Залікова Робота з Рівнянь Математичної Фізики

Захаров Дмитро

30 листопада, 2024

Варіант 6

Зміст

1	Залікова Робота				
	1.1	Номер 1	2		
	1.2	Номер 2	3		
	1.3	Номер 3	5		

1 Залікова Робота

1.1 Номер 1.

Умова Задачі 1.1. Визначити тип рівняння, привести до канонічного вигляду.

$$4u_{xx} + 4u_{xy} + u_{yy} - 2u_y = 0$$

Розв'язання. Для цього прикладу, маємо A=4, B=2 та C=1. Знаходимо дискримінант $\Delta=AC-B^2=4-4=0$. Таким чином, тип рівняння **параболічний**.

Зведемо рівняння до канонічного вигляду. Для цього знайдемо підстановку. Маємо dy/dx=B/A=1/2, звідки y=x/2+C, C= const. Таким чином, перша змінна $\xi=y-x/2$ — перший інтеграл нашого диференціального рівняння. У якості лінійно незалежної від цієї змінної другої змінної беремо $\eta:=x$. Таким чином, виражаємо спочатку перші похідні:

$$u_{x} = u_{\xi} \xi_{x} + u_{\eta} \eta_{x} = -\frac{1}{2} u_{\xi} + u_{\eta},$$

$$u_{y} = u_{\xi} \xi_{y} + u_{\eta} \eta_{y} = u_{\xi}.$$

За допомогою цих виразів знаходимо другі похідні:

$$u_{xx} = \frac{\partial}{\partial x} \left(-\frac{1}{2} u_{\xi} + u_{\eta} \right) = -\frac{1}{2} \left(u_{\xi\xi} \xi_{x} + u_{\xi\eta} \eta_{x} \right) + u_{\eta\xi} \xi_{x} + u_{\eta\eta} \eta_{x}$$

$$= -\frac{1}{2} \left(-\frac{1}{2} u_{\xi\xi} + u_{\xi\eta} \right) - \frac{1}{2} u_{\eta\xi} + u_{\eta\eta} = \frac{1}{4} u_{\xi\xi} - \frac{1}{2} u_{\xi\eta} - \frac{1}{2} u_{\eta\xi} + u_{\eta\eta}$$

$$= \frac{1}{4} u_{\xi\xi} - u_{\xi\eta} + u_{\eta\eta}.$$

$$u_{yy} = \frac{\partial}{\partial y} u_{\xi} = u_{\xi\xi} \xi_{y} + u_{\xi\eta} \eta_{y} = u_{\xi\xi}.$$

$$u_{xy} = \frac{\partial}{\partial x} u_{\xi} = u_{\xi\xi} \xi_{x} + u_{\xi\eta} \eta_{x} = -\frac{1}{2} u_{\xi\xi} + u_{\xi\eta}.$$

Підставимо ці вирази у вихідне рівняння:

$$4\left(\frac{1}{4}u_{\xi\xi} - u_{\xi\eta} + u_{\eta\eta}\right) + 4\left(-\frac{1}{2}u_{\xi\xi} + u_{\xi\eta}\right) + u_{\xi\xi} - 2u_{\xi} = 0,$$

$$u_{\xi\xi} - 4u_{\xi\eta} + 4u_{\eta\eta} - 2u_{\xi\xi} + 4u_{\xi\eta} + u_{\xi\xi} - 2u_{\xi} = 0,$$

$$4u_{\eta\eta} - 2u_{\xi} = 0 \implies \left[u_{\eta\eta} - \frac{1}{2}u_{\xi} = 0\right]$$

Відповідь. Маємо параболічний тип рівняння, що зводиться підстановкою $\xi=y-x/2$ та $\eta=x$ до канонічного вигляду $u_{\eta\eta}-\frac{1}{2}u_{\xi}=0$.

1.2 Номер 2.

Умова Задачі 1.2. Розв'язати за допомогою методу функції Гріна та електростатичних відображень в \mathbb{R}^3 .

$$-\Delta u = 0$$
, $x_2 > 0$, $u\Big|_{x_2=0} = \sin 4x_1 \cos x_3$.

