Chapter 31 Développements limités

31.1 Développement limité en 0

31.2 Formule de Taylor-Young

31.3 Opérations sur les développements limités

Exercice 31.1

Déterminer le développement limité à l'ordre 4 en 0 de $x \mapsto \operatorname{sh}(x) - 2\sqrt{1+x}$.

Exercice 31.2

Déterminer le développement limité à l'ordre 7 en 0 de la fonction arctan.

Exercice 31.3

Déterminer le développement limité à l'ordre 5 en 0 de la fonction $x \mapsto e^x \sin(x)$.

Exercice 31.4

Déterminer le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \ln(\cos(x))$.

Exercice 31.5

Déterminer le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \ln\left(\frac{\sin(x)}{x}\right)$.

Exercice 31.6

Déterminer le développement limité à l'ordre 5 en 0 de la fonction tanh.

Exercice 31.7 (***)

- **1.** Développement limité à l'ordre n en 0 de $f(x) = \frac{1}{(1-x)^2(1+x)}$.
- **2.** Soit a_k le k-ème coefficient. Montrer que a_k est le nombre de solutions dans \mathbb{N}^2 de l'équation p+2q=k.

Exercice 31.8 (*)

1. Déterminer le développement limité à l'ordre 4, au voisinage de x = 0 de

$$f(x) = \operatorname{sh}(x)\operatorname{ch}(2x)$$
.

2. Déterminer le développement limité à l'ordre 5, au voisinage de x = 0 de

$$f(x) = e^{\sin(2x)}.$$

3. Déterminer le développement limité à l'ordre 4, au voisinage de x = 0 de

$$f(x) = \ln(1 + \sinh x).$$

Exercice 31.9

Donner les développements limités suivants.

1.
$$DL3$$
 en 0 de $f(x) = \ln \frac{1+x}{1-x}$.

2.
$$DL3$$
 en 0 de $f(x) = \exp \sqrt{1+x}$.

3.
$$DL3$$
 en 0 de $f(x) = \ln(2 + \sin x)$.

Exercice 31.10

Donner les développements limités suivants.

1.
$$DL3$$
 en 0 de $f(x) = (\cos x)\sqrt{1+x}$;

2.
$$DL4$$
 en 0 de $f(x) = \ln(1+x)\sqrt{1+x}$;

3.
$$DL3$$
 en 0 de $f(x) = \frac{(1+x)^{1/3}}{1-x}$;

4.
$$DL4 \text{ en } 0 \text{ de } f(x) = e^{\cos x}$$
;

5.
$$DL3 \text{ en } 0 \text{ de } f(x) = \frac{x}{\ln(1+x)}$$
;

6.
$$DL4 \text{ en } 0 \text{ de } f(x) = \frac{x}{\sin x}.$$

Exercice 31.11

Déterminer les développements limités à l'ordre demandé au voisinage des points indiqués.

1.
$$\frac{1}{1-x^2-x^3}$$
 (ordre 7 en 0).

2.
$$\frac{1}{\cos x}$$
 (ordre 7 en 0).

3. Arccos
$$\sqrt{\frac{x}{\tan x}}$$
 (ordre 3 en 0).

4.
$$\tan x$$
 (ordre 3 en $\frac{\pi}{4}$).

5.
$$(\operatorname{ch} x)^{1/x^2}$$
 (ordre 2 en 0).

6.
$$\tan^3 x(\cos(x^2) - 1)$$
 (ordre 8 en 0).

7.
$$\frac{\ln(1+x)}{x^2}$$
 (ordre 3 en 1).

8. Arctan($\cos x$) (ordre 5 en 0).

9. Arctan
$$\sqrt{\frac{x+1}{x+2}}$$
 (ordre 2 en 0).

10.
$$\frac{1}{x^2} - \frac{1}{\arcsin^2 x}$$
 (ordre 5 en 0).

11.
$$\ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right)$$
 (ordre 100 en 0).

Exercice 31.12

Déterminer le développement limité de

$$\int_{x}^{x^2} \frac{1}{\sqrt{1+t^4}} \, \mathrm{d}t$$

à l'ordre 10 en lorsque $x \to 0$.

Exercice 31.13

Écrire le développement limité à l'ordre 4 en zéro de

$$f: x \mapsto \arctan \frac{\sqrt{3} + x}{1 + x\sqrt{3}}$$

31.4 Développement limité en un point a

Exercice 31.14

Donner les développements limités suivants.

