Тема: Использование электронных таблиц при моделировании математических задач

Задания лабораторной работы

Цель:

- 1. Научиться строить графики функций средствами электронных таблиц.
- 2. Научиться строить графики поверхностей средствами электронных таблиц.

Примечания:

- 1. Все задания лабораторной работы надо выполнять в одном файле.
- 2. Формат имени файла: «ФИО студента, номер группы/подгруппы, ЛР графики.xls» (.xlsx).
- 3. На каждом листе должен быть добавлен верхний колонтитул, в котором указать ФИО студента и номер подгруппы.
- 4. Все листы должны быть оформлены в едином стиле: форматирование листа, форматирование ячеек, форматирование графиков.
- 5. В имени листа указать выполняемое задание (то есть листы должны быть переименованы).

Требования к отчету по работе:

1. Прикрепить файл, созданный в программе MS Excel.

Кратко задание лабораторной работы

- При необходимости повторить принципы работы в электронных таблицах (рассмотрены в приложении, после сформулированных заданий).
- Добавить нужное количество листов и отформатировать их в соответствии с указаниями преподавателя.
- Проанализировать и выполнить на компьютере построение графика линейной функции.
- Выполнить на компьютере построение графиков функций.
- Выполнить на компьютере построение графиков поверхностей.
- Выложить файл в moodle.
- На сайте создать страницу, посвящённую Теме 2 «Использование электронных таблиц при моделировании математических задач».
 - ✓ Разместить на странице материалы, полученные при выполнении лабораторной работы.
 - ✓ Написать краткое описание прикреплённых файлов. Например:
 - о В файле «... графики.xlsx» находится выполнение лабораторной работы по построению графиков функций и графиков поверхностей.
 - о Использованы следующие функции Excel: (перечислить).
 - о Построены графики линейной/степенной/показательной функций.

Задание 0. Форматирование листа

Оформление листов:

- 1. Название листа должно соответствовать номеру выполняемого задания или названию задания.
- 2. На каждом листе добавить колонтитул, в котором написать свои Фамилию, Имя, Отчество и номер подгруппы.
- 3. Для всего листа установить размер шрифта не менее 12.
- 4. Установить формат отображения листа «Обычный».

Задание 1. Построение графика линейной функции

 $\frac{3адание}{-}$: Найдите значения функций (не менее 7) и постройте график функций: Y=k*x+b

Ход работы

1. Прочитать теоретический материал по видам ссылок.

2. Построить компьютерную модель:

ĺ	A	В	C	D	E	F	G	H
1	k	2						
2	b	3						
3								
4	х	-3	-2	-1	0	1	2	3
5	У	-3	-1	1	3	5	7	9
C				7 - 10 m				

- 1) Составить в диапазоне A1:В2 вспомогательную таблицу с константами.
 - Ввести имена констант в ячейки А1 и А2.
 - о Ввести значения констант в ячейки B1 и B2. Значения выбрать по своему усмотрению (не выбирать значения "0" и "1").
 - о Провести форматирование ячеек (границы и фон ячеек, выравнивание текста).
- 2) Составить в диапазоне A4:Н5 основную таблицу нахождения значений функции.
 - о Ввести в ячейки А4 и А5 имена аргумента и функции.
 - о Ввести в ячейки В4 и С4 соответствующие числовые значения.
 - о Выделить ячейки В4 и С4, а затем при помощи функции автозаполнения заполнить диапазон D4: H4. Обратите внимание значения аргументов расположены по возрастанию.
 - Ввести формулу в ячейку В5 (по формуле должно вычисляться значение функции в данной точке).
 - о При помощи функции автозаполнения заполнить диапазон С5 : Н5.
 - При необходимости исправить формулу в ячейке В5 и снова выполнить автозаполнение.
 - о Провести форматирование ячеек (границы и фон ячеек, выравнивание текста).
- 3) Устно сформулировать вывод о выборе абсолютных, смешанных и относительных ссылок.

