Badano zanieczyszczenie terenów wokół pewnej elektrowni. W tym celu odsłonięto siedem profili glebowych.
W powierzchniowej warstwie badanych profili zawartości ołowiu i cynku (w mg/kg) przedstawiały się
następująco:

ołów (X)	355	190	345	316	269	210	275
cynk (Y)	82	53	93	82	67	46	80

$$\sum_{i} x_{i} = 1960; \quad \sum_{i} x_{i}^{2} = 573092; \quad \sum_{i} y_{i} = 503; \quad \sum_{i} y_{i}^{2} = 37911; \quad \sum_{i} x_{i} y_{i} = 146860$$

a) Obliczyć i zinterpretować współczynnik korelacji między cechami X i Y.

Odp. r = 0.92

b) Sprawdzić hipotezę o braku korelacji między zawartością ołowiu i cynku w powierzchniowej warstwie badanych profili. Przyjąć poziom istotności 0,05.

Odp. $t_0 = 5,25$; $t_{0,05; 5} = 2,571$; H_0 odrzucamy

c) Wyznaczyć równanie regresji liniowej zawartości cynku względem zawartości ołowiu w powierzchniowej warstwie badanych profili. Zinterpretować współczynnik regresji.

Odp. y = 2,468+0,2478x

- d) Narysować wykres prostej regresji na tle diagramu korelacyjnego
- e) Sprawdzić, czy regresja liniowa cechy Y względem X jest istotna. Przyjąć poziom istotności 0.05.
- f) Obliczyć i zinterpretować współczynnik determinacji. Odp. $R^2 = 84,64\%$
- g) Zaprognozować, zgodnie z przyjętym modelem regresji, zawartość cynku w powierzchniowej warstwie, gdy zawartość wapnia wynosi 270 (mg/kg). Odp. 69,374
- 2. Na terenie byłego województwa konińskiego badano zmniejszenie się emisji pyłu (w t/rok) po zamontowaniu instalacji mokrego odpylania na kominach największych zakładów. Otrzymano dane:

$$\sum_{i} x_{i} = 18; \quad \sum_{i} x_{i}^{2} = 64; \quad \sum_{i} y_{i} = 49,2; \quad \sum_{i} y_{i}^{2} = 420,7; \quad \sum_{i} x_{i} y_{i} = 160$$

- a) Obliczyć i zinterpretować współczynnik korelacji między zmniejszeniem emisji pyłów a liczbą instalacji mokrego odpylania.
 Odp. r = 0,94
- b) Wyznaczyć równanie regresji liniowej zmniejszenia emisji pyłów względem liczby instalacji mokrego odpylania. Zinterpretować współczynnik regresji. Obliczyć i zinterpretować współczynnik determinacji.
 Odp. v = 4,48 + 1,24x; R²= 88,36%
- c) Zweryfikować hipotezę o istotności regresji liniowej. Przyjąć poziom istotności $\alpha = 0.05$.
- d) Narysować prostą regresji.
- e) Określić przewidywane zmniejszenie emisji pyłów, gdy liczba instalacji wyniesie 3.

Odp. 8,2

3. Dział marketingu pewnej firmy analizował zależność wielkości sprzedaży swych produktów (w tys. sztuk) a liczbą współpracujących z zakładem hurtowni. Otrzymano dane:

liczba hurtowni (X)	1	2	3	4	5	6	7	8	9	10
wielkość sprzedaży (Y)	5,8	6,1	8,4	9,2	9,3	10,4	12,9	14,6	19,1	22,8

$$\sum_{i} x_{i} = 55; \quad \sum_{i} x_{i}^{2} = 385; \quad \sum_{i} y_{i} = 118,6; \quad \sum_{i} y_{i}^{2} = 1684,92; \quad \sum_{i} x_{i} y_{i} = 795,9$$

- a) Obliczyć i zinterpretować współczynnik korelacji między wielkością sprzedaży produktów a liczbą współpracujących z zakładem hurtowni. Odp. r = 0,95
- b) Wyznaczyć równanie regresji liniowej wielkości sprzedaży produktów względem liczby współpracujących z zakładem hurtowni. Zinterpretować współczynnik regresji. Obliczyć i zinterpretować współczynnik determinacji.

Odp.
$$y = 2,29 + 1,74x$$
; $R^2 = 90,25\%$

c) Zweryfikować hipotezę o istotności regresji liniowej. Przyjąć poziom istotności $\alpha = 0.05$. Odp.

$$F_0 = 70,48 > F_{0,05;1,8} = 5,318$$
; H_0 odrzucamy

- d) Narysować prostą regresji na tle diagramu korelacyjnego.
- e) Określić przewidywaną wielkość sprzedaży, gdy liczba hurtowni wyniesie 6.

