Gradient_Descent_and_Back_Propogation.R

kriti

Sat Nov 03 21:49:54 2018

```
###understanding cost function and back propogation of errors
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
##we will run 100 iterations to update the weights
##the weight and bias in a neural network can be modelled like the slope and intercept in a linear re
gression
##just like in a linear regression we try to update the beta values after each iteration, in a neural
 network
##we update the weights in a similar way
n=100
intercept=3
slope=4.5
x=rnorm(n)
hist(x)
```

Histogram of x

y=x*slope+intercept
plot(x=x,y=y)

##adding noise
y=x*slope+intercept+rnorm(100)
plot(x=x,y=y)


```
##we add a columns of 1s to facilitate matrix mul

## its imp to notice that we want one out for each row
# of data, so essentially the row of matrix one and column of
# matrix 2 should be one. Hence since col of mat1=row of mat2
# for matrix mul hence we add another row of 1's in the data
x_b<-cbind(x,rep(1,n))
head(x_b)</pre>
```

```
## [1,] -1.4968709 1
## [2,] 2.0355967 1
## [3,] 1.1461531 1
## [4,] 0.3039515 1
## [5,] 0.4949068 1
## [6,] -0.3958989 1
```

```
##creating a dataframe
data<-data.frame(x=x_b,y=y)
data</pre>
```

```
##
                x.x x.V2
## 1
       -1.496870888
                       1 -4.03906278
## 2
        2.035596737
                       1 14.38659355
## 3
        1.146153104
                         9.03047109
## 4
        0.303951495
                          4.89377923
## 5
        0.494906755
                          5.08713731
## 6
       -0.395898862
                       1 1.32734895
## 7
        0.375597595
                       1 5.35595300
## 8
       -0.577810016
                       1 0.31318230
## 9
        0.893397990
                       1 6.76529397
## 10
       -0.380008023
                       1 1.39871745
## 11
       -0.357027710
                       1
                          1.34409871
## 12
        0.009639976
                       1 2.25811867
## 13
        1.540456189
                       1 10.04739810
## 14
       -0.797293121
                       1 -1.78503446
## 15
       -0.624245126
                       1 -0.40695245
## 16
       -0.181903360
                       1 2.88909865
## 17
        0.949147924
                       1 6.69302747
## 18
       -0.366860714
                          0.09544085
                       1
## 19
        1.288300348
                       1 8.60190244
## 20
       -0.073802780
                       1 1.97212918
## 21
       -1.634027117
                       1 -4.14141346
## 22
       -0.123427222
                       1 3.70881671
## 23
        0.364782093
                       1 6.21597170
## 24
                       1 -1.02145629
       -0.966146811
       -1.290545651
## 25
                       1 -2.89493794
## 26
       -1.514009960
                       1 -3.31883608
## 27
        0.542343311
                       1
                          5.22220973
## 28
        1.255756488
                       1 9.31507520
## 29
        0.460602619
                       1 3.75431205
## 30
       -1.731658593
                       1 -4.06907539
## 31
       -0.166958647
                       1 3.63296924
## 32
       -1.366072992
                       1 -2.03163279
## 33
        0.872536580
                       1 6.69154365
## 34
        1.135311334
                       1 9.64666226
## 35
       -0.041428738
                       1 0.73279572
##
  36
       -0.275325909
                       1 2.99167283
## 37
        1.589155117
                       1 10.24174535
## 38
       -0.223390365
                       1 0.65752024
## 39
        0.707787567
                       1 5.13729319
## 40
       -0.566538379
                       1 0.63381017
## 41
        1.357883868
                       1 10.24890141
## 42
        1.305104745
                       1 8.67446355
## 43
       -1.092030224
                       1 -2.50333290
## 44
       -0.457279757
                       1 0.56224997
## 45
       -0.050783085
                          3.92656043
## 46
       -0.483100104
                       1 1.70250676
## 47
       -1.923479947
                       1 -3.72216254
       -0.876061335
## 48
                       1 -0.42632108
## 49
       -0.314151333
                       1 -0.22284664
## 50
        0.384494847
                       1 3.49189467
## 51
        0.630399668
                       1 4.75763437
## 52
        0.076010719
                       1 2.29805845
## 53
        0.783954787
                          4.17602028
## 54
       -0.442257709
                       1 -0.76016634
## 55
        1.130085740
                       1 6.81460930
```

```
## 56
                       1 5.44210419
        0.617862224
## 57
       -0.702086902
                       1 1.42097336
## 58
        0.804946905
                       1 7.47715744
## 59
        0.523758280
                          5.62592500
## 60
        0.586711487
                       1 5.69205661
## 61
       -0.461080382
                       1 2.30385968
## 62
        0.361594005
                       1 4.80782737
## 63
       -1.079538302
                       1 -0.26227779
## 64
       -0.977102188
                       1 -1.90608314
## 65
        0.294670124
                       1 4.30821877
## 66
        0.112992073
                       1 3.57552873
## 67
        0.511993941
                       1 5.28513768
##
  68
        1.359297179
                       1 10.79447545
## 69
        0.395124629
                       1 4.59389869
## 70
       -0.890957517
                       1 -0.29844304
## 71
        0.602680848
                       1 6.59883674
## 72
        0.070465483
                       1 2.91141830
       -0.401519797
## 73
                       1 0.03851908
## 74
       -0.929177244
                       1 -0.65067484
## 75
       -0.831373558
                       1 -2.21721978
## 76
        0.805025831
                       1 4.20709408
## 77
        0.521993733
                       1
                         4.71231766
## 78
        0.538438833
                       1 4.29498775
## 79
       -0.030217794
                       1 1.80130241
## 80
       -0.680781130
                       1 -1.80711180
## 81
       -0.215103177
                       1 1.89448539
## 82
       -0.544381272
                       1 1.99181858
## 83
        0.160722764
                       1 3.27471360
## 84
        1.824658382
                       1 11.08406509
## 85
       -0.037768465
                       1 2.26001572
## 86
       -0.196833948
                       1 1.06068617
## 87
        0.342446225
                       1 4.85032391
## 88
        0.356618960
                       1 4.18685231
                       1 -0.49091736
## 89
       -0.744108798
## 90
        1.693654668
                       1 11.63947667
## 91
        0.673389450
                       1 5.93178738
       -0.376670160
## 92
                       1 0.80059107
## 93
       -1.710998906
                       1 -5.37228665
## 94
        0.376146187
                       1 2.88479574
## 95
       -0.222982160
                       1 3.33560950
## 96
       -0.150352581
                       1 2.85792469
       -0.238628940
## 97
                       1 0.77854094
## 98
        0.755413855
                       1 7.86769189
## 99
        1.703566825
                       1 11.51056699
## 100 -0.595217149
                       1 0.13009541
```

```
##defining the Learning rate and no of iterations
learning_rate=0.05
n_iterations=100
##though the value of theta zero and theta one is 3 and 4.5
## we start the model with very high values which are not
## at all close to the original values
theta=matrix(c(20,20))
theta
##
        [,1]
## [1,]
          20
          20
## [2,]
##creating vectors that store the values of the parameters and
## the errors
b0<-vector("numeric",length=n_iterations)</pre>
b1<-vector("numeric",length=n_iterations)</pre>
sse<-vector("numeric",length=n_iterations)</pre>
res<-x_b%*%theta-y
grad=(t(x_b)%*%res)*2/n
grad
##
         [,1]
## x 24.85373
     35.57653
grad*learning_rate
##
         [,1]
## x 1.242686
##
     1.778827
theta=theta-grad*learning_rate
theta
##
         [,1]
## x 18.75731
##
    18.22117
ss=(y-(x_b%*%theta))**2
head(ss)
```

```
## [,1]

## [1,] 33.83796

## [2,] 1765.42039

## [3,] 941.84267

## [4,] 362.09171

## [5,] 502.52894

## [6,] 89.63972
```

```
###we see that after one iteration the value of weights have come down
##This we will repeat for N interations inside a loop
##reinitializing theta
theta=matrix(c(20,20))
theta
```

```
## [,1]
## [1,] 20
## [2,] 20
```

```
for(i in 1:n_iterations)
{
    res<-(x_b%*%theta)-y
    gradient<-(t(x_b)%*%res)*2/n
    theta<-theta-(learning_rate*gradient)
    sse[i]<-sum((y-(x_b%*%theta))**2)
    b0[i]<-theta[2]
    b1[i]<-theta[1]
}

model_i<-data.frame(model_iter=1:n_iterations,sse=sse,b0=b0,b1=b1)
model_i</pre>
```

