NeXtlook A Real-Time Quick-Look Processor for NeXtRAD

Darryn Jordan

June 12, 2017

Contents

1	Installation														1							
	1.1	Prerequisites																-				
		1.1.1 F	FTw																			-
		1.1.2 M	lisc																			-
	1.2	NeXtlook																				
2	Usage																•					
	2.1 Experiment Configuration																					
		2.1.1 E	xampl	e P	ara	me	etei	Fi	le													•
		2.1.2 Pa	arame	ter	De	scr	ipt	ion														4
3	Res	ults																				

Abstract

NeXtlook is a quicklook processor for generating range-time-intensity and range-Doppler plots of NeXtRAD datasets. Multithreading is supported for pulse-compression, but Doppler-processing is currently only supported when using a single thread.

Chapter 1

Installation

This chapter documents the installation process for the NeXtlook processor.

1.1 Prerequisites

1.1.1 FFTw

Download the latest version of FFTw from their website ensuring that the version number is 3.3.6 or higher. This version introduced thread-safe planners which are vital. Extract the files in an arbitrary location, enter the extracted folder and run the following commands,

```
./configure —enable-threads
make -j
sudo make install
```

If any problems occur I suggest using the following command to perform a clean before retrying,

```
make distclean
```

The extracted folder can now be deleted.

1.1.2 Misc.

```
sudo apt install cmake
sudo apt install git
sudo apt install libopency-dev
sudo apt install libboost-all-dev
```

1.2 NeXtlook

At the time of writing, the NeXtlook source code is located at https://github.com/darrynjordan/nextlook. The source can be downloaded as a zip folder or cloned from the repo,

```
git clone https://github.com/darrynjordan/nextlook.git Within the cloned folder, create a new folder to hold the built executable and run Cmake,
```

```
mkdir build cd build cmake ...
```

If no errors have occurred, the executable can be compiled and run as follows,

```
\begin{array}{ll} make \ -j \\ . \, / \, nextlook \end{array}
```

Chapter 2

Usage

2.1 Experiment Configuration

On first run, the program will probably complain about not finding the binary dataset. Do not panic. Within the root folder there should be a textfile called **experiment.ini** which contains all experiment parameters. This is where the path to the binary dataset and reference waveform, and other options must be configured.

2.1.1 Example Parameter File

```
[config]
debug\_mode = false
[dataset]
{\rm data\_filename} \ = \ .. \, / \, 12 \, \_12 \, \_2016 \, \_14 \, \_48 \, \_59 \, \_adc1 data \, . \, dat
n_cmplx_samples_range_line = 2048
n range lines = 30000
ref_filename = ../Ref_PL_Xband_MPALNA_3us.dat
n_{\text{cmplx\_samples\_ref}} = 297
n_{\text{cmplx\_samples\_padded}} = 2048;
[processing]
n_{threads} = 1;
doppler_enabled = true
doppler\_cpi = 256
range\_window = UNIFORM
doppler_window = UNIFORM
[visualisation]
update\_rate = 1024
```

```
doppler_colour_map = 1
rti_colour_map = 2
histogram_equalization = 1
slow = 0
threshold = 50
```

2.1.2 Parameter Description

config

• **debug-mode** provides additional information through the command line during processing.

dataset

- data-filename the path to the binary dataset to be processed.
- n-cmplx-samples-range-line number of complex samples in each range line.
- n-range-lines total number of range lines to process.
- ref-filename the path to the binary reference to be processed.
- n-cmplx-samples-ref the number of complex samples in the reference waveform.
- n-cmplx-samples-padded determines the number of complex samples each range line must be zero padded to.

processing

- **n-threads** the number of threads which will be launched for pulse compression.
- doppler-enabled toggles Doppler processing.
- doppler-cpi number of range bins used for each Doppler plot.
- range-window tapering function applied to each range line.
- doppler-window tapering function applied to each Doppler line.

visualisation

- **update-rate** number of range lines to be processed before a plot update occurs.
- **doppler-colour-map** [0 11] index of colour map to be applied to range-Doppler plot.

- rti-colour-map [0 11] index of colour map to be applied to RTI plot.
- histogram-equalization [0 1] toggles histogram equalisation for both plots.
- \bullet slow [0 500] number of milliseconds processing delay between each plot update.
- \bullet threshold [0 255] apply threshold to both plots.

Chapter 3

Results

Once processing is complete, plots will be saved in a folder corresponding to the name of the processed dataset.

../results/*dataset_filename*/*plot_title*.jpg