MicroPatent® PatSearch FullText: Record 1 of 2

Search scope: US Granted US Applications EP-A EP-B WO JP; Full patent spec.

Years: 1971-2003

Patent/Publication No.: JP10240477 JP03282727

JP10240477 A

INFORMATION PROCESSOR, INFORMATION PROCESSING METHOD AND STORAGE MEDIUM STORING COMPUTER READABLE PROGRAM CANON INC

Inventor(s): ;MIHASHI TOSHIYA

Application No. 09283608 JP09283608 JP, Filed 19971016, A1 Published 19980911

Abstract: PROBLEM TO BE SOLVED: To reconvert into output information that is easily processed by an external device and to improve processing efficiency of an external device by reconverting and sending output information after converting output control information from an application program, etc., into output information.

SOLUTION: Essentially for a page printer, it is desirable to send image data as a lump of data quantity that is gathered to some extent from a host computer 200. However, some applications 201 to not send data such a lump but sends image data which are much subdivided. An adaptive print processor 206 once stores the subdivided image data in a printer spooler 204 through buffering processing, further and adaptively decides whether rotation processing is needed according to a paper sending direction of a printer 100 side and sends data to the printer 100 after a host side performs rotation processing when the rotation processing is necessary.

Int'l Class: G06F00312; B41J02938

Priority: JP 08351008 19961227

Patents Citing this One: No US, EP, or WO patents/search reports have cited this patent.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-240477

(43)公開日 平成10年(1998) 9月11日

(51) Int.Cl. ⁶		線別記号	FΙ	
G06F	3/12		G06F 3/1	2 C
				A
B41J	29/38		B41J 29/3	8 Z

		審查請求	未請求 請求項の数30 OL (全 19 頁)	
(21)出願番号	特膜平9-283608	(71)出願人	000001007	
			キヤノン株式会社	
(22) 出顧日	平成 9 年 (1997) 10月16日 東京都大田区下す		東京都大田区下丸子3丁目30番2号	
		(72)発明者	三橋 俊哉	
(31)優先権主張番号	特職平8-351008		東京都大田区下丸子3丁目30番2号キヤノ	
(32) 優先日	平8 (1996)12月27日		ン株式会社内	
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 丸島 催一	

(54) 【発明の名称】 情報処理装置および情報処理方法およびコンピュータが読み出し可能なプログラムを格納した記 像媒体

(57)【要約】

【課題】 アプリケーションプログラム等から生成され る出力制御情報から外部装置が解析可能な最適な出力情 報を生成して送信することである。

【解決手段】 出力制御情報から変換された出力情報を プリンタ・スプーラ204に記憶し、該記憶された前記 出力情報を適応型プリントプロセッサ206が再変換 し、該再変換された出力情報を印刷装置100に送信す る構成を特徴とする。

【特許請求の範囲】

【請求項1】 所定の出力制御情報を変換して出力情報を生成し、生成された出力情報を外部装置に送信する情報処理装置であって。

前記出力制御情報から変換された出力情報を記憶する記憶手段と、

前記記憶手段に記憶された前記出力情報を再変換する再 変換手段と、

前記再変換手段によって変換された出力情報を外部装置 に送信する送信手段と、を有することを特徴とする情報 処理装置。

【請求項2】 前記出力制御情報は、前記情報処理装置 でのアプリケーションプログラムの実行により生成され ることを特徴とする請求項1記載の情報処理装置。

【請求項3】 前記外審装置は印刷装置であり、前記変 頻手段によって再変換された出力情報は前記外部装置が 解析可能な印刷データであることを特徴とする請求項1 計載の情報処理装置。

【請求項4】 前記出力制御情報から変換された出力情報は前記外部装置が解析可能なデータであることを特徴とする請求項1記載の情報処理装置。

【請求項5】 前記再変換手段は、前記出力情報をページ記述言語に基づいて構成することを特徴とする請求項 1記載の情報処理装置。

【請求項6】 前記記憶手段は、順次生成される出力制 御情報からそれぞれ異なる変換方式で変換されて生成された各出力情報を記憶し

前記再変換手段は、前記記憶手段に記憶される各出力情報を統一されたデータ形式に再変換することを特徴とす る請求項1記載の情報処理装置。

【請求項7】 前記再変換手段は、順次生成される各出 力情報で指定される用紙送り方向がそれぞれ異なる場合 に、各出力情報で指定される用紙送り方向が統一される ように再変換することを特徴とする請求項6記載の情報 処理装置。

【請求項8】 前記情報処理装置は、前記外部装置の状 態を認識する認識手段を有し、前記再変換手段は、前記 認識手段によって認識された前記外部装置の状態に基づ いて前記出力情報を再変換することを特徴とする請求項 1 記載の情報処理装置。

【請求項9】 前記再変換手段は、スキャンライン単位 で所定の出力制御情報を変換して生成される出力情報を 所定スキャンライン数の単位で再変換することを特徴と する請求項1記載の情報処理装置。

【請求項10】 前記再変換手段は、スキャンライン単位の出力情報に付加情報を加え、所定スキャンライン数の単位で再変換することを特徴とする請求項1記載の情報処理装置。

【請求項11】 所定の出力制御情報を変換して出力情報を生成し、生成された出力情報を外部装置に送信する

情報処理方法であって、

前記出力制御情報から変換された出力情報を再変換する 再変換工程と、

該再変換された出力情報を外部装置に送信する送信工程 と、を有することを特徴とする情報処理方法。

【請求項12】 前記出力制御情報は、前記情報処理装置でのアプリケーションプログラムの実行により生成されることを特徴とする請求項11記載の情報処理方法。

【請求項13】 前記外部装置は印刷装置であり、前記 変換手段によって再変換された出力情報は前記外部装置 が解析可能な印刷データであることを特徴とする請求項 1 記載の情報処理方法

【請求項14】 前記出力制御情報から変換された出力 情報は前記外部装置が解析可能なデータであることを特 徴とする請求項11記載の情報処理方法。

【請求項15】 前記再変換工程は、前記出力情報をベージ記述言語に基づいて構成することを特徴とする請求項11記載の情報処理方法。

【請求項16】 前記再変換工程は、順次生成される出 力制御情報からそれぞれ異なる変換方式で変換されて生 成された各出力情報を統一されたデータ形式に再変換す ることを特徴とする詰求項11計動の情報処理方法.

【請求項17】 前記再変換工程は、順次生成される各 出力情報で指定される用紙送り方向がそれぞれ異なる場 合に、各出力情報で指定される用紙送り方向が統一され るように再変換することを特徴とする請求項16記載の 情報処理方法。

【請求項18】 前記外部装置の状態を認識する認識工程を有し、

前記再変換工程は、前記認識工程によって認識された前 記外部装置の状態に基づいて前記出力情報を再変換する ことを特徴とする請求項11記載の情報処理方法。

【請求項19】 前記再変換工程は、スキャンライン単位で所定の出力制御情報を変換して生成される出力情報 を所定スキャンライン数の単位で再変換することを特徴 とする請求項11記載の情報処理方法。

【請求項20】 前記再変換工程は、スキャンライン単位の出力情報に付加情報を加え、所定スキャンライン数の単位で再変換することを特徴とする請求項11記載の情報処理方法。

【請求項21】 所定の出力制御情報を変換して出力情報を生成し、生成された出力情報を外部装置に送信する コンピュータが読み出し可能なプログラムを格納した記憶媒体であって、

前記出力制御情報から変換された出力情報を再変換する 再変換工程と

該再変換された出力情報を外部装置に送信する送信工程 と、を含む、コンピュータが読み出し可能なプログラム を格納したことを特徴とする記憶媒体。

【請求項22】 前記出力制御情報は、前記情報処理装

置でのアプリケーションプログラムの実行により生成さ れることを特徴とする請求項21記載のコンピュータが 読み出し可能なプログラムを格納した記憶媒体。

【請求項23】 前記外部装置は印刷装置であり、前記 変換手段によって再変換された出力情報は前記外部装置 が解析可能な印刷データであることを特徴とする請求項 21記載のコンピュータが読み出し可能なプログラムを 格納した記憶媒体、

【請求項24】 前記出力制御情報から変換された出力 情報は前記外部装置が解析可能なデータであることを特 徴とする請求項21記載のコンピュータが読み出し可能 なプログラムを格納した記憶媒体。

【請求項25】 前記再変換工程は、前記出力情報をペ ジ記述言語に基づいて構成することを特徴とする請求 項21記載のコンピュータが読み出し可能なプログラム を格納した記憶媒体。

【請求項26】 前記再変換工程は、順次生成される出 力制御情報からそれぞれ異なる変換方式で変換されて生 成された各出力情報を統一されたデータ形式に再変機す ることを特徴とする請求項21記載のコンピュータが読 み出し可能なプログラムを格納した記憶媒体。

【請求項27】 前記再変換工程は、順次生成される各 出力情報で指定される用紙送り方向がそれぞれ異なる場 合に、各出力情報で指定される用紙送り方向が統一され るように再変換することを特徴とする請求項26記載の コンピュータが読み出し可能なプログラムを格納した記 憶媒体。

【請求項28】 前記外部装置の状態を認識する認識工 程を有し、

前記再変換工程は、前記認識工程によって認識された前 記外部装置の状態に基づいて前記出力情報を再変換する ことを特徴とする請求項21記載のコンピュータが読み 出し可能なプログラムを格納した記憶媒体。

