텍스트 기반 용의자 검색 시스템 개발

원티드

201924440 김정민

201924538 이영민

201924547 이창욱

목차

1. 연구 배경 및 목표

3

- 1) 연구 배경
- 2) 연구 목표

4

- 2. 요구 조건 분석 및 제약 사항
 - 1) 요구 조건 분석
 - 2) 제약 사항

5

- 3. 개발 환경 및 사용 기술
 - 1) 개발 환경
 - 2) 사용 기술
 - 3) 시스템 구상도

- 4. 연구 일정 및 역할 분담
 - 1) 연구 일정
 - 2) 역할 분담

7

5. 참고문헌

8

1. 연구 배경 및 목표

1) 연구 배경

현대 사회에서 공공 장소나 기업, 주거 지역 등에 설치된 CCTV 카메라들은 범죄 예방 및 대응에 중요한 도구로 활용된다. 하지만 이러한 영상 데이터를 효과적으로 분석하고 활용하는 것은 여전히 어려운 과제이다. 최근 컴퓨터 비전 기술은 빅 데이터와 인공지능의 발전으로 급속히 발전하고 있다. 객체 감지, 얼굴 인식, 특징 추출 등의 기술을 활용하여 비디오 데이터를 자동으로 분석하고 해석할 수 있는 기술이 발전되고 있다. 영상 데이터의 분석이 텍스트 기반의 검색으로 가능하다면 많은 시간과 인력 비용을 감소 시키는 효과가 있을 것이다.

2) 연구 목표

컴퓨터 비전 기술을 활용하여 영상 데이터를 자동으로 분석하고, 특정 쿼리에 따라 용의자를 식별하는 시스템을 개발한다. 이를 통해 수작업 분석에 필요한 시간과 비용을 절약하고 효율성을 높일 수 있다. 시스템은 다양한 특징 쿼리를 지원하여 사용자가 원하는 조건에 따라 용의자를 검색할 수 있도록 한다. 예를들어 모자를 쓴 사람, 마스크를 쓴 사람, 특정 색깔의 옷을 입은 사람 등을식별할 수 있어야 한다. 시스템은 높은 정확도로 용의자를 식별할 수 있어야하며, 동시에 영상 데이터를 빠르게 처리할 수 있어야 한다. 이를 위해 최신의컴퓨터 비전 기술을 활용하여 성능을 최적화한다. 사용자가 쉽게 특정 쿼리를입력하고 결과를 확인할 수 있도록 사용자 친화적인 인터페이스를 제공한다.

2. 요구 조건 분석 및 제약 사항

- 1) 요구 조건 분석
 - 여러 동영상에서 텍스트를 사용한 용의자 검색
 - 동영상에서 인물이 있는 이미지 추출
 - 이미지에서 인물에 대한 특징 추출 및 저장
 - 입력된 쿼리에 따라 저장된 이미지 탐색
 - 서비스 제공
 - 웹 브라우저를 통해 사용가능
 - Application 제공

2) 제약 사항

- 긴 동영상에서 모든 이미지를 추출한다면 비용이 크게 증가
 - 적당한 간격으로 이미지 추출
 - 비슷한 이미지거나 특정 객체가 없다면 제거
- 용의자 검색을 위한 다양한 객체 데이터 학습 필요
 - 공개된 다양한 데이터셋을 학습
 - 데이터 증강법 사용
- CCTV 영상을 처리, 저장하는 과정에서 사생활 침해 가능성
 - 영상을 내부에서 처리
 - 작업 후 데이터 삭제

3.개발 환경 및 사용 기술

1) 개발 환경

- Python: openCV 라이브러리 구동

- IntelliJ : API 구축 IDE

- Android Studio : application IDE

2) 기술 스택

- openCV (실시간 이미지 분석을 위한 라이브러리)

- YOLOv8 (이미지에서 객체 분석을 위한 딥러닝 알고리즘)

- Spring Boot (backend)
- Svelte (frontend)
- Git / GitHub (버전 관리)
- Amazon EC2(배포)
- Android(안드로이드 용앱)

¹ https://github.com/ultralytics/ultralytics

² https://www.yoloworld.cc/

3) 시스템 구상도

4. 연구 일정 및 역할 분담

1) 연구 일정

개발구분	세부 항목	5	6	7	8	9
기획	주제 선정					
	자료 조사					
인공지능 모델 생성	데이터셋 조사					
	학습 모델					
	모델 평가					
	모델 추출					
Web 개발	개발환경 구축					
	API 개발					
	와이어프레임 생성					
	클라이언트 개발					
Application 개발 및 배포	UI 및 기능 개발					
	Application 배포					

2) 역할 분담

이름	역할	
김정민	Web개발 Web 관리	
이영민	인공지능 모델 평가 Web, Application 테스트	
이창욱	Application UI 및 기능 개발 인공지능 모델 추출	
고	자료 조사 인공지능 모델 학습	

5.참고문헌

- [1] 나준희, 김현민, 김창범, 강두웅, 오정현. (2022). 딥러닝 기반 실종자 식별 지능형 CCTV. 제어로봇시스템학회 국내학술대회 논문집, 전남.
- [2] 김경목, 전호범, 임건선. (2022). 드론과 인공지능을 활용한 실종자 탐색에 관한 연구. 보건의료생명과학논문지, 10(2), 361-367, 10.22961/JHCLS.2022.10.2.361
- [3] 손석빈, 백한결, 박수현, 김중헌.(2024).YOLO 계열 객체 탐지 신경망 모델 기술 동향.한국통신학회 학술대회논문집,(),74-75.
- [4] Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, Ying Shan. (2024). YOLO-World: Real-Time Open-Vocabulary Object Detection.
- [5] Ultralytics. Ultralytics YOLO 문서. https://docs.ultralytics.com/ko