Uniwersytet Jagielloński w Krakowie

Wydział Fizyki, Astronomii i Informatyki Stosowanej

Łukasz Kostrzewa

Nr albumu: 1080514

Wizualizacja, edycja i przetwarzanie grafów on-line

Praca magisterska na kierunku Informatyka stosowana

Praca wykonana pod kierunkiem dr hab. Barbary Strug Zakład Projektowania i Grafiki Komputerowej

Kraków 2017

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Kraków, dnia

Podpis autora pracy

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Kraków, dnia

Podpis kierującego pracą

Spis treści

W	$^{\prime}\mathrm{step}$		4
1	Wp	rowadzenie	5
	1.1	Czym są grafy	5
	1.2	Znane grafy	5
	1.3	Zastosowania grafów	5
2	Wy	magania	6
	2.1	Tworzenie grafów	6
		2.1.1 Importowanie grafów	6
		2.1.2 Generowanie grafów	6
	2.2	Wizualizacja	7
	2.3	Edycja	7
	2.4	Przetwarzanie	8
	2.5	Eksportowanie	8
	2.6	Udostępnianie grafu	8
3	Istn	niejące rozwiązania	9
	3.1	Aplikacje internetowe	9
	3.2	Aplikacje desktopowe	18
4	Ana	aliza	19
	4.1	Formaty zapisu grafów	19
	4.2	Biblioteki do wizualizacji grafów w JavaScript	22
		4.2.1 Cytoscape.js	22
		· · · · ·	22
		e v	22
		- *	22
	4.3	Grafowe bazy danych	22

5	Projekt	23
	5.1 Interfejs użytkownika	24
6	Implementacja	28
7	Testy	29
8	Wnioski	30
\mathbf{A}	Instrukcje dla użytkowników	31
В	Instrukcje dla programistów	32
\mathbf{C}	Użyte narzędzia	33
Bi	bliografia	34

\mathbf{Wstep}

"This question is so banal, but seemed to me worthy of attention in that geometry, nor algebra, nor even the art of counting was sufficient to solve it¹". Tak w 1736 roku pisał Leonhard Euler w liście do Giovanniego Marinoniego, włoskiego matematyka i inżyniera, o jednym z pierwszych problemów w teorii grafów – problemie mostów królewskich. Banalny, ale warty uwagi.

W dzisiejszych czasach teoria grafów rozwiązuje wiele nietrywialnych problemów, a część z nich nadal pozostaje otwarta. Grafy znalazły praktyczne zastosowanie w wielu różnorodnych dziedzinach nauki, takich jak informatyka, ekonomia, socjologia, jak również chemia, lingwistyka, geografia czy nawet architektura. Bez wątpienia teoria grafów jest dziedziną matematyki i informatyki, która zasługuje na uwagę, co postaram się w niniejszej pracy przedstawić.

Głównym celem mojej pracy jest stworzenie aplikacji służącej do wizualizacji i edycji grafów w przeglądarce. W przeciągu kilku ostatnich lat mogliśmy zaobserwować gwałtowny wzrost znaczenia aplikacji internetowych. Co dziwne, na dzień dzisiejszy w sieci praktycznie nie ma rozwiązania, które pozwalałoby wczytać graf, wyświetlić, w łatwy sposób przetworzyć, a następnie wyeksportować do znanego formatu. Praca ta jest odpowiedzią na ów deficyt.

W pracy dokonam również przeglądu i analizy bibliotek JavaScript oraz technologii służących do wizualizacji grafów w przeglądarce.

¹Cytat zaczerpnięty z [HW04], wyróżnienie własne.

Wprowadzenie

- 1.1 Czym są grafy
- 1.2 Znane grafy
- 1.3 Zastosowania grafów

Wymagania

Rozdział ten zawiera wszystkie wymagania funkcjonalne, które powinna spełniać aplikacja, aby praca z grafami była możliwie przystępna i intuicyjna.

2.1 Tworzenie grafów

Podstawowym i oczywistym wymaganiem jest, aby użytkownik mógł stworzyć nowy, pusty graf skierowany oraz nieskierowany. Ponadto użytkownik powinien mieć możliwość zaimportowania istniejącego grafu oraz wygenerowania znanego grafu, np. cyklu lub grafu pełnego o zadanej ilości wierzchołków.

2.1.1 Importowanie grafów

Użytkownik powinien móc wczytać graf z komputera lub z chmury (np. Google Drive lub Dropbox) w trzech znanych formatach:

- GraphML,
- GEXF,
- JGF.

Opisy formatów znajdują się w sekcji 4.1.

