Index theory of unbounded Fredholm operators

Marina Prokhorova

Technion - Israel Institute of Technology

February 22, 2023 / NYC Noncommutative Geometry Seminar

Classical results

Framework

- H complex separable Hilbert space of infinite dimension
- Linear operator $A \colon H \to H$ is called Fredholm if Im(A) is closed and Ker(A) and $Coker(A) = Ker(A^*)$ are finite-dimensional.
- ullet $\mathcal{B}(H)$ space of bounded operators on H (with the norm topology)
- $\mathcal{B}_F(H)$ subspace of bounded Fredholm operators

Index of Fredholm operators

- Single operator: $\operatorname{ind}(A) = \dim \operatorname{Ker}(A) \dim \operatorname{Coker}(A)$ determines isomorphism $\operatorname{ind} \colon \pi_0(\mathcal{B}_F) \to \mathbb{Z}$.
- Family case: for X compact, there is natural isomorphism ind: $[X, \mathcal{B}_F] \to K^0(X)$, so \mathcal{B}_F is the classifying space for K^0 [Atiyah, Jänich]
- $K^0(X)$ is an Abelian group generated by isomorphism classes [E] of vector bundles E over X, with relations $[E \oplus F] = [E] + [F]$
- For $A: X \to \mathcal{B}_F$ continuous, $\operatorname{ind}(A) \approx [\operatorname{Ker}(A)] [\operatorname{Coker}(A)] \in K^0(X)$ (roughly speaking)

Self-adjoint Fredholm operators

- ullet $\mathcal{B}^{\mathrm{sa}}_{F}(H)$ space of self-adjoint Fredholm operators
- Coker(A) \cong Ker(A^*), so ind(A) = 0 for self-adjoint ASimilarly for families: ind(A) = 0 \in $K^0(X)$ for $A: X \to \mathcal{B}_F^{\mathrm{sa}}(H)$ However, self-adjoint operators have their own index theory, with values in $K^1(X)$ instead of $K^0(X)$.

Theorem [Atiyah and Singer; 1969]

- $\mathcal{B}_F^{\mathrm{sa}} = \mathcal{B}_F^+ \sqcup \mathcal{B}_F^- \sqcup \mathcal{B}_F^*$ has three connected components:
 - \mathcal{B}_{F}^{+} essentially positive operators
 - \triangleright \mathcal{B}_{F}^{-} essentially negative operators
 - \mathcal{B}_{F}^{*} neither essentially positive, nor essentially negative
- ullet \mathcal{B}_F^+ and \mathcal{B}_F^- are contractible
- \mathcal{B}_F^* is a classifying space for K^1

$$K^1(X) = \lim_{n \to \infty} [X, \mathcal{U}_n] = [X, \mathcal{U}_\infty], \text{ where } \mathcal{U}_\infty = \lim_{n \to \infty} \mathcal{U}_n$$

•
$$K^0(pt) = \mathbb{Z}$$

•
$$K^1(pt) = 0$$
, $K^1(S^1) = \mathbb{Z}$

	operator/path	family
Fredholm	index: $\pi_0(\mathcal{B}_{\digamma}) o \mathbb{Z}$	index: $[X, \mathcal{B}_F] \to K^0(X)$
Self-adjoint Fredholm	spectral flow: $\pi_1(\mathcal{B}_{F}^{\mathrm{sa}}) o \mathbb{Z}$	index: $[X, \mathcal{B}_F^{\operatorname{sa}}] \to K^1(X)$

Spectral flow: path
$$\mathcal{A} \colon [0,1] \to \mathcal{B}_{\mathcal{F}}^{\mathrm{sa}} \quad \leadsto \quad \mathrm{sp.flow}(\mathcal{A}) \in \mathbb{Z}$$

• The spectral flow counts (with signs) the number of eigenvalues passing through zero from the start of the path to its end

Unbounded operators

- Unbounded operator $A \colon H \to H$ acts from $dom(A) \subset H$ to H
- A is called closed if its graph is closed
- A is called densely defined if its domain is dense in H
- $\mathcal{R}(H)$ regular operators (= closed and densely defined)
- $\mathcal{R}^{\mathrm{sa}}(H)$ regular self-adjoint operators
- $\mathcal{R}_F(H)$ regular Fredholm operators (the same definition as in bounded case)

