

Grundlagen elektrischer Maschinen

1. Grundlagen

magnetische Größen		
Durchflutung (magnetische Spannungsquelle)	Θ	[A]
Fluss	Φ	[Vs]
verketteter Fluss	Ψ	[Vs]
mag. Flussdichte	\vec{B}	$\left[\frac{\text{Vs}}{\text{m}^2}\right]$
mag. Feldstärke	$ec{H}$	$\left[\frac{A}{m}\right]$
magnetische Spannung	V_m	[A]
magnetischer Widerstand	R_m	$\left[\frac{A}{V_{c}}\right]$
Streuziffer	σ	[1]
elektrische Größen		
Stromdichte	\vec{s}	$\begin{bmatrix} \underline{\mathbf{A}} \end{bmatrix}$
dielektrische Verschiebung	\vec{D}	$\begin{bmatrix} \frac{1}{As} \end{bmatrix}$
•	E .	$\begin{bmatrix} m^2 \end{bmatrix}$
el. Feldstärke		$\frac{\dot{m}}{\Delta}$
Strombelag	a	[Am]
spezifischer Widerstand	ρ	[Ω m]
mechanische Größen		
Drehmoment	M	[Nm]
Massenträgheitsmoment	J	$\left[\text{kg m}^2 \right]$
Spulenwindungszahl	w_{Sp}	[1]
effektive Windungszahl	w_{eff}	[1]
Luftspalthöhe	δ	[mm]
scheinbarer Luftspalt	δ'	[mm]
effektiver Luftspalt	$\delta^{\prime\prime}$	[mm]
Anzahl der Leiter pro Nut	Z_N	[1]
Zahl der Einzelspulen (Kommutatorsegmente)	Z_K	[1]
ideelle Eisenlänge	l_i	[m]
bewickelbare Nutfläche	A_N	$[m^2]$
magnetisch aktiver Winkel	β_M	[rad]
Drehzahl	n	$\left[\frac{1}{s}\right]$
Rotornutenzahl	N	[1]
Rotornutenzahl pro Pol	Q	[1]
Anzahl paralleler Zweige	a	[1]
Näherungsfaktoren		
Carterfaktor	k_C	[1]
Eisenfüllfaktor	k_{Fe}	[1]
Eisenfaktor (Magnnetisierungsbedarf Eisen)	k_{μ}	[1]
Nutfüllfaktor	k_Q	[1]
Permeabilität $\mu_0 = 4\pi \cdot 10^{-7} \frac{V_S}{Am}$ Permittivität $\varepsilon_0 = 8.854 \cdot 10^{-12} \frac{A_S}{V_{CM}}$		

1.1.1. Allgemeine Maschinenbegriffe - Durchmesser

Achshöhe

Dil	Maße	
	Stator Außend.	D_{A1}
D_{12}	Stator Innend.	D_{A1} D_{I1}
$D_{\delta m}$	Rotor Außend.	D_{A2} D_{I2}
	Rotor Innend.	D_{12}
PA2	Mittl. Luftspaltd.	D
	witti. Luitspaitu.	$D_{\delta m}$
	Luftspalthöhe	δ
V		

1.1.2. Allgemeine Maschinenbegriffe - Abmessungen

Nutzahl	N	[1]
Nutteilung	$ au_N$	[cm
Polpaarzahl	p	[1]
Polteilung	$ au_p$	[cm
Nuthöhe	h_N	[cm
Nutbreite	b_N	[cm
Jochhöhe	h_J	[cm

1.2. Grundlegende Gleichungen

1.2.1. Maxwell

$ rot \vec{H} = \vec{s} + \frac{\partial \vec{D}}{\partial t} rot \vec{H} = \vec{s} (< 10 \text{kHz}) $	$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
$\operatorname{div} \vec{B} = 0$	$\operatorname{div} \vec{D} = \gamma$

1.2.2. Durchflutungs- und Induktionsgesetz

Durchflutungsgesetz	Induktionsgesetz	
$\begin{array}{ccc} \oint_{L_A} \vec{H} \mathrm{d} \vec{l} = \iint_{A_L} \vec{s} \mathrm{d} \vec{A} = \\ \Sigma i = \Theta \end{array}$	$u_{i} = \frac{\partial \Psi(t)}{\partial t} = \frac{\partial}{\partial t} \left(\iint_{A} \vec{B} d\vec{A} \right)$ $\oint_{r} \vec{E} d\vec{l} + u_{i} = 0$	

1.2.3. Kenngrößen

magnetische Größen	elektrische Größen
$\Phi = \iint \vec{B} d\vec{A}$ $V_m = \iint \vec{H} d\vec{l}$	$I = \iint \vec{s} \mathrm{d} \vec{A} \ U = \int \vec{E} \mathrm{d} \vec{l}$
$\Theta = w \cdot I$ $R_m = \frac{V_m}{\Phi} = \frac{l}{\mu \cdot A}$ $\vec{B} = \mu \cdot \vec{H}$ $\Psi = \Phi \cdot w = L \cdot i$	$R = \frac{U}{I} = \rho \frac{l}{A}$ $\vec{D} = \varepsilon \cdot \vec{E}$
$\bigoplus_{\substack{\Phi \\ \text{magnetisch wirksame Fläche} \\ A = k_{\text{Fe}} \cdot A_{\text{geometrisch}}} V$	

