Cálculo de homología

Rafael Villarroel

2021-03-08 16:00 -0500

Consideremos el complejo simplicial Δ cuyo conjunto de caras maximales es $\mathcal{F}(\Delta) = \{abc, bd, cd\}$.

Calculemos $H_1(\Delta, R) = Z_1(\Delta, R)/B_1(\Delta, R)$. Consideremos la frontera $\partial_1: C_1(\Delta, R) \to C_0(\Delta, R)$. En las bases dadas por las cadenas elementales, esa transformación lineal tiene matriz:

 $a \wedge b$ $a \wedge c$ $b \wedge c$ $b \wedge d$ $c \wedge d$

Figure: Matriz de
$$\partial_1$$

El espacio nulo está generado por

son generadores de $Z_1(\Delta, R)$. Este espacio nulo se puede calcular en Python con el siguiente código: from sympy import Matrix

corresponde con $a \wedge b - a \wedge c + b \wedge c$. El segundo vector se corresponde con $-a \wedge b + a \wedge c - b \wedge d + c \wedge d$. Estos dos

 $(1, -1, 1, 0, 0)^T$, $(-1, 1, 0, -1, 1)^T$. El primer vector se

A=Matrix([[-1,-1,0,0,0],

El espacio $B_1(\Delta, R)$ es la imagen de la frontera $\partial_2 : C_2(\Delta, R) \to C_1(\Delta, R)$. Esta frontera tiene matriz:

Rafael Villarroel Cálculo de homología 2021-03-08 16:00 -0500

$$\begin{array}{c}
a \wedge b \wedge c \\
a \wedge c \\
b \wedge c \\
b \wedge d \\
c \wedge d
\end{array}$$

$$\begin{array}{c}
a \wedge b \wedge c \\
-1 \\
0 \\
0
\end{array}$$

Figure: Matriz de ∂₂

Como $\partial_2(a \wedge b \wedge c) = a \wedge b - a \wedge c + b \wedge c$, y éste vector es diferente de cero, genera a $B_1(\Delta, R)$. Por lo tanto

 $B_1(\Delta, R) = \langle a \wedge b - a \wedge c + b \wedge c \rangle$. Tenemos entonces que el cociente $Z_1(\Delta, R)/B_1(\Delta, R)$ está

generado por $\overline{a \wedge b - a \wedge c + b \wedge c} = \overline{0}$ y por

Consideremos que
$$\overline{0} = (a \land b - a \land c + b \land c)$$
 implica $\overline{b \land c} = \overline{-a \land b + a \land c}$. De ésto, se obtiene que el segundo generador es igual a $\overline{b \land c - b \land d + c \land d}$. Como el primer generador es $\overline{0}$, se obtiene que $H_1(\Delta, R)$ está generado por $\overline{b \land c - b \land d + c \land d}$. Calculemos $H_2(\Delta, R) = Z_2(\Delta, R)/B_2(\Delta, R)$. En este caso

 $Z_2(\Delta,R)=\ker\partial_2=0$. Además $B_2(\Delta,R)$ es la imagen de $\partial_3\colon C_3(\Delta,R)\to C_2(\Delta,R)$, por lo que $B_2(\Delta,R)=0$. Por lo tanto $H_2(\Delta,R)=0$. Calculemos $H_0(\Delta,R)=Z_0(\Delta,R)/B_0(\Delta,R)$. En este caso $Z_0(\Delta,R)=\ker\partial_0$, donde $\partial_0\colon C_0(\Delta,R)\to C_{-1}(\Delta,R)=R$. La matriz (respecto a las bases usuales) de ∂_0 es (1111). Un conjunto de generadores del espacio nulo de esta matriz es

(1, -1, 0, 0)(1, 0, -1, 0)(1, 0, 0, -1), los cuales se

Calculemos $B_0(\Delta, R)$, es decir, la imagen de

corresponden con a-b, a-c, a-d.

 $\partial_1: C_1(\Delta, R) \to C_0(\Delta, R)$. Tenemos que $\partial_1(b \wedge a) = a - b$, $\partial_1(c \wedge a) = a - c$, $\partial_1(c \wedge a + d \wedge c) = a - d$. Esto implica que $Z_0(\Delta, R) = B_0(\Delta, R)$, por lo tanto $H_0(\Delta, R) = 0$.

$$H_p(\Delta, R) \cong \begin{cases} R & \text{si } p = 1, \\ 0 & \text{si } p \neq 1 \end{cases}$$
 (1)