Do Large Language Models Understand Chemistry? A Conversation with

	21/acs.jcim.3c00285			
0		READS 11		
2 author	ors, including:			
	Andre Silva Pimentel			
	Pontifícia Universidade Católica do Rio de Janeiro			
	91 PUBLICATIONS 1,269 CITATIONS			
	SEE PROFILE			
Some of the authors of this publication are also working on these related projects:				
Some of the dutilots of this publication are also nothing on these reduced projects.				
Project Coarse-grained molecular dynamics View project				
Project	course grained molecular dynamics view project			
	Combbasis and Interfacial Characterization of Diadogradable Confestion & Viscons			
Project	Synthesis and Interfacial Characterization of Biodegradable Surfactants View project			

Do Large Language Models Understand Chemistry? A Conversation with ChatGPT

Cayque Monteiro Castro Nascimento and André Silva Pimentel*

Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil

*Corresponding author: a_pimentel@puc-rio.br

Abstract

The Large language models has promised a revolution answering to complex questions using the ChatGPT model. Its application in Chemistry is still in the infancy. This viewpoint addresses the question of how well LLM understands Chemistry by posing five simple tasks in different subareas of Chemistry.

Large language models (LLM) are tools of artificial intelligence (AI) that uses machine learning algorithms to generate text. This allows them to guess or predict words and create phrases, paragraphs, and a full essay that reflect how humans write and speak. These tasks are performed with unbelievable proficiency in different languages.¹⁻³ LLM have recently remade natural language processing because they have helped to develop robust trained models for many different tasks using datasets with even billion of words.⁴⁻⁷ These models are also trained using complex algorithms to recognize word-based patterns, allowing them to learn its context and natural language.^{8,9} LLM are input with text excerpts that are partially masked or obscured. Thus, a neural network attempts to predict the absent elements and then evaluates the prediction to the original text. The neural network executes this task iteratively adjusting parameters based on the output. Finally, this neural network builds a model of how words are related to each other in sentences.^{10–12,13}. LLM a powerful and versatile tool to many applications that might include understanding chemistry perhaps.^{14–19,20}

Examples of LLM are: 1) Turing NLG was released and developed by Microsoft in early 2020 with the largest amount of data to date, a 17-billion parameters;²¹ 2) Gopher is a model with 280-billion-parameters developed by DeepMind.²² It excels in STEM disciplines, which is the first clue that LLM can understand Chemistry; 3) the GPT-3 model that is developed by the AI research and deployment company OpenAl. It is nurtured with a publicly available dataset of around 570 gigabytes of text information. GPT-3 has ever released one of the largest neural networks that can reconstruct merely anything with a language structure, including a computer code; 20,23 and 4) the Galactica, a huge opensource language model designed to help scientists, was released by Meta that hoped to clean up its image from criticism.²⁴ After just three days, it decided to not demonstrate its model to the public, supposedly because it might not work as well as users want, or not work with the necessary ethics, receiving more critics.²⁵ Critics comment that a blind spot to the serious limitations of the big language models, especially because the data used to build the models is sometimes not curated, freely available anywhere on the web or even from secondary literature.²⁵ From this point of view, if it is asked about a physical or chemical property, LLM can answer any value or property about a chemical compound,

wrong or correct, just because the data is not curated or from secondary literature. Therefore, it is important to remember that LLM has limited understanding of the text it analyzes or generates. If LLM capture this wrong value in its training, it might answer this value after being asked. The generated answers may be apparently valid, but LLM does not have the ability to reason or demonstrate understanding about the subject. LLM is also not able to respond about future trends in Chemistry. There are also several other limitations.^{24,25}

The aim of this viewpoint is to raise simple tasks that are answered correctly or incorrectly, precise, or not, using LLM in Chemistry. Criticisms remind that the only thing the LLM "know" for sure is how words and sentences are formed. Everything else is speculation. Is this criticism too strong? It is important to mention that what is speculation now might not be speculation in the future when the LLMs will be better built using more reliable data. ²⁶ In this viewpoint we briefly review some of the shortcoming still present in LLMs available nowadays with the intent to bring the attention of users and developers to the need for advancements.

To illustrate the underlying issues, we focus our discussion on specific tasks that LLMs might be applied in Chemistry using the OpenAl ChatGPT with the InstructGPT model, text-davinci-003, which has knowledge of Chemistry equations and common calculations.²⁷ However, the outcomes might not be of relevance to other LLM described anywhere. It follows the control parameters used in the predictions made in this viewpoint. Temperature is one of the most important settings to control the output of the GPT-3 engine. It controls the randomness of the generated text.²⁸ A value of 0 makes the engine deterministic, which means that it will always generate the same output for a given input text. It was used 0.1 to be more deterministic. The maximum tokens are 256 (1 token is around 4 characters) that can be generated by the model.²⁹ It was used a standard "top p" parameter equal to 1 that controls how many different words or phrases the language model considers when it is trying to predict a sentence. It was used a frequency penalty of 0 to lower the chances of a word being selected again. It was also used a presence penalty of zero that encourages the model to make novel predictions.

1st Task: Convert compound name into the SMILES chemical representation, and vice-versa.³⁰ ³¹

The attempt to convert compound name into the SMILES chemical representation used the following question: "What is the SMILES representation of {compound name}?"

