

Las Americas Institute of Technology

Nombres de estudiantes:

Jesus Alberto Beato Pimentel.

Matriculas:

2023-1283.

Institución académica:

Instituto Tecnológico de las Américas (ITLA).

Materia:

Circuitos Eléctricos II

Profesor:

Ing. Omar De Los Santos Bueno

Tema del trabajo:

Ejercicios pautados del cap. 12

PROBLEMAS SECCIÓN 12.2 Fuentes independientes y dependientes (controladas)

1. Explique, con sus propias palabras, la diferencia entre una fuente controlada y una fuente independiente.

Convierta la fuente de voltaje de la figura 12.58 en una fuente de corriente.

Convierta la fuente de corriente de la figura 12.59 en una fuente de voltaje.

FIG. 12.59 Problema 3.

4. Convierta la fuente de voltaje de la figura 12.60(a) en una fuente de corriente y la fuente de corriente de la figura 12.60(b) en una fuente de voltaje.

FIG. 12.60 Problema 4.

SECCIÓN 12.4 Análisis de mallas

5. Escriba las ecuaciones de malla para la red de la figura 12.61. Determine la corriente que fluye a través del resistor R.

FIG. 12.61 Problemas 5 y 40.

Pronuncia de la Companya de la Compa	V Dates
E1= 10v 10° (W) T. E60° (W) F.	72=60 190° 72=60 190° 72=80 1-90° E1=40V160° E1=40V160°
O alla topula oc	F2=40v 160°
-Ext Ix. 7x + 82 (Ix - I2)=0 -(30×10)+(4210°. Ix)+(62190°. (4.210 [56,31. I2)+(6190°. I2)	
	= 10 10 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1

6. Escriba las ecuaciones de malla para la red de la figura 12.62.

FIG. 12.62 Problema 6.

aldrand to	Epracio VI Dato
1+	72 = 200 90
\$50A 320A	1/2=6014
1, Z 1, Z -	E1 = 5V 20°
- E. SV(30" - 120 V	to Vanta- soul of
120=4 m/c2	
& Malla Is	
08-1 08-05	1 42 5 44
-F, + 71 - I+ 72 (I	$(-T_2) + E_2 = 0$
-(E1120°) 1500 10°-Ta	+201 90° . To - 201 90° + 201 0° =0
(5,11 20) 4 62 95 1 21 8	80°. I 20.2 -90° + 20VL0° = 0
- 150/ 30 / + 53-85 (-16)	a distance of the second
- 20 11 -	
* Malla I2	
/	
-E2 - Z2 (I2-Te) + Z3	- (Could) + (as id . T.) + (as 190 - T.) - (as 10) + (as 190 - T.)
(200 Lg") - 20 2 /90 · I2	+200/90° - I, +600/-90° - I2 = 0
	IL + 80 1 1-90° · I2 = 0

7. Escriba las ecuaciones de malla para la red de la figura 12.63. Determine la corriente que fluye a través del resistor R_1 .

FIG. 12.63 Problemas 7 y 21.

*8. Escriba las ecuaciones de malla para la red de la figura 12.64. Determine la corriente que fluye a través del resistor R_1 .

FIG. 12.64 Problema 8.

777		Į-	+ 40-	1	CO VIII	+ +	8.9	I I	17	= 11	+135	0
7	60 v LC	+1+	ILA	-110	[I2]	- 2.2	Is)	Frov L	120° 7	1 = 2	0 190	
7	600	-							Ŧ	= 60	v 10	_ 1
3 ×	Malla	Tı	,							-120	ovlo	10
E 60	1 - to - 1	Z ₄ - 7	100 72	+ 12 - 1	72=0		1	`				
60	v10°-	(5/3	6.87°.1	1)-(101-90	T2)+	(101-	10 · I2)	=0			
≯	Malla	To										1
-		T .	7 -	1.70	-To . Z	u + To	· Z4=1)				
-Le	2 1-90	-I2)-	1/22 1-	90 - ta)-(6n)	10.T2)	-(221-	90 ·T2)	4(25	196.	Ts) = (2
6 YI	alla:	43										
-I3	-24 +	I2.	Z4 - I	3 - 7 5	- Fo=	0	; - I3) -	(12011	Ino	1=0		
- (2	2 L-90	·IB)	+ (20	1-90.	70)-(80 10	~ L3/	11200	1,50)-0		
Ros	dución	1										
					· To -							
-	72 .1						[3=-E2					
I3 =_	72.7	4 · E	+ (12	2)2-(2	1+72)(72+7	3+74))	· F2	1 2			
(7,	+22)()	2, + 23	124) (2	4125)-(Z,	+ Z2)	(Zy)2-(5	24+25	(23)			