

pgRouting Manual

Release v2.6.0

pgRouting Contributors

1	General	3
	1.1 Introduction	3
	1.2 Installation	5
	1.3 Support	9
	1.4 Sample Data	
2	Pgrouting Concepts	19
	2.1 pgRouting Concepts	19
	2.2 pgr_version	32
3	Data Types	33
	3.1 pgRouting Data Types	33
4	Topology Functions	37
	4.1 Topology - Family of Functions	37
5	Routing functions	63
	5.1 Routing Functions	63
6	Available Functions but not official pgRouting functions	149
	6.1 Stable Proposed Functions	149
	6.2 Experimental Functions	226
7		393
	7.1 Release Notes	393
Bil	bliography	407

 $pgRouting\ extends\ the\ PostGIS^1/PostgreSQL^2\ geospatial\ database\ to\ provide\ geospatial\ routing\ and\ other\ network\ analysis\ functionality.$

This is the manual for pgRouting v2.6.0.

The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License³. Feel free to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and wherever possible, a link back to http://pgrouting.org. For other licenses used in pgRouting see the *Licensing* page.

Contents 1

¹http://postgis.net

²http://postgresql.org

³http://creativecommons.org/licenses/by-sa/3.0/

2 Contents

General

1.1 Introduction

pgRouting is an extension of PostGIS¹ and PostgreSQL² geospatial database and adds routing and other network analysis functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp³, was later extended by Orkney⁴ and renamed to pgRouting. The project is now supported and maintained by Georepublic⁵, iMaptools⁶ and a broad user community.

pgRouting is part of OSGeo Community Projects⁷ from the OSGeo Foundation⁸ and included on OSGeo Live⁹.

1.1.1 Licensing

The following licenses can be found in pgRouting:

License	
GNU General Public	Most features of pgRouting are available under GNU General Public
License, version 2	License, version 2 ¹⁰ .
Boost Software License -	Some Boost extensions are available under Boost Software License - Version
Version 1.0	1.0^{11} .
MIT-X License	Some code contributed by iMaptools.com is available under MIT-X license.
Creative Commons	The pgRouting Manual is licensed under a Creative Commons
Attribution-Share Alike 3.0	Attribution-Share Alike 3.0 License ¹² .
License	

In general license information should be included in the header of each source file.

1.1.2 Contributors

This Release Contributors

¹http://postgis.net

²http://postgresql.org

³http://camptocamp.com

⁴http://www.orkney.co.jp

⁵http://georepublic.info

⁶http://imaptools.com/

⁷http://wiki.osgeo.org/wiki/OSGeo_Community_Projects

⁸http://osgeo.org

⁹http://live.osgeo.org/

¹⁰http://www.gnu.org/licenses/gpl-2.0.html

¹¹ http://www.boost.org/LICENSE_1_0.txt

¹² http://creativecommons.org/licenses/by-sa/3.0/

Individuals (in alphabetical order)

Anthony Tasca, Virginia Vergara

And all the people that give us a little of their time making comments, finding issues, making pull requests etc.

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Georepublic¹³
- Google Summer of Code¹⁴
- iMaptools¹⁵
- Paragon Corporation¹⁶
- Versaterm Inc. 17

Contributors Past & Present:

Individuals (in alphabetical order)

Akio Takubo, Andrea Nardelli, Anthony Tasca, Anton Patrushev, Ashraf Hossain, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis Rykov, Ema Miyawaki, Florian Thurkow, Frederic Junod, Gerald Fenoy, Jay Mahadeokar, Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Manikata Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Maoguang Wang, Mohamed Zia, Mukul Priya, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal, Stephen Woodbridge, Sylvain Housseman, Sylvain Pasche, Vidhan Jain, Virginia Vergara

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Camptocamp
- CSIS (University of Tokyo)
- Georepublic
- Google Summer of Code
- iMaptools
- Orkney
- Paragon Corporation
- Versaterm Inc.

¹³https://georepublic.info/en/

¹⁴https://developers.google.com/open-source/gsoc/

¹⁵http://imaptools.com

¹⁶http://www.paragoncorporation.com/

¹⁷http://www.versaterm.com/

1.1.3 More Information

- The latest software, documentation and news items are available at the pgRouting web site http://pgrouting.org.
- PostgreSQL database server at the PostgreSQL main site http://www.postgresql.org.
- PostGIS extension at the PostGIS project web site http://postgis.net.
- Boost C++ source libraries at http://www.boost.org.
- Computational Geometry Algorithms Library (CGAL) at http://www.cgal.org.
- The Migration guide can be found at https://github.com/pgRouting/pgrouting/wiki/Migration-Guide.

1.2 Installation

Table of Contents

- Short Version
- Get the sources
- Enabling and upgrading in the database
- Dependencies
- Configuring
- Building
- Testing

Instructions for downloading and installing binaries for different Operative systems instructions and additional notes and corrections not included in this documentation can be found in Installation wiki¹⁸

To use pgRouting postGIS needs to be installed, please read the information about installation in this Install Guide¹⁹

1.2.1 Short Version

Extracting the tar ball

```
tar xvfz pgrouting-2.6.0.tar.gz cd pgrouting-2.6.0
```

To compile assuming you have all the dependencies in your search path:

```
mkdir build
cd build
cmake ..
make
sudo make install
```

Once pgRouting is installed, it needs to be enabled in each individual database you want to use it in.

```
createdb routing
psql routing -c 'CREATE EXTENSION postGIS'
psql routing -c 'CREATE EXTENSION pgRouting'
```

1.2. Installation 5

 $^{^{18}} https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting-pgRouti$

¹⁹http://www.postgis.us/presentations/postgis_install_guide_22.html

1.2.2 Get the sources

The pgRouting latest release can be found in https://github.com/pgRouting/pgrouting/releases/latest

wget

To download this release:

```
wget -O pgrouting-2.6.0.tar.gz https://github.com/pgRouting/pgrouting/archive/v2.6.0 tar.gz
```

Goto Short Version to the extract and compile instructions.

git

To download the repository

```
git clone git://github.com/pgRouting/pgrouting.git
cd pgrouting
git checkout v2.6.0
```

Goto *Short Version* to the compile instructions (there is no tar ball).

1.2.3 Enabling and upgrading in the database

Enabling the database

pgRouting is an extension and depends on postGIS. Enabling postGIS before enabling pgRouting in the database

```
CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;
```

Upgrading the database

To upgrade pgRouting in the database to version 2.6.0 use the following command:

```
ALTER EXTENSION pgrouting UPDATE TO "2.6.0";
```

More information can be found in https://www.postgresql.org/docs/current/static/sql-createextension.html

1.2.4 Dependencies

Compilation Dependencies

To be able to compile pgRouting, make sure that the following dependencies are met:

- C and C++0x compilers * g++ version \geq 4.8
- Postgresql version >= 9.3
- PostGIS version >= 2.2
- The Boost Graph Library (BGL). Version >= 1.53
- CMake >= 3.2
- CGAL >= 4.2

optional dependencies

For user's documentation

- Sphinx >= 1.1
- Latex

For developer's documentation

• Doxygen >= 1.7

For testing

- pgtap
- pg_prove

Example: Installing dependencies on linux

Installing the compilation dependencies

Database dependencies

```
sudo apt-get install
  postgresql-10 \
  postgresql-server-dev-10 \
  postgresql-10-postgis
```

Build dependencies

```
sudo apt-get install
  cmake \
  g++ \
  libboost-graph-dev \
  libcgal-dev
```

Optional dependencies

For documentation and testing

```
sudo apt-get install -y python-sphinx \
    texlive \
    doxygen \
    libtap-parser-sourcehandler-pgtap-perl \
    postgresql-10-pgtap
```

1.2.5 Configuring

pgRouting uses the *cmake* system to do the configuration.

The build directory is different from the source directory

Create the build directory

```
$ mkdir build
```

1.2. Installation 7

Configurable variables

To see the variables that can be configured

```
$ cd build
$ cmake -L ..
```

Configuring The Documentation

Most of the effort of the documentation has being on the HTML files. Some variables for the documentation:

Variable	Default	Comment
WITH_DOC	BOOL=OFF	Turn on/off building the documentation
BUILD_HTML	BOOL=ON	If ON, turn on/off building HTML for user's documentation
BUILD_DOXY	BOOL=ON	If ON, turn on/off building HTML for developer's documentation
BUILD_LATEX	BOOL=OFF	If ON, turn on/off building PDF
BUILD_MAN	BOOL=OFF	If ON, turn on/off building MAN pages
DOC_USE_BOOTSTRAF	BOOL=OFF	If ON, use sphinx-bootstrap for HTML pages of the users
		documentation

Configuring with documentation

```
$ cmake -DWITH_DOC=ON ..
```

Note: Most of the effort of the documentation has being on the html files.

1.2.6 Building

Using make to build the code and the documentation

The following instructions start from path/to/pgrouting/build

```
$ make  # build the code but not the documentation
$ make doc  # build only the documentation
$ make all doc  # build both the code and the documentation
```

We have tested on several platforms, For installing or reinstalling all the steps are needed.

Warning: The sql signatures are configured and build in the cmake command.

MinGW on Windows

```
$ mkdir build
$ cd build
$ cmake -G"MSYS Makefiles" ..
$ make
$ make install
```

Linux

The following instructions start from path/to/pgrouting

```
mkdir build
cd build
cmake ..
make
sudo make install
```

When the configuration changes:

```
rm -rf build
```

and start the build process as mentioned above.

1.2.7 Testing

Currently there is no make test and testing is done as follows

The following instructions start from path/to/pgrouting/

```
tools/testers/algorithm-tester.pl
createdb -U <user> ___pgr___test___
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> ___pgr___test___
```

1.2.8 See Also

Indices and tables

- genindex
- · search

1.3 Support

pgRouting community support is available through the pgRouting website²⁰, documentation²¹, tutorials, mailing lists and others. If you're looking for *commercial support*, find below a list of companies providing pgRouting development and consulting services.

1.3.1 Reporting Problems

Bugs are reported and managed in an issue tracker²². Please follow these steps:

- 1. Search the tickets to see if your problem has already been reported. If so, add any extra context you might have found, or at least indicate that you too are having the problem. This will help us prioritize common issues.
- 2. If your problem is unreported, create a new issue²³ for it.
- 3. In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL necessary to replicate a problem.
- 4. If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest version the problem appears.

1.3. Support 9

²⁰http://pgrouting.org/support.html

²¹http://docs.pgrouting.org

²²https://github.com/pgrouting/pgrouting/issues

²³https://github.com/pgRouting/pgrouting/issues/new

- 5. For the versions where you can replicate the problem, note the operating system and version of pgRouting, PostGIS and PostgreSQL.
- 6. It is recommended to use the following wrapper on the problem to pin point the step that is causing the problem.

```
SET client_min_messages TO debug;
    <your code>
SET client_min_messages TO notice;
```

1.3.2 Mailing List and GIS StackExchange

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

- User mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-users
- Developer mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-dev

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange²⁴ and tag the question with pgrouting. Find all questions tagged with pgrouting under http://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting questions feed²⁵.

1.3.3 Commercial Support

For users who require professional support, development and consulting services, consider contacting any of the following organizations, which have significantly contributed to the development of pgRouting:

Company	Offices in	Website
Georepublic	Germany, Japan	https://georepublic.info
iMaptools	United States	http://imaptools.com
Paragon Corporation	United States	http://www.paragoncorporation.com
Camptocamp	Switzerland, France	http://www.camptocamp.com

• Sample Data that is used in the examples of this manual.

1.4 Sample Data

The documentation provides very simple example queries based on a small sample network. To be able to execute the sample queries, run the following SQL commands to create a table with a small network data set.

Create table

```
CREATE TABLE edge_table (
   id BIGSERIAL,
   dir character varying,
   source BIGINT,
   target BIGINT,
   cost FLOAT,
   reverse_cost FLOAT,
   capacity BIGINT,
   reverse_capacity BIGINT,
   category_id INTEGER,
   reverse_category_id INTEGER,
   x1 FLOAT,
```

10 Chapter 1. General

²⁴http://gis.stackexchange.com/

²⁵http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest

```
y1 FLOAT,
x2 FLOAT,
y2 FLOAT,
the_geom geometry
);
```

Insert data

```
INSERT INTO edge_table (
   category_id, reverse_category_id,
   cost, reverse_cost,
   capacity, reverse_capacity,
   x1, y1,
   x2, y2) VALUES
(3, 1,
       1, 1, 80, 130,
                           2, 0, 2, 1),
(3, 2,
        -1, 1, -1, 100,
                         2, 1,
                                    3, 1),
(2, 1,
      -1, 1, -1, 130,
                         3,
                              1,
                                     4, 1),
(2, 4,
      1, 1, 100, 50,
                         2,
                              1, 2, 2),
        1, -1, 130, -1,
(1, 4,
                         3,
                              1, 3, 2),
       1, 1, 50, 100,
(4, 2,
                         0, 2, 1, 2),
(4, 1,
      1, 1, 50, 130,
                         1, 2, 2, 2),
                          2,
(2, 1,
        1, 1, 100, 130,
                              2, 3, 2),
        1, 1, 130, 80,
1, 1, 130, 50,
                          3,
(1, 3,
                              2,
                                     4, 2),
                                    2, 3),
                               2,
(1, 4,
                           2,
                    -1,
                               2,
                                    3, 3),
        1, -1, 130,
(1, 2,
                           3,
        1, -1, 100, -1,
1, -1, 100, -1,
        1, -1, 100,
                                    3, 3),
(2, 3,
                           2,
                                3,
                                    4, 3),
                          3,
(2, 4,
                                3,
                                    2, 4),
(3, 1,
        1, 1, 80, 130,
                          2,
                                3,
(3, 4,
        1, 1, 80, 50,
                                    4, 3),
                          4,
                                2,
                                    4, 2),
(3, 3,
                              1,
        1, 1, 80, 80,
                          4,
        1, 1, 130, 100,
                          0.5, 3.5, 1.99999999999,3.5),
(1, 2,
(4, 1,
        1, 1, 50, 130,
                           3.5, 2.3, 3.5,4);
UPDATE edge_table SET the_geom = st_makeline(st_point(x1,y1),st_point(x2,y2)),
dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' -- both ways
          WHEN (cost>0 AND reverse_cost<0) THEN 'FT' -- direction of the LINESSTRING
          WHEN (cost<0 AND reverse_cost>0) THEN 'TF' -- reverse direction of the L!NESTRING
          ELSE '' END;
                                                   -- unknown
```

Topology

• Before you test a routing function use this query to create a topology (fills the source and target columns).

```
SELECT pgr_createTopology('edge_table',0.001);
```

Points of interest

- When points outside of the graph.
- Used with the withPoints Family of functions functions.

```
CREATE TABLE pointsOfInterest(
   pid BIGSERIAL,
   x FLOAT,
   y FLOAT,
   edge_id BIGINT,
```

1.4. Sample Data 11

```
side CHAR,
   fraction FLOAT,
   the_geom geometry,
   newPoint geometry
);
INSERT INTO pointsOfInterest (x, y, edge_id, side, fraction) VALUES
(1.8, 0.4, 1, '1', 0.4),
(4.2, 2.4, 15, 'r', 0.4),
(2.6, 3.2, 12, '1', 0.6),
(0.3, 1.8, 6, 'r', 0.3),
(2.9, 1.8, 5, '1', 0.8),
(2.2, 1.7, 4, 'b', 0.7);
UPDATE pointsOfInterest SET the_geom = st_makePoint(x,y);
UPDATE pointsOfInterest
   SET newPoint = ST_LineInterpolatePoint(e.the_geom, fraction)
   FROM edge_table AS e WHERE edge_id = id;
```

Restrictions

• Used with the *pgr_trsp* - *Turn Restriction Shortest Path (TRSP)* functions.

```
CREATE TABLE restrictions (
    rid BIGINT NOT NULL,
    to_cost FLOAT,
    target_id BIGINT,
    from_edge BIGINT,
    via_path TEXT
);

INSERT INTO restrictions (rid, to_cost, target_id, from_edge, via_path) VALUES
(1, 100, 7, 4, NULL),
(1, 100, 11, 8, NULL),
(1, 100, 10, 7, NULL),
(2, 4, 8, 3, 5),
(3, 100, 9, 16, NULL);
```

Categories

• Used with the Flow - Family of functions functions.

```
/*
CREATE TABLE categories (
    category_id INTEGER,
    category text,
    capacity BIGINT
);

INSERT INTO categories VALUES
(1, 'Category 1', 130),
(2, 'Category 2', 100),
(3, 'Category 3', 80),
(4, 'Category 4', 50);
*/
```

Vertex table

• Used in some deprecated signatures or deprecated functions.

```
-- TODO check if this table is still used

CREATE TABLE vertex_table (
    id SERIAL,
    x FLOAT,
    y FLOAT
);

INSERT INTO vertex_table VALUES
(1,2,0), (2,2,1), (3,3,1), (4,4,1), (5,0,2), (6,1,2), (7,2,2),
(8,3,2), (9,4,2), (10,2,3), (11,3,3), (12,4,3), (13,2,4);
```

1.4.1 Images

- Red arrows correspond when cost > 0 in the edge table.
- Blue arrows correspond when reverse_cost > 0 in the edge table.
- Points are outside the graph.
- Click on the graph to enlarge.

Network for queries marked as directed and cost and reverse_cost columns are used

When working with city networks, this is recommended for point of view of vehicles.

Network for queries marked as undirected and cost and reverse_cost columns are used

When working with city networks, this is recommended for point of view of pedestrians.

Network for queries marked as directed and only cost column is used

Network for queries marked as undirected and only cost column is used

Pick & Deliver Data

```
DROP TABLE IF EXISTS customer CASCADE;
CREATE table customer (
   id BIGINT not null primary key,
   x DOUBLE PRECISION.
   v DOUBLE PRECISION,
   demand INTEGER,
   opentime INTEGER,
   closetime INTEGER,
   servicetime INTEGER,
   pindex BIGINT,
   dindex BIGINT
);
INSERT INTO customer(
 id,
        x, y, demand, opentime, closetime, servicetime, pindex, dindex) VALUES
        40,
                            0, 1236, 0,
  Ο,
              50,
                   0,
                                                Ο,
                                                       0),
        45,
              68,
                     -10,
                            912,
                                   967,
                                          90,
                                                11,
  1,
                                                       0),
  2,
        45,
              70,
                    -20,
                            825,
                                   870,
                                          90,
                                                 6,
                                                       0),
```

1.4. Sample Data 13

Fig. 1.1: Graph 1: Directed, with cost and reverse cost

14 Chapter 1. General

Fig. 1.2: Graph 2: Undirected, with cost and reverse cost

Fig. 1.3: Graph 3: Directed, with cost

Fig. 1.4: Graph 4: Undirected, with cost

1.4. Sample Data 15

(3,	42,	66,	10,	65,	146,	90,	0,	75),
(4,	42,	68,	-10,	727,	782,	90,	9,	0),
(5,	42,	65,	10,	15,	67,	90,	0,	7),
(6,	40,	69,	20,	621,	702,	90,	0,	2),
(7,	40,	66,	-10,	170,	225,	90,	5,	0),
(8,	38,	68,	20,	255,	324,	90,	0,	10),
(9,	38,	70,	10,	534,	605,	90,	0,	4),
(10,	35,	66,	-20,	357,	410,	90,	8,	0),
(11,	35,	69,	10,	448,	505,	90,	0,	1),
(12,	25,	85,	-20,	652,	721,	90,	18,	0),
(13,	22,	75,	30,	30,	92,	90,	0,	17),
(14,	22,	85,	-40,	567,	620,	90,	16,	0),
(15,	20,	80,	-10,	384,	429,	90,	19,	0),
(16,	20,	85,	40,	475,	528,	90,	0,	14),
(17,	18,	75,	-30 ,	99,	148,	90,	13,	0),
(18,	15,	75 ,	20,	179,	254,	90,	0,	12),
(19,	15,	80,	10,	278,	345,	90,	0,	15),
(20,	30,	50,	10,	10,	73,	90,	0,	
(21,	30,	52,	-10,	914,	965,	90,	30,	0),
(22,	28,	52,	-20,	812,	883,	90,	28,	0),
(23,	28,	55,	10,	732,	777,	Ο,	0,	103),
(24,	25,	50,	-10,	65,	144,	90,	20,	0),
(25,	25,	52,	40,	169,	224,	90,	0,	27),
(26,	25,	55,	-10,	622,	701,	90,	29,	0),
(27,	23,	52,	-40,	261,	316,	90,	25,	0),
(28,	23,	55,	20,	546,	593,	90,	0,	22),
(29,	20,	50,	10,	358,	405,	90,	0,	26),
(30,	20,	55,	10,	449,	504,	90,	0,	21),
(31,	10,	35,	-30,	200,	237,	90,	32,	0),
(32,	10,	40,	30,	31,	100,	90,	0,	31),
(33,	8,	40,	40,	87 ,	158,	90,	0,	37),
(34,	8,	45,	-30,	751,	816,	90,		0),
(35,	5,	35,	10,	283,	344,	90,	0,	39),
(36,	5,	45,	10,	665,	716,	0,	0,	105),
(37,	2,	40,	-40,	383,	434,	90,	33,	0),
(38,	0,	40,	30,	479,	522,	90,	0,	34),
(39,	0,	45,	-10,	567,	624,	90,	35,	0),
(40,	35,	30,	-20,	264,	321,	90,	42,	0),
(41,	35,	32,	-10,	166,	235,	90,	43,	0),
(42,	33,	32,	20,	68,	149,	90,	0,	40),
(43,	33,	35,	10,	16,	80,	90,	0,	41),
(44,	32,	30,	10,	359,	412,	90,	0,	46),
(45,	30,	30,	10,	541,	600,	90,	0,	48),
(46,	30,	32,	-10,	448,	509,	90,	44,	0),
(47,	30,	35,	-10,	1054,	1127,	90,	49,	0),
(48,	28,	30,	-10,	632,	693,	90,	45,	0),
(49,	28,	35,	10,	1001,	1066,	90,	0,	47),
(50,	26,	32,	10,	815,	880,	90,		52),
							0,	
(51,	25,	30,	10,	725,	786,	0,	0,	101),
(52,	25,	35 ,	-10,	912,	969,	90,	50,	0),
(53,	44,	5,	20,	286,	347,	90,	0,	58),
(54,	42,	10,	40,	186,	257,	90,	0,	60),
(55,	42,	15,	-40,	95,	158,	90,	57 ,	0),
(56,	40,	5,	30,	385,	436,	90,	0,	59),
(57,	40,	15,	40,	35,	87,	90,	0,	55),
(58,	38,	5 ,	-20 ,	471,	534,	90,	53 ,	0),
(59,	38,	15,	-30,	651,	740,	90,	56,	0),
(60,	35,	5,	-40,	562,	629,	90,	54,	0),
(61,	50,	30,	-10,	531,	610,	90,	67,	0),
(62,	50,	35,	20,	262,	317,	90,	0,	68),
(63,	50,	40,	50,	171,	218,	90,	Ο,	74),
(64,	48,	30,	10,	632 ,	693 ,	0,	0,	102),
(65,	48,	40,	10,	76,	129,	90,	0,	72),
(00,	40,	⊒∪ ,	⊥∪,	10,	147,	<i>J</i> ∪,	∪,	14),

16 Chapter 1. General

(66,	47,	35,	10,	826,	875,	90,	0,	69),
(67,	47,	40,	10,	12,	77,	90,	0,	61),
(68,	45,	30,	-20,	734,	777,	90,	62,	0),
(69,	45,	35,	-10,	916,	969,	90,	66,	0),
(70,	95,	30,	-30,	387,	456,	90,	81,	0),
(71,	95,	35,	20,	293,	360,	90,	0,	77),
(72,	53,	30,	-10,	450,	505,	90,	65,	0),
(73,	92,	30,	-10,	478,	551,	90,	76,	0),
(74,	53,	35,	-50,	353,	412,	90,	63,	0),
(75,	45,	65,	-10,	997,	1068,	90,	3,	0),
(76,	90,	35,	10,	203,	260,	90,	0,	73),
(77,	88,	30,	-20,	574,	643,	90,	71,	0),
(78,	88,	35,	20,	109,	170,	0,	0,	104),
(79,	87 ,	30,	10,	668,	731,	90,	0,	80),
(80,	85 ,	25,	-10,	769 ,	820 ,	90,	79 ,	0),
(81,	85,	35,	30,	47,	124,	90,	0,	70),
(82,	75,	55,	20,	369,	420,	90,	0,	85),
(83,	72,	55,	-20,	265,	338,	90,	87,	0),
(84,	70,	58,	20,	458,	523,	90,	0,	89),
(85,	68,	60,	-20,	555,	612,	90,	82,	0),
(86,	66,	55,	10,	173,	238,	90,	0,	91),
(87,	65,	55,	20,	85 ,	144,	90,	0,	83),
(88,	65,	60,	-10,	645,	708,	90,	90,	0),
(89,	63,	58,	-20,	737,	802,	90,	84,	0),
(90,	60,	55,	10,	20,	84,	90,	0,	88),
(91,	60,	60,	-10,	836,	889,	90,	86,	0),
(92,	67,	•				90,		
(92,	•	85, 85,	20 ,	368 ,	441,		0,	93),
	65 ,		-20 ,	475,	518,	90,	92 ,	0),
(94,	65 ,	82,	-10,	285,	336,	90,	96,	0),
(95,	62,	80,	-20,	196,	239,	90,	98,	0),
(96,	60,	80,	10,	95,	156,	90,	0,	94),
(97,	60,	85 ,	30,	561,	622,	0,	0,	106),
(98,	58,	75,	20,	30,	84,	90,	0,	95),
(99,	55 ,	80,	-20,	743,	820,	90,	100,	0),
(100,	55 ,	85,	20,	647,	726,	90,	0,	99),
(101,	25,	30,	-10,	725,	786,	90,	51,	0),
(102,	48,	30,	-10,	632,	693,	90,	64,	0),
(103,	28,	55,	-10,	732,	777,	90,	23,	0),
(104,	88,	35,	-20,	109,	170,	90,	78,	0),
(105,	5,	45,	-10,	665,	716,	90,	36,	0),
(106,	60,	85,	-30,	561,	622,	90,	97,	0);

1.4. Sample Data 17

18 Chapter 1. General

Pgrouting Concepts

2.1 pgRouting Concepts

Contents

- pgRouting Concepts
 - Getting Started
 - * Create a routing Database
 - * Load Data
 - * Build a Routing Topology
 - * Check the Routing Topology
 - * Compute a Path
 - Inner Queries
 - * Description of the edges_sql query for dijkstra like functions
 - * Description of the edges_sql query (id is not necessary)
 - * Description of the parameters of the signatures
 - * Description of the edges_sql query for astar like functions
 - * Description of the edges_sql query for Max-flow like functions
 - * Description of the Points SQL query
 - Return columns & values
 - * Description of the return values for a path
 - * Description of the return values for a Cost function
 - * Description of the Return Values
 - Advanced Topics
 - * Routing Topology
 - * Graph Analytics
 - * Analyze a Graph
 - * Analyze One Way Streets
 - · Example
 - Performance Tips
 - * For the Routing functions
 - * For the topology functions:
 - How to contribute

2.1.1 Getting Started

This is a simple guide to walk you through the steps of getting started with pgRouting. In this guide we will cover:

- Create a routing Database
- Load Data
- Build a Routing Topology
- Check the Routing Topology
- · Compute a Path

Create a routing Database

The first thing we need to do is create a database and load pgrouting in the database. Typically you will create a database for each project. Once you have a database to work in, your can load your data and build your application in that database. This makes it easy to move your project later if you want to to say a production server.

For Postgresql 9.2 and later versions

```
createdb mydatabase
psql mydatabase -c "create extension postgis"
psql mydatabase -c "create extension pgrouting"
```

Load Data

How you load your data will depend in what form it comes it. There are various OpenSource tools that can help you, like:

osm2pgrouting

• this is a tool for loading OSM data into postgresql with pgRouting requirements

shp2pgsql

• this is the postgresql shapefile loader

ogr2ogr

• this is a vector data conversion utility

osm2pgsql

• this is a tool for loading OSM data into postgresql

So these tools and probably others will allow you to read vector data so that you may then load that data into your database as a table of some kind. At this point you need to know a little about your data structure and content. One easy way to browse your new data table is with pgAdmin3 or phpPgAdmin.

Build a Routing Topology

Next we need to build a topology for our street data. What this means is that for any given edge in your street data the ends of that edge will be connected to a unique node and to other edges that are also connected to that same unique node. Once all the edges are connected to nodes we have a graph that can be used for routing with pgrouting. We provide a tool that will help with this:

Note: this step is not needed if data is loaded with *osm2pgrouting*

```
select pgr_createTopology('myroads', 0.000001);
```

• pgr_createTopology

Check the Routing Topology

There are lots of possible sources for errors in a graph. The data that you started with may not have been designed with routing in mind. A graph has some very specific requirements. One is that it is *NODED*, this means that except for some very specific use cases, each road segment starts and ends at a node and that in general is does not cross another road segment that it should be connected to.

There can be other errors like the direction of a one-way street being entered in the wrong direction. We do not have tools to search for all possible errors but we have some basic tools that might help.

- pgr_analyzeGraph
- pgr_analyzeOneway
- pgr_nodeNetwork

Compute a Path

Once you have all the preparation work done above, computing a route is fairly easy. We have a lot of different algorithms that can work with your prepared road network. The general form of a route query is:

```
select pgr_dijkstra(`SELECT * FROM myroads', 1, 2)
```

As you can see this is fairly straight forward and you can look and the specific algorithms for the details of the signatures and how to use them. These results have information like edge id and/or the node id along with the cost or geometry for the step in the path from *start* to *end*. Using the ids you can join these result back to your edge table to get more information about each step in the path.

• pgr_dijkstra

2.1.2 Inner Queries

- Description of the edges_sql query for dijkstra like functions
- *Description of the edges_sql query (id is not necessary)*
- Description of the parameters of the signatures
- Description of the edges_sql query for astar like functions
- Description of the edges_sql query for Max-flow like functions
- Description of the Points SQL query

There are several kinds of valid inner queries and also the columns returned are depending of the function. Which kind of inner query will depend on the function(s) requirements. To simplify variety of types, ANY-INTEGER and ANY-NUMERICAL is used.

Where:

```
ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT
```

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative:
			edge (<i>target</i> , <i>source</i>) does not exist, there-
			fore it's not part of
			the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query (id is not necessary)

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.
via_vertices	ARRAY[ANY-INTEGER]		Array of ordered vertices identifiers that are going to be visited.
directed	BOOLEAN	true	 When true Graph is considered Directed When false the graph is considered as Undirected.
strict	BOOLEAN	false	 When false ignores missing paths returning all paths found When true if a path is missing stops and returns EMPTY SET
U_turn_on_edge	BOOLEAN	true	 When true departing from a visited vertex will not try to avoid using the edge used to reach it. In other words, U turn using the edge with same id is allowed. When false when a departing from a visited vertex tries to avoid using the edge used to reach it. In other words, U turn using the edge with same id is used when no other path is found.

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column Type		Description	
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically. 	
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.	
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.	
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered. 	

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

2.1.3 Return columns & values

- Description of the return values for a path
- Description of the return values for a Cost function
- Description of the Return Values

There are several kinds of columns returned are depending of the function.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description	
umn			
seq	INT	Sequential value starting from 1.	
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for	
		the same start_vid to end_vid combination.	
path_seqINT Relative position in the path. Has value 1 for the beginning of a path.		Relative position in the path. Has value 1 for the beginning of a path.	
start_vidBIGINTIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.			
end_vid BIGINTIdentifier of the ending vertex. Used when multiple ending vertices are in the query.			
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.	
edge	BIGIN	NTIdentifier of the edge used to go from node to the next node in the path sequence1 for	
		the last node of the path.	
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.	
agg_cos	t FLOAT	Aggregate cost from start_v to node.	

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description	
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.	
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.	
agg_cost	agg_cost FLOAT Aggregate cost from start_vid to end_vid.		

Description of the Return Values

Column	Type	Description	
seq	INT	Sequential value starting from 1.	
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).	
source	BIGINT	Identifier of the first end point vertex of the edge.	
target	BIGINT	Identifier of the second end point vertex of the edge.	
flow	BIGINT	Flow through the edge in the direction (source, target).	
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, target).	

2.1.4 Advanced Topics

- Routing Topology
- Graph Analytics
- Analyze a Graph
- Analyze One Way Streets
 - Example

Routing Topology

Overview

Typically when GIS files are loaded into the data database for use with pgRouting they do not have topology information associated with them. To create a useful topology the data needs to be "noded". This means that where two or more roads form an intersection there it needs to be a node at the intersection and all the road segments need to be broken at the intersection, assuming that you can navigate from any of these segments to any other segment via that intersection.

You can use the *graph analysis functions* to help you see where you might have topology problems in your data. If you need to node your data, we also have a function $pgr_nodeNetwork()$ that might work for you. This function splits ALL crossing segments and nodes them. There are some cases where this might NOT be the right thing to do.

For example, when you have an overpass and underpass intersection, you do not want these noded, but pgr_nodeNetwork does not know that is the case and will node them which is not good because then the router will be able to turn off the overpass onto the underpass like it was a flat 2D intersection. To deal with this problem some data sets use z-levels at these types of intersections and other data might not node these intersection which would be ok.

For those cases where topology needs to be added the following functions may be useful. One way to prep the data for pgRouting is to add the following columns to your table and then populate them as appropriate. This example makes a lot of assumption like that you original data tables already has certain columns in it like one_way, fcc, and possibly others and that they contain specific data values. This is only to give you an idea of what you can do with your data.

```
ALTER TABLE edge_table

ADD COLUMN source integer,

ADD COLUMN target integer,

ADD COLUMN cost_len double precision,

ADD COLUMN cost_time double precision,

ADD COLUMN rcost_len double precision,

ADD COLUMN rcost_time double precision,

ADD COLUMN x1 double precision,

ADD COLUMN x1 double precision,

ADD COLUMN y2 double precision,

ADD COLUMN x2 double precision,

ADD COLUMN y2 double precision,

ADD COLUMN to_cost double precision,

ADD COLUMN to_cost double precision,

ADD COLUMN rule text,

ADD COLUMN isolated integer;

SELECT pgr_createTopology('edge_table', 0.000001, 'the_geom', 'id');
```

The function $pgr_createTopology()$ will create the <code>vertices_tmp</code> table and populate the <code>source</code> and <code>target</code> columns. The following example populated the remaining columns. In this example, the <code>fcc</code> column contains feature class code and the <code>CASE</code> statements converts it to an average speed.

```
rcost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
 len_km = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')/1000.$,
 len_miles = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')
              / 1000.0 * 0.6213712,
 speed_mph = CASE WHEN fcc='A10' THEN 65
                   WHEN fcc='A15' THEN 65
                   WHEN fcc='A20' THEN 55
                   WHEN fcc='A25' THEN 55
                   WHEN fcc='A30' THEN 45
                   WHEN fcc='A35' THEN 45
                   WHEN fcc='A40' THEN 35
                   WHEN fcc='A45' THEN 35
                   WHEN fcc='A50' THEN 25
                   WHEN fcc='A60' THEN 25
                   WHEN fcc='A61' THEN 25
                   WHEN fcc='A62' THEN 25
                   WHEN fcc='A64' THEN 25
                   WHEN fcc='A70' THEN 15
                   WHEN fcc='A69' THEN 10
                   ELSE null END,
 speed\_kmh = CASE WHEN fcc='A10' THEN 104
                   WHEN fcc='A15' THEN 104
                   WHEN fcc='A20' THEN 88
                   WHEN fcc='A25' THEN 88
                   WHEN fcc='A30' THEN 72
                   WHEN fcc='A35' THEN 72
                   WHEN fcc='A40' THEN 56
                  WHEN fcc='A45' THEN 56
                  WHEN fcc='A50' THEN 40
                   WHEN fcc='A60' THEN 50
                   WHEN fcc='A61' THEN 40
                   WHEN fcc='A62' THEN 40
                   WHEN fcc='A64' THEN 40
                   WHEN fcc='A70' THEN 25
                   WHEN fcc='A69' THEN 15
                   ELSE null END;
-- UPDATE the cost information based on oneway streets
UPDATE edge_table SET
   cost_time = CASE
       WHEN one_way='TF' THEN 10000.0
       ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
   rcost_time = CASE
       WHEN one way='FT' THEN 10000.0
       ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
-- clean up the database because we have updated a lot of records
VACUUM ANALYZE VERBOSE edge_table;
```

Now your database should be ready to use any (most?) of the pgRouting algorithms.

Graph Analytics

Overview

It is common to find problems with graphs that have not been constructed fully noded or in graphs with z-levels at intersection that have been entered incorrectly. An other problem is one way streets that have been entered in the

wrong direction. We can not detect errors with respect to "ground" truth, but we can look for inconsistencies and some anomalies in a graph and report them for additional inspections.

We do not current have any visualization tools for these problems, but I have used mapserver to render the graph and highlight potential problem areas. Someone familiar with graphviz might contribute tools for generating images with that.

Analyze a Graph

With *pgr_analyzeGraph* the graph can be checked for errors. For example for table "mytab" that has "mytab_vertices_pgr" as the vertices table:

```
SELECT pgr_analyzeGraph('mytab', 0.000002);
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 158
NOTICE:
                                  Dead ends: 20028
NOTICE: Potential gaps found near dead ends: 527
NOTICE:
                  Intersections detected: 2560
NOTICE:
                            Ring geometries: 0
pgr_analyzeGraph
  OK
(1 row)
```

In the vertices table "mytab_vertices_pgr":

- Deadends are identified by cnt=1
- Potencial gap problems are identified with chk=1.

```
SELECT count(*) as deadends FROM mytab_vertices_pgr WHERE cnt = 1;
deadends
-----
20028
(1 row)

SELECT count(*) as gaps FROM mytab_vertices_pgr WHERE chk = 1;
gaps
-----
527
(1 row)
```

For isolated road segments, for example, a segment where both ends are deadends. you can find these with the following query:

```
SELECT *
    FROM mytab a, mytab_vertices_pgr b, mytab_vertices_pgr c
    WHERE a.source=b.id AND b.cnt=1 AND a.target=c.id AND c.cnt=1;
```

If you want to visualize these on a graphic image, then you can use something like mapserver to render the edges and the vertices and style based on ont or if they are isolated, etc. You can also do this with a tool like graphviz, or geoserver or other similar tools.

Analyze One Way Streets

pgr_analyzeOneway analyzes one way streets in a graph and identifies any flipped segments. Basically if you count the edges coming into a node and the edges exiting a node the number has to be greater than one.

This query will add two columns to the vertices_tmp table ein int and eout int and populate it with the appropriate counts. After running this on a graph you can identify nodes with potential problems with the following query.

The rules are defined as an array of text strings that if match the col value would be counted as true for the source or target in or out condition.

Example

Lets assume we have a table "st" of edges and a column "one_way" that might have values like:

- 'FT' oneway from the source to the target node.
- 'TF' oneway from the target to the source node.
- 'B' two way street.
- " empty field, assume twoway.
- <NULL> NULL field, use two_way_if_null flag.

Then we could form the following query to analyze the oneway streets for errors.

Typically these problems are generated by a break in the network, the one way direction set wrong, maybe an error related to z-levels or a network that is not properly noded.

The above tools do not detect all network issues, but they will identify some common problems. There are other problems that are hard to detect because they are more global in nature like multiple disconnected networks. Think of an island with a road network that is not connected to the mainland network because the bridge or ferry routes are missing.

2.1.5 Performance Tips

- For the Routing functions
- For the topology functions:

For the Routing functions

To get faster results bound your queries to the area of interest of routing to have, for example, no more than one million rows.

Use an inner query SQL that does not include some edges in the routing function

```
SELECT id, source, target from edge_table WHERE

id < 17 and

the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id = 5)
```

Integrating the inner query to the pgRouting function:

For the topology functions:

When "you know" that you are going to remove a set of edges from the edges table, and without those edges you are going to use a routing function you can do the following:

Analize the new topology based on the actual topology:

```
pgr_analyzegraph('edge_table',rows_where:='id < 17');
```

Or create a new topology if the change is permanent:

```
pgr_createTopology('edge_table',rows_where:='id < 17');
pgr_analyzegraph('edge_table',rows_where:='id < 17');</pre>
```

2.1.6 How to contribute

Wiki

- Edit an existing pgRouting Wiki¹ page.
- Or create a new Wiki page
 - Create a page on the pgRouting Wiki²
 - Give the title an appropriate name
- Example³

Adding Functionaity to pgRouting

Consult the developer's documentation⁴

Indices and tables

- genindex
- search

Reference

pgr_version - to get pgRouting's version information.

¹https://github.com/pgRouting/pgrouting/wiki

²https://github.com/pgRouting/pgrouting/wiki

³https://github.com/pgRouting/pgrouting/wiki/How-to:-Handle-parallel-edges-(KSP)

⁴http://docs.pgrouting.org/doxy/2.4/index.html

2.2 pgr_version

2.2.1 Name

pgr_version — Query for pgRouting version information.

2.2.2 Synopsis

Returns a table with pgRouting version information.

```
table() pgr_version();
```

2.2.3 Description

Returns a table with:

Column	Туре	Description
version	varchar	pgRouting version
tag	varchar	Git tag of pgRouting build
hash	varchar	Git hash of pgRouting build
branch	varchar	Git branch of pgRouting build
boost	varchar	Boost version

History

• New in version 2.0.0

2.2.4 Examples

• Query for the version string

```
SELECT version FROM pgr_version();

version
-----
2.6.0
(1 row)
```

2.2.5 See Also

Indices and tables

- genindex
- search

Data Types

- pgr_costResult[] A set of records to describe a path result with cost attribute.
- pgr_costResult3[] A set of records to describe a path result with cost attribute.
- pgr_geomResult A set of records to describe a path result with geometry attribute.

3.1 pgRouting Data Types

The following are commonly used data types for some of the pgRouting functions.

- pgr_costResult[] A set of records to describe a path result with cost attribute.
- pgr_costResult3[] A set of records to describe a path result with cost attribute.
- pgr_geomResult A set of records to describe a path result with geometry attribute.

3.1.1 pgr_costResult[]

Name

pgr_costResult[] — A set of records to describe a path result with cost attribute.

Description

```
CREATE TYPE pgr_costResult AS
(
    seq integer,
    id1 integer,
    id2 integer,
    cost float8
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the node id

id2 generic name, to be specified by the function, typically the edge id

cost cost attribute

3.1.2 pgr_costResult3[] - Multiple Path Results with Cost

Name

pgr_costResult3[] — A set of records to describe a path result with cost attribute.

Description

```
CREATE TYPE pgr_costResult3 AS
(
    seq integer,
    id1 integer,
    id2 integer,
    id3 integer,
    cost float8
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the path id

id2 generic name, to be specified by the function, typically the node id

id3 generic name, to be specified by the function, typically the edge id

cost cost attribute

History

- New in version 2.0.0
- Replaces path_result

See Also

• Introduction

Indices and tables

- genindex
- · search

3.1.3 pgr_geomResult[]

Name

pgr_geomResult[] — A set of records to describe a path result with geometry attribute.

Description

```
CREATE TYPE pgr_geomResult AS
(
    seq integer,
    id1 integer,
    id2 integer,
```

```
geom geometry
);
```

seq sequential ID indicating the path order
id1 generic name, to be specified by the function
id2 generic name, to be specified by the function
geom geometry attribute

History

- New in version 2.0.0
- Replaces geoms

See Also

• Introduction

Indices and tables

- genindex
- search

3.1.4 See Also

Indices and tables

- genindex
- search

Topology Functions

- pgr_createTopology to create a topology based on the geometry.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneway to analyze directionality of the edges.
- pgr_nodeNetwork -to create nodes to a not noded edge table.

4.1 Topology - Family of Functions

The pgRouting's topology of a network, represented with an edge table with source and target attributes and a vertices table associated with it. Depending on the algorithm, you can create a topology or just reconstruct the vertices table, You can analyze the topology, We also provide a function to node an unoded network.

- pgr_createTopology to create a topology based on the geometry.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneway to analyze directionality of the edges.
- pgr_nodeNetwork -to create nodes to a not noded edge table.

4.1.1 pgr_createTopology

Name

pgr_createTopology — Builds a network topology based on the geometry information.

Synopsis

The function returns:

- OK after the network topology has been built and the vertices table created.
- FAIL when the network topology was not built due to an error.

Description

Parameters

The topology creation function accepts the following parameters:

edge_table text Network table name. (may contain the schema name AS well)

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

the_geom text Geometry column name of the network table. Default value is the_geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to SELECT a subset or rows. Default value is true to indicate all rows that where source or target have a null value, otherwise the condition is used.

clean boolean Clean any previous topology. Default value is false.

Warning: The edge_table will be affected

- The source column values will change.
- The target column values will change.
 - An index will be created, if it doesn't exists, to speed up the process to the following columns:
 - * id
 - * the_geom
 - * source
 - * target

The function returns:

- OK after the network topology has been built.
 - Creates a vertices table: <edge_table>_vertices_pgr.
 - Fills id and the geom columns of the vertices table.
 - Fills the source and target columns of the edge table referencing the id of the vertices table.
- FAIL when the network topology was not built due to an error:
 - A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source, target or id are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneway functions.

The structure of the vertices table is:

- id bigint Identifier of the vertex.
- cnt integer Number of vertices in the edge_table that reference this vertex. See
 pgr_analyzeGraph.
- **chk** integer Indicator that the vertex might have a problem. See *pgr_analyzeGraph*.
- **ein** integer Number of vertices in the edge_table that reference this vertex AS incoming. See pgr_analyzeOneway.

eout integer Number of vertices in the edge_table that reference this vertex AS outgoing. See *pgr_analyzeOneway*.

the_geom geometry Point geometry of the vertex.

History

• Renamed in version 2.0.0

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_createTopology is:

When the arguments are given in the order described in the parameters:

We get the same result AS the simplest way to use the function.

Warning:

An error would occur when the arguments are not given in the appropriate order:

In this example, the column id of the table ege_table is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the id column.

When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of the parameters would not matter.

```
SELECT pgr_createTopology('edge_table', 0.001,
    source:='source', id:='id', target:='target', the_geom:='the_geom');
pgr_createtopology
-----OK
(1 row)
```

```
SELECT pgr_createTopology('edge_table', 0.001, source:='source');
pgr_createtopology
-----
OK
(1 row)
```

Selecting rows using rows where parameter

Selecting rows based on the id.

```
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 10');
pgr_createtopology
-----OK
(1 row)</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_createTopology('edge_table', 0.001,
    rows_where:='the_geom && (SELECT st_buffer(the_geom, 0.05) FROM edge_table WHERE id=5)');
    pgr_createtopology
-------
OK
(1 row)
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom);

SELECT 1

SELECT pgr_createTopology('edge_table', 0.001,
    rows_where:='the_geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology
------
OK
(1 row)
```

Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src , target AS tgt FROM SELECT 18
```

Using positional notation:

The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := pgr_createtopology
-----OK
(1 row)
```

Warning:

An error would occur when the arguments are not given in the appropiriate order:

In this example, the column gid of the table mytable is passed to the function AS the geometry column, and the geometry column mygeom is passed to the function AS the id column.

When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table. The order of the parameters do not matter:

SELECT pgr_createTopology('mytable', 0.001, the_geom:='mygeom', id:='gid', source:=|src', target

Selecting rows using rows_where parameter

Based on id:

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_whete:='gid < 10
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='r
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
   rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='n
   rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
pgr_createtopology
(1 row)
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
    rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology
------
OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='srows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology
```

```
OK
(1 row)
```

Examples with full output

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

```
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 6', clean := true);</pre>
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where
NOTICE: Performing checks, please wait .....
NOTICE: Creating Topology, Please wait...
NOTICE: ----> TOPOLOGY CREATED FOR 5 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target|, rows_where
NOTICE: Performing checks, please wait .....
NOTICE: Creating Topology, Please wait...
        ----> TOPOLOGY CREATED FOR 13 edges
NOTICE:
NOTICE:
        Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
       _____
NOTICE:
pgr_createtopology
OK
(1 row)
```

The example uses the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

- genindex
- · search

4.1.2 pgr_createVerticesTable

Name

pgr_createVerticesTable — Reconstructs the vertices table based on the source and target information.

Synopsis

The function returns:

- OK after the vertices table has been reconstructed.
- FAIL when the vertices table was not reconstructed due to an error.

```
pgr_createVerticesTable(edge_table, the_geom, source, target, rows_where)
RETURNS VARCHAR
```

Description

Parameters

The reconstruction of the vertices table function accepts the following parameters:

```
edge_table text Network table name. (may contain the schema name as well)
```

the_geom text Geometry column name of the network table. Default value is the_geom.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to SELECT a subset or rows. Default value is true to indicate all rows.

Warning: The edge_table will be affected

- An index will be created, if it doesn't exists, to speed up the process to the following columns:
 - the_geom
 - source
 - target

The function returns:

- OK after the vertices table has been reconstructed.
 - Creates a vertices table: <edge_table>_vertices_pgr.
 - Fills id and the_geom columns of the vertices table based on the source and target columns of the edge table.
- FAIL when the vertices table was not reconstructed due to an error.
 - A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source, target are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requierment of the pgr_analyzeGraph and the pgr_analyzeOneway functions.

The structure of the vertices table is:

```
id bigint Identifier of the vertex.
```

cnt integer Number of vertices in the edge_table that reference this vertex. See
 pgr_analyzeGraph.

chk integer Indicator that the vertex might have a problem. See *pgr_analyzeGraph*.

ein integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneway.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing. See *pgr_analyzeOneway*.

the_geom geometry Point geometry of the vertex.

History

• Renamed in version 2.0.0

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_createVerticesTable is:

```
SELECT pgr_createVerticesTable('edge_table');
```

When the arguments are given in the order described in the parameters:

```
SELECT pgr_createVerticesTable('edge_table','the_geom','source','target');
```

We get the same result as the simplest way to use the function.

Warning: An error would occur when the arguments are not given in the appropriate order: In this example, the column source column source of the table mytable is passed to the function as the geometry column, and the geometry column the geometry column the geometry column.

When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_createVerticesTable('edge_table',the_geom:='the_geom',source:='source',target:='targe'

SELECT pgr_createVerticesTable('edge_table',source:='source',target:='target',the_geom:='the_geom'
```

Parameters defined with a default value can be omitted, as long as the value matches the default:

```
SELECT pgr_createVerticesTable('edge_table', source:='source');
```

Selecting rows using rows_where parameter

Selecting rows based on the id.

```
SELECT pgr_createVerticesTable('edge_table',rows_where:='id < 10');</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(the_geom,
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom);

SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(othergeom));
```

Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src , target AS tgt FROM e
```

Using positional notation:

The arguments need to be given in the order described in the parameters:

```
SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt');
```

Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column src of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the source column.

When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_createVerticesTable('mytable', the_geom:='mygeom', source:='src', target:='tgt');
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:='mygeom');
```

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

Selecting rows using rows where parameter

Selecting rows based on the gid.

Selecting the rows where the geometry is near the geometry of the row with gid=100 of the table othertable.

SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt', rows_where:='gid < 10|);

Examples

```
SELECT pgr_createVerticesTable('edge_table');
    NOTICE:
            PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE:
        Performing checks, pelase wait .....
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
                   VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE:
           ---->
NOTICE:
                                               FOR
                                                    18 EDGES
NOTICE:
         Edges with NULL geometry, source or target: 0
                                    Edges processed: 18
NOTICE:
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pdr
NOTICE:
    pgr_createVerticesTable
    OK
    (1 row)
```

The example uses the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr_createTopology to create a topology based on the geometry.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneway to analyze directionality of the edges.

Indices and tables

- · genindex
- search

4.1.3 pgr_analyzeGraph

Name

pgr_analyzeGraph — Analyzes the network topology.

Synopsis

The function returns:

- OK after the analysis has finished.
- FAIL when the analysis was not completed due to an error.

Description

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

- Use *pgr_createVerticesTable* to create the vertices table.
- Use *pgr_createTopology* to create the topology and the vertices table.

Parameters

The analyze graph function accepts the following parameters:

```
\begin{table} edge\_table \ \mbox{text Network table name.} \end{table} \ (may \ contain \ the \ schema \ name \ as \ well)
```

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

the geom text Geometry column name of the network table. Default value is the geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows_where text Condition to select a subset or rows. Default value is true to indicate all rows.

The function returns:

- OK after the analysis has finished.
 - Uses the vertices table: <edge_table>_vertices_pgr.
 - Fills completely the cnt and chk columns of the vertices table.
 - Returns the analysis of the section of the network defined by rows_where
- FAIL when the analysis was not completed due to an error.
 - The vertices table is not found.
 - A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source, target or id are the same.

- The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

- id bigint Identifier of the vertex.
- **cnt** integer Number of vertices in the edge_table that reference this vertex.
- **chk** integer Indicator that the vertex might have a problem.
- **ein** integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneway.
- **eout** integer Number of vertices in the edge_table that reference this vertex as outgoing. See *pgr_analyzeOneway*.

the_geom geometry Point geometry of the vertex.

History

• New in version 2.0.0

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_analyzeGraph is:

```
SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table',0.001);
```

When the arguments are given in the order described in the parameters:

```
SELECT pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target');
```

We get the same result as the simplest way to use the function.

Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column id of the table mytable is passed to the function as the geometry column, and the geometry column the geometry to the function as the id column.

When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_analyzeGraph('edge_table', 0.001, the_geom:='the_geom', id:='id', source:='source', target

SELECT pgr_analyzeGraph('edge_table', 0.001, source:='source', id:='id', target:='target', the_geom:=
```

Parameters defined with a default value can be omitted, as long as the value matches the default:

```
SELECT pgr_analyzeGraph('edge_table',0.001,source:='source');
```

Selecting rows using rows_where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.

```
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_analyzeGraph('edge_table', 0.001, rows_where:='the_geom && (SELECT st_buffer(the_geom, 0
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom);

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(other_geom
```

Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , the_geom AS mygeom FROM SELECT pgr_createTopology('mytable',0.001,'mygeom','gid','src','tgt');
```

Using positional notation:

The arguments need to be given in the order described in the parameters:

```
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt');
```

Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column gid of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the id column.

When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_analyzeGraph('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src', target:='tgt'

SELECT pgr_analyzeGraph('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom'
```

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

Selecting rows using rows where parameter

Selecting rows based on the id.

```
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',rows_where:='gid < 10');</pre>
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom'
```

Selecting the rows WHERE the geometry is near the geometry of row with id =5.

Selecting the rows WHERE the geometry is near the place='myhouse' of the table othertable. (note the use of quote_literal)

```
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom'
rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quo
```

Examples

```
SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing {f for} isolated edges. Please wait...
NOTICE: Analyzing {f for} ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                      ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                             Isolated segments: 2
NOTICE:
                                    Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
                    Intersections detected: 1
NOTICE:
                              Ring geometries: 0
 pgr_analyzeGraph
 OK
```

```
(1 row)
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');</pre>
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'id' < 10')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing {f for} ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 0
NOTICE:
                                  Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                    Intersections detected: 0
NOTICE:
                            Ring geometries: 0
pgr_analyzeGraph
OK
(1 row)
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id >= 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'id >= 10')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                           Isolated segments: 2
NOTICE:
                                  Dead ends: 8
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
                     Intersections detected: 1
NOTICE:
                             Ring geometries: 0
pgr_analyzeGraph
OK
(1 row)
-- Simulate removal of edges
SELECT pgr createTopology('edge table', 0.001,rows where:='id <17');
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                           Isolated segments: 0
NOTICE:
                                  Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                      Intersections detected: 0
                            Ring geometries: 0
NOTICE:
 pgr_analyzeGraph
```

```
OK
    (1 row)
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id <17');</pre>
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table',0.001,'the_geom','id','source','target','id NOTICE: Performing checks, pelase wait .....
NOTICE: Creating Topology, Please wait...
         -----> TOPOLOGY CREATED FOR 16 edges
NOTICE:
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pdr
NOTICE: ----
     pgr_analyzeGraph
     OK
     (1 row)
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                       ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                              Isolated segments: 0
NOTICE:
                                       Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                        Intersections detected: 0
NOTICE:
                                Ring geometries: 0
     pgr_analyzeGraph
     OK
     (1 row)
```

The examples use the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr_analyzeOneway to analyze directionality of the edges.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr_nodeNetwork to create nodes to a not noded edge table.

Indices and tables

- genindex
- search

4.1.4 pgr_analyzeOneway

Name

pgr_analyzeOneway — Analyzes oneway Sstreets and identifies flipped segments.

Synopsis

This function analyzes oneway streets in a graph and identifies any flipped segments.

Description

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential problems created by setting the direction of a segment the wrong way. A node is a *source* if it has edges the exit from that node and no edges enter that node. Conversely, a node is a *sink* if all edges enter the node but none exit that node. For a *source* type node it is logically impossible to exist because no vehicle can exit the node if no vehicle and enter the node. Likewise, if you had a *sink* node you would have an infinite number of vehicle piling up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could generate exactly these conditions. Think about a divided highway and on the north bound lane one segment got entered wrong or maybe a sequence of multiple segments got entered wrong or maybe this happened on a round-about. The result would be potentially a *source* and/or a *sink* node.

So by counting the number of edges entering and exiting each node we can identify both *source* and *sink* nodes so that you can look at those areas of your network to make repairs and/or report the problem back to your data vendor.

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

- Use *pgr_createVerticesTable* to create the vertices table.
- Use *pgr_createTopology* to create the topology and the vertices table.

Parameters

```
edge_table text Network table name. (may contain the schema name as well)
s_in_rules text[] source node in rules
s_out_rules text[] source node out rules
t_in_rules text[] target node in rules
t_out_rules text[] target node out rules
oneway text oneway column name name of the network table. Default value is oneway.
source text Source column name of the network table. Default value is source.
target text Target column name of the network table. Default value is target.
two_way_if_null boolean flag to treat oneway NULL values as bi-directional. Default value is true.
```

Note: It is strongly recommended to use the named notation. See *pgr_createVerticesTable* or *pgr_createTopology* for examples.

The function returns:

- OK after the analysis has finished.
 - Uses the vertices table: <edge_table>_vertices_pgr.
 - Fills completely the ein and eout columns of the vertices table.
- FAIL when the analysis was not completed due to an error.
 - The vertices table is not found.
 - A required column of the Network table is not found or is not of the appropriate type.
 - The names of source, target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value would be counted as true for the source or target in or out condition.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

```
id bigint Identifier of the vertex.
```

cnt integer Number of vertices in the edge_table that reference this vertex. See
 pgr_analyzeGgraph.

chk integer Indicator that the vertex might have a problem. See *pgr_analyzeGraph*.

ein integer Number of vertices in the edge_table that reference this vertex as incoming.

eout integer Number of vertices in the edge_table that reference this vertex as outgoing.

the_geom geometry Point geometry of the vertex.

History

• New in version 2.0.0

Examples

```
SELECT pgr_analyzeOneway('edge_table',

ARRAY['', 'B', 'TF'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'FT'],

Oneway:='dir');

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table', '{"",B,TF}', '{"",B,FT}', '{"",B,FT}', '{"",B,FT}', 'dir', 'sou

NOTICE: Analyzing graph for one way street errors.

NOTICE: Analysis 25% complete ...

NOTICE: Analysis 50% complete ...

NOTICE: Analysis 75% complete ...

NOTICE: Analysis 100% complete ...

NOTICE: Found 0 potential problems in directionality

pgr_analyzeoneway
```

```
OK (1 row)
```

The queries use the Sample Data network.

See Also

- Routing Topology for an overview of a topology for routing algorithms.
- Graph Analytics for an overview of the analysis of a graph.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.

Indices and tables

- · genindex
- search

4.1.5 pgr_nodeNetwork

Name

pgr_nodeNetwork - Nodes an network edge table.

Author Nicolas Ribot

Copyright Nicolas Ribot, The source code is released under the MIT-X license.

Synopsis

The function reads edges from a not "noded" network table and writes the "noded" edges into a new table.

```
pgr_nodenetwork(edge_table, tolerance, id, text the_geom, table_ending, rows_where, outall)
RETURNS TEXT
```

Description

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not "noded" correctly. This will create invalid topologies, which will result in routes that are incorrect.

What we mean by "noded" is that at every intersection in the road network all the edges will be broken into separate road segments. There are cases like an over-pass and under-pass intersection where you can not traverse from the over-pass to the under-pass, but this function does not have the ability to detect and accommodate those situations.

This function reads the edge_table table, that has a primary key column id and geometry column named the_geom and intersect all the segments in it against all the other segments and then creates a table edge_table_noded. It uses the tolerance for deciding that multiple nodes within the tolerance are considered the same node.

Parameters

```
edge_table text Network table name. (may contain the schema name as well)tolerance float8 tolerance for coincident points (in projection unit)ddid text Primary key column name of the network table. Default value is id.
```

```
the_geom text Geometry column name of the network table. Default value is the_geom.
table_ending text Suffix for the new table's. Default value is noded.
```

The output table will have for edge_table_noded

```
id bigint Unique identifier for the table
old_id bigint Identifier of the edge in original table
sub_id integer Segment number of the original edge
source integer Empty source column to be used with pgr_createTopology function
target integer Empty target column to be used with pgr_createTopology function
the geom geometry Geometry column of the noded network
```

History

• New in version 2.0.0

Example

Let's create the topology for the data in Sample Data

Now we can analyze the network.

```
SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                       ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                              Isolated segments: 2
NOTICE:
                                       Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
                    Intersections detected: 1
NOTICE:
                                Ring geometries: 0
pgr_analyzegraph
OK
(1 row)
```

The analysis tell us that the network has a gap and an intersection. We try to fix the problem using:

```
SELECT pgr_nodeNetwork('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_nodeNetwork('edge_table',0.001,'the_geom','id','noded')
NOTICE: Performing checks, pelase wait .....
NOTICE: Processing, pelase wait .....
NOTICE: Split Edges: 3
NOTICE: Untouched Edges: 15
NOTICE:
         Total original Edges: 18
NOTICE: Edges generated: 6
NOTICE: Untouched Edges: 15
NOTICE:
         Total New segments: 21
NOTICE: New Table: public.edge_table_noded
NOTICE: ----
pgr_nodenetwork
OK
(1 row)
```

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

```
SELECT old_id, sub_id FROM edge_table_noded ORDER BY old_id, sub_id;
old_id | sub_id
       2
              1
3
              1
4
              1
5
              1
6
              1
7
              1
8
              1
9
              1
10
              1
11
       1
12
13
13
       2
14
       1
14
       15
       1
16
              1
17
              1
18
              1
18
(21 rows)
```

We can create the topology of the new network

Now let's analyze the new topology

```
SELECT pgr_analyzegraph('edge_table_noded', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table_noded', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                     ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                           Isolated segments: 0
NOTICE:
                                   Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                      Intersections detected: 0
NOTICE:
                             Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

Images

Before Image

After Image

Comparing the results

Comparing with the Analysis in the original edge_table, we see that.

	Before	After
Table name	edge_table	edge_table_noded
Fields	All original fields	Has only basic fields to do a topol-
		ogy analysis
Dead ends	• Edges with 1 dead end:	Edges with 1 dead end: 1-1,6-1,14-
	1,6,24	2, 18-1 17-1 18-2
	• Edges with 2 dead ends 17,18	
	Edge 17's right node is a dead end	
	because there is no other edge shar-	
	ing that same node. (cnt=1)	
Isolated segments	two isolated segments: 17 and 18	No Isolated segments
	both they have 2 dead ends	• Edge 17 now shares a
		node with edges 14-1
		and 14-2
		• Edges 18-1 and 18-2
		share a node with edges
		13-1 and 13-2
Gaps	There is a gap between edge 17 and	Edge 14 was segmented Now edges:
•	14 because edge 14 is near to the	14-1 14-2 17 share the same node
	right node of edge 17	The tolerance value was taken in ac-
		count
Intersections	Edges 13 and 18 were intersecting	Edges were segmented, So, now
		in the interection's point there is a
		node and the following edges share
		it: 13-1 13-2 18-1 18-2

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2, 18-1 and 18-2 into our edge-table, copying the data for dir,cost,and reverse cost with tho following steps:

- Add a column old_id into edge_table, this column is going to keep track the id of the original edge
- Insert only the segmented edges, that is, the ones whose max(sub_id) >1

We recreate the topology:

To get the same analysis results as the topology of edge_table_noded, we do the following query:

```
SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='id not in (select old_id from edge_table
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',
                           'id not in (select old_id from edge_table where old_id is not null)')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                           Isolated segments: 0
NOTICE:
                                   Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE.
                    Intersections detected: 0
NOTICE:
                            Ring geometries: 0
pgr_createtopology
ΟK
(1 row)
```

To get the same analysis results as the original edge_table, we do the following query:

```
SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='old_id is null')

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'old_id is null')

NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...
```

```
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
                   ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
NOTICE:
                         Isolated segments: 2
NOTICE:
                                Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
         Intersections detected: 1
NOTICE:
                          Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a street level juction, and the same happens with edges 17 and 13.

```
SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                      ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                            Isolated segments: 0
NOTICE:
                                    Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
          Intersections detected: 5
NOTICE:
NOTICE:
                              Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

See Also

Routing Topology for an overview of a topology for routing algorithms. pgr_analyzeOneway to analyze directionality of the edges. pgr_createTopology to create a topology based on the geometry. pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

- · genindex
- · search

4.1.6 See Also

Indices and tables

- genindex
- · search

Routing functions

5.1 Routing Functions

All Pairs - Family of Functions

- pgr_floydWarshall Floyd-Warshall's Algorithm
- pgr_johnson- Johnson's Algorithm

pgr_aStar - Shortest Path A*

pgr_bdAstar - Bi-directional A* Shortest Path

pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.
- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr_KSP - K-Shortest Path

pgr_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

- pgr_TSP When input is given as matrix cell information.
- pgr_eucledianTSP When input are coordinates.

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on pgr_dijkstra
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints
- Post pocessing
 - pgr_alphaShape Alpha shape computation
 - pgr_pointsAsPolygon Polygon around a set of points

5.1.1 All Pairs - Family of Functions

The following functions work on all vertices pair combinations

pgr_floydWarshall

Synopsis

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

Fig. 5.1: Boost Graph Inside

Availability: 2.0.0

• Renamed on 2.2.0, previous name pgr_apspWarshall

The Floyd-Warshall algorithm, also known as Floyd's algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for *dense graphs*. We use Boost's implementation which runs in $\Theta(V^3)$ time,

Characteristics

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a V x V matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of (*start_vid*, *end_vid*, *agg_cost*).
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When $start_vid = end_vid$, the $agg_cost = 0$.
- Recommended, use a bounding box of no more than 3500 edges.

Signature Summary

```
pgr_floydWarshall(edges_sql)
pgr floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_floydWarshall(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 1 On a directed graph.

Complete Signature

```
pgr_floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 2 On an undirected graph.

```
SELECT * FROM pgr_floydWarshall(
   'SELECT id, source, target, cost FROM edge_table where id < 5',
   false
);
start_vid | end_vid | agg_cost
            2 |
       1 |
                5 I
       1 |
                          2
               1 |
                          1
        2 |
               5 I
                          1
       2 |
       5 |
               1 |
                          2
        5 |
               2 |
                         1
(6 rows)
```

Description of the Signatures

Description of the edges_sql query (id is not necessary)

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures Receives (edges_sql, directed)

Parame-	Type	Description
ter		
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	(optional) Default is true (is directed). When set to false the graph is considered as
		Undirected

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
agg_cost	FLOAT	Total cost from start_vid to end_vid.

History

• Re-design of pgr_apspWarshall in Version 2.2.0

See Also

- pgr_johnson
- Boost floyd-Warshall² algorithm
- Queries uses the Sample Data network.

 $^{^2} http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html$

Indices and tables

- genindex
- · search

pgr_johnson

Synopsis

pgr_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

Fig. 5.2: Boost Graph Inside

Availability: 2.0.0

• Renamed on 2.2.0, previous name pgr_apspJohnson

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for *sparse graphs*. It usees the Boost's implementation which runs in $O(VE \log V)$ time,

Characteristics

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a $V \times V$ matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When $start_vid = end_vid$, the $agg_cost = 0$.

Signature Summary

```
pgr_johnson(edges_sql)
pgr johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_johnson(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 1 On a directed graph.

Complete Signature

```
pgr_johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example 2 On an undirected graph.

```
SELECT * FROM pgr_johnson(
   'SELECT source, target, cost FROM edge_table WHERE id < 5
      ORDER BY id',
  false
);
start_vid | end_vid | agg_cost
-----
      1
                     2
                     1
                     1
      5 |
             1 |
                     2
      5 |
             2 |
(6 rows)
```

Description of the Signatures

Description of the edges_sql query (id is not necessary)

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures Receives (edges_sql, directed)

Parame-	Туре	Description
ter		
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	(optional) Default is true (is directed). When set to false the graph is considered as
		Undirected

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
agg cost	FLOAT	Total cost from start vid to end vid.

History

• Re-design of pgr_apspJohnson in Version 2.2.0

See Also

- pgr_floydWarshall
- Boost Johnson⁴ algorithm implementation.
- Queries uses the Sample Data network.

 $^{^4} http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html$

Indices and tables

- genindex
- · search

Performance

The following tests:

- non server computer
- with AMD 64 CPU
- 4G memory
- · trusty
- posgreSQL version 9.3

Data

The following data was used

```
BBOX="-122.8,45.4,-122.5,45.6"
wget --progress=dot:mega -O "sampledata.osm" "http://www.overpass-api.de/api/xapi?*[bbox=][@meta]
```

Data processing was done with osm2pgrouting-alpha

```
createdb portland
psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s 0
```

Results

Test One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests were executed to get the average The tested query is:

```
SELECT count(*) FROM pgr_floydWarshall(
    'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson(
    'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');
```

The results of this tests are presented as:

SIZE is the number of edges given as input.

EDGES is the total number of records in the query.

DENSITY is the density of the data $\frac{E}{V \times (V-1)}$.

OUT ROWS is the number of records returned by the queries.

Floyd-Warshall is the average execution time in seconds of pgr_floydWarshall.

Johnson is the average execution time in seconds of pgr_johnson.

SIZE	EDGES	DENSITY	OUT ROWS	Floyd-Warshall	Johnson
500	500	0.18E-7	1346	0.14	0.13
1000	1000	0.36E-7	2655	0.23	0.18
1500	1500	0.55E-7	4110	0.37	0.34
2000	2000	0.73E-7	5676	0.56	0.37
2500	2500	0.89E-7	7177	0.84	0.51
3000	3000	1.07E-7	8778	1.28	0.68
3500	3500	1.24E-7	10526	2.08	0.95
4000	4000	1.41E-7	12484	3.16	1.24
4500	4500	1.58E-7	14354	4.49	1.47
5000	5000	1.76E-7	16503	6.05	1.78
5500	5500	1.93E-7	18623	7.53	2.03
6000	6000	2.11E-7	20710	8.47	2.37
6500	6500	2.28E-7	22752	9.99	2.68
7000	7000	2.46E-7	24687	11.82	3.12
7500	7500	2.64E-7	26861	13.94	3.60
8000	8000	2.83E-7	29050	15.61	4.09
8500	8500	3.01E-7	31693	17.43	4.63
9000	9000	3.17E-7	33879	19.19	5.34
9500	9500	3.35E-7	36287	20.77	6.24
10000	10000	3.52E-7	38491	23.26	6.51

Test Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE> 30 tests were executed to get the average The tested edge query is:

```
WITH

buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom FROM ways),

bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box from buffer)

SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom && (SELECT box from
```

The tested queries

```
SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)
```

The results of this tests are presented as:

SIZE is the size of the bounding box.

EDGES is the total number of records in the query.

DENSITY is the density of the data $\frac{E}{V \times (V-1)}$.

OUT ROWS is the number of records returned by the queries.

 $\textbf{Floyd-Warshall} \ \ \text{is the average execution time in seconds of } pgr_floydWarshall.$

Johnson is the average execution time in seconds of pgr_johnson.

SIZE	EDGES	DENSITY	OUT ROWS	Floyd-Warshall	Johnson
0.001	44	0.0608	1197	0.10	0.10
0.002	99	0.0251	4330	0.10	0.10
0.003	223	0.0122	18849	0.12	0.12
0.004	358	0.0085	71834	0.16	0.16
0.005	470	0.0070	116290	0.22	0.19
0.006	639	0.0055	207030	0.37	0.27
0.007	843	0.0043	346930	0.64	0.38
0.008	996	0.0037	469936	0.90	0.49
0.009	1146	0.0032	613135	1.26	0.62
0.010	1360	0.0027	849304	1.87	0.82
0.011	1573	0.0024	1147101	2.65	1.04
0.012	1789	0.0021	1483629	3.72	1.35
0.013	1975	0.0019	1846897	4.86	1.68
0.014	2281	0.0017	2438298	7.08	2.28
0.015	2588	0.0015	3156007	10.28	2.80
0.016	2958	0.0013	4090618	14.67	3.76
0.017	3247	0.0012	4868919	18.12	4.48

See Also

- pgr_johnson
- pgr_floydWarshall
- Boost floyd-Warshall⁵ algorithm

Indices and tables

- genindex
- · search

5.1.2 pgr_bdAstar

Name

 $pgr_bdAstar$ — Returns the shortest path using A^* algorithm.

Fig. 5.3: Boost Graph Inside

Availability:

- pgr_bdAstar(one to one) 2.0.0, Signature change on 2.5.0
- pgr_bdAstar(other signatures) 2.5.0

⁵http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

Signature Summary

```
pgr_bdAstar(edges_sql, start_vid, end_vid)
pgr_bdAstar(edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq , node, edge, cost, agg_cost)
OR EMPTY SET
```

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

```
pgr_bdAstar(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET
```

Using these signatures, will load once the graph and perform several one to one pgr_bdAstar

- The result is the union of the results of the one to one *pgr_bdAStar*.
- The extra start vid and/or end vid in the result is used to distinguish to which path it belongs.

