

Uczenie Maszynowe

Teoria

Joe Mama Mike Hawk Nick Ger Hugh Jass Bic Didz Mike Oxlong Geega Neega Sleepy "Slippy" Joe (oceń w końcu kolosy)

June 29, 2023

Abstract

W niniejszym dokumencie przedstawiamy podsumowanie teoretyczne kursu z uczenia maszynowego. Kurs ten obejmuje klasyczne algorytmy uczenia maszynowego dotyczące zagadnień takich jak regresja, klasyfikacja, klastrowanie, redukcja wymiarów i wyszukiwanie wzorców. Uczestnicy kursu dowiedzą się również o działaniu sieci neuronowych i poznają charakterystykę podstawowych typów sieci. W ramach kursu poruszane są również podstawowe problemy, które mogą pojawić się podczas uczenia maszynowego, a uczestnicy zdobędą wiedzę na temat ich matematycznych przyczyn. Będą w stanie dobrać odpowiedni algorytm uczenia maszynowego w zależności od konkretnego zagadnienia i dostępnych danych. Ponadto, kurs obejmuje tematy związane z walidacją modelu i rozwiązywaniem typowych problemów, które mogą pojawić się podczas trenowania modelu. Uczestnicy zdobędą umiejętność przeprowadzania walidacji modelu oraz rozwiązywania występujących trudności.

Contents

Contents

1	Roo	dzaje uczenia maszynowego	;
2	Me	tryki	2
	2.1	K lasy fikacja	
		2.1.1 Accuracy	
		2.1.2 Precision	,
		2.1.3 Recall (True Positive Rate, Sensitivity, Probability of Detection)	
		2.1.4 F1-score	(
		2.1.5 Kompromis Precision/Recall	(
	2.2	Regresja	(
3	Reg	${f gresja}$,
	3.1	Regresja Liniowa	ć
	3.2	Gradient Descent	8
	3.3	Regresja wielomianowa	8
	3.4	Learning Curves	é
		3.4.1 Bias	8
		3.4.2 Variance	8
		3.4.3 Irreducible Error	9
		3.4.4 Kompromis między <i>Bias</i> a <i>Variance</i>	,
	3.5	Regularyzowane modele liniowe	9
		3.5.1 Ridge Regression	9
		3.5.2 Lasso Regression	9
		3.5.3 Early Stopping	,
	3.6	Regresja Logistyczna	9
4	SV	M (Support Vector Machines)	,
	4.1	Hard Margin Classification	10
	4.2	Soft Margin Classification	10
	4.3	Nieliniowa klasyfikacja SVM	10
		4.3.1 Polynomial Kernel	10
	4.4	Regresor SVM	10
	4.5	Drzewa Decyzyjne	1
		4.5.1 White Box vs Black Box	1
		4.5.2 Hiperparametry	1:
		4.5.3 Regresja	1:
5	Ens	semble Learning i Random Forests	12
	5.1	W problemie klasyfikacji rozróżniamy 2 rodzaje klasyfikatorów:	1
		5.1.1 Hard Voting Classifier	1
		5.1.2 Soft Voting Classifier	1

Contents

	5.2	Bagging i Pasting	13
	5.3	Random Forests	13
		5.3.1 Extremely Randomized Trees Ensembly	13
	5.4	Boosting	14
		5.4.1 AdaBoost	14
		5.4.2 Gradient Boosting	14
	5.5	Stacking	14
_	ъ.		
Ó	Red	lukcja Wymiarów	14
	6.1	Curse of Dimensionality	15

