### Practice quiz: Train the model with gradient descent

Total points 2

1. 1 point

Gradient descent is an algorithm for finding values of parameters w and b that minimize the cost function J.

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

When  $\frac{\partial J(w,b)}{\partial w}$  is a negative number (less than zero), what happens to w after one update step?

- ( w stays the same
- It is not possible to tell if w will increase or decrease.
- O wdecreases
- w increases.

2. 1 point

For linear regression, what is the update step for parameter b?

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$left[ left] b = b - lpha rac{1}{m} \sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)})$$

## Practice quiz: Supervised vs unsupervised learning

Total points 2

1. Which are the two common types of supervised learning? (Choose two)

1 point

- Classification
- Clustering
- Regression

2.

Which of these is a type of unsupervised learning?

- Regression
- Classification
- Clustering

## Practice quiz: Regression

Total points 2

1.

|    | For linear regression, the model is $f_{w,b}(x)=wx+b$ .                                                                                    |         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
|    | Which of the following are the inputs, or features, that are fed into the model and with which the model is expected to make a prediction? |         |
|    |                                                                                                                                            |         |
|    | $\bigcirc$ m                                                                                                                               |         |
|    | $\bigcirc (x,y)$                                                                                                                           |         |
|    | igcup w and $b$ .                                                                                                                          |         |
|    |                                                                                                                                            |         |
| 2. | For linear regression, if you find parameters $w$ and $b$ so that $J(w,b)$ is very close to zero, what can you conclude?                   | 1 point |
|    | lacktriangledown The selected values of the parameters $w$ and $b$ cause the algorithm to fit the training set really well.                |         |
|    | igcirc The selected values of the parameters $w$ and $b$ cause the algorithm to fit the training set really poorly.                        |         |
|    | This is never possible there must be a bug in the code.                                                                                    |         |
|    |                                                                                                                                            |         |

1 point

## Practice quiz: Multiple linear regression

Total points 4

| 1. | In the training set below, what is $x_4^{(3)}$ ? Please type in the number below (this is an integer such as 123, no decimal |
|----|------------------------------------------------------------------------------------------------------------------------------|
|    | points).                                                                                                                     |

1 point

| Size in feet <sup>2</sup> | Number of<br>bedrooms | Number of floors | Age of home in years | Price (\$) in<br>\$1000's |
|---------------------------|-----------------------|------------------|----------------------|---------------------------|
| X1                        | X <sub>2</sub>        | Хз               | X4                   |                           |
| 2104                      | 5                     | 1                | 45                   | 460                       |
| 1416                      | 3                     | 2                | 40                   | 232                       |
| 1534                      | 3                     | 2                | 30                   | 315                       |
| 852                       | 2                     | 1                | 36                   | 178                       |
|                           |                       |                  |                      |                           |

30

O False

| 2. |                                                                                                                                                                         | 1 point |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|    | Which of the following are potential benefits of vectorization? Please choose the best option.                                                                          |         |
|    | It can make your code shorter                                                                                                                                           |         |
|    | All of the above                                                                                                                                                        |         |
|    | It makes your code run faster                                                                                                                                           |         |
|    | It allows your code to run more easily on parallel compute hardware                                                                                                     |         |
|    |                                                                                                                                                                         |         |
| 3. | $\label{twice} True/False? To make gradient descent converge about twice as fast, a technique that almost always works is to double the learning rate $alpha$.$         | 1 point |
|    | ○ True                                                                                                                                                                  |         |
|    | <ul><li>False</li></ul>                                                                                                                                                 |         |
|    |                                                                                                                                                                         |         |
| 4. |                                                                                                                                                                         | 1 point |
|    | True/False? With polynomial regression, the predicted values $f_w,b(x)$ does not necessarily have to be a straight line (or linear) function of the input feature $x$ . |         |

### Practice quiz: Gradient descent in practice

Total points 4

1.



1 point

Which of the following is a valid step used during feature scaling?

- Subtract the mean (average) from each value and then divide by the (max min).
- Add the mean (average) from each value and and then divide by the (max min).
- **2.** Suppose a friend ran gradient descent three separate times with three choices of the learning rate  $\alpha$  and plotted the learning curves for each (cost J for each iteration).

1 point





For which case, A or B, was the learning rate  $\alpha$  likely too large?

- O Both Cases A and B
- o case B only
- Neither Case A nor B
- O case A only
- 3. Of the circumstances below, for which one is feature scaling particularly helpful?

1 point

- Feature scaling is helpful when one feature is much larger (or smaller) than another feature.
- Feature scaling is helpful when all the features in the original data (before scaling is applied) range from 0 to
   1.
- Various helping a green return product the green and have date on the terms and account, and price are then

1 point

You are helping a grocery store predict its revenue, and have data on its items sold per week, and price per item. What could be a useful engineered feature?

- For each product, calculate the number of items sold times price per item.
- O For each product, calculate the number of items sold divided by the price per item.

#### 1/1 point

# Gradient descent for logistic regression

repeat {

$$w_j = w_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^m \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - \mathbf{y}^{(i)} \right) \mathbf{x}_j^{(i)} \right]$$
$$b = b - \alpha \left[ \frac{1}{m} \sum_{i=1}^m \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - \mathbf{y}^{(i)} \right) \right]$$

} simultaneous updates

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{(-\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

Which is the correct update step for

- igodeligap The update steps look like the update steps for linear regression, but the definition of  $f_{ec{w},b}(\mathbf{x}^{(i)})$  is different
- O The update steps are identical to the update steps for linear regression.
- **⊘** Correct

For logistic regression,  $f_{\vec{w},b}(\mathbf{x}^{(i)})$  is the sigmoid function instead of a straight line.

### Practice quiz: Cost function for logistic regression

Latest Submission Grade 100%

1/1 point

$$\overbrace{J(\overrightarrow{\mathbf{w}},b)} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})}_{\zeta}$$

In this lecture series, "cost" and "loss" have distinct meanings. Which one applies to a single training example?

✓ Loss

1.

- Correct In these lectures, loss is calculated on a single training example. It is worth noting that this definition is not universal. Other lecture series may have a different definition.
- ☐ Cost
- Both Loss and Cost
- Neither Loss nor Cost
- 1/1 point

### Simplified loss function

$$L(f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)}))$$

For the simplified loss function, if the label  $y^{(i)}=0$ , then what does this expression simplify to?

- $\bigcirc \log(f_{\vec{w},b}(\mathbf{x}^{(i)}))$
- $\bigcap \log(1 f_{\vec{w},b}(\mathbf{x}^{(i)})) + log(1 f_{\vec{w},b}(\mathbf{x}^{(i)}))$
- $\bigcirc -\log(1 f_{\vec{w},b}(\mathbf{x}^{(i)})) log(1 f_{\vec{w},b}(\mathbf{x}^{(i)}))$
- $\bigcirc$  log(1  $f_{\vec{w},b}(\mathbf{x}^{(i)})$ )
- $\bigcirc$  **Correct**When  $y^{(i)} = 0$ , the first term reduces to zero.