(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 107181513 B (45) 授权公告日 2021. 01. 22

- (21) 申请号 201610140712.2
- (22)申请日 2016.03.11
- (65) 同一申请的已公布的文献号 申请公布号 CN 107181513 A
- (43) 申请公布日 2017.09.19
- (73) 专利权人 电信科学技术研究院 地址 100191 北京市海淀区学院路40号
- (72) **发明人** 李辉 高秋彬 陈润华 陈文洪 塔玛拉卡•拉盖施
- (74) 专利代理机构 北京银龙知识产权代理有限 公司 11243

代理人 黄灿 刘伟

(51) Int.CI.

H04B 7/0456 (2017.01) *H04B* 7/06 (2006.01)

(56) 对比文件

- US 2014226702 A1,2014.08.14
- CN 103220080 A, 2013.07.24
- WO 2012043202 A1,2012.04.05
- CN 105027463 A, 2015.11.04
- CN 104811229 A,2015.07.29
- CN 102868477 A, 2013.01.09
- US 2013022144 A1,2013.01.24
- US 2016013845 A1,2016.01.14

审查员 倪静

权利要求书6页 说明书26页 附图4页

(54) 发明名称

一种信道状态信息的反馈方法及装置

(57) 摘要

本发明提供了一种信道状态信息的反馈方法及装置,反馈方法包括:在第一预编码矩阵集合中确定第一预编码矩阵,并确定与第一预编码矩阵集合中确定第一预编码矩阵索引值;在第二预编码矩阵集合中确定第二预编码矩阵,并确定与第二预编码矩阵对应的第二预编码矩阵索引值,其中,第二预编码矩阵包括用于对每个天线分组中的波束选择的波束选择部分和用于对多个天线分组间的相位调整的相位调整部分;向接入设备反馈第一预编码矩阵索引值和第二预编码矩阵索引值和第二预编码矩阵索引值,由接入设备使用第一预编码矩阵索引值和第二预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵。

1.一种信道状态信息的反馈方法,其特征在于,所述反馈方法包括:

在第一预编码矩阵集合中确定第一预编码矩阵W₁,并确定与第一预编码矩阵W₁对应的第一预编码矩阵索引值,其中,所述第一预编码矩阵W₁由天线阵列的多个天线分组所使用的波束分组构成;

在第二预编码矩阵集合中确定第二预编码矩阵W₂,并确定与第二预编码矩阵W₂对应的第二预编码矩阵索引值,其中,所述第二预编码矩阵W₂包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组间的相位进行调整的相位调整部分:

向接入设备反馈所述第一预编码矩阵索引值和第二预编码矩阵索引值,由所述接入设备使用所述第一预编码矩阵索引值和第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W;

所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & & 0 \\ & \mathbf{X}_1 & & & \\ & & \mathbf{X}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 X_i × X_i 的矩阵,每一列表示一个波束方向, X_i 表示第i个分组内的天线单元数目, X_i = $X_$

第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个 $(\sum_{i=0}^{M-1}L_i)\times r$ 的矩阵,r表示预编码矩阵W的秩。

2.根据权利要求1所述的反馈方法,其特征在于,所述第二预编码矩阵W2的构造如下:

表示为r1,定义第i个天线分组的波束选择向量为:

$$\mathbf{E}_i = \begin{bmatrix} \mathbf{e}_{i,0} & \mathbf{e}_{i,1} & \cdots & \mathbf{e}_{i,r_1-1} \end{bmatrix}$$

其中, $e_{i,j}$ 为一个长度为 L_i 的列选择向量,用于从波束分组 X_i 中选择一个波束或者将 X_i 中的波束合并为一个波束, $j=0,1,\dots r_1-1$; W_p 表示相位调整部分, W'_2 中选择r列作为第二预编码矩阵 W_2 。

3.根据权利要求2所述的反馈方法,其特征在于,

若 \mathbf{r}_1 个波束之间相互正交,则 $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{I}_{r_1}$,其中, \mathbf{U} 为一个正交矩阵,包含 \mathbf{r}_2 列,每列为 \mathbf{M} 个相位调整因子,所述 \mathbf{r}_2 为大于等于 $\frac{r}{r_1}$ 的最小整数, \mathbf{I}_{r_1} 为一个 $\mathbf{r}_1 \times \mathbf{r}_1$ 的单位矩阵;

$$\mathbf{W}_p = \mathbf{U} \otimes \mathbf{V}$$

其中,U为一个正交矩阵,用于上级分组之间的相位调整,包含 \mathbf{r}_2 列,每列为 $\frac{M}{r_1}$ 个相位调

整因子,所述 r_2 为大于等于 $\frac{r}{r}$ 的最小整数;

V用于一个上级分组内的天线分组间的相位调整,其结构为

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_{r_1}^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_{r_1}^{(2)} & \cdots & \mathbf{V}'(:,r_1) \otimes \mathbf{e}_{r_1}^{(r_1)} \end{bmatrix}$$

其中,V'为一个正交矩阵,其包含 r_1 列,每列为 r_1 个相位调整因子,V'(:,i)表示矩阵的第i列, $\mathbf{e}_{r_i}^{(i)}$ 表示单位矩阵 $\mathbf{I}_{r_i \times r_i}$ 的第i列。

- 4.根据权利要求1所述的反馈方法,其特征在于,所述天线阵列的分组数M随着预编码矩阵W的秩r而变化。
 - 5.根据权利要求1所述的反馈方法,其特征在于,所述反馈方法还包括:

获取信道测量结果,根据所述信道测量结果,确定码本的码本参数,其中,将所述第一预编码矩阵 W_1 的集合称为第一码本,将所述第二预编码矩阵 W_2 的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本;

将所述码本参数反馈给所述接入设备,或者,根据预先确定的码本参数与一个或多个 参数的映射关系,确定与所述码本参数对应的一个或多个参数,将所述参数反馈给所述接 入设备。

6.根据权利要求1所述的反馈方法,其特征在于,所述反馈方法还包括:

接收所述接入设备发送的一个或多个参数;

根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述一个或多个参数对应的码本参数,或者接收所述接入设备发送的全部码本参数。

7.根据权利要求5或6所述的反馈方法,其特征在于,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W1中天线分组内使用的波束组的构成方式中的一种或多种组合。

8.一种信道状态信息的反馈方法,其特征在于,所述反馈方法还包括:

接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩阵 W_1 对应,所述第一预编码矩阵 W_1 由天线阵列的多个天线分组所使用的波束分组构成;所述第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩阵 W_2 对应,所述第二预编码矩阵 W_2 包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组件的相位进行调整的相位调整部分;

通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和 第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵 W;

所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & & 0 \\ & \mathbf{X}_1 & & & \\ & & \mathbf{X}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 N_i × L_i 的矩阵,每一列表示一个波束方向, N_i 表示第i个分组内的天线单元数目, $N=\sum_{i=0}^{M-1}N_i$ 为天线阵列总的天线单元数, L_i 表示第i个天线分组所使用的波束分组中包含的波束个数:

第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个 $(\sum_{i=1}^{M-1}L_i)\times r$ 的矩阵,r表示预编码矩阵W的秩。

9.根据权利要求8所述的反馈方法,其特征在于,所述反馈方法还包括:

构造所述第一预编码矩阵 W_1 的集合得到第一码本,构造所述第二预编码矩阵 W_2 的集合得到第二码本;

通过所述第一码本和第二码本中的矩阵的运算得到码本。

10.根据权利要求9所述的反馈方法,其特征在于,所述反馈方法还包括:

将所述码本的码本参数告知所述终端,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W1中天线分组内使用的波束组的构成方式中的一种或多种组合。

11.一种信道状态信息的反馈装置,其特征在于,所述反馈装置包括:

第一确定模块,用于在第一预编码矩阵集合中确定第一预编码矩阵W1,并确定与第一预编码矩阵W1对应的第一预编码矩阵索引值,其中,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;

第二确定模块,用于在第二预编码矩阵集合中确定第二预编码矩阵W2,并确定与第二预

编码矩阵W2对应的第二预编码矩阵索引值,其中,所述第二预编码矩阵W2包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组间的相位进行调整的相位调整部分;

第一反馈模块,用于向接入设备反馈所述第一预编码矩阵索引值和第二预编码矩阵索引值,由所述接入设备使用所述第一预编码矩阵索引值和第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W;

所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & & 0 \\ & \mathbf{X}_1 & & & \\ & & \mathbf{X}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 N_i × L_i 的矩阵,每一列表示一个波束方向, N_i 表示第i个分组内的天线单元数目, $N=\sum_{i=0}^{M-1}N_i$ 为天线阵列总的天线单元数, L_i 表示第i个天线分组所使用的波束分组中包含的波束个数;

第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个 $(\sum_{i=1}^{M-1}L_i)\times r$ 的矩阵,r表示预编码矩阵W的秩。

12.根据权利要求11所述的反馈装置,其特征在于,所述第二预编码矩阵W2的构造如下:

$$\mathbf{W}_2' = \begin{bmatrix} \mathbf{E}_0 & & & & 0 \\ & \mathbf{E}_1 & & \\ & & \mathbf{E}_2 & \\ & & & \ddots & \\ 0 & & & \mathbf{E}_{M-1} \end{bmatrix} \cdot \mathbf{W}_p$$
,其中
$$\begin{bmatrix} \mathbf{E}_0 & & & 0 \\ & \mathbf{E}_1 & & \\ & & \mathbf{E}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{E}_{M-1} \end{bmatrix}$$
表示波束选择部分,从每个天线分组中选择相同个数的波束,

表示为r1,定义第i个天线分组的波束选择向量为:

$$\mathbf{E}_i = \begin{bmatrix} \mathbf{e}_{i,0} & \mathbf{e}_{i,1} & \cdots & \mathbf{e}_{i,r_1-1} \end{bmatrix}$$

其中, $e_{i,j}$ 为一个长度为 L_i 的列选择向量,用于从波束分组 X_i 中选择一个波束或者将 X_i 中的波束合并为一个波束, $j=0,1,\dots,r_1-1$; W_0 表示相位调整部分, W'_2 中选择r列作为第

二预编码矩阵W2。

13.根据权利要求12所述的反馈装置,其特征在于,

若 \mathbf{r}_1 个波束之间相互正交,则 $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{I}_{r_1}$,其中,U为一个正交矩阵,包含 \mathbf{r}_2 列,每列为M个相位调整因子,所述 \mathbf{r}_2 为大于等于 $\frac{r}{r_1}$ 的最小整数, \mathbf{I}_{r_1} 为一个 $\mathbf{r}_1 \times \mathbf{r}_1$ 的单位矩阵;

$$\mathbf{W}_p = \mathbf{U} \otimes \mathbf{V}$$

其中,U为一个正交矩阵,用于上级分组之间的相位调整,包含 r_2 列,每列为 $\frac{M}{r_1}$ 个相位调整因子,所述 r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数;

V用于一个上级分组内的天线分组间的相位调整,其结构为

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_{r_1}^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_{r_1}^{(2)} & \cdots & \mathbf{V}'(:,r_1) \otimes \mathbf{e}_{r_1}^{(r_1)} \end{bmatrix}$$

其中,V'为一个正交矩阵,其包含 r_1 列,每列为 r_1 个相位调整因子,V'(:,i)表示矩阵的第i列, $\mathbf{e}_{r}^{(i)}$ 表示单位矩阵 \mathbf{I}_{r} **的第i列。

- 14.根据权利要求11所述的反馈装置,其特征在于,所述天线阵列的分组数M随着预编码矩阵W的秩r而变化。
 - 15.根据权利要求11所述的反馈装置,其特征在于,所述反馈装置还包括:

第一码本参数处理模块,用于获取信道测量结果,根据所述信道测量结果,确定码本的码本参数;将所述码本参数反馈给所述接入设备,或者,根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述码本参数对应的一个或多个参数,将所述参数反馈给所述接入设备,其中,将所述第一预编码矩阵W1的集合称为第一码本,将所述第二预编码矩阵W2的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本。

16.根据权利要求11所述的反馈装置,其特征在于,所述反馈装置还包括:

第二码本参数处理模块,用于接收所述接入设备发送的一个或多个参数;根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述一个或多个参数对应的码本参数,或者接收所述接入设备发送的全部码本参数。

17.根据权利要求15或16所述的反馈装置,其特征在于,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、Wi中天线分组内使用的波束组的构成方式中的一种或多种组合。

18.一种信道状态信息的反馈装置,其特征在于,包括:所述反馈装置包括:

第二反馈模块,用于接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩阵W1对应,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;所述第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩

阵W₂对应,所述第二预编码矩阵W₂包括用于对每个天线分组中的波束分组进行波束选择的 波束选择部分和用于对多个天线分组件的相位进行调整的相位调整部分:

预编码矩阵选择模块,用于通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W;

所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & & 0 \\ & \mathbf{X}_1 & & & \\ & & \mathbf{X}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 N_i × L_i 的矩阵,每一列表示一个波束方向, N_i 表示第i个分组内的天线单元数目, $N=\sum_{i=0}^{M-1}N_i$ 为天线阵列总的天线单元数, L_i 表示第i个天线分组所使用的波束分组中包含的波束个数;

第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个 $(\sum_{i=1}^{M-1}L_i)\times r$ 的矩阵,r表示预编码矩阵W的秩。

19.根据权利要求18所述的反馈装置,其特征在于,所述反馈装置还包括:

第三反馈模块,用于将码本的码本参数告知所述终端,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W1中天线分组内使用的波束组的构成方式中的一种或多种组合,其中,将所述第一预编码矩阵W1的集合称为第一码本,将所述第二预编码矩阵W2的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本。

一种信道状态信息的反馈方法及装置

技术领域

[0001] 本发明涉及通信技术领域,尤其涉及一种信道状态信息的反馈方法及装置。

背景技术

[0002] 在Rel-10版本的LTE (Long Term Evolution,长期演进)系统中,针对基站端8天线引入了两级码本。在Rel-12版本中,针对基站端4天线也增强为两级码本。在Rel-13版本中,基站端采用了FD MIMO (Full Dimension Multi-Input-Multi-Output,全维度多入多出技术)天线阵列(参见图1和图2),天线端口增加至16,且可以一维或者二维排列。

