ı	lear'e	Manua	I for the	ProMini	Δir Tra	nsmitter	and B	Pacaivar
		אנווואואו	1 101 1110		\mathbf{A} II II \mathbf{A}			eceivei

OScaleDeadRail https://oscaledeadrail.com

Darrell Lamm darrelllamm0@gmail.com

November 3, 2022 Copyright© 2019-2022, Darrell Lamm. All rights reserved.

Contents

1	Intr	oductio	n	3
2	Abo	ut DCC		3
3	_	ck-Star		4
	3.1 3.2		onal Technical Information	
4	Pro	Mini Ai	r Settings/Configuration	10
5	Inte	gration		14
	5.1		iew of Connections	
	5.2	ProMi	ni Air Receiver Connections	16
	5.3	ProMi	ni AirTransmitter Connections	18
	5.4	Integra	ation of the ProMini Air Receiver into a Locomotive	18
6	RF	Receive	r Compatibility	18
	6.1	Airwii	re CONVRTR Series	19
	6.2	QSI S	olutions Gwire	20
	6.3	Tam V	alley Depot DRS1, MkIII	21
	6.4		alley Depot DRS1, MkIV	
	6.5	NCE I	D13DRJ Wireless Decoder	22
	6.6	Stanto	n S-Cab Receivers	22
		6.6.1	Operating the S-Cab Throttle with the ProMini Air Rx	23
	6.7	OScal	eDeadRail ProMini Air Receiver	
	6.8		ver and Decoder Behavior with Loss of RF	
		6.8.1	Airwire CONVRTR Series	30
		6.8.2	Stanton Cab LXR-DCC Receiver	
		6.8.3	NCE D13DRJ	
		6.8.4	QSI Solutions Gwire and Tam Valley Depot DRS1 Series	
		6.8.5	OScaleDeadRail ProMini Air Receiver	
A	Firn	nware I	nstallation	32
В	Reg	ulatory	Notices	37
	eferen	·		39
Al	brev	iations/	Acronyms	39
Gl	ossar	y		39

List of Figures

	1	Typical model railroad battery-powered radio-controlled application	3
	2	The components and connections needed for the ProMini Air transmitter	5
	3	Example ProMini Air transmitter connections	5
	4	The components and connections needed for the ProMini Air receiver	6
	5	Example ProMini Air receiver connections (w DRV8871)	7
	6	Example ProMini Air receiver connections (w Cytron MD13S)	8
	7	LCD display showing DCC message sent	9
	8	LCD display showing DCC message received	10
	9	ProMini Air with an Liquid Crystal Display (LCD) display and DCC Con-	
		verter/+5V Power Supply	14
	10	ProMini Air antenna connector (U.FL)	15
	11	ISP programmer connections for the ProMini Air Tx and Rx	15
	12	The ProMini Air receiver's power and data connections	17
	13	The ProMini Air transmitter's power and data connections	18
	14	DCC data collected from a "typical" and Airwire throttle	20
	15	Gwire U.FL connector	21
	16	Tam Valley Depot DRS1, MKIII	22
	17	The recently-released Tam Valley Depot DRS1, MkIV receiver	23
	18	The recently-released Tam Valley Depot DRS1, MkIV receiver with U.FL	
		plug	24
	19	The NCE D13DRJ wireless decoder	25
	20	The S-Cab LXR-DCC receiver with a built-in antenna	26
	21	Demonstration that the ProMini Air transmitter successfully transmits to	
		the LXR-DCC receiver	27
	22	The ProMini Air receiver with a U.FL antenna	28
	23	ProMini Air's outputs with valid RF DCC signal	32
	24	ProMini Air's DCC "Idle" outputs with no valid RF DCC signal, filtering off	33
	25	Tam Valley Depot and Gwire outputs with no valid RF DCC signal	33
	26	ProMini Air's outputs with no valid RF DCC signal, filtering on	34
	27	GitHub Source download	34
Li	ist o	of Tables	
	1	ProMini Air Settings and Configuration	12
	2	RF Receiver Summary	19

Figure 1: Typical model railroad battery-powered radio-controlled application.

1 Introduction

Before understanding how to set up and use the ProMini Air transmitter and receiver, let's set the stage with Figure 1. What's different from typical model railroads is that power comes from a battery rather than electrified rails, and DCC (more about this in a moment) control information is received by a radio receiver (from a radio transmitter connected to a DCC throttle) rather than from DCC signals imposed on the track voltage by a throttle. This battery-powered, radio-controlled method of operation is sometimes called "dead-rail" because neither power nor signal is applied to the rails.

2 About DCC

We'll introduce some terminology that may be new. The National Model Railroad Association (NMRA) set forth a standard [1] for communicating with decoders onboard loco-

motives and other model railroad devices called Digital Command Control (DCC). DCC-compliant throttles control and configure these devices by sending coded, digital voltage waveforms over wires or tracks (usually) to these devices, which sift out those addressed to them. These coded waveforms contain digital messages or "packets" specify an action and an "Address" that determines the recipient device. Most DCC packets are addressed to a specific recipient, although a few kinds of messages are for *all* listening recipients.

Any DCC output (say from Digitrax, NCE, or other DCC throttle such as the low cost WiFi-equipped EX-CommandStation we offer) can be wirelessly transmitted using the ProMini Air transmitter over the "Airwire Channels" 0-16 in the North American 902–928 MHz or European 868-870 MHz "ISM Band" band (the Airwire or European channel (channel 18) and output power level is adjustable as described below) to a variety of RF receivers, including the ProMini Air receiver, that in turn convert the RF transmissions back to DCC signals any DCC decoder can "understand."

We also provide a North American channel 17 for Stanton-Cab transmitters (to the ProMini Air receiver) or Stanton-Cab receivers (from the ProMini Air transmitter).

After the ProMini Air has been interfaced and powered as described in the next section, the ProMini Air transmitter or receiver can be operated without further ado. However, you can reconfigure some aspects of the ProMini Air's operation as described later in this Manual.

3 Quick-Start

We provide the ProMini Air transmitter or receiver as a fully-assembled, modular device, already connected to any additional modular components necessary to act as either a transmitter or receiver.

For the ProMini Air transmitter, you simply connect the DCC Converter to a DCC throttle's Track R/L output that is used as both a power and DCC data source (Figures 2 and 3), or simply plug in power to use the WiFi-equipped EX-CommandStation we offer as a fully-standalone transmitter that allows you to use a smartphone's WiThrottle-compatible app to connect to the ProMini Air transmitter.

For the ProMini Air receiver, connect battery power to the power harness plug and plug the DCC amplifier's output to the Track R/L inputs to DCC decoder (Figure 4 and 5).

