HW4 - Past Linearity [MACS 30100]

Adarsh Mathew

2/14/2020

Setup - Reading and Cleaning Data

```
gss_train_dfmin <- read_csv("../data/gss_train.csv") %>%
    select(egalit_scale, income06) %>%
    #mutate(egalit_scale = as.factor(egalit_scale)) %>%
    na.omit()

gss_test_dfmin <- read_csv("../data/gss_test.csv") %>%
    select(egalit_scale, income06) %>%
    #mutate(egalit_scale = as.factor(egalit_scale)) %>%
    na.omit()
```

Q1: Polynomial Regression

```
polyreg_mse <- function(degree_val){</pre>
  set.seed(02162020)
  poly_control <- trainControl(method = "cv", number = 10)</pre>
  polyreg_mod <- train(form = egalit_scale ~ poly(income06, degree = degree_val),</pre>
                        data = gss_train_dfmin %>% mutate(degree_val = degree_val), method = "lm", prePr
                        metric = "RMSE", trControl = poly_control)
  #summary(polyreg_mod)
  train_mse <- mean((predict(polyreg_mod, newdata = gss_train_dfmin) - gss_train_dfmin$egalit_scale)^2)
  test_mse <- mean((predict(polyreg_mod, newdata = gss_test_dfmin) - gss_test_dfmin$egalit_scale)^2)
  out_tbl <- tibble(train_mse = train_mse,</pre>
                    test_mse = test_mse)
  return(out_tbl)
polyreg_df <- c(1:15) %>%
  enframe(name = NULL, value= "poly_degree") %>%
  mutate(mse_values = map(poly_degree, ~polyreg_mse(.x))) %>%
  unnest(mse_values)
polyreg_df %>%
```

```
ggplot(aes(x = poly_degree, y = test_mse)) +
geom_line() +
geom_point() +
theme_minimal() +
ggtitle("Test MSE vs Polynomial Degree", subtitle = "Polynomial Linear Regression")
```

Test MSE vs Polynomial Degree

Polynomial Linear Regression

The best MSE is from degree = 1.

```
polymod_best <- lm(egalit_scale ~ income06, data = gss_train_dfmin)
summary(polymod_best)</pre>
```

```
##
## Call:
## lm(formula = egalit_scale ~ income06, data = gss_train_dfmin)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                      0.4677
                               7.2394 18.7828
## -22.5484 -6.7059
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 25.86350 0.72845 35.505
                                           <2e-16 ***
              -0.38585
                          0.04119 -9.368
                                           <2e-16 ***
## income06
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

Fit of Polynomial Regression against data


```
margins::margins(polymod_best)

## Average marginal effects

## lm(formula = egalit_scale ~ income06, data = gss_train_dfmin)

## income06

## -0.3859

cplot(polymod_best, "income06")
```

```
##
      xvals
               yvals
                        upper
                                  lower
          1 25.47765 26.82954 24.12575
## 1
  2
##
          2 25.09179 26.36846 23.81513
## 3
          3 24.70594 25.90809 23.50380
##
          4 24.32009 25.44857 23.19161
## 5
          5 23.93424 24.99008 22.87840
## 6
          6 23.54839 24.53286 22.56392
          7 23.16253 24.07719 22.24788
## 7
## 8
          8 22.77668 23.62346 21.92991
## 9
          9 22.39083 23.17218 21.60948
## 10
         10 22.00498 22.72402 21.28594
         11 21.61913 22.27985 20.95840
## 11
## 12
         12 21.23328 21.84084 20.62571
         13 20.84742 21.40844 20.28640
## 13
## 14
         14 20.46157 20.98444 19.93871
## 15
         15 20.07572 20.57076 19.58068
## 16
         16 19.68987 20.16921 19.21052
         17 19.30402 19.78100 18.82703
## 17
         18 18.91816 19.40632 18.43001
## 18
         19 18.53231 19.04427 18.02035
## 19
## 20
         20 18.14646 18.69322 17.59970
```