The attempt to convert SMILES into the compound name used the following question: "What is the compound name whose the SMILES representation is {SMILES}?"

The conversion of compound SMILES names to chemical representations, 30 and vice-versa, is a difficult task for LLMs even for the case of simple alkanes and alkenes (Table 1). The hit rate is around 27 % for both tasks. It is challenging even for very small molecules such as alkanes of 2 or three carbon atoms. It is also difficult for IUPAC or common names of some compounds. For larger straight chain, branched, cyclic or aromatic hydrocarbon compounds of 4 to 10 carbon atoms, the ChatGPT model makes a lot of confusion as it can be observed in Table 1. It does not comprehend the difference between alkanes and alkenes, benzene and cyclohexene, two alkanes with the difference of several carbon atoms, cis and trans isomers, and so on. It is also interesting that it adds halogen or oxygen atoms that do not exist in the molecule. More robust strings representations may be more suitable, but a couple attempts showed that the ChatGPT model does not understand the actual and robust SELFIES representation, for example. 32,33

2nd Task: Finding information on octanol-water partition coefficient of chemical compounds.^{34,35}

The attempt to find octanol-water partition coefficient of essential oil components was made using the following question: "What is the octanol-water partition coefficient of the {compound name}?"

The experimental octanol-water partition coefficient (logP_{exp}) of essential oil components is compared with what ChatGPT finds in the literature (logP_{ChatGPT}) (Table 2). It is important to mention that the experimental techniques used to measure this property for hydrophobic molecules are not the standard ones.^{36–38} The ChatGPT model found reasonable values for this property, sometimes much better than those found using bio-cheminformatics tools.

Excluding the unknown octanol-water partition coefficients (ChatGPT model answer the octanol-water partition coefficient is unknown of some compounds), the mean relative error was around 31% that is very reasonable for this kind of complex molecules.

3rd Task: Getting structural information on coordination compounds.³⁹

The attempt to find the geometry of coordination compounds was performed using the following question: What is the geometry of the coordination compound {compound}?

The geometries of coordination compounds with coordination numbers from 2 to 12 are predicted in Table 3. The ChatGPT model makes the right prediction in 5 from 12 coordination compounds. It is important to mention that it predicts almost correctly two coordination compounds, K₃[NbOF₆] and (NH₄)₂Ce(NO₃)₆. Both compounds are only a different kind of octahedron. So, if this is considered correct, the hit rate of the ChatGPT model is 58%, which is considered good because some of these compounds are not common.

4th Task: Water solubility of polymers.⁴⁰

The attempt to find the water solubility of polymers was made using the following question: What is the water solubility of {polymer}?

The ChatGPT model makes the correct prediction of the water solubilities of eleven polymers (Table 4) because they have important applications in the industry and academy. It is honest to note that this task is simple to predict even for a student because the chemical structure and functional groups of the monomer are clear and simple evidence for a student to make a good prediction. Also, it is important to mention that the ChatGPT prediction is more reliable when the question is about something contextualized.

5th Molecular point groups.⁴¹

The attempt to find the molecular point groups of the molecules was performed using the following question: What is the molecular point group of {molecule}?

The ChatGPT model makes the right prediction in 6 from 10 molecular point groups of simple molecules compounds (Table 5). It is also considered

reasonable because this subject is not as popular and common as coordination chemistry, for example. If complex molecules are used in these questions as used for the coordination chemistry subject, the hit rate might be less than 60%.

Concluding remarks

LLMs are nowadays applied to interpret questions in Chemistry subjects and answer them to understand if LLMs can comprehend Chemistry. Although researchers have recently stated that they found high accuracy on chemistry questions using some tricks, 31 it is presented here in five tasks that the accuracy in answering the questions was between 25 to 100% without any tricks. The low or high accuracy depends on several important considerations: reasonable prompts should give correct answers, questions on popular subjects are easily answered, very specific topics that are not well included in a database or are not well trained in the model gives low accuracy, and the development of better prompt or strategies for training and fitting this knowledge in models might output better results. 13

In this viewpoint, it is attempted to mimic a regular student prompting the ChatGPT model to answer on Chemistry subjects without using any tricks such as inserting copyright notices in source files or finetuning with human feedback. Despite, aligning language models with human intent is a promising direction to get correct answers.^{13,31} Nevertheless, it is important that care must be taken using completions with difficult prompts.²⁶ It is also noted that LLMs always answer something. It is somewhat interesting and surprising that non-English languages may generate even better outputs.

It is disappointed that the conversion of SMILES representation into compound names, and vice-versa, gives such low accuracy. This prompt gives a low hit rate because the answer sometimes misses or add a methyl group, for example. Other confusions are: including a non-existent atom in the representation, confounding between regular cyclic and aromatic, or not understanding isomers. Unfortunately, the ChatGPT model did not perform well in several attempts to understand the most actual and robust string representation, SELFIES. 32,33

Finally, it is essential to give a rationalist prediction of future in the field of LLMs. It is important to mention that neither experimental nor computational chemists should be feared to the development of LLMs. The automation of tasks should not reduce the need for hands and creativity of experimental or computational chemists. Instead, many exciting and better artificial intelligence tools^{42–44} should be integrated into research to expand and solve even complex problems that challenge several researchers in long period of time, reducing the effort and facilitating the resolution of the problem.

