Prize-Collecting Data Fusion for Cost-Performance Tradeoff in Distributed Inference

Anima Anandkumar¹ Meng Wang¹ Lang Tong¹
Ananthram Swami²

¹School of ECE, Cornell University, Ithaca, NY.

²Army Research Laboratory, Adelphi MD.

INFOCOM 2009 April 23, 2009

Supported by Army Research Laboratory CTA.

Distributed Statistical Inference

Sensor Network Applications: Statistical Inference

- Sensors: take measurements, e.g., Target, Temperature
- Fusion center: make a final decision

Wireless sensor networks for inference

- Energy constraints
- Measurement selection, inference accuracy
- In-network data fusion

Sensor selection, routing and fusion policies

Optimal Node Selection For Tradeoff

Cost-Performance Tradeoff

- Cost
 ≡ Total cost of routing with fusion
- Objective $\equiv \mathsf{Cost} + \mu$ Performance degradation, $\mu > 0$

Optimal Node Selection For Tradeoff

Cost-Performance Tradeoff

- Cost
 ≡ Total cost of routing with fusion
- Performance degradation
 ≡ Inference error probability
- Objective $\equiv \text{Cost} + \mu \text{ Performance degradation}, \quad \mu > 0$

Optimal Node Selection For Tradeoff

Cost-Performance Tradeoff

- Cost
 ≡ Total cost of routing with fusion
- Performance degradation ≡ Inference error probability
- Objective $\equiv \mathsf{Cost} + \mu$ Performance degradation, $\mu > 0$

Challenges

- Presence of Correlation
- Multi-Hop Routing & Fusion
- Optimality: NP-hard, Brute Force?

Outline

- Introduction
- Problem Formulation and Main Results
 - Network and Inference Model
 - Cost-Performance Tradeoff
 - Main Results
 - Simplification of the Problem
- Special Case: IID Measurements
- 4 General Correlation Cases: Two Selection Heuristics
- Simulation
- 6 Conclusion

Network and Inference Model

Network Model

- Fixed location $\mathbf{V} \stackrel{\Delta}{=} (1, \dots, n)$.
- Feasible links with cost C(i, j) for link (i, j).

Network and Inference Model

Network Model

- Fixed location $\mathbf{V} \stackrel{\Delta}{=} (1, \dots, n)$.
- Feasible links with cost C(i, j) for link (i, j).

Inference model

- ullet Sensor measurements Y_{V} .
- Binary hypothesis: \mathcal{H}_0 vs. \mathcal{H}_1 : $\mathcal{H}_k : \mathbf{Y}_{\mathbf{V}} \sim f(\mathbf{y}_{\mathbf{v}}|\mathcal{H}_k)$

Network graph

Dependency graph

Optimal Cost-Performance Tradeoff

Problem Statement

- Select $V_s \subset V$ and design a fusion scheme $\Gamma(V_s)$.
- Minimize the total routing costs $C(\Gamma(V_s))$ plus a penalty π based on the error prob. $P_M(V_s)$.

$$\pi(V \setminus V_s) \stackrel{\Delta}{=} \log \frac{P_M(V_s)}{P_M(V)} > 0$$

Optimal Cost-Performance Tradeoff

Problem Statement

- Select $V_s \subset V$ and design a fusion scheme $\Gamma(V_s)$.
- Minimize the total routing costs $C(\Gamma(V_s))$ plus a penalty π based on the error prob. $P_M(V_s)$.

$$\pi(V \setminus V_s) \stackrel{\Delta}{=} \log \frac{P_M(V_s)}{P_M(V)} > 0$$

Fusion policy graph

$$\min_{V_s \subset V, \Gamma(V_s)} \left[C(\Gamma(V_s)) + \mu \pi(V \setminus V_s) \right], \ \mu > 0$$

Prize-Collecting Data Fusion

Main Results

$$\min_{V_s \subset V, \Gamma(V_s)} \left[C(\Gamma(V_s)) + \mu \log \frac{P_M(V_s)}{P_M(V)} \right), \ \mu > 0$$

IID measurements

 $2 - (|V| - 1)^{-1}$ approximation via Prize-Collecting Steiner Tree

PCST

Correlated data: component and clique selection heuristics

- Provable approximation guarantee for special dependency graphs.
- Substantially better than no data fusion.
- Performance under different node placements.

