Convolutional Neural Networks

Instructor: Xuechen Zhang

Washington State University Vancouver

Slides adapted from R. Singh@Brown and K. Wong@UTK

Today's goal – learn about convolution

- Intro to CNNs Convolution
- Convolution Stride
- Learning in CNNs

Does a network have to be fully connected?

Why would you ever want to do this?

Advantages of Partial Connections

- Fewer connections -> fewer weights to learn
 - Faster training; more compact models; better generalization performance
- Can design connectivity pattern that exploits knowledge of the data (like connecting patterns in features)

When partially connected networks are useful

- Observation: Nearby pixels are more likely to be related
- Assumption: It is okay to only connect the nearby pixels
- Focusing on local patterns = partial connections
- How?

The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

(1) An image (2D – B/W)

(2) A filter (also called a kernel)

into (aloo ballou b			
1	1	1	
0	0	0	
-1	-1	-1	

2D array of numbers; could be any values

Sum up multiplied values to produce output value

Move the filter over by one pixel

	. 3				
1	1	1	3		
0	0	0	0		
-1	-1	-1	0		
0	5	1	4		

Move the filter over by one pixel

ŭ				
2	1	1	1	
7	0	0	0	
0	-1	-1	-1	
0	5	1	4	

Repeat (multiply, sum up)

image

2	0×1	1 ×1	3x1
7	1 _{×0}	1 _{×0}	0 _{×0}
0	2 _{x-1}	5 _{x-1}	0 _{x-1}
0	5	1	4

Repeat (multiply, sum up)

In summary:

image					
2	0	1	3		
7	1	1	0		
0	2	5	0		
0	5	1	4		

filter/kernel

Try it out yourself!

Convolve this image

2	0	3	1
1	1	0	0
1	0	2	0
1	0	1	2

With this filter

$$V(0,0) = (1 \otimes K)(0,0) = \sum_{m=0}^{2} \sum_{n=0}^{2} I(0+m,0+n)K(m,n)$$

What Convolution Does (In Code)

```
// Input: Image I, Kernel K, Output V, pixel index x,y
// Assumes K is 3x3
function apply_kernel(I, K, V, x, y)
  for m = 0 to 2:
    for n = 0 to 2:
        V(x,y) += K(m,n) * I(m+x, n+y)
```

Different filters = different effects

Blur

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Edge Detection / Outline Kernel

0	-1	0
-1	5	-1
0	-1	0

Shift

0	0	0
1	0	0
0	0	0

* exaggerated

Today's goal – learn about convolution

- Intro to CNNs Convolution
- Convolution Stride
- Learning in CNNs

Stride

- We don't just have to slide the filter by one pixel every time
- The distance we slide a filter by is called stride
 - All the examples we have seen have been stride = 1

Stride in Action

Why would we want stride > 1?

- Any connection between input and output size?
 - Larger stride turns a bigger input into the same size output
 - Larger stride turns the same size input into a smaller output
 - Use this to (controllably) descrese image resolution!

Today's goal – learn about convolution

- Intro to CNNs Convolution
- Convolution Stride
- Learning in CNNs

Key Idea 1: Filters are Learnable

Key Idea 1: Filters are Learnable

 $k_{i,j}$ are learnable parameters

Detecting patterns using learned filters

Label="Mouse"

Detecting patterns using learned filters

 $Multiplication \ and \ Summation = (50*30) + (50*30) + (50*30) + (20*30) + (50*30) = 6600 \ (A \ large \ number!)$

Key Idea 2: Learn many filters

This block of filters is called a *filter bank*

Key Idea 2: Learn many filters

The output is now a multi-channel image

Key Idea 2: Learn many filters

• Why are multiple filters a good idea?

Key Idea 2: Learn many filters

- Why are multiple filters a good idea?
- Can learn to extract different features of the image

How is convolution "partially connected"?

Why would you ever want to do this?

Only certain input pixels are "connected" to certain output pixels

Colored dots in the input pixels represent which output pixels that input pixel contributes to

If this were fully connected, every input pixel would have all four output colors output

Convolution in Tensorflow

- The output size of a convolution layer depends on 4 Hyperparameters:
 - Number of filters, N

- The output size of a convolution layer depends on 4 Hyperparameters:
 - Number of filters, N
 - The size of these filters, F

- The output size of a convolution layer depends on 4 Hyperparameters:
 - Number of filters, N
 - The size of these filters, F
 - The stride, S

2	0	3	1	0
2	4	5	2	3
0	0	3	3	1
2	9	9	7	8
3	4	7	2	1

2	0	3	1	0
2	4	5	2	3
0	0	3	3	1
2	9	9	7	8
3	4	7	2	1

Convolution in Tensorflow

List of ints of length 4

Represents the strides along each dimension of the input

[batch_stride_stride_stride_along_height, stride_along_input_channels]