Acknowledgments

The authors are thankful to the research productivity fellowship granted by CNPq (310166/2020-9), the INCT-FCx (CNPq Grants 573560/2008-0, 465259/2014-6 and 302554/2017-3, and FAPESP Grant 2014/50983-3), and CAPES (Finance Code 001). The authors also acknowledge the FAPERJ NanoHealth Research Network (E-26/010.000983/2019), the FAPERJ Program for Thematic Projects in the State of Rio de Janeiro (210.104/2020), and the FAPERJ award "Scientist of Our State" (201.186/2022).

Data and code availability

The code is executed in Python 3.8.10 and available on https://github.com/andresilvapimentel/Al4Chem. Access to OpenAl GPT-3 InstructGPT (text-davinci-003) is governed by OpenAl and not the author.

References

- (1) Bird, S.; Klein, E.; Loper, E. *Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit*, 1st ed.; O'Reilly Media, 2009; Vol. 1.
- (2) Tunstall, L.; von Werra, L.; Wolf, T. *Natural Language Processing with Transformers: Building Language Applications with Hugging Face*, 1st ed.; O'Reilly Media, 2022; Vol. 1.
- (3) Kublik, S.; Saboo, S. *GPT-3: Building Innovative NLP Products Using Large Language Models*, 1st ed.; O'Reilly Media, 2022; Vol. 1.
- (4) Hocky, G. M.; White, A. D. Natural Language Processing Models That Automate Programming Will Transform Chemistry Research and Teaching. *Digit Discov.* **2022**, *1*, 79–83.
- (5) Srivastava, A.; Rastogi, A.; Rao, A.; Shoeb, A. A. M.; Abid, A.; Fisch, A.; Brown, A. R.; Santoro, A.; Gupta, A.; Garriga-Alonso, A.; Kluska, A.; Lewkowycz, A.; Agarwal, A.;

