CS 450: Numerical Anlaysis¹ Eigenvalue Problems

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Eigenvalues and Eigenvectors

ightharpoonup A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ, x) if

$$Ax = \lambda x$$

- For any scalar α , αx is also an eigenvector of A with eigenvalue λ
- Generally, an eigenvalue λ is associated with an eigenspace $\mathcal{X} \subseteq \mathbb{C}^n$ such that each $x \in \mathcal{X}$ is an eigenvector of A with eigenvalue λ .
- The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue (when less, matrix is defective, otherwise matrix is diagonalizable).
- **Each** $n \times n$ matrix has up to n eigenvalues, which are either real or complex
 - The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
 - The dimensionalities of all the eigenspaces (multiplicity associated with each eigenvalue) sum up to n for a diagonalizable matrix.
 - ► If the matrix is real, real eigenvalues are associated with real eigenvectors, but complex eigenvalues may not be.

Eigenvalue Decomposition

▶ If a matrix A is diagonalizable, it has an eigenvalue decomposition

$$A = XDX^{-1}$$

where ${m X}$ are the right eigenvectors, ${m X}^{-1}$ are the left eigenvectors and ${m D}$ are eigenvalues

$$AX = [Ax_1 \quad \cdots Ax_n] = XD = [d_{11}x_1 \quad \cdots \quad d_{nn}x_n].$$

- If A is Hermitian, its right and left singular vectors are the same by symmetry, hence in this case $X^{-1} = X^H$.
- More generally, any normal matrix, $A^HA = AA^H$, has unitary eigenvectors.
- ▶ A and B are similar, if there exist Z such that $A = ZBZ^{-1}$
 - lacktriangle Normal matrices are unitarily similar ($oldsymbol{Z}^{-1}=oldsymbol{Z}^H$) to diagonal matrices
 - Symmetric real matrices are orthogonally similar $(\mathbf{Z}^{-1} = \mathbf{Z}^T)$ to real diagonal matrices
 - Hermitian matrices are unitarily similar to real diagonal matrices

Similarity of Matrices

Invertible similarity transformations $Y = XAX^{-1}$

matrix $(oldsymbol{A})$	similarity (X)	reduced form (Y)
arbitrary	invertible	bidiagonal
diagonalizable	invertible	diagonal

Unitary similarity transformations $oldsymbol{Y} = oldsymbol{U} oldsymbol{A} oldsymbol{U}^H$

matrix $(oldsymbol{A})$	similarity ($oldsymbol{U}$)	$reduced\ form\ (Y)$
arbitrary	unitary	triangular
normal	unitary	diagonal
Hermitian	unitary	real diagonal

Orthogonal similarity transformations $oldsymbol{Y} = oldsymbol{Q} oldsymbol{A} oldsymbol{Q}^T$

matrix (A)	similarity $(oldsymbol{Q})$	reduced form (Y)
real	orthogonal	real Hessenberg
real symmetric	orthogonal	real diagonal
SPD	orthogonal	real positive diagonal

Canonical Forms

Any matrix is *similar* to a bidiagonal matrix, giving its *Jordan form*:

$$m{A} = m{X} egin{bmatrix} m{J}_1 & & & \ & \ddots & \ & & m{J}_k \end{bmatrix} m{X}^{-1}, & orall i, & m{J}_i = egin{bmatrix} \lambda_i & 1 & & \ & \ddots & \ddots & \ & & \ddots & 1 \ & & & \lambda_i \end{bmatrix}$$

the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its Schur form:

$$A = QTQ^H$$

where T is upper-triangular, so the eigenvalues of A is the diagonal of T. Columns of Q are the Schur vectors.

Eigenvectors from Schur Form

- ▶ Given the eigenvectors of one matrix, we seek those of a similar matrix: Suppose that $A = SBS^{-1}$ and $B = XDX^{-1}$ where D is diagonal.
 - ▶ The eigenvalues of A are $\{d_{11}, \ldots, d_{nn}\}$
 - $lacktriangledown A = SBS^{-1} = SXDX^{-1}S^{-1}$ so SX are the eigenvectors of A
- ▶ Its easy to obtain eigenvectors of triangular matrix *T*:
 - One eigenvector is simply the first elementary vector.
 - The eigenvector associated with any diagonal entry (eigenvalue λ) may be obtaining by observing that

$$\mathbf{0} = (T - \lambda I)x = egin{bmatrix} oldsymbol{U}_{11} & oldsymbol{u} & oldsymbol{T}_{13} \ & oldsymbol{0} & oldsymbol{v}^T \ & oldsymbol{U}_{33} \end{bmatrix} egin{bmatrix} -oldsymbol{U}_{11}^{-1}oldsymbol{u} \ 1 \ oldsymbol{0} \end{bmatrix},$$

so it suffices to solve $oldsymbol{U}_{11}oldsymbol{y}=-oldsymbol{u}$ to obtain eigenvector $oldsymbol{x}.$

