Abstract

These notes are based on Davi Maximo's lectures for the course "Geometric Analysis and Topology I" given at UPenn along with Lee's *Smooth Manifolds* and Spivak's *A Comprehensive Introduction to Differential Geometry, Vol. 1.* Any mistake in what follows is my own.

Contents

1	Smooth manifolds	2
	1.1 Lecture 1	2
	1.2 Lecture 2	3
_		
2	Smooth maps	4
	2.1 Lecture 3	4
	2.2 Lecture 4	5
	2.3 Lecture 5	7
_		_
3	Tangent vectors	7
	3.1 Lecture 6	7
	3.2 Lecture 7	9
	3.3 Lecture 8	9
	3.4 Lecture 9	10
	3.5 Lecture 10	12
	3.6 Lecture 11	13
	3.7 Lecture 12	14
	3.8 Lecture 13	15
4	Vector bundles	16
	4.1 Lecture 14	16
	4.2 Lecture 15	17
5	Differential forms	18
	5.1 Lecture 16	18
	5.2 Lecture 17	19
	5.3 Lecture 18	21
	5.4 Lecture 19	22
	5.5 Lecture 20	23
	5.6 Lecture 21	24
	5.0 Bookar 21	
6	Integration	26
	6.1 Lecture 22	26
	6.2 Lecture 23	27
	3.2 Bookar 20	
7	De Rham cohomology	29
Ť	7.1 Lecture 24	29
	7.2 Lecture 25	$\frac{20}{31}$
	7.3 Lecture 26	31
	7.5 Eccture 20 · · · · · · · · · · · · · · · · · ·	91
8	Integral curves and flows	32
Ü	8.1 Lecture 27	32
	J.I HOUVELO #1	04
		22
	8.2 Lecture 28	33

1 Smooth manifolds

1.1 Lecture 1

Definition 1.1.1. A space M is a (topological) n-dimensional manifold (or n-manifold) if it is

- Hausdorff.
- second-countable, and
- locally Euclidean of dimension n, i.e., for any $x \in M$, there exist an open $U \ni x$ and a homeomorphism $\phi: U \to V$ for some open $V \subset \mathbb{R}^n$.

Definition 1.1.2.

- 1. Let M be an n-manifold. A coordinate chart is a tuple (U, ϕ) of an open subset $U \subset M$ and a homeomorphism $\phi: U \to W \subset \mathbb{R}^n$.
- 2. If (U, ϕ) is a coordinate chart and $\pi_i : \mathbb{R}^n \to \mathbb{R}$ denotes the *i*-th projection map, then we call elements of the set $\{(\pi_1(\phi(p)), \dots, \pi_n(\phi(p))) \mid p \in U\}$ local coordinates on U.

Notation. We will use the symbols x^i and x_i interchangeably for local coordinates.

Definition 1.1.3.

1. Given charts (U, ϕ) , (V, ψ) with $U \cap V \neq \emptyset$, we say that the two are C^k -compatible if the transition $map \ \psi \circ \phi^{-1}$

$$U \xrightarrow{\phi} \phi(U \cap V)$$

$$\downarrow^{\psi \circ \phi^{-1}}$$

$$\psi(U \cap V)$$

is C^k .

2. A collection of charts $(U_{\alpha}, \phi_{\alpha})$ which covers a manifold M and is pairwise C^k -compatible is called a C^k -atlas for M.

Example 1.1.4. Consider $(\mathbb{R}, x \mapsto x)$ and $(\mathbb{R}, x \mapsto x^3)$. Since $x \mapsto x^{\frac{1}{3}}$ is not differentiable at 0, these charts do not form a C^1 -atlas on \mathbb{R} .

Definition 1.1.5. An atlas A is maximal if it contains every chart that is C^{∞} - (or smoothly) compatible with every chart in A.

Lemma 1.1.6.

- 1. Every smooth atlas is contained in a unique maximal atlas.
- 2. Two smooth atlases are contained in the same maximal atlas if and only if their union is also a smooth atlas.

Remark 1.1.7. This shows that an atlas is maximal if and only if it's maximal in the usual in the set-theoretic sense.

Definition 1.1.8. A manifold M is smooth if it admits a maximal smooth atlas, also known as a smooth structure.

Remark 1.1.9. Lemma 1.1.6 shows that it's enough to construct any smooth atlas for M to show it's a smooth manifold

Remark 1.1.10. An open problem is whether there is more than one smooth structure on \mathbb{S}^4 . This is known for each $n \neq 4$. Milnor (1958) gave an affirmative answer for \mathbb{S}^7 .

1.2 Lecture 2

Lemma 1.2.1. If M admits a smooth structure, then M admits uncountably many smooth structures.

Remark 1.2.2. There exists a 10-dimensional topological manifold that admits no smooth structure (Kevaire 1961)

Remark 1.2.3. Any 2- or 3-dimensional manifold admits a smooth structure.

Example 1.2.4. The following are examples of smooth structures on topological manifolds.

- 1. Any real vector space V where $\dim(V) = n$ has a canonical smooth structure as follows. Endow V with any norm, since all norms on a finite-dimensional space are equivalent and hence generate the same topology. Pick any basis $B := (b_1, \ldots, b_n)$ of V. Define the isomorphism $T : V \to \mathbb{R}^n$ by $b_i \mapsto e_i$ where e_i denotes the standard basis. This is also a diffeomorphism, implying that V is a topological manifold and that (V, T) is an atlas on V. If B' is any other basis of V and T' the corresponding isomorphism, then the transition map $T' \circ T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism, hence a diffeomorphism. By Lemma 1.1.6(2), it follows that any two bases determine the same smooth structure on V.
- 2. The restriction of a smooth structure on a manifold M to an open subset $U \subset M$ is called an open submanifold.
- 3. By our previous two examples, $GL(n,\mathbb{F}) \subset M(n,\mathbb{F})$ is a smooth manifold.
- 4. Let $U \subset \mathbb{R}^n$ be open and $F: U \to \mathbb{R}^m$ be continuous. Let $\Gamma(F)$ be the graph of F and $\pi_1 \upharpoonright_{\Gamma} (F)$ be the restriction of the projection $(x, y) \mapsto x$. This is a homeomorphism between $\Gamma(F)$ and U. Hence $(\pi_1 \upharpoonright_{\Gamma} (F), \Gamma(F))$ is a smooth atlas.
- 5. For each $i=1,2,\ldots,n+1$, let $U_i^+:=\{\vec{x}\in\mathbb{R}^{n+1}:x_i>0\}$. Define U_i^- similarly. The U_i^\pm cover \mathbb{S}^n . Define the map $f:B_1(0)\subset\mathbb{R}^n\to\mathbb{R}$ by $f(\vec{u})=\sqrt{1-|\vec{u}|^2}$. Define $x_i:B_1(0)\to\mathbb{R}$ by $f(x_1,\ldots,\widehat{x_i},\ldots x_n)$. Then $\Gamma(x_i)=U_i^+\cap\mathbb{S}^n$ and $\Gamma(-x_i)=U_i^-\cap\mathbb{S}^n$. By our previous example, these graphs with their corresponding projections form a smooth structure on \mathbb{S}^n .
- 6. Let $f: U_{\text{open}} \subset \mathbb{R}^m \to \mathbb{R}$ be smooth. For $c \in \mathbb{R}$, let $M_c := f^{-1}(c)$. Assume that the total derivative $\nabla f(a)$ is nonzero for each $a \in M_c$. Then $f_{x_i}(a) \neq 0$ for some $1 \leq i \leq m$. Then by the Implicit Function Theorem there is some smooth $F: \mathbb{R}^{m-1} \to \mathbb{R}$ given by $x_i = F(x_1, \dots, \widehat{x_i}, \dots, x_m)$ on some neighborhood $U_a \subset \mathbb{R}^m$ of a such that $f^{-1}(c) \cap U_a$ is the graph of F. Then the $f^{-1}(c) \cap U_a$ together with their graph coordinates define a smooth atlas on M_c .
- 7. For each $i=1,\ldots,n+1$, let $\tilde{U}_i:=\{\vec{x}\in\mathbb{R}^{n+1}:x_i\neq 0\}$. Let $\pi:\mathbb{R}^{n+1}\setminus\{0\}\to\mathbb{RP}^n$ be the quotient map and $U_i:=\pi(\tilde{U}_i)$. Since \tilde{U}_i is saturated and open, we know that $\pi\upharpoonright_{\tilde{U}_i}$ is a quotient map.\(^1\) Define $f_i:U_i\to\mathbb{R}^n$ by $[x_1,\ldots,x_{n+1}]\mapsto(\frac{x_1}{x_i},\ldots,\frac{x^{i-1}}{x_i},\frac{x^{i+1}}{x_i},\ldots,\frac{x_{n+1}}{x_i})$, which has inverse $(x_1,\ldots,x_n)\mapsto[x_1,\ldots,x_{i-1},1,x_{i+1},\ldots x_n]$. Since $f_i\circ\pi$ is continuous, so is $f_i.$ \(^2\) Hence f_i is a homeomorphism. It's easy to check that each transition $f_i\circ f_j^{-1}$ is smooth. Thus, the (U_i,f_i) define a smooth atlas on \mathbb{RP}^n .
- 8. Let $M_1 \times \cdots \times M_k$ be a product of n_i -dimensional smooth manifolds. Then this is a smooth manifold of dimension $n_1 + \cdots + n_k$.

Exercise 1.2.5. Show that \mathbb{RP}^n is second countable and Hausdorff.

Proof. Recall that $\mathbb{S}^n/_{\sim} \cong \mathbb{RP}^n$ where $x \sim y$ if y = -x. Thus it suffices to show these properties are true of $P^n := \mathbb{S}^n/_{\sim}$.

First, let $B := \{V_n\}$ denote the usual countable basis of \mathbb{S}^n inherited from \mathbb{R}^{n+1} . If $p \in U \subset P^n$ is open, then $\pi^{-1}(U)$ is a neighborhood of $\pi^{-1}(p)$, which equals $\{a, -a\}$ for some point a on the sphere. There is some ball $B \ni B_q(r) \cap \mathbb{S}^n \ni a$ with $q \in \mathbb{Q}$ and $r \in \mathbb{Q}^{n+1}$. Then $B \in B_q(-r) \cap \mathbb{S}^n \ni -a$. Note that the union of these two balls is contained in $\pi^{-1}(U)$ and is saturated, hence is mapped to a neighborhood $N \subset U$ of p. Thus $\pi(V_n)$ for $n \in \mathbb{N}$ is a countable basis of P^n .

The proof of being Hausdorff is pretty much the same idea.

¹Munkres, James. Theorem 22.1. Topology.

²Munkres, James. Theorem 22.2. Topology.

Lemma 1.2.6 (Smooth manifold construction lemma). Let M be a set and $\{U_{\alpha}\}$ a collection of subsets with injections $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ such that

- 1. Each $\phi_{\alpha}(U_{\alpha})$ is open.
- 2. Any $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$, $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ are open.
- 3. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is smooth.
- 4. Countably many U_{α} cover M.
- 5. If $p, q \in M$ with $p \neq q$, then either both are in U_{α} for some α or they can be separated by sets in $\{U_{\alpha}\}$ Then M has a unique smooth manifold structure with $(U_{\alpha}, \phi_{\alpha})$ as charts.

Proof. We show that the U_a give a topology on M.

Definition 1.2.7. If M^n is an n-dimensional manifold and $f:M^n\to\mathbb{R}$ is a function, we say that f is differentiable at p if there is some chart $(U_{\alpha}, \phi_{\alpha})$ such that the coordinate representation $f \circ \phi_{\alpha}^{-1} : \phi(U_{\alpha}) \to \mathbb{R}$ is differentiable at p.

Lemma 1.2.8. If $f \circ \phi^{-1}$ is differentiable at $\phi(p)$ and $\psi: V \to \mathbb{R}^n$ is another coordinate neighborhood of $p \in M^n$, then $f \circ \psi^{-1} : \phi(V) \to \mathbb{R}$ is also differentiable at $\phi(p)$. In particular, our previous definition is coordinate-independent.

$\mathbf{2}$ Smooth maps

2.1Lecture 3

Definition 2.1.1. Let M^n and N^k be smooth manifolds. We say that $F: M \to N$ is smooth at $p \in M$ if there are charts $(V, \phi) \ni p$ and $(V', \psi) \ni F(p)$ with $F(V) \subset V'$ such that the coordinate representation $\psi \circ F \circ \phi^{-1}$ is smooth.

$$V \xrightarrow{F} V'$$

$$\downarrow^{\psi}$$

$$\phi(V) \xrightarrow{\psi \circ F \circ \phi^{-1}} \psi(V')$$

Remark 2.1.2. This definition is independent of coordinates. If $(U, \bar{\phi})$ and $(U', \bar{\psi})$ are other charts around p and F(p), respectively, then

$$\bar{\psi} \circ F \circ \phi^{-1} = (\bar{\psi} \circ \psi^{-1}) \circ (\psi \circ F \circ \phi^{-1})$$
$$\psi \circ F \circ \bar{\phi}^{-1} = (\psi \circ F \circ \phi^{-1}) \circ (\phi \circ \bar{\phi}^{-1}),$$

which are smooth a p as compositions of smooth maps.

Remark 2.1.3. Smooth implies continuous.

Proof. Using the notation from Definition 2.1.1, we see that for each $p \in M$, there is a neighborhood V of p such that $F \upharpoonright_V = \psi^{-1} \circ \psi \circ F \circ \phi^{-1} \circ \phi$ is a composition of continuous maps (as we know smooth implies continuous for maps between Euclidean spaces) and thus itself continuous. We can glue these restrictions together to conclude that F is continuous. Remark 2.1.4.

- 1. Given $F: M \to N$, if every $p \in M$ has a neighborhood U_p so that $F \upharpoonright_{U_p}$ is smooth, then F is smooth.
- 2. Conversely, the restriction of any smooth map to an open subset is smooth.

Example 2.1.5. The natural projection $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is smooth. Let $v \in (\mathbb{R}^{n+1} \setminus \{0\}, \mathrm{id})$. Let $(U_i, \phi_i) \in A_n$ be a neighborhood of $\pi(p)$. Since π is continuous, $S := \pi^{-1}(U_i) \cap (\mathbb{R}^{n+1} \setminus \{0\})$ is a neighborhood of v. Further, $\phi_i \circ \pi \circ \mathrm{id}: S \to \phi_i(U_i)$ is given by $x \mapsto \frac{(x_1, \dots, \widehat{x_i}, \dots, x_{n+1})}{x_i}$, which is smooth.

Definition 2.1.6. A smooth map with smooth inverse is called a *diffeomorphism*.

Note 2.1.7. This defines an equivalence relation \approx between smooth manifolds.

Remark 2.1.8. If $M^n \approx N^k$, then n = k.

Example 2.1.9. The following are diffeomorphisms.

- 1. $(\mathbb{R}, \mathrm{id}) \approx (\mathbb{R}, x \mapsto x^{\frac{1}{3}}) \text{ via } F : x \mapsto x^3.$
- 2. $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{\sqrt{1-|x|^2}}$ is a diffeomorphism with inverse $G(y) = \frac{y}{\sqrt{1+|y|^2}}$.
- 3. $\mathbb{S}^n/_{\sim} \approx \mathbb{RP}^n$.
- 4. If M is a smooth manifold and (U, ϕ) a chart, then $\phi: U \to (\phi(U), \mathrm{id})$ is a diffeomorphism.

Definition 2.1.10. If M is any topological space and $f: M \to \mathbb{R}^n$ is continuous, then the support of f is

$$\operatorname{supp} f \coloneqq \operatorname{cl}(\{x \in M : f(x) \neq 0\}).$$

Lemma 2.1.11. Given any $0 < r_1 < r_2$, there is some smooth function $H : \mathbb{R}^n \to \mathbb{R}$ such that H = 1 on $\bar{B}_{r_1}(0)$, 0 < H < 1 on $B_{r_2}(0) \setminus \bar{B}_{r_1}(0)$, and H = 1 elsewhere.

Proof. We construct such an H. First recall that $f: \mathbb{R} \to \mathbb{R}$ given by $e^{-\frac{1}{t}}$ for t > 0 and 0 otherwise is smooth. Now define $h: \mathbb{R} \to \mathbb{R}$ by $h(t) = \frac{f(r_2 - t)}{f(r_2 - t) + f(t - r_1)}$. Finally, define $H: \mathbb{R}^n \to \mathbb{R}$ by H(x) = h(|x|). \square

2.2 Lecture 4

Definition 2.2.1. Let \mathcal{U} be an open cover of a topological space X. We say that

- 1. the open cover \mathcal{V} is a refinement of \mathcal{U} if for every $V \in \mathcal{V}$, there is some $U \in \mathcal{U}$ such that $V \subset U$.
- 2. \mathcal{U} is locally finite if each $x \in X$ has some neighborhood that intersects only finitely many $U \in \mathcal{U}$.
- 3. X is paracompact if every open cover of X admits a locally finite refinement.

