OSM - Turno preliminare

Lugano, Losanna, Zurigo - 12 gennaio 2013

Durata: 3 ore

Ogni esercizio vale 7 punti.

- 1. Un gruppo di 2013 persone siedono uniformemente distribuiti ad un tavolo rotondo. Dopo che si sono seduti si accorgono che ad ogni piatto vi è collocato un cartellino con nome e nessun commensale è seduto ad un posto con cartellino indicante il suo nome. Dimostrare che si può girare il tavolo in modo che ci siano almeno due persone con il loro nome scritto davanti.
- 2. Siano M_1 ed M_2 i centri di due cerchi, rispettivamente k_1 e k_2 . Supponiamo che i due cerchi si taglino perpendicolarmente in un punto P, sia inoltre Q l'intersezione di k_1 con M_1M_2 . Dimostrare che l'intersezione della perpendicolare al segmento M_1M_2 passante per M_2 e della retta retta PQ si trova su k_2 .
- **3.** Diciamo che un numero è simpatico se le cifre della sua rappresentazione decimale soddisfano le seguenti condizioni:
 - a) Ogni cifra 0, 1, ..., 9 appare al massimo una volta.
 - b) Sia A una cifra pari e B una cifra dispari, allora tra A e B troviamo esattamente $\frac{A+B-1}{2}$ altre cifre.

Si trovi il numero di numeri simpatici.

4. Trova tutte le paia (m, n) di numeri naturali che soddisfano:

$$(m+1)! + (n+1)! = m^2n^2$$

5. Trova il più piccolo numero naturale n, per il quale ogni sottoinsieme S di n elementi di $\{1, 2, \ldots, 100\}$ contiene almeno un numero scrivibile come somma di 3 altri elementi di S.

Buon lavoro!