Розв'язання. Запишемо функцію Гріна:

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi \|\mathbf{x} - \boldsymbol{\xi}\|} - \frac{1}{4\pi \|\mathbf{x}' - \boldsymbol{\xi}\|},$$

де $\mathbf{x} = (x_1, x_2, x_3)$, а $\mathbf{x}' = (x_1, -x_2, x_3)$. Таким чином, явно маємо вираз:

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi\sqrt{(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2}} - \frac{1}{4\pi\sqrt{(x_1 - \xi_1)^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2}}.$$

Тепер згадаємо, що розв'язок ми можемо знайти за допомогою наступної формули:

$$u(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \boldsymbol{\xi}) f(\boldsymbol{\xi}) d\boldsymbol{\xi} - \int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} \phi(\boldsymbol{\xi}) d_{\boldsymbol{\xi}} S,$$

де в нашому випадку, на щастя, $f(\boldsymbol{\xi}) \equiv 0$, а не на щастя $\phi(\boldsymbol{\xi}) = \sin 4\xi_1 \cos \xi_3$. Отже, залишається порахувати лише другий інтеграл. Для нього потрібно знайти похідну функції Гріна за нормаллю, причому за умови $\xi_2 = 0$ (оскільки проходитись будемо саме по цій площині). Нормаль має вигляд $\boldsymbol{\nu} = (0, -1, 0)$. Таким чином, маємо:

$$\frac{\partial G}{\partial \boldsymbol{\nu}} = -\frac{\partial G}{\partial \xi_2} = -\frac{x_2 - \xi_2}{4\pi((x_1 - \xi_1)^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} - \frac{x_2 + \xi_2}{4\pi((x_1 - \xi_1)^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}}$$

При $\xi_2 = 0$, зокрема, маємо:

$$\begin{aligned} \frac{\partial G}{\partial \boldsymbol{\nu}} \Big|_{\xi_2 = 0} &= -\frac{x_2}{4\pi ((x_1 - \xi_1)^2 + x_2^2 + (x_3 - \xi_3)^2)^{3/2}} - \frac{x_2}{4\pi ((x_1 - \xi_1)^2 + x_2^2 + (x_3 - \xi_3)^2)^{3/2}} \\ &= -\frac{x_2}{2\pi} \cdot \frac{1}{((x_1 - \xi_1)^2 + x_2^2 + (x_3 - \xi_3)^2)^{3/2}} \end{aligned}$$

Таким чином, підставимо цей вираз у вираз для розв'язку:

$$u(\mathbf{x}) = \frac{x_2}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{((x_1 - \xi_1)^2 + x_2^2 + (x_3 - \xi_3)^2)^{3/2}} \cdot \sin 4\xi_1 \cos \xi_3 d\xi_1 d\xi_3,$$

Тепер, нам треба певним чином перетворити цей вираз. Для цього пропонується зробити підстановку $\eta_1:=x_1-\xi_1$, $\eta_3:=x_3-\xi_3$:

$$u(\mathbf{x}) = \frac{x_2}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{(\eta_1^2 + x_2^2 + \eta_3^2)^{3/2}} \cdot \sin 4(x_1 - \eta_1) \cos(x_3 - \eta_3) d\eta_1 d\eta_3.$$

Далі, розпишемо косинус та синус як $\sin(4x_1 - 4\eta_1) = \sin 4x_1 \cos 4\eta_1 - \cos 4x_1 \sin 4\eta_1$ та $\cos(x_3 - \eta_3) = \cos x_3 \cos \eta_3 + \sin x_3 \sin \eta_3$. Таким чином, маємо:

$$u(\mathbf{x}) = \frac{x_2}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{(\sin 4x_1 \cos 4\eta_1 - \cos 4x_1 \sin 4\eta_1)(\cos x_3 \cos \eta_3 + \sin x_3 \sin \eta_3)}{(\eta_1^2 + x_2^2 + \eta_3^2)^{3/2}} d\eta_1 d\eta_3.$$

Помітимо, що коли ми розкриємо дужки, то усі добутки з $\cos 4\eta_1 \sin \eta_3$, $\sin 4\eta_1 \cos \eta_3$ та $\sin 4\eta_1 \sin \eta_3$ зникнуть через непарність підінтегральної функції та симетричному інтегруванні по всьому простору. Таким чином, маємо:

$$u(\mathbf{x}) = \frac{\sin 4x_1 \cos x_3}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{x_2 \cos 4\eta_1 \cos \eta_3}{(\eta_1^2 + x_2^2 + \eta_3^2)^{3/2}} d\eta_1 d\eta_3.$$

На цьому етапі, звичайно, можна почати шукати повністю цей інтеграл. Проте, можна також помітити, що цей інтеграл — це певна функція від x_2 (хоч і потенційно дуже складна). Тому, нехай $\varphi(x_2):=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\frac{x_2\cos 4\eta_1\cos \eta_3}{(\eta_1^2+x_2^2+\eta_3^2)^{3/2}}d\eta_1d\eta_3$. Тоді, $u(\mathbf{x})=\sin 4x_1\cos x_3\varphi(x_2)$.

