Nachname:	
Vorname:	
Legi-Nr.:	
Studiengang:	Biol Pharm HST

Basisprüfung Winter 2016 Organische Chemie I & II

für die Studiengänge

Biologie

Pharmazeutische Wissenschaften

Gesundheitswissenschaften und Technologie

Prüfungsdauer: 2 Stunden

Alle Aufgaben sind zu lösen!

Unleserliche oder mehrdeutige Texte und Zeichnungen werden nicht gewertet! Bitte allfällige Zusatzblätter mit Namen anschreiben und an diesen Bogen anheften!

Teil OC I	Pkte (max)	Pkte	Teil OC II	Pkte (max)	Pkte
Aufgabe 1	7		Aufgabe 7	5	
Aufgabe 2	4.5		Aufgabe 8	24	
Aufgabe 3	10.5		Aufgabe 9	8	
Aufgabe 4	5.5				
Aufgabe 5	5				
Aufgabe 6	4.5				
Pkte OC I	37		Pkte OC II	37	
Punkte OC = Pkte OC I + Pkte OC II					
Note OC					

Aufgabe 1 (7 Punkte)

a1) Benennen Sie den Verbindungsstamm (Hauptkette inkl. ranghöchste funktionelle Gruppe; ohne Substituenten) der links gezeigten Verbindung.	
NH Propansäure, Propionsäure (falsch: Propancarbonsäure, Ethancarbonsäure)	
a2) Wie lautet der Stereodeskriptor für die eindeutig definierte stereogene Einheit des Moleküls? \rightarrow Z	1.5
a3) Bei der gezeigten Verbindung handelt es sich um ein Derivat von Cystein → HSCH₂CH(NH₂)CO₂H. Wie lautet der Präfixname des in Cystein enthaltenen Substituenten −SH ? → Sulfanyl-, Mercapto Falsch: Thio-	
b1) Wie lautet der Name der links gezeigten biologisch relevanten Verbindung (von der IUPAC beibehaltener Trivialname, Heterocyclentabelle Skript)?	
Cytosin, 4-Amino-1 <i>H</i> -pyrimidin-2-on, 4-Aminopyrimidin-2(1 <i>H</i>)-on (kein Punkteabzug für das Weglassen des indizierten Wasserstoffs "1 <i>H</i> ")	1.5
b2) Wie lautet der Name des zugrunde liegenden Heterocyclus C ₄ H ₄ N ₂ (Sechsring mit 2 N-Atomen und 3 Doppelbindungen aber ohne Substituenten)?	1.5
Pyrimidin, 1,3-Diazin	
b3) Wie lautet der Präfixname des rechteckig eingerahmten Subst.? → Amino-	
c) Zeichnen Sie die Strukturformel folgender Verbindung. Wählen sie ggf. eine adäquate sterische Darstellung. Zeichnen Sie an stereogenen Zentren alle Substituenten inkl. H-Atome ein.	
(S)-2-(Prop-1-in-1-yl)cyclopropan-1,1-dicarbonitril	
	1
d) Zeichnen Sie die Strukturformel folgender Verbindung. Wählen sie ggf. eine adäquate sterische	
Darstellung. Zeichnen Sie an stereogenen Zentren alle Substituenten inkl. H-Atome ein.	
3-(Allyloxy)cyclohex-2-enon	
	1
e) Zu welchen Substanzklassen gehören folgende Verbindungen?	
	2
N N H Guanidin Nitroverbindung	
Punkte Aufgabe 1 7	7

Aufgabe 2 (4.5 Punkte)

a) Tragen Sie die fehlenden Formalladungen in die folgenden *Lewis*-Formeln ein:

1.5

1

b) Zeichnen Sie je eine weitere, möglichst gute (aber nicht äquivalente) Grenzstruktur untenstehender Moleküle in die vorgegebenen Rahmen ein:

c) Geben Sie Hybridisierung und Bindungsgeometrie an den nummerierten Atomen an.
 (Bei der Hybridisierung reicht ein Ausdruck, der sie insgesamt beschreibt – die Anzahl der einzelnen Orbitale müssen Sie nicht angeben.)

