Sequenzprotokoll

<11	0>	Univ	ersi	tät	Müns	ter									
<12			Dyslokationsmoleküle												
		•													
<13	0>	P057	2057744												
<16	0>	13													
<17	0>	PatentIn version 3.1													
<21 <21 <21 <21	1> 2>	1 497 PRT künstliche Sequenz													
<22	3>	Amin	osäu	rese	quen	z vo	n GF	P-M&	M						
<40	0>	1													
Met 1	Val	Ser	Lys	Gly 5	Glu	Glu	Leu	Phe	Thr 10	Gly	Val	Val	Pro	Ile 15	Leu
Val	Glu	Leu	Asp 20	Gly	Asp	Val	Asn	Gly 25	His	Lys	Phe	Ser	Val 30	Ser	Gly
Glu	Gly	Glu 35	Gly	Asp	Ala	Thr	Tyr 40	Gly	Lys	Leu	Thr	Leu 45	Lys	Phe	Ile
Cys	Thr 50	Thr	Gly	Lys	Leu	Pro 55	Val	Pro	Trp	Pro	60	Leu	Val	Thr	Thr
Leu 65	Thr	Tyr	Gly	Val	Gln 70	Cys	Phe	Ser	Arg	Tyr 75	Pro	Asp	His	Met	Lys 80
Gln	His	Asp	Phe	Phe 85	Lys	Ser	Ala	Met	Pro 90	Glu	Gly	Tyr	Val	Gln 95	Glu
Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105	Asn	Tyr	Lýs	Thr	Arg 110	Ala	Glu
Val	Lys	Phe 115	Glu	Gly	Asp	Thr	Leu 120	Val	Asn	Arg	Ile	Glu 125	Leu	Lys	Gly
Ile	Asp 130	Phe	Lys	Glu	Asp	Gly 135	Asn	Ile	Leu	Gly	His 140	Lys	Leu	Glu	Tyr
Asn 145	Tyr	Asn	Ser	His	Asn 150	Val	Tyr	Ile	Met	Ala 155	Asp	Lys	Gln	Lys	Asn 160

- Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175
- Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 185 190
- Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205
- Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220
- Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Gly 225 230 235 240
- Thr Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln 245 250 255
- His Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp
 260 265 270
- Thr Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly
 275 280 285
- Pro Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly 290 295 300
- Lys Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Fro Glu Val Lys 305 310 315 320
- Lys Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His 325 330 335
- Lys Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly 340 345 350
- Arg Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg 355 360 365
- Lys Val Glu Glu Glu Gly Tyr Gly Ser Ala Thr Ser His Thr Met Ser 370 375 380
- Thr Ala Glu Val Leu Leu Asn Met Glu Ser Pro Ser Asp Ile Leu Asp 385 390 395 400
- Glu Lys Gln Ile Phe Ser Thr Ser Glu Met Leu Pro Asp Ser Asp Pro

Ala Pro Ala Val Thr Leu Pro Asn Tyr Leu Phe Pro Ala Ser Glu Pro

Asp Ala Leu Asn Arg Ala Gly Asp Thr Ser Asp Gln Glu Gly His Ser 435 440 445

Leu Glu Glu Lys Ala Ser Arg Glu Glu Ser Ala Lys Lys Thr Gly Lys 450 455 460

Ser Lys Lys Arg Ile Arg Lys Thr Lys Gly Asn Arg Ser Thr Ser Pro 465 470 475 480

Val Thr Asp Pro Ser Ile Pro Ile Arg Lys Lys Ser Lys Asp Gly Lys 485 490 495

Gly

<210> 2

<211> 1491

<212> DNA

<213> künstliche Sequenz

<223> Nukleotidsequenz von GFP-M&M

<400> atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagetga ceetgaagtt catetgeace aceggcaage tgeeegtgee etggeecace 180 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cagcacgact tettcaagte egecatgeee gaaggetacg tecaggageg caccatette 300 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagetggagt acaactacaa cagecacaac gtetatatea tggeegacaa geagaagaac 480 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 gaccactace ageagaacae ecceategge gaeggeeeeg tgetgetgee egacaaceae 600 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagggt 720 accgtcattg ccaattatct gcccaaccgg acagatgtgc agtgccaaca ccggtggcag 780 aaagtgctga accetgaact catcaaaggt ccetggacca aagaagaaga tcagagagte 840 atagagettg tecagaaata tggteegaag egttggtetg ttattgeeaa geaettaaaa 900

