Листок 1. Многообразия и поверхности Гладкие многообразия

Крайний срок сдачи 25.09.2020

Задачи со звездочками можно сдавать и после дедлайна.

- 1. Задайте гладкий атлас (карты, гладкость перехода между картами) на множестве невырожденных треугольников в плоскости с вершиной в (0,0) и углом $\frac{\pi}{3}$ при этой вершине.
 - 2. (а) Напишите формулы, задающие стереографические проекции двумерной сферы

$$x^2 + y^2 + z^2 = 1$$

на плоскость z=0 из полюсов и определите с помощью них атлас.

(б) Напишите аналогичные формулы для n-мерной сферы S^n :

$$(x^0)^2 + (x^1)^2 + \ldots + (x^n)^2 = 1,$$

и определите с помощью них атлас S^n .

- (в) Докажите, что атлас S^n состоит как минимум из двух карт.
- **3.** Введите на множестве всех прямых на плоскости естественную топологию и структуру гладкого многообразия, так, чтобы оно было гомеоморфно листу Мёбиуса.
- **4.** Нарисуйте на плоскости множество точек, которое (a)* может быть образом непрерывной кривой, но не может быть образом гладкой кривой (Ответ необходимо обосновать!); (б) может быть гладкой, но не может быть образом регулярной кривой.
 - **5.** Пусть $f: \mathbb{R}^n \to \mathbb{R}$ гладкая функция,

$$\Sigma_C = \{ x \in \mathbb{R}^n \mid f(x) = C \}$$

её множество уровня и grad $f(x) \neq 0$, $x \in \Sigma_C$. Докажите, что в этом случае на Σ_C можно ввести структуру гладкого (n-1)-мерного многообразия.

- 6. Докажите, что у регулярной поверхности существует гладкий атлас.
- 7. Пусть (M,A) и (\tilde{M},\tilde{A}) многообразия с заданными на них гладкими $C^{(k)}$ -структурами. Гладкие структуры (M,A) и (\tilde{M},\tilde{A}) считаются изоморфными, если существует такое $C^{(k)}$ -отображение $f:M\to \tilde{M}$, которое имеет обратное $f^{-1}:M\to \tilde{M}$ также $C^{(k)}$ -отображение в атласах A,\tilde{A} .
- (а) Покажите, что гладкая структура на \mathbb{R} , заданная картой $\varphi(x)=x^{2k+1}$, изоморфна, но не равна, гладкой структуре на \mathbb{R} , заданной картой $\psi(x)=x^{2n+1},\,k\neq n.$
 - (б) Покажите, что на \mathbb{R} все структуры одинаковой гладкости изоморфны.
- (в)* Покажите, что на окружности S^1 любые две $C^{(\infty)}$ -структуры изоморфны. (Отметим, что это свойство остается верным вплоть до сферы S^6 , а на сфере S^7 , напротив, существуют неэквивалентные $C^{(\infty)}$ -структуры.)
- 8.* Докажите, что гладкая замкнутая кривая на плоскости, не имеющая самопересечений, имеет не менее четырёх экстремумов кривизны.

Решения

Задача 1

Сопоставим каждому треугольнику точку a на $\mathbb S$ и длины сторон $l_1, l_2 > 0$. Таким образом мы построили биекцию $\varphi: \triangle \to (a, l_1, l_2)$.

$$a \in \mathbb{S}, \ l_1, l_2 \in \mathbb{R}_+ \to (a, l_1, l_2) \in \mathbb{S} \times \mathbb{R} \times \mathbb{R}$$

Открытые множества $U_1 \times U_2 \times U_3 \subset \mathbb{S} \times \mathbb{R} \times \mathbb{R}$. Карты на $S^1 \times \mathbb{R}_+ \times \mathbb{R}_+$ – это $(U_1 \times U_2 \times U_3, \ \varphi_1 \times \varphi_2 \times \varphi_3)$

Карты на S^1 – 2 интервала S^1/A_1 и S^1/A_2 , эти каты согласованы. $\varphi_2 \circ \varphi_1^{-1}(a) = \varphi_2(b) = c$

Карты на \mathbb{R}_+ это ((a,b),f)

$$f = f_1 \circ f_1'$$
 $f_1': x \to -\frac{2}{a-b}x + \frac{a+b}{a-b} = \frac{a+b-2x}{a-b}$ то есть $(a,b) \to (1,1)$
 $f_1: x \to \tan \frac{\pi x}{2}$

