Révision 1 – Résolution des problèmes de statique – Statique 2D

TD 01

Modélisation d'un hayon de coffre électrique

Concours Centrale Supelec TSI 2013

Savoirs et compétences :

Mise en situation

Le PCS (Power Closure System), conçu par Valéo, est un système d'ouverture et de fermeture automatique de hayon de coffre automobile. Le système étant symétrique, les deux vérins sont ramenées dans le plan d'évolution de la porte de coffre et leur action mécanique s'exerçant sur la porte de coffre est supposée identique.

On donne un diagramme d'exigence partiel du système étudié.

Objectif

- Déterminer les caractéristiques du vérin répondant au cahier des charges : longueur du vérin en position coffre ouvert et coffre fermé, course du vérin, raideur du ressort équipant le vérin.
- Déterminer le couple moteur maximal nécessaire pour le maintien en position du hayon.
- Déterminer le courant de pincement afin que l'effort de pincement soit inférieure à 40 N pendant 10 ms.

Le repère $(B; \overrightarrow{x_t}, \overrightarrow{y_t}, \overrightarrow{z_0})$ est lié à la Terre. L'accélération de la pesanteur s'écrit $\overrightarrow{g} = -g \overrightarrow{y_t}$ avec $g = 9.81 \, \mathrm{m \, s^{-2}}$. La structure du véhicule et la porte de coffre sont en liaison pivot d'axe $(B, \overrightarrow{z_0})$.

Le repère $(B; \overrightarrow{x_p}, \overrightarrow{y_p}, \overrightarrow{z_0})$ est lié à la porte de coffre S_1 de masse M=30 kg. Le repère $(B; \overrightarrow{x_v}, \overrightarrow{y_v}, \overrightarrow{z_0})$ est lié au corps du vérin. La sortie de tige par rapport au corps du vérin S_3 se fait dans la direction du vecteur $\overrightarrow{x_v}$. Les liaisons entre le corps du vérin S_3 et le bâti S_0 ainsi qu'entre la

tige du vérin S_2 et la porte de coffre S_1 sont des liaisons rotules de centres respectifs A et C. Le point D représente l'extrémité de la porte du coffre. La hauteur du point D par rapport au sol suivant la verticale est de 0,7 m en position coffre fermé et de 1,8 m en position coffre ouvert.

Caractéristiques géométriques du vérin

Le centre d'inertie du coffre est situé en G tel que $\overrightarrow{BG} = \lambda \overrightarrow{x_p}$ avec $\lambda = 0.6$ m.

 $\overrightarrow{AB} = -a\overrightarrow{x_0} + b\overrightarrow{y_0}$, $\overrightarrow{AC} = L\overrightarrow{x_v}$, $\overrightarrow{BC} = c\overrightarrow{x_p}$, $\overrightarrow{BD} = d\overrightarrow{x_p}$ avec $a = 0.55 \,\mathrm{m}$, $b = 0.14 \,\mathrm{m}$, $c = 0.14 \,\mathrm{m}$ et $d = 1 \,\mathrm{m}$. L'angle formé entre $\overrightarrow{x_0}$ et l'horizontale $\overrightarrow{x_t}$ est $\theta_0 = 42^\circ$.

Question 1 Déterminer l'angle d'ouverture maximal.

Question 2 Déterminer la longueur du vérin L en fonction de l'angle d'ouverture du coffre θ .

On donne la courbe donnant l'évolution de la course du vérin en fonction de l'ouverture du hayon.

Question 3 Déterminer les valeurs extrêmes de L, ainsi que la course du vérin.

1

Dimensionnement des caractéristiques du ressort

Les vérins utilisés sont constitués d'un moteur à courant continu, d'un réducteur à engrenage, d'une vis à billes et d'un ressort. Ce dernier permet d'assurer l'équilibre de la porte de coffre en cas de panne des vérins électriques.

On suppose dans un premier temps que le coffre est à l'équilibre.

Question 4 Déterminer l'effort F exercé par chacun des vérins sur la porte de coffre en fonction de θ , α et des constantes du problème.

En exploitant les équations obtenues à partir de l'écriture de la fermeture géométrique obtenue précédemment, on montre que la relation entre θ et α s'écrit : $\tan \alpha = \frac{b+c\sin \theta}{-a+c\cos \theta}.$

On déduit de la question précédente le tracé de l'évolution de l'effort F nécessaire au maintien en équilibre du coffre en fonction de la longueur L du vérin.

On choisit d'utiliser un ressort précontraint au sein du vérin de manière à assister l'ouverture du coffre et à assurer l'équilibre du coffre sur une plage de fonctionnement maximale. On estime que les forces de frottement maximales au sein du vérin (essentiellement dues à la friction dans la vis) sont de l'ordre de $F_{\rm frot} = 100\,{\rm N}$.