Rodzaje uczenia maszynowego

Podziały ze względu na: * nadzór: * uczenie nadzorowane - trzeba etykietować zbiór uczący * uczenie nienadzorowane - nie trzeba etykietować zbioru uczącego (uczenie bez nauczyciela) * cześciowo nadzorowane - cześć danych jest etykietowana, cześć nie * uczenie przez wzmacnianie - polega na dawaniu kar i nagród za konkretne wybory, które algorytm uwzglednia przy kolejnych próbach * sposób uogólnienia: * instancje (np. KNN, drzewa) - uczenie na pamieć, szuka najbardziej podobnego do pytanego obiektu i podpisuje go tak samo według poznanych zasad, przykład: K-nearest neighbors; przede wszystkim wielkość modelu jest nieznana przed rozpoczęciem uczenia * model (np. sieci neuronowe, regresja logistyczna, SVM) - szuka zależności między wartościami i na ich podstawie dobiera parametry funkcji, na podstawie której potem przewiduje wartość; wielkość modelu jest znana przed rozpoczeciem uczenia * dostęp do danych: * batch - posiadamy dostęp do kompletnego zbioru danych, jeśli możemy trzymać cały zbiór danych i dane nie zmieniają się zbyt czesto * online (mini-batches) - karmimy model ciagle małymi porcjami danych, jeśli nie mamy miejsca na utrzymanie całego zbioru lub dane ciagle sie zmieniaja

2 Metryki

2.1 Klasyfikacja

• Confusion Matrix

Predicted

Figure 1: Confusion Matrix

2.1.1 Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- Classification Error
 - Wyraża jaka część instancji została dobrze sklasyfikowana

2.1.2 Precision

$$Precission = \frac{TP}{TP + FP}$$

- Stosowana gdy wymagamy od modelu wysoką wartość True Positives i chcemy zminimalizować liczbę False Positives
- Proporcja True Positives do sumy True Positives i False Positives

2.1.3 Recall (True Positive Rate, Sensitivity, Probability of Detection)

$$Recall = \frac{TP}{TP + FN}$$

• Stosowana gdy wymagamy od modelu wysoką wartość *True Positives* i chcemy zminimalizować liczbę *False Negatives*

2 Metryki 2.2 **Regresja**

• Proporcja True Positives do sumy True Positives i False Negatives

2.1.4 F1-score

$$F1 - score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

- Metryka stosowana do porównywania modeli.
- Korzystne dla modeli z podobną wartością Precision i Recall.
- Średnia harmoniczna obu wartości.

2.1.5 Kompromis Precision/Recall

• Precision zmniejsza Recall i vice versa.

2.2 Regresja

Mean square error (błąd średnio kwadratowy):

$$MSE(x,y) = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

- Błąd średnio-kwadratowy, najczęściej stosowany w przypadku regresji liniowej
- Stosowana ogólnie w regresjach
- Gdy funkcja f jest różniczkowalna, to MSE jest różniczkowalny ze względu na parametry funkcji f
- Równoważna z normą l_2 (Norma Euklidesowa)

Mean absolute error (błąd średnio bezwzględny):

$$MAE(x,y) = \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - y_i|$$

- Błąd średniego odchylenia wartości bezwzględnej
- Stosowana ogólnie w regres
- Stosowane gdy jest dużo outlier'ów w zbiorze
- Równoważna z normą l_1 (Norma Manhattan)

Entropia:

$$H(X) = -\sum_{i=1}^n p(x_i) \log p(x_i)$$

- Wyraża ilość informacji, którą możemy uzyskać po otrzymaniu instancji ze zbioru
- Tworzy zbilansowane drzewa
- Tak dzielimy zbiór tworząc drzewa, aby zysk entropii był jak największy (dowiadujemy się najwięcej dzieląc w ten sposób)

Gini:

2 Metryki 2.2 **Regresja**

$$Gini(X) = 1 - \sum_{i=1}^n p(x_i)^2$$

- Wyraża czystość zbioru
- Szybsza do obliczenia (względem entropii, nie trzeba liczyć logarytmu)
- Ma tendencję do izolowania najczęściej występującej klasy w osobnej gałęzi drzewa.
- Jest zerowa gdy wszystkie instancje w zbiorze są tej samej klasy
- Jest maksymalna gdy instancje są równomiernie rozłożone po klasach
- \bullet Wykorzystywana w algorytmie CART (Classification and Regression Tree).