Both the ProMini Air transmitter and receiver can be optionally connected to an LCD that uses the "I2C" interface that uses ProMini Air outputs GND, VCC (+5V), SDA (3.3V data), and SCL (3.3V clock) as input. The display provides information on DCC messages received (PMA < DCC_Packet) and sent (PMA > DCC_Packet). See Figures 7 and 8.

Important Note: Since the ProMini Air operates on 3.3V logic, it has $4.7k\Omega$ "pull-up" resistors connected to 3.3VDC for the SDA and SCL I2C outputs to the LCD. The I2C LCD must have any onboard pull-up resistors removed! All LCDs provided by us will have the pull-up resistors removed. The ProMini Air also provides the +5VDC power and ground

Figure 2: The components and connections needed for the ProMini Air transmitter

Figure 3: Example ProMini Air transmitter connections. In this case, the DCC converter is eliminated, and the ProMini Air transmitter is directly integrated with the WiFi-equipped EX-CommandStation for a complete, stand-alone solution allowing connections from both USB-connected and smartphone throttles.

Figure 4: The components and connections needed for the ProMini Air receiver

that I2C displays require.

Of course the LCD display cannot be used once the ProMini Air *receiver* is mounted, but we strongly suggest that you keep the LCD display connected to the ProMini Air transmitter so that you can monitor changes in the ProMini Air transmitter's settings such as broadcast channel and power.

3.1 Additional Technical Information

The ProMini Air requires interfacing to additional electronics that are provided. For the transmitter, the DCC signals that would normally be applied to the tracks by a DCC throttle are input to a simple "DCC Converter" that provides both 5V DC power and 5V logic DCC signal for the ProMini Air transmitter. See Figure 2 and 3.

For an small additional cost, we will integrate the ProMini Air transmitter with a WiFi-equipped EX-CommandStation for a fully-integrated stand-alone transmitter solution. Once connected to the EX-CommandStation's WiFi network, the user can employ a WiThrottle-compliant smart phone app, such as WiThrottle, as a throttle for dead-rail control. Also, the user can connect a computer to the EX-CommandStation's USB port, and use various computer-driven throttles, including web-based throttles. See this web page for full details on using smartphone apps and the ProMini Air integrated with a WiFi-equipped EX-CommandStation.

For the receiver, the 3.3V logic DCC signal output by the ProMini Air receiver is converted by a "DCC amplifier" back to "track DCC" signals that an onboard DCC decoder can "understand." See Figure 4 and 5. We generally integrate either the small (1" x 0.8") 3.6A DRV8871 amplifier or the more powerful 13A Cytron amplifiers.

We decided to take this modular approach to allow: 1) the user to replace failed com-

Figure 5: Example ProMini Air receiver connections with a DRV8871 amplifier. Note the 1 ohm current-limiting resistor on the DCC out.

Figure 6: Example ProMini Air receiver connections with a Cytron MD13S amplifier

Figure 7: LCD display showing message DCC sent (Tx: sent wirelessly; Rx: sent to DCC amplifier)

ponents (and not the entire assembly) and 2) us to reduce our exposure to supply chain disruptions and parts obsolescence, keeping your costs low.

We believe this "modular" approach gives you flexibility for both installation and parts replacement. As an additional benefit of the ProMini Air's modularity, the user is that a transmitter can be repurposed as a receiver or vice versa with a simple firmware change.

3.2 Antennas for the ProMini Air

The ProMini Air *transmitter* comes with a "whip" antenna that preserves FCC/IC/ETSI/CE approval for the ProMini Air *transmitter* containing the Anaren A110LR09x or A1101R09x, or the Ebyte E07-900M10S transceiver daughterboards. The approval numbers are the following:

- FCC ID: X7J-A1107 (Anaren), 2ALPH-E07900M10S (Ebyte)
- IC: 8975A-A11072401

The OScaleDeadRail site discusses antennas that may be used with the ProMini Air *receiver* in cases where the provided whip antenna is not feasible to use. We do not recommend you replace the approved antenna for the ProMini Air *transmitter* because it may violate the FCC/IC/ETSI/CE approvals for an "active transmitter."

Figure 8: LCD display showing message DCC received (Tx: received from DCC throttle; Rx: received wirelessly)

4 ProMini Air Settings/Configuration

Note: The instructions here refer to both the ProMini Air transmitter (Tx) and receiver (Rx). Where necessary, we will try to differentiate between these options with "Tx" or "Rx" for the ProMini Air transmitter or receiver, respectively.

The ProMini Air has many default configuration settings that should make it useful "out of the box," and "OPS Mode" (sometimes called "Programming on the Main" or "PoM") re-configuration by the DCC throttle described below can change these settings, perhaps the most important of which is the Airwire Radio Frequency (RF) channel to transmit/receive on. But first, we need to explain how to make the ProMini Air "listen" to the DCC throttle's re-configuration commands explicitly meant for the ProMini Air.

While DCC throttles are mostly concerned with commanding the speed, direction, and other behavior of locomotives, they can be used to reconfigure the "decoders" that are busy interpreting the DCC commands sent by the DCC throttle. Usually, reconfiguration involves changing lighting effects and other behavior of devices on a locomotive *at a specific address*, and "OPS mode" is very convenient for doing so. Each DCC throttle manufacturer has a slightly different method for putting the throttle into "OPS mode" so that it can communicate with a decoder at a specific address, but once in this mode, the DCC throttles all send the same NMRA-compliant, DCC packets to reconfigure the recipient decoder by means of changing the *value* of a *Configuration Variable* (CV).

This last point is the source of a lot of confusion. A Configuration Variable (CV) is the

fixed address number with a set purpose where we will deliver a change in its value held at this address. We usually refer to the fixed address with a set purpose as "CV#", where # is some number. For instance, CV1 holds the value of a device's "short address" (whose value can be between 1 and 127). The value stored at this address can be changed, so we often refer to the value held at the CV address # as "CV#=value."

The ProMini Air "listens" to electrical signal DCC commands from the throttle (Tx) or from a wireless DCC signal (Rx), and if the address of a command matches the ProMini Air's address, which is 9900(Tx)/9901(Rx) by default (CV17=230, CV18=172(Tx)/173(Rx)), while the throttle is in "OPS mode", the ProMini Air can be re-configured. *Note: Previous versions of ProMini Air had default long addresses of* 9000(Tx)/9001(Rx) (CV17=227, CV18=40(Tx)/41(Rx))!

