Reprezentacja zmiennoprzecinkowa $x_{t,r}$ liczby x:

$$x_{t,r} = m_t \cdot P^{c_r}$$

 m_t - mantysa, $|m_t| < 1$, t - liczba znaków mantysy,

 c_r - wykładnik (cecha), r - liczba znaków wykładnika,

P - podstawa (ograniczymy się do P=2).

Naturalna reprezentacja znormalizowana:

$$0.5 \le |m_t| < 1$$
,

wówczas t pozycjom mantysy odpowiada t pierwszych pozycji po przecinku mantysy jako liczby,

np.: $m_7 = 1011011 \sim 0,1011011, m_4 = 1011 \sim 0,1011.$

(jedynka jest zawsze na pierwszej pozycji każdej mantysy znormalizowanej).

Np. dla t=4 i r=2 oraz dwóch bitów znaków przykładowa reprezentacja zmiennoprzecinkowa binarna:

(niebieskie bity znaków, zero = plus: $(-1)^0 = 1$).

Podana liczba w systemie dziesiętnym:

$$x = 2^{(-1)^0(1 \cdot 2^1 + 0 \cdot 2^0)} \cdot (-1)^0(1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4}) = 2.75,$$

kolejne potęgi dwójki rosną płynnie od końca mantysy do początku wykładnika.

Zbiór liczb maszynowych dla reprezentacji znormalizowanej, uzupełniony o 0:

$$\{-x_{max},\ldots,-x_{min}\}\cup\{0\}\cup\{x_{min},\ldots,x_{max}\},\$$

gdzie:
$$x_{min} = m_{min} 2^{r_{min}}, x_{max} = m_{max} 2^{r_{max}}$$

W standardzie IEEE 754 przyjęto konwencję normalizacji:

$$1 \le |m_t| < 2,$$

np.
$$m_7 = 1011011 \sim 1{,}011011, m_4 = 1011 \sim 1{,}011$$

Liczba 2.75 zapisana w tej konwencji jest w postaci :

$$x = 2^{(-1)^0(0 \cdot 2^1 + 1 \cdot 2^0)} \cdot (-1)^0(1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}) = 2.75$$

(mantysa pomnożona przez 2, wykładnik zmniejszony o 1).

Wg standardu IEEE 754, format 32 bitowy (single precision):

- ullet mantysa 24 bitowa, z normalizacją: $1 \leq |m_{24}| < 2$,
- wykładnik 8 bitowy kodowany z przesunięciem o $2^7-1=127$

co daje zakres liczb ok. od $\pm 1.8 \times 10^{-38}$ do $\pm 3.4 \times 10^{38}$.

bit	wykładnik bez znaku	znormalizowana mantysa 24 pozycyjna
znaku	przesunięty o 127	(pierwszy bit zawsze równy 1 - domyślny)
(1 bit)	(8 bitów)	(23 bity)

Reprezentacja liczby dziesiętnej w tym standardzie:

$$x_{IEEE754,32} = (-1)^s \cdot m_{24} \cdot 2^{c_8-127}, \text{ gdzie}$$

s – bit znaku,

 m_{24} – liczba dziesiętna odpowiadająca mantysie 24 bitowej,

 $c_8 - 127$ – liczba z zakresu -126 ($c_8 \sim 00000001$) do $+127(c_8 \sim 111111110)$,

np. wykładnik zero (dla mantysy z zakresu [1,2)) jest reprezentowany przez $c_8 \sim 01111111 \ (0 \cdot 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 127).$

Reprezentacja liczby dziesiętnej x = 2.75:

$$\left(x = 2^{(-1)^0(0 \cdot 2^1 + 1 \cdot 2^0)} \cdot (-1)^0(1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}) = 2.75\right)$$

Zbiór liczb maszynowych

$$M = \{-x_{max}, \dots, -x_{min}\} \cup \{0\} \cup \{x_{min}, \dots, x_{max}\} \subset R$$
 jest skończony;

- im większe t, tym M jest "gęściejszy",
- im większe r, tym M pokrywa większy zakres liczb.

Zakładając $c_r = c$, oznaczmy najlepsze maszynowe przybliżenie liczby x przez $\operatorname{rd}(x)$ (od rounding): $\operatorname{rd}(x) = m_t \cdot 2^c$

Przybliżenie jest najlepsze, jeśli:

$$|\operatorname{rd}(x) - x| \le \min_{g \in M} |g - x|$$

Postulat ten jest spełniony przez typowe zaokrąglenie:

$$m_t = \sum_{i=1}^t e_{-i} \cdot 2^{-i} + e_{-(t+1)} \cdot 2^{-t},$$

gdzie $e_{-1}=1$, $e_{-i}=0$ lub 1 dla i=2,3,...,t+1 (wzór dla $\frac{1}{2}\leq m_t<1$).

