Pressure Controller

Mohamed Moustafa Selim

Date
21/1/2024
Course title
Mastering Embedded System
Kirolos Shenouda

THE PROCESS

Case study

After contact with the client, it is understandable that the client expects the delivery of a software using these specifications:

- 1 Pressure controller informs the crew with an alarm when pressure exceeds 20 bars in the cabin
- 2 the alarm duration is 60 seconds
- 3 keep track of the measured values

Pressure Controller PAGE 3

Requirement

After reviewing the specifications required we divide the project into a few requirements:

System analysis

• Activity Diagram:

• Sequence Diagram:

System Design

- Now we start designing the system and how to implement its code.
 - o Block Diagram:

Pressure Controller PAGE 5

State machines of each module:

Figure 4. Main Algorithm

Figure 2.Alarm Actuator

Figure 3.Pressure Sensor

Figure 1.Alarm Monitor

Pressure Controller PAGE 6

• Simulation of TTool sequence:

Software implementation

- implement .c and .h codes.
- Also implement makefile, startup & linker script.

Proteus Simulation

- After compiling and generating an elf file we put it on proteus simulation
 - We can see in first simulation the pressure value is less than 20 so the LED is OFF

Figure 5.LOW pressure

o And in the second simulation the pressure value is more than 20 so the LED is ON for a time period then turns off and take another reading.

Figure 6.HIGH pressure

SW Analysis

• Mapfile is generated along with symbols table and sections table in src folder.