Згадуємо, що у нас $\Delta u = 0$, тому можемо знайти похідну:

$$\Delta u = \sum_{i=1}^{3} \frac{\partial^2 u}{\partial x_i^2} = -16 \sin 4x_1 \cos x_3 \varphi(x_2) + \sin 4x_1 \cos x_3 \frac{d^2 \varphi}{dx_2^2} - \sin 4x_1 \cos x_3 \varphi(x_2)$$
$$= -17 \sin 4x_1 \cos x_3 \varphi(x_2) + \sin 4x_1 \cos x_3 \frac{d^2 \varphi}{dx_2^2} = 0.$$

Гарні новини — можемо скоротити на $\sin 4x_1 \cos x_3$, що зведе рівняння до

$$\frac{d^2\varphi}{dx_2^2} - 17\varphi(x_2) = 0.$$

Це рівняння вже розв'язується досить просто. Знаходимо характеристичний поліном $\lambda^2-17=0$ і помічаємо, що корені $\lambda_1=\sqrt{17},\ \lambda_2=-\sqrt{17},\$ тому загальний розв'язок має вигляд $\varphi(x_2)=C_1e^{\sqrt{17}x_2}+C_2e^{-\sqrt{17}x_2}.$ Проте, залишилось знайти константи C_1 та C_2 . По-перше, помічаємо, що $\varphi(x_2)$ має бути обмеженою при $x_2>0$. Тому, $C_1=0$. Більш того, оскільки $u\Big|_{x_2=0}=\sin 4x_1\cos x_3$, то також $\varphi(0)=1$, що дає $C_2=1$. Таким чином, остаточно:

$$u(x_1, x_2, x_3) = \sin 4x_1 \cos x_3 e^{-\sqrt{17}x_2}.$$

Відповідь. Розв'язком є $u(x_1, x_2, x_3) = \sin 4x_1 \cos x_3 e^{-\sqrt{17}x_2}$

1.3 Номер 3.

Умова Задачі 1.3. Розв'язати за допомогою методу функції Гріна та конформних відображень в \mathbb{R}^2 .

$$-\Delta u = 0$$
, $x_1 > 0$, $x_2 < 0$, $u\Big|_{x_1=0} = 1$, $u\Big|_{x_2=0} = 1$.

Розв'язання. Згадаємо, що метод конформних відображень полягає у (а) побудові конформного відображення $w: \mathbb{C} \to \mathbb{C}$, що переводить задану область в одиничний круг та (б) знаходженні функції Гріна у вигляді¹:

$$G(\mathbf{x},\boldsymbol{\xi}) = \frac{1}{2\pi} \log \left| \frac{1 - w(z)\overline{w(\zeta)}}{w(z) - w(\zeta)} \right|, \quad z = x_1 + ix_2, \quad \zeta = \xi_1 + i\xi_2.$$

Отже, нам потрібно перевести область $x_1>0$, $x_2<0$ у одиничний круг. Для цього спочатку переведемо область у верхню півплощину за допомогою відображення $^2w_1:z\mapsto z^2$. Далі, за перетворенням Келі $w_2:z\mapsto \frac{z^{-i}}{z+i}$ переведемо верхню півплощину у одиничний круг. Наше відображення $w=w_2\circ w_1$, тобто

$$w(z) = \frac{z^2 - i}{z^2 + i}.$$

Підставимо цей вираз у функцію Гріна:

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{2\pi} \log \left| \frac{1 - \frac{z^2 - i}{z^2 + i} \left(\frac{\overline{\zeta}^2 + i}{\overline{\zeta}^2 - i} \right)}{\frac{z^2 - i}{z^2 + i} - \frac{\zeta^2 - i}{\zeta^2 + i}} \right| = \frac{1}{2\pi} \log \left| \frac{(z - \overline{\zeta})(z + \overline{\zeta})}{(z - \zeta)(z + \zeta)} \right|$$

