Radiation

Alejandro Campos

 $\mathrm{June}\ 23,\ 2023$

Contents

1	Introduction			
	1.1 Definitions	2		
2	Thermal radiation	4		

Chapter 1

Introduction

1.1 Definitions

Consider an infinitesimal amount of energy dE which is the energy at location \mathbf{x} and time t with frequencies in the infinitesimal range $d\nu$ about the frequency ν and flowing in the direction of the solid angle $d\Omega$ about the vector Ω and passing through an infinitesimal area $d\mathbf{A}$ with unit normal \mathbf{A} . We express this energy in terms of a distribution $I_{\nu} = I_{\nu}(\mathbf{x}, t, \nu, \Omega)$ as follows

$$dE = I_{\nu}(\mathbf{\Omega} \cdot \mathbf{A}) dt d\nu d\Omega dA. \tag{1.1}$$

 I_{ν} is referred to as the spectral radiance, or spectral specific intensity. Various additional radiation quantities can be defined in terms of I_{ν} , as shown in table 1.1.

Any quantity dependent on ν can be integrated over all frequencies to obtain a total value. For example, for the spectral radiance/spectral specific intensity, we have

$$I = \int_0^\infty I_\nu \, d\nu. \tag{1.2}$$

In the above, $I = I(\mathbf{x}, t, \mathbf{\Omega})$ is the radiance, or specific intensity.

	spectral	
	definition	units
Spectral radiance / Spectral specific intensity	$I_{ u}$	$\left[\frac{J}{s{\cdot}m^2{\cdot}sr{\cdot}Hz}\right]$
0 th moment	$J_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} d\Omega$	$\left[\frac{J}{s{\cdot}m^2{\cdot}Hz}\right]$
1 st moment	$\mathbf{H}_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} \mathbf{\Omega} d\Omega$ $= \frac{\mathbf{F}_{\nu}}{4\pi}$	$\left[\frac{J}{s \cdot m^2 \cdot Hz}\right]$
2 nd moment	$\mathbf{K}_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} \mathbf{\Omega} \mathbf{\Omega} d\Omega$ $= \frac{c}{4\pi} \mathbf{P}_{\nu}$	$\left[\frac{J}{s{\cdot}m^2{\cdot}Hz}\right]$
Spectral radiant energy density	$E_{\nu} = \frac{1}{c} \int_{4\pi} I_{\nu} d\Omega$ $= \frac{4\pi}{c} J_{\nu}$	$\left[\frac{\rm J}{\rm m^3 \cdot Hz}\right]$
One-sided spectral radiant energy flux	$S_{\nu}^{\mathbf{A}} = \int_{\mathbf{\Omega} \cdot \mathbf{A} > 0} I_{\nu}(\mathbf{\Omega} \cdot \mathbf{A}) d\Omega$	$\left[\frac{J}{s \cdot m^2 \cdot Hz}\right]$

Table 1.1: Radiation quantities. In the above ${\bf F}_{\nu}$ is the radiation flux and ${\bf P}_{\nu}$ the radiation pressure tensor.

Chapter 2

Thermal radiation

For blackbody radiation we have

$$I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}.$$
 (2.1)

Consider the identity

$$\int_0^\infty \frac{x^3}{\exp(yx) - 1} \, dx = \frac{1}{15} \left(\frac{\pi}{y}\right)^4. \tag{2.2}$$

Using the above to integrate over all frequencies, we get

$$I = \frac{2h}{c^2} \frac{1}{15} \left(\frac{\pi kT}{h}\right)^4. \tag{2.3}$$

Defining the Stefan-Boltzmann constant as

$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3},\tag{2.4}$$

we have

$$I = -\frac{1}{\pi}\sigma T^4. \tag{2.5}$$

In this case I_{ν} is isotropic, that is, it is independent of the direction Ω . Thus $J_{\nu}=I_{\nu}$ and therefore $E_{\nu}=(4\pi/c)I_{\nu}$. Integrating over all frequencies leads to $E=(4\pi/c)I$.

Figure 2.1: Spherical coordinates from Wikipedia.

For the one-sided spectral radiant energy flux, we make reference to the diagram for spherical coordinates in fig. 2.1. Let's assume $\mathbf{A} = \mathbf{z}$ without loss of generality. Then, we have

$$S_{\nu}^{\hat{\mathbf{z}}} = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I_{\nu} \cos\theta \, d\Omega = I_{\nu} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} \cos\theta \sin\theta \, d\theta d\phi = \pi I_{\nu}. \tag{2.6}$$

	total	spectral
Radiance / Specific intensity	$I = \frac{1}{\pi}\sigma T^4$	- ` ' '
Radiant energy density	$E = \frac{4}{c}\sigma T^4$	$E_{\nu} = \frac{8\pi h \nu^3}{c^3} \frac{1}{\exp(h\nu/kT) - 1}$
One-sided radiant energy flux	$S^{\hat{\mathbf{z}}} = \sigma T^4$	$S_{\nu}^{\hat{\mathbf{z}}} = \frac{2\pi h \nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$

Table 2.1: Radiation quantities for a blackbody spectrum

Similarly as before, integrating over all frequencies leads to $S^{\hat{\mathbf{z}}} = \pi I$. These and the other relations derived above are shown in table 2.1.