Buyruk Kümesi Mimarisi

Buyruk Kümesi Tablosu

Sıra	İşlem	Kısaltma	opcode			
1	TOPLAMA	ТОР	000	KY1	KY2	HY
2	ÇIKARMA	CIK	001	KY1	KY2	HY
3	NOT AND	NND	010	KY1	KY2	HY
4	YÜKLEME	YUK	011	KY1	ANL	HY
5	SAKLAMA	SAK	100	KY1	KY2	ANL
6	EŞİTSE DALLAN	ESD	101	KY1	KY2	ANL

İşlem Açıklamaları

1. TOPLAMA (TOP)

• İşlem: KY1 + KY2 -> HY

• Açıklama: KY1 ve KY2'deki değerleri toplar ve sonucu HY'ye kaydeder.

2. ÇIKARMA (CIK)

• İşlem: KY1 - KY2 -> HY

• Açıklama: KY1'den KY2'yi çıkarır ve sonucu HY'ye kaydeder.

3. NOT AND (NND)

• İşlem: ~(KY1 ^ KY2) -> HY

• Açıklama: KY1 ve KY2 üzerinde bit düzeyinde NAND işlemi yapar ve sonucu HY'ye kaydeder.

4. YÜKLEME (YUK)

KY1	000XXXXXXXXXXX
ANL	XXX00000000000
toplam	ADRES

• Açıklama: Elde edilen **ADRES** ile veri belleğine erişir, veri belleğinden gelen veriyi, HY'ye kaydeder.

5. SAKLAMA (SAK)

KY2	000XXXXXXXXXXX
ANL	XXX000000000000
toplam	ADRES

• Açıklama: KY1 yazmacındaki veriyi, veri belleğine, toplama sonucu elde edilen **ADRES** ile erişerek kaydeder.

6. EŞİTSE DALLAN (ESD)

• İşlem: KY1 == KY2 ->

• Açıklama:

• Eğer ANL 1XX formatında ise: PS = PS - 0XX000

• Eğer ANL 0XX formatında ise: PS = PS + 0XX000

Not: ESD buyruğu X11000 ve X01000 arasında atlama yapabilir. Bu özellik, buyruğun -24 ile +24 arasında buyruk atlayabilmesine olanak sağlar. Yani, mevcut konumdan geriye doğru 24 buyruk veya ileriye doğru 24 buyruk atlayabilir. Sembolik olarak şöyle gösterilebilir: -24 ... -8 [MEVCUT KONUM] +8 ... +24

Merkezi İşlem Birimi

Bu işlemci, basit ve sınırlı yeteneklere sahip 12-bit Harvard mimarisi kullanan deneysel bir işlemcidir.

Özellikler

- 12-bit veri yolu
- Harvard mimarisi (ayrı veri ve buyruk bellekleri)
- Tek vuruşlu çalışma
- 6 temel buyruk:
 - TOPLAMA
 - ÇIKARMA
 - $\circ \ NOT \ AND$
 - YÜKLEME
 - SAKLAMA
 - EŞİTSE DALLAN
- 49 KB veri belleği
- 25 MB buyruk belleği

Testler

Topla TEST

Bu test, işlemcinin TOP buyruğunu test etmektedir. Dolaylı olarak Yükle ve Sakla buyruklarını da test eder.

YUK	011 000 000 001	601
YUK	011 001 000 010	642
TOP	000 001 010 011	053
SAK	100 011 011 000	8d8

Veri Belleği Önce

- 1. 000 000 000 001 (001)
- 2. 000 000 000 010 (002)
- 3. XXX XXX XXX XXX XXX

Veri Belleği Sonra

- 1. 000 000 000 001 (001)
- 2. 000 000 000 010 (002)
- 3. 000 000 000 011 (003)

Çıkar TEST

Bu test, işlemcinin CIK buyruğunu test etmektedir. Dolaylı olarak Yükle ve Sakla buyruklarını da test eder.

YUK	011 000 000 001	601
YUK	011 001 000 010	642
CIK	001 010 001 011	28b
SAK	100 011 011 000	8d8

Veri Belleği Önce

- 1. 000 000 000 001 (001)
- 2. 000 000 000 011 (003)
- 3. XXX XXX XXX XXX XXX

Veri Belleği Sonra

- 1. 000 000 000 001 (001)
- 2. 000 000 000 011 (003)
- 3. 000 000 000 010 (002)

Not And TEST

Bu test, işlemcinin NND buyruğunu test etmektedir. Dolaylı olarak Yükle ve Sakla buyruklarını da test eder.

YUK	011 000 000 001	601
YUK	011 001 000 010	642
NND	010 010 001 011	48b
SAK	100 011 010 000	8d0

Veri Belleği Önce

- 1. 000 000 000 001 **(001)**
- 2. 000 000 000 011 **(003)**
- 3. XXX XXX XXX XXX XXX

Veri Belleği Sonra

- 1. 000 000 000 001 (001)
- 2. 000 000 000 011 (003)
- 3. 000 000 000 010 **(ffe)**

Eşitse Dallan TEST

Bu test, işlemcinin ESD buyruğunu test eder. Çekirdek döngüsü olarak kullanılabilir.

Buyruk Belleği

1. 101 000 000 111 **(a07)**