正态分布中 μ的区间估计

例 设 $X \sim N(\mu, \sigma^2)$, $\sigma^2 = \sigma_0^2$, 求参数 μ 的置信度为 $1 - \alpha$ 的置信区间.

分析:

1)要估计参数,就涉及统计量;而选取统计量应根据优良性质准则来选.

这里 μ 的优良估计是: \overline{X} 它是无偏、有效、相合估计.

2) 考察统计量所服从的分布,这里:

$$\overline{X} \sim N\left(\mu, \frac{\sigma_0^2}{n}\right)$$

3) 将统计量化为常用分布, 再通过临界值确定区间, 这里:

$$\frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1)$$

解:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 是 μ 的优良估计,且

$$\overline{X} \sim N(\mu, \frac{\sigma_0^2}{n})$$

从而
$$U = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$$

$$P\{u_{1-\alpha/2} \leq U \leq u_{\alpha/2}\} = 1-\alpha$$

由标准正态分布的对称性可知

$$u_{1-\alpha/2} = -u_{\alpha/2}$$

从而,前式可化为:

$$P\{|U|\leq u_{\alpha/2}\}=1-\alpha \qquad \mathbb{P}$$

$$P\left\{-u_{\frac{\alpha}{2}} \leq \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \leq u_{\frac{\alpha}{2}}\right\} = 1 - \alpha$$

从而
$$P\left\{\overline{X} - \frac{\sigma_0}{\sqrt{n}}u_{\frac{\alpha}{2}} \le \mu \le \overline{X} + \frac{\sigma_0}{\sqrt{n}}u_{\frac{\alpha}{2}}\right\} = 1 - \alpha$$

由此可得, μ的置信度为1-α的置信区间为:

$$\left[\overline{X} - \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}} \right]$$

特别, 当 σ_0 =1, α =0.05, 样本观测值为:

 $u_{\alpha/2}=1.96$, μ 的置信区间为: [4.35, 5.65]

估计量的选取

例 设 $X\sim N(\mu,\sigma^2)$, 求参数 σ^2 的置信度为 $1-\alpha$ 的置 信区间.

分析:

1) 当 μ 未知时,应选统计量为: S^2 要化至常用分布,由抽样分布定理可知:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$$

 $\frac{n-1}{\sigma^2} S^2 \sim \chi^2(n-1)$ 2) 当 μ 已知时,应选统计量为: $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$

$$\sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma} \right)^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \sim \chi^{2}(n)$$

原因: 它是最简单的无偏、有效、相合估计量.

未知参数的替换

例 设 $X\sim N(\mu,\sigma^2)$, σ^2 未知,求参数 μ 的置信度为 $1-\alpha$ 的置信区间.

分析:
$$1.\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \, \mathbb{E}\mu$$
的优良估计,且 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

思考: 是否仍选统计量
$$U = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

令 $P\{u_{1-\alpha/2} \le U \le u_{\alpha/2}\} = 1-\alpha$ 求得置信区间?

不可 因为 σ^2 未知,故 U 不是统计量

- 2. 选一个统计量去替代 σ^2 : S^2 、 M_2 选哪一个较好?
 - 选 S^2 因为它是 σ^2 的无偏、有效、相合估计

化至常用分布,应为t分布,据抽样分布定理有:

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

3. 得 T 的置信区间: $P\{t_{1-\alpha/2}(n-1) \le T \le t_{\alpha/2}(n-1)\} = 1-\alpha$ 由分布的对称性,即 $t_{1-\alpha/2}(n-1) = -t_{\alpha/2}(n-1)$ 可化为: $P\{-t_{\alpha/2}(n-1) \le T \le t_{\alpha/2}(n-1)\} = 1-\alpha$

4. 代换后可得μ的置信区间:

$$\left[\overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right]$$

比较:

 $\sigma^2 = \sigma_0^2$ 时, μ 的置信区间为

$$\left[\overline{X} - \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}}\right]$$

 σ^2 未知时, μ 的置信区间为

$$\left[\overline{X} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right]$$

零件长度的方差

例 从自动机床加工的同类零件中任取16件测得长度 值为(单位: mm)

12.15	12.12	12.01	12.28	12.09	12.16	12.03	12.01
12.06	12.13	12.07	12.11	12.08	12.01	12.03	12.06

求方差的估计值和置信区间($\alpha=0.05$).

