Les vannes Neles V-port série R de Metso sont des vannes à segment sphérique essentiellement destinées à la régulation, mais également utilisables en sectionnement. Ce sont des vannes de régulation universelles pour des applications diverses et notamment les applications de production de la pâte et du papier. Elles peuvent être équipées d'un réducteur de bruit/cavitation Q-Trim® (par exemple pour la lutte contre le bruit aérodynamique lié aux gaz et à la vapeur). Un obturateur à C_V réduit est disponible pour le modèle DN25.

CARACTERISTIQUES

Construction monobloc

 Les vannes de la série R, ont un corps monobloc sans risque de laisser apparaître des voies de fuite potentielles.

Siège métallique

□ Le siège de la vanne à segment sphérique R est robuste et exceptionnellement durable Sa construction garantit que l'écoulement ne touche pas directement la surface d'étanchéité, d'où une durée de vie prolongée. Un joint actif assure à tout moment un contact correct entre le siège et la surface du segment sphérique, même aux faibles pressions différentielles. Le siège étant à l'intérieur du corps de la vanne, son fonctionnement et son étanchéité ne sont en aucune façon affectés par les contraintes de tuyauterie.

Option de siège souple

□ La vanne à segment sphérique R est également disponible en version siège souple. Elle étend l'adaptation des vannes R aux applications pour lesquelles le chromage dur de l'obturateur n'est pas approprié, par exemple pour les acides et les autres fluides à très bas pH. Cette option comprend un insert X-treme® inséré dans un siège en acier inoxydable.

Paliers protégés

 Les paliers sont logés dans le corps de la vanne, loin de la veine fluide, et ont une large surface offrant ainsi une charge réduite sur les paliers et une grande durée de vie.

Sensibilité de fonctionnement

□ Grâce à l'utilisation de deux paliers d'une garniture de presse-étoupe à ressort précontraint et au bas niveau de friction du siège, le couple requis pour l'actionnement d'une vanne à segment sphérique R est faible, d'où la possibilité d'utiliser un actionneur de petite taille. Par conséquent, cette vanne de régulation combine à la fois de très bonnes performances de régulation à un prix très compétitif.

Q-Trim®

□ La plupart des usines fixent des limites de niveau sonore pour les vannes de régulation. Or ces limites sont facilement dépassées, notamment dans les applications de régulation de gaz et de vapeur, avec l'emploi de vannes standard. La cavitation des liquides survenant aux fortes pressions différentielles et susceptible de causer des dommages importants peut être réduite à l'aide de l'obturateur optionnel Q-Trim®. Cette construction autonettoyante prévenant le bouchage de la vanne est utilisable avec des fluides tels que la vapeur sale, la liqueur noire et même la pâte à 3,5 %.

Obturateur à C_v réduit.

Quatre obturateurs à C_v réduits différents sont disponibles pour la vanne DN 25. Ils permettent d'obtenir une haute précision de régulation aux faibles débits, dans des applications telles que les lignes d'additifs ou de coloration, de colle, etc.

ÉCLATÉ

NOMENCLATURE (construction standard)*

Repère	Désignation	Matériau
1	Corps	ASTM A351 gr. CF8M
3	Segment V-port	SIS 2324 + Chromage / SIS 2324 / AISI 329
4	Siège	Acier inoxydable + revêtement dur au cobalt / PTFE 1)
4A	Bague de siège	AISI 316
5	Ressort de blocage	INCONEL 625
6	Joint de siège	Acier inoxydable + PTFE
9	Entretoise	ASTM A351 gr. CF8M
10	Bride pleine	ASTM A351 gr. CF8M
11	Axe moteur	SIS 2324/AISI 329 Inox Duplex
12	Axe	SIS 2324/AISI 329 Inox Duplex
13	Clavette	SIS 2324/AISI 329
14	Goupille cylindrique	SIS 2324/AISI 329
15	Goupille cylindrique	SIS 2324/AISI 329
16	Palier	PTFE sur maillage en acier inoxydable
17	Palier	PTFE sur maillage en acier inoxydable
19	Plaque d'étanchéité	Graphite
20	Garniture	PTFE
22	Joint de garnissage (seulement en DN25 faible capacité)	Inox AISI 316
25	Vis fraisée	ISO 3506 A2-70
26	Vis hexagonale	ISO 3506 A2-70
30	Anneau de retenue	AISI 316
31	Rondelle	AISI 316
32	Rondelle élastique	AISI 316
35	Plaque d'identification	AISI 304

^{*} Les pièces ne sont pas dans l'ordre de leur numérotation parce que certaines ont leur numéro propre prédéfini.

