L2 BOPE

Traitement des Données

formulaire et éléments de cours

Un objectif des statistiques est de se donner des règles pour décider quand on peut se permettre d'énoncer quelque chose de général à partir d'une observation incomplète et en partie soumise aux hasards de l'échantillonnage.

Sergine Ponsard

Sophie Padié

Sophie Padié

Jean-Baptiste Ferdy

sergine.ponsard@univ-tlse3.fr

sophie.padie@univ-tlse3.fr

Université Paul Sabatier Toulouse 3

Table des matières

1	Pro	ologue	3
	1.1	Suggestion d'ouvrages disponibles à la BU	3
	1.2	Terminologie	3
		1.2.1 Glossaire Anglais - Français	3
		1.2.2 Mots piégés	3
	1.3	Conventions de notation	3
	1.4	Quelques formules usuelles	4
		1.4.1 Estimation de la moyenne	4
		1.4.2 Estimation de la variance : problème de biais dans l'estimation	4
		1.4.3 Erreur standard de la moyenne	4
		1.4.4 Intervalle de confiance	4
2	Les	tests classiques	5
	2.1	Notions fondamentales sur les tests statistiques	5
		2.1.1 Les 8 étapes d'un test statistique	5
		2.1.2 Risque de première espèce et prise de décision	5
		2.1.3 Outil informatique pour les statistiques	5
	2.2	Analyse d'une variable quantitative	6
		2.2.1 Comparaison d'une moyenne observée à une moyenne théorique	6
		2.2.2 Comparaison de deux moyennes, échantillons indépendants	6
		2.2.3 Comparaison de deux moyennes, échantillons appariés	8
		2.2.4 Comparaison de variances	8
		2.2.5 Lien entre deux variables quantitatives	8
	2.3	Analyse d'une variable qualitative	10
		2.3.1 Lien entre deux variables qualitatives : test du χ^2 d'indépendance	10
		2.3.2 Comparaison d'une distribution observée à une distribution théorique : test du χ^2 de conformité	
3	Det	ux applications simples du modèle linéaire	12
	3.1	La régression linéaire simple	12
		3.1.1 Première étape : trouver la meilleure droite pour décrire la relation entre x et Y	12
		3.1.2 Deuxième étape : vérifier les conditions de validité	12
		3.1.3 Troisième étape : décomposer la variation de Y pour tester l'effet de x	12
		3.1.4 Corrélation ou régression ?	13
	3.2	L'analyse de variance à un facteur de classification	13
		3.2.1 Première étape : trouver la meilleure prédiction	13
		3.2.2 Deuxième étape : vérifier les conditions de validité	14
		3.2.3 Troisième étape : décomposition de la variance et test de Fisher	14
	3.3	Retour sur la signification de la décomposition de la variance dans l'ANOVA	14
4	Une	e clef pour choisir le bon test	16
5	Tab	oles statistiques	17

1. Prologue

1.1 Suggestion d'ouvrages disponibles à la BU

Nous vous conseillons les deux ouvrages suivants :

- Biostatistiques. Scherrer. Gaëtan Morin Editeur.
 Un classique qui couvre à peu près le programme du cours.
- Statistiques avec R. Cornillon. Presses Universitaires de Rennes (PUR).
 Rédigé sous la forme de fiches TD et incluant l'utilisation du logiciel R. Très recommandé en prévision du second semestre!

"statistiques", est couramment employé pour qualifier de simple données "brutes". Attention aussi, entre autres (n'hésitez pas à compléter la liste!), à :

 Population Échantillon Normal Monotone Significatif Robuste 	 Précis Biais Corrélation Régression Hasard Résidu
RobustePuissant	— Résidu

1.2 Terminologie

1.2.1 Glossaire Anglais - Français

On donne ci-dessous la traduction de quelques termes importants que vous êtes susceptibles de rencontrer en anglais, dans vos lectures ou bien dans votre utilisation d'un logiciel de traitement de données (par exemple le logiciel R que vous utiliserez au second semestre).

Anglais	Français
square root	racine carrée
integer	entier
slope	pente
intercept	ordonnée à l'origine
mean	moyenne
variance	variance
$standard\ deviation$	écart type
$standard\ error$	erreur standard
median	médiane
sample	échantillon
range	gamme, étendue
population	population
random	aléatoire
p-value, type I error	risque de première espèce
type II error	risque de seconde espèce
$confidence\ interval$	intervalle de confiance
degrees of freedom (df)	degrés de liberté (ddl)
paired	apparié
two-tailed test	test bilatéral
one-tailed test	test unilatéral
t- t es t	test de Student
chi squared test	test du χ^2
boxplot	boite à moustache

1.2.2 Mots piégés

Les mots suivants, employés en statistiques dans un sens bien précis, sont également utilisés dans le langage courant, avec évidemment un sens différent (ce serait trop facile). On vous invite donc à la plus grande vigilance lorsque vous les lirez et les entendrez dans le cadre de ce cours. Un petit effort est nécessaire afin de ne pas tomber dans le piège tendu. A titre d'exemple, le mot

1.3 Conventions de notation

Par convention, on notera en majuscule les variables aléatoires et en minuscule leur réalisation. Les quantités surmontées d'un « chapeau » sont des estimations de paramètres de la population réalisées à partir d'un échantillon. Par convention encore, on notera H_0 l'hypothèse nulle et H_1 l'hypothèse alternative. La notation $P(T \geqslant t_{obs}|_{H_0})$ veut donc dire « probabilité que la variable aléatoire T soit supérieure ou égale à la valeur numérique t_{obs} en supposant l'hypothèse nulle H_0 vraie ».

Notation	Signification
X	variable aléatoire
x	réalisation de la variable aléatoire
	X
P(X=x)	probabilité que X soit égal à x
μ	moyenne d'une population
•	moyenne de la variable aléatoire
μ_X	X
μ_{ech}	moyenne des mesures x dans un
	échantillon
$\hat{\mu}$	estimation de la moyenne d'une
	population
$\hat{\mu}_X$	estimation de la moyenne de la
	variable aléatoire X
σ^2	variance d'une population
σ	écart-type d'une population
$\sigma \ \sigma_{X}^{2} \ \sigma_{ech}^{2}$	variance de la variable aléatoire X
σ_{ech}^2	variance des mesures x_i dans un
	échantillon (il s'agit donc d'une
	description de l'échantillon, et pas
	d'une estimation de la variance de
	la population)
$\hat{\sigma}^2$	estimation de la variance σ^2 de la
	population
$\hat{\sigma}_X^2$	estimation de la variance de la va-
	riable aléatoire X
H_0	hypothèse nulle
H_1	hypothèse alternative
$P(X = x _{H_0})$	probabilité que X soit égal à x si
	H_0 est vraie

1.4 Quelques formules usuelles

1.4.1 Estimation de la moyenne

L'estimateur $\hat{\mu}$ de la moyenne μ de X est aussi la moyenne μ_{ech} des x_i :

$$\hat{\mu} = \mu_{ech} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} (x_1 + x_2 + \dots + x_n) \quad (1.1)$$

Si jamais les données sont organisées en k classes, x_i étant la valeur de la classe i et n_i l'effectif dans la classe, on calcule la moyenne en posant

$$\hat{\mu} = \frac{\sum_{i=1}^{k} n_i x_i}{n} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_k x_k}{n_1 + n_2 + \dots + n_k}$$
 (1.2)

1.4.2 Estimation de la variance : problème de biais dans l'estimation

La variance de X est une mesure de la dispersion des réalisations de X autour de leur moyenne μ . Soit σ^2 cette variance. On a parfois besoin de décrire la dispersion des mesures observées dans un échantillon de taille n. On calcule alors

$$\sigma_{ech}^2 = \frac{\sum_i (x_i - \hat{\mu})^2}{n} \tag{1.3}$$

qui peut aussi s'écrire

$$\sigma_{ech}^2 = \frac{\sum_i x_i^2}{n} - \hat{\mu}^2 \tag{1.4}$$

Cette quantité σ_{ech}^2 est un estimateur **biaisé** de la variance σ^2 de la population. En pratique, on obtient un estimateur non-biaisé de la variance en calculant

$$\hat{\sigma}^2 = \frac{\sum_i (x_i - \hat{\mu})^2}{n - 1} \tag{1.5}$$

qui peut aussi s'écrire

$$\hat{\sigma}^2 = \frac{\sum_i x_i^2}{n-1} - \frac{n}{n-1} \hat{\mu}^2 \tag{1.6}$$

1.4.3 Erreur standard de la moyenne

On peut montrer que l'écart-type d'une estimation de moyenne (c'est-à-dire l'écart type de $\hat{\mu}$ considéré comme une V.A.) est égal à

$$\sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}} \tag{1.7}$$

L'erreur standard est l'estimation (sans biais) de cet écart type et se calcule de la façon suivante :

$$\hat{\sigma}_{\hat{\mu}} = \frac{\hat{\sigma}}{\sqrt{n}} \tag{1.8}$$

1.4.4 Intervalle de confiance

Soit X une V.A. **normalement distribuée**, et M et S deux V.A. correspondant aux moyenne et écart type de X estimées sur un échantillon de taille n. On pose

$$T = \frac{M - \mu_X}{S/\sqrt{n}}$$

qui suit une loi de Student à n-1 degrés de liberté. L'intervalle de confiance est déterminé par les bornes -c et c telles que P(-c < T < c) = p avec p une probabilité proche de 1 (typiquement p = 0.95). Les bornes -c et c sont lues dans la table de Student et permettent d'écrire

$$P\left(M - c \times \frac{S}{\sqrt{n}} < \mu_X < M + c \times \frac{S}{\sqrt{n}}\right) = p \quad (1.9)$$

L'intervalle de confiance est donc défini comme

$$\left[\hat{\mu} - \frac{c\hat{\sigma}}{\sqrt{n}}; \hat{\mu} + \frac{c\hat{\sigma}}{\sqrt{n}}\right] \tag{1.10}$$

et a une probabilité p de contenir la vraie moyenne μ .

2. Les tests classiques

2.1 Notions fondamentales sur les tests statistiques

2.1.1 Les 8 étapes d'un test statistique

- 1. Formuler la question biologique.
- 2. Vérification des conditions de validité, conditions dans lesquelles le test pourra être employé.
- 3. Définition de l'**hypothèse nulle** (H_0) . H_0 doit être une hypothèse suffisamment **bien définie** pour qu'on ait un attendu précis sur les valeurs numériques qu'on devrait observer si elle était vérifiée. Par exemple on peut poser comme hypothèse nulle qu'une proportion vaut 1/2, mais pas qu'elle est différente de 1/2. Au cours du test, on cherche à invalider H_0 ,
- 4. Définition de l'hypothèse alternative (H_1) , hypothèse vérifiée si H_0 ne l'est pas. Les deux hypothèses, H_0 et H_1 doivent couvrir l'ensemble des possibilités,
- 5. Définition d'une **statistique** (par exemple T, U, etc.) et calcul de la valeur de la statistique observée pour l'échantillon étudié (t_{obs} , u_{obs} , etc.)
- 6. Détermination de la distribution de la statistique sous H₀ (par exemple, distribution de Student pour T, loi du U de Wilcoxon pour U, etc.), Dans les tests dits paramétriques, on fait une hypothèse sur la distribution des données qui permet de déterminer la distribution de la statistique; cette hypothèse est donc une condition de validité du test,
- 7. Détermination du **risque de première espèce** (voir figure 2.1A-F; le calcul est le plus souvent approché lorsqu'on n'a pas d'ordinateur et de logiciel de statistique),
- 8. Conlusion on décide de rejeter ou non H_0 selon la valeur de α (voir figure 2.1G).

2.1.2 Risque de première espèce et prise de décision

Le risque de première espèce (α ou encore « p-value » en anglais) est défini comme la **probabilité** de rejeter à tort H_0 . De façon équivalente, on peut dire que le risque de première espèce est la probabilité d'observer, quand H_0 est vraie, une valeur de la statistique plus extrême que celle que l'on a mesurée. Par plus extrême, il faut entendre ici une valeur plus compatible avec l'hypothèse H_1 retenue. Le calcul du risque de première espèce dépend donc de H_0 (puisqu'on utilise la distribution de la statistique sous H_0 pour le calculer), de la valeur observée de la statistique et de l'hypothèse alternative H_1 . Tout ceci est résumé dans la figure 2.1.

2.1.3 Outil informatique pour les statistiques

Les statistiques se font, bien sûr, en utilisant un ordinateur...Le logiciel R (logiciel libre téléchargeable gratuite-

FIGURE 2.1 – **A-F Le calcul du risque de première espèce.** Chaque graphique représente la distribution d'une statistique X sous l'hypothèse nulle H_0 . La façon de s'en servir pour calculer le risque de première espèce dépend de l'hypothèse alternative H_1 retenue. Lorsqu'on réalise un test unilatéral (A,B, C, D) le risque de première espèce correspond à l'aire sous la courbe du côté des valeurs attendues sous H_1 (indiquées par les flèches). Lorsqu'on réalise un test bilatéral (E et F), le risque de première espèce est obtenu en multipliant par deux la plus petite des deux aires (à gauche ou à droite, selon la valeur de x_{obs}). **G. L'utilisation du risque de première espèce.** Le risque de première espèce est le risque de se tromper en rejetant H_0 . S'il est faible, on peut donc rejeter H_0 sans craindre de se tromper trop souvent.

ment : http://www.r-project.org/) est un des outils de référence. On vous donne donc, pour chaque test, la fonction R correspondante. Ces fonctions calculent toutes la valeur du risque de première espèce α . En TD de statistique nous utiliserons des tables statistiques à la place de ces fonctions ; on ne pourra alors souvent pas obtenir la valeur de α mais seulement l'encadrer.

2.2 Analyse d'une variable quantitative

2.2.1 Comparaison d'une moyenne observée à une moyenne théorique

Problème : On mesure X sur un échantillon de n individus. Soit μ la moyenne de X et $\hat{\mu}$ son estimation obtenue à partir de l'échantillon. On cherche à comparer la moyenne des mesures observées à une moyenne théorique. Soit m cette moyenne théorique : l'échantillon est-il issu d'une population de moyenne m?

2.2.1.1 Test de Student

Conditions de validité: X suit une loi normale. En toute rigueur, si X ne suit pas une loi normale mais que n est grand, on pourrait utiliser le théorème central limite et employer malgré tout ce test. En pratique, on vous suggère d'utiliser plutôt, en cas de non normalité, une approche non paramétrique. 1

Hypothèse nulle : $\mu=m$

Hypothèse alternative : Test bilatéral : $\mu \neq m$; test unilatéral : $\mu > m$ ou $\mu < m$.

Statistique : $t_{obs} = (\hat{\mu} - m)/\sqrt{\hat{\sigma}^2/n}$

Distribution de la statistique sous $H_0: T$ suit une distribution de Student à n-1 degrés de liberté

Risque de première espèce : voir figure 2.1.

Code R: t.test(y,mu=...) où y est un vecteur contenant les observations et mu est la moyenne théorique (c'est-à-dire le m utilisé ci-dessus).

2.2.2 Comparaison de deux moyennes, échantillons indépendants

Problème : On mesure la même variable dans deux échantillons, de tailles respectives n_1 et n_2 , issus de deux populations. Soient X_1 et X_2 les quantités mesurées dans les populations 1 et 2. Les moyennes de X_1 et X_2 sont μ_1 et μ_2 . Soient $\hat{\mu}_1$ et $\hat{\mu}_2$ les estimations de ces moyennes calculées à partir des deux échantillons. On veut savoir si la différence observée entre $\hat{\mu}_1$ et $\hat{\mu}_2$ est due à une différence entre μ_1 et μ_2 , ou bien peut être expliquée par les variations d'échantillonnages.

2.2.2.1 Test Z

Conditions de validité: X_1 et X_2 sont indépendantes et suivent des lois normales dont les variances sont identiques et connues. En pratique, cela revient à supposer que les effectifs sont suffisamment grands pour que $\hat{\sigma}_1^2 \approx \sigma_1^2$ et $\hat{\sigma}_1^2 \approx \sigma_1^2$.

Hypothèse nulle : $\mu_1 = \mu_2$

1. voir 2.2.2.4, page 7.

Hypothèse alternative : Test bilatéral : $\mu_1 \neq \mu_2$; test unilatéral : $\mu_1 > \mu_2$ ou $\mu_1 < \mu_2$ selon l'a priori sur les variables.

Statistique: $z_{obs} = (\hat{\mu}_1 - \hat{\mu}_2) / \sqrt{\hat{\sigma}_1^2 / n_1 + \hat{\sigma}_2^2 / n_2}$.

Distribution de la statistique sous $H_0: Z$ suit une loi normale centrée réduite.

Risque de première espèce : voir figure 2.1.

Code R: le test Z n'est pas implémenté dans R (en pratique on utilise plutôt le test de Student). On peut néanmoins, une fois z_{obs} calculé, utiliser la fonction pnorm pour calculer le risque de première espèce.

2.2.2.2 Test de Student

Conditions de validité: X_1 et X_2 sont indépendantes et suivent des lois normales de même variance (condition à vérifier par un test de comparaison de variance, voir page 8).

Hypothèse nulle : $\mu_1 = \mu_2$

Hypothèse alternative : Test bilatéral : $\mu_1 \neq \mu_2$; test unilatéral : $\mu_1 > \mu_2$ ou $\mu_1 < \mu_2$ selon l'a priori sur les variables.

Statistique : La statistique utilisée est simplement la différence des moyennes estimées $(\hat{\mu}_1 - \hat{\mu}_2)$ divisée par l'erreur standard de cette différence. Si les échantillons sont **grands** $(n_1 \geqslant 30 \text{ et } n_2 \geqslant 30)$ on peut calculer

$$t_{obs} = (\hat{\mu}_1 - \hat{\mu}_2) / \sqrt{\hat{\sigma}_1^2 / n_1 + \hat{\sigma}_2^2 / n_2}$$
 (2.1)

s'ils sont au contraire **petits**, on les regroupera pour estimer une variance commune. On écrit alors

$$t_{obs} = (\hat{\mu}_1 - \hat{\mu}_2) / \sqrt{\hat{\sigma}^2 (1/n_1 + 1/n_2)}$$
 (2.2)

avec

$$\hat{\sigma}^2 = ((n_1 - 1)\hat{\sigma}_1^2 + (n_2 - 1)\hat{\sigma}_2^2)/(n_1 + n_2 - 2)$$
(2.3)

Si n_1 et n_2 sont grands les deux approches donnent les mêmes résultats. En pratique, donc, on utilise toujours la seconde méthode et on calcule une variance commune!

Distribution de la statistique sous H_0 : T suit une distribution de Student à $\nu = n_1 + n_2 - 2$ degrés de liberté.

Risque de première espèce : voir figure 2.1.

Code R: t.test(y1,y2,var.equal=TRUE) où y1 et y2 sont deux vecteurs contenant les observations des deux échantillons. Attention, l'option par défaut est var.equal=FALSE, voir ci-dessous.

2.2.2.3 Test de Student avec correction de Welch

Conditions de validité : X_1 et X_2 sont indépendantes et suivent des lois normales dont les variances ne sont pas nécessairement égales.

Hypothèse nulle : $\mu_1 = \mu_2$

Hypothèse alternative : Test bilatéral : $\mu_1 \neq \mu_2$; test unilatéral : $\mu_1 > \mu_2$ ou $\mu_1 < \mu_2$ selon l'a priori sur les variables.

Statistique: $t_{obs} = (\hat{\mu}_1 - \hat{\mu}_2) / \sqrt{\hat{\sigma}_1^2 / n_1 + \hat{\sigma}_2^2 / n_2}$.

Distribution de la statistique sous H_0 : T suive une distribution de Student à

$$\nu = \frac{\left(\hat{\sigma}_1^2/n_1 + \hat{\sigma}_2^2/n_2\right)^2}{\frac{\left(\hat{\sigma}_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(\hat{\sigma}_2^2/n_2\right)^2}{n_2 - 1}}$$
(2.4)

degrés de liberté.

Risque de première espèce : voir figure 2.1.

Code R: t.test(y1,y2,var.equal=FALSE) où y1 et y2 sont deux vecteurs contenant les observations des deux échantillons. L'option var.equal=FALSE est l'option par défaut.

2.2.2.4 Test de Wilcoxon-Mann-Whitney

Conditions de validité : X_1 et X_2 sont indépendantes

Hypothèse nulle : Les deux échantillons proviennent de populations de même loi $(P(X_1 = x) = P(X_2 = x))$

Hypothèse alternative:

Test bilatéral : $P(X_1 = x) \neq P(X_2 = x)$ Test unilatéral : $P(X_1 > X_2) < P(X_2 > X_1)$ ou $P(X_1 > X_2) > P(X_2 > X_1)$

Statistique : On classe l'ensemble des $n_1 + n_2$ valeurs et on leur affecte un rang $(R_{1i}, pour l'individu i$ de la population 1). En cas d'ex aequo, on donne le rang moyen à toutes les mesures identiques. On calcule alors

$$u_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - \sum_{i} R_{1i}$$
 (2.5)

où $\sum_i R_{1i}$ est la somme des rangs pour les observations de l'échantillon issu de la population 1. On peut par ailleurs calculer $u_2 = n_1 n_2 - u_1$, qui correspond à la même statistique calculée en utilsant R_{2i} .

Distribution de la statistique sous H_0 : U suit la distribution de Wilcoxon (à noter que n_1 et n_2 peuvent être permutés dans la table sans que le résultat en soit changé!). Cette distribution n'est cependant pas exacte en présence d'ex aequo. Si n_1 et n_2 sont grands (n > 30), qu'il y ait des ex aequo ou non, la distribution de U peut-être approximée par une loi normale de moyenne $\mu = \frac{1}{2}n_1n_2$ et de variance $\sigma^2 = \frac{1}{12}n_1n_2(n_1 + n_2 + 1)$.

