Problema A: Números de Motzkin

Este ano é ano da sequência de inteiros M_n dita de Motzkin (link wikipedia). Diz o Wikipedia que

Em matemática, um número de Motzkin para um dado número n é o número de diferentes maneiras de desenhar cordas não-intersectantes entre n pontos sobre uma circunferência. Os números de Motzkin são denominados em memória de Theodore Motzkin, tendo diversas aplicações em geometria, combinatória e teoria dos números.

Os números de Motzkin M_n para $n=0,1,\ldots$ formam a sequência:

 $1, \ 1, \ 2, \ 4, \ 9, \ 21, \ 51, \ 127, \ 323, \ 835, \ 2188, \ 5798, \ 15511, \ 41835, \ 113634, \ 310572, \\ 853467, \ 2356779, \ 6536382, \ 18199284, \ 50852019, \ 142547559, \ 400763223, \ 1129760415, \\ 3192727797, \ 9043402501, \ 25669818476, \ 73007772802, \ 208023278209, \ 593742784829$

Por exemplo, para $M_5 = 21$, as soluções são (retirado do site wikipedia):

Figura 1: M_5 numa imagem

Aviso: É esperado uma solução recursiva . Qualquer solução baseada na iteração (ciclos) será rejeitada pela equipa docente.

A resolução deste exercício precisa de uma implementação da sequência muito cuidada. Primeiro, é necessário uma implementação claramente eficiente: sem cuidado particular, a execução é rapidamente incomportável.

Segundo, por esta considerar valores de entrada relativamente grandes, a sequência vai muito rapidamente devolver valores que ultrapassam em tamanho a capacidade dos inteiros primitivos (int). Para isso, aconselha-se o uso da aritmética de precisão arbitrária. Tal funcionalidade pode ser encontrada na biblioteca zarith.

Entrada

Uma linha com um inteiro n.

Saída

Uma primeira linha com o valor M_n

Limites

 $0 \le n \le 10000$

Exemplo de Entrada

6

Exemplo de Saída

51