Policy-Based Reinforcement Learning

Shusen Wang

Policy Function Approximation

Action-Value Function

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[R_t|s_t, \mathbf{a}_t, \pi\right].$$

- Taken w.r.t. actions $a_{t+1}, a_{t+2}, a_{t+3}, \cdots$ and states $s_{t+1}, s_{t+2}, s_{t+3}, \cdots$
- Actions are randomly sampled: $a_t \sim \pi(\cdot | s_t)$. (Policy function.)
- States are randomly sampled: $s_{t+1} \sim p(\cdot | s_t, a_t)$. (State transition.)

State-Value Function

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[R_t|s_t, \mathbf{a_t}, \pi\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s_t)} \left[Q_{\pi}(s_t, \boldsymbol{a}) \right] = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s_t) \cdot Q_{\pi}(s_t, \boldsymbol{a}).$$

- Integrate out action a.
- Given s_t and π , state-value function can tell the expected return.

State-Value Function

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s_t)} \left[Q_{\pi}(s_t, \boldsymbol{a}) \right] = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s_t) \cdot Q_{\pi}(s_t, \boldsymbol{a}).$$

Policy Function Approximation

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s_t)} \left[Q_{\pi}(s_t, \boldsymbol{a}) \right] = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s_t) \cdot Q_{\pi}(s_t, \boldsymbol{a}).$$

Policy-based learning: Learn a policy π that maximizes $\mathbb{E}_{S}[V_{\pi}(S)]$.

Policy Function Approximation

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s_t)} \left[Q_{\pi}(s_t, \boldsymbol{a}) \right] = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s_t) \cdot Q_{\pi}(s_t, \boldsymbol{a}).$$

Policy-based learning: Learn a policy π that maximizes $\mathbb{E}_{S}[V_{\pi}(S)]$.

Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s,\theta)$

- $\pi(a|s;\theta) = 0.2$ means that observing s, the agent shall take action a with probability 0.2.
- Let \mathcal{A} be the set all actions, e.g., $\mathcal{A} = \{\text{"left", "right", "up"}\}$.
- $\sum_{a \in \mathcal{A}} \pi(a|s, \theta) = 1$. (That is why we use softmax activation.)

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta}$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s; \theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s; \theta) \cdot Q_{\pi}(s, a)}{\partial \theta}$$

Push the differentiation into the summation.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

 Q_{π} is independent of $\boldsymbol{\theta}$.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

- Chain rule: $\frac{\partial \log[f(x)]}{\partial x} = \frac{\partial f(x)}{\partial x} \cdot \frac{1}{f(x)}$.
- Thus $\frac{\partial f(x)}{\partial x} = f(x) \cdot \frac{\partial \log[f(x)]}{\partial x}$.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \mathbb{E}_{a} \left[\frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a) \right].$$

The expectation is taken w.r.t. the random variable $a \sim \pi(\cdot | s; \theta)$.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(\boldsymbol{a}|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,\boldsymbol{a}) \right].$$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(\boldsymbol{a}|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,\boldsymbol{a}) \right].$$

Policy gradient ascent:

$$\mathbf{\theta}_{t+1} \leftarrow \mathbf{\theta}_t + \beta \cdot \frac{\partial V(s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \big|_{\mathbf{\theta} = \mathbf{\theta}_t}.$$

Increasing the state-value means improving the policy.

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{a \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(a|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,a) \right].$$

Question: How to compute the policy gradient $\frac{\partial V(s;\theta)}{\partial \theta}$?

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(\boldsymbol{a}|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,\boldsymbol{a}) \right].$$

Question: How to compute the policy gradient $\frac{\partial V(s;\theta)}{\partial \theta}$?

- Sample actions: $a^{(1)}, a^{(2)}, \dots, a^{(k)} \sim \pi(\cdot | s; \theta)$.
 - (The agent does not actually perform the actions.)
 - Sample only one action (i.e., k = 1) also works.
- Compute $\tilde{\mathbf{g}}(\mathbf{\theta}) = \frac{1}{k} \sum_{i=1}^{k} \frac{\partial \log \pi(\mathbf{a}^{(1)}|s_t, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s_t, \mathbf{a}^{(1)}).$
- $\tilde{\mathbf{g}}(\boldsymbol{\theta})$ is unbiased estimate of $\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.

The agent may not actually perform action a_t .

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 5. (Stochastic) policy gradient: $\tilde{\mathbf{g}}(\mathbf{\theta}_t) \approx q_t \cdot \mathbf{d}_{\theta,t}$.
- 6. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \tilde{\mathbf{g}}(\mathbf{\theta}_t)$.

- 1. Observe the state S_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\sigma \log \pi(a_t|s_t,\theta)}{\partial \theta} |_{\theta=\theta_t}$.
- 5. (Stochastic) policy gradient: $\tilde{\mathbf{g}}(\mathbf{\theta}_t) \approx q_t \cdot \mathbf{d}_{\theta,t}$.
- 6. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \tilde{\mathbf{g}}(\mathbf{\theta}_t)$.

