Data and Network Security

Contents

Course Information	3
Assessment	4
Lectures	5
Lecture One - Course Introduction	5
Lecture Two - Course Overview	6
Lecture Three - Number Theory and Finite Fields	10

Course Information

Lecturers Details

• Lecturer: Dr. Clementine Gritti

- Office: Erskine 304

- Email: clementine.gritti@canterbury.ac.nz

• Tutor: Ryan Beaumont

- Email: rbe72@uclive.ac.nz

Other Information

• Labs and Quiz's will be available on learn

Textbooks

- Cryptography and network security: principles and practice, William Stallings, 5th edition
 - * This course is inspired from this book as the bulk of the course is founded in cryptography.
 - * The exam will only be on content in the slides not from the book
- Computer security: principles and practice, William Stallings and Lawrie Brown, 3rd edition

2.1 Term 1 Plan

Week	Course			
starting date	week	Monday lecture	Thursday lecture	Lab
19/07/2021	1	L1: Course introduction	L2: Course overview	no lab
26/07/2021	2	L3: Discrete mathematics	L4: CrypTool (at home)	Lab 1: Introduction
02/08/2021	3	L5: Classical encryption part 1	L6: Classical encryption part 2	Lab 2: Discrete maths exercises
09/08/2021	4	L7: Block ciphers	L8: Block cipher modes	Lab 3: CrypTool part 1
16/08/2021	5	L9: Stream ciphers	L10: Number theory	Lab 4: CrypTool part 2
23/08/2021	6	L11: Hash functions and MACs	no lecture	Lab 5: Number theory exercises

2.2 Term 2 Plan

Week	Course			
starting date	week	Monday lecture	Thursday lecture	Lab
13/09/2021	7	L12: Public key crypto part 1	L13: Public key crypto part 2	Lab 6: Hash functions
				and MACs exercises
20/09/2021	8	L14: Digital signatures	L15: PKI and certificates	Lab 7: CrypTool part 3
27/09/2021	9	L16: Key establishment	L17: TLS part 1	Lab 8: PKI and certificates
04/10/2021	10	L18: TLS part 2	L19: IPSec and VPN	Lab 9: Digital signatures and
				key establishment exercises
11/10/2021	11	L20: Email security	L21: Malware and attacks	Lab 10: TLS
18/10/2021	12	L22: Recap lecture	no lecture	Lab 11: IPSec and email
				security exercises

Figure 1: Timetable

Assessment

- 1. Labs (10%) attendance and participation:
- Labs are done individually but you are encouraged to discuss and share with your peers (you are allowed to see each other during labs).
- Attending one lab each week over the semester automatically gives you full mark: The tutor will assess your attendance.
- If you cannot attend one lab session, then a report (along with a justification of student absence) will be required and assessed:
 - The report needs to be submitted by one week after the missed session.
 - Example: if you miss Tuesday lab on Week X then you are asked to submit a report by Tuesday of Week X+1.
 - The report needs to be sent to both the lecturer and the tutor.
- 2. Weekly quizzes (20%):
- They can be found and done on LEARN.
- 9 quizzes in total.
- Each quiz contains 10 questions. Each question contains 4 choices such that only one choice is correct.
- 2 attempts per quiz, such that the highest grade is taken into account.
- A quiz is given on Friday of Week X, and should be done before Friday of Week X+1 (except for the one released just before the break):
- 3. Assignment (20%):
- Deadline: 17 September 2021.
- Small exercises on what has been covered so far.
- The assignment will be released on LEARN on 20 August 2021.
- Your report should be uploaded to LEARN.
- 4. Final exam (50%)
- 3-hours duration
- 25 multiple-choice questions
- 5 open questions, such that if additional information is needed to solve the problem then it will be provided.
- Covers all content from all lectures study definitions, mechanisms, processes
 - Not expected to remember the code of each standard (e.g. RFC1234)

Lectures

Lecture One - Course Introduction

- All materials will be found on learn, including lectures, labs, quizzes and assignments.
- Course outline available
- Labs must be done in person or a report will not get full marks if do not attend
- · Labs start next week
- Weekly quizzes go over two lectures each multi-choice
- Midterm and final will all be entirely open questions

Why do we need cyber security

- Privacy
- Security
- Risk management

Famous recent attacks

- Dark hotel attack
 - Targeted phishing attacks using spy-ware
 - Infiltrating guests computers through WIFI networks at hotels
 - Loss of confidentiality
- POODLE attack
 - man in the middle exploit
 - Communications can be decryped and exploited
- EncroChat
 - A communications network and service provider
 - Infiltrated by police in 2020
- WannaCry
 - Loss of availability
 - stolen government hacking tools
 - Worm encrypting files on computers hard drive
 - * Was a form of ransom-ware
- Botnet
 - Botnet attacking IoT devices with default admin credentials

- DDos
- Loss of availability

Because of these attacks, some users have lost confidence in the service provided not storing/selling data.

