2026 考研数学零基础提前学课堂手迹版讲义 新浪微博: 考研数学周洋鑫

零基础提前学(2)

3. 单调性

设f(x)在区间I上有定义.

若对区间 I 中任意不同的两点 x_1 , x_2 , 当 x_1 < x_2 时,恒有 $f(x_1)$ < $f(x_2)$ 成立,则称 f(x) 在区间 I 上是**严格单调递增**.

【敵重点】函数 f(x) 在区间 I 上有界的充分必要条件是: f(x) 在区间 I 上即有上界,也有下界。(从围像上进行理解)

【例1.2】设函数 $f(x) = x \cdot \tan x \cdot e^{\sin x}$, 则 f(x) 是 (

C. 周期函数

【考点5】反函数微博关注考研数学周洋鑫 | 一笑而过考研数学

设函数 f(x) 的定义域为 D,值域为 R_v . 若对于任意的 $y \in R_v$, 有唯一确定的 $x \in D$, 使得y=f(x),则由此可以确定了一个y关于x的新函数,记为 $x=f^{-1}(y)$,并称其为 y = f(x)的反函数.

X=1_(1) — ——→ Y=1⁻(x) Y= f(x)'

【敲重点】1. 单调的函数一定具有反函数.

2. 函数 y = f(x) 与其反函数 $y = f^{-1}(x)$ 关于 y = x 对称.

3. 函数 y = f(x) 与其反函数 $y = f^{-1}(x)$ 定义域与值域互相做调换.

4. 若函数 $y = f^{-1}(x)$ 是函数 y = f(x) 的反函数,则有

$$f^{-1}[f(x)] = x, f[f^{-1}(x)] = x.$$

大次) 【例1.6】求反双曲正弦函数 $y = \ln(x + \sqrt{x^2 + 1})$ 的反函数.

【考点6】基本初等函数

1=0X

基本初等函数包括: 反三角函数、对数函数、幂函数、三角函数、指数函数.

1. 三角函数

(1) 正(余)弦函数

(2) 正(余) 切函数

(4) 诱导公式

重点 公式

① 关于周期性

$$\sin(2k\pi + x) = \frac{\sin x}{\sin x}, \cos(2k\pi + x) = \frac{\cos x}{\sin x},$$

$$\tan(k\pi + x) = \frac{\cos x}{\sin x}, \cot(k\pi + x) = \frac{\cos x}{\sin x}. \quad (k \in \mathbb{Z})$$

$$\sin(-x) = \frac{-\sin x}{\cos(-x)}, \cos(-x) = \frac{\cos x}{\cos(-x)},$$
 $\tan(-x) = \frac{-\cos x}{\cos(-x)}, \cot(-x) = \frac{-\cos x}{\cos(-x)}.$

③ 奇变偶不变,符号看象限

	0	π 6 1	1	rath,	$\frac{\pi}{2}$
sin x	0	7	<u> </u>) (8	1
$\cos x$	1 -	<u>I</u>		() (\	٥
tan x	0	<u></u>	1	B	X
cot x	×	IS	1	<u> </u>	0
sec x	1	기다	IZ	Ł	X
csc x	* T	口光与	E	田計	
	7511	$H \oplus V$		15	- 33

(6) 二倍角公式《海降長公式》 研数学周洋鑫 | 一笑而过考研数学

① 二倍角公式

$$\sin 2x = \frac{2 \sin x}{\sin 2x},$$

$$\cos 2x = \frac{2 \cos x}{\cos x} = \frac{1 - 2 \sin x}{\cos x} = \frac{2 \sin x}$$

② 降幂公式

$$\sin^2 x = \frac{ - \cos 2x}{ }$$
, $\cos^2 x = \frac{ + \cos 2x}{ }$

③ 两角和、两角差公式

$$\sin(x+y) = \frac{\sin(x-y)}{\sin(x-y)} = \frac{\sin(x-y)}{\sin(x-y)} = \frac{\sin(x-y)}{\sin(x-y)} = \frac{\cos(x-y)}{\sin(x-y)} = \frac{\cos(x-y)}{\sin(x-y$$

【例1.7】思考: $y = \sin x$ 在 $\left[\frac{\pi}{2}, \frac{3}{2}\pi\right]$ 内的反函数.

微博关注考外数学周洋鑫 | 一笑而过考研数学

(2) 常见函数值

$$\arcsin 0 = \underline{\quad \quad }, \ \arcsin 1 = \underline{\quad \quad }, \ \arcsin \frac{1}{2} = \underline{\quad \quad },$$

$$\arcsin \frac{\sqrt{2}}{2} = \underline{\quad \quad }, \ \arcsin \frac{\sqrt{3}}{2} = \underline{\quad \quad }, \ \arcsin (-1) = \underline{\quad \quad },$$

$$\arccos 0 = \underline{\quad \quad }, \ \arccos 1 = \underline{\quad \quad }, \ \arccos \frac{1}{2} = \underline{\quad \quad },$$

$$\arccos \frac{\sqrt{2}}{2} = \underline{\quad \quad }, \ \arccos \frac{\sqrt{3}}{2} = \underline{\quad \quad }, \ \arccos (-1) = \underline{\quad \quad }.$$

(3) 反正(余)切函数

(4) 常见函数值

$$\arctan 0 = \underline{}, \arctan 1 = \underline{}, \arctan \sqrt{3} = \underline{},$$
 $\arctan \frac{\sqrt{3}}{3} = \underline{}, \arctan (-1) = \underline{}, \arctan (-\sqrt{3}) = \underline{}.$

3.指数函数

一笑而过 考研数学 微博关注考研数学周洋鑫 4.对数函数

图象	
定义域	¥70
值域	R
过定点	(1,0)
单调性	/
运算性质	0 n Ad = of n A (V20)

@ InAb= InA+InB 8 In A- INB.

5.幂函数

【考点7】初等函数

由常数和基本初等函数经过有限次的四则运算和复合所构成的<mark>用一个表达式表</mark>示的函数称为**初等函数**,一般地,不能用一个数学式子表达的函数为**非初等函数**,例如分段函数

$$f(x) = \begin{cases} \sin x, & x > 0 \\ e^x - 1, & x \le 0 \end{cases}, \quad 符号函数 \, \mathrm{sgn} \, x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \, 均为非初等函数. \\ -1, & x < 0 \end{cases}$$

(c)
$$\lambda = |x| = |x_x| = (x_x)_{\frac{x}{2}}$$

(3)
$$y = x^{1/2} = e^{2 \times \ln x}$$

【考】幂指函数——见到幂指函数,立即幂指转换

考研数学周洋鑫

微植羊注老研数学周洋象 | 一竿而讨 老研数学