partículas con todas las velocidades posibles en la posición \boldsymbol{x} a tiempo t. Por otro lado, puede determinarse la densidad de impulso mediante

$$\rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) = \int \boldsymbol{\xi} f(\boldsymbol{x},\boldsymbol{\xi},t) d^{3}\xi.$$
 (2.2)

De forma similar, la densidad de energía total corresponde al momento

$$\rho(\boldsymbol{x},t)E(\boldsymbol{x},t) = \frac{1}{2} \int |\boldsymbol{\xi}|^2 f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.3)

2.1.1. Función de distribución de equilibrio

En el análisis original realizado para gases iluidos y monoatómicos, Maxwell menciona que cuando un gas permanece sin perturbaciones por un período de tiempo suficientemente largo, la función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ alcanza una distribución de equilibrio $f^{eq}(\boldsymbol{x}, \boldsymbol{\xi}, t)$ que es isotrópica en el espacio de velocidades en torno a $\boldsymbol{\xi} = \boldsymbol{u}$. De esta manera, si te toma un marco de referencia que se desplaza con velocidad \boldsymbol{u} , entonces dicha distribución de equilibrio puede expresarse como $f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|, t)$. Por otro lado, si se supone que la distribución de equilibrio puede expresarse de forma separable, es decir

$$f^{eq}(|\boldsymbol{v}|^2) = f^{eq}(v_x^2 + v_y^2 + v_z^2) = f_{1D}^{eq}(v_x^2) f_{1D}^{eq}(v_y^2) f_{1D}^{eq}(v_z^2), \tag{2.4}$$

entonces puede demostrarse que dicha distribución queda definida como

$$f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|^2, t) = e^{3a} e^{b|\boldsymbol{v}|^2}.$$
 (2.5)

Por otro lado, considerando que las colisiones monoaómicas conservan masa, momento y energía, y usando además la relación de gases ideales:

$$\rho e = \frac{3}{2}RT = \frac{3}{2}p,\tag{2.6}$$

finalmente puede encontrarse una expresión explícita para la distribución de equilibrio

$$f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|, t) = \rho \left(\frac{3}{4\pi e}\right)^{3/2} e^{-3|\boldsymbol{v}|^2/(4e)} = \rho \left(\frac{1}{2\pi RT}\right)^{3/2} e^{-|\boldsymbol{v}|^2/(2RT)}$$
(2.7)

2.1.2. La ecuación de Boltzmann

La función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ establece propiedades tangibles de un fluido a través de sus diferentes momentos. Asimismo, es posible determinar una ecuación que permita modelar su evolución en el espacio físico, de velocidades, y el tiempo. En el análisis siguiente, se omitirá la dependencia de f con $(\boldsymbol{x}, \boldsymbol{\xi}, t)$ por claridad.

Como f es una función de la posición \boldsymbol{x} , de la velocidad de las partículas $\boldsymbol{\xi}$, y del tiempo t, la derivada total respecto al tiempo resulta

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right) \frac{dt}{dt} + \left(\frac{\partial f}{\partial x_{\beta}}\right) \frac{dx_{\beta}}{dt} + \left(\frac{\partial f}{\partial \xi_{\beta}}\right) \frac{d\xi_{\beta}}{dt}.$$
 (2.8)

En este caso dt/dt = 1, la velocidad de las partículas se obtiene como $dx_{\beta}/dt = \xi_{\beta}$, y la fuerza volumétrica \mathbf{F} queda determinada por la segunda ley de Newton $d\xi_{\beta}/dt = F_{\beta}/\rho$. Utilizando la notación tradicional $\Omega(f) = df/dt$ para el diferencial total respecto al tiempo, se obtiene la ecuación de Boltzmann para describir la evolución de f:

$$\frac{\partial f}{\partial t} + \xi_{\beta} \frac{\partial f}{\partial x_{\beta}} + \frac{F_{\beta}}{\rho} \frac{\partial f}{\partial \xi_{\beta}} = \Omega(f). \tag{2.9}$$

La Ec. (2.9) puede verse como una ecuación de advección para f, donde los dos primeros términos del miembro izquierdo corresponden a la advección de f con la velocidad de partículas ξ , mientras que el tercero representa el efecto de las fuerzas externas. Por otro lado, el miembro derecho contiene un término de fuente conocido como operador de colisión, que representa la redistribución local de f debido a colisiones entre las propias partículas. Estas colisiones conservan masa, momento y energía, lo que se traduce en restricciones para los momentos de Ω :

$$\int \Omega(f) d^3 \xi = 0 \tag{2.10a}$$

$$\int \boldsymbol{\xi} \,\Omega(f) \,d^3 \boldsymbol{\xi} = \mathbf{0} \tag{2.10b}$$

$$\int |\boldsymbol{\xi}|^2 \Omega(f) \, d^3 \xi = 0 \tag{2.10c}$$

2.1.3. Ecuaciones de conservación macroscópicas

Las ecuaciones de conservación macroscópicas pueden obtenerse como momentos de la ecuación de Boltzmann, es decir, multiplicando la Ec. (2.9) por funciones de ξ e integrando sobre todo el espacio de velocidades. Para ello, es necesario introducir una

notación general para los momentos de f

$$\Pi_0 = \int f \, d^3 \xi = \rho \tag{2.11a}$$

$$\Pi_{\alpha} = \int \xi_{\alpha} f \, d^3 \xi = \rho u_{\alpha} \tag{2.11b}$$

$$\Pi_{\alpha\beta} = \int \xi_{\alpha} \xi_{\beta} f \, d^3 \xi \tag{2.11c}$$

$$\Pi_{\alpha\beta\gamma} = \int \xi_{\alpha}\xi_{\beta}\xi_{\gamma}f \, d^{3}\xi \tag{2.11d}$$

La ecuación más simple de obtener corresponde a la de conservación de masa. Integrando la Ec. (2.9) en el espacio de velocidades, y usando las Ecs. (2.10) y (2.11), se obtiene:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_{\beta})}{\partial x_{\beta}} = 0. \tag{2.12}$$

De manera similar, multiplicando la Ec. (2.9) por ξ_{α} e integrando en el espacio de velocidades se obtiene la ecuación de conservación de momento:

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial \Pi_{\alpha\beta}}{\partial x_{\beta}} = F_{\alpha}. \tag{2.13}$$

donde $\Pi_{\alpha\beta}$ se define como el tensor de flujo de impulso. Si se descompone la velocidad de las partículas como xi = u + v, entonces la Ec. (2.13) puede reescribirse como

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial (\rho u_{\alpha} u_{\beta})}{\partial x_{\beta}} = \frac{\partial \sigma_{\alpha\beta}}{\partial x_{\beta}} + F_{\alpha}. \tag{2.14}$$

con $\sigma_{\alpha\beta}$ representando el tensor de tensiones:

$$\sigma_{\alpha\beta} = -\int v_{\alpha}v_{\beta}f \, d^3\xi \tag{2.15}$$

Finalmente, puede seguirse un procedimiento similar para encontrar una ecuación macroscópica de conservación de energía. Multiplicando la Ec. (2.9) por $\xi_{\alpha}\xi_{\beta}$ e integrando en el espacio de velocidades se obtiene:

$$\frac{\partial \rho E}{\partial t} + \frac{1}{2} \frac{\Pi_{\alpha \alpha \beta}}{\partial x_{\beta}} = F_{\beta} u_{\beta}. \tag{2.16}$$

Descomponiendo el momento como en la ecuación de conservación de impulso y usando la Ec. (2.14) multiplicada por u_{α} , la Ec. (2.16) puede reescribirse como:

$$\frac{\partial \rho e}{\partial t} + \frac{(\rho u_{\beta} e)}{\partial x_{\beta}} = \sigma_{\alpha\beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} - \frac{\partial q_{\beta}}{\partial x_{\beta}}, \tag{2.17}$$

donde el flujo de calor q está definido por el momento

$$q_{\beta} = \frac{1}{2} \int v_{\alpha} v_{\alpha} v_{\beta} f \, d^3 \xi \tag{2.18}$$

En este punto es interesante destacar que si bien la convervación de masa queda definida exactamente, las ecuaciones de impulso y energía dependen de la forma de f, que todavía no es conocida. En el caso particular en que $f \simeq f^{eq}$, se obtienen las ecuaciones de Euler para impulso y energía:

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial (\rho u_{\alpha} u_{\beta})}{\partial x_{\beta}} = -\frac{\partial p}{\partial x_{\alpha}} + F_{\alpha}$$
(2.19a)

$$\frac{\partial \rho e}{\partial t} + \frac{(\rho u_{\beta} e)}{\partial x_{\beta}} = -p \frac{\partial u_{\beta}}{\partial x_{\beta}} \tag{2.19b}$$

Este hecho muestra que los procesos macroscópicos de disipación viscosa y difusión de calor se encuentran directamente vinculados a la desviación de f respecto de su valor de equilibrio.

2.2. Discretización del espacio de velocidades

El desarrollo mostrado en la Sección 2.1 evidencia la posibilidad de representar adecuadamente el comportamiento de un fluido usando una función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$. Sin embargo, dicha distribución se encuentra definida en un espacio con 7 dimensiones, es decir, 3 coordenadas espaciales, 3 para el espacio de velocidades, y una para el tiempo, de modo que la resolución de ecuaciones en este espacio multidimensional involucra un esfuerzo computacional considerable. Por otro lado, es necesario considerar que este enfoque no es siempre justificable, dado que en definitiva son los momentos de la ecuación de Boltzmann (integrales en el espacio de velocidades) los que conducen a ecuaciones macroscópicas de conservación de masa, impulso y energía.

Estas características originaron la búsqueda de versiones simplificadas de la ecuación de Boltzmann que no sacrifiquen el comportamiento macroscópico, es decir, de sus momentos. Entre estas alternativas podemos encontrar las expansiones en base al número de Mach [1] o en series de Hermite [2]. Si bien ambas conducen a la misma representación de Navier-Stokes, la representación en series de Hermite presenta una base matemática más sólida, y es la que se utilizará a continuación.

La idea fundamental de la espansión usando polinomios de Hermite consiste en simplificar la función de distribución de equilibrio f^{eq} y discretizar el espacio de velocidades, pero manteniendo las leyes de conservación macroscópicas. En particular, como f^{eq} tiene una forma exponencial conocida, puede ser expresada a través de la función generatriz de dichos polinomios. Por otro lado, los momentos de masa e impulso son

representados como integrales discretas de f^{eq} usando los polinomios de Hermite.

2.2.1. Adimensionalización

Antes de proceder con la discretización de f y f^{eq} en series de Hermite, es conveniente reescribir las ecuaciones governantes de forma adimensional, con el objetivo de simplificar los pasos siguientes.

La función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ representa la densidad de masa en el espacio físico tridimensional y en el espacio de velocidades, también tridimensional. Por lo tanto, las unidades de f en el SI son:

$$[f] = \text{kg} \times \frac{1}{\text{m}^3} \times \frac{1}{(\text{m/s})^3} = \frac{\text{kg s}^3}{\text{m}^6}.$$
 (2.20)

Las propiedades de un fluido pueden analizarse en términos de una longitud característica l, velocidad característica V y densidad característica ρ_0 . Si se denota con * a las cantidades adimensionales, entonces podemos escribir los operadores diferenciales adimensionales como:

$$\frac{\partial}{\partial t^*} = \frac{l}{V} \frac{\partial}{\partial t}, \qquad \frac{\partial}{\partial x^*} = l \frac{\partial}{\partial x}, \qquad \frac{\partial}{\partial \xi^*} = V \frac{\partial}{\partial \xi}. \tag{2.21}$$

Esto lleva a escribir a la forma adimensional de la ecuación de Boltzmann:

$$\frac{\partial f^*}{\partial t^*} + \xi_{\alpha}^* \frac{\partial f^*}{\partial x_{\alpha}^*} + \frac{F_{\alpha}^*}{\rho^*} \frac{\partial f^*}{\partial \xi_{\alpha}^*} = \Omega^*(f^*), \tag{2.22}$$

donde $f^* = fV^d/\rho_0$, $\mathbf{F}^* = \mathbf{F}l/(\rho_0 V^2)$, $\rho^2 = \rho/\rho_0$ y $\Omega^* = \Omega l V^2/\rho_0$. Siguiendo el mismo procedimiento, la función de equilibrio adimensional resulta:

$$f^{eq*} = \left(\frac{\rho^*}{2\pi\theta^*}\right)^{d/2} e^{-(\xi^* - u^*)^2/(2\theta^*)}$$
 (2.23)

En este caso, θ^* corresponde a la temperatura adimensional $\theta^* = RT/V^2$. En las secciones siguientes se trabajará exclusivamente con cantidades adimensionales, omitiendo el superíndice * por claridad.