Definition 2.2.2. Let M be a topological space and $\mathbf{X} := (X_{\alpha})_{\alpha \in A}$ be an open cover. A partition of unity subordinate to \mathbf{X} is a family $(\psi_{\alpha})_{\alpha \in A}$ of continuous functions $\psi_{\alpha} : M \to \mathbb{R}$ such that

- 1. $0 \le \psi_{\alpha}(x) \le 1$ for each α and x.
- 2. supp $\psi_{\alpha} \subset X_{\alpha}$ for each α .
- 3. The family (supp ψ_{α}) is locally finite, in that every point $p \in M$ has a neighborhood V_p such that $V_p \cap \text{supp } \psi_{\alpha} \neq \emptyset$ for at most finitely many α . In particular, M is paracompact.
- 4. $\sum_{\alpha \in A} \psi_{\alpha}(x) = \sup\{\sum_{\alpha \in F} \psi(x) : F_{\text{twite}} \subset A\} = 1 \text{ for each } x.$

Lemma 2.2.3. Every topological manifold M is paracompact.

Proof. Since M has a countable atlas, it has a countable basis $\{B_n\}$ of precompact coordinate balls. (The continuous image of a precompact set into a Hausdorff space is also precompact.)

Step 1: By induction, we can build a countable covering $\{U_n\}$ of precompact sets such that $\operatorname{cl}(U_{n-1}) \subset U_n$ and $\overline{B_n} \subset U_n$ for each n.

Step 2: We build a countable locally finite open cover $\{V_n\}$. Set $V_n = \operatorname{cl}(U_n) \setminus U_{n-2}$ for n > 2 and $V_n = U_n$ otherwise. Note that every V_n intersects only finitely many other V_i , hence $\{V_n\}$ is locally finite.

Step 3: Let $\{X_{\alpha}\}$ be any open cover. For any $p \in M$, there is some α with $p \in X_{\alpha}$ and some neighborhood W_p that intersects V_j for only finitely many natural j. Set $\widetilde{W}_p = W_p \cap X_{\alpha}$. Then the \widetilde{W}_p cover M. Since each V_j is precompact by construction, we know V_j has a finite subcover $\widetilde{W}_{p_{j_{k_1}}}, \ldots, \widetilde{W}_{p_{j_{k_j}}}$. Then $V_j = (V_j \cap \widetilde{W}_{p_{j_{k_1}}}) \cup \cdots \cup (V_j \cap \widetilde{W}_{p_{j_{k_j}}})$. Therefore, $\{(V_j \cap \widetilde{W}_{p_{j_{k_1}}}), \ldots, (V_j \cap \widetilde{W}_{p_{j_{k_j}}})\}_{j \in \mathbb{N}}$ is a locally finite refinement of $\{X_{\alpha}\}$, as desired.

Remark 2.2.4. If X is connected, then X is paracompact if and only if it is second-countable.

Theorem 2.2.5 (Existence of partition of unity). If M is a smooth manifold, then any open cover $\mathcal{X} := \{X_{\alpha}\}_{{\alpha} \in A} \text{ of } M \text{ admits a partition of unity.}$

Proof. For each $\alpha \in A$, we can find a countable basis \mathcal{C}_{α} of precompact coordinate balls (centered at 0) for X_{α} . Then $\mathcal{C} := \bigcup_{\alpha} \mathcal{C}_{\alpha}$ is a basis for M. Since M is paracompact, \mathcal{X} admits a locally finite refinement $\{C_i\}$ consisting of elements of \mathcal{C} . Note that the cover $\{\operatorname{cl}(B_i)\}$ is also locally finite. There are coordinate balls $C'_i \subset X_{\alpha_i}$ such that $C'_i \supset \operatorname{cl}(C_i)$. For each i, let $\phi_i : C'_i \to \mathbb{R}^n$ be a smooth coordinate map so that $\phi_i(C'_i) \supset \phi(C_i)$ and $\phi(\operatorname{cl}(C_i)) = \operatorname{cl}(\phi(C_i))$. Define $f_i : M \to \mathbb{R}$ by

$$f_i(x) = \begin{cases} H_i \circ \phi_i & x \in C_i' \\ 0 & x \in M \setminus \operatorname{cl}(C_i) \end{cases}$$

where $H_i: \mathbb{R}^n \to \mathbb{R}$ is a smooth function that is positive on $\phi_i(C_i)$ and zero elsewhere, as in Section 2.1. Note that f_i is well-defined because $f_i = 0$ on $C'_i \setminus \operatorname{cl}(C_i)$. Also, it is smooth by the gluing lemma for open sets.

Define $f: M \to \mathbb{R}$ by $f(x) = \sum_i f_i(x)$, which is a finite sum and hence well-defined. We see that f is a smooth function and that f(x) > 0 for each $x \in M$. Then $g_i(x) \equiv \frac{f_i(x)}{f(x)}$ defines a smooth function $M \to \mathbb{R}$ for each i, so that $\sum_i g_i(x) = 1$ and $0 \le g_i(x) \le 1$ for each $x \in M$. Note that $\sup_i g_i(x) = \operatorname{cl}(C_i)$.

For each $\alpha \in A$, define $\psi_{\alpha} : M \to \mathbb{R}$ by

$$\psi_{\alpha}(x) = \sum_{i: \alpha_i = \alpha} g_i(x).$$

Interpret this as the zero function when there are no i such that $\alpha_i = \alpha$. Note that each ψ_{α} is smooth as a finite sum of smooth functions and satisfies $0 \le \psi_{\alpha} \le 1$. Moreover, we have that

$$\operatorname{supp}(\psi_{\alpha}) = \operatorname{cl}\left(\bigcup_{i:\ \alpha_i = \alpha} C_i\right) = \bigcup_{i:\ \alpha_i = \alpha} \operatorname{cl}(C_i).$$

Since $\{cl(C_i)\}\$ is locally finite, so is $\{supp(\psi_\alpha)\}_{\alpha\in A}$. Finally, the fact that $\alpha_i\in A$ implies that

$$\sum_{\alpha} \psi_{\alpha}(x) = \sum_{i} g_{i}(x) = 1$$

for each $x \in M$. Therefore, we may take $\{\psi_{\alpha}\}$ as our desired partition of unity.

Corollary 2.2.6. If $A \subset U \subset M$ with A closed and U open in M, then there is a (smooth) bump function $f: M \to \mathbb{R}$ such that f(x) = 1 for each $x \in A$ and f(x) = 0 outside a neighborhood of A.

Proof. Since $\{U, M \setminus A\}$ is an open cover of M, there is a partition of unity ϕ_1, ϕ_2 such that supp $\phi_1 \subset U$, supp $\phi_2 \subset M \setminus A$, and $\phi_1 + \phi_2 = 1$. Hence $\phi_1 \upharpoonright_{A} = 1 - 0 = 1$. And $\phi_1 \upharpoonright_{M \setminus U} = 0$.

2.3 Lecture 5

Corollary 2.3.1 (Whitney). Let M be a smooth manifold and $K \subset M$ be closed. Then there exists a non-negative smooth function $f: M \to \mathbb{R}$ such that $f^{-1}(0) = K$.

Remark 2.3.2. Hence closed subsets of smooth manifolds are completely characterized as the 0-level sets of smooth maps. To be the 0-level set of analytic maps, such as polynomials, is much more special (cf. algebraic geometry).

Proof. First assume $M = \mathbb{R}^n$ for some n. We have $M \setminus K$ open, which is thus the union of countably many balls $B_{r_i}(x_i)$ with $r_i \leq 1$. Construct, as in Section 2.1, a smooth bump function $h : \mathbb{R}^n \to \mathbb{R}$ such that h(x) = 1 on $\bar{B}_{\frac{1}{2}}(0)$ and that h is supported in $B_1(0)$. By our construction of h, we can verify that for each $i \in \mathbb{N}$, there is some $C_i \geq 1$ that bounds any of the partials of h up through order i.

Define $f: \mathbb{R}^n \to \mathbb{R}$ by $\sum_{i=1}^{\infty} \frac{r_i^i}{2^i C_i} h(\frac{x-x_i}{r_i})$. Each *i*-th term is bounded by $\frac{1}{2^i}$, implying by Weierstrass M-test that f is well-defined and continuous. Since h is zero outside $B_1(0)$, we see that $f^{-1}(0) = K$. To see that f is smooth, assume by induction that f is C^{k-1} for a given $k \geq 1$. By the chain rule and induction, we can write any k-th partial D_k of the i-th term of the series defining f as $\frac{(r_i)^{i-k}}{2^i C_i} D_k h(\frac{x-x_i}{r_i})$. As h is smooth, this expression is C^1 . And since $r_i \leq 1$ and C_i bounds all partials up to order i, it is eventually bounded by $\frac{1}{2^i}$. Hence the series of these expressions converges uniformly to a continuous function. By Theorem C.31 in Lee, it follows that $D_k f$ exists and is continuous, completing the induction.

Now, assume M is arbitrary. Find a cover (B_{α}) of smooth coordinate balls for M. Let $\{\phi_{\alpha}\}$ be a partition of unity subordinate to this cover. Note that each B_{α} is diffeomorphic to \mathbb{R}^n . Since the property of admitting a non-negative smooth $f: M \to \mathbb{R}$ with $f^{-1}(0) = K$ can be stated in the language of smooth manifolds, it is invariant under diffeomorphism. Thus, there is some non-negative smooth $f_{\alpha}: B_{\alpha} \to \mathbb{R}$ where $f^{-1}(0) = K \cap B_{\alpha}$ for each α . Then we can check that $g = \sum_{\alpha} \phi_{\alpha} f_{\alpha}$ is the desired function.

Corollary 2.3.3. Let M be a smooth manifold and $K \subset M$ be closed. Let c > 0. Then there exists a non-negative smooth $f: M \to \mathbb{R}$ such that $f^{-1}(c) = K$.

Exercise 2.3.4. Prove that the restriction of a smooth map on \mathbb{R}^{n+1} to \mathbb{S}^n is smooth.

3 Tangent vectors

3.1 Lecture 6

Remark 3.1.1. Imagine the tangent space of \mathbb{S}^n at a point p as all of the directions from p with respect to which I can find the rate of change of a smooth map f given that I'm only allowed to roam through \mathbb{S}^n .

Definition 3.1.2. Given $a \in \mathbb{R}^n$, a map $\omega : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is called a *derivation at a* if it

a. is linear over \mathbb{R}

b. satisfies $\omega(fg) = f(a)\omega(g) + g(a)\omega(f)$ for any $f, g \in C^{\infty}(\mathbb{R}^n)$.

Remark 3.1.3. If f is constant, then $\omega f = 0$ for any derivation ω .

Example 3.1.4. if $u \in \mathbb{R}^n$, recall the directional derivative of $f \in C^{\infty}(\mathbb{R}^n)$ in the direction u at a is defined as

$$D_u f(a) = \lim_{h \to 0} \frac{1}{h} (f(a+hu) - f(a)) = \frac{d}{dh} |_{h=0} f(a+hu).$$

Then this is a derivation of f at a.

Theorem 3.1.5. For $a \in \mathbb{R}^n$, define $L_a : \mathbb{R}^n_a \to T_a \mathbb{R}^n$ by $v_a \mapsto D_v|_a$. This is an isomorphism.

Proof. L_a is clearly linear, so we just prove that it is injective and surjective.

Suppose $u, v \in \mathbb{R}^n_a$ and $L_a(u) = L_a(v)$. Then by linearity $L_a(u-v) = 0$, implying $\frac{d}{dt}|_{t=0} f(a+t(u-v)) = 0$ for any smooth function f. But if $u-v \neq 0$, then this says that, for any f, the directional derivative of f at a in the direction of a certain nonzero vector vanishes, which is clearly false. Hence u=v, and L_a is injective.

Next, suppose $\omega \in T_a \mathbb{R}^n$ and consider the coordinate projection $x^i : \mathbb{R}^n \to \mathbb{R}$ for each i = 1, ..., n. Set $v_i = \omega(x^i)$ and write $v = v_i e_i$. We show that $L_a(v) = D_v|_a = \omega$. By Taylor's Theorem, for any $f \in C^{\infty}(\mathbb{R}^n)$ we can write

$$f(x) = f(a) + \sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i) + c \sum_{i,j=1}^{n} (x_i - a_i)(x_j - a_j) \int_0^1 (1 - t) \frac{\partial^2 f}{\partial x_i \partial x_j} (a + t(x - a)) dt$$

for some c > 0. Each term of the second sum is the product of two smooth functions vanishing at a. We can apply the product rule and linearity of ω to conclude that

$$\omega f = \omega \left(\sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i)\right) = \sum_{i=1}^{n} \omega \left(f_{x_i}(a)(x_i - a_i)\right) = \sum_{i=1}^{n} f_{x_i}(a)(\omega(x_i) - \omega(a_i)) = \sum_{i=1}^{n} f_{x_i}(a)v_i = D_v|_a f.$$

Corollary 3.1.6. We have $\dim(T_a\mathbb{R}^n)=n$, where the partial derivatives $\{\frac{\partial}{\partial x_i}|_a\}_{1\leq i\leq n}$ form a basis for $T_a\mathbb{R}^n$.

Definition 3.1.7. If M is a smooth manifold and $p \in M$, an \mathbb{R} -linear map $v : C^{\infty}(M) \to \mathbb{R}$ is called a derivation at p if v(fg) = f(p)v(g) + v(f)g(p) for any f and g.

Definition 3.1.8. The tangent space of M at p is defined as $T_pM = \{\omega : C^{\infty}(M) \to \mathbb{R} : \omega \text{ is a derivation of } M \text{ at } p\}.$

Definition 3.1.9. Given smooth manifolds M and N, a smooth map $F: M \to N$, and $p \in M$, we define the differential of F at p as $dF_p: T_pM \to T_{F(p)}N$ given by $dF_p(v)(f) = v(f \circ F)$, which is linear because v is linear. It's easy to verify that this satisfies the product rule. We call $dF_p(v)$ the pushforward of v by dF.

Proposition 3.1.10. Given M, N, P smooth manifolds, $F: M \to N, G: N \to P$ smooth maps, and $p \in M$, the following hold.

- 1. $dF_p: T_pM \to T_{F(p)}N$ is linear.
- 2. $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_pM \to T_{G(F(p))}P$.
- 3. $d(\mathrm{id}_M)_p = \mathrm{id} : T_pM \to T_pM$.
- 4. If F is a diffeomorphism, then dF_p is an isomorphism with inverse $d(F^{-1})_{F(p)}$.

Aside. This shows that mapping (M, p) to T_pM and $F: (M, p) \to (N, F(p))$ to $dF|_p$ defines a functor from Diff_* to $\mathsf{Vec}_{\mathbb{R}}$, called the tangent space functor.

Lemma 3.1.11. Let $v \in T_pM$ and $f, g \in C^{\infty}(M)$. Then if f and g agree on some neighborhood N_p of p, then vg = vf.

Proof. Set h = f - g, so that h vanishes on N_p . Find a smooth bump function $\phi : M \to \mathbb{R}$ such that $\phi \equiv 1$ on $\mathrm{supp}(h)$ and $\mathrm{supp}(\phi) \subset M \setminus \{p\}$. Then $\phi h(x) = h(x)$ for any $x \in M$. Since ϕ and h vanish at p, it follows that $vf - vg = vh = v(\phi h) = 0$.

Proposition 3.1.12. If M is an n-dimensional smooth manifold, then $\dim(T_pM) = n$ for every $p \in M$. In particular, we identify the standard basis by $e_i \leftrightarrow (0, \dots, 0, \frac{\partial}{\partial x_i}|_p, 0 \dots, 0)$.

3.2 Lecture 7

Remark 3.2.1. Given $p \in M$, find a chart $(U, \phi) \ni p$. Then $d\phi_p : T_pM \cong T_pU \to T_{\phi(p)}\phi(U) \cong T_p\mathbb{R}^n$ is an isomorphism. This choice of chart gives a natural choice of basis for T_pM :

$$\{\frac{\partial}{\partial x_i}|_p\}_{1\leq i\leq n}$$

where

$$\frac{\partial}{\partial x_i}|_p := (d\phi_p)^{-1}(\frac{\partial}{\partial x_i}|_{\phi(p)}) = (d\phi^{-1})_{\phi(p)}(\frac{\partial}{\partial x_i}|_{\phi(p)}).$$

Remark 3.2.2. Let $F: M \to N$ be smooth with $M \subset \mathbb{R}^n$ and $N \subset \mathbb{R}^m$ open. Then by the chain rule we get

$$dF_p(\frac{\partial}{\partial x_i}|_p)f = \frac{\partial}{\partial x_i}|_p(f \circ F) = \frac{\partial}{\partial x_i}|_p(f(F_1, \dots, F_m)) = \sum_{j=1}^m \frac{\partial f}{\partial F_j}(F(p))\frac{\partial F_j}{\partial x_i}(p) = \sum_{j=1}^m \frac{\partial F_j}{\partial x_i}(p)(\frac{\partial}{\partial y_j}|_{F(p)})f.$$

Therefore, dF_p can be represented by the familiar $m \times n$ Jacobian matrix of F at p,

$$DF(p) := \begin{bmatrix} \vdots & & \vdots \\ \frac{\partial F_j}{\partial x_1}(p) & \cdots & \frac{\partial F_j}{\partial x_n}(p) \\ \vdots & & \vdots \end{bmatrix},$$

which acts on $\mathbb{R}^n \cong T_p M$.