Risque de première espèce : voir figure 2.1. Attention : la distribution de Wilcoxon est discrète et donc $P(U \leq u_{obs}|_{H_0}) \neq P(U < u_{obs}|_{H_0})$! On peut par contre utiliser indifférement les statistiques u_1 et u_2 pour le calcul, en réfléchissant bien, dans les test unilatéraux, aux valeurs attendues si H_1 est vérfiée.

Code R: wilcox.test(y1,y2) où y1 et y2 sont deux vecteurs contenant les observations des deux échantillons.

N.B. Le test de Wilcoxon-Mann-Whitney n'est pas, comme la formulation de l'hypothèse nulle présentée ici le montre bien, un test de comparaison de moyenne : il teste l'identité des lois des deux variables aléatoires. Il n'empêche que dans de nombreux cas, particulièrement lorsque les variances des deux variables sont égales, l'hypothèse nulle ne sera rejetée que si les moyennes théoriques des deux distributions sont différentes. Probablement pour cette raison, l'usage en biologie est d'utiliser ce test comme une alternative non-paramétrique ² au test de Student. Prudence néanmoins : un risque de première espèce faible dans un test de Wilcoxon n'indique pas nécessairement une différence de moyenne ! Il indique que l'un des deux échantillons comprend plus de valeurs élevées que l'autre.

2.2.2.5 En résumé : quel test choisir pour comparer deux moyennes?

les variables ne

sont pas normaleles variables sont normalement distribuées ment distribuées $n_1 \geqslant 30 \text{ et } n_2 \geqslant 30,$ n'importe lequel des tests Mann-Whitneyparamétriques (Z,Wilcoxon Student avec ou sans Si n_1 et n_2 sont correction de Welch), grands et que $n_1 \approx n_2$ $n_1 < 30$ ou $n_2 < 30$, un test paramétrique Student avec ou (Z, Student avec ou sans correction sans correction de de Welch. Le test Welch) peut conve-Z est à proscrire, à nir mais il sera peu cause de l'approxipuissant³. mation normale de la statistique. Student avec cor-Mann-Whitney-# rection de Welch Wilcoxon

Deux points importants à noter :

— Vous aurez noté que lorsque les données sont normalement distribuées, le test de Welch est toujours une option possible. Pour cette raison, la fonction t.test du logiciel R applique par défaut la correction de Welch (c'est-à-dire sauf si on demande explicitement à ce que ça ne soit pas la cas en utilisant l'option var.equal=TRUE).

^{2.} Un test est dit non-paramétrique lorsqu'il ne fait pas d'hypothèse sur la distribution des données. Souvent, ces tests transforment les données en rang. Les observations 0, 1, 100 et 0, 1, 1000 seront donc considérées comme identiques : de l'information est perdue!

^{3.} La puissance est la capacité d'un test à détecter des différences quand elles existent, c'est-à-dire à rejeter H0 quand elle est fausse. La puissance pourrait donc se calculer comme $1-\beta$, avec β risque de seconde espèce. Sauf qu'on ne peut généralement pas calculer β . . .

 Attention, le test de Mann-Whitney-Wilcoxon n'est pas réellement un test de comparaison de moyenne!
 Voir le NB de la page précédente.

2.2.3 Comparaison de deux moyennes, échantillons appariés

Problème : On mesure deux variables sur les mêmes n individus. Par exemple on réalise deux mesures de poids par individu à quelques semaines d'intervalle. Ces deux mesures ne sont donc pas indépendantes l'une de l'autre. On cherche néanmoins à les comparer. Soit X_1 et X_2 les variables mesurées et $D = X_1 - X_2$ la différence entre ces deux mesures. Soit μ_D la moyenne de D et $\hat{\mu}_D$ l'estimation de cette moyenne sur l'échantillon. Soit σ_D^2 la variance de D et $\hat{\sigma}_D^2$ son estimation sur l'échantillon.

2.2.3.1 Test de Student

Conditions de validité : La différence $D = X_1 - X_2$ suivent une loi normale.

Hypothèse nulle : $\mu_D = 0$

Hypothèse alternative : Test bilatéral : $\mu_D \neq 0$; test unilatéral : $\mu_D > 0$ ou $\mu_D < 0$

Statistique : $t_{obs} = \hat{\mu}_D / \sqrt{\hat{\sigma}_D^2 / n}$

Distribution de la statistique sous $H_0: T$ suit une distribution de Student à n-1 degrés de liberté.

Risque de première espèce : voir figure 2.1.

Code R : t.test(...,paired=TRUE)

2.2.3.2 Test de Wilcoxon

Hypothèse nulle : les deux mesures sont distribuées selon la même loi $(P(X_1 = k) = P(X_2 = k))$

Hypothèse alternative:

Test bilatéral : $P(X_1 > X_2) \neq P(X_2 > X_1) \neq \frac{1}{2}$ Test unilatéral : $P(X_1 > X_2) < P(X_2 > X_1)$ ou $P(X_1 > X_2) > P(X_2 > X_1)$

Statistique : On calcule pour chaque observation i la différence $x_{1,i}-x_{2,i}$. On prend ensuite la valeur absolue de ces différences, et on classe les individus selon cette valeur. On calcule enfin $u_{1,obs}$ en additionnant les rangs correspondant à des différences $x_{1,i}-x_{2,i}$ positives, et $u_{2,obs}$ en additionnant ceux des différences négatives.

Distribution de la statistique sous H_0 : U suit la distribution de Wilcoxon pour échantillons appariés (non fournie ici). Comme pour le cas des échantillons indépendants, cette distribution n'est pas exacte en présence d'ex aequo.

Risque de première espèce : voir figure 2.1, avec les même précautions que dans pour le test sur échantillons non appariés.

Code R : wilcox.test(...,paired=TRUE)

2.2.4 Comparaison de variances

2.2.4.1 Comparaison de deux variances : test de Fisher et Snedecor

Problème: Soient X_1 et X_2 les quantités mesurées dans les populations 1 et 2. Les variances de X_1 et X_2 sont σ_1^2 et σ_2^2 . Soient $\hat{\sigma}_1^2$ et $\hat{\sigma}_2^2$ les estimations de ces quantités sur des échantillons de tailles n_1 et n_2 . On utilise $\hat{\sigma}_1^2$ et $\hat{\sigma}_2^2$ pour savoir si $\sigma_1^2 \neq \sigma_2^2$.

Conditions de validité : X_1 et X_2 sont indépendantes et suivent toutes deux une loi normale.

Hypothèse nulle : $\sigma_1^2 = \sigma_2^2$

Hypothèse alternative : Test bilatéral : $\sigma_1^2 \neq \sigma_2^2$; test unilatéral : $\sigma_1^2 > \sigma_2^2$ ou $\sigma_1^2 < \sigma_2^2$

Statistique : $f_{obs} = \hat{\sigma}_1^2/\hat{\sigma}_2^2$

Distribution de la statistique sous H_0 : F suit une loi de Fisher à $n_1 - 1$ et $n_2 - 1$ degrés de liberté.

Risque de première espèce : voir figure 2.1, en faisant bien attention à ne pas permuter par erreur les degrés de liberté!

Code R : var.test

2.2.4.2 Tests alternatifs

Test de Ansari-Bradley : Une version nonparamétrique du test de Fisher.

Code R : ansari.test

Test de Mood: Une autre version nonparamétrique du test de Fisher. Il faut lui préférer le test d'Ansari-Bradley, d'après la documentation de R...

 $\operatorname{Code} R$: mood.test

Test de Fligner-Killeen : Test non paramétrique de comparaison de k variances. Un léger écart à la normalité a tendance à produire un résultat de test de Barlett significatif, même si les k variances comparées sont en réalité identiques. Pour remédier à ce problème, on peut utiliser avec profit le test de Fligner-Killeen.

Code R : fligner.test

2.2.5 Lien entre deux variables quantitatives

Problème : On mesure deux quantités Y_1 et Y_2 sur n individus issus d'une même population. On cherche à tester l'existence d'un lien entre Y_1 et Y_2 .

2.2.5.1 Mesurer la force du lien : covariance et corrélation

Soient deux variables aléatoires Y_1 et Y_2 de moyennes μ_{Y_1} et μ_{Y_2} et de variances $\sigma_{Y_1}^2$ et $\sigma_{Y_2}^2$. La covariance entre Y_1 et Y_2 , que l'on notera ici $\sigma_{Y_1Y_2}$, mesure le lien qui existe entre les deux variables. Si les deux variables sont

indépendantes, elle est nulle ⁴. Si elle est positive, les individus dont la mesure Y_1 est plus élevée que μ_{Y_1} ont en moyenne des valeurs de Y_2 plus élevées que μ_{Y_2} . Si elle est négative, les individus dont la mesure Y_1 est plus élevée que μ_{Y_1} ont en moyenne des valeurs de Y_2 moins élevées que μ_{Y_2} . On estime la covariance en calculant

$$\hat{\sigma}_{Y_1 Y_2} = \frac{\sum_{i=1}^{n} (y_{1i} - \hat{\mu}_{Y_1})(y_{2i} - \hat{\mu}_{Y_2})}{n-1}$$
 (2.6)

qui peut aussi s'écrire

$$\hat{\sigma}_{Y_1 Y_2} = \frac{\sum_{i=1}^{n} y_{1i} y_{2i}}{n-1} - \frac{n}{n-1} \hat{\mu}_{Y_1} \hat{\mu}_{Y_2}$$
 (2.7)

En pratique on utilise plus souvent la corrélation (de Pearson) qui est une sorte de covariance standardisée :

$$r_{Y_1Y_2} = \frac{\sigma_{Y_1Y_2}}{\sigma_{Y_1}\sigma_{Y_2}} \tag{2.8}$$

que l'on estime par

$$\hat{r}_{Y_1,Y_2} = \frac{\hat{\sigma}_{Y_1,Y_2}}{\hat{\sigma}_{Y_1}\hat{\sigma}_{Y_2}} \tag{2.9}$$

$$= \frac{\sum_{i=1}^{n} (y_{1i} - \hat{\mu}_{Y_1})(y_{2i} - \hat{\mu}_{Y_2})}{\sqrt{\sum_{i=1}^{n} (y_{1i} - \hat{\mu}_{Y_1})^2 \sum_{i=1}^{n} (y_{2i} - \hat{\mu}_{Y_2})^2}} \quad (2.10)$$

La covariance entre une variable et elle même est tout simplement sa variance; la corrélation entre une variable et elle même vaut un. La corélation varie donc entre -1 et +1. La figure 2.2 illustre la relation entre la forme du nuage de point formé par les mesures des deux variables et la valeur de corrélation.

2.2.5.2 Tests de corrélation

a. Test de corrélation de Pearson

Conditions de validité : Y_1 et Y_2 suivent une distribution binormale. En pratique, pour tester la

^{4.} Attention : la réciproque n'est pas vraie. La covariance de deux variables aléatoires non indépendantes peut être nulle !

FIGURE 2.2 — Plusieurs tirages aléatoires de deux variables Y_1 et Y_2 et la corrélation de Pearson correspondante. Les deux premières lignes illustrent le fait que la corrélation ne mesure pas uniquement la pente de la relation linéaire entre les deux variable, mais dépend aussi de la dispersion des points autour de cette relation.

validité de cette hypothèse, on vérifie que chacune des deux variables est normalement distribuée, mais aussi que la variance d'une variable ne change pas en fonction de l'autre variable (hypothèse d'homoscédasticité) et que la relation entre les deux variables est linéaire

Hypothèse nulle : $r_{Y_1Y_2} = 0$

Hypothèse alternative : Test bilatéral : Y_1 et Y_2 sont liées $(r_{Y_1Y_2} \neq 0)$; test unilatéral : Y_1 et Y_2 sont liées positivement $(r_{Y_1Y_2} > 0)$ ou négativement $(r_{Y_1Y_2} < 0)$

Statistique :
$$t_{obs} = \hat{r}_{Y_1Y_2} / \sqrt{(1 - \hat{r}_{Y_1Y_2}^2)/(n-2)}$$

Distribution de la statistique sous H_0 :

distribution de Student à n-2 degrés de liberté

Risque de première espèce:

Test bilatéral : $\alpha = 2 \times P(T \leqslant -|t_{obs}||_{H_0})$ Test unilatéral : $\alpha = P(T \geqslant t_{obs}|_{H_0})$ ou $\alpha = P(T \leqslant t_{obs}|_{H_0})$

 $\begin{array}{c} \textbf{Code R} : \texttt{cor.test(...,method="pearson")}. \\ \textbf{L'option method="pearson"} \ \ \text{est l'option par} \\ \textbf{d\'efaut}. \end{array}$

b. Test de corrélation non-paramétrique de Spearman

Calculer la corrélation de Spearman revient à calculer une corrélation de Pearson sur les rangs des observations. On commence donc par classer les données selon Y_1 , d'une part, et selon Y_2 , d'autre part. Soit R_{1i} et R_{2i} les rangs attribués aux observations y_{1i} et y_{2i} , respectivement.

Les sommes des rangs étant $\sum_i R_{1i} = \sum_i R_{2i} = n(n+1)/2$, les moyennes des rangs sont identiques pour les deux variables :

$$\hat{\mu}_{R_1} = \hat{\mu}_{R_2} = \frac{1}{2}(n+1) \tag{2.11}$$

Les variances des rangs ne sont indentiques qu'en l'absence d'ex aequo. Dans le doute, il vaut donc mieux les calculer en utilisant la somme des rangs élevés au carré :

$$\begin{cases}
\hat{\sigma}_{R_1}^2 = \frac{1}{n-1} \sum_i R_{1i}^2 - \frac{n}{n-1} \frac{(n+1)^2}{4} \\
\hat{\sigma}_{R_2}^2 = \frac{1}{n-1} \sum_i R_{2i}^2 - \frac{n}{n-1} \frac{(n+1)^2}{4}
\end{cases} (2.12)$$

en notant que seule la somme des rangs élevés au carré diffère entre les deux équations. Le calcul de la covariance entre les rangs est

$$\hat{\sigma}_{R_1 R_2} = \frac{1}{n-1} \sum_{i} R_{1i} R_{2i} - \frac{n}{n-1} \frac{(n+1)^2}{4} \qquad (2.13)$$

la corrélation entre les rangs est donc

$$\hat{\rho}_{Y_1 Y_2} = \frac{\hat{\sigma}_{R_1 R_2}}{\sqrt{\hat{\sigma}_{R_1}^2 \hat{\sigma}_{R_2}^2}} \tag{2.14}$$

où $\hat{\rho}_{Y_1Y_2}$ est le ρ (rho) de Spearman.

Conditions de validité: Le test ne suppose ni la normalité des variables étudiées, ni la constance des variances. Il ne suppose pas non plus que la relation entre Y_1 et Y_2 est linéaire: réaliser le test de Spearman sur Y_1 et Y_2 , ou $\log(Y_1)$ et $\log(Y_2)$ ou bien encore $\exp(Y_1)$ et $\exp(Y_2)$, etc., produirait exactement le même résultat puisque l'on utilise les rangs des observations. La corrélation de Spearman n'aurait cependant aucun sens si la relation etre Y_1 et Y_2 n'était pas monotone, c'est-à-dire si Y_2 ne variait pas toujours dans le même sens avec Y_1 . Les graphiques de la troisième ligne de la figure 2.2 correspondent donc à des cas qui ne peuvent pas être analysés par une corrélation de Spearman.

Hypothèse nulle : Y_1 et Y_2 sont indépendantes $(\rho_{Y_1Y_2} = 0)$

Hypothèse alternative : Test bilatéral : Y_1 et Y_2 sont liées $(\rho_{Y_1Y_2} \neq 0)$; test unilatéral : $\rho_{Y_1Y_2} > 0$ ou $\rho_{Y_1Y_2} < 0$.

Statistique : $\hat{\rho}_{Y_1Y_2}$ ou $t_{obs} = \hat{\rho}_{Y_1Y_2}/\sqrt{(1-\hat{\rho}_{Y_1Y_2}^2)/(n-2)}$

Distribution de la statistique sous H_0 : En l'absence d'ex aequo $\hat{\rho}_{Y_1Y_2}$ suit la distribution du ρ de Spearman, qui n'est pas fournie dans ce formulaire! Dans le cas général, et particulièrement en présence d'ex aequo, on utilise t_{obs} comme statistique et on approxime sa distribution par une loi de Student à $\nu = n-2$ ddl.

Risque de première espèce : voir figure 2.1.

 $\operatorname{Code} R : \operatorname{cor.test}(\ldots, \operatorname{method="spearman"}).$

c. Test alternatif

Test de corrélation de Kendall : Il s'agit d'un autre test de corrélation non-paramétrique. Ce test est intéressant notamment en présence de nombreux ex aequo

 $egin{array}{lll} \mathbf{Code} & \mathbf{R} & : & \mathsf{cor.test} & \mathsf{avec} & \mathsf{l'option} \\ \mathsf{method="kendall"} & & & \end{array}$

2.3 Analyse d'une variable qualitative

2.3.1 Lien entre deux variables qualitatives : test du χ^2 d'indépendance

Problème : Chaque individu de l'échantillon est affecté à une modalité parmi a pour une première variable qualitative Y_1 , et à une modalité parmi b pour une seconde variable qualitative Y_2 . Les données peuvent donc être résumées dans une table de contingence à a lignes et b colonnes, chaque case contenant le nombre d'observation pour une combinaison particulière y_1y_2 et le nombre total d'individus mesurés étant n. On cherche à comparer la répartition des individus dans les b classes de Y_2 entre les a modalité de Y_1 .

Conditions de validité: L'échantillonnage doit suivre la règle de Cochran, c'est-à-dire que dans 80% des cas au moins les effectifs **théoriques** doivent dépasser 5 et qu'ils ne doivent en aucun cas être nuls. Si cette règle n'est pas respectée, il faut opérer des regroupements de classes (dans R, une correction dite de Yates est appliquée pour régler ce problème).

Hypothèse nulle : Les deux variables qualitatives sont donc indépendantes, si bien que la répartition des effectifs dans les b modalités de Y_2 est la même quelle que soit la modalité de Y_1

Hypothèse alternative : Il existe au moins une modalité de Y_1 dont les individus se répartissent d'une façon différente entre les b modalités de Y_2 .

Statistique : Pour chaque modalité i de Y_1 et chaque modalité j de Y_2 on calcule un effectif attendu sous l'hypothèse nulle :

$$\hat{n}_{ij} = \frac{n_i \cdot n_{\cdot j}}{n} \tag{2.15}$$

où $n_{i\cdot} = \sum_{j=1}^b n_{ij}$ est la somme des effectifs pour la ligne i, et $n_{\cdot j} = \sum_{i=1}^a n_{ij}$ est la somme des effectifs pour la colonne j. n est le nombre total d'individus échantillonnés $n = \sum_{i=1}^a \sum_{j=1}^b n_{ij}$. À partir de ces effectifs attendus, on calcule un écart entre la prédiction \hat{n}_{ij} et l'observation n_{ij} :

$$\chi_{obs}^2 = \sum_{i=1}^a \sum_{j=1}^b \frac{(n_{ij} - \hat{n}_{ij})^2}{\hat{n}_{ij}}$$
 (2.16)

Distribution de la statistique sous H_0 : Loi du χ^2 à $\nu=(a-1)(b-1)$ degrés de liberté. ν se calcule donc simplement à partir des nombre de lignes (a) et de colonnes (b) de la table de contigence.

Risque de première espèce : $\alpha = P(\chi^2 \geqslant \chi^2_{obs}|_{H_0})$ (ici, les valeurs compatibles avec H_1 sont nécessairement élevées).

Code R: chisq.test(y1,y2) ou les vecteurs y1 et y2 contiennent les observations des deux variables dont on étudie le lien, ou bien chisq.test(x) où x est une table de contingence.

2.3.2 Comparaison d'une distribution observée à une distribution théorique : test du χ^2 de conformité

Problème : On échantillonne dans une population, chaque individu échantillonné appartenant à une catégorie parmi b possibles. On cherche à comparer la répartition observée des individus dans les b classes à une répartition théorique attendue. Le nombre total d'individus échantillonnés est n.

La réalisation du test est en tout point identique à ce qui précède, les effectifs prédits étant calculés à partir de la distribution théorique. Il faut néanmoins retrancher au nombre de dégrés de liberté (b-1) le nombre ϕ de paramètres estimés pour calculer les effectifs attendus.

Loi	ϕ	$Param\`etres$
Poisson	1	moyenne
Binomiale	1	probabilité de succès
Normale	2	moyenne et variance

Code R: chisq.test(x,p) ou le vecteurs x contient les effectifs de l'échantillon et p les fréquence attendues. Attention cependant, R ne peut pas savoir combien de paramètres sont nécessaires pour estimer les fréquences théoriques! Il faut donc corriger les degrés de liberté à la main pour se conformer au tableau ci-dessus.

3. Deux applications simples du modèle linéaire

Le modèle linéaire est un outil statistique très couramment employé, qui cherche à prédire les valeurs de Y à partir de variables prédictives x. Il est construit autour d'un **modèle statistique** qui prend la forme

$$Y_i = \hat{y}_i + \hat{\epsilon}_i \tag{3.1}$$

où \hat{y}_i est la **prédiction** de y faite pour l'individu i (c'està-dire la valeur attendue en moyenne pour cet individu) et où $\hat{\epsilon}_i$ est une variable aléatoire noramlement distribuée correspondant à la différence entre la valeur observée y_i et la valeur prédite \hat{y}_i . Cette variable aléatoire décrit donc l'erreur que l'on commet dans notre prédiction; les réalisation \hat{e}_i de ces erreurs, c'est-à-dire leur valeur pour le jeu de données particulier qu'on analyse, sont communément appellées **résidus**.

