The Bantawa paradigm

Table: The Bantawa non-past affirmative transitive paradigm (?, 145-8)

A P	1sg	1DI	1DE	1рі	1PE	2sg	2du	2PL	3sg	3DU 3PL
1sg						Σ-na	Σ-naci	Σ -nanin	Σ-uŋ	Σ -uŋcɨŋ
1DI									Σ-cu	Σ -cuci
1de							Σ-ni		Σ-cu?a	Σ-cuci?a
1PI									Σ -um	Σ -umc i m
1PE							Σ -ni		Σ -umka	Σ -umc i mka
2sg	ti-∑-ŋa								t i -∑-u	ti-∑-uci
2DU	ti- Σ -ŋaŋcɨŋ		$ti-\Sigma$ - $ni(n)$		$ti-\Sigma$ - $ni(n)$				t i -∑-cu	t i -∑-cuci
2PL	ti- Σ -ŋaŋnɨŋ								t i -∑-um	ti - Σ -umcum
3sg	i-∑-ŋa		(n)i-∑-aci?a		(n)i-∑-inka				Σ-u	Σ -uci
3DU	i- Σ -ŋaŋciŋ	n i -∑-ci	ni-∑-aci?a	m i- Σ	ni-∑-inka	n i- Σ	n i -∑-ci	ni - Σ - in	i-∑-cu	i-∑-cuci
3pL	ni-∑-ŋa		m-2-utiru		не-23-ики				i-S	mi-∑-uci
INTR	Σ-ηа	Σ-ci	Σ-ca	Σ -in	Σ-inka	ti-∑	ti-∑-ci	ti-∑-in	Σ	Σ -ci mi- Σ

The Bantawa paradigm

Table: The Bantawa non-past negative transitive paradigm (?, 145-8)

A P	1sg	1ы	1de	1рі	1PE	2sg	2DU	2PL	3sg	3DU 3PL
1sg						i-∑-nan	i-∑-nancin	i-Σ-naminin	i-Σ-niŋ	i-∑-niŋciŋ
1di									i-Σ-cun	i-∑-cuncin
1de							i-∑-nin		i-Σ-cunka	i-∑-cuncinka
1PI									i-∑-imin	i - Σ -imincin
1PE							i-∑-nin		i-Σ-iminka	i-∑-imincinka
2sg	ti-∑-niŋ								ti-∑-nan	ti-∑-nancin
2DU	ti-∑-ŋɨŋcɨŋ		ti-∑-niminin		ti-∑-niminin				ti-∑-nancin	ti-∑-nancinan
2PL	ti- Σ -ŋɨŋmɨnɨŋ								ti-∑-naminin	ti- Σ -nannimincin
3sg	i-∑-niŋ								i-∑-un	i-∑-uncin
3DU	i-∑-ŋiŋciŋ	ni-∑-cin	ni- Σ -cinka	mi- Σ -nin	ni- Σ -iminka	ni - Σ - nan	ni - Σ -nancin	ni- Σ -naminin	i-∑-cun	i-∑-cuncin
3pl	ni- Σ -niŋ								ni - Σ -un	ni-∑-uncin
INTR	i-∑-niŋ	i-∑-cin	i-∑-cinka	i-∑-imin	i-Σ-iminka	ti-∑-nan	ti-∑-nanci	ti-∑-naminin	i-Σ-nin	i-Σ-cin ni-Σ-nin

The Khaling paradigm

Table: Khaling transitive paradigm

	1s	1DI	1de	1рі	1PE	2s	2D	2P	3s	3D	3Р
1s						R-nε	R-su	R-nu	R-u	R-u-su	R-u-nu
1 _{DI}										R-i	
1de						?i-R	?i-R-i	?i-R-ni		R-u	
1рі										R-ki	
1PE						?i-R	?i-R-i	?i-R-ni		R-kл	
2s	?i-R-ŋл								?i-R- u	?i-R-su	?i-R-nu
2^{D}	?i-R-ŋл-su									?i-R-i	
2P	?і-R-ŋл-пи									?i-R-ni	
3s	?i-R-ŋл								R-u		
3D	?i-R-ŋл-su	?i-R-i	?i-R-u	?i-R-ki	?i-R-kл	?i-R	?i-R-i	?i-R-ni		R-su	
3Р	?і-R-ŋл-пи										R-nu

The Zbu paradigm

Table: Zbu Rgyalrong transitive paradigm (data adapted from ?)

