MASTER ATIAM: Examen de traitement du signal **UE Fondamentaux pour ATIAM**

Durée : 1h30. Documents papier autorisés, aucun document électronique. Roland Badeau

Rappels et notations

Dans tout ce qui suit, nous utiliserons les notations et définitions suivantes :

— Transformée de Fourier à Temps Continu (TFTC) d'un signal analogique $x_a(t)$:

$$X_a(f) = \int_{\mathbb{R}} x_a(t)e^{-2i\pi ft}dt$$

- TFTC inverse : $x_a(t) = \int_{\mathbb{R}} X_a(f) e^{+2i\pi f t} df$ Transformée de Fourier à Temps Discret (TFTD) d'un signal discret x(n) :

$$X(e^{2i\pi\nu}) = \sum_{n\in\mathbb{Z}} x(n)e^{-2i\pi\nu n}$$

- TFTD inverse : $x(n) = \int_{-1/2}^{1/2} X(e^{2i\pi\nu}) e^{+2i\pi\nu n} d\nu$ Transformée de Fourier Discrète (TFD) d'ordre M d'un signal discret fini $x_M(n)$:

$$X_M(k) = \sum_{n=0}^{M-1} x_M(n) e^{-2i\pi \frac{k}{M}n}$$

- TFD inverse : $x_M(n) = \frac{1}{M} \sum_{k=0}^{M-1} X_M[k] e^{+2i\pi \frac{k}{M}n}$ Transformée en Z d'un signal discret x(n) :

$$X(z) = \sum_{n \in \mathbb{Z}} x(n)z^{-n}$$

Formule d'échantillonnage : si $\forall n \in \mathbb{Z}, x_e(n) = x_a(nT)$ où $T \in \mathbb{R}_+^*$, alors

$$X_e(e^{2i\pi\nu}) = \frac{1}{T} \sum_{k \in \mathbb{Z}} X_a \left(\frac{\nu + k}{T}\right) \tag{1}$$

Fonction d'autocovariance d'un processus X(n) stationnaire au sens large (SSL) réel :

$$R_X(k) = \mathbb{E}((X(n+k)-m_X)(X(n)-m_X))$$
 indépendamment de n , où $m_X = \mathbb{E}(X(n)) \ \forall n \in \mathbb{Z}$

— Densité spectrale de puissance (DSP) d'un processus X(n) SSL :

$$S_X(e^{2i\pi\nu}) = \sum_{k\in\mathbb{Z}} R_X(k)e^{-2i\pi\nu k}$$

- Filtrage des processus SSL: Soit Y(n) le processus obtenu par filtrage stable, de réponse impulsionnelle h(n) et de fonction de transfert H(z), d'un processus SSL X(n). Alors Y(n) est SSL :
 - de moyenne $m_Y = H(1) m_X$ (où H(1) est la valeur de la réponse en fréquence en $\nu = 0$),
 - de fonction d'autocovariance $R_Y = h * \tilde{h} * R_X$ (où $\tilde{h}(n) = h(-n)^*$),
 - de DSP $S_Y(e^{2i\pi\nu}) = |H(e^{j2\pi\nu})|^2 S_X(e^{2i\pi\nu}).$
- Formules trigonométriques :

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$
 (2)

$$\cos(\theta - \phi) = \cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi) \tag{3}$$

