1. 
$$-\left[\frac{\partial}{\partial x}\left(K_{1}(x,y)\frac{\partial y}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{2}(x,y)\frac{\partial y}{\partial y}\right)\right]=f(x,y)$$

$$0 \leq x \leq b, \quad c \leq y \leq d, \quad 0 < c_{11} \leq k_{1}(x,y) \leq c_{12} \quad 0 < c_{21} \leq k_{2}(x,y) \leq c_{22}$$

$$U|_{x=a} = g_{3}(y)$$
  $U|_{x=b} = g_{2}(y)$   
 $U|_{y=c} = g_{3}(x)$   $U|_{y=d} = g_{3}(x)$ 

$$N_{\times}$$
 - encus page.  $[a,b]$ ,  $N_{g}$  - encus page.  $[c,d]$   
 $X_{o} \leq X_{i} \leq ... \leq X_{N}, X_{i} \in [a,b], X_{o} = a, X_{N} = b$   $y_{o} \leq y_{i} < ... \leq y_{N}, y_{i} \in [c,d], y_{o} = c, y_{N} = d$   
 $h_{\times} = \frac{b-a}{N_{\times}}$   $h_{y} = \frac{c-d}{N_{y}}$ 

$$X_{i-\frac{1}{2}} = \frac{X_i + X_{i-1}}{2}, i=1,2,...,N_x$$



pewerme myerch byzvax och.cerku  $U(x_i, y_j) = U_{i,j}$   $V(x_i, y_j) = V_{i,j}$  $U_{i,j} \approx V_{i,j}$  -[\sigma\_{\frac{1}{2}}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2} i=1,2,..., Nx-1, j=1,2,..., Ny-1  $S = \frac{1}{2} \frac{1}{2}$ xi-2 xi+2 xj+2 xdy = hxhy 4
xi-2 yj-2
341 = K.(x  $K_{1}(x_{i-\frac{1}{2}},y_{i})\frac{\partial y_{i}}{\partial x_{i}}\approx K_{1}(x_{i-\frac{1}{2}},y_{i})\frac{V_{i,5}-V_{i-1},j}{h_{x}}$ K2 (x; y j+1) 34/x=x; k2 (x; y j-1) Visi-Vij-1
hy - [h, k, (x;-1, y) Vi+15j-Vi, 5 - h, k, (x;-1, y;) Vi, j-Vi-15 + + hx K2 (x; y; +2) Vi, j+1-Vi, j -hx K2 (x; y; -1) Vij-Vi,j-1 = hx hy f; 1=1,2,..., Nx-1 j=1,2,..., Ny-1

$$V_{i,j} = g_{s}(y_{j}) i = 0, j = 0, 1, ..., N_{y}$$

$$V_{i,j} = g_{s}(y_{j}), i = 0, 1, ..., N_{y}$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

$$V_{i,j} = g_{s}(x_{i}), i = 0, 1, ..., N_{x}, j = 0$$

2. 
$$S_{ij} = h_{x}h_{x} f_{ij} + h_{y}k_{i} (x_{i+\frac{1}{2}}, y_{j}) \frac{u_{ij} - u_{ij}}{h_{x}} - h_{y}k_{i} (x_{i+\frac{1}{2}}, y_{j}) \frac{u_{ij} - u_{ij}}{h_{x}}$$
 $+ h_{x}k_{z}(x_{i}, y_{j+\frac{1}{2}}) \frac{u_{ij} - u_{ij}}{h_{y}} - h_{x}k_{z} (x_{i}, y_{j+\frac{1}{2}}) \frac{u_{ij} - u_{ij}}{h_{x}}$ 
 $u_{i+y} = u(x_{i} + h_{x}, y_{j}) = u_{ij} + h_{x} \frac{\partial u_{ij}}{\partial x} + \frac{h_{x}^{2}}{\partial x^{2}} \frac{\partial u_{ij}}{\partial x^{2}} + \frac{h_{x}^{3}}{\partial x^{2}} \frac{\partial u_{ij}}{\partial x^{3}} + \frac{h_{x}^{4}}{\partial x^{4}} \frac{\partial u_{ij}}{\partial x^{4}} + O(h_{x}^{4})$ 
 $K_{i+\frac{1}{2}i} = k_{i}(x_{i} + \frac{h_{x}}{2}, y_{j}) = k_{i,j} + \frac{h_{x}}{2} \frac{\partial k_{i,j}}{\partial x} + \frac{h_{x}^{2}}{2} \frac{\partial u_{i,j}}{\partial x^{2}} + \frac{h_{x}^{4}}{48} \frac{\partial u_{i,j}}{\partial x^{3}} + \frac{h_{x}^{4}}{2} \frac{\partial u_{i,j}}{\partial x^{3}} + \frac{h_$ 

