### 7.2

How Convolutional Neural Networks Work

Part 5: Controlling The Output Size With Padding

#### How do we calculate the feature map size?



#### How do we calculate the feature map size?



(The same formula works for "height")

Deep Learning Fundamentals, Unit 7





```
import torch
import torch.nn as nn

layer = nn.Conv2d(1, 1, kernel_size=3, padding=0, stride=1)

example = torch.rand(1, 100, 100)
layer(example).shape

torch.Size([1, 98, 98])
```





```
import torch
import torch.nn as nn

layer = nn.Conv2d(1, 1, kernel_size=5, padding=0, stride=2)

example = torch.rand(1, 100, 100)
layer(example).shape

torch.Size([1, 48, 48])
```



```
import torch
import torch.nn as nn

layer = nn.Conv2d(1, 1, kernel_size=5, padding=0, stride=2)

example = torch.rand(1, 100, 100)
layer(example).shape

torch.Size([1, 48, 48])
```

#### Padding = 1

Will add a row/column of zeros to each size



image with no padding





image with no padding



image with no padding



image with no padding















# Or, instead of doing the math, we can use padding = "same"

## Next: Let's take a look at some common CNN architectures