

Problem 1 (零空间的增长) 记 $A\in \mathbb{F}^{n\times n}$ 是任意域上的方阵. 约定 $A^0=I$ 是单位矩阵, 以及 $A^{k+1}=A\cdot A^k$.

1.证明有子空间的包含列

$$0=N(A^0)\subset N(A^1)\subset N(A^2)\subset\cdots$$

特别地, 若 $N(A^N)=N(A^{N+1})$, 则 $N(A^{N+1})=N(A^{N+2})=\cdots$

假定 $N(A^N)=N(A^{N+1})$. 对所有形如 Ax 的向量 y, 依定义, $A^Ny=0$ 当且仅当 $A^{N+1}y=0$. 这说明 $N(A^{N+1}) = N(A^{N+2}).$

2. 假定存在**最小的**正整数 N 使得 $N(A^N) = N(A^{N+1})$. 证明 N < n.

若
$$N>n$$
, 则 $n>N(A)>N(A^2)>\cdots>N(A^n)>N(A^{n+1})\geq 0$. 矛盾.

3.(Slightly challenging?) 证明: $\dim N(A^{N+2}) - \dim N(A^{N+1}) \leq \dim N(A^{N+1}) - \dim N(A^{N})$. 换言 之, 散点图 $\{(k, \dim N(A^k))\}_{k\in\mathbb{N}}$ 是上凸函数.

将 $N(A^{N+1})$ 扩张成 $N(A^{N+2})$,等价于添加一些基 $\{v_i\}_{i=1}^s$,使得 $\{A^{N+1}v_i\}_{i=1}^s$ 是 $C(A^{N+1})\cap N(A)$ 的 一组基,因此左式是 $\dim(C(A^{N+1})\cap N(A))$. 相应地,右式是 $\dim(C(A^N)\cap N(A))$.

Problem 2 (幂零矩阵的标准型) 仍假定 $A \in \mathbb{F}^{n \times n}$ 是**任意域上**的幂零方阵.

- 1.证明:存在正整数 N < n 使得 $A^N = O$.
- 2. (若觉得简单, 可以跳过) 假定 n=3, $A^2\neq O$, 但 $A^3=O$. 证明: 存在向量 $\{x,y,z\}$ 使得 Ax=y, Ay=z, 但Az = 0. 换言之, 存在链

$$x \xrightarrow{A} y \xrightarrow{A} z \xrightarrow{A} \mathbf{0}$$

同时, 仿照 **Problem 0** 说明 A 相似于 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

3.(若觉得简单,可以跳过)假定 $n=3, A \neq O$,但 $A^2=O$.证明:存在向量 $\{x,y,z\}$ 使得 Ax=y, $Ay = Az = \mathbf{0}$. 换言之, 存在链

$$oxed{x \stackrel{A}{
ightarrow} y \stackrel{A}{
ightarrow} \mathbf{0}}, \quad oxed{z \stackrel{A}{
ightarrow} \mathbf{0}}$$

4. (Slightly challenging) 使用归纳法证明: 存在若干条链

$$oxed{x_i^1\overset{A}{
ightarrow}x_i^2\overset{A}{
ightarrow}x_i^3\overset{A}{
ightarrow}\cdots x_i^{n_i}\overset{A}{
ightarrow}\mathbf{0}igg|_{i=1}^s}$$

且 $\bigcup_{i=1}^s \{x_i^j\}_{1\leq j\leq n_i}$ 是 \mathbb{F}^n 的一组基.作为推论, $\sum_{i=1}^s n_i=n$.