【請求項29】 前記再変換工程は、スキャンライン単 位で所定の出力制御情報を変換して生成される出力情報 を所定スキャンライン数の単位で再変換することを特徴 とする請求項21記載のコンピュータが読み出し可能な プログラムを格納した記憶媒体。

【請求項30】 前記再変換工程は、スキャンライン単 位の出力情報に付加情報を加え、所定スキャンライン数 の単位で再変機することを特徴とする請求項21記載の コンピュータが読み出し可能なプログラムを格納した記 愤媒体.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、所定の出力制御情 報を変換して出力情報を生成し、該生成した出力情報を 外部装置に送信する情報処理装置および情報処理方法お よびコンピュータが読み出し可能なプログラムを格納し た記憶媒体に関するものである。

[0002]

【従来の技術】従来よりホスト・コンピュータからの印 刷情報を受けて動作する印刷装置を含む情報処理システ ムに関するものであり、特にプリンタ言語(PDL(Pr interDescription Language)) やプリンタ制御コマン ドなどと呼ばれるプリンタ制御機能を持つ印刷装置およ び、その印刷装置のためにホスト・コンピュータ側で用 意されるプリンタ・ドライバ、またはプリンタ・スプー ラやプリントプロセッサなどと呼ばれるソフトウェアを 含む印刷システムが輝々提案されている。

【0003】そして、従来の印刷システムにおいては、 プリンタ・ドライバにおける処理は、それぞれの基本ソ フトウェアであるオペレーティングシステム (Windows (米国Nicrosoft 社の登録商標) やUNIXなどで じ 下OSと記す) やアプリケーションソフトウェアに依存 する部分が多く、基本的にはシステムからの印刷情報 を、目的とする印刷装置のPDLにコード変換すること のみに注力している。

【0004】例えば、キヤノン株式会計製のLBP-A 404Fという印刷装置 (レーザビームプリンタ) に対 応したプリンタ・ドライバ (Windows3.1用) では、印刷 装置側に装着された拡張メモリのサイズをユーザがアリ ンタ・ドライバのメニュー (GUI=Graphic User Int erface) から設定することで、出力モードを標準モード (300dpiの解像度で処理) か高精細モード(60 Odpiの解像度で処理)のいずれかに切り替えること を可能とするようなプリンタドライバがあった。

【0005】しかしながら、実際の切り替え作業はユー ザの判断に委ねられおり、プリンタ・ドライバ自身が最 適な設定を自動的に行ったり、印刷装置に装着されてい るメモリ量を印刷装置自身に問い合わせて、その情報を 取得し、その取得結果に応じて印刷装置側の負荷を考慮 した最適なPDLコードを送出するような印刷データ加 工処理は行っていなかった。

【0006】また、目的とする印刷装置のPDLに変換 する際に、一旦変換し終ったものを再度見直し、得られ る描画結果は同じで、印刷装置に送るコード量をより小 さくしたり、より高速に印刷が完了するようなPDLコ ードに再度変換し直すような処理は行っていなかった。 【0007】さらに、Windows NTやWindows 95 (い ずれも米国Microsoft 社の登録商標)には、プリンタ・ スプーラやプリントプロセッサと呼ばれるプロセスが存 在する。このプロセスでは、プリンタ・ドライバまたは システム(GDI)が作成した印刷情報データを記憶手 段に貯め込んだり、貯め込まれた印刷情報データをプリ ンタに送出したりする処理を専門に行う部分である。 【0008】従来は、プリンタ・ドライバが作成したP DLコード列は、このプリンタ・スプーラやプリントプ

ロセッサで情報が加工されることなく、そのままプリン タに送出されていた。また、ある印刷物を1ページから 順序通りに印刷するか、後ろのページから印刷するかを 指定できる場合があるが、このような場合は、基本的に はプリンタ・ドライバのレベルで印刷順序を制御する。 【0009】しかし、逆順印刷が指定された場合でも、 デリンタ・ドライバは通常印刷と同様に1ページから印 別データを作り、すべてのページの印刷データを由 リンタにデータを送出する際にページ単位でデータの送 出順序を削削するような印刷データ処理もある。

[0010] ただし、この場合は、ページ単位で異なる データの送出順序の変更に過ぎず、アリンタ・ドライバ が作成したPDLコード自体を加工したり変換したりす るものではなかった。

【0011】また、プリンタ・ドライバで行うPDLコードへの変態作楽は、システムから渡される1対1で対応するような形で、規則的に変換作業が行われれる場合が多く、システムから渡されるデータをバッファリングして、その内容に応じて処理を切り替えたりするとなかった。これにはプリンタ・ドライバというプロセスがファイルシステムを利用することを許していないといったシステム側の割膜事項が起因している場合もあった。

[0012]

【発明が解決しようとする課題】しかしながら、上記従来の印刷システムにおいては、次のような問題があった。

【0013】 プリンタに送出されるプリンタ制御コードは、アプリケーションソフトがどのような抽画手順を行っているかを、どのような抽画処理を行っているかたり大きく異なり、結果的に手軽な推画命令の繰り返し処理といった冗長なコード列を多く含んだり、印明結果を得るまでのパフォーマンスを極端に低下させる場合があった。

【0014】例えば、図11(a)で示すように、ある 補価(この場合は矩形補画)を行うのに、非常に細かい 単位でオブジェクトを分削する場合があるが、本来な ら、これは図11(b)のように一つにまとめることが 可能である。図11に配せたコド列は、ギヤノン株式会社製のページ記述言語であるLIPSというPDLで記述されたものである。図11(a)は、ブリンタ・ドライバが空の的に3つに細分化した矩形を描画しようとしているのではなく、アフリケーションソフトの印刷 処理や補画プロセスの段階で細分化されているものである。

【0015】また、プリンタ・ドライバ側の処理で、こ れら細分化されたものをまとめるためには、システム側 から渡される印刷情報をある程度先読みする必要があ り、プリンタ・ドライバという処理の中でそれを実現す ることはかなり難しく、場合によってはシステム側の制 級などによって不可能なケースもある。 【0016】プリンタ・ドライバは、一般的には基本ソ 力ト(OS) 側から渡されるシステム内で統一的な措画 命令やベージ制御命令を隠々の印刷装置が持つPDLな どのプリンタ制御命令に変換する役割を担っている。ま 、基本ソフト(OS) 側から渡されるシステム内で統 一的な措面命令ページ制御命令は、基本ソフト上で動 作する応用ソフト(アプリケーションソフト、列えばワ プアや来計権のソフト)によって作成される。したが って、冗長なアリンタ制御命令が発生する場合、その多 くは、応用ソフト側の相震処理または印刷処理に起因し ていることになる。

【0017】しかしながら、アプリケーションソフト側 からすれば、特定の印刷装置に的を絞って指画処理や印 動処理を特化することは技術の変要因以外でも様々な問題を抱えることになり難しいのが現状である。さらに このようなアプリケーションソフトを開発するソトト 本場に加速いがなければ良しとしてしまい、印刷結果を 得るまでの処理時間や画質面での品位などといった質的 な面での向しは後手後手になる傾向もある。

【0018】一方、プリンタ・ドライバ側でも同様な問題を持ち、特定のアプリケーションに特化した処理を追加しても、アプリケーションソフトのバージョンアップが頻繁に行われるため、それが一時しのぎで終ってしまうという点が発展される。

【0019】また、システムによっては、プリンタ・ドライバ順で、どのアプリケーションソフトからデータを受けているかを特定できない場合や、その逆のケースで現在どの印刷装置が接続されているかを特定できない場合もあり、同題解決が困磨となっている。

【0020】さらに、ネットワーク環境における、プリ ンタサーバでは、複数のユーザが複数のホスト・コンピ ュータから、1台の印刷装置を共有するため、プリンタ ・ドライバが存在する個々のホスト側で問題を解決する より、サーバ側で問題解決できる手段が望まれている。 【0021】本発明は、上記の問題点を解消するために なされたもので、本発明に係る第1の発明~第30の発 明の目的は、アプリケーションプログラム等からの出力 制御情報を出力情報に変換した後、さらに外部装置のデ ータ処理負担を軽減できるように再変換して送信するこ とにより、プリンタドライバから引き渡される印刷デー 夕をさらに印刷装置の出力環境状態に適応するように該 印刷データを再加工して印刷装置に転送処理することに より、アプリケーションプログラム等から生成される出 力制御情報から外部装置が解析可能な最適な出力情報を 生成して送信することができる情報処理装置および情報 処理方法およびコンピュータが読み出し可能なプログラ ムを格納した記憶媒体を提供することである。

[0022]