Table 1 provides CVs that can be changed to re-configure the ProMini Air. To change these values, the throttle that the ProMini Air connects (Tx) or RF DCC signal listens (Rx) to must first select the current address of the ProMini Air, which is 9900(Tx)/9901(Rx) by default. Then according to the instructions for the particular throttle, set the throttle in "OPS mode" or "programming-on-the-main" of Configuration Variables (CVs).

Table 1 also provides valid values for the CVs, so if the user attempts to set an invalid value for a CV, the entry will be ignored and will NOT take effect! All changes to CV values made in "OPS mode" are persistent after power-down except for CV254 (RF power level), which will reset to the original default value of 8 upon power-up. This setting has no important effect on the ProMini Air receiver (Rx). This feature prevents the ProMini Air transmitter from producing unexpected high-power RF output upon turn-on.

In general, it should not be necessary to change the ProMini Air's address. But, if the user needs to change the address, the following information will help. It's a little complicated. If the user is not changing from a short to a long address or vice versa, no change in CV29 is needed. The fifth bit of CV29 specifies whether to use a "long" (bit 5=1) or "short" (bit 5=0) address. For the ProMini Air, no other bits of CV29 are relevant, so either set CV29=0 to use the "short" address specified in CV1 or set CV29=32 to use the "long" address specified by CV17 and CV18.

When resetting the "long address" for the ProMini Air, the user *must* set CV17 *before* setting CV18! Once the user programs the value of CV18, the ProMini Air's address will change to the new address, whose value is set by the funny formula:

$$Address = (CV17value - 192) * 256 + CV18value,$$

so for the default values for CV17 and CV18 in Table 1: (231-192)*256 + 15/14(Tx/Rx) = 9900(Tx)/9901(Rx). Changing the address by first setting CV17 and then CV18 means that the ProMini Air will no longer accept "OPS mode" changes at the *old* address, and the user must change the throttle's address to the *new* address before going back into "OPS mode" for any further configuration changes to the ProMini Air. Similarly, if the user changes the value of CV29, then the address for the ProMini Air may have changed from long-to-short or short-to-long address, so the user must change the address on the throttle to communicate with the ProMini Air in "OPS mode" at the *new* address.

It may become necessary to reset the ProMini Air completely. An example is when power "glitches" corrupt the EEPROM memory during start-up when the ProMini Air is

Table 1: ProMini Air Settings and Configuration

			C	e
Feature	CV#	Valid CV Vals	Default	Comments
RF Channel	CV255	0–16, 17, 18	0	Airwire Ch. 0-16, S-Cab Ch. 17, EU Ch. 18
RF Power	CV254	0-10	8	Experimentation is required
Locked Anti-phase On/Off	CV253	0 or ≠ 0	1	DCC+/DCC- output type (Rx)
DCC sampling time	CV252	0–255	4	Time in 1/4 s intervals for DCC sampling before turn-off
Transceiver sleep time	CV251	0–255	0	Time in 1/4 s intervals for transceiver sleep
Bad transition counts, low btye	CV250	0–255	100	Low byte of maximum bad DCC transitions
Bad transition counts, high btye	CV249	0–255	0	High byte of maximum bad DCC transitions
DC Level	CV248	0 or ≠ 0	1	DCC A level when no valid DCC and DCC filtering on
Idle time in ms	CV247	0–255	0	Wait time in ms before forcing DCC IDLE packet send if more than 2 DCC packet repeats
DCC filtering	CV246	0 or ≠ 0	0	DCC filtering OFF (= 0) or ON (\neq 0) (Rx)
Channel wait period	CV245	0-60	1	Channel waiting period in sec (Rx)
Automatic IDLE Insertion off	CV244	0 or ≠ 0	0	Turn OFF (= 1) or ON (\neq 0) automatic IDLE packet insertion (Tx)
Transceiver DEVIATN code*	CV243	0-255	64	The transceiver's GFSK "DEVIATN" value
Number of preamble bits*	CV242	≥ 25	30	Tx only! 0 value uses internal defaults
Timer long counts*	CV241	≥ 67	27	(256-CV241)*0.5uS = DCC 1/2 "zero" duration
Timer short counts*	CV240	0–255	141	(256-CV240)*0.5uS = DCC 1/2 "one" duration
Configuration	CV29	0-255	32	CV29=32 to use long address
Long addr low byte	CV18	0–255	14(Tx), 15(Rx)	Default CV17 & CV18 make Address = $9900(Tx)/9901(Rx)$
Long addr high byte	CV17	192– 231	231	Program CV17 before CV18!
Factory reset	CV8	8	NA	CV8=8 causes "factory" reset
Short addr	CV1	1-127	3	CV29=0 to use short address
*Resets to default on power-up				

writing to EEPROM. The user can force a "factory" reset where you return the ProMini Air to its original settings by setting the throttle or wireless transmitter into "OPS" mode, selecting the ProMini Air's DCC address, and setting CV8 to 8. The ProMini Air will ignore other values for CV8. If successfully executed, the ProMini Air will display a reset message if an LCD is connected. Regardless, *do not turn off the power during reset*, which may last several seconds. Turning off power during reset almost guarantees EEPROM corruption, requiring yet another "factory" reset, so please wait at least ten seconds before turning off the ProMini Air following a factory reset.

A small LCD display with an "I2C" interface can be attached to the ProMini Air via the 4-pin connector to provide the user with useful information. The I2C address of the LCD display is typically either 0x27 (39 decimal) or 0x3F (63 decimal). The ProMini Air will attempt to "find" the display by automatically searching a range of I2C addresses, so the user does not need to know the display's address.

The ProMini Air uses 4.7k "pull-up" resistors connected to 3.3V that the I2C SDA and SCL inputs/outputs require, and we remove any pull-up resistors the displays have because they are internally connected to +5V power, which will damage the ProMini Air.

The LCD shown in Figure 9 displays the ProMini Air's address, Airwire channel number, and power level. The display is a FICBOX IIC/I2C 1602 Serial 5V Blue Backlight LCD Display for Arduino 2560 UNO AVR (which can be purchased here).

Many "I2C" interface displays are available and will probably work. The ProMini Air provides a 4-pin interface to the "I2C" display: GND, +5V (VCC), SCA, and SCL. It is crucial to make a contrast adjustment to the LCD using a small screwdriver to adjust the contrast potentiometer on the back of the display. Many users believe the display is defective simply because the contrast setting is wrong. See Figure 9.

A modified Arduino LiquidCrystal_I2C library by Frank de Brabander is included at the GitHub site for the ProMini Air to implement the display functions. You must use the modified version of this library included at the ProMini Air's GitHub site! We modified the library for global instantiation without parameters, and the init method uses parameters to initialize the display in a locally-scoped function.