Entropia krzyżowa:

$$H(p,q) = -\sum_{i=1}^n p(x_i) \log q(x_i)$$

- Stosowana w klasyfikacji
- Wyraża oczekiwaną ilość informacji o instancji, jeżeli zakodujemy ją przy użyciu modelu q zamiast p
- $p(x_i)$ prawdziwy rozkład prawdopodobieństwa
- $q(x_i)$ rozkład prawdopodobieństwa przewidywany przez model
- Podczas uczenia modelu q staramy się minimalizować entropię krzyżową, ponieważ to oznacza, że
 potrzebujemy mniejszej liczby bitów, żeby przewidzieć klasę instancji z rozkładu p (dla rozkładu p
 podczas uczenia zazwyczaj dokładnie znamy klasy każdej z instancji, więc entropia rozkładu p jest
 równa 0).

3 Regresja

3.1 Regresja Liniowa

- Opiera się na założeniu, że istnieje liniowa zależność między zmiennymi wejściowymi a zmienną wyjściową.
- Dopasowuje hiperpłaszczyznę (określoną funkcją g), dla której średnia odległość instancji od wartości funkcji g jest najmniejsza.
- Mamy zbiór wektorów $A\subseteq\mathbb{R}^{n+1}$ i funkcję $f:A\to\mathbb{R}$, która przyporządkowuje każdemu wektorowi $x\in A$ wartość f(x)
- Każdy wektor ze zbioru Ama postać $x=[x_0,x_1,...,x_n],$ gdzie $x_0=1$
- Chcemy znaleźć funkcję $g: \mathbb{R}^{n+1} \to \mathbb{R}$ taką, że $g(x) = \Theta^T x$ dla pewnego wektora $\Theta \in \mathbb{R}^n$ i wektor Θ minimalizuje $MSE(x, \Theta) = \frac{1}{n} \sum_{i=1} n(\Theta^T x f(x))^2$
- Można pokazać, że jeżeli mamy wektor z wszystkich wartości f(x) dla wszystkich wektorów ze zbioru A oraz X jest macierzą złożoną ze wszystkich wektorów z A, to $\Theta = (X^T X)^{-1} X^T$

3.2 Gradient Descent

- Stosowany jeżeli nie można znaleźć rozwiązania analitycznego (np. w przypadku regresji logistycznej), a rozważana funkcja jest ciągła i różniczkowalna w rozważanej dziedzinie
- Zaczynamy ze startowym wektorem x z dziedziny analizowanej funkcji
- Obliczamy gradient funkcji w punkcie x
- Przesuwamy się w kierunku przeciwnym do wektora gradientu, ponieważ gwarantuje to najszybsze możliwe zmniejszanie się wartości funkcji
- Znajduje minimum lokalne.

Stochastic Gradient Descent: * Stosowany w przypadku, gdy zbiór danych jest bardzo duży * Do obliczania gradientu wybieramy losowo podzbiór danych * Znajduje minimum lokalne, szybciej niż *Gradient Descent*, ale nie jest tak dokładny.

3.3 Regresja wielomianowa

- \bullet Regresja liniowa, ale zamiast liniowej funkcji g używamy wielomianu g stopnia n
- Do każdej instancji x dodajemy nowe cechy $x_2=x^2, x_3=x^3,...,x_n=x^n,$ następnie stosujemy regresję liniową na nowym zbiorze cech.

3.4 Learning Curves

3.4.1 Bias

- Błąd generalizacji wynikający ze złych założeń. Prowadzi do underfittingu
- Model jest najprawodopodobniej zbyt prosty.

3.4.2 Variance

Nadmierna wrażliwość na małą wariancję w zbiorze danych. Prowadzi do underfittingu

• Model jest najprawodopodobniej zbyt skomplikowany.

3.4.3 Irreducible Error

• Wynika z zaszumionego zbioru danych.

3.4.4 Kompromis między Bias a Variance

• Zwiększenie złożoności modelu prowadzi do zwiększenia Variance i zmniejszenia Bias'u i vice versa.

3.5 Regularyzowane modele liniowe

3.5.1 Ridge Regression

- Regularyzowana wersja Regresji Liniowej
- Zmusza model do utrzymywania małych wag
- Używa normy l_2

3.5.2 Lasso Regression

- Regularyzowana wersja Regresji Liniowej
- Używa normy l_1
- Ma tendencje do usuwania wag dla najmniej ważnych cech
- Zwraca Rzadki model (Dużo zer w polach wag)

3.5.3 Early Stopping

• Zatrzymuje proces uczenia w momencie gdy błąd walidacji osiąga minimum.