Power, A.; Ray, A.; Warstadt, A.; Kocurek, A. W.; Safaya, A.; Tazarv, A.; Xiang, A.; Parrish, A.; Nie, A.; Hussain, A.; Askell, A.; Dsouza, A.; Slone, A.; Rahane, A.; Iyer, A. S.; Andreassen, A.; Madotto, A.; Santilli, A.; Stuhlmüller, A.; Dai, A.; La, A.; Lampinen, A.; Zou, A.; Jiang, A.; Chen, A.; Vuong, A.; Gupta, A.; Gottardi, A.; Norelli, A.; Venkatesh, A.; Gholamidavoodi, A.; Tabassum, A.; Menezes, A.; Kirubarajan, A.; Mullokandov, A.; Sabharwal, A.; Herrick, A.; Efrat, A.; Erdem, A.; Karakaş, A.; Roberts, B. R.; Loe, B. S.; Zoph, B.; Bojanowski, B.; Özyurt, B.; Hedayatnia, B.; Neyshabur, B.; Inden, B.; Stein, B.; Ekmekci, B.; Lin, B. Y.; Howald, B.; Diao, C.; Dour, C.; Stinson, C.; Argueta, C.; Ramírez, C. F.; Singh, C.; Rathkopf, C.; Meng, C.; Baral, C.; Wu, C.; Callison-Burch, C.; Waites, C.; Voigt, C.; Manning, C. D.; Potts, C.; Ramirez, C.; Rivera, C. E.; Siro, C.; Raffel, C.; Ashcraft, C.; Garbacea, C.; Sileo, D.; Garrette, D.; Hendrycks, D.; Kilman, D.; Roth, D.; Freeman, D.; Khashabi, D.; Levy, D.; González, D. M.; Perszyk, D.; Hernandez, D.; Chen, D.; Ippolito, D.; Gilboa, D.; Dohan, D.; Drakard, D.; Jurgens, D.; Datta, D.; Ganguli, D.; Emelin, D.; Kleyko, D.; Yuret, D.; Chen, D.; Tam, D.; Hupkes, D.; Misra, D.; Buzan, D.; Mollo, D. C.; Yang, D.; Lee, D.-H.; Shutova, E.; Cubuk, E. D.; Segal, E.; Hagerman, E.; Barnes, E.; Donoway, E.; Pavlick, E.; Rodola, E.; Lam, E.; Chu, E.; Tang, E.; Erdem, E.; Chang, E.; Chi, E. A.; Dyer, E.; Jerzak, E.; Kim, E.; Manyasi, E. E.; Zheltonozhskii, E.; Xia, F.; Siar, F.; Martínez-Plumed, F.; Happé, F.; Chollet, F.; Rong, F.; Mishra, G.; Winata, G. I.; de Melo, G.; Kruszewski, G.; Parascandolo, G.; Mariani, G.; Wang, G.; Jaimovitch-López, G.; Betz, G.; Gur-Ari, G.; Galijasevic, H.; Kim, H.; Rashkin, H.; Hajishirzi, H.; Mehta, H.; Bogar, H.; Shevlin, H.; Schütze, H.; Yakura, H.; Zhang, H.; Wong, H. M.; Ng, I.; Noble, I.; Jumelet, J.; Geissinger, J.; Kernion, J.; Hilton, J.; Lee, J.; Fisac, J. F.; Simon, J. B.; Koppel, J.; Zheng, J.; Zou, J.; Kocoń, J.; Thompson, J.; Kaplan, J.; Radom, J.; Sohl-Dickstein, J.; Phang, J.; Wei, J.; Yosinski, J.; Novikova, J.; Bosscher, J.; Marsh, J.; Kim, J.; Taal, J.; Engel, J.; Alabi, J.; Xu, J.; Song, J.; Tang, J.; Waweru, J.; Burden, J.; Miller, J.; Balis, J. U.; Berant, J.; Frohberg, J.; Rozen, J.; Hernandez-Orallo, J.; Boudeman, J.; Jones, J.; Tenenbaum, J. B.; Rule, J. S.; Chua, J.; Kanclerz, K.; Livescu, K.; Krauth, K.; Gopalakrishnan, K.; Ignatyeva, K.; Markert, K.; Dhole, K. D.; Gimpel, K.; Omondi, K.; Mathewson, K.; Chiafullo, K.; Shkaruta, K.; Shridhar, K.; McDonell, K.; Richardson, K.; Reynolds, L.; Gao, L.; Zhang, L.; Dugan, L.; Qin, L.; Contreras-Ochando, L.; Morency, L.-P.; Moschella, L.; Lam, L.; Noble, L.; Schmidt, L.; He, L.; Colón, L. O.; Metz, L.; Şenel, L. K.; Bosma, M.; Sap, M.; ter Hoeve, M.; Faroogi, M.; Faruqui, M.; Mazeika, M.; Baturan, M.; Marelli, M.; Maru, M.; Quintana, M. J. R.; Tolkiehn, M.; Giulianelli, M.; Lewis, M.; Potthast, M.; Leavitt, M. L.; Hagen, M.; Schubert, M.; Baitemirova, M. O.; Arnaud, M.; McElrath, M.; Yee, M. A.; Cohen, M.; Gu, M.; Ivanitskiy, M.; Starritt, M.; Strube, M.; Swędrowski, M.; Bevilacqua, M.; Yasunaga, M.; Kale, M.; Cain, M.; Xu, M.; Suzgun, M.; Tiwari, M.; Bansal, M.; Aminnaseri, M.; Geva, M.; Gheini, M.; T, M. V.; Peng, N.; Chi, N.; Lee, N.; Krakover, N. G.-A.; Cameron, N.; Roberts, N.; Doiron, N.; Nangia, N.; Deckers, N.; Muennighoff, N.; Keskar, N. S.; Iyer, N. S.; Constant, N.; Fiedel, N.; Wen, N.; Zhang, O.; Agha, O.; Elbaghdadi, O.; Levy, O.; Evans, O.; Casares, P. A. M.; Doshi, P.; Fung, P.; Liang, P. P.; Vicol, P.; Alipoormolabashi, P.; Liao, P.; Liang, P.; Chang, P.; Eckersley, P.; Htut, P. M.; Hwang, P.; Miłkowski, P.; Patil, P.; Pezeshkpour, P.; Oli, P.; Mei, Q.; Lyu, Q.; Chen, Q.; Banjade, R.; Rudolph, R. E.; Gabriel, R.; Habacker, R.; Delgado, R. R.; Millière, R.; Garg, R.; Barnes, R.; Saurous, R. A.; Arakawa, R.; Raymaekers, R.; Frank, R.; Sikand, R.; Novak, R.; Sitelew, R.; LeBras, R.; Liu, R.; Jacobs, R.; Zhang, R.; Salakhutdinov, R.; Chi, R.; Lee, R.; Stovall, R.; Teehan, R.; Yang, R.; Singh, S.; Mohammad, S. M.; Anand, S.; Dillavou, S.; Shleifer, S.; Wiseman, S.; Gruetter, S.; Bowman, S. R.; Schoenholz, S. S.; Han, S.; Kwatra, S.; Rous, S. A.; Ghazarian, S.; Ghosh, S.; Casey, S.; Bischoff, S.; Gehrmann, S.; Schuster, S.; Sadeghi, S.; Hamdan, S.;

Zhou, S.; Srivastava, S.; Shi, S.; Singh, S.; Asaadi, S.; Gu, S. S.; Pachchigar, S.; Toshniwal, S.; Upadhyay, S.; Shyamolima; Debnath; Shakeri, S.; Thormeyer, S.; Melzi, S.; Reddy, S.; Makini, S. P.; Lee, S.-H.; Torene, S.; Hatwar, S.; Dehaene, S.; Divic, S.; Ermon, S.; Biderman, S.; Lin, S.; Prasad, S.; Piantadosi, S. T.; Shieber, S. M.; Misherghi, S.; Kiritchenko, S.; Mishra, S.; Linzen, T.; Schuster, T.; Li, T.; Yu, T.; Ali, T.; Hashimoto, T.; Wu, T.-L.; Desbordes, T.; Rothschild, T.; Phan, T.; Wang, T.; Nkinyili, T.; Schick, T.; Kornev, T.; Telleen-Lawton, T.; Tunduny, T.; Gerstenberg, T.; Chang, T.; Neeraj, T.; Khot, T.; Shultz, T.; Shaham, U.; Misra, V.; Demberg, V.; Nyamai, V.; Raunak, V.; Ramasesh, V.; Prabhu, V. U.; Padmakumar, V.; Srikumar, V.; Fedus, W.; Saunders, W.; Zhang, W.; Vossen, W.; Ren, X.; Tong, X.; Zhao, X.; Wu, X.; Shen, X.; Yaghoobzadeh, Y.; Lakretz, Y.; Song, Y.; Bahri, Y.; Choi, Y.; Yang, Y.; Hao, Y.; Chen, Y.; Belinkov, Y.; Hou, Y.; Hou, Y.; Bai, Y.; Seid, Z.; Zhao, Z.; Wang, Z.; Wang, Z.; Wu, Z. Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models. 2022,

arXiv:2206.04615. arXiv.org ePrint archive. https://arxiv.org/abs/2206.04615 (accessed Feb 27, 2023).

