- **62.** Una compañía paga un salario a sus ejecutivos y les da un porcentaje de sus acciones como un bono anual. El año pasado el presidente de la compañía recibió \$80 000 y 50 acciones, se pagó a cada uno de los vicepresidentes \$45 000 y 20 acciones y el tesorero recibió \$40 000 y 10 acciones.
 - a) Exprese los pagos a los ejecutivos en dinero y acciones como una matriz de 2×3 .
 - b) Exprese el número de ejecutivos de cada nivel como un vector columna.
 - c) Utilice la multiplicación de matrices para calcular la cantidad total de dinero y el número total de acciones que pagó la compañía a los ejecutivos el año pasado.
- **63.** La siguiente tabla contiene ventas, utilidades brutas por unidad y los impuestos por unidad sobre las ventas de una compañía grande:

	Producto					
Mes	Artí I	culo ve	ndido III	Artículo	Utilidad unitaria (en cientos de dólares)	Impuestos unitarios (en cientos de dólares)
Enero	4	2	20	I	3.5	1.5
Febrero	6	1	9	II	2.75	2
Marzo	5	3	12	III	1.5	0.6
Abril	8	2.5	20			

Elabore una matriz que muestre las utilidades y los impuestos totales de cada mes.

64. Sea *A* una matriz cuadrada. Entonces A^2 se define simplemente como *AA*. Calcule $\begin{pmatrix} 2 & -1 \\ 4 & 6 \end{pmatrix}^2$.

65. Calcule
$$A^2 \operatorname{si} A = \begin{pmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$
.

66. Calcule $A^3 \operatorname{si} A = \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}$.

67. Calcule A^2 , A^3 , A^4 y A^5 donde

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

68. Calcule A^2 , A^3 , A^4 y A^5 donde

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$