Ficha3-Ex. 8 Seja $T: \mathbb{R}^n \to \mathbb{R}^p$ uma transformação linear e seja

$$C = A + \langle v_1, \cdots, v_k \rangle$$
 $(A, v_1, \cdots, v_k \in \mathbb{R}^n)$

um subespaço afim de \mathbb{R}^n . Mostre que a imagem de \mathcal{C} pela transformação T é o subespaço afim de \mathbb{R}^p dado por

$$T(\mathcal{C}) = T(A) + \langle T(v_1), \cdots, T(v_k) \rangle.$$

Tem-se

$$T(\mathcal{C}) = \{T(\mathbf{x}) : \mathbf{x} \in \mathcal{C}\}$$

$$= \{T(A + \alpha_1 v_1 + \dots + \alpha_k v_k) : \alpha_1, \dots, \alpha_k \in \mathbb{R}\}$$

$$= \{T(A) + \alpha_1 T(v_1) + \dots + \alpha_k T(v_k) : \alpha_1, \dots, \alpha_k \in \mathbb{R}\} \quad \text{(por linearidade)}$$

$$= T(A) + \langle T(v_1), \dots, T(v_k) \rangle.$$

Ficha3-Ex. 9

Usando o exercício anterior, determine e represente graficamente a imagem das seguintes retas de \mathbb{R}^2

$$\mathcal{R}_1 = \langle (1,2) \rangle$$
 $\mathcal{R}_2 = (0,1) + \langle (1,2) \rangle$

por cada uma das seguintes transformações lineares.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \to (x, -y)$

$$T(\mathcal{R}_1) = \langle T(1,2) \rangle = \langle (1,-2) \rangle$$
 $T(\mathcal{R}_2) = T(0,1) + \langle T(1,2) \rangle = (0,-1) + \langle (1,-2) \rangle$

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \to (2x - y, 0)$$

$$T(\mathcal{R}_1) = \{(0,0)\}$$
 $T(\mathcal{R}_2) = \{(-1,0)\}$

Ficha3-Ex. 10 Seja $T: V \to W$ uma transformação linear e sejam $v_1, \dots, v_k \in V$ vetores linearmente independentes. Mostre que, se T é injetiva, então $T(v_1), \dots, T(v_k)$ são linearmente independentes.

Sejam $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ tais que

$$\alpha_1 T(v_1) + \dots + \alpha_k T(v_k) = 0_W.$$

Como T é linear, isto implica que

$$T(\alpha_1 v_1 + \dots + \alpha_k v_k) = 0_W = T(0_V).$$

Como T é injetiva, isto implica que

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0_V.$$

Como v_1, \dots, v_k são linearmente independentes, podemos concluir que

$$\alpha_1 = \dots = \alpha_k = 0$$

o que significa que $T(v_1), \dots, T(v_k)$ são linearmente independentes.

Observação. Uma transformação <u>linear</u> e <u>bijetiva</u> $T:V\to W$ diz-se **isomorfismo linear**. Neste caso, temos dim $V=\dim W$ e \overline{T} envia uma base de V sobre uma base de W. Por exemplo:

- \bullet A transformação $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ do Ex. 5 é um isomorfismo $(x,y) \longmapsto (2x+y,2y)$ linear.
- Para cada $n \in \mathbb{N}$, a transformação

$$T: \mathbb{R}^{n+1} \longrightarrow \mathcal{P}ol_n(\mathbb{R})$$

 $(a_0, a_1, \dots, a_n) \longmapsto P(x) = a_0 + a_1x + \dots + a_nx^n$

é um isomorfismo linear.

Note que T envia a base canónica de \mathbb{R}^{n+1} sobre a base de $\mathcal{P}ol_n(\mathbb{R})$ dada por

$$P_0(x) = 1, P_1(x) = x, \dots, P_n(x) = x^n.$$

• Se V é um espaço vetorial de dimensão n com base v_1, \dots, v_n , então a transformação linear definida por

$$T: \mathbb{R}^n \longrightarrow V$$

$$e_i \longmapsto v_i$$

 (e_1,\cdots,e_n) base canónica de \mathbb{R}^n) é um isomorfismo linear.