Managing Ambiguity in Regression Ensembles

Yuri Zelenkov
Graduate School of Business
HSE University

Ensemble taxonomy

Regression problem

Problem

$$h: X \to Y, \quad X \subset \mathbb{R}^k, \quad Y \subset \mathbb{R}$$

Approximation f of h is obtained by applying a learning algorithm A with the hyperparameters θ to the training set \mathcal{D} , so $f = A(\mathcal{D}, \theta)$. The goodness of f is assessed by

$$L(y,f) = (y-f)^2$$

Let
$$f$$
 is a convex ensemble $f_E = \sum_{i=1}^M w_i f_i$ $\sum_{i=1}^M w_i = 1, \ w_i \geq 0, \ i = 1, \ldots, M$

Ambiguity Decomposition

Let f_E be an ensemble of M regressors f_i , i = 1...M, i.e. f_E is a convex combination of the individual estimators

$$f_E = \sum_{i=1}^{M} w_i f_i, \sum_{i=1}^{M} w_i = 1, \ w_i \ge 0, \ i = 1, \dots, M.$$

According to (Krogh & Vedelsby, 1995), at an arbitrary single data point the quadratic error of the ensemble can be decomposed into two terms

$$(f_E - y)^2 = \sum_{i=1}^{M} w_i (f_i - y)^2 - \sum_{i=1}^{M} w_i (f_i - f_E)^2$$
 (1)
weighted error ambiguity

Mathematical Formulation-1

Suppose, we have an ensemble $f_E^{(M-1)}$ of M-1 trained estimators f_i and we want to add a new estimator f_M to minimize the total error:

$$f_M, w = \underset{f, w}{\operatorname{arg\,min}} (y - f_E^M)^2$$

Let
$$w_i=1/M$$
 , thus $f_E^{(M)}=rac{1}{M}\sum_{i=1}^M f_i=rac{1}{M}\left(\sum_{i=1}^{M-1} f_i+f_M
ight)$

So, the loss fucntion is

$$L(y, f_E^{(M)}) = \left(y - \frac{M-1}{M} f_E^{(M-1)} - \frac{1}{M} f_M\right)^2.$$

Mathematical Formulation - 2

$$L(y, f_E^{(M)}) = \left[y - \frac{M-1}{M} f_E^{(M-1)} - \frac{1}{M} f_M\right]^2$$

$$\frac{\partial L(y, f_E^{(M)})}{\partial f_M} = -\frac{2}{M} \left(y - \frac{M-1}{M} f_E^{(M-1)} - \frac{1}{M} f_M\right) = 0$$

$$t_M = My - (M-1) f_E^{(M-1)}$$

As

$$f_E^{(M-1)} = \frac{1}{M-1} \sum_{i=1}^{M-1} f_i$$

Then, target to train f_M

$$t_{M} = My - \sum_{i=1}^{M-1} f_{i} \qquad => \qquad (y - t_{M})^{2} - (t_{M} - f_{E}^{(M)})^{2} = 0$$

Managing Ambiguity Algorithm

Algorithm 1 Managing Ambiguity Ensemble

Input: dataset $\{(x_i, y_i)\}_{i=1}^N$, number of iterations M Fit an initial learner f_1 using training set $\{(x_i, y_i)\}_{i=1}^N$ for m = 2 to M do

- 1. Compute new targets $t_i^m = my_i \sum_{j=1}^{m-1} f_{ji}$ for $i = 1, \dots, N$.
- 2. Fit a base learner f_m using training set $\{(x_i, t_i^m)\}_{i=1}^N$.
- 3. Update the model $f_E = \frac{1}{m} \sum_{i=1}^m f_i$.

end for

Synthetic Dataset

Inputs X are independent features uniformly distributed on the interval [0, 1]. The output y is created according to the formula:

$$y = 10\sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + noise * \mathbb{N}(0,1)$$

Out of the *n* features features, only 5 are actually used to compute *y*. The remaining features are independent of y.

