Paper / Subject Code: 50921 / Engineering Mathematics-III

Max. Marks: 80

(Time: 03 hours)

N.B.: (1) Question No.1 is compulsory

- (2) Attempt any threequestions from Q.2 to Q.6
- (3) Figures to the right indicate full marks

Q. I (a) Find the Laplace Transform of
$$e^{2t} + 4t^3 - \sin 2t \cos 3t$$

05

(b) Find the Fourier series of
$$f(x) = x$$
, $-\pi < x < \pi$

05

05

05

(c)	Calculate Spearman's coefficient of rank correlation from the following data										
	X:	12	17	22	27	32					
	Y:	113	119	117	115	121					

- (d) Find the constants a, b, c, d, e if $f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy)$ is analytic
- Q.2 (a) Determine whether the function $f(z) = \frac{1}{2} log(x^2 + y^2) + itan^{-1} \frac{y}{x}$ is analytic and if so, find its derivative.

Find (i) k, (ii) P(X < 4) (iii) $P(3 < X \le 6)$

- (c) Evaluate $\int_0^{\infty} e^{-2t} t \cos t dt$ 08
- Q.3 (a) Find the Fourier series of $f(x) = \frac{\pi^2}{12} \frac{x^2}{4}$, $-\pi < x < \pi$
 - (b) A continuous random variable has probability density function $f(x) = k(x x^2); 0 \le x \le 1$ Find (i) k, (ii) mean, (iii) variance
 - (c) Find the inverse Laplace transform of $\frac{s^2+2s+3}{(s^2+2s+5)(s^2+2s+2)}$ 08
- Q.4(a) Find the Laplace Transform of f(t), where f(t) = cost, for $0 < t < \pi$ and f(t) = sint, for $t > \pi$
 - (b) Calculate the Karl Pearson's coefficient of correlation from the following data

X:	65	66	67	67	68	69	70	72
Y:	67	68	65	68	72	72	69	71

Paper / Subject Code: 50921 / Engineering Mathematics-III

- (c) Find the Fourier series of $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi x, & \pi \le x \le 2\pi \end{cases}$ 08
- Q.5 (a) Find the inverse Laplace transform of $\frac{s}{(2s+1)^2}$
 - (b) Find the Laplace transform of $t \left(\frac{sint}{e^t}\right)^2$
 - Find the lines of regression for the following data (c) X: **Y**:
- - (b) Find the inverse Laplace transform of $log \left(1 + \frac{a^2}{s^2}\right)$
 - (c) Find the analytic function f(z) = u + iv whose imaginary part is $v = x^2 y^2 + \frac{x}{x^2 + y^2}$