# Øving 12

# **Oppgave 1**

To lange, parallelle ledninger henger i lette snorer med lengde  $L=5,0~{\rm cm}$ . Hver ledning har en masse per lengdeenhet på  $\lambda=30~{\rm g/m}$ , og de fører begge en identisk strøm I i motsatte retninger. Se figuren under.



Hva er strømmen I i hver leder dersom vinkelen mellom snorene er  $\theta=12^\circ$  (dvs. vinkelen mellom hver snor og vertikalretningen er  $\frac{\theta}{2}$ )?

## Oppgave 2

En primitiv likestrømsmotor består av en kvadratisk ledersløyfe med sidelengde  $a=10~{\rm cm}$  plassert i et homogent magnetfelt med feltstyrke/flukstetthet  $B=0,50~{\rm T}$  og retning mot høyre. Ved t=0 er magnetfeltet parallellt med planet til sløyfa, idet sløyfa tilkobles et batteri slik at det går en konstant strøm  $I=10~{\rm A}$  i sløyfa. Sløyfa er opplagret slik at den kan rotere om midtpunktet. Se figuren under.



- a) Bestem absoluttverdien av magnetkrafta på hver av de to sidene som er parallelle med magnetfeltet.
- b) Bestem absoluttverdien av magnetkrafta på hver av de to sidene som står vinkelrett på magnetfelet.
- c) Bestem absoluttverdien av den totale magnetkrafta på sløyfa.
- d) Bestem dreiemomentet  $\tau$  på sløyfa som funksjon av vinkelen  $\phi$  mellom magnetfeltet og sløyfas normalvektor, dvs. bestem  $\tau(\phi)$ .

#### Oppgave 3

Gitt to lange, parallelle ledere som fører en identisk strøm I med samme retning, som vist på figuren under.



Bestem magnetfeltet i de to angitte punktene på figurene:

- a)  $P_1$ , som ligger i samme avstand a fra hver leder
- b)  $P_2$ , som ligger i avstand 2a fra den nederste lederen.

### **Oppgave 4**

En primitiv generator er utformet N vindinger av rektangulære ledersløyfer med areal A som roterer i et konstant, homogent ytre magnetfelt med feltstyrke B med retning vertikalt på figuren. Sløyfa roteres med håndmakt med konstant vinkelfart  $\omega$  om midtpunktet til sløyfa (stiplet linje på figuren).  $\phi(t)$  er vinkelen mellom sløyfas normalvektor og magnetfeltet ved tid t.



Hvilke påstander er riktige:

- A. Absoluttverdien av den induserte emsen i generatoren er  $|NBA\omega\sin\omega t|$
- B. Absoluttverdien av den induserte emsen i generatoren er  $|NBA\omega\cos\omega t|$
- C. Absoluttverdien av den induserte emsen i sløyfa er konstant
- D. Absoluttverdien av den induserte emsen i sløyfa er størst når normalvektoren og magnetfeltet står vinkelrett på hverandre, dvs. for  $\phi=n\cdot\frac{\pi}{2}, n=1,2,3,\ldots$
- E. Absoluttverdien av den induserte emsen i sløyfa er størst når normalvektoren og magnetfeltet er parallelle, dvs. for  $\phi=n\cdot 2\pi, n=0,1,2,3,\ldots$
- F. Tiden for ett omløp av sløyfa er  $t=rac{2\pi}{\omega}$