2.2.2. Expansión en series de Hermite

Las bases de la teoría cinética muestran que el operador de colisión preserva ciertos momentos de la función de distribución, lo que a su vez implica que los momentos de

 f^{eq} y f deben coincidir:

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t) d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi}) d^{3}\xi = \rho(\boldsymbol{x},t) \quad (2.24a)$$

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t)\boldsymbol{x}\boldsymbol{i} d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi})\boldsymbol{x}\boldsymbol{i} d^{3}\xi = \rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) \quad (2.24b)$$

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t)\frac{|\boldsymbol{\xi}|^{2}}{2} d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi})\frac{|\boldsymbol{\xi}|^{2}}{2} d^{3}\xi = \rho(\boldsymbol{x},t)E(\boldsymbol{x},t) \quad (2.24c)$$

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t)\frac{|\boldsymbol{\xi}-\boldsymbol{u}|^{2}}{2} d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi})\frac{|\boldsymbol{\xi}-\boldsymbol{u}|^{2}}{2} d^{3}\xi = \rho(\boldsymbol{x},t)e(\boldsymbol{x},t) \quad (2.24d)$$

Las cantidades conservadas de la Ec. (2.24) pueden obtenerse como integrales de f o f^{eq} en el espacio de velocidades. Por lo tanto, la expansión en series de Hermite contribuye a transformar esas integrales continuas en sumas discretas evaluadas en puntos específicos del espacio de velocidades.

Los polinomios de Hermite se definen en un espacio d-dimensional como: [2, 3]

$$\boldsymbol{H}^{(n)}(\boldsymbol{x}) = (-1)^n \frac{1}{\omega(\boldsymbol{x})} \boldsymbol{\nabla}^{(n)} \omega(\boldsymbol{x}), \qquad (2.25)$$

donde $\omega(\boldsymbol{x})$ es una función generatriz:

$$\omega(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} e^{-\boldsymbol{x}^2/2} \tag{2.26}$$

Tanto $\boldsymbol{H}^{(n)}$ como $\boldsymbol{\nabla}^{(n)}$ son tensores de rango n, de modo que sus d^n componentes pueden expresarse como $H_{\alpha_1...\alpha_n}^{(n)}$ y $\nabla_{\alpha_1...\alpha_n}^{(n)}$, donde $\{\alpha_1...\alpha_n\}$ son índices comprendidos entre 1 y d. Para el caso particular de una dimensión, los polinomios se reducen a

$$H^{(n)}(x) = (-1)^{(n)} \frac{1}{\omega(x)} \frac{d^n}{dx^n} \omega(x), \qquad \omega(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 (2.27)

Los polinomios de Hermite son ortogonales respecto a la función de peso $\omega(\mathbf{x})$ y constituyen una base completa en \Re^n [4], de modo que es posible representar cualquier función $f(\mathbf{x})$ suficientemente suave mediante:

$$f(\boldsymbol{x}) = \omega(\boldsymbol{x}) \sum_{n=0}^{\infty} \frac{1}{n!} \boldsymbol{a}^{(n)} \cdot \boldsymbol{H}^{(n)}(\boldsymbol{x}), \qquad \boldsymbol{a}^{(n)} = \int f(\boldsymbol{x}) \boldsymbol{H}^{(n)}(\boldsymbol{x}) d^n x$$
 (2.28)

Esta propiedad permite aplicar la expansión en series de Hermite a la función de distribución de equilibrio en el espacio de velocidades

$$f^{eq}(\rho, \boldsymbol{u}, \theta, \boldsymbol{\xi}) = \omega(\boldsymbol{\xi}) \sum_{n=0}^{\infty} \frac{1}{n!} \boldsymbol{a}^{(n)eq}(\rho, \boldsymbol{u}, \theta) \cdot \boldsymbol{H}^{(n)}(\boldsymbol{\xi})$$
(2.29a)

$$\boldsymbol{a}^{(n)eq}(\rho, \boldsymbol{u}, \theta) = \int f^{eq}(\rho, \boldsymbol{u}, \theta, \boldsymbol{\xi}) \boldsymbol{H}^{(n)}(\boldsymbol{\xi}) d^{d} \boldsymbol{\xi}$$
(2.29b)

En particular, puede verse que la función de distribución de equilibrio tiene la misma forma funcional que la función generatriz $\omega(\boldsymbol{x})$

$$f^{eq}(\rho, \boldsymbol{u}, \theta, \boldsymbol{\xi}) = \frac{\rho}{\theta^{d/2}} \omega \left(\frac{\boldsymbol{\xi} - \boldsymbol{u}}{\sqrt{\theta}} \right),$$
 (2.30)

de modo que el cálculo de los coeficientes $a^{(n)}$ puede simplificarse mediante:

$$\boldsymbol{a}^{(n)eq} = \rho \int \omega(\boldsymbol{\eta}) \boldsymbol{H}^{(n)}(\sqrt{\theta}\boldsymbol{\eta} - \boldsymbol{u}) d^d \eta, \qquad (2.31)$$

donde $\eta = (\xi - u)/\sqrt{\theta}$. El cálculo de estas integrales puede realizarse directamente, de modo que los primeros coeficientes resultan:

$$a^{(0),eq} = \rho \tag{2.32a}$$

$$a_{\alpha}^{(1),eq} = \rho u_{\alpha} \tag{2.32b}$$

$$a_{\alpha\beta}^{(2),eq} = \rho \left[u_{\alpha} u_{\beta} + (\theta - 1) \delta_{\alpha\beta} \right]$$
 (2.32c)

$$a_{\alpha\beta\gamma}^{(3),eq} = \rho \left[u_{\alpha} u_{\beta} u_{\gamma} + (\theta - 1) (\delta_{\alpha\beta} u_{\gamma} + \delta_{\beta\gamma} u_{\alpha} + \delta_{\gamma\alpha} u_{\beta}) \right]. \tag{2.32d}$$