[0003] 基于此天线阵列的配置,码本的设计在原有的4天线和8天线端口的两级码本的基础上扩展至二维的两级码本,这种码本结构可以直接扩展至更高的天线端口数目。

[0004] 在基于线性预编码的多天线系统中,接收机根据信道信息从预先定义好的由预编码矩阵构成的集合中选择合适的预编码矩阵,将选中的预编码矩阵在集合中的索引反馈给发射机,该集合称为码本。发射机根据接收到的索引确定对应的预编码矩阵,并用其对发送信号进行适当的预处理,以提高信息传输的有效性和可靠性。码本是实现这一过程的必要元素。码本设计需要使其尽可能地匹配信道分布特性、最小化码本量化带来的性能损失。

[0005] 在实现本发明过程中,发明人发现现有技术中至少存在如下问题:以上码本结构将天线阵列作为一个整体进行设计,未考虑天线的阵列的不同部分的信道间差异。基于此码本进行信道状态信息反馈时,由于信道的量化不够精确,将引入一定的性能损失。

发明内容

[0006] 为了解决上述技术问题,本发明的实施例提出一种信道状态信息的反馈方法及装置,基于天线阵列分组的方式,通过将天线阵列划分为更小的天线阵列分组,并采用两级反馈的方式,能够更加精确的量化信道并提升系统性能。

[0007] 依据本发明的一个方面,提供了一种信道状态信息的反馈方法,所述反馈方法包括:在第一预编码矩阵集合中确定第一预编码矩阵W1,并确定与第一预编码矩阵W1对应的第一预编码矩阵索引值,其中,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;在第二预编码矩阵集合中确定第二预编码矩阵W2,并确定与第二预编码矩阵W2对应的第二预编码矩阵索引值,其中,所述第二预编码矩阵W2包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组间的相位进行调整的相位调整部分;向接入设备反馈所述第一预编码矩阵索引值和第二预编码矩阵索引值,由所述接入设备使用所述第一预编码矩阵索引值和第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W。

[0008] 可选地,

[0009] 所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & 0 \\ & \mathbf{X}_1 & & \\ & & \mathbf{X}_2 & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

[0010] 其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 N_i × L_i 的矩阵,每一列表示一个波束方向, N_i 表示第i个分组内的天线单元数目, $N=\sum_{i=0}^{M-1}N_i$ 为天线阵列总的天线单元数, L_i 表示第i个天线分组所使用的波束分组中

包含的波束个数;

[0011] 第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个($\sum_{i}^{M-1}L_i$)×r的矩阵,r表示预编码矩阵W的秩。

[0012] 可选地,

[0013] 所述第二预编码矩阵W2的构造如下:

[0014]
$$\mathbf{W}_2' = \begin{bmatrix} \mathbf{E}_0 & & & & 0 \\ & \mathbf{E}_1 & & & \\ & & \mathbf{E}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{E}_{M-1} \end{bmatrix} \cdot \mathbf{W}_p$$
,其中

波束,表示为r1,定义第i个天线分组的波束选择向量为:

[0016]
$$\mathbf{E}_i = \begin{bmatrix} \mathbf{e}_{i,0} & \mathbf{e}_{i,1} & \cdots & \mathbf{e}_{i,r,-1} \end{bmatrix}$$

[0017] 其中, $e_{i,j}$ 为一个长度为 L_i 的列选择向量,用于从波束分组 X_i 中选择一个波束或者将 X_i 中的波束合并为一个波束, $j=0,1,\dots r_1-1$; W_p 表示相位调整部分, W'_2 中选择r列作为第二预编码矩阵 W_2 。

[0018] 可选地,

[0019] 若 \mathbf{r}_1 个波束之间相互正交,则 $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{I}_n$,其中, \mathbf{U} 为一个正交矩阵,包含 \mathbf{r}_2 列,每列为M个相位调整因子,所述 \mathbf{r}_2 为大于等于 $\frac{r}{r_1}$ 的最小整数, \mathbf{I}_n 为一个 $\mathbf{r}_1 \times \mathbf{r}_1$ 的单位矩阵;

[0021] $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{V}$

[0022] 其中,U为一个正交矩阵,用于上级分组之间的相位调整,包含 r_2 列,每列为 $\frac{M}{r_1}$ 个相

位调整因子,所述 r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数;

[0023] V用于一个上级分组内的天线分组间的相位调整,其结构为

[0024]
$$\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_{r_1}^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_{r_1}^{(2)} & \cdots & \mathbf{V}'(:,r_1) \otimes \mathbf{e}_{r_1}^{(r_1)} \end{bmatrix}$$

[0025] 其中,V'为一个正交矩阵,其包含 r_1 列,每列为 r_1 个相位调整因子,V'(:,i)表示矩阵的第i列, $\mathbf{e}_{\eta}^{(i)}$ 表示单位矩阵 $\mathbf{I}_{\eta \times \eta}$ 的第i列。

[0026] 可选地,所述天线阵列的分组数M随着预编码矩阵W的秩r而变化。

[0027] 可选地,所述反馈方法还包括:

[0028] 获取信道测量结果,根据所述信道测量结果,确定码本的码本参数,其中,将所述第一预编码矩阵 W_1 的集合称为第一码本,将所述第二预编码矩阵 W_2 的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本;

[0029] 将所述码本参数反馈给所述接入设备,或者,根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述码本参数对应的一个或多个参数,将所述参数反馈给所述接入设备。

[0030] 可选地,所述反馈方法还包括:接收所述接入设备发送的一个或多个参数;根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述一个或多个参数对应的码本参数,或者接收所述接入设备发送的全部码本参数。

[0031] 可选地,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、Wi中天线分组内使用的波束组的构成方式中的一种或多种组合。

[0032] 依据本发明的另一个方面,还提供了一种信道状态信息的反馈方法,所述反馈方法还包括:接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩阵W1对应,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;所述第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩阵W2对应,所述第二预编码矩阵W2包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组件的相位进行调整的相位调整部分;通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W。

[0033] 可选地,所述反馈方法还包括:构造所述第一预编码矩阵W1的集合得到第一码本,构造所述第二预编码矩阵W2的集合得到第二码本;通过所述第一码本和第二码本中的矩阵的运算得到码本。

[0034] 可选地,所述反馈方法还包括:

[0035] 将所述码本的码本参数告知所述终端,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数N_i、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W₁中天线分组内使用的波束组的构成方式中的一种或多种组合。

[0036] 依据本发明的又一个方面,还提供了一种信道状态信息的反馈装置,所述反馈装置包括:第一确定模块,用于在第一预编码矩阵集合中确定第一预编码矩阵W1,并确定与第一预编码矩阵W1对应的第一预编码矩阵索引值,其中,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;第二确定模块,用于在第二预编码矩阵集合中确定第二预编码矩阵W2,并确定与第二预编码矩阵W2对应的第二预编码矩阵索引值,其中,所述第二预编码矩阵W2包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组间的相位进行调整的相位调整部分;第一反馈模块,用于向接入设备反馈所述第一预编码矩阵索引值和第二预编码矩阵索引值,由所述接入设备使用所述第一预编码矩阵索引值和第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵索引值和第二预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W。

[0037] 可选地,

[0038] 所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & 0 \\ & \mathbf{X}_1 & & \\ & & \mathbf{X}_2 & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

[0039] 其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 N_i × L_i 的矩阵,每一列表示一个波束方向, N_i 表示第i个分组内的天线单元数目, $N=\sum_{i=0}^{M-1}N_i$ 为天线阵列总的天线单元数, L_i 表示第i个天线分组所使用的波束分组中包含的波束个数;

[0040] 第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个 $(\sum_{i=1}^{M-1}L_i)\times r$ 的矩阵,r表示预编码矩阵W的秩。

[0041] 可选地,所述第二预编码矩阵W2的构造如下:

$$\begin{bmatrix} \mathbf{0042} \end{bmatrix} \quad \mathbf{W}_2' = \begin{bmatrix} \mathbf{E}_0 & & & & 0 \\ & \mathbf{E}_1 & & & \\ & & \mathbf{E}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{E}_{M-1} \end{bmatrix} \cdot \mathbf{W}_p$$
,其中

波束,表示为r1,定义第i个天线分组的波束选择向量为:

$$[0044] \quad \mathbf{E}_{i} = \begin{bmatrix} \mathbf{e}_{i,0} & \mathbf{e}_{i,1} & \cdots & \mathbf{e}_{i,r_{i-1}} \end{bmatrix}$$

[0045] 其中, $e_{i,j}$ 为一个长度为 L_i 的列选择向量,用于从波束分组 X_i 中选择一个波束或者将 X_i 中的波束合并为一个波束, $j=0,1,\dots,r_1-1;W_p$ 表示相位调整部分, W'_2 中选择r列作为第二预编码矩阵 W_2 。

[0046] 可选地,若 r_1 个波束之间相互正交,则 $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{I}_{r_1}$,其中, \mathbf{U} 为一个正交矩阵,包含 r_2 列,每列为M个相位调整因子,所述 r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数, \mathbf{I}_{r_1} 为一个 $r_1 \times r_1$ 的单位矩阵:

[0048]
$$\mathbf{W}_p = \mathbf{U} \otimes \mathbf{V}$$

[0049] 其中,U为一个正交矩阵,用于上级分组之间的相位调整,包含 r_2 列,每列为 $\frac{M}{r_1}$ 个相

位调整因子,所述 r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数;

[0050] V用于一个上级分组内的天线分组间的相位调整,其结构为

[0051]
$$\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_{\eta}^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_{\eta}^{(2)} & \cdots & \mathbf{V}'(:,r_1) \otimes \mathbf{e}_{\eta}^{(r_1)} \end{bmatrix}$$

[0052] 其中,V'为一个正交矩阵,其包含 r_1 列,每列为 r_1 个相位调整因子,V'(:,i)表示矩阵的第i列, $\mathbf{e}_n^{(i)}$ 表示单位矩阵 $\mathbf{I}_{n \times n}$ 的第i列。

[0053] 可选地,所述天线阵列的分组数M随着预编码矩阵W的秩r而变化。

[0054] 可选地,所述反馈装置还包括:

[0055] 第一码本参数处理模块,用于获取信道测量结果,根据所述信道测量结果,确定码本的码本参数;将所述码本参数反馈给所述接入设备,或者,根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述码本参数对应的一个或多个参数,将所述参数反馈给所述接入设备,其中,将所述第一预编码矩阵W1的集合称为第一码本,将所述第二预编码矩阵W2的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本。

[0056] 可选地,所述反馈装置还包括:第二码本参数处理模块,用于接收所述接入设备发送的一个或多个参数;根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述一个或多个参数对应的码本参数,或者接收所述接入设备发送的全部码本参数。

[0057] 可选地,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数N_i、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W₁中天线分组内使用的波束组的构成方式中的一种或多种组合。

[0058] 依据本发明的又一个方面,还提供了一种信道状态信息的反馈装置,包括:所述反馈装置包括:第二反馈模块,用于接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩阵W1对应,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;所述第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩阵W2对应,所述第二预编码矩阵W2包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组件的相位进行调整的相位调整部分;预编码矩阵选择模块,用于通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W。

[0059] 可选地,所述反馈装置还包括:第三反馈模块,用于将码本的码本参数告知所述终端,所述码本参数包括:天线阵列的分组数M、分组方式、每个分组内的天线单元数 N_i 、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、 W_1 中天线分组内使用的波束组的构成方式中的一种或多种组合,其中,将所述第一预编码矩阵 W_1 的集合称为第一码本,将所述第二预编码矩阵 W_2 的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本。

[0060] 本发明的有益效果是:将天线阵列划分为更小的天线阵列分组,两级码本分别实现组内的波束选择及组间的相位调整,并可以分别反馈,能够更加精确的量化信道并提升系统性能。此外分组的数目可随数据传输流数而变化。

附图说明

[0061] 图1为Re1-13版本中的二维天线端口中12天线端口示意图;

[0062] 图2为Re1-13版本中的二维天线端口中16天线端口示意图;

[0063] 图3为本发明的第一实施例中信道状态信息的反馈方法的流程图:

[0064] 图4A为本发明的第一实施例中天线分组中单极化天线阵列分组的示意图;

[0065] 图4B为本发明的第一实施例中天线分组中双极化天线阵列分组的示意图:

[0066] 图5为本发明的第二实施例中信道状态信息的反馈方法的流程图;

[0067] 图6为本发明的第三实施例中信道状态信息的反馈装置的框图;

[0068] 图7为本发明的第四实施例中信道状态信息的反馈装置的框图。

具体实施方式

[0069] 本发明的实施例中,终端(UE)可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备(终端)、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的CPE(Customer Premise Equipment,客户终端设备)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。接入设备可以是基站,

当然可以理解的是,上述基站的形式不限,可以是宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等。

[0070] 第一实施例

[0071] 参见图3,图中示出了信道状态信息的反馈方法,该方法的执行主体可以是终端, 具体步骤如下:

[0072] 步骤S301、在第一预编码矩阵集合中确定第一预编码矩阵 W_1 ,并确定与第一预编码矩阵 W_1 对应的第一预编码矩阵索引值($i_{1,1}$, $i_{1,2}$),其中,所述第一预编码矩阵 W_1 由天线阵列的多个天线分组所使用的波束分组构成:

[0073] 步骤S302、在第二预编码矩阵集合中确定第二预编码矩阵W₂,并确定与第二预编码矩阵W₂对应的第二预编码矩阵索引值(i₂),其中,所述第二预编码矩阵W₂包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组间的相位进行调整的相位调整部分;

[0074] 可选地,第一预编码矩阵 W_1 和第二预编码矩阵 W_2 可以采用不同的反馈周期及反馈 频域颗粒度,例如,第一预编码矩阵 W_1 描述信道的长程特性,采用宽带,长时反馈;所述第二 预编码矩阵 W_2 描述信道的短时特性,采用窄带,短时反馈。

