

Chapitre VII - Les intégrales

 ${\sf Bacomathiques-https://bacomathiqu.es}$

Table des matières		
I - Calcul d'aire		
1.	Qu'est-ce-qu'une intégrale?	
2.	Comment calculer une intégrale?	
3.	Positivité de l'intégrale	
II - Propriétés de l'intégrale 5		
1.	Propriétés algébriques	j
2.	Linéarité	j
3.	Relation de Chasles	
III - Calculs particuliers 6		
1.	Intégrales de fonctions paires et impaires	j
2.	Intégrales de fonctions périodiques	•
3.	Valeur moyenne d'une fonction	
4.	Aire entre deux courbes	
5.	Primitive s'annulant en a	

I - Calcul d'aire

1. Qu'est-ce-qu'une intégrale?

Dans un repère orthogonal, on prends un point A(1; 1) et on appelle **Unité d'Aire** (U.A.) l'aire du rectangle formé par les points OIA et J.

Soient a et b deux réels avec $a \leq b$ et f une fonction **continue** sur [a;b]. L'intégrale de la fonction f sur [a;b] notée $\int_a^b f(x) \, \mathrm{d}x$ représente l'aire entre la courbe de f et l'axe des abscisses délimitée par les droites d'équation x=a et x=b et est exprimée en **U.A.**.

On dit que les réels a et b sont les **bornes** de l'intégrale.

2. Comment calculer une intégrale?

Pour connaître une intégrale, il faut savoir calculer la primitive d'une fonction donnée (voir le cours sur les Primitives). Soient deux réels a et b avec une fonction f continue sur un intervalle I (on note F la primitive de cette fonction). Alors l'intégrale de la fonction f entre les bornes f0 et f1 est donnée par la formule suivante :

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(a) - F(b)$$

Exemple: On veut calculer l'aire entre la courbe d'une fonction f définie par f(x) =2x + 1 et l'axe des abscisses sur l'intervalle [1; 4]:

 $\mathbf{1}^{\mathsf{ère}}$ étape : On cherche une primitive de f. On trouve $F(x) = x^2 + x = x(x+1)$. $\mathbf{2}^{\mathsf{nde}}$ étape : On calcule l'intégrale. On a $\int_1^4 2x + 1 \, \mathrm{d}x = \left[x(x+1)\right]_1^4 = 4(4+1)$ — 1(1+1) = 3 - 20 = 18 U.A.

Positivité de l'intégrale

Soient deux réels a et b et une fonction f continue sur un intervalle I. De manière générale, le signe de l'intégrale de f sur [a;b] dépend du signe de f. Ainsi :

- $\begin{array}{l} \text{ Si } f>0 \text{ sur } [a;b] \text{, alors } \int_a^b f(x) \,\mathrm{d}x>0 \\ \text{ Si } f<0 \text{ sur } [a;b] \text{, alors } \int_a^b f(x) \,\mathrm{d}x<0 \\ \text{ Soit } c\in\mathbb{R} \text{ avec } a< c< b. \text{ Si } f>0 \text{ sur } [a;c] \text{ et si } f<0 \text{ sur } [b;c] \text{ (output)} \end{array}$ inversement si f<0 sur [a;c] et si f>0 sur [b;c]), on ne conna de l'intégrale. Le signe dépend de l'aire qui sera la plus "grande". — Si a=b, alors $\int_a^b f(x) \, \mathrm{d}x=0$. inversement si f < 0 sur [a; c] et si f > 0 sur [b; c]), on ne connaît pas le signe
- Soit g une fonction définie sur I avec f>g sur I, alors $\int_a^b f(x) \, \mathrm{d}x > \int_a^b g(x) \, \mathrm{d}x$.

Exemple: On veut calculer l'aire sous la courbe d'une fonction f définie par f(x) = xsur l'intervalle [-2; 2]:

 $1^{\text{ère}}$ étape : On cherche une primitive de f. On trouve $F(x) = \frac{x^2}{2}$.

 $\mathbf{2^{nde}} \text{ \'etape : On calcule l'int\'egrale. On a } \int_{-2}^2 x \, \mathrm{d}x = \left[\frac{x^2}{2}\right]_{-2}^2 = \frac{4}{2} - \frac{4}{2} = 0 \text{ U.A. (logique car l'aire au dessus de la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe de la fonction } f \text{ sur } [-2;0] \text{ est \'egale à l'aire sous la la courbe } f \text{ est \'egale } f \text{ l'aire } f \text{ est \'egale } f \text{ es$ courbe de f sur [0; 2].

