Notes on Set Theory

Ray Li

November 7, 2024

Contents

	Chapter 6: Cardinal Numbers and The Axim of Choice	2
	1.1 Material Notes	
	1.2 Excercise Answers	2
2	Ray's Notes Summary	3

1 Chapter 6: Cardinal Numbers and The Axim of Choice

1.1 Material Notes

In the Book Page 134 to 135, while proving the case 1, the book mentioned

Pigeonhole Principle: No natural number is equinumerous to a proper subset of itself.

Proof Assume that f is a one-to-one function from the set n into the set n. We will show that ran f is all of the set n (and not a proper subset of n). This suffices to prove the theorem. We use induction on n. Define:

 $T = \{n \in \omega \mid \text{any one-to-one function from } n \text{ into } n \text{ has range } n\}.$

Then $0 \in T$; the only function from the set 0 into the set 0 is \emptyset and its range is the set 0. Suppose that $k \in T$ and that f is a one-to-one function from the set k^+ into the set k^+ . We must show that the range of f is all of the set k^+ ; this will imply that $k^+ \in T$. Note that the restriction $f \upharpoonright k$ of f to the set k maps the set k one-to-one into the set k^+ .

Case 1 Possibly the set k is closed under f. Then $f \upharpoonright k$ maps the set k into the set k. Then because $k \in T$ we may conclude that $\operatorname{ran}(f \upharpoonright k)$ is all of the set k. Since f is one-to-one, the only possible value for f(k) is the number k. Hence $\operatorname{ran} f$ is $k \cup \{k\}$, which is the set k^+ .

[Ray's Note 1: Here the Case 1 should have more explanation:

We know that k is closed under f and $ran(f \upharpoonright k) = k$. Then why do we have $ranf = k \cup \{k\}$? This is because of the following argument:

f is one-to-one. We also know that $k \notin k$ (otherwise we would form Russell's paradox). The preimage $f^{-1}[\{f(k)\}]$ (the preimage of f(k) under f) can only contain one element since f is one-to-one, and $k \in f^{-1}[\{f(k)\}]$ because the preimage of f(k) must contain k. Thus, $ranf = ran(f \upharpoonright k) \cup ran(f \upharpoonright \{k\}) = k \cup \{k\}$.

1.2 Excercise Answers

2 Ray's Notes Summary

[Ray's Note 1 (Page 2): Here the Case 1 should have more explanation:

We know that k is closed under f and $ran(f \upharpoonright k) = k$. Then why do we have $ranf = k \cup \{k\}$? This is because of the following argument:

f is one-to-one. We also know that $k \notin k$ (otherwise we would form Russell's paradox). The preimage $f^{-1}[\{f(k)\}]$ (the preimage of f(k) under f) can only contain one element since f is one-to-one, and $k \in f^{-1}[\{f(k)\}]$ because the preimage of f(k) must contain k. Thus, $\operatorname{ran} f = \operatorname{ran}(f \upharpoonright k) \cup \operatorname{ran}(f \upharpoonright \{k\}) = k \cup \{k\}$.]