[0075] 步骤S303、向接入设备反馈第一预编码矩阵索引值 $(i_{1,1},i_{1,2})$ 和第二预编码矩阵索引值 (i_2) ,由接入设备使用第一预编码矩阵索引值 (i_1) ,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W。

[0076] 需要说明的是,在本实施例中将具有以上形式的一组预编码矩阵构成的集合称为码本。可选地,在本实施例中,该反馈方法还包括:码本的码本参数配置步骤,具体方式如下:

[0077] 获取信道测量结果,根据信道测量结果,确定码本的码本参数;将码本参数反馈给接入设备;或者

[0078] 获取信道测量结果,根据信道测量结果,确定码本参数,然后根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述码本参数对应的一个或多个参数,将参数反馈给所述接入设备。

[0079] 上述码本参数包括:天线分组的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、Wi中天线分组内使用的波束组的构成方式(波束组配置方式)中的一种或多种组合。上述映射关系可以是:码本参数和天线端口数绑定的映射关系,或者码本参数和天线端口数及数据流数目绑定的映射关系。

[0080] 下面结合具体场景介绍本发明的第一实施例。

[0081] 将天线阵列进行分组,参见图4A,图中示出了单极化天线阵列的分组,图中一个虚线框内的天线单元为一个分组。参见图4B,图中示出了双极化天线阵列的分组,图中一个虚线框内的天线单元为两个分组,每个极化方向是一个分组。以下将天线阵列的分组数表示为M。

[0082] 接入设备端使用的预编码矩阵W具有如下形式:

$$[0083] \quad \mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & 0 \\ & \mathbf{X}_1 & & \\ & & \mathbf{X}_2 & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

[0084] 其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0, $i=0,1,\cdots,M-1,M$ 表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组,波束分组矩阵 X_i 为一个 X_i × L_i 的矩阵。 X_i 表示第i个分组内的天线单元数目,

 $N = \sum_{i=0}^{M-1} N_i$ 为天线阵列总的天线单元数, L_i 表示第i 个天线分组所使用的波束分组中包含的

波束个数。较优的,波束分组矩阵X_i可以由一组DFT (离散傅里叶变换)向量构成,每个DFT向量表示一个波束方向。

[0085] 第二预编码矩阵W₂用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵。

[0086] 所述第二预编码矩阵W2的构造如下:

$$\begin{bmatrix} \mathbf{E}_0 & & & & & & & & \\ & & \mathbf{E}_1 & & & & \\ & & & \mathbf{E}_2 & & & \\ & & & & \ddots & \\ & & & & \mathbf{E}_{M-1} \end{bmatrix} \cdot \mathbf{W}_p, \\ \downarrow \mathbf{W}_p, \\ \downarrow \mathbf{E}_0 & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

波束,表示为r₁,定义第i个天线分组的波束选择向量为:

[0089]
$$\mathbf{E}_i = \begin{bmatrix} \mathbf{e}_{i,0} & \mathbf{e}_{i,1} & \cdots & \mathbf{e}_{i,r,-1} \end{bmatrix}$$

[0090] 其中, $e_{i,j}$ 为一个长度为 L_i 的列选择向量,用于从波束分组 X_i 中选择一个波束或者将 X_i 中的波束合并为一个波束, $j=0,1,\dots$ 1; W_p 表示相位调整部分, W'_2 中选择r列作为第二预编码矩阵 W_2 。一种可选的实现方式为 $e_{i,j}$ 中仅有一个元素为1,其余均为零。

[0091] a) 若r₁个波束相互正交

[0092] 定义分组间的相位调整为

[0093]
$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_0 & \mathbf{u}_1 & \cdots & \mathbf{u}_{r_{s-1}} \end{bmatrix}$$

[0094] 其中, r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数, u_i 表示分组间的相位调整因子,用于调整各个

分组之间的相位关系,其为一个长度为M的列向量,且要求U中的各个列向量之间相互正交,用以保证数据流之间无干扰。一种可选的实现方式为U使用Householder变换生成。这样 W'_2 可以表示为

$$[0095] \quad \mathbf{W}_{2}' = \begin{bmatrix} \mathbf{E}_{0} & & & & 0 \\ & \mathbf{E}_{1} & & & \\ & & \mathbf{E}_{2} & & \\ & & & \ddots & \\ 0 & & & \mathbf{E}_{M-1} \end{bmatrix} \cdot \left(\mathbf{U} \otimes \mathbf{I}_{r_{1}} \right)$$

[0096] 其中 \mathbf{I}_{r_1} 为一个 $\mathbf{r}_1 \times \mathbf{r}_1$ 的单位矩阵。从 \mathbf{W}'_2 中选择 \mathbf{r} 列作为预编码矩阵中的 \mathbf{W}_2 ,一种方法是 \mathbf{W}_2 由 \mathbf{W}'_2 中的前 \mathbf{r} 列构成。同时需要注意,在计算最终的预编码矩阵时,需要对 $\mathbf{W}_1 \bullet \mathbf{W}_2$ 的结果进行归一化。

[0097] 如果 $r_1=1$,则

$$[0098] \qquad \mathbf{W}_2' = \begin{bmatrix} \mathbf{E}_0 & & & & 0 \\ & \mathbf{E}_1 & & & \\ & & \mathbf{E}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{E}_{M-1} \end{bmatrix} \cdot \mathbf{U}$$

[0099] 进一步的,如果有 $E_0=E_1=\cdots=E_{M-1}$,则有

[0100] $\mathbf{W}_2 = \mathbf{U} \otimes \mathbf{E}_0$

[0101] b) 若r₁个波束不正交,可以选择完全相同的波束,或者不同的波束。

[0102] 若 r_1 个波束之间非正交,此时 r_1 个波束可以相同,也可以不同,并需要满足M能够被 r_1 整除。此时将M个天线分组中的每 r_1 个分组构成一个更大的分组,称为上级分组。这样共有 $\frac{M}{r_1}$ 个上级分组。较优的,每个上级分组内的每个天线分组选择相同的 r_1 个波束。有

[0103]
$$\mathbf{W}_p = \mathbf{U} \otimes \mathbf{V}$$

[0104] 其中,U为一个正交矩阵,用于上级分组之间的相位调整,包含 r_2 列,每列为 $\frac{M}{r}$ 个

相位调整因子。所述 r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数。v用于一个上级分组内的天线分组间的相位调整,其结构为

[0105]
$$\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_{r_1}^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_{r_1}^{(2)} & \cdots & \mathbf{V}'(:,r_1) \otimes \mathbf{e}_{r_1}^{(r_1)} \end{bmatrix}$$

[0106] 其中,V'为一个正交矩阵,其包含 r_1 列,每列为 r_1 个相位调整因子。V'(:,i)表示矩阵的第i列, $\mathbf{e}_n^{(i)}$ 表示单位矩阵 $\mathbf{I}_{\eta \times \eta}$ 的第i列。

[0107] 根据上述内容的介绍,预编码矩阵的秩r由两部分构成,一部分是天线分组中选择的波束数r₁,另一部分是各个分组之间构成的数据流数r₂。

 个数据流的并行传输。通常分组内天线间距较小,天线阵列的相关性较强,适合低秩传输; 而天线分组之间可以等效看作较大间距的天线阵列,相关性较弱,适合高秩传输,因此这种 配置较为典型。

整实现大于等于 $\frac{r}{r_1}$ 个数据流的传输。其余 r_1 , r_2 的组合方式与此类似。

[0111] 进一步,可选地,天线阵列的分组数M随着数据传输流数(即预编码矩阵的秩r)而变化。例如:一种变化关系需要满足 $M \ge r_2$,其中 r_2 为大于等于 $\frac{r}{r}$ 的最小整数。

[0112] 较优的,第一预编码矩阵 W_1 描述信道的长程特性,采用宽带,长时反馈;第二预编码矩阵 W_2 描述信道的短时特性,采用窄带,短时反馈。可选地,一种构造码本的方式是分别构造第一预编码矩阵 W_1 的集合和第二预编码矩阵 W_2 的集合,并通过这两个集合中的矩阵的运算得到码本。将第二预编码矩阵 W_1 构成的集合称为第一级码本,将第二预编码矩阵 W_2 构成的集合称为第二级码本。

[0113] 具体实施方式一:

[0114] 对于双极化天线阵列,一种典型的实施方式为 r_1 =1,所有天线分组内的天线单元数目相同,即 N_0 = N_1 =···= N_{M-1} 。

[0115] 一种可选方式,天线阵列的分组数与预编码矩阵的秩r之间的关系满足 $M=2\cdot \left|\frac{r+1}{2}\right|$,其中r为预编码矩阵的秩,M为天线阵列的分组数, $\lfloor \cdot \rfloor$ 表示向下取整。

[0116] 另一种可选方式,天线阵列的分组数与预编码矩阵的秩r之间的关系如表1所定义 [0117] 表1:天线阵列的分组数与预编码矩阵的秩之间的关系

[0118]

预编码矩阵的秩r	天线阵列的分组数M
1	2
2	2
3	4
4	4
5	8
6	8
7	8
8	8

[0119] 此外,较优的,假设每个天线分组中使用的波束均取自相同的波束向量集合,且每个波束分组X_i所包含的波束数L_i均相同。

[0120] W₁采用DFT向量构造如下:

[0121] i) 若每个天线阵列分组为二维天线阵列,则

[0122] 定义两个维度的两组DFT向量

[0123]
$$\mathbf{h}_{l} = \begin{bmatrix} 1 & e^{\frac{j2\pi l}{N_{h}O_{1}}} & \cdots & e^{\frac{j2\pi \cdot (N_{h}-1) \cdot l}{N_{h}O_{1}}} \end{bmatrix}^{T}, l = 0, 1, \cdots, N_{h}O_{1} - 1$$

[0124]
$$\mathbf{v}_{k} = \begin{bmatrix} 1 & e^{\frac{j2\pi k}{N_{v}O_{2}}} & \cdots & e^{\frac{j2\pi \cdot (N_{v}-1)k}{N_{v}O_{2}}} \end{bmatrix}^{T}, k = 0,1,\cdots,N_{v}O_{2} - 1$$

[0125] 其中, N_h 表示天线分组内第一维度的天线个数, N_v 表示天线分组内第二维度的天线个数,则有 N_i = N_h • N_v 。 0_1 与 0_2 分别表示第一维度的过采样因子和第二维度的过采样因子。两个维度DFT向量的Kronecker积构成一个波束方向,这样可以构成包含 N_h0_1 • N_v0_2 个向量的波束向量集合

[0126]
$$\{\mathbf{y}_{l,k} = \mathbf{v}_k \otimes \mathbf{h}_l, l = 0,1,\dots, N_k O_1 - 1, k = 0,1,\dots, N_v O_2 - 1\}$$

[0127] 将此向量集合每 L_i 个向量分为一组。一种分组方式,假设 L_i =4,每个波束组由二维索引 ($i_{1,1},i_{1,2}$) 定义,

$$\begin{bmatrix} \textbf{0128} \end{bmatrix} \quad \begin{bmatrix} \textbf{X}^{(i_{l_1},i_{l_2})} \\ = \begin{bmatrix} \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_2}},N,\mathcal{Q}_2)} \otimes \textbf{h}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_1}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_2}+l_i},N_{h}\mathcal{Q}_2} \otimes \textbf{h}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_1}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_{l_1}},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_1},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{\text{mod}\mathcal{Q}_{i_1},N_{h}\mathcal{Q}_2}, \textbf{v}_{\text{mod}\mathcal{Q}_{i_1},N_{h}\mathcal{Q}_2}, \textbf{v}$$

其中 $i_{1,1}=0,1,\cdots,N_h0_1/2-1,i_{1,2}=0,1,\cdots,N_v0_2/2-1$ 。整个波束向量集合分为 $(N_h0_1/2)$ • $(N_v0_2/2)$ 个波束组。因此对于每个天线阵列分组所使用的波束分组 X_i 均有

[0129]
$$\mathbf{X}_{i} \in \left\{ \mathbf{X}^{(i_{1,1},i_{1,2})}, i_{1,1} = 0,1,\cdots,N_{h}O_{1}/2-1, i_{1,2} = 0,1,\cdots,N_{v}O_{2}/2-1 \right\}$$

[0130] 若限制所有天线阵列分组的波束分组相同,即 $X_0 = X_1 = \cdots = X_{M-1}$,则第一级码本共包含 $(N_hO_1/2)$ • $(N_vO_2/2)$ 个 W_1 码字,进行信道状态信息反馈时,终端将波束组索引 $(i_{1,1},i_{1,2})$ 作为码字索引反馈给接入设备。否则,第一级码本共包含 $((N_hO_1/2)$ • $(N_vO_2/2))^M$ 个 W_1 码字,进行信道状态信息反馈时,终端将每个天线分组的波束组索引 $(i_{1,1},i_{1,2})$ 反馈给接入设备,或者将M个波束组索引的组合在 $((N_hO_1/2)$ • $(N_vO_2/2))^M$ 个码字中的索引反馈给接入设备。

[0131] ii) 若每个天线阵列分组为一维天线阵列,则

[0132] 定义一组DFT向量

[0133]
$$\mathbf{v}_{l} = \begin{bmatrix} 1 & e^{\frac{j2\pi l}{N_{i}O}} & \cdots & e^{\frac{j2\pi \cdot (N_{i}-1) \cdot l}{N_{i}O}} \end{bmatrix}^{T}, l = 0,1,\cdots,N_{i}O - 1$$

[0134] 其中, N_i 表示天线分组内的天线个数,0表示过采样因子。这样可以构成包含 N_i 0个向量的波束向量集合。将此向量集合每 L_i 个向量分为一组。一种分组方式,假设 L_i =4,每个波束组由一维索引 i_1 定义,

[0135]
$$\mathbf{X}^{(i_1)} = \left[\mathbf{v}_{\text{mod}(2i_1, N_i O)}, \mathbf{v}_{\text{mod}(2i_1 + 1, N_i O)}, \mathbf{v}_{\text{mod}(2i_1 + 2, N_i O)}, \mathbf{v}_{\text{mod}(2i_1 + 3, N_i O)} \right]$$

