《线性代数》模拟试题 02

专业:	班级:	姓名:	学号:
)—·//•·		

题	i号	得分	合计	总分
	1			
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
	10			
=	11			
	12			
	13			
	14			
	15			
=	16			
	17			
	18			
	19			
	20			
	21			
四	22			

- -、填空题: 1~10 小题,每小题 2 分,共 20 分.
 - 若五元排列12i4 j 的逆序数等于 3,则排列 j4i21 的逆序数等于
 - 行列式 $D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ 的第 3、4 行元素代数余子式的和为______.
 - 设A为4阶方阵, A^* 是A的伴随矩阵,若 $\left|A\right|$ =-2,则 $\left|-A^*\right|$ =_____.
 - 4. 设 $A = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \begin{pmatrix} -1 & 5 & 4 \end{pmatrix}$,则 $A^5 =$ _______.
 - 求满足等式 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c & c_1 & c_2 \end{vmatrix}$ $B = \begin{vmatrix} a_1 & a_2 + ka_3 & a_3 \\ b_1 & b_2 + kb_3 & b_3 \\ c_1 & c_2 + kc_3 & c_3 \end{vmatrix}$ 的矩阵 B =______.
 - 6. 设 A 、 B 为 3 阶 方 阵 , E 为 3 阶 单 位 矩 阵 , 且 满 足 AB = A + B , 则 $\left(A-E\right)^{-1}=\underline{\qquad}.$
 - 7. 设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, 其中 $\alpha_2 \setminus \alpha_3$ 线性无关, $\alpha_1 + 2\alpha_2 \alpha_3 = 0$,向量 $\beta = \alpha_1 + 2\alpha_2 + 3\alpha_3$, 则 $Ax = \beta$ 的通解可表示为
 - 设向量 $\boldsymbol{\alpha} = (2, 1, 3, 2)^{\mathrm{T}}$, $\boldsymbol{\beta} = (1, 2, -2, 1)^{\mathrm{T}}$,则 $\boldsymbol{\alpha} 与 \boldsymbol{\beta}$ 的夹角 $\boldsymbol{\theta} = \underline{\hspace{1cm}}$.
 - 9. 若 3 阶方阵 A 的特征值有 1、2、0,则 A-E 的特征值为 , A 是否可
- 、单项选择题: $11 \sim 15$ 小题,每小题 3 分,共 15 分.
 - 11. 已知 4 阶方阵 A 的第三列的元素依次为1、3、-2、2,它们的余子式的值分别为3、

$$-2$$
、1、1,则 $A=($).

(A) 5

(B) -5 (C) -3

(D) 3

12 . 设 A 、 B 为 n 阶方阵,且 A ≠ O , AB = O ,则下列结论正确的是().
--	----

(A) $\boldsymbol{B} = \boldsymbol{O}$

 $(\mathsf{B}) \ |\mathbf{B}| = 0 \ |\mathbf{E}| \ |\mathbf{A}| = 0$

(C) BA = 0

- (D) $(A-B)^2 = A^2 + B^2$
- 13. 向量组 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性无关的充分必要条件是 ().
 - (A) α_1 , α_2 , ..., α_n 都不是零向量
 - (B) $\alpha_1, \alpha_2, ..., \alpha_n$ 中任意两个向量都线性无关
 - (C) α_1 , α_2 , ..., α_n 中任意一个向量都不能用其余向量线性表出
 - (D) $\alpha_1, \alpha_2, ..., \alpha_n$ 中任意 s-1 个向量都线性无关
- 14. 若非齐次线性方程组 Ax = b 的导出组 Ax = 0 仅有零解,则 Ax = b ().
 - (A) 必有无穷多解

(B) 必有唯一解

(C) 必定无解

- (D) 上述选项均不对
- 15. 对于n阶实对称矩阵A,以下结论正确的是().
 - (A) 一定有n个不同的特征根
 - (B) 它的特征根一定是整数
 - (C) 存在正交矩阵 P, 使 $P^{T}AP$ 成对角形
 - (D) 属于不同特征根的特征向量必线性无关,但不一定正交
- 三、计算题: 16~21 小题, 每小题 9 分, 共 54 分.

16. 设
$$a_1 a_2 \cdots a_n \neq 0$$
,计算 n 阶行列式
$$\begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 + a_n \end{vmatrix}$$
.

17. 给定矩阵
$$A = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 & 3 \end{pmatrix}$$
, 求 A^{-1} , $|A^{2}|$ 以及 $(A^{*})^{-1}$.

18. 设 3 阶矩阵
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, X 是 3 阶未知方阵,解矩阵方程 $AX = A + 2X$.

19. 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 1 & 5 & -3 \\ 3 & -2 & 3 & 6 & -1 \\ 1 & 6 & -4 & -1 & 4 \\ 3 & 2 & 0 & 5 & 0 \end{pmatrix}$$
, 求: (1) 矩阵 A 的秩,并给出 A 的一个最高

阶非零子式; (2) 矩阵 A 列向量组的一个极大线性无关组,并将其余向量用极大线性无关组表示.

20. 已知线性方程组
$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ x_1 + 3x_2 + 6x_3 + x_4 = 3 \end{cases}$$
 . (1) a 为何值时方程组有解; (2) 当方程
$$x_1 - 5x_2 - 10x_3 + 9x_4 = a$$

组有解时求出它的全部解 (用解的结构表示).

21. 已知实二次型 $f(x_1,x_2,x_3)=2x_1^2+2x_2^2+2x_3^2+2x_1x_2+2x_1x_3+2x_2x_3$,求正交变换将该二次型化为标准形,并给出标准形(要求:写出计算步骤).

四、证明题:本题满分11分.

- 22. (1) 设 $A = (a_{ij})$ 为 3 阶可逆阵,且 $A_{ij} = a_{ij}$ (这里 A_{ij} 表示 A 中 a_{ij} 的代数余子式). 证明 A = 1 .
 - (2) 设矩阵 $A_{m\times n}B_{n\times m}$ 为可逆阵,证明 A 必为行满秩矩阵,B 必为列满秩矩阵.