解:设零件长度为 $X\sim N(\mu,\sigma^2)$,用 S^2 作为方差的估计

$$\overline{x} = \frac{1}{16} \sum_{i=1}^{16} x_i = 12.08, \quad \sum_{i=1}^{16} (x_i - \overline{x})^2 = 0.0761$$

故方差的估计值为
$$\hat{\sigma}^2 = \frac{1}{15} \sum_{i=1}^{16} (x_i - \bar{x})^2 = 0.005$$

下面计算方差的置信区间:

由于 μ 未知, S^2 是 σ^2 的优良估计,相应的常用分布为:

$$\chi^2 = \frac{n-1}{\sigma^2} S^2 \sim \chi^2 (n-1)$$

相应的置信区间为:

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) \leq \frac{n-1}{\sigma^{2}} S^{2} \leq \chi_{\alpha/2}^{2}(n-1)\right\} = 1-\alpha$$

$$\left[(n-1)S^{2} / \chi_{\alpha/2}^{2}(n-1), (n-1)S^{2} / \chi_{1-\alpha/2}^{2}(n-1) \right]$$

查
$$\chi^2$$
分布表可得: $\chi^2_{\alpha/2}(n-1) = \chi^2_{0.025}(15) = 27.488$ $\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(15) = 6.262$

$$\left[(n-1)S^2 / \chi_{\alpha/2}^2 (n-1), (n-1)S^2 / \chi_{1-\alpha/2}^2 (n-1) \right]$$

$$\chi_{\alpha/2}^2 (n-1) = \chi_{0.025}^2 (15) = 27.488$$

$$\chi_{1-\alpha/2}^2 (n-1) = \chi_{0.975}^2 (15) = 6.262$$

σ^2 的置信度为0.95的置信区间为:

$$\left[\frac{0.0761}{27.488}, \frac{0.0761}{6.26}\right]$$
 \mathbb{P} [0.002768,0.012]

比较: σ^2 的估计值为 0.005

婴儿体重的估计

例、假定初生婴儿的体重服从正态分布,随机抽取12名 婴儿,测得体重为: (单位:克)

3100, 2520, 3000, 3000, 3600, 3160, 3560, 3320, 2880, 2600, 3400, 2540

试以95%的置信度估计初生婴儿的平均体重以及方差.

解:设初生婴儿体重为X克,则 $X\sim N(\mu, \sigma^2)$

(1) 需估计 μ ,而 σ 未知:

取
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

,有 t_{0.025}(11)= 2.201 ,

 $\alpha = 0.05$, n = 12,

 $\therefore \overline{X} \approx 3057, \qquad S \approx 375.3$

 μ 的置信区间为: $\left[\overline{X} - t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}\right]$

婴儿体重的估计

代入数据得:

$$\left[3057 - \frac{375.3}{\sqrt{12}} \times 2.201,3057 + \frac{375.3}{\sqrt{12}} \times 2.201\right]$$

即 [2818,3296]

(2) 需估计
$$\sigma^2$$
,而µ未知: 取 $\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$

有
$$\chi^2_{0.025}(11) = 21.92$$
 , $\chi^2_{0.975}(11) = 3.816$,

$$\sigma^2$$
的置信区间为:
$$\left[\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right]$$

$$11 \times S^2 = 1549000$$

$$\therefore \sigma^2$$
的置信区间为: $[\frac{1549000}{21.92}, \frac{1549000}{3.816}]$

即 [70666,405922.4]

两稻种产量的期望差的置信区间

例 甲、乙两种稻种分别种在10块试验田中,每块田中甲、乙稻种各种一半. 假设两种稻种产量X、Y 服从正态分布,且方差相等.

10块田中的产量如下表 (单位:公斤),求两稻种产量的期望差 μ_1 - μ_2 的置信区间(α =0.05).

甲	140	137	136	140	145	148	140	135	144	141
乙	135	118	115	140	128	131	130	115	121	125

解: 设 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$, $\sigma_1^2=\sigma_2^2=\sigma^2$,要估计 μ_1 - μ_2 ,取统计量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中,
$$S_w = \sqrt{\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

由样本表可计算得:

$$\overline{x} = 140.6$$
 $s_1^2 = 16.933$ $n_1 = 10$ $\overline{y} = 126.8$ $s_2^2 = 71.956$ $n_2 = 10$ 从而, $S_w = \sqrt{\frac{9 \times 16.933 + 9 \times 71.956}{18}} = 6.667$

可得两稻种产量期望差的置信度为95%的置信区间为:

$$\left[\overline{X} - \overline{Y} - t_{\frac{\alpha}{2}} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \overline{X} - \overline{Y} + t_{\frac{\alpha}{2}} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right]$$

$$[140.6-126.8-2.10096.667\sqrt{\frac{2}{10}},140.6-126.8-2.10096.667\sqrt{\frac{2}{10}}]$$

即[7.536, 20.064]

常见的区间估计 $X \sim N(\mu, \sigma^2)$

$$P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1-\alpha$$

被估参数	条件	统计量 (枢轴变量)	置信区间		
μ	σ^2 已 知	$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}\right]$		
μ	σ ² 未 知	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$\left[\overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right]$		
σ^2	μ已 知	$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$	$\left[\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right]$		
σ^2	μ未 知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\left[\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right]$		

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N$

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$ $P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1 - \alpha$

被估参数	条件	统计量 (枢轴变量)
$\mu_1 - \mu_2$	σ_1^2 已知 σ_2^2 已知	$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$
$\mu_1 - \mu_2$	σ_1^2 未知 σ_2^2 未知	$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ $S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
$rac{{oldsymbol{\sigma}_1^2}}{{oldsymbol{\sigma}_2^2}}$	μ ₁ 未知 μ ₂ 未知	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$