3.6 Regresja Logistyczna

- Wykorzystuj funkcję aktywacji $f(x) = \frac{1}{1 + e^{-x}}$ (Sigmoid)
- Szacuje prawdopodobieństwo przynależności instancji do pewnej klasy.
- Stosuje funkcji sigmoid do zwrócenia prawdopodobieństwa (Sigmoid zwraca wartości między 0 a 1).

4 SVM (Support Vector Machines)

• Algorytm klasyfikacji oparty o zasadę największego marginesu.

Figure 2: Porównanie regresji liniowej (lewy wykres) z SVM (prawy wykres)

• Wrażliwy na skalowanie danych (Zawsze skalować przed użyciem)

4.1 Hard Margin Classification

- Wszystkie instancje muszą się znaleźć poza marginesem.
- Działa tylko wtedy, gdy dane da się liniowo rozdzielić.
- Wrażliwy na outliers'y

4.2 Soft Margin Classification

- Elastyczny model
- Szyka balansu między posiadaniem jak największego marginesu, a limitowaniem liczby jego naruszeń.

4.3 Nieliniowa klasyfikacja SVM

• Używaj kiedy dane nie da się rozdzielić liniowo.

4.3.1 Polynomial Kernel

 Sztuczka dzięki której możemy dostać wyniki, jakbyśmy korzystali z wielomianowego modelu bez użycia go.

4.4 Regresor SVM

- By działał musimy odwrócić jego zadanie- zmieścić jak najwięcej instancji w jak najmniejszym marginesie.
- Model jest ϵ niewrażliwy, czyli dodawanie więcej instancji znajdujących się w marginesie nie wpływa na zdolność przewidywania modelu.
- Do rozwiązywania nieliniowych modeli użyj kernelized SVM model

Figure 3: Wpływ ϵ na wydajność regresji

4.5 Drzewa Decyzyjne

- Stosowany do klasyfikacji i regresji
- Nie wymaga przygotowania danych, nie trzeba skalować ani centrować
- Model Nieparametryczny
 - Liczba parametrów nie jest zdefiniowana przed ćwiczeniem modelu
 - Model może się przeuczyć.

• White Box model

- Prosty do zinterpretowania- wiemy dlaczego podjął taką a nie inną decyzję.
- Scikit używa algorytmu CART (próbuje zachłannie minimalizować współczynnik Gini) do trenowania drzew decyzyjnych
- Algorytm **CART** w celu ustalenia miejsca podziału oblicza wartość $J(k,t_k) = \frac{m_{lewa}}{m} * G_{lewa} + \frac{m_{prawa}}{m} * G_{prawa}, \text{ gdzie } G_{lewa} \text{ i } G_{prawa} \text{ wyrażają nieczystości lewej i prawej części po podziałe, a } m_{lewa} \text{ i } m_{prawa} \text{ to liczba instancji w lewej i prawej części, } m \text{ to liczba wszystkich instancji}}$
- Obrót przestrzeni instancji może całkowicie zmieniać wygenerowane drzewo i jego złożoność.

4.5.1 White Box vs Black Box

- W przypadku Black Box ciężko jest sprawdzić dlaczego dany model podjał taka decyzje
- Dla modeli, które nie są White Box bardzo trudnym zadaniem jest dokładne określenie wnioskowania przeprowadzonego przez model, które może być łatwo zrozumiane przez człowieka0
- Przykłady White Box:
 - Drzewa decyzyjne
 - Regresja Liniowa
 - SVM
- Przykłady Black Box:
 - Sieci neuronowe
 - Random Forests

4.5.2 Hiperparametry

- Bez żadnych ograniczeń model bardzo szybko przeucza się (Wtedy go nazywamy nieparametrycznym, opisany wyżej)
- Regularyzacja jest procesem mającym przeciwdziałać przeuczeniu, przez dobranie odpowiednich hiperparametrów
 - Najważniejszą wartość jaką możemy dostrajać jest ograniczenie maksymalnej $glębokości\ drzewa$ (Domyślnie jest ∞)

4.5.3 Regresja

- Struktura drzewa przypomina tą z problemu klasyfikacji.
- Możemy uznać problem regresji jako problem klasyfikacji z nieograniczoną liczbą klas, którą możemy regulować przez maksymalną głębokość drzewa.