[0136] 其中 i_1 =0,1,…, N_i 0/2-1。整个波束向量集合分为 N_i 0/2个波束组。因此对于每个天线阵列分组所使用的波束分组 X_i 均有

[0137]
$$\mathbf{X}_{i} \in \left\{ \mathbf{X}^{(i_{1})}, i_{1} = 0, 1, \dots, N_{i}O/2 - 1 \right\}$$

[0138] 若限制所有天线阵列分组的波束分组相同,即 $X_0 = X_1 = \cdots = X_{M-1}$,则第一级码本共包含 N_i 0/2个 W_1 码字,进行信道状态信息反馈时,终端将波束组索引 i_1 作为码字索引反馈给接入设备。否则,第一级码本共包含 $(N_i$ 0/2) M 个 W_1 码字,进行信道状态信息反馈时,终端将每个天线分组的波束组索引 i_1 反馈给接入设备,或者将M个波束组索引的组合在 $(N_i$ 0/2) M 个码字中的索引反馈给接入设备。

[0139] W₂构造如下:

[0140] 由于 r_1 =1,有

[0141]
$$\mathbf{W}_{2} = \begin{bmatrix} \mathbf{e}_{0,0} & & & & 0 \\ & \mathbf{e}_{1,0} & & & \\ & & \mathbf{e}_{2,0} & & \\ & & & \ddots & \\ 0 & & & \mathbf{e}_{M-1,0} \end{bmatrix} \cdot \mathbf{U}$$

[0142] 其中, $e_{i,0}$ 为一个长度为4(由于 L_i =4)的列选择向量,假设其为一个单位向量,一个元素为1表示选择此列对应的波束,其余元素为0。对于一个天线分组,列选择部分有4种可能,即 $e_{i,0}$ ∈{[1 0 0 0]^T,[0 1 0 0]^T,[0 0 1 0]^T,[0 0 0 1]^T}。

[0143] 因此 W_2 的列选择部分共有 4^M 种组合。作为一个例子,可以有 $e_{0,0}=e_{1,0}=e_{2,0}=\ldots=e_{M-1,0}$,这时有

 $[0144] \mathbf{W}_2 = \mathbf{U} \otimes \mathbf{e}_{0.0}$

[0145] 天线分组间的相位调整矩阵U为一个M×r的矩阵,表示为

[0146]
$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_0 & \mathbf{u}_1 & \cdots & \mathbf{u}_{r-1} \end{bmatrix} = \begin{bmatrix} u_{0,0} & u_{0,1} & \cdots & u_{0,r-1} \\ u_{1,0} & u_{1,1} & \cdots & u_{1,r-1} \\ \vdots & \vdots & \vdots & \vdots \\ u_{M-1,0} & u_{M-1,1} & \cdots & u_{M-1,r-1} \end{bmatrix}$$

[0147] 共有Q个矩阵,分别为 U_0 , U_1 , U_2 ,..., U_{Q-1} 。根据前述讨论,矩阵U中的每一列元素用于调整各个天线分组之间的相位,且U的各列之间要求正交,以避免数据流之间的干扰。可选地,以下两种构造方式可以满足此要求。

[0148] 天线分组间的相位调整矩阵构造方式一、

[0149] Householder变换是构造正交基的一种典型方法,其可以用于构造矩阵U。定义 Householder变换矩阵

[0150]
$$\mathbf{P}_n = \mathbf{I} - 2\mathbf{s}_n \mathbf{s}_n^H / \mathbf{s}_n^H \mathbf{s}_n$$

[0151] 其中, s_n 为一个长度为M基向量,且 s_n 中的每个元素均由 { ± 1 , $\pm j$ } 及 { $(\pm 1 \pm j)/\sqrt{2}$ } 构成,I为M×M的单位矩阵。生成Q个基向量,即 $n=0,1,\cdots,Q-1$,对每个基向量计算其变换矩阵 P_n ,再对 P_n 进行列顺序的调整同时从中选择r列,得出一个相位调整矩阵U。因此 W_2 的相位调整部分共有Q种组合。这样,第二级码本共包含 4^M •Q个码字,可以使用 $i_2=0,1,\cdots,4^M$ •Q-1作为码本索引进行指示并反馈。

[0152] 考虑
$$\operatorname{rank}=3$$
的码本,根据假设条件 $M=2\cdot\left\lfloor\frac{r+1}{2}\right\rfloor$,有 $M=4$ 。假设进行 $\operatorname{Householder}$

变换的基向量个数Q=4,一种相位调整矩阵U的集合如下:

[0154] 天线分组间的相位调整矩阵构造方式二:

[0155] 通过Grassmannian流形构造天线分组间的相位调整矩阵。矩阵集合 U_0 , U_1 , U_2 ,..., U_{Q-1} 通过求解如下的优化问题得到:

[0156]
$$\{ \mathbf{U}_0, \ \mathbf{U}_1, \ \mathbf{U}_2, \ \cdots, \ \mathbf{U}_{Q-1} \} = \arg\max_{\left[\mathbf{F}_0, \mathbf{F}_1, \cdots, \mathbf{F}_{Q-1} | \mathbf{F}_q^H \mathbf{F}_q = \mathbf{I}_{rxr}, q = 0, 1, \cdots, Q-1 \right] 0 \le i \le j \le Q-1} dist(\mathbf{F}_i, \mathbf{F}_j), 其中I_{r'r}为$$

r'r单位阵,dist(A,B) 定义两个矩阵A和B之间的距离,例如

[0157] dist(A,B) = | |A-B||_F(Frobenius范数)

[0158] 或者

[0159] $\operatorname{dist}(A,B) = ||A-B||_2$

[0160] 上述得到矩阵集合内的Q个矩阵之间的最小距离在所有可能的矩阵集合中达到最大或者接近最大。需要说明的是,上述优化问题可以通过离线计算机数值运算求解。

[0161] 按照上述方式得到第一级码本和第二级码本后,第一级码本中的一个矩阵和第二级码本中的一个矩阵相乘得到的矩阵进行归一化,得到码本中的预编码矩阵。若每个天线分组为二维天线阵列,则可进行以下的归一化

$$\begin{bmatrix} \mathbf{X}_{0} & & & & 0 \\ & \mathbf{X}_{1} & & & \\ & & \mathbf{X}_{2} & & \\ & & & \ddots & \\ 0 & & & & \mathbf{X}_{M-1} \end{bmatrix} \begin{bmatrix} u_{0,0}\mathbf{e}_{0,0} & u_{0,1}\mathbf{e}_{0,0} & \cdots & u_{0,r-1}\mathbf{e}_{0,0} \\ u_{1,0}\mathbf{e}_{1,0} & u_{1,1}\mathbf{e}_{1,0} & \cdots & u_{1,r-1}\mathbf{e}_{1,0} \\ u_{2,0}\mathbf{e}_{2,0} & u_{2,1}\mathbf{e}_{2,0} & \cdots & u_{2,r-1}\mathbf{e}_{2,0} \\ \vdots & & \vdots & & \vdots \\ u_{M-1,0}\mathbf{e}_{M-1,0} & u_{M-1,1}\mathbf{e}_{M-1,0} & \cdots & u_{M-1,r-1}\mathbf{e}_{M-1,0} \end{bmatrix}$$

[0163] 其中,N_h表示天线分组内第一维度的天线个数,N_v表示天线分组内第二维度的天线个数,r表示数据传输的流数。

[0164] 或者,预编码矩阵具有如下形式,作为一个例子,这里假设 $e_{0,0}=e_{1,0}=\cdots=e_{M-1,0}$,且使用列选择组合中的第i个向量,则有

$$[0165] \quad \mathbf{W} = \frac{1}{\sqrt{N_h N_v \cdot r}} \begin{bmatrix} u_{0,0} \mathbf{X}_0(:,i) & u_{0,1} \mathbf{X}_0(:,i) & \cdots & u_{0,r-1} \mathbf{X}_0(:,i) \\ u_{1,0} \mathbf{X}_1(:,i) & u_{1,1} \mathbf{X}_1(:,i) & \cdots & u_{1,r-1} \mathbf{X}_1(:,i) \\ u_{2,0} \mathbf{X}_2(:,i) & u_{2,1} \mathbf{X}_2(:,i) & \cdots & u_{2,r-1} \mathbf{X}_2(:,i) \\ \vdots & & \vdots & & \vdots \\ u_{M-1,0} \mathbf{X}_{M-1}(:,i) & u_{M-1,1} \mathbf{X}_{M-1}(:,i) & \cdots & u_{M-1,r-1} \mathbf{X}_{M-1}(:,i) \end{bmatrix}$$

[0166] 其中, X_i (:,i)表示选择矩阵的第i列。

[0167] 以天线分组数M=4,数据传输流数r=3为例,同时假设 $X_0=X_1=\cdots=X_{M-1}$, $e_{0,0}=e_{1,0}=\cdots=e_{M-1,0}$,则码本可以写为表2所示:

