2021

CHEMISTRY — HONOURS

Paper: DSE-A-1

(Molecular Modelling and Drug Design)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest (Q. 2 to Q. 13).

1. Answer any ten questions:

1×10

- (a) Distinguish between conformation and configuration of a molecule.
- (b) For a linear tetra-atomic molecule draw the potential energy versus torsion angle graph.
- (c) What is the coordinate system one can use to describe the three-dimensional structure of a molecule?
- (d) What is the significance of "time step" in a Molecular Dynamics simulation?
- (e) Suggest a non-derivative method for energy minimization.
- (f) Write an expression to estimate the bond-angle distortion energy identifying the parameters used in the expression.
- (g) What are local and global minima of a molecule?
- (h) What is meant by sequence alignment?
- (i) While running a molecular dynamics simulation, what are most commonly stored in the computer?
- (i) What are covalent and non-covalent interactions?
- (k) What are the units of length and energy commonly used in molecular mechanics?
- (l) What is a ligand?
- 2. Write a function that can be used to calculate the potential energy of a molecule. Explain all the terms and parameters used in it.
- 3. What is Molecular Dynamics simulation? Briefly outline the steps. What is meant by the length of the simulation? 2+2+1
- **4.** What is energy minimization? What is the significance of the gradient calculated in the derivative methods?

Please Turn Over

(V(5th	Sm.)-Chemistry-H/DSE-A-1/CBCS (2)	
5.	Name a second-order energy minimization method and briefly outline the steps.	1+4
6.	What is QSAR? Briefly explain its use in drug design.	1+4
7.	What is the significance of Temperature in a Molecular Dynamics simulation? Suggest a metholic keep it constant during the simulation.	od to 2+3
8.	Show with a sketch why it is not correct to say that a transition state is not a maximum on PES.	4
9.	Give four applications of Molecular Mechanics. Which is the most widely used?	
10.	Molecular mechanics can calculate the values (in cm ⁻¹) of vibrational frequencies, but without 'ou assistance' it cannot calculate their intensities. — Explain.	ıtsid :
11.	If the surface is quadratic, then Newton-Raphson method will be a good choice for energy minimiza — Explain.	ation
12.	What are the basic elements of the Monte-Carlo method? Write down the differences between Molecular Dynamics and Monte Carlo methods.	weei
13.	An important concept in computer simulation is that of the phase space. — Explain.	