Odp. 12,73

4. Badano zawartość tlenu rozpuszczonego w wodzie destylowanej (cecha Y w mgO₂/dm³) w zależności od temperatury (cecha X w °C). Uzyskano dane:

temperatura (X)	5	7	8	11	13	14	16	17	20	21
zawartość tlenu (Y)	12,9	13,6	11,9	11	11,2	11,9	10	11,7	8,8	8,9

$$\sum_{i} x_{i} = 132; \quad \sum_{i} x_{i}^{2} = 2010; \quad \sum_{i} y_{i} = 111,9; \quad \sum_{i} y_{i}^{2} = 1274,57; \quad \sum_{i} x_{i} y_{i} = 1409,9$$

- a) Obliczyć współczynnik korelacji między zawartością tlenu w wodzie destylowanej a temperaturą. Odp. r = □0,87
- b) Sprawdzić hipotezę o braku korelacji między zawartością tlenu rozpuszczonego w wodzie destylowanej a temperaturą. Przyjąć poziom istotności 0,05.

Odp.
$$t_0 = 4,99$$
; $t_{0,05; 8} = 2,306$; H_0 odrzucamy

- c) Wyznaczyć równanie regresji liniowej zawartości tlenu rozpuszczonego w wodzie destylowanej względem temperatury. Obliczyć i zinterpretować współczynnik determinacji. Odp. y = 14,5 0,25x; R²= 75,69%
- d) Sprawdzić, czy regresja liniowa cechy Y względem X jest istotna. Przyjąć poziom istotności 0,05.
- e) Określić przewidywaną zawartość tlenu, gdy temperatura wynosi 12 °C.

Odp. 11,5

5. Badano zależność między roczną wielkością wytworzonych odpadów w Polsce w mln ton wg GUS a ilością odpadów wykorzystanych wtórnie w ciągu roku w mln ton. Uzyskano następujące dane:

Dla X (wytworzone odpady):	120,8	122,7	124,6	124,4	133,2
Dla Y (wykorzystane odpady):	65,6	66,9	69,5	80,1	91,7

$$\sum_{i} x_{i} = 625,7$$
; $\sum_{i} x_{i}^{2} = 78390,69$; $\sum_{i} y_{i} = 373,8$; $\sum_{i} y_{i}^{2} = 28434,12$; $\sum_{i} x_{i} y_{i} = 46971,69$

- a) Obliczyć współczynnik korelacji między wielkością wykorzystanych odpadów a ilością wytworzonych odpadów oraz obliczyć współczynnik determinacji. Zinterpretować oba wyniki.
 Odp. r = 0,92; R²= 84,64%
- b) Oszacować prostą regresji wielkości wykorzystanych odpadów względem wytworzonych odpadów. y = -193.72 + 2.15x
- c) Określić przewidywaną wielkość wykorzystanych odpadów, gdy ilość wytworzonych odpadów wynosi 130 mln ton.
 Odp. 85,78

Ćwiczenia 13

współczynnik korelacji Pearsona:

$$r_{xy} = \frac{\hat{s}_{xy}}{\sqrt{\hat{s}_x^2 \hat{s}_y^2}} \qquad -1 \le r_{xy} \le 1$$

$$\hat{s}_{xy} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - \frac{\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n} \right) \qquad \hat{s}_x^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} \right) \qquad \hat{s}_y^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} \right)$$

test hipotezy o braku korelacji w populacji

 $H_0: \rho = 0,$

 $H_1: \rho \neq 0$,

$$t = \frac{r_{xy}}{\sqrt{1 - r_{yy}^2}} \sqrt{n - 2}$$

Jeżeli

 $|t|>t_{\alpha,n-2}$

to hipotezę H_0 odrzucamy na rzecz H_1

(inaczej: H_0 odrzucamy jeśli $t \in (-\infty, -t_{\alpha, n-2}) \cup (t_{\alpha, n-2}, \infty)$)

Współczynnik determinacji jest miarą dopasowania prostej regresji do punktów empirycznych

$$R^2 = r_{xy}^2 \cdot 100\%$$

Równie regresji liniowej:

$$y = \hat{\beta}_0 + \hat{\beta}_1 x$$
 gdzie:

$$\hat{\beta}_1 = \frac{\hat{s}_{xy}}{\hat{s}_x^2}$$

oraz
$$\hat{\beta}_0$$
=

 $\hat{\beta}_1 = \frac{\hat{s}_{xy}}{\hat{s}^2}$ oraz $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

test hipotezy o istotności wsp. regresji

 $H_0: \beta_1 = 0,$

 $H_1: \beta_1 \neq 0$,

$$t = \frac{\hat{\beta}_1}{\hat{s}_v \sqrt{1 - r_{xv}^2}} \cdot \hat{s}_x \sqrt{n - 2}$$

Jeżeli

 $|t|>t_{\alpha,n-2}$

to hipotezę H₀ odrzucamy na rzecz H₁

(inaczej: H_0 odrzucamy jeśli $t \in (-\infty, -t_{\alpha, n-2}) \cup (t_{\alpha, n-2}, \infty)$)