Example: elliptic operators on closed manifolds

- E vector bundle over a closed manifold M
- A elliptic operator of order d acting on sections of E; it is Fredholm
- If d > 0, then A is bounded as an operator $H_s(E) \to H_{s-d}(E)$, but unbounded as an operator $L^2(E) \to L^2(E)$.
- ullet For K^0 -index, one can deal with bounded operators $H_s o H_{s-d}$
- Another option: bounded transform $A \mapsto A(1 + A^*A)^{-1/2}$ provides 0-th order (i.e. bounded) elliptic operator; preserves self-adjointness; behaves well on symbols.

Bounded transform

- Fix a homeomorphism $\chi \colon \overline{\mathbb{R}} = [-\infty, \infty] \to [-1, 1]$, $\chi(A) = A(1 + A^2)^{-1/2}$ (the **bounded transform** map).
- Extension to non-self-adjoint operators: $\chi(A) = A(1 + A^*A)^{-1/2}$.
- ullet A regular $\Longrightarrow \chi(A)$ bounded, of norm $\leqslant 1$ A self-adjoint $\Longleftrightarrow \chi(A)$ self-adjoint A Fredholm $\Longleftrightarrow \chi(A)$ Fredholm
- For elliptic operator A of positive order on a closed manifold, $\chi(A)$ is elliptic of order 0 and depends continuously on A

Riesz topology

Riesz topology on $\mathcal{R}(H)$ is induced by the inclusion $\chi \colon \mathcal{R}(H) \hookrightarrow \mathcal{B}(H)$

Elliptic operators

- Families of elliptic operators on closed manifolds are Riesz continuous
- Families of elliptic boundary value problems on compact manifolds, in general, are **not** Riesz continuous (or are not known to be Riesz continuous), so one needs weaker topology on $\mathcal{R}(H)$

Appropriate topology for boundary value problems is the graph topology

Graph topology

- Grassmanian Gr(H) is the set of all closed subspaces of H with the topology induced by the inclusion $Gr(H) = \mathcal{P}(H) \subset \mathcal{B}(H)$
- Graph topology on $\mathcal{R}(H)$ is induced by the inclusion $\mathcal{R}(H) \hookrightarrow \operatorname{Gr}(H \oplus H)$ taking operator to its graph

Two topologies on $\mathcal{R}(H)$

- Riesz topology is strictly stronger than the graph topology.
- ullet On bounded operators all three topologies coincide: norm = Riesz = graph
- $\mathcal{B}(H)$ is dense and open both in ${}^r\mathcal{R}(H)$ and ${}^g\mathcal{R}(H)$
- ullet $^r\mathcal{R}(H)$ / $^g\mathcal{R}(H)$ space of regular operators with Riesz / graph topology
- Riesz topology: elliptic operators on closed manifolds
- Graph topology: elliptic boundary value problems on compact manifolds

Index theory for unbounded operators

Subspaces of $\mathcal{R}(H)$

- $\mathcal{R}^{\mathrm{sa}}(H)$ self-adjoint operators
- $\mathcal{R}_F(H)$ Fredholm operators
- $\mathcal{R}_K(H)$ operators with compact resolvent (both $(1+A^*A)^{-1}$ and $(1+AA^*)^{-1}$ are compact operators)

Example: elliptic operators of positive order

Riesz topology

- Natural inclusions ${}^r\mathcal{R}_K \hookrightarrow {}^r\mathcal{R}_F \stackrel{\mathcal{X}}{\hookrightarrow} \mathcal{B}_F$ and ${}^r\mathcal{R}_K^{\mathrm{sa}} \hookrightarrow {}^r\mathcal{R}_F^{\mathrm{sa}} \stackrel{\mathcal{X}}{\hookrightarrow} \mathcal{B}_F^{\mathrm{sa}}$ induce homotopy equivalences
- In particular, ${}^{r}\mathcal{R}_{F}^{\mathrm{sa}}$ has three connected components

Families of elliptic operators on closed manifolds are Riesz continuous, so their index theory is the same as for operators of order 0 (i.e. bounded)

Graph topology

Theorem [Booss-Bavnbek, Lesch, Phillips; 2001]

