Name	;	

CH1020

EXAM 3B (70 points)

November 30th, 2018

There are a total of 11 pages in the exam (including this page). There are a total of 13 questions. Show your work to get full credit. The required tables can be found on the last 4 pages

Name	

1. (2 points) Which of the following statements correctly describes the signs of q and wfor the following process at P = 1 atm and $T = 25^{\circ}C$?

$$N_2(l) \rightarrow N_2(g)$$

- a. q and w are negative
- q is positive, and w is negative
- c. q is negative and w is positive
- d. q and w are both positive
- e. q and w are both zero
- 2. (2 points) Indicate of each of the following processes is exothermic or endothermic
 - a. condensation of water vapor (water vapor is the system) exother wic
 - b. When solid sodium hydroxide is dissolved in water, the solution gets warm (sodium hydroxide is the system) exolure wic
- 3. (2 points) For each of the following reactions, indicate whether the absolute value ΔE is smaller, equal or larger than ΔH

a.
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
 $\triangle E \leq \triangle H$

$$\Delta E \leq \Delta H$$

b.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 $\Delta E \subseteq \Delta H$

$$\Delta E \subseteq \Delta H$$

- 4. (2 points) 10.0 g of a metal, initially at 25°C, is placed into 10.0 g of water, initially at 100°C. Which metal will have the highest final temperature? Shown after each metal is its specific heat (you don't need to do a calculation to solve this question).
 - a. iron (0.450 J/(g·°C))
 - b. copper $(0.385 \text{ J/(g}^{\circ}\text{C}))$
 - (c.) gold (0.128 J/(g·°C))
 - d. silver (0.235 J/(g.°C))

Name	10

5. (5 points) To inflate a balloon pressure-volume work is done on the surroundings. If 210 J of work was used to inflate a balloon from an initial volume of 0.200 L against an external pressure of 1.00 atm, what is the final volume of the balloon?

$$-2100 \cdot \frac{10 \text{ m. L}}{101.30} = -2.07 \text{ a.m. L} 0$$

$$-2.07 \text{ a.m. L} = -100 \text{ a.m. L} (V_p - 0.2L) 0$$

$$2.07 L = V_p - 0.2L 0$$

$$V_p = 2.27L 0$$

6. (5 points) Use Hess's Law to calculate the enthalpy change for the reaction $C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$

from the following data:

(provide the appropriate chemical reactions to receive full credit)

Name	

7. (8 points) Use ΔH^{o}_{f} values to calculate ΔH^{o}_{rxn} for the reaction below (see table for ΔH^{o}_{f} values, provide the appropriate chemical reactions to receive full credit).

$$C_{2}H_{5}OH(l)+3O_{2}(g)\rightarrow 2CO_{2}(g)+3H_{2}O(g)$$

$$[2C+3H_{2}+\frac{1}{2}O_{2}\rightarrow C_{2}H_{5}OH]\times (-1)\Rightarrow +277.7kJlmol$$

$$[Ccs)+O_{2}(g)\rightarrow Co_{2}(g)J\times (2)\Rightarrow -393.5kJlmol\times 2=$$

$$-787kJlmol$$

$$[H_{2}(g)+\frac{1}{2}O_{2}\rightarrow H_{2}O(g)J\times (3)\Rightarrow -241.8\times 3=0$$

$$-125.4kJlmol$$

$$2H_{rxm}=-1235kJlmol$$

8. (8 points) A 45.0 g iron metal (specific heat capacity = 0.450 J/g °C) is heated to 90.0°C and dropped into 55.0 g of water at 23.2 °C (specific heat capacity = 4.184 J/g°C). What is the final temperature of the water/iron mixture?

MFe :
$$C_{SC}(F_{e}) \cdot \Delta T(F_{e}) = -(M_{H_{e}0} \cdot C_{S}(H_{e}0) \cdot ZT_{H_{e}0})$$
 U
 $U_{5.09} \cdot 0.450 \, 3/3^{\circ}C \cdot \Delta T_{Fe} = -(55.09 \cdot 4.184 \, 3/3^{\circ}C \cdot \Delta T_{H_{e}0}) \, 0$
 $20.25 \, \Delta T_{Fe} = -230.12 \, \Delta T_{H_{e}0} \, (D)$
 $\Delta T_{Fe} = -11.36 \, \Delta T_{H_{e}0} \, (D)$
 $T_{p} \cdot 90^{\circ}C = -11.36 \, (T_{p} - 23.2^{\circ}C) \, (D)$
 $T_{p} + 11.36 \, T_{p} = 263.6^{\circ}C + 90^{\circ}C = 353.6^{\circ}C \, (D)$
 $T_{p} = \frac{353.6^{\circ}C}{12.36} = 28.6^{\circ}C \, (D)$

9. (8 points) Magnesium metal reacts with hydrochloric acid according to the balanced equation:

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$
 $\Delta H_{rxn} = ?$

When 2.00g Mg(s) metal is combined with enough 1.00M HCl to make 300 mL of the solution, it causes the temperature of the solution to increase from 22.4°C to 27.5°C. Find ΔH_{rxn} for this reaction as written (d_{solution}=1.00 g/ml; $C_{s, solution}=4.18 \text{ J/g}^{\circ}\text{C}$)

$$q = 3009 \cdot 418999 \cdot (27.5 \cdot (27.5 \cdot (-27.4 \cdot ($$

10. (8 points) A bomb calorimeter has a heat capacity of 3.640 kJ/°C. When a 1.608 g sample of cymene (C₁₀H₁₄, found in several spices and fragrances including thyme, anise and coriander) was burned in this calorimeter, the temperature increased by 19.35°C. Calculate the energy of combustion for one mole of cymene.

$$q = 3.640 \text{ kJ/c} \cdot 19.35 \text{ c} = 70.4 \text{ ks} \text{ d}$$

$$q_{rxy} = -70.43 \text{ ks} \text{ d}$$

$$H \text{ moles} = 1.6089 \cdot \frac{1 \text{ moc}}{134.2} = 0.012 \text{ moc}$$

$$\Delta H_{rxy} = \frac{-70.43 \text{ ks}}{0.012 \text{ mod}} = -5878 \text{ ks/mod}$$

Name

11. (4 points) What mass of CH₄ must burn to emit 267 kJ of heat?

$$CH_4(g) + 2O_2(g) \rightarrow 3CO_2(g) + 3H_2O(g) \quad \Delta H_{rxn} = -802.3 \, kJ / mol$$

12. (8 points) Give the names for the following chemical compounds:

a).
$$H_3C-CH_2-CH-CH_2-CH_3$$
 3 - pentanol

1.3 dimethose cyclo hexane @

- 13. (8 points) Provide the condensed structural formula for the following compounds:
 - a) 2-pentene

b) 2-butanoic acid

$$CH_3-CH=CH-C^{*0}OH$$

c) 2,3-dimethyl hexane

d) 2-butanol