Projeto de Compiladores 2017/18

Compilador para a linguagem UC

12 de fevereiro de 2018

Este projeto consiste no desenvolvimento de um compilador para a linguagem UC, que é um subconjunto da linguagem C (de acordo com o standard C99).

Na linguagem UC é possível usar variáveis e literais do tipo char, short, int, e double (todos com sinal). A linguagem UC inclui expressões aritméticas e lógicas, instruções de atribuição, operadores relacionais, e instruções de controlo (if-else e while). Inclui também funções com os tipos de dados já referidos, sendo a passagem de parâmetros sempre feita por valor. A ausência de parâmetros de entrada ou de valor de retorno é identificada pela palavra-chave void.

A função invocada no início de cada programa chama-se main, tem valor de retorno do tipo int e não recebe parâmetros, sendo que o programa int main(void) { return 0; } é um dos mais pequenos possíveis na linguagem UC. Os programas podem ler e escrever carateres na consola através das funções pré-definidas getchar() e putchar(), respetivamente.

O significado de um programa na linguagem UC será o mesmo que em C99, assumindo a pré-definição das funções getchar() e putchar(). Por fim, são aceites comentários nas formas /* ... */ e // ... que deverão ser ignorados. Assim, por exemplo, o programa que se segue imprime na consola os carateres de A a Z:

```
int main(void) {
  char i = 'A';
  while (i <= 'Z') {
    putchar(i);
    i = i + 1;
  }
  return 0;
}</pre>
```

1 Metas e avaliação

O projeto está estruturado em quatro metas, sendo que o resultado de cada meta é o ponto de partida para a construção da meta seguinte. As datas e as ponderações são as seguintes:

- 1. Análise lexical (16%) 1 de março de 2018
- 2. Análise sintática (26%) 5 de abril de 2018
- 3. Análise semântica (26%) 4 de maio de 2018
- 4. Geração de código (26%) 30 de maio de 2018

A entrega final será acompanhada de um relatório com um peso de 6% na avaliação. O trabalho será obrigatoriamente verificado no MOOSHAK, em cada uma das metas, usando um concurso criado especificamente para o efeito. Para além disso, a entrega final do trabalho deverá ser feita através do InforEstudante, até às 23h59 do dia 30 de maio de 2018, e incluir todo o códigofonte produzido no âmbito do projeto (exatamente os mesmos .zip que tiverem sido colocados no MOOSHAK em cada meta) e um ficheiro grupo.txt contendo os dados do grupo, no formato:

Grupo: \langle nome_do_grupo \rangle
Nome1: \langle nome_aluno_1 \rangle
Numero1: \langle numero_aluno_1 \rangle
Email1: \langle email_aluno_1 \rangle
Nome2: \langle nome_aluno_2 \rangle
Numero2: \langle numero_aluno_2 \rangle
Email2: \langle email_aluno_2 \rangle

1.1 Defesa e grupos

O trabalho será realizado por grupos de dois alunos inscritos em turmas práticas do mesmo docente. Em casos excecionais, a confirmar com o docente, admite-se trabalhos individuais. A defesa oral do trabalho será realizada em grupo e terá lugar entre os dias 4 e 15 de junho de 2018. A nota final do projeto diz respeito à prestação individual na defesa e está limitada pela soma ponderada das pontuações obtidas no MOOSHAK em cada uma das metas. Assim, a classificação final nunca poderá exceder a pontuação obtida no MOOSHAK acrescida da classificação do relatório final. Aplica-se mínimos de 47.5% à nota final após a defesa.

2 Meta 1 – Analisador lexical

Nesta primeira meta deve ser programado um analisador lexical para a linguagem UC. A programação deve ser feita recorrendo à linguagem de programação C utilizando a ferramenta *lex*. Os "tokens" a ser considerados pelo compilador deverão estar de acordo com o <u>C99 standard</u>¹ e são apresentados em seguida.

2.1 Tokens da linguagem UC

ID: sequências alfanuméricas começadas por uma letra, onde o símbolo "_" conta como uma letra. Letras maiúsculas e minúsculas são consideradas letras diferentes.

INTLIT: sequências de dígitos decimais (0-9).

CHRLIT: um único caráter (excepto *newline* ou aspa simples) ou uma "sequência de escape" entre aspas simples. Apenas as sequências de escape \n, \t \\, \', \" e \ooo são definidas pela linguagem, onde ooo representa uma sequência de 1 a 3 dígitos entre 0 e 7. A ocorrência de uma sequência de escape inválida ou de mais do que um caráter ou sequência de escape entre aspas simples deve dar origem a um erro lexical.