WO 2004/037278

gggagaa	ttg gaaagcagtg	tcgggagagg	tggcacaacc	atttgaatcc	agaagttaag	960
aaaacct	cct ggacagaaga	ggaggacaga	atcatttacc	aggcacacaa	gcgtctgggg	1020
aacagat	ggg cagagatcgc	aaagctgctg	cccggacgga	ctgataatgc	tatcaagaac	1080
cactgga	att ccaccatgcg	tcgcaaggtg	gaacaggaag	gctacggatc	cgccacctcg	1140
cacacca	tgt caaccgcgga	agtcttactc	aatatggagt	ctcccagcga	tatcctggat	1200
gagaago	aga tcttcagtac	ctccgaaatg	cttccagact	cggaccctgc	accagctgtc	1260
actctgo	cca actacctgtt	tcctgcctct	gagcccgatg	ccctgaacag	ggcgggtgac	1320
actagtg	acc aggagggca	ttctctggag	gagaaggcct	ccagagagga	aagtgccaag	1380
aagacto	gga aatcaaagaa	gagaatccgg	aagaccaagg	gcaaccgaag	tacctcacct	1440
gtcactg	acc ccagcatece	cattaggaag	aaatcaaagg	atggcaaagg	С	1491
<210> <211> <212> <213> <223> <400> ataggat <210> <211> <212> <213> <223>	3 30 DNA künstliche Sequ Oligonukleotid 3 cccg ccacctcgca 4 30 DNA künstliche Sequ Oligonukleotid	orimer MEF-1 caccatgtca caccatgtca	·			30
<400> cagaatt	4 cgc ctttgccatc	ctttgatttc				30
<210><211><211><212><213>	5 30 DNA kūnstliche Seq	uenz				
<223>	Oligonukleotid	primer myb-	KpnI for			
<400> cagagag	5 ggta ccgtcattgc	caattatctg				30
<210><211><211><212><213>	6 30 DNA				·	

<223> Oligonukleotidprimer myb-BamHI rev

<400> 6 cagagaggat ccgtagcctt cctgttccac	30
<210> 7 <211> 21 <212> DNA <213> künstliche Sequenz	
<223> Oligonukleotidprimer p14 PF for	
<400> 7 agtggctacg taagagtgat cgc	23
<210> 8 <211> 18 <212> DNA <213> künstliche Sequenz	
<223> Oligonukleotidprimer p14 ^{ARP} rev	
<400> 8 cttacagatc agacgtcaag ccc	2
<210> 9 <211> 22 <212> DNA <213> künstliche Sequenz	
<223> Oligonukleotidprimer c-kit for	
<400> 9 actgttgttg ctttccgttc aa	22
<210> 10 <211> 20 <212> DNA <213> künstliche Sequenz	
<223> Oligonukleotidprimer c-kit rev	
<400> 10 ttaagcccga tttcactgcc	20
<210> 11 <211> 4151 <212> DNA <213> künstliche Sequenz	
<223> cDNA EGFP	
<pre><400> 11 tagttattac tagcgctacc ggactcagat ctcgagctca agcttcgaat tctgcagtc</pre>	eg 60
acggtaccgc gggcccggga tccaccggtc gccaccatgg tgagcaaggg cgaggagct	g 120