	1sg	1DU	1PL	2sg	2DU	2PL	3sg	3DU	3PL	3'
1sg							Σ_3 -ŋ	Σ_3 -ŋ-nd z ə	Σ_3 -ŋ-ɲә	
1 du				to- Σ_1	tv-∑1-ndzə	tv- Σ_1 -nə		Σ_1 -tçə		
1PL								Σ_1 -jə		
2sg	tә-wә- Σ_1 -ŋ							tə- Σ_3		
2du	tə-wə- Σ_1 -ŋ-ndzə	tə-wə- Σ_1 -tçə	tə-wə- Σ_1 -jə					$t alpha - \Sigma_1 - n d x alpha$		
2PL	t ə-wə- Σ_1 -ŋ-ɲə							t ə- Σ_1 -лə		
3sg	wə- Σ_1 -ŋ									Σ_3
3DU	wə- Σ_1 -ŋ-ndzə	wə- Σ_1 -tçə	wə- Σ_1 -jə	tə-wə- Σ_1	tə-wə-∑1-ndzə	t ә-wә- Σ_1 -лә				Σ_1 -nd z_2
3PL	wə- Σ_1 -ŋ-ɲə									Σ_1 -nə
3'							wə- Σ_1	wə- Σ_1 -ndzə	wә- Σ_1 -лә	
INTR	Σ_{1} - η	Σ_1 -tçə	Σ_1 -jə	tə- Σ_1	$t - \Sigma_1$ -nd z	t а- Σ_1 - p а	Σ_1	Σ_1 -nd z ə	Σ_1 -дә	

The Cree paradigm

Table: Plains Cree present paradigms. TA wâpam- "see" and IA pimipahtâ-"run" (?)

A P	1sg	1н	1PE	2sg	2PL	3sg	3PL	3'
1sg				kiwâpamitin	kiwâpamitinâwâw	niwâpamâw	niwâpamâwak	niwâpamimâwa
1PI						kiwâpamânaw	kiwâpamânawak	kiwâpamimânawa
1PE				kiwâţ	amitinân	niwâpamânân	niwâpamânânak	niwâpamimânâna
2sg	kiwâpamin		kiwâpaminân			kiwâpamâw	kiwâpamâwak	kiwâpamimâwa
2PL	kiwâpaminâwâw		кішаратінан			kiwâpamâwâw	kiwâpamâwâwak	kiwâpamimâwâwa
3sg	niwâpamik	kiwâpamikonaw	niwâpamikonân	kiwâpamik	kiwâpamikowâw			wâpam(im)êw
3PL	niwâpamikwak	kiwâpamikonawak	niwâpamikonânak	kiwâpamikwak	kiwâpamikowâwak			wâpam(im)êwak
3'	niwâpamikoviwa	kiwâpamikonawa	niwâpamikonâna	kiwâpamikoviwa	kiwâpamikowâwa	wâpamik	wâpamikwak	wâpamêyiwa
3	пимаратикоуима	кімиратікопама	пичаратикопана	Kiwapamikoyiwa	кіширатикошиш	<i>w</i> аратик	wapamikwak	wâpamikoyiwa
INTR	nipimipahtân	kipimipahtâ(nâ)naw	nipimipahtânân	kipimipahtân	kipimipahtânâwâw	pimipahtâw	pimipahtâwak	pimipahtâyiwa

The Sahaptin paradigm

Table: Sahaptin verb paradigm

P	1sg	1PL	2sg	2PL	3sg 3pl
1sg			$\Sigma = mash$		\acute{a} - Σ = (n) ash
1PL			$\Sigma = mc$	atash	\acute{a} - Σ = (n)atash
2sg	$p\acute{a}-\Sigma=(n)am$	$\Sigma = (n)am$			\acute{a} - $\Sigma = (n)am$
2PL	$\Sigma =$	pam -			\acute{a} - Σ = pam
3 sg	$i-\Sigma = (n)ash$	$i-\Sigma = (n)atash$	$i-\Sigma=(n)am$	$i-\Sigma = pam$	i-Σ
3PL	$pa-\Sigma = (n)ash$	$pa-\Sigma = (n)atash$	$pa-\Sigma=(n)am$	$pa-\Sigma = pam$	\acute{a} - $\Sigma = pat^{HUM}/pa$ - Σ
3'					pά- Σ
INTR	$\Sigma = (n)ash$	$\Sigma = (n)$ atash	$\Sigma = (n)am$	$\Sigma = pam$	ί-Σ ρα-Σ

The Sahaptin paradigm

Table: Past tense paradigm of \underline{k} 'inu(n)- 'to see'

P A	1sg	1 _{PL}	2sg	2PL	3sg 3pl
1sg			<u>k</u> 'ínuna = mash		á <u>k</u> 'inuna = ash
1PL			<u>k</u> 'ínuna	= matash	á <u>k</u> 'inuna = atash
2sg	pá <u>k</u> 'inuna = am	<u>k</u> 'ínuna = am			á <u>k</u> 'inuna = am
2PL	<u>k</u> 'ínur	na=pam			á <u>k</u> 'inuna=pam
3sg	i <u>k</u> 'ínuna = ash	i <u>k</u> 'ínuna = atash	i <u>k</u> 'ínuna = am	i <u>k</u> 'ínuna=pam	i <u>k</u> 'ínuna
3PL	pa <u>k</u> 'ínuna = ash	pa <u>k</u> 'ínuna = atash	pa <u>k</u> 'ínuna = am	pa <u>k</u> 'ínuna=pam	á <u>k</u> 'inuna=pat ^{HUM} / pa <u>k</u> 'ínuna
3'					pá <u>k</u> 'inuna

