threason FOR PORTFOLIO OPTIMIZATION

RESEARCH NOTES IN THE ENEXA PROJECT

Alex Goessmann, DATEV eG

February 13, 2025

1 The portfolio optimization problem

Given n products and the covariance matrices $\Sigma[L_0, L_1] \in \mathbb{R}^{d \times d}$, the expectations $\mu[L_0]$ and the risk appetite parameter q > 0, we state the portfolio optimization problem

$$\operatorname{argmin}_{x_{[d]}} q \left(\sum_{l_0, l_1 \in [n], l_0 \neq l_1} \Sigma[L_0 = l_0, L_1 = l_1] \cdot e_1 \left[X_{l_0} \right] \cdot e_1 \left[X_{l_1} \right] \right) - \sum_{l \in [n]} \mu[L = l] \cdot e_1 \left[X_l \right]. \tag{1}$$

Remark 1 (Connection with threason). • The portfolio optimization problem is a mode search in an exponential family of atomic variables and terms of pairs.

- The objective of the optimization is the (negative of its) energy tensor E.
- It has a monomial decomposition with order constraint r=2.

2 Connection with threason

Let us now show the connection with threason in more precision.

2.1 Exponential family of features

The portfolio optimization problem is a mode search in an exponential family of atomic variables and terms of pairs.

2.2 Energy Tensor and corresponding distribution

The energy tensor to be maximized is

$$E = -q \left(\sum_{l_0, l_1 \in [n], \, l_0 \neq l_1} \Sigma[L_0 = l_0, L_1 = l_1] \cdot e_1 \left[X_{l_0} \right] \cdot e_1 \left[X_{l_1} \right] \right) + \sum_{l \in [n]} \mu[L = l] \cdot e_1 \left[X_l \right].$$

We can reconstruct a member of the corresponding Markov Logic Network to the by the temperature $\beta > 0$ scaled energy as

$$\mathbb{P}^{\beta}\left[X_{[d]}\right] = \left\langle \exp\left[\beta \cdot E\right]\right\rangle \left[X_{[d]}|\varnothing\right] \, .$$

Sampling from these members in the low temperature limit $\beta \to 0$ is equivalent to the portfolio optimization problem.

2.3 Representation by a monomial selection architecture

The energy tensor E has a monomial decomposition with order constraint r=2.