HW14

108048110

2022-05-18

BACS HW - Week 14

Prerequisite

```
library(ggpubr)
library(ggplot2)
library(plot3D)
library(rgl)
library(factoextra)
library(FactoMineR)
library(magrittr)
library(psych)
```

```
path = 'data/security_questions.xlsx'
questions <- readxl::read_excel(path, sheet=1, col_names = c("Index", "Questions"))
data <- readxl::read_excel(path, sheet=2)</pre>
```

Question 1)

Parallel analysis

a. Show a single visualization with scree plot of data, scree plot of simulated noise, and a horizontal line showing the eigenvalue=1 cutoff.

```
data_pca <- prcomp(data, scale.=TRUE)
data_pca |> sapply(head)

## $sdev
## [1] 3.0513855 1.2634603 1.0721745 0.8729123 0.8216697 0.7820893
##
## $rotation
```

```
PC2
                         PC3
                                          PC4 PC5
## Q1 -0.2677422 0.11034169 -0.001973491 0.126220668 -0.04846842 0.18267305
## Q3 -0.2508767 0.02587854 0.083648794 -0.399268076 -0.06176634 0.13431707
## Q4 -0.2042919 -0.50898177 0.100759585 0.040690031 -0.07291314 -0.06834342
## Q6 -0.2237681 0.08280509 0.193281966 -0.004209098 0.61134877 0.05513614
##
           PC7
                      PC8
                                PC9
                                         PC10
                                                    PC11
## Q1 -0.47564502 0.01187767 -0.15894574 0.02559547 -0.26143355 0.3655136121
## Q2 0.10381142 0.37048403 0.01890634 -0.01758985 0.14151163 -0.1423173350
## Q3 0.29794768 -0.04536194 0.04616097 0.62920376 -0.21541155 0.0711375730
## Q4 0.07323286 -0.08271823 0.03401181 0.13146697 -0.18277248 0.0001075882
## Q5 0.19273010 -0.18894882 0.21869003 -0.09878156 0.09015446 0.0962621836
## Q6 -0.06503361 -0.53842306 0.33147646 0.04348905 0.23018884 0.1679270706
##
           PC13
                    PC14
                               PC15
                                         PC16
                                                    PC17
## Q1 -0.09437152 0.2153828 0.107191422 -0.26663363 -0.15892454 0.49709414
## Q2 -0.01439656 -0.1415103 -0.124321587 0.04539846 0.01378516 -0.07954338
## Q3 0.07897104 0.3827506 -0.173199162 0.10905667 -0.08731092 -0.07451547
## Q4 0.32083974 -0.5371817 -0.009053271 -0.26266355 -0.39030988 0.02091260
## Q5 0.41176540 0.1377995 0.420108616 -0.20508811 0.26389562 -0.07356419
## Q6 -0.06866003 -0.1222959 -0.076584623 -0.04426883 0.11718533 0.02443898
## $center
       01
               02
                       Q3
                              04
                                      Q5
## 5.604938 5.049383 5.306173 4.992593 5.760494 4.762963
## $scale
    Q1
               Q2
                     Q3
                             Q4
## 1.409647 1.653838 1.465810 1.592819 1.412259 1.451565
##
## $x
##
            PC1
                      PC2
                                PC3
                                          PC4
                                                    PC5
## [1,] -1.7754125 -2.0169459 -1.63959104 0.5352081 -0.08797596 -0.3728346
## [2,] -1.3437632 -0.8882234 -0.25368424 -0.4570310 0.23962874 -0.4268643
## [3,] -1.7933115 -0.4260365 0.07691544 0.4141432 -0.60889140 0.5624084
## [4,] 0.9013133 -0.2983700 0.36032074 0.7691251 0.40805995 -0.1145464
## [5,] -2.9135336 -1.3469746 -0.14286375 -0.1077017 -1.47129093 0.8579121
## [6,] 1.2061151 -0.3409259 1.94682489 -0.1299549 0.16378728 -0.1768219
##
             PC7
                       PC8
                                 PC9
                                          PC10
                                                    PC11
## [2,] 0.25929669 -0.10719126 -0.6186849 -0.03219035 0.13518587 -0.28714217
## [3,] 0.29407731 -1.08068173 0.3747303 -0.02571319 -0.06443770 0.20395036
## [4,] -0.07167346 -0.08161187 0.4527110 0.15952336 -0.07864503 -0.12495990
## [5,] -0.33413881 0.28492699 0.2001644 -0.09883888 -0.56009509 0.05191722
##
             PC13
                       PC14 PC15
                                          PC16
                                                       PC17
                                                                 PC18
## [1,] 0.001813884 0.25632295 0.2039214 0.05929609 -0.450507689 0.25009281
## [2,] 0.167932157 -0.05901637 -0.4252439 0.07265085 0.255354655 -0.48814544
## [3,] -0.320481103 -0.16741905 -0.2202692 -0.24785872 0.409204449 -0.37686973
## [4,] 0.133981171 0.24263900 -0.2105912 0.39901391 -0.343677682 -0.23329700
## [5,] 0.111733382 0.34393812 -0.6789966 -0.21330516 0.009084729 -0.39442816
## [6,] 0.618654281 -0.08565330 0.3726984 -0.36311736 0.616667407 -0.07356653
```

data_pca\$rotation = -data_pca\$rotation

data_pca <- prcomp(data, scale.=TRUE)</pre>

```
# Simulating the noise and taking its eigenvalues
sim_noise <- function(n, p){
   noise <- data.frame(replicate(p, rnorm(n))) # 33*10
   correlation <- cor(noise) # 10*10
   eigen(correlation)$values # 10, how much variance can be explained from the noise.
}
eigen_noise <- replicate(100, sim_noise(33, 10)) #100*10
eigen_noise_mean <- apply(eigen_noise, 1, mean)
res.pca <- PCA(data)</pre>
```