A partir de la Ec. (2.32) puede observarse que los coeficientes de la serie de Hermite están directamente relacionados con las principales cantidades conservadas. En esta línea, puede demostrarse que existe una relación similar para los coeficientes de la expansión en series de Hermite de la función de distribución f:

$$a^{(0),eq} = \int f^{eq} d^d \xi \qquad = \rho = \int f d^d \xi \qquad = a^{(0)} \qquad (2.33a)$$

$$a_{\alpha}^{(1),eq} = \int \xi_{\alpha} f^{eq} d^d \xi \qquad = \rho u_{\alpha} = \int \xi_{\alpha} f d^d \xi \qquad = a_{\alpha}^{(1)} \qquad (2.33b)$$

$$a_{\alpha}^{(1),eq} = \int \xi_{\alpha} f^{eq} d^{d} \xi \qquad = \rho u_{\alpha} = \int \xi_{\alpha} f d^{d} \xi \qquad = a_{\alpha}^{(1)} \qquad (2.33b)$$

$$\frac{a_{\alpha\alpha}^{(2),eq} + \rho d}{2} = \int \frac{|\xi|^2}{2} f^{eq} d^d \xi \qquad = \rho E = \int \frac{|\xi|^2}{2} f d^d \xi \qquad = \frac{a_{\alpha\alpha}^{(2)} + \rho d}{2} \qquad (2.33c)$$

La representación adecuada de las leyes de conservación macroscópica puede alcanzarse con pocos términos de las series de Hermite, aunque se ha observado que la inclusión de términos de mayor orden contribuyen a mejorar la precisión y estabilidad del método numérico final [5]. De esta forma, la representación en serie de f^{eq} con sólo N=3 términos puede aproximarse por:

$$f^{eq} \approx \omega(\boldsymbol{\xi}) \sum_{n=0}^{N=3} \frac{1}{n!} \boldsymbol{a}^{(n),eq} \cdot \boldsymbol{H}^{(n)}(\boldsymbol{\xi})$$
 (2.34)

$$\approx \omega(\boldsymbol{\xi})\rho\left[1 + \xi_{\alpha}u_{\alpha} + (u_{\alpha}u_{\beta} + (\theta - 1)\delta_{\alpha\beta})(\xi_{\alpha}\xi_{\beta} - \delta_{\alpha\beta})\right]$$
(2.35)

2.2.3. Discretización de la función de distribución de equilibrio

La expansión de la función de distribución de equilibrio $f^{eq}(\boldsymbol{x},\boldsymbol{\xi},t)$ en series de Hermite es apropiada, ya que la forma funcional de $f^{eq}(\boldsymbol{\xi})$ es similar a la de la función generatriz $\omega(\boldsymbol{x}\boldsymbol{i})$, y los primeros coeficientes de la serie están directamente relacionados con los principales momentos conservados (densidad, velocidad y energía). Por otro lado, el empleo de polinomios de Hermite permite calcular integrales de determinadas funciones utilizando la evaluación de dicha función en un intervalo discreto de puntos (abscisas), mediante la regla conocida como cuadratura de Gauss-Hermite. En particular, esta técnica permite calcular exactamente ciertas integrales de polinomios mediante:

$$\int \omega(\boldsymbol{x}) P^{(N)}(\boldsymbol{x}) d^d x = \sum_{i=1}^n w_i P^{(N)}(\boldsymbol{x}_i)$$
(2.36)

donde $P^{(N)}$ es un polinomio de grado N, n es al menos n=(N+1)/2, y w_i son pesos asociados a las abscisas \boldsymbol{x}_i . En este caso, cada componente del punto multidimensional \boldsymbol{x}_i , es decir, $x_{i\alpha}$ con $\alpha=1\ldots d$, es una raíz del polinomio de Hermite unidimensional $H^n(x_{i\alpha})=0$. De esta forma, la cuadratura de Gauss-Hermite puede usarse para reescribir los coeficientes de la serie de f^{eq} mediante un conjunto discreto de velocidades $\{\boldsymbol{\xi}_i\}$:

$$\boldsymbol{a}^{(n),eq} = \int f^{eq}(\boldsymbol{\xi}) \boldsymbol{H}^{(n)}(\boldsymbol{\xi}) d^d \boldsymbol{\xi} = \rho \sum_{i=1}^n w_i Q(\boldsymbol{\xi}_i) \boldsymbol{H}^{(n)}(\boldsymbol{\xi}_i)$$
(2.37)

Esta discretización lleva a describir n cantidades $f_i^{eq}(\boldsymbol{x},t)$, correspondientes a la función de distribución de equilibrio evaluada en la velocidad $\boldsymbol{\xi}_i$. Por lo tanto, podemos reemplazar a la función continua $f^{eq}(\boldsymbol{\xi})$ por un conjunto discreto

$$f_i^{eq} = w_i \rho \left[1 + \xi_{i\alpha} u_\alpha + \frac{1}{2} \left(u_\alpha u_\beta + (\theta - 1) \delta_{\alpha\beta} \right) \left(\xi_{i\alpha} \xi_{i\beta} - \delta_{\alpha\beta} \right) \right]$$
(2.38)

El conjunto f_i^{eq} es continuo en espacio y tiempo, y satisface las mismas leyes de conservación para los primeros tres momentos de $f^{eq}(\boldsymbol{\xi})$. Finalmente, asumiendo un comportamiento isotérmico ($\theta=1$) y reescribiendo las velocidades de las partículas como

$$\mathbf{e}_i = \frac{\mathbf{\xi}_i}{\sqrt{3}},\tag{2.39}$$

podemos escribir una forma final para la distribución de equilibrio discreta:

$$f_i^{eq} = w_i \rho \left[1 + \frac{e_{i\alpha} u_\alpha}{c_s^2} + \frac{u_\alpha u_\beta (e_{i\alpha} e_{i\beta} - c_s^2 \delta_{\alpha\beta})}{2c_s^4} \right]$$
 (2.40)

donde además se definió convenientemente a la constante c_s , llamada velocidad del sonido.

