P8106 Midterm - Code

Group 2: Kate Colvin (KAC2301), Jeong Yun (Lizy) Choi (JC6452), and Flora Pang (FP2513)

Exploratory Analysis

Loading in Data

```
load("dat1.RData")
load("dat2.RData")

dat1 <- dat1 %>% janitor::clean_names()
dat2 <- dat2 %>%janitor::clean_names()
```

Producing Summary Table

Training and test data have the same distribution of demographic characteristics; there is a difference in time since vaccination and log-transformed antibody levels between training and test data

```
# Combining data for summary table, data cleaning
dat1_com <- dat1 %>% mutate(set = "Training Data")
dat2_com <- dat2 %>% mutate(set = "Testing Data")
dat <- dat1_com %>%
  rbind(dat2 com) %>%
  rename(days_vaccinated = time) %>%
  mutate(race = as.character(race), smoking = as.character(smoking)) %>%
  mutate(race = case_match(
        race, "1" ~ "White", "2" ~ "Asian", "3" ~ "Black", "4" ~ "Hispanic"),
         gender = case_match(gender, 1 ~ "Male", 0 ~ "Female"),
         smoking = case_match(
           smoking, "0" ~ "Never", "1" ~ "Former", "2" ~ "Current"))
# Summary table
dat %>% select(!id) %>%
  tbl_summary(
   by = set,
   label = list(age = "Age", gender = "Gender", race = "Race", smoking = "Smoking",
                 height = "Height (cm)", weight = "Weight (kg)", bmi = "BMI",
                 diabetes = "Diabetes", hypertension = "Hypertension",
                 sbp = "Systolic Blood Pressure (mmHg)", ldl = "LDL Cholesterol (mg/dL)",
                 days vaccinated = "Time Since Vaccinated (days)",
                 log_antibody = "Log-Transformed Antibody Level")) %>%
  add_overall() %>% add_p() %>%
  modify_caption("Summary of Patient Testing and Training Data (N=6000)") %>%
  as_gt() %>% tab_options(table.font.size = 10)
```

Table 1: Summary of Patient Testing and Training Data (N=6000)

Characteristic	Overall $N = 6,000^{1}$	Testing Data $N = 1,000^{1}$	Training Data $N = 5{,}000^{1}$	$\mathbf{p} ext{-}\mathbf{value}^2$
Age	60.0 (57.0, 63.0)	60.0 (57.0, 63.0)	60.0 (57.0, 63.0)	0.9
Gender				0.7
Female	3,082 (51%)	509 (51%)	2,573 (51%)	
Male	2,918 (49%)	491 (49%)	2,427 (49%)	
Race				0.6
Asian	333 (5.6%)	55 (5.5%)	278 (5.6%)	
Black	1,235 (21%)	199 (20%)	1,036 (21%)	
Hispanic	548 (9.1%)	83 (8.3%)	465 (9.3%)	
White	3,884 (65%)	663 (66%)	3,221 (64%)	
Smoking				0.8
Current	589 (9.8%)	103 (10%)	486 (9.7%)	
Former	1,800 (30%)	296 (30%)	1,504 (30%)	
Never	3,611 (60%)	601 (60%)	3,010 (60%)	
Height (cm)	170.1 (166.1, 174.2)	170.2 (166.1, 174.2)	170.1 (166.1, 174.3)	0.7
Weight (kg)	80 (75, 85)	80 (75, 84)	80 (75, 85)	0.8
BMI	27.60 (25.80, 29.50)	27.60 (25.80, 29.60)	27.60 (25.80, 29.50)	0.9
Diabetes	929 (15%)	157 (16%)	772 (15%)	0.8
Hypertension	2,754 (46%)	456 (46%)	2,298 (46%)	0.8
Systolic Blood Pressure (mmHg)	130 (124, 135)	130 (124, 135)	130 (124, 135)	0.3
LDL Cholesterol (mg/dL)	110 (96, 124)	112 (96, 124)	110 (96, 124)	0.4
Time Since Vaccinated (days)	116 (82, 152)	171 (140, 205)	106 (76, 138)	< 0.001
Log-Transformed Antibody Level	10.06 (9.65, 10.45)	9.93 (9.50, 10.32)	10.09 (9.68, 10.48)	< 0.001

¹ Median (Q1, Q3); n (%)