PCA graph of individuals

PCA graph of variables


```
p1 <- fviz_eig(res.pca,</pre>
                choice = 'eigenvalue',
                addlabels=TRUE,
               main='Original Screeplot (variance)')
p1 <- p1+geom_hline(yintercept = 1,color="red", lwd=1.2)</pre>
p2 <- fviz_eig(res.pca,</pre>
                choice = 'variance',
                addlabels=TRUE,
               main='Original Screeplot (eigenvalue)')
p2 <- p2+geom_hline(yintercept = 1,color="red", lwd=1.2)</pre>
color_list <- "coral2"</pre>
p3 <- fviz_eig(res.pca,</pre>
                choice = 'eigenvalue',
               addlabels=TRUE,
               main='Screeplot with noise (variance)')+
  geom_point(aes(x=1:10, y=eigen_noise_mean),color=color_list)+
  geom_line(aes(x=1:10, y=eigen_noise_mean),color=color_list)+
  theme_bw()
p3 <- p3+geom_hline(yintercept = 1,color="red", lwd=1.2)
ggarrange(p1, p2, ncol=2, nrow=1)
```


ggarrange(p1, p3, ncol=2, nrow=1)

b. How many dimensions would you retain if we used Parallel Analysis?

• After conducting *Horn's Parallel Analysis*, we can easily observe from the plot that the first PC is the only component with a higher eigenvalues compare to the average noise. As a result, by comparing variance extracted from the original data versus noise, we can conclude that only a single dimension, the first PC, will be retained in our model.

Question 2) Factor model

Composite measurement model vs. Factor model analysis

Comparison

- In simple terms, the main difference between composite model and factor model is that the latter tends to examine *model fittness* by interpreting whether the factors in our model are related to the answer to our question or not; whereas, composite models consist of a set of interrelated composites, all of which emerge as linear combinations of the observable variables.
- Furthermore, factor analysis requires a larger amount of data, while composite measurement model can be done with just few samples.