 $\verb|sklearn.datasets.make_friedman1| (n_samples=10000, n_features=20, noise=0.1, random_state=101)| \\$

MODEL	$L(y,f_E)$	M	l_r	d	S	F
GB	0.201 (0.011)	163	0.113	5	-	-
SGB	0.165 (0.007)	200	0.102	7	0.872	0.845
DART	0.138 (0.007)	166	0.249	9	_	_
SDART	0.115 (0.009)	164	0.297	6	0.883	0.834
BR	1.348 (0.071)	192	_	_	0.904	0.963
RF	1.302 (0.070)	157	_	_	0.999	0.804
MA	0.064 (0.004)	190	_	5	_	_

Comparison with Gradient Boosting

$$RLR_{m} = \frac{L(y, f_{E}^{m-1}) - L(y, f_{E}^{m})}{L(y, f_{E}^{m-1})}$$

Fig. 1. The contribution of estimtors for different GB algorithms

Number of estimators

Number of estimators

Comparison with Random Forest

$$\frac{1}{N} \sum_{j=1}^{N} (f_{Ej} - y_j)^2 = \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{M} w_i (f_{ij} - y_j)^2 - \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{M} w_i (f_{ij} - f_{Ej})^2 =$$

$$= \sum_{i=1}^{M} \left[\frac{1}{N} \sum_{j=1}^{N} (f_{ij} - y_j)^2 - \frac{1}{N} \sum_{j=1}^{N} (f_{ij} - f_{Ej})^2 \right].$$

$$e_i = \sum_{j=1}^{N} (f_{ij} - y_i)^2 / N$$
 $a_i = \sum_{j=1}^{N} (f_{ij} - f_{Ej})^2 / N$

train_test_split(test_size= 0.25)

Managing Ambiguity ($e_{train} = 0.220$, $e_{test} = 0.432$)

Random Forest ($e_{train} = 0.256$, $e_{test} = 1.592$)

TABLE III
EXPERIMENT RESULTS.

DATASET	SAMPLES	FEATURES	SCALING	BR	GB		MA	
AIRFOIL	1503	3	1.0E+00	12.920(8.185)	11.361(7.240)	*	10.612(6.773)	*
AUTO	392	7	1.0E+00	8.280(5.776)	8.240(5.228)		8.148(5.230)	
BANK8FM	8192	8	1.0E+01	0.096(0.007)	$0.088(\ 0.005)$	*	$0.093(\ 0.005)$	
BIKE	17379	12	1.0E-02	0.382(0.178)	$0.284(\ 0.109)$	*	0.300(0.135)	
BOSTON	506	13	1.0E+00	21.750(25.761)	17.858(19.881)		18.302(23.422)	
CADATA	20640	8	1.0E-05	0.494(0.222)	$0.400(\ 0.165)$	*	0.420(0.153)	*
CART	40768	10	1.0E+00	1.293(0.026)	1.002(0.021)	*	0.996(0.020)	*\$
CARSEATS	400	10	1.0E+00	2.390(0.534)	1.700(0.419)	*	1.391(0.281)	*\$
CCPP	9568	4	1.0E+00	10.645(1.312)	9.087(1.417)	*	9.540(1.634)	*
CONCRETE	1030	8	1.0E-01	0.222(0.053)	0.157(0.054)	*	$0.138(\ 0.055)$	*\$
EGRID	10000	12	1.0E+03	134.331(10.363)	73.125(5.553)	*	47.264(2.691)	*
ELEVATORS	16599	18	1.0E+03	8.224(2.187)	5.010(0.858)	*	4.629(0.764)	*
FACEBOOK	40949	53	1.0E+00	478.411(168.689)	477.693(201.241)		471.570(199.857)	
HOUSE	22784	16	1.0E-03	1009.607(108.110)	999.840(91.138)		1013.261(88.251)	
KIN8NM	8192	8	1.0E+01	1.919(0.096)	1.420(0.086)	*	1.180 (0.071)	*\$
LASER	933	4	1.0E+00	67.709(93.933)	68.342(73.960)		54.882(77.498)	\diamond
SMARKET	1250	7	1.0E+01	138.414(108.073)	129.260(103.732)	*	140.175(107.545)	
STOCK	950	9	1.0E+00	8.797(8.449)	7.259(7.308)		5.904(4.963)	
TREASURY	1049	15	1.0E+00	0.056(0.030)	0.051(0.028)		$0.042(\ 0.023)$	*
WANKARA	1609	9	1.0E+00	1.893(0.221)	1.836(0.185)		1.655(0.224)	*\$

Python Code

https://github.com/yzelenkov/Managing-Ambiguity

QUESTIONS?