Relational Algebra 关系代数

courtesy of Joe Hellerstein for some slides

Guifeng Zheng
SUN YAT-SEN UNIVERSITY

Recap: You are here

- First part of course is done: conceptual foundations
- You now know:
 - E/R Model
 - Relational Model
 - Relational Algebra (a little, project / join)
- You now know how to:
 - Capture part of world as an E/R model
 - Convert E/R models to relational models
 - Convert relational models to good (normal) forms
- Next:
 - Create, update, query tables with R.A/SQL
 - Write SQL/DB-connected applications

3-minute Normalization Review

Q: What's required for BCNF?

Q: How do we fix a non-BCNF relation?

Q: If As→Bs violates BCNF, what do we do?

Q: Can BCNF decomposition ever be lossy?

Q: How do we combine two relations?

Q: Can BCNF decomp. lose FDs?

Q: Why would you ever use 3NF?

Relational Query Languages

- Query languages: manipulation and retrieval of data
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

(Actually, I no longer believe this. But it's the standard viewpoint)

Formal Relational Query Languages

Relational Algebra关系代数:

More operational, very useful for representing execution plans.

Relational Calculus关系演算:

Describe what you want, rather than how to compute it. (Non-procedural, <u>declarative</u>.)

Understanding Algebra & Calculus is key to understanding SQL, query processing!

What is relational algebra?

- An algebra for relations
- "High-school" algebra: an algebra for numbers
- Algebra = formalism for constructing expressions
 - Operations
 - Operands: Variables, Constants, expressions
- Expressions:
 - Vars & constants
 - Operators applied to expressions
 - They evaluate to values

Algebra	Vars/consts	Operators	Eval to
High-school	Numbers	+ * - / etc.	Numbers
Relational	Relations (=sets of tupes)	union, intersection, join, etc.	Relations

Why do we care about relational algebra?

- The exprs are *the form that questions about the data take* (有美数据的问题采用的形式!)
 - □ The relations these exprs cash out to are *the answers to our questions*(其表示的关系正是我们的问题的答案)
- RA ~ more succinct rep.(简洁表示) of many SQL queries
- DBMS parse SQL into something like RA.
- First proofs of concept for RDBMS/RA:
 - System R at IBM
 - Ingress at Berkeley
- "Modern" implementation of RA: SQL
 - Both state of the art, mid-70s

Preliminaries预备知识

- A query is applied to relation instances
- The result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed
 - Schema for the result of a query is also fixed.
 - determined by the query language constructs
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions
 - Named-field notation more readable.
 - Both used in SQL
 - Though positional notation is discouraged

Relational Algebra: 5 Basic Operations

- <u>Selection</u> (σ)
 - Selects a subset of rows (horizontal)
- Projection (π)
 - Retains only desired columns (vertical)
- Cross-product (x)
 - Allows us to combine two relations.
- Set-difference ()
 - □ Tuples in r1, but not in r2.
- **Union** (∪)
 - Tuples in r1 or in r2.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Example Instances

R1

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection (π)

- Example: $\pi_{sname,rating}(S2)$
- Retains only attributes that are in the "projection list".
- Schema of result:
 - the fields in the projection list
 - with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates
 - Note: real systems typically don't do duplicate elimination
 - Unless the user explicitly asks for it.
 - (Why not?)

Projection (π)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age
35.0
55.5

$$\pi_{age}(S2)$$

Selection (O)

- Selects rows that satisfy selection condition.
- Result is a relation.

Schema of result is same as that of the input relation.

Do we need to do duplicate elimination?

si	1	sname	rating	ag	e
28		yuppy	9	35	0.
31		lubber	8	55 55	.5
1		0110017	5	24	
	, ,	guppy	1.0	2	7.0
2	5	rusty	10	3:	0.0

sname	rating
yuppy	9
rusty	10

 $\sigma_{rating>8}(S2)$

sname, rating (ST)

Union, Set-Difference

- Both of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - 'Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?

Union

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

S1

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Set Difference

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
44	guppy	5	35.0
•	\mathbf{C}	C1	•

S2-S1

Cross-Product

- S1 × R1:
 - Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1,
 - Field names `inherited' if possible.

Cross Product Example

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

 $S1 \times R1 =$

Naming conflict: S1 and R1 have a field with the same name.