- ${}^{g}\mathcal{R}_{F}^{\mathrm{sa}}(H)$ is path connected
- ullet Spectral flow homomorphism $\pi_1({}^g\mathcal{R}_F^{\mathrm{sa}}) o\mathbb{Z}$ is surjective

Theorem [Joachim; 2003]

- ullet ${}^g\mathcal{R}_K(H)$ and ${}^g\mathcal{R}_F(H)$ are classifying spaces for K^0
- ullet ${}^g\mathcal{R}_K^{\mathrm{sa}}(H)$ and ${}^g\mathcal{R}_F^{\mathrm{sa}}(H)$ are classifying spaces for K^1

Joachim proved this theorem in a more general situation, for the Hilbert module $H_C = C \otimes H$ over a unital C^* -algebra C (the Hilbert space case corresponds to $C = \mathbb{C}$):

- ${}^{g}\mathcal{R}_{K}(H_{C})$ and ${}^{g}\mathcal{R}_{F}(H_{C})$ are classifying spaces for $K^{0}(-;C)$
- ${}^{g}\mathcal{R}_{K}^{\mathrm{sa}}(H_{C})$ and ${}^{g}\mathcal{R}_{F}^{\mathrm{sa}}(H_{C})$ are classifying spaces for $K^{1}(-;C)$

However, his proof is based on Kasparov KK-theory, even in the case $C=\mathbb{C}$

My results

Spaces of unbounded Fredholm operators. I. Homotopy equivalences, arXiv:2110.14359 (2021), 24 pp.

Goals

- Transparent proof of Joachim's results for Hilbert spaces (i.e. for $C = \mathbb{C}$) based on topology and operator theory, without use of KK-theory
- Simple definitions of K^0 and K^1 family index for graph continuous families (convenient for applications; without use of KK-theory) works also for non-compact spaces of parameters
- Relate spaces of unbounded operators with graph topology to classical spaces of bounded operators representing *K*-theory

Relation to classical spaces

- $\mathcal{B}(H) \hookrightarrow {}^{r}\mathcal{R}(H) \xrightarrow{\mathfrak{I} \&} {}^{g}\mathcal{R}(H) \hookrightarrow \mathsf{Gr}(H \oplus H)$
- Zero operator $\mapsto H \oplus 0$
- "Infinite operator" $\mapsto 0 \oplus H$
- Restricted Grassmanian $Gr_K(H \oplus H) = \{L \in Gr \mid L \text{ is compact def. of } 0 \oplus H\}$ = $\{p \in \mathcal{P} \mid p - p_{0 \oplus H} \text{ is compact}\}$
- Fredholm Grassmanian $\operatorname{\mathsf{Gr}}_{\digamma}(H \oplus H) = \{L \in \operatorname{\mathsf{Gr}} \mid (L, H \oplus 0) \text{ is Fredholm pair}\}\$ $= \{p \in \mathcal{P} \mid p p_{H \oplus 0} \text{ is Fredholm}\}\$

Theorem 1 [P; 2021]

$$\begin{array}{ccc}
 & {}^{r}\mathcal{R}_{K} \xrightarrow{\mathbb{I}^{\downarrow}} {}^{g}\mathcal{R}_{K} \hookrightarrow \operatorname{Gr}_{K} \\
\downarrow & \downarrow & \downarrow \\
\mathcal{B}_{F} & \hookrightarrow {}^{r}\mathcal{R}_{F} \xrightarrow{\mathbb{I}^{\downarrow}} {}^{g}\mathcal{R}_{F} \hookrightarrow \operatorname{Gr}_{F}
\end{array}$$

All these maps are homotopy equivalences, so all spaces represent K^0 .

