Industrial informatics

Paolo Burgio paolo.burgio@unimore.it

SE NON LO SAI SPIEGARE IN MODO SEMPLICE, NON L'HAI CAPITO ABBASTANZA BENE

- Einsteir

THE EXAM

Mandatory written test

- > A mix of multiple (closed) responses, and open questions
- > Up to 30/30
- > 3 dates, 1 of which in December (tentative). See Q&A on website

Optionally, to improve your mark you can choose between

- > Oral (3-4 questions)
- > Project (recommended for internship and theses)
- \rightarrow (typically +4/- ∞)

Course material

Course website

https://hipert.unimore.it/people/paolob/pub/Industrial Informatics/index.html

Course slides

- > Available on Dolly, early preview on github
 - https://github.com/HiPeRT/IndInf20.git
- > Typically, enough to pass the exam, also if not attending class
- > Hands-on exercises

Classes in streaming

- > I try to make recordings available asap
- > (Tentative) some physical labs, will be recorded

Textbooks

- > See course website
- Add reference at the end of each slides block

Required skills

Unix Programming

- > Also win is fine..
- > C/C++ preferred

A bit of electronics might help...but it's not mandatory

Passion, passion!!

Required material on your side

A laptop with GNU/Linux

- > For fast prototyping
- > Also win is fine...you can use Cygwin or Ubuntu Shell for Windows

Embedded boards for hardcore hands-on

- > Raspberry Pi
 - You should already have it for the IoT course
- > Arduino (do you want this?)
- > NodeMCU (do you want this?)
 - ESP8266/ESP32 processor
- > ...plus some basic stuff (breadboard, electric cables, leds...)

CAD tools

- > CODESYS by 3S-Smart Softfare Solutions GmbH
 - I will use V3.5 SP10 Patch 3+, better having the same
 - I can provide it, as well as textbook

How to contact me?

AKA: ricevimento

> paolo.burgio@unimore.it

But let's try something different..

- > For every question, open a ticket ("issue") on GitHub
 - https://github.com/HiPeRT/IndInf20.git

- > So, all of your colleagues will enjoy the answers
- > Netiquette: before ask, search in "issues"

What is this about?

Why "Industrial" informatics?

What makes them different by "standard" informatics?

- > Applications
- Computers
- > Requirements
- > Frameworks
- → Processes (industrial, not "OS processes" ©)
- > Technologies

"domain driven" ...?

Es: industrial plants are different than biotech, or nuclear plants

- > Tens of application domains..
- > Is automotive also industrial...today? (rhetorical)
 - And aerospatial? Planes, ships, surveillance drones?
 - Safety critical systems
- > Rise of many-core computers
 - Size, Weight and Power constraints SWaP
- > Internet 4.0 Internet of Things
 - How can we use Machine Learning?

Past, present and future

Not easy to teach, not easy to structure

H

What's common?

- > Tight interaction with the environment
 - A plant, a machine
 - Trough sensors and actuators
 - A lot of computers
 - Huge cost
 - Centralized controller & data analytics w/human

- · Eco-System architecture
- · Cyber-physical systems
- Embedded system

- > We want guarantees
 - Worst-case timing behavior
 - Often, safety
 - Reliability, fail-tolerancy, also in monitoring
 - Security (we won't see this)

- Real-Time systems
- · Dependable
- Observable

- Compliancy with previous technology
 - Lombardia, ER are highly-industrial areas (consider also farms)
 - Can't always use "startup-like" models
 - Not easy to replace legacy HW/SW

- old technologies
- Legacy software
- old processes

> The future present

- · Machine Learning
- · Big data
- IoT
- 3

CPS - Cyber Physical (Eco)Systems

Tight interaction with the environment

- > Typically, multiple embedded computing units close to the plant
- > And one (or more) centralized controller
- > Today, these computational **edges** have more and more computing power

Real-Time, dependable systems

We want it to go fast....in the worst case!

- > If humans are "around", the system might be safety critical
- > Hard vs. Firm vs. Soft Real-Time

We want it to recover from faults

- > Fault tolerance
- > Fail-safe vs. Fail-operational

Achieved by design

- > Well-known industrial processes
- > Also, mathematical frameworks
- > Engineering

Our journey

Will cover these main topics

- > Collaborative tool (quickly)
- > Languages & grammars, Automations & machines
- > Computing architectures: PLCs, GPGPUs, reconfigurable archiectures, ...
- > Real-Time systems
- > Programming industrial systems: PLC, embedded GPGPUs & CUDA
- > A glance on embedded machine learning
- > Automotive systems
- > 2-3 seminars, chosen together

...always with an hands-on approach!

References

Course website

http://hipert.unimore.it/people/paolob/pub/Industrial_Informatics/index.html

My contacts

- > paolo.burgio@unimore.it
- http://hipert.mat.unimore.it/people/paolob/