27-04-2024

What is machine learning?

- Extract (learn) meaningful information from the examples (training) and answer the query for unseen examples
- Specific task
- How can we allow computer to extract meaningful information from the examples?
 - Design general rules
 - Development of algorithms
- Automate the process of inductive inference

Inductive bias

- Garcia effect, Garcia et. al. 1960
 - Rat has an inductive bias

Group-1

Sweet water

drinking sweet water

drinking normal water

Empirical risk minimization (ERM)

- Given $X_1, X_2, \ldots, X_n, X_i \in \mathcal{X}$ are n data points and $Y_1, Y_2, \ldots, Y_n, Y_i \in \mathcal{Y}$ are their corresponding outputs
- If we know the data distribution, then we can use Bayes decision rule?
- But in most of the cases we don't know the data distribution!
 - We can compute ERM as: $R_n(f) := \frac{1}{n} \sum_{i=1}^n l(X_i, Y_i, f(X_i))$
 - $^{\blacktriangleright}$ Consider a set of functions $\mathscr{F}:\mathcal{X}\to\mathcal{Y}$

$$f_n := \arg\min_{f \in \mathscr{F}} R_n(f)$$

Estimation Vs Approximation error

- Let's consider an example: least square regression problem
- Let \hat{f} be the true best in \mathscr{F} :

$$\hat{f} := \arg\min_{f \in \mathcal{F}} R(f)$$

- Estimation error: $R(f_n) R(\hat{f})$
 - Its a random variables. Why?
 - Depends on n
- Approximation error: $R(\hat{f}) R(f^*)$
 - $^{*} f^{*}$ is the Bayes/best over all functions (measurable)
- ullet Size of the function class ${\mathscr F}$
 - ► Small ?
 - Undercutting
 - Large?
 - Overfitting

