

Designing a unified, more capable 5G air interface

Diverse services

Diverse spectrum

Diverse deployments

Existing, emerging, and unforeseen services - a platform for future innovation

Driving the 5G roadmap and ecosystem expansion

5G NR pioneering advanced 5G NR technologies

To meet an extreme variation of 5G NR requirements

Mission-critical services

Cellular Vehicle-to-Everything (C-V2X)

Drone communications | Private Networks

Ultra Reliable Low Latency Comms (URLLC)

Enhanced mobile broadband

Spectrum sharing | Flexible slot-based framework

Scalable OFDM | Massive MIMO | Mobile mmWave

Dual Connectivity | Advanced channel coding

Massive Internet of Things

Enhanced power save modes

Deeper coverage | Grant-free UL

Narrow bandwidth | Efficient signaling

10x
Decrease in end-to-end latency

10x Experienced throughput 3x Spectrum efficiency 100x Traffic capacity 100x Network efficiency

10x Connection density

The R&D engine fueling the 5G industry

Early system-level R&D investments

Designing/testing 5G for many years with best-in-class prototype systems

3GPP standards and technology leadership

Our system-level inventions are foundational to 5G NR standard

Global network experience and ecosystem collaborations

Industry-leading demos, simulations, testing and trials on path to commercialization

Qualcom

Building on our LTE technology leadership

5G NR design and technologies

3GPP Release-15

Our technology inventions drove Rel-15 specifications

Scalable OFDMbased air interface

Scalable OFDM numerology

Address diverse services, spectrum, deployments

Flexible slot-based framework

Self-contained slot structure

Low latency, URLLC, forward compatibility

Advanced channel coding

Multi-Edge LDPC and CRC-Aided Polar

Support large data blocks, reliable control channel

Massive MIMO

Reciprocity-based MU-MIMO

Large # of antennas to increase coverage/capacity

Mobile mmWave

Beamforming and beam-tracking

For extreme capacity and throughput

Early R&D investments | Best-in-class prototypes | Fundamental contributions to 3GPP

5G NR standard aligned with our early 5G design

A testament to the impact of our early 5G R&D and fundamental contributions to 3GPP

November 2015

Qualcomm Technologies' 5G Analyst Day

Scalable OFDM-based 5G NR air interface

Scalable numerology

2ⁿ scaling of subcarrier spacing to efficiently support wider bandwidths Frequency localization

Windowing¹ can effectively minimize in-band and out-ofband emissions Lower power consumption

Single-carrier²
OFDM utilized for efficient uplink transmissions

Asynchronous multiple access

Can co-exist with optimized waveforms and multiple access for IoT UL³

Qualcomm Research is a division of Qualcomm Technologies, Inc.

1. Such as Weighted Overlap Add (WOLA) utilized in LTE systems today. 2. DFT-Spread (DFT-S) OFDM. 3. Such as non-orthogonal Resource Spread Multiple Access (RSMA)

3GPP Rel-15 specifications aligned with Qualcomm Research whitepaper published Nov 2015 [link]

Scalable 5G NR OFDM numerology—examples

Efficiently address 5G diverse spectrum, deployments and services

Scaling reduces FFT processing complexity for wider bandwidths with reusable hardware

	<1GHz 3G	Hz 4GHz	5GHz		24-28GHz	37-40GHz	64-71GHz
	600MHz (2x35MHz) 2.5GHz (LTE B41) 3	3.45- 3.55- 3.7- 55GHz 3.7GHz 4.2GH	z	5.9-7.1GHz	24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz 47.2-48.2GHz	64-71GHz
(*)	600MHz (2x35MHz)	3.55-3.7 GHz			27.5-28.35GHz	37-37.6GHz 37.6-40GHz	64-71GHz
* * * *	700MHz (2x30 MHz)	3.4-3.8GHz	(5.9-6.4GHz	24. <u>5-27.5G</u> Hz		
4 b	700MHz (2x30 MHz)	3.4-3.8GHz			26GHz		
	700MHz (2x30 MHz)	3.4-3.8GHz			26GHz		
	700MHz (2x30 MHz)	3.46-3.8GHz			26GHz		
	700MHz (2x30 MHz)	3.6-3.8GHz			26. <u>5-27.5G</u> Hz		
*:		3.3-3.6GHz	4.8-5GHz		24. <u>5-27.5G</u> Hz	37.5-42.5GHz	
# # #		3.4-3.7GHz			26.5-29.5GHz		
		3.6-4.2GHz	4.4-4.9GHz		26.5-28.5GHz		
**		3.4-3.7GHz			24.25-27.5GHz	39GHz	

