Лекция 9

Определенный интеграл

Пусть функция f(x) определена на отрезке [a,b], a < b. Разобьем отрезок [a,b] на n частей промежуточными точками

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b \tag{1}$$

и выберем в каждом из отрезков $\left[x_{i-1}, x_i\right]$ произвольную точку $\xi_i: x_{i-1} \leq \xi_i \leq x_i$,

Обозначим через $\Delta x_i = x_i - x_{i-1}$ длину отрезка $\left[x_{i-1}, x_i\right], \ i=1,\dots,n$. Обозначим через λ наибольшую из разностей $\Delta x_i = x_i - x_{i-1}$, $i=1,\dots,n$: $\lambda = \max_{i=1,\dots,n} \Delta x_i$

Определение. Сумма

$$\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} \tag{2}$$

называется *интегральной суммой* функции f(x) для данного разбиения (1) и данного выбора точек ξ_i .

Определение. Пусть существует конечный предел интегральных сумм (2), когда $\lambda \to 0$, не зависящий ни от способа разбиения отрезка [a,b] на части промежуточными точками $x_0, x_1, \dots, x_{n-1}, x_n$, ни от выбора точек $\xi_1, \xi_2, \dots, \xi_n$. Тогда этот предел называется *определенным интегралом* функции f(x) на отрезке [a,b] и обозначается символом

$$\int_{a}^{b} f(x) dx.$$

Таким образом,

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}.$$

Определение. Функция f(x) называется при этом *интегрируемой* (по Риману) на отрезке [a,b]. Числа a и b называются *нижним* и *верхним* пределами интеграла, соответственно.

Определение. Пусть a > b. Тогда

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

Определение. $\int_{a}^{a} f(x) dx = 0.$

Теорема (необходимое условие интегрируемости функции). *Если функция* f(x) интегрируема на отрезке [a,b], то функция f(x) ограничена на этом отрезке.

Это условие не является достаточным для интегрируемости функции по Риману.

Теорема (достаточное условие интегрируемости функции). *Непрерывная на отрезке* [a,b] функция f(x) интегрируема на этом отрезке.

Теорема. Если функция f(x) имеет конечное число точек разрыва на отрезке [a,b] и ограничена на [a,b], то f(x) интегрируема на отрезке [a,b].

Пусть $f(x) \ge 0$. Геометрически частичная сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, с основаниями Δx_i и высотами $f(\xi_i)$, $i=1,\ldots,n$. Отсюда вытекает

Геометрический смысл определенного интеграла.

Если неотрицательная функция f(x) непрерывна на отрезке [a,b], то интеграл

 $\int_{a}^{b} f(x)dx$ равен площади криволинейной фигуры,

ограниченной сверху графиком функции y = f(x), снизу осью $Ox\ u\ c$ боков отрезками прямых $x = a\ u\ x = b$.

Механический смысл определенного интеграла.

Пусть дан линейный неоднородный стержень, лежащий на оси Ох в пределах отрезка [a,b]. Пусть плотность распределения массы вдоль стержня (линейная плотность) есть некоторая непрерывная функция $\rho(x) \ge 0$. Требуется определить массу стержня. Для этого разобьем стержень на n произвольных мелких частей точками $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$. Будем считать, что плотность $\rho(x)$ постоянна на части $[x_{i-1}, x_i]$ и равна $\rho(\xi_i)$ для некоторой точки $\xi_i \in [x_{i-1}, x_i]$, i = 1, ..., n. Тогда масса отрезка стержня $[x_{i-1}, x_i]$ равна $\rho(\xi_i) \Delta x_i$, а масса всего стержня приближенно равна $\sum_{i=1}^n \rho(\xi_i) \Delta x_i$. Точное значение массы m получим в пределе, когда $\max_{i=1,...,n} \Delta x_i \to 0$:

$$m = \lim_{\substack{\max \\ i=1,\dots,n}} \sum_{i=1}^{n} \rho(\xi_i) \Delta x_i = \int_{a}^{b} \rho(x) dx.$$

Основные свойства определенного интеграла.

0) Нормировка.

$$\int_{a}^{b} 1 dx = b - a.$$
Следствие.
$$\int_{a}^{b} C dx = C(b - a), C = \text{const}$$

1) Линейность.

Если функции f(x) и g(x) интегрируемы на [a,b], A и B – константы, то функция

Af(x)+Bg(x) также интегрируема на [a,b] и выполняется равенство

$$\int_{a}^{b} Af(x) + Bg(x) dx = A \int_{a}^{b} f(x) dx + B \int_{a}^{b} g(x) dx.$$

2) Монотонность.

Если a < b, $f(x) \le g(x)$ и функции f(x) и g(x) интегрируемы на [a,b], то $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$

Следствие 1. Если $f(x) \ge 0$ на [a,b], a < b, и f(x) интегрируема на [a,b], то $\int_a^b f(x) dx \ge 0$.

Следствие 2. Если a < b, f(x) интегрируема на [a,b] и $m \le f(x) \le M$ на [a,b], где $m = \mathrm{const}$, $M = \mathrm{const}$, то

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a).$$

Следствие 3. Если a < b, функция f(x) интегрируема на [a,b], то функция |f(x)| также интегрируема на [a,b] и

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Замечание. Из интегрируемости функции |f(x)| не следует интегрируемость функции f(x).

3) Аддитивность.

Для любых трех чисел a,b,c справедливо равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

при условии, что функция f(x) интегрируема на объемлющем отрезке.

Определение. Средним значением функции f(x) на отрезке [a,b] называется число

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Пусть $m \le f(x) \le M$ на [a,b], где $m = {\rm const}$, $M = {\rm const}$, тогда $m \le \mu \le M$. **Теорема (о среднем)**. Если функция f(x) непрерывна на отрезке [a,b], то на этом отрезке найдется такая точка c, что $\int_{a}^{b} f(x) dx = f(c)(b-a)$.

Доказательство. Поскольку функция f(x) непрерывна на отрезке [a,b], то $m \le f(x) \le M$, где $m = \min_{x \in [a,b]} f(x)$, $M = \max_{x \in [a,b]} f(x)$. По определению среднего значения $\int_a^b f(x) dx = \mu(b-a)$, $m \le \mu \le M$. По теореме о переходе непрерывной функции через промежуточные значения найдется точка $c \in [a,b]$ такая, что $\mu = f(c)$ и, следовательно, $\int_a^b f(x) dx = f(c)(b-a)$.

Замечание. Условие непрерывности функции является существенным.

Геометрический смысл теоремы о среднем значении

Среднее значение неотрицательной функции f(x) на отрезке [a,b] — это высота прямоугольника с основанием b-a, и высотой f(c) площадь которого равна

площади криволинейной трапеции.

Пусть функция f(x) интегрируема на отрезке [a,b]. Тогда функция f(x) интегрируема на отрезке $[a,x] \ \forall x \in [a,b]$. Построим новую функцию

$$\Phi(x) = \int_{a}^{x} f(t)dt, x \in [a,b].$$

Такую функцию называют *интегралом с переменным верхним пределом*.

Теорема (о производной интеграла по переменному верхнему пределу). *Если* функция f(x) непрерывна на отрезке [a,b], то функция $\Phi(x) = \int_a^x f(t) dt$, $x \in [a,b]$ является первообразной функции f(x) на [a,b], т.е. $\exists \Phi'(x) = f(x)$, $x \in [a,b]$.

◄Доказательство. Зафиксируем $x_0 \in [a,b]$ и рассмотрим разностное отношение для функции $\Phi(x)$ в точке x_0 :

$$\frac{\Delta\Phi}{\Delta x} = \frac{\Phi\left(x_0 + \Delta x\right) - \Phi\left(x_0\right)}{\Delta x} = \frac{1}{\Delta x} \left(\int_a^{x_0 + \Delta x} f\left(t\right) dt - \int_a^{x_0} f\left(t\right) dt\right) = \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f\left(t\right) dt.$$

Воспользуемся непрерывностью функции f(x) на отрезке $[x_0, x_0 + \Delta x]$ и применим теорему о среднем значении. Тогда

$$\int_{x_0}^{x_0 + \Delta x} f(t) dt = f(c) \Delta x,$$

где точка c расположена между x_0 и $x_0 + \Delta x$. Следовательно,

$$\frac{\Delta\Phi}{\Delta x} = f(c), \lim_{\Delta x \to 0} \frac{\Delta\Phi}{\Delta x} = \lim_{\Delta x \to 0} f(c) = f(x_0), \text{ ч.т.д.} \blacktriangleright$$

Замечание. Мы доказали, что всякая непрерывная функция f(x) имеет первообразную.

Замечание. Теорема распространяется и на случай *интеграла с переменным нижним пределом*

$$\Phi(x) = \int_{x}^{b} f(t)dt, x \in [a,b].$$

Поскольку
$$\int_{x}^{b} f(t)dt = -\int_{b}^{x} f(t)dt$$
, то $\Phi'(x) = -f(x)$.