CSE 3505-FDA DA2

Suppose you have the following dataset

Registration	Study	Attendance	CGPA
Number	Time in	in %	
	Hrs		
1	4	100	6.2
2	6	50	5.3
3	16	95	9.9
4	12	85	9.0
5	18	100	10.0
6	2	50	4.0
7	5	70	6.9
8	9	80	7.7
9	15	80	8.9
10	3	75	6.5
11	7	7.5	8.0

The above table shows the marks obtained by students based on their study hours and attendance in the class.

a) Derived the multiple regression equation to predict CGPA based on study Time and Attendance.

y	χ,	Y 2	ya ²	x, 2	χ,²	yx,	X, N2	9×2
6.3		100	38.44	10000	(0000)	9H.8	400	620
5.3	6	50	20,09	36	2500	31.8	300	265
9.9	16	95	98.01	256	9025	158.4	1520	940-5'
9	12	85	81	144	705	80)	(0 20	108 462
			100	324	10000	(80	(80 o	(000)
10	1.8	50	16	H	3500	8	(00)	800
44	3	70	H7.61	25	4900	gu.5	35 0	483
6.9	5			81	6400	58.29	710	1616
7.7	9	60	59.29	205	6400	133.5	1200	712
8.9	15	75	H3.25	9	5625	19.5	205	HP7.5
8.0	7	4.5	64	646	56.25	56	50.5	60
88.H	97	790.5	6533	1169	64631.25	823.8	7.537.	6149
80.4 = 11 xa + 61 x97 + 61 x790.5								
803.8= 97x9+ 1168 xb, + 76875 bz								
6149 = 790.50 + 64631.25 b2 + 7487.5 b1								

From 3 equations w gt

$$a = \mu - 48042$$
 $b_1 = 0.31078$
 $b_2 = -0.0042$
 $y = \mu.48047 + 9.31048 x, -0.000 + 2x$

b) Apply multiple regression to predict the CGPA of a student if he has 78% attendance and 8hr Study time.

```
y = 4.78077 + 0.31078 \times 8 - 0.000 + 2 \times 78
y = 7.28
```

c) Finally write an R script to perform the multiple regression and predict the CGPA of the student as per the condition given in bit (b).

Code:

```
x1<-c(4,6,16,12,18,2,5,9,15,3,7)

x2<-c(100,50,95,85,100,50,70,80,80,75,7.5)

y<-c(6.2,5.3,9.9,9,10,4,6.9,7.7,8.9,6.5,8)

input<-data.frame(y,x1,x2)

input

regM<-lm(y~x1+x2,data=input)

regM
```

summary(regM)

```
> cgpa=4.78077+0.31078*8-0.00042*78
> cgpa
[1] 7.23425
> |
```

d) Interpret the results and various statistics measures obtained after executing the script and attach the outputs.

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7950347 0.8073421 5.939 0.000346 ***
x1 0.3114073 0.572976 5.435 0.000620 ***
x2 -0.0006964 0.0116896 -0.060 0.953957
---
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9037 on 8 degrees of freedom
Multiple R-squared: 0.8217, Adjusted R-squared: 0.7771
F-statistic: 18.44 on 2 and 8 DF, p-value: 0.00101
```