Supercomputing @ MPIA

Data Science Workshop - March 2024

Chapter 1: Parallel Processing

- Storage: Long-term, Large, Slow: HDD (~0.1 GB/s), SDD (~1 GB/s)
- Memory: Volatile, Fast(er) (~10 GB/s)
- Node: Component Computer
 - CPU: Physical Chip: Contains Cache Memory + Compute Unit(s).
 - Core: A single compute unit capable of billions of actions /s.
 - Thread (logical CPU): Number of concurrent threads supported.
- Thread: A context of execution where computation occurs.
- **Process:** Instance of a program in memory. Contains the resources necessary for computation (memory, sockets, security). Can spawn (child) processes and will use thread(s) to accomplish computation.

Terminology

Parallel-Processing

Multi-Threading:

- Not to be confused with Simultaneous Multi-Threading or Hyperthreading
- Multiple concurrent threads access the same shared memory.
- Less overhead, one copy of process.
- Limited to a single Node.
- Can lead to nastiness (race conditions).
- Python can't multi-thread (GIL).
- Many low-level libraries are MTed.

Multi-Processing:

- Multiple processes working together.
- Can be distributed over multiple nodes.
- Can even be distributed over networks.
- Each process has its own memory, though it's possible to share.
- Much more overhead incurred from spawn, copy, and communication.
- Usually, if we want to do this on large scale, we need MPI (or similar).

Exercise #0: Multi-Threading

HPCWorkshop/Chapter1/multithreading:

- C:
 - Native: multithread.c (cumbersome)
 - OpenMP: multithread_omp.c (simpler but not race-safe)
- Python:
 - multithread.py (offers little benefit due to GIL)
- Julia:
 - multithread.jl (slow due to overhead and race-safe)

Exercise #0: Takeaways

- 1. Parallelism benefits can be lost quickly do to overheads.
- 2. Use low-level libraries (or packages that call them) to write fast code.
- 3. When possible, work smarter, not harder.
- 4. Writing **fast/efficient** multithreaded low-level code is hard.
- 5. In general, unless we are writing/optimizing an algorithm, we want...

Exercise #1: Multi-Processing

HPCWorkshop/Chapter1/multiprocessing:

- C:
 - Native: multiprocess.c (can only be run one one machine)
 - MPI: multiprocess_mpi.c (can be scaled to an HPC/network)

• Python:

- o multiprocess.py (can only be run one one machine)
- MPI: multiprocess_mpi.py (can be scaled to an HPC/network)

Julia:

- multiprocess.jl (easy to set up and distribute)
- multiprocess_mpi.jl (possible but required configuring)

Exercise #1: Takeaways

- 1. MPI is our friend for parallel computing!
 - Can be used with many languages across multiple nodes.
- 2. Chunking is incredibly important to reduce overheard.
 - Splitting up our work too finely will remove our benefits!
- 3. Many codes out there will use OpenMPI or MPICH.
 - But these will usually be available to use on MPCDF/astro-nodes.

Chapter 2: Batch Processing

Compute Facilities Available to YOU

	Nodes	CPUs/Cores/Threads	Memory	Storage
MPIA Laptop	1	1/10/10	16GB	~1TB
Astro-nodes	~25	1/32/32 - 2/72/144	250GB - 1TB	~1PB
MPCDF Cobra	~3000	1/40/80	250GB - 1TB	~1PB
MPCDF Raven	~1600	2/72/144	250GB - 1TB	~1PB
MPCDF Vera	~100	2/72/72	250GB - 1TB	~1PB

MPCDF

Max Planck Computing and Data Facility

- In general we don't access the compute nodes directly.
- First, we access a Bastion Host with password and OTP:
 - ssh ***@gate.mpcdf.mpg.de
 - Purely for getting elsewhere.
- Then, access the cluster login node:
 - ssh ***@vera01.bc.rzg.mpg.de
 - ssh raven or ssh cobra
 - Login nodes are used for:
 - Editing code.
 - Compiling binaries.
 - Submitting jobs.

MPCDF

Max Planck Computing and Data Facility

- See ssh_config file to make this "slightly" less painful.
- How do I transfer data to MPCDF?
 - Small (< 1GB): scp
 - Medium (<250GB): rsync
 - Large (>250GB): Globus
- File Systems & Storage:
 - Home directory (~1TB)
 - For Results and Code
 - Scratch (~1PB or 5TB)
 - NOT backed up, for heavy I/O tasks.
 - Long-term Tape Storage

- Responsible for taking requests and allocating computational time.
- Designed for HPC systems: monitoring, fault tolerance, etc.
- Required information:
 - Number of Threads and Cores (CPUs+GPUs)
 - Amount of Memory
 - Necessary Packages/Modules
 - Maximum Runtime
- There are a few common ones, but we will focus on Slurm:
 - Currently the one used by the MPCDF.

