분석배경 및 제안

- 기획 재정부에 따르면 향후 5년간 공공기관의 주산과 부채 규모가 증가하고, 부채비율은 '24년까지 171.4% 수준이 될 것으로 전망
- 현재 공공기관의 효율적인 예산 활용이 요구되고 있는 상황

'20~'24년 부채비율 전망(조원, %, %p)-

구문	19년(실적)	'20년	'21년	'22년	'23년	'24년	'2
자산 (조원)	794.6	824.5	860.4	901.0	934.2	975.1	_
부채 (조원)	497.2	521.6	540.8	571.0	591.1	615.8	
자본 (조원)	297.5	302.9	319.6	330.0	343.2	359.3	급
부채비용(%)	167.1	172.2	169.2	173.0	172.2	171,4	(8

20 21	'20~'24년	금융부채	전망(조원)
-------	----------	------	--------

구 분	19년(삼작)	'20년	21년	'22년	'23년	'24년
금융부채(조원)	378.4	400.8	415.2	438.4	456.6	476.6
(총자산 대비, %)	47.6	48.6	48.3	48.7	48.9	48.9

※ 자료: 기획재정부, 「'20~'24년 공공기관 중장기 재무관리계획」, 2020.09€

조달청의 조달 업무에 있어 공공기간의 시간과 비용을 획기적으로 줄이는 것이 목표

분석배경 및 제안

관리도 / 추정가격예측모델

• 조달청 공고 현황 정보 미흡

입찰 공고를 확인했을 때 공고 기관과 수요 기관이 분리되어 있기 때문에 정확한 수요기관의 예산 지출 현황(물품/공사/용역)을 파악하기에 어려움이 있다고 판단하였다.

수요기관별 공고 현황에 대해 과거부터 누적된 현황을 한 눈에 파악할 수 있는 지표 요구

• 기관의 효율적인 예산 관리 지원

효율적인 예산 관리 지원

기간별로 평균적인 금액보다 높은 금액이 게시된 구간에 알람을 주어 특수 원인 변동을 식별 추후 발생될 입찰 공고의 추정가격 예측을 통해

입찰 프로세스

- 규격검토 및 구매결의 □ 입찰 공고 □ 예정가격 결정 □ 입찰 순
- 추정가격: 기관에서 사용한 것으로 나타내는 제일처음 금액 □ 기관에서 사용하려는 '예산'으로 정의
- 기관의 입장에서 예산관리를 도우는 것이 목적이므로, '추정가격'을 사용

'일주일 치'의 합산 추정가격으로 선정

- 기관이 입찰공고를 올리기 일주일 전에 발주계획을
 세우는 경우가 많기 때문에
- □ 언제 예산이 많이 사용되었는지 보기 쉬움
- 추정금액의 변동이 줄어들어 일주일 치의 추정 금액의 변동을 관리할 수 있음

데이터 선정_추정가격예측 공통

물품 입찰 공고 내역 (2017 ~ 2021)

용역 입찰 공고 내역 (2017 ~ 2021)

공사 입찰 공고 내역 (2017 ~ 2021)

기관을 대상으로 > 한국수자원			누요기관명	÷
			62468	방위사업청
		!	13366	한국수자원공 <mark>사</mark>
추정가격	ate		11746	서울특별시
1213394500.00000	08	2018-0	9715	한국도로공사
2100809455.00000	15	2018-0	8109	서울교통공사
5161653780.00000	22	2018-0		
1889171056.00000	29	2018-0		
8386696600.00000	06	2018-0		
2224				
15323871280.00000	05	2021-1		
15572623196.00000	12	2021-1		
23078195505.00000	19	2021-1		
6937094040.00000	26	2021-1		

2022-01-02

4566138800.00000

전체 데이터 셋에서 공고 개수가 많은

분석 목적_관리도

입찰공고의 추정가격 특수 원인 변동 식별

: 기관 및 대상별로 입찰 공고에 게시된 추정 가격을 바탕으로 과거 누적 데이터 보다 예산 소모가 크게 발생할 경우(공정이탈상태) Alarm을 일으켜 원인 식별

입찰 공고의 추정가격이 안정상태에 있는지 판별 또 안정상태로 유지함으로써 입찰 공고의 효과적인 관리

활용 데이터 및 전처리

활용데이터	활용내용
물품 입찰공고 내역(2017~2021)	물품의 추정가격 및 입찰공고 게시일자를 알기 위해서 사용하였음
용역 입찰공고 내역(2017~2021)	용역의 추정가격 및 입찰공고 게시일자를 알기 위해서 사용하였음
공사 입찰공고 및 진행 내역 (2017~2021)	공사의 추정가격 및 입찰공고 게시일자를 알기 위해서 사용하였음