Тогда $(a,b) \sim \mathbb{R}$

Проверим согласованность карт $((a,b), f_{ab})$ и $((c,d), f_{cd})$

$$(f_1 \circ f_1')^{-1} = f_1'^{-1} \circ f_1^{-1}$$

$$f_2 \circ (f_2' \circ f_1'^{-1}) \circ f_1^{-1} = \frac{x(b-a) + (a+b) - (c+d)}{d-c}$$

$$x \in (c,b)$$

$$y_{1} = \frac{2x - (a+b)}{b-a}$$

$$x = \frac{2y - (a+b)}{b-a}$$

$$y_{2} = \frac{x(b-a) + (a+b)}{2}$$

$$y_{1} \circ y_{2} = x$$

$$y_{2} \circ y_{1} = x$$

Следовательно отображение линейное, откуда следует что оно биективное и c-1 диффеоморфизм Таким образом все карты $(U_1 \times U_2 \times U_3, \ \varphi_1 \times \varphi_2 \times \varphi_3)$ согласованы.

(a)
$$x^2+y^2+z^2=1$$
 A_1,A_2 – полюса Пусть $U_1=S^2/A_1,\ U_2=S^2/A_2$ $\varphi_1:(x,y,z)\to\left(\frac{x}{1-z},\frac{y}{1-z}\right)$ $\varphi_2:(x,y,z)\to\left(\frac{x}{1+z},\frac{y}{1+z}\right)$

Отображение перехода

$$\varphi_{12} = \varphi_2 \circ \varphi_1^{-1}$$

$$(x, y, z) \neq (0, 0, \pm 1)$$

$$\varphi_1^{-1}(x, y) = \left(\frac{2x}{|a|^2 + 1}, \frac{2y}{|a|^2 + 1}, \frac{|a|^2 - 1}{|a|^2 + 1}\right)$$

$$|a|^2 = x^2 + y^2$$

$$\varphi_{12} = \left(\frac{x}{|a|^2}, \frac{y}{|a|^2}\right) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

$$J = \begin{vmatrix} \frac{y^2 - x^2}{(x^2 + y^2)^2} & \frac{-2xy}{(x^2 + y^2)^2} \\ \frac{-2xy}{(x^2 + y^2)^2} & \frac{x^2 - y^2}{(x^2 + y^2)^2} \end{vmatrix} = \frac{1}{(x^2 + y^2)^2} \begin{vmatrix} y^2 - x^2 & -2xy \\ -2xy & x^2 - y^2 \end{vmatrix} \neq 0$$

Следовательно отображение гладкое

(б) зададим A_1, A_2, U_1, U_2 аналогично пункту (а)

$$\varphi_1: (x_0, \dots, x_n) = \left(\frac{x_0}{1 - x_n}, \dots, \frac{x_{n-1}}{1 - x_n}\right)
\varphi_2: (x_0, \dots, x_n) = \left(\frac{x_0}{1 + x_n}, \dots, \frac{x_{n-1}}{1 + x_n}\right)
\varphi_2 \circ \varphi_1^{-1}: (x_0, \dots, x_n) = \left(\frac{x_1}{x_1^2 + \dots + x_n^2}, \dots, \frac{x_n}{x_1^2 + \dots + x_n^2}\right)$$

3

Следовательно оно гладкое

Посчитаем Якобиан

$$\frac{\partial \varphi_{12}}{\partial x_1} = \frac{x_1^2 + \ldots + x_n^2 - 2x_1^2}{(x_1^2 + \ldots + x_n^2)^2} = \frac{-x_1^2 + \ldots + x_n^2}{(x_1^2 + \ldots + x_n^2)^2}$$

$$\frac{\partial \varphi_{12}}{\partial x_2} = \frac{-2x_1x_2}{(x_1^2 + \ldots + x_n^2)^2}$$

