Neuron:

Dynamics of Proteins & Enzymes

Neuron: Nucleus & Synapse

Stage-1:

Protein Formation

Basic Genetic Processes: R² T⁵

Replication of DNA (during Cell Division)

Protein Formation Steps:

- > Transcription,
- > RNA processing,
- > Transference,
- > Translation
- > Translocation

Genetic Code (RNA to Amino Acids)*

(Discovery of Har Govind Khorana)

RNA

	t ition end)					Third Position (3' end)
			Second Posi	tion		
		U	С	A	G	
		Phe Phe	Ser Ser	Туг Туг	Cys Cys	U C
U						
		Leu Leu	Ser Ser	Stop Stop	Stop Trp	A G
		Leu Leu	Pro Pro	His His	Arg Arg	U C
С						
		Leu Leu (Met)*	Pro Pro	Gln Gln	Arg Arg	A G
A		Ile Ile	Thr Thr	Asn Asn	Ser Ser	U C
A		Ile Met (start)	Thr Thr	Lys Lys	Arg Arg	A G
		Val Val	Ala Ala	Asp Asp	Gly Gly	U C
G						
		Val Val (Met)*	Ala Ala	Glu Glu	Gly Gly	A G
		initiator codon; GUG usually o for methionine to initiate a pro		and CUG for leucine, but, ra	arely,	

MODOLOGO Chica Consort **Nucleolus** ANALOS DE LA COMPANION DE LA C 1 Transcription rRNA **Nucleus** processing AN Ribosomal subunits Amino acids Translation factors 3 mRNA translation

Ribosoma RNA (rRNA)

Transfer RNA (tRNA)

Messenger RNA (mRNA)

Translation: Protein Synthesis by "3" RNAs

The Nobel Prize in Chemistry 2009

© The Nobel Foundation. Photo: U. Montan

Venkatraman Ramakrishnan

Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan

Thomas A. Steitz

Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan

Ada E. Yonath

Prize share: 1/3

The Nobel Prize in Chemistry 2009 was awarded jointly to Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath "for studies of the structure and function of the ribosome."

Genetic Code (RNA to Amino Acids)*

Alanine	Valine	Isoleucine	
(Ala or A)	(Val or V)	(lie or l)	
Methionine	Phenylalanine	Tyrosine	
(Met or M)	(Phe or F)	(Tyr or Y)	
Lysine	Arginine	Histidine	
(Lys or K)	(Arg or R)	(His or H)	
Glutamate	Asparagine	Glutamine	
(Glu or E)	(Asn or N)	(GIn or Q)	
Aspartate	Serine	Threonine	
(Asp or D)	(Ser or S)	(Thr or T)	
Cysteine	Glycine	Proline	
(Cys or C)	(Gly or G)	(Pro or P)	
Leucine (Leu or L)	Tryptophan (Trp or W)		

Position (5' end)		Second	Position		Positio (3' enc
	U	C	A	G	
	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
U					
	Leu	Ser	Stop	Stop	A
	Leu	Ser	Stop	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu (Met)*	Pro	Gln	Arg	G
A	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	A
	Met (start)	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	A
	Val (Met)*	Ala	Glu	Gly	G

Structure of tRNA

3-D Representation

Yeast's Alanine tRNA

Protein aa -tRNA₇ arriving Peptide Growing bonding H2N-C-R polypeptide chain C=OH C=O Ribosome tRNA₄ leaving mRNA Codon Polypeptide **Electron** 50S chaperones Microscopy **Double-Stranded RNA Computational** 30S **Tomographic** mRNA **Imaging**

Ribosome Structure

X-Ray Crystallography

Poly-ribosome ("Poly-some"): Recycled Ribosome

"Circular" mRNA used

Electron Microscopy

