- 1. For $\Sigma = \{0, 1\}$ determine whether the string 00010 is in each of the following languages ($\subset \Sigma^*$).

 - (a) $\{0, 1\}^*$ (b) $\{000, 101\}\{10, 11\}$ (c) $\{00\}\{0\}^*\{10\}$
 - (d) $\{000\}^*\{1\}^*\{0\}$ (e) $\{00\}^*\{10\}^*$ (f) $\{0\}^*\{1\}^*\{0\}^*$
- 2. For $\Sigma = \{x, y, z\}$, let $A, B \subset \Sigma^*$ be given by $A = \{xy\}$ and $B = \{\lambda, x\}$. Determine $AB, BA, B^3, B^+, A^*.$
- 3. If $A(\neq \emptyset)$ is a language and $A^2 = A$, prove that $A = A^*$.
- 4. Let $\Sigma = \{0, 1\}$. $A \subset \Sigma^*$ is recursively defined by
 - (i) $0, 1 \in A$.
 - (ii) $\forall x \in A$, $0x1 \in A$.

Reword this definition in terms of a phrase-structure grammar $G = (\Sigma, T, S, P)$. Is $00011111 \in A$? Is 000011111? Why?

- 5. Provide a recursive definition for each of the following languages $A \subset \Sigma^*$ over $\Sigma = \{0, 1\}.$
 - (a) $x \in A$ if and only if the number of 0's in x is even.
 - (b) $x \in A$ if and only if there is only one 0 in x.
 - (c) $x \in A$ if and only if all of the 0's in x precede all of the 1's.

Reword these definitions in terms of grammars G.

- 6. Let $G = (\Sigma, T, S, P)$ where $\Sigma = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Determine the type classification(s) of G when P is the set of productions given by:
 - (a) $S \to aAB$, $A \to Bb$, $B \to \lambda$.
 - (b) $S \rightarrow aA, A \rightarrow a, A \rightarrow b.$
 - (c) $S \rightarrow ABa, AB \rightarrow a.$
 - (d) $S \rightarrow ABA$, $A \rightarrow aB$, $B \rightarrow ab$.
 - (e) $S \rightarrow bA$, $A \rightarrow B$, $B \rightarrow a$.
 - (f) $S \rightarrow aA$, $aA \rightarrow B$, $B \rightarrow aA$, $A \rightarrow b$.
 - (g) $S \rightarrow bA$, $A \rightarrow b$, $S \rightarrow \lambda$.
 - (h) $S \rightarrow AB$, $B \rightarrow aAb$, $aAb \rightarrow b$.
 - (i) S \rightarrow aA, A \rightarrow bB, B \rightarrow b, B $\rightarrow \lambda$.
 - (j) $S \rightarrow A, A \rightarrow B, B \rightarrow \lambda$.