大话成像之

数字成像系统 32讲

Color Correction Matrix与3D LUT

Ming Yan imaging algorithm engineer

CCM 的目的:

将camera rgb 色彩空间转换为sRGB 色彩空间。 camera_rgb -> XYZ -> sRGB

其中sRGB 转换为 XYZ 的是已知的:

CIE (国际照明委员会):

X = R * 0.412424 + G * 0.357579 + B * 0.180464; Y = R * 0.212656 + G * 0.715158 + B * 0.0721856; Z = R * 0.0193324 + G * 0.119193 + B * 0.950444;

CCM 的评价标准:

通过CIE LAB 色彩空间来计算color error

CIE Lab (1976)

$$\Delta E_{ab}^* = ((L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2)^{1/2};$$

$$\Delta C^* = ((a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2)^{1/2}$$

	Number		sRGB			CIE L*a*b*		
No.			R	G	В	L*	a*	b*
1.	dark skin		115	82	68	37.986	13.555	14.059
2.	light skin		194	150	130	65.711	18.13	17.81
3.	blue sky		98	122	157	49.927	-4.88	-21.925
4.	foliage		87	108	67	43.139	-13.095	21.905
5.	blue flower		133	128	177	55.112	8.844	-25.399
6.	bluish green		103	189	170	70.719	-33.397	-0.199
7.	orange		214	126	44	62.661	36.067	57.096
8.	purplish blue		80	91	166	40.02	10.41	-45.964
9.	moderate red		193	90	99	51.124	48.239	16.248
10.	purple		94	60	108	30.325	22.976	-21.587
11.	yellow green		157	188	64	72.532	-23.709	57.255
12.	orange yellow		224	163	46	71.941	19.363	67.857
13.	blue		56	61	150	28.778	14.179	-50.297
14.	green		70	148	73	55.261	-38.342	31.37
15.	red		175	54	60	42.101	53.378	28.19
16.	yellow		231	199	31	81.733	4.039	79.819
17.	magenta		187	86	149	51.935	49.986	-14.574
18.	cyan		8	133	161	51.038	-28.631	-28.638
19.	white (.05*)		243	243	242	96.539	-0.425	1.186
20.	neutral 8 (.23*)		200	200	200	81.257	-0.638	-0.335
21.	neutral 6.5 (.44*)		160	160	160	66.766	-0.734	-0.504
22.	neutral 5 (.70*)		122	122	121	50.867	-0.153	-0.27
23.	neutral 3.5 (.1.05*)		85	85	85	35.656	-0.421	-1.231
24.	black (1.50*)		52	52	52	20.461	-0.079	-0.973

注:(1)awb 常用 HSV

(2) 上面的公式只适 用于CIE1976, 并不适用于 CIE1994和CIE2000。

参考链接:

http://zschuessler.github.io/ DeltaE/learn/

CCM 的注意事项:

(1) 饱和值处理

(2) CCM 一般在gamma 前面

因此CCM 不是保证图像在CCM 之后变为srgb 色彩空间,而是在gamma 后为srgb色彩空间。

CCM 的计算方法:

- (1) 24色色卡对用的srgb 求逆 gamma, 然后作为target color target=(color check srgb).^(gamma);
- (2) 求得输入图像24色色卡每个patch对用的RGBmean;

for color error < th

- (3) 设置ccm matrix初始值。
- (4) 计算color error

```
if (color error<th) || (color error达到最小值)|| (迭代次数>n) break;
```

else

(5) 计算新的ccm matrix 值

end

end

ccm 计算时的一些附加功能:

- (a) ccm 各patch 的权重;
- (b) 可以考虑噪声等选项;
- (c) 可以提高或者降低饱和度

调试CCM 时的注意事项:

- (1) 计算ccm 时曝光需要正常。
- (2) ccm 会增强彩噪,在高ISO 时需要降低ccm的saturation,甚至关闭ccm模块。
- (3) gamma 变动时, ccm 也需要跟随自己变动。

CCM 的缺陷和3D lut 的优势

ccm是线性的,但是色彩转换不是线性的。

1.4130 -0.2119 -0.2011

-0.2410 1.5821 -0.3412

0.0058 -0.4711 1.4654

比如ccm 输入值为: (250,230,230) -> (258.26,225.1570,230.1390)

250*1.4130+230*(-0.2119)+230*(-0.2011)=258.26 250*-0.2410+230*(1.5821)+230*(-0.3412)=225.1570 250*0.0058 +230*(-0.4711)+230*(1.4654)=230.1390

3D - lut 基本原理

参考文献: Strengths and limitations of a uniform 3D-LUT approach for digital camera characterization

3D - lut

$$P = w0*A + w1*B + w2*C + w3*D$$

思考题: 为什么awb error常用 HSV, color error 使用lab

THANKS

本课程由 Ming Yan提供

大话成像之 数字成像系统 32 讲

内容目录

- 1. 数字成像系统介绍
- 2. CMOS image sensor基础
- 3. 光学基础
- 4. 颜色科学基础
- 5. ISP 信号处理基础
- 6. 3A概述
- 7. 黑电平与线性化
- 8. Green Imbalance
- 9. 坏点消除
- 10. Vignetting与Color shading
- 11. SNR 与Raw Denoise
- 12. Dynamic Range与Tone Mapping
- 13. MTF与Demosaic
- 14. 色彩空间与色彩重建
- 15. Color Correction Matrix与3D LUT
- 16. Gamma与对比度增强
- 17. Sharpening

- 18. Color Space Conversion
- 19. 空域去噪
- 20. 时域去噪
- 21. Color Aberrance Correction and Depurple
- 22. ISP 的统计信息
- 23. 自动曝光
- 24. 自动白平衡
- 25. 自动对焦
- 26. 闪光灯
- 27. HDR
- 28. Exif 和DNG
- 29. Encoder
- 30. 图像防抖
- 31. 图像质量评价工具与方法
- 32. 画质调优