Oszacowanie błędu zaokrąglenia (roundoff error):

$$|m - m_t| \le 2^{-(t+1)}$$

Uzasadnienie:

- na pierwszej odrzucanej pozycji mantysy jest ${\bf 0}$, to odrzucana część (z pierwszą jedynką na pozycji t+2 lub dalej) jest z zakresu $[0 \ 2^{-(t+1)})$ tzn. mantysa m_t jest z niedomiarem $< \ 2^{-(t+1)}$;
- na pierwszej odrzucanej pozycji mantysy jest 1, tzn. odrzucana część jest z zakresu $[2^{-(t+1)} \ 2^{-t}) = [\frac{1}{2}2^{-t} \ 2^{-t})$, ale wtedy zaokrąglamy dodając 2^{-t} do mantysy ponieważ odrzucana część jest z zakresu $[\frac{1}{2}2^{-t} \ 2^{-t})$, to błąd jest dodatni z zakresu

$$2^{-t} - \left[\frac{1}{2}2^{-t} \ 2^{-t}\right] = \left(0 \ \frac{1}{2}2^{-t}\right] = \left(0 \ 2^{-(t+1)}\right],$$

tzn. mantysa m_t jest z nadmiarem $\leq 2^{-(t+1)}$.

Błąd względny reprezentacji:

$$\frac{\operatorname{rd}(x) - x}{x} = \frac{m_t \cdot 2^c - m \cdot 2^c}{m \cdot 2^c} = \frac{m_t - m}{m},$$

skąd oszacowanie błędu względnego zaokrąglenia:

$$\left| \frac{\operatorname{rd}(x) - x}{x} \right| = \frac{|m_t - m|}{|m|} \le \frac{2^{-(t+1)}}{2^{-1}} = 2^{-t}, \quad \operatorname{gdy} \quad |m| \ge 2^{-1} \quad (\frac{1}{2} \le m_t < 1)$$

Zależność

$$\left| \frac{\operatorname{rd}(x) - x}{x} \right| = \frac{|m_t - m|}{|m|} \le 2^{-t}$$

jest uniwersalna i nie zależy od przyjętego wzorca normalizacji mantysy.

Stąd, maksymalny błąd względny reprezentacji zmiennoprzecinkowej zależy jedynie od liczby bitów mantysy i nazywany jest dokładnością maszynową, czy precyzją maszynową (machine precision) i oznaczany jest przez eps

Dla mantysy t-bitowej i zaokrąglania (dla każdej normalizacji) $eps = 2^{-t}$.

Mamy:

$$|rd(x) - x| \le eps \cdot |x|$$

stąd błąd reprezentacji można zapisać w równoważnej postaci:

$$rd(x) - x = \varepsilon \cdot x, \quad |\varepsilon| \le eps,$$

gdzie ε to liczba reprezentująca błąd zaokrąglenia liczby x (dodatnia, zero lub ujemna).

Ostatnią równość zapisuje się powszechnie w postaci

$$\operatorname{rd}(x) = x(1+\varepsilon), \quad |\varepsilon| \le eps$$

Aproksymacja maszynowa liczby przez obcięcie:

$$m_t = \sum_{i=1}^t e_{-i} \cdot 2^{-i} \quad (\text{wz\'or dla } \frac{1}{2} \leq m_t < 1),$$

wprowadza tzw. błąd obcięcia (truncation error, chopping error).

Odrzucana część jest z zakresu $[2^{-(t+1)}, 2^{-t})$, stąd m_t jest z niedomiarem $\leq 2^{-t}$,

$$|m - m_t| \le 2^{-t}$$
.

Przy zaokrąglaniu było $|m-m_t| \leq 2^{-(t+1)}$, stąd teraz $eps = 2^{-t+1}$ (zamiast 2^{-t}),

$$\operatorname{rd}(x) = x(1+\varepsilon), \quad |\varepsilon| \le 2^{-t+1} = eps.$$

W przypadku stosowania słowa o podwójnej długości mantysy:

$$eps_{mdl} = (eps)^2$$
,

gdzie indeks dolny "mdl" oznacza mantissa double length.

