"Toshkent irrigatsiya va qishloq xo'jaligini mexanizatsiyalash muhandislari instituti" Milliy tadqiqot universiteti

Termodinamika va Issiqlik uzatish asoslari fani

Mavzu: Bug' kuch qurilmalarining sikllari

texnika fanlari nomzodi, dotsenti Nuritov Ikrom Rajabovich

Bug' kuch qurilmalarining sikllari

Reja:

- 1.Bug' kuch qurilmalarining sikllari, ishlash sxemasi.
- 1.1.Suv bug'i uchun Karno sikli.
- 1.2.Suv bug'i uchun Renkin sikli.

FOYDALANILGAN ADABIYOTLAR `

- 1. Joseph M Powers. LECTURE NOTES ON THERMODYNAMICS. Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana 46556-5637, USA, updated 01 July 2014.
- 2. R.A.Zohidov, M.M.Alimova, Sh.S.Mavjudova. Issiqlik texnikasi (darslik). T.: "O'zbekiston faylasuflari milliy jamiyati" nashriyoti, 2010. 200 b.
- 3. T.S.Xudoyberdiev, B.P.Shaymardanov, R.A.Abduraxmonov, A.N.Xudoyorov, B.R.Boltaboyev. Issiqlik texnikasi asoslari (darslik)—T.: "Cho'lpon" nashriyoti, 2008. 216 b.
- 4. Ш. Ж. Имомов, И. Р. Нуритов, К.Э.Усмонов. Сборник задач по основам термодинамики и теплопередачи /Учебное пособие-Т.:ТИИИМСХ.2021.-116 с.

https://pro-sensys.com/info/articles/obzornye-stati/dvigatel-vnutrennego-sgoraniya/

https://www.youtube.com/watch?v=q1kqXlfPm40

https://www.youtube.com/watch?v=uFlftLUy9b4

https://www.youtube.com/watch?v=SInRCuDhYKc

https://www.youtube.com/watch?v=ET6V9QeA-WE

« Baliq skeleti» sxemasi - Ichki Yonuv dvigatellarining ideal sikllari

1.Bug' - kuch qurilmalarining sikllari, ishlash sxemasi.

Issiqlik elektr stansiyasi

Yadro yoqilg'isi — zanjirli bo'linishida yadro reaktsiyasini amalga oshiruvchi modda bo'lib, jarayon izolyatsiyalangan germetik reaktorlard amalga oshiriladi. Issiqlik elektr stansiyasi tabiiy yadro yonilg'isi Uran bo'lib, bo'linuvchi yadro *235U* ga ega.

Issiqlik elektr stansiyasi

Bug'qozoni (1) dan chiqayotgan to'yingan bug', bug' qizdirgich (2) da izobarik quriydi (xq_1) va qiziydi. Yuqori harorat va bosimdagi bug' quvur (7) orqali turbina (3) ga borib rotorni aylantiradi, ya'ni bug'ning bosim energiyasi mexanik energiyaga aylanadi. Turbina rotoridagi mexanik energiyani shu val davomiga ulangan elektrogenerator (4) bilan elektr energiyasiga o'tkazib olish mumkin. Asosiy energiyasini berib bo'lgan bug' suv bilan sovutib turiladigan kondensator (5) ga o'tib, suvga aylanadi. q_2 issiqlik miqdori sovituvchi suv bilan chiqib ketadi. Kondensator suv nasos (6) orqali yana bug' qozoniga yuboriladi va sikl takrorlanaveradi. Rasmdan ko'rinib turibdiki, ishchi jism (suv, bug') ga berilayotgan issiqlik miqdori q_1 ikki bosqichda: suvni qaynatish va bug' hosil qilishda, hamda bug' qizdirgichda bug'ni quritish va qizdirishda beriladi.

1.1.Suv bug'i uchun Karno sikli.

Klassik *Karno sikli* dan foydalangan holda bugʻ elektr stansiyasining strukturaviy ishlash sxemasi .

- 1- bug' turbinasidan keyin ishchi bug'ning kondensati;
- 2 nasosdan keyingi ishchi suyuqlik;
- 3 turbina oldidagi ishchi suyuqlikning bug'i;

 Q_{in} - bug'latgichga beriladigan issiqlik;

 W_t -issiqlik dvigatelining foydali mexanik kuchi;

 W_P - bosim ostida ishlaydigan nasosning suyuqlikni etkazib berish ushun sarflanadigan mexanik quvvat.

