Λυμαρμανικ Ημκυτα 824

$$\frac{772}{2}$$

$$\int (\dot{X}(t)^2 - 20x(t)\dot{X}(t) - 24x'(t)) dt + x^2(0) + x(\frac{T}{2}) \longrightarrow min$$
1) $\dot{L} = \dot{X}^2 - 20x\dot{x} - 24x^2$

$$\dot{t} = x^2(0) + x(\frac{T}{2})$$

$$\frac{\partial \dot{t}}{\partial x} - \frac{\partial \dot{t}}{\partial t} = 0$$

$$-20\dot{x} - 148\dot{x} - 2\dot{x} + 20\dot{x} = 0$$

$$\dot{x} + 24\dot{x} = 0 \implies x(t) = C, cos(\sqrt{24}\dot{x}) + C, sin(\sqrt{24}\dot{x})$$
2) \dot{y} Chooling Transleps and uncorn: $\frac{\partial \dot{t}}{\partial \dot{x}} \Big|_{t=0} = \frac{\partial \dot{t}}{\partial x}$

$$\frac{\partial \dot{t}}{\partial x} \Big|_{t=0} = \frac{\partial \dot{t}}{\partial x}$$

$$\frac{\partial$$

3) $-2 \left(\frac{1}{4} \right) + 2 \left(\frac{\pi}{4} \right) - 20 \left(\frac{\pi}{4} \right) - 20 \left(\frac{\pi}{4} \right) - 20 \left(\frac{\pi}{4} \right) = -1$ $= \frac{1}{2} \left(\frac{\pi}{4} \right) + 2 \left($

 $x(t)=C_1 \cos(\sqrt{24} x)+C_2 \sin(\sqrt{24} x)$ u sto syget other.