FICHE TECHNIQUE

Type

Vanne quart de tour à passage réduit

- RA à monter entre brides

Pressions nominales

Corps:

RA: ASME 300 / PN 40
Obturateur: Cf. tableau ci-dessous

Taille DN / pouces	pression différentielle max. en sectionnement dp (bar)
025 1"	50
040 / 1 1/2"	50
050 / 2"	50
065 / 2 1/2"	50
080 / 3"	50
100 / 4"	40
150 / 6"	40
200 / 8"	35
250 / 10"	35

Tailles

RA: DN25, 40, 50, 65, 80, 100, 150, 200, 250

Dimensions face à face

RA selon standard Metso

Températures

-40... +260 °C.

Caractéristiques inhérentes d'écoulement

Egal pourcentage.

Etanchéité

Le test d'étanchéité se fait dans le sens de l'écoulement. L'étanchéité standard de la vanne à segment sphérique V-port à siège métallique est conforme à ANSI/FCI 70.2. Classe IV.

Tests

Toutes les vannes fabriquées par Metso sont soumises à un test de pression. La pression de test du corps d'une vanne de série R est égale à 1,5 x la pression nominale, La pression de test du siège est 3,5 barG selon IEC 60534 / ANSI/FCI 702 Class IV. Les tests sont effectués à l'eau.

Pression différentielle maximum en sectionnement

Pression maximum applicable au corps en matériau standard A 351 gr. CF8M

Remarque: Le bruit et la cavitation doivent être aussi pris en compte lors de la détermination de la pression différentielle maximale de la vanne.

Dans la pratique, il faut toujours vérifier la température, l'actionneur, le facteur de charge, le bruit, la cavitation, la vitesse de passage du fluide, etc. avec le logiciel Nelprof.

C_v maximum pour les vannes de la série RA

Т	aille	Siège métallique, S	Q-Trim	Siège métallique, 1S	Q-Trim + Siège 1S	Siège souple, T2
DN	Pouces	C _v 100 % ¹)	C _v 100 % ²⁾	C _v 100 % ¹⁾	C _v 100 % ²⁾	C _v 100 % ¹⁾
25	1	45	-	24	-	21
40	1 1/2	110	-	58	-	61
50	2	180	47	115	30	110
65	2 1/2	280	96	210	72	215
80	3	420	160	342	130	340
100	4	620	250	510	210	520
150	6	1260	540	1160	500	1070
200	8	2030	880	1910	830	1760
250	10	3210	1510	3050	1440	2830

^{1) 100%} correspond à un angle de rotation de 95°.

²⁾ Pour les vannes Q-R, 100% correspond à un angle de rotation de 90°.

METSO 3 R 21 FR

CONSTRUCTIONS DE SIEGE

Pression différentielle maximum en régulation avec plage d'ouverture de la RA de 0 %-70 %

Pression différentielle maximum en régulation avec plage d'ouverture de la RA de 70 %-100 %

Pression différentielle maximum en régulation avec plage d'ouverture de la Q-RA de 0 %- 30 %

Pression différentielle maximum en régulation avec plage d'ouverture de la Q-RA de 30 % - 60 %

Pression différentielle maximum en régulation avec plage d'ouverture de la Q-RA de 60 %-100 %

CONSTRUCTIONS DE SIEGE

SELECTION DE L'ACTIONNEUR RECOMMANDE POUR LA REGULATION

Les tailles vanne/actionneur sont présélectionnées. Elles sont données pages 7 à 11. La taille vanne/actionneur doit être vérifiée à l'aide du logiciel Nelprof pour chaque vanne de régulation.

