

## UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE TELEINFORMÁTICA (DETI) CURSO DE GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO

MATHEUS GOMES CORDEIRO - 396436 ABEL PINHEIRO DE FIGUEIREDO - 396432

TRANSFORMADA DE LAPLACE

## 0.1 Grupo 1

A esse grupo foram dadas as seguintes funções:  $t, \frac{(1-e^{-at})}{a}$ , e senh(at). Delas foram calculadas suas respectivas funções de transferência, que foram:  $(\frac{1}{s^2}), (\frac{1}{as+s^2})$  e  $(\frac{a}{a^2-s^2})$ . Desse modo, e utilizando  $a=5, t=0:0.1:3, w=2\pi$  e n=6, foram plotadas as respostas ao impulso em função do tempo, mostradas na Figura 1:



Figura 1 – Gráficos de h(t) vs t do Grupo 1

## 0.2 Grupo 2

A esse grupo foram dadas as seguintes funções:  $t^{n-1}$ , cos(wt) e  $(e^{-at}sen(wt))$ . Delas foram calculadas suas respectivas funções de transferência, que foram:  $(\frac{(n-1)!}{s^n}), (\frac{s}{s^2+w^2})$  e  $(\frac{w}{(a+s)^2+w^2})$ . Desse modo, e utilizando a=5, t=0: 0.1: 3,  $w=2\pi$  e n=6, foram plotadas as respostas ao impulso em função do tempo, mostradas na Figura 2:



Figura 2 – Gráficos de h(t) vs t do Grupo 2

## 0.3 **Grupo 3**

A esse grupo foram dadas as seguintes funções:  $e^{-at}$ ,  $te^{-at}$ , e  $(e^{-at}cos(wt))$ . Delas foram calculadas suas respectivas funções de transferência, que foram:  $(\frac{1}{a+s})$ ,  $(\frac{1}{a^2+2as+s^2})$  e  $(\frac{a+s}{(a+s)^2+w^2})$ . Desse modo, e utilizando a=5, t=0: 0.1: 3,  $w=2\pi$  e n=6, foram plotadas as respostas ao impulso em função do tempo, mostradas na Figura 3:



Figura 3 – Gráficos de h(t) vs t do Grupo 3