Lecture 14

Simultaneity bias

Consider the model:

$$\begin{cases} y_t = \alpha x_t + u_t \\ x_t = \beta y_t + v_t \end{cases}$$

Substituting the second equation into the first one, we get the reduced-form equation:

$$y_t = rac{1}{1-lphaeta}(lpha v_t + u_t)$$

Similarly:

$$x_t = rac{1}{1-lphaeta}(eta u_t + v_t)$$

Since x_t is a function of y_t which, in turn, has u_t , there is correlation between to variable in the RHS (first equation).

- The same goes for the second equation of the system: y_t is a function of x_t which contains v_t .
- The simultaneity then introduces bias.

Is the estimate consistent if we regress y on x?

- ullet We have already seen that $\hat{lpha}=rac{\displaystyle\sum (x_i-ar{x})(y_i-ar{y})}{\displaystyle\sum (x_i-ar{x})^2}.$
- ullet As $N o\infty$, plim $\hat{lpha}=rac{\mathrm{Cov}(x,y)}{\mathrm{Var}(x)}.$
 - Since $y = \alpha x + u$, then:

$$\frac{\mathrm{Cov}(x,y)}{\mathrm{Var}(x)} = \frac{\mathrm{Cov}(x,\alpha x + u)}{\mathrm{Var}(x)} = \frac{\alpha \mathrm{Cov}(x,x) + \mathrm{Cov}(x,u)}{\mathrm{Var}(x)} = \alpha + \frac{\mathrm{Cov}(x,u)}{\mathrm{Var}(x)}.$$

- \circ Thus, $\operatorname{plim} \hat{lpha} = lpha + rac{\operatorname{Cov}(x,u)}{\operatorname{Var}(x)}.$
 - lacksquare We know that $x=rac{1}{1-lphaeta}(eta u+v).$
 - $lacksquare ext{Then, } \mathrm{Cov}(x,u) = \mathrm{Cov}igg(rac{1}{1-lphaeta}(eta u+v),uigg).$
 - $\begin{array}{l} \blacksquare \quad \text{Since we assume } u \perp v \text{ (uncorrelated),} \\ \operatorname{Cov}(x,u) = \frac{1}{1-\alpha\beta} \bigg[\beta \operatorname{Cov}(u,u) + \operatorname{Cov}(v,u) \bigg] = \frac{\beta}{1-\alpha\beta} \operatorname{Var}(u). \end{array}$
 - Also, $\operatorname{Var}(x) = \left(\frac{1}{1 \alpha \beta}\right)^2 \left[\operatorname{Var}(\beta u, v)\right].$
 - $lacksquare ext{Then, } \operatorname{Var}(x) = \left(rac{1}{1-lphaeta}
 ight)^2 igg[\operatorname{Var}(eta u) + \operatorname{Var}(v) + 2\operatorname{Cov}(eta u,v)igg].$
 - $\qquad \mathsf{Again,} \ u \perp v \to \mathrm{Var}(x) = \left(\frac{1}{1-\alpha\beta}\right)^2 \bigg[\beta^2 \mathrm{Var}(u) + \mathrm{Var}(v)\bigg].$

- Plugging those back in and simplifying: plim $\hat{\alpha} = \alpha + \beta(1 \alpha\beta) \frac{\mathrm{Var}(u)}{\beta \mathrm{Var}(u) + \mathrm{Var}(v)}$.
 - 1. $\hat{\alpha}$ is inconsistent;
 - 2. Unless $\beta = 0$, $\hat{\alpha}$ is biased.

Example:

$$\left\{egin{aligned} P = eta_1 + eta_2 W + u_P \ W = lpha_1 + lpha_2 P + lpha_3 ext{UN} + u_W & (lpha_3 < 0) \end{aligned}
ight.$$

where:

- P: price growth (inflation), W: wage growth (endogenous variables).
- UN: unemployment (exogenous variable).
- u_P and u_W : stochastic noise associated with P and W, respectively.

Substituting the second equation into the first one, we obtain the reduced-form equation for P:

$$P = rac{1}{1-eta_2lpha_2}igg[(eta_1+eta_2lpha_1)+eta_2lpha_3\mathrm{UN}+(eta_2u_W+u_P)igg].$$

Similarly:

$$W = rac{1}{1-eta_2lpha_2}igg[(lpha_1+lpha_2eta_1)+lpha_3\mathrm{UN}+(lpha_2u_P+u_W)igg].$$

We can see above that the reduced form of W has u_P in it. Then, there is correlation between W and u_P and, consequently, $\hat{\beta}_2$ will be biased.