Wg standardu IEEE 754 liczba w podwójnej precyzji ("double precision"):

bit	wykładnik	znormalizowana mantysa 53 pozycyjna
znaku	przesunięty	(pierwszy bit zawsze równy 1 - domyślny)
(1 bit)	(11 bitów)	(52 bity)

co daje zakres liczb ok. od $\pm 2.2 \times 10^{-308}$ do $\pm 1.8 \times 10^{308}$.

ARYTMETYKA ZMIENNOPOZYCYJNA

Wynikiem działań na liczbach maszynowych nie są na ogół liczby maszynowe.

Oznaczając przez fl (floating point) wynik działania zmiennopozycyjnego, zapisujemy wyniki działań elementarnych w postaci:

$$fl(x \pm y) = (x \pm y) \cdot (1 + \varepsilon),$$

$$fl(x \cdot y) = (x \cdot y) (1 + \varepsilon),$$

$$fl(x/y) = (x/y) (1 + \varepsilon), \quad \text{gdzie } |\varepsilon| \le eps.$$

Przyczyna: Standard IEEE 754 wymaga organizacji jednostki arytmetycznej komputera zapewniającej osiąganie takiej dokładności.

Z reguły funkcje elementarne również są realizowane w taki sposób, np.:

$$fl\left(\sqrt{x}\right) = \left(\sqrt{x}\right) \cdot (1+\varepsilon), \quad |\varepsilon| \le eps.$$

Uwaga: dokładność maszynową eps można również określić jako najmniejszą dodatnią liczbę maszynową g taką, że zachodzi relacja: fl(1+g) > 1, tzn.

$$eps = min\{g \in M : fl(1+g) > 1; g > 0\}.$$

PROPAGACJA BŁĘDÓW

W programach mamy:

- dane wejściowe obarczone błędami reprezentacji maszynowej,
- ciągi elementarnych operacji arytmetycznych (i obliczania funkcji elementarnych), przy wykonywaniu generujących błędy numeryczne.

Błędy te ulegają propagacji – wymnażaniu, sumowaniu, itp., co może prowadzić do poważnej kumulacji błędów i stąd całkowity błąd względny wyniku zadania obliczanego numerycznie jest z reguły znacznie większy od dokładności maszynowej.

Dwa sposoby analizy błędy wyniku:

- metodą probablistyczną zakładając, że poszczególne błędy jednostkowe to niezależne, nieskorelowane zmienne losowe i wyznaczając np. błąd średni,
- metodą najgorszego przypadku, wyznaczając oszacowanie maksymalnego możliwego modułu błędu,
- metodami analitycznymi, w ograniczonym zakresie prostszych przypadków.

PROPAGACJA BŁĘDÓW – PRZYKŁAD

Przykład. Oszacowanie błędu maksymalnego zadania dodawania dwóch liczb:

$$y = a + b,$$

Realizując algorytm w arytmetyce zmiennopozycyjnej mamy

$$y = [a(1 + \varepsilon_a) + b(1 + \varepsilon_b)](1 + \varepsilon_1)$$

gdzie $|\varepsilon_a|, |\varepsilon_b|, |\varepsilon_1| \leq eps$.

Przekształcając powyższe wyrażenie dostajemy

$$y = (a + a\varepsilon_{a} + b + b\varepsilon_{b})(1 + \varepsilon_{1})$$

$$= a + a\varepsilon_{a} + b + b\varepsilon_{b} + a\varepsilon_{1} + a\varepsilon_{a}\varepsilon_{1} + b\varepsilon_{1} + b\varepsilon_{b}\varepsilon_{1}$$

$$= a + a\varepsilon_{a} + b + b\varepsilon_{b} + a\varepsilon_{1} + b\varepsilon_{1}$$

$$= a + b + a(\varepsilon_{a} + \varepsilon_{1}) + b(\varepsilon_{b} + \varepsilon_{1})$$

$$= (a + b) \left[1 + \frac{a(\varepsilon_{a} + \varepsilon_{1})}{a + b} + \frac{b(\varepsilon_{b} + \varepsilon_{1})}{a + b} \right] = (a + b) [1 + \delta]$$

PROPAGACJA BŁĘDÓW – PRZYKŁAD (2)

Błąd względny:

$$\delta = \frac{a(\varepsilon_a + \varepsilon_1)}{a+b} + \frac{b(\varepsilon_b + \varepsilon_1)}{a+b}$$