The Nez Percé paradigm

Table: Nez Perce verb paradigm

P	1sg	1 _{PL}	2sg	2PL	3 sg	3 PL
1sg			Σ	nées-Σ	?e-Σ	?e-nées-∑
1PL			pe - Σ	pe-nées-Σ	$?e ext{-}pe ext{-}\Sigma$?e-pe-nées-∑
2sg	Σ	nées-Σ			?e-Σ	?e-nées-Σ
2PL	$pe ext{-}\Sigma$	pe-nées-Σ			?e-pe-Σ	?e-pe-nées- Σ
3sg	hi - Σ	hi-nées- Σ	hi-Σ	hi-nées-Σ	pée-Σ	hi-nées-Σ
3PL	hi-pe- Σ	hi-pe-nées-Σ	hi-pe- Σ	hi-pe-nées-Σ	hi-pe- Σ	hi-pe-nées- Σ
INTR	Σ	pe-Σ	Σ	pe - Σ	hi-Σ	hi-pe-Σ

The Nez Percé paradigm

Table: Past tense paradigm of hekí- 'see'

P A	1sg	1 _{PL}	2sg	2PL	$3~\mathrm{sg}$	3 PL
1sg			héexne	nées-exne	?e-héxne	?e-nées-exne
1PL			pe-héxne	pe-nées-exne	?e-pe-héxne	?e-pe-nées-exne
2sg	héexn(im)e	nées-exn(im)e			?e-héxne	?e-nées-exne
2PL	pe-héxn(im)e	pe-nées-exn(im)e			?e-pe-héxne	?e-pe-nées-exne
3sg	he-héxne	hi-nées-exne	he-héxne	hi-nées-exne	pé-exne	hi-nées-exne
3PL	hi-pe-héxne	hi-pe-nées-exne	hi-pe-héxne	hi-pe-nées-exne	hi-pe-héxne	hi-pe-nées-exne

The Dargwa paradigm

Table: Icari Dargwa Potential Present verb paradigm of =uc-/=urc- 'catch', =ax- 'go, walk' (?)

P A	1	2sg	2 _{PL}	3
1		$= urc - u - \bar{t}$	$= urc - u - \bar{t} - a$	= urc-i-d
2sg	$=$ urc - u - \bar{t}			$=$ urc - i - \bar{t}
$2\mathrm{PL}$	$= urc - u - \bar{t} - a$			$=$ urc - i - \bar{t} - a
3	= urc - u - d	$=$ urc - u - \bar{t}	$= urc - u - \bar{t} - a$	= urc-u
INTR	= ax-u-d	$=ax-u-\bar{t}$	$=ax-u-\bar{t}-a$	= ax-ar

The Chukchi paradigm

Table: The aorist paradigm (?)

P A	1sg	1PL	2sg	2PL	3 sg	3 PL
1sg			t-∑-yət	t-Σ-tək	t-Σ-(γ?e)-n	t-Σ-net
1PL			mət-Σ-yət	mət-Σ-tək	m ət- Σ -(γ ?e)- n	mət-Σ-net
2sg	ine-Σ-(γ?)-i	Σ-tku			Σ-(γ?e)-n	Σ-net
2PL	ine-Σ-tək	Σ-tku-tək			Σ-	tkə
3sg	ine-Σ-(γ?)-i	ne-l?u-mək	ne-Σ-yət	ne-Σ-tək	Σ-nin	Σ -ninet
3PL	пе-Σ-уәт	пе-ии-тәк	ne-2-yət	ne-∠-t∂K	ne-Σ-(y?e)-n	ne-Σ-(yʔe)-net
INTR	t-Σ-(γ?e)-k	mət-Σ-mək	Σ-(γ?)-i	Σ-tək	Σ-(γ?)-i	Σ-(γ?e)-t

The Chukchi paradigm

Table: The aorist paradigm of 12u- 'to see' (?)

P A	1sg	1PL	2sg	2PL	3 sg	3 PL
1sg			t-l?u-yət	t-l?u-tək	t-l?u-y?e-n	t-l?u-net
1PL			mət-l?u-yət	mət-l?u-tək	mət-l?u-y?e-n	mət-l?u-net
2sg	ine-l?u-y?i	l?u-tku			l?u-y?e-n	l?u-net
2PL	ine-l?u-tək	l?u-tku-tək			l?u	-tkə
3sg	ine-l?u-y?i	ne-l?u-mək	12	ne-l?u-tək	l?u-nin	l?u-ninet
3PL	ne-l?u-yəm	пе-ии-тәк	ne-tru-yət	ne-tril-tək	ne-l?u-y?e-n	ne-l?u-y?e-net