Personal data detection in free text

Candidate:

Gabriele Gioetto

Supervisors:

Dr. Francesco Di Cerbo

Prof. Paolo Papotti

Prof. Giuseppe Rizzo

1. HR Ticket dataset generator

Dear Sir/Madame, my name is Charlene Coleman and I work at Smith LLC United States.

I think my salary is under range of around 6000 USD per month which was given by management in March 2015 after a discussion with HR department during that period.

2. Use cases

Classification

Anonymization

Named Entity Recognition

1. HR Ticket Generation

HR Ticket Generation

- Objective: generate fake tickets sent to HR to train Machine Learning models
- Why fake? GDPR personal data
- Method: start from a dataset of real data to reflect real world distributions in the generated tickets

Our Approach

Creation of a Taxonomy of HR Tickets Topics

- Family situations, health conditions, work conditions (compensation)...
- Identification of key elements for each topic (e.g. type of disease, sick leave length etc)

Gathering of Open Data HR information

• Public information on absenteism, discrimination at work, salary conditions ...

Ticket Generation from Open Data

 Definition of methodology to combine key topic elements with randomly generated profile information and use all data to generate an HR ticket

Taxonomy

Taxonomy

Taxonomy (Variables)

Category	Sub-category	variables
Ask Information	Accommodation	location, duration
Complaint	About coworker	complaint, reason
	About superior	complaint, reason
Timetable change	Shift change	reason_of_change, old_date, new_date
Salary	Salary raise	old_salary, new_salary, increase, work_title
	Gender pay gap	wage_gap
Life Event	Health issues	disease, number_of_days_of_sick_leave
	Personal issues	issue, number_of_days
Refund	Travel	from, to, date_travel

Method

1) Create an **employee dataset** (with random names, surnames, mails, companies, ...)

name	first_name	last_name	nationality	country	email	company	company_email	ticket_date
Jivin Samra	Jivin	Samra	IN	US	jivin.samra@sathe.com	Sullivan-Byrd United States	hr@SullivanByrd.com	27/06/2018
Anna Tschentscher	Anna	Tschentscher	DE	DE	atschentscher@hauffer.com	Dobes GbR Germany	hr@DobesGbR.com	7/5/2017
Sigfried Eberth	Sigfried	Eberth	DE	US	sigfried.eberth@hoevel.de	Barrett-Davis United States	hr@BarrettDavis.com	17/01/2021
Marcia Hays	Marcia	Hays	US	DE	mhays@walsh.info	Kobelt Kostolzin AG & Co. KGaA Germany	hr@KobeltKostolzinAGCoKGaA.com	9/8/2017
Christopher Harrison	Christopher	Harrison	US	DE	charrison@sanchez-lang.net	Walter Germany	hr@Walter.com	10/10/2017

2) Create **additional employees' information** with respect to the type of ticket, following statistical distribution from real data set

name	work_title	prev_salary	standard_	increase_	new_salary
Jivin Samra	operations specialties manager	139700	559.6	0.08	150900
Anna Tschentscher	protective service occupation	52900	320.52	0.05	55500
Sigfried Eberth	home health and personal care aides; and	30200	121.76	0.09	32900
Marcia Hays	driver/sales workers and truck driver	45300	272.76	0.06	48000
Christopher Harrison	all occupation	58200	116.52	0.06	61700

Datasets used

List of dataset used in the project:

- <u>Absenteeism at work Data Set</u>: records of **absenteeism at work** from July 2007 to July 2010 at a courier company in Brazil
- <u>National Occupational Employment and Wage Estimates United States</u>: **wage estimates** calculated with data collected from employers **in all industry sectors** in metropolitan and nonmetropolitan areas in every state and the District of Columbia
- <u>List of events of life</u>: list of major **events in life**
- Gender pay gap in the UK: list of UK companies with average pay gap amongst genders
- OpenFlights Database: datasets of airports and flights all over the world
- <u>Geonames all cities with a population over 1000</u>: datasets of all **cities** of the world with a population over 1000 people

Aggregated: the information are aggregated (Ex: average salary)

Work Title	Annual mean wage
Sales manager	\$142,390
Cook	\$29,560

Single Record: there is a record for each employee

Employee ID	Reason for Absence	Time off
1	Pregnancy	120 days
2	COVID	10 days

Privacy of datasets

Bayesian Networks

Calculate **correlations** between the attributes in the dataset, allowing us to approximate the distribution of data. Noise is then injected into each marginal to uphold the **differentially private** guarantee. We create a new dataset by sampling from these distributions.

Used when there is a **record** in the dataset **for each employee**

Gaussian Noise

Add **gaussian noise** to the numerical features to augment the privacy guarantees.

