Information Systems Security Exercices Series 1 - Modular Arithmetic Reminders

September 22nd, 2021

Modular Arithmetic

- \mathbb{N} is the set of natural numbers (positive integers) : $\{0, 1, 2, 3, ...\}$
- \mathbb{Z} is the set of relative numbers (positive and negative integers): $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- \mathbb{Z}_n is the set of integers modulo $n:\{0,1,...,n-1\}$
- \mathbb{R} is the set of real numbers.
- $\lfloor x \rfloor$ is the integer part (floor) of an $x \in \mathbb{R}$, i.e. the biggest integer y such that $y \leq x$.
- a|b means a divides b (for $a, b \in \mathbb{Z}$), i.e. an integer (positive or negative) k exists such that $k \cdot a = b$.

Examples:

- $|\pi| = 3$, |-3.2| = -4, |2.4| = 2.
- 4|12, -3|21 (because (-3)(-7) = 21).

Greatest Common Divisor: Let $a, b, c \in \mathbb{Z}$, such that c|a and c|b, then c is a common divisor of a and b. If $\forall d$ such that d is a common divisor of a and b, we have $d \leq c$, then c is called the *greatest common divisor* of a and b : gcd(a, b) = c.

Modulo: Let $a, n \in \mathbb{R}$, we define "a modulo n" as the remainder r in the division of a by n:

$$a = q \cdot n + r = \lfloor \frac{a}{n} \rfloor \cdot n + (a \mod n)$$

This creates n groups of numbers with different values modulo n (from 0 to n-1). When two numbers a and b have the same remainder (the same value mod n), we then say they are congruent modulo n, which is denoted:

$$a \equiv b \mod n$$

Example: $7 \equiv 15 \mod 4$ (7 mod 4 = 3 and 15 mod 4 = 3).

Congruences and properties:

Congruences are:

- Reflexive : $a \equiv b \mod n$ if n | (a b)
- Symmetric: $a \equiv b \mod n$ implies $b \equiv a \mod n$
- Transitive : $a \equiv b \mod n$ and $b \equiv c \mod n$ implies $a \equiv c \mod n$

We can then see the following mathematical simplifications:

- $[(a \mod n) + (b \mod n)] \mod n = a + b \mod n$
- $[(a \mod n) (b \mod n)] \mod n = a b \mod n$
- $[(a \mod n) \cdot (b \mod n)] \mod n = a \cdot b \mod n$

Let $a, b, c, n \in \mathbb{Z}$, then if $a \equiv b \mod n$, we have :

- $\bullet \ a+c \equiv b+c \mod n$
- $a c \equiv b c \mod n$
- $a \cdot c \equiv b \cdot c \mod n$

Inverses and Z_n

Multiplicative Inverse: Let $a \in \mathbb{Z}_n$. The multiplicative inverse of a modulo n, if such an inverse exists, is the integer $x \in \mathbb{Z}_n$ such that $ax \equiv 1 \mod n$. (If such an x exists, then it is unique, and a is said to be invertible). The multiplicative inverse is noted $a^{-1} \mod n$.

Division modulo n: Let $a, b \in \mathbb{Z}_n$. The division of a by b modulo n is defined as the multiplication $a \cdot b^{-1} \mod n$, and is defined only if b is invertible modulo n.

Invertible property: Let $a \in \mathbb{Z}_n$. Then, a is invertible if and only if gcd(a, n) = 1.

Multiplicative Group of \mathbb{Z}_n : The multiplicative Group of \mathbb{Z}_n is noted $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n | pgcd(a, n) = 1\}$. Specifically, if n is prime, it means $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus 0$ (i.e. if n is prime, the multiplicative group contains all integers from 1 to n-1).

Bézout Identity: If $a, b \in \mathbb{Z}$, then we can find two numbers $x, y \in \mathbb{Z}$ such as ax + by = pgcd(a, b).

Euler totient function: Given a number $n \in \mathbb{Z}$, the Euler totient function (also known as Euler phi function), $\Phi(n)$, is the size of the following set : $\{x \mid 0 < x < n, pgcd(x, n) = 1\}$ (i.e. the set of number co-prime with n in $\mathbb{Z}_n \setminus 0$).