Some final points about the reconfiguration of the ProMini Air:

- While many DCC throttles have alternative methods for re-configuring decoders, such as "Service Mode" and "Quick Decoder Setup", the only method that the Pro-Mini Air will respond to is the very simple "OPS Mode" or "programming-on-themain mode" (POM) that allows specific CVs to be *directly* set.
- Technically the ProMini Air is not a "multi-function" decoder, but we have chosen the addressing and reconfiguration of the ProMini Air as if it were one because the user usually becomes quite adept at quickly:
 - 1. changing the decoder address to the ProMini Air's,
 - 2. putting the throttle in "OPS mode",
 - 3. making CV changes to re-configure the ProMini Air,
 - 4. exiting "OPS mode", and finally

Figure 9: ProMini Air with an LCD display and DCC Converter/+5V Power Supply

5. changing the DCC throttle address back to whatever locomotive the user is trying to control.

5 Integration

To complete the integration of the ProMini Air receiver (Rx) or transmitter (Tx), you must establish several connections.

5.1 Overview of Connections

The Anaren and Ebyte transceiver daughterboards have a versatile U.FL plug for antenna connections. You can plug in either the Anaren whip antenna we provide or a U.FL-to-SMA or U.FL-to-RP-SMA cable that screws into a remotely-mounted antenna. See Figure 10 for details on these connections.

See Figure 11 for the "ISP" connections that for reprogramming the ProMini Air. Section A provides details on how to re-program the ProMini Air.

Which power and data connections you use depends on whether the ProMini Air will act as a receiver (Rx) or a transmitter (Tx). THERE IS NO PROTECTION AGAINST INCORRECT BATTERY OR EXTERNAL POWER CONNECTIONS!!! You will destroy

Figure 10: ProMini Air antenna connector (U.FL)

Figure 11: ISP programmer connections for the ProMini Air Tx and Rx

the ProMini Air **immediately** if you reverse the GROUND and POSITIVE POWER SUP-PLY connection!

We will break down these connections for the ProMini Air receiver and transmitter in the following two sections.

5.2 ProMini Air Receiver Connections

See Figure 12 for the ProMini Air receiver's typical power and data connections we use when integrating the ProMini Air with an amplifier. V+ and V-(GND) are received from the amplifier, which also uses battery power, and the DCC+ and DCC- outputs return to the amplifier. Note that the "+5V" jumper is connected to "+5V BAT" to provide +5VDC to an connected LCD display from an onboard voltage regulator that converts V+/V- to +5V/GND.

It is possible to use a separate +5VDC/GND voltage source connected to V+ and V-, and in this case the "+5V" jumper is connected to "+V" instead of "+5V BAT" to provide +5VDC/GND output to any connected LCD as well as powering the onboard electronics.

The ProMini Air receiver must connect to an external DCC amplifier that converts the DCC+/DCC- 3.3V logic from the ProMini Air receiver to DCC Track R/L that a DCC decoder requires. This DCC amplifier uses battery power and the DCC+/DCC- inputs from the ProMini Air receiver to provide the power and DCC messages, coded as a bipolar DCC waveform, to the decoder for both power and DCC messages.

We generally provide one of two "DCC amplifiers" with the ProMini Air recever:

- The excellent Cytron MD13S high-power (13A continuous) DCC amplifier may be purchased here It uses "locked-antiphase" modulation requiring the ProMini Air to output 3.3V logic-level DCC on DCC+ and a "high" 3.3V output on DCC-. This output scheme is activated by setting CV253 to 1, the default.
- The AdaFruit DRV8871 or DRV8871 clones are a smaller (1.0"x0.8"x0.4") 3.6A amplifier requiring two 3.3V logic-level DCC inputs that are inverted with respect to each other. This output scheme is activated by setting CV253 to 0. On power-up, some decoders produce large "in-rush" currents because their large "keep-alive" capacitors are in near short-circuit condition before they charge. These in-rush currents will cause the DRV8871 to shut down unless the output current is limited. We insert a 1 ohm resistor in series with the DCC output to limit the current during short-circuit conditions.
- You can successfully use more expensive high-amperage amplifiers (about \$30 US as of 2020) found at Pololu here or here. These amplifiers are smaller (0.8" x 1.3") than the Cytron.

Should you ever fully reset the ProMini Air receiver (by setting CV8 to a value of "8" in PoM mode at the ProMini Air's DCC address), you will need to set the value of CV253 at the ProMini Air's DCC address (9901 by default) in PoM mode back to the proper value (which is "1" by default).

Figure 12: The ProMini Air receiver's power and data connections

Figure 13: The ProMini Air transmitter's power and data connections

5.3 ProMini AirTransmitter Connections

The ProMini Air's transmitter connections are shown in Figure 13.

5.4 Integration of the ProMini Air Receiver into a Locomotive

Of course, the real purpose of the ProMini Air receiver and DCC amplifier is to integrate them into a locomotive for wireless DCC control using an onboard battery as power. For most installations, all that is necessary is to connect battery power to the DCC amplifier (which in turn supplies power to the ProMini Air receiver) and the amplifier's DCC output to the on-board DCC decoder.

6 RF Receiver Compatibility

We have successfully tested the ProMini Air transmitter with several wireless, RF receivers, operating in the 902–928 MHz Industrial, Scientific, and Medical (ISM) band that are designed to interface with onboard DCC decoders:

- Airwire CONVRTR series
- QSI Solutions Gwire
- Tam Valley Depot DRS1, MkIII and MkIV

- Stanton Cab (S-Cab) receivers such as the LXR-DCC
- NCE D13DRJ wireless DCC decoder
- OScaleDeadRail ProMini Air receiver.

We have also verified that the ProMini Air transmitter works in the European ISM band at 869.85MHz with the Tam Valley Depot DRS1, Mk IV, receiver. This is Channel 18 on the ProMini Air transmitter (and receiver).

Table 2: RF Receiver Summary

Name	Channels	Antenna	RF Loss Output	CV27 Relevant?
CONVRTR	0-16	Int or U.FL	DC	Yes
Gwire	0-7	Wire or U.FL	Pulses	No
DRS1, MkIII	16, 17	Wire	Pulses	No
DRS1, MkIV	0-17,18	Int or U.FL	Pulses	No
S-Cab LXR-DCC	17	Int	DC	Yes
NCE D13DRJ	16, 17	Int	Pulses	No
ProMini Air	0-17,18	SMA or U.FL	DCC Idle/DC*	No/Yes*

Int=Internal, *software configurable

6.1 Airwire CONVRTR Series

The company CVP manufactures and supports its Airwire series of products that include hand-held wireless DCC-compliant throttles (such as the T5000 and T1300) and receivers, such as the CONVRTR series that seamlessly connects to DCC decoders onboard the locomotive. As a general comment, CVP provides excellent, detailed installation and operation documentation and that's in part why they are dominant in some segments of wireless model railroad control. The CONVRTR receiver has some sophisticated features, such as setting its Airwire RF channel purely in software, as described in its User Guide.

