Introduction

Cooperative Electric Vehicles Planning

Jaël Champagne Gareau Marc-André Lavoie Guillaume Gosset Éric Beaudry

Computer Science Department Université du Québec à Montréal

6 - 10 may 2024

Outline

- 1 Introduction
- 2 Problem definition
- 3 Proposed methods
- 4 Evaluation
- 5 Conclusion

Electric Vehicles Planning

Introduction

000

- EVs are becoming increasingly widespread due to :
 - environmental concerns:
 - improvements in their battery range;
 - increased charging stations availability.
- There are some challenges specific to EV planners, e.g., :
 - intermediate stops for recharging when the journey is too long;
 - unpredictable waiting times at the charging stations;
 - regenerative braking.

Introduction

000

- Single EV path-planning from α to ω in a road network;
- The EV has a range ρ and must hop from stations to stations;
- Many variants (consideration of regenerative braking, waiting times, etc.)

Electric Vehicles Routing Problem (EVRP)

- A fleet of EVs controlled by the same entity and sharing the same objective;
 - E.g., deliver packages from a depot/warehouse to a set of locations;
- Goal : find a mininum set of EVs able to complete all tasks with minimal cost;

Motivation

Introduction

"An open challenge is to devise algorithms for socially optimal real-time routing with a reasonable response time for a large number of vehicles." 1

Gareau et al. UQAM

Basharzad, S. N., Choudhury, F. M., Tanin, E., Andrew, L. L. H., Samet, H., & Sarvi, M. (2022). Electric vehicle charging: It is not as simple as charging a smartphone. Proceedings of the 30th International Conference on Advances in Geographic Information Systems, 1–4. https://doi.org/10.1145/3557915.3560967

Motivation – Example

7 / 23

Motivation - Example

Motivation - Example

Introduction

- There are many EVs, controlled by different end-users, each with their own goal.
- It is desirable to plan their routes collectively to reduce global waiting times.
- EV drivers can send a planning request to a centralized planner.
- New EVs can enter the planning problem at any time.
 - In practice, the planner can recompute a global plan
 - every N new requests to the planner since the last replanning;
 - every T minutes.
- In this research, we focus on a batch of EV requests during a given replanning.

Main differences between EVRP and CEVPP				
EVRP	CEVPP			
EVs start and end at same position	Each EV has its own start and end			
The EVs cooperate to reach a common goal	Each EV has its own goal			
The problem is static / offline	The problem is dynamic / online			
Find min-set of EVs able to	Minimize the global plan cost			
complete all tasks with min-cost	(travel + charging + waiting) times			

CEVPP – Definition

Road Network

We define a road network M as a tuple (V, E, λ, μ, S) , where :

- V is the set of nodes (latitude, longitude) on the map:
- E is the set of road segments (edges);
- $\lambda: E \to \mathbb{R}^+$ gives the length (in m) of every edge;
- $\mu : E \to \mathbb{R}^+$ gives the expected speed (in m/s) at every edge :
- \blacksquare $S \subseteq V$ is the set of all charging stations.

EV Request

Each EV has an associated EV request, i.e., a tuple $(\alpha, \omega, \rho, \tau)$, where :

- \blacksquare α is the departure node:
- \blacksquare ω is the arrival node:
- $\blacksquare \rho$ is the range of the EV;

9/23

CEVPP - Definition

CEVPP instance

A CEVPP instance is a tuple (M, R) where :

- M is a road network;
- $R = \langle (\alpha_1, \omega_1, \tau_1, \rho_1), \dots, (\alpha_k, \omega_k, \tau_k, \rho_k) \rangle$ is a list of EV requests in an arbitrary order.

Objective

The **objective** of a CEVPP instance is to find a solution $\pi = \langle \pi_1, \pi_1, \dots, \pi_k \rangle$ that

- minimizes total (travel + charge + wait) time of the batch of EVs.
- $C^*(\pi_i)$ is the cost of the optimal plan of the i^{th} EV when it is alone in M, i.e., :
 - geographically the shortest-path;
 - no waiting time.