$$\begin{vmatrix}
-x_1^2 + \ldots + x_n^2 & -2x_1x_2 & -2x_1x_3 & \ldots & -2x_1x_n \\
-2x_1x_2 & x_1^2 - x_2^2 + \ldots + x_n^2 & \ddots & \ddots & \vdots \\
-2x_1x_2 & x_1^2 - x_2^2 + \ldots + x_n^2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
-2x_1x_n & \dots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
-2x_1x_n & \dots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
-2x_1x_n & \dots & \dots & -2x_{n-1}x_n & x_1^2 + \ldots + x_n^2
\end{pmatrix}$$

$$= -(x_1^{2n} + \ldots + x_n^{2n}) + \ldots \neq 0$$

(в) Допустим что можно покрыть одной картой, тогда по определению карты существует гомеоморфизм $\varphi : \mathbb{S}^n \to \mathbb{R}^n$, но S^n компакт, так как оно закрыто и ограничено (можно рассмотреть норму $|\cdot| : \mathbb{R}^n \to [0, +\infty)$ и $S^n = |\cdot|^{-1}(1)$), в то время как \mathbb{R}^n не компакт так как его открытое покрытие $\{B(0,n) \mid n=1,\ldots,\infty\}$ не имеет конечного подпокрытия.

Задача 3

Заметим, что можно построить сюръективное отображение из множества ненулевых векторов(с началом в любой точке плоскости) во множество прямых на плоскости. Рассмотрим $A=\mathbb{R}^2\times(\mathbb{R}^2/0)$, где перва точка отождествляется с началом вектора, а вторая является самим ненулевым вектором и введем на данном пространстве стандартную топологию. Теперь зададим отношение эквивалентности векторов $(p_1,v_1)\sim(p_2,v_2)\Leftrightarrow v_1\parallel v_2\wedge(p_1-p_2)\parallel v_1$. Таким образом мы можем отождествить A/\sim со множеством всех прямых плоскости и задать на нем стандартную фактор-топологию.

Заметим, что любую прямую на плоскости можно задать как ax+by+c=0, таким образом построив биекцию с тройками (a,b,c), причем можно заметить, что $(a,b,c)\sim(\lambda a,\lambda b,\lambda c)$ и тогда каждая прямая отождествляется с соответствующей ей тройкой в однородных координатах $ax+by+c\to(a:b:c)$ и множество прямых является подмножеством RP^2 (так как там отсутствует точка a=b=0).

(a*)

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

 $|\sin\left(\frac{1}{x}\right)|<1$ ограничена, а x=0 при $x\to 0$ следовательно функция непрерывна в 0 Если функция гладкая то её производная существует и непрерывна

$$f'=\sin\frac{1}{x}+x\cos\frac{1}{x}\cdot-\frac{1}{x^2}=\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x}$$

 $\sin\frac{1}{x}$ имеет разрыв в 0, а следовательно и f'имеет разрыв, откуда следует что f не гладкая.

(б) <u>Гладкая кривая</u> – это гладкое отображение $f:I\to\mathbb{R}^n$, где $I\subset\mathbb{R}$ является открытым множеством. Геометрическим объектом в данном случае является $f(I)\subset\mathbb{R}$

<u>Регулярная кривая</u> – это гладкая кривая $f:I \to \mathbb{R}^n$ для которой выполнено что $\forall t \in I: \ \dot{f}(t) \neq 0$

$$\gamma:(-\infty,\infty) o\mathbb{R}^2$$

$$t \to (t^2, t^3)$$

$$\frac{\partial t^2}{\partial t} \neq 0$$

$$\frac{\partial t^3}{\partial t} \neq 0$$

Дифференцируема, а следовательно гладкая

$$||v|| = ||(2t, 3t^2)|| = \sqrt{4t^2 + 9t^2} = 0$$
 при $t = 0$

Пусть (x_0^1,\ldots,x_0^n) – координаты точки x_0 в пространстве \mathbb{R}^n и $\frac{\partial f}{\partial x^i}(x_0)\neq 0$. Рассмотрим точку $v_0=(x_0^1,\ldots,x_0^{i-1},x_0^{i+1},\ldots,x_0^{i+1},\ldots,x_0^{$

$$\begin{split} x_0^i &= y^i(x_0^1,\dots,x_0^{i-1},x_0^{i+1},\dots,x_0^n) \\ |x_0^i - y^i(x^1,\dots,x^{i-1},x^{i+1},\dots,x^n)| &< \delta \text{ на } V_i \\ \text{множество } U_i &= \delta_c \cap (V \times (x_0^i - \delta,x_0^i + \delta)) \subset \mathbb{R}^n \text{ совпадает с множеством} \\ \{(x^1,\dots,x^{i-1},y^i(x^1,\dots,x^{i-1},x^{i+1},\dots,x^n),x^{i+1},\dots,x^n) \mid (x^1,\dots,x^{i-1},x^{i+1},\dots,x^n) \subset V\} \end{split}$$

Рассмотрим (U_i, φ_i) в качестве карты в окрестности точки x_0 .

