Databases and Information Systems CS303

Relational Algebra and Relational Calculus 24-08-2023

Formal Relational Query Languages

- Formal way to describe queries
- Analogous to Algorithmic analysis
 - Language independent
- Types:
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus
- Used for:
 - Mathematical framework to analyze queries
 - Query Representation
 - Query optimization

Relational Algebra

Relational Algebra

- Procedural:
 - Specifies what is the required result and also how to obtain it.
- Takes one or more relation as input and produces a new relation as a result
- One operator for every basic step that we have in the query

Basic Relational Operators: SELECT

- Denotedby
- Corresponds to WHERE of SQL queries
- \bullet $\sigma_{
 m condition}$ (relation)
- $\sigma_{\text{dept_name}}$ = 'Physics' (instructor)

ID	name dept_name		salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	name	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

Basic Relational Operators: SELECT

- $\sigma_{\text{dept_name} = \text{'Physics' } \Lambda \text{ salary} > 90000}$ (instructor)
- > >= < <= are all allowed
- AND (Λ) OR (V) can be specified in the condition

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	name	dept_name	salary
22222	Einstein	Physics	95000
		1/2	

Basic Relational Operators: PROJECT

• Denoted by π

- π_{list_of_attributes}(relation_name)
- π_{ID, name, dept_name} (instructor)

ID	name dept_name		salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	3	
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Basic Relational Operators: PROJECT

• $\Pi_{\text{ID, name, dept_name}}$ ($\sigma_{\text{dept_name = 'Physics'}}$ (instructor))

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	name	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

Basic Relational Operators: PROJECT

• $\Pi_{\text{ID, name, dept_name}}$ ($\sigma_{\text{dept_name = 'Physics'}}$ (instructor))

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	name	dept_name
22222	Einstein	Physics
33456	Gold	Physics

Basic Relational Operators: UNION

Denoted by U

- $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = 'Spring' } \Lambda \text{ year = 2009}}$ (section))
- $\Pi_{\text{course_id}}$ ($\sigma_{\text{semester = Fall } \Lambda \text{ year = 2009}}$ (section))

course_id	sec_id	semester	year	building	room_number	time_slot_id
			J	0		
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

section

$$\pi_{\text{course_id}}$$
 ($\sigma_{\text{semester = 'Spring' }\Lambda \text{ year = 2009}}$ (section)) $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = Fall }\Lambda \text{ year = 2009}}$ (section))

Basic Relational Operators: UNION

- $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = 'Spring' }\Lambda \text{ year = 2009}}$ (section)) U $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = Fall }\Lambda \text{ year = 2009}}$ (section))
- No duplicates (True for all relational operators)

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

section

course_id
CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Basic Relational Operators: UNION

- r U s is well defined only if the following holds:
 - o Both r and s should have same number of attributes
 - o Domain of i-th attribute of r should be the same as the domain of i-th attribute of s

r and s can be relations from the database of other relational algebraic expressions

Basic Relational Operators: Set Difference

Denotedby

- $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = 'Spring' } \Lambda \text{ year = 2009}}$ (section))
- $\Pi_{\text{course_id}}$ ($\sigma_{\text{semester = Fall } \Lambda \text{ year = 2009}}$ (section))

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

sectior

$$\pi_{\text{course_id}}(\sigma_{\text{semester = 'Spring' }\Lambda \text{ year = 2009}}(\text{section})) - \pi_{\text{course_id}}(\sigma_{\text{semester = Fall }\Lambda \text{ year = 2009}}(\text{section}))$$

Basic Relational Operators: Set Difference

- $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = 'Spring' } \Lambda \text{ year = 2009}}$ (section)) $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = Fall } \Lambda \text{ year = 2009}}$ (section))
- No duplicates (True for all relational operators)

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

section

course_id
CS-347
PHY-101

Basic Relational Operators: Cartesian Product

Denoted by

• $\sigma_{\text{dept_name='Physics'}}$ (instructor X teaches)

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

instructor teaches

	inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
	22222	Einstein	Physics	95000	10101	CS-437	1	Fall	2009
	22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2010
1	22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	2010
4	22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2010
	22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2009
	22222	Einstein	Physics	95000	32343	HIS-351	1	Spring	2010
									• • • • • • • • • • • • • • • • • • • •
	33456	Gold	Physics	87000	10101	CS-437	1	Fall	2009
	33456	Gold	Physics	87000	10101	CS-315	1	Spring	2010
	33456	Gold	Physics	87000	12121	FIN-201	1	Spring	2010
	33456	Gold	Physics	87000	15151	MU-199	1	Spring	2010
	33456	Gold	Physics	87000	22222	PHY-101	1	Fall	2009
	33456	Gold	Physics	87000	32343	HIS-351	1	Spring	2010
			•••	•••			•••		•••

