

BARSicle

4. Arduino Rotary Encoder

This is Rotary Encoder

- Produces 20 output "clicks" per rotation (DT, CLK)
- Has push button switch (SW)
- Outputs two codes

Wiring

- Encoder -> Nano
 - GND -> GND
 - + -> +5V
 - SW -> D4
 - DT -> D3
 - CLK -> D2

Rotary.h

- Rotary.h is a library for encoders, two modes
 - Interrupt mode processor interrupted from whatever it is doing to execute a service routine, faster response
 - Polling mode go around a loop checking if the encoder has been turned

ENC - Polling

- File > Sketchbook > My_ENC
- Open Monitor window

```
My_ENC
 1 // ENCODER
 3 #include "Rotary.h"
 5 \text{ Rotary enc} = \text{Rotary}(2, 3);
 7 void setup() {
     Serial.begin(9600);
     Serial.println("Ready");
10 }
11
12 void loop() {
     unsigned char result;
14
     result = enc.process();
15
16
    if (result) {
      if (result == DIR_CW) {
17
         Serial.println("Up");
18
19
       if (result == DIR_CCW) {
20
21
         Serial.println("Down");
22
23
24 }
```


Using ENC & OLED

- Encoder
 - GND -> GND
 - + -> +5V
 - SW -> D4
 - DT -> D3
 - CLK -> D2

- OLED
 - GND -> GND
 - VCC -> +5V
 - SCL -> A5
 - SDA -> A4

• File > Sketchbook > My_ENC_OLED

OLED Display

```
My_ENC_OLED
```

```
3 #include "Oled.h"
 4 #include "Rotary.h"
 6 \text{ Rotary enc} = \text{Rotary}(2, 3);
 8 char m[10] = "Ready";
10 void setup() {
    oled.begin();
12
13
    dispUpdate();
14 }
15
16 void loop() {
    unsigned char result;
18
    result = enc.process();
19
    if (result == DIR_CW) {
     strcpy(m, "Up");
21
22
      dispUpdate();
23 }
24 if(result == DIR_CCW) {
25
      strcpy(m, "Down");
26
      dispUpdate();
27
   }
28 }
29
30 void dispUpdate() {
    oled.firstPage();
32
    do {
       dispMsgUL(20, 20, m);
33
    } while ( oled.nextPage() );
35 }
36
```


Well done Nano + OLED + Encoder