Factor analysis - Principal

- The principal function in r is simply doing a PCA for n principal components of either a correlation or covariance matrix.
- Different from principal returns a subset of the *best n factors*, and the eigenvectors are rescaled by square root of the eigenvalues to produce the components' loadings.

```
data_principal <- principal(data, nfactor=ncol(data), rotate="none", scores=TRUE)
data_principal |> sapply(head)
```

```
## $values
## [1] 9.3109533 1.5963320 1.1495582 0.7619759 0.6751412 0.6116636
##
## $rotation
  [1] "none"
##
##
## $n.obs
## [1] 405
##
## $communality
## Q1 Q2 Q3 Q4 Q5 Q6
##
   1 1 1 1 1 1
##
## $loadings
                                   PC3
                                               PC4
                                                           PC5
                                                                       PC6
##
           PC1
                      PC2
## Q1 0.8169846 -0.13941235 -0.002115927
                                       0.110179575 -0.03982503
                                                                0.14286663
## Q2 0.6726084 -0.01375526
                           0.089174403
                                       0.225318062 0.07714486
                                                                0.62355887
## Q3 0.7655215 -0.03269651
                           0.089686106 -0.348526020 -0.05075153
                                                                0.10504794
## Q4 0.6233733 0.64307826
                           0.108031860
                                       0.035518829 -0.05991052 -0.05345065
## Q5 0.6900841 -0.03126466 -0.542354570
                                       0.045893140 -0.15875304
                                                                0.11679238
  Q6 0.6828029 -0.10462094
                           0.207232000 -0.003674174
                                                    0.50232679
##
             PC7
                         PC8
                                     PC9
                                               PC10
                                                           PC11
                                                                        PC12
## Q1 -0.33733445 -0.008127994 -0.10685731 -0.01588562 -0.15574104 -2.006357e-01
## Q2 0.07362459 -0.253525551 0.01271050 0.01091700 0.08430123
                                                                7.812005e-02
## Q3
      ## Q4 0.05193782 0.056604827 0.02286573 -0.08159391 -0.10888112 -5.905673e-05
## Q5 0.13668703 0.129299377
                             0.14702268 0.06130797
                                                     0.05370677 -5.283971e-02
                              0.22284763 -0.02699113
                                                     0.13712796 -9.217760e-02
##
  Q6 -0.04612279
                 0.368447741
##
             PC13
                        PC14
                                     PC15
                                                PC16
                                                             PC17
                                                                         PC18
## Q1 0.051019769 -0.11027592 0.051916385 -0.12800198 0.072610801 0.223163787
## Q2 0.007783168 0.07245324 -0.060213096 0.02179430 -0.006298283 -0.035709939
## Q3 -0.042693857 -0.19596819 -0.083886137 0.05235450
                                                      0.039891358 -0.033452727
## Q4 -0.173454555 0.27503687 -0.004384802 -0.12609608 0.178328111 0.009388433
## Q5 -0.222611404 -0.07055330 0.203472631 -0.09845601 -0.120570886 -0.033025662
## Q6 0.037119449 0.06261547 -0.037092490 -0.02125200 -0.053540633 0.010971554
##
## $fit
## [1] 1
##
## $fit.off
## [1] 1
##
## $fn
```

```
## [1] "principal"
##
## $Call
  principal(r = data, nfactors = ncol(data), rotate = "none", scores = TRUE)
##
##
   $uniquenesses
##
                            02
                                          03
                                                        04
                                                                      Q5
              01
##
    2.220446e-16
                  1.776357e-15 2.220446e-16 4.440892e-16 -2.220446e-16
##
              06
##
   6.661338e-16
##
## $complexity
##
                           Q3
                                                      ۵6
        Q1
                  Q2
                                    Q4
                                             Q5
## 2.152023 2.756187 2.594462 3.027717 3.127357 3.285651
##
## $chi
## [1] 2.115614e-26
##
## $EPVAL
## [1] NA
##
## $R2
## PC1 PC2 PC3 PC4 PC5 PC6
##
        1
           1
                1 1
##
## $objective
## [1] 0
##
## $residual
##
                               Q2
                                            Q3
                 Q1
                                                         04
## Q1 1.110223e-16 -1.110223e-16 1.110223e-16 5.551115e-17
                                                             0.000000e+00
## Q2 -1.110223e-16 1.665335e-15 9.436896e-16 2.775558e-16
                                                             1.665335e-16
## Q3 1.110223e-16 9.436896e-16 3.330669e-16 2.220446e-16
                                                             3.330669e-16
## Q4 5.551115e-17 2.775558e-16 2.220446e-16 4.440892e-16
                                                             2.775558e-16
      0.000000e+00
                    1.665335e-16 3.330669e-16 2.775558e-16 -2.220446e-16
## Q6
      2.220446e-16 4.440892e-16 1.110223e-16 5.551115e-17
                                                            1.665335e-16
##
                Q6
                              Q7
                                           08
                                                        Q9
## Q1 2.220446e-16 -2.220446e-16 1.110223e-16 1.110223e-16 2.220446e-16
## Q2 4.440892e-16 4.440892e-16 9.436896e-16 3.885781e-16 7.771561e-16
## Q3 1.110223e-16 2.775558e-16 7.771561e-16 7.771561e-16 7.771561e-16
## Q4 5.551115e-17 2.775558e-16 2.775558e-16 5.551115e-16 3.885781e-16
## Q5 1.665335e-16 7.216450e-16 3.330669e-16 2.220446e-16 2.220446e-16
## Q6 6.661338e-16 6.661338e-16 4.440892e-16 3.330669e-16 1.665335e-16
##
                             Q12
                                                       Q14
               Q11
                                          Q13
                                                                    Q15
## Q1 0.000000e+00 2.220446e-16 0.000000e+00 3.330669e-16 1.110223e-16
## Q2 8.326673e-16 4.440892e-16 0.000000e+00 3.885781e-16 7.771561e-16
## Q3 4.440892e-16 2.775558e-16 1.110223e-16 4.440892e-16 8.326673e-16
## Q4 4.996004e-16 -3.330669e-16 0.000000e+00 1.110223e-16 5.551115e-17
## Q5 1.110223e-16 5.551115e-17 1.665335e-16 2.775558e-16 3.330669e-16
## Q6 1.665335e-16
                   6.661338e-16 2.220446e-16 4.440892e-16 1.110223e-16
##
               Q16
                             Q17
                                           Q18
## Q1 0.000000e+00 1.665335e-16 -1.110223e-16
## Q2 8.881784e-16 -1.110223e-16 3.885781e-16
## Q3 3.330669e-16 1.665335e-16 8.881784e-16
```

```
## Q4 4.996004e-16 -2.220446e-16 3.330669e-16
## Q5 3.330669e-16 3.885781e-16 5.551115e-16
## Q6 1.110223e-16 3.330669e-16 2.220446e-16
##
## $rms
## [1] 4.131712e-16
## $factors
## [1] 18
##
## $dof
## [1] -18
## $null.dof
## [1] 153
##
## $null.model
## [1] 12.40251
##
## $criteria
## objective
##
                   NA
                             NΑ
##
## $STATISTIC
## [1] 0
## $PVAL
## [1] NA
##
## $weights
##
            PC1
                        PC2
                                     PC3
                                                  PC4
                                                              PC5
## Q1 0.08774447 -0.08733293 -0.001840643 0.144597191 -0.05898771 0.23357059
## Q2 0.07223840 -0.00861679 0.077572759 0.295702345 0.11426479 1.01944740
## Q3 0.08221731 -0.02048228 0.078017889 -0.457397691 -0.07517173 0.17174136
## Q4 0.06695053 0.40284745 0.093976850 0.046614110 -0.08873777 -0.08738570
## Q5 0.07411530 -0.01958532 -0.471793912 0.060229123 -0.23514052 0.19094218
## Q6 0.07333329 -0.06553834 0.180270992 -0.004821903 0.74403222 0.07049853
##
             PC7
                         PC8
                                     PC9
                                                PC10
                                                           PC11
## Q1 -0.67066434 -0.01735717 -0.23642509 -0.04124033 -0.4388535 -0.6658844490
## Q2 0.14637516 -0.54139874 0.02812238 0.02834138 0.2375474 0.2592705089
## Q3 0.42010927 0.06628869 0.06866249 -1.01379518 -0.3615990 -0.1295968250
## Q4 0.10325908 0.12087848 0.05059114 -0.21182420 -0.3068097 -0.0001960018
## Q5 0.27175141 0.27611623 0.32529220 0.15916032 0.1513371 -0.1753682735
## Q6 -0.09169806 0.78681278 0.49305726 -0.07007108 0.3864048 -0.3059257472
            PC13
                       PC14
                                   PC15
                                               PC16
                                                           PC17
## Q1 0.17455946 -0.4206697 0.22131743 -0.55540931 0.34784094 1.10727007
## Q2 0.02662939 0.2763875 -0.25668597 0.09456695 -0.03017183 -0.17718173
## Q3 -0.14607311 -0.7475602 -0.35760318 0.22716973 0.19109894 -0.16598214
## Q4 -0.59345884 1.0491836 -0.01869223 -0.54713947 0.85427811 0.04658252
## Q5 -0.76164448 -0.2691398 0.86739552 -0.42720735 -0.57759300 -0.16386318
## Q6 0.12700079 0.2388593 -0.15812377 -0.09221387 -0.25648559 0.05443748
##
## $r.scores
##
                PC1
                              PC2
                                            PC3
                                                          PC4
                                                                        PC5