Simplification of the Problem

Simplification of the fusion scheme

ullet Minimal sufficient statistic for $V_s\subset V$ Log-Likelihood Ratio:

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \log \frac{f(\mathbf{Y}_{V_s}; \mathcal{H}_0)}{f(\mathbf{Y}_{V_s}; \mathcal{H}_1)}$$

ullet Limit to schemes delivering LLR(\mathbf{Y}_{V_s})

Simplification of the Problem

Simplification of the fusion scheme

ullet Minimal sufficient statistic for $V_s\subset V$ Log-Likelihood Ratio:

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \log \frac{f(\mathbf{Y}_{V_s}; \mathcal{H}_0)}{f(\mathbf{Y}_{V_s}; \mathcal{H}_1)}$$

- ullet Limit to schemes delivering LLR(\mathbf{Y}_{V_s})
- LLR $(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$

 $c \in \mathbb{C}$: the set of maximal cliques

Simplification of the Problem

Simplification of the fusion scheme

ullet Minimal sufficient statistic for $V_s\subset V$ Log-Likelihood Ratio:

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \log \frac{f(\mathbf{Y}_{V_s}; \mathcal{H}_0)}{f(\mathbf{Y}_{V_s}; \mathcal{H}_1)}$$

- ullet Limit to schemes delivering LLR(\mathbf{Y}_{V_s})
- LLR $(\mathbf{Y}_{V_s}) = \sum\limits_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$

 $c \in \mathbb{C}$: the set of maximal cliques

Simplification of the penalty function

$$\pi(V \backslash V_s) \stackrel{\Delta}{=} \log \frac{P_M(V_s)}{P_M(V)}$$

Error exponent approx. in a large network

$$\mathcal{D} \stackrel{\triangle}{=} -\lim_{|V| \to \infty} \frac{1}{|V|} \log P_M(V)$$

dependency graph

Outline

- Introduction
- 2 Problem Formulation and Main Results
 - Network and Inference Model
 - Cost-Performance Tradeoff
 - Main Results
 - Simplification of the Problem
- Special Case: IID Measurements
- 4 General Correlation Cases: Two Selection Heuristics
- 5 Simulation
- 6 Conclusion

PCDF: IID case

$$\min_{V_s \subset V, \Gamma(V_s)} \left[C(\Gamma(V_s)) + \mu \log \frac{P_M(V_s)}{P_M(V)} \right], \ \mu > 0$$

Simplifications of IID measurements

- $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$
- LLR(\mathbf{Y}_{V_s}) = $\sum\limits_{i \in V_s} \log \frac{f(Y_i;\mathcal{H}_0)}{f(Y_i;\mathcal{H}_1)} = \sum\limits_{i \in V_s} \mathsf{LLR}(\mathbf{Y}_i)$
- $\bullet \ \, \mathsf{Error} \,\, \mathsf{exponent} \,\, \mathcal{D} = D(f(Y;\mathcal{H}_0) || f(Y;\mathcal{H}_1)) \\$

PCDF: IID case

$$\min_{V_s \subset V, \Gamma(V_s)} \left[C(\Gamma(V_s)) + \mu \log \frac{P_M(V_s)}{P_M(V)} \right], \ \mu > 0$$

Simplifications of IID measurements

- $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$
- LLR(\mathbf{Y}_{V_s}) = $\sum_{i \in V_s} \log \frac{f(Y_i; \mathcal{H}_0)}{f(Y_i; \mathcal{H}_1)} = \sum_{i \in V_s} \mathsf{LLR}(\mathbf{Y}_i)$
- Error exponent $\mathcal{D} = D(f(Y; \mathcal{H}_0) || f(Y; \mathcal{H}_1))$

Modified cost-performance tradeoff for IID

$$\min_{V_s \subset V, \Gamma(V_s)} \left[C(\Gamma(V_s)) + \mu[|V| - |V_s|]D \right]$$

- Asymptotic convergence to the original problem.
- The optimal solution is the Prize Collecting Steiner Tree.