【課題を解決するための手段】本発明に係る第1の発明

- は、所定の出力制御情報を変換して出力情報を生成し 生成された出力情報を外部装置に送信する情報処理装置 であって、前記出力制即情報から変換された出力情報を 記憶する記憶手段と、前記記憶手段に記憶された前記出 力情報を再変換する再変換手段と、前記再変換手段によ って変換された出力情報を外部装置に送信する送信手段 とを有するものである。
- 【0023】本発明に係る第2の発明は、前記出力制御 情報は、前記情報処理装置でのアプリケーションプログ ラムの実行により生成されるものである。
- 【0024】本発明に係る第3の発明は、前記外部装置 は印刷装置であり、前記空換手段によって再変換された 出力情報は前記外部装置が解析可能な印刷データとする ものである。
- 【0025】本発明に係る第4の発明は、前記出力制御 情報から変換された出力情報は前記外部装置が解析可能 なデータとするものである。
- 【0026】本発明に係る第5の発明は、前記再変換手段は、前記出力情報をページ記述言語に基づいて構成するものである。
- 【0027】本発明に係る第6の発明は、前記記憶手段は、順次生成される出力制御情報からそれぞれ異なる変換方式で変換されて生成された各出力情報を記憶し、前記記憶手段に記憶される各出力情報を接続されたが一ク形式に再変物するものである。
- 【0029】本発明に係る第8の発明は、前記情報処理 装置は、前記外部装置の状態を認識する認識手段を有 し、前記再変換手段は、前記認識手段によって認識され た前記外部装置の状態に基づいて前記出力情報を再変換 するものである。
- [0030]本発明に係る第9の発明は、前記再変換手 段は、スキャンライン単位で所定の出力制御情報を変換 して生成される出力情報を所定スキャンライン数の単位 で再変換するものである。
- 【0031】本発明に係る第10の発明は、前記再変換 手段は、スキャンライン単位の出力情報に付加情報を加 え、所定スキャンライン数の単位で再変換するものであ る.
- 【0032】本発明に係る第11の発明は、所定の出力 制御情報を変換して出力情報を生成し、生成された出力 情報を分縮速度に送信する情報処理方法であって、前記 出力制制情報から変換された出力情報を再変換する再変 換工程と、該再変換された出力情報を外部装置に送信す る送信工程とを有するものである。
- 【0033】本発明に係る第12の発明は、前記出力制

- 御情報は、前記情報処理装置でのアプリケーションプログラムの実行により生成されるものである。
- 【0034】本発明に係る第13の発明は、前記外部装置は印刷装置であり、前記交換手段によって再交換され た出力情報は前記外部装置が解析可能な印刷データとす るものである。
- 【0035】本発明に係る第14の発明は、前記出力制 御情報から変換された出力情報は前記外部装置が解析可 能なデータとするものである。
- 【0036】本発明に係る第15の発明は、前記再変換 工程は、前記出力情報をページ記述言語に基づいて構成 するものである。
- 【0037】本発明に係る第16の発明は、前記再変換 工程は、順次生成される出力制御情報からそれぞれ異な 会変換方式で変換されて生成された各出力情報を統一さ れたデータ形式に再変換するものである。
- 【0038】本発明に係る第17の発明は、前記再変換工程は、順次生成される各出力情報で指定される用紙送り方向がそれぞれ異なる場合に、各出力情報で指定される用紙送り方向が統一されるように再変換するものである。
- [0039] 本発明に係る第18の発明は、前記外部装置の状態を認識する認識工程を有し、前記再変換工程は、前記認識工程によって認識された前記外部装置の状態に基づいて前記出力倍報を再変換するものである。
- 【0040】本発明に係る第19の発明は、前記再変換 工程は、スキャンライン単位で所定の出力制御情報を変 換して生成される出力情報を所定スキャンライン数の単 位で再変換するものである。
- 【0041】本発明に係る第20の発明は、前記再変換 工程は、スキャンライン単位の出力情報に付加情報を加 、、所定スキャンライン数の単位で再変換するものであ る。
- 【0042】本発明に係る第21の発明は、所定の出力 物物情報を変して出力情報を生成し、生成された出力 情報を外部装置に送信するコンピュータが観み出し可能 なプログラムを格納した記憶鉄体であって、前記出力制 筋情報から変換された出力情報を再変換さる変換工程 と、該再変換された出力情報を外部装置に送信する送信 工程とを含む、コンピュータが読み出し可能なアログラ ムを記憶媒体に絡動したものである。
- 【0043】本発明に係る第22の発明は、第21の発明において、前記出力制御情報は、前記情報処理装置でのアプリケーションプログラムの実行により生成されるものである。
- 【0044】本発明に係る第23の発明は、第21の発明において、前記や舗装置は印度装置であり、前記変換手段によって再変換された出力情報は前記が舗装置が解析可能な印刷データとするものである。
- 【0045】本発明に係る第24の発明は、第21の発

明において、前記出力制御情報から変換された出力情報 は前記外部装置が解析可能なデータとするものである。 【0046】本発明に係る第25の発明は、第21の発 明において、前記再変換工程は、前記出力情報をページ 記述言語に基づいて機成するものである。

【0047】本発明に係る第26の発明は、第21の発明において、前記再変換工程は、順次生成される出力制 制情報からそれぞれ異なな変換方式で変換されて生成さ れた各出力情報を統一されたデータ形式に再変換する本 売明に係る第27の発明は、第26の売明において、前 配再変換工程は、順次生成される各出力情報で指定され る用紙送り方向がそれぞれ異なる場合に、各出力情報で 指定される用紙送り方向が被一されるように再変換する ものである。

【0048】本発明に係る第28の発明は、第21の発明において、前記外部装置の状態を認識する認識工程を記憶媒体に格納し、前記再変換工程は、前記認識工程によって認識された前記外部装置の状態に基づいて前記出力情報を再変換するものである。

[0049] 本発明に係る第29の発明は、第21の発明において、前記再変換工程は、スキャンライン単位で 所定の出力制御情報を変換して生成される出力情報を所 定スキャンライン数の単位で再変換するものである。

【0050】本発明に係る第30の発明は、第21の発明において、前記再変換工程は、スキャンライン単位の 出力情報に付加情報を加え、所定スキャンライン数の単位で再変換するものである。 【0051】

【発明の実施の形態】本実施形態の構成を説明する前に、本実施形態を適用する印刷システムの印刷を担うレーデビームプリンの (以下、「LBP」と記述)の構成について図1を参照しながら説明する。

【0052】図1は、本発明に係る情報処理装置と通信 可能な印刷装置の構成を示す概略断面図であり、LBP の場合に対応する。

【0053】図において、100はLBP本株であり、 外部に接続されているホスト・コンピュータなどから供 始されるプリントデータ(文字コード等)及び制御コー ドからなる印刷情報やマクロ命令等を入力して記憶する とともに、それらの情報に従って対応する文字パターン やナームパターン等を中成し、記憶媒体である記録紙 トに復き形成する。

【0054】120は操作のためのスイッナおよび人E 及売得等が配されているオペレーション、パネル、1 10はしBP本体100の制備およびホスト・コンピュ ータから供給される文学情報等を解析し印刷処理を行う フォーマッタ制御部である。このフォーマッ分制御部 10において展開された印制情報は、対応するパターン ビデオ信号に変換されレーザドライバ131に出力され 。レーザドライバ131に出力を対 するための回路であり、入力されたビデオ信号に応じて 半導体レーザ141から発射されるレーザ光142をオ ・オフ切り替えする。レーザ光142は回転多面鏡1 43で左右方向に振らされて静電ドラム144上には文字バ ターンの静電潜像が形成されることになる。この潜像 は、一般でラム144周間に配設された現像ユニット1 45により現像された後、記録紙に転写される。

【0055】この記録紙にはカットシートを用い、カットシート記録板はLBPI00に装着した輪紙カセット 146に収録とローラ1 47及収録とローラ1 48と機送ローラ1 49により、装置かに取り込まれて、静電ドラム144に供給され、記録紙に転写され、画像を形成する。また、LBP本体100には、図示しないカードスロットを少なくとも1個以上備え、内蔵フォントに加えてオプションフォントカード、言語株(コマンド体系)の異なる制御カード(エミュレーションカード)を接続できるように構成されている。

【0056】図2は、本発明の第1実施形態を示す情報 処理装置を適用可能な印刷システムの構成を示すブロック図である。

【0057】図2において、200はホスト・コンピュ ータであり、プリントデータ及び制御コードからなる印 刷情報を印刷装置100に出力するものである。なお、 本発明の機能が実行されるのであれば、単体の機器であ っても、複数の機器からなるシステムであっても、LA N等のネットワークを介して処理が行われるシステムで あっても本発明を適用できることはいうまでもない。 【0058】印刷装置100は、機能的に大きく分けて フォーマッタ制御部110.オペレーションパネル部 (オペレーション・パネル) 120, 出力制御部13 0, プリンタエンジン部140より構成されている。 【0059】フォーマッタ制御部110は、ホスト・コ ンピュータ200との通信手段であるところのインタフ ェース (I/F) 部111と、受信データ等を一時的に 保持管理するための受信バッファ1121、受信データ 等を一時的に保持管理するための送信バッファ112 2. 印刷制御処理を実行するにあたり、各種データを格 納する記憶手段であるところのファイルシステム11 3、印刷データの解析を司るコマンド解析部114.印 刷制御処理実行部115. 描画処理実行部116. ペー ジメモリ117等より構成されている。

【0060】インタフェース(I/F)部111は、ホスト・コンピュータ200との印刷データの送受信およな希明を強制ではいいません。 このインタフェース 部11を通して受信した印刷データは、そのデータを一時的に保持する記憶手段である受信パッファ1121に淡次蓄積され、必要に応じてコマンド解析部114によって読み出される。

【0061】コマンド解析部114は、各印場期間コマンド体系(ページ記述言語)に準した制御プログラム141により構成されており、このコマンド解析部114で解析されたコマンドは、文字印字、図形、イメージ、措画に関する印刷データの解析結果を措画処理実行部16においてより処理しやすい統一的な形式の中間コードの形に変換する。また、給紙選択やフォーム登録などの措画以外のコマンドは、印刷制御処理実行部115において処理をなる。