- 5.不妨设 $n_1 \geq n_2 \geq \cdots \geq n_s$. 证明 $\dim N(A) = s$, 也就是 $\{x_i^1 \mid i \geq 1\}$ 的大小.
- 6.证明: 对给定的正整数 k,集合 $\{x_i^k \mid i \geq 1\}$ 的大小是 $\dim N(A^{k-1}) \dim N(A^k)$.
- 7.证明: A 相似于分块对角矩阵 $\mathrm{diag}(J_{n_1}(0),\ldots,J_{n_s}(0))$. 此处, $J_k(0)$ 是大小为 k, 特征值为 0 的 Jordan 块.
- 8.假定 $\lambda \in \mathbb{F}$, 方阵 A 能被形如 $(x-\lambda)^l$ 的多项式零化.证明: A 相似于分块对角矩阵 $\operatorname{diag}(J_{n_1}(\lambda),\ldots,J_{n_s}(\lambda)).$

 $egin{align*} egin{align*} 1.$ 假定 $\mathbb{F} \subset \mathbb{K}$ 是两个包含的域,例如 $\mathbb{Q} \subset \mathbb{Q}[\sqrt[3]{2}]$,或是 $\mathbb{R} \subset \mathbb{C}$). 任取 \mathbb{F} 上的矩阵 M,记 m 是 \mathbb{F} -线性空间 $\{x \in \mathbb{F}^N \mid Mx = 0\}$ 的维数;由于 A 也是 \mathbb{K} 上的矩阵,记 n 是 \mathbb{K} -线性空间 $\{x \in \mathbb{K}^N \mid Mx = 0\}$ 的维数,证明 m=n.

零空间维数即标准阶梯形中的全零行数. 这一结果和域的选取无关.

2.假定 $\varphi:V\to V$ 是有限维线性空间到自身的线性映射. 证明: φ 是单射, 当且仅当 φ 是满射, 亦当且仅当 φ 是双射.

将 φ 写成矩阵形式, 即方阵 A. 此时

- $1.\varphi$ 是双射当且仅当存在线性映射 ψ , 使得 $\varphi\psi = \psi\varphi = \mathrm{id}_V$, 等价地看, A 可逆;
- $2. \varphi$ 是单射当且仅当 $\varphi(u_{\bullet}P)=\varphi(u_{\bullet})P=0 \iff P=0$, 等价地看, $AP=O \iff P=O$, 即 N(A)=0;
- 3.arphi 是满射当且仅当 $V=C(arphi(u_ullet))=C(u_ullet\cdot A)$. 换言之, $N(A^T)=0$.

因此以上三者等价.

3.证明: AX-XB=O 只有零解,当且仅当 A 与 B 的特征多项式互素. 提示: 可以使用 Hamilton-Cayley 定理.

假定 A 与 B 的特征多项式互素,此时存在多项式 g 与 f 使得 $\chi_A f + \chi_B g = 1$. 此时 $\chi_A(B) \cdot g(B) = I$, 以及 $\chi_B(A) \cdot f(A) = I$. 归纳得 $A^k X = X B^k$,从而

$$O=\chi_A(A)X=X\cdot \underbrace{\chi_A(B)}_{$$
irjii

这说明 X = O.

反之, 假定 χ_A 与 χ_B 有公共因子 d(x), 再不妨设 d 是不可约多项式. 下给出方程的非零解.

对 A, 由不变子空间得分块上三角矩阵

$$P^{-1}AP=egin{pmatrix} A_1 & A_2 \ O & A_4 \end{pmatrix}, \quad \det(xI-A_1)=d(x).$$

对 A, 由不变子空间得分块下三角矩阵

$$Q^{-1}BQ=egin{pmatrix} B_1 & O \ B_3 & B_4 \end{pmatrix}, \quad \det(xI-B_1)=d(x).$$

此时 $A_1\sim B_1$. 由于分块相似变换不改变上(下)三角矩阵,故不妨设 $A_1=B_1=T$. 考虑相抵换元,可以直接写出非零解 $X=P^{-1}\begin{pmatrix} T&O\\O&O\end{pmatrix}Q$.

