Abalone_Regression

2023-04-24

Neste trabalho analiso os dados de https://archive.ics.uci.edu/ml/datasets/abalone.

O abalone é um molusco gastrópode pertencente à família Haliotidae e é encontrado sob a forma de diversas espécies em águas costeiras de quase todo o mundo. Por causa de seu uso como jóia e alimento,há duas espécies de abalone que se encontram em risco de extinção.

Neste projeto, irei prever a idade do abalone baseada em fatores físicos.

A idade do abalone é determinada cortando a casca através do cone, manchando-a e contando o número de anéis através de um microscópio. Outras medidas, mais fáceis de obter, são usadas para prever a idade.

Nome	Tipo de Dado	Unidade de Medida	Descrição
Sex (Sexo)	nominal	_	M, F e I (infantil)
Length (Comprimento)	contínuo	mm	Medição mais longa da concha
Diameter (Diâmetro)	contínuo	mm	Perpendicular ao comprimento
Height (Altura)	contínuo	mm	Com carne na concha
Whole weight (Peso total)	contínuo	gramas	Abalone inteiro
Shucked weight (Peso da carne)	contínuo	gramas	Peso da carne
Viscera weight (Peso das vísceras)	contínuo	gramas	Peso do intestino (após sangria)
Shell weight (Peso da concha)	contínuo	gramas	Depois de seco
Rings (Anéis)	inteiro	_	+1,5 dá a idade em anos

Bibliotecas

```
#install.packages("tidyverse")
#install.packages("ggplot2")
#install.packages("GGally")
#install.packages("ggcorrplot")
#install.packages("DataExplorer")
#install.packages("caret")
#install.packages("corrplot")
#install.packages("doParallel")
#install.packages("caret")
#install.packages("rpart.plot")
#install.packages("rpart")
#install.packages("routle")
#install.packages("rattle")
#install.packages("RColorBrewer")
```

Chamada das Bibliotecas

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
           1.1.1
                       v readr
                                    2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.2
                                    3.2.1
                     v tibble
## v lubridate 1.9.2
                        v tidyr
                                    1.3.0
## v purrr
              1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
##
    +.gg
          ggplot2
library(ggcorrplot)
library(corrplot)
## corrplot 0.92 loaded
library(readr)
library(DataExplorer)
library(doParallel)
## Carregando pacotes exigidos: foreach
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
##
       accumulate, when
##
## Carregando pacotes exigidos: iterators
## Carregando pacotes exigidos: parallel
library(caret)
## Carregando pacotes exigidos: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
```

```
library(rpart)
library(rattle)
## Carregando pacotes exigidos: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
library(RColorBrewer)
library(VIM)
## Carregando pacotes exigidos: colorspace
## Carregando pacotes exigidos: grid
## VIM is ready to use.
##
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
##
## The following object is masked from 'package:rattle':
##
##
       wine
##
## The following object is masked from 'package:datasets':
##
##
       sleep
library(ModelMetrics)
##
## Attaching package: 'ModelMetrics'
##
## The following objects are masked from 'package:caret':
##
       confusionMatrix, precision, recall, sensitivity, specificity
##
##
## The following object is masked from 'package:base':
##
##
       kappa
Limpando o ambiente de execução
rm(list = ls())
Setando o Local de trabalho
```

Visualização Geral do DataFrame

setwd("C:/Users/karin/OneDrive/Desktop/Mestrado/Mineração")

```
options(scipen = 999) #visualização dos dados sem a notação científica
abalone <- read_csv("abalone.csv", show_col_types = FALSE)</pre>
abalone <- as_tibble(abalone)</pre>
abalone
## # A tibble: 4,177 x 9
           Length Diameter Height 'Whole weight' 'Shucked weight' 'Viscera weight'
##
     Sex
##
      <chr> <dbl>
                      <dbl> <dbl>
                                            dbl>
                                                             <dbl>
##
   1 M
            0.455
                      0.365 0.095
                                            0.514
                                                            0.224
                                                                             0.101
##
  2 M
            0.35
                     0.265 0.09
                                            0.226
                                                            0.0995
                                                                             0.0485
## 3 F
            0.53
                     0.42
                            0.135
                                            0.677
                                                            0.256
                                                                             0.142
## 4 M
            0.44
                     0.365 0.125
                                            0.516
                                                            0.216
                                                                             0.114
## 5 I
                     0.255 0.08
            0.33
                                            0.205
                                                            0.0895
                                                                             0.0395
## 6 I
            0.425
                     0.3
                            0.095
                                           0.352
                                                            0.141
                                                                             0.0775
## 7 F
            0.53
                     0.415 0.15
                                            0.778
                                                            0.237
                                                                             0.142
## 8 F
            0.545
                     0.425 0.125
                                           0.768
                                                            0.294
                                                                             0.150
## 9 M
            0.475
                     0.37
                                            0.509
                                                            0.216
                                                                             0.112
                            0.125
                      0.44
                                            0.894
## 10 F
            0.55
                            0.15
                                                            0.314
                                                                             0.151
## # i 4,167 more rows
## # i 2 more variables: 'Shell weight' <dbl>, Rings <dbl>
```

O dataset possui 9 atributos e 4177 instâncias