Couple maximum applicable sur l'axe

Taille de	la vanne	Cou	ple
DN	Pouces	Nm	ft-lb
25	1	30	22
40	1.5	30	22
50	2	65	48
65	2.5	65	48
80	3	160	118
100	4	160	118
150	6	490	362
200	8	675	498
250	10	1350	996

Siège S

Siège	Acier inoxydable + revêtement dur au cobalt
Ressort	Inconel 625
Joint de siège	Joint à lèvre en PTFE garni / Ressort en Elgiloy
Températures	-40+260°C / -40+500°F
Application	Universel

Siège souple T (PTFE + C25%)

Code	Corps de siège	Ressort	Joint de siège	Joint d'appui						
T2	Inox. 316	Inconel 625	DN 25 - 150 X-treme® DN 200 - 250 PTFE renforcé	PTFE						
Températures pour T2: -40+260°C / -40+500°F										

Siège métallique non étanche E

Siège	Alliage au cobalt
Températures	-40+260°C / -40+500°F
Application	Conditions très érosives ne requérant pas l'étanchéité
OBS.!	La flèche du sens d'écoulement est inversée.

Siège métallique à étanchéité bidirectionnelle 1S

Siège	316 SS + revêtu alliage au cobalt
Ressort	Inconel 625
Joint de siège	Viton GF
Températures	-30 °C +200 °C / -22 °F+186 °F
Service	Universel

COUPLE

DIMENSIONS

RA

Turno	DN	ISO 5211								Diı	mensio	ns, mm									V
Туре	DN	150 3211	A1	Α	øB	С	øD	E	R	K	øΟ	М	Р	øS1	øS2	øU1	øU2	øΖ	L	V	Kg
	25	F05	21	50	64	56	33	127	27	102	15	4,76	17	-	50	-	6,6	35	15,5	52	1,3
	40	F05	21	60	82	65	49	133,5	25	108,5	15	4,76	17	-	50	-	6,6	35	15,5	52	2,4
	50	F05, F07	27	75	100	91	60	144,5	25	119,5	15	4,76	17	70	50	9	6,6	55	15,5	67	3,7
	65	F05, F07	40	100	118	97	75	151	25	126	15	4,76	17	70	50	9	6,6	55	15,5	67	5,3
RA	80	F07, F10	38	100	130	108	89	177	35	142	20	4,76	22,2	102	70	11	9	70	16	94	6,2
	100	F07, F10	41	115	158	120	115	186	35	151	20	4,76	22,2	102	70	11	9	70	16	94	9,6
	150	F10, F12	55	160	216	174	164	244	44	200	25	6,35	27,8	125	102	14	11	85	22	114	24
	200	F10, F12	70	200	268	201	205	285	50	235	30	6,35	32,9	125	102	14	11	85	22	114	42
	250	F12, F14	82	240	324	251	259	338	61	277	35	9,53	39,1	140	125	18	14	100	26	136	68

RA-B1C

T	Max.						Dim	nensions,	mm						NPT	Kg
Туре	∆p 1)	DN	Α	A1	В	С	D	F	G	Х	V	J	Н	lmax		, kg
RA_025-B1C6	50	25	50	21	64	56	33	400	260	90	36	168	305	310	1/4	5,5
RA_040-B1C6	50	40	60	21	82	65	49	400	260	90	36	175	320	310	1/4	6,6
RA_050-B1C6	50	50	75	27	100	91	60	400	260	90	36	185	355	310	1/4	8
RA_050-B1C9	50	50	75	27	100	91	60	455	315	110	43	185	365	305	1/4	13,5
RA_065-B1C6	50	65	100	40	118	97	75	400	260	90	36	192	367	310	1/4	9,5
RA_065-B1C9	50	65	100	40	118	97	75	455	315	110	43	192	380	305	1/4	15
RA_080-B1C6	50	80	100	38	130	108	89	400	260	90	36	200	390	310	1/4	11
RA_080-B1C9	50	80	100	38	130	108	89	455	315	110	43	200	400	305	1/4	16
RA_100-B1C6	40	100	115	41	158	120	115	400	260	90	36	210	410	310	1/4	15
RA_100-B1C9	40	100	115	41	158	120	115	455	315	110	43	210	420	305	1/4	19
RA_150-B1C9	25	150	160	55	216	174	164	455	315	110	43	260	515	305	1/4	34
RA_150-B1C11	40	150	160	55	216	174	164	540	375	135	51	265	530	310	3/8	40
RA_150-B1C13	40	150	160	55	216	174	164	635	445	175	65	280	550	325	3/8	55
RA_200-B1C9	15	200	200	70	268	201	205	455	315	110	43	294	575	305	1/4	52
RA_200-B1C11	32	200	200	70	268	201	205	540	375	135	51	310	590	310	3/8	59
RA_200-B1C13	35	200	200	70	268	201	205	635	445	175	65	325	610	325	3/8	73
RA_250-B1C13	30	250	240	82	324	251	259	635	445	175	65	366	730	325	3/8	100
RA_250-B1C17	35	250	240	82	324	251	259	770	545	215	78	373	750	340	3/8	125

