

Termodinâmica I - EM 360

Primeira Prova (20/05/2010)

Prof. Dr. Marcio de Souza-Santos

Questão

A Figura mostra o diagrama de um sistema de geração de potência termelétrica a vapor.

Os dados para este ciclo estão mostrados na tabela abaixo.

Corrente	Temperatura (°C)	Pressão (bar)	Título	Volume especifico (m³/kg)	Entalpia (kJ/kg)
1		61			
2	46	60			
3	180	58			
4	500	56			
5	490	54			
6		0,10	0,92		
7	43	0,09			
8	13	100			
9	24	98	*		~

Dados complementares:

Velocidade média do fluído na corrente 6: 200 m/s

Potência consumida pela bomba: 400 HP

Vazão mássica vapor: 9 x 104 kg/h

Diâmetro da tubulação entre a caldeira e a turbina: 200 mm

Diâmetro das tubulações entre o condensador e a caldeira: 75 mm

Pede-se calcular:

- a) A potência produzida pela turbina
- b) A taxa de troca de calor no economizador
- c) A taxa de troca de calor no condensador
- d) A vazão da água de resfriamento na corrente 8
- e) O rendimento do ciclo