L'analyse se décompose en trois étapes :

- 1. On détermine le modèle qui permet de commettre le moins d'erreurs dans les prédictions,
- 2. On teste les conditions de validité,
- 3. On utilise le modèle pour tester la significativité des effets qui nous intéressent.

Le modèle linéaire est un outil général et très flexible, parce que la prédiction \hat{y} peut s'écrire de nombreuses façons très différentes. Ici on en décrira les deux applications les plus simples : la régression linéaire et l'analyse de variance à un facteur de classification, couramment appelée ANOVA.

3.1 La régression linéaire simple

Problème: Dans les tests de corrélation vus précédemment, Y_1 et Y_2 sont deux variables aléatoires. Les deux sont sujettes à des variations non contrôlées et ont le même statut. Il peut aussi arriver que l'on cherche à expliquer une variable aléatoire quantitative Y (variable **dépendante**) par une variable quantitative x (variable **explicative**) contrôlée. On réalise alors une régression linéaire et la variable x (notée en minuscule, et non pas en majuscule comme les variables aléatoires) correspond à ce que l'on appelle un **effet fixe** : elle n'est pas aléatoire.

3.1.1 Première étape : trouver la meilleure droite pour décrire la relation entre x et Y

On suppose dans la régression linéaire que la relation entre x (variable non-aléatoire quantitative) et Y (variable aléatoire quantitative) peut être décrite par une équation de droite. La prédiction peut donc s'écrire

$$a + b x_i \tag{3.2}$$

où a est l'ordonnée à l'origine de la droite et b sa pente ; l'erreur constatée à chaque prédiction est donc

$$y_{ij} - (a + bx_i) \tag{3.3}$$

et l'erreur globale peut être quantifiée en calculant la Somme des Carrés des Écarts Résiduels, c'est-à-dire la somme de ces erreurs élevées au carré. On cherche à déterminer les valeurs \hat{a} et \hat{b} de a et b qui minimisent la SCER. C'est la méthode dite des moindres carrés. On peut montrer que

$$\hat{b} = \frac{\hat{\sigma}_{xY}}{\hat{\sigma}_x^2} \tag{3.4}$$

$$\hat{a} = \hat{\mu}_Y - \hat{b}\hat{\mu}_x \tag{3.5}$$

Notez que lorsque $x = \hat{\mu}_x$ on a $\hat{y} = \hat{\mu}_Y$. Autrement dit la droite de régression qui minimise la SCER passe nécessairement par le point $(\hat{\mu}_x, \hat{\mu}_Y)$, c'est-à-dire par le centre du nuage des points (x_i, y_{ij}) .

3.1.2 Deuxième étape : vérifier les conditions de validité

Après avoir ajusté la droite de régression aux données, on doit vérifier que cet ajustement est correct. C'est-à-dire qu'il faut vérifier que les résidus $(\hat{e}_{ij} = y_{ij} - \hat{y}_i)$ sont :

- 1. indépendants : test de Durbin-Watson,
- 2. normalement distribués : test de Shapiro-Wilk,
- 3. homoscédastiques, test de Breush-Pagan.

Pour cet enseignement on vous fera analyser les résultats des tests de Shapiro-Wilk et de Breush-Paga, mais pas ceux du test de Durbin-Watson.

3.1.3 Troisième étape : décomposer la variation de Y pour tester l'effet de

Soient k le nombre de valeurs différentes de x_i , et n_i le nombre de mesures y_{ij} réalisées pour la valeur x_i avec $n = \sum_{i=1}^k n_i$. La dispersion totale de Y peut se décomposer de la façon suivante :

$$\sum_{i,j} (y_{ij} - \hat{\mu}_Y)^2 = \sum_{i,j} (\hat{y}_i - \hat{\mu}_Y)^2 + \sum_{i,j} (y_{ij} - \hat{y}_i)^2$$
SCET

dispersion = dispersion + dispersion
totale expliquée résiduelle

(3.6)

$$SCET = \sum_{i,j} (y_{ij} - \hat{\mu})^2 = \sum_{i,j} y_{ij}^2 - n\hat{\mu}^2 = (n-1)\hat{\sigma}_Y^2$$

$$SCEE = \sum_{i=1}^k n_i (\hat{y}_i - \hat{\mu}_Y)^2 = \sum_{i=1}^k \{n_i \hat{y}_i^2\} - n\hat{\mu}^2$$

$$SCER = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 = \sum_{i,j} y_{ij}^2 - \sum_{i=1}^k \{n_i \hat{y}_i^2\}$$

La figure 3.1 illustre le principe de cette décomposition ; le tableau d'analyse de variance présenté ci-dessous la résume :

FIGURE 3.1 – Régression linéaire simple. Chaque point blanc correspond à un couple (x_i, y_{ij}) de valeurs observées, x étant une variable explicative et Y la variable à expliquer. La droite en trait plein correspond à la droite de régression. Chaque point noir placé sur cette droite correspond donc à une prédiction \hat{y}_i réalisée pour une valeur de x_i . La droite en pointillé indique $\hat{\mu}_Y$, la moyenne des y_{ij} . SCEE : somme des carrés des écarts expliqués ; chaque segment vertical représente l'écart entre la prédiction \hat{y}_i et $\hat{\mu}_Y$. SCER : somme des carrés des écarts résiduels ; chaque segment vertical représente l'écart entre la prédiction \hat{y}_i et l'observation y_{ij} . SCET : somme des carrés des écarts totaux ; chaque segment vertical représente l'écart entre y_{ij} et $\hat{\mu}_Y$ la moyenne des Y. Lorsque le modèle est ajusté, c'est-à-dire lorsque SCER est minimal et que $\hat{b} = \hat{\sigma}_{X,Y}/\hat{\sigma}_x^2$, on a SCET = SCEE + SCER.

Variation	SCE	ddl	CM	F
			$CME = \frac{SCEE}{1}$	$\frac{CME}{CMR}$
Résiduelle	SCER	n-2	$CMR = \frac{SCER}{n-2}$	
Totale	SCET	n-1		

D'après la table précédente, si le modèle n'explique rien, c'est-à-dire si on ne peut pas du tout prédire la valeur de Y à partir de celle de x, les carrés moyens CME et CMR devraient, en espérance, être égaux. Si à l'inverse il existe une relation entre x et Y, on s'attend à CME > CMR.

Conditions de validité: Les erreurs $e_i = y_i - \hat{y}_i$ sont distribuées normalement, leur variance est constante (elle ne dépend notamment pas de x_i).

Hypothèse nulle : Le modèle n'est pas explicatif $(\sigma_E^2 = 0)$

Hypothèse alternative : Le modèle est explicatif $(\sigma_E^2 > 0)$

Statistique : $f_{obs} = \frac{SCEE}{SCER/(n-2)}$

Distribution de la statistique sous H_0 : F suit une distribution de Fisher à 1 et n-2 degrés de liberté

Risque de première espèce : $\alpha = P(F \geqslant f_{obs}|_{H_0})$ Code R : 1m pour ajuster le modèle aux données (c'est-à-dire pour estimer le paramètre b), puis anova pour réaliser la décomposition de la variance et le test de Fisher. Entre les deux, il faut vérifier les conditions de validité du modèle linéaire. On peut pour cela utiliser les outils graphiques mis à disposition dans R (fonction plot). Le test de Shapiro (shapiro.test) permet de tester la normalité des résidus. Celui de Breusch-Pagan (ncv.test dans le package car, bptest dans le package lmtest) permet de tester l'homoscédasticité des résidus. Le test de Durbin-Watson (dwtest dans le package lmtest) permet de tester l'indépendance des résidus.

3.1.4 Corrélation ou régression ?

But de l'analyse	Y aléatoire, X	Y_1 et Y_2
	fixé	aléatoires
Décrire quantitati-	Régression linéa	aire (même si
vement l'influence	en théorie la ré	gression sup-
de X sur Y	pose x contrôlé) 1
Estimer l'associa-	Impossible	Corrélation ¹
tion entre deux		
variables non		
contrôlées		

3.2 L'analyse de variance à un facteur de classification

Problème : On réalise une mesure Y dans k populations. Dans chaque population A_i étudiée, on échantillonne n_i individus (avec $n = \sum_i^k n_i$). On cherche à comparer les moyennes des mesures entre les k populations.

3.2.1 Première étape : trouver la meilleure prédiction

Le modèle linéaire s'écrit ici :

$$Y_{ij} = \hat{y}_i + \hat{\epsilon}_{ij} \tag{3.7}$$

où \hat{y}_i correspond à une prédiction de la mesure dans la population i et où $\hat{\epsilon}_{ij}$ est une VA correspondant à l'erreur, c'est-à-dire à l'écart entre cette prédiction et la mesure réalisée sur l'individu j de la population i. Le fait d'utiliser la même prédiction \hat{y}_i pour tous les y_{ij} suppose que la moyenne des Y observée pour un individu ne dépend que de la population dont il est issu.

Comme précédemment, ce modèle est ajusté par les moindres carrés, et on montre que la meilleur prédiction possible est simplement

$$\hat{y}_i = \hat{\mu}_i \tag{3.8}$$

où $\hat{\mu}_i$ est la moyenne estimée des mesures à l'intérieur de la population i.

^{1.} Dans les cas simples, régression linéaire et corrélation de Pearson produisent le même risque de première espèce. En pratique, il arrive donc souvent que l'on analyse l'association entre deux variables non contrôlées par une régression.

3.2.2 Deuxième étape : vérifier les conditions de validité

Comme pour la régression linéaire, on doit vérifier que l'ajustement de notre modèle est correct et que donc les résidus sont :

- 1. indépendants,
- 2. normalement distribués,
- 3. homoscédastiques.

3.2.3 Troisième étape : décomposition de la variance et test de Fisher

Soit $\hat{\mu}$ la moyenne de l'ensemble des mesures (toutes populations confondues). La somme des carrés des écarts (SCE) totale peut s'écrire SCET = SCEE + SCER avec

$$SCET = \sum_{i,j} (y_{ij} - \hat{\mu})^2 = \sum_{i,j} y_{ij}^2 - n\hat{\mu}^2$$

$$SCEE = \sum_{i=1}^k n_i (\hat{\mu}_i - \hat{\mu})^2 = \sum_{i=1}^k \{n_i \hat{\mu}_i^2\} - n\hat{\mu}^2$$

$$SCER = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \hat{\mu}_i)^2 = \sum_{i,j} y_{ij}^2 - \sum_{i=1}^k \{n_i \hat{\mu}_i^2\}$$

Cette décomposition, illustrée par la figure 3.2, est ensuite utilisée pour construire le tableau d'analyse de la variance :

Variation		ddl	$_{\mathrm{CM}}$	F
Expliquée	SCEE	k-1	$CME = \frac{SCEE}{k-1}$	$\frac{CME}{CMR}$
			$CMR = \frac{SCER}{n-k}$	
Totale	SCET	n-1		

On peut maintenant se servir de la décomposition de la variance pour tester l'effet du facteur population sur la variable mesurée :

Conditions de validité : $\epsilon_{ij} = Y_{ij} - \hat{y}_i$ suit une distribution normale centrée et sa variance est la même dans chacune des k populations

Hypothèse nulle : $\mu_1 = \mu_2 = \dots = \mu_k$ si bien que la variation inter-population est du même ordre que la variation intra-population (CME et CMR sont égaux en espérance)

Hypothèse alternative : Au moins deux des k populations diffèrent entre elles (en espérance CME > CMR)

Statistique : $f_{obs} = \frac{CME}{CMR}$

Distribution de la statistique sous H_0 : F suit une distribution de Fisher à k-1 et N-k degrés de liberté

Risque de première espèce : $\alpha = P(F \geqslant f_{obs}|_{H_0})$

Code R: La procédure est identique à celle indiquée pour la régression linéaire: lm pour ajuster le modèle aux données (c'est-à-dire ici pour estimer les paramètres α_i), puis anova pour réaliser la

FIGURE 3.2 – ANOVA à un facteur de classification. Chaque point blanc correspond à une mesure y_i réalisée dans une des trois populations (A, B ou C) étudiées. Les segments horizontaux en trait plein correspondent à la prédiction du modèle pour chacune des populations. Chacun des points noirs placés sur ces segments correspond donc à une prédiction \hat{y}_i . La droite en pointillé indique $\hat{\mu}_Y$, la moyenne des y_i . SCEE : somme des carrés des écarts expliqués ; chaque segment vertical représente l'écart entre la prédiction \hat{y}_i et $\hat{\mu}_Y$ (écart inter-groupe). SCER : somme des carrés des écarts résiduels ; chaque segment vertical représente l'écart entre la prédiction \hat{y}_i et l'observation y_i (écart intra-groupe). SCET : somme des carrés des écarts totaux ; chaque segment vertical représente l'écart entre y_i et $\hat{\mu}_Y$ la moyenne des Y. Lorsque le modèle est ajusté, c'est-à-dire lorsque la SCER est minimale et que la prédiction correspond à la moyenne de la population à laquelle l'individu mesuré appartient, on a SCET = SCEE + SCER.

décomposition de la variance et le test de Fisher. Entre les deux, il faut vérifier que les conditions de validité du modèle linéaire sont remplies, comme indiqué là aussi pour la régression linéaire (voir page 13).

3.3 Retour sur la signification de la décomposition de la variance dans l'ANOVA

Un point un peu délicat à bien saisir ici est comment on peut tester l'existence de différences de moyenne en comparant des variances...Nous allons tenter ici d'expliquer ce point de façon intuitive.

Imaginons que l'on réalise une mesure sur deux individus choisis dans deux populations différentes. Deux situations sont possibles. Si les populations sont identiques, on ne s'attend pas à observer plus de différences entre ces deux individus qu'entre deux individus choisis au hasard dans la même population. Si au contraire les populations sont différentes, on s'attend à observer plus

de différences entre deux individus choisis dans deux populations distinctes qu'entre deux individus issus de la même population.

Pour quantifier et contraster ces différences, on peut se servir de variances. Les différences entre individus issus de la même population sont reliées à la variance de la mesure au sein de chaque population (la variance intrapopulation, que nous avons appelée au-desus le carré moyen résiduel). Les différences entre individus issus de populations différentes dépendent à la fois de la variance intra-population et de la variance entre populations (la variance inter-populations). Cette variance correspond au carré moyen expliqué.

Pour tester l'hypothèse nulle selon laquelle les moyennes de toutes les populations sont égales, il nous suffira donc de tester l'hypothèse selon laquelle le carré moyen expliqué est égal au carré moyen résiduel. L'hypothèse alternative est ici que le carré moyen expliqué est supérieur au carré moyen résiduel, puisqu'il ne peut pas, en principe, y avoir moins de différences entre deux individus issus de deux populations distinctes qu'entre deux individus issus de la même population. Le problème se résume donc à une comparaison de deux variances, et on peut le résoudre en utilisant le test de comparaison de variances de Fisher.

4. Une clef pour choisir le bon test

FIGURE 4.1 – Pour chaque test, des symboles indiquent les conditions de validité. Dans tous les cas, les unités d'observations sont supposées indépendantes les unes des autres. Le symbole i indique que chaque mesure est réalisée sur une unité d'observation unique. L'hypothèse de normalité est représentée par le symbole \mathcal{N} ; celle d'homoscédasticité par le symbole $\sigma_1^2 = \sigma_2^2$ (même dans le cas du modèle linéaire où ce sont les résidus et non les variables qui doivent être normalement distribués et de variance constante). Les tests qui ne traitent qu'une seule variable (comparaison d'une moyenne observée à une moyenne théorique et test du χ^2 de conformité) ne sont pas représentés ici.

17

5. Tables statistiques

Distribution normale centrée réduite

Z suit une distribution de normale centrée ($\mu = 0$) réduite ($\sigma = 1$).

$$\begin{array}{ll} p = & F(z_{obs}) = \int_{-\infty}^{z_{obs}} f(z) dz \\ = & P(Z \leqslant z_{obs}) \end{array}$$

La table indique une valeur de p pour un z_{obs} donné.

z_{obs}	0	-0,01	-0,02	-0,03	-0,04	-0,05	-0,06	-0,07	-0,08	-0,09	z_{obs}	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002	0	0,5	0,504	0,508	0,512	0,516	0,5199	0,5239	0,5279	0,5319	0,5359
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003	0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,2	0,5793	0,5832	0,5871	0,591	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
-3,1	0,001	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007	0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,648	0,6517
-3	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,001	0,001	0,4	0,6554	0,6591	0,6628	0,6664	0,67	0,6736	0,6772	0,6808	0,6844	0,6879
-2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014	0,5	0,6915	0,695	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,719	0,7224
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,002	0,0019	0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,003	0,0029	0,0028	0,0027	0,0026	0,7	0,758	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,004	0,0039	0,0038	0,0037	0,0036	0,8	0,7881	0,791	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
-2,5	0,0062	0,006	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048	0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,834	0,8365	0,8389
-2,4	0,0082	0,008	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064	1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084	1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,877	0,879	0,881	0,883
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,011	1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,898	0,8997	0,9015
-2,1	0,0179	0,0174	0,017	0,0166	0,0162	0,0158	0,0154	0,015	0,0146	0,0143	1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
-2	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183	1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,025	0,0244	0,0239	0,0233	1,5	0,9332	0,9345	0,9357	0,937	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294	1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367	1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455	1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
-1,5	0,0668	0,0655	0,0643	0,063	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559	1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,975	0,9756	0,9761	0,9767
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681	2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823	2,1	0,9821	0,9826	0,983	0,9834	0,9838	0,9842	0,9846	0,985	0,9854	0,9857
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,102	0,1003	0,0985	2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,989
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,123	0,121	0,119	0,117	2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
-1	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379	2,4	0,9918	0,992	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,166	0,1635	0,1611	2,5	0,9938	0,994	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
-0,8	0,2119	0,209	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867	2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,996	0,9961	0,9962	0,9963	0,9964
-0,7	0,242	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148	2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,997	0,9971	0,9972	0,9973	0,9974
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451	2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,998	0,9981
-0,5	0,3085	0,305	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,281	0,2776	2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
-0,4	0,3446	0,3409	0,3372	0,3336	0,33	0,3264	0,3228	0,3192	0,3156	0,3121	3	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,999	0,999
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,352	0,3483	3,1	0,999	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
-0,2	0,4207	0,4168	0,4129	0,409	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859	3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
-0,1	0,4602	$0,\!4562$	0,4522	0,4483	0,4443	0,4404	$0,\!4364$	$0,\!4325$	$0,\!4286$	0,4247	3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
0	0,5	0,496	0,492	0,488	0,484	0,4801	0,4761	0,4721	0,4681	0,4641	3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

<u>_</u>

Distribution de Student

T suit une distribution de Student à ν degrés de liberté :

$$\begin{array}{ll} p = & F_{\nu}(t_{obs}) = \int_{-\infty}^{t_{obs}} f_{\nu}(t) dt \\ = & P(T \leqslant t_{obs}) \end{array}$$

La table indique une valeur de t_{obs} pour un p et un ν donnés.

