MIT 6.875

Foundations of Cryptography Lecture 14

Beyond Secure Communication

Much more than communicating securely.

- Complex Interactions: proofs, computations, games.
- Complex Adversaries: Alice or Bob, adaptively chosen.
- Complex Properties: Correctness, Privacy, Fairness.
- Many Parties: this class, MIT, the internet.

Classical Proofs

Steve Cook

Leonid Levin

Prover writes down a string (proof); Verifier checks.

Proofs

Efficiently Verifiable Proofs: \mathcal{NP}

Works hard

Polynomial-time

Theorem: *N* is a product of two prime numbers

Accept iff N = PQ and P, Q prime

Efficiently Verifiable Proofs: \mathcal{NP}

Works hard

Polynomial-time

<u>Def</u>: A language/decision procedure \mathcal{L} is simply a set of strings. So, $\mathcal{L} \subseteq \{0,1\}^*$.

Efficiently Verifiable Proofs: \mathcal{NP}

<u>Def</u>: \mathcal{L} is an \mathcal{NP} -language if there is a **poly-time** verifier V where

- Completeness: True theorems have (short) proofs. for all $x \in \mathcal{L}$, there is a poly(|x|)-long witness (proof) $w \in \{0,1\}^*$ s.t. V(x, w) = 1.
- Soundness: False theorems have no short proofs. for all $x \notin \mathcal{L}$, there is no witness. That is, for all polynomially long $w \in \{0,1\}^*$, V(x,w) = 0.

Theorem: *N* is a product of two prime numbers

Accept iff N = PQ.

After interaction, Bob the Verifier knows:

- 1) N is a product of two primes.
- 2) Also, the two factors of N.

Theorem: y is a quadratic residue mod N

After interaction, Bob the Verifier knows:

- 1) y is a quadratic residue mod N.
- 2) Also, the square root of y.

Theorem: Graphs G_0 and G_1 are isomorphic.

Proof =
$$\pi$$
: $[N] \rightarrow [N]$,

the isomorphism

Check $\forall i, j$:

$$(\pi(i), \pi(j)) \in E_1 \text{ iff } (i, j) \in E_0.$$

Theorem: Graphs G_0 and G_1 are isomorphic.

After interaction, Bob the Verifier knows:

- 1) G_0 and G_1 are isomorphic.
- 2) Also, the isomorphism.

Theorem: Graphs G has a Hamiltonian cycle.

$$(v_0, ..., v_{N-1})$$

Check
$$\forall i$$
:

$$(v_i, v_{i+1 \bmod N}) \in E$$

Theorem: Graphs *G* has a Hamiltonian cycle.

After interaction, Bob the Verifier knows:

- 1) G has a Hamiltonian cycle.
- 2) Also, the Hamiltonian cycle itself.

Theorem: Graphs G has a Hamiltonian cycle.

Proof = Hamiltonian cycle
$$(v_0, ..., v_{N-1})$$
Verifier

NP-Complete Problem:

Every one of the other problems can be reduced to it

Theorem: y is a quadratic residue mod N

After interaction, Bob the Verifier knows:

- 1) y is a quadratic residue mod N.
- 2) Also, the square root of y.

Is there any other way?

Zero Knowledge Proofs

"I will prove to you that I could've sent you a proof if I felt like it."

Prover

Zero Knowledge Proofs

"I will not give you the square root, but I will prove to you that I could provide one if I wanted to."

Prover

Two (Necessary) New Ingredients

- 1. Interaction: Rather than passively reading the proof, the verifier engages in a conversation with the prover.
- 2. Randomness: The verifier is randomized and can make a mistake with a (exponentially small) probability.

Here is the idea.

THEOREM: "there is an ≤ k move solution to this cube"

Here is the idea.

Challenge (0 or 1)

Here is the idea.

Challenge (0 or 1)

Comp. Unbounded

Probabilistic Polynomial-time

<u>Def</u>: \mathcal{L} is an \mathcal{IP} -language if there is a unbounded P and **probabilistic poly-time** verifier V where

- Completeness: If $x \in \mathcal{L}$, V always accepts.
- Soundness: If $x \notin \mathcal{L}$, regardless of the cheating prover strategy, V accepts with negligible probability.

<u>Def</u>: \mathcal{L} is an \mathcal{IP} -language if there is a **probabilistic poly-time** verifier V where

- Completeness: If $x \in \mathcal{L}$, Pr[(P, V)(x) = accept] = 1.
- Soundness: If $x \notin \mathcal{L}$, there is a negligible function negl s.t. for every P^* ,

$$Pr[(P^*, V)(x) = accept] = negl(\lambda).$$

<u>Def</u>: \mathcal{L} is an \mathcal{IP} -language if there is a **probabilistic poly-time** verifier V where

- Completeness: If $x \in \mathcal{L}$, $\Pr[(P, V)(x) = accept] \ge c$.
- Soundness: If $x \notin \mathcal{L}$, there is a negligible function negl s.t. for every P^* ,

$$\Pr[(P^*, V)(x) = accept] \leq s.$$

Equivalent as long as $c - s \ge 1/\text{poly}(\lambda)$

Interactive Proof for QR

 $\mathcal{L} = \{(N, y): y \text{ is a quadratic residue mod } N\}.$

$$s = r^{2} \pmod{N}$$

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

Completeness

Claim: If $(N, y) \in L$, then the verifier accepts the proof with probability 1.