Avaliability

- pgr_bdAstar(one to one) 2.0, signature change on 2.5
- pgr_bdAstar(other signatures) 2.5

Signatures

Minimal Signature

```
pgr_bdAstar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

This usage finds the shortest path from the start_vid to the end_vid

- · on a directed graph
- with **heuristic**'s value 5
- with factor's value 1
- with epsilon's value 1

Example Using the defaults

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
  FROM edge_table',
  2, 3
);
seq | path_seq | node | edge | cost | agg_cost
_____
 1 |
         1 | 2 | 4 | 1 |
         2 | 5 | 8 | 1 |
  2 |
                                  1
                    9 | 1 |
         3 | 6 |
  3 |
                                  2
         4 | 9 | 16 | 1 |
                                 3
 4 |
  5 |
         5 | 4 | 3 |
                         1 |
                                  4
         6 |
              3 | -1 |
                         0 |
 6 I
(6 rows)
```

pgr bdAstar One to One

```
pgr_bdAstar(edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

This usage finds the shortest path from the start_vid to the end_vid allowing the user to choose

- heuristic.
- and/or factor
- and/or epsilon.

Note: In the One to One signature, because of the deprecated signature existence, it is compulsory to indicate if the graph is **directed** or **undirected**.

Example Directed using Heuristic 2

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   2, 3,
   true, heuristic := 2
);
seq | path_seq | node | edge | cost | agg_cost
          1 | 2 | 4 | 1 |
  2 |
          2 | 5 | 8 | 1 |
                                      1
  3 |
          3 | 6 |
                      9 | 1 |
           4 | 9 | 16 | 1 |
                                      3
  4 |
  5 |
           5 | 4 | 3 | 1 |
                                      4
          6 |
                3 | -1 | 0 |
  6 |
(6 rows)
```

pgr_bdAstar One to many

```
pgr_bdAstar(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing the user to choose

• if the graph is directed or undirected

- and/or heuristic.
- and/or factor
- · and/or epsilon.

Example Directed using Heuristic 3 and a factor of 3.5

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   2, ARRAY[3, 11],
   heuristic := 3, factor := 3.5
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
  1 | 3 | 2 | 4 | 1 | 0
          2 |
                   3 | 5 | 8 |
  2 |
                                   1 |
  3 |
          3 |
                   3 | 6 | 9 |
                                   1 |
  4 |
          4 |
                   3 | 9 | 16 | 1 |
                                              3
          5 |
  5 |
                   3 | 4 | 3 | 1 |
                   3 | 3 | -1 | 0 |
  6 |
          6 |
                 3 | 3 | -1 | 0 | 11 | 2 | 4 | 1 |
                                              0
  7 |
          1 |
          2 | 11 | 5 | 8 |
3 | 11 | 6 | 11 |
4 | 11 | 11 | -1 |
  8 |
                                              1
                              8 | 1 |
  9 |
                        6 | 11 | 1 |
                                              2
 10 I
                                    0 1
(10 rows)
```

pgr_bdAstar Many to One

```
pgr_bdAstar(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from each start vid in start vids to the end vid allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

Example Undirected graph with Heuristic 4

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], 3,
   false, heuristic := 4
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
                          2 | 2 |
           1 |
                                       1 |
  1 |
                     2 |
           2 |
                      2 |
                             3 | -1 |
                                         0 |
  2 |
                             7 |
            1 |
                      7 |
                                   6 |
                                         1 |
  3 |
                             8 |
            2 |
                      7 |
                                   7 |
  4 |
                                         1 |
                      7 |
                            5 |
                                  4 |
                                        1 |
           3 |
  5 |
                      7 |
                           2 |
                                  2 |
                                        1 |
           4 |
                                                   3
  6 |
                           3 |
                      7 |
                                        0 |
           5 |
  7 |
                                 -1 |
                                                   4
(7 rows)
```

pgr bdAstar Many to Many

```
pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_vids allowing the use

- if the graph is directed or undirected
- and/or heuristic.
- · and/or factor
- and/or epsilon.

Example Directed graph with a factor of 0.5

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], ARRAY[3, 11],
   factor := 0.5
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
                   2 | 3 | 2 | 4 | 1 |
2 | 3 | 5 | 8 | 1 |
2 | 3 | 6 | 9 | 1 |
2 | 3 | 9 | 16 | 1 |
           1 | 2 |
2 | 2 |
3 | 2 |
  1 |
2 |
                                   4 |
                                        3 |
                                              1 |
                                             0 |
                                   3 |
                                        -1 |
                                  2 |
                                        4 |
                                                       0
                                              1 |
                                 5 |
                                        8 |
                                              1 |
                                                        1
                           11 | 6 |
                                       11 |
                                             1 I
                           11 | 11 |
                                        -1 I
                                             0 1
                            3 I
                                  7 I
                                        6 |
                                              1 |
                            3 | 8 |
                                        7 | 1 |
                            3 | 5 |
                                        8 | 1 |
                            3 | 6 |
                                        9 | 1 |
                            3 | 9 | 16 | 1 |
                            3 | 4 | 3 | 1 |
                                                       5
                             3 | 3 |
                                        -1 | 0 |
                                                       6
                                   7 | 6 | 1 |
                                                       0
                           11 |
                                        7 | 1 |
                            11 | 8 |
                                                        1
                                  5 |
                            11 |
                                        10 | 1 |
                                                        2
                            11 |
                                  10 | 12 |
                                               1 |
                                                        3
                            11 | 11 | -1 |
(22 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
start_vids	ARRAY[ANY-INTEGER]	Starting vertices identifierers.
end_vid	ANY-INTEGER	Ending vertex identifier.
end_vids	ARRAY[ANY-INTEGER]	Ending vertices identifiers.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) 1: h(v) abs(max(dx, dy)) 2: h(v) abs(min(dx, dy)) 3: h(v) = dx * dx + dy * dy 4: h(v) = sqrt(dx * dx + dy * dy) 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see $Factor$
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for
		the same start_vid to end_vid combination.
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vio	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

See Also

• Bidirectional A* - Family of functions

- Sample Data network.
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- · search

5.1.3 pgr bdDijkstra

pgr bdDijkstra — Returns the shortest path(s) using Bidirectional Dijkstra algorithm.

Fig. 5.4: Boost Graph Inside

Availability:

- pgr_bdDijkstra(one to one) 2.0.0, Signature changed 2.4.0
- pgr_bdDijkstra(other signatures) 2.5.0

Signature Summary

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid)
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
```

```
RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost) OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a **directed** graph from one start_vid to one end_vid:

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
  --+----+-----
  1 |
         1 | 2 | 4 | 1 |
  2 |
         2 | 5 | 8 | 1 |
                                  1
                    9 | 1 |
  3 |
         3 | 6 |
          4 | 9 | 16 |
  4 |
                         1 |
                                   3
  5 |
         5 | 4 | 3 |
                          1 |
                                   4
         6 | 3 | -1 |
                          0 |
  6 |
(6 rows)
```

pgr_bdDijkstra One to One

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3,
   false
);
seq | path_seq | node | edge | cost | agg_cost
  1 |
          1 | 2 | 2 | 1 |
                                   0
  2 |
            2 |
                  3 |
                      -1 |
                             0 |
                                         1
(2 rows)
```

pgr_bdDijkstra One to many

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_dijkstra* where the starting vertex is fixed, and stop when all end_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr_dijkstra.
- The extra end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3, 11]);
seq | path_seq | end_vid | node | edge | cost | agg_cost
  1 | 3 | 2 | 4 | 1 |
                  3 | 5 | 8 |
         2 |
  2 |
                                 1 |
                                           1
          3 |
                  3 | 6 |
                             9 | 1 |
  3 |
                  3 |
  4 |
                        9 | 16 |
          4 |
                                  1 |
  5 |
          5 |
                  3 |
                       4 |
                             3 | 1 |
  6 |
          6 |
                  3 |
                        3 |
                            -1 I
                                  0 1
  7 |
          1 |
                11 |
                       2 |
                             4 |
                                   1 |
          2 | 11 |
  8 |
                       5 |
                             8 |
                                   1 |
                                           1
  9 |
          3 |
                 11 |
                       6 |
                             11 |
                                   1 |
 10 |
          4 |
                 11 |
                      11 |
                             -1 I
                                   0 |
(10 rows)
```

pgr_bdDijkstra Many to One

```
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start vid in start vids to one end vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one $pgr_dijkstra$ where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  ARRAY[2, 7], 3);
seq | path_seq | start_vid | node | edge | cost | agg_cost
 ___+__
                         2 | 4 |
                                            0
     1 |
  1 1
                  2 |
                                   1 |
  2 |
         2 |
                  2 | 5 | 8 | 1 |
                                            1
         3 |
                        6 |
                             9 |
  3 |
                  2 |
                                   1 |
                                            2
          4 |
                                   1 |
  4 |
                   2 |
                        9 | 16 |
                                            3
  5 |
          5 |
                   2 |
                        4 | 3 |
                                   1 |
                                            4
          6 |
  6 |
                   2 |
                         3 |
                             -1 |
                                   0 |
                                            5
  7 |
                         7 |
          1 |
                   7 |
                              6 |
                                   1 |
                                            0
  8 |
          2 |
                   7 |
                         8 |
                              7 |
                                            1
                                   1 |
```

9	3	7	5	8	1	2	
10	4	7	6	9	1	3	
11	5	7	9	16	1	4	
12	6	7	4	3	1	5	
13	7	7	3	-1	0	6	
(13 rows)							

pgr_bdDijkstra Many to Many

```
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr_dijkstra* for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',							
		ARRAY[3, 11]					
seq		start_vid			_		
1	-				4		
2			3			'	1
3		2		1 6			
4	4	2					
5	5	2					
6	6	2] 3			_
7	1	2					
8	2	2	11	•			1
9	3	2	11		11		
10	4	2	11				3
11		7					0
12	2	7	3		7	1	1
13	3	7	3			1	2
14	4	7	3			1	3
15		7	3				
16	6	7	3			1	5
17	7	7	3	•			6
18		7	11			'	0
19	2	7	11	8	7	1	1
20		7	11	1 5	10		2
21		7	11	10	12	1	3
22		7	11	11	-1	0	4
(22 rd	ows)						

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

 $edges_sql$ an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Туре	Default	Description
sql	TEXT		SQL query as described above.
start_vid	BIGINT		Identifier of the starting vertex of the path.
start_vids	ARRAY[BIGINT]		Array of identifiers of starting vertices.
end_vid	BIGINT		Identifier of the ending vertex of the path.
end_vids	ARRAY[BIGINT]		Array of identifiers of ending vertices.
directed	BOOLEAN	true	 When true Graph is considered Directed When false the graph is considered as Undirected.

Description of the return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description	
umn			
seq	INT	Sequential value starting from 1.	
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for	
		the same start_vid to end_vid combination.	
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.	
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.	
end_vid	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.	
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.	
edge	edge BIGINTIdentifier of the edge used to go from node to the next node in the path sequence1 for		
		the last node of the path.	
cost	t FLOAT Cost to traverse from node using edge to the next node in the path sequence.		
agg_cos	t FLOAT	Aggregate cost from start_v to node.	

See Also

- The queries use the Sample Data network.
- Bidirectional Dijkstra Family of functions
- $\bullet\ http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP\%20shortest\%20path\%20algorithms.pdf$
- https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

- genindex
- · search

5.1.4 Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.
- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr_dijkstra

pgr_dijkstra — Returns the shortest path(s) using Dijkstra algorithm. In particular, the Dijkstra algorithm implemented by Boost.Graph.

Availability

- pgr_dijkstra(one to one) 2.0.0, signature change 2.1.0
- pgr_dijkstra(other signatures) 2.1.0

Fig. 5.5: Boost Graph Inside

Synopsis

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid). This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost the non included values (v, v) is θ
 - When the starting vertex and ending vertex are the different and there is no path:
 - * The agg_cost the non included values (u, v) is ∞
- For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: $O(|start_vids| * (V \log V + E))$

Signature Summary

```
pgr_dijkstra(edges_sql, start_vid, end_vid)
pgr_dijkstra(edges_sql, start_vid, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vid, end_vids, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vids, directed:=true)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a **directed** graph from one start_vid to one end_vid.

Example

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
----+-----+-----+-----+-----+-----
  1 |
         1 | 2 | 4 | 1 |
          2 | 5 | 8 | 1 |
  2 |
                                    1
          3 | 6 |
                     9 | 1 |
                                    2.
  3 |
  4 |
          4 | 9 | 16 | 1 |
                                    3
  5 |
          5 | 4 | 3 | 1 |
                                    4
          6 | 3 | -1 | 0 |
  6 |
(6 rows)
```

pgr_dijkstra One to One

This signature finds the shortest path from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_dijkstra One to many

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_dijkstra* where the starting vertex is fixed, and stop when all end_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr_dijkstra.
- The extra end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost FROM edge_table',
    2, ARRAY[3,5],
    FALSE
```

);									
seq	path_seq	end_vid	nod	e	edge		cost		agg_cost
+		+	+	+		-+-		+-	
1	1	3	1	2	4		1		0
2	2	3	1	5	8		1		1
3	3	3	1	6	5		1		2
4	4	3	1	3	-1		0		3
5	1	5	1	2	4		1		0
6	2	5	1	5	-1		0		1
(6 row	rs)								

pgr_dijkstra Many to One

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one $pgr_dijkstra$ where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
          1 |
                    2 |
                          2 | 4 |
                                      1 |
  1 1
                                                0
  2 |
          2 |
                    2 |
                          5 |
                               -1 |
                                      0 |
                                                1
  3 |
          1 |
                   11 | 11 | 13 |
                                      1 |
          2 |
  4 |
                   11 | 12 | 15 |
                                      1 |
                   11 |
  5 |
          3 |
                          9 | 9 |
                                      1 |
  6 |
          4 |
                   11 |
                          6 |
                               8 |
                                      1 |
                                                3
           5 |
  7 |
                    11 |
                          5 | -1 |
                                       0 |
(7 rows)
```

pgr_dijkstra Many to Many

```
pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr_dijkstra for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], ARRAY[3,5],
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

    1 |
    2 |
    3 |
    2 |
    2 |
    1 |

    2 |
    2 |
    3 |
    3 |
    -1 |
    0 |

  2 |
                                                                    1
           3 |
                                   5 | 2 |
                                                 4 |
                                                         1 |
                                   5 | 5 | 3 | 11 |
  4 |
                                                 -1 |
                                                         0 |
                                                                    1
                                                11 |
  5 I
                                                         1 |
                                   3 |
  6 |
                                          6 |
                                                 5 |
                                                         1 |
                                   3 | 3 .
5 | 11 |
  7 |
                                                -1 |
                                                         0 |
                                  5 |
                                                11 |
  8 |
                                                         1 |
                                                                    0
                                  5 |
                                          6 |
                                                 8 |
  9 |
                                                         1 |
                                                                    1
                                  5 | 5 |
                                               -1 |
 10 |
                                                         0 |
(10 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Column	Туре	Default
sql	TEXT	
start_vid	BIGINT	
start_vids	ARRAY[BIGINT]	
end_vid	BIGINT	
end_vids	ARRAY[BIGINT]	
directed	BOOLEAN	true

Description of the parameters of the signatures

Description of the return values for a path Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description			
umn					
seq	INT	Sequential value starting from 1.			
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for			
		the same start_vid to end_vid combination.			
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.			
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.			
end_vio	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.			
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.			
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for			
		the last node of the path.			
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.			
agg_cos	t FLOAT	Aggregate cost from start_v to node.			

Additional Examples

The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending vertices 3 and 5 in a directed and undirected graph with and with out reverse_cost.

Examples for queries marked as directed with cost and reverse_cost columns The examples in this section use the following *Network for queries marked as directed and cost and reverse_cost columns are used*

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
----+----
  1 |
            1 |
                  2 |
                        4 |
                              1 |
                                        0
  2 |
            2 |
                  5 I
                        8 |
                              1 |
                                        1
  3 |
            3 |
                  6 |
                        9 |
                              1 |
                                        2
  4 |
            4 |
                  9 |
                      16 |
                               1 |
                                        3
  5 |
                  4 |
                        3 |
```

```
6 | 3 | -1 | 0 | 5
 6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seg | path_seg | node | edge | cost | agg_cost
----+-----
 1 | 2 | 4 | 1 | 0
          2 | 5 | -1 | 0 |
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  2, ARRAY[3,5]
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
   -+----+----+-----
              3 | 2 | 4 |
3 | 5 | 8 |
3 | 6 | 9 |
                                 1 |
1 |
1 |
          1 |
          2 |
  2 |
         3 |
                             9 |
                  3 |
  3 |
                                  1 |
          4 |
                  3 |
                       9 | 16 |
  4 |
          5 |
                  3 |
                       4 |
                                  1 |
                             3 |
  5 I
  6 |
          6 I
                  3 | 3 | -1 |
                                  0 |
                  5 | 2 | 4 |
                                 1 |
 7 |
          1 |
          2 |
                 5 | 5 | -1 |
                                  0 |
 8 |
(8 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  11, 3
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
  1 | 11 | 13 | 1 | 0
          2 | 12 | 15 | 1 |
3 | 9 | 16 | 1 |
4 | 4 | 3 | 1 |
5 | 3 | -1 | 0 |
  2 |
                                    1
  3 |
  4 |
  5 I
(5 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   11, 5
) ;
seq | path_seq | node | edge | cost | agg_cost
 1 | 11 | 13 | 1 | 0
          2 | 12 | 15 | 1 |
 2 |
          3 | 9 | 9 | 1 |
 4 |
          4 | 6 | 8 | 1 |
 5 |
          5 | 5 | -1 | 0 |
(5 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  ARRAY[2,11], 5
) ;
seq | path_seq | start_vid | node | edge | cost | agg_cost
2 |
                   2 | 2 | 4 | 1 |
2 | 5 | -1 | 0 |
          2 |
  2 |
                                              1
```

```
11 | 11 | 13 | 1 |
          1 |
                                   1 |
          2 |
                  11 |
                        12 |
                             15 |
                                             1
  4 |
                                   1 |
                  11 |
                              9 |
  5 |
          3 |
                        9 |
                                             2
                              8 |
          4 |
                  11 |
                                    1 |
  6 1
                        6 |
                                             3
                  11 | 5 | -1 | 0 |
  7 |
          5 I
(7 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  ARRAY[2, 11], ARRAY[3,5]
      seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
____+
  1 |

    1 |
    2 |
    3 |
    2 |
    4 |
    1 |

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |

  2 |
                                                      1
  3 |
                            3 |
                                 6 |
                                       9 |
                                             1 |
                            3 |
  4 |
                                 9 | 16 |
                                             1 |
                            3 |
                                       3 |
  5 |
                                 4 |
                                             1 |
                            3 |
  6 |
                                 3 |
                                      -1 |
                                             0 |
                            5 | 4 . 5 |
  7 |
                                       4 |
                                             1 |
                           5 ,
5 | 5 ,
11 |
                                      -1 |
  8 |
                                             0 |
                                                      1
  9 |
                                      13 |
                                             1 |
                                                     0
 10 |
                                12 |
                                      15 |
                                            1 |
                           3 |
                                                     1
 11 |
                           3 |
                                 9 |
                                      16 |
                                            1 |
                                      3 |
 12 |
                           3 | 4 |
                                            1 1
 13 |
                           3 | 3 | -1 |
                                           0 |
                           5 | 11 | 13 | 1 |
 14 |
 15 I
                           5 | 12 | 15 | 1 |
                                                     1
                           5 | 9 | 9 | 1 |
 16 |
 17 |
18 |
                           5 | 6 |
                                      8 | 1 |
         5 I
                  11 |
                           5 | 5 | -1 | 0 |
(18 rows)
```

Examples for queries marked as undirected with cost and reverse_cost columns The examples in this section use the following *Network for queries marked as undirected and cost and reverse_cost columns are used*

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
 1 | 2 | 2 | 1 | 0
           2 | 3 | -1 | 0 |
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
_____
          1 | 2 | 4 | 1 | 0
2 | 5 | -1 | 0 | 1
 1 |
  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
```

```
11, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
1 | 11 | 11 | 0
             2 | 6 | 5 | 1 |
  2 |
             3 | 3 | -1 | 0 |
  3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    11, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
       1 | 11 | 11 | 1 |
2 | 6 | 8 | 1 |
3 | 5 | -1 | 0 |
  1 |
   2 |
  3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    ARRAY[2,11], 5,
);
seq | path_seq | start_vid | node | edge | cost | agg_cost

      1 |
      1 |
      2 |
      2 |
      4 |
      1 |
      0

      2 |
      2 |
      2 |
      5 |
      -1 |
      0 |
      1

      3 |
      1 |
      11 |
      11 |
      12 |
      1 |
      0

      4 |
      2 |
      11 |
      10 |
      10 |
      1 |
      1

      5 |
      3 |
      11 |
      5 |
      -1 |
      0 |
      2

(5 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, ARRAY[3,5],
    FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
_____
 1 | 3 | 2 | 2 | 1 | 0
                        3 | 3 | -1 |
             2 |
  2 |
                                            0 |
             1 |
                       5 | 2 | 4 | 1 |
  3 I
                     5 | 5 | -1 | 0 |
  4 |
             2 |
(4 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 11], ARRAY[3,5],
   FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
             1 | 2 | 1 |
                   2 |
2 |
2 |
2 |
                                3 | 2 | 2 | 1 |
3 | 3 | -1 | 0 |
5 | 2 | 4 | 1 |
5 | 5 | -1 | 0 |
  1 |
            1 |
   2 |
                                                   -1 , 4 | 1 , 1 , -1 | 0 | 1 | 1 | 1 | 5 | 1 | 1 |
   3 |
                                                  -1 |
            2 | 2 |
1 | 11 |
2 | 11 |
3 | 11 |
                                    5 | 5 |
3 | 11 |
3 | 6 |
   4 |
                                                                        1
                                                  11 |
                                                                       0
   5 |
                                            6 |
                                                                       1
   6 |
                                     3 | 3 | -1 | 0 |
   7 |
```

```
8 | 1 | 11 | 5 | 11 | 11 | 0

9 | 2 | 11 | 5 | 6 | 8 | 1 | 1

10 | 3 | 11 | 5 | 5 | -1 | 0 | 2

(10 rows)
```

Examples for queries marked as directed with cost column The examples in this section use the following *Network for queries marked as directed and only cost column is used*

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
(0 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
 1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1
(2 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edge_table',
  11, 3
);
seq | path_seq | node | edge | cost | agg_cost
----+----+-----
(0 rows)
SELECT * FROM pgr dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 5
seq | path_seq | node | edge | cost | agg_cost
____+
(0 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
  ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
_____
 1 | 2 | 2 | 4 | 1 | 0
          2 |
                   2 | 5 | -1 | 0 |
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, ARRAY[3,5]
) ;
seq | path_seq | end_vid | node | edge | cost | agg_cost
1 | 5 | 2 | 4 | 1 | 0
2 | 5 | 5 | -1 | 0 | 1
  1 |
  2 |
(2 rows)
```

Examples for queries marked as undirected with cost column The examples in this section use the following *Network for queries marked as undirected and only cost column is used*

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
 1 | 2 | 4 | 1 | 0
           2 | 5 | 8 | 1 |
                                         1
           3 | 6 | 5 | 1 |
 3 |
           4 | 3 | -1 | 0 |
  4 |
(4 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
----+------
           1 | 2 | 4 | 1 | 0
2 | 5 | -1 | 0 | 1
 1 |
2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
_____
 1 | 1 | 11 | 11 | 1 |
 2 | 2 | 6 | 5 | 1 |
3 | 3 | -1 | 0 |
                                      1 2
(3 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    11 |
    11 |
    1 |
    0

    2 |
    2 |
    6 |
    8 |
    1 |
    1

    3 |
    3 |
    5 |
    -1 |
    0 |
    2

 3 |
(3 rows)
```

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2,11], 5,
   FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
  1
                                                0
  3 |
4 |
5 |
                                                1
          3 |
                   11 | 5 | -1 |
                                      0 |
(5 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, ARRAY[3,5],
   FALSE
) ;
seq | path_seq | end_vid | node | edge | cost | agg_cost

    1 |
    1 |
    3 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |
    1

          3 |
  4 |
  5 |
6 |
          2 | 5 | 5 | -1 | 0 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2, 11], ARRAY[3,5],
   FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
4 | 1 |
8 | 1 |
5 | 1 |
                         3 | 2 | 3 | 5 |
                                                         1
                             3 |
                                  6 |
                                         5 |
                                                        2
                                   3 |
                                              0 |
                             3 |
                                         -1 |
                             5 | 2 |
                                         4 | 1 |
                                         -1 |
                                              0 |
                                                        1
                             5 | 5 |
                             3 | 11 | 11 | 1 |
                             3 | 6 |
                                         5 | 1 |
                             3 | 3 | -1 | 0 |
                             5 | 11 | 11 | 1 |
                            5 | 6 | 8 | 1 |
                             5 | 5 | -1 | 0 |
(12 rows)
```

Equvalences between signatures

Examples For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following:

• Network for queries marked as directed and cost and reverse_cost columns are used

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 3,
    TRUE
```

```
);
seq | path_seq | node | edge | cost | agg_cost
 1 | 2 | 4 | 1 | 0
          2 | 5 | 8 | 1 |
  3 |
          3 | 6 | 9 | 1 |
          4 | 9 | 16 | 1 |
  4 |
          5 | 4 | 3 | 1 |
  5 |
          6 | 3 | -1 | 0 |
 6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
                         1 |
1 |
1 |
         1 | 2 | 4 |
2 | 5 | 8 |
3 | 6 | 9 |
  1 |
                                    1
  2 |
  3 |
                         1 |
          4 | 9 |
                    16 |
  4 |
          5 | 4 |
                     3 | 1 |
 5 I
          6 | 3 | -1 | 0 |
 6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3],
  TRUE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
1 | 3 | 2 | 4 |
                                 1 |
                 3 | 5 | 8 | 1 | 3 | 6 | 9 | 1 |
  2 |
          2 |
          3 |
          3 | 3 | 6 | 9 |
4 | 3 | 9 | 16 |
5 | 3 | 4 | 3 |
6 | 3 | 3 | -1 |
  3 |
  4 |
                                   1 |
                                    1 |
  5 I
                                 0 |
  6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3]
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
 1 | 3 | 2 | 4 | 1 | 0
         2 |
                  3 | 5 | 8 | 1 |
  3 |
          3 |
                  3 | 6 | 9 | 1 |
          4 | 3 | 9 | 16 | 1 |
5 | 3 | 4 | 3 | 1 |
6 | 3 | 3 | -1 | 0 |
  4 |
  5 |
  6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2], ARRAY[3],
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
2 | 3 | 2 | 4 | 1 |
2 | 3 | 5 | 8 | 1 |
         1 |
 1 |
        2 1
  2 |
```

```
3 |
                                                        9 |
                                                                  1 |
                3 |
                              2 |
                                                  6 |
                            2 |
                                        3 |
                                               9 |
                                                               1 |
   4 |
               4 |
                                                       16 |
                                                                              3
                                                               1 |
               5 I
                            2 |
   5 I
                                        3 |
                                               4 |
                                                        3 |
                                                                             4
                                                               0 |
  6 I
               6 I
                            2 |
                                        3 | 3 | -1 |
                                                                             5
(6 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    ARRAY[2], ARRAY[3]
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
_____

      1 |
      1 |
      2 |
      3 |
      2 |
      4 |
      1 |

      2 |
      2 |
      3 |
      5 |
      8 |
      1 |

                                                                              1
   3 |
              3 |
                            2 |
                                        3 | 6 |
                                                        9 | 1 |

    4 |
    2 |
    3 |
    9 |
    16 |
    1 |

    5 |
    2 |
    3 |
    4 |
    3 |
    1 |

    6 |
    2 |
    3 |
    3 |
    -1 |
    0 |

  4 |
  5 |
  6 |
(6 rows)
```

Examples For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following:

• Network for queries marked as undirected and cost and reverse_cost columns are used

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3,
   FALSE
) ;
seq | path_seq | node | edge | cost | agg_cost
----+------
      1 | 2 | 2 | 1 | 0
2 | 3 | -1 | 0 | 1
  1 |
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3],
  FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
 1 | 3 | 2 | 2 | 1 | 0
 2 |
          2 |
                   3 | 3 | -1 | 0 |
(2 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2], 3,
  FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
1 | 2 | 2 | 2 | 1 | 0
2 | 2 | 3 | -1 | 0 | 1
  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2], ARRAY[3],
   FALSE
```

See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
- The queries use the Sample Data network.

Indices and tables

- genindex
- · search

pgr dijkstraCost

Synopsis

pgr_dijkstraCost

Using Dijkstra algorithm implemented by Boost.Graph, and extract only the aggregate cost of the shortest path(s) found, for the combination of vertices given.

Fig. 5.6: Boost Graph Inside

Availability

• pgr_dijkstraCost(all signatures) 2.2.0

The pgr_dijkstraCost algorithm, is a good choice to calculate the sum of the costs of the shortest path for a subset of pairs of nodes of the graph. We make use of the Boost's implementation of dijkstra which runs in $O(V \log V + E)$ time.

Characteristics

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).

- When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost int the non included values (v, v) is θ
- When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- For undirected graphs, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start_vids* or *end_vids* is ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: $O(|start_vids| * (V \log V + E))$

Signature Summary

```
pgr_dijkstraCost(edges_sql, start_vid, end_vid);
pgr_dijkstraCost(edges_sql, start_vid, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vid, end_vids, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vids, directed);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Signatures

Minimal signature The minimal signature is for a **directed** graph from one start_vid to one end_vid:

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example

pgr_dijkstraCost One to One

This signature performs a Dijkstra from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

Example

pgr_dijkstraCost One to Many

This signature performs a Dijkstra from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_dijkstraCost Many to One

```
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, BIGINT end_vid,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

This signature performs a Dijkstra from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

pgr_dijkstraCost Many to Many

```
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, array[ANY_INTEGER] emd_vids,
BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

This signature performs a Dijkstra from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Type	Default
TEXT	
BIGINT	
ARRAY[BIGINT]	
BIGINT	
ARRAY[BIGINT]	
BOOLEAN	true
	TEXT BIGINT ARRAY[BIGINT] BIGINT ARRAY[BIGINT]

Description of the parameters of the signatures

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Additional Examples

Example 1 Demonstration of repeated values are ignored, and result is sorted.

```
SELECT * FROM pgr_dijkstraCost(
       'select id, source, target, cost, reverse_cost from edge_table',
          ARRAY[5, 3, 4, 3, 3, 4], ARRAY[3, 5, 3, 4]);
start_vid | end_vid | agg_cost
----+----
            4 |
5 |
3 |
5 |
3 |
        3 |
        3 |
                           1
        4 |
                           3
        4 |
        5 |
                            4
                4 |
                            3
        5 |
(6 rows)
```

Example 2 Making start_vids the same as end_vids

```
SELECT * FROM pgr_dijkstraCost(
       'select id, source, target, cost, reverse_cost from edge_table',
         ARRAY[5, 3, 4], ARRAY[5, 3, 4]);
start_vid | end_vid | agg_cost
   ----+----
       3 | 4 |
3 | 5 |
                    3
                        2
               3 |
       4 |
                         1
               5 |
       4 |
                         3
               3 |
       5 |
                         4
               4 |
       5 |
                         3
```

(6 rows)

See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
- Sample Data network.

Indices and tables

- genindex
- · search

pgr_dijkstraCostMatrix - proposed

Name

pgr_dijkstraCostMatrix - Calculates the a cost matrix using pgr_dijktras.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 5.7: Boost Graph Inside

Availability: 2.3.0

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_dijkstraCostMatrix(edges_sql, start_vids)
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

```
pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_dijkstraCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
-----
       1 |
              2 |
       1 | 2 | 3 |
              4 |
       1 |
       2 |
              1 |
       2 |
              3 |
       2 |
              4 |
              1 |
       3 |
                        2
       3 |
              2 |
                        1
                        3
       3 |
              4 |
                        3
              1 |
       4 |
               2 |
                        2
       4 |
       4 |
               3 |
(12 rows)
```

Complete Signature

```
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_dijkstraCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   false
);
start_vid | end_vid | agg_cost
        1 | 2 |
1 | 3 |
                          2
        1 |
                4 |
        2 |
                1 |
                          1
               3 |
        2 |
                          1
        2 |
                4 |
                           2
        3 |
                1 |
                           2
        3 |
                2 |
                           1
        3 |
                4 |
                           1
        4 |
                1 |
                           3
        4 |
                 2 |
                           2
                 3 |
        4 |
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Pa-	Type	Description
rame-		
ter		
edges_sq	I TEXT	Edges SQL query as described above.
start_vid	${f s}$ ARRAY [ANY $-$ INT	EAFRY of identifiers of the vertices.
di-	BOOLEAN	(optional). When false the graph is conside
rected		true which considers the graph as Directed.
	rame- ter edges_sq start_vid di-	rame- ter edges_sql TEXT start_vids ARRAY [ANY-INT di- BOOLEAN

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
        false
   )
   $$,
   randomize := false
seq | node | cost | agg_cost
         1 |
                1 |
  1 |
         2 |
                1 |
  2 |
                            1
         3 |
                1 |
                            2
  3 |
         4 |
                 3 |
                            3
  4 |
  5 |
         1 |
                 0 |
(5 rows)
```

See Also

- Dijkstra Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_drivingDistance

Name

pgr_drivingDistance - Returns the driving distance from a start node.

Fig. 5.8: Boost Graph Inside

Availability

- pgr_drivingDistance(single vertex) 2.0.0, signature change 2.1.0
- pgr_drivingDistance(multiple vertices) 2.1.0

Synopsis

Using the Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value distance. The edges extracted will conform to the corresponding spanning tree.

Signature Summary

```
pgr_drivingDistance(edges_sql, start_vid, distance)
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, [start_vid,] node, edge, cost, agg_cost)
```

Signatures

Minimal Use

```
pgr_drivingDistance(edges_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Driving Distance From A Single Starting Vertex

```
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Driving Distance From Multiple Starting Vertices

```
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, start_vid, node, edge, cost, agg_cost)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

	Col-	Туре	Description
	umn		
	edges_	sql EXT	SQL query as described above.
	start_v	v id BIGINT	Identifier of the starting vertex.
	start_v	r ids rray [any-	I ATTAGEOR Identifiers of the starting vertices.
	dis-	FLOAT	Upper limit for the inclusion of the node in the result
	tance		
	di-	BOOLEAN	(optional). When false the graph is considered as I
	rected		which considers the graph as Directed.
ĺ	equico	st Boolean	(optional). When true the node will only appear in
			Default is false which resembles several calls using
			signatures. Tie brakes are arbitrary.

Description of the parameters of the signatures

Description of the return values Returns set of (seq [, start_v], node, edge, cost, agg_cost)

Column	Туре	Description	
seq	INTEGER	Sequential value starting from 1.	
start_vid	INTEGER	Identifier of the starting vertex.	
node	BIGINT	Identifier of the node in the path within the limits from start_vid.	
edge	BIGINT	Identifier of the edge used to arrive to node. 0 when the node is the start_vid.	
cost	FLOAT	Cost to traverse edge.	
agg_cost	FLOAT	Aggregate cost from start_vid to node.	

Additional Examples

Examples for queries marked as directed with cost and reverse_cost columns The examples in this section use the following *Network for queries marked as directed and cost and reverse_cost columns are used*

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      2, 3
    );
seq | node | edge | cost | agg_cost
----+-----
  1 | 2 | -1 | 0 |
  2 | 1 | 1 | 1 |
                          1
  3 | 5 | 4 | 1 |
  4 | 6 | 8 | 1 |
  5 |
      8 |
            7 | 1 |
  6 | 10 | 10 | 1 |
                          3
  7 | 7 | 6 | 1 |
                          3
  8 |
      9 |
            9 |
                  1 |
                          3
  9 | 11 | 12 |
                  1 |
 10 | 13 | 14 |
                  1 |
(10 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      13, 3
    );
seq | node | edge | cost | agg_cost
     13 |
  1 |
           -1 | 0 |
           14 | 1 |
     10 |
  2 |
                          1
  3 |
      5 |
           10 | 1 |
                           2
           12 |
                 1 |
                           2
  4 |
     11 I
  5 I
      2 |
            4 |
                  1 |
                           3
  6 | 6 | 8 | 1 |
```

```
7 |
                  1 |
       8 |
           13 |
                 1 |
  8 | 12 |
                           3
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     array[2,13], 3
    );
seq | from_v | node | edge | cost | agg_cost
_____
 1 | 2 | 2 | -1 | 0 | 0
       2 | 1 | 1 | 1 |
                                 1
  2 |
        2 | 5 | 4 | 1 |
                                 1
  3 |
  4 |
        2 | 6 | 8 | 1 |
                                 2
  5 |
        2 |
              8 |
                   7 | 1 |
                        1 |
  6 |
        2 | 10 | 10 |
        2 | 7 | 6 |
2 | 9 | 9 |
  7 |
                         1 |
  8 |
                         1 |
             11 |
  9 |
        2 |
                   12 |
                         1 |
             13 |
 10 I
         2 |
                   14 |
                         1 |
                                 0
             13 |
       13 |
 11 |
                   -1 |
                         0 |
                                 1
             10 |
                        1 |
 12 |
        13 |
                   14 |
 13 |
              5 I
                  10 |
                        1 |
       13 |
       13 |
                  12 |
                        1 |
 14 |
            11 |
       13 |
 15 I
             2 |
                        1 |
                   4 |
 16 |
       13 |
             6 | 8 |
                        1 |
             8 |
                   7 | 1 |
 17 I
       13 I
 18 |
       13 | 12 | 13 | 1 |
(18 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     array[2,13], 3, equicost:=true
    ) ;
seq | from_v | node | edge | cost | agg_cost
1 | 2 | 2 | -1 | 0 |
        2 | 1 | 1 | 1 |
2 | 5 | 4 | 1 |
2 | 6 | 8 | 1 |
                                 1
  2 |
  3 |
              6 |
  4 |
                   7 |
             8 |
  5 I
        2 |
                         1 |
             7 |
                  6 |
                        1 |
        2 |
  6 |
                   9 |
                        1 |
             9 |
  7 |
        2 |
                  -1 |
                        0 |
 8 |
       13 |
            13 |
                        1 |
       13 |
            10 |
                  14 |
                                 1
 9 1
 10 I
       13 | 11 |
                  12 I
                        1 |
 11 |
       13 I
            12 | 13 |
                        1 |
(11 rows)
```

Examples for queries marked as undirected with cost and reverse_cost columns The examples in this section use the following *Network for queries marked as undirected and cost and reverse_cost columns are used*

```
1
      3 | 2 | 1 | 5 | 4 | 1 |
                             1
  4 |
      4 |
             3 | 1 |
                             2
  5 |
  6 I
      6 I
             8 | 1 |
       8 |
             7 | 1 |
  7 |
  8 | 10 | 10 | 1 |
 9 | 7 | 6 | 1 |
10 | 9 | 16 | 1 |
 11 | 11 | 12 | 1 |
 12 | 13 | 14 | 1 |
(12 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      13, 3, false
    );
seq | node | edge | cost | agg_cost
----+----
      13 | -1 | 0 | 0
10 | 14 | 1 | 1
5 | 10 | 1 | 2
  2 |
  3 |
            12 |
                   1 |
      11 |
  4 |
             4 | 1 |
       2 |
  5 I
      6 |
             8 |
                   1 |
  6 |
  7 | 8 |
             7 | 1 |
  8 | 12 | 13 | 1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, false
seq | from_v | node | edge | cost | agg_cost
_____
        2 | 2 | -1 | 0 |

2 | 1 | 1 | 1 | 1 |

2 | 3 | 2 | 1 |

2 | 5 | 4 | 1 |

2 | 4 | 3 | 1 |

2 | 6 | 8 | 1 |

2 | 8 | 7 | 1 |

2 | 10 | 10 | 1 |

2 | 7 | 6 | 1 |
  1 | 2 | 2 | -1 | 0 |
                                     1
  2 |
  3 |
  4 |
  5 |
  6 |
  7 |
       2 |
  8 |
              7 | 9 |
  9 |
                    16 |
                           1 |
        2 |
 10 I
        2 |
                           1 |
              11 | 12 |
 11 I
                          1 |
 12 I
         2 |
              13 | 14 |
        13 | 13 | -1 |
                          0 |
 13 I
        13 | 10 | 14 | 1 |
 14 |
                                     1
        13 | 5 | 10 |
 15 I
                           1 |
        13 | 11 | 12 | 1 |
 16 |
 17 |
        13 | 2 | 4 | 1 |
        13 | 6 | 8 | 1 |
 18 |
               8 | 7 | 1 |
 19 |
        13 |
                                     3
         13 | 12 | 13 |
 20 |
                           1 |
(20 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, false, equicost:=true
    );
seq | from_v | node | edge | cost | agg_cost
----+----+-----
  1 | 2 | 2 | -1 | 0 | 0
```

```
1 |
                  1 |
                       1 |
        2 |
                 2 |
 3 |
        2 |
            3 |
                      1 |
                               1
            5 |
                 4 |
                              1
 4 |
       2 |
                      1 |
                3 |
                      1 |
 5 I
       2 |
            4 |
                               2.
 6 |
       2 |
            6 | 8 |
                      1 |
            8 |
                 7 |
 7 |
       2 |
                      1 |
       2 | 7 | 6 |
 8 |
                      1 |
 9 |
       2 |
            9 | 16 | 1 |
 10 |
      13 | 13 | -1 | 0 |
 11 |
      13 | 10 | 14 | 1 |
                              1
 12 |
      13 | 11 | 12 | 1 |
                      1 |
 13 |
       13 | 12 | 13 |
(13 rows)
```

Examples for queries marked as directed with cost column The examples in this section use the following *Network for queries marked as directed and only cost column is used*

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      2, 3
    );
seq | node | edge | cost | agg_cost
----+-----
 1 | 2 | -1 | 0 | 0
  2 | 5 | 4 | 1 | 3 | 6 | 8 | 1 |
  3 | 6 |
  4 | 10 | 10 | 1 |
  5 | 9 |
            9 | 1 |
                          3
  6 | 11 | 11 | 1 |
  7 | 13 | 14 | 1 |
(7 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      13, 3
    );
seq | node | edge | cost | agg_cost
----+-----
 1 | 13 | -1 | 0 | 0
(1 row)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
     array[2,13], 3
    );
seg | from_v | node | edge | cost | agg_cost
----+----+-----+-----+-----+------
 1 | 2 | 2 | -1 | 0 | 0
        2 | 5 | 4 | 1 |
                                 1
  2 |
              6 | 8 | 1 |
  3 |
        2 |
  4 |
        2 | 10 | 10 | 1 |
  5 |
        2 | 9 | 9 | 1 |
  6 |
        2 | 11 | 11 | 1 |
  7 |
         2 | 13 | 14 | 1 |
       13 | 13 | -1 |
  8 |
                         0 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      array[2,13], 3, equicost:=true
```

seq	from_v	node	edge	cost	agg_cost
1 1	 2	+ I 2	+ -1	 I 0	+ I 0
2	2	I 5	4	1	1
3	2	6	8	1	2
4	2	10	10	1	2
5	2	9	9	1	3
6	2	11	11	1	3
7	13	13	-1	0	0
(7 row	vs)				

Examples for queries marked as undirected with cost column The examples in this section use the following *Network for queries marked as undirected and only cost column is used*

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      2, 3, false
    );
seq | node | edge | cost | agg_cost
----+-----
 1 | 2 | -1 | 0 | 0
  2 | 1 | 1 | 1 |
                         1
  3 | 5 | 4 | 1 |
  4 | 6 | 8 | 1 |
  5 | 8 |
            7 | 1 |
  6 | 10 | 10 | 1 |
  7 | 3 | 5 | 1 |
                         3
                          3
 8 |
      7 | 6 | 1 |
      9 |
            9 |
 9 |
                 1 |
                          3
 10 | 11 | 12 |
                 1 |
                 1 |
 11 | 13 | 14 |
(11 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      13, 3, false
    );
seq | node | edge | cost | agg_cost
----+----
 1 | 13 | -1 | 0 | 0
  2 | 10 | 14 | 1 |
                          1
  3 | 5 | 10 | 1 |
  4 | 11 | 12 | 1 |
  5 | 2 | 4 | 1 |
  6 | 6 | 8 | 1 |
            7 | 1 |
  7 | 8 |
                          3
  8 | 12 | 13 | 1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
     'SELECT id, source, target, cost FROM edge_table',
     array[2,13], 3, false
    );
seq | from_v | node | edge | cost | agg_cost
----+----+----+----+----+-----+------
            2 | -1 |
1 | 1 |
5 | 4 |
                       0 |
1 |
                             0
1
  1 |
      2 |
        2 |
  2 |
             5 |
                        1 |
                                 1
        2 |
  3 |
             6 | 8 |
                        1 |
                                 2
        2 |
  4 |
                   7 |
        2 |
             8 |
                        1 |
  5 I
        2 | 10 | 10 | 1 |
  6 1
```

```
2 |
                      5 |
                            1 |
                7 |
  8 |
                     6 |
                                     3
         2 |
                           1 |
               9 |
  9 |
         2 |
                     9 |
                           1 |
                                     3
               11 |
 10 I
         2 |
                     12 I
                           1 |
                                     3
 11 |
         2 |
              13 |
                     14 |
                           1 |
                                     3
         13 |
             13 |
                     -1 |
 12 |
                           0 |
         13 |
             10 |
                     14 |
 13 |
                           1 |
                                     1
         13 |
               5 |
                     10 |
                           1 |
 15 |
         13 | 11 |
                    12 |
                           1 |
                                     3
 16 |
         13 | 2 |
                   4 |
                           1 |
               6 |
                   8 |
         13 |
                                    3
 17 |
                           1 |
         13 |
               8 |
                     7 |
                                     3
                           1 |
 18 |
               12 |
                           1 |
 19 |
         13 |
                     13 |
(19 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      array[2,13], 3, false, equicost:=true
    );
seq | from_v | node | edge | cost | agg_cost
_____
                    -1 |
         2 |
  1 |
               2 |
                          0 |
             1 |
        2 |
                    1 |
                          1 |
                                    1
  2 |
         2 |
               5 |
                    4 |
                           1 |
                                    1
  3 |
                           1 |
         2 |
               6 I
                   8 |
  4 |
                     7 |
  5 I
         2 |
               8 |
                           1 |
         2 |
               3 | 5 |
  6 |
                           1 |
  7 |
         2 |
               7 | 6 |
                           1 |
  8 |
         2 |
               9 |
                    9 |
                           1 |
  9 |
        13 |
             13 |
                    -1 |
                           0 |
 10 |
        13 | 10 | 14 |
                           1 |
                                    1
 11 |
        13 |
             11 |
                     12 |
                           1 |
                                     2
                                     3
 12 |
         13 |
               12 |
                     13 |
                           1 |
(12 rows)
```

See Also

- pgr_alphaShape Alpha shape computation
- pgr_pointsAsPolygon Polygon around set of points
- Sample Data network.

Indices and tables

- genindex
- search

pgr_KSP

Name

pgr_KSP — Returns the "K" shortest paths.

Fig. 5.9: Boost Graph Inside

Availability: 2.0.0

• Signature change 2.1.0

Synopsis

The K shortest path routing algorithm based on Yen's algorithm. "K" is the number of shortest paths desired.

Signature Summary

```
pgr_KSP(edges_sql, start_vid, end_vid, K);
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

Signatures

Minimal Signature

```
pgr_ksp(edges_sql, start_vid, end_vid, K);
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

Complete Signature

```
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)

RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

_			
	Column	Type	Description
ĺ	edges_sql	TEXT	SQL query as described above.
ĺ	start_vid	BIGINT	Identifier of the starting vertex.
Ī	end_vid	BIGINT	Identifier of the ending vertex.
Ī	k	INTEGE	RThe desiered number of paths.
	directed	BOOLEA	N(optional). When false the graph is considered as Un
			which considers the graph as Directed.
	heap_patl	18BOOLEA	N(optional). When true returns all the paths stored in the
			false which only returns k paths.

Roughly, if the shortest path has N edges, the heap will contain about than N $\,\star\,\,$ k paths for small value of k and k $\,>\,$ 1.

Col-	Type	Description
umn		
seq	INTEGE	R Sequential value starting from 1.
path_seq	INTEGE	Relative position in the path of node and edge. Has value 1 for the beginning of a path.
path_id	BIGINT	Path identifier. The ordering of the paths For two paths i, j if i < j then agg_cost(i) <=
		agg_cost(j).
node	BIGINT	Identifier of the node in the path.
edge	BIGINT	Identifier of the edge used to go from node to the next node in the path sequence1
		for the last node of the route.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Warning: During the transition to 3.0, because pgr_ksp version 2.0 doesn't have defined a directed flag nor a heap_path flag, when pgr_ksp is used with only one flag version 2.0 signature will be used.

Additional Examples

Examples to handle the one flag to choose signatures The examples in this section use the following *Network for queries marked as directed and cost and reverse_cost columns are used*

```
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2,
     directed:=true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
        1 |
1 |
1 |
                   1 | 2 | 4 |
2 | 5 | 8 |
3 | 6 | 9 |
4 | 9 | 15 |
  1 |
                                   1 |
  2 |
                                      1 |
  3 |
                                      1 |
                                   1 | 0 |
         1 |
                    4 |
  4 |
         1 |
                   5 |
                        12 |
  5 |
                               -1 |
         2 | 2 | 2 |
                                    1 |
                   1 |
                               4 |
                         2 |
  6 |
  7 |
                        5 |
                              8 |
                                    1 |
                   2 |
                                              1.
                   3 |
                         6 |
                              11 |
                                     1 |
  8 |
 9 |
10 |
                  4 | 11 | 13 |
         2 |
                                   1 |
         2 |
                  5 | 12 |
                               -1 I
                                    0 1
(10 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 12, 2
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
  1 | 1 | 2 | 4 | 1 |
                                         0
  2 |
         1 |
                  2 | 5 | 8 | 1 |
                                               1
  3 |
         1 |
                   3 | 6 |
                               9 | 1 |
  4 | 1 | 5 | 1 | 6 | 2 | 7 | 2 | 8 | 2 | 9 | 2 |
                   4 |
                         9 |
                               15 | 1 |
                   5 | 12 | -1 |
                                     0 |
                   1 | 2 |
2 | 5 |
                               4 |
                                     1 |
                               8 |
                                      1 |
                   3 |
                         6 |
                               11 |
                                     1 |
                       11 |
                   4 |
                                     1 |
                               13 |
                                               3
 10 | 2 | 5 | 12 |
                               -1 I
                                     0 |
(10 rows)
```

Examples for queries marked as directed with cost and reverse_cost columns The examples in this section use the following *Network for queries marked as directed and cost and reverse_cost columns are used*

```
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 12, 2
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
 1 | 2 | 4 |
2 | 5 | 8 |
3 | 6 | 9 |
  1 |
         1 |
                                  1 |
                                 1 | 1 |
         1 |
  2 |
                                            1
         1 |
  3 |
         1 |
                       9 | 15 |
                                  1 |
                                           3
                  4 |
  4 |
                                 0 |
         1 |
                  5 | 12 | -1 |
                                           4
  5 I
```

```
1 |
                               2 |
                                     4 |
                                             1 |
  7 |
                              5 I
                                     8 |
            2 |
                       2 |
                                           1 |
                                                        1
            2 |
                             6 |
                                           1 |
                                                      2
                       3 |
                                     11 |
  8 1
            2 |
                                           1 |
  9 1
                       4 | 11 |
                                     13 I
                                                       3
 10 |
            2 |
                       5 | 12 | -1 |
                                           0 |
(10 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2, heap_paths:=true
seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    4 |
    1 |

    2 |
    1 |
    2 |
    5 |
    8 |
    1 |

                                                        1
  3 |
           1 |
                       3 | 6 |
                                     9 | 1 |
  4 |
           1 |
                       4 |
                              9 |
                                    15 |
                                             1 |
  5 |
            1 |
                       5 | 12 |
                                    -1 |
                                            0 |
                       5 ,
1 | \( \alpha \) ,
| 5 |
          1 | 2 | 2 | 2 | 2 | 2 | 3 |
  6 |
                                     4 |
                                             1 |
                       2 | 5 ,
                                     8 |
  7 |
                                             1 |
                      2 .
3 | 6 .
11 |
                                           1 |
                                    11 |
  8 |
                                           1 |
  9 |
                                    13 I
                                           0 |
                      5 | 12 |
                                    -1 |
 10 |
 11 |
                             2 |
                      1 |
                                     4 |
                                           1 |
                                                       0
           3 |
 12 |
                      2 | 5 | 10 |
                                           1 |
                                                       1
                      3 | 10 | 12 | 1 |
 13 |
           3 |
 14 |
15 |
           3 I
                      4 | 11 | 13 | 1 |
           3 I
                      5 | 12 | -1 | 0 |
(15 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2, true, true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
1 | 1 | 2 | 4 |
                                          1 |
           1 |
1 |
1 |
                       2 | 5 | 8 | 1 | 3 | 6 | 9 | 1 |
  2 |
                                                        1
                       3 | 6 ,
  3 |
  4 |

      4 |
      1 |

      5 |
      1 |

      6 |
      2 |

      7 |
      2 |

      8 |
      2 |

      9 |
      2 |

      10 |
      2 |

      11 |
      3 |

      12 |
      3 |

                                    15 I
                                            1 |
                       5 | 12 |
                                    -1 |
                                            0 |
                      1 | 2 | 2 | 2 | 5 |
                                           1 |
                                    4 |
                                                       0
                                    8 |
                                           1 |
                      2 |
                                                       1
                             6 |
                                           1 |
                      3 |
                                   11 |
                      4 | 11 |
                                   13 |
                                           1 |
                    5 | 12 |
                                    -1 |
                                           0 |
                      1 | 2 | 4 |
2 | 5 | 10 |
                                          1 |
                                                       0
                                           1 |
                                                       1
           3 |
                      3 | 10 | 12 |
 13 |
                                           1 |
                                           1 |
 14 |
           3 |
                      4 | 11 | 13 |
 15 |
           3 |
                     5 | 12 |
                                     -1 |
                                           0 |
(15 rows)
```

Examples for queries marked as undirected with cost and reverse_cost columns The examples in this section use the following *Network for queries marked as undirected and cost and reverse_cost columns are used*

```
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 12, 2, directed:=false
);
```

```
seq | path_id | path_seq | node | edge | cost | agg_cost
______

    1 |
    1 |
    1 |
    2 |
    2 |
    1 |
    0

    2 |
    1 |
    2 |
    3 |
    3 |
    1 |
    1

    3 |
    1 |
    3 |
    4 |
    16 |
    1 |
    2

  (10 rows)
SELECT * FROM pgr_KSP(
              'SELECT id, source, target, cost, reverse_cost FROM edge_table',
                 2, 12, 2, false, true
       );
  seq | path_id | path_seq | node | edge | cost | agg_cost
                          1 | 1 | 2 | 2 |
1 | 2 | 3 | 3 |
1 | 3 | 4 | 16 |
                                                                                                                          1 |
1 |
1 |
        2 |
                                 1 |
        3 |

      3 |
      1 |
      3 |
      4 |
      16 |
      1 |

      4 |
      1 |
      4 |
      9 |
      15 |
      1 |

      5 |
      1 |
      5 |
      12 |
      -1 |
      0 |

      6 |
      2 |
      1 |
      2 |
      4 |
      1 |

      7 |
      2 |
      2 |
      5 |
      8 |
      1 |

      8 |
      2 |
      3 |
      6 |
      11 |
      1 |

      9 |
      2 |
      4 |
      11 |
      1 |
      1 |

      9 |
      2 |
      4 |
      11 |
      1 |
      1 |

      10 |
      2 |
      5 |
      12 |
      -1 |
      0 |

      11 |
      3 |
      1 |
      2 |
      4 |
      1 |

      12 |
      3 |
      2 |
      5 |
      10 |
      1 |

      13 |
      3 |
      3 |
      10 |
      12 |
      1 |

      14 |
      3 |
      4 |
      11 |
      13 |
      1 |

      15 |
      3 |
      5 |
      12 |
      -1 |
      0 |

      16 |
      4 |
      1 |
      2 |
      4 |
      1 |

      <
                                                                                                                             1 |
                                1 |
                                                                   4 |
                                                                                     9 | 15 |
        4 |
                                                                                                                                                               1
                                                                                                                                                               1
                                                                                                                                                                3
                                                                                                                                                                 4
                                                                                                                                                                0
                                                                                                                                                                  1
 (22 rows)
```

Examples for queries marked as directed with cost column The examples in this section use the following *Network for queries marked as directed and only cost column is used*

```
1 |
                 1 |
                       2 |
                            4 |
                                 1 |
                      5 I
               2 | 3 |
                           8 |
                                1 |
        1 |
                                         1
  2 |
                      6 |
                           9 |
                                1 |
        1 |
  3 |
        1 |
                4 |
                      9 |
  4 |
                          15 |
                                1 |
  5 |
        1 |
                 5 | 12 |
                           -1 |
                                0 |
        2 |
                 1 | 2 | 4 |
  6 |
                                1 |
  7 |
        2 |
                2 | 5 |
                           8 |
                                1 |
                                         1
  8 |
        2 |
                 3 | 6 | 11 |
                                1 |
 9 |
        2 |
                 4 | 11 | 13 |
                               1 |
 10 |
                5 | 12 |
         2 |
                           -1 |
                                0 |
(10 rows)
SELECT * FROM pgr_KSP(
   'SELECT id, source, target, cost FROM edge_table',
    2, 12, 2, heap_paths:=true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
1 | 2 | 4 |
2 | 5 | 8 |
3 | 6 | 9 |
4 | 9 | 15 |
       1 |
1 |
1 |
                               1 |
1 |
1 |
  2 |
  3 |
        1 |
                                1 |
  4 |
        1 |
                               0 |
5 | 12 |
                           -1 |
  5 I
                                1 |
                 1 |
                           4 |
                      2 |
                           8 |
                2 | 5 |
                               1 |
                                         1
                 3 | 6 | 11 |
                               1 |
                 4 | 11 | 13 |
                               1 |
                5 | 12 | -1 | 0 |
                 1 | 2 |
                           4 | 1 |
                2 | 5 | 10 | 1 |
                3 | 10 | 12 |
                                1 |
 14 |
15 |
        3 |
                4 | 11 | 13 |
                               1 |
                                         3
        3 |
                5 | 12 |
                           -1 |
                                0 |
(15 rows)
SELECT * FROM pgr_KSP(
   'SELECT id, source, target, cost FROM edge_table',
    2, 12, 2, true, true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
1 | 1 | 2 | 4 | 1 |
1 | 2 | 5 | 8 | 1 |
  1 |
        1 |
                           8 |
                                1 |
                                         1
                 2 |
  2 |
  2 | 1 | 3 | 1 | 4 | 1 | 5 | 1 | 6 | 2 | 7 | 2 |
                               1 |
                     6 |
                           9 |
                 3 |
                4 | 9 | 15 |
                               1 |
               5 | 12 | -1 |
                               0 |
                1 | 2 | 4 | 2 | 5 | 8 |
                                1 |
                                1 |
                                         1
               5 | 12 | -1 |
1 | 2 |
        2 |
                 3 | 6 | 11 |
  8 |
                                1 |
        2 |
  9 |
                                1 |
 10 |
        2 |
                                0 |
 11 |
        3 |
                1 | 2 |
                               1 |
        3 |
                      5 | 10 |
                                         1
 12 |
                2 |
                                1 |
                 3 | 10 | 12 |
        3 |
 13 |
                               1 |
 14 |
        3 |
                           13 |
                                         3
                 4 | 11 |
                               1 |
         3 |
 15 |
                 5 | 12 |
                                 0 |
                           -1 |
(15 rows)
```

Examples for queries marked as undirected with cost column The examples in this section use the following *Network for queries marked as undirected and only cost column is used*

```
SELECT * FROM pgr_KSP(
     'SELECT id, source, target, cost FROM edge_table',
      2, 12, 2, directed:=false
seq | path_id | path_seq | node | edge | cost | agg_cost
   1 | 1 | 2 | 4 | 1 | 0
                        2 | 5 | 8 | 1 |
   2 |
            1 |
                        3 | 6 |
                                        9 | 1 |
            1 |
   3 |
   4 |
                                9 | 15 | 1 |
            1 |
                         4 |
   5 |
            1 |
                         5 | 12 | -1 | 0 |
   6 |
            2 |
                         1 | 2 | 4 | 1 |
   7 |
            2 |
                         2 | 5 |
                                        8 |
                                               1 |
           2 |
                        3 | 6 | 4 | 11 |
   8 |
                                        11 |
                                                1 |
   9 |
             2 |
                                        13 |
                                                 1 |
 10 |
             2 |
                         5 | 12 |
                                       -1 |
                                                0 |
(10 rows)
SELECT * FROM pgr_KSP(
     'SELECT id, source, target, cost FROM edge_table',
      2, 12, 2, directed:=false, heap_paths:=true
seq | path_id | path_seq | node | edge | cost | agg_cost
   1 |
          1 | 1 | 2 | 4 | 1 |
                      2 | 5 | 8 | 1 |
   2 |
           1 |
   3 |
            1 |
                        3 | 6 |
                                       9 | 1 |

      3 |
      1 |

      4 |
      1 |

      5 |
      1 |

      6 |
      2 |

      7 |
      2 |

      8 |
      2 |

      9 |
      2 |

      10 |
      2 |

      11 |
      3 |

      12 |
      3 |

      13 |
      3 |

      14 |
      3 |

      15 |
      3 |

                         4 | 9 | 15 | 1 |
                        5 | 12 | -1 | 0 |
                        1 | 2 | 4 |
                                               1 |
                       2 | 5 |
                                        8 |
                                                            1
                                               1 |
                        3 |
                                6 |
                                       11 |
                                               1 |
                                       13 |
                         4 | 11 |
                                               1 |
                                                            3
                                        -1 |
                                                0 |
                         5 | 12 |
                         1 | 2 | 2 | 5 |
                                        4 |
                                                1 |
                         2 |
                                        10 |
                                                 1 |
                         3 |
                               10 |
                                        12 |
                                                 1 |
                         4 |
                                11 |
                                        13 |
                                                 1 |
            3 |
                    5 |
                               12 |
 15 |
                                        -1 |
                                                 0 |
(15 rows)
```

See Also

- http://en.wikipedia.org/wiki/K_shortest_path_routing
- Sample Data network.

Indices and tables

- genindex
- search

pgr_dijkstraVia - Proposed

Name

pgr_dijkstraVia — Using dijkstra algorithm, it finds the route that goes through a list of vertices.

Fig. 5.10: Boost Graph Inside

Availability: 2.2.0

Synopsis

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between $vertex_i$ and $vertex_{i+1}$ for all $i < size_of(vertex_via)$.

The paths represents the sections of the route.

Note: This is a proposed function

Signatrue Summary

Signatures

Minimal Signature

Example Find the route that visits the vertices 1 3 9 in that order

```
SELECT * FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
  ARRAY[1, 3, 9]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
  1 | 1 | 1 | 1 | 3 | 1 | 1 | 0 |
                                  3 | 2 | 4 |
  2 |
        1 |
                 2 |
                          1 |
                                                 1 |
                                                          1 |
                                                                       1
                 3 |
                          1 |
                                  3 |
                                      5 | 8 |
  3 |
        1 |
                                                 1 |
                                                          2 |
        1 |
                                                          3 |
                                                                       3
                 4 |
                          1 |
                                  3 |
                                      6 | 9 |
                                                 1 |
  4 |
                                                                       4
  5 |
        1 |
                 5 |
                          1 |
                                  3 |
                                      9 | 16 |
                                                 1 |
                                                          4 |
                 6 |
                          1 |
                                                                       5
                                       4 | 3 |
                                                          5 |
  6 |
        1 |
                                 3 |
                                                 1 |
        1 |
                 7 |
                          1 |
                                  3 |
                                       3 | -1 |
                                                  0 |
                                                                       6
  7 |
                                                          6 |
  8 |
        2 |
                 1 |
                          3 |
                                  9 |
                                      3 | 5 |
                                                  1 |
                                                          0 |
                                                                       6
                          3 |
  9 |
        2 |
                 2 |
                                  9 |
                                       6 |
                                            9 |
                                                  1 |
                                                                       7
                                                          1 |
                 3 |
                                                  0 |
 10 |
         2 |
                          3 |
                                  9 |
                                       9 | -2 |
                                                          2 |
(10 rows)
```

Complete Signature

```
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)

RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,

node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

Example Find the route that visits the vertices 1 3 9 in that order on an undirected graph, avoiding U-turns when possible

```
SELECT * FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
   ARRAY[1, 3, 9], false, strict:=true, U_turn_on_edge:=false
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
1 |
                          1 |
  1 |
                 1 |
                                   3 |
                                        1 |
                                             1 |
                                                   1 |
                                                            0 |
                                3 | 2 |
        1 |
                                            2 |
                                                           1 |
  2 |
                 2 |
                          1 |
                                                   1 |
                                                                         1
  3 |
        1 |
                 3 |
                          1 |
                                  3 |
                                        3 |
                                             -1 |
                                                  0 |
                                                           2 |
                                                                         2
  4 |
        2 |
                 1 |
                          3 |
                                  9 |
                                        3 | 5 |
                                                   1 |
                                                            0 |
  5 |
         2 |
                 2 |
                           3 |
                                  9 |
                                        6 |
                                             9 |
                                                   1 |
                                                            1 |
  6 |
         2 |
                 3 |
                          3 |
                                   9 |
                                         9 |
                                             -2 |
                                                   0 |
                                                            2 |
(6 rows)
```

Description of the Signature

Description of the edges_sql query for dijkstra like functions

edges sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре	Default
edges_sql	TEXT	
via_vertices	ARRAY[ANY-INTEGER]	
directed	BOOLEAN	true
strict	BOOLEAN	false
U_turn_on_edge	BOOLEAN	true

 $\label{lem:parameters} \textbf{Description of the parameters of the signatures}$

Description of	the parameters o	f the signatures
----------------	------------------	------------------

Param-	Туре	Description
eter		
edges_sql	TEXT	SQL query as described above.
via_vertic	esarray [any-	IAMEGERIER identifiers
di-	BOOLEAN	(optional) Default is true (is directed). When set to
rected		as Undirected
strict	BOOLEAN	(optional) ignores if a subsection of the route is m
		found Default is true (is directed). When set to fall
		Undirected
U_turn_o	n <u>B</u> edgeEAN	(optional) Default is true (is directed). When set to
		as Undirected

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description	
seq	BIGIN	TSequential value starting from 1.	
path_pid	BIGIN	Tidentifier of the path.	
path_seq	BIGIN	TSequential value starting from 1 for the path.	
start_vid	BIGIN	Tidentifier of the starting vertex of the path.	
end_vid	BIGIN	Tidentifier of the ending vertex of the path.	
node	BIGIN	Tidentifier of the node in the path from start_vid to end_vid.	
edge	BIGIN	BIGINTIdentifier of the edge used to go from node to the next node in the path sequence1 for	
		the last node of the path2 for the last node of the route.	
cost	FLOAT	Cost to traverse from node using edge to the next node in the route sequence.	
agg_cost	FLOAT	Total cost from start_vid to end_vid of the path.	
route_agg_	route_agg costOAT Total cost from start_vid of path_pid = 1 to end_vid of the current		
		path_pid.	

Examples

Example 1 Find the route that visits the vertices 1 5 3 9 4 in that order

```
SELECT * FROM pgr_dijkstraVia(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
  ARRAY[1, 5, 3, 9, 4]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
  1 |
             2 |
                1 |
                         1 | 5 |
1 | 5 |
      1 |
1 |
                                5 | 1 |
5 | 2 |
                                          1 |
4 |
                                                      0 |
1 |
  2 |
                                                 1 |
                                                                      1
        1 |
                                                        2 |
                3 |
                         1 |
                                5 |
                                      5 |
                                          -1 |
                                                0 |
                                                                      2
  3 |
        2 |
                1 |
                         5 |
                                      5 I
                                          8 |
  4 |
                                                        0 |
                                 3 |
                                                                      2
                                                 1 |
                               3 |
3 |
3 |
3 |
9 |
9 |
        2 |
                2 |
                                      6 | 9 |
  5 |
                         5 |
                                                        1 |
                                                                      3
                                                 1 |
        2 |
                                      9 | 16 |
                3 I
                         5 I
                                                1 |
                                                        2 1
                                                                      4
 6 1
        2 |
                         5 I
                                                                      5
 7 |
                4 |
                                      4 |
                                           3 |
                                                1 |
                                                        3 I
        2 |
                5 I
                         5 I
                                      3 | -1 |
                                                0 |
 8 |
                                                        4 |
 9 |
        3 |
                1 |
                         3 |
                                      3 | 5 |
                                                1 |
                                                        0 |
 10 |
        3 |
                2 |
                         3 |
                                      6 | 9 |
                                                1 |
                                                                      7
                                                        1 |
 11 |
        3 |
                3 |
                         3 |
                                9 |
                                      9 | -1 |
                                                0 |
                                                         2 |
                                                                      8
                         9 |
                                                                      8
 12 |
        4 |
                1 |
                                4 |
                                      9 | 16 |
                                                1 |
                                                        0 |
                         9 |
 13 |
        4 |
                2 |
                                4 |
                                      4 | -2 |
                                                0 |
                                                        1 |
(13 rows)
```

Example 2 What's the aggregate cost of the third path?

Example 3 What's the route's aggregate cost of the route at the end of the third path?

```
SELECT route_agg_cost FROM pgr_dijkstraVia(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
    ARRAY[1, 5, 3, 9, 4]
)
WHERE path_id = 3 AND edge < 0;
route_agg_cost</pre>
```

Example 4 How are the nodes visited in the route?

```
SELECT row_number() over () as node_seq, node
FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
   ARRAY[1, 5, 3, 9, 4]
WHERE edge <> -1 ORDER BY seq;
node_seq | node
           1
      1 |
       2 |
             2
       3 |
       4 |
       5 |
            9
       6 |
             3
       7 |
       8 |
            6
       9 |
           9
      10 |
(10 rows)
```

Example 5 What are the aggregate costs of the route when the visited vertices are reached?

Example 6 show the route's seq and aggregate cost and a status of "passes in front" or "visits" node 9

```
SELECT seq, route_agg_cost, node, agg_cost,
CASE WHEN edge = -1 THEN 'visits'
ELSE 'passes in front'
END as status
FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
  ARRAY[1, 5, 3, 9, 4])
WHERE node = 9 and (agg_cost <> 0 or seq = 1);
seq | route_agg_cost | node | agg_cost | status
----+-----
                 4 | 9 | 2 | passes in front
8 | 9 | 2 | visits
  6 |
 11 |
                 8 | 9 |
(2 rows)
ROLLBACK;
ROLLBACK
```

See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
- Sample Data network.

Indices and tables

- genindex
- · search

The problem definition (Advanced documentation)

```
Given the following query:
```

```
\begin{split} & \text{pgr\_dijkstra}(sql, start_{vid}, end_{vid}, directed) \\ & \text{where } sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\} \\ & \text{and} \\ & \bullet \ source = \bigcup source_i, \end{split}
```

• $target = \bigcup target_i$,

The graphs are defined as follows:

Directed graph

The weighted directed graph, $G_d(V, E)$, is definied by:

- ullet the set of vertices V
 - $V = source \cup target \cup start_{vid} \cup end_{vid}$
- the set of edges E

$$-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} & \text{if } reverse_cost = \\ \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0\} & \text{if } reverse_cost \neq 0\} \end{cases}$$

Undirected graph

The weighted undirected graph, $G_u(V, E)$, is definied by:

- ullet the set of vertices V
 - $V = source \cup target \cup start_vvid \cup end_{vid}$
- the set of edges E

```
 \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \end{cases} \\ \text{if } reverse\_cost = \\ \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \cup \{(source_i, target_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \text{if } reverse\_cost \neq 0 \end{cases}
```

The problem

Given:

- $start_{vid} \in V$ a starting vertex
- $end_{vid} \in V$ an ending vertex

•
$$G(V, E) = \begin{cases} G_d(V, E) & \text{if } 6 \text{ } directed = true \\ G_u(V, E) & \text{if } 5 \text{ } directed = false \end{cases}$$

Then:

•
$$\pi = \{(path_seq_i, node_i, edge_i, cost_i, agg_cost_i)\}$$

where:

- $path_seq_i = i$
- $path_seq_{|\pi|} = |\pi|$
- $node_i \in V$
- $node_1 = start_{vid}$
- $node_{|\pi|} = end_{vid}$
- $\forall i \neq |\pi|, \quad (node_i, node_{i+1}, cost_i) \in E$

$$\bullet \ edge_i = \begin{cases} id_{(node_i,node_{i+1},cost_i)} & \quad \text{when } i \neq |\pi| \\ -1 & \quad \text{when } i = |\pi| \end{cases}$$

• $cost_i = cost_{(node_i, node_{i+1})}$

$$\begin{aligned} \bullet \ cost_i &= cost_{(node_i, node_{i+1})} \\ \bullet \ agg_cost_i &= \begin{cases} 0 & \text{when } i = 1 \\ \sum_{k=1}^i cost_{(node_{k-1}, node_k)} & \text{when } i \neq 1 \end{cases} \end{aligned}$$

In other words: The algorithm returns a the shortest path between $start_{vid}$ and end_{vid} , if it exists, in terms of a sequence of

- path_seq indicates the relative position in the path of the node or edge.
- cost is the cost of the edge to be used to go to the next node.
- agg_cost is the cost from the $start_{vid}$ up to the node.

If there is no path, the resulting set is empty.

See Also

Indices and tables

- · genindex
- search

5.1.5 pgr_trsp - Turn Restriction Shortest Path (TRSP)

Name

pgr_trsp — Returns the shortest path with support for turn restrictions.

Synopsis

The turn restricted shorthest path (TRSP) is a shortest path algorithm that can optionally take into account complicated turn restrictions like those found in real world navigable road networks. Performamnce wise it is nearly as fast as the A* search but has many additional features like it works with edges rather than the nodes of the network. Returns a set of *pgr_costResult* (seq, id1, id2, cost) rows, that make up a path.

Description

The Turn Restricted Shortest Path algorithm (TRSP) is similar to the shooting star in that you can specify turn restrictions.

The TRSP setup is mostly the same as *Dijkstra shortest path* with the addition of an optional turn restriction table. This provides an easy way of adding turn restrictions to a road network by placing them in a separate table.

sql a SQL query, which should return a set of rows with the following columns:

```
SELECT id, source, target, cost, [,reverse_cost] FROM edge_table
```

id int4 identifier of the edge

source int4 identifier of the source vertex

target int 4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only used when the directed and has_rcost parameters are true (see the above remark about negative costs).

source int4 NODE id of the start point

target int 4 NODE id of the end point

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.

restrict_sql (optional) a SQL query, which should return a set of rows with the following columns:

```
SELECT to_cost, target_id, via_path FROM restrictions
```

to_cost float8 turn restriction cost

target_id int4 target id

via_path text comma separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify **EDGE id** of source and target together with a fraction to interpolate the position:

```
source_edge int4 EDGE id of the start edge
source_pos float8 fraction of 1 defines the position on the start edge
target_edge int4 EDGE id of the end edge
target_pos float8 fraction of 1 defines the position on the end edge
Returns set of pgr_costResult[]:
seq row sequence
id1 node ID
id2 edge ID (-1 for the last row)
cost cost to traverse from id1 using id2
```

History

• New in version 2.0.0

Support for Vias

Warning: The Support for Vias functions are prototypes. Not all corner cases are being considered.

We also have support for vias where you can say generate a from A to B to C, etc. We support both methods above only you pass an array of vertices or and array of edges and percentage position along the edge in two arrays.

sql a SQL query, which should return a set of rows with the following columns:

```
SELECT id, source, target, cost, [,reverse_cost] FROM edge_table
```

id int4 identifier of the edge

source int4 identifier of the source vertex

target int 4 identifier of the target vertex

cost float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.

reverse_cost (optional) the cost for the reverse traversal of the edge. This is only
 used when the directed and has_rcost parameters are true (see the above
 remark about negative costs).

vids int4[] An ordered array of NODE id the path will go through from start to end.

directed true if the graph is directed

has_rcost if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.

restrict_sql (optional) a SQL query, which should return a set of rows with the following columns:

```
SELECT to_cost, target_id, via_path FROM restrictions
```

to_cost float8 turn restriction cost

target_id int4 target id

via_path text commar separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify **EDGE id** together with a fraction to interpolate the position:

```
eids int 4 An ordered array of EDGE id that the path has to traverse
```

pcts float8 An array of fractional positions along the respective edges in eids, where 0.0 is the start of the edge and 1.0 is the end of the eadge.

Returns set of *pgr_costResult[]*:

```
seq row sequence
id1 route ID
id2 node ID
id3 edge ID (-1 for the last row)
cost cost to traverse from id2 using id3
```

History

• Via Support prototypes new in version 2.1.0

Examples

Without turn restrictions

```
SELECT * FROM pgr_trsp(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       7, 12, false, false
   );
seq | id1 | id2 | cost
  0 |
       7 |
            6 |
  1 |
        8 |
             7 |
        5 | 8 |
  2 |
                     1
             9 |
  3 |
        6 |
                     1
       9 | 15 |
  4 |
                     1
  5 | 12 |
             -1 I
(6 rows)
```

With turn restrictions

Then a query with turn restrictions is created as:

```
SELECT * FROM pgr_trsp(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       2, 7, false, false,
       'SELECT to_cost, target_id::int4,
       from_edge || coalesce('','' || via_path, '''') AS via_path
       FROM restrictions'
   );
seq | id1 | id2 | cost
  0 | 2 | 4 | 1
  1 | 5 | 10 | 1
  2 | 10 | 12 |
  3 | 11 | 11 |
  4 | 6 | 8 |
  5 | 5 | 7 |
                    1
  6 | 8 | 6 |
                    1
        7 | -1 |
  7 |
(8 rows)
SELECT * FROM pgr_trsp(
```

```
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
       7, 11, false, false,
       'SELECT to_cost, target_id::int4,
       from_edge || coalesce('','' || via_path, '''') AS via_path
       FROM restrictions'
   );
seq | id1 | id2 | cost
      7 | 6 | 1
  0 |
  1 | 8 | 7 |
      5 | 8 |
                    1
  2. 1
           9 |
  3 | 6 |
                    1
  4 |
      9 | 15 |
                    1
  5 | 12 | 13 |
                    1
  6 |
      11 | -1 |
(7 rows)
```

An example query using vertex ids and via points:

```
SELECT * FROM pgr_trspViaVertices(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       ARRAY[2,7,11]::INTEGER[],
       false, false,
       'SELECT to_cost, target_id::int4, from_edge ||
       coalesce('',''||via_path,'''') AS via_path FROM restrictions');
seq | id1 | id2 | id3 | cost
      1 | 2 | 4 | 1
  2 | 1 | 5 | 10 |
      1 | 10 | 12 |
  3 I
                         1
      1 | 11 | 11 |
                          1
  4 |
  5 |
      1 | 6 | 8 |
                          1
            5 |
                 7 |
       1 |
                          1
  6 1
            8 | 6 |
        1 |
  7 1
                          1
  8 |
        2 |
             7 |
                   6 |
                          1
  9 |
        2 |
             8 |
                   7 |
                          1
 10 |
        2 |
             5 |
                   8 |
                          1
 11 |
        2 |
             6 |
                   9 |
                          1
 12 |
        2 |
             9 | 15 |
                          1
       2 | 12 |
 13 |
                  13 |
                          1
      2 | 11 |
 14 |
                  -1 I
                          0
(14 rows)
```

An example query using edge ids and vias:

```
SELECT * FROM pgr_trspViaEdges(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost,
       reverse_cost FROM edge_table',
       ARRAY[2,7,11]::INTEGER[],
       ARRAY[0.5, 0.5, 0.5]::FLOAT[],
       true,
       'SELECT to_cost, target_id::int4, FROM_edge ||
       coalesce('',''||via_path,'''') AS via_path FROM restrictions');
seq | id1 | id2 | id3 | cost
  1 |
       1 | -1 | 2 | 0.5
        1 |
                    4 |
              2 |
  2 |
        1 |
              5 |
                   8 |
  3 |
                   9 |
   4 |
        1 |
              6 |
              9 | 16 |
  5 I
        1 |
                           1
   6 1
        1 |
              4 |
                   3 I
                           1
```

```
3 |
         1 |
                               1
  8 |
         1 |
                6 |
                       8 |
                               1
                       7 |
  9 |
         1 |
                5 |
                               1
 10 |
         2 |
                5 |
                       8 |
                               1
 11 |
         2 |
                6 |
                       9 |
                               1
         2 |
                9 |
 12 |
                     16 |
                4 |
                       3 |
 13 |
         2 |
                               1
 14 |
         2 |
                3 |
                       5 I
 15 |
         2 |
                6 |
                     11 |
(15 rows)
```

The queries use the Sample Data network.

