

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session 2025-2026

Vision: Dream of where you want.	Mission: Means to achieve Vision

Program Educational Objectives of the program (PEO): (broad statements that describe the professional and career accomplishments)

PEO1	Preparation	P: Preparation	Pep-CL abbreviation
PEO2	Core Competence	E: Environment	pronounce as Pep-si-IL
		(Learning Environment)	easy to recall
PEO3	Breadth	P: Professionalism	
PEO4	Professionalism	C: Core Competence	
PEO5	Learning	L: Breadth (Learning in	
	Environment	diverse areas)	

Program Outcomes (PO): (statements that describe what a student should be able to do and know by the end of a program)

Keywords of POs:

Engineering knowledge, Problem analysis, Design/development of solutions, Conduct Investigations of Complex Problems, Engineering Tool Usage, The Engineer and The World, Ethics, Individual and Collaborative Team work, Communication, Project Management and Finance, Life-Long Learning

PSO Keywords: Cutting edge technologies, Research

"I am an engineer, and I know how to apply engineering knowledge to investigate, analyse and design solutions to complex problems using tools for entire world following all ethics in a collaborative way with proper management skills throughout my life." *to contribute to the development of cutting-edge technologies and Research*.

Integrity: I will adhere to the Laboratory Code of Conduct and ethics in its entirety.

Sanskruti. Paunikar 24/10/2025

Name and Signature of Student and Date

(Signature and Date in Handwritten)

Yeshwantrao Chavan College of Engineering

Department of Artificial Intelligence & Data Science

Vision of the Department

 $To \ be \ a \ well-known \ centre \ for \ pursuing \ computer \ education \ through \ innovative \ pedagogy, \ value-based \ education \ and \ industry \ collaboration.$

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session	2025-26 (ODD)	Course Name	High Performance Computing Lab	
Semester	7 AIDS	Course Code	22ADS702	
Roll No	21	Name of Student	Sanskruti. Paunikar	

Practical Number	6	
Course Outcome	CO1:-Understand and Apply Parallel Programming Concepts CO1:-Analyze and Improve Program Performance.	
	CO3:-Demonstrate Practical Skills in HPC Tools and Environments.	
Aim	Parallel Pi Calculation using MPI	
Theory (100 words)	The value of π can be approximated using the Monte Carlo meth numerical integration.	
	One common numerical method is based on the integration of the area under a curve:	
	$\pi=4\int_0^1\frac{1}{1+x^2}dx$	
	This integral can be approximated by dividing the interval [0,1] into N subintervals and summing the area of rectangles:	
	$\pipprox 4 imes rac{1}{N}\sum_{i=0}^{N-1}rac{1}{1+x_i^2}$	
	Where $x_i=rac{i+0.5}{N}.$	
	Using MPI, the work of summing these rectangles can be distributed among multiple	
	processes. Each process computes a partial sum, and the master process (rank 0) collects the	
	results to compute the final value of π .	
	Software/Hardware Requirements:	
	Hardware: Multi-core CPU or cluster with multiple nodes Software:	
	o Linux/Unix OS	
	o MPICH or OpenMPI	
	o GCC Compiler	

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Hingna Road, Wanadongri, Nagpur - 441 110

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problemsolving skills through emerging technologies.

Procedure and Execution

Steps of Implementation:-

(100 Words)

- 1. Initialize MPI environment using MPI Init.
- 2. Get the rank (ID) of each process and total number of processes using MPI Comm rank and MPI Comm size.
- 3. Divide the range [0,1] among processes. Each process computes a partial sum of π

for its assigned range.

- 4. Use MPI Reduce to collect and sum all partial results at the root process.
- 5. The root process prints the final value of π .
- 6. Finalize MPI using MPI Finalize.

```
Code:
```

```
#include <stdio.h&gt;
#include <mpi.h&gt;
int main(int argc, char* argv[]) {
int rank, size, n = 1000000, i;
double h, sum = 0.0, x, local sum = 0.0, pi;
MPI Init(&argc, &argv);
MPI Comm rank(MPI COMM WORLD, & amp;rank);
MPI Comm size(MPI COMM WORLD, & amp; size);
h = 1.0 / (double) n;
// Each process computes its portion
for (i = rank; i \& lt; n; i += size) {
x = h * (i + 0.5);
local sum += 4.0 / (1.0 + x * x);
local sum *= h;
// Reduce all local sums to get the final result
MPI Reduce(&local sum, &pi, 1, MPI DOUBLE,
MPI SUM, 0,
MPI COMM WORLD);
if (rank == 0) {
printf("Calculated value of Pi = \%.16f \land guot;, pi);
MPI Finalize();
return 0;
```


Yeshwantrao Chavan College of Engineering

NAAC A++ Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: <u>www.ycce.edu</u>

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

	Output:
	<pre>#include <stdio.h> #include <mpi.h></mpi.h></stdio.h></pre>
	<pre>int main(int argc, char* argv[]) { int rank, size, n = 1000000, i; double h, sum = 0.0, x, local_sum = 0.0, pi;</pre>
	<pre>MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size);</pre>
	h = 1.0 / (double) n;
	<pre>// Each process computes its portion for (i = rank; i < n; i += size) { x = h * (i + 0.5); local_sum += 4.0 / (1.0 + x * x); } local_sum *= h;</pre>
	<pre>// Reduce all local sums to get the final result MPI_Reduce(&local_sum, π, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);</pre>
	<pre>if (rank == 0) {</pre>
	<pre>MPI_Finalize(); return 0;</pre>
	Do you want to install the Pack' extension from Micr
Output Analysis	OpenMPI executes the program successfully and gives us the calculated value of Pi.
Github link	https://github.com/sanskruti-1234/HPC.git
Conclusion	The Parallel Pi Calculation using MPI experiment successfully demonstrated that utilizing the Message Passing Interface significantly reduces the computation time compared to a sequential approach by distributing the numerical integration workload among multiple processes.

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Hingna Road, Wanadongri, Nagpur - 441 110

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problemsolving skills through emerging technologies.

Plag Report (Similarity index < 12%)	Result Word Statistics	0% Exact Match 0% 100%
	The value of π can be approximated using the Monte Carlo method or numerical integration. One common numerical method is based on the integration of the area under a curve: This integral can be approximated by dividing the interval [0,1] into N subintervals and summing the area	Plagiarism Partial Match 0% Unique Download Report
	of rectangles: Using MPI, the work of summing these rectangles can be distributed among multiple processes. Each process computes a partial sum, and the master process (rank 0) collects the results to compute the final value of π. Software/Hardware Requirements: Hardware: Multi-core CPU or cluster with multiple nodes Software: o Linus/Unix OS o MPICH or OpenMPI o GCC Compiler	Congratulation! No Plagiarism Found
Date	Algorithm: 1. Initialize MPI environment using MPI_init. 2. Get the rank (iD) of each process and total number of processes using	