Convex Learning Problems Reference: Ch 12 Shafev-Schwartz

Definition (Convexity)

A set C in a vector space, is convex if

for any two vectors u, v in C the line

segment between u and v is contained in C.

That is, for any $v \in [0,1]$ $v \in [0,1]$

Convex

non convex

Note $f: \mathbb{R}^n \to \mathbb{R}$ $\nabla f(x) = (\mathcal{J}_{X_1}(x), \dots, \mathcal{J}_{X_n}(x))$ gradient vector pointing in direction of greatest increase for f(x)

Defin (Convex function)

A function from a convex set C, $f:C \rightarrow \mathbb{R}$ is convex if, for every $u, v \in C$ and $u \in [0,1]$ $f(u + (1-u)v) \leq u f(u) + (1-u) f(v)$ u

$$A(u) = g \cdot (u - w) + f(w)$$

$$Chuk \quad A(w) = g \cdot 0 + f(w) = f(w).$$

$$Check \quad u = 7 \quad 49/2 = f(7)$$

$$A(4) = 3 \cdot 4 + 9/2$$

$$Gup \text{ at } 7 \text{ is } 24.5 - 17.5 \text{ a}$$

$$A(4)$$

$$f(w) = \frac{w^{2}}{2}$$

$$w = +3$$

$$A(u) = 3(4-3) + \frac{9}{2}$$

Properties of convex functions

- Ref Boyd Convex Opt
- · Every local minimum is a global minimum (exercise)
 · supporting hyperplane (tangent) property.

Let f: C→R where C is an open, convex set Defn Define, for vectors q, the affine function A(u) = f(w) + g(u-w) A(w) = f(w) $g = \nabla f(w)$

Lemma: the function f: C > R, C open, convert, is convex iff for every wtC, there exists g such that

 $f(u) \ge Ag(u)$ for all $u \in C$ Ag(w) = f(w)

A vector g that satisfies # is called a subgradient of f at w. $\partial f(w) = [all subgradients of <math>f$ at w?

proof discussion of them results.

Ref Ch I Convex Analysis.

Vistanu. min. A(c) >0

Definition Convex Hull (of a set) A smallest convex set containing A can write every cfco(A) as $c = \begin{cases} \sum_{i=1}^{n} w_{i} a_{i} & \text{weight vector} \\ \sum_{i=1}^{n} w_{i} = 1 & \text{with } \end{cases}$ Mazur's Lemma

Separation Thm Difference between finite & ordin-Vector space (could be or-dimensional) $[[2, 2^2, 2^2, (x_1, ..., x_n, ...)], |x|]_2^2 = \sum_{i=1}^2 x_{ii}^2 < \infty$ Hahn Burach Thm vector space
open convex set non-empty

M non-empty affire subspace, CM=

Then there exists a separatory thyperplane H, given by A(x)

Sepantes if $A(c) \ge 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard $A(a) \le 0$ that $A(a) \le 0$ the standard

More properties of convex functions.

Lemma Let fiR TR be twice differtiable. The following are equivalent (TFAE)

- 8 1. f is convex
- · 2. f/ is monotonically non-decreasing
 · 3. f/ is non-negotive-

$$f: \mathbb{R}^{n} \to \mathbb{R}$$
 C^{2} . TFAE

- 1. f is convex 3. Df(x) is non-negative reformte
- $\partial \cdot (\nabla f(x) \nabla f(y)) \cdot (x y) \geq 0$

note: 2 extends to non-differtiable case replacing graduent with subgraduents

$$\int_{f'}^{f'} \frac{f'}{x^2} \frac{1}{x^2} \frac$$

Examples of Convex functions:

$$f(x) = x^2/2$$

$$f(x) = \chi \log x \quad (\text{on } x > 0)$$

$$\text{check} \quad f(x) = \frac{\chi}{\chi} + \log \chi$$

 $= 17 \log x \quad \text{uncreasing}$ $\int_{0}^{\pi} (x) = \frac{1}{x} > 0$ $\log x = -1$ $x = \frac{1}{c}$

properties of convex functions

o if g is convex and f(x) is affine, then g of is convex max of convex functions is convex

See Boyd & Vandenberg for more properties & examples P=J10 OO=I coln of O $Pv_1=\lambda_1v_1$ PV2=1/2/2

Key properties for convex optimization.

Lipschitz & "Smooth"

Defin Let $f: CCIR^d \mapsto IR^{+}$. Suppose $||f(w_1) - f(w_2)|| \le \rho ||w_1 - w_2|| + |w_1, w_2 \in C$ then say f is ρ -Lipshitz continous over C.

Note if f is $\nabla f(x)$ exists $\# \| \nabla f(x) \| \leq \rho \ \forall x \in C$ then f is ρ -lipschitz. Why? Mean-Value Thm. $f(w_1) - f(w_2) = \nabla f(\Xi) \cdot (w_1 - w_2)$ for some Ξ .

Smoothness

Defn: A differ trable function $f: PR \to PR$ is P = Smooth if its gradient is P = Lipschitz. $||\nabla f(v) - \nabla f(w)|| \leq |P||V - w|| \quad \forall v, w$

Note smoothness implies $f(v) \leq f(w) + \left(\frac{tf(w)}{V-w} \right) + \frac{3}{2} \left[\left| V-w \right|^2 \right]$ $A_w(v)$

Convexity: $A_{W}(v) \leq f(v)$ Both $A_{W}(v) \leq f(v) \leq A_{W}(v) + P_{S}(|V-W|)^{2}$

meons: upper of lower bounds on affine approximation

 $\frac{\text{Note}}{f(v) \leq A_{w}(v) + \frac{B}{2} ||v-w||^{2}}$

Set $V = W - \frac{1}{B} \nabla f(w)$

f(v) < f(w) + (7f(w), = 7f(w)) - = = 1 14/12

 $\Rightarrow \frac{1}{2B} ||\nabla f(w)||^2 \leq f(w) - f(v)$

if, in addition $f(v) \ge 0$ $\forall v$, then $\|\nabla f(w)\|^2 \le 2\beta f(w)$ $\forall w$ I self bounded function