```
#Atributos
ncol(abalone)

## [1] 9
```

```
#Instâncias
nrow(abalone)
```

[1] 4177

Dos 9 atributos, 8 são do tipo num e 1 do tipo chr.

```
str(abalone)
```

Aqui estão presentes o máximo, mínimo, média e mediana dos atributos númericos.*

summary(abalone)

```
##
       Sex
                         Length
                                       Diameter
                                                       Height
##
  Length:4177
                     Min.
                           :0.075
                                          :0.0550
                                                          :0.0000
                                  Min.
                                                  Min.
  Class : character
                     1st Qu.:0.450
                                    1st Qu.:0.3500
                                                   1st Qu.:0.1150
## Mode :character
                     Median :0.545
                                    Median :0.4250
                                                   Median :0.1400
##
                     Mean
                           :0.524
                                    Mean
                                          :0.4079
                                                    Mean
                                                          :0.1395
##
                     3rd Qu.:0.615
                                    3rd Qu.:0.4800
                                                    3rd Qu.:0.1650
##
                     Max.
                           :0.815 Max.
                                          :0.6500
                                                    Max.
                                                          :1.1300
##
                   Shucked weight
                                   Viscera weight
                                                    Shell weight
    Whole weight
## Min. :0.0020
                   Min. :0.0010 Min. :0.0005
                                                   Min.
                                                         :0.0015
  1st Qu.:0.4415
                   1st Qu.:0.1860 1st Qu.:0.0935
                                                   1st Qu.:0.1300
                                                   Median :0.2340
## Median :0.7995
                   Median :0.3360 Median :0.1710
## Mean :0.8287
                   Mean :0.3594 Mean :0.1806
                                                   Mean :0.2388
                   3rd Qu.:0.5020 3rd Qu.:0.2530
##
   3rd Qu.:1.1530
                                                   3rd Qu.:0.3290
  Max.
        :2.8255
                   Max. :1.4880 Max. :0.7600
##
                                                   Max. :1.0050
##
       Rings
## Min. : 1.000
## 1st Qu.: 8.000
## Median: 9.000
## Mean : 9.934
## 3rd Qu.:11.000
## Max. :29.000
```

Verificação de dados Missing

```
ppData <- abalone
missPlotData <- aggr(ppData, numbers = TRUE, sortvars = TRUE, labels = names(ppData), cex.axis = 0.4, g</pre>
```


Criação a coluna Age

```
abalone$Age <- abalone$Rings
```

Cópia dos dados de Rings para Age e soma de 1.5 para ter a idade

```
abalone$Age <- as.numeric(abalone$Age) #convertendo de inteiro para float
abalone$Age <- abalone$Age + 1.5
abalone
```

```
## # A tibble: 4,177 \times 10
            Length Diameter Height 'Whole weight' 'Shucked weight' 'Viscera weight'
##
##
      <chr>
             <dbl>
                       <dbl>
                               <dbl>
                                               <dbl>
                                                                 <dbl>
                                                                                    <dbl>
##
    1 M
             0.455
                       0.365
                               0.095
                                               0.514
                                                                0.224
                                                                                  0.101
##
    2 M
             0.35
                       0.265 0.09
                                               0.226
                                                                0.0995
                                                                                  0.0485
##
    3 F
             0.53
                       0.42
                               0.135
                                               0.677
                                                                0.256
                                                                                  0.142
    4 M
             0.44
                       0.365
                               0.125
                                               0.516
                                                                0.216
                                                                                  0.114
##
    5 I
                       0.255
##
             0.33
                               0.08
                                               0.205
                                                                0.0895
                                                                                  0.0395
    6 I
                       0.3
##
             0.425
                               0.095
                                               0.352
                                                                0.141
                                                                                  0.0775
##
    7 F
             0.53
                       0.415
                               0.15
                                               0.778
                                                                0.237
                                                                                  0.142
                       0.425
##
    8 F
             0.545
                               0.125
                                               0.768
                                                                0.294
                                                                                  0.150
##
    9 M
             0.475
                       0.37
                               0.125
                                               0.509
                                                                0.216
                                                                                  0.112
## 10 F
             0.55
                       0.44
                               0.15
                                               0.894
                                                                0.314
                                                                                  0.151
## # i 4,167 more rows
## # i 3 more variables: 'Shell weight' <dbl>, Rings <dbl>, Age <dbl>
```

Retirada da coluna Rings

