Geometria 1 2 dic 2021

1 Forme Bilineari

1.1 Matrici associate alle forme bilineari

Osservazione (1.1) Se $\xi : \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K}$ è una forma bilineare, ξ induce 2 dic 2021 una matrice $A \in \mathbb{K}^{n,n}$ tale che $\xi = \xi_A$, cioè

$$\xi(X,Y) = {}^{t}XAY \quad \forall X,Y \in \mathbb{K}^{n}$$

Per costruire A fisso

$$\mathscr{B} = \{e_1, \cdots, e_n\}$$

base canonica in \mathbb{K}^n e quindi si definisce $A = (a_{ij})$ dove $a_{ij} = \xi(e_i, e_j)$. Verifico che $\xi(X, Y) = {}^t X A Y$, infatti

$$X = \sum_{i=1}^{n} x_i e_i \qquad Y = \sum_{i=1}^{n} y_j e_j$$

$$\xi(X,Y) = \xi\left(\sum_{i=1}^{n} x_{i}e_{i}, \sum_{j=1}^{n} y_{j}e_{j}\right) =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}\xi(e_{i}, e_{j})y_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}a_{ij}y_{j} =$$

$$= (x_{1}, \dots, x_{n})A\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = {}^{t}XAY$$

Sia V uno spazio vettoriale su \mathbb{K} con dim V = n. Sia $\mathscr{B} = \{v_1, \dots, v_n\}$ una base di V e sia $\xi : V \times V \to \mathbb{K}$ una forma bilineare, associamo a ξ la matrice $A = (a_{ij}), a_{ij} = \xi(v_i, v_j)$.

$$\xi(v,w) = {}^{t}(v)_{\mathscr{B}}A(w)_{\mathscr{B}}$$

infatti

$$v = \sum_{i=1}^{n} x_i v_i \qquad w = \sum_{j=1}^{n} y_j v_j$$
$$(v)_{\mathscr{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad (w)_{\mathscr{B}} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

 $[\]frac{1}{1}$ ξ bilineare

$$\xi(v,w) = \xi\left(\sum_{i=1}^{n} x_i v_i, \sum_{j=1}^{n} y_j v_j\right) =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \xi(v_i, v_j) y_j = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i a_{ij} y_j =$$

$$= (x_1, \dots, x_n) A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = {}^t(v)_{\mathscr{B}} A(w)_{\mathscr{B}}$$

Indico A con $M^{\mathscr{B}}(\xi)$, cioè A è la matrice associata a ξ tramite la base \mathscr{B}

Proposizione p.i Sia \mathcal{B} una base di V, e sia ξ una forma bilineare su V

- 1. ξ è simmetrica $\iff M^{\mathscr{B}}(\xi)$ è simmetrica;
- 2. ξ è antisimmetrica $\iff M^{\mathscr{B}}(\xi)$ è antisimmetrica.

dim. (p.i) Dimostro 1, 2 è analogo.

" \Longrightarrow " Sia $A = M^{\mathscr{B}}(\xi)$, e indico \mathscr{B} con $\mathscr{B} = \{v_1, \dots, v_n\}$. So che $a_{ij} = \xi(v_i, v_j)$, poiché ξ è simmetrica

$$\xi(v_i, v_i) = \xi(v_i, v_i) = a_{ii}$$

 $\implies a_{ij} = a_{ji}$, ovvero A è simmetrica.

$$\xi(v, w) = {}^t(v)_{\mathscr{B}} A(w)_{\mathscr{B}}$$

poiché $t(v)_{\mathscr{B}}A(w)_{\mathscr{B}} \in \mathbb{K}$, ho che

$$t \left(t(v)_{\mathscr{B}} A(w)_{\mathscr{B}} \right) = t(v)_{\mathscr{B}} A(w)_{\mathscr{B}} = \xi(v, w)$$

ma so anche che

$$t \left(t(v)_{\mathscr{B}} A(w)_{\mathscr{B}} \right) =$$

$$= t(w)_{\mathscr{B}} t A(v)_{\mathscr{B}} = t(w)_{\mathscr{B}} A(v)_{\mathscr{B}} =$$

$$= \xi(w, v)$$

 $[\]frac{1}{2}$ ξ bilineare

$$\implies$$
 si ottiene $\xi(v,w) = \xi(w,v) \ \forall v,w \in V$, cioè ξ simmetrica.

Sia V uno spazio vettoriale di dimensione finitan su un campo \mathbb{K} , e sia ξ una forma bilineare su V. Siano \mathscr{B} e \mathscr{B}' due basi su V. Sono definite $M^{\mathscr{B}}(\xi)$ e $M^{\mathscr{B}'}(\xi)$ - Cerchiamo il legame tra le due matrici. Pongo $A = M^{\mathscr{B}}(\xi)$, e $A' = M^{\mathscr{B}'}(\xi)$.

