24.11 TOTAL ENERGY DENSITY IN ELECTROMAGNETIC WAVES

Since an electromagnetic wave consists of both components, the electric field vector \overrightarrow{E} and magnetic field vector \overrightarrow{B} (or \overrightarrow{H}), the total energy density is the sum of electrostatic and magnetic energy density.

For a plane polarized electromagnetic wave travelling along X-direction, the two components E_{x} and H_{y} are related by the equation

$$\frac{Ez}{Hy} = \sqrt{\frac{\mu}{\epsilon}} \qquad ... (i)$$

where μ is the magnetic permeability and ϵ , the electric pemittivity of the dielectric medium. Squaring Eq. (i), we get

$$\in E_z^2 = \mu H_y^2$$

Now the quantity $\in E_z^2$ has the dimension of $\frac{\text{Farads}}{\text{metre}} \times \frac{\text{Volts}^2}{\text{metre}^2} = \frac{\text{Joule}}{\text{metre}^3}$ i.e. energy per unit volume.

Therefore, the quantity $\frac{1}{2} \in E_z^2$ is the electrostatic energy per unit volume for a dielectric and

 $\frac{1}{2}\mu H_y^2$ is the magnetic energy per unit volume. We know that energy stored per unit volume is called the energy density (U).

Hence,

Electrostatic energy density, $U_e = \frac{1}{2} \in E_z^2$

Magnetic energy density, $U_m = \frac{1}{2} \mu H_y^2$

Total energy density of a plane-polarized E.M wave will be

$$U_p = \frac{1}{2} \in E_z^2 + \frac{1}{2} \mu H_y^2 \qquad ... (ii)$$

In general, for an electromagnetic wave

$$U = \frac{1}{2} \in E^2 + \frac{1}{2} \mu H^2 \qquad ... (iii)$$

Moreover, it is observed that electrostatic energy density U_e is equal to the magnetic energy density U_m .

$$\frac{U_e}{U_m} = \frac{\frac{1}{2} \in E^2}{\frac{1}{2} \mu H^2} = \frac{E^2}{\mu H^2}$$

but

or

$$\frac{E}{H} = \sqrt{\frac{\mu}{\epsilon}} \quad \text{or} \quad \frac{E^2}{H^2} = \frac{\mu}{\epsilon}$$

 $\frac{U_e}{U_m} = \frac{\epsilon}{\mu} \cdot \frac{\mu}{\epsilon} = 1$

 $U_a = U_{-}$

... (iv)

From Eq (iii), we have

$$U = U_e + U_m = \frac{1}{2} \in E^2 + \frac{1}{2} \mu H^2$$

$$= \frac{1}{2} \in E^2 + \frac{1}{2} \in E^2 = \in E^2$$

$$= (\epsilon_r) (\epsilon_0 E^2)$$

$$= \epsilon_r \times [\text{energy density in free space}] \qquad [\because \epsilon = \epsilon_0 \cdot \epsilon_r]$$

$$= \dots (v)$$

Thus, the energy density in a dielectric is \in , times the energy denisty of the same wave in vacuum (i.e. free space).

24.12 REFLECTION AND TRANSMISSION OF ELECTROMAGNETIC WAVES

Consider an electromagnetic wave incident normally on an infinite plane boundary separating two media of impedances Z_1 and Z_2 . These impedances will be real for dielectric media and complex quantities for conducting media. The electric field vectors for the incident, reflected and transmitted waves are indicated as E_p , E_r and E_q and the corresponding values for the magnetic field

vectors, H_r , H_r and H_t respectively. The vector direction $\overrightarrow{E_r} \times \overrightarrow{H_r}$ must be opposite to that of

 $\overrightarrow{E_i} \times \overrightarrow{H_i}$ to satisfy the energy flow condition of poynting vector. Therefore, if the incident wave is travelling along the positive direction of X-axis, the reflected wave will travel in the negative direction of X-axis *i.e.*, the incident wave will be reflected normally backward. If Z_2 is less than Z_1 it is the electric vector which is reversed and if Z_2 is greater than Z_1 the magnetic vector will be reversed. We are considering a case $Z_2 < Z_1$.