Ainsi, cette intégrale sera positive :

Et cette intégrale sera négative :

Page 4 sur 8

II - Propriétés de l'intégrale

1. Propriétés algébriques

Soient deux réels a et b et une fonction f **continue** sur un intervalle I. k est un réel quelconque. On a les propriétés suivantes :

$$- \int_a^b f(x) dx = - \int_b^a f(x) dx$$

$$- \int_a^b k \times f(x) dx = k \times \int_b^a f(x) dx$$

2. Linéarité

Soient deux réels a et b et deux fonction f et g continues sur un intervalle I. k et l sont deux réels quelconques :

$$- \int_a^b f(x) + g(x) dx = \int_b^a f(x) dx + \int_b^a g(x) dx$$

$$- \int_a^b k \times f(x) + l \times g(x) dx = k \times \int_b^a f(x) dx + l \times \int_b^a g(x) dx$$

3. Relation de Chasles

Soient trois réels a, b, c et une fonction f continue sur un intervalle I. La relation de Chasles nous donne la propriété suivante :

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Exemple: On veut calculer l'aire entre la courbe d'une fonction f définie par f(x) = |x| et l'axe des abscisses sur l'intervalle [-2;4] (Rappel : la fonction valeur absolue est définie par $x \mapsto -x$ sur $]-\infty;0]$ et par $x \mapsto x$ sur $[0;+\infty[)$.

 $\begin{array}{l} \mathbf{1^{\grave{e}re}} \ \ \check{\mathbf{e}tape} : \ \mathsf{On} \ \ \mathsf{s\acute{e}pare} \ \ \mathsf{l'int\acute{e}grale} \ \ \grave{\mathbf{a}} \ \ \mathsf{l'aide} \ \ \mathsf{de} \ \ \mathsf{la} \ \ \mathsf{relation} \ \ \mathsf{de} \ \mathsf{Chasles} : \ I = \int_{-2}^{4} |x| \, \mathrm{d}x = \int_{-2}^{0} -x \, \mathrm{d}x + \int_{0}^{4} x \, \mathrm{d}x. \\ \mathbf{2^{nde}} \ \ \ \ \mathsf{\acute{e}tape} : \ \mathsf{On} \ \ \mathsf{calcule} \ \ \mathsf{l'int\acute{e}grale}. \ \mathsf{On} \ \ \mathsf{a} \ \ I = \int_{-2}^{0} -x \, \mathrm{d}x + \int_{0}^{4} x \, \mathrm{d}x = \left[-\frac{x^{2}}{2} \right]_{-2}^{0} + \frac{x^{2}}{2} \left[-\frac{$

III - Calculs particuliers

1. Intégrales de fonctions paires et impaires

Soit f une fonction paire (comme $x \mapsto x^2$) définie sur I, on a la relation suivante pour tout $a \in I$ (-a doit être dans I) :

$$\int_{-a}^{a} f(x) \, dx = 2 \times \int_{0}^{a} f(x) \, dx = 2 \times \int_{-a}^{0} f(x) \, dx$$

Si f est une fonction impaire (comme $x \mapsto x^3$), on a la relation suivante :

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

Ces deux relations peuvent se retrouver visuellement, pour les fonctions paires (l'aire du côté gauche par rapport à (Oy) est égale à l'aire de l'autre côté de (Oy), et les deux sont positives; on peut donc les additionner pour retrouver l'aire totale) :

2. Intégrales de fonctions périodiques

Soit f une fonction périodique de période k (comme $x\mapsto cos(x)$ avec $k=2\pi$) définie sur I, on a la relation suivante pour tout $a\in I$ (-a doit être dans I) :

$$\int_0^k f(x) \, \mathrm{d}x = \int_0^{a+k} f(x) \, \mathrm{d}x$$

3. Valeur moyenne d'une fonction

Soient a et b deux réels avec $a \le b$ et f une fonction **continue** sur [a;b]. La valeur moyenne de f sur [a;b] est donnée par la formule suivante :

$$\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$$

4. Aire entre deux courbes

Soient a et b deux réels avec $a \le b$ et deux fonctions f et g continues sur [a;b]. Si on f>g sur cet intervalle, alors l'aire entre les deux courbes est donnée par la relation suivante :

$$\int_a^b f(x) - g(x) \, \mathrm{d}x$$

5. Primitive s'annulant en a

Soient une fonction f continue sur un intervalle I et un réel $a \in \mathbb{R}$. La primitive de f (notée F) qui vaut 0 quand x=a est donnée par la formule :

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x$$