To'yingan quruq bug' uchun Karno siklini" $p \mathcal{G}$ " va "Ts" koordinatalarida yuqori (x=1) va quyi (x=0) chegara

*chiziqlari orasida chizamiz.*1-2 chizig'i (jarayoni) izotermik va shu bilan birga izobarik jarayon hisoblanadi. 2-3 bug' turbinasidagi bug'ning adiabatik kengayish jarayoni. 3-4 izobarik va bir vaqtning o'zida izotermik sharoitda bug'ning kondensatsiyalanish jarayoni. 4-1 nam bug'ning adiabatik qisilishi (kompressorda).

Bug'ga berilgan va undan sovutgichga o'tgan issiqlik miqdorlari:

$$q_1 = (x_2 - x_1) r_1$$
 J/kg
 $q_2 = (x_3 - x_4) r_2$ J/kg

bu yerda r_1 , r_2 - p_1 , p_2 -bosim sharoitida bug' hosil qilish uchun kerakli issiqlik mikdori. Siklda foydalanilgan issiqlik miqdori "Ts" koordinatalarida 1-2-3-4-1 yuza bilan ifodalanadi.

$$q_0 = q_1 - q_2 = r_1 (x_2 - x_1) - r_2 (x_3 - x_4)$$

Nam bug' uchun Karno siklining termik f.i.k. uchun ifoda:

$$\eta_t = \frac{q_0}{q_1} = \frac{\mathbf{r_1}(x_2 - x_1) - \mathbf{r_2}(x_3 - x_4)}{\mathbf{r_1}(x_2 - x_1)}$$

To'yingan quruq bug' uchun $x_1 = 0$ va $x_2 = 1$ bo'lganligi uchun termik f.i.k:

$$\eta_t = 1 - \frac{r_2}{r_1} (x_3 - x_4)$$

$$\ell_0 = r_1(x_2 - x_1) \cdot \frac{T_1 - T_2}{T_1}$$

1 kg quruq to'yingan bug'ning foydali ishi "pv" koordinatalarida 1-2-3-4-1 yuza bilan ifodalanadi. To'yingan bug'uchun umumiy holda

Karno siklininig termik f.i.k. yukori (nazariy) bo'lishi bilan birga uning asosiy kamchiligi, ishlab bulgan bug'ning kondensatorda to'la suvga aylanmasligi bo'lib, kompressor bug'suv aralashmasi, ya'ni katta hajmli massani qisishi kerak bo'ladi. Katta hajmni qisish uchun esa katta energiya talab qilinadi.

1.2.Suv bug'i uchun Renkin sikli.

Bug' kuch qurilmalari (BKQ) uchun Renkin sikli asos qilib olingan. Karno siklidan bu siklning farqi shundaki, bug' kondensatorda to'la suvga aylanadi.

Kompressor katta hajmli bug'-suv aralashmasini emas, nasos kichik hajmli suvni haydaydi, bu esa BKQ ning f.i.k. ni ancha ortishiga olib keladi.

Klassik Rankine siklidan foydalangan holda bugʻ elektr stansiyasining strukturaviy diagrammasi.

- 1-Kondensatordan keyin ishchi suyuqlikning kondensati;
- 2- nasosdan keyingi ishchi suyuqlik;
- 3-turbina oldidagi ishchi suyuqlikning bug'i;
- 4-kondensatorga kirishda ishchi suyuqlikning bug'i;

Q_{in} - bug'latgichga beriladigan issiqlik;

Q_{out} - kondensatordan olingan issiqlik quvvati;

W_t -issiqlik dvigatelining foydali mexanik kuchi;

 $\mathbf{W}_{\mathbf{P}}$ - bosim ostida ishlaydigan nasosning suyuqlikni etkazib berish ushun sarflanadigan mexanik quvvat.