 $^{1) \} Pression \ différentielle \ maximum \ en \ sectionnement \ avec \ 0,6 \ pour \ facteur \ de \ charge \ de \ l'actionneur \ et \ 5 \ bar \ de \ presion \ d'alimentation$

RA - B1J, B1JA

T	Max.	Dimensions, mm														
Туре	Δp 1)	DN	Α	A1	øΒ	С	øD	F	G	Х	V	J	Н	Imax	NPT	kg
RA_ 025-B1J6/B1JA6	50/50	25	50	21	64	56	33	485	368	110	36	167	291	305	3/8	17
RA_ 040-B1J6/B1JA6	50/50	40	60	21	82	65	49	485	368	110	36	174	306	305	3/8	16
RA_ 050-B1J6/B1JA6	50/50	50	75	27	100	91	60	485	368	110	36	184	343	305	3/8	17
RA_ 065-B1J6/B1JA6	50/50	65	100	40	118	97	75	485	368	110	36	194	358	305	3/8	19
RA_ 080-B1J6/B1JA6	25/50	80	100	38	130	108	89	485	368	110	36	199	374	305	3/8	20
RA_100-B1J6/B1JA6	12/50	100	115	41	158	120	113	485	368	110	36	209	398	305	3/8	23
RA_150-B1J6/B1JA6	-/25	150	160	55	216	174	164	485	368	110	36	257	498	305	3/8	37
RA_ 025-B1J8/B1JA8	50/50	25	50	21	64	56	33	560	420	135	43	168	293	305	3/8	19
RA_ 040-B1J8/B1JA8	50/50	40	60	21	82	65	49	560	420	135	43	175	308	305	3/8	20
RA_ 050-B1J8/B1JA8	50/50	50	75	27	100	91	60	560	420	135	43	185	345	305	3/8	21
RA_ 065-B1J8/B1JA8	50/50	65	100	40	118	97	75	560	420	135	43	195	360	305	3/8	23
RA_ 080-B1J8/B1JA8	50/50	80	100	38	130	108	89	560	420	135	43	200	376	305	3/8	24
RA_100-B1J8/B1JA8	50/50	100	115	41	158	120	113	560	420	135	43	210	400	305	3/8	27
RA_150-B1J8/B1JA8	10/25	150	160	55	216	174	164	560	420	135	43	258	500	305	3/8	41
RA_150-B1J10/B1JA10	40/40							650	490	175	51	275	530	225	3/8	55
RA_200-B1J10/B1JA10	15/25	200	200	70	268	201	205	650	490	175	51	310	590	310	3/8	75
RA_200-B1J12/B1JA12	32/35							800	620	215	65	324	635	235	1/2	100
RA_250-B1J16/B1JA16	35/35	250	240	85	324	251	259	990	760	265	78	373	760	340	1/2	170

¹⁾ Pression d'alimentation BJ 4 bar / BJA 5 bar

METSO 3 R 21 FR

RA - M

TYPE	Fixation de l'actionneur	Dimensions, mm												
ITPE	ISO 5211	DN	ØD	Α	A1	ØB	С	F	G	н	J	V	ØZ	kg
	M07/15F05	25	33/38x	50	21	64	56	235	184	223	131	52	160	5.1
	M07/15F05	40	49	60	21	82	65	235	184	238	137	52	160	6.2
	M07/15F05	50	60	75	27	100	91	235	184	275	148	52	160	7.5
	M07/15F05	65	75	100	40	118	97	235	184	288	155	52	160	9.5
RA	M07/20F07	80	89	100	38	130	108	235	184	315	171	52	160	10
NA.	M07/20F07	100	115	115	41	158	120	235	184	336	180	52	160	14
	M10/25F10	150	164	160	55	216	174	238	187	439	235	52	200	29
	M12/30F12	200	205	200	70	268	201	307	238	524	276	71	315	52
	M12/35F12	250	259	240	82	324	251	307	238	616	318	71	315	78
	M14/35F12	250	259	240	82	324	251	385	285	621	320	86	400	87

^{**)} Les actionneurs M07...M12 sont équipés d'un volant manuel type SR, les actionneurs M14...M16 d'un volant manuel R.

