

What is claimed is:

1. A hybrid vehicle that is traction powered by an internal combustion engine and an
2 electric motor powered by a fuel cell system, the hybrid vehicle's drive system
3 comprising:
 - 4 a) the electric motor being combined with a driveshaft that is also driven by
5 the internal combustion engine via a transmission; and
 - 6 b) a computer controller establishing values of power delivered to the
7 electric motor from the fuel cell system to rotate the driveshaft
8 independently or in combination with internal combustion engine,
9 depending on vehicle traction drive demands.
1. 2. The hybrid vehicle of claim 1, wherein the fuel cell system delivers both peak and mean
2 power to the electric motor without the need of an electricity storage device
3 (traction battery).
1. 3. The hybrid vehicle of claim 1, wherein the internal combustion engine and the fuel cell
2 system are powered by the same fuel.
1. 4. The hybrid vehicle of claim 1, wherein the exhaust of fuel cell system is fed back into
2 an intake of the internal combustion engine.
1. 5. The hybrid vehicle of claim 1, wherein the fuel cell system includes a Solid Oxide Fuel
2 Cell (SOFC).
1. 6. The hybrid vehicle of claim 5, wherein exhaust from the internal combustion engine
2 provides heat to the SOFC.
1. 7. The hybrid vehicle of claim 1, wherein the electric motor has a rotor coaxial with the
2 driveshaft and a stator fixed to the vehicle frame.
1. 8. A hybrid vehicle having an internal combustion engine and an electric motor powered
2 by a fuel cell system each arranged as a traction power source, the vehicle
3 comprising:

- 4 a) a driveshaft rotated by the internal combustion engine, wherein the
5 driveshaft includes a rotor of the electric motor; and

6 b) a stator of the motor surrounds the rotor and is fixed to the vehicle; and

7 c) a fuel cell system provides peak power to the motor without the need of
8 an electricity storage device; and

9 d) the fuel cell system can rotate the driveshaft independently of the
10 internal combustion engine or in combination with the internal
11 combustion engine.

1 9. The vehicle of claim 8, wherein the internal combustion engine and the fuel cell system
2 are powered by the same fuel.

1 10. The vehicle of claim 8, wherein the fuel cell system includes a SOFC.

1 11. The vehicle of claim 10, wherein exhaust from the fuel cell system is fed to an intake
2 of the internal combustion engine.

1 12. The method of claim 10, wherein exhaust from the internal combustion engine
2 provides heat to the SOFC.

1 13. A method of operating a traction drive of a hybrid vehicle having an internal
2 combustion engine, a transmission, a driveshaft and a driven wheel, the method
3 comprising:

- 4 a) arranging a rotor of an electric motor in the driveshaft so that a stator of
5 the motor surrounds the driveshaft; and

- 6 b) powering the electric motor with a fuel cell system unaided by an
7 electricity storage device; and

- 8 c) using a computer controller to control the electric motor and the internal
9 combustion engine so that the electric motor can rotate the
10 driveshaft alone or with the internal combustion engine, depending
11 on vehicle traction drive demands.

- 1 22. The method of claim 19, including feeding an exhaust from the fuel cell system to an
2 intake of the internal combustion engine.