1 Exercises

1.1

Convert $2x^2 + 3x + 1 \equiv 0 \pmod{5}$ to a quadratic congruence whose first coefficient is 1.

Since $3*2 \equiv 1 \pmod{5}$, the congruence is equivalent to $x^2 + 4x + 3 \equiv 0 \pmod{5}$.

1.2

Change the quadratic in Exercise 1 to the form (3).

$$(x+2)^2 \equiv 1 \pmod{5}.$$

1.3

By inspection, find all the solutions of the congruence in Exercise 2.

 $y^2 \equiv 1 \pmod{5}$ has solutions 1 and 4, so the congruence in Exercise 2 has solutions 2 and 4.

1.4

If p > 3, what are the two solutions of $x^2 \equiv 4 \pmod{p}$?

2 and p-2.

1.5

For what values of a does $x^2 \equiv a \pmod{7}$ have two solutions?

1, 4, 2.

1.6

Find the solutions of $x^2 \equiv 8 \pmod{31}$.

```
8 \equiv 39 \equiv 70 \equiv 101 \equiv 132 \equiv 2^2 * 33 \equiv 2^2 * 2 \pmod{31}. 2 \equiv 33 \equiv 64 \equiv 8^2 \pmod{31}. 2^2 * 8^2 \equiv 16^2 \pmod{31}.
```

15 and 16 are solutions to $x^2 \equiv 8 \pmod{31}$.

1.7

What is (1/3)? (1/7)? (1/11)? In general, what is (1/p)?

All of them must be 1, since 1 and p-1 are solutions to the congruences.

1.8

What is (4/5)? (4/7)? (4/p) for any odd prime p?

For p > 3, it should be 1, as 2, p - 2 are both solutions.

1.9

Induce a theorem from the two preceding exercises.

$$(k^2/p) = 1$$
 as long as $p \nmid k$.

Verify that if (a/p) = -1 and $a \equiv b \pmod{p}$, then (b/p) = -1.

If (a/p) = -1, then $\not\exists x \ni x^2 \equiv a \equiv b \pmod{p}$.

1.11

Prove (B), using (6).

 $(a^2/p) \equiv a^{2(p-1)/2} \equiv a^{p-1}$. By Fermat's Theorem, $a^{p-1} \equiv 1 \pmod{p}$. So, $(a^2/p) \equiv 1 \pmod{p}$, and since $(a^2/p) = 1$ or -1, $(a^2/p) = 1$.

1.12

Prove that (4a/p) = (a/p).

Know that (4a/p) = (4/p)(a/p). Also know that $p \nmid 4$, as p is an odd prime. So we can use the result from the previous, that $(2^2/p) = 1$.

1.13

Evaluate (19/5) and (-9/13) by using (A) and (B).

$$(19/5) = (4/5) = (2^2/5) = 1.$$
 $(-9/13) = (4/13) = (2^2/13) = 1.$

1.14

For which of the primes 3, 5, 7, 11, 13, 17, 19, and 23 is -1 a quadratic residue?

-1 is a quadratic residue for 5, 13, and 17.

1.15

Evaluate (6/7) and (2/23)(11/23).

$$(6/7) = (-1/7) = -1.$$
 $(2/23)(11/23) = (23/2) * -(23/11) = -(1/2)(1/11) = -1.$

2 Problems

2.1

Which of the following congruences have solutions?

$$x^2 \equiv 7 \pmod{53}$$
, $x^2 \equiv 14 \pmod{31}$, $x^2 \equiv 53 \pmod{7}$, $x^2 \equiv 25 \pmod{997}$.

$$(7/53) = (53/7) = (4/7) = 1.$$

 $(14/31) = (2/31)(7/31) = -(31/2)(31/7) = -(1/2)(3/7) = 1.$
 $(53/7) = (4/7) = 1.$
 $(25/997) = 1.$

2.2

Which of the following congruences have solutions?

$$x^2 \equiv 8 \pmod{53}, \quad x^2 \equiv 15 \pmod{31}, \quad x^2 \equiv 54 \pmod{7}, \quad x^2 \equiv 625 \pmod{9973}.$$

$$(8/53) = (2/53)(4/53) = (2/53) = -1.$$

 $(15/31) = (3/31)(5/31) = -(31/3)(31/5) = -(1/3)(1/5) = -1.$

$$(54/7) = (5/7) = -1.$$

 $(625/9973) = (25/9973)(25/9973) = 1.$

Find solutions for the congruences in Problem 1 that have them.

```
x^2 \equiv 7 \equiv 60 \equiv 2^2 * 15 \pmod{53}.

15 \equiv 68 \equiv 121 \equiv 11^2 \pmod{53}.

So, 22 and 31 are solutions to the congruence.

x^2 \equiv 14 \equiv 169 \equiv 13^2 \pmod{31}.

So, 13 and 18 are solutions to the congruence.

x^2 \equiv 53 \equiv 4 \equiv 2^2 \pmod{7}.

So, 2 and 5 are solutions to the congruence.

x^2 \equiv 25 \pmod{997}.

5 and 992 are solutions to the congruence.
```