- 注: 此题也可以使用有限扩域, 使得 χ_A 与 χ_B 可以分解作一次因子的乘积, 从而取 A 的上三角矩阵化与 B 的下三角化. 这一解法本质上与上述方法相同, 但关于扩域的论述是比较麻烦的.
- 4.给定矩阵 $A\in\mathbb{F}^{n\times n}$ 和 $B\in\mathbb{F}^{m\times m}$. 证明以下是等价的 (建议灵活使用先前作业中的结论).
 - 1. 对未知量 $X \in \mathbb{F}^{n \times m}$, 方程 AX XB = O 只有零解.
 - 2.任意给定矩阵 $C \in \mathbb{F}^{n \times m}$, 对未知量 $X \in \mathbb{F}^{n \times m}$, 方程 AX XB = C 总有解.
 - 3. 任意给定矩阵 $C \in \mathbb{F}^{n \times m}$, 对未知量 $X \in \mathbb{F}^{n \times m}$, 方程 AX XB = C 有且仅有唯一的解.
 - 4.对任意矩阵C,总有相似矩阵

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \sim \begin{pmatrix} A & O \\ O & B \end{pmatrix}.$$

5.A 与 B 的特征多项式互素.

 $1 \cdot \operatorname{rank} egin{pmatrix} A & C \ O & B \end{pmatrix} = \operatorname{rank}(A) + \operatorname{rank}(B)$ 的充要条件: 存在 X 与 Y 使得 AX + YB = C. $2 \cdot egin{pmatrix} A & C \ O & B \end{pmatrix} \sim egin{pmatrix} A & O \ O & B \end{pmatrix}$ 的充要条件: 存在 X 使得 AX - XB = C.

1.证明: A 相似于一个分块上三角矩阵,

$$\begin{pmatrix} A_1 & * & \cdots & * \\ O & \ddots & \ddots & dots \\ dots & \ddots & \ddots & * \\ O & \cdots & O & A_s \end{pmatrix},$$

其中, A_i 配有一个不可分解的多项式 f_i ,使得 $f_i(A_i)$ 是幂零矩阵.

以下是一种可行的解法: 假定 A 是一般域 $\mathbb F$ 上的 n-阶方阵, 则 A 的特征多项式可以分解作 $\mathbb F[x]$ 中不可分解多项式的乘积, 记作 $\chi_A(x)=\prod_{i=1}^s f_i(x)^{n_i}$. 对多项式 f_i , 定义

$$V_i := \{v \mid$$
 存在 $N \geq 1$, 使得 $(f_i(A))^N \cdot v = \mathbf{0}\}.$

此时有直和分解 $\mathbb{F}^n=V_1\oplus V_2\oplus\cdots\oplus V_s$. 对于任意 $1\leq t\leq s$, 子空间 $V_1\oplus V_2\oplus\cdots\oplus V_t$ 是关于左乘 $(A\cdot)$ 这一线性映射的不变子空间.

2. 使用 Problem 3 说明上一小问的分块上三角矩阵可以取作分块对角矩阵. 换言之, 证明存在相似矩阵

$$\begin{pmatrix} A_1 & * & \cdots & * \\ O & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ O & \cdots & O & A_s \end{pmatrix} \sim \begin{pmatrix} A_1 & O & \cdots & O \\ O & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & O \\ O & \cdots & O & A_s \end{pmatrix}.$$

- 3. 这是惟一的需要使用复数域的地方! 如果所有 $f_i(x)=(x-\lambda_i)$ 都是一次多项式, 则所有 $(A_i-\lambda_i I)$ 都是幂零矩阵, 因此相似于 **Problem 2** 中所得的标准型.
- 4.假若 f_i 不是一次多项式,请自行学习有理标准型相关知识.

1. 假定 A与 B是实方阵. 若存在可逆复方阵 C 使得 $C^{-1}AC=B$, 则存在可逆实方阵 R 使得 $R^{-1}AR=B$.

这对一般域也成立:两个矩阵相似,当且仅当它们在某一扩域上相似. 此处的证明类似 Problem 3.1, 只需将初等因子组写作形如 $Fx=\mathbf{0}$ 的式子即可.