2.2.4. Discretización de la función de distribución

El procedimiento aplicado para aproximar la dependencia de f^{eq} en el espacio de velocidades $\boldsymbol{\xi}$ también puede ser usado con la función de distribución f:

$$\boldsymbol{a}^{(n)}(\boldsymbol{x},t) = \int f(\boldsymbol{x},\boldsymbol{e},t)\boldsymbol{H}^{(n)}(\boldsymbol{e}) d^{d}e \approx \sum_{i=1}^{q} f_{i}(\boldsymbol{x},t)\boldsymbol{H}^{(n)}(\boldsymbol{e}_{i})$$
(2.41)

Ahora se tiene un conjunto de q funciones $f_i(\boldsymbol{x},t)$, relacionadas con las velocidades discretas \boldsymbol{e}_i y continuas en el espacio y tiempo. Usando este conjunto es posible reescribir la ecuación de Boltzmann, pero esta vez discreta en el espacio de velocidades:

$$\partial_t f_i + e_{i\alpha} \partial_\alpha f_i = \Omega(f_i), \qquad i = 1 \dots q,$$
 (2.42)

donde los momentos macroscópicos se pueden calcular usando sumas discretas:

$$\rho = \sum_{i} f_i = \sum_{i} f_i^{eq} \tag{2.43a}$$

$$\rho \mathbf{u} = \sum_{i} f_{i} \mathbf{e}_{i} = \sum_{i} f_{i}^{eq} \mathbf{e}_{i}$$
(2.43b)

2.2.5. Conjunto discreto de velocidades

La descomposición de las funciones de distribución usando series de Hermite mostró que el espacio de velocidades puede ser discretizado, pero hasta este punto no se estableció de qué manera. Los conjuntos de velocidades $\{e_i\}$ admisibles deben cumplir dos propiedades fundamentales; por un lado, presentar una resolución suficiente que permita capturar los fenómenos físicos deseados, y por otro contener la menor cantidad de componentes posibles para reducir el costo computacional involucrado.

Tradicionalmente, los conjuntos de velocidades suelen identificarse con la notación $\mathrm{D}d\mathrm{Q}q$ introducida por [6], donde d corresponde al número de dimensiones espaciales y q a la cantidad de velocidades discretas. Estos conjuntos quedan determinados por las velocidades $\{e_i\}$, los pesos $\{w_i\}$ y la velocidad del sonido c_s^2 . Si bien existen numerosos mecanismos para construir conjuntos de velocidades con las propiedades deseadas, la

alternativa más sencilla y directa consiste en evaluar la isotropía rotacional de los tensores de grilla [7, 8], es decir, de aquellos momentos con factores de peso $\{w_i\}$. Esta simetría implica que los tensores de grilla de hasta orden 5 satisfagan

$$\sum_{i} w_i = 1 \tag{2.44a}$$

$$\sum_{i} w_i e_{i\alpha} = 0 \tag{2.44b}$$

$$\sum_{i} w_{i} e_{i\alpha} e_{i\beta} = c_{s}^{2} \delta_{\alpha\beta} \tag{2.44c}$$

$$\sum_{i} w_i e_{i\alpha} e_{i\beta} e_{i\gamma} = 0 \tag{2.44d}$$

$$\sum_{i} w_{i} e_{i\alpha} e_{i\beta} e_{i\gamma} e_{i\mu} = c_{s}^{4} (\delta_{\alpha\beta} \delta_{\gamma\mu} + \delta_{\alpha\gamma} \delta_{\beta\mu} + \delta_{\alpha\mu} \delta_{\beta\gamma})$$
 (2.44e)

$$\sum_{i} w_i e_{i\alpha} e_{i\beta} e_{i\gamma} e_{i\mu} e_{i\nu} = 0. \tag{2.44f}$$

Una vez establecidas este tipo de restricciones, el procedimiento habitual consiste en definir el conjunto de velocidades discretas, y posteriormente determinar $\{w_i\}$ y c_s^2 . La dimensión de $\{e_i\}$ dependerá de la cantidad de restricciones de la Ec. (2.44) que quieran satisfacerse simultáneamente: para resolver adecuadamente ecuaciones macroscópicas como Navier-Stokes se necesita cumplir con los primeros 6 tensores de grilla, mientras que para ecuaciones de advección-difusión lineales, alcanza con satisfacer los primeros 4.

La Ec. (2.42) suele discretizarse grillas espaciales regulares de espaciado Δx , y en intervalos de tiempo regulares Δt . Por lo tanto, es conveniente elegir el conjunto de velocidades $\{e\}_i$ de modo que conecten exclusivamente nodos vecinos. De esta forma surgen los modelos de grilla tradicionales como D1Q3, D2Q9 y D3Q15, los cuales se ilustran en la **figura de velocidades de grilla**. En la Tabla 2.1 se resumen las principales propiedades de cada modelo de grilla.

2.3. Discretización del espacio y tiempo

Hasta este punto, sólo se aplicó la discretización de la ecuación de Boltzmann en el espacio de velocidades. El paso final hacia la ELB debe completarse con la discretización del espacio y tiempo.

La ecuación de Boltzman discreta (Ec. (2.42)) es una ecuación diferencial en derivadas parciales (EDP) de primer orden y parabólica. Una de las técnicas más usadas en la resolución de este tipo de ecuaciones es aquella que se conoce como método de las características, que consiste en parametrizar las variables independientes de la

Modelo	$\{oldsymbol{e}_i\}$	$\{w_i\}$	c_s^2
D1Q3	(0)	2/3	$1/\sqrt{3}$
	(±1)	1/6	
	(0,0)	4/9	
D2Q9	$(\pm 1,0), (0,\pm 1)$	1/9	$1/\sqrt{3}$
	$(\pm 1,\pm 1)$	1/36	
	(0,0,0)	2/9	
D3Q15	$(\pm 1,0,0), (0,\pm 1,0), (0,0,\pm 1)$	1/9	$1/\sqrt{3}$
	$(\pm 1,\pm 1,\pm 1)$	1/72	

Tabla 2.1: Ejemplos de conjuntos de velocidades

EDP para transformarla en una ecuación diferencial ordinaria (EDO). En este caso, es posible expresar la solución de 2.42 como $f_i = f_i(\boldsymbol{x}(\zeta), t(\zeta))$, donde ζ parametriza una trayectoria en el espacio. De esta manera, la (2.42) puede reescribirse usando un diferencial total:

$$\frac{df}{d\zeta} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial \zeta} + \frac{\partial f}{\partial x_{\alpha}} \frac{\partial x_{\alpha}}{\partial \zeta} = \Omega_{i}(\boldsymbol{x}(\zeta), t(\zeta))$$
(2.45)