```

```
## PC1 1.000000e+00 -4.163336e-17 0.000000e+00 1.457168e-16 -2.602085e-16
## PC2 -1.214306e-17 1.000000e+00 -1.309716e-16 -9.540979e-17 -5.204170e-17
## PC3 2.515349e-17 -1.188286e-16 1.000000e+00 -2.740863e-16 -2.634611e-16
## PC4 -1.023487e-16 -5.767956e-17 -3.582204e-16 1.000000e+00 3.382711e-17
  PC5 -2.302845e-16 -6.353425e-17 -1.758576e-16 5.659535e-17
  PC6 -1.773755e-16 4.165505e-16 2.645453e-16 -6.804453e-16 -5.031782e-16
                 PC6
                               PC7
                                             PC8
                                                           PC9
                                                                        PC10
## PC1 -2.359224e-16 -6.661338e-16
                                    2.775558e-16 -8.326673e-17
                                                                2.463307e-16
       4.362830e-16 -5.551115e-17
                                    3.469447e-18 -1.249001e-16 -1.669671e-16
## PC3 3.812055e-16 2.289835e-16 -1.517883e-16 -1.040834e-16 -8.326673e-17
## PC4 -6.643991e-16 -7.008283e-16 5.204170e-17 -3.348016e-16
                                                                3.786034e-16
## PC5 -4.009380e-16 -4.163336e-16
                                   1.409463e-16 5.204170e-17
                                                                1.008308e-16
       1.000000e+00 -1.977585e-16
                                    5.412337e-16 -1.066855e-16
                                                                5.209591e-16
##
                PC11
                              PC12
                                            PC13
                                                          PC14
                                                                        PC15
## PC1 -2.775558e-16 -7.771561e-16
                                    1.110223e-16 -6.938894e-17
                                                               1.665335e-16
## PC2 -1.457168e-16 -5.551115e-17
                                    3.469447e-17
                                                  7.285839e-17 -8.326673e-17
## PC3 -3.955170e-16 -1.110223e-16 6.765422e-16 2.233456e-16 -5.551115e-16
## PC4 -2.706169e-16 3.885781e-16 -4.267420e-16 1.487525e-16 1.457168e-16
## PC5 -6.149595e-16 3.365364e-16 1.899522e-16 9.473759e-16 -1.539567e-16
## PC6 -3.642919e-16 -9.645063e-16 -6.713380e-16 -6.245005e-16 1.577731e-15
##
                PC16
                             PC17
                                           PC18
## PC1 -1.110223e-16 2.498002e-16 5.551115e-16
## PC2 -2.498002e-16 7.632783e-17 -2.359224e-16
## PC3 8.187895e-16 4.510281e-16 4.024558e-16
## PC4 1.110223e-16 1.196959e-16 8.222589e-16
## PC5 -2.671474e-16 6.990936e-16 -6.591949e-17
## PC6 -5.759282e-16 6.765422e-17 8.604228e-16
## $Vaccounted
##
                               PC1
                                          PC2
                                                     PC3
                                                                PC4
                                                                           PC5
## SS loadings
                         9.3109533 1.59633195 1.14955822 0.76197591 0.67514118
## Proportion Var
                         0.5172752 0.08868511 0.06386435 0.04233199 0.03750784
## Cumulative Var
                         0.5172752 0.60596029 0.66982464 0.71215663 0.74966447
## Proportion Explained 0.5172752 0.08868511 0.06386435 0.04233199 0.03750784
  Cumulative Proportion 0.5172752 0.60596029 0.66982464 0.71215663 0.74966447
                                           PC7
                                                      PC8
                                                                 PC9
                                PC6
                                                                          PC10
## SS loadings
                         0.61166360 0.50298552 0.46827880 0.45197111 0.3851964
## Proportion Var
                         0.03398131 0.02794364 0.02601549 0.02510951 0.0213998
## Cumulative Var
                         0.78364578 0.81158943 0.83760491 0.86271442 0.8841142
## Proportion Explained 0.03398131 0.02794364 0.02601549 0.02510951 0.0213998
## Cumulative Proportion 0.78364578 0.81158943 0.83760491 0.86271442 0.8841142
##
                               PC11
                                          PC12
                                                     PC13
                                                                PC14
                                                                           PC15
## SS loadings
                         0.35488164 0.30130710 0.29227731 0.26214370 0.23457883
## Proportion Var
                         0.01971565 0.01673928 0.01623763 0.01456354 0.01303216
## Cumulative Var
                         0.90382986 0.92056915 0.93680678 0.95137031 0.96440247
## Proportion Explained
                         0.01971565 0.01673928 0.01623763 0.01456354 0.01303216
## Cumulative Proportion 0.90382986 0.92056915 0.93680678 0.95137031 0.96440247
##
                               PC16
                                          PC17
                                                    PC18
## SS loadings
                         0.23046423 0.20874714 0.2015441
## Proportion Var
                         0.01280357 0.01159706 0.0111969
## Cumulative Var
                         0.97720604 0.98880310 1.0000000
## Proportion Explained 0.01280357 0.01159706 0.0111969
## Cumulative Proportion 0.97720604 0.98880310 1.0000000
##
```

```
## $Structure
                                             PC4
##
                     PC2
                                 PC3
                                                        PC5
                                                                   PC6
          PC1
## Q1 0.8169846 -0.13941235 -0.002115927 0.110179575 -0.03982503 0.14286663
## Q2 0.6726084 -0.01375526 0.089174403 0.225318062 0.07714486 0.62355887
## Q3 0.7655215 -0.03269651 0.089686106 -0.348526020 -0.05075153 0.10504794
## Q4 0.6233733 0.64307826 0.108031860 0.035518829 -0.05991052 -0.05345065
## Q5 0.6900841 -0.03126466 -0.542354570 0.045893140 -0.15875304 0.11679238
## Q6 0.6828029 -0.10462094 0.207232000 -0.003674174 0.50232679 0.04312138
##
            PC7
                        PC8
                                   PC9
                                             PC10
                                                        PC11
                                                                     PC12
## Q1 -0.33733445 -0.008127994 -0.10685731 -0.01588562 -0.15574104 -2.006357e-01
## Q2 0.07362459 -0.253525551 0.01271050 0.01091700 0.08430123 7.812005e-02
## Q3 0.21130888 0.031041586 0.03103346 -0.39051021 -0.12832484 -3.904844e-02
## Q4 0.05193782 0.056604827 0.02286573 -0.08159391 -0.10888112 -5.905673e-05
## Q5 0.13668703 0.129299377 0.14702268 0.06130797 0.05370677 -5.283971e-02
## Q6 -0.04612279 0.368447741 0.22284763 -0.02699113 0.13712796 -9.217760e-02
##
            PC13
                       PC14
                                   PC15
                                              PC16
                                                          PC17
                                                                      PC18
## Q1 0.051019769 -0.11027592 0.051916385 -0.12800198 0.072610801 0.223163787
## Q2 0.007783168 0.07245324 -0.060213096 0.02179430 -0.006298283 -0.035709939
## Q3 -0.042693857 -0.19596819 -0.083886137 0.05235450 0.039891358 -0.033452727
## Q4 -0.173454555 0.27503687 -0.004384802 -0.12609608 0.178328111 0.009388433
## Q5 -0.222611404 -0.07055330 0.203472631 -0.09845601 -0.120570886 -0.033025662
## Q6 0.037119449 0.06261547 -0.037092490 -0.02125200 -0.053540633 0.010971554
##
## $scores
             PC1
                      PC2
                                PC3
                                          PC4
                                                              PC6
##
                                                    PC5
## [1,] 0.5818382 1.5963666 -1.5292203 0.6131293 -0.1070697 -0.4767162
## [2,] 0.4403780 0.7030085 -0.2366072 -0.5235704 0.2916363 -0.5458000
## [3,] 0.5877040 0.3371982 0.0717378 0.4744385 -0.7410415 0.7191103
## [4,] -0.2953784 0.2361530 0.3360654 0.8811024 0.4966228 -0.1464620
## [5,] 0.9548232 1.0660996 -0.1332467 -0.1233820 -1.7906111 1.0969491
## [6,] -0.3952680 0.2698351 1.8157724 -0.1488750 0.1993347 -0.2260891
##
             PC7
                       PC8
                                 PC9
                                           PC10
                                                     PC11
                                                                PC12
## [1,] -1.1274984 -0.4531817 -0.2008367 0.29175628 -0.6301099 0.12999789
## [2,] 0.3656110 0.1566416 -0.9202677 0.05186623 0.2269288 0.52310913
## [3,] 0.4146520 1.5792306 0.5573955 0.04142999 -0.1081679 -0.37155216
## [5,] -0.4711391 -0.4163718 0.2977361 0.15925268 -0.9401995 -0.09458162
## [6,] -2.0364905 -1.8124301 -0.3160456 0.45429950 -0.4123576 0.08255907
##
             PC13
                       PC14
                                 PC15
                                           PC16
                                                      PC17
                                                                PC18
## [1,] -0.00335515 -0.5006310 0.4210351 0.1235163 0.98603412 0.5570782
## [3,] 0.59279546 0.3269905 -0.4547884 -0.5163004 -0.89563299 -0.8394719
## [4,] -0.24782563 -0.4739046 -0.4348062 0.8311631 0.75221340 -0.5196657
## [5,] -0.20667378 -0.6717545 -1.4019200 -0.4443238 -0.01988391 -0.8785831
# ss_loadings = eigenvalues
ss_loadings <- sum(data_principal$loadings[,"PC1"]^2)</pre>
ss_loadings
```