Course Focus

- Cryptography as a foundation for information security
- Applications of cryptography
- · History of cryptography
- Modern cryptography
 - Block ciphers, stream ciphers
 - public key crypto
 - Hashing and MAC
- · Some mathematics
 - Modular arithmetic
 - Number theory
 - Elliptic curves
- Using all of the cryptography
 - Public key infrastructure
 - Secure email
 - TLS (HTTPS)

Lecture Two - Course Overview

What is cyber security?

Definition from the NIST computer security handbook:

- The protection afforded to an automated information system in order to attain the applicable objectives of preserving the integrity, availability and confidentiality of information system resources.
 - Some literature might differentiate between *computer security and cyber security*

Definitions

A threat

- Represents a potential security harm to an asset
- An attack
 - is a threat that is carried out
- · The threat agent
 - carrying out the attack is referred to as an attacker
- A countermeasure
 - Any means taken to deal with an attack
- · A residual level of risk to the assets
 - represented by vulnerabilities possibly exploited by threat agents

Assets

- Computer systems and other data processing, storage and data communication devices
- OS, system utilities and applications
- Files and databases and further data
- Local and wide area network links

Vulnerabilities

- A computer system can be:
 - * Leaky
 - · meaning gives access to information through the network, violates confidentiality
 - * Corrupted
 - · meaning that it does the wrong thing, violates integrity principle
 - * Unavailable
 - · meaning that it becomes impossible or impractical to use, violates availability
- Passive attacks
 - Interception
 - Traffic analysis
 - * Spoofing, finding information and observing traffic
- Active attacks
 - Altering information and system resources
 - May be hard to prevent but easy to detect
 - Masquerade

- * the attacker claims to be someone else *authorized*
- Falsification (Man in middle)
 - * the attacker changes messages during transmission
- Misappropriation (DDOS)
 - * the attacker prevents legitimate users from accessing resources
- Inside attacks
 - initiated by an entity INSIDE the security perimeter
 - authorization to access system resources but use of them in a malicious way
 - Exposure
 - * the attacker intentionally releases sensitive information to an outsider.
 - Falsification
 - * the attacker alters or replaces valid data or introduces false data into a file or database.
- Outside attacks
 - initiated from OUTSIDE the perimeter, by an unauthorised or illegitimate user of the system
 - Obstruction
 - * the attacker disables communication links or alters communication control information.
 - Intrusion
 - * the attacker gains unauthorised access to sensitive data by overcoming the access control protections.

Security functional requirements

- Information security management requires to:
 - 1. Identify threats
 - 2. Classify all threats according to liklihood and severity
 - 3. Apply security controls based on cost benefit analysis
- Countermeasures to vulnerabilities and threats comprise:
 - 1. Computer security technical measures
 - access control, authentication and system protection
 - 2. Management measures
 - awareness and training

- 3. Both
- configuration management

Defining Information Security

Definition from the NIST computer security handbook:

• The term security is used in the sense of minimizing the vulnerabilities of assets and resources. An asset is anything of value. A vulnerability is any weakness that could be exploited to violate a system or the information it contains. A threat is a potential violation of security.

