Ljetni ispitni rok 2015/2016

by: docx ;)

1. **(10 bodova)** Za identifikaciju frekvencijske karakteristike $G(jw) = \frac{Y(jw)}{U(jw)}$ koristi se signal bjelog šuma u prema shemi na slici 1. Spektralna snaga bijelog šuma definirana je sljedećim izrazom:

$$S_{uu} = \begin{cases} 2, w \neq 0 \\ s_0, & w = 0 \end{cases}$$
 (1)

- a) (3 boda) Što označava parametar s_o u (1) u vremenskoj domeni i koja je njegova vrijednost?
- b) (3 boda) Odredite i skicirajte spektralnu gustoću snage izlaznog signala S_{vv}(w).
- c) (4 boda) Odredite srednju snagu izlaznog signala P_v

Napomena:
$$\frac{d \ actan(x)}{dx} = \frac{1}{1+x^2}$$

Slika 1.

2. (10 bodova) Korištenjem korelacijske analize emitira se prijenosna funkcija procesa G(jw),

$$Y(jw)=G(jw)U(jw)+V(jw)$$

pri čemu je poznato da ulazni signal procesa $u(t)=F^{-1}\{U(jw)\}$ i šum $v(t)=F^{-1}\{V(jw)\}$ sadrže smetnju w(t).

$$u(t)=u^*(t)+w(t)$$

$$v(t)=v^{*}(t)+w(t)$$

pri čemu su u^* i v^* nekorelirani signali bijelog šuma. Izvedite izraz za pogrešku estimacije prijenosne funkcije procesa $\hat{G}(jw) - G(jw)$ pri čemu je $\hat{G}(jw)$ estimat dobiven primjenom korelacijske analize uz zanemarenje korelacije signala u i v. Komentirajte rezultat.

3. (13 bodova) Ovisnost izlaza modela y o ulaznom signalu u modelira se jednadžbom

$$y(k) = \alpha + \beta u(k) + \varepsilon(k)$$
 (2)

pri čemu je ε signal bijelog šuma srednje vrijednosti nula koji ne korelira s ulaznim i izlaznim signalom, a α i β su parametri modela koje je potrebno identificirati iz N parova ulazno-izlaznih podataka $\{u(k), y(k)\}_{k=1}^N$

- a) **(3 boda)** Definirajte vektor mjerenja Y i parametara θ , te matricu podataka Φ za estimaciju parametara modela (2) $\hat{\alpha}$ i $\hat{\beta}$ korištenjem metode najmanjih kvadrata.
- b) **(7 bodova)** Korištenjem metode najveće vjerojatnosti (maximum likelihood) odredite estimat parametara modela (2), $\hat{\alpha}$ i $\hat{\beta}$. Poznato je da se slučajna varijabla pogreške modela ε ravna po Gaussovoj razdiobi, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$.

Napomena: funkcija gustoće vjerojatnosti slučajne varijable ζ s Gaussovom razdiobom $\zeta \sim N(0, \sigma^2)$ definirana je s $f_{\zeta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ pri čemu x označava realizaciju slučajne varijable ζ .

c) **(3 boda)** Odredite izraz za kovarijancu parametara modela **(2)** identificiranih metodom najmanjih kvadrata ako je poznato $E[\underline{\varepsilon} \cdot \underline{\varepsilon}^T] = \sigma_{\varepsilon}^2 I$ pri čemu je s I označena jedinična matrica odgovarajuće dimenzije i ε je vektor pogrešaka modela.

4. (7 bodova)

- a) (4 boda) Objasnite i matematički opišite kako se red modela procjenjuje testom odnosa determinanata.
- b) (3 boda) Postupkom identifikacije ARX modela dobiveni su sljedeći polinomi:

$$A(z^{-1})=1-4z^{-1}+4z^{-2}$$

 $B(z^{-1})=z^{-1}-2z^{-2}$

Koristeći polinomski test procijenite red dobivenog modela.