La figure précédente représente la force que doit exercer le vérin sur la porte de coffre pour assurer l'équilibre de cette dernière en fonction de la longueur du vérin. Les courbes en pointillés représentent la force du vérin $\pm 100\,\mathrm{N}$.

Question 5 Déterminer la raideur k du ressort et sa longueur à vide L_0 de manière à obtenir une situation d'équilibre sur la plus grande plage de fonctionnement. Préciser votre démarche.

La figure suivante représente l'évolution du couple moteur dans un vérin lors des phases d'ouverture et de fermeture du coffre.

Question 6 Déterminer le couple moteur maximal en phase d'ouverture puis en phase de fermeture.

Réglage de la fonction sécurité des personnes

Pour limiter le risque d'accident lié au pincement d'un utilisateur, il est nécessaire de limiter le couple du moteur à courant continu durant la phase de fermeture du hayon.

On envisage la présence d'un obstacle empêchant la fermeture du coffre. On modélise l'action de l'obstacle sur la porte de coffre par un glisseur s'appliquant en D et s'exprimant $\overrightarrow{F_{\text{pinc}}} = F_{\text{pinc}} \overrightarrow{y_p}$.

On cherche à déterminer l'accroissement de couple moteur en cas de présence d'obstacle. On suppose ainsi que la porte de coffre est en équilibre sous l'effet du poids et de l'action des vérins. On ajoute ainsi l'effort de pincement $F_{\rm pinc}$ en D et on cherche l'accroissement d'effort $\Delta F \vec{x}_v$ qu'exercent chacun des vérins en C sur la porte en la supposant en équilibre.

On donne la relation entre le couple moteur et la force fournie par le vérin en régime quasi-statique : $C_m = \rho F$ avec $\rho = 7.89 \times 10^{-5} \, \mathrm{m}$.

Question 7 Déterminer l'expression littérale puis la valeur numérique de ΔF l'accroissement de la force qu'exerce chacun des vérins sur la porte de hayon.

La constante de couple du moteur est donnée par $K_t = 9.5 \times 10^{-3} \,\mathrm{NmA^{-1}}$.

Question 8 En déduire la valeur numérique de l'accroissement ΔC_m de couple moteur en fonction de la présence d'un obstacle. Déterminer l'intensité maximale du courant dans le moteur lors d'un pincement.

Synthèse

Question 9 Réaliser un poster permettant de synthétiser comment les caractéristiques des composants ont été déterminés.

TD 01

Modélisation d'un hayon de coffre électrique

Concours Centrale Supelec TSI 2013

Savoirs et compétences :

Mise en situation

Caractéristiques géométriques du vérin

Question 1 Déterminer l'angle d'ouverture maximal.

L'angle d'ouverture est donc de 67,5°.

Question 2 Déterminer la longueur du vérin L en fonction de l'angle d'ouverture du coffre θ .

Correction

La longueur du vérin est donnée par la valeur de L. En réalisant la fermeture géométrique, on a $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \Leftrightarrow -a\overrightarrow{x_0} + b\overrightarrow{y_0} + c\overrightarrow{x_p} - L\overrightarrow{x_v} = \overrightarrow{0}$.

En projetant l'équation vectorielle dans \mathcal{R}_0 , on a :

$$\begin{cases} -a + c \cos \theta - L \cos \alpha = 0 \\ b + c \sin \theta - L \sin \alpha = 0 \end{cases}$$

On a donc $L^2 = (-a + c \cos \theta)^2 + (b + c \sin \theta)^2$.

Question 3 Déterminer les valeurs extrêmes de L, ainsi que la course du vérin.

Correction

La longueur du vérin varie de 43,3 cm à 56,5 cm soit une course de 13,2 cm.

Dimensionnement des caractéristiques du ressort

Question 4 Déterminer l'effort F exercé par chacun des vérins sur la porte de coffre en fonction de θ , α et des constantes du problème.

Correction

On isole le corps et le piston du vérin. L'ensemble est soumis à deux actions mécaniques (liaisons sphériques en A et C). D'après le PFS, cette action mécanique est donc suivant Ces deux actions mécaniques sont donc de même direction (le vecteur $\overrightarrow{x_n}$), de même norme et de sens opposé.

On isole le hayon h.

