Informe del Proyecto Bifrost: Optimización de Rutas de Transporte Público en La Habana

Resumen

El proyecto **Bifrost** se centra en la optimización de las rutas de transporte público (buses) en la ciudad de La Habana, utilizando técnicas avanzadas de Inteligencia Artificial (IA) y Simulación. Implementado en C++, Bifrost emplea algoritmos de búsqueda como el algoritmo de Dijkstra multilayered con inertial flow, lógica difusa para la toma de decisiones de los usuarios, y simulación basada en sistemas de agentes para modelar el comportamiento de los pasajeros. Además, se utiliza un algoritmo de optimización para mejorar continuamente las rutas y minimizar el tiempo promedio de viaje de los usuarios. Este informe detalla la metodología, los componentes técnicos y los resultados obtenidos, alineándose con los objetivos de las asignaturas de IA y Simulación.

Índice

- 1. Introducción
- 2. Objetivos del Proyecto
- 3. Metodología
 - Obtención y Procesamiento del Mapa
 - Algoritmo de Búsqueda: Dijkstra Multilayered con Inertial Flow
 - Modelado de Rutas y Usuarios
 - Simulación de Iteraciones
 - Lógica Difusa para la Toma de Decisiones
 - Optimización de Rutas
- 4. Implementación en C++
- 5. Aspectos de Simulación
 - Sistema de Agentes
 - Características de los Agentes
 - Interacción y Comportamiento
- 6. Resultados y Análisis
- 7. Conclusiones

Introducción

El transporte público es un componente esencial de la infraestructura urbana, afectando directamente la calidad de vida de los habitantes y la eficiencia económica de una ciudad. En el contexto de La Habana, optimizar las rutas de los autobuses puede reducir significativamente el tiempo de viaje de los usuarios, disminuir la congestión y mejorar la accesibilidad. El proyecto Bifrost aborda este desafío mediante la integración de técnicas de IA y simulación para modelar, analizar y optimizar las rutas de transporte público.

Objetivos del Proyecto

El proyecto Bifrost persigue alcanzar los siguientes objetivos, alineados con las asignaturas de IA y Simulación:

1. Conocimiento:

 Implementar lógica difusa y sistemas de conocimiento experto para la toma de decisiones de los usuarios.

2. Búsqueda:

 Utilizar algoritmos de búsqueda como el recocido simulado (simulated annealing) y/o A* para la optimización de rutas.

3. Procesamiento de Lenguaje Natural (NLP):

 Se considera la posibilidad de integrar NLP para mejorar la interacción con los usuarios o interpretar datos textuales.

4. Simulación:

 Desarrollar un sistema de simulación basado en agentes que modela el comportamiento de los pasajeros y la dinámica del transporte público.

Metodología

Obtención y Procesamiento del Mapa

El mapa de La Habana se obtuvo a través de **OpenStreetMap (OSM)**, una plataforma colaborativa que provee datos geoespaciales detallados. Estos datos fueron procesados y convertidos en una representación gráfica adecuada para su manipulación en C++. Esto incluyó la extracción de nodos y aristas que representan las intersecciones y las calles de la ciudad, respectivamente.

Algoritmo de Búsqueda: Dijkstra Multilayered con Inertial Flow

Para calcular los caminos mínimos en el mapa, se implementó el **algoritmo de Dijkstra multilayered**. Este enfoque divide el mapa en múltiples capas, permitiendo una búsqueda más eficiente en entornos urbanos complejos.

Modelado de Rutas y Usuarios

Definición de Rutas de Autobús

Cada ruta de autobús se define por varias propiedades:

- Cantidad de autobuses que operan en la ruta.
- Arregio de IDs de nodos que representan las paradas a lo largo de la ruta.

Propiedades de los Usuarios

Cada usuario (persona) en la simulación posee las siguientes propiedades:

- house_node_id : ID del nodo donde reside.
- work_node_id : ID del nodo donde trabaja.
- speed : Velocidad de caminata en metros por minuto.
- physical_state : Estado físico (valor entre 0 y 1).
- patience: Nivel de paciencia (valor entre 0 y 1).
- money: Nivel economico (valor entre 0 y 1).

Simulación de Iteraciones

Cada iteración de la simulación sigue estos pasos:

1. Configuración Inicial:

 Se define el número de personas y se asignan rutas de autobús iniciales junto con la cantidad de autobuses en cada ruta.

2. Decisión de Transporte:

Para cada persona, se decide si caminar o tomar el autobús, utilizando lógica difusa.

3. Cálculo del Tiempo de Viaje:

• Se calcula el tiempo que cada persona tarda en llegar a su destino, considerando variables como la velocidad de caminata individual y la disponibilidad del autobús.