1.3. Entstehung des Drehmoments

1.3.1. Lorenzkraft

1.3.2. Drehmoment

1.3.3. Strombelag

$$\vec{F_L} = I \cdot (\vec{l} \times \vec{B})$$

 $M_D = F \cdot r = M_L + M_R + J \frac{\mathrm{d}\omega}{\mathrm{d}t}$

 $m_d(t) = \left(\frac{D}{2}\right)^2 \cdot \int_{-\frac{l_z}{2}}^{\frac{l_z}{2}} \int_0^{2\pi} a(\vartheta,z,t) B_\delta(\vartheta,z,t) \,\mathrm{d}\vartheta \,\mathrm{d}z$

 $a = \int \vec{s} \, d\vec{l} = \frac{\partial \sum i}{\partial l} = \frac{\partial}{\partial l} \left[\iint_A \vec{s} \, d\vec{A} \right] = -\frac{\partial \Theta}{\partial l}$

 $V(\vartheta) = \Theta(\vartheta) = -\frac{D}{2} \int a_{\text{ges}}(\vartheta) \, d\vartheta$

Magnetfeld wegen Nuten inhomogen. Ausgleich durch Carterfaktor k_{C}

 $k_C = k_{C1} \cdot k_{C2}$ $k_{C_i} = \frac{\tau_{N_i}}{\tau_{N_i} - \gamma_i \cdot \delta}$

 $\sigma_{\mathsf{E}} = \frac{\Phi_{\mathsf{E}\sigma}}{\Phi_{\mathsf{E}\mathsf{L}}}$

 $\sigma_{N} = \frac{2 \cdot \Phi_{N\sigma}}{\Phi_{Nh}}$

 $a_m = \frac{b_N}{\tau_N} \cdot A_{\rm N} = \frac{\sum \Theta_N}{\tau_p} \qquad \qquad A_{\rm N} = \frac{Z_N \cdot i}{b_N} = \frac{\Theta_N}{b_N}$ 1.3.4. Felderregerkurve

$$\vec{l}_L = I \cdot (\vec{l} \times \vec{B})$$

1.7.2. Reibungsverluste

 $P_{Cu} = R \cdot I^2$

 Ventilationsverluste (Verwirbelung Kühlmittel Strömungsverluste)

1.7. Verluste

1.7.1. Kupferverluste

 Lagerreibung • Reibung an Kontaktflächen (z.B Schleifringe, Kommutator)

1.7.3. Hystereseverluste

 $P_{\text{FeH}} = m_{\text{Fe}} \cdot v_{15\text{H}} \cdot \frac{f}{50 \,\text{Hz}} \cdot (\frac{B}{1.5 \,\text{T}})^2$

Verlustziffer: $v_{15\mathrm{H}}(f=15\mathrm{Hz},B=1.5\,\mathrm{T})\left[\frac{\mathrm{W}}{\mathrm{k}\sigma}\right]$ (Herstellerangabe)

1.7.4. Wirbelstromverluste

$$P_{\mathsf{FeW}} = m_{\mathsf{Fe}} \cdot v_{15\mathsf{W}} \cdot (\frac{f}{50\,\mathrm{Hz}})^2 \cdot (\frac{B}{1.5\,\mathrm{T}})^2$$

Verlustziffer: $v_{15\mathrm{W}}(f=15\mathrm{Hz},B=1,5~\mathrm{T})\left\lceil\frac{\mathrm{W}}{\mathrm{k}\sigma}\right\rceil$ (Herstellerangabe)

1.7.5. Gesamte Eisenverluste

$$P_{\text{Fe}} = m_{\text{Fe}} \cdot v_{\text{Fe}15} \cdot \frac{f}{50 \, \text{Hz}} \cdot (\frac{B}{1.5 \, \text{T}})^2$$

1.8. Leistung

1.8.1. mechanische Leistung

$$P_m = 2\pi \cdot n \cdot M_i = \omega_m \cdot M_i$$

1.8.2. elektrische Leistung

$$P_{\rm el} = U \cdot I$$

$$\eta = rac{P_{\mathsf{ab}}}{P_{\mathsf{auf}}}$$

$$\delta^{\prime\prime} = k_{\mu} \cdot k_{\mathsf{Abfl}} \cdot \delta^{\prime} \qquad \gamma_{i} = \frac{\left(\frac{b_{N_{i}}}{\delta}\right)^{2}}{\frac{b_{N_{i}}}{\delta}} \qquad k_{\mu} = 1 + \frac{V_{m}\mathsf{Fe}}{\frac{2 \cdot V_{m} \delta^{\prime}}{\delta^{\prime}}} \qquad \eta_{\mathsf{Motor}} = \frac{P_{m}}{P_{\mathsf{el}}}$$

$$\eta_{\mathsf{Generator}} = \frac{Pel}{Pm}$$

1.5. Streuung

1.5.1. Polstreuung

Φ_E: Gesamtfluss durch Polspule Φ_{Fh}: Hauptfluss

1.4. Effektiver Luftspalt

(ungenutet $k_{C_i} = 1$):

 $\delta' = k_C \cdot \delta$

$$\begin{split} & \Phi_{\text{E}\sigma} \text{: Streufluss} \\ & \Phi_{\text{E}} = \Phi_{\text{Eh}} + \Phi_{\text{E}\sigma} = (1 + \sigma_{\text{E}}) \cdot \Phi_{\text{Eh}} \end{split}$$