Basic Relational Operators: Set Difference

Denotedby

• $\Pi_{\text{name, course_id}}$ ($\sigma_{\text{instructor.id = teaches.id}}$ ($\sigma_{\text{dept_name='Physics'}}$ (instructor X teaches)))

inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
22222	Einstein	Physics	95000	10101	CS-437	1	Fall	2009
22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2010
22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	2010
22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2009
22222	Einstein	Physics	95000	32343	HIS-351	1	Spring	2010
33456	Gold	Physics	87000	10101	CS-437	1	Fall	2009
33456	Gold	Physics	87000	10101	CS-315	1	Spring	2010
33456	Gold	Physics	87000	12121	FIN-201	1	Spring	2010
33456	Gold	Physics	87000	15151	MU-199	1	Spring	2010
33456	Gold	Physics	87000	22222	PHY-101	1	Fall	2009
33456	Gold	Physics	87000	32343	HIS-351	1	Spring	2010
***	•••					•••		
***	***	•••	•••	•••		•••		

name	course_id
Einstein	PHY-101

Basic Relational Operators: Renaming

 \bullet ρ_X (

• $\rho_{\text{temp_inst (temp_id, temp_name)}}$ ($\pi_{\text{ID, name}}$ (instructor))

_						
ID	name	dept_name	salary			
10101	Srinivasan	Comp. Sci.	65000			
12121	Wu	Finance	90000			
15151	Mozart	Music	40000			
22222	Einstein	Physics	95000			
32343	El Said	History	60000			
33456	Gold	Physics	87000			
45565	Katz	Comp. Sci.	75000			
58583	Califieri	History	62000			
76543	Singh	Finance	80000			
76766	Crick	Biology	72000			
83821	Brandt	Comp. Sci.	92000			
98345	Kim	Elec. Eng.	80000			

Basic Relational Operators: Renaming

• Find the highest salary in the university

• $\pi_{\text{instructor.salary (instructor)}} - \pi_{\text{instructor.salary}} (\sigma_{\text{instructor.salary}} ($

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

salary

Basic Relational Algebra: Formal Definition

- Basic expressions:
 - A relation in the database : Example: instructor, takes, ...
 - Constant relation
 - Example: { (22222, Einstein, Physics, 95000), (76543, Singh, Finance, 80000) }
- If E1 and E2 are already constructed then the following are relational algebraic expressions:
 - o F1 U F2
 - o E1 E2
 - E1 X E2
 - \circ $\sigma_{\rm p}$ (E1) where P is a condition on some attribute of E1
 - \circ π_S (E1) where S is a subset of attributes of E1
 - \circ $\rho_{X(A1,An)}$ (E1) where X(A1...An) is a new name for the result of E1

Additional Relational Operators

- Basic relational operators are sufficient to express any relational algebraic query
- But it becomes lengthy if we use only those
- Additional operators do not add any expressive power but simplify the queries

Additional Relational Operators: Intersection

Denotedby

- $\pi_{\text{course_id}}$ ($\sigma_{\text{semester = 'Spring' } \Lambda \text{ year = 2009}}$ (instructor)) $\Pi_{\text{course_id}}$ ($\sigma_{\text{semester = Fall } \Lambda \text{ year = 2009}}$ (instructor))
- $r \cap s = r (r s)$

Additional Relational Operators: Natural Join

Denoted

• instructor ⋈ teaches

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

1	ID	name	dept_name	salary	course_id	sec_id	semester	year
	10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
	10101	Srinivasan	Comp. Sci.	65000	CS-315	1	Spring	2010
L	10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
U	12121	Wu	Finance	90000	FIN-201	1	Spring	2010
	15151	Mozart	Music	40000	MU-199	1	Spring	2010
	22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
	32343	El Said	History	60000	HIS-351	1	Spring	2010
	45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
	45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
	76766	Crick	Biology	72000	BIO-101	1	Summer	2009
	76766	Crick	Biology	72000	BIO-301	1	Summer	2010
	83821	Brandt	Comp. Sci.	92000	CS-190	1	Spring	2009
	83821	Brandt	Comp. Sci.	92000	CS-190	2	Spring	2009
	83821	Brandt	Comp. Sci.	92000	CS-319	2	Spring	2010
	98345	Kim	Elec. Eng.	80000	EE-181	1	Spring	2009

instructor

teaches

Additional Relational Operators: Natural Join

• Let r and s be two relational algebraic expressions with R and S as the set of attributes of r and s respectively. Let R \cap S = {A1, A2.. An } Then:

```
• r \bowtie s = \pi_{R \cup S} (\sigma_{r,A1 = s,A1 \land r,A2 = s,A2 \land ... r,An = s,An} (r X s))
```

- \bowtie is associative: ($r\bowtie s$) \bowtie t = $r\bowtie$ ($s\bowtie$ t) = $r\bowtie s\bowtie$ t
- Is \bowtie order invariant? $r \bowtie s \bowtie t = r \bowtie t \bowtie s$?

Additional Relational Operators: Theta Join

- Variant of Natural join that combines select and cartesian product
- $r \bowtie_{\theta} s$ where θ is a condition on the attributes of r and s
- $r \bowtie_{\theta} s = \sigma_{\theta} (r X s)$

Additional Relational Operators: Assignment operator

Additional Relational Operators: Outer Join

Left Outer Join : rS

● Right Outer Join : r 🔀

Full Outer Join: r ⋈ s

Additional Relational Operators: Outer Join

- Left Outer Join: $r \bowtie s = (r \bowtie s) \cup ((r (r \bowtie s)) \times (null, null, ...null))$
- Right Outer Join : r ⋈ s (exercise)
- Full Outer Join : r ⋈ s (exercise)

Other Relational Operators

- There are many other operators like Division, Semi-join, Anti semi-join etc.
- All these can be expressed using the basic operators.
- Used as and when required