[1] 9.310953

```
data_principal$values[1]
```

```
## [1] 9.310953
```

a. To which components does each item seem to best belong? (3 components)

```
# function that find good loadings in each PC.
find unique <- function(data principal, n){</pre>
  for (i in 1:n){
    if (max(data_principal$loadings[,i]) > 0.7){
      important_ones <- data_principal$loadings[,i][data_principal$loadings[,i]>=0.7]
      important_ones <- sort(important_ones, decreasing=TRUE)</pre>
      cat("Component", i, "has good loadings:", names(important_ones))
      important_ones <- sort(data_principal$loadings[,i], decreasing = TRUE)[1]</pre>
      cat("Component", i, "has good no loadings.\n")
      cat('The largest lambda value is: ', important_ones)
    name <- names(important_ones)</pre>
    cat("\nBest fit:", name)
    cat('\n')
    cat('\n')
head(data_principal$loadings[,1:3])
##
            PC1
                        PC2
                                      PC3
## Q1 0.8169846 -0.13941235 -0.002115927
## Q2 0.6726084 -0.01375526 0.089174403
## Q3 0.7655215 -0.03269651 0.089686106
## Q4 0.6233733 0.64307826 0.108031860
## Q5 0.6900841 -0.03126466 -0.542354570
## Q6 0.6828029 -0.10462094 0.207232000
data_principal$Vaccounted[, 1:5]
                                PC1
                                           PC2
                                                      PC3
                                                                  PC4
                                                                             PC5
##
## SS loadings
                         9.3109533 1.59633195 1.14955822 0.76197591 0.67514118
## Proportion Var
                         0.5172752 0.08868511 0.06386435 0.04233199 0.03750784
## Cumulative Var
                         0.5172752 0.60596029 0.66982464 0.71215663 0.74966447
## Proportion Explained 0.5172752 0.08868511 0.06386435 0.04233199 0.03750784
## Cumulative Proportion 0.5172752 0.60596029 0.66982464 0.71215663 0.74966447
for (i in 1:18){
  cat(paste0('Best belong for Question ', i),': ')
  cat(names(sort(data_principal$loadings[i,], decreasing=TRUE))[1])
  cat('\n')
```

```
## Best belong for Question 1 : PC1
## Best belong for Question 2 : PC1
## Best belong for Question 3 : PC1
## Best belong for Question 4 : PC2
## Best belong for Question 5 : PC1
## Best belong for Question 6 : PC1
## Best belong for Question 7 : PC1
## Best belong for Question 8 : PC1
## Best belong for Question 9 : PC1
## Best belong for Question 10 : PC1
## Best belong for Question 11 : PC1
## Best belong for Question 12 : PC2
## Best belong for Question 13 : PC1
## Best belong for Question 14: PC1
## Best belong for Question 15 : PC1
## Best belong for Question 16 : PC1
## Best belong for Question 17 : PC2
## Best belong for Question 18 : PC1
find_unique(data_principal, 18)
## Component 1 has good loadings: Q1 Q14 Q18 Q8 Q3 Q16 Q11 Q9 Q13 Q15
## Best fit: Q1 Q14 Q18 Q8 Q3 Q16 Q11 Q9 Q13 Q15
## Component 2 has good no loadings.
## The largest lambda value is: 0.6642605
## Best fit: Q17
##
## Component 3 has good no loadings.
## The largest lambda value is: 0.3241768
## Best fit: Q7
## Component 4 has good no loadings.
## The largest lambda value is: 0.2857201
## Best fit: Q7
## Component 5 has good no loadings.
## The largest lambda value is: 0.5023268
## Best fit: Q6
##
## Component 6 has good no loadings.
## The largest lambda value is: 0.6235589
## Best fit: Q2
##
## Component 7 has good no loadings.
## The largest lambda value is: 0.3219782
## Best fit: Q7
##
## Component 8 has good no loadings.
## The largest lambda value is: 0.3684477
## Best fit: Q6
##
## Component 9 has good no loadings.
```

