Nevezetes diszkrét eloszlások:

Név	Jelölés	Értékek	Valószínűnégek	EX	D^2X
Indikátor vagy	Ind(p) = Bin(1, p)	0, 1	P(X = 1) = p, P(X = 0) = 1 - p	p	p(1 - p)
Karakterisztikus					
Binomiális	Bin(n,p)	0, 1,, n	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Poisson	$Poisson(\lambda)$	0, 1,	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$ $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$	λ	λ
Geometriai (Pascal)	Geo(p) = NegBin(1, p)	1, 2,	$P(X = k) = p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negatív binomiális	$\operatorname{NegBin}(n,p)$		$P(X = k) = {\binom{k-1}{n-1}} p^n (1-p)^{k-n}$	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$
Hipergeometriai	HiperGeo(N, M, n)	0, 1,, n	$P(X=k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$	$n\frac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\left(1-\frac{n-1}{N-1}\right)$

Nevezetes abszolút folytonos eloszlások:

Név	Jelölés	Értékek	Eloszlásfüggvény	Sűrűségfüggvény	EX	D^2X
Standard normális	N(0,1)	$(-\infty,\infty)$	$\Phi(x) = $ táblázatban	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} x \in \mathbb{R}$	0	1
Normális	$N(m, \sigma^2)$	$(-\infty,\infty)$	visszavezethető $\Phi(x)$ - re	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}} x \in \mathbb{R}$	m	σ^2
Egyenletes	$\mathrm{E}(a,b)$	[a,b]	$\begin{cases} 0 & \text{ha } x \le a \\ \frac{x-a}{b-a} & \text{ha } a < x \le b \\ 1 & \text{ha } b < x \end{cases}$	$\begin{cases} \frac{1}{b-a} & \text{ha } a < x \leq b \\ 0 & \text{különben} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciális	$\operatorname{Exp}(\lambda)$	$(0,\infty)$	$\begin{cases} 1 - e^{-\lambda x} & \text{ha } x \ge 0 \\ 0 & \text{k\"{u}l\"{o}nben} \end{cases}$	$\begin{cases} \lambda e^{-\lambda x} & \text{ha } x \ge 0 \\ 0 & \text{k\"{u}l\"{o}nben} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma	$\Gamma(lpha,\lambda)$	$(0,\infty)$	nincs zárt elemi képlet	$\begin{cases} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} & \text{ha } x \ge 0\\ 0 & \text{különben} \end{cases}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$

Chi-négyzet eloszás: $X \sim \chi_n^2$ ha $X = Z_1^2 + \cdots + Z_n^2$, ahol $Z_i \sim N(0,1) \ \forall i$ függetlenek

t eloszás:
$$X \sim t_n$$
 ha $X = \frac{Z}{\sqrt{\frac{Y_n}{n}}}$, ahol $Z \sim N(0,1)$ és $Y_n \sim \chi_n^2$

F eloszlás:
$$X \sim F_{n_1,n_2}$$
 ha $X = \frac{U_1/n_1}{U_2/n_2}$, ahol $U_1 \sim \chi^2_{n_1}$ és $U_2 \sim \chi^2_{n_2}$