_						
	##		model_iter	sse	b0	b1
	##	1	_	40679.1139		
	##		2	33357.6724	16.626219	17.616424
4	##	3	3	27374.3581	15.196260	16.568808
1	##	4	4	22482.0113	13.914347	15.606673
1	##	5	5	18479.5121	12.765262	14.722894
1	##	6	6	15203.1470	11.735346	13.910951
1	##	7	7	12519.6023	10.812336	13.164883
1	##	8	8	10320.2780	9.985223	12.479231
1	##	9	9	8516.6707	9.244126	11.849001
1	##	10	10	7036.6244	8.580176	11.269621
4	##	11	11	5821.2858	7.985415	10.736905
	##		12		7.452697	10.247018
	##		13			9.796449
1	##	14	14	3325.7150	6.548408	9.381980
1	##	15	15	2769.2604	6.165922	9.000662
	##		16		5.823523	
	##		17		5.517055	
	##		18	1620.3198	5.242790	
	##		19	1362.4631	4.997384	
	##		20	1149.2922	4.777838	
	##		21	972.9188		
	##		22	826.8700	4.405838	
	##		23	705.8306	4.248808	
	+# ##		24		4.108429	
				522.0867		
	## ++		25		3.982961	
	## ++		26		3.870844	
	## ++		27		3.770681	
	##		28	347.3163	3.681217	
	##		29	307.3884	3.601329	
	##		30		3.530010	
	##		31	246.3201	3.466358	
	##		32		3.409564	
	##		33	203.7279	3.358904	
	##		34			
	##		35			
;	##	36	36	162.5390	3.237572	5.350489
=	##	37	37	152.9932	3.205603	5.287559
4	##	38	38	144.9813	3.177133	5.229504
;	##	39	39	138.2514	3.151791	5.175941
4	##	40	40	132.5940	3.129241	5.126519
1	##	41	41			
	##		42		3.091353	
	##		43		3.075507	
	##		44		3.061434	
	##		45		3.048941	
	τπ ##		46			
	+# ##		47			
	## ++		48	110.0170	3.019318	
	##		49			
	##		50		3.004778	
	##		51		2.998742	
	##		52			
	##		53	105.5039	2.988699	
	##		54		2.984545	
1	##	55	55	104.5152	2.980884	4.711929