- 1. Observe the state s_{+} .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$
- Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 1: Monte Carlo.

• Play the game to the end and generate the trajectory:

$$S_t, a_t, r_t, S_{t+1}, a_{t+1}, r_{t+1}, \cdots, S_T, a_T, r_T.$$

- Compute the discounted return $R_t = \sum_{k=t}^T \gamma^k r_k$.
- Since $Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t]$, we can use R_t to approximate $Q_{\pi}(s_t, a_t)$.

- - Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 2: Approximate Q_{π} using a neural network.

This leads to the actor-critic method.

Actor-Critic Method

State-Value Function Approximation

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$.

Policy network (actor): Use a neural net to approximate $\pi(a|s)$.

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic): Use a neural net to approximate $Q_{\pi}(s, a)$.

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

State-Value Function Approximation

Definition: State-value function.

•
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a) \approx \sum_{a} \pi(a|s;\theta) \cdot q(s,a;\mathbf{w}).$$

Policy network (actor): Use a neural net to approximate $\pi(a|s)$.

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic): Use a neural net to approximate $Q_{\pi}(s, a)$.

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

Value Network (Critic): q(s, a; w)

- Inputs: state s and action a.
- Output: approximate action-value (scalar).

Policy Network (Actor): $\pi(a|s,\theta)$

- Input: state s, e.g., a screenshot of Super Mario.
- Output: probability distribution over the actions.
- Let \mathcal{A} be the set all actions, e.g., $\mathcal{A} = \{\text{"left", "right", "up"}\}$.
- $\sum_{a \in \mathcal{A}} \pi(a|s, \theta) = 1$. (That is why we use softmax activation.)

State-Value Function Approximation

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

Training: Update the parameters θ and \mathbf{w} .

- Update policy network $\pi(a|s; \theta)$ to increase the state-value $V(s; \theta, \mathbf{w})$.
 - Actor gradually performs better.
 - (Not actually better; the actor just caters for the critic's taste.)
 - Supervision is purely from the critic.
- Update value network $q(s, \mathbf{a}; \mathbf{w})$ to better estimate the return.
 - Critic's judgement becomes more accurate.
 - Supervision is purely from the rewards.

State-Value Function Approximation

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Training: Update the parameters θ and \mathbf{w} .

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Observe new state s_{t+1} and reward r_t .
- 4. Update θ (in policy network) using policy gradient.
- 5. Update w (in value network) using temporal difference (TD).

Update value network using TD

- Predicted value: $q(s_t, a_t; \mathbf{w}_t)$.
- Observe new state s_{t+1} and reward r_t .
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- Loss: $L_t(\mathbf{w}) = \frac{1}{2} [q(s_t, \mathbf{a}_t; \mathbf{w}) y_t]^2$.
- Gradient: $\mathbf{g}_t(\mathbf{w}) = \frac{\partial L_t(\mathbf{w})}{\partial \mathbf{w}} = [q(s_t, \mathbf{a}_t; \mathbf{w}) y_t] \cdot \frac{\partial q(s_t, \mathbf{a}_t; \mathbf{w})}{\partial \mathbf{w}}.$
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \mathbf{g}_t(\mathbf{w}_t)$.

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\tilde{\mathbf{g}}_{\theta}(\mathbf{\theta}; \mathbf{a}, s, \mathbf{w}) = \frac{\partial \log \pi(\mathbf{a}|s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s;\theta,\mathbf{w}_t)}{\partial \theta} = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s;\theta)} [\tilde{\mathbf{g}}_{\theta}(\theta;\boldsymbol{a},s,\mathbf{w})].$

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\tilde{\mathbf{g}}_{\theta}(\mathbf{\theta}; \mathbf{a}, s, \mathbf{w}) = \frac{\partial \log \pi(\mathbf{a}|s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s;\theta,\mathbf{w}_t)}{\partial \theta} = \mathbb{E}_{\mathbf{a} \sim \pi(\cdot|s;\theta)} [\tilde{\mathbf{g}}_{\theta}(\theta;\mathbf{a},s,\mathbf{w})].$

Algorithm: Update policy network using stochastic policy gradient.

- Random sampling: $a \sim \pi(\cdot | s_t; \theta_t)$. (Thus $\tilde{\mathbf{g}}_{\theta}(\theta; a, s_t, \mathbf{w}_t)$ is unbiased.)
- Stochastic gradient ascent: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \tilde{\mathbf{g}}_{\theta}(\mathbf{\theta}_t; \boldsymbol{a}, s_t, \mathbf{w}_t)$.

