Exercice 1

Soit à calculer une primitive d'un élément simple réel de seconde espèce, c'est-à-dire une intégrale de la forme :

$$\int \frac{at+b}{\left(t^2+pt+q\right)^n} \, \mathrm{d}t \, .$$

a. Justifier qu'il suffit de savoir calculer une primitive de la forme :

$$\int \frac{\mathrm{d}t}{(1+t^2)^n}$$

b. Comment calculer ces primitives de proche en proche ?

Un calcul de primitive non trivial

Exercice 2

a. Calculer, pour x réel, l'intégrale :

$$\int_{0}^{+\infty} e^{-t} \cos(2xt) dt.$$

b. Existence et calcul de :

$$\int_{0}^{+\infty} \left(\int_{x}^{+\infty} \frac{\sin t}{t} dt \right) dx.$$

Dérivation sous le signe somme et intégration par parties pour obtenir une équadif.

intégrations par parties successives pour obtenir une majoration satisfaisante.

Exercice 3

Pour $n \in \mathbb{N}$, on pose :

$$L_n(X) = \frac{\mathrm{d}}{\mathrm{d}X^n} \Big((X^2 - 1)^n \Big) .$$

 ${\bf a.}\;$ Prouver que les polynômes $L_n\;$ sont deux à deux orthogonaux pour le

produit scalaire $\int_{-1}^{1} fg$.

b. Calculer $(L_p | L_p)$.

Intégration par parties itérée.

Exercice 4

On pose, pour x réel, $f(x) = \sum_{n=1}^{+\infty} \frac{\cos nx}{n^2}$.

a. Prouver que la fonction f ainsi définie est continue sur $\mathbb R$ et déterminer ses coefficients de Fourier.

b. Quel calcul peut mener à des coefficients de Fourier égaux à $\frac{1}{n^2}$?

Postuler alors la forme de f sur $[0,\pi]$.

c. Calculer *f*.

Intégration par parties dans les séries de Fourier.

Exercice 5

- 5. On pose, pour x réel, $g(x) = \int_{0}^{+\infty} \frac{\cos(tx)}{1+t^2} dt$.
- **a.** Prouver que g est définie, continue sur \mathbb{R} , et qu'elle est paire. Donner la valeur de g en 0 et déterminer la limite de g en $+\infty$. On limite dans la suite l'étude de g à \mathbb{R}_+^* .
 - **b.** Prouver que pour tout x > 0, on a $g(x) = \int_0^{+\infty} \frac{x \cos t}{x^2 + t^2} dt$. En déduire que

g est de classe C^2 sur \mathbb{R}_+^* .

- **c.** Après avoir vérifié que $\frac{\partial^2}{\partial x^2} \left(\frac{x}{t^2 + x^2} \right) = -\frac{\partial^2}{\partial t^2} \left(\frac{x}{t^2 + x^2} \right)$, donner une équation différentielle du second ordre vérifiée par g.
 - **d.** Calculer g(x) pour tout réel x.

Exercice 6

On se propose de prouver l'irrationalité de π . On suppose pour cela l'existence de deux entiers positifs et premiers entre eux a et b tels que $\pi = \frac{a}{b}$.

Pour n entier naturel et x réel, on pose :

$$P_n(x) = \frac{x^n (a - bx)^n}{n!}$$
 et $I_n = \int_0^{\pi} P_n(x) \sin x \, dx$.

- **a.** Calculer $\sup_{0 \le x \le \pi} |P_n(x)|$ en fonction de a, b et n. Prouver que I_n est strictement positif pour tout n, et déterminer la limite de la suite (I_n) .
- **b.** Pour tout entier k, la dérivée d'ordre k du polynôme P_n sera notée $P_n^{(k)}$. Par convention, $P_n^{(0)} = P_n$. Calculer en fonction de a, b, n et k les valeurs de $P_n^{(k)}(0)$ et de $P_n^{(k)}(\frac{a}{b})$ dans les trois cas suivants :
 - i. $0 \le k \le n-1$ (lorsque $n \ge 1$);
 - ii. $n \le k \le 2n$;
 - iii. $k \ge 2n + 1$.

Montrer que dans tous les cas considérés, $P_n^{(k)}(0)$ et $P_n^{(k)}(\frac{a}{b})$ sont des entiers relatifs.

c. Montrer que I_n est un entier relatif pour tout entier n et conclure.

Une double intégration par parties sans aucun calcul.

Intégrations par parties successives pour trouver la nature arithmétique d'une intégrale.