1.
$$DL4 \text{ en } \pi/3 \text{ de } f(x) = \cos x$$
;

2.
$$DL4$$
 en 1 de $f(x) = e^x$;

3.
$$DL4 \text{ en } 2 \text{ de } f(x) = \frac{1}{x}$$
;

4.
$$DL3 \text{ en } \pi/4 \text{ de } f(x) = \tan x$$
;

5.
$$DL4$$
 en e de $f(x) = \ln x$

5. *DL*4 en *e* de
$$f(x) = \ln x$$
;
6. *DL*4 en 1 de $f(x) = \frac{\ln x}{x}$.

Exercice 31.15

Déterminer un équivalent simple, au voisinage de x = e de $e^x - x^e$.

Déterminer le développement limité de

$$\tan \left(4(\pi^3 + x^3)\right)^{1/3}$$

à l'ordre 3 en lorsque $x \to \pi$.

31.5 Applications des développements limités

Exercice 31.17

Calculer les limites suivantes.

1.
$$\lim_{x\to 0} \frac{\sin 3x}{1-e^{2x}}$$
;

3.
$$\lim_{x\to 0} \frac{1}{\sin x} - \frac{1}{x}$$
;

2.
$$\lim_{x\to 0} \frac{x-\ln(1+x)}{x^2}$$
;

3.
$$\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{x}$$
;
4. $\lim_{x \to 0} \frac{x - \arcsin(x)}{x^3}$.

Exercice 31.18

Déterminer la limite de $\frac{1}{x^2} - \frac{1}{\tan^2(x)}$ quand x tend vers 0.

Exercice 31.19

Déterminer

$$\lim_{x\to 0} \left(\frac{\ln(1+2x+2x^2)}{\ln(1+2x+3x^2)}\right)^{1/(e^x-1)}.$$

Exercice 31.20

Pour chacune des fonctions suivantes, donner le développement limité demandé. En déduire l'équation de la tangente à la courbe de f au point d'abscisse 0 ainsi que les positions relatives.

1.
$$DL2$$
 en 0 de $f(x) = e^x - 2\sqrt{1+x}$.

3.
$$DL3$$
 en 0 de $f(x) = \ln(1-x) - \cos x$

2.
$$DL3$$
 en 0 de $f(x) = \ln(1+x) + e^x$

1.
$$DL2$$
 en 0 de $f(x) = e^x - 2\sqrt{1 + x}$.
3. $DL3$ en 0 de $f(x) = \ln(1 - x) - \cos x$.
4. $DL4$ en 0 de $f(x) = e^x \cos(x) + \frac{x^3}{3} - x$.

Exercice 31.21

Pour $x \in \mathbb{R}^*$, on pose

$$f(x) = \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right).$$

- 1. Déterminer un développement limité à l'ordre 3 au voisinage de x = 0 de f(x).
- 2. En déduire le prolongement par continuité de f en zéro. On note encore f ce prolongement.
- 3. Montrer que f, ainsi prolongée, est dérivable en zéro.
- **4.** Préciser la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse zéro, au voisinage de ce point.

Exercice 31.22

Soit f la fonction définie sur]-1,1[par $f(x)=\frac{\sqrt{1+x}}{1-x}.$

Déterminer une équation de la tangente à la courbe représentative de f au point de coordonnées (0, f(0)) puis la position de la courbe par rapport à sa tangente.

Exercice 31.23

Pour les fonctions suivantes au voisinage du point a indiqué, étudier la possibilité de prolonger par continuité, puis, dans l'affirmative, la dérivabilité et l'existence d'une tangente à la courbe ; enfin préciser le placement local de la courbe par rapport à sa tangente.

338

1.
$$f: x \mapsto \frac{2x \ln x}{x-1}$$
 au point $a=1$.

2.
$$g: x \mapsto \ln(\tan x)$$
 au point $a = \pi/4$.

3.
$$h: x \mapsto \frac{1}{x(e^x - 1)} - \frac{1}{x^2} + \frac{1}{2x}$$
 au point $a = 0$.

Exercice 31.24

Soit g la fonction $x \mapsto \frac{\arctan x}{(\sin x)^3} - \frac{1}{x^2}$.

