Лема за покачването за безконтекстни езици

Иво Стратев

9 юни 2020 г.

Въведение

Лемата до някъде прилича на тази за регулярни езици, но е по-сложна! Нека L е безкраен език над азбука Σ .

Ако L е контекстно свободен език, то същесвува $\mathfrak{p} \in \mathbb{N}_+$, такова че за всяка дума $\alpha \in L$ ако $|\alpha| \geq \mathfrak{p}$, то същесвуват $\mathfrak{u}, \mathfrak{v}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \Sigma^*$, такива че

$$\begin{aligned} \alpha &= uvxyz \\ \& &|vxy| \leq p \\ \& &vy \neq \varepsilon \end{aligned}$$
 & $(\forall i \in \mathbb{N})(uv^ixy^iz \in L)$

Контрапозиция на лемата

Нека L е безкраен език над азбука Σ . Ако за всяко $\mathfrak{p}\in\mathbb{N}_+$ е вярно, че съществува дума $\alpha\in L$, такаква че $|\alpha|\geq \mathfrak{p}$ и за всеки $\mathfrak{u},\mathfrak{v},\mathfrak{x},\mathfrak{y},z\in\Sigma^*$, такива че

$$\alpha = uvxyz$$
 & $|vxy| \le p$ & $vy \ne \varepsilon$

съществува $\mathfrak{i}\in\mathbb{N}$ такова, че $\mathfrak{uv}^{\mathfrak{i}}x\mathfrak{y}^{\mathfrak{i}}z\notin\mathsf{L},$ то L не е контекстно свободен език.

Обща схема на доказателство

Нека е даден безкраен език L над азбука Σ.

Нека $\mathfrak{p} \in \mathbb{N}_+$ е произволно.

Избираме $\alpha \in L$, такаква че $|\alpha| \geq p$ и проверяваме, че за всяко едно разбиване на α на пет части $u, v, x, y, z \in \Sigma^*$, такива че $\alpha = uvxyz$ и $|vxy| \leq p$ и $|vy| \geq 1$ можем да намерим $i \in \mathbb{N}$, такова че $uv^ixy^iz \notin L$.

Тогава от лемата за покачването (разрастването) L не е безконтекстен език.

Класика в жанра

Да се докаже, че езикът $L = \{a^nb^nc^n \mid n \in \mathbb{N}\}$ не е контекстно свободен.

Нека $\mathfrak{p} \in \mathbb{N}_+$. Избираме $\alpha = \mathfrak{a}^{\mathfrak{p}} b^{\mathfrak{p}} c^{\mathfrak{p}}$. В сила са $\alpha \in L$ и $|\alpha| = 3\mathfrak{p} \geq \mathfrak{p}$. Разглеждаме произволно разбиване на 5 части спазващо условията на лемата. Нека $\mathfrak{u}, \mathfrak{v}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \{\mathfrak{a}, \mathfrak{b}, \mathfrak{c}\}^*$ са такива, че $\alpha = \mathfrak{u} \nu \mathfrak{x} \mathfrak{y} \mathfrak{z}, |\nu \mathfrak{x} \mathfrak{y}| \leq \mathfrak{p}$ и $|\nu \mathfrak{y}| \geq 1$. Възможни са два случая.

Случай 1. иvху е префикс на $a^p b^p$

```
Тогава \mathcal{N}_a(\nu y)>0 или \mathcal{N}_b(\nu y)>0.

Избираме \mathfrak{i}=0 и тогава \mathcal{N}_a(\mathfrak{u} \nu^i x y^i z)<\mathcal{N}_c(\mathfrak{u} \nu^i x y^i z) или \mathcal{N}_b(\mathfrak{u} \nu^i x y^i z)<\mathcal{N}_c(\mathfrak{u} \nu^i x y z^i).

Следователно \mathfrak{u} \nu^i x y^i z \not\in L.
```

Случай 2. ар е префикс на и.

```
Тогава \mathcal{N}_b(\nu y) > 0 или \mathcal{N}_c(\nu y) > 0.

Избираме i = 0 и тогава \mathcal{N}_b(u \nu^i x y^i z) < \mathcal{N}_a(u \nu^i x y^i z) или \mathcal{N}_c(u \nu^i x y^i z) < \mathcal{N}_a(u \nu^i x y z^i).

Следователно u \nu^i x y^i z \not\in L.
```

Заключение:

Следователно $L=\{\mathfrak{a}^{\mathfrak{n}}b^{\mathfrak{n}}c^{\mathfrak{n}}\mid \mathfrak{n}\in\mathbb{N}\}$ не е контекстно свободен.

