1 ИСХОДНЫЕ ДАННЫЕ

1.1 Координаты шарниров крепления звеньев МН

по оси Х по оси У

$$X01 := 0.415$$
 [M] $Y01 := 0.563$ [M]

$$X03 := 0.250 \text{ [M]} Y03 := 1.112 \text{ [M]}$$

$$X05 := 0.135$$
 [M] $Y05 := 0.480$ [M]

$$X07 := 0.415 \text{ [M]} Y07 := 0.895 \text{ [M]}$$

1.2 Длины звеньев механизма навески

$$L3 := 0.200$$
 [M] $L34 := 0.325$ [M]

$$L5 := 0.480$$
 [M] $L56 := 1.035$ [M]

$$L6 := 0.595$$
 [M] $\phi BD := 22 \cdot deg [M]$

Предварительные длины регулируемых звеньев (раскосы и верхняя тяга)

$$L7 := 0.7$$
 [M] $L4 := 0.6$ [M]

1.3 Изменение обобщенной координаты

Крайние пределы изменения обобщенной координаты

Smin :=
$$0.420 [M]$$
 Smax := $0.670 [M]$

Число рассчитываемых положений

$$N_{pol} := 10$$

Шаг изменения обобщенной координаты

$$\Delta S := \frac{Smax - Smin}{N_{pol} - 1} \quad [M]$$

Пределы изменения обобщенной координаты

$$S := Smin, Smin + \Delta S... Smax [M]$$

1.4 Параметры НМ

$$P6 := 27500$$
 [H] - Bec HM

$$\Phi$$
P6 := 90 · deg [град] - угол наклона линии YP56 к оси X

1.5 Параметры гидропривода МСХА

 $\eta := 0.84$

- кпд гидравлической системы

 $D_{\boldsymbol{gc}} \coloneqq 0.08$

[м] - диаметр поршня ГЦ

 $P_{gc_max} := 17.5 \cdot 10^6$

[Па] - давление в гидросистеме

 $k_{QC} := 2$

[м] - число ГЦ

1.6 Параметры МСХА

a := 0.6

[м] - расстояние от передних колес до ЦТ НМ

b := 1.62

[м] - расстояние от задних колес до противовесов

L := 2.960

[м] - база МСХА

Prp := 8000

[Н] - вес противовесов МСХА

Рмсха := 56000

[H] - Bec MCXA

2 ГЕОМЕТРИЧЕСКИЙ АНАЛИЗ

На рисунке 2.1 приведена кинематическая схема МН

Рисунок 2.1 - Кинематическая схема МН

2.1 Анализ первой структурной группы

L13 :=
$$\sqrt{(X01 - X03)^2 + (Y01 - Y03)^2} = 0.573$$
 [M]

$$\phi$$
13 := atan $\left(\frac{Y03 - Y01}{X01 - X03}\right)$ = 73.272·deg [град]
$$\phi$$
3(S) := acos $\left(\frac{L3^2 + L13^2 - S^2}{2 \cdot L3 \cdot L13}\right)$ – ϕ 13
$$\phi$$
12(S) := ϕ 13 – acos $\left(\frac{S^2 + L13^2 - L3^2}{2 \cdot S \cdot L13}\right)$

$$\phi_{12}(S) := \phi_{13} - a\cos\left(\frac{1}{2\cdot S \cdot L}\right)$$

$$\phi$$
34(S) := ϕ 3(S) + ϕ BD

Расчет положений точек

$$X34(S) := X03 + L34 \cdot \cos(\phi 34(S))$$
 $X23(S) := X03 + L3 \cdot \cos(\phi 3(S))$
 $Y34(S) := Y03 + L34 \cdot \sin(\phi 34(S))$ $Y23(S) := Y03 + L3 \cdot \sin(\phi 3(S))$

2.2 Анализ второй структурной группы

L35 :=
$$\sqrt{(X03 - X05)^2 + (Y03 - Y05)^2} = 0.642$$
 [м]
 $\delta 1 := \pi - a\cos\left(\frac{X03 - X05}{L35}\right) = 100.313 \cdot deg$ [град]
 $\phi 341(S) := \phi 34(S) + \delta 1$
 $S1(S) := \sqrt{L35^2 + L34^2 - 2 \cdot L35 \cdot L34 \cdot \cos(\phi 341(S))}$
 $\phi S1(S) := a\cos\left(\frac{L35^2 + S1(S)^2 - L34^2}{2 \cdot L35 \cdot S1(S)}\right)$