- (6) Wang, S.; Guo, Y.; Wang, Y.; Sun, H.; Huang, J. SMILES-BERT. In *Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics*; ACM: New York, USA, September 7 10, 2019; pp 429–436, Association for Computing Machinery, New York, USA, 2019.
- (7) Chithrananda, S.; Grand, G.; Ramsundar, B. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction. 2020, arXiv:2010.09885. arXiv.org ePrint archive. arXiv:2010.09885v2 (accessed Feb 27, 2023).
- (8) Frey, N.; Soklaski, R.; Axelrod, S.; Samsi, S.; Gomez-Bombarelli, R.; Coley, C.; Gadepally, V. Neural Scaling of Deep Chemical Models. 2022, ChemRxiv.org ePrint archive. 10.26434/chemrxiv-2022-3s512 (accessed Feb 27, 2023).
- (9) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. 2017, arXiv:1706.03762. arXiv.org ePrint archive. arXiv:1706.03762v5 (accessed Feb 27, 2023).
- (10) Lane, H.; Hapke, H.; Howard, C. Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python, 1st ed.; Manning Publications, 2019; Vol. 1.
- (11) Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. *BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding*; 2019. arXiv:1810.04805. arXiv.org e Print archive. arXiv:1810.04805v2 (accessed Feb 27, 2023).
- (12) Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. 2016, arXiv: 1409.047. arXiv.org ePrint archive. arXiv:1409.0473v7 (accessed Feb 27, 2023).
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C. L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; Schulman, J.; Hilton, J.; Kelton, F.; Miller, L.; Simens, M.; Askell, A.; Welinder, P.; Christiano, P.; Leike, J.; Lowe, R. Training Language Models to Follow Instructions with Human Feedback. 2022, arXiv:2203.02155. arXiv.org ePrint archive. arXiv:2203.02155v1 (accessed Feb 27, 2023).

- (14) Pan, J. Large Language Model for Molecular Chemistry. *Nat Comput Sci.* 2023, 3,5. https://doi.org/10.1038/s43588-023-00399-1
- (15) Yoshimori, A.; Chen, H.; Bajorath, J. Chemical Language Models for Applications in Medicinal Chemistry. *Future Med Chem* **2023**. Feb 2. doi: 10.4155/fmc-2022-0315. Epub ahead of print. PMID: 36727442.
- (16) Wen, N.; Liu, G.; Zhang, J.; Zhang, R.; Fu, Y.; Han, X. A Fingerprints Based Molecular Property Prediction Method Using the BERT Model. *J Cheminform*. [Online] **2022**, *14*, Article 71. https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00650-3#citeas (Accessed Feb 27, 2023).
- (17) Ross, J.; Belgodere, B.; Chenthamarakshan, V.; Padhi, I.; Mroueh, Y.; Das, P. Large-Scale Chemical Language Representations Capture Molecular Structure and Properties. *Nat Mach Intell.* **2021**, 4, 1256 1264.
- (18) Flam-Shepherd, D.; Zhu, K.; Aspuru-Guzik, A. Language Models Can Learn Complex Molecular Distributions. *Nat Commun* **2022**, *13*, 3293 3303.
- (19) Blanchard, A. E.; Gounley, J.; Bhowmik, D.; Chandra Shekar, M.; Lyngaas, I.; Gao, S.; Yin, J.; Tsaris, A.; Wang, F.; Glaser, J. Language Models for the Prediction of SARS-CoV-2 Inhibitors. *Int J High Perform Comput Appl* **2022**, *36*, 587–602.
- (20) Jablonka, K. M.; Schwaller, P.; Ortega-Guerrero, A.; Smit, B. Is GPT-3 All You Need for Low-Data Discovery in Chemistry?. 2023, ChemRxiv.org ePrint archive. 10.26434/chemrxiv-2023-fw8n4 (accessed Feb 27, 2023).
- (21) Rosset, C. *Turing-NLG: A 17-billion-parameter language model by Microsoft*. Microsoft Research Blog. https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/ (accessed February 19, 2023).
- (22) Rae, J.; Irving, G.; Weidinger, L. *Language modelling at scale: Gopher, ethical considerations, and retrieval*. Deep Mind. https://www.deepmind.com/blog/language-modelling-at-scale-gopher-ethical-considerations-and-retrieval (accessed February 20, 2023).
- (23) Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D. Language Models Are Few-Shot Learners. 2020, arXiv:2005.14165. arXiv.org ePrint archive. arXiv:2005.14165v4 (accessed Feb 27, 2023).
- (24) Taylor, R.; Kardas, M.; Cucurull, G.; Scialom, T.; Hartshorn, A.; Saravia, E.; Poulton, A.; Kerkez, V.; Stojnic, R. Galactica: A Large Language Model for Science. 2022, arXiv:2211.09085. arXiv.org ePrint archive. arXiv:2211.09085v1 (accessed Feb 27, 2023).
- (25) Heaven, W. D. Why Meta's latest large language model survived only three days online.