4. Resultados de la Simulación:

• Se obtiene el tiempo promedio que las personas tardan en llegar a sus destinos.

Lógica Difusa para la Toma de Decisiones

La lógica difusa se emplea para modelar la incertidumbre y la variabilidad en las decisiones de transporte de los usuarios. Se definen reglas que consideran múltiples factores para determinar la opción de transporte más adecuada para cada persona.

Reglas Definidas

```
fl::Rule::parse("if Distance is Far and PhysicalState is Weak then Decision is Bus", engine);
fl::Rule::parse("if Money is Low then Decision is Walk", engine);
fl::Rule::parse("if BusDelay is Long then Decision is Walk", engine);
fl::Rule::parse("if PhysicalState is Strong and Distance is Close then Decision is Walk", engine);
fl::Rule::parse("if Distance is Medium and PhysicalState is Average then Decision is Walk", engine
fl::Rule::parse("if Money is High then Decision is Bus", engine);
```


Optimización de Rutas

El algoritmo optimizador ajusta las rutas y la cantidad de autobuses iniciales para mejorar el tiempo promedio de viaje de los usuarios. Se utiliza **recocido simulado (simulated annealing)** como técnica de optimización para explorar el espacio de soluciones y encontrar configuraciones de rutas que minimicen el tiempo de viaje promedio.

Implementación en C++

El proyecto Bifrost está completamente implementado en **C++**, aprovechando su eficiencia y capacidad para manejar grandes volúmenes de datos geoespaciales y simulaciones en tiempo real. Se utilizaron bibliotecas específicas para el procesamiento de datos de OSM, implementación de algoritmos de búsqueda y lógica difusa, así como para la simulación basada en agentes.

Aspectos de Simulación

Sistema de Agentes

La simulación se basa en un **sistema de agentes**, donde cada agente representa a una persona que utiliza el transporte público. Los agentes son **proactivos** en sus acciones, buscando activamente llegar a sus destinos de la manera más eficiente posible.

Características de los Agentes

Cada agente posee las siguientes características:

- Deseos:
 - Llegar a su destino (trabajo o residencia) de manera eficiente.
- Miedos:
 - Que el autobús se demore, lo que podría afectar su tiempo de viaje.
- Propiedades Individuales:
 - house_node_id, work_node_id, speed, physical_state, patience, money.

Interacción y Comportamiento

Los agentes interactúan con el sistema de transporte público y con otros agentes de la siguiente manera:

Decisión de Transporte:

 Basada en lógica difusa, considerando variables como distancia, estado físico, retraso del autobús y disponibilidad económica.

Respuesta a la Congestión:

 La demora de un autobús está directamente relacionada con la cantidad de autobuses asignados a una ruta específica, afectando las decisiones futuras de los agentes.

Adaptación:

 Los agentes adaptan sus decisiones en cada iteración de la simulación en función de las condiciones actuales del sistema.

Resultados y Análisis

Tras múltiples iteraciones de la simulación, se obtuvieron los siguientes resultados:

• Reducción del Tiempo Promedio de Viaje:

 La optimización de rutas y la asignación adecuada de autobuses resultaron en una disminución significativa del tiempo promedio que los usuarios tardan en llegar a sus destinos.

• Eficiencia en la Distribución de Autobuses:

 El algoritmo de optimización logró una distribución más equilibrada de los autobuses, minimizando los retrasos y mejorando la puntualidad.

Adaptabilidad del Sistema:

 El sistema demostró ser capaz de adaptarse a diferentes configuraciones de rutas y cantidades de autobuses, manteniendo la eficiencia en diversas condiciones.

Conclusiones

El proyecto Bifrost ha demostrado que es posible optimizar las rutas de transporte público en una ciudad compleja como La Habana mediante la integración de técnicas avanzadas de IA y simulación. La utilización de lógica difusa permitió modelar de manera efectiva las decisiones de los usuarios, mientras que los algoritmos de búsqueda y optimización garantizaron una asignación eficiente de recursos. La simulación basada en agentes proporcionó una representación realista del comportamiento de los usuarios y las dinámicas del transporte público, lo que fue fundamental para iterar y mejorar las rutas propuestas.

Este enfoque no solo reduce el tiempo de viaje promedio de los usuarios, sino que también contribuye a una mayor eficiencia en la operación del transporte público, lo que puede tener un impacto positivo en la calidad de vida de los habitantes y en la sostenibilidad urbana.

Referencias

• OpenStreetMap (OSM): https://www.openstreetmap.org/

• Algoritmo de Dijkstra: Wikipedia

• Lógica Difusa: Wikipedia

• Recocido Simulado: Wikipedia

• Simulación Basada en Agentes: Wikipedia

• C++ Programming Language: ISO C++