Life insurance models

List 5.

- 1. Show that $A_x = vq_x + vp_x A_{x+1}$.
- 2. If $l_x = 100 x$ for $0 \le x \le 100$ and i = 0.05, evaluate $A_{25\cdot\overline{400}}$
- 3. If $A_x = 0.25$, $A_{x+20} = 0.40$, and $A_{x:\overline{20}|} = 0.55$, calculate $A_{x:\overline{20}|}^1$ and $A_{x:\overline{20}|}^1$.
- 4. Express A_{x+t} $(x \in N, 0 \le t \le 1)$ as a function of A_x , v and life table parameters under the assumpion of a uniform distribution of deaths.
- 5. Calculate $A^1_{25:\overline{5}|}$ with benefit 100000 payable at the end of the year of death. We assume i=3%. Use the life tables. Calculate also $A^1_{60;\overline{5}|}$.
- 6. Let us consider two populations P and P^M with forces of mortality μ_{x+t} and μ_{x+t}^M , respectively. We know that $\mu_{x+t}^M = \mu_{x+t} + M$ and M is a random number from uniform distribution over interval [0.01; 0.02]. For population P we have

$$A_{x:\overline{35}|}^{1} = 0.195276.$$

Calculate $A_{x:\overline{35}|}^{-1}$ for population P^M .

7. The p.d.f. of the future lifetime T for (x) is assumed to be

$$g(t) = \begin{cases} \frac{1}{80} & \text{for } 0 < t < 80, \\ 0 & \text{elsewhere.} \end{cases}$$

At a force of interest, δ , calculate for Z (the present value random variable for a whole life insurance of unit amount issued to (x) the net single premium and the variance.

8. Calculate $_{3|}A_x$ if we know

$$A_x = \alpha_0, \ (IA)_{x:\overline{k}|}^1 = \alpha_k, \ k = 1, 2, 3.$$

Hint: $_{3|}A_x = \sum_{k=3}^{\infty} v^{k+1}{}_k p_x q_{x+k}, \ (IA)^1_{x:\overline{n}|} = \sum_{k=0}^{n-1} (k+1) v^{k+1}{}_k p_x q_{x+k}.$ 9. Under the assumption $A^1_{x:\overline{20}|} = 0.2$ and $(IA)^1_{x:\overline{20}|} = 0.75 (DA)^1_{x:\overline{20}|}$ calculate $(DA)^1_{x:\overline{20}|}$ Hint: $(DA)_{x:\overline{n}|}^1 = \sum_{k=0}^{n-1} (n-k)v^{k+1}{}_k p_x q_{x+k}$.

10. We consider two 10-years policy issues for (40) payable at the moment of death. The policy issue ROSS pays 10000t if the insured dies at the age of 40 + t, t < 10. The policy issue MAL pays 10000(10-t) if the insured dies at the age of 40+t, t<10. Calculate the net single premium for policy ROSS if it is known that it is 11 times higher than the net single premium for policy MAL. Moreover we know $\overline{A}_{40:\overline{10}|}^1 = 0.05$.