MA3705 Algoritmos Combinatoriales.

Profesor: Iván Rapaport.

Auxiliares: Antonia Labarca y Cristian Palma.

Auxiliar 11

P1 Sea $\mathcal{M} = (X, \mathcal{I})$ matroide y $f: X \to Y$ función epiyectiva.

- a) Pruebe que $\mathcal{M}_f = (Y, f(\mathcal{I}))$ es matroide, donde $f(\mathcal{I}) := \{f(J) | J \in \mathcal{I}\}.$
- b) **Propuesto:** Sea r función de rango de \mathcal{M} . Pruebe que $r_f(Q) = \min_{Z \subseteq Q} [r(f^{-1}(Z)) + |Q \setminus Z|]$ es rango de \mathcal{M}_f .

P2 Modele los siguientes problemas como intersecciones de matroides:

- a) Sea G = (V, E) un grafo simple y $W \subseteq V$ un conjunto estable (es decir, tal que $\forall u, v \in W, uv \notin E$). Determine si existe T^* árbol generador de G tal que los vértices $v \in W$ son hojas de T^* .
- b) Sean $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ grafos simples tales que $|V_1| = |V_2|$ y sea $\phi : E_1 \to E_2$ biyectiva. Determine si existe T^* árbol generador de G_1 tal que $\phi(T^*)$ sea árbol generador de G_2 .
- **P3** Sea G = (V, E) un grafo conexo tal que |V| = n. Sea $\varphi : E \to [n-1]$ coloreo de las aristas de G. Un árbol generador T se dice *arcoiris* si tiene exactamente una arista de cada color. Pruebe que G tiene un árbol generador arcoiris si y solo si al borrar todas las aristas de cualquier conjunto de C colores de C se generan a lo más C + 1 componentes conexas.