Now consider the general case $F: M \to N$ smooth between manifolds. For $p \in M$, choose charts $(U, \phi) \ni p$ and $(V, \psi) \ni F(p)$. Then the Euclidean map $\hat{F} := \psi \circ F \circ \phi^{-1} : \phi(F^{-1}(V) \cap U) \to \psi(V)$ is smooth. If $\hat{p} := \phi(p)$, it follows from our previous remark that $d\hat{F}_{\hat{p}}$ is represented by the Jacobian of \hat{F} at \hat{p} . Noting that $F \circ \phi^{-1} = \psi^{-1} \circ \hat{F}$, we compute

$$dF_p(\frac{\partial}{\partial x_i}|_p) = dF_p(d(\phi^{-1})|_{\hat{p}}(\frac{\partial}{\partial x_i}|_{\hat{p}})) = d(\psi^{-1})|_{\hat{F}(\hat{p})}(d\hat{F}|_{\hat{p}}(\frac{\partial}{\partial x_i}|_{\hat{p}}))$$

$$=d(\psi^{-1})|_{\hat{F}(\hat{p})}\left(\sum_{j=1}^{m}\frac{\partial \hat{F}_{j}}{\partial x_{i}}(\hat{p})\frac{\partial}{\partial y_{j}}|_{\hat{F}(\hat{p})}\right)=\sum_{j=1}^{m}\frac{\partial \hat{F}_{j}}{\partial x_{i}}(\hat{p})\frac{\partial}{\partial y_{j}}|_{F(p)}.$$

Therefore, dF_p can be represented by the Jacobian matrix of \hat{F} at \hat{p} .

Remark 3.2.3. Given two distinct pairs of coordinates for p and F(p), the respective Jacobian matrices are related by the familiar change-of-basis matrix. In particular, they are similar. For details, see Lee, pages 63-65.

Definition 3.2.4. Given a smooth manifold M, we define a notion of a smoothly varying tangent space, called the *tangent bundle of* M by the set

$$TM = \coprod_{p \in M} T_p M$$

endowed with a natural topology induced by the projection $\pi: TM \to M$, $(\phi, p) \mapsto p$.

Example 3.2.5. As \mathbb{R}^n_a is canonically isomorphic to \mathbb{R}^n , we have $T\mathbb{R}^n \cong \coprod_{a \in \mathbb{R}^n} \{a\} \times \mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$.

3.3 Lecture 8

Proposition 3.3.1. For any smooth n-dimensional manifold M, the tangent bundle TM has a natural topology and smooth structure so that it's a 2n-dimensional smooth manifold and the projection $\pi: TM \to M$ is smooth.

Proof. Given a chart (U,ϕ) , define $\tilde{\phi}: \pi^{-1}(U) \to \mathbb{R}^n$ by $v_i \frac{\partial}{\partial x_i}|_p \mapsto (x^1(p),\dots,x^n(p),v_1,\dots,v_n)$ where $\phi = (x^1,\dots,x^n)$. We call the $\tilde{\phi}((f,p))$ the natural coordinates on TM. This is continuous with $\operatorname{Im} \tilde{\phi} = \phi(U) \times \mathbb{R}^n$, which is open. Further, $\tilde{\phi}^{-1}$ on $\phi(U) \times \mathbb{R}^n$ is given by $(x_1,\dots,x_n,v_1,\dots,v_n) \mapsto v_i \frac{\partial}{\partial x_i}|_{\phi^{-1}(x)}$. Define $\{(\pi^{-1}(U),\tilde{\phi})\}$ as charts on TM. Given charts $(\pi^{-1}(U),\tilde{\phi}), (\pi^{-1}(V),\tilde{\psi})$, it's straightforward to check that $\tilde{\psi} \circ \tilde{\phi}^{-1}: \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is smooth.

Next, notice that if we take a countable cover $\{U_i\}$ of M by smooth coordinate domains, then $\{\pi^{-1}(U_i)\}$ satisfies the conditions of Lemma 1.2.6.

Finally, to see that $\pi:TM\to M$ is smooth, note that its coordinate representation at every point is given by the projection $\pi:\mathbb{R}^{2n}\to\mathbb{R}^n$, $(x,v)\mapsto x$.

Definition 3.3.2. Given $F: M \to N$ is smooth, define the *global differential* $dF: TM \to TN$ of F by $dF(\phi, p) = dF_p(\phi)$.

Proposition 3.3.3. The global differential $dF:TM \to TN$ is smooth.

Aside. This shows that mapping M to TM and F to dF defines a functor from Diff to itself, called the tangent functor.

Remark 3.3.4. If F is a diffeomorphism, then so is dF with $d(F^{-1}) = (df)^{-1}$.

Definition 3.3.5. Given a smooth curve $\gamma: J \to M$ and $t_0 \in J$, the velocity of γ at t_0 is defined as

$$\gamma'(t_0) = d\gamma \left(\frac{d}{dt}|_{t_0}\right) \in T_{\gamma(t_0)}M.$$

Remark 3.3.6. Let $(U,\phi) \ni \gamma(t_0)$ be chart on M. Then $\gamma'(t_0) = \frac{d\gamma^i}{dt} \frac{\partial}{\partial x_i}|_{\gamma(t_0)}$.

Proposition 3.3.7. Every $v \in T_pM$ is the velocity of some smooth curve $\gamma: J \to M$ at 0 such that $\gamma(0) = p$.

Proof. Let (U, ϕ) be a chart centered at p. Write $v = v_i \frac{\partial}{\partial x_i}|_p$. For $\epsilon > 0$ small, define $\gamma : (-\epsilon, \epsilon) \to U$ by $\gamma(t) = \phi^{-1}(tv_1, \dots, tv_n)$. Our previous remark implies that $\gamma'(0) = v$.

Proposition 3.3.8. Let $v \in T_pM$. Then $dF_p(v) = (F \circ \gamma)'(0)$ for any smooth $\gamma : J \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$.

Aside. A smooth function element on M is a pair (f,U) with $U \subset M$ open and $f: M \to \mathbb{R}$ smooth. Say that $(f,U) \sim (g,V)$ if $p \in U \cap V$ and $f \equiv g$ on some neighborhood of p. The class $[(f,U)] := [f]_p$ is called the *germ of* f at p. The set of such classes is denoted by $C_p^{\infty}(M)$. This is an associative algebra over \mathbb{R} .

Define a derivation of $C_p^{\infty}(M)$ as a linear map $v: C_p^{\infty}(M) \to \mathbb{R}$ such that $v[fg]_p = f(p)v[g]_p + g(p)v[f]_p$.

The tangent space $\mathcal{D}_p M$ of such derivations serves as an equivalent (via isomorphism) definition of the tangent space of M at p.

3.4 Lecture 9

Theorem 3.4.1 (Inverse function theorem). If $F: M \to N$ is smooth and dF_p is invertible, then there are connected neighborhoods U_0 of p and V_0 of F(p) such that $F \upharpoonright_{U_0}: U_0 \to V_0$ is a diffeomorphism.

Proof. Notice that M and N have equal dimension (say n) because dF_p is invertible. Choose charts (U, f) centered at p and (V, g) centered at F(p) such that $F(U) \subset V$. Then $\widehat{F} := g \circ F \circ f^{-1}$ is smooth map from $\widehat{U} := f(U) \subset \mathbb{R}^n$ to $\widehat{V} := g(V) \subset \mathbb{R}^n$ with $\widehat{F}(0) = 0$. Now $d\widehat{F}_0$ is invertible as the composition of three invertible maps. The Euclidean inverse function theorem implies that there are open balls $B_r(0)$ and $B_s(0)$ such that $\widehat{F} : B_r(0) \to B_s(0)$ is a diffeomorphism. Then $F : f^{-1}(B_r(0)) \to g^{-1}(B_s(0))$ is a diffeomorphism.

Corollary 3.4.2. If dF_p is nonsingular at each $p \in M$, then F is a local diffeomorphism.

Proposition 3.4.3.

- 1. The finite product of local diffeomorphisms is a local diffeomorphism.
- 2. The composition of two local diffeomorphisms is a local diffeomorphism.
- 3. Any bijective local diffeomorphism is a diffeomorphism.
- 4. A map F is a local diffeomorphism if and only if each point in dom(F) has a neighborhood where F's coordinate representation is a local diffeomorphism.

Definition 3.4.4. The rank of a smooth map F at a point p is the rank of dF_p . If the rank of F is equal at each point, then we say F has constant rank.

Theorem 3.4.5 (Constant rank theorem). Let $F: M^m \to N^n$ be smooth with constant rank $r \leq m, n$. Then for each $p \in M$, there are charts (U, f) centered at p and (V, g) centered at F(p) with $F(U) \subset V$ where the coordinate representation of F is given by

$$\widehat{F}(x_1,\ldots,x_r,x_{r+1},\ldots x_m) = (x_1,\ldots,x_r,0,\ldots,0).$$

Note 3.4.6. If m = n = r, then this follows immediately from the inverse function theorem.

Remark 3.4.7. The global condition on the rank of F cannot be weakened, as the space of $n \times m$ matrices of rank r need not be open. For example, consider $A(t) = \begin{bmatrix} 1 & t \\ 1 & 1 \end{bmatrix}$, which has rank 2 for $t \neq 1$ and rank 1 otherwise.

Proof. (Constant rank theorem) Since our statement is local, we may assume that $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ are open subsets. Since DF(p) has rank r, it has some invertible $r \times r$ sub-matrix, which we may assume is the upper left sub-matrix $\left(\frac{\partial F^i}{\partial x^j}\right)_{i,j\in[r]}$. Write $(x,y)=(x^1,\ldots,x^r,y^1,\ldots,y^{m-r})$ and $(v,w)=(v^1,\ldots,v^r,w^1,\ldots,w^{n-r})$ for the standard coordinates of \mathbb{R}^m and \mathbb{R}^n , respectively. By applying translations, we may assume that p=(0,0) and F(p)=(0,0). Let F(x,y)=(Q(x,y),R(x,y)) for some smooth $Q:M\to\mathbb{R}^r$ and $R:M\to\mathbb{R}^{n-r}$. Then the Jacobian matrix $\left(\frac{\partial Q^i}{\partial x^j}\right)$ is invertible at (0,0) by hypothesis.

Define $f: M \to \mathbb{R}^m$ by $(x,y) \mapsto (Q(x,y),y)$. Define the Kronecker delta symbol δ_i^j by $\delta_i^j = 1$ when i = j and 0 otherwise. Then

$$D[f](0,0) \begin{bmatrix} \frac{\partial Q^i}{\partial x^j}(0,0) & \frac{\partial Q^i}{\partial y^j}(0,0) \\ 0 & \delta^i_j \end{bmatrix}.$$

Since

$$\det(D[f](0,0)) = \det\left(\frac{\partial Q^i}{\partial x^j}(0,0)\right) \cdot \det(\delta^i_j) = \det\left(\frac{\partial Q^i}{\partial x^j}(0,0)\right) \neq 0,$$

it follows that D[f] is invertible at (0,0).

Thus, we can apply the inverse function theorem to get a connected open set $U_0 \ni (0,0)$ and an open cube $\widetilde{U}_0 \ni f(0,0) = (0,0)$ such that $f: U_0 \to \widetilde{U}_0$ is a diffeomorphism. Let $f^{-1}(x,y) = (A(x,y),B(x,y))$. Then (x,y) = f(A(x,y),B(x,y)) = (Q(A(x,y),B(x,y)),B(x,y)), so that y = B(x,y). Hence

$$f^{-1}(x,y) = (A(x,y), y).$$

Additionally, Q(A(x,y),y)=x since $f\circ f^{-1}=\mathrm{id}_{\widetilde{U}_0}.$ If $\widetilde{R}:\widetilde{U}_0\to\mathbb{R}^{n-r}$ is defined by $(x,y)\mapsto R(A(x,y),y),$ then

$$F\circ f^{-1}(x,y)=(x,\widetilde{R}(x,y)).$$

Therefore,

$$D[F \circ f^{-1}](x,y) = \begin{bmatrix} \delta_j^i & 0\\ \frac{\partial \tilde{R}^i}{\partial x^j}(x,y) & \frac{\partial \tilde{R}^i}{\partial y^j}(x,y) \end{bmatrix}$$

for any $(x,y) \in \widetilde{U}_0$. It's clear that the first r columns of this matrix are linearly independent. But since f^{-1} is a diffeomorphism, it has rank r on \widetilde{U}_0 . It follows that $\frac{\partial \widetilde{R}^i}{\partial y^j}(x,y) = 0$ for each $(x,y) \in \widetilde{U}_0$. But \widetilde{U}_0 was chosen to be an open cube, so that $\widetilde{R}(x,y) = \widetilde{R}(x,0)$. If $S(x) := \widetilde{R}(x,0)$, then $F \circ f^{-1}(x,y) = (x,S(x))$.

Now, let $V_0 = \{(v, w) \in N \mid (v, 0) \in \widetilde{U}_0\}$, which is a neighborhood of (0, 0) in N. Since \widetilde{U}_0 is a cube, we see that $F \circ f^{-1}(\widetilde{U}_0) \subset V_0$. Hence $F(U_0) \subset V_0$. Define $g: V_0 \to \mathbb{R}^n$ by $(v, w) \mapsto (v, w - S(v))$, which is smooth with inverse $g^{-1}(s, t) = (s, t + S(s))$. Then

$$\widehat{F}(x,y) = g \circ F \circ f^{-1}(x,y) = (x, S(x) - S(x)) = (x,0),$$

as desired. \Box

3.5 Lecture 10

Definition 3.5.1. A smooth map $F: M \to N$ is a *(smooth) submersion* if its rank is constant at $\dim(N)$. It is an *immersion* if its constant at $\dim(M)$.

Definition 3.5.2. A topological embedding is a continuous map $F: M \to N$ which is a homeomorphism onto F(M).

Example 3.5.3. The map $\gamma : \mathbb{R} \to \mathbb{R}^2$ defined by $t \mapsto (t^3, 0)$ is a smooth topological embedding but not an immersion, since $\gamma'(0) = 0$.

Example 3.5.4. The curve $f: (-\pi, \pi) \to \mathbb{R}^2$ defined by $f(t) = (\sin 2t, \sin t)$ is called a lemniscate and defined a figure-eight curve. This is not a topological embedding, because the figure-eight is compact whereas $(-\pi, \pi)$ is not. But it is a smooth immersion as f' never vanishes.

Definition 3.5.5. A map is a *smooth embedding* if it both a topological embedding and a smooth immersion.

Example 3.5.6. There is a smooth embedding of \mathbb{RP}^2 into \mathbb{R}^4 but not into \mathbb{R}^3

Example 3.5.7. If $U \subset M$ is open, then the inclusion $U \hookrightarrow M$ is a smooth embedding.

Definition 3.5.8. A manifold $S \subset M$ in the subspace topology is an *embedded* (or *regular*) *submanifold* if it has a smooth structure such that the inclusion $S \hookrightarrow M$ is smooth.

Remark 3.5.9. The image of a smooth embedding is an embedded submanifold.

Definition 3.5.10. If $S \subset M$ is an embedded submanifold, then dim M – dim S is called the *codimension* of S in M.

Proposition 3.5.11. Let $U \subset M$ be open and $f: U \to N$ be smooth where dim M = m and dim N = n. If $\Gamma(f)$ denotes the graph of f, then it is an embedded m-dimensional manifold of $M \times N$.

Proof. Define $\gamma_f(x): U \to M \times N$ by $\gamma_f(x) = (x, f(x))$. It's easy to check this is a smooth embedding. \square

Definition 3.5.12. We say S has the local k-slice condition if for each $p \in S$, there is a chart $(U, f) \ni p$ for M such that $f(U \cap S) = \{x \in \mathbb{R}^n : x^{k+1} = \cdots = x^m = 0\}$, where $m = \dim M$.

Theorem 3.5.13. Let M^n be a smooth manifold. If $S \subset M$ is an embedded manifold with dim S = k, then S has the local k-slice condition. Conversely, if $S \subset M$ has the local k-slice condition, then S is a manifold in the subspace topology and has a smooth structure making it an embedded submanifold of dimension k.