Self-adjoint operators

Relation to classical spaces

- Lagrangian Grassmanian instead of Grassmanian: ${}^g\mathcal{R}^{\mathrm{sa}}(H)\hookrightarrow\mathsf{LGr}(H\oplus H)$
- Cayley transform $\kappa \colon {}^{g}\mathcal{R}^{\mathrm{sa}}(H) \hookrightarrow \mathcal{U}(H)$, $\kappa(A) = (A-i)(A+i)^{-1} = 1 2i(A+i)^{-1}$ (so graph convergence \iff convergence in the norm resolvent sense)
- Zero operator $\mapsto -1$, "infinite operator" $\mapsto +1$
- Restricted unitary group $U_K = \{u \in \mathcal{U} \mid u-1 \text{ is compact}\} \cong \mathsf{LGr}_K$
- "Fredholm unitary group" $\mathcal{U}_F = \{u \in \mathcal{U} \mid u+1 \text{ is Fredholm}\} \cong \mathsf{LGr}_F$

Theorem 2 [P; 2021]

$$\begin{array}{cccc}
^{r}\mathcal{R}_{K}^{*} \longrightarrow {}^{g}\mathcal{R}_{K}^{\mathrm{sa}} & \stackrel{\mathsf{k}}{\hookrightarrow} & \mathcal{U}_{K} \\
\downarrow & & \downarrow & & \downarrow \\
\mathcal{B}_{F}^{*} & \hookrightarrow {}^{r}\mathcal{R}_{F}^{*} \longrightarrow {}^{g}\mathcal{R}_{F}^{\mathrm{sa}} & \stackrel{\mathsf{k}}{\hookrightarrow} & \mathcal{U}_{F}
\end{array}$$

All these maps are homotopy equivalences, so all spaces represent K^1 .

Essentially positive / negative operators

Question [Booss-Bavnbek, Lesch, and Phillips; 2001]

Are \mathcal{R}_F^- and \mathcal{R}_F^+ (two "trivial" parts of $\mathcal{R}_F^{\mathrm{sa}}$) contractible in the graph topology?

The answer is negative:

Theorem 3 [P; 2021]

- Each of the spaces ${}^g\mathcal{R}_F^+$, ${}^g\mathcal{R}_F^-$, and ${}^g\mathcal{R}_F^*$ represents K^1
- Embeddings $\mathcal{R}_F^+ \hookrightarrow \mathcal{R}_F^{\mathrm{sa}}$, $\mathcal{R}_F^- \hookrightarrow \mathcal{R}_F^{\mathrm{sa}}$, and $\mathcal{R}_F^* \hookrightarrow \mathcal{R}_F^{\mathrm{sa}}$ are homotopy equivalences in the graph topology
- The same holds for operators with compact resolvent

The following example demonstrates that

- \bullet ${}^g\mathcal{R}_K^+$ is not contractible
- Family of elliptic boundary value problems may fail to be Riesz continuous

Rellich's example (extended from \mathbb{R} to $\mathbb{R}P^1$)

- $A=-d^2/dt^2$ acts on functions $\psi\colon [0,1] o \mathbb{C}$
- ullet Family of boundary value problems for A parametrized by $\mathbb{R}P^1\cong S^1$
- For $x = [x_0 : x_1] \in \mathbb{R}P^1$, the domain of \mathcal{A}_x is $\{ \psi \in H^2([0,1];\mathbb{C}) \mid \psi(0) = 0 \text{ and } x_0\psi(1) = x_1\psi'(1) \}$

Then we have:

- Each A_x is essentially positive operator with compact resolvent
- ullet ${\cal A}$ is a graph continuous loop with non-trivial spectral flow =1
- Spectral graph of this family is a single curve; for positive eigenvalues it is an infinite spiral line making an infinite number of rotations in the upward direction over the circle $\mathbb{R}P^1$; for negative eigenvalues it goes to $-\infty$ as x goes to [1:+0]

Proof of Theorems 1–3

Our proof handles all the maps on diagrams at once.

The proof is based on the following theorem:

Theorem [tom Dieck; 1971]

A map is a homotopy equivalence if it is locally a homotopy equivalence.

More precisely, let

- $f: X \to Y$ continuous map
- (X_{λ}) and (Y_{λ}) numerable coverings of X and Y, indexed by $\lambda \in \Lambda$
- $f(X_{\lambda}) \subset Y_{\lambda}$ and $f: X_{\lambda} \to Y_{\lambda}$ is a homotopy equivalence
- Moreover, $f: \bigcap_{\lambda \in F} X_{\lambda} \to \bigcap_{\lambda \in F} Y_{\lambda}$ is a homotopy equivalence for every finite non-empty $F \subset \Lambda$

Then f itself is a homotopy equivalence

Theorem 4

Let X be one of the spaces of unbounded operators on the diagrams. Then the subspace $X_0 = \{A \in X \mid A \text{ invertible}\}$ is contractible.

