

NºMec.

Notas: - O seu teste está numerado no canto superior direito. Assine a folha de presenças na linha com esse nº.

- só é permitida calculadora sem capacidade de comunicação e material de escrita em papel; todo o restante material (incluindo pasta/mochila, portátil/tablet e telemóvel) deve ser depositado na parte baixa do anfiteatro;
- em cada questão só há uma resposta correcta; uma resposta certa vale 0,5 valores, uma errada desconta 0,1 valores e uma não resposta vale 0 valores; as respostas têm de ser assinaladas com um X na grelha abaixo; mais do que um X por coluna é considerado como resposta errada; a classificação final é convertida para uma escala de 0 a 20 valores;
- duração do teste: 70 minutos, sem tolerância.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
(a)																
(b)																
(c)																
(d)																

1. Numa resistência $R=1k\Omega$ mediu-se uma potência dissipada de 9mW. Sendo I a corrente que a atravessa e V a tensão aos seus terminais, qual das seguintes respostas é verdadeira?

(a)
$$I = 3 \times 10^{-3} \text{mA}$$
 × (b) $I = 3 \text{mA}$

$$\times$$
 (b) I = 3mA

(c)
$$I = 9mA$$

(d)
$$V = 9V$$

2. Com R1=R2=R3=R4=R5=R, a resistência Req é dada por:

(a)
$$Req = R/3$$

(a)
$$Req = R/3$$
 × (b) $Req = R/2$

(c)
$$Req = R$$

(d)
$$Req = 2R$$

3. Sabendo que V2 = 4V, determine R3:

(a) R3= 2
$$\Omega$$

x (b)
$$R3 = 3 \Omega$$

(c) R3= 4
$$\Omega$$

(d) R3=
$$6 \Omega$$

4. Considerando os sentidos das correntes indicados, uma equação de correntes para o nó A é:

(a)
$$-i_F - i_2 + (i_4 + i_5) = 0$$
 (b) $i_F - i_2 - (i_4 + i_5) = 0$

(b)
$$i_F - i_2 - (i_4 + i_5) = 0$$

(c)
$$i_F + i_2 - (i_4 + i_5) =$$

(c)
$$i_F + i_2 - (i_4 + i_5) = 0$$
 \times (d) $i_F - i_2 + (i_4 + i_5) = 0$

5. Aplicando sobreposição a corrente **Iy** é dada pela soma:

$$0 - 1 = -1 A$$

$$\times$$
 (a) 0 - 1 = -1 A (b) 0 + 1 = 1 A

(c)
$$-2-1=-3$$
 A (d) $2+1=3$ A

- **6.** Os dois circuitos são equivalentes se:
 - (a) V_{TH} = -20 V e R_{TH} = 2,4 k Ω
- × **(b)** V_{TH} = -20 V e R_{TH} = 3,2 kΩ
 - (c) $V_{TH} = 20 \text{ V e R}_{TH} = 2.4 \text{ k}\Omega$
 - (d) V_{TH} = 20 V e R_{TH} = 3,2 k Ω

- 7. Os dois circuitos são equivalentes se:
 - (a) $I_N = 1 \text{ mA}$; $R_N = 2 \text{ k}\Omega$
 - **(b)** $I_N = 1 \text{ mA}$; $R_N = 9 \text{ k}\Omega$
- \times (c) I_N = 3 mA; R_N = 2 k Ω
 - (d) $I_N = 3 \text{ mA}$; $R_N = 9 \text{ k}\Omega$

- **8.** Para o circuito da direita calcule Vo:
 - (a) $V_0 = -5 V$
- **(b)** $V_0 = -2 V$
- (c) $V_0 = +2 V$
- \times (d) $V_0 = +5 V$

- **9.** Para o sinal à direita, determine o *duty-cycle* e o valor médio:
 - \times (a) $\partial = 20\%$; $v_{\text{med}} = 1 \text{ V}$
- **(b)** $\partial = 80\%$; $v_{\text{med}} = 1 \text{ V}$
- (c) $\partial = 20\%$; $v_{\text{med}} = -1 \text{ V}$
- (d) $\partial = 80\%$; $v_{\text{med}} = -1 \text{ V}$

- **10.** O sinal à direita alimenta uma resistência de $10,6k\Omega$. Determine, aproximadamente, a potência dissipada:
 - (a) 0 W
- \times (b) 5 W
- **(c)** 10 W
- (d) 40 W

- **11.** Para o sinal da figura, determine o tempo de descida:
 - (a) 8 ns
- \times **(b)** 16 ns
- (c) 20 ns
- (d) 50 ns

12. Para t < 0s o comutador está na posição 1.

Em t = 0s, o comutador muda para a posição 2, ligando a resistência à massa. Ao fim de 1ms, a tensão V0 = 3,68V.