Designed for diverse spectrum bands/types

Global snapshot of 5G spectrum bands allocated or targeted

Flexible slot-based 5G NR framework

Efficiently multiplex envisioned and future 5G services on the same frequency

Scalable 5G NR slot duration for diverse latency/QoS

14 OFDM symbols per slot with mini-slot (2, 4, or 7 symbols) for shorter transmissions¹

Supports slot aggregation for dataheavy transmissions Efficient multiplexing of long and short transmissions²

Flexible 5G NR slot structures – Examples

Benefits of the 5G NR TDD self-contained slot

Much faster, more flexible TDD switching and turn-around than 4G LTE

1. Sounding Reference Signal

5G NR TDD self-contained slot structure in action

Three examples showcasing faster TDD switching for low latency

DL reference signals (DL DMRS) & UL Reference + Sounding (UL DSMR, SRS) not showed for simplicity

1. Indoor (sub-6 or mmWave)

- Shorter guard for indoor deployment
- Fast turn-around (DL/UL switch per slot)
- Ultra-low latency possible on every slot
- Maximum flexibility for UL/DL allocation

2. Outdoor (sub-6 or mmWave)

- · Larger guard for outdoor deployment
- DL/UL switch per 1ms (5x faster than LTE)
- Slot 1 opportunity for ultra-low latency
- Bulk of UL traffic goes on Slot 3

3. Outdoor mmWave

- Larger guard for outdoor deployment
- 6:2 configuration every 1ms (120kHz SCS)
- Slot 3 opportunity for ultra-low latency
- Bulk of UL traffic goes on Slots 6 & 7

5G NR flexible FDD slot structure

Delivering low latency, extended coverage, and forward compatibility

FDD baseline for continuous transmission and extended coverage

FDD partial slot for faster DL/UL turn-around and efficient half-duplex FDD implementation

Advanced ME-LDPC¹ channel coding is more efficient than LTE Turbo code at higher data rates

High efficiency

Significant gains over LTE Turbo—particularly for large block sizes suitable for MBB

Low complexity

Easily parallelizable decoder scales to achieve high throughput at low complexity

Low latency

Efficient encoding/decoding enables shorter transmission time at high throughput

1. Multi-Edge Low-Density Parity-Check

Selected as 5G NR eMBB data channel as part of 3GPP Release-15

Performance gains of CRC-Aided Polar channel coding led to its adoption across many 5G NR control use cases

5G NR CRC-Aided (CA-Polar) design

Efficient construction based on single Cyclic Redundancy Check (CRC) for joint detection and decoding

Link-level gains of 5G NR CA-Polar design

Versus PC-Polar¹ (lower is better)

1. Parity-Check Polar channel coding

5G NR optimized design for massive MIMO

Key enabler for using higher spectrum bands, e.g. 4 GHz, with existing LTE sites

Enabled through an advanced 5G NR end-to-end Massive MIMO design (network and device)

Optimized design for TDD reciprocity procedures utilizing UL SRS¹

Enhanced CSI-RS² design and reporting mechanism

Advanced, high-spatial resolution codebook supporting up to 256 antennas

New features, such as distributed MIMO

5G NR optimized design for TDD reciprocity procedures

5G NR slot structure and enhanced Ref Signals enable fast/accurate feedback

^{*}Sub-6 GHz, macro cell numerology, 30 kHz tone spacing; Channel sounding opportunity increases from <= 200 Hz with LTE to 2 kHz with 5G NR.

1. Sounding Reference Signal. 2. Channel State Information Reference Signal. 3. Channel Quality Indicator

5G NR massive MIMO increases coverage & capacity

Faster, more uniform data rates throughout cell

Median Burst Rate

Cell-edge Burst Rate

Assumptions: carrier frequency 4GHz; 200m ISD, 200MHz total bandwidth; base station: 256 antenna elements (x-pol), 48dBm Tx power; UE: 4 Tx/Rx antenna elements, 23dBm max. Tx power; full buffer traffic model, 80% indoor and 20% outdoor UEs.