2.4

Find solutions for the congruences in Problem 2 that have them.

```
x^2 \equiv 625 \pmod{9973}.
25 and 9948 are solutions to the congruence.
```

2.5

Calculate (33/71), (34/71), (35/71), and (36/71).

$$\begin{array}{l} (33/71)=(71/33)=(5/33)=(33/5)=(3/5)=-1.\\ (33/71)=(2/71)(17/71)=(71/17)=(3/17)=(17/3)=(2/3)=-1.\\ (35/71)=(5/71)(7/71)=-(71/5)(71/7)=-(1/5)(1/7)=-1.\\ (36/71)=1. \end{array}$$

2.6

Calculate (33/73), (34/73), (35/73), and (36/73).

$$\begin{array}{l} (33/73)=(3/73)(11/73)=(73/3)(73/11)=(1/3)(7/11)=-(11/7)=-(4/7)=-1.\\ (34/73)=(2/73)(17/73)=(73/17)=(5/17)=(17/5)=(2/5)=-1.\\ (35/73)=(5/73)(7/73)=(3/5)(3/7)=-(2/3)(1/3)=1.\\ (36/73)=1. \end{array}$$

2.7

Solve
$$2x^2 + 3x + 1 \equiv 0 \pmod{7}$$
 and $2x^2 + 3x + 1 \equiv 0 \pmod{101}$.
$$x^2 + 12x + 4 \equiv 0 \pmod{7}$$

$$(x+6)^2 \equiv 4 \pmod{7}$$

$$x \in \{3,6\},$$

$$x^2 + 52x + 51 \equiv 0 \pmod{101},$$

$$(x+26)^2 \equiv 625 \pmod{101},$$

$$x \in \{50,100\}$$

Solve
$$3x^2+x+8\equiv 0\pmod{11}$$
 and $3x^2+x+52\equiv 0\pmod{11}$.
$$x^2+4x+10\equiv 0\pmod{11}$$

$$(x+2)^2\equiv 16\pmod{11}$$

$$x\in\{2,5\},$$

$$x^2+4x+10\equiv 0\pmod{11}$$

$$x\in\{2,5\}$$

2.9

Calculate (1234/4567) and (4321/4567).

$$\begin{aligned} (1234/4567) &= (2/4567)(617/4567) = (4567/617) = (248/617) \\ &= (2/617)(4/617)(31/617) = (31/617) = (617/31) = (28/31) \\ &= (4/31)(7/31) = -(31/7) = -(3/7) = 1 \\ (4321/4567) &= (29/4567)(149/4567) = (4567/29)(4567/149) \\ &= (14/29)(97/149) = (2/29)(7/29)(149/97) = -(29/7)(52/97) \\ &= -(1/7)(4/97)(13/97) = -(97/13) = -(6/13) = 1 \end{aligned}$$

2.10

Calculate (1356/4567) and (6531/4567).

$$(1356/4567) = (3/4567)(4/4567)(113/4567) = -(4567/3)(4567/113)$$

$$= -(1/3)(47/113) = -(113/47) = -(19/47) = (47/19) = (9/19) = 1$$

$$(6531/4567) = (3/4567)(7/4567)(311/4567) = -(3/7)(213/311)$$

$$= (3/311)(71/311) = (2/3)(27/71) = -(3/71) = (2/3) = -1$$

2.11

Show that if p = q + 4a (p and q are odd primes), then (p/q) = (a/q).

Know $p \equiv 4a \pmod{q}$, so (p/q) = (4a/q) = (4/q)(a/q) = (a/q).

2.12

Show that if p = 12k + 1 for some k, then (3/p) = 1.

Know $p \equiv 1 \pmod{3}$, so (p/3) = (1/3) = 1. Since $p \equiv 1 \pmod{4}$, know that (p/3) = (3/p), so (3/p) = 1.

2.13

Show that Theorem 6 could also be written $(2/p) = (-1)^{(p^2-1)/8}$ for odd primes p.

If $p \equiv r \pmod 8$, then p = 8k + r, $p^2 = 64k^2 + 16k + r^2$. The first two terms divided by 8 are $8k^2 + 2k$, which is always even. So we only have to examine $(r^2 - 1)/8 \pmod 2$ for the following. If $p \equiv 1 \pmod 8$, then $(1-1)/8 \equiv 0 \pmod 2$. If $p \equiv 7 \pmod 8$, then $(49-1)/8 \equiv 0 \pmod 2$. Since -1 to an even power is 1, and (2/p) = 1 if $p \equiv 1$ or 7 (mod 8), the equation holds for $p \ni (2/p) = 1$. If $p \equiv 3 \pmod 8$, then $(9-1)/8 \equiv 1 \pmod 2$. Since -1 to an odd power is -1, and (2/p) = -1 if $p \equiv 3 \pmod 8$, the equation holds for $p \ni (2/p) = -1$.