Розпишемо цей вираз явно як функцію від x_1, x_2, ξ_1, ξ_2 :

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi} \log((x_1 - \xi_1)^2 + (x_1 + \xi_2)^2) + \frac{1}{4\pi} \log((x_1 + \xi_1)^2 + (x_1 - \xi_2)^2)$$
$$= -\frac{1}{4\pi} \log((x_1 - \xi_1)^2 + (x_1 - \xi_2)^2) - \frac{1}{4\pi} \log((x_1 + \xi_1)^2 + (x_1 + \xi_2)^2)$$

Нарешті, за формулою розв'язку через функцію Гріна, маємо:

$$u(x_1, x_2) = \int_{\Omega} G(\mathbf{x}, \boldsymbol{\xi}) f(\boldsymbol{\xi}) d\boldsymbol{\xi} - \int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} \phi(\boldsymbol{\xi}) dS_{\boldsymbol{\xi}}$$

В нашому випадку $f(\boldsymbol{\xi}) \equiv 0$, тому вже легше:

$$u(x_1, x_2) = -\int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} \phi(\boldsymbol{\xi}) dS_{\boldsymbol{\xi}}$$

 $^{^{1}}$ Під записом \log маємо на увазі логарифмування за базою e.

²Таким чином, границя області (промінь) it (t < 0) перейде у $-t^2$ — промінь від 0 до $-\infty$ вздовж Ox. В свою чергу, границя $x_2 = 0$, $x_1 > 0$, що відповідає променю t, t > 0, перейде у саму себе.

Знаходимо часткову похідну $\partial G/\partial \xi_1$ для вертикальної границі:

$$\frac{\partial G}{\partial \xi_1} = \frac{1}{2\pi} \cdot \frac{\xi_1 - x_1}{(\xi_1 - x_1)^2 + (\xi_2 + x_2)^2} + \frac{1}{2\pi} \cdot \frac{\xi_1 + x_1}{(\xi_1 + x_1)^2 + (\xi_2 - x_2)^2} - \frac{1}{2\pi} \cdot \frac{\xi_1 - x_1}{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2} - \frac{1}{2\pi} \cdot \frac{\xi_1 + x_1}{(\xi_1 + x_1)^2 + (\xi_2 + x_2)^2}$$

Також, одразу порахуємо $\partial G/\partial \xi_2$, котра знадобиться для горизонтальної границі:

$$\frac{\partial G}{\partial \xi_2} = \frac{1}{2\pi} \cdot \frac{\xi_2 + x_2}{(\xi_1 - x_1)^2 + (\xi_2 + x_2)^2} + \frac{1}{2\pi} \cdot \frac{\xi_2 - x_2}{(\xi_1 + x_1)^2 + (\xi_2 - x_2)^2} - \frac{1}{2\pi} \cdot \frac{\xi_2 - x_2}{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2} - \frac{1}{2\pi} \cdot \frac{\xi_2 + x_2}{(\xi_1 + x_1)^2 + (\xi_2 + x_2)^2}$$

Сама похідна за нормаллю по границі $x_2 < 0$, $x_1 = 0$ ($oldsymbol{
u}_1 = (-1,0)$), у свою чергу,

$$\frac{\partial G}{\partial \boldsymbol{\nu}_1} = -\frac{\partial G}{\partial \xi_1}\Big|_{\xi_1 = 0} = \frac{1}{\pi} \cdot \frac{x_1}{x_1^2 + (\xi_2 + x_2)^2} - \frac{1}{\pi} \cdot \frac{x_1}{x_1^2 + (\xi_2 - x_2)^2}$$

Для горизонтальної границі $x_1 > 0, x_2 = 0 \ (\nu_2 = (0, 1)),$ маємо:

$$\frac{\partial G}{\partial \boldsymbol{\nu}_2} = \frac{\partial G}{\partial \xi_2} \Big|_{\xi_2 = 0} = \frac{1}{\pi} \cdot \frac{x_2}{x_2^2 + (\xi_1 - x_1)^2} - \frac{1}{\pi} \cdot \frac{x_2}{x_2^2 + (\xi_1 + x_1)^2}$$