The largest lambda value is: 0.4005233

```
## Best fit: Q9
##
## Component 10 has good no loadings.
## The largest lambda value is: 0.3049279
## Best fit: Q13
##
## Component 11 has good no loadings.
## The largest lambda value is: 0.2356899
## Best fit: Q11
##
## Component 12 has good no loadings.
## The largest lambda value is: 0.2266301
## Best fit: Q11
##
## Component 13 has good no loadings.
## The largest lambda value is: 0.2943817
## Best fit: Q10
##
## Component 14 has good no loadings.
## The largest lambda value is: 0.2750369
## Best fit: Q4
##
## Component 15 has good no loadings.
## The largest lambda value is: 0.2034726
## Best fit: Q5
## Component 16 has good no loadings.
## The largest lambda value is: 0.2463264
## Best fit: Q17
##
## Component 17 has good no loadings.
## The largest lambda value is: 0.1783281
## Best fit: Q4
##
## Component 18 has good no loadings.
## The largest lambda value is: 0.2231638
## Best fit: Q1
```

• Conclusion. Items are either best belong to PC1 or PC2. Also, only the first PC has good loadings.

b. How much of the total variance of the security dataset do the first 3 PCs capture?

```
data_principal$Vaccounted['Cumulative Var', 'PC3']
```

[1] 0.6698246

- c. Which items are less than adequately explained by the first 3 principal components?
 - Tips. Communality and Uniqueness.

```
data_pca3 <- principal(data, nfactor=3, rotate='none', scores=TRUE)</pre>
# variances of variables explained by a specified amount of principal components.
community <- data_pca3$communality</pre>
community
##
          Q1
                    Q2
                               Q3
                                         Q4
                                                    Q5
                                                              Q6
                                                                         Q7
                                                                                   Q8
## 0.6869041 0.4605433 0.5951359 0.8138147 0.7713420 0.5201104 0.6371369 0.7375512
          Q9
                   Q10
                              Q11
                                        Q12
                                                   Q13
                                                             Q14
                                                                       Q15
                                                                                  Q16
## 0.6178667 0.7642903 0.6648554 0.8185557 0.5181043 0.6930021 0.6063756 0.6485852
         017
## 0.8347032 0.6679663
# 1-communality, unexplained variance of a certain variable.
data_pca3$uniquenesses
##
                    Q2
                               Q3
                                         Q4
                                                    Q5
                                                              Q6
                                                                         Q7
                                                                                   Q8
## 0.3130959 0.5394567 0.4048641 0.1861853 0.2286580 0.4798896 0.3628631 0.2624488
                   Q10
                              011
                                        012
                                                   013
                                                             014
                                                                       015
## 0.3821333 0.2357097 0.3351446 0.1814443 0.4818957 0.3069979 0.3936244 0.3514148
         Q17
## 0.1652968 0.3320337
  • Think we're dealing with an item with low communality and high uniqueness value.
temp = sort(data_pca3$communality)
names(temp[temp<=0.7])</pre>
    [1] "02" "013" "06" "03" "015" "09" "07" "016" "011" "018" "01" "014"
temp = sort(data pca3$uniquenesses, decreasing = TRUE)
names(temp[temp>=0.3])
   [1] "Q2" "Q13" "Q6" "Q3" "Q15" "Q9" "Q7" "Q16" "Q11" "Q18" "Q1" "Q14"
  • Conclusion. Q2 is the least to be adequately explained by the first 3 PC.
d. How many measurement items share similar loadings between 2 or more components?
data_principal <- principal(data, nfactor=ncol(data), rotate='none', scores=TRUE)</pre>
data_principal$loadings |> round(2)
##
```

