Assignment No 06

Advanced Database System Lab(5CS372)

Name: Anushka Ajit Jadhav PRN: 21520003 Batch:T1

Title:

To design and implement a data warehouse for a customer order processing system in a company.

Theory:

Data Warehouse:

- A data warehouse is a large, centralized repository of data that is used to support business decision-making activities.
- It is designed to store data from multiple sources, such as transactional databases, applications, and external sources, in a format that is optimized for querying and analysis.
- Data warehouses typically use a process called ETL (extract, transform, load) to integrate data from different sources and transform it into a format that is consistent and usable for reporting and analysis.
- This process involves extracting data from the source systems, transforming it to meet the needs of the data warehouse, and loading it into the data warehouse.

Specifications:

- The target of data warehouse system is an enterprise that consists of a number of stores located in different cities and states.
- Each store holds a variety of items in various quantity. In addition, the enterprise keep the information of the customers.
- There are two kinds of customers: walk-in led by tourism guide and mail-order by post address inclusive.
- The city location of the customer, together with the data of the customer's first order, is stored by the existing system.

- Each customer lives in one city only, and the enterprise will try to satisfy the customer's order items by the present stock in the city where the customer lives.
- Each customer order can be for any quantity of any number of items, and each order is uniquely identified by an order number.
- The location of the stores is also recorded. Each store is located in one city, and there can be many stores in the city.
- Each city has one headquarter for coordinating all of its stores.
- The enterprise's goal is to meet all of the customer's requirements from stores located in the customer's city.
- If the requirement cannot be met, the company will turn to the other cities where the item can be found if there is any.
- Some processing information is important for the enterprise. For example, the total quantity of item stored in each city.
- After every time an item is taken, the company needs to know the total quantities of the item in all the stores in a city.

The relational schema of the enterprise's current (operational) databases are:

Headquarter Database:

Relation Customer_id, Customer_name, City_id, First_order_date)

Relation Walk-in_customers (*Customer_id, tourism_guide, Time)

Relation Mail_order_customers (*Customer_id, post_address, Time)

Sales Databases:

Relation Headqarters (<u>City_id</u>, City_name, Headquarter_addr, State, Time)

Relation Stores (Store_id, *City_id, Phone, Time)

Relation Items (Item_id, Description, Size, Weight, Unit_price, Time)

Relation Stored_items (*Store_id, *Item_id, Qantity_held, Time)

Relation Order (Order_no, Order_date, Customer_id)

Relation Ordered_item (*Order no, *Item_id, Quantity_ordered, Ordered_price, Time)

Where underlined are primary key and "*" prefixed are foreign keys.

Business requirements:

In order to meet users' demand, the data warehouse system extracts data from the existing two database into a data warehouse, and provides online analytical processing with roll up, drill down, slice and dice features according to users selections based on dimension tables to meet the user requirements.