											p											
ν	0,001	0,01	0,025	0,05	0,075	0,1	0,125	0,15	0,175	0,2	0,225	0,25	0,275	0,3	0,325	0,35	0,375	0,4	0,425	0,45	0,475	0,5
1	-318,309	-31,821	-12,706	-6,314	-4,165	-3,078	-2,414	-1,963	-1,632	-1,376	-1,171	-1	-0,854	-0,727	-0,613	-0,51	-0,414	-0,325	-0,24	-0,158	-0,079	0
2	-22,327	-6,965	-4,303	-2,92	-2,282	-1,886	-1,604	-1,386	-1,21	-1,061	-0,931	-0,816	-0,713	-0,617	-0,528	-0,445	-0,365	-0,289	-0,215	-0,142	-0,071	0
3	-10,215	-4,541	-3,182	-2,353	-1,924	-1,638	-1,423	-1,25	-1,105	-0,978	-0,866	-0,765	-0,671	-0,584	-0,502	-0,424	-0,349	-0,277	-0,206	-0,137	-0,068	0
4	-7,173	-3,747	-2,776	-2,132	-1,778	-1,533	-1,344	-1,19	-1,057	-0,941	-0,836	-0,741	-0,652	-0,569	-0,49	-0,414	-0,341	-0,271	-0,202	-0,134	-0,067	0
5	-5,893	-3,365	-2,571	-2,015	-1,699	-1,476	-1,301	-1,156	-1,031	-0,92	-0,819	-0,727	-0,641	-0,559	-0,482	-0,408	-0,337	-0,267	-0,199	-0,132	-0,066	0
6	-5,208	-3,143	-2,447	-1,943	-1,65	-1,44	-1,273	-1,134	-1,013	-0,906	-0,808	-0,718	-0,633	-0,553	-0,477	-0,404	-0,334	-0,265	-0,197	-0,131	-0,065	0
7	-4,785	-2,998	-2,365	-1,895	-1,617	-1,415	-1,254	-1,119	-1,001	-0,896	-0,8	-0,711	-0,628	-0,549	-0,474	-0,402	-0,331	-0,263	-0,196	-0.13	-0,065	0
8	-4,501	-2,896	-2,306	-1,86	-1,592	-1,397	-1,24	-1,108	-0,993	-0,889	-0,794	-0,706	-0,624	-0,546	-0,471	-0,399	-0.33	-0,262	-0,195	-0.13	-0,065	0
9	-4,297	-2,821	-2,262	-1,833	-1,574	-1,383	-1,23	-1,1	-0,986	-0,883	-0,79	-0,703	-0,621	-0,543	-0,469	-0,398	-0,329	-0,261	-0,195	-0,129	-0,064	0
10	-4,144	-2,764	-2,228	-1,812	-1,559	-1,372	-1,221	-1,093	-0,98	-0,879	-0,786	-0,7	-0,619	-0,542	-0,468	-0,397	-0,328	-0,26	-0,194	-0,129	-0,064	0
11	-4,025	-2,718	-2,201	-1,796	-1,548	-1,363	-1,214	-1,088	-0,976	-0,876	-0,783	-0,697	-0,617	-0,54	-0,466	-0,396	-0.327	-0,26	-0,194	-0,129	-0,064	0
12	-3,93	-2,681	-2,179	-1,782	-1,538	-1,356	-1,209	-1,083	-0,972	-0,873	-0,781	-0,695	-0,615	-0,539	-0,465	-0,395	-0,326	-0,259	-0,193	-0,128	-0,064	0
13	-3,852	-2,65	-2,16	-1,771	-1,53	-1,35	-1,204	-1,079	-0,969	-0,87	-0,779	-0,694	-0,614	-0,538	-0,464	-0,394	-0,325	-0,259	-0,193	-0,128	-0,064	0
14	-3,787	-2,624	-2,145	-1,761	-1,523	-1,345	-1,2	-1,076	-0,967	-0,868	-0,777	-0,692	-0,613	-0,537	-0,464	-0,393	-0,325	-0,258	-0,193	-0,128	-0,064	0
15	-3,733	-2,602	-2,131	-1,753	-1,517	-1,341	-1,197	-1,074	-0,965	-0,866	-0,776	-0,691	-0,612	-0,536	-0,463	-0,393	-0,325	-0,258	-0,192	-0,128	-0,064	0
16	-3,686	-2,583	-2,12	-1,746	-1,512	-1,337	-1,194	-1,071	-0,963	-0,865	-0,774	-0,69	-0,611	-0,535	-0,462	-0,392	-0,324	-0,258	-0,192	-0,128	-0,064	0
17	-3,646	-2,567	-2,11	-1,74	-1,508	-1,333	-1,191	-1,069	-0,961	-0,863	-0,773	-0,689	-0,61	-0,534	-0,462	-0,392	-0,324	-0,257	-0,192	-0,128	-0,064	0
18	-3,61	-2,552	-2,101	-1,734	-1,504	-1,33	-1,189	-1,067	-0,96	-0,862	-0,772	-0,688	-0,609	-0,534	-0,461	-0,392	-0,324	-0,257	-0,192	-0,127	-0,064	0
19	-3,579	-2,539	-2,093	-1,729	$^{-1,5}$	-1,328	-1,187	-1,066	-0,958	-0,861	-0,771	-0,688	-0,609	-0,533	-0,461	-0,391	-0,323	-0,257	-0,192	-0,127	-0,064	0
20	-3,552	-2,528	-2,086	-1,725	-1,497	-1,325	-1,185	-1,064	-0,957	-0,86	-0,771	-0,687	-0,608	-0,533	-0,461	-0,391	-0,323	-0,257	-0,192	-0,127	-0,063	0
21	-3,527	-2,518	-2,08	-1,721	-1,494	-1,323	-1,183	-1,063	-0,956	-0,859	-0,77	-0,686	-0,608	-0,532	-0,46	-0,391	-0,323	-0,257	-0,191	-0,127	-0,063	0
22	-3,505	-2,508	-2,074	-1,717	-1,492	-1,321	-1,182	-1,061	-0,955	-0,858	-0,769	-0,686	-0,607	-0,532	-0,46	-0,39	-0,323	-0,256	-0,191	-0,127	-0,063	0
23	-3,485	-2,5	-2,069	-1,714	-1,489	-1,319	-1,18	-1,06	-0,954	-0,858	-0,769	-0,685	-0,607	-0,532	-0,46	-0,39	-0,322	-0,256	-0,191	-0,127	-0,063	0
24	-3,467	-2,492	-2,064	-1,711	-1,487	-1,318	-1,179	-1,059	-0,953	-0,857	-0,768	-0,685	-0,606	-0,531	-0,46	-0,39	-0,322	-0,256	-0,191	-0,127	-0,063	0
25	-3,45	-2,485	-2,06	-1,708	-1,485	-1,316	-1,178	-1,058	-0,952	-0,856	-0,767	-0,684	-0,606	-0,531	-0,459	-0,39	-0,322	-0,256	-0,191	-0,127	-0,063	0
26	-3,435	-2,479	-2,056	-1,706	-1,483	-1,315	-1,177	-1,058	-0,952	-0,856	-0,767	-0,684	-0,606	-0,531	-0,459	-0,39	-0,322	-0,256	-0,191	-0,127	-0,063	0
27	-3,421	-2,473	-2,052	-1,703	-1,482	-1,314	-1,176	-1,057	-0,951	-0,855	-0,767	-0,684	-0,605	-0,531	-0,459	-0,389	-0,322	-0,256	-0,191	-0,127	-0,063	0
28	-3,408	-2,467	-2,048	-1,701	-1,48	-1,313	-1,175	-1,056	-0,95	-0,855	-0,766	-0,683	-0,605	-0,53	-0,459	-0,389	-0,322	-0,256	-0,191	-0,127	-0,063	0
29	-3,396	-2,462	-2,045	-1,699	-1,479	-1,311	-1,174	-1,055	-0.95	-0,854	-0,766	-0,683	-0,605	-0,53	-0,459	-0,389	-0,322	-0,256	-0,191	-0,127	-0,063	0
30	-3,385	-2,457	-2,042	-1,697	-1,477	-1,31	-1,173	-1,055	-0,949	-0,854	-0,765	-0,683	-0,605	-0,53	-0,458	-0,389	-0,322	-0,256	-0,191	-0,127	-0,063	0
40	-3,307	-2,423	-2,021	-1,684	-1,468	-1,303	-1,167	-1,05	-0,946	-0,851	-0,763	-0,681	-0,603	-0,529	-0,457	-0,388	-0,321	-0,255	-0.19	-0,126	-0,063	0
60	-3,232	-2,39	-2	-1,671	-1,458	-1,296	-1,162	-1,045	-0,942	-0,848	-0.76	-0,679	-0,601	-0,527	-0,456	-0,387	-0,32	-0,254	-0.19	-0,126	-0,063	0
70	-3,211	-2,381	-1,994	-1,667	-1,456	-1,294	-1,16	-1,044	-0,941	-0,847	-0.76	-0,678	-0,601	-0,527	-0,456	-0,387	-0,32	-0,254	-0.19	-0,126	-0,063	0
80	-3,195	-2,374	-1,99	-1,664	-1,453	-1,292	-1,159	-1,043	-0,94	-0,846	-0,759	-0,678	-0,6	-0,526	-0,455	-0,387	-0,32	-0,254	-0.19	-0,126	-0,063	0
120	-3,16	-2,358	-1,98	-1,658	-1,449	-1,289	-1,156	-1,041	-0,938	-0,845	-0,758	-0,677	-0,599	-0,526	-0,455	-0,386	-0,319	-0,254	-0.19	-0,126	-0,063	0
10000	-3,091	-2,327	-1,96	-1,645	-1,44	-1,282	-1,15	-1,036	-0,935	-0,842	-0,755	-0,675	-0,598	-0,524	-0,454	-0,385	-0,319	-0,253	-0,189	-0,126	-0,063	0

19

Distribution de Fisher

 $f_{\nu_1,\nu_2}(f)$ $0 \qquad f_{obs} \qquad f$

 $F=\hat{\sigma}_1^2/\hat{\sigma}_2^2$ suit une distribution de Fisher à ν_1 et ν_2 degrés de liberté :

$$p = \int_{f_{obs}}^{\infty} f_{\nu_1,\nu_2}(f) df$$
$$= P(F \geqslant f_{obs})$$

La table indique une valeur de f_{obs} pour un p et des valeurs de ν_1 et ν_2 données.

													ν_2												
ν_1	p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	0,001	405284,07	998,5	167,03	74,14	47,18	35,51	29,25	25,41	22,86	21,04	19,69	18,64	17,82	17,14	16,59	16,12	15,72	15,38	15,08	14,82	14,59	14,38	14,2	14,03
	0,005	16210,72	198,5	55,55	31,33	22,78	18,63	16,24	14,69	13,61	12,83	12,23	11,75	11,37	11,06	10,8	10,58	10,38	10,22	10,07	9,94	9,83	9,73	9,63	9,55
	0,01	4052,18	98,5	34,12	21,2	16,26	13,75	12,25	11,26	10,56	10,04	9,65	9,33	9,07	8,86	8,68	8,53	8,4	8,29	8,18	8,1	8,02	7,95	7,88	7,82
	0,025	647,79	38,51	17,44	12,22	10,01	8,81	8,07	7,57	7,21	6,94	6,72	6,55	6,41	6,3	6,2	6,12	6,04	5,98	5,92	5,87	5,83	5,79	5,75	5,72
1	0,05	161,45	18,51	10,13	7,71	6,61	5,99	5,59	5,32	5,12	4,96	4,84	4,75	4,67	4,6	4,54	4,49	4,45	4,41	4,38	4,35	4,32	4,3	4,28	4,26
İ	0,1	39,86	8,53	5,54	4,54	4,06	3,78	3,59	3,46	3,36	3,29	3,23	3,18	3,14	3,1	3,07	3,05	3,03	3,01	2,99	2,97	2,96	2,95	2,94	2,93
	0,25	5,83	2,57	2,02	1,81	1,69	1,62	1,57	1,54	1,51	1,49	1,47	1,46	1,45	1,44	1,43	1,42	1,42	1,41	1,41	1,4	1,4	1,4	1,39	1,39
	0.5	1	0.67	0.59	0.55	0.53	0,51	0,51	0.5	0.49	0.49	0.49	0.48	0.48	0.48	0.48	0.48	0.47	0.47	0,47	0,47	0,47	0.47	0,47	0.47
	0.75	0,17	0,13	0,12	0,12	0,11	0,11	0,11	0.11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0.1	0,1	0,1	0.1	0.1	0,1	0.1	0,1
	0,001	499999,5	999	148,5	61,25	37,12	27	21,69	18,49	16,39	14,91	13,81	12,97	12,31	11,78	11,34	10,97	10,66	10,39	10,16	9,95	9,77	9,61	9,47	9,34
	0,005	19999,5	199	49,8	26,28	18,31	14,54	12,4	11,04	10,11	9,43	8,91	8,51	8,19	7,92	7,7	7,51	7,35	7,21	7,09	6,99	6,89	6,81	6,73	6,66
	0,01	4999,5	99	30,82	18	13,27	10,92	9,55	8,65	8,02	7,56	7,21	6,93	6.7	6,51	6,36	6,23	6,11	6,01	5,93	5,85	5,78	5,72	5,66	5,61
	0,025	799,5	39	16,04	10,65	8,43	7,26	6,54	6,06	5,71	5,46	5,26	5,1	4,97	4,86	4,77	4,69	4,62	4,56	4,51	4,46	4,42	4,38	4,35	4,32
2	0,05	199,5	19	9,55	6,94	5,79	5,14	4,74	4,46	4,26	4,1	3,98	3.89	3,81	3,74	3,68	3,63	3.59	3,55	3,52	3,49	3,47	3,44	3,42	3,4
-	0,1	49,5	9	5,46	4,32	3,78	3,46	3,26	3,11	3,01	2,92	2,86	2,81	2,76	2,73	2,7	2,67	2,64	2,62	2,61	2,59	2,57	2,56	2,55	2,54
	0,25	7,5	3	2,28	2	1,85	1,76	1,7	1,66	1,62	1,6	1,58	1,56	1,55	1,53	1,52	1,51	1,51	1,5	1,49	1,49	1,48	1,48	1,47	1,47
ł	0.5	1,5	1	0,88	0,83	0,8	0,78	0,77	0,76	0,75	0,74	0,74	0,73	0,73	0,73	0,73	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,71	0,71
	0,75	0,39	0,33	0,32	0,33	0,3	0.3	0,77	0,70	0.3	0,74	0,74	0,73	0,73	0,73	0,73	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,71	0,71
_	0,001	540379,2	999,17	141,11	56.18	33,2	23,7	18,77	15,83	13,9	12,55		10,8	10,21	9,73			8,73	8,49	8,28		7,94	7,8	7,67	7,55
	0,001	21614,74	199,17		24,26			10,88		8,72		11,56	7,23			9,34	9,01			5,92	8,1	5,73	5,65		
	0,003	5403,35	99,17	47,47 $29,46$	16,69	16,53 $12,06$	12,92		9,6	6,99	8,08	$^{7,6}_{6,22}$		6,93	6,68	6,48	6,3	6,16	6,03		5,82		$^{5,05}_{4,82}$	5,58 $4,76$	5,52
-							9,78	8,45	7,59		6,55		5,95	5,74	5,56	5,42	5,29	5,18	5,09	5,01	4,94	4,87			4,72
3	0,025	864,16	39,17	15,44	9,98	7,76	6,6	5,89	5,42	5,08	4,83	4,63	4,47	4,35	4,24	4,15	4,08	4,01	3,95	3,9	3,86	3,82	3,78	3,75	3,72
3	0,05	215,71	19,16	9,28	6,59	5,41	4,76	4,35	4,07	3,86	3,71	3,59	3,49	3,41	3,34	3,29	3,24	3,2	3,16	3,13	3,1	3,07	3,05	3,03	3,01
	0,1	53,59	9,16	5,39	4,19	3,62	3,29	3,07	2,92	2,81	2,73	2,66	2,61	2,56	2,52	2,49	2,46	2,44	2,42	2,4	2,38	2,36	2,35	2,34	2,33
	0,25	8,2	3,15	2,36	2,05	1,88	1,78	1,72	1,67	1,63	1,6	1,58	1,56	1,55	1,53	1,52	1,51	1,5	1,49	1,49	1,48	1,48	1,47	1,47	1,46
	0,5	1,71	1,13	1	0,94	0,91	0,89	0,87	0,86	0,85	0,85	0,84	0,84	0,83	0,83	0,83	0,82	0,82	0,82	0,82	0,82	0,81	0,81	0,81	0,81
ļ	0,75	0,49	0,44	0,42	0,42	0,42	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41
	0,001	562499,58	999,25	137,1	53,44	31,09	21,92	17,2	14,39	12,56	11,28	10,35	9,63	9,07	8,62	8,25	7,94	7,68	7,46	7,27	7,1	6,95	6,81	6,7	6,59
	0,005	22499,58	199,25	46,19	23,15	15,56	12,03	10,05	8,81	7,96	7,34	6,88	6,52	6,23	6	5,8	5,64	5,5	5,37	5,27	5,17	5,09	5,02	4,95	4,89
	0,01	5624,58	99,25	28,71	15,98	11,39	9,15	7,85	7,01	6,42	5,99	5,67	5,41	5,21	5,04	4,89	4,77	4,67	4,58	4,5	4,43	4,37	4,31	4,26	4,22
	0,025	899,58	39,25	15,1	9,6	7,39	6,23	5,52	5,05	4,72	4,47	4,28	4,12	4	3,89	3,8	3,73	3,66	3,61	3,56	3,51	3,48	3,44	3,41	3,38
4	0,05	224,58	19,25	9,12	6,39	5,19	4,53	4,12	3,84	3,63	3,48	3,36	3,26	3,18	3,11	3,06	3,01	2,96	2,93	2,9	2,87	2,84	2,82	2,8	2,78
	0,1	55,83	9,24	5,34	4,11	3,52	3,18	2,96	2,81	2,69	2,61	2,54	2,48	2,43	2,39	2,36	2,33	2,31	2,29	2,27	2,25	2,23	2,22	2,21	2,19
	0,25	8,58	3,23	2,39	2,06	1,89	1,79	1,72	1,66	1,63	1,59	1,57	1,55	1,53	1,52	1,51	1,5	1,49	1,48	1,47	1,47	1,46	1,45	1,45	1,44
	0,5	1,82	1,21	1,06	1	0,96	0,94	0,93	0,91	0,91	0,9	0,89	0,89	0,88	0,88	0,88	0,88	0,87	0,87	0,87	0,87	0,87	0,87	0.86	0,86
	0,75	0,55	0,5	0,49	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48
	0,001	576404,56	999,3	134,58	51,71	29,75	20,8	16,21	13,48	11,71	10,48	9,58	8,89	8,35	7,92	7,57	7,27	7,02	6,81	6,62	6,46	6,32	6,19	6,08	5,98
	0,005	23055,8	199,3	45,39	22,46	14,94	11,46	9,52	8,3	7,47	6,87	6,42	6,07	5,79	5,56	5,37	5,21	5,07	4,96	4,85	4,76	4,68	4,61	4,54	4,49
	0,01	5763,65	99,3	28,24	15,52	10,97	8,75	7,46	6,63	6,06	5,64	5,32	5,06	4,86	4,69	4,56	4,44	4,34	4,25	4,17	4,1	4,04	3,99	3,94	3,9
-[0,025	921,85	39,3	14,88	9,36	7,15	5,99	5,29	4,82	4,48	4,24	4,04	3,89	3,77	3,66	3,58	3,5	3,44	3,38	3,33	3,29	3,25	3,22	3,18	3,15
5	0,05	230,16	19,3	9,01	6,26	5,05	4,39	3,97	3,69	3,48	3,33	3,2	3,11	3,03	2,96	2,9	2,85	2,81	2,77	2,74	2,71	2,68	2,66	2,64	2,62
İ	0,1	57,24	9,29	5,31	4,05	3,45	3,11	2,88	2,73	2,61	2,52	2,45	2,39	2,35	2,31	2,27	2,24	2,22	2,2	2,18	2,16	2,14	2,13	2,11	2,1
İ	0,25	8,82	3,28	2,41	2,07	1,89	1,79	1,71	1,66	1,62	1,59	1,56	1,54	1,52	1,51	1,49	1,48	1,47	1,46	1,46	1,45	1,44	1,44	1,43	1,43
ı	0.5	1,89	1,25	1,1	1.04	1	0,98	0,96	0,95	0.94	0,93	0,93	0,92	0,92	0,91	0,91	0,91	0.91	0.9	0.9	0,9	0.9	0.9	0.9	0,9
1	0,75	0,59	0,54	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53
	0,001	585937,11	999,33	132,85	50,53	28,83	20,03	15,52	12,86	11,13	9,93	9,05	8,38	7,86	7,44	7,09	6,8	6,56	6,35	6,18	6,02	5,88	5,76	5,65	5,55
1	0,005	23437,11	199,33	44,84	21,97	14,51	11,07	9,16	7,95	7,13	6,54	6,1	5,76	5,48	5,26	5,07	4,91	4,78	4,66	4,56	4,47	4,39	4,32	4,26	4,2
1	0,01	5858,99	99,33	27,91	15,21	10,67	8,47	7,19	6,37	5,8	5,39	5,07	4,82	4,62	4,46	4,32	4,2	4,1	4,01	3,94	3,87	3,81	3,76	3,71	3,67
1	0,025	937,11	39,33	14,73	9,2	6,98	5,82	5,12	4,65	4,32	4,07	3,88	3,73	3,6	3,5	3,41	3,34	3,28	3,22	3,17	3,13	3,09	3,05	3,02	2,99
6	0,05	233,99	19,33	8,94	6,16	4,95	4,28	3,87	3,58	3.37	3,22	3,09	3	2,92	2,85	2,79	2,74	2,7	2,66	2,63	2,6	2,57	2,55	2,53	2,51
"	0,1	58,2	9,33	5,28	4,01	3,4	3,05	2,83	2,67	2,55	2,46	2,39	2,33	2,28	2,24	2,21	2,18	2,15	2,13	2,11	2,09	2,08	2,06	2,05	2,04
1	0,25	8,98	3,31	2,42	2,08	1.89	1,78	1,71	1,65	1,61	1.58	1,55	1,53	1,51	1.5	1,48	1,47	1,46	1,45	1,44	1,44	1,43	1,42	1,42	1,41
1	0.5	1,94	1,28	1,13	1,06	1,02	1	0.98	0.97	0,96	0.95	0,95	0.94	0.94	0.94	0.93	0.93	0.93	0.93	0,92	0,92	0,92	0,92	0,92	0,92
- [0,75	0,62	0,57	0.56	0.56	0.56	0.56	0,56	0,56	0,56	0,56	0,57	0,54	0,54	0,54	0,53	0,53	0,53	0,53	0,52	0,52	0,52	0,52	0,57	0,52
	0,10	1 0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01

