

Sesión 5.1 Self-supervised learning II

iBOT. MAE

1.

Masked Image Modeling

BERT

BERT

"WordPiece tokenization is a powerful technique in NLP."

Tokenization:

BEiT

(Bidirectional Encoder representation for Image Transformers)

(Bidirectional Encoder representation for Image Transformers)

VQ-VAE (Vector Quantised-Variational AutoEncoder)

(dVAE es muy similar, pero no había una imagen bonita :D)

BEIT

(Bidirectional Encoder representation for Image Transformers)

Maximize the log-likelihood of the correct visual tokens z_i given the corrupted image:

$$\max \sum_{x \in \mathcal{D}} \mathbb{E}_{\mathcal{M}} \left[\sum_{i \in \mathcal{M}} \log p_{\text{MIM}}(z_i | x^{\mathcal{M}}) \right]$$
CrossEntropy

Aplicamos al 40% de la imagen

(Image BERT Pretraining with Online Tokenizer)

(Image BERT Pretraining with Online Tokenizer)

Self-distillation loss:

$$\mathcal{L}_{\texttt{[CLS]}} = -P_{m{ heta'}}^{\texttt{[CLS]}}(m{v})^{\mathrm{T}} \log P_{m{ heta}}^{\texttt{[CLS]}}(m{u})$$

MIM loss:

$$\mathcal{L}_{\text{MIM}} = -\sum_{i=1}^{N} m_i \cdot P_{\boldsymbol{\theta'}}^{\text{patch}}(\boldsymbol{u}_i)^{\text{T}} \log P_{\boldsymbol{\theta}}^{\text{patch}}(\hat{\boldsymbol{u}}_i)$$

Sim M/M (Simple Masked Image Modeling)

Methods	Input	Fine-tuning	Linear eval	Pre-training
		Top-1 acc (%)	Top-1 acc (%)	costs
Sup. baseline [44]			-	-
DINO [5]	224^2		78.2	2.0×
MoCo v3 [9]	224^2	83.2	76.7	$1.8 \times$
ViT [15]	384^2	79.9	-	\sim 4.0 \times
BEiT [1]	224^2	83.2	56.7	$1.5 \times^{\dagger}$
Ours	224^2	83.8	56.7	1.0×

EVA

BEIT

Predicción de Tokens Visuales

MAE

Reconstrucción de Píxeles

EVA

Regresión de Features de CLIP

EVA

2.

 $H(a,b) = -a\log b$

CODE?

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
    t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(gs) # SGD
    gt.params = 1*gt.params + (1-1)*gs.params
    C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```


DINO v2

DINO V2

Processing pipeline

DINO v2

> Reinventa el mundo <

GRACIAS

Victor Flores Benites