```
myvars <- names(abalone) %in% c("Rings")</pre>
abalone <- abalone[!myvars]</pre>
str(abalone)
## tibble [4,177 x 9] (S3: tbl_df/tbl/data.frame)
                    : chr [1:4177] "M" "M" "F" "M" ...
   $ Sex
                    : num [1:4177] 0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 0.475 0.55 ...
##
   $ Length
##
   $ Diameter
                    : num [1:4177] 0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 0.37 0.44 ...
##
   $ Height
                    : num [1:4177] 0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 0.125 0.15 ...
   $ Whole weight : num [1:4177] 0.514 0.226 0.677 0.516 0.205 ...
   $ Shucked weight: num [1:4177] 0.2245 0.0995 0.2565 0.2155 0.0895 ...
##
   $ Viscera weight: num [1:4177] 0.101 0.0485 0.1415 0.114 0.0395 ...
   $ Shell weight : num [1:4177] 0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 0.165 0.32 ...
##
##
   $ Age
                    : num [1:4177] 16.5 8.5 10.5 11.5 8.5 9.5 21.5 17.5 10.5 20.5 ...
```

Seleção de Características

Verificação da correlação entre os atributos

```
numericCol <- unlist(lapply(abalone, is.numeric))
numericData <- abalone[,numericCol]

correlationMatrix <- cor(numericData)
corrplot(correlationMatrix, method = "circle")</pre>
```


Como são altamente relacionados, plotei novo gráfico para saber o ponto de corte para a seleção

```
ggcorr(abalone, label=T)
```

Warning in ggcorr(abalone, label = T): data in column(s) 'Sex' are not numeric ## and were ignored

Definido o ponto de corte, fiz a seleção

Separação entre treino e teste

```
set.seed(123)
partition <- createDataPartition(abalone_regression$Age, p=0.75, list = FALSE)

train.set <- abalone_regression[partition,]
test.set <- abalone_regression[-partition,]

#train.set</pre>
```

Modelo de Regressão Linear

```
tc <- trainControl(method = "repeatedcv", number = 10, repeats = 5)
regressao_linear <- train(Age ~. , data = train.set, method = "lm", trControl = tc)
regressao_linear

## Linear Regression
##
## 3134 samples
## 3 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 2820, 2821, 2822, 2821, 2820, ...
## Resampling results:
##</pre>
```

Predições - Regressão Linear

Rsquared

2.469378 0.4154475 1.776433

MAE

Tuning parameter 'intercept' was held constant at a value of TRUE

```
predictionsL <- predict(regressao_linear, test.set)

RMSEL <- rmse(abalone_regression$Age,predictionsL)

RMSEL</pre>
```

[1] 10.24926

##

##

##

RMSE

Support Vector Machines com Núcleo Linear

```
train_control <- trainControl(method="repeatedcv", number=10, repeats=3)
svm1 <- train(Age ~., data = train.set, method = "svmLinear", trControl = train_control, preProcess =
svm1</pre>
```

```
## Support Vector Machines with Linear Kernel
##
```

```
## 3134 samples
##
      3 predictor
##
## Pre-processing: centered (4), scaled (4)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 2821, 2821, 2821, 2821, 2820, 2821, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                          MAE
##
     2.529422 0.4139736 1.724406
## Tuning parameter 'C' was held constant at a value of 1
```

Predições - Support Vector Machines com Núcleo Linear

```
predictionsSVM <- predict(svm1, test.set)

RMSEL <- rmse(abalone_regression$Age,predictionsSVM)

RMSEL</pre>
```

```
## [1] 10.24021
```

Fiz duas execuções de maneiras diferentes utilizando modelo linear (SVM com kernel linear e a própria regressão linear). Como esperado, ambos obtiveram RMSE por volta de 2.5,o que significa um desvio padrão de 2.5 dos valores reais. Para o caso do abalone, onde os valores são baixos, considero um resultado mediano para ruim.