Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén Vásquez

Ayudante: José Cuevas Barrientos Curso: Álgebra abstracta II Sigla: MAT2244

Fecha: 15 de mayo de 2025

Localizaciones y anillos noetherianos

Preliminares

Sea A un anillo (conmutativo). Un A-módulo M es un grupo abeliano aditivo (M,+) con un «producto escalar» $: A \times M \to M$ tales que para todo $a, b \in A$ y $m, n \in M$ se cumple:

- 1. $1 \cdot m = m$.
- $2. \ a \cdot (b \cdot m) = (ab) \cdot m.$
- 3. $a \cdot (m+n) = a \cdot m + a \cdot n$.
- 4. $(a+b) \cdot m = a \cdot m + b \cdot m$.

Se sigue que $0 \cdot m = 0 \in M$ (recuerde que M es aditivo así que tiene un «0»).

Dado un par de A-módulos M, N, una función $\varphi \colon M \to N$ se dice un homomorfismo de A $m\acute{o}dulos$ si es un homomorfismo de grupos aditivos $(M,+) \to (N,+)$ y respeta producto escalar:

$$\forall a \in A, m \in M, \qquad \varphi(am) = a\varphi(m).$$

Dado un conjunto multiplicativo $S \subseteq A$ y un A-módulo M podemos construir el $S^{-1}A$ -módulo $S^{-1}M$ cuyos elementos son pares (m,s) con $m \in M$ y $s \in S$ bajo la equivalencia

$$m/s = m'/s' \iff \exists t \in S \quad t(s'm - sm) = 0 \in M.$$

Con las sumas y producto escalar:

$$\frac{m}{s} + \frac{n}{t} := \frac{tm + sn}{st}, \qquad \frac{a}{t} \cdot \frac{m}{s} := \frac{am}{ts}.$$

Dado un ideal primo $\mathfrak{p} \triangleleft A$, considere $S := A \setminus \mathfrak{p}$ el cual es un conjunto multiplicativo (¿por qué?), denotaremos por $A_{\mathfrak{p}} := S^{-1}A$ a la localización.

Propiedades «locales» 1.

- 1. (Examen de lucidez) Sea A un anillo.
 - a) Pruebe que, dado un primo $\mathfrak{p} \triangleleft A$, el anillo $A_{\mathfrak{p}}$ es local y que su único ideal maximal es

$$\mathfrak{p}_{\mathfrak{p}}=\mathfrak{p}A_{\mathfrak{p}}=\left\{\frac{p}{q}:p\in\mathfrak{p},q\notin\mathfrak{p}\right\}.$$

- b) Si A es dominio íntegro, describa la localización $A_{(0)}$.
- 2. (Funtorialidad de localización) Sea $\varphi \colon M \to N$ un homomorfismo de A-módulos.
 - a) Pruebe que la función $M \to S^{-1}M$ dada por $m \mapsto m/1$ es un homomorfismo de A-módulos.
 - b) Pruebe que la función $S^{-1}\varphi \colon S^{-1}M \to \hat{S^{-1}N}$ dada por $m/s \mapsto \varphi(m)/s$ es un homomorfismo de $S^{-1}A$ -módulos.
- 3. Sea A un anillo y M un A-módulo. Pruebe que son equivalentes:
 - a) M = 0.

()

- b) $M_{\mathfrak{p}} = 0$ para todo $\mathfrak{p} \triangleleft A$ primo.
- c) $M_{\mathfrak{m}} = 0$ para todo $\mathfrak{m} \triangleleft A$ maximal.
- 4. Sea $\varphi \colon M \to N$ un homomorfismo de A-módulos. Pruebe que son equivalentes:
 - a) φ es invectiva.
 - b) $\varphi_{\mathfrak{p}}$ es inyectiva para todo $\mathfrak{p} \triangleleft A$ primo.
 - c) $\varphi_{\mathfrak{m}}$ es inyectiva para todo $\mathfrak{m} \triangleleft A$ maximal.

@

 \odot

- 5. Un anillo A se dice reducido si su nilradical $\mathfrak{N}(A) = 0$. Pruebe que A es reducido syss cada localización $A_{\mathfrak{p}}$ (donde $\mathfrak{p} \triangleleft A$ recorre los ideales primos) es reducida.
- Problema: ¿Es cierto que A es un dominio íntegro syss cada localización $A_{\mathfrak{p}}$ es un dominio íntegro?

2. Anillos noetherianos

- 6. Sea A un anillo noetheriano. Pruebe que toda A-álgebra finitamente generada es también noetheriana.
- 7. Sea A un anillo noetheriano. Pruebe que existe un entero $n \ge 1$ tal que la potencia del nilradical $\mathfrak{N}^n = 0$.

Problema: Dé un contraejemplo de un nilradical cuyas potencias jamás son el ideal nulo.

A. Ejercicios propuestos

- 1. Sea A un anillo y $\mathfrak{p} \triangleleft A$ un ideal primo. Pruebe que $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ es isomorfo al cuerpo de fracciones $\operatorname{Frac}(A/\mathfrak{p})$.
 - 2. Sea A un anillo y $\mathfrak{p} \triangleleft A$ un ideal primo.
 - a) Describa Spec $A_{\mathfrak{p}}$ en términos de Spec A.
 - b) ¿Qué sucede con Spec $A_{\mathfrak{p}}$ cuándo \mathfrak{p} es maximal?

PISTA: Para este ejercicio podría resultar conveniente recordar que, al localizar con $S = \{f^n : n \in \mathbb{N}\}$ para $f \in A$, se cumple que

$$\operatorname{Spec}(S^{-1}A) = \{ \mathfrak{p} : \mathfrak{p} \cap S = \emptyset \} \subseteq \operatorname{Spec} A.$$

3. Un espacio topológico X se dice noetheriano si toda cadena descendente de cerrados

$$F_0 \supseteq F_1 \supseteq F_2 \supseteq \cdots$$

se estabiliza, es decir, existe n para el cual $F_n = F_{n+1} = \cdots$

- a) Pruebe que si A es anillo noetheriano, entonces Spec A es un espacio noetheriano.
- b) Dé un ejemplo de un anillo no noetheriano A cuyo espectro Spec A sí es noetheriano.

B. Comentarios adicionales

El ejercicio 4 puede mejorarse a que φ es sobreyectivo (resp. isomorfismo) syss cada localización en maximales lo es. La razón de no incluirlo aquí fue que emplea la noción del conúcleo coker $\varphi := N/\operatorname{Img} \varphi$ que exige un poco más de familiaridad con módulos; los lectores estás invitados a hacer el intento del ejercicio.

Referencias

- 1. ATIYAH, M. F. y MACDONALD, I. G. Introduction to Commutative Algebra (Addison-Wesley, 1969).
- 2. Jacobson, N. Basic Algebra 2 vols. (Freeman y Company, 1910).

Correo electrónico: josecuevasbtos@uc.cl

 URL : https://josecuevas.xyz/teach/2025-1-ayud/