电位差计实验报告

2411545 邱凯锐

2025. 3. 17

1 实验目的

- 1. 了解电位差计的电位补偿原理和结构。
- 2. 掌握电位差计的校准方法和测量方法。
- 3. 测量待测电源分别位于 0.1 档、0.6 档和 1.2 档时未知电动势 E_X 的大小,电位差计灵敏度,并计算不确定度 u。

2 实验原理

2.1 电位差计原理——电压补偿原理

Figure 1 是将被测电动势的电源 E_x 与一已知电动势的电源 E_0 "+"端对"+"端,"-"端对"-"端地联成一回路,在电路中串联检流计"G",若两电源电动势不相等,即 $E_x \neq E_0$,回路中必有电流,检流计指针偏转;如果电动势 E_0 可调并已知,那么改变 E_0 的大小,使电路满足 $E_x = E_0$,则回路中没有电流,检流计指示为零,这时待测电动势 E_x 得到已知电动势 E_0 的完全补偿。可以根据已知电动势值 E_0 定出 E_x ,这种方法叫补偿法。如果要测任一电路中两点之间的电压,只需将待测电压两端点接入。

上述补偿回路代替 E_x ,根据补偿原理就可以测出它的大小。我们知道,用电压表测量电压时,总要从被测电路上分出一部分电流,从而改变了被测电路的状态,用补偿法测电压时,补偿电路中没有电流,所以不影响被测电路的状态。这是补偿测量法最大的优点和特点。

Figure 1: 电压补偿法

Figure 2: 电位差计

按电压补偿原理构成的测量电动势的仪器称为电位差计。由上述补偿原理可知,采用补偿法测量电动势对 E_O 应有两点要求: (1) 可调。能使 E_O 和 E_X 补偿。(2) 精确。能方便而准确地读出补偿电压 E_O 大小,数值要稳定。是实现补偿法测电动势的原理线路,即电位差计的原理图。采用精密电阻 R_{ab} 组成分压器,再用电压稳定的电源 E 和限流电阻 R 串联后向它供电。只要 R_{cd} 和 I_O 数值精确,则图中虚线内 E_O 之间的电压即为精确的可调补偿电压 E_O 和 E_X 组成的回路 E_O 和 E_X 组成的回路 E_O 和 E_X 组成的回路 E_O 和 E_X 组成的回路 E_O 和 E_X 经成

2.2 电位差计的校准

要想使回路的工作电流等于设计时规定的标准值 I_O ,必须对电位差计进行校准。方法如图 4 所示。 E_S 是已知的标准电动势,根据它的大小,取 cd 间电阻为 R_{cd} ,使 $R_{cd}=E_S/I_O$,将开关 K 倒向 E_S ,调节 R 使检流计指针无偏转,电路达到补偿,这时 I_O 满足关系 $I_O=E_S/R_{cd}$,由于已知的 E_S 、 R_{cd} 都相当准确,所以 I_O 就被精确地校准到标准值,要注意测量时 R 不可再调,否则工作电流不再等于 I_O 。

Figure 3: 电位差计的校准

3 实验设备

87-1 型学生式电位差计(杭州大华)

- 1. 电位差计基本误差为 ±0.2%(以满度值计算); 电位差计的工作电流为 5.5 毫安。
 - 2. 电位差计有 "×1" 和 "×0.1" 二档倍率:
 - "×1"档的测量上限为 1.710 伏, 最小分度为 0.0001 伏;
 - "×0.1"档的测量上限为 171.0 毫伏, 最小分度为 0.01 毫伏。

- 3、本电位差计的工作电源为 $2.8\sim3.2$ 伏,电源回路的工作电流调节可采用 "内接 R"。
 - 4、标准电势 1.01860 伏, 被测电势 0-1900mV 分 11 挡。

Figure 4: 电位差计

Figure 5: 电位差计内部电路

4 实验内容

- 1. 按照电路图连接电路
- 2. 校准学生式电位差计

使用电位差计之前,先要进行校准,使电流达到规定值。先放好 R_A 、 R_B 和 R_C ,使其电压刻度等于标准电池电动势。合上 K_1 、 K_3 ,将 K_2 推向 E_S

(间歇使用),并同时调节 R,使检流计无偏转 (指零),为了增加检流计灵敏度,应逐步减少 R_b ,如此反复开、合 K_2 ,确认检流计中无电流流过时,则 I_O 已达到规定值。