Por inspección, debe cumplirse

$$\frac{\partial t}{\partial \zeta} = 1, \qquad \frac{\partial x_{\alpha}}{\partial \zeta} = e_{i\alpha}.$$
 (2.46)

de modo que las soluciones f_i siguen una trayectoria dada por $\mathbf{x} = \mathbf{x}_0 + \mathbf{e}_i t$, donde \mathbf{x}_0 es una constante arbitraria. Si se considera la trayectoria que pasa a través del punto (\mathbf{x}_0, t_0) , con $t(\zeta = 0) = t_0$ y $\mathbf{x}(\zeta = 0) = \mathbf{x}_0$, entonces la integración de la Ec. (2.45) resulta:

$$f_i(\boldsymbol{x}_0 + \boldsymbol{e_i}\Delta t, t_0 + \Delta t) - f_i(\boldsymbol{x}_0, t_0) = \int_0^{\Delta t} \Omega_i(\boldsymbol{x}_0 + \boldsymbol{e_i}\zeta, t_0 + \zeta) \,\mathrm{d}\zeta. \tag{2.47}$$

Como el punto (x_0, t_0) es arbitrario, la integración puede generalizarse como:

$$f_i(\mathbf{x} + \mathbf{e}_i \Delta t, t + \Delta t) - f_i(\mathbf{x}, t) = \int_0^{\Delta t} \Omega_i(\mathbf{x} + \mathbf{e}_i \zeta, t + \zeta) \,\mathrm{d}\zeta. \tag{2.48}$$

A partir de la integración de la Ec. (2.48) resulta explicito el acople entre la discretización espacial y temporal, y refuerza la practicidad de emplear conjuntos de velocidades que, en un intervalo de tiempo Δt , se vinculen con las posiciones vecinas en la grilla espacial.

Sólo resta integral el término derecho de la Ec. (2.48). Empleando em método de

Euler explícito, puede obtenerse finalmente la ecuación de lattice Boltzmann

$$f_i(\mathbf{x} + \mathbf{e}_i \Delta t, t + \Delta t) - f_i(\mathbf{x}, t) = \Delta t \Omega_i(\mathbf{x}, t).$$
(2.49)

La discretización de Euler empleada conduce a una aproximación de primer orden en la discretización de espacio y tiempo. Sin embargo, puede demostrarse que si se realiza dicha integración mediante el método trapezoidal [9], y con una redefinición adecuada de la función de distribución discreta, es posible obtener una ecuación igual a 2.49. Por lo tanto, es posible afirmar que la Ec. (2.49) constituye una aproximación de segundo orden también en espacio y tiempo.

2.4. Operadores de colisión

LBGK y MRT. Matrices de transformación?

2.5. La expansión de Chapman-Enskog

Podemos ponerla acá, aunque hay que ver como queda con las cuentas más adelante. Hay que ver, pero podrían ir acá las cuentas de la ecuación básica.

2.6. Overview de LBM

Algoritmo, colision, streaming, etc.

- [1] He, X., Luo, L.-S. Lattice Boltzmann model for the incompressible Navier-Stokes equation. *Journal of statistical Physics*, 88 (3-4), 927-944, 1997. 7
- [2] Shan, X., Yuan, X.-F., Chen, H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. *Journal of Fluid Mechanics*, **550**, 413, 2006. 7, 9
- [3] Grad, H. On the kinetic theory of rarefied gases. Communications on Pure and Applied Mathematics, 2 (4), 331–407, 1949. 9
- [4] Wiener, N. The Fourier integral and certain of its applications. Cambridge University Press, 1989. 9
- [5] d'Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 360 (1792), 437–451, mar. 2002. 10
- [6] Qian, Y. H., d'Humières, D., Lallemand, P. Lattice BGK models for Navier-Stokes equation. *EPL (Europhysics Letters)*, **17** (6), 479, 1992. 12
- [7] Guo, Z., Shu, C. Lattice Boltzmann method and its applications in engineering. Advances in computational fluid dynamics. New Jersey: World Scientfic, 2013. 13
- [8] Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, I., Rivet, J.-P. Lattice gas hydrodynamics in two and three dimensions. *Complex Systems*, 1, 649-707, 1987. 13
- [9] He, X., Shan, X., Doolen, G. D. Discrete Boltzmann equation model for nonideal gases. *Physical Review E*, **57** (1), R13, 1998. 15
- [10] Scardovelli, R., Zaleski, S. Direct numerical simulation of free surface and interfacial flow. *Annual Review of Fluid Mechanics*, **31** (1), 567–603, ene. 1999.

[11] Liu, H., Valocchi, A. J., Kang, Q. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. *Physical Review E*, 85 (4), 046309, abr. 2012.

- [12] Gunstensen, A. K., Rothman, D. H., Zaleski, S., Zanetti, G. Lattice Boltzmann model of immiscible fluids. *Physical Review A*, **43** (8), 4320, 1991.
- [13] Shan, X., Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. *Physical Review E*, **47** (3), 1815–1819, 1993.
- [14] Shan, X., Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. *Physical Review E*, **49** (4), 2941, 1994.
- [15] Chen, L., Kang, Q., Mu, Y., He, Y.-L., Tao, W.-Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. *International Journal of Heat and Mass Transfer*, **76**, 210–236, sep. 2014.
- [16] Swift, M. R., Orlandini, E., Osborn, W. R., Yeomans, J. M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. *Physical Review E*, **54** (5), 5041, 1996.
- [17] Inamuro, T., Konishi, N., Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. *Computer Physics Communications*, **129** (1-3), 32–45, 2000.
- [18] He, X., Chen, S., Zhang, R. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability. *Journal of Computational Physics*, 152, 642-663, 1999.
- [19] Liang, H., Shi, B. C., Guo, Z. L., Chai, Z. H. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. *Physical Review E*, 89 (5), mayo 2014.
- [20] Rothman, D. H., Keller, J. M. Immiscible cellular-automaton fluids. *Journal of Statistical Physics*, 52 (3-4), 1119–1127, 1988.
- [21] Kuzmin, A., Mohamad, A. A., Succi, S. Multi-relaxation time lattice boltzmann model for multiphase flows. *International Journal of Modern Physics C*, 19 (06), 875–902, 2008.
- [22] Jacqmin, D. Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling. *Journal of Computational Physics*, **155** (1), 96–127, oct. 1999.

