实验三 LED点阵显示屏

- *一、实验目的和要求
- *二、实验设备
- *三、实验原理及预习
- *四、实验内容和步骤
- * 五、思考题

一、实验目的和要求

- *继续深入学习和掌握MCS-51的体系结构、 指令系统和汇编语言开发
- * 学习使用串行方式驱动LED点阵显示屏显示字符
- * 学习使用单片机实验箱连接硬件,运行程序
- * 学习Keil软件的使用

二、实验设备

- *单片机实验箱
- * Keil开发系统
- * Proteus仿真软件

三、实验原理及预习

- * MCS-51的体系结构、指令系统和汇编语言
- * Keil软件操作
- * 移位寄存器595的原理和使用
 - * 见资料 74LS595
- * LED点阵显示屏原理
 - * 连接方式见: 16X16LED点阵显示模块原理图
 - * 自行预习扫描显示的原理

四、实验内容和步骤

- * 1、使用示例程序学习Keil软件以及实验箱的操作使用
- * 2、根据要求在Keil中编写汇编程序,在实验箱上连线运行

4.1 Keil软件使用

- * Keil C51 软件是众 多单片机应用开发的 的优秀软件之一,它 集编辑,编译,仿真 于一体,支持汇 编,PLM 语言和C语 言的程序设计
- * 开发环境类似于VC 开发环境

Keil开发流程 - 建立工程

- * 首先要建立一个工程,一个工程可以包含多个汇编和C文件,生成 一套可执行代码。
- * 打开Keil软件,选择"Project"菜单下的"New Project",自己给定工程名。(建议每一个工程先建立一个子目录)
- * CPU选择Atmel的AT89S51,下一个对话框选择"否",进入工程页面

设置Project

- * 点击左侧的 "Target1",右键选择"Options for Target"(也可在Project菜单找到),在对话框中选择"Output"页签,确保选中"Create HEX File"(产生hex文件)
- *目的是在编译成功之后同时生成HEX目标代码, 可以被下载到开发平台上执行

设置Project

- *接下来,在Debug页签,选中右面的"Use"+"Keil Monitor-51"
- * 点击旁边的Setting,对话框里面的Port选择合适的串行口(实验机是Com1)
- * 可根据情况适当加大波特率(Baudrate),提高传输速度
- * 可以选中 "Serial Interrupt",方便后面调试,但可能造成软件运行不稳定
- * 上述步骤的目的是使用真实实验设备运行程序

为Project增加文件

- *选择菜单"File-New",生成新空白文件
- *选择"File-Save As",填入合适的文件名(如main.asm),并保存。
- * 回到主界面,选择"Project"菜单,或在工程上 点右键,选择 "Add File to Group",然后选中 刚才的文件(注意扩展名),将此文件加入工程。

程序录入和编译

- * 使用Proteus打开实验1的示例文件
- * 将源代码拷贝到Keil的文件(main.asm)中
- * 删掉这两行
 - * \$NOMOD51
 - * \$INCLUDE (8051.MCU)
- *选择Project菜单中的"Build Target"进行汇编和连接,直至没有错误

4.2 在实验箱上运行程序

- * 设备连线
- * Keil程序下载到实验箱
- *程序运行及调试
- * 结束运行

设备连线

管脚连接表

MCS51端口	实验箱二号孔名	连接设备管脚	输入/输出
P1.0	CAPO	SWITCH⊠ K1	IN
P1.7	SPISTE	LAMP⊠ K8	OUT

关闭实验箱电源;

按照上表,使用导线连接CAP0到开关区的K1,连接SPISTE到LAMP区的L8

与实验箱通信

- * 打开实验箱电源(保险起见按复位键)
- * 打开Keil中Debug菜单下的第一项
- *如果出现连接失败对话框,检查以下问题,然后"Try Again"
 - * 在Setting菜单中检查通信设置
 - * 实验箱电源是否开启,通信线缆是否连接好
 - * 实验箱是否正在运行程序,按一下复位键
- *注意到Keil软件的下方状态栏中显示进度条, 表明正在向实验箱的CPU传送程序

程序运行

- * 进入debug状态下,可以选择Debug菜单(或工具栏、快捷键)中各项功能
- *选择"Go"连续运行,扳动实验箱上的开 关K1,可以看到L8灯闪烁,与实验1仿真运 行时效果相同
- * 可以使用断点、单步等方法进行调试

结束程序运行

- *选择"Stop Running"结束运行
 - * 如果之前没有设置"Serial Interrupt",会出现对话框,选择"Stop Debugging",然后对话框又出现,继续选择"Stop Debugging",回到编辑状态。然后实验箱端按一下复位键。
 - * 如果设置了"Serial Interrupt",会回到调试状态,可以设置断点,或者继续运行
- *注意,请先结束运行,之后按复位键,否则Keil软件可能会失去响应。

4.3 编程

- *使用汇编语言在Keil中编程,在实验箱上运行,达到以下目标:
 - * 在LED点阵显示屏上显示学生姓名等信息(不 少于3个汉字)
 - * 汉字以一定速度不断上移,移到最后返回开头,如此循环
 - * 当拨动某个开关时,显示屏暂停移动,反之持续移动
 - *请尽量增强显示效果,避免闪烁,避免不应该 亮的地方变亮

4.3 编程提示

- * 可以在给出的仿真图中进行初步编程
 - * 仿真图中只放置了一个8*8的点阵,可以自行添加完善为16*16的点阵
 - * 也可只使用仿真图进行初步编程,掌握原理
- *设计好实验用的管脚连接表,在进行实验箱实验前,连接导线,不要打开电源,请教师检查后继续实验。
- * 汉字点阵代码,可以使用计算机中提供的 PCtoLCD2002(在D盘中可以找到)软件生成,注意软件的各个选项的作用。

五、思考题

- 1、如何参照实验原理图思路,设计一个 128*32的点阵显示屏?说明设计要点即可。
- 2、对于上面的宽显示屏,如何实现一串文字的水平移动,说明编程思路。
- 3、实验箱的595器件的MR管脚直接接电源, OE管脚直接接地。如果可以将这两个管脚 使用单片机进行控制,可以在编程上带来 哪些好处?