Tầng Liên kết dữ liệu

Mục Tiêu

- o điều khiển truy cập đường truyền
- Điều khiển liên kết

Application

Presentation

Session

Transport

Network

Data link

Physical

Nội dung

- o Giới thiệu
- Kỹ thuật phát hiện và sửa lỗi
- Điều khiển truy cập đường truyền
- ARP
- Ethernet

GIỚI THIỆU - 1

- Link: "kết nối/liên kết"giữa các nodes kề nhau
 - Wired
 - Wireless
- Data link layer: chuyển gói tin (frame) từ một node đến node kề qua 1 link
 - Mỗi link có thể dùng giao thức khác nhau để truyền tải frame

GIỚI THIỆU - 2

- Tại nơi gởi:

 - Truy cập đường truyền (nếu dùng đường truyền chung)
- o Tại nơi nhận:
 - Nhận các frame dữ liệu từ tầng physical
 - Kiểm tra lỗi
 - Chuyển cho tầng network

GIỚI THIỆU - 3

Application

Presentation

Session

Transport

Network

Data link

Physical

- LLC (Logical Link Control)
 - Điều khiển luồng
 - Kiểm tra lỗi
 - Báo nhận
- MAC (Media Access Control)
 - Truy cập đường truyền

Logical Link Control

Media Access Control

Nội dung

- o Giới thiệu
- Kỹ thuật phát hiện và sửa lỗi
- Điều khiển truy cập đường truyền
- ARP
- Ethernet

Kỹ thuật phát hiện và sửa lỗi - 1

EDC= Error Detection and Correction

D = Data

Kỹ thuật phát hiện và sửa lỗi - 2

- Các phương pháp:
 - Parity Check (bit chan le)
 - Checksum
 - Cylic Redundancy Check (CRC)

PARITY CHECK

- Dùng thêm một số bit để đánh dấu tính chẵn lẻ
 - Dựa trên số bit 1 trong dữ liệu
 - Phân loại:
 - Even Parity: số bit 1 phải là một số chẵn
 - o Odd Parity: số bit 1 phải là một số lẻ
- Các phương pháp:
 - Parity 1 chiều
 - Parity 2 chiều
 - Hamming code

PARITY 1 CHIỀU - 1

- Số bit parity: 1 bit
- Chiều dài của dữ liệu cần gởi đi: d bit
- → DL gởi đi sẽ có (d+1) bit
- o Bên gởi:
 - Thêm 1 bit parity vào dữ liệu cần gởi đi
 - Mô hình chẵn (Even parity)
 - số bit 1 trong d+1 bit là một số chẵn
 - Mô hình lẻ (Odd Parity)
 - số bit 1 trong d+1 bit là một số lẻ

```
d bits Parity bit
0111000110101011 1 (mô hình chẵn)
0 (mô hình lẻ)
```

PARITY 1 CHIÈU - 2

- o Bên nhận:
 - Nhận D' có (d+1) bits
 - Đếm số bit 1 trong (d+1) bits = x
 - Mô hình chẵn: nếu x lẻ → error
 - Mô hình lẻ: nếu x chẵn → error
- Ví dụ: nhận 0111000110101011
 - Parity chẵn: sai
 - Parity le: đúng
 - o Dữ liệu thật: 011100011010101
- Đặc điểm:
 - Phát hiện được lỗi khi số bit lỗi trong dữ liệu là số lẻ
 - Không sửa được lỗi

PARITY 2 CHIỀU - 1

- Dữ liệu gởi đi được biểu diễn thành ma trận NxM
- Số bit parity: (N + M + 1) bit
- Đặc điểm:
 - Phát biện và sửa được 1 bit lỗi
- Bên gởi
 - Biểu diễn dữ liệu cần gởi đi thành ma trận NxM
 - Tính giá trị bit parity của từng dòng, từng cột

PARITY 2 CHIÈU - 2

- Ví dụ:
 - Dùng parity chẵn
 - N = 3, M = 5
 - Dữ liệu cần gởi đi: 10101 11110 01110

```
10101 1
11110 0
01110 1
00101 0
```

