دورة العام 2010 العادية	امتحانات الشهادة الثانوية العامة فرع: العلوم العامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	المدة و الدوس العابث	عدد المسائل: ست

ارشادات عامة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الاتزام بترتيب المسائل الوارد في المسابقة)

I - (2points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

N°	questions	a	b	c	d
1	$(1+i\sqrt{3})^{-6}=$	<u>1</u> 64	$-\frac{1}{64}$	$\frac{1}{64}$ i	– 64i
2	La négation de la proposition $p \wedge (q q)$ est :	(q p) ∧ q	(¬p) ∨ q	(¬p)∨(¬q)	(p p)^(q p)
3	Si $\frac{\pi}{2} \le x < \pi$ et $F(x) = \int_{0}^{\sin x} \sqrt{1 - t^2} dt$, alors $F'(x) =$	cosx	$\frac{1}{2}\sin 2x$	-cos ² x	cos² x
4	$\int_{-1}^{1} x (x^2 - 1) dx =$	0	$\frac{1}{2}$	1	$-\frac{1}{2}$
5	On donne dans le plan rapporté au repère orthonormé (O; \vec{i} , \vec{j}) le point B(1; 2). Les coordonnées de M tels que le triangle OBM est rectangle en O et $(\overrightarrow{BO}, \overrightarrow{BM}) = -\frac{\pi}{3}(2\pi)$ sont :	$\left(-2\sqrt{3};\sqrt{3}\right)$	(-4;2)	(4;-2)	$\left(\frac{2\sqrt{3}}{3}; \frac{\sqrt{3}}{3}\right)$

II- (2 points)

Dans l'espace rapporté au repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on donne le plan (P) d'équation x - 2y + z - 2 = 0 et les droites (D) et (D') définies par :

(D):
$$\begin{cases} x = m \\ y = -2m + 1 \quad \text{et} \quad \text{(D')} : \begin{cases} x = t + 2 \\ y = t - 1 \end{cases} \\ z = t - 2 \end{cases}$$
 (m et t sont des paramètres réels).

- 1) Démontrer que les droites (D) et (D') ne sont pas coplanaires.
- 2) a- Prouver que (D) est perpendiculaire à (P).
 - b- Déterminer les coordonnées du point d'intersection I de (D) et (P).
- 3) a- Prouver que (D') est contenue dans (P).
 - b- Le cercle (C) de centre I et de rayon $\sqrt{5}$ contenu dans le plan (P), coupe la droite (D') en deux points A et B. Calculer les coordonnées de A et B.
 - c- Soit J le milieu de [AB]. Prouver que (I J) est perpendiculaire à (D) et (D').

III - (3 points)

Dans un plan orienté on donne deux carrés directs ABCD et BEFG de côtés respectifs 2 et 1.

Soit S la similitude plane directe, de rapport k et d'angle α , qui transforme E en A et G en C.

- **A-** 1) Vérifier que k=2 et $\alpha=-\frac{\pi}{2}$ (2π) .
 - 2) Démontrer que l'image du point F par S est B puis déduire S(B).
 - 3) Construire le centre W de S.
- **B-** Le plan complexe est muni d'un repère orthonormé direct $(B; \overrightarrow{BE}, \overrightarrow{BG})$.
 - 1) Déterminer les affixes des points A et E.
 - 2) Donner l'écriture complexe de S.
 - 3) Déterminer la forme algébrique de l'affixe de W.
 - 4) Montrer que les points C, W et E sont alignés.
- C- Soit R la rotation de centre A et d'angle $\frac{\pi}{2}$.

Démontrer que RoS est une homothétie dont on déterminera le rapport et le centre.

2

IV - (3 points)

L'équipe d'une grande usine est répartie en trois catégories:

les ingénieurs, les techniciens et les ouvriers.

- •6% de l'équipe sont des ingénieurs.
- •74% de l'équipe sont des ouvriers.
- •80% des ouvriers sont des hommes.
- •10% des ingénieurs sont des femmes.

On interroge au hasard une personne de l'équipe de cette usine.