Proof. See Lee, Theorem 5.8. \Box

Example 3.5.14. For any n, $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ is an embedded hypersurface because it is locally the graph of smooth map and thus has the local n-slice condition.

Theorem 3.5.15. Let $F: M^m \to N^n$ be smooth with constant rank r. Each level set of F is an embedded submanifold of codimension r in M.

Proof. Set k=m-r. Let $c\in N$ and $p\in F^{-1}(c)$. By the constant rank theorem, there are charts (U,f) centered at p and (V,g) centered at F(p)=c for which F has coordinate representation $(x_1,\ldots,x_r,x_{r+1},\ldots,x_m)\mapsto (x_1,\ldots,x_r,0,\ldots,0)$, which must send each point in $f(F^{-1}(c)\cap U)$ to 0. Thus, $f(F^{-1}(c)\cap U)$ equals the k-slice $\{x\in \mathbb{R}^m: x_1=\cdots=x_r=0\}$. By Theorem 3.5.13, S is an embedded submanifold of dimension k.

3.6 Lecture 11

Question. Can M^n with $n \ge 1$ be homeo-/diffeomorphic to $M \setminus \{p\}$?

Remark 3.6.1. We can generalize Theorem 3.5.15 to maps that are not necessarily of constant rank.

Definition 3.6.2. Let $\phi: M \to N$ be smooth. We say that $p \in M$ is a

- 1. regular point if $d\phi_p$ is surjective.
- 2. critical point otherwise.

Definition 3.6.3. With notation as before, we say that $c \in N$ is a

- 1. regular value if each point in $\phi^{-1}(c)$ is regular.
- 2. critical value otherwise.

Theorem 3.6.4. Every regular level set of a smooth map $F: M^m \to N^n$ is an embedded submanifold of codimension n.

Proof. Let $c \in N$. Note that since the subspace of full-rank matrices is open, the set U of points $p \in M$ where dF_p is surjective is open in M. Hence $F \upharpoonright_U : U \to N$ is a smooth submersion. In particular it has constant rank n, so that $F^{-1}(c)$ is an embedded submanifold with codimension n of U, which itself is an open submanifold of M.

Example 3.6.5. \mathbb{S}^n is the regular level set of the smooth function $x \mapsto |x|^2$.

Theorem 3.6.6 (Sard). If $F: M \to N$ is smooth, then the set of all critical values of F has measure zero in N.

Proposition 3.6.7. Suppose M is smooth and $S \subset M$ is embedded. Then for any $f \in C^{\infty}(S)$, then there is some neighborhood U of S in M and $\hat{f} \in C^{\infty}(U)$ such that $\hat{f} \upharpoonright_S = f$.

Proposition 3.6.8. The tangent space of a submanifold $S \subset M$ at $p \in S$ is just the image of the injective canonical map $di_p : T_pS \to T_pM$ where i denotes inclusion. More concretely, this is equal to

$$A := \{ \gamma'(0) \in T_pM : \gamma : (-\epsilon, \epsilon) \to S \text{ and } \gamma(0) = p \}.$$

Proof. Let $v \in T_pS$. We know that $v = \gamma'(0)$ for some curve γ in S. Then $i \circ \gamma$ is a curve in M with $(i \circ \gamma)' = di_p(v)$. Conversely, let $v := w'(0) \in A$. We have $w = j \circ w$ where $j : i(S) \to S$ is the reverse inclusion. Since $(j \circ w)'(0) = dj_p(v) \in T_pS$, it follows that $d_i((j \circ w)'(0)) = v$.

Remark 3.6.9. The gradient ∇F has two main properties.

- 1. It is orthogonal to the level sets of F.
- 2. $dF_p(v) = \langle \nabla F_p, v \rangle$.

But we don't have an inner product on M unless M is a Riemannian manifold, which by definition has a smoothly varying inner product.

3.7 Lecture 12

Definition 3.7.1. If $\pi: M \to N$ is a continuous map, a section of π is a continuous right inverse for π .

Definition 3.7.2. A (smooth) vector field X is a smooth section of the projection $\pi: TM \to M$, i.e., $X_p := F(p) \in T_pM$ for each $p \in M$. Let $\mathscr{X}(M)$ denote the space of smooth vector fields in M.

Remark 3.7.3. Given a chart U on M, if $p \in U$, then we can write $X_p = \sum_i r_i \frac{\partial}{\partial x_i}|_p$ for some unique real coefficients r_i . Define each $X^i: U \to \mathbb{R}$ by $X_i(p) = r_i$. Then $X_p = \sum_i X_i(p) \frac{\partial}{\partial x_i}|_p$.

Definition 3.7.4. We call such X_i the component functions of X for the chart U.

Proposition 3.7.5. A vector field X is smooth if and only if each component function in any given chart is smooth.

Remark 3.7.6. $\mathscr{X}(M)$ is a module over $C^{\infty}(M)$ by the action $f \cdot X = (p \mapsto f(p)X_p)$.

Lemma 3.7.7. If S is a closed subset of M and X a smooth vector field along S, then there is an extension of X to a smooth vector field on M.

Definition 3.7.8. Let $U \subset M^n$ be open and $X_1, \ldots, X_k \in \mathcal{X}(M)$.

- 1. X_1, \ldots, X_k are linearly independent if for any $p \in U$, we have $\{X_1(p), \ldots, X_k(p)\}$ linearly independent in T_pM .
- 2. If k = n and X_1, \ldots, X_k are linearly independent, then $\{X_1, \ldots, X_k\}$ is a local frame in U.

Example 3.7.9. The basis vectors $p \mapsto \frac{\partial}{\partial x_i}|_p$ form a local frame for a given chart U around p, called the coordinate frame.

Definition 3.7.10. A local frame for U is called a *global frame* if U = M. If such a frame exists, then M is called *parallelizable*.

Example 3.7.11. \mathbb{R}^n is parallelizable via the standard coordinate vector fields.

Lemma 3.7.12. M is parallelizable if and only if $TM \approx M \times \mathbb{R}^n$.

Theorem 3.7.13 (Kervaire). \mathbb{S}^n is parallelizable if and only if $n \in \{0, 1, 3, 7\}$.

Example 3.7.14. Any Lie group is parallelizable.

Remark 3.7.15. Note that $\mathscr{X}(M)$ acts on $C^{\infty}(U)$ for $U \subset M$ via $X \cdot f = (p \mapsto X_p(f))$. Given $X \in \mathscr{X}(M)$ fixed, this induces a linear map $X : C^{\infty}(U) \to C^{\infty}(U)$ satisfying the product rule X(fg) = fXg + gXf. We call such a map a derivation of $C^{\infty}(U)$.

Moreover, if $F: M \to N$ is smooth, then we have $dF_pX(p) \in T_{F(p)}N$ for each $p \in M$. But this may not define a vector field on N, since F may not be surjective.

Example 3.7.16. Note that for $X,Y\in \mathcal{X}(M),\, X(Yf)$ need not be a derivation. Indeed, let $M=\mathbb{R}^2,\, X=\frac{\partial}{\partial x},\, \text{and}\,\, Y=x\frac{\partial}{\partial y}.$ If f(x,y)=x and g(x,y)=y, then XY(fg)=2x whereas fXY(g)+gXY(f)=x, so that XY(f) is not a derivation.

Definition 3.7.17. Let $X,Y \in \mathscr{X}(M)$. Then $[X,Y] := XY - YX : C^{\infty}(M) \to C^{\infty}(M)$ is called the *Lie bracket of X and Y*.

Remark 3.7.18. (Clairaut) If $X_i = \frac{\partial}{\partial x_i} \in \mathcal{X}(M)$, then $[X_i, X_j] = 0$ for any $1 \leq i, j \leq n$.

Proposition 3.7.19. A map $D: C^{\infty}(M) \to C^{\infty}(M)$ is a derivation if and only if there is some $X \in \mathscr{X}(M)$ such that Df = Xf for any f.

Proof. We've established the backward implication. Conversely, assume that D is a derivation. Define $X: M \to TM$ by $X_p(f) = (Df)(p)$. Since Df = Xf is smooth for each X, it follows that X is smooth by Lee, Proposition 8.14.

Proposition 3.7.20. Any Lie bracket [X,Y] is a smooth vector field.

Proof. By our last proposition, it suffices to show that [X,Y] is a derivation. Let f,g be smooth functions on M. Then

$$\begin{split} [X,Y](fg) &= X(Y(fg)) - Y(X(fg)) = X(fYg + gYf) - Y(fXg + gXf) = XfYg + XgYf - YfXg - YgXf \\ &= fXYg + YgXf + gXYf + YfXg - fYXg - XgYf - gYXf - XfYg = fXYg + gXYf - fYXg - gYXf \\ &= f[X,Y]g + g[X,Y]f. \end{split}$$

3.8 Lecture 13

Definition 3.8.1. The function $[X,Y]:M\to TM$ is given by $p\mapsto (f\mapsto X_p(Yf)-Y_p(Xf))$.

Proposition 3.8.2. Write $X = X^i \frac{\partial}{\partial x_i}$ and $Y = Y^j \frac{\partial}{\partial x_j}$ in local coordinates. Then

$$[X,Y] = \sum_{i,j} \left(X^i \frac{\partial Y^j}{\partial x_i} - Y^i \frac{\partial X^j}{\partial x_i} \right) \frac{\partial}{\partial x_j}.$$

Proof. Since [X,Y] is a vector field, $([X,Y]f) \upharpoonright_U = [X,Y](f \upharpoonright_U)$ for any open $U \subset M$. Therefore, we can compute, say, Xf in a coordinate expression for X. We can apply the product rule and Clairaut to get

$$\begin{split} [X,Y]f &= X^i \frac{\partial}{\partial x_i} (Y^j \frac{\partial f}{\partial y_j}) - Y^j \frac{\partial}{\partial x_j} (X^i \frac{\partial f}{\partial x_i}) = X^i \frac{\partial Y^j}{\partial x_i} \frac{\partial f}{\partial x_j} + X^i Y^j \frac{\partial^2 f}{\partial x_i x_j} - Y^j \frac{\partial X^i}{\partial x_j} \frac{\partial f}{\partial x_i} - Y^j X^i \frac{\partial^2 f}{\partial x_j x_i} \\ &= X^i \frac{\partial Y^j}{\partial x_i} \frac{\partial f}{\partial x_j} - Y^j \frac{\partial X^i}{\partial x_j} \frac{\partial f}{\partial x_i} = \sum_{i,j} (X^i \frac{\partial Y^j}{\partial x_i} - Y^i \frac{\partial X^j}{\partial x_i}) \frac{\partial}{\partial x_j}. \end{split}$$

Remark 3.8.3. It's a fact that if $X_1, \ldots, X_n \in \mathscr{X}(U)$ such that $[X_i, X_j] = 0$, then there are local coordinates $x^i : V \to \mathbb{R}$ such that $X_i = \frac{\partial}{\partial x^i}$. This is a converse to Clairaut.

Proposition 3.8.4.

1. (Bilinearity) For any $a, b \in \mathbb{R}$,

$$[aX + bY, Z] = a[X, Z] + b[Y, Z]$$

 $[Z, aX + bY] = a[Z, X] + b[Z, Y].$

2. (Antisymmetry)

$$[X,Y] = -[Y,X].$$

3. (Jacobi Identity)

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

4. For any $f, g \in C^{\infty}(M)$,

$$[fX, gY] = fg[X, Y] + (fXg)Y - (gYf)X,$$

where fX denotes the module action $f \cdot X$.

Proof. Compute directly.

Definition 3.8.5. Let $X \in \mathcal{X}(M)$ and $Y \in \mathcal{X}(N)$. Let $F : M \to N$ be a diffeomorphism. The *pushforward* of X by F, denoted by F_*X , is the vector field on N given by $q \mapsto dF_{F^{-1}(q)}(X_{F^{-1}(q)})$.

Definition 3.8.6. Let $X \in \mathcal{X}(M)$ and $Y \in \mathcal{X}(N)$. If $F : M \to N$ is a diffeomorphism, then X and Y are F-related if $Y = F_*X$.

Remark 3.8.7. $X(f \circ F) = (Yf) \circ F$ if and only if X and Y are F-related.

Theorem 3.8.8 (Naturality of the Lie bracket). Suppose $F: M \to N$ is a diffeomorphism and $X, Y \in \mathcal{X}(M)$. Then $F_*[X,Y] = [F_*X, F_*Y]$.

Proof. Let $f \in C^{\infty}(M)$. By our previous remark, we see that $XY(f \circ F) = X(F_*Yf \circ F) = F_*X(F_*Yf) \circ F$, and likewise $YX(f \circ F) = F_*Y(F_*Xf) \circ F$. Thus,

$$[X,Y](f\circ F)=F_*X(F_*Yf)\circ F-F_*Y(F_*Xf)\circ F=([F_*X,F_*Y]f)\circ F.$$

We conclude by again applying our previous remark.

Corollary 3.8.9. Let $S \subset M$ be a submanifold. If $X, Y \in \mathscr{X}(M)$ have $X_p, Y_p \in T_p(S)$ for each $p \in S$, then $[X,Y]_p \in T_p(S)$ as well.

Proof. Let $i: S \to M$ denote inclusion. Then there are $X', Y' \in \mathcal{X}(S)$ with X' i-related to $X \upharpoonright_S$ and Y' to $Y \upharpoonright_S$. This implies [X', Y'] is i-related to $[X, Y] \upharpoonright_S$, which in turn implies that $[X, Y]_p \in T_p(S)$ for any $p \in S$.

4 Vector bundles

Definition 4.0.1. Let M be a topological space. A *(real) vector bundle of rank* k *over* M is a topological space E endowed with the following structure.

- 1. A surjective continuous map $\pi: E \to M$.
- 2. For each $p \in M$, $E_p := \pi^{-1}(p)$ is endowed with the structure of a k dimensional real vector space.
- 3. For each $p \in M$, there is a neighborhood U_p in M and a homeomorphism $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ such that
 - (a) $\pi_U \circ \phi = \pi \upharpoonright_{\pi^{-1}(U)}$, where $\pi_U : U \times \mathbb{R}^k \to U$ is the projection.
 - (b) For each $q \in U$, $\phi \upharpoonright_{E_q}$ is a linear isomorphism $E_q \cong \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$.

If M and E are smooth manifolds and π and the ψ are smooth, then E is called a smooth vector bundle.

Example 4.0.2. The Mobius strip and $\mathbb{S}^1 \times \mathbb{R}$ are different vector bundles over \mathbb{S}^1 .

Remark 4.0.3. We can always construct a global section for a smooth vector bundle by using partition of unity. But we cannot always ensure that it is non-vanishing, as shown by the hairy ball theorem for bundles over \mathbb{S}^2 .

4.1 Lecture 14

Lemma 4.1.1 (Vector bundle construction lemma). Let M^n be a smooth manifold and suppose that for any $p \in M$, there is some vector space E_p of some fixed dimension k. Let $E := \coprod_{p \in M} E_p$ and $\pi : E \to M$ be the projection map. Further, suppose we have the following data.

- 1. an open cover $\{U_{\alpha}\}$.
- 2. for each α , a bijective $\phi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^k$ whose restriction to each E_p is a linear isomorphism to $\{p\} \times \mathbb{R}^k$.
- 3. for each $U_{\alpha} \cap U_{\beta} \neq \emptyset$, a smooth map $\tau_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$ such that $\phi_{\alpha} \circ \phi_{\beta}^{-1}(p,v) = (p,\tau_{\alpha\beta}(p)v)$.

Then E has a unique topology and smooth structure making it into a smooth vector bundle of rank k over M.

Remark 4.1.2. The matrices $\tau_{\alpha\beta}(p)$ are called the transition functions of the vector bundle E. They satisfy the so-called cocycle condition in that $\tau_{\alpha\alpha}(p) = I_k$ and $\tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p)\tau_{\gamma\alpha}(p) = I_k$.

Definition 4.1.3. If V is a real vector space, then define the dual space $V^* = \text{Hom}(V, \mathbb{R})$.

Proposition 4.1.4.

- 1. If $\dim(V) = n$, then $\dim(V^*) = n$.
- 2. There is a canonical isomorphism $V \cong (V^*)^*$ via $v \mapsto (\phi \mapsto \phi(v))$.

Definition 4.1.5. Let v_1, \ldots, v_n be a basis for V. Then the *dual basis* consists of $\phi_i : V \to \mathbb{R}$ given by $\phi_i(v_i) = 1$ when i = j and $\phi_i(v_i) = 0$ otherwise.

Definition 4.1.6. Let $A: V \to W$ be linear. Then define the linear map $A^*: W^* \to V^*$ by $w \mapsto (v \mapsto w(Av))$.

Definition 4.1.7. Let M^n be a smooth manifold. Define the cotangent space at p as T_p^*M . Define the cotangent bundle of M as $T^*M = \coprod_n T_n^*M$.

Lemma 4.1.8. T^*M is a smooth n vector bundle over M.