$$\frac{5}{13} = h_{x}h_{y} f_{ij} + h_{y} [h_{x} (\frac{\partial}{\partial x} (k_{1} \frac{\partial u}{\partial x}))_{i,j} + h_{x}^{3} / \frac{1}{2} k_{1} \frac{\partial^{3} u}{\partial x^{3}} + \frac{1}{6} \frac{\partial k_{1}}{\partial x^{3}} \frac{\partial^{3} u}{\partial x^{3}} + \frac{1}{24} \frac{\partial^{3} k_{1}}{\partial x^{2}} \frac{\partial u}{\partial x^{3}} + \frac{1}{24} \frac{\partial^{3} k_{1}}{\partial x^{3}} \frac{\partial u}{\partial x^{3}} + \frac{1}{24} \frac{\partial^{3} k_{2}}{\partial y^{3}} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial^{3} k_{2}}{\partial x^{3}} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial^{3} k_{2}}{\partial x^{3}} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial^{3} k_{1}}{\partial x^{3}} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial^{3} k_{2}}{\partial y} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} + \frac{1}{6} \frac{\partial u}{\partial y} \frac{\partial u}$$

$$P_{x} = 2 - 0 = 2$$

$$P_{y} = 2 - 0 = 2$$

$$P_{x} = \frac{1}{12} k_{1} \frac{\partial \mathcal{U}}{\partial x^{4}} + \frac{1}{6} \frac{\partial k_{1}}{\partial x} \frac{\partial \mathcal{U}}{\partial x^{3}} + \frac{1}{8} \frac{\partial k_{1}}{\partial x^{2}} \frac{\partial^{2} \mathcal{U}}{\partial x^{2}} + \frac{1}{24} \frac{\partial^{3} k_{1}}{\partial x^{3}} \frac{\partial \mathcal{U}}{\partial x}$$

 $P_{y} = \frac{1}{12} k_{2} \frac{\partial^{4} u}{\partial y^{4}} + \frac{1}{6} \frac{\partial k_{2}}{\partial y} \frac{\partial^{3} u}{\partial y^{3}} + \frac{1}{8} \frac{\partial k_{2}}{\partial y^{2}} \frac{\partial^{2} u}{\partial y^{2}} + \frac{1}{24} \frac{\partial^{3} k_{1}}{\partial y^{3}} \frac{\partial u}{\partial y}$ 

Byramurioux ayulerax muyrarotas Toremble



$$a_{m} = -\frac{h_{x}}{h_{y}} K_{z}(x_{i}, y_{j-1}) \qquad b_{m} = -\frac{h_{x}y}{h_{yx}} K_{z}(x_{i-\frac{1}{2}}, y_{j})$$

$$d_{m} = -\frac{hy}{hx} k_{i}(x_{i+\frac{1}{2}}, y_{j}) \qquad e_{m} = -\frac{hx}{hy} k_{z}(x_{i}, y_{j+\frac{1}{2}})$$

$$i=0$$
;  $j=0,1,...,N_g$   $C_m w_m = g_m$   $C_m = 1$ ,  $g_m = g_1(g_j)$   
 $i=N_x$ ;  $j=0,1,...,N_g$   $C_m w_m = g_m$   $C_m = 1$ ,  $g_m = g_2(g_j)$   
 $i=0,1,...,N_x$ ;  $j=0$   $C_m w_m = g_m$   $C_m = 1$ ,  $g_m = g_3(x_i)$   
 $j=0,1,...,N_x$ ;  $j=N_g$   $C_m w_m = g_m$   $C_m = 1$ ,  $g_m = g_4(x_i)$   
 $Aw = g$   $Ae R^{N_xN}$ ,  $w,ge R^N$ ,  $N = (N_x + 1)(N_y + 1)$ 