 MIT Technology Review.

 https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science/ (accessed February 20, 2023).

- (26) 26. Shen Y, Heacock L, Elias J, Hentel KD, Reig B, Shih G, Moy L. ChatGPT and Other Large Language Models Are Double-edged Swords. Radiology. 2023 Jan 26:230163. doi: 10.1148/radiol.230163. Epub ahead of print. PMID: 36700838.
- (27) OpenAl. *ChatGPT: Optimizing Language Models for Dialogue*. https://openai.com/blog/chatgpt/ (accessed February 20, 2023).
- (28) AlgoWriting. A simple guide to setting the GPT-3 temperature. https://algowriting.medium.com/gpt-3-temperature-setting-101-41200ff0d0be (accessed February 20, 2023).
- (29) OpenAI. What are tokens and how to count them?

 https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them (accessed February 20, 2023)
- (30) Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. *J Chem Inf Comput Sci.* **1988**, *28*, 31–36.
- (31) White, A. D.; Hocky, G. M.; Gandhi, H. A.; Ansari, M.; Cox, S.; Wellawatte, G. P.; Sasmal, S.; Yang, Z.; Liu, K.; Singh, Y.; Peña Ccoa, W. J. Assessment of Chemistry Knowledge in Large Language Models That Generate Code. *Digit Discov* [Online] **2023**. https://pubs.rsc.org/en/content/articlelanding/2023/dd/d2dd00087c (accessed Feb 20, 2023).
- (32) Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-Referencing Embedded Strings (SELFIES): A 100% Robust Molecular String Representation. *Mach Learn Sci Technol.* **2020**, *1*, 045024. https://doi.org/10.1088/2632-2153/aba947.
- (33) Edwards, C.; Lai, T.; Ros, K.; Honke, G.; Cho, K.; Ji, H. Translation between Molecules and Natural Language. 2022, arXiv:2204.11817. arXiv.org ePrint archive. arXiv:2204.11817v3 (accessed Feb 27, 2023).
- (34) Griffin, S.; Wyllie, S. G.; Markham, J. Determination of Octanol–Water Partition Coefficient for Terpenoids Using Reversed-Phase High-Performance Liquid Chromatography. *J Chromatogr A.* **1999**, *864*, 221–228.
- (35) Vilas-Boas, S. M.; da Costa, M. C.; Coutinho, J. A. P.; Ferreira, O.; Pinho, S. P. Octanol–Water Partition Coefficients and Aqueous Solubility Data of Monoterpenoids: Experimental, Modeling, and Environmental Distribution. *Ind Eng Chem Res.* 2022, 61, 3154–3167.
- (36) Costa, R. K. M.; Souza, L. M. P.; Silva, R. S.; Souza, F. R.; Pimentel, A. S. The Reconciliation between the Experimental and Calculated Octanol-Water Partition Coefficient of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphatidylcholine Using Atomistic Molecular Dynamics: An Open Question. *J Biomol Struct Dyn.* **2023**, 1–8.
- (37) Souza, L. M. P.; Souza, F. R.; Reynaud, F.; Pimentel, A. S. Tuning the Hydrophobicity of a Coarse Grained Model of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphatidylcholine Using the Experimental Octanol-Water Partition Coefficient. *J Mol Liq.* 2020, 319, 114132.
- (38) Fornasier, F.; Souza, L. M. P.; Souza, F. R.; Reynaud, F.; Pimentel, A. S. Lipophilicity of Coarse-Grained Cholesterol Models. *J Chem Inf Model.* **2020**, *60*, 569–577.

- (39) Lancashire, R. J. Coordination Numbers and Geometry. LibreTexts Chemistry. https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules _and_Websites_(Inorganic_Chemistry)/Coordination_Chemistry/Structure_and_Nome nclature_of_Coordination_Compounds/Coordination_Numbers_and_Geometry (accessed February 19, 2023).
- (40) Kadajji, V. G.; Betageri, G. v. Water Soluble Polymers for Pharmaceutical Applications. *Polymers (Basel).* **2011**, *3*, 1972–2009.
- (41) Arkansas State University Department of Chemistry and Physics. *Symmetry and Point Groups*. http://myweb.astate.edu/mdraganj/pointgroupanswers.html (accessed February 19, 2023).
- (42) Ross, J.; Belgodere, B.; Chenthamarakshan, V.; Padhi, I.; Mroueh, Y.; Das, P. Molformer: Large Scale Chemical Language Representations Capture Molecular Structure and Properties. 2022, arXiv: 2106.09553. arXiv.org ePrint archive. arXiv:2106.09553v3 (accessed Feb 27, 2023)
- (43) Dunn, A.; Dagdelen, J.; Walker, N.; Lee, S.; Rosen, A. S.; Ceder, G.; Persson, K.; Jain, A. Structured Information Extraction from Complex Scientific Text with Fine-Tuned Large Language Models. 2022, arXiv: 2212.05238. arXiv.org ePrint archive. arXiv:2212.05238v1 (accessed Feb 27, 2023).
- (44) Horawalavithana, S.; Ayton, E.; Sharma, S.; Howland, S.; Subramanian, M.; Vasquez, S.; Cosbey, R.; Glenski, M.; Volkova, S. Foundation Models of Scientific Knowledge for Chemistry: Opportunities, Challenges and Lessons Learned. In *Proceedings of BigScience Episode #5 Workshop on Challenges & Perspectives in Creating Large Language Models*; Dublin, Ireland, May 27, 2022, Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp 160–172.

