LINMA2171 - Introduction: General framework for fitting a function to data

P.-A. Absil

December 3, 2024

- 1. Data:
 - Data domain: $\mathcal{X} \in \mathbb{R}^d$.
 - Data function: $f: \mathcal{X} \to \mathbb{R}$ in a set of admissible data functions $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X}}$, where $\mathbb{R}^{\mathcal{X}}$ denotes the set of all functions from \mathcal{X} to \mathbb{R} .
- 2. Design:
 - Model domain: $\widehat{\mathcal{X}}$ such that $\mathcal{X} \subseteq \widehat{\mathcal{X}} \subseteq \mathbb{R}^d$.
 - Set of admissible model functions: $\widehat{\mathcal{F}} \subseteq \mathbb{R}^{\widehat{\mathcal{X}}}$.
 - Loss function: $\mathcal{L}: \widehat{\mathcal{F}} \times \mathcal{F} \to \mathbb{R}$. It is customary to require that

$$\mathcal{L}(\widehat{f}, f) \begin{cases} = 0 & \text{if } \widehat{f} \Big|_{\mathcal{X}} = f, \\ > 0 & \text{otherwise.} \end{cases}$$
 (1)

• Regularizer: $\mathcal{R}: \widehat{\mathcal{F}} \to \mathbb{R}$, usually such that

$$\mathcal{R}(\widehat{f}) \begin{cases} = 0 & \text{if } \widehat{f} \text{ is "regular"}, \\ > 0 & \text{otherwise.} \end{cases}$$
 (2)

3. Optimization problem:

$$\underset{\widehat{f} \in \widehat{\mathcal{F}}}{\operatorname{arg\,min}} \ \mathcal{L}(\widehat{f}, f) + \lambda \mathcal{R}(\widehat{f}), \tag{3}$$

where $\lambda \geq 0$ is a design parameter that tunes the balance between the usually conflicting goals of data attachment and regularity.

4. Optimization algorithm.

Exercise 1

List possible purposes for fitting a function to data. Illustrate those purposes by means of graphical examples. Think about how you would do the design part of the above framework for each purpose.