[0168] 表2:一种天线分组数M=4,数据传输流数r=3的码本

 $i_{1,1}, i_{1,2}$

							•	_	
	$i_{1,1} = 0,1,\cdots, N_h O_1 / 2 - 1$	$\mathbf{W}_{(2i_{1.1},2i_{1.2})}^{(3)}$	$\mathbf{W}^{(3)}_{(2i_{1,1},2i_{1,2}+1)}$	$\mathbf{W}^{(3)}_{(2i_{l,l}+l,2i_{l,2})}$	$\mathbf{W}^{(3)}_{(2i_{\mathbf{l},\mathbf{l}}+1,2i_{\mathbf{l},2}+1)}$	$\widetilde{\mathbf{W}}_{(2i_{ ,1},2i_{ ,2})}^{(3)}$	$\widetilde{\mathbf{W}}_{(2i_{1,1},2i_{1,2}+1)}^{(3)}$	$\widetilde{\mathbf{W}}_{(2i_{\ ,\ }+1,2i_{\ ,2})}^{(3)}$	$\mathbf{W}^{(3)}_{(2i_{\mathbf{l},\mathbf{l}}+\mathbf{l},2i_{\mathbf{l},2}+\mathbf{l}}$
	$i_{1,2} = 0,1,\cdots, N_{\nu}O_2/2-1$	1,10							
	$i_{1,1}, i_{1,2}$	i_2							
		8	9	10	11	12	13	14	15
	$i_{1,1} = 0,1,\cdots, N_h O_1 / 2 - 1$	$\overline{\mathbf{W}}_{(2i_{I,I},2i_{I,2})}^{(3)}$	$\overline{\mathbf{W}}_{(2i_{\ ,\ },2i_{\ ,2}+1)}^{(3)}$	$\mathbf{W}^{(3)}_{(2i_{\mathbf{l},\mathbf{l}}+\mathbf{l},2i_{\mathbf{l},2})}$	$\overline{\mathbf{W}}_{(2i_{I,I}+I,2i_{I,2}+I)}^{(3)}$	$\hat{\mathbf{W}}_{(2i_{\parallel,1},2i_{\parallel,2})}^{(3)}$	$\hat{\mathbf{W}}_{(2i_{1,1},2i_{1,2}+1)}^{(3)}$	$\hat{\mathbf{W}}_{(2i_{\parallel,\parallel}+1,2i_{\parallel,2})}^{(3)}$	$\hat{\mathbf{W}}_{(2i_{\parallel,\parallel}+1,2i_{\parallel,2}+1)}^{(3)}$
	$i_{1,2} = 0,1,\dots, N_{\nu}O_2/2-1$								
	其中,								
)]	$\mathbf{W}_{(m_1, m_2)}^{(3)} = \frac{1}{\sqrt{4N_h}}$								
	$\begin{bmatrix} \mathbf{v}_{\operatorname{mod}(m_2,N_{\flat}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{\hbar}O_1)} & \mathbf{v}_{\operatorname{mod}(m_2,N_{\flat}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{\hbar}O_1)} & \mathbf{v}_{\operatorname{mod}(m_2,N_{\flat}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{\hbar}O_1)} \end{bmatrix}$								
],
	$\mathbf{v}_{\mathrm{mod}(m_2,N_{\nu}O_2)}\otimes\mathbf{h}$	$\operatorname{mod}(m_1, N_h O_1)$	$\mathbf{V}_{\mathrm{mod}(m_2,N_1)}$	$_{O_2)} \otimes \mathbf{h}_{\mathrm{mod}}$	$(m_l, N_h O_l)$	$-1 \cdot \mathbf{v}_{\text{mod}}$	$(m_2,N_{\nu}O_2)$ \otimes	$\mathbf{h}_{\mathrm{mod}(m_{\mathrm{I}},N_{h}C)}$	
	$\mathbf{v}_{\mathrm{mod}(m_2,N_vO_2)} \otimes \mathbf{h}$ $\mathbf{v}_{\mathrm{mod}(m_2,N_vO_2)} \otimes \mathbf{h}$	$\operatorname{mod}(m_1, N_h O_1)$ $\operatorname{mod}(m_1, N_h O_1)$	$\mathbf{v}_{\mathrm{mod}(m_2,N_1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2)}$	$\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$	$\begin{aligned} &\mathrm{i}(m_{\mathrm{l}},N_{h}O_{\mathrm{l}})\\ &\mathrm{nod}(m_{\mathrm{l}},N_{h}O_{\mathrm{l}}) \end{aligned}$	$-1 \cdot \mathbf{v}_{\text{mod}}$ $-1 \cdot \mathbf{v}_{\text{mod}}$	(m_2,N_vO_2) \otimes (m_2,N_vO_2) \otimes	$\mathbf{h}_{\mathrm{mod}(m_{\mathrm{l}},N_{h}C)}$ $\mathbf{h}_{\mathrm{mod}(m_{\mathrm{l}},N_{h}C)}$	
	$\mathbf{v}_{\mathrm{mod}(m_2,N_{\nu}O_2)}\otimes\mathbf{h}$	$\operatorname{mod}(m_1, N_h O_1)$ $\operatorname{mod}(m_1, N_h O_1)$	$\mathbf{V}_{\mathrm{mod}(m_2,N_1)}$	$\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$	$\begin{aligned} &\mathrm{i}(m_{\mathrm{l}},N_{h}O_{\mathrm{l}}) \\ &\mathrm{nod}(m_{\mathrm{l}},N_{h}O_{\mathrm{l}}) \end{aligned}$	$-1 \cdot \mathbf{v}_{\text{mod}}$ $-1 \cdot \mathbf{v}_{\text{mod}}$	(m_2,N_vO_2) \otimes (m_2,N_vO_2) \otimes	$\mathbf{h}_{\mathrm{mod}(m_{\mathrm{I}},N_{h}C)}$	
	$\mathbf{v}_{\mathrm{mod}(m_2,N_vO_2)} \otimes \mathbf{h}$ $\mathbf{v}_{\mathrm{mod}(m_2,N_vO_2)} \otimes \mathbf{h}$	$mod(m_1, N_h O_1)$ $mod(m_1, N_h O_1)$ $mod(m_1, N_h O_1)$	$\mathbf{v}_{\mathrm{mod}(m_2,N_1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2)}$	$\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$	$\begin{aligned} &\mathrm{i}(m_{\mathrm{l}},N_{h}O_{\mathrm{l}}) \\ &\mathrm{nod}(m_{\mathrm{l}},N_{h}O_{\mathrm{l}}) \end{aligned}$	$-1 \cdot \mathbf{v}_{\text{mod}}$ $-1 \cdot \mathbf{v}_{\text{mod}}$	(m_2,N_vO_2) \otimes (m_2,N_vO_2) \otimes	$\mathbf{h}_{\mathrm{mod}(m_{\mathrm{l}},N_{h}C)}$ $\mathbf{h}_{\mathrm{mod}(m_{\mathrm{l}},N_{h}C)}$	
	$\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\widetilde{\mathbf{W}}_{(m_{1},m_{2})}^{(3)} = \frac{1}{\sqrt{4N_{h}N_{v} \cdot r}}$ $\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(n)}$	$\label{eq:mod_mod_mod_n} \begin{split} & \operatorname{mod}(m_1, N_h O_1) \\ & \operatorname{mod}(m_1, N_h O_1) \\ & \operatorname{mod}(m_1, N_h O_1) \\ & \cdot $	$\mathbf{v}_{\mathrm{mod}(m_2,N_1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2)}$	$\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{n}} \otimes \mathbf{h}_{\mathrm{n}}$ $\mathbf{h}_{\mathrm{n}} \otimes \mathbf{h}_{\mathrm{n}}$ $\mathbf{h}_{\mathrm{n}} \otimes \mathbf{h}_{\mathrm{n}}$	$\begin{aligned} &\mathrm{i}(m_1,N_hO_1)\\ &\mathrm{nod}(m_1,N_hO_1)\\ &\mathrm{nod}(m_1,N_hO_1) \end{aligned}$	$-1 \cdot \mathbf{v}_{\text{mod}}$ $-1 \cdot \mathbf{v}_{\text{mod}}$ $\mathbf{v}_{\text{mod}(m)}$	$(m_2,N_{\nu}O_2)$ \otimes $(m_2,N_{\nu}O_2)$ \otimes $(m_2,N_{\nu}O_2)$ \otimes \mathbf{h}	$\mathbf{h}_{\mathrm{mod}(m_{\mathrm{l}},N_{h}C)}$ $\mathbf{h}_{\mathrm{mod}(m_{\mathrm{l}},N_{h}C)}$	۱ (۱۹
	$\mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{w}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{w}_{(m_{1},m_{2})} = \frac{1}{\sqrt{4N_{h}N_{v} \cdot r}}$ $\mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(n)}$ $j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}}$	$\label{eq:mod_mod_mod_n} \begin{split} \operatorname{mod}(m_1, N_k O_l) \\ \operatorname{mod}(m_1, N_k O_l) \\ \\ \operatorname{mod}(m_1, N_k O_l) \\ \\ \\ \cdot \\ \\ \cdot $	$\mathbf{v}_{\mathrm{mod}(m_2,N,0,1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2,N,0,1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2,N,0,0,1)}$ $\mathbf{v}_{\mathrm{mod}(m_2,N,0,0,1)}$	$\mathbf{h}_{\mathrm{mod}}(\mathcal{O}_{2}) \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}}(\mathcal{O}_{2}) \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}}(\mathcal{O}_{2}) \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}}(\mathcal{O}_{2}) \otimes \mathbf{h}_{\mathrm{mod}}$	$\begin{aligned} & \text{In}(m_t, N_k O_1) \\ & \text{nod}(m_t, N_k O_1) \\ & \text{nod}(m_t, N_k O_1) \\ & \text{od}(m_t, N_k O_1) \end{aligned}$	$-1 \cdot \mathbf{v}_{\text{mod}}$ $-1 \cdot \mathbf{v}_{\text{mod}}$ $\mathbf{v}_{\text{mod}(m)}$ $-1 \cdot \mathbf{v}_{\text{mod}(m)}$ $j \cdot \mathbf{v}_{\text{mod}(m)}$	$(m_{2},N_{\nu}O_{2}) \otimes (m_{2},N_{\nu}O_{2}) \otimes (m_{2},N_{\nu}O_{2}) \otimes \mathbf{h}$ $(m_{2},N_{\nu}O_{2}) \otimes \mathbf{h}$ $(m_{2},N_{\nu}O_{2}) \otimes \mathbf{h}$ $(m_{2},N_{\nu}O_{2}) \otimes \mathbf{h}$	$\begin{aligned} \mathbf{h}_{\text{mod}(m_{l},N_{k}C_{l})} \\ \mathbf{h}_{\text{mod}(m_{l},N_{k}C_{l})} \\ \\ \mathbf{mod}(m_{l},N_{k}O_{l}) \end{aligned}$	(۱۹
	$\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}$ $\widetilde{\mathbf{W}}_{(m_{1},m_{2})}^{(3)} = \frac{1}{\sqrt{4N_{h}N_{v} \cdot r}}$ $\mathbf{V}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(n)}$	$ \label{eq:mod_mod_mod_n} \begin{split} \operatorname{mod}(m_1, N_h O_1) \\ \operatorname{mod}(m_1, N_h O_1) \\ \\ \operatorname{mod}(m_1, N_h O_1) \\ \\ \\ \cdot \\ $	$\mathbf{v}_{\mathrm{mod}(m_2,N,1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2,N,1)}$ $-1 \cdot \mathbf{v}_{\mathrm{mod}(m_2,N,1)}$ $-j \cdot \mathbf{v}_{\mathrm{mod}(m_2,N,1)}$	$\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$ $\mathbf{h}_{\mathrm{mod}} \otimes \mathbf{h}_{\mathrm{mod}}$	$\begin{aligned} & \operatorname{d}(m_1, N_k O_1) \\ & \operatorname{nod}(m_1, N_k O_1) \\ & \operatorname{nod}(m_1, N_k O_1) \end{aligned}$ $& \operatorname{dd}(m_1, N_k O_1) \\ & \operatorname{dd}(m_1, N_k O_1) \\ & \operatorname{dd}(m_1, N_k O_1) \end{aligned}$	$-1 \cdot \mathbf{v}_{\text{mod}}$ $-1 \cdot \mathbf{v}_{\text{mod}}$ $\mathbf{v}_{\text{mod}(m)}$ $-1 \cdot \mathbf{v}_{\text{mod}(m)}$ $j \cdot \mathbf{v}_{\text{mod}(m)}$ $1 \cdot \mathbf{v}_{\text{mod}(m)}$	$(m_{2},N_{\nu}O_{2}) \otimes (m_{2},N_{\nu}O_{2}) \otimes (m_{2},N_{\nu}O_{2}) \otimes \mathbf{h}$ $(m_{2},N_{\nu}O_{2}) \otimes \mathbf{h}$	$\mathbf{h}_{\operatorname{mod}(m_1,N_kC_1)}$ $\mathbf{h}_{\operatorname{mod}(m_1,N_kC_1)}$ $\mathbf{mod}(m_1,N_kC_1)$ $\mathbf{h}_{\operatorname{mod}(m_1,N_kC_1)}$)

$$\begin{aligned} \overline{\mathbf{W}}_{(m_{1},m_{2})}^{(3)} &= \frac{1}{\sqrt{4N_{h}N_{v} \cdot r}} \cdot \\ & \begin{bmatrix} \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ -j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & -j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ -1 \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \\ -j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} & j \cdot \mathbf{v}_{\text{mod}(m_{2},N_{v}O_{2})} \otimes \mathbf{h}_{\text{mod}(m_{1},N_{h}O_{1})} \end{aligned}$$

[0171] 表2-A:一种天线分组数M=4,数据传输流数r=4的码本

	$i_{1,1}, i_{1,2}$	i_2							
		0	1	2	3	4	5	6	7
	$i_{1,1} = 0,1,\cdots, N_h O_1 / 2 - 1$	$W_{(2i_{1,1},2i_{1,2},0)}^{(4)}$	W (4) (2 <i>i</i> _{1,1} ,2 <i>i</i> _{1,2} +1,0)	W (4) (2 <i>i</i> _{1,1} +1,2 <i>i</i> _{1,2} ,0)	W (4) (2 <i>i</i> _{1,1} +1,2 <i>i</i> _{1,2} +1,9)	$W_{{}^{(2l_{1,1},2l_{1,2},1)}}^{(4)}$	$W_{{}_{(2i_{1,1},2i_{1,2}+1,1)}}^{(4)}$	$W_{{}_{(2i_{1,1}+1,2i_{1,2},1)}}^{(4)}$	$W_{(2i_{1,1}+1,2i_{1,2}+1,1)}^{(4)}$
	$i_{1,2} = 0,1,\cdots, N_{\nu}O_2/2-1$								
Fo.4=03	$i_{1,1}, i_{1,2}$		i_2						
[0172]		8	9	10	11	12	13	14	15
	$i_{1,1} = 0, 1, \dots, N_h O_1 / 2 - 1$ $i_{1,2} = 0, 1, \dots, N_v O_2 / 2 - 1$	$W_{(2i_{1,1},2i_{1,2},2)}^{(4)}$	W (4) (2 <i>i</i> _{1,1} ,2 <i>i</i> _{1,2} +1,2)	$W_{(2l_{1,1}+1,2l_{1,2},2)}^{(4)}$	$W_{(2l_{1,1}+1,2l_{1,2}+1,2)}^{(4)}$	$W_{(2l_{1,1},2l_{1,2},3)}^{(4)}$	W (4) (2l _{1,1} ,2l _{1,2} +1,3)	$W_{(2l_{1,1}+1,2l_{1,2},3)}^{(4)}$	$W_{(2i_{1,1}+1,2i_{1,2}+1,3)}^{(4)}$
	$i_{1,2} = 0,1,\dots,N_{\nu}O_2/2-1$								
	其中,								
	$\mathbf{W}_{(m_1,m_2,n)}^{(4)} = \frac{1}{\sqrt{4N_hN_v\cdot r}} \cdot \mathbf{Z}_n \otimes \left(v_{\mathrm{mod}(m_2,N_vO_2)} \otimes h_{\mathrm{mod}(m_1,N_hO_1)}\right) \text{ , } \mathbf{Z}_n \text{ 属于一个矩阵集合,该集合中矩阵的维度 4 ′ 4}$								

[0173] 如前所述码本定义,第一级码本使用 $(i_{1,1},i_{1,2})$ 作为第一级码本索引PMI1,第二级码本使用 i_2 作为第二级码本索引PMI2。PMI1和PMI2可以采用不同的反馈周期及反馈频域颗粒度。较优的,PMI1采用宽带,长时反馈。PMI2采用窄带,短时反馈。接入设备根据两级码本的反馈确定用于数据传输的预编码矩阵。

[0174] 具体实施方式二:

[0175] 对于双极化天线阵列,另一种较优的实施方式为 r_1 =2,所有天线分组内的天线单元数目相同,即 N_0 = N_1 =···= N_{M-1} 。

[0176] 作为例子,一种天线阵列的分组数与预编码矩阵的秩之间的关系如表3所定义

[0177] 表3:天线阵列的分组数与预编码矩阵的秩之间的关系

[0178]

预编码矩阵的秩r	天线阵列的分组数M
1	2
2	2
3	2
4	2
5	4
6	4
7	4
8	4

[0179] 此外,较优的,假设每个天线分组中使用的波束均取自相同的波束向量集合,且每个波束分组X_i所包含的波束数L_i均相同。

[0180] W₁构造如下:

[0181] W₁可以采用与实施方式一类似的方法。根据前述讨论,较优的,每个波束分组中包含相互正交的波束,因此波束分组X₁与具体实施方式一有所不同。假设每L₁=8个向量分为一组。一种分组方式为

$$\begin{bmatrix} \mathbf{X}^{(i_{j_1},i_{j_2})} = \\ \begin{bmatrix} \mathbf{v}_{mod(2i_{j_12},N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_11},N_kO_1)}, \mathbf{v}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_11},N_kO_1)}, \mathbf{v}_{mod(2i_{j_12},N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_kO_1)}, \mathbf{v}_{mod(2i_{j_12},N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_11}+1,N_kO_1)}, \mathbf{v}_{mod(2i_{j_12},N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)}, \mathbf{v}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)}, \mathbf{v}_{mod(2i_{j_12}+1,N_vO_2)} \otimes \mathbf{h}_{mod(2i_{j_12}+1,N_vO_2)}, \mathbf{v}_{mod(2i_{j_12}+1,N_vO_2)}, \mathbf{v}_{mod(2i_{j_12$$

[0183] 其中 $i_{1,1}=0,1,\cdots,N_h0_1/2-1,i_{1,2}=0,1,\cdots,N_v0_2/2-1$ 。这种分组方式中,波束1,2、

 $3\sqrt{4}$ 分别与波束 $5\sqrt{6}\sqrt{7}\sqrt{8}$ 正交。整个波束向量集合分为 $(N_hO_1/2)$ • $(N_vO_2/2)$ 个波束组。因此对于每个天线阵列分组所使用的波束分组 X_i 均有

[0184]
$$\mathbf{X}_{i} \in \left\{ \mathbf{X}^{(i_{1,1},i_{1,2})}, i_{1,1} = 0,1,\cdots,N_{h}O_{1}/2-1, i_{1,2} = 0,1,\cdots,N_{v}O_{2}/2-1 \right\}$$

