CSE 5441 Autumn 2017

homework 4 - dependence analysis

due date: Wed., 9/27

1. [10 pts.] Describe all data dependencies in the following code segment:

S1: a++

S2: b = a + b

S3: c = a + d

S4: $d = c^2$

S5: a - -

2. **[10 pts.]** What are the data dependencies, distance vectors and direction vectors for S1 and S2 in the following code segment?

for
$$(i = 0; i < MAX; i++)$$

for $(j = 0; j < MAX; j++)$
 $A[i][j] = A[i+1][j-1]$

BODY(i, j, k, m)

S2: B[i][j] = A[i][j]

Can these loops be re-ordered? Why or why not?

S1:

3. Given the following loop nest, for each value of BODY, which loop re-orderings are valid?

BODY

for (
$$i = 0$$
; $i < MAX$; $i++$) (a.) **[10 pts.]** A[i , j , k , m] = B[$i-1$, $j-1$, $k-1$, $m-1$] for ($j = 0$; $j < MAX$; $j++$) (b.) **[10 pts.]** A[i , j , k , m] = A[$i-1$, j , k , m] for ($k = 0$; $k < MAX$; $k++$) (c.) **[10 pts.]** A[i , j , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , k , k = A[i , i , i , k = A[i , i , i , k = A[