HOJA 2

[1.]
$$T = \frac{(O_1 - E_1)^2}{E_1} + \frac{(O_2 - E_2)^2}{E_2} \xrightarrow{d} \chi_1^2$$
 si $n \to \infty$
 X v.a produce $\int \chi_1$, χ_2 valores posibles ρ , $1-\rho$ probabilidades

Hay que ver que
$$T=Z^2$$
, doude $Z \sim N(0,1)$
 $X = \cos \sin \theta$ a producir caras y cruces $A_1 = \cos \theta = 0$
 $A_2 = \cos \theta = 0$
 $A_3 = \cos \theta = 0$
 $A_4 = \cos \theta = 0$
 $A_2 = \cos \theta = 0$
 $A_2 = \cos \theta = 0$
 $A_3 = \cos \theta = 0$
 $A_4 =$

$$T = \frac{(O_{1} - np)^{2}}{np} + \frac{(n - O_{1} - n(1-p))^{2}}{n(1-p)} = \frac{(O_{1} - np)^{2}}{np} + \frac{(O_{1} - np)^{2}}{n(1-p)} = \frac{(O_{1} - np)^{2}}{np(1-p)} = \frac{(O_{1} - np)^{2}}{\sqrt{np(1-p)}}$$

$$= \frac{(O_{1} - np)^{2}(1-p+p)}{np(1-p)} = \frac{(O_{1} - np)^{2}}{\sqrt{np(1-p)}} = \frac{(O_{1} - np)^{2}}{\sqrt{np(1-p)}}$$

Por el TCL:

$$T \xrightarrow{d} Z^2 \sim \chi_1^2$$

con $Z \sim N(0,1)$

perque:

$$E(Bin(n,p)) = NP$$

$$V(Bin(n,p)) = NP(1-p)$$

2.
$$(x_4, ..., x_n)$$
 ceros y unos $= \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n (1 - \overline{x})$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n (1 - \overline{x})$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n \overline{x}$
 $= n^{\circ}$ unos $= n - \sum_{i} x_i = n \overline{x}$
 $= n - \sum_{i}$

A partir de ahora, hasta los ejercicios de K-S, se realizan en una hoja de Excel. Aquí mostraremos los razonamientos para el grado de libertaol.

3.) Sena bueno si la distribución fuese uniforme:
$$valor esperado = \frac{n}{\# valores-posibles}$$
En nuestro caso, $\# valores-posibles = 40$, $n = 200$
Grados de libertad: $10-1=9$

Grados de libertad 1
$$6-4=5$$

[5.] Esperados en cada celda:
$$\frac{n}{\# celdas} = \frac{60}{9}$$

Grados de libertad: $9-1=8$

Estimación por máx. verosimilitud:
$$\hat{p} = 0.9129$$
 (solver) grados de libertad = $4-1-1=2$ porque necesitamos estimar p

VERO $(p) = (\frac{p}{2})^{442}$. $(\frac{p^2}{2} + p(1-p))^{514}$. $(\frac{1-p}{2})^{38}$. $(\frac{1-p}{2})^6$

$$\log_{P} VERO_{P}(p) = 442 \log_{P} \left(\frac{1}{2}\right) + 514 \log_{P} \left(\frac{1}{2}\right)^{2} + 38 \log_{P} \left(\frac{1-p}{2}\right) + 6 \log_{P} \left(\frac{(1-p)^{2}}{2}\right)$$

$$\frac{d\log_{P} VERO_{P}}{dp}(p) = \frac{442}{p} + 514 \frac{2(1-p)}{p(2-p)} + \frac{-38}{1-p} + \frac{-12}{1-p} = 0$$

$$\Leftrightarrow 442(2-p)(1-p) + 1024(1-p)^{2} - 50 p(2-p) = 0 \Leftrightarrow$$

$$\Leftrightarrow 884 - 884p - 442p + 442p^{2} + 1024 - 2048p + 1024p^{2} - 100p + 50p^{2} = 0$$

$$\Leftrightarrow 1516 p^{2} - 3474p + 1908 = 0 \Leftrightarrow$$

$$P = \frac{3474 \pm \sqrt{(3474)^{2} - 4.1516.1908}}{2.1516} = p = 0.9129$$

$$\Leftrightarrow p = 1.37.87$$

$$(no valida)$$

7.]
a) Consideramos Ho: "la prob. de asesinato es igual todos los dias"
Grados de libertad: 7-1=6

b) Hacemos dos test chi-cuadrado:

1. De lunes a viernes (grados de libertad: 5-1 = 4)

2. Sábado y domingo, e.d., fin de semana (g.l. = 2-1+1)

Buscamos aceptar ambos para aceptar Ho.