2.1.2 Generowanie grafów

Użytkownik powinien mieć możliwość wygenerowania znanych grafów, dla zadanych parametrów wejściowych:

• grafu pustego,

- grafu liniowego,
- grafu cyklicznego,
- koła,
- grafu pełnego (lub turnieju dla grafów skierowanych),
- grafu pełnego dwudzielnego,
- grafu Petersena,
- drzewa (o zadanej wysokości i ilości dzieci)

Definicje i przykłady powyższych grafów znajdują się w sekcji 1.2.

Ponadto przydatnym dodatkiem w aplikacji będzie możliwość wygenerowania grafu losowego – o danej ilości wierzchołków oraz parametrem prawdopodobieństwa określającym, czy pomiędzy dwoma wierzchołkami istnieje krawędź.

2.2 Wizualizacja

Użytkownik powinien móc przesuwać widok, przybliżać i oddalać graf oraz rozmieszczać wierzchołki grafu w dowolny sposób. W aplikacji powinna istnieć możliwość zmiany układu grafu: układ oparty na oddziaływaniach (ang. force-based layout), układ siatki, układ okręgu, układ koncentryczny, układ hierarchiczny.

Użytkownik powinien być w stanie zmienić kategorię wierzchołka oraz typ krawędzi. Inne typy i kategorie powinny być oznaczone innym kolorem oraz powinna istnieć możliwość zmiany koloru.

Aplikacja powinna również dostarczać opcję wyszukiwania i filtrowania danych (np. tylko dany typ wierzchołków, wierzchołki o stopniu większym niż zadany parametr). Przydatną funkcjonalnością będzie wyświetlanie sąsiadów danego wierzchołka po najechaniu na niego kursorem myszy.

2.3 Edycja

W aplikacji powinien istnieć osobny tryb edycji. Gdy użytkownik jest w tym trybie, powinien móc dodawać oraz usuwać wierzchołki i krawędzie. Powinien być w stanie także dodawać oraz modyfikować etykiety wierzchołków i krawędzi.

Użytkownik powinien mieć możliwość zaznaczania wielu wierzchołków i krawędzi na raz. Użyteczną funkcjonalnością będzie również grupowanie (lub rozgrupowanie) zaznaczonych wierzchołków.

Aplikacja powinna wyświetlać ostatnio wykonaną akcję oraz udostępniać możliwość jej cofnięcia.

2.4 Przetwarzanie

Aplikacja powinna dawać możliwość wykonania podstawowych algorytmów na danym grafie:

- wyszukiwanie najkrótszej ścieżki pomiędzy dwoma wybranymi wierzchołkami,
- znajdowanie minimalnego drzewa rozpinającego,
- obliczanie algorytmu PageRank,
- znajdowanie (silnie) spójnych składowych oraz dwuspójnych składowych,
- znajdowanie cyklu Eulera,
- znajdowanie cyklu Hamiltona.

2.5 Eksportowanie

Użytkownik powinien mieć możliwość wyeksportowania do formatów, które zostały przedstawione w podsekcji 2.1.1.

Ponadto przydatną funkcjonalnością będzie możliwość wyeksportowania obecnego widoku do pliku graficznego, np. PNG lub JPG.

2.6 Udostępnianie grafu

W aplikacji powinna istnieć możliwość udostępniania grafu innym użytkownikom. Po wybraniu tej opcji, powinien zostać wygenerowany unikalny odnośnik do grafu. Po przejściu na ten adres (w podstawowej wersji) inni użytkownicy mogą wyświetlić i edytować graf.

Istniejące rozwiązania

W tym rozdziale przedstawię istniejące aplikacje internetowe [Sta] i desktopowe służące do tworzenia i wizualizacji grafów. Tabela 3.1 zawiera porównanie funkcjonalności opisywanych aplikacji internetowych.

3.1 Aplikacje internetowe

Graph Creator

	http://illuminations.nctm.org/Activity.aspx?id=3550
Autor	National Council of Teachers of Mathematics

Aplikacja pozwala tworzyć grafy skierowane i nieskierowane. Posiada możliwość kolorowania wierzchołków, wyrównania ich do siatki oraz ustawienia wag na krawędziach i etykiet w wierzchołkach. Ponadto użytkownik może wyświetlić stopnie wierzchołków oraz wyginać krawędzie. Dodatkową funkcjonalnością jest możliwość zaznaczenia kilku wierzchołków na raz.