1.5.2. Nut- und Zahnkopfstreuung

 Φ_{N} : Gesamtfluss der in Nuten gebetteten Spulen Φ_{Nh} : Hauptfluss

 $\Phi_{N\sigma}$: Streufluss (Nut- & Zahnkopfstreuung)

 $\Phi_{N} = \Phi_{Nh} + 2\dot{\Phi}_{N\sigma} = (1 + \sigma_{N}) \cdot \Phi_{Nh}$

1.5.3. Stirnstreuung

Φς: Gesamtfluss Stirnstreuung

Φ_{Sh}: Hauptfluss Stirnstreuung

 $\Phi_{\mathsf{S}\sigma}$: Streufluss Stirnstreuung

 $\begin{array}{l} \text{gesamte Streuziffer: } \sigma_{\text{ges}} = \frac{\Phi_{\sigma,\,\text{ges}}}{\Phi_{\text{Sh}}} \\ \Phi_{\text{S}} = \Phi_{\text{Sh}} + \Phi_{\sigma,\,\text{ges}} = (1 + \sigma_{\text{ges}}) \cdot \Phi_{\text{Sh}} \end{array}$

1.5.4. Induktivitäten

Hauptinduktivität: $L_h = \frac{\Psi_h}{i}$

Gesamte Streuinduktivität: $L_{\sigma} = \frac{\Psi_{\sigma}}{i} = \sigma \cdot L_{h}$

Totale Induktivität: $L_{\rm ges} = \frac{\Psi_{\rm ges}}{i} = (1+\sigma) \cdot L_h$

1.6. Spulen

Spulenwindungszahl $u = \frac{Z_K^2}{N}$ Nebeneinanderliegende Spulenseiten pro Nut Wellenwicklung Schleifenwicklung

2. Gleichstrommaschine

2.1. Größen

Maschinenkonstante (Spannung)	k_U	[1]
Maschinenkonstante (Drehmoment)	k_{M}	[1]
Flusskonstante	k_{Φ}	$\left[\frac{\text{Vs}}{\text{A}}\right]$
Erregerstromkonstante	k_E	[1]
Ankerwindungszahl	w_2	[1]
Bürstenübergangsspannung	U_B	[V]
Kommutatorsegmentspannung	U_S	[V]

2.2. Systemgleichungen

$$\begin{aligned} U_A &= R_{A,\text{res}} \cdot I_A + U_i + 2 \cdot U_B & w_2 &= \frac{N_2 \cdot Z_N}{2a} \\ \Phi_E &= k_\Phi \cdot I_E & k_U &= 4p \cdot w_2 \\ U_i &= k_U \cdot \Phi_E \cdot n & k_M &= \frac{k_U}{2\pi} \end{aligned}$$

$$M_i = k_M \cdot \Phi_E \cdot I_A$$

$$M_i = M_R + M_L + J \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

2.3. Verhalten

2.4. Gleichstrom-Nebenschlussmaschine 2.4.1. ESB

2.4.2. Drehmoment-Drehzahl-Kennlinie

$$n = \frac{U_A - 2 \cdot U_B}{k_U \cdot \Phi_E} - \frac{2\pi \cdot R_{A, \mathrm{res}}}{(k_U \cdot \Phi_E)^2} \cdot M_i$$

2.4.3. Wichtige Betriebspunkte

$$\begin{array}{ll} \text{Anlaufmoment: } (n=0) & M_{i, \mathsf{An}} = k_M \cdot \Phi_E \cdot I_{A, \mathsf{An}} \\ \text{Leerlaufdrehzahl: } (M_i = 0) & n_0 = \frac{U_A - 2 \cdot U_B}{k_U \cdot \Phi_E} \\ \text{Anlaufstrom: } (n=0) & I_{A, \mathsf{An}} = \frac{U_A - 2 \cdot U_B}{R_{A, \mathsf{res}}} \\ \\ n = n_0 \cdot \left(1 - \frac{M_i}{M_{i, \mathsf{An}}}\right) & M_i = M_{i, \mathsf{An}} \cdot \left(1 - \frac{n}{n_0}\right) \end{array}$$

2.5. Gleichstrom-Reihenschlussmaschine

2.5.2. Systemgleichungen

$$\begin{split} I_E &= k_E \cdot I_A \quad \text{mit } k_E = \begin{cases} 1 & \text{für } R_P \to \infty \\ 0 & \text{für } R_P = 0 \end{cases} \\ \frac{R_p}{R_p + R_E} & \text{sonst} \end{cases} \\ \Phi_E &= k_\Phi \cdot I_E = k_\Phi \cdot k_E \cdot I_A \\ M_i &= k_M \cdot \Phi_E \cdot I_A = k_M \cdot k_\Phi \cdot k_E \cdot I_A^2 \end{split}$$

2.5.3. Drehmoment-Drehzahl-Kennlinie

 $U_i = k_{II} \cdot \Phi_E \cdot n = k_{II} k_{\Phi} k_E \cdot I_{A} \cdot n$

$$M_i = k_M \; k_\Phi \; k_E \cdot \frac{(U_A - 2 \cdot U_B)^2}{(k_U \; k_\Phi \; k_E \cdot n + R_{A, \rm res})^2}$$

Anlaufmoment: (n=0) $M_{i, {\sf An}} = k_M \; k_\Phi \; k_E \cdot \left(\frac{U_A}{R_{A, {\sf res}}} \right)^2$