(Can use the renaming operator)

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Rename op

- Changes the schema, not the instance
- Notation: $\rho_{B1,...,Bn}(R)$
- ρ is spelled "rho", pronounced "row"

$$\rho_{\text{(C(1->sid1, 5->sid2)}}(\text{R1XS1})$$

- Example:
 - Employee(ssn,name)
 - $ho_{E2(social, name)}(Employee)$
 - \Box Or just: $\rho_E(Employee)$

Compound Operator: Intersection

- On top of 5 basic operators, several additional "Compound Operators"
 - These add no computational power to the language
 - Useful shorthand
 - Can be expressed solely with the basic operators.
- Intersection takes two input relations, which must be <u>union-compatible</u>.
- Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$

Intersection

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Compound Operator: Join

- Involve cross product, selection, and (sometimes) projection.
- Most common type of join: "natural join"
 - □ R ⋈S conceptually is:
 - Compute R x S
 - Select rows where attributes appearing in both relations have equal values
 - Project all unique attributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.

Natural Join Example

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

R1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

S1 ⋈ R1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Natural Join

R

Α	В
X	Y
X	Z
Y	Z
Z	V

S

В	С
Z	U
V	W
Z	V

- R ⋈S=?

Unpaired tuples called dangling

Natural Join

 Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S?

Given R(A, B, C), S(D, E), what is R ⋈S?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

Other Types of Joins

Condition Join (or "theta-join"):

$$R \bowtie_{c} S = \sigma_{c}(R \times S)$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$

- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.
- <u>Equi-Join</u>: Special case: condition c contains only conjunction of equalities.

Division Operation

- Notation: r ÷ s
- Suited to gueries that include the phrase "for all."
- Let r and s be relations over schemas R and S respectively, where

$$R = (A_1,..., A_m, B_1,..., B_n)$$

 $S = (B_1,..., B_n)$

The result of $r \div s$ is a relation over the schema $(R - S) = (A_1, ..., A_m)$

```
r \div s = \{ t \mid (t \in \pi_{R-S}(r)) \land (\forall u \in s, tu \in r) \}
```

Division Operation - example

$$r \div s = \{ t \mid (t \in \pi_{R-S}(r)) \land (\forall u \in s, tu \in r) \}$$

 $\begin{array}{c|cccc} \mathbf{r} & \mathbf{A} & \mathbf{B} \\ \hline \alpha & 1 \\ \hline \alpha & 2 \\ \hline \alpha & 3 \\ \hline \beta & 1 \\ \hline \gamma & 1 \\ \hline \delta & 1 \\ \hline \delta & 3 \\ \hline \delta & 4 \\ \hline \delta & 6 \\ \hline \varepsilon & 1 \\ \end{array}$

S	В
	1
	2

The result consists of attribute A only but not all of the 5 values. How to find out? u = 1, 2 Check if: $\forall u \in s \ (tu \in r)$ $t \in \pi_{R-S}(r)$

Is $\langle \epsilon, 1 \rangle$ and $\langle \epsilon, 2 \rangle$

tuples in r?

r÷s A α ε

Another Division Example

Relations r, s:

A	В	C	D	E
a	A	а	A	1
a	A	Υ	A	1
а	A	Υ	В	1
ß	A	Υ	A	1
ß	A	Υ	В	3
Υ	A	Υ	A	1
Υ	A	Υ	В	1
Υ	A	ß	В	1

D	Е
A	1
В	1

 $r \div s$

A	В	C
α	A	γ
γ	A	γ

Properties of Division Operation

• Let $q = r \div s$ Then q is the largest relation satisfying: $q \times s \subseteq r$

Examples

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Sailors

$S^{\frac{1}{2}}$	id	sname	rating	age
2	2	dustin	7	45.0
3	1	lubber	8	55.5
5	8	rusty	10	35.0

Boats

<u>bid</u>	bname	color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

Find names of sailors who've reserved boat #103

Solution 1:

$$\pi_{name} ((\sigma_{bid=103} \text{Reserves}) \bowtie \text{Sailors})$$

Solution 2:

$$\pi_{name} (\sigma_{bid=103} (Reserves \bowtie Sailors))$$

Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

► A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

 Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho$$
 (Tempboats, (σ color='red' \vee color='green' Boats))

$$\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$$

Find sailors who've reserved a red and a green boat

Cut-and-paste previous slide?

$$\rho$$
 (Tempboats,($\sigma_{color='red(\land color='green'} Boats)$)

 $\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$

Find sailors who've reserved a red and a green boat

 Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho \ (Tempred, \pi_{sid}((\sigma_{color='red'}, Boats) \bowtie Reserves))$$

$$\rho$$
 (Tempgreen, π sid ((σ color = green Boats) \bowtie Reserves))

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Summary

- Relational Algebra: a small set of operators mapping relations to relations
 - Operational, in the sense that you specify the explicit order of operations
 - A closed set of operators! Can mix and match.
- Basic ops include: σ, π, ×, ∪, —,

Important compound ops: ∩, ⋈