Application of iRODS metadata management for cancer genome analysis iRODS User Group Meeting 2016

e:Med initiative

sponsored by the

Federal Ministry of Education and Research

grant no. 01ZX1303A

Lech Nieroda

University of Cologne Regional Computing Center

Agenda

- Who are we?
- SMOOSE Project: data management requirements
- Why use iRODS?
- Our iRODS integration
- Various Concerns

Regional Computing Center (RRZK)

University of Cologne

- High Performance Computing for scientists of North Rhine-Westphalia
- IT infrastructure & support for University of Cologne

CHEOPS HPC Cluster at the RRZK

Peak- and Linpack Performance

Top500 Rank

Number of Nodes / Cores

Total RAM

Total Storage (Lustre + GPFS)

Interconnect (Infiniband and Ethernet)

100 TFLOP/s and 85,9 TFLOP/s

90 (11/2010)

841 / 9712

35,5 TB

500 TB + 900 TB

QDR 40Gb/s and 10Gb/s

Why a data management system?

SMOOSE Project

Systems-level analysis of MOdulators of Oncogenic Signaling

- Identification of new genetic markers for diagnosis and treatment of cancer
- Devise therapy and move findings into clinical application
- Interdisciplinary consortium with 10 sub-projects

e:Med initiative sponsored by the

Federal Ministry of Education and Research

grant no. 01ZX1303A

Our part in SMOOSE Project:

- Optimize cancer genome analysis workflows
 - Computation:
 - Optimize speed/throughput
 - Miniaturisation, use of accelerators
 - Lower operational cost
 - Data handling
 - Efficient & redundancy free storage
 - Secure access to patient data
 - Quick reanalysis and result dissemination

NGS Data Life Cycle:

Cross-section requirements:

Authenticate & Track Access

Verify Metadata

Verify data integrity

Data discoverability

iRODS

- Allows freely customizable and searchable metadata
- Rule-engine allows predefined actions in regular intervals, triggered by events or manually
- Any data operation can be augmented with matching actions, allowing audit trails
- Fine grained access control
- Virtual Filespace that can be adapted to organizational structures

Metadata groups:

INPUT

ANALYSIS RUN

RESULTS

- Data Provider
- Sample_ID
- Sample_Type
- Species
- Input format
- Project_Name

- ...

- Analyst
- Sample_ID
- Sample_Type
- Reference ID
- Applications
- Parameters

- ...

- N_reads_align
- N_mean_coverage
- N_targets_hit
- N n reads
- N n overlap
- N_reads_in_target
- Metadata can be entered manually or created dynamically, for example by parsing log files
- > Metadata is intended for various levels (Project, Sample, Run, ...)
- Metadata needs to be verified to ensure consistency!

Metadata verification

Example CSV Sheet with INPUT-Metadata:

	Α	В	С	D
1	MetaData INPUT			
2	Attribute	Value	Value Domain	Further tests
3	LocalPath	/test/path/sample	[a-zA-Z0-9_+-/.]	Path readability
4	Filename1	testfile_T.bam	[a-zA-Z0-9_+].{bam fastq}	File readability
5	Filename2	testfile_N.bam	[a-zA-Z0-9_+].{bam fastq}	File readability
6	Sample_ID	P1234-PB03	[a-zA-Z0-9+.]	None
7	Sample_Type	exome	{exome genome}	None
8	Project_Name	SMOOSE	[a-zA-Z0-9+.]	None
9	Data_Provider	Max Mustermann	[a-zA-Z]	Name DB
10	Species	human	{human mouse}	None

Verification within a perl-import Script:

Virtual Paths

- Perl scripts create unique, predefined Virtual Paths according to metadata values
- Access control to those predefined V. Paths has been set up for appropriate user/group
- An upload/download only succeeds if the user/group may access the Zone, Project, Sample_Type, Sample_ID and thus the V. Path

```
/<Zone>/archive/<Projectname>/<Sample_Type>/<Sample_ID>/input
/<Zone>/archive/<Projectname>/<Sample_Type>/<Sample_ID>/run_1
/<Zone>/archive/<Projectname>/<Sample_Type>/<Sample_ID>/run_2
...
```

Leveraging fine grained iRODS access control!

iRODS rule example

A simple rule to fetch input files for a certain Zone,
 Project, Sample type, Sample ID:

Data Flow

University of Cologne

Security and privacy Concerns

- Anonymization/Pseudonymization of genetic samples
- SSL between iRODS Server <-> iCommand Client
- Host-based FQDN Certificates restrict allowed hosts
- PAM authentication (Kerberos failed with 4.1.6!)
- One dedicated server provides access to iRODS ressources
- File access in vault restricted to single irods user
- NFS access restricted to single irods user

iRODS has full control over stored Data/Metadata!

Data control

Should iRODS manage only metadata and cede file control to the file system?

Pro:

- Data security relies on well known file systems instead of internal iRODS authentication
- Faster data access as long as it's on the same server since upload/download is no longer necessary

Con:

- Metadata can point to nonexistant or changed files!
- Filesystem must support POSIX ACL
- File registration requires admin or file owner
 - Loosening of NFS export restrictions
 - Loosening of iRODS permission checking rules
- Direct Access plugin requires root access
 - Loosening of NFS export restrictions

Summary

- Verifiable data schemas enforce metadata consistency and enable a hierarchical file space with predefined locations, making access control easier
- Efficient access control is paramount in the clinical context
- We have decided to rely on iRODS authentication to use it for both data and metadata management, while tightening security and restricting services
- This resulted in a comprehensive system including results as well as the underlying sources with matching, discoverable descriptions and reasonable security

