Year 8

Volume

Non Calculator Section

Name_

Skills and Knowledge Assessed:

- Draw different views of prisms and solids formed from combinations of prisms (ACMMG161)
- Choose appropriate units of measurement for area and volume and convert from one unit to another (ACMMG195)
- Develop the formulas for volumes of rectangular and triangular prisms and prisms in general. Use formulas to solve problems involving volume (ACMMG198)
- Calculate the surface area and volume of cylinders and solve related problems (ACMMG217) Extension

Answer all questions in the spaces provided on this test paper by:

Writing the answer in the box provided.

or

Shading in the bubble for the correct answer from the four choices provided.

Show any working out on the test paper. Calculators are **not** allowed.

1. Which diagram shows the three dimensional view of the solid whose plan and elevations are shown below.

2. Which solid below could be described as a prism?

3. What is the volume of the cube shown?

4. What is the volume of the rectangular prism?

5. The solid is made by joining centimetre cubes together.

What is the volume of the solid?

6. How many cubic centimetres are there in a cubic metre?

1 000

10 000

100 000

1 000 000

7. What is the volume of the prism shown in cm³?

$$\square$$
 1 800 cm³

$$\square$$
 18 000 cm³

8. Find the volume of the triangular prism shown.

9. What is the volume of the triangular prism shown?

$$\square$$
 2 400 m³

$$\qquad \qquad 2\ 720\ m^3$$

$$\sim$$
 4 800 m³

The area of the heptagonal base of this prism is 25 cm².

What is the volume of the prism?

11. What is the volume of the cylinder, in terms of π .

 \square 300 π mm³

 \square 900 π mm³

 \square 1 200 π mm³

12. What is the volume of the prism whose net is shown here?

13. What volume of paint would the cylindrical can hold.

Answer in cm^3 and in terms of $\ \pi.$

14. A barn has the dimensions shown.

Calculate the volume of the barn in cubic metres.

A food package is in the form of a trapezoidal prism.

The dimensions are shown.

Find the volume of the package.

Year	Volume 8	Calculator Allowed Short Answer Section
		Name
	swer all questions in the spaces provided on this test partitions the answer in the box provided. or Shading in the bubble for the correct answer from the forward any working out on this test paper. Calculators are a	our choices provided.
1.	What name could be given to the solid below? Hexagonal prism Hexagonal pyramid Pentagonal prism. Pentagonal pyramid.	
2.	What name would be given to a solid whose net is shown	below?

3. A cube has a volume of 17.576 cm³?

What is its side length?

8.8 cm

4. What is the volume of the rectangular prism?

5. Find the volume of the triangular prism shown.

5 m

6. A water trough is in the shape of a trapezoidal prism.

It is 35 cm deep and 165 cm long.

What is its volume, correct to the nearest cm³?

 \square 186 450 cm³

☐ 404 250 cm³

☐ 606 375cm³

 \square 808 500 cm³

7. The prism has a rhombus as its base.

What is its volume?

- 30 cm^3
- 90 cm^3
- 360 cm^3

8. An eraser is in the shape of a prism with a parallelogram as its cross section.

> What is the volume of the eraser in mm³?

12 cm

9. A paperweight is a prism with a face in the shape of a kite, as shown.

It is 3 cm thick and made of glass.

What volume of glass is used to make the paperweight?

10. What is the volume of the solid shown?

- 966 cm³
- 1932 cm^3
- \bigcirc 2 112 cm³

What is the volume of the cylinder to the nearest cm³?

- \square 2 651 cm³
- 5 301 cm³
- \square 10 603 cm³

12. The diagram shows a picnic hamper.

Find the volume of the hamper?

- \square 18 550 cm³
- \square 24 850 cm³
- \square 30 800 cm³
- \square 37 100 cm³

A storage hut is in the shape of a half cylinder.

The diameter of the semicircle is 10 metres and the length of the hut is 15 metres.

What is its volume to the nearest cubic metre?

Jack is building a prism from 1 cm² cubes. What is the least number of cubes he must add to produce a prism?

A cylindrical water cooler is 66 cm high and has a diameter of 46 cm.

It is currently half full, and is used to fill cups that hold 400 ml.

Given that 1000 cm³ holds 1 litre, how many more cups could be filled from the cooler?

