Scalable Interconnects for Reconfigurable Spatial Architectures

YaqiZhang yaqiz@stanford.edu Alexander Rucker acrucker@stanford.edu

Matthew Vilim mvilim@stanford.edu

Raghu Prabhakar raghup17@stanford.edu

STANFORD DAWN

William Hwang williamhwang@stanford.edu

Kunle Olukotun kunle@stanford.edu

Motivation

Spatial Accelerators

- Energy efficient
- High-throughput
- Low-latency

Communication Pattern

Memory Bus

Multi-Processor

Network Requirements

- Saturate compute throughput
- Low area and energy overheads
- Flexible for new applications
- Scalable to large arrays

Architecture	Comm. Type C	Comm. Freq.	Granularity	Limited by
Processor	Parallelism	Low	Packet	Latency
Spatial Accelerator	Parallelism & Pipelining	High	Fine-grained	Throughput

—— Compiler & Mapping Flow

Place and Route Algorithm

- Start with random placement
 - Route all links, in order of activation count
 - Build most efficient broadcast tree
 - Guarantee static network placement, if possible
 - Else, map the link to the dynamic network
- Re-place VBs with the highest routing cost

Cost = f(DynCongest, avg(RouteLength), max(RouteLength))

Observed Program Characteristics

How can we improve link usage and saturate compute/memory throughput?

— Network Design Space

- Static network
 - Flow control
 - End-to-end
 - Per-hop
 - Bandwidth
 - Scalar-only network
- Dynamic network
 - Virtual Channels (VCs)
 - Router flit width
- Static and dynamic hybrids
 - Varied static bandwidth
 - Varied dynamic params

—— Area and Energy Characterization -

$$E_{\mathsf{net}} = \sum_{\mathsf{allocated}} P_{\mathsf{inactive}} T_{\mathsf{sim}} + E_{\mathsf{flit}} \# \mathsf{flit}$$

Evaluation

- Dynamic networks perform poorly on compute-bound applications due to low bandwidth
- Hybrid networks reduce data movement by using a dynamic network as an escape path

- On pipelined CGRAs, a hybrid network improves energy efficiency by 1.8x compared to a static network with similar performance
- Performance varies up to 7x between the best and worst network configurations

Conclusion

- Performance correlates strongly with network bandwidth for spatial accelerators
- Bandwidth scales more efficiently on a static network
- Combining large static and small dynamic networks:
 - Eliminates place and route failure
 - Improves perf/watt