Proof. Let (U, ϕ) be a smooth chart for M. Define $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ by $a_i \lambda^i|_p \mapsto (p, a_1, \dots, a_n)$, where $\{\lambda^i|_p\}$ is a dual basis for T_pM . Then we apply the vector bundle construction lemma. See Lee, Proposition 11.9 for the straightforward details.

Remark 4.1.9. Let (U, x^i) be smooth coordinates for M^n . Then $\psi : a_i \lambda^i|_p \mapsto (x^1(p), \dots, x^n(p), a_1, \dots, a_n)$ is a local chart $(\pi^{-1}(U), \psi)$ for T^*M .

Definition 4.1.10. A section of T^*M is called a covector field or a (differential/smooth) 1-form.

4.2 Lecture 15

Definition 4.2.1. Define $Df: C^{\infty}(M) \to \Gamma(T^*M)$ by $f \mapsto (p \mapsto df_p)$ where $df_p(v) = vf$ for every $v \in T_pM$. We call df the differential of f.

Remark 4.2.2. Let (U, x^i) be local coordinates for M. Let (dx^i) denote the corresponding coordinate coframe on U. Write $df_p = A_i(p)dx^i|_p$ for some functions $A_i: U \to \mathbb{R}$. Then $A_i(p) = df_p(\frac{\partial}{\partial x^i}|_p) = \frac{\partial f}{\partial x^i}(p)$, so that $df_p = \frac{\partial f}{\partial x^i}(p)dx^i|_p$. In this way, the differential of f generalizes the gradient of a smooth function on \mathbb{R}^n .

Proposition 4.2.3. If M is connected, then f is constant if and only if df = 0.

Proof. Since vf=0 for any derivation v and constant f, the forward direction is clear. Conversely, suppose that df=0 and let $p\in M$. Set $C=\{q\in M: f(q)=f(p)\}$. We want C=M. It suffices to show that C is clopen. For any $q\in C$, choose a coordinate ball $U\ni p$. Then since $0=df=\frac{\partial f}{\partial x^i}dx^i$, it follows that $\frac{\partial f}{\partial x^i}=0$ for each i. Elementary calculus implies that f must be constant on U. Hence C is open. Since $C=f^{-1}(p)$, it is also closed.

Remark 4.2.4. Transition functions for changing coordinates. [[???]]

Definition 4.2.5. Let $F: M \to N$ be smooth. Let $\omega \in \Gamma(T^*N)$. Define the *pullback* $F^*\omega$ of ω as the element of $\Gamma(T^*M)$ given by

$$F^*\omega|_p(X|_p) = \omega|_{F(p)}(F_*|_pX_p).$$

Note that unlike the pushforward, the pullback requires just that F be smooth.

Lemma 4.2.6. Let $F: M \to N$ be smooth, $\alpha, \beta \in \Gamma(T^*N)$ and $f, g \in C^{\infty}(N)$. Then

$$F^*(f\alpha + q\beta) = (f \circ F)F^*\alpha + (q \circ F)F^*\beta.$$

Proof. Let $X \in \mathcal{X}(M)$.

$$F^*(f\alpha + g\beta)|_p(X_p) = (f\alpha + g\beta)|_{F(p)}(F_*|_pX_p) = f(F(p))\alpha_{F(p)}(F_*|_pX_p) + g(F(p))\beta_{F(p)}(F_*|_pX_p)$$
$$= [(f \circ F)F^*\alpha]_p(X_p) + [(g \circ F)F^*\beta]_p(X_p).$$

Remark 4.2.7. Let $\gamma: J \subset \mathbb{R} \to M$ be a curve in M. Note that $\Gamma(T^*\mathbb{R}) = \{f(t)dt: f: T \to \mathbb{R}\}$. Then

$$\omega \in \Gamma(T^*M) \implies \gamma^*\omega \in \Gamma(T^*\mathbb{R}) \implies \gamma^*\omega = f(t)dt$$

for some curve f along J.

Definition 4.2.8. We define the integral of ω along γ as

$$\int_{\gamma} \omega = \int_{I} \gamma^* \omega.$$

Proposition 4.2.9. Suppose ϕ is a positive reparameterization of γ . Then $\int_{\gamma} \omega = \int_{\gamma \circ \phi} \omega$.

Proof. See Lee, 11.31. \Box

Definition 4.2.10. A differential 1-form is *closed* if $\frac{\partial w_i}{\partial x^j} - \frac{\partial w_j}{\partial x^i} = 0$ for any i, j where $w = w_i dx^i$.

Exercise 4.2.11. Being closed is a well-defined property.

Example 4.2.12. By Clairaut, df is closed for any $f \in C^{\infty}(M)$.

5 Differential forms

5.1 Lecture 16

Theorem 5.1.1 (Universal property of the tensor product). Let V_1, \ldots, V_k be (real) vector spaces. There exists a vector space $V_1 \otimes \cdots \otimes V_k$ (called the tensor product of the V_i) and map $: \otimes : V_1 \times \cdots \times V_k$ so that for any multilinear map $T: V_1 \times \cdots \times V_k \to W$, there is some unique linear $\widetilde{T}: V \otimes \cdots \otimes V_k \to W$ such that the following commutes.

$$V_1 \times \cdots \times V_k \xrightarrow{T} W$$

Proof. If we prove it when k=2, then we're done by induction. Let $\mathbb{R}\langle V_1 \times V_2 \rangle$ denote the free vector space on $V_1 \times V_2$, i.e., the set of all finite formal linear combinations of $V_1 \times V_2$. Set

$$G = \langle (av_1, v_2) - a(v_1, v_2), (v_1, av_2) - a(v_1, v_2), (v_1 + w_1, v_2) - (v_1, v_2) - (w_1, v_2), (v_1, w_2 + v_2) - (v_1, w_2) - (v_1, v_2) \rangle.$$

Given $T: V_1 \times V_2 \to W$ multilinear, define $\widetilde{T}: \mathbb{R}\langle V_1 \times V_2 \rangle \to W$ by $\sum a_{(v_1,v_2)}(v_1,v_2) \mapsto \sum a_{(v_1,v_2)}T(v_1,v_2)$. Since T is multilinear, $G \subset \ker \widetilde{T}$. Therefore, if $V_1 \otimes V_2 := \mathbb{R}\langle V_1 \times V_2 \rangle / G$, then we get

Thus, if $i: V_1 \times V_2 \to \mathbb{R}\langle V_1 \times V_2 \rangle$ denotes inclusion, then $\widetilde{\widetilde{T}} \circ \pi \circ i = \widetilde{T} \circ i$, which gives the desired diagram. We see that $\widetilde{\widetilde{T}}$ is unique because it is uniquely determined by elements of the form $v_1 \otimes v_2 \coloneqq [(v_1, v_2)]$ by T and every element of $V_1 \otimes V_2$ can be written as some linear combination of such elements.

Proposition 5.1.2. If $a, b \in \mathbb{R}$, then $(av_1 + bw_1) \otimes v_2 = a(v_1 \otimes v_2) + b(w_1 \otimes v_2)$.

Proposition 5.1.3.

- 1. (Vect_{\mathbb{R}}, \oplus , \otimes) is a semiring.
- 2. $V \otimes W \cong W \otimes V$.
- 3. $V \otimes \mathbb{R} \cong V$.
- 4. $(V \otimes W)^* \cong V^* \otimes W^*$.

Proposition 5.1.4. $V^* \otimes W^* \cong B(V,W)$ canonically where B(V,W) denotes the space of bilinear maps $V \times W \to \mathbb{R}$.

Proof. Define $\Phi: V^* \times W^* \to B(V, W)$ by $(\omega, \eta) \mapsto ((v, w) \mapsto \omega(v)\eta(w))$. This is linear, hence induces

$$V^* \times W^* \xrightarrow{\Phi} B(V, W)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

One can show that $\tilde{\Phi}$ is a natural isomorphism.

Remark 5.1.5. Our previous result can be generalized.

$$V_1^* \otimes \cdots \otimes V_k^* \cong L(V_1, \dots, V_k; \mathbb{R}).$$

Definition 5.1.6. (tensor type) We say that an element of $V_l^k := \underbrace{V^* \otimes \cdots \otimes V^*}_{k \text{ times}} \otimes \underbrace{V \otimes \cdots \otimes V}_{l \text{ times}}$ is a (k, l)-tensor. A (k, 0) tensor is called *covariant*. A (0, l)-tensor is called *contravariant*.

Definition 5.1.7. Let M be a manifold. Then define the (k, l)-tensor bundle

$$T_l^k M = \coprod_{p \in M} (T_p)_l^k M.$$

Exercise 5.1.8. What is the dimension of $T_l^k M$?

Example 5.1.9. $T^{1}M = T^{*}M$, and $T_{1}M = TM$.

Remark 5.1.10. Suppose (x^i) and (y^i) are two local coordinate systems for $p \in M$. Then

$$dx^{i_1} \otimes dx^{i_2} \otimes \cdots dx^{i_k} = \left(\frac{\partial x^{i_1}}{\partial y^{l_1}} dy^{p_1}\right) \otimes \cdots \otimes \left(\frac{\partial x^{i_k}}{\partial y^{l_k}} dy^{p_k}\right)$$
$$= \sum_{p_1, \dots, p_k} \frac{\partial x^{i_1}}{\partial y^{l_1}} \cdots \frac{\partial x^{i_k}}{\partial y^{l_k}} \otimes dy^{p_1} \otimes \cdots \otimes dy^{p_k}.$$

Definition 5.1.11. A (k,l)-tensor field is a (smooth) section of T_l^kM . Let $\mathcal{T}_l^k(M) := \Gamma(T_l^kM)$.

5.2 Lecture 17

Remark 5.2.1. Let (U, x^i) be local coordinates for M. Then $A \in \mathcal{T}_k^l(M)$ can be written as

$$A|_{p} = A_{i_{1}...i_{k}}^{j_{1}...j_{l}} dx^{i_{1}}|_{p} \otimes \cdots \otimes dx^{i_{k}}|_{p} \otimes \frac{\partial}{\partial x^{j_{1}}}|_{p} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_{l}}}|_{p}$$

summed over $n^k \cdot n^l$ tensors.

Example 5.2.2. Define $\sigma = \delta_j^i dx^j \otimes \frac{\partial}{\partial x^i}$, $X = X^k \frac{\partial}{\partial x^k}$, and $w = w_l dx^l$. Then

$$\sigma(X,w) = \delta^i_j dx^j \otimes \frac{\partial}{\partial x^i} (X^k \frac{\partial}{\partial x^k}, w_l dx^l) = \delta^i_j dx^j (X^k \frac{\partial}{\partial x^k}) \frac{\partial}{\partial x^i} w_l dx^l = \delta^i_j \delta^j_k X^k w_l \delta^l_i \underbrace{= w_k X^k}_{[[\text{Why?}]]} = w(X).$$

We say that σ is *invariant* in this case.

Example 5.2.3. Show that $\delta_i^j dx^i \otimes dx^j$ is not an invariant tensor.

Proposition 5.2.4.

1. Any $\sigma \in \mathcal{T}_l^k(M)$ induces a $C^{\infty}(M)$ -multilinear map

$$\hat{\sigma}: \underbrace{\mathscr{X}(M) \times \cdots \times \mathscr{X}(M)}_{k \ times} \times \underbrace{\mathscr{X}^*(M) \times \cdots \times \mathscr{X}^*(M)}_{l \ times} \to C^{\infty}(M)$$

$$(X_1, \dots, X_k, w_1, \dots, w_l) \mapsto (p \mapsto \sigma(X_1|_p, \dots, X_k|_p, w_1|_p, \dots, w_l|_p)).$$

2. Any multilinear map over $C^{\infty}(M)$ is of the above form for some (k,l)-tensor field.

Example 5.2.5. The Lie bracket is not multilinear over $C^{\infty}(M)$, as [fX + gY, Z] = f[X, Y] + g[Y, Z] - Z(f)X - Z(g)Y.

Remark 5.2.6. The smooth function $\hat{\sigma}_p$ above is determined completely by the values $X_1(p), \dots, X_k(p), w_1(p), \dots, w_l(p)$.

Definition 5.2.7. A covariant k-tensor T is alternating if for any vectors Y, X_1, \ldots, X_{k-1} , it follows that

$$T(X_1, X_2, \dots, Y, \dots, Y, \dots, X_{k-1}) = 0.$$

This is also called a *exterior form*.

Example 5.2.8. If σ is a 0-tensor or a 1-tensor, then it is alternating.

Proposition 5.2.9. TFAE.

- 1. T is alternating.
- 2. $T(X_1, \ldots, X_k) = 0$ whenever $\{X_1, \ldots, X_k\}$ is linearly dependent.
- 3. $T(X_1, \ldots, X_i, X_{i+1}, \ldots, X_k) = -T(X_1, \ldots, X_{i+1}, X_i, \ldots, X_k).$

Definition 5.2.10. The space of alternating covariant k-tensors is a subspace of $T^k(V)$ that is denoted by $\bigwedge^k(V)$. Given $T \in T^k(V)$, define the alternation of T as

$$\operatorname{Alt}(T): (V_1, \dots, V_k) \mapsto \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) T(V_{\alpha(1)}, \dots, V_{\sigma(k)}).$$

Example 5.2.11. Alt $(T)(X, Y, Z) = \frac{1}{6}(T(X, Y, Z) + T(Y, Z, X) + T(Z, X, Y) - T(Y, X, Z) - T(Z, Y, X) - T(X, Z, Y)).$

Example 5.2.12. Let $\{w^1, \dots, w^n\}$ be a cobasis for the real vector space V. Then

$$\operatorname{Alt}(w^{1} \otimes \cdots \otimes w^{n})(e_{1}, \dots, e_{n})$$

$$= \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) w^{1} \otimes \cdots \otimes w^{n}(e_{\sigma(1)}, \dots, e_{\sigma(n)})$$

$$= \frac{1}{n!} \operatorname{sgn}(\operatorname{id}_{n}) w^{1} \otimes \cdots \otimes w^{n}(e_{1}, \dots, e_{n})$$

$$= \frac{1}{n!}.$$

Proposition 5.2.13.

- 1. Alt $(T) \in \bigwedge^k(V)$.
- 2. Alt $(T) = T \iff T \in \bigwedge^k(V)$.
- 3. Alt: $T^k(V) \to \bigwedge^k(V)$ is linear.

5.3 Lecture 18

Lemma 5.3.1. Let $\{w^1, \ldots, w^n\}$ be a cobasis for the real vector space V. Let $k \leq n$. Then

$$A := \{ \operatorname{Alt}(w^{i_1} \otimes \cdots \otimes w^{i_k}) : 1 \le i_1 < \cdots < i_k \le n \}$$

is a basis for $\bigwedge^k(V)$.

Proof. It's clear from our previous proposition, that A spans $\bigwedge^k(V)$. It remains to show that A is linearly independent.

Exercise 5.3.2.

- 1. If (i_1, \ldots, i_k) is not pairwise distinct, then $Alt(w^{i_1} \otimes \cdots \otimes w^{i_k}) = 0$.
- 2. $\operatorname{Alt}(w^{i_1} \otimes \cdots \otimes w^{i_j} \otimes w^{i_{j+1}} \otimes \cdots \otimes w^{i_k}) = -\operatorname{Alt}(w^{i_1} \otimes \cdots \otimes w^{i_{j+1}} \otimes w^{i_j} \otimes \cdots \otimes w^{i_k}).$

Therefore, span $(A) = \text{span}\{\text{Alt}(w^{i_1} \otimes \cdots \otimes w^{i_k}) : 1 \leq i_1 \leq \cdots \leq i_k \leq n\}.$

Exercise 5.3.3. Show that this implies that A is linearly independent.

Corollary 5.3.4. If $\dim(V) = n$, then $\dim \bigwedge^k(V) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Definition 5.3.5. Define the wedge product as the map

$$\wedge: \bigwedge^k(V) \times \bigwedge^l(V) \to \bigwedge^{k+l}(V) \qquad (w,q) \mapsto w \wedge q \coloneqq \frac{(k+l)!}{k!l!} \operatorname{Alt}(w \otimes q).$$

This is like the tensor product. The exterior algebra A^* is the algebra of alternating tensors under the wedge product.

Corollary 5.3.6. The set $\{w^{i_1} \wedge \cdots \wedge w^{i_k} : 1 \leq i_1 < \cdots < i_k \leq n\}$ is a basis for $\bigwedge^k(V)$.

Proof. For each (i_1, \ldots, i_k) , one can show that $w^{i_1} \wedge \cdots \wedge w^{i_k}$ and $\mathrm{Alt}(w^{i_1} \otimes \cdots \otimes w^{i_k})$ differ by a real factor.

