Statistical Thinking for Forensic Practitioners

Important Results & Procedures

This document is intended to be a summary of the important results (formulas, theorems, etc.) and "rote" procedures (e.g., hypothesis tests) covered in the course. Use this as a "quick" reference for homework assignments, etc.

Part 2: Probability

• For an event E, E^c is its complement (the event "not E") and

$$Pr(E^c) = 1 - Pr(E)$$

Odds Ratio

 \bullet Odds in favor of E is

$$O_f = \frac{Pr(E)}{Pr(E^c)} = \frac{Pr(E)}{1 - Pr(E)}$$

 \bullet Odds against E is

$$O_a = \frac{Pr(E^c)}{Pr(E)} = \frac{1 - Pr(E)}{Pr(E)}$$

• Given odds against E, O_a ,

$$Pr(E) = \frac{1}{O_a + 1}$$

Conditional Probability

• Definition of the conditional probability of A given B:

$$Pr(A|B) = \frac{Pr(A \text{ and } B)}{Pr(B)}$$

- Above definition is equivalent to (by algebra) Pr(A and B) = Pr(B|A)Pr(A) = Pr(A|B)Pr(B).
- A and B are independent if Pr(A and B) = Pr(A)Pr(B).
 - Equivalently, if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B).
- The "Law of Total Probability:"

$$Pr(A) = Pr(A|B)Pr(B) + Pr(A|B^c)Pr(B^c)$$

Bayes' Theorem

 \bullet The conditional probability of A given B is equal to

$$Pr(A|B) = \frac{Pr(B|A)Pr(A)}{Pr(B)}$$

- In courtroom, commonly consider events E = evidence, $H_s = \text{"same source"}$ proposition, and $H_d = \text{"different source"}$ proposition.
- "Odds Form" of Bayes' Theorem:

$$\frac{Pr(H_s|E)}{Pr(H_d|E)} = \frac{Pr(E|H_s)Pr(H_s)}{Pr(E|H_d)Pr(H_d)}$$

Part 3: Data Collection

- Simple Random Sampling:
 - Every sample of size n drawn from the population of size N has the same probability of selection.
 - If sampling with replacement, then each sample has a $\frac{1}{N^n}$ probability of being selected where N^n is the total number of possible samples.
 - If sampling without replacement, then there are

$$\binom{N}{n} = \frac{N!}{n!(N-n)!}$$

possible samples of size n. 1 over this quantity gives the probability that any one sample is selected.

Part 5: Probability Models and Uncertainty

Common discrete probability distributions

- Binomial distribution
 - Often used to describe the number of "successes," X say, out of n independent, binary trials.
 - If $X \sim Binomial(n, p)$, then the probability mass function is given by

$$Pr(X = k) = \begin{cases} \binom{n}{k} p^k (1 - p)^{n - k} & \text{if } k = 0, 1, 2, ..., n \\ 0 & \text{otherwise.} \end{cases}$$

- Hypergeometric distribution
 - Often used to describe the number of successes out of n trials without replacement our of a population of N objects, of which K objects have a feature of interest.
 - If $X \sim Hypergeometric(N, K, n)$, then the probability mass function is given by

$$Pr(X = k) = \begin{cases} \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} & \text{if } k = 0, 1, ..., K \\ 0 & \text{otherwise.} \end{cases}$$

- Poisson distributions
 - Often used to describe the number of events, X, occurring in an interval of time/space.
 - Parameter λ is the average number of events in the defined interval (of space/time)
 - If $X \sim Poisson(\lambda)$, then the probability mass function is given by

$$Pr(X = k) = \begin{cases} \frac{\lambda^k \exp(-\lambda)}{k!} & \text{if } k = 0, 1, 2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Common continuous probability distributions

- Normal distribution
 - Commonly used to model data that are symmetric and unimodal. Also describes the probabilistic behavior
 of a mean as the sample size increases to infinity (a result called the Central Limit Theorem).
 - Parameter μ is the mean (average) of the distribution. Parameter σ^2 is the variance of the distribution.
 - If $X \sim Normal(\mu, \sigma^2)$, then the probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

for any $x \in \mathbb{R}$.