Table 1. The conversion of compound names into the SMILES chemical representations, and vice-versa. The green cells represent the correct answers. 30

Convert compound name into the SMILES chemical representation (6/23=26%)			
Name	SMILES	Name	SMILES
Ethane	C=C	Ethene	C=C
Propane	C(C)(C)C	Propene	C=C
		Propylene	C=C(C)C
Butane	CCCCC	But-2-ene	C=C(C)C
Pentane	CCCCC	cis-but-2-ene	C/C=C/C
		trans-but-2-ene	C/C=C/C
Hexane	CCCCC	2-Methyl-2-butene	C=C(C)C(C)C
Heptane	CCCCCC	2-Methyl-1-butene	C=C(C)C(C)(C)C
Octane	CCCCCCC	Isoprene	C=C(C)C(C)C
		2-methyl-1,3-butadiene	C=C(C)C(C)=C
Nonane	CCCCCCCC	Cyclohexane	C1CCCCC1
Decane	CCCCCCCCC	Cyclohexene	C1=CC=CC=C1
Xylene	C1=CC=CC=C1	Benzene	C1=CC=CC=C1
Convert SM	IILES into the compo	und name (5/18=28%)	
SMILES	Name	SMILES	Name
SMILES	Name Ethane	SMILES C=C	Name Ethene
CC	Ethane	C=C	Ethene
CC	Ethane Tricarbon	C=C C=CC	Ethene Ethylene
CCC	Ethane Tricarbon Monoxide	C=C C=CC CC=C	Ethene Ethylene Ethene
CCC CCC	Ethane Tricarbon Monoxide Butane	C=C C=CC CC=C	Ethene Ethylene Ethene 1,3-Butadiene
CCC CCC	Ethane Tricarbon Monoxide Butane	C=C C=CC CC=CC C/C=C\C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene
CC CCC CCCC	Ethane Tricarbon Monoxide Butane Pentane	C=C C=CC CC=C C/C=C\C C/C=C/C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene 1,3-Butadiene
CC CCCC CCCCC	Ethane Tricarbon Monoxide Butane Pentane Hexane	C=C C=CC CC=CC C/C=C\C C/C=C/C CC=C/C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene 1,3-Butadiene 2-Buten-1-ol
CC CCCC CCCCC	Ethane Tricarbon Monoxide Butane Pentane Hexane	C=C C=CC CC=CC C/C=C\C C/C=C/C CC=C/C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene 1,3-Butadiene 2-Buten-1-ol
CC CCCC CCCCCC CCCCCC	Ethane Tricarbon Monoxide Butane Pentane Hexane Hexane	C=C C=CC CC=C CC=C\C C/C=C\C C/C=C/C CC=C/C CC=C(C)C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene 1,3-Butadiene 2-Buten-1-ol 3-Methylbut-1-ene
CC CCCC CCCCC CCCCC	Ethane Tricarbon Monoxide Butane Pentane Hexane Hexane	C=C C=CC CC=C CC=C\C C/C=C\C C/C=C/C CC=C/C CC=C(C)C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene 1,3-Butadiene 2-Buten-1-ol 3-Methylbut-1-ene
CC CCCC CCCCC CCCCC CCCCC	Ethane Tricarbon Monoxide Butane Pentane Hexane Hexane Octane	C=C C=CC CC=C CC=CC C/C=C\C C/C=C/C CC=C(C)C CCC(=C)C	Ethene Ethylene Ethene 1,3-Butadiene 1,3-Dichloropropene 1,3-Butadiene 2-Buten-1-ol 3-Methylbut-1-ene 1,3-Butadiene

Table 2. The comparison between the experimental octanol-water partition coefficient (logPexp) of essential oil components and the value of the same property found using the ChatGPT model (logPChatGPT). The relative error (%) is also presented for each compound. Values in pink cells obtained from ³⁴, and blue cells from ³⁵. UNK is the acronym of unknown.

Name	logPexp	logPChatGPT	Error (%)
linalool	3.19	4.3	35
limonene	4.38	4.7	7
gamma-Terpinene	4.36	4.2	, -4
(+)-Camphene	4.22	UNK	7
camphor	2.74	4.3	57
terpinyl acetate	3.96	UNK	_
eugenol	2.23	4.6	106
citronellal	3.83	4.2	10
citronellol	3.91	4.3	10
p-cymene	4.1	4.2	2
(R)-(-)-Carvone	2.47	3.3	34
(1R)-(-)-fenchone	2.59	4.7	81
geraniol	2.54	4.5	77
carvacrol	2.99	4.4	47
thymol	3.15	4.3	37
alpha-terpinene	4.25	4.2	-1
(1R)-Camphor	2.41	4.2	74
(±)-β-citronellol	3.21	4.3	34
Eucalyptol	2.89	4.2	45
L-(-)-menthol	3.85	4.2	9
(-)-menthone	3.33	4.3	29
p-Ment-6-en-2,8-diol	1.81	UNK	-
(-)-cis-Myrtanylamine	2.05	UNK	-
(1S)-(-)-Verbenone	2.23	3.2	43
Linalool oxide	2.43	UNK	-
Piperitone	2.85	UNK	-
1,4-Cineole	2.97	4.7	58
Myrtenal	2.98	UNK	-
(-)-Borneol	3.01	4.3	43
Dihydrocarvone	3.08	UNK	-
(+)-Pulegone	3.08	4.3	40
(-)-Carveol	3.12	4.2	35
(-)-Perilla aldehyde	3.13	UNK	
(S)-cis-Verbenol	3.16	4.3	36
(S)-(-)-Perilla alcohol	3.17	UNK	-
(+)-Fenchol	3.17	4.2	32
(+)-Isomenthol	3.19	2.6	-18
Limonene oxide	3.2	UNK	-

