

Name: SATYAJIT GHANA Reg. No: 17ETCS002159

Laboratory 7

Combinational Circuits-III Decimal to BCD Encoder and Decoders

1. Introduction and Purpose of Experiment

Students will learn to design and implement a circuit for Decimal to BCD Encoder.

2. Aim and Objectives

Aim: Design and implement a circuit for Decimal to BCD Encoder

Objectives: At the end of this lab, the student will be able to

- Develop a circuit for Decimal to BCD Encoder
- Understand the basics of Decoders
- 3. Experimental Procedure
 - a. Write truth table and block diagram for Decimal to BCD Encoder
 - b. Construct the circuits for Decimal to BCD Encoder using appropriate ICs. Verify the functionality and show the output to the course leader
 - c. Using an example, describe how a decoder can be implemented using a Demultiplexer.

Your document should include:

- Handwritten truth table and block diagrams for the circuit in 3(a).
- Answer to 3(c)

Name: SATYAJIT GHANA Reg. No: 17ETCS002159

3.b

Name: SATYAJIT GHANA Reg. No: 17ETCS002159

3.c

To see how a demultiplexer can be made into a decoder let's first see the function tables of a demultiplexer and a decoder, and the example we will be taking here will be of a 1:4 DEMUX and a 2:4 DECODER:

1:4 DEMUX					
I	S1	S0	Υ		
10	0	0	10		
I1	0	1	l1		
12	1	0	12		
13	1	1	13		

2:4 DECODER							
I1	10	Y0	Y1	Y2	Y3		
0	0	1	0	0	0		
0	1	0	1	0	0		
1	0	0	0	1	0		
1	1	0	0		1		

From this we can observe that in a DEMUX the input is directly sent to the corresponding output line given the right select bits, and in a decoder its essentially the same thing, just that the output is 1 for the line number corresponding to the select bit. So if we make the input line of a demux as 1, it becomes a decoder, the select lines of the demux become the input for the decoder.

