Coursework (5) for Introductory Lectures on Optimization

Hanxuan Li 3220106039

Dec. 9, 2023

Excercise 1. Prove the following theorem:

for any $x_0 \in \text{dom } f$, all vectors $g \in \partial f(x_0)$ are supporting to the level set $\mathcal{L}_f(f(x_0))$:

$$\langle \boldsymbol{g}, \boldsymbol{x}_0 - \boldsymbol{x} \rangle \ge 0, \quad \forall \boldsymbol{x} \in \mathcal{L}_f(f(\boldsymbol{x}_0)) \equiv \{ \boldsymbol{x} \in \text{dom } f : f(\boldsymbol{x}) \le f(\boldsymbol{x}_0) \}$$
 (1)

Proof of Excercise 1: Since $g \in \partial f(x_0)$, we have:

$$\forall \boldsymbol{x} \in \text{dom } f, f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \boldsymbol{g}, \ \boldsymbol{x} - \boldsymbol{x}_0 \rangle \tag{2}$$

Also, we have $x \in \mathcal{L}_f(f(x_0))$, which means $f(x) \leq f(x_0)$. Thus, we have:

$$f(x_0) \ge f(x) \ge f(x_0) + \langle g, x - x_0 \rangle \tag{3}$$

Thus we have $\langle \boldsymbol{g}, \ \boldsymbol{x} - \boldsymbol{x}_0 \rangle \leq 0$. That is:

$$\langle \boldsymbol{g}, \boldsymbol{x} \rangle \le \langle \boldsymbol{g}, \boldsymbol{x}_0 \rangle, \quad \forall \boldsymbol{x} \in \mathcal{L}_f(f(\boldsymbol{x}_0))$$
 (4)

So by the definition of the supporting hyperplane, we have g is supporting to the level set $\mathcal{L}_f(f(x_0))$.

Excercise 2. Prove the following theorem:

let $Q \subseteq \text{dom } f$ be a closed convex set, $x_0 \in Q$ and

$$\boldsymbol{x}^* = \operatorname{argmin}\{f(\boldsymbol{x})|\boldsymbol{x} \in Q\} \tag{5}$$

Then for any $g \in \partial f(\boldsymbol{x}_0)$ we have $\langle \boldsymbol{g}, \boldsymbol{x}_0 - \boldsymbol{x}^* \rangle \geq 0$.

Proof of Excercise 2: Since $x^* = \operatorname{argmin}\{f(x)|x \in Q\}$, we have:

$$\forall \boldsymbol{x} \in Q, f(\boldsymbol{x}^*) \le f(\boldsymbol{x}) \tag{6}$$

Also, we have $x_0 \in Q$, which means $f(x_0) \ge f(x^*)$. Thus, we have:

$$f(\boldsymbol{x}_0) \ge f(\boldsymbol{x}^*) \ge f(\boldsymbol{x}_0) + \langle \boldsymbol{g}, \ \boldsymbol{x}^* - \boldsymbol{x}_0 \rangle \tag{7}$$

Thus we have $\langle \boldsymbol{g}, \ \boldsymbol{x}^* - \boldsymbol{x}_0 \rangle \leq 0$. That is: For any $\boldsymbol{g} \in \partial f(\boldsymbol{x}_0)$, we have $\langle \boldsymbol{g}, \ \boldsymbol{x}_0 - \boldsymbol{x}^* \rangle \geq 0$.

Excercise 3. Prove the following theorem:

let f be closed and convex. Assume that it is differentiable on its domain. Then $\partial f(x) = \{\nabla f(x)\}\$ for any $x \in \operatorname{int}(\operatorname{dom} f)$.

Proof of Excercise 3: Notice that $\forall p \in \mathbb{R}^n$, we have:

$$\langle \nabla f(\boldsymbol{x}), \boldsymbol{p} \rangle = \lim_{t \to 0} \frac{f(\boldsymbol{x} + t\boldsymbol{p}) - f(\boldsymbol{x})}{t}$$
 (8)

Becausen $f'(\boldsymbol{x}_0; \boldsymbol{p}) = \max \{ \langle \boldsymbol{g}, \boldsymbol{p} \rangle | \boldsymbol{g} \in \partial f(\boldsymbol{x}_0) \}$ for all $\boldsymbol{x} \in int(\text{dom } f)$ So we have:

$$\langle \nabla f(\boldsymbol{x}), \boldsymbol{p} \rangle = f'(\boldsymbol{x}; \boldsymbol{p}) \ge \langle \boldsymbol{g}, \boldsymbol{p} \rangle$$
 (9)

That is: $\forall \boldsymbol{p} \in \mathbb{R}^n, \langle \nabla f(\boldsymbol{x}) - \boldsymbol{g}, \boldsymbol{p} \rangle \geq 0$. Let $\boldsymbol{p} = \boldsymbol{g} - \nabla f(\boldsymbol{x})$, we have:

$$\|\boldsymbol{g} - \nabla f(\boldsymbol{x})\|^2 \le 0 \tag{10}$$

So we have $g = \nabla f(x)$. Because of the arbitrariness of p thus the arbitrariness of g, we can reach the conclution that $\partial f(x) = {\nabla f(x)}$ for any $x \in \text{int}(\text{dom } f)$.