SQL Queries:

```
CREATE schema Headquarter;
CREATE schema Sales;
CREATE TABLE Customer (
    Customer_id INT PRIMARY KEY,
    Customer_name VARCHAR(50),
    City_id INT,
    First_order_date DATE,
    FOREIGN KEY (City_id) REFERENCES sales.Headqarters(City_id)
);
CREATE TABLE Walk_in_customers (
    Customer_id INT PRIMARY KEY,
    tourism guide VARCHAR(50),
    Time DATETIME,
    FOREIGN KEY (Customer_id) REFERENCES Customer(Customer_id)
);
CREATE TABLE Mail_order_customers (
    Customer_id INT PRIMARY KEY,
    post_address VARCHAR(100),
   Time DATETIME,
    FOREIGN KEY (Customer_id) REFERENCES Customer(Customer_id)
);
CREATE TABLE Headqarters (
    City id INT PRIMARY KEY,
    City_name VARCHAR(50),
   Headquarter_addr VARCHAR(100),
    State VARCHAR(50),
    Time DATETIME
);
CREATE TABLE Stores (
    Store_id INT PRIMARY KEY,
    City_id INT,
    Phone VARCHAR(20),
```

```
Time DATETIME,
    FOREIGN KEY (City id) REFERENCES Headgarters(City id)
);
CREATE TABLE Items (
    Item id INT PRIMARY KEY,
   Description VARCHAR(100),
   Size VARCHAR(20),
   Weight DECIMAL(10,2),
   Unit price DECIMAL(10,2),
    Time DATETIME
);
CREATE TABLE Stored items (
    Store id INT,
    Item id INT,
    Quantity_held INT,
   Time DATETIME,
    PRIMARY KEY (Store_id, Item_id),
   FOREIGN KEY (Store_id) REFERENCES Stores(Store_id),
    FOREIGN KEY (Item_id) REFERENCES Items(Item_id)
);
CREATE TABLE OrderT (
   Order no INT PRIMARY KEY,
   Order date DATE,
   Customer id INT,
    FOREIGN KEY (Customer id) REFERENCES headquarter.Customer(Customer id)
);
CREATE TABLE Ordered_item (
   Order_no INT,
    Item_id INT,
    Quantity_ordered INT,
    Ordered_price DECIMAL(10,2),
    Time DATETIME,
    PRIMARY KEY (Order_no, Item_id),
    FOREIGN KEY (Order no) REFERENCES OrderT(Order no),
    FOREIGN KEY (Item id) REFERENCES Items(Item id)
);
CREATE schema Datawarehouse;
CREATE TABLE Sales_Fact (
    Store_id INT,
   Item_id INT,
    Quantity_held INT,
   Unit price DECIMAL(10,2),
```

```
PRIMARY KEY (Store id, Item id),
    FOREIGN KEY (Store id) REFERENCES sales. Stores (Store id),
    FOREIGN KEY (Item id) REFERENCES sales.Items(Item id)
);
CREATE TABLE Store Dim (
    Store id INT PRIMARY KEY,
   City id INT,
   Phone VARCHAR(20),
    FOREIGN KEY (City id) REFERENCES sales. Headqarters(City id)
);
CREATE TABLE Item Dim (
   Item id INT PRIMARY KEY,
   Description VARCHAR(100),
   Size VARCHAR(20),
   Weight DECIMAL(10,2)
);
CREATE TABLE City Dim (
   City id INT PRIMARY KEY,
   City name VARCHAR(50),
   State VARCHAR(50)
);
INSERT INTO Headqarters (City id, City name, Headquarter addr, State, Time)
VALUES
(1, 'New York City', '123 Broadway, Suite 500', 'NY', '2022-01-01
00:00:00'),
(2, 'Los Angeles', '456 Main St, 12th Floor', 'CA', '2022-02-01 00:00:00'),
(3, 'Chicago', '789 Elm St, Suite 200', 'IL', '2022-03-01 00:00:00');
INSERT INTO Customer (Customer id, Customer name, City id, First order date)
VALUES
(1, 'John Smith', 1, '2022-01-01'),
(2, 'Mary Johnson', 2, '2022-02-15'),
(3, 'David Lee', 3, '2022-03-20');
INSERT INTO Walk_in_customers (Customer_id, tourism_guide, Time) VALUES
(1, 'Tourist Guide A', '2022-01-01 10:00:00'),
(2, 'Tourist Guide B', '2022-02-15 15:30:00');
INSERT INTO Mail_order_customers (Customer_id, post_address, Time) VALUES
(3, '123 Main St, Anytown USA', '2022-03-20 09:00:00');
INSERT INTO Stores (Store id, City id, Phone, Time) VALUES
```

```
(1, 1, '555-1234', '2022-01-02 09:00:00'),
(2, 1, '555-5678', '2022-01-02 09:00:00'),
(3, 2, '555-9876', '2022-02-15 10:30:00'),
(4, 3, '555-4321', '2022-03-20 11:45:00');
INSERT INTO Items (Item id, Description, Size, Weight, Unit price, Time)
VALUES
(1, 'Widget', 'Small', 1.0, 10.00, '2022-01-01 00:00:00'),
(2, 'Gizmo', 'Large', 2.5, 25.00, '2022-02-01 00:00:00'),
(3, 'Thingamajig', 'Medium', 0.5, 5.00, '2022-03-01 00:00:00');
INSERT INTO Stored items (Store id, Item id, Quantity held, Time) VALUES
(1, 1, 100, '2022-01-02 09:00:00'),
(1, 2, 50, '2022-01-02 09:00:00'),
(2, 1, 75, '2022-01-02 09:00:00'),
(3, 2, 100, '2022-02-15 10:30:00'),
(4, 3, 200, '2022-03-20 11:45:00');
INSERT INTO OrderT (Order_no, Order_date, Customer_id) VALUES
(1001, '2022-02-15', 1),
(1000, '2022-01-01', 2),
(1002, '2022-03-20', 3);
INSERT INTO Ordered_item (Order_no, Item_id, Quantity_ordered,
Ordered price, Time) VALUES
(1000,1,2,20.00,'2022-01-01 10:00:00');
INSERT INTO Ordered item (Order no, Item id, Quantity ordered,
Ordered price, Time) VALUES
(1001,2,3,75.00,'2022-02-15 15:30:00');
INSERT INTO Ordered item (Order no, Item id, Quantity ordered,
Ordered_price, Time) VALUES
(1002,3,1,5.00,'2022-03-20 09:00:00');
/******* inserting data into dimension
INSERT INTO Store_Dim (Store_id, City_id, Phone)
SELECT DISTINCT Store_id, City_id, Phone
FROM Sales.Stores;
INSERT INTO City_Dim (City_id, City_name, State)
SELECT DISTINCT City_id, City_name, State
FROM Sales.Headqarters;
INSERT INTO Sales_Fact (Store_id, Item_id, Quantity_held, Unit_price)
SELECT si.Store id, si.Item id, si.Quantity held, i.Unit price
```

```
FROM Sales.Stored_items si
JOIN Sales.Items i ON si.Item_id = i.Item_id;
```