communality = h^2

Loadings:
PC1

Q1

PC2

0.82 - 0.14

PC3

PC4

0.11

PC5

PC6

PC7

0.14 - 0.34

PC8

PC9

-0.11

PC10 PC11 PC12

-0.16 - 0.20

```
0.23
## Q2
       0.67
                                  0.62
                                           -0.25
                       -0.35
## Q3
       0.77
                                    0.11 0.21
                                                          -0.39 - 0.13
## Q4
       0.62 0.64 0.11
                                                                -0.11
                             -0.16 0.12 0.14 0.13 0.15
## Q5
       0.69
               -0.54
                                               0.37 0.22
## Q6
       0.68 -0.10 0.21
                              0.50
## Q7
       0.66 -0.32 0.32 0.29
                                          0.32 0.16 -0.16 0.20 -0.26
## Q8
              -0.34
                              0.17 - 0.16
                                              -0.14 - 0.16
       0.79
                                                                -0.13 - 0.17
                                              -0.31 0.40 0.16
       0.72 -0.23 0.20 -0.11
## Q9
                             -0.21
## Q10 0.69 -0.10 -0.53
                        -0.20
                                          0.11 0.17
## Q11 0.75 -0.26 0.17 0.23 -0.17 -0.15
                                               0.12 -0.19
                                                                 0.24 0.23
## Q12 0.63 0.64 0.12
                                                           0.10
## Q13 0.71
                        -0.53
                                                    -0.19 0.30 0.18
## Q14 0.81 -0.10 0.16 -0.32
                                                    -0.15
                                                                      0.13
## Q15 0.70
             -0.33
                             0.42 -0.20 0.11 -0.21 -0.17 -0.12 0.11
## Q16 0.76 -0.20 0.18 0.18 -0.28 -0.17
                                              -0.13
                                                          -0.13 0.23 -0.26
## Q17 0.62 0.66 0.11
                             -0.13
## Q18 0.81 -0.11
                                         -0.41
                                                               -0.14 0.21
                                                    0.12
      PC13 PC14 PC15 PC16 PC17 PC18
## Q1
           -0.11
                       -0.13
                                    0.22
## Q2
## Q3
           -0.20
## Q4 -0.17 0.28
                       -0.13 0.18
## Q5 -0.22
                  0.20 -0.10 -0.12
## Q6
## Q7
## Q8
                 -0.25
                             -0.14 - 0.14
## Q9
                                    0.10
## Q10 0.29
                  -0.13
                              0.11
## Q11 -0.12
                  -0.15 -0.14
## Q12 0.21 -0.24
                  -0.14
                                 -0.17
## Q13 -0.11
                              0.12
## Q14 0.16 0.20 0.16
                             -0.23
## Q15
                   0.16
                              0.10 0.10
## Q16
                                   -0.12
## Q17
                        0.25 -0.18 0.19
## Q18 -0.11
                        0.20
                                   -0.14
##
##
                   PC1 PC2 PC3
                                  PC4
                                          PC5
                                               PC6 PC7 PC8
## SS loadings
              9.319 1.587 1.137 0.775 0.667 0.607 0.500 0.470 0.450 0.383
## Proportion Var 0.518 0.088 0.063 0.043 0.037 0.034 0.028 0.026 0.025 0.021
## Cumulative Var 0.518 0.606 0.669 0.712 0.749 0.783 0.811 0.837 0.862 0.883
                  PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18
                 0.358 0.303 0.287 0.268 0.232 0.233 0.206 0.199
## SS loadings
## Proportion Var 0.020 0.017 0.016 0.015 0.013 0.013 0.011 0.011
## Cumulative Var 0.903 0.920 0.936 0.951 0.963 0.976 0.988 0.999
x<- unname(data_pca3$loadings[,1])</pre>
y<- unname(data_pca3$loadings[,2])</pre>
z<- unname(data_pca3$loadings[,3])</pre>
scatter3D(x, y, z,
         phi=0,
         bty='g',
         main="Dimension Comparison",
```

```
xlab='PC1', ylab='PC2', zlab='PC3',
    cex=2, pch=20,
    ticktype="simple")
text3D(x, y, z, labels=paste0("Q", 1:18), add=TRUE, colkey = FALSE, cex=0.7)
```

Dimension Comparison

Subjects scores

- Ans. Q4, Q12 and Q17 share similar loadings since about the same amount of variance is explained by each PC.
- e. Can you interpret a meaning behind the first principal component from the items that load best upon it?

```
find_unique(data_principal, 1)
## Component 1 has good loadings: Q1 Q14 Q18 Q8 Q3 Q16 Q11 Q9 Q13 Q15
## Best fit: Q1 Q14 Q18 Q8 Q3 Q16 Q11 Q9 Q13 Q15
best_fit_PC1 <- sort(c(1, 14, 18, 8, 3, 16, 11, 9, 13, 15))
questions[best_fit_PC1,]
## # A tibble: 10 x 2
##
      Index Questions
##
      <chr> <chr>
           I am convinced that this site respects the confidentiality of the tran-
##
##
   2 Q3
           This site checks the information communicated with me for accuracy
  3 Q8
           This site ascertains my identity before processing the transactions re~
## 4 Q9
           I can remove my personal information from this site when I want to
## 5 Q11
           This site devotes time and effort to preventing unauthorized access to~
```

```
## 6 Q13 This site provides me with some evidence to protect against its denial~
## 7 Q14 This site devotes time and effort to verify the accuracy of the inform~
## 8 Q15 This site ascertains my identity before sending any messages to me
## 9 Q16 Databases that contain my personal information are protected from unau~
## 10 Q18 This site uses some security controls for the confidentiality of the t~
```

• Ans. I'm guessing that consumers perceive the security of e-commerce websites largely on its functionality and security.

Question 3) Rotated Components

a. Does each rotated component (RC) explain the same, or different, amount of variance than the corresponding PCs?

```
data_principal <- principal(data, nfactor=3, rotate='none', scores=TRUE)
data_r_principal <- principal(data, nfactor=3, rotate='varimax', scores=TRUE)

data_principal$Vaccounted["Proportion Var",]

## PC1 PC2 PC3
## 0.51727518 0.08868511 0.06386435

data_r_principal$Vaccounted["Proportion Var",]

## RC1 RC3 RC2
## 0.3118416 0.1938966 0.1640864</pre>
```

- Ans. They are all different from the original PC. RC1 is less than the first PC.
- b. Do the 3 RCs explain the same, more, or less cumulative variance as the 3 PCs combined?

