Solutions to Hungerford Chapter 5.1

Isaac Martin

Last compiled January 22, 2023

Exercise 1.

- (a) Show that [F:K]=1 if and only if F=K.
- (b) Show that if [F:K] is prime, then there are no intermediate fields between F and K.
- (c) If $u \in F$ has degree n over K, then n divides [F : K].

Proof:

- (a) If [F:K]=1 then F is a 1-dimensional vector space over K. Hence there exists some element $x\in F$ such that for all other $y\in F$ there is some $k\in K$ such that y=kx. Define a map $\varphi:K\to F$ by $\varphi(k)=kx$. This is surjective by the previous observation and is injective as it is a map of fields. Hence it is an isomorphic.
- (b) If E is a field such that F/E/K, then [F:E][E:K]=[F:K]. Since [F:K] is prime, either [E:K]=1 or [F:E]=1. In the first case $E\cong K$ and in the second $E\cong F$ by part (a). Hence there are no proper intermediate field extensions.
- (c) If $u \in F$ has degree n over K, then the field extension K(u) of K is degree n. Since $K(u) \subseteq F$, K(u) is an intermediate extension and hence $[F:K(u)][K(u):K] = [F:K] \implies [F:K(u)]n = [F:K]$, giving us the result.