However, the CONVRTR interacts with the Airwire wireless throttles in ways that make it challenging to transmit "garden variety" DCC wirelessly to the CONVRTR for proper operation. The Airwire wireless throttles send a non-dcc "cutout" (1/2 "one" and 1/2 "zero") after the end packet bit from the previous DCC packet followed by numerous (30) DCC preamble bits by as a "keep-alive" signal for the CONVRTR. A red LED on the CONVRTR board indicates received signal quality and flickers least when receiving numerous DCC preamble bits with the leading "cutout." The *brightness* of the LED is an indication of received RF power. Typical DCC throttles are not designed with these concerns in mind and do not output enough DCC preamble bits or the leading "cutout" before the preamble to keep the CONVRTR "happy." See Figure 14 for the unusual features of a Airwire throttle's transmitted DCC.

To combat this problem, the ProMini Air transmitter software intercepts "garden variety" DCC from the throttle and attempts to interleave a large number (30 or more) of

Figure 14: Data collected from a "typical" and Airwire throttle demonstrating the large number of preamble bits and leading "cutout" required to keep Airwire receivers "happy"

DCC preamble bits with a leading "cutout" to maintain communication with the CON-VRTR. Also, the ProMini Air transmitter inserts additional DCC "idle" messages, which has been observed to to improve Airwire CONVRTR compatibility. Auto-insertion of DCC Idle messages can be turned of by setting the ProMini Air's CV244 to 0, but doing so will probably interfere with Airwire CONVRTR compatibility.

We caution the user that "Service Mode" commands will be sent wirelessly to *all* "listening" wireless decoders because "Service Mode" does *not* use a specific DCC address! So, all wireless DCC receivers should be turned *off* except for the single "target" for "Service Mode" reprogramming. Note that most decoder reprogramming can be done in "OPS" mode, which will send reprogramming commands to a specific DCC address, so resorting to "Service Mode" should be a last resort.

Like the Gwire receiver below, the Airwire CONVRTR has a U.FL connector for connecting a shielded antenna cable from the receiver to an externally-mounted antenna. An internal antenna option is available as well for CONVRTR mountings that are not surrounded by metal.

6.2 QSI Solutions Gwire

The Gwire receiver operates on Airwire RF channels 0-7, which must be selected from a dial on the device itself and is a suitable wireless DCC receiver for the ProMini Air. A nice feature of this receiver is an onboard U.FL connector (see Figure 15) that allows the user to connect a shielded antenna cable between the receiver and an externally-mounted antenna. The U.FL connector is useful when the antenna must be mounted on the exterior of a metal locomotive or tender shell. See Blueridge Engineering's website here and here for details on how to interface the Gwire to any onboard DCC decoder. The Gwire presents

Figure 15: Gwire U.FL connector. If using the U.FL connector, detach the wire antenna.

no difficulties for the ProMini Air transmitter, and you can find it on eBay at reasonably low prices.

6.3 Tam Valley Depot DRS1, MkIII

The DRS1, MkIII receiver operates only on Airwire RF channel 16 (actually, 916.49 MHz, which is close enough to Airwire channel 16 at 916.37 MHz) and makes a suitable wireless DCC receiver. This receiver has a long, single-wire antenna that provides efficient RF reception (see Figure 16). However, the user should place this wire outside any metal shell, which may be inconvenient in some mounting applications. The DRS1, MkIII, presents no difficulties for the ProMini Air transmitter. The DRS1, MKIV, described in the next section, supersedes this receiver.

6.4 Tam Valley Depot DRS1, MkIV

The DRS1, MkIV, receiver completely departs from the DRS1, MkIII. It operates at the original Tam Valley 916.48 MHz frequency (S-Cab channel 17), Airwire Channels 0-16, and the European ISM band at 869.85MHz (channel "18"). The DRS1, MkIV, comes with either an internal antenna or a U.FL plug connecting to an external antenna. The DRS1, MkIV presents no difficulties for the ProMini Air transmitter. This receiver is an interesting choice because it changes channels automatically until it finds sufficient RF signal carrying

Figure 16: Tam Valley Depot DRS1, MKIII in an open-cavity install. Note the built-in long wire antenna.

DCC packets. See Figures 17 and 18.

6.5 NCE D13DRJ Wireless Decoder

The NCE D13DRJ, now, sadly, discontinued, is a dead-rail DCC decoder that originally touted compatibility with the Stanton Cab. The decoder's documentation is found here. As can be seen in Figure 19, the decoder is tightly-integrated with the receiver.

The NCE D13DRJ uses the same receiver chip (the Linx RXM-916-ES operating at 916.48MHz) as the older Tam Valley Depot Mk III receiver. The NCE D13DJR has been verified to work with the ProMini Air transmitter on Airwire Channel 16 (916.37MHz) or Channel 17 (916.48MHz).

6.6 Stanton S-Cab Receivers

The Stanton Cab (or S-Cab) is a series of dead-rail transmitters and receivers developed and sold by dead-rail pioneer Neil Stanton, Ph.D. S-Cab products are available at this site

Stanton offers a hand-held transmitter, the S-Cab Throttle, specifically designed to transmit to S-Cab RF receivers. These receivers include the S-CAB Radio Receiver (LXR-DCC) and Loco Receivers for HO, On3, On30, and some S-scale installations. Also, Stan-

Figure 17: The recently-released Tam Valley Depot DRS1, MkIV receiver. Note the internal antenna on the right side of the board.

ton will provide an S-Cab receiver coupled with decoders for larger scales. The available options are discussed on the S-Cab website here.

The S-Cab Throttle and receivers operate at 916.48MHz or 918.12MHz (single frequency only!). The former frequency is close to Airwire Channel 16 (916.36MHz), and the latter is the same frequency as Airwire Channel 11. However, Airwire hand-held transmitters *WILL NOT WORK* with S-Cab receivers at either Channel 16 or 11. And Airwire receivers *WILL NOT WORK* with the S-Cab Throttle.

We have devised the RF settings that allow the ProMini Air transmitter to operate with the S-Cab receivers (such as the LXR-DCC, Figure 20), and these settings are now added an S-Cab compatible Channel 17. This addition required moving the European Channel 17 to Channel 18. See Figure 21 for a demonstration of the ProMini Air Tx transmitting to the S-Cab LXR-DCC receiver.