Szacujemy maksymalny moduł błędu:

$$|\delta| = \left| \frac{a(\varepsilon_a + \varepsilon_1)}{a+b} + \frac{b(\varepsilon_b + \varepsilon_1)}{a+b} \right|$$

$$\leq \left| \frac{a(\varepsilon_a + \varepsilon_1)}{a+b} \right| + \left| \frac{b(\varepsilon_b + \varepsilon_1)}{a+b} \right|$$

$$= \frac{|a| |(\varepsilon_a + \varepsilon_1)|}{|a+b|} + \frac{|b| |(\varepsilon_b + \varepsilon_1)|}{|a+b|}$$

$$\leq \frac{|a| 2eps}{|a+b|} + \frac{|b| 2eps}{|a+b|} = \frac{|a| + |b|}{|a+b|} 2eps$$

(Dla algorytmu
$$y = (a+b) + c$$
 otrzymamy: $\delta \le \frac{(|a|+|b|+|c|)}{|a+b+c|} 3eps$)

UWARUNKOWANIE ZADANIA

Matematyczne zadanie obliczeniowe – odwzorowanie $\phi: \mathbb{R}^n \longmapsto \mathbb{R}^m$,

$$\mathbf{w} = \phi(\mathbf{d}),$$

gdzie: $\mathbf{d} = [d_1 \ d_2 \cdots d_n]^T$ - wektor danych, $\mathbf{w} = [w_1 \ w_2 \cdots w_m]^T$ - wektor wyników.

W praktyce mamy jedynie reprezentacje maszynowe danych, tj.

$$rd(d_i) = d_i(1 + \varepsilon_i)$$
, gdzie $|\varepsilon_i| \le eps$, $i = 1, ..., n$.

Definicja. Zadanie obliczeniowe nazywamy źle uwarunkowanym, jeśli niewielkie (względne) zaburzenia danych zadania powodują duże (względne) zmiany jego rozwiązania.

Wskaźnikiem uwarunkowania nazwiemy wielkość charakteryzującą ilościowo zmiany wartości wyniku w stosunku do zmian (zaburzeń) wartości danych.

UWARUNKOWANIE ZADANIA Prosty przykład

Przykład. Policzmy iloczyn skalarny

$$w = \phi(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} a_i b_i,$$

dla:

- a) $\mathbf{a} = [1 \ 2 \ 3], \ \mathbf{b} = [2 \ 6 \ -5], \ \text{wynik: } w = -1,$
- b) $\mathbf{a} = [1.02 \ 2.04 \ 2.96], \ \mathbf{b} = [2 \ 6 \ -5], \ \text{wynik: } w = -0.52,$

a następnie:

- c) $\mathbf{a} = [1 \ 2 \ 3], \ \mathbf{b} = [2 \ 6 \ +5], \ \text{wynik: } w = 29,$
- d) ${\bf a}=[1.02\ 2.04\ 2.96],\ {\bf b}=[2\ 6\ +5],\$ wynik: w=29.8 zaburzenie wyniku na poziomie zaburzenia danych !

Wniosek: Uwarunkowanie zadania zależy od konkretnych wartości danych, dla których to zadanie liczymy.

UWARUNKOWANIE ZADANIA 2

Błędy danych:

bezwzględny:
$$\Delta \mathbf{d} = [\Delta d_1 \ \Delta d_2 \cdots \Delta d_n]^T$$
, względny: $\frac{\|\Delta \mathbf{d}\|}{\|\mathbf{d}\|}$.

Błąd bezwzględny wyniku: $\Delta \mathbf{w} = [\Delta w_1 \ \Delta w_1 \cdots \Delta w_m]^{\mathrm{T}}$,

błąd względny wyniku:

$$\frac{\|\Delta \mathbf{w}\|}{\|\mathbf{w}\|} = \frac{\|\phi\left(\mathbf{d} + \Delta \mathbf{d}\right) - \phi\left(\mathbf{d}\right)\|}{\|\phi\left(\mathbf{d}\right)\|}.$$

Wskaźnik uwarunkowania:

$$\operatorname{cond}_{\phi}(\mathbf{d}) = \lim_{\delta \to 0} \sup_{\|\Delta \mathbf{d}\| \le \delta} \frac{\frac{\|\phi(\mathbf{d} + \Delta \mathbf{d}) - \phi(\mathbf{d})\|}{\|\phi(\mathbf{d})\|}}{\frac{\|\Delta \mathbf{d}\|}{\|\mathbf{d}\|}},$$

tzn. granica kresu górnego ilorazu błędów względnych wyniku i danych, względem wszystkich malejących Δd , dla których zadanie jest dobrze postawione.

