[ML/DL] python 을 통한 교차검증 (k -Fold , stratifiedkFold) — 나무늘보의 개발 블로그

노트북: 첫 번째 노트북

만든 날짜: 2021-01-01 오후 6:41

URL: https://continuous-development.tistory.com/166?category=736685

ML,DL

[ML/DL] python 을 통한 교차검증 (k -Fold , stratifiedkFold)

2020. 10. 28. 17:29 수정 삭제 공개

교차검증이란?

머신러닝을 돌리기 전에 train test로 나눠 머신을 훈련한다. 하지만 이 훈련 때 학습 데이터에 과도하게 초점을 맞춰 머신이 훈련될 수가 있다.

이 같은 경우에는 훈련시에는 점수가 잘 나오지만 실제 테스트를 할 때는 점수가 잘 나오지 않는다.

이걸 과적합(overfitting)이라고 한다.

우리는 훈련시에 이 같은 과적합을 막아야 한다. 이걸 위해 교차검증 이란 것 을 사용한다.

교차검증이란 훈련 데이터 세트를 바꿔가면 훈련하면서 나온 평균을 정확 도로 보는 방법을 뜻한다. 이렇게 훈련 데이터 세트를 교차하면서 검증을 하기에 교차 검증이라고 한다.

교차 검증

학습 데이터를 다시 분할하여 학습 데이터와 학습된 모델의 성능을 일차 평가하는 검증 데이터로 나눔.

모든 학습/검증 과정이 완료된 후 최종적으로 성능을 평가하기 위한 데이터 세트

테스트 데이트 세트

K-fold 교차검증

K 폴드 교차 검증

학습세트와 검증 세트를 나눠 반복해서 검증한다. 이걸 k값만큼의 폴드 세트에 k번의 학습과 검증을 한다. 이러한 방법으로 k번 평가를 하게 된다.

한 번의 학습을 통해 평가를 할 경우 과적합이 일어날 가능성이 크다. 이 럴 때를 대비해 교차검증을 통해 과적합을 막아준다.

K-Fold 사용법

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

import pandas as pd
import numpy as np
```

sklearn을 통해 KFold를 import 해준다.

```
fold_iris.keys()

dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
```

간단하게 sklearn을 통해 데이터 셋을 가져오고

```
fold_iris = load_iris()
features = fold_iris.data
# print(features)
label = fold_iris.target
# print(label)
fold_df_clf = DecisionTreeClassifier()
```

그 부분에서 data(독립변수)와 target(종속변수) 를 가져온다.

그리고 여기서는 DecisionTree를 사용한다.

```
# 5개의 폴드 세트를 분리하여 각 폴드 세트별 정확도를 담을 리스트를 생성

kfold = KFold(n_splits=5)

cv_accuracy = []
```

우리는 KFold를 5개로 split할 예정이다. 이 값은 사용자가 임의로 정할 수 있다.

```
n_iter = 0

for train_idx , test_idx in kfold.split(features) :
    X_train , X_test = features[train_idx] , features[test_idx]

y_train , y_test = label[train_idx] , label[test_idx]

# 학습을 진행하겠다면?
```

```
fold_df_clf.fit(X_train , y_train)
# 예측
fold_pred = fold_df_clf.predict(X_test)