Fig. 24.4

According to boundary conditions from electromagnetic theory, the components of field

vectors $\stackrel{\rightarrow}{E}$ and $\stackrel{\rightarrow}{H}$ tangential or parallel to the boundary are continuous across the boundary.

$$E_i + E_r = E_i$$
and
$$H_i + H_r = H_i$$
... (i)
... (ii)

Again
$$Z_1 = \frac{E_i}{H_i}, -Z_1 = \frac{E_r}{H_r} \text{ and } Z_2 = \frac{E_t}{H_t}$$

$$H_i = \frac{E_i}{Z_1}, H_r = -\frac{E_r}{Z_1} \text{ and } H_t = \frac{E_t}{Z_2}$$

Substituting in (ii) we have

$$\frac{E_i}{Z_1} - \frac{E_r}{Z_1} = \frac{E_i}{Z_2}$$

$$E_i - E_r = E_i \frac{Z_i}{Z_2} \qquad \dots (iii)$$

or

or

Dividing (i) by (iii), we have

$$\frac{E_i + E_r}{E_i - E_r} = \frac{Z_2}{Z_1} \qquad \dots (iv)$$

By componendo and dividendo

$$E_r^2 = E_i^2 - \frac{\eta_1}{\eta_2} \cdot \frac{E_i^2 \cos \theta_2}{\cos \theta_1}$$

Dividing through out by E_i^2 , we get

$$\frac{E_r^2}{E_i^2} = 1 - \frac{\eta_1 E_t^2 \cos \theta_2}{\eta_2 E_i^2 \cos \theta_1}$$

$$\frac{E_r^2}{E_i^2} = 1 - \frac{\sqrt{\epsilon_2} E_t^2 \cos \theta_2}{\sqrt{\epsilon_1} E_t^2 \cos \theta_1} \qquad \dots (ii)$$

Horizontal Polarization

In this case, the electric vector \vec{E} is perpendicular to the plane of incidence and parallel to the reflecting surface. Let the electric field strength \vec{E}_i of the incident wave be in the + ve χ -direction, then applying boundary condition that the tangential component of \vec{E} is continuous across the boundary,

$$E_i + E_r = E_t$$

Dividing by E_i , we get

$$\frac{E_l}{E_i} = 1 + \frac{E_r}{E_i} \qquad \dots (iii)$$

Substituting in equation (ii), we have

$$\frac{E_r^2}{E_i^2} = 1 - \sqrt{\frac{\epsilon_2}{\epsilon_1}} \left(1 + \frac{E_r}{E_i} \right)^2 \frac{\cos \theta_2}{\cos \theta_2}$$

$$1 - \frac{E_r^2}{E_i^2} = \sqrt{\frac{\epsilon_2}{\epsilon_1}} \left(1 + \frac{E_r}{E_i} \right)^2 \frac{\cos \theta_2}{\cos \theta_1}$$

$$\left(1 - \frac{E_r}{E_i} \right) \left(1 + \frac{E_r}{E_i} \right) = \sqrt{\frac{\epsilon_2}{\epsilon_1}} \cdot \left(1 + \frac{E_r}{E_i} \right)^2 \frac{\cos \theta_2}{\cos \theta_1}$$

$$1 - \frac{E_r}{E_i} = \sqrt{\frac{\epsilon_2}{\epsilon_1}} \cdot \left(1 + \frac{E_r}{E_i} \right) \frac{\cos \theta_2}{\cos \theta_1}$$

$$\frac{E_r}{E_i} = \sqrt{\frac{\epsilon_1}{\epsilon_1}} \cos \theta_1 - \sqrt{\epsilon_2} \cos \theta_2$$

$$\frac{E_r}{E_i} \cos \theta_1 + \sqrt{\epsilon_2} \cos \theta_2 \qquad \dots (iv)$$

From equation (i),

$$\sqrt{\epsilon_2}\cos\theta_2 = \sqrt{\epsilon_2(1-\sin^2\theta_2)} = \sqrt{\epsilon_2-\epsilon_2\sin^2\theta_2}$$

ELECTION

$$\sqrt{\epsilon_2}\cos\theta_2 = \sqrt{\epsilon_2 - \epsilon_1\sin^2\theta_1}$$

 $(\because \in_2 \sin^2 \theta_1 = \in_1 \sin^2 \theta_1)$

$$\frac{E_r}{E_i} = \frac{\sqrt{\epsilon_1} \cos \theta_1 - \sqrt{\epsilon_2 - \epsilon_1} \sin^2 \theta_1}{\sqrt{\epsilon_1} \cos \theta_1 + \sqrt{\epsilon_2 - \epsilon_1} \sin^2 \theta_1}$$

(v)

Thus, reflection co-efficient is given by

$$R = \frac{E_r}{E_i} = \frac{\cos \theta_1 - \sqrt{\left(\frac{\epsilon_2}{\epsilon_1}\right) - \sin^2 \theta_1}}{\cos \theta_1 + \sqrt{\left(\frac{\epsilon_2}{\epsilon_1}\right) - \sin^2 \theta_1}}$$

... (vi)