PARITY 2 CHIỀU - 1

- o Bên nhận:
 - Biểu diễn dữ liệu nhận thành ma trận (N+1)x(M+1)
 - Kiểm tra tính đúng đắn của từng dòng/cột
 - Đánh dấu các dòng/cột dữ liệu bị lỗi
 - Bit lỗi: bit tại vị trí giao giữa dòng và cột bị lỗi

Parity 2 Chièu - 2

- Ví dụ:
 - Dùng parity chẵn
 - N = 3, M = 5

Dữ liệu nhận:

101011 111100 011101 001010

Không có lỗi Dữ liệu thật: 10101 11110 01110 Dữ liệu nhận: 101011 101100 011101 001010

Có lỗi Dữ liệu thật: 10101 11110 01110

Mỗi hamming code

- có M bit, đánh số từ 1 đến M
- Bit parity: log₂M bits, tại các vị trí lũy thừa của 2
- Dữ liệu thật được đặt tại các vị trí không là lũy thừa của 2
- VD: M = 7
 - $\circ \log_2 7 = 3$: dùng 3 bits làm bit parity (1, 2, 4)
 - Có 4 vị trí có thể đặt dữ liệu (3, 5, 6, 7)

o Đặc điểm:

- sửa lỗi 1 bit
- nhận dạng được 2 bit lỗi
- Sửa lỗi nhanh hơn Parity code 2 chiều

- Bên gởi:
 - Chia dữ liệu cần gởi đi thành các khối dữ liệu (với số bit là số vị trí có thể đặt vào Hamming Code)
 - Với mỗi khối dữ liệu → tạo 1 Hamming Code
 - Đặt các bit dữ liệu vào các vị trí không phải là lũy thừa của 2 trong Hamming Code
 - o lưu ý: vị trí được đánh số từ 1 đến M
 - Tính check bits
 - Tính giá trị của các bit parity

Hamming code – 3

- Ví dụ:
 - M = 7
 - Dùng parity lẻ
 - Thông tin cần gởi: 1011

Tính check bits:

$$3 = 2^{1} + 2^{0} = 0 1 1$$
 $5 = 2^{2} + 2^{0} = 1 0 1$
 $6 = 2^{2} + 2^{1} + = 1 1 0$
 $7 = 2^{2} + 2^{1} + 2^{0} = 1 1 1$

 $2^2 + 2^1 + 2^0$

Vị trí 20:

- Xét cột 20 trong check bit > các vị trí có bit 1
- Lấy các bit DL tại các vị trí có bit 1 trong check bit \rightarrow tính bit parity cho các bit dữ liệu này

Dữ liệu cần gởi: 1011

Dữ lệu gởi: 1011011

- Bên nhận: với mỗi Hamming Code
 - Điền các bit Hamming Code nhận vào các vị trí từ 1 đến M
 - Tính check bit
 - Kiểm tra các bit parity
 - o Nếu tại bit 2ⁱ phát hiện sai → đánh dấu Error, hệ số k_i = 1
 - o Ngược lại, đánh dấu No Error = 0, hệ số k_i = 0
 - Vị trí bit lỗi: pos = $\sum 2^{i*} k_i$

Tính check bits:

$$3 = 2^{1} + 2^{0} = 0 \quad 1 \quad 1$$
 $5 = 2^{2} + 2^{0} = 1 \quad 0 \quad 1$
 $6 = 2^{2} + 2^{1} = 1 \quad 1 \quad 0$
 $7 = 2^{2} + 2^{1} + 2^{0} = 1 \quad 1 \quad 1$

Odd parity: Không có lỗi

Odd parity: LÕI

Hamming code – 13

```
2^{0} 2^{1} 2^{2}
3 = 2^{1} + 2^{0} = 0 \quad 1 \quad 1
5 = 2^{2} + 2^{0} = 1 \quad 0 \quad 1
6 = 2^{2} + 2^{1} = 1 \quad 1 \quad 0
7 = 2^{2} + 2^{1} + 2^{0} = 1 \quad 1 \quad E = \text{error in column}
E \quad E \quad NE \quad NE = \text{no error in column}
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow
1 \quad 1 \quad 0 = 6
```