UWARUNKOWANIE ZADANIA 3

Niech

$$\phi(\mathbf{d}) = f(\mathbf{d}), \ f: \mathbb{R}^n \to \mathbb{R},$$

f różniczkowalna, ograniczamy się do **normy euklidesowej wektorów**.

Ponieważ dla dostatecznie małych $\triangle \mathbf{d}$:

$$|f(\mathbf{d} + \Delta \mathbf{d}) - f(\mathbf{d})| \approx \left| f'(\mathbf{d}) \cdot \Delta \mathbf{d} \right|$$
(gdzie $f'(\mathbf{d}) = \left[\frac{\partial f(\mathbf{d})}{\partial d_1} \frac{\partial f(\mathbf{d})}{\partial d_2} \cdots \frac{\partial f(\mathbf{d})}{\partial d_n} \right] - \text{wektor wierszowy}$)

oraz dla normy euklidesowej i każdego $\delta>0$

$$\max_{\|\triangle \mathbf{d}\| = \delta} \left| f'(\mathbf{d}) \cdot \triangle \mathbf{d} \right| = \left\| f'(\mathbf{d}) \right\| \left\| \triangle \mathbf{d} \right\| = \left\| f'(\mathbf{d}) \right\| \delta$$

(równość osiągana dla współliniowych wektorów),

to można sformułować wskaźnik uwarunkowania $\operatorname{cond}_f(\mathbf{d})$ w postaci

$$\operatorname{cond}_{f}(\mathbf{d}) = \lim_{\delta \to 0} \left(\max_{\|\Delta \mathbf{d}\| = \delta} \frac{\frac{|f(\mathbf{d} + \Delta \mathbf{d}) - f(\mathbf{d})|}{|f(\mathbf{d})|}}{\frac{\|\Delta \mathbf{d}\|}{\|\mathbf{d}\|}} \right) = \frac{\frac{\|f'(\mathbf{d})\|\delta}{|f(\mathbf{d})|}}{\frac{\delta}{\|\mathbf{d}\|}} = \frac{\|f'(\mathbf{d})\|\|\mathbf{d}\|}{|f(\mathbf{d})|}$$

WSKAŹNIK UWARUNKOWANIA – Przykład 1

$$\operatorname{cond}_{f}(\mathbf{d}) = \frac{\left\| f'(\mathbf{d}) \right\| \|\mathbf{d}\|}{|f(\mathbf{d})|}$$

Obliczymy powyższy wskaźnik uwarunkowania dla $\phi(\mathbf{d}) = f(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} a_i b_i$.

Wektor danych zdefiniujemy w postaci

$$\mathbf{d} = [a_1 \ a_2 \cdots a_n \ b_1 \ b_2 \cdots b_n]^{\mathrm{T}}$$

Mamy

$$\operatorname{cond}_{f}(\mathbf{d}) = \frac{\|[b_{1} \ b_{2} \cdots b_{n} \ a_{1} \ a_{2} \cdots a_{n}]\|_{2} \|\mathbf{d}\|_{2}}{|\sum_{i=1}^{n} a_{i} b_{i}|} = \frac{\sum_{i=1}^{n} (a_{i}^{2} + b_{i}^{2})}{|\sum_{i=1}^{n} a_{i} b_{i}|}$$

Dla danych w poprzednim przykładzie mamy:

1)
$$\mathbf{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 & 6 & -5 \end{bmatrix}$, stad $\operatorname{cond}_f(\mathbf{d}) = 79$

2)
$$\mathbf{a} = [1 \ 2 \ 3], \ \mathbf{b} = [2 \ 6 \ + 5], \ \text{stad} \ \operatorname{cond}_f(\mathbf{d}) = \frac{79}{29} \cong 2.7.$$

WSKAŹNIK UWARUNKOWANIA – Przykład 2

Aproksymacja pochodnej funkcji g(x) ilorazem różnicowym wstecznym, tzn.

$$f(\mathbf{d}) = \frac{g(x) - g(x - h)}{h}$$

gdzie $\mathbf{d} = [g(x) \ g(x-h)]^{\mathrm{T}}$ – wektor danych z błędami względnymi $\varepsilon_1, \varepsilon_2$, tzn.

$$fl(g(x)) = g(x)(1+\varepsilon_1), \quad \varepsilon_1 \le Eps,$$

 $fl(g(x-h)) = g(x-h)(1+\varepsilon_2), \quad \varepsilon_2 \le Eps, \quad Eps \ge eps.$