Sappiamo che se $v, w \in V$ allora

$$\xi(v,w) = {}^t(v)_{\mathscr{B}}A(w)_{\mathscr{B}} = {}^t(v)_{\mathscr{B}'}A'(w)_{\mathscr{B}'}$$

Posso scrivere

$$(v)_{\mathscr{B}} = P(v)_{\mathscr{B}'} \qquad (w)_{\mathscr{B}} = P(w)_{\mathscr{B}'}$$

con $P \in GL(n, \mathbb{K})$ matrice del cambiamento di base

$$\implies {}^{t}(v)_{\mathscr{B}}A(w)_{\mathscr{B}} = {}^{t}(P(v)_{\mathscr{B}'})AP(w)_{\mathscr{B}'} = {}^{t}(v)_{\mathscr{B}'}{}^{t}PAP(w)_{\mathscr{B}'}$$

Da qui si deduce

$${}^{t}(v)_{\mathscr{B}'}{}^{t}PAP(w)_{\mathscr{B}'} = {}^{t}(v)_{\mathscr{B}'}A'(w)_{\mathscr{B}'} \qquad \forall v, w \in V$$

$$\implies \forall X, Y \in \mathbb{K}^n \ ^t X^t PAPY = ^t XA'Y$$

 $\implies A' = {}^tPAP$, infatti se $C \in \mathbb{K}^{n,n}$ $C = (c_{ij})$, vale $c_{ij} = {}^te_iCe_j$, dove $\{e_1, \dots, e_n\}$ base canonica di \mathbb{K}^n .

 $A' = {}^{t}PAP$ con P matrice del cambiamento di base:

(1)
$$M^{\mathscr{B}'}(\xi) = {}^{t}M^{\mathscr{B},\mathscr{B}'}M^{\mathscr{B}}(\xi)M^{\mathscr{B},\mathscr{B}'}$$

Osservazione (1.2) In generale A e A' non hanno lo stesso determinante, infatti

$$A' = {}^{t}PAP$$
 $\det(A') = \det^{2}(P)\det(A)$

Definizione $A, B \in \mathbb{K}^{n,n}$ sono congruenti se $\exists P \in GL(n, \mathbb{K})$ tale che $B = {}^t\!PAP$

Esercizio Essere congruenti è una relazione di equivalenza

Soluzione Dimostrare l'affermazione

 $[\]overline{^3}$ poiché $A = {}^t A$

Definizione Matrici congruenti possono avere determinanti diversi, ma se B e A sono congruenti hanno lo stesso rango.

Si definisce il *rango* di una forma bilineare come il rango di una sua qualsiasi matrice associata rispetto ad un base.

1.2 Forme quadratiche

Sia V uno spazio vettoriale su un campo \mathbb{K}

$$B(V, \mathbb{K}) = \{ \xi : V \times V \mid \xi \text{ è bilineare} \}$$

 $B(V, \mathbb{K})$ è uno spazio vettoriale su \mathbb{K} , con la struttura data da

(2)
$$(\lambda \xi + \mu \eta)(v, w) := \lambda \xi(v, w) + \mu \eta(v, w)$$

con $\lambda \xi + \mu \eta \in B(V, \mathbb{K})$, e $\xi, \eta \in B(V, \mathbb{K}), \lambda, \mu \in \mathbb{K}$.

Si definiscono

$$B_S(V, \mathbb{K}) = \{ \xi \in B(V, \mathbb{K}) \mid \xi \text{ è simmetrica} \}$$

 $B_A(V, \mathbb{K}) = \{ \xi \in B(V, \mathbb{K}) \mid \xi \text{ è antisimmetrica} \}$

 $B_S(V, \mathbb{K})$ e $B_A(V, \mathbb{K})$ sottospazi vettoriali in $B(V, \mathbb{K})$

Definizione Se \mathbb{K} è un campo si definisce la caratteristica di \mathbb{K} come il più piccolo naturale n tale che $n \neq 0$ e

(3)
$$n - \text{volte}1 + 1 + \dots + 1 = 0$$

Per convenzione si dice che \mathbb{K} ha caratteristica 0 se n non esiste

Esempio (1.1) \mathbb{Q} , \mathbb{R} , \mathbb{C} hanno caratteristica 0, mentre \mathbb{Z}_2 ha caratteristica 2.

Se \mathbb{K} ha caratteristica 2

$$x = -x \Rightarrow x = 0$$

D'ora in avanti si assume che K non abbia caratteristica 2.