Graph Creator nie daje możliwości eksportowania i importowania grafów. Nie można również przesuwać widoku ani oddalać oraz przybliżać grafu. Aplikacja posiada ograniczenie liczby wierzchołków – maksymalna dozwolona ilość to 52 wierzchołki.

label show degree

vertex tools

edge tools

graph explorer

Rysunek 3.1: Zrzut ekranu z aplikacji Graph Creator

Graph Online

Adres URL	http://graphonline.ru/en/
Autor	Unick-soft

Aplikacja również daje możliwość stworzenia grafów zarówno skierowanych jak i nieskierowanych. Podobnie jak poprzednia aplikacja pozwala na zmianę etykiet wierzchołków, nadanie wag krawędziom oraz na wyświetlenie stopnia wierzchołków. Ponadto użytkownik ma możliwość przesuwania widoku oraz jego przybliżania i oddalania. Dodatkowo *Graph Online* pozwala zapisać graf jako macierz sąsiedztwa lub incydencji oraz wczytać graf zapisany w takiej postaci. Użytkownik może również zapisać graf na serwerze – po zapisaniu wyświetlany jest ogólnodostępny adres URL do grafu. Ciekawą funkcjonalnością jest eksport grafu do obrazka (plik PNG).

Graph Online posiada możliwość wykonania podstawowych algorytmów na grafie, takich jak: znajdowanie najkrótszej ścieżki pomiędzy dwoma wierz-

chołkami, znajdowanie cyklu Eulera, znajdowanie spójnych składowych, znajdowanie minimalnego drzewa rozpinającego.

W przeciwieństwie do poprzedniej aplikacji nie mamy możliwości kolorowania wierzchołków, zaznaczania kilku wierzchołków na raz oraz wyginania krawędzi. Maksymalna dozwolona ilość wierzchołków to 299.

♣ Graph → Q View → Click on the object to remove

**Remove object

**Click on the object to remove

Rysunek 3.2: Zrzut ekranu z aplikacji Graph Online

GraphJS

Adres URL	https://dl.dropboxusercontent.com/u/4189520/GraphJS/
	graphjs.html
Autor	David Kofoed Wind

Aplikacja pozwala na tworzenie grafów nieskierowanych. Podobnie jak w poprzednich aplikacjach możemy nadawać etykiety wierzchołkom i krawędziom. Niespotykaną funkcjonalnością jest możliwość stworzenia kilku grafów i przełączania się pomiędzy nimi oraz możliwość eksportu grafu do formatu LATEX (pakiet TikZ). Ponadto użytkownik ma możliwość eksportu do własnego formatu JSON oraz importu grafu z tego formatu. Aplikacja posiada funkcjonalność zaznaczania wielu wierzchołków na raz.

W *GraphJS* nie ma możliwości przesuwania widoku oraz przybliżania i oddalania grafu. Nie ma również możliwości kolorowania wierzchołków oraz

wyginania krawędzi. Aplikacja zdaje się nie mieć limitu na liczbę wierzchołków – udało się wczytać graf C_{1000} jednakże dodanie kolejnego wierzchołka zajmuje około 10 sekund.

Rysunek 3.3: Zrzut ekranu z aplikacji GraphJS

Graphrel

Adres URL	https://yiboyang.github.io/graphrel/
Autor	Yibo Yang

Aplikacja daje możliwość tworzenia grafów skierowanych. W przeciwieństwie do poprzednio opisywanych aplikacji posiada układ kierowany siłą (ang. force-directed layout), choć istnieje również opcja samodzielnego rozstawienia wierzchołków – poprzez przytrzymanie klawisza Ctrl. Użytkownik może zaimportować graf z formatu stworzonego przez aplikację (tablice list sąsiedztwa dla każdego wierzchołka). Bardzo przydatną i niespotykaną funkcjonalnością jest możliwość cofania oraz ponawiania ostatnich akcji.

W Graphrel nie możemy nadawać własnych etykiet na krawędziach ani w wierzchołkach, nie możemy przesuwać widoku ani zmieniać przybliżenia grafu. Nie ma również możliwości wyginania krawędzi, zaznaczania kliku

wierzchołków na raz oraz kolorowania wierzchołków. Do aplikacji udało się wczytać graf C_{100} , przy próbie wczytania C_{101} pojawia się informacja o niepoprawnym formacie.

Rysunek 3.4: Zrzut ekranu z aplikacji Graphrel

Graphrel

VisuAlgo

Adres URL	https://visualgo.net/en/
Autor	Dr Steven Halim

Aplikacja stworzona przez Dr Stevena Halima z National University of Singapore. Posiada możliwość tworzenia prostych grafów, jednak jej głównym celem jest wizualizacja algorytmów przez animację (nie tylko na grafach, ale również na strukturach danych). Użytkownik wraz z przebiegiem algorytmu może obserwować przebieg kodu, może zatrzymać się w dowolnym jego kroku, cofnąć się do kroku poprzedniego albo przejść do następnego.