Jeśli krok h > 0 jest potęgą liczby 2 (dana bez błędu), to

$$\operatorname{cond}_{f}(\mathbf{d}) = \frac{\|[1/h - 1/h]\|_{2} \|[g(x) \ g(x - h)]\|_{2}}{|g(x) - g(x - h)|/h}$$
$$= \frac{\sqrt{2}\sqrt{g(x)^{2} + g(x - h)^{2}}}{|g(x) - g(x - h)|} \cong \frac{2|g(x)|}{|g(x) - g(x - h)|}$$

Wniosek: malenie h zmniejsza |g(x)-g(x-h)| – uwarunkowanie pogarsza się, ale: im mniejszy krok h tym mniejszy bląd aproksymacji pochodnej – efekt przeciwny.

Stąd: istnieje optymalny h minimalizujący sumę błędów aproksymacji i numerycznego.

WSKAŹNIK UWARUNKOWANIA – Przykład 3

Rozważymy uwarunkowanie funkcji wyznaczających różne pierwiastki wielomianu kwadratowego $w(x) = ax^2 + bx + c$, a > 0, wg wzorów:

$$x_1(a, b, c) = \frac{-b + \sqrt{b^2 - 4ac}}{2a},$$

$$x_2(a, b, c) = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

Wektor danych to wektor współczynników wielomianu, $\mathbf{d} = [a\ b\ c]^{\mathrm{T}}$.

Mamy(dla $b^2 - 4ac \neq 0$):

$$x_1'(a,b,c) = \begin{bmatrix} \frac{2ac - b^2 + b\sqrt{b^2 - 4ac}}{2a^2\sqrt{b^2 - 4ac}} & \frac{b - \sqrt{b^2 - 4ac}}{2a\sqrt{b^2 - 4ac}} & \frac{-1}{\sqrt{b^2 - 4ac}} \end{bmatrix},$$

$$x_2'(a,b,c) = \begin{bmatrix} \frac{-2ac + b^2 + b\sqrt{b^2 - 4ac}}{2a^2\sqrt{b^2 - 4ac}} & \frac{-b - \sqrt{b^2 - 4ac}}{2a\sqrt{b^2 - 4ac}} & \frac{1}{\sqrt{b^2 - 4ac}} \end{bmatrix}$$

WSKAŹNIK UWARUNKOWANIA – Przykład 3 cd.

$$\operatorname{cond}_{x_1}(\mathbf{d}) = \frac{2a \left\| x_1'(\mathbf{d}) \right\| \sqrt{a^2 + b^2 + c^2}}{|-b + \sqrt{b^2 - 4ac}|} \quad \left(x_1(a, b, c) = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \right)$$

$$\operatorname{cond}_{x_2}(\mathbf{d}) = \frac{2a \left\| x_2'(\mathbf{d}) \right\| \sqrt{a^2 + b^2 + c^2}}{|-b - \sqrt{b^2 - 4ac}|} \quad \left(x_1(a, b, c) = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \right)$$

Wskaźnik uwarunkowania funkcji definiującej pierwiastek o mniejszym module bardzo wzrasta, gdy $b^2 \gg |4ac|$ – możliwy znacznie większy błąd względny.

Aby tego uniknąć, wykorzystujemy tylko wzór dla pierwiastka o większym module (z większym modułem licznika we wzorze na pierwiastek), drugi pierwiastek wyznaczamy z wzoru Viéte'a $x_1 + x_2 = -b/a$.

Jeśli potrzebny jest tylko pierwiastek o mniejszym module, stosujemy wzory

$$x_1(a,b,c) = \frac{2c}{-b - \sqrt{b^2 - 4ac}}, \quad x_2(a,b,c) = \frac{2c}{-b + \sqrt{b^2 - 4ac}},$$

(wykorzystując jedynie ten wzór, w którym mianownik ma większy moduł).

