

One Kind of Binary Tree ADTs

Heaps and Priority Queues

Heap

A binary tree storing keys at its nodes

Heap

Satisfy the following properties:

- Heap-Order:
 - for every internal node v other than the root,
 - $Maxheap: key(v) \le key(parent(v))$
 - Minheap: key(v) >= key(parent(v))
- A Complete Binary Tree:
 - let *h* be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes

Heap

■ The last node of a heap is the rightmost node with the maximal depth

Height of a Heap

■ Theorem:

A heap storing n keys has height $O(\log n)$

Height of a Heap

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth i = 0, ..., h 1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- Thus, $n \ge 2^h$, i.e., $h \le \log n$

Insertion

- Insert a key *k* to the heap
 - a complete binary tree
 - heap order
- The algorithm consists of three steps
 - Find the insertion node *z* (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- After the insertion of a new key *k*, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node

Upheap

- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time
- Insertion of a heap runs in $O(\log n)$ time

RemoveMin

- Removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
 - Find the minimal child c
 - Swap k and c if c<k

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached

■ Similar algorithm (swap left/right) for updating the last node after a removal

Array-based Implementation

- We can represent a heap with n keys by means of an array of length n + 1
- The cell of at rank 0 is not used
- For the node at rank *i*
 - the left child is at rank 2*i*
 - the right child is at rank 2i + 1
- Insert at rank n + 1
- Remove at rank *n*
- Use a growthable array

Recall: Priority Queue ADT

- A priority queue dequeues entries in order according to their keys
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - insert(k, x)inserts an entry with key k and value x
 - removeMin()removes and returns the entry with smallest key
 - min()returns, but does not remove, an entry with smallest key
 - size(), isEmpty()

A sequence of priority queue methods:

Method	Return Value	Priority Queue Contents
insert(5,A)		{ (5,A) }
insert(9,C)		{ (5,A), (9,C) }
insert(3,B)		{ (3,B), (5,A), (9,C) }
min()	(3,B)	{ (3,B), (5,A), (9,C) }
removeMin()	(3,B)	{ (5,A), (9,C) }
insert(7,D)	10/196-0	{ (5,A), (7,D), (9,C) }
removeMin()	(5,A)	{ (7,D), (9,C) }
removeMin()	(7,D)	{ (9,C) }
removeMin()	(9,C)	{ }
removeMin()	null	{ }
isEmpty()	true	{ }

Sequence-based Priority Queue

Implementation with an unsorted list

- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take O(n) time since we have to traverse the entire sequence to find the smallest key

Sequence-based Priority Queue

■ Implementation with a sorted list

- Performance:
 - insert takes O(n) time since we have to find the place where to insert the item
 - removeMin and min take O(1) time, since the smallest key is at the beginning

Priority Queue Sort

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S, C)
 Input sequence S, comparator C for
 the elements of S
  Output sequence S sorted in
 increasing order according to C
 P \leftarrow priority queue with
      comparator C
 while \neg S.isEmpty ()
      e \leftarrow S.removeFirst()
      P.insert (e, \emptyset)
 while ¬P.isEmpty()
      e \leftarrow P.removeMin().getKey()
      S.addLast(e)
```

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to

$$1 + 2 + ... + n$$

■ Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:

Sequence S (7,4,8,2,5,3,9)

Priority Queue P

()

Phase 1

(a)

(4,8,2,5,3,9)

(7)

(b)

(8,2,5,3,9)

(7,4)

••

(g)

()

(7,4,8,2,5,3,9)

Phase 2

(a)

(2)

(7,4,8,5,3,9)

(b)

(2,3)

(7,4,8,5,9)

(c)

(2,3,4)

(7,8,5,9)

(d)

(2,3,4,5)

(7,8,9)

(e)

(2,3,4,5,7)

(8,9)

(f)

(2,3,4,5,7,8)

(9)

(g)

(2,3,4,5,7,8,9)

()

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with *n* insert operations takes time proportional to

$$1 + 2 + ... + n$$

- 2. Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time
- Insertion-sort runs in $O(n^2)$ time

Insertion-Sort Example

	Sequence S	Priority queue P
Input:	(7,4,8,2,5,3,9)	()
Phase 1		
(a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(4,7)
(c)	(2,5,3,9)	(4,7,8)
(d)	(5,3,9)	(2,4,7,8)
(e)	(3,9)	(2,4,5,7,8)
(f)	(9)	(2,3,4,5,7,8)
(g)	Ô	(2,3,4,5,7,8,9)

Phase 2

(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4,5,7,8,9)

$$(g) \qquad (2,3,4,5,7,8,9) \qquad ($$

In-place Insertion-Sort (Bubble Sort)

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place
- A portion of the input sequence itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the sequence
 - We can use swaps instead of modifying the sequence

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

Heap-Sort

- Consider a priority queue with *n* items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take $O(\log n)$ time
 - methods size, is Empty, and min take time O(1) time
- Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms,
 such as insertion-sort and selection-sort

A Faster Heap-Sort

- Insert n keys one by one taking O(n log n) times
- If we know all keys in advance, we can save the construction to O(n) times by bottom up construction

Bottom-up Heap Construction

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases
- In phase i, pairs of heaps with 2i
 −1 keys are merged into heaps with 2i+1−1 keys

Merging Two Heaps

- Given two heaps and a key k, we create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property

An Example of Bottom-up Construction

Analysis

• We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)

Analysis

- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- Thus, bottom-up heap construction runs in O(n) time
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort from $O(n \log n)$ to O(n)