```
cplot(polymod_best, "income06", what = "effect")
```


Since the best-fit degree is 1, the final model is a linear one-variable fit. income06 has a negative effect on egalit_scale, and the AME is constant at -0.386. As an individual moves into a higher income slab, their score on the constructed egalitarian scale decreases.

Q2: Step Regression

```
results_step <- vfold_cv(gss_train_dfmin, v = 10)

stepreg_df <- expand(results_step, id, ncuts = 2:35) %>%
  left_join(results_step) %>%
  mutate(test_mse = map2_dbl(splits, ncuts, stepreg2_mse)) %>%
  group_by(ncuts) %>%
  summarize(mean_test_mse = mean(test_mse))

## Joining, by = "id"

stepreg_df %>%
```

Optimal number of cuts for step regression

Optimal number of cuts: 5.

Fit of Step Regression against data

This is a strange model to fit, given the categorical nature of the data, and the fit seems arbitrary.

Q3: Natural Spline Regression

```
# ## Failed Method 1
#
# nsplinereg_mse <- function(degree_val, cut_val){
# set.seed(02162020)
#
# nspline_control <- trainControl(method = "cv", number = 10)
#
# knots_len <- length(gss_train_dfmin$income06)
# knots_val <- sort(gss_train_dfmin$income06)[2:(knots_len-1)]</pre>
```

```
#
                  nsplinereg\_mod \leftarrow train(form = egalit\_scale \sim ns(income06, df = (degree\_val*(1+cut\_val)), knots = knot = k
                                                                                                                    data = gss_train_dfmin %>% mutate(degree_val = degree_val,
#
#
                                                                                                                                                                                                                                                                                 cut \ val = cut \ val),
#
                                                                                                                   method = "qlm",
                                                                                                                   preProcess = c("center", "scale"),
#
#
                                                                                                                   metric = "RMSE", trControl = nspline_control)
#
#
                  #summary(polyreg_mod)
#
#
                   train\_mse \leftarrow mean((predict(nsplinereg\_mod, newdata = gss\_train\_dfmin) - gss\_train\_dfmin\$egalit\_scal)
#
                   test\_mse \leftarrow mean((predict(nsplinereg\_mod, newdata = gss\_test\_dfmin) - gss\_test\_dfmin\$egalit\_scale) \cap test\_mse \leftarrow mean((predict(nsplinereg\_mod, newdata = gss\_test\_dfmin) - gss\_test\_dfmin\$egalit\_scale) \cap test\_mse \leftarrow test\_ms
#
#
                 out_tbl <- tibble(train_mse = train_mse,</pre>
#
                                                                                                      test_mse = test_mse)
#
#
                 return(out\_tbl)
#
                 # if (mse_type == "train") return(train_mse) else return(test_mse)
# }
\# nsplinereg_df <- expand_grid(poly_degree = seq(1, 15, by = 1),
                                                                                                                                                n_cuts = seq(1, 15, by = 1)) \%
#
             mutate(mse_values = map2(poly_degree, n_cuts, nsplinereq_mse)) %>%
#
              unnest (mse_values)
#
# nsplinereg_df %>%
           qqplot(aes(x = n_cuts, y = test_mse)) +
#
             geom_line() +
#
                 geom_point() +
              theme_minimal() +
             qqtitle("Test MSE vs Number of Cuts", subtitle = "Natural Spline Regression")
# # FAILED METHOD 2 - Code from Lab
# # function to simplify things
# splinereg_fun <- function(splits, df = NULL){</pre>
#
#
                 # estimate the model on each fold
                 model <- glm(egalit_scale ~ ns(income06, df),</pre>
#
                                                                               data = analysis(splits))
#
#
               model_mse <- broom::augment(model, newdata = assessment(splits)) %>%
#
                           rcfss::mse(truth = eqalit_scale, estimate = .fitted)
#
#
#
#
                  return(mean(model_mse$.estimate))
# }
# tune_over_knots <- function(splits, knots){</pre>
                 splinereg_fun(splits, df = (knots + 3))
# }
#
# # estimate CV error for knots in 0:25
```