2. 若 A 是实方阵, 其 (视作复方阵) Jordan 形是 ${
m diag}(J_1,\ldots,J_s)$. 证明: 若存在 $z\in\mathbb{C}\setminus\mathbb{R}$ 使得 $J_d(z)$ 是 A 的 Jordan 块, 则 $J_d(\overline{z})$ 也是 A 的 Jordan 块.

提示: (A-zI) 与 $(A-\overline{z}I)$ 有相同的零空间增长序列 (Problem 1.1), 从而共轭的 Jordan 块成对出现.

3.证明并推广以下相似矩阵的结论:

由此描述实方阵的标准型.

4.证明:任意两个实方阵都是两个实对称方阵的乘积.

先前作业 (对称矩阵相关) 出现过类似的构造.

参 复矩阵特征根的重要工具: Gershgorin 圆盘

Definition 给定 $A\in\mathbb{C}^{n imes n}$. 对 $1\leq k\leq n$, 定义复平面 $\mathbb{C}=\mathbb{R}^2$ 上的第 i 个闭圆盘如下:

- \bigcirc 圆盘的中心是 $a_{i,i} \in \mathbb{C}$,
- \odot 圆盘的半径是 $\sum_{1 \leq i \leq n, \; \mathbb{E} \; i \neq i} |a_{i,j}|$.

以上定义了第 i 个 Gershgorin 圆盘, 记作

$$D_i = igg\{z: |z-a_{i,i}| \leq \sum_{1 \leq j \leq n, \; \mathbb{H} \; j
eq i} |a_{i,j}| igg\}.$$

Problem 5 (Gershgorin 圆盘定理) 对上述复方阵 A, 任取特征值 λ 和相应特征向量 v, 满足 $Av=\lambda v$.

1.假定v中第i个分量模长最大,证明 $\lambda \in D_i$.

直接计算得 $\lambda v_i = \sum_{1 < j < n} a_{i,j} v_j$. 由于向量 Av 的第 i 个分量模长最大 (因此 $v_i \neq 0$), 计算得

$$|\lambda-a_{i,i}|=\frac{|\sum_{1\leq j\leq n}a_{i,j}v_j|}{|v_i|}\leq \sum_{1\leq j\leq n}|a_{i,j}|\cdot\frac{|v_i|}{v_i}\leq \sum_{1\leq j\leq n}|a_{i,j}|.$$

- 2.作为推论, $\bigcup_{i=1}^n D_i$ 中包含了 A 的所有特征值.
- 3. 记复矩阵 $A:=egin{pmatrix}2&1&0\\1&3&-1\\1&0&-2\end{pmatrix}$. 尝试求出 A 的所有特征根,并画出所有的 Gershgorin 圆盘. 对 A^T 作类似的
- 4. 假定 A 与 B 是可对角化的 n-阶复方阵. 证明: 对 $t\in[0,1]$, 存在复平面上连续的道路 $\{\lambda_i:[0,1]\to\mathbb{C}\}_{i=1}^n$, 满足
 - $1.\{\lambda_i(0)\}_{i=1}^n$ 恰是 A 的所有特征值;
 - 2. $\{\lambda_i(1)\}_{i=1}^n$ 恰是 B 的所有特征值;
 - 3. $\{\lambda_i(t)\}_{i=1}^n$ 是 (1-t)A + tB 的特征值.

思考: 对某些 $t \in (0,1)$, 矩阵 (1-t)A + tB 未必可对角化. 此时的特征道路应作何种调整?

依照 ε - δ 语言的论证, 这是可去间断点. 所以不用做任何调整.

5. 假定 A 可对角化,且 $\bigcup_{i=1}^n D_i$ 有两个连通分支 $\bigcup_{i=1}^k D_i$ 与 $\bigcup_{i=k+1}^n D_i$. 证明: 则第一个连通分支恰包含 k 个特征值,第二个连通分支包含 n-k 个特征值.