	등록유	공고게시일 자	5달구 분	입찰공고 차수	수요기관명	수요기관코 드	긴급공고 여부	정정공고 여부	취소공고 여부	추정가격	입 할 방 식	낙찰자결정방법	입찰계약방법	예가방 법	업종제한내용	지역제한내용
0	나라장터 (G2B)	2020-03- 31	자체조 달	0	전라북도 정읍시	4690000	Υ	N	N	87100000.0	전자입 찰	추정가격 1억미만(PQ 비대상)	제한경쟁	복수예 가	NaN	전라북도[45000]
1	나라장터 (G2B)	2020-03- 31	자체조 달	0	울산광역시 북구	3720000	N	N	N	42171818.0	전자입 찰	제한최저	수의(총액)소 액수의	복수예 가	[학술.연구용역(1169)]	부산광역시[26000], 울산광역시[31000], 경 상남도[48000]
2	나라장터 (G2B)	2020-03- 31	자체조 달	0	서울특별시	6110000	N	N	N	50000000.0	전자입 찰	제한최저	수의(총액)소 액수의	복수예 가	NaN	서울특별시[11000]
3	나라장터 (G2B)	2020-03- 31	자체조 달	1	충청북도교육청 충청북도제천 교육지원청	8031000	Υ	N	Υ	62630000.0	전자입 찰	추정가격 1억미만(PQ 비대상)	제한경쟁	복수예 가	[안전진단전문기관(건축)(1397)]업종 또는[안전진단전 문기관(종합)(4963)]	충청북도[43000]
4	나라장터 (G2B)	2020-03- 31	자체조 달	0 -	충청북도교육청 충청북도제천 교육지원청	8031000	Υ	N	N	70980000.0	전자입 찰	추정가격 1억미만(PQ 비대상)	제한경쟁	복수예 가	[안전진단전문기관(건축)(1397)]업종 또는[안전진단전 문기관(종합)(4963)]	충청북도[43000]

- 각 수요기관에 대해서 입찰 공고 게시 건수가 1000회 이상인 기업이 전체 공고의 60%를 차지
- □ 이에 대한 기관을 주 target으로 하여 진행
- 입찰 공고는 있으나, 추정 금액이 0원으로 아직 산정되지 않은 값들 □ 관리상한선 선정에 영향을 끼치므로 제거
- 기관에서 입찰공고에 명시한 "추정금액"을 기관에서 사용하려는 "예산"으로 고려하여 관리도를 구축

T-square + Bootstrap

T-square 다변량 관리도는 각 변수에(물품/용역/공사) 대해서 정규분포를 따라야 사용 가능하다.

□ QQplot을 그려보았으나, 실제 데이터는 정규분포를 따르지 않음

◆ 붓스트랩 방식 : 분포를 따른다는 가정이 필요 없고, 정상데이터에 alpha값이 고정이 되므로, 우리가 원하는 성능의 alpha값을 가지는 관리도가 만들어진다.

데이터 분석 - t-square 관리도 제작

목적: 기관의 입장에서 예산관리를 진행

- □ 데이터 내의 "예산" 사용은 물품/공사/용역 분야로 나누어져 있다. 이를 통합할 경우,
- ① 각 분야에 쓰이는 예산 규모가 다름
- ② 어느 분야에서 예산 사용량이 큰지 확인이 불가하기 때문에 각 분야를 나누어 관리도를 구축하는 것을 목표

기관의 예산 사용 데이터

- 물품/공사/용역 각 분야에 쓰이는 예산 규모가 다름

Jul 2019

- 예산 사용량이 일반적인 경우보다 큰지 확인이 불가
- □ 물품/공사/용역 각 분야를 나누어서 관리도를 구축

데이터 분석 - t-square 관리도 결과

5710000기관의 2017 ~ 2020의 용역 관리도 (Apply bootstraps)

5710000기관의 2017 ~ 2020의 공사 관리도 (Apply bootstraps)

---- 물품 ---- UCL

> 표준화된 평균과의 거리를 나타내고, 변수 간 관계까지 고려하는 관리도

- '우리가 관리하려는 값' □ 관리도의 '하나의 점'
- 하나의 점이 관리한계선을 넘게 된다면 이상치로 인식
- □ 빨간색 점으로 바뀌고 Alarm 일으킴

또한, 표의 형태로 '어느 분야의 예산'에서 문제가 있는지 알 수 있음

데이터 분석 - SVDD 관리도 제작

- 사용자는 사용 목적에 따라 관리도를 선택하여 사용할 수 있다.
- 기존 T-square 관리도: '표준화시킨 평균과의 거리'를 중점으로 해서 관리도를 구축
- SVDD 관리도 : 정상데이터를 포함하는 최소 부피의 입체 도형을 찾는 관리도
- * 구현 과정

* 이 과정을 매해 갱신해 나간다.↩

이후, 현재 데이터로 정상/비정상 판별

데이터 분석 - SVDD 관리도 결과

데이터 분석 – SVDD 관리도 결과

*** Fitting of the SVDD model is completed. ***

*** Prediction of the provided data is completed. ***

running time = 0.0040 seconds

number of samples = 157 number of alarm = 17

Calculating the grid scores (0050+0050)...

