Exercises from Charles Pinter's 'A Book of Abstract Algebra'

Unathi Skosana

June 13, 2021

Exercises accompanying the notes from Charles Pinter's 'A Book of Abstract Algebra'

Contents

Operations 1

Operations

Exercise 1. For each rule, is it an operation, if not, why?

- 1. $a * b = \sqrt{|ab|}$, on the set \mathbb{Q} No. If a = b = 1, then $1 * 1 = \sqrt{2} \notin \mathbb{Q}$
- 2. $a * b = a \ln b$, on the set $\{x \in \mathbb{R} : x > 0\}$. No. It is not closed under *, e.g 0 < b < 1, then $a * b = a \ln b < 0$
- 3. a * b is a root of the equation, $x^2 = a^2b^2$, on the set \mathbb{R} No. The operation isn't uniquely defined. $x^2 = a^2b^2$ has to two roots, namely +ab and -ab
- 4. Subtraction, on the set \mathbb{Z} . Yes.
- 5. Subtraction, on the set $\{n \in \mathbb{Z} : n \ge 0\}$. No. e.g. b = a + 1 then a * b = -1 which is not in the set.
- 6. a * b = |a b|, on the set $\{n \in \mathbb{Z} : n \ge 0\}$ Yes. (distance metric)

Exercise 2. Indicate whether or not:

- I it is commutative,
- II it is associative,
- III ℝ has an identity element with respect to *
- IV every $x \in \mathbb{R}$ has an inverse with respect to *
- 1. x * y = x + 2y + 4
 - I Commutativity:

$$y * x = y + 4x + 4 \neq x + 4y + 4 \quad \forall x, y \in \mathbb{R}$$
 (1)

Not commutative

II Associativity:

$$x * (y * z) = x * (y + 2z + 4) = x + 2(y + 2z + 4) + 4$$

$$(x * y) * z = (x + 2y + 4) * z = x + 2y + 4 + 2z + 4$$

$$x * (y * z) \neq (x * y) * z$$
(2)

Not associative

III Existence of identity:

$$x * e = x + 2e + 4 = x$$

 $2e = 4 \implies e = -2$ (3)

Check

$$x * 2 = x + -2 * 2 + 4 = x$$

2 * x = -2 + 2x + 4 = 2 * (x + 1) (4)

No identity element, and thus no inverses.

2.
$$x * y = x + 2y - xy$$

I Commutativity:

$$y * x = y + 2x - yx \neq x + 2y - xy \quad \forall x, y \in \mathbb{R}$$
 (5)

II Associativity:

$$x * (y * z) = x * (y + 2z - yz) = x + 2(y + 2z - yz) - x(y + 2z - yz)$$

$$= x + 2y + 4z - 2yz - xy - 2xz + xyz$$

$$(x * y) * z = (x + 2y - yx) * z = x + 2y - yx + 2z - (x + 2y - yx)z$$

$$= x + 2y - yx + 2z - xz - 2yz + yxz$$

$$x * (y * z) \neq (x * y) * z$$
(6)

III Existence of identity:

$$x * e = x + 2e - xe = x$$

 $2e - xe = e(2 - x) = 0 \implies e = 0$ (7)

Check

$$x * 0 = x + 0 - 0 = x$$

$$0 * x = 0 + 2x - 0 = 2x$$
(8)

No identity element, thus no inverses.

3.
$$x * y = |x + y|$$

I Commutativity:

$$y * x = |y + x| = |x + y| = x * y$$
 (9)

II Associativity:

$$x * (y * z) = x * |y + z| = |x + |y + z||$$

(x * y) * z = |x + y| * z = ||x + y| + z| (10)

 $x * (y * z) \neq (x * y) * z$, to see this set x = 1, y = -2, z = 0

$$|1 + |-2|| \neq ||1 - 2||$$

III Existence of identity:

$$x * e = |x + e| = x \implies e = 0 \tag{11}$$

Check

$$x * 0 = |x + 0| = x$$

 $0 * x = |0 + x| = x$ (12)

IV Existence of inverses:

$$x * x' = |x + x'| = 0 \implies x' = -x$$
 (13)

Check

$$x * (-x) = |x + (-x)| = 0$$

(-x) * x = |(-x) + x| = 0 (14)

4. x * y = |x - y|

I Commutativity:

$$y * x = |y - x| = |-(x - y)| = |x - y|$$
 (15)

II Associativity:

$$x * (y * z) = x * |y - z| = |x - |y - z||$$

(x * y) * z = |x - y| * z = ||x - y| - z| (16)

$$x * (y * z) \neq (x * y) * z$$
, to see this set $x = 1, y = -2, z = 0$

III Existence of identity:

$$x * e = |x - e| = x \implies e = 0 \tag{17}$$

Check

$$x * e = |x - 0| = x$$

 $e * x = |0 - x| = x$ (18)

IV Existence of inverses:

$$x * x' = |x - x'| = 0 \implies x' = x$$
 (19)

Check

$$x * x' = |x - x'| = |x - x| = 0$$

$$x' * x = |x' - x| = |x - x| = 0$$
 (20)

5. x * y = xy + 1

i Commutativity:

$$y * x = yx + 1 = xy + 1 = x * y \tag{21}$$

ii Associativity:

$$x * (y * z) = x * (yz + 1) = x(yz + 1) + 1 = xyz + x + 1$$

$$(x * y) * z = (xy + 1) * z = (xy + 1)z + 1 = xyz + z + 1$$
(22)

$$(x*y)*z\neq x*(y*z)$$

iii Existence of identity:

$$x * e = xe + 1 = x$$

$$xe = x - 1$$

$$e = \frac{x - 1}{x}$$
(23)

Check

$$x * e = x \frac{x-1}{x} + 1 = x - 1 + 1 = x$$

$$e * x = \frac{x-1}{x} x + 1 = x - 1 + 1 = x$$
(24)

6. $x * y = \max\{x, y\}$

I Commutativity:

$$y * x = \max\{y, x\} = x * y$$
 (25)

II Associativity:

$$x * (y * z) = x * \max\{y, z\} = \max\{x, \max\{y, z\}\}\$$

$$(x * y) * z = \max\{x, y\} * z = \max\{\max\{x, y\}, z\}$$
 (26)

Regardless of the how three numbers are compose with *, they produce the same result; that is larger of three numbers. 0Thus x * (y * z) = (x * y) * z.

III Existence of identity:

$$x * e = \max\{x, e\} = x \implies e \le x \quad \forall x \in \mathbb{R}$$
 (27)

No such element in $\mathbb R$ unless you extend it to include $-\infty$ and ∞ . By this no inverses.