

Fine-Grained Generalized Zero-Shot Learning via Dense Attribute-Based Attention

Dat Huynh and Ehsan Elhamifar

Khoury College of Computer Sciences
Northeastern University

Motivation

Fine-Grained Recognition:

- Recognize visually similar objects

 Must localize attributes
- Experts annotation is costly

Dense Attention & Attribute Embedding

Zero-Shot Learning:

- Generalize to unseen classes using annotations from seen classes
- Existing methods cannot localize attributes without bbox annotations

Contributions:

- Dense Attention: capture attribute details
- Attention Embedding: transfer attribute details

Proposed Architecture

- Encode attributes into multiple features
- Dense Attention has multiple soft-attention channels:
 - Output attribute features $m{h}^a$
 - Guide by attribute semantic $oldsymbol{v}_a$ (word2vec of the attribute name)
- Attribute Embedding:
 - Compute each attribute score e^a from attribute feature
 - Compute class score s^c as sum of attribute scores

Experiments

Outperform SOTA on ZSL and Generalized ZSL

 Dense Attention localizes present attributes and finds evidence for absent attributes

wing shape long

back

wing color

black

belly pattern

multi-colored