Kohlendioxid CO₂

Hybridisierung

-

o sp

2 sp

3 sp²

Bindungsgeometrie

trigonal pyramidal

linear

linear (endständig)

gewinkelt

 $4 ext{sp}^2$

Punkte Aufgabe 2

ł.5

Aufgabe 3 (10.5 Punkte)

Aufgabe 3 (Fortsetzung)

3	(
c) • Weld	he der folgenden Moleküle a-d sind chiral (b	pitte ankreuzen)?		
	F I	F		
	F. Toler		F	
			\	1.5
F a	b	c d		
chiral:]			
• Welche	Beziehung besteht jeweils zwischen den Mo	olekülen folgender Paare (bitte ankreuze	∍n)?	
	Moleküle b und c sind	Moleküle c und d sind		
	☐ Enantiomere	☐ Enantiomere		
	☐ Diastereoisomere	X Diastereoisomere	·	1
	X Konstitutionsisomere	☐ Konstitutionsisomere		
	☐ keine Isomere	☐ keine Isomere		
d) Die <i>Fisc</i>	her-Projektion eines C ₇ -Zuckers ist links ang	gegeben.		
10	НО	CH ₂ OH	٦	
HO 2	—н [н]ОнОн[н]	H OH		
H 3	$\stackrel{\text{-OH}}{=}$ HOH ₂ C 6 5 4 3 2	CHO } H		
H 4	$-OH$ 7 1 3 1	1 } 	σ	
HO 5	—н ОН Н ПОНОН	H } H		
HO 6	—н	CH ₂ OH H OH 1 H OH H OH H OH H OH		
	H ₂ OH Keilstrich-Formel			
L-Glyce	ero-L-galactoheptose	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∟ von	
_	4 <i>R</i> ,5 <i>S</i> ,6 <i>S</i>)-2,3,4,5,6,7-hexahydroxyhep			
d1) Hande	elt es sich dabei um einen D- oder L-Zucker	(bitte ankreuzen)? ☐ D ✓L		0.5
	12) Zeichnen Sie das in der <i>Eischer</i> -Projektion vorgegebene Molekül als Keilstrich-Formel			4 E
(Subs	ituenten in Kästchen ergänzen).			1.5
	chnen Sie die absolute Konfiguration der ste		oen links	
	ildeten Zuckers mit CIP-Deskriptoren (bitte a $\square R \checkmark S$ C(5):	ankreuzen). $\Box R $		1
` ,	• •		05 00	
	ele Stereoisomere mit der Konstitution des o ele davon sind chiral? Antwort: 32.	bigen Zuckers sind denkbar? Antwort:	2 = 32.	1
d5) Reduz	iert man die Carbonylgruppe solcher C ₇ -Zuc	cker, so erhält man Heptole der Konstitu	ution	
	₂ (CHOH) ₅ CH ₂ OH. Zeichnen Sie eine <u>belieb</u>	-	nioktion	1
	tution, indem Sie die Fischer-Projektion obeeine horizontale Spiegelgerade aufweise		JEKUOII	
		Punkto	Aufgabe 3	10.5
		i dilitic	9 0	

Aufgabe 4 (5.5 Punkte)

a) Geben Sie den p K_a -Wert folgender Säuren an (auf ±1 pK-Einheit genau; Skala für wässrige Lösung). Falls eine Verbindung mehrere acide Protonentypen enthält, beziehen Sie sich auf die sauersten (p K_a^{-1}).

- b) Welche der beiden unter b1)-b3) angegebenen Säuren ist jeweils stärker (bitte ankreuzen)?
 - Welcher Effekt ist dafür primär verantwortlich? (eine der möglichen Begründungen 1-8 einsetzen).

Wichtigste Effekte:

- 1. Elektronegativität des direkt an das acide Proton gebundenen Atoms.
- 2. Atomgrösse/Polarisierbarkeit des direkt an das acide Proton gebundenen Atoms (Stärke der X–H-Bindung).
- 3. Hybridisierung des Atoms, an dem durch Deprotonierung ein einsames Elektronenpaar entsteht.
- 4. σ-Akzeptor-Effekt.
- 5. π -Akzeptor-Effekt.
- 6. π -Donor-Effekt.
- 7. Solvatation (Wechselwirkung mit dem Lösungsmittel).
- 8. Wasserstoffbrücken.