Remark 5.3.7. Let $B := \{e_1, \dots, e_n\}$ be the standard basis for V. Note that $\det_B \in \bigwedge^n(V)$ by Proposition 5.2.13. But $\bigwedge^n(V) = 1$, so that $\det_B = c(w^1 \wedge \dots \wedge w^n)$. But evaluating both sides at (e_1, \dots, e_n) gives 1 = c(1) = c. Thus,

$$\det_B = w^1 \wedge \dots \wedge w^n.$$

Proposition 5.3.8. Suppose that ω , ω , η , and η' are exterior forms. The following are properties of the wedge product.

1. (Bilinearity) If $a, a' \in \mathbb{R}$, then

$$(a\omega + a'\omega') \wedge \eta = a(\omega \wedge \eta) + a'(\omega' \wedge \eta)$$

$$\eta \wedge (a\omega + a'\omega') = a(\eta \wedge \omega) + a'(\eta \wedge \omega').$$

2. (Associativity)

$$(\eta \wedge \omega) \wedge \omega' = \eta \wedge (\omega \wedge \omega').$$

3. (Anticommutativity) If $\omega \in \bigwedge^k(V)$ and $\eta \in \bigwedge^l(V)$, then

$$\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega.$$

Corollary 5.3.9. If ω is a 1-form, then $\omega \wedge \omega = 0$.

4. If
$$\omega^1, \ldots, \omega^k \in \bigwedge^1(V)$$
, then

$$\omega^1 \wedge \cdots \wedge \omega^k(v_1, \ldots, v_k) = \det(\omega^j(v_i)).$$

Definition 5.3.10. Let M^n be a smooth manifold. Define the alternating bundle of rank k as

$$\bigwedge^{k}(M) = \coprod_{p \in M} \bigwedge^{k}(T_{p}M).$$

A smooth section of $\bigwedge^k(M)$ is called a differential k-form.

Remark 5.3.11. In local coordinates we have a basis $\{\frac{\partial}{\partial x^i}|_p\}_{1\leq i\leq n}$ for T_pM and a corresponding dual basis $\{dx^i\}$. Then for any $w\in \bigwedge^k(M)$, we can write

$$w = \sum_{1 \le i_1 < \dots < i_k \le n} w_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

locally at p. Let $I := \{i_1 < \cdots < i_k\}$. Since

$$dx^{i_1} \wedge \dots \wedge dx^{i_l} \left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}} \right) = \delta_J^I$$

where $\delta_J^I = 1$ if and only if I = J as sets, it follows that $w_{i_1,...,i_k} = w(\frac{\partial}{\partial x^{i_1}}, \dots, \frac{\partial}{\partial x^{i_k}})$. We abbreviate this by writing

$$w = w_I dx^I,$$

where we tacitly sum over the I.

Remark 5.3.12. Write $w=w_Idx^I$ and $w=\tilde{w}_Jd\tilde{x}^J$ locally where $x,\tilde{x}:U\to\mathbb{R}^m$ are charts. A direct computation shows that

$$\tilde{w}_J = w(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}) = \sum_I \det(k \times k \text{ minor of } \frac{\partial x}{\partial \tilde{x}} \text{ relative to } i_1, \dots, i_k \text{ and } j_1, \dots, j_k).$$

5.4 Lecture 19

Definition 5.4.1. Let $F: M \to N$ be smooth and $\omega \in \bigwedge^k(N)$. Define the pullback $F^*\omega$ of ω by F as the differential k-form on M given by

$$F^*\omega|_p(v_1,\ldots,v_k)=\omega_{F(p)}(dF_p(v_1),\ldots,dF_p(v_k)),$$

Remark 5.4.2. The pullback $F: \Omega^k(N) \to \Omega^k(M)$ is a linear map over \mathbb{R} .

Proposition 5.4.3 (Naturality of the pullback). $F^*(\omega \wedge \eta) = F^*(\omega) \wedge F^*(\eta)$.

Lemma 5.4.4. In any local coordinates, $F^*(\sum_I \omega_I dy^{i_1} \wedge \cdots \wedge dy^{i_k}) = \sum_I (\omega_I \circ F) d(y^{i_1} \circ F) \wedge \cdots \wedge d(y^{i_k} \circ F)$. Proof. ??

Example 5.4.5. Consider the transformation to polar coordinates $\mathbb{R}^2 \to \mathbb{R}^2$ given by $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$. This is the identity map with respect to different atlases on \mathbb{R}^2 . Our previous lemma together with computational properties of \wedge gives

$$\begin{aligned} dx \wedge dy \\ &= d(r\cos\theta) \wedge d(r\sin\theta) \\ &= (\cos\theta dr - r\sin\theta d\theta) \wedge (\sin\theta dr + r\cos\theta d\theta) \\ &= (\cos\theta dr - r\sin\theta d\theta) \wedge \sin\theta dr + (\cos\theta dr - r\sin\theta d\theta) \wedge r\cos\theta d\theta \\ &= (\cos\theta dr \wedge \sin\theta dr) - (r\sin\theta d\theta \wedge \sin\theta dr) + (\cos\theta dr \wedge r\cos\theta d\theta) - (r\sin\theta d\theta \wedge r\cos\theta d\theta) \\ &= -(r\sin\theta d\theta \wedge \sin\theta dr) + (\cos\theta dr \wedge r\cos\theta d\theta) \\ &= r\sin^2\theta (dr \wedge d\theta) + r\cos^2\theta (dr \wedge d\theta) \\ &= rdr \wedge d\theta. \end{aligned}$$

5.5 Lecture 20

Definition 5.5.1. Let $\Omega^k(M)$ and $A^k(M)$ denote the vector space of differential k-forms on the manifold M. Let $\omega \in A^k(M)$ and write $\omega_I dx^I$ in local coordinates. Define the exterior derivative of ω as

$$d\omega = d\omega_I \wedge dx^I.$$

Note that $d\omega = \frac{\partial}{\partial x^j}\omega_I dx^j \wedge dx^I$. We call the operation $d: A^k(M) \to A^{k+1}(M)$ exterior differentiation.

Remark 5.5.2. If we view $\Omega^k : \mathbf{Diff}^{\mathrm{op}} \to \mathbf{Vec}_{\mathbb{R}}$ as the presheaf sending each smooth map f to the pullback f^* , then the exterior derivative becomes a natural transformation $\Omega^k \Rightarrow \Omega^{k+1}$.

Definition 5.5.3. Let $\omega \in A^k(M)$.

- 1. We say that ω is closed if $d\omega = 0$.
- 2. We say that ω is exact if $\omega = d\eta$ for some $\eta \in A^{k-1}(M)$.

Lemma 5.5.4. Suppose $M = \mathbb{R}^n$.

- 1. d is linear over \mathbb{R} .
- 2. $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$.
- 3. $d \circ d \equiv 0$.
- 4. $d(F^*\omega) = F^*(d\omega)$.

Proof. The first statement is obvious, and the last is an easy computation. Now, write $\omega = udx^I$ and $\eta = vdx^J$. By linearity, it suffices to compute $d(udx^I \wedge vdx^J)$ in order to verify the second statement.

$$d(\omega \wedge \eta) = d(udx^{I} \wedge vdx^{J})$$

$$= d(uvdx^{I} \wedge dx^{J})$$

$$= (vdu + udv) \wedge dx^{I} \wedge dx^{J}$$

$$= (du \wedge dx^{I}) \wedge (vdx^{J}) \wedge (dv \wedge udx^{I}) \wedge dx^{J}$$

$$= (du \wedge dx^{I}) \wedge (vdx^{J}) \wedge (-1)^{k} (udx^{I}) \wedge (dv \wedge dx^{J})$$

$$= d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{k} \omega \wedge d\eta.$$

To prove the third statement, first observe that if k=1 and we write $\omega = \omega_i dx^j$, then

$$d\omega = \sum_{i,j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j = \sum_{i < j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j + \sum_{i > j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j = \sum_{i < j} (\frac{\partial \omega_j}{\partial x^i} - \frac{\partial \omega_i}{\partial x^j}) dx^i \wedge dx^j.$$

This together with Clairaut implies that

$$d(du) = \frac{\partial^2 u}{\partial x^i \partial x^j} dx^i \wedge dx^j = \sum_{i < j} \left(\frac{\partial^2 u}{\partial x^i \partial x^j} - \frac{\partial^2 u}{\partial x^j \partial x^i} \right) dx^i \wedge dx^j = 0.$$

Drop the assumption that k=1. Then expanding $d(d\omega)$ gives a sum of two summations of wedge products. One of which contains the term $d(d\omega_J)$, and the other contains the term $d(dx^{j_i})$. These both equal zero, hence the entire expression $d(d\omega)$ vanishes.

Corollary 5.5.5. The exterior derivative is well-defined.

Proof. Let (U, ϕ) be a chart for M. Notice that

$$d\omega = \phi^* d(\phi^{-1}{}^*\omega).$$

Let (V, ψ) be another chart. Then

$$(\phi \circ \psi^{-1})^* d(\phi^{-1}{}^*\omega) = d((\phi \circ \psi^{-1})^* \phi^{-1}{}^*\omega).$$

Since $(\phi \circ \psi^{-1})^* = \psi^{-1}^* \circ \phi^*$ and $F^* \circ F^{-1}^* = id$ for any diffeomorphism F, it follows that

$$\psi^{-1*} \circ \phi^* d(\phi^{-1*} \omega) = d(\psi^{-1*} \omega).$$

 \Longrightarrow

$$\phi^* d(\phi^{-1*} \omega) = \psi^* d(\psi^{-1*} \omega).$$

Corollary 5.5.6. Any exact form is closed.

Remark 5.5.7. It is not the case that any closed form is exact. Let $M := \mathbb{R}^2 \setminus \{0\}$. Define the 1-form $\omega : M \to TM$ by $(x,y) \mapsto \frac{xdy - ydx}{x^2 + y^2}$. On the on hand, a direct computation shows that $d\omega = 0$. On the other hand, recall from calculus that ω is exact on a connected open $\omega \subset M$ if and only if $\int_c \omega = 0$ for any closed curve $c \subset \omega$. But if $\gamma : [0, 2\pi] \to M$ is given by $(\cos \theta, \sin \theta)$, then

$$\int_{\gamma} \omega = \int_{0}^{2\pi} d\theta = 2\pi \neq 0,$$

hence ω is not exact.

Theorem 5.5.8 (Unique differentiation theorem). The exterior derivative is the unique operation $\bar{d}: A^k(M) \to A^{k+1}$ satisfying the three above properties along with the property that $\bar{d}f$ equals the differential of f for any $f \in C^{\infty}(M)$.

Proposition 5.5.9 (Naturality of the exterior derivative). If F is a smooth map, then $d(F^*\omega) = F^*(d\omega)$.

Proof. This follows from the case $M = \mathbb{R}^n$, which is stated in Lemma 5.5.4.

Definition 5.5.10. Let V be a finite-dimensional vector space. For each $v \in V$, define interior multiplication as the linear map $i_v : \bigwedge^k(V) \to \bigwedge^{k-1}(V)$ given by $i_v \omega(w_1, \ldots, w_{k-1}) = \omega(v, w_1, \ldots, w_{k-1})$. Let $v \sqcup \omega \coloneqq i_v \omega$. Then we may extend interior multiplication as follows. For each $X \in \mathscr{X}(M)$ and $\omega \in A^k(M)$, define the (k-1)-form $X \sqcup \omega$ by $p \mapsto X_p \sqcup \omega_p$.

5.6 Lecture 21

Definition 5.6.1. Let V be a finite-dimensional vector space. Suppose that $\{e_1, \ldots, e_n\}$ and $\{f_1, \ldots, f_n\}$ are two bases for V. We say that they are *co-oriented* if the change-of-basis matrix has positive determinant.

Note 5.6.2. This gives us two equivalence classes of bases for V, which we call the *orientations for* V. If $[E_1, \ldots, E_n]$ is a given orientation for V, then we call any basis in it (positively) oriented and any basis not in it negatively oriented.

Definition 5.6.3. An orientation on a manifold M is a continuous choice of orientation on each T_nM .

Note 5.6.4. Equivalently, if $\{(U_{\alpha}, \phi_{\alpha})\}$ denotes the smooth structure on M, we say that M is *orientable* if the Jacobian $D[\phi_{\beta} \circ \phi_{\alpha}^{-1}]$ has positive determinant on $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ for any α, β .

Example 5.6.5. \mathbb{S}^n is orientable for any $n \geq 1$. For each $p \in \mathbb{S}^n$, say that (v_1, \dots, v_n) is positively oriented on $T_p\mathbb{S}^n$ if (p, v_1, \dots, v_n) is positively oriented on \mathbb{R}^{n+1} , i.e. is co-oriented with the standard basis for \mathbb{R}^{n+1} .

Lemma 5.6.6. Let $\pi: E \to M$ be a smooth vector bundle and $V \subset E$ open. If V_p is a convex subspace of E_p for every $p \in M$, then there is some $\sigma \in \Gamma(E)$ such that $\sigma_p \in V_p$ for every p.

Proof. Find a cover of E by local trivializations U_{α} over M along with smooth sections σ_{α} of them. We get some partition of unity ψ_{α} subordinate to (U_{α}) . Define $\sigma: M \to E$ as $\sum_{\alpha} \psi_{\alpha} \sigma_{\alpha}$, so that $\sigma \in \Gamma(E)$. Then σ_{p} belongs to V_{p} by convexity.

Proposition 5.6.7. Suppose that M is an n-manifold. Any nowhere vanishing n-form on M gives rise to a unique orientation on M. Conversely, any orientation on M gives rise to a nowhere vanishing n-form on M.

Proof. First, let $\omega \in A^n(M)$ be nowhere vanishing. For each $p \in M$, we see that ω_p defines an orientation O_M^p on M by saying that $[e_1, \ldots, e_n] \in O_M$ if and only if $\omega_p(e_1, \ldots, e_n) > 0$. It remains to show that if $p \in M$, then we can find some chart U_p around p and some local frame $(E_1, \ldots, E_n)_p$ on U_p such that $\omega_q(E_1|_q, \ldots, E_n|_q) > 0$ for every $q \in U_p$. To see this, pick any U_p and local frame $(E_1, \ldots, E_n)_p$ on U_p . Write $\omega = f dE^1 \wedge \cdots \wedge dE^n$ locally for some smooth $f: U_p \to \mathbb{R}$. Since ω is nowhere vanishing, it follows that

$$\omega(E_1,\ldots,E_n)=f\neq 0.$$

Since f is continuous and M connected, we see that f > 0 or f < 0. We may assume that f > 0 as otherwise we choose $(-E_1, \ldots, -E_n)_p$ instead.

Conversely, given $p \in M$ and an orientation O_M^p on T_pM , say that $w \in \bigwedge^n(T_pM)$ is positively oriented if $w(e_1, \ldots, e_n) > 0$ for any $[e_1, \ldots, e_n] \in O_M^p$. Then the subspace $\bigwedge^n_+(T_pM)$ is open and convex. By our previous lemma, we are done.

Definition 5.6.8. A diffeomorphism $F: M \to N$ between two oriented manifolds is orientation-preserving if the isomorphism dF_p maps positively oriented bases for T_pM to positively oriented bases for $T_{F(p)}N$ for each $p \in M$. It is called orientation-reversing if it maps positively oriented bases to negatively oriented ones.

Note 5.6.9. F is orientation-preserving \iff $\det(dF_p) > 0$ for each $p \in M$ \iff $F^*\omega$ is positively oriented for any positively oriented form ω .

Lemma 5.6.10. The antipodal map $\alpha: \mathbb{S}^n \to \mathbb{S}^n$ is orientation-preserving if and only if n is odd.

Proof. We have the commutative diagram

$$\mathbb{S}^{n} \xrightarrow{\alpha} \mathbb{S}^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}^{n+1} \xrightarrow{\hat{\alpha}} \mathbb{R}^{n+1}$$

where $\hat{\alpha}: \vec{x} \mapsto -\vec{x}$. By inspecting $\det(I_{n+1})$, we see that $\hat{\alpha}$ is orientation-preserving if and only if n is odd. Thus, the restriction α has the same property.

Corollary 5.6.11. \mathbb{RP}^n is not orientable when n is even.

Proof. Suppose, for contradiction, that \mathbb{RP}^n admits some orientation. Apply Proposition 5.5.9 to obtain a nowhere vanishing n-form ω on \mathbb{RP}^n . If $\pi: \mathbb{S}^n \to \mathbb{RP}^n$ denotes the natural projection, then we also obtain the nowhere vanishing n-form $\pi^*\omega$ on \mathbb{S}^n . Applying the same proposition shows that this determines the usual orientation on \mathbb{S}^n . Note that $\pi \circ \alpha = \pi$, so that $\alpha^*\pi^*\mathbb{S}^n = \pi^*\mathbb{S}^n$. But this implies that α preserves the orientation of \mathbb{S}^n , contrary of our previous lemma.

Proposition 5.6.12. \mathbb{RP}^n is orientable only if n is even.

