PARTIE 1: ALGEBRE (5 pts)

Exercice: (5 pts)

Soit la matrice :

$$M_{\alpha} = \begin{pmatrix} 1 & -1 & 2 - \alpha \\ 0 & 2 & \alpha - 2 \\ 1 & 1 & \alpha \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1- Discuter, suivant le paramètre α , la diagonalisation de M_{α} .
- **2-** On pose : $\alpha = 0$.
 - \mathbf{a} / Sans effectuer de calculs, dire si M_0 est inversible. Justifier.
 - ${f b}/$ Trouver une matrice inversible P et une matrice diagonale D telles que :

$$D = P^{-1}.M_0.P.$$

c/ En déduire l'expression de la matrice M_0^n où $n \in \mathbb{N}^*$ en fonction des matrices D et P.

PARTIE 2: ANALYSE (6 pts)

Exercice:

Soit $f:[0,+\infty[\times\mathbb{R}\longrightarrow\mathbb{R}]$ l'application définie par :

$$f(t,x) = \begin{cases} \frac{e^{-t^2} - e^{-t^2x^2}}{t^2} & \text{si } t \neq 0\\ x^2 - 1 & \text{si } t = 0 \end{cases}$$

1) Montrer que f est continue sur $[0, +\infty[\times \mathbb{R}.$

- 2) Montrer que $\frac{\delta f}{\delta x}$ existe et est continue sur $[0, +\infty[\times \mathbb{R}.$
- 3) i) Montrer que $\int_{1}^{+\infty} f(t,x)dt$ est convergente pour tout $x \in \mathbb{R}$.
- ii) On pose : $\varphi_1(x) = \int_{0}^{1} f(t, x) dt$, $\varphi_2(x) = \int_{1}^{+\infty} f(t, x) dt$,

et $\varphi(x) = \varphi_1(x) + \varphi_2(x)$ pour tout $x \in \mathbb{R}$.

Montrer que les fonctions φ_1 et φ_2 sont continues sur \mathbb{R} .

iii) Calculer $\varphi(1)$.

4) Montrer que φ est de classe C^1 sur \mathbb{R}_+^* .

Pour $x \in \mathbb{R}_+^*$, calculer $\varphi'(x)$. (On admettra que $\int_0^{+\infty} e^{-s^2} ds = \frac{\sqrt{\pi}}{2}$.)

5) Calculer $\varphi(x)$ pour tout $x \in \mathbb{R}$.

En déduire la valeur de l'intégrale $\int_{0}^{+\infty} e^{-t^2} - 1 dt$.

PARTIE 3: PROBABILITES ET STATISTIQUES (5 pts)

Exercice: (5 pts)

Soient X et Y deux variables aléatoires réelles de Bernoulli indépendantes et de même paramètre $p,\,(p\in]0,1[).$

2

Soient: U = X + Y et V = X - Y

Déterminer :

- a) La loi du couple (U, V).
- b) La covariance de (U, V).
- c) U et V sont-elles indépendantes? Justifier et conclure?

PARTIE 4: LOGIQUE MATHEMATIQUE (4 pts)

Exercice 1: (2 pts)

La formule ci-dessous est-elle valide? Est-elle satisfiable?

$$\alpha: \exists x P(x,y) \to (\exists x P(z,x) \to P(z,y))$$

(Justifiez vos réponses)

Exercice 2: (2 pts)

Traduire la définition simplifiée ci-dessous dans le langage des prédicats du premier ordre. "Le PPCM de deux nombres est le plus petit multiple commun à ces deux nombres."