# 정확도 측정
n_iter += 1
accuracy = np.round( accuracy_score(y_test , fold_pred) , 4)
print('\n{} 교차검증 정확도 : {} , 학습 데이터 크기 : {} , 검증 데이터 크기 : {}'.format(n_iter, accuracy cv_accuracy.append(accuracy))
print('\n')
print('\n 평균검증 정확도 : ' , np.mean(cv_accuracy))
```

위에서 분할했던 kfold를 넣고 split을 하는데 우리가 가지고 있던 fold_iri s.data를 분할한다. 이것을 train_idx와 test_idx로 분할한다.

이것을 통해 훈련하는 부분과 검증하는 부분을 나눈다. 그렇게 인덱스를 나누고 해당 하는 인덱스를 features와 label에 넣는다.

지금 까지 했던 것을 토대로 예측을 한다. 이 예측은 for문에 의해서 5번 돌게끔 된다.

1 교차검증 정확도 : 1.0 , 학습 데이터 크기 : 120 , 검증 데이터 크기 : 30

2 교차검증 정확도 : 1.0 , 학습 데이터 크기 : 120 , 검증 데이터 크기 : 30

3 교차검증 정확도 : 0.8333 , 학습 데이터 크기 : 120 , 검증 데이터 크기 : 30

4 교차검증 정확도 : 0.9333 , 학습 데이터 크기 : 120 , 검증 데이터 크기 : 30

5 교차검증 정확도 : 0.7333 , 학습 데이터 크기 : 120 , 검증 데이터 크기 : 30

평균검증 정확도 : 0.89998

kfold 의 문제점

kfold의 경우 일정한 간격으로 잘라서 사용한다.

여기서보면 답이 0 , 1, 2 이 세가지로 나눠지는데 만약에 이상황에서 잘 라서 학습을하는데

0,1만 답으로 가지고 있는 학습데이터를 가지고 학습을 했을때는 2라는 답을 도출 할 수 없다.

0,2, 만 가지고 학습을 했을 경우에 1이라는 답을 도출 할 수 없다. 이것이 Kfold의 문제점이다.

```
In [90]: # 기존 KFold 의 문제점 다시 한번 확인
kfold_iris_data = load_iris()
kfold_iris_data_df = pd.DataFrame(data=kfold_iris_data.data , columns = kfold_iris_data.feature_names)
kfold_iris_data_df['target'] = kfold_iris_data.target
print("value_counts: #n", kfold_iris_data_df['target'].value_counts())

value_counts:
2 50
1 50
0 50
Name: target, dtype: int64
```

In [92]: kfold_iris_data_df.head()

Out [92]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [100]: kfold_iris = KFold(n_splits=3)
         cnt iter=0
         for train_idx, test_idx in kfold_iris.split(kfold_iris_data_df): # 내가 나눌 값을 넣는다.
             print(train_idx, test_idx)
            #정확도 측정
            cnt_iter +=1
            label_train = kfold_iris_data_df['target'].iloc[train_idx]
            label_test = kfold_iris_data_df['target'].iloc[test_idx]
            print('label_train\n', label_train)
            print('교차검증: {}'.format(cnt_iter))
         print('학습 레이블데이터 분포 : #n',label_train.value_counts())
           print('검증 레이블데이터 분포 : #m',label_test.value_counts())
         # print('\n 평균검증정확도: ',np.mean(cv_accuracy))
         교차검증: 1
         학습 레이블데이터 분포 :
             50
           50
         Name: target, dtype: int64
         검증 레이블데이터 분포 :
             50
         Name: target, dtype: int64
         교차검증: 2
         학습 레이블데이터 분포 :
             50
           50
        Name: target, dtype: int64
         검증 레이블데이터 분포 :
             50
        Name: target, dtype: int64
         교차검증: 3
         학습 레이블데이터 분포 :
             50
           50
        Name: target, dtype: int64
         검증 레이블데이터 분포 :
        Name: target, dtype: int64
```

이러한 문제를 해결하기 위해 나온것이 stratifiedkFold이다.

stratifiedkFold

stratifiedkFold 는 target에 속성값의 개수를 동일하게 하게 가져감으로 써 kfold 같이 데이터가 한곳으로 몰리는것을 방지한다.

```
# 레이블 값의 분포를 반영해주지 못하는 문제를 해결하기위해서 stratifieldKFold 를 이용
from sklearn.model_selection import StratifiedKFold

skf_iris = StratifiedKFold(n_splits=3)
cnt_iter = 0

for train_idx , test_idx in skf_iris.split(kfold_iris_data_df , kfold_iris_data_df['target']):
    # print(train_idx , test_idx)
    cnt_iter += 1

label_train = kfold_iris_data_df['target'].iloc[train_idx]

label_test = kfold_iris_data_df['target'].iloc[test_idx]

# print('label_train\n' , label_train)

print(''교차 검증: {}'.format(cnt_iter))

print('학습 레이블 데이터 분포: \n' , label_train.value_counts())

print('검증 레이블 데이터 분포: \n' , label_test.value_counts())
```

```
교차 검증 : 1
학습 레이블 데이터 분포 :
2
     33
    33
    33
Π
Name: target, dtype: int64
검증 레이블 데이터 분포 :
2
    -17
    17
0
    17
Name: target, dtype: int64
교차 검증 : 2
학습 레이블 데이터 분포 :
2
     33
    33
    33
Name: target, dtype: int64
검증 레이블 데이터 분포 :
    -17
    17
    17
Name: target, dtype: int64
교차 검증 : 3
학습 레이블 데이터 분포 :
2
     34
    34
    34
Name: target, dtype: int64
검증 레이블 데이터 분포 :
    16
    16
    16
Name: target, dtype: int64
```