Rayleigh Quotient

► For any vector x, the *Rayleigh quotient* provides an estimate for some eigenvalue of A:

$$ho_{m{A}}(m{x}) = rac{m{x}^H m{A} m{x}}{m{x}^H m{x}}.$$

- If x is an eigenvector of A, then $\rho_A(x)$ is the associated eigenvalue.
- Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue estimate given x and y, as it is the solution to $x\alpha \cong y$.
- ▶ The normal equations for this scalar-output least squares problem are

$$oldsymbol{x}^Toldsymbol{x}lpha=oldsymbol{x}^Toldsymbol{y} \quad\Rightarrow\quad lpha=rac{oldsymbol{x}^Toldsymbol{y}}{oldsymbol{x}^Toldsymbol{x}}=rac{oldsymbol{x}^Toldsymbol{A}oldsymbol{x}}{oldsymbol{x}^Toldsymbol{x}}.$$

Perturbation Analysis of Eigenvalue Problems

Suppose we seek eigenvalues $D = X^{-1}AX$, but find those of a slightly perturbed matrix $D + \delta D = \hat{X}^{-1}(A + \delta A)\hat{X}$:

Note that the eigenvalues of $X^{-1}(A+\delta A)X=D+X^{-1}\delta AX$ are also $D+\delta D$. So if we have perturbation to the matrix $||\delta A||_F$, its effect on the eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation $\delta \hat{A}=X^{-1}\delta AX$ of a diagonal matrix of eigenvalues D, with norm

$$||\delta \hat{A}||_F \le ||X^{-1}||_2 ||\delta A||_F ||X||_2 = \kappa(X) ||\delta A||_F.$$

▶ Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix: Given a matrix $A \in \mathbb{R}^{n \times n}$, let $r_i = \sum_{j \neq i} |a_{ij}|$, define the Gershgorin disks as

$$D_i = \{ z \in \mathbb{C} : |z - a_{ii}| < r_i \}.$$

The eigenvalues $\lambda_1, \ldots, \lambda_n$ of any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are contained in the union of the Gershgorin disks, $\forall i \in \{1, \ldots, n\}, \lambda_i \in \bigcup_{j=1}^n D_j$.

Gershgorin Theorem Perturbation Visualization

- ► Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
- ▶ Bottom part corresponds to bounds on Gershgorin disks of $X^{-1}(A + \delta A)X$, which contain the eigenvalues D of A and the perturbed eigenvalues $D + \delta D$ of $A + \delta A$ provided that $||\delta A||$ is sufficiently small.

Conditioning of Particular Eigenpairs

Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y, $\lambda = y^H A x / y^H x$ For a sufficiently small perturbation δA , the eigenvalue λ is perturbed to an eigenvalue $\hat{\lambda}$ of $\hat{A} = A + \delta A$. The eigenvalue perturbation, ignoring error due to the change in eigenvectors, is

$$|\hat{\lambda} - \lambda| pprox |oldsymbol{y}^H oldsymbol{\delta} oldsymbol{A} oldsymbol{x}/oldsymbol{y}^H oldsymbol{x}| \leq rac{||oldsymbol{\delta} oldsymbol{A}||}{|oldsymbol{y}^H oldsymbol{x}|}.$$

This is small if x is near-parallel to y and large if they are near-perpendicular.

