California State University, Sacramento The College of Engineering and Computer Science

CPE 186 Computer Hardware Design

Midterm

Fall 2020

Student Name: Shammah Thao

	[36 points] Each of correct answer.	f the following questions onl	y has one correct answer. Please	select the			
rate i	With PCI Bus width s going to be 32 MBps	n of 64 bits and running at m. B. 264 MBps	aximum 33MHz, the maximum d C. 512 MBps	ata transfer			
	/hen IRDY# gets a <mark>itiator</mark>	sserted, it indicates which of B. Target	the following agent is ready for t C. None	transaction?			
 3). What is the functionality of C/BE[3:0]? A. Defines the PCI command during address phase. B. Indicate byte enable during address phase. C. None of the above. 							
 4). For PCI Express (PCIe) Transactions: A. Memory Read is Posted Transaction. B. IO Read is Non-Posted Transaction. C. Configuration Write is Posted Transaction. 							
 5). Sequence Number is first added into the TLP packet by the PCIe transmitter at the A. Transaction Layer B. Data Link Layer C. PHY Layer 							
6). PCIe TLP maximum data payload transfer size is A. 2 DW B. 3 DW C. 1024 DW							
7). FRAME# is used to signalA. only start of a transaction B. only end of a transactionC. the start and end of a transaction.							
	CIe Type 0 configu Base Address Reg	-	Registers C. 6 Base Address F	Registers			
,	CIe TLP header siz Words or 8 Words		C. 4 DW or 5 DW				
<mark>А. Т</mark> В. І	PCIe replay buffer Transaction Layer Data Link Layer PHY Layer	is located inside the					

- 11). Suppose a legacy device ABC is restricted to the lower 16 bits of PCIe IO address space. This means, the device ABC supports
- A. 64 GB IO address space
- B. 64 MB IO address space
- C. 64 KB IO address space

b=1;

#10; a=1; b=1;

#10 \$stop;

- 12). Which of the following statement about PCIe is correct?
- A. The transmitter uses a 2-bit Replay Number counter, referred to as the REPLAY_NUM counter, to keep track of the number of replay events.
- B. The transmitter uses a 8-bit Replay Number counter, referred to as the REPLAY_NUM counter, to keep track of the number of replay events.
- C. The transmitter uses a 12-bit Replay Number counter, referred to as the REPLAY_NUM counter, to keep track of the number of replay events.
- D. The transmitter uses a 20-bit Replay Number counter, referred to as the REPLAY_NUM counter, to keep track of the number of replay events.

```
[24 points].
`timescale 1 ns / 1 ns
module cir(a, b, f);
 input a, b;
 output f;
 assign f = \sim (a \& b);
endmodule
(1). Write a general verilog testbench for the above circuit without
using any task. You must include all four testing cases for a and b.
module cir tb;
module cir tb;
reg a,b;
wire f;
cir utt(a,b,f);
initial begin
a=0;
b=0;
#10;
a=1;
b=0;
#10;
a=0;
```

end endmodule

```
(2). Modify the above testbench by using task called "test" below to
rewrite your testbench.
`timescale 1 ns / 1 ns
module cir tb;
 reg __a,b____;
 wire \overline{f};
 cir g1 ( ___a__, __b___, f);
 initial begin
  a = 0; b = 0;
  #10 test( f, 1 );
  a = 0; b = 1;
  #10 test( f, _____0__);
a = 1; b = 0;
  #10 test( f, ____0__);
a = 1; b = 1;
  #10 test( f, ____1__);
  #10 $stop;
 end
task test;
// Write a task in Verilog of "test" which compares two input data
// values, one is from generated testing output result and another
// one is from expected testing result and find out if they are equal.
// If the two values are not equal, display the simulation time,
// the error massage, as well as the testing values of a and b.
Task check res;
input data;
input res;
begin
       if(data!=res)
               $display($time, "ns, Error: a=%b, b=%b, Expected value =
%d, Actual value = %d n", a, b, res, data);
end
endtask
endmodule
```

- 3. [40 points]
- (1). Fill out 5 blanks with different PCIe hardware unit names of Endpoint (EP), Switch, and Root Complex in the diagram below.

	Root ComplexSwitch	 B:Legacy EndPoint,
D :	PCI-XP Endpoint	E: PCI-XP Bridge to PCI

Device A transmits TLPs with Sequence Numbers 8, 9, 10, 11, 12 where TLP 8 is the first TLP sent and TLP 12 is the last TLP sent.

Device B receives TLPs with Sequence Numbers 8, 9, 10 in that order. TLP 11, 12 are still en route.

Device B performs the error checks and collectively acknowledges good receipt of TLPs 8, 9, 10.

i. What sequence number will Device B return with in its ACK DLLP packet?

Your Answer: sequence number 11.

ii. What will Device A do with the TLP packets in its replay buffer after it receives the above ACK information successfully?

Your Answer:

A will clear 8,9,10 from its buffer and remain with 11, 12. It will then send sequence number 11 followed by sequence number 12.

Device A transmits TLPs with Sequence Numbers 3, 4, 5, 6, and 7. Device B receives TLP 3 with no error. However, it receives TLP 4 with a CRC error. Device B schedules the return of a NAK DLLP with a Sequence Number.

i. What sequence number will Device B send to Device A in its NAK DLLP packet?

Your Answer: sequence number _____4__

ii. What will Device A do with the TLP packets 3, 4, 5, 6, and 7 in its replay buffer after it receives the above NAK information successfully?

Your Answer:

Buffer accepts all the packet which is send after 4 but it sends every time negative acknowledge until it will not get the correct packet of 4. So, Device A has only packet 4 in Replay buffer.

(4). The receiver Device B returns an ACK/NAK DLLP to the Device A, but the remote transmitter Device A detects a CRC error in the DLLP. What will the transmitter Device A do after detecting CRC error in its received ACK/NAK DLLP?

Your Answer:

If DLLP CRC error is detected, the DLLP is discarded and an error is reported