- 1. Donner le domaine de définition de g.
- 2. Montrer qu'elle se prolonge par continuité en 0 en une fonction dérivable.
- 3. Déterminer la tangente en 0 au graphe de cette fonction et la position de ce graphe par rapport à celle-ci.

31.6 Développements asymptotiques

Exercice 31.25

- 1. Montrer que, pour $\lambda > e$, l'équation $e^x = \lambda x$ a deux solutions dans $]0, +\infty[$. On notera $x(\lambda)$ la plus petite.
- **2.** Se convaincre sur un dessin que $\lim_{\lambda \to +\infty} x(\lambda) = 0$.
- 3. Montrer que $\lim_{\lambda \to +\infty} x(\lambda) = 0$.
- **4.** Établir successivement les résultats suivants lorsque λ tend vers $+\infty$:

(a)
$$x(\lambda) \sim \frac{1}{\lambda}$$
.

(b)
$$e^{x(\lambda)} = 1 + \frac{1}{\lambda} + o\left(\frac{1}{\lambda}\right)$$
.

(c)
$$x(\lambda) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + o\left(\frac{1}{\lambda^2}\right)$$
.

(d)
$$x(\lambda) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + \frac{3}{2\lambda^3} + o\left(\frac{1}{\lambda^3}\right)$$
.

On a ainsi obtenu un développement asymptotique de $x(\lambda)$ quand λ tend vers $+\infty$.

Exercice 31.26 Applications des développements limités à l'étude de suites

Déterminer un équivalent des suites dont le terme général est donné.

1.
$$u_n = (n+1)^{\frac{1}{n+1}} - n^{\frac{1}{n}}$$
.

2.
$$u_n = 2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1}$$
.

3.
$$u_n = \frac{\ln(n+1) - \ln(n)}{\sqrt{n+1} - \sqrt{n}}$$
.

Exercice 31.27

Étudier avec soin les branches infinies et leur placement local par rapport aux éventuelles asymptotes.

$$\begin{array}{cccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x + \sqrt{x^2 + 1} \end{array}.$$

Exercice 31.28

Soit la fonction f définie par

$$f(x) = \frac{x^3}{x+1} \ln\left(\frac{x+1}{x}\right)$$

Étudier les branches infinies (pour $x \to +\infty$ et $x \to -\infty$) de la courbe de f.

Exercice 31.29

Étudier la fonction d'une variable réelle définie par la relation

$$f(x) = x + \sqrt{x^2 - 1}$$

en portant une attention particulière aux asymptotes et demi-tangentes.

Exercice 31.30

Réaliser l'étude complète des fonctions suivantes et les tracer. Étudier avec soin les branches infinies et leur placement local par rapport aux éventuelles asymptotes.

$$f: x \mapsto \sqrt{\frac{x^3}{x-1}},$$
 et $g: x \mapsto x^2 \arctan\left(\frac{1}{1+x}\right).$

Exercice 31.31

Soit λ un réel strictement positif, différent de $\sqrt{2}$, et (f_{λ}) la famille de fonctions définie par

$$f_{\lambda}(x) = \left(x - \frac{1}{\lambda}\right) e^{\lambda/x}.$$

On note C_{λ} sa courbe représentative.

- **1.** Étude de f_1 .
 - (a) Étudier les variations de la fonction f_1 .
 - (b) À l'aide d'un développement limité on dit aussi développement asymptotique —, déterminer sa limite en $+\infty$ et $-\infty$, montrer que sa courbe admet une asymptote oblique que l'on précisera et étudier la position de la courbe par rapport à cette asymptote.
 - (c) Calculer les limites à gauche et à droite de f_1 en 0. La fonction f_1 admet-elle un prolongement par continuité en 0 ? Si oui, ce prolongement est-il dérivable ? Que peut-on en déduire pour la courbe C_1 ?
 - (d) Représenter graphiquement C_1 et son asymptote oblique.
- 2. Dans cette question, on étudie f_2 . À l'aide d'un développement limité, déterminer sa limite en $+\infty$ et $-\infty$, montrer que la courbe C_2 admet une asymptote oblique que l'on précisera et étudier la position de la courbe par rapport à cette asymptote.
- 3. À l'aide d'un développement limité, étudier les branches infinies de C_{λ} .