Logique et Langage Partiel

Pierre-Léo Bégay

13 Novembre 2017

Consignes

Durée: 2 heures

S'il y a des problèmes de compréhension / de français, ne pas hésiter à me demander

Vous pourrez remarquer un sympathique exercice bonus à la fin. Ne vous y frottez que si vous avez fait - ou au moins tenté - tout le reste.

1 Syllogistique et Port-Royal

1.1 Classification de propositions

Donnez la classe (la plus précise possible) des propositions suivantes :

- ullet Le prof de logique est fou
- Les cours qu'il donne sont brouillons
- Un devoir de ce prof est super long à faire
- Aucun élève n'apprécie le cours
- Si il est gentil, le prof mettra un partiel pas trop dur

1.2 Relations entre propositions

Propositions contradictoires Pour chaque proposition de l'exercice précédent, donnez sa proposition contradictoire (cad sa négation). Vous pouvez évidemment utiliser les classifications que vous avez précédemment données.

1.3 Schémas

Pour chaque syllogisme, dire s'il est valide ou non

1^{er} syllogisme	Certains M sont A	$2^{\grave{e}me}$ syllogisme	Tous les M sont A
	Tous les B sont M		Certains B sont M
	Certains B sont A		Certains B sont A

2 Raisonnement

2.1 Première situation

Mary Jane s'inquiète : non seulement son copain Clark Kent rate la plupart de leurs rendez-vous, mais en plus ça correspond systématiquement à des apparitions de Batman - super-héros masqué local - pour sauver la ville d'un nouveau super-méchant. Au bout de la cinquantième fois, et alors qu'elle n'a toujours pas vu les deux en même temps, Mary Jane en est persuadée : Clark Kent est en fait Batman.

Quel type de raisonnement fait-elle (merci de donner le nom précis du raisonnement) ? Est-ce un raisonnement rigoureux, et pourquoi ?

2.2 Deuxième situation

Chloé, armée de tout son courage et de quelques centaines d'heures de temps libre¹, décide de se mettre à jouer à un jeu en ligne appelé *Légende of Ligue 1* (LoL1). Lors de sa première partie, elle tombe sur des joueurs agressifs, qui l'insultent pour un oui ou pour un non. Puis pareil à la seconde partie, à la troisième, etc ...

Au bout de 50 parties à se faire agresser par l'intégralité des autres participants, Chloé conclut que tous les joueurs de *LoL1* sont des gens peu recommandables. Quel type de raisonnement fait-elle (nom précis aussi svp)? Est-ce un raisonnement rigoureux, et pourquoi?

3 Logique propositionnelle

3.1 Arbres syntaxiques

Donnez l'arbre syntaxique de chacune des propositions suivantes :

- 1. $(P \land \neg P)$
- 2. $((P \lor Q) \land (\neg P \lor \neg Q))$
- 3. $(P \rightarrow (Q \rightarrow R))$
- 4. $\neg((P \land Q) \to R)$

3.2 Sémantique

Donnez les conditions de vérité (cad la table de vérité) des formules de l'exercice précédent. Attention au nombre de configurations (et donc de lignes)!

Donnez une formule équivalente à la quatrième qui n'utilise ni \rightarrow , ni \wedge Allez-y doucement et mécaniquement, et ça se passera bien

¹en même temps, c'est manifestement pas sur vous qu'elle peut compter pour s'occuper

3.3 Modélisation

Modéliser en logique propositionnelle (du mieux que possible) les phrases suivantes :

- Stéphane étudie à Paris 7
- Stéphane et Jade étudient à Paris 7
- Stéphane s'est inscrit à Paris 7 parce que c'est là que Jade étudie
- Si elle n'a pas cours demain, Jade ira au cinéma
- Stéphane n'ira au cinéma demain que s'il n'a pas cours et qu'il a de l'argent

Bonus

Soient les (squelettes de) formules

$$\phi = ((A?B)?(C?D))$$
$$\psi = ((A?B)?(C?D))$$

Remplacez chacun des "?" par un connecteur binaire $(\land, \lor, \to \text{ou} \leftrightarrow, \text{chacun peut servir} 0, 1 \text{ ou plusieurs fois})$ de façon à ce qu'aucune des deux formules n'implique l'autre. Dit autrement, de telle sorte que ϕ puisse être vraie sans que ψ le soit, et inversement.

Je vois deux façons d'essayer de résoudre cette énigme : soit vous prenez des formules au hasard et vous tâtonnez jusqu'à ce qu'elles marchent, soit vous pouvez vous inspirer de patterns (ou phénomènes) de la logique propositionnelle qu'on a croisés plusieurs fois depuis le début du cours.

Pour prouver votre réponse, donnez une configuration² telle que ϕ soit vraie (= 1) et ψ soit fausse (= 0), puis une autre configuration telle que ψ soit vraie et ϕ soit fausse

S'il vous reste du temps, essayez d'expliquer en français, avec vos propres mots, pourquoi aucune des deux formules n'implique l'autre

 $^{^2}$ Par configuration, on entend une valuation des propositions atomiques, par exemple $A=0,\ B=1,\ C=0$ et D=1