1 Questions courtes

1.1 Signaux déterministes

- a) Filtre différentiateur. On considère le filtre qui à une entrée x(n) associe la sortie y(n) = x(n) x(n-1).
 - 1) Exprimer sa réponse impulsionnelle h(n) et sa fonction de transfert H(z).
 - 2) Ce filtre est-il à réponse impulsionnelle finie (RIF) ou infinie (RII)? Est-il causal, stable?
- b) Filtre AR1. On considère le filtre causal défini par sa fonction de transfert $H(z) = \frac{1}{1 az^{-1}}$ avec |a| < 1.
 - 1) Ce filtre est-il stable? Est-il RIF/RII? Quelle est la relation entrée/sortie correspondante?
 - 2) Donner le domaine de définition de H(z) et calculer la réponse impulsionnelle h(n) correspondante.
- c) Filtre moyenneur. On considère le filtre de réponse impulsionnelle $g(n) = \frac{1}{2P+1} \mathbf{1}_{[-P,P]}(n)$, où $P \in \mathbb{N}^*$.
 - 1) Ce filtre est-il RIF/RII? Est-il causal? stable?
 - 2) Calculer sa fonction de transfert et tracer approximativement sa réponse en fréquence $G(e^{2i\pi\nu})$ pour $\nu \in \left[0, \frac{1}{2}\right]$ et P=2. Ce filtre est-il passe-haut / passe-bas? Quelle est sa fréquence de coupure ν_c , définie comme la plus petite fréquence $\nu > 0$ telle que $G(e^{2i\pi\nu}) = 0$?

1.2 Processus aléatoires

- a) **Processus SSL**. Prouver que les processus suivants sont SSL, et déterminer leurs moyennes, leurs fonctions d'autocovariance et leurs densités spectrales de puissance :
 - 1) bruit blanc (centré) W(n) de variance σ^2 ,
 - 2) processus AR1 causal (filtrage d'un bruit blanc par $H(z) = \frac{1}{1 az^{-1}}$ de coefficient $a \in]-1$ 1[).
- b) Somme de deux processus SSL. Soient deux processus $X_1(n)$ et $X_2(n)$ indépendants, SSL, centrés, de fonctions d'autocovariance R_{X_1} et R_{X_2} , et de DSP S_{X_1} et S_{X_2} . Prouver que le processus $X(n) = X_1(n) + X_2(n)$ est aussi SSL, centré, de fonction d'autocovariance $R_X(k) = R_{X_1}(k) + R_{X_2}(k)$ et de DSP $S_X(e^{2i\pi\nu}) = S_{X_1}(e^{2i\pi\nu}) + S_{X_2}(e^{2i\pi\nu})$.
- c) **Puissance d'un processus SSL.** Soit $\epsilon(n)$ un processus SSL réel centré, de DSP $S_{\epsilon}(e^{2i\pi\nu})$. On définit $\sigma_{\epsilon}^2 = \mathbb{E}(\epsilon(n)^2)$. Prouver que $\sigma_{\epsilon}^2 = \int_{-1/2}^{1/2} S_{\epsilon}(e^{2i\pi\nu}) d\nu$.

2 Filtre de Hilbert

Soit $x_a(t)$ un signal réel à temps continu (analogique). Le signal analytique associé à $x_a(t)$ est le signal $z_a(t)$ dont la TFTC a pour expression $Z_a(f) = 2U_a(f)X_a(f)$, où $U_a(f)$ est la fonction échelon-unité, qui vaut 1 si f > 0, et 0 si f < 0. Pour des raisons de continuité, on prend $U_a(0) = \frac{1}{2}$. On donne le nom de filtre analytique au filtre dont le gain en fréquence est $2U_a(f)$.

- (a) Quelle propriété vérifie la fonction $X_a(f)$? En déduire l'expression de $\frac{1}{2}(Z_a(f) + Z_a^*(-f))$ en fonction de $X_a(f)$, et prouver que la partie réelle de $z_a(t)$ est égale à $x_a(t)$. On pourra alors écrire $z_a(t) = x_a(t) + iy_a(t)$, où le signal réel $y_a(t)$ est défini comme la partie imaginaire de $z_a(t)$.
- (b) Démontrer que $y_a(t)$ se déduit de $x_a(t)$ par un filtrage linéaire de réponse en fréquence $H_a(f) = -i \operatorname{signe}(f)$, où $\operatorname{signe}(f) = 1$ si f > 0, $\operatorname{signe}(f) = -1$ si f < 0, et $\operatorname{signe}(0) = 0$. Le filtre $H_a(f)$ porte le nom de filtre de Hilbert, et $y_a(t)$ est appelé transformée de Hilbert de $x_a(t)$.

