Exercice 1.

1. Voici l'arbre pondéré complété :

2. (a) R_n et $\overline{R_n}$ forment une partition de l'univers donc, d'après les probabilités totales on a :

$$r_{n+1} = p(R_{n+1})$$

$$= p(R_n \cap R_{n+1}) + p(\overline{R_n} \cap R_{n+1})$$

$$= p_{R_n}(R_{n+1}) \times p(R_n) + p_{\overline{R_n}}(R_{n+1}) \times p(\overline{R_n})$$

$$= 0.95r_n + 0.2(1 - r_n)$$

$$= 0.75r_n + 0.2$$

(b) On procède par récurrence : soit P_n : « $r_n \ge 0.8$ ».

Initialisation: $r_1 = p(R_1) = 0.9$ donc $r_1 \ge 0.8$ et P_1 est donc vraie.

Hérédité : Soit $n \in \mathbb{N}^*$. Supposons P_n vraie $(r_n \ge 0.8)$.

Montrons que P_{n+1} est vraie $(r_{n+1} \ge 0.8)$.

D'après l'hypothèse de récurrence : $r_n \ge 0.8$ et en multipliant cette inégalité par 0.75 > 0 il vient $0.75 r_n \ge 0.6$ puis en additionnant 0.2 on a $0.75 r_n + 0.2 \ge 0.8$ soit $r_{n+1} \ge 0.8$ ce qui prouve que P_{n+1} est vraie.

Conclusion: P_1 est vraie et P_n est héréditaire à partir du rang n=1, P_n est donc vraie pour tout entier naturel n non nul c'est-à-dire $r_n \ge 0.8$.

(c) $\forall n \in \mathbb{N}^*$,

$$r_{n+1} - r_n = 0.75r_n + 0.2 - r_n$$

= $-0.25r_n + 0.2$

D'après la question précédente on a démontré que $r_n \geqslant 0.8$ donc en multipliant cette inégalité par -0.25 < 0, il vient $-0.25 r_n \leqslant -0.2$ puis en additionnant 0.2 on obtient $-0.25 r_n + 0.2 \leqslant 0$ soit $r_{n+1} - r_n \leqslant 0$ ce qui prouve que la suite $(r_n)_{n \in \mathbb{N}^*}$ est décroissante.

- (d) La suite $(r_n)_{n\in\mathbb{N}^*}$ est décroissante et minorée par 0,8 donc la suite $(r_n)_{n\in\mathbb{N}^*}$ converge vers une limite ℓ telle que $\ell\geqslant 0,8$.
- (e) La suite $(r_n)_{n\in\mathbb{N}^*}$ est convergente, soit ℓ sa limite. On a donc $\lim_{n\to+\infty} r_n=\ell$. De même $\lim_{n\to+\infty} r_{n+1}=\ell$. Or $r_{n+1}=0.75r_n+0.2$. Par passage à la limite il vient : $\lim_{n\to+\infty} r_{n+1}=\lim_{n\to+\infty} 0.75r_n+0.2=0$ soit $\ell=0.75\ell+0.2$. On a rapidement $\ell=\frac{4}{5}=0.8$.
- 3. (a) $\forall n \in \mathbb{N}^*$,

$$v_{n+1} = r_{n+1} - 0.8$$

$$= 0.75r_n + 0.2 - 0.8$$

$$= 0.75r_n - 0.6$$

$$= 0.75 \left(r_n - \frac{0.6}{0.75}\right)$$

$$= 0.75(r_n - 0.8)$$

$$= 0.75v_n$$

On en déduit que la suite $(v_n)_{n \in \mathbb{N}^*}$ est géométrique de raison q = 0.75 et de premier terme $v_1 = r_1 - 0.8 = 0.9 - 0.8 = 0.1$.

- (b) $\forall n \in \mathbb{N}^*$, $v_n = v_1 q^{n-1}$ soit $v_n = 0.1 \times 0.75^{n-1}$. Or $v_n = r_n - 0.8$ donc $r_n = v_n + 0.8$ soit $r_n = 0.1 \times 0.75^{n-1} + 0.8$.
- (c) -1 < 0.8 < 1 donc $\lim_{n \to +\infty} 0.75^{n-1} = 0$ puis $\lim_{n \to +\infty} 0.1 \times 0.75^{n-1} = 0$ et enfin

$$\lim_{n\to+\infty}r_n=0.8$$

À long terme, la probabilité que le client rapporte la bouteille du panier sera égale à 0,8.

- 4. (a) La suite $(r_n)_{n \in \mathbb{N}^*}$ est décroissante, de premier terme $r_1 = 0.9$ et de limite 0.8: il existe donc un entier n_0 tel que pour tout $n \ge n_0$, $r_n \le 0.85$.
 - (b) Voici le programme complété:

Exercice 2.

1. Pour tout entier naturel n non nul on a $-1 \leqslant (-1)^n \leqslant 1$ donc $0 \leqslant \frac{1+(-1)^n}{\sqrt{n}} \leqslant \frac{2}{\sqrt{n}}$.

De façon évidente $\lim_{n \to +\infty} 0 = 0$ et $\lim_{n \to +\infty} \frac{2}{\sqrt{n}} = 0$ donc d'après le théorème d'encadrement des limites :

$$\lim_{n \to +\infty} \frac{1 + (-1)^n}{\sqrt{n}} = 0 \quad .$$

- 2. Pour tout entier naturel n, $-1 \le \cos(n^2) \le 1$ puis en multipliant cet encadrement par -2 < 0, il vient :
 - $-2 \leqslant -2\cos(n^2) \leqslant 2$ puis en additionnant n^3 il vient : $n^3 2 \leqslant n^3 2\cos(n^2) \leqslant n^3 + 2$. Or $\lim_{n \to +\infty} n^3 2 = +\infty$ donc d'après le théorème de comparaison des limites :

$$\lim_{n \to +\infty} n^3 - 2\cos(n^2) = +\infty$$

3. Calculons $\lim_{n \to +\infty} \frac{5n^2}{n^2 + 6n + 3}$

On a une forme indéterminée du type « $\frac{\infty}{\infty}$ » donc on change d'écriture. Soit n > 0 :

$$\frac{5n^2}{n^2 + 6n + 3} = \frac{\cancel{n^2} \times 5}{\cancel{n^2} \left(1 + \frac{6}{n} + \frac{3}{n^2}\right)}$$
$$= \frac{5}{1 + \frac{6}{n} + \frac{3}{n^2}}$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 5 = 5$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 1 + \frac{6}{n} + \frac{3}{n^2} = 1$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{5}{1 + \frac{6}{n} + \frac{3}{n^2}} = 5.$$
Donc
$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{5n^2}{n^2 + 6n + 3} = 5.$$