Risulta $B_S(V, \mathbb{K}) \cap B_A(V, \mathbb{K}) = \{\underline{0}\}$, infatti se $\xi \in B_S(V, \mathbb{K}) \cap B_A(V, \mathbb{K})$ allora

$$\xi(v,w) = -\xi(v,w) \, \forall \, v,w \in V \implies \xi(v,w) = 0 \in \mathbb{K}$$

Inoltre

(4)
$$B(V, \mathbb{K}) = B_S(V, \mathbb{K}) \oplus B_A(V, \mathbb{K})$$

infatti se $\xi \in B(V, \mathbb{K})$

$$\xi(v, w) = \frac{1}{2} \Big(\xi(v, w) + \xi(w, v) \Big) + \frac{1}{2} \Big(\xi(v, w) - \xi(w, v) \Big) \forall v, w \in V$$

Si definiscono

$$\xi_s := \frac{1}{2} (\xi(v, w) + \xi(w, v)), \ \xi_s \in B_S(V, \mathbb{K})$$

$$\xi_a := \frac{1}{2} (\xi(v, w) - \xi(w, v)), \ \xi_a \in B_A(V, \mathbb{K})$$

$$\implies \xi = \xi_a + \xi_s$$

⇒ la somma è diretta.

Definizione Sia $\xi \in B_S(V, \mathbb{K})$, ξ induce

$$Q_{\xi}: V \to \mathbb{K}$$

 $v \mapsto \xi(v, v)$

 Q_{ξ} si dice la forma quadratica associata a ξ

Esempio (1.2) Se (V, \cdot) è uno spazio vettoriale Euclideo, e $\xi(v, w) = v \cdot w$ $\implies Q_{\xi}(v) = ||v||^2$

Osservazione (1.3)

- 1. Si può estendere la nozione di forma quadratica su $B(V, \mathbb{K})$ tramite $Q_{\xi}(v)=\xi(v,v)$, in questo modo $Q_{\xi}=Q_{\xi_s}$
- $2. \ Q_{\lambda\xi+\mu\eta} = \lambda Q_{\xi} + \mu Q_{\eta}$
- 3. $Q_{\xi}(\lambda v) = \lambda^2 Q_{\xi}(v)$
- 4. Se $Q_{\xi} = Q_{\eta} \implies \xi = \eta$, cioè la forma quadratica di una forma bilineare simmetrica determina la forma bilineare simmetrica

Dimostrazione.

$$\begin{aligned} Q_{\xi}(v+w) &= \xi(v+w,v+w) = \\ &= \xi(v,v) + \xi(w,w) + \xi(v,w) + \xi(w,v) = \\ &= Q_{\xi}(v) + Q_{\xi}(w) + 2\xi(v,w) \end{aligned}$$

Quindi

(5)
$$\xi(v, w) = \frac{1}{2} (Q_{\xi}(v + w) - Q_{\xi}(v) - Q_{\xi}(w))$$

Definizione Sia V spazio vettoriale su $\mathbb{K}, \xi \in B_S(V, \mathbb{K}), Q_{\xi}$.

Fissiamo \mathscr{B} base di V, $M^{\mathscr{B}}(\xi) \in \mathbb{K}^{n,n}$ matrice associata. $M^{\mathscr{B}}(\xi)$ si dice anche la matrice associata a Q_{ξ} , e il rango di $M^{\mathscr{B}}(\xi)$ è per definizione il rango di Q_{ξ} .

Sia $B = \{v_1, \dots, v_n\}$, sia $v \in V$ e $X = (v)_{\mathscr{B}}$ con $X \in \mathbb{K}^n$.

$$Q_{\xi}(v) = {}^{t}XM^{\mathscr{B}}(\xi)X = \sum_{i,j}^{n} X_{i}X_{j}a_{ij}$$

dove $(a_{ij}) = M^{\mathscr{B}}(\xi)$.

Dal punto di vista algebrico Q_{ξ} è un poli
onmio di secondo grado omogeneo nelle componenti di v.

Esempio (1.3) Sia \mathcal{B} la base canonica di \mathbb{R}^3 , e $\xi \in B_S(\mathbb{R}^3, \mathbb{R})$ tale che

$$M^{\mathcal{B}}(\xi) = \begin{pmatrix} 3 & 1 & -2\\ 1 & 0 & -1\\ -2 & -1 & 1 \end{pmatrix}$$

Calcolo $Q_{\xi}(X)$

$$Q_{\xi}(X) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 3 & 1 & -2 \\ 1 & 0 & -1 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} =$$

$$= \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 3x_1 + x_2 - 2x_3 \\ x_1 - x_3 \\ -2x_1 - x_2 + x_3 \end{pmatrix} =$$

$$= x_1(3x_1 + x_2 - 2x_3) + x_2(x_1 - x_3) + x_3(-2x_1 - x_2 + x_3) =$$

$$= 3x_1^2 + 2x_1x_2 - 4x_1x_3 - 2x_2x_3 + 1x_3^2 + 0x_2^2$$

Osservazione (1.4) Si noti che i coefficienti dei quadrati sono gli elementi sulla diagonale. Vale come regola generale che, data $M^{\mathcal{B}}(\xi) = (a_{ij}), X = (x_1, \dots, x_n), Q_{\xi}(X)$ è un polinomio tale che

- gli elementi a_{ii} sono i coefficienti di x_i^2 ;
- gli elementi a_{ij} , con $i \neq j$, moltiplicati per due, sono i coefficienti del prodotto $x_i x_j$.