Rysunek 3.5: Zrzut ekranu z aplikacji VisuAlgo

Linkurious

Adres URL http://linkurio.us
Autor Linkurious

Rysunek 3.6: Zrzut ekranu z aplikacji Linkurious

yEd Live

Adres URL https://www.yworks.com/yed-live/ Autor yWorks

Rysunek 3.7: Zrzut ekranu z aplikacji yEd Live

Tablica 3.1: Porównanie aplikacji Graph Creator, Graph Online, GraphJS i Graphrel

	Graph Grader	Graph Online	G. App. S.	Graphie)
graf nieskierowany	✓	✓	✓	_
graf skierowany	✓	✓	_	✓
etykiety na krawędziach	✓	✓	✓	_
etykiety w wierzchołkach	✓	✓	✓	_
kolorowanie wierzchołków	√	_	_	_
wyginanie krawędzi	√	_	_	_
zaznaczanie kilku wierzchołków	✓	_	✓	_
przesuwanie widoku	_	✓	_	_
przybliżanie/oddalanie	_	✓	_	_
zapisywanie/wczytywanie	_	\checkmark^1	\checkmark^2	\checkmark^3

 $^{^1}$ jako macierz sąsiedztwa lub jako obrazek 2 własny format <code>JSON</code> lub jako <code>L&T</code>EX

Aplikacje desktopowe 3.2

Gephi

https://gephi.org/

GraphTea

http://www.graphtheorysoftware.com/

Cytoscape

http://www.cytoscape.org/

yEd Graph Editor

https://www.yworks.com

³ własny format (listy sąsiedztwa)

Analiza

4.1 Formaty zapisu grafów

Istnieje wiele formatów służących do opisu grafów. Do najpopularniejszych należą [MB04; Gep]

- GraphML Graph Markup Language
- GEXF Graph Exchange XML Format
- JGF JSON Graph Format
- DOT format programu Graphviz
- GML Graph Modeling Language
- DGML Directed Graph Markup Language
- XGMML eXtensible Graph Markup and Modeling Language

Graph Markup Language (GraphML)

Listing 4.1: Przykład grafu w formacie GraphML

```
<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
    http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
    <graph id="G" edgedefault="undirected">
        <node id="1"/>
        <node id="2"/>
        <edge source="1" target="2"/>
        </graph>
</graph></graphml>
```

Graph Exchange XML Format (GEXF)

Listing 4.2: Przykład grafu w formacie GEXF

JSON Graph Format (JGF)

Listing 4.3: Przykład grafu w formacie JGF

DOT Graphviz

Listing 4.4: Przykład grafu w formacie DOT

```
graph graphname {
    a -- b -- c;
    b -- d;
}
```

4.2 Biblioteki do wizualizacji grafów w Java-Script

	Cytoscape.js	Sigma	VivaGraphJS
Licencja	MIT	MIT	BSD 3
Rozmiar	294	112,9	60,4
Renderowanie			
SVG	•	tak	•
HTML5 Canvas	•	tak	•
WebGL Canvas	•	tak	•
Obsługiwane formaty	•	•	•
Rozszerzalność	•	•	•
•	•	•	•

- 4.2.1 Cytoscape.js
- 4.2.2 sigma.js
- 4.2.3 VivaGraph.js
- 4.2.4 Linkurious.js
- 4.3 Grafowe bazy danych

Projekt

5.1 Interfejs użytkownika

Rysunek 5.1: Tryb widoku grafu

Rysunek 5.2: Tryb edycji grafu

Rysunek 5.3: Widok menu

Rysunek 5.4: Menu kontekstowe i informacja o ostatniej akcji

Rozdział 6 Implementacja

Testy

Wnioski

Dodatek A Instrukcje dla użytkowników

Dodatek B Instrukcje dla programistów

Dodatek C Użyte narzędzia

Bibliografia

- [HW04] Brian Hopkins i Robin Wilson. "The Truth about Königsberg". W: College Mathematics Journal 35 (maj 2004), s. 198-207. URL: https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/hopkins.pdf (term. wiz. 29.04.2017).
- [MB04] S. Mohammed i M. Bernard. *Graph File Formats*. Spraw. tech. Mona, Kingston, Jamajka: Department of Mathematics and Computer Science, The University of the West Indies, 2004. URL: http://www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf (term. wiz. 29.04.2017).
- [Gep] Gephi. Supported Graph Formats. The Gephi Consortium. URL: https://gephi.org/users/supported-graph-formats/ (term. wiz. 29.04.2017).
- [Sta] Mathematics StackExchange. Online tool for making graphs (vertices and edges). Stack Overflow. URL: https://math.stackexchange.com/questions/13841/online-tool-for-making-graphs-vertices-and-edges (term. wiz. 02.05.2017).