"BAA- MACHINE LEARNING"

USING - PYTHON

By - SIDDHESH POWAR

Modified Sample Data used for Analysis

		imported succes	sfully								
Out[30]:		grosses_thousands	sub_thousands	group_thousands	single_thousands	avg_ticket	top_ticket	capacity_percent	run_time_mins	rev_per_seat	city_theater
	16	1027	226	63	738	62.03	200	86	150	65.7	Hayes
	16	1065	418	114	533	60.16	200	80	140	59.6	Hayes
	16	717	380	42	294	55.95	200	90	155	79.8	Imperia
	16	577	370	31	176	74.69	200	87	140	63.4	Hayes
	16	835	402	131	302	77.34	200	81	140	78.4	Imperia
	10	730	147	91	492	78.78	200	73	145	90.2	Hayes
	16	1007	475	71	461	76.87	200	80	145	66.3	Imperia
	32	2901	390	297	2214	75.74	200	75	135	67.8	Studio 54
	16	1018	441	132	444	75.52	200	62	165	63.4	Imperia
	16	734	412	51	270	74.86	200	65	230	68.1	Simons
	16	935	433	79	423	69.40	200	65	135	70.6	Hayes
	16	698	422	43	233	73.17	200	66	160	70.6	Hayes
	16	1233	305	128	799	74.30	200	68	150	70.6	Shuber
	16	882	433	149	300	71.03	200	73	150	63.4	Simons

Exploratory Data Analysis EDA: Data Info

EDA: Plotting Frequency of Shows by each Theater

EDA: Univariate Analysis Box and Whisker Plot

EDA: Univariate Plot Histogram

Correlation Matrix

0	1	0.347533	0.398948	0.455743	0.0729144	-0.233402	-0.731222	0.477978	-0.442621	0.0151847
1	0.347533	1	-0.284056	0.571003	-0.285483	0.38248	-0.362842	0.642578	0.252556	0.190047
2	0.398948	-0.284056	1	-0.523649	0.152937	-0.139176	-0.0928948	0.0162655	-0.434016	-0.383585
3	0.455743	0.571003	-0.523649	1	-0.225343	-0.227577	-0.481548	0.473286	0.279258	0.44665
4	0.0729144	-0.285483	0.152937	-0.225343	1	-0.104438	-0.147477	-0.523283	-0.614603	-0.189916
5	-0.233402	0.38248	-0.139176	-0.227577	-0.104438	1	-0.0302517	0.41764	0.205851	0.0950844
6	-0.731222	-0.362842	-0.0928948	-0.481548	-0.147477	-0.0302517	1	-0.49444	0.381407	-0.353652
7	0.477978	0.642578	0.0162655	0.473286	-0.523283	0.41764	-0.49444	1	0.375873	0.417863
8	-0.442621	0.252556	-0.434016	0.279258	-0.614603	0.205851	0.381407	0.375873	1	0.150421
9	0.0151847	0.190047	-0.383585	0.44665	-0.189916	0.0950844	-0.353652	0.417863	0.150421	1

Correlation Heatmap for all Parameters

Pair Plots

Machine Learning: Linear Regression Data Distribution

Out[16]:							
		avg_ticket	capacity_percent	grosses_thousands	sub_thousands	group_thousands	single_thousands
	count	90.000000	90.000000	90.000000	90.000000	90.000000	90.00000
	mean	75.383111	75.488889	1365.411111	676.233333	92.677778	681.30000
	std	12.222814	12.783631	1504.228787	386.548602	125.030048	1149.12706
	min	55.000000	46.000000	84.000000	20.000000	1.000000	129.00000
	25%	66.355000	64.250000	830.500000	424.750000	32.000000	242.00000
	50%	72.565000	78.000000	1031.500000	679.000000	61.500000	373.50000
	75%	85.725000	83.750000	1256.000000	877.500000	103.500000	529.00000
	max	104.340000	99.000000	9711.000000	2165.000000	768.000000	7142.00000

Performance Evaluation of the Model

In [42]: from sklearn.linear_model import LinearRegression
accuracy = regressor.score(X_test,y_test)
print(accuracy*100,'%')
89.05404442607621 %