- Log-Normal distribution
 - Often used to model skewed data (specifically, right-skewed, non-negative data). The natural logarithm
 of Log-Normal-distributed observations follow a normal distribution.
 - Due to the relationship with the normal distribution, this distribution is also parameterized by μ, σ^2 , although their interpretations are not the same as with the normal distribution.
 - If $X \sim Log Normal(\mu, \sigma^2)$, then the probability density function is given by

$$f(x) = \begin{cases} \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(\ln(x) - \mu)^2\right) & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

More on parameters

• The expected value of a random variable X, denoted E(X) is defined by

$$E(X) = \begin{cases} \sum_{k \in \Omega} k Pr(X = k) & \text{if } X \text{ is discrete} \\ \int_{\Omega} x f(x) \ dx & \text{if } X \text{ is continuous} \end{cases}$$

- Interpret this as the weighted average of all possible values of X where the weights are the respective probabilities.
- The expected values for the distributions described above are:

Distribution	E(X)
Binomial(n,p)	n * p
Hypergeometric(N, K, n)	$n*\frac{K}{N}$
$Poisson(\lambda)$	λ
$Normal(\mu, \sigma^2)$	μ
$Log - Normal(\mu, \sigma^2)$	$\exp\left(\mu + \frac{1}{2}\sigma^2\right)$

Table 1: Expected Values of Common Distributions

• The variance of a random variable X, denoted Var(X), is defined by

$$\operatorname{Var}(X) = E\left\{ [X - E(X)]^2 \right\} = \begin{cases} \sum_{k \in \Omega} [k - E(X)]^2 Pr(X = k) & \text{if } X \text{ is discrete} \\ \int_{\Omega} [x - E(X)]^2 f(x) \ dx & \text{if } X \text{ is continuous.} \end{cases}$$

- Interpret this as the average squared distance from the mean
- It is a fact that $Var(aX) = a^2Var(X)$ for $a \in \mathbb{R}$.
- The variances for the distributions described above are:

Distribution	Var(X)
Binomial(n, p)	n * p * (1 - p)
$\overline{ Hypergeometric(N,K,n) }$	$n*\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
$Poisson(\lambda)$	λ
$Normal(\mu, \sigma^2)$	σ^2
$Log - Normal(\mu, \sigma^2)$	$\exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$

Table 2: Variances of Common Distributions

Covariance and Correlation

 \bullet The *covariance* between two random variables X and Y is defined as

$$Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}.$$

- Measures the linear association between variables X and Y.
- Positive/negative/0 covariance indicates positive/negative/no linear association between X and Y, respectively.
- It is a fact that
 - 1. $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$ for $a, b \in \mathbb{R}$
 - 2. Cov(X, Y) = 0 if X and Y are independent.
- E.g., Cadmium may occur in higher elemental concentrations along with Aluminium.
- ullet The correlation between two variables X and Y is defined as

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}}$$
(1)

- Interpreted similar to covariance, but bounded between -1 and 1.
- Correlation close to 1/-1 means that two variables have a strong positive/negative association, respectively (think in terms of scatterplots)
- It is a fact that Corr(X,Y) = 0 if X and Y are independent.

Part 6: Inference

Point Estimation

• Common population parameters of interest and their associated estimators include:

Pop. Parameter	Sample Estimator	Formula
Mean μ	\bar{x}	$\frac{1}{n}\left(\sum_{i=1}^{n} x_i\right)$
Variance σ^2	S^2	$\frac{1}{n-1} \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \right)$
Standard deviation	S	$\sqrt{S^2}$
Proportion π	p	Proportion of "successes" in sample

- Alternatively, we may denote the sample estimators using "hats" e.g., $\hat{\mu}$, $\hat{\sigma}^2$, $\hat{\pi}$, etc.
- The Central Limit Theorem says that for a sufficiently large sample drawn from a distribution with mean μ and variance σ^2 , the distribution of \bar{X} will be normal with mean μ and variance $\frac{\sigma^2}{n}$ even if the distribution from which the sample was drawn is not normal.
 - The CLT says that the sample mean is *unbiased*, meaning $E(\bar{X}) = \mu$.
 - It also says that the sample mean is *consistent*, meaning as n increases, the sampling distribution of \bar{X} gets more concentrated around μ . Equivalently, $\frac{\sigma^2}{n}$ shrinks as n grows.