3. Wechselfeld - Drehfeld

3.1. Größen

Stator Rotor	Index 1 Index 2	
Ordnungszahl der Oberwellen	ν	[1]
elektrische Frequenz	f	[Hz]
elektrische Kreisfrequenz	ω	rads
$\omega = 2\pi f$		
mechanische Kreisfrequenz	ω_m	$\left\lceil \frac{\text{rad}}{\text{s}} \right\rceil$
Phasenwinkel	φ	[rad]
Strangachsenwinkel	ϑ	[rad]
Strangspannung	U_1	[V]
Strangstrom	I_1	[A]
komplexe Scheinleistung	<u>S</u>	[VA]
Wirkleistung	P	[W]
Blindleistung	Q	[Var]
Strangzahl	m	[1]
Windungszahl pro Strang	w_1	[1]
Lochzahl (Nuten pro Pol und Strang)	q	[1]
Nutwinkel	α_N	[rad]
Spulenwinkel	$lpha_{Sp}$	[rad]
Polwinkel	α_p	[rad]
Spulenweite	W_{Sp}	[cm]
Zonungsfaktor	ξ_Z	[1]
Sehnungsfaktor	ξ_S	[1]
Nutschlitzbreitenfaktor	ξ_N	[1]
Schrägungsfaktor	ξ_{Schr}	[1]

3.2. Stern & Dreieckschaltung

Sternschaltung	Dreiecksschaltung
$U_1 = \frac{U_N}{\sqrt{3}}$ $I_1 = I_N$	$U_1 = U_N$ $I_1 = \frac{I_N}{\sqrt{3}}$

3.3. Einfluss realer Luftspalt

 $w_{\text{eff}} = w_{\text{Sp}} \cdot \xi_{(\nu)}$ $\alpha_N = \frac{2\pi}{N}$ $\alpha_{\mathsf{Sp}} = W_{\mathsf{Sp}}(\mathsf{absolut}) \cdot \alpha_N$

 $\xi_{(\nu)} = \xi_{Z(\nu)} \cdot \xi_{S(\nu)} \cdot \xi_{N(\nu)}$

3.3.1. Zonung Erhöhung der Lochzahl q (Beschränkt durch $N_{\rm max}=\frac{D\pi}{\tau N,{\rm min}}$) mit $\tau_{N,{\rm min}}\approx 1~{\rm cm}$

 $w_{\text{eff}} = q \cdot w_{\text{Sp}} \cdot \xi_{Z(\nu)}$

$$\xi_{Z(\nu)} = \frac{\sin\left(q \cdot \nu \frac{\alpha_N}{2} p\right)}{q \cdot \sin\left(\nu \frac{\alpha_N}{2} p\right)} = \frac{\sin\left(\nu \frac{\pi}{2} \frac{q}{Q}\right)}{q \cdot \sin\left(\nu \frac{\pi}{2} \frac{1}{Q}\right)}$$

3.3.2. Sehnung Kürzung der Spulenweite W_{Sp} (nicht bei Einschichtwicklung möglich)

$$\begin{split} w_{\text{eff}} &= q \cdot w_{\text{Sp}} \cdot \xi_{S(\nu)} \\ \xi_{S(\nu)} &= \sin \left(\nu \frac{\pi}{2} \frac{W_{\text{Sp}}}{\tau_p} \right) = \sin \left(\nu \frac{\alpha_{\text{Sp}}}{\alpha_p} \frac{\pi}{2} \right) \end{split}$$

3.3.3. Nutschlitzbreite

$$\begin{split} w_{\text{eff}} &= w_{\text{Sp}} \cdot \xi_{N(\nu)} \\ \xi_{N(\nu)} &= \frac{\sin \left(\nu \frac{b_N}{D}\right)}{\nu \frac{b_N}{D}} \end{split}$$

4.2. ESB

$$\begin{split} & \underline{U}_1 = \underline{Z}_1 \cdot \underline{I}_1 + \underline{U}_{\text{iP}} \\ & \underline{Z}_1 = R_1 + jX_d \\ & X_d = X_{1h} + X_{1\sigma} = 2\pi f \cdot (L_{1h} + L_{1\sigma}) \\ & |\underline{U}_{\text{iP}}| = U_{\text{iP}} = \omega M_{21} \sqrt{2} \cdot I_2 \\ & \sigma = \frac{L_{1\sigma}}{L_{1h}} \end{split}$$

4.3. Systemgleichungen

$$\begin{split} \vec{u}_1 &= R_1 \cdot \vec{i}_1(t) + \frac{\partial \vec{\Psi}_1(t)}{\partial t} \\ \vec{\Psi}_1 &= L_1 \cdot \vec{i}_1(t) + M_{21} \cdot \vec{i}_2'(t) \\ u_2 &= R_2 \cdot i_2(t) + \frac{\partial \Psi_2(t)}{\partial t} \\ \Psi_2 &= L_2 \cdot i_2(t) + 3 \cdot M_{21} \cdot (\vec{i}_1(t)e^{-jp\vartheta m} + \vec{i}_1^*(t)e^{jp\vartheta m}) \end{split}$$