Baseline planner

Introduction

- We precompute a stations' graph G = (S, E') with the Floyd-Warshall algorithm.
- We assume, without loss of generality, that $(\alpha, \omega) \in S^2$ are in G

Algorithm Baseline Non-Cooperative EV Planner

```
procedure NCEVP((M, R = \langle r_1, \dots, r_k \rangle) : CEVPP, G : stations' graph)
    for all r_i \in R do
       Considers travel and charging, but not waiting time
       \pi_i \leftarrow \mathsf{A}^*(M,r_i)
                                            \triangleright Only considers edges e with length \lambda(e) < \rho_i
       \pi \leftarrow \pi \cup \{\pi_i\}
    Compute the global penalty P(\pi)
```

■ Time complexity of NCEVP : $\Theta(k \cdot |S|^2)$.

11 / 23

Optimal Planner

We propose an optimal planner that uses a graph-planning algorithm to search in a graph representing the problem's state-space.

State

We define a state to be an array $\sigma = [(\sigma_1^s, \sigma_1^t), (\sigma_2^s, \sigma_2^t), \dots, (\sigma_k^s, \sigma_k^t)]$, where :

- σ_i^s is the charging station currently used by the i^{th} EV;
- σ_i^t is the planned departure time of the i^{th} EV from station σ_i^s .

Optimal Planner

Introduction

Algorithm Exhaustive-Search Cooperative EV Planner

```
1: procedure ESCEVP((M, R = \langle r_1, \dots, r_k \rangle): CEVPP)
         open \leftarrow Empty Priority Queue of (state, cost <math>f = g + h)
 2:
         open.push(InitialState(M, R), 0)
 3:
 4.
         while not open.empty() do
             \sigma \leftarrow open.pop()
 5:
             if IsGOALSTATE(\sigma) then \sigma^* \leftarrow \sigma; break
 6:
 7:
             for all vehicle i \in \{1, \dots, k\} do

    any EV can move

                  for all s \in \mathsf{REACHABLESTATIONS}(\sigma_i^s, \rho_i) do
 8.
                       if ith EV already visited s then continue
 9:
                       \sigma' \leftarrow \sigma
                                                         \triangleright state \sigma' is same as \sigma except for the i^{th} EV
10:
                       \sigma'[i] \leftarrow (s, COMPUTETIMEDEPARTURE(i, s, \sigma))
11.
                       f \leftarrow \min_{i \in \{1, \dots, k\}} (\mathsf{COST}(i, \sigma') + \mathsf{HEURISTIC}(i, \sigma', r_i))
12:
                       open.push(\sigma', f)
13:
         Extract global plan \pi from \sigma^*
14:
         Compute the global penalty P(\pi)
15:
```

Time complexity of ESCEVP : $\Omega(|S|^k)$.

Permutations Planner

Introduction

- We propose another cooperative planner, inspired by Cooperative-A*.
- It computes a plan for each EV one-by-one, but records charging stations occupancy in a reservation table.
- The Modified-A* algorithm considers the waiting time due to existing reservations when planning a new EV.

Permutations Planner

Introduction

Algorithm Permutations Cooperative EV Planner

```
1: procedure PCEVP((M, R = \langle r_1, \dots, r_k \rangle): CEVPP)
          \mathcal{P} \leftarrow \mathsf{GETConsideredPermutations}(R)
 2:
          C_{hest} \leftarrow \infty
 3:
          for all \phi \in \mathcal{P} do
 4.
                \pi \leftarrow \emptyset
 5:
                \mathcal{R} \leftarrow \mathsf{Empty} \; \mathsf{Reservation} \; \mathsf{Table}
 6.
               for all r_i \in \phi do
                                                                                                                 ▷ In given order
 7.
                     \pi_i = \mathsf{MODIFIEDA}^*(M, r_i, \mathcal{R})
 8:
                     UPDATERESERVATION TABLE (\mathcal{R}, \pi)
 9:
                     \pi \leftarrow \pi \cup \{\pi_i\}
10:
               if C(\pi) < C_{best} then
11.
12:
                     \pi_{hest} \leftarrow \pi
          Compute the global penalty P(\pi_{hest})
13:
```

Time complexity : $\Theta(|\mathcal{P}| \cdot |\mathcal{S}|^2)$.