6.6.1 Operating the S-Cab Throttle with the ProMini Air Rx

The specialized RF settings for Channel 17 also allow the S-Cab Throttle to transmit to the ProMini Air receiver with just a tiny wrinkle to establish communication (more about this below).

Since the S-Cab Throttle transmits on Channel, the ProMini Air Rx must use its automatic "channel search" capability to "find" the S-Cab Throttle's intermittent transmissions

Figure 18: The recently-released Tam Valley Depot DRS1, MkIV receiver with a U.FL plug for connecting to an external antenna.

on this Channel with it's unique RF settings.

The S-Cab Throttle's intermittent transmissions are where the "wrinkle" occurs. The ProMini Air Rx's channel search after power on quickly searches for transmissions in the following channel sequence: 0(A), 18(E), 17 (S-Cab), 1(A), 2(A), 3(A), ..., 16(A), where (A) mean Airwire channel, (E) means European ISM frequency 869.85MHz, and (S-Cab) means for S-Cab at 916.48MHz with other specialized settings.

The S-Cab Throttle's transmissions are intermittent, so if the operator does nothing, the S-Cab Throttle might not be transmitting in the short time window when the ProMini Air Rx is looking for transmissions on Channel 17. To force the S-Cab Throttle into nearly continuous transmissions, slide the speed control up and down continuously for several seconds while the ProMini Air Tx is powering up to guarantee the ProMini Air Tx has transmissions on Channel 17. If the ProMini Air Tx does not "sync up" with the S-Cab Throttle, try again by turning the ProMini Air Tx off and then back on while sliding the S-Cab's speed control up and down.

The Channel 17 settings are devised for S-Cab products operating at 916.48MHz. Contact the author should you need this interoperability at 918.12MHz.

6.7 OScaleDeadRail ProMini Air Receiver

The inexpensive ProMini Air receiver presents no issues when used with the ProMini Air transmitter. This receiver operates on Airwire RF channels 0–16, S-Cab channel 17, or

Figure 19: The NCE D13DRJ wireless decoder

Figure 20: The S-Cab LXR-DCC receiver with a built-in antenna.

Figure 21: Demonstration that the ProMini Air transmitter (yellow waveform) successfully transmits to the LXR-DCC receiver (blue waveform) on Channel 17. Note the very slight time delay of the LXR-DCC's waveform.

Figure 22: The ProMini Air receiver with a U.FL antenna.

the European ISM band at 869.85MHz (channel "18") and requires a separate amplifier to convert the ProMini Air's DCC+/DCC- 3.3V logic outputs to bipolar DCC that provides sufficient power to the decoder.

6.8 Receiver and Decoder Behavior with Loss of RF

The designers of various DCC-compatible RF receivers have a several of strategies for what output to provide to the onboard DCC decoders when a valid RF signal is lost:

- 1. Output the random pulses that the RF receiver naturally outputs when a valid RF signal is lost. This option will cause most DCC decoders to maintain direction and speed while the DCC decoder "sifts" the random pulses searching for valid DCC packets.
- 2. Output a fixed, positive Direct Current (DC) voltage to one of the DCC decoder's "Track" inputs and a zero voltage DC the other "Track" input when either a) valid RF signal is lost or b) for some RF receivers such as the Airwire CONVRTR do not receive "keep-alive" DCC packets often enough from the RF transmitter. How the DCC decoder responds to these DC "Track" inputs depends upon DCC decoder configuration and, unfortunately, DCC decoder manufacturer discretion.
- 3. Output a DCC "Idle" message that keeps the decoder "happy" and continues its current operating state.

Several NMRA-specified *Configuration Variables* (CVs) affect how decoders handle the loss of valid DCC packets, which is important to understand when using the ProMini Air transmitter because the RF receivers may lose or receive corrupted RF signal from the ProMini Air transmitter.

The NMRA standard S-9.2.4, Section C "Occurrence of Error Conditions" [3] describes "Multi-Function Digital Decoder shall have a Packet Update time-out value." Further down on line 60, the standard states, "A value of 0 disables the time-out (i.e., the user has chosen not to have a time-out)". This part of the NMRA standard is *not* universally implemented by manufacturers, and it affects how decoders will respond to the loss of RF transmission of DCC packets. To implement this requirement, the NMRA standard NMRA standard S-9.2.2 [2] has defined the "recommended", but *not* "mandatory", CV11, Packet Time-Out Value. A value of CV11=0 is defined to turn off the time-out, but CV11 is frequently *not* implemented.

However, another CV that *is* often implemented addresses some aspects of the loss of DCC. The "optional" CV27, Decoder Automatic Stopping Configuration is under reevaluation by NMRA, but the NMRA has taken no definite action for some time. Here is what the NMRA standard [2] currently (as of 2019) states about CV27:

Configuration Variable 27 Decoder Automatic Stopping Configuration Used to configure which actions will cause the decoder to stop automatically.

Bit 0 = Enable/Disable Auto Stop in the presence of an asymmetrical DCC signal, which is more positive on the right rail.

```
"0" = Disabled "1" = Enabled
```

Bit 1 = Enable/Disable Auto Stop in the presence of an asymmetrical DCC signal, which is more positive on the left rail.

```
"0" = Disabled "1" = Enabled
```

Bit 2 = Enable/Disable Auto Stop in the presence of an Signal Controlled Influence cutout signal.

```
"0" = Disabled "1" = Enabled
```

Bit 3 = Reserved for Future Use.

Bit 4 = Enable/Disable Auto Stop in the presence of reverse polarity DC. "0" = Disabled "1" = Enabled

Bit 5 = Enable/Disable Auto Stop in the presence forward polarity DC. "0" = Disabled "1" = Enabled

Bits 6-7 = Reserved for future use.

Since DCC decoder manufacturers frequently *do* implement CV27, what electrical output the DCC-compatible RF receiver provides to the DCC decoder upon loss of a valid RF signal will influence how the DCC decoder responds. We will break this down for various

brands of DCC-compatible RF receivers in the 902-928 MHz ISM band in the following subsections.

Note that some DCC decoders will *not* honor CV27=0; i.e., all auto-stopping features *disabled*. For example, with CV27 set to 0, the Zimo MX-696, and probably other Zimo DCC decoders as well, will continue speed and *forward* direction if *positive* DC level is input to the "*Right Track*" *DCC input*, and a zero DC level is input to the "*Left Track*" *DCC input*. Under these "track voltage" conditions, the locomotive will *stop* if originally moving *backward*. Some (but not all) DCC-compatible RF receivers, such as the Airwire CONVRTR, provide these DC inputs if a valid RF signal is lost, but only if connected correctly.