4. Synchronmaschine

4.1. Größen

Erregerstrom	I_2	[A]
induzierte Polradspannung	\underline{U}_{iP}	[V]
synchrone Reaktanz	X_d	$[\Omega]$
Selbstinduktivität	L	[H]
Koppelinduktivität (von Rotor nach Stator)	M_{21}	[H]
Polradwinkel	ϑ	[rad]
Phasenwinkel von \underline{Z}_1	φ_{Z1}	[rad]
Netzleistung (Wirkleistung)	P_1	[W]
innere elektrische Leistung	P_W	[W]
Drehfeldleistung	P_{δ}	[W]
mechanische Leistung	P_m	[W]
Erregerleistung	P_E	[W]
Leerlaufkurzschlussstrom	\underline{I}_{K0}	[A]
Dreisträngiger Dauerkurzschlussstrom	\underline{I}_{KIII}	[A]
Leerlaufkurzschlussverhältnis (LKV)	$\frac{\underline{I}_{K0}}{\underline{I}_N}$	[1]

4.4. Wichtige Gleichungen

4.4.1. Synchrone Drehzahl Luftspaltfeld

$$n_{\mathsf{syn}} = n_N = \frac{f_1}{p}$$

4.4.2. Drehmoment

$$M_K \sim \frac{U_1}{f_1}$$

$$M_i = -\frac{3p}{\omega_1} \cdot \left[\frac{U_1 \cdot U_{\mathsf{iP}}}{Z_1} \cdot \sin\left(\vartheta - \varphi_{Z1}\right) + \frac{U_{\mathsf{iP}}^{\ 2}}{Z_1} \cdot \sin\left(\varphi_{Z1}\right) \right]$$

$$M_K = \frac{3p}{\omega_1} \cdot \frac{U_1 \cdot U_{\mathsf{iP}}}{Z_1} = \frac{3p}{\omega_1} \cdot U_1 \cdot I_{K\mathsf{III}}$$

 $R_1 = 0 \Rightarrow \varphi_{Z1} = 0 \Rightarrow M_i = -M_K \cdot \sin(\vartheta)$

4.4.3. Leistung

$$\begin{split} \underline{S}_1 &= 3 \cdot \underline{U}_1 \cdot \underline{I}_1^* \\ P_1 &= S_1 \cdot \cos{(\varphi)} = 3 \cdot U_1 \cdot I_1 \cdot \cos{(\varphi)} \\ P_W &= 3 \cdot U_{\text{IP}} \cdot I_1 \cdot \cos{(\varphi)} \\ P_{\delta} &= \omega_m \cdot M_i = P_W - 3 \cdot R_1 \cdot I_1^2 \\ P_m &= 2\pi \cdot n \cdot (M_i - M_R) = \omega_m \cdot (M_i - M_R) = P_{\delta} - P_R \end{split}$$

$$P_E = U_2 \cdot I_2$$

$$\eta = \frac{P_m}{P_1 + P_{VE}}$$

4.5. Betriebsbereiche

Bei Leerlauferregung ($I_2 = I_{20}$): $\Rightarrow U_1 = U_{iP}$ Bei linearer Leerlaufkennlinie ($X_d = \text{const.}$): $I_2 = I_{20} \cdot \frac{U_{\text{iP}}}{I_{\text{i-}}}$

4.5.1. Leerlauf $(I_1 = 0)$

$$I_{20} = \frac{U_{\rm iP}}{\omega M_{21} \sqrt{2}} = \frac{U_1}{\omega M_{21} \sqrt{2}}$$

4.5.2. Kurzschluss $(U_1 = 0)$

$$\underline{I}_{KIII} = \frac{\underline{U}_{iP}}{\underline{Z}_{1}}$$

$$\underline{I}_{K0} = \underline{I}_{KIII}(I_{20}) = \frac{\underline{U}_{1}}{\underline{Z}_{1}}$$

4.5.3. Betriebsarten

artheta zwischen dem Zeiger von \underline{U}_1 nach $\underline{U}_{\mathsf{iP}}$ φ zwischen dem Zeiger von $\overline{\underline{I}_1}$ nach $\overline{\underline{U}_1}$

 \underline{I}_2 eilt $\underline{U}_{\mathsf{iP}}$ um 90° nach

Phasenschieberbetrieb: $\vartheta = 0$ ($R_1 = 0$ VZS - Betrieb am starren Netz)

- Betrieb im Leerlauf
- · reine Blindleistungsabgabe bzw. -aufnahme
- $cos(\varphi) = 0 \Rightarrow$
 - untererregt: $\Rightarrow \varphi = 90^{\circ}$
 - übererregt: $\Rightarrow \varphi = -90^{\circ}$

Motorbetrieb: $\vartheta < 0$ ($R_1 = 0$ VZS - Betrieb am starren Netz)

untererregt $\varphi > 0$

 $\mathsf{\ddot{u}bererregt}\ \varphi < 0$

Generatorbetrieb: $\vartheta > 0$ ($R_1 = 0$ VZS - Betrieb am starren Netz)

untererregt $\varphi > 0$

übererregt $\varphi < 0$

4.6. Zeigerdiagramm

4.7. Stromortskurve

$$\begin{split} \underline{I}_1 &= \underline{I}_{K0} - \underline{I}_{KIII} \\ \underline{I}_{KIII} &= \frac{U_{\text{iP}}}{U_1} \cdot \underline{I}_{K0} \cdot e^{j\vartheta} \\ \underline{I}_{K0} &= -\frac{U_1}{Z_1} \cdot j \, e^{j\varphi} Z1 \end{split}$$

