Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

В.Г. ПАК

ДИСКРЕТНАЯ МАТЕМАТИКА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018 ©

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

ЛЕКЦИЯ №3

ОСНОВНЫЕ ПРАВИЛА И ФОРМУЛЫ ПЕРЕЧИСЛИТЕЛЬНОЙ КОМБИНАТОРИКИ

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018©

Тема 2. Комбинаторика

- §1. Основные правила и формулы
 - 1.1. Выборки
 - 1.2. Правила суммы и произведения
 - 1.3. Размещения
 - 1.4. Перестановки
 - 1.5. Сочетания без повторений
 - 1.6. Сочетания с повторениями

1.1. Выборки

Тема 2. Комбинаторика

Комбинаторика — раздел дискретной математики, в котором количественно и качественно исследуются комбинации элементов множеств и отношения на них.

§1. Основные правила и формулы 1.1. Выборки

Пусть имеются n различных типов (видов) элементов (предметов). Элементы разных видов отличаются, а одного вида логически неразличимы. Определение. Выборкой ((n,r)-выборкой) называется совокупность r элементов данных n видов.

Определение. Выборка называется *повторной*, если в ней допустимы предметы одного типа.

Определение. Выборка называется *бесповторной*, если в ней все предметы должны быть разных типов.

Определение. Выборка называется *упорядоченной*, если в ней задан порядок расположения предметов.

Определение. Выборка называется *неупорядоченной*, если в ней порядок следования предметов не имеет значения.

1.1. Выборки

Таким образом, упорядоченная выборка — вектор, неупорядоченная бесповторная — множество, неупорядоченная повторная — мультимножество.

Выборка	Упорядоченная	Неупорядоченная
Повторная	Размещение с повторениями	Сочетание с повторениями
Бесповторная	Размещение (без повторений)	Сочетание (без повторений)

1.2. Правила суммы и произведения

Для подсчёта чисел выборок и для решения перечислительных комбинаторных задач вообще применяются следующие основные правила. **Правило суммы.** Если выбор предмета A можно осуществить m способами, а выбор предмета B - n способами, причём их совместный выбор исключён, то выбор либо A, либо B возможен m+n способами.

Теоретико-множественная формулировка: если |A|=m, |B|=n, $A\cap B=\emptyset$, то $|A\cup B|=m+n$.

1.2. Правила суммы и произведения

Правило произведения. Если выбор предмета A можно осуществить m способами, а после каждого такого выбора предмет B можно выбрать n способами, то выбор обоих предметов A и B в указанном порядке возможен mn способами.

Теоретико-множественная формулировка: если |A| = m, |B| = n, то $|A \times B| = mn$.

Замечание. Оба правила естественным образом обобщаются на любое конечное число предметов.

Правило суммы. Если выбор предмета A_1 можно осуществить n_1 способами, выбор предмета A_2 - n_2 способами и т.д. Выбор предмета A_k можно осуществить n_k способами. Попарно совместный выбор предметов исключён. Тогда выбор одного из предметов A_1, \ldots, A_k возможен $n_1 + \cdots + n_k$ способами.

Теоретико-множественная формулировка: если $|A_1|=n_1$, $|A_2|=n_2$, ..., $|A_k|=n_k$, $A_i\cap A_j=\emptyset$, $i\neq j$, то $|A_1\cup\cdots\cup A_k|=n_1+\cdots+n_k$.

1.2. Правила суммы и произведения

Правило произведения. Если выбор предмета A_1 можно осуществить n_1 способами, а после каждого такого выбора предмет A_2 можно выбрать n_2 способами, после каждого совместного выбора A_1 и A_2 выбор A_3 можно сделать n_3 и т.д., После каждого совместного выбора предыдущих предметов выбор A_k можно осуществить n_k способами то выбор всех предметов A_1, \ldots, A_k в указанном порядке возможен $n_1 \cdots n_k$ способами.

Теоретико-множественная формулировка: если $|A_1| = n_1$, $|A_2| = n_2$, ..., $|A_k| = n_k$, то $|A_1 \times \cdots \times A_k| = n_1 \cdots n_k$.

1.3. Размещения

1.3. Размещения

Определение. Размещением с повторениями из n элементов по r называется упорядоченная повторная (n,r)-выборка.

Число различных (n,r)-размещений с повторениями обозначается \bar{A}_n^r .

$$\bar{A}_n^r = n^r$$

Определение. Размещением (без повторений) из n элементов по r называется упорядоченная бесповторная (n,r)-выборка.

Число различных (n,r)-размещений обозначается A_n^r .

$$A_n^r = n(n-1)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

1.4. Перестановки

Определение. Перестановкой (без повторений) n различных элементов называется их расположение в ряд.

Таким образом, (n)-перестановка - вектор n различных элементов данных n типов, или (n,n)-размещение.

Число различных (n)-перестановок обозначается P_n .

$$P_n = n!$$

Определение. Пусть имеются n_1 предметов первого типа, n_2 - второго типа и т.д., n_k - k-го типа, $n_1+\dots+n_k=n$. Предметы разных типов различимы, одного типа — неразличимы. Перестановкой с повторениями называется расположение всех этих предметов в ряд.

Число различных перестановок с повторениями обозначается $P(n_1; ...; n_k)$.

$$P(n_1; \dots; n_k) = \frac{n!}{n_1! \cdots n_k!}$$

1.5. Сочетания без повторений

1.5. Сочетания без повторений

Определение. Сочетанием (без повторений) из n элементов по r называется неупорядоченная бесповторная (n,r)-выборка.

Число различных (n,r)-сочетаний обозначается C_n^r .

$$C_n^r = \frac{n(n-1)\cdots(n-r+1)}{r!} = \frac{n!}{(n-r)! \, r!}$$

Числа \mathcal{C}_n^r называются биномиальными коэффициентами. Свойства биномиальных коэффициентов:

- 1. $C_n^r = C_n^{n-r}$ (симметрия);
- 2. $C_n^r = C_{n-1}^r + C_{n-1}^{r-1}$ (формула Паскаля);
- 3. $C_n^k C_k^r = C_n^r C_{n-r}^{k-r}$;
- 4. C_n^r равно числу r-элементных подмножеств (n)-множества;
- 5. $C_n^0 + C_n^1 + \dots + C_n^n = 2^n$.

1.5. Сочетания без повторений

Треугольник Паскаля

Треугольник Паскаля	Номер	Возведение в степень двучлена
1	0	$(\mathbf{a} + \mathbf{b})^0 = 1$
1 1	1	$(\mathbf{a} + \mathbf{b})^1 = \mathbf{a} + \mathbf{b}$
1 2 1	2	$(a+b)^2 = a^2 + 2ab + b^2$
1 3 3 1	3	$(a+b)^3 = a^3 + 3a^2b + 3b^2a + b^3$
1 4 6 4 1	4	$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
1 5 10 10 5 1	5	$(a +b)^5=a^5 +5a^4b+10a^3b^2+10a^2b^3 +5ab^4+b^5$
1 6 15 20 15 6 1	6	ит. д.

1.5. Сочетания без повторений

1.6. Сочетания с повторениями

1.6. Сочетания с повторениями

Определение. Сочетанием с повторениями из n элементов по r называется неупорядоченная повторная (n,r)-выборка.

Число различных (n,r)-сочетаний с повторениями обозначается \bar{C}_n^r .

$$\bar{C}_n^r = C_{n+r-1}^r$$

Свойство чисел \bar{C}_n^r :

$$\bar{C}_n^r = \bar{C}_{n-1}^r + \bar{C}_{n-1}^{r-1}.$$