Seminarul 6

Aplicații ale LTNM

1. Fie $(p_n)_n$ un şir de numere din intervalul (0,1) şi fie $(X_n)_n$ un şir de variabile aleatoare independente care au distribuțiile următoare: $X_n \sim \begin{pmatrix} 1 & 0 \\ p_n & 1-p_n \end{pmatrix}, n \in \mathbb{N}^*$.

Demonstrați că
$$Z_n = \frac{1}{n} \sum_{i=1}^n (X_i - p_i) \xrightarrow{a.s.} 0.$$

- 2. Considerăm următorul experiment, descris pe etape:
- într-o urnă se află o bilă neagră; se adaugă o bilă albă în urnă; se extrage aleatoriu o bilă din urnă; se notează culoarea bilei extrase; bila extrasă este repusă în urnă;
- se adaugă încă o bilă albă în urnă; se extrage aleatoriu o bilă din urnă; se notează culoarea bilei extrase; bila extrasă este repusă în urnă;
- ş.a.m.d.

Pentru fiecare $n \in \mathbb{N}^*$, fie Y_n variabila aleatoare care indică numărul de bile albe extrase după netape ale experimentului descris mai sus. Demonstrați că: $\frac{Y_n}{n} \xrightarrow{a.s.} 1$.

- 3. Durata (în minute) unei plăți pentru o factură la un ghișeu într-o bancă urmează distribuția continuă Unif[1,3]. Știind că duratele oricăror plăți sunt independente, demonstrați că:
- i) media aritmetică a duratelor plăților a n facturi converge a.s. la 2 minute, când $n \to \infty$.
- ii) media geometrică a duratelor plăților a n facturi converge a.s. la $\frac{3\sqrt{3}}{e}$ minute, când $n \to \infty$. iii) media armonică a duratelor plăților a n facturi converge a.s. la $\frac{2}{\ln 3}$ minute, când $n \to \infty$.
- 4. Fie $(X_n)_n$ un şir de variabile aleatoare independente care au aceeaşi funcție de repartiție F. Fie $x \in \mathbb{R}$ fixat şi

$$\hat{F}_n(x) = \frac{\#\{i \in \{1, \dots, n\} : X_i \le x\}}{n}, \quad n \in \mathbb{N}^*,$$

funcțiile de repartiție empirice pe punctul x. Demonstrați că $E(\hat{F}_n(x)) = F(x)$ și $\hat{F}_n(x) \xrightarrow{a.s.} F(x)$, adică $\hat{F}_n(x)$ este un estimator nedeplasat și consistent pentru F(x).

Rețele Bayes

Definiții și notații:

- 1) G este un graf orientat aciclic (i.e. nu conține niciun drum orientat închis).
- $\mathbf{2}$) Fiecare nod din G este identificat cu o variabilă aleatoare corespunzătoare.
- 3) Nodul Y este *părinte* pentru nodul X, dacă există în G o muchie orientată de la Y la X. Mulțimea părinților lui X se notează cu p(X).

4) Nodul Y este descendent al nodului X, dacă există un drum orientat în G de la X la Y.

- 5) Nodul Y este nondescendent al nodului X, dacă nu este descendent al nodului X. Mulţimea nondescendeților lui X se notează cu nd(X).
- **6**) G se numește rețea Bayes, dacă satisface condiția Markov: orice nod X și nondescendenții săi nd(X) sunt **condițional independenți**, dacă se dau valorile părinților p(X) (dacă $p(X) = \emptyset$, atunci X și nd(X) sunt independenți).