Это возможно так как $\varphi_i(U_i) = V_i$ и обратное отображение задается равенством $\varphi_i^{-1}(x^1,\dots,x^{i-1},x^{i+1},\dots,x^n) = (x^1,\dots,x^{i-1},y^i(x^1,\dots,x^{i-1},x^{i+1},\dots,x^n),x^{i+1},\dots,x^n)$

Отображение перехода $\varphi_j \varphi_i^{-1} : \varphi(U_i \cap U_j) \to V_j$ имеет вид $(x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^n) \to (x'^1, \dots, x'^{j-1}, x'^{j+1}, \dots, x'^n)$ где $x^a = x'^a$ при $a \neq i$ и $x'^i = y^i(x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^n)$ и, следовательно, гладкое.

Задача 6

Поверхность $f(x_1,\ldots,x_n)=0$

<u>Карты регулярной поверхности</u> – локальные окрестности $x \in U$, которым гомеоморфно $V \subset \mathbb{R}^n$ (некое открытое множество)

Тогда каждое множество, удовлетворяющее условию, будет картой, рассмотрим 2 из них

Проверим согласованность карт $(U_1,f_1),\; (U_2,f_2)$ в точке $x=(x_1,\ldots,x_n)$

$$f_1(x_1,\dots,x_n) = f(x_2,x_3,\dots,x_n)$$

$$f_2(x_1,\dots,x_n) = f(x_1,x_3,\dots,x_n)$$

$$f_{12} = f_2 \circ f_1^{-1}(x_2,x_3,\dots,x_n) = f_2(f_1(x_2,\dots,x_n),x_2,\dots,x_n) = (f_1(x_2,\dots,x_n),x_3,\dots,x_n)$$

$$x_1 = f_1(x_2,\dots,x_n)$$

$$x_2 \to f_1(x_2,\dots,x_n)$$

$$x_3 \to x_3$$

$$\dots$$

$$x_n \to x_n$$

$$J = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_3} & \dots & \frac{\partial f_1}{\partial x_n} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix} \neq 0$$
 так как $\frac{\partial f_1}{\partial x_1} \neq 0$ так как теорема о неявной функции применима
$$\frac{\partial f_1}{\partial x_1} \neq 0$$
 так как теорема о неявной функции применима

(а) $(\mathbb{R}, \varphi), (\mathbb{R}, \psi)$ – гладкие структуры

$$\varphi(x) = x^{2k+1}$$
$$\psi(x) = x^{2n+1}$$
$$k \neq n$$

Атласы (\mathbb{R},φ) и (\mathbb{R},ψ) не одинаковые, так как \bigcup атласов не является атласом.

$$\psi\circ\varphi^{-1}(x)=x^{\frac{2n+1}{2k+1}}$$

$$\varphi\circ\psi^{-1}(x)=x^{\frac{2k+1}{2n+1}}$$

$$x^{\frac{2n+1}{2k+1}}\cdot x^{\frac{2k+1}{2n+1}}=x$$
 следовательно $J\left(x^{\frac{2n+1}{2k+1}\prime}\right)=J\left(\frac{2n+1}{2k+1}\cdot x^{\frac{2k+1}{2n+1}-1}\right)$ или $J\left(x^{\frac{2k+1}{2n+1}\prime}\right)=J\left(\frac{2k+1}{2n+1}\cdot x^{\frac{2n+1}{2k+1}-1}\right)$ не существует в точке $x=0$

Следовательно карты не согласованы и отображение перехода не гладкое

$$\exists f: \varphi(x) \to \psi(x)$$
$$f: x \to x^{\frac{2k+1}{2n+1}}$$

Тогда $g: x \stackrel{id}{ o} \psi \circ f \circ \varphi^{-1}(x) = x$ – диффеоморфизм

(б)

(B*)

Задача 8*