Proof of Theorem 2 for the map ${}^r\mathcal{R}_K^* o {}^g\mathcal{R}_K^{\mathrm{sa}}$

Let $X = {}^r\mathcal{R}_K^*$, $Y = {}^g\mathcal{R}_K^{\mathrm{sa}}$, and $f: X \to Y$ the identity map

- We take open coverings parametrized by $\lambda \in \mathbb{R}$, $X_{\lambda} = \{A \in X \mid A \lambda \text{ invertible}\}\$ and $Y_{\lambda} = \{A \in Y \mid A \lambda \text{ invertible}\}\$
- ② Each X_{λ} and Y_{λ} is contractible, so $X_{\lambda} \to Y_{\lambda}$ is a homotopy equivalence
- For finite intersections, the map is also homotopy equivalence (they both are fibered over the same base space with contractible fibers)

Thus tom Dieck's theorem implies that $X \to Y$ is a homotopy equivalence

The proof for all other arrows on diagrams is completely similar

M. Prokhorova. From graph to Riesz continuity. arXiv:2202.03337 (2022), 20 pp.

Theorem 5 [P; 2022], homotopy inverse map to ${}^r\mathcal{R}_K \hookrightarrow {}^g\mathcal{R}_K$

There is a map $v : \mathcal{R}(H) \to \mathcal{U}(H)$ such that

- v is both Riesz-to-norm and graph-to-strong continuous
- ② $\Phi: {}^{g}\mathcal{R}(H) \to {}^{r}\mathcal{R}(H), A \mapsto A \cdot v(A)$ is graph-to-Riesz continuous
- **3** Restriction of Φ to \mathcal{R}_K is homotopy inverse to the identity map ${}^r\mathcal{R}_K \to {}^g\mathcal{R}_K$
- Restriction of Φ to \mathcal{R}_F is homotopy inverse to the identity map ${}^r\mathcal{R}_F \to {}^g\mathcal{R}_F$

Theorem 6 [P; 2022]

- X arbitrary topological space
- \bullet \mathcal{H} , \mathcal{H}' numerable Hilbert bundles over X
- \bullet $\mathcal{A} = (\mathcal{A}_x)$ graph continuous, $\mathcal{A}_x \in \mathcal{R}_K(\mathcal{H}_x, \mathcal{H}_x')$

Then there are global trivializations of \mathcal{H} , \mathcal{H}' taking \mathcal{A} to a **Riesz** continuous map $X \to \mathcal{R}_K(H,H')$.

Theorem 6 [P; 2022]

- X arbitrary topological space
- \mathfrak{D} \mathcal{H} , \mathcal{H}' numerable Hilbert bundles over X

Then there are global trivializations of \mathcal{H} , \mathcal{H}' taking \mathcal{A} to a **Riesz** continuous map $X \to \mathcal{R}_K(H, H')$.

Theorem 7: self-adjoint case [P; 2022]

- X metrizable space of finite covering dimension
- \circ \mathcal{H} Hilbert bundle over X
- **3** $\mathcal{A} = (\mathcal{A}_x)$ **graph** continuous, $\mathcal{A}_x \in \mathcal{R}_K^*(\mathcal{H}_x)$ (self-adjoint operators with compact resolvent, neither essentially positive nor essentially negative)

Then there is a global trivializations of \mathcal{H} taking \mathcal{A} to a **Riesz** continuous map $X \to \mathcal{R}_{\kappa}^*(H)$.

In Rellich example operators are essentially positive, so Thm. 7 is not applicable

Alternative approach to the index of unbounded operators

Recently Ivanov developed a new approach to the index of Fredholm families, which works even under weaker continuity assumptions. His approach is based on Segal's theory of classifying spaces.

- N.V. Ivanov. Topological categories related to Fredholm operators: I. Classifying spaces. arXiv:2111.14313 (2021), 106 pp.
- N.V. Ivanov. Topological categories related to Fredholm operators: II. The analytic index. arXiv:2111.15081 (2021), 53 pp.