InT 1. Докажите, что если есть набор целых чисел ℓ_1, \dots, ℓ_n , удовлетворяющие неравенству

$$\sum_{i=1}^{n} 2^{-\ell_i} \le 1,$$

то существует префиксный код с кодовыми словами c_1,\dots,c_n , где $|c_i|=\ell_i$.

Определение

Для случайной величины α с вероятностями событий (p_1, p_2, \dots) меру

$$\mathrm{H}(\alpha) \coloneqq \sum p_i \log \frac{1}{p_i}.$$

мы будем называть э**нтропия** и обозначать H (иногда h).

Энтропией α при $\beta=b$ мы будем называть энтропию распределения α при условии, что $\beta=b$, то есть следующую величину:

$$\mathrm{H}(\alpha \mid \beta = b) \coloneqq \sum_{i} \Pr[\alpha = i \mid \beta = b] \cdot \log \frac{1}{\Pr[\alpha = i \mid \beta = b]}$$

Тогда энтропией α при условии β мы назовем среднее значение по b энтропии α при $\beta=b$. Таким образом:

$$\mathrm{H}(\alpha \mid \beta) \coloneqq \underset{b \sim \beta}{\mathbb{E}}[\mathrm{H}(\alpha \mid \beta = b)] = \sum_{b} \mathrm{H}(\alpha \mid \beta = b) \cdot \Pr[\beta = b].$$

InT 2.] Докажите, что величины α, β, γ независимы в совокупности (вероятность события $(\alpha = \alpha_i, \beta = \beta_j, \gamma = \gamma_k)$ равна произведению трех отдельных вероятностей) тогда и только тогда, когда:

$$H(\alpha, \beta, \gamma) = H(\alpha) + H(\beta) + H(\gamma).$$

Определение

Взаимной информацией между случайными величинами α и β будем называть функцию $I(\alpha:\beta):=\mathrm{H}(\alpha)-\mathrm{H}(\alpha\mid\beta).$

Также определим взаимную информацию в α и β при условии γ . $I(\alpha:\beta\mid\gamma)=\mathrm{H}(\alpha\mid\beta,\gamma)$.

InT 3. Докажите следующие свойства взаимной информации:

- $\overline{\mathbf{a}}) \ \overline{I}(\alpha : \beta) = I(\beta : \alpha);$
- б) α и β независимы тогда и только тогда, когда $I(\alpha:\beta)=0$;
- в) $I(f(\alpha):\beta) \leq I(\alpha:\beta)$ для любой функции f.

[INT 4.] Докажите неравенство $2 \operatorname{H}(\alpha,\beta,\gamma) \leq \operatorname{H}(\alpha,\beta) + \operatorname{H}(\alpha,\gamma) + \operatorname{H}(\beta,\gamma)$.

Комментарий. Верно и более общее утверждение. Пусть T_1,\dots,T_k — произвольные кортежи, составленные из переменных $\alpha_1,\dots\alpha_n$, причем каждая переменная входит ровно в r кортежей. Тогда r Н $(\alpha_1,\dots,\alpha_n) \leq$ Н (T_1) + Н (T_2) + \dots + Н (T_k) (Shearer's inequality).

InT 5. Пусть $\alpha \coloneqq (\alpha_1, \alpha_2, \dots, \alpha_n)$ — это случайная величина, задающая последовательность состояний Марковской цепи, изображенной на рисунке.

Чему равен предел $\lim_{n\to\infty} \frac{\mathrm{H}(\alpha)}{n}$?

InT 6. Имеется набор из n камней. Сколько взвешиваний необходимо, чтобы найти самый тяжелый и самый лёгкий камни (на каждую чашу можно класть не более одного камню)?

INT 7. Докажите, что следующее неравенство выполнено *не для всех* троек случайных величин (α, β, γ) .

$$2\operatorname{H}(\alpha,\beta,\gamma) \leq \operatorname{H}(\alpha,\beta) + \operatorname{H}(\alpha,\gamma \mid \beta) + \operatorname{H}(\beta,\gamma \mid \alpha)$$