Definition 5.6.13. Let $\mathbb{H}^n := \{(x^1, \dots, x^n) \in \mathbb{R}^n : x^n \geq 0\}$. An *n*-dimensional manifold with boundary M is a second-countable Hausdorff space that is locally homeomorphic to either an open Euclidean ball or an open subset in \mathbb{H}^n . Any point $p \in M$ is called an *interior point* if it belongs to a chart homeomorphic to an open ball. It is called a *boundary point* if it belongs to a boundary chart that maps p into $\partial \mathbb{H}^n$.

Note 5.6.14. Every point in M is either an interior or a boundary point, but not both.

Proposition 5.6.15. The set of boundary points ∂M is an (n-1)-dimensional embedded submanifold of M.

Remark 5.6.16. Moreover, ∂M inherits an orientation from M when M is oriented. This is called the *induced* or *Stokes orientation*. Indeed, we may construct a smooth outward-pointing vector field N along ∂M , which is nowhere tangent to ∂M . Therefore, if ω denotes the orientation form for M, then the form $i_{\partial M}^*(N \perp \omega)$ is an orientation form form ∂M .

Example 5.6.17. \mathbb{S}^n is orientable as the boundary of the closed unit ball.

6 Integration

6.1 Lecture 22

Note 6.1.1. Our treatment of integration will follow Spivak rather than Lee.

Definition 6.1.2. A singular k-cell on M^n is a smooth map $\sigma:[0,1]^k\to M$.

Remark 6.1.3. Note that 0-cells are precisely points in M and 1-cells are precisely smooth curves in M.

Definition 6.1.4. Let $A_0^k(\mathbb{R}^k)$ denote the space of k-forms with compact support. Let $\omega \in A_0^k(\mathbb{R}^k)$ and write $\omega = f dx^1 \wedge \cdots \wedge dx^k$. Define

$$\int_{\mathbb{R}^k} \omega = \int_{\mathbb{R}^k} f(x^1, \dots, x^k) dx^1 \cdots dx^k.$$

Exercise 6.1.5. Given another coordinate representation $\omega = gy^1 \wedge \cdots \wedge y^k$ with $\det(\frac{\partial x}{\partial y}) > 0$, we have that $\int_{\mathbb{R}^k} f(x^1, \dots, x^k) dx^1 \cdots dx^k = \int_{\mathbb{R}^k} g(x^1, \dots, x^k) dy^1 \cdots dy^k$. Thus, our last definition makes sense.

Definition 6.1.6. Let $\omega \in A^k(M)$ and σ be a singular k-cell on M. Define

$$\int_{\sigma} \omega = \int_{[0,1]^k} \sigma^* \omega.$$

Proposition 6.1.7. Let $p:[0,1]^k \to [0,1]^k$ be a diffeomorphism. If p is orientation-preserving, then $\int_{\sigma} \omega = \int_{\sigma \circ p} \omega$. If p is orientation-reversing, then $\int_{\sigma} \omega = -\int_{\sigma \circ p} \omega$.

Definition 6.1.8. A singular k-chain on M is a formal finite \mathbb{R} -combination $\sigma = \sum_{i=1}^{N} a_i \sigma_i$ of singular k-cells on M. Define

$$\int_{\sigma} \omega = \sum_{i=1}^{N} a_i \int_{\sigma_i} \omega.$$

Definition 6.1.9. Let σ be a singular k-cell on M. Let $i = 1, \ldots, 2k$ and $\alpha = 0, 1$. Define the (i, α) -face of σ as the smooth map $\sigma_{(i,\alpha)}$ given by

$$\sigma_{(i,\alpha)}(x^1,\ldots,x^k) = \sigma(x^1,\ldots,x^{i-1},\alpha,x^i,\ldots,x^k).$$

Moreover, define the boundary of σ as the (k-1)-chain

$$\partial \sigma = \sum_{i=1}^{k} (-1)^{i+1} (\sigma_{(i,1)} - \sigma_{(i,0)}).$$

Definition 6.1.10. If $\sigma := \sum_{i=1}^{N} a_i \sigma_i$ is a singular k-chain, then define the boundary of σ as the (k-1)-chain

$$\partial \sigma = \sum_{i=1}^{N} a_i \partial \sigma_i.$$

Note that $\int_{\partial \sigma} \omega = \sum_{i=1}^{N} a_i \int_{\partial \sigma_i} \omega$.

Definition 6.1.11. A singular k-chain σ is a closed chain if $\partial \sigma = 0$.

Exercise 6.1.12. If σ is any singular k-chain, then $\partial \sigma$ is closed.

Theorem 6.1.13 (Stokes' theorem for chains). Let σ be a k-chain and $\omega \in A^{k-1}(M)$. Then $\int_{\sigma} d\omega = \int_{\partial \sigma} \omega$.

Proof. For now, assume that $M = \mathbb{R}^k$ and $\sigma = I^k$. As the smooth structure on \mathbb{R}^k is global, we may write $\omega = f dx^1 \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^k$ for some distinguished $1 \leq i \leq k$ and some smooth $f : \mathbb{R}^k \to \mathbb{R}$. We compute

$$d\omega = df \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= \left(\sum_{j=1}^{k} \frac{\partial f}{\partial x^{j}} dx^{j}\right) \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= (-1)^{i-1} \frac{\partial f}{\partial x^{i}} dx^{1} \wedge \dots \wedge dx^{k}.$$

Now, apply Fubini and the fundamental theorem of calculus (FTC) to obtain

$$\begin{split} &\int_{\sigma} d\omega = (-1)^{i-1} \int_{[0,1]^k} \frac{\partial f}{\partial x^i} dx^1 \wedge \dots \wedge dx^k \\ &= (-1)^{i-1} \int_0^1 \dots \int_0^1 \Big(\int_0^1 \frac{\partial f}{\partial x^i} dx^i \Big) dx^1 \dots \widehat{dx^i} \dots dx^k \\ &= (-1)^{i-1} \int_0^1 \dots \int_0^1 (f(x^1,\dots,\underbrace{1}_{i\text{-th position}},\dots,x^k) - f(x^1,\dots,\underbrace{0}_{i\text{-th position}},\dots,x^k)) dx^1 \dots \widehat{dx^i} \dots dx^k \\ &= (-1)^{i-1} \Big(\int_{[0,1]^{k-1}} f(x^1,\dots,1,\dots,x^k) dx^1 \dots \widehat{dx^i} \dots dx^k - \int_{[0,1]^{k-1}} f(x^1,\dots,0,\dots,x^k) dx^1 \dots \widehat{dx^i} \dots dx^k \Big) \\ &= (-1)^{i-1} \Big(\int_{\sigma_{(i,1)}} \omega - \int_{\sigma_{(i,0)}} \omega \Big). \end{split}$$

Moreover, we compute

$$\int_{\partial \sigma} \omega = \sum_{j=1}^{k} (-1)^{j-1} \left(\int_{\sigma_{(j,1)}} \omega - \int_{\sigma_{(j,0)}} \omega \right).$$

Since x^j is constant along the (j,α) -face for each $\alpha=0,1,$ it follows that $dx^j=0.$ Therefore,

$$\int_{\partial \sigma} \omega = (-1)^{i-1} \Big(\int_{\sigma_{(i,1)}} \omega - \int_{\sigma_{(i,0)}} \omega \Big) = \int_{\sigma} d\omega.$$

Finally, assume that M is arbitrary and σ is an arbitrary k-cell on M. By the special case just proved, we have that

$$\int_{\sigma} d\omega = \int_{[0,1]^k} \sigma^*(d\omega) = \int_{[0,1]^k} d(\sigma^*\omega) = \int_{\partial[0,1]^k} \sigma^*\omega = \int_{\partial\sigma} \omega.$$

This clearly remains true if σ is a k-chain on M.

Corollary 6.1.14. The FTC occurs precisely when $\sigma = I^1$ and $\omega = f$. This shows that Stokes' theorem for chains is equivalent to the FTC.

6.2 Lecture 23

Lemma 6.2.1. Let M be an oriented manifold. Let $\omega \in A^n(M)$. Let σ_1 and σ_2 be singular n-cells on M that can be extended to diffeomorphisms on (open) neighborhoods of $[0,1]^n$. Suppose that both are orientation-preserving. If $\sup \omega \subset \sigma_1([0,1]^n) \cap \sigma_2([0,1]^n)$, then $\int_{\sigma_1} \omega = \int_{\sigma_2} \omega$.

Proof. Since supp $\omega \subset \sigma_1([0,1]^n) \cap \sigma_2([0,1]^n)$, we may write

$$\int_{\sigma_1} \omega = \int_{\sigma_2 \circ (\sigma_2^{-1} \circ \sigma_1)} \omega \underbrace{=}_{\text{Prop. } 30} \int_{\sigma_2} \omega.$$

Definition 6.2.2. Let $\omega \in A^n(M)$. Let σ be an orientation-preserving singular n-cell on M. If supp $\omega \subset \sigma([0,1]^n)$, then, by our previous lemma, we may define

$$\int_{M} \omega = \int_{\sigma} \omega.$$

In general, there exists an open cover (U_{α}) of M such that each $U_{\alpha} \subset \sigma_{\alpha}([0,1]^n)$ where σ_{α} is some orientation-preserving singular n-cell on M. Find a partition of unity (ϕ_{α}) subordinate to this cover. Note that each $\phi_{\alpha}\omega$ belongs to $A^n(M)$ and is supported in U_{α} . If ω is compactly supported, then supp ω intersects at most finitely many supp ϕ_{α} . In this case, we define

$$\int_{M} \omega = \sum_{\alpha} \int_{M} \phi_{\alpha} \omega$$

as this sum if finite.

Lemma 6.2.3. If $(V_{\beta}, \psi_{\beta})$ be another such partition of unity, then $\sum_{\beta} \int_{M} \psi_{\beta} \omega = \sum_{\alpha} \int_{M} \phi_{\alpha} \omega$. Hence our previous definition makes sense.

Proof.

$$\sum_{\alpha} \int_{M} \phi_{\alpha} \omega = \sum_{\alpha} \int_{M} \phi_{\alpha} \sum_{\beta} \psi_{\beta} \omega$$

$$= \sum_{\alpha} \sum_{\beta} \int_{M} \phi_{\alpha} \psi_{\beta} \omega = \sum_{\beta} \sum_{\alpha} \int_{M} \psi_{\beta} \phi_{\alpha} \omega$$

$$= \sum_{\beta} \int_{M} \psi_{\beta} \sum_{\alpha} \phi_{\alpha} \omega = \sum_{\beta} \int_{M} \psi_{\beta} \omega.$$

Note 6.2.4. If ω is not assumed to be compact, then $\int_M \omega$ may be infinite but is still well-defined.

Theorem 6.2.5 (Stokes). Let M be an oriented compact n-manifold with boundary. If $\omega \in A^{n-1}(M)$, then

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Proof. There are three cases to consider.

<u>Case 1:</u> Suppose that there is some orientation-preserving n-cell σ on M such that supp $\omega \subset \operatorname{Int}(\operatorname{im} \sigma)$ and $\operatorname{im} \sigma \cap \partial M = \emptyset$. By Stokes' theorem for chains, it follows that

$$\int_{M} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = 0 = \int_{\partial M} \omega.$$

<u>Case 2:</u> Suppose that there is some orientation-preserving n-cell σ on M such that supp $\omega \subset \operatorname{im} \sigma$, $\operatorname{im} \sigma \cap \partial M = \sigma_{(n,0)}([0,1]^{n-1})$, and supp $\omega \cap \operatorname{im} \partial \sigma \subset \sigma_{(n,0)}$. By Stokes' theorem for chains, it follows that

$$\int_{M} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = (-1)^{n} \int_{\sigma_{(n,0)}} \omega.$$

Note that if μ is the usual orientation on \mathbb{H}^n , then the induced orientation on the boundary $\partial \mathbb{H}^n$ is equal to $(-1)^n \mu$. Therefore, $\sigma_{(n,0)} : [0,1]^{n-1} \to \partial M$ is orientation-preserving if and only if n is even. In either case, we have that

$$(-1)^n \int_{\sigma_{(n,0)}} \omega = \int_{\partial M} \omega,$$

which completes this case.

<u>Case 3:</u> In general, there exist an open cover (U_{α}) of M and a partition of unity (ϕ_{α}) subordinate to it such that each $\phi_{\alpha}\omega$ is an (n-1)-form of the kind in Case 1 or Case 2. Since $\sum_{\alpha}\phi_{\alpha}$ is constant, we see that $0 = d(\sum_{\alpha}\phi_{\alpha}) = \sum_{\alpha}d\phi_{\alpha}$. Hence $\sum_{\alpha}d\phi_{\alpha} \wedge \omega = 0$, so that $\sum_{\alpha}\int_{M}d\phi_{\alpha} \wedge \omega = 0$. From this we compute

$$\begin{split} \int_{M} d\omega &= \int_{M} \sum_{\alpha} \phi_{\alpha} d\omega \\ &= \sum_{\alpha} \int_{M} \phi_{\alpha} d\omega \\ &= \sum_{\alpha} \int_{M} d\phi_{\alpha} \wedge \omega + \phi_{\alpha} d\omega \\ &= \sum_{\alpha} \int_{M} d(\phi_{\alpha} \omega) \\ &= \sum_{\alpha} \int_{\partial M} \phi_{\alpha} \omega \\ &= \int_{\partial M} \omega. \end{split}$$

7 De Rham cohomology

7.1 Lecture 24

Definition 7.1.1. Given a manifold M^n and integer $k \geq 1$, define the real vector spaces

$$Z^{k}(M) = \{ \omega \in A^{k}(M) : d\omega = 0 \}$$

$$B^{k}(M) = \{ dn : n \in A^{k-1}(M) \}.$$

Since $B^k(M) \subset Z^k(M)$, we may form the quotient space

$$H^k_{\mathrm{dR}}(M) := Z^k(M)/B^k(M),$$

called the k-th de Rham cohomology group of M.

Remark 7.1.2. This is the same as the singular cohomology group over \mathbb{R} .

Note 7.1.3. $H_{dR}^k(M)$ can be thought of as a quantitative measure of the number of holes in M.

Theorem 7.1.4. If M and N are continuously homotopy equivalent, then $H_{dR}^k \cong H_{dR}^k$ for each $k \geq 1$.

Lemma 7.1.5 (Poincaré). If M is (smoothly) contractible, then $H^k_{dR}(M) = 0$ for each $k \ge 1$.

Proof. Assume that k = 1. For each $t \in [0, 1]$, define $\iota_t : M \to M \times [0, 1]$ by $p \mapsto (p, t)$.

Claim. If ω is any closed 1-form on $M \times [0,1]$, then $\iota_1^*\omega - \iota_0^*\omega$ is exact.

Proof. If $\pi_M: M \times [0,1] \to M$ denotes the projection and (U,x^i) denotes local coordinates on M, then $(\pi_M^{-1}(U),(\bar{x}^i,t))$ is a coordinate chart on $M \times [0,1]$ where $\bar{x}^i := x^i \circ \pi_M$. We thus have that $\omega = w_i d\bar{x}^i + f dt$. For each $\alpha = 0,1$, we see that

$$\iota_{\alpha}^* \omega = \iota_{\alpha}^* (w_i d\bar{x}^i + f dt) = w_i(-, \alpha) dx^i + 0.$$

Moreover,

$$0 = d\omega$$

$$= dw_i \wedge d\bar{x}^i + df \wedge dt$$

$$= (\text{terms not involving } dt) + \frac{\partial w_i}{\partial t} dt \wedge d\bar{x}^i$$

$$+ \frac{\partial f}{\partial \bar{x}^i} d\bar{x}^i \wedge dt.$$

This implies that $\frac{\partial w_i}{\partial t} = \frac{\partial f}{\partial \bar{x}^i}$ for each i. For each $p \in U$, we compute the sum

$$w_i(p,1) - w_i(p,0) = \int_0^1 \frac{\partial w_i}{\partial t}(p,t)dt = \int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt.$$

As a result,

$$\iota_1^*\omega - \iota_0^*\omega = \left(\int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt\right)dx^i.$$

Define $g: U \to \mathbb{R}$ by $\int_0^1 f(p,t)dt$, so that $\frac{\partial g}{\partial x^i} = \int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt$. It follows that $\iota_1^*\omega - \iota_0^*\omega = \frac{\partial g}{\partial x^i}dx^i = dg$.

Since the pullback is coordinate-independent, q is as well.

By assumption, there is some smooth map $H: M \times [0,1] \to M$ such that $H \circ \iota_1 = \mathrm{id}_M$ and $H \circ \iota_0 = e_{p_0}$ where $p_0 \in M$. Let ω be a closed 1-form on M. Then $H^*\omega$ is closed since pullbacks commute with exterior derivatives. Recall that the pullback is a contravariant functor. By our claim, it follows that $\iota_1^*H^*\omega - \iota_0^*H^*\omega = \omega - 0 = \omega$ is closed.

The generalization of this result to any positive integer k proceeds as follows.