Figure 4: Predykcje 2 regresorów o różnych maksymalnych głębokościach

5 Ensemble Learning i Random Forests

- Stosujemy zasadę mądrości tłumu jeżeli mamy wiele klasyfikatorów, to możemy je zagregować w grupę klasyfikatorów znacznie zwiększając wydajność modelu.
- Wszystkie klasyfikatory powinny być od siebie niezależne
- Redukuje Bias i Variance

5.1 W problemie klasyfikacji rozróżniamy 2 rodzaje klasyfikatorów:

Wykorzystywana jest moc przyjaźni (ang. Power of friendship).

5.1.1 Hard Voting Classifier

Wybiera klasę, która jest dominantą zbioru propozycji klas zwróconych przez klasyfikatory.

5.1.2 Soft Voting Classifier

 Wykorzystuje prawdopodobieństwa zwracane przez model, następnie uśrednia je i wybiera klasę z najwyższym średnim prawdopodobieństwem.

5.2 Bagging i Pasting

- Wykorzystują wiele instancji klasyfikatora tego samego typu, ale trenowanych na różnych podzbiorach danych.
- Bagging (Bootstrap Aggregating) polega na losowaniu instancji ze zwracaniem (zastępowaniem)
 i trenowaniu na nich różnych klasyfikatorów, a następnie wykorzystaniu metody hard voting do
 wyboru klasy.
- Pasting jest podobny do Bagging'u, ale zamiast losować instancje ze zwracaniem, losuje je bez zwracania, co oznacza, że każdy klasyfikator może być trenowany tylko na części danych, a liczba klasyfikatorów jest ograniczona przez liczbę instancji w zbiorze treningowym.

5.3 Random Forests

- Zbiór drzew decyzyjnych
- Dodaje extra losowość
- Umożliwia łatwe sprawdzenie istotności pewnej cechy
- Jeżeli zastosujemy Bagging na drzewach decyzyjnych, to otrzymamy Random Forest
- Agreguje predykcje ze wszystkich drzew i wybiera klase o największej ilości głosów (hardvoting)
 - Grupa drzew decyzyjnych
 - Każdy uczy się na innym podzbiorze zbioru danych

5.3.1 Extremely Randomized Trees Ensembly

- Szybciej się uczy
- Stosuje losowe progi dla każdej cechy

5.4 Boosting

- Łączy wiele weak learners w strong learner
- Trenuje predyktory sekwencyjnie
 - Każdy kolejny próbuje poprawić błędy poprzedniego

5.4.1 AdaBoost

- Adaptive Boosting
- Zwraca uwagę na instancje słabo dopasowane przez poprzednie predyktory.
- Nie skaluje się dobrze.

5.4.2 Gradient Boosting

- Możemy go użyć z różnymi funkcjami straty
- Dopasowuje nowy predyktor do pozostałego błędu przez poprzedni model
- XGBoost
 - Aktualnie najlepszy klasyfikator (razem z CatBoostem).

5.5 Stacking

- Metoda podobna do *Voting Classifier'a*, ale zamiast używać prostych funkcji do agregacji predykcji, trenuje model, aby nauczył się jak łączyć predykcje innych modeli
- Możliwe jest stosowanie bardziej zagnieżdżonych architektur, w których występują kolejne warstwy modeli.

6 Redukcja Wymiarów

- Stosujemy do uproszczenia zbioru danych w celu przyspieszenia procesu uczenia modelu
- Prowadzi do utraty części informacji, umożliwiając jednocześnie lepszą wydajność modelu
- Może być również wykorzystywana do wizualizacji danych.

6.1 Curse of Dimensionality

 Odnosi się do zjawiska, w którym dodanie kolejnych wymiarów do zbioru danych powoduje znaczny (eksponencjalny) wzrost wymaganej ilości danych do zachowania odpowiedniej gęstości danych.