→ Lỗi bit thứ 6 trong Hamming Code

Dữ liệu nhận đúng: 1011011

Dữ liệu thật: 1011

30

CHECK SUM - 1

- o Bên gởi
 - d bits trong DL gởi đi được xem như gồm N số k bits:
 x₁, x₂, ..., x_N
 - Tính tổng $X = x_1 + x_2 + ... + x_N$
 - Tính bù 1 của X → giá trị checksum
- VD: Dữ liệu cần gởi: 1110 0110 0110 0110, k = 4
 - 1110, 0110, 0110, 0110
 - 0101, 0110, 0110
 -
 - Sum = 0010
 - Checksum = 1101

1110

0110

0100

→1

CHECK SUM - 1

- o Bên nhận:
 - tính tổng cho tất cả giá trị nhận được (kể cả giá trị checksum).
 - Nếu tất cả các bit là 1, thì dữ liệu nhận được là đúng;
 ngược lại: có lỗi xảy ra
- o VD:
 - nhận: 1110 0110 0110 0110 1101
 - o Sum = 1111
 - → đúng
 - Nhận: 1010 0110 0110 0110 1101
 - o Sum = 1011
 - → sai

Nội dung

- o Giới thiệu
- o Kỹ thuật phát hiện và sửa lỗi
- Điều khiển truy cập đường truyền
- ARP
- Ethernet

ĐIỀU KHIỂN TRUY CẬP ĐƯỜNG TRUYỀN - 1

- Loại liên kết (link)
 - Điểm đến điểm (Point-to-point)

- Dialup
- Nối trực tiếp giữa: host host, host SW
- Chia se (Shared)

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

ĐIỀU KHIỂN TRUY CẬP ĐƯỜNG TRUYỀN - 2

Trong môi trường chia sẻ

Hạn chế xảy ra collision

- → Giao thức tầng Data link: Quyết định cơ chế để các node sử dụng môi trường chia sẻ
 - khi nào được phép gởi DL xuống đường truyền
 - Làm sao phát hiện xảy ra Collision
 -

ĐIỀU KHIỂN TRUY CẬP ĐƯỜNG TRUYỀN - 3

- Các phương pháp:
 - Phân chia kênh truyền (Channel partition protocols)
 - Tranh chấp (Random access protocols)
 - Luân phiên (Taking-turns protocols)

PHÂN CHIA KÊNH TRUYỀN

- TDM (Time Division Multiplexing)
- FDM (Frequency Division Multiplexing)
- CDMA (Code Division Multiple Access)

TDM

- Ý tưởng:
 - Chia kênh truyền thành các khe thời gian
 - Mỗi khe thời gian chia thành N khe nhỏ
 - Mỗi khe nhỏ dành cho 1 node trong mạng
 - → Mỗi node có băng thông: R/N

FDM

- Ý tưởng:
 - Chia kênh truyền thành N kênh truyền nhỏ
 - Mỗi kênh truyền dành cho 1 node
 - → Mỗi node có băng thông: R/N

- Mỗi node có 1 code riêng
- Bên gởi: mã hoá dữ liệu trước khi gởi bằng code của mình và bên nhận phải biết code của người gởi
- 1 bit DL được mã hoá thành M bits
- Kênh truyền: chia thành từng các khe thời gian, mỗi bit truyền trong 1 khe

TRANH CHẤP

- Các node chiếm trọn băng thông khi truyền
- Lắng nghe đụng độ sau khi truyền
- Một số phương pháp:
 - ALOHA (Slotted, Pure)
 - CSMA (Carrier Sense Multiple Access)

Pure ALOHA

- Mỗi node có thể bắt đầu truyền dữ liệu bất cứ khi nào node có nhu cầu
- Nếu phát hiện xung đột → chờ 1 khoảng thời gian rồi truyền lại