Ye	ar 8 Volume	Non Calculator Section		
ANSWERS				
No.	WORKING	ANSWER		
1.	1 st has pyramid above a prism	1 st answer		
2.	3 rd is a triangular prism	3 rd answer		
3.	$V=3^3=27$	27 cm ³		
4.	$V = 5 \times 4 \times 8$ $= 160 \text{ cm}^3$	160 cm ³		
5.	Bottom row = 10 cm^3 Second row = 5 cm^3 Top row = 3 cm^3 Total volume = 18 cm^3	$18\mathrm{cm}^3$		
6.	1 cubic metre = $100 \times 100 \times 100 \text{ cm}$ = 1000000 cm^3	4 th answer		
7.	$30 \text{ mm} = 3 \text{ cm}$ $V = 3 \times 5 \times 12$ $= 180 \text{ cm}^{3}$	2 nd answer		
8.	$V = \frac{1}{2} \times 8 \times 6 \times 8$ $= 192 \text{ m}^3$	192 m³		

9.	$V = \frac{1}{2} \times 16 \times 15 \times 20$ = 8 \times 300 = 2400 m ³	1 st answer
10.	$V = Al$ $= 25 \times 8$ $= 200 \text{ cm}^3$	200 cm ³
11.	$V = \pi r^2 h$ $= \pi \times 5^2 \times 12$ $= 300\pi \text{ mm}^3$	2 nd answer
12.	$V = \frac{1}{2} \times 12 \times 8 \times 10$ = 480 cm ³	480 cm ³
13.	$0.4 m = 40 \text{ cm}$ $V = \pi r^2 h$ $= \pi \times 10^2 \times 40$ $= 4000\pi \text{ cm}^3$	$4000\pi~\text{cm}^3$
14.	Area end = $5 \times 6 + \frac{1}{2} \times 6 \times 4$ = $30 + 12$ = 42 'm''^2 Volume = 42×8 = 336 m^3	$336\mathrm{m}^3$
15.	Area trapezium = $\frac{12}{2}(14 + 16)$ = 6×30 = 180 cm^2 Volume = 180×20 = 3600 cm^3	$3~600~\mathrm{cm}^3$

Volume

Year 8

Calculator Allowed
Short Answer
Section

ANSWERS

No.	WORKING	ANSWER
1.	It is a Pentagonal prism.	3 rd answer
2.	Hexagonal prism	Hexagonal prism
3.	$V = \text{side}^{3}$ $17.576 = \text{side}^{3}$ $\text{side} = \sqrt[3]{17.576}$ = 2.6 cm	1 st answer
4.	$V = 12.5 \times 16 \times 6.4$ = 1 280 cm ³	1 280 cm ³
5.	$V = \frac{1}{2} \times 12 \times 5 \times 16$ = 480 m ³	480 m³
6.	Area trapezium = $\frac{35}{2}$ (60 + 80) = $\frac{35}{2} \times 140$ = 2450 cm^2 Volume = 24560×165 = $404 250 \text{ cm}^3$	2 nd answer

7.	Area rhombus = $\frac{1}{2} \times 8 \times 7.5$ = 30 cm ² Volume = 30 × 12 = 360 cm ³ (nearest tenth)	4 th answer
8.	Area parallelogram = 80×45 = 3600 mm^2 Volume = 3600×50 = $180\ 000\ \text{mm}^3$	180 000 mm ³
9.	Area kite = $\frac{1}{2} \times 18 \times 12$ = 108 cm^2 Volume = 108×3 = 324 cm^3	$324~\mathrm{cm}^3$
10.	Area cross section = $15 \times 7 + 8 \times 7$ = $105 + 56$ = 161 cm^2 Volume = 161×12 = 1932 cm^3	3 rd answer
11.	radius = $\frac{15}{2} = 7.5$ Area circle = $\pi \times 7.5^2$ = 176.714 Volume = 176.714 × 15 = 2650.71 = 2 651 cm ³ (nearest cm ³)	2 nd answer
12.	Area cross section = trapezium + triangl = $\frac{10}{2}(45 + 25) + \frac{1}{2} \times 45 \times 8$ = $5(70) + 180$ = $350 + 180$ = 530 cm^2 Volume = 530×35 = 18550 cm^3	1 st answer

13.	radius = $\frac{10}{2} = 5$ Area semicircle = $\frac{\pi \times 5^2}{2}$ = 39.270 Volume = 39.270 × 15 = 589.0486 = 589 m ³ (nearest m ³)	589 m³
14.	Extra needed 5 on second row and 4 on top row to make a prism. Total needed = 9 cubes.	9 cubes
15.	$1000 \text{cm}^3 = 1 \text{ litre} = 1000 \text{ ml}$ so $1 \text{ cm}^3 = 1 \text{ ml}$ $V = \pi \times 23^2 \times 66$ $= 109 686 \text{ cm}^3 \text{ (ml)}$ Half full so has $54 843 \text{ ml}$ Number of cups $= \frac{54843}{400}$ = 137.1075 137 cups could be filled	137 cups