NOM:	Prénom:	N° SU:

Premier Examen Réparti LU3INI033 « Réseaux »

Mardi 7 novembre 2023 - Durée: 1 heure 30

Autorisé : 1 feuille A4 manuscrite recto/verso + calculatrice (non communicante)

Voici 3 feuilles contenant les énoncés et les zones de réponse à compléter (sans déborder), sans les dégrafer. Vous devez écrire vos nom, prénom et N° SU sur chacune des feuilles.

Exercice 1: Méthode d'accès CSMA/CA (Wi-Fi) (30 minutes)

On rappelle le fonctionnement de la méthode d'accès CSMA/CA utilisée pour les réseaux Wifi. Chaque station souhaitant émettre une trame de données doit vérifier que le canal est libre avant de transmettre. Deux cas sont possibles au moment où la station souhaite émettre une trame :

- Le canal est libre : la station attend alors pendant une durée DIFS (*Data Inter-Frame Spacing*) et si pendant cette période aucune transmission n'est détectée, la station peut transmettre sa trame.
- Le canal n'est pas libre (il y a une transmission en cours) : la station écoute jusqu'à ce que le support devienne libre, puis attend une durée DIFS. Si pendant cette durée la station détecte une transmission, elle interrompt son DIFS et se replace immédiatement en écoute du canal. Sinon, la station détermine aléatoirement une valeur de compteur (backoff), et écoute le support pendant toute la durée de décrémentation de ce compteur. Dès qu'une transmission est détectée, le compteur est mis en pause. Il n'est réactivé que lorsque le canal devient libre pendant une durée DIFS. A l'expiration du compteur, la station transmet sa trame.

On considère un réseau sans-fil constitué de 4 machines utilisant le protocole CSMA/CA. Dans tout l'exercice on supposera que les 4 stations sont toutes à portée radio les unes des autres, et on négligera le temps de propagation.

Le temps sera découpé en Unités de Temps (notées UT) dont la durée n'a pas besoin d'être précisée ici. On supposera que les 4 machines ont chacune une trame à envoyer et que la durée d'émission d'une trame est de 8 UT. On considèrera qu'un DIFS dure 3 UT. On supposera finalement que les 4 machines souhaitent émettre leur trame au temps : t = 0 UT pour A ; t = 25 UT pour B ; t = 5 UT pour C ; t = 10 UT pour D. Si un backoff (compteur de retrait) doit être tiré par une machine, on prendra : 3 pour A ; 2 pour B ; 4 pour C et 7 pour D.

1. Compléter le schéma suivant en faisant apparaître les périodes de transmission des 4 stations. En déduire l'instant (en nombres d'UT) auquel chaque machine termine l'émission de sa trame.

Fin d'émission de la trame de A :	UT
Fin d'émission de la trame de B:	UT
Fin d'émission de la trame de C:	UT
Fin d'émission de la trame de D :	UT

Le protocole CSMA/CA oblige une machine ayant reçue correctement une trame, à l'acquitter. Avant d'envoyer son acquittement, la machine doit attendre que le canal soit libre, puis patienter pendant une durée SIFS (*Short Inter-Frame Spacing*). Si pendant cette durée aucune transmission n'est détectée, la station peut transmettre son acquittement. Sinon, elle se remet en écoute du canal.

A titre d'exemple, voici l'échange entre une station émettrice A et sa destination B (à portée de A), si aucune autre station ne vient perturber l'échange :

Si une machine a une trame et un acquittement à envoyer, elle donnera systématiquement la priorité à l'acquittement.

On considèrera qu'un SIFS dure 1 UT (en rose sur la figure) et la durée d'émission d'une trame d'acquittement est de 2 UT (en vert sur la figure).

Dans la suite on prendra en compte les acquittements envoyés par les différentes machines. On supposera que la trame de A est à destination de B, celle de B à destination de C, celle de C à destination de D, et celle de D à destination de A (et, rappelons-le, que les stations sont toutes à portée radio les unes des autres).