See Also

• pgr_costResult[]

Indices and tables

- genindex
- · search

5.1.6 Traveling Sales Person - Family of functions

- *pgr_TSP* When input is given as matrix cell information.
- *pgr_eucledianTSP* When input are coordinates.

pgr TSP

Name

• pgr_TSP - Returns a route that visits all the nodes exactly once.

Availability: 2.0.0

• Signature changed 2.3.0

Synopsis

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the form of matrix cell contents. The matrix information must be symmetrical.

Signature Summary

```
pgr_TSP(matrix_cell_sql)
pgr_TSP(matrix_cell_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

Signatures

Basic Use

```
pgr_TSP(matrix_cell_sql)
RETURNS SETOF (seq, node, cost, agg_cost)
```

Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to have random execution, the example is wrapping the actual call.

Complete Signature

```
pgr_TSP(matrix_cell_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

Example:

```
start_id := 7,
   randomize := false
);
seq | node | cost | agg_cost
  1 | 7 | 1 | 0
  2 | 8 | 1 |
                    1
  3 | 5 | 1 |
                    2
                    3
  4 | 2 | 1 |
  5 | 1 |
            2 |
                     4
  6 | 3 | 1 |
                     6
  7 |
      4 | 1 |
                     7
       9 |
            1 |
                    8
  8 |
  9 |
      12 | 1 |
      11 |
 10 |
             1 |
                    10
      10 |
 11 |
             1 |
                    11
 12 |
      13 |
          3 |
             3 |
                    12
                    15
 13 | 6 |
14 | 7 |
            0 |
                    18
(14 rows)
```

Description of the Signatures

Description of the Matrix Cell SQL query

Column	Туре	Description	
start_vid	BIGINT	Identifier of the starting vertex.	
end_vid	BIGINT	Identifier of the ending vertex.	
agg_cost	FLOAT	Cost for going from start_vid to end_vid	

Can be Used with:

- pgr_dijkstraCostMatrix proposed
- pgr_withPointsCostMatrix proposed
- pgr_floydWarshall
- pgr_johnson

To generate a symmetric matrix

• directed := false.

If using directed := true, the resulting non symmetric matrix must be converted to symmetric by fixing the non symmetric values according to your application needs.

Description Of the Control parameters			
The control parameters are opti-	onal, and hav	ve a default va	alue.
Parameter	 Туре	Default	Description
start_vid	``BIGINT``	,0,	The greedy part of the implementation
end_vid	``BIGINT``	,0,	Last visiting vertex before returning
max_processing_time	``FLOAT``	`+infinity`	Stop the annealing processing when the
tries_per_temperature	``INTEGER``	`500`	Maximum number of times a neighbor(s)
max_changes_per_temperature	``INTEGER``	`60`	Maximum number of times the solution is
max_consecutive_non_changes	``INTEGER``	`100`	Maximum number of consecutive times the
initial_temperature	``FLOAT``	`100`	Starting temperature.
final_temperature	``FLOAT``	`0.1`	Ending temperature.
cooling factor	``FLOAT``	`0.9`	Value between between 0 and 1 (not inc

```
**randomize**

'`BOOLEAN`` `true` Choose the random seed

- true: Use current time as seed

- false: Use `1` as seed. Using this v
```

Examples

Example Using with points of interest.

To generate a symmetric matrix:

- the **side** information of pointsOfInterset is ignored by not including it in the query
- and directed := false

```
SELECT * FROM pgr_TSP(
   SELECT * FROM pgr_withPointsCostMatrix(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
       'SELECT pid, edge_id, fraction from pointsOfInterest',
       array[-1, 3, 5, 6, -6], directed := false);
   $$,
   start_id := 5,
   randomize := false
);
seq | node | cost | agg_cost
----+----
  1 | 5 | 1 |
2 | 6 | 1 |
  1 |
                      1
2
  3 | 3 | 1.6 |
  4 | -1 | 1.3 |
                      3.6
  5 | -6 | 0.3 |
                      4.9
  6 | 5 | 0 |
                      5.2
(6 rows)
```

The queries use the Sample Data network.

See Also

- Traveling Sales Person Family of functions
- http://en.wikipedia.org/wiki/Traveling_salesman_problem
- http://en.wikipedia.org/wiki/Simulated_annealing

Indices and tables

- · genindex
- · search

pgr_eucledianTSP

Name

pgr_eucledianTSP - Returns a route that visits all the coordinates pairs exactly once.

Availability: 2.3.0

Synopsis

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the form of coordinates.

Signature Summary

```
pgr_eucledianTSP(coordinates_sql)
pgr_eucledianTSP(coordinates_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

Signatures

Minimal Signature

```
pgr_eucledianTSP(coordinates_sql)
RETURNS SETOF (seq, node, cost, agg_cost)
```

Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to have random execution, the example is wrapping the actual call.

Complete Signature

```
pgr_eucledianTSP(coordinates_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

Example:

```
SELECT* from pgr_eucledianTSP(
   SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
   tries_per_temperature := 3,
   cooling_factor := 0.5,
   randomize := false
);
seq | node |
                 cost
                         | agg_cost
  1 |
       1 | 1.4142135623731 |
        3 |
                          1 | 1.4142135623731
  2 |
                          1 | 2.41421356237309
  3 |
       9 | 0.58309518948453 | 3.41421356237309
  4 |
      16 | 0.58309518948453 | 3.99730875185762
  5 I
  6 |
       6 |
                          1 | 4.58040394134215
  7 |
       5 |
                          1 | 5.58040394134215
  8 |
        8 I
                         1 | 6.58040394134215
       7 | 1.58113883008419 | 7.58040394134215
  9 |
 10 | 14 | 1.49999999999 | 9.16154277142634
                        0.5 | 10.6615427714253
 11 | 15 |
 12 | 13 |
                        1.5 | 11.1615427714253
 13 | 17 | 1.11803398874989 | 12.6615427714253
                         1 | 13.7795767601752
 14 | 12 |
                          1 | 14.7795767601752
 15 | 11 |
 16 | 10 |
                         2 | 15.7795767601752
                          1 | 17.7795767601752
 17 | 2 |
        1 |
 18 |
                         0 | 18.7795767601752
(18 rows)
```

Description of the Signatures

Description of the coordinates SQL query

Column	Туре	Description
id	BIGINT	Identifier of the coordinate. (optional)
X	FLOAT	X value of the coordinate.
y	FLOAT	Y value of the coordinate.

When the value of id is not given then the coordinates will receive an id starting from 1, in the order given.

```
Description Of the Control parameters
The control parameters are optional, and have a default value.
Default
Parameter
                                   Type
                                                                 Description
______ ____
                                    ``BIGINT``
                                                   ,0,
**start_vid**
                                                                 The greedy part of the implementation
                                    ``BIGINT``
``FLOAT``
**max_processing_time**

**max_processing_time**

**INTEGER'

**max_changes_per_temperature**

*INTEGER'

**o0

**max_consecutive_non_changes**

*INTEGER'

*INTEGER'

*O0

*Maximum number of times a neighbor(s)

**max_consecutive_non_changes**

*INTEGER'

*INTEGER'

*O0

*Maximum number of times the solution i

**max_consecutive_non_changes**

*INTEGER'

*INTEGER'

*O0

*Maximum number of consecutive times the solution i

**strintial_temperature**

*FLOAT'

*O1

*Ending temperature.

**cooling_factor**

*Value between between 0 and 1 (not inc.)
**end_vid**
                                                                 Last visiting vertex before returning
                                                   `0.9`
                                    ``BOOLEAN`` `true`
**randomize**
                                                                  Choose the random seed
                                                                   - true: Use current time as seed
                                                                   - false: Use `1` as seed. Using this v
______ _______
```

Examples

Example Skipping the Simulated Annealing & showing some process information

```
SET client_min_messages TO DEBUG1;
SET
SELECT* from pgr_eucledianTSP(
    $$
    SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
```

```
$$,
   tries_per_temperature := 0,
   randomize := false
);
DEBUG: pgr_eucledianTSP Processing Information
Initializing tsp class ---> tsp.greedyInitial ---> tsp.annealing ---> OK
Cycle(100)
                total changes =0 0 were because delta energy < 0
Total swaps: 3
Total slides: 0
Total reverses: 0
Times best tour changed: 4
Best cost reached = 18.7796
seq | node | cost
                         - 1
                                 agg_cost
       1 | 1.4142135623731 |
                 1 | 1.4142135623731
        3 |
  2 |
  3 |
        4 |
                          1 | 2.41421356237309
        9 | 0.58309518948453 | 3.41421356237309
  4 |
      16 | 0.58309518948453 | 3.99730875185762
  5 |
                          1 | 4.58040394134215
  6 |
        6 |
  7 |
        5 I
                          1 | 5.58040394134215
  8 |
       8 |
                          1 | 6.58040394134215
  9 |
        7 | 1.58113883008419 | 7.58040394134215
 10 | 14 | 1.49999999999 | 9.16154277142634
                        0.5 | 10.6615427714253
 11 | 15 |
 12 | 13 |
                        1.5 | 11.1615427714253
 13 | 17 | 1.11803398874989 | 12.6615427714253
 14 | 12 |
               1 | 13.7795767601752
 15 | 11 |
                         1 | 14.7795767601752
                         2 | 15.7795767601752
 16 | 10 |
                          1 | 17.7795767601752
 17 | 2 |
        1 |
                         0 | 18.7795767601752
 18 |
(18 rows)
```

The queries use the Sample Data network.

History

• New in version 2.3.0

See Also

- Traveling Sales Person Family of functions
- http://en.wikipedia.org/wiki/Traveling_salesman_problem
- http://en.wikipedia.org/wiki/Simulated_annealing

Indices and tables

- genindex
- search

General Information

Origin

The traveling sales person problem was studied in the 18th century by mathematicians Sir William Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book Graph Theory (Biggs et al. 1976).

- ISBN-13: 978-0198539162
- ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the connection between Menger & Whitney, and the development of the TSP can be found in On the history of combinatorial optimization (till 1960)¹⁴

Problem Definition

Given a collection of cities and travel cost between each pair, find the cheapest way for visiting all of the cities and returning to the starting point.

Characteristics

- The travel costs are symmetric:
 - traveling costs from city A to city B are just as much as traveling from B to A.
- This problem is an NP-hard optimization problem.
- To calculate the number of different tours through n cities:
 - Given a starting city,
 - There are n-1 choices for the second city,
 - And n-2 choices for the third city, etc.
 - Multiplying these together we get (n-1)! = (n-1)(n-2)..1.
 - Now since our travel costs do not depend on the direction we take around the tour:
 - * this number by 2
 - * (n-1)!/2.

TSP & Simulated Annealing

The simulated annealing algorithm was originally inspired from the process of annealing in metal work.

Annealing involves heating and cooling a material to alter its physical properties due to the changes in its internal structure. As the metal cools its new structure becomes fixed, consequently causing the metal to retain its newly obtained properties. [C001]

Pseudocode

Given an initial solution, the simulated annealing process, will start with a high temperature and gradually cool down until the desired temperature is reached.

For each temperature, a neighbouring new solution **snew** is calculated. The higher the temperature the higher the probability of accepting the new solution as a possible bester solution.

¹⁴http://www.cwi.nl/ lex/files/histco.ps

Once the desired temperature is reached, the best solution found is returned

```
Solution = initial_solution;

temperature = initial_temperature;
while (temperature > final_temperature) {

    do tries_per_temperature times {
        snew = neighbour(solution);
        If P(E(solution), E(snew), T) >= random(0, 1)
            solution = snew;
    }

    temperature = temperature * cooling factor;
}

Output: the best solution
```

pgRouting Implementation

pgRouting's implementation adds some extra parameters to allow some exit controls within the simulated annealing process.

To cool down faster to the next temperature:

- max_changes_per_temperature: limits the number of changes in the solution per temperature
- max_consecutive_non_changes: limits the number of consecutive non changes per temperature

This is done by doing some book keeping on the times **solution = snew**; is executed.

- max_changes_per_temperature: Increases by one when solution changes
- max_consecutive_non_changes: Reset to 0 when solution changes, and increased each try

Additionally to stop the algorithm at a higher temperature than the desired one:

- max_processing_time: limits the time the simulated annealing is performed.
- book keeping is done to see if there was a change in **solution** on the last temperature

Note that, if no change was found in the first **max_consecutive_non_changes** tries, then the simulated annealing will stop.

```
Solution = initial_solution;
temperature = initial_temperature;
while (temperature > final_temperature) {
    do tries_per_temperature times {
        snew = neighbour(solution);
        If P(E(solution), E(snew), T) >= random(0, 1)
           solution = snew;
        when max_changes_per_temperature is reached
           or max_consecutive_non_changes is reached
            BREAK:
    }
   temperature = temperature * cooling factor;
   when no changes were done in the current temperature
       or max_processing_time has being reached
       BREAK:
}
Output: the best solution
```

Choosing parameters

There is no exact rule on how the parameters have to be chose, it will depend on the special characteristics of the problem.

- Your computational time is crucial, then put your time limit to **max_processing_time**.
- Make the **tries_per_temperture** depending on the number of cities, for example:
 - Useful to estimate the time it takes to do one cycle: use 1
 - * this will help to set a reasonable max_processing_time
 - -n*(n-1)
 - **-** 500 * n
- For a faster decreasing the temperature set **cooling_factor** to a smaller number, and set to a higher number for a slower decrease.
- When for the same given data the same results are needed, set **randomize** to *false*.
 - When estimating how long it takes to do one cycle: use false

A recommendation is to play with the values and see what fits to the particular data.

Description Of the Control parameters

The control parameters are optional, and have a default value.

Parameter	Туре	Default	Description
start_vid	BIGINT	0	The greedy part of the implementation will use this identifier.
end_vid	BIGINT	0	Last visiting vertex before returning to start_vid.
max_processing_time	FLOAT	+infinity	Stop the annealing processing when the value is reached.
tries_per_temperature	INTEGER	500	Maximum number of times a neighbor(s) is searched in each temperature.
max_changes_per_tempe		60	Maximum number of times the solution is changed in each temperature.
max_consecutive_non_ch	a nges TEGER	100	Maximum number of consecutive times the solution is not changed in each temperature.
initial_temperature	FLOAT	100	Starting temperature.
final_temperature	FLOAT	0.1	Ending temperature.
cooling_factor	FLOAT	0.9	Value between between 0 and 1 (not including) used to calculate the next temperature.
randomize	BOOLEAN	true	• true: Use current time as seed • false: Use <i>l</i> as seed. Using this value will get the same results with the same data in each execution.

Description of the return columns

Returns set of (seq, node, cost, agg_cost)

Column	Type	Description
seq	INTEGER	Row sequence.
node	BIGINT	Identifier of the node/coordinate/point.
cost	FLOAT	Cost to traverse from the current node ito the n
		• 0 for the last row in the path sequence.
agg_cost	FLOAT	Aggregate cost from the node at seq = 1 to the
		• 0 for the first row in the path sequence.

See Also

References

- http://en.wikipedia.org/wiki/Traveling_salesman_problem
- http://en.wikipedia.org/wiki/Simulated_annealing

Indices and tables

- genindex
- · search

5.1.7 Driving Distance - Category

- pgr_drivingDistance Driving Distance based on pgr_dijkstra
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints
- · Post pocessing
 - pgr_alphaShape Alpha shape computation
 - pgr_pointsAsPolygon Polygon around a set of points

pgr_alphaShape

Name

pgr_alphaShape — Core function for alpha shape computation.

Synopsis

Returns a table with (x, y) rows that describe the vertices of an alpha shape.

```
table() pgr_alphaShape(text sql [, float8 alpha]);
```

Description

sql text a SQL query, which should return a set of rows with the following columns:

```
SELECT id, x, y FROM vertex_table
```

- id int4 identifier of the vertex
- x float8 x-coordinate
- y float8 y-coordinate

alpha (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha value is used. For more information, see CGAL - 2D Alpha Shapes¹⁵.

Returns a vertex record for each row:

- x x-coordinate
- y y-coordinate

¹⁵http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

If a result includes multiple outer/inner rings, return those with separator row (x=NULL and y=NULL).

History

- Renamed in version 2.0.0
- Added alpha argument with default 0 (use optimal value) in version 2.1.0
- Supported to return multiple outer/inner ring coordinates with separator row (x=NULL and y=NULL) in version 2.1.0

Examples

PgRouting's alpha shape implementation has no way to control the order of the output points, so the actual output might different for the same input data. The first query, has the output ordered, he second query shows an example usage:

Example: the (ordered) results

```
SELECT * FROM pgr_alphaShape(
    'SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y
   FROM edge_table_vertices_pgr') ORDER BY x, y;
 x | y
  0 |
0.5 | 3.5
  2 |
        0
  2 |
        4
3.5 |
        4
  4 |
        1
  4 |
  4 |
(8 rows)
```

Example: calculating the area

Steps:

- · Calculates the alpha shape
 - the ORDER BY clause is not used.
- · constructs a polygon
- and computes the area

```
(1 row)
```

The queries use the Sample Data network.

See Also

- pgr_drivingDistance Driving Distance
- pgr_pointsAsPolygon Polygon around set of points

Indices and tables

- genindex
- · search

pgr_pointsAsPolygon

Name

pgr_pointsAsPolygon — Draws an alpha shape around given set of points.

Synopsis

Returns the alpha shape as (multi)polygon geometry.

```
geometry pgr_pointsAsPolygon(text sql [, float8 alpha]);
```

Description

sql text a SQL query, which should return a set of rows with the following columns:

```
SELECT id, x, y FROM vertex_result;
```

- id int4 identifier of the vertex
- x float8 x-coordinate
- y float8 y-coordinate

alpha (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha value is used. For more information, see CGAL - 2D Alpha Shapes¹⁶.

Returns a (multi)polygon geometry (with holes).

History

- Renamed in version 2.0.0
- Added alpha argument with default 0 (use optimal value) in version 2.1.0
- Supported to return a (multi)polygon geometry (with holes) in version 2.1.0

¹⁶http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

Examples

In the following query there is no way to control which point in the polygon is the first in the list, so you may get similar but different results than the following which are also correct.

The query use the Sample Data network.

See Also

- pgr_drivingDistance Driving Distance
- pgr_alphaShape Alpha shape computation

Indices and tables

- genindex
- · search

See Also

Indices and tables

- genindex
- search

5.1.8 See Also

Indices and tables

- genindex
- · search

All Pairs - Family of Functions

- pgr_floydWarshall Floyd-Warshall's Algorithm
- pgr_johnson- Johnson's Algorithm

```
pgr_aStar - Shortest Path A*
```

pgr_bdAstar - Bi-directional A* Shortest Path

pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- *pgr_dijkstraCost* Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to create a costs matrix.

- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.
- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr_KSP - K-Shortest Path

pgr_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

- *pgr_TSP* When input is given as matrix cell information.
- pgr_eucledianTSP When input are coordinates.

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on pgr_dijkstra
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints
- Post pocessing
 - pgr_alphaShape Alpha shape computation
 - pgr_pointsAsPolygon Polygon around a set of points

Available Functions but not official pgRouting functions

- Stable Proposed Functions
- Experimental Functions

6.1 Stable Proposed Functions

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

As part of the Dijkstra - Family of functions

- pgr_dijkstraCostMatrix proposed Use pgr_dijkstra to calculate a cost matrix.
- pgr_dijkstraVia Proposed Use pgr_dijkstra to make a route via vertices.

Families

aStar - Family of functions

- pgr_aStar A* algorithm for the shortest path.
- *pgr_aStarCost proposed* Get the aggregate cost of the shortest paths.
- pgr_aStarCostMatrix proposed Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

- pgr_bdAstar Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Proposed Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix proposed Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

- pgr_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Proposed Bidirectional Dijkstra to calculate the cost of the shortest paths

• pgr_bdDijkstraCostMatrix - proposed - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Flow - Family of functions

- pgr_maxFlow Proposed Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- Applications
 - pgr_edgeDisjointPaths Proposed Calculates edge disjoint paths between two groups of vertices.
 - pgr_maxCardinalityMatch Proposed Calculates a maximum cardinality matching in a graph.

withPoints - Family of functions

- pgr_withPoints Proposed Route from/to points anywhere on the graph.
- pgr_withPointsCost Proposed Costs of the shortest paths.
- pgr_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr_withPointsKSP Proposed K shortest paths.
- pgr_withPointsDD Proposed Driving distance.

categories

Cost - Category

- pgr_aStarCost proposed
- pgr_bdAstarCost Proposed
- pgr_bdDijkstraCost Proposed
- pgr_dijkstraCost
- pgr_withPointsCost Proposed

Cost Matrix - Category

- pgr_aStarCostMatrix proposed
- pgr bdAstarCostMatrix proposed
- pgr_bdDijkstraCostMatrix proposed
- pgr_dijkstraCostMatrix proposed
- pgr_withPointsCostMatrix proposed

KSP Category

- pgr_KSP Driving Distance based on pgr_dijkstra
- pgr_withPointsKSP Proposed Driving Distance based on pgr_dijkstra

6.1.1 aStar - Family of functions

The A* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic that allow it to solve most shortest path problems by evaluation only a sub-set of the overall graph.

- pgr_aStar A* algorithm for the shortest path.
- *pgr_aStarCost proposed* Get the aggregate cost of the shortest paths.

• pgr_aStarCostMatrix - proposed - Get the cost matrix of the shortest paths.

pgr_aStar

Name

pgr_aStar — Returns the shortest path using A* algorithm.

Fig. 6.1: Boost Graph Inside

Availability:

- pgr_astar(one to one) 2.0.0, Signature changed 2.3.0
- pgr_astar(other signatures) 2.4.0

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Vertices of the graph are:
 - positive when it belongs to the edges_sql
- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path:
 - * The agg_cost the non included values (u, v) is ∞
- When (x,y) coordinates for the same vertex identifier differ:
 - A random selection of the vertex's (x,y) coordinates is used.
- Running time: $O((E+V) * \log V)$

Signature Summary

```
pgr_aStar(edges_sql, start_vid, end_vid)
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
```

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

```
pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- proposed pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- proposed pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- proposed RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost) OR EMPTY SET
```

Signatures

Minimal Signature

```
pgr_aStar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

Example Using the defaults

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   2, 12);
seq | path_seq | node | edge | cost | agg_cost
                 2 | 4 | 1 |
5 | 10 | 1 |
  1 |
           1 |
                        10 |
  2 |
            2 |
                                           1
                               1 |
                 10 |
            3 |
                        12 |
  3 |
                                           2
                               1 |
            4 |
                        13 |
                 11 |
  4 |
                                           3
           5 I
                 12 |
                       -1 |
                               0 |
  5 I
(5 rows)
```

One to One

```
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

Example Undirected using Heuristic 2

```
SELECT * FROM pgr_astar(
    'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    2, 12,
    directed := false, heuristic := 2);
seq | path_seq | node | edge | cost | agg_cost
                   2 | 2 | 1 |
3 | 3 | 1 |
4 | 16 | 1 |
9 | 15 | 1 |
   1 |
            1 |
              2 |
   2 |
              3 | 4 , 9 |
   3 |
   4 |
                                                 3
                                   0 |
                   12 |
              5 |
                            -1 |
   5 |
(5 rows)
```

One to many

```
pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_astar* where the starting vertex is fixed, and stop when all end vids are reached.

- The result is equivalent to the union of the results of the one to one *pgr_astar*.
- The extra end_vid in the result is used to distinguish to which path it belongs.

Example

```
_____
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   2, ARRAY[3, 12], heuristic := 2);
seq | path_seq | end_vid | node | edge | cost | agg_cost
        1 |
               3 | 2 | 4 |
  1 |
                                     1 |
                                8 |
  2 |
           2 |
                    3 |
                          5 |
                                       1 |
                                                1
                                9 |
           3 |
  3 |
                    3 |
                          6 |
                                       1 |
                                                2
                    3 |
                          9 |
                                16 |
                                      1 |
           4 |
  4 |
                          4 |
  5 |
           5 |
                    3 |
                                3 |
                                      1 |
                          3 |
                   3 |
  6 |
           6 |
                                -1 I
                                      0 |
                          2 |
  7 |
           1 |
                  12 I
                                4 1
                                      1 1
                                                Ω
  8 |
           2 |
                   12 |
                         5 I
                                10 I
                                      1 1
                                                1
           3 |
  9 |
                   12 | 10 |
                                12 |
                                      1 |
           4 |
 10 |
                  12 | 11 |
                                13 |
                                      1 |
           5 |
 11 |
                  12 | 12 |
                                -1 I
(11 rows)
```

Many to One

```
pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr_aStar* where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_aStar*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   ARRAY[7, 2], 12, heuristic := 0);
seq | path_seq | start_vid | node | edge | cost | agg_cost
                            2 |
                     2 |
                                    4 |
                                           1 |
  1 1
          1 |
                                                      0
                              5 |
                                    10 |
                                          1 |
            2 |
                       2 |
  2 |
                                                      1
            3 |
                       2 |
2 |
                             10 |
  3 |
                                    12 |
                                           1 |
                                                      2.
            4 |
                                    13 |
                                            1 |
                                                      3
   4 |
                             11 I
             5 |
                        2 |
                             12 |
                                    -1 |
                                            0 |
  5 I
```

6	1	7	7	6	1	0
7	2	7	8	7	1	1
8	3	7	5	10	1	2
9	4	7	10	12	1	3
10	5	7	11	13	1	4
11	6	7	12	-1	0	5
(11 rows)						

Many to Many

```
pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr_dijkstra* for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

SELECT	SELECT * FROM pgr_astar(
' 5	'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',						
AF	RRAY[7, 2],	ARRAY[3, 12]	, heurist:	ic := 2);		
seq	path_seq	start_vid	end_vid	node	edge	cost	agg_cost
+	+	++	+	+	+	+	+
1	1	2	3	2	4	1	0
2	2	2	3	1 5	8	1	1
3	3	2	3	1 6	9	1	2
4	4	2	3	9	16	1	3
5	5	2	3	4] 3	1	4
6	6	2	3	3	-1	0	5
7	1	7	3	1 7	6	1	0
8	2	7	3	8	7	1	1
9	3	7	3	5	8	1	2
10	4	7	3	1 6	9	1	3
11	5	7	3	9	16	1	4
12	6	7	3	4	3	1	5
13	7	7	3] 3	-1	0	6
14	1	2	12	2	4	1	0
15	2	2	12	5	10	1	1
16	3	2	12	10		1	2
17	4	2 2	12	11	13	•] 3
18	5		12	12	_		4
19	1 2	7 1 7	12	7	6 7	1	0
20 21	4 3	/ 7	12 12	8 5	/ 10	1 1	1 1
22) 3 4	1 / I I 7 I	12	1 10	10 12	•	1 2 1 3
23	1 4 1 5	1 / I I 7 I	12			•	1 3 1 4
24) 5 6	1 / I I 7 I		11 12		•	I 4 I 5
(24 rc		/	12	1 12		1 0	ı J
(24 10	JWS)						

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре
edges_sql	TEXT
start_vid	ANY-INTEGER
end_vid	ANY-INTEGER
directed	BOOLEAN
heuristic	INTEGER
factor	FLOAT
epsilon	FLOAT

Description of the parameters of the signatures

Description of the return values for a path Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Туре	Description
umn		
seq	INT	Sequential value starting from 1.
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for
		the same start_vid to end_vid combination.
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for
		the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cos	t FLOAT	Aggregate cost from start_v to node.

See Also

- aStar Family of functions
- Sample Data
- $\bullet \ http://www.boost.org/libs/graph/doc/astar_search.html$
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- · search

pgr_aStarCost - proposed

Name

pgr_aStarCost — Returns the aggregate cost shortest path using aStar - Family of functions algorithm.

Fig. 6.2: Boost Graph Inside

Availability: 2.4.0

Signature Summary

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

```
pgr_aStarCost(edges_sql, start_vid, end_vid) -- Proposed
pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed
pgr_aStarCost(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed
pgr_aStarCost(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed
PRETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

Signatures

Minimal Signature

```
pgr_aStarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

Example Using the defaults

```
2 | 12 | 4
(1 row)
```

One to One

```
pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

Example Setting a Heuristic

```
SELECT * FROM pgr_aStarCost(
    'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    2, 12,
    directed := false, heuristic := 2);
start_vid | end_vid | agg_cost
    2 | 12 | 4
(1 row)
```

One to many

```
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

This signature finds a path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_astar* where the starting vertex is fixed, and stop when all end_vids are reached.

- The result is equivalent to the union of the results of the one to one *pgr_astar*.
- The extra end_vid column in the result is used to distinguish to which path it belongs.

Example

Many to One

```
pgr_aStarCost(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) +- Proposed RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr_aStar* where the ending vertex is fixed.

• The result is the union of the results of the one to one *pgr_aStar*.

• The extra start_vid column in the result is used to distinguish to which path it belongs.

Example

Many to Many

```
pgr_aStarCost(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr_dijkstra for all start_vids.

- The result is the union of the results of the one to one pgr dijkstra.
- The extra start_vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_aStarCost(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   ARRAY[7, 2], ARRAY[3, 12], heuristic := 2);
start_vid | end_vid | agg_cost
        ---+-----
        2 |
                3 |
               12 |
        2 |
                            4
        7 |
                3 |
                            6
        7 |
                12 |
                            5
(4 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре
edges_sql	TEXT
start_vid	ANY-INTEGER
end_vid	ANY-INTEGER
directed	BOOLEAN
heuristic	INTEGER
factor	FLOAT
epsilon	FLOAT

Description of the return values for a Cost function Returns set of (start_vid, end_vid,

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

See Also

agg_cost)

• aStar - Family of functions.

 $\label{lem:continuous} \textbf{Description of the parameters of the signatures}$

- Sample Data network.
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- search

pgr_aStarCostMatrix - proposed

Name

pgr_aStarCostMatrix - Calculates the a cost matrix using pgr_aStar.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.3: Boost Graph Inside

Availability: 2.4.0

Synopsis

Using aStar algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_aStarCostMatrix(edges_sql, vids)
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

```
pgr_aStarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for vertices 1, 2, 3, and 4.

```
1 |
         3 |
                   2 |
                               1
                   2 |
                               2
         4 |
         1 |
                   3 |
                               6
                  3 |
         2 |
                               5
                  3 |
                               1
         4 |
         1 |
                  4 |
                               5
         2 |
                   4 |
         3 |
                   4 |
                               3
(12 rows)
```

Complete Signature

```
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_aStarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   directed := false, heuristic := 2
);
start_vid | end_vid | agg_cost
        2 |
                 1 |
        3 |
                 1 |
                             2
                 1 |
        4 |
                             3
        1 |
                 2 |
                            1
        3 |
                 2 |
                            1
        4 |
                 2 |
                            2
        1 |
                 3 |
                            2
        2 |
                 3 |
                            1
        4 |
                 3 |
        1 |
                 4 |
                            3
        2 |
                 4 |
                             2
        3 |
                  4 |
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре
edges_sql	TEXT
vids	ARRAY[ANY-INTEGER]
directed	BOOLEAN
heuristic	INTEGER
factor	FLOAT
epsilon	FLOAT

Description of the parameters of the signatures

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

```
SELECT * FROM pgr_TSP(
   $$
   SELECT * FROM pgr_aStarCostMatrix(
       'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
       (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
       directed:= false, heuristic := 2
   $$,
   randomize := false
seq | node | cost | agg_cost
----+----
        1 |
             1 |
                        0
  1 |
       2 |
             1 |
  2 |
                         1
  3 |
         3 |
               1 |
                          2
  4 |
               3 |
                          3
         4 |
  5 |
         1 |
               0 |
```

(5 rows)

See Also

- aStar Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

The problem definition (Advanced documentation)

The A* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic, that is an estimation of the remaining cost from the vertex to the goal, that allows to solve most shortest path problems by evaluation only a sub-set of the overall graph. Running time: $O((E+V)*\log V)$

Heuristic

Currently the heuristic functions available are:

- 0: h(v) = 0 (Use this value to compare with pgr_dijkstra)
- 1: $h(v) = abs(max(\Delta x, \Delta y))$
- 2: $h(v) = abs(min(\Delta x, \Delta y))$
- 3: $h(v) = \Delta x * \Delta x + \Delta y * \Delta y$
- 4: $h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)$
- 5: $h(v) = abs(\Delta x) + abs(\Delta y)$

where $\Delta x = x_1 - x_0$ and $\Delta y = y_1 - y_0$

Factor

Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the points:

latitude	conversion	Factor
45	1 longitude degree is 78846.81 m	78846
0	1 longitude degree is 111319.46 m	111319

Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the points and on the average speed say 25m/s is the speed.

latitude	conversion	Factor
45	1 longitude degree is (78846.81m)/(25m/s)	3153 s
0	1 longitude degree is (111319.46 m)/(25m/s)	4452 s

See Also

- pgr_aStar
- pgr_aStarCost proposed
- pgr_aStarCostMatrix proposed
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- · search

6.1.2 Bidirectional A* - Family of functions

- pgr_bdAstar Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Proposed Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix proposed Bidirectional A* algorithm to calculate a cost matrix of paths.

pgr_bdAstarCost - Proposed

Name

 $pgr_bdAstarCost$ — Returns the shortest path using A* algorithm.

Fig. 6.4: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Signature Summary

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid)
pgr_bdAstarCost(edges_sql, start_vid, end_vid [, directed , heuristic, factor, epsilon])
pgr_bdAstarCost(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstarCost(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstarCost(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

Using these signatures, will load once the graph and perform several one to one pgr_bdAstarCost

- The result is the union of the results of the one to one pgr_bdAstarCost.
- The extra start_vid and/or end_vid in the result is used to distinguish to which path it belongs.

Signatures

Minimal Signature

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start_vid to the end_vid

- · on a directed graph
- with **heuristic**'s value 5
- with factor's value 1
- with **epsilon**'s value 1

Example Using the defaults

```
2 | 3 | 5
(1 row)
```

pgr_bdAstarCost One to One

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing the user to choose

- if the graph is directed or undirected
- · heuristic.
- · and/or factor
- and/or epsilon.

Note: In the One to One signature, because of the deprecated signature existence, it is compulsory to indicate if the graph is **directed** or **undirected**.

Example Directed using Heuristic 2

pgr_bdAstarCost One to many

```
pgr_bdAstarCost(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic.
- and/or factor
- and/or epsilon.

Example Directed using Heuristic 3 and a factor of 3.5

```
(2 rows)
```

pgr_bdAstarCost Many to One

```
pgr_bdAstarCost(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from each start_vid in start_vids to the end_vid allowing the user to choose

- if the graph is **directed** or **undirected**
- and/or heuristic,
- · and/or factor
- · and/or epsilon.

Example Undirected graph with Heuristic 4

pgr_bdAstarCost Many to Many

```
pgr_bdAstarCost(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_vids allowing the use

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

Example Directed graph with a factor of 0.5

```
SELECT * FROM pgr_bdAstarCost(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], ARRAY[3, 11],
   factor := 0.5
);
start_vid | end_vid | agg_cost
                3 |
        2 |
                             5
        2 |
                            3
                11 |
                 3 |
        7 |
                             6
                11 |
        7 |
(4 rows)
```

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Type
edges_sql	TEXT
start_vid	ANY-INTEGER
start_vids	ARRAY[ANY-INTEGER]
end_vid	ANY-INTEGER
end_vids	ARRAY[ANY-INTEGER]
directed	BOOLEAN
heuristic	INTEGER
neur iste	INTEGER
factor	FLOAT
epsilon	FLOAT
1 -	

$\label{lem:parameters} \textbf{Description of the parameters of the signatures}$

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description	
start_vid	BIGINT	dentifier of the starting vertex. Used when multiple starting vetrices are in the query.	
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.	
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.	

See Also

- Bidirectional A* Family of functions
- Sample Data network.
- Migration Guide⁵
- http://www.boost.org/libs/graph/doc/astar_search.html
- http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- genindex
- search

 $^{^5} https://github.com/cvvergara/pgrouting/wiki/Migration-Guide\#pgr_bdastar$

pgr_bdAstarCostMatrix - proposed

Name

pgr_bdAstarCostMatrix - Calculates the a cost matrix using pgr_bdAstar.

Fig. 6.5: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_bdAstarCostMatrix(edges_sql, start_vids)
pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

Signatures

Minimal Signature

```
pgr_bdAstarCostMatrix(edges_sql, start_vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

This usage calculates the cost from the each start_vid in start_vids to each start_vid in start_vids

- on a directed graph
- with **heuristic**'s value 5
- with factor's value 1
- with epsilon's value 1

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_bdAstarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
----+----
       1 |
             3 |
                2 |
       1 |
                          6
               4 |
                          5
       1 |
       2 |
               1 |
                         1
       2 |
               3 |
                         5
       2 |
               4 |
                          4
               1 |
       3 |
                          2
       3 |
               2 |
       3 |
               4 |
                          3
       4 |
               1 |
                          3
       4 |
               2 |
                          2
               3 |
        4 |
                          1
(12 rows)
```

Complete Signature

```
pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

This usage calculates the cost from the each start_vid in start_vids to each start_vid in start_vids allowing the

- if the graph is directed or undirected
- heuristic,
- · and/or factor
- and/or epsilon.

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_bdAstarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   false
);
start_vid | end_vid | agg_cost
        1 |
                2 |
        1 |
                3 |
                           2
        1 |
                 4 |
        2 |
                1 |
                           1
        2 |
                3 |
                           1
                           2
        2 |
                 4 |
                            2
                 1 |
        3 |
        3 |
                 2 |
                            1
```

	3	4	1
	4	1	3
	4	2	2
	4	3	1
(12 rc	ows)		

Description of the Signatures

Description of the edges_sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре
edges_sql	TEXT
start_vid	ANY-INTEGER
start_vids	ARRAY[ANY-INTEGER]
end_vid	ANY-INTEGER
end_vids	ARRAY[ANY-INTEGER]
directed	BOOLEAN
heuristic	INTEGER
factor	FLOAT
epsilon	FLOAT

Description of the parameters of the signatures

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Type	Description	
start_vid	BIGINT	dentifier of the starting vertex. Used when multiple starting vetrices are in the query.	
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.	
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.	

Examples

Example Use with tsp

3	3	1	2		
4	4	3	3		
5	1	0	6		
(5 rows)					

See Also

- Bidirectional A* Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

Synopsis

Based on A* algorithm, the bidirectional search finds a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid). It runs two simultaneous searches: one forward from the start_vid, and one backward from the end_vid, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
- When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is θ
- When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is ∞
- Running time (worse case scenario): $O((E + V) * \log V)$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_astar

Description of the Signatures

Description of the edges sql query for astar like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of <i>source</i> vertex.
y1	ANY-NUMERICAL		Y coordinate of <i>source</i> vertex.
x2	ANY-NUMERICAL		X coordinate of <i>target</i> vertex.
y2	ANY-NUMERICAL		Y coordinate of <i>target</i> vertex.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Description
edges_sql	TEXT	Edges SQL query as described
		above.
start_vid	ANY-INTEGER	Starting vertex identifier.
start_vids	ARRAY[ANY-INTEGER]	Starting vertices identifierers.
end_vid	ANY-INTEGER	Ending vertex identifier.
end_vids	ARRAY[ANY-INTEGER]	Ending vertices identifiers.
directed	BOOLEAN	 Optional. When false the graph is considered as Undirected. Default is true which considers the graph as Directed.
heuristic	INTEGER	 (optional). Heuristic number. Current valid values 0~5. Default 5 0: h(v) = 0 (Use this value to compare with pgr_dijkstra) 1: h(v) abs(max(dx, dy)) 2: h(v) abs(min(dx, dy)) 3: h(v) = dx * dx + dy * dy 4: h(v) = sqrt(dx * dx + dy * dy) 5: h(v) = abs(dx) + abs(dy)
factor	FLOAT	(optional). For units manipulation. $factor > 0$. Default 1. see $Factor$
epsilon	FLOAT	(optional). For less restricted results. $epsilon >= 1$. Default 1.

See Also

Indices and tables

- genindex
- search

6.1.3 Bidirectional Dijkstra - Family of functions

- pgr_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Proposed Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr_bdDijkstraCostMatrix proposed Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

pgr_bdDijkstraCost - Proposed

 $\verb|pgr_bdDijkstraCost| - Returns the shortest path (s) 's cost using Bidirectional Dijkstra algorithm.$

Fig. 6.6: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Signature Summary

```
pgr_dijkstraCost(edges_sql, start_vid, end_vid)
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid, directed)
pgr_bdDijkstraCost(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstraCost(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstraCost(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a directed graph from one start_vid to one end_vid:

Example

pgr_bdDijkstraCost One to One

```
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Example

pgr_bdDijkstraCost One to many

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr_dijkstra* where the starting vertex is fixed, and stop when all end_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr_dijkstra.
- The extra end_vid in the result is used to distinguish to which path it belongs.

Example

pgr_bdDijkstraCost Many to One

```
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr_dijkstra* where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  ARRAY[2, 7], 3);
seq | path_seq | start_vid | node | edge | cost | agg_cost
  1 |
          1 |
                   2 |
                          2 | 4 |
                                     1 |
                                               0
          2 |
                 2 | 2 |
                         5 | 8 | 1 |
  2 |
                                               1
                               9 |
                         6 |
  3 |
          3 |
                   2 |
                                     1 |
                                              2.
  4 |
          4 |
                         9 | 16 |
                   2 |
                                     1 |
                                               3
  5 | 6 | 7 |
          5 |
                                     1 |
                    2 |
                          4 | 3 |
          6 |
                                     0 |
                    2 |
                          3 | -1 |
                                               5
          1 |
  7 |
                    7 |
                          7 |
                                6 |
                                     1 |
                                               Ω
          2 |
                    7 |
  8 |
                          8 |
                                7 |
                                     1 |
                                               1
          3 |
                    7 |
                          5 |
                                     1 |
  9 |
                                8 I
          4 |
                    7 |
                          6 |
 10 |
                                9 |
                                      1 |
                                               3
                   7 |
 11 |
          5 |
                          9 |
                               16 |
                                     1 |
                                               4
                    7 |
                                     1 |
                                               5
 12 |
          6 |
                          4 |
                               3 |
          7 |
                    7 |
                          3 |
                               -1 |
                                               6
 13 |
                                     0 1
(13 rows)
```

pgr_bdDijkstraCost Many to Many

```
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start_vid in start_vids to each end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr_dijkstra* for all start_vids.

- The result is the union of the results of the one to one *pgr_dijkstra*.
- The extra start vid in the result is used to distinguish to which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

Example

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  ARRAY[2, 7], ARRAY[3, 11]);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
1 | 2 |
                          3 | 2 | 4 | 1 |
  1 |
         2 | 3 |
                                 5 I
  2 |
                  2 |
                           3 |
                                     8 |
                                            1 |
                                                    1
                           3 |
                                 6 |
                                      9 |
  3 |
                  2 |
                                            1 1
          4 |
                   2 |
                           3 |
                                 9 |
                                     16 |
  4 |
                                            1 |
                                                    3
          5 |
6 |
                   2 |
                           3 |
  5 |
                                 4 |
                                      3 |
                                            1 |
                                                    4
                   2 |
                           3 |
                                 3 |
                                     -1 |
  6 |
                                            0 1
          1 |
  7 |
                   2 |
                          11 |
                                 2 |
                                      4 |
                                            1 |
                                                    0
  8 |
          2 |
                   2 |
                           11 |
                                 5 I
                                      8 |
                                            1 |
                                                    1
                   2 |
                          11 |
  9 |
          3 |
                                 6 |
                                     11 |
                                            1 |
                                                    2
                   2 |
          4 |
                          11 |
                               11 |
                                     -1 |
 10 |
                                            0 |
                                                    3
                   7 |
 11 |
                                7 |
          1 |
                           3 |
                                      6 |
                                                    0
                                            1 |
                   7 |
          2 |
                                      7 |
 12 I
                           3 |
                                 8 1
                                            1 |
                                                    1
 13 I
          3 I
                   7 |
                           3 |
                                     8 |
                                 5 I
                                            1 |
```

14	4	7	3	6	9	1	3	
15	5	7	3	9	16	1	4	
16	6	7	3	4	3	1	5	
17	7	7	3	3	-1	0	6	
18	1	7	11	7	6	1	0	
19	2	7	11	8	7	1	1	
20	3	7	11	5	10	1	2	
21	4	7	11	10	12	1	3	
22	5	7	11	11	-1	0	4	
(22 rows)								

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Column	Tuno	Default
Column	Type	Default
sql	TEXT	
start_vid	BIGINT	
start_vids	ARRAY[BIGINT]	
end_vid	BIGINT	
end_vids	ARRAY[BIGINT]	
directed	BOOLEAN	true

Description of the parameters of the signatures

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

See Also

- The queries use the Sample Data network.
- pgr_bdDijkstra
- $\bullet\ http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP\%20shortest\%20path\%20algorithms.pdf$
- https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

- genindex
- · search

pgr_bdDijkstraCostMatrix - proposed

Name

pgr_bdDijkstraCostMatrix - Calculates the a cost matrix using pgr_bdDijkstra.

Fig. 6.7: Boost Graph Inside

Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vids)
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Signatures

Minimal Signature

The minimal signature:

• Is for a directed graph.

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_bdDijkstraCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
-----
        1 |
                2 |
                          1
        1 |
                3 |
                           6
                4 |
        1 |
        2 |
                1 |
                           1
                3 |
        2 |
                           5
        2 |
                4 |
                           4
        3 |
                1 |
                           2
                2 |
        3 |
                           1
                           3
        3 |
                 4 |
        4 |
                 1 |
```

```
4 | 2 | 2
4 | 3 | 1
(12 rows)
```

Complete Signature

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_bdDijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
) ;
start_vid | end_vid | agg_cost
   -----
        1 |
                 2 |
                            1
        1 |
                 3 |
                            2
                 4 |
                            3
        1 |
                 1 |
                            1
        2 |
        2 |
                 3 |
                            1
        2 |
                 4 |
                            2
        3 |
                 1 |
                            2
                 2 |
        3 |
                            1
        3 |
                 4 |
                            1
        4 |
                 1 |
                            3
                 2 |
        4 |
                            2
        4 |
                 3 |
                            1
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Pa-	lype	Description
rame-		
ter		
edges_sq	I TEXT	Edges SQL query as described above.
start_vid	${f s}$ ARRAY [ANY $-$ INT	EAFRy of identifiers of the vertices.
di-	BOOLEAN	(optional). When false the graph is conside
rected		true which considers the graph as Directed.

Description of the return values for a Cost function Returns set of $(start_vid, end_vid, agg_cost)$

Column	Type	Description
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example Use with tsp

seq	node	cost		agg_cost
+	+		-+	
1	1	1		0
2	2	1		1
3	3	1		2
4	4	3		3
5	1	0		6
(5 row	s)			

See Also

- Bidirectional Dijkstra Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

Indices and tables

- genindex
- · search

Synopsis

Based on Dijkstra's algorithm, the bidirectional search finds a shortest path a starting vertex (start_vid) to an ending vertex (end_vid). It runs two simultaneous searches: one forward from the source, and one backward from the target, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
- When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is 0
- When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is ∞
- Running time (worse case scenario): $O((V \log V + E))$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_dijkstra

See Also

Indices and tables

• genindex

· search

6.1.4 withPoints - Family of functions

When points are also given as input:

- pgr_withPoints Proposed Route from/to points anywhere on the graph.
- pgr_withPointsCost Proposed Costs of the shortest paths.
- pgr_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr_withPointsKSP Proposed K shortest paths.
- pgr_withPointsDD Proposed Driving distance.

pgr withPoints - Proposed

Name

pgr_withPoints - Returns the shortest path in a graph with additional temporary vertices.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.8: Boost Graph Inside

Availability: 2.2.0

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path(s)

Characteristics:

The main Characteristics are:

- Process is done only on edges with positive costs.
- Vertices of the graph are:
 - positive when it belongs to the edges_sql
 - negative when it belongs to the points_sql

- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path. The agg_cost the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path: The agg_cost the non included values (u,v) is ∞
- For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- The returned values are ordered: start_vid ascending end_vid ascending
- Running time: $O(|start_vids| \times (V \log V + E))$

Signature Summary

```
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vids, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vids, end_vid, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vids, end_vids, directed, driving_side, details)
RETURNS SET OF (seq, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)
```

Signatures

Minimal Use

The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No **details** are given about distance of other points of points_sql query.

```
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

Example From point 1 to point 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, -3);
seq | path_seq | node | edge | cost | agg_cost
 ____+
                      1 | 0.6 |
                                      0
  1 |
           1 |
                -1 |
                2 |
                      4 | 1 |
10 | 1 |
                      4 |
           2 |
  2 |
                                     0.6
                5 |
           3 |
  3 |
                                     1.6
           4 |
                     12 | 0.6 |
  4 |
               10 |
                                     2.6
           5 |
                     -1 |
  5 I
               -3 I
                           0 1
                                     3.2
(5 rows)
```

One to One

Example From point 1 to vertex 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3,
   details := true);
seq | path_seq | node | edge | cost | agg_cost
____+
           1 | -1 | 1 | 0.6 |
           2 | 2 | 4 | 0.7 |
  2 |
                                      0.6
           3 | -6 | 4 | 0.3 |
                                      1.3
  3 |
            4 | 5 | 8 | 1 |
                                      1.6
  4 |
           5 | 6 | 9 | 1 |
6 | 9 | 16 | 1 |
7 | 4 | 3 | 1 |
8 | 3 | -1 | 0 |
  5 |
                                       2.6
                                       3.6
  6 |
  7 |
                                       4.6
  8 |
(8 rows)
```

One to Many

Example From point 1 to point 3 and vertex 5

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, ARRAY[-3, 5]);
seq | path_seq | end_pid | node | edge | cost | agg_cost
1 | -3 | -1 | 1 | 0.6 |
                                         0
  1 |
                 -3 | 2 |
-3 | 5 |
                               4 | 1 | 1 | 10 | 1 |
  2 |
          2 |
                                             0.6
                                            1.6
  3 |
                  -3 |
          3 |
                              10 |
                  -3 | 10 |
           4 | 5 |
  4 |
                              12 | 0.6 |
                                             2.6
                 -3 | -3 |

-3 | -1 |
          5 |
                              5 |
               5 | -1 |
5 | 2 |
5 | 5 |
          1 |
  6 |
                              4 | 1 |
-1 | 0 |
                                            0.6
  7 |
          2 |
 8 |
          3 |
                              -1 |
                                           1.6
(8 rows)
```

Many to One

Example From point 1 and vertex 2 to point 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], -3);
seq | path_seq | start_pid | node | edge | cost | agg_cost
 -1 | -1 | 1 | 0.6 |
-1 | 2 | 4 | 1 |
-1 | 5 | 10 | 1 |
  1 |
           1 |
           2 |
                                               0.6
  2 |
           3 |
                     -1 |
                                                1.6
  3 |
                     -1 | 10 |
                                12 | 0.6 |
                                               2.6
  4 |
           4 |
            5 I
                     -1 | -3 |
                                -1 |
                                      0 |
  5 I
                                               3.2
                     2 |
                           2 | 4 | 1 |
  6 1
           1 |
                                                 0
```

7	2	2	5	10	1	1
8	3	2	10	12	0.6	2
9	4	2	-3	-1	0	2.6
(9 rows)						

Many to Many

Example From point 1 and vertex 2 to point 3 and vertex 7

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7]);
seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
                    --
-1 |
                            -3 | -1 | 1 | 0.6 |
  1 |
           1 |
                    -1 |
           2 |
                            -3 | 2 |
-3 | 5 |
                                         4 | 1 |
10 | 1 |
  2 |
                                                      0.6
                            -3 | 5 .
-3 | 5 .
-1 10 |
                                        10 |
  3 |
           3 |
                    -1 |
                                                      1.6
                    -1 |
           4 |
                                        12 | 0.6 |
  4 |
                                                       2.6
          4 |
5 |
                    -1 |
                            -3 |
                                 -3 |
                                        -1 |
                                             0 |
  5 I
                                                      3.2
          1 |
                    -1 |
                                        1 | 0.6 |
  6 |
                             7 | -1 |
                                                       0
       7 |
                    -1 |
                             7 |
                                  2 |
                                        4 |
                                             1 |
                                                     0.6
                             7 | 5 |
                                        7 1
  8 |
                   -1 I
                                             1 |
                                                      1.6
                   -1 |
                             7 | 8 |
  9 |
                                        6 | 1 |
                                                      2.6
                   -1 |
2 |
2 |
2 |
2 |
                             7 |
                                   7 |
                                        -1 | 0 |
 10 |
                                                      3.6
 11 |
                            -3 | 2 |
                                        4 | 1 |
 12 |
                            -3 | 5 | 10 | 1 |
 13 |
                            -3 | 10 | 12 | 0.6 |
                                                       2
                                                      2.6
 14 |
                            -3 | -3 | -1 | 0 |
                    2 |
                             7 | 2 |
 15 |
                                        4 | 1 |
                                                       0
 16 |
                             7 | 5 |
                                        7 | 1 |
                    2 |
                                                        1
          3 |
                    2 | 2 |
 17 |
                             7 | 8 |
                                        6 | 1 |
                                                        2.
 18 |
                            7 | 7 | -1 | 0 |
(18 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. If column present, it can not be NULL. If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Parameter	Туре
edges_sql	TEXT
points_sql	TEXT
start_vid	ANY-INTEGER
end_vid	ANY-INTEGER
start_vids	ARRAY[ANY-INTEGER]
end_vids	ARRAY[ANY-INTEGER]
directed	BOOLEAN
driving_side	CHAR
details	BOOLEAN

Description of the parameters of the signatures

Description of the return values Returns set of (seq, [path_seq,] [start_vid,] [end_vid,] node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Row sequence.
path_seq	INTEGER	Path sequence that indicates the relative position on the path.
start_vid	BIGINT	Identifier of the starting vertex. When negative: is a point's pid.
end_vid	BIGINT	Identifier of the ending vertex. When negative: is a point's pid.
node	BIGINT	Identifier of the node: • A positive value indicates the node is a vertex of edges_sql. • A negative value indicates the node is a point of points_sql.
edge	BIGINT	Identifier of the edge used to go from node to the • -1 for the last row in the path sequence.
cost	FLOAT	Cost to traverse from node using edge to the ne • 0 for the last row in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_pid to node. • 0 for the first row in the path sequence.

Examples

Example Which path (if any) passes in front of point 6 or vertex 6 with **right** side driving topology.

```
SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:'):: TEXT AS path_
       CASE WHEN edge = -1 THEN ' visits'
           ELSE ' passes in front of'
       END as status,
       CASE WHEN node < 0 THEN 'Point'
           ELSE 'Vertex'
       END as is_a,
       abs(node) as id
   FROM pgr_withPoints(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
       'SELECT pid, edge_id, fraction, side from pointsOfInterest',
       ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
       driving_side := 'r',
       details := true)
   WHERE node IN (-6,6);
       path_at | status
                                       | is_a | id
(-1 \Rightarrow -6) at 4th step: | visits | Point | 6
(-1 \Rightarrow -3) at 4th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 4th step: | passes in front of | Point | 6
```

```
(-1 => -2) at 6th step: | passes in front of | Vertex | 6
(-1 => 3) at 4th step: | passes in front of | Point | 6
(-1 => 3) at 6th step: | passes in front of | Vertex | 6
(-1 => 6) at 4th step: | passes in front of | Point | 6
(-1 => 6) at 6th step: | visits | Vertex | 6
(1 => -6) at 3th step: | visits | Point | 6
(1 => -3) at 3th step: | passes in front of | Point | 6
(1 => -2) at 3th step: | passes in front of | Point | 6
(1 => -2) at 5th step: | passes in front of | Vertex | 6
(1 => 3) at 3th step: | passes in front of | Vertex | 6
(1 => 3) at 5th step: | passes in front of | Vertex | 6
(1 => 6) at 3th step: | passes in front of | Vertex | 6
(1 => 6) at 5th step: | visits | Vertex | 6
(1 => 6) at 5th step: | visits | Vertex | 6
(1 => 6) at 5th step: | visits | Vertex | 6
```

Example Which path (if any) passes in front of point 6 or vertex 6 with **left** side driving topology.

```
SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:'):: TEXT AS path_
        CASE WHEN edge = -1 THEN ' visits'
            ELSE ' passes in front of'
        END as status,
        CASE WHEN node < 0 THEN 'Point'
            ELSE 'Vertex'
        END as is_a,
        abs(node) as id
    FROM pgr_withPoints(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
         'SELECT pid, edge_id, fraction, side from pointsOfInterest',
        ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
        driving_side := 'l',
        details := true)
    WHERE node IN (-6,6);
        path_at | status | is_a | id
 (-1 \Rightarrow -6) at 3th step: | visits | Point | 6
 (-1 \Rightarrow -3) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 5th step: | passes in front of | Vertex | 6
 (-1 \Rightarrow 3) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow 3) at 5th step: | passes in front of | Vertex | 6
 (-1 \Rightarrow 6) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow 6) at 5th step: | visits | Vertex | 6
 (1 \Rightarrow -6) at 4th step: | visits
                                                  | Point | 6
 (1 => -3) at 4th step: \mid passes in front of \mid Point \mid 6
 (1 \Rightarrow -2) at 4th step: | passes in front of | Point
 (1 => -2) at 6th step: \mid passes in front of \mid Vertex \mid 6
 (1 => 3) at 4th step: | passes in front of | Point | 6
(1 => 3) at 6th step: | passes in front of | Vertex | 6
(1 => 6) at 4th step: | passes in front of | Point | 6
 (1 => 6) at 6th step: | visits
                                                   | Vertex | 6
(16 rows)
```

Example Many to many example with a twist: on undirected graph and showing details.

```
SELECT * FROM pgr_withPoints(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], ARRAY[-3,7],
    directed := false,
    details := true);
seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
```

	+	+	+	+	+	+	+
1		-1	-3	-1	1	0.6	0
2	2	-1	-3	2	4	0.7	0.6
3	3	-1	-3	-6	4	0.3	1.3
4	4	-1	-3	5	10	1	1.6
5	5	-1	-3	10	12	0.6	2.6
6	1 6	-1	-3	-3	-1	0	3.2
7	1	-1	7	-1	1	0.6	0
8	2	-1	7	2	4	0.7	0.6
9	3	-1	7	-6	4	0.3	1.3
10	4	-1	7	1 5	7	1	1.6
11	5	-1	7	8	6	0.7	2.6
12	1 6	-1	7	-4	6	0.3	3.3
13	7	-1	7	7	-1	0	3.6
14	1	2	-3	2	4	0.7	0
15	2	2	-3	-6	4	0.3	0.7
16	3	2	-3	1 5	10	1	1
17	4	2	-3	10	12	0.6	2
18	5	2	-3	-3	-1	0	2.6
19	1	2	7	2	4	0.7	0
20	2	2	7	-6	4	0.3	0.7
21	3	2	7	5	7	1	1
22	4	2	7	8	6	0.7	2
23	5	2	7	-4	6	0.3	2.7
24	1 6	2	7	7	-1	0] 3
(24 r	ows)						

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

- genindex
- search

pgr_withPointsCost - Proposed

Name

 $\verb|pgr_withPointsCost-Calculates| the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.$

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.9: Boost Graph Inside

Availability: 2.2.0

Synopsis

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost of the shortest path(s) found.

Characteristics:

The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.
- Vertices of the graph are:
 - positive when it belongs to the edges_sql
 - **negative** when it belongs to the points sql
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost in the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞
- If the values returned are stored in a table, the unique index would be the pair: (start_vid, end_vid).
- For undirected graphs, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- For optimization purposes, any duplicated value in the *start_vids* or *end_vids* is ignored.
- The returned values are ordered:
 - start_vid ascending

- end_vid ascending
- Running time: $O(|start_vids| * (V \log V + E))$

Signature Summary

```
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Note: There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Use

The minimal signature:

- Is for a **directed** graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.

```
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example

One to One

Example

One to Many

Example

Many to One

Example

Many to Many

Example

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. • If column present, it can not be NULL. • If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative position from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Parameter	Туре
edges_sql	TEXT
points_sql	TEXT
start_vid	ANY-INTEGER
end_vid	ANY-INTEGER
start_vids	ARRAY[ANY-INTEGER]
end_vids	ARRAY[ANY-INTEGER]
directed	BOOLEAN
driving_side	CHAR

$\label{lem:description} \textbf{Description of the parameters of the signatures}$

Description of the return values Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex. When negative: is a point's pid.
end_vid	BIGINT	Identifier of the ending point. When negative: is a point's pid.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Examples

Example With **right** side driving topology.

```
SELECT * FROM pgr_withPointsCost(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'l');
start_pid | end_pid | agg_cost
   -----
       -1 |
                -3 |
                        3.2
       -1 |
                7 |
                         3.6
                -3 |
        2 |
                        2.6
        2 |
                7 |
(4 rows)
```

Example With **left** side driving topology.

```
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
```

Example Does not matter driving side.

```
SELECT * FROM pgr_withPointsCost(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'b');
start_pid | end_pid | agg_cost
       -1 | -3 |
                7 |
       -1 |
                         3.6
       2 |
                -3 |
                         2.6
              7 |
        2 |
                          3
(4 rows)
```

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

- genindex
- · search

pgr_withPointsCostMatrix - proposed

Name

pgr_withPointsCostMatrix - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.10: Boost Graph Inside

Availability: 2.2.0

Signature Summary

```
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids)
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Note: There is no details flag, unlike the other members of the withPoints family of functions.

Signatures

Minimal Signature

The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.

```
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Example

```
SELECT * FROM pgr_withPointsCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction from pointsOfInterest',
   array[-1, 3, 6, -6]);
start_vid | end_vid | agg_cost
   ----+----
       -6 |
               -1 |
                        1.3
               3 |
       -6 |
                        4.3
       -6 |
                6 |
                        1.3
               -6 |
       -1 |
                         1.3
                3 |
                         5.6
       -1 |
       -1 |
                6 |
                         2.6
        3 |
                -6 |
                         1.7
        3 |
                -1 |
                         1.6
```

```
3 | 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3 | 3
(12 rows)
```

Complete Signature

Example returning a symmetrical cost matrix

- Using the default side value on the points_sql query
- Using an undirected graph
- Using the default **driving_side** value

```
SELECT * FROM pgr_withPointsCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction from pointsOfInterest',
   array[-1, 3, 6, -6], directed := false);
start_vid | end_vid | agg_cost
       -6 |
                -1 | 1.3
       -6 |
                3 |
                        1.7
       -6 |
                6 |
                         1.3
                -6 I
       -1 |
                         1.3
                3 |
       -1 |
                         1.6
                6 |
                         2.6
       -1 |
        3 |
                -6 |
                         1.7
        3 |
                -1 |
                         1.6
        3 |
                6 |
                          1
                -6 |
                          1.3
        6 |
        6 |
                -1 |
                          2.6
        6 |
                 3 |
(12 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description	
id	ANY-INTEGER		Identifier of the edge.	
source	ANY-INTEGER		Identifier of the first end	
			point vertex of the edge.	
target	ANY-INTEGER		Identifier of the second end	
			point vertex of the edge.	
cost	ANY-NUMERICAL		Weight of the edge	
			(source, target)	
			• When negative:	
			edge (source, target)	
			does not exist, there-	
			fore it's not part of	
			the graph.	
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target,	
			source),	
			• When negative:	
			edge (target, source)	
			does not exist, there-	
			fore it's not part of	
			the graph.	

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. If column present, it can not be NULL. If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Parameter	Туре
edges_sql	TEXT
points_sql	TEXT
start_vids	ARRAY[ANY-INTEGER]
directed	BOOLEAN
driving_side	CHAR

Description of the parameters of the signatures

Description of the return values for a Cost function Returns set of (start_vid, end_vid, agg_cost)

Column	Туре	Description	
start_vid	BIGINT	Identifier of the starting vertex. Used when multiple starting vetrices are in the query.	
end_vid	BIGINT	Identifier of the ending vertex. Used when multiple ending vertices are in the query.	
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.	

Examples

Example Use with tsp

```
SELECT * FROM pgr_TSP(
   $$
    SELECT * FROM pgr_withPointsCostMatrix(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
        'SELECT pid, edge_id, fraction from pointsOfInterest',
       array[-1, 3, 6, -6], directed := false);
    $$,
   randomize := false
);
seq | node | cost | agg_cost
       -6 | 1.3 |
                         0
   1 |
        -1 | 1.6 |
                        1.3
   2 |
        3 |
              1 |
  3 |
                         2.9
        6 | 1.3 |
   4 |
                         3.9
  5 |
              0 |
        -6 |
                         5.2
(5 rows)
```

See Also

- withPoints Family of functions
- Cost Matrix Category

- Traveling Sales Person Family of functions
- sampledata network.

Indices and tables

- genindex
- search

pgr_withPointsKSP - Proposed

Name

pgr_withPointsKSP - Find the K shortest paths using Yen's algorithm.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.11: Boost Graph Inside

Availability: 2.2.0

Synopsis

Modifies the graph to include the points defined in the points_sql and using Yen algorithm, finds the K shortest paths.

Signature Summary

```
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K, directed, heap_paths, driving_sid
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
```

Signatures

Minimal Usage

The minimal usage:

• Is for a directed graph.

- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No **details** are given about distance of other points of the query.
- No heap paths are returned.

```
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
```

Example

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
  -1, -2, 2);
seq | path_id | path_seq | node | edge | cost | agg_cost
  1 | 1 | 1 | -1 | 1 | 0.6 | 0
  2. 1
        1 |
                 2 | 2 | 4 | 1 |
                                        0.6
                 3 | 5 | 8 | 1 |
  3 |
        1 |
                                       1.6
                4 | 6 |
                           9 | 1 |
  4 |
        1 |
                                       2.6
        1 |
  5 I
                5 | 9 | 15 | 0.4 |
  6 |
        1 |
                 6 | -2 | -1 | 0 |
                1 | -1 | 1 | 0.6 |
        2 |
  7 |
                                         0
        2 |
                2 | 2 | 4 | 1 |
                                      0.6
 8 |
 9 |
        2 |
                 3 | 5 |
                           8 | 1 |
                                       1.6
 10 |
        2 |
                 4 |
                      6 | 11 | 1 |
                                       2.6
 11 |
        2 |
                5 | 11 | 13 |
                               1 |
                                        3.6
 12 |
        2 |
                 6 | 12 | 15 | 0.6 |
                                        4.6
 13 I
        2 |
                 7 | -2 |
                           -1 | 0 |
                                        5.2
(13 rows)
```

Complete Signature Finds the K shortest paths depending on the optional parameters setup.

Example With details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 6, 2, details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
  __+____
  1 | 1 | 1 | -1 | 1 | 0.6 | 0
                  2 | 2 | 4 | 0.7 | 0.6
3 | -6 | 4 | 0.3 | 1.3
  2 |
         1 |
  3 |
         1 |
  4 |
         1 |
                  4 | 5 |
                             8 | 1 |
                                           1.6
                  5 |
                                   0 |
  5 |
         1 |
                       6 | -1 |
                                          2.6
                             1 | 0.6 |
  6 |
          2 |
                  1 | -1 |
                                            0
                              4 | 0.7 |
                   2 |
  7 |
          2 |
                        2 |
                                          0.6
  8 |
          2 |
                   3 | -6 |
        2 .
2 |
                              4 | 0.3 |
                                           1.3
                   4 |
                        5 I
                             10 |
  9 |
                                   1 |
                                           1.6
        2 |
2 |
 10 |
                  5 | 10 |
                             12 |
                                  0.6 |
                                           2.6
                   6 |
 11 |
                        -3 |
                             12 | 0.4 |
         2 |
                       11 |
                  7 |
 12 |
                             13 |
                                  1 |
                                           3.6
         2 |
                             15 | 0.6 |
                       12 |
 13 |
                  8 |
                                           4.6
         2 |
                  9 |
                      -2 |
                            15 | 0.4 |
                                          5.2
 14 |
         2 |
 15 I
                 10 |
                       9 |
                             9 |
                                  1 |
                                           5.6
         2 |
                 11 | 6 | -1 |
                                  0 |
 16 I
                                           6.6
```

(16 rows)

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. If column present, it can not be NULL. If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

 $\boldsymbol{ANY\text{-}INTEGER} \ \ small int, int, bigint$

ANY-NUMERICAL smallint, int, bigint, real, float

Parameter	Туре	
edges_sql	TEXT	
points_sql	TEXT	
start_pid	ANY-INTEGER	
end_pid	ANY-INTEGER	
K	INTEGER	
directed	BOOLEAN	
heap_paths	BOOLEAN	
driving_side	CHAR	
details	BOOLEAN	

 $\label{lem:condition} \textbf{Description of the parameters of the signatures}$

Description of the return values Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

Column	Type	Description
seq	INTEGER	Row sequence.
path_seq	INTEGER	Relative position in the path of node
		and edge. Has value 1 for the begin-
		ning of a path.
path_id	INTEGER	Path identifier. The ordering of the
		paths: For two paths i, j if $i < j$ then
		$agg_cost(i) \le agg_cost(j)$.
node	BIGINT	Identifier of the node in the path.
		Negative values are the identifiers of
		a point.
edge BIGINT		Identifier of the edge used to go from node to the
		• −1 for the last row in the path sequence.
cost	FLOAT	Cost to traverse from node using edge to the ne
		• 0 for the last row in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_pid to node.
		• 0 for the first row in the path sequence.

Examples

Example Left side driving topology with details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, -2, 2,
   driving_side := 'l', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
  1 | 1 | 1 | -1 | 1 | 0.6 | 0
                  2 | 2 | 4 | 0.7 | 0.6
3 | -6 | 4 | 0.3 | 1.3
         1 |
  2 |
  3 |
         1 |
  4 |
         1 |
                  4 | 5 | 8 | 1 |
                                           1.6
  5 |
         1 |
                  5 | 6 |
                             9 | 1 |
                                           2.6
                  6 |
  6 |
         1 |
                        9 | 15 |
                                   1 |
                                           3.6
  7 |
          1 |
                   7 | 12 |
                             15 | 0.6 |
                                           4.6
         1 |
2 |
  8 |
                   8 |
                       -2 |
                             -1 |
                                   0 |
                                           5.2
                              1 | 0.6 |
  9 |
                  1 | -1 |
        2 | 2 | 2 |
                             4 | 0.7 | 4 | 0.3 |
 10 |
                   2 |
                        2 |
 11 |
                  3 |
                       -6 |
                                           1.3
                             8 |
                        5 |
                                  1 |
 12 |
                  4 |
                                           1.6
 13 |
         2 |
                  5 I
                       6 |
                            11 |
                                   1 |
                                           2.6
                                  1 |
 14 |
         2 |
                       11 |
                             13 |
                  6 |
                                           3.6
 15 |
                  7 |
         2 |
                       12 |
                             15 | 0.6 |
                                           4.6
 16 |
         2 |
                  8 | -2 |
                             -1 |
                                   0 |
                                           5.2
(16 rows)
```

Example Right side driving topology with heap paths and details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, -2, 2,
   heap_paths := true, driving_side := 'r', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
         1 |
                1 | -1 |
                               1 | 0.4 |
  1 1
         1 |
                   2 | 1 |
                                   1 |
  2 |
                               1 |
                                           0.4
         1 |
                        2 |
  3 |
                   3 |
                              4 | 0.7 |
                                            1.4
         1 |
  4 |
                   4 | -6 |
                               4 | 0.3 |
                                            2.1
                   5 | 5 |
                                   1 |
  5 I
         1 |
                               8 |
                                            2.4
         1 |
                   6 | 6 |
                              9 |
                                   1 |
  6 |
  7 |
         1 |
                   7 | 9 |
                              15 | 0.4 |
                                            4.4
  8 |
         1 |
                   8 | -2 |
                              -1 |
                                   0 |
                                            4.8
  9 |
          2 |
                   1 | -1 |
                              1 | 0.4 |
 10 |
          2 |
                   2 | 1 |
                               1 |
                                   1 |
                                            0.4
                               4 | 0.7 |
          2 |
                   3 |
 11 |
                        2 |
                                            1.4
          2 |
                   4 | -6 |
                               4 | 0.3 |
 12 |
                                             2.1
 13 |
          2 |
                   5 | 5 |
                               8 |
                                   1 |
                                             2.4
 14 |
                   6 |
          2 |
                        6 |
                              11 |
                                     1 |
                                             3.4
                                   1 |
 15 I
          2 |
                   7 | 11 |
                              13 I
                                             4.4
          2 |
 16 |
                   8 | 12 |
                              15 I
                                     1 |
                                             5.4
 17 |
          2 |
                   9 |
                        9 |
                              15 | 0.4 |
                                             6.4
          2 |
 18 I
                 10 |
                        -2 I
                              -1 |
                                    0 |
                                             6.8
 19 |
          3 |
                   1 |
                        -1 |
                               1 |
                                   0.4 |
                        1 |
                               1 |
         3 |
                   2 |
 20 |
                                    1 |
                                             0.4
 21 |
         3 |
                   3 |
                        2 |
                                   0.7 |
                               4 |
                                            1.4
         3 |
                   4 |
                        -6 I
                               4 |
 22 |
                                   0.3 |
                                            2.1
         3 |
                        5 |
                                    1 |
                   5 I
 23 |
                              10 I
                                            2.4
 24 |
         3 |
                              12 | 0.6 |
                                            3.4
                   6 |
                       10 |
 25 I
         3 |
                   7 I
                        -3 I
                              12 | 0.4 |
 26 |
         3 |
                  8 | 11 |
                              13 I
                                    1 |
                                            4.4
         3 |
                   9 | 12 |
                              15 I
                                            5.4
 27 |
                                    1 |
          3 |
                  10 |
                        9 |
                              15 | 0.4 |
 28 |
                                             6.4
 29 |
          3 |
                  11 |
                        -2 |
                                     0 |
                              -1 |
                                             6.8
(29 rows)
```

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

• withPoints - Family of functions

Indices and tables

- · genindex
- search

pgr withPointsDD - Proposed

Name

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Fig. 6.12: Boost Graph Inside

Availability: 2.2.0

Synopsis

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have costs less than or equal to the value distance from the starting point. The edges extracted will conform the corresponding spanning tree.

Signature Summary

```
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side, distance, directed, directed, directed, driving_side, distance, directed, directed, directed
```

Signatures

Minimal Use

The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No details are given about distance of other points of the query.

```
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
    directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

Example

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8);
seq | node | edge | cost | agg_cost
  --+----+----+----+-----
  1 | -1 | -1 | 0 |
  2 | 1 | 1 | 0.4 | 0.4
                          0.6
  3 | 2 |
             1 | 0.6 |
  4 | 5 |
             4 | 1 |
                           1.6
  5 | 6 |
             8 |
                   1 |
                           2.6
       8 |
             7 | 1 |
  6 I
                           2.6
                   1 |
  7 | 10 | 10 |
                           2.6
      7 |
9 |
  8 |
             6 |
                    1 |
                           3.6
  9 1
             9 |
                    1 |
                           3.6
 10 |
      11 | 11 |
                    1 |
                            3.6
 11 |
       13 |
             14 |
                   1 |
                            3.6
(11 rows)
```

Driving distance from a single point Finds the driving distance depending on the optional parameters setup.

Example Right side driving topology

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'r',
   details := true);
seq | node | edge | cost | agg_cost
                    0 |
        -1 | -1 |
  1 1
      1 | 1 | 0.4 |
2 | 1 | 1 |
  2 |
                              0.4
                              1.4
               1 | 1 | 4 | 0.7 |
  3 |
  4 1
        -6 |
                               2.1
  5 I
        5 |
               4 | 0.3 |
                               2.4
        6 |
              8 | 1 |
  6 |
                               3.4
        8 |
               7 |
                      1 |
  7 |
                               3.4
                     1 |
       10 | 10 |
  8 |
                               3.4
(8 rows)
```

Driving distance from many starting points Finds the driving distance depending on the optional parameters setup.

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative:
			edge (<i>target</i> , <i>source</i>) does not exist, there-
			fore it's not part of
			the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Description
pid	ANY-INTEGER	 (optional) Identifier of the point. If column present, it can not be NULL. If column not present, a sequential identifier will be given automatically.
edge_id	ANY-INTEGER	Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	 (optional) Value in ['b', 'r', 'l', NULL] indicating if the point is: • In the right, left of the edge or • If it doesn't matter with 'b' or NULL. • If column not present 'b' is considered.