Вводим дополнительную переменную L4 - длину расскоса, длину которой необходимо подобрать согласно исходным данным

$$\phi 41(S, L4) := acos \left(\frac{L4^2 + S1(S)^2 - L5^2}{2 \cdot L4 \cdot S1(S)} \right) - \phi S1(S)$$

$$\varphi 51(S,L4) := \pi - acos \left(\frac{L5^2 + S1(S)^2 - L4^2}{2 \cdot L5 \cdot S1(S)}\right) - \varphi S1(S)$$

$$\varphi 4(S,L4) := \varphi 41(S,L4) - \delta 1$$

$$\phi$$
5(S,L4) := ϕ 51(S,L4) - δ 1

Расчет положений точек

$$X45(S, L4) := X05 + L5 \cdot cos(\phi 5(S, L4))$$

$$Y45(S, L4) := Y05 + L5 \cdot sin(\phi 5(S, L4))$$

$$X56(S, L4) := X05 + L56 \cdot \cos(\phi 5(S, L4))$$

$$Y56(S, L4) := Y05 + L56 \cdot sin(\phi 5(S, L4))$$

Подбираем длину раскоса МН, которая обеспечивает положение точки П56 над горизонтом на расстоянии 0.2 м для минимального хода поршня ГЦ

$$L4_0 := (L4 \cdot 0.1 + L4 \cdot 1.5) \cdot 0.5 = 0.480$$

Given

$$Y56(Smin, L4_0) = 0.2$$

$$L4 := Find(L4_0) = 0.6613$$
 [м] подобранная длина раскоса

Переопределяем найденные выше параметры

$$X56(S) := X56(S, L4)$$
 $\phi 5(S) := \phi 5(S, L4)$ $X45(S) := X45(S, L4)$

$$Y56(S) := Y56(S, L4)$$
 $\phi 4(S) := \phi 4(S, L4)$ $Y45(S) := Y45(S, L4)$

Проверка

$$X34s(S) := X45(S) - L4 \cdot cos(\phi 4(S))$$
 $X23s(S) := X01 + S \cdot cos(\phi 12(S))$

$$Y34s(S) := Y45(S) - L4 \cdot sin(\phi 4(S))$$
 $Y23s(S) := Y01 + S \cdot sin(\phi 12(S))$

$$X45s(S) := X34(S) + L4 \cdot cos(\varphi 4(S))$$

$$Y45s(S) := Y34(S) + L4 \cdot sin(\varphi 4(S))$$

2.3 Анализ третьей структурной группы

L57 :=
$$\sqrt{(X07 - X05)^2 + (Y07 - Y05)^2} = 0.501$$
 [M]

$$\delta 2:=\pi-acos\bigg(\frac{X07-X05}{L57}\bigg)=2.164$$

Вспомогательные переменные

L53(S) :=
$$\sqrt{(X07 - X56(S))^2 + (Y07 - Y56(S))^2}$$

$$\phi 53(S) := acos \left(\frac{L53(S)^2 + L57^2 - L56^2}{2 \cdot L53(S) \cdot L57} \right)$$

Вводим дополнительную переменную L7 - длину верхней тяги, длину которой необходимо подобрать согласно исходным данным

$$\phi 61(S,L7) := \pi - a\cos\left(\frac{L6^2 + L53(S)^2 - L7^2}{2 \cdot L6 \cdot L53(S)}\right) + \phi 53(S)$$

$$\phi 71(S,L7) := acos \left(\frac{L7^2 + L53(S)^2 - L6^2}{2 \cdot L7 \cdot L53(S)} \right) + \phi 53(S)$$

$$\phi 6(S, L7) := \phi 61(S, L7) - \delta 2$$

$$\phi 7(S,L7) := \phi 71(S,L7) - \delta 2$$

$$X67(S,L7) := X07 + L7 \cdot cos(\phi 7(S,L7))$$

$$Y67(S,L7) := Y07 + L7 \cdot sin(\phi 7(S,L7))$$

Проверка

$$X67s(S, L7) := X56(S) + L6 \cdot cos(\phi 6(S, L7))$$

$$Y67s(S, L7) := Y56(S) + L6 \cdot sin(\phi6(S, L7))$$

Определение хода ГЦ для рабочего положения НМ

$$Sp := 0.5 \cdot (Smax + Smin)$$

Given

$$Y56(Sp) = YP56$$

Подбор длины верхней тяги, обеспечивающей величину угла ϕ 6(S) в соответствии с исходными данными

$$L7_0 := (L7 \cdot 0.1 + L7 \cdot 1.5) \cdot 0.5 = 0.560$$

Given

$$\phi6(Sp,L7_0) = \phiP6$$

$$L7 := Find(L7_0) = 0.7585$$
 [м] подобранная длина верхней тяги

Переопределяем найденные выше параметры

$$\phi$$
7(S) := ϕ 7(S,L7) X67(S) := X67(S,L7) X67s(S) := X67s(S,L7)

$$\varphi 6(S) := \varphi 6(S,L7) \qquad Y67(S) := Y67(S,L7) \qquad Y67s(S) := Y67s(S,L7)$$

Определение угла фS6, координат точки S6 и длины вектора LS6

$$LS6 := \sqrt{X6^2 + Y6^2} = 0.871 \quad \text{[M]}$$

rs :=
$$\sqrt{(X6 - X67(Sp))^2 + (