3. 测量未知电池电动势 E_X

按待测电动势的近似值放好 R_A 、 R_B 、 R_C , K_2 推向 E_X 并同时调电位 差计 R_A 、 R_B 、 R_C 使检流计无偏转(在测 E_X 的步骤中 R 不能变动),此时 R_A 、 R_B 和 R_C 显示的读数值即为 E_X 值。

重复"校准"与"测量"两个步骤。共对 E_X 测量 5 次,取 E_X 的平均 值作为测量结果。

4. 电位差计的灵敏度

当电位差计测量达到平衡时,检流计的指针不再偏转,但这并不能说明测量回路中的电流绝对为零,这反映了电位差计对平衡的判别能力。为此引入电位差计电压灵敏度的概念,定义为:

$$S = \frac{\Delta n}{\Delta U} (\text{\r{A}/V})$$

式中 ΔU 为电位差计平衡后,使分度电阻 R 上 A、C 间电压调离平衡时的电压改变值, Δn 为此时检流计 G 偏转的格数。

分别测量待测电势 0.1 档、0.6 档和 1.2 档的电势输出,重复测量 5次取平均,并测量电位差计灵敏度。

5 实验数据

5.1 不确定度 u 计算方法

A 类不确定度:

$$u_a = 1.14\sqrt{\frac{\sum_{i=1}^{n} (E_{x_i} - \overline{E_x})^2}{n(n-1)}}$$

B 类不确定度:

$$u_{b_1} = \frac{\Delta_{\{\chi\}}}{\sqrt{3}}$$
$$u_{b_2} = \frac{\delta}{\overline{\varsigma}}$$

其中 $\Delta_{\emptyset} = 2 \times 10^{-5} \text{V}(\times 1$ 档), $\Delta_{\emptyset} = 2 \times 10^{-6} \text{V}(\times 0.1$ 档), $\delta = 0.2$ 。

$$u = \sqrt{u_a^2 + u_{b_1}^2 + u_{b_2}^2}$$

5.2 实验数据

以下数据中 $\Delta n = 5$

1. 电势 0.1 档

组别	$E_x(V)$	$E_x'(\mathbf{V})$	ΔE	S
1	0.100103	0. 100148	0.000045	111111.1111
2	0.100111	0. 100150	0.000039	128205. 1282
3	0.100115	0. 100154	0.000039	128205. 1282
4	0.100110	0.100160	0.000050	100000
5	0.100113	0. 100158	0.000045	111111.1111

$\overline{E_x}({\tt V})$	\overline{S}	u_a	u_{b_1}	u_{b_2}	u
0.100110	115726. 4957	0.000002	0.000001	0.000002	0.000003

得到结果: $E_x = \overline{E_x} \pm u = (0.100110 + 0.000003)V$

2. 电势 0.6 档

组别	$E_x(V)$	$E'_x(V)$	ΔE	S
1	0. 59940	0. 59936	0.00004	125000
2	0. 59958	0. 59951	0.00007	71428. 57143
3	0. 59952	0. 59945	0.00007	71428. 57143
4	0. 59944	0. 59940	0.00004	125000
5	0. 59940	0. 59936	0.00004	125000

$\overline{E_x}(V)$	\overline{S}	u_a	u_{b_1}	u_{b_2}	u
0. 59947	103571.4286	0.000041	0.000012	0.000002	0.000042

得到结果: $E_x = \overline{E_x} \pm u = (0.59947 + 0.00004)V$

3. 电势 1.2 档

组别	$E_x(V)$	$E_x'(\mathbf{V})$	ΔE	S
1	1. 20001	1. 20007	0.00006	83333. 33333
2	1. 20010	1. 20002	0.00008	62500
3	1. 20005	1. 20000	0.00005	100000
4	1. 20001	1. 19994	0.00007	71428. 57143
5	1. 20007	1. 20003	0.00004	125000

$\overline{E_x}(V)$	\overline{S}	u_a	u_{b_1}	u_{b_2}	u
1. 20005	88452. 38095	0.000020	0.000012	0.000002	0.000023

得到结果: $E_x = \overline{E_x} \pm u = (1.20005 + 0.00002)V$

6 思考题与总结

思考题: 电位差计的测量精度与哪些因素有关?

标准电源 E_s 的精确程度,检流计 G 的灵敏度,工作电压 E 的稳定性,可调电阻 R_A 、 R_B 和 R_C 的精确度,人为因素(操作的规范性和速度)。

本次实验通过我们电位差计测量了未知电动势 E_x ,较为成功地掌握了电位差计的原理和使用方法。在实验操作的过程中,操作的顺序、规范性和熟练度都对测量结果有着不小的影响,这对我们日后进行一些测量精度较高的实验提供了一些经验。