

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Лабораторная работа №3»

Студентка 315 группы А. Б. Толеутаева

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

Содержание

1	Постановка задачи	3
2	Вычисление преобразований Фурье	4
3	Свойства преобразования Фурье, которые используются в задаче	6
4	Эффект наложения спектра (aliasing) и его устранение	7
5	Рябь (ripple)	11

1 Постановка задачи

Получить аппроксимацию преобразования Фурье $F(\lambda)$ при помощи быстрого преобразования Фурье (БПФ) для функций

1.

$$f_1(x) = \begin{cases} \cos(3x), & 2|x| \leqslant 1\\ 0, & 2|x| \geqslant 1 \end{cases}$$

2.

$$f_2(x) = \frac{1 - \cos^2(4x)}{3x};$$

3.

$$f_3(x) = x^5 e^{-|x|^3};$$

4.

$$f_4(x) = \frac{\log(2+x^2)}{3+x^2}.$$

Построить графики $F(\lambda)$. Вычислить $F(\lambda)$ в явном виде для $f_1(x)$, $f_2(x)$, сравнить графики из аналитического представления и из аппроксимации через БПФ. Проиллюстрировать эффект наложения спектра и рябь.

Проиллюстрировать устранение эффекта наложения спектра и ряби.

2 Вычисление преобразований Фурье

Преобразование Фурье имеет вид:

$$F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ixw} dx.$$

Пример 2.1. Функция 1.

$$F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ixw}dx = \frac{1}{\sqrt{2\pi}} \int_{-0.5}^{0.5} \cos(3x)e^{-ixw}dx =$$

$$= \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} \cos(3x)\cos(-xw)dx + \int_{-\infty}^{\infty} i\cos(3x)\sin(-xw)dx \right) =$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{\sin(x(w+3))}{2(w+3)} + \frac{\sin(x(-w+3))}{2(-w+3)} + \frac{i\cos(x(w+3))}{2(w+3)} + \frac{i\cos(x(w-3))}{2(w-3)} \right) \Big|_{-0.5}^{0.5} =$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{(w-3)\sin(0.5(w+3)) + \sin(0.5(w-3))(w+3)}{w^2 - 9} \right)$$

Пример 2.2. Функция 2.

$$F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1 - \cos^2(4x)}{3x} e^{-ixw} dx = \frac{1}{6\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1 - \cos(8x)}{x} e^{-ixw} dx =$$

$$= \frac{1}{6\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} -\frac{\cos(-wx) + i\sin(-wx)}{x} dx + \right)$$

$$+ \int_{-\infty}^{\infty} \frac{i\sin((8-w)x) + \cos((8-w)x) + i\sin((-w-8)x) + \cos((-w-8)x)}{2x} dx = 1$$

$$= \frac{1}{12\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} \frac{\cos(u) - i\sin(u)}{u} du + \int_{-\infty}^{\infty} \frac{\cos(t_2) - i\sin(t_2)}{t_2} dt_2 + \int_{-\infty}^{\infty} \frac{\cos(t_1) - i\sin(t_1)}{t_1} dt_1 \right) \Big|_{-\infty}^{\infty}.$$

Известно, что для интегрального синуса Si = $\int_0^x \frac{\sin(x)}{x} dx$ и интегрального косинуса $\operatorname{Ci} = \int\limits_0^x \frac{\cos(x)}{x} dx$ выполняются соотношения:

$$C_1 = \int_0^\infty \frac{\cos(w)}{x} dx$$
 выполняются соотношения:

