2. (a)
$$X = 0.63 \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix}$$

i. Yes they're linearly independent

b)
$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 1 & 0 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

:. rank(X)=2

3. a)
$$f(w) = w^{T}(3x)$$

 $9wf = 3x$

b)
$$f(w)=(w-x)^T(w-x)$$

$$\partial w f = \frac{\partial f(w)}{\partial (w-x)} \frac{\partial (w-x)}{\partial (w)}$$

$$= 2(W-X)$$

c)
$$f(w) = \chi^{7} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} w$$

$$\nabla w f = \begin{pmatrix} x^{T} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \end{pmatrix}^{T} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \cdot x$$

d)
$$f(w) = w^{T} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} w$$

$$= \omega^{T} ($$

$$\nabla w = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} w = 2w$$

$$E(\frac{1}{-1},\frac{1}{1})^{+}$$

$$f(w) = w^{T} \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} w$$

$$\nabla w f = \left[\begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} \right] w = 2 \cdot \left[\begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} \right] w$$

10	b) 0000 (450	Lostinica artimatica y acida to amorto dacta V
4,	D) Stept, use	e feature-extraction methods to create test data X
	Step2.for	each X:
	1	calculate XW
		if Xw >0 then classify it as smiling face else classify it as a non-smiling face.
		else classifyit as a non-smiling face.
		lalue
	C). I think t	the feature with the largest absolute weight, seems to
		est important. For it would contribute the most
		classification. Empirically speaking, the weight value of all
		res are randomly initialized in the beginning. And then, in
	the gradie	nt decent the feature which affects classification the most
	would get	t the largest gradient for its weight. After all the epochs,
	this featur	re's weight value is changed to be the largest.
	-00	
	OD IT I could	d do experiment, I would choose the features by randomly picking
	up 3 teatu	res and masking all the others, then selecting the group with the
	least arrivari	(10/1 100/ 712.
	To build a	of, I would simply choose 3 features with top 3 absolute weight value
		classifier:
	C-	tep 1. randomly divide the training set and test set (80%:20%)
	ر-	tep 2. get the weight for training set with least square. tep 3. Test the error rate:
	J.	for each (xxy) test set;
		carchiate XW
		if Xw·y≥o: right
		PICE: INTONO
		Mong Camples
		error rate = Wrong sample x 100%
		total samples
		eise: wrong error rate = wrong samples X 100% total Samples

10/15/22, 10:32 PM HW2

```
In [1]:
         import scipy . io as sio
         import numpy as np
         # #### Part a #####
         # load the training data X and the training labels y
         matlab data file = sio . loadmat ('face emotion data.mat')
         X = matlab_data_file ['X']
         y = matlab_data_file ['y']
         \# n = number of data points
         # p = number of features
         n,p = np.shape(X)
         # Solve the least - squares solution . w is the list of
         # weight coefficients
         X_=np.hstack((X,[[1.]for i in range(n)]))
         np.random.seed(1234)
         w_init=np.random.normal(0,1,size=(p+1,1))
         lr=0.0001
         sigma=1e-8
         def dw(x,y,w):
             return 2*x.T.dot(x.dot(w)-y)
         def grad_least_square(x,y,lr,w_init,sigma):
             w=w_init
             i=0
             while 1:
                 dw_cur=dw(x,y,w)
                 w hat=w-2*lr*dw cur
                 sigma_hat=np.sum((w_hat-w)**2)
                  \#print(np.sum((y-X .dot(w))**2))
                 #print(sigma hat)
                 #print()
                 if sigma_hat<sigma:</pre>
                      w=w hat
                      break
                 w=w hat
             return w
         w=grad_least_square(X_,y,lr,w_init,sigma)
         print(w)
         [[ 0.94128699]
         [ 0.1292234 ]
         [ 0.29656433]
         [-0.33543203]
         [-0.00827229]
         [-0.02106024]
         [-0.16532586]
         [-0.0785805]
         [-0.16675397]
         [ 0.078125 ]]
In [2]:
         def estimate_error(x,y,w):
```

