Graphs

Overview

Terminology
Size
Representations
Adjacency matrix
Adjacency lists
Algorithms
Depth-first search
Breadth-first search

Terminology

Circles are called *vertices* (singular: *vertex*) or *nodes*.

Lines or arrows are called edges.

A graph with one-way edges is *directed*.

The *neighbors* of a vertex are the vertices that can be reached in one step.

Size

An undirected graph with v vertices has at most v(v-1)/2 edges.

A directed graph with v vertices has at most v^2 edges (including self-loops).

In general, the number of edges $e \in O(v^2)$.

A graph can have zero edges!

Representations

Adjacency matrix

Χ

Χ

3

Χ

Χ

Χ

An entry at position r, c indicates an edge from vertex r to vertex c. For an undirected graph, the matrix is always symmetric.

Space used: $\Theta(v^2)$

Time to see if an edge exists: $\Theta(1)$

Good for dense graphs (which have close to the maximum number of edges).

Adjacency lists

Row r is a linked list of the indices of vertex r's neighbors.

Space used: $\Theta(v + e)$

Time to see if an edge exists: O(v)

Good for *sparse* graphs (which have much less than the maximum number of edges).

Algorithms

Depth-first search

Must specify starting vertex.

One of several orders starting at C: CIEAJLBDFKHGM.

Follow edges until you hit a dead end, then backtrack to the last fork.

J G B K

Must keep track of visited vertices to prevent a loop.

Mark this vertex visited and add it to output For each unvisited neighbor Search that neighbor

Breadth-first search

Must specify starting vertex.

One of several orders starting at C: CIJGMAELDBHFK.

Visit neighbors, then their neighbors, and so on.

Must keep track of visited nodes to prevent a loop.

Mark the start vertex visited and add it to a (previously empty) queue While the queue is not empty:

Dequeue a vertex v and add it to output For each unvisited neighbor of v: Mark that neighbor visited Enqueue that neighbor

This algorithm can be used to find shortest paths.

Review

Graphs are made of vertices and edges.

Some graphs are directed.

$$e \in O(v^2)$$

Graphs can be represented by adjacency matrices or adjacency lists.

Depth-first and breadth-first search are two of many useful graph algorithms.