Universidad del Istmo Curso: Análisis de datos

Catedrático: Juan Andrés García Porres

Investigación e implementaciones Tarea 2

Juan Pablo Estrada Lucero Ingeniería en sistemas y ciencias de la computación 0000012782

Fecha de entrega: 02 / 08 / 2025

Primera parte

• Generadores de congruencia lineal (LCG)

Algoritmo que permite obtener secuencia de números pseudoaleatorios calculados con una función lineal definida a trozos discontinua.

Fundamento matemático:

La secuencia de números enteros X_1 , X_2 , X_3 , ... está definida por la relación de recurrencia:

$$X_i = (aX_{i-1} + c) \mod m$$

con $0 \le X_i \le m - 1$ donde m (el módulo), a (el multiplicador), c (el incremento) y X_0 (la semilla o valor inicial) son números enteros no negativos.

Además a los números m , a , c y X_0 se les impone las condiciones m > 0, 0 < a < m, 0 \leq c < m y 0 \leq X_0 < m.

Su período es la longitud máxima de la secuencia antes de repetirse en m.

Tendrá período completo m para cualquier valor de la semilla X_0 en $\{0, 1, ..., m-1\}$ si y sólo si:

- 1. c & m son coprimos, mcd(c,m) = 1
- 2. a 1 es múltiplo de todos los factores primos de m, es decir, a = 1 mod z para todo z que sea factor primo de m.
- 3. Si m es múltiplo de 4, entonces a 1 también lo es.

o Pseudocódigo:

```
Función LCG(semilla, a, c, m, cantidad)

// semilla: número inicial

// a: multiplicador

// c: incremento

// m: módulo

// cantidad: cuántos números aleatorios generar

X = semilla // Valor inicial

Repetir cantidad veces:

X = (a * X + c) mod m // Fórmula principal

Print(X) // Imprimir el número pseudoaleatorio generado

Fin Repetir

Fin Función
```

Método de cuadros medios o middle-square method

Método para generar números pseudoaleatorios.

Fundamento matemático:

Cada número sucesivo se genera tomando, los "n" dígitos centrales del cuadrado del número anterior de n dígitos.

o Pseudocódigo:

```
Función CuadrosMedios(semilla, cantidad, n_digitos)

// semilla: número inicial

// cantidad: cantidad de números a generar

// n_digitos: cantidad de dígitos que tendrá cada número generado

X = semilla // Valor inicial

Repetir cantidad veces:
    cuadrado = X * X // Elevar al cuadrado
    texto = convertir a cadena con ceros a la izquierda hasta tener el
doble de dígitos

// Extraer los dígitos del centro
    inicio = posición desde donde extraer los dígitos del centro
    centro = extraer n_digitos desde la posición inicio

X = convertir centro a número
    Print(X) // Imprimir número pseudoaleatorio generado
Fin Repetir
```

Mersenne Twister

Generador de números pseudoaleatorios desarrollado en 1997

Fundamento matemático:

Fin Función

Este genera números en el rango de [0, 2^w-1]

El algoritmo Mersenne Twister se basa en una recurrencia lineal matricial sobre un campo binario finito F².

Consiste en definir una serie x_i , a través de una relación de recurrencia simple, y luego generar números con la forma x^T_i , donde T es una matriz F^2 invertible llamada matriz de templado.

El algoritmo general se caracteriza por las siguientes magnitudes:

w: tamaño de palabra (en bits)

n: grado de recurrencia

m: palabra intermedia, un desplazamiento utilizado en la relación de recurrencia que define la serie x, $1 \le m < n$

r: punto de separación de una palabra, o el número de bits de la máscara de bits inferior, $0 \le r \le w - 1$

a: coeficientes de la matriz de torsión en forma normal racional

b, c: máscaras de bits de templado TGFSR(R)

s, t: desplazamientos de bits de templado TGFSR(R)

u, d, l: desplazamientos/máscaras de bits de templado Mersenne Twister adicionales

La serie x se define como una serie de cantidades de w bits con la relación de recurrencia:

$$x_{k+n} := x_{k+m} \oplus \left(({x_k}^u \mid {x_{k+1}}^l)A
ight) \qquad k = 0, 1, 2, \ldots$$

Fuente: https://en.wikipedia.org/wiki/Mersenne Twister

Pseudocódigo:

Blum Blum Shub

Generador pseudoaleatorio de números.