Renkin siklini " $p\theta$ " va "Ts"diagrammlarida ifodalaymiz: Renkin sikli

- 1-2 chizig'i suvni qisib bug' qozoniga uzatish jarayoni (chiziq vertikaldan biroz chapga og'adi). "Ts"diagrammasida 1 va 2 nuqtalar ustmaust tushadi.
- **2-3** suvni bug' qozonida qaynatish (izobarik) jarayoni;
- **3-4** suvni (izobarik) bug'lanish jarayoni;
- 4-5 bug'ni (izobarik) qizdirish jarayoni;
- 5-7 o'ta qizigan (quruq) bug'ni turbinada (adiabatik) kengayib mexanik ish bajarish jarayoni;
- 7-1 -ishlab bo'lgan bug'ni kondensatordagi (izobarik) kichrayishi bo'lib, bug' suv holatiga o'tadi;

Ts diagrammada

- i yuza 0-0'-1-a-0- kondensat suvdagi qoldiq issiqlik miqdori;
- λ yuza: 1-3-b-a-1- suvni shu bosimda to'yinish haroratigacha qizdirish uchun sarflangan issiqlik miqdori;
- r yuza **3-4-c-b-3** bug' hosil qilish issiqligi, ya'ni qaynashning boshlanishidan to'la bug'lanib bo'lguncha sarflanadigan issiqlik miqdori;
- **q** yuza **4-5-d-c-4** to'yingan quruq bug'ni o'ta qizdirish uchun sarflanadigan issiqlik miqdoriyuza.

Yuza: 1-7-d -a -1 ishlab bo'lgan bug'ni sovutgichga beradigan q₂ issiqlik miqdori. Siklda olingan foydali ish:

 $\ell_0 = i_1 - i_2$

bu yerda, i₁- bug' qozonida va bug' qizdirgichda suvga va bug'ga berilgan issiqlik miqdori.

i₂- kondensatordagi sovituvchi suv bilan chiqib ketayotgan issiqlik miqdori.

Renkin siklning termik f.i.k.

 $m{\eta}_{_t} = rac{m{q}_{_0}}{m{q}_{_1}} = rac{m{i}_{_1} - m{i}_{_2}}{m{i}_{_1} - m{i}_{_2}^{_1}}$

Agar suv bug'i uchun Karno va Renkin sikllarini o'zaro taqqoslasak, Karno sikli tejamliroq, ya'ni f.i.k. yuqoriroq ekanligi bilinadi.

Bug'-kuch qurilmalarining termik f.i.k. uning to'la afzalligini ifoda qila olmaydi.

Asosiy ko'rsatkich **BKQ** uchun solishtirma bug' sarfi bo'lib hisoblanadi ya'ni **1kVt.soat** elektr energiyasi olish uchun sarflangan bug' (kg):

Yoki *1 kVt.soat* elektr energiyasi olish uchun sarflanadigan solishtirma issiqlik miqdori:

$$q_0 = \frac{3.6 \cdot 10^6}{\eta_t}$$
 $\frac{\text{kVt.soat}}{\text{kJ}}$

Renkin sikli termik f.i.k. ning son qiymati bug'ning asosiy ko'r-satkichlariga bog'liq.

1.3.Issiqlik bilan ta'minlash asoslari.

Ishlatayotgan bug' - kuch qurilmalaridagi bug'ning boshlang'ich va oxirgi bosim hamda haroratlarida siklning f.i.k. lari yuqori emas. Buning sababi, 50% yaqin issiqlik miqdori (q_2) kondensatorda sovutgichga o'tib ketadi.

Bu yo'qotilayotgan issiqlik miqdori "Ts" diagrammasida a-e-e'a₀-a yuza bilan ifodalangan. Shuncha miqdordagi issiqlikni foydali ishga sarflash mumkin. Odatdagi **BKQ** larida q_2 issiqlikdan foydalanish imkoniyati yo'q, chunki kondensatordan chiqayotgan sovituvchi suvning harorati xonalarni isitishga yetarli emas (30...35°S).

Nazorat savollari va topshiriqlar

- 1.Bug' kuch qurilmalari sxemalarini tasvirlang va ularning bir biridan farq qiluvchi xususiyatlarini ko'rsating.
- 2.Bug' kuch qurilmasi siklining FIK ni oshirish yo'llarini ko'rsating.
- 3. Siklning Ts koordinatalardagi tasvirlanishidan foydalanib, sikl tahlilini bajaring.

E`TIBORINGIZ UCHUN RAHMAT