Supposons que le signal $x_a(t)$ satisfait les hypothèses du théorème d'échantillonnage : il existe une fréquence F_e telle que le support de $X_a(f)$ soit inclus dans $]-\frac{F_e}{2},\frac{F_e}{2}[$. On considère alors les signaux échantillonnés $x(n)=x_a(nT_e)$ et $y(n)=y_a(nT_e)$, où $T_e=1/F_e$. On rappelle la relation entre la TFTD $X(e^{2i\pi\nu})$ et la TFTC $X_a(f)$:

$$X(e^{2i\pi\nu}) = \frac{1}{T_e} \sum_{k \in \mathbb{Z}} X_a \left(\frac{\nu + k}{T_e}\right) \tag{4}$$

(c) Simplifier l'expression (4) lorsque $\nu \in]-\frac{1}{2},\frac{1}{2}[$. Vérifier que $Y(e^{2i\pi\nu})$ satisfait une expression similaire. En déduire que le signal y(n) peut aussi s'exprimer comme le résultat du filtrage discret de x(n) par le filtre de réponse en fréquence $H(e^{2i\pi\nu})=-i\operatorname{signe}(\nu)$, pour $\nu \in]-\frac{1}{2},\frac{1}{2}[$ (et $H(e^{2i\pi\nu})=0$ pour $\nu=\pm\frac{1}{2}$).

Remarque : le filtre discret $H(e^{2i\pi\nu})$ permet de calculer directement les échantillons y(n) de la transformée de Hilbert à partir des échantillons x(n), sans avoir à effectuer de conversion numérique / analogique.

- (d) En appliquant la TFTD inverse, prouver que la réponse impulsionnelle h(n) vérifie $h(n) = \frac{2}{\pi n}$ si n est impair, et 0 si n est pair.
- (e) Ce filtre est-il causal? stable? RIF ou RII?
- (f) Pour un filtre discret de réponse impulsionnelle g(n) et de fonction de transfert G(z), quelle est la réponse impulsionnelle du filtre de fonction de transfert $G(z^2)$?
- (g) En utilisant la nullité des coefficients pairs de h(n), en déduire qu'il existe une fonction de transfert G(z), telle que $H(z) = z^{-1}G(z^2)$. Que vaut la réponse impulsionnelle g(n)?

3 Filtrage optimal

On considère le modèle de mélange additif de processus donné par la figure suivante :

où X(n) et Y(n) sont deux processus indépendants et identiquement distribués (IID), centrés, indépendants entre eux, de variances σ_X^2 et σ_Y^2 . Le filtre est causal, de fonction de transfert $H(z) = \frac{1}{1 - az^{-1}}$ avec |a| < 1.

- a) Démontrer que S(n) est centré et exprimer sa fonction d'autocovariance $R_S(k)$ en fonction de σ_X , σ_Y et h (on pourra utiliser la réponse à la question 1.2.b) et le théorème de filtrage des processus SSL).
- b) En déduire l'expression de la variance de S(n), notée σ_S^2 en fonction de σ_X , σ_Y et a (on pourra utiliser le résultat de la question 1.1.b2)).
- c) On filtre maintenant S(n) par un filtre d'égalisation E(z), pour obtenir le processus T(n):

$$S(n) \longrightarrow E(z) \longrightarrow T(n)$$

- 1) Démontrer qu'il existe un filtre E(z) causal stable tel que E(z)H(z)=1 et déterminer sa réponse impulsionnelle e(n).
- 2) Prouver alors que le processus transmis s'écrit T(n) = X(n) + W(n) où l'on exprimera le processus W en fonction de Y et e.
- d) On cherche ce que vaut le rapport signal à bruit (RSB) en sortie, défini par $\eta = \frac{\sigma_X^2}{\sigma_W^2}$.
 - 1) Exprimer σ_W^2 en fonction de σ_Y^2 .
 - 2) Exprimer η en fonction du RSB en entrée $\eta_e = \frac{\sigma_X^2}{\sigma_V^2}$ et de a.