

SÍLABO INSTALACIONES ELÉCTRICAS EN EDIFICACIONES

ÁREA CURRICULAR: TÓPICOS DE INGENIERÍA

CICLO: V SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09093805020

II. CRÉDITOS : 02

III. REQUISITOS : 09004904030 Construcción I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte del área curricular de Tecnología, es de carácter obligatorio; curso teórico – práctico. A través de sus objetivos y contenidos proporciona los conocimientos básicos para el diseño y desarrollo del proyecto de instalaciones eléctricas interiores de una edificación, sobre la base de los planos de distribución arquitectónica, niveles mínimos de Iluminación establecidos por el Reglamento Nacional de Edificaciones y el Código Nacional de Electricidad vigente.

El curso se desarrolla a través de las siguientes unidades de aprendizaje: I: Instalaciones eléctricas interiores de una vivienda unifamiliar. II. Instalaciones eléctricas interiores de una vivienda bifamiliar y edificio de departamentos.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Código Nacional de Electricidad. (2012).
- Reglamento Nacional de Edificaciones. (2012). Perú: Diario El Peruano.
- Rodríguez, M. Instalaciones Eléctricas Interiores.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INSTALACIONES ELÉCTRICAS INTERIORES DE UNA VIVIENDA UNIFAMILIAR.

OBJETIVOS DE APRENDIZAJE:

 Proporcionar los conocimientos, teórico-prácticos en la formación profesional del Ingeniero, que debe estar capacitado para interpretar, diseñar, evaluar, modificar y ejecutar en obra, un proyecto completo de Instalaciones Eléctricas Interiores, en edificaciones.

PRIMERA SEMANA

Primera sesión:

Instalaciones Eléctricas Interiores

Segunda sesión:

Criterios para el diseño de Instalaciones Eléctricas Interiores.

SEGUNDA SEMANA

Primera sesión:

Partes componentes de una Instalación Eléctrica Interior

Segunda sesión:

Conocimiento práctico, de las partes componentes de una Instalación Eléctrica Interior.

Entrega del Tema del Trabajo Nº 01

TERCERA SEMANA

Primera sesión:

Exposiciones grupales

Segunda sesión:

Exposiciones grupales

CUARTA SEMANA

Primera sesión:

Exposiciones grupales

Segunda sesión:

Fin de Exposiciones grupales

QUINTA SEMANA

Primera sesión:

Definiciones usuales: Conductores eléctricos, tipos; Metodología para su selección óptima.

Tuberías PVC, tipos; Metodología para su selección óptima.

Segunda sesión:

Definiciones usuales: Cajas de interconexión, tipos

SEXTA SEMANA

Primera sesión:

Práctica calificada 1 - Crítica a los avances

Segunda sesión:

Práctica dirigida- Crítica a los avances Criterios para el Diseño de Instalaciones Eléctricas para una vivienda: unifamiliar, bifamiliar.

SÉPTIMA SEMANA

Primera sesión:

Práctica dirigida- Crítica a los avances

Segunda sesión:

Práctica dirigida- Crítica a los avances

Presentación del trabajo N° 1

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión

Entrega del tema Trabajo Nº 02.

Segunda sesión

Práctica calificada 2 - Discusión conjunta acerca del tema entregado.

UNIDAD II: INSTALACIÒNES ELÉCTRICAS INTERIORES DE UNA VIVIENDA BIFAMILIAR Y EDIFICIO DE DEPARTAMENTOS.

OBJETIVOS DE APRENDIZAJE:

 Proporcionar los conocimientos, teórico-prácticos en la formación profesional del Ingeniero, que debe estar capacitado para interpretar, diseñar, evaluar, modificar y ejecutar en obra, un proyecto completo de Instalaciones Eléctricas Interiores, de una Edificación Multifamiliar.

DÉCIMA SEMANA

Primera sesión:

Elaboración de la memoria descriptiva de una vivienda unifamiliar.

Segunda sesión:

Elaboración de las Especificaciones técnicas, de los materiales usados en las instalaciones eléctricas interiores.

UNDÉCIMA SEMANA

Primera sesión:

Carga unitaria y factores de demanda utilizados en el cálculo de los alimentadores.

Segunda sesión:

Práctica calificada 3 - Crítica a los avances

DUODÉCIMA SEMANA

Primera sesión:

Diseño eléctrico completo de un edificio de departamentos.

Segunda sesión:

Práctica dirigida- Crítica a los avances

DECIMOTERCERA SEMANA

Primera sesión:

Práctica dirigida- - Crítica a los avances

Segunda sesión:

Práctica dirigida- - Crítica a los avances

DECIMOCUARTA SEMANA

Primera sesión:

Diagrama unifilar, Acometida, Alimentadores, Circuitos Derivados. Tablero de distribución.

Segunda sesión:

Práctica calificada 4 -- Crítica a los avances

DECIMOQUINTA SEMANA

Primera sesión:

Práctica Dirigida-Crítica a los avances

Segunda sesión:

Diseño de montantes, diagramas unifilares y banco de medidores.

DECIMASEXTA SEMANA

Examen Final

DECIMASÉPTIMA SEMANA

Entrega de actas de promedios del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo- Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración— Ejecución. El docente demuestra cómo se elabora un diseño y el estudiante ejecuta, para demostrar que aprendió a diseñar una Instalación Eléctrica Interior.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, ecran, proyector de multimedia y puntero electrónico.

Materiales: Texto base, separata, Autocad versión 2007

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+EP+EF)/4 PE= ((P1+P2+P3+P4-MN)/3 +W1)/2

Donde:

PF = Promedio Final

EP = Examen Parcial

EF = Examen Final

PE = Promedio de Evaluaciones

P1,...P4 = Prácticas calificadas

MN = Menor nota de prácticas

W1 =Trabajo 1

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería.	K	
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.		
(d)	Trabajar adecuadamente en un equipo multidisciplinario.		
(e)	Identificar, formular y resolver problemas de ingeniería.		
(f)	Comprensión de lo que es la responsabilidad ética y profesional.		
(g)	Comunicarse, con su entorno, en forma efectiva.		
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.		
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.		
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil		
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines	K	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
0	4	0

b) Sesiones por semana: Dos sesiones.

c) Duración: 4 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Víctor Egoavil de la Torre.

XV. FECHA:

La Molina, marzo de 2017.