Soit les événements :

- I : « La personne interrogée est de la catégorie des ingénieurs ». '
- O: «La personne interrogée est de la catégorie des ouvriers».
- T: « La personne interrogée est de la catégorie des techniciens».
- H: «La personne interrogée est un homme».
- 1)a-Quelle est la probabilité d'interroger un homme ouvrier?
 - b- Quelle est la probabilité d'interroger un homme ingénieur?
- 2) On sait que 80% de l'équipe sont des hommes.
 - a- Démontrer que la probabilité d'interroger un homme technicien est 0,154.
 - b- La personne interrogée est une femme, quelle est la probabilité qu'elle soit une technicienne?
- 3) Dans cette question, on suppose que l'équipe de cette usine compte 500 personnes.

On choisit au hasard et simultanément trois personnes de cette équipe.

- a- Calculer la probabilité de choisir trois personnes de trois catégories différentes.
- b- Calculer la probabilité de choisir au plus une personne de la catégorie des ingénieurs.

V - (3 points)

Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$.

Soient (D), (D') et (Δ) les droites d'équations respectives x = 2, x = -2 et y = -1.

On désigne par d, d' et δ les distances d'un point quelconque $M(x\;;y)$ à (D), (D') et (Δ) respectivement.

- Soit (E) l'ensemble des points M tels que $-2 \le x \le 2$ et $d \times d' = 4\delta^2$.
- · 1) Vérifier que les points O et A(2; -1) appartiennent à (E).
- 2) a- Calculer d, d' et δ en fonction de x et y.
 - b- Montrer que (E) est l'ellipse d'équation $\frac{x^2}{4} + (y+1)^2 = 1$.
 - c- Tracer (E).
- 3) a- Calculer l'excentricité de (E).
 - b- Déterminer les coordonnées des foyers F_1 et F_2 et les équations des directrices associées (d_1) et (d_2) .
- 4) Soit $M(x_0; y_0)$ un point variable de (E).
 - a- Calculer, en fonction de x_0 , la distance de M à la directrice (d_1) . Déduire la distance MF_1 puis calculer MF_2 .
 - b- Déterminer les abscisses des points M de (E) tels que FMF₂ = 90°.

VI - (7 points)

Soit f la fonction définie, sur
$$]0; +\infty[par f(x) = \frac{\ln x}{\sqrt{x}} + 1 - x]$$
.

On désigne par (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1) a- Déterminer $\lim_{x\to 0} f(x)$ et en déduire une asymptote à (C).
 - b- Déterminer $\lim_{x\to +\infty} f(x)$ et montrer que la droite (d) d'équation y=-x+1 est une asymptote à la courbe (C).
 - c- Étudier la position relative de (C) et (d).
- 2) Soit g la fonction définie sur]0; $+\infty$ [par g(x)=2-ln x-2x \sqrt{x} .
 - a- Démontrer que g est strictement décroissante sur]0 ; $+\infty$ [.
 - b- Vérifier que g(1) = 0 et déduire le signe de g(x).
- 3) a- Montrer que f '(x) = $\frac{g(x)}{2x\sqrt{x}}$.
 - b- Dresser le tableau de variations de f.
- 4) a- Trouver les coordonnées du point A de (C) où la tangente (T) est parallèle à (d).
 - b- Tracer (d), (T) et (C).
- 5) Calculer l'aire du domaine limité par (C), la droite (d) et les deux droites d'équations x = 1 et x = e.
- 6) a- Montrer que f admet sur [1;+∞[une fonction réciproque h et donner le domaine de définition de h.
 - b- Soit (C_1) la courbe représentative de h, montrer que (T) est tangente à (C_1) au point d'ordonnée e^2 et tracer (C_1) dans le même repère.

4

- 7) On définit une suite (u_n) par son premier terme $u_o > 1$ et pour tout entier naturel n, $u_{n+1} = u_n + f(u_n)$.
 - a- Démontrer par récurrence, que pour tout entier naturel n on a $u_n > 1$. (on pourra utiliser la courbe (C))
 - b- Démontrer que la suite (u_n) est décroissante.
 - c- Déduire que (u_n) est convergente et calculer sa limite.