Забележка:

Най-лесно е да гледаме къде се намира vxy понеже той е непразен. Удобно е или да е сред първите две части $\mathfrak a$ -та и/или $\mathfrak b$ -та или сред вторите $\mathfrak b$ -та и/или $\mathfrak c$ -та.

Случаите не са непресичащи, но обхващат всички възможни понеже $|vxy| \le p$ и няма как да обвахне пове от два вида букви.

Пример 1.

Да се докаже, че езикът $L = \{b^{n^2} \mid n \in \mathbb{N}\}$ не е контекстно свободен.

Нека $\mathfrak{p} \in \mathbb{N}_+$. Избираме $\alpha = \mathfrak{b}^{\mathfrak{p}^2}$. В сила са $\alpha \in L$ и $|\alpha| = \mathfrak{p}^2 \ge \mathfrak{p}$.

Разглеждаме произволно разбиване на 5 части спазващо условията на лемата.

Нека $u,v,x,y,z\in\{a,b,c\}^*$ са такива, че $\alpha=uvxyz,\,|vxy|\leq p$ и $|vy|\geq 1.$

Нека k = |vy|. Тогава $vy = b^k$ и $1 \le k \le p$.

Тогава $uv^i xy^i z = uxz.(vy)^i = b^{n^2-k}.(b^k)^i = b^{n^2-k+ik} = b^{n^2+(i-1)k}.$

Нека i=2. Тогава $uv^ixy^iz=b^{n^2+k}$.

Трябва да покажем, че $n^2 + k$ не е точен квадрат на естествено число.

B сила са $n^2 < n^2 + 1 < n^2 + k$ и

 $(n+1)^2 = n^2 + 2n + 1 = n^2 + n + (n+1) \ge n^2 + k + (n+1) > n^2 + k.$

Следователно $n^2 < n^2 + k < (n+1)^2$ и $k \in \mathbb{N}_+$ и значи $n^2 + k$ не е точен квадрат. Следователно $uv^2xy^2z \notin L$.

Следователно от лемата за разрастването следва, че ${\sf L}$ не е безконтекстен.

Пример 2

Нека $A = \{\omega\omega^{rev} \mid \omega \in \{c,d\}^*\}$ и нека $B = \{\omega.\omega \mid \omega \in \{c,d\}^*\}.$

Да се определи кой от двата езика е контекстно свободен.

Решение. А е контекстно свободен език, защото

 $\langle \{S\}, \{c,d\}, S, \{S \to cSc, \ S \to dSd, \ S \to \epsilon\} \rangle \text{ го генерира}.$

За B ще покажем, че е не е контекстно свободен чрез лемата за покачването. Очевидно не е краен език.

Нека $\mathfrak{p}\in\mathbb{N}_+$. Избираме $\alpha=(\mathfrak{a}^\mathfrak{p}\mathfrak{b})(\mathfrak{a}^\mathfrak{p}\mathfrak{b})$. В сила са $\alpha\in L$ и $|\alpha|=2(\mathfrak{p}+1)>\mathfrak{p}$.

Разглеждаме произволно разбиване на 5 части спазващо условията на лемата.

Нека $\mathfrak{u},\mathfrak{v},\mathfrak{x},\mathfrak{y},\mathfrak{z}\in\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\}^*$ са такива, че $\alpha=\mathfrak{u}\mathfrak{v}\mathfrak{x}\mathfrak{y}\mathfrak{z},\,|\mathfrak{v}\mathfrak{x}\mathfrak{y}|\leq\mathfrak{p}$ и $|\mathfrak{v}\mathfrak{y}|\geq1.$

Възможен е следния случай: $\mathfrak{p} \geq 3, \, \mathfrak{u} = \mathfrak{a}^{\mathfrak{p}-1}, \, \mathfrak{v} = \mathfrak{a}, \, \mathfrak{x} = \mathfrak{b}, \, \mathfrak{y} = \mathfrak{a}, \, \mathfrak{z} = \mathfrak{a}^{\mathfrak{p}-1}\mathfrak{b}.$

Тогава $(\forall i \in \mathbb{N})(uv^ixy^iz = a^{p-1}a^iba^ia^{p-1}b = (a^{p+i-1}b)(a^{p+i-1}b) \in L).$

Това означава, че a^pba^pb като дума не става с цел аргумент, че B не е безконтекстен. Трябва да изберем друга дума.