A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{x} = x + \delta x$, can be obtained with an estimate of both eigenvectors (also $\hat{y} = y + \delta y$),

$$|\hat{\lambda}_{ extbf{XAX}} - \lambda| pprox |\delta x^H A x + x^H A \delta x| \leq |\lambda| ||\delta x|| + \left(|\lambda||y^H x| + |1 - y^H x| \cdot ||A||\right) ||\delta x||$$
 $|\hat{\lambda}_{ extbf{YAX}} - \lambda| pprox \left| \frac{\delta y^H A x + y^H A \delta x}{y^H x}
ight| \leq |\lambda| \frac{||\delta x|| + ||\delta y||}{|y^H x|}$

Power Iteration

▶ Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix A:

$$oldsymbol{x}^{(i)} = oldsymbol{A} oldsymbol{x}^{(i-1)}$$
 (typically with normalization of $oldsymbol{x}^{(i)}$ at each step).

For a random $x^{(0)}$, power iteration converges eigenvalue of A with largest modulus, $\lim_{i\to\infty} \rho_A(x^{(i)}) = \lambda_{max}(A)$. If this eigenvalue has multiplicity one, power iteration converges to dominant eigenvector.

► The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Assuming $m{A}$ is diagonalizable with eigenvectors $m{U}$ and $m{V}^H = m{U}^{-1}$,

$$m{x}^{(k)} = m{A}^k m{x}^{(0)} = (m{U}m{D}m{V}^H)^k m{x}^{(0)} = m{U}m{D}^k m{V}^H m{x}^{(0)} = \sum_{i=1}^n m{u}_i \underbrace{\lambda_i^k m{v}_i^H m{x}^{(0)}}_{(i,k)}.$$

The coefficient $\alpha^{(i,k)}$ associated with the maximum λ_i and dominant eigenvector u_i grows relatively, since $|\alpha^{(i,k)}/\alpha^{(j,k)}| = (|\lambda_i|/|\lambda_j|)^k \underbrace{|\alpha^{(i,0)}/\alpha^{(j,0)}|}_{\text{coeffit}}$.

Inverse and Rayleigh Quotient Iteration

- ▶ Inverse iteration uses LU/QR/SVD of A to run power iteration on A^{-1}
 - ightharpoonup For a randomly chosen $oldsymbol{x}^{(0)}$, solving

$$m{A}m{x}^{(i)} = m{x}^{(i-1)}$$
 (typically with normalization of $m{x}^{(i)}$ at each step).

converges to $\lim_{i\to\infty} \rho_{\boldsymbol{A}}(\boldsymbol{x}^{(i)}) = \lambda_{\min}(\boldsymbol{A})$ provided there is a unique eigenvalue with minimum magnitude.

- Inverse iteration on $A \sigma I$ converges to the eigenvalue closes to σ , since all eigenvalues are shifted by σ .
- Rayleigh quotient iteration provides rapid convergence to an eigenpair

$$(A - \rho_A(x^{(i-1)})I)x^{(i)} = x^{(i-1)},$$

since at each step the relative magnitude largest eigenvalue of $(A - \rho_A(x^{(i-1)})I)^{-1}$ grows. Formally, it achieves cubic convergence, but requires matrix refactorization at each step.

Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation
 - Given eigenvalue λ_1 and right eigenvector x_1 , seek v so that $B = A \lambda_1 u v^T$ has eigenvalues $0, \lambda_2, \dots, \lambda_n$, where

$$oldsymbol{A} = oldsymbol{X} oldsymbol{D} \underbrace{oldsymbol{Y}^T}_{oldsymbol{X}^{-1}} = \sum_{i=1}^n \lambda_i oldsymbol{x}_i oldsymbol{y}_i^T.$$

- Ideal choice would be $v = y_1^T$, i.e., the left eigenvector associated with λ_1 , as then the n-1 other eigenvectors of B would be the same as those of A.
- For symmetric matrices $y_1 = x_1$, but for nonsymmetric, obtaining y_1 may require more work.
- Good alternative choice for nonsymmetric is to select $v = x_1$, as then the Schur vectors are unmodified, since for $A = QTQ^T$, with $t_{11} = \lambda_1$, $q_1 = x_1$, we get

$$oldsymbol{B} = oldsymbol{Q} oldsymbol{T} oldsymbol{Q}^T - \lambda_1 oldsymbol{q}_1 oldsymbol{q}_1^T = oldsymbol{Q} (oldsymbol{T} - \lambda_1 oldsymbol{Q}^T oldsymbol{q}_1 oldsymbol{q}_1^T oldsymbol{Q}^T - \lambda_1 oldsymbol{e}_1 oldsymbol{e}_1^T) oldsymbol{Q}^T.$$

