

TCS

Dr. Jürgen Koslowski

Einführung in die Logik

Aufgabenblatt 2, 2023-05-08

Achtung, ausnahmsweise frühere Abgabe: bis Donnerstag, 11. Mai, 11:30 Uhr

Präsenzaufgabe 1

(Vergl. Folie 72): eine Signatur $\mathcal{I} \xrightarrow{\overline{ar}} \mathbb{N}$ mit gegebener Semantik (d.h., vorgegebenen Wahrheitstabellen für jeden Junktor in \mathcal{I}) heißt funktional vollständig, wenn zu jeder Formel $A \in \mathcal{F}[\mathcal{A}]$ eine äquivalente Formel $B \in \operatorname{Term}(\overline{ar}, \mathcal{A})$ existiert.

Der 3-stellige Junktor $[]_{/3}$ möge die Semantik von if-then-else haben, als Wahrheitstabelle:

p	q	r	[p,q,r]
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Zeigen Sie, dass die Signatur $\{[]_{/3}, \bot_{/0}, \top_{/0}\}\,$ funktional vollständig ist.

Lösungsvorschlag:

Mittels stuktureller Induktion wollen wir alle Junktoren aus \mathcal{J} mit Hilfe der Junktoren aus \mathcal{I} simulieren: Die konstanten Junktoren stimmen überein. Nun sei die Simulation möglich für $A, B \in \mathcal{F}[A]$, die zu $A', B' \in \mathbf{Term}(\{[]/3, \bot/0, \top/0\}, A)$ äquivalent sind.

• $\neg A \models [A, \bot, \top] \models [A', \bot, \top]$, per Wahrheitstabelle:

A		$ \top $	$[A, \bot, \top]$
0	0	1	1
1	0	1	0

• $A \to B \vDash [A, B, \top] \vDash [A', B', \top]$, per Wahrheitstabelle:

A	$\mid B \mid$	T	$[A, B, \top]$
0	0	1	1
0	1	1	1
1	0	1	0
1	1	1	1
	0	0 0 0 1	0 0 1 0 1 1

• $A \vee B \models \neg A \rightarrow B \models [A, \top, B] \models [A', \top, B']$, per Wahrheitstabelle:

A	B	T	$[A, \top, B]$
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

Die Umformung $A \vee B \models \neg A \rightarrow B$ liefert die viel kompliziertere Simulation $[\neg A, B, \top] \models [[A', \bot, \top], B', \top]$.

• $A \wedge B \models [A, B, \bot] \models [A', B', \bot]$, per Wahrheitstabelle:

A	$\mid B \mid$	_	$[A, B, \bot]$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1

Die Umformung $A \land B \models \neg(\neg A \lor \neg B) \models \neg(A \to \neg B)$ liefert auch eine viel kompliziertere Simulation.

• $A \leftrightarrow B \vDash [A, B, \neg B] \vDash [A, B, [B, \bot, \top]] \vDash [A', B', [B', \bot, \top]]$, per Wahrheitstabelle

A	B	$\neg B$	$[A, B, \neg B]$
0	0	1	1
0	1	0	0
1	0	1	0
1	1	0	1

Geht man auf die Definition $A \leftrightarrow B \vDash (A \to B) \land (B \to A)$ zurück, so erbigt sich eine noch umständlichere Simulation.

Präsenzaufgabe 2

Wir modifizieren \mathcal{K}_0 , indem wir Schema Ax3 aus \mathcal{R}_0 entfernen, und stattdessen die Schemata

$$\frac{}{\neg \neg A \to A} \ \, (\text{Th2}) \quad \text{sowie} \quad \frac{}{(A \to B) \to (A \to \neg B) \to \neg A} \ \, (\text{Th7})$$

hinzufügen. Zeigen Sie, dass auch der resultierende Kalkül \mathcal{K}_0' vollständig und korrekt ist.

Lösungsvorschlag:

Alle Axiome von \mathcal{K}'_0 sind in \mathcal{K}_0 herleitbar.

Für die umgekehrte Richtung genügt es zu zeigen, dass (Ax3) in \mathcal{K}'_0 herleitbar ist. Leider beruhen die Herleitungen von (Th3), (Th4), (Th5), (Th6) und (Th8) in \mathcal{K}_0 direkt oder mittelbar auf (Ax3), können also zunächst in \mathcal{K}'_0 nicht verwendet werden.

Andererseits beruht der Beweis des Deduktionstheorems für \mathcal{K}_0 nur auf (Ax1), (Ax2) und auf (Th1), und der Beweis von (Th1) verwendet (Ax3) nicht. Damit steht das Deduktionstheorem auch in \mathcal{K}_0' zur Verfügung. Das liefert folgende Ableitung von (Ax3) in \mathcal{K}_0' :

Hausaufgabe 3 [10 PUNKTE]

Untersuchen Sie folgende Junktormengen \mathcal{I} auf funktionale Vollständigkeit. Begründen Sie Ihre Antwort. [Alle Junktoren haben hier ihre übliche Stelligkeit und Semantik.]