												ν	2												
ν_1	p 0,001	1 592873,29	2 999,36	3 131,58	4 49,66	5 28,16	6 19,46	7 15,02	8 12,4	9 10,7	10 9,52	11 8,66	12 8	13 7,49	14 7.08	15 6,74	16 6,46	17 6,22	18 6,02	19 5,85	20 5,69	21 5,56	22 5,44	23 5,33	24 5,23
	0,001	23714,57	199,36	44,43	$\frac{49,66}{21,62}$	$\frac{28,16}{14,2}$	19,46 $10,79$	8,89	7,69	6,88	6.3	5,86	5,52	5,25	5,08	4,85	4.69	4,56	4,44	$^{5,85}_{4,34}$	4.26	4.18	$\frac{5,44}{4,11}$	$\frac{5,33}{4,05}$	3,99
	0,01	5928,36	99,36	27,67	14,98	10,46	8,26	6,99	6,18	5,61	5,2	4,89	4,64	4,44	4,28	4,14	4,03	3,93	3,84	3,77	3,7	3,64	3,59	3,54	3,5
7	0,025	948,22	39,36	14,62	9,07	6,85	5,7	4,99	4,53	4,2	3,95	3,76	3,61	3,48	3,38	3,29	3,22	3,16	3,1	3,05	3,01	2,97	2,93	$^{2,9}_{2,44}$	2,87
'	$0,05 \\ 0,1$	236,77 58,91	$\frac{19,35}{9,35}$	8,89 $5,27$	$^{6,09}_{3,98}$	$^{4,88}_{3,37}$	$^{4,21}_{3,01}$	3,79 $2,78$	$^{3,5}_{2,62}$	3,29 $2,51$	$3,14 \\ 2,41$	3,01 $2,34$	$^{2,91}_{2,28}$	$^{2,83}_{2,23}$	2,76 $2,19$	$^{2,71}_{2,16}$	$^{2,66}_{2,13}$	$^{2,61}_{2,1}$	$^{2,58}_{2,08}$	$^{2,54}_{2,06}$	$^{2,51}_{2,04}$	$^{2,49}_{2,02}$	$^{2,46}_{2,01}$	1,99	$^{2,42}_{1,98}$
	0,25	9,1	3,34	2,43	2,08	1,89	1,78	1,7	1,64	1,6	1,57	1,54	1,52	1,5	1,49	1,47	1,46	1,45	1,44	1,43	1,43	1,42	1,41	1,41	1,4
	$0,5 \\ 0,75$	1,98 0,64	$^{1,3}_{0,59}$	0,58	1,08 0,58	$^{1,04}_{0,58}$	$^{1,02}_{0,59}$	0,59	0,99 $0,59$	$0,98 \\ 0,59$	$0,97 \\ 0,59$	$0,96 \\ 0.59$	$0,96 \\ 0,59$	$0,96 \\ 0,59$	0,95 0.6	0,95	$0,95 \\ 0,6$	0.94 0.6	$0,94 \\ 0,6$	0,94 0.6	0,94 0,6	0,94 0,6	0.93	$0,93 \\ 0,6$	0.93
	0,75	598144,16	999,37	130,62	49	27,65	19,03	14,63	12,05	10,37	9,2	8,35	7,71	7,21	6,8	6,47	6,19	5,96	5,76	5,59	5,44	5,31	5,19	5,09	4,99
	0,005	23925,41	199,37	44,13	21,35	13,96	10,57	8,68	7,5	6,69	6,12	5,68	5,35	5,08	4,86	4,67	4,52	4,39	4,28	4,18	4,09	4,01	3,94	3,88	3,83
	$0,01 \\ 0,025$	5981,07 956,66	99,37 $39,37$	27,49 $14,54$	14,8	6,76	8,1	$^{6,84}_{4,9}$	6,03	$_{4,1}^{5,47}$	$\frac{5,06}{3,85}$	$4,74 \\ 3,66$	$^{4,5}_{3,51}$	$^{4,3}_{3,39}$	$^{4,14}_{3,29}$	$\frac{4}{3,2}$	$3,89 \\ 3,12$	$3,79 \\ 3,06$	$3,71 \\ 3,01$	$^{3,63}_{2,96}$	3,56 $2,91$	3,51 $2,87$	3,45 $2,84$	$^{3,41}_{2,81}$	3,36 $2,78$
8	0,023	238,88	19,37	8,85	8,98 $6,04$	4,82	$^{5,6}_{4,15}$	3,73	$\frac{4,43}{3,44}$	3,23	3,07	2,95	2,85	2,77	2,7	2,64	2,59	2,55	2,51	2,48	2,45	2,42	2,34	2,37	2,76
	0,1	59,44	9,37	5,25	3,95	3,34	2,98	2,75	2,59	2,47	2,38	2,3	2,24	2,2	2,15	2,12	2,09	2,06	2,04	2,02	2	1,98	1,97	1,95	1,94
	0,25 0,5	9,19	3,35 $1,32$	$^{2,44}_{1,16}$	2,08 1,09	1,89 1,05	1,78 1,03	$^{1,7}_{1,01}$	1,64	$^{1,6}_{0,99}$	$^{1,56}_{0,98}$	$^{1,53}_{0.98}$	$^{1,51}_{0,97}$	$^{1,49}_{0,97}$	$^{1,48}_{0.96}$	$^{1,46}_{0.96}$	$^{1,45}_{0.96}$	$^{1,44}_{0,96}$	$^{1,43}_{0.95}$	$^{1,42}_{0,95}$	$^{1,42}_{0.95}$	$^{1,41}_{0.95}$	$^{1,4}_{0,95}$	$^{1,4}_{0,95}$	$^{1,39}_{0,94}$
	0,75	0,65	0,6	0,6	0,6	0,6	0,61	0,61	0,61	0,61	0,61	0,61	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62
	0,001	602283,99	999,39	129,86	48,47	27,24	18,69	14,33	11,77	10,11	8,96	8,12	7,48	6,98	6,58	6,26	5,98	5,75	5,56	5,39	5,24	5,11	4,99	4,89	4,8
	$0,005 \\ 0,01$	24091 6022,47	199,39 99,39	43,88 $27,35$	21,14 $14,66$	13,77 $10,16$	10,39 7,98	8,51 $6,72$	7,34 $5,91$	$6,54 \\ 5,35$	$\frac{5,97}{4,94}$	5,54 $4,63$	$^{5,2}_{4,39}$	4,94 $4,19$	4,72 4.03	$^{4,54}_{3,89}$	$\frac{4,38}{3,78}$	$^{4,25}_{3,68}$	$^{4,14}_{3,6}$	$\frac{4,04}{3,52}$	$3,96 \\ 3,46$	$3,88 \\ 3,4$	$3,81 \\ 3,35$	$3,75 \\ 3,3$	$3,69 \\ 3,26$
	0,025	963,28	39,39	14,47	8,9	6,68	5,52	4,82	4,36	4,03	3,78	3,59	3,44	3,31	3,21	3,12	3,05	2,98	2,93	2,88	2,84	2,8	2,76	2,73	2,7
9	0,05	240,54	19,38	8,81	6	4,77	4,1	3,68	3,39	3,18	3,02	2,9	2,8	2,71	2,65	2,59	2,54	2,49	2,46	2,42	2,39	2,37	2,34	2,32	2,3
	$0,1 \\ 0,25$	59,86 9,26	9,38 $3,37$	5,24 $2,44$	3,94 $2,08$	3,32 $1,89$	$^{2,96}_{1,77}$	$^{2,72}_{1,69}$	$^{2,56}_{1,63}$	$^{2,44}_{1,59}$	$^{2,35}_{1,56}$	$^{2,27}_{1,53}$	$^{2,21}_{1,51}$	$^{2,16}_{1,49}$	$^{2,12}_{1,47}$	$^{2,09}_{1,46}$	$^{2,06}_{1,44}$	$^{2,03}_{1,43}$	$\frac{2}{1,42}$	$^{1,98}_{1,41}$	$^{1,96}_{1,41}$	$^{1,95}_{1,4}$	$^{1,93}_{1,39}$	$^{1,92}_{1,39}$	$^{1,91}_{1,38}$
	0,5	2,03	1,33	1,17	1,1	1,06	1,04	1,02	1,01	1	0,99	0,99	0,98	0,98	0,97	0,97	0,97	0,96	0,96	0,96	0,96	0,96	0,96	0,95	0,95
	0,75	0,66	0,62 999,4	0,61	0,62	0,62	0,62	0,62	0,63	0,63	0,63	0,63	0,63	0,63	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64
	0,001 0,005	605620,97 24224,49	199,4	129,25 43,69	48,05 20,97	26,92 13,62	18,41 10,25	14,08 8,38	$11,54 \\ 7,21$	9,89 6,42	8,75 5,85	7,92 $5,42$	7,29 5,09	$^{6,8}_{4,82}$	6,4 4,6	6,08 4,42	5,81 4,27	5,58 $4,14$	5,39 4,03	5,22 $3,93$	5,08 $3,85$	$4,95 \\ 3,77$	4,83 3,7	4,73 3,64	$\frac{4,64}{3,59}$
	0,01	6055,85	99,4	27,23	14,55	10,05	7,87	6,62	5,81	5,26	4,85	4,54	4,3	4,1	3,94	3,8	3,69	3,59	3,51	3,43	3,37	3,31	3,26	3,21	3,17
10	$0,025 \\ 0.05$	968,63 241,88	39,4 $19,4$	$14,42 \\ 8,79$	8,84 $5,96$	6,62	5,46 $4,06$	$^{4,76}_{3,64}$	4,3	$3,96 \\ 3,14$	3,72 $2,98$	3,53 $2,85$	3,37 $2,75$	$^{3,25}_{2,67}$	$^{3,15}_{2,6}$	3,06 $2,54$	$^{2,99}_{2,49}$	$^{2,92}_{2,45}$	$^{2,87}_{2,41}$	$^{2,82}_{2,38}$	$^{2,77}_{2,35}$	$^{2,73}_{2,32}$	$^{2,7}_{2,3}$	$^{2,67}_{2,27}$	$^{2,64}_{2,25}$
10	0,05	60,19	9,39	5,23	3,90	$^{4,74}_{3,3}$	2,94	2,7	3,35 $2,54$	2,42	2,32	$^{2,85}_{2,25}$	2,73	2,14	2,0	2,06	2,49	2,43	1,98	1,96	1,94	1,92	1,9	1,89	1,88
	0,25	9,32	3,38	2,44	2,08	1,89	1,77	1,69	1,63	1,59	1,55	1,52	1,5	1,48	1,46	1,45	1,44	1,43	1,42	1,41	1,4	1,39	1,39	1,38	1,38
	$0,5 \\ 0,75$	2,04 0,67	$^{1,35}_{0,63}$	$^{1,18}_{0,62}$	1,11 0.63	$^{1,07}_{0,63}$	$^{1,05}_{0,63}$	$^{1,03}_{0,64}$	$^{1,02}_{0,64}$	$^{1,01}_{0,64}$	0.64	$0,99 \\ 0.65$	$0,99 \\ 0,65$	$0,98 \\ 0.65$	0.98 0.65	0,98 $0,65$	$0,97 \\ 0,65$	$0,97 \\ 0.65$	$0,97 \\ 0,65$	$0,97 \\ 0,66$	$0,97 \\ 0.66$	0,96 $0,66$	0,96 $0,66$	$0,96 \\ 0,66$	0,96 $0,66$
	0,001	608367,68	999,41	128,74	47,7	26,65	18,18	13,88	11,35	9,72	8,59	7,76	7,14	6,65	6,26	5,94	5,67	5,44	5,25	5,08	4,94	4,81	4,7	4,6	4,51
	0,005	24334,36	199,41	43,52	20,82	13,49	10,13	8,27	7,1	6,31	5,75	5,32	4,99	4,72	4,51	4,33	4,18	4,05	3,94	3,84	3,76	3,68	3,61	3,55	3,5
	0,01 $0,025$	6083,32 973,03	99,41 $39,41$	27,13 $14,37$	$14,45 \\ 8,79$	$9,96 \\ 6,57$	7,79 $5,41$	6,54 $4,71$	5,73 $4,24$	5,18 3,91	$^{4,77}_{3,66}$	$^{4,46}_{3,47}$	$\frac{4,22}{3,32}$	$\frac{4,02}{3,2}$	$3,86 \\ 3,09$	3,73 3,01	3,62 $2,93$	3,52 $2,87$	3,43 $2,81$	3,36 $2,76$	3,29 $2,72$	$^{3,24}_{2,68}$	3,18 $2,65$	3,14 $2,62$	$^{3,09}_{2,59}$
11	0,05	242,98	19,4	8,76	5,94	4,7	4,03	3,6	3,31	3,1	2,94	2,82	2,72	2,63	2,57	2,51	2,46	2,41	2,37	2,34	2,31	2,28	2,26	2,24	2,22
	0,1	60,47	9,4	5,22	3,91	3,28	$^{2,92}_{1,77}$	2,68	$^{2,52}_{1,63}$	2,4	2,3	2,23	$^{2,17}_{1.49}$	2,12	$^{2,07}_{1,46}$	$^{2,04}_{1.44}$	2,01	1,98 $1,42$	1,95	1,93	1,91	1,9	1,88	1,87	1,85
	$0,25 \\ 0,5$	9,37 2,06	3,39 $1,35$	$^{2,45}_{1,19}$	$^{2,08}_{1,12}$	1,89 1,08	1,05	$^{1,69}_{1,04}$	1,03	$^{1,58}_{1,01}$	$^{1,55}_{1,01}$	$^{1,52}_{1}$	0,99	$^{1,47}_{0,99}$	0.99	0,98	$^{1,43}_{0,98}$	0.98	$^{1,41}_{0,98}$	$^{1,4}_{0,97}$	$^{1,39}_{0,97}$	$^{1,39}_{0,97}$	$^{1,38}_{0,97}$	$^{1,37}_{0,97}$	$^{1,37}_{0,97}$
	0,75	0,68	0,63	0,63	0,64	0,64	0,65	0,65	0,65	0,65	0,66	0,66	0,66	0,66	0,66	0,66	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67
	0,001 0,005	610667,82 24426,37	999,42 199,42	128,32 43,39	47,41 20.7	26,42 13,38	17,99 10,03	13,71 8,18	11,19 7,01	9,57 6,23	8,45 5,66	7,63 5,24	$\frac{7}{4,91}$	6,52 4,64	6,13 4,43	5,81 4,25	5,55 $4,1$	5,32 3,97	5,13 3,86	4,97 3,76	4,82 3.68	4,7 3,6	$4,58 \\ 3,54$	4,48 3,47	4,39 3,42
	0,003	6106,32	99,42	27,05	14,37	9,89	7,72	6,47	5,67	5,11	4,71	4,4	4,16	3,96	3,8	3,67	3,55	3,46	3,37	3,70	3,23	3,17	3,12	3,07	3,03
	0,025	976,71	39,41	14,34	8,75	6,52	5,37	4,67	4,2	3,87	3,62	3,43	3,28	3,15	3,05	2,96	2,89	2,82	2,77	2,72	2,68	2,64	2,6	2,57	2,54
12	$0,05 \\ 0,1$	243,91 60,71	19,41 $9,41$	8,74 $5,22$	$\frac{5,91}{3,9}$	$^{4,68}_{3,27}$	$\frac{4}{2.9}$	3,57 $2,67$	$^{3,28}_{2,5}$	3,07 $2,38$	2,91 2,28	$^{2,79}_{2,21}$	$^{2,69}_{2,15}$	$^{2,6}_{2,1}$	$^{2,53}_{2,05}$	$^{2,48}_{2,02}$	$^{2,42}_{1,99}$	$^{2,38}_{1,96}$	$^{2,34}_{1,93}$	$^{2,31}_{1,91}$	$^{2,28}_{1,89}$	$^{2,25}_{1,87}$	2,23 1,86	$^{2,2}_{1,84}$	2,18 1,83
	0,25	9,41	3,39	2,45	2,08	1,89	1,77	1,68	1,62	1,58	1,54	1,51	1,49	1,47	1,45	1,44	1,43	1,41	1,4	1,4	1,39	1,38	1,37	1,37	1,36
	$0,5 \\ 0,75$	2,07 0,68	$^{1,36}_{0,64}$	$^{1,2}_{0,64}$	$^{1,13}_{0,65}$	1,09	$^{1,06}_{0,65}$	$^{1,04}_{0,66}$	1,03 0,66	$^{1,02}_{0,66}$	$^{1,01}_{0,67}$	$^{1,01}_{0,67}$	1	1	0,99	$0,99 \\ 0,68$	$0,99 \\ 0,68$	0,98	$0,98 \\ 0,68$	0,98	0.98 0.68	0,98	0.97 0.68	0,97	0,97
	0,73	612622,01	999,42	127,96	47,16	0,65 26,22	17,82	13,56	11,06	9,44	8,32	7,51	0,67 6,89	0,67 6,41	0,67 6,02	5,71	5,44	0,68 5,22	5,03	0,68 4,87	4,72	0,68 4,6	4,49	0,68 4,39	0,68 4,3
	0,005	24504,54	199,42	43,27	20,6	13,29	9,95	8,1	6,94	6,15	5,59	5,16	4,84	4,57	4,36	4,18	4,03	3,9	3,79	3,7	3,61	3,54	3,47	3,41	3,35
	0,01 $0,025$	6125,86 979,84	99,42 $39,42$	26,98	14,31	9,82	$\frac{7,66}{5,33}$	6,41	5,61	$\frac{5,05}{3,83}$	$^{4,65}_{3,58}$	$4,34 \\ 3,39$	$^{4,1}_{3,24}$	$3,91 \\ 3,12$	3,75	$^{3,61}_{2,92}$	$^{3,5}_{2,85}$	$^{3,4}_{2,79}$	3,32 $2,73$	3,24 $2,68$	3,18 $2,64$	$^{3,12}_{2,6}$	3,07 $2,56$	3,02 $2,53$	2,98
13	0,025 $0,05$	979,84 244,69	$\frac{39,42}{19,42}$	14,3 8,73	8,71 $5,89$	$^{6,49}_{4,66}$	5,33 3,98	$^{4,63}_{3,55}$	$^{4,16}_{3,26}$	3,83	$^{3,58}_{2,89}$	$\frac{3,39}{2,76}$	$^{3,24}_{2,66}$	2,58	3,01 $2,51$	2,92 $2,45$	$^{2,85}_{2,4}$	2,79 $2,35$	2,73	2,68	2,64 $2,25$	$^{2,6}_{2,22}$	$^{2,56}_{2,2}$	2,53 $2,18$	$^{2,5}_{2,15}$
	0,1	60,9	9,41	5,21	3,89	3,26	2,89	2,65	2,49	2,36	2,27	2,19	2,13	2,08	2,04	2	1,97	1,94	1,92	1,89	1,87	1,86	1,84	1,83	1,81
	$0,25 \\ 0,5$	9,44 2,08	$^{3,4}_{1,37}$	$^{2,45}_{1,2}$	2,08 1,13	1,89 1,09	$^{1,77}_{1,06}$	1,68 1,05	1,62 1,03	$^{1,58}_{1,02}$	$^{1,54}_{1,02}$	$^{1,51}_{1,01}$	1,49	1,47	1,45	$^{1,43}_{0,99}$	0.99	$^{1,41}_{0,99}$	$^{1,4}_{0,99}$	$^{1,39}_{0,98}$	1,38 0,98	$^{1,37}_{0,98}$	$^{1,37}_{0,98}$	$^{1,36}_{0,98}$	1,36 0,98
	$0.5 \\ 0.75$	0,69	0,65	0,65	0,65	0,66	0,66	0,67	0,67	0,67	0,68	0,68	0,68	0,68	0,68	0,99	0,99	0,99	0,99	0,98	0,98	0,98	0,98	0,98	0,98
	0,001	614302,75	999,43	127,64	46,95	26,06	17,68	13,43	10,94	9,33	8,22	7,41	6,79	6,31	5,93	5,62	5,35	5,13	4,94	4,78	4,64	4,51	4,4	4,3	4,21
	$0,005 \\ 0,01$	24571,77 6142,67	199,43 99,43	43,17 $26,92$	20,51 $14,25$	$\frac{13,21}{9,77}$	$9,88 \\ 7,6$	$^{8,03}_{6,36}$	6,87 $5,56$	6,09 $5,01$	$^{5,53}_{4,6}$	$^{5,1}_{4,29}$	$^{4,77}_{4,05}$	$\frac{4,51}{3,86}$	$^{4,3}_{3,7}$	$^{4,12}_{3,56}$	$3,97 \\ 3,45$	$3,84 \\ 3,35$	$3,73 \\ 3,27$	$3,64 \\ 3,19$	$3,55 \\ 3,13$	$3,48 \\ 3,07$	$3,41 \\ 3,02$	$^{3,35}_{2,97}$	$^{3,3}_{2,93}$
	0,01	982,53	39,43	14,28	8,68	6,46	5,3	4,6	4,13	3,8	3,55	3,36	3,21	3,08	2,98	2,89	$^{3,43}_{2,82}$	2,75	2,7	2,65	2,6	2,56	2,53	2,5	$^{2,93}_{2,47}$
14	0,05	245,36	19,42	8,71	5,87	4,64	3,96	3,53	3,24	3,03	2,86	2,74	2,64	2,55	2,48	2,42	2,37	2,33	2,29	2,26	2,22	2,2	2,17	2,15	2,13
	$0,1 \\ 0,25$	61,07 9,47	$9,42 \\ 3,41$	$_{2,45}^{5,2}$	3,88 $2,08$	$^{3,25}_{1,89}$	2,88 1,76	2,64 1,68	$^{2,48}_{1,62}$	$^{2,35}_{1,57}$	$^{2,26}_{1,54}$	$^{2,18}_{1,51}$	$^{2,12}_{1,48}$	$^{2,07}_{1,46}$	$^{2,02}_{1,44}$	$^{1,99}_{1,43}$	$^{1,95}_{1,42}$	$^{1,93}_{1,41}$	$^{1,9}_{1,4}$	1,88 1,39	1,86 1,38	$^{1,84}_{1,37}$	1,83 1,36	$^{1,81}_{1,36}$	$^{1,8}_{1,35}$
	0,5	2,09	1,37	1,21	1,13	1,09	1,07	1,05	1,04	1,03	1,02	1,01	1,01	1	1	1	0,99	0,99	0,99	0,99	0,99	0,98	0,98	0,98	0,98
	0,75	0,69	0,65	0,65	0,66	0,66	0,67	0,67	0,68	0,68	0,68	0,69	0,69	0,69	0,69	0,69	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7