Histograms of Differing Variables by Training and Test Set

```
# Antibody level
plot_sets <- dat %>%
  ggplot(aes(x = log_antibody,
             fill = set,
             color = set)) +
  geom_density(alpha = 0.3, linewidth = 1) +
  labs(x = "Log-Transformed Antibody Level",
       y = "Density",
       title = "Figure 1: Distribution of Log-Transformed Antibody Level, by Data Set") +
  theme_minimal()
# Time since vaccination (days)
plot_days <- dat %>%
  ggplot(aes(x = days_vaccinated,
            fill = set,
            color = set)) +
  geom_density(alpha = 0.3, linewidth = 1) +
  labs(x = "Time Since Vaccinated (days)",
       y = "Density",
       title = "Figure 2: Distribution of Days Since Vaccination, by Data Set") +
  theme minimal()
plot_sets
```

²Wilcoxon rank sum test; Pearson's Chi-squared test

Figure 1: Distribution of Log-Transformed Antibody Level, by Data Set

Figure 2: Distribution of Days Since Vaccination, by Data Set

Plots of Log-Transformed Antibody Level, by Categorical Variables

Figure 3: Distribution of Log-Transformed Antibody Level, by Gender


```
strip_markdown <- function(x) {gsub("\\*\\*", "", x)}

dat %>% select(gender, log_antibody) %>%
   tbl_summary(by = gender) %>% add_p() %>%
   modify_caption("Log-Transformed Antibody Level, by Gender") %>%
   as_kable() %>%
   footnote(general_title = "", general = "Median (Q1, Q3), Wilcoxon Rank Sum Test") %>%
   strip_markdown()
```

Table 2: Log-Transformed Antibody Level, by Gender

Characteristic	Female $N = 3,082$	$\mathrm{Male\ N} = 2{,}918$	p-value
log_antibody	$10.20\ (9.79,\ 10.58)$	9.93 (9.51, 10.30)	< 0.001

Median (Q1, Q3), Wilcoxon Rank Sum Test

Figure 4: Distribution of Log-Transformed Antibody Level, by Race

Table 3: Log-Transformed Antibody Level, by Race

Characteristic	Asian $N = 333$	Black $N = 1,235$	Hispanic $N = 548$	White $N = 3,884$	p-value
log_antibody	10.06 (9.62, 10.44)	10.08 (9.65, 10.44)	10.03 (9.61, 10.42)	10.06 (9.65, 10.46)	0.4

Median (Q1, Q3), Kruskal-Wallis Rank Sum Test

Figure 5: Distribution of Log-Transformed Antibody Level, by Smoking

Table 4: Log-Transformed Antibody Level, by Smoking Status

Characteristic	Current $N = 589$	Former $N = 1,800$	Never $N = 3,611$	p-value
log_antibody	9.91 (9.46, 10.28)	10.10 (9.66, 10.48)	10.07 (9.68, 10.46)	< 0.001

Median (Q1, Q3), Kruskal-Wallis Rank Sum Test

Correlation Matrix of Numerical Variables

```
cor matrix <- dat %>%
  select(age, height, weight, bmi, sbp, ldl, days_vaccinated, log_antibody) %>%
  rename("Age" = age,
         "Height" = height,
         "Weight" = weight,
         "BMI" = bmi,
         "SBP" = sbp,
         "LDL" = 1d1,
         "Days Vaccinated" = days_vaccinated,
         "Log(Antibody)" = log_antibody) %>%
  cor()
cor_plot <- corrplot(cor_matrix,</pre>
                     main = "Figure 6: Correlation Matrix of Numerical Variables",
                     mar=c(0,0,1,0), cex.main = 1,
                     method = "color",
                     addCoef.col = "black",
                     tl.col = "black",
                     number.cex = 0.8,
                     tl.srt = 45,
                     order = 'original',
                     diag = F)
```


Plots of Log-Transformed Antibody Level vs. Selected Numerical Variables

```
# Antibody level vs. BMI
plot_bmi <- dat %>% ggplot(aes(x = bmi, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) +
  geom_smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "BMI",
       title = "Figure 7: Log-Transformed Antibody Level vs. BMI") +
  theme minimal()
# Antibody level vs. Weight
plot_weight <- dat %>%
  ggplot(aes(x = weight, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) +
  geom smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "Weight",
       title = "Figure 8: Log-Transformed Antibody Level vs. Weight") +
  theme minimal()
# Antibody level vs. Age
plot_age <- dat %>% ggplot(aes(x = age, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) + geom_smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "Age",
       title = "Figure 9: Log-Transformed Antibody Level vs. Age") +
  theme_minimal()
plot_bmi
```


Figure 8: Log-Transformed Antibody Level vs. Weight

plot_age

Figure 9: Log-Transformed Antibody Level vs. Age

Model Selection and Training

Since the response variable (log_antibody) is continuous, this project will consider the following models:

- Multiple Linear Regression (MLR) as a baseline.
- LASSO Regression to improve predictive performance by selecting important predictors.
- MARS model allow remain in regression but also capture nonlinear effects

After comparing model performance, the best model will be based on cross-validation results.