Examples : $\Phi(8) = |\{1, 3, 5, 7\}| = 4$; $\Phi(7) = |\{1, 2, 3, 4, 5, 6\}| = 6$. We can easily see that for any prime number n, $\Phi(n) = n - 1$.

Euler theorem: For any integer n > 0 and any integer a co-prime with n, $a^{\Phi(n)} \equiv 1 \mod n$.

Fermat's little theorem: If p is a prime number and a is an integer such that p does not divide a, then $a^p \equiv a \mod p$.

Primitive roots: Let $n \in \mathbb{Z}, g \in \mathbb{Z}_n$. We call g a primitive root modulo n if $\forall a$ such that $pgdc(a, n) = 1, \exists k \in \mathbb{Z}$ such that $g^k \equiv a \mod n$.

Order: Let $a, n \in \mathbb{N}$, and pgdc(a, n) = 1. The order of a modulo n, noted $ord_n(a)$, is the smaller positive integer $x \in \mathbb{N}$ such that $a^x \equiv 1 \mod n$.

Generator: For a multiplicative group \mathbb{Z}_n^* and a primitive root $g \in \mathbb{Z}_n^*$, we call g a generator of \mathbb{Z}_n^* (as the powers of g generates all elements in \mathbb{Z}_n^*).

Remark : A generator has an order which is equal to the Euler totient function of the group : $ord_n(g) = \Phi(n)$

Groups, Rings and Fields

Group : A group is an algebraic structure defined by a set G and an operator $*: G \times G \to G$, such that :

- $\forall a, b \in G, a * b \in G$. This is the closure property.
- The operator * is associative (i.e. a*(b*c) = (a*b)*c) for all $a,b,c \in G$).
- There is a unique neutral element $1 \in G$, such that a * 1 = 1 * a = a for all $a \in G$ (note that it is not necessarily the number "1").
- Each element $a \in G$ has a unique inverse $a^{-1} \in G$, such that $a * a^{-1} = a^{-1} * a = 1$ (the neutral element defined earlier).

Abelian Group: A group is said Abelian if operation * is commutative $(a*b = b*a \text{ for all } a, b \in G)$.

Ring: A ring is an algebraic structure defined by a set A and two operators $+, *: G \times G \to G$, such that:

- (A, +) is an abelian group (we note the neutral element 0 for operator +).
- Operator * is associative.
- Operator * has a unique neutral element $1 \in A, 1 \neq 0$ such that 1 * a = a * 1 = a for all $a \in A$.
- Operator * is distributive with + : a * (b + c) = (a * b) + (a * c) and (a + b) * c = (a * c) + (b * c) for all $a, b, c \in A$.

Commutative Ring: A ring is said to be commutative if the product * is commutative (i.e. a*b=b*a for all $a,b\in A$).

Field: A field is a commutative ring (A,+,*) in which $(A \setminus 0,*)$ is a group.

Exercices

Justify all answers.

- 1. Compute:
 - $((11 \mod 7) + (17 \mod 7)) \mod 7$
 - $((11 \mod 7) (17 \mod 7)) \mod 7$
 - $((11 \mod 7) \cdot (17 \mod 7)) \mod 7$
 - $(21 * 27 * 41) \mod 8$
 - \bullet -44 mod 7
- 2. In \mathbb{Z}_7 , compute :
 - The additive table.
 - The multiplication table.
 - The additive inverse for each number.
 - The multiplicative inverse for each number.
- 3. Is $(\mathbb{Z}_7, +)$ a group?
- 4. Is (\mathbb{Z}_8, \times) a group?
- 5. Is (\mathbb{Z}_8^*, \times) a group?
- 6. Is (\mathbb{Z}_n^*, \times) a group?
- 7. Give the order of:
 - 2 mod 7
 - 3 mod 7
 - 3 mod 10
- 8. Find a primitive root modulo 7 (i.e. a generator of \mathbb{Z}_7^*).
- 9. Find all primitive roots modulo 11.
- 10. Show there is no primitive root modulo 12.