3. Построить график функции:

- о Выделить диапазон А4: Н5.
- о Добавить диаграмму: тип диаграммы «Диаграмма XY» («Точечная»). Примечание: при необходимости выбрать параметр «Ряды данных в строках».
- о В заголовке диаграммы указать название функции.
- о Провести форматирование графика. Форматирование должно соответствовать цели лабораторной работы.

Задание 2. Использование встроенных функций. Графики функций

Примечание:

Все графики функций строить на одном листе, посвященном заданию 2.

Для выполнения задания надо использовать встроенные функции электронных таблиц. Например:

- функцию нахождения квадратного корня (SQRT / КВАДРАТНЫЙ КОРЕНЬ),
- функцию степени (POWER / СТЕПЕНЬ),
- функцию модуля (абсолютного значения, ABS)
- и так далее.

Задание:

1. Найдите значение функции (не менее 7) и постройте график функции.

$$y = 2^x + 3$$

Ход работы:

1) Вычислить не менее 7 значений функций. Для этого построить компьютерную модель, содержащую аргумент и значение функции.

Примечание:

- Значения аргументов должны быть расположены по возрастанию.
- Учесть ОДЗ: х любое число, то есть взять и несколько отрицательных значений, и несколько положительных значений аргумента.
- 2) Построить график функции.
- 2. Найдите значение функции (не менее 7) и постройте график функции.

$$y = \sqrt{x}$$

Ход работы:

1) Вычислить не менее 7 значений функций. Для этого построить компьютерную модель, содержащую аргумент и значение функции.

Примечание:

- Значения аргументов должны быть расположены по возрастанию.
- Учесть ОДЗ: x не отрицательное число, то есть взять и число «ноль», и положительные значения аргумента (удобно брать «1», «4», «9» и так далее).
- 2) Построить график функции.
- 3. Найдите значение функции (не менее 9) и постройте график функции.

$$y = 7 - |x|$$

Ход работы:

1) Вычислить не менее 9 значений функций. Для этого построить компьютерную модель, содержащую аргумент и значение функции.

Примечание:

- Значения аргументов должны быть расположены по возрастанию.
- Учесть ОДЗ: х любое число, то есть взять и несколько отрицательных значений, и несколько положительных значений аргумента.
- 2) Построить график функции.
- 4. Найдите значение функции (не менее 14) и постройте график функции.

$$y = \frac{1}{x}$$

Ход работы:

1) Вычислить не менее 14 значений функций. Для этого построить компьютерную модель, содержащую аргумент и значение функции.

Примечание:

- Значения аргументов должны быть расположены по возрастанию.
- Вычислить не менее 14 значений функций.
- Учесть ОДЗ: x ненулевое число, то есть взять 7 отрицательных значений (в том числе, взять значения «-0.5» и «-0.25») и 7 положительных значений аргумента (в том числе, взять значения «0.25» и «0.5»)..
- 2) Построить график функции.

Примечание: Линия между двумя частями графика должна отсутствовать!

5. Найдите значение функции (не менее 7) и постройте график функции.

$$y = \ln(x)$$

Ход работы:

1) Вычислить не менее 7 значений функций. Для этого построить компьютерную модель, содержащую аргумент и значение функции.

Примечание:

- Значения аргументов должны быть расположены по возрастанию.
- Учесть ОДЗ: x положительное число, то есть взять, в том числе, значения <0,25> и <0,5>.
- 2) Построить график функции.

Задание 3. Гиперболический параболоид. График поверхности

Гиперболический параболоид — седловая поверхность, описываемая в прямоугольной системе координат уравнением вида:

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Также гиперболический параболоид может быть образован движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх, при условии, что первая парабола соприкасается с вершиной второй.

Пересечение гиперболического параболоида с плоскостью z = z0 является **гиперболой**.