Methodology

- We compared the baseline planner to three different instances of pcEVP:
 - only one permutation, where EVs are ordered by time of departure τ ($\Theta(|S|^2)$);
 - random $\log(k!)$ permutations $(\Theta(k \log k \cdot |S|^2)$;
 - cascade permutations ($\Theta(k^2 \cdot |S|^2)$).
- Empirical evaluation is done on two regions of Canada (OpenStreetMap):
 - Maritimes (2 105 607 vertices and 4 200 189 edges):
 - Québec (4 416 080 vertices and 8 797 051 edges).
- We used real charging stations data from the Electric Circuit.
 - Maritimes had 50 charging stations;
- Québec had two tested subset of stations (347 and 1816 stations).
- All algorithms were implemented in C++ and compiled with g++ (version 12.2).
- Experiments were performed on a 4.2 GHz Intel Core i5-7600k CPU.
- We measured two metrics:
 - running time of the algorithms:
 - penalty $\frac{1}{k} \sum_{i=1}^{k} (C(\pi_i) C^*(\pi_i))^2$ of the solutions.
- EV requests :
 - \blacksquare Range ρ is sampled uniformly between 100 and 550 km.
 - Departure time τ is sampled uniformly between 0 and 120 minutes.
 - The departure α (resp. arrival ω) of each EV is sampled from a 50 km cluster.
- We used a timeout value of 15 minutes per request.

Average running times (ms)

Network	Baseline	By departure	Random $log(k!)$	Cascade
Maritimes ₅₀	0.09	0.19	95.35	1459.2
Quebec ₃₄₇	2.272	2.70	99.27	558.86
Quebec ₁₈₁₆	93.84	103.76	1058.18	3656.6
Average	32.07	35.55	417.60	1891.55

Average reduction (%) in penalty (min) compared to baseline

Network	By departure	Random $log(k!)$	Cascade
Maritimes ₅₀	93.06	93.07	95.22
Quebec ₃₄₇	86.33	86.73	89.35
Quebec ₁₈₁₆	96.69	97.57	98.25
Average	92.03	92.46	94.27

Penalty on Maritimes₅₀

Penalty value vs. number of EVs on the Maritimes₅₀ road network

troduction Problem definition Proposed methods **Evaluation** Conclusion OO OOO OOO OOO OOO OOO

Computation times on Maritimes₅₀

Computation time vs. number of EVs on the Maritimes₅₀ road network

roduction Problem definition Proposed methods **Evaluation** Conclusion OO OOOO●OOO O

Penalty on Quebec₃₄₇

Computation times on Quebec₃₄₇

Computation time vs. number of EVs on the Québec₃₄₇ road network

roduction Problem definition Proposed methods **Evaluation** Conclusion OO OOOOOO●O O

Penalty on Quebec₁₈₁₆

Computation times on Quebec₁₈₁₆

Computation time vs. number of EVs on the Québec₁₈₁₆ road network

Problem definition Proposed methods Evaluation Conclusion

○○○○○ ○○○○○○○○○

Conclusion

Conclusion

Introduction

- We introduced the new CEVPP problem.
- Overall time can drastically be reduced (2h per EV, on average).
- As the number of EVs grows, the number of bottlenecks at stations grows too, presenting more opportunities for optimization and further emphasizing the relevance of CEVPP.
- Future works :
 - Finding ways of pruning large part of the state-space, to make that optimal planner more useful for real-world applications.
 - Conduct a comprehensive analysis of various permutation subsets.
 - Consider waiting times caused by EVs external to our planner.

Acknowledgments

Fonds de recherche Nature et technologies

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