Convolution in Tensorflow

"Problem" With Convolution

- Output of convolution is always smaller than the input
- Why might we want the output size to be the same?
 - To avoid the filter "eating at the border" of the image when applying multiple conv layers

Solution: Padding

Apply the kernel to 'imaginary' pixels surrounding the image

?	?	?	?	?	?	?
?	2	0	3	1	1	?
?	1	1	0	0	2	?
?	4	3	2	0	1	?
?	1	0	5	2	0	?
?	0	1	0	3	0	?
?	?	?	?	?	?	?

What Values to Use For These Pixels?

Standard practice: fill with zeroes

0	0	0	0	0	0	0
0	2	0	3	1	1	0
0	1	1	0	0	2	0
0	4	3	2	0	1	0
0	1	0	5	2	0	0
0	0	1	0	3	0	0
0	0	0	0	0	0	0
				· · · · ·		

Padding Modes in Tensorflow

2 available options: 'VALID' and 'SAME':

Valid

Filter only slides over "Valid" regions of the data

data						
2	0	1	3			
0	1	1	0			
0	0	2	0			
0	1	1	1			

Same

Filter slides over the bounds of the data, ensuring output size is the "Same" as input size (when stride = 1)

Same as input size (when stride = 1)						
0	0	0	0	0	0	
0	2	0	1	3	0	
0	1	1	2	3	0	
0	4	3	2	1	0	
0	8	3	1	3	0	
0	0	0	0	0	0	

VALID Padding in Tensorflow

2	0	3	1
1	1	0	0
1	0	2	0
1	0	1	2

1	0	-1
2	0	-2
1	0	-1

0	0	0	0	0	0
0	2	0	1	3	0
0	1	1	2	3	0
0	4	3	2	1	0
0	8	3	1	3	0
0	0	0	0	0	0

0	0	0	0	0	0
0	2	0	1	3	0
0	1	1	2	3	0
0	4	3	2	1	0
0	8	3	1	3	0
0	0	0	0	0	0

0	0	0	0	0	0
0	2	0	1	3	0
0	1	1	2	3	0
0	4	3	2	1	0
0	8	3	1	3	0
0	0	0	0	0	0

0	0	0	0	0	0
0	2	0	1	3	0
0	1	1	2	3	0
0	4	3	2	1	0
0	8	3	1	3	0
0	0	0	0	0	0

SAME Padding example

2	0	თ	1
1	1	0	0
1	0	2	0
1	0	1	2

1	0	-1
2	0	-2
1	0	-1

- The output size of a convolution layer depends on 4 Hyperparameters:
 - Number of filters, N
 - The size of these filters, F
 - The stride, S
 - The amount of padding, P

0	0	0	0	0	0	
0	0	0	0	0	0	Padding = 2
0	0	2	3	0	0]
0	0	9	2	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

- Suppose we know the number of filters, their size, the stride, and padding (n,f,s,p).
- Then for a convolution layer with input dimension w * h * d, the output dimensions w' * h' * d' are:

$$- w' = \frac{w - f + 2p}{s} + 1$$

$$-h' = \frac{h-f+2p}{s} + 1$$

$$- d' = n$$

Output Size for "VALID" Padding

- (n,f,s,p) = (1, 3, 1, 0)
- If w=4, w'=2.

Output Size for "SAME" Padding

- (n,f,s,p) = (1, 3, 1, 1)
- If w=4, w'=4.
- We choose p=1 so output size is the same.

Convolution in Tensorflow

Application to Real World Data (MNIST)

```
true label: 0
```

```
# Sets up a 5x5 filter with 1 input channels and 16 output channels self.filter = tf.Variable(tf.random.normal([5, 5, 1, 16], stddev=0.1))

# Convolves the input batch with our defined filter
conv = tf.nn.conv2d(inputs, self.filter, [1, 2, 2, 1], padding="SAME")
```

Should be of shape (batch sz, 28, 28, 1) for MNIST

inputs = MNIST image batch

Application to Real World Data (CIFAR)


```
# Should be of shape (batch_sz, 32, 32, 3) for CIFAR10
inputs = CIFAR_image_batch

# Sets up a 5x5 filter with 3 input channels and 16 output channels
self.filter = tf.Variable(tf.random.normal([5, 5, 3, 16], stddev=0.1))

# Convolves the input batch with our defined filter
conv = tf.nn.conv2d(inputs, self.filter, [1, 2, 2, 1], padding="SAME")
```