

Fundaciones profundas Aspectos de diseño

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Grupos de pilotes

La carga última de un grupo de pilotes puede estimarse como la menor entre

- La suma de las cargas últimas individuales
- La carga última del contorno de pilotes como una pila única

La carga de servicio de un grupo de pilotes depende del asentamiento límite

- Suelos bajo la punta del grupo
- Interacción entre los diferentes pilotes

Grupos de pilotes

Existen diversas fuentes de interacción pilote-suelo-pilote en un grupo de pilotes. Las principales fuentes de interacción son:

- Alteración de densidad de suelos debido a construcción de pilotes subsecuentes;
- Interacción elástica: La carga en un pilote produce deformaciones del suelo circundante, lo cual induce deformaciones en los pilotes vecinos;
- Interacción plástica: Reducción de capacidad última debido a interferencia de superficies de falla.

En la practica se utiliza un factor global que tiende a considerar todos estos efectos en forma conjunta y que han sido calibrados mediante ensayos.

Eficiencia de grupo

• Pilotes hincados en suelos granulares: $Q_{ug}\cong \sum Q_{u_i}$

Eficiencia de grupo

- Pilotes hincados en suelos granulares: $Q_{ug} \cong \sum Q_{u_i}$
- Pilotes excavados en suelos granulares: $Q_{ug}\cong 0.70~\sum Q_{u_i}$

Eficiencia de grupo

- Pilotes hincados en suelos granulares:
- Pilotes excavados en suelos granulares:
- Pilotes en suelos cohesivos:
 - Ecuación de Converse-Labarre
 - Regla de Feld (1943)
 - Ecuación Los Angeles
 - Ecuación Siler-Keeney

$$Q_{ug} \cong \sum Q_{u_i}$$

$$Q_{ug} \cong 0.70 \sum Q_{u_i}$$

$$Q_{ug} \leq \sum Q_{u_i}$$

Asentamiento de un grupo de pilotes

Cuando los pilotes trabajan en grupo, la eficiencia individual disminuye.

Su eficiencia depende de:

- Distancia entre pilotes
- Número de pilotes en el grupo
- Relación de rigidez pilote-terreno
- Profundidad de capas rígidas inferiores
- Distribución de rigidez en horizontal y vertical.

Métodos para el análisis de grupo de pilotes (Poulos 2003)

- Métodos que modifican de la curva carga-asentamiento para considerar el efecto grupo
- Métodos que usan factores de interacción y principio de superposición de efectos
- Método de radio de asentamiento, donde se afecta el resultado del asentamiento de un pilote por un factor de grupo.
- Métodos que asimilan el grupo de pilotes a fundaciones superficiales.
- Métodos numéricos tridimensionales.

Método por factor de interacción (Poulos 1980)

El asentamiento de un pilote individual (w_k) en un grupo de n pilotes viene dado por:

$$w_k = w_1 P_k + w_1 \sum_{j=1}^n P_j \cdot \alpha_{kj}$$

- P_i : carga en el pilote j;
- w_1 : asentamiento individual de un pilote bajo carga unitaria;
- α_{ij} : factor de interacción para el pilote i debido al pilote j.

Método por factor de interacción (Poulos 1980)

En la publicación original Poulos calculó numéricamente los factores de interacción para arreglos de pilotes y presentó sus resultados en forma de ábacos normalizados.

Factores de interacción para pilotes flotantes, con L/D=10 (Poulos, 1980)

Mejoras al método por factor de interacción

Desde la publicación original de Poulos se lograron mejoras al método, con las siguientes consideraciones (en orden de importancia):

- Rigidez no homogénea con la profundidad.
- Influencia del estrato resistente inferior.
- El terreno entre pilotes es más rígido que la interfaz piloteterreno.
- Interacción entre pilotes de tamaños distintos.
- Capas compresibles bajo la punta de los pilotes.
- Aplicación del factor de interacción solo a la parte elástica de la interacción.

Mejoras al método por factor de interacción

 Rigidez no homogénea con la profundidad: Si no se considera la variación de la rigidez, el factor de interacción se sobrestima.

Mejoras al método por factor de interacción

 Influencia del estrato resistencia inferior: La presencia de un estrato muy rígido en la base de los pilotes "amortigua" el efecto grupo.