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x} dx = \int_{0}^{\infty} \frac{\cos(x)}{x} dx - \int_{0}^{-\infty} \frac{\cos(x)}{x} dx = \mathrm{Ci}(\infty) - \mathrm{Ci}(-\infty) = \mathrm{Ci}(\infty) - \mathrm{Ci}(\infty) = 0.$$

$$\int\limits_{-\infty}^{\infty} \frac{\sin(ax)}{ax} d(ax) = \int\limits_{0}^{\infty} \frac{\sin(ax)}{ax} d(ax) - \int\limits_{0}^{-\infty} \frac{\sin(ax)}{ax} d(ax) = \operatorname{Si}(\infty) - \operatorname{Si}(-\infty) = 2\operatorname{Si}(\infty) = \pi.$$

$$\int_{-\infty}^{\infty} \frac{\sin(ax)}{ax} d(ax) = \int_{0}^{\infty} \frac{\sin(ax)}{ax} d(ax) - \int_{0}^{-\infty} \frac{\sin(ax)}{ax} d(ax) = \mathrm{Si}(\infty) - \mathrm{Si}(-\infty) = 2\mathrm{Si}(\infty) = \pi.$$
 При а < 0
$$\int_{-\infty}^{\infty} \frac{\sin(ax)}{ax} d(ax) = -\int_{0}^{\infty} \frac{\sin(ax)}{ax} d(ax) + \int_{0}^{-\infty} \frac{\sin(ax)}{ax} d(ax) = -\mathrm{Si}(\infty) + \mathrm{Si}(-\infty) = -2\mathrm{Si}(\infty) = -\pi.$$
 Подставим это в полученное выражение, получим

$$\frac{-2\operatorname{Si}(wx) + \operatorname{Si}((w-8)x) + \operatorname{Si}((w+8)x)}{12\sqrt{2\pi}}\Big|_{-\infty}^{\infty} = \begin{cases} -2\sqrt{\pi}/(12\sqrt{2}), & w \in (0,8); \\ 2\sqrt{\pi}/(12\sqrt{2}), & w \in (-8,0); \\ 0, & |w| > 8; \\ 0, & w = 0 \end{cases}$$

$$= -\frac{i\sqrt{\pi}}{12\sqrt{2}}(\operatorname{sgn}(w-8) - 2\operatorname{sgn}(w) + \operatorname{sgn}(w+8)).$$

3 Свойства преобразования Фурье, которые используются в задаче

[2] Для функций, заданных на диапазоне $[a,b]:a\neq -b$, используем теорему временного сдвига:

$$f(x - \alpha) = e^{-i\alpha\lambda}F(\lambda),$$

где $\alpha = (b - a)/2$.

Для функций, заданных на диапазоне [-a,a], с окном [c,d] используем теорему масштаба:

$$f(\beta x) = \frac{1}{\beta} F\left(\frac{\lambda}{\beta}\right),\,$$

где $\beta = a/\max(|c|, |d|)$.

1. Для вещественных четных сигналов: f(x) = f(-x), выполняется:

$$F(\lambda) = F(-\lambda) = \operatorname{Im}(F(\lambda)) = 0.$$

2. Для вещественных нечетных сигналов: f(x) = -f(-x), выполняется:

$$F(\lambda) = -F(-\lambda) = \operatorname{Re}(F(\lambda)) = 0.$$

Дискретизация сигнала f(t) по времени с шагом Δt приводит к периодическому повторению исходного спектра $F(\lambda)$ с периодом, равным частоте дискретизации $f_d=1/\Delta t$. Полезная информация содержится в полосе $[-f_d/2,f_d/2]$. Поэтому для устранения эффекта наложения сигнала пропустим сигнал через фильтр с частотой Найквиста $f_c=f_d/2=1/2\Delta t$.

Спектр функции дискретного аргумента является периодическим:

$$F(\lambda) = F(\lambda - \frac{k}{\Delta t})$$

где период спектра $1/\Delta t$ равен величине, обратной шагу дискретизации Δt функции f(t).

Выбор шага дискретизации.