2. Compléter le schéma suivant en faisant apparaître les périodes de transmission des 4 stations, ainsi que celles des acquittements. En déduire l'instant (en nombres d'UT) auquel chaque machine termine l'émission de sa trame de données (sans inclure le temps nécessaire pour recevoir l'acquittement correspondant).

Fin d'émission de la trame de données de A:	UT	
Fin d'émission de la trame de données de B:	UT	
Fin d'émission de la trame de données de C :	UT	
Fin d'émission de la trame de données de D :	UT	

NOM:	Prénom:	N° SU :

Exercice 2 : Adressage et tables de routage (30 minutes)

Une entreprise dispose de 3 routeurs R0, R1 et R2. Les tables de routage de R1 et R2 sont les suivantes :

R1

Destination	Netmask	Gateway (nom)	Interface
200.200.0.0	255.255.255.224	R0	eth0
200.200.0.128	255.255.255.224	*	eth2
200.200.1.0	255.255.255.224	R0	eth0
200.200.1.128	255.255.255.248	*	eth1
200.200.1.136	255.255.255.252	*	eth0
200.200.1.140	255.255.255.252	R0	eth0
0.0.0.0	0.0.0.0	R0	eth0

R2

Destination	Netmask	Gateway (nom)	Interface
200.200.0.0	.200.0.0 255.255.254 *		eth2
200.200.0.128	255.255.255.224	R0	eth0
200.200.1.0	255.255.255.224	*	eth1
200.200.1.128	255.255.255.248	R0	eth0
200.200.1.136	255.255.255.252	R0	eth0
200.200.1.140	255.255.255.252	*	eth0
0.0.0.0	0.0.0.0	R0	eth0

Le routeur R0 fait office de passerelle de sortie de l'entreprise et possède 3 interfaces (eth0, eth1 et eth2). Il est connecté par 3 liaisons point à point : à R1 via son interface eth1, à R2 via son interface eth2 et au routeur Rfai du fournisseur d'accès Internet via son interface eth0.

1.	Faites un schéma du réseau, en faisant figurer tous les sous-réseaux de l'entreprise avec leurs adresses
	(IPv4 slashées), ainsi que les 3 routeurs avec leurs adresses. Vous choisirez pour chaque interface des
	routeurs R1 et R2 l'adresse IP la plus grande possible (contenant le plus de bits à 1).

Netmask	Gateway		erface
missant an alas			
survant en cias au plus grand	ssant les sous-réseaux d).	e l'entreprise par ord	re de préfixe croiss
	nombre d'adresses	première adresse	dernière adresse
fixe	IP du sous-réseau	IP du sous-réseau	IP du sous-réseau
-	_	elle dû recevoir de so	on fournisseur d'ac
. 1 1	, , , , .	- duo overs 1 1	
	te). D'où vient le gâchi		dressage (et le préf
	ongueur de fixe m) de préfixe	ongueur de fixe nombre d'adresses IP du sous-réseau	ongueur de fixe IP du sous-réseau IP du sous-réseau m) de préfixe réseau l'entreprise a-t-elle dû recevoir de so

2. Donnez la table de routage du routeur R0, incluant toutes les entrées possibles que l'on peut déduire du

NOM:	Prénom:	N° SU:
NOW.	Tichom.	14 50.

Exercice 3 : Commutateurs, ARP et ICMP (30 minutes)

Le réseau suivant est formé de 11 segments Ethernet interconnectés par 7 commutateurs notés B1 à B7 et par 2 routeurs notés R1 et R2. 2 machines hôte H1 et H2 y sont connectées.

Les adresses MAC des interfaces des commutateurs et des routeurs sont représentées sur la figure et sont notées de façon symbolique avec le nom de l'équipement suivi d'une lettre (Ex : B2a, B2b et B2c pour les 3 interfaces du commutateur B2). Les commutateurs exécutent le protocole STP. On supposera que les adresses MAC des commutateurs suivent l'ordre alphabétique de leurs noms.