记 Λ 是 A 的对角部分, $N:=A-\Lambda$ 是对角线全零的矩阵. 定义 $A^{(t)}=\Lambda+tN$, 记第 i 个圆盘为 $D_i^{(t)}$. 对任意 $t\in[0,1]$ 总有

$$\underbrace{\left(\bigcup_{i=1}^k D_i^{(t)}\right)}_{\text{if if $d: d$ o $M^{(t)}$}} \cap \underbrace{\left(\bigcup_{i=k+1}^n D_i^{(t)}\right)}_{\text{if if $d: d$ o $N^{(t)}$}} = \emptyset.$$

 $M^{(0)}$ 中包含 k 个特征值, 依照连续性, $M^{(t)}$ 中恰好包含 k 个特征值. $N^{(t)}$ 亦然.

6. 假定 A 的 n 个圆盘两两不交,则 A 一定可对角化,且每一圆盘中恰好包含一个特征值.

同上,将n个离散的点连续变换作n个两两不交的闭圆盘.

 ${f 1}$.找出所有 ${f 2} imes {f 2}$ 的复矩阵 ${f A}$,使得不存在 ${f B}^2 = {f A}$.使用 Jordan 标准型,将这个结论推广至 n imes n 阶的复矩 阵

论断: 2×2 复矩阵存在平方根,当且仅当矩阵不相似于 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- 1.一方面,矩阵 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 不存在平方根.若此类矩阵有平方根 Q,则 Q 幂零且非零.从而 $Q \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. 这与 $Q^2 \neq Q$ 矛盾.
- 2. 另一方面, 所有可对角化矩阵存在平方根, 所有相似于 $J_2(\lambda)$ ($\lambda \neq 0$) 的矩阵存在平方根.
- ullet n-维情形: 仅需关注幂零部分. 若幂零矩阵 N 存在平方根, 当且仅当 N 是幂零矩阵的平方, 亦当且仅当 $J_1(0)$ 的数量不小于所有 $J_{\geq 2}(0)$ 的数量.

提供一个计算矩阵级数的一般方法:

$$f(J_n(\lambda)) = egin{pmatrix} f(\lambda) & f'(\lambda) & rac{f''(\lambda)}{2} & \cdots & rac{f^{(n-1)}(\lambda)}{(n-1)!} \ 0 & f(\lambda) & f'(\lambda) & \cdots & rac{f^{(n-2)}(\lambda)}{(n-2)!} \ dots & dots & \ddots & dots \ 0 & 0 & 0 & f(\lambda) & f'(\lambda) \ 0 & 0 & 0 & 0 & f(\lambda) \end{pmatrix}.$$

假定 A 是 n 阶矩阵, f 是解析函数 (依照收敛的形式幂级数定义的函数). 那么 f(A) 仅与 f 的前 (n-1) 阶导数相关.

2.假定 $A \in \mathbb{R}^{n \times n}$.若对一切 $1 \leq i \leq n$ 都有

$$2|a_{i,i}| > \sum_{i=1}^n |a_{i,j}|,$$

则 A 是可逆矩阵.

依照圆盘定理, 0 不属于任何一个圆盘, 从而矩阵可逆.

3. 假定 $A \in \mathbb{R}^{n \times n}$. 称 A 是有趣的, 当且仅当对一切 $1 \leq i \leq n$, 都有

$$2a_{i,i} > \sum_{i=1}^n |a_{i,j}|.$$

试用圆盘定理证明以下是单射:

$$n$$
-阶有趣矩阵 $\to \mathbb{R}^{n \times n}$, $A \mapsto A^2$.

依照圆盘定理, $\sigma(A) \subset \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\}$. 由于

$$\{z\in\mathbb{C}\mid \mathrm{Re}(z)>0\}
ightarrow\mathbb{C},\quad z\mapsto z^2$$

是单射, 故以上对应的逆映射可以直接写出.

4.假定 $A \in \mathbb{R}^{n \times n}$. 称 A 是奇妙的, 当且仅当对一切 $1 \leq i \leq n$, 都有

$$3|a_{i,i}|>\sum_{i=1}^n|a_{i,j}|.$$

试用圆盘定理证明以下是单射:

$$n$$
-阶奇妙矩阵 $\to \mathbb{R}^{n \times n}$, $A \mapsto A^3$.