【0062 1 指頭処理朱行都116では、この中間コードによって各種面コマンドを実行し、文字や図形、イメージの各オブジェクトをページメモリ117に逐次展開していく、なお、一般的に、フォーマック朝閉部110 は、中央演算処理装置(CPU)、リードオンリーメモリ (ROM)、ラングムアクセスメモリ (RAM) などを用いたコンピュータ・システムによって相成されている。

【0063】また、各部の処理は、マルチタスクモニタ (リアルタイムOS)のもとで、タイムシェアリングに 処理される構成であってもよいとし、各機能ごとに専用の コントローラ・ハードウェアを用窓して独立して処理さ れる構成であってもかまわない。

【0064】ポペレーション・パネル120は、印刷装置の各種状態を設定・表示するためのものである。 【0065】出力制御部130は、ページメモリ117の内容をビデオ信号に変換処理し、プリンタエンジン部140、回議を試を行う、プリンタエンジン部60段付取ったビデオ信号を記録紙に未久可規順服形成するための印刷機構部であり、図1において前途したものである。 拾紙カセット146は着設可能な用紙格納装置である。

【0066】以上、印刷装置100について説明したが、次にホスト・コンピュータ200の構成について説明を加える。

【0067】ホスト・コンピュータ200は、入力デバ イスであるところのキーボード210やボインティング デバイスであるところのマウス211と、表示デバイス であるディスプレイ・モニタ220を合わせた一つのコ ンピュータシステムとして構成されている。ホスト・コ ンピュータ200は、MS-DOS、Windows 95など の基本のSのもとで動作しているものとする。

【0068】本発明の印刷に関する部分にのみ注目し、 基本OS上での機能を大きく分類すると、アプリケーション・ソフト(アプリケーション)201、基本OSの 機能の一部であるGraphic Device Interface (以後、G DIと記す)202、プリンタ・ドライバ203、プリ ンタ・ドライバの生成したデータを一時的に格熱処理するプリンタ・スプーラ204と分けて考えることができる。なお、本実能形態では、Windows 95やWindows N Tに含まれるプリントプロセッサというソフトウェアの 機能は、プリンタ・スプーラ204に包含されているものとする。

【0069】なお、一般的に、これらのホスト・コンピュータ200は、中央資産処理装置(CPU)、リードオンリー×モリ(ROM)、ランダムアクセスメモリ(RAM)などのハードウェアのもとで、基本ソフトと呼ばれるソフトウェアがその制御を可り、その基本ソフトの下で、応用ソフトが動作するようになっている。アリンタ・ドライバ203やプリンタ・スプーラ204なども、この応用ソフトの一つと位置付けられるものである。

【0070】アプリケーション・ソフト201は、例えば、ワープロや表計算のソフトウェアなどを指すものである。例えば、一般的なワープロソフトを例に取り説明する。

【0071】アリケーション・ソフト201では、図 3に示すような画面構成を備え、テキストの編集作業を中心に行い、その文書を印刷する時には、マウス211などによって印刷メニューを選択して印刷を実行する。【0072】次に、アプリケーション・ソフト201は、基本の80一部の機能である。GDI202をコールする。このGDI202は、ディスプレイ・モニタ220に対する画面表示や印刷出力などの表示デバイスや刷デバイスを可る基本関数群であり、各種を様のアプリケーションソフトウェアは、この基本関数群を利用することで、機種(ハードウェア)に依存する部分を意識さることなく、アプリケーションウェアを動作させることが可能である。

【0073】次にGD I 202では、それぞれの印刷能 面の機種に依存する情報を管理するプリンタ・ドライバ 203から印刷デバイスの持つ推画能力や印刷解像度な どの情報を取り込み、アプリケーション・ソフト201 からコールされたGD I 関数を解析し、その情報を現在 選択されているプリンタ・ドライバ203に遊す。

【0074】 ブリンタ・ドライバ203 は、 GD I 20 2より受け取った情報と、それ自身が特つグラフィカル ・ユーザ・インタフェース (GU I) によって設定され た印刷環境設定をもとに、対応する印刷装置のコマンド 体系に準拠したコマンド列およびデータ列を生成するも のである。

【0075】このように生成されたコマンド別およびデータ別は、一旦、プリンタ・スアーラ204と呼ばれるデータ格納手段によって著えられる。このプリンタ・スアーラ204は、アプリケーションソフトの印刷処理の解放を早める働きがある。つまり、直接、印刷接置に可解データを逃げると、印刷整置の受信パッファ1121がいっぱいになったり、何らかの理由(例えば低づまり(ジャム)等)によって適信手段がオフライン状態になると、ホストから印刷データが送れない状態になり、アプリケーションの印刷処理が中断してしまうが、一時アリケーションの印刷処理が中断してしまうが、一時

的にデータを格納する手段があれば、まずその格納手段 に対して印刷データをすべて吐き出してしまえば、アプ リケーションソフトは印刷処理から解放されることにな る。

【0076】このようにして生成されたコマンド列およ ザデータ列は、一旦、プリンタ・スアーラ204と呼ば れるデータ格納手段によって著えた後、ホスト・コンピ ュータ200の通信手段であるところのI/F部230 を通して、印明装置100へ送出される。また、I/F 都230は、印明装置からの印刷情報を受信する機能も 備え持つものでもある。

【0077】以上、図2に基づいて本発明を構成する各要素について説明をしたが、次に、まず本発明の全体的な動作についてより具体的な実施形態を例に取り簡単に概要を説明する。

【0078】〔本発明の実施形態の概要〕プリンタ・ド ライバより、スキャンラインごとに送られてくるイメー ジを、本発明によって一括化し、かつ、プリンタ側の用 紙送り方向を見て適応的に回転処理をホスト側で行う。 【0079】本来、ページプリンタでは、イメージデー タは、ホスト・コンピュータ200からある程度まとま ったデータ量の固まりとして送出するのが望ましいが、 アプリケーション201によっては、そのような固まり として送出してこないで、非常に細分化したイメージデ ータを送出するものがある。ここでいう細分化とは、あ る矩形のイメージを1スキャンラインずつのデータに分 けて取り扱うようなことをいう。このような細分化され たイメージデータを処理する際に、ホスト側で一括化が できれば、プリンタ側のイメージ描画処理にかかる負荷 は軽減できる。さらに、ホスト側で作成したイメージデ ータの向きと、プリンタ側の用紙送り方向とが90度ま たは270度違う場合は、通常プリンタ側において、回 転処理が入るため、印刷結果を得るまでの時間が遅くな るという問題もあった。

[0080] 本発明では、このような問題を解決するために、組分化されたイメージデータをバッファリング処理で一旦味め込み、さらに、プリンタ側の用紙送り方向によって回転処理が必要な場合はホスト側でその処理をした上で、プリンタにデータを送出するように処理するものである。

【0081】また、バッファリング時にバッファリング 後のイメージがその後の回転処理を考慮した矩形になる ように補正することも特徴とする。

【0082】図4は、図2に示したホスト・コンピュータ200間での印刷情報処理の流れおよびイメージデータの構造の概念を示す図でおり、図1と同一のものには同一の符号を付してある。なお、以下では、本実施形態における本発明の処理を行うソフトウェアを「適応型プリントプロセッサ」と呼ぶことにする。

【0083】図4の(a)において、206は適応型プ リントプロセッサで、細分化されたイメージデータをバ ッファリング処理で一旦プリンタ・スプーラ204に貯 め込み、さらに、プリンタ側の用紙送り方向によって回 転処理が必要かどうかを適応的に判断し、回転処理が必 要な場合はホスト側でその処理をした上で、プリンタ1 00にデータを送出するように処理するものである。 【0084】図4の(b), (c)は、イメージデータ の構造を示し、図4の(b)は従来系のデータ構造に対 応し、イメージデータ I MD 1 に印刷形態の指示に基づ き回転が必要な場合でも、一定の展開手順に従って展開 されたイメージデータIMD1をプリンタ100に転送 する場合に対応し、該イメージデータIMD1はプリン タ100の回転資源により印刷形態に従って展開処理さ れた後、プリンタエンジンから出力されることとなる。 【0085】一方、図4の(c)は従来系のデータ構造 に対応し、イメージデータIMD2に印刷形態の指示に 基づき回転が必要な場合は、所定の加工処理手順に従っ て展開されて一括化されたイメージデータ I MD2 (図 中の斜線部にはホスト・コンピュータ200側でNUL レデータが付加される)をプリンタ100に転送する場 合に対応し、該イメージデータIMD2は回転処理した 後、あるいはプリンタ100に転送された後、プリンタ 100の回転資源により印刷形態に従って展開処理され た後、プリンタエンジンから出力されることとなる。な お、イメージデータ I MD 2は一括化されているため、 従来のスキャン単位での回転処理に比べて格段に処理負 担を軽減できる。

【0086】以下、本実施形態と第1~第10の発明の 各手段との対応及びその作用について図4等を参照して 説明する。

【0087】第1の発明は、所定の出力制御情報を変換 して出力情報を生成し、生成された出力情報を外部装置 に送信する情報処理装置であって、前記出力制御情報か ら変換された出力情報を記憶する記憶手段(プリンタ・ スプーラ204)と、前記記憶手段に記憶された前記出 力情報を再変換する再変換手段(適応型プリントプロセ ッサ206のデータ処理機能による)と、前記再変換手 段によって変換された出力情報を外部装置に送信する送 信手段(適応型プリントプロセッサ206の通信処理機 能による)とを有し、出力制御情報から変換された出力 情報をプリンタ・スプーラ204に記憶し、該記憶され た前記出力情報を適応型プリントプロセッサ206が再 変換し、該再変換された出力情報を印刷装置100に送 信するので、出力制御情報からの変換では対応しにくい 出力情報を外部装置が処理しやすい出力情報に再変換で き、送信される出力情報を処理する外部装置での処理効 率を格段に向上させることができる。