WSKAŹNIK UWARUNKOWANIA (SZACOWANIE)

Jeśli
$$\Delta d_i = d_i \varepsilon_i$$
, $\operatorname{rd}(d_i) = d_i (1 + \varepsilon_i)$, $|\varepsilon_i| \leq eps$, $i = 1, ..., n$, to dla normy $\|\cdot\|_2$ (też $\|\cdot\|_1$, $\|\cdot\|_\infty$) mamy $\frac{\|\Delta \mathbf{d}\|}{\|\mathbf{d}\|} \leq eps$, ponieważ
$$\frac{\|\Delta \mathbf{d}\|}{\|\mathbf{d}\|} = \frac{\sqrt{(d_1 \varepsilon_1)^2 + (d_2 \varepsilon_2)^2 + \cdots + (d_n \varepsilon_n)^2}}{\|\mathbf{d}\|} \leq \frac{\|\mathbf{d}\| eps}{\|\mathbf{d}\|} = eps.$$

Z naszej definicji wskaźnika uwarunkowania wynika bezpośrednio

$$\frac{\|\Delta \mathbf{w}\|}{\|\mathbf{w}\|} \approx \operatorname{cond}_{\phi}(\mathbf{d}) \cdot \frac{\|\Delta \mathbf{d}\|}{\|\mathbf{d}\|}$$

Nie znając postaci funkcyjnej zadania, można póbować szacować wskaźnik jako najmniejszą możliwą do wyznaczenia wartość $\operatorname{cond}_{\phi}^s(\operatorname{\mathbf{d}})$, dla której zachodzi (dla wszystkich $\triangle \operatorname{\mathbf{d}})$ $\frac{\|\Delta \mathbf{w}\|}{\|\mathbf{w}\|} \leq \operatorname{cond}_{\phi}^s(\operatorname{\mathbf{d}}) \cdot \frac{\|\Delta \operatorname{\mathbf{d}}\|}{\|\operatorname{\mathbf{d}}\|}.$

Tak prosta postać często jest trudna do uzyskania, ogólniej szukamy możliwie dokładnego oszacowania θ $\frac{\|\Delta \mathbf{w}\|}{\|\mathbf{w}\|} \leq \theta \bigg(\frac{\|\Delta \mathbf{d}_1\|}{\|\mathbf{d}_1\|}, \dots, \frac{\|\Delta \mathbf{d}_m\|}{\|\mathbf{d}_1\|} \bigg)$

gdzie argumentami są błędy względne danych/grup danych (będą przykłady).

ALGORYTM I JEGO NUMERYCZNE REALIZACJE

Trzy podstawowe i różne pojęcia:

- Zadanie obliczeniowe (matematyczne): $\mathbf{w} = \phi(\mathbf{d})$,
- Algorytm $A(\mathbf{d})$ obliczenia wyniku zadania $\phi(\mathbf{d})$, tj sposób wyznaczenia wyniku zgodnie z jednoznacznie określoną kolejnością wykonywania elementarnych działań arytmetycznych,
- Numeryczna realizacja $fl(A(\mathbf{d}))$ algorytmu $A(\mathbf{d})$, polegająca na:
 - a) zastąpieniu wielkości liczbowych występujących w $A\left(\mathbf{d}\right)$ ich reprezentacjami zmiennopozycyjnymi,
 - b) wykonaniu operacji arytmetycznych (działań elementarnych, obliczaniu wartości funkcji standardowych) w arytmetyce zmiennopozycyjnej "fl", tj. w sposób przybliżony.

```
Przykład: zadanie: \phi(a,b)=a^2-b^2, algorytm A1\,(a,b): a\cdot a-b\cdot b, algorytm A2\,(a,b): (a+b)\cdot (a-b)
```

ALGORYTM I JEGO NUMERYCZNE REALIZACJE 2

Realizacja numeryczna algorytmu A1(a,b):

$$fl(A1(a,b)) = fl(a \cdot a - b \cdot b)$$

$$= fl[fl(a \cdot a) - fl(b \cdot b)]$$

$$= [a^{2}(1 + \varepsilon_{1}) - b^{2}(1 + \varepsilon_{2})](1 + \varepsilon_{3}) \quad (|\varepsilon_{i}| \le eps)$$

$$= [a^{2} - b^{2} + a^{2}\varepsilon_{1} - b^{2}\varepsilon_{2}](1 + \varepsilon_{3})$$

$$= a^{2} - b^{2} + a^{2}\varepsilon_{1} - b^{2}\varepsilon_{2} + (a^{2} - b^{2})\varepsilon_{3} + a^{2}\varepsilon_{1}\varepsilon_{3} - b^{2}\varepsilon_{2}\varepsilon_{3}$$

$$= a^{2} - b^{2} + a^{2}\varepsilon_{1} - b^{2}\varepsilon_{2} + (a^{2} - b^{2})\varepsilon_{3}$$

$$= (a^{2} - b^{2})(1 + \frac{a^{2}\varepsilon_{1} - b^{2}\varepsilon_{2}}{a^{2} - b^{2}} + \varepsilon_{3})$$

$$= (a^{2} - b^{2})(1 + \delta_{1}),$$

gdzie

$$\delta_1 = \frac{a^2 \varepsilon_1 - b^2 \varepsilon_2}{a^2 - b^2} + \varepsilon_3$$

$$|\delta_1| = \left| \frac{a^2 \varepsilon_1 - b^2 \varepsilon_2}{a^2 - b^2} + \varepsilon_3 \right| \le \frac{a^2 + b^2}{|a^2 - b^2|} eps + eps.$$