```
# results <- vfold_cv(gss_train_dfmin, v = 10)</pre>
#
# splinereg_df <- expand(results, id, knots = 1:10) %>%
   left_join(results) %>%
#
    mutate(mse_values = map2(splits, knots, tune_over_knots))
# splinereg_df %>%
   group_by(knots) %>%
#
#
   summarize(mean_test_mse = mean(mse_values, na.rm = T)) %>%
#
   ggplot(aes(knots, mean_test_mse)) +
#
  geom_point() +
#
   geom_line() +
#
   #scale y continuous(labels = scales::percent) +
#
   labs(title = "Optimal number of knots for natural cubic spline regression",
#
         x = "Knots",
#
        y = "10-fold CV error")
```

```
Error in qr.default(t(const)) : NA/NaN/Inf in foreign function call (arg 1)
                                                                                                                                                              ≜ Hide Traceback
 24. qr.default(t(const))
  23. qr(t(const))
  22. ns(income06, df)
  eval(predvars, data, env)
  20. eval(predvars, data, env)
  19. model.frame.default(formula = egalit_scale ~ ns(income06, df), data = analysis(splits), drop.unused.levels = TRUE)
  18. stats::model.frame(formula = egalit_scale ~ ns(income06, df), data = analysis(splits), drop.unused.levels = TRUE)
  17. eval(mf, parent.frame())
  16. eval(mf, parent.frame())
  15. glm(egalit_scale ~ ns(income06, df), data = analysis(splits))
  14. splinereg_fun(splits, df = (knots + 3))
  13. .f(.x[[i]], .y[[i]], ...)
  12. map2(splits, knots, tune_over_knots)
  11. mutate_impl(.data, dots, caller_env())
 10. mutate.tbl_df(., mse_values = map2(splits, knots, tune_over_knots))
9. mutate(., mse_values = map2(splits, knots, tune_over_knots))
  8. function_list[[k]](value)

    withvisible(function_list[[k]](value))

  6. freduce(value, `_function_list`)
  5. '_fseq'('_1hs')
  4. eval(quote(`_fseq`(`_lhs`)), env, env)
  3. eval(quote(`_fseq`(`_lhs`)), env, env)
  2. withvisible(eval(quote(`_fseq`(`_lhs`)), env, env))
  1. \; expand(results, \; id, \; knots = 1:10) \; \% \; left\_join(results) \; \% \; mutate(mse\_values = map2(splits, \; knots, \; tune\_over\_knots))
```

Figure 1: Error traceback for the above chunk

Q4: Estimating Egalitarianism with all Predictors

Reading and Cleaning Data

```
gss_train_df <- read_csv("../data/gss_train.csv") %>%
  mutate_if(is.numeric, ~as.integer(.x)) %>%
  mutate_if(is.character, ~as.factor(.x))

gss_test_df <- read_csv("../data/gss_test.csv") %>%
  mutate_if(is.numeric, ~as.integer(.x)) %>%
  mutate_if(is.character, ~as.factor(.x))
```

Helper Functions

Implementing it in a tibble object:

Linear Regression

```
mean((predict((result_df %>%
                filter(model_type == "lm") %>%
                select(model_obj))$model_obj[[1]], newdata = gss_test_df) - gss_test_df$egalit_scale)^2
## [1] 63.37644
featureimp_plot_lm <- plot((result_df %>%
        filter(model_type == "lm") %>%
        select(featureimp_obj))$`featureimp_obj`[[1]]) +
  theme_minimal() +
  ggtitle("Linear Regression",
          subtitle = "Feature Importance")
interaction_plot_lm <- plot((result_df %>%
       filter(model_type == "lm") %>%
       select(interaction_obj))$`interaction_obj`[[1]]) +
 theme minimal() +
  ggtitle("Linear Regression",
          subtitle = "Overall Interaction Strength")
all_interaction_plot_lm <- plot((result_df %>% filter(model_type == "lm") %>%
        select(all_interaction_obj))$all_interaction_obj[[1]])
```

Elastic Net

