Лабораторная работа №5. Вероятностные алгоритмы проверки чисел на простоту.

Предмет: Математические основы защиты информации и информационной безопасности

Александр Сергеевич Баклашов

Содержание

1	Целі	ь работы																	4
2	Зада	ние																	5
3	Теоретическое введение													6					
4	Вып	олнение лаборатор	ной рабо	ты															7
	4.1	Тест Ферма																	7
		4.1.1 Задача																	7
	4.2	Нахождение сим	вола Яко	би .															7
		4.2.1 Задача																	7
	4.3	Тест Соловэя-Шт	рассена																10
		4.3.1 Задача																	10
		4.3.2 Решение.																	10
	4.4	Тест Соловэя-Шт	рассена																10
		4.4.1 Задача																	10
		4.4.2 Решение .			•		•	•		•	•		•	 •	•	•		•	10
5	Выв	оды																	12
6	Библ	пиография																	13

List of Figures

4.1	Тест Ферма												7
4.2	Символ Якоби												9
4.3	Тест Соловэя-Штрассена												10
4.4	Тест Соловэя-Штрассена												11

1 Цель работы

Рассмотреть и реализовать алгоритмы проверки чисел на простоту.

2 Задание

Реализовать следующие алгоритмы:

- Тест Ферма;
- Нахождение символа Якоби;
- Тест Соловэя-Штрассена;
- Тест Миллера-Рабина.

3 Теоретическое введение

Тест Ферма:

Теория: Основан на малой теореме Ферма, которая утверждает, что если р - простое число, то для любого целого а, не кратного р, справедливо $a^{p-1} \equiv 1 (mod\ p)$. Если обратное также верно, то р - простое. Тест Ферма использует эту теорему, проверяя условие для случайно выбранных а.

Нахождение символа Якоби:

Теория: Символ Якоби обобщает символ Лежандра и предоставляет метод определения квадратичной вычетности для нечетных простых чисел. Символ Якоби для числа а и простого нечетного числа р определяется как произведение символов Лежандра для простых множителей а по модулю р. Используется для проверки квадратичной вычетности.

Тест Соловэя-Штрассена:

Теория: Основан на том, что простые числа обладают свойством квадратичной вычетности. Если n - простое, то для любого целого числа а существует квадратный корень по модулю n. Тест Соловэя-Штрассена проверяет это свойство для случайно выбранных a, используя символ Якоби.

Тест Миллера-Рабина:

Теория: Основан на том, что большинство составных чисел обладают свойством "псевдопростоты" по отношению к определенному базису. Тест Миллера-Рабина проверяет это свойство для случайно выбранных базисов. Если число п не проходит тест, то оно с большой вероятностью составное.

Эти тесты предоставляют методы проверки простоты чисел, но важно отметить, что они не гарантируют абсолютную простоту и могут давать ошибочные результаты. В практике их часто комбинируют или применяют с дополнительными проверками для повышения надежности.

4 Выполнение лабораторной работы

4.1 Тест Ферма

4.1.1 Задача

Реализовать тест Ферма

4.1.1.1 Решение

Реализуем тест Ферма (рис. 4.1)

```
n=5
a= np.random.randint (2,n-1)
r=pow(a,n-1) % n
if (r==1):
    print ("Число, вероятно, простое")
else:
    print ("Число, вероятно, составное")
```

Figure 4.1: Тест Ферма

4.2 Нахождение символа Якоби

4.2.1 Задача

Реализовать алгоритм нахождения символа Якоби

Число, вероятно, простое

4.2.1.1 Решение

Найдём символ Якоби (рис. 4.2)

```
n=11
[3]:
      a= np.random.randint (0,n)
      print ("a =",a)
      g=1
      d=1
      def representation(n):
          k = 0
          a1 = n
         while a1 % 2 == 0:
             k += 1
              a1 //= 2
          return k, a1
     while (d==1):
          if (a==0):
              print ("Символ Якоби =",0)
              break
          if (a==1):
              print ("Символ Якоби =",g)
              break
          k, a1 = representation(a)
          if (k%2==0):
              s=1
          if (k%2!=0):
              if (n%8==1 or n%8==-1):
                  s=1
              if (n%8==3 or n%8==-3):
                  s=-1
          if (a1==1):
              print ("Символ Якоби =", g*s)
              break
          if (n%4==3 and a1%4==3):
              5=-5
          a=n%a1
          n=a1
          g=g*s
      a = 4
```

Figure 4.2: Символ Якоби

Символ Якоби = 1

4.3 Тест Соловэя-Штрассена

4.3.1 Задача

Реализовать тест Соловэя-Штрассена

4.3.2 Решение

Реализуем тест Соловэя-Штрассена (рис. 4.3)

```
n=11
a= np.random.randint (2,n-2)
r=pow(a,(n-1)/2) % n
if (r!=1) and (r!=n-1):
    print ("Число ", n," составное")
else:
    s = a/n
    if (r==s%n):
        print ("Число ", n," составное")
    else:
        print ("Число ", n," составное")
else:
        print ("Число ", n," вероятно, простое")
```

Число 11 вероятно, простое

Figure 4.3: Тест Соловэя-Штрассена

4.4 Тест Соловэя-Штрассена

4.4.1 Задача

Реализовать тест Соловэя-Штрассена

4.4.2 Решение

Реализуем тест Соловэя-Штрассена (рис. 4.4)

```
def representation(n):
   s = 0
   r = n - 1 # Начнем с максимально возможного нечётного r, который равен n - 1
   while r % 2 == 0:
        r //= 2
        s += 1
    return s, r
n = 13
s, r = representation(n)
a= np.random.randint (2,n-2)
y=pow(a,r) % n
while (y!=1 \text{ and } y!=n-1):
   j=1
   if (j \le n-1 \text{ and } y!=n-1):
        y=(y*y) %n
       if (y==1):
           print ("Число ",n," составное")
           raise SystemExit("Stop right there!")
        j+=1
   if (y != n-1):
        print ("Число ",n," составное")
        raise SystemExit("Stop right there!")
print ("Число ",n," простое")
Число 13 простое
```

Figure 4.4: Тест Соловэя-Штрассена

5 Выводы

В ходе данной лабораторной работы я рассмотрел и реализовал следующие алгоритмы:

- Тест Ферма;
- Нахождение символа Якоби;
- Тест Соловэя-Штрассена;
- Тест Миллера-Рабина.

6 Библиография

- 1. Python documentation. [Электронный ресурс]. M. URL: Python documentation (Дата обращения: 28.09.2023).
- 2. Лабораторная работа №5. Вероятностные алгоритмы проверки чисел на простоту. 5 с. [Электронный ресурс]. М. URL: Лабораторная работа №5. Вероятностные алгоритмы проверки чисел на простоту. (Дата обращения: 10.11.2023).