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

Type	
TEXT	
TEXT	
ANY-INTEGER	
ANY-NUMERICAL	
BOOLEAN	
CHAR	
BOOLEAN	
BOOLEAN	
	ANY-INTEGER ANY-NUMERICAL BOOLEAN CHAR

$\label{lem:parameters} \textbf{Description of the parameters of the signatures}$

Description of the return values Returns set of (seq, node, edge, cost, agg_cost)

Column	Туре	Description
seq	INT	row sequence.
node	BIGINT	Identifier of the node within the Distance from start_pid. If details =: true a negative value is the identifier of a point.
edge	BIGINT	Identifier of the edge used to go from node to
		• -1 when start_vid = node.
cost	FLOAT	Cost to traverse edge. • 0 when start_vid = node.
agg_cost	FLOAT	Aggregate cost from start_vid to node. • 0 when start_vid =
		node.

Examples for queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost columns are used

Example Left side driving topology

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'l',
   details := true);
seq | node | edge | cost | agg_cost
----+-----
  1 | -1 | -1 | 0 | 0
2 | 2 | 1 | 0.6 | 0.6
3 | -6 | 4 | 0.7 | 1.3
4 | 5 | 4 | 0.3 | 1.6
                              1.6
               1 | 1 |
  5 |
        1 |
        6 |
8 |
               8 |
7 |
                      1 |
  6 |
                               2.6
                              2.6
                      1 |
  7 |
                     1 |
  8 |
        10 |
              10 |
                               2.6
              12 | 0.6 |
                               3.2
  9 |
        -3 |
                              3.3
        -4 |
               6 | 0.7 |
 10 |
              6 | 0.3 |
        7 |
 11 |
                              3.6
        9 |
               9 | 1 |
 12 |
                               3.6
 13 |
             11 | 1 |
       11 |
                               3.6
 14 | 13 | 14 | 1 |
                              3.6
(14 rows)
```

Example Does not matter driving side.

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'b',
   details := true);
seq | node | edge | cost | agg_cost
----+----
  1 | -1 | -1 | 0 | 0
2 | 1 | 1 | 0.4 | 0.4
3 | 2 | 1 | 0.6 | 0.6
                             1.3
        -6 I
              4 | 0.7 |
4 | 0.3 |
  4 |
       5 |
  5 I
                              1.6
               8 | 1 |
7 | 1 |
  6 |
        6 |
                              2.6
        8 |
                             2.6
               7 |
  7 |
                    1 |
                              2.6
  8 |
       10 |
             10 |
       -3 |
             12 | 0.6 |
                             3.2
  9 |
       -4 |
 10 |
              6 | 0.7 |
                             3.3
             6 | 0.3 |
 11 |
       7 |
                              3.6
        9 1
              9 1 1 1
 12 I
                              3.6
 13 I
      11 | 11 | 1 |
                              3.6
 14 | 13 | 14 |
                     1 |
                              3.6
(14 rows)
```

The queries use the Sample Data network.

History

• Proposed in version 2.2

See Also

- pgr_drivingDistance Driving distance using dijkstra.
- pgr_alphaShape Alpha shape computation.
- pgr_pointsAsPolygon Polygon around set of points.

Indices and tables

- · genindex
- · search

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Images

The squared vertices are the temporary vertices, The temporary vertices are added according to the driving side, The following images visually show the differences on how depending on the driving side the data is interpreted.

Right driving side

Left driving side

doesn't matter the driving side

Introduction

This family of functions was thought for routing vehicles, but might as well work for some other application that we can not think of.

The with points family of function give you the ability to route between arbitrary points located outside the original graph.

When given a point identified with a *pid* that its being mapped to and edge with an identifier *edge_id*, with a *fraction* along that edge (from the source to the target of the edge) and some additional information about which *side* of the edge the point is on, then routing from arbitrary points more accurately reflect routing vehicles in road networks,

I talk about a family of functions because it includes different functionalities.

- pgr_withPoints is pgr_dijkstra based
- pgr_withPointsCost is pgr_dijkstraCost based
- pgr_withPointsKSP is pgr_ksp based
- pgr_withPointsDD is pgr_drivingDistance based

In all this functions we have to take care of as many aspects as possible:

- Must work for routing:
 - Cars (directed graph)
 - Pedestrians (undirected graph)
- Arriving at the point:
 - In either side of the street.
 - Compulsory arrival on the side of the street where the point is located.
- Countries with:
 - Right side driving
 - Left side driving
- Some points are:
 - Permanent, for example the set of points of clients stored in a table in the data base
 - Temporal, for example points given through a web application
- The numbering of the points are handled with negative sign.
 - Original point identifiers are to be positive.
 - Transformation to negative is done internally.
 - For results for involving vertices identifiers
 - * positive sign is a vertex of the original graph
 - * negative sign is a point of the temporary points

The reason for doing this is to avoid confusion when there is a vertex with the same number as identifier as the points identifier.

Graph & edges

- Let $G_d(V, E)$ where V is the set of vertices and E is the set of edges be the original directed graph.
 - An edge of the original edges_sql is (id, source, target, cost, reverse_cost) will generate internally
 - * (id, source, target, cost)
 - $*(id, target, source, reverse_cost)$

Point Definition

- A point is defined by the quadruplet: (pid, eid, fraction, side)
 - **pid** is the point identifier
 - eid is an edge id of the edges_sql
 - **fraction** represents where the edge *eid* will be cut.
 - side Indicates the side of the edge where the point is located.

Creating Temporary Vertices in the Graph

For edge (15, 9,12 10, 20), & lets insert point (2, 12, 0.3, r)

On a right hand side driving network

From first image above:

- We can arrive to the point only via vertex 9.
- It only affects the edge (15, 9,12, 10) so that edge is removed.
- Edge (15, 12,9, 20) is kept.
- Create new edges:
 - (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
 - (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

On a left hand side driving network

From second image above:

- We can arrive to the point only via vertex 12.
- It only affects the edge (15, 12,9 20) so that edge is removed.
- Edge (15, 9,12, 10) is kept.
- Create new edges:
 - (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
 - (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

Remember that fraction is from vertex 9 to vertex 12

When driving side does not matter

From third image above:

- We can arrive to the point either via vertex 12 or via vertex 9
- Edge (15, 12,9 20) is removed.
- Edge (15, 9,12, 10) is removed.
- Create new edges:
 - (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
 - (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6
 - (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
 - (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

See Also

Indices and tables

- genindex
- search

6.1.5 Cost - Category

- pgr_aStarCost proposed
- pgr_bdAstarCost Proposed
- pgr_bdDijkstraCost Proposed
- pgr_dijkstraCost
- pgr_withPointsCost Proposed

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

General Information

Characteristics

The main Characteristics are:

- Each function works as part of the family it belongs to.
- It does not return a path.
- Returns the sum of the costs of the resulting path(s) for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The $agg\ cost$ int the non included values (v, v) is 0.
 - When the starting vertex and ending vertex are the different and there is no path.
 - * The agg_cost in the non included values (u, v) is ∞ .
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start_vids* or in *end_vids* are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending

See Also

Indices and tables

- genindex
- · search

6.1.6 Cost Matrix - Category

- pgr_aStarCostMatrix proposed
- pgr bdAstarCostMatrix proposed
- pgr_bdDijkstraCostMatrix proposed
- pgr_dijkstraCostMatrix proposed
- pgr_withPointsCostMatrix proposed

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

General Information

Synopsis

Traveling Sales Person - Family of functions needs as input a symmetric cost matrix and no edge (u, v) must value ∞ .

This collection of functions will return a cost matrix in form of a table.

Characteristics

The main Characteristics are:

- Can be used as input to *pgr_TSP*.
 - **directly** when the resulting matrix is symmetric and there is no ∞ value.
 - It will be the users responsibility to make the matrix symmetric.
 - * By using geometric or harmonic average of the non symmetric values.
 - * By using max or min the non symmetric values.
 - * By setting the upper triangle to be the mirror image of the lower triangle.
 - * By setting the lower triangle to be the mirror image of the upper triangle.
 - It is also the users responsibility to fix an ∞ value.
- Each function works as part of the family it belongs to.
- It does not return a path.

- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
 - When the starting vertex and ending vertex are the same, there is no path.
 - * The agg_cost int the non included values (v, v) is 0.
 - When the starting vertex and ending vertex are the different and there is no path.
 - * The agg cost in the non included values (u, v) is ∞ .
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start_vids* are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: approximately $O(|start_vids| * (V \log V + E))$

See Also

• pgr_TSP

Indices and tables

- genindex
- search

6.1.7 KSP Category

- pgr_KSP Driving Distance based on pgr_dijkstra
- pgr_withPointsKSP Proposed Driving Distance based on pgr_dijkstra

Indices and tables

- genindex
- search

6.2 Experimental Functions

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Contraction - Family of functions - Reduce network size using contraction techniques

• pgr_contractGraph - Experimental - Reduce network size using contraction techniques

Graph Analysis

• pgr_labelGraph - Experimental - Analyze / label subgraphs within a network

Components - Family of functions - Analyze components within a graph

- pgr_connectedComponents Experimental Return the connected components of an undirected graph
- pgr_strongComponents Experimental Return the strongly connected components of a directed graph
- pgr_biconnectedComponents Experimental Return the biconnected components of an undirected graph
- pgr_articulationPoints Experimental Return the articulation points of an undirected graph
- pgr_bridges Experimental Return the bridges of an undirected graph

VRP

- pgr_gsoc_vrppdtw Experimental
- pgr_vrpOneDepot Experimental

6.2.1 Contraction - Family of functions

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

pgr_contractGraph - Experimental

pgr_contractGraph - Experimental

pgr_contractGraph — Performs graph contraction and returns the contracted vertices and edges.

Fig. 6.13: Boost Graph Inside

Availability: 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- There are two types of contraction methods used namely,
 - Dead End Contraction
 - Linear Contraction
- The values returned include the added edges and contracted vertices.
- The returned values are ordered as follows:
 - column *id* ascending when type = v
 - column id descending when type = e

Signature Summary:

The pgr_contractGraph function has the following signatures:

```
pgr_contractGraph(edges_sql, contraction_order)
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)
RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)
```

Signatures

Minimal signature

```
pgr_contractGraph(edges_sql, contraction_order)
```

Example Making a dead end contraction and a linear contraction.

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[1, 2]);
seq | type | id | contracted_vertices | source | target | cost
                                               -1 |
  1 \mid v \mid 5 \mid \{7, 8\}
                                 -1 |
                                                     -1
  2 | v | 15 | {14}
                                               -1 | -1
                                | -1 |
                                      -1 |
  3 | v
        | 17 | {16}
                                               -1 | -1
                                 | -1 | {1,2}
| -2 | {4\
                                       3 |
                                               5 |
  4 | e
                                 9 |
                                               3 |
  5 | e | -2 | {4}
                                 1
        | -3 | {10,13}
                                        5 |
                                               11 |
  6 I e
                                  | -4 | {12}
                                       11 |
  7 | e
(7 rows)
```

Complete signature

```
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)
```

Example Making a dead end contraction and a linear contraction and vertex 2 is forbidden from contraction

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1, 2], forbidden_vertices:=ARRAY[2]);
seq | type | id | contracted_vertices | source | target | cost
  1 | v | 2 | {1}
                                 -1 |
                                              -1 |
                                                    -1
  2 | v | 5 | {7,8}
                                      -1 |
                                -1 | -1
        | 15 | {14}
                                -1 |
  3 | v
                                      -1 |
                                                    -1
        | 17 | {16}
                                      -1 |
  4 | v
                                -1 | -1
        | -1 | {4}
                                              3 |
                                       9 |
                                 5 | e
        | -2 | {10,13}
  6 | e
                                       5 |
                                              11 |
                                 7 | e
        | -3 | {12}
                                      11 |
                                               9 |
(7 rows)
```

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Type	Description
edges_sql	TEXT	SQL query as described above.
contraction_order	ARRAY[ANY-INTEGER]	Ordered contraction operations. • 1 = Dead end contraction • 2 = Linear contraction
forbidden_vertices	ARRAY[ANY-INTEGER]	(optional). Identifiers of vertices forbidden from contraction. Default is an empty array.
max_cycles	INTEGER	(optional). Number of times the contraction operations on <i>contraction_order</i> will be performed. Default is 1.
directed	BOOLEAN	 When true the graph is considered as <i>Directed</i>. When false the graph is considered as <i>Undirected</i>.

Description of the return values

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)

The function returns a single row. The columns of the row are:

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
type	TEXT	 Type of the id. 'v' when id is an identifier of a vertex. 'e' when id is an identifier of an edge.
id	BIGINT	Identifier of: • the vertex when type = 'v'. - The vertex belongs to the edge_table passed as a parameter. • the edge when type = 'e'. - The id is a decreasing sequence starting from -1. - Representing a pseudo id as is not incorporated into the edge_table.
contracted_vertices	ARRAY[BIGINT]	Array of contracted vertex identifiers.
source	BIGINT	Identifier of the source vertex of the current edge <i>id</i> . Valid values when $type = 'e'$.
target	BIGINT	Identifier of the target vertex of the current edge id . Valid values when $type = 'e'$.
cost	FLOAT	Weight of the edge (<i>source</i> , <i>target</i>). Valid values when <i>type</i> = 'e'.

Examples

Example Only dead end contraction

Example Only linear contraction

```
SELECT * FROM pgr_contractGraph(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2]);
```

1 e -1 {4}						contracted_vertices						
3 e -3 {8} 7 5 2 4 e -4 {12} 11 9 2	1	е	-	-1	İ	{ 4 }	-+ 	9	İ	3	İ	2
						` '	 					
			-	-4	I	{12}		11		9		2

Indices and tables

- genindex
- · search

Introduction

In big graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph algorithms. Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it supports two algorithms:

- 1. Dead end contraction
- 2. Linear contraction

Allowing the user to:

- Forbid contraction on a set of nodes.
- Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Note: UNDER DISCUSSION: Forbid contraction on a set of edges

Dead end contraction

In the algorithm, dead end contraction is represented by 1.

Dead end nodes

The definition of a dead end node is different for a directed and an undirected graph.

In case of a undirected graph, a node is considered a dead end node if

• The number of adjacent vertices is 1.

In case of an directed graph, a node is considered a dead end node if

- There are no outgoing edges and has at least one incoming edge.
- There is one incoming and one outgoing edge with the same identifier.

Examples

- The green node B represents a dead end node
- The node A is the only node connecting to B.
- Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- · Directed graph

Operation: Dead End Contraction

The dead end contraction will stop until there are no more dead end nodes. For example from the following graph:

- Node A is connected to the rest of the graph by an unlimited number of edges.
- Node B is connected to the rest of the graph with one incoming edge.
- Node B is the only node connecting to C.
- The green node C represents a *Dead End* node

After contracting C, node B is now a *Dead End* node and is contracted:

Node B gets contracted

Nodes $\ensuremath{\mathsf{B}}$ and $\ensuremath{\mathsf{C}}$ belong to node $\ensuremath{\mathsf{A}}$.

Not Dead End nodes

In this graph B is not a *dead end* node.

Linear contraction

In the algorithm, linear contraction is represented by 2.

Linear nodes

A node is considered a linear node if satisfies the following:

- The number of adjacent vertices are 2.
- Should have at least one incoming edge and one outgoing edge.

Examples

- The green node B represents a linear node
- The nodes A and C are the only nodes connecting to B.
- Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- Node C is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- · Directed graph

Operation: Linear Contraction

The linear contraction will stop until there are no more linear nodes. For example from the following graph:

- Node A is connected to the rest of the graph by an unlimited number of edges.
- Node B is connected to the rest of the graph with one incoming edge and one outgoing edge.
- Node C is connected to the rest of the graph with one incoming edge and one outgoing edge.
- Node D is connected to the rest of the graph by an unlimited number of edges.
- The green nodes B and C represents *Linear* nodes.

After contracting B, a new edge gets inserted between A and C which is represented by red color.

Node C is *linear node* and gets contracted.

Nodes B and C belong to edge connecting A and D which is represented by red color.

Not Linear nodes

In this graph B is not a *linear* node.

The cycle

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting contracted graph, after applying one operation, the set of vertices that can be contracted by another operation changes.

This implementation, cycles max_cycles times through operations_order.

```
<input>
do max_cycles times {
   for (operation in operations_order)
      { do operation }
}
<output>
```

Contracting Sample Data

In this section, building and using a contracted graph will be shown by example.

- The Sample Data for an undirected graph is used
- a dead end operation first followed by a linear operation.

The original graph:

After doing a dead end contraction operation:

Doing a linear contraction operation to the graph above

There are five cases, in this documentation, which arise when calculating the shortest path between a given source and target. In this examples, pgr_dijkstra is used.

- Case 1: Both source and target belong to the contracted graph.
- Case 2: Source belongs to a contracted graph, while target belongs to a edge subgraph.
- Case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.
- Case 4: Source belongs to a contracted graph, while target belongs to an vertex subgraph.
- Case 5: The path contains a new edge added by the contraction algorithm.

Construction of the graph in the database

Original Data

The following query shows the original data involved in the contraction operation.

Contraction Results

```
-1
   3 | v
            | 17 | {16}
                                                -1 I
                                                          -1 I
                                                           5 |
                                                                  2
  4 | e
            |-1|\{1,2\}
                                         3 |
  5 | e
            | -2 | {4}
                                                 9 |
                                                           3 |
                                                                  2
                                         6 | e
            | -3 | \{10, 13\}
                                                 5 I
                                                          11 |
                                                                  2.
                                         7 | e
            | -4 | {12}
                                                11 |
                                                           9 |
                                                                  2
(7 rows)
```

The above results do not represent the contracted graph. They represent the changes done to the graph after applying the contraction algorithm. We can see that vertices like 6 and 11 do not appear in the contraction results because they were not affected by the contraction algorithm.

step 1

Adding extra columns to the edge_table and edge_table_vertices_pgr tables:

Column	Description
con-	The vertices set belonging to the vertex/edge
tracted_vertices	
is_contracted On a <i>vertex</i> table: when true the vertex is contracted, so is not part of the contracted	
	graph.
is_contracted	On an <i>edge</i> table: when true the edge was generated by the contraction algorithm.

Using the following queries:

```
ALTER TABLE edge_table ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE
ALTER TABLE edge_table ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
SET client_min_messages TO NOTICE;
SET
```

step 2

For simplicity, in this documentation, store the results of the call to pgr_contractGraph in a temporary table

```
SELECT * INTO contraction_results
FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   array[1,2], directed:=true);
SELECT 7
```

step 3

Update the *vertex* and *edge* tables using the results of the call to pgr_contraction

• In *edge_table_vertices_pgr.is_contracted* indicate the vertices that are contracted.

```
UPDATE edge_table_vertices_pgr
SET is_contracted = true
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10
```

• Add to *edge_table_vertices_pgr.contracted_vertices* the contracted vertices belonging to the vertices.

```
UPDATE edge_table_vertices_pgr
SET contracted_vertices = contraction_results.contracted_vertices
FROM contraction_results
WHERE type = 'v' AND edge_table_vertices_pgr.id = contraction_results.id;
UPDATE 3
```

• Insert the new edges generated by pgr_contractGraph.

```
INSERT INTO edge_table(source, target, cost, reverse_cost, contracted_vertices, is_contracted)
SELECT source, target, cost, -1, contracted_vertices, true
FROM contraction_results
WHERE type = 'e';
INSERT 0 4
```

step 3.1

Verify visually the updates.

• On the *edge_table_vertices_pgr*

```
SELECT id, contracted_vertices, is_contracted
FROM edge_table_vertices_pgr
ORDER BY id;
id | contracted_vertices | is_contracted
_____
 1 |
                      | t
 2 |
                      | t
 3 |
                      | f
 4 |
                       Ιt
 5 | {7,8}
                       Ιf
 6 |
                       Ιf
 7 |
                       Ιt
 8 |
 9 |
                       | f
10 |
                       Ιt
11 |
                       | f
12 |
                       | t
13 |
                       | t
14 |
                       | t
15 | {14}
                      | f
                      Ιt
16 I
17 | {16}
                      | f
(17 rows)
```

• On the *edge_table*

```
SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_contracted
FROM edge_table
ORDER BY id;
id | source | target | cost | reverse_cost | contracted_vertices | is_contracted

    1 |
    1 |
    2 |
    1 |

    2 |
    2 |
    3 |
    -1 |

                                    1 |
                                                          Ιf
                                    1 |
                                                          | f
         3 |
                 4 | -1 |
                                    1 |
 3 |
                                                          | f
                 5 |
         2 |
 4 |
                      1 |
                                    1 |
                      1 | 1 |
 5 |
         3 |
                 6 |
                                    -1 |
         7 |
 6 |
                 8 |
                                    1 |
                      1 |
 7 |
         8 |
                 5 |
                                    1 |
                      1 |
         5 I
                6 |
                                    1 |
 8 |
                                                          l f
 9 |
                9 |
                      1 |
                                    1 |
         6 |
                                                          Ιf
               10 |
                                    1 |
10 |
         5 I
                      1 |
                                                          Ιf
11 |
         6 |
               11 | 1 |
                                   -1 |
                                                          l f
```

```
-1 |
12 |
         10 | 11 | 1 |
                                                               | f
              12 |
13 |
13 |
        11 |
                                       -1 |
                         1 |
                                                               | f
14 |
        10 |
                        1 |
                                       1 |
                                                               Ιf
15 |
        9 |
                12 |
                        1 |
                                       1 |
                                                               Ιf
16 |
         4 |
                 9 |
                        1 |
                                       1 |
                                                               Ιf
       4 | 9 | 1 |
14 | 15 | 1 |
16 | 17 | 1 |
17 |
                                       1 |
                                                               | f
18 |
                                       1 |
                                                               | f
                5 | 2 |
19 |
         3 |
                                       -1 \mid \{1, 2\}
                                                               Ιt
20 |
         9 |
                 3 | 2 |
                                      -1 \mid \{4\}
                                                               Ιt
         5 | 11 | 2 |
11 | 9 | 2 |
21 |
                                      -1 \mid \{10, 13\}
                                                               | t
22 |
                        2 |
                                       -1 \mid \{12\}
                                                               | t
(22 rows)
```

• vertices that belong to the contracted graph are the non contracted vertices

```
SELECT id FROM edge_table_vertices_pgr
WHERE is_contracted = false
ORDER BY id;
id
----
3
5
6
9
11
15
17
(7 rows)
```

case 1: Both source and target belong to the contracted graph.

Inspecting the contracted graph above, vertex 3 and vertex 11 are part of the contracted graph. In the following query:

- vertices_in_graph hold the vertices that belong to the contracted graph.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 11: $3 \rightarrow 6 \rightarrow 11$, and in the contracted graph, it is also $3 \rightarrow 6 \rightarrow 11$. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
   WITH
   vertices_in_graph AS (
      SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices in graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   3, 11, false);
seq | path_seq | node | edge | cost | agg_cost
____+
          1 | 3 | 5 | 1 | 0
           2 | 6 | 11 | 1 |
                                      1
  2 |
           3 | 11 | -1 | 0 |
  3 |
(3 rows)
```

case 2: Source belongs to the contracted graph, while target belongs to a edge subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 1 belongs to the contracted subgraph

- expand1 holds the contracted vertices of the edge where vertex 1 belongs. (belongs to edge 19).
- vertices_in_graph hold the vertices that belong to the contracted graph and also the contracted vertices of edge 19.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 1: $3 \rightarrow 2 \rightarrow 1$, and in the contracted graph, it is also $3 \rightarrow 2 \rightarrow 1$. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
   $$
   WTTH
   expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
   expand1 AS (SELECT contracted_vertices FROM edge_table
      WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 1)),
   vertices_in_graph AS (
      SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
      UNION
       SELECT unnest(contracted_vertices) FROM expand1)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   $$,
   3, 1, false);
seq | path_seq | node | edge | cost | agg_cost
  __+____
           1 |
                 3 |
                       2 | 1 |
                                        0
  1 |
                             1 |
            2 |
                 2 |
                       1 |
  2 |
                                          1
            3 |
                 1 | -1 |
                             0 |
  3 |
                                          2.
(3 rows)
```

case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.

Inspecting the contracted graph above, vertex 7 belongs to the contracted subgraph of vertex 5 and vertex 13 belongs to the contracted subgraph of edge 21. In the following query:

- expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)
- expand13 holds the contracted vertices of edge where vertex 13 belongs. (belongs to edge 21)
- vertices_in_graph hold the vertices that belong to the contracted graph, contracted vertices of vertex 5 and contracted vertices of edge 21.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 7 to 13: 7 -> 8 -> 5 -> 10 -> 13, and in the contracted graph, it is also 7 -> 8 -> 5 -> 10 -> 13. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
$$
WITH

expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices.
```

```
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
      WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
   expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
   expand13 AS (SELECT contracted_vertices FROM edge_table
      WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 13)),
   vertices_in_graph AS (
      SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
      UNION
      SELECT unnest (contracted_vertices) FROM expand13
      UNTON
      SELECT unnest (contracted_vertices) FROM expand7)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   $$,
   7, 13, false);
seq | path_seq | node | edge | cost | agg_cost
----+----+-----
  1 |
          1 | 7 |
                        6 | 1 |
           2 | 8 | 7 | 1 |
  2 |
                                         1
           3 | 5 | 10 | 1 |
  3 |
           4 | 10 | 14 | 1 |
  4 |
  5 |
          5 | 13 | -1 | 0 |
(5 rows)
```

case 4: Source belongs to the contracted graph, while target belongs to an vertex subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 7 belongs to the contracted subgraph of vertex 5. In the following query:

- expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)
- vertices_in_graph hold the vertices that belong to the contracted graph and the contracted vertices of vertex
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: 3 -> 2 -> 5 -> 8 -> 7, but in the contracted graph, it is 3 -> 5 -> 8 -> 7. The results, on the contracted graph do not match the results as if it was done on the original graph. This is because the path contains edge 19 which is added by the contraction algorithm.

```
SELECT * FROM pgr_dijkstra(
    $$
WITH
    expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices
    expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
        WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
    vertices_in_graph AS (
        SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
        UNION
        SELECT unnest(contracted_vertices) FROM expand7)
    SELECT id, source, target, cost, reverse_cost
    FROM edge_table
    WHERE source IN (SELECT * FROM vertices_in_graph)
    AND target IN (SELECT * FROM vertices_in_graph)
    $$$,
```

case 5: The path contains an edge added by the contraction algorithm.

In the previous example we can see that the path from vertex 3 to vertex 7 contains an edge which is added by the contraction algorithm.

```
WITH
first_dijkstra AS (
    SELECT * FROM pgr_dijkstra(
       $$
       WITH
       expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vert
       expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
           WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
        vertices_in_graph AS (
           SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
            UNTON
            SELECT unnest(contracted_vertices) FROM expand7)
        SELECT id, source, target, cost, reverse_cost
        FROM edge_table
        WHERE source IN (SELECT * FROM vertices_in_graph)
       AND target IN (SELECT * FROM vertices_in_graph)
        $$,
        3, 7, false))
SELECT edge, contracted_vertices
   FROM first_dijkstra JOIN edge_table
   ON (edge = id)
   WHERE is contracted = true;
edge | contracted_vertices
  19 | {1,2}
(1 row)
```

Inspecting the contracted graph above, edge 19 should be expanded. In the following query:

- first_dijkstra holds the results of the dijkstra query.
- edges_to_expand holds the edges added by the contraction algorithm and included in the path.
- vertices_in_graph hold the vertices that belong to the contracted graph, vertices of the contracted solution and the contracted vertices of the edges added by the contraction algorithm and included in the contracted solution.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: $3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$, and in the contracted graph, it is also $3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra($$
WITH
-- This returns the results from case 2
```

```
first_dijkstra AS (
       SELECT * FROM pgr_dijkstra(
           WITH
           expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_
           expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
              WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
           vertices_in_graph AS (
               SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
               SELECT unnest(contracted_vertices) FROM expand7)
           SELECT id, source, target, cost, reverse_cost
           FROM edge_table
           WHERE source IN (SELECT * FROM vertices_in_graph)
           AND target IN (SELECT * FROM vertices_in_graph)
           3, 7, false)),
   -- edges that need expansion and the vertices to be expanded.
   edges_to_expand AS (
       SELECT edge, contracted_vertices
       FROM first_dijkstra JOIN edge_table
       ON (edge = id)
       WHERE is_contracted = true),
   vertices_in_graph AS (
       -- the nodes of the contracted solution
       SELECT node FROM first_dijkstra
       UNION
       -- the nodes of the expanding sections
       SELECT unnest (contracted_vertices) FROM edges_to_expand)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   -- not including the expanded edges
   AND id NOT IN (SELECT edge FROM edges_to_expand)
   $$,
   3, 7, false);
seq | path_seq | node | edge | cost | agg_cost
  ---+----+----
          1 | 3 | 2 |
                              1 |
  1 1
                                          0
            2 |
                 2 |
                         4 |
                                1 |
  2 |
                                           1
            3 |
                         7 |
  3 |
                 5 |
                                1 |
  4 |
            4 |
                 8 |
                         6 |
                                1 |
                                           3
            5 I
                  7 | -1 |
  5 I
(5 rows)
```

See Also

- http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
- http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf
- The queries use pgr_contractGraph Experimental function and the Sample Data network.

Indices and tables

• genindex

· search

6.2.2 Flow - Family of functions

- pgr_maxFlow Proposed Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- · Applications
 - pgr_edgeDisjointPaths Proposed Calculates edge disjoint paths between two groups of vertices.
 - pgr_maxCardinalityMatch Proposed Calculates a maximum cardinality matching in a graph.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

pgr maxFlow - Proposed

Synopsis

pgr_maxFlow — Calculates the maximum flow in a directed graph from the source(s) to the targets(s) using the Push Relabel algorithm.

Fig. 6.14: Boost Graph Inside

Availability: 2.4.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Characteristics

- The graph is directed.
- When the maximum flow is 0 then there is no flow and **0** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Uses the *pgr_pushRelabel* algorithm.
- Running time: $O(V^3)$

Signature Summary

```
pgr_maxFlow(edges_sql, source, target)
pgr_maxFlow(edges_sql, sources, target)
pgr_maxFlow(edges_sql, source, targets)
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT
```

One to One Calculates the maximum flow from the *source* to the *target*.

```
pgr_maxFlow(edges_sql, source, target)
RETURNS BIGINT
```

Example

```
230
(1 row)
```

One to Many Calculates the maximum flow from the *source* to all of the *targets*.

```
pgr_maxFlow(edges_sql, source, targets)
RETURNS BIGINT
```

Example

Many to One Calculates the maximum flow from all the *sources* to the *target*.

```
pgr_maxFlow(edges_sql, sources, target)
RETURNS BIGINT
```

Example

Many to Many Calculates the maximum flow from all of the *sources* to all of the *targets*.

```
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT
```

Example

```
FROM edge_table'
, ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
pgr_maxflow
-----
360
(1 row)
```

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target,
			source),
			• When negative:
			edge (target, source)
			does not exist, there-
			fore it's not part of
			the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description
edges_sql	TEXT		The edges SQL query as
source	BIGINT		Identifier of the starting
sources	ARRAY[BIGINT]		Array of identifiers of th
target	BIGINT		Identifier of the ending v
targets	ARRAY[BIGINT]		Array of identifiers of th

Description of the return value

Type Description		
BIGINT	Maximum flow possible from the source(s) to the target(s)	

See Also

- Flow Family of functions
- http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

• https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

- genindex
- search

pgr_pushRelabel - Proposed

Synopsis

pgr_pushRelabel — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.

Fig. 6.15: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maxFlowPushRelabel
- New in 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Characteristics

- The graph is **directed**.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.

- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr_maxFlow* when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- Running time: $O(V^3)$

Signature Summary

```
pgr_pushRelabel(edges_sql, source, target) - Proposed
pgr_pushRelabel(edges_sql, sources, target) - Proposed
pgr_pushRelabel(edges_sql, source, targets) - Proposed
pgr_pushRelabel(edges_sql, sources, targets) - Proposed
pgr_pushRelabel(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One Calculates the flow on the graph edges that maximizes the flow from the *source* to the *target*.

```
pgr_pushRelabel(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_pushRelabel(
    'SELECT id,
            source.
            target,
            capacity,
            reverse_capacity
    FROM edge_table'
    , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity

    1 | 10 |
    5 |
    10 | 100 |

    2 | 8 |
    6 |
    5 | 100 |

    3 | 11 |
    6 |
    11 | 130 |

                                                            3.0
                                                            30
                                                             0
  4 | 12 |
                    10 |
                              11 | 100 |
(4 rows)
```

One to Many Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_pushRelabel(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
target,
           capacity,
          reverse_capacity
   FROM edge_table'
   , 6, ARRAY[11, 1, 13]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
      1 | 2 | 1 | 130 |
2 | 3 | 2 | 80 |
                                                       0
  2 |
                                                      20
        3 |
                    4 |
                             3 | 80 |
  3 |
                                                      50
                   5 |
5 |
                            2 | 50 |
8 | 50 |
        4 |
  4 |
                                                       0
        7 |
  5 |
                                                      80
                                 80 |
                   5 | 10 |
6 | 5 |
6 | 9 |
  6 |
       10 |
                                                      50
                            5 | 130 |
  7 |
        8 |
                                                       0
        9 |
                        | 80 |
| 11 | 130 |
| 8 | -
                   6 |
                                                      50
  8 |
  9 |
      11 |
                   6 |
                                                       0
                   7 |
 10 |
                                                      0
        6 I
                   8 |
                            7 |
                                  50 I
 11 | 6 |
                                                      50
                  8 |
9 |
 12 | 7 |
13 | 16 |
                            5 | 50 |
                                                      0
                            4 | 80 |
                                                      0
                  10 | 11 | 80 |
 14 | 12 |
                                                      20
(14 rows)
```

Many to One Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to the *target*.

```
pgr_pushRelabel(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_pushRelabel(
   'SELECT id,
         source,
         target,
         capacity,
         reverse_capacity
   FROM edge_table'
   , ARRAY[6, 8, 12], 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  __+____
 1 | 10 | 5 | 10 | 100 |
              6 | 5 | 100 |
6 | 11 | 130 |
10 | 11 | 100 |
 2 | 8 |
                         5 | 100 |
                                               30
 3 | 11 |
                                                0
  4 | 12 |
                                                0
(4 rows)
```

Many to Many Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to all of the *targets*.

```
pgr_pushRelabel(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_pushRelabel(
     'SELECT id,
                source,
                target,
                capacity,
                reverse_capacity
     FROM edge_table'
     , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
____+
 1 | 1 | 2 | 1 | 50 |
2 | 3 | 4 | 3 | 80 |
3 | 4 | 5 | 2 | 50 |
4 | 10 | 5 | 10 | 100 |
5 | 8 | 6 | 5 | 130 |
6 | 9 | 6 | 9 | 30 |
7 | 11 | 6 | 11 | 130 |
8 | 7 | 8 | 5 | 20 |
9 | 16 | 9 | 4 | 80 |
10 | 12 | 10 | 11 | 100 |
11 | rows)
                                                                                 8.0
                                                                                50
                                                                                  0
                                                                                 30
                                                                               100
                                                                                  0
                                                                                30
                                                                                  0
                                                                                  0
                                                                                   0
(11 rows)
```

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description
edges_sql	TEXT		The edges SQL query as
source	BIGINT		Identifier of the starting
sources	ARRAY[BIGINT]		Array of identifiers of th
target	BIGINT		Identifier of the ending v
targets	ARRAY[BIGINT]		Array of identifiers of th

Description of the Return Values

Column	Type	Description
seq	INT	Sequential value starting from 1.
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).
source	BIGINT	Identifier of the first end point vertex of the edge.
target	BIGINT	Identifier of the second end point vertex of the edge.
flow	BIGINT	Flow through the edge in the direction (source, target).
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, targe

See Also

- Flow Family of functions, pgr_boykovKolmogorov, pgr_edmondsKarp
- http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
- $\bullet\ https://en.wikipedia.org/wiki/Push\%E2\%80\%93 relabel_maximum_flow_algorithm$

Indices and tables

- genindex
- · search

pgr_edmondsKarp - Proposed

Synopsis

 $pgr_edmondsKarp$ — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.

Fig. 6.16: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maxFlowEdmondsKarp
- New in 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Characteristics

- The graph is directed.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr_maxFlow* when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- Running time: $O(V * E^2)$

Signature Summary

```
pgr_edmondsKarp(edges_sql, source, target) - Proposed
pgr_edmondsKarp(edges_sql, sources, target) - Proposed
pgr_edmondsKarp(edges_sql, source, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One Calculates the flow on the graph edges that maximizes the flow from the *source* to the *target*.

```
pgr_edmondsKarp(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
             source,
             target,
             capacity,
            reverse_capacity
    FROM edge_table'
    , 6, 11
) ;
seq | edge | start_vid | end_vid | flow | residual_capacity
____+

    1 | 10 | 5 | 10 | 100 |

    2 | 8 | 6 | 5 | 100 |

    3 | 11 | 6 | 11 | 130 |

    4 | 12 | 10 | 11 | 100 |

                                                                  30
                                                                 30
                                                                 0
         12 |
(4 rows)
```

One to Many Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_edmondsKarp(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
            source,
            target,
            capacity,
            reverse_capacity
   FROM edge_table'
  , 6, ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
              2 | 1 | 50 |
4 | 3 | 80 |
5 | 2 | 50 |
        3 |
4 |
   2 |
                                                             50
                                      50 |
                     5 I
   3 |
                                                              0
                    5 |
6 |
6 |
                           10 |
5 |
9 |
                                      80 |
       10 |
                                                             50
   4 |
                                5 | 130 |
         8 |
                                                              0
   5 I
        9 |
                                                             50
                                      80 |
   6 I
                    6 | 11 | 130 |
9 | 4 | 80 |
10 | 11 | 80 |
   7 | 11 |
                                                             0
  8 | 16 |
                                                             0
  9 | 12 |
                                                             20
(9 rows)
```

Many to One Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to the *target*.

```
pgr_edmondsKarp(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Many to Many Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to all of the *targets*.

```
pgr_edmondsKarp(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
            source,
           target,
           capacity,
           reverse_capacity
   FROM edge_table'
   , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
       1 | 2 | 1 | 50 |
3 | 4 | 3 | 80 |
4 | 5 | 2 | 50 |
   1 |
                                                           80
   2 |
                                                           50
   3 |
                                                            0
                    5 | 10 | 100 |
6 | 5 | 130 |
6 | 9 | 80 |
       10 |
   4 |
                                                           30
                    6 |
6 |
   5 |
         8 |
                                                            0
        9 |
                          11 | 80 |
11 | 130 |
5 |
  6 |
                                                           50
                    6 |
   7 | 11 |
                                                            0
         7 |
                    8 |
                                                           30
  8 |
                     9 |
                               4 | 80 |
  9 | 16 |
                                                            0
                             11 | 100 |
 10 | 12 |
                    10 |
                                                           0
(10 rows)
```

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Type	Default	Description
edges_sql	TEXT		The edges SQL query as
source	BIGINT		Identifier of the starting
sources	ARRAY[BIGINT]		Array of identifiers of th
target	BIGINT		Identifier of the ending v
targets	ARRAY[BIGINT]		Array of identifiers of th
	source sources target	edges_sql TEXT source BIGINT sources ARRAY[BIGINT] target BIGINT	edges_sql TEXT source BIGINT sources ARRAY[BIGINT] target BIGINT

Description of the Return Values

Column	Type	Description
seq	INT	Sequential value starting from 1.
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).
source	BIGINT	Identifier of the first end point vertex of the edge.
target	BIGINT	Identifier of the second end point vertex of the edge.
flow	BIGINT	Flow through the edge in the direction (source, target).
residual capacity	BIGINT	Residual capacity of the edge in the direction (source, targe

See Also

- $\bullet \ \ Flow \ \ Family \ of functions, pgr_boykov Kolmogorov, pgr_Push Relabel$
- http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html
- $\bullet\ https://en.wikipedia.org/wiki/Edmonds\%E2\%80\%93Karp_algorithm$

Indices and tables

- genindex
- search

pgr boykovKolmogorov - Proposed

Synopsis

pgr_boykovKolmogorov — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Boykov Kolmogorov algorithm.

Fig. 6.17: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maxFlowBoykovKolmogorov
- New in 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Characteristics

- The graph is **directed**.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
 - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by $pgr_maxFlow$ when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources

- By aggregation of the incoming flow to the targets
- Running time: Polynomial

Signature Summary

```
pgr_boykovKolmogorov(edges_sql, source, target) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, target) - Proposed
pgr_boykovKolmogorov(edges_sql, source, targets) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One Calculates the flow on the graph edges that maximizes the flow from the *source* to the *target*.

```
pgr_boykovKolmogorov(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_boykovKolmogorov(
    'SELECT id,
             source,
             target,
             capacity,
             reverse_capacity
    FROM edge_table'
    , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
____+

    1 | 10 | 5 | 10 | 100 |

    2 | 8 | 6 | 5 | 100 |

    3 | 11 | 6 | 11 | 130 |

    4 | 12 | 10 | 11 | 100 |

                                                                 30
                                                                  0
                                                                  0
(4 rows)
```

One to Many Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_boykovKolmogorov(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_boykovKolmogorov(
  'SELECT id,
        source,
        target,
        capacity,
        reverse_capacity
  FROM edge_table'
  , 6, ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
1 |
      1 |
               2 |
                   1 | 50 |
                                           80
               4 | 3 | 80 |
                                           50
  2 |
```

	3	4	5	-	2	50	1	0
	4	10	5	-	10	80		50
	5	8	6		5	130		0
	6	9	6		9	80		50
	7	11	6		11	130		0
	8	16	9		4	80		0
	9	12	10		11	80		20
(9	rows)						

Many to One Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to the *target*.

```
pgr_boykovKolmogorov(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_boykovKolmogorov(
     'SELECT id,
              source,
              target,
              capacity,
             reverse_capacity
    FROM edge_table'
    , ARRAY[6, 8, 12], 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
   1 | 10 | 5 | 10 | 100 |
2 | 8 | 6 | 5 | 100 |
3 | 11 | 6 | 11 | 130 |
4 | 12 | 10 | 11 | 100 |
                                                                     30
                                                                     30
                                                                      0
                                                                       0
(4 rows)
```

Many to Many Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to all of the *targets*.

```
pgr_boykovKolmogorov(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_boykovKolmogorov(
  'SELECT id,
         source,
         target,
         capacity,
        reverse_capacity
  FROM edge_table'
   , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
1 | 3 |
           2 |
4 |
5 |
  1 |
      1 |
                            50 I
                                             80
      3 |
                            80 |
                                             50
  2 |
                        2 | 50 |
      4 |
  3 |
                                              0
                       10 | 100 |
                5 |
                                             30
  4 |
     10 |
                6 |
                        5 | 130 |
                                             0
  5 I
       8 I
```

6	9	6	9	80	50	
7	11	6	11	130	0	
8	7	8	5	20	30	
9	16	9	4	80	0	
10	12	10	11	100	0	
(10 row	rs)					

Description of the Signatures

Description of the edges_sql query for Max-flow like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target,
			source),
			• When negative:
			edge (target, source)
			does not exist, there-
			fore it's not part of
			the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signatures

Column	Туре	Default	Description
edges_sql	TEXT		The edges SQL query as
source	BIGINT		Identifier of the starting
sources	ARRAY[BIGINT]		Array of identifiers of th
target	BIGINT		Identifier of the ending v
targets	ARRAY[BIGINT]		Array of identifiers of th

Description of the Return Values

Column	lype	Description
seq	INT	Sequential value starting from 1.
edge_id	BIGINT	Identifier of the edge in the original query(edges_sql).
source	BIGINT	Identifier of the first end point vertex of the edge.
target	BIGINT	Identifier of the second end point vertex of the edge.
flow	BIGINT	Flow through the edge in the direction (source, target).
residual_capacity	BIGINT	Residual capacity of the edge in the direction (source, targe

See Also

- Flow Family of functions, pgr_pushRelabel, pgr_EdmondsKarp
- http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

Indices and tables

- genindex
- search

pgr_maxCardinalityMatch - Proposed

Synopsis

pgr_maxCardinalityMatch — Calculates a maximum cardinality matching in a graph.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Fig. 6.18: Boost Graph Inside

Availability:

- Renamed 2.5.0, Previous name pgr_maximumCardinalityMatching
- New in 2.3.0

Characteristics

- A matching or independent edge set in a graph is a set of edges without common vertices.
- A maximum matching is a matching that contains the largest possible number of edges.
 - There may be many maximum matchings.

- Calculates **one** possible maximum cardinality matching in a graph.
- The graph can be directed or undirected.
- Running time: $O(E * V * \alpha(E, V))$
 - $\alpha(E, V)$ is the inverse of the Ackermann function²⁰.

Signature Summary

```
pgr_MaximumCardinalityMatching(edges_sql) - Proposed
pgr_MaximumCardinalityMatching(edges_sql, directed) - Proposed

RETURNS SET OF (seq, edge_id, source, target)
OR EMPTY SET
```

Minimal Use

```
pgr_MaximumCardinalityMatching(edges_sql)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET
```

The minimal use calculates one possible maximum cardinality matching on a directed graph.

Example

```
SELECT * FROM pgr_maxCardinalityMatch(
   'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table
);
seq | edge | source | target
              1 |
      1 |
  1 |
  2 |
      3 |
               4 |
  3 |
      9 |
               6 |
               7 |
  4 | 6 |
  5 | 14 |
               10 |
                       13
  6 | 13 |
               11 |
                       12
  7 | 17 |
              14 |
                      15
  8 | 18 |
               16 |
                       17
(8 rows)
```

Complete signature

```
pgr_MaximumCardinalityMatching(edges_sql, directed)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET
```

The complete signature calculates one possible maximum cardinality matching.

```
SELECT * FROM pgr_maxCardinalityMatch(
    'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
    directed := false
);
seq | edge | source | target
        1 |
                 1 |
  1 |
         3 |
                  3 |
  2 |
                            4
         9 |
  3 |
                            9
                  6 |
                  7 |
         6 |
  4 1
                           8
   5 I
                 10 I
                          13
        14 I
   6 |
        13 |
                 11 |
```

²⁰https://en.wikipedia.org/wiki/Ackermann_function

7	17	14	15
8	18	16	17
(8 rows)	5)		

Description of the Signatures

Description of the SQL query

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Description
id	ANY-INTEGER	Identifier of the edge.
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.
target	ANY-INTEGER	Identifier of the second end point vertex of the edge.
going	ANY-NUMERIC	A positive value represents the existence of the edge (source, target).
coming	ANY-NUMERIC	A positive value represents the existence of the edge (target, source).

Where:

- ANY-INTEGER SMALLINT, INTEGER, BIGINT
- ANY-NUMERIC SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION

Description of the parameters of the signatures

Column	Type	Description
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	(optional) Determines the type of the graph. Defar

Description of the Result

Column	Туре	Description	
seq	INT	Sequential value starting from 1.	
edge	BIGINT	Identifier of the edge in the original query(edges_sql).	
source	BIGINT	Identifier of the first end point of the edge.	
target	BIGINT	Identifier of the second end point of the edge.	

See Also

- Flow Family of functions
- http://www.boost.org/libs/graph/doc/maximum_matching.html
- https://en.wikipedia.org/wiki/Matching_%28graph_theory%29
- https://en.wikipedia.org/wiki/Ackermann_function

Indices and tables

- genindex
- search

pgr_edgeDisjointPaths - Proposed

Name

pgr_edgeDisjointPaths — Calculates edge disjoint paths between two groups of vertices.

Fig. 6.19: Boost Graph Inside

Availability: 2.3.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow algorithms to calculate the paths.

Characteristics:

The main characterics are:

- Calculates the edge disjoint paths between any two groups of vertices.
- Returns EMPTY SET when source and destination are the same, or cannot be reached.
- The graph can be directed or undirected.
- One to many, many to one, many to many versions are also supported.
- Uses *pgr_boykovKolmogorov Proposed* to calculate the paths.

Signature Summary

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (seq, path_id, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)
OR EMPTY SET
```

Signatures

Minimal use

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

The minimal use is for a directed graph from one start_vid to one end_vid.

Example

```
SELECT * FROM pgr_edgeDisjointPaths(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_id | path_seq | node | edge | cost | agg_cost
1 | 3 | 2 | 1 |
  1 |
                                       0
        1 |
1 |
2 |
                      2 |
                 2 |
                          4 | 1 |
  2 |
                                        1
  3 |
                 3 |
                      5 |
                                0 |
                          -1 |
                1 |
                      3 |
                          5 |
                                1 |
  4 |
        2 |
                 2 |
 5 I
                      6 |
                           8 |
                                1 |
             3 |
                     5 |
        2 |
  6 |
                           -1 |
                               0 |
(6 rows)
```

One to One

This signature finds the set of dijoint paths from one start_vid to one end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   3, 5,
   directed := false
);
seq | path_id | path_seq | node | edge | cost | agg_cost
                 1 | 3 | 2 | 1 |
       1 |
                                1 |
        1 |
                 2 | 2 | 4 |
  2 |
                  3 | 5 | -1 |
  3 |
        1 |
                                  0 |
                                           0
        2 |
                 1 | 3 |
                             3 | -1 |
  4 |
  5 |
        2 |
                  2 | 4 | 16 | 1 |
                                          -1
  6 |
        2 |
                  3 | 9 | 9 |
                                  1 |
                                           Ω
        2 |
                            8 |
                                  1 |
  7 |
                  4 | 6 |
                                           1
  8 |
         2 |
                  5 | 5 |
                            -1 |
                                  0 |
                                  1 |
  9 |
         3 |
                  1 | 3 |
                             5 I
                                           0
 10 |
                  2 |
                       6 |
         3 |
                            11 |
                                  1 |
                                           1
                  3 |
                      11 |
 11 |
         3 |
                            12 |
                                  -1 |
 12 |
         3 |
                  4 | 10 |
                            10 |
                                   1 |
 13 I
         3 |
                  5 I
                       5 I
                            -1 |
                                  0 |
(13 rows)
```

One to Many

This signature finds the sset of disjoint paths from the start_vid to each one of the end_vid in end_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one pgr_edgeDisjointPaths.
- The extra end_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

Example

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   3, ARRAY[4, 5, 10]
);
seq | path_id | path_seq | end_vid | node | edge | cost | agg_cost
                    1 |
  1 |
                            4 |
                                   3 | 5 |
                                               1 |
          1 1
                            4 |
                                        9 |
                    2 |
                                   6 |
  2 |
          1 |
                                               1 |
                                                        1
                    3 |
                             4 |
  3 |
          1 |
                                   9 | 16 |
                                               1 |
                    4 |
                                       -1 |
          1 |
  4 |
                             4 |
                                   4 |
                                               0 |
                                                        3
          2 |
                            5 |
                                        2 |
  5 |
                    1 |
                                   3 |
                                               1 |
                                                        0
                                       4 |
          2 |
                            5 |
  6 |
                    2 |
                                   2 |
                                               1 |
                                                        1
                           5 |
          2 |
                                  5 I
  7 |
                    3 |
                                       -1 |
                                               0 |
                                                        2.
  8 |
          3 |
                            5 |
                                  3 |
                                        5 I
                   1 |
                                                        Λ
                                               1 |
  9 |
         3 |
                   2 |
                                        8 |
                           5 I
                                  6 I
                                               1 1
                                                        1
         3 |
                   3 I
                           5 I
                                       -1 |
                                              0 |
 10 I
                                  5 I
                                                        2
         4 |
 11 I
                   1 |
                           10 I
                                  3 I
                                        2 |
                                              1 |
                                                        0
 12 |
          4 |
                   2 |
                           10 |
                                  2 |
                                        4 |
                                              1 |
                                                        1
                   3 |
 13 |
          4 |
                           10 |
                                  5 | 10 |
                                              1 |
          4 |
                   4 |
                           10 | 10 | -1 |
                                                         3
 14 |
                                               0 1
(14 rows)
```

Many to One

This signature finds the set of disjoint paths from each one of the start_vid in start_vids to the end_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one pgr_edgeDisjointPaths.
- The extra start_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

1	1	1	0	3	2	1	0	
2	1	2	0	2	4	1	1	
3	1	3	0	5	-1	0	2	
4	2	1	1	3	5	1	0	
5	2	2	1	6	8	1	1	
6	2	3	1	5	-1	0	2	
7	3	1	2	6	8	1	0	
8	3	2	2	5	-1	0	1	
9	4	1	3	6	9	1	0	
10	4	2	3	9	16	1	1	
11	4	3	3	4	3	1	2	
12	4	4	3	3	2	1	3	
13	4	5	3	2	4	1	4	
14	4	6	3	5	-1	0	5	
(14 rows)								

Many to Many

This signature finds the set of disjoint paths from each one of the start_vid in start_vids to each one of the end_vid

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one *pgr_edgeDisjointPaths*.
- The extra start_vid and end_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[3, 6], ARRAY[4, 5, 10]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
____+__
  1 |
        1 | 1 | 0 | 4 | 3 | 5 | 1 |
                           0 |
  2 |
        1 |
                 2 |
                                   4 | 6 | 9 |
                                                   1 |
                                                             1
                 3 |
                           0 |
                                        9 | 16 |
         1 |
                                   4 |
                                                    1 |
                                                             2.
  3 |
                           0 |
  4 |
         1 |
                  4 |
                                        4 | -1 |
                                                    0 |
                                                             3
                                   4 |
  5 |
        2 |
                           1 |
                                   5 |
                                        3 | 2 |
                                                    1 |
                                                             0
                 1 |
  6 |
         2 |
                  2 |
                           1 |
                                   5 |
                                        2 |
                                              4 |
                                                    1 |
                                                             1
                  3 |
  7 |
          2 |
                           1 |
                                         5 |
                                   5 |
                                              -1 |
                                                    0 |
                           5 |

5 |

2 | 5 |

3 | 10 |

3 | 10 '

3 |
                  1 |
                                         3 |
          3 |
                                              5 |
  8 |
                                                    1 |
                                                             0
                  2 |
          3 |
                                         6 |
                                              8 |
  9 |
                                                    1 |
                                                             1
                  3 |
 10 |
         3 |
                                         5 I
                                              -1 |
                                                    0 |
                  1 |
 11 |
         4 |
                                         3 |
                                              2 |
                                                    1 |
                                                             0
                                              4 |
 12 |
         4 |
                  2 |
                                         2 |
                                                    1 |
                                                             1
                                         5 |
                                             10 |
 13 |
                  3 |
         4 |
                                                    1 |
                           3 |
                                  10 |
 14 |
         4 |
                  4 |
                                        10 |
                                              -1 |
                                                    0 |
         5 I
                 1 |
                                              9 |
 15 I
                           4 |
                                   4 |
                                                             Ω
                                        6 |
                                                    1 |
                                  4 |
         5 |
                  2 |
                           4 |
                                        9 |
                                             16 |
 16 I
                                                    1 1
                                                             1
 17 |
         5 |
                 3 |
                           4 |
                                  4 |
                                        4 |
                                             -1 |
                                                    0 |
 18 |
         6 |
                 1 |
                           5 I
                                  5 |
                                        6 |
                                              8 |
                                                    1 |
 19 |
         6 |
                  2 |
                           5 |
                                  5 |
                                        5 |
                                             -1 |
                                                    0 |
                                                             1
                                              9 |
 20 |
         7 |
                  1 |
                           6 |
                                   5 |
                                         6 |
                                                    1 |
                                                             0
 21 |
         7 |
                  2 |
                           6 |
                                   5 |
                                         9 | 16 |
                                                    1 |
                                                             1
 22 |
          7 |
                  3 |
                            6 |
                                    5 |
                                         4 | 3 |
                                                    1 |
                                                             2.
```

23	7	4	6	5	3	2	1	3
24	7	5	6	5	2	4	1	4
25	7	6	6	5	5	-1	0	5
26	8	1	7	10	6	8	1	0
27	8	2	7	10	5	10	1	1
28	8	3	7	10	10	-1	0	2
(28 rows)								

Description of the Signatures

$Description \ of \ the \ edges_sql \ query \ for \ dijkstra \ like \ functions$

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse cost	ANY-NUMERICAL	-1	Weight of the edge (target,
10,0130_030			source),
			• When negative:
			edge (target, source)
			does not exist, there-
			fore it's not part of
			the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Column	Туре	Default
sql	TEXT	
start_vid	BIGINT	
start_vids	ARRAY[BIGINT]	
end_vid	BIGINT	
end_vids	ARRAY[BIGINT]	
directed	BOOLEAN	true

Description of the parameters of the signatures

Description of the return values for a path Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Col-	Type	Description		
umn				
seq	INT Sequential value starting from 1.			
path_id	INT	Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for		
		the same start_vid to end_vid combination.		
path_se	qINT	Relative position in the path. Has value 1 for the beginning of a path.		
start_vi	d BIGIN	TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.		
end_vio	BIGIN	TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.		
node	BIGIN	TIdentifier of the node in the path from start_vid to end_vid.		
edge	BIGIN	TIdentifier of the edge used to go from node to the next node in the path sequence1 for		
		the last node of the path.		
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.		
agg_cos	t FLOAT	Aggregate cost from start_v to node.		

See Also

• Flow - Family of functions

Indices and tables

- genindex
- · search

Flow Functions General Information

Characteristics

- The graph is **directed**.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.

- There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr_maxFlow* when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets

pgr_maxFlow is the maximum Flow and that maximum is guaranteed to be the same on the functions pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov, but the actual flow through each edge may vary.

Problem definition

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not exceed the capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except the for source which only has outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow through each edge may vary. Given the following query:

```
\begin{aligned} & \texttt{pgr\_maxFlow} \; (edges\_sql, source\_vertex, sink\_vertex) \\ & \texttt{where} \; edges\_sql = \{(id_i, source_i, target_i, capacity_i, reverse\_capacity_i)\} \end{aligned}
```

Graph definition

The weighted directed graph, G(V, E), is defined as:

- ullet the set of vertices V
 - $source_vertex \cup sink_vertex \cup source_i \cup target_i$
- the set of edges ${\cal E}$

```
 - E = \begin{cases} \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} & \text{if } reverse\_capacity = 0 \\ \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} & \text{if } reverse\_capacity_i > 0\} \\ \cup \{(target_i, source_i, reverse\_capacity_i) \text{ when } reverse\_capacity_i > 0)\} & \text{if } reverse\_capacity \neq 0 \end{cases}
```

Maximum flow problem

Given:

- G(V,E)
- $source_vertex \in V$ the source vertex
- $sink_vertex \in V$ the sink vertex

Then:

```
\begin{split} pgr\_maxFlow(edges\_sql, source, sink) &= \mathbf{\Phi} \\ \mathbf{\Phi} &= (id_i, edge\_id_i, source_i, target_i, flow_i, residual\_capacity_i) \end{split}
```

Where:

 Φ is a subset of the original edges with their residual capacity and flow. The maximum flow through the graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In particular:

- $id_i = i$
- $edge_id = id_i$ in edges_sql
- $residual\ capacity_i = capacity_i flow_i$

See Also

• https://en.wikipedia.org/wiki/Maximum_flow_problem

Indices and tables

- · genindex
- · search

6.2.3 pgr_labelGraph - Experimental

Name

pgr_labelGraph — Locates and labels sub-networks within a network which are not topologically connected.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Must be run after pgr_createTopology (). No use of geometry column. Only id, source and target columns are required.

The function returns:

- OK when a column with provided name has been generated and populated successfully. All connected edges will have unique similar integer values. In case of rows_where condition, non participating rows will have -1 integer values.
- FAIL when the processing cannot be finished due to some error. Notice will be thrown accordingly.
- rows_where condition generated 0 rows when passed SQL condition has not been fulfilled by any row.

```
varchar pgr_labelGraph(text, text, text, text, text, text)
```

Description

A network behind any routing query may consist of sub-networks completely isolated from each other. Possible reasons could be:

- An island with no bridge connecting to the mainland.
- An edge or mesh of edges failed to connect to other networks because of human negligence during data generation.
- The data is not properly noded.
- Topology creation failed to succeed.

pgr_labelGraph() will create an integer column (with the name provided by the user) and will assign same integer values to all those edges in the network which are connected topologically. Thus better analysis regarding network structure is possible. In case of rows_where condition, non participating rows will have -1 integer values.

Prerequisites: Must run pgr_createTopology() in order to generate source and target columns. Primary key column id should also be there in the network table.

Function accepts the following parameters:

edge_table text Network table name, with optional schema name.

id text Primary key column name of the network table. Default is id.

source text **Source** column name generated after pgr_createTopology(). Default is source.

target text Target column name generated after pgr_createTopology(). Default is target.

subgraph text Column name which will hold the integer labels for each sub-graph. Default is subgraph.

rows_where text The SQL where condition. Default is true, means the processing will be done on the whole table.

Example Usage

The sample data, has 3 subgraphs.

```
SET client_min_messages TO WARNING;
SET

SELECT pgr_labelGraph('edge_table', 'id', 'source', 'target', 'subgraph');
pgr_labelgraph
------
OK
(1 row)

SELECT DISTINCT subgraph FROM edge_table ORDER BY subgraph;
subgraph
------
1
2
3
(3 rows)
```

See Also

• pgr_createTopology²² to create the topology of a table based on its geometry and tolerance value.

Indices and tables

- genindex
- · search

6.2.4 Components - Family of functions

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting
- pgr_connectedComponents Experimental Return the connected components of an undirected graph.
- pgr_strongComponents Experimental Return the strongly connected components of a directed graph.
- pgr_biconnectedComponents Experimental Return the biconnected components of an undirected graph.
- pgr_articulationPoints Experimental Return the articulation points of an undirected graph.
- pgr_bridges Experimental Return the bridges of an undirected graph.

pgr_connectedComponents - Experimental

pgr_connectedComponents — Return the connected components of an undirected graph using a DFS-based approach. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.20: Boost Graph Inside

²²https://github.com/Zia-/pgrouting/blob/develop/src/common/sql/pgrouting_topology.sql

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

A connected component of an undirected graph is a set of vertices that are all reachable from each other. This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- Components are described by vertices
- The returned values are ordered:
 - component ascending
 - node ascending
- Running time: O(V + E)

Signatures

```
pgr_connectedComponents(edges_sql)

RETURNS SET OF (seq, component, n_seq, node)

OR EMPTY SET
```

The signature is for a **undirected** graph.

```
SELECT * FROM pgr_connectedComponents(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | component | n_seq | node
----+----
             1 |
                    1 |
  1 |
             1 |
                    2 |
  2 |
             1 |
                    3 |
  3 |
            1 |
                    4 |
  4 |
  5 |
            1 |
                    5 I
  6 |
             1 |
                    6 |
  7 |
             1 |
                    7 |
                     8 |
```

9	1	9	9
10	1	10	10
11	1	11	11
12	1	12	12
13	1	13	13
14	14	1	14
15	14	2	15
16	16	1	16
17	16	2	17
(17 rows)			

Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description		
id	ANY-INTEGER		Identifier of the edge.		
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.		
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.		
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.		
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.		

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum node identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
node	BIGINT	Identifier of the vertex.

See Also

- http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_strongComponents - Experimental

pgr_strongComponents — Return the strongly connected components of a directed graph using Tarjan's algorithm based on DFS. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.21: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other. This implementation can only be used with a directed graph.

Characteristics

The main Characteristics are:

- Components are described by vertices
- The returned values are ordered:
 - component ascending
 - node ascending
- Running time: O(V + E)

Signatures

```
pgr_strongComponents(edges_sql)

RETURNS SET OF (seq, component, n_seq, node)

OR EMPTY SET
```

The signature is for a directed graph.

```
SELECT * FROM pgr_strongComponents(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | component | n_seq | node
```


Description of the Signatures

Description of the edges_sql query for components functions

 $\textbf{edges_sql} \ \ \text{an SQL query, which should return a set of rows with the following columns:}$

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for connected components and strongly connected components $set of (seq, component, n_seq, node)$

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum node identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
node	BIGINT	Identifier of the vertex.

See Also

- http://en.wikipedia.org/wiki/Strongly_connected_component
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_biconnectedComponents - Experimental

pgr_biconnectedComponents — Return the biconnected components of an undirected graph. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.22: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained in a single biconnected component. So, the output only has edge version.

This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- Components are described by edges
- The returned values are ordered:
 - component ascending
 - edge ascending
- Running time: O(V + E)

Signatures

```
pgr_biconnectedComponents(edges_sql)

RETURNS SET OF (seq, component, n_seq, edge)

OR EMPTY SET
```

The signature is for a undirected graph.

```
SELECT * FROM pgr_biconnectedComponents(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | component | n_seq | edge
               1 |
                        1 |
               2 |
                        1 |
                               2
   2 |
               2 |
                        2 |
                               3
   3 |
               2 |
                        3 |
                               4
   4 |
               2 |
                               5
   5 |
                        4 |
               2 |
                        5 I
                               8
   6 |
   7 |
               2 |
                        6 |
                               9
   8 |
               2 |
                        7 |
                              10
   9 |
               2 |
                        8 |
                              11
  10 |
               2 |
                        9 |
                              12
  11 |
               2 |
                       10 |
                              13
  12 |
               2 |
                       11 |
                              15
               2 |
                       12 |
  13 |
                              16
  14 |
               6 |
                        1 |
                               6
               7 |
                               7
  15 |
                        1 |
  16 |
              14 |
                              14
                        1 |
  17 |
              17 I
                              17
                        1 |
  18 |
              18 |
                        1 |
                              18
(18 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for biconnected components, connected components (edge version) and strongly connected components Returns set of (seq, component, n_seq, edge)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum edge identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
edge	BIGINT	Identifier of the edge.

See Also

- http://en.wikipedia.org/wiki/Biconnected_component
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_articulationPoints - Experimental

pgr_articulationPoints - Return the articulation points of an undirected graph. In particular, the algorithm implemented by Boost.Graph.

Fig. 6.23: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph. This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- The returned values are ordered:
 - node ascending
- Running time: O(V + E)

Signatures

```
pgr_articulationPoints(edges_sql)

RETURNS SET OF (seq, node)

OR EMPTY SET
```

The signature is for a **undirected** graph.

Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for articulation points Returns set of (seq, node)

Column	Type	Description
seq	INT	Sequential value starting from 1.
node	BIGINT	Identifier of the vertex.

See Also

- http://en.wikipedia.org/wiki/Biconnected_component
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

pgr_bridges - Experimental

pgr_bridges - Return the bridges of an undirected graph.

Fig. 6.24: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

A bridge is an edge of an undirected graph whose deletion increases its number of connected components. This implementation can only be used with an undirected graph.

Characteristics

The main Characteristics are:

- The returned values are ordered:
 - edge ascending
- Running time: O(E * (V + E))

Signatures

```
pgr_bridges(edges_sql)

RETURNS SET OF (seq, node)

OR EMPTY SET
```

The signature is for a **undirected** graph.

Example

```
SELECT * FROM pgr_bridges(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
seq | edge
----+----
1 | 1
2 | 6
```

```
3 | 7
4 | 14
5 | 17
6 | 18
(6 rows)
```


Description of the Signatures

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for bridges Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGINT	Identifier of the edge.

See Also

- http://en.wikipedia.org/wiki/Bridge_%28graph_theory%29
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

The problem definition

Connected components

A connected component of an undirected graph is a set of vertices that are all reachable from each other.

Notice: This problem defines on an undirected graph.

Given the following query:

```
pgr_connectedComponentsV(sql)
```

```
where sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\}
```

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- \bullet the set of vertices V
 - $-V = source \cup target$
- the set of edges E

Given:

• *G*(*V*, *E*)

Then:

$$\pi = \{(component_i, n_seq_i, node_i)\}$$

where:

- $component_i = \min\{node_i | node_i \in component_i\}$
- n_seq_i is a sequential value starting from 1 in a component.
- $node_i \in component_i$
- The returned values are ordered:
 - component ascending
 - node ascending

Example:

- The first component is composed of nodes 0, 1 and 4.
- The second component is composed of node 3.
- The third component is composed of nodes 2 and 5.

Strongly connected components

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other.

Notice: This problem defines on a directed graph.

Given the following query:

```
\label{eq:pgr_strongComponents} \begin{aligned} & \text{pgr\_strongComponentsV}(sql) \\ & \text{where } sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\} \\ & \text{and} \end{aligned}
```

• $source = \bigcup source_i$,

• $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted directed graph, $G_d(V, E)$, is definied by:

- ullet the set of vertices V
 - $V = source \cup target \cup start_{vid} \cup end_{vid}$
- \bullet the set of edges E

$$-E = \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} & \text{if } reverse_cost = 0\} \\ \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >= 0)\} & \text{if } reverse_cost \neq 0\} \end{cases}$$

Given:

• *G*(*V*, *E*)

Then:

$$\boldsymbol{\pi} = \{(component_i, n_seq_i, node_i)\}$$

where:

- $component_i = \min node_i | node_i \in component_i$
- n_seq_i is a sequential value starting from 1 in a component.
- $node_i \in component_i$
- The returned values are ordered:
 - component ascending
 - node ascending

Example:

- The first component is composed of nodes 1, 2 and 4.
- The second component is composed of node 0.
- The third component is composed of node 3.
- The fourth component is composed of node 5.
- The fifth component is composed of node 6.

Biconnected components

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained in a single biconnected component. So, the output only has edge version.

Notice: This problem defines on an undirected graph.

Given the following query:

 ${\tt pgr_biconnectedComponents}(sql)$

where $sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}$ and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- the set of vertices V
 - $-V = source \cup target$
- the set of edges E

```
 \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \end{cases} \\ \text{if } reverse\_cost = \\ \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \cup \{(source_i, target_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \end{aligned}  if reverse\_cost \neq 0
```

Given:

• *G*(*V*, *E*)

Then:

$$\pi = \{(component_i, n_seq_i, node_i)\}$$

where:

- $component_i = \min node_i | node_i \in component_i$
- n_seq_i is a sequential value starting from 1 in a component.
- $edge_i \in component_i$
- The returned values are ordered:
 - component ascending
 - edge ascending

Example:

- The first component is composed of edges 1 2, 0 1 and 0 2.
- The second component is composed of edges 2 4, 2 3 and 3 4.
- The third component is composed of edge 5 6.
- The fourth component is composed of edge 6 7.
- The fifth component is composed of edges 8 9, 9 10 and 8 10.

Articulation Points

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph.

Notice: This problem defines on an undirected graph.

Given the following query:

```
pgr_articulationPoints(sql)
```

```
where sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\}
```

and

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- ullet the set of vertices V
 - $V = source \cup target$
- the set of edges E

Given:

• *G*(*V*, *E*)

Then:

$$\pi = \{node_i\}$$

where:

- $node_i$ is an articulation point.
- The returned values are ordered:
 - node ascending

Example:

• Articulation points are nodes 2 and 6.

Bridges

A bridge is an edge of an undirected graph whose deletion increases its number of connected components.

Notice: This problem defines on an undirected graph.

Given the following query:

```
\begin{aligned} & \text{pgr\_bridges}(sql) \\ & \text{where } sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\} \end{aligned}
```

- $source = \bigcup source_i$,
- $target = \bigcup target_i$,

The graphs are defined as follows:

The weighted undirected graph, G(V, E), is definied by:

- ullet the set of vertices V
 - $-V = source \cup target$
- ullet the set of edges E

```
 \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \end{cases} \\ \text{if } reverse\_cost = \\ \begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \cup \{(target_i, source_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \cup \{(source_i, target_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \end{cases} \\ \text{if } reverse\_cost \neq 0 \end{cases}
```

Given:

• *G*(*V*, *E*)

Then:

$$\pi = \{edge_i\}$$

where:

- $edge_i$ is an edge.
- The returned values are ordered:
 - edge ascending

Example:

• Bridges are edges 5 <--> 6 and 6 <--> 7.

Description of the edges_sql query for components functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Parameter	Type	Default	Description
edges_sql	TEXT		SQL query as described above.

Description of the return values for connected components and strongly connected components

Returns set of (seq, component, n_seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum node identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
node	BIGINT	Identifier of the vertex.

Description of the return values for biconnected components, connected components (edge version) and strongly connected components

Returns set of (seq, component, n_seq, edge)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
component	BIGINT	Component identifier. It is equal to the minimum edge identifier in the component.
n_seq	INT	It is a sequential value starting from 1 in a component.
edge	BIGINT	Identifier of the edge.

Description of the return values for articulation points

Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
node	BIGINT	Identifier of the vertex.

Description of the return values for bridges

Returns set of (seq, node)

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGINT	Identifier of the edge.

See Also

Indices and tables

- genindex
- · search

6.2.5 pgr_gsoc_vrppdtw - Experimental

Name

pgr_gsoc_vrppdtw — Returns a solution for Pick and Delivery with time windows Vehicle Routing Problem

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Signature Summary

pgr_gsoc_vrppdtw(sql, vehicle_num, capacity)
RETURNS SET OF pgr_costResult[]:

Signatures

Complete signature

```
pgr_gsoc_vrppdtw(sql, vehicle_num, capacity)
Returns set of pgr_costResult[]:
```

Example: Show the id1

Description of the Signatures

Description of the sql query

Column	Type	Description
id	ANY-INTEGER	Identifier of the customer.
		• A value of 0 identifies the
		starting location
X	ANY-NUMERICAL	X coordinate of the location.
y	ANY-NUMERICAL	Y coordinate of the location.
demand	ANY-NUMERICAL	How much is added / removed from
		the vehicle.
		 Negative value is a delivery,
		 Positive value is a pickup,
openTime	ANY-NUMERICAL	The time relative to 0, when the cus-
		tomer opens.
closeTime	ANY-NUMERICAL	The time relative to 0, when the cus-
		tomer closes.
serviceTime	ANY-NUMERICAL	The duration of the loading / un-
		loading.
pIndex	ANY-INTEGER	Value used when the current cus-
		tomer is a Delivery to find the cor-
		responding Pickup
dIndex	ANY-INTEGER	Value used when the current cus-
		tomer is a Pickup to find the corre-
		sponding Delivery

Description of the parameters of the signatures

Column	Туре	Description
sql	TEXT	SQL query as described above.
vehicle_num	INTEGER	Maximum number of vehicles in the result. (currently is ignored)
capacity	INTEGER	Capacity of the vehicle.