【0088】第2の発明は、前記出力制御情報は、前記 情報処理装置でのアプリケーションプログラムの実行に より生成されるので、アプリケーションプログラムの実 行時に、外部装置に送信すべき出力情報を生成すること ができる。

【0089】第3の発明は、前記外部装置は印刷装置で あり、前記変換手段によって再変換された出力情報は前 記外部装置が解析可能な印刷データとするので、既に外 部装置側に備えられる解析資源に基づいて印刷データを 容易に解析することができる。

【0090】第4の発明は、前記出力制御情報から変換 された出力情報は前記外部装置が解析可能なデータとす るので、既に外部装置側に備えられる解析資源に基づい てデータを容易に解析することができる。

【0091】第5の発明は、前記再変換手段(適応型プリントプロセッサ206のデータ処理機能による)は、前記出力情報をページ記述言語に基づいて構成するので、外部装置に送信すべき出力情報のデータ量を抑えることができる。

【0092】第6の発明は、前記記憶手段(アリンタ・スアーラ204)は、限次生成される出力制即情報からそれぞれ異なる変換方式で変換されて生成された名出力情報を記憶し、前記再変無手段は、前記記憶手段に記憶される名出力情報を表でされたデータ形式工変換するので、異なる変換方式で変換された各出力情報であっても外部装置からみれば面一化処理できる最適なデータ形式に変換処理することができる。

【0093】第7の発明は、前証再変換手段(適応型プリントプロセッサ206のデータ処理機能による)は、 順次生成される各出力情報で指定される用紙送り方向が それぞれ異なる場合に、各出力情報で指定される用紙送 り方向が終一されるように再変換するので、出力情報を 処理する外部装置側でのデータ処理負担を減らすことが できる。

【0094】第8の発明は、前記情報処理整置は、前記 外部装置の状態を認識する認識手段を有し、前記再変換 手段は、前記認識手段によって認識された前記外部装置 の状態に基づいて前記出力情報を再変換するので、出力 情報を処理する外部装置側でのデータ処理負担を減らす ことができる。

[0095] 第9の発明は、前記再変換手段(適応型プ リントプロセッサ206のデータ処理機能による)は、 スキャンライン単位で所定の九別的時間報を変換して生 成される出力情報を所定スキャンライン数の単位で再変 接するので、アプリケーション側のデータ処理単位に柔 飲た灯がすることができる。

【0096】第10の発明は、前記再変換手段(適応型 デリントプロセッサ206のデータ処理機能による は、スキャンライン単位の出力情報に付加情報を加え、 所定スキャンライン教の単位で再変換するので、外部装 置に送信すべき出力情報とコンパクトにまとめ効率よく 転送することができる。

【0097】これにより、プリンタ側に、現在のプリン 夕側の状態(空きRAM容量やエンジンスピード、ファ ームウェアのバージョン、用紙送り方向等)をホスト側 に通知するカレント状態通知手段、ホスト側に、前記プ リンタ側のカレント状態を読出すプリンタカレント状態 読み出し手段、プリンタ・ドライバ203から送出され た印刷情報データを印刷装置に送出する前に一日貯め込 む記憶手段、その記憶手段から印刷情報データを読み出 し、前記プリンタ側の状態読み出し手段によって得られ た情報に応じて印刷情報データを加工するデータ加工手 段、加工された印刷情報データを印刷装置100に送出 する送出手段を持たせ、プリンタ・ドライバ203が作 成したプリントデータ及び制御コードからなる印刷情報 から、冗長な部分を取り除き、データを送出すべき印刷 装置100にとって最適な印刷情報となるようにデータ 加工を行うよう作用させることで、あるいは従来、デー タサイズが無用に大きかった印刷情報や、非効率的な繰 り返し処理が含まれる印刷情報などによって、印刷結果 を得るまでの時間的な問題やファイル化して保存してお く際のデータサイズの問題等を解決し、ホスト側とプリ ンタ側の双方を合わせた印刷システムとしてマクロ的な 視野に立って、印刷処理の効率改善といった効果が得ら ns.

【0098】 言い替えれば、本発明は、プリンタ・ドライバ203が生成した元長なPDLコードを含む生のP したデータから、元長な部分を取り除くフィルタであるが、単なるフィルタではなく、プリンタ100の状態 (空きRAM容量やエンジンスピード、ファームウェアのバージョン、用紙送り方向等)に応じて、適応的に最適化したPDLコード列を生成するものでする。

(0099)また、本発明は、プリンティングシステムとしてトータルな環境でのスループット向上を目的とするためのものであり、例えば個分化されているイメージデータを一括化することにより、プリンタ側の処理を軽減したり、データ転送経路での無駄を少なくしパフェンスの向上をはかったり、プリンタ・ドライバ側のバグを吸収したり、プリンタ側のファームウェアのバージョンによって、そのバージョンが持つ固有のバグを吸収したりとさまざまな応用が考えられる。

【0100】さらに、本売明は、基本的にはホスト・コンピュータ側で処理されるため、ホスト・コンピュータ側のハードウェア性能(処理能力)に応じて印刷結果を得るまでのトータルなスループットを飛躍的に向上することが明確なため、今核益々性能が向上することが明白なパーソナルコンピュータやネットワーク環境において、本売明の効果もそれらに比例して増大していくと期待できる。

【0101】以下、図5、図6および図7を参照しなが ら本発明に係る情報処理装置の第1のデータ処理動作に 付いて説明する。

- 【0102】図5は、本売明に係る情報処理装置の第1 のデーク処理手順の一例を示すフローチャートであり、 「ブリンタ・ドライバより、スキャンラインごとに送ら れてくるイメージを本発明によって一括化し、かつプリ ンタ側の用紙送り方向を見て遊応的に回転処理をホスト であり、」という実施形態における処理手順に対応す る、なお、(1)~(14)は各ステップを示す。
- 【0103】また、本フローチャートでは、アプリケーションソフト(アプリケーション201)の印刷メニューより印刷が実行され、プリンタ・ドライバ203の処理が起動した時点からのものとする。
- 【0104】まず、ステップ(1) において、プリンタ ドライバ203の処理が完了したかどうかを判定す る。この場合、プリンタ・ドライバ203の処理は、ア プリケーション201からの一回の印刷操作に対して生 成される "印刷ショブ"と呼ばれる一連のデータブロッ ク単位で行うのとする。
- 【0105】また、プリンタ・ドライバ203は、生成 したPDLコード列をプリント・スプーラ204と呼ば いる一時的な記憶手段に一旦格納する。このプリント・ スプーラ204には、アプリケーションソフトの印刷処理とプリンタへの出力処理を切り離して別々に実行でき るようにする効果があり、結果的にアプリケーションの 印刷処理から解析を強める働きがある。
- 【0106】ステップ(2)では、これら一連の処理の 完了を待った後、本発明の処理を行うソフトウェアであ る "適応型プリントプロセッサ206" を起動し、その ソフトウェアによって、プリント・スプーラ204から のデータを読み出す。
- 【0107】ステップ(3)では、このプリント・スプ 一ラ204のデータをすべて読み終えたかどうかをチェ ックする。すべて読み終えていたと判定した場合は処理 を終了するが、そうでない場合はステップ(4)に進 み、データの解析処理を行う。
- 【0108】ステップ(4)では、アリンタ・ドライバ 203が生成したPDLコード列より、「ラスタ・イメ ージ措画命令」という一連のコマンド及びデータ列を検 索する。読み出したデータがこのコマンドでないと判定 した場合は、ステップ(5)に進む。
- 【01091一方、「ラスタ・イメージ措面命令」だったと判定した場合は、ステップ(8)に進み、継続フラグのチェックを行う。本実施形態において、継続フラグとは、後述するバッファリング処理を継続的に行うかどうかを判別するための内部的なフラグである。この継続フラグがのNの状態ならステップ(10)に進み、措面位置の背頂を行う。
- 【0110】バッファリングを行う際は、この描画位置 を見て、一つ前のイメージ描画と、続くイメージ描画が 連続的に描画されているかどうかを調べる。一つ前のイ メージ描画の(Y方向の最大値+スキャンライン)が