Пересечение гиперболического параболоида с плоскостью x = x0 или y = y0 является **параболой**.

График поверхности выглядит следующим образом:

Задание: Построить компьютерную модель, вычисляющую координаты точек гиперболического параболоида

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
, при a=1 и b=1

Построить график поверхности.

Ход работы:

1) Построить компьютерную модель.

4	Α	В	С	D	E	F	G	Н	1	J	K	L
1		-7,5	-6	-4,5	-3	-1,5	0	1,5	3	4,5	6	7,5
2	-5	31,25	11	-4,75	-16	-22,75	-25	-22,75	-16	-4,75	11	31,25
3	-4	40,25	20	4,25	-7	-13,75	-16	-13,75	-7	4,25	20	40,25
4	-3	47,25	27	11,25	0	-6,75	-9	-6,75	0	11,25	27	47,25
5	-2	52,25	32	16,25	5	-1,75	-4	-1,75	5	16,25	32	52,25
6	-1	55,25	35	19,25	8	1,25	-1	1,25	8	19,25	35	55,25
7	0	56,25	36	20,25	9	2,25	0	2,25	9	20,25	36	56,25
8	1	55,25	35	19,25	8	1,25	-1	1,25	8	19,25	35	55,25
9	2	52,25	32	16,25	5	-1,75	-4	-1,75	5	16,25	32	52,25
10	3	47,25	27	11,25	0	-6,75	-9	-6,75	0	11,25	27	47,25
11	4	40,25	20	4,25	-7	-13,75	-16	-13,75	-7	4,25	20	40,25
12	5	31,25	11	-4,75	-16	-22,75	-25	-22,75	-16	-4,75	11	31,25

Для этого:

- Ввести соответствующие числовые значения в ячейках А2 и А3.
- Выделить диапазон ячеек A2 : A3. При помощи функции автозаполнения: заполнить ячейки A3 : A12. Таким образом, будут получены значения параметра "x".
- Ввести соответствующие числовые значения в ячейках В1 и С1.
- Выделить диапазон ячеек B1 : C1. При помощи функции автозаполнения: заполнить ячейки D1 : L1. Таким образом, будут получены значения параметра "y".
- В ячейке B2 ввести формулу: =(B\$1)^2-(\$A2)^2
- При помощи автозаполнения заполнить ячейки C2 : L2.
- Выделить диапазон ячеек B2 : L2. При помощи функции автозаполнения: заполнить ячейки B3 : L12. Таким образом, будут получены значения параметра "z".
- 2) Устно сформулировать вывод о выборе абсолютных, смешанных и относительных ссылок.

3) Построить график поверхности.

Для этого:

- Выделить диапазон ячеек A1 : L12
- Добавить диаграмму: тип диаграммы «Поверхность». В заголовке диаграммы указать название.
- Провести форматирование графика. Форматирование должно соответствовать цели лабораторной работы.

Основные понятия и принципы работы с электронными таблицами

Прикладные программы, предназначенные для работы с электронными таблицами, называются табличными процессорами.

Поля, значения которых вычисляются через значения других полей, называются вычисляемыми или зависимыми. В них вводятся формулы.

Поля, значения которых не зависят от других ячеек, называются независимым. Они содержат исходные данные.

Структура листа

Лист состоит из столбцов и строк.

Строки нумеруются числами, начиная с 1 (единицы).

Столбцы – называются латинскими буквами: A, B, C, D, E, ..., Z, AA, AB, AC, ..., AZ, BA, BB, BC, ..., ZZ, AAA, AAB, AAC, ... и так далее.

Иногда при создании нового файла, при открытии программы вместо латинских букв столбцы обозначены числами. Это означает, что был выбран стиль ссылок R1C1.