Stromortskurve

- 1. \underline{U}_1 auf reelle Achse legen 2. Richtung von \underline{U}_{iP} einzeichnen
- 3. \underline{I}_{K0} einzeichnen bei $R_1=0$: \underline{I}_{K0} eilt \underline{U}_1 um 90° nach
- 4. konstante Erregung: Kreis um Spitze von \underline{I}_{K0} mit Radius I_{KIII}
- 5. Richtungen von \underline{I}_{KIII} und \underline{I}_1 festgelegt durch φ bzw. ϑ
- **6.** bei $R_1=0$: Verlängerung von $\underline{U}_{\mathsf{iP}}\perp\underline{I}_{K\mathsf{III}}$

4.8. dq-Darstellung

Zeigerdiagramm

- 1. U_1 auf reelle Achse legen
- 2. \underline{I}_1 einzeichnen
- 3. Richtung von U_{iP} legt d und q Achse fest $(\vartheta = unbekannt \Rightarrow weiter bei Trick)$
- 4. Zerlegung von \underline{I}_1 in \underline{I}_d und \underline{I}_q
- **5.** Spannungsabfall an $X_d = |X_d \cdot I_d|$
- **6.** Spannungsabfall an $X_q = \begin{vmatrix} x_q & x_q \\ X_q & Y_q \end{vmatrix}$
- 7. $\underline{U}_{iP} = \underline{U}_1 jX_d \cdot \underline{I}_d jX_q \cdot \underline{I}_d$

- 1. $\vartheta = \arg(\underline{U}_1 jX_q \cdot \underline{I}_1) \Rightarrow \text{Richtungsgerade von}$
- 2. $\underline{U}_{\mathrm{iP}} = \mathrm{Senkrechte} \ \mathrm{von} \ \underline{U}_1 j X_d \cdot \underline{I}_d \ \mathrm{auf} \ \mathrm{Richtungsgerade}$

4.8.1. Systemgleichungen

$$\begin{split} U_d &= R_1 \cdot I_d - \omega_1 L_q \cdot I_q \\ U_q &= R_1 \cdot I_q + \omega_1 L_d \cdot I_d + \sqrt{2} \cdot U_{\text{iP}} \\ U_{\text{iP}} &= \sqrt{2} \cdot \omega_1 M_{21} \cdot I_2 \\ U_2 &= R_2 \cdot I_2 \\ M_i &= 3 \cdot p \cdot M_{21} \cdot I_2 \cdot I_q \end{split}$$

4.8.2. Zeigerdiagramm

4.9. Schenkelpolläufer

4.9.1. Drehmoment $(R_1 = 0)$

$$M_i' = -\frac{m_1 \cdot p}{\omega_1} U_1 \left[\frac{U_{\mathsf{iP}}}{X_d} \sin(\vartheta) + \frac{U_1}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right) \sin(2\vartheta) \right]$$

Reluktanzmoment (Reaktionsmoment):

$$M_r = -\frac{m_1 \cdot p}{\omega_1} \cdot \frac{{U_1}^2}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right) \sin(2\vartheta)$$

Vollpolläufer entwickeln kein Reluktanzmoment wegen $L_d=L_q$. Maximales Reluktanzmoment bei $|\vartheta| = 45^{\circ}$.

4.9.2. Systemgleichungen

$$\begin{split} \underline{U}_1 &= \underline{U}_d + \underline{U}_q + \underline{U}_{\mathsf{iP}} \\ &= jX_d \cdot \underline{I}_d + jX_q \cdot \underline{I}_q + \underline{U}_{\mathsf{iP}} \\ \underline{I}_1 &= \underline{I}_d + \underline{I}_g \end{split}$$

5. Asynchronmaschine

Übersetzungsverhältnis	\ddot{u}	[1]
Schlupf	s	[1]
Kippschlupf	s_K	[1]
Kippmoment	M_K	[Nm]
Bezogener Statorwiderstand	ρ_1	[1]
Bezogener Rotorwiderstand	$ ho_2$	[1]
Hilfsgröße	Δho_1	[1]
Rotor-Statorwärmeverluste	P_{Cu}	[W]
Magnetisierungsstrom	$\underline{I}_{1\mu}$	[A]
Rotor-Vorwiderstand	R_{2V}	$[\Omega]$

5.2.1. Übersetzungsverhältnis Bei Schleifring-ASM gilt: $M_{21}=M_{12}=M$

$$\ddot{u} = \frac{L_{1h}}{M} = \sqrt{\frac{m_1}{m_2}} \cdot \frac{w_1 \, \xi_1}{w_2 \, \xi_2} \cdot \frac{1}{\xi_{\rm Schr}} = \sqrt{\frac{m_1}{m_2}} \cdot \frac{w_1, {\rm eff}}{w_2, {\rm eff}} \cdot \frac{1}{\xi_{\rm Schr}}$$

$$\begin{array}{ll} R'_{2,\mathrm{ges}} = \ddot{u}^2 \cdot R_{2,\mathrm{ges}} & R'_{2,\mathrm{ges}} = R'_2 + R'_{2V} \\ \underline{U}_2 = \frac{1}{\ddot{u}} \cdot \underline{U}_{1i} & L'_{2\sigma} = \ddot{u}^2 \cdot (L_{2\sigma} + L_{2\mathrm{Schr}} \\ \underline{I}'_2 = \frac{1}{\ddot{u}} \cdot \underline{I}_2 & \end{array}$$

