

# INSTITUTO TECNOLÓGICO DE NUEVO LAREDO INGENIERÍA EN SISTEMAS COMPUTACIONALES



### PROGRAMACIÓN MÓVIL II

### **TEMA 2**

### LENGUAJE DE PROGRAMACIÓN SWIFT

### **EJERCICIOS PRÁCTICOS**

Arreglos unidimensionales y bidimensionales

**2.3.24.** Imprima el elemento mayor de un arreglo de *N* números.

Pruebas

| Arreglo                | mayor |
|------------------------|-------|
| [1, 2, 3, 10, 100]     | 100   |
| [10, 12, 33, 11, 1, 8] | 33    |

**2.3.25.** Imprima los elementos de un vector en orden inverso al que se encuentran almacenados.

Pruebas

| vector                 | salida               |
|------------------------|----------------------|
| [1, 2, 3, 10, 100]     | 100, 10, 3, 2, 1     |
| [10, 12, 33, 11, 1, 8] | 8, 1, 11, 33, 12, 10 |

**2.3.26.** Invierta los elementos de un arreglo sin crear otro.

Pruebas

| arreglo                | salida                 |
|------------------------|------------------------|
| [1, 2, 3, 10, 100]     | [100, 10, 3, 2, 1]     |
| [10, 12, 33, 11, 1, 8] | [8, 1, 11, 33, 12, 10] |



### INSTITUTO TECNOLÓGICO DE NUEVO LAREDO INGENIERÍA EN SISTEMAS COMPUTACIONALES



**2.3.27.** Dados los vectores A y B, imprima todos los elementos de B que se encuentren en A. Si no existen elementos en común, no debe imprimir nada.

#### Pruebas

| A                  | В                  | salida |
|--------------------|--------------------|--------|
| [1, 2, 3, 10, 100] | [1, 2, 3, 4, 5, 6] | 1      |
|                    |                    | 2      |
|                    |                    | 3      |
| [1, 2, 3, 10, 100] | [5, 2, 3, 10, 13]  | 2      |
|                    |                    | 3      |
|                    |                    | 10     |
| [1, 2, 3, 10, 100] | [5, 6]             |        |

**2.3.28.** Extraiga cada digito, de izquierda a derecha, de un número dado en n y almacénelo en un vector. Resuélvalo aritméticamente, es decir, sin convertir n a cadena de caracteres.

Pruebas

| n        | vector                   |
|----------|--------------------------|
| 12345    | [1, 2, 3, 4, 5]          |
| 20143831 | [2, 0, 1, 4, 3, 8, 3, 1] |

#### 2.3.29. Dadas las matrices

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix}; \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Calcular:

a) 
$$A + B$$

$$A+B=\begin{pmatrix}2&0&1\\3&0&0\\5&1&1\end{pmatrix}+\begin{pmatrix}1&0&1\\1&2&1\\1&1&0\end{pmatrix}=\begin{pmatrix}2+1&0+0&1+1\\3+1&0+2&0+1\\5+1&1+1&1+0\end{pmatrix}=\begin{pmatrix}3&0&2\\4&2&1\\6&2&1\end{pmatrix}$$



# INSTITUTO TECNOLÓGICO DE NUEVO LAREDO INGENIERÍA EN SISTEMAS COMPUTACIONALES



b) A – B

$$A - B = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 - 1 & 0 - 0 & 1 - 1 \\ 3 - 1 & 0 - 2 & 0 - 1 \\ 5 - 1 & 1 - 1 & 1 - 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & -1 \\ 4 & 0 & 1 \end{pmatrix}$$

c) AxB

$$A \cdot B = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 & 2 \cdot 0 + 0 \cdot 2 + 1 \cdot 1 & 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 \\ 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 & 3 \cdot 0 + 0 \cdot 2 + 0 \cdot 1 & 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 \\ 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 & 5 \cdot 0 + 1 \cdot 2 + 1 \cdot 1 & 5 \cdot 1 + 1 \cdot 1 \cdot 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{pmatrix}$$

**2.3.30.** Dada una matriz cuadrada A, almacene los elementos de la diagonal principal y los de la diagonal inversa, en vectores llamados DP y DI respectivamente.

#### Pruebas

| A |   | DP | DI |   |   |
|---|---|----|----|---|---|
| 3 | 5 | 8  | 2  | 3 | 2 |
| 2 | 7 | 9  | 5  | 7 | 9 |
| 2 | 8 | 9  | 2  | 9 | 8 |
| 4 | 6 | 7  | 1  | 1 | 4 |

**2.3.31.** Dada una matriz cuadrada *A*, imprima el resultado de sumar los elementos que no corresponden a la periferia de la matriz.

Pruebas

| Α |   |   |   |   |
|---|---|---|---|---|
| 3 | 5 | 8 | 9 | 2 |
| 1 | 4 | 2 | 1 | 0 |
| 4 | 5 | 4 | 8 | 1 |
| 9 | 8 | 1 | 0 | 3 |
| 7 | 2 | 1 | 1 | 3 |

Suma=33