Description of the result

RETURNS SET OF pgr_costResult[]:

Column	Type	Description	
seq	INTEGER	Sequential value starting from 1.	
id1	INTEGER	Current vehicle identifier.	
id2	INTEGER	Customer identifier.	
cost	FLOAT	• when id2 = 0 for the second time for the same id1, then has the total time for the current id1	wait time plu

Examples

Example: Total number of rows returned

```
SELECT count(*) FROM pgr_gsoc_vrppdtw(
    'SELECT * FROM customer ORDER BY id', 25, 200);
count
-----
126
(1 row)
```

Example: Results for only id1 values: 1, 5, and 9

```
SELECT * FROM pgr_gsoc_vrppdtw(
   'SELECT * FROM customer ORDER BY id', 25, 200)
   WHERE id1 in (1, 5, 9);
seq | id1 | id2 | cost
----+----
  1 | 1 | 0 |
                              0
  2 | 1 | 13 | 120.805843601499
  3 | 1 | 17 | 214.805843601499
  4 | 1 | 18 | 307.805843601499
      1 | 19 | 402.805843601499
  5 |
       1 | 15 | 497.805843601499
  6 |
       1 |
            16 | 592.805843601499
  8 |
       1 |
            14 | 684.805843601499
  9 |
       1 |
            12 | 777.805843601499
       1 | 50 | 920.815276724293
 10 |
 11 |
       1 | 52 | 1013.97755438446
       1 | 49 | 1106.97755438446
 12 |
 13 I
      1 | 47 | 1198.97755438446
```

```
0 | 1217.00531076178
 57 |
        5 |
             0 |
                                0
 58 |
        5 |
             90 | 110.615528128088
 59 I
        5 | 87 | 205.615528128088
 60 I
        5 | 86 | 296.615528128088
 61 |
        5 | 83 | 392.615528128088
        5 | 82 | 485.615528128088
 62 |
        5 | 84 | 581.446480022934
 64 |
        5 | 85 | 674.27490714768
 65 I
        5 | 88 | 767.27490714768
        5 | 89 | 860.103334272426
 66 I
        5 | 91 | 953.70888554789
 67 I
        5 | 0 | 976.069565322888
 68 |
105 I
        9 |
            0 |
106 |
        9 | 67 | 102.206555615734
107 |
        9 | 65 | 193.206555615734
        9 | 63 | 285.206555615734
108 |
109 |
        9 |
            62 | 380.206555615734
110 |
        9 |
             74 | 473.206555615734
111 |
        9 |
             72 | 568.206555615734
        9 | 61 | 661.206555615734
112 |
        9 | 64 | 663.206555615734
113 |
114 |
        9 | 102 | 753.206555615734
115 |
      9 | 68 | 846.206555615734
            0 | 866.822083743822
116 |
      9 |
(38 rows)
```

See Also

- The examples use Pick & Deliver Data
- http://en.wikipedia.org/wiki/Vehicle routing problem

Indices and tables

- genindex
- search

6.2.6 pgr_vrpOneDepot - Experimental

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

No documentation available

Example:

Current Result

```
BEGIN;
BEGIN
SET client_min_messages TO NOTICE;
SELECT * FROM pgr_vrpOneDepot(
   'SELECT * FROM vrp_orders',
   'SELECT * FROM vrp_vehicles',
   'SELECT * FROM vrp_distance',
   1);
oid | opos | vid | tarrival | tdepart
 -1 | 1 | 5 | 0 |
 66 | 2 | 5 |
                      0 |
 25 | 3 | 5 |
                      0 |
 21 | 4 | 5 |
                      0 |
                               0
 84 | 5 | 5 |
                      0 |
 50 | 6 | 5 |
                      0 |
                               0
       7 | 5 |
                      0 |
                               0
 49 |
 24 | 8 | 5 |
                               0
                      0 |
 22 |
       9 | 5 |
                       0 |
                               0
                               0
 20 | 10 |
            5 |
             5 | U |
5 | 0 |
5 | 11 |
5 | 30 |
5 | 71 |
5 | 83 |
5 | 98 |
5 | 114 |
5 | 131 |
5 | 144 |
5 | 158 |
                      0 |
 19 |
       11 |
                                 0
 66 |
       12 |
                                21
 84 |
       13 |
                                45
 24 |
       14 |
                                81
            5 |
5 |
 22 |
       15 I
                                93
            5 |
                              108
 20 |
       16 |
             5 |
                              124
       17 |
 19 |
             5 I
 50 I
                              141
       18 |
       19 |
            5 |
                              154
 21 |
      20 |
            5 I
 25 I
                              168
      21 | 5 | 179 |
22 | 5 | 234 |
1 | 6 | 0 |
 49 I
                              189
 -1 |
                              234
                               0
 -1 |
 31 |
       2 | 6 |
                       0 |
                                0
 32 |
       3 | 6 |
                      0 |
 81 | 4 | 6 |
                      0 |
                               0
 94 | 5 | 6 |
                      0 |
                               0
 93 | 6 | 6 |
                       0 |
                               0
                       0 |
 35 |
        7 | 6 |
                                0
                  0 |
0 |
0 |
15 |
61 |
78
                       0 |
 33 |
       8 | 6 |
                                0
                               0
        9 |
             6 |
 28 I
       10 I
             6 |
 27 |
                                 0
              6 |
       11 |
 93 |
                                25
       12 |
              6 |
                                71
 32 |
 28 |
       13 |
              6 |
                      97 |
 31 |
       14 |
              6 |
                              107
                   112 |
134 |
152 |
                              122
 35 |
       15 |
             6 |
                              144
 27 |
             6 |
       16 |
             6 |
                              162
 33 |
       17 |
             6 |
                     196 |
                              206
 94 |
       18 |
 81 I
             6 |
                     221 |
                              231
      19 |
             6 |
 -1 I
      20 I
                     238 |
                               238
 -1 |
       1 |
              3 |
                      0 1
                               0
 16 |
```

14				0
	4	3	0	0
-	1 5	3	0	0
17		3	0	0
	7		0	0
13		3	1 0	0
11		3	0	0
	11		35	
48			48	
13	13	3	64	74
16	14	3	82	92
17			94	
10			115	
11			130	
14			147	
18		3	169	
-1	20	3	219	219
-1			0	
71			0	
	3			
	4		0	
	5	8	0	
42	6	8	0	0
	7		0	0
	8	8	0	
		8	1 0	
	10		34	
40			4 9	
39	12	8	61	85
41			90	
42			111	
44			131	
55			166	
71			198	
-1	18	8	228	228
-1			. 0	
4		1	1 0	
101		1	0	
46				
5	5	1	0	
3	6	1	0	0
46	7	1	38	
3		1		
2	9			
	10			
2	11	1	148	158
5			165	
101				
-1				
-1				
92				
52	3	13	0	0
57				. 0
85		13		
68		13		
63				
63	8	13	29	62
	1 9			
	1 10			
	11			
57				
92	13	13	159	177

		1 10	1 100	100
-1		13		
-1		7	0	•
30		7	0 1	
		7	0	
		1 /	0 1	0
		1 7	0	0
-		1 7	0	0
34	7			
		1 7		
30		1 7		
38				
36				
-1			217	
-1			0	
89	2	2	0	0
47			0	
61			0 1	
9		1 2	0 1	
8		1 2	0 1	
			96	
			111	
47			124	
61	11	2	154	165
-1			192	192
-1				
97			0 1	
] 3		0 1	
				0
51			0 1	
		14	0	
77		14		
	7	14	21	44
64				
77				
51				
97			154	
-1				
			180	
-1				
		15	0	
73		15	0	
95	4	15	0	0
82	5	15	0 1	0
	1 6	1 15	. 0 1	0
	7		27	
72		15	50	
82				
		15	91	
95				
67			144	
-1			167	
-1				
78				
26				
87				
	5			
87		11		
23		11	118	
78	8	11		
26		1 11		
-1		1 11		
		4	0	
		4	0	
59			0	
100	4	4	0	0

54	5	4		0	0
60	6	4)	42	52
100				74	
54		4		103	
59		4		153	
-1				211	
-1			.	0	0
86				0	
90				0	
65				0	
53	1 5	10	3	0	0
53				25	
65				82	
86		10		111	
90		10		140	
-1		10	.	206	
-1				0	
6				0	
80				0	0
7			7	0	0
56				0	
6				40	
80	7	12)	73	99
7	8	12	7	113	123
56		1 12		142	
-1		12		166	
-1				0	
88	2	19	3	0	0
70				0	
				0	•
58					
99				0	0
70	6	19)	9	51
99				56	
88		19		97	
58		19		125	
-1	10	19	.	162	162
-1		17	.	0	0
75		1 17		0	
98		17		0	
76	4	17	5	0	0
76				57	
98					
		17		97	
75				146	
-1	8	17	.	192	192
-1				0	
69				0	
79				0	
74	4	16	<u> </u>	0	0
74	1 5	16		39	87
79				94	
69				136	
-1		16		164	
-1	1	9	.	0	0
62				0	
37					
				0	
45				0	
37	1 5	9	7	43	53
45			5	63	
62				94	
-1		1 9		120	
-1		18		0	0
91	2	18	.	0	0
12				0	
	, ,	1 10	• 1		. 0

```
34 |
                 18
                                          69
  91 |
           5 |
                 18
                              99 |
                                        109
                    - 1
  -1 |
                             113 I
                                        113
           6 |
                 18
  -1 I
           1 |
                 2.0
                               0 1
                                          0
  83 |
           2 |
                 20
                               0 |
                                          0
                                          52
  83 |
           3 |
                 20 |
                              15 |
  -1 |
           4 |
                 20 |
                              67 |
                                          67
  -1 |
                 0 |
                                       3712
           0 |
                              -1 I
(241 rows)
ROLLBACK;
ROLLBACK
```

Data

```
drop table if exists vrp_orders cascade;
create table vrp_orders (
    id integer not null primary key,
    order_unit integer,
    open_time integer,
    close_time integer,
    service_time integer,
    x float8,
    y float8
);
copy vrp_orders (id, x, y, order_unit, open_time, close_time, service_time) from stdin;
                           50.000000
1
         40.000000
                                             0
                                                       0
                                                                240
         25.000000
                                             2.0
                                                        145
                                                                   175
                                                                               10
2
                           85.000000
         22.000000
                           75.000000
                                             30
                                                        50
3
                                                                   80
                                                                             1.0
4
         22.000000
                           85.000000
                                             10
                                                        109
                                                                   139
                                                                               10
5
         20.000000
                           80.000000
                                             40
                                                        141
                                                                   171
                                                                               10
6
         20.000000
                           85.000000
                                             20
                                                        41
                                                                   71
                                                                             10
         18.000000
                                             20
                                                        95
                                                                   125
                                                                              10
                           75.000000
8
         15.000000
                           75.000000
                                             20
                                                        79
                                                                   109
                                                                              10
9
         15.000000
                           80.000000
                                             10
                                                        91
                                                                   121
                                                                              10
10
          10.000000
                            35.000000
                                              20
                                                        91
                                                                   121
                                                                               10
11
                                              30
          10.000000
                            40.000000
                                                         119
                                                                    149
                                                                                 10
12
          8.000000
                           40.000000
                                             40
                                                        59
                                                                   89
                                                                             1.0
                           45.000000
13
          8.000000
                                             20
                                                        64
                                                                   94
                                                                             10
14
          5,000000
                           35,000000
                                             10
                                                        142
                                                                   172
                                                                               10
15
          5.000000
                           45.000000
                                             10
                                                        35
                                                                   65
                                                                             10
16
          2.000000
                           40.000000
                                             20
                                                        58
                                                                   88
                                                                             10
17
          0.000000
                           40.000000
                                             20
                                                        72
                                                                   102
                                                                              10
          0.000000
                           45.000000
                                             20
                                                        149
                                                                   179
                                                                               10
19
          44.000000
                            5.000000
                                             20
                                                        87
                                                                   117
                                                                              10
20
          42.000000
                            10.000000
                                              40
                                                        72
                                                                   102
                                                                               10
                                              10
                                                         122
21
          42.000000
                            15.000000
                                                                    152
                                                                                 10
          40.000000
                            5.000000
                                             10
                                                        67
                                                                   97
                                                                             1.0
22
          40.000000
                                                        92
23
                            15.000000
                                              40
                                                                   122
                                                                               10
2.4
          38.000000
                            5.000000
                                             30
                                                        65
                                                                   95
                                                                             1.0
25
          38.000000
                            15.000000
                                              10
                                                         148
                                                                    178
                                                                                10
26
          35.000000
                            5.000000
                                             20
                                                        154
                                                                    184
                                                                               10
27
          95.000000
                            30.000000
                                              30
                                                         115
                                                                    145
                                                                                10
          95.000000
                            35.000000
                                                                    92
                                                                              10
28
                                              20
                                                         62
29
          92.000000
                            30.000000
                                              10
                                                         62
                                                                    92
                                                                              10
30
          90.000000
                            35.000000
                                              10
                                                         67
                                                                    97
                                                                              10
31
          88.000000
                            30.000000
                                              10
                                                         74
                                                                    104
                                                                               10
                                                                              10
32
          88.000000
                             35.000000
                                              20
                                                         61
                                                                    91
                                              10
                                                         131
                                                                     161
                                                                                 10
33
          87.000000
                             30.000000
```

34	85.000000	25.000000	10	51	81	10	
35	85.000000	35.000000	30	111	141	10	
36	67.000000	85.00000	20	139	169	10	
37	65.000000	85.000000	40	43	73	10	
38	65.000000	82.000000	10	124	154	10	
39	62.000000	80.000000	30	75	105	10	
40	60.000000	80.000000	10	37	67	10	
41	60.000000	85.000000	30	85	115	10	
42	58.000000	75.000000	20	92	122	10	
43	55.000000	80.000000	10	33	63	10	
44	55.000000	85.000000	20	128	158	10	
45	55.000000	82.000000	10	64	94	10	
46	20.000000	82.000000	10	37	67	10	
47	18.000000	80.000000	10	113	143	10	
48	2.000000	45.000000	10	45	75	10	
49	42.000000	5.000000	10	151	181	10	
50	42.000000	12.000000	10	104	134	10	
51	72.000000	35.000000	30	116	146	10	
52	55.000000	20.000000	19	83	113	10	
53	25.000000	30.000000	3	52	82	10	
54	20.000000	50.000000	5	91	121	10	
55	55.000000	60.000000	16	139	169	10	
56	30.000000	60.000000	16	140	170	10	
57							
	50.000000	35.000000	19	130	160	10	
58	30.000000	25.000000	23	96	126	10	
59	15.000000	10.000000	20	152	182	10	
60	10.000000	20.000000	19	42	72	10	
61	15.000000	60.000000	17	155	185	10	
62	45.000000	65.000000	9	66	96	10	
63	65.000000	35.000000	3	52	82	10	
64	65.000000	20.000000	6	39	69	10	
65	45.000000	30.000000	17	53	83	10	
66	35.000000	40.000000	16	11	41	10	
67	41.000000	37.000000	16	133	163	10	
68	64.000000	42.000000	9	70	100	10	
69	40.000000	60.000000	21	144	174	10	
70	31.000000	52.000000	27	41	71	10	
71	35.000000	69.000000	23	180	210	10	
72	65.000000	55.000000	14	65	95	10	
73	63.000000	65.000000	8	30	60	10	
74	2.000000	60.000000	5	77	107	10	
75	20.000000	20.000000	8	141	171	10	
76	5.000000	5.000000	16	74	104	10	
77	60.000000	12.000000	31	75	105	10	
78	23.000000	3.000000	7	150	180	10	
79	8.000000	56.000000	27	90	120	10	
80	6.000000	68.000000	30	89	119	10	
81	47.000000	47.000000	13	192	222	10	
82	49.000000	58.000000	10	86	116	10	
83	27.000000	43.000000	9	42	72	10	
84	37.000000	31.000000	14	35	65	10	
85	57.000000	29.000000	18	96	126	10	
86	63.000000	23.000000	2	87	117	10	
87	21.000000	24.000000	28	87	117	10	
88	12.000000	24.000000	13	90	120	10	
89	24.000000	58.000000	19	67	97	10	
90	67.000000	5.000000	25	144	174	10	
91	37.000000	47.000000	6	86	116	10	
92	49.000000	42.000000	13	167	197	10	
93	53.000000	43.000000	14	14	44	10	
94	61.000000	52.000000	3	178	208	10	
95	57.000000	48.000000	23	95	125	10	
96	56.000000	37.000000	6	34	64	10	
			-	- -	· -	-	

```
55.000000
                        54.000000
                                        26
                                                 132
                                                            162
                                                                       10
98
         4.000000
                       18.000000
                                        35
                                                120
                                                           150
                                                                      10
99
         26.000000
                        52.000000
                                         9
                                                 46
                                                           76
                                                                    10
100
         26.000000
                         35.000000
                                         15
                                                  77
                                                            107
                                                                       10
101
          31.000000
                          67.000000
                                         3
                                                  180
                                                            210
                                                                       10
١.
drop table if exists vrp_vehicles cascade;
create table vrp_vehicles (
   vehicle_id integer not null primary key,
   capacity integer,
   case_no integer
);
copy vrp_vehicles (vehicle_id, capacity, case_no) from stdin;
        200
                  5
2
        200
                  5
        200
                  5
3
                  5
        200
4
5
                  5
        200
       200
6
7
       200
                  5
8
       200
       200
        200
10
        200
12
        200
13
        200
                   5
                   5
14
        200
                   5
1.5
        200
                   5
16
         200
17
         200
                   5
18
         200
                   5
19
         200
                   5
20
         200
                   5
١.
drop table if exists vrp_distance cascade;
create table vrp_distance (
   src_id integer,
   dest_id integer,
   cost Float8,
   distance Float8,
   traveltime Float8
);
copy vrp_distance (src_id, dest_id, cost, distance, traveltime) from stdin;
        2 38.078866 38.078866 38.078866
        3
                                                30.805844
1
                30.805844
                               30.805844
                39.357337
                               39.357337
                                                39.357337
1
        4
        5
                               36.055513
                                                36.055513
                36.055513
1
                40.311289
                                40.311289
                                                40.311289
1
        6
                               33.301652
                                                33.301652
        7
                33.301652
1
                                35.355339
        8
                35.355339
                                                35.355339
1
                                39.051248
                39.051248
                                                39.051248
1
        9
                                 33.541020
                                                 33.541020
1
        10
                 33.541020
        11
                 31.622777
                                 31.622777
                                                 31.622777
1
        12
                 33.526109
                                 33.526109
                                                 33.526109
1
1
        13
                 32.388269
                                 32.388269
                                                 32.388269
1
        14
                 38.078866
                                 38.078866
                                                 38.078866
1
        15
                                 35.355339
                                                 35.355339
                 35.355339
1
        16
                 39.293765
                                 39.293765
                                                 39.293765
        17
                 41.231056
                                 41.231056
                                                41.231056
1
```

1	18	40.311289	40.311289	40.311289
1	19	45.177428	45.177428	45.177428
1	20	40.049969	40.049969	40.049969
1	21	35.057096	35.057096	35.057096
1	22	45.000000	45.000000	45.000000
1	23	35.000000	35.000000	35.000000
1	24	45.044423	45.044423	45.044423
1	25	35.057096	35.057096	35.057096
			45.276926	
1	26	45.276926		45.276926
1	27	58.523500	58.523500	58.523500
1	28	57.008771	57.008771	57.008771
1	29	55.713553	55.713553	55.713553
1	30	52.201533	52.201533	52.201533
1	31	52.000000	52.000000	52.000000
1	32	50.289164	50.289164	50.289164
1	33	51.078371	51.078371	51.078371
1	34	51.478151	51.478151	51.478151
1	35	47.434165	47.434165	47.434165
1	36	44.204072	44.204072	44.204072
1	37	43.011626	43.011626	43.011626
1	38	40.607881	40.607881	40.607881
1	39	37.202150	37.202150	37.202150
1	40	36.055513	36.055513	36.055513
1	41	40.311289	40.311289	40.311289
1	42	30.805844	30.805844	30.805844
1	43	33.541020	33.541020	33.541020
1	44	38.078866	38.078866	38.078866
1	45	35.341194	35.341194	35.341194
1	46	37.735925	37.735925	37.735925
1	47	37.202150	37.202150	37.202150
1	48	38.327536	38.327536	38.327536
1	49	45.044423	45.044423	45.044423
1	50	38.052595	38.052595	38.052595
1	51	35.341194	35.341194	35.341194
1	52	33.541020	33.541020	33.541020
1	53	25.000000	25.000000	25.000000
1	54	20.000000	20.000000	20.000000
1	55	18.027756	18.027756	18.027756
1	56	14.142136	14.142136	14.142136
1	57	18.027756	18.027756	18.027756
1	58	26.925824	26.925824	26.925824
1	59	47.169906	47.169906	47.169906
1	60	42.426407	42.426407	42.426407
1	61	26.925824	26.925824	26.925824
1	62	15.811388	15.811388	15.811388
1	63	29.154759	29.154759	29.154759
1	64	39.051248	39.051248	39.051248
1	65	20.615528	20.615528	20.615528
1	66	11.180340	11.180340	11.180340
1	67	13.038405	13.038405	13.038405
1	68	25.298221	25.298221	25.298221
1	69	10.000000	10.000000	10.000000
1	70	9.219544	9.219544	9.219544
1	71	19.646883	19.646883	19.646883
1	72	25.495098	25.495098	25.495098
1	73	27.459060	27.459060	27.459060
1	74	39.293765	39.293765	39.293765
1	75	36.055513	36.055513	36.055513
		57.008771	57.008771	57.008771
1	76 77			
1	77	42.941821	42.941821	42.941821
1	78	49.979996	49.979996	49.979996
1	79	32.557641	32.557641	32.557641
1	80	38.470768	38.470768	38.470768

1 81 7.615773 7.615773 7.615	
	041595
1 83 14.764823 14.764823 14.	764823
1 84 19.235384 19.235384 19.3	235384
1 85 27.018512 27.018512 27.0	018512
1 86 35.468296 35.468296 35.	468296
1 87 32.202484 32.202484 32.	202484
1 88 38.209946 38.209946 38.3	209946
	888544
	478567
1 91 4.242641 4.242641 4.242	
	041595
	764823
	095023
	117243
	615528
1 97 15.524175 15.524175 15.	524175
1 98 48.166378 48.166378 48.	166378
1 99 14.142136 14.142136 14.1	142136
1 100 20.518285 20.518285 20	.518285
	.235384
	78866
	40307
2 4 3.000000 3.000000 3.00000	
2 5 7.071068 7.071068 7.0710	
2 6 5.000000 5.000000 5.00000	
	06556
	42136
	80340
	201533
	434165
	104054
	462628
	851648
	721360
	537115
2 17 51.478151 51.478151 51.	478151
2 18 47.169906 47.169906 47.1	169906
2 19 82.225300 82.225300 82.	225300
2 20 76.902536 76.902536 76.	902536
2 21 72.034714 72.034714 72.	034714
	394103
	589105
	049368
	196910
	622577
	022469
	023253
	683332
	006097
	630138
	430094
	879430
	852814
	102497
	00000
	00000
	112342
	336309
	355339
	00000
	481879
2 43 30.413813 30.413813 30.	413813

2	44	30.000000	30.000000	30.000000	
2	45	30.149627	30.149627	30.149627	
2	46	5.830952	5.830952	5.830952	
2	47	8.602325	8.602325	8.602325	
2	48	46.141088	46.141088	46.141088	
2	49	81.786307	81.786307	81.786307	
2	50	74.953319	74.953319	74.953319	
2	51	68.622154	68.622154	68.622154	
2	52	71.589105	71.589105	71.589105	
2	53	55.000000	55.000000	55.000000	
2	54	35.355339	35.355339	35.355339	
2	55	39.051248	39.051248	39.051248	
2	56	25.495098	25.495098	25.495098	
2	57	55.901699	55.901699	55.901699	
2	58	60.207973	60.207973	60.207973	
2	59	75.663730	75.663730	75.663730	
2	60	66.708320	66.708320	66.708320	
2	61	26.925824	26.925824	26.925824	
2	62	28.284271	28.284271	28.284271	
2	63	64.031242	64.031242	64.031242	
2	64	76.321688	76.321688	76.321688	
			58.523500		
2	65	58.523500		58.523500	
2	66	46.097722	46.097722	46.097722	
2	67	50.596443	50.596443	50.596443	
2	68	58.051701	58.051701	58.051701	
2	69	29.154759	29.154759	29.154759	
2	70	33.541020	33.541020	33.541020	
2	71	18.867962	18.867962	18.867962	
2	72	50.000000	50.00000	50.000000	
2	73	42.941821	42.941821	42.941821	
2	74	33.970576	33.970576	33.970576	
2	75	65.192024	65.192024	65.192024	
2	76	82.462113	82.462113	82.462113	
2	77	80.956779	80.956779	80.956779	
2	78	82.024387	82.024387	82.024387	
2	79	33.615473	33.615473	33.615473	
2	80	25.495098	25.495098	25.495098	
2	81	43.908997	43.908997	43.908997	
2	82	36.124784	36.124784	36.124784	
2	83	42.047592	42.047592	42.047592	
		55.317267			
2	84		55.317267	55.317267	
2	85	64.498062	64.498062	64.498062	
2	86	72.718636	72.718636	72.718636	
2	87	61.131007	61.131007	61.131007	
2	88	62.369865	62.369865	62.369865	
2	89	27.018512	27.018512	27.018512	
2	90	90.354856	90.354856	90.354856	
2	91	39.849718	39.849718	39.849718	
2	92	49.244289	49.244289	49.244289	
2	93	50.477718	50.477718	50.477718	
2	94	48.836462	48.836462	48.836462	
2	95	48.918299	48.918299	48.918299	
2	96	57.140179	57.140179	57.140179	
2	97	43.139309	43.139309	43.139309	
2	98	70.213959	70.213959	70.213959	
2	99	33.015148	33.015148	33.015148	
2	100	50.009999	50.009999	50.009999	
2	101	18.973666	18.973666	18.973666	
3	1	30.805844	30.805844	30.805844	
3	2	10.440307	10.440307	10.440307	
3	4	10.000000	10.000000	10.000000	
3	5	5.385165	5.385165	5.385165	
3	6	10.198039	10.198039	10.198039	

3			4 00000	4 00000	4 00000	
1	3	7	4.000000	4.000000	4.000000	
10						
3 11 37,000000 37,000000 37,000000 3 12 37,696154 37,696154 37,696154 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 34,481879 37,481879 37,282180 37,282180 37,282180 37,282180 37,282180 37,282180 37,282180 37,282180 37,282180 37,282180 37,282180						
3 12 37,696154 37,696154 37,696154 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 33,105891 34,461879 34,481879 34,281828 32,281828 32,2277244 32,248189 32,248189 32,248189 32,248189 32,248189 32,248189 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 13 33.105891 33.105891 33.105891 33.462628 34.262628 34.262628 34.262628 34.262628 34.262628 34.262628 34.262628 34.262628 34.262628 34.262628 36.266638 36.26607353 36.266638 36.26641839 36.261839 36.246639 36.2641839 36.2641839 36.2641839 37.266699 37.2696699 37.2696699 37.2696699 37.2696699 37.2696699 3				37.000000	37.000000	
1 14 43.462628 43.462628 43.462628 43.462628 3 15 34.481879 34.461879 34.481879 9 3 16 40.311289 40.311289 40.311289 3 18 37.202150 37.202150 37.202150 3 19 73.375745 73.375745 73.375745 3 20 68.007353 68.007353 68.007353 3 21 63.245553 63.245553 63.245553 3 22 72.277244 72.277244 72.277244 3 23 62.611839 62.641839 62.641839 3 24 71.805292 71.805292 71.805292 3 25 62.096699 62.096699 62.096699 3 26 71.196910 71.196910 71.196910 3 28 83.246615 83.246615 83.246615 3 29 83.216585 83.216585 83.216585 3 31 79.881162 79.881162 79.881162 3 32 77.175126 77.175126 77.175126 77.175126 <t< td=""><td></td><td></td><td></td><td></td><td>37.696154</td><td></td></t<>					37.696154	
1 15 34,481879 34,481879 34,481879 2 16 40,311289 40,311289 311289 3 17 41,340053 41,340053 37,202150 37,202150 3 19 73,375745 73,375745 73,375745 73,375745 3 20 68,007353 68,007353 68,007353 68,007353 3 21 63,245553 63,245553 62,245553 3 22 72,277244 72,277244 72,277244 72,277244 3 23 62,641839 62,641839 62,641839 3 24 71,805292 71,805292 71,805292 2 5 62,096699 62,096699 62,096699 3 28 83,240615 83,240615 83,240615 83,240615 3 28 83,240615 83,240615 83,240615 83,240615 3 30 78,892332 78,892332 78,892332 3 31 79,881162 79,881162 79,881162 3 34 64,09722 79,056942 79,056942 3 34 64,09732		13	33.105891	33.105891	33.105891	
3 16 40.311289 40.311289 40.311289 3 17 41.340053 41.340053 3 18 37.202150 37.202150 37.202150 3 19 73.375745 73.375745 73.375745 3 20 68.007353 68.007353 68.007353 3 21 63.245553 63.245553 63.245553 3 22 72.277244 72.277244 72.277244 3 23 62.641839 62.641839 62.641839 3 24 71.805292 71.805292 71.805292 3 25 62.096699 62.096699 62.096699 3 27 85.755466 85.755466 85.755466 3 28 83.240615 83.240615 83.240615 3 29 83.16585 83.216585 83.216585 3 30 78.892332 78.892332 78.892332 3 31 79.881162 79.881162 79.881162 <td>3</td> <td>14</td> <td>43.462628</td> <td>43.462628</td> <td>43.462628</td> <td></td>	3	14	43.462628	43.462628	43.462628	
17	3	15	34.481879	34.481879	34.481879	
3 18 37.202150 37.202150 37.202150 37.202150 37.202150 37.202150 37.202150 37.202150 37.202150 37.202150 37.202150 37.375745 38.205533 38.205533 38.205553 68.007363 68.007363 78.006699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62.0066699 62	3	16	40.311289	40.311289	40.311289	
3 19 73.375745 73.375745 73.375745 73.375745 3.375745 3.375745 68.007353 68.007353 68.007353 68.007353 63.245553 63.245553 63.245553 63.245553 63.245533 63.245553 63.245563 63.245563 63.245563 63.245563 63.245563 63.245569 71.196160 71.196160 71.196910 71.196910 71.195910 71.196910 71.196910 71.196910 71.195126 71.175126 71.175126	3	17	41.340053	41.340053	41.340053	
3 19 73.375745 73.375745 73.375745 73.375745 3.375745 3.375745 68.007353 68.007353 68.007353 68.007353 63.245553 63.245553 63.245553 63.245553 63.245533 63.245553 63.245563 63.245563 63.245563 63.245563 63.245563 63.245569 71.196160 71.196160 71.196910 71.196910 71.195910 71.196910 71.196910 71.196910 71.195126 71.175126 71.175126	3	18	37.202150	37.202150	37.202150	
3 20 68,007353 68,007353 68,007353 63,245553 63,24553 63,24553 3 22 72,277244 72,27724 72,28724 72,28724 72,28724 72,28724 72,28724 72,28724 72,28724 72,28724 72,28724 72,28724		19	73.375745	73.375745	73.375745	
3 21 63.245553 63.245553 63.245553 3 22 72.277244 72.277244 72.277244 3 23 62.641839 62.641839 62.641839 3 24 71.805292 71.805292 71.805292 3 25 62.096699 62.096699 62.096699 3 26 71.196910 71.196910 71.196910 3 27 85.755466 85.755466 85.755466 3 28 83.246615 83.240615 83.240615 3 29 83.216585 83.216585 83.216585 3 30 78.892332 78.892332 78.892332 3 31 79.881162 79.881162 79.881162 3 29.7.175126 77.175126 77.175126 3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46		20	68.007353	68.007353	68.007353	
3 22 72.277244 72.277244 72.277244 72.277244 3 23 62.641839 62.641839 62.641839 3 24 71.805292 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.806615 72.807661 72.807661 72.807661 72.807661 72.807661 72.807661 72.807661 72.807661 72.807661 72.807661 72.807662 72.807662 72.807662 72.807772 72.807772 72.807772 <		21			63.245553	
3 23 62.641839 62.641839 62.641839 3 24 71.805292 71.805292 71.805292 3 25 62.096699 62.096699 62.096699 3 26 71.196910 71.196910 71.196910 3 27 85.755466 85.755466 85.755466 3 28 83.240615 83.240615 83.240615 3 29 83.216585 83.216585 83.216585 3 30 78.892332 78.892332 78.892332 3 31 79.881162 79.881162 79.881162 3 29 79.056942 79.056942 79.056942 3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 24 71,805292 71,805292 71,805292 3 25 62,096699 62,096699 62,096699 3 26 71,196910 71,196910 71,196910 3 27 85,755466 85,755466 85,755466 85,755466 3 28 83,240615 83,240615 83,240615 83,240615 3 29 83,216585 83,216585 83,216585 3 30 78,892332 78,892332 78,892332 3 31 79,881162 79,881162 79,881162 3 32 77,175126 77,175126 77,175126 3 34 80,430094 80,430094 80,430094 3 35 74,625733 74,625733 74,625733 3 36 46,097722 46,097722 46,097722 3 37 44,147480 44,147480 44,147480 3 43 43,566042 43,566042 43,566042 3 40 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 25 62.096699 62.096699 62.096699 3 26 71.196910 71.196910 71.196910 3 27 85.755466 85.755466 85.755466 3 28 83.240615 83.240615 83.240615 3 29 83.216885 83.216885 83.216585 3 30 78.892332 78.892332 78.892332 3 31 79.881162 79.881162 77.175126 3 32 77.175126 77.175126 77.175126 3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.31289 3 40 38.327536 38.327536 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 26 71.196910 71.196910 71.196910 3 27 85.755466 85.755466 85.755466 3 28 83.240615 83.240615 83.240615 3 29 83.216585 83.216585 83.216585 3 30 78.892332 78.892332 78.892332 3 31 79.881162 79.881162 79.881162 3 32 77.175126 77.175126 77.175126 3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 3 40 38.37536 38.327536 38.327536 3 41 39.293765 39.293765 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 27 85.755466 85.755466 85.755466 3.240615 83.240616 79.056942 79.056942 79.056942 79.056942 79.056942 79.056942 79.056942 79.056942 79.056942 30.00094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 80.430094 40.21242 44.0471406 44.147480 44.147480 44.147480 44.147480						
3 28 83.240615 83.240615 83.240615 83.216585 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 29 83.216585 83.216585 83.216585 3 30 78.892332 78.892332 78.892332 78.892332 3 31 79.881162 79.881162 79.881162 79.881162 3 32 77.175126 77.175126 77.175126 77.175126 3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 3 41 39.293765 39.293765 39.293765 3 42 36.00000 36.00000 36.00000 3 43 33.376639 33.376639 33.374256 3 47 6.403124 6.403124 6.403124 4<						
3 30 78.892332 78.892332 78.891162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.881162 79.956942 40.30099 30.900004 33.05639 34.4000000 44.0311289 44.147480 44.147480 44.147480 44.147480 44.147480 44.147480 44.3560042 43.566042 43.566042 43.566042 33.37536 38.327536 38.327536 38.327536 38.327536 38.327536 38.327536 38.327536 38.325365 39.293765 39.293765 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 31 79.881162 79.881162 79.881162 77.175126 77.28513 74.625733 74.625733 74.625733 74.625733 74.625733 74.625733 74.625733 74.625733 74.625733 74.626733 74.6097722 46.097722 46.097722 43.566042 43.566042 43.566042 43.566042 33.5766042 33.5766042 33.576639 38.327536 38.327536 38.327536 38.327536 39.293765 39.293765 39.293765 39.293765 39.293765 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 32 77.175126 77.175126 77.175126 79.056942 79.056942 79.056942 79.056942 30.56942 79.056944 79.056944 79.056944 79.056944 79.056944						
3 33 79.056942 79.056942 79.056942 3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 3 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 39.293765 3 42 36.00000 36.00000 36.00000 3 43 33.376639 33.376639 33.3734256 3 47 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 47 6.403124 6.403124 6.403124 4 6.403124 6.403124 6.403124 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3 34 80.430094 80.430094 80.430094 3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 39.293765 3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 47 6.403124 6.403124 6.403124 4 40.31224 6.403124 6.403124 4 40.31242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3						
3 35 74.625733 74.625733 74.625733 3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 39.293765 3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242						
3 36 46.097722 46.097722 46.097722 3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 3 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 39.293765 3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 47 6.403124 6.403124 6.403124 3 47 6.403124 6.403124 6.403124 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 6						
3 37 44.147480 44.147480 44.147480 3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 3 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 39.293765 3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.3734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889						
3 38 43.566042 43.566042 43.566042 3 39 40.311289 40.311289 40.311289 3 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 39.293765 3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 56 17.000000 <t< td=""><td></td><td></td><td>46.097722</td><td>46.097722</td><td>46.097722</td><td></td></t<>			46.097722	46.097722	46.097722	
3 39 40.311289 40.311289 40.311289 3 40 38.327536 38.327536 38.327536 3 41 39.293765 39.293765 3 42 36.000000 36.000000 3 43 33.376639 33.376639 3 44 34.481879 34.481879 3 45 33.734256 33.734256 3 46 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 40 10.40471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138				44.147480	44.147480	
3 40 38.327536 38.327536 38.327536 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293765 39.293766 39.29376639 33.376639 33.376639 33.376639 33.376639 34.481879 36.055513 36.055513 36.055513 36.055513 36.055513 36.055513 36.055513 36.		38	43.566042	43.566042	43.566042	
3 41 39.293765 39.293765 39.293765 3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 1		39	40.311289	40.311289	40.311289	
3 42 36.000000 36.000000 36.000000 3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 4	3	40	38.327536	38.327536	38.327536	
3 43 33.376639 33.376639 33.376639 3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 4 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956	3	41	39.293765	39.293765	39.293765	
3 44 34.481879 34.481879 34.481879 3 45 33.734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 4 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.293872 56.293872 3 61 16.552945 16.552945	3	42	36.000000	36.000000	36.000000	
3 45 33.734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 4 45.099889 45.099889 45.099889 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 61 16.552945 16.552945 16.552945	3	43	33.376639	33.376639	33.376639	
3 45 33.734256 33.734256 33.734256 3 46 7.280110 7.280110 7.280110 3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 4 45.099889 45.099889 45.099889 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 61 16.552945 16.552945 16.552945	3	44	34.481879	34.481879	34.481879	
3 47 6.403124 6.403124 6.403124 3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 <t< td=""><td></td><td>45</td><td>33.734256</td><td>33.734256</td><td>33.734256</td><td></td></t<>		45	33.734256	33.734256	33.734256	
3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187	3	46	7.280110	7.280110	7.280110	
3 48 36.055513 36.055513 36.055513 3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039	3	47	6.403124	6.403124	6.403124	
3 49 72.801099 72.801099 72.801099 3 50 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039		48	36.055513	36.055513	36.055513	
3 50 66.098411 66.098411 66.098411 66.098411 3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115					72.801099	
3 51 64.031242 64.031242 64.031242 3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309						
3 52 64.140471 64.140471 64.140471 3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292						
3 53 45.099889 45.099889 45.099889 3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481						
3 54 25.079872 25.079872 25.079872 3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 55 36.249138 36.249138 36.249138 3 56 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 56 17.000000 17.000000 17.000000 3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 57 48.826222 48.826222 48.826222 3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 58 50.635956 50.635956 50.635956 3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 59 65.375837 65.375837 65.375837 3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 60 56.293872 56.293872 56.293872 3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 61 16.552945 16.552945 16.552945 3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 62 25.079872 25.079872 25.079872 3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 63 58.728187 58.728187 58.728187 3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 64 69.814039 69.814039 69.814039 3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 65 50.537115 50.537115 50.537115 3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 66 37.336309 37.336309 37.336309 3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 67 42.485292 42.485292 42.485292 3 68 53.413481 53.413481 53.413481						
3 68 53.413481 53.413481 53.413481						
3 69 23.430749 23.430749 23.430749						
	3	69	23.430749	23.430749	23.430749	

3	70	24.698178	24.698178	24.698178	
3	71	14.317821	14.317821	14.317821	
3	72	47.423623	47.423623	47.423623	
3	73	42.201896	42.201896	42.201896	
3	74	25.000000	25.000000	25.000000	
3	75	55.036352	55.036352	55.036352	
3	76	72.034714	72.034714	72.034714	
3	77	73.573093	73.573093	73.573093	
3	78	72.006944	72.006944	72.006944	
3	79	23.600847	23.600847	23.600847	
3	80	17.464249	17.464249	17.464249	
3	81	37.536649	37.536649	37.536649	
3	82	31.906112	31.906112	31.906112	
3	83	32.388269	32.388269	32.388269	
3	84	46.486557	46.486557	46.486557	
			57.801384		
3	85	57.801384		57.801384	
3	86	66.219333	66.219333	66.219333	
3	87	51.009803	51.009803	51.009803	
3	88	51.971146	51.971146	51.971146	
3	89	17.117243	17.117243	17.117243	
3	90	83.216585	83.216585	83.216585	
3	91	31.764760	31.764760	31.764760	
3	92	42.638011	42.638011	42.638011	
3	93	44.553339	44.553339	44.553339	
3	94	45.276926	45.276926	45.276926	
3	95	44.204072	44.204072	44.204072	
3	96	50.990195	50.990195	50.990195	
3	97	39.115214	39.115214	39.115214	
3	98	59.774577	59.774577	59.774577	
3	99	23.345235	23.345235	23.345235	
3	100	40.199502	40.199502	40.199502	
3	101	12.041595	12.041595	12.041595	
4	1	39.357337	39.357337	39.357337	
4	2	3.000000	3.000000	3.000000	
4	3	10.000000	10.000000	10.000000	
4	5	5.385165	5.385165	5.385165	
4	6	2.000000	2.000000	2.000000	
4	7	10.770330	10.770330	10.770330	
4	8	12.206556	12.206556	12.206556	
4	9	8.602325	8.602325	8.602325	
4	10	51.419841	51.419841	51.419841	
4	11	46.572524	46.572524	46.572524	
4	12	47.127487	47.127487	47.127487	
4	13	42.379240	42.379240	42.379240	
4	14	52.810984	52.810984	52.810984	
4	15	43.462628	43.462628	43.462628	
4	16	49.244289	49.244289	49.244289	
4	17	50.089919	50.089919	50.089919	
			45.650849		
4	18	45.650849		45.650849	
4	19	82.969874	82.969874	82.969874	
4	20	77.620873	77.620873	77.620873	
4	21	72.801099	72.801099	72.801099	
4	22	82.000000	82.000000	82.000000	
4	23	72.277244	72.277244	72.277244	
4	24	81.584312	81.584312	81.584312	
4	25	71.805292	71.805292	71.805292	
4	26	81.049368	81.049368	81.049368	
4	27	91.400219	91.400219	91.400219	
4	28	88.481637	88.481637	88.481637	
4	29	89.022469	89.022469	89.022469	
4	30	84.403791	84.403791	84.403791	
4	31	85.912746	85.912746	85.912746	
4	32	82.800966	82.800966	82.800966	

4	33	85.146932	85.146932	85.146932	
4	34	87.000000	87.000000	87.000000	
4	35	80.430094	80.430094	80.430094	
4	36	45.000000	45.000000	45.000000	
4	37	43.000000	43.000000	43.000000	
4	38	43.104524	43.104524	43.104524	
4	39	40.311289	40.311289	40.311289	
4	40	38.327536	38.327536	38.327536	
4	41	38.000000	38.000000	38.000000	
4	42	37.363083	37.363083	37.363083	
4	43	33.376639	33.376639	33.376639	
4	44	33.000000	33.000000	33.000000	
4	45	33.136083	33.136083	33.136083	
4	46	3.605551	3.605551	3.605551	
4	47	6.403124	6.403124	6.403124	
4	48	44.721360	44.721360	44.721360	
4	49	82.462113	82.462113	82.462113	
4	50	75.690158	75.690158	75.690158	
4	51	70.710678	70.710678	70.710678	
4	52	72.897188	72.897188	72.897188	
4	53	55.081757	55.081757	55.081757	
4	54	35.057096	35.057096	35.057096	
4	55	41.400483	41.400483	41.400483	
4	56	26.248809	26.248809	26.248809	
4	57	57.306195	57.306195	57.306195	
4	58 59	60.530984	60.530984 75.325958	60.530984 75.325958	
4	59 60	75.325958 66.098411	66.098411	66.098411	
4	61	25.961510	25.961510	25.961510	
4	62	30.479501	30.479501	30.479501	
4	63	65.946948	65.946948	65.946948	
4	64	77.935871	77.935871	77.935871	
4	65	59.615434	59.615434	59.615434	
4	66	46.840154	46.840154	46.840154	
4	67	51.623638	51.623638	51.623638	
4	68	60.108236	60.108236	60.108236	
4	69	30.805844	30.805844	30.805844	
4	70	34.205263	34.205263	34.205263	
4	71	20.615528	20.615528	20.615528	
4	72	52.430907	52.430907	52.430907	
4	73	45.617979	45.617979	45.617979	
4	74	32.015621	32.015621	32.015621	
4	75	65.030762	65.030762	65.030762	
4	76	81.786307	81.786307	81.786307	
4	77	82.298238	82.298238	82.298238	
4	78	82.006097	82.006097	82.006097	
4	79	32.202484	32.202484	32.202484	
4	80	23.345235	23.345235	23.345235	
4	81	45.486262	45.486262	45.486262	
4	82	38.183766	38.183766	38.183766	
4	83	42.296572	42.296572	42.296572	
4	84	56.044625	56.044625	56.044625	
4	85	66.037868	66.037868	66.037868	
4	86 87	74.330344	74.330344	74.330344	
4		61.008196	61.008196	61.008196	
4	88 89	61.814238 27.073973	61.814238 27.073973	61.814238	
4	90	91.787799	91.787799	27.073973 91.787799	
4	90	40.853396	40.853396	40.853396	
4	91	50.774009	50.774009	50.774009	
4	93	52.201533	52.201533	52.201533	
4	94	51.088159	51.088159	51.088159	
4	95	50.931326	50.931326	50.931326	
	, ,	55.751520	53.551520	00.00100	

4	96	58.821765	58.821765	58.821765
4	97	45.276926	45.276926	45.276926
4	98	69.375788	69.375788	69.375788
4	99	33.241540	33.241540	33.241540
4	100	50.159745	50.159745	50.159745
4	101	20.124612	20.124612	20.124612
5	1	36.055513	36.055513	36.055513
5	2	7.071068	7.071068	7.071068
5	3	5.385165	5.385165	5.385165
5	4	5.385165	5.385165	5.385165
5	6	5.000000	5.000000	5.000000
5	7	5.385165	5.385165	5.385165
5	8	7.071068	7.071068	7.071068
5	9	5.000000	5.000000	5.000000
5	10	46.097722	46.097722	46.097722
5	11	41.231056	41.231056	41.231056
5	12	41.761226	41.761226	41.761226
5	13	37.000000	37.000000	37.000000
5	14	47.434165	47.434165	47.434165
5	15	38.078866	38.078866	38.078866
5	16	43.863424	43.863424	43.863424
5	17	44.721360	44.721360	44.721360
	18			
5		40.311289	40.311289	40.311289
5	19	78.746428	78.746428	78.746428
5	20	73.375745	73.375745	73.375745
5	21	68.622154	68.622154	68.622154
5	22	77.620873	77.620873	77.620873
5	23	68.007353	68.007353	68.007353
5	24	77.129761	77.129761	77.129761
5	25	67.446275	67.446275	67.446275
5	26	76.485293	76.485293	76.485293
5	27	90.138782	90.138782	90.138782
	28	87.464278	87.464278	87.464278
5				
5	29	87.658428	87.658428	87.658428
5	30	83.216585	83.216585	83.216585
5	31	84.403791	84.403791	84.403791
5	32	81.541401	81.541401	81.541401
5	33	83.600239	83.600239	83.600239
5	34	85.146932	85.146932	85.146932
5	35	79.056942	79.056942	79.056942
5	36	47.265209	47.265209	47.265209
5	37	45.276926	45.276926	45.276926
5	38	45.044423	45.044423	45.044423
5	39	42.000000	42.000000	42.000000
		40.000000	40.000000	40.00000
5	40			
5	41	40.311289	40.311289	40.311289
5	42	38.327536	38.327536	38.327536
5	43	35.000000	35.000000	35.000000
5	44	35.355339	35.355339	35.355339
5	45	35.057096	35.057096	35.057096
5	46	2.00000	2.000000	2.000000
5	47	2.00000	2.000000	2.000000
5	48	39.357337	39.357337	39.357337
5	49	78.160092	78.160092	78.160092
5	50	71.470274	71.470274	71.470274
5	51	68.767725	68.767725	68.767725
5	52	69.462220	69.462220	69.462220
5	53	50.249378	50.249378	50.249378
5	54	30.000000	30.000000	30.000000
5	55	40.311289	40.311289	40.311289
5	56	22.360680	22.360680	22.360680
5	57	54.083269	54.083269	54.083269
5	58	55.901699	55.901699	55.901699
				<u> </u>

5	59	70.178344	70.178344	70.178344	
5	60	60.827625	60.827625	60.827625	
5	61	20.615528	20.615528	20.615528	
5	62	29.154759	29.154759	29.154759	
5	63	63.639610	63.639610	63.639610	
5	64	75.000000	75.000000	75.000000	
5	65				
		55.901699	55.901699	55.901699	
5	66	42.720019	42.720019	42.720019	
5	67	47.853944	47.853944	47.853944	
5	68	58.137767	58.137767	58.137767	
5	69	28.284271	28.284271	28.284271	
5	70	30.083218	30.083218	30.083218	
5	71	18.601075	18.601075	18.601075	
5	72	51.478151	51.478151	51.478151	
5	73	45.541190	45.541190	45.541190	
5	74	26.907248	26.907248	26.907248	
5	75	60.000000	60.000000	60.000000	
5	76				
		76.485293	76.485293	76.485293	
5	77	78.892332	78.892332	78.892332	
5	78	77.058419	77.058419	77.058419	
5	79	26.832816	26.832816	26.832816	
5	80	18.439089	18.439089	18.439089	
5	81	42.638011	42.638011	42.638011	
5	82	36.400549	36.400549	36.400549	
5	83	37.656341	37.656341	37.656341	
5	84	51.865210	51.865210	51.865210	
5	85	63.007936	63.007936	63.007936	
5	86	71.400280	71.400280	71.400280	
5	87	56.008928	56.008928	56.008928	
5	88	56.568542	56.568542	56.568542	
5	89	22.360680	22.360680	22.360680	
5	90	88.509886	88.509886	88.509886	
5	91	37.121422	37.121422	37.121422	
5	92	47.801674	47.801674	47.801674	
5	93	49.578221	49.578221	49.578221	
5	94	49.648766	49.648766	49.648766	
5	95	48.918299	48.918299	48.918299	
5	96	56.080300	56.080300	56.080300	
5	97	43.600459	43.600459	43.600459	
5	98	64.031242	64.031242	64.031242	
5	99	28.635642	28.635642	28.635642	
	100	45.398238	45.398238	45.398238	
5					
5	101	17.029386	17.029386	17.029386	
6	1	40.311289	40.311289	40.311289	
6	2	5.00000	5.00000	5.00000	
6	3	10.198039	10.198039	10.198039	
6	4	2.000000	2.000000	2.000000	
6	5	5.000000	5.000000	5.000000	
6	7	10.198039	10.198039	10.198039	
6	8	11.180340	11.180340	11.180340	
6	9	7.071068	7.071068	7.071068	
6	10	50.990195	50.990195	50.990195	
6	11	46.097722	46.097722	46.097722	
6	12	46.572524	46.572524	46.572524	
6	13	41.761226	41.761226	41.761226	
6	14	52.201533	52.201533	52.201533	
6	15	42.720019	42.720019	42.720019	
6	16	48.466483	48.466483	48.466483	
6	17	49.244289	49.244289	49.244289	
6	18	44.721360	44.721360	44.721360	
6	19	83.522452	83.522452	83.522452	
6	20	78.160092	78.160092	78.160092	
6	21	73.375745	73.375745	73.375745	

6	22	82.462113	82.462113	82.462113	
6	23	72.801099	72.801099	72.801099	
		82.000000			
6	24		82.00000	82.000000	
6	25	72.277244	72.277244	72.277244	
6	26	81.394103	81.394103	81.394103	
6	27	93.005376	93.005376	93.005376	
6	28	90.138782	90.138782	90.138782	
6	29	90.603532	90.603532	90.603532	
	30		86.023253	86.023253	
6		86.023253			
6	31	87.458562	87.458562	87.458562	
6	32	84.403791	84.403791	84.403791	
6	33	86.683332	86.683332	86.683332	
6	34	88.459030	88.459030	88.459030	
6	35	82.006097	82.006097	82.006097	
6	36	47.000000	47.000000	47.000000	
6	37	45.000000	45.000000	45.000000	
6	38	45.099889	45.099889	45.099889	
6	39	42.296572	42.296572	42.296572	
6	40	40.311289	40.311289	40.311289	
6	41	40.000000	40.000000	40.000000	
6	42	39.293765	39.293765	39.293765	
6	43	35.355339	35.355339	35.355339	
6	44	35.000000	35.000000	35.000000	
6	45	35.128336	35.128336	35.128336	
6	46	3.000000	3.000000	3.000000	
6	47	5.385165	5.385165	5.385165	
6	48	43.863424	43.863424	43.863424	
6	49	82.969874	82.969874	82.969874	
6	50	76.243032	76.243032	76.243032	
6	51	72.138755	72.138755	72.138755	
6	52	73.824115	73.824115	73.824115	
6	53	55.226805	55.226805	55.226805	
6	54	35.000000	35.000000	35.000000	
6	55	43.011626	43.011626	43.011626	
6	56	26.925824	26.925824	26.925824	
6	57	58.309519	58.309519	58.309519	
		60.827625			
6	58		60.827625	60.827625	
6	59	75.166482	75.166482	75.166482	
6	60	65.764732	65.764732	65.764732	
6	61	25.495098	25.495098	25.495098	
6	62	32.015621	32.015621	32.015621	
6	63	67.268120	67.268120	67.268120	
6	64	79.056942	79.056942	79.056942	
6	65	60.415230	60.415230	60.415230	
6	66	47.434165	47.434165	47.434165	
6	67	52.392748	52.392748	52.392748	
6	68	61.522354	61.522354	61.522354	
6	69	32.015621	32.015621	32.015621	
6	70	34.785054	34.785054	34.785054	
6	71	21.931712	21.931712	21.931712	
6	72	54.083269	54.083269	54.083269	
				47.423623	
6	73	47.423623	47.423623		
6	74	30.805844	30.805844	30.805844	
6	75	65.000000	65.000000	65.000000	
6	76	81.394103	81.394103	81.394103	
6	77	83.240615	83.240615	83.240615	
6	78	82.054860	82.054860	82.054860	
6	79	31.384710	31.384710	31.384710	
6	80	22.022716	22.022716	22.022716	
6	81	46.615448	46.615448	46.615448	
6	82	39.623226	39.623226	39.623226	
6	83	42.579338	42.579338	42.579338	
6	84	56.612719	56.612719	56.612719	

6	85	67.119297	67.119297	67.119297	
6	86	75.451971	75.451971	75.451971	
6	87	61.008196	61.008196	61.008196	
6	88	61.522354	61.522354	61.522354	
6	89	27.294688	27.294688	27.294688	
6	90	92.784697	92.784697	92.784697	
5	91	41.629317	41.629317	41.629317	
ō	92	51.865210	51.865210	51.865210	
5	93	53.413481	53.413481	53.413481	
5	94	52.630789	52.630789	52.630789	
õ	95	52.325902	52.325902	52.325902	
5	96	60.000000	60.000000	60.000000	
5	97	46.754679	46.754679	46.754679	
)	98	68.883960	68.883960	68.883960	
	99	33.541020	33.541020	33.541020	
	100	50.358713	50.358713	50.358713	
	101	21.095023	21.095023	21.095023	
	1	33.301652	33.301652	33.301652	
	2	12.206556	12.206556	12.206556	
	3	4.000000	4.000000	4.000000	
	4	10.770330	10.770330	10.770330	
	5	5.385165	5.385165	5.385165	
	6	10.198039	10.198039	10.198039	
	8				
		3.000000	3.000000	3.000000	
	9	5.830952	5.830952	5.830952	
	10	40.792156	40.792156	40.792156	
	11	35.902646	35.902646	35.902646	
	12	36.400549	36.400549	36.400549	
	13	31.622777	31.622777	31.622777	
	14	42.059482	42.059482	42.059482	
	15	32.695565	32.695565	32.695565	
	16	38.483763	38.483763	38.483763	
	17	39.357337	39.357337	39.357337	
	18	34.985711	34.985711	34.985711	
,	19	74.672619	74.672619	74.672619	
,	20	69.289249	69.289249	69.289249	
	21	64.621978	64.621978	64.621978	
	22	73.375745	73.375745	73.375745	
	23	63.906181	63.906181	63.906181	
	24	72.801099	72.801099	72.801099	
	25	63.245553	63.245553	63.245553	
	26	72.034714	72.034714	72.034714	
	27	89.185201	89.185201	89.185201	
	28	86.769810	86.769810	86.769810	
	29	86.608314	86.608314	86.608314	
	30	82.365041	82.365041	82.365041	
	31	83.216585	83.216585	83.216585	
	32	80.622577	80.622577	80.622577	
	33	82.377181	82.377181	82.377181	
	34	83.600239	83.600239	83.600239	
	35	78.032045	78.032045	78.032045	
	36	50.009999	50.009999	50.009999	
	37	48.052055	48.052055	48.052055	
	38	47.518417	47.518417	47.518417	
	38 39	44.283180	44.283180	44.283180	
	40	42.296572	42.296572	42.296572	
	41	43.174066	43.174066	43.174066	
,	42	40.000000	40.000000	40.000000	
,	43	37.336309	37.336309	37.336309	
7	44	38.327536	38.327536	38.327536	
7	45	37.656341	37.656341	37.656341	
7 7	46	7.280110	7.280110	7.280110	
	47	5.00000	5.000000	5.000000	

7	48	34.000000	34.000000	34.000000
7	49	74.000000	74.000000	74.000000
7	50	67.416615	67.416615	67.416615
7	51	67.201190	67.201190	67.201190
7	52	66.287254	66.287254	66.287254
7	53	45.541190	45.541190	45.541190
7	54	25.079872	25.079872	25.079872
7	55	39.924930	39.924930	39.924930
7	56	19.209373	19.209373	19.209373
7	57	51.224994	51.224994	51.224994
7	58	51.419841	51.419841	51.419841
7	59	65.069194	65.069194	65.069194
7	60	55.578773	55.578773	55.578773
7	61	15.297059	15.297059	15.297059
7	62	28.792360	28.792360	28.792360
7	63	61.717096	61.717096	61.717096
7	64	72.346389	72.346389	72.346389
7	65	52.478567	52.478567	52.478567
7	66	38.910153	38.910153	38.910153
7	67	44.418465	44.418465	44.418465
7	68	56.612719	56.612719	56.612719
7	69	26.627054	26.627054	26.627054
7	70	26.419690	26.419690	26.419690
7	71	18.027756	18.027756	18.027756
7	72	51.078371	51.078371	51.078371
7	73	46.097722	46.097722	46.097722
7	74	21.931712	21.931712	21.931712
7	75	55.036352	55.036352	55.036352
7	76	71.196910	71.196910	71.196910
7	77	75.716577	75.716577	75.716577
7	78	72.173402	72.173402	72.173402
7	79	21.470911	21.470911	21.470911
7	80	13.892444	13.892444	13.892444
7	81	40.311289	40.311289	40.311289
7	82	35.355339	35.355339	35.355339
7	83	33.241540	33.241540	33.241540
7	84	47.927028	47.927028	47.927028
7	85	60.307545	60.307545	60.307545
7	86	68.767725	68.767725	68.767725
7	87	51.088159	51.088159	51.088159
7	88	51.351728	51.351728	51.351728
7	89	18.027756	18.027756	18.027756
7	90	85.445889	85.445889	85.445889
7	91	33.837849	33.837849	33.837849
7	92	45.276926	45.276926	45.276926
7	93	47.423623	47.423623	47.423623
7	94	48.764741	48.764741	48.764741
7	95	47.434165	47.434165	47.434165
7	96	53.740115	53.740115	53.740115
7	97	42.544095	42.544095	42.544095
7	98	58.694122	58.694122	58.694122
	99			
7		24.351591	24.351591	24.351591
7	100	40.792156	40.792156	40.792156
7	101	15.264338	15.264338	15.264338
8	1	35.355339	35.355339	35.355339
8	2	14.142136	14.142136	14.142136
8	3	7.00000	7.000000	7.000000
8	4	12.206556	12.206556	12.206556
8	5	7.071068	7.071068	7.071068
8	6	11.180340	11.180340	11.180340
8	7	3.000000	3.000000	3.000000
8	9	5.00000	5.000000	5.000000
8	10	40.311289	40.311289	40.311289

8	11	35.355339	35.355339	35.355339	
8	12	35.693137	35.693137	35.693137	
8	13	30.805844	30.805844	30.805844	
8	14	41.231056	41.231056	41.231056	
8	15	31.622777	31.622777	31.622777	
8	16	37.336309	37.336309	37.336309	
8	17	38.078866	38.078866	38.078866	
8			33.541020	33.541020	
	18	33.541020			
8	19	75.769387	75.769387	75.769387	
8	20	70.384657	70.384657	70.384657	
8	21	65.795137	65.795137	65.795137	
8	22	74.330344	74.330344	74.330344	
8	23	65.000000	65.000000	65.000000	
8	24	73.681748	73.681748	73.681748	
8	25	64.257295	64.257295	64.257295	
8	26	72.801099	72.801099	72.801099	
8	27	91.787799	91.787799	91.787799	
8	28	89.442719	89.442719	89.442719	
8	29	89.185201	89.185201	89.185201	
8	30	85.000000	85.000000	85.000000	
8	31	85.755466	85.755466	85.755466	
8	32	83.240615	83.240615	83.240615	
8	33	84.905830	84.905830	84.905830	
8	34	86.023253	86.023253	86.023253	
8	35	80.622577	80.622577	80.622577	
8	36	52.952809	52.952809	52.952809	
8	37	50.990195	50.990195	50.990195	
8	38	50.487622	50.487622	50.487622	
8	39	47.265209	47.265209	47.265209	
8	40	45.276926	45.276926	45.276926	
8	41	46.097722	46.097722	46.097722	
8	42	43.000000	43.000000	43.000000	
8	43	40.311289	40.311289	40.311289	
8	44	41.231056	41.231056	41.231056	
8	45	40.607881	40.607881	40.607881	
8	46	8.602325	8.602325	8.602325	
8	47	5.830952	5.830952	5.830952	
8	4 /	32.695565	32.695565	32.695565	
	40	75.026662			
8			75.026662	75.026662	
8	50	68.541958	68.541958	68.541958	
8	51	69.634761	69.634761	69.634761	
8	52	68.007353	68.007353	68.007353	
8	53	46.097722	46.097722	46.097722	
8	54	25.495098	25.495098	25.495098	
8	55	42.720019	42.720019	42.720019	
8	56	21.213203	21.213203	21.213203	
8	57	53.150729	53.150729	53.150729	
8	58	52.201533	52.201533	52.201533	
8	59	65.000000	65.000000	65.000000	
8	60	55.226805	55.226805	55.226805	
8	61	15.000000	15.000000	15.000000	
8	62	31.622777	31.622777	31.622777	
8	63	64.031242	64.031242	64.031242	
8	64	74.330344	74.330344	74.330344	
8	65	54.083269	54.083269	54.083269	
8	66	40.311289	40.311289	40.311289	
8	67	46.043458	46.043458	46.043458	
8	68	59.076222	59.076222	59.076222	
8	69	29.154759	29.154759	29.154759	
8	70	28.017851	28.017851	28.017851	
8	71	20.880613	20.880613	20.880613	
8	72		53.851648	53.851648	
		53.851648			
8	73	49.030603	49.030603	49.030603	

8	74	19.849433	19.849433	19.849433
8	75	55.226805	55.226805	55.226805
8	76	70.710678	70.710678	70.710678
8	77	77.420927	77.420927	77.420927
8	78	72.443081	72.443081	72.443081
8	79	20.248457	20.248457	20.248457
8	80	11.401754	11.401754	11.401754
8	81	42.520583	42.520583	42.520583
8	82	38.013156	38.013156	38.013156
	83	34.176015	34.176015	34.176015
8				
8	84	49.193496	49.193496	49.193496
8	85	62.289646	62.289646	62.289646
8	86	70.767224	70.767224	70.767224
	87		51.351728	
8		51.351728		51.351728
8	88	51.088159	51.088159	51.088159
8	89	19.235384	19.235384	19.235384
8	90	87.200917	87.200917	87.200917
8				35.608988
	91	35.608988	35.608988	
8	92	47.381431	47.381431	47.381431
8	93	49.678969	49.678969	49.678969
8	94	51.429563	51.429563	51.429563
	95	49.929951	49.929951	49.929951
8				
8	96	55.901699	55.901699	55.901699
8	97	45.177428	45.177428	45.177428
8	98	58.051701	58.051701	58.051701
8	99	25.495098	25.495098	25.495098
8	100	41.484937	41.484937	41.484937
8	101	17.888544	17.888544	17.888544
9	1	39.051248	39.051248	39.051248
9				
	2	11.180340	11.180340	11.180340
9	3	8.602325	8.602325	8.602325
9	4	8.602325	8.602325	8.602325
9	5	5.000000	5.000000	5.000000
9	6	7.071068	7.071068	7.071068
9	7	5.830952	5.830952	5.830952
9	8	5.00000	5.000000	5.000000
9	10	45.276926	45.276926	45.276926
9	11	40.311289	40.311289	40.311289
9	12	40.607881	40.607881	40.607881
9	13	35.693137	35.693137	35.693137
9	14	46.097722	46.097722	46.097722
9	15	36.400549	36.400549	36.400549
9	16	42.059482	42.059482	42.059482
9	17	42.720019	42.720019	42.720019
9	18	38.078866	38.078866	38.078866
9	19	80.411442	80.411442	80.411442
9	20	75.026662	75.026662	75.026662
9	21	70.384657	70.384657	70.384657
9	22	79.056942	79.056942	79.056942
9	23	69.641941	69.641941	69.641941
9	24	78.447435	78.447435	78.447435
9	25	68.949257	68.949257	68.949257
9	26	77.620873	77.620873	77.620873
9	27	94.339811	94.339811	94.339811
9	28	91.787799	91.787799	91.787799
9	29	91.809586	91.809586	91.809586
9	30	87.464278	87.464278	87.464278
9	31	88.481637	88.481637	88.481637
9	32	85.755466	85.755466	85.755466
			87.658428	
	22		8/ h584/8	87.658428
9	33	87.658428		
9	34	89.022469	89.022469	89.022469
9	34	89.022469	89.022469	89.022469

9	37	50.249378	50.249378	50.249378	
9	38	50.039984	50.039984	50.039984	
9	39	47.000000	47.000000	47.000000	
9	40	45.000000	45.000000	45.000000	
9	41	45.276926	45.276926	45.276926	
9	42	43.289722	43.289722	43.289722	
9	43	40.000000	40.00000	40.000000	
9	44	40.311289	40.311289	40.311289	
9	45	40.049969	40.049969	40.049969	
9	46	5.385165	5.385165	5.385165	
9	47	3.000000	3.000000	3.000000	
9	48	37.336309	37.336309	37.336309	
9	49	79.711982	79.711982	79.711982	
9	50	73.164199	73.164199	73.164199	
9	51	72.622311	72.622311	72.622311	
9	52	72.111026	72.111026	72.111026	
9	53	50.990195	50.990195	50.990195	
9	54	30.413813	30.413813	30.413813	
9	55	44.721360	44.721360	44.721360	
9	56	25.000000	25.000000	25.000000	
9	57	57.008771	57.008771	57.008771	
9	58	57.008771	57.008771	57.008771	
9	59	70.000000	70.000000	70.000000	
9	60	60.207973	60.207973	60.207973	
9	61	20.000000	20.00000	20.000000	
9	62	33.541020	33.541020	33.541020	
9	63	67.268120	67.268120	67.268120	
9	64	78.102497	78.102497	78.102497	
9	65	58.309519	58.309519	58.309519	
9	66	44.721360	44.721360	44.721360	
9	67	50.249378	50.249378	50.249378	
9	68	62.008064	62.008064	62.008064	
9	69	32.015621	32.015621	32.015621	
9	70	32.249031	32.249031	32.249031	
9	71	22.825424	22.825424	22.825424	
9	72	55.901699	55.901699	55.901699	
9	73	50.289164	50.289164	50.289164	
9	74	23.853721	23.853721	23.853721	
9	75	60.207973	60.207973	60.207973	
9	76	75.663730	75.663730	75.663730	
9	77	81.541401	81.541401	81.541401	
9	78	77.414469	77.414469	77.414469	
9	79	25.000000	25.000000	25.000000	
9	80	15.000000	15.000000	15.000000	
9	81	45.967380	45.967380	45.967380	
9	82	40.496913	40.496913	40.496913	
9	83	38.897301	38.897301	38.897301	
9	84	53.712196	53.712196	53.712196	
9	85	66.068147	66.068147	66.068147	
9	86	74.518454	74.518454	74.518454	
9	87	56.320511	56.320511	56.320511	
9	88	56.080300	56.080300	56.080300	
9	89	23.769729	23.769729	23.769729	
9	90	91.263355	91.263355	91.263355	
9	91	39.661064	39.661064	39.661064	
9	92	50.990195	50.990195	50.990195	
9	93	53.037722	53.037722	53.037722	
9	94	53.851648	53.851648	53.851648	
9	95	52.801515	52.801515	52.801515	
9	96	59.413803	59.413803	59.413803	
9	97	47.707442	47.707442	47.707442	
9	98	62.968246	62.968246	62.968246	
9	99	30.083218	30.083218	30.083218	

9	100	46.324939	46.324939	46.324939	
9	101	20.615528	20.615528	20.615528	
10	1	33.541020	33.541020	33.541020	
10	2	52.201533	52.201533	52.201533	
10	3	41.761226	41.761226	41.761226	
10	4	51.419841	51.419841	51.419841	
10	5	46.097722	46.097722	46.097722	
10	6	50.990195	50.990195	50.990195	
10	7	40.792156	40.792156	40.792156	
10	8	40.311289	40.311289	40.311289	
10	9	45.276926	45.276926	45.276926	
10	11	5.000000	5.00000	5.00000	
		5.385165			
10	12		5.385165	5.385165	
10	13	10.198039	10.198039	10.198039	
10	14	5.00000	5.00000	5.000000	
10	15	11.180340	11.180340	11.180340	
10	16	9.433981	9.433981	9.433981	
10					
	17	11.180340	11.180340	11.180340	
10	18	14.142136	14.142136	14.142136	
10	19	45.343136	45.343136	45.343136	
10	20	40.607881	40.607881	40.607881	
10	21	37.735925	37.735925	37.735925	
10	22	42.426407	42.426407	42.426407	
10	23	36.055513	36.055513	36.055513	
10	24	41.036569	41.036569	41.036569	
10	25	34.409301	34.409301	34.409301	
10	26	39.051248	39.051248	39.051248	
	27				
10		85.146932	85.146932	85.146932	
10	28	85.000000	85.000000	85.000000	
10	29	82.152298	82.152298	82.152298	
10	30	80.00000	80.000000	80.00000	
10	31	78.160092	78.160092	78.160092	
10	32	78.000000	78.000000	78.000000	
10	33	77.162167	77.162167	77.162167	
10	34	75.663730	75.663730	75.663730	
10	35	75.000000	75.000000	75.000000	
10	36	75.822160	75.822160	75.822160	
10	37	74.330344	74.330344	74.330344	
10	38	72.346389	72.346389	72.346389	
10	39	68.767725	68.767725	68.767725	
10	40	67.268120	67.268120	67.268120	
10	41	70.710678	70.710678	70.710678	
10	42	62.481997	62.481997	62.481997	
10	43	63.639610	63.639610	63.639610	
10	44	67.268120	67.268120	67.268120	
10	45	65.069194	65.069194	65.069194	
10	46	48.052055	48.052055	48.052055	
10	47	45.705580	45.705580	45.705580	
10			12.806248	12.806248	
	48	12.806248			
10	49	43.863424	43.863424	43.863424	
10	50	39.408121	39.408121	39.408121	
10	51	62.000000	62.000000	62.000000	
10	52	47.434165	47.434165	47.434165	
10	53	15.811388	15.811388	15.811388	
10	54	18.027756	18.027756	18.027756	
10	55	51.478151	51.478151	51.478151	
10	56	32.015621	32.015621	32.015621	
10	57	40.000000	40.000000	40.00000	
10	58	22.360680	22.360680	22.360680	
10	59	25.495098	25.495098	25.495098	
10	60	15.000000	15.000000	15.000000	
10	61	25.495098	25.495098	25.495098	
10	62	46.097722	46.097722	46.097722	

10	63	55.000000	55.000000	55.000000	
10	64	57.008771	57.008771	57.008771	
10	65	35.355339	35.355339	35.355339	
10	66	25.495098	25.495098	25.495098	
10	67	31.064449	31.064449	31.064449	
10	68	54.451814	54.451814	54.451814	
10	69	39.051248	39.051248	39.051248	
10	70	27.018512	27.018512	27.018512	
10	71	42.201896	42.201896	42.201896	
10	72	58.523500	58.523500	58.523500	
10	73	60.901560	60.901560	60.901560	
10	74	26.248809	26.248809	26.248809	
10	75	18.027756	18.027756	18.027756	
10	76	30.413813	30.413813	30.413813	
10	77	55.036352	55.036352	55.036352	
10	78	34.539832	34.539832	34.539832	
10	79	21.095023	21.095023	21.095023	
10	80	33.241540	33.241540	33.241540	
10	81	38.897301	38.897301	38.897301	
10	82	45.276926	45.276926	45.276926	
10	83	18.788294	18.788294	18.788294	
10	84	27.294688	27.294688	27.294688	
10	85	47.381431	47.381431	47.381431	
			54.341513	54.341513	
10	86	54.341513			
10	87	15.556349	15.556349	15.556349	
10	88	11.180340	11.180340	11.180340	
10	89	26.925824	26.925824	26.925824	
10	90	64.412732	64.412732	64.412732	
10	91	29.546573	29.546573	29.546573	
10	92	39.623226	39.623226	39.623226	
10	93	43.737855	43.737855	43.737855	
10	94	53.758720	53.758720	53.758720	
10	95	48.764741	48.764741	48.764741	
10					
	96	46.043458	46.043458	46.043458	
10	97	48.846699	48.846699	48.846699	
10	98	18.027756	18.027756	18.027756	
10	99	23.345235	23.345235	23.345235	
10	100	16.000000	16.000000	16.000000	
10	101	38.275318	38.275318	38.275318	
11	1	31.622777	31.622777	31.622777	
11	2	47.434165	47.434165	47.434165	
11	3	37.000000	37.000000	37.000000	
11	4	46.572524	46.572524	46.572524	
11	5	41.231056	41.231056	41.231056	
11	6	46.097722	46.097722	46.097722	
11	7	35.902646	35.902646	35.902646	
11	8	35.355339	35.355339	35.355339	
11	9	40.311289	40.311289	40.311289	
11	10	5.00000	5.000000	5.000000	
11	12	2.00000	2.000000	2.000000	
11	13	5.385165	5.385165	5.385165	
11	14	7.071068	7.071068	7.071068	
11	15	7.071068	7.071068	7.071068	
11	16	8.000000	8.000000	8.000000	
11	17	10.000000	10.000000	10.000000	
11	18	11.180340	11.180340	11.180340	
11	19	48.795492	48.795492	48.795492	
11	20	43.863424	43.863424	43.863424	
11	21	40.607881	40.607881	40.607881	
11	22	46.097722	46.097722	46.097722	
11	23	39.051248	39.051248	39.051248	
11	24	44.821870	44.821870	44.821870	
11	25	37.536649	37.536649	37.536649	
	27	57.550045	37.00019	57.00017	

11	26	43.011626	43.011626	43.011626	
11	27	85.586214	85.586214	85.586214	
11	28	85.146932	85.146932	85.146932	
11	29	82.607506	82.607506	82.607506	
11	30	80.156098	80.156098	80.156098	
11	31	78.638413	78.638413	78.638413	
11	32	78.160092	78.160092	78.160092	
11	33	77.646635	77.646635	77.646635	
11	34	76.485293	76.485293	76.485293	
11	35	75.166482	75.166482	75.166482	
11	36	72.622311	72.622311	72.622311	
11	37	71.063352	71.063352	71.063352	
11	38	69.202601	69.202601	69.202601	
11	39	65.604878	65.604878	65.604878	
11	40	64.031242	64.031242	64.031242	
11	41	67.268120	67.268120	67.268120	
11	42	59.405387	59.405387	59.405387	
11	43	60.207973	60.207973	60.207973	
11	44	63.639610	63.639610	63.639610	
11	45	61.554854	61.554854	61.554854	
11	46	43.174066	43.174066	43.174066	
11	47	40.792156	40.792156	40.792156	
11		9.433981	9.433981	9.433981	
	48				
11	49	47.423623	47.423623	47.423623	
11	50	42.520583	42.520583	42.520583	
11	51	62.201286	62.201286	62.201286	
11	52	49.244289	49.244289	49.244289	
11	53	18.027756	18.027756	18.027756	
11	54	14.142136	14.142136	14.142136	
11	55	49.244289	49.244289	49.244289	
11	56	28.284271	28.284271	28.284271	
11	57	40.311289	40.311289	40.311289	
11	58	25.000000	25.000000	25.000000	
11	59	30.413813	30.413813	30.413813	
11	60	20.000000	20.000000	20.000000	
11	61	20.615528	20.615528	20.615528	
11	62	43.011626	43.011626	43.011626	
11	63	55.226805	55.226805	55.226805	
11	64	58.523500	58.523500	58.523500	
11	65	36.400549	36.400549	36.400549	
11	66	25.000000	25.000000	25.000000	
11	67	31.144823	31.144823	31.144823	
11	68	54.037024	54.037024	54.037024	
11	69	36.055513	36.055513	36.055513	
11	70	24.186773	24.186773	24.186773	
11	71	38.288379	38.288379	38.288379	
11	72	57.008771	57.008771	57.008771	
11	73	58.600341	58.600341	58.600341	
11	74	21.540659	21.540659	21.540659	
11	75	22.360680	22.360680	22.360680	
11		35.355339	35.355339	35.355339	
	76 77				
11	77	57.306195	57.306195	57.306195	
11	78	39.217343	39.217343	39.217343	
11	79	16.124515	16.124515	16.124515	
11	80	28.284271	28.284271	28.284271	
11	81	37.656341	37.656341	37.656341	
11	82	42.953463	42.953463	42.953463	
11	83	17.262677	17.262677	17.262677	
11	84	28.460499	28.460499	28.460499	
11		48.270074	48.270074	48.270074	
	85				
11	86	55.659680	55.659680	55.659680	
11	87	19.416488	19.416488	19.416488	
11	88	16.124515	16.124515	16.124515	

