

Comunicação de Dados (2018/2019) Ficha de Exercícios (Análise de Sinais – 1 1/2 aulas)

1. Responda ao seguinte problema:

A1 B2

	Considere que o sinal x(t) (em volts) é apresentado da seguinte forma:
	$x(t) = 0.7 + 0.6\cos(400\pi t) + 0.5\cos(800\pi t) + 0.4\cos(1600\pi t) + 0.3\cos(2000\pi t) +$
	$0.2 \cos(2800\pi t)$. Poderemos afirmar que:
	Se trata de um sinal periódico com uma componente constante de 0.7 volts.
2	Se trata de um sinal periódico com um período de 5 ms e com uma componente
	constante de 0.35 volts.

C3 Se trata de um sinal periódico com a frequência fundamental de 400 Hertz.

D4 Se trata de um sinal periódico com um período de 2.5 ms.

Indique se considera cada uma das afirmações anteriores verdadeira (V) ou Falsa (F):

		~-		
A 1	D2	(13	D4	
AI	DZ	C3	D4	

- 2. Considere o mesmo sinal x(t) que foi apresentado na alínea anterior.
 - a. Represente a característica de amplitude do sinal x(t) através do seu espectro bilateral.
 - b. Considere que se transmite o sinal x(t) num sistema de transmissão que elimina todas as frequências acima dos 250 Hz (i.e. só passam as frequências tais que |f| < 250 Hz). Apresente um esboço da forma de onda que se iria obter à saída do sistema de transmissão.
- 3. A Figura 1 representa um sinal rectangular periódico, v(t), onde cada rectângulo simboliza um dígito binário. A duração de cada rectângulo é constante e a sua amplitude é +/-A Volt. Explique, em termos gerais, como procederia para apresentar uma aproximação a v(t) na forma de uma soma de vários cosenos.

Figura 1 - sinal v(t)

- 4. Enuncie e explique o Teorema da potência de Parseval.
- 5. Tendo em conta a definição apresentada na bibliografia disponibilizada, explique como se pode calcular a *Largura de Banda* de um determinado sinal.
- 6. O sinal periódico v(t) apresentado na Figura 2 codifica uma sequência binária alternada de ritmo r_b = 2 Mbps sendo o seu espectro de amplitude dado pela fórmula:

$$|C_n| = \frac{A\sqrt{2}}{2\pi n} [\cos(\pi n) - 1]$$
 $n = ...-3, -2, -1, 1, 2, 3...$

Comunicação de Dados, MIEI, 2018/2019

Figura 2 – Sinal v(t)

- a. Represente graficamente o espectro de amplitude (bilateral) do sinal v(t).
- b. Determine a largura de banda do sinal v(t).
- c. Discuta a forma de codificação utilizada para transmissão da sequencia binária.
- 7. Responda ao seguinte problema:

Considere o sinal x(t) (em volts) que é apresentado como uma soma de ondas sinusoidais: $x(t) = 0.5 \cos(0\pi t) + 0.4 \cos(100\pi t) + 0.3 \cos(400\pi t) + 0.2 \cos(800\pi t) + 0.1 \cos(1600\pi t) + 0.05 \cos(3200\pi t) + ...$

Assuma que o sinal tem uma potência média total de 400 miliwatt.

- A1 Trata-se de um sinal não periódico com uma componente continua de 0,5 volts.
- **B2** Trata-se de um sinal periódico com um período de 20 milissegundos.
- C3 | Trata-se de um sinal periódico com a frequência fundamental de 100 Hz.
- **D4** Trata-se de um sinal com uma largura de banda de 200 Hz.

Indique se considera cada uma das afirmações anteriores verdadeira (V) ou Falsa (F):

|--|

8. Considere que o sinal z(t) é obtido pela multiplicação do sinal v(t) (do problema 6) por um cosseno de frequência cíclica f_p .

$$z(t) = v(t) \cdot \cos(2\pi f_{\rm p} t)$$

Tendo em consideração que $f_p = 10 \text{ MHz}$ apresente um esboço do espectro de amplitude (bilateral) do sinal z(t).

9. Na plataforma da disciplina serão disponibilizadas (*secção Material de Apoio/Diversos*) algumas referências para determinadas ferramentas/aplicações e outros tópicos relacionados com a área da análise espectral de sinais. Explore essas referências.

$$v(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j2\pi n f_0 t} \qquad n = 0, \pm 1, \pm 2, \cdots \qquad C_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

$$v(t) = C_0 + \sum_{n=1}^{\infty} |2C_n| \cos(2\pi n f_0 t + \arg C_n) \qquad S = \langle |v(t)|^2 \rangle = \frac{1}{T_0} \int_{T_0} |v(t)|^2 dt$$

$$S = \sum_{n=-\infty}^{+\infty} |C_n|^2 \qquad v(t) \cdot \cos(2\pi f_p t) \leftrightarrow \frac{1}{2} \left[V(f - f_p) + V(f + f_p) \right]$$