- 続くイメージ描画の開始位置になっているかどうかを調べる。また、X方向については、バッファリング後のイ メージが矩形になるように補正する必要があるため、こ の時点ではX方向の位置関係は無視するものとする。
- 【0111】以上のことにより、ステップ(10)にて 実際に行うチェックは、次の場面位置のY 厳酷が入って いる「NXT_Y」という変数と、現在処理中のラスタ イメージ機能合今の措画開始位置のY 座観を示す「C UR_Y」という変数を比較することで、措面データの 連続性チェックを行う。このチェックにおいて、不連続 が検出された時点で、バッファリング処理は打ち切り、 それまで貯め込んだものを出力処理する(11)。この ステップ(11)の出力処理の内容については、別に図 6として図声に大フローチャートを用いて後述する。再 びステップ(8)以降の説明に戻る。
- 【0112】一方、ステップ(8)において継続フラグ がOFFであったと判定した場合は、ステップ(9)に 進み継続フラグをONにセットし、ステップ(12)に 進む、ステップ(12)では、現在処理している「ラス ク・イメーン組織命合うというPDL形式のデータを、 徳に行う矩形化処理のために都合が良いように、検述す る図7に示すような内部的な中間データ(詳細は図8に で検査する)に変換する。
- 【0113】ステップ(13)では、ステップ(12)で得られた中間データを図7に示すように一次バッファリングする。ここで、一次的に貯め込まれたデータは、後で再び読み出されて処理されることになる。
- 【0114】ステップ(14)では、次に描画すべきイ メージの増画位置のY座標が入っているNXT_Yとい う変数を更新する。この処理は、現在処理中のラスタ・ イメージ措面命令の措画開始位置のY座標を示すCUR _Yという変数に、そのイメージデータの高さ(スキャ ンライン数)を加算することによって行われる。
- 【0115】さて次に、ステップ(4)におけるコマンド解析処理において、ラスタ・イメージ描画命令以外のコマンドであった場合について述べる。
- 【0116】まず、ステッア(5)において、継続フラグのチェックを行い、継続フラグがONであると判定した場合は、バッファリングされていたイメージデータが別の印刷命令によってクーミネイトされたと解釈し、こで一旦、後述する出力処理を実行する(6)。その後は、ステッア(7)で継続プラグをOFFにしておく。【0117】一方、ステッア(5)において、継続フラグがOFFであったと判定した場合は、バッファリング処理は行われていなかったと解釈し、ステップ(6)。
- (7)の処理をスキップする。
- 【0118】以上説明したステップ(4)からステップ(14)の一連の処理が完了すると、再びステップ
- (2)に戻り、次のデータを処理する。
- 【0119】次に、図5に示したフローチャートのステ

- ップ(6)およびステップ(11)における出力処理に ついて、さらに詳細に説明を行う。
- 【0120】図6は、図5に示した出力処理ルーチンの詳細手順の一例を示すフローチャートである。なお、
- (1)~(6)は各ステップを示す。 【0121】図7は、図4に示した適応型プリントプロ
- セッサ206によるデータ処理の流れを説明する図である。 【01221 先ず、ステップ(1)において、一次バッ
- TU1221元す、ステッノ(I)において、一次ハッファリングのデータがあるかどうかを調べる。データがないと判定した場合は、本処理は終了する。
- 【0123】一方、ステップ(1)でデータがあったと 判定した場合、ステップ(2)に進み、矩形化処理を行う。
- 【0124】なお、本実施形態において、矩形化処理とは、図7に示すように細分化されたイメージデータにおいて、左右方向の凹凸を101し データ (ー) のせつ) で埋め、全体として矩形のイメージデータとすることである。このように矩形化することで、PDLのラスタイメージ措画命合が複数発行されていたものが、一つの命令にまとめられるため、重複する冗長なコマンドが行メータ(例えば解復度やX座標の指定など) が大幅に削減できる他、プリンタ側のコマンド解析に関する負荷やイメージ措施拠遅少負責も軽減される。
- 【0125】さらに、回転処理が伴う場合は、図7に示すように凹凸のあるものや、1スキャンラインごとに送られるイメージデータより、矩形のイメージデータを処理する場合の方が効率がよい、これは、回転処理がイメ・64または128×128の正方が単位で専用の回転処理ハードウェアを使った処理が可能なためで、数ラインのデータを選次回転処理するよりは、パフォーマンスの向上にもったがる。
- 【0126】実際の矩形化処理は、前述の図5に示した フローチャートの説明のステップ(12)、(13)で 作られた中間データを一次バッファから逐次読み出しで 次のような処理を行う。
- 【0127】まず、一度すべての中間データを走査し、各イメージデータの幅の最大値(Wmax)と、最左端の水庫様(Kmin)を検索する。次にも3一度間じ中間データを初めから走査しながら、そのX座標と先に得られたXminとを比較し、差分を実データ(イメージデータの集体)の前にNULLデータとして埋める。さらに、データ全体の幅がWmaxと等してなるように東データの後ろにNULLデータを補間する。このようなNULLデータの補間処理をすべての中間データに対して深水行うとで類形化を実現する。
- て逐次行うことで矩形化を実現する。 【 0 1 2 8 】 さて、再び図 6 に示すフローチャートの説 明に戻る。
- 【0129】矩形化処理が完了した後、ステップ(3) において、本発明におけるプリンタ側の現在の状態(空

- きRAM容量や用紙送り方向など)をホスト側に通知するカレント状態通知手段から、現在の用紙送り方向が縦送りか横送りかを問い合わせる。
- (0130]このカレント状鬼遺知手段は、印刷装置1 00の印刷制御処理実行部115に一つのアログラム (ソフトウェア)として存在と、印刷装置100の各種 状態をモニタし、その結果をある形式のデータ列に変換 し、送信バッファ112に送る。送信バッファ113 2に送るれたデータ列は、インタフェース都111を介

してホスト側にカレント状態の通知を行う。

- 【0131】この印刷装置100からの情報をホスト・コンピュータ200間で取得する。この際、ホスト・コンピュータ200回で取得する。この際、ホスト・コンピュータ200と印刷装置100の通信は双方向通信手段を介して、情報の問い合わせ、それに応じてカレント情報の返送という形で行われる。
- 【0132】このステップ(3)では、印刷装置100 側に装着されている給紙カセットが機送り給紙が機送り 給紙かの情報を前記方法によって問い合わせる。
- 【0133】ここで、用紙送り方向とは、例えば同じA 4用紙であっても、長手方向を横方向に給紙する場合と 縦方向に給紙する場合がある。横送りが可能な印刷装置 では、縦送りに比べ用紙搬送時間が短いためスループッ トが出るというメリットがある。
- 【0134】一方、電子写真の転写、定着のプロセスに おいて、A4用紙の長さ分の橋の感光ドラムが必要であ り、縦送りの場合にくらベコストがかさむというデメリ ットもある。さらに、拡大・縮小などを行う場合に用紙 が縦送りでないと行えない場合などもある。
- 【0135】以上のような理由により、用紙送り方向は 総送り、構送りの2種類が存在する。一般的にPDLで は、この用紙送り方向には依存しない形で、ページ記述 を行うが、実際の描画処理では、この用紙送り方向に依 存し、処理が大きく異なる。
- 【0136】つまり、ホスト側から送られるイメージデータの向きと印刷装置内での描画処理が90度または270度ずれる場合があり、この回転処理は通常、印刷装でいるが、この回転処理が入る場合はスループットの低下が懸今される。
- 【0137】本発明はこのような問題も解決するものであり、印刻装置100から得られた用紙送り情報をステップ(4)において判別し、用紙送りが構送りであった場合には、ステップ(5)においてホスト側で、事前に回転処理を行うように作用する。
- 【0138】一方、ステップ(4)において用紙送り方 向が縦送りであったと判定した場合は、プリンタ・ドラ イバ203 側で作成したイメージデータの向きがそのま ま活かせるので、回転処理は行わずステップ(6)へ進 ***
- 【0139】ステップ(5)における回転処理は、矩形化されたイメージデータの実体を128ピクセル×12

- 8ビクセルの正方形を基本単位として読み出し、用紙送 り方向に適応するように回転処理を行う。このようにし て、用紙送り方向を見て、プリンタ側での回転処理が不 要な最適なイメージデータが完成したら、ステップ
- (6)で、そのデータを印刷装置側に送出し、すべての 処理を完了することになる。
- 【0140】以上説明したように本実施形態では、プリンタ側の現在の状態(芝きRAM容量や用紙送り方向なりをおよりを表し、一般に通知するカレント状態過期を見、ホスト側に、前記カレント状態を読み出す手段、アリンタ・ドライバ203から送出された印刷データを一時的に対し、前記カレント状態に応じて印刷データを加工する手段、加工された印刷データを即財産置100に送出するほと、可能データが開発である。 送出手段によって構成され、前記データ加工等に大い大変である。 プリンタ側の負荷となる元長部を取り除き、最適な印刷データに加工することを特徴とするものである。
- 間データの形式の一例を示す図である。 【0142】本実施形態では、X座額(相対), データ
- 【0142】本実施形態では、X座標(相対),データ サイズ,イメージデータ等より構成されている。
- 【0143】以下に、本実施形態におけるホスト・コン ピュータ200のメモリ資源としてのハードディスクH Dの内容を図9に基づいて説明する。
- 【0144】図9は、図2に示したハードディスクHD のメモリマップを示す図である。
- (0145) 圏9において、ディレクトリ情報はそれぞれのプログラムを格納している物理的な位置情報を格しているもったかあ、基本ソフトはアプリケーションの実行を管理したり、周辺装置とホスト・コンピュータ20とのデータのやり取りを仲介するところである。プリンタ・ドライバ203はフロッピーディスクなどの記憶媒体によってホスト側のハードディスクに供給される。本売明であるところの適応型プリントプロセッサ26やプリント、スプーラ2046間様な形態で供給するものである。その他に、このハードディスクには、実際にユーザが利用し作薬を行うための応用ソフトなどが複数納められている。
- 【0146】以下、本実施形態と第11~第30の発明 の各工程との対応及びその作用について図5,図6等を 参照して説明する。
- 【0147】第11の売明は、所定の出力制物情報を実 関に送信する情報処理方法であって、前記出力制制を情報 から変換された出力情報と再変換する再変換工程(図5 のステップ(11))と、該再変換された出力情報を外 都装置に送信する送信工程(図6のステップ(6))と を適応型プリントプロセッサ206が原示しない記憶媒 体に記憶される制御プログラムを実行して、出力制御情報 数からの変態では対応して、地力制御者と外部装置が必