5.3. Systemgleichungen

$$\begin{split} \vec{u}_1 &= R_1 \cdot \vec{i}_1 + \frac{\partial \vec{\Psi}_1}{\partial t}, & \vec{\Psi}_1 &= L_1 \cdot \vec{i}_1 + M \cdot \vec{i}_2 \cdot e^{jp\vartheta_m} \\ \\ 0 &= R_{2,\text{ges}} \cdot \vec{i}_2 + \frac{\partial \vec{\Psi}_2}{\partial t}, & \vec{\Psi}_2 &= L_2 \cdot \vec{i}_2 + M \cdot \vec{i}_1 \cdot e^{-jp\vartheta_m} \\ \\ J \frac{\mathrm{d}\omega}{\mathrm{d}t} &= M_i - M_R - M_L \end{split}$$

5.4. Wichtige Größen

5.4.1. Schlupf

$$s = \frac{n_{\rm syn} - n}{n_{\rm syn}} = \frac{\omega_{\rm syn} - \omega_m}{\omega_{\rm syn}} = \frac{\omega_1 - p \cdot \omega_m}{\omega_1} = \frac{\omega_2}{\omega_1}$$

Gegenstrombremse s > 15.4.2. Drehzahl

synchrone Drehzahl

 $n_{syn} = \frac{f}{n}$

Motor 1 > s > 0 Generator

s < 0

Nenndrehzahl

 $n_N = n_s(1 - s_N)$

2. $R_1 \underline{I}_1$ (gleiche Phasenlage wie \underline{I}_1) $j\omega_1L_{1\sigma}I_1$ (eilt I_1 um 90° voraus)

3. $\underline{U}_{1i} = \underline{U}_1 - R_1\underline{I}_1 - j\omega_1L_{1\sigma}\underline{I}_1$

5. $\underline{I}'_2 = \underline{I}_{1\mu} - \underline{I}_1$

6. $R'_{2 \text{ ges}} \underline{I}'_{2}$ (parallel zu \underline{I}'_{2})

7. $j\omega_1 L_{2\sigma}' \underline{I_2'}$ (eilt $\underline{I_2'}$ um 90° voraus)

8. $R'_{2,\text{ges}} \cdot \frac{1-s}{s} \cdot \underline{I}'_2 = -\underline{U}_{1i} - R'_{2,\text{ges}} \underline{I}'_2 - j\omega_1 L'_{2\sigma} \underline{I}'_2$

5.4.3. Leistung

$$\begin{split} \underline{S}_1 &= m_1 \cdot \underline{U}_1 \cdot \underline{I}_1^* \\ P_1 &= S_1 \cdot \cos(\varphi) = m_1 \cdot U_1 \cdot I_1 \cdot \cos(\varphi) \\ P_{\mathsf{Netz}} &= m_1 \cdot U_1 \cdot I_1 \cdot \cos(\varphi_N) = P_1 + P_{\mathsf{Fe}} \\ P_{\delta} &= 2\pi \cdot n_{\mathsf{SVO}} \cdot M_i = P_1 - P_{\mathsf{Cu1}} - P_{\mathsf{Fe}} \end{split}$$

$$P_{mi} = (1 - s)P_{\delta} = P_{\delta} - P_{\text{Cu}2} - P_{2V} = \omega_m \cdot M_i$$

 $P_m = 2\pi \cdot n \cdot (M_i - M_R) = \omega_m \cdot (M_i - M_R) = P_{mi} - P_R$

 $P_{Cu2} = s \cdot P_{\delta} = m_2 \cdot R_2 \cdot I_2^2$

5.4.4. Phase

ASM immer induktiv $\Rightarrow \varphi > 0$

$$\begin{split} \varphi &= \varphi_{1} Z - \varphi_{1} N \\ \varphi &= \begin{cases} \arctan(\frac{b}{a}) & \text{für } a > 0 \\ \arctan(\frac{b}{a}) + \pi & \text{für } a < 0, b \geq 0 \\ \arctan(\frac{b}{a}) - \pi & \text{für } a < 0, b < 0 \end{cases} \end{split}$$

5.4.5. Weitere Parameter

$$\begin{array}{ll} \text{Wotter Parameter} \\ L_{1\sigma} = \sigma_1 \cdot L_{1h} & L_1 = L_{1h} + L_{1\sigma} \\ L'_{2\sigma} = \sigma_2 \cdot L_{1h} & L'_2 = L_{1h} \cdot (1 + \sigma_2) \\ L_{\sigma} = \sigma \cdot L_1 = L_{1\sigma} + \frac{\xi_{\text{Schr.}}}{1 + \sigma_2} L'_{2\sigma} \\ \rho_1 = \frac{R_1}{\omega_1 L_1} & \rho_2 = \frac{R_2, \text{ges}}{\omega_1 L_2} = \frac{R'_2, \text{ges}}{\omega_1 L'_2} \\ \Delta \rho_1 = \sqrt{1 + \left(\frac{\rho_1}{\sigma}\right)^2} \cdot \sqrt{1 + \rho_1^2} \\ \sigma = 1 - \frac{M^2}{(1 + \sigma_1) \cdot (1 + \sigma_2)} = 1 - \frac{M^2}{L_1 L_2} \end{array}$$