Momens nouver passer passer passer marques craver currents presents

| * | * |   | * |   |   |   |   | - |
|---|---|---|---|---|---|---|---|---|
| + | * | * |   | * |   |   |   |   |
|   |   | * |   |   | * |   |   |   |
| * |   |   | + | ¥ |   | * |   |   |
|   | * |   | 1 | * | 4 |   | * |   |
|   |   | * |   | * | * | 1 |   | * |
|   |   |   | 4 |   |   | * | * |   |
|   |   |   |   | * |   | * | * | × |
|   |   |   |   |   | * |   | * | * |

Copyragna waspunger ancrease yp-ir

|   |   |   |   |   |   |   |   |   |   |   | ¥ | * | * |   |   | * | *      | * |   |   | * | *   | * |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--------|---|---|---|---|-----|---|---|
|   |   |   |   |   |   |   | * | * | × |   |   | ¥ | ¥ | * |   |   | $\Psi$ | * | * |   |   |     |   |   |
| 1 | 1 | 1 | 1 | 1 | 1 | ¥ | * | * | 1 | 1 | X | X | X | 1 | 1 | × | *      | * | 1 | 1 | 1 | 1 1 | 1 | 1 |
|   |   |   |   |   | * | * | * |   |   | * | * | * |   |   | * | * | *      |   |   |   |   |     |   |   |

 $m_L=L$ ,  $m_u=L$ ,  $L=N_X+1$ ,  $ABD(m_L+m_u+1+m_L,N)$ PA=LU Cinyxiyna mais. & cuci. yp-ingan cum. mais.  $m_u = L$ ,  $L_x = N_x + 1$ ,  $N = (N_x + 1)(N_y + 1)$ ABD (ma+1,N) A=AT, 2(A)>0, A=LL'

Compary ma water, and yp-  $\bar{u}$   $AV = F, A \in \mathbb{R}^{N \times N}, N = (N_{\times} + 1)(N_{Y} + 1), V, F \in \mathbb{R}^{N}$  [Co Bo]

|     | Co | Bo |     |          |          |      |              |      | Vo    | ĵ             | Fo    |   |
|-----|----|----|-----|----------|----------|------|--------------|------|-------|---------------|-------|---|
| •   | A, | C, | B,  | <i>*</i> |          |      | ·            |      | V     | 5 3           | F,    |   |
|     |    | ,  |     |          | ,        |      |              |      |       | 1 (1 )<br>1 4 |       |   |
| A=  |    |    | A;  | Cj       | Bj       |      |              | V=   | V     | F=            | F:    |   |
|     |    |    |     | -        |          |      |              | )    |       | )             | -     |   |
|     |    |    |     |          | Any      | CNIT | Bey-1        |      | VNy-1 |               | Fuy-1 |   |
|     |    |    |     |          | <i>3</i> | Any  | Bay-1<br>Cny |      | VNG   |               | - FNA |   |
|     |    |    |     |          | ,        |      | -,           | *    |       | ÷ .           |       |   |
|     | *  |    |     |          | *        | *    |              | *    |       | -             |       | 1 |
|     | د  | +  |     |          | *        | * *  |              | ,    |       | *             |       |   |
| 4,= |    |    | - / | ), C; =  |          |      | 0            | ,B;= |       |               |       |   |
| U   |    |    | *   | , O      |          | *    | * *          | , ,  |       |               | *     |   |
| ı   |    |    | *   |          |          |      | * *          |      | -     |               | × *   |   |

A;, C;, B;  $\in \mathbb{R}^{(Nx+1)\times(Nx+1)}$ 

$$\begin{cases} V_{0,j} \\ V_{Nxj} \end{cases}, \quad f_{j} = \begin{cases} f_{0,j} \\ f_{i,j} \\ \vdots \\ F_{Nx,j} \end{cases}$$

$$Metog \quad \text{Metog} \quad \text{Met$$

$$j = N_y - 1, N_y - 2, ..., 1, 0$$
  
 $V_j = \alpha_{j+1} V_{j+1} + \beta_{j+1}$ 

$$\det C_{j} \neq 0 \qquad ||C_{0}^{-1}B_{0}|| \neq 1, ||C_{N_{y}}^{-1}B_{N_{y}}|| \leq 1, ||C_{j}^{-1}A_{j}|| + ||C_{j}^{-1}B_{j}|| \leq 1$$

$$||A_{j}|| \leq 1 \qquad \text{det} (A_{j}A_{j} + C_{j}) \neq 0$$