```
print("Training MSE for Elastic Net:")
## [1] "Training MSE for Elastic Net:"
mean((predict((result_df %>%
                filter(model_type == "glmnet") %>%
                dplyr::select(model_obj))$model_obj[[1]], newdata = gss_train_df) - gss_train_df$egalit
## [1] 55.9775
print("Testing MSE for Elastic Net:")
## [1] "Testing MSE for Elastic Net:"
mean((predict((result_df %>%
                filter(model_type == "glmnet") %>%
                dplyr::select(model_obj))$model_obj[[1]], newdata = gss_test_df) - gss_test_df$egalit_s
## [1] 61.38986
featureimp_plot_enet <- plot((result_df %>%
       filter(model_type == "glmnet") %>%
        select(featureimp_obj))$`featureimp_obj`[[1]]) +
 theme_minimal() +
  ggtitle("Elastic Net",
          subtitle = "Feature Importance")
interaction_plot_enet <- plot((result_df %>%
                                 filter(model_type == "glmnet") %>%
                                 select(interaction_obj))$interaction_obj[[1]]) +
```

Principal Component Regression

```
print("Training MSE for pcr:")
## [1] "Training MSE for pcr:"
mean((predict((result df %>%
                filter(model type == "pcr") %>%
                dplyr::select(model_obj)) $model_obj[[1]], newdata = gss_train_df) - gss_train_df$egalit
## [1] 70.99323
print("Testing MSE for pcr:")
## [1] "Testing MSE for pcr:"
mean((predict((result_df %>%
                filter(model_type == "pcr") %>%
                dplyr::select(model_obj))$model_obj[[1]], newdata = gss_test_df) - gss_test_df$egalit_s
## [1] 69.07672
featureimp plot pcr <- plot((result df %>%
       filter(model_type == "pcr") %>%
        select(featureimp_obj))$`featureimp_obj`[[1]]) +
 theme_minimal() +
  ggtitle("Principal Component Regression",
          subtitle = "Feature Importance")
interaction_plot_pcr <- plot((result_df %>%
                                filter(model_type == "pcr") %>%
                                select(interaction_obj))$interaction_obj[[1]]) +
  theme_minimal() +
  ggtitle("Principal Component Regression",
          subtitle = "Overall Interaction Strength")
all_interaction_plot_pcr <- plot((result_df %>%
                                    filter(model_type == "pcr") %>%
                                    select(all_interaction_obj))$all_interaction_obj[[1]])
```

Partial Least Squares Regression

```
dplyr::select(model_obj))$model_obj[[1]], newdata = gss_train_df) - gss_train_df$egalit
## [1] 56.74024
print("Testing MSE for pls:")
## [1] "Testing MSE for pls:"
mean((predict((result_df %>%
                filter(model_type == "pls") %>%
                dplyr::select(model_obj))$model_obj[[1]], newdata = gss_test_df) - gss_test_df$egalit_s
## [1] 62.17684
featureimp_plot_pls <- plot((result_df %>%
        filter(model_type == "pls") %>%
        select(featureimp_obj))$`featureimp_obj`[[1]]) +
  theme_minimal() +
  ggtitle("Partial Least Squares Regression",
          subtitle = "Feature Importance")
interaction_plot_pls <- plot((result_df %>%
                                filter(model_type == "pls") %>%
                                select(interaction_obj))$interaction_obj[[1]]) +
  theme minimal() +
  ggtitle("Partial Least Squares Regression",
          subtitle = "Overall Interaction Strength")
all_interaction_plot_pls <- plot((result_df %>%
                                    filter(model_type == "pls") %>%
                                    select(all_interaction_obj))$all_interaction_obj[[1]])
```

Q5: Feature Importance & Interaction Effects

Feature Importance

pres08, polviews, grass, partyid_3 seem to show up as the top features across models, which is in line with expectations – redistribution and opportunity play an important role in political narratives in the US. PCR seems to weight other variables as more important though, and much larger error-bars.