		I										ν	'n												
ν_1	p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	0,001	615763,66	999,43	127,37	46,76	25,91	17,56	13,32	10,84	9,24	8,13	7,32	6,71	6,23	5,85	5,54	5,27	5,05	4,87	4,7	4,56	4,44	4,33	4,23	4,14
	$0,005 \\ 0,01$	24630,21 6157,28	199,43 $99,43$	$\frac{43,08}{26,87}$	$\frac{20,44}{14,2}$	$\frac{13,15}{9,72}$	$9,81 \\ 7,56$	$^{7,97}_{6,31}$	$^{6,81}_{5,52}$	$^{6,03}_{4,96}$	$_{4,56}^{5,47}$	$\frac{5,05}{4,25}$	$^{4,72}_{4,01}$	$\frac{4,46}{3,82}$	$^{4,25}_{3,66}$	$^{4,07}_{3,52}$	$3,92 \\ 3,41$	$3,79 \\ 3,31$	$3,68 \\ 3,23$	$3,59 \\ 3,15$	$^{3,5}_{3,09}$	$3,43 \\ 3,03$	$^{3,36}_{2,98}$	$^{3,3}_{2,93}$	3,25 2,89
	0,025	984,87	39,43	14,25	8,66	6,43	5,27	4,57	4,1	3,77	3,52	3,33	3,18	3,05	2,95	2,86	2,79	2,72	2,67	2,62	2,57	2,53	2,5	2,47	2,44
15	0,05	245,95	19,43	8,7	5,86	4,62	3,94	3,51	3,22	3,01	2,85	2,72	2,62	2,53	2,46	2,4	2,35	2,31	2,27	2,23	2,2	2,18	2,15	2,13	2,11
	$0,1 \\ 0,25$	61,22 9,49	$9,42 \\ 3,41$	$^{5,2}_{2,46}$	$\frac{3,87}{2.08}$	3,24 $1,89$	2,87 1,76	2,63 1,68	$^{2,46}_{1,62}$	$^{2,34}_{1,57}$	$^{2,24}_{1,53}$	$^{2,17}_{1.5}$	$^{2,1}_{1,48}$	$^{2,05}_{1,46}$	$^{2,01}_{1,44}$	$^{1,97}_{1,43}$	$^{1,94}_{1,41}$	$^{1,91}_{1,4}$	1,89 1,39	$^{1,86}_{1,38}$	$^{1,84}_{1,37}$	1,83 1,37	1,81 1.36	$^{1,8}_{1,35}$	1,78 1,35
	0,5	2,09	1,38	1,21	1,14	1,1	1,07	1,05	1,04	1,03	1,02	1,02	1,01	1,01	1	1	1	0.99	0.99	0.99	0,99	0.99	0.99	0.98	0.98
	0,75	0,7	0,66	0,66	0,66	0,67	0,67	0,68	0,68	0,69	0,69	0,69	0,7	0,7	0,7	0,7	0,7	0,7	0,71	0,71	0,71	0,71	0,71	0,71	0,71
	0,001	620907,67 24835,97	999,45 199,45	126,42	46,1	25,39	17,12	12,93	10,48	8,9	7,8	7,01	6,4	5,93 $4,27$	5,56	5,25	4,99	4,78	4,59	4,43	4,29	4,17	4,06	3,96	3,87
	$0,005 \\ 0.01$	6208,73	99,45	42,78 $26,69$	20,17 14.02	$\frac{12,9}{9,55}$	9,59 $7,4$	7,75 $6,16$	$^{6,61}_{5,36}$	5,83 $4,81$	5,27 $4,41$	4,86 4.1	4,53 $3,86$	3,66	$\frac{4,06}{3,51}$	$3,88 \\ 3,37$	3,73 $3,26$	$3,61 \\ 3,16$	$^{3,5}_{3,08}$	3,4	3,32 $2,94$	3,24 2.88	3,18 $2,83$	3,12 $2,78$	3,06 2,74
	0,025	993,1	39,45	14,17	8,56	6,33	5,17	4,47	4	3,67	3,42	3,23	3,07	2,95	2,84	2,76	2,68	2,62	2,56	2,51	2,46	2,42	2,39	2,36	2,33
20	0,05	248,01	19,45	8,66	5,8	4,56	3,87	3,44	3,15	2,94	2,77	2,65	2,54	2,46	2,39	2,33	2,28	2,23	2,19	2,16	2,12	2,1	2,07	2,05	2,03
	$0,1 \\ 0,25$	61,74 9,58	$9,44 \\ 3,43$	5,18 $2,46$	$\frac{3,84}{2,08}$	3,21 1,88	$^{2,84}_{1,76}$	$^{2,59}_{1,67}$	$^{2,42}_{1,61}$	$^{2,3}_{1,56}$	$^{2,2}_{1,52}$	$^{2,12}_{1,49}$	$^{2,06}_{1,47}$	$^{2,01}_{1,45}$	$^{1,96}_{1,43}$	$^{1,92}_{1,41}$	$^{1,89}_{1,4}$	1,86 1,39	$^{1,84}_{1,38}$	$^{1,81}_{1,37}$	$^{1,79}_{1,36}$	$^{1,78}_{1,35}$	$^{1,76}_{1,34}$	$^{1,74}_{1,34}$	1,73 1,33
	0,23	2,12	1,39	1,23	1,15	1,11	1,08	1,07	1,01	1,04	1,03	1,03	1,02	1,02	1,01	1,01	1,01	1,01	1,38	1,37	1,30	1,33	1,34	1	0.99
	0,75	0,71	0,67	0,68	0,68	0,69	0,7	0,7	0,71	0,71	0,71	0,72	0,72	0,72	0,73	0,73	0,73	0,73	0,73	0,73	0,74	0,74	0,74	0,74	0,74
	0,001	624016,83	999,46	125,84	45,7	25,08	16,85	12,69	10,26	8,69	7,6	6,81	6,22	5,75	5,38	5,07	4,82	4,6	4,42	4,26	4,12	4	3,89	3,79	3,71
	$0,005 \\ 0.01$	24960,34 6239,83	199,46 $99,46$	42,59 $26,58$	$\frac{20}{13,91}$	12,76 $9,45$	$9,45 \\ 7,3$	7,62 $6,06$	6,48 $5,26$	5,71 $4,71$	5,15 $4,31$	$^{4,74}_{4,01}$	$\frac{4,41}{3,76}$	$\frac{4,15}{3,57}$	$3,94 \\ 3,41$	3,77 $3,28$	3,62 $3,16$	$3,49 \\ 3,07$	3,38 $2,98$	3,29 $2,91$	$^{3,2}_{2,84}$	3,13 $2,79$	3,06 $2,73$	$\frac{3}{2,69}$	2,95 2,64
	0,025	998,08	39,46	14,12	8,5	6,27	5,11	4,4	3,94	3,6	3,35	3,16	3,01	2,88	2,78	2,69	2,61	2,55	2,49	2,44	2,4	2,36	2,32	2,29	2,26
25	0,05	249,26	19,46	8,63	5,77	4,52	3,83	3,4	3,11	2,89	2,73	2,6	2,5	2,41	2,34	2,28	2,23	2,18	2,14	2,11	2,07	2,05	2,02	2	1,97
	$0,1 \\ 0,25$	62,05 9,63	$9,45 \\ 3,44$	5,17 $2,46$	3,83 2,08	3,19 1,88	$^{2,81}_{1,75}$	$^{2,57}_{1,67}$	$^{2,4}_{1,6}$	$^{2,27}_{1,55}$	$^{2,17}_{1,52}$	$^{2,1}_{1,49}$	$^{2,03}_{1,46}$	$^{1,98}_{1,44}$	$^{1,93}_{1,42}$	$^{1,89}_{1,4}$	1,86 1,39	1,83 1,38	$^{1,8}_{1,37}$	1,78 $1,36$	$^{1,76}_{1,35}$	$^{1,74}_{1,34}$	$^{1,73}_{1,33}$	$^{1,71}_{1,33}$	$^{1,7}_{1,32}$
	0,5	2,13	1,4	1,23	1,16	1,12	1,09	1,07	1,06	1,05	1,04	1,04	1,03	1,03	1,02	1,02	1,02	1,01	1,01	1,01	1,01	1,01	1	1	1
	0,75	0,72	0,68	0,69	0,69	0,7	0,71	0,72	0,72	0,73	0,73	0,73	0,74	0,74	0,74	0,75	0,75	0,75	0,75	0,75	0,75	0,76	0,76	0,76	0,76
	0,001 $0,005$	626098,96 25043,63	999,47 $199,47$	125,45 $42,47$	45,43 $19,89$	24,87 $12,66$	16,67 $9,36$	12,53 7,53	10,11 $6,4$	8,55 $5,62$	7,47 $5,07$	6,68 $4,65$	6,09 4,33	$\frac{5,63}{4,07}$	5,25 $3,86$	4,95 $3,69$	$^{4,7}_{3,54}$	$\frac{4,48}{3,41}$	$^{4,3}_{3,3}$	$\frac{4,14}{3,21}$	$\frac{4}{3,12}$	$3,88 \\ 3,05$	3,78 $2,98$	$^{3,68}_{2,92}$	3,59 2,87
	0,003	6260,65	99,47	26,5	13,84	9,38	7,23	5,99	5,2	4,65	4,25	3,94	3,7	3,51	3,35	3,21	3,1	3	2,92	2,84	2,78	2,72	2,67	2,62	2,58
	0,025	1001,41	39,46	14,08	8,46	6,23	5,07	4,36	3,89	3,56	3,31	3,12	2,96	2,84	2,73	2,64	2,57	2,5	2,44	2,39	2,35	2,31	2,27	2,24	2,21
30	0,05	250,1	19,46	8,62 $5,17$	5,75	4,5	$^{3,81}_{2,8}$	3,38 $2,56$	3,08	$^{2,86}_{2,25}$	$^{2,7}_{2,16}$	2,57	$^{2,47}_{2,01}$	2,38	2,31	$^{2,25}_{1,87}$	2,19	2,15	$^{2,11}_{1,78}$	$^{2,07}_{1,76}$	$^{2,04}_{1,74}$	2,01	1,98	$^{1,96}_{1,69}$	1,94
	$0,1 \\ 0,25$	62,26 9,67	$9,46 \\ 3,44$	2,47	$\frac{3,82}{2,08}$	3,17 1,88	1,75	1,66	$^{2,38}_{1.6}$	1,55	1,51	2,08 1,48	1,45	$^{1,96}_{1,43}$	$^{1,91}_{1,41}$	1.4	1,84 $1,38$	$^{1,81}_{1,37}$	1,78	1,76	1,74	$^{1,72}_{1,33}$	$^{1,7}_{1,32}$	1,32	1,67 1,31
	0,5	2,15	1,41	1,24	1,16	1,12	1,1	1,08	1,07	1,05	1,05	1,04	1,03	1,03	1,03	1,02	1,02	1,02	1,02	1,01	1,01	1,01	1,01	1,01	1,01
	0,75	0,73	0,69	0,69	0,7	0,71	0,72	0,72	0,73	0,74	0,74	0,74	0,75	0,75	0,75	0,76	0,76	0,76	0,76	0,77	0,77	0,77	0,77	0,77	0,77
	$0,001 \\ 0,005$	628712,03 25148,15	999,47 $199,47$	124,96 $42,31$	45,09 19,75	$\frac{24,6}{12,53}$	16,44 $9,24$	12,33 7,42	9,92 $6,29$	8,37 $5,52$	7,3 $4,97$	6,52 $4,55$	5,93 $4,23$	5,47 $3,97$	$\frac{5,1}{3,76}$	$^{4,8}_{3,58}$	$\frac{4,54}{3,44}$	$^{4,33}_{3,31}$	$\frac{4,15}{3,2}$	3,99 $3,11$	$3,86 \\ 3,02$	3,74 $2,95$	$^{3,63}_{2,88}$	$^{3,53}_{2,82}$	3,45 2,77
	0,01	6286,78	99,47	26,41	13,75	9,29	7,14	5,91	5,12	4,57	4,17	3,86	3,62	3,43	3,27	3,13	3,02	2,92	2,84	2,76	2,69	2,64	2,58	2,54	2,49
	0,025	1005,6	39,47	14,04	8,41	6,18	5,01	4,31	3,84	3,51	3,26	3,06	2,91	2,78	2,67	2,59	2,51	2,44	2,38	2,33	2,29	2,25	2,21	2,18	2,15
40	$0,05 \\ 0,1$	251,14 62,53	$19,47 \\ 9,47$	8,59 $5,16$	$\frac{5,72}{3,8}$	$\frac{4,46}{3,16}$	3,77 $2,78$	3,34 $2,54$	$3,04 \\ 2,36$	2,83 2,23	$^{2,66}_{2,13}$	$^{2,53}_{2,05}$	$^{2,43}_{1,99}$	$^{2,34}_{1,93}$	$^{2,27}_{1,89}$	$^{2,2}_{1,85}$	$^{2,15}_{1,81}$	$^{2,1}_{1,78}$	$^{2,06}_{1,75}$	$^{2,03}_{1,73}$	$^{1,99}_{1,71}$	1,96 1,69	$^{1,94}_{1,67}$	$^{1,91}_{1,66}$	1,89 1,64
	0,25	9,71	3,45	2,47	2.08	1,88	1,75	1,66	1,59	1,54	1,51	1,47	1,45	1,42	1,41	1,39	1,37	1,76	1,75	1,73	1,33	1,32	1,31	1,31	1,3
	0,5	2,16	1,42	1,25	1,17	1,13	1,1	1,08	1,07	1,06	1,05	1,05	1,04	1,04	1,03	1,03	1,03	1,02	1,02	1,02	1,02	1,02	1,01	1,01	1,01
	0,75	0,73 630285,38	0,7 999,48	0,7 124,66	0,71 44,88	0,72 24,44	0,73 16,31	0,74 12,2	9,8	0,75 8,26	0,75 7,19	0,76 6,42	0,76 5,83	0,77 5,37	0,77 5	0,77 4.7	0,77 4,45	0,78 4,24	0,78 4,06	0,78 3,9	0,78 3,77	0,79 3,64	0,79 3,54	0,79 3,44	0,79 3,36
	0,001	25211,09	199,48	42,21	19,67	12,45	9,17	7,35	6,22	5,45	4,9	4,49	4,17	3,91	3,7	3,52	3,37	3,25	3,14	3,04	2,96	2,88	2,82	2,76	2,7
	0,01	6302,52	99,48	26,35	13,69	9,24	7,09	5,86	5,07	4,52	4,12	3,81	3,57	3,38	3,22	3,08	2,97	2,87	2,78	2,71	2,64	2,58	2,53	2,48	2,44
50	0,025	1008,12	39,48 $19,48$	14,01	8,38 5,7	6,14	4,98 $3,75$	4,28 $3,32$	3,81	$^{3,47}_{2,8}$	3,22	3,03	2,87	2,74	2,64	2,55	2,47	2,41	$^{2,35}_{2,04}$	2,3 2	2,25	2,21	$^{2,17}_{1,91}$	2,14	2,11
30	$0,05 \\ 0,1$	251,77 62,69	9,48 9,47	8,58 5,15	3,8	$\frac{4,44}{3,15}$	2,77	2,52	3,02 $2,35$	2,22	$^{2,64}_{2,12}$	$^{2,51}_{2,04}$	$^{2,4}_{1,97}$	$^{2,31}_{1,92}$	$^{2,24}_{1,87}$	2,18 1,83	$^{2,12}_{1,79}$	$^{2,08}_{1,76}$	1,74	1,71	$^{1,97}_{1,69}$	$^{1,94}_{1,67}$	1,65	$^{1,88}_{1,64}$	1,86 1,62
	0,25	9,74	3,46	2,47	2,08	1,88	1,75	1,66	1,59	1,54	1,5	1,47	1,44	1,42	1,4	1,38	1,37	1,36	1,34	1,33	1,32	1,32	1,31	1,3	1,29
	0,5	2,17	1,42	1,25	1,18	1,13	1,11	1,09	1,07	1,06	1,06	1,05	1,04	1,04	1,04	1,03	1,03	1,03	1,02	1,02	1,02	1,02	1,02	1,02	1,01
	0,75	0,74 631336,56	0,7 999,48	0,71 124,47	0,72 44,75	0,73 24,33	0,74 16,21	0,74 12,12	0,75 9,73	0,76 8,19	0,76 7,12	0,77 6,35	0,77 5,76	0,77 5,3	0,78 4,94	0,78 4,64	0,78 4,39	0,79 4,18	0,79	0,79 3,84	0,79 3,7	0,8 3,58	0,8 3,48	0,8 3,38	0,8 3,29
	0,005	25253,14	199,48	42,15	19,61	12,4	9,12	7,31	6,18	5,41	4,86	4,45	4,12	3,87	3,66	3,48	3,33	3,21	3,1	3	2,92	2,84	2,77	2,71	2,66
	0,01	6313,03	99,48	26,32	13,65	9,2	7,06	5,82	5,03	4,48	4,08	3,78	3,54	3,34	3,18	3,05	2,93	2,83	2,75	2,67	2,61	2,55	2,5	2,45	2,4
60	$0,025 \\ 0,05$	1009,8 252,2	39,48 $19,48$	13,99 $8,57$	8,36 $5,69$	6,12 $4,43$	$4,96 \\ 3,74$	$^{4,25}_{3,3}$	$3,78 \\ 3,01$	3,45 $2,79$	$^{3,2}_{2,62}$	$\frac{3}{2,49}$	$^{2,85}_{2,38}$	$^{2,72}_{2,3}$	$^{2,61}_{2,22}$	2,52 $2,16$	$^{2,45}_{2,11}$	$^{2,38}_{2,06}$	$^{2,32}_{2,02}$	$^{2,27}_{1,98}$	$^{2,22}_{1,95}$	$^{2,18}_{1,92}$	$^{2,14}_{1,89}$	$^{2,11}_{1,86}$	2,08 1,84
30	0,05	62,79	9,48 $9,47$	8,57 5,15	3.79	$\frac{4,43}{3,14}$	$\frac{3,74}{2,76}$	$\frac{3,3}{2,51}$	$^{3,01}_{2,34}$	2,79	2,62	2,49	1,96	1,9	1,86	1,82	1,78	1,75	$\frac{2,02}{1,72}$	1,98	1,68	1,66	1,64	1,62	1,84
	0,25	9,76	3,46	2,47	2,08	1,87	1,74	1,65	1,59	1,54	1,5	1,47	1,44	1,42	1,4	1,38	1,36	1,35	1,34	1,33	1,32	1,31	1,3	1,3	1,29
	0,5	2,17	1,43	1,25	1,18	1,14	1,11	1,09	1,08	1,07	1,06	1,05	1,05	1,04	1,04	1,03	1,03	1,03	1,03	1,02	1,02	1,02	1,02	1,02	1,02
	0,75	0,74 633972,4	0,7 999,49	0,71 123,97	0,72 44,4	0,73 24,06	0,74 15,98	0,75 11,91	0,76 9,53	0,76 8	0,77 6,94	0,77 6,18	0,78 5,59	0,78 5,14	0,78 4,77	0,79 4,47	0,79 4,23	0,79 4,02	0,8 3,84	3,68	0,8 3,54	0,8 3,42	0,81 3,32	3,22	0,81 3,14
1	0,001	25358,57	199,49	41,99	19,47	12,27	9	7,19	6,06	5,3	4,75	4,34	4,01	3,76	3,55	3,37	3,22	3,1	2,99	2,89	2,81	2,73	2,66	2,6	2,55
	0,01	6339,39	99,49	26,22	13,56	9,11	6,97	5,74	4,95	4,4	4	3,69	3,45	3,25	3,09	2,96	2,84	2,75	2,66	2,58	2,52	2,46	2,4	2,35	2,31
120	$0,025 \\ 0,05$	1014,02 253,25	39,49 $19,49$	$\frac{13,95}{8,55}$	8,31 5,66	$^{6,07}_{4,4}$	$^{4,9}_{3,7}$	$^{4,2}_{3,27}$	3,73 $2,97$	3,39 $2,75$	3,14 $2,58$	$^{2,94}_{2,45}$	$^{2,79}_{2,34}$	$^{2,66}_{2,25}$	$^{2,55}_{2,18}$	$^{2,46}_{2,11}$	$^{2,38}_{2,06}$	$^{2,32}_{2,01}$	$^{2,26}_{1.97}$	$^{2,2}_{1,93}$	$^{2,16}_{1,9}$	$^{2,11}_{1,87}$	$^{2,08}_{1,84}$	$^{2,04}_{1,81}$	2,01 1,79
120	0,03	63,06	9,48	5,14	3,78	3,12	2,74	2,49	2,32	2,18	2,08	2,43	1,93	1,88	1,83	1,79	1,75	1,72	1,69	1,67	1,64	1,62	1,6	1,59	1,57
	0,25	9,8	3,47	2,47	2,08	1,87	1,74	1,65	1,58	1,53	1,49	1,46	1,43	1,41	1,39	1,37	1,35	1,34	1,33	1,32	1,31	1,3	1,29	1,28	1,28
	$0,5 \\ 0.75$	2,18 0.75	1,43 0.71	1,26 0.72	1,18 0.73	$\frac{1,14}{0.74}$	0.75	$^{1,1}_{0.76}$	$\frac{1,08}{0.77}$	$^{1,07}_{0.78}$	1,06 0.78	1,06 0.79	$^{1,05}_{0.79}$	1,05	1,04	1,04	$^{1,04}_{0.81}$	1,03	$^{1,03}_{0.81}$	1,03	1,03 0,82	$^{1,03}_{0.82}$	$^{1,03}_{0.82}$	$^{1,02}_{0.83}$	1,02 0.83
1	0,70	0,70	0,71	0,72	0,73	0,74	0,70	0,70	0,77	0,10	0,10	0,79	0,79	0,0	υ,ο	0,0	0,01	0,01	0,01	0,04	0,04	0,04	0,04	0.00	0,00