Proof:

$$z^2 = (rx^b)^2 = r^2(x^2)^b = sy^b \pmod{N}$$

So, the verifier's check passes and he accepts.

Soundness

Claim: If $(N, y) \notin L$, then for every cheating prover P^* , the verifier accepts with probability at most 1/2.

Proof: Suppose the verifier accepts with probability > 1/2.

Then, there is some $s \in \mathbb{Z}_N^*$ s.t. the prover produces

$$z_0: z_0^2 = s \pmod{N}$$

$$z_1: z_1^2 = sy \pmod{N}$$

This means $(z_1/z_0)^2 = y \pmod{N}$, which tells us that $(N, y) \in L$.

Interactive Proof for QR

 $\mathcal{L} = \{(N, y): y \text{ is a quadratic residue mod } N\}.$

$$s_i = r_i^2 \pmod{N}$$

$$(N, y)$$

$$b_i \leftarrow \{0, 1\}$$

$$(N, y)$$

If
$$b_i$$
=0: $z_i = r_i$
If b_i =1: $z_i = xr_i$

Check for all i: $z_i^2 = s_i y^b \pmod{N}$

REPEAT sequentially λ times.

Soundness

Claim: If $(N, y) \notin L$, then for every cheating prover P^* , the verifier accepts with probability at most $(\frac{1}{2})^{\lambda}$.

Proof: Exercise.

This is Zero-Knowledge.

But what does that mean?

$$s = r^2 \pmod{N}$$

$$(N, y)$$

$$b \leftarrow \{0, 1\}$$

$$(N, y)$$

If b=0:
$$z = r$$
If b=1: $z = rx$

Check:
$$z^2 = sy^b \pmod{N}$$

How to Define Zero-Knowledge?

After the interaction, V knows:

- The theorem is true; and
- A view of the interaction
 (= transcript + coins of V)

P gives zero knowledge to V:

When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P.

How to Define Zero-Knowledge?

(*P*, *V*) is zero-knowledge if *V* can generate his VIEW of the interaction all by himself in probabilistic polynomial time.

How to Define Zero-Knowledge?

(*P*, *V*) is zero-knowledge if *V* can "simulate" his VIEW of the interaction all by himself in probabilistic polynomial time.

The Simulation Paradigm

 sim_S : (s, b, z)

 $view_V(P,V)$: Transcr($\mathfrak{p}\mathfrak{t}b_{\overline{z}}(s,b,z)$, Coins = b

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are indistinguishable:

- 1. $view_V(P, V)$
- 2. $S(x, 1^{\lambda})$

Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is **perfect zeroknowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **identical**:

1.
$$view_V(P, V)$$

2.
$$S(x, 1^{\lambda})$$

Statistical Zero Knowledge: Definition

An Interactive Protocol (P,V) is statistical zeroknowledge for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in$ L, the following two distributions are statistically indistinguishable:

- 1. $view_V(P, V)$
- 2. $S(x, 1^{\lambda})$

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is **computational zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **computationally indistinguishable**:

- 1. $view_V(P, V)$
- 2. $S(x, 1^{\lambda})$

Zero Knowledge

Claim: The QR protocol is zero knowledge.

$$view_V(P,V)$$
: (s,b,z)

Simulator S works as follows:

- 1. First pick a random bit b.
- 2. pick a random $z \in Z_N^*$.
- 3. compute $s = z^2/y^b$.
- 4. output (s, b, z).

Exercise: The simulated transcript is identically distributed as the real transcript in the interaction (P,V).

What if V is NOT HONEST.

OLD DEF

An Interactive Protocol (P,V) is **honest-verifier** perfect zero-knowledge for a language L if there exists a PPT simulator S such that for every $x \in L$, the following two distributions are identical:

$$view_V(P,V)$$

2.
$$S(x, 1^{\lambda})$$

An Interactive Protocol (P,V) is **perfect zero-knowledge** for a language L if **for every PPT** V^* , there exists a (expected) poly time simulator S s.t. for every $x \in L$, the following two distributions are identical:

1.
$$view_{V^*}(P, V^*)$$

2.
$$S(x, 1^{\lambda})$$

Suppose there were a non-interactive ZK proof system for 3COL.

Step 1. When G is in 3COL, V accepts the proof π . (Completeness)

Suppose there were a non-interactive ZK proof system for 3COL.

Step 2. **PPT** Simulator S, **given only G in 3COL**, produces an indistinguishable proof $\tilde{\pi}$ (Zero Knowledge).

In particular, V accepts $\widetilde{\pi}$.

Suppose there were a non-interactive ZK proof system for 3COL.

Step 3. Imagine running the Simulator S on a $G \notin 3$ COL. It produces a proof $\tilde{\pi}$ which the verifier still accepts!

(WHY?! Because S and V are PPT. They together cannot tell if the input graph is 3COL or not)

Suppose there were a non-interactive ZK proof system for 3COL.

Step 4. Therefore, S is a cheating prover!

Produces a proof for a $G \notin 3COL$ that the verifier nevertheless accepts.

Ergo, the proof system is NOT SOUND!