[23] Ding, H., Spelt, P. D., Shu, C. Diffuse interface model for incompressible two-phase flows with large density ratios. *Journal of Computational Physics*, **226** (2), 2078–2095, oct. 2007.

- [24] Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. *Progress in Energy and Combustion Science*, **52**, 62–105, 2016.
- [25] Leclaire, S., Pellerin, N., Reggio, M., Trépanier, J.-Y. Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method. Journal of Physics A: Mathematical and Theoretical, 47 (10), 105501, 2014.
- [26] Leclaire, S., Pellerin, N., Reggio, M., Trépanier, J.-Y. Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice Boltzmann models. *International Journal of Multiphase Flow*, 57, 159–168, 2013.
- [27] Huang, H., Huang, J.-J., Lu, X.-Y., Sukop, M. C. On simulations of high-density ratio flows using color-gradient multiphase lattice Boltzmann models. *International Journal of Modern Physics C*, **24** (04), 1350021, 2013.
- [28] Li, Q., Luo, K. H., Li, X. J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. *Physical Review E*, 87 (5), 2013.
- [29] Lee, T., Lin, C.-L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. *Journal of Computational Physics*, **206** (1), 16–47, jun. 2005.
- [30] Safari, H., Rahimian, M. H., Krafczyk, M. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. *Physical Review E*, 90 (3), sep. 2014.
- [31] Márkus, A., Házi, G. On pool boiling at microscale level: The effect of a cavity and heat conduction in the heated wall. *Nuclear Engineering and Design*, **248**, 238–247, jul. 2012.
- [32] Gong, S., Cheng, P. Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer. *International Journal of Heat and Mass Transfer*, **85**, 635–646, jun. 2015. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931015001714.

[33] Safari, H., Rahimian, M. H., Krafczyk, M. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow. *Physical Review E*, 88 (1), 2013.

- [34] Shan, X. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. *Physical Review E*, **77** (6), jun. 2008.
- [35] Blundell, S., Blundell, K. Concepts in Thermal Physics. Oxford University Press, 2006.
- [36] McQuarrie, D. A., Simon, J. D. Molecular Thermodynamics. University Science Books, 1999.
- [37] Yuan, P., Schaefer, L. Equations of state in a lattice Boltzmann model. *Physics of Fluids*, **18** (4), 042101, 2006.
- [38] He, X., Doolen, G. D. Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. *Journal of Statistical Physics*, **107** (1-2), 309–328, 2002.
- [39] Shan, X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. *Physical Review E*, **73** (4), 047701, 2006. URL https://link.aps.org/doi/10.1103/PhysRevE.73.047701.
- [40] Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K., Toschi, F. Generalized lattice Boltzmann method with multirange pseudopotential. *Physical Review E*, 75 (2), feb. 2007.
- [41] Li, Q., Luo, K. H., Li, X. J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. *Physical Review E*, **86** (1), 2012.
- [42] Guo, Z., Zheng, C., Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. *Physical Review E*, **65** (4), abr. 2002.
- [43] McCracken, M. E., Abraham, J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. *Physical Review E*, **71** (3), mar. 2005.
- [44] Li, Q., Luo, K. H., Gao, Y. J., He, Y. L. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. *Physical Review E*, **85** (2), 2012.
- [45] Berberan-Santos, M. N., Bodunov, E. N., Pogliani, L. Liquid-vapor equilibrium in a gravitational field. *American Journal of Physics*, **70** (4), 438, 2002.

[46] Fogliatto, E. O., Clausse, A., Teruel, F. E. Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 29 (9), 3095—3109, 2019.

- [47] Zou, Q., He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. *Physics of Fluids*, **9** (6), 1591, 1997.
- [48] Alexander, F. J., Chen, S., Sterling, J. D. Lattice Boltzmann thermohydrodynamics. *Physical Review E*, **47** (4), R2249–R2252, 1993. URL https://link.aps.org/doi/10.1103/PhysRevE.47.R2249.
- [49] Succi, S. The lattice Boltzmann equation: for complex states of flowing matter. First edition ed⁶ⁿ. Oxford: Oxford University Press, 2018. OCLC: 1022116988.
- [50] Dong, Z., Xu, J., Jiang, F., Liu, P. Numerical study of vapor bubble effect on flow and heat transfer in microchannel. *International Journal of Thermal Sciences*, **54**, 22–32, abr. 2012. URL https://linkinghub.elsevier.com/retrieve/pii/S1290072911003498.
- [51] Li, Q., Kang, Q., Francois, M., He, Y., Luo, K. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. *International Journal of Heat and Mass Transfer*, 85, 787–796, 2015.
- [52] Márkus, A., Házi, G. Simulation of evaporation by an extension of the pseudo-potential lattice Boltzmann method: A quantitative analysis. *Physical Review E*, 83 (4), 2011.
- [53] Huang, R., Wu, H. A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation. *Journal of Computational Physics*, **274** (Supplement C), 50-63, oct. 2014.
- [54] Li, Q., Zhou, P., Yan, H. J. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change. *Physical Review E*, **96** (6), dic. 2017.
- [55] Huang, H.-B., Lu, X.-Y., Sukop, M. C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations. *Journal of Physics A: Mathematical and Theoretical*, **44** (5), 055001, feb. 2011.
- [56] Li, Q., Luo, K. H. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. *Physical Review E*, **89** (5), 2014.

[57] Huang, H., Sukop, M. C., Lu, X.-Y. Multiphase lattice Boltzmann methods: theory and application. Chichester, West Sussex: John Wiley and Sons, Inc, 2015.

