# **Microwave Engineering Lab**

# **Experiment: 6**

Design of branch line coupler with 3 dB power division



Southern University of Science and Technology, Shenzhen, P.R. China

## *Task-1:*

#### Design of branch line coupler with 3 dB power division

### **Objective**

- Design of circuit model of the branch-line coupler with 3 dB power division using ADS.
- Full-wave simulation of branch-line coupler using HFSS.



Fig. 1. Branch-line coupler. Here  $Z_0 = 50 \Omega$ .



Fig. 2 Circuit simulation of branch-line coupler in ADS.





| Name | Value | Unit | Evaluated | Type   |
|------|-------|------|-----------|--------|
| hs   | 0.787 | mm   | 0.787mm   | Desian |
| hc   | 0.017 | mm   | 0.017mm   | Desian |
| Lf   | 10    | mm   | 10mm      | Desian |
| Wf   | 2.33  | mm   | 2.33mm    | Desian |
| L1   | 27.22 | mm   | 27.22mm   | Desian |
| W1   | 2.33  | mm   | 2.33mm    | Desian |
| L2   | 27    | mm   | 27mm      | Desian |
| W2   | 3.82  | mm   | 3.82mm    | Desian |

Dimensions for 3 dB branch-line coupler

# **Design procedure of branch-line coupler:**

## 1. Substrate:

Create a box with the below properties.
Assign material: Right Click>Assign Material>Rogers/Select RT Duroid 5870

| Comn | nand     |                      |       |
|------|----------|----------------------|-------|
|      | Name     |                      | Value |
|      | Command  | CreateBox            |       |
|      | Coordina | Global               |       |
|      | Position | -Lf-L1/2Lf-L2/2 .0mm |       |
|      | XSize    | 2*Lf+L1              |       |
|      | YSize    | 2*Lf+L2              |       |
|      | ZSize    | hs                   |       |
|      |          |                      |       |

| Name        | Value                        |  |
|-------------|------------------------------|--|
| Name        | Sub                          |  |
| Material    | "Roaers RT/duroid 5870 (tm)" |  |
| Solve Insi  | ▼                            |  |
| Orientation | Global                       |  |
| Model       | <b>▽</b>                     |  |
| Display     |                              |  |
| Color       |                              |  |
| Transpar    | 0                            |  |
| Transpar    | 0                            |  |

### 2. Ground:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Commar | nd       |                      |       |
|--------|----------|----------------------|-------|
|        | Name     |                      | Value |
|        | Command  | CreateBox            |       |
|        | Coordina | Global               |       |
|        | Position | -Lf-L1/2Lf-L2/2 .0mm |       |
|        | XSize    | 2*Lf+L1              |       |
|        | YSize    | 2*Lf+L2              |       |
|        | ZSize    | -hc                  |       |
|        |          |                      |       |
|        |          |                      |       |

| Name        | Value    |  |
|-------------|----------|--|
| Name        | GND      |  |
| Material    | "copper" |  |
| Solve Insi. |          |  |
| Orientation | Global   |  |
| Model       | <b>▽</b> |  |
| Display     |          |  |
| Color       |          |  |
| Transpar    | 0        |  |

### 3. AirBox:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Select Air

# Command

| Name     | Value                    |
|----------|--------------------------|
| Command  | CreateBox                |
| Coordina | Global                   |
| Position | -Lf-L1/2-10mmLf-L2/210mm |
| XSize    | 2*Lf+L1+20mm             |
| YSize    | 2*Lf+L2                  |
| ZSize    | 20                       |

| Name Airbox Material "air"  Solve Insi  Orientation Global | Mana        | Value |
|------------------------------------------------------------|-------------|-------|
| Material "air"  Solve Insi  Orientation Global             | Name        | Value |
| Solve Insi Orientation Global                              |             |       |
| Orientation Global                                         | Material '  | "air" |
| _                                                          | Solve Insi  | ▼     |
| Model   ✓                                                  | Orientation |       |
| 110001                                                     | Model       | ▼     |
| Display                                                    | Displav     |       |
| Color                                                      | Color       |       |
| Color 1                                                    |             |       |

### 4. FL1:

Create a box with the below properties.
Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                    | Value |
|----------|--------------------|-------|
| Command  | CreateBox          |       |
| Coordina | Global             |       |
| Position | -L1/2-Wf/2L2/2 .hs |       |
| XSize    | Wf                 |       |
| YSize    | -Lf                |       |
| ZSize    | hc                 |       |