Consecință: Fie X_1, \ldots, X_n variabile aleatoare discrete, care sunt nodurile unei rețele Bayes, și x_1, \ldots, x_n valori posibile corespunzătoare. Fie $\widehat{p(X_j)} = \bigcap_{\substack{i=1 \ X_i \in p(X_j)}} (X_i = x_i), j = \overline{1, n}$, unde considerăm

 $\widehat{p(X_j)}$ ca fiind evenimentul sigur dacă $p(X_j) = \emptyset$. Atunci (condiția Markov implică)

$$P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1 | \widehat{p(X_1)}) \cdot \dots \cdot P(X_n = x_n | \widehat{p(X_n)}),$$

dacă presupunem că probabilitățile condiționate folosite au sens.

Demonstrație: Fără a restrânge generalitatea, presupunem că nodurile X_1, \ldots, X_n sunt ordonate ancestral: toți părinții lui X_j sunt la stânga lui X_j și toți descendenții lui X_j sunt la dreapta lui X_j , i.e. $p(X_j) \subseteq \{X_1, \ldots, X_{j-1}\} \subseteq nd(X_j)$, $j = \overline{2, n}$. Folosind presupunerea făcută și condiția Markov, deducem:

$$P(X_{j} = x_{j} | X_{j-1} = x_{j-1}, \dots, X_{1} = x_{1}) = \frac{P(X_{j} = x_{j}, \dots, X_{1} = x_{1})}{P(X_{j-1} = x_{j-1}, \dots, X_{1} = x_{1})} = \frac{P(X_{j} = x_{j}, \dots, X_{1} = x_{1} | \widehat{p(X_{j})})}{P(X_{j-1} = x_{j}, \dots, X_{1} = x_{1} | \widehat{p(X_{j})})} = \frac{P(X_{j} = x_{j}, \dots, X_{1} = x_{1} | \widehat{p(X_{j})})}{P(X_{j-1} = x_{j-1}, \dots, X_{1} = x_{1} | \widehat{p(X_{j})})} = P(X_{j} = x_{j} | \widehat{p(X_{j})}), \quad j = \overline{2, n},$$

dacă numitorul este nenul. Folosind regula de înmulțire a probabilităților și relațiile de mai sus, obținem

$$P(X_n = x_n, \dots, X_1 = x_1) = P(X_n = x_n | \widehat{p(X_n)}) \cdot \dots \cdot P(X_1 = x_1 | \widehat{p(X_1)}).$$

Exemplu

Considerăm următoarele variabile aleatoare care indică anumite situații (1=da și 0=nu), pe care le aveți în vedere pentru o persoană într-o seară:

- \bullet F indică dacă filmul care rulează la cinema este în premieră sau nu.
- \bullet S indică dacă biletul de intrare la film este scump sau nu.
- \bullet C indică dacă persoana vizionează filmul de la cinema sau nu.
- \bullet Rindică dacă persoana ia cina la un restaurant sau nu.
- B indică dacă persoana bea un cocteil la un bar sau nu.

Variabilele aleatoare de mai sus depind unele de altele conform unei rețele Bayes cu probabilitățile condiținate date mai jos.

P(F=1)	P(F=0)
0,8	0,2

S	$P(S = \dots F = 1)$	P(S = F = 0)
1	0,9	0,6
0	0,1	0,4

C	P(C = S = 1, F = 1)	P(C = S = 1, F = 0)	P(C = S = 0, F = 1)	P(C = S = 0, F = 0)
1	0,6	0,2	0,9	0,4
0	0,4	0,8	0,1	0,6

R	$P(R = \dots C = 1)$	P(R = C = 0)
1	0,3	0,5
0	0,7	0,5

B	$P(B = \dots C = 1)$	$P(B = \dots C = 0)$
1	$0,\!5$	0,8
0	0,5	0,2

Calculați probabilitățile următoarelor evenimente:

- a) Persoana vizionează un film care nu e în premieră la cinema.
- b) Persoana bea un cocteil la un bar, știind că nu vizionează filmul care rulează în premieră la cinema, biletul de intrare la film fiind scump.
- c) Persoana ia cina la un restaurant.
- d) Filmul care rulează la cinema este în premieră, știind că persoana ia cina la un restaurant.