8.	Grados	de	libertad:	4-1	=(3)
----	--------	----	-----------	-----	------

$$\boxed{9.7}$$
 Grados de libertad : 2.3 -1 - (2-1) - (3-1) = $\boxed{2}$

10. No se estiman las probabilidades de pertenecer a PU, PT
$$\stackrel{\cdot}{\circ}$$
 CD:

Grados de libertad: $3.3-1-(3-1)=6$

[12.] El tamatro de la muestra no se estima.
Grados de libertad:
$$2.3-1-(2-1)=4$$

[14.] Grados de libertad:
$$3.3-1-(3-1)-(3-1)=4$$

| 44. | Grados de libertad:
$$2.3 - 1 - (2-1) - (3-1) = 2$$

17. | n=1 , X, F continua

Recordemos que, por un tma. visto en clase, la distr. Δ_n es la misma para toda v.a. X continua. En particular, $\Delta_n^{\times} = \Delta_n^{\times}$, con $U \sim \text{UNIF[0,1]}$.

 $\Delta_4 = \max \left\{ |F(x_4)|, |A - F(x_4)| \right\}$

Tomamos FX = FUNIF [0,1]:

 $Z := \max \left\{ F(X_1), 4 - F(X_1) \right\}$

Hay que estudiar la distr. de Z = max { U, 1-U}

U~ UNIF[0,1]

Z toma valores en $\left[\frac{1}{2},1\right]$:

 $z_0 \in (0,1) \Rightarrow \mathbb{P}(Z \leq z_0) = \mathbb{P}(\max\{u, 1-u\} \leq z_0) =$

 $= \mathbb{P}\big(\mathbb{U} \leq 20, 1-\mathbb{U} \leq 20\big) = \mathbb{P}\big(1-20 \leq \mathbb{U} \leq 20\big) =$

 $= \begin{cases} 0 & \text{si } 2 < \frac{1}{2} \\ 22 - 1 & \text{si } 2 > \frac{1}{2} \end{cases}$

> Z~ UNIF[=,4]

FUNCIÓN DE DISTRIBUCIÓN EXP (4/2)

20.
$$\Delta_{n} = \sup_{t \in \mathbb{R}} \left| F_{n}(t) - F(t) \right| = \max_{1 \le i \le n} \left| \max_{t \le i \le n} \left| \frac{i-1}{n} - F(x_{i}) \right| \right| \frac{i-1}{n} - F(x_{i}) \right|$$

$$\sqrt{n} \Delta_{n} \xrightarrow[n \to \infty]{} \text{ dierta variable de } k-S.$$

$$\Delta_{n}^{+} = \sup_{t \in \mathbb{R}} \left(F_{n}(t) - F(t) \right)^{+} \quad ; \quad \sqrt{n} \Delta_{n}^{+} \xrightarrow[n \to \infty]{} 1 - e^{-2x^{2}}, \quad x > 0$$

$$\Delta_{n}^{-} = \sup_{t \in \mathbb{R}} \left(F_{n}(t) - F(t) \right)^{-}$$

$$d_{n}^{-} = \sup_{t \in \mathbb{R}} \left(F_{n}(t) - F(t) \right)^{-}$$

$$\Delta_n^+ = \max_{1 \le i \le n} \left(\frac{1}{n} - F(x_i) \right)^+$$

$$\sup_{t \le X_1} \left(F_n(t) - F(t) \right)^+ = \left(\frac{1}{n} - F(x_i) \right)^+$$

$$2x_0 - 1 = 0.95 \longrightarrow x_0 = \frac{1.95}{2} = 0.975$$

Rechazaríamos para
$$\{x \in \mathbb{R}: \Phi(x) \geq 0'975\} \Rightarrow$$

$$\Rightarrow \begin{cases} \chi \in \mathbb{R} : |\chi| \geqslant \Phi^{-1}(0|975) \end{cases} \text{ valor absolute debide}$$

$$= \frac{1}{96} \text{ valor absolute de la normal}$$

Region de rechazo: {x∈IR: 1×1≥1'96}