R10	1	▼ : [× <	fx
4	1	2	3	4
1				
2				
3				
4				
5				
6				
7				

Для исправления надо:

- Открыть «Параметры» (в главном меню выбрать «Главная Параметры Excel» (2007), «Файл Параметры» (2010, 2013)).
- Перейти на вкладку «Формулы»
- Снять галочку слева от параметра «Стиль ссылок R1C1».

Имя (адрес ячейки)

Наименьшая структурная единица электронной таблицы – ячейка.

Ячейка может содержать: текст, числовое значение, формулу.

Имя ячейки (адрес ячейки) – состоит из имени столбца и номера строки. Например: A1, A10, B5, C15, AB2, BC15.

Имя выделенной ячейки написано в левом верхнем углу окна.

Диапазон ячеек

Диапазон ячеек — это любая прямоугольная часть таблицы. Обозначается верхней левой и нижней правой ячейками, разделенными двоеточием. Минимальный диапазон — одна ячейка таблицы. Например. A1:C7, E11:S12, A1:A10, A1: S1

Выделение фрагментов листа

Одна ячейка. Щёлкнуть на ячейке 1 раз левой кнопкой мыши (курсор имеет вид белого плюса).

Диапазон ячеек. Подвести курсор в любой угол выделяемого диапазона (курсор имеет вид белого плюса). Удерживая нажатой левую кнопку мыши, вести указатель в противоположный угол диапазона. Например, из левого верхнего в правый нижний, из левого нижнего в правый верхний, из правого верхнего в левый нижний, из правого нижнего в левый верхний. Отжать кнопку мыши.

Весь лист. Щёлкнуть 1 раз левой кнопкой мыши (курсор имеет вид белого плюса) на пересечении имён столбцов и номеров строк (прямоугольник в левом верхнем углу).

Один столбец. Щёлкнуть 1 раз левой кнопкой мыши на имени столбца (курсор имеет вид стрелки черного цвета, направленной вниз).

Одна строка. Щёлкнуть 1 раз левой кнопкой мыши на номере строки (курсор имеет вид стрелки черного цвета, направленной вправо).

Несколько подряд идущих столбцов. Есть несколько способов. Рассмотрим два из них. Способ 1. Подвести курсор к имени крайнего (левого или правого) выделяемого столбца (курсор имеет вид стрелки черного цвета, направленной вниз). Удерживая нажатой левую кнопку мыши, вести указатель к имени другого крайнего столбца. Отжать кнопку мыши. Способ 2. Выделить один крайний столбец. Затем, удерживая нажатой клавишу Shift, выделить другой крайний столбец.

Несколько подряд идущих строк. Есть несколько способов. Рассмотрим два из них. **Способ 1.** Подвести курсор к номеру крайней (верхней или нижней) выделяемой строки (курсор имеет вид стрелки черного цвета, направленной вправо). Удерживая нажатой левую кнопку мыши, вести указатель к номеру другой крайней строки. Отжать кнопку мыши. **Способ 2.** Выделить одну крайнюю строку. Затем, удерживая нажатой клавишу Shift, выделить другую крайнюю строку.

Разрозненные фрагменты. При форматировании таблицы или при построении диаграмм часто нужно выделять разрозненные фрагменты. Например, ячейки с фамилиями и ячейки с баллами находятся НЕ в соседних строках/столбцах; столбцы (строки), разделённые другими столбцами (строками); ячейки «шапки» таблицы. Тогда сначала надо выделить один фрагмент. Затем удерживая нажатой клавишу Ctrl, выделить другой фрагмент.

Изменение размеров строки (столбца)

Изменение ширины столбца и высоты строки можно организовать разными способами:

- протягиванием (размер определяем «на глаз»),
- автоматическим подбором минимального значения (ширина/высота станут такими, чтобы в текст «помещался» в ячейку),
- заданием конкретного числового значения (требуется, например, в будущем распечатывать лист).

Каждый из указанных способов выбирается в зависимости от необходимого результата.