[0185] 其余过程与具体实施方式一相同,这里不再赘述。

[0186] W₂构造如下:

[0187] 由于 r_1 =2,有

$$[0188] \quad \mathbf{W}_{2}' = \begin{bmatrix} \mathbf{e}_{0,0}, \mathbf{e}_{0,1} \\ & [\mathbf{e}_{1,0}, \mathbf{e}_{1,1}] \\ & & [\mathbf{e}_{2,0}, \mathbf{e}_{2,1}] \\ & & \ddots \\ & & & [\mathbf{e}_{M-1,0}, \mathbf{e}_{M-1,1}] \end{bmatrix} \cdot (\mathbf{U} \otimes \mathbf{I}_{2\times 2})$$

[0189] 其中,e_{i,0}为一个长度为8(由于L_i=8)的列选择向量,假设其为一个单位向量,一个元素为1表示选择此列对应的波束,其余元素为0。对于一个天线分组,为了保证选择的2个波束正交,列选择部分有4种可能,即

[0190]
$$[\mathbf{e}_{i,0}, \mathbf{e}_{i,1}] \in \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$
。因此 \mathbb{W}_2 的列选择部分共有 $4^{\mathbb{M}}$ 种组合。

[0191] 天线分组间的相位调整矩阵U为一个M×r₂的矩阵,表示为

$$[0192] \quad \mathbf{U} = \begin{bmatrix} \mathbf{u}_{0} & \mathbf{u}_{1} & \cdots & \mathbf{u}_{r_{2}-1} \end{bmatrix} = \begin{bmatrix} u_{0,0} & u_{0,1} & \cdots & u_{0,r_{2}-1} \\ u_{1,0} & u_{1,1} & \cdots & u_{1,r_{2}-1} \\ \vdots & \vdots & \vdots & \vdots \\ u_{M-1,0} & u_{M-1,1} & \cdots & u_{M-1,r_{2}-1} \end{bmatrix}$$

[0193] 共有Q个矩阵,分别为U₀,U₁,U₂,...,U_{Q-1}。这样,第二级码本共包含 4^{M} • Q个码字,可以使用i₂=0,1,…, 4^{M} • Q-1作为码本索引进行指示并反馈。根据前述讨论,r₂为大于等于 $\frac{r}{r_1}$

的最小整数,则有
$$r_2 = \left\lfloor \frac{r+1}{2} \right\rfloor$$
。

[0194] 考虑rank=4的码本,根据表3有M=2。天线分组间的相位调整矩阵U可以直接扩展LTE系统的2天线rank=2的码本,如下:

$$\begin{bmatrix} 0195 \end{bmatrix} \quad \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ e^{\frac{j\pi}{4}} & -e^{\frac{j\pi}{4}} \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ e^{\frac{j3\pi}{4}} & -e^{\frac{j3\pi}{4}} \end{bmatrix} \right\}$$

[0196] 因此W2的相位调整部分共有Q=4种组合。

[0197] 最后进行预编码矩阵的归一化,得到最终的预编码矩阵。若每个天线分组为二维天线阵列,且采用上述天线分组间的相位调整矩阵,则进行以下的归一化

$$\mathbf{W} = \frac{1}{\sqrt{N_h N_v \cdot r}} \begin{bmatrix} \mathbf{X}_0 & 0 \\ & \mathbf{X}_1 \\ & & \ddots \\ 0 & & \mathbf{X}_{M-1} \end{bmatrix}$$
[0198]
$$\mathbf{X} = \frac{1}{\sqrt{N_h N_v \cdot r}} \begin{bmatrix} u_{0,0} \mathbf{e}_{0,0} & u_{0,0} \mathbf{e}_{0,1} & u_{0,1} \mathbf{e}_{0,0} & u_{0,1} \mathbf{e}_{0,1} & \cdots & u_{0,r_2-1} \mathbf{e}_{0,0} & u_{0,r_2-1} \mathbf{e}_{0,1} \\ u_{1,0} \mathbf{e}_{0,0} & u_{1,0} \mathbf{e}_{1,1} & u_{1,1} \mathbf{e}_{1,0} & u_{1,1} \mathbf{e}_{1,1} & \cdots & u_{1,r_2-1} \mathbf{e}_{1,0} & u_{1,r_2-1} \mathbf{e}_{1,1} \\ u_{2,0} \mathbf{e}_{2,0} & u_{2,0} \mathbf{e}_{2,1} & u_{2,1} \mathbf{e}_{2,0} & u_{2,1} \mathbf{e}_{2,1} & \cdots & u_{2,r_2-1} \mathbf{e}_{2,0} & u_{2,r_2-1} \mathbf{e}_{2,1} \\ \vdots & & & \vdots & & \vdots \\ u_{M-1,0} \mathbf{e}_{M-1,0} & u_{M-1,0} \mathbf{e}_{M-1,1} & u_{M-1,1} \mathbf{e}_{M-1,0} & u_{M-1,1} \mathbf{e}_{M-1,1} & \cdots & u_{M-1,r_2-1} \mathbf{e}_{M-1,0} & u_{M-1,r_2-1} \mathbf{e}_{M-1,1} \end{bmatrix}$$

[0199] 其中,N_h表示天线分组内第一维度的天线个数,N_v表示天线分组内第二维度的天线个数,r表示数据传输的流数,col_r(•)表示选择其中的r列。

[0200] 或者,预编码矩阵具有如下形式,作为一个例子,假设 $[e_{0,0},e_{0,1}]=[e_{1,0},e_{1,1}]=\cdots$ = $[e_{M-1,0},e_{M-1,1}]$,且选择4种列选择组合中的第i个,则有

$$\begin{bmatrix} 0201 \end{bmatrix} \qquad \mathbf{W} = \frac{1}{\sqrt{N_h N_v \cdot r}} col_r \begin{bmatrix} u_{0,0} \mathbf{X}_0(:,i) & u_{0,0} \mathbf{X}_0(:,i+4) & \cdots & u_{0,r_2-1} \mathbf{X}_0(:,i) & u_{0,r_2-1} \mathbf{X}_0(:,i+4) \\ u_{1,0} \mathbf{X}_1(:,i) & u_{1,0} \mathbf{X}_1(:,i+4) & \cdots & u_{1,r_2-1} \mathbf{X}_1(:,i) & u_{1,r_2-1} \mathbf{X}_1(:,i+4) \\ u_{2,0} \mathbf{X}_2(:,i) & u_{2,0} \mathbf{X}_2(:,i+4) & \cdots & u_{2,r_2-1} \mathbf{X}_2(:,i) & u_{2,r_2-1} \mathbf{X}_2(:,i+4) \\ \vdots & & \vdots & & \vdots \\ u_{M-1,0} \mathbf{X}_{M-1}(:,i) & u_{M-1,0} \mathbf{X}_{M-1}(:,i+4) & \cdots & u_{M-1,r_2-1} \mathbf{X}_{M-1}(:,i) & u_{M-1,r_2-1} \mathbf{X}_{M-1}(:,i+4) \end{bmatrix}$$

[0202] 其中, X_i (:,i)表示选择矩阵的第i列。

[0203] 假设 $X_0 = X_1 = \cdots = X_{M-1}$, $[e_{0,0}, e_{0,1}] = [e_{1,0}, e_{1,1}] = \cdots = [e_{M-1,0}, e_{M-1,1}]$,则以 $r_1 = 2$,M = 2的rank = 4码本为例,写为表4所示:

[0204] 表4:一种天线分组数M=2,数据传输流数r=4的码本

	$i_{1,1}, i_{1,2}$	i_2								
		0	1	2	3	4	5	6	7	
	$i_{1,1} = 0,1,\cdots,N_h O_1 / 2 - 1$	$\mathbf{W}^{(4)}_{(2i_{1,1},2i_{1,2})}$	$\mathbf{W}_{(2i_{1,1},2i_{1,2}+1)}^{(4)}$	$\mathbf{W}^{(4)}_{(2i_{ , }+l,2i_{ ,2})}$	$\mathbf{W}^{(4)}_{(2i_{ , }+l,2i_{ ,2}+l)}$	$\widetilde{\mathbf{W}}_{(2i_{1,1},2i_{1,2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{ ,1},2i_{ ,2}+1)}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{ ,1}+1,2i_{ ,2})}^{(4)}$	$\mathbf{W}^{(4)}_{(2i_{1,1}+1,2i_{1,2}+1)}$	
	$i_{1,2} = 0,1,\dots,N_{\nu}O_2/2-1$									
	i _{1,1}					i_2				
		8	9	10	11	12	13	14	15	
	$i_{1,1} = 0,1,\cdots, N_h O_1 / 2 - 1$	$\overline{\mathbf{W}}_{(2i_{1,1},2i_{1,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{1,1},2i_{1,2}+1)}^{(4)}$	$\mathbf{W}_{(2i_{1,1}+1,2i_{1,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{\mathbb{I},\mathbb{I}}+1,2i_{\mathbb{I},2}+1)}^{(4)}$	$\hat{\mathbf{W}}_{(2i_{1,1},2i_{1,2})}^{(4)}$	$\hat{\mathbf{W}}_{(2i_{1,1},2i_{1,2}+1)}^{(4)}$	$\hat{\mathbf{W}}_{(2i_{1,1}+1,2i_{1,2})}^{(4)}$	$\hat{\mathbf{W}}_{(2i_{ ,1}+1,2i_{ ,2}+1)}^{(4)}$	
	$i_{1,2} = 0,1,\dots, N_{\nu}O_2/2-1$									
	其中,									
	$\mathbf{W}_{(m_1,m_2)}^{(4)} = \frac{1}{\sqrt{2N_h N_v \cdot r}}.$									
	$\begin{bmatrix} \mathbf{v}_{\operatorname{mod}(m_2,N_{\bullet}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{h}O_1)} & \mathbf{v}_{\operatorname{mod}(m_2,N_{\bullet}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1+O_1,N_{h}O_1)} & \mathbf{v}_{\operatorname{mod}(m_2,N_{\bullet}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{h}O_1)} & \mathbf{v}_{\operatorname{mod}(m_2,N_{\bullet}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1+O_1,N_{h}O_1)} \end{bmatrix}$									
[0205]	$\left[\mathbf{v}_{\mathrm{mod}(m_2,N_vO_2)} \otimes \mathbf{h}_{\mathrm{mod}(m_1,N_kO_1)} \right]$	$\mathbf{V}_{\mathrm{mod}(m_2,N_{\mathbf{v}}O)}$	$h_{\mathrm{mod}(m_1+1)} \otimes \mathbf{h}_{\mathrm{mod}(m_1+1)}$	O_1,N_kO_1 -1.	$\mathbf{V}_{\mathrm{mod}(m_2,N_{\mathbf{v}}O_2)}$	\otimes h _{mod(m_1,N_1}	$_{,O_1)} - 1 \cdot \mathbf{v}_{\text{mod}}$	$d_{(m_2,N_vO_2)}\otimes \mathbf{h}$	$mod(m_1 + O_1, N_k O_1)$	
	$\widetilde{\mathbf{W}}_{(m_1,m_2)}^{(4)} = \frac{1}{\sqrt{2N_k N_v \cdot r}} \cdot$									
	$\begin{bmatrix} \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1+O_1,N_kO_1)} & \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1+O_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1+O_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_1,N_kO_1)} & e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \\ e^{j\frac{\pi}{4}} \cdot \mathbf{v}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_iO_2)} \otimes \mathbf{h}_{mod(m_2,N_i$									
	$\overline{\mathbf{W}}_{(m_1,m_2)}^{(4)} = \frac{1}{\sqrt{2N_h N_v \cdot r}} \cdot$									
	$\begin{bmatrix} \mathbf{v}_{\operatorname{mod}(m_2,N_{\mathbf{v}}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{\mathbf{k}}O_1)} \\ j \cdot \mathbf{v}_{\operatorname{mod}(m_2,N_{\mathbf{v}}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_{\mathbf{k}}O_1)} \end{bmatrix}$									
	$\hat{\mathbf{W}}_{(m_1,m_2)}^{(4)} = \frac{1}{\sqrt{2N_h N_v \cdot r}} \cdot$									
	$\begin{bmatrix} \mathbf{v}_{\operatorname{mod}(m_2,N_{\mathbf{v}}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_kO_1)} \\ e^{j\frac{3\pi}{4}} \cdot \mathbf{v}_{\operatorname{mod}(m_2,N_{\mathbf{v}}O_2)} \otimes \mathbf{h}_{\operatorname{mod}(m_1,N_kO_1)} \end{bmatrix}$	$e^{\int \frac{\mathbf{V}_{\text{mod}(m_2,N_{\psi})}}{4} \cdot \mathbf{V}_{\text{mod}(m_2)}}$	$(O_2) \otimes \mathbf{h}_{\operatorname{mod}(m_1 + O_2)} \otimes \mathbf{h}_{\operatorname{mod}(n_2 + O_2)} \otimes \mathbf{h}_{mod$	$O_1, N_k O_1$) $m_1 + O_1, N_k O_1$) $-e^{-\frac{1}{2}}$	$\mathbf{v}_{\text{mod}(m_2,N_vO_2)} \otimes \frac{3\pi}{4} \cdot \mathbf{v}_{\text{mod}(m_2,N_vO_2)}$	$\mathbf{h}_{\operatorname{mod}(m_{\mathrm{I}},N_{k}O_{\mathrm{I}})}$ $\otimes \mathbf{h}_{\operatorname{mod}(m_{\mathrm{I}},N_{k}O_{\mathrm{I}})}$	$\mathbf{v}_{\text{mod}(m)}$ $e^{j\frac{3\pi}{4}} \cdot \mathbf{v}_{\text{mod}(m)}$	$\mathbf{h}_{\mathrm{mod}(m_2,N_vO_2)} \otimes \mathbf{h}_{\mathrm{mod}(n_2,N_vO_2)} \otimes \mathbf{h}_1$	n_1+O_1,N_kO_1) $nod(m_1+O_1,N_kO_1)$	

