Software development

Section 3: Neural Networks

Ioannis Emiris and Emmanouil Christoforou

Dept Informatics & Telecoms, NKUA

December 15, 2019

Introduction

Machine Learning

Machine learning (ML) uses statistical techniques to give computer systems the ability to `learn' (i.e. progressively improve performance on a specific task) from data, without being explicitly programmed.

Neural Networks

Neural Networks (and Deep Learning) is a class of ML algorithms that use a cascade of layers of nonlinear processing units for feature extraction and transformation, mimicking the human neurons. Each successive layer uses the output from the previous layer as input.

Live Neural Network

Artificial Neural Network

Neural Networks

- NN is a cascade of hidden layers
- Each layer is a data transformation function
 - weights/parameters determine the transformation
 - transformations are differentiable for improving output

NN Layers of representations

- Input: Raw data
- Data transformed so that irrelevant information is filtered out

Outline

Architecture

2 Layers

Usage

Learning process

Predicted f(X): Find f s.t. f(x) is close to **True value**

Goal of training

Goal of training \rightarrow find weights that minimise loss function

Activation functions

- Non-linear activation transformation on (weighted) input
- Generate **non-linear mappings** from inputs to outputs
- Decide whether this neuron is active or not

Activation functions (I)

Loss functions based on problem

- $y = \text{true output label/value}, \hat{y} = \text{predicted class/value},$
- n = number of training instances, M = # classes.
 - Regression

Mean Squared Error (MSE):
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Mean Absolute Error (MAE):
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y_i}|$$

Classification

binary cross-entropy:
$$-\frac{1}{n}\sum_{i=1}^{n}(y_{i}\log\widehat{y}_{i}+(1-y_{i})\log(1-\widehat{y_{i}}))$$

(multiclass, one label) cross-entropy:
$$-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{M} y_{ij} \log \widehat{y_{ij}}$$

Backward propagation

- Forward propagation: compute activations (black arrows)
- Backprop: compute derivatives optimizing parameters/weights (red)
- Gradient descent exploits chain rule $\frac{dL}{dx} = \frac{dL}{dw} \frac{dw}{dx}$
- . . . to get partial derivative of loss wrt weights
- Learning rate: step to change weights

Overfitting

NN as universal approximators

Universal Approximation Theorem

Let ξ be a non-constant, bounded, monotonically-increasing continuous activation function, $f:[0,1]^d\to\mathbb{R}$ continuous, and $\epsilon>0$. Then, $\exists n$, parameters $a,b\in\mathbb{R}^n,W\in\mathbb{R}^{n\times d}$ s.t.

$$\left|\sum_{i=1}^n a_i \xi(w_i^T x + b_i) - f(x)\right| < \epsilon.$$

- Any f approximated arbitrarily well by NN with one hidden layer
- How many neurons? How to find the parameters?
- Does it generalize well? Does it overfit?
- Shallow nets work poorly for high-dimensional data like images

Better Generalization with Greater Depth

- Empirical results show that deeper networks generalize better
- Test accuracy consistently increases when increasing depth

Transcribe multidigit numbers from photographs of addresses (Goodfellow'14)

Outline

Architecture

- 2 Layers
- Usage

Fully Connected Layer

Matrix multiplication: W is a 10×3072 real matrix.

Convolution definition

- Pointwise matrix multiply
- The kernel (convolution mask) is a small matrix (or flipped)

Convolution

Motivation: Sparse / Parameter sharing / Equivariant representations

Original:

Sharpen:

0	-1	0
-1	5	-1
0	-1	0

Blur: $\frac{1}{9}$

	1	1	1	l
-	1	1	1	
	1	1	1	l

Edge detect:

-1	-1	-1
-1	8	-1
-1	-1	-1

1D vs 2D convolution

1D Convolutional - Example

In this example for natural language processing, a sentence is made up of 9 words. Each word is a vector that represents a word as a low dimensional representation. The feature detector will always cover the whole word. The height determines how many words are considered when training the feature detector. In our example, the height is two. In this example the feature detector will iterate through the data 8 times

2D Convolutional - Example

In this example for computer vision, each pixel within the image is represented by its x- and y position as well as three values (RGB). The feature detector has a dimension of 2 x 2 in our example. The feature detector will now slide both horizontally and vertically across the image.

Pooling (Downsampling)

- Makes representations smaller and more manageable
- Helps make representation roughly invariant to small input translations
- \mathbf{Max} , Avg, L^2 norm, weighted avg distance from the central pixel

Recurrent Neural Networks (RNN)

NNs mainly distinguished in:

- Feedforward neural networks (FNN):
 Features processed independently
- Recurrent neural networks (RNN):
 Features processed sequentially e.g. time series

RNN allow cyclic connections

ightarrow fit best to process **sequential** data

RNN input

RNN: Type of sequences

1-many: image captioning (image \rightarrow word sequence)

many-1: sentiment classification (word sequence \rightarrow sentiment) many-many: machine translation (word sequence \rightarrow word seq.)

many-many: video classification on frame level

Recurrent neural networks

- allow cyclic connections
- . . . essentially offer internal state (memory)
- keep track of arbitrarily long-term dependencies (boon/issue)
- internal state processes input x_t 's by applying recurrence formula at every time step t: new state $h(t) \leftarrow f_w(h_{t-1}, x_t)$.

Numerics: Back-propagated gradients may vanish (\to 0) or explode (\to ∞).

Outline

Architecture

2 Layers

Usage

Typical Neural Network

CNN example

Development frameworks

Training may be done on GPU environment Colab (Google).

References

- Deep Learning book (https://www.deeplearningbook.org/) (www.dropbox.com/s/oj3olyzxvnchrqs/SGP%202018.pdf?dl=0)
- Yannis Avrithis, Deep learning for computer vision (6h short course)
 (http://erga.di.uoa.gr/meetings/Slides_Avrithis.zip)
- J.J. Allaire, Machine Learning with TensorFlow and R (https: //beta.rstudioconnect.com/ml-with-tensorflow-and-r/)