• plim
$$\hat{\beta}_2 = \beta_2 + \frac{\operatorname{Cov}(W, u_p)}{\operatorname{Var}(W)}$$
.
• $\operatorname{Cov}(W, u_P) = \frac{\alpha_2}{1 - \beta_2 \alpha_2} \operatorname{Var}(u_P)$.
• $\operatorname{Var}(W) = \frac{1}{(1 - \beta_2 \alpha_2)^2} \left[\alpha_3^2 \operatorname{Var}(\operatorname{UN}) + \alpha_2^2 \operatorname{Var}(u_P) + \operatorname{Var}(u_W) \right]$.

- $\qquad \text{o Then, plim } \hat{\beta}_2 = \beta_2 + \alpha_2 \Big(1 \beta_2 \alpha_2\Big) \frac{\mathrm{Var}(u_P)}{\alpha_3^2 \mathrm{Var}(\mathrm{UN}) + \alpha_2^2 \mathrm{Var}(u_P) + \mathrm{Var}(u_W)}.$
- If α_2 were equal to zero, there would be no simultaneity bias.
 - Note that, were α_2 equal to zero, W would not be a function of P, it would rather only be a function of the exogenous variable UN.

Identification problem

Model 1:

$$\begin{cases} Q^D = \alpha_0 + \alpha_1 P + u \\ Q^S = \beta_0 + \beta_1 P + v \\ Q^D = Q^S \equiv Q \end{cases}$$

Reduced form:

$$P = \frac{\beta_0 - \alpha_0}{\alpha_1 - \beta_1} + \frac{1}{\alpha_1 - \beta_1}(v - u)$$

•
$$P = \lambda_0 + \varepsilon_P$$
:

$$\circ \ \, \varepsilon_P = \frac{1}{\alpha_1 - \beta_1}(v - u).$$

$$Q = \frac{\alpha_1\beta_0 - \alpha_0\beta_1}{\alpha_1 - \beta_1} + \frac{1}{\alpha_1 - \beta_1} \Big(\alpha_1v + \beta_1u\Big)$$

• $Q = \gamma_0 + \varepsilon_Q$:

$$\circ \ \ \gamma_0 = \frac{\alpha_1 \beta_0 - \alpha_0 \beta_1}{\alpha_1 - \beta_1}.$$

$$\circ \ \ \varepsilon_Q = \frac{1}{\alpha_1 - \beta_1} \Big(\alpha_1 v + \beta_1 u \Big).$$

To estimate the reduced form we would regress P and Q on constants, λ_0 and γ_0 , respectively.

•
$$\hat{\lambda}_0 = \bar{P}, \hat{\gamma}_0 = \bar{Q}.$$

However, we have 4 structural parameters (unknowns) - $\alpha_0, \alpha_1, \beta_0, \beta_1$ -, while running the regression will produce two pieces of information ($\hat{\lambda}_0$ and $\hat{\gamma}_0$).

• That means that $\begin{cases} \hat{\lambda}_0 = \frac{\beta_0 - \alpha_0}{\alpha_1 - \beta_1} \\ \hat{\gamma}_0 = \frac{\alpha_1 \beta_0 - \alpha_0 \beta_1}{\alpha_1 - \beta_1} \end{cases}$ is an unidentified system (it has more unknowns than equations

This model is said to be under-identified

Model 2:

$$\begin{cases} Q^D = \alpha_0 + \alpha_1 P + \alpha_2 Y + u \\ Q^S = \beta_0 + \beta_1 P + v \\ Q^D = Q^S \equiv Q \end{cases}$$

Reduced form:

$$P=rac{eta_0-lpha_0}{lpha_1-eta_1}-rac{lpha_2}{lpha_1-eta_1}Y+rac{1}{lpha_1-eta_1}(v-u).$$

•
$$P = \lambda_0 + \lambda_1 Y + \varepsilon_P$$
.

$$\circ \ \lambda_0 = \frac{\beta_0 - \alpha_0}{\alpha_1 - \beta_1}.$$

$$\lambda_1 = -\frac{\alpha_2}{\alpha_1 - \beta_1}.$$

•
$$Q = (\beta_0 + \beta_1 \lambda_0) + \beta_1 \lambda_1 Y + \varepsilon_Q = \gamma_0 + \gamma_1 Y + \varepsilon_Q$$
.

Running the regression on the reduced-form equations we obtain four estimates: $\hat{\lambda}_0, \hat{\lambda}_1, \hat{\gamma}_0, \hat{\gamma}_1$.

- Can we thus retrieve the structural parameters $\alpha_0, \alpha_1, \alpha_2, \beta_0, \beta_1$?
 - o Generally, no, because, once again, we have more unknowns that equations!
 - But we can identify a subset of those structural parameters:

$$lacksquare \gamma_1 = eta_1 \lambda_1 \Rightarrow \hat{eta}_1 = rac{\hat{\gamma}_1}{\hat{\lambda}_1}.$$

The system is then partially identified, due to the presence of the variable Y which discriminates the demand curve (Q^D) and allows us to identify a particular supply curve (Q^S) for a given value of Y.

TO BE CONTINUED...