Dihydrocarveol	3.21	UNK	-
(+/-)-Isoborneol	3.24	4.3	33
Terpinen-4-ol	3.26	UNK	-
alpha-Terpineol	3.28	4.3	31
Methyleugenol	3.45	4.2	22
Nerol	3.47	UNK	-
beta-lonone	3.84	4.3	12
alpha-Ionone	3.85	4.2	9
Linalyl acetate	3.93	4.3	9
Neryl acetate	3.98	UNK	-
Menthyl acetate	4	UNK	-
Geranyl acetate	4.04	4.2	4
alpha-Terpinolene	4.24	UNK	-
Car-3-ene	4.38	UNK	-
Car-2-ene	4.44	UNK	-
(+)-alpha-Pinene	4.44	4.3	-3

Table 3. The geometry of coordination compounds with coordination numbers from 2 to 12. The green cells represent the correct answers.³⁹

Coordination compound	Geometry	Correct?
[Ag(NH ₃) ₂] ⁺	Linear	Yes
[Cu(CN) ₃] ²⁻	Trigonal planar	Yes
CoCl ₂ (pyr) ₂	Square planar	No. Tetrahedral
cis-PtCl ₂ (NH ₃) ₂	Square planar	Yes
VO(acac) ₂	Octahedral	No. Square pyramid
[Ni(CN) ₅] ³⁺	Trigonal bipyramidal	Yes
[Cr(en) ₃][Ni(CN) ₅]	Octahedral	No. Trigonal bipyramidal
[Co(en) ₃]Cl ₃	Octahedral	Yes
K ₃ [NbOF ₆]	Octahedral	Almost. Capped octahedral
bis-(tert-	Octahedral	No. Pentagonal Bipyramid
butylacac)₂(DMSO)di-		
oxoUranium		
(NH ₄) ₂ Ce(NO ₃) ₆	Octahedral	Almost. Cuboctahedron
Ceric ammonium nitrate	Tetrahedral	No. Cuboctahedron

Ligand abbreviation: pyr = pyruvic acid, acac = acetylacetonate, en = ethylenediamine, and DMSO = dimethyl sulfoxide

Table 4. The water solubility of 11 polymers. 100% of answers are correctly predicted.⁴⁰

Polymer	Answer
Poly(ethylene glycol)	Poly(ethylene glycol) with a molecular weight of less
	than 1,000 is highly soluble in water, while those with
	a molecular weight of more than 10,000 are only
	slightly soluble.
Polyvinyl pyrrolidone	The water solubility of polyvinyl pyrrolidone (PVP) is
	generally considered to be very high, with a solubility
	of up to 20% in water at room temperature.
Polyvinyl alcohol	The water solubility of polyvinyl alcohol (PVA) is
	generally considered to be very high, with most
	grades of PVA being completely soluble in cold
B. I	water.
Polyacrylic acid	The water solubility of polyacrylic acid is very high,
	with a solubility of up to 90% in water at room
Debramdanida	temperature.
Polyacrylamide	Generally, anionic polyacrylamide is more soluble in water than cationic polyacrylamide. Anionic
	water than cationic polyacrylamide. Anionic polyacrylamide is typically soluble in water up to 1-
	2%, while cationic polyacrylamide is usually only
	soluble up to 0.1-0.2%.
N-(2-Hydroxypropyl)	The water solubility of N-(2-Hydroxypropyl)
methacrylamide	methacrylamide is approximately 0.1 g/L at 25 °C.
Polyethylene	Polyethylene is insoluble in water.
Polyvinylchloride	The water solubility of polyvinyl chloride (PVC) is
	very low, with only 0.01-0.02 g/100 mL of water at
	room temperature.
Polyvinyl acetate	The water solubility of polyvinyl acetate is very low,
	with only 0.1 g/L at 20 °C.
Polystyrene	Polystyrene is not water soluble.
Polydimethylsiloxane	Polydimethylsiloxane is insoluble in water.

Table 5. The molecular point groups of simple molecules. The green cells represent the correct answers.⁴¹

Molecule	Point group	Correct?			
H ₂ O	C _{2v}	Yes			
CH ₄	Сзу	No. It is T _d			
NH ₃	C _{3v}	Yes			
Ethene	C _{2v}	No. It is D _{2h}			
Acetylene	D∞h	Yes			
Benzene	D _{6h}	Yes			
AsF ₅	C _{3v}	No. It is D _{3h}			
SCI ₄	C _{4v}	No. It is C _{2v} .			
BrF ₃	C _{2v}	Yes			
Ferrocene	D _{5h}	Yes			

View publication stats

TOC graphics