Distribution de Fisher (suite)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 0,001 \\ 0,005 \\ 0,005 \\ 0,66 \\ 6,65 \\ 6,67 \\ 0,07 \\ 0,005 \\ 0,001 \\ 0,567 \\ 0,39 \\ 0,015 \\ 0,025 \\ 0,005 \\ 0,39 \\ 0,39 \\ 0,32 \\ 0,11 \\ 0,25 \\ 0,005 \\ 0,39 \\ 0,39 \\ 0,32 \\ 0,33 \\ 0,34 \\ 0,33 \\ 0,32 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,34 \\ 0,44 \\ 0,44 \\ 0,44 \\ 0,44 \\ 0,44 \\ 0,44 \\ 0,44 \\ 0,$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0,75 0,41 0,41 0,4 0,4 0,4
0,001 6,49 6,12 5,7 5,31 4,95 4,62
0,005 4,84 4,62 4,37 4,14 3,92 3,72
0,01 4,18 4,02 3,83 3,65 3,48 3,32
0,025 3,35 3,25 3,13 3,01 2,89 2,79
4 0.05 2.76 2.69 2.61 2.53 2.45 2.37
0,1 2,18 2,14 2,09 2,04 1,99 1,95
0,25 1,44 1,42 1,4 1,38 1,37 1,35
0,5 0,86 0,86 0,85 0,85 0,84 0,84
0,75 0,48 0,48 0,48 0,48 0,48 0,48
0,001 5,89 5,53 5,13 4,76 4,42 4,11
0,005 4,43 4,23 3,99 3,76 3,55 3,35
0,025 3,13 3,03 2,9 2,79 2,67 2,57
5 0,05 2,6 2,53 2,45 2,37 2,29 2,21
0,1 2,09 2,05 2 1,95 1,9 1,85
0,25 1,42 1,41 1,39 1,37 1,35 1,33
0,5 0,89 0,89 0,89 0,88 0,88 0,88
0,75 0,53 0,53 0,53 0,53 0,53
0,001 5,46 5,12 4,73 4,37 4,04 3,75
0,005 4,15 3,95 3,71 3,49 3,28 3,09
0,01 3,63 3,47 3,29 3,12 2,96 2,8
0,025 2,97 2,87 2,74 2,63 2,52 2,41
0,1 2,02 1,98 1,93 1,87 1,82 1,77
0,25 1,41 1,39 1,37 1,35 1,33 1,31
0,5 0,92 0,91 0,91 0,9 0,9 0,89
0.75 0.57 0.57 0.57 0.57 0.57 0.58
0,001 5,15 4,82 4,44 4,09 3,77 3,48
0.005 0.04 0.54 0.50 0.00 0.00
0,005 $3,94$ $3,74$ $3,51$ $3,29$ $3,09$ $2,9$
0,01 3,46 3,3 3,12 2,95 2,79 2,64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

14.		25	30	ν 40	60	120	
ν_1	0,001	4,71	4,39	4,02	3.69	3,38	∞ $3,1$
	0,005	3,64	3,45	3,22	3,01	2,81	2,62
	0,01	3,22	3,07	2,89	2,72	2,56	2,41
	0,025	2,68	2,57	2,45	2,33	2,22	2,11
9	0,05	2,28	2,21	2,12	2,04	1,96	1,88
	0,1	1,89	1,85	1,79	1,74	1,68	1,63
	0,25	1,38	1,36	1,34	1,31	1,29	1,27
	0,5	0,95	0,95	0,94	0,94	0,93	0,93
	0,75	0,64	0,64	0,65	0,65	0,65	0,66
	0,001	4,56	$\frac{4,24}{3,34}$	3,87	$^{3,54}_{2,9}$	3,24 $2,71$	2,96
	$0,005 \\ 0,01$	3,54 3,13	2,98	$^{3,12}_{2,8}$	2,63	$^{2,71}_{2,47}$	$^{2,52}_{2,32}$
	0,01	2,61	$^{2,98}_{2,51}$	2,39	2,03	2,47	2,32
10	0,020	2,24	2,16	2,08	1,99	1,91	1,83
	0,1	1,87	1,82	1,76	1,71	1,65	1,6
	0.25	1,37	1,35	1,33	1,3	1,28	1,26
	0.5	0,96	0,96	0,95	0,94	0,94	0,93
	0,75	0,66	0,66	0,66	0,67	0,67	0,67
	0,001	4,42	4,11	3,75	3,42	3,12	2,85
	0,005	3,45	3,25	3,03	2,82	2,62	2,43
	0,01	3,06	2,91	2,73	2,56	2,4	2,25
	0,025	2,56	2,46	2,33	2,22	2,1	1,99
11	0,05	2,2	2,13	2,04	1,95	1,87	1,79
	0,1	1,84	1,79	1,74	1,68	1,63	1,57
	0,25	1,36	1,34	1,32	1,29	1,27	1,25
	0,5	0,97	0,96	0,96	0,95	0,95	0,94
	0,75	0,67	0,68	0,68	0,68	0,69	0,69
	0,001	4,31	4	3,64	3,32	3,02	2,75
	0,005	3,37	3,18	2,95	2,74	2,54	2,36
	0,01	2,99 2,51	2,84	2,66	2,5	2,34	2,19
12	$0,025 \\ 0,05$	2,31	$^{2,41}_{2,09}$	$^{2,29}_{2}$	$^{2,17}_{1,92}$	$^{2,05}_{1,83}$	$^{1,95}_{1,75}$
12	0,03	1,82	1,77	1,71	1,66	1,6	1,55
	0,25	1,36	1,34	1,31	1,29	1,26	1,24
	0,5	0,97	0,97	0,96	0,96	0,95	0,95
	0,75	0,68	0,69	0,69	0,69	0,7	0,7
	0,001	4,22	3,91	3,55	3,23	2,93	2,66
	0,005	3,3	3,11	2,89	2,68	2,48	2,3
	0,01	2,94	2,79	2,61	2,44	2,28	2,13
	0,025	2,48	2,37	2,25	2,13	2,01	1,9
13	0,05	2,14	2,06	1,97	1,89	1,8	1,72
	0,1	1,8	1,75	1,7	1,64	1,58	1,52
	0,25	1,35	1,33	1,31	1,28	1,26	1,23
	0,5	0,98	0,97	0,97	0,96	0,95	0,95
	0,75	0,7	0,7	0,7	0,71	0,71	0,72
	0,001	4,13	3,82	3,47	3,15	2,85	2,58
	0,005	3,25	3,06	2,83	2,62	2,42	2,24
	$0,01 \\ 0,025$	2,89	2,74 $2,34$	2,56	2,39	$^{2,23}_{1,98}$	2,08
14	0,025	2,44 $2,11$	$\frac{2,34}{2,04}$	$^{2,21}_{1,95}$	$^{2,09}_{1,86}$	1,78	1,87 1,69
1.4	0,03	1,79	1,74	1,68	1,62	1,76	1,51
	0,25	1,35	1,33	1,3	1,27	1,25	1,22
	0,5	0.98	0,97	0,97	0,96	0,96	0,95
	0,75	0,7	0,71	0,71	0,72	0,72	0,73
	0,001	4,06	3,75	3,4	3,08	2,78	2,52
	0,005	3,2	3,01	2,78	2,57	2,37	2,19
	0,01	2,85	2,7	2,52	2,35	2,19	2,04
	0,025	2,41	2,31	2,18	2,06	1,94	1,83
15	0,05	2,09	2,01	1,92	1,84	1,75	1,67
	0,1	1,77	1,72	1,66	1,6	1,55	1,49
	0,25	1,34	1,32	1,3	1,27	1,24	1,22
	0,5	0,98	0,98	0,97	0,97	0,96	0,96
	0,75	0,71	0,72	0,72	0,72	0,73	0,74
		3,79	3,49	3,14	2,83	2,53	2,27
	0,001	0.04		2,6	2,39	2,19	2
	0,005	3,01	2,82				
	$0,005 \\ 0,01$	2,7	2,55	2,37	2,2	2,03	1,88
20	$0,005 \\ 0,01 \\ 0,025$	$^{2,7}_{2,3}$	$^{2,55}_{2,2}$	$^{2,37}_{2,07}$	1,94	1,82	1,71
20	0,005 $0,01$ $0,025$ $0,05$	2,7 2,3 2,01	2,55 $2,2$ $1,93$	2,37 2,07 1,84	$^{1,94}_{1,75}$	1,82 1,66	$^{1,71}_{1,57}$
20	0,005 0,01 0,025 0,05 0,1	2,7 2,3 2,01 1,72	2,55 2,2 1,93 1,67	2,37 2,07 1,84 1,61	1,94 $1,75$ $1,54$	1,82 1,66 1,48	1,71 1,57 1,42
20	0,005 $0,01$ $0,025$ $0,05$	2,7 2,3 2,01	2,55 $2,2$ $1,93$	2,37 2,07 1,84	$^{1,94}_{1,75}$	1,82 1,66	$^{1,71}_{1,57}$

				ν	2		
ν_1	p	25	30	40	60	120	∞
	0,001	3,63	3,33	2,98	2,67	2,37	2,11
	0,005	2,9	2,71	2,48	2,27	2,07	1,88
	0,01	2,6	2,45	2,27	2,1	1,93	1,77
	0.025	2,23	2,12	1,99	1,87	1,75	1,63
25	0.05	1,96	1,88	1,78	1,69	1.6	1,51
	0.1	1,68	1,63	1,57	1,5	1,44	1,38
	0,25	1,31	1,29	1,26	1,23	1,2	1,17
	0.5	1	1	0.99	0.98	0.98	0.97
	0,75	0.76	0.77	0.77	0.78	0.79	0,8
	0.001	3,52	3,22	2,87	2,55	2,26	1,99
	0,005	2,82	2,63	2,4	2,19	1,98	1,79
	0,01	2,54	2,39	2,2	2,03	1,86	1,7
	0,025	2,18	2,07	1,94	1,82	1,69	1,57
30	0,05	1,92	1,84	1,74	1,65	1,55	1,46
	0,1	1,66	1,61	1,54	1,48	1,41	1,34
	0,25	1,31	1,28	1,25	1,22	1,19	1,16
	0,5	1	1	0,99	0,99	0,98	0,98
	0,75	0,77	0,78	0,79	0,8	0,8	0,82
	0,001	3,37	3,07	2,73	2,41	2,11	1,84
	0,005	2,72	2,52	2,3	2,08	1,87	1,67
	0,01	2,45	2,3	2,11	1,94	1,76	1,59
	0,025	2,12	2,01	1,88	1,74	1,61	1,49
40	0,05	1,87	1,79	1,69	1,59	1,5	1,4
	0,1	1,63	1,57	1,51	1,44	1,37	1,3
	0,25	1,29	1,27	1,24	1,21	1,18	1,14
	0,5	1,01	1,01	1	0,99	0,99	0,98
	0,75	0,79	0,8	0,81	0,82	0,83	0,84
	0,001	3,28	2,98	2,64	2,32	2,02	1,74
	0,005	2,65	2,46	2,23	2,01	1,8	1,59
	0,01	2,4	2,25	2,06	1,88	1,7	1,53
	0,025	2,08	1,97	1,83	1,7	1,56	1,43
50	0,05	1,84	1,76	1,66	1,56	1,46	1,35
	0,1	1,61	1,55	1,48	1,41	1,34	1,26
	0,25	1,29	1,26	1,23	1,2	1,16	1,13
	0,5	1,01	1,01	1	1	0,99	0,99
	0,75	0,8	0,81	0,82	0,83	0,84	0,86
	0,001	3,22	2,92	2,57	2,25	1,95	1,66
	0,005	2,61	2,42	2,18	1,96	1,75	1,54
	0,01	2,36	2,21	2,02	1,84	1,66	1,48
	0,025	2,05	1,94	1,8	1,67	1,53	1,39
60	0,05	1,82	1,74	1,64	1,53	1,43	1,32
	0,1	1,59	1,54	1,47	1,4	1,32	1,24
	0,25	1,28	1,26	1,22	1,19	1,16	1,12
	0,5	1,02	1,01	1,01	1	0,99	0,99
	0,75	0,81	0,82	0,83	0,84	0,85	0,87
	0,001	3,06	2,76	2,41	2,08	1,77	1,45
	0,005	2,5	2,3	2,06	1,83	1,61	1,37
	0,01	2,27	2,11	1,92	1,73	1,53	1,33
	0,025	1,98	1,87	1,72	1,58	1,43	1,27
120	0,05	1,77	1,68	1,58	1,47	1,35	1,22
	0,1	1,56	1,5	1,42	1,35	1,26	1,17
	0,25	1,27	1,24	1,21	1,17	1,13	1,08
	0,5	1,02	1,02	1,01	1,01	1	0,99
	0,75	0,83	0,84	0,85	0,87	0,88	0,91

Distribution du χ^2

X suit une distribution du χ^2 à ν degrés de liberté :

$$p = \int_{\chi_{obs}^2}^{\infty} f_{\nu}(x) dx$$
$$= P(X \geqslant \chi_{obs}^2)$$

La table indique une valeur de χ^2_{obs} pour un p et une x valeur de ν donnés.

						p					
ν	0,001	0,01	0,025	0,05	0,075	0,1	0,125	0,15	0,175	0,2	0,225
1	10,828	6,635	5,024	3,841	3,17	2,706	2,354	2,072	1,84	1,642	1,472
2	13,816	9,21	7,378	5,991	5,181	4,605	4,159	3,794	3,486	3,219	2,983
3	16,266	11,345	9,348	7,815	6,905	6,251	5,739	5,317	4,957	4,642	4,361
4	18,467	13,277	11,143	9,488	8,496	7,779	7,214	6,745	6,342	5,989	5,672
5	20,515	15,086	12,833	11,07	10,008	9,236	8,625	8,115	7,676	7,289	6,942
6	22,458	16,812	14,449	12,592	11,466	10,645	9,992	9,446	8,975	8,558	8,183
7	24,322	18,475	16,013	14,067	12,883	12,017	11,326	10,748	10,247	9,803	9,403
8	26,124	20,09	17,535	15,507	14,27	13,362	12,636	12,027	11,499	11,03	10,607
9	27,877	21,666	19,023	16,919	15,631	14,684	13,926	13,288	12,734	12,242	11,797
10	29,588	23,209	20,483	18,307	16,971	15,987	15,198	14,534	13,956	13,442	12,976
11	31,264	24,725	21,92	19,675	18,294	17,275	16,457	15,767	15,167	14,631	14,146
12	32,909	26,217	23,337	21,026	19,602	18,549	17,703	16,989	16,367	15,812	15,308
13	34,528	27,688	24,736	22,362	20,897	19,812	18,939	18,202	17,559	16,985	16,464
14	36,123	29,141	26,119	23,685	22,18	21,064	20,166	19,406	18,743	18,151	17,613
15	37,697	30,578	27,488	24,996	23,452	22,307	21,384	20,603	19,921	19,311	18,756
16	39,252	32	28,845	26,296	24,716	23,542	22,595	21,793	21,092	20,465	19,895
17	40,79	33,409	30,191	27,587	25,97	24,769	23,799	22,977	22,258	21,615	21,029
18	42,312	34,805	31,526	28,869	27,218	25,989	24,997	24,155	23,419	22,76	22,159
19	43,82	36,191	32,852	30,144	28,458	27,204	26,189	25,329	24,575	23,9	23,286
20	45,315	37,566	34,17	31,41	29,692	28,412	27,376	26,498	25,728	25,038	24,409
21	46,797	38,932	35,479	32,671	30,92	29,615	28,559	27,662	26,876	26,171	25,529
22	48,268	40,289	36,781	33,924	32,142	30,813	29,737	28,822	28,021	27,301	26,646
23	49,728	41,638	38,076	35,172	33,36	32,007	30,911	29,979	29,162	28,429	27,76
24	51,179	42,98	39,364	36,415	34,572	33,196	32,081	31,132	30,3	29,553	28,872
25	52,62	44,314	40,646	37,652	35,78	34,382	33,247	32,282	31,436	30,675	29,981
26	54,052	45,642	41,923	$38,\!885$	36,984	$35,\!563$	34,41	33,429	32,568	31,795	31,088
27	55,476	46,963	43,195	40,113	38,184	36,741	35,57	34,574	33,698	32,912	32,193
28	56,892	48,278	44,461	41,337	39,38	37,916	36,727	35,715	34,826	34,027	33,296
29	58,301	49,588	45,722	42,557	40,573	39,087	37,881	36,854	35,951	35,139	34,398
30	59,703	50,892	46,979	43,773	41,762	40,256	39,033	37,99	37,074	36,25	35,497
40	73,402	63,691	59,342	55,758	53,501	$51,\!805$	$50,\!424$	49,244	48,205	47,269	46,411
60	99,607	88,379	83,298	79,082	76,411	74,397	72,751	71,341	70,096	68,972	67,941
80	124,839	112,329	106,629	101,879	98,861	$96,\!578$	94,709	93,106	91,687	90,405	89,227
120	173,617	158,95	152,211	146,567	142,965	140,233	137,99	136,062	134,353	$132,\!806$	131,382
∞	10442,731	10331,934	10279,07	10233,749	10204,29	10181,662	10162,894	10146,618	10132,082	10118,825	$10106,\!542$

						p				
ν	0,25	0,275	0,3	0,325	0,35	0,375	0,4	0,425	0,45	0,475
1	1,323	1,192	1,074	0,969	0,873	0,787	0,708	0,636	0,571	0,51
2	2,773	2,582	2,408	2,248	2,1	1,962	1,833	1,711	1,597	1,489
3	4,108	3,877	3,665	3,468	3,283	3,11	2,946	2,791	2,643	2,502
4	5,385	5,122	4,878	4,651	4,438	4,236	4,045	3,862	3,687	3,519
5	6,626	6,335	6,064	5,811	5,573	5,347	5,132	4,926	4,728	4,537
6	7,841	7,525	7,231	6,955	6,695	6,447	6,211	5,984	5,765	5,554
7	9,037	8,699	8,383	8,087	7,806	7,539	7,283	7,037	6,8	6,57
8	10,219	9,86	9,524	9,209	8,909	8,624	8,351	8,087	7,833	7,585
9	11,389	11,01	10,656	10,323	10,006	9,704	9,414	9,134	8,863	8,6
10	12,549	12,152	11,781	11,43	11,097	10,779	10,473	10,178	9,892	9,614
11	13,701	13,287	12,899	12,532	12,184	11,85	11,53	11,22	10,92	10,627
12	14,845	14,415	14,011	13,629	13,266	12,918	12,584	12,26	11,946	11,64
13	15,984	15,538	15,119	14,722	14,345	13,984	13,636	13,299	12,972	12,652
14	17,117	16,656	16,222	15,812	15,421	15,046	14,685	14,336	13,996	13,664
15	18,245	17,769	17,322	16,898	16,494	16,107	15,733	15,372	15,02	14,676
16	19,369	18,879	18,418	17,981	17,565	17,165	16,78	16,406	16,042	15,687
17	20,489	19,985	19,511	19,062	18,633	18,221	17,824	17,439	17,065	16,698
18	21,605	21,088	20,601	20,14	19,699	19,276	18,868	18,472	18,086	17,709
19	22,718	22,188	21,689	21,216	20,764	20,33	19,91	19,503	19,107	18,719
20	23,828	23,285	22,775	22,29	21,826	21,381	20,951	20,534	20,127	19,729
21	24,935	24,38	23,858	23,362	22,888	22,432	21,991	21,564	21,147	20,739
22	26,039	25,473	24,939	24,432	23,947	23,481	23,031	22,593	22,166	21,748
23	27,141	26,563	26,018	25,501	25,006	24,529	24,069	23,622	23,185	22,758
24	28,241	27,652	27,096	26,568	26,063	25,576	25,106	24,65	24,204	23,767
25	29,339	28,738	28,172	27,633	27,118	26,623	26,143	25,677	25,222	24,776
26	30,435	29,823	29,246	28,698	28,173	27,668	27,179	26,704	26,24	25,784
27	31,528	30,906	30,319	29,761	29,227	28,712	28,214	27,73	27,257	26,793
28	32,62	31,988	31,391	30,823	30,279	29,755	29,249	28,756	28,274	27,802
29	33,711	33,068	32,461	31,884	31,331	30,798	30,283	29,781	29,291	28,81
30	34,8	34,147	33,53	32,943	32,382	31,84	31,316	30,806	30,307	29,818
40	45,616	44,87	44,165	43,493	42,848	42,226	41,622	41,034	$40,\!459$	39,893
60	66,981	66,08	65,227	64,411	63,628	62,87	62,135	61,417	60,713	60,02
80	88,13	87,099	86,12	85,184	84,284	83,413	82,566	81,739	80,927	80,126
120	130,055	128,804	127,616	126,479	125,383	124,322	123,289	$122,\!278$	121,285	120,305
∞	10095,02	10084,104	10073,675	10063,64	10053,923	10044,462	10035,203	10026,102	10017,114	10008,204

Distribution de Wilcoxon

U suit une distribution de Wilcoxon de paramètres n_1 et $n_2,$ les tailles des deux échantillons comparés.