11	89	22.803509	22.803509	22.803509	
11	90	66.887966	66.887966	66.887966	
11	91	27.892651	27.892651	27.892651	
			39.051248		
11	92	39.051248		39.051248	
11	93	43.104524	43.104524	43.104524	
11	94	52.392748	52.392748	52.392748	
11	95	47.675990	47.675990	47.675990	
11	96	46.097722	46.097722	46.097722	
11	97	47.127487	47.127487	47.127487	
11	98	22.803509	22.803509	22.803509	
11	99	20.000000	20.000000	20.000000	
11	100	16.763055	16.763055	16.763055	
11	101	34.205263	34.205263	34.205263	
12	1	33.526109	33.526109	33.526109	
12	2	48.104054	48.104054	48.104054	
12	3	37.696154	37.696154	37.696154	
12	4	47.127487	47.127487	47.127487	
12	5	41.761226	41.761226	41.761226	
12	6	46.572524	46.572524	46.572524	
12	7	36.400549	36.400549	36.400549	
12	8	35.693137	35.693137	35.693137	
	9				
12		40.607881	40.607881	40.607881	
12	10	5.385165	5.385165	5.385165	
12	11	2.00000	2.000000	2.000000	
12	13	5.000000	5.000000	5.000000	
12	14	5.830952	5.830952	5.830952	
12	15	5.830952	5.830952	5.830952	
12	16	6.000000	6.000000	6.000000	
12	17	8.000000	8.000000	8.000000	
12	18	9.433981	9.433981	9.433981	
12	19	50.209561	50.209561	50.209561	
12	20	45.343136	45.343136	45.343136	
12	21	42.201896	42.201896	42.201896	
12	22	47.423623	47.423623	47.423623	
12	23	40.607881	40.607881	40.607881	
12	24	46.097722	46.097722	46.097722	
12	25	39.051248	39.051248	39.051248	
12	26	44.204072	44.204072	44.204072	
12	27	87.572827	87.572827	87.572827	
12	28	87.143560	87.143560	87.143560	
12	29	84.593144	84.593144	84.593144	
12	30	82.152298	82.152298	82.152298	
12	31	80.622577	80.622577	80.622577	
12	32	80.156098	80.156098	80.156098	
12	33	79.630396	79.630396	79.630396	
12	34	78.447435	78.447435	78.447435	
12	35	77.162167	77.162167	77.162167	
12	36	74.202426	74.202426	74.202426	
12					
	37	72.622311	72.622311	72.622311	
12	38	70.802542	70.802542	70.802542	
12	39	67.201190	67.201190	67.201190	
12	40	65.604878	65.604878	65.604878	
12	41	68.767725	68.767725	68.767725	
12	42	61.032778	61.032778	61.032778	
12	43	61.717096	61.717096	61.717096	
12	44	65.069194	65.069194	65.069194	
12	45	63.031738	63.031738	63.031738	
12	46	43.680659	43.680659	43.680659	
12	47	41.231056	41.231056	41.231056	
12	48	7.810250	7.810250	7.810250	
12	49	48.795492	48.795492	48.795492	
12	50	44.045431	44.045431	44.045431	
12	51	64.195015	64.195015	64.195015	

12	52	51.078371	51.078371	51.078371	
12	53	19.723083	19.723083	19.723083	
12	54	15.620499	15.620499	15.620499	
12	55	51.078371	51.078371	51.078371	
12	56	29.732137	29.732137	29.732137	
12	57	42.296572	42.296572	42.296572	
12	58	26.627054	26.627054	26.627054	
12	59	30.805844	30.805844	30.805844	
12	60	20.099751	20.099751	20.099751	
12	61	21.189620	21.189620	21.189620	
12	62	44.654227	44.654227	44.654227	
12	63	57.218878	57.218878	57.218878	
12	64	60.406953	60.406953	60.406953	
12	65	38.327536	38.327536	38.327536	
12	66	27.00000	27.000000	27.000000	
12	67	33.136083	33.136083	33.136083	
12	68	56.035703	56.035703	56.035703	
12	69	37.735925	37.735925	37.735925	
12	70	25.942244	25.942244	25.942244	
12	71	39.623226	39.623226	39.623226	
12	72	58.940648	58.940648	58.940648	
12	73	60.415230	60.415230	60.415230	
		20.880613			
12	74		20.880613	20.880613	
12	75	23.323808	23.323808	23.323808	
12	76	35.128336	35.128336	35.128336	
12	77	59.059292	59.059292	59.059292	
12	78	39.924930	39.924930	39.924930	
12	79	16.000000	16.000000	16.000000	
12	80	28.071338	28.071338	28.071338	
12	81	39.623226	39.623226	39.623226	
12	82	44.777226	44.777226	44.777226	
12	83	19.235384	19.235384	19.235384	
12	84	30.364453	30.364453	30.364453	
12	85	50.219518	50.219518	50.219518	
12	86	57.567352	57.567352	57.567352	
12	87	20.615528	20.615528	20.615528	
12	88	16.492423	16.492423	16.492423	
12	89	24.083189	24.083189	24.083189	
12	90	68.600292	68.600292	68.600292	
12	91	29.832868	29.832868	29.832868	
12	92	41.048752	41.048752	41.048752	
12	93	45.099889	45.099889	45.099889	
12	94	54.341513	54.341513	54.341513	
12	95			49.648766	
		49.648766	49.648766		
12	96	48.093659	48.093659	48.093659	
12	97	49.040799	49.040799	49.040799	
12	98	22.360680	22.360680	22.360680	
12	99	21.633308	21.633308	21.633308	
12	100	18.681542	18.681542	18.681542	
12	101	35.468296	35.468296	35.468296	
13	1	32.388269	32.388269	32.388269	
13	2	43.462628	43.462628	43.462628	
13	3	33.105891	33.105891	33.105891	
13	4	42.379240	42.379240	42.379240	
13	5	37.000000	37.000000	37.000000	
13	6	41.761226	41.761226	41.761226	
13	7	31.622777	31.622777	31.622777	
13	8	30.805844	30.805844	30.805844	
13	9	35.693137	35.693137	35.693137	
13	10	10.198039	10.198039	10.198039	
13	11	5.385165	5.385165	5.385165	
13	12	5.000000	5.000000	5.000000	
13	14	10.440307	10.440307	10.440307	

13	15	3.000000	3.000000	3.000000	
					ļ
13	16	7.810250	7.810250	7.810250	ļ
13	17	9.433981	9.433981	9.433981	
13	18	8.000000	8.000000	8.000000	
13	19	53.814496	53.814496	53.814496	
13	20	48.795492	48.795492	48.795492	
13	21	45.343136	45.343136	45.343136	
13	22	51.224994	51.224994	51.224994	
13	23	43.863424	43.863424	43.863424	
13	24	50.000000	50.000000	50.000000	
13	25	42.426407	42.426407	42.426407	
13	26	48.259714	48.259714	48.259714	
13	27	88.283634	88.283634	88.283634	
13	28	87.572827	87.572827	87.572827	
13	29	85.328776	85.328776	85.328776	
13	30	82.607506	82.607506	82.607506	
13	31	81.394103	81.394103	81.394103	
13	32	80.622577	80.622577	80.622577	
13	33	80.411442	80.411442	80.411442	
13	34	79.555012	79.555012	79.555012	
13	35	77.646635	77.646635	77.646635	
13	36	71.281134	71.281134	71.281134	
13	37	69.634761	69.634761	69.634761	
13	38	67.955868	67.955868	67.955868	
13	39	64.350602	64.350602	64.350602	
13	40	62.681736	62.681736	62.681736	
13	41	65.604878	65.604878	65.604878	
13	42	58.309519	58.309519	58.309519	
13	43	58.600341	58.600341	58.600341	
13	44	61.717096	61.717096	61.717096	
13	45	59.816386	59.816386	59.816386	
13	46	38.897301	38.897301	38.897301	
13	47	36.400549	36.400549	36.400549	
13	48	6.000000	6.000000	6.000000	
13	49	52.497619	52.497619	52.497619	
13	50	47.381431	47.381431	47.381431	
13	51	64.776539	64.776539	64.776539	
13	52	53.235327	53.235327	53.235327	
13	53	22.671568	22.671568	22.671568	
13	54	13.000000	13.00000	13.000000	
13	55	49.335586	49.335586	49.335586	
		26.627054	26.627054	26.627054	
13	56				
13	57	43.174066	43.174066	43.174066	
13	58	29.732137	29.732137	29.732137	
13	59	35.693137	35.693137	35.693137	
13	60	25.079872	25.079872	25.079872	
13	61	16.552945	16.552945	16.552945	
13	62	42.059482	42.059482	42.059482	
13	63	57.870545	57.870545	57.870545	
13	64	62.241465	62.241465	62.241465	
13	65	39.924930	39.924930	39.924930	
13	66	27.459060	27.459060	27.459060	
13	67	33.955854	33.955854	33.955854	
13	68	56.080300	56.080300	56.080300	
13	69	35.341194	35.341194	35.341194	
13	70	24.041631	24.041631	24.041631	
13	71	36.124784	36.124784	36.124784	
13	72	57.870545	57.870545	57.870545	
13	73	58.523500	58.523500	58.523500	
13	74	16.155494	16.155494	16.155494	
13	75	27.730849	27.730849	27.730849	
13	76	40.112342	40.112342	40.112342	
13	77	61.587336	61.587336	61.587336	

13	78	44.598206	44.598206	44.598206	
13	79	11.000000	11.000000	11.000000	
13	80	23.086793	23.086793	23.086793	
13	81	39.051248	39.051248	39.051248	
13	82	43.011626	43.011626	43.011626	
13	83	19.104973	19.104973	19.104973	
13	84	32.202484	32.202484	32.202484	
13	85	51.546096	51.546096	51.546096	
13	86	59.236813	59.236813	59.236813	
13	87	24.698178	24.698178	24.698178	
13	88	21.377558	21.377558	21.377558	
13	89	20.615528	20.615528	20.615528	
13	90	71.281134	71.281134	71.281134	
13	91	29.068884	29.068884	29.068884	
13	92	41.109610	41.109610	41.109610	
13	93	45.044423	45.044423	45.044423	
13	94	53.460266	53.460266	53.460266	
13	95	49.091751	49.091751	49.091751	
13	96	48.662100	48.662100	48.662100	
13	97	47.853944	47.853944	47.853944	
13	98	27.294688	27.294688	27.294688	
13	99	19.313208	19.313208	19.313208	
13	100	20.591260	20.591260	20.591260	
13	101	31.827661	31.827661	31.827661	
14	1	38.078866	38.078866	38.078866	
14	2	53.851648	53.851648	53.851648	
14	3	43.462628	43.462628	43.462628	
14	4	52.810984	52.810984	52.810984	
14	5	47.434165	47.434165	47.434165	
14	6	52.201533	52.201533	52.201533	
14	7	42.059482	42.059482	42.059482	
14	8	41.231056	41.231056	41.231056	
14	9	46.097722	46.097722	46.097722	
14	10	5.000000	5.00000	5.000000	
14	11	7.071068	7.071068	7.071068	
14	12	5.830952	5.830952	5.830952	
14	13	10.440307	10.440307	10.440307	
14	15	10.000000	10.000000	10.000000	
14	16	5.830952	5.830952	5.830952	
14	17	7.071068	7.071068	7.071068	
14	18	11.180340	11.180340	11.180340	
14	19	49.203658	49.203658	49.203658	
14	20	44.654227	44.654227	44.654227	
14	21	42.059482	42.059482	42.059482	
14	22	46.097722	46.097722	46.097722	
14	23	40.311289	40.311289	40.311289	
14	24	44.598206	44.598206	44.598206	
			38.587563		
14	25	38.587563		38.587563	
14	26	42.426407	42.426407	42.426407	
14	27	90.138782	90.138782	90.138782	
14	28	90.00000	90.000000	90.000000	
14	29	87.143560	87.143560	87.143560	
14	30	85.000000	85.000000	85.000000	
14	31	83.150466	83.150466	83.150466	
14	32	83.000000	83.000000	83.000000	
14	33	82.152298	82.152298	82.152298	
14	34	80.622577	80.622577	80.622577	
14	35	80.000000	80.000000	80.00000	
14	36	79.649231	79.649231	79.649231	
14	37	78.102497	78.102497	78.102497	
14	38	76.216796	76.216796	76.216796	
14	39	72.622311	72.622311	72.622311	
14	40	71.063352	71.063352	71.063352	

14 41 74.330344 74.330344 74.330344 14 42 66.400301 66.400301 66.400301 14 43 67.268120 67.268120 67.268120 14 44 70.710678 70.710678 70.710678 14 45 68.622154 68.622154 68.622154 14 46 49.335586 49.335586 49.335586 14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 12.213203 14 54 21.213203 21.213203 21.213203 14 54 21.213203 25.90529 55.901699 55	
14 43 67.268120 67.268120 67.268120 14 44 70.710678 70.710678 70.710678 14 45 68.622154 68.622154 68.622154 14 46 49.335586 49.335586 49.335586 14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.00000 45.00000 45.00000 14 58 26.925824 26.9258	
14 43 67.268120 67.268120 67.268120 14 44 70.710678 70.710678 70.710678 14 45 68.622154 68.622154 68.622154 14 46 49.335586 49.335586 49.335586 14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.00000 45.00000 45.00000 14 58 26.925824 26.9258	
14 44 70.710678 70.710678 70.710678 14 45 68.622154 68.622154 68.622154 14 46 49.335586 49.335586 49.335586 14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.00000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 54 21.213203 21.213203 21.213203 14 56 35.355339 35.355339 35.355339 14 57 45.00000 45.00000 45.00000 14 58 26.925824	
14 45 68.622154 68.622154 68.622154 14 46 49.335586 49.335586 49.335586 14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 35.355339 14 57 45.000000 45.00000 45.00000 14 58 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925	
14 46 49.335586 49.335586 49.335586 14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 61 26.925824 26.925824 26.925824 14 62 50.00000 50.00	
14 47 46.840154 46.840154 46.840154 14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.0	
14 48 10.440307 10.440307 10.440307 14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.00000 50.00000 14 63 60.000000 60.000	
14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.00000 50.000000 14 63 60.000000 60.00000 60.00000 14 64 61.846584 61.8465	
14 49 47.634021 47.634021 47.634021 14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.00000 50.000000 14 63 60.000000 60.00000 60.00000 14 64 61.846584 61.8465	
14 50 43.566042 43.566042 43.566042 14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 26.925824 26.925824 14 61 26.925824 26.925824 26.925824 26.925824 26.925824 14 62 50.00000 50.00000 50.00000 50.00000 14.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.846584 61.	
14 51 67.000000 67.000000 67.000000 14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 61.846584	
14 52 52.201533 52.201533 52.201533 14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.0	
14 53 20.615528 20.615528 20.615528 14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.00000 50.000000 14 63 60.000000 50.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 69 43.011626 43.01	
14 54 21.213203 21.213203 21.213203 14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626	
14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.3	
14 55 55.901699 55.901699 55.901699 14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.3	
14 56 35.355339 35.355339 35.355339 14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 26.925824 14 59 26.925824	
14 57 45.000000 45.000000 45.000000 14 58 26.925824 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 <	
14 58 26.925824 26.925824 26.925824 26.925824 14 59 26.925824 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 59 26.925824 26.925824 26.925824 14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 60 15.811388 15.811388 15.811388 14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 61 26.925824 26.925824 26.925824 14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 62 50.000000 50.000000 50.000000 14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 63 60.000000 60.000000 60.000000 14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 64 61.846584 61.846584 61.846584 14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 65 40.311289 40.311289 40.311289 14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 66 30.413813 30.413813 30.413813 14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 67 36.055513 36.055513 36.055513 14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 68 59.413803 59.413803 59.413803 14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 69 43.011626 43.011626 43.011626 14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 70 31.064449 31.064449 31.064449 14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 71 45.343136 45.343136 45.343136 14 72 63.245553 63.245553 63.245553	
14 72 63.245553 63.245553 63.245553	
14 73 65.299311 65.299311 65.299311	
14 74 25.179357 25.179357 25.179357	
14 75 21.213203 21.213203 21.213203	
14 76 30.000000 30.000000 30.000000	
14 77 59.615434 59.615434 59.615434	
14 78 36.715120 36.715120 36.715120	
14 79 21.213203 21.213203 21.213203	
14 80 33.015148 33.015148 33.015148	
14 82 49.648766 49.648766 49.648766	
14 83 23.409400 23.409400 23.409400	
14 84 32.249031 32.249031 32.249031	
14 85 52.345009 52.345009 52.345009	
14 86 59.228372 59.228372 59.228372	
14 87 19.416488 19.416488 19.416488	
14 88 13.038405 13.038405 13.038405	
14 89 29.832868 29.832868 29.832868	
14 90 68.876701 68.876701 68.876701	
14 91 34.176015 34.176015 34.176015	
14 92 44.553339 44.553339 44.553339	
14 93 48.662100 48.662100 48.662100	
14 94 58.523500 58.523500 58.523500	
14 95 53.600373 53.600373 53.600373	
14 96 51.039201 51.039201 51.039201	
14 97 53.488316 53.488316 53.488316	
14 98 17.029386 17.029386 17.029386	
14 99 27.018512 27.018512 27.018512	
14 100 21.000000 21.000000 21.000000	
14 101 41.231056 41.231056 41.231056	
15 1 35.355339 35.355339 35.355339	
15 2 44.721360 44.721360 44.721360	

15 3 34,481879 34,481879 34,481879 34,481878 34,481878 43,48288 39,078866 15 5 38,078866 39,078866 39,078866 39,078866 15 6 42,720019 42,720019 42,720019 42,720019 12,720019 42,72019 42,72019 42,72019 42,720019 42,720019 42,720019 42,720019 42,720019 42,720019 42,720019 42,720019 42,7200000 42,000000 52,000000 52,00000						
15 4 41,462628 42,462628 43,462628 43,678866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,078866 38,088555 32,689555 32,689555 32,689555 32,689555 38,000599 36,400549 31,6277777 31,627777 31,627777 31,627777 <th>15</th> <th>3</th> <th>34.481879</th> <th>34.481879</th> <th>34.481879</th> <th></th>	15	3	34.481879	34.481879	34.481879	
15 5 38.078866 38.078866 38.078866 38.078866 15 7 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.693565 32.69352 32.693	15		43.462628	43.462628	43.462628	
15 6 42,720019 42,720019 42,720019 42,720019 15 7 32,6895665 32,6995665 32,6995665 36,600549 36,400						
15 8 31,622777 31,622777 36,400549 36,400600 36,400600 36,400600 36,400600 36,400600 36,400600 36,400600 36,400600 36,400600 36,400600 36,400600 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 36,400712 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15 8 31,627777 31,622787 31,622787 31,622787 31,622787 31,62278 31,622787						
15						
15 10 11.180340 11.180340 11.180340 15 11 7.071068 7.071068 7.071068 15 12 5.830952 5.830952 5.830952 15 14 10.000000 10.000000 10.000000 15 16 5.830952 5.830952 5.830952 15 7.071068 7.071068 7.071068 17 7.071068 7.071068 7.071068 15 18 5.000000 5.000000 15 19 55.865911 55.865911 15 20 50.931326 50.931326 50.931326 15 21 47.634021 47.634021 47.634021 15 22 53.150729 53.150729 53.150729 15 23 46.097722 46.097722 60.097722 15 24 51.85569 51.85569 51.85569 15 25 44.598206 44.598206 44.598206 15 28 <						
15 11 7.071068 7.071068 7.071068 15 12 5.830952 5.830952 5.830952 5.830952 15 14 10.000000 10.000000 10.000000 15 16 5.830952 5.830952 5.830952 15 16 5.830952 5.830952 5.830952 15 17 7.071068 7.071068 7.071068 15 18 5.000000 5.000000 5.000000 15 19 55.865911 55.865911 55.865911 15 20 50.931326 50.931326 50.931326 15 21 47.634021 47.634021 47.634021 15 22 53.150729 53.150729 53.150729 15 23 46.097722 46.097722 46.097722 15 24 51.85569 51.85559 51.85559 15 25 44.598206 44.598206 44.598206 15 27 91.241438						
15 12 5,830952 5,830952 5,830952 15 13 3,000000 3,000000 10,000000 15 14 10,000000 10,000000 10,000000 15 16 5,830952 5,830952 5,830952 15 17 7,071068 7,071068 7,071068 15 18 5,000000 5,000000 5,000000 15 19 55,865911 55,865911 55,865911 15 20 50,931326 50,931326 50,931326 15 21 47,634021 47,634021 47,634021 15 22 53,150729 53,150729 53,150729 15 24 51,885569 51,885569 51,885569 15 24 51,885569 51,885569 51,885569 15 25 44,598206 44,598206 44,598206 15 26 50,00000 50,00000 50,00000 15 27 91,241438 91,241438 <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td>		10				
15 13 3,000000 3,000000 10,000000 10,000000 15 16 5,830952 5,830952 5,830952 5,830952 5,830952 15 17 7,071068 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15 14 10.00000 10.00000 10.00000 15 16 5.830952 5.830952 5.830952 5.830952 15 17 7.071068 7.071068 7.071068 15 18 5.000000 5.000000 5.000000 15 19 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.86591 55.86591 55.86591 55.86591 55.86591 55.86591 55.86592 55.85569 51.85569	15	12	5.830952	5.830952		
15 16 5,830952 5,830952 5,830952 1,8300000 5,0000000 5,000	15	13	3.00000	3.000000	3.000000	
15 17 7.071068 7.071068 7.071068 15 18 5.000000 5.000000 5.000000 15 19 55.865911 55.865911 55.865911 55.865911 15 20 50.931326 50.931326 50.931326 50.931326 15 21 47.634021 47.634021 47.634021 47.634021 15 22 53.150729 53.150729 53.150729 91.5150729 15 24 51.855569 51.855569 51.855569 51.855569 15 25 44.598206 44.598206 44.598206 15 26 50.00000 50.00000 50.00000 15 27 91.241438 91.241438 91.241438 15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 15 30 85.586214 85.586214 85.586214 15 31 84.344522 84.344532	15	14	10.00000	10.000000	10.000000	
15 17 7.071068 7.071068 7.071068 15 18 5.000000 5.000000 5.000000 15 19 55.865911 55.865911 55.865911 15 20 50.931326 50.931326 50.931326 15 21 47.634021 47.634021 47.634021 15 22 53.150729 53.150729 53.150729 15 23 46.097722 46.097722 46.097722 15 24 51.855569 51.855569 51.855569 15 25 44.598206 44.598206 44.598206 15 26 50.00000 50.00000 50.00000 15 27 91.241438 91.241438 91.241438 15 29 88.28624 88.283634 88.283634 88.283634 15 30 85.586214 85.586214 85.586214 85.586214 15 31 84.344532 84.344532 84.344532 84.344532 84.344532 </td <td>15</td> <td>16</td> <td>5.830952</td> <td>5.830952</td> <td>5.830952</td> <td></td>	15	16	5.830952	5.830952	5.830952	
15 18 5.000000 5.000000 5.000000 15 19 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.865911 55.86591 55.85599 55.85599 55.85599 55.85569 55.85620 44.598206 44.598206 44.598206 44.598206 55.86206 55.86214 85.86214<	15	17	7.071068	7.071068	7.071068	
15 19 \$5,865911 \$5,865911 \$5,865911 15 20 \$0,931326 \$0,931326 \$0,931326 15 21 47,634021 47,634021 47,634021 15 22 \$3,150729 \$3,150729 \$3,150729 15 23 46,097722 46,097722 46,097722 15 24 \$1,855569 \$1,855569 \$1,855569 15 25 \$44,598206 \$44,598206 \$44,598206 15 26 \$50,000000 \$50,000000 \$50,000000 15 27 \$1,241438 \$91,241438 \$91,241438 15 28 \$90,553851 \$90,553851 \$90,553851 \$90,553851 15 29 \$82,26364 \$82,28364 \$82,283634 \$82,283634 15 30 \$85,586214 \$85,586214 \$85,586214 \$85,586214 15 31 \$84,344532 \$84,344532 \$84,344532 \$84,344532 15 32 \$83,600239 \$83,6						
15 20 50.931326 50.931326 50.931326 15 21 47.634021 47.634021 47.634021 15 22 53.150729 53.150729 53.150729 15 23 46.097722 46.097722 46.097722 15 24 51.855569 51.855569 51.855569 15 25 44.588206 44.598206 44.598206 15 26 50.00000 50.00000 50.00000 15 27 91.241438 91.241438 91.241438 15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 88.283634 15 30 85.866214 85.86214 85.86214 85.86214 85.86214 85.86214 85.86214 86.586214 85.86214 85.86214 86.34532 84.344532 84.344532 84.344532 84.344532 84.344532 84.344532 85.86214 85.86214 85.86214 85.86214 85.86						
15 21 47,634021 47,634021 47,634021 15 22 53.150729 53.150729 53.150729 15 23 46.097722 46.097722 46.097722 15 24 51.855569 51.855569 51.855569 15 25 44.598206 44.598206 44.598206 15 26 50.00000 50.00000 50.00000 15 27 91.241438 91.241438 91.241438 15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 15 31 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.600239 15 32 83.360062 83.360662 83.36062 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467						
15 22 53.150729 53.150729 46.097722 46.097722 46.097722 15.09722 15						
15 24 51.855569 51.855569 51.855569 51.855569 15 25 54.598206 44.598206 44.598206 15 26 50.000000 50.000000 50.000000 15 27 91.241438 91.241438 91.241438 15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 15 30 85.586214 85.586214 85.586214 15 31 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.360662 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 37 72.111026 72.111026 72.111026 15 38						
15 24 \$1,855569 \$1,855569 \$4,598206 \$44,598206 \$44,598206 \$44,598206 \$44,598206 \$44,598206 \$44,598206 \$44,598206 \$44,598206 \$45,5000000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000 \$50,00000						
15 25 44,598206 44,598206 30,00000 50,000000 50,0						
15 26 50.00000 50.00000 50.00000 15 27 91.241438 91.241438 91.241438 15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 15 30 85.586214 85.586214 85.586214 15 31 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.600239 15 34 82.462113 82.462113 82.462113 15 35 80.6022577 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 68.887966 66.887966 66.887966 60.887966 60.89766 60.991560 60.901560						
15 27 91,241438 91.241438 91.241438 15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 15 30 85.586214 85.586214 85.586214 85.586214 15 31 84.344532 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.600239 83.60062 15 34 82.462113 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134 70.491134						
15 28 90.553851 90.553851 90.553851 15 29 88.283634 88.283634 88.283634 15 30 85.586214 85.586214 85.586214 15 31 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.600239 15 33 83.360662 83.360662 83.360662 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 37 72.111026 72.111026 72.111026 15 39 66.887966 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 68.007353	15	26	50.00000	50.000000	50.000000	
15 29 88.283634 88.283634 88.283634 85.586214 85.286213 85.622113 86.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 <td>15</td> <td>27</td> <td>91.241438</td> <td>91.241438</td> <td>91.241438</td> <td></td>	15	27	91.241438	91.241438	91.241438	
15 29 88.283634 88.283634 88.283634 85.586214 85.286213 85.622113 86.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 80.622577 <td>15</td> <td>28</td> <td>90.553851</td> <td>90.553851</td> <td>90.553851</td> <td></td>	15	28	90.553851	90.553851	90.553851	
15 30 85.586214 85.586214 85.586214 15 31 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.60062 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 47 37.336309 37.336309 37.336309 15 49 54.488531 54.48		29	88.283634	88.283634	88.283634	
15 31 84.344532 84.344532 84.344532 15 32 83.600239 83.600239 83.600239 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 15 37 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 47 37.336309 37.336309 37.336309 <td></td> <td></td> <td>85.586214</td> <td>85.586214</td> <td>85.586214</td> <td></td>			85.586214	85.586214	85.586214	
15 32 83.600239 83.600239 83.600239 15 33 83.360662 83.360662 83.360662 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.3						
15 33 83.360662 83.360662 83.360662 15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.00						
15 34 82.462113 82.462113 82.462113 15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.00000 3.00000 15 49 54.488531 54.488531 54.488531						
15 35 80.622577 80.622577 80.622577 15 36 73.783467 73.783467 73.783467 15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.00000 15 49 578221 49.578221 49.578221 15 51 67.742158 67.742158 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15 36 73.783467 73.783467 73.783467 73.783467 73.783467 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 72.111026 73.783467 70.491134 70.491156 60.901560 60.901560 60.901560 60.901560 60.901560 60.901560 60.901560 60.901560 60.901560 60.901560 60.901560 60.80166 70.901546 62.201286 62.20						
15 37 72.111026 72.111026 72.111026 15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.9016						
15 38 70.491134 70.491134 70.491134 15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.0000						
15 39 66.887966 66.887966 66.887966 15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 54 15.811388 15.811388 15.811388 15 54 15.81388 15.81138						
15 40 65.192024 65.192024 65.192024 15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 56 29.154759 29.1547			70.491134			
15 41 68.007353 68.007353 68.007353 15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.1547	15	39	66.887966	66.887966	66.887966	
15 42 60.901560 60.901560 60.901560 15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.0977	15	40	65.192024	65.192024	65.192024	
15 43 61.032778 61.032778 61.032778 15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.00000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.01562	15	41	68.007353	68.007353	68.007353	
15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 60 25.495098 25.4950	15	42	60.901560	60.901560	60.901560	
15 44 64.031242 64.031242 64.031242 15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 60 25.495098 25.4950	15	43	61.032778	61.032778	61.032778	
15 45 62.201286 62.201286 62.201286 15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.4950		44	64.031242	64.031242	64.031242	
15 46 39.924930 39.924930 39.924930 15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.0277			62.201286			
15 47 37.336309 37.336309 37.336309 15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.7213						
15 48 3.000000 3.000000 3.000000 15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.8276						
15 49 54.488531 54.488531 54.488531 15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.0						
15 50 49.578221 49.578221 49.578221 15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.00000 65.00000 15 65 42.720019 42.720						
15 51 67.742158 67.742158 67.742158 15 52 55.901699 55.901699 15 53 25.000000 25.000000 15 54 15.811388 15.811388 15 55 52.201533 52.201533 15 56 29.154759 29.154759 15 57 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 52 55.901699 55.901699 55.901699 15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 53 25.000000 25.000000 25.000000 15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 54 15.811388 15.811388 15.811388 15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 55 52.201533 52.201533 52.201533 15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 56 29.154759 29.154759 29.154759 15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019			15.811388		15.811388	
15 57 46.097722 46.097722 46.097722 15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019		55	52.201533	52.201533	52.201533	
15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019	15	56	29.154759	29.154759	29.154759	
15 58 32.015621 32.015621 32.015621 15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019	15	57	46.097722	46.097722	46.097722	
15 59 36.400549 36.400549 36.400549 15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 15 62 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019		58	32.015621	32.015621	32.015621	
15 60 25.495098 25.495098 25.495098 15 61 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019			36.400549	36.400549	36.400549	
15 61 18.027756 18.027756 18.027756 15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 62 44.721360 44.721360 44.721360 15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 63 60.827625 60.827625 60.827625 15 64 65.000000 65.000000 65.00000 15 65 42.720019 42.720019 42.720019						
15 64 65.000000 65.000000 65.000000 15 65 42.720019 42.720019 42.720019						
15 65 42.720019 42.720019 42.720019						
15 00 30.413813 30.413813 30.413813						
	12	66	30.413813	30.413813	30.413813	

_					
15	67	36.878178	36.878178	36.878178	
15	68	59.076222	59.076222	59.076222	
15	69	38.078866	38.078866	38.078866	
15	70	26.925824	26.925824	26.925824	
15	71	38.418745	38.418745	38.418745	
15	72	60.827625	60.827625	60.827625	
15	73	61.351447	61.351447	61.351447	
15	74	15.297059	15.297059	15.297059	
15	75	29.154759	29.154759	29.154759	
15	76	40.000000	40.000000	40.00000	
15	77	64.140471	64.140471	64.140471	
15	78	45.694639	45.694639	45.694639	
15	79	11.401754	11.401754	11.401754	
15	80	23.021729	23.021729	23.021729	
15	81	42.047592	42.047592	42.047592	
15	82	45.880279	45.880279	45.880279	
15	83	22.090722	22.090722	22.090722	
15	84	34.928498	34.928498	34.928498	
15	85	54.405882	54.405882	54.405882	
15	86	62.032250	62.032250	62.032250	
15	87	26.400758	26.400758	26.400758	
15	88	22.135944	22.135944	22.135944	
15	89	23.021729	23.021729	23.021729	
15	90	73.783467	73.783467	73.783467	
15	91	32.062439	32.062439	32.062439	
	92	44.102154	44.102154	44.102154	
15					
15	93	48.041649	48.041649	48.041649	
15	94	56.435804	56.435804	56.435804	
15	95	52.086467	52.086467	52.086467	
15	96	51.623638	51.623638	51.623638	
15	97	50.803543	50.803543	50.803543	
15				27.018512	
	98	27.018512	27.018512		
15	99	22.135944	22.135944	22.135944	
15	100	23.259407	23.259407	23.259407	
15	101	34.058773	34.058773	34.058773	
16	1	39.293765	39.293765	39.293765	
16	2	50.537115	50.537115	50.537115	
16	3	40.311289	40.311289	40.311289	
16	4	49.244289	49.244289	49.244289	
16	5	43.863424	43.863424	43.863424	
16	6	48.466483	48.466483	48.466483	
16	7	38.483763	38.483763	38.483763	
16	8	37.336309	37.336309	37.336309	
16	9	42.059482	42.059482	42.059482	
16	10	9.433981	9.433981	9.433981	
16	11	8.000000	8.000000	8.000000	
16	12	6.000000	6.000000	6.000000	
16	13	7.810250	7.810250	7.810250	
16	14	5.830952	5.830952	5.830952	
16	15	5.830952	5.830952	5.830952	
	17	2.000000	2.000000	2.000000	
16					
16	18	5.385165	5.385165	5.385165	
16	19	54.671748	54.671748	54.671748	
16	20	50.000000	50.000000	50.000000	
16	21	47.169906	47.169906	47.169906	
16	22	51.662365	51.662365	51.662365	
16	23	45.486262	45.486262	45.486262	
16	24	50.209561	50.209561	50.209561	
16	25	43.829214	43.829214	43.829214	
16	26	48.104054	48.104054	48.104054	
16	27	93.536089	93.536089	93.536089	
16	28	93.134312	93.134312	93.134312	
16	29	90.553851	90.553851	90.553851	
Τ 0	<u>ک</u> ک	90.00001	30.3330JT	30.33331	

16	30	88.141931	88.141931	88.141931	
16	31	86.579443	86.579443	86.579443	
16	32	86.145226	86.145226	86.145226	
16	33	85.586214	85.586214	85.586214	
16	34	84.344532	84.344532	84.344532	
16	35	83.150466	83.150466	83.150466	
16	36	79.056942	79.056942	79.056942	
16	37	77.420927	77.420927	77.420927	
16	38	75.716577	75.716577	75.716577	
16	39	72.111026	72.111026	72.111026	
16	40	70.455660	70.455660	70.455660	
16	41	73.409809	73.409809	73.409809	
16	42	66.037868	66.037868	66.037868	
16	43	66.400301	66.400301	66.400301	
16	44	69.526973	69.526973	69.526973	
16	45	67.623960	67.623960	67.623960	
16	46	45.694639	45.694639	45.694639	
16	47	43.081318	43.081318	43.081318	
16	48	5.000000	5.000000	5.000000	
16	49	53.150729	53.150729	53.150729	
16	50	48.826222	48.826222	48.826222	
16	51	70.178344	70.178344	70.178344	
16	52	56.648036	56.648036	56.648036	
16	53	25.079872	25.079872	25.079872	
16	54	20.591260	20.591260	20.591260	
16	55	56.648036	56.648036	56.648036	
16	56	34.409301	34.409301	34.409301	
16	57	48.259714	48.259714	48.259714	
16	58	31.764760	31.764760	31.764760	
16	59	32.695565	32.695565	32.695565	
16	60	21.540659	21.540659	21.540659	
16	61	23.853721	23.853721	23.853721	
16	62	49.739320	49.739320	49.739320	
16	63	63.198101	63.198101	63.198101	
16	64	66.098411	66.098411	66.098411	
16	65	44.147480	44.147480	44.147480	
16	66	33.000000	33.000000	33.000000	
16	67	39.115214	39.115214	39.115214	
16	68	62.032250	62.032250	62.032250	
16	69	42.941821	42.941821	42.941821	
16	70				
		31.384710	31.384710	31.384710	
16	71	43.931765	43.931765	43.931765	
16	72	64.761099	64.761099	64.761099	
16	73	65.924199	65.924199	65.924199	
16	74	20.000000	20.000000	20.000000	
16	75	26.907248	26.907248	26.907248	
16	76	35.128336	35.128336	35.128336	
16	77	64.404969	64.404969	64.404969	
16	78	42.544095	42.544095	42.544095	
16	79	17.088007	17.088007	17.088007	
		28.284271	28.284271	28.284271	
16	80				
16	81	45.541190	45.541190	45.541190	
16	82	50.328918	50.328918	50.328918	
16	83	25.179357	25.179357	25.179357	
16	84	36.138622	36.138622	36.138622	
16	85	56.089215	56.089215	56.089215	
16	86	63.324561	63.324561	63.324561	
16	87	24.839485	24.839485	24.839485	
16	88	18.867962	18.867962	18.867962	
16	89	28.425341	28.425341	28.425341	
16	90	73.824115	73.824115	73.824115	
16	91	35.693137	35.693137	35.693137	
16	92	47.042534	47.042534	47.042534	

16	93	51.088159	51.088159	51.088159	
16	94	60.207973	60.207973	60.207973	
16	95	55.578773	55.578773	55.578773	
16	96	54.083269	54.083269	54.083269	
16	97	54.817880	54.817880	54.817880	
16	98	22.090722	22.090722	22.090722	
16	99	26.832816	26.832816	26.832816	
16	100	24.515301	24.515301	24.515301	
16	101	39.623226	39.623226	39.623226	
17	1	41.231056	41.231056	41.231056	
17	2	51.478151	51.478151	51.478151	
17	3	41.340053	41.340053	41.340053	
17		50.089919	50.089919	50.089919	
	4				
17	5	44.721360	44.721360	44.721360	
17	6	49.244289	49.244289	49.244289	
17	7	39.357337	39.357337	39.357337	
17	8	38.078866	38.078866	38.078866	
17	9		42.720019		
		42.720019		42.720019	
17	10	11.180340	11.180340	11.180340	
17	11	10.000000	10.00000	10.000000	
17	12	8.000000	8.000000	8.000000	
17	13	9.433981	9.433981	9.433981	
17	14	7.071068	7.071068	7.071068	
17	15	7.071068	7.071068	7.071068	
17	16	2.000000	2.000000	2.000000	
17	18	5.000000	5.000000	5.000000	
17	19	56.222771	56.222771	56.222771	
17	20	51.613952	51.613952	51.613952	
17	21	48.877398	48.877398	48.877398	
17	22	53.150729	53.150729	53.150729	
17	23	47.169906	47.169906	47.169906	
17	24	51.662365	51.662365	51.662365	
17	25	45.486262	45.486262	45.486262	
17	26	49.497475	49.497475	49.497475	
17	27	95.524866	95.524866	95.524866	
17	28	95.131488	95.131488	95.131488	
17	29	92.541882	92.541882	92.541882	
17	30	90.138782	90.138782	90.138782	
17	31	88.566359	88.566359	88.566359	
17	32	88.141931	88.141931	88.141931	
17	33	87.572827	87.572827	87.572827	
17	34	86.313383	86.313383	86.313383	
17		85.146932	85.146932	85.146932	
	35				
17	36	80.709355	80.709355	80.709355	
17	37	79.056942	79.056942	79.056942	
17	38	77.388630	77.388630	77.388630	
17	39	73.783467	73.783467	73.783467	
17	40	72.111026	72.111026	72.111026	
17	41	75.000000	75.000000	75.000000	
17	42	67.742158	67.742158	67.742158	
17	43	68.007353	68.007353	68.007353	
17	44	71.063352	71.063352	71.063352	
17	45	69.202601	69.202601	69.202601	
17	46	46.518813	46.518813	46.518813	
17	47	43.863424	43.863424	43.863424	
17	48	5.385165	5.385165	5.385165	
17	49	54.671748	54.671748	54.671748	
17		50.477718	50.477718	50.477718	
	50				
17	51	72.173402	72.173402	72.173402	
17	52	58.523500	58.523500	58.523500	
17	53	26.925824	26.925824	26.925824	
17	54	22.360680	22.360680	22.360680	
17	55	58.523500	58.523500	58.523500	
Τ /		50.525500	30.323300	30.323300	

17	56	36.055513	36.055513	36.055513	
17	57	50.249378	50.249378	50.249378	
17	58	33.541020	33.541020	33.541020	
17	59	33.541020	33.541020	33.541020	
17	60	22.360680	22.360680	22.360680	
17	61	25.000000	25.000000	25.000000	
17	62	51.478151	51.478151	51.478151	
17	63	65.192024	65.192024	65.192024	
17	64	68.007353	68.007353	68.007353	
17	65	46.097722	46.097722	46.097722	
17	66	35.000000	35.000000	35.000000	
17	67	41.109610	41.109610	41.109610	
17			64.031242	64.031242	
	68	64.031242			
17	69	44.721360	44.721360	44.721360	
17	70	33.241540	33.241540	33.241540	
17	71	45.453273	45.453273	45.453273	
17	72	66.708320	66.708320	66.708320	
17	73	67.779053	67.779053	67.779053	
17	74	20.099751	20.099751	20.099751	
17	75	28.284271	28.284271	28.284271	
17	76	35.355339	35.355339	35.355339	
17	77	66.211781	66.211781	66.211781	
17	78	43.566042	43.566042	43.566042	
17	79	17.888544	17.888544	17.888544	
17	80	28.635642	28.635642	28.635642	
17	81	47.518417	47.518417	47.518417	
17	82	52.201533	52.201533	52.201533	
17	83	27.166155	27.166155	27.166155	
17	84	38.078866	38.078866	38.078866	
17	85	58.051701	58.051701	58.051701	
17	86	65.253352	65.253352	65.253352	
17	87	26.400758	26.400758	26.400758	
17	88	20.00000	20.000000	20.000000	
17		30.000000	30.000000	30.000000	
	89				
17	90	75.591005	75.591005	75.591005	
17	91	37.656341	37.656341	37.656341	
17	92	49.040799	49.040799	49.040799	
17	93	53.084838	53.084838	53.084838	
		62.169124			
17	94		62.169124	62.169124	
17	95	57.558666	57.558666	57.558666	
17	96	56.080300	56.080300	56.080300	
17	97	56.753854	56.753854	56.753854	
17	98	22.360680	22.360680	22.360680	
17	99	28.635642	28.635642	28.635642	
			26.476405		
17	100	26.476405		26.476405	
17	101	41.109610	41.109610	41.109610	
18	1	40.311289	40.311289	40.311289	
18	2	47.169906	47.169906	47.169906	
18	3	37.202150	37.202150	37.202150	
				45.650849	
18	4	45.650849	45.650849		
18	5	40.311289	40.311289	40.311289	
18	6	44.721360	44.721360	44.721360	
18	7	34.985711	34.985711	34.985711	
18	8	33.541020	33.541020	33.541020	
18	9	38.078866	38.078866	38.078866	
18	10	14.142136	14.142136	14.142136	
18	11	11.180340	11.180340	11.180340	
18	12	9.433981	9.433981	9.433981	
18	13	8.00000	8.000000	8.000000	
18	14	11.180340	11.180340	11.180340	
18	15	5.000000	5.000000	5.000000	
18	16	5.385165	5.385165	5.385165	
18	17	5.00000	5.000000	5.000000	

18	19	59.464275	59.464275	59.464275	
18	20	54.671748	54.671748	54.671748	
18	21	51.613952	51.613952	51.613952	
18	22	56.568542	56.568542	56.568542	
18	23	50.000000	50.000000	50.000000	
18	24	55.172457	55.172457	55.172457	
18	25	48.414874	48.414874	48.414874	
18	26	53.150729	53.150729	53.150729	
18	27	96.176920	96.176920	96.176920	
18	28	95.524866	95.524866	95.524866	
18	29	93.214806	93.214806	93.214806	
18	30	90.553851	90.553851	90.553851	
18	31	89.269256	89.269256	89.269256	
18	32	88.566359	88.566359	88.566359	
18	33	88.283634	88.283634	88.283634	
18	34	87.321246	87.321246	87.321246	
18	35	85.586214	85.586214	85.586214	
18	36	78.032045	78.032045	78.032045	
18	37	76.321688	76.321688	76.321688	
18	38	74.793048	74.793048	74.793048	
18	39	71.196910	71.196910	71.196910	
18	40	69.462220	69.462220	69.462220	
18	41	72.111026	72.111026	72.111026	
18	42	65.299311	65.299311	65.299311	
18	43	65.192024	65.192024	65.192024	
18	44	68.007353	68.007353	68.007353	
18	45	66.287254	66.287254	66.287254	
18	46	42.059482	42.059482	42.059482	
18	47	39.357337	39.357337	39.357337	
18	48	2.000000	2.00000	2.00000	
18	49	58.000000	58.00000	58.000000	
18	50	53.413481	53.413481	53.413481	
18	51	72.691127	72.691127	72.691127	
18	52	60.415230	60.415230	60.415230	
18	53	29.154759	29.154759	29.154759	
18	54	20.615528	20.615528	20.615528	
18	55	57.008771	57.008771	57.008771	
18	56	33.541020	33.541020	33.541020	
18	57	50.990195	50.990195	50.990195	
18	58	36.055513	36.055513	36.055513	
18	59	38.078866	38.078866	38.078866	
18	60	26.925824	26.925824	26.925824	
18	61	21.213203	21.213203	21.213203	
18	62	49.244289	49.244289	49.244289	
18	63	65.764732	65.764732	65.764732	
18	64	69.641941	69.641941	69.641941	
18	65	47.434165	47.434165	47.434165	
18	66	35.355339	35.355339	35.355339	
18	67	41.773197	41.773197	41.773197	
18	68	64.070274	64.070274	64.070274	
18	69	42.720019	42.720019	42.720019	
18	70	31.780497	31.780497	31.780497	
18	71	42.438190	42.438190	42.438190	
18	72	65.764732	65.764732	65.764732	
18	73	66.098411	66.098411	66.098411	
18	74	15.132746	15.132746	15.132746	
18	75	32.015621	32.015621	32.015621	
18	76	40.311289	40.311289	40.311289	
18	77	68.476273	68.476273	68.476273	
18	78	47.885280	47.885280	47.885280	
18	78 79	13.601471	13.601471	13.601471	
		23.769729	23.769729	23.769729	
18	80				
18	81	47.042534	47.042534	47.042534	

18	82	50.695167	50.695167	50.695167	
18	83	27.073973	27.073973	27.073973	
18	84	39.560081	39.560081	39.560081	
18	85	59.203040	59.203040	59.203040	
18	86	66.730802	66.730802	66.730802	
18	87	29.698485	29.698485	29.698485	
18	88	24.186773	24.186773	24.186773	
18	89	27.294688	27.294688	27.294688	
18	90	78.032045	78.032045	78.032045	
18	91	37.054015	37.054015	37.054015	
18	92	49.091751	49.091751	49.091751	
18	93	53.037722	53.037722	53.037722	
18	94	61.400326	61.400326	61.400326	
18	95	57.078893	57.078893	57.078893	
18	96	56.568542	56.568542	56.568542	
18	97	55.731499	55.731499	55.731499	
18	98	27.294688	27.294688	27.294688	
18	99	26.925824	26.925824	26.925824	
18	100	27.856777	27.856777	27.856777	
18	101	38.013156	38.013156	38.013156	
19	101	45.177428	45.177428	45.177428	
19	2		45.177428 82.225300	45.177428 82.225300	
		82.225300			
19	3	73.375745	73.375745	73.375745	
19	4	82.969874	82.969874	82.969874	
19	5	78.746428	78.746428	78.746428	
19	6	83.522452	83.522452	83.522452	
19	7	74.672619	74.672619	74.672619	
19	8	75.769387	75.769387	75.769387	
19	9	80.411442	80.411442	80.411442	
19	10	45.343136	45.343136	45.343136	
19	11	48.795492	48.795492	48.795492	
19	12	50.209561	50.209561	50.209561	
19	13	53.814496	53.814496	53.814496	
19	14	49.203658	49.203658	49.203658	
19	15	55.865911	55.865911	55.865911	
19	16	54.671748	54.671748	54.671748	
19	17	56.222771	56.222771	56.222771	
19	18	59.464275	59.464275	59.464275	
19	20	5.385165	5.385165	5.385165	
19	21	10.198039	10.198039	10.198039	
19	22	4.000000	4.000000	4.000000	
19	23	10.770330	10.770330	10.770330	
19	24	6.000000	6.000000	6.000000	
19	25	11.661904	11.661904	11.661904	
19	26	9.000000	9.000000	9.000000	
19	27	56.797887	56.797887	56.797887	
19	28	59.169249	59.169249	59.169249	
19	29	54.120237	54.120237	54.120237	
19	30	54.918121	54.918121	54.918121	
19	31	50.606324	50.606324	50.606324	
19	32	53.254108	53.254108	53.254108	
19	33	49.739320	49.739320	49.739320	
19	34	45.617979	45.617979	45.617979	
19	35	50.803543	50.803543	50.803543	
19	36	83.240615	83.240615	83.240615	
19	37	82.710338	82.710338	82.710338	
19	38	79.812280	79.812280	79.812280	
19	39	77.129761	77.129761	77.129761	
19	40	76.687678	76.687678	76.687678	
19	41	81.584312	81.584312	81.584312	
19	42	71.386273	71.386273	71.386273	
19	43	75.802375	75.802375	75.802375	
19	44	80.752709	80.752709	80.752709	
1.7	77	00.132103	00.102103	00.102103	

19	45	77.781746	77.781746	77.781746	
19	46	80.653580	80.653580	80.653580	
19	47	79.378838	79.378838	79.378838	
19	48	58.000000	58.000000	58.00000	
19	49	2.000000	2.000000	2.000000	
19	50	7.280110	7.280110	7.280110	
19	51	41.036569	41.036569	41.036569	
19	52	18.601075	18.601075	18.601075	
19	53	31.400637	31.400637	31.400637	
19	54	51.400037	51.000000	51.000000	
19	55	56.089215	56.089215	56.089215	
19	56	56.753854	56.753854	56.753854	
19	57	30.594117	30.594117	30.594117	
19	58	24.413111	24.413111	24.413111	
19	59	29.427878	29.427878	29.427878	
	60	37.161808	37.161808	37.161808	
19					
19	61	62.177166	62.177166	62.177166	
19	62	60.008333	60.008333	60.008333	
19	63	36.619667	36.619667	36.619667	
19	64	25.806976	25.806976	25.806976	
19	65	25.019992	25.019992	25.019992	
19	66	36.138622	36.138622	36.138622	
19	67	32.140317	32.140317	32.140317	
19	68	42.059482	42.059482	42.059482	
19	69	55.145263	55.145263	55.145263	
19	70	48.764741	48.764741	48.764741	
19	71	64.629715	64.629715	64.629715	
19	72	54.230987	54.230987	54.230987	
19	73	62.936476	62.936476	62.936476	
19	74	69.202601	69.202601	69.202601	
19	75	28.301943	28.301943	28.301943	
19	76	39.000000	39.000000	39.000000	
19	77	17.464249	17.464249	17.464249	
19	78	21.095023	21.095023	21.095023	
19	79	62.425956	62.425956	62.425956	
19	80	73.573093	73.573093	73.573093	
19	81	42.107007	42.107007	42.107007	
19	82	53.235327	53.235327	53.235327	
19	83	41.629317	41.629317	41.629317	
19	84	26.925824	26.925824	26.925824	
19	85	27.294688	27.294688	27.294688	
19	86	26.172505	26.172505	26.172505	
19	87	29.832868	29.832868	29.832868	
19	88	37.215588	37.215588	37.215588	
19	89	56.648036	56.648036	56.648036	
19	90	23.000000	23.000000	23.000000	
19	91	42.579338	42.579338	42.579338	
19	92	37.336309	37.336309	37.336309	
19	93	39.051248	39.051248	39.051248	
19	94	49.979996	49.979996	49.979996	
19	95	44.922155	44.922155	44.922155	
19	96	34.176015	34.176015	34.176015	
19	97	50.219518	50.219518	50.219518	
19	98	42.059482	42.059482	42.059482	
19	99	50.328918	50.328918	50.328918	
19	100	34.985711	34.985711	34.985711	
19	101	63.348244	63.348244	63.348244	
20	1	40.049969	40.049969	40.049969	
20	2	76.902536	76.902536	76.902536	
20	3	68.007353	68.007353	68.007353	
20	4	77.620873	77.620873	77.620873	
20	5	73.375745	73.375745	73.375745	
20	6	78.160092	78.160092	78.160092	
				*	

20	7	69.289249	69.289249	69.289249	
20	8	70.384657	70.384657	70.384657	
20	9	75.026662	75.026662	75.026662	
20	10	40.607881	40.607881	40.607881	
20	11	43.863424	43.863424	43.863424	
20	12	45.343136	45.343136	45.343136	
20	13	48.795492	48.795492	48.795492	
20	14	44.654227	44.654227	44.654227	
20		50.931326	50.931326	50.931326	
	15				
20	16	50.000000	50.000000	50.000000	
20	17	51.613952	51.613952	51.613952	
20	18	54.671748	54.671748	54.671748	
20	19	5.385165	5.385165	5.385165	
20	21	5.000000	5.000000	5.000000	
20	22	5.385165	5.385165	5.385165	
20	23	5.385165	5.385165	5.385165	
20	24	6.403124	6.403124	6.403124	
20	25	6.403124	6.403124	6.403124	
20	26	8.602325	8.602325	8.602325	
20	27	56.648036	56.648036	56.648036	
20	28	58.600341	58.600341	58.600341	
20	29	53.851648	53.851648	53.851648	
20	30	54.120237	54.120237	54.120237	
20	31	50.159745	50.159745	50.159745	
20	32	52.354560	52.354560	52.354560	
20	33	49.244289	49.244289	49.244289	
20	34	45.541190	45.541190	45.541190	
20	35	49.739320	49.739320	49.739320	
20	36	79.056942	79.056942	79.056942	
20	37	78.447435	78.447435	78.447435	
20	38	75.584390	75.584390	75.584390	
20	39	72.801099	72.801099	72.801099	
20	40	72.277244	72.277244	72.277244	
20	41	77.129761	77.129761	77.129761	
20	42	66.940272	66.940272	66.940272	
20	43	71.196910	71.196910	71.196910	
20	44	76.118329	76.118329	76.118329	
20	45	73.164199	73.164199	73.164199	
2.0	46	75.286121	75.286121	75.286121	
20	47	74.000000	74.000000	74.000000	
20	48	53.150729	53.150729	53.150729	
20	49	5.000000	5.000000	5.00000	
20	50	2.000000	2.000000	2.000000	
20	51	39.051248	39.051248	39.051248	
20	52	16.401219	16.401219	16.401219	
20	53	26.248809	26.248809	26.248809	
20	53 54	45.650849	45.650849	45.650849	
20		51.662365	51.662365	51.662365	
	55 56				
20	56	51.419841	51.419841	51.419841	
20	57	26.248809	26.248809	26.248809	
20	58	19.209373	19.209373	19.209373	
20	59	27.000000	27.000000	27.000000	
20	60	33.526109	33.526109	33.526109	
20	61	56.824291	56.824291	56.824291	
20	62	55.081757	55.081757	55.081757	
20	63	33.970576	33.970576	33.970576	
20	64	25.079872	25.079872	25.079872	
20	65	20.223748	20.223748	20.223748	
20	66	30.805844	30.805844	30.805844	
20	67	27.018512	27.018512	27.018512	
20	68	38.832976	38.832976	38.832976	
20	69	50.032970	50.039984	50.039984	
20	70	43.416587	43.416587	43.416587	
	7.0	10.410001	10.410001	10.11.000/	

20	71	59.413803	59.413803	59.413803	
20	72	50.537115	50.537115	50.537115	
20	73	58.872744	58.872744	58.872744	
20	74	64.031242	64.031242	64.031242	
20	75	24.166092	24.166092	24.166092	
20	76		37.336309		
		37.336309		37.336309	
20	77	18.110770	18.110770	18.110770	
20	78	20.248457	20.248457	20.248457	
20	79	57.201399	57.201399	57.201399	
20	80	68.264193	68.264193	68.264193	
20	81	37.336309	37.336309	37.336309	
20	82	48.507731	48.507731	48.507731	
20	83	36.249138	36.249138	36.249138	
20	84	21.587033	21.587033	21.587033	
20	85	24.207437	24.207437	24.207437	
20	86	24.698178	24.698178	24.698178	
20	87	25.238859	25.238859	25.238859	
20	88	33.105891	33.105891	33.105891	
20	89	51.264022	51.264022	51.264022	
20	90	25.495098	25.495098	25.495098	
20	91	37.336309	37.336309	37.336309	
20	92	32.756679	32.756679	32.756679	
20	93	34.785054	34.785054	34.785054	
20	94	46.097722	46.097722	46.097722	
20	95	40.853396	40.853396	40.853396	
20	96	30.413813	30.413813	30.413813	
20	97	45.880279	45.880279	45.880279	
20	98	38.832976	38.832976	38.832976	
20	99	44.944410	44.944410	44.944410	
20	100	29.681644	29.681644	29.681644	
20	101	58.051701	58.051701	58.051701	
21	1	35.057096	35.057096	35.057096	
21	2	72.034714	72.034714	72.034714	
21	3	63.245553	63.245553	63.245553	
21	4	72.801099	72.801099	72.801099	
21					
	5	68.622154	68.622154	68.622154	
21	6	73.375745	73.375745	73.375745	
21	7	64.621978	64.621978	64.621978	
21	8	65.795137	65.795137	65.795137	
21	9	70.384657	70.384657	70.384657	
21	10	37.735925	37.735925	37.735925	
21	11	40.607881	40.607881	40.607881	
21	12	42.201896	42.201896	42.201896	
21	13	45.343136	45.343136	45.343136	
21	14	42.059482	42.059482	42.059482	
21	15	47.634021	47.634021	47.634021	
21	16	47.169906	47.169906	47.169906	
21	17	48.877398	48.877398	48.877398	
21	18	51.613952	51.613952	51.613952	
21	19	10.198039	10.198039	10.198039	
21	20	5.00000	5.000000	5.000000	
21	22	10.198039	10.198039	10.198039	
21	23	2.000000	2.000000	2.000000	
21	24	10.770330	10.770330	10.770330	
21	25	4.000000	4.000000	4.000000	
21	26	12.206556	12.206556	12.206556	
21	27	55.081757	55.081757	55.081757	
21	28	56.648036	56.648036	56.648036	
21	29	52.201533	52.201533	52.201533	
21	30	52.000000	52.000000	52.000000	
21	31	48.383882	48.383882	48.383882	
21	32	50.159745	50.159745	50.159745	
21	33	47.434165	47.434165	47.434165	

21	34	44.147480	44.147480	44.147480	
21	35	47.423623	47.423623	47.423623	
21	36	74.330344	74.330344	74.330344	
21	37	73.681748	73.681748	73.681748	
21	38	70.837843	70.837843	70.837843	
21	39	68.007353	68.007353	68.007353	
21	40	67.446275	67.446275	67.446275	
21	41	72.277244	72.277244	72.277244	
21	42	62.096699	62.096699	62.096699	
21	43	66.287254	66.287254	66.287254	
21	44	71.196910	71.196910	71.196910	
21	45	68.249542	68.249542	68.249542	
21			70.519501	70.519501	
	46	70.519501			
21	47	69.289249	69.289249	69.289249	
21	48	50.000000	50.000000	50.000000	
21	49	10.000000	10.000000	10.000000	
21	50	3.000000	3.000000	3.000000	
21	51	36.055513	36.055513	36.055513	
21	52	13.928388	13.928388	13.928388	
21	53	22.671568	22.671568	22.671568	
21	54	41.340053	41.340053	41.340053	
21	55	46.840154	46.840154	46.840154	
21	56	46.572524	46.572524	46.572524	
21	57	21.540659	21.540659	21.540659	
21	58	15.620499	15.620499	15.620499	
21	59	27.459060	27.459060	27.459060	
21	60	32.388269	32.388269	32.388269	
21	61	52.478567	52.478567	52.478567	
21	62	50.089919	50.089919	50.089919	
21	63	30.479501	30.479501	30.479501	
21	64	23.537205	23.537205	23.537205	
21	65	15.297059	15.297059	15.297059	
21	66	25.961510	25.961510	25.961510	
21	67	22.022716	22.022716	22.022716	
21					
	68	34.828150	34.828150	34.828150	
21	69	45.044423	45.044423	45.044423	
21	70	38.600518	38.600518	38.600518	
21	71	54.451814	54.451814	54.451814	
21	72	46.141088	46.141088	46.141088	
21	73	54.230987	54.230987	54.230987	
21	74	60.207973	60.207973	60.207973	
21	75	22.561028	22.561028	22.561028	
21	76	38.327536	38.327536	38.327536	
21	77	18.248288	18.248288	18.248288	
21	78	22.472205	22.472205	22.472205	
21	79	53.263496	53.263496	53.263496	
21		64.070274	64.070274	64.070274	
	80				
21	81	32.388269	32.388269	32.388269	
21	82	43.566042	43.566042	43.566042	
21	83	31.764760	31.764760	31.764760	
21	84	16.763055	16.763055	16.763055	
21	85	20.518285	20.518285	20.518285	
21	86	22.472205	22.472205	22.472205	
21	87	22.847319	22.847319	22.847319	
21	88	31.320920	31.320920	31.320920	
21	89	46.615448	46.615448	46.615448	
21	90	26.925824	26.925824	26.925824	
21		32.388269	32.388269	32.388269	
	91				
21	92	27.892651	27.892651	27.892651	
21	93	30.083218	30.083218	30.083218	
21	94	41.593269	41.593269	41.593269	
21	95	36.249138	36.249138	36.249138	
21	96	26.076810	26.076810	26.076810	

21	97	41.109610	41.109610	41.109610	
21	98	38.118237	38.118237	38.118237	
11	99	40.311289	40.311289	40.311289	
1	100	25.612497	25.612497	25.612497	
1	101	53.150729	53.150729	53.150729	
2	1	45.000000	45.000000	45.000000	
2	2	81.394103	81.394103	81.394103	
2	3	72.277244	72.277244	72.277244	
2	4	82.000000	82.000000	82.000000	
2	5	77.620873	77.620873	77.620873	
2	6	82.462113	82.462113	82.462113	
2	7	73.375745	73.375745	73.375745	
2	8	74.330344	74.330344	74.330344	
2	9	79.056942	79.056942	79.056942	
2	10	42.426407	42.426407	42.426407	
2	11	46.097722	46.097722	46.097722	
2	12	47.423623	47.423623	47.423623	
2	13	51.224994	51.224994	51.224994	
2	14	46.097722	46.097722	46.097722	
2	15	53.150729	53.150729	53.150729	
2	16	51.662365	51.662365	51.662365	
2	17	53.150729	53.150729	53.150729	
2	18	56.568542	56.568542	56.568542	
2	19	4.000000	4.000000	4.000000	
2	20	5.385165	5.385165	5.385165	
2	21	10.198039	10.198039	10.198039	
2	23	10.000000	10.000000	10.000000	
2	24	2.000000	2.000000	2.000000	
2	25	10.198039	10.198039	10.198039	
2	26	5.000000	5.000000	5.000000	
2	27	60.415230	60.415230	60.415230	
2					
	28	62.649820	62.649820	62.649820	
2	29	57.697487	57.697487	57.697487	
2	30	58.309519	58.309519	58.309519	
2	31	54.120237	54.120237	54.120237	
2	32	56.603887	56.603887	56.603887	
2	33	53.235327	53.235327	53.235327	
2	34	49.244289	49.244289	49.244289	
2	35	54.083269	54.083269	54.083269	
2	36	84.433406	84.433406	84.433406	
2	37	83.815273	83.815273	83.815273	
2	38	80.956779	80.956779	80.956779	
2	39	78.160092	78.160092	78.160092	
2	40	77.620873	77.620873	77.620873	
2	41	82.462113	82.462113	82.462113	
2	42	72.277244	72.277244	72.277244	
2	43	76.485293	76.485293	76.485293	
2	44	81.394103	81.394103	81.394103	
2	45	78.447435	78.447435	78.447435	
2	46	79.555012	79.555012	79.555012	
2	47	78.160092	78.160092	78.160092	
2	48	55.172457	55.172457	55.172457	
2	49	2.000000	2.000000	2.000000	
2	50	7.280110	7.280110	7.280110	
2	51	43.863424	43.863424	43.863424	
2	52	21.213203	21.213203	21.213203	
2	53	29.154759	29.154759	29.154759	
2	54	49.244289	49.244289	49.244289	
2	55	57.008771	57.008771	57.008771	
_	56	55.901699	55.901699	55.901699	
2		JJ•⊅U⊥677	$JJ \cdot JU \perp U J J$	JJ. JUI 077	
		31 600777	31 622777	31 622777	
.2 .2 .2	57 58	31.622777 22.360680	31.622777 22.360680	31.622777 22.360680	

22	60	33.541020	33.541020	33.541020	
22	61	60.415230	60.415230	60.415230	
22	62	60.207973	60.207973	60.207973	
22	63	39.051248	39.051248	39.051248	
22	64	29.154759	29.154759	29.154759	
22	65	25.495098	25.495098	25.495098	
22	66	35.355339	35.355339	35.355339	
22	67	32.015621	32.015621	32.015621	
22	68	44.102154	44.102154	44.102154	
22	69	55.000000	55.000000	55.000000	
22	70	47.853944	47.853944	47.853944	
22	71	64.195015	64.195015	64.195015	
22	72	55.901699	55.901699	55.901699	
22	73	64.257295	64.257295	64.257295	
22	74	66.850580	66.850580	66.850580	
22	75	25.000000	25.000000	25.000000	
22	76	35.00000	35.000000	35.000000	
22					
	77	21.189620	21.189620	21.189620	
22	78	17.117243	17.117243	17.117243	
22	79	60.207973	60.207973	60.207973	
22	80	71.589105	71.589105	71.589105	
22	81	42.579338	42.579338	42.579338	
		53.758720		53.758720	
22	82		53.758720		
22	83	40.162171	40.162171	40.162171	
22	84	26.172505	26.172505	26.172505	
22	85	29.410882	29.410882	29.410882	
22	86	29.206164	29.206164	29.206164	
22	87	26.870058	26.870058	26.870058	
22	88	33.837849	33.837849	33.837849	
22	89	55.362442	55.362442	55.362442	
22	90	27.000000	27.000000	27.000000	
22	91	42.107007	42.107007	42.107007	
22			38.078866	38.078866	
	92	38.078866			
22	93	40.162171	40.162171	40.162171	
22	94	51.478151	51.478151	51.478151	
22	95	46.238512	46.238512	46.238512	
22	96	35.777088	35.777088	35.777088	
22	97	51.244512	51.244512	51.244512	
22	98	38.275318	38.275318	38.275318	
22	99	49.040799	49.040799	49.040799	
22	100	33.105891	33.105891	33.105891	
22	101	62.649820	62.649820	62.649820	
23	1	35.000000	35.000000	35.000000	
23	2	71.589105	71.589105	71.589105	
23	3	62.641839	62.641839	62.641839	
23	4	72.277244	72.277244	72.277244	
23	5	68.007353	68.007353	68.007353	
23	6	72.801099	72.801099	72.801099	
23	7	63.906181	63.906181	63.906181	
23	8	65.000000	65.000000	65.000000	
23	9	69.641941	69.641941	69.641941	
23	10	36.055513	36.055513	36.055513	
23	11	39.051248	39.051248	39.051248	
23	12	40.607881	40.607881	40.607881	
23	13	43.863424	43.863424	43.863424	
23	14	40.311289	40.311289	40.311289	
23	15	46.097722	46.097722	46.097722	
23	16	45.486262	45.486262	45.486262	
23		47.169906	47.169906	47.169906	
	17				
23	18	50.00000	50.000000	50.000000	
23	19	10.770330	10.770330	10.770330	
23	20	5.385165	5.385165	5.385165	
23	21	2.00000	2.000000	2.000000	
		2.00000	2.00000	2.00000	

23	22	10.000000	10.000000	10.000000	
23	24	10.198039	10.198039	10.198039	
23	25	2.000000	2.000000	2.000000	
23	26	11.180340	11.180340	11.180340	
23	27	57.008771	57.008771	57.008771	
23	28	58.523500	58.523500	58.523500	
23	29	54.120237	54.120237	54.120237	
23	30	53.851648	53.851648	53.851648	
		50.289164			
23	31		50.289164	50.289164	
23	32	52.000000	52.00000	52.000000	
23	33	49.335586	49.335586	49.335586	
23	34	46.097722	46.097722	46.097722	
23	35	49.244289	49.244289	49.244289	
23	36	75.026662	75.026662	75.026662	
23	37	74.330344	74.330344	74.330344	
23	38	71.512237	71.512237	71.512237	
23	39	68.622154	68.622154	68.622154	
23	40	68.007353	68.007353	68.007353	
23	41	72.801099	72.801099	72.801099	
23	42	62.641839	62.641839	62.641839	
23	43	66.708320	66.708320	66.708320	
23	44	71.589105	71.589105	71.589105	
23	45	68.658576	68.658576	68.658576	
23	46	69.921384	69.921384	69.921384	
23	47	68.622154	68.622154	68.622154	
23	48	48.414874	48.414874	48.414874	
23	49	10.198039	10.198039	10.198039	
23	50	3.605551	3.605551	3.605551	
23	51	37.735925	37.735925	37.735925	
23	52	15.811388	15.811388	15.811388	
23	53	21.213203	21.213203	21.213203	
23	54	40.311289	40.311289	40.311289	
23	55	47.434165	47.434165	47.434165	
23	56	46.097722	46.097722	46.097722	
23	57	22.360680	22.360680	22.360680	
23	58	14.142136	14.142136	14.142136	
23	59	25.495098	25.495098	25.495098	
23	60	30.413813	30.413813	30.413813	
23	61	51.478151	51.478151	51.478151	
23	62	50.249378	50.249378	50.249378	
23	63	32.015621	32.015621	32.015621	
23	64	25.495098	25.495098	25.495098	
23	65	15.811388	15.811388	15.811388	
23	66	25.495098	25.495098	25.495098	
23	67	22.022716	22.022716	22.022716	
23	68	36.124784	36.124784	36.124784	
23	69	45.000000	45.000000	45.000000	
23	70	38.078866	38.078866	38.078866	
23	71	54.230987	54.230987	54.230987	
23	72	47.169906	47.169906	47.169906	
23	73	55.036352	55.036352	55.036352	
23	74	58.898217	58.898217	58.898217	
23	75	20.615528	20.615528	20.615528	
23	76	36.400549	36.400549	36.400549	
23	77	20.223748	20.223748	20.223748	
23	78	20.808652	20.808652	20.808652	
23	79	52.009614	52.009614	52.009614	
23	80	62.968246	62.968246	62.968246	
23	81	32.756679	32.756679	32.756679	
23	82	43.931765	43.931765	43.931765	
23	83	30.870698	30.870698	30.870698	
23	84	16.278821	16.278821	16.278821	
23	85	22.022716	22.022716	22.022716	