Interval Estimators

• Confidence intervals are all of the general form:

(point estimate) \pm (critical value) * SE(point estimate)

- The critical value is dependent on 2 factors: the desired confidence level and whether the population variance is known.
 - Confidence level will be of the form $(1 \alpha) * 100\%$ for some α (e.g., 95% confidence means $\alpha = .025$).
 - If the test concerns population proportions or if the population variance is explicitly given, then assume it is known. In this case, use a standard normal $z_{1-\alpha/2}$ quantile as a critical value (NORM.S.INV in Excel).
 - In most problems involving population means, the population variance is unknown. In this case, use a $t_{1-\alpha/2,d.f.}$ critical value, which is the $(1-\alpha/2)$ -th quantile of a t-distribution with d.f. degrees of freedom (e.g., d.f. = n-1 for a test involving a single population mean). This can be calculated using the T.INV function in Excel.
- Table summarizing standard errors under various situations:

		Standard Error	
Parameter of Interest	Pt. Estimator	Pop. Var. Known	Pop. Var. Unknown
μ	\bar{x}	$\frac{\sigma}{\sqrt{n}}$	$\frac{S}{\sqrt{n}}$
			d.f. = n - 1
$\mu_1 - \mu_2$	$\bar{x} - \bar{y}$	$\sqrt{rac{\sigma_x^2}{n_1}+rac{\sigma_y^2}{n_2}}$	$\sqrt{rac{S_x^2}{n_1} + rac{S_y^2}{n_2}}$
			$d.f. = n_1 + n_2 - 1$
π	$\hat{p} = \frac{Y}{n}$	$\sqrt{rac{\pi_0(1-\pi_0)}{n}}$	$\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$
(A pop. proportion)	Y = # successes	(E.g., $H_0: \pi = \pi_0$)	

Hypothesis Testing

- 1. Formulate 2 hypotheses, H_0 and H_a .
- 2. Collect data and calculate relevant statistic
- 3. Calculate the "distance" between the sample statistic and the hypothesized parameter value
 - The "distance" is commonly quantified using a test statistic of the following form:

$$\frac{\text{point estimate} - \text{null hypothesized value}}{\text{SE of point estimate}}$$

• Table summarizing test statistics in various situations:

		Standard Error	
Null Hypothesis	Test Statistic	Pop. Var. Known	Pop. Var. Unknown
$H_0: \mu = \mu_0$	$\frac{\bar{x}-\mu_0}{SE_{\bar{x}}}$	$\frac{\sigma}{\sqrt{n}}$	$\frac{S}{\sqrt{n}}$
			d.f. = n - 1
$H_0: \mu_1 - \mu_2 = d$	$\frac{(\bar{x}-\bar{y})-d}{SE_{\bar{x}-\bar{y}}}$	$\sqrt{rac{\sigma_x^2}{n_1}+rac{\sigma_y^2}{n_2}}$	$\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}$
(d=0 often)			$d.f. = n_1 + n_2 - 1$
$H_0: \pi = \pi_0$	$\frac{\hat{p}-\pi_0}{SE_{\hat{p}}}$	$\sqrt{rac{\pi_0(1-\pi_0)}{n}}$	$\sqrt{rac{\pi_0(1-\pi_0)}{n}}$
(A pop. proportion)			(Note π_0 used here)
$H_0: \pi_1 - \pi_2 = d$	$\frac{(\hat{p}_1 - \hat{p}_2) - d}{SE_{\hat{p}_1 - \hat{p}_2}}$	$\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$	$\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $\frac{1}{2} = \frac{n_1 * \hat{p}_1 + n_2 * \hat{p}_2}{n_1 + n_2}$
(d=0 often)		where $\hat{p} = \frac{Y_1 + Y_2}{n_1 + n}$	$\frac{\vec{r}_{2}}{r_{2}} = \frac{n_{1} * \hat{p}_{1} + n_{2} * \hat{p}_{2}}{n_{1} + n_{2}}$

