

تنش در فنرهای مارپیچ

با روش جمع آثار:

تنش ماکزیمم در قطر داخلی

$$\tau_{\max} = \frac{Tr}{J} + \frac{F}{A}$$

$$T = FD/2$$
 $A = \pi d^2/4$ $J = \pi d^4/32$

$$J = \pi d^4/32$$

$$\tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2}$$

تنش در فنرهای مارپیچ

$$\tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2}$$

$$C = \frac{D}{d}$$

 $au=K_srac{8FD}{\pi d^3}$ $C=rac{D}{d}$ اندیس فنر: lacktriangleright

 $K_s = \frac{2C+1}{2C}$

ضریب اثر بار عرضی

▶ معمولا بين ۶ تا ١٢

▶ نشانگر شکل فنر

▶ تعیین کننده روش ساخت

◄ برای مقادیر بزرگ: نورد سرد

▶ برای مقادیر کوچک: نورد گرم

- ▶ اثرات انحناء:
- 🕨 معادلات نوشته شده بدون در نظر گرفتن انحنا فنر بود
 - 🕨 با در نظر گرفتن اثر بار عرضی و انحنا
 - ▶ تفاوت این دو ضریب کمتر از ۲٪ است.
 - از ضریب K_B استفاده می کنیم.

 $K_W = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}$

 $K_B = \frac{4C+2}{4C-3}$

 $\tau = K_B \frac{8FD}{\pi d^3}$

روابط ابعادی در فنرهای فشاری

تعداد حلقه های موثر فنر: N_a

		ساده	ساده سنگ خورده	تخت شده	تخت سنگ خورده
	Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground
بر موثر	حلقه های غی N_e	0	1	2	2
	کل حلقه ها N_t	N_a	$N_a + 1$	$N_a + 2$	$N_a + 2$
	طول آزاد L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$
	طول مرده L_{s}	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t
	گام P	$(L_0 - d)/N_a$	$L_0/(N_a+1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$

پایداری فنرهای فشاری

▶ فشردگی بحرانی:

$$y_{\rm cr} = L_0 C_1' \left[1 - \left(1 - \frac{C_2'}{\lambda_{\rm eff}^2} \right)^{1/2} \right]$$

$$\lambda_{\rm eff} = \frac{\alpha L_0}{D}$$

$$C_1' = \frac{E}{2(E-G)}$$
 ثوابت بدون بعد: $lacktriangle$

$$C_2' = \frac{2\pi^2 (E - G)}{2G + E}$$

پایداری فنرهای فشاری

الريدرة إي

▶ ضریب رعنایی:

که α ضریب شرایط مرزی انتهایی فنر می باشد:

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

لراحی اجزاء 2 دکتر محمد جواد اشرفی

26

اگر زیر رادیکال منفی باشد یعنی $1 \geq C_2'/\lambda_{eff}^2 \geq 1$ به ازاء همه مقادیر فشردگی پایداری خواهيم داشت

$$y_{\rm cr} = L_0 C_1' \left[1 - \left(1 - \frac{C_2'}{\lambda_{\rm eff}^2} \right)^{1/2} \right]$$

$$L_0 < \frac{\pi D}{\alpha} \left[\frac{2(E-G)}{2G+E} \right]^{1/2}$$

$$L_0 < 2.63 rac{D}{lpha}$$
 مراحی بجربه د دکتر محمد جواد اشرفی

			ماده فنر	
توضيح	مشخصههای استاندارد	نام ماده	جدول ۱۰ ۳-۳ فولادهای پر کربن و	
بهترین، چقرمهترین، و مرسومترین جنس فنرهای کوچک با بیشترین مقاومت کششی، تحمل بارهای تکراری بیش از دیگر مواد فنر، قطر 0.12 تا mm 3 موجود، حدود دمای کاربری: صفر تا ℃120.	UNS G10850 AISI 1085 ASTM A228-51	سيم موسيقى 0.80-0.95C	الياژي فنر منيع: Harold C. R. Carlson, "Selection and Application of Spring Materials," <i>Mechanical Engineering</i> , vol. 78, 1956, pp. 331-334.	
انواع فراوان فنر پیچیده با کاربری عمومی و ارزان، اگر سیم موسیقی بهصرفه نباشد یا کلفت تر بخواهیم. برای بارهای تکاندار یا ضربه به کار نرود. قطر مرسوم 3 تا mm 12، ولی کوچک تر و بزرگ تر هم هست. دمای کاربری: صفر تا °280.	UNS G10650 AISI 1065 ASTM 229-41	سیم بازپخت شده در روغن 0.60-0.70C		