Build data warehouse / OLAP which will answer the following queries:

1. Find all the stores along with city, state, phone, description, size, weight and unit price that hold a particular item of stock.

 \rightarrow

```
SELECT s.Store_id, c.City_name, c.State, s.Phone, i.Description,
i.Size, i.Weight, f.Unit_price
FROM Sales_Fact f
JOIN Store_Dim s ON f.Store_id = s.Store_id
JOIN Item_Dim i ON f.Item_id = i.Item_id
JOIN City_Dim c ON s.City_id = c.City_id
WHERE i.Description='Widget';
```


2. Find all the orders along with customer name and order date that can be fulfilled by a given store.

 \rightarrow

```
SELECT OrderT.Order_no, Customer.Customer_name, OrderT.Order_date
FROM Sales_Fact
JOIN Store_Dim ON Sales_Fact.Store_id = Store_Dim.Store_id
JOIN Item_Dim ON Sales_Fact.Item_id = Item_Dim.Item_id
JOIN Sales.Ordered_item ON Sales_Fact.Store_id = Ordered_item.Item_id
JOIN Sales.OrderT ON Ordered_item.Order_no = OrderT.Order_no
JOIN Headquarter.Customer ON OrderT.Customer_id =
Customer.Customer_id
WHERE Store_Dim.Store_id = 3;
```


3. Find all stores along with city name and phone that hold items ordered by given customer.

 \rightarrow

4. Find the headquarter address along with city and state of all stores that hold stocks of an item above a particular level.

 \rightarrow

```
SELECT DISTINCT h.Headquarter_addr, h.City_name, h.State
FROM Sales. Stored items si
JOIN Sales.Stores s ON si.Store_id = s.Store_id
JOIN Sales.Headqarters h ON s.City_id = h.City_id
JOIN Sales.Items i ON si.Item id = i.Item id
WHERE si.Quantity held > 75
AND i.Description = 'Widget';
  Result Grid
                                                 Export: Wrap Cell
                 Filter Rows:
     Headquarter_addr
                            City_name
                                          State
     123 Broadway, Suite 500
                           New York City
                                          NY
```

5. For each customer order, show the items ordered along with description, store id and city name and the stores that hold the items.

 \rightarrow

6. Find the city and the state in which a given customer lives.

 \rightarrow

Conclusion:

From this assignment I able to learn concept of data Warehouse and how we can implement data warehouse.