

La Régression Linéaire en Machine Learning

Réalisé par : BADR BERNANE (ISITD)

Etapes pour résoudre un probléme d'apprentissage supervisé (LR pour notre cas)

1 - DATASET:

Notre dataset représente l'ensemble des facteurs qui influence l'apparition du diabetes ou non.

			F	eatu	ıres			
x_1	x_2	х	3	<i>x</i> ₄		<i>x</i> ₅	<i>x</i> ₆	Target y
No. of the last of	BloodPressure		ulin	BMI		DiabetesPedigreeFunction		Outcome
148)	33.6	0.62		
85	6	6	()	26.6	0.35		1 0
183	6	4	()	23.3	0.672	2 3	2 1
89	6	6	94	ļ	28.1	0.16	7 2	1 0
137	4	0	168	3	43.1	2.288	3	3 1
116	7	4	()	25.6	0.20	1 3	0
78	5	0	88	3	31	0.24	3 20	6 1
115		0	()	35.3	0.134	4 29	0
197	7	0	543	3	30.5	0.158	3 5	3 1
125	9	6	()	0	0.232	2 5	4 1

Outcome est une fonction de (Glucose, BloodPressure, Insulin, BMI, DiabetesPedigreeFunction et Age).

1 - DATASET:

```
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('C:\sokar.csv')

x = data[['Glucose', 'BloodPressure', 'BMI', 'Age']].values
y = data['Outcome'].values.reshape(-1, 1)
#print(x.shape) # Pour vérifier Les dimensions de x
#print(y.shape) # Pour vérifier Les dimensions de y
```

```
"""la presiere etape c'est la dataset sous sa forme matricille"""
"""la matrice X"""
X = np.hstack((x, np.ones((x.shape[0], 1))))
#print(X)
"""maintenant theta qui contient les paramètres (a et b pour un model simple) """
theta = np.random.randn(X.shape[1], 1)
#print(theta.shape)
# #print(theta.shape)
# #print(theta)
#plt.satater(x[:,0], y) # afficher les résultats. x_1 en abscisse et y en ordonnée
#plt.title('badr')
# #plt.show()

# fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax_scatter(x[:,0], x[:,1], y, c='b', marker='o') # affiche en 3D in variable x_1, x_2, et la target y
# affiche les nons des axes
ax_set_xlabel('x_2')
# ax_set_xlabel('x_2')
# ax_set_xlabel('x_2')
# ax_set_xlabel('y')
# plt.show()
```


- La première image illustre l'importation du dataset sous forme de fichier CSV et la sélection de quatre features. (Lorsqu'on dépasse trois dimensions, il devient difficile pour un humain de comprendre les graphes)
- La deuxième image montre la transformation du dataset en une matrice, où l'on parle de X, la matrice des features.
- La troisième image représente un graphe 3D montrant la relation entre la target Y, le Glucose et la BloodPressure. Le graphe semble un peu vide car une petite portion du dataset a été utilisée, afin de faciliter la compréhension des concepts.

2 - Model:

Pour notre model on a : $F = X.\theta$

- Le graphe 1 represente l'affichage des resultats de notre modele par rapport a notre dataset x .
- Les résultats semblent illogiques, mais cela est normal, car nous développons un modèle qui traite plusieurs dimensions (>3). Contrairement à un modèle à une seule dimension où les relations sont plus intuitives et compréhensibles, la complexité augmente avec le nombre de dimensions. Le graphe 2 le confirme, car il montre que les choses sont plus faciles à interpréter lorsqu'on se concentre sur une seule variable.

```
"""La fonction cout"""
Comment Code
def fonction_cout(X, theta, y):

m = len(y)
return 1/(2*m) * np.sum((model(X, theta) - y)**2)
#print(fonction cout(X, theta, y))
```

3 - Fonction Cout:

Formule:

$$J(\theta) = \frac{1}{2m} \Sigma (X \cdot \theta - y)^{2}$$

On mesure les erreurs du modele sur le Dataset X, y en implémenter l'Erreur Quadratique Moyenne.

