A. TRANSCRIPTION (DNA → mRNA)

Why it is needed

DNA is in the **nucleus** and it contains the **base sequence** that **codes** for a **protein**.

Ribosomes are in the cytoplasm and read a base sequence to make a protein.

However, **DNA** is **too large** to **leave** the **nucleus**.

So, the **DNA base sequence** must be **copied** onto a **smaller** molecule called **mRNA**.

mRNA then leaves the nucleus and attaches to a ribosome in the cytoplasm.

How it happens

- DNA → mRNA
- RNA polymerase separates DNA strands/breaks H-bonds between strand
- One DNA strand/antisense strand acts as a template
- Free RNA nucleotides attach
- By complementary base pairing / adenine, uracil and guanine, cytosine pair;
- RNA polymerase joins RNA nucleotides together;
- mRNA strand made:
- (mRNA is) complementary to the DNA template/antisense strand;
- mRNA contains uracil instead of thymine;
- DNA strands go back together / H-bonds reform;

B. THE GENETIC CODE

- The base sequence of a mRNA molecule codes for the production of a polypeptide
- This base sequence is read by a ribosome in triplets of bases called codons
- Each **codon** codes for one **specific amino acid** in a protein chain
- The **order** of the **codons** in an **mRNA** determines the **order** of **amino acids** in a protein

The genetic code is UNIVERSAL

The same mRNA codons code for the same amino acids in all organisms

Second letter

Second letter									
		U	С	Α	G				
First letter	U	UUU Phe UUC Leu UUA Leu UUG	UCU UCC UCA UCG	UAU Tyr UAA Stop UAG Stop	UGU Cys UGA Stop UGG Trp	U C A G	Thirc		
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG GIN	CGU CGC CGA CGG	U C A G			
	Α	AUU AUC AUA IIIe AUG Met	ACU ACC ACA ACG	AAU ASN AAA AAG Lys	AGU Ser AGA AGA AGG	U C A G	letter		
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA GAG Glu	GGU GGC GGA GGG	U C A G			

mRNA codons and the amino acids they code for

The genetic code is **DEGENERATE**

Different mRNA codons can code for the same amino acid

• The mRNA codon CCU codes for the amino acid Proline

C. tRNA (TRANSFER RNA)

Three bases ('triplet) that bind to a codon on mRNA

Comparing and contrasting mRNA and tRNA

	mRNA	tRNA		
Sugar	Ribose			
Bases	Adenine (A); Uracil (U); Guanine (G); Cytosine (C)			
Amino acid	No	Yes		
binding site				
Contains	Codons	Anticodon		
Shape	Linear	'Clover-leaf'		
Half life	Shorter	Longer		

Each mRNA codon codes for a specific amino acid

- 6. This process continues until a stop codon is reached
- 7. When this happens, the protein is released

UAC

3. A second tRNA molecule with the specific anticodon attaches to the next mRNA codon

2. First tRNA carrying a specific amino acid attaches to the start codon on mRNA by complementary base pairing

5. Ribosome moves one codon along The first tRNA detaches

MUDUNUMAMENTAL

AUG CCAGUC

4. The two amino acids are joined together by a peptide bond

E. COMPARE AND CONTRAST DNA REPLICATION & TRANSCRIPTION

DNA replication	Transcription				
DNA → DNA	DNA → mRNA				
Involves DNA polymerase	Involves RNA polymerase				
Involves thymine	Involves uracil				
Product is double stranded	Product is single stranded				
Both strands act as templates	One strand acts as a template				
Complete strand copied	Part of a strand copied				
Happens in the nucleus					
DNA unzips/strands separate					
Complementary copy/strand produced					
DNA molecule zips back up (at the end)					

F. WHY IS THE DNA BASE SEQUENCE SO IMPORTANT?

DNA base sequence determines:

mRNA base sequence determines:

amino acid sequence determines:

tertiary structure of protein determines:

if the protein is functional or non-functional