COMMENT PASSER COMMANDE

Exemple: Cas d'une vanne RA avec obturateur de capacité standard (-), construction de corps sans brides selon ASME Classe 300 (RA), rainure et clavette standard (A), taille (080), corps en CF8M, segment en acier type 329+ chromé dur, visserie en A2-70, axes, goupilles & paliers en AISI 329/PTFE (A) et siège en alliage au cobalt, joint de siège à lèvre en PTFE (S).

	RA	A	080	A	S
1.	2.	3.	4.	5.	6.

1.	Q-TRIM OU BAS C _V	
- C _v standard ou sans Q-Trim		
Q	Atténuateur bruit/cavitation DN50-400	
C005	C _v maxi = 0,5 DN25	
C015	C _v maxi = 1,5 DN25	
C05	C _v maxi = 5 DN25	
C15	C _v maxi = 15 DN25	

2.	MODÈLE		
RA	Vanne à insérer entre brides, passage réduit, longueur du face à face standard Metso, Corps 300/PN40		

3.	CONSTRUCTION
Α	Standard, axe avec rainure à clavette.

4.	TAILLE	
	En mm : 025, 040, 050, 065, 080, 100, 150, 200, 250.	

5.	CORPS	SEGMENT	VISSERIE	AXES, GOUPILLES, PALIERS
Α	CF8M	Type 329+ Chromé dur	A2-70	AISI 329/PTFE
S	CF8M	Type 329	A2-70	AISI 329/PTFE
H (avec siège T6)	CW-6M (Hastelloy C)	CW-6M	A2-70	Hastelloy C/PVDF
U (avec siège U)	CK3MCuN (SMO)	ASTM A351 gr. CK3MCuN + revêtement céramique (TiO)	A2-70	UNS31254/ PTFE chargé sur tamis SMO 254

6.	SIÈGE
S	Alliage au cobalt, joint de siège à lèvres en PTFE.
Т	Siège métal avec insert X-treme pour diam. DN 25 - 150, et joint arrière à lèvre en PTFE. Siège métal avec insert PTFE+C25% pour diamètre DN 200 - 250, joint arrière à lèvre en PTFE
E	Alliage au cobalt, version résistante à l'érosion, non étanche.
U	Titane, étanchéité arrière par joint à lèvres PTFE / ressort titane
15	Siège métal à étanchéité bidirectionnelle. 316 SS revêtu alliage au cobalt

Metso Flow Control Inc.

France, 8 avenue de l'Ille Saint Martin, 92737 Nanterre. Tél. +333 8950 6400. Fax +333 8950 6440. france.sales@metso.com

Canada, 32 boul. Hymus, Pointe-Claire, Quebec, H9R 1C9. Tél. +1514 630 6998. Fax +1514 630 5598

Europe, Vanha Porvoontie 229, P.O. Box 304, FI-01301 VANTAA, Finland Tél. +358 20 483 150. Fax +358 20 483 151

Amérique du Nord, 44 Bowditch Drive, P.O. Box 8044, Shrewsbury, MA 01545, USA. Tél. +1 508 852 0200. Fax +1 508 852 8172

Amérique du Sud, Av. Independéncia, 2500- Iporanga, 18087-101, Sorocaba-São Paulo, Brazil. Tel. +55 15 2102 9700. Fax +55 15 2102 9748/49

Asie-Pacifique, 238B Thomson Road, #17-01 Novena Square Tower B, Singapore 307685. Tel. +65 6511 1011. Fax +65 6250 0830

 $\textbf{Chine,}\ 11/F,\ China\ Youth\ Plaza,\ No.19\ North\ Rd\ of\ East\ 3rd\ Ring\ Rd,\ Chaoyang\ District,\ Beijing\ 100020,\ China.\ Tel.\ +86\ 10\ 6566\ 6600.\ Fax\ +86\ 10\ 6566\ 2583$

Proche-Orient, Roundabout 8, Unit AB-07, P.O. Box 17175, Jebel Ali Freezone, Dubai, United Arab Emirates. Tél. +971 4 883 6974. Fax +971 4 883 6836

www.metso.com/valves

Peut faire l'objet de modifications sans préavis. Tous les noms de produits dans ce bulletin sont des marques déposées de Metso Flow Control Inc.