- 理しやすい出力情報に再変換でき、送信される出力情報 を処理する外部装置での処理効率を格段に向上させることができる。
- 【0148】第12の発明は、前記出力制御情報は、前 記情報処理装置でのアプリケーションプログラムの実行 により生成されるので、アプリケーションプログラムの 実行時に、外部装置に送信すべき出力情報を生成するこ とができる。
- 【0149】第13の発明は、前記外部装置は印刷装置 であり、前記変換手段によって再変換された出力情報は 前記外部装置が解析可能な印刷データとするので、既に 外部装置側に備えられる解析資源に基づいて印刷データ を容易に解析することができる。
- 【0150】第14の発明は、前記出力制御情報から変 換された出力情報は前記外部装置が解析可能なデータと するので、既に外部装置側に備さられる解析資源に基づ いてデータを容易に解析することができる。
- 【0151】第15の発明は、前記再変換工程は、前記 出力情報をページ記述言語に基づいて構成するので、外 部装置に送信すべき出力情報のデータ量を抑えることが できる。
- (0152]第16の発明は、前記再変換工程は、順次 生成される出力前衛情報からそれそれ異なる変換方式で 変換されて生成された各出力情報を統一されたデータ形 式に再変換するので、異なる変換方式で変換された各出 力情報であっても外部装置からみれば画一位処理できる 最適なデーの発気に変換処理するとかできる
- 【0153】第17の発明は、前記再変換工程は、順次 生成される各出力情報で指定される用紙送り方向がそれ ぞれ異なる場合に、各出力情報で指定される用紙送り方 向が統一されるように再変換するので、出力情報を処理 する外部装置間でのデータ処理負担を減らすことができ る。
- 【0154】第18の発明は、前記外部装置の火態を記 譲する認識工程を有し、前記再変換工程は、前記認識工 程 (図6のステップ(3),(4))によって認識され た前記外部装置の状態に基づいて前記出力情報を再変換 するので、出力情報を処理する外部装置側でのデータ処 理負担を被うたとかできる。
- 【0155】第19の発明は、前記再変換工程は、スキャンライン単位で所定の出力制御情報を変換して生成される出力情報を研定スキャンライン数の単位で再変換するので、アプリケーション側のデータ処理単位に柔軟に対応することができる。
- 【0156】第20の発明は、前記再変換工程は、スキャンライン単位の出力情報に付加情報を加え、所定スキャンライン型の単位で再変換するので、外部整置に送信すべき出力情報をコンパクトにまとめ効率よく転送することができる。
- 【0157】第21の発明は、所定の出力制御情報を変

換して出力情報を生成し、生成された出力情報を外部装置に送信するコンピュータが読み出し可能なアログラムを格納した記憶媒体であって、前記出力制御情報から変換された出力情報を外部装置に送信する送信工程とを含む、コンピュータが読み出し可能なアログラと記憶媒体に格納したものである。すなわち、後途する外部記憶媒体または内部の記憶資源に図5.図6に示す工程に対するアログラムコードを記憶した記憶媒体から図示しないCPUが読み出して実行する形態も本発明の実施形態に含まれるものである。

- 【0158】第22の発明は、第21の発明において、前記出力制制情報は、前記情報処理装置でのアプリケションプログラムの実行により生成されるものである。 【0159】第23の発明は、第21の発明において、前記外部装置は印刷誌置であり、前記変換手段によって再変換された出力情報は前記外部装置が解析可能な印刷データとするものである。
- 【0160】第24の発明は、第21の発明において、 前記出力制御情報から変換された出力情報は前記外部装 置が解析可能なデータとするものである。
- 【0161】第25の発明は、第21の発明において、 前記再変換工程は、前記出力情報をページ記述言語に基 づいて構成するものである。
- 【0162】第26の発明は、第21の発明において、 前記再変換工程は、順次生成される出力制制情報からそ れぞれ異なる変換方式で変換されて生成された各出力情 報を統一されたデータ形式に再変換する。
- 【0163】第27の発明は、第26の発明において、 前記再変換工程は、順次生成される名出力情報で指定さ れる用紙送り方向がそれぞれ異なる場合に、各出力情報 で指定される用紙送り方向が統一されるように再変換す るものである。
- 【0164】第28の発明は、第21の発明において、 前記外部装置の状態を認識する認識工程を記憶媒体に格 納し、前記再交換工程は、前記認識工程によって認識さ れた前記外部装置の状態に基づいて前記出力情報を再変 捜するものである。すなわち、後述する外部記憶媒体は なは内部の記憶資源に図5. 図6に示す工程に対応する プログラムコードを記憶させ、該プログラムコードを記 憶した記憶媒体から図示しないCPUが読み出して実行 する形態も本発明の実施形態に含まれるものである。 (0165)第29の発明は、第21の発明において、 (0165)第29の発明は、第21の発明において、
- 10165] 第29の発明は、第21の発明において、 前記再変換工程は、スキャンライン単位で所定の出力制 傾情報を変換して生成される出力情報を所定スキャンラ イン数の単位で再変換するものである。
- 【0166】第30の発明は、第21の発明において、 前記再変換工程は、スキャンライン単位の出力情報に付 加情報を加え、所定スキャンライン数の単位で再変換す

るものである。

- 【0167】 【その他の実施形態】本実施形態は、総分 化されているイメージデータを一括化し、プリンタの用 紙搬送方向に適応し必要であれば回転処理をも行か、印 刷データが持つ滞在的なプリンタ側の負荷を事前に軽減 しパフォーマンス向上をはかるというものについて説明 を行ったが、本発明は図11で示したように、イメージ 以外の傾面オブジェクト(図11では矩形横画)をはじ め、すべてのPDLコードに対して適応することも可能 である。
- 【0168】また、本実施税能では、プリンタ・ドライ (の印刷ジョブの処理が終ったタイミングで本発明の処理 理(適応型プリントプロセッサ)を起動するようにした が、プリンタ・ドライバの処理と並列に本発明の処理を 実行することも可能である。このような並列処理は、基 本ソフトであるOSの機能に依存する。例えば、Window s 95では、完全なマルチタスク処理が可能である。
- 【0169】さらに、本実絶形態では、印刷装置のカレト状態を検知するタイミングとして、印刷ジョブ単位で行ったが、これをページ単位でカレント状態を見るように変更することで、自動給低状態でA4横用紙がなくなり、A4縦用紙が遊択された場合でも、動的に対応可能とするように処理することも可能である。
- 【0170】以下、図10に示すメモリマップを参照して本発明に係る情報処理装置を適用可能な印刷システムで読み出し可能なデータ処理プログラムの構成について 設明する。
- 【0171】図10は、本発明に係る情報処理装置を適用可能な印刷システムで読み出し可能な各種データ処理 プログラムを格納する記憶媒体のメモリマップを説明する図である。
- 【0172】なお、特に図示しないが、記憶媒体に記憶されるプログラム群を管理する情報、例えばバージョン情報、作成者等も記憶され、かつ、プログラム読み出し側のOS等に依存する情報、例えばプログラムを識別表示するアイコン等も記憶される場合もある。
- 【0173】さらに、各種プログラムに従属するデータ も上記ディレクトリに管理されている。また、各種プロ グラムをコンピュータにインストールするためのプログ ラムや、インストールするプログラムが圧縮されている 場合に、解凍するプログラム等も記憶される場合もあ る。
- 【0174】本実施形態における図5、図6に示す機能が外部からインストールされるアログラムによって、ホストコンピュータにより逃げされていてもよい。そして、その場合、CD-ROMやフラッシュメモリやFD の記憶媒体により、あらいはネットワークを介して外部の記憶媒体から、プログラムを含む情報群を出力装置に供給される場合でも本売明は適用されるものである。 (0175)以上のように、前途上大変接続限の機能を

- 実現するソフトウエアのプログラムコードを記録した記 憶媒体を、システムあるいは装置に供給し、そのシステ ムあるいは装置のコンピュータ(またはCPUやMP
- U) が記憶媒体に格納されたプログラムコードを読出し 実行することによっても、本発明の目的が達成されるこ とは言うまでもない。
- 【0176】この場合、記憶媒体から読み出されたプロ グラムコード自体が本発明の新規な機能を実現すること になり、そのプログラムコードを記憶した記憶媒体は本 奈明を機成することになる。
- 【0177】プログラムコードを供給するための記憶媒体としては、例えば、フロッピーディスク、ハードディスク、光ディスク、大融気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROM、EEPROM等を用いることができる。
- [0178]また、コンピュータが読み出したプログラ ムコードを実行することにより、前述した実施形態の機 能が実現されるだけでなく、そのプログラムコードの指 示に基づき、コンピュータ上で稼働しているOS(オペ レーティングシステム)等が実際の処理の一部または全 都を行い、その処理によって前述した実施形態の機能が 実現される場合も含まれることは言うまでもない。
- 【0179】さらに、記憶媒体から読み出されたプログ ウムコードが、コンビュークに挿入された機能拡張ボードやコンピュータに接続された機能拡張エニットに備わ るメモリに書き込まれた後、そのプログラムコードの指 示に基づき、その機能拡張エニットに 備わるCPU等が実際の処理の一部または全部を行い、 その処理によって前述した実施形態の機能が実現される 場合も含まれることは言うまでもない。
- 【0180】上記名実施形態によれば、プリンタドライ 代と印刷読蓋の間のホストコンピュータ側に介在し、印 明読置側の出力環境状態に造成して、プリンタドライバ が生成した印刷データが持つ潜在的な負荷を事前に軽減 するため、印刷システムとして印刷にかかるトータルな 専問を考えた場合、ユーザがホストコンピュータ等で印 削開始指示を与えてから印刷結果を得るまでの時間が大 幅に遠くなるという印刷処理パフォーマンスが格段に向 上する。
- 【0181】具体的には、冗長な印刷データの背除。印 刷データのコンパクト化による印刷速度の向上、登録用 メモリの節約が連成される。また、イメージデータのバ ッファリング処理による一括化により、回転処理の高速 化が図られ、印刷処理速度が向上する。
- [0182] 更に、アプリケーションソフトの措画手順 に依存して、結果的に単純な措画命令の繰り返し処理と いった冗長なコード列を減らすことができ、繰り返し処 理の効率化を図ることができる。
- 【0183】上記のような効率化は、単にデータ転送量 を少なくするばかりか、内部処理の負担軽減に貢献で