SLOTTED ALOHA

- o Giả thiết:
 - Các frame có kích thước tối đa là L bits
- Kênh truyền: chia thành các khe thời gian có kích thước L/R (s)
- Khi 1 node có nhu cầu truyền dữ liệu: phải chờ đến thời điểm bắt đầu của 1 khe mới được truyền
 - cần đồng bộ thời gian giữa các node
- Nếu đụng độ xảy ra: truyền lại với xác suất là p

CSMA - 1

- Lắng nghe đường truyền trước khi truyền:
 - Đường truyền rảnh: truyền dữ liệu
 - Đường truyền bận: chờ
- Lắng nghe đường truyền sau khi truyền
 - Nếu đụng độ xảy ra:
 - o dừng truyền
 - o đợi 1 khoảng thời gian và truyền lại

CSMA - 2

Đánh giá:

- o Các node có quyền ngang nhau
- o Chi phí cao
- o Tốc độ: chấp nhận được nếu số lượng node ít
- Không ấn định độ ưu tiên cho thiết bị đặc biệt

o Cải tiến:

- CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
- CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)

CSMA/CD

- Thiết bị lắng nghe đường truyền
- Nếu đường truyền rảnh, thiết bị truyền DL của mình lên đường truyền
- Sau khi truyền, lắng nghe đụng độ?
- Nếu có, thiết bị gởi tín hiệu cảnh báo các thiết bị khác
- Tạm dừng 1 khoảng thời gian ngẫu nhiên rồi gởi
 DL
- Nếu tiếp tục xảy ra đụng độ, tạm dừng khoảng thời gian gấp đôi.
- Dùng trong mạng Ethernet

LUÂN PHIÊN

- Dùng thẻ bài (Token Passing)
- Dò chọn (Polling)

TOKEN PASSING

- Ý tưởng:
 - Dùng 1 thẻ bài (token) di chuyển qua các node
 - Thiết bị muốn truyền DL thì phải chiếm được thẻ bài
- o Đánh giá:
 - Thích hợp cho các mạng có tải nặng
 - Thiết lập được độ ưu tiên cho thiết bị đặc biệt
 - Chậm hơn CSMA trong mạng có tải nhẹ
 - Thiết bị mạng đắt tiền
- Dùng trong mạng Token Ring

POLLING

- Có 1 node đóng vai trò điều phối
- Node điều phối kiểm tra nhu cầu gởi DL của các node thứ cấp và xếp vào hàng đợi theo thứ tự và độ ưu tiên
- Thiết bị truyền DL khi đến lượt

o Đánh giá:

- Có thể thiết lập độ ưu tiên
- Tốn chi phí
- Việc truyền DL của 1 thiết bị tuỳ thuộc vào thiết bị dò chọn

Nội dung

- o Giới thiệu
- o Kỹ thuật phát hiện và sửa lỗi
- o Điều khiển truy cập đường truyền
- ARP
- Ethernet

ARP - 1

ARP - 2

- ARP (Address Resolution Protocol)
 - Phân giải từ địa chỉ IP thành địa chỉ MAC
 - Chỉ phân giải trong cùng đường mạng
 - Sử dụng ARP table:
 - o IP
 - MAC
 - o TTL :thời gian sống của record
 - Lưu trong RAM

ARP – CƠ CHẾ HOẠT ĐỘNG

ARP - REQUEST

MAC A.B.C.1.3.3 MAC ff.ff.ff.ff.ff

IP 197.15.22.33

197.15.22.126

IP

What is your MAC Addr?