Contenido

- Definición y tipos de fundación profunda
- Métodos de instalación de pilotes
- Diseño para estados límites últimos
- Diseño para estados límites de servicio
- Aspectos de diseño
 - Grupo de pilotes
 - Fricción negativa

Fricción negativa

Fricción negativa: terreno del fuste se asienta más que el pilote

- Rellenos sobre suelos blandos
- Abatimiento de nivel freático

La fricción negativa no reduce la carga última del pilote

Produce

- Mayores asentamientos (modifica SLS)
- Mayor carga de compresión en el pilote

Fricción negativa

Fricción negativa. Plano neutro

El plano neutro se define como aquel donde no existe desplazamiento relativo entre el pilote y el terreno.

En el caso donde la punta sea infinitamente rígida, el plano neutro se encontrará a nivel de la punta del pilote

$$P_e + W + \int_0^{L_n} F_S^{(-)} dz = Q_b + \int_0^{L_n} F_S^{(+)} dz$$

Fricción negativa

Ejercicio (Fellenius Test 2020)

- Se efectúa un ensayo de carga estática sobre pilotes hincados de 40cm de diámetro y 25m de profundidad.
- No existe efecto grupo.

		Depth (m) ==>			0	5	10	15	20	25
Increment	Load	Stress	Mvmnt	Compr.	Strain					
		Head	Head		SG-6	SG-5	SG-4	SG-3	SG-2	SG-1
(#)	(kN)	(kN/m ²)	(mm)	(mm)	(με)	(με)	(με)	(με)	(με)	(με)
L0	0	0	0.00	0.00	0	0	0	0	0	0
L1	200	1591.55	0.67	0.67	51	45	20	9	4	0
L2	400	3183.10	1.41	1.41	103	89	52	26	10	1
L3	600	4774.65	2.37	2.12	161	134	85	43	18	2
L4	800	6366.20	3.53	3.00	209	173	125	73	27	6
L5	1,000	7957.75	4.54	3.74	267	225	166	105	39	13
L6	1,200	9549.30	6.62	4.63	315	277	212	137	59	23
L7	1,400	11140.85	15.67	5.67	376	330	264	166	69	42
L8	1,600	12732.40	36.54	7.04	419	383	318	218	117	75
L9	1,800	14323.94	62.74	8.24	480	436	371	270	169	130
L10	2,000	15915.49	94.65	9.65	528	489	424	324	221	180
L11	2,200	17507.04	127.00	11.40	586	542	477	377	273	237

Ejercicio (Fellenius Test 2020)

- Profundidad del nivel freático: 1.0 m
- Se abate el nivel freático 1.0 m y se genera un relleno por encima del nivel de terreno de 0.70m generando una presión vertical igual a 15 kPa.

oil Profile										
COMPRESSIBILITY										
DEPTH	Soil	Water	Density	Precompr.	Virgin	Precompr.	Remarks			
		Content	Q t	Margin, Δσ'	m	m_{r}				
(m)	(Type)	(%)	(kg/m ³)	(kPa)	()	()	()			
0										
F	Silty Sand		1900	0	180.0	180	Density may be shy of actual, but I have accepted the information given although			
5	Clay	56 to 70	1600	0	6.5	150	it would indicate ≈30+ % water content, which is far too large for silty sand. modulus number from oedometer test (m = 1/CR)			
10	Clay	30 10 70	1000	O	0.5	130	modulus number nom oedometer test (m = 1/Cit)			
. •	Clay	56 to 70	1600	0	8.7	200	modulus number from oedometer test (m = 1/CR)			
15	•						·			
	Clay	56 to 70	1600	10	13.0	300	modulus number from oedometer test ($m = 1/CR$)			
20	01	501 70	4000	00	40.0	000	11 (1 (1 (1 (1 (1 (1 (1 (1 (1			
25	Clay	56 to 70	1600	30	13.0	300	modulus number from oedometer test (m = 1/CR)			
20	Sand		2100	100	300.0	300	m = E/100; E (kPa)			
30+	Caria		2100	.50	000.0	300	= 1,100, = (0)			

Ejercicio (Fellenius Test 2020)

Ejercicio:

Sabiendo que el pilote estará sometido a una carga vertical igual a 800kN (D=700kN y L=100kN) y que el asentamiento máximo admisible es 30mm, determinar:

- 1. Distribución de la carga en función de la profundidad;
- Distribución del asentamiento del pilote y el terreno en función de la profundidad.