Used when the data in the dataset are already **aggregated** (Ex: Mean salary)

Ticket Generation (Template)

```
From: ${email}
To: ${company email}
                                                                      Information about the employee
First name: $\first name}
                                                                      Generated with Faker )
Last name: ${last name}
Company: ${company}
Date: $\ficket date\}
Ticket category: ${category}
Ticket sub-category: ${sub category}
Date start absence: ${date start absence}
                                                                    Information specific to the
Reason absence: ${reason}
                                                                    category (Sampled from datasets)
Subject: Request for sick leave for ${number of days}
                                                                   Ticket text ( Generated with
Dear Sir/Madame, my name is $\frac{\$name}{\} and I work at
                                                                   generative model)
$\{company\}. I am requesting . I hope <generate>
```

Ticket Generation (GPT-J)

GPT-J is an open source generative model developed by EletheurAI

• It achieves similar performances to GPT-3

Trained on the Pile dataset

• The Pile dataset is an 825GB English text corpus composed by Academic, Internet, Prose, Dialogue and Misc categories

Two main differences with GPT-3

- Rotary Embedding
- Attention layer and feed forward layer in parallel

Ticket Generation (Parameters)

- Min length
- Max length
- Top k
- Top p
- Temperature
- Repetition penalty

- Length penalty
- No repeat ngram size
- Num beams
- Do sample
- Bad words
- Force words

Ticket Generation (Complete Schema)

Ticket Generation (Survey)

Why?

• To understand if the tickets generated by the model were **similar** to real tickets

How?

• We gave each respondent a excel file with 20 random prompts to fill

No personal data

• Each prompt had some info attached. We asked the respondent to use the info to write the ticket in a way that felt natural to them

Ticket Generation (Survey)

Ticket details		Detail used (X if yes, empty if not)			ot)
First name	Zachary				
Last name	Traore				
Ticket category	Life event				
Ticket sub-category	Health issues				
Date start absence	18/07/2017				
Reason absence	COVID	X			
Subject	Request for sick leave for 2 days				
	Ticket text				
	Dear Sir/Madame, I am positive to COVID and I cannot come				
	to work for the next days. I don't exactly know when I will be				
	able to return to work. Zachary				

• TTR

$$TTR = \frac{number_of_unique_bigrams}{total_number_of_bigrams}$$

NOUN RATIO

$$noun_ratio = \frac{counter_noun_words}{counter\ all\ words}$$

VERB RATIO

$$verb_ratio = \frac{counter_verb_words}{counter_all_words}$$

WORD FREQUENCY

$$word_freq = \begin{cases} log_e(word_freq_wiki), & \text{if } word_freq_wiki \ge 10 \\ skip, & \text{otherwise} \end{cases}$$

Main Takeaways:

- The model tends to write more unique words and not to repeat itself
- The model tends to use **more nouns** than a real person
- The model tends the same number of verbs as a real person
- The average number of words (word count) varies a lot from category to category, both in generated and survey tickets

BERTopic

BERTopic

Topic Word Scores

2. Use Cases

USE CASES

WHY?

• In order to assess the **suitability** of the HR ticket dataset for downstream ML tasks

HOW?

- Training set: HR ticket dataset generated by our application
- **Test set**: HR tickets gathered with survey

TASKS

- Classification
- Anonymization
- Named Entity Recognition

Classification

Classification of the tickets' categories

Two models:

- BERT
- FastText

Classification (Results)

F1 score: **0.78**

Hyperparameters:

Epochs: 5

Learning rate: 5e-05

Weight decay: 0.001

Batch size: 8

Warmup steps: 500

Anonymization

Classical anonymization

The new intern at my office, the one with red hair, caught covid last week

The new intern at my office, the one with red hair, caught covid <DATE_TIME>

Our anonymization

The new intern at my office, the one with red hair, caught covid last week

An employee was sick last week

Anonymization

Dear Sir/Madame,
my name is Charlene
Coleman and I work at
Smith LLC United States.

I think my salary is under range of around 6000 USD per month which was given by management in March 2015 after a discussion with HR department during that period.

Summarization and anonymization

Using a few-shot approach with model T5, removing personal info without affecting the content needed for analysis matters

The employee requests a salary raise of 6000 USD per month

Evaluation of the summarization and anonymization of the tickets using:

- question-answering models
- cosine-similarity

Anonymization (Evaluation: QAGS)

Anonymization (Evaluation: SummaQA)

- SUMMAQA

Named Entity Recognition (Classical)

NER on the tickets' entities (the entities are the variables taken from the datasets)

Main Problem:

The model could not recognize from entites with almost identical format but used in different context (Ex: a date of start absence, entity belonging to the requests of time off due to health reasons, and a date of travel, entity belonging to requests of refund for travel).

Named Entity Recognition (with Spacy pre-trained model)

Look for entities with Spacy

Dear Sir/Madame,
my name is Patrick
Lagarde. Could you help
me finding a nice place
to stay for the next
twelve month in Tours
(France)? The cost will
be around 300\$ per
month depending on the
house type.

Named Entity Recognition

Tokenize and find token of entities' positions

Dear Sir/Madame,
my name is Patrick
Lagarde. Could you help
me finding a nice place
to stay for the next
twelve month in Tours
(France)? The cost will
be around 300\$ per
month depending on the
house type.

Named Entity Recognition

TRAINING

Dear Sir/Madame,
my name is Patrick
Lagarde. Could you help
me finding a nice place
to stay for the next
twelve month in Tours
(France)? The cost will
be around 300\$ per
month depending on the
house type.

34

Results

F1 score: **0.96**

Thanks for the attention!