

19CSE337 Social Networking and Security

Lecture 20

Topics to Discuss

Learning based methods

Feature based classification

- Classification is a supervised learning approach.
- It uses class labels.
- Let $(x,y) \in E$ in G(V,E) and I(x,y) be the label of node pair.
- Each non-connected pair of nodes corresponds to an instance of a class label.
- The pair of nodes can be either positive or negative. (Binary classification).
- I(x,y)=+1 if $(x,y)\in E$ else -1

Feature based classification

- To build an efficient classifier, it is must to extract required features from the network.
- Classification learning models will use similarity index based features also.

Step-1 Compute Similarity Scores (Data Set for Learning)

Node Pair/Link	CN	JC	PA
(A,C)	3	0.5	9
(A,G)	1	0.167	12
(A,H)	0	0	12
(D,E)	1	0.2	9
(D,F)	1	0.2	9
(H,I)	1	0.5	1

Fix the minimum values of each metrics as follows to be considered. CN=1,JC=0.5, PA=9

Step-2 Compute Frequency Table (Two class labels Yes/No)

Node Pair	Yes	No
A,C	3	0
A,G	2	1
A,H	1	2
D,E	2	1
D,F	2	1
H,I	2	1

Yes/No is counted based on satisfying min. scores in earlier table.

Step-3 Compute Likelihood Table

Node Pair	Yes	No	
A,C	3	0	3/18=0.167
A,G	2	1	3/18=0.167
A,H	1	2	3/18=0.167
D,E	2	1	3/18=0.167
D,F	2	1	3/18=0.167
H,I	2	1	3/18=0.167
	12/18=0.67	6/18=0.33	

```
P(Class/Data)=[P(Data/Class)*P(Class)]/P(Data).
P(Yes/AC)=[P(AC/Yes)*P(Yes)]/P(AC)
  P(AC/Yes)=3/12=0.25
  P(Yes)=12/18=0.67
  P(AC)=3/18=0.167
P(Yes/AC)=[0.25*0.67]/0.167=1
```

```
P(Class/Data)=[P(Data/Class)*P(Class)]/P(Data).
P(Yes/HI)=[P(HI/Yes)*P(Yes)]/P(HI)
  P(HI/Yes)=2/12=0.167
  P(Yes)=12/18=0.67
  P(HI)=3/18=0.167
P(Yes/AC)=[0.167*0.67]/0.167=0.67 [>0.5, The link HI
will form]
```

```
P(Class/Data)=[P(Data/Class)*P(Class)]/P(Data).
P(Yes/AH)=[P(AH/Yes)*P(Yes)]/P(AH)
  P(AH/Yes)=1/12=0.083
  P(Yes)=12/18=0.67
  P(AH)=3/18=0.167
P(Yes/AH)=[0.083*0.67]/0.167=0.332 [<0.5, The link AH
will not form]
```


Thanks.....