فولاد	نوع	نورد	آنیل نرم	(1(+QT) o	بهسازی شد	در حالت			
93.0		کرم	+A	استحكام	تنش تسليم		۵	خواص، کاربر	
نام کوتاه	مواد	سختی HB	سختی HB	R _m کششی N/mm ²	R _{p0,2} N/mm	نسبی شکست A %	in Attacking 9	* 184,20 \$24,50, 1.1 * 181,11 \$40,50	
38Si7	1.5023	240	217	13001600	1150	8		ضامن فنری پیچ	
46Si7	1.5024	270	248	14001700	1250	7		فنر برگی (شمشی)، فنر پیچی	
55Cr3	1.7176	> 310	248	14001700	1250	3	فنرهای کششی و فشاری بزرگ		
54SiCr6	1,7102	310	248	14501750	1300	6	مفتول فنر		
1SiCr7	1.7108	310	248	15501850	1400	5,5	ى	ننر برگی (شمشی)، فنر بشقاب	
1CrV4	1.8159	> 310	248	14001700	1200	6		ننرهای تحت بار بالا	
توضيح				la Knody	ت.	d = 10 صادق اس	آزمایشی با mm	۱) مقادیر استحکام برای نمونه	
min J	ل گىرد	EN مفتو	1 10089 – 2	20 × 8000 – 51	ICrV4+A:			قـطر مـفتول d = 20 mm، نوع فولاد 51CrV4، وضعيد	
					ful) به mm (انتخ	قطر مفتول ا	شكل تحويل	

ماده فنر

- ▶ با توجه به فرایند ساخت، با افزایش قطر استحکام کاهش می یابد.
- ▶ معمولا آزمایش روی قطر خاصی انجام می شود (مثلا ۱۰ میلیمتر)
 - ◄ برای بقیه قطرها از رابطه زیر استفاده می شود:

$$S_{ut} = \frac{A}{d^m}$$

طراحی اجزاء 2 دکتر محمد جواد اشرفی

30

ماده فنر

قیمت نسبی سیم	A, MPa·mm ^m	قطر، mm	A, kpsi∙in ^m	قطر، in	نمای m	شماره ASTM	چنس
2.6	2211	0.10-6.5	201	0.004-0.256	0.145	A228	سيم موسيقي"
1.3	1855	0.5-12.7	147	0.020-0.500	0.187	A229	سيم T&Q⊘†
1.0	1783	0.7-12.7	140	0.028-0.500	0.190	A227	سيم سخت كشيده [‡]
3.1	2005	0.8-11.1	169	0.032-0.437	0.168	A232	سيم فولاد كرم-واناديم§
4.0	1974	1.6-9.5	202	0.063-0.375	0.108	A401	سيم فولاد كرم-سيليس
7.6-11	1867	0.3-2.5	169	0.013-0.10	0.146	A313	سيم فولاد ضدزنگ 302#
	2065	2.5-5	128	0.10-0.20	0.263		15 15 Mar
	2911	5-10	90	0.20-0.40	0.478		
8.0	1000	0.1-0.6	145	0.004-0.022	0	B159	سيم فسفر برنز**
	913	0.6-2	121	0.022-0.075	0.028		
	932	2-7.5	110	0.075-0.30	0.064		

 $S_{ut} = \frac{A}{d^m}$

"سطح صاف، براق، بی عیب. آپرستههای ناشی از گرماکاری باید پاک شود. آسطح نرم، براق و بی عیب ظاهری. آپریم بازپخت شده با کیفیت صنایع هوایی، تابکاری شده آنهم هست. "بازپخت سدقی (۲۹) Rockwell، بازپخت نشده آنهم هست. *از فولاد ضدزنگ 302. "بازپخت شدهٔ CAS10.