23						
23 88 29, 410882 29, 410882 29, 410882 29, 100882 23 90 45, 800279 45, 800279 45, 800279 28, 792360 23 91 32, 140317 32, 140317 32, 140317 32, 140317 23 92 28, 460499 28, 460499 28, 460499 30, 670698 23 94 42, 544095 42, 544095 30, 670698 30, 670698 23 95 37, 1211422 37, 121422 37, 121422 37, 121422 23 96 27, 202941 27, 202941 27, 202941 27, 202941 23 96 27, 202941 36, 124784 36, 124784 36, 124784 23 99 36, 124784 36, 124784 39, 560081 39, 560081 39, 560081 23 100 24, 413111 24, 413111 24, 413111 24, 413111 24 2 81, 049238 81, 049238 81, 049238 81, 049388 24 2 81, 069238 81, 049388 81, 049388	23	86	24.351591	24.351591	24.351591	
23 89 45,890279 45,880279 45,880279 45,880279 23 91 32,140317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,1413						
23 90 28,792260 28,792260 28,792260 21,40317 32,140317 32,140317 32,140317 32,140317 32,140317 32,460499 28,460499 28,460499 28,460499 28,460499 28,460499 28,460499 28,460499 30,870698 <td>23</td> <td>88</td> <td>29.410882</td> <td>29.410882</td> <td>29.410882</td> <td></td>	23	88	29.410882	29.410882	29.410882	
23 91 32,140317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,141317 32,1413111 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,141311 32,14131 32,14131 <td>23</td> <td>89</td> <td>45.880279</td> <td>45.880279</td> <td>45.880279</td> <td></td>	23	89	45.880279	45.880279	45.880279	
23 92 28.460499 28.460499 28.460499 30.870698 30.870698 30.870698 30.870698 30.870698 30.870698 30.870698 30.870698 30.870698 42.544095 42.544042 42.5440423 43.544111 42.413111 42.413111 42.413111 42.413111 42.413111 42.413111 42.413111 42.41311 42.41311 42.54312 43.544042 44.61524	23	90	28.792360	28.792360	28.792360	
23 93 30,870698 30,870698 30,870698 22,544095 42,544095 22,544095 22,544095 22,544095 22,544095 22,544095 22,544095 22,544095 22,544095 22,244122 37,121423 37,121423 <td>23</td> <td>91</td> <td>32.140317</td> <td>32.140317</td> <td>32.140317</td> <td></td>	23	91	32.140317	32.140317	32.140317	
23 93 30.870698 20.870698 24.544095 42.544095 42.544095 42.544095 37.121422 37.121423 <td>23</td> <td>92</td> <td>28.460499</td> <td>28.460499</td> <td>28.460499</td> <td></td>	23	92	28.460499	28.460499	28.460499	
23 94 42,544095 42,544095 42,544095 37,121422 37,121422 37,121422 37,121422 31,21422 31,21422 31,21422 32,20941 27,202944 27,202941	23	93	30.870698	30.870698	30.870698	
23 95 37.121422 37.121422 37.121422 37.121422 36.124784 27.202941 27.202941 27.202941 23.98 36.124784 36.04423 45.04423 45.04423 45.04423 45.04423 46.044423 46.044423 46.0444434 46.044444						
23 96 27.202941 27.202941 27.202941 23 97 41.785165 41.785165 41.785165 23 98 36.124784 36.124784 36.124784 23 100 24.413111 24.413111 24.413111 24.413111 23 101 52.773099 52.773099 52.773099 24 1 45.044423 45.044423 45.044423 24 2 81.049368 81.049368 81.049368 24 3 71.805292 71.805292 71.805292 24 4 81.584312 81.584312 81.584312 24 6 82.00000 82.00000 82.00000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 9 78.447435 78.447435 78.447435 24 10 41.036569 41.036569 41.036569 24 11 44.81						
23 97 41.788165 41.785165 41.785165 42.784 36.124784 36.124784 36.124784 36.124784 36.124784 39.560081 39.560000 39.560000 39.560000 39.560000 39.560000 39.560000 39.560000 39.56000 39.560000 39.560000 39.560000 39.560000 39.560000 39.560000 39.560000 39.560000 39.555569						
23 98 36.124784 36.124784 36.124784 39.560081 23 100 24.413111 24.413111 24.413111 24.413111 23 101 52.773099 52.773099 52.773099 24 1 45.044423 45.044423 45.044423 24 2 81.049368 81.049368 81.049368 24 3 71.805292 71.805292 71.805292 24 4 81.584312 81.584312 81.584312 24 5 77.129761 77.129761 77.129761 24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 9 78.447435 78.447435 78.447435 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24						
23 99 39,560081 39,560081 39,560081 23 100 24,413111 24,413111 24,413111 23 101 52,773099 52,773099 52,773099 24 1 45,044423 45,044423 45,044423 24 2 81,049368 81,049368 81,049368 24 3 71,805292 71,805292 71,805292 24 4 81,584312 81,584312 81,584312 24 5 77,129761 77,129761 77,129761 24 6 82,000000 82,000000 82,000000 24 7 72,801099 72,801099 72,801099 24 8 73,681748 73,681748 73,681748 73,681748 24 9 78,447435 78,447435 78,447435 78,447435 24 10 41,036569 41,036569 41,036569 24 11 44,821870 44,821870 44,821870 24						
23 100 24.413111 24.413121 24.21321 24.21321 24.21321 24.21321 24.21321 24.21321 24.21321 24.21321 24.21322 24.2132 24.2132						
23 101 52.773099 52.773099 52.773099 24 1 45.044423 45.044423 45.044423 24 2 81.049368 81.049368 81.049368 24 3 71.805292 71.805292 71.805292 24 4 81.584312 81.584312 81.584312 24 5 77.129761 77.129761 77.129761 24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 9 78.447455 78.447435 78.447435 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.00000 50.00000 50.00000 24 15 51.855569 51.8556						
24 1 45.04423 45.04423 45.04423 24 2 81.049368 81.049368 81.049368 24 3 71.805292 71.805292 71.805292 24 4 81.584312 81.584312 81.584312 24 5 77.129761 77.129761 77.129761 24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.00000 50.00000 50.00000 24 14 44.989206 44.598206 44.598206 24 15 51.855569 51.855569 51.85569 51.855569 51.85569 24 16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 2 81.049368 81.049368 81.049368 24 3 71.805292 71.805292 71.805292 24 4 81.584312 81.584312 81.584312 24 5 77.129761 77.129761 77.129761 24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.00000 50.00000 50.00000 24 14 44.821870 44.598206 44.598206 24 15 51.85569 51.85569 51.85569 24 16 50.209561 50.209561 50.209561 24 16 50.52055 51.662365<						
24 3 71.805292 71.805292 71.805292 24 4 81.584312 81.584312 81.584312 24 5 77.129761 77.129761 77.129761 24 6 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 9 78.407435 78.407435 78.407435 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.00000 50.00000 50.00000 24 14 44.898206 44.598206 44.598206 24 15 51.855569 51.855569 51.85569 24 16 50.209561 50.209561 50.209561 24 16 60.00000 6.00000 6.00000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 4 81.584312 81.584312 77.129761 77.129762 74.60.097722 46.097722 46.097722 44.0977722 44.0977722 44.0977722 44.0977722 44.097772 77.129875 51.855569 51.855569 51.855569 51.855569 51.855			81.049368	81.049368	81.049368	
24 5 77.129761 77.129761 82.000000 24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 9 78.447435 78.447435 78.447435 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.00000 50.00000 50.00000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 20 6.403124 6.403	24	3	71.805292	71.805292	71.805292	
24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.000000 50.000000 50.000000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 23 10.198039 10	24	4	81.584312	81.584312	81.584312	
24 6 82.000000 82.000000 82.000000 24 7 72.801099 72.801099 72.801099 24 8 73.681748 73.681748 73.681748 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.000000 50.000000 50.000000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 23 10.198039 10	24	5	77.129761	77.129761	77.129761	
24 7 72,801099 72,801099 72,801099 24 8 73,681748 73,681748 73,681748 24 9 78,447435 78,447435 78,447435 24 10 41,036569 41,036569 41,036569 24 11 44,821870 44,821870 44,821870 24 12 46,097722 46,097722 46,097722 24 13 50,000000 50,000000 50,000000 24 14 44,598206 44,598206 44,598206 24 15 51,855569 51,855569 51,855569 24 16 50,209561 50,209561 50,209561 24 17 51,662365 51,662365 51,662365 24 18 55,172457 55,172457 55,172457 24 19 6,000000 6,000000 6,000000 24 20 6,403124 6,403124 6,403124 24 21 10,770330 10,77	24		82.000000	82.000000	82.000000	
24 8 73.681748 73.681748 73.681748 24 9 78.447435 78.447435 78.447435 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.00000 50.00000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 23 10.198039 10.198039 10.198						
24 9 78.447435 78.447435 78.447435 24 10 41.036569 41.036569 41.036569 24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.000000 50.000000 50.000000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.00000 6.00000 6.00000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.00000 2.000000 24 23 10.198039 10.198039<						
24 10 41.036569 41.036569 41.036569 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.821870 44.6097722 46.097722 44.598206 44.598206 44.598206 44.598206 44.598206 59.508302 59.508561 50.209562 50.200600 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 11 44.821870 44.821870 44.821870 24 12 46.097722 46.097722 46.097722 24 13 50.000000 50.000000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 10.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.000000 24 26 3.000000 3.000000 3.0000						
24 12 46.097722 46.097722 46.097722 24 13 50.000000 50.000000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.00000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 26 3.00000 3.00000 3.00000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 30 60.033324 60.033324 60.033324 <						
24 13 50.000000 50.000000 50.000000 24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 3.000000 3.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 14 44.598206 44.598206 44.598206 24 15 51.855569 51.855569 51.855569 24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.00000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 30 60.033324 60.033324 60.033324 60.033324 60.033324 60.033324 60.033324 <						
24 15 \$1.855569 \$1.855569 \$1.855569 \$0.209561 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 16 50.209561 50.209561 50.209561 24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519		14	44.598206	44.598206		
24 17 51.662365 51.662365 51.662365 24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.00000 2.00000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.00909 24 32 58.309519 58.309519 58.309519 24 34 51.078371 51.078371		15	51.855569	51.855569	51.855569	
24 18 55.172457 55.172457 55.172457 24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.00000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.078407 55.758407 55.758407 24 35 55.758407 55.758407	24	16	50.209561	50.209561	50.209561	
24 19 6.000000 6.000000 6.000000 24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 33 55.00909 55.00909 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066	24	17	51.662365	51.662365	51.662365	
24 20 6.403124 6.403124 6.403124 24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 33 55.090990 55.009090 55.009090 24 33 55.009090 55.009090 55.758407 24 36 85.094066 85.094066 85.094066 24 36 85.094066 85.094066 84.433406 24 38 81.596569 81.596569 81.596569 <td>24</td> <td>18</td> <td>55.172457</td> <td>55.172457</td> <td>55.172457</td> <td></td>	24	18	55.172457	55.172457	55.172457	
24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 3.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 </td <td>24</td> <td>19</td> <td>6.000000</td> <td>6.000000</td> <td>6.000000</td> <td></td>	24	19	6.000000	6.000000	6.000000	
24 21 10.770330 10.770330 10.770330 24 22 2.000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 3.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 </td <td>24</td> <td>20</td> <td>6.403124</td> <td>6.403124</td> <td>6.403124</td> <td></td>	24	20	6.403124	6.403124	6.403124	
24 22 2.000000 2.000000 2.000000 24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 10.00000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 </td <td></td> <td></td> <td></td> <td>10.770330</td> <td>10.770330</td> <td></td>				10.770330	10.770330	
24 23 10.198039 10.198039 10.198039 24 25 10.000000 10.000000 3.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.16009						
24 25 10.000000 10.000000 3.000000 24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.16009						
24 26 3.000000 3.000000 3.000000 24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.9698						
24 27 62.241465 62.241465 62.241465 24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.8						
24 28 64.412732 64.412732 64.412732 24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.8160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.						
24 29 59.506302 59.506302 59.506302 24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.7						
24 30 60.033324 60.033324 60.033324 24 31 55.901699 55.901699 24 32 58.309519 58.309519 24 33 55.009090 55.009090 24 34 51.078371 51.078371 24 35 55.758407 55.758407 24 36 85.094066 85.094066 24 37 84.433406 84.433406 24 38 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
24 31 55.901699 55.901699 55.901699 24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.0						
24 32 58.309519 58.309519 58.309519 24 33 55.009090 55.009090 55.009090 24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.6						
24 33 55.009090 55.009090 24 34 51.078371 51.078371 24 35 55.758407 55.758407 24 36 85.094066 85.094066 24 37 84.433406 84.433406 24 38 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 34 51.078371 51.078371 51.078371 24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873		32	58.309519		58.309519	
24 35 55.758407 55.758407 55.758407 24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873	24	33	55.009090	55.009090	55.009090	
24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873	24	34	51.078371	51.078371	51.078371	
24 36 85.094066 85.094066 85.094066 24 37 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873	24	35	55.758407	55.758407	55.758407	
24 37 84.433406 84.433406 84.433406 84.433406 24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873			85.094066	85.094066	85.094066	
24 38 81.596569 81.596569 81.596569 24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 39 78.746428 78.746428 78.746428 24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 40 78.160092 78.160092 78.160092 24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 41 82.969874 82.969874 82.969874 24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 42 72.801099 72.801099 72.801099 24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 43 76.902536 76.902536 76.902536 24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 44 81.786307 81.786307 81.786307 24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 45 78.854296 78.854296 78.854296 24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 46 79.075913 79.075913 79.075913 24 47 77.620873 77.620873 77.620873						
24 47 77.620873 77.620873 77.620873						
24 48 53.814496 53.814496 53.814496		47				
	24	48	53.814496	53.814496	53.814496	

0.4	1.0	4 00000	4 000000	4 000000	
24	49	4.000000	4.000000	4.000000	
24	50	8.062258	8.062258	8.062258	
24	51	45.343136	45.343136	45.343136	
24	52	22.671568	22.671568	22.671568	
24	53	28.178006	28.178006	28.178006	
24	54	48.466483	48.466483	48.466483	
24	55	57.567352	57.567352	57.567352	
24	56	55.578773	55.578773	55.578773	
24	57	32.310989	32.310989	32.310989	
24	58	21.540659	21.540659	21.540659	
24	59	23.537205	23.537205	23.537205	
24	60	31.764760	31.764760	31.764760	
24	61	59.615434	59.615434	59.615434	
24	62	60.406953	60.406953	60.406953	
24	63	40.360872	40.360872	40.360872	
24	64	30.886890	30.886890	30.886890	
24	65	25.961510	25.961510	25.961510	
24	66	35.128336	35.128336	35.128336	
24	67	32.140317	32.140317	32.140317	
24	68	45.221676	45.221676	45.221676	
24	69	55.036352	55.036352	55.036352	
24	70	47.518417	47.518417	47.518417	
24	71	64.070274	64.070274	64.070274	
24	72	56.824291	56.824291	56.824291	
24	73	65.000000	65.000000	65.000000	
24	74	65.734314	65.734314	65.734314	
24	75	23.430749	23.430749	23.430749	
24	76	33.000000	33.000000	33.000000	
24	77	23.086793	23.086793	23.086793	
24	78	15.132746	15.132746	15.132746	
24	79	59.169249	59.169249	59.169249	
24	80	70.661163	70.661163	70.661163	
24	81	42.953463	42.953463	42.953463	
24	82	54.129474	54.129474	54.129474	
24	83	39.560081	39.560081	39.560081	
24	84	26.019224	26.019224	26.019224	
24	85	30.610456	30.610456	30.610456	
24	86	30.805844	30.805844	30.805844	
24	87	25.495098	25.495098	25.495098	
24	88	32.202484	32.202484	32.202484	
24	89	54.817880	54.817880	54.817880	
24	90	29.000000	29.000000	29.000000	
24	91	42.011903	42.011903	42.011903	
24	92	38.600518	38.600518	38.600518	
24	93	40.853396	40.853396	40.853396	
24	94	52.325902	52.325902	52.325902	
24	95	47.010637	47.010637	47.010637	
24	96	36.715120	36.715120	36.715120	
24	97	51.865210	51.865210	51.865210	
24	98	36.400549	36.400549	36.400549	
24	99	48.507731	48.507731	48.507731	
24	100	32.310989	32.310989	32.310989	
24	101	62.393910	62.393910	62.393910	
25	1	35.057096	35.057096	35.057096	
25	2	71.196910	71.196910	71.196910	
25	3	62.096699	62.096699	62.096699	
25	4	71.805292	71.805292	71.805292	
25	5	67.446275	67.446275	67.446275	
25	6	72.277244	72.277244	72.277244	
25	7	63.245553	63.245553	63.245553	
25	8	64.257295	64.257295	64.257295	
25	9	68.949257	68.949257	68.949257	
25	10	34.409301	34.409301	34.409301	

25	11	37.536649	37.536649	37.536649	
25	12	39.051248	39.051248	39.051248	
25	13	42.426407	42.426407	42.426407	
25	14	38.587563	38.587563	38.587563	
25	15	44.598206	44.598206	44.598206	
25	16	43.829214	43.829214	43.829214	
25	17	45.486262	45.486262	45.486262	
25	18	48.414874	48.414874	48.414874	
25					
25	19	11.661904	11.661904 6.403124	11.661904 6.403124	
	20	6.403124			
25	21	4.000000	4.000000	4.000000	
25	22	10.198039	10.198039	10.198039	
25	23	2.000000	2.000000	2.000000	
25	24	10.000000	10.000000	10.000000	
25	26	10.440307	10.440307	10.440307	
25	27	58.940648	58.940648	58.940648	
25	28	60.406953	60.406953	60.406953	
25	29	56.044625	56.044625	56.044625	
25	30	55.713553	55.713553	55.713553	
25	31	52.201533	52.201533	52.201533	
25	32	53.851648	53.851648	53.851648	
25	33	51.244512	51.244512	51.244512	
25	34	48.052055	48.052055	48.052055	
25	35	51.078371	51.078371	51.078371	
25	36	75.769387	75.769387	75.769387	
25	37	75.026662	75.026662	75.026662	
25	38	72.235725	72.235725	72.235725	
25	39	69.289249	69.289249	69.289249	
25	40	68.622154	68.622154	68.622154	
25	41	73.375745	73.375745	73.375745	
25	42	63.245553	63.245553	63.245553	
25	43	67.186308	67.186308	67.186308	
25	44	72.034714	72.034714	72.034714	
25	45	69.123079	69.123079	69.123079	
25	46	69.375788	69.375788	69.375788	
25	47	68.007353	68.007353	68.007353	
25	48	46.861498	46.861498	46.861498	
25	49	10.770330	10.770330	10.770330	
25	50	5.00000	5.000000	5.00000	
25	51	39.446166	39.446166	39.446166	
25	52	17.720045	17.720045	17.720045	
25	53	19.849433	19.849433	19.849433	
25	54	39.357337	39.357337	39.357337	
25	55	48.104054	48.104054	48.104054	
25	56	45.705580	45.705580	45.705580	
25	57	23.323808	23.323808	23.323808	
25	58	12.806248	12.806248	12.806248	
25	59	23.537205	23.537205	23.537205	
25		28.442925	28.442925	28.442925	
	60				
25	61	50.537115	50.537115	50.537115	
25	62	50.487622	50.487622	50.487622	
25	63	33.600595	33.600595	33.600595	
25	64	27.459060	27.459060	27.459060	
25	65	16.552945	16.552945	16.552945	
25	66	25.179357	25.179357	25.179357	
25	67	22.203603	22.203603	22.203603	
25	68	37.483330	37.483330	37.483330	
25	69	45.044423	45.044423	45.044423	
25	70	37.656341	37.656341	37.656341	
25	71	54.083269	54.083269	54.083269	
25	72	48.259714	48.259714	48.259714	
25	73	55.901699	55.901699	55.901699	
25	74	57.628118	57.628118	57.628118	
	/ 1	07.020110	J, • 020110	0,,020110	

25	75	18.681542	18.681542	18.681542	
25	76	34.481879	34.481879	34.481879	
25	77	22.203603	22.203603	22.203603	
25	78	19.209373	19.209373	19.209373	
25	79	50.803543	50.803543	50.803543	
25	80	61.911227	61.911227	61.911227	
25	81	33.241540	33.241540	33.241540	
25	82	44.384682	44.384682	44.384682	
25	83	30.083218	30.083218	30.083218	
25	84	16.031220	16.031220	16.031220	
25	85	23.600847	23.600847	23.600847	
25	86	26.248809	26.248809	26.248809	
25	87	19.235384	19.235384	19.235384	
25	88	27.513633	27.513633	27.513633	
25	89	45.221676	45.221676	45.221676	
25	90	30.675723	30.675723	30.675723	
25	91	32.015621	32.015621	32.015621	
25	92	29.154759	29.154759	29.154759	
25	93	31.764760	31.764760	31.764760	
25	94	43.566042	43.566042	43.566042	
25	95	38.078866	38.078866	38.078866	
25	96	28.425341	28.425341	28.425341	
25	97	42.544095	42.544095	42.544095	
25	98	34.132096	34.132096	34.132096	
25	99	38.897301	38.897301	38.897301	
25	100	23.323808	23.323808	23.323808	
25	101	52.469038	52.469038	52.469038	
26	1	45.276926	45.276926	45.276926	
26	2	80.622577	80.622577	80.622577	
26	3	71.196910	71.196910	71.196910	
26	4	81.049368	81.049368	81.049368	
26	5	76.485293	76.485293	76.485293	
26	6	81.394103	81.394103	81.394103	
26	7	72.034714	72.034714	72.034714	
26	8	72.801099	72.801099	72.801099	
26	9	77.620873	77.620873	77.620873	
26	10	39.051248	39.051248	39.051248	
26	11	43.011626	43.011626	43.011626	
26	12	44.204072	44.204072	44.204072	
26	13	48.259714	48.259714	48.259714	
26	14	42.426407	42.426407	42.426407	
26	15	50.000000	50.000000	50.000000	
26	16	48.104054	48.104054	48.104054	
26	17	49.497475	49.497475	49.497475	
26	18	53.150729	53.150729	53.150729	
26	19	9.000000	9.000000	9.00000	
26	20	8.602325	8.602325	8.602325	
26	21	12.206556	12.206556	12.206556	
26	22	5.000000	5.000000	5.000000	
26	23	11.180340	11.180340	11.180340	
26	24	3.000000	3.000000	3.000000	
26	25	10.440307	10.440307	10.440307	
26	27	65.000000	65.000000	65.000000	
26	28	67.082039	67.082039	67.082039	
26	29	62.241465	62.241465	62.241465	
26	30	62.649820	62.649820	62.649820	
26	31	58.600341	58.600341	58.600341	
26	32	60.901560	60.901560	60.901560	
26	33	57.697487	57.697487	57.697487	
26	34	53.851648	53.851648	53.851648	
26	35	58.309519	58.309519	58.309519	
26	36	86.162637	86.162637	86.162637	
26	37	85.440037	85.440037	85.440037	
20	J /	00.110007	00.110007	55.11005/	

26	38	82.637764	82.637764	82.637764	
26	39	79.711982	79.711982	79.711982	
26	40	79.056942	79.056942	79.056942	
26	41	83.815273	83.815273	83.815273	
26	42	73.681748	73.681748	73.681748	
26	43	77.620873	77.620873	77.620873	
26	44	82.462113	82.462113	82.462113	
26		79.555012	79.555012	79.555012	
	45				
26	46	78.447435	78.447435	78.447435	
26	47	76.902536	76.902536	76.902536	
26	48	51.855569	51.855569	51.855569	
26	49	7.000000	7.000000	7.000000	
26	50	9.899495	9.899495	9.899495	
26	51	47.634021	47.634021	47.634021	
26	52	25.000000	25.000000	25.000000	
26	53	26.925824	26.925824	26.925824	
26	54	47.434165	47.434165	47.434165	
26	55	58.523500	58.523500	58.523500	
26	56	55.226805	55.226805	55.226805	
26	57	33.541020	33.541020	33.541020	
26	58	20.615528	20.615528	20.615528	
26	59	20.615528	20.615528	20.615528	
26	60	29.154759	29.154759	29.154759	
26	61	58.523500	58.523500	58.523500	
26	62	60.827625	60.827625	60.827625	
26	63	42.426407	42.426407	42.426407	
26	64	33.541020	33.541020	33.541020	
26	65	26.925824	26.925824	26.925824	
26	66	35.000000	35.000000	35.000000	
26	67	32.557641	32.557641	32.557641	
26	68	47.010637	47.010637	47.010637	
26	69	55.226805	55.226805	55.226805	
26	70	47.169906	47.169906	47.169906	
26	71	64.000000	64.000000	64.000000	
26	72	58.309519	58.309519	58.309519	
26	73	66.211781	66.211781	66.211781	
26	74	64.140471	64.140471	64.140471	
26	75	21.213203	21.213203	21.213203	
26	76	30.000000	30.000000	30.000000	
26	77	25.961510	25.961510	25.961510	
26	78	12.165525	12.165525	12.165525	
26	79	57.706152	57.706152	57.706152	
26	80	69.354164	69.354164	69.354164	
26	81	43.680659	43.680659	43.680659	
26	82	54.817880	54.817880	54.817880	
26	83	38.832976	38.832976	38.832976	
26	84	26.076810	26.076810	26.076810	
26	85	32.557641	32.557641	32.557641	
26	86	33.286634	33.286634	33.286634	
		23.600847	23.600847		
26	87			23.600847	
26	88	29.832868	29.832868	29.832868	
26	89	54.129474	54.129474	54.129474	
26	90	32.000000	32.000000	32.000000	
26	91	42.047592	42.047592	42.047592	
26	92	39.560081	39.560081	39.560081	
26	93	42.047592	42.047592	42.047592	
26	94	53.712196	53.712196	53.712196	
26	95	48.301139	48.301139	48.301139	
26	96	38.275318	38.275318	38.275318	
26	97	52.924474	52.924474	52.924474	
26	98	33.615473	33.615473	33.615473	
26	99	47.853944	47.853944	47.853944	
26	100	31.320920	31.320920	31.320920	

2.6	1.01	62 12000	60 10000	62 12000	
26 27	101 1	62.128898 58.523500	62.128898 58.523500	62.128898 58.523500	
27	2	89.022469	89.022469	89.022469	
27	3	85.755466	85.755466	85.755466	
27	4	91.400219	91.400219	91.400219	
27	5	90.138782	90.138782	90.138782	
27	6	93.005376	93.005376	93.005376	
27	7	89.185201	89.185201	89.185201	
27	8	91.787799	91.787799	91.787799	
27	9	94.339811	94.339811	94.339811	
27	10	85.146932	85.146932	85.146932	
27	11	85.586214	85.586214	85.586214	
27	12	87.572827	87.572827	87.572827	
27	13	88.283634	88.283634	88.283634	
27	14	90.138782	90.138782	90.138782	
27	15	91.241438	91.241438	91.241438	
27	16	93.536089	93.536089	93.536089	
27	17	95.524866	95.524866	95.524866	
27	18	96.176920	96.176920	96.176920	
27	19	56.797887	56.797887	56.797887	
27	20	56.648036	56.648036	56.648036	
27	21	55.081757	55.081757	55.081757	
27	22	60.415230	60.415230	60.415230	
27	23	57.008771	57.008771	57.008771	
27	24	62.241465	62.241465	62.241465	
27	25	58.940648	58.940648	58.940648	
27	26	65.000000	65.000000	65.000000	
27	28	5.000000	5.000000	5.000000	
27	29	3.000000	3.000000	3.000000	
27	30	7.071068	7.071068	7.071068	
27	31	7.00000	7.000000	7.000000	
27	32	8.602325	8.602325	8.602325	
27	33	8.000000	8.000000	8.000000	
27	34	11.180340	11.180340	11.180340	
27	35	11.180340	11.180340	11.180340	
27	36	61.717096	61.717096	61.717096	
27	37	62.649820	62.649820	62.649820	
27	38	60.033324	60.033324	60.033324	
27	39	59.908263	59.908263	59.908263	
27	40	61.032778	61.032778	61.032778	
27	41	65.192024	65.192024	65.192024	
27	42	58.258047	58.258047	58.258047	
27	43	64.031242	64.031242	64.031242	
27 27	44 45	68.007353 65.604878	68.007353 65.604878	68.007353 65.604878	
27	45	91.263355	91.263355	91.263355	
27	47	91.263355	91.263355	91.263355	
27	48	94.201911	94.201911	94.201911	
27	49	58.600341	58.600341	58.600341	
27	50	55.973208	55.973208	55.973208	
27	51	23.537205	23.537205	23.537205	
27	52	41.231056	41.231056	41.231056	
27	53	70.000000	70.000000	70.000000	
27	54	77.620873	77.620873	77.620873	
27	55	50.000000	50.000000	50.000000	
27	56	71.589105	71.589105	71.589105	
27	57	45.276926	45.276926	45.276926	
27	58	65.192024	65.192024	65.192024	
27	59	82.462113	82.462113	82.462113	
27	60	85.586214	85.586214	85.586214	
27	61	85.440037	85.440037	85.440037	
27	62	61.032778	61.032778	61.032778	
27	63	30.413813	30.413813	30.413813	

27	64	31.622777	31.622777	31.622777	
27	65	50.000000	50.000000	50.00000	
27	66	60.827625	60.827625	60.827625	
27	67	54.451814	54.451814	54.451814	
27	68	33.241540	33.241540	33.241540	
27	69	62.649820	62.649820	62.649820	
27	70	67.675697	67.675697	67.675697	
27	71	71.561163	71.561163	71.561163	
27	72	39.051248	39.051248	39.051248	
27	73	47.423623	47.423623	47.423623	
27	74	97.718985	97.718985	97.718985	
27	75	75.663730	75.663730	75.663730	
27	76	93.407708	93.407708	93.407708	
27	77	39.357337	39.357337	39.357337	
27	78	76.896034	76.896034	76.896034	
27	79	90.801982	90.801982	90.801982	
27	80	96.772930	96.772930	96.772930	
27	81	50.921508	50.772530	50.921508	
27	82	53.851648	53.851648	53.851648	
27	83	69.231496	69.231496	69.231496	
27	84	58.008620	58.008620	58.008620	
27	85	38.013156	38.013156	38.013156	
27	86	32.756679	32.756679	32.756679	
27	87	74.242845	74.242845	74.242845	
27	88	83.216585	83.216585	83.216585	
27	89	76.321688	76.321688	76.321688	
27	90	37.536649	37.536649	37.536649	
27	91	60.440053	60.440053	60.440053	
27	92	47.539457	47.539457	47.539457	
27	93	43.965896	43.965896	43.965896	
27	94	40.496913	40.496913	40.496913	
27	95	42.047592	42.047592	42.047592	
27	96	39.623226	39.623226	39.623226	
27	97	46.647615	46.647615	46.647615	
27			91.787799		
	98	91.787799		91.787799	
27	99	72.422372	72.422372	72.422372	
27	100	69.180922	69.180922	69.180922	
27	101	73.925638	73.925638	73.925638	
28	1	57.008771	57.008771	57.008771	
28	2	86.023253	86.023253	86.023253	
28	3	83.240615	83.240615	83.240615	
28	4	88.481637	88.481637	88.481637	
28	5	87.464278	87.464278	87.464278	
28	6	90.138782	90.138782	90.138782	
28	7	86.769810	86.769810	86.769810	
28	8	89.442719	89.442719	89.442719	
28	9	91.787799	91.787799	91.787799	
28	10	85.000000	85.000000	85.00000	
28	11	85.146932	85.146932	85.146932	
28	12	87.143560	87.143560	87.143560	
28	13	87.572827	87.143360	87.572827	
		90.00000	90.000000	90.000000	
28	14				
28	15	90.553851	90.553851	90.553851	
28	16	93.134312	93.134312	93.134312	
28	17	95.131488	95.131488	95.131488	
28	18	95.524866	95.524866	95.524866	
28	19	59.169249	59.169249	59.169249	
28	20	58.600341	58.600341	58.600341	
28	21	56.648036	56.648036	56.648036	
28	22	62.649820	62.649820	62.649820	
28	23	58.523500	58.523500	58.523500	
28	24	64.412732	64.412732	64.412732	
28	25	60.406953	60.406953	60.406953	
Î.					

28	26	67.082039	67.082039	67.082039	
28	27	5.000000	5.00000	5.000000	
28	29	5.830952	5.830952	5.830952	
28	30	5.000000	5.000000	5.00000	
28	31	8.602325	8.602325	8.602325	
28	32	7.000000	7.000000	7.000000	
28	33	9.433981	9.433981	9.433981	
28	34	14.142136	14.142136	14.142136	
28	35	10.000000	10.000000	10.00000	
28	36	57.306195	57.306195	57.306195	
28	37	58.309519	58.309519	58.309519	
28	38	55.758407	55.758407	55.758407	
28	39	55.803226	55.803226	55.803226	
28	40	57.008771	57.008771	57.008771	
28	41	61.032778	61.032778	61.032778	
28	42	54.488531	54.488531	54.488531	
28	43	60.207973	60.207973	60.207973	
28	44	64.031242	64.031242	64.031242	
28	45	61.717096	61.717096	61.717096	
28	46	88.509886	88.509886	88.509886	
28	47	89.185201	89.185201	89.185201	
28	48	93.536089	93.536089	93.536089	
28	49	60.901560	60.901560	60.901560	
28	50	57.775427	57.775427	57.775427	
28	51	23.000000	23.000000	23.000000	
28	52	42.720019	42.720019	42.720019	
28	53	70.178344	70.178344	70.178344	
28	54	76.485293	76.485293	76.485293	
28	55	47.169906	47.169906	47.169906	
28	56	69.641941	69.641941	69.641941	
28					
	57	45.000000	45.000000	45.000000	
28	58	65.764732	65.764732	65.764732	
28	59	83.815273	83.815273	83.815273	
28	60	86.313383	86.313383	86.313383	
28	61	83.815273	83.815273	83.815273	
28	62	58.309519	58.309519	58.309519	
28	63	30.000000	30.000000	30.00000	
28	64	33.541020	33.541020	33.541020	
28	65	50.249378	50.249378	50.249378	
28	66	60.207973	60.207973	60.207973	
28	67	54.037024	54.037024	54.037024	
28	68	31.780497	31.780497	31.780497	
28	69	60.415230	60.415230	60.415230	
28	70	66.219333	66.219333	66.219333	
28	71	68.963759	68.963759	68.963759	
28	72	36.055513	36.055513	36.055513	
28	73	43.863424	43.863424	43.863424	
28	74	96.301610	96.301610	96.301610	
28	75	76.485293	76.485293	76.485293	
28	76	94.868330	94.868330	94.868330	
28	76	41.880783	41.880783	41.880783	
28	78	78.790862	78.790862	78.790862	
28	79	89.498603	89.498603	89.498603	
28	80	94.921020	94.921020	94.921020	
28	81	49.477268	49.477268	49.477268	
28	82	51.429563	51.429563	51.429563	
28	83	68.468971	68.468971	68.468971	
28	84	58.137767	58.137767	58.137767	
28	85	38.470768	38.470768	38.470768	
28	86	34.176015	34.176015	34.176015	
28	87	74.813100	74.813100	74.813100	
28	88	83.725743	83.725743	83.725743	
28	89	74.632433	74.632433	74.632433	

28 90 41.036569 41.036569 41.036569 28 91 59.228372 59.228372 59.228372 59.228372 28 92 46.529560 46.529560 46.529560 46.529560 28 94 38.013156 38.013156 38.013156 38.013156 28 95 49.162171 40.162171 40.162171 40.162171 28 96 39.051248 39.051248 39.051248 39.051248 28 97 44.283180 44.283180 44.283180 44.283180 28 99 71.063352 71.063352 71.063352 71.063352 28 100 69.000000 69.000000 69.000000 69.000000 69.000000 29 1 55.713553 55.713553 55.713553 55.713553 25.71294 29 1 89.121688 39.221688 89.221689 89.221689 29 1 89.121688 89.121688 89.121689 89.121688						
28 92 46,529560 46,529560 46,529560 28 94 38,033156 38,033156 38,033156 38,016124 39,051248 39,051248 39,051248 39,051248 39,051248 44,283180 44,2831	28	90	41.036569	41.036569	41.036569	
28 93 42,755117 42,755117 42,755117 42,755117 40,162171 <td>28</td> <td>91</td> <td>59.228372</td> <td>59.228372</td> <td>59.228372</td> <td></td>	28	91	59.228372	59.228372	59.228372	
28 94 38,013156 38,013156 38,013156 39,051248 32,574294 92,574294 <td>28</td> <td>92</td> <td>46.529560</td> <td>46.529560</td> <td>46.529560</td> <td></td>	28	92	46.529560	46.529560	46.529560	
28 94 38,013156 38,013156 38,013156 39,051248 32,574294 92,574294 <td>28</td> <td>93</td> <td>42.755117</td> <td>42.755117</td> <td>42.755117</td> <td></td>	28	93	42.755117	42.755117	42.755117	
28 95 40.162171 40.162171 40.162171 40.162171 28 97 44.283180 44.283180 44.283180 44.283180 92.574294 92.574294 92.574294 28 99 71.063352 71.063352 71.063352 71.063352 28 101 71.554175 71.554175 71.554175 71.554175 29 1 55.713553 55.713553 55.713553 55.713553 29 2 86.683332 86.683332 86.683332 86.683332 29 3 33.216585 83.216585 83.216585 83.22469 89.022469 29 5 87.659428 87.658428 87.658428 87.658428 87.658428 87.658428 29 6 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.603532 30.6		94	38.013156	38.013156	38.013156	
28 96 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051248 39.051249 32.574294		95	40.162171	40.162171	40.162171	
28 97 44.283180 44.283180 44.283180 28 98 92.574294 92.574294 92.574294 28 100 69.000000 69.000000 69.000000 28 101 71.554175 71.554175 71.554175 29 1 55.713553 55.713553 55.713553 29 2 86.683332 86.683332 86.683332 29 3 83.216585 83.216585 83.216585 29 4 89.022469 89.022469 89.022469 29 5 87.658428 87.658428 87.658428 29 6 96.03532 90.603532 90.603532 29 7 86.608314 86.608314 86.608314 29 8 89.185201 89.185201 89.185201 29 9 91.809586 91.809586 91.809586 29 10 82.152298 82.152298 82.152298 29 11 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 29 13 85.328776 85.328776 85.328776 29 16 90.553851 90.553851<		96	39.051248	39.051248	39.051248	
28 98 92.574294 92.574294 92.574294 28 99 71.063352 71.063352 71.063352 28 100 69.00000 69.00000 69.00000 28 101 71.554175 71.554175 71.554175 29 1 55.713553 55.713553 55.713553 29 2 86.683332 86.683332 86.683332 29 4 89.022469 89.022469 89.022469 29 5 87.68428 87.658428 87.658428 29 6 90.603532 90.603532 90.603532 29 7 86.608314 86.608314 86.608314 29 9 91.809586 91.809586 91.809586 29 10 82.152298 82.152298 82.152298 29 11 82.607506 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 84.593144 29 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
28 99 71.063352 71.063352 71.063352 89.000000 28 101 71.554175 71.554175 71.554175 71.554175 29 1 55.713553 55.713553 55.713553 55.713553 29 2 86.683332 86.683332 86.683332 86.683332 29 4 89.022469 89.022469 89.022469 89.022469 29 5 87.658428 87.658428 87.658428 87.658428 29 6 90.603532 90.603532 90.603532 29 7 86.608314 86.608314 86.608314 86.608314 29 9 91.809586 91.809586 91.809586 29 10 82.152298 82.152298 82.152298 29 11 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 84.593144 29 15 88.283634 88.283634 88.283634 88.283634 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
28 100 69.00000 69.00000 28 101 71.554175 71.554175 71.554175 29 1 55.713553 55.713553 55.713553 29 3 83.216585 83.216585 83.216585 29 4 89.022469 89.022469 89.022469 29 5 87.658428 87.658428 87.658428 29 6 90.603532 90.603532 90.603532 29 7 86.608314 86.608314 86.608314 86.608314 29 9 91.809586 91.809586 91.809586 29 10 82.152298 82.152298 82.152298 29 11 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 84.593144 29 13 85.328776 85.328776 85.328776 85.328776 29 14 87.143560 87.143560 87.143560 87.143560						
28 101 71,554175 71,554175 71,554175 29 1 55,713553 55,713553 55,713553 383,216585 90,603532 90,60362 90,6036						
29 1 55,713553 55,713553 55,713553 286,683332 86,683332 86,683332 83,216585 83,2152298 82,152298 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 2 86.683332 86.683332 86.683332 86.683332 87.65845 83.216585 83.216585 83.216585 83.216585 89.022469 89.022469 89.022469 89.022469 89.022469 89.022469 89.022469 89.022469 89.063532 90.600576 80.70364 90.70364 90.700074 90.700074						
29 3 83,216585 83,216585 83,216585 83,022469 89,022469 80,022469 80,022469 80,022469 80,022469 80,022469 80,022469 80,022469 80,020460 80,022469 80,02260 80,02260 80,02260 80,02260 80,02260 80,02260 80,02260 80,02260 80,02260 80,02260 80,02260 80,02360 80,02360 80,02360 80,02360 80,02360 80,02360 80,						
29 4 89.022469 89.022469 89.022469 29 5 87.658428 87.658428 87.658428 29 6 90.603532 90.603532 90.603532 29 7 86.608314 86.608314 86.608314 29 8 89.185201 89.185201 89.185201 29 10 82.152298 82.152298 82.152298 29 11 82.607506 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 84.593144 29 14 87.143560 87.143560 87.143560 29 15 88.283634 88.283634 88.283634 29 16 90.553851 90.553851 90.553851 29 17 92.541882 92.541882 92.541882 29 19 54.120237 54.120237 54.120237 29 21 52.201533 52.201533 52.201533 29						
29 5 87,658428 87,658428 90,603532 80,20566 80,607506 82,607506						
29 6 90.603532 90.603532 90.603532 29 7 86.608314 86.608314 86.608314 29 8 89.185201 89.185201 89.185201 29 9 91.809586 91.809586 91.809586 29 10 82.152298 82.152298 82.152298 29 11 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 29 13 85.328776 85.328776 85.328776 29 14 87.143560 87.143560 87.143560 29 15 88.223634 88.283634 88.283634 88.283634 29 16 90.553851 90.553851 90.553851 90.553851 29 16 90.553851 90.553851 90.553851 90.553851 29 18 93.214806 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.12						
29 7 86,608314 86,608314 86,608314 89,185201 89,185201 89,185201 89,185201 89,185201 89,185201 89,185201 89,185201 89,185201 89,185201 82,1852298 82,181248 84,283634 88,283634 88,283634 88,283634 88,283634 88,283634 88,283634 88,283634 88,283634 88,283634 89,214806 93,214806 93,214806 93,214806 93,214806 <						
29 8 89.185201 89.185201 89.185201 9.1.809586 91.809586 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 9 91.809586 91.809586 91.809586 82.152298 29 10 82.152298 82.152298 82.607506 29 12 84.593144 84.593144 84.593144 84.593144 29 13 85.328776 85.328776 85.328776 29 14 87.143560 87.143560 87.143560 29 15 88.283634 88.283634 88.283634 29 16 90.553851 90.553851 90.553851 29 17 92.541882 92.541882 92.541882 29 18 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 52.201533 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59						
29 10 82.152298 82.152298 82.607506 82.6075076 82.701506 82.6075076<						
29 11 82.607506 82.607506 82.607506 29 12 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 88.283634 88.283634 88.283634 88.283634 88.283634 88.283634 99.553851 90.5538						
29 12 84.593144 84.593144 84.593144 84.593144 84.593144 84.593144 85.328776 85.328777 85.2201533 85.2201533 85.251632<						
29 13 85.328776 85.328776 85.328776 87.143560 29 14 87.143560 87.143560 87.143560 87.143560 29 15 88.283634 88.283634 88.283634 82.23634 29 16 90.553851 90.553851 90.553851 90.553851 29 17 92.541882 92.541882 92.541882 29 18 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 56.044625 29 26 62.241465 62						
29 14 87.143560 87.143560 87.143560 29 15 88.283634 88.283634 88.283634 29 16 90.553851 90.553851 90.553851 29 17 92.541882 92.541882 92.541882 29 18 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 56.044625 29 27 3.000000 3.000000 3.000000 29 28 5.830552 5.830552 5.830565 29 31 4.000000 4.000000 4.000000 29 34 8.602325						
29 15 88.283634 88.283634 88.283634 29 16 90.553851 90.553851 90.553851 29 18 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 24 59.506302 59.506302 59.506302 29 26 62.241465 62.241465 62.241465 29 26 62.241465 62.241465 62.241465 29 27 3.00000 3.00000 3.00000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.3851						
29 16 90.553851 90.553851 90.553851 29 17 92.541882 92.541882 92.541882 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 31 4.000000 4.000000 4.000000 29 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
29 17 92.541882 92.541882 92.541882 29 18 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
29 18 93.214806 93.214806 93.214806 29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 31 4.000000 4.000000 4.000000 29 31 4.000000 4.000000 4.000000 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.						
29 19 54.120237 54.120237 54.120237 29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.835165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.000000 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230						
29 20 53.851648 53.851648 53.851648 29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.835165 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.00000 4.00000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.41523						
29 21 52.201533 52.201533 52.201533 29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 29 28 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.00000 4.00000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 38 58.591808 58.591808 58.591808 29						
29 22 57.697487 57.697487 57.697487 29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591						
29 23 54.120237 54.120237 54.120237 29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.399519 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 24 59.506302 59.506302 59.506302 29 25 56.044625 56.044625 56.044625 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.000000 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.						
29 25 56.044625 56.044625 62.241465 29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 <						
29 26 62.241465 62.241465 62.241465 29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400						
29 27 3.000000 3.000000 3.000000 29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.00000 5.00000 5.00000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201						
29 28 5.830952 5.830952 5.830952 29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.000000 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 46 88.814413 88.814413						
29 30 5.385165 5.385165 5.385165 29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.000000 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 <						
29 31 4.000000 4.000000 4.000000 29 32 6.403124 6.403124 6.403124 29 33 5.000000 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454						
29 32 6.403124 6.403124 6.403124 29 33 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454						
29 33 5.000000 5.000000 29 34 8.602325 8.602325 8.602325 29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 49 55.901699 55.901699 55.901699 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
29 34 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.1413						
29 35 8.602325 8.602325 8.602325 29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.1413						
29 36 60.415230 60.415230 60.415230 29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.6						
29 37 61.269895 61.269895 61.269895 29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 38 58.591808 58.591808 58.591808 29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 39 58.309519 58.309519 58.309519 29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 40 59.363288 59.363288 59.363288 29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 41 63.631753 63.631753 63.631753 29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 29 46 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 42 56.400355 56.400355 56.400355 29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 43 62.201286 62.201286 62.201286 29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 44 66.287254 66.287254 66.287254 29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 45 63.820060 63.820060 63.820060 29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 46 88.814413 88.814413 88.814413 29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 47 89.308454 89.308454 89.308454 29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 48 91.241438 91.241438 91.241438 29 49 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 49 55.901699 55.901699 55.901699 29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 50 53.141321 53.141321 53.141321 29 51 20.615528 20.615528 20.615528						
29 51 20.615528 20.615528 20.615528						
29 52 38.327536 38.327536 38.327536						
	29	52	38.327536	38.327536	38.327536	

29	53	67.000000	67.000000	67.000000	
29	54	74.726167	74.726167	74.726167	
29	55	47.634021	47.634021	47.634021	
29	56	68.876701	68.876701	68.876701	
29	57	42.296572	42.296572	42.296572	
29	58	62.201286	62.201286	62.201286	
29	59	79.555012	79.555012	79.555012	
29	60	82.607506	82.607506	82.607506	
29	61	82.637764	82.637764	82.637764	
29	62	58.600341	58.600341	58.600341	
29	63	27.459060	27.459060	27.459060	
29	64	28.792360	28.792360	28.792360	
29	65	47.00000	47.000000	47.000000	
29	66	57.870545	57.870545	57.870545	
29	67				
		51.478151	51.478151	51.478151	
29	68	30.463092	30.463092	30.463092	
29	69	60.033324	60.033324	60.033324	
29	70	64.845971	64.845971	64.845971	
29	71	69.065187	69.065187	69.065187	
29	72	36.796739	36.796739	36.796739	
29	73	45.453273	45.453273	45.453273	
29	74	94.868330	94.868330	94.868330	
29	75	72.691127	72.691127	72.691127	
29	76	90.520716	90.520716	90.520716	
29	77	36.715120	36.715120	36.715120	
29	78	74.094534	74.094534	74.094534	
29	79	87.931792	87.931792	87.931792	
29	80	94.021274	94.021274	94.021274	
29	81	48.104054	48.104054	48.104054	
29	82	51.312766	51.312766	51.312766	
29	83	66.287254	66.287254	66.287254	
29	84	55.009090	55.009090	55.009090	
29	85	35.014283	35.014283	35.014283	
29	86	29.832868	29.832868	29.832868	
29	87	71.253070	71.253070	71.253070	
29	88	80.224684	80.224684	80.224684	
29	89	73.539105	73.539105	73.539105	
29	90	35.355339	35.355339	35.355339	
29	91	57.567352	57.567352	57.567352	
29	92	44.643029	44.643029	44.643029	
29	93	41.109610	41.109610	41.109610	
29	94	38.013156	38.013156	38.013156	
29	95	39.357337	39.357337	39.357337	
29	96	36.674242	36.674242	36.674242	
29	97	44.102154	44.102154	44.102154	
29	98	88.814413	88.814413	88.814413	
29	99	69.570109	69.570109	69.570109	
29	100	66.189123	66.189123	66.189123	
29	101	71.344236	71.344236	71.344236	
30	1	52.201533	52.201533	52.201533	
30	2	82.006097	82.006097	82.006097	
30	3	78.892332	78.892332	78.892332	
30	4	84.403791	84.403791	84.403791	
30	5	83.216585	83.216585	83.216585	
30	6	86.023253	86.023253	86.023253	
30	6 7	82.365041	82.365041	82.365041	
30	8	85.000000	85.000000	85.000000	
30	9	87.464278	87.464278	87.464278	
30	10	80.000000	80.00000	80.000000	
30	11	80.156098	80.156098	80.156098	
30	12	82.152298	82.152298	82.152298	
30	13	82.607506	82.607506	82.607506	
30	14	85.000000	85.000000	85.000000	

30	15	85.586214	85.586214	85.586214	
30	16	88.141931	88.141931	88.141931	
30	17	90.138782	90.138782	90.138782	
30	18	90.553851	90.553851	90.553851	
30	19	54.918121	54.918121	54.918121	
30	20	54.120237	54.120237	54.120237	
30	21	52.000000	52.000000	52.000000	
30	22	58.309519	58.309519	58.309519	
30	23	53.851648	53.851648	53.851648	
30	24	60.033324	60.033324	60.033324	
30	25	55.713553	55.713553	55.713553	
30	26	62.649820	62.649820	62.649820	
30	27	7.071068	7.071068	7.071068	
30	28	5.000000	5.000000	5.000000	
30	29	5.385165	5.385165	5.385165	
30	31	5.385165	5.385165	5.385165	
30	32	2.000000	2.000000	2.000000	
30	33	5.830952	5.830952	5.830952	
30	34	11.180340	11.180340	11.180340	
30	35	5.00000	5.000000	5.000000	
30	36	55.036352	55.036352	55.036352	
	36 37		55.901699		
30		55.901699		55.901699	
30	38	53.235327	53.235327	53.235327	
30	39	53.000000	53.000000	53.000000	
30	40	54.083269	54.083269	54.083269	
30	41	58.309519	58.309519	58.309519	
30	42	51.224994	51.224994	51.224994	
30	43	57.008771	57.008771	57.008771	
30	44	61.032778	61.032778	61.032778	
30	45	58.600341	58.600341	58.600341	
30	46	84.314886	84.314886	84.314886	
30	47	84.905830	84.905830	84.905830	
30	48	88.566359	88.566359	88.566359	
30	49	56.603887	56.603887	56.603887	
30	50	53.225934	53.225934	53.225934	
30	51	18.000000	18.000000	18.000000	
30	52	38.078866	38.078866	38.078866	
30	53	65.192024	65.192024	65.192024	
30	54	71.589105	71.589105	71.589105	
30	55	43.011626	43.011626	43.011626	
30	56	65.000000	65.000000	65.000000	
30	57	40.000000	40.000000	40.000000	
30	58	60.827625	60.827625	60.827625	
30		79.056942	79.056942		
	59 60	81.394103		79.056942	
30	60		81.394103	81.394103	
30	61	79.056942	79.056942	79.056942	
30	62	54.083269	54.083269	54.083269	
30	63	25.000000	25.000000	25.000000	
30	64	29.154759	29.154759	29.154759	
30	65	45.276926	45.276926	45.276926	
30	66	55.226805	55.226805	55.226805	
30	67	49.040799	49.040799	49.040799	
30	68	26.925824	26.925824	26.925824	
30	69	55.901699	55.901699	55.901699	
30	70	61.400326	61.400326	61.400326	
30	71	64.660653	64.660653	64.660653	
30	72	32.015621	32.015621	32.015621	
30	73	40.360872	40.360872	40.360872	
30	74	91.482239	91.482239	91.482239	
30	75	71.589105	71.589105	71.589105	
30	76	90.138782	90.138782	90.138782	
30	77	37.802116	37.802116	37.802116	
30	78	74.249579	74.249579	74.249579	

30	79	84.646323	84.646323	84.646323	
30	80	90.249654	90.249654	90.249654	
30	81	44.643029	44.643029	44.643029	
30	82	47.010637	47.010637	47.010637	
30	83	63.505905	63.505905	63.505905	
30					
	84	53.150729	53.150729	53.150729	
30	85	33.541020	33.541020	33.541020	
30	86	29.546573	29.546573	29.546573	
30	87	69.871310	69.871310	69.871310	
30	88	78.771822	78.771822	78.771822	
30	89	69.892775	69.892775	69.892775	
30	90	37.802116	37.802116	37.802116	
30	91	54.341513	54.341513	54.341513	
30	92	41.593269	41.593269	41.593269	
30	93	37.854986	37.854986	37.854986	
30	94	33.615473	33.615473	33.615473	
30	95	35.468296	35.468296	35.468296	
30	96	34.058773	34.058773	34.058773	
30	97	39.824616	39.824616	39.824616	
30	98	87.664132	87.664132	87.664132	
30	99	66.219333	66.219333	66.219333	
30					
	100	64.000000	64.000000	64.000000	
30	101	67.119297	67.119297	67.119297	
31	1	52.000000	52.000000	52.000000	
31	2	83.630138	83.630138	83.630138	
31	3	79.881162	79.881162	79.881162	
31	4	85.912746	85.912746	85.912746	
31	5	84.403791	84.403791	84.403791	
31	6	87.458562	87.458562	87.458562	
31	7	83.216585	83.216585	83.216585	
31	8	85.755466	85.755466	85.755466	
31	9	88.481637	88.481637	88.481637	
31	10	78.160092	78.160092	78.160092	
31	11	78.638413	78.638413	78.638413	
31	12	80.622577	80.622577	80.622577	
31	13	81.394103	81.394103	81.394103	
31	14	83.150466	83.150466	83.150466	
31	15	84.344532	84.344532	84.344532	
31	16	86.579443	86.579443	86.579443	
31	17	88.566359	88.566359	88.566359	
31	18	89.269256	89.269256	89.269256	
31	19	50.606324	50.606324	50.606324	
31	20	50.159745	50.159745	50.159745	
31	21	48.383882	48.383882	48.383882	
31	22	54.120237	54.120237	54.120237	
31	23	50.289164	50.289164	50.289164	
31	24	55.901699	55.901699	55.901699	
31	25	52.201533	52.201533	52.201533	
31	26	58.600341	58.600341	58.600341	
31	27	7.000000	7.000000	7.000000	
31	28	8.602325	8.602325	8.602325	
31	29	4.000000	4.000000	4.000000	
31	30	5.385165	5.385165	5.385165	
31	32	5.000000	5.000000	5.000000	
31	33	1.000000	1.000000	1.000000	
31	34	5.830952	5.830952	5.830952	
31	35	5.830952	5.830952	5.830952	
31	36	58.872744	58.872744	58.872744	
31	37	59.615434	59.615434	59.615434	
31	38	56.859476	56.859476	56.859476	
31	39	56.356011	56.356011	56.356011	
31	40	57.306195	57.306195	57.306195	
31	41	61.717096	61.717096	61.717096	
) T	41	01./1/090	01./1/090	01./1/050	

31	42	54.083269	54.083269	54.083269	
31	43	59.908263	59.908263	59.908263	
31	44	64.140471	64.140471	64.140471	
31	45	61.587336	61.587336	61.587336	
31	46	85.603738	85.603738	85.603738	
31	47	86.023253	86.023253	86.023253	
31	48	87.298339	87.298339	87.298339	
31	49	52.354560	52.354560	52.354560	
31	50	49.396356	49.396356	49.396356	
31	51	16.763055	16.763055	16.763055	
31	52	34.481879	34.481879	34.481879	
31	53	63.000000	63.000000	63.000000	
31	54	70.880181	70.880181	70.880181	
31	55	44.598206	44.598206	44.598206	
31	56	65.299311	65.299311	65.299311	
31	57	38.327536	38.327536	38.327536	
31	58	58.215118	58.215118	58.215118	
31	59	75.690158	75.690158	75.690158	
31	60	78.638413	78.638413	78.638413	
31	61	78.924014	78.924014	78.924014	
31	62	55.443665	55.443665	55.443665	
31	63	23.537205	23.537205	23.537205	
31	64	25.079872	25.079872	25.079872	
31	65	43.000000	43.000000	43.000000	
31	66	53.935146	53.935146	53.935146	
31	67	47.518417	47.518417	47.518417	
31	68	26.832816	26.832816	26.832816	
31	69	56.603887	56.603887	56.603887	
31	70	61.098281	61.098281	61.098281	
31	71	65.802736	65.802736	65.802736	
31	72	33.970576	33.970576	33.970576	
31	73	43.011626	43.011626	43.011626	
31	74	91.082380	91.082380	91.082380	
31	75	68.731361	68.731361	68.731361	
31	76	86.683332	86.683332	86.683332	
31	77	33.286634	33.286634	33.286634	
31	78	70.384657	70.384657	70.384657	
31	79	84.118963	84.118963	84.118963	
31	80	90.376988	90.376988	90.376988	
31	81	44.384682	44.384682	44.384682	
		48.010416	48.010416		
31	82			48.010416	
31	83	62.369865	62.369865	62.369865	
31	84	51.009803	51.009803	51.009803	
31	85	31.016125	31.016125	31.016125	
31	86	25.961510	25.961510	25.961510	
31	87	67.268120	67.268120	67.268120	
31	88	76.236474	76.236474	76.236474	
31	89	69.856997	69.856997	69.856997	
31	90	32.649655	32.649655	32.649655	
31	91	53.758720	53.758720	53.758720	
31	92	40.804412	40.804412	40.804412	
31	93	37.336309	37.336309	37.336309	
31	94	34.828150	34.828150	34.828150	
31	95	35.846897	35.846897	35.846897	
31	96	32.756679	32.756679	32.756679	
31	97	40.804412	40.804412	40.804412	
31	98	84.852814	84.852814	84.852814	
31	99	65.787537	65.787537	65.787537	
31		62.201286		62.201286	
	100		62.201286		
31	101	67.955868	67.955868	67.955868	
32	1	50.289164	50.289164	50.289164	
32	2	80.430094	80.430094	80.430094	
32	3	77.175126	77.175126	77.175126	
_	-	. = . = = = =		· · · - ·	

2.2	4	02 000000	00 000000	00 000000	
32 32	4	82.800966	82.800966	82.800966	
	5	81.541401	81.541401	81.541401	
32	6	84.403791	84.403791	84.403791	
32	7	80.622577	80.622577	80.622577	
32	8	83.240615	83.240615	83.240615	
32	9	85.755466	85.755466	85.755466	
32	10	78.000000	78.000000	78.000000	
32	11	78.160092	78.160092	78.160092	
32	12	80.156098	80.156098	80.156098	
32	13	80.622577	80.622577	80.622577	
32	14	83.000000	83.000000	83.000000	
32	15	83.600239	83.600239	83.600239	
32	16	86.145226	86.145226	86.145226	
32	17	88.141931	88.141931	88.141931	
32	18	88.566359	88.566359	88.566359	
32	19	53.254108	53.254108	53.254108	
32	20	52.354560	52.354560	52.354560	
32	21	50.159745	50.159745	50.159745	
32	22	56.603887	56.603887	56.603887	
32	23	52.000000	52.000000	52.000000	
32 32	24	58.309519	58.309519	58.309519	
	25	53.851648	53.851648	53.851648	
32 32	26 27	60.901560 8.602325	60.901560 8.602325	60.901560 8.602325	
32					
	28	7.000000	7.000000	7.000000	
32	29	6.403124	6.403124	6.403124	
32 32	30	2.000000	2.000000 5.000000	2.000000	
32	31 33	5.000000 5.099020	5.099020	5.000000 5.099020	
32	34	10.440307	10.440307	10.440307	
32	35	3.000000	3.000000	3.000000	
32	36	54.230987	54.230987	54.230987	
32	37	55.036352	55.036352	55.036352	
32	38	52.325902	52.325902	52.325902	
32	39	51.971146	51.971146	51.971146	
32	40	53.000000	53.000000	53.000000	
32	41	57.306195	57.306195	57.306195	
32	42	50.000000	50.000000	50.000000	
32	43	55.803226	55.803226	55.803226	
32	44	59.908263	59.908263	59.908263	
32	45	57.428216	57.428216	57.428216	
32	46	82.661962	82.661962	82.661962	
32	47	83.216585	83.216585	83.216585	
32	48	86.579443	86.579443	86.579443	
32	49	54.918121	54.918121	54.918121	
32	50	51.429563	51.429563	51.429563	
32	51	16.000000	16.000000	16.000000	
32	52	36.249138	36.249138	36.249138	
32	53	63.198101	63.198101	63.198101	
32	54	69.634761	69.634761	69.634761	
32	55	41.400483	41.400483	41.400483	
32	56	63.158531	63.158531	63.158531	
32	57	38.000000	38.000000	38.000000	
32	58	58.855756	58.855756	58.855756	
32	59	77.162167	77.162167	77.162167	
32	60	79.429214	79.429214	79.429214	
32	61	77.162167	77.162167	77.162167	
32	62	52.430907	52.430907	52.430907	
32	63	23.000000	23.000000	23.000000	
32	64	27.459060	27.459060	27.459060	
32	65	43.289722	43.289722	43.289722	
32	66	53.235327	53.235327	53.235327	
32	67	47.042534	47.042534	47.042534	

32	68	25.000000	25.000000	25.000000	
32	69	54.120237	54.120237	54.120237	
32	70	59.481089	59.481089	59.481089	
32	71	62.968246	62.968246	62.968246	
32	72	30.479501	30.479501	30.479501	
32	73	39.051248	39.051248	39.051248	
32	74	89.560036	89.560036	89.560036	
32	75	69.634761	69.634761	69.634761	
32	76	88.255311	88.255311	88.255311	
32	77	36.235342	36.235342	36.235342	
32	78	72.449983	72.449983	72.449983	
32	79	82.710338	82.710338	82.710338	
32	80	88.391176	88.391176	88.391176	
32	81	42.720019	42.720019	42.720019	
32	82	45.276926	45.276926	45.276926	
32	83	61.522354	61.522354	61.522354	
32	84	51.156622	51.156622	51.156622	
32	85	31.575307	31.575307	31.575307	
32	86	27.730849	27.730849	27.730849	
32	87	67.896981	67.896981	67.896981	
32	88	76.791927	76.791927	76.791927	
32	89	68.007353	68.007353	68.007353	
32	90	36.619667	36.619667	36.619667	
32	91	52.392748	52.392748	52.392748	
32	92	39.623226	39.623226	39.623226	
32	93	35.902646	35.902646	35.902646	
32	94	31.906112	31.906112	31.906112	
32	95	33.615473	33.615473	33.615473	
32	96	32.062439	32.062439	32.062439	
32	97	38.078866	38.078866	38.078866	
32	98	85.702975	85.702975	85.702975	
32					
	99	64.288413	64.288413	64.288413	
32	100	62.000000	62.000000	62.000000	
32	101	65.368188	65.368188	65.368188	
33	1	51.078371	51.078371	51.078371	
33	2	82.879430	82.879430	82.879430	
33	3	79.056942	79.056942	79.056942	
33	4	85.146932	85.146932	85.146932	
33	5	83.600239	83.600239	83.600239	
33	6	86.683332	86.683332	86.683332	
33	7	82.377181	82.377181	82.377181	
33	8	84.905830	84.905830	84.905830	
33	9	87.658428	87.658428	87.658428	
33	10	77.162167	77.162167	77.162167	
33	11	77.646635	77.646635	77.646635	
33	12	79.630396	79.630396	79.630396	
33		80.411442	80.411442	80.411442	
	13		80.411442	80.411442	
33	14	82.152298			
33	15	83.360662	83.360662	83.360662	
33	16	85.586214	85.586214	85.586214	
33	17	87.572827	87.572827	87.572827	
33	18	88.283634	88.283634	88.283634	
33	19	49.739320	49.739320	49.739320	
33	20	49.244289	49.244289	49.244289	
33	21	47.434165	47.434165	47.434165	
33	22	53.235327	53.235327	53.235327	
33	23	49.335586	49.335586	49.335586	
33	24	55.009090	55.009090	55.009090	
33	25	51.244512	51.244512	51.244512	
33	26	57.697487	57.697487	57.697487	
33	27	8.000000	8.000000	8.000000	
33	28	9.433981	9.433981	9.433981	
33	29	5.000000	5.000000	5.000000	
1.).)	∠ ツ	5.00000	3.00000	5.00000	

2.2	2.0	E 0200E2	E 0200E2	E 0200E2	
33 33	30 31	5.830952	5.830952	5.830952	
		1.000000	1.000000	1.000000	
33	32	5.099020	5.099020	5.099020	
33	34	5.385165	5.385165	5.385165	
33	35	5.385165	5.385165	5.385165	
33	36	58.523500	58.523500	58.523500	
33	37	59.236813	59.236813	59.236813	
33	38	56.462377	56.462377	56.462377	
33	39	55.901699	55.901699	55.901699	
33	40	56.824291	56.824291	56.824291	
33	41	61.269895	61.269895	61.269895	
33	42	53.535035	53.535035	53.535035	
33	43	59.363288	59.363288	59.363288	
33	44	63.631753	63.631753	63.631753	
33	45	61.057350	61.057350	61.057350	
33	46	84.811556	84.811556	84.811556	
33	47	85.211502	85.211502	85.211502	
33	48	86.313383	86.313383	86.313383	
33	49	51.478151	51.478151	51.478151	
33	50	48.466483	48.466483	48.466483	
33	51	15.811388	15.811388	15.811388	
33	52	33.526109	33.526109	33.526109	
33	53	62.000000	62.000000	62.000000	
33	54	69.921384	69.921384	69.921384	
33	55	43.863424	43.863424	43.863424	
33	56	64.412732	64.412732	64.412732	
33	57	37.336309	37.336309	37.336309	
33	58	57.218878	57.218878	57.218878	
33	59	74.726167	74.726167	74.726167	
33	60	77.646635	77.646635	77.646635	
33	61	78.000000	78.000000	78.000000	
33	62	54.671748	54.671748	54.671748	
33	63	22.561028	22.561028	22.561028	
33	64	24.166092	24.166092	24.166092	
33	65	42.000000	42.000000	42.000000	
33	66	52.952809	52.952809	52.952809	
33	67	46.529560	46.529560	46.529560	
33	68	25.942244	25.942244	25.942244	
33	69	55.758407	55.758407	55.758407	
33	70	60.166436	60.166436	60.166436	
33	71	65.000000	65.000000	65.000000	
33	72	33.301652	33.301652	33.301652	
33	73	42.438190	42.438190	42.438190	
33	74	90.138782	90.138782	90.138782	
33	75	67.742158	67.742158	67.742158	
33	76	85.726309	85.726309	85.726309	
33	77	32.449961	32.449961	32.449961	
33	78	69.462220	69.462220	69.462220	
33	79	83.168504	83.168504	83.168504	
33	80	89.470666	89.470666	89.470666	
33	81	43.462628	43.462628	43.462628	
33	82	47.201695	47.201695	47.201695	
33	83	61.392182	61.392182	61.392182	
33	84	50.009999	50.009999	50.009999	
33	85	30.016662	30.016662	30.016662	
33	86	25.000000	25.000000	25.000000	
33	87	66.272166	66.272166	66.272166	
33	88	75.239617	75.239617	75.239617	
33	89	68.942005	68.942005	68.942005	
33	90	32.015621	32.015621	32.015621	
33	91	52.810984	52.810984	52.810984	
33	92	39.849718	39.849718	39.849718	
33	93	36.400549	36.400549	36.400549	

33	94	34.058773	34.058773	34.058773
33	95	34.985711	34.985711	34.985711
33	96	31.780497	31.780497	31.780497
33	97	40.00000	40.000000	40.000000
33	98	83.862983	83.862983	83.862983
33	99	64.845971	64.845971	64.845971
33	100	61.204575	61.204575	61.204575
33	101	67.119297	67.119297	67.119297
34	1	51.478151	51.478151	51.478151
34	2	84.852814	84.852814	84.852814
34	3	80.430094	80.430094	80.430094
34	4	87.000000	87.000000	87.000000
34	5	85.146932	85.146932	85.146932
34	6	88.459030	88.459030	88.459030
34	7	83.600239	83.600239	83.600239
34	8	86.023253	86.023253	86.023253
34	9	89.022469	89.022469	89.022469
34	10	75.663730	75.663730	75.663730
34	11	76.485293	76.485293	76.485293
34	12	78.447435	78.447435	78.447435
34	13	79.555012	79.555012	79.555012
34	14	80.622577	80.622577	80.622577
34	15	82.462113	82.462113	82.462113
34	16	84.344532	84.344532	84.344532
34	17	86.313383	86.313383	86.313383
34	18	87.321246	87.321246	87.321246
34	19	45.617979	45.617979	45.617979
34	20	45.541190	45.541190	45.541190
34	21	44.147480	44.147480	44.147480
34	22	49.244289	49.244289	49.244289
34	23	46.097722	46.097722	46.097722
34	24	51.078371	51.078371	51.078371
34	25	48.052055	48.052055	48.052055
34	26	53.851648	53.851648	53.851648
34	27	11.180340	11.180340	11.180340
34	28	14.142136	14.142136	14.142136
34	29	8.602325	8.602325	8.602325
34	30	11.180340	11.180340	11.180340
34	31	5.830952	5.830952	5.830952
34	32	10.440307	10.440307	10.440307
34	33	5.385165	5.385165 10.00000	5.385165 10.000000
34	35 36	10.000000 62.641839	62.641839	62.641839
34	36	63.245553	63.245553	63.245553
34	38	63.24553	63.245553	63.245553
34	39	59.615434	59.615434	59.615434
34	40	60.415230	60.415230	60.415230
34	41	65.000000	65.000000	65.000000
34	42	56.824291	56.824291	56.824291
34	43	62.649820	62.649820	62.649820
34	44	67.082039	67.082039	67.082039
34	45	64.412732	64.412732	64.412732
34	46	86.452299	86.452299	86.452299
34	47	86.683332	86.683332	86.683332
34	48	85.375641	85.375641	85.375641
34	49	47.423623	47.423623	47.423623
34	50	44.922155	44.922155	44.922155
34	51	16.401219	16.401219	16.401219
34	52	30.413813	30.413813	30.413813
34	53	60.207973	60.207973	60.207973
34	54	69.641941	69.641941	69.641941
34	55	46.097722	46.097722	46.097722
34	56	65.192024	65.192024	65.192024
				***=*= *

34	57	36.400549	36.400549	36.400549	
34	58	55.000000	55.000000	55.000000	
34	59	71.589105	71.589105	71.589105	
34	60	75.166482	75.166482	75.166482	
34	61	78.262379	78.262379	78.262379	
34	62	56.568542	56.568542	56.568542	
34	63	22.360680	22.360680	22.360680	
34	64	20.615528	20.615528	20.615528	
34	65	40.311289	40.311289	40.311289	
34	66	52.201533	52.201533	52.201533	
34	67	45.607017	45.607017	45.607017	
34	68	27.018512	27.018512	27.018512	
34	69	57.008771	57.008771	57.008771	
34	70	60.373835	60.373835	60.373835	
34	71	66.603303	66.603303	66.603303	
34	72	36.055513	36.055513	36.055513	
34	73	45.650849	45.650849	45.650849	
34	74	90.077744	90.077744	90.077744	
34	75	65.192024	65.192024	65.192024	
34	76	82.462113	82.462113	82.462113	
34	77	28.178006	28.178006	28.178006	
34	78	65.787537	65.787537	65.787537	
34	79	83.006024	83.006024	83.006024	
34	80	89.944427	89.944427	89.944427	
34	81	43.908997	43.908997	43.908997	
34	82	48.836462	48.836462	48.836462	
34	83	60.728906	60.728906	60.728906	
34	84	48.373546	48.373546	48.373546	
34	85	28.284271	28.284271	28.284271	
34	86	22.090722	22.090722	22.090722	
34	87	64.007812	64.007812	64.007812	
34	88	73.006849	73.006849	73.006849	
34	89	69.354164	69.354164	69.354164	
34			26.907248		
	90	26.907248		26.907248	
34	91	52.801515	52.801515	52.801515	
34	92	39.812058	39.812058	39.812058	
34	93	36.715120	36.715120	36.715120	
34	94	36.124784	36.124784	36.124784	
34	95	36.235342	36.235342	36.235342	
34	96	31.384710	31.384710	31.384710	
34	97	41.725292	41.725292	41.725292	
34	98	81.301906	81.301906	81.301906	
34	99	64.884513	64.884513	64.884513	
34	100	59.841457	59.841457	59.841457	
34	101	68.410526	68.410526	68.410526	
35	1	47.434165	47.434165	47.434165	
35	2	78.102497	78.102497	78.102497	
35	3	74.625733	74.625733	74.625733	
35	4	80.430094	80.430094	80.430094	
35	5	79.056942	79.056942	79.056942	
35	6	82.006097	82.006097	82.006097	
35	7	78.032045	78.032045	78.032045	
35	8	80.622577	80.622577	80.622577	
35	9	83.216585	83.216585	83.216585	
35	10	75.000000	75.000000	75.000000	
35	11	75.166482	75.166482	75.166482	
35	12	77.162167	77.162167	77.162167	
35	13	77.646635	77.646635	77.646635	
35	14	80.000000	80.00000	80.000000	
35	15	80.622577	80.622577	80.622577	
35	16	83.150466	83.150466	83.150466	
35	17	85.146932	85.146932	85.146932	
35		85.586214	85.586214	85.586214	
JJ	18	03.300214	03.300214	00.000214	

35	19	50.803543	50.803543	50.803543	
35	20	49.739320	49.739320	49.739320	
35	21	47.423623	47.423623	47.423623	
35	22	54.083269	54.083269	54.083269	
35	23	49.244289	49.244289	49.244289	
35	24	55.758407	55.758407	55.758407	
35	25	51.078371	51.078371	51.078371	
35	26	58.309519	58.309519	58.309519	
35	27	11.180340	11.180340	11.180340	
			10.000000	10.000000	
35	28	10.000000			
35	29	8.602325	8.602325	8.602325	
35	30	5.000000	5.000000	5.000000	
35	31	5.830952	5.830952	5.830952	
35	32	3.000000	3.000000	3.000000	
35	33	5.385165	5.385165	5.385165	
35	34	10.000000	10.000000	10.000000	
35	36	53.141321	53.141321	53.141321	
35	37	53.851648	53.851648	53.851648	
35	38	51.078371	51.078371	51.078371	
35	39	50.537115	50.537115	50.537115	
35	40	51.478151	51.478151	51.478151	
35	41	55.901699	55.901699	55.901699	
35	42	48.259714	48.259714	48.259714	
35	43	54.083269	54.083269	54.083269	
35	44	58.309519	58.309519	58.309519	
35	45	55.758407	55.758407	55.758407	
35	46	80.212219	80.212219	80.212219	
35	47	80.709355	80.709355	80.709355	
35	48	83.600239	83.600239	83.600239	
35	49	52.430907	52.430907	52.430907	
35	50	48.764741	48.764741	48.764741	
35	51	13.000000	13.000000	13.000000	
35	52	33.541020	33.541020	33.541020	
35	53	60.207973	60.207973	60.207973	
35	54	66.708320	66.708320	66.708320	
35	55	39.051248	39.051248	39.051248	
35	56	60.415230	60.415230	60.415230	
35	57	35.000000	35.000000	35.000000	
35	58	55.901699	55.901699	55.901699	
35	59	74.330344	74.330344	74.330344	
35	60	76.485293	76.485293	76.485293	
35		74.330344	74.330344	74.330344	
35	61 62	50.00000	50.000000	50.000000	
35	63	20.00000	20.000000	20.000000	
	64	25.00000	25.000000	25.000000	
35					
35	65 66	40.311289	40.311289	40.311289	
35	66	50.249378	50.249378	50.249378	
35	67	44.045431	44.045431	44.045431	
35	68	22.135944	22.135944	22.135944	
35	69	51.478151	51.478151	51.478151	
35	70	56.612719	56.612719	56.612719	
35	71	60.464866	60.464866	60.464866	
35	72	28.284271	28.284271	28.284271	
35	73	37.202150	37.202150	37.202150	
35	74	86.683332	86.683332	86.683332	
35	75	66.708320	66.708320	66.708320	
35	76	85.440037	85.440037	85.440037	
35	77	33.970576	33.970576	33.970576	
35	78	69.771054	69.771054	69.771054	
35	79	79.812280	79.812280	79.812280	
35	80	85.615419	85.615419	85.615419	
35	81	39.849718	39.849718	39.849718	
35	82	42.720019	42.720019	42.720019	

35	83	58.549125	58.549125	58.549125	
35	84	48.166378	48.166378	48.166378	
35	85	28.635642	28.635642	28.635642	
35	86	25.059928	25.059928	25.059928	
35	87	64.938432	64.938432	64.938432	
35	88	73.824115	73.824115	73.824115	
35	89	65.192024	65.192024	65.192024	
35	90	34.985711	34.985711	34.985711	
35	91	49.477268	49.477268	49.477268	
35	92	36.674242	36.674242	36.674242	
35	93	32.984845	32.984845	32.984845	
35	94	29.410882	29.410882	29.410882	
35	95	30.870698	30.870698	30.870698	
35	96	29.068884	29.068884	29.068884	
35	97	35.510562	35.510562	35.510562	
35	98	82.764727	82.764727	82.764727	
35	99	61.400326	61.400326	61.400326	
35	100	59.000000	59.000000	59.000000	
35	101	62.769419	62.769419	62.769419	
36	1	44.204072	44.204072	44.204072	
36	2	42.000000	42.000000	42.000000	
36	3	46.097722	46.097722	46.097722	
36	4	45.000000	45.000000	45.000000	
36	5	47.265209	47.265209	47.265209	
36	6	47.203203	47.000000	47.000000	
36	7	50.009999	50.009999	50.009999	
36	8	52.952809	52.952809	52.952809	
36	9	52.239832	52.239832	52.239832	
36	10	75.822160	75.822160	75.822160	
36	11	72.622311	72.622311	72.622311	
36	12	74.202426	74.202426	74.202426	
36	13	74.202426	71.281134	71.281134	
36	14	79.649231	79.649231	79.649231	
36	15	73.783467		73.783467	
36	16	79.056942	73.783467 79.056942	79.056942	
36	17	80.709355	80.709355	80.709355	
36	18	78.032045	78.032045	78.032045	
36	19	83.240615	83.240615	83.240615	
36	20	79.056942	79.056942	79.056942	
36	21	74.330344	74.330344	74.330344	
36	22	84.433406	84.433406	84.433406	
36		75.026662			
36	23 24	85.094066	75.026662 85.094066	75.026662	
36			75.769387	85.094066	
36	25 26	75.769387 86.162637	86.162637	75.769387 86.162637	
36	27	61.717096	61.717096	61.717096	
36	28	57.306195	57.306195	57.306195	
36	28 29	60.415230	60.415230	60.415230	
36	30	55.036352	55.036352	55.036352	
36	31	58.872744	58.872744	58.872744	
36	32	54.230987	54.230987	54.230987	
		58.523500	58.523500	58.523500	
36 36	33 34	62.641839	62.641839	62.641839	
36	35	53.141321	53.141321	53.141321	
36	35 37	2.00000	2.000000	2.000000	
36	38	3.605551	3.605551	3.605551	
36	38 39	7.071068	7.071068	7.071068	
36 36	40 41	8.602325 7.000000	8.602325	8.602325 7.000000	
36	41 42	13.453624	7.000000 13.453624	13.453624	
36	42	13.453624	13.453624	13.453624	
36	43	12.000000	12.000000	12.000000	
36	45	12.369317	12.369317	12.369317	
30	40	17.203211	14.303311	14.303311	

36	46	47.095647	47.095647	47.095647	
36	47	49.254441	49.254441	49.254441	
36	48	76.321688	76.321688	76.321688	
36	49	83.815273	83.815273	83.815273	
36	50	77.162167	77.162167	77.162167	
36	51	50.249378	50.249378	50.249378	
36	52	66.098411	66.098411	66.098411	
36	53	69.202601	69.202601	69.202601	
36	54	58.600341	58.600341	58.600341	
36	55	27.730849	27.730849	27.730849	
36	56	44.654227	44.654227	44.654227	
36	57	52.810984	52.810984	52.810984	
36	58	70.491134	70.491134	70.491134	
36	59	91.263355	91.263355	91.263355	
36	60	86.452299	86.452299	86.452299	
36	61	57.697487	57.697487	57.697487	
36	62	29.732137	29.732137	29.732137	
36	63	50.039984	50.039984	50.039984	
36	64	65.030762	65.030762	65.030762	
36	65	59.236813	59.236813	59.236813	
36	66	55.217751	55.217751	55.217751	
36	67	54.589376	54.589376	54.589376	
36	68	43.104524	43.104524	43.104524	
36	69	36.796739	36.796739	36.796739	
36	70	48.836462	48.836462	48.836462	
36	71	35.777088	35.777088	35.777088	
36	72	30.066593	30.066593	30.066593	
36	73	20.396078	20.396078	20.396078	
36	74	69.641941	69.641941	69.641941	
36	75	80.212219	80.212219	80.212219	
36	76	101.212647	101.212647	101.212647	
36	77	73.334848	73.334848	73.334848	
36	78	93.059121	93.059121	93.059121	
36	79	65.741920	65.741920	65.741920	
36	80	63.324561	63.324561	63.324561	
36	81	42.941821	42.941821	42.941821	
36	82	32.449961	32.449961	32.449961	
36	83	58.00000	58.000000	58.000000	
36	84	61.773781	61.773781	61.773781	
36	85	56.885851	56.885851	56.885851	
36	86	62.128898	62.128898	62.128898	
36	87	76.400262	76.400262	76.400262	
36	88	82.134037	82.134037	82.134037	
36	89	50.774009	50.774009	50.774009	
36	90	80.00000	80.000000	80.000000	
36	91	48.414874	48.414874	48.414874	
36	92	46.615448	46.615448	46.615448	
36	93	44.271887	44.271887	44.271887	
36	94	33.541020	33.541020	33.541020	
36	95	38.327536	38.327536	38.327536	
36	96	49.244289	49.244289	49.244289	
36	97	33.241540	33.241540	33.241540	
36	98	91.967386	91.967386	91.967386	
36	99	52.630789	52.630789	52.630789	
36	100	64.660653	64.660653	64.660653	
36	101	40.249224	40.249224	40.249224	
37	1	43.011626	43.011626	43.011626	
37	2	40.000000	40.000000	40.000000	
37	3	44.147480	44.147480	44.147480	
37	4	43.000000	43.000000	43.000000	
37	5	45.276926	45.276926	45.276926	
37	6	45.000000	45.000000	45.000000	
37	7	48.052055	48.052055	48.052055	