Direct Matrix Reductions

▶ We can always compute an orthogonal similarity transformation to reduce a general matrix to *upper-Hessenberg* (upper-triangular plus the first subdiagonal) matrix H, i.e. $A = QHQ^T$:

We can perform successive two-sided application of Householder reflectors

$$m{A} = egin{bmatrix} h_{11} & a_{12} & \cdots \ a_{21} & a_{22} & \ dots & \ddots \end{bmatrix} = m{Q}_1 egin{bmatrix} h_{11} & a_{12} & \cdots \ h_{21} & t_{22} & \cdots \ m{0} & dots & \ddots \end{bmatrix} = m{Q}_1 egin{bmatrix} h_{11} & h_{12} & \cdots \ h_{21} & h_{22} & \cdots \ m{0} & dots & \ddots \end{bmatrix} m{Q}_1^T = \cdots$$

subsequent columns can be reduced by induction, so we can always stably reduce to upper-Hessenberg with roughly the same cost as QR.

In the symmetric case, Hessenberg form implies tridiagonal: If $A = A^T$ then $H = QAQ^T = H^T$, and a symmetric upper-Hessenberg matrix must be tridiagonal.

Simultaneous and Orthogonal Iteration

- Simultaneous iteration provides the main idea for computing many eigenvectors at once:
 - lacktriangleq Initialize $oldsymbol{X}_0 \in \mathbb{R}^{n imes k}$ to be random and perform

$$X_{i+1} = AX_i$$
.

- ▶ Observe that $\lim_{i\to\infty} \operatorname{span}(X_i) = \mathbb{S}$ where \mathbb{S} is the subspace spanned by the k eigenvectors of A with the largest eigenvalues in magnitude.
- ▶ Orthogonal iteration performs QR at each step to ensure stability

$$\boldsymbol{Q}_{i+1}\boldsymbol{R}_{i+1} = \boldsymbol{A}\boldsymbol{Q}_i$$

- $ightharpoonup Q_i$ has the same span as X_i in orthogonal iteration.
- ightharpoonup OR has cost $O(nk^2)$ while product has cost $O(n^2k)$ per iteration.
- Can use this to compute the right singular vectors of matrix M by using $A = M^T M$ (no need to form A, just multiply Q_i by M^T then M).
- Small number of iterations suffice to obtain reasonable low-rank approximation of M, and ultimately Q converges to singular vectors in its truncated SVD.

QR Iteration

- ▶ QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,
 - lacksquare Orthogonal iteration computes $\hat{m{Q}}_{i+1}\hat{m{R}}_{i+1}=m{A}\hat{m{Q}}_i$
 - lacktriangle QR iteration computes $oldsymbol{A}_{i+1} = oldsymbol{R}_i oldsymbol{Q}_i$ at iteration i
- ▶ Using induction, we assume $A_i = \hat{\boldsymbol{Q}}_i^T A \hat{\boldsymbol{Q}}_i$ and show that QR iteration obtains $A_{i+1} = \hat{\boldsymbol{Q}}_{i+1}^T A \hat{\boldsymbol{Q}}_{i+1}$
 - lacktriangle QR iteration performs QR to obtain $oldsymbol{Q}_i oldsymbol{R}_i = oldsymbol{A}_i$
 - Orthogonal iteration performs QR

$$\hat{m{Q}}_{i+1}\hat{m{R}}_{i+1} = m{A}\hat{m{Q}}_i egin{array}{c} = & \hat{m{Q}}_im{A}_i = \hat{m{Q}}_im{Q}_i \ \hat{m{R}}_{i+1} \ \hat{m{R}}_{i+1} \end{array}$$

consequently, we can observe that
$$m{R}_i = oldsymbol{Q}_i^T oldsymbol{\hat{Q}}_i^T m{A} oldsymbol{\hat{Q}}_i^T$$

lacksquare QR iteration performs product $oldsymbol{A}_{i+1} = oldsymbol{R}_i oldsymbol{Q}_i = \hat{oldsymbol{Q}}_{i+1}^T oldsymbol{A} \hat{oldsymbol{Q}}_{i+1}$