3/2010	,				Gradient_Descent_and_back_Propogation.R
##	56	56	104.1298	2.977661	4.698138
##	57	57	103.8025	2.974827	4.685398
##	58	58	103.5243	2.972338	4.673628
##	59	59	103.2878	2.970155	4.662752
##	60	60	103.0866	2.968242	4.652703
##	61	61	102.9154	2.966569	4.643417
##	62	62	102.7698	2.965108	4.634835
##	63	63	102.6457	2.963835	4.626904
##	64	64	102.5400	2.962727	4.619575
##	65	65	102.4500	2.961765	4.612800
##	66	66	102.3732	2.960932	4.606539
##	67	67	102.3078	2.960213	4.600751
##	68	68	102.2520	2.959593	4.595400
##	69	69	102.2044	2.959061	4.590455
##	70	70	102.1638	2.958606	4.585882
##	71	71	102.1291	2.958219	4.581655
##	72	72	102.0995	2.957891	4.577747
##	73	73	102.0743	2.957614	4.574134
##	74	74	102.0527	2.957383	4.570793
##	75	75	102.0342	2.957190	4.567703
##	76	76	102.0185	2.957032	4.564847
##	77	77	102.0050	2.956904	4.562205
##	78	78	101.9935	2.956801	4.559763
##	79	79	101.9837	2.956720	4.557504
##	80	80	101.9753	2.956658	4.555414
##	81	81	101.9681	2.956612	4.553482
##	82	82	101.9620	2.956581	4.551695
##	83	83	101.9567	2.956561	4.550043
##	84	84	101.9522	2.956551	4.548514
##	85	85	101.9483	2.956549	4.547100
##	86	86	101.9451	2.956554	4.545792
##	87	87	101.9422	2.956565	4.544582
##	88	88	101.9398	2.956581	4.543463
##	89	89		2.956601	4.542428
##	90	90	101.9360	2.956624	4.541470
##	91	91	101.9345	2.956649	4.540584
##	92	92	101.9332	2.956675	4.539765
##	93	93	101.9321	2.956703	4.539007
##	94	94	101.9311	2.956732	4.538305
##	95	95	101.9303	2.956762	4.537656
##	96	96	101.9296	2.956791	4.537056
##	97	97	101.9290	2.956821	4.536500
	98	98	101.9285	2.956850	4.535986
##	99	99	101.9281	2.956879	4.535511
##	100	100	101.9277	2.956907	4.535070

```
###plotting all the lines and the final regression line
p1 <- data %>%
 ggplot(aes(x=x, y=y)) +
 geom_abline(aes(intercept = b0,
                  slope = b1,
                  colour = -sse,
                  frame = model_iter),
              data = model_i,
              alpha = .50
 ) +
 geom_point(alpha = 0.4) +
 geom_abline(aes(intercept = b0,
                  slope = b1),
              data = model_i[100, ],
              alpha = 0.5,
              size = 2,
              colour = "dodger blue") +
 geom_abline(aes(intercept = b0,
                  slope = b1),
              data = model_i[1, ],
              colour = "red",
              alpha = 0.5,
              size = 2) +
 scale_color_continuous(low = "red", high = "grey") +
 guides(colour = FALSE) +
 theme_minimal()
```

Warning: Ignoring unknown aesthetics: frame

р1