1. Если спектр оригинала ограничен, т.е. существует верхняя граница спектра λ_{max} , то шаг Δt выбирается из условия превышения частотой Найквиста сетки $\lambda_N=1/2\Delta t$ верхней границы λ_{max} спектра рассматриваемой функции:

$$\Delta t \le \frac{1}{2\lambda_{max}}$$

2. Если спектр оригинала неограничен, то за величину верхней его границы λ_{max} , можно принять значение, при котором спектральная компонента $F(\lambda_{max})$ мала:

$$F(\lambda_{max}) \ll \max F(\lambda)$$

4 Эффект наложения спектра (aliasing) и его устранение

[2] Наложение спектра (aliasing) возникает из-за конечной длины выборки сигнала. Если частота Найквиста λ_N на выбранной сетке меньше верхней границы спектральной полосы λ_{max} , то по спектру $F_{\Delta t}(\lambda)$ дискретной функции невозможно восстановить спектр $F(\lambda)$ функции непрерывного аргумента: $F(\lambda) \neq F_{\Delta t}(\lambda)H(\lambda)$ при $\lambda_N \neq \lambda_{max}$, где

$$H(\lambda) = \begin{cases} 1, & \lambda \in [-\lambda_N, \lambda_N]; \\ 0, & \lambda \notin [-\lambda_N, \lambda_N] \end{cases}$$

- оконная функция. В этом случае в сумме периодов спектра перекрываются слагаемые $F(\lambda-k/\Delta x)$ и наложение окна на спектр не позволяет получить без погрешностей спектр функции непрерывного аргумента.

Рассмотрим данный эффект на функции №1.

Верхняя граница спектра равна $\lambda_{max} = 0.5$. Частота дискретизации = 1, период равен 10. Зелёная линия — изображение Фурье, полученное аналитически. Синими точками обозначены аппроксимации Фурье (слагаемые $F(\lambda - k/\Delta t)$). Фиолетовая линия — итоговая аппроксимация — сумма слагаемых $F(\lambda - k/\Delta t)$ (Рис. 1).

Рис. 1. Исходное преобразование Фурье.

Уменьшим частоту дискретизации до 0.5, периоду — до 20. Теперь граничная частота Найквиста $\lambda_N=1/2\Delta t>\lambda_{max}$, выполнются условия теоремы Котельникова–Шеннона и наложения спектра не происходит (Рис. 2).

Рис. 2. Преобразование после увеличения частоты дискретизации.

Рассмотрим эффект на функции №3. Начальная частота дискретизации равна 1 (см. Рис. 3), конечная равна 0.5 (см. Рис. 4). Видно, что эффект устранен.

Рис. 3. Исходное преобразование.

Рис. 4. Преобразование после увеличения частоты дискретизации.

Теперь попробуем увеличить диапазон дискретного времени. Эффект наложения спектра стал в 2 раза менее значительным, но не устранился полностью (см. Рис. 5).

Рис. 5. Преобразование после увеличения дискретного времени.

5 Рябь (ripple)

Рябь (ripple) в частотной области возникает из-за усечения сигнала во временной области. Для минимизации этого эффекта можно либо увеличить временную область [a,b], либо увеличить частоту дискретизации сигнала.

Рассмотрим эффект на функции №2. Пусть f(x) задана на отрезке [a,b]=[-5,5] (Рис. 6)

Рис. 6. Исходное преобразование Фурье на отрезке [-5, 5].

Пусть теперь f(x) задана на отрезке [a,b]=[-10,10] (Рис. 7). Видно, что с увеличением числа членов ряда он все более точно приближается к исходной функции в том смысле, что амплитуда осцилляций уменьшается, а частота увеличивается. Однако в узких областях вблизи скачков функции, отклонение все же остается. [1]

Рис. 7. Преобразование Фурье на отрезке [-10, 10].

На отрезке [a,b] = [-100,100] улучшается точность, но рябь остается (Рис. 8).

Рис. 8. Преобразование Фурье на отрезке [-100, 100].

Список литературы

- [1] Кон В. Г., НИЦ "Курчатовский Институт Москва, 2011. (http://www.kohnvict.narod.ru/a/1/fourier-problems.htm)
- [2] Кандидов В. П., Чесноков С. С., Шленов С. А., ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ. Физический факультет МГУ, 2019. (https://ofvp.phys.msu.ru/wp-content/uploads/2021/03/diskretnoe-preobrazovanie-fure.pdf)