We have the decomposition $T_{(p,t)}M \times [0,1] = \ker d\pi|_{(p,t)} \oplus \ker d\pi_M|_{(p,t)}$ where $\pi: M \times [0,1] \to [0,1]$ denotes projection. Then any 1-form ω on $M \times [0,1]$ may be written uniquely as $\omega = \omega_1 + \omega_2$ such that $\omega_i(v_1 + v_2) = \omega(v_i)$ for each i = 1, 2. Hence there is some unique $f: M \times [0,1] \to \mathbb{R}$ such that $\omega_2 = fdt$. In general, one can show that if ω is a k-form on $M \times [0,1]$, then we can write ω uniquely as

$$\omega = \omega_1 + (dt \wedge \eta)$$

where $\omega_1(v_1,\ldots,v_k)=0$ if some $v_i\in\ker d\pi_M|_{(p,t)}$ and η is a (k-1)-form with the analogous property.

Lemma 7.1.6. Define the (k-1)-form $I\omega$ on M by

$$I\omega|_{p}(v_{1},\ldots,v_{k-1}) = \int_{0}^{1} \eta(p,t)(d\iota_{t}|_{(p,t)}(v_{1}),\ldots,d\iota_{t}|_{(p,t)}(v_{k-1}))dt.$$

Then $\iota_1^*\omega - \iota_0^*\omega = d(I\omega) + I(d\omega)$. In particular, $\iota_1^*\omega - \iota_0^*\omega$ is exact whenever $d\omega = 0$.

Proof. For an argument similar to our k=1 case, see Spivak, Theorem 7.17. In particular, $I\omega$ and η correspond to our q and f, respectively.

Corollary 7.1.7. By Remark 5.5.7, $\mathbb{R}^2 \setminus \{0\}$ is not contractible.

7.2 Lecture 25

Corollary 7.2.1. If M is closed (i.e., compact without boundary) and orientable, then M is not contractible.

Proof. There is some positively oriented orientation form ω on M. Then $d\omega=0$, and $\int_M\omega>0$. But if $\omega=d\eta$ for some form η , then $\int_M\omega=\int_{\partial M}\eta=0$, a contradiction. Hence $H^n(M)\neq 0$.

Example 7.2.2. \mathbb{S}^n is not contractible.

Theorem 7.2.3. If M is a (connected) orientable n-manifold, then there is an isomorphism

$$\underbrace{H^n_c(M)}_{compactly\ supported} \stackrel{\cong}{\longrightarrow} \mathbb{R}, \quad [\omega] \mapsto \int_M \omega.$$

Proof. Take for granted that the statement holds when $M = \mathbb{R}^n$. There is some compactly supported orientation form ω on M such that $\int_M \omega \neq 0$ and $\sup \omega \subset \underbrace{U}_{\text{open}} \subset M$. Let ω' be a compactly supported

n-form on M. Find any partition of unity (ϕ_{α}) on M. Then $\omega' = \phi_1 \omega' + \cdots + \phi_k \omega'$, Thus, we may assume that supp $\omega' \subset V$ where $V \approx \mathbb{R}^n$. We want to show that $\omega' = c\omega + d\eta$ for some $c \in \mathbb{R}$ and some $\eta \in A^{n-1}(M)$. Since M is connected, there is some sequence $U = V_1, V_2, \ldots, V_r = V$ of open sets such that $V_i \approx \mathbb{R}^n$ and $V_i \cap V_{i+1} \neq \emptyset$ for each $i = 1, \ldots, r-1$. For each $i = 1, \ldots, r-1$, find forms ω_i on M such $\int_M \omega_i \neq 0$ and supp $\omega_i \subset V_i \cap V_{i+1}$. It follows that

$$\omega_1 = c_1 \omega + d\eta_1$$

$$\omega_2 = c_2 \omega_1 + d\eta_2$$

$$\vdots$$

$$\omega' = c_r \omega_{r-1} + d\eta_r,$$

as desired. \Box

Remark 7.2.4. If M and N are closed orientable n-manifolds and $f: M \to N$ is smooth, then the pullback f^* induces a linear map $f^*: H^n_{\mathrm{dR}}(N) \to H^n_{\mathrm{dR}}(M)$. We thus get a linear map $f^*: \mathbb{R} \to \mathbb{R}$, which shows that there is some real number a such that

$$\int_{M} f^* \omega = a \int_{N} \omega$$

for every $\omega \in H^n_{dR}(N)$. Such a scalar a is called the degree of f.

7.3 Lecture 26

Theorem 7.3.1. Let M and N be closed orientable n-manifolds and $f: M \to N$ be smooth. By Sard's theorem, find some regular value q of f. For each $p \in f^{-1}(q)$, define $\operatorname{sgn}_p f = \begin{cases} 1 & df_p \text{ orientation-preserving} \\ -1 & df_p \text{ orientation-reversing} \end{cases}$. Then

$$\deg f = \sum_{p \in f^{-1}(q)} \operatorname{sgn}_p f$$

where we set $\deg f = 0$ if $f^{-1}(q) = \emptyset$. In particular, $\deg f$ is always an integer.

Proof. Since f has constant rank n and $\{q\}$ is closed, we see that $f^{-1}(q)$ is a compact 0-dimensional submanifold of M and thus must be finite. Write $f^{-1}(q) = \{p_1, \ldots, p_k\}$. Find respective charts U_1, \ldots, U_k which are pairwise disjoint so that each $u_i \in U_i$ is a regular point of f. Find a chart (V, y^i) around q such that the components of $f^{-1}(V)$ are precisely the U_i . Set $\omega = gdy^1 \wedge \cdots \wedge dy^n$ where g is nonnegative and compactly supported in V. This implies that $f^*\omega \subset f^{-1}(V) = U_1 \sqcup \cdots \sqcup U_k$. Therefore,

$$\int_{M} f^* \omega = \sum_{i=1}^{k} \int_{U_i} f^* \omega.$$

Since each $f \upharpoonright_{U_i}: U_i \to V$ is a diffeomorphism, we have that

$$\int_{U_i} f^*\omega = \begin{cases} \int_V \omega & f \upharpoonright_{U_i} \text{ orientation-preserving} \\ -\int_V \omega & f \upharpoonright_{U_i} \text{ orientation-reversing} \end{cases}.$$

As a result,

$$\int_M f^*\omega = \big(\sum_{p \in f^{-1}(q)} \operatorname{sgn}_p f\big) \int_V \omega = \big(\sum_{p \in f^{-1}(q)} \operatorname{sgn}_p f\big) \int_M \omega.$$

Example 7.3.2. Let $A_n : \mathbb{S}^n \to \mathbb{S}^n$ denote the antipodal map. Choose $p_0 \in \mathbb{S}^n$, which is a regular value of A_n . Hence deg $A_n = (-1)^{n-1}$.

Theorem 7.3.3. Suppose that $f, g: M \to N$ are (smoothly) homotopic maps. Then $f^* = g^*$ as linear maps. If M and N are compact orientable n-manifolds, it follows that deg $f = \deg g$.

Proof. By assumption, there exists a smooth map $H: M \times [0,1] \to M$ such that $H \circ \iota_0 = f$ and $H \circ \iota_1 = g$. Let $\omega \in Z^k(N)$. We apply Lemma 7.1.6 (including its notation) to compute

$$g^*\omega - f^*\omega$$

$$= (H \circ \iota_1)^*\omega - (H \circ \iota_0)^*\omega$$

$$= \iota_1^*(H^*\omega) - \iota_0^*(H^*\omega)$$

$$= d(IH^*\omega) + I(dH^*\omega) = d(IH^*\omega).$$

This implies that $f^*([\omega]) = g^*([\omega])$, as required.

Corollary 7.3.4. (Hairy ball theorem) If n is even, then there is no non-vanishing vector field on \mathbb{S}^n .

Proof. The identity $\mathrm{id}_{\mathbb{S}^n}$ has degree 1 and thus is not homotopic to the antipodal map A_n . Suppose, for contradiction, that there is some non-vanishing $X \in \mathscr{X}(\mathbb{S}^n)$. For each $p \in \mathbb{S}^n$, there is a unique great semicircle γ_p traveling from p to A(p) whose tangent vector at p equals cX_p for some $c \in \mathbb{R}$. The smooth map $H(p,t) = \gamma_p(t)$ defines a homotopy between $\mathrm{id}_{\mathbb{S}^n}$ and A_n , a contradiction.

8 Integral curves and flows

8.1 Lecture 27

Definition 8.1.1. Let M be a manifold and $X \in \mathcal{X}(M)$. We say that $\gamma : J \to M$ is an integral curve for X if $\gamma'(t) = X_{\gamma(t)}$ for any $t \in J$.

Example 8.1.2. Set $M = \mathbb{R}^2$, $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$, and $\gamma(t) = (x(t), y(t))$. Then $\gamma'(t) = x'(t) \frac{\partial}{\partial x} + y'(t) \frac{\partial}{\partial y}$. The system $\begin{cases} x(t) = x'(t) \\ y(t) = y'(t) \end{cases}$ determines that $\gamma(t) = e^t(x(0), y(0))$.

Remark 8.1.3. In general, define the vector field $x^i \frac{\partial}{\partial x^i}$ on a chart (U, x^i) for the *n*-manifold M. Then given an integral curve $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$ for X where $\gamma^i = \gamma \circ x^i$, we obtain the system

$$\gamma^{\prime i}(t) = X^i(\gamma^1(t), \dots, \gamma^n(t)).$$

Given that $\gamma(0) = p$, we have an initial value problem, to which we can always find a local solution.

Theorem 8.1.4 (Fundamental theorem for autonomous ODEs). Let $U \subset \mathbb{R}^n$ be open and $X : U \to \mathbb{R}^n$ is a smooth vector field. Consider the initial value problem.

(*)
$$\begin{cases} \gamma'^{i}(t) = X^{i}(\gamma^{1}(t), \dots, \gamma^{n}(t)) \\ \gamma(t_{0}) = (c^{1}, \dots, c^{n}) \end{cases}$$

- 1. (Existence) Let $t_0 \in \mathbb{R}$ and $x_0 \in U$. There exist some interval $J_0 \ni t_0$ and open subset $U_0 \subset U$ such that for each $c \in U_0$, there is some C^1 curve $\gamma : J_0 \to U_0$ that solves (*).
- 2. (Uniqueness) Any two differentiable solutions to (*) agree on the common domain.
- 3. (Smoothness) Let J_0 and U_0 be as before. Define $\theta: J_0 \times U_0 \to U$ by $(t, x) \mapsto \gamma_x(t)$ where $\gamma_x: J_0 \to U$ uniquely solves (*) with initial condition $\gamma(t_0) = x$. Then θ is smooth.

Example 8.1.5. For any compact manifold M, we may stipulate that the U_0 form a finite cover $\{U_1, \ldots, U_k\}$ of M. Then make J_0 smalles than any of the corresponding intervals J_1, \ldots, J_k . This gives the smooth map $\theta: J \times \mathbb{S}^n \to \mathbb{S}^n$ defined by $(t, p) \mapsto \gamma_p^i(t)$.

Corollary 8.1.6. Let X be a smooth vector field on M and $p \in M$. There is some $\epsilon > 0$ and a smooth curve $\gamma : (-\epsilon, \epsilon) \to M$ such that $\gamma(0) = p$ and γ is an integral curve for X.

Definition 8.1.7. Let $\theta : \mathbb{R} \times M \to M$ be a group action on M. We call θ a global flow on M if it is smooth, i.e., $\theta^p(t) := \theta(t,p) : \mathbb{R} \to M$ is smooth for every $p \in M$. The vector field $p \mapsto (\theta^p)'(0)$ is called the infinitesimal generator of θ .

Question. When is a vector field an infinitesimal generator of a global flow?

Example 8.1.8. Define $X = x^3 \frac{\partial}{\partial x}$ on \mathbb{R}^2 . Then any integral curve $\gamma(t) = (x(t), y(t))$ for X must satisfy

$$\frac{dx}{dt} = x^3. \implies dx = x^3 dt.$$

$$\implies -\frac{1}{2x^2} = t + c.$$

$$\implies x(t) = \frac{1}{\sqrt{c - 2t}},$$

which is not smooth on \mathbb{R} . Hence X does not generate global flow.

Lemma 8.1.9 (Escape lemma). Let $X \in \mathcal{X}(M)$ and γ be an integral curve for X. If the domain of γ does not equal \mathbb{R} , then im γ is not contained in any compact set.

Remark 8.1.10. If M is compact, then every smooth vector field on M generates a global flow.

Theorem 8.1.11 (Fundamental theorem on flows). Let M be a manifold and $X \in \mathcal{X}(M)$. There exist some unique maximal flow domain $D \subset \mathbb{R} \times M$ and unique flow $\phi : D \times \mathbb{R} \to M$ such that X generates ϕ . We call ϕ the flow of X.

Corollary 8.1.12. If M is a closed manifold, then $D = \mathbb{R} \times M$.

8.2 Lecture 28

Definition 8.2.1. Let M be a manifold without boundary. Let $V \in \mathcal{X}(M)$. Let θ denote the flow of V. For any $W \in \mathcal{X}(M)$. Define the rough vector field

$$(\mathcal{L}_V W)_p = \lim_{t \to 0} \frac{d(\theta_{-t})_{\theta_t(p)}(W_{\theta_t(p)}) - W_p}{t}.$$

This is called the $Lie\ derivative\ of\ W\ with\ respect\ to\ V$.

Note 8.2.2. If $p \in M$, then $(\mathcal{L}_V W)_p$ exists and $\mathcal{L}_V W \in \mathcal{X}(M)$.

Theorem 8.2.3. If $V, W \in \mathcal{X}(M)$, then $\mathcal{L}_V W = [V, W]$.

Proof. Define $\mathcal{R}(M)$ as the set of points $p \in M$ such that $V_p \neq 0$. Note that $\operatorname{cl}(\mathcal{R}(M)) = \operatorname{supp} V$. Let $p \in M$. We consider three cases.

1. Suppose $p \in \mathcal{R}(M)$. Then it's a fact that we can find smooth coordinates (U, u^i) near p such that $V = \frac{\partial}{\partial u^1}$. In these coordinates we thus have that $\theta_t(u) = (u^1 + t, u^2, \dots, u^n)$. The Jacobian of θ_{-t} at each t equals the identity. If $u \in U$, it follows that

$$d(\theta_{-t})_{\theta_t(u)}(W_{\theta_{t(u)}})$$

$$= d(\theta_{-t})_{\theta_t(x)} (W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} |_{\theta_t(u)})$$

$$= W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} |_{u}.$$

From this we compute

$$(\mathcal{L}_V W)_p = \frac{d}{dt}|_{t=0} W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j}|_u$$
$$= \frac{\partial}{\partial u^1} W^j(u^1, u^2, \dots, u^n) \frac{\partial}{\partial u^j}|_u$$
$$= [V, W]_u.$$

- 2. Suppose that $p \in \operatorname{supp} V \setminus \mathcal{R}(M)$. Since $\operatorname{supp} V$ is dense in M and TM is Hausdorff, it follows that $(\mathcal{L}_V W)_p = [V, W]_p$.
- 3. If $p \in M \setminus \sup V$, then V vanishes on some neighborhood H of p. This implies that $\theta_t = \mathrm{id}_H$, so that $d(\theta_{-t})_{\theta_t(p)}(W_{\theta_{t(p)}}) = W_p$. Hence $(\mathcal{L}_V W)_p = 0 = [V, W]_p$.

Definition 8.2.4. Let M be an n-manifold. A smooth local frame $(X_1, \ldots X_n)$ is called a *commuting* or holonomic frame if $[X_i, X_j] = 0$ for any $1 \le i, j \le n$.

Theorem 8.2.5. Let (X_1, \ldots, X_k) be a linearly independent k-tuple of smooth commuting vector fields defined on an open set $W \subset M$. For any $p \in W$, there is some chart (U, x^i) around p such that

$$X_i = \frac{\partial}{\partial x^i}$$

holds locally for each i = 1, ..., k.

Proof. This is messy. See Lee, Theorem 9.46.

9 Distributions

Definition 9.0.1. Let M be a manifold. A k-distribution on M is a rank-k smooth subbundle of TM.

Note 9.0.2. A 1-distribution is precisely a vector field.

Definition 9.0.3. Let $N \subset M$ be a nonempty submanifold and D be a distribution on M. Write $D = \bigcup_{p \in M} D_p$ as a family of subspaces. Then N is called an *integral manifold of* D if $D_p = T_p N$ for each $p \in N$. Moreover, we say that D is *integrable* if each $p \in M$ is contained in an integrable manifold of D.

Definition 9.0.4. We say that a distribution D is *involutive* if $[X,Y] \in D$ whenever $X,Y \in D$.

Proposition 9.0.5. If D is integrable, then it is involutive.

Theorem 9.0.6 (Frobenius). If D is involutive, then it is integrable.