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T = (V', E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2 - \frac{1}{|V|-1}$

Approx. PCST

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T=(V',E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2 - \frac{1}{|V|-1}$

Fusion of IID measurements

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} \mathsf{LLR}(\mathbf{Y}_i)$$

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T=(V',E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2 - \frac{1}{|V|-1}$

Fusion of IID measurements

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} \mathsf{LLR}(\mathbf{Y}_i)$$

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T=(V',E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2-\frac{1}{|V|-1}$

Fusion of IID measurements

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} \mathsf{LLR}(\mathbf{Y}_i)$$

Outline

- Introduction
- 2 Problem Formulation and Main Results
 - Network and Inference Model
 - Cost-Performance Tradeoff
 - Main Results
 - Simplification of the Problem
- Special Case: IID Measurements
- 4 General Correlation Cases: Two Selection Heuristics
- Simulation
- 6 Conclusion

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathfrak{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

$$\mathsf{LLR}(\mathbf{Y}_{V_s}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

How to select useful groups? Dependency graph of V_s may be different!

Node selection and data fusion via PCST reduction

Prize-Collecting Steiner tree (PCST) Reduction

Node selection and data fusion via PCST reduction

Prize-Collecting Steiner tree (PCST) Reduction

Node selection and data fusion via PCST reduction

Prize-Collecting Steiner tree (PCST) Reduction

Node selection and data fusion via PCST reduction

Component Selection Heuristic

- Groups = components.
- No new cliques.
- Approximation guarantee.

Component Selection Heuristic

- Groups = components.
- No new cliques.
- Approximation guarantee.

Component Selection Heuristic

- Groups = components.
- No new cliques.
- Approximation guarantee.

Clique Selection Heuristic

- Groups = cliques.
- New produced cliques.
- No approximation guarantee.

Component Selection Heuristic

- Groups = components.
- No new cliques.
- Approximation guarantee.

Clique Selection Heuristic

- Groups = cliques.
- New produced cliques.
- No approximation guarantee.

Component Selection Heuristic

- Groups = components.
- No new cliques.
- Approximation guarantee.

Clique Selection Heuristic

- Groups = cliques.
- New produced cliques.
- No approximation guarantee.

Component selection = clique selection for disjoint cliques.

Outline

- Introduction
- 2 Problem Formulation and Main Results
 - Network and Inference Model
 - Cost-Performance Tradeoff
 - Main Results
 - Simplification of the Problem
- Special Case: IID Measurements
- 4 General Correlation Cases: Two Selection Heuristics
- Simulation
- 6 Conclusion

Simulation: IID Measurements

Significant saving compared with no data fusion

Simulation: Correlated Measurements

Simulation: Correlated Measurements (cont.)

Outline

- Introduction
- Problem Formulation and Main Results
 - Network and Inference Model
 - Cost-Performance Tradeoff
 - Main Results
 - Simplification of the Problem
- Special Case: IID Measurements
- 4 General Correlation Cases: Two Selection Heuristics
- Simulation
- 6 Conclusion

Conclusion

Summary of Results

- Prize-Collecting Data Fusion for cost-performance tradeoff
- PCST for IID data
- Component and clique selection heuristics for correlated data

Future directions

- Local selection and coordination
- Realtime measures and delay

http://acsp.ece.cornell.edu/members/anima/pubs/Anandkumar09TR.pdf

Dependency Graph and Markov Random Field

- Consider an undirected graph $\mathfrak{G}(\mathbf{V})$, each vertex $V_i \in \mathbf{V}$ is associated with a random variable Y_i
- For any disjoint sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ such that \mathcal{C} separates \mathcal{A} and \mathcal{B} ,