- **Ans.** They give the same cumulative variance eventually.
- c. Refer to Question 2 (d), do those items have more clearly differentiated loadings among rotated components?

```
best_fit_PC1
   [1] 1 3 8 9 11 13 14 15 16 18
apply(data_principal$loadings[,1:3], 1, sum)
##
           Q1
                      Q2
                                  Q3
                                             Q4
                                                         Q5
                                                                    Q6
                                                                               Q7
## 0.67545634 0.74802751 0.82251113 1.37448338 0.11646488 0.78541392 0.66316968
                      Q9
                                 Q10
                                            Q11
                                                        Q12
                                                                   Q13
## 0.48525232 0.69493938 0.05479378 0.66448296 1.38940461 0.73160603 0.86855457
                     Q16
                                 Q17
## 0.38207531 0.73791584 1.39185527 0.62793493
apply(data_r_principal$loadings[,1:3], 1, sum)
          Q1
                    Q2
                               Q3
                                         Q4
                                                   Q5
                                                              Q6
                                                                        Q7
                                                                                   Q8
## 1.3306176 1.1180147 1.2681355 1.2653345 1.2339059 1.0856569 0.9486593 1.3930230
          Q9
                   Q10
                              011
                                        012
                                                  Q13
                                                             014
                                                                       015
                                                                                  016
## 1.1090290 1.2019089 1.1537269 1.2731707 1.1670301 1.3121035 1.2415778 1.1805769
##
         Q17
                   018
## 1.2626960 1.3317078
  • Ans. Looking at the table, almost every measurement items increased, instead of Q4, Q12 and Q17,
    which are the only 3 items that are not best belong to PC1 originally.
d. Can you now more easily interpret the meaning of the 3 RCs from the items that load best
upon each of them?
for (i in 1:18){
  cat(paste0('Best belong for Question ', i),': ')
  cat(names(sort(data_r_principal$loadings[i,], decreasing=TRUE))[1])
  cat('\n')
}
## Best belong for Question 1 : RC1
## Best belong for Question 2 : RC1
## Best belong for Question 3 : RC1
## Best belong for Question 4 : RC2
## Best belong for Question 5 : RC3
## Best belong for Question 6 : RC1
## Best belong for Question 7 : RC1
## Best belong for Question 8 : RC3
## Best belong for Question 9 : RC1
## Best belong for Question 10 : RC3
## Best belong for Question 11 : RC1
## Best belong for Question 12 : RC2
## Best belong for Question 13 : RC1
## Best belong for Question 14: RC1
```

Best belong for Question 15 : RC3

```
## Best belong for Question 16 : RC1
## Best belong for Question 17 : RC2
## Best belong for Question 18 : RC1
find_unique(data_r_principal, 3)
## Component 1 has good loadings: Q7 Q11 Q16 Q9 Q14
## Best fit: Q7 Q11 Q16 Q9 Q14
## Component 2 has good loadings: Q5 Q10 Q8
## Best fit: Q5 Q10 Q8
## Component 3 has good loadings: Q17 Q12 Q4
## Best fit: Q17 Q12 Q4
find_unique(data_principal, 3)
## Component 1 has good loadings: Q1 Q14 Q18 Q8 Q3 Q16 Q11 Q9 Q13 Q15
## Best fit: Q1 Q14 Q18 Q8 Q3 Q16 Q11 Q9 Q13 Q15
## Component 2 has good no loadings.
## The largest lambda value is: 0.6642605
## Best fit: Q17
## Component 3 has good no loadings.
## The largest lambda value is: 0.3241768
## Best fit: Q7
  • Ans. Yes.
```

- e. If we reduced the number of extracted and RCs to 2, does the meaning of our RCs change?
 - RC1: concerns of the sites security. (unautorized access)
 - RC2: concerns of transaction transmission.
 - RC3: concerns of transaction evidential protection.

Ungraded Question

Q. How many components (1-3) do you believe we should extract and analyze to understand this dataset?

Additional Practice

Reproducing data

```
# reproduce data from various pc dimensions
reproduce_data <- function(original, num_pc){</pre>
  pca_results <- prcomp(original, scale=TRUE)</pre>
  scores <- pca_results$x[, 1:num_pc]</pre>
  weights <- pca_results$rotation[, 1:num_pc]</pre>
  reproduction <- scores %*% t(weights)</pre>
  return(reproduction)
residual_plt <- function(original, reproduction, ndim){</pre>
  residual <- as.data.frame(original-reproduction)</pre>
  ggplot()+
    aes(x=1:nrow(data_scale), y=residual$Q1)+
    geom_point(alpha=0.7, size=2)+
    ylim(-2,2)+
    geom_hline(yintercept = 0,
                col='salmon',
                lwd=1.2,
                1ty=2)+
    ggtitle(pasteO("Dimension Reduction: ", ndim))
}
data_scale <- scale(data)</pre>
ndim=3
temp = reproduce_data(data_scale, ndim)
p1 <- residual_plt(data_scale, temp,ndim=ndim)</pre>
temp = reproduce_data(data_scale, ndim)
p2 <- residual_plt(data_scale, temp,ndim=ndim)</pre>
ndim=12
temp = reproduce_data(data_scale, ndim)
p3 <- residual_plt(data_scale, temp,ndim=ndim)</pre>
ndim=18
temp = reproduce_data(data_scale, ndim)
p4 <- residual_plt(data_scale, temp,ndim=ndim)</pre>
ggarrange(p1, p2, p3, p4, ncol=2, nrow=2)
```

Warning: Removed 3 rows containing missing values (geom_point).