180 ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg ccacaagttc 240 agegtgteeg gegagggega gggegatgee acetaeggea agetgaeeet gaagtteate 300 tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct gacctacggc gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt caagtccgcc 360 420 atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc 480 540 atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa ctacaacagc 600 cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa cttcaagatc 660 cgccacaaca tegaggaegg cagegtgeag etegeegaee actaceagea gaacaceeee 720 ateggegacg geocegtget getgecegae aaccaetace tgageaccea gteegecetg 780 agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc 840 gggatcactc tcggcatgga cgagctgtac aagtaaagcg gccgcgactc tagatcataa 900 tcagccatac cacatttgta gaggttttac ttgctttaaa aaacctccca cacctcccc tgaacctgaa acataaaatg aatgcaattg ttgttgttaa cttgtttatt gcagcttata 960 atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcactgc 1020 1080 attctagttg tggtttgtcc aaactcatca atgtatctta aggcgtaaat tgtaagcgtt aatattttgt taaaattcgc gttaaatttt tgttaaatca gctcattttt taaccaatag 1140 gccgaaatcg gcaaaatccc ttataaatca aaagaataga ccgagatagg gttgagtgtt 1200 1260 gttccagttt ggaacaagag tccactatta aagaacgtgg actccaacgt caaagggcga 1320 aaaaccgtct atcagggcga tggcccacta cgtgaaccat caccctaatc aagttttttg 1380 gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga agaaagcgaa aggagcgggc 1440 1500 getagggege tggcaagtgt ageggteaeg etgegegtaa ecaceaeae egeegegett 1560 aatgcgccgc tacagggcgc gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga 1620 1680 taaatgcttc aataatattg aaaaaggaag agtcctgagg cggaaagaac cagctgtgga atgtgtgtca gttagggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa 1740 1800 gcatgcatct caattagtca gcaaccaggt gtggaaagtc cccaggctcc ccagcaggca 1860 gaagtatgca aagcatgcat ctcaattagt cagcaaccat agtcccgccc ctaactccgc ccatecegee cetaacteeg eccagtteeg eccattetee geeccatgge tgactaattt 1920 tttttattta tgcagaggcc gaggccgcct cggcctctga gctattccag aagtagtgag 1980

gaggcttttt	tggaggccta	ggcttttgca	aagatcgatc	aagagacagg	atgaggatcg	2040
tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	cggccgcttg	ggtggagagg	2100
ctattcggct	åtgactgggc	acaacagaca	atcggctgct	ctgatgccgc	cgtgttccgg	2160
ctgtcagcgc	aggggcgccc	ggttctttt	gtcaagaccg	acctgtccgg	tgccctgaat	2220
gaactgcaag	acgaggcagc	gcggċtatcg	tggctggcca	cgacgggcgt	tccttgcgca	2280
gctgtgctcg	acgttgtcac	tgaagcggga	agggactggc	tgctattggg	cgaagtgccg	2340
gggcaggatc	tcctgtcatc	tcaccttgct	cctgccgaga	aagtatccat	catggctgat	2400
gcaatgcggc	ggctgcatac	gcttgatccg	gctacctgcc	cattcgacca	ccaagcgaaa	2460
catcgcatcg	agcgagcacg	tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	2520
gacgaagagc	atcaggggct	cgcgccagcc	gaactgttcg	ccaggctcaa	ggcgagcatg	2580
cccgacggcg	aggatctcgt	cgtgacccat	ggcgatgcct	gcttgccgaa	tatcatggtg	2640
gaaaatggcc	gcttttctgg	attcatcgac	tgtggccggc	tgggtgtggc	ggaccgctat	2700
caggacatag	cgttggctac	ccgtgatatt	gctgaagagc	ttggcggcga	atgggctgac	2760
cgcttcctcg	tgctttacgg	tatcgccgct	cccgattcgc	agcgcatcgc	cttctatcgc	2820
cttcttgacg	agttcttctg	agcgggactc	tggggttcga	aatgaccgac	caagcgacgc	2880
ccaacctgcc	atcacgagat	ttcgattcca	ccgccgcctt	ctatgaaagg	ttgggcttcg	2940
gaatcgtttt	ccgggacgcc	ggctggatga	tcctccagcg	cggggatctc	atgctggagt	3000
tcttcgccca	ccctaggggg	aggctaactg	aaacacggaa	ggagacaata	ccggaaggaa	3060
cccgcgctat	gacggcaata	aaaagacaga	ataaaacgca	cggtgttggg	tcgtttgttc	3120
ataaacgcgg	ggttcggtcc	cagggctggc	actctgtcga	taccccaccg	agaccccatt	3180
ggggccaata	cgcccgcgtt	tcttcctttt	ccccacccca	cccccaagt	tcgggtgaag	3240
gcccagggct	cgcagccaac	gtcggggcgg	caggccctgc	catagcctca	ggttactcat	3300
atatacttta	gattgattta	aaacttcatt	tttaatttaa	aaggatctag	gtgaagatcc	3360
tttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	3420
accccgtaga	aaagatcaaa	ggatcttctt	gagáteettt	ttttctgcgc	gtaatctgct	3480
gcttgcaaac	aaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	3540
caactctttt	tccgaaggta	actggcttca	gcagagcgca	gataccaaat	actgtccttc	3600
tagtgtagcc	gtagttaggc	caccacttca	agaactctgt	agcaccgcct	acatacctcg	3660
ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	3720
tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	3780
gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	3840

tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	3900
gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	3960
gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	4020
ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	4080
ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	4140
ccgccatgca	t					4151
	e sapiens					
	A MEF					
<400> 12 atggctatta	ccctacagcc	cagtgacctg	atctttgagt	tcgcaagcaa	cgggatggat	60
gatgatatcc	accagctgga	agacccctct	gtgttcccag	ctgtgatcgt	ggagcaggta	120
ccctaccctg	atttactgca	tctgtactcg	ggactggagt	tggacgacgt	tcacaatggc	180
atcataacag	acgggacctt	gtgcatgacc	caggatcaga	tcctggaagg	cagttttttg	240
ctgacagatg	acaatgaggc	cacctcgcac	accatgtcaa	ccgcggaagt	cttactcaat	300
atggagtctc	ccagcgatat	cctggatgag	aagcagatct	tcagtacctc	cgaaatgctt	360
ccagactcgg	accctgcacc	agctgtcact	ctgcccaact	acctgtttcc	tgcctctgag	420
cccgatgccc	tgaacagggc	gggtgacact	agtgaccagg	aggggcattc	tctggaggag	480
aaggcctcca	gagaggaaag	tgccaagaag	actgggaaat	caaagaagag	aatccggaag	540
accaagggca	accgaagtac	ctcacctgtc	actgacccca	gcatccccat	taggaagaaa	600
tcaaaggatg	gcaaaggcag	caccatctat	ctgtgggagt	tectectgge	tcttctgcaa	660
gacagaaaca	cctgtcccaa	gtacatcaag	tggacccagc	gagagaaagg	catcttcaaa	720
ctggtggact	ccaaagctgt	gtccaagctg	tgggggaagc	agaaaaacaa	gcctgacatg	780
aactatgaga	caatggggcg	ggcactaaga	tactactacc	aaagaggcat	actggccaaa	840
gtggaagggc	agaggctggt	gtaccagttt	aaggagatgc	ccaaggacct	ggtggtcatt	900
gaagatgagg	atgagagcag	cgaagccaca	gcagccccac	ctcaggcctc	cacggcctct	960
gtggcctctg	ccagtaccac	ccggcgaacc	agctccaggg	tctcatccag	atctgccccc	1020
cagggcaagg	gcagctcttc	ttgggagaag	ccaaaaattc	agcatgtcgg	tctccagcca	1080
tctgcgagtc	tggaattggg	accgtcgcta	gacgaggaga	tccccactac	ctccaccatg	1140
ctcgtctctc	cagcagaggg	ccaggtcaag	ctcaccaaag	ctgtgagtgc	atcttcagtg	1200
						1060

cccagcaaca tccacctagg agtggcccc gtggggtcgg gctcggccct gaccctgcag

acgatcccac	tgaccacggt	gctgaccaat	gggcctcctg	ccagtactac	tgctcccact	1320
cagctcgttc	tccagagtgt	tccagcggcc	tctactttca	aggacacctt	cactttgcag	1380
gcctctttcc	ccctgaacgc	cagtttccaa	gacagccagg	tggcagcccc	aggggctcca	1440
ctgattctca	gtggcctccc	ccaacttctg	gctggggcca	accgtccgac	caacccggcg	1500
ccacccacgg	tcacaggggc	tggaccagca	gggcccagct	ctcagccccc	tgggactgtc	1560
attgctgcct	tcatcaggac	ttctggcact	acagcagccc	ctagggtcaa	ggaggggcca	1620
ctgaggtcct	cctcctatgt	tcagggtatg	gtgacggggg	ccccatgga	ggggctgctg	1680
gttcctgaag	agaccctgag	ggagctcctg	agagatcagg	ctcatcttca	gccacttcca	1740
acccaggtgg	tttccagggg	ttcccacaat	ccgagccttc	tgggcaacca	gactttgtct	1800
cctcccagcc	gccccactgt	tgggctgacc	ccagtggctg	aacttgagct	ctcctcaggc	1860
tcagggtccc	tgctgatggc	tgagcctagt	gtgaccacat	ctgggagcct	tctgacaaga .	1920
tccccaccc	cagccccttt	ctccccattc	aaccctactt	ccctcattaa	gatggagccc	1980
catgacatat	aa					1992