Избираме $\alpha = (\alpha^p b^p)(\alpha^p b^p)$. В сила са $\alpha \in L$ и $|\alpha| = 2(2p) \ge p$.

Разглеждаме произволно разбиване на 5 части спазващо условията.

Нека $u,v,x,y,z\in\{a,b,c\}^*$ са такива, че $\alpha=uvxyz,\,|vxy|\leq p$ и $|vy|\geq 1$. Възможни са пет случаи.

Случай 1. $uvxy = \mathfrak{a}^k$ за някое $k \in \mathbb{N}$

Тогава $z=a^{p-k}b^pa^pb^p$. Избираме $\mathfrak{i}=0$. Тогава $\mathfrak{u} \nu^{\mathfrak{i}} x y^{\mathfrak{i}} z=a^{k-|\nu y|}a^{p-k}a^pb^p=a^{p-|\nu y|}b^p.a^pb^p\notin L$.

Случай 2.

За някой k, m, t, s $\in \mathbb{N}$ $v = a^k$, $x = a^m b^t$, $y = b^s$ и $(|k| > 0 \lor |s| > 0)$ и $k+s \le p-m-t \le p$. Тогава $u = a^{p-k-m}$ и $z = b^{p-t-s}a^pb^p$ и значи избираме i = 2. Тогава $uv^ixy^iz = a^{p-k-m}a^{2k}a^mb^tb^{2s}b^{p-t-s}a^pb^p = a^{p+k}b^{p+s}a^pb^p \notin L$.

Случай 3.

За някои $k,t\in\mathbb{N}$ $\nu xy=b^k$ и $\mathfrak{u}=\mathfrak{a}^pb^{p-k-t}$ и $\nu=b^t\mathfrak{a}^pb^p$. Избираме $\mathfrak{i}=0$. Тогава $\mathfrak{u}\nu^\mathfrak{i}xy^\mathfrak{i}z=\mathfrak{a}^pb^{p-|\nu y|}\mathfrak{a}^pb^p\notin L$.

Случай 4.

За някой $k, m, t, s \in \mathbb{N}$ $\nu = b^k, \ x = b^m a^t, \ y = a^s$ и $(|k| > 0 \lor |s| > 0)$ и $k+s \leq p$. Тогава $u = a^p b^p b^{p-k-m}$ и $z = a^{p-t-s}$ и значи избираме $\mathfrak{i} = 2$. Тогава $u \nu^\mathfrak{i} x y^\mathfrak{i} z = a^p b^p b^{p-k-m} b^{2k} b^m a^t a^{2s} a^{p-t-s} = a^p b^p b^{p+k} a^{p+s} \notin L$.

Случай 5. $vxyz = b^k$ за някое $k \in \mathbb{N}$

Тогава $u=a^pb^pa^pb^{p-k}$. Избираме $\mathfrak{i}=\mathfrak{0}$. Тогава $uv^\mathfrak{i}xy^\mathfrak{i}z=a^pb^pb^{p-k}b^{k-|vy|}=a^pb^p.a^pb^{p-|vy|}\not\in L$.

Заключение.

Следователно от лемата за разрастването следва, че L не е безконтекстен.

Пример 3

Нека $A = \{a^n b^k c^{n+k} \mid n, k \in \mathbb{N}\}$ и нека $B = \{a^n b^k c^{n,k} \mid n, k \in \mathbb{N}\}.$

Да се определи кой от двата езика е контекстно свободен.

Решение. А е контекстно свободен език, защото

 $\langle \{S,F\}, \{a,b,c\}, S, \{S \to aSc, \ S \to F, \ F \to bSc, \ F \to \epsilon\} \rangle \text{ го генерира.}$

За В ще покажем, че е не е контекстно свободен чрез лемата за покачването. Очевидно не е краен език.