, wie	درص	شسان، د بن 5 کشش	قطر d، in	Mpsi	E GPa	G Mpsi	GPa
سيم موسيقى A228	45-60	65-75	<0.032	29.5	203.4	12.0	82.7
6:>			0.033-0.063	29.0	200	11.85	81.7
			0.064-0.125	28.5	196.5	11.75	81.0
			>0.125	28.0	193	11.6	80.0
فنر A227 ،HD	45-55	60-70	< 0.032	28.8	198.6	11.7	80.7
			0.033-0.063	28.7	197.9	11.6	80.0
			0.064-0.125	28.6	197.2	11.5	79.3
			>0.125	28.5	196.5	11.4	78.6
بازپخت در روغن A239	45-50	85-90		28.5	196.5	11.2	77.2
فنر سوپاپ A230	50-60	85-90		29.5	203.4	11.2	77.2
کرم_وانادیم A231	65-75	88-93		29.5	203.4	11.2	77.2
A232		88-93		29.5	203.4	11.2	77.2
کرم–سیلیس A40 1 فولاد ضدزنگ	65–75	85–93		29.5	203.4	11.2	77.2
A313*	45-55	65-75		28	193	10	69.0
17-7PH	55-60	75-80		29.5	208.4	. 11	75.8
414	42-55	65-70		29	200	11.2	77.2
420	45-55	65-75		29	200	11.2	77.2
431	50-55	72-76		30	206	11.5	79.3
برنز فسفردار 8159	45-50	75-80		15	103.4	6	41.4
مس برليم B197	50	70		17	117.2	6.5	44.8
1,17,0	50-55	75		19	131	7.3	50.3
آلياز Inconel، X-750	40-45	65-70		31	213.7	11.2	77.2

محتدر 302، 304، و 316.

مقاومت كششى		
پس از پیشتنید <i>گی</i> (شامل ،K)	قبل از پیش تنیدگی (شامل K_{W} یا K_{B})	جنس
60-70	45	سیم موسیقی و فولاد
65-75	50	کربنی سردکشیده فولاد کربنی و کمآلیاژ
5 5-6 5	35	سخت و بازپخت شده فولادهای ضدزنگ آستینتی
55 -6 5	35	ر آلیاژهای غیر آمنی

جدول ۶-۱۰ فنر بیشترین تنشهای پیچشی بیشترین تنشهای پیچشی مجاز برای کاربردهای ایستای فنرهای مارپیچ فشاری شاری Robert E. Joerres, "Springs" Chap. 24 in Joseph E. Shigley and Charles R. Mischke (eds.), Standard Handbook of Machine Design, 2nd ed., McGraw-Hill, New York, 1996.

(FOM) Figure of Merit فيمت تمام شده يا ►

fom = -(relative material cost) $\frac{\gamma \pi^2 d^2 N_t D}{\Lambda}$

طراحي استاتيكي فنر فشاري

$$\tau = K_B \frac{8FD}{\pi d^3}$$

$$\frac{S_{sy}}{n_s} = K_B \frac{8F_s D}{\pi d^3} = \frac{4C + 2}{4C - 3} \left[\frac{8(1 + \xi)F_{\text{max}}C}{\pi d^2} \right]$$

طراحي استاتيكي فنر فشاري

- 1. انتخاب جنس فنر
- 2. انتخاب قطر مفتول فنر
- 3. تعیین قطر یا اندیس فنر با توجه به محدودیتها و پارامترهای طراحی
 - ▶ قطر خارجی فنر
 - ▶ قطر داخلی فنر
 - نیروی مرده و ماکزیمم
 - 🕨 ضریب اطمینان و تنش تسلیم برشی
 - 4. تعیین تعداد حلقه ها با توجه به
 - طول مرده، فشردگی ماکزیمم و بحرانی

طراحی اجزاء 2 دکتر محمد جواد اشرفی

طراحي استاتيكي فنر فشاري

As-wound or set

 $D = d_{\text{rod}} + d + \text{allow}$

 $S_{sy} = \operatorname{const}(A) / d^{m\dagger}$

 $S_{sv} = 0.65 A / d^m$

$$C = \frac{2\alpha - \beta}{4\beta} + \sqrt{\left(\frac{2\alpha - \beta}{4\beta}\right)^2 - \frac{3\alpha}{4\beta}} \qquad D = \frac{S_{sy}\pi d^3}{8n_s(1 + \xi)F_{\text{max}}}$$

$$\alpha = \frac{S_{sy}}{n_s} \qquad \beta = \frac{8(1+\xi)F_{\text{max}}}{\pi d^2}$$