Calculation of the grid scores is completed. Time cost 0.1546 seconds

분석 목적_추정가격예측 공통

대상(물품/용역/공사)별 추정 가격 예측

: 대상별로 입찰 공고에 게시된 추정 가격을 바탕으로 미래의 가격 형성 범위를 예측

조달 예산 관리에 효율성 제고

과거 데이터 기반으로 추정가격이 높게 형성되는 구간에 대한 예측 정보 제공

분석 과정_데이터 전처리 및 EDA

- 1. 정상시계열 검증
- : Data decomposition / ACF / PACF

Critical values: 1%:-3.465 5%:-2.877 10%:-2.575

- ✓ 계절성이나 특이 추세성 확인
- ✓ 시계열 데이터 정상성 확인
- ✓ ARIMA Model 파라미터 계수 추측

ADF Static value가 Critical values 보다 작은 값을 가지면 해당 데이터는 정상 시계열 데이터로 간주한다.

✓ 단위근 검정은 (비정상) 시계열에 대해 확률적 추세 여부를 검정한다.즉, 비정상 시계열인지 검정하는 문제로 귀결된다.

- 2. Feature scaling(minmax Scaling)
- : 추정가격(feature)의 크기를 통일하기 위해 크기 단위 조정

3. Train / Test set 분리 : 모델 적합 전 train set, test set 을 분리

분석 과정_모델링

4. 모델적합

: auto_arima library 사용

		SAF	RIMAX	Resul	ts		
Time: Sample:		y SARIMAX ri, 18 Feb 2022 15:22:52 0 - 137		0.000	Observations Likelihood	:	137 -3441.947 6887.894 6893.734 6890.267
Covariance	Type: ======		opg				
	coef	std err		Z	P> z	[0.025	0.975]
intercept sigma2	1.106e+10 3.888e+20	1.68e+09 0.294		 6.567 2e+21	0.000 0.000	7.76e+09 3.89e+20	1,44e+10 3,89e+20
====== Ljung-Box Prob(Q): Heterosked Prob(H) (t	asticity (H):		0.38 0.54 0.18 0.00		Jarque-Bera (JB): Prob(JB): Skew: Kurtosis:		21800 0 6 63

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 4.8e+35. Standard errors may be unstable.

분석 과정_모델링

5. 모델test

분석 과정_모델링

5. 모델test

Machine Learning Model- 데이터 전처리 및 EDA

Scaling

안정적인 학습 모델을 구축하기 위함

Min Max scaling bull Log Transformation robust scaler

: 전체 RMSE 값이 0.03793 -> 0.0274 로 감소

=> 예측값은 역 scaling으로 도출

이상치 제거

0.95 percentile 을 기준으로 이상치 판단

Machine Learning Model - 모델링

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 10)	480
dense (Dense)	(None, 1)	11

Total params: 491 Trainable params: 491 Non-trainable params: 0

결과) Mean_Squared_log_error = 0.30123

+	٨	
+		
-		
+		
-	^ / / / /	
- /	\searrow \bigwedge \bigwedge \bigwedge \bigvee	
~^/		_
. /		1
	V	
2021-07 2021-08	2021-09 2021-10 2021-11 2021-12 20	022-0

	mean_absolute_error	mean_squared_error	mean_squared_log_error	median_absolute_error
train	234959035.66158	271241698466206336.00000	0.62882	99967925.48148
test	145764996.40363	41568263341647224.00000	0.30123	94438572.36364

결론

이러한 관리도와 예측된 추정 가격 지표는 공공 기관의 기간별 예산을 배정함에 있어서 예산과 관련된 합리적인 의사결정을 내릴 수 있도록 도움을 줄 것으로 기대할 수 있다.

결론

- 6개월치 추정 금액 예측 과거 데이터를 통해 추정금액의 정상범위를 관리도를 통해 확인 UCL을 벗어난다면, 알람을 일으켜 인지함
- 2.

이러한 관리도와 예측된 추정 가격 지표는 공공 기관의 기간별 예산을 배정함에 있어서 예산과 관련된 합리적인의사결정을 내릴 수 있도록 도움을 줄 것으로 기대할 수 있다.

활용 방안 및 결론

- 사용자는 사용 목적에 따라 관리도를 선택하여 사용할 수 있다.
- T-square 관리도는 '표준화시킨 평균과의 거리'를 중점으로 해서 관리도를 구축하였다면, SVDD는 정상데이터를 포함하는 최소 부피의 입체 도형을 찾는 것을 중점이라는 점에서 차이를 보인다.
- SVDD 관리도는 hyper parameter(C, gamma)를 변경해가며 좀 더 세밀하게 관리도를 조정하여 만들 수 있다. 이는 기관에 따라 작은 변동까지 확인하고 싶다면 hyper parameter 값을 변경하여 좀 더 민감한 관리도를 만들 수 있다. 그러나, 이 관리도에서는 어떤 변수가 원인이 되어서 alarm을 일으키는 지 알 수 없다는 단점이 있다.
- 과거데이터 기준이엇는데 업데이트된 데이터 넣으면 되는가 ->논문. 이전 사례들 참고 결론부분
- - 유지 보수; 조달청에서 이걸 사용하면 그만큼의 성능을 보일 수 있는가