ALGORYTM I JEGO NUMERYCZNE REALIZACJE 3

Realizacja numeryczna algorytmu A2(a,b):

$$fl(A2(a,b)) = fl[(a+b) \cdot (a-b)]$$

$$= fl[fl(a+b) \cdot fl(a-b)]$$

$$= [(a+b)(1+\varepsilon_1) \cdot (a-b)(1+\varepsilon_2)](1+\varepsilon_3)$$

$$= (a^2 - b^2)(1+\varepsilon_1)(1+\varepsilon_2)(1+\varepsilon_3)$$

$$= (a^2 - b^2)(1+\varepsilon_1 + \varepsilon_2 + \varepsilon_3)$$

$$= (a^2 - b^2)(1+\delta_2),$$

gdzie

$$\delta_2 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$
$$|\delta_2| = |\varepsilon_1 + \varepsilon_2 + \varepsilon_3| \le 3eps.$$

(Dla algorytmu A1(a,b) mieliśmy:

$$|\delta_1| \le \frac{a^2 + b^2}{|a^2 - b^2|} eps + eps.$$

NUMERYCZNA STABILNOŚĆ ALGORYTMÓW

Przyjmując względny błąd danych:
$$\frac{\|\triangle \mathbf{d}\|}{\|\mathbf{d}\|} \leq eps$$

$$\frac{\parallel \phi \left(\mathbf{d} + \Delta \mathbf{d}\right) - \phi \left(\mathbf{d}\right) \parallel}{\parallel \phi \left(\mathbf{d}\right) \parallel} \leq \operatorname{cond}_{\phi} \left(\mathbf{d}\right) \cdot eps$$

Definicja: Algorytm $A(\mathbf{d})$ realizujący zadanie $\phi(\mathbf{d})$ nazywamy **numerycznie stabilnym**, jeśli istnieje taka stała dodatnia K_s , że dla każdych danych $\mathbf{d} \in D$ i dostatecznie małego eps (tj. dostatecznie silnej arytmetyki) zachodzi nierówność:

$$\frac{\|fl(A(\mathbf{d})) - \phi(\mathbf{d})\|}{\|\phi(\mathbf{d})\|} \le K_s \cdot \operatorname{cond}_{\phi}(\mathbf{d}) \cdot eps$$

gdzie stałą K_s nazywamy wskaźnikiem stabilności.

Z definicji powyższej wynika bezpośrednio

$$\lim_{eps\to 0} \frac{\parallel fl(A(\mathbf{d})) - \phi(\mathbf{d}) \parallel}{\parallel \phi(\mathbf{d}) \parallel} = 0$$

NUMERYCZNA STABILNOŚĆ ALGORYTMÓW 2

$$\frac{\|fl(A(\mathbf{d})) - \phi(\mathbf{d})\|}{\|\phi(\mathbf{d})\|} \le K_s \cdot \operatorname{cond}_{\phi}(\mathbf{d}) \cdot eps$$

Całkowity błąd względny wyniku uzyskiwanego algorytmem numerycznie stabilnym zależy od:

- uwarunkowania zadania $(\operatorname{cond}_{\phi}(\mathbf{d}))$,
- stosowanej arytmetyki zmiennopozycyjnej (eps),
- wskaźnika stabilności numerycznej algorytmu (K_s) , tj. jakości algorytmu.

Metoda pozornych równoważnych zaburzeń: polega na wykazaniu, że $fl(A(\mathbf{d}))$ jest zaburzonym dokładnym rozwiązaniem zadania ϕ o zaburzonych danych, tj. $fl(A(\mathbf{d})) = \phi (\mathbf{d} + \Delta \mathbf{d}) \cdot (1 + \eta),$

gdzie błędy względne danych i wyniku spełniają:

$$\frac{|\Delta d_i|}{|d_i|} \le k_i \cdot eps, \quad |\eta_j| \le k_j \cdot eps,$$

zaś k_i i k_j to stałe (o niewielkich wartościach).