$$p = F(u_{obs}) = \sum_{0}^{u_{obs}} f(u)$$
$$= P(U \le u_{obs})$$

 $\begin{array}{ll} p = & F(u_{obs}) = \sum_{0}^{u_{obs}} f(u) \\ = & P(U \leqslant u_{obs}) \\ \text{La table indique une valeur de } p \text{ pour un } u_{obs} \text{ donn\'e.} \end{array}$

													n_2									
n_1	p	4	5	6	7	8	9	10	11	12	13	14	$\frac{n_2}{15}$	16	17	18	19	20	25	30	35	40
101	$\frac{P}{0,001}$	0	0	0	0	1	2	2	3	3	4	4	5	6	6	7	8	8	11	15	18	21
	0,005	0	1	2	2	3	4	5	6	7	8	8	9	10	11	12	13	14	18	23	27	32
	0,01	1	2	3	$\frac{2}{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	22	27	32	37
	0,025	2	3	4	6	7	8	9	10	12	13	14	15	16	18	19	20	21	28	34	40	46
5	0,05	3	5	6	7	9	10	12	13	14	16	17	19	20	21	23	24	26	33	40	47	54
	0,1	5	6	8	9	11	13	14	16	18	19	21	23	24	26	28	29	31	39	47	56	64
	0,25	7	9	11	13	15	17	19	21	23	25	28	30	32	34	36	38	40	50	60	71	81
	0,5	10	12	15	17	20	22	25	27	30	32	35	37	40	42	45	47	50	62	75	87	100
	0,75	13	16	19	22	25	28	31	34	37	40	42	45	48	51	54	57	60	75	90	104	119
	0,001	0	0	0	1	2	3	4	5	5	6	7	8	9	10	11	12	13	17	22	26	31
	0,005	1	2	3	4	5	6	7	8	10	11	12	13	14	16	17	18	19	25	31	38	44
	0,01	2	3	4	5	7	8	9	10	12	13	14	16	17	19	20	21	23	30	36	43	50
	0,025	3	4	6	7	9	11	12	14	15	17	18	20	22	23	25	26	28	36	44	52	60
6	0,05	4	6	8	9	11	13	15	17	18	20	22	24	26	27	29	31	33	42	51	60	69
	0,1	6	8	10	12	14	16	18	20	22	24	26	28	30	32	35	37	39	49	59	70	80
	0,25	9	11	14	16	19	21	24	26	29	31	34	36	39	41	44	46	49	61	74	86	99
	0,5	12 15	15	$\frac{18}{22}$	21 26	24	27	30	33	36	39	42 50	45	$\frac{48}{57}$	51	$\frac{54}{64}$	57 68	$\frac{60}{71}$	75 89	$\frac{90}{106}$	$\frac{105}{124}$	$\frac{120}{141}$
	0,75		19			29	33	36	40 7	43	47		54	12	61		16					42
	0,001 $0,005$	0	$\frac{0}{2}$	$\frac{1}{4}$	2 5	3 7	4 8	6 10	11	8 13	$\frac{9}{14}$	10 16	$\frac{11}{17}$	19	14 20	$\frac{15}{22}$	23	$\frac{17}{25}$	23 33	$\frac{30}{41}$	$\frac{36}{48}$	56
	0,003	2	$\frac{2}{4}$	5	7	8	10	12	13	15	$\frac{14}{17}$	18	20	22	$\frac{20}{24}$	25	$\frac{23}{27}$	29 29	33 37	46	55	64
	0,01	4	6	7	9	11	13	15	17	19	21	23	25	27	29	$\frac{25}{31}$	33	35	45	55	65	75
7	0,05	5	7	9	12	14	16	18	20	22	25	27	29	31	34	36	38	40	51	62	74	85
	0,1	7	9	12	14	17	19	22	24	27	29	32	34	37	39	42	44	47	59	72	84	97
	0,25	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	72	87	102	117
	0,5	14	17	21	24	28	31	35	38	42	45	49	52	56	59	63	66	70	87	105	122	140
	0,75	18	22	26	30	34	38	42	46	50	54	58	62	66	70	74	78	82	103	123	143	163
	0,001	0	1	2	3	5	6	7	9	10	12	13	15	16	18	19	21	22	30	38	46	53
	0,005	2	3	5	7	8	10	12	14	16	18	19	21	23	25	27	29	31	40	50	60	69
	0,01	3	5	7	8	10	12	14	16	18	21	23	25	27	29	31	33	35	46	56	67	77
	0,025	5	7	9	11	14	16	18	20	23	25	27	30	32	35	37	39	42	54	66	78	90
8	0,05	6	9	11	14	16	19	21	24	27	29	32	34	37	40	42	45	48	61	74	87	100
	0,1	8	11	14	17	20	23	25	28	31	34	37	40	43	46	49	52	55	69	84	99	113
	0,25	12	15	19	22	25	29	32	36	39	42	46	49	53	56	60	63	66	84	101	118	135
	0,5	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	100	120	140	160
	0,75	20	25	29	34	39	43	48	52	57	62	66	71	75	80	84	89	94	116	139	162	185
	$0,001 \\ 0,005$	0	2	3	4 8	6 10	$\frac{8}{12}$	9	11	13	$\frac{15}{21}$	16	18	20	22 30	24	26	27	37	46	$\frac{56}{71}$	65
	0,003	2	$\frac{4}{6}$	6		12		14	17	19 22	$\frac{21}{24}$	23	$\frac{25}{29}$	$\frac{28}{32}$		32	34	37 41	48	59 66	71 79	82
	0,01 $0,025$	4 5	8	8 11	10 13	16	15 18	$\frac{17}{21}$	$\frac{19}{24}$	$\frac{22}{27}$	29	$\frac{27}{32}$	35	38	34 40	$\frac{37}{43}$	39 46	$\frac{41}{49}$	54 63	66 77	90	91 104
9	0,025	7	10	13	16	19	22	25	28	31	$\frac{29}{34}$	$\frac{32}{37}$	40	43	46	49	52	55	70	86	101	116
"	0,00	10	13	16	19	23	26	29	32	36	39	42	46	49	53	56	59	63	79	96	113	130
	0,25	13	17	21	25	29	33	37	40	44	48	52	56	60	64	68	72	75	95	114	134	153
	0,5	18	22	27	31	36	40	45	49	54	58	63	67	72	76	81	85	90	112	135	157	180
	0,75	23	28	33	38	43	48	53	59	64	69	74	79	84	89	94	99	105	130	156	181	207
	0,001	1	2	4	6	7	9	11	13	15	18	20	22	24	26	28	30	33	44	55	66	77
	0,005	3	5	7	10	12	14	17	19	22	25	27	30	32	35	38	40	43	56	69	83	96
	0,01	4	7	9	12	14	17	20	23	25	28	31	34	37	39	42	45	48	62	77	91	105
	0,025	6	9	12	15	18	21	24	27	30	34	37	40	43	46	49	53	56	72	88	104	120
10	0,05	8	12	15	18	21	25	28	32	35	38	42	45	49	52	56	59	63	80	97	115	132
	0,1	11	14	18	22	25	29	33	37	40	44	48	52	55	59	63	67	71	90	109	128	147
	0,25	15	19	24	28	32	37	41	45	50	54	58	63	67	71	76	80	84	106	128	150	172
	0,5	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	125	150	175	200
	0,75	25	31	36	42	48	53	59	65	70	76	82	87	93	99	104	110	116	144	172	200	228
	$0,001 \\ 0,005$	1 3	3 6	5 8	7 11	$\frac{9}{14}$	11 17	13 19	$\frac{16}{22}$	18 25	$\frac{21}{28}$	$\frac{23}{31}$	$\frac{25}{34}$	$\frac{28}{37}$	30 40	33 43	$\frac{35}{46}$	38 49	$\frac{51}{64}$	64 79	$\frac{77}{94}$	90 110
	0,005	5	8	10	13	16	$\frac{17}{19}$	23	22 26	25 29	28 32	35	$\frac{34}{38}$	42	$\frac{40}{45}$	48		49 54	$\frac{64}{71}$	79 87	103	120
	0,01 $0,025$	7	10	14	17	20	$\frac{19}{24}$	$\frac{23}{27}$	31	$\frac{29}{34}$	38	35 41	38 45	42	$\frac{45}{52}$	48 56	51 59	63	81	87 99	$\frac{103}{117}$	135
11	0,025	9	13	$\frac{14}{17}$	20	$\frac{20}{24}$	28	32	35	$\frac{34}{39}$	43	41	51	46 55	52 58	62	66	70	90	109	$\frac{117}{129}$	148
11	0,03 $0,1$	12	16	20	$\frac{20}{24}$	28	32	$\frac{32}{37}$	41	45	49	53	58	62	66	70	74	79	100	121	$\frac{129}{142}$	164
	$0,1 \\ 0,25$	17	21	26	31	36	40	45	50	55	60	64	69	74	79	84	89	93	118	142	166	190
	0,5	22	27	33	38	44	49	55	60	66	71	77	82	88	93	99	104	110	137	165	192	220
	0,75	27	34	40	46	52	59	65	71	77	83	90	96	102	108	114	120	127	157	188	219	250
	0,001	1	3	5	8	10	13	15	18	21	24	26	29	32	35	38	41	43	58	73	87	102
	0,005	4	7	10	13	16	19	22	25	28	32	35	38	42	45	48	52	55	72	89	106	123
	0,01	6	9	12	15	18	22	25	29	32	36	39	43	47	50	54	57	61	79	97	116	134
	0,025	8	12	15	19	23	27	30	34	38	42	46	50	54	58	62	66	70	90	110	130	150
12	0,05	10	14	18	22	27	31	35	39	43	48	52	56	61	65	69	73	78	99	121	142	164
		13	18	22	27	31	36	40	45	50	54	59	64	68	73	78	82	87	110	134	157	181
	0,1	13	10																			
	$_{0,25}^{0,1}$	18	23	29	34	39	44	50	55	60	65	71	76	81	87	92	97	102	129	155	182	209
						$\frac{39}{48}$	$\frac{44}{54}$	50 60	55 66	$\frac{60}{72}$	65 78	71 84 97	76 90	81 96	$\frac{87}{102}$	$\frac{92}{108}$	$\frac{97}{114}$	$\frac{102}{120}$	$\frac{129}{150}$	$\frac{155}{180}$	$\frac{182}{210}$	209 240 271

Distribution de Wilcoxon (suite)

												n_2										
n_1	p	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	25	30	35	40
	0,001	2	4	6	9	12	15	18	21	24	27	30	33	36	39	43	46	49	65	82	98	115
	0,005	4	8	11	14	18	21	25	28	32	35	39	43	46	50	54	58	61	80	99	118	137
	$0,01 \\ 0,025$	6	10 13	$\frac{13}{17}$	$\frac{17}{21}$	$\frac{21}{25}$	24 29	$\frac{28}{34}$	$\frac{32}{38}$	$\frac{36}{42}$	40 46	$\frac{44}{51}$	$\frac{48}{55}$	$\frac{52}{60}$	$\frac{56}{64}$	60 68	64 73	68 77	88 99	$\frac{108}{121}$	$\frac{128}{143}$	$\frac{149}{166}$
13	0,025	11	16	20	25	29	34	38	43	48	52	57	62	66	71	76	81	85	109	133	157	180
	0,1	14	19	$^{-24}$	29	34	39	44	49	54	59	64	69	75	80	85	90	95	121	146	172	198
	0,25	20	25	31	37	42	48	54	60	65	71	77	83	88	94	100	106	111	140	169	198	227
	0,5	26	32	39	45	52	58	65	71	78	84	91	97	104	110	117	123	130	162	195	227	260
	0,75	32	40	47	54	62	69	76	83	91	98	105	112	120	127	134	141	149	185	221	257	293
	$0,001 \\ 0,005$	5	4 8	7 12	10 16	13 19	$\frac{16}{23}$	$\frac{20}{27}$	23 31	$\frac{26}{35}$	30 39	33 43	$\frac{37}{47}$	$\frac{40}{51}$	$\frac{44}{55}$	$\frac{47}{59}$	$\frac{51}{64}$	$\frac{55}{68}$	73 88	91 109	109 130	$\frac{128}{151}$
	0,01	7	11	14	18	23	27	31	35	39	44	48	52	57	61	66	70	74	96	119	141	163
	0,025	10	14	18	23	27	32	37	41	46	51	56	60	65	70	75	79	84	108	132	157	181
14	0,05	12	17	22	27	32	37	42	47	52	57	62	67	72	78	83	88	93	119	145	171	197
	0,1	16	21	26	32	37	42	48	53	59	64	70	75	81	86	92	98	103	131	159	187	215
	$0,25 \\ 0,5$	21 28	$\frac{28}{35}$	$\frac{34}{42}$	40 49	46 56	$\frac{52}{63}$	58 70	64 77	$\frac{71}{84}$	77 91	83 98	$\frac{89}{105}$	$\frac{96}{112}$	$\frac{102}{119}$	$\frac{108}{126}$	$\frac{114}{133}$	$\frac{120}{140}$	$\frac{152}{175}$	$\frac{183}{210}$	$\frac{214}{245}$	$\frac{245}{280}$
	0.75	35	$\frac{33}{42}$	50	58	66	74	82	90	97	105	113	121	128	136	144	152	160	198	237	$\frac{243}{276}$	315
	0,001	2	5	8	11	15	18	22	25	29	33	37	41	44	48	52	56	60	80	100	120	141
	0,005	6	9	13	17	21	25	30	34	38	43	47	52	56	61	65	70	74	97	120	143	166
	0,01	8	12	16	20	25	29	34	38	43	48	52	57	62	67	71	76	81	105	129	154	178
1,5	0,025	11	15	20	25	30	35	40	45	50	55	60	65	71	76	81	86	91	118	144	170	197
15	$0,05 \\ 0,1$	13 17	$\frac{19}{23}$	$\frac{24}{28}$	$\frac{29}{34}$	34 40	40 46	$\frac{45}{52}$	51 58	$\frac{56}{64}$	62 69	67 75	73 81	78 87	84 93	89 99	$\frac{95}{105}$	$\frac{101}{111}$	$\frac{129}{141}$	$\frac{157}{171}$	$\frac{185}{202}$	$\frac{213}{232}$
	$0,1 \\ 0,25$	23	30	36	43	49	56	63	69	76	83	89	96	103	109	116	123	130	163	197	$\frac{202}{230}$	$\frac{232}{264}$
	0,5	30	37	45	52	60	67	75	82	90	97	105	112	120	127	135	142	150	187	225	262	300
	0,75	37	45	54	62	71	79	87	96	104	112	121	129	137	146	154	162	170	212	253	295	336
	0,001	3	6	9	12	16	20	24	28	32	36	40	44	49	53	57	61	66	87	109	132	154
	0,005	6	10	14	19	23	28	32	37	42	46	51	56	61	66	71	75	80	105	130	155	180
	0,01	8	13	17	22	27	32	37	42	47	52	57	62	67 76	72	77	83	88	114	140	166	193
16	$0,025 \\ 0,05$	12 15	16 20	$\frac{22}{26}$	$\frac{27}{31}$	$\frac{32}{37}$	$\frac{38}{43}$	43 49	$\frac{48}{55}$	$\frac{54}{61}$	60 66	$\frac{65}{72}$	71 78	76 84	82 90	87 96	$\frac{93}{102}$	99 108	$\frac{127}{138}$	$\frac{155}{169}$	$\frac{184}{199}$	$\frac{212}{229}$
10	0,00	18	24	30	37	43	49	55	62	68	75	81	87	94	100	107	113	120	152	184	217	249
	$0,\!25$	25	32	39	46	53	60	67	74	81	88	96	103	110	117	124	131	139	175	210	246	282
	0,5	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160	200	240	280	320
	0,75	39	48	57	66	75	84	93	102	111	120	128	137	146	155	164	173	181	225	270	314	358
	0,001	3	6	10	14	18	22	26	30	35	39	44	48	53 66	58 71	62	67	71	95	119	143	167
	$0,005 \\ 0,01$	9	$\frac{11}{14}$	16 19	$\frac{20}{24}$	$\frac{25}{29}$	$\frac{30}{34}$	35 39	$\frac{40}{45}$	$\frac{45}{50}$	50 56	$\frac{55}{61}$	$\frac{61}{67}$	$\frac{66}{72}$	71 78	76 83	82 89	87 94	$\frac{113}{123}$	$\frac{140}{151}$	$\frac{167}{179}$	$\frac{194}{208}$
	0,025	12	18	23	29	35	40	46	52	58	64	70	76	82	88	94	100	106	136	167	197	228
17	0,05	16	21	27	34	40	46	52	58	65	71	78	84	90	97	103	110	116	148	181	213	246
	0,1	19	26	32	39	46	53	59	66	73	80	86	93	100	107	114	121	128	162	197	231	266
	0,25	26	34	41	49	56	64	71	79	87	94	102	109	117	125	132	140	148	186	224	263	301
	$0,5 \\ 0,75$	34 42	$\frac{42}{51}$	$\frac{51}{61}$	59 70	68 80	76 89	85 99	93 108	$\frac{102}{117}$	$\frac{110}{127}$	$\frac{119}{136}$	$\frac{127}{146}$	$\frac{136}{155}$	$\frac{144}{164}$	$\frac{153}{174}$	$\frac{161}{183}$	$\frac{170}{192}$	$\frac{212}{239}$	$\frac{255}{286}$	$\frac{297}{332}$	$\frac{340}{379}$
-	0,001	42	7	11	15	19	24	28	33	38	43	47	52	57	62	67	72	77	103	128	154	180
	0,005	7	12	17	22	27	32	38	43	48	54	59	65	71	76	82	88	93	122	151	180	209
	0,01	10	15	20	25	31	37	42	48	54	60	66	71	77	83	89	95	101	131	162	192	223
	0,025	13	19	25	31	37	43	49	56	62	68	75	81	87	94	100	107	113	146	178	211	244
18	0,05	17	23	29	36	42	49	56	62	69	76	83	89	96	103	110	117	124	158	193	227	262
	$0,1 \\ 0,25$	21 28	$\frac{28}{36}$	$\frac{35}{44}$	$\frac{42}{52}$	49 60	$\frac{56}{68}$	63 76	$\frac{70}{84}$	$\frac{78}{92}$	$\frac{85}{100}$	$\frac{92}{108}$	$\frac{99}{116}$	$\frac{107}{124}$	$\frac{114}{132}$	$\frac{121}{140}$	$\frac{129}{149}$	$\frac{136}{157}$	$\frac{173}{197}$	$\frac{210}{238}$	$\frac{246}{279}$	$\frac{283}{320}$
	0,5	36	45	54	63	72	81	90	99	108	117	126	135	144	153	162	171	180	225	270	315	360
	0,75	44	54	64	74	84	94	104	114	124	134	144	154	164	174	184	193	203	253	302	351	400
	0,001	4	8	12	16	21	26	30	35	41	46	51	56	61	67	72	78	83	110	138	166	193
	0,005	8	13	18	23	29	34	40	46	52	58	64	70	75	82	88	94	100	130	161	192	223
	$0,01 \\ 0,025$	10 14	16 20	$\frac{21}{26}$	$\frac{27}{33}$	33 39	39 46	$\frac{45}{53}$	51 59	57 66	$\frac{64}{73}$	70 79	76 86	83 93	89 100	$\frac{95}{107}$	$\frac{102}{114}$	$\frac{108}{120}$	$\frac{140}{155}$	$\frac{173}{190}$	$\frac{205}{225}$	$\frac{238}{259}$
19	0,025 0,05	18	$\frac{20}{24}$	20 31	38	39 45	52	59	66	73	81	79 88	86 95	$\frac{93}{102}$	110	117	$\frac{114}{124}$	131	168	$\frac{190}{205}$	$\frac{225}{242}$	$\frac{259}{279}$
10	0,1	22	29	37	44	52	59	67	74	82	90	98	105	113	121	129	136	144	183	222	261	301
	0,25	29	38	46	55	63	72	80	89	97	106	114	123	131	140	149	157	166	209	252	295	338
	0,5	38	47	57	66	76	85	95	104	114	123	133	142	152	161	171	180	190	237	285	332	380
	0,75	47	57	68	78	89	99	110	120	131	141	152	162	173	183	193	204	214	266	318	370	422
	$0,001 \\ 0,005$	4 9	8 14	13	17 25	22 31	27 37	33 43	38 49	43 55	49 61	55 68	$\frac{60}{74}$	66 80	71 87	77 93	83 100	89 106	118	$\frac{147}{171}$	$\frac{177}{204}$	207
	0,005 $0,01$	11	$\frac{14}{17}$	$\frac{19}{23}$	$\frac{25}{29}$	35	$\frac{37}{41}$	$\frac{43}{48}$	$\frac{49}{54}$	$\frac{55}{61}$	61 68	$\frac{68}{74}$	74 81	80 88	87 94	93 101	100	$\frac{106}{115}$	$\frac{139}{149}$	$\frac{171}{183}$	$\frac{204}{218}$	$\frac{238}{253}$
	0,025	15	21	28	35	$\frac{33}{42}$	49	56	63	70	77	84	91	99	106	113	120	128	164	201	238	$\frac{255}{275}$
20	0,05	19	26	33	40	48	55	63	70	78	85	93	101	108	116	124	131	139	178	217	256	295
	0,1	23	31	39	47	55	63	71	79	87	95	103	111	120	128	136	144	152	194	235	276	318
	0,25	31	40	49	58	66	75	84	93	102	111	120	130	139	148	157	166	175	220	266	311	357
	0,5	40	50 60	60 71	70	80	90	100	110	120	130	140	150	160	170	180	190	200	250	300	350	400
	0,75 $0,001$	49	60	71 17	82 23	94 30	105 37	116 44	127 51	138 58	149 65	160 73	170 80	181 87	192 95	203 103	214 110	225 118	280 156	334 196	389 235	443 275
	0,001	11	18	25	33	40	48	56	64	72	80	88	97	105	113	122	130	139	181	$\frac{190}{224}$	$\frac{233}{267}$	311
	0,01	14	22	30	37	46	54	62	71	79	88	96	105	114	123	131	140	149	193	238	283	329
	0,025	19	28	36	45	54	63	72	81	90	99	108	118	127	136	146	155	164	212	259	307	355
25	0,05	24	33	42	51	61	70	80	90	99	109	119	129	138	148	158	168	178	228	278	328	378
	0,1	29	39	49	59	69	79	90	100	110	121	131	141	152	162	173	183	194	246	299	352	405
	0.25	39	50 62	61 75	72 87	100	95 112	106	118	129	140	$\frac{152}{175}$	163	175	186	197	$\frac{209}{237}$	220	$\frac{277}{312}$	335 375	392 437	450 500
	$0,5 \\ 0,75$	50 61	$\frac{62}{75}$	$\frac{75}{89}$	$87 \\ 103$	$\frac{100}{116}$	$\frac{112}{130}$	$\frac{125}{144}$	$\frac{137}{157}$	$\frac{150}{171}$	$\frac{162}{185}$	$\frac{175}{198}$	$\frac{187}{212}$	$\frac{200}{225}$	$\frac{212}{239}$	$\frac{225}{253}$	$\frac{237}{266}$	$\frac{250}{280}$	$\frac{312}{348}$	$\frac{375}{415}$	$\frac{437}{483}$	$\frac{500}{550}$
	٥,.٠				-00		-00		-01			-00			200				J 20		200	