视觉加工中的动作信息基于强化学习和有监督学习的探索

王仪瑾,赵雨晴,王金泉 指导老师:陈娟 教授

第二届大湾区杯 AI for Science 科技竞赛金奖答辩

战队成员介绍 >

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

王仪瑾

硕士研究生 计算认知神经科学方向

赵雨晴

华南师范大学心理学院 华南师范大学心理学院 博士研究生 运动与感知方向

王金泉

华南师范大学心理学院 硕士研究生 视觉障碍与康复方向

陈娟 教授

华南师范大学心理学院 博士生导师

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

感觉系统

输入刺激

"自传入信号"

上"外传入信号"

(自主动作产生的输入信号)

(外部环境改变产生的输入信号)

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

动作系统

感觉系统

输入刺激

Article | Oude Lohuis *et al.* (2024). Triple dissociation of visual, auditory and motor processing in mouse primary visual cortex. *Nature Neuroscience*, *27*(4), 758-771.

口唇动作

Article | Guitchounts, G., Masís, J., Wolff, S. B., & Cox, D. (2020). Encoding of 3D head orienting movements in the primary visual cortex. *Neuron*, *108*(3), 512-525.

头部动作

Article | Bola, Ł., Vetter, P., Wenger, M., & Amedi, A. (2023). Decoding reach direction in early "visual" cortex of congenitally blind individuals. *Journal of Neuroscience*, *43*(46), 7868-7878.

手部动作

强化模型的可行性验证(以Stroop为例)>

字义:

绿

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

(不一致条件)

正确率下降反应时上升

step函数:模拟操作 (计算奖励,模拟反应时)

reset函数: 重置环境

act函数: 决策模块

remember函数:存储经验

train函数: 训练方法

update函数: 更新网络

强化模型的可行性验证(以Stroop为例)>

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

视觉+运动交互任务的强化学习模型 >

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

视觉+运动交互任务的强化学习模型 >

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

视觉模块

视觉+运动交互任务的机器学习结果(强化学习模型)>

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

动作信息能够有效降低视觉模型前期的训练损失

视觉+运动交互任务的机器学习结果(强化学习模型)>

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

强化学习模型未能支持理论假设

视觉+运动交互任务的机器学习结果(有监督学习模型)>

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

强化学习模型未能支持理论假设

有监督学习模型也未能支持理论假设

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

➤ 强化学习模型成功复制了人类的Stroop效应,结果验证了强化学习在模拟基础认知过程中的有效性。

绿红蓝(不一致条件)

正确率下降反应时上升

强化学习模型及有监督模型在动作-视觉任务中均未能验证理论假设,结果并未支持动作-视觉交互理论。

理论问题?

视觉+运动交互任务的人类学习结果 >

战队介绍

项目背景

模型验证

模型结果

中期讨论

行为结果

项目背景

模型验证

模型结果

中期讨论

行为结果

总结讨论

项目局限性 >

> 理论方面:

动作的"传出副本"假设在人类群体上还没有被系统地验证,可能动作系统的传出副本可能只是一种宽泛的信号,并不包含具体的运动参数信息。

> 建模方面:

- 模型仅能够模拟单一的角度信息,与真实人类动作输出无法完全对齐。
- 网络架构较简单,而真实动作往往涉及到更加复杂的输入与加工,本项目网络无法处理多模态信息。

未来展望 >

〉认知神经科学方面:

通过采用计算模型,我们能够模拟和预测这些交互过程,为补充人类神经科学研究中的数据空缺提供了新的途径。

> 计算建模方面:

通过整合视觉和运动信息,我们可以开发更为先进的多模态神经网络,能够模拟和测试如何将来自运动控制的信号与视觉信息有效融合。

视觉加工中的动作信息基于强化学习和有监督学习的探索

王仪瑾,赵雨晴,王金泉 指导老师:陈娟 教授

第二届大湾区杯 AI for Science 科技竞赛金奖答辩