```
(featureimp_plot_enet + featureimp_plot_lm + featureimp_plot_pls + featureimp_plot_pcr)
```



```
featureimp_values <- bind_rows((result_df %>%
            filter(model_type == "lm") %>%
            select(featureimp_obj))$featureimp_obj[[1]]$results %>%
            as_tibble() %>%
            mutate(model_type = "lm"),
          (result_df %>%
            filter(model_type == "glmnet") %>%
            select(featureimp_obj))$featureimp_obj[[1]]$results %>%
            as tibble() %>%
            mutate(model_type = "enet"),
          (result_df %>%
            filter(model_type == "pcr") %>%
             select(featureimp_obj))$featureimp_obj[[1]]$results %>%
            as_tibble() %>%
           mutate(model_type = "pcr"),
          (result_df %>%
             filter(model_type == "pls") %>%
             select(featureimp_obj))$featureimp_obj[[1]]$results %>%
            as_tibble() %>%
            mutate(model_type = "pls"))
featureimp_values %>%
  ggplot(aes(x = feature, y = importance, colour = model_type, size = importance)) +
  geom_point(alpha = 0.7) +coord_flip() +
  theme minimal() +
  ggtitle("Comparison of Feature Importance across Models",
          subtitle = "Elastic Net, Linear Regression, Principal Component Regression, Partial Least Squ
```

Comparison of Feature Importance across Models Elastic Net, Linear Regression, Principal Component Regression, Partial Least

Feature Interaction

All the interaction effects are extremely small, to the order of 10^{-15} . And as such, there is no consistency in the rank order of these interaction effects.

(interaction_plot_enet + interaction_plot_lm + interaction_plot_pcr + interaction_plot_pls)


```
interaction_ranks <- bind_rows((result_df %>%
             filter(model_type == "lm") %>%
             select(interaction_obj))$interaction_obj[[1]]$results %>%
            as_tibble() %>%
            mutate(rank = row_number(desc(.interaction)),
                   model_type = "lm"),
          (result_df %>%
             filter(model type == "glmnet") %>%
             select(interaction_obj))$interaction_obj[[1]]$results %>%
            as tibble() %>%
            mutate(rank = row_number(desc(.interaction)),
                   model_type = "enet"),
          (result_df %>%
             filter(model_type == "pcr") %>%
             select(interaction_obj))$interaction_obj[[1]]$results %>%
            as_tibble() %>%
            mutate(rank = row_number(desc(.interaction)),
                   model_type = "pcr"),
          (result_df %>%
             filter(model_type == "pls") %>%
             select(interaction_obj))$interaction_obj[[1]]$results %>%
            as_tibble() %>%
            mutate(rank = row_number(desc(.interaction)),
                   model_type = "pls"))
ggplot(data = interaction_ranks, aes(x = model_type, y = rank, group = .feature)) +
  geom_line(aes(color = .feature), size = 0.5, alpha = 1) +
  geom_point(aes(color = .feature), size = 4, alpha = 1) +
  geom point(color = "#FFFFFF", size = 1) +
  \# scale_x_continuous(breaks = 1:16, minor_breaks = 1:16, expand = c(.05, .05)) +
  geom_text(data = interaction_ranks %>% filter(model_type == "enet"),
            aes(label = .feature, x = 0.85) , hjust = .85, fontface = "bold", color = "#888888", size =
  geom_text(data = interaction_ranks %>% filter(model_type == "pls"),
            aes(label = .feature, x = 4.15) , hjust = 0.15, fontface = "bold", color = "#888888", size
  \# coord\_cartesian(ylim = c(1, show.top.n)) +
  theme_minimal() +
  scale_y_reverse()+
  labs(x = "Model Type",
      y = "Rank",
       title = "Change in Interaction Strength Ranks across Models",
       subtitle = "Elastic Net, Linear Regression, \nPrincipal Component Regression, Partial Least Squa
  theme(legend.position = "bottom")
```

Change in Interaction Strength Ranks across Models

Elastic Net, Linear Regression, Principal Component Regression, Partial Least Squares Regression

Comparison of Interaction Strengths across Models Elastic Net, Linear Regression, Principal Component Regression, Partial Least