	Säure 1	Säure 2	Wichtigster Effekt
b1)	$N_{H_2}^{\oplus}$	N N H	
		~	3
b2)	$0 \stackrel{H}{>} 0$	O	
	✓		5
b3)	HO ₂ C CO ₂ H	CO ₂ H	
		~	8

Punkte Aufgabe 4

5.5

1

1

1.5

1.5

Aufgabe 5 (5 Punkte)

Aufgaben a und b werden nur unter Angabe des Lösungswegs und der verwendeten Formeln gewertet. Vergessen Sie bei physikalischen Grössen die Einheiten nicht!

a) In einem substituierten Ethanderivat XCH₂CH₂X (s. Abb.) stehen das *antiperiplanare* Konformer (*ap*) und die beiden enantiomeren *gauche*-Konformere (g^+, g^-) miteinander im Gleichgewicht:

Annahme: Die Abstossungsenergie der beiden Gruppen X in *gauche*-Stellung beträgt +5.8 kJ/mol (+1.4 kcal/mol).

- Geben Sie n\u00e4herungsweise die Gleichgewichtskonstanten K₁, K₂ und K₃ (s. Abb.) f\u00fcr die gekoppelten Gleichgewichte an.
- Geben Sie das Verhältnis [ap]: $[g^{\dagger}]$: $[g^{\overline{}}]$ der drei Konformere im Gleichgewicht bei 25 °C an.

Als Enantiomere haben g^+ und g^- den gleichen

Energieinhalt, d. h. $K_2 = 1$ ($\Delta G_2 = 0$) und $K_1 = K_3$ ($\Delta G_1 = \Delta G_3 = +1.4$ kcal/mol).

Somit gilt: $\log K_1 = -\Delta G_1/1.4 = -1.4/1.4 = -1$ und $K_1 = 10^{-1} = 0.1 = K_3$

Zum Konformerenverhältnis im Gleichgewicht:

(1) $[g^{\dagger}] = [g^{-}]$ ($K_2 = 1$, isoenergetische Enantiomere liegen im Verhältnis 1 : 1 vor)

(2)
$$[ap] + [g^{\dagger}] + [g^{\overline{}}] = [ap] + 2[g^{\overline{}}] = 1$$
 (Gesamtkonz. = 1 bzw. 100%)

Aus
$$K_1 = [g^-]/[ap] = 0.1$$
 folgt: $[g^-] = 0.1[ap]$ oder $[ap] = 10[g^-]$

in (2):
$$10 [g^-] + 2 [g^-] = 12 [g^-] = 1 \Leftrightarrow [g^-] = 1/12 \approx 0.08$$

und
$$[ap] = 1 - 2[g^{-}] \approx 1 - 0.16 = 0.84$$

Das Verhältnis [ap]: $[g^{\dagger}]$: $[g^{\dagger}]$ beträgt also 84 : 8 : 8 bzw. 42 : 4 : 4 .

b) Betrachten Sie die folgenden Konformerengleichgewichte (1) – (3) und beantworten Sie die untenstehende Frage unter Angabe eines (kurzen) Lösungswegs.

Zu Gl. (3): Berechnen Sie ΔG_3 und näherungsweise K_3 (konkreter Zahlenwert ohne mathemat. Operatoren; inkl. Vorzeichen und Einheit).

Kombination der verschiedenen Gleichgewichte: $\Delta G_3 = \frac{1}{2} \Delta G_1 - \frac{1}{2} \Delta G_2 = -2.2 + 0.8 = -1.4$ kcal/mol. Aus der Näherungsgleichung $\Delta G_3 = -1.4$ log K_3 erhält man für die Gleichgewichtskonstante:

 $\log K_3 = \Delta G_3 / -1.4 = -1.4 / -1.4 = 1 \iff K_3 = 10$

Punkte Aufgabe 5

1.5

1.5

1.5

Aufgabe 6 (4.5 Punkte)

 a) Zeichnen Sie vom rechts als Keilstrich-Formel gezeigten Molekül das energetisch höchstliegende Konformer (Ergänzung der eingerahmten Newman-Projektion). Betrachten Sie die Wechselwirkungen von Deuterium (D) mit anderen Gruppen dabei als identisch mit denen von H.