类似地, $\sigma(A)$ 中特征向量的辐角属于 $(-30^\circ,30^\circ)\cup(\pi-30^\circ,\pi+30^\circ)$, 以这一开区域为定义域的立方函数 $z\mapsto z^3$ 是单射.

5.称一个复方阵 A 是本质正的,若 A 的所有特征根都是正实数. 试证明: 若 A 与 B 都是本质正的矩阵,且 $A^2=B^2$,则 A=B.

考虑 A(A-B)=(A-B)(-B). 由于 $\sigma(A)\cap\sigma(-B)=\emptyset$, 因此 AX=X(-B) 只有零解. 这说明 A=B.

6. 若 $A \ni B$ 是本质正的, 且 $A^3 = B^3$, 则 A = B.

提示: 记 $\omega_{1,2}=rac{-1\pm\sqrt{3}}{2}$ 是三次单位根, 考虑方程组

$$egin{cases} A(A^2+\omega_1AB+\omega_1^2B^2) = (A^2+\omega_1AB+\omega_1^2B^2)(\omega B); \ A(A^2+\omega_2AB+\omega_2^2B^2) = (A^2+\omega_2AB+\omega_2^2B^2)(\omega B). \end{cases}$$

特别地, 可以对本质正的条件做一些弱化, 例如本题第 4 小问.

7.证明: 本质正的矩阵有唯一的本质正的 n-次方根.

先考虑 n=p 是素数. 记 w 是 p-次单位根, 则对一切 $1 \le k \le p-1$,

$$A(A^{p-1} + w^k A^{p-2}B + w^{2k}A^{p-3}B^2 + \dots + w^{(p-1)k}B^{p-1})$$

= $(A^{p-1} + w^k A^{p-2}B + w^{2k}A^{p-3}B^2 + \dots + w^{(p-1)k}B^{p-1})(w^k B).$

因此, $A^{p-1} + w^k A^{p-2} B + w^{2k} A^{p-3} B^2 + \cdots + w^{(p-1)k} B^{p-1} = O$. 写作线性方程组, 得

$$(w^{i\cdot (j-1)})_{1\leq i\leq (p-1),\ 1\leq j\leq p}\cdot egin{pmatrix}A^{p-1}\A^{p-1}B\dots\B^{p-1}\end{pmatrix}_p=egin{pmatrix}O\O\dots\O\end{pmatrix}_{p-1}.$$

此处, $\{A^lB^{p-1-l}\}_{0\leq l\leq p-1}$ 是 p 个未知量.左侧矩阵 $W_{(p-1)\times p}=(w^{i\cdot (j-1)})$ 形如增广矩阵 $(1\ V)$,V 是 p-阶 Vandermonde 方阵 (可逆).因此,存在行初等变换,使得

$$W = (\mathbf{1} \ \ V) \xrightarrow{\mathrm{framegh}} (\mathbf{v} \ \ I) \quad (存在唯一的 \ \mathbf{v} \in \mathbb{C}^{p-1}).$$

由于行变换不改变列线性关系, 结合 $\mathbf{1}\in N(W)$ 知 $\mathbf{v}=-\mathbf{1}$. 此时, 方阵组的最后一个等式是 $A^{p-1}-B^{p-1}=O$.

igcolon (关键结论) 我们证明了对任意素数 p, 若本质正矩阵满足 $A^p=B^p$, 则 $A^{p-1}=B^{p-1}$.

记 S(p) 是命题: 本质正的矩阵有唯一的本质正的 n-次方根. 那么

$$S(a)$$
 真, 且 $S(b)$ 真 $\Longrightarrow S(a \cdot b)$ 真.

上一条引理说明

$$S(p-1)$$
 真 \Longrightarrow $S(p)$ 真 $(\forall p \in 素数)$.

从而对所有 $n \geq 2$, S(n) 真.