Segmentação Automática do Espelho Nasal de Bovinos

Jorge Luiz

Tópicos

- Introdução
- Algoritmos Computacionais
- Trabalhos Anteriores
- Proposta Experimental
- Análise dos Resultados
- Conclusão

Introdução

- Por que identificar bovinos?
- Métodos de identificação
 - "Clássicos" brincos, RFID, marcação a fogo, ...
 - Biométricos

Método deve ser robusto e aplicável em larga escala

Objetivos

 Objetivo global: identificar um bovino a partir de qualquer foto contendo seu espelho nasal

Objetivos

- Objetivo do projeto: extrair a região do espelho nasal
- Como: técnicas de processamento de imagens e visão computacional

- Haar Cascade
- MB-LBP Cascade
- YOLO (You Only Look Once)

•

- Haar Cascade
 - Viola, Jones et al. (2001)
 - Treinamento com "positivos" e "negativos"
 - Cascade:
 - Cascata de conjuntos de classificadores
 - Cada estágio composto de classificadores simples
 - Haar:
 - Haar-like features

Fonte: adaptado de Lienhart e Maydt (2002)

Fonte: Autoria própria

- LBP Cascade
 - LBP (Local Binary Pattern):
 - Popularizado por Ojala, Pietikäinen e Mäenpää (2002)
 - Compara uma região com sua vizinhança
 - LBP original: 1 pixel, raio 1
 - MB-LBP (Multi-scale Block)
 - Sub-regiões de blocos em vez de 1 pixel
 - Versão utilizada pelo OpenCV

Aplicação de MB-LBP 9x6. Fonte: Zhang et al. (2007)

- YOLO (You Only Look Once)
 - Rede neural convolucional

Trabalhos Anteriores

- Não baseados em fotografia digital
 - Inviáveis para aplicação em larga escala
- Baseados em fotografia digital
 - Necessário extrair a região de interesse

- Impressões de tinta do focinho digitalizadas
 - Barry et al. (2007), Noviyanto e Arymurthy (2013)

- Boa precisão
- Dificuldade de obtenção

Fonte: Barry et al. (2007)

- Corte manual
 - Barry et al. (2007)
 - Hadad, Mahmoud e Mousa (2015)
 - Gimenez (2015)
- Foco nas outras etapas do processo

Fonte: Barry et al. (2007)

Fonte: Hadad, Mahmoud e Mousa (2015)

Fonte: Gimenez (2015)

- Leick (2016) MB-LBP Cascade
- Detecção de Focinho, Narina Direita e Narina Esquerda

Proposta Experimental

- Comparação de MB-LBP com YOLO
 - Taxa de detecção, qualidade da detecção
- Base de dados
 - Fotos obtidas pelo IAPAR e LAFAC-USP
 - 2879 imagens, 121 animais
 - Cinco bases de dados
- Cenários experimentais
 - Variação de animais, cenários, parâmetros de treinamento
 - Analisar resultados, principalmente imagens falhas

Algoritmos

- MB-LBP, YOLO
- IAPAR1, IAPAR2_1 usadas para treinamento

Quadro 1 – Bases de imagens

Base	Imagens	Animais	Equipamento	Resolução
IAPAR1	377	19	celular Motorola Moto X4	3024×4032
IAPAR2_1	668	33	celular Motorola Moto X4	4032×3024
IAPAR2_2	319	18	celular Samsung Galaxy S4 SGH-M919	4128×3096
IAPAR2_3	507	51	câmera Canon EOS Rebel T5	5184×3456
USP	1008	51	câmera Sony DSC-H5	2048×1536 ou
				3072×2304

Fonte: Autoria própria

Algoritmos

Capacidade de detecção de duas narinas

Tabela 1 – Capacidade de detecção de duas narinas.								
	IAPAR2_2	IAPAR2_3	USP	Total				
MB-LBP YOLO	241/319 (75,55%) 295/319 (92,48%)	352/507 (69,43%) 498/507 (98,22%)	951/1009 (94,25%) 987/1009 (97,82%)	1544/1835 (84,14%) 1780/1835 (97,00%)				
Fonte: Autoria própria								

Não necessariamente detecção correta

Amostras de detecções equivocadas

Tabela 2 – Quantidade de detecções equivocadas.							
	IAPAR2_2	IAPAR2_3	USP	Total			
MB-LBP YOLO	14/241 (5,80%) 0/295 (0,00%)	53/352 (15,06%) 0/498 (0,00%)	8/951 (0,84%) 0/987 (0,00%)	75/1544 (4,86%) 0/1835 (0,00%)			
Fonte: Autoria própria							

Imagens de baixa qualidade

Oclusão de narinas/ângulo incomum

Combinação de ângulo e iluminação?

YOLO superior a MB-LBP

MB-LBP superior a YOLO

Conclusão

- YOLO é uma abordagem promissora!
- Mudanças no processo de treinamento?
- Outros algoritmos?

Referências

- BARRY, B. et al. Using muzzle pattern recognition as a biometric approach for cattle identification. Transactions of the ASABE, American Society of Agricultural and Biological Engineers, v. 50, n. 3, p. 1073–1080, 2007.
- FREUND, Y.; SCHAPIRE, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, Elsevier, v. 55, n. 1, p. 119–139, 1997.
- GIMENEZ, C. M. Identificação biométrica de bovinos utilizando imagens do espelho nasal . 114 f. Tese (Zootecnia) Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, 2015.
- HADAD, H. M. E.; MAHMOUD, H. A.; MOUSA, F. A. Bovines muzzle classification based on machine learning techniques. Procedia Computer Science, 2015.
- LEICK, W. da S. Tecnologia computacional de apoio a rastreabilidade biométrica de bovinos. 73 f. Dissertação (Zootecnia) — Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, 2016.

Obrigado!