The "correct" connection relates to how the user connects the DCC output from the RF receiver to the "Track Right" and "Track Left" inputs of the DCC decoder. Under normal circumstances, when there is a valid RF signal, which way the DCC decoder connects to the RF receiver does *not* matter. Under the exceptional case of DC-only output by the RF receiver, if it loses a valid RF signal, which way the DCC decoder connects to the RF transmitter *does* matter. The user will likely want the locomotive to continue *forward* with the loss of a valid RF signal, so some experimentation is required to determine which of the RF transmitter DCC outputs should connect to which of the DCC decoder's "Track" inputs to achieve the desired behavior.

As a further complication, we recommend that the user *turn off* the decoder's "analog" mode of operation by setting Bit 2 of CV29 to 0 to force the decoder to use "NMRA Digital Only" control of "Power Source Conversion" (see [2]). If Bit 2 of CV29 *is* set to 1, and again we emphasize the user should probably *not* activate this feature, then "Power Source Conversion Enabled" and then CV12 determines the power source; the most common of which is CV12=1, "Analog Power Conversion."

6.8.1 Airwire CONVRTR Series

When the CONVRTR loses a valid RF signal or receives insufficiently large number of DCC preamble bits with a leading "cutout," it detects these conditions and sends a fixed DC voltage to the decoder. Consequently, the user *should* set CV27 according to the description above.

While it seems that you would want the locomotive to stop if its RF receiver loses a valid RF signal, consider what might happen in tunnels or remote locations. Getting stuck under these circumstances if a valid RF signal is lost is probably not what the user wants, so we strongly suggest that the user set CV27=0.

The user is cautioned, however, that some DCC decoders, such as the new ESU Lok-Sound 5 L DCC, do *not* honor the CV27=0 setting unless the decoder's "Track Right/Left" is connected "correctly" to the CONVRTR's "A/B" output. Experimentation may be required to determine the correct connection, but my experience is the following: CONVRTR A <-> Decoder Track Right & CONVRTR B <-> Decoder Track Left.

6.8.2 Stanton Cab LXR-DCC Receiver

If the S-Cab LXR-DCC loses valid RF reception, it will output a DC voltage. Depending on which of the LXR-DCC's output are connected to which DCC track input to the decoder, this DC voltage will be considered as "positive" or "negative" DC voltage, and the decoder will respond depending on the decoder's configuration. Consequently, like the CVP Airwire CONVRTR, the user *should* set CV27 according to the description above.

6.8.3 NCE D13DRJ

The NCE D13DJR wireless decoder is tightly integrated with its Linx RXM-916-ES receiver. By default, the decoder will maintain direction and speed, and lighting outputs when it loses valid RF signals.

6.8.4 QSI Solutions Gwire and Tam Valley Depot DRS1 Series

The QSI Solutions Gwire and Tam Valley Depot DRS1, MkIII and MkIV DCC-compatible RF receivers will output random pulses to the onboard DCC decoder when a valid RF signal is lost, so setting CV27 is probably of no use. On the "plus" side, most DCC decoders will maintain locomotive direction and speed in the presence of these random pulses since the DCC decoder is actively sorting through these pulses for valid DCC packets, which is usually the behavior the user wants.

This Blueridge Engineering webpage describes how to modify the GWire for use as an RF receiver easily for any onboard DCC decoder.

6.8.5 OScaleDeadRail ProMini Air Receiver

The OScaleDeadRail ProMini Air receiver has a default long address of 9901. Like the ProMini Air transmitter, the ProMini Air's receiver's channel can be reset in "OPS Mode" by setting CV255 to a value in the range of 0—18. The ProMini Air receiver has the following options when a valid RF signal is lost:

- Output a DCC "Idle" message that will keep the decoder "happy." The decoder will
 continue to operate in its current state, including maintaining its current speed and
 direction.
- Output either fixed positive or negative voltage DC to the onboard DCC decoder: In this case, setting CV27 for the onboard DCC decoder at *its* address *is* relevant. The user can set the ProMini Air receiver to output fixed DC voltage when it loses a valid RF signal by setting CV246 to 1 in "OPS mode" at the ProMini Air's address. A positive DC voltage is output by setting the ProMini Air receiver's CV248 to 1 in "OPS mode" at the ProMini Air's address or a negative DC voltage is output by setting CV248 to 0. If the user does not want the locomotive to stop with the loss of a valid RF signal, then set CV27=0 for the onboard DCC decoder at *its* address. Of course, setting CV27 to other values (see above) in the DCC decoder will determine how the DCC decoder responds to the fixed DC voltage that the ProMini Air outputs to the onboard DCC decoder upon loss of a valid RF signal.

Figure 23: ProMini Air's raw transceiver and filtered DCC outputs with valid RF DCC signal

See Figures 23, 24, and 26 for how the ProMini Air can be configured.

A Firmware Installation

The ProMini Air Tx and Rx are provided with the firmware already loaded. These instructions are for advanced users who want to update the firmware.

The source code is available from this GitHub site. Locate the source code in a directory where the Arduino IDE can find it. You should retain the subdirectory structure to access the "project" with the Arduino IDE.

Depending on whether you want a transmitter or receiver, edit config.h to select the "define" for the transmitter or receiver.

For a receiver (Rx), config.h should look like this:

Figure 24: ProMini Air's raw transceiver and filtered DCC outputs (DCC "Idle") with no valid RF DCC signal and filtering off (CV246=0).

Figure 25: This is the output produced by the Gwire and Tam Valley Depot receivers with no valid RF DCC signal.

Figure 26: ProMini Air's raw transceiver and filtered DCC outputs with no valid RF DCC signal and filtering on (CV246=1, CV248=1). This is the output produced by the Airwire CONVRTR as well.