- き、情報処理装置側のCPUの処理能力が高い程、トー タルなスループットを大幅に向上できる。
- 【0184】さらに、再加工手段は、プリンタドライバ と印刷装置の間のホストコンピュータ側に介在するた め、従来の印刷システムにはいっさい手を加えることな く利用することが可能となる。
- 【0185】また、本発明の処理は、PDLコードを受けてPDLコードを吐き出す単なるフィルタプログラムとしても存在可能なため、ホストコンピュータ側の環境への機能依存性が極めて低く、様々な環境で動作可能となる。
- 【0186】また、特に、ネットワーク環境において は、プリントサーバとなるコンピュータに、フィルタブ ログラムという形式で組み込むことにより、複数のユー ザからの印刷要求を、さらに効率よく処理することがで きる。

[0187]

- 【発明の効果】以上説明」たように、本売明に係る第1 の売明によれば、出力制御情報から変換された出力情報 を記憶手段に記憶し、該定値された前記出力情報を再変 頻手段が再変換し、該再変換された出力情報を選賃手段 が外部装置に送信するので、出力制御情報からの変換で は対応してくい出力情報を外部装置が処理。やすい出力 情報に再変換でき、送信される出力情報を処理する外部 数置での処理が乗を特段に向、させることができる。
- 【0188】第2の発明によれば、前記出力制御情報は、前記情報処理装置でのアアリケーションプログラムの実行により生成されるので、アアリケーションプログラムの実行時に、外部装置に送信すべき出力情報を生成することができる。
- 【0189】第3の発明によれば、前記外部装置は印刷 装置であり、前記変換手段によって再変換された出力情 報は前記外部装置が解析可能な印刷データとするので、 販に外部装置側に備えられる解析資源に基づいて印刷デ ータを努めに解析することができる。
- 【0190】第4の発明によれば、前記出力制御情報から変換された出力情報に前記分部装置が解析可能なデータとするので、既に外部装置側に備えられる解析資源に基づいてデータを容易に解析することができる。
- 【0191】第5の発明によれば、前記再変換手段は、 前記出力情報をページ記述言語に基づいて構成するの で、外部装置に送信すべき出力情報のデータ量を抑える ことができる。
- 【0192】第6の発明によれば、前記記修手段は、順次生成される出力削削情報からそれぞれ異なる変換方式で変換されて生成された金出力情報を記憶し、前記再変換手段は、前記記憶手段に記憶される各出力情報を統一されたデータ形式に再変換するので、異なる変換方式で変換された各出力情報であっても外部装置からみれば画一化処理できる最適なデータ形式に変換処理することが

できる。

- 【0193】第7の発明によれば、前記再変換手段は、 順次生成される各出力情報で指定される用紙送り方向が それぞれ奨なる場合に、発出力情報で指定される用紙送 り方向が統一されるように再変換するので、出力情報を 処理する外部装置側でのデータ処理負担を減らすことが できる。
- 【0194】第8の発明によれば、前記情報処理装置 は、前記外部装置の状態を認識する認識手段を有し、前 記再変換手段は、前記認識手段によって認識された前記 外部装置の状態に基づいて前記出力情報を再変換するの で、出力情報を処理する外部装置側でのデーク処理負担 を減らすことができる。
- 【0195】第9の発明によれば、前記再変換手段は、 スキャンライン単位で所定の出力制御情報を変換して生 成される出力情報を所定スキャンライン数の単位で再変 検するので、アプリケーション側のデータ処理単位に柔 軟に対応することができる。
- 【0196】第10の発明によれば、前記再変換手段 は、スキャンライン単位の出力情報に付加情報を加え、 所定スキャンライン製の単位で再変換するので、外部装 電に送信すべき出力情報をコンパクトにまとめ効率よく 転送することができる。
- 【0197】第11, 第21の発明によれば、出力制御情報から変換された出力情報を再変換する事変換工程 を、該再変換された出力情報を手外部装置に送信するの で、出力制御情報からの変換では対応しにくい出力情報 を外部装置が処理しやすい出力情報に再変換でき、送信 される出力情報を処理する外部装置での処理効率を格段 に向上させることができる。
- 【0198】第12.第22の発明によれば、前配出力 制御情報は、前記情報処理装置でのアプリケーションプ ログラムの実行により生成されるので、アプリケーショ ンプログラムの実行時に、外部該置に送信すべき出力情 報を生成することができる。
- 【0199】第13,第23の発明によれば、前配外部 装置は印刷装置であり、前記変換手段によって再変換さ れた出力情報は前記外部装置が解析可能な印刷データと するので、限に外部装置側に備えられる解析資源に基づ いて印刷データを容易に解析することができる。
- 【0200】第14,第24の発明によれば、前記出力 制御情報から変換された出力情報よ前記外部装置が解析 可能なデータとするので、既に外部装置側に備えられる 解析資源に基づいてデータを容易に解析することができ る。
- 【0201】第15,第25の発明によれば、前記再変 換工程は、前記出力情報をページ記述言語に基づいて構 成するので、外部装置に送信すべき出力情報のデータ量 を抑えることができる。
- 【0202】第16,第26発明によれば、前記再変換

- 工程は、限次生成される出力制期情報からそれでれ異なる変換方式で変換されて生成された各出力情報を各出力情報を基一されたデータ形式に再変換するので、異なる変換方式で変換された各出力情報であっても外部装置からみれば画一化処理できる最適なデータ形式に変換処理することができる。
- 【0203】第17, 第27の発明によれば、前記再変 模工程は、順次生成される各出力情報で指定される用紙 送り方向がそれぞれ異なる場合に、各出力情報で指定される用紙 もの目紙送り方向が転一されるように再変換するので、 出力情報と処理する外部装置側でのデータ処理負担を減 らすことができる。
- 【0204】第18, 第28の発明によれば、前記再変 接工程は、前記認識工程によって認識された前記外格装 置の状態に基づいて前記出力情報を再変換するので、出 力情報を処理する外部装置側でのデータ処理負担を減ら すことができる。
- 【0205】第19,第29の発明によれば、前記再変 接工程は、スキャンライン単位で所定の出力飼酵情報を 要して生成される出力情報を所定スキャンライン数の 単位で再変換するので、アプリケーション側のデータ処 理単位に柔軟に対応することができる。
- 【0206】第20、第30の発明によれば、前記再変 換工程は、スキャンライン単位の出力情報に付加情報を 加え、所定スキャンライン数の単位で再変換するので、 外部装置に送信すべき出力情報をコンパクトにまとめ効 率よく転送することができる。
- 【0207】従って、アプリケーションプログラム等か ら生成される出力制御情報から外部装置が解析可能な最 適な出力情報を生成して送信することができる等の優れ た効果を奉する。
- 【図面の簡単な説明】
- 【図1】本発明に係る情報処理装置と通信可能な印刷装置の構成を示す機略断面図である。
- 【図2】本発明の第1実施形態を示す情報処理装置を適 用可能な印刷システムの構成を示すブロック図である。
- 【図3】図2に示したアプリケーションに基づく編集画 面の一例を示す図である。
- 【図4】図2に示したホスト・コンピュータ側での印刷 情報処理の流れおよびイメージデータの構造の概念を示 す図である。
- 【図5】本発明に係る情報処理装置の第1のデータ処理 手順の一例を示すフローチャートである。
- 【図6】図5に示した出力処理ルーチンの詳細手順の一 例を示すフローチャートである。
- 【図7】図4に示した適応型プリントプロセッサによる データ処理の流れを説明する図である。
- 【図8】図2に示した印刷装置の中間データの形式の一例を示す図である。
- 【図9】図2に示したハードディスクHDのメモリマッ

プを示す図である。

【図10】本発明に係る情報処理装置を適用可能な印刷システムで読み出し可能な各種データ処理プログラムを格約する記憶媒体のメモリマップを説明する図である。 【図11】この種の印刷システムにおける矩形描画に対する措画オブジェクト例を示す図である。

【符号の説明】

201 アプリケーション

202 GDI 203 プリンタ・ドライバ

204 プリンタ・スプーラ

206 適応型プリントプロセッサ

【図1】

【図8】

中間データの形式 || X 座櫃 (相対) || データサイズ || イメージデータ ||

【図2】

【図3】

【図11】

(a)

(b)

50 80 110 140 100

140 100