Fundamento matemático:

Este se compone de la siguiente manera:

$$x_{n+1} = (x_n)^2 \mod M$$

- donde:

M = p*q (donde p y q son dos números primos muy grandes)

En cada paso del algoritmo se obtiene un resultado para x_n los dos números primos, p y q, deben ser ambos congruentes a 3 (mod 4)

o Pseudocódigo:

Función BlumBlumShub(semilla, M, cantidad)

// semilla: número inicial (debe ser coprimo con M)

// M: número compuesto obtenido de multiplicar dos primos grandes

// cantidad: cuántos números pseudoaleatorios se quieren generar

X = semilla

Repetir cantidad veces:

X = (X * X) mod M //Elevación al cuadrado

Print(X) // Imprimir número pseudoaleatorio generado Fin Repetir Fin Función

RANDU

Fundamento matemático:

Es un LCG, el cual se define a través de la siguiente recurrencia:

$$V_{j+1}$$
 = 65539 * V_j mod 2^31

Teniendo en consideración que V₀ es un número impar.

La normalización del valor se obtiene mediante:

$$X_i = V_i / 2^31$$

Pseudocódigo:

Función RANDU(semilla, cantidad)

// semilla: número inicial

// cantidad: cuántos números pseudoaleatorios a generar

a = 65539 // Multiplicador específico del RANDU

 $m = 2^31$

X = semilla

Repetir cantidad veces:

X = (a * X) mod m // Fórmula del generador

Print(X) // Imprimir el número pseudoaleatorio generado

Fin Repetir

Fin Función

Tabla comparativa entre cada algoritmo:

Algoritmo	Velocidad	Periodo	Seguridad / Criptografía	Casos de uso típicos
Generadores de congruencia lineal (LCG)	Muy rápida	Moderado, depende de los parámetros (hasta ~2 ³¹ –1 para 32 bits)	Baja, predecible, no seguro criptográficamente	Simulaciones simples, juegos, prototipos, generación de datos no críticos
Método de cuadrados medios (Middle-square)	Lenta, especialmente para números grandes	Muy corto, suele degenerar rápidamente	Muy baja, altamente predecible y con ciclos cortos	Educación, experimentos históricos, demostración de conceptos
Mersenne Twister	Muy rápida	Muy largo (~2 ¹⁹⁹³⁷ –1)	Media, no es seguro para criptografía	Simulaciones científicas, videojuegos, generación de números aleatorios de propósito general
Blum Blum Shub	Lenta, requiere operaciones de factorización	Muy largo (depende de los números primos grandes usados)	Muy alta, es seguro criptográficamente	Aplicaciones criptográficas, generación de claves, tokens de seguridad
RANDU	Rápida	Moderado (ciclos de ~2 ³¹ /4)	Muy baja, tiene correlaciones graves	Históricamente usado en mainframes IBM, hoy en día obsoleto

Bibliografía:

https://es.wikipedia.org/wiki/Generador_lineal_congruencial

https://www.youtube.com/watch?v=mXBGXU0zJnw

https://es.wikipedia.org/wiki/M%C3%A9todo_del_medio_del_cuadrado

https://simulacion2017.wordpress.com/2017/02/23/2-2-1-algoritmo-de-cuadrados-medios/

https://es.wikipedia.org/wiki/Blum_Blum_Shub

https://en.wikipedia.org/wiki/RANDU

https://es.wikipedia.org/wiki/Mersenne twister

https://en.wikipedia.org/wiki/Mersenne_Twister

https://www.youtube.com/watch?v=TF4PLUcJO5w

https://www.geeksforgeeks.org/python/how-to-add-leading-zeros-to-a-number-in-python/