5. **(16 bodova)**

Za sustav opisan sljedećim jednadžbama:

$$x_k = \phi_{k-1} x_{k-1} + \Gamma_{k-1} u_{k-1} + u_{k-1}$$

 $y_k = H_k x_k + v_k$

gdje su procesni i mjerni šum, u_{k-1} i v_k bijeli i nekorelirani šumovi varijanci Q i R, potrebno je riješiti sljedeće podzadatke:

- a) (4 boda) Izvesti očekivanu pogrešku naknadne estimacije \tilde{x}_k^+
- b) (4 boda) Izvesti jednadžbu za računanje matrice kovarijanci pogreške naknadne estimacije diskretnog Kalmanovog filtra P_k^+
- c) **(4 boda)** Čemu je jednaka kriterijska funkcija koju minimizira diskretni Kalmanov filtar prilikom računanja optimalnog pojačanja K_k ? Dokažite!
- d) (4 boda) Čemu je jednaka inovacija r_k diskretnog Kalmanovog filtra? Izvesti izraz za računanje matrice kovarijanci inovacije.

6. (12 bodova)

U akvariju se nalazi x_p pirana i x_g akvarijskih ribica. Ribice hranite jednom tjedno hranom u. također, svaki tjedan pirane pojedu nekoliko ribica. Natalitet pirana proporcionalan je populaciji ribica, a mortalitet je proporcionalan njihovoj vlastitoj populaciji (zbog prenapučenosti). Natalitet ribica proporcionalan je količini hrane u (uz konstantu proporcionalnosti 1), a mortalitet je proporcionalan populaciji pirana.

- a) **(4 boda)** Napišite model zadanog sustava u prostoru stanja, gdje su stanja broj pirana $x_{p,k}$ i broj akvarijskih ribica $x_{g,k}$. Uzmite da konstante proporcionalnosti (za koje nije drugačije rečeno) iznose ½, a nesigurnost oba modela izrazite bijelim šumom jedinične varijance i nulte očekivane vrijednosti (w_k ^N(0,1)) Pirane zbog veličine možete točno prebrojati, dok za ribice pretpostavljate mjerni šum jedinične varijance i nulte očekivane vrijednosti.
- b) **(4 boda)** U početnom trenutku imamo točan broj pirana i ribica ($x_{p,0}$ i $x_{g,0}$). Kalmanovim filtrom estimiramo populaciju ribica. Koliko iznosi matrica kovarijanci pogreške naknadne estimacije broja pirana i akvarijskih ribica nakon 1 tjedna (k=1)?
- c) **(4 boda)** Koliko iznosi omjer populacija pirana i akvarijskih ribica u ustaljenom stanju? Za ovaj dio zadatka pretpostavite da nema procesnog šuma.

7. (12 bodova)

Razmotrimo jednodimenzionalan nestacionarni model rasta koji je definiran sljedećom jednadžbom:

$$x_k = \alpha x_{k-1} + \beta \frac{x_{k-1}}{1 + x_{k-1}^2} + \gamma \cos(1.2k - 1.2) + w_k$$

gdje su koeficijenti $\alpha=0.5$, $\beta=25$ i $\gamma=10$. Procesni šum ravna se prema $w_k \sim N(0,1)$. Mjerenje rasta vrši se sljedećom nelinearnom funkcijom:

$$y_k = \frac{x_k^2}{20} + v_k$$

gdje se mjerni šum ravna prema $v_k \sim N(0,1)$. Potrebno je:

- a) (4 boda) Odrediti matrice Φ , L, H i M diskretnog proširenog Kalmanovog filtra
- b) **(4 boda)** Ako u koraku k=0 vrijedi $\hat{x}_0^+ = 10$ i $P_0^+ = I$, koristeći diskretni prošireni Kalmanov filtar odredite \hat{x}_1^- i P_1^-
- c) **(4 boda)** Odrediti vrijednosti \hat{x}_1^+ i P_1^+ , ako je stvarna vrijednost x_1 =18, a slučajna varijabla v_k u koraku 1 poprimila je vrijednost 0.1.