Course #4:

Recurrent Neural Networks

Roadmap

• Recap from course #3

Auto-encoders

Recurrents Neural Networks

Lecture. #3 Things to know (AE)

- Auto-encoder
- Latent variable
- UNet
- ResNet

Recurrent Neural Networks

Application to text data

Language Translation

Encoder-Decoder Architecture

https://towardsdatascience.com/understanding-neural-machine-translation-encoder-decoder-architecture-80f205643ba4

Applications to geoscience

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

A Deep Learning Method With Merged LSTM Neural Networks for SSHA Prediction

Tao Song O, Senior Member, IEEE, Jingyu Jiang, Wei Li, and Danya Xu

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1029/2018JD028375

Key Points:

- Artificial intelligence techniques are useful tools in support of forecasting complex precipitation in short range ID-6 bd
- Long Short-Term Memory structure is capable of learning spatial and temporal correlations, efficiently
- The framework provides accurate conclusion forecasts, aspecially for

Short-Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networks

Ata Akbari Asanjan¹ (0), Tiantian Yang^{1,2} (0), Kuolin Hsu^{1,3}, Soroosh Sorooshian¹ (0), Jungjang Lin⁴, and Oidong Peng⁴

Lead-Time [min.]

¹Department of Civil and Environmental Engineering, Center for Hydrometeorology and Remote Sensing, University of California, Irvine, CA, USA, ²School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA, ³Center for Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan, ⁴China Institute of Water Resources and Hydropower Research, Beijing, China

2853

Recurrent Neural Networks

Applications:

- Time-series forecasting
- Audio processing
- Translation

•

Do CNNs also apply?

RNN: Underlying formulation (similar to state-space representation)

```
x \rightarrow \text{input vector}
                                                               h \rightarrow hidden state
                                                               t \rightarrow \text{index (time, index, etc...)}
y \rightarrow \text{output vector}
     W_{hy}
                                                             W_{hy}
                                                                                 W_{hv}
                                                                                                     W_{hy}
                                                                                      W_{hh}
            W_{hh}
     W_{xh}
                                                             W_{xh}
                                                                                 W_{xh}
                                                                                                     W_{xh}
  X_{t-1}
                                                         X_{t-1}
Fold
                                                                        Unfold
```

 $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t)$ and $y_t = g(W_{hy}h_t)$

RNN: Underlying formulation (similar to state-space representation)

Classic RNN Architectures

Conventional RNN with sigmoid

- The sensitivity of the input values decays over time
- The network forgets the previous input

Long-Short Term Memory (LSTM) [2]

- The cell remember the input as long as it wants
- The output can be used anytime it wants

Dense and convolutional versions of LSTM and GRU exist (depending on the structure of the hidden state)

Short-term forecasting application (L63 case-study)

https://github.com/CIA-Oceanix/DLOA2023/blob/main/lectures/notebooks/notebook PytorchLightning Forecasting L63 students.ipynb

Lecture. #3 Things to know (RNN)

- Recurrent Neural Network
- LSTM
- Unfloded and folded representations

Physics-informed/theoryguided networks

General question

How to exploit physical knowledge in the design of neural networks?

Bridging physics & Al: a broader picture

Physical model

$$\frac{\partial u}{\partial t} + \langle \nabla u, v \rangle = \kappa \Delta u$$

Representation learning

Trainable representation

Making the most of AI and Physics Theory

- Model-Driven/Theory-Guided & Data-Constrained schemes
- Data-Driven & Physics-Aware schemes (eg, Ouala et al., 2019)

15

Bridging Physics & Al: a broader picture

Physics-informed & Data-constrained

Data-driven & Physics-aware

Bridging physics & Al: a broader picture

Physical model

$$\frac{\partial u}{\partial t} + \langle \nabla u, v \rangle = \kappa \Delta u$$

Representation learning

Trainable representation

Making the most of AI and Physics Theory

- Model-Driven/Theory-Guided & Data-Constrained schemes
- Data-Driven & Physics-Aware schemes (eg, Ouala et al., 2019)

17

An illustration through L63 dynamics: numerical experiments (Fablet et al., 2018)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sigma \left(y(t) - x(t) \right)$$

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = x(t) \left(\rho - z(t) \right) - y(t)$$

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = x(t) y(t) - \beta z(t)$$
Lorenz-63 equations

Associated Euler integration scheme $d_t X(t) = F_{\theta} \left(X(t) \right)$

An illustration through L63 dynamics: numerical experiments (Fablet et al., 2018)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sigma\left(y(t) - x(t)\right)$$

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = x(t)\left(\rho - z(t)\right) - y(t)$$

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = x(t)y(t) - \beta z(t)$$
Lorenz-63 equations

Generalization to higher-order integration schemes (eg, RK4)

$$d_t X(t) = F_{\theta} \left(X(t) \right)$$

$$X(t+\delta) = X(t) + \sum_i \beta_i k_i$$
with $k_i = F_{\theta} \left(X(t) + \delta \alpha_i k_{i-1} \right)$

NB: Same number of trainable model parameters as the Euler-based architecture

Implementation for L63 dynamics

https://github.com/CIA-Oceanix/DLOA2023/blob/main/lectures/notebooks/notebook_PytorchLightning_Forecasting_L63_students.ipynb

An illustration through L63 dynamics: numerical experiments (Fablet et al., 2018)

Forecasting experiments					
Noise-free training data					
Forecasting time step	t _o +h	t ₀ +4h	t ₀ +8h		
Analog forecasting	<10-6	0.002	0.005		
Sparse regression	<10-6				
MLP	<10-6	0.018	0.044		
Bi-NN(4)	<10-6	<10-6	<10-6		
Noisy training data (σ =0.5)					
Forecasting time step	t _o +h	t ₀ +4h	t ₀ +8h		
Analog forecasting	<10-6	2.01	2.2		
Bi-NN(4)	<10-6	0.054	0.14		
-					

Assimilation experiment (1 obs. every 8 time steps)					
Noise standard deviation in training data		-	1		
True model	<u>0.50</u>	-	-		
Analog forecasting	0.65	1.17	1.81		
Bi-NN(4)	0.60	0.75	0.86		

Physics-informed neural architectures

PINNS for ODEs/PDEs (from Cai et al., 2021)

Identification of ODEs (Ouala et al., 2021)

Other physics-informed representation: Hamiltonian representations [eg, Greydanus et al., 2019], Fourier representations [eg, Li et al., 2021]

Variational data assimilation (Fablet e tal., 2021)