4. Decide between 2 hypotheses:

- Select a confidence level (1α)
- Determine the decision threshold (critical value) of the test.
 - If σ^2 is assumed known or the test concerns a (single) population proportion, then Excel function NORM.S.INV can calculate critical value.
 - If σ^2 is assumed unknown, then Excel function T.INV calculates a one-sided critical value and T.INV.2T a two-sided critical value.
- \bullet Compute p-value.
 - Quantifies the probability of getting data like the observed data (or something more extreme) if the null hypothesis is true.
 - If σ^2 is assumed known or if test concerns a population proportion, then NORM.S.DIST can be used to calculate p-value.
 - If σ^2 is unknown, then T.DIST or T.DIST.2T can be used to calculate p-value (depending on sidedness of H_a).
- If p-value $\leq \alpha$, then reject H_0 in favor of H_a .
- 5. Interpret results in the context of the original research question.
- Rejecting the null does not mean results are practically significant.
 - The "effect size," d, can be a better measure of practical significance:

$$d = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{(n_1 - 1)S_x^2 + (n_2 - 1)S_y^2}{n_1 + n_2 - 2}}}.$$

- d is called Cohen's d statistic. E.g., values around 0.8 are considered large.
- Performing multiple tests without correcting erodes the collective (family-wise) confidence level.
 - E.g., if 5 tests are performed at the $\alpha=.05$ level, then the family-wise confidence level is actually $.95^5=.77$.
 - Bonferroni correction can be used to divide the α significance level up across the different tests. Run each of k tests at a significance level of $\frac{\alpha}{k}$.
 - Controlling for the False Discovery Rate (FDR) is another method
- Two One-Sided Tests (TOST) is one way of performing an equivalence test. Consider an example of showing that two population means μ_1, μ_2 are equal for illustration:
 - Determine threshold Δ_1, Δ_2 within which it would be appropriate to call the two means equal (e.g., $\pm .5\%$).
 - Two null hypotheses to test are $H_{0_1}: \mu_1 \mu_2 \leq \Delta_L$ and $H_{0_2}: \mu_1 \mu_2 \geq \Delta_U$. If both of these nulls are rejected, then there's evidence of equality.
 - Statistics are (assuming unknown population variances)

$$\frac{\bar{x} - \bar{y} - \Delta_L}{\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}}$$
 and $\frac{\bar{x} - \bar{y} - \Delta_U}{\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}}$

- Compare these statistics to their respective $\pm t_{1-\alpha/2,n_1+n_2-2}$ critical values. If both tests reject, then conclude that equivalence is supported.
- Could construct a confidence interval for $\mu_1 \mu_2$ as well

Sample Size Calculation

- We may want to know before performing a study how large the sample size needs to be to accomplish the study's goals.
- Suppose a population proportion π is to be estimated. We want a large enough sample to achieve a margin of error $ME \leq m$ with a confidence level of $(1-\alpha)*100\%$. Then the estimated sample size n is

$$n = \left(\frac{z_{1-\alpha/2}}{m}\right)^2 \hat{p}(1-\hat{p})$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -th standard normal quantile (e.g., 1.96 for 95% confidence).

• Suppose we were instead interested in estimating a population mean, μ . We often want to be within some proportion of the true value (called the *relative margin of error* (RME)). Suppose we want our estimate to be within q% of the true value at a $(1-\alpha)*100\%$ confidence level. Then the sample size calculation would be

$$n = \left(\frac{\sigma^2}{\mu}\right)^2 \left(\frac{z_{1-\alpha/2}}{q}\right)^2.$$

- Slides 41-46 contain information for determining a sample size based on the Hypergeometric distribution.
- If we want to detect an effect of size d with power $1-\beta$ and confidence $1-\alpha$, then a rough sample size estimate is

$$n = \frac{2(z_{1-\alpha/2} + z_{1-\beta})^2}{d^2}$$

Part 7: Regression & ANOVA

Testing for significant correlation

• Sample covariance between two samples, $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ say, is

$$Cov(\boldsymbol{x}, \boldsymbol{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n}.$$

• Sample correlation between \boldsymbol{x} and \boldsymbol{y} is

$$Corr(\boldsymbol{x}, \boldsymbol{y}) = r_{x,y} = \frac{Cov(\boldsymbol{x}, \boldsymbol{y})}{S_x S_y}$$

- - 1. Hypotheses are $H_0: \rho = 0$ vs. $H_a: \rho \neq 0$ where ρ is the true correlation between $\boldsymbol{x}, \boldsymbol{y}$
 - 2. Test statistic is

$$t = r_{x,y} \sqrt{\frac{n-2}{1-r_{x,y}^2}}$$

3. Compare against a t distribution with n-2 degrees of freedom. So critical values are $\pm t_{1-\alpha/2,n-2}$.

Simple Linear Regression (SLR)

• SLR model assumes for each i = 1, ..., n:

$$y_i = E(y_i|X_i = x_i) + \epsilon_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_i \sim Normal(0, \sigma^2)$ are independent.