D = Cd

طراحي استاتيكي فنر فشاري

$$C = D/d$$

$$K_B = (4C + 2)/(4C - 3)$$

$$\tau_s = 8K_B(1 + \xi)F_{\text{max}}D/(\pi d^3)$$

$$n_s = S_{sy}/\tau_s$$

$$OD = D + d$$

$$ID = D - d$$

 $N_a = Gd^4 y_{\text{max}}/(8D^3 F_{\text{max}})$ $N_t: \text{ Table } 10-1$ $L_s: \text{ Table } 10-1$ $L_O: \text{ Table } 10-1$ $(L_O)_{\text{cr}} = 2.63D/\alpha$ $\text{fom} = -(\text{rel. cost}) \gamma \pi^2 d^2 N_t D/4$

طراحی اجزاء 2 دکتر محمد جواد اشرفی

فرکانس بحرانی فنرهای مارپیچ

$$f = \frac{1}{2} \sqrt{\frac{kg}{W}}$$

▶ اگر فنر از یک طرف آزاد باشد:

$$f = \frac{1}{4} \sqrt{\frac{kg}{W}}$$

$$W=AL\gamma=rac{\pi d^2}{4}(\pi DN_a)(\gamma)=rac{\pi^2 d^2DN_a\gamma}{4}$$
 وزن فنر:

♦ فركانس طبيعي اصلي بايستي ١٥ تا ٢٠ برابر فركانس بارگذاري باشد.

طراحی اجزاء 2 دکتر محمد جواد اشرفی

51

طراحي فنرتحت بار خستكي

- ▶ در بسیاری از کاربردها بار گذاری نوسانی داریم.
- ▶ از آنجا که فنرها یا تحت کشش هستند یا فشار پس تنش نوسانی خالص نداریم.

طراحي فنرتحت بار خستكي

 ◄ آزمایشها نشان داده است که مستقل از جنس و قطر استحکام حد دوام در بارگذاری خستگی تقریبا ثابت است.

$$S_{sa} = 35 \text{ kpsi } (241 \text{ MPa})$$
 $S_{sm} = 55 \text{ kpsi } (379 \text{ MPa})$

✓ یکی از روشهای افزایش استحکام حد دوام ساچمه زنی فنر می باشد که ریزترکهای سطحی را رفع می کند. در این حالت:

$$S_{sa} = 57.5 \text{ kpsi } (398 \text{ MPa})$$
 $S_{sm} = 77.5 \text{ kpsi } (534 \text{ MPa})$

در ادامه با معلوم بودن قطر و جنس، S_{su} تعیین شده: lacktriangle

$$S_{ut} = \frac{A}{d^m}$$

$$S_{su}=0.67S_{ut}$$

$$S_{se} = \frac{S_{sa}}{1 - \left(\frac{S_{sm}}{S_{su}}\right)^2}$$

◄ با فرض منحنی گربر:

ا با فرض خط گودمن:

 $S_{se}=rac{oldsymbol{arepsilon}}{1}$ طراحی اجزاء 2 دکتر محمد جواد اشرہ

 $S_{se} = \frac{S_{sa}}{1 - \frac{S_{sm}}{S_{su}}}$

- ▶ آزمایشهای خستگی نشان می دهد اگر نمونه بدون شیار و ترک و تمرکز تنش باشد:
 - ▶ تنش پیچشی میانگین تاثیری در خستگی ندارد
 - ◄ بر این اساس معیار و روش sine استفاده می شود.
 - ▶ در فنرها که معمولا شیار و تمرکز تنش نداریم، این روش مرسوم می باشد.
 - ▶ در این معیار تنها تنش نوسانی با مقدار تنشهای مرجع نوسانی مقایسه می شود.
 - 🕨 بدون ساچمه زنی

$$S_{sa} = 35 \text{ kpsi } (241 \text{ MPa})$$

🕨 با ساچمه زنی

 $S_{sa} = 57.5 \text{ kpsi } (398 \text{ MPa})$

$$F_a = \frac{F_{\text{max}} - F_{\text{min}}}{2}$$

$$F_m = \frac{F_{\text{max}} + F_{\text{min}}}{2}$$

$$\tau_a = K_B \frac{8F_a D}{\pi d^3}$$

$$\tau_m = K_B \frac{8F_m D}{\pi d^3}$$

طراحی اجزاء 2 دکتر محمد جواد اشرفی