[0206] 具体实施方式三:

[0207] 对于双极化天线阵列,若波束分组中选择的 r_1 个波束不正交,一种可选的实施方式为 r_1 =2,所有天线分组内的天线单元数目相同,即 N_0 = N_1 =···= N_{M-1} 。

[0208] 作为例子,一种天线阵列的分组数与预编码矩阵的秩之间的关系如表5所定义

[0209] 表5:天线阵列的分组数与预编码矩阵的秩之间的关系

[0210]	预编码矩阵的秩r	天线阵列的分组数M
	1	2
	2	2
	3	4
	4	4
	5	8
	6	8
	7	8

[0211] 这样,2个天线分组构成一个上级分组,上级分组数为 $\frac{M}{2}$ 。此外,较优的,假设每个

天线分组中使用的波束均取自相同的波束向量集合,且每个波束分组Xi所包含的波束数Li均相同。

[0212] W₁的构造方式如下:

$$[0213] \quad \mathbf{W}_1 = \begin{bmatrix} \mathbf{X}_0 & & & & 0 \\ & \mathbf{X}_1 & & & \\ & & \mathbf{X}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix}$$

[0214] W_1 的构造方式与具体实施方式一完全相同,相同内容在此不再敷述。由于 r_1 =2,将天线分组中,每两个分组组成一个上级分组。例如,将每两个相邻的天线分组组成一个上级分组,如[X_0,X_1],[X_2,X_3],…。较优的,上级分组中的两个天线分组使用的波束分组相同,即有 X_0 = X_1,X_2 = $X_3,$ …, X_{M-2} = X_{M-1} 。

[0215] W₂构造如下:

[0216] 由于 r_1 =2,有

$$[0217] \quad \mathbf{W}_{2}' = \begin{bmatrix} \mathbf{e}_{0,0}, \mathbf{e}_{0,1} \\ & [\mathbf{e}_{1,0}, \mathbf{e}_{1,1}] \\ & & [\mathbf{e}_{2,0}, \mathbf{e}_{2,1}] \\ & & \ddots \\ 0 & & & [\mathbf{e}_{M-1,0}, \mathbf{e}_{M-1,1}] \end{bmatrix} \cdot (\mathbf{U} \otimes \mathbf{V})$$

[0218] 其中,根据具体实施方式一中的假设,e_{i,0}和e_{i,1}为一个长度为4(由于L_i=4)的列选择向量,假设其为一个单位向量,一个元素为1表示选择此列对应的波束,其余元素为0。对于一个天线分组,不要求两个列向量正交,且可以选择两个相同的波束,这样列选择部分有10种可能,即

$$\begin{bmatrix} \mathbf{0} \\ \mathbf{2} \\ \mathbf{1} \\ \mathbf{9} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{1} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{1} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{1} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 1 & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 1 & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 1 & \mathbf{1} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 1 & \mathbf{1} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 1 & \mathbf{1} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 1 & \mathbf{1} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{$$

[0220] 较优的,上级分组中的两个天线分组选择相同的波束,即有 $[\mathbf{e}_{0,0},\mathbf{e}_{0,1}] = [\mathbf{e}_{1,0},\mathbf{e}_{1,1}]$,

$$[\mathbf{e}_{2,0},\mathbf{e}_{2,1}] = [\mathbf{e}_{3,0},\mathbf{e}_{3,1}], \quad \cdots, \quad [\mathbf{e}_{M-2,0},\mathbf{e}_{M-2,1}] = [\mathbf{e}_{M-1,0},\mathbf{e}_{M-1,1}] \circ$$

[0221] 上级分组内的相位调整矩阵 $\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_2^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_2^{(2)} \end{bmatrix}$ 是一个 4×2 的矩阵,

其中 $\mathbf{V'} = \begin{bmatrix} \alpha_0 & \beta_0 \\ \alpha_1 & \beta_1 \end{bmatrix}$ 为一个 2×2 的正交矩阵,其可以使用具体实施方式一中的相位调整矩阵

构造方法。例如,可以使用Householder变换构造V',一种V'的矩阵集合如下

$$\begin{bmatrix} 0222 \end{bmatrix} \quad \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ e^{j\frac{\pi}{4}} & -e^{j\frac{\pi}{4}} \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ e^{j\frac{3\pi}{4}} & -e^{j\frac{3\pi}{4}} \end{bmatrix} \right\}$$

[0223] 上级分组间的相位调整矩阵U为一个 $\frac{M}{2}$ × r_2 的正交矩阵,所述 r_2 为大于等于 $\frac{r}{2}$ 的最小整数,表示为

$$[0224] \qquad \mathbf{U} = \begin{bmatrix} u_{0,0} & u_{0,1} & \cdots & u_{0,r_2-1} \\ u_{1,0} & u_{1,1} & \cdots & u_{1,r_2-1} \\ \vdots & \vdots & \vdots & \vdots \\ u_{M/2-1,0} & u_{M/2-1,1} & \cdots & u_{M/2-1,r_2-1} \end{bmatrix}$$

[0225] 此矩阵同样可以使用具体实施方式一中的相位调整矩阵构造方法。以r=8为例,使用Householder变换构造U,一种U的矩阵集合如下:

[0227] 按照上述方式得到第一级码本和第二级码本后,第一级码本中的一个矩阵和第二级码本中的一个矩阵相乘得到的矩阵进行归一化,得到码本中的预编码矩阵。若每个天线分组为二维天线阵列,则可进行以下的归一化

$$\begin{aligned} \mathbf{W} = & \frac{1}{\sqrt{N_h N_v \cdot r}} \begin{bmatrix} \mathbf{X}_0 & 0 \\ & \mathbf{X}_1 \\ & & \ddots \\ 0 & & \mathbf{X}_{M-1} \end{bmatrix} \\ & \begin{bmatrix} u_{0,0} \alpha_0 \mathbf{e}_{0,0} & u_{0,0} \beta_0 \mathbf{e}_{0,1} & u_{0,1} \alpha_0 \mathbf{e}_{0,0} & u_{0,1} \beta_0 \mathbf{e}_{0,1} & \cdots & u_{0,r_2-1} \alpha_0 \mathbf{e}_{0,0} & u_{0,r_2-1} \beta_0 \mathbf{e}_{0,1} \\ u_{0,0} \alpha_1 \mathbf{e}_{1,0} & u_{0,0} \beta_1 \mathbf{e}_{1,1} & u_{0,1} \alpha_1 \mathbf{e}_{1,0} & u_{0,1} \beta_1 \mathbf{e}_{1,1} & \cdots & u_{0,r_2-1} \alpha_1 \mathbf{e}_{1,0} & u_{0,r_2-1} \beta_1 \mathbf{e}_{1,1} \\ u_{1,0} \alpha_0 \mathbf{e}_{2,0} & u_{1,0} \beta_0 \mathbf{e}_{2,1} & u_{1,1} \alpha_0 \mathbf{e}_{2,0} & u_{1,1} \beta_0 \mathbf{e}_{2,1} & \cdots & u_{1,r_2-1} \alpha_0 \mathbf{e}_{2,0} & u_{1,r_2-1} \beta_0 \mathbf{e}_{2,1} \\ u_{1,0} \alpha_1 \mathbf{e}_{3,0} & u_{1,0} \beta_1 \mathbf{e}_{3,1} & u_{1,1} \alpha_1 \mathbf{e}_{3,0} & u_{1,1} \beta_1 \mathbf{e}_{3,1} & \cdots & u_{1,r_2-1} \alpha_1 \mathbf{e}_{3,0} & u_{1,r_2-1} \beta_1 \mathbf{e}_{3,1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{M/2-1,0} \alpha_0 \mathbf{e}_{M-2,0} & u_{M/2-1,0} \beta_0 \mathbf{e}_{M-2,0} & u_{M/2-1,1} \alpha_0 \mathbf{e}_{M-2,0} & u_{M/2-1,1} \beta_0 \mathbf{e}_{M-2,0} & \cdots & u_{M/2-1,r_2-1} \alpha_0 \mathbf{e}_{M-2,0} & u_{M/2-1,r_2-1} \beta_0 \mathbf{e}_{M-2,0} \\ u_{M/2-1,0} \alpha_1 \mathbf{e}_{M-1,0} & u_{M/2-1,0} \beta_1 \mathbf{e}_{M-1,0} & u_{M/2-1,1} \alpha_1 \mathbf{e}_{M-1,0} & u_{M/2-1,1} \beta_1 \mathbf{e}_{M-1,0} & \cdots & u_{M/2-1,r_2-1} \alpha_1 \mathbf{e}_{M-1,0} & u_{M/2-1,r_2-1} \beta_1 \mathbf{e}_{M-1,0} \end{aligned} \right)$$

[0229] 其中,Nh表示天线分组内第一维度的天线个数,Nv表示天线分组内第二维度的天线个数,r表示数据传输的流数,colr(•)表示选择其中的r列。

[0230] 或者,预编码矩阵具有如下形式,作为一个例子,这里假设 $[e_{0,0},e_{0,1}]=[e_{1,0},e_{1,1}]$ =…= $[e_{M-1,0},e_{M-1,1}]$,且使用列选择组合中的第i个和第j个向量,则有

$$\begin{aligned} \mathbf{W} = \frac{1}{\sqrt{N_k N_v \cdot r}} \\ & \begin{bmatrix} u_{0,0} \alpha_0 \mathbf{X}_0(:,i) & u_{0,0} \beta_0 \mathbf{X}_0(:,j) & u_{0,1} \alpha_0 \mathbf{X}_0(:,i) & u_{0,1} \beta_0 \mathbf{X}_0(:,j) & \cdots & u_{0,r_2-1} \alpha_0 \mathbf{X}_0(:,i) & u_{0,r_2-1} \beta_0 \mathbf{X}_0(:,j) \\ u_{0,0} \alpha_1 \mathbf{X}_1(:,i) & u_{0,0} \beta_1 \mathbf{X}_1(:,j) & u_{0,1} \alpha_1 \mathbf{X}_1(:,i) & u_{0,1} \beta_1 \mathbf{X}_1(:,j) & \cdots & u_{0,r_2-1} \alpha_1 \mathbf{X}_1(:,i) & u_{0,r_2-1} \beta_1 \mathbf{X}_1(:,j) \\ u_{1,0} \alpha_0 \mathbf{X}_2(:,i) & u_{1,0} \beta_0 \mathbf{X}_2(:,j) & u_{1,1} \alpha_0 \mathbf{X}_2(:,i) & u_{1,1} \beta_0 \mathbf{X}_2(:,j) & \cdots & u_{1,r_2-1} \alpha_0 \mathbf{X}_2(:,i) & u_{1,r_2-1} \beta_0 \mathbf{X}_2(:,j) \\ u_{1,0} \alpha_1 \mathbf{X}_3(:,i) & u_{1,0} \beta_1 \mathbf{X}_3(:,j) & u_{1,1} \alpha_1 \mathbf{X}_3(:,i) & u_{1,1} \beta_1 \mathbf{X}_3(:,j) & \cdots & u_{1,r_2-1} \alpha_1 \mathbf{X}_3(:,i) & u_{1,r_2-1} \beta_1 \mathbf{X}_3(:,j) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-2}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-2}(:,j) & u_{M/2-1,1} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,1} \alpha_1 \mathbf{X}_{M-1}(:,j) & \cdots & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) & \cdots & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) & \cdots & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,1} \beta_1 \mathbf{X}_{M-1}(:,j) & \cdots & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,1} \beta_1 \mathbf{X}_{M-1}(:,j) & \cdots & u_{M/2-1,r_2-1} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) \\ u_{M/2-1,0} \alpha_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,i) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M-1}(:,j) & u_{M/2-1,0} \beta_1 \mathbf{X}_{M$$

[0232] 其中,X_i(:,i)表示选择矩阵的第i列。

[0233] 假设 $X_0 = X_1 = \cdots = X_{M-1}$,每个天线分组中使用的波束分组中包含4个波束,[e_{0,0},e_{0,1}]=[e_{1,0},e_{1,1}]= \cdots =[e_{M-1,0},e_{M-1,1}],则以 $x_1 = 2$,M=4的 $x_1 = 4$ 码本为例,写为表6所示:

[0234] 表6:一种天线分组数M=4,数据传输流数r=4的码本

$i_{1,1}, i_{1,2}$	i_2								
	0	1	2	3					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\mathbf{W}^{(4)}_{(2i_{ ,1},2i_{ ,2},2i_{ ,1},2i_{ ,2})}$	$\mathbf{W}^{(4)}_{(2i_{l,l}+l,2i_{l,2},2i_{l,l}+l,2i_{l,2})}$	$\mathbf{W}^{(4)}_{(2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2},2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2})}$	$\mathbf{W}^{(4)}_{(2i_{\mathbf{l},\mathbf{l}}+3,2i_{\mathbf{l},2},2i_{\mathbf{l},\mathbf{l}}+3,2i_{\mathbf{l},2})}$					
$i_{1,2} = 0,1,\dots,N_{\nu}O_2/2-1$									
i _{1,1}	i_2								
	4	5	6	7					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\mathbf{W}^{(4)}_{(2i_{1,1},2i_{1,2},2i_{1,1}+1,2i_{1,2})}$	$\mathbf{W}^{(4)}_{(2i_{I,I}+1,2i_{I,2},2i_{I,I}+2,2i_{I,2})}$	$\mathbf{W}^{(4)}_{(2i_{1,1},2i_{1,2},2i_{1,1}+3,2i_{1,2})}$	$\mathbf{W}^{(4)}_{(2i_{l,l}+1,2i_{l,2},2i_{l,l}+3,2i_{l,2})}$					
$i_{1,2} = 0,1,\dots, N_{\nu}O_2/2-1$									
$i_{1,1}, i_{1,2}$			i_2						
	8	9	10	11					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\widetilde{\mathbf{W}}_{(2i_{I,I},2i_{I,2},2i_{I,I},2i_{I,2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{l,l}+l,2i_{l,2},2i_{l,l}+l,2i_{l,2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2},2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{1,1}+3,2i_{1,2},2i_{1,1}+3,2i_{1,2})}^{(4)}$					
$i_{1,2} = 0,1,\dots,N_{\nu}O_2/2-1$									
i _{1,1}	i_2								
	12	13	14	15					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\widetilde{\mathbf{W}}_{(2i_{1,1},2i_{1,2},2i_{1,1}+1,2i_{1,2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{\mathbf{l},\mathbf{l}}+1,2i_{\mathbf{l},2},2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{1,1},2i_{1,2},2i_{1,1}+3,2i_{1,2})}^{(4)}$	$\widetilde{\mathbf{W}}_{(2i_{1,1}+1,2i_{1,2},2i_{1,1}+3,2i_{1,2})}^{(4)}$					
$i_{1,2} = 0,1,\dots, N_{\nu}O_2/2-1$									
$i_{1,1}, i_{1,2}$			i_2						
	16	17	18	19					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\overline{\mathbf{W}}_{(2i_{\parallel,1},2i_{\parallel,2},2i_{\parallel,1},2i_{\parallel,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{1,1}+1,2i_{1,2},2i_{1,1}+1,2i_{1,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2},2i_{\mathbf{l},\mathbf{l}}+2,2i_{\mathbf{l},2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{l,l}+3,2i_{l,2},2i_{l,l}+3,2i_{l,2})}^{(4)}$					
$i_{1,2} = 0,1,\dots,N_v O_2 / 2 - 1$									
i _{1,1}			i_2						
	20	21	22	23					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\overline{\mathbf{W}}_{(2i_{l,l},2i_{l,2},2i_{l,l}+l,2i_{l,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{I,I}+1,2i_{I,2},2i_{I,I}+2,2i_{I,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{l,l},2i_{l,2},2i_{l,l}+3,2i_{l,2})}^{(4)}$	$\overline{\mathbf{W}}_{(2i_{\mathbf{l},\mathbf{l}}+1,2i_{\mathbf{l},2},2i_{\mathbf{l},\mathbf{l}}+3,2i_{\mathbf{l},2})}^{(4)}$					
$i_{1,2} = 0,1,\dots, N_{\nu}O_2/2-1$									
$i_{1,1}, i_{1,2}$	$i_{1,1},i_{1,2}$ i_2								
	24	25	26	27					
$i_{1,1} = 0,1,\dots,N_h O_1/2-1$	$\hat{\mathbf{W}}_{(2i_{ ,1},2i_{ ,2},2i_{ ,1},2i_{ ,2})}^{(4)}$	$\hat{\mathbf{W}}^{(4)}_{(2i_{l,1}+l,2i_{l,2},2i_{l,l}+l,2i_{l,2})}$	$\hat{\mathbf{W}}^{(4)}_{(2i_{I,I}+2,2i_{I,2},2i_{I,I}+2,2i_{I,2})}$	$\hat{\mathbf{W}}^{(4)}_{(2i_{l,l}+3,2i_{l,2},2i_{l,l}+3,2i_{l,2})}^{(4)}$					

[0235]

[0237] 其中,假设相位调整矩阵

$$[0238] \quad \mathbf{V}' \in \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \quad \right\}, \quad \mathbf{U} \in \left\{ \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ e^{j\frac{\pi}{4}} & -e^{j\frac{\pi}{4}} \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ e^{j\frac{3\pi}{4}} & -e^{j\frac{3\pi}{4}} \end{bmatrix} \right\}$$

[0239] 如前所述码本定义,第一级码本使用($i_{1,1}$, $i_{1,2}$)作为第一级码本索引PMI1,第二级码本使用 i_2 作为第二级码本索引PMI2。PMI1和PMI2可以采用不同的反馈周期及反馈频域颗粒度。较优的,PMI1采用宽带,长时反馈。PMI2采用窄带,短时反馈。基站根据两级码本的反馈确定用于数据传输的预编码矩阵。

[0240] 第二实施例

[0241] 参见图5,图中示出了信道状态信息的反馈方法,该方法的执行主体可以是接入设备,具体步骤如下:

[0242] 步骤S501、接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩

阵W1对应,所述第一预编码矩阵W1由天线阵列的多个天线分组所使用的波束分组构成;所述 第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩阵W2对 应,所述第二预编码矩阵W2包括用于对每个天线分组中的波束分组进行波束选择的波束选 择部分和用于对多个天线分组件的相位进行调整的相位调整部分;

[0243] 步骤S502、通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W,其中,预编码矩阵 $W=W_1 \cdot W_2$ 。

[0244] 可选地,在本实施例中,所述反馈方法还包括:

[0245] 将码本参数告知所述终端,所述码本参数包括:天线分组的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、Wi中天线分组内使用的波束组的构成方式中的一种或多种组合。

[0246] 可选地,在本实施例中,所述反馈方法还包括:

[0247] 构造所述第一预编码矩阵 W_1 的集合得到第一码本,构造所述第二预编码矩阵 W_2 的集合得到第二码本:

[0248] 通过所述第一码本和第二码本中的矩阵的运算得到码本。

[0249] 可选地,在本实施例中,所述第一级码本描述信道的长程特性,采用宽带,长时反馈;所述第二级码本描述信道的短时特性,采用窄带,短时反馈。

[0250] 在本实施例中,将天线阵列划分为更小的天线阵列分组,两级码本分别实现组内的波束选择及组间的相位调整,并可以分别反馈,能够更加精确的量化信道并提升系统性能。此外分组的数目可随数据传输流数而变化。

[0251] 第三实施例

[0252] 参见图6,图中示出了一种信道状态信息的反馈装置,反馈装置60包括:

[0253] 第一确定模块601,用于在第一预编码矩阵集合中确定第一预编码矩阵W₁,并确定与第一预编码矩阵W₁对应的第一预编码矩阵索引值,其中,所述第一预编码矩阵W₁由天线阵列的多个天线分组所使用的波束分组构成:

[0254] 第二确定模块602,用于在第二预编码矩阵集合中确定第二预编码矩阵W₂,并确定与第二预编码矩阵W₂对应的第二预编码矩阵索引值,其中,所述第二预编码矩阵W₂包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组间的相位进行调整的相位调整部分;

[0255] 第一反馈模块603,用于向接入设备反馈所述第一预编码矩阵索引值和第二预编码矩阵索引值,由所述接入设备使用所述第一预编码矩阵索引值和第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W,其中,预编码矩阵W=W₁•W₂。

[0256] 在本实施例中,可选地,

[0257] 所述预编码矩阵
$$\mathbf{W} = \mathbf{W}_1 \mathbf{W}_2 = \begin{bmatrix} \mathbf{X}_0 & & & & 0 \\ & \mathbf{X}_1 & & & \\ & & \mathbf{X}_2 & & \\ & & & \ddots & \\ 0 & & & \mathbf{X}_{M-1} \end{bmatrix} \cdot \mathbf{W}_2$$

[0258] 其中,第一预编码矩阵 W_1 是一个块对角矩阵,除了波束分组矩阵 X_i ,所在对角块,其余元素均为0,i=0,1,…,M-1,M表示天线阵列的分组数; X_i 表示第i个天线分组内使用的波束分组, X_i 为一个 N_i × L_i 的矩阵,每一列表示一个波束方向, N_i 表示第i个分组内的天线单元数目, $N=\sum_{i=0}^{M-1}N_i$ 为天线阵列总的天线单元数, L_i 表示第i个天线分组所使用的波束分组中包含的波束个数;

[0259] 第二预编码矩阵 W_2 用于进行波束选择及相位调整,其从每个波束分组中选择若干波束,并调整各个天线分组所选波束的相位,以得到最终的预编码矩阵,第二预编码矩阵 W_2 为一个 $(\sum_{i=0}^{M-1} L_i) \times r$ 的矩阵,r表示预编码矩阵W的秩。

[0260] 在本实施例中,可选地,所述第二预编码矩阵W2的构造如下:

[0263] 从每个天线分组中选择相同个数的波束,表示为r₁,定义第i个天线分组的波束选择向量为:

$$[0264] \mathbf{E}_i = \begin{bmatrix} \mathbf{e}_{i,0} & \mathbf{e}_{i,1} & \cdots & \mathbf{e}_{i,r_i-1} \end{bmatrix}$$

[0265] 其中, $e_{i,j}$ 为一个长度为 L_i 的列选择向量,用于从波束分组 X_i 中选择一个波束或者将 X_i 中的波束合并为一个波束, $j=0,1,\dots$ r₁-1; W_p 表示相位调整部分, W'_2 中选择r列作为第二预编码矩阵 W_2 在本实施例中,可选地,

[0266] 若 \mathbf{r}_1 个波束之间相互正交,则 $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{I}_n$,其中, \mathbf{U} 为一个正交矩阵,包含 \mathbf{r}_2 列,每列为M个相位调整因子,所述 \mathbf{r}_2 为大于等于 $\frac{r}{r_1}$ 的最小整数, \mathbf{I}_n 为一个 $\mathbf{r}_1 \times \mathbf{r}_1$ 的单位矩阵;

[0267] 若 r_1 个波束之间非正交,将M个天线分组中的每 r_1 个分组构成 $\frac{M}{r_1}$ 个上级分组,

[0268] $\mathbf{W}_p = \mathbf{U} \otimes \mathbf{V}$

[0269] 其中,U为一个正交矩阵,用于上级分组之间的相位调整,包含 r_2 列,每列为 $\frac{M}{r_1}$ 个相

位调整因子,所述 r_2 为大于等于 $\frac{r}{r_1}$ 的最小整数;

[0270] V用于一个上级分组内的天线分组间的相位调整,其结构为

[0271]
$$\mathbf{V} = \begin{bmatrix} \mathbf{V}'(:,1) \otimes \mathbf{e}_{\kappa}^{(1)} & \mathbf{V}'(:,2) \otimes \mathbf{e}_{\kappa}^{(2)} & \cdots & \mathbf{V}'(:,r_1) \otimes \mathbf{e}_{\kappa}^{(r_1)} \end{bmatrix}$$

[0272] 其中,V'为一个正交矩阵,其包含 r_1 列,每列为 r_1 个相位调整因子,V'(:,i)表示矩阵的第i列, $\mathbf{e}_{r}^{(i)}$ 表示单位矩阵 $\mathbf{I}_{r\times r}$ 的第i列。

[0273] 在本实施例中,可选地,所述天线阵列的分组数M随着预编码矩阵W的秩r而变化。

[0274] 在本实施例中,可选地,所述反馈装置还包括:

[0275] 第一码本参数处理模块,用于获取信道测量结果,根据所述信道测量结果,确定码本的码本参数;将所述码本参数反馈给所述接入设备,或者,根据预先确定的码本参数与一个或多个参数的映射关系,确定与所述码本参数对应的一个或多个参数,将所述参数反馈给所述接入设备,其中,将所述第一预编码矩阵 W_1 的集合称为第一码本,将所述第二预编码矩阵 W_2 的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本。

[0276] 在本实施例中,可选地,所述反馈装置还包括:

[0277] 第二码本参数处理模块,用于接收所述接入设备发送的一个或多个参数;根据预 先确定的码本参数与一个或多个参数的映射关系,确定与所述一个或多个参数对应的码本 参数,或者接收所述接入设备发送的全部码本参数。

[0278] 在本实施例中,可选地,所述码本参数包括:天线分组的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W1中天线分组内使用的波束组的构成方式(波束配置方式)中的一种或多种组合。

[0279] 在本实施例中,将天线阵列划分为更小的天线阵列分组,两级码本分别实现组内的波束选择及组间的相位调整,并可以分别反馈,能够更加精确的量化信道并提升系统性能。此外分组的数目可随数据传输流数而变化。

[0280] 第四实施例

[0281] 参见图7,图中示出了一种信道状态信息的反馈装置,反馈装置70包括:

[0282] 第二反馈模块701,用于接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩阵W₁对应,所述第一预编码矩阵W₁由天线阵列的多个天线分组所使用的波束分组构成;所述第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩阵W₂对应,所述第二预编码矩阵W₂包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组件的相位进行调整的相位调整部分;

[0283] 预编码矩阵选择模块702,用于通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W,其中,预编码矩阵 $W=W_1 \cdot W_2$ 。

[0284] 在本实施例中,可选地,所述反馈装置还包括:

[0285] 第三反馈模块,用于将码本的码本参数告知所述终端,所述码本参数包括:天线分组的分组数M、分组方式、每个分组内的天线单元数Ni、每个分组内天线单元的行数和列数、预编码矩阵中的波束的采样率、W1中天线分组内使用的波束组的构成方式中的一种或多种组合,其中,将所述第一预编码矩阵W1的集合称为第一码本,将所述第二预编码矩阵W2的集合称为第二码本,将经过运算后得到的作为数据传输的预编码矩阵集合称为码本。

[0286] 在本实施例中,将天线阵列划分为更小的天线阵列分组,两级码本分别实现组内的波束选择及组间的相位调整,并可以分别反馈,能够更加精确的量化信道并提升系统性能。此外分组的数目可随数据传输流数而变化。

[0287] 应理解,说明书通篇中提到的"一个实施例"或"一实施例"意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的"在一个实施例中"或"在一实施例中"未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。

[0288] 在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定

[0289] 在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

[0290] 另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。

[0291] 上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

[0292] 以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

图1

图2

图3

图4A

图4B

接收终端反馈的第一预编码矩阵索引值和第二预编码矩阵索引值,其中,所述第一预编码矩阵索引值与所述终端在第一预编码矩阵集合中确定的第一预编码矩阵W₁对应,所述第一预编码矩阵W₁由天线阵列的多个天线分组所使用的波束分组构成;所述第二预编码矩阵索引值与所述终端在第二预编码矩阵集合中确定的第二预编码矩阵W₂对应,所述第二预编码矩阵W₂包括用于对每个天线分组中的波束分组进行波束选择的波束选择部分和用于对多个天线分组件的相位进行调整的相位调整部分

S501

通过所述第一预编码矩阵索引值及第二预编码矩阵索引值,从第一预编码矩阵集合和第二预编码矩阵集合中选择对应的预编码矩阵并经过运算后作为数据传输的预编码矩阵W

S502

图5

<u>60</u>

图6

<u>70</u>

图7