5.5. Statorstrom

$$\underline{I}_1 = \frac{\underline{U}_1}{\omega_1 L_1} \cdot \frac{\rho_2 + js}{\rho_1 \cdot \rho_2 - \sigma \cdot s + j(\rho_2 + s \cdot \rho_1)}$$

$$I_{1A} = |\underline{I}_1|(s=1) = \frac{U_1}{\omega_1 L \sigma} \sqrt{\frac{1 + \rho_2^2}{\left(1 - \frac{\rho_1 \cdot \rho_2}{\sigma}\right)^2 + \left(\frac{\rho_1 + \rho_2}{\sigma}\right)^2}}$$

$$\begin{array}{c} \text{Ideeller Kurzschlussstrom:} \\ I_{1Ki} = |\underline{I}_1|(s \to \pm \infty) = \frac{U_1}{\omega_1 L_\sigma} \cdot \frac{1}{\sqrt{1 + \left(\frac{\rho_1}{\sigma}\right)^2}} \end{array}$$

Leerlaufstrom:
$$I_{10} = |\underline{I}_1|(s=0) = \frac{U_1}{\omega_1 L_1} \cdot \frac{1}{\sqrt{1+\rho_1 2}}$$

5.5.1. Magnetisierungsstrom

$$\underline{I}_{\mu} = \frac{\rho_2 + j \cdot s \cdot (\sigma - \sigma_1 \cdot (1 - \sigma))}{\rho_1 \cdot \rho_2 - \sigma \cdot s + j \cdot (\rho_2 + s \cdot \rho_1)} \cdot \frac{\underline{U}_1}{\omega_1 L_1}$$

5.6. Zeigerdiagramm

Zeigerdiagramm

- 1. U_1 auf reelle Achse legen und I_1 einzeichnen

- 4. $\underline{I}_{1\mu} = \frac{\underline{U}_{1i}}{i\omega_1\underline{L}_{1k}}$ (eilt \underline{U}_{1i} um 90° nach)

5.7. Stromortskurve

bei
$$R_1 = 0$$

$$\tan(\mu) = s_K$$

Stromortskurve

- 1. \underline{U}_1 auf reelle Achse legen $\Rightarrow \varphi_1 \underline{U} = 0$
- 2. $R_1 = 0 \Rightarrow \underline{I}_{10}$ und \underline{I}_{1Ki} haben keinen Realteil
- 3. Kreismittelpunkt auf Im-Achse zwischen \underline{I}_{1Ki} und \underline{I}_{10}
- **4.** μ zwischen P_0 und P_A

5.7.1. Schlupfgerade

Schlupfgerade

- 1. Schlupfgerade an beliebiger Stelle einzeichnen
- 2. gesuchtes s aus Längenverhältnis zu bekanntem Schlupf bestimmen

5.7.2. Maßstab

Strommaßstab	m_I	$\left[\frac{A}{cm}\right]$
Leistungsmaßstab	$m_P = 3 \cdot U_1 \cdot m_I$	$\left[\frac{W}{cm}\right]$
Drehmomentmaßstab	$m_{M}=rac{m_{P}}{2\pi\cdot n_{syn}}$	$\left[\frac{\mathrm{Nm}}{\mathrm{cm}}\right]$

5.7.3. Ablesbare Werte

Aufgenommene elektrische Leistung	$P_1 = \overline{PB} \cdot m_P$
Kupferverluste Rotor	$P_{Cu2} = \overline{AB} \cdot m_P$
Abgegebene mechanische Leistung	$P_m = \overline{PA} \cdot m_P$
Inneres Drehmoment	$M_i = \overline{PB} \cdot m_M$

Definition Punkt B: Orthogonale Projektion von P auf Im-Achse

5.8. Drehmoment

$$M_K \sim \left(\frac{U_1}{f_1}\right)^2 \qquad M_N \sim \Phi_\delta \frac{U_1}{f_1}$$

$$M_i = M_R + M_L + J \frac{\partial \omega}{\partial t}$$

5.8.1. Drehmomentgleichung

$$M_i = 3p(1-\sigma)\frac{{U_1}^2}{{\omega_1}^2 L_\sigma} \frac{s \cdot s_K}{\Delta \rho_1 s_K{}^2 + 2\frac{\rho_1}{\sigma}(1-\sigma) s_K s + \Delta \rho_1 s}$$

$$\begin{split} & \text{Kippmoment:} \\ & M_K = M_i(s_K) = \frac{3}{2}p \cdot (1-\sigma)\frac{U_1^{\ 2}}{\omega_1^{\ 2}L_\sigma} \left(\frac{1}{\Delta\rho_1 + \frac{\rho_1}{\sigma}(1-\sigma)}\right) \\ & (R_1=0): M_K = \frac{m_1U_1\frac{I_1K_1-I_{10}}{2\pi \cdot n_s}}{\frac{2\pi \cdot n_s}{1+\left(\frac{\rho_1}{\sigma}\right)^2}} \\ & \text{Kippschlupf: } s_K = \frac{\rho_2}{\sigma}\sqrt{\frac{1+\rho_1^{\ 2}}{1+\left(\frac{\rho_1}{\sigma}\right)^2}} \end{split}$$

 $s_K > 0$ Motor

 $s_K < 0$ Generator

5.8.2. Klossche Gleichung (Annahme $R_1 = 0$)

$$\frac{M_i}{M_K} = \frac{2 \cdot s_K \cdot s}{s_K^2 + s^2}$$

$$s_{1,2} = s_K \frac{M_K}{M_i} \pm \sqrt{\left(s_K \frac{M_K}{M_i}\right)^2 - s_K^2}$$

Nur echte Lösung wenn gilt: $s < s_K$