REALLIT: uma parte inteira seguida de um ponto, opcionalmente seguido de uma parte fracionária e/ou de um expoente; ou um ponto seguido de uma parte fracionária, opcionalmente

¹ISO C 1999 Standard - https://tinyurl.com/comp2018

seguida de um expoente; ou uma parte inteira seguida de um expoente. O expoente consiste numa das letras "e" ou "E" seguida de um número opcionalmente precedido de um dos sinais "+" ou "-". Tanto a parte inteira como a parte fracionária e o número do expoente consistem em sequências de dígitos decimais.

CHAR = char

ELSE = else

WHILE = while

IF = if

INT = int

SHORT = short

DOUBLE = double

RETURN = return

VOID = void

BITWISEAND = "&"

BITWISEOR = "|"

BITWISEXOR ="^"

AND = "&&"

ASSIGN = "="

MUL = "*"

COMMA = ","

DIV = "/"

EQ = "=="

GE = ">="

GT = ">"

 $LBRACE = "{"}$

LE = "<="

```
LPAR = "("

LT = "<"

MINUS = "-"

MOD = "%"

NE = "!="

NOT = "!"

OR = "||"

PLUS = "+"

RBRACE = "}"

RPAR = ")"

SEMI = ";"
```

RESERVED: palavras reservadas da linguagem C não utilizadas em UC, bem como os símbolos "[", "]", o operador de incremento ("++") e o operador de decremento ("--").

2.2 Programação do analisador

O analisador deverá chamar-se uccompiler, ler o ficheiro a processar através do *stdin* e, se invocado com a opção -1, emitir o resultado da análise para o *stdout* e terminar. Na ausência de qualquer opção, nada deve ser escrito no *stdout* à exceção de possíveis mensagens de erro. Caso o ficheiro first.uc contenha o programa de exemplo dado anteriormente, que imprime os carateres de A a Z, a invocação:

```
./uccompiler -l < first.uc
```

deverá imprimir a correspondente sequência de tokens no ecrã. Neste caso:

```
INT
ID(main)
LPAR
VOID
RPAR
LBRACE
CHAR
ID(i)
ASSIGN
CHRLIT('A')
SEMI
WHILE
LPAR
```

```
ID(i)
L.F.
CHRLIT('Z')
RPAR
LBRACE
ID(putchar)
LPAR
ID(i)
RPAR
SEMI
ID(i)
ASSIGN
ID(i)
PLUS
INTLIT(1)
SEMI
RBRACE
RETURN
INTLIT(0)
SEMI
RBRACE
```

O analisador deve aceitar (e ignorar) como separador de tokens o espaço em branco (espaços, tabs e mudanças de linha), bem como comentários do tipo /* ... */ e //... . Deve ainda detetar a existência de quaisquer erros lexicais no ficheiro de entrada. Sempre que um token possa admitir mais do que um valor semântico, o valor encontrado deve ser impresso entre parêntesis logo a seguir ao nome do token, como exemplificado acima para ID e INTLIT.

2.3 Tratamento de erros

Caso o ficheiro contenha erros lexicais, o programa deverá imprimir exatamente uma das seguintes mensagens no *stdout*, conforme o caso:

```
"Line <num linha>, col <num coluna>: invalid char constant (<c>)\n"
"Line <num linha>, col <num coluna>: unterminated comment\n"
"Line <num linha>, col <num coluna>: unterminated char constant\n"
"Line <num linha>, col <num coluna>: illegal character (<c>)\n"
```

onde <num linha> e <num coluna> devem ser substituídos pelos valores correspondentes ao *início* do token que originou o erro, e <c> devem ser substituídos por esse token. O analisador deve recuperar da ocorrência de erros lexicais a partir do *fim* desse token.

2.4 Submissão da meta 1

O trabalho deverá ser validado no MOOSHAK, usando o concurso criado especificamente para o efeito em https://mooshak2.dei.uc.pt/~comp2018/. Será tida em conta apenas a submissão ao problema A desse concurso. Os restantes problemas destinam-se a ajudar na validação do analisador. No entanto, o MOOSHAK não deve ser utilizado como ferramenta de depuração.

O ficheiro *lex* a submeter deverá chamar-se uccompiler.l e ser colocado num ficheiro com o nome uccompiler.zip. O ficheiro .zip não deverá conter quaisquer diretorias.