

	•	ie без учителя vised Learning	
Невероятностные модели	Вероятностные (генеративные) модели		
 Sparse Coding + Autoencoders k-means, 	Плотность в явном виде (explicit density)		Плотность в неявном виде (implicit density)
	Tractable Models	Non-Tractable Models	GANMomet MatchingNetworks
	Fully observedBelief NetsNADEPixelRNN	 Boltzmann Machines ~ VAE Helmholtz Machines 	

Автокодировщики (Auto-encoders)

Fully Contented Auto-encoder

Convolution Auto-encoder

Дьяконов А.Г. (Москва, МГУ)

Глубокие автокодировщики

Зачем нужны автокодировщики

- сокращение размерности
- выделение признаков (для других алгоритмов)
- предобучение
- специальные задачи (ниже: устранение шума)

Denoising Autoencoder

увеличение выборки с помощью дополнения к ней зашумлённых изображений

зашумления разного типа

- больше данных
- правильнее формируемые признаки

Предобучение с помощью автокодировщика послойно обучить автокодировщики

первый слой должен воспроизводить вход второй слой должен воспроизводить первый и т.д. обучить последний слой, используя размеченные данные обучить всю сеть, используя размеченные данные

https://cs.stanford.edu/~quocle/tutorial2.pdf

Постановка задачи. Выборка $\{x_i\}_{i=1}^m$, базисы $\{b_i\}_{i=1}^k$, хотим представить в виде разреженной линейной комбинации (sparse linear combination)

$$x_i \approx \sum_{j=1}^k \alpha_{ij} b_j$$
:

в основном все \mathcal{C}_{ii} нулевые!

$$\sum_{i=1}^{m} \left\| x_i - \sum_{j=1}^{k} \alpha_{ij} b_j \right\|_2^2 + \lambda \sum_{i=1}^{m} \sum_{j=1}^{k} |\alpha_{ij}| \to \min_{\alpha, b}$$

Alternative optimization – попеременно фиксировать базис и коэффициенты

вписывается в парадигму автокодировщика!

Kavukcuoglu, Ranzato, Fergus, LeCun, 2009

к скрытых бинарных нейронов

$$X_{j} \approx \sum_{t=1}^{k} D_{jt} \sigma \left(\sum_{i=1}^{n} W_{ti} X_{i} \right)$$

+ L1 регуляризация на значения $z = \sigma(Wx)$

вписывается в парадигму автокодировщика!

Kavukcuoglu, Ranzato, Fergus, LeCun, 2009

к скрытых бинарных нейронов

$$||Dz - x||_2^2 + \lambda ||z||_1 + ||\sigma(Wx) - z||_2^2 \rightarrow \min_{D,W,z}$$

Использование RBM

4 million unlabelled images

Learned features (out of 10,000)

Reuters dataset: 804,414 unlabeled newswire stories Bag-of-Words

russian russia moscow yeltsin soviet clinton house president bill congress computer system product software develop

Learned features: "topics"

trade country import world economy stock wall street point dow

Использование RBM

$$P_{\theta}(v,h) = \frac{1}{Z(\theta)} \exp\left(\sum_{ij} W_{ij} v_i h_j + \sum_i b_i v_i + \sum_j a_j h_j\right)$$

Глубокие RBM (Deep Boltzmann Machines)

Многоуровневое пространство скрытых переменных (разные степени детализации)

Salakhutdinov, Hinton, 2009

SOM – Самоорганизующиеся карты Кохонена

Хотим отобразить пространство в регулярную структуру (например, узлы решётки решётки)

Решётка задаёт соседство узлов (топологию)

Самоорганизующиеся карты Кохонена

Алгоритм обучения

1. Подаём объект ${\it X}$

2. Находим самый близкий узел

$$(a,b) = \underset{(i,j)}{\operatorname{arg\,max\,sim}}(x, w_{ij})$$

соревнование ~ нейрон-победитель, пример $\sin(x,w_{ij}) = -\parallel x - w_{ij} \parallel$

3. Коррекция весов

$$W_{ij} \leftarrow W_{ij} + \eta K((a,b),(i,j))x$$

веса нейронов около победителя корректируются больше...

~ кооперация, пример
$$K((a,b),(i,j)) = \exp(-|a-i|+|b-j|)$$
 $(a,b) = \argmax_{(i,j)} \sin(x,w_{ij})$

Регуляризация в автокодировщиках

- + шум (в Denoising Autoencoders)
- + специальное слагаемое к функции ошибки (в Sparse Autoencoders)
- + специальное слагаемое к функции ошибки для стабильности латентного представления (используем Якобиан в Contractive Autoencoders)

Adversarial Autoencoders (AAE)

Цель: наделить структурой пространство скрытых переменных

+ adversarial loss для соответствия распределения ПСП произвольному априорному

Отличие AAE от VAE

Replaced by adversarial loss in AAE

в VAE мы обратное распространение через KL \Rightarrow должна быть аналитическая запись p(z)

в ААЕ достаточно сэмплировать из априорного распределения

ниже (см. рис.) разные априорные распределения: нормальное в 2D и смесь нормальных

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Brendan Frey «Adversarial Autoencoders» // https://arxiv.org/abs/1511.05644

Wasserstein Auto-Encoders (доклад на ICLR 2018) – обобщение ААЕ

VAE&GAN – минимизируют меру различия распределения данных и модели

WAE – «регуляризованное» расстояние Вассерштейна между модельным и целевым распределением

WAE = AAE при
$$c(x,y) = ||x-y||_2^2$$
 WAE использует не обязательно состязательную (adversarial) меру D_z

Расстояние Вассерштейна-1

$$W(p, p') = \inf E_{(x,y) \sim \Pi(p,p')} || x - y ||$$

где $\Pi(p,p')$ – множество всех совместных распределений с соответвующими проекциями

Arjovsky et al 2017

Эквивалентно:

$$W(p,p') = \sup_{\|f\|_{L} \le 1} \mathbf{E}_{x \sim p} f(x) - \mathbf{E}_{x \sim p'} f(x)$$

Sup по липшицевым функциям с константой Липшица \leq 1 На практике f аппроксимируется с помощью НС, где все веса клиппируются, чтобы лежать на компактном пространстве (например на гиперкубе со стороной ϵ)