<210> 13 <211> 191

<211> 1913 <212> DNA

<213> Mus musculus

<223> cDNA c-myb

<400> 13 60 atggcccgga gaccccgaca cagcatctac agtagcgatg aagatgatga agacattgag 120 atgtgtgacc atgactacga tgggctgctg cccaaatctg gaaagcgtca cttggggaaa actaggtgga caagggaaga ggatgagaag ctgaagaagc tggtggaaca gaacggaaca 180 240 gacgactgga aagtcattgc caattatctg cccaaccgga cagatgtgca gtgccaacac 300 cggtggcaga aagtgctgaa ccctgaactc atcaaaggtc cctggaccaa agaagaagat 360 cagagagtca tagagcttgt ccagaaatat ggtccgaagc gttggtctgt tattgccaag 420 cacttaaaag ggagaattgg aaagcagtgt cgggagaggt ggcacaacca tttgaatcca gaagttaaga aaacctcctg gacagaagag gaggacagaa tcatttacca ggcacacaag 480 540 cgtctgggga acagatgggc agagatcgca aagctgctgc ccggacggac tgataatgct 600 atcaagaacc actggaattc caccatgcgt cgcaaggtgg aacaggaagg ctacctgcag 660 aagccttcca aagccagcca gacgccagtg gccacgagct tccagaagaa caatcatttg 720 atggggtttg ggcatgcctc acctccatct cagetetete caagtggcca gtcctccgte 780 aacagcgaat atccctatta ccacatcgcc gaagcacaaa acatctccag tcacgttccc

tatcctgtcg	cattgcatgt	taatatagtc	aacgtccctc	agccggctgc	ggcagccatc	840
cagagacact	ataacgacga	agaccctgag	aaggaaaagc	gaataaagga	gctggagttg	900
ctcctgatgt	caacagagaa	cgagctgaag	ggacagcagg	cattaccaac	acagaaccac	960
acttgcagct	accccgggtg	gcacagcacc	tccattgtgg	accagaccag	acctcatggg	1020
gatagtgcac	ctgtttcctg	tttgggagaa	caccatgcca	ccccatctct	gcctgcagat	1080
cccggctccc	tacctgaaga	aagtgcctca	ccagcaaggt	gcatgatcgt	ccaccagggc	1140
accattctgg	acaatgttaa	gaacctctta	gaatttgcag	aaacactcca	gtttatagat	1200
tctttcttga	acacttccag	caaccatgaa	aactcgggct	tagatgcacc	taccttaccc	1260
tccactcctc	tcattggtca	caaactgaca	ccatgtcgag	accagactgt	gaaaacccag	1320
aaggaaaatt	ccatctttag	aactccagct	atcaaaaggt	caatcctcga	aageteteet	1380
cgaactccca	caccattcaa	acatgccctt	gcagctcaag	aaattaaata	cggtcccctg	1440
aagatgctac	ctcagacccc	ctcccatgca	gtggaggacc	tacaagatgt	gattaagcgg	1500
gaatcggatg	aatctggaat	tgttgctgag	tttcaagaga	gtggaccacc	gttactgaaa	1560
aaaatcaagc	aggcggtgga	gtcgccaact	gagaaatcgg	gaaacttctt	ctgctcaaac	1620
cactgggcag	agaacagcct	gagcacccaa	ctgttctcgc	aggcgtctcc	tgtggcagat	1680
gccccaaata	ttcttacaag	ctctgtttta	atgacacctg	tatcagaaga	tgaagacaat	1740
gtcctcaaag	cctttaccgt	acctaagaac	aggcccctgg	tgggtccctt	gcagccatgc	1800
agtggtgcct	gggagccagc	atcctgtggg	aagacagagg	accagatgac	ggcctccggt	1860
ccggctcgga	aatacgtgaa	cgcgttctca	gctcgaactc	tggtcatgtg	aga	1913