QR Iteration with Shift

▶ QR iteration can be accelerated using shifting:

$$egin{aligned} oldsymbol{Q}_i oldsymbol{R}_i &= oldsymbol{A}_i - \sigma_i oldsymbol{I} \ oldsymbol{A}_{i+1} &= oldsymbol{R}_i oldsymbol{Q}_i + \sigma_i oldsymbol{I} \end{aligned}$$

note that A_{i+1} is similar to A_i , since we can reorganize the above as

$$egin{aligned} oldsymbol{R}_i oldsymbol{Q}_i &= oldsymbol{Q}_i^T (oldsymbol{A}_i - \sigma_i oldsymbol{I}) oldsymbol{Q}_i, \ oldsymbol{Q}_i (oldsymbol{A}_{i+1} - \sigma_i oldsymbol{I}) oldsymbol{Q}_i^T &= oldsymbol{Q}_i oldsymbol{R}_i, \end{aligned}$$

and observe that R_iQ_i is similar to Q_iR_i .

► The shift is typically selected to accelerate convergence with respect to a particular eigenvalue:

We can select the shift as the bottom right element of A_i , which would be the smallest eigenvalue if A_i is triangular (we have converged). Such shifting should accelerate convergence of the last column of A_i , once finished we should operate only on the first n-1 columns, and so on.

QR Iteration Complexity

QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs $O(n^3)$ operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, $H_i = A_i$

- reduction to upper-triangular requires n-1 Givens rotations, if G_i rotates the (i+1)th row into the ith to eliminate the ith element on the first subdiagonal, $R_i = G_1^T \cdots G_{n-1}^T H_i$
- ▶ computation of $H_{i+1} = RQ$ can be done by application of the n-1 Givens rotations to R from the right $H_{i+1} = R_iG_{n-1} \cdots G_1$.

Both cost $O(n^2)$, for $O(n^3)$ overall if QR iteration converges in O(n) steps.

Given a tridiagonal matrix, the same two general steps are required, but now each step costs O(n), so overall the eigenvalues and eigenvectors of a tridiagonal matrix can be computed with $O(n^2)$ work.

Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

- ▶ QR iteration requires O(1) QR factorizations per eigenvalue, $O(n^2)$ cost to get eigenvalues, $O(n^3)$ for eigenvectors. The last cost is not optimal.
- ▶ Divide and conquer reduces tridiagonal **T** by a similarity transformation to a rank-1 perturbation of identity, then computes its eigenvalues using roots of secular equation

$$\begin{split} \boldsymbol{T} &= \begin{bmatrix} \boldsymbol{T}_1 & t_{n/2+1,n/2}\boldsymbol{e}_{n/2}\boldsymbol{e}_{1}^T \\ t_{n/2+1,n/2}\boldsymbol{e}_{1}\boldsymbol{e}_{1}^T & \boldsymbol{T}_2 \end{bmatrix} \\ &= \begin{bmatrix} \hat{\boldsymbol{T}}_1 \\ \hat{\boldsymbol{T}}_2 \end{bmatrix} + t_{n/2+1,n/2} \begin{bmatrix} \boldsymbol{e}_{n/2} \\ \boldsymbol{e}_{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_{n/2}^T & \boldsymbol{e}_{1}^T \end{bmatrix} = \begin{bmatrix} \boldsymbol{Q}_1\boldsymbol{D}_1\boldsymbol{Q}_1^T & \\ \boldsymbol{Q}_2\boldsymbol{D}_2\boldsymbol{Q}_2^T \end{bmatrix} + \dots \\ &= \begin{bmatrix} \boldsymbol{Q}_1 \\ \boldsymbol{Q}_2 \end{bmatrix} \left(\underbrace{\begin{bmatrix} \boldsymbol{D}_1 \\ \boldsymbol{D}_2 \end{bmatrix} + t_{n/2+1,n/2} \begin{bmatrix} \boldsymbol{Q}_1^T\boldsymbol{e}_{n/2} \\ \boldsymbol{Q}_2^T\boldsymbol{e}_{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_{n/2}^T\boldsymbol{Q}_1 & \boldsymbol{e}_{1}^T\boldsymbol{Q}_2 \end{bmatrix}}_{\boldsymbol{D} + \alpha \boldsymbol{u} \boldsymbol{u}^T} \right) \begin{bmatrix} \boldsymbol{Q}_1^T & \\ \boldsymbol{Q}_2^T \end{bmatrix} \end{split}$$

