Time Complexity of Algorithms

Big-O Notation	Name	Description	Example Algorithms
O(1)	Constant Time	Execution time is constant, regardless of input size.	Array index access, Hash table lookup
O(log n)	Logarithmic Time	Time increases logarithmically as input size grows.	Binary Search, BST lookup
O(n)	Linear Time	Execution time grows directly with input size.	Linear Search, Traversing an array
O(n log n)	Log-Linear Time	Slightly worse than linear, common in sorting.	Merge Sort, Quick Sort (avg case)
O(n^2)	Quadratic Time	Execution time grows quadratically with input size.	Bubble Sort, Selection Sort
O(n^3)	Cubic Time	Execution time grows cubically with input size.	Matrix Multiplication (Naïve)
O(2^n)	Exponential Time	Execution time doubles with each input increase.	Recursive Fibonacci, Subset Sum
O(n!)	Factorial Time	Execution time grows factorially, extremely slow.	TSP (Brute force), Permutations