Les adresses IPv4 des 3 sous-réseaux interconnectés par les 2 routeurs sont données sur la figure. Elles ont toutes les trois un masque de sous-réseau en /26. Pour les adresses IPv4 des interfaces des routeurs et des hôtes, seul le dernier octet est donné sur la figure (Ex : l'interface R1a du routeur R1 a pour adresse IP 192.168.2.62).

1. Parmi les 9 segments du sous-réseau 192.168.2.64/26, quels sont ceux qui sont désactivés par le STP ?

La machine hôte H1 souhaite tester la connectivité de la machine H2 et lui envoie un (seul) « ping » :

Cette commande Unix génère l'envoi d'un paquet IP contenant un message ICMP Echo Request de H1 vers H2, puis l'envoi d'un paquet IP contenant un message ICMP Echo Reply de H2 vers H1.

Dans un premier temps on s'intéresse à l'envoi du message ICMP Echo Request.

On suppose qu'initialement les caches ARP de toutes les machines (hôtes et routeurs) sont vides. L'envoi du message Echo Request de H1 vers H2 va donc nécessiter un échange ARP sur chacun des 3 sous-réseaux.

2. Donner les adresses MAC des trames encapsulant les requêtes et les réponses ARP sur les 3 sousréseaux

		Adresse MAC source	Adresse MAC destination
102 169 2 0/26	Requête ARP		
192.168.2.0/26	Réponse ARP		
192.168.2.64/26	Requête ARP		
192.108.2.04/20	Réponse ARP		
102 169 2 129/26	Requête ARP		
192.168.2.128/26	Réponse ARP		

3.	Donner les entrées	des caches ARF	apprises de	es 2 routeurs R1	l et R2 à l'issue	de ces 3 échanges ARP.

Cache ARP de R1			
Adresse MAC	Adresse IP		

Cache ARP de R2							
Adresse MAC	Adresse IP						

On suppose qu'avant les échanges ARP les tables CAM de tous les commutateurs étaient vides.

4. A l'issue de l'échange ARP ayant lieu sur le sous-réseau 192.168.2.64/26, quels sont parmi tous les commutateurs B1 à B7, ceux qui possèdent dans leur table CAM une correspondance pour R1 ? Même question pour R2.

R1	
R2	

5. Sur chacun des 3 sous-réseaux, à l'issue de l'échange ARP correspondant, le paquet IP encapsulant le message ICMP Echo Request doit être transporté dans une trame Ethernet. Remplir dans le tableau suivant les champs d'en-tête de la trame et du paquet qui encapsule le message.

	Trame l	Ethernet]		
	Adresse MAC source	Adresse MAC destination	Adresse IP source		
192.168.2.0/26					32
192.168.2.64/26					
192.168.2.128/26					

6. Classer dans l'ordre d'émission des trames les encaspulant, chacun des 9 messages de cet échange :

	Ordre (1 à 9)
Requête ARP sur 192.168.2.0/26	
Réponse ARP sur 192.168.2.0/26	
Requête ARP sur 192.168.2.64/26	
Réponse ARP sur 192.168.2.64/26	
Requête ARP sur 192.168.2.128/26	
Réponse ARP sur 192.168.2.128/26	
Message ICMP Echo Request sur 192.168.2.0/26	
Message ICMP Echo Request sur 192.168.2.64/26	
Message ICMP Echo Request sur 192.168.2.128/26	

On s'intéresse maintenant à l'envoi du message ICMP Echo Reply.

7.	Parmi	les	11	points	d'observation	(un	sur	chaque	segment)	lesquels	voient	passer	du	trafic
	corresp	ond	ant	à l'envo	i de ce message	? Ju	stifie	er la répo	nse.					