Solving the Secular Equation for Divide and Conquer

To solve the eigenproblem at each step, the divide and conquer method needs to diagonalize a rank-1 perturbation of a diagonal matrix

$$\boldsymbol{A} = \boldsymbol{D} + \alpha \boldsymbol{u} \boldsymbol{u}^T.$$

► The zeros of the characteristic polynomial define the eigenvalues,

$$f(\lambda) = \det(\boldsymbol{D} + \alpha \boldsymbol{u} \boldsymbol{u}^T - \lambda \boldsymbol{I}) = 1 + \alpha \boldsymbol{u}^T (\boldsymbol{D} - \lambda \boldsymbol{I})^{-1} \boldsymbol{u} = 1 + \alpha \sum_{i=1}^n \frac{u_i^2}{d_{ii} - \lambda} = 0.$$

- ► This nonlinear equation can be solved efficiently by a variant of Newton's method (covered in the next chapter) that uses hyperbolic rather than linear extrapolations at each step.
- Major alternatives to divide and conquer include spectral bisection and the MRRR algorithm.

Introduction to Krylov Subspace Methods

 \blacktriangleright Krylov subspace methods work with information contained in the $n \times k$ matrix

$$oldsymbol{K}_k = egin{bmatrix} oldsymbol{x_0} & oldsymbol{Ax_0} & \cdots & oldsymbol{A}^{k-1} oldsymbol{x_0} \end{bmatrix}$$

We seek to best use the information from the matrix vector product results (columns of K_k) to solve eigenvalue problems.

Assuming K_n is invertible, the matrix $K_n^{-1}AK_n$ is a companion matrix C: Letting $k_n^{(i)} = A^{i-1}x$, we observe that

$$oldsymbol{A}oldsymbol{K}_n = egin{bmatrix} oldsymbol{A}oldsymbol{k}_n^{(1)} & \cdots & oldsymbol{A}oldsymbol{k}_n^{(n-1)} & oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix} = egin{bmatrix} oldsymbol{k}_n^{(2)} & \cdots & oldsymbol{k}_n^{(n)} & oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix},$$

therefore premultiplying by K_m^{-1} transforms the first n-1 columns of AK_n into the last n-1 columns of I,

$$oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{K}_n = egin{bmatrix} oldsymbol{K}_n^{-1}oldsymbol{k}_n^{(2)} & \cdots & oldsymbol{K}_n^{-1}oldsymbol{k}_n^{(n)} & oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix} = egin{bmatrix} oldsymbol{e}_2 & \cdots & oldsymbol{e}_n & oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix}$$

Krylov Subspaces

ightharpoonup Given $Q_kR_k=K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}_k) = \{p(\boldsymbol{A})\boldsymbol{x}_0 : deg(p) < k\},\$$

where p is any polynomial of degree less than k.

- ▶ The Krylov subspace includes the k-1 approximate dominant eigenvectors generated by k-1 steps of power iteration:
 - ▶ The approximation obtained from k-1 steps of power iteration starting from x_0 is given by the Rayleigh-quotient of $y = A^k x_0$.
 - lacktriangle This vector is within the Krylov subspace, $m{y} \in \mathcal{K}_k(m{A}, m{x}_0)$.
 - Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.

Krylov Subspace Methods

- ▶ The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $||AQ_k Q_k H_k||_2$: The minimizer X for the linear least squares problem $Q_k X \cong A Q_k$ is (via the normal equations) $X = Q_k^T A Q_k = H_k$.
- $ightharpoonup H_k$ is Hessenberg, because the companion matrix C_k is Hessenberg:

$$oldsymbol{H}_k = oldsymbol{Q}_k^T oldsymbol{A} oldsymbol{Q}_k = oldsymbol{R}_k oldsymbol{K}_k^{-1} oldsymbol{A} oldsymbol{K}_k oldsymbol{R}_k^{-1} = oldsymbol{R}_k oldsymbol{C}_k oldsymbol{R}_k^{-1}$$

is a product of three matrices: upper-triangular R_k , upper-Hessenberg C_k , and upper-triangular R_k^{-1} , which results in upper-Hessenberg H_k .

Rayleigh-Ritz Procedure

 \blacktriangleright The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

$$H_k = XDX^{-1}$$

eigenvalue approximations based on Ritz vectors X are given by $Q_k X$.