Изменение размера (ширины) столбца

- **Способ 1.** Подвести курсор к правой границе имени столбца (курсор примет вид двунаправленной стрелки). Удерживая нажатой левую кнопку мыши, вести указатель влево или вправо (соответственно для уменьшения или увеличения ширины столбца).
- Способ 2. Подвести курсор к правой границе имени столбца (курсор примет вид двунаправленной стрелки). Сделать двойной щелчок левой кнопкой мыши.
- Способ 3. Выделить столбец (несколько столбцов). Вызвать контекстное меню к имени столбца (если несколько столбцов, то к любому из них). Выбрать команду «Ширина столбца». В открывшемся диалоговом окне ввести числовое значение ширины. Нажать «ОК».
- **Способ 4.** Выделить столбец (несколько столбцов). Выполнить команду при помощи главного меню «Главная Ячейки Формат Ширина столбца». В открывшемся диалоговом окне ввести числовое значение ширины. Нажать «ОК».

Изменение размера (высоты) строки

- **Способ 1.** Подвести курсор к нижней границе номера строки (курсор примет вид двунаправленной стрелки). Удерживая нажатой левую кнопку мыши, вести указатель вверх или вниз (соответственно для уменьшения или увеличения высоты строки).
- Способ 2. Подвести курсор к нижней границе номера строки (курсор примет вид двунаправленной стрелки). Сделать двойной щелчок левой кнопкой мыши.
- **Способ 3.** Выделить строку (несколько строк). Вызвать контекстное меню к номеру строки (если несколько строк, то к любой из них). Выбрать команду «Высота строки». В открывшемся диалоговом окне ввести числовое значение высоты. Нажать «ОК».
- **Способ 4.** Выделить столбец (несколько столбцов). Выполнить команду при помощи главного меню «Главная Ячейки Формат Высота строки». В открывшемся диалоговом окне ввести числовое значение высоты. Нажать «ОК».

Столбцы одинаковой ширины (Строки одинаковой высоты)

Выделить несколько столбцов (строк). Выполнить команду при помощи главного меню «Главная – Ячейки – Формат – Автоподбор ширины столбца (Автоподбор высоты строки)».

Перенос текста в ячейке

Изначально текст в каждой ячейке располагается в одну строку (без переноса). Текст часто не помещается в ячейку. При этом можно организовать перенос текста (размещение текста в ячейке в несколько строк).

Способ 1. Выделить ячейку. Выполнить команду главного меню «Главная – Выравнивание – Перенести текст».

Способ 2. Выделить ячейку. В контекстном меню выбрать команду «Формат ячеек.». В открывшемся диалоговом окне перейти на вкладку «Выравнивание». Поставить галочку слева от команды «переносить по словам». Нажать «ОК».

Ввод текста, чисел. даты

Для ввода любой информации (текста, числа, даты) надо сначала выделить ячейку, а затем начинать ввод. Дробные числа, как правило, набирают со знаком «запятая». Даты, как правило, набирают со знаком «точка» или «слеш».

Объединение ячеек

Используется при:

- создании заголовков к таблице,
- создании «шапки» таблицы,
- организации сложной структуры таблицы.

- **Способ 1.** Выделить диапазон ячеек. При помощи главного меню выполнить команду «Главная Выравнивание Объединить ячейки (Объединить и поместить в центре)».
- Способ 2. Выделить диапазон ячеек. В контекстном меню выбрать команду «Объединить ячейки».
- **Способ 3.** Выделить диапазон ячеек. В контекстном меню выбрать команду «Формат ячеек». Перейти на вкладку «Выравнивание». Поставить галочку слева от команды «объединение ячеек». Нажать «ОК».

Изменение формата ячеек

Сначала надо выделить диапазон ячеек.

Затем для изменения формата ячеек можно либо пользоваться командами в главном меню, либо открывать диалоговое окно.