Нека $\mathfrak{p} \in \mathbb{N}_+$. Избираме $\alpha = \mathfrak{a}^{\mathfrak{p}} \mathfrak{b}^{\mathfrak{p}} \mathfrak{c}^{\mathfrak{p}^2}$. В сила са $\alpha \in L$ и $|\alpha| = 2\mathfrak{p} + \mathfrak{p}^2 \geq \mathfrak{p}$. Разглеждаме произволно разбиване на 5 части спазващо условията на лемата. Нека $\mathfrak{u}, \mathfrak{v}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \{\mathfrak{a}, \mathfrak{b}, \mathfrak{c}\}^*$ са такива, че $\alpha = \mathfrak{u} \mathfrak{v} \mathfrak{v} \mathfrak{v} \mathfrak{z}, |\mathfrak{v} \mathfrak{v} \mathfrak{v}| \leq \mathfrak{p}$ и $|\mathfrak{v} \mathfrak{v}| \geq 1$. Възможни са няколко случая.

Случай 1. uvxy = \mathfrak{a}^k за някое $k \in \mathbb{N}$

Тогава $z=a^{p-k}b^pc^{p^2}$. Избираме i=0. Тогава $uv^ixy^iz=a^{k-|vy|}a^{p-k}b^pc^{p^2}=a^{p-|vy|}b^pc^{p^2}\notin L$, защото $(p-|vy|).p< p^2$.

Случай 2.

За някои k, m, t, s $\in \mathbb{N}$ $\nu = a^k$, $x = a^m b^t$, $y = b^s$ и $(|k| > 0 \lor |s| > 0)$ и $k+s \leq p$. Тогава $\mathfrak{u} = a^{p-k-m}$ и $z = b^{p-t-s}c^{p^2}$ и значи избираме $\mathfrak{i} = 2$. Тогава $\mathfrak{u} \nu^i x y^i z = a^{p-k-m} a^{2k} a^m b^t b^{2s} b^{p-t-s} c^{p^2} = a^{p+k} b^{p+s} c^{p^2}$. Така $(p+k)(p+s) = p^2 + (k+s)p + sk \geq p^2 + (k+s)p > p^2 \geq p^2 + p > p^2$. Следователно $\mathfrak{u} \nu^i x y^i z \notin L$.

Случай 3.

За някой $k,m,t,s\in\mathbb{N}$ $\nu=b^k,$ $x=b^mc^t,$ $y=c^s$ и $(|k|>0 \lor |s|>0)$ и $k+s\leq p$. Тогава $u=a^pb^{p-k-m}$ и $z=c^{p^2-t-s}$ и значи избираме i=2. Тогава $uv^ixy^iz=a^pb^{p-k-m}b^{2k}b^mc^tc^{2s}c^{p^2-t-s}=a^pb^{p+k}c^{p^2+s}$. Така $p(p+k)=p^2+kp$.

Ако k=0, то $0 < s \le p$ и значи $p(p+k) = p^2 < p^2 + s$. Ако k>0, то $0 \le s < p$ и значи $p(p+k) = p^2 + kp \ge p^2 + p > p^2 + s$. Следователно $uv^ixy^iz \notin L$.

Случай 4. $\nu xyz = c^k$ за някое $k \in \mathbb{N}$

Тогава $\mathfrak{u}=\mathfrak{a}^{\mathfrak{p}}b^{\mathfrak{p}}c^{\mathfrak{p}^2-k}$. Избираме $\mathfrak{i}=0$. Тогава $\mathfrak{u}\nu^{\mathfrak{i}}xy^{\mathfrak{i}}z=\mathfrak{a}^{\mathfrak{p}}b^{\mathfrak{p}}c^{\mathfrak{p}^2-k}b^{k-|\nu y|}=\mathfrak{a}^{\mathfrak{p}}b^{\mathfrak{p}}.c^{\mathfrak{p}^2-|\nu y|}\notin L$, защото $\mathfrak{p}^2>\mathfrak{p}^2-|\nu y|$.

Заключение.

Следователно от Лемата за разрастването $B = \{a^n b^k c^{n.k} \mid n,k \in \mathbb{N}\}$ не е контекстно свободен.