Теоретическое домашнее задание от 15.10 Дифференциальные уравнения и динамические системы

Глеб Минаев @ 204 (20.Б04-мкн)

16 октября 2021 г.

Задача 7. Пусть α — решение уравнения y'=f(x,y) с периодом T. Тогда имеем, что для вяской фиксированной константы x_0 и всякого $n\in\mathbb{Z}$

$$f(x_0 + nT, \alpha(x_0)) - \alpha'(x_0) = f(x_0 + nT, \alpha(x_0 + nT)) - \alpha'(x_0 + nT) = 0,$$

т.е. $f(x,\alpha(x_0)) - \alpha'(x_0)$, являясь многочленом от x, имеет бесконечно много корней (все точки вида $x_0 + nT$ и, возможно, что-то ещё). Таким образом $f(x,\alpha(x_0)) - \alpha'(x_0) \equiv 0$, т.е. для всякого $a \in \text{range}(\alpha)$ верно, что $f(x,a) \equiv \alpha'(\alpha^{-1}(a))$ констнатно по x.

Пусть $A = \sup_{\mathbb{R}} \alpha$, а $\alpha(x_1) = A$. Тогда имеем, что $f(x,A) = \alpha'(x_1) = 0$, так как x_1 — точка супремума. Рассмотрим функцию $\beta(x) \equiv A$. Тогда

$$\beta' = 0 = f(x, A) = f(x, \beta).$$

Следовательно, β — решение, которое имеет с α общие точки (все точки супремума α , а это, как минимум, точки вида $x_0 + nT$). Следовательно по единственности области \mathbb{R}^2 $\alpha = \beta$, т.е. $\alpha \equiv A$.