Диалоговое окно состоит из вкладок:

- **Число**. Можно, например, задавать «числовой» формат и задавать количество знаков после запятой. Или «денежный» формат и выбирать единицы измерения. Или формат «дата» и выбрать порядок и наличие отображения дня-месяца-года. Или «процентный» формат (знак процентов при этом будет автоматически показываться справа от числа) и задавать количество знаков после запятой.
- Выравнивание. Можно задавать выравнивание внутри ячейки (как по вертикали, так и по горизонтали), направление (ориентацию) текста внутри ячейки (например, чтобы писать текст снизу вверх или под углом), перенос по словам, объединение ячеек и так далее.
- Шрифт. Можно задавать тип шрифта, размер шрифта, начертание и так далее.
- Граница. Можно задавать для границ ячеек: тип, толщину, цвет линии и так далее. Примечание: сначала выбирать тип и цвет линии. А затем либо воспользоваться кнопками в верхней части окна («внешние», «внутренние»), либо кнопками справа (для определения каждой отдельной линии).
- Заливка. Можно задавать для ячеек цвет заливки. Цвет заливки должен быть таким, чтобы текст остался читабельным.
- Защита. Можно задавать параметры защиты, которые будут работать при установке защиты для всего листа. Например, если поставить галочку слева от команды «скрыть формулы». А затем защитить весь лист. То при выборе этих ячеек: формулы НЕ будут отображаться в строке формул.

Ввод формул

Любая формула начинается со знака = (равно).

Формула может содержать: числа, имена ячеек, знаки операций, знаки сравнений, круглые скобки, имена функций.

Знаки операций НЕ всегда записываются также как в математике.

Знак	Смысл знака
+	сложение
_	вычитание
*	умножение
/	деление
٨	возведение в степень

Знаки сравнений НЕ всегда записываются также как в математике.

Знак	Смысл знака
>	больше
<	меньше
=	равно
<>	не равно
>=	больше или равно
<=	меньше или равно

Для ввода формулы необходимо/желательно соблюдать следующие принципы работы:

- 1. Прежде чем вводить формулу, надо определиться:
 - в каких ячейках будут исходные данные,
 - в каких ячейках значения будут получены по формулам.
- **2.** При обращении в формулах к другим ячейкам лучше в нужный момент выбирать их щелчком мыши. Можно вводить адреса и вручную, но при этом следить, чтобы была включена раскладка английского языка.
- **3.** При использовании в формулах функций надо соблюдать синтаксис (скобки, кавычки, точки с запятой и так далее).
- 4. Для правильного порядка действий надо использовать скобки. В том числе это актуально при работе с обыкновенными дробями.
- 5. При использовании текстового значения: это значение надо набирать в кавычках.
- **6.** В конце набора формулы надо нажать клавишу Enter.

Использование встроенных функций

В электронных таблицах встроены разные функции. Они разделены по категориям. Например, математические, статистические, текстовые, логические и так далее.

Для ввода формулы с функцией необходимо/желательно соблюдать следующие принципы работы:

- 1. Прежде чем вводить формулу с функцией, надо определиться:
 - в каких ячейках будут исходные данные,
 - в каких ячейках значения будут получены по формулам.
- **2.** При обращении в формулах к другим ячейкам лучше в нужный момент выбирать их щелчком мыши. Можно вводить адреса и вручную, но при этом следить, чтобы была включена раскладка английского языка.
- **3.** При использовании в формулах функций надо соблюдать синтаксис (скобки, кавычки, точки с запятой и так далее).
- 4. Для правильного порядка действий надо использовать скобки. В том числе это актуально при работе с обыкновенными дробями.

- 5. При использовании текстового значения: это значение надо набирать в кавычках.
- 6. Внимательно читайте подсказки и комментарии, которые даёт программа.
- **7.** В конце набора формулы надо нажать клавишу Enter.

Лучше сначала вводить новую для себя функцию при помощи диалогового окна (мастера функций). Затем понять и запомнить синтаксис. И только после этого можно вводить функцию вручную.