Résultats:

```
PROBLEMS 5 OUTPUT DEBUG CONSOLE TERMINAL PORTS SEARCH ERROR JUPYTER NUGET COMMENTS

PS C:\Users\BERNANE> python -u "c:\Users\BERNANE\Desktop\controle_LR_surdataset_diabet.py"

c:\Users\BERNANE\Desktop\controle_LR_surdataset_diabet.py:7: SyntaxWarning: invalid escape sequence '\s'

data = pd.read_csv('C:\sokar.csv')

872.4370585990048

-0.19413400844612072

PS C:\Users\BERNANE>
```

4- Algorithme de minimisation

Pour ce algorithme on a deux methodes : les moindres carres et la descente de gradient.

Nous avons choisi la descente de gradient, car la méthode des moindres carrés (ou les équations normales) implique l'inversion de matrices. Bien que cela fonctionne parfaitement pour des cas simples, cela devient problématique pour de grands ensembles de données (par exemple, 1 million d'exemples). Dans ces situations, même un ordinateur peut prendre des millions d'années pour effectuer les calculs nécessaires. La descente de gradient, en revanche, est plus efficace pour traiter de grands ensembles de données, car elle itère progressivement vers une solution sans nécessiter d'inversion de matrice.

PHASE D'Entraînement du Modèle

```
""" entrainemant """

theta_final, cost_history = descente_du_gradient(X, theta, y, alpha=0.0001, n_iter=1000)

#print(theta_final)

prediction = model(X, theta_final)

"""plt.scatter(x[:,2], y)

plt.plot(x[:,2], prediction, color='red')

plt.show()"""

fig = plt.figure()

ax = fig.add_subplot(i11, projection='3d')

ax.scatter(x[:,0], x[:,1], y, c='b', marker='o') # affiche en 30 ta variable x_1, x_2, et la target y

ax.scatter(x[:,0], x[:,1], prediction, c='r', marker='o')

# offiche les noms des axes
ax.set_ylabel('x_2')
ax.set_ylabel('x_2')
is ax.set_zlabel('y')
if plt.show()
```


comme conclusion notre modéle travaille bien .

Améliorations:

```
1 """ La courbe d'apprentissage """
2 plt.plot(range(len(cost_history)), cost_history)
3 plt.show()
```

La courbe d'apprentissage

Cela nous aide à bien choisir le nombre d'itérations pour que le modèle fonctionne efficacement. Par exemple, à partir du graphe, nous pouvons observer qu'après 500 itérations, les résultats deviennent satisfaisants. Cela indique que 500 itérations sont suffisantes pour que la machine converge vers une solution optimale.

```
"""coeficient de determination"""
def coef_determination(y, pred):
    u = ((y - pred)**2).sum()
    v = ((y - y.mean())**2).sum()
    return 1 - u/v
    print(coef_determination(y, prediction))
```

Le coeficient de determination

```
PROBLEMS 5 OUTPUT DEBUG CONSOLE TERMINAL PORTS SEARCH ERROR JUPYTER NUGET COMMENTS

PS C:\Users\BERNANE> python -u "c:\Users\BERNANE\Desktop\controle_LR_surdataset_diabet.py"

c:\Users\BERNANE\Desktop\controle_LR_surdataset_diabet.py:7: SyntaxWarning: invalid escape sequence '\s'

data = pd.read_csv('C:\sokar.csv')

6413.363280518358

-2.0283872349651992

PS C:\Users\BERNANE>
```

la performance de notre modele.

Annexe:

```
.
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    """la premiere etape c'est la dataset sous sa forme matricille"""
    """maintenant theta qui contient les paramétres (a et b pour un model simple) """
   ax.scatter(x[:,0], x[:,1], y, c='b', marker='o') # affiche en 3D la variable x_1, x_2, et la target y
   # affiche les noms des axes
   ax.set xlabel('x 1')
   ax.set_zlabel('y')
    """le modéle F = X.0 """
    """gradient & Descente de gradient"""
   def descente_du_gradient(X, theta, y, alpha, n_iter):
       for i in range(0, n_iter):
   theta_final, cost_history = descente_du_gradient(X, theta, y, alpha=0.0001, n_iter=1000)
   plt.plot(x[:,2], prediction, color='red')
   ax = fig.add_subplot(111, projection='3d')
   ax.scatter(x[:,0], x[:,1], y, c='b', marker='o') # affiche en 3D la variable x_1, x_2, et la target y
   ax.set_ylabel('x_2')
   ax.set_zlabel('y')
    """ La courbe d'apprentissage """
```