The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz value $\lambda_{max}(H_k)$ will be the maximum Rayleigh quotient of any vector in $\mathcal{K}_k = span(Q_k)$,

$$\max_{\boldsymbol{x} \in span(\boldsymbol{Q}_k)} \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} = \max_{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^T \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \max_{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^T \boldsymbol{H}_k \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \lambda_{\textit{max}}(\boldsymbol{H}_k),$$

which is the best approximation to $\lambda_{max}(A) = \max_{x \neq 0} \frac{x^T A x}{x^T x}$ available in \mathcal{K}_k . The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.

Arnoldi Iteration

We have that

Arnoldi iteration computes $H = H_n$ directly using the recurrence $q_i^T A q_j = h_{ij}$, where q_l is the lth column of Q_n :

$$oldsymbol{q}_i^T oldsymbol{A} oldsymbol{q}_j = oldsymbol{q}_i^T (oldsymbol{Q}_n oldsymbol{H}_n oldsymbol{Q}_n^T) oldsymbol{q}_j = oldsymbol{e}_i^T oldsymbol{H}_n oldsymbol{e}_j = h_{ij}.$$

► After each matrix-vector product, orthogonalization is done with respect to each previous vector:

Given $u_j = Aq_j$, compute $h_{ij} = q_i^T u_j$ for each $i \leq j$, forming a column of the H matrix at a time.

Lanczos Iteration

Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:

Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg matrix \mathbf{H}_n as before, except that it must also be symmetric, since

$$\boldsymbol{H}_n^T = (\boldsymbol{Q}_n^T \boldsymbol{A} \boldsymbol{Q}_n)^T = \boldsymbol{Q}_n^T \boldsymbol{A}^T \boldsymbol{Q}_n = \boldsymbol{Q}_n^T \boldsymbol{A} \boldsymbol{Q}_n = \boldsymbol{H}_n,$$

which implies that H_n must be tridiagonal.

► After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Since $h_{ij}=0$ if |i-j|>1, given $\boldsymbol{u}_j=\boldsymbol{A}\boldsymbol{q}_j$, it suffices to compute only $h_{jj}=\boldsymbol{q}_j^T\boldsymbol{u}_j$ and $h_{j-1,j}=h_{j,j-1}=\boldsymbol{q}_{j-1}^T\boldsymbol{u}_j$.

Cost Krylov Subspace Methods

- The cost of matrix-vector multiplication when the matrix has m nonzeros is m multiplications and at most m additions, so roughly 2m in total.
- ightharpoonup The cost of orthogonalization at the kth iteration of a Krylov subspace method is
 - ightharpoonup O(nk) for k inner products in Arnoldi,
 - ightharpoonup O(n) in Lanczos, since only 2 orthogonalizations needed.
 - For Arnoldi with k-dimensional subspace, in total, orthogonalization costs $O(nk^2)$, matrix-vector products cost O(mk), so generally desire nk < m.

Restarting Krylov Subspace Methods

- ► In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
 - ▶ Arnoldi cost of orthogonalization dominates if k > m/n.
 - ► In Lanczos, reorthogonalizing iterate to previous guesses can ensure orthogonality in the presence of round-off error.
 - Selective orthogonalization strategies control when and with respect to what previous columns of Q, each new iterate $u_j = Aq_j$ should be orthogonalized.
- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors: If we wish to find a particular eigenvector isolate some eigenspaces, restarting is beneficial
 - can orthogonalize to previous eigenvector estimates to perform deflation,
 - can pick starting vector as Ritz vector estimate associated with desired eigenpair,
 - given new starting vector, can discard previous Krylov subspace, which helps make storing the needed parts of Q possible.

Generalized Eigenvalue Problem

lacktriangle A generalized eigenvalue problem has the form $Ax=\lambda Bx$,

$$AX = BXD$$
$$B^{-1}A = XDX^{-1}$$

Generalized eigenvalue problems arise frequently, especially in solving partial differential equations.

▶ When A and B are symmetric and B is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

$$\underbrace{L^{-1}AL^{-T}}_{\tilde{A}}\underbrace{L^{T}X}_{\tilde{X}} = \underbrace{L^{T}X}_{\tilde{X}}D$$

Alternative canonical forms and methods exist that are specialized to the generalized eigenproblem.