Calcule, aproximadamente, o valor de C:

- **(b)** 110nF
- \times (c) 0,5 μ F
- (d) $1,1\mu F$

13. O circuito à direita é do tipo Passa-Alto (PA) ou Passa-Baixo (PB) ? Determine a sua frequência de corte. (se necessário aproxime o resultado)

- × **(a)** PA / 80 kHz
- **(b)** PB / 80 kHz
- (c) PA / 0.5 MHz
- (d) PB / 0.5 MHz
- **14.** No circuito à direita $R = 6.8 \text{ k}\Omega$ e C = 1.8 nF. Vi é uma sinusoide com 10 Vpp. Aproximadamente, a que frequência é que se obtém uma tensão Vo com 100 mVpp:
 - (a) 13 kHz
- **(b)** 130 kHz
- \times (c) 1,3 MHz
- (**d**) 13 MHz

- **15.** Considere um circuito LC série, com L=1mH e C=1,2μF, a funcionar à frequência de 4,6kHz. Determine, aproximadamente, a impedância equivalente em módulo e fase.
 - (a) $0\Omega / -90^{\circ}$
- **(b)** $0\Omega / +90^{\circ}$
- (c) $58\Omega / -90^{\circ}$
- (d) $58\Omega / +90^{\circ}$

0,07/+90°

16. O circuito à direita está em regime permanente, ou seja, está a funcionar há longo tempo. Calcule I1:

(b)
$$I1 = 2 \text{ mA}$$

$$\times$$
 (c) I1 = 5 mA

(d)
$$I1 = 10 \text{ mA}$$

$$v = \frac{dw}{dq} \quad i = \frac{dq}{dt} \quad p(t) = v(t)i(t) \quad w = \int_{t_1}^{t_2} p(t) dt \quad V = R \times I \quad \sum \text{Iin} = \sum \text{Iout} \quad \sum V = 0$$

$$R_{EQ} = \sum_{n=1}^{N} R_n \quad R_{EQ} = \frac{R_1 R_2}{R_1 + R_2} \quad V_{R2} = Vi \quad \frac{R_2}{R_1 + R_2} \quad I_{R2} = \frac{R_1}{R_1 + R_2} \text{ Ii}$$

$$V_{med} = \frac{1}{T} \int_{t_0}^{t_0 + T} v(t) dt \quad V_{ef} = V_{ms} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0 + T} v^2(t) dt \quad V_{ef} = V_{rms} = \frac{V_m}{\sqrt{2}}$$

$$\mathbf{W} = 2\pi \mathbf{f} = 2\pi / \mathbf{T} \quad \tau = RC \quad \tau = L / R \quad j^2 = -1$$

$$q_c = Cv_c \quad i_c = C \frac{dv_c}{dt} \quad v_c(t) = \frac{1}{C} \int_{t_0}^{t} i_c dt + v_c(t_0) \quad w(t) = \frac{1}{2} Cv^2(t) \quad z = a + j b$$

$$|z| = \sqrt{a^2 + b^2}$$

$$v_L = L \frac{di_L}{dt} \quad i_L(t) = \frac{1}{L} \int_{t_0}^{t} v_L dt + i_L(t_0) \quad w(t) = \frac{1}{2} Li^2(t) \quad \phi = \tan^{-1} \left(\frac{b}{a}\right)$$

$$v_C(t) = V_i e^{-t / RC} \quad v_C(t) = V_s - V_s e^{-t / RC} \quad i_L(t) = I_f - I_f e^{-tR/L}$$

$$Z_L = j\omega L = \omega L \angle 90^\circ$$

 $Vr = I_{L \text{med}} T/C$ $I_{L \text{med}} \approx V_{L \text{med}}/R_L$ $Vr = I_{L \text{med}} T/2C$

 $f_B = \frac{1}{2\pi RC}$ $H(f) = \frac{1}{1 + i(f/f_B)}$ $H(f) = \frac{V_{out}}{V_{in}} = \frac{j(f/f_B)}{1 + j(f/f_B)}$ $|H(f)|_{dB} = 20 \log |H(f)|$