Figure 27: How to download the GitHub zip file that will maintain the directory structure

```
/* For transmitter*/
// #define TRANSMITTER
// Set the default channel for NA/EU 900MHz only!
#if defined(NAFII 900MHz)
 Uncomment ONLY ONE #define*/
/* To set the default to NA channel 0 for 869/915MHz ISM bands only!*/
#define NA DEFAULT
/* To set the default to EU channel 18 for 869/915MHz ISM bands only!*/
// #define EU_DEFAULT
#endif
// Set the transceiver's crystal frequency
/* Uncomment ONLY ONE #define*/
/* For 27MHz transceivers (e.g., Anaren 869/915MHz (CC110L) and Anaren 869MHz (CC1101) radios)*/
/* For 26MHz transceiver (almost all other radios, including Anaren 433MHz (CC1101), 915MHz (CC1101), and 2.4GHz (CC2500) radios)*/
#define TWENTY_SIX_MHZ
```

If you want a transmitter (Tx), then config.h should be the following:

```
/* For World-Wide 2.4GHz ISM band*/
// #define NAEU 2p4GHz
// Set Transmitter or Receiver
/* Uncomment ONLY ONE #define*/
/* For receiver*/
// #define RECEIVER
/* For transmitter*
#define TRANSMITTER
// Set the default channel for NA/EU 900MHz only!
/* Uncomment ONLY ONE #define*/
/* To set the default to NA channel 0 for 869/915MHz ISM bands only!*/
#define NA DEFAULT
/* To set the default to EU channel 18 for 869/915MHz ISM bands only!*/
// #define EU_DEFAULT
/* Uncomment ONLY ONE #define*/
/* For 27MHz transceivers (e.g., Anaren 869/915MHz (CC110L) and Anaren 869MHz (CC1101) radios)*/
// #define TWENTY_SEVEN_MHZ
// For 26MHz transceiver (almost all other radios, including Anaren 433MHz (CC1101), 915MHz (CC1101), and 2.4GHz (CC2500) radios)*/
#define TWENTY_SIX_MHZ
```

Two further options are available. The first option selects the crystal frequency of the FCC/EC-approved transceiver: 27MHz (Anaren) or 26MHz (Ebyte). The second option specifies North American or European default use.

You load the firmware into the Pro Mini MCU using an "AVR ISP," such as the Sparkfun Pocket AVR Programmer or a less-expensive clone. This "ISP" downloading mode will bypass and erase the bootloader to directly load the firmware into the Pro Mini MCU. On boot-up with the bootloader now erased, the ProMini Air's MCU will almost instantly supply "3.3V logic DCC" to the DCC amplifier, which provides the DCC decoder with standard DCC waveforms. There is no "boot-up DC" and no need to set CV29, bit2=0. (I set it anyway.) With this solution, all DCC decoders I've tried (ESU, Zimo, MTH) startup without the "boot-up jerk."

Physical connection between the ISP programmer and the ProMini Air is established using the ISP holes shown below.

This "ISP" form of loading firmware is not as extensively used by folks using the Arduino IDE, but ISP loading is easily accessible within the Arduino IDE. The overly-brief method of ISP programming steps are the following:

1. Insert pins into the ISP's 6-pin output plug. These pins will be inserted into conducting ISP holes in the ProMini Air's PCB in a later step.

- 2. From the Arduino IDE, select the 16MHz Atmega328 MCU
- 3. From the Arduino IDE, Select Tools → Programmer → "USBtinyISP" (or whatever ISP programmer you are using).
- 4. Select the "AirMiniSketchTransmitter_NMRA" sketch.
- 5. Connect the USBtinyISP (or other) Programmer (with power switch ON) to the computer using the USB connector.
- 6. Insert the ISP pins into the ProMini Air's ISP holes in alignment with the pin-out as shown.

7. Tilt the inserted pins to make firm electrical contact with the sides of the conducting holes and hold them in this position. The plug should be inserted into the "MCU" side as shown.

- 8. Select Sketch → Upload using a Programmer. The Arduino IDE will compile the sketch and download the resulting firmware to the Pro Mini via the USBtinyISP, bypassing (and erasing) the bootloader.
- 9. Once download is complete, wait five seconds or so to allow the ProMini Air to boot up the first time to load the EEPROM, and then release the pins' contact with the ProMini Air ISP holes.

We do not provide a specialized ISP connector since establishing good electrical contact by merely tilting the pins works well and keeps the size of the ProMini Air small and compact.

Once the ProMini Air receiver or transmitter firmware is installed in the Pro Mini and inserted into the ProMini Air PCB, the ProMini Air is ready for integration as described in Section 5!

B Regulatory Notices

The following is a required FCC notice:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.

- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The following is a required IC notice:

Notice: This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Avis: Cet appareil est conforme avec Industrie Canada RSS standard exempts de licence (s). Son fonctionnement est soumis aux deux conditions suivantes: (1) cet appareil ne peut pas provoquer d'interférences et (2) cet appareil doit accepter toute interférence, y compris les interférences qui peuvent causer un mauvais fonctionnement du dispositif.

References

- [1] Anonymous. Communications Standards For Digital Command Control, All Scales. NMRA Standard S9.2, National Model Railroad Association, Inc., National Model Railroad Association, Inc., P.O. Box 1328, Soddy Daisy, TN 37384-1328, July 2004. https://www.nmra.org/sites/default/files/s-92-2004-07.pdf.
- [2] Anonymous. Configuration Variables For Digital Command Control, All Scales. NMRA Standard S9.2.2, National Model Railroad Association, Inc., National Model Railroad Association, Inc., P.O. Box 1328, Soddy Daisy, TN 37384-1328, July 2012. https://www.nmra.org/sites/default/files/standards/ sandrp/pdf/s-9.2.2_decoder_cvs_2012.07.pdf.
- [3] Anonymous. Fail-Safe Operating Characteristics For Digital Command Control, All Scales. NMRA Standard S9.2.4, National Model Railroad Association, Inc., National Model Railroad Association, Inc., P.O. Box 1328, Soddy Daisy, TN 37384-1328, July 2012. https://www.nmra.org/sites/default/files/s-9.2.4_2012_07.pdf.

Abbreviations/Acronyms

DCC Digital Command Control

ISM Industrial, Scientific, and Medical

LCD Liquid Crystal Display

NMRA National Model Railroad Association

RF Radio Frequency

Glossary

- GFSK Frequency-Shift Keying (FSK) is an encoding technique in which digital information is encoded by a discrete frquency shift in the carrier frequency. In Gaussian Frequency-Shift Keying (GFSK), a temporal Gaussian filter smoothes the driving pulse that controls the frequency shift to reduce "sideband" output. The "DEVIATN" value specifies the frequency shift for the Texas Instruments CC1101 (and CC110L) transceiver chip used in the ProMini Air.
- **I2C** Inter-Integrated Circuit, sometimes abbreviated "IIC." A synchronous, multi-master, multi-slave, packet switched, single-ended, serial computer bus invented in 1982 by Philips Semiconductor (now NXP Semiconductors).
- **ISM Band** For the purposes of this document and for the US only, the 902–928 MHz RF band reserved for: "Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications." Other ISM bands exist as well, both in the US and internationally.

OPS Mode "Operations Mode" or "Programming-On-the-Main" (PoM). The mode of a DCC throttle that can change the configuration variable (CV) for a DCC decoder at a specific address while the locomotive or device is operating.