- [58] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E. M. The Lattice Boltzmann Method - Principles and Practice. Graduate Texts in Physics. Springer International Publishing Switzerland, 2017.
- [59] Huang, R., Wu, H. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field. *Physical Review E*, **91** (3), 2015.
- [60] Cheng, Y., Li, J. Introducing unsteady non-uniform source terms into the lattice Boltzmann model. *International Journal for Numerical Methods in Fluids*, **56** (6), 629–641, 2008.
- [61] Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Series in computational and physical processes in mechanics and thermal sciences. Hemisphere Publishing Corporation, 1980.
- [62] Alexiades, V., Solomon, A. D. Mathematical modeling of melting and freezing processes. Hemisphere Publishing Corporation, 1993.
- [63] Lou, Q., Guo, Z., Shi, B. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. *Physical Review E*, **87** (6), 063301, jun. 2013. URL https://link.aps.org/doi/10.1103/PhysRevE.87.063301.
- [64] Ajaev, V. S., Homsy, G. M. Modeling shapes and dynamics of confined bubbles. *Annu. Rev. Fluid Mech.*, **38**, 277–307, 2006.
- [65] Hua, J., Lou, J. Numerical simulation of bubble rising in viscous liquid. *Journal of Computational Physics*, **222** (2), 769–795, mar. 2007. URL http://linkinghub.elsevier.com/retrieve/pii/S0021999106003949.
- [66] Freitas, C. J., Ghia, U., Celik, I., Roache, P., Raad, P. ASME's quest to quantify numerical uncertainty. AIAA Paper, 627, 2003, 2003. URL http://arc.aiaa.org/ doi/pdf/10.2514/6.2003-627.
- [67] Guo, Z., Zheng, C., Shi, B. An extrapolation method for boundary conditions in lattice Boltzmann method. *Physics of Fluids*, **14** (6), 2007, 2002.
- [68] Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R., Ogino, F. A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and Its Application to a Heat-Transfer Problem. *Journal of Computational Physics*, 179, 201–215, 2002.
- [69] Fritz, W. Berechnung des Maximalvolumens von Dampfblasen. Physik. Zeitsch, 36, 379, 1935.

[70] Xu, A., Zhao, T., An, L., Shi, L. A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. *International Journal of Heat and Fluid Flow*, 56, 261–271, dic. 2015.

- [71] Liang, G., Mudawar, I. Review of pool boiling enhancement by surface modification. International Journal of Heat and Mass Transfer, 128, 892–933, ene. 2019. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931018330321.
- [72] Gregorčič, P., Zupančič, M., Golobič, I. Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids. *Scientific Reports*, 8 (1), 7461, dic. 2018. URL http://www.nature.com/articles/s41598-018-25843-5.
- [73] Liu, B., Liu, J., Zhang, Y., Wei, J., Wang, W. Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces. *International Journal of Heat and Mass Transfer*, **132**, 259–270, abr. 2019. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931018334318.
- [74] Hutter, C. Experimental Pool Boiling Investigation of FC-72 on Silicon with Artificial Cavities, Integrated Temperature Micro-Sensors and Heater. Tesis Doctoral, The University of Edinburgh, 2009.
- [75] Hutter, C., Kenning, D. B. R., Sefiane, K., Karayiannis, T. G., Lin, H., Cummins, G., et al. Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors. Experimental Thermal and Fluid Science, 34 (4), 422–433, 2010. xii
- [76] Larson Geisler, K. J. Buoyancy-driven two phase flow and boiling heat transfer in narrow vertical channels. PhD Thesis, University of Minnesota, 2007.
- [77] Cao, Z., Zhou, J., Wei, J., Sun, D., Yu, B. Experimental and numerical study on bubble dynamics and heat transfer during nucleate boiling of FC-72. *International Journal of Heat and Mass Transfer*, **139**, 822–831, ago. 2019. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931019302662.
- [78] Fang, W.-Z., Chen, L., Kang, Q.-J., Tao, W.-Q. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. *International Journal of Thermal Sciences*, 114, 172–183, abr. 2017. URL https://linkinghub.elsevier.com/retrieve/ pii/S1290072916310705.
- [79] Zhang, C., Hong, F., Cheng, P. Simulation of liquid thin film evaporation and boiling on a heated hydrophilic microstructured surface by Lattice Boltzmann

- method. International Journal of Heat and Mass Transfer, **86**, 629–638, jul. 2015. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931015002872.
- [80] Peng, D.-Y., Robinson, D. B. A New Two-Constant Equation of State. *Industrial Engineering Chemistry Fundamentals*, **15** (1), 59–64, feb. 1976. URL https://pubs.acs.org/doi/abs/10.1021/i160057a011.
- [81] Kupershtokh, A., Medvedev, D., Karpov, D. On equations of state in a lattice Boltzmann method. *Computers & Mathematics with Applications*, **58** (5), 965–974, sep. 2009.
- [82] Gong, S., Cheng, P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 53, 93–104, ene. 2012. URL http://www.sciencedirect.com/science/article/pii/S0045793011002994.
- [83] Li, Q., Luo, K. H., Kang, Q. J., Chen, Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. *Physical Review E*, **90** (5), nov. 2014. URL https://link.aps.org/doi/10.1103/PhysRevE.90.053301.
- [84] Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Toschi, F. Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows. *Physical Re*view Letters, 97 (20), 2006.
- [85] Ma, X., Cheng, P. Numerical Simulation of Complete Pool Boiling Curves: From Nucleation to Critical Heat Flux Through Transition Boiling to Film Boiling. Nuclear Science and Engineering, 193 (1-2), 1–13, feb. 2019. URL https://www.tandfonline.com/doi/full/10.1080/00295639.2018.1504566.
- [86] Guo, Q., Cheng, P. 3D lattice Boltzmann investigation of nucleation sites and dropwise-to-filmwise transition in the presence of a non-condensable gas on a biomimetic surface. *International Journal of Heat and Mass Transfer*, **128**, 185–198, 2019. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931018328485.
- [87] Hu, A., Li, L., Uddin, R., Liu, D. Contact angle adjustment in equation-of-state-based pseudopotential model. *Physical Review E*, **93** (5), 053307, 2016. URL https://link.aps.org/doi/10.1103/PhysRevE.93.053307.
- [88] Wang, L., Huang, H.-b., Lu, X.-Y. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. *Physical Review E*, **87** (1), 2013. URL https://link.aps.org/doi/10.1103/PhysRevE.87.013301.

[89] Ding, H., Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. *Physical Review E*, **75** (4), 2007. URL https://link.aps.org/doi/10.1103/PhysRevE.75.046708.

[90] Xu, X., Qian, T. Single-bubble dynamics in pool boiling of one-component fluids. *Physical Review E*, **89** (6), jun. 2014.