Anatomy of a SLURM Script

Preamble:

- Meta-information about the job.
 - stdout, stderr
 - Job Name
 - Working Directory
- Requests resources for the job.
 - Nodes
 - Memory
 - Core
 - SMTs
- Array Jobs.
- Conditional Jobs.

Main Body:

- Loads relevant modules.
 - Conda
 - OpenMPI
- Runs your code!

SLURM Commands

- **sbatch:** Submit a job.
- **srun:** Run a parallel command.
- squeue: Monitor the queue
- scancel: Cancel a job

Exercise #2: Slurm Scripts

Log-in to cobra:

- Helloworld.slurm
- Helloarray.slurm

Log-in to raven-i (for interactive example) or raven:

- Square_mpi.slurm (copy over python script from Chapter 1)
 - module load anaconda/3/2023.03 gcc/13 openmpi/4.1
 - o conda create --name fast-mpi4py python=3.8 -y && conda init
 - source ~/.bashrc
 - o conda activate fast-mpi4py && pip install mpi4py --no-cache-dir
 - o srun -n 2 -p interactive multiprocess_mpi.py

Exercise #2: Takeaways

- 1. Parallel code is (mostly) straightforward to run with SLURM.
- 2. Batch scripting can make iterating over large samples efficient.
- 3. Understand the available modules.
- 4. Interactive nodes can be used for testing purposes.
- 5. In general, queue times are long. Ensure your code runs first!

Chapter 3: Workflow Managers

Automate Building Scripts

Make:

- Reads a Makefile to execute.
- Broken down into:
 - target
 - dependencies
 - o commands
- Trivially parallelizable.
- Designed for automating software compilation.

Snakemake:

- Reads a Snakefile
- Broken down
 - Rules
 - Targets
 - Outputs
- Built with Python.
- Designed to automate data processing tasks.

Exercise #3: Snakemake

Run a Snakemake Workflow

- conda env create -f environment.yaml
- conda activate snakemake
- snakemake --dryrun
- snakemake --process 3
 - Snakemake will run until all outputs are created
 - -F to force scripts to run again.
- snakemake --dag | dot -Tsvg > dag.svg
 - With graphviz we can visualize the dependency structure.

Exercise #3: Challenge

Complete this Snakemake workflow

- We're going to download SDSS spectra and plot them in Fnu.
- Remember to think about the workflow!
- Look in the Answer file if you get stuck.
- We can then run this on the HPC in ONE line!
 - -cluster "sbatch -cpus-per-task=2 --mem=2000 -t 1" --jobs 3

Exercise #3: Takeaways

- 1. Snakemake rules are focused on creating products (files).
- 2. Snakemake can handle the relationship between rules.
- 3. Resource limits and batching make snakemake efficient.
- 4. Can help encapsulate entire project workflows.
- 5. Visualizing your workflow and dry-run for project management.
- 6. Incredibly extensible with conda and containers and HPC systems!

Chapter 4: Containers

- Solves the age-old issue: "But it runs fine on MY machine!"
- Containers are a standard unit of computation:
 - Contains everything you need to run code.
- Industry Standards:
 - Docker: Typically not used on HPC systems due to security.
 - Apptainer (nee Singularity)
 - Charlie Cloud (optimized for efficiency)
- NOT a virtual machine, no hardware virtualization!
 - This means a smaller hit to performance!

Containers

APP #1
BINS / LIBS
BINS / LIBS
BINS / LIBS
BINS / LIBS

DOCKER DAEMON

HOST OPERATING SYSTEM

INFRASTRUCTURE

Virtual Machines

Docker Containers

Containers

- Images are built from definition files.
- Note: Images always require root to build.
- However, Apptainer are executed w/o root, unlike Docker.
- Once we have a Container running, we can execute code within it!
- In general, we can pull images made by anyone in the community!
 - Ideally we can find a pre-made image of software that we want.
 - We can also take an existing image, and add on top of it.
- They can be surprisingly lightweight even with an entire OS inside

Apptainer

Exercise #4: Containers

Download The Docker App

- We will use a Dockerfile to specify a simple environment.
- docker build buildx --tag python:latest .
 - Docker hashes intermediate steps to keep things fast.
- docker run -v ~path:/app -w /app --name python -dit python:latest
 - -v Mounts a local directory.
 - -dit Keeps the container open and runs in the background.
- docker exec python ./dockertest.py

Exercise #4: Takeaways

- 1. Containers are effective ways of sharing reproducible code.
- 2. They are easy to make and share, there might already be one for you!
- 3. Container systems are ideal for deploying at scale.
- 4. Want your new student/postdoc to run code Day 1? Use a container!
- 5. Have a short term student on a project? Use a container!

Chapter 5: Putting it all Together

Exercise #5: Gadget-4

- Let's run a test simulation using Gadget!
- Together we're going to:
 - a. Build a Docker Image
 - b. Build the Software with OpenMPI Multiprocessing
 - c. Use Apptainer to Run it on the HPC
 - d. Write a SLURM script to submit the job
 - e. Write a SnakeMake file to automate this process?