On réalise le BAME :

- action mécanique du vérin $v : \{\mathcal{T}(v \to h)\} = \left\{\begin{array}{c} F_v \overrightarrow{x_v} \\ \overrightarrow{0} \end{array}\right\}_C$;
- action de la pesanteur : $\{\mathcal{T}(\text{pes} \to h)\} = \left\{\begin{array}{c} -Mg\overrightarrow{y_t} \\ \overrightarrow{0} \end{array}\right\}_{C}$;
- action de la pivot en $B : \{ \mathcal{T}(0 \rightarrow h) \}.$

On cherche à connaître l'action du vérin en fonction des actions de pesanteur. On réalise donc le théorème du moment statique en B en projection sur $\overrightarrow{z_0}$:

$$(\overrightarrow{0} + \overrightarrow{BC} \wedge F_v \overrightarrow{x_v} + \overrightarrow{0} + \overrightarrow{BG} \wedge -Mg \overrightarrow{y_t}) \cdot \overrightarrow{z_0} = \overrightarrow{0} \Rightarrow (c \overrightarrow{x_p} \wedge F_v \overrightarrow{x_v} + \lambda \overrightarrow{x_p} \wedge -Mg \overrightarrow{y_t}) \cdot \overrightarrow{z_0} = \overrightarrow{0}$$

$$\Leftrightarrow c F_v \sin(\alpha - \theta) - \lambda M g \cos \theta = 0$$
$$F_v = \frac{\lambda M g \cos \theta}{c \sin(\alpha - \theta)}.$$

Dans le cas où on considère les deux vérins, on aura $F_1 = F_2 = F_{\nu}/2$.

Question 5 Déterminer la raideur k du ressort et sa longueur à vide L_0 de manière à obtenir une situation d'équilibre sur la plus grande plage de fonctionnement. Préciser votre démarche.

Si on isole la tige du vérin:

- en phase d'ouverture, le TRS s'exprime par : $F_m + F_r F_f F_h = 0 \Leftrightarrow F_r = F_f + F_h F_m$;
- en phase de fermeture, le TRS s'exprime par : $-F_m + F_r + F_f F_h = 0 \Leftrightarrow F_r = -F_f + F_h + F_m$;

La plage de fonctionnement la plus large est située entre 0,5 m et 0,56 m. La pente est la même pour les 3 courbes. Elle est d'environ $k=\frac{100}{0,06}\simeq 1667\,\mathrm{N\,m^{-1}}$.

En phase de fermeture, lorsque le vérin est déployé, la précharge permettant d'assurer l'équilibre est d'environ 500 N. L'écrasement est donc de 300 mm environ.

Question 6 Déterminer le couple moteur maximal en phase d'ouverture puis en phase de fermeture.

Correction

En phase d'ouverture, le couple maximal est de 4×10^{-3} Nm. En phase de fermeture il est de 3.5×10^{-3} Nm.

Réglage de la fonction sécurité des personnes

Question 7 Déterminer l'expression littérale puis la valeur numérique de ΔF l'accroissement de la force qu'exerce chacun des vérins sur la porte de hayon.

Correction

On isole le hayon et on réalise le BAME. Le théorème du moment statique en
$$B$$
 en projection sur $\overrightarrow{z_0}$:
$$(\overrightarrow{0} + \overrightarrow{BC} \wedge -2\Delta F \overrightarrow{x_v} + \overrightarrow{0} + \overrightarrow{BD} \wedge F_{\text{pinc}} \overrightarrow{y_0}) \cdot \overrightarrow{z_0} = \overrightarrow{0} \Rightarrow (c \overrightarrow{x_0} \wedge -2\Delta F \overrightarrow{x_v} + d \overrightarrow{x_0} \wedge F_{\text{pinc}} \overrightarrow{y_0}) \cdot \overrightarrow{z_0} = \overrightarrow{0} \Rightarrow -c 2\Delta F \sin \alpha + d F_{\text{pinc}} = 0 \Rightarrow \Delta F = \frac{d F_{\text{pinc}}}{c 2 \sin \alpha}.$$
$$AN: \text{Pour } \theta = 0, \tan \alpha = \frac{b}{-a+c} = \frac{0,14}{-0,55+0,14} = -0,34 \Rightarrow \alpha \simeq -18,8^{\circ}. \Rightarrow \Delta F = \frac{40}{2 \cdot 0,14 \sin \alpha} = -443 \text{ N}.$$

La constante de couple du moteur est donnée par $K_t = 9.5 \times 10^{-3} \,\text{NmA}^{-1}$.

Question 8 En déduire la valeur numérique de l'accroissement ΔC_m de couple moteur en fonction de la présence d'un obstacle. Déterminer l'intensité maximale du courant dans le moteur lors d'un pincement.

Correction On a $|\Delta C_m| = \rho \, |\Delta F|$ avec $\rho = 7.89 \times 10^{-5} \, \text{m}$. En conséquence : $|\Delta C_m| = 443 \cdot 7.89 \cdot 10^{-5} = 35 \, \text{mNm}$. En fin de fermeture, $C_m = 2.5 \times 10^{-3} \, \text{Nm}$. En conséquence $I_{\text{max}} = \frac{C_{\text{max}}}{K_t} = \frac{C_m + \Delta C_m}{K_t} = \frac{2.5 \cdot 10^{-3} + 35 \cdot 10^{-3}}{9.5 \cdot 10^{-3}} = 3.95 \, \text{A}$.

Synthèse

Question 9 Réaliser un poster permettant de synthétiser comment les caractéristiques des composants ont été déterminés.

6