Если функции вкладываются друг в друга, то сначала надо изучить и проанализировать структуру каждой функции, а только потом использовать их вместе.

Чаще всего структура функций следующая:

- Функция это формула. А значит сначала будет знак «равно».
- Затем название функции.
- Затем открывается круглая скобка.
- После этого перечисляются отдельные части (параметры) ней. Эти параметры отделяются друг от друга «точкой с запятой».
- Затем закрывается круглая скобка.

Примечание:

- Знак «равно» ставится только вначале общей формулы.
- Когда функции встраиваются друг в друга, то в середине формулы знак «равно» не ставится (не путать знак «равно» в начале формулы и знак «равно», используемый для сравнения!).

Порядок работы с мастером функций:

- 1. Выделить ячейку, в которой должен отображаться результат выполнения функции.
- **2.** Нажать на кнопку «Мастер функций» («Вставить функцию», f_x).
- 3. В открывшемся диалоговом окне выбрать нужную категорию и нужную функцию.
- **4.** Прочитать комментарий по функции расположен в нижней части окна. Убедиться, что выбрана правильная функция
- **5.** Нажать кнопку «ОК» («Далее»).
- **6.** В новом диалоговом окне заполнить поля ввода: ввести данные с клавиатуры, выбрать адреса ячеек щелчком мыши на них и так далее.
- 7. Нажать «ОК»

Строка формул (строка ввода)

Всё, что набрано в ячейке (текст, число, дата, формула, функция) будет показано в **строке формул** – длинная белая строка в верхней части окна.

Важно:

- Если строка формул пустая значит в выделенной ячейке ничего не набрано. Даже если зрительно другой текст «загораживает» текущую ячейку. Истина написана в строке формул.
- В ячейке показывается результат формулы, в строке формул сама формула!

Виды ссылок

В электронной таблице реализован принцип относительной адресации. Согласно ему, адреса ячеек, используемых в формулах, определены не абсолютно; адреса ячеек определены относительно ячейки, в которой располагается формула.

При этом всякое изменение места расположения формулы ведет к автоматическому изменению адресов ячеек в этих формулах.

При организации формул и при вставке функций: общение к ячейкам можно организовать разными видами ссылок.

Относительная ссылка — используются для указания адреса ячейки, вычисляемого относительно ячейки, в которой находится формула. При перемещении или копировании формулы такие ссылки автоматически обновляются в зависимости от нового положения формулы.

Если формулу с такой ссылкой копировать/перемещать вниз или вверх, то будет изменяться номер строки. Если формулу с такой ссылкой копировать/перемещать влево или вправо, то будет изменяться имя столбна.

Примеры таких ссылок: A1, C15, FD3, AS324.

Абсолютная ссылка — используется для указания фиксированного адреса ячейки. При перемещении или копировании формулы такие ссылки НЕ изменяются. В адресе такой ячейки стоит знак \$. Для создания абсолютной ссылки необходимо либо набрать знак \$ «вручную», либо поставить курсор в формуле после адреса ячейки и нажать на клавиатуре клавишу F4.

Если формулу с такой ссылкой копировать/перемещать (в любом направлении), то будет оставаться именно эта ссылка – без изменения.

Примеры таких ссылок: \$A\$1, \$C\$15, \$FD\$3, \$AS\$324.

Смешанная ссылка – используется для указания фиксированного имени столбца (либо фиксированного номера строки) в адресе ячейки. При перемещении или копировании формулы соответственно НЕ изменяются либо имя столбца, либо номер строки. В адресе такой ячейки знак \$ стоит только перед фиксированной частью. Для создания смешанной ссылки необходимо «вручную» набрать знак \$ либо только перед именем столбца, либо только перед номером строки. Также можно поставить курсор в формуле после адреса ячейки и нажать несколько раз на клавиатуре клавишу F4.