• For simple linear regression, the least-squares estimators are

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = r_{x,y} \frac{S_y}{S_x} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- $e_i = y_i \hat{y}_i = y_i (b_0 + b_1 x_i)$ is called a residual.
- The estimator for σ^2 , the Mean Square Error, is:

$$\hat{\sigma}^2 = S_e^2 = MSE = \frac{SSE}{n-2}$$

where SSE is the sum of squared errors defined as

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2.$$

• b_1 is random with distribution $Normal(\beta_1, \sigma_{b_1}^2)$.

$$-\sigma_{b_1}^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 is estimated by

$$\hat{\sigma}_{b_1}^2 = S_{b_1}^2 = \frac{MSE}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- A $(1-\alpha)*100\%$ confidence interval for β_1 is given by

$$b_1 \pm t_{1-\alpha/2,n-2} S_{b_1}$$
.

- A test statistic for testing $H_0: \beta_1 = \beta_1^*$ is

$$t = \frac{b_1 - \beta_1^*}{S_{b_1}}$$

which is compared to a t distribution with n-2 degrees of freedom.

- Prediction in SLR
 - The standard error for a predicted mean response $\hat{y}_{x^*} = b_0 + b_1 x^*$ based on a new predictor value $X = x^*$ is

$$SE_{\hat{y}_{x^*}} = \sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2(x^* - \bar{x})^2}{(n-1)S_x^2}}.$$

Since σ^2 is most likely unknown, we can instead replace it with the MSE.

- A $(1-\alpha)*100\%$ CI for $E(Y|X=x^*)$ is then

$$\hat{y}_{x^*} \pm t_{1-\alpha/2,n-2} SE_{\hat{y}_{x^*}}$$

- The standard error of a predicted single response y_{n+1} given predictor x_{n+1} is

$$SE_{y_{n+1}} = \sqrt{MSE}\sqrt{1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{(n-1)S_x^2}}.$$

Regression with categorical predictors

Regression with categorical predictors

- Consider an example in which height y_i is response variable. The sternum height is a continuous predictor, call it x_i , and the sex ("Male" or "Female") is a categorical variable.
 - We need to "binarize" the sex variable by arbitrarily assigning each category to 0 or 1. Say 1 corresponds to "Male" and 0 to "Female."
 - The dummy variable d_i will represent this binarization:

$$d_i = \begin{cases} 1 & \text{if subject } i \text{ is Male} \\ 0 & \text{if subject } i \text{ is Female.} \end{cases}$$

- The regression model can be expessed as

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 d_i + \epsilon_i.$$

* Note

$$y_i|$$
subject i is male $= \beta_0 + \beta_1 x_i + \beta_2(1) + \epsilon_i = (\beta_0 + \beta_2) + \beta_1 x_i + \epsilon_i$
 $y_i|$ subject i is female $= \beta_0 + \beta_1 x_i + \beta_2(0) + \epsilon_i = \beta_0 + \beta_1 x_i + \epsilon_i$.

So adding the dummy variable d_i allows for the intercepts between the "Male" and "Female" models to differ.

- To represent an interaction, we can introduce the interaction variable z_i where

$$z_i = d_i * x_i = \begin{cases} x_i & \text{if subject } i \text{ is male} \\ 0 & \text{if subject } i \text{ if female.} \end{cases}$$

- The model with included z_i interaction is

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 d_i + \beta_3 z_i + \epsilon_i.$$

* Now note that

$$y_i$$
|subject i is male = $\beta_0 + \beta_1 x_i + \beta_2(1) + \beta_3(x_i) + \epsilon_i = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x_i + \epsilon_i$
 y_i |subject i is female = $\beta_0 + \beta_1 x_i + \beta_2(0) + \beta_3(0) + \epsilon_i = \beta_0 + \beta_1 x_i + \epsilon_i$

meaning the interaction has the desired effect of allowing the slope on x_i to differ.