Actor Critic Method

Actor Critic Method

Actor Critic Method: Update Actor

Actor Critic Method: Update Actor

- Value q is the supervision.
- Actor seeks to improve herself (the parameters) to cater for the critic.
- She hopes, next time for the same s, the action $\pi(\cdot | s, \theta)$ will receive higher q.
- Compute policy gradient using s, a, q.
- Update the actor's parameters using "stochastic gradient ascent".

Actor Critic Method: Update Critic

In the beginning, the critic makes random judgement. How to improve the critic? Value Value q Reward *r* Network (Critic)

Actor Critic Method: Update Critic

- In the beginning, the critic makes random judgement.
- How to improve the critic?

- Make use the fact that q_t should be close to $r_t + \gamma \cdot q_{t+1}$; if not, a loss.
- Compute q_t using (s_t, a_t) and q_{t+1} using (s_{t+1}, a_{t+1}) .
- Update the critic's parameters using TD learning.

Summary of Algorithm

- 1. Observe the state s_t ; randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; observe new state s_{t+1} and reward r_t .
- 3. Randomly sample a_{t+1} according to $\pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform a_{t+1} .)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- 5. Compute the TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot q_t \cdot \mathbf{d}_{\theta,t}$.

Policy Gradient with Baseline

Policy Gradient with Baseline

Definition: Approximated state-value function.

- $V(s; \boldsymbol{\theta}) b = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot [Q_{\pi}(s, \boldsymbol{a}) b].$
- Here, the baseline b must be independent of θ and a.

Policy Gradient with Baseline

Definition: Approximated state-value function.

- $V(s; \boldsymbol{\theta}) b = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot [Q_{\pi}(s, \boldsymbol{a}) b].$
- Here, the baseline b must be independent of θ and a.

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \frac{\partial [V(s;\theta)-b]}{\partial \theta} = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(\boldsymbol{a}|s,\theta)}{\partial \theta} \cdot [Q_{\pi}(s,\boldsymbol{a})-b] \right].$$

- The baseline b does not affect correctness.
- A good baseline b can reduce variance.
- We can use $b = r_t + \gamma \cdot q_{t+1}$ (TD target) as the baseline.

Actor Critic Update (without baseline)

- 1. Observe the state s_t ; randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; observe new state s_{t+1} and reward r_t .
- 3. Randomly sample a_{t+1} according to $\pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform a_{t+1} .)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- 5. Compute the TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot q_t \cdot \mathbf{d}_{\theta,t}$.

Actor Critic Update (with baseline)

- 1. Observe the state s_t ; randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; observe new state s_{t+1} and reward r_t .
- 3. Randomly sample a_{t+1} according to $\pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform a_{t+1} .)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- 5. Compute the TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, a_t; \mathbf{w})}{\mathbf{Racelline}} \Big|_{\mathbf{w} = \mathbf{w}_t}$
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{\delta}_t \cdot \mathbf{d}_{\theta,t}$.

Summary

Actor Critic Method

Definition: State-value function.

•
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$$
.

Definition: State-value function approximation using neural networks.

- Approximate policy function $\pi(a|s)$ by $\pi(a|s;\theta)$ (actor).
- Approximate value function $Q_{\pi}(s, \mathbf{a})$ by $q(s, \mathbf{a}; \mathbf{w})$ (critic).

Actor Critic Method

 Value network (critic) is useful in training; it provides the policy network (actor) with supervision.

- After training, the value network (critic) will not be used.
- Agent is controlled by policy network (actor):

$$a_t \sim \pi(\cdot | s_t; \boldsymbol{\theta}).$$

Training Policy and Value Networks

Learning: Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(\boldsymbol{a}|s,\theta)}{\partial \theta} \cdot q(s,\boldsymbol{a};\mathbf{w}) \right].$
- Perform gradient ascent.

Learning: Update the value network (critic) by TD learning.

- Predicted action-value: $q_t = q(s_t, \mathbf{a_t}; \mathbf{w})$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w})$
- Gradient: $\frac{\partial (q_t y_t)^2/2}{\partial \mathbf{w}} = (q_t y_t) \cdot \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}}$.
- Perform gradient descent.

Deterministic Policy Gradient (DPG)

Reference

• Lillicrap and others: Continuous control with deep reinforcement learning. arXiv:1509.02971. 2015.

Deterministic Policy Gradient (DPG)

- DPG is a actor-critic method.
- The policy network is deterministic: $a = \pi(s; \theta)$.

Deterministic Policy Gradient (DPG)

- DPG is a actor-critic method.
- The policy network is deterministic: $a = \pi(s; \theta)$.
- Trained value network by TD learning.
- Train policy network to maximize the value $q(s, \mathbf{a}; \mathbf{w})$.

Train Policy Network

- Train policy network to maximize the value $q(s, a; \mathbf{w})$.
- Gradient: $\frac{\partial q(s,a;w)}{\partial \theta} = \frac{\partial a}{\partial \theta} \cdot \frac{\partial q(s,a;w)}{\partial a}$.
- Update θ using gradient ascent.