#### 5. FL2:

Create a box with the below properties.
Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                      |
|----------|----------------------|
| Command  | CreateBox            |
| Coordina | Global               |
| Position | -L1/2-Wf/2 .L2/2 .hs |
| XSize    | Wf                   |
| YSize    | Lf                   |
| ZSize    | hc                   |

### 6. FL3:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                     | Value |
|----------|---------------------|-------|
| Command  | CreateBox           |       |
| Coordina | Global              |       |
| Position | L1/2+Wf/2 .L2/2 .hs |       |
| XSize    | -Wf                 |       |
| YSize    | Lf                  |       |
| ZSize    | hc                  |       |

### 7. FL4:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                   |
|----------|-------------------|
| Command  | CreateBox         |
| Coordina | Global            |
| Position | L1/2+Wf/2L2/2 .hs |
| XSize    | -Wf               |
| YSize    | -Lf               |
| ZSize    | hc                |

### 8. TL1:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                    |
|----------|--------------------|
| Command  | CreateBox          |
| Coordina | Global             |
| Position | -L1/2L2/2-W1/2 .hs |
| XSize    | L1                 |
| YSize    | W1                 |
| ZSize    | hc                 |

#### 9. TL2:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                      |
|----------|----------------------|
| Command  | CreateBox            |
| Coordina | Global               |
| Position | -L1/2 .L2/2+W1/2 .hs |
| XSize    | L1                   |
| YSize    | -W1                  |
| ZSize    | hc                   |

#### 10. TL3:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name     |                    |
|----------|--------------------|
| Command  | CreateBox          |
| Coordina | Global             |
| osition  | -L1/2+W2/2L2/2 .hs |
| (Size    | -W2                |
| /Size    | L2                 |
| ZSize    | hc                 |

#### 11. TL4:

Create a box with the below properties.

Assign material: Right Click>Assign Material>Rogers/Select Copper

| Name<br>Command | CreateBox         |
|-----------------|-------------------|
| Coordina        |                   |
| Position        | L1/2-W2/2L2/2 .hs |
| XSize           | W2                |
| YSize           | L2                |
| ZSize           | hc                |

## 12. Port1:

Create a rectangle in ZX-plane with the below properties.

| Name     |                        |
|----------|------------------------|
| Command  | CreateRectangle        |
| Coordina | Global                 |
| Position | -L1/2-2.5*WfL2/2-Lf .0 |
| Axis     | Υ                      |
| XSize    | 5*Wf                   |
| ZSize    | 4.2*hs                 |

## 13. port2:

Create a rectangle in ZX-plane with the below properties.

| <u>Name</u><br>Command | CreateRectangle          |
|------------------------|--------------------------|
| Coordina               | Global                   |
| Position               | -L1/2-2.5*Wf .L2/2+Lf .0 |
| Axis                   | Υ                        |
| KSize                  | 5*Wf                     |
| ZSize                  | 4.2*hs                   |

### 14. Port3:

Create a rectangle in ZX-plane with the below properties.

| Name                               |                         |
|------------------------------------|-------------------------|
| Command                            | CreateRectangle         |
| Coordina                           | Global                  |
| Position                           | L1/2-2.5*Wf .L2/2+Lf .0 |
| Axis                               | Υ                       |
| <size< td=""><td>5*Wf</td></size<> | 5*Wf                    |
| ZSize                              | 4.2*hs                  |

#### 15. Port4:

Create a rectangle in ZX-plane with the below properties.

| Name     |                       |
|----------|-----------------------|
| Command  | CreateRectangle       |
| Coordina | Global                |
| Position | L1/2-2.5*WfL2/2-Lf .0 |
| Axis     | Y                     |
| XSize    | 5*Wf                  |
| ZSize    | 4.2*hs                |

#### **Analysis**

- Assign boundary to airbox: Right Click on Airbox>Go to Assign Boundary> select Radiation.
- ➤ Assign ports: Click HFSS>Excitations>Assign>Wave Port.
- > Define integral lines for each port.
- ➤ Point to analysis Setup and add solution setup.

Solution Frequency: 2 GHz Max number of passes: 20 Max Delta S per passes: 0.002 Frequency Sweep: 1 GHz – 3 GHz

**Sweep type: Fast** 

- > Validate your model and analyze.
- $\triangleright$  Generate a graph for  $S_{11}$ ,  $S_{21}$ ,  $S_{31}$  and  $S_{41}$  vs. frequency. Also plot the phase response between two output ports.

#### Report

- 1. Format should include title, objective, analysis/discussion, results, and conclusion
- 2. Include all relevant graphs and outputs from ADS and HFSS with detailed design procedure for HFSS
- 3. Compare the results for obtained from ADS and HFSS.