Data Pre-processing

```
# Converting categorical variables into factors
dat1 <- dat1 %>%
  mutate(
    gender = factor(gender, levels = c(0, 1), labels = c("Female", "Male")),
   race = factor(race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic")),
   smoking = factor(smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current")),
   diabetes = factor(diabetes),
   hypertension = factor(hypertension)
dat2 <- dat2 %>%
  mutate(
   gender = factor(gender, levels = c(0, 1), labels = c("Female", "Male")),
   race = factor(race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic")),
   smoking = factor(smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current")),
   diabetes = factor(diabetes),
   hypertension = factor(hypertension)
sum(is.na(dat1))
## [1] 0
sum(is.na(dat2))
## [1] 0
dat1 <- dat1 %>% select(-id)
dat2 <- dat2 %>% select(-id)
# Split training data into training (80%) and validation (20%)
set.seed(123)
train_index <- createDataPartition(dat1$log_antibody, p = 0.8, list = FALSE)</pre>
train_data <- dat1[train_index, ]</pre>
valid_data <- dat1[-train_index, ]</pre>
```

Training multiple linear regression model

```
mlr_model <- lm(log_antibody ~ ., data = train_data)
summary(mlr_model)

##
## Call:
## lm(formula = log_antibody ~ ., data = train_data)</pre>
```

```
##
## Residuals:
##
       Min
                 1Q
                     Median
## -2.13316 -0.35330 0.02809 0.38037 1.64371
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 26.2267745 2.5711711 10.200 < 2e-16 ***
## age
                 -0.0214288 0.0021720 -9.866 < 2e-16 ***
## genderMale
                 -0.2917270 0.0174904 -16.679 < 2e-16 ***
## raceAsian
                 -0.0217822 0.0392909 -0.554
                                                 0.5793
                                                 0.9472
## raceBlack
                 -0.0014558 0.0219999 -0.066
## raceHispanic
                -0.0563862 0.0302636 -1.863
                                                 0.0625 .
                  0.0183932 0.0194704
## smokingFormer
                                       0.945
                                                 0.3449
## smokingCurrent -0.1821800 0.0307072 -5.933 3.23e-09 ***
## height
                 -0.0789900 0.0150568 -5.246 1.63e-07 ***
## weight
                  0.0831140 0.0159211
                                       5.220 1.88e-07 ***
## bmi
                 -0.2869272   0.0458538   -6.257   4.33e-10 ***
                 -0.0009792 0.0239012 -0.041
## diabetes1
                                                 0.9673
## hypertension1 -0.0030485 0.0292595 -0.104
                                                 0.9170
## sbp
                 0.0006393 0.0019277
                                       0.332
                                                 0.7402
## ldl
                 -0.0002973 0.0004484 -0.663
                                                 0.5073
                 -0.0002329 0.0001997 -1.166
                                                 0.2437
## time
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.552 on 3984 degrees of freedom
## Multiple R-squared: 0.1482, Adjusted R-squared: 0.145
## F-statistic: 46.2 on 15 and 3984 DF, p-value: < 2.2e-16
# Evaluating model performance on validation data
mlr_pred <- predict(mlr_model, newdata = valid_data)</pre>
mlr_rmse <- sqrt(mean((mlr_pred - valid_data$log_antibody)^2))</pre>
mlr_rmse
```

