Machine Learning (60050): Assignment 1

K Rahul Dev - 15CS10021

Part c:

Experimenting with Combination of Features

- Features: Linear Combinations, Quadratic Combinations, Cubic
 Combinations
- **Error Function**: Mean Square Error
- **Optimization Function**: Gradient Descent
- **Learning Rate**: 0.05

Procedure:

- 1.Split the Dataset into Train Set and Test Set [80:20]
- 2. Theta Values (Learning Parameters) are initialized randomly.

Final Learned Values (Theta Values)

Learning Rate	Linear	Quadratic	Cubic
	Combination	Combination	Combination
0.01	[-0.10543436	[-0.1034223	[0.24570956
	0.08786005	0.08625711	0.09335038
	0.18436629	0.31018084	0.6386838
	0.96560801	0.96365585	0.9767122
	0.4582587]	0.61573651]	0.77345081]
0.02	[-0.08032039	[-0.03273072	[0.02963346
	0.09274871	0.09265528	0.09273884
	0.29872628	0.50792871	0.60687929
	0.975974	0.97581969	0.97583202
	0.5199437]	0.70279975]	0.76285811]
0.03	[-0.13119729	[-0.10638316	[-0.04508841
	0.09240358	0.09219639	0.09227843
	0.26999613	0.48069087	0.58996231
	0.97533727	0.97505901	0.97504633
	0.50147136]	0.69050685]	0.75735701]
0.04	[-0.14194175	[-0.12863299	[-0.06990571
	0.09210503	0.09179553	0.0918725
	0.25853204	0.46403546	0.57837988
	0.974731	0.97433607	0.97429527
	0.4947055]	0.68320598]	0.75367127]
0.05	[-0.14229371	[-0.13388513	[-0.07750236
	0.09181967	0.09141558	0.0914865
	0.2516477	0.45105242	0.56871677
	0.97413377	0.9736275	0.97355746
	0.49103284]	0.67761615]	0.75062976]
0.06	[-0.14009194	[-0.13368306	[-0.0793005
	0.09153865	0.09104403	0.09110835
	0.24599701	0.43941974	0.55977844

		1	T
	0.97353992	0.97292545	0.97282541
	0.48818179]	0.67263536]	0.74782297]
0.07	[-0.13732519	[-0.13180269	[-0.0791994
	0.09125974	0.09067679	0.09073391
	0.24072876	0.42837437	0.55115609
	0.972948	0.9722273	0.97209654
	0.48557469]	0.66790197]	0.74511092]
0.08	[-0.13447746	[-0.12944631	[-0.07849795
	0.09098236	0.09031252	0.0903618
	0.23563351	0.41766983	0.54271253
	0.97235763	0.97153219	0.97136998
	0.48306965]	0.66329968]	0.74244674]
0.09	[-0.13166087	[-0.12698579	[-0.0776178
	0.09070636	0.08995078	0.08999155
	0.23066053	0.40722644	0.53440221
	0.97176871	0.97083983	0.97064546
	0.4806325]	0.65879137]	0.73981502]
0.10	[-0.12889943	[-0.12453228	[-0.07669213
	0.09043168	0.0895914	0.08962301
	0.22579667	0.39701691	0.52620973
	0.9711812	0.9701501	0.96992284
	0.4782546]	0.65436479]	0.73721067]

Test RMSE vs Different Combination of Features

Plot:

From the above Graph we can infer that:

- I. **Cubic Combination** results in tremendously larger values of RMSE and decreases with increase in Learning Rate, but never attained the Minimum
- Ii. **Quadratic Combination** resulted in RMSE increase initially may be due to random initialization,and then started decrease with increase in Learning Rate,also never attained the minimum.

Iii. **Linear Combination** resulted though initially increased, then gradually decreased with increase in Learning Rate, but attained the **Minimum** of the three.

From the above observations, and also considering less number of features for the given problem, **Linear Combination** is most preferable.

PS: Because of Random initialization, every execution of the trained model gives different Learned Values

The above graph is corresponding with the values submitted in part_c result file.