PRACTICAL-6

Gauss-Jacobi Method

Prachi Mittal{20211061}

Ques-1

```
In[16]:= GaussJacobi[A0_, b0_, X0_, maxiter_] :=
       Module [ \{A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m, OutputDetails \}, \}
        size = Dimensions[A];
        n = size[1];
        m = size[2];
        If[n ≠ m,
          Print["Not a square matrix, cannot proceed with gauss jacobi method"];
          Return[]];
         OutputDetails = {xk};
         xk1 = Table[0, {n}];
         While k < maxiter,
          For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) *
               (b[i]] - Sum[A[i, j] * xk[j], {j, 1, i - 1}] - Sum[A[i, j] * xk[j], {j, i + 1, n}]);
          OutputDetails = Append[OutputDetails, xk1];
          xk = xk1;
         colHeading = Table[X[s], {s, 1, n}];
         Print[
          NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
         Print["No. of iterations performed ", maxiter];
       ];
     A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
     b = \{10, -14, -33\};
     X0 = \{0, 0, 0\};
     GaussJacobi[A, b, X0, 15]
```

X[1]	X[2]	X[3]
0	0	0
2.	-1.55556	4.71429
0.425397	-2.98413	4.55556
0.774603	-3.43845	3.92245
1.11871	-3.04067	3.84253
1.07112	-2.89044	4.00534
0.975953	-2.97867	4.04146
0.979148	-3.02644	4.00266
1.00422	-3.00813	3.98947
1.00584	-2.99391	3.99828
0.99947	-2.99729	4.00257
0.998428	-3.00132	4.0007
0.999985	-3.00083	3.9994
1.00041	-2.99974	3.99976
1.00004	-2.99976	4.00013
0.999898	-3.00004	4.00008

No. of iterations performed 15

Ques-2

```
In[21]:= GaussJacobi[A0_, b0_, X0_, maxiter_] :=
       Module [A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m, OutputDetails],
        size = Dimensions[A];
        n = size[1];
        m = size[2];
        If [n \neq m]
          Print["Not a square matrix, cannot proceed with gauss jacobi method"];
          Return[]];
         OutputDetails = {xk};
         xk1 = Table[0, {n}];
         While k < maxiter,
          For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) *
               b[i] - Sum[A[i, j] * xk[j], {j, 1, i - 1}] - Sum[A[i, j] * xk[j], {j, i + 1, n}]);
          k++;
          OutputDetails = Append[OutputDetails, xk1];
          xk = xk1;
         ];
         colHeading = Table[X[s], {s, 1, n}];
          NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
        Print["No. of iterations performed ", maxiter];
       ];
     A = \{\{4, 1, 1\}, \{1, 5, 2\}, \{1, 2, 3\}\};
     b = \{2, -6, -4\};
     X0 = \{0.5, -0.5, -0.5\};
     GaussJacobi[A, b, X0, 15]
```

```
X[1]
            X[2]
                         X[3]
0.5
            -0.5
                          -0.5
0.75
                          -1.16667
            -1.1
1.06667
            -0.883333
                         -0.85
0.933333
            -1.07333
                         -1.1
1.04333
            -0.946667
                          -0.928889
0.968889
            -1.03711
                         -1.05
1.02178
            -0.973778
                         -0.964889
            -1.0184
0.984667
                         -1.02474
1.01079
            -0.987037
                         -0.982622
0.992415
            -1.00911
                         -1.01224
            -0.993588
                         -0.9914
1.00534
0.996247
            -1.00451
                         -1.00605
1.00264
            -0.996828
                         -0.995744
                          -1.00299
0.998143
            -1.00223
1.00131
            -0.998431
                          -0.997894
0.999081
            -1.0011
                         -1.00148
```

No. of iterations performed 15

Ques-3

```
In[31]:= GaussJacobi[A0_, b0_, X0_, maxiter_] :=
       Module [ \{A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m, OutputDetails \}, \}
         size = Dimensions[A];
         n = size[1];
         m = size[2];
         If [n \neq m]
          Print["Not a square matrix, cannot proceed with gauss jacobi method"];
          Return[]];
         OutputDetails = {xk};
         xk1 = Table[0, {n}];
         While k < maxiter,
          For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) *
               (b[i]] - Sum[A[i, j] * xk[j], {j, 1, i - 1}] - Sum[A[i, j] * xk[j], {j, i + 1, n}]);
          k++;
          OutputDetails = Append[OutputDetails, xk1];
          xk = xk1;
         ];
         colHeading = Table[X[s], {s, 1, n}];
          NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
         Print["No. of iterations performed ", maxiter];
       ];
     A = \{\{-3, 1, 0\}, \{2, -3, 1\}, \{0, 2, -3\}\};
     b = \{-2, 0, -1\};
     X0 = \{0, 0, 0\};
     GaussJacobi[A, b, X0, 15]
```

V [1]	VIDI	V [2]
X[1]	X[2]	X[3]
0	0	0
0.666667	0.	0.333333
0.666667	0.555556	0.333333
0.851852	0.555556	0.703704
0.851852	0.802469	0.703704
0.934156	0.802469	0.868313
0.934156	0.912209	0.868313
0.970736	0.912209	0.941472
0.970736	0.960982	0.941472
0.986994	0.960982	0.973988
0.986994	0.982658	0.973988
0.994219	0.982658	0.988439
0.994219	0.992293	0.988439
0.997431	0.992293	0.994862
0.997431	0.996575	0.994862
0.998858	0.996575	0.997716

No. of iterations performed 15