Show that the quadratic reciprocity theorem could also be written $(p/q)(q/p) = (-1)^{(p-1)(q-1)/4}$ for odd primes p and q.

The quadratic reciprocity theorem states that if $p \equiv q \equiv 3 \pmod{4}$, then (p/q) = -(q/p). Otherwise, (p/q) = (q/p). Since p, q are odd primes, each can either be $\equiv 1$ or $\equiv 3 \pmod{4}$. If both $p, q \equiv 3 \pmod{4}$, then $(4k_p + 2)(4k_q + 2)/4 = (16k_pk_1 + 8k_p + 8k_q + 4)/4$. Thus the exponent is odd, and -1 raised to that exponent is -1. We also know that if $p \equiv q \equiv 3 \pmod{4}$, then (p/q) = -(q/p), so $(p/q)(q/p) = -((q/p)^2) = -1$. Now consider both $p, q \equiv 1 \pmod{4}$. Then $(p-1)(q-1)/4 = 4k_p4k_q/4$ for some k_p , k_q , and the exponent is even. Without loss of generality, if $p \equiv 1$ and $q \equiv 3 \pmod{4}$, then $(p-1)(q-1)/4 = 4k_p(4k_q + 2)/4$, and the exponent is even. If the exponent is even, then -1 raised to that exponent is 1. We know that if either p or $q \not\equiv 3 \pmod{4}$, then (p/q) = (q/p), so $(p/q)(q/p) = (q/p)^2 = 1$.

2.15

Student A says, "I've checked all the way up to 100 and I still haven't found n so that n^2+1 is divisible by 7. I'm tired now - I'll find one tomorrow." Student B says, after a few seconds of reflection, "No you won't." How did B know so quickly?

This problem can be rewritten as $x^2 \equiv 6 \pmod{7}$. Can examine the first few integers (under 7) to see that 6 is a nonresidue (mod 7): $1^2 \equiv 1$, $2^2 \equiv 4$, $3^2 \equiv 2 \pmod{7}$.

2.16

Show that if a is a quadratic residue \pmod{p} and $ab \equiv 1 \pmod{p}$, then b is a quadratic residue \pmod{p} .

It follows that (a/p) = 1. We know that (1/p) = 1 for any p. So, since $ab \equiv 1 \pmod{p}$, (ab/p) = (1/p) = 1. Also know that $p \nmid a, b$, since if it did divide either, $ab \equiv 0 \pmod{p}$. Then (ab/p) = (a/p)(b/p), and (b/p) = 1.

2.17

Does $x^2 \equiv 211 \pmod{159}$ have a solution? Note that 159 is not prime.

Yes, by inspection $211 + 2 * 159 = 529 = 23^2$ is a solution.

2.18

Prove that if $p \equiv 3 \pmod{8}$ and (p-1)/2 is prime, then (p-1)/2 is a quadratic residue \pmod{p} .

Since $\frac{p-1}{2}$ is prime, we can use the quadratic reciprocity theorem. If $p \equiv 3 \pmod 8$, then $p \equiv 3 \pmod 4$. But, if we write p = 8k + 3, we see that $\frac{p-1}{2} = \frac{8k+3-1}{2} = 4k + 1 \equiv 1 \pmod 4$. So, $(\frac{p-1}{2}/p) = (p/\frac{p-1}{2})$. $p \equiv p - 2(\frac{p-1}{2}) \equiv 1 \pmod {\frac{p-1}{2}}$, so $(p/\frac{p-1}{2}) = (1/\frac{p-1}{2}) = 1$.

2.19

Generalize Problem 16 by finding what condition on r will guarantee that if a is a quadratic residue \pmod{p} and $ab \equiv r \pmod{p}$, then b is a quadratic residue \pmod{p} .

It follows that (a/p) = 1. Since $ab \equiv r \pmod{p}$, (ab/p) = (r/p). Since $p \nmid a, b$, (ab/p) = (a/p)(b/p) = (b/p) = (r/p). So, b a quadratic residue if, and only if, r a quadratic residue.

2.20

Suppose that p = q + 4a, where p and q are odd primes. Show that (a/p) = (a/q).

Know that $p \equiv 4a \pmod{q}$, so (p/q) = (4a/q) = (a/q). Conversely, $q \equiv -4a \pmod{p}$, so (q/p) = (-1/p)(4a/p) = (-1/p)(a/p). Know that if $p \equiv 1 \pmod{4}$, then (-1/p) = 1. Observe also that $p \equiv q \pmod{4}$, so if $p \equiv 1 \pmod{4}$, then (q/p) = (p/q). So, if $p \equiv 1 \pmod{4}$, then (p/q) = (a/p), and (a/p) = (a/q). If $p \equiv 3 \pmod{4}$, then (-1/p) = -1 and (q/p) = -(p/q). So then -(p/q) = -(a/p), or (p/q) = (a/p), and (a/p) = (a/q).