지금 하고있는건 분류에서만 가능하다.

예제)

```
# [실습] random_state = 100
# 붓꽃 데이터 세트에서 Stratified KFold 를 이용하여 교차검증(3, 5)을 진행하고 평균정확도를 확인
# Stratified KFold 는 분류, 회귀 X
# 회귀는 연속된 숫자 값이기 때문에 지원하지 않는다.
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
# 회귀에서는 지원하지 않는다.
from sklearn.model_selection import StratifiedKFold
import pandas as pd
import numpy as np
result_iris = load_iris()
result_features = result_iris.data
result_label = result_iris.target
# 학습기 생성
result_clf = DecisionTreeClassifier(random_state=100)
```

```
result_skfold = StratifiedKFold(n_splits=3)
idx_iter=0
cv_accuracy=[]

# StratifiedKFold의 split() 호출시 반드시 레이블 데이터 셋도 추가 입력 필요
for train_index, test_index in result_skfold.split(features, label):
# split()으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
X_train, X_test = features[train_index], features[test_index]
y_train, y_test = label[train_index], label[test_index]
```

```
# 학습 및 예측
result_clf.fit(X_train , y_train)
pred = result_clf.predict(X_test)

# 반복 시 마다 정확도 측정
idx_iter += 1
accuracy = np.round(accuracy_score(y_test,pred), 4)
train_size = X_train.shape[0]
test_size = X_test.shape[0]

print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
.format(idx_iter, accuracy, train_size, test_size))
print("#{0} 검증 세트 인덱스:{1}'.format(idx_iter,test_index))
cv_accuracy.append(accuracy)
```

```
#1 교차 검증 정확도 :0.9804, 학습 데이터 크기: 99, 검증 데이터 크기: 51
#1 검증 세트 인덱스: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116]
#2 교차 검증 정확도 :0.9216, 학습 데이터 크기: 99, 검증 데이터 크기: 51 #2 검증 세트 인덱스: [ 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133]
#3 교차 검증 정확도 :0.9792, 학습 데이터 크기: 102, 검증 데이터 크기: 48 #3 검증 세트 인덱스: [ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149]
```

```
# 교차 검증별 정확도 및 평균 정확도 계산
print('\n## 교차 검증별 정확도:', np.round(cv_accuracy, 4))
print('## 평균 검증 정확도:', np.mean(cv_accuracy))
```

교차 검증별 정확도: [0.9804 0.9216 0.9792] ## 평균 검증 정확도: 0.9604

'ML,DL' 카테고리의 다른 글□

[ML/DL] 정밀도와 재현율의 트레이드 오프 정의와 구현□

[ML/DL] python 을 통한 분류(classification) 성능평가지표 사용법(Accuracy,Pre...

[ML/DL] python 을 통한 교차검증 (k -Fold , stratifiedkFold)□

[ML/DL] python 을 통한 결측값 확인 및 결측치 처리 방법 🗆

[ML/DL] 데이터 인코딩 - Label Encoding / One-hot Encoding/ dummies 🗆

[ML/DL] 파이썬(python)을 이용한 분류(Classification)하기□

k fold k-fold

StratifiedKFold 교차검증

교차검증 k-fold

교차검증 kfold

나아무늘보

혼자 끄적끄적하는 블로그 입니다.