Newman-Projektion des energetisch höchstliegenden Konformers

b1) Betrachten Sie die Rotation um die zentrale Bindung von 2-Methylbutan. Zeichnen Sie die drei Konformere durch Ergänzen der vorgegebenen *Newman*-Projektionen (θ = Torsionswinkel).

entspricht
$$\theta$$
 = 0°: Ausgangspunkt der Drehung im Energieprofil H CH₃ richtung

H
$$CH_3$$
 CH_3
 $\theta = 60^{\circ}$

H
H
CH

$$H_3$$
 CH_3
 $\theta = 180^\circ$

$$H$$
 CH_3
 H
 CH_3
 $\theta = 300^\circ$

b2) Welches der qualitativen Energieprofile $\bf A$ - $\bf D$ entspricht der Rotation um die zentrale Bindung von 2-Methylbutan [θ = Torsionswinkel]?

Hinweis bzgl. <u>ekliptischer</u> Wechselwirkungsenergien: 1 × Me/Me = 17 kJ/mol; 1 × H/Me = 6 kJ/mol.

Antwort: das korrekte Energieprofil ist ... C...

Punkte Aufgabe 6

4.5

1.5

1.5

Aufgabe 7 (5 Punkte)

a) Welche Protonen der folgenden Verbindungen werden beim Behandeln mit D_2O/OD^- schnell gegen Deuteronen (= D = 2 H) ausgetauscht? Zeichnen Sie <u>alle eingeführten Deuteronen</u> in die vorgegebenen Formeln ein.

Austausch an der vinylischen Position der linken Verb. = Grenzfall → kein Punkteabzug

b) Welches der folgenden Elektrophile ist das stärkste? Begründen Sie Ihre Wahl <u>kurz und präzise</u>. Nur begründete Antworten werden gewertet!

Begründung:

Das elektrophile Zentrum des Ethylcarbeniumions ist ein <u>Sextett-C</u> mit einer <u>vollen (+)-Ladung</u>. Das benzylische Carbeniumion hingegen ist resonanzstabilisiert, was die (+)-Ladungsdichte am Carbeniumzentrum herabsetzt. Das elektrophile Zentrum des Acetaldehyds, schliesslich, ist ein Oktettzentrum und trägt nur eine positive Partialladung $(\delta+)$.

c) Welche der folgenden Verbindungen liegt am stärksten enolisiert vor (Reinsubstanz)? Begründen Sie Ihre Wahl <u>kurz und präzise</u>. Nur begründete Antworten werden gewertet!

Begründung:

Die Enol-Form von Cyclohexa-2,4-dienon ist Phenol und somit ein Aromat. Der mit der Aromatisierung einhergehende Gewinn an Resonanzenergie übertrifft die Stabilisierung, die in den anderen beiden Systemen aus der Bildung einer α,β -ungesättigten Carbonylverbindung und ggf. einer intramolekularen H-Brücke (Verb. links) resultiert.

Punkte Aufgabe 7

Aufgabe 8 (24 Punkte, d. h. ≈1.5 Punkte pro ergänzte Lücke)

 Ergänzen Sie folgende Syntheseschemata mit den jeweils fehlenden Reaktanten, Hauptprodukten, Zwischenprodukten, Reagenzien und <u>relevanten Reaktionsbedingungen</u>. Bei Fehlen spezifischer Angaben wird jeweils die übliche Aufarbeitung vorausgesetzt. Beachten Sie ggf. auch die <u>Stereochemie!</u> <u>Geben Sie bei stereoisomeren Produkten alle gebildeten Stereoisomere an</u>. 	
MeO HCI (aus AcCI + EtOH) MeO rac	i) 1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii) 1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	iii) 1.5
Strecker (1. Stufe) HCI, (Bu ₄ NBr) EtOH / H ₂ O 25° rac Hier kein Punkteabzug falls rac vergessen. Zusätzliche Hydrolyse des Aminonitrils mit Aminosäure als Endprodukt ist auch OK.	iv)

Fortsetzung Aufgabe 8 ↓

Aufgabe 9 (8 Punkte)

→ Bei der Bildung von 2 wird als Nukleofug H eliminiert, während D im Molekül verbleibt.

Punkte Aufgabe 9