37 8 50.990195 50.990195 50.990195 37 9 50.249378 50.249378 50.249378 37 10 74.330344 74.330344 74.330344 37 11 71.063352 71.063352 71.063352 37 12 72.622311 72.622311 72.622311 37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026 37 16 77.420927 77.420927 77.420927	
37 9 50.249378 50.249378 50.249378 37 10 74.330344 74.330344 74.330344 37 11 71.063352 71.063352 71.063352 37 12 72.622311 72.622311 72.622311 37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 10 74.330344 74.330344 74.330344 37 11 71.063352 71.063352 71.063352 37 12 72.622311 72.622311 72.622311 37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 11 71.063352 71.063352 71.063352 37 12 72.622311 72.622311 72.622311 37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 12 72.622311 72.622311 72.622311 37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 13 69.634761 69.634761 69.634761 37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 14 78.102497 78.102497 78.102497 37 15 72.111026 72.111026 72.111026	
37 15 72.111026 72.111026 72.111026	
37 16 77.420927 77.420927 77.420927	
37 17 79.056942 79.056942 79.056942	
37 18 76.321688 76.321688 76.321688	
37 19 82.710338 82.710338 82.710338	
37 20 78.447435 78.447435 78.447435	
37 21 73.681748 73.681748 73.681748	
37 22 83.815273 83.815273 83.815273	
37 23 74.330344 74.330344 74.330344	
37 24 84.433406 84.433406 84.433406	
37 25 75.026662 75.026662 75.026662	
37 26 85.440037 85.440037 85.440037	
37 27 62.649820 62.649820 62.649820	
37 28 58.309519 58.309519 58.309519	
37 29 61.269895 61.269895 61.269895	
37 30 55.901699 55.901699	
37 31 59.615434 59.615434 59.615434	
37 32 55.036352 55.036352 55.036352	
37 33 59.236813 59.236813 59.236813	
37 34 63.245553 63.245553 63.245553	
37 35 53.851648 53.851648 53.851648	
37 36 2.000000 2.000000 2.000000	
37 38 3.000000 3.000000 3.000000	
37 39 5.830952 5.830952 5.830952	
37 40 7.071068 7.071068 7.071068	
37 41 5.000000 5.000000 5.000000	
37 42 12.206556 12.206556 12.206556	
37 43 11.180340 11.180340 11.180340	
37 45 10.440307 10.440307 10.440307	
37	
37 47 47.265209 47.265209 47.265209	
37 48 74.625733 74.625733 74.625733	
37 49 83.240615 83.240615 83.240615	
37 50 76.537572 76.537572 76.537572	
37 51 50.487622 50.487622 50.487622	
37 52 65.764732 65.764732 65.764732	
37 53 68.007353 68.007353 68.007353	
37 54 57.008771 57.008771 57.008771	
37 55 26.925824 26.925824 26.925824	
37 56 43.011626 43.011626 43.011626	
37 57 52.201533 52.201533 52.201533	
37 58 69.462220 69.462220 69.462220	
37 59 90.138782 90.138782 90.138782	
37 60 85.146932 85.146932 85.146932	
37 61 55.901699 55.901699 55.901699	
37 62 28.284271 28.284271 28.284271	
37 63 50.000000 50.000000 50.000000	
37 64 65.000000 65.000000 65.000000	
37 65 58.523500 58.523500 58.523500	
37 66 54.083269 54.083269 54.083269	
37 67 53.665631 53.665631 53.665631	
37 68 43.011626 43.011626 43.011626	
37 69 35.355339 35.355339 35.355339	
37 70 47.381431 47.381431 47.381431	
37 71 34.000000 34.000000 34.000000	

37	72	30.000000	30.000000	30.000000
37	73	20.099751	20.099751	20.099751
37	74	67.779053	67.779053	67.779053
37	75	79.056942	79.056942	79.056942
37	76	100.000000	100.000000	100.000000
37	77	73.171033	73.171033	73.171033
37	78	92.130342	92.130342	92.130342
37	79	63.953108	63.953108	63.953108
37	80			61.400326
		61.400326 42.047592	61.400326	42.047592
37	81		42.047592	
37	82	31.384710	31.384710	31.384710
37	83	56.639209	56.639209	56.639209
37	84	60.827625	60.827625	60.827625
37	85	56.568542	56.568542	56.568542
37	86	62.032250	62.032250	62.032250
37	87	75.213031	75.213031	75.213031
37	88	80.808415	80.808415	80.808415
37	89	49.091751	49.091751	49.091751
37	90	80.024996	80.024996	80.024996
37	91	47.201695	47.201695	47.201695
37	92	45.880279	45.880279	45.880279
37	93	43.680659	43.680659	43.680659
37	94	33.241540	33.241540	33.241540
37	95	37.854986	37.854986	37.854986
37	96	48.836462	48.836462	48.836462
37	97	32.572995	32.572995	32.572995
37	98	90.609050	90.609050	90.609050
37	99	51.088159	51.088159	51.088159
37		63.411355	63.411355	63.411355
	100			
37	101	38.470768	38.470768	38.470768
38	1	40.607881	40.607881	40.607881
38	2	40.112342	40.112342	40.112342
38	3	43.566042	43.566042	43.566042
38	4	43.104524	43.104524	43.104524
38	5	45.044423	45.044423	45.044423
38	6	45.099889	45.099889	45.099889
38	7	47.518417	47.518417	47.518417
38	8	50.487622	50.487622	50.487622
38	9	50.039984	50.039984	50.039984
38	10	72.346389	72.346389	72.346389
38	11	69.202601	69.202601	69.202601
38	12	70.802542	70.802542	70.802542
38	13	67.955868	67.955868	67.955868
38	14	76.216796	76.216796	76.216796
38	15	70.491134	70.491134	70.491134
38	16	75.716577	75.716577	75.716577
38	17	77.388630	77.388630	77.388630
38	18	74.793048	74.793048	74.793048
38	19	79.812280	79.812280	79.812280
38	20	75.584390	75.584390	75.584390
38	21	70.837843	70.837843	70.837843
38	22	80.956779	80.956779	80.956779
38	23	71.512237	71.512237	71.512237
38	24	81.596569	81.596569	81.596569
38	25	72.235725	72.235725	72.235725
38	26	82.637764	82.637764	82.637764
38	27	60.033324	60.033324	60.033324
38	28	55.758407	55.758407	55.758407
38	29	58.591808	58.591808	58.591808
38	30	53.235327	53.235327	53.235327
38	31	56.859476	56.859476	56.859476
38	32	52.325902	52.325902	52.325902
38	33	56.462377	56.462377	56.462377

38	34	60.406953	60.406953	60.406953	
38	35	51.078371	51.078371	51.078371	
38	36	3.605551	3.605551	3.605551	
38	37	3.000000	3.000000	3.000000	
38	39	3.605551	3.605551	3.605551	
38	40	5.385165	5.385165	5.385165	
38	41	5.830952	5.830952	5.830952	
38	42	9.899495	9.899495	9.899495	
38	43	10.198039	10.198039	10.198039	
38	44	10.440307	10.440307	10.440307	
38	45	10.000000	10.000000	10.00000	
38	46	45.000000	45.000000	45.00000	
38	47	47.042534	47.042534	47.042534	
38	48	73.061618	73.061618	73.061618	
38	49	80.361682	80.361682	80.361682	
38	50	73.681748	73.681748	73.681748	
38	51	47.518417	47.518417	47.518417	
38	52	62.801274	62.801274	62.801274	
38					
	53	65.604878	65.604878	65.604878	
38	54	55.217751	55.217751	55.217751	
38	55	24.166092	24.166092	24.166092	
38	56	41.340053	41.340053	41.340053	
38	57	49.335586	49.335586	49.335586	
38	58	66.887966	66.887966	66.887966	
38	59	87.658428	87.658428	87.658428	
38	60	82.879430	82.879430	82.879430	
38	61	54.626001	54.626001	54.626001	
38	62	26.248809	26.248809	26.248809	
38	63	47.000000	47.000000	47.00000	
38	64	62.000000	62.000000	62.00000	
38	65	55.713553	55.713553	55.713553	
38	66	51.613952	51.613952	51.613952	
38	67	51.000000	51.000000	51.000000	
38	68	40.012498	40.012498	40.012498	
38					
	69	33.301652	33.301652	33.301652	
38	70	45.343136	45.343136	45.343136	
38	71	32.695565	32.695565	32.695565	
38	72	27.000000	27.000000	27.000000	
38	73	17.117243	17.117243	17.117243	
38	74	66.730802	66.730802	66.730802	
38	75	76.609399	76.609399	76.609399	
38	76	97.616597	97.616597	97.616597	
38	77	70.178344	70.178344	70.178344	
38	78	89.470666	89.470666	89.470666	
38	79	62.649820	62.649820	62.649820	
38	80	60.638272	60.638272	60.638272	
38	81	39.357337	39.357337	39.357337	
38	82	28.844410	28.844410	28.844410	
38	83	54.451814	54.451814	54.451814	
38	84	58.180753	58.180753	58.180753	
38	85	53.600373	53.600373	53.600373	
38		59.033889	59.033889	59.033889	
	86				
38	87	72.801099	72.801099	72.801099	
38	88	78.568442	78.568442	78.568442	
38	89	47.507894	47.507894	47.507894	
38	90	77.025970	77.025970	77.025970	
38	91	44.821870	44.821870	44.821870	
38	92	43.081318	43.081318	43.081318	
38	93	40.804412	40.804412	40.804412	
38	94	30.265492	30.265492	30.265492	
38	95	34.928498	34.928498	34.928498	
50					
38	96	45.891176	45.891176	45.891176	

38	98	88.413800	88.413800	88.413800	
38	99	49.203658	49.203658	49.203658	
38	100	61.073726	61.073726	61.073726	
38	101	37.161808	37.161808	37.161808	
39	1	37.202150	37.202150	37.202150	
39	2	37.336309	37.336309	37.336309	
39	3	40.311289	40.311289	40.311289	
39	4	40.311289	40.311289	40.311289	
39	5	42.000000	42.000000	42.000000	
39	6	42.296572	42.296572	42.296572	
39	7	44.283180	44.283180	44.283180	
39	8	47.265209	47.265209	47.265209	
39	9	47.000000	47.00000	47.000000	
39	10	68.767725	68.767725	68.767725	
39	11	65.604878	65.604878	65.604878	
39	12	67.201190	67.201190	67.201190	
39	13	64.350602	64.350602	64.350602	
39	14	72.622311	72.622311	72.622311	
39	15	66.887966	66.887966	66.887966	
39	16	72.111026	72.111026	72.111026	
39	17	73.783467	73.783467	73.783467	
39	18	71.196910	71.196910	71.196910	
39	19	77.129761	77.129761	77.129761	
39	20	72.801099	72.801099	72.801099	
39	21	68.007353	68.007353	68.007353	
39	22	78.160092	78.160092	78.160092	
39	23	68.622154	68.622154	68.622154	
39	24	78.746428	78.746428 69.289249	78.746428	
39 39	25 26	69.289249 79.711982	79.711982	69.289249 79.711982	
39	27	59.908263	59.908263	59.908263	
39	28	55.803226	55.803226	55.803226	
39	29	58.309519	58.309519	58.309519	
39	30	53.000000	53.000000	53.000000	
39	31	56.356011	56.356011	56.356011	
39	32	51.971146	51.971146	51.971146	
39	33	55.901699	55.901699	55.901699	
39	34	59.615434	59.615434	59.615434	
39	35	50.537115	50.537115	50.537115	
39	36	7.071068	7.071068	7.071068	
39	37	5.830952	5.830952	5.830952	
39	38	3.605551	3.605551	3.605551	
39	40	2.000000	2.000000	2.000000	
39	41	5.385165	5.385165	5.385165	
39	42	6.403124	6.403124	6.403124	
39	43	7.000000	7.000000	7.00000	
39	44	8.602325	8.602325	8.602325	
39	45	7.280110	7.280110	7.280110	
39	46	42.047592	42.047592	42.047592	
39	47	44.000000	44.000000	44.000000	
39	48	69.462220	69.462220	69.462220	
39	49	77.620873	77.620873	77.620873	
39	50	70.880181	70.880181	70.880181	
39	51	46.097722	46.097722	46.097722	
39	52	60.406953	60.406953	60.406953	
39	53	62.201286	62.201286	62.201286	
39	54	51.613952	51.613952	51.613952	
39	55	21.189620	21.189620	21.189620	
39	56	37.735925	37.735925	37.735925	
39	57	46.572524	46.572524	46.572524	
39	58	63.631753	63.631753	63.631753	
39	59	84.314886	84.314886	84.314886	
39	60	79.397733	79.397733	79.397733	

39	61	51.078371	51.078371	51.078371	
39	62	22.671568	22.671568	22.671568	
39	63	45.099889	45.099889	45.099889	
39	64	60.074953	60.074953	60.074953	
39	65	52.810984	52.810984	52.810984	
39	66	48.259714	48.259714	48.259714	
39			47.853944		
	67	47.853944		47.853944	
39	68	38.052595	38.052595	38.052595	
39	69	29.732137	29.732137	29.732137	
39	70	41.773197	41.773197	41.773197	
39	71	29.154759	29.154759	29.154759	
39	72	25.179357	25.179357	25.179357	
39	73	15.033296	15.033296	15.033296	
39	74	63.245553	63.245553	63.245553	
39	75	73.239334	73.239334	73.239334	
39	76	94.201911	94.201911	94.201911	
39	77	68.029405	68.029405	68.029405	
39	78	86.313383	86.313383	86.313383	
39	79	59.093147	59.093147	59.093147	
39		57.271284	57.271284	57.271284	
	80				
39	81	36.249138	36.249138	36.249138	
39	82	25.553865	25.553865	25.553865	
39	83	50.931326	50.931326	50.931326	
39	84	55.009090	55.009090	55.009090	
39	85	51.244512	51.244512	51.244512	
39	86	57.008771	57.008771	57.008771	
39	87	69.404611	69.404611	69.404611	
39	88	75.073298	75.073298	75.073298	
39	89	43.908997	43.908997	43.908997	
39	90	75.166482	75.166482	75.166482	
39	91	41.400483	41.400483	41.400483	
39	92	40.162171	40.162171	40.162171	
39	93	38.078866	38.078866	38.078866	
39	94	28.017851	28.017851	28.017851	
39					
	95	32.388269	32.388269	32.388269	
39	96	43.416587	43.416587	43.416587	
39	97	26.925824	26.925824	26.925824	
39	98	84.899941	84.899941	84.899941	
39	99	45.607017	45.607017	45.607017	
39	100	57.628118	57.628118	57.628118	
39	101	33.615473	33.615473	33.615473	
40	1	36.055513	36.055513	36.055513	
40	2	35.355339	35.355339	35.355339	
40	3	38.327536	38.327536	38.327536	
40	4	38.327536	38.327536	38.327536	
40	5	40.000000	40.000000	40.000000	
40	6	40.311289	40.311289	40.311289	
40	7	42.296572	42.296572	42.296572	
40	8	45.276926	45.276926	45.276926	
40	9	45.000000	45.000000	45.000000	
40					
	10	67.268120	67.268120	67.268120	
40	11	64.031242	64.031242	64.031242	
40	12	65.604878	65.604878	65.604878	
40	13	62.681736	62.681736	62.681736	
40	14	71.063352	71.063352	71.063352	
40	15	65.192024	65.192024	65.192024	
40	16	70.455660	70.455660	70.455660	
40	17	72.111026	72.111026	72.111026	
40	18	69.462220	69.462220	69.462220	
40	19	76.687678	76.687678	76.687678	
40	20	72.277244	72.277244	72.277244	
40	21	67.446275	67.446275	67.446275	
40	22	77.620873	77.620873	77.620873	
_ ~					

40 23 66.007353 69.007353 69.007353 40 24 78.160092 78.160092 78.160092 40 25 68.627154 68.627154 68.627154 40 26 79.056942 79.056942 79.056942 40 27 61.032778 61.032778 61.032778 40 28 57.008771 57.008771 57.008771 40 29 59.363288 59.363288 59.363288 40 30 54.093269 54.093269 54.093269 40 31 57.306195 57.006195 57.306195 40 32 53.000000 53.000000 53.000000 40 33 56.924291 56.924291 56.924291 40 34 66.15230 60.415230 60.415230 40 35 51.478151 51.478151 51.478151 40 36 8.602325 8.602325 8.602325 40 37 7.071068 7.071068 7.071068 40 38 5.385165 5.385165 5.385165 40 38 5.385165 5.385165 5.385165 40 41 5.00000 2.000000 2.000000 40 41 5.000000 2.000000 2.000000 40 42 5.385165 5.385165 5.385165 40 43 5.000000 2.000000 2.000000 40 44 5.000000 2.000000 2.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 47.091068 7.071068 7.071068 40 47 7.071068 7.071068 7.071068 40 48 67.742158 67.742158 67.742158 40 47 42.00000 42.000000 42.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 5.385165 5.385165 5.385165 40 47 42.00000 42.000000 42.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 5.385265 5.385165 5.385165 40 47 42.000000 42.000000 42.000000 40 40 46 47.071068 7.071068 7.071068 40 47 42.000000 42.000000 42.000000 40 40 46 47.071068 7.071068 7.071068 40 47 42.000000 42.000000 42.000000 40 40 46 47.071068 7.071068 7.071068 40 47 42.000000 42.000000 42.000000 40 40 40 40 40 40 40 40 40 40 40 40 40 4						
40 25 68,622154 68,622154 68,622154 40 26 79,056942 79,056942 79,056942 40 27 61,032778 61,032778 61,032778 40 28 57,008771 57,008771 57,008771 40 30 54,083269 54,083269 54,083269 40 31 57,306195 57,306195 57,306195 40 32 53,000000 53,000000 53,000000 40 34 60,415230 60,415230 60,415230 40 35 51,478151 51,478151 51,478151 40 36 8,602325 8,602325 8,602325 40 38 5,385165 5,385165 5,385165 40 38 5,385165 5,385165 5,385165 40 34 5,000000 5,000000 5,000000 40 41 5,000000 5,000000 5,000000 40 42 5,985165 5,385165 <td>40</td> <td>23</td> <td>68.007353</td> <td>68.007353</td> <td>68.007353</td> <td></td>	40	23	68.007353	68.007353	68.007353	
40 25 68,622154 68,622154 68,622154 40 26 79,056942 79,056942 79,056942 40 27 61,032778 61,032778 61,032778 40 28 57,008771 57,008771 57,008771 40 30 54,083269 54,083269 54,083269 40 31 57,306195 57,306195 57,306195 40 32 53,000000 53,000000 53,000000 40 34 60,415230 60,415230 60,415230 40 35 51,478151 51,478151 51,478151 40 36 8,602325 8,602325 8,602325 40 38 5,385165 5,385165 5,385165 40 38 5,385165 5,385165 5,385165 40 34 5,000000 5,000000 5,000000 40 41 5,000000 5,000000 5,000000 40 42 5,985165 5,385165 <td>40</td> <td>24</td> <td>78.160092</td> <td>78.160092</td> <td>78.160092</td> <td></td>	40	24	78.160092	78.160092	78.160092	
40 26 79.056942 79.056942 79.056942 79.056942 40 27 61.032778 61.032778 61.032778 61.032778 61.032778 61.032778 61.032778 61.032778 61.032778 57.006771 57.006700 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
40 27 61.032778 61.032778 61.032778 61.032778 40 28 57.08271 57.08771 57.08771 40 29 59.363288 59.363288 59.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363288 69.363289 59.363288 69.363289 6						
40 28 57,008771 57,008771 57,008771 40 29 59,362288 59,362288 59,362288 59,362288 54,083269 54,083269 54,083269 54,083269 54,083269 54,083269 54,083269 54,083269 54,083269 54,083269 57,306195 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
40 29 59,363288 59,363288 59,363288 40,83269 54,083269 54,083269 57,306195 57,471968 57,771068 77,771068 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
40 30 \$4,083269 \$4,083269 \$4,083269 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$7,306195 \$8,002000 \$3,000000 \$3,000000 \$4,0000000 \$4,000000 \$4,000000 \$4,000000 \$4,000000 \$4,000000 \$4,000000 \$4,0000000 \$4,0000000 \$4,000000 \$4,000000 \$4,0000000 \$4,0000000 \$4,000000 \$4,0000						
40 31 57,306195 57,306195 57,306195 40 32 53,000000 53,000000 53,000000 40 33 56,824291 56,824291 56,824291 40 35 51,478151 51,478151 51,478151 40 36 8,602325 8,602325 8,602325 40 37 7,071068 7,071068 7,071068 40 38 5,385165 5,385165 5,385165 5,385165 40 41 5,000000 2,000000 2,000000 4000000 40 41 5,000000 5,000000 5,000000 40 43 5,00000 5,000000 5,000000 40 43 5,000000 5,000000 5,000000 40 44 7,071068 7,071068 7,071068 40 45 5,385165 5,385165 5,385165 40 46 40,049969 40,049969 40,049969 40 47	40	29	59.363288	59.363288	59.363288	
10	40	30	54.083269	54.083269	54.083269	
40	40	31	57.306195	57.306195	57.306195	
40	40	32	53.00000	53.000000	53.00000	
40 34 60.415230 60.415230 60.415230 40 35 51.478151 51.478151 51.478151 40 36 8.602325 8.602325 8.602325 40 37 7.071068 7.071068 7.071068 40 39 2.000000 2.000000 2.000000 40 42 5.385165 5.385165 5.385165 40 42 5.385165 5.385165 5.385165 40 43 5.000000 5.000000 5.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 40.049969 40.049969 40.049969 40 47 42.000000 42.000000 42.000000 40 47 42.000000 42.000000 40.049969 40 47 42.000000 42.000000 40.049969 40 47 7.042022 70.342022		33	56.824291			
40 35 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.478151 \$1.48151 \$1.478151 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
40 36 8.602325 8.602325 8.602325 40 37 7.071068 7.071068 7.071068 7.071068 40 38 5.385165 5.385165 5.385165 40 39 2.000000 2.000000 5.000000 40 41 5.000000 5.000000 5.000000 40 42 5.385165 5.385165 5.385165 40 43 5.000000 5.000000 6.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 40.049969 40.049969 40.049969 40 47 42.00000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 67.742158 40 50 70.342022 70.342022 70.342022 46.572524 40 52 60.207973 60.207973 60.207973 60.207973 <						
40 37 7,071068 7,071068 7,071068 40 38 5,385165 5,385165 5,385165 5,385165 40 41 5,000000 2,000000 2,000000 40 41 5,000000 5,000000 5,000000 40 43 5,000000 5,000000 6,000000 40 44 7,071068 7,071068 7,071068 40 45 5,385165 5,385165 5,385165 40 46 40,049969 40,049969 40,049969 40 47 42,000000 42,000000 42,000000 40 48 67,742158 67,742158 67,742158 40 49 77,129761 77,129761 77,129761 77,129761 40 50 70,342022 70,342022 70,342022 70,342022 40 51 46,572524 46,572524 46,572524 46,572524 40 52 60,207973 60,207973 60,207973						
40 38 5.385165 5.385165 5.385165 40 39 2.000000 2.000000 40 41 5.000000 5.000000 40 42 5.385165 5.385165 5.385165 40 43 5.000000 5.000000 5.000000 40 44 7.071088 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 40.049969 40.049969 40.049969 40 47 42.000000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 40 49 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 40 51 46.572524 46.572524 46.572524 40 52 60.207973 60.207973 60.207973 40 53 61.032778 61.032778 61.032778						
40 39 2.000000 2.000000 2.000000 40 41 5.000000 5.000000 5.000000 40 42 5.385165 5.385165 5.385165 40 43 5.000000 5.000000 5.000000 40 44 7.071088 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 40.049969 40.049969 40.049969 40 47 42.000000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 40 49 77.129761 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 40.34022 40 51 46.572524 46.572524 46.572524 46.572524 40 53 61.032778 61.032778 61.032778 61.032778 40 54 50.00000 50.00000 50.00000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
40 41 5.000000 5.000000 5.000000 40 42 5.385165 5.385165 5.385165 40 43 5.000000 5.000000 5.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 40.049969 40.049969 40.049969 40 47 42.000000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 40 49 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 40 51 46.572524 46.572524 46.572524 46.572524 46.572524 40 52 60.207973 60.207973 60.207973 60.207973 40 53 61.032778 61.032778 61.032778 61.032778 40 54 50.000000 50.00000 50.00000	40	38	5.385165	5.385165	5.385165	
40 42 5.385165 5.385165 5.000000 40 43 5.000000 5.000000 5.000000 40 44 7.071068 7.071068 7.071068 40 45 5.385165 5.385165 5.385165 40 46 40.049969 40.049969 40.049969 40 47 42.000000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 40 49 77.129761 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 46.572524 46.07773 60.000000 50.00000 50.000000 50.000000 50.000000 50.000000 <td>40</td> <td>39</td> <td>2.00000</td> <td>2.00000</td> <td>2.000000</td> <td></td>	40	39	2.00000	2.00000	2.000000	
40	40	41	5.000000	5.000000	5.000000	
40	40	42	5.385165	5.385165	5.385165	
40	40	43	5 000000	5 000000	5 000000	
40 45 5.385165 5.385165 5.385165 40.049969 40.049969 40.049969 40.049969 40 46 40.049969 40.000000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 67.742158 40 49 77.129761 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 70.342022 40 51 46.572524 46.572524 46.572524 46.572524 40 52 60.207973 60.207973 60.207973 46.207973 40 53 61.032778 61.032778 61.032778 61.032778 40 54 50.000000 50.000000 50.000000 60.000000 40 55 20.615528 20.615528 20.615528 20.615528 40.615528 20.615528 20.615528 20.615528 20.615528 20.615528 20.615528 20.615528 20.615528 20.615528 20.615528 <						
40 46 40.049969 40.049969 40.049969 40 47 42.000000 42.000000 42.000000 40 48 67.742158 67.742158 67.742158 40 49 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 40 51 46.572524 46.572524 46.572524 40 52 60.207973 60.207973 60.207973 40 53 61.032778 61.032778 61.032778 40 54 50.00000 50.00000 50.00000 40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 61 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
40 47 42,000000 42,000000 42,000000 40 48 67,742158 67,742158 67,742158 67,742158 40 49 77,129761 77,129761 77,129761 40 50 70,342022 70,342022 70,342022 40 51 46,572524 46,572524 46,572524 40 52 60,207973 60,207973 60,207973 40 53 61,032778 61,032778 61,032778 61,032778 40 54 50,000000 50,00000 50,000000 60,00000 40 55 20,615528 20,615528 20,615528 40 56 36,055513 36,055513 36,055513 36,055513 40 57 46,097722 46,097722 46,097722 46,097722 40 58 62,649820 62,649820 62,649820 62,649820 40 69 83,216585 83,216585 83,216585 83,216585 40						
40						
40 49 77.129761 77.129761 77.129761 40 50 70.342022 70.342022 70.342022 40 51 46.572524 46.572524 46.572524 40 52 60.207973 60.207973 60.207973 40 53 61.032778 61.032778 61.032778 40 54 50.000000 50.000000 50.000000 40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 45.276926 45.276926	40			42.000000		
40 50 70.342022 70.342022 70.342022 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.027773 60.207973 60.207973 60.207973 60.207978 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02778 40.02772 40.027722 46.09782 29.244289 49.244289 49.244289 49.244289 49.244289 49.244289 49.244289 49.244289 49.244289 49.	40	48	67.742158	67.742158	67.742158	
40 51 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.572524 46.207973 60.207973 60.207973 60.207978 61.032778 61.032778 61.032778 60.207973 60.207973 60.207978 61.032778 60.000000 50.000000 40.061 46.007972 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.097722 46.09772 40.24289 49.244289	40	49	77.129761	77.129761	77.129761	
40 52 60.207973 60.207973 60.207973 40 53 61.032778 61.032778 61.032778 40 54 50.000000 50.000000 50.000000 40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 67 47.001637	40	50	70.342022	70.342022	70.342022	
40 52 60.207973 60.207973 60.207973 40 53 61.032778 61.032778 61.032778 40 54 50.000000 50.000000 50.000000 40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 67 47.001637	40	51	46.572524	46.572524	46.572524	
40 53 61.032778 61.032778 61.032778 40 54 50.000000 50.000000 50.000000 40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 47.010637 40 67 47.010637 47.010637 47.010637 47.010637 40		52	60.207973		60.207973	
40 54 50.000000 50.000000 50.000000 40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 67 47.10637 47.109906 47.169906 40 68 38.209946 38.209946 38.209946 40 69 28.2824271						
40 55 20.615528 20.615528 20.615528 40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 67 47.016637 47.010637 47.010637 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 72 25.49508 <						
40 56 36.055513 36.055513 36.055513 40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.3						
40 57 46.097722 46.097722 46.097722 40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.4						
40 58 62.649820 62.649820 62.649820 40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.2						
40 59 83.216585 83.216585 83.216585 40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.3	40	57	46.097722		46.097722	
40 60 78.102497 78.102497 78.102497 40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.0	40	58	62.649820	62.649820	62.649820	
40 61 49.244289 49.244289 49.244289 40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.0	40	59	83.216585	83.216585	83.216585	
40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.00000 68.00	40	60	78.102497	78.102497	78.102497	
40 62 21.213203 21.213203 21.213203 40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.00000 68.00	40	61	49.244289	49.244289	49.244289	
40 63 45.276926 45.276926 45.276926 40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 79 57.271284 57.271284 57.271284 40 79 57.271284 57.2						
40 64 60.207973 60.207973 60.207973 40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.3						
40 65 52.201533 52.201533 52.201533 40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.3						
40 66 47.169906 47.169906 47.169906 40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.4						
40 67 47.010637 47.010637 47.010637 40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.5						
40 68 38.209946 38.209946 38.209946 40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.5						
40 69 28.284271 28.284271 28.284271 40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.1			47.010637		47.010637	
40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.0	40	68	38.209946	38.209946	38.209946	
40 70 40.311289 40.311289 40.311289 40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.0	40	69	28.284271	28.284271	28.284271	
40 71 27.313001 27.313001 27.313001 40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159	40		40.311289	40.311289	40.311289	
40 72 25.495098 25.495098 25.495098 40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159			27.313001	27.313001	27.313001	
40 73 15.297059 15.297059 15.297059 40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 74 61.351447 61.351447 61.351447 40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 75 72.111026 72.111026 72.111026 40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 76 93.005376 93.005376 93.005376 40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 77 68.000000 68.000000 68.000000 40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 78 85.428333 85.428333 85.428333 40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 79 57.271284 57.271284 57.271284 40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159	40	77	68.000000	68.000000	68.000000	
40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159	40	78	85.428333	85.428333	85.428333	
40 80 55.317267 55.317267 55.317267 40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159	40	79	57.271284	57.271284	57.271284	
40 81 35.468296 35.468296 35.468296 40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159			55.317267	55.317267	55.317267	
40 82 24.596748 24.596748 24.596748 40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 83 49.578221 49.578221 49.578221 40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 84 54.129474 54.129474 54.129474 40 85 51.088159 51.088159 51.088159						
40 85 51.088159 51.088159 51.088159						
40 86 57.078893 57.078893 57.078893						
	40	86	57.078893	57.078893	57.078893	

40	87	68.242216	68.242216	68.242216	
40	88	73.756356	73.756356	73.756356	
40	89	42.190046	42.190046	42.190046	
40	90	75.325958	75.325958	75.325958	
40	91	40.224371	40.224371	40.224371	
40	92	39.560081	39.560081	39.560081	
40	93	37.656341	37.656341	37.656341	
40	94	28.017851	28.017851	28.017851	
40	95	32.140317	32.140317	32.140317	
40	96		43.185646		
		43.185646		43.185646	
40	97	26.476405	26.476405	26.476405	
40	98	83.546394	83.546394	83.546394	
40	99	44.045431	44.045431	44.045431	
40	100	56.400355	56.400355	56.400355	
40	101	31.780497	31.780497	31.780497	
41	1	40.311289	40.311289	40.311289	
41	2	35.000000	35.000000	35.000000	
41	3	39.293765	39.293765	39.293765	
41	4	38.000000	38.000000	38.000000	
41	5	40.311289	40.311289	40.311289	
41	6	40.000000	40.000000	40.000000	
41	7	43.174066	43.174066	43.174066	
41	8	46.097722	46.097722	46.097722	
41	9	45.276926	45.276926	45.276926	
41	10	70.710678	70.710678	70.710678	
41	11	67.268120	67.268120	67.268120	
41	12	68.767725	68.767725	68.767725	
41	13	65.604878	65.604878	65.604878	
41	14	74.330344	74.330344	74.330344	
41	15	68.007353	68.007353	68.007353	
41	16	73.409809	73.409809	73.409809	
41	17	75.000000	75.000000	75.000000	
41	18	72.111026	72.111026	72.111026	
41	19	81.584312	81.584312	81.584312	
41	20	77.129761	77.129761	77.129761	
41	21	72.277244	72.277244	72.277244	
41	22	82.462113	82.462113	82.462113	
				72.801099	
41	23	72.801099	72.801099		
41	24	82.969874	82.969874	82.969874	
41	25	73.375745	73.375745	73.375745	
41	26	83.815273	83.815273	83.815273	
41	27	65.192024	65.192024	65.192024	
41	28	61.032778	61.032778	61.032778	
41	29	63.631753	63.631753	63.631753	
41	30	58.309519	58.309519	58.309519	
41		61.717096	61.717096	61.717096	
	31				
41	32	57.306195	57.306195	57.306195	
41	33	61.269895	61.269895	61.269895	
41	34	65.000000	65.000000	65.000000	
41	35	55.901699	55.901699	55.901699	
41	36	7.00000	7.000000	7.000000	
41	37	5.000000	5.000000	5.000000	
41	38	5.830952	5.830952	5.830952	
41	39	5.385165	5.385165	5.385165	
41	40	5.000000	5.000000	5.000000	
41	42	10.198039	10.198039	10.198039	
41	43	7.071068	7.071068	7.071068	
41	44	5.000000	5.000000	5.000000	
41	45	5.830952	5.830952	5.830952	
41					
	46	40.112342	40.112342	40.112342	
41	47	42.296572	42.296572	42.296572	
41	48	70.455660	70.455660	70.455660	
41	49	82.00000	82.000000	82.000000	

41	50	75.186435	75.186435	75.186435
41	51	51.419841	51.419841	51.419841
41	52	65.192024	65.192024	65.192024
41	53	65.192024	65.192024	65.192024
41	54	53.150729	53.150729	53.150729
41	55	25.495098	25.495098	25.495098
41	56	39.051248	39.051248	39.051248
41	57	50.990195	50.990195	50.990195
41	58	67.082039	67.082039	67.082039
41	59	87.464278	87.464278	87.464278
41	60	82.006097	82.006097	82.006097
41	61	51.478151	51.478151	51.478151
41	62	25.000000	25.000000	25.000000
41	63	50.249378	50.249378	50.249378
41	64	65.192024	65.192024	65.192024
41	65	57.008771	57.008771	57.008771
41	66	51.478151	51.478151	51.478151
41	67	51.623638	51.623638	51.623638
41	68	43.185646	43.185646	43.185646
41	69	32.015621	32.015621	32.015621
41	70	43.931765	43.931765	43.931765
41	71	29.681644	29.681644	29.681644
41	72	30.413813	30.413813	30.413813
41	73	20.223748	20.223748	20.223748
41	74	63.158531	63.158531	63.158531
41	75	76.321688	76.321688	76.321688
41	76	97.082439	97.082439	97.082439
41	77	73.000000	73.000000	73.000000
41	78	89.961103	89.961103	89.961103
41	79	59.539903	59.539903	59.539903
41	80	56.612719	56.612719	56.612719
41	81	40.162171	40.162171	40.162171
41	82	29.154759	29.154759	29.154759
41	83	53.413481	53.413481	53.413481
41	84	58.694122	58.694122	58.694122
41	85	56.080300	56.080300	56.080300
41	86	62.072538	62.072538	62.072538
41	87	72.401657	72.401657	72.401657
41	88	77.620873	77.620873	77.620873
41	89	45.000000	45.000000	45.000000
41	90	80.305666	80.305666	80.305666
41	91	44.418465	44.418465	44.418465
41	92	44.384682	44.384682	44.384682
41	93	42.579338	42.579338	42.579338
41	94	33.015148	33.015148	33.015148
41	95	37.121422	37.121422	37.121422
41	96	48.166378	48.166378	48.166378
41	97	31.400637	31.400637	31.400637
41	98	87.321246	87.321246	87.321246
41	99	47.381431	47.381431	47.381431
41	100	60.464866	60.464866	60.464866
41	101	34.132096	34.132096	34.132096
42	1	30.805844	30.805844	30.805844
42	2	34.481879	34.481879	34.481879
42	3	36.00000	36.000000	36.000000
42	4	37.363083	37.363083	37.363083
42	5	38.327536	38.327536	38.327536
42	6	39.293765	39.293765	39.293765
42	7	40.000000	40.000000	40.000000
42	8	43.000000	43.000000	43.000000
42	9	43.289722	43.289722	43.289722
42	10	62.481997	62.481997	62.481997
42	11	59.405387	59.405387	59.405387
L				

```
12
                                      61.032778
                                                                       61.032778
                                                                                                        61.032778
42
                   13
                                      58.309519
                                                                       58.309519
                                                                                                        58.309519
42
                   14
                                      66.400301
                                                                       66.400301
                                                                                                        66.400301
42
                   15
                                      60.901560
                                                                       60.901560
                                                                                                        60.901560
                                      66.037868
                                                                       66.037868
                                                                                                        66.037868
                   17
                                      67.742158
                                                                       67.742158
                                                                                                         67.742158
42
                   18
                                      65.299311
                                                                       65.299311
                                                                                                        65.299311
42
                   19
                                      71.386273
                                                                       71.386273
                                                                                                        71.386273
                                      66.940272
42
                   20
                                                                       66.940272
                                                                                                        66.940272
42
                   21
                                      62.096699
                                                                       62.096699
                                                                                                        62.096699
42
                   2.2.
                                      72.277244
                                                                       72.277244
                                                                                                        72.277244
42
                   2.3
                                      62.641839
                                                                       62.641839
                                                                                                        62.641839
                   24
                                      72.801099
                                                                       72.801099
                                                                                                        72.801099
42
42
                   25
                                      63.245553
                                                                       63.245553
                                                                                                        63.245553
42
                   26
                                      73.681748
                                                                       73.681748
                                                                                                        73.681748
42
                   27
                                      58.258047
                                                                       58.258047
                                                                                                        58.258047
                                      54.488531
42
                   28
                                                                       54.488531
                                                                                                        54.488531
42
                   29
                                      56.400355
                                                                       56.400355
                                                                                                        56.400355
42
                   30
                                      51.224994
                                                                       51.224994
                                                                                                        51.224994
42
                   31
                                      54.083269
                                                                       54.083269
                                                                                                        54.083269
42
                   32
                                      50.000000
                                                                       50.000000
                                                                                                        50.000000
                   33
                                                                       53.535035
42
                                      53.535035
                                                                                                        53.535035
42
                   34
                                      56.824291
                                                                       56.824291
                                                                                                        56.824291
42
                   35
                                      48.259714
                                                                      48.259714
                                                                                                        48.259714
42
                   36
                                      13.453624
                                                                     13.453624
                                                                                                        13.453624
                   37
                                      12.206556
                                                                     12.206556
                                                                                                       12.206556
                   38
                                      9.899495
                                                                     9.899495
                                                                                                    9.899495
42
                   39
                                      6.403124
                                                                     6.403124
                                                                                                    6.403124
42
                   40
                                      5.385165
                                                                     5.385165
                                                                                                    5.385165
42
                   41
                                      10.198039
                                                                     10.198039
                                                                                                     10.198039
42
                   43
                                      5.830952
                                                                     5.830952
                                                                                                    5.830952
42
                   44
                                      10.440307
                                                                     10.440307
                                                                                                     10.440307
42
                   45
                                      7.615773
                                                                     7.615773
                                                                                                    7.615773
42
                   46
                                                                       38.639358
                                      38.639358
                                                                                                        38.639358
42
                   47
                                      40.311289
                                                                       40.311289
                                                                                                        40.311289
                                      63.529521
                                                                       63.529521
                   48
                                                                                                        63.529521
See Also
                   49
                                      71.805292
                                                                       71.805292
                                                                                                        71.805292
     • http://en_wikipedia.org/wiki/Vehicle_routing_problem_0
                                                                                                        65.000000
42
                                                                                                        42.379240
                   52
                                      55.081757
42
                                                                       55.081757
                                                                                                        55.081757
                                      55.803226
                                                                       55.803226
                                                                                                        55.803226
Indices and tables
                                      45.486262
                                                                       45.486262
                                                                                                        45.486262
42
                   55
                                      15.297059
                                                                       15.297059
                                                                                                        15.297059
                                                                       31.764760
42 • genindex6
                                      31.764760
                                                                                                        31.764760
                                      40.792156
                                                                       40.792156
                                                                                                        40.792156
42
     • search <sub>58</sub>
42
                                      57.306195
                                                                       57.306195
                                                                                                        57.306195
                                      77.935871
                                                                       77.935871
                                                                                                        77.935871
                                      73.000000
                                                                       73.000000
                                                                                                        73.000000
Graph Operations
                                      45.541190
                                                                       45.541190
                                                                                                        45.541190
                   62
                                      16.401219
                                                                       16.401219
                                                                                                        16.401219
Transformations- Family of function 88-1 Maps a given graphs to 1a new form 40.607881
     • pgr_lineGraph - Experimental 54 Transformation algorithm for generating a Line Graph.
^{42} • pgr\_lineGraphFull - ^{4}Experimental - Transformation algorithm for 1 generating a Line Graph out of each
42
        vertex in the input graph. 629317
                                                                       41.629317
                                                                                                        41.629317
42
                                       33.541020
                                                                       33.541020
                                                                                                        33.541020
                   69
                                      23.430749
42
                                                                       23.430749
                                                                                                        23.430749
6.2.7 pgr_7lineGraph5- £$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$
                                                                                                        35.468296
                                                                                                        23.769729
                                       21.189620
                                                                        21.189620
                                                                                                         21.189620
pgr_lineGraph — Transforms a given graph into its corresponding edge-based graph.
                   74
                                                                       57.974132
42
                                      57.974132
                                                                                                         57.974132
                   75
                                      66.850580
42
                                                                       66.850580
                                                                                                        66.850580
                   76
42
                                      87.800911
                                                                       87.800911
                                                                                                        87.800911
                   77
                                                                       63.031738
                                      63.031738
                                                                                                        63.031738
                                                                       80.056230
                                                                                                        80.056230
62. Experimental Functions 6230
                                                                                                                                                            377
                                                                       53.488316
                                                                                                        53.488316
                                      53.488316
42
                                      52.469038
                                                                       52.469038
                                                                                                         52.469038
```

30.083218

19.235384

30.083218

19.235384

42

42

30.083218

19.235384

Fig. 6.25: Boost Graph Inside

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

Given a graph G, its line graph L(G) is a graph such that:-

- each vertex of L(G) represents an edge of G
- two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G.

The following figures show a graph (left, with blue vertices) and its Line Graph (right, with green vertices).

Signature Summary

```
pgr_lineGraph(edges_sql, directed)
RETURNS SET OF (seq, source, target, cost, reverse_cost)
    OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_lineGraph(edges_sql)
RETURNS SET OF (seq, source, target, cost, reverse_cost) or EMPTY SET
```

The minimal signature is for a **directed** graph:

Example

```
SELECT * FROM pgr_lineGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table'
seq | source | target | cost | reverse_cost
_____
       -18 | 18 | 1 |
  1 |
                                 1
  2 | -17 | 17 | 1 | 3 | -16 | -3 | 1 |
                                 1
                                 -1
       -16 |
  4 |
              16 | 1 |
                                 1
  5 |
       -15 |
              -9 | 1 |
                                  1
       -15 |
               15 | 1 |
  6 |
              -10 |
                     1 |
1 |
  7 |
       -14 |
            12 |
14 |
  8 |
       -14 |
                                 -1
                     1 |
  9 |
       -14 |
                                  1
                     1 |
 10 |
       -10 |
               -7 I
                                  1
                    1 |
              -4 |
       -10 I
 11 |
                                  1
               8 |
                     1 |
 12 |
       -10 |
                                  1
              10 |
                     1 |
 13 I
       -10 I
                                  1
                    1 |
              -8 |
 14 I
       -9 I
                                  1
       -9 | 9 |
-9 | 11 |
               9 |
                     1 |
 15 I
                                  1
 16 |
                    1 |
                                 -1
 17 |
        -8 |
              -7 I
                    1 |
                                 1
 18 |
        -8 |
              -4 | 1 |
 19 |
        -8 |
               8 | 1 |
 20 |
        -7 |
              -6 | 1 |
                                 1
        -6 I
               6 | 1 |
 21 I
                                  1
 22 |
        -4 |
              -1 | 1 |
                                  1
        -4 |
 23 |
               4 | 1 |
                                  1
 24 |
        -3 |
              -2 | 1 |
                                 -1
 25 |
        -3 |
                5 | 1 |
                                 -1
        -2 |
 26 |
               -1 | 1 |
                                 -1
        -2 |
               4 | 1 |
 27 |
                                 -1
               1 | -8 |
 28 |
        -1 |
                     1 |
                                  1
 29 |
         5 I
              -8 |
                      1 |
                                 -1
        5 |
 30 |
                9 |
                     1 |
                                 -1
              11 |
        5 I
 31 |
                     1 |
                                 -1
        7 |
               -7 I
                    1 |
 32 |
                                  1
        7 |
                    1 |
               -4 |
 33 |
                                 1
 34 |
                    1 |
        8 |
              11 |
                                 -1
 35 |
                     1 |
       10 |
              12 |
                                 -1
 36 I
        11 |
              13 I
                     1 |
                                 -1
       12 |
              13 |
 37 |
                     1 |
                                 -1
       13 |
              -15 |
 38 |
                     1 |
                                 -1
       16 |
              -9 |
 39 |
                     1 |
                                 1
 40 |
       16 |
              15 |
                     1 |
(40 rows)
```

Complete Signature

```
pgr_lineGraph(edges_sql, directed);
RETURNS SET OF (seq, source, target, cost, reverse_cost) or EMPTY SET
```

This signature returns the Line Graph of the current graph:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Example

```
SELECT * FROM pgr_lineGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   FALSE
);
seq | source | target | cost | reverse_cost
  1 | -3 | -2 | 1 |
2 | -3 | 5 | 1 |
3 | -2 | 4 | 1 |
                                       -1
                                       -1
  4 |
         1 |
                  4 | 1 |
                                       -1
         4 | 8 | 1 |
4 | 10 | 1 |
5 | 9 | 1 |
  5 |
                                       -1
  6 |
                                       -1
  7 |
                                       -1
                 11 | 1 |
  8 |
         5 |
                                       -1
  9 |
                          1 |
                 7 |
         6 |
                                       _1
 10 |
          7 |
                   8 |
                          1 |
                                       -1
          7 |
 11 |
                 10 |
                          1 |
                                        -1
          8 |
                   9 |
 12 |
                          1 |
                                        -1
          8 |
                 11 |
 13 |
                          1 |
                                        -1
                  15 |
 14 |
          9 |
                          1 |
 15 I
          10 |
                  12 |
                          1 |
                                        -1
 16 |
          10 |
                  14 |
                          1 |
                                       -1
                                       -1
 17 |
          11 |
                  13 |
                          1 |
          12 |
                  13 |
                                       -1
 18 |
                          1 |
 18 | 12 |
19 | 16 |
                                       -1
                 15 |
                          1 |
(19 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target) • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source), • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Type	Description
edges_sql	TEXT	SQL query as described above.
directed	BOOLEAN	 When true the graph is considered as <i>Directed</i>. When false the graph is considered as <i>Undirected</i>.

Description of the return values

RETURNS SETOF (seq, source, target, cost, reverse_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
source	BIGINT	Identifier of the source vertex of the current edge <i>id</i> . • When <i>negative</i> : the source is the reverse edge in the original graph.
target	BIGINT	Identifier of the target vertex of the current edge <i>id</i> . • When <i>negative</i> : the target is the reverse edge in the original graph.
cost	FLOAT	Weight of the edge (source, target). • When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	FLOAT	Weight of the edge (target, source). • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

See Also

- https://en.wikipedia.org/wiki/Line_graph
- The queries use the Sample Data network.

Indices and tables

- genindex
- search

6.2.8 pgr_lineGraphFull - Experimental

pgr_lineGraphFull — Transforms a given graph into a new graph where all of the vertices from the original graph are converted to line graphs.

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Synopsis

pgr_lineGraphFull, converts original directed graph to a directed line graph by converting each vertex to a complete graph and keeping all the original edges. The new connecting edges have a cost 0 and go between the adjacent original edges, respecting the directionality.

A possible application of the resulting graph is "routing with two edge restrictions":

- Setting a cost of using the vertex when routing between edges on the connecting edge
- Forbid the routing between two edges by removing the connecting edge

This is possible because each of the intersections (vertices) in the original graph are now complete graphs that have a new edge for each possible turn across that intersection.

Characteristics

The main characteristics are:

- This function is for directed graphs.
- Results are undefined when a negative vertex id is used in the input graph.
- Results are undefined when a duplicated edge id is used in the input graph.
- Running time: TBD

Signature Summary

```
pgr_lineGraphFull(edges_sql)
RETURNS SET OF (seq, source, target, cost, edge)
OR EMPTY SET
```

Signatures

Minimal signature

```
pgr_lineGraphFull(TEXT edges_sql)
RETURNS SET OF (seq, source, target, cost, edge) OR EMPTY SET
```

Example

```
SELECT * FROM pgr_lineGraphFull(
   'SELECT id, source, target, cost, reverse_cost
     FROM edge_table
     WHERE id IN (4,7,8,10)'
);
seq | source | target | cost | edge
----+-----
                               4
  1 |
        -1 |
                 5 | 1 |
         2 |
                      0 |
                               0
                -1 |
  2 |
                 2 |
                         1 |
  3 |
         -2 |
                              -4
         -3 |
                 8 |
                         1 |
                              -7
  4 |
  5 I
         -4 |
                  6 |
                         1 |
  6 |
         -5 I
                 10 |
                         1 |
                              10
  7 |
          5 |
                 -2 |
                         0 |
  8 |
          5 I
                 -3 |
                         0 |
  9 |
          5 I
                 -4 |
                         0 |
  10 |
          5 |
                 -5 I
                         0 |
         -6 |
                 -2 |
 11 |
                         0 |
 12 |
         -6 |
                 -3 |
                         0 |
                               0
         -6 |
 13 |
                 -4 |
                         0 |
                 -5 I
 14 |
         -6 I
                         0 |
         -7 I
                 -2 |
                         0 |
 15 I
         -7 I
                 -3 |
 16 |
                         0 |
 17 |
         -7 I
                 -4 |
                         0 |
 18 |
         -7 I
                 -5 I
                         0 |
 19 |
         -8 |
                 -2 |
                         0 |
 20 |
         -8 |
                 -3 |
                         0 |
 21 |
         -8 |
                 -4 |
                         0 |
 22 |
         -8 |
                 -5 I
                         0 |
         -9 I
                               7
 23 |
                 -6 |
                         1 |
         8 |
                 -9 I
                               0
 24 |
                         0 |
                 -7 I
 25 I
        -10 I
                         1 |
                              -8
                         0 |
 26 |
                -10 |
                               0
         6 |
 27 |
         -11 |
                 -8 |
                         1 | -10
 28 |
         10 |
                 -11 |
                         0 |
(28 rows)
```

Description of the Signatures

Description of the edges_sql query for dijkstra like functions

edges_sql an SQL query, which should return a set of rows with the following columns:

Column	Type	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end
			point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end
			point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge
			(source, target)
			• When negative:
			edge (source, target)
			does not exist, there-
			fore it's not part of
			the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target,
			source),
			• When negative:
			edge (target, source)
			does not exist, there-
			fore it's not part of
			the graph.

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

Column	Туре	Default	Description
sql	TEXT		SQL query as described above.

Additional Examples

The examples of this section are based on the Sample Data network.

The examples include the subgraph including edges 4, 7, 8, and 10 with reverse_cost.

Example for generating the LineGraphFull

This example displays how this graph transformation works to create additional edges for each possible turn in a graph.

```
SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE id IN (4,7,8,10);
```


In the transformed graph, all of the edges from the original graph are still present (yellow), but we now have additional edges for every turn that could be made across vertex 6 (orange).

Example for creating table that identifies transformed vertices

The vertices in the transformed graph are each created by splitting up the vertices in the original graph. Unless a vertex in the original graph is a leaf vertex, it will generate more than one vertex in the transformed graph. One of the newly created vertices in the transformed graph will be given the same vertex-id as the vertex that it was created from in the original graph, but the rest of the newly created vertices will have negative vertex ids. Following is an example of how to generate a table that maps the ids of the newly created vertices with the original vertex that they were created from

The first step is to store your results graph into a table and then create the vertex mapping table with one row for each distinct vertex id in the results graph.

```
CREATE TABLE lineGraph_edges AS SELECT * FROM pgr_lineGraphFull(
    $$SELECT id, source, target, cost, reverse_cost
    FROM edge_table WHERE id IN (4,7,8,10)$$
);
```

```
SELECT 28

CREATE TABLE lineGraph_vertices AS

SELECT *, NULL::BIGINT AS original_id

FROM (SELECT source AS id FROM lineGraph_edges

UNION

SELECT target FROM lineGraph_edges) as foo

ORDER BY id;

SELECT 16
```

Next, we set the original_id of all of the vertices in the results graph that were given the same vertex id as the vertex that it was created from in the original graph.

```
UPDATE lineGraph_vertices AS r
   SET original_id = v.id
   FROM edge_table_vertices_pgr AS v
   WHERE v.id = r.id;
UPDATE 5
```

Then, we cross reference all of the other newly created vertices that do not have the same original_id and set thier original_id values.

```
WITH
unassignedVertices
 AS (SELECT e.id, e.original_id
       FROM lineGraph_vertices AS e
       WHERE original_id IS NOT NULL),
edgesWithUnassignedSource
 AS (SELECT *
       FROM lineGraph_edges
       WHERE cost = 0 and source IN (SELECT id FROM unassignedVertices)),
edgesWithUnassignedSourcePlusVertices
 AS (SELECT *
       FROM edgesWithUnassignedSource
       JOIN lineGraph_vertices
       ON(source = id)),
{\tt verticesFromEdgesWithUnassignedSource}
 AS (SELECT DISTINCT edgesWithUnassignedSourcePlusVertices.target,
                      edgesWithUnassignedSourcePlusVertices.original_id
       FROM edgesWithUnassignedSourcePlusVertices
       JOIN lineGraph_vertices AS r
       ON(target = r.id AND r.original_id IS NULL))
UPDATE lineGraph_vertices
 SET original_id = verticesFromEdgesWithUnassignedSource.original_id
 FROM verticesFromEdgesWithUnassignedSource
 WHERE verticesFromEdgesWithUnassignedSource.target = id;
UPDATE 8
WITH
unassignedVertices
 AS (SELECT e.id, e.original_id
       FROM lineGraph_vertices AS e
       WHERE original_id IS NOT NULL),
edgesWithUnassignedTarget
 AS (SELECT *
        FROM lineGraph_edges
       WHERE cost = 0 and target IN (SELECT id FROM unassignedVertices)),
edgesWithUnassignedTargetPlusVertices
 AS (SELECT *
       FROM edgesWithUnassignedTarget
       JOIN lineGraph_vertices
       ON(target = id)),
verticesFromEdgesWithUnassignedTarget
 AS (SELECT DISTINCT edgesWithUnassignedTargetPlusVertices.source,
                     edgesWithUnassignedTargetPlusVertices.original_id
```

```
FROM edgesWithUnassignedTargetPlusVertices
JOIN lineGraph_vertices AS r
ON(source = r.id AND r.original_id IS NULL))

UPDATE lineGraph_vertices
SET original_id = verticesFromEdgesWithUnassignedTarget.original_id
FROM verticesFromEdgesWithUnassignedTarget
WHERE verticesFromEdgesWithUnassignedTarget.source = id;

UPDATE 3
```

The only vertices left that have not been mapped are a few of the leaf vertices from the original graph. The following sql completes the mapping for these leaf vertices (in the case of this example graph there are no leaf vertices but this is nessessary for larger graphs).

```
unassignedVertexIds
 AS (SELECT id
       FROM lineGraph_vertices
       WHERE original_id IS NULL),
edgesWithUnassignedSource
 AS (SELECT source, edge
       FROM lineGraph_edges
       WHERE source IN (SELECT id FROM unassignedVertexIds)),
originalEdgesWithUnassignedSource
 AS (SELECT id, source
       FROM edge_table
       WHERE id IN (SELECT edge FROM edgesWithUnassignedSource))
UPDATE lineGraph_vertices AS d
 SET original_id = (SELECT source
                       FROM originalEdgesWithUnassignedSource
                       WHERE originalEdgesWithUnassignedSource.id =
                         (SELECT edge
                            FROM edgesWithUnassignedSource
                            WHERE edgesWithUnassignedSource.source = d.id))
 WHERE id IN (SELECT id FROM unassignedVertexIds);
UPDATE 0
WITH
unassignedVertexIds
 AS (SELECT id
       FROM lineGraph_vertices
       WHERE original_id IS NULL),
edgesWithUnassignedTarget
 AS (SELECT target, edge
       FROM lineGraph_edges
       WHERE target IN (SELECT id FROM unassignedVertexIds)),
originalEdgesWithUnassignedTarget
 AS (SELECT id, target
       FROM edge_table
       WHERE id IN (SELECT edge FROM edgesWithUnassignedTarget))
UPDATE lineGraph_vertices AS d
 SET original_id = (SELECT target
                       FROM originalEdgesWithUnassignedTarget
                       WHERE originalEdgesWithUnassignedTarget.id =
                          (SELECT edge
                            FROM edgesWithUnassignedTarget
                            WHERE edgesWithUnassignedTarget.target = d.id))
 WHERE id IN (SELECT id FROM unassignedVertexIds);
UPDATE 0
```

Now our vertex mapping table is complete:

```
5 |
               5
  6 I
               6
  8 I
               8
 10 |
              10
-11 |
              10
-10 |
              6
 -9 I
              8
 -5 |
               5
 -4 |
               5
               5
 -3 |
               5
 -2 |
 -1 |
               2
 -8 |
               5
 -7 |
               5
               5
 -6 I
(16 rows)
```

Example for running a dijkstra's shortest path with turn penalties

One use case for this graph transformation is to be able to run a shortest path search that takes into account the cost or limitation of turning. Below is an example of running a dijkstra's shortest path from vertex 2 to vertex 8 in the original graph, while adding a turn penalty cost of 100 to the turn from edge 4 to edge -7.

First we must increase set the cost of making the turn to 100:

Then we must run a dijkstra's shortest path search using all of the vertices in the new graph that were created from vertex 2 as the starting point, and all of the vertices in the new graph that were created from vertex 8 as the ending point.

```
SELECT * FROM
  (SELECT * FROM
    (SELECT * FROM pgr_dijkstra($$SELECT seq AS id, * FROM lineGraph_edges$$,
      (SELECT array_agg(id) FROM lineGraph_vertices where original_id = 2),
      (SELECT array_agg(id) FROM lineGraph_vertices where original_id = 8)
   )) as shortestPaths
 WHERE start_vid = 2 AND end_vid = 8 AND (cost != 0 OR edge = -1)) as b;
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
____+
            2 | 2 | 8 | -1 | 1 | 1 |

4 | 2 | 8 | -4 | 5 | 1 |

6 | 2 | 8 | -10 | 25 | 1 |

8 | 2 | 8 | -3 | 4 | 1 |

9 | 2 | 8 | 8 | -1 | 0 |
 29 |
  31 |
                                                                     1
 33 |
                                                                    2
 35 |
                                                                    3
 36 |
(5 rows)
```

Normally the shortest path from vertex 2 to vertex 8 would have an aggregate cost of 2, but since there is a large penalty for making the turn needed to get this cost, the route goes through vertex 6 to avoid this turn.

If you cross reference the node column in the dijkstra results with the vertex id mapping table, this will show you that the path goes from v2 -> v5 -> v6 -> v5 -> v8 in the original graph.

See Also

- http://en.wikipedia.org/wiki/Line_graph
- http://en.wikipedia.org/wiki/Complete_graph

Indices and tables

- genindex
- search

6.2.9 Transformation - Family of functions

- pgr_lineGraph Experimental Transformation algorithm for generating a Line Graph.
- pgr_lineGraphFull Experimental Transformation algorithm for generating a Line Graph out of each vertex in the input graph.

Introduction

This family of functions is used for transforming a given input graph G(V, E) into a new graph G'(V', E').

See Also

Indices and tables

- genindex
- search

6.2.10 See Also

Indices and tables

- genindex
- search

pgRouting Manual, Release v2.6.0					

Change Log

- pgRouting 2.6.0 Release Notes
- pgRouting 2.5.3 Release Notes
- pgRouting 2.5.2 Release Notes
- pgRouting 2.5.1 Release Notes
- pgRouting 2.5.0 Release Notes
- pgRouting 2.4.2 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes
- pgRouting 2.3.2 Release Notes
- pgRouting 2.3.1 Release Notes
- pgRouting 2.3.0 Release Notes
- pgRouting 2.2.4 Release Notes
- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes
- pgRouting 2.1.0 Release Notes
- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes
- pgRouting 1.x Release Notes

7.1 Release Notes

To see the full list of changes check the list of Git commits¹ on Github.

Table of contents

- pgRouting 2.6.0 Release Notes
- pgRouting 2.5.3 Release Notes

¹https://github.com/pgRouting/pgrouting/commits

- pgRouting 2.5.2 Release Notes
- pgRouting 2.5.1 Release Notes
- pgRouting 2.5.0 Release Notes
- pgRouting 2.4.2 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes
- pgRouting 2.3.2 Release Notes
- pgRouting 2.3.1 Release Notes
- pgRouting 2.3.0 Release Notes
- pgRouting 2.2.4 Release Notes
- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes
- pgRouting 2.1.0 Release Notes
- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes
- pgRouting 1.x Release Notes

7.1.1 pgRouting 2.6.0 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.6.0² on Github.

New fexperimental functions

• pgr_lineGraphFull

Bug fixes

- Fix pgr_trsp(text,integer,double precision,integer,double precision,boolean,boolean[,text])
 - without restrictions
 - * calls pgr_dijkstra when both end points have a fraction IN (0,1)
 - * calls pgr_withPoints when at least one fraction NOT IN (0,1)
 - with restrictions
 - * calls original trsp code

²https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=milestone%3A%22Release%202.6.0%22%20

Internal code

- Cleaned the internal code of trsp(text,integer,integer,boolean,boolean [, text])
 - Removed the use of pointers
 - Internal code can accept BIGINT
- · Cleaned the internal code of withPoints

7.1.2 pgRouting 2.5.3 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.3³ on Github.

Bug fixes

• Fix for postgresql 11: Removed a compilation error when compiling with postgreSQL

7.1.3 pgRouting 2.5.2 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.24 on Github.

Bug fixes

• Fix for postgresql 10.1: Removed a compiler condition

7.1.4 pgRouting 2.5.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.15 on Github.

Bug fixes

• Fixed prerequisite minimum version of: cmake

7.1.5 pgRouting 2.5.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.5.0⁶ on Github.

enhancement:

• pgr_version is now on SQL language

 $^{^3} https://github.com/pgRouting/pgrouting/issues?utf8=\%E2\%9C\%93\&q=milestone\%3A\%22Release\%202.5.3\%22\%20$

⁴https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=milestone%3A%22Release%202.5.2%22%20

⁶https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.5.0%22+is%3Aclosed

Breaking change on:

- pgr_edgeDisjointPaths:
 - Added path_id, cost and agg_cost columns on the result
 - Parameter names changed
 - The many version results are the union of the one to one version

New Signatures:

• pgr_bdAstar(one to one)

New Proposed functions

- pgr_bdAstar(one to many)
- pgr_bdAstar(many to one)
- pgr_bdAstar(many to many)
- pgr_bdAstarCost(one to one)
- pgr_bdAstarCost(one to many)
- pgr_bdAstarCost(many to one)
- pgr_bdAstarCost(many to many)
- pgr_bdAstarCostMatrix
- pgr_bdDijkstra(one to many)
- pgr_bdDijkstra(many to one)
- pgr_bdDijkstra(many to many)
- pgr_bdDijkstraCost(one to one)
- pgr_bdDijkstraCost(one to many)
- pgr_bdDijkstraCost(many to one)
- pgr_bdDijkstraCost(many to many)
- pgr_bdDijkstraCostMatrix
- pgr_lineGraph
- pgr_lineGraphFull
- pgr_connectedComponents
- pgr_strongComponents
- pgr_biconnectedComponents
- pgr_articulationPoints
- pgr_bridges

Deprecated Signatures

• pgr_bdastar - use pgr_bdAstar instead

Renamed Functions

- pgr_maxFlowPushRelabel use pgr_pushRelabel instead
- pgr_maxFlowEdmondsKarp -use pgr_edmondsKarp instead
- pgr_maxFlowBoykovKolmogorov use pgr_boykovKolmogorov instead
- pgr_maximumCardinalityMatching use pgr_maxCardinalityMatch instead

Deprecated function

• pgr_pointToEdgeNode

7.1.6 pgRouting 2.4.2 Release Notes

To see the issues closed by this release see the Git closed milestone for $2.4.2^7$ on Github.

Improvement

• Works for postgreSQL 10

Bug fixes

- Fixed: Unexpected error column "cname"
- Replace __linux__ with __GLIBC__ for glibc-specific headers and functions

7.1.7 pgRouting 2.4.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.4.18 on Github.

Bug fixes

- Fixed compiling error on macOS
- Condition error on pgr_withPoints

7.1.8 pgRouting 2.4.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.4.09 on Github.

New Signatures

• pgr_bdDijkstra

⁷https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=milestone%3A%22Release%202.4.2%22%20

⁸https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=milestone%3A%22Release%202.4.1%22%20

⁹https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.4.0%22+is%3Aclosed

New Proposed Signatures

- pgr_maxFlow
- pgr_astar(one to many)
- pgr_astar(many to one)
- pgr_astar(many to many)
- pgr_astarCost(one to one)
- pgr_astarCost(one to many)
- pgr_astarCost(many to one)
- pgr_astarCost(many to many)
- pgr_astarCostMatrix

Deprecated Signatures

• pgr_bddijkstra - use pgr_bdDijkstra instead

Deprecated Functions

• pgr_pointsToVids

Bug fixes

- Bug fixes on proposed functions
 - pgr_withPointsKSP: fixed ordering
- TRSP original code is used with no changes on the compilation warnings

7.1.9 pgRouting 2.3.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.2¹⁰ on Github.

Bug Fixes

- Fixed pgr_gsoc_vrppdtw crash when all orders fit on one truck.
- Fixed pgr_trsp:
 - Alternate code is not executed when the point is in reality a vertex
 - Fixed ambiguity on seq

7.1.10 pgRouting 2.3.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.111 on Github.

 $^{^{10}} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.3.2\%22+is\%3Aclosed$

¹¹https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.1%22+is%3Aclosed

Bug Fixes

- Leaks on proposed max_flow functions
- Regression error on pgr_trsp
- Types discrepancy on pgr_createVerticesTable

7.1.11 pgRouting 2.3.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.0¹² on Github.

New Signatures

- pgr_TSP
- pgr_aStar

New Functions

• pgr_eucledianTSP

New Proposed functions

- pgr_dijkstraCostMatrix
- pgr_withPointsCostMatrix
- pgr_maxFlowPushRelabel(one to one)
- pgr_maxFlowPushRelabel(one to many)
- pgr_maxFlowPushRelabel(many to one)
- pgr_maxFlowPushRelabel(many to many)
- pgr_maxFlowEdmondsKarp(one to one)
- pgr_maxFlowEdmondsKarp(one to many)
- $\bullet \ pgr_maxFlowEdmondsKarp(many\ to\ one)$
- pgr_maxFlowEdmondsKarp(many to many)
- $\bullet \;\; pgr_maxFlowBoykovKolmogorov \; (one \; to \; one) \\$
- pgr_maxFlowBoykovKolmogorov (one to many)
- $\bullet \ pgr_maxFlowBoykovKolmogorov \ (many \ to \ one)$
- pgr_maxFlowBoykovKolmogorov (many to many)
- pgr_maximumCardinalityMatching
- pgr_edgeDisjointPaths(one to one)
- pgr_edgeDisjointPaths(one to many)
- pgr_edgeDisjointPaths(many to one)
- pgr_edgeDisjointPaths(many to many)
- pgr_contractGraph

¹²https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.0%22+is%3Aclosed

Deprecated Signatures

- pgr_tsp use pgr_TSP or pgr_eucledianTSP instead
- pgr_astar use pgr_aStar instead

Deprecated Functions

- pgr_flip_edges
- pgr_vidsToDmatrix
- pgr_pointsToDMatrix
- pgr_textToPoints

7.1.12 pgRouting 2.2.4 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.4¹³ on Github.

Bug Fixes

- Bogus uses of extern "C"
- Build error on Fedora 24 + GCC 6.0
- Regression error pgr_nodeNetwork

7.1.13 pgRouting 2.2.3 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.3¹⁴ on Github.

Bug Fixes

• Fixed compatibility issues with PostgreSQL 9.6.

7.1.14 pgRouting 2.2.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.2¹⁵ on Github.

Bug Fixes

• Fixed regression error on pgr_drivingDistance

7.1.15 pgRouting 2.2.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.116 on Github.

¹³https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.4%22+is%3Aclosed

¹⁴https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.3%22+is%3Aclosed

¹⁵https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.2%22+is%3Aclosed

 $^{^{16}} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A2.2.1+is\%3Aclosed$

Bug Fixes

- Server crash fix on pgr_alphaShape
- Bug fix on With Points family of functions

7.1.16 pgRouting 2.2.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.0¹⁷ on Github.

Improvements

- pgr_nodeNetwork
 - Adding a row_where and outall optional parameters
- Signature fix
 - pgr_dijkstra to match what is documented

New Functions

- pgr_floydWarshall
- pgr_Johnson
- pgr_dijkstraCost(one to one)
- pgr_dijkstraCost(one to many)
- pgr_dijkstraCost(many to one)
- pgr_dijkstraCost(many to many)

Proposed functionality

- pgr_withPoints(one to one)
- pgr_withPoints(one to many)
- pgr_withPoints(many to one)
- pgr_withPoints(many to many)
- pgr_withPointsCost(one to one)
- pgr_withPointsCost(one to many)
- pgr_withPointsCost(many to one)
- pgr_withPointsCost(many to many)
- pgr_withPointsDD(single vertex)
- pgr_withPointsDD(multiple vertices)
- pgr_withPointsKSP
- pgr_dijkstraVia

 $^{^{17}} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.2.0\%22+is\%3Aclosed$

Deprecated functions:

- pgr_apspWarshall use pgr_floydWarshall instead
- pgr_apspJohnson use pgr_Johnson instead
- pgr_kDijkstraCost use pgr_dijkstraCost instead
- pgr_kDijkstraPath use pgr_dijkstra instead

Renamed and deprecated function

• pgr_makeDistanceMatrix renamed to _pgr_makeDistanceMatrix

7.1.17 pgRouting 2.1.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.1.0¹⁸ on Github.

New Signatures

- pgr_dijkstra(one to many)
- pgr_dijkstra(many to one)
- pgr_dijkstra(many to many)
- pgr_drivingDistance(multiple vertices)

Refactored

- pgr_dijkstra(one to one)
- pgr_ksp
- pgr_drivingDistance(single vertex)

Improvements

• pgr_alphaShape function now can generate better (multi)polygon with holes and alpha parameter.

Proposed functionality

- Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)
 - pgr_pointToEdgeNode convert a point geometry to a vertex_id based on closest edge.
 - pgr_flipEdges flip the edges in an array of geometries so the connect end to end.
 - pgr_textToPoints convert a string of x,y;x,y;... locations into point geometries.
 - pgr_pointsToVids convert an array of point geometries into vertex ids.
 - pgr_pointsToDMatrix Create a distance matrix from an array of points.
 - pgr_vidsToDMatrix Create a distance matrix from an array of vertix_id.
 - pgr_vidsToDMatrix Create a distance matrix from an array of vertix_id.
- Added proposed functions from GSoc Projects:

 $^{^{18}} https://github.com/pgRouting/pgrouting/issues? q=is\%3A issue+milestone\%3A\%22 Release+2.1.0\%22+is\%3A closed to the control of the cont$

- pgr_vrppdtw
- pgr_vrponedepot

Deprecated functions

- pgr_getColumnName
- pgr_getTableName
- pgr_isColumnCndexed
- pgr_isColumnInTable
- pgr_quote_ident
- pgr_versionless
- pgr_startPoint
- pgr_endPoint
- pgr_pointToId

No longer supported

• Removed the 1.x legacy functions

Bug Fixes

• Some bug fixes in other functions

Refactoring Internal Code

- A C and C++ library for developer was created
 - encapsulates postgreSQL related functions
 - encapsulates Boost.Graph graphs
 - * Directed Boost.Graph
 - * Undirected Boost.graph.
 - allow any-integer in the id's
 - allow any-numerical on the cost/reverse_cost columns
- \bullet Instead of generating many libraries: All functions are encapsulated in one library The library has the prefix 2-1-0

7.1.18 pgRouting 2.0.1 Release Notes

Minor bug fixes.

Bug Fixes

• No track of the bug fixes were kept.

7.1.19 pgRouting 2.0.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.0.0¹⁹ on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility to pgRouting 1.x releases. The main Goals for this release are:

- Major restructuring of pgRouting.
- · Standardization of the function naming
- Preparation of the project for future development.

As a result of this effort:

- pgRouting has a simplified structure
- · Significant new functionality has being added
- · Documentation has being integrated
- · Testing has being integrated
- And made it easier for multiple developers to make contributions.

Important Changes

- Graph Analytics tools for detecting and fixing connection some problems in a graph
- A collection of useful utility functions
- Two new All Pairs Short Path algorithms (pgr_apspJohnson, pgr_apspWarshall)
- Bi-directional Dijkstra and A-star search algorithms (pgr_bdAstar, pgr_bdDijkstra)
- One to many nodes search (pgr_kDijkstra)
- K alternate paths shortest path (pgr_ksp)
- New TSP solver that simplifies the code and the build process (pgr_tsp), dropped "Gaul Library" dependency
- Turn Restricted shortest path (pgr_trsp) that replaces Shooting Star
- Dropped support for Shooting Star
- Built a test infrastructure that is run before major code changes are checked in
- Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.
- Improved build process for Windows
- Automated testing on Linux and Windows platforms trigger by every commit
- Modular library design
- Compatibility with PostgreSQL 9.1 or newer
- Compatibility with PostGIS 2.0 or newer
- Installs as PostgreSQL EXTENSION
- Return types re factored and unified
- Support for table SCHEMA in function parameters
- Support for st_ PostGIS function prefix
- Added pgr_ prefix to functions and types
- Better documentation: http://docs.pgrouting.org

¹⁹https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.0.0%22+is%3Aclosed

· shooting_star is discontinued

7.1.20 pgRouting 1.x Release Notes

To see the issues closed by this release see the Git closed issues for $1.x^{20}$ on Github. The following release notes have been copied from the previous RELEASE_NOTES file and are kept as a reference.

Changes for release 1.05

· Bug fixes

Changes for release 1.03

- Much faster topology creation
- · Bug fixes

Changes for release 1.02

- · Shooting* bug fixes
- Compilation problems solved

Changes for release 1.01

· Shooting* bug fixes

Changes for release 1.0

- Core and extra functions are separated
- · Cmake build process
- Bug fixes

Changes for release 1.0.0b

- Additional SQL file with more simple names for wrapper functions
- Bug fixes

Changes for release 1.0.0a

- Shooting* shortest path algorithm for real road networks
- Several SQL bugs were fixed

Changes for release 0.9.9

- PostgreSQL 8.2 support
- Shortest path functions return empty result if they could not find any path

 $^{^{20}} https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+1.x\%22+is\%3Aclosed$

Changes for release 0.9.8

- Renumbering scheme was added to shortest path functions
- Directed shortest path functions were added
- routing_postgis.sql was modified to use dijkstra in TSP search

Indices and tables

- genindex
- search

 $^{{}^{21}}http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-beginners/6$