The large bandwidth opportunity for mmWave

The new frontier of mobile broadband

Unified design across diverse spectrum bands/types

Multi-Gbps data rates
With large bandwidths (100s of MHz)

Much more capacity
With dense spatial reuse

Lower latency
Opens up new opportunities

Overcoming numerous challenges to mobilize mmWave

Coverage

Analog beamforming with narrow beamwidth to overcome significant path loss in bands above 24 GHz

Robustness

Adaptive beam steering and switching to overcome blockage from hand, head, body and foliage

Device size/power

Different antenna configurations (face/edge) to fit mmWave design in smartphone form factor and thermal constraints

Mobilizing mmWave with 5G NR technologies

Key properties for robust mmWave operation in a NLOS mobile environment

Very dense network topology and spatial reuse (~150-200m ISD)

Fast beam steering and switching within an access point

Architecture that allows for fast beam switching across access points

Tight integration with sub-6 GHz (LTE or NR)

Qualcomm Research 5G mmWave prototype

Showcasing robust mobile communications in real-world OTA testing

Spectrum aggregation essential to 5G NR deployments

Carrier Aggregation (CA) and Dual Connectivity enable deployments with tightly and loosely coordinated cells

Dual Connectivity across LTE and NR

Fully leveraging LTE investments and coverage, including NSA operation for early 5G NR deployments

CA across spectrum bands

E.g., tight CA between 5G NR mmWave and sub-6 GHz to address mmWave coverage gaps

CA across FDD and TDD bands

Sub-1 GHz and mid/high band aggregation; supplemental uplink for better coverage, supplemental downlink for capacity

CA across spectrum types

LTE Rel-10+

E.g., Licensed and unlicensed with 5G NR Licensed Assisted Access (LAA) – approved Rel-15 Study Item

5G NR Rel-15+

Building on solid LTE CA and Dual Connectivity foundation

Supplemental DL FDD/TDD CA LAA CA Dual Connectivity LTE/5G NR NSA Supplemental UL Supplemental DL FDD/TDD CA NR LAA CA Dual Connectivity

Dual connectivity to fully leverage LTE investments

Gigabit LTE provides the coverage foundation for 5G eMBB

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. Source: GSA (www.gsacom.com) - Oct 2017 on network launches, Oct 2017 on subscriptions, Nov 2017 on commercial devices

Enabling gigabit experiences everywhere

Providing VoLTE leveraging LTE's ubiquitous coverage

Supplementing 5G NR mid-band and mmWave

5G NR FDD/TDD CA to support mid-band deployments

Low-band FDD can help increase 5G NR TDD UL data rate/range¹

Non-Standalone (NSA)

Low-band LTE or NR UL can help increase UL data rate/range

Standalone (SA)

NR low-band can carry NR uplink control and data for edge cell users

NSA 5G NR is accelerating 5G NR deployments for 2019

Non-Standalone (NSA) leverages LTE RAN and EPC for coverage and mobility

While introducing 5G NR to enhance the user plane performance and efficiency

NSA stepping stone to SA 5G NR for full 5G capability

Standalone (SA) utilizes 5G NextGen Core Network (NGC)

Leveraging SDN/NFV technologies to create optimized network slices and deliver on 5G's full potential

Ongoing network evolutions simplify NSA to SA evolution

Mitigate impact to legacy services and in-market devices while network evolves

Making 5G NR a commercial reality for 2019

Best-in-class 5G prototype systems

Designing and testing 5G technologies for many years

5G NR standards and technology leadership

Our technology inventions are driving the 5G NR standard

5G NR interoperability testing and trials

Leveraging prototype systems and our leading global network experience

Modem and RFFE leadership

Announced the Qualcomm Snapdragon X50 5G modem family

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries

LTE foundational technologies

Driving a rich 5G roadmap in Release 16 and beyond

Qualcomm

5G is the foundation to what's next. We are the foundation to 5G.

Learn more at www.qualcomm.com/5G

Making 5G NR a commercial reality for 2019 eMBB deployments

Driving the expansion of 5G NR ecosystem and opportunity

Questions?

Connect with Us

www.qualcomm.com/wireless

www.qualcomm.com/news/onq

@qualcomm tech

http://www.youtube.com/playlist?list=PL8A D95E4F585237C1&feature=plcp

http://www.slideshare.net/qualcommwirelessevolution

Qualcomm

Thank you!

Follow us on: **f y** in

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.