Quadratic Regression

• A quadratic regression model is of the form

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$$

where ϵ_i are independent with distribution $Normal(0, \sigma^2)$, i = 1, ..., n.

• After obtaining estimates b_0, b_1, b_2 , the estimator for σ^2 is

$$MSE = \frac{1}{n-3} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i - b_2 x_i^2)^2$$

with associated degrees of freedom n-3.

Classification & Logistic Regression

- Consider example of predicting someone's sex, y_i , based on hand breadth, x_i .
 - Binarize y_i arbitrarily. Say 1 corresponds to "female" and 0 to "male."
 - Logistic regression model assumes $y_i|X_i=x_i$ are independent with distribution $Binomial(1,\pi_i)$.
 - In this example, $\pi_i = Pr(y_i = 1|x_i) = Pr(\text{subject } i \text{ is female}|x_i).$
 - The relationship between π_i and x_i is assumed to be

$$\pi_i = f(\beta_0 + \beta_1 x_i) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}$$

where β_0, β_1 are unknown. f(x) is known as the *logistic function*.

- Upon obtaining b_0, b_1 , the estimated probability that the *i*th subject if female is $\hat{\pi}_i = f(b_0 + b_1 x_i)$.
- Given a $(1 \alpha) * 100\%$ confidence interval for $\beta_0 + \beta_1 x_i$, [L, U] say, we can calculate a confidence interval for π_i by considering

$$\left[\frac{\exp\left(L\right)}{1+\exp(L)},\frac{\exp(U)}{1+\exp(U)}\right].$$

- Two-sided α-level hypothesis tests for, say, $H_0: \pi_i = \pi_0$ can be performed by determining whether the above $(1 - \alpha) * 100\%$ confidence interval for π_i contains π_0 .

Part 8: Assessing Evidence

Two-Stage Approach

- 1. Stage 1 (Similarity)
 - Determine if the crime scene and suspect objects agree on one or more characteristics

- Can use hypothesis tests to assess strength of evidence towards same source hypothesis
- Conclusion is that two samples "are indistinguishable" or "match."
- Steps of Implementation (based on hypothesis test):
 - (a) Characterize each object by mean value (e.g., mean trace elemental concentration in population of glass fragments)
 - (b) Obtain sample values from crime scene object
 - (c) Obtain sample values from suspect's object
 - (d) Use sample values to test hypothesis that two samples have the same population mean (i.e., same source). Can use t-test or equivalence test to do so.
 - (e) Summarize test results using p-value, probability of data like like the observed data, assuming null hypothesis is true
 - (f) Reach a conclusion (based on an α -level like .05 or .01): small p-value indicates strong evidence towards alternative hypothesis
 - (g) Otherwise, can't reject the null hypothesis.

2. Stage 2 (Identification)

- Assess the significance of the agreement by finding the likelihood of such agreement occurring by chance
 - E.g., if blood types are found to be indistinguishable, how likely is it that two random individuals' blood types (say, of a particular ethnic descent, sex, etc.) are indistinguishable?

Likelihood Ratio Approach

• Likelihood ratio is

$$\frac{Pr(E|S)}{Pr(E|S^c)}$$

- The numerator assumes common source, S, and asks about the likelihood of the evidence in that case
 - Similar to finding a p-value, but doesn't require a binary decision at the end
- The denominator assumes different source, S^c , and asks about likelihood of evidence in that case
 - Analogous to finding the coincidental match probability.
- An LR-based conclusion: "The evidence is [LR] times more likely if the objects have the same source than if the objects have different sources."
- Some advocate for mapping the value of a LR to a "verbal equivalent" conclusion. One example of a table from ENFSI is:

LR Value	Verbal Equivalent: "The forensic findings"
1	" do not support one proposition over the other."
2-10	" provide weak support for the same source proposition relative to the different source proposition."
10-100	" provide moderate support"
100-1000	" provide moderately strong support"
1000-10000	" provide strong support"
10000-1 mill.	" provide very strong support"
1 million +	" provide extremely strong support"