- 1. [4 PUNKTE] $\mathcal{I} = \{\neg, \land\}$
- 2. [3 punkte] $\mathcal{I} = \{\land, \lor\}$
- 3. [3 PUNKTE] $\mathcal{I} = \{\rightarrow, \bot\}$

Lösungsvorschlag:

- 1. Nachzuweisen ist, dass jede Formel $A \in \mathcal{F}[A]$ zu einer Formel $A' \in \mathbf{Term}(\mathcal{I}, A)$ äquivalent ist. Die umgekehrte Richtung ist wegen $\mathcal{I} \subseteq \mathcal{J}$ trivial.
 - $\bot \models p \land \neg p \text{ und } \top \models \neg (p \land \neg p) \text{ für jedes } p \in \mathcal{A}$.
 - $A \vee B \models \neg(\neg A \wedge \neg B) \models \neg(\neg A' \wedge \neg B')$ nach den de
Morganschen Regeln.
 - $A \to B \models \neg A \lor B \models \neg (A \land \neg B) \models \neg (A' \land \neg B')$ ggf. per Wahrheitstabelle.
 - $A \leftrightarrow B \bowtie (A \to B) \land (B \to A) \bowtie (A' \to B') \land (B' \to A')$, und dies läßt sich aufgrund der vorigen Ergebnisse durch \neg und \land ausdrücken.
- 2. \neg läßt sich nicht durch \land und \lor ausdrücken: \neg nimmt nur ein Argument, eine Simulation mittels \land und \lor dürfte das auch mehrfach verwenden. Aber \land und \lor bilden sowohl $\langle 0, 0 \rangle$ auf 0 und $\langle 1, 1 \rangle$ auf 1 ab, also auch längere konstante Tupel.

Alternativ: Gemäß Folie 73 ist jede Formel in $Term(\{\land,\lor\},\mathcal{A})$ konstant, also ist nach dem Post'schen Vollständigkeitssatz $\{\land,\lor\}$ nicht vollständig.

- 3. Wegen Teil 1 ist nur nachzuweisen, dass jede Formel $A \in \textbf{Term}(\{\neg, \land\}, \mathcal{A})$ zu einer Formel $A' \in \textbf{Term}(\{\rightarrow, \bot\}, \mathcal{A})$ äquivalent ist.
 - $\neg A \models A \rightarrow \bot \models A' \rightarrow \bot$, ggf. per Wahrheitstabelle.
 - $A \land B \vDash \neg(\neg A \lor \neg B) \vDash \neg(A \to \neg B) \vDash (A \to B \to \bot) \to \bot \vDash (A' \to B' \to \bot) \to \bot$

Hausaufgabe 4 [10 PUNKTE]

Beweisen Sie mit allen Details den Satz auf Folie 81: Gegeben ist ein deduktives System $\mathcal{K} = \langle \mathcal{F}, \mathcal{R} \rangle$. Eine Formel in \mathcal{F} ist genau dann ein Theorem (d.h., hat einen "langen Beweis"), wenn sie einen "kurzen Beweis" (d.h., eine Ableitung ohne Prämissen) hat.

Lösungsvorschlag:

Im Folgenden ist die Prämissenmenge Γ leer.

 (\Longrightarrow) Induktion über die Anzahl der Regelanwendungen in einem langen Beweis für B.

n=1: Es handelt sich bei B um ein Axiom. Ein kurzer Beweis hat dann die Form $\langle B \rangle$.

Annahme: Die Behauptung sei wahr für alle Theorme, die einen langen Beweis mit $1 \le k < n$ Regelanwendungen haben.

Schluß: Das Theorem B habe einen minimalen langen Beweis mit n>1 Regelanwendungen. Dabei resultiere B aus der Anwendung einer Regel mit $m \leq n$ Prämissen B_j , j < m. Nach Konstruktion benötigen deren lange Beweise weniger als n Regelanwendungen, also existieren kurze Beweise $\langle B_{j,k}:k\leq \ell_j\rangle$ mit $B_{j,\ell_j}=B_j$. Konkatenation dieser kurzen Beweise und Anfügen von B als letztes Element liefert einen kurzen Beweis von B. Dieser kann Redundanz enthalten und muß daher nicht minimal sein, aber das stört nicht.

 (\longleftarrow) Induktion über die Länge kurzer Beweise für B.

n=1: Es handelt sich bei B um ein Axiom. Dann existiert eine Regel mit leerer Prämisse und Konklusion B. Diese Regel ist selber ein langer Beweis für B.

Annahme: Die Behauptung sei wahr für alle Formeln mit einem kurzen Beweis der Länge $\leq n$.

Schluß: B habe einen minimalen kurzen Beweis der Länge n+1, etwa $\langle B_i:i\leq n\rangle$ mit $B_n=B$. Da B kein Axiom sein kann, resultiert B aus der Anwendung einer Regel mit m>0 Prämissen $B_{f(j)}$ für eine Abbildung $m\stackrel{f}{\longrightarrow} n$ (man beachte, dass B_n keine Prämisse sein kann). Mit Hilfe dieser Regel lassen sich die nach Voraussetzung existierenden langen Beweise für $B_{f(j)}$, j< m, zu einem langen Beweis von B kombinieren. Man beachte: Die Funktion f braucht weder injektiv noch surjektiv zu sein!

Hausaufgabe 5 [10 PUNKTE]

Zeigen Sie im Hilbert-Kalkül \mathcal{K}_0 :

1. [4 PUNKTE]
$$\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow A \rightarrow C$$

2. [6 punkte]
$$\vdash \neg (A \to B) \to B \to A$$

Lösungsvorschlag:

1.

2.

$$\begin{array}{ccc} 0. & & \neg (A \to B) & & \text{Ann.} \\ 1. & & B \to A \to B & & \text{Ax1} \\ 2. & & (B \to A \to B) \to \neg (A \to B) \to \neg B & & \text{Th5} \\ \end{array}$$

Die Zeilen 1–3 könnten auch vor den ersten Kasten gezogen werden. Alternative Lösung