ARP - CHECKING

ARP - REPLY

A.B.C.7.3.5 - 197.15.22.126

MAC A.B.C.1.3.3

MAC A.B.C.7.3.5

IP

IP 197.15.22.33<mark>197.15.22.12</mark>6

Data

A.B.C.1.3.3

197.15.22.34

A.B.C.4.3.4

197.15.22.126

A.B.C.7.3.5

62

Nội dung

- o Giới thiệu
- o Kỹ thuật phát hiện và sửa lỗi
- o Điều khiển truy cập đường truyền
- o ARP
- Ethernet

ETHERNET - 1

- Là 1 kỹ thuật (technology) mạng LAN có dây
 - Là 1 kỹ thuật mạng LAN đầu tiên
 - Chuẩn 802.3
 - Hoạt động tầng Data Link và Physical
 - Tốc độ: 10 Mbps 10 Gbps
 - Đồ hình mạng:
 - Bus
 - Star
 - Giao thức tầng MAC: CSMA/CD
 - Đơn giản và rẻ hơn mạng Token Ring LAN, ATM

CSMA/CD - QUÁ TRÌNH TRUYỀN DỮ LIỆU

- 1. Host wants to transmit
- 2. Is carrier sensed?
- Assemble frame
- 4. Start transmitting
- 5. Is a collision detected?
- Keep transmitting
- 7. Is the transmission done?
- 8. Transmission completed
- Broadcast jam signal
- 10. Attempts = Attempts + 1
- 11. Attempts > Too many?
- 12. Too many collisions; abort transmission
- 13. Algorithm calculates backoff
- 14. Wait for t microseconds

ETHERNET - CÂU TRÚC FRAME

Bytes	8	6	6	2	0-1500 "	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
					((
(b)	Preamble S o F	Destination address	Source address	Length	Data	Pad	Check- sum

a) earlier Ethernet frames - b) 802.3 frames

- Preamble (8 bytes)
 - Đồng bộ đồng hồ bên gởi và bên nhận (10101010)
 - Start of Frame (SOF): báo hiệu bắt đầu frame (10101011)
- Dest. Addr (6 bytes)
 - địa chỉ MAC của card mạng nhận gói tin tiếp theo
- Src. Addr (6 bytes)
 - địa chỉ MAC của card mạng gởi gói tin
- Type (2 bytes)
 - Giao thức sử dụng ở tầng trên
- CRC: dùng để kiểm tra lỗi

ETHERNET – TRƯỜNG TYPE

EtherType	Protocol
0x0800	Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x8035	Reverse Address Resolution Protocol (RARP)
0x809b	AppleTalk (Ethertalk)
0x80f3	AppleTalk Address Resolution Protocol (AARP)
0x8100	IEEE 802.1Q-tagged frame
0x8137	Novell IPX (alt)
0x8138	Novell
0x86DD	Internet Protocol, Version 6 (IPv6)
0x8847	MPLS unicast
0x8848	MPLS multicast

ETHERNET - MINH HOA

ETHERNET - CÁC CÔNG NGHỆ MẠNG

- o 10Base2
- o 10Base5
- 10BaseT
- 100BaseTX
- 100BaseFX
- Gigabit Ethernet

ETHERNET – CHUẨN 10MBPS

Standard	Topology	Medium	Maximum cable length	Transport
10BASE5	Bus	Thick coaxial cable	500m	Half-duplex
10BASE2	Bus	Thin coaxial cable	185m	Half-duplex
10BASE-T	Star	CAT3 UTP	100m	Half or Full- duplex

ETHERNET – CHUẨN 100MBPS

Standard	Medium	Maximum cable length
100BASE-TX	CAT5 UTP	100m
100BASE-FX	Multi-mode fibre (MMF) 62.5/125	412m

ETHERNET – CHUẨN GIGABIT

Standard	Medium	Maximum cable length
1000BASE-SX	Fiber optics	550 m
1000BASE-LX	Fiber optics	5000 m
1000BASE-CX	STP	25 m
1000BASE-T	Cat 5 UTP	100 m

TÀI LIỆU THAM KHẢO

- Slide của J.F Kurose and K.W. Ross về Computer Networking: A Top Down Approach
- Slide CCNA, version 3.0, Cisco

CSMA/CA

- - Thiết bị lắng nghe đường truyền
 - Nếu đường truyền rảnh, thiết bị gởi tín hiệu bắt đầu truyền tín hiệu RTS (request to send)
 - Sau khi truyền xong, gởi tín hiệu báo xong CTS (clear to send)
- Dùng trong mạng LocalTalk