The CIA Triad

- Confidentiality
 - Preventing unauthorised disclosure of information
- Integrity
 - Preventing modification or destruction of information
- Availability
 - ensuring resources are accessible when required

Information Security Definitions

- Security Service
 - a processing or communication service to give a specific kind of protection to system resources.
 - Types of security services [Lecture Two Slide 20/27]:
 - * Peer entity authentication
 - * Data origin authentication
 - * Access control
 - * Data confidentiality
 - * Traffic flow confidentiality
 - * Data integrity
 - * Non-repudiation
 - * Availability
- · Security Mechanism
 - a method of implementing one or more security services.
 - Types of security mechanisms

- * Encipherment
- * Digital signature
- * Access control
 - · access control lists, password or tokens which may be used to indicate access rights
- * Data integrity
- * Authentication exchange
- * Traffic padding
- * Routing control
- * Notarization

Risk Management

A key tool in information security management:

- 1. Identify threats
- 2. Classify all treats according to likelihood and severity
- 3. Apply security controls based on cost benefit analysis

Lecture Three - Number Theory and Finite Fields

Factorisation

The set of all integers is denoted by $\mathbb{Z}=...,-3,-2,-1,0,1,2,3,...$, given $a,b\in\mathbb{Z}$, a divides b if there exists $k\in\mathbb{Z}$ s.t ak=b.

- This means that a is a factor of b
- *a*|*b*

We use p to denote a prime, an integer $p \ge 1$ is a *prime* if its divisors are (1, p).

Testing a prime number p by trial numbers up to the square root of p = There are more efficient
ways to check for primality later in the course

Properties of factorisation and useful formulae:

- If a|b and a|c, then a|bc
- If p is prime and p|ab then either p|a or p|b
- Division algorithm
 - given $a,b\in\mathbb{Z},\quad s.t\quad a>b$, then there exists $q,r\in mathbb{Z}\quad s.t\quad a=bq+r$
 - a = bq + r and $0 \le r \ leq b$, we can use this to show $r < \frac{a}{2}$.

Greatest common divisor (GCD)

- gcd(a,b) = d if d|a and d|b
- if c|a and c|b then c|d
- a and b are relatively prime / co-prime when gcd(a,b)=1

• Euclidean Algorithm

- Find d = gcd(a, b)

$$a = bq_1 + r_1$$
 for $0 < r_1 < b$
 $b = r_1q_1 + r_2$ for $0 < r_2 < r_1$
 $r_1 = r_2q_1 + r_3$ for $0 < r_3 < r_2$

...

$$f_{k-3} = r_{k-2}q_{k-1} + r_{k-1} \quad for \quad 0 < f_{k-1} < f_{k-2}$$

$$f_{k-2} = r_{k-1}q_k + r_k \quad for \quad 0 < f_k < f_{k-1}$$

$$f_{k-1} = r_kq_{k+1} + r_{k+1} \quad with \quad r_{k+1} = 0$$

- Hence $d = r_k = gcd(a, b)$
- · Back Substitution Extending Euclidean Algorithm
 - Finding x, y in $ax + ay = d = r_k$
 - This is essentially reversing the Euclidean algorithm

Modular Arithmetic:

- Given $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then the following conditions hold:
 - $a+b \equiv c+d \pmod{\mathsf{n}}$
 - $ac \equiv bd \pmod{n}$
 - $ka \equiv kb \pmod{n}$

Groups

- A group $\mathbb G$ is a set with *binary operation* and:
 - * Closure: $a \cdot b \in \mathbb{G}$ for $a, b \in \mathbb{G}$
 - * Identity: there is an element 1, s.t. $a \cdot 1 = 1 \cdot a = a$ for $a \in \mathbb{G}$
 - * Inverse: there is an element b s.t. $a \cdot b = 1$ for $a \in \mathbb{G}$
 - * Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for $a, b, c \in \mathbb{G}$

- * Commutativity: $a \cdot b = b \cdot a$ for $a, b \in \mathbb{G}$
 - · If this condition holds, the group is said to be abelian.

Cyclic Groups

- the order $|\mathbb{G}|$ of a group \mathbb{G} is the number of elements in \mathbb{G}
- g^k denote the repeated application of $g\in\mathbb{G}$, using the group operation
- The order |g| of $g \in \mathbb{G}$ is the smallest integer k s.t. $g^k = 1$
- g is a generator of $\mathbb G$
- A group is said to be cyclic if it has a generator

Finding inverse

- Use extended Euclidean algorithm if GCD is 1.

Fields

- A field \mathbb{F} is a set with binary operations:
- \mathbb{F} is an *abelian group* under the operation + with identity element of 0.

Finite Fields

- Setting up secure communications requires fields with a finite number of elements.
- Notation is $GF(p) = \mathbb{Z}_p$
- Addition modulo 2: XOR LOGIC