Случай 1 «Зафиксирован номер строки» (знак \$ стоит только перед номером строки). Если формулу с такой ссылкой копировать/перемещать вниз или вверх, то номер строки будет оставаться неизменным (из-за данной фиксации). Если формулу с такой ссылкой копировать/перемещать влево или вправо, то будет изменяться имя столбца (так как оно не зафиксировано).

Примеры таких ссылок: A\$1, C\$15, FD\$3, AS\$324.

Случай 2 «Зафиксировано имя столбца» (знак \$ стоит только перед именем столбца). Если формулу с такой ссылкой копировать/перемещать вниз или вверх, то будет изменяться номер строки (так как он не зафиксирован). Если формулу с такой ссылкой копировать/перемещать влево или вправо, то имя столбца будет оставаться неизменным (из-за данной фиксации).

Примеры таких ссылок: \$A1, \$C15, \$FD3, \$AS324.

Функция автозаполнения

Функция автозаполнения позволяет ускорить, упростить процесс набора текста, формул.

Автозаполнение можно использовать в любом направлении. То есть выделив нужный фрагмент, можно тянуть за правый нижний угол как вниз, так и вверх, и влево, и вправо.

Внимание: курсор должен иметь вид плюса черного цвета.

Возможности:

- Если набрать в одной ячейке цифру 1, а в соседней цифру 2. Затем выделить эти две ячейки и протянуть за правый нижний угол (курсор принимает вид плюса черного цвета). Будет автоматически продолжен натуральный ряд.
- Если набрать в одной ячейке цифру 1, а в соседней цифру 3. Затем выделить эти две ячейки и протянуть за правый нижний угол (курсор принимает вид плюса черного цвета). Будет автоматически продолжен ряд нечётных чисел. Компьютер «знает» основы арифметической прогрессии.

- Если набрать в одной ячейке цифру 2, а в соседней цифру 4. Затем выделить эти две ячейки и протянуть за правый нижний угол (курсор принимает вид плюса черного цвета). Будет автоматически продолжен ряд нечётных чисел. Компьютер «знает» основы арифметической прогрессии.
- Если в одной ячейке набрать число или текст. А затем протянуть эту ячейку за правый нижний угол (курсор принимает вид плюса черного цвета). Введённое значение будет автоматически повторяться в ячейках.
- Если в одной ячейке набрать текущую дату (день-месяц-год). А затем протянуть эту ячейку за правый нижний угол (курсор принимает вид плюса черного цвета). Будет автоматически продолжаться календарный порядок дат. При этом соблюдается количество дней в месяце, високосные года и так далее.
- Если в одной ячейке набрать название месяца или дня недели. А затем протянуть эту ячейку за правый нижний угол (курсор принимает вид плюса черного цвета). Будет автоматически продолжаться календарный порядок месяцев или дней недели.
- Если в одной ячейке набрать формулу/функцию. А затем протянуть эту ячейку за правый нижний угол (курсор принимает вид плюса черного цвета). Введённая формула/функция будет автоматически повторяться в ячейках. Не забудьте про разные виды ссылок!
- Если в нескольких подряд ячейках набрать разные формулы. А затем выделить этот диапазон и протянуть его за правый нижний угол (курсор принимает вид плюса черного цвета). Тогда все формулы будут повторяться. Поэтому в таблицах удобно, когда формулы располагаются в соседних ячейках. Достаточно один раз их всех набрать, а затем продолжить на все строки или столбцы.

Режимы отображения содержания таблицы

Существуют:

- 1. Режим отображения значений. В ячейках написаны результаты вычисления. А сами формулы можно увидеть только в строке формул.
- 2. Режим отображения формул. В ячейках отображаются сами формулы. При этом значения не видны.

Чтобы переключаться в режим отображения формул (и обратно в режим отображения значений) надо:

Версия **2007 и выше**: В главном меню «Формулы – Зависимости формул – Показать формулы».