[1] 0.5443976

Training LASSO regression model

Standardizing numerical variables for LASSO

```
num_vars <- c("age", "height", "weight", "bmi", "sbp", "ldl", "time")

preprocess_params <- preProcess(train_data[, num_vars], method = c("center", "scale"))
    train_data[, num_vars] <- predict(preprocess_params, train_data[, num_vars])
    valid_data[, num_vars] <- predict(preprocess_params, valid_data[, num_vars])
    dat2[, num_vars] <- predict(preprocess_params, dat2[, num_vars]) # Applying same transformation to test

# Preparing the data matrices for glmnet
    x_train <- model.matrix(log_antibody ~ ., train_data)[, -1] # Removing the intercept
    y_train <- train_data$log_antibody

x_valid <- model.matrix(log_antibody ~ ., valid_data)[, -1]
    y_valid <- valid_data$log_antibody</pre>
```

```
set.seed(123)
lasso_model <- cv.glmnet(x_train, y_train, alpha = 1) # LASSO with cross validation

best_lambda <- lasso_model$lambda.min
lasso_final <- glmnet(x_train, y_train, alpha = 1, lambda = best_lambda) # final model is based on opti

# predicting with LASSO on validation data

lasso_pred <- predict(lasso_final, newx = x_valid)
lasso_rmse <- sqrt(mean((lasso_pred - y_valid)^2))
lasso_rmse</pre>
```

[1] 0.5444827

Training MARS model

```
mars_model <- earth(log_antibody ~ ., data = train_data)</pre>
summary(mars_model)
## Call: earth(formula=log_antibody~., data=train_data)
##
##
                     coefficients
## (Intercept)
                       10.6736281
## genderMale
                       -0.2934673
## smokingCurrent
                       -0.1914705
## h(2.23884-age)
                        0.0949434
## h(bmi- -1.53409)
                       -0.2544287
## h(0.0941101-bmi)
                       -0.2077791
## h(bmi-2.73542)
                        0.5673150
## h(-1.17191-time)
                       -1.4869949
## h(time- -1.17191)
                       -0.0977731
##
## Selected 9 of 13 terms, and 5 of 15 predictors
## Termination condition: RSq changed by less than 0.001 at 13 terms
## Importance: genderMale, bmi, time, age, smokingCurrent, raceAsian-unused, ...
## Number of terms at each degree of interaction: 1 8 (additive model)
## GCV 0.2785185
                    RSS 1104.624
                                     GRSq 0.2187119
                                                       RSq 0.2249513
# predicting with MARS on validation data
mars_pred <- predict(mars_model, newdata = valid_data)</pre>
mars_rmse <- sqrt(mean((mars_pred - valid_data$log_antibody)^2))</pre>
mars_rmse
```

[1] 0.5286262

• The MARS model achieves the lowest RMSE. Therefore MARS will be used as the preferred model for predicting log_antibody. Although further fine-tuning and additional feature exploration could further enhance the model's predictive power.

MARS model tuning

```
tune_grid <- expand.grid(degree = 1:3, nprune = seq(5, 50, by = 5))
train_control <- trainControl(method = "cv", number = 10)</pre>
```

```
mars_tune <- train(log_antibody ~ ., data = train_data, method = "earth",</pre>
                   trControl = train_control, tuneGrid = tune_grid)
mars_tune$bestTune
    nprune degree
## 2
         10
train_control <- trainControl(method = "cv", number = 10)</pre>
# Train the MARS model with best tuning parameters
mars_model_tune <- train(log_antibody ~ .,</pre>
                         data = train_data,
                         method = "earth",
                         trControl = train_control,
                         tuneGrid = data.frame(nprune = 10, degree = 1))
summary(mars model tune)
## Call: earth(x=matrix[4000,15], y=c(10.65,9.889,1...), keepxy=TRUE, degree=1,
##
               nprune=10)
##
##
                     coefficients
                      10.6736281
## (Intercept)
## genderMale
                       -0.2934673
## smokingCurrent
                      -0.1914705
## h(2.23884-age)
                       0.0949434
## h(bmi- -1.53409)
                       -0.2544287
## h(0.0941101-bmi)
                       -0.2077791
## h(bmi-2.73542)
                       0.5673150
## h(-1.17191-time)
                       -1.4869949
## h(time- -1.17191)
                      -0.0977731
## Selected 9 of 13 terms, and 5 of 15 predictors (nprune=10)
## Termination condition: RSq changed by less than 0.001 at 13 terms
## Importance: genderMale, bmi, time, age, smokingCurrent, raceAsian-unused, ...
## Number of terms at each degree of interaction: 1 8 (additive model)
## GCV 0.2785185
                    RSS 1104.624
                                     GRSq 0.2187119
                                                       RSq 0.2249513
mars_tune_pred <- predict(mars_model_tune, newdata = valid_data)</pre>
mars_tune_rmse <- sqrt(mean((mars_tune_pred - valid_data$log_antibody)^2))</pre>
mars_tune_rmse
## [1] 0.5286262
plot(mars_model)
```


Model Selection

Results