10/15/22, 10:32 PM HW2

```
y hat=x.dot(w)
    y_hat=np.where(y_hat <= 0, -1, 1)</pre>
    #print(y_hat)
    #print(y)
    return 1.-np.sum(y hat==y)/y.shape[0]
lr=0.00001
sigma=1e-8
error=0
for i in range(8):
    hold_out_X=X_[16*i:16*(i+1)]
    hold_out_y=y[16*i:16*(i+1)]
    train_X=np.concatenate((X_[0:16*i],X_[16*(i+1):]))
    train_y=np.concatenate((y[0:16*i],y[16*(i+1):]))
    np.random.seed(1234)
    w_init=np.random.normal(0,1,size=(p+1,1))
    w=grad_least_square(train_X,train_y,lr,w_init,sigma)
    #print(w)
    error+=estimate_error(hold_out_X,hold_out_y,w)
print(error/8.)
```

0.0390625

```
In [3]:
         #4f
         #9features
         fature index=[i for i in range(9)]
         X_new=X_[:,fature_index+[9]]
         #X new=X
         lr=0.00001
         sigma=1e-9
         hold_out_X=X_new[:32]
         hold_out_y=y[:32]
         train_X=X_new[32:]
         train y=y[32:]
         error=0
         np.random.seed(1234)
         w_init=np.random.normal(0,1,size=(10,1))
         w=grad_least_square(train_X,train_y,lr,w_init,sigma)
         cur_err=estimate_error(hold_out_X,hold_out_y,w)
         #print(cur err)
         error+=cur_err
         print(error)
```

0.0625

```
In [4]: #4f
    #3features

fature_index=[0,2,3]
```

```
X_new=X_[:,fature_index+[9]]
lr=0.00001
sigma=1e-8

hold_out_X=X_new[:32]
hold_out_y=y[:32]
train_X=X_new[32:]
train_y=y[32:]
error=0

np.random.seed(1234)
w_init=np.random.normal(0,1,size=(4,1))

w=grad_least_square(train_X,train_y,lr,w_init,sigma)
cur_err=estimate_error(hold_out_X,hold_out_y,w)
#print(cur_err)
error+=cur_err

print(error)
```

0.25

```
In [5]:
         import numpy as np
         import scipy . io as sio
         import matplotlib . pyplot as plt
         # Load x and y vectors
         d = sio.loadmat ('polydata.mat')
         z = d ['x']
         y = d ['y']
         # n = number of data points
         # N = number of points to use for interpolation
         # z = points where interpolant is evaluated
         # p = array to store the values of the interpolated polynomials
         n = z.size
         N = 100
         z_test= np.linspace(np.min(z),np.max(z),N)
         p = np.zeros ((3,N))
         np.random.seed(1234)
         lr=0.001
         sigma=1e-8
         i=0
         for d in [1,2,3]:
             x_train=np.array([[z_[0]**i for i in range(d+1)] for z_ in z])
             x_test=np.array([[z_**i for i in range(d+1)] for z_ in z_test])
             w_init=np.random.normal(0,1,size=(d+1,1))
             w=grad least square(x train,y,lr,w init,sigma)
             p[i]+=x test.dot(w).reshape(-1)
             i=i+1
         # generate X- matrix for this choice of d
         # solve least - squares problem . w is the list
         # of polynomial coefficients
         # evaluate best -fit polynomial at all points z_test ,
         # and store the result in p
         # NOTE ( optional ): this can be done in one line
```

10/15/22, 10:32 PM HW2

0.2

0.0

```
# with the polyval command !
# plot the datapoints and the best -fit polynomials
plt.plot(z,y,'.',z_test,p[0,:],z_test,p[1,:],z_test,p[2,:],linewidth =2)
plt.legend ([ 'data', 'd=1', 'd=2', 'd=3'] , loc ='upper left')
plt.title ('best fit polynomials of degree 1 , 2 , 3')
plt.xlabel ('x')
plt.ylabel ('y')
plt.show ()
```


0.4

In []:

0.6

х

0.8

1.0