Таким чином, все звелось до обчислення двох інтегралів:

$$u_{1}(x_{1}, x_{2}) = \int_{-\infty}^{0} \frac{\partial G}{\partial \nu_{1}} \Big|_{\xi_{1}=0} \phi(\xi_{2}) d\xi_{2} = \frac{x_{1}}{\pi} \int_{-\infty}^{0} \left(\frac{1}{x_{1}^{2} + (\xi_{2} + x_{2})^{2}} - \frac{1}{x_{1}^{2} + (\xi_{2} - x_{2})^{2}} \right) d\xi_{2},$$

$$u_{2}(x_{1}, x_{2}) = \int_{0}^{+\infty} \frac{\partial G}{\partial \nu_{2}} \Big|_{\xi_{2}=0} \phi(\xi_{1}) d\xi_{1} = \frac{x_{2}}{\pi} \int_{0}^{+\infty} \left(\frac{1}{x_{2}^{2} + (\xi_{1} - x_{1})^{2}} - \frac{1}{x_{2}^{2} + (\xi_{1} + x_{1})^{2}} \right) d\xi_{1}.$$

Почнемо з першого інтегралу. Оскільки межі інтегралу виглядають не дуже привабливо, зробимо просте перетворення $\xi_2 \mapsto -\xi_2$, отримавши:

$$u_1(x_1, x_2) = \frac{x_1}{\pi} \int_0^{+\infty} \left(\frac{1}{x_1^2 + (\xi_2 - x_2)^2} - \frac{1}{x_1^2 + (\xi_2 + x_2)^2} \right) d\xi_2$$

Далі розглядаємо інтеграл наступного вигляду:

$$\mathcal{I}(\alpha) := \int_0^{+\infty} \frac{d\xi_2}{x_1^2 + (\xi_2 - \alpha)^2}$$

Він достатньо легко знаходиться. Для цього, зробимо такі перетворення:

$$\mathcal{I}(\alpha) = \frac{1}{x_1} \int_0^{+\infty} \frac{d\left(\frac{\xi_2 - \alpha}{x_1}\right)}{1 + \left(\frac{\xi_2 - \alpha}{x_1}\right)^2} = \frac{1}{x_1} \arctan\left(\frac{\xi_2 - \alpha}{x_1}\right) \Big|_0^{+\infty} = \frac{\pi}{2x_1} + \frac{\arctan\frac{\alpha}{x_1}}{x_1}$$

Тоді, наш перший інтеграл має вигляд:

$$u_1(x_1, x_2) = \frac{x_1(\mathcal{I}(x_2) - \mathcal{I}(-x_2))}{\pi} = \frac{2}{\pi} \arctan \frac{x_2}{x_1}$$

Тепер розглянемо другий $(u_2(x_1, x_2))$. Для нього розглянемо інтеграл такого вигляду:

$$\mathcal{J}(\beta) := \int_0^{+\infty} \frac{d\xi_1}{x_2^2 + (\xi_1 - \beta)^2} = \frac{1}{x_2} \arctan \frac{\xi_1 - \beta}{x_2} \Big|_0^{+\infty} = \frac{\pi}{2x_2} + \frac{\arctan \frac{\beta}{x_2}}{x_2}$$

Таким чином, наш другий інтеграл має вигляд:

$$u_2(x_1, x_2) = \frac{x_2(\mathcal{J}(x_1) - \mathcal{J}(-x_1))}{\pi} = \frac{2}{\pi} \arctan \frac{x_1}{x_2}$$

Отже, остаточний вигляд розв'язку задачі:

$$u(x_1, x_2) = -u_1(x_1, x_2) - u_2(x_1, x_2) = -\frac{2}{\pi} \arctan \frac{x_2}{x_1} - \frac{2}{\pi} \arctan \frac{x_1}{x_2} = \boxed{-\frac{2}{\pi} \left(\arctan \frac{x_2}{x_1} + \arctan \frac{x_1}{x_2}\right)}$$

Проте, цей розв'язок можна сильно спростити, якщо скористатися тим фактом, що

$$\arctan(z) + \arctan\left(\frac{1}{z}\right) = \begin{cases} \pi/2, & z > 0\\ -\pi/2, & z < 0 \end{cases}$$

Зокрема, на всій нашій облатсі $x_2/x_1 < 0$, тому $u(x_1, x_2) \equiv 1$.

Відповідь. $u \equiv 1$.