

HI-8421, HI-8424

March 2007

6-Channel / 8-Channel Discrete-to-Digital Interface Sensing 28V / Open Signals

DESCRIPTION

The HI-8421 is a six channel discrete-to-digital interface device. The HI-8424 has eight channels. Mixed-signal CMOS technology is used to provide superior low-power performance. The device inputs are configured to sense 28V / Open discrete signals. The device outputs are CMOS / TTL compatible and may be disabled (tri-state) using the \overline{CE} and \overline{OE} pins.

The HI-8421 is a drop-in replacement for the DEI1054.

For added functionality, the Holt HI-8422 offers eight channels of Open / Ground sensing and eight channels of 28V / Ground sensing in a single device.

BLOCK DIAGRAM

FEATURES

- 6 or 8 independent 28V / Open sensing channels
- 5.0V single supply operation
- Low power CMOS technology
- Lightning protected inputs to DO-160D level 3
- HI-8421 is a drop in replacement for DEI1054

PIN CONFIGURATIONS

16-Pin Plastic SOIC package (Narrow Body)

20 Pin TSSOP package

FUNCTION TABLE

Discrete Input	CE	ŌĒ	Output
Open	0	0	1
28 Volts	0	0	0
Х	1	Х	High Z
Х	Х	1	High Z

PIN DESCRIPTIONS

PIN		SYMBOL	FUNCTION	DESCRIPTION			
(HI-8421)	(HI-8424)	01202	· Citorion	BEGOTAL FIGH			
1	1	IN1	Discrete Input	28 Volt / Open sensing input, channel 1			
2	2	IN2	Discrete Input	28 Volt / Open sensing input, channel 2			
3	3	IN3	Discrete Input	28 Volt / Open sensing input, channel 3			
4	4	IN4	Discrete Input	28 Volt / Open sensing input, channel 4			
5	5	IN5	Discrete Input	28 Volt / Open sensing input, channel 5			
6	6	IN6	Discrete Input	28 Volt / Open sensing input, channel 6			
-	7	IN7	Discrete Input	28 Volt / Open sensing input channel 7			
7	8	ŌĒ	Digital input	Output Enable. OUT1-OUT8 are high-impedance if OE is high			
8	9	CE	Digital input	Chip Enable. OUT1-OUT8 are high-impedance if CE is high			
9	10	VDD	Power	Positive supply voltage 5.0 V			
-	11	OUT8	Tri-state output	Logic output, channel 8			
-	12	OUT7	Tri-state output	Logic output, channel 7			
10	13	OUT6	Tri-state output	Logic output, channel 6			
11	14	OUT5	Tri-state output	Logic output, channel 5			
12	15	OUT4	Tri-state output	Logic output, channel 4			
-	16	IN8	Discrete Input	28 Volt / Open sensing input, channel 8			
13	17	OUT3	Tri-state output	Logic output, channel 3			
14	18	OUT2	Tri-state output	Logic output, channel 2			
15	19	OUT1	Tri-state output	Logic output, channel 1			
16	20	GND	Power	Ground			

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +7 V			
Logic input voltage range	-0.3 V to +5.5 V			
Discrete input voltage range	-80 V to + 80 V			
Power dissipation at 25°C	350 mW			
Solder temperature	275°C for 10 sec			
Storage temperature	-65°C to +150°C			

RECOMMENDED OPERATING CONDITIONS

Supply Voltage
VDD 4.5 V to 5.5 V
Operating Temperature Range
Industrial Screening40°C to +85°C
Hi-Temp Screening55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

ELECTRICAL CHARACTERISTICS

VDD = 5.0V ± 10%, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

VBD 0.0V 2 1070, GVB 0V, TA Operating temperature runge (unloss stretmes specified).								
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS		
DISCRETE INPUTS								
Open state input voltage	Vso	Input voltage to give high output	-5		10	V		
28 V state input voltage	Vs28	Input voltage to give low output	14			V		
Open state input current	Iso	Maximum input current to give high output			84	μA		
28 V state input current	IS28	Minimum input current to give low output	197			μА		
Input resistance	Rin	0 V < VIN < 16 V	71		119	ΚΩ		
Input current at 28 V	lin28	VIN = 28 V			394	μΑ		

ELECTRICAL CHARACTERISTICS (Cont.)

VDD = 5.0V ± 10%, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARA	METER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
LOGIC INPUTS (CE, OE)		•					•
Input Voltage	Input voltage HI	VIH		2.0			V
	Input voltage LO	VIL				0.8	V
Input current	Input sink	liн	VIH = VDD			1.0	μA
	Input source	lı∟	VIL = 0 V	-1.0			μA
OUTPUTS						•	•
Logic output voltage	High	Vон	Iон = -5 mA	2.4			V
	Low	Vol	IoL = 5 mA			0.4	V
Logic output voltage (CMOS) High	Vон	Iон = -100 uA	VDD - 0.2			V
	Low	Vol	IOL = 100 uA			0.2	V
Tri-state output current		loz	Vout = 0 V or VDD			±10	μA
SUPPLY CURRENT						<u> </u>	
VDD current		ldd	Vın = 0 V (all inputs)		5	10	mA
SWITCHING CHARACTERISTIC	CS						•
Propagation delay	IN to OUT	tlh, thl				500	ns
Output enable time		tzL, tzH	From CE or OE			25	ns
Output disable time		tLZ, tHZ	From CE or OE			25	ns

TIMING DIAGRAMS

LIGHTNING PROTECTION

The 28V / Open inputs will survive DO-160D level 3, waveforms 3, 4 and 5A without external components.

ORDERING INFORMATION

PACKAGE DIMENSIONS

16-PIN PLASTIC SMALL OUTLINE (SOIC) - NB

(Narrow Body)

inches (millimeters)

Package Type: 16HN

BSC = "Basic Spacing between Centers" is theoretical true position dimension and

has no tolerance. (JEDEC Standard 95)

20-PIN PLASTIC TSSOP

inches (millimeters)

Package Type: 20HT

Detail A

BSC = "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)