Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 261.5 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 7.92, tilsynelatende blå størrelseklass $m_B = 9.89$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 7.92, tilsynelatende blå størrelseklass $m_B = 10.89$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\cdot}\mathrm{V}=2.32,$ tilsynelatende

blå størrelseklass m_B = 5.29

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 2.32, tilsynelatende blå størrelseklass $m_B=4.29$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.00 og store halvakse a=15.51 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.00 og store halvakse a=9.89 AU.

Filen 1F.txt

Ved bølgelengden 497.92 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 11.00 10.90 Tilsynelatende størrelsklasse m_V 10.80 10.70 10.60 10.50 10.40 10.30 10.20 10 Ó 20 30 40 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 11.60 solmasser, temperatur på 23.50 Kelvin og tetthet 1.35e-21 kg per kubikkmeter

Gass-sky B har masse på 22.30 solmasser, temperatur på 17.20 Kelvin og tetthet 1.01e-20 kg per kubikkmeter

Gass-sky C har masse på 8.00 solmasser, temperatur på 70.40 Kelvin og

tetthet 9.61e-21 kg per kubikkmeter

Gass-sky D har masse på 10.80 solmasser, temperatur på 76.00 Kelvin og tetthet 2.71e-21 kg per kubikkmeter

Gass-sky E har masse på 18.40 solmasser, temperatur på 42.40 Kelvin og tetthet 6.30e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas overflate består hovedsaklig av helium

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE C) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE D) stjernas energi kommer fra Planck-stråling alene

STJERNE E) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

Filen 1L.txt

Stjerne A har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 5.12

Stjerne B har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 9.93

Stjerne C har spektralklasse F8 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.17

Stjerne D har spektralklasse K7 og visuell tilsynelatende størrelseklasse m_V

= 1.53

Stjerne E har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V =5.62

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

Figur 1 10 9

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.959999999999996447286 AU.

Tangensiell hastighet er 35298.101931973622413352 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.372 AU.

Kometens avstand fra jorda i punkt 2 er r2=8.255 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.240.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9500 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00057 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=1050.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9892 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 594.00 nm.

Filen 4A.txt

Stjernas masse er 5.61 solmasser.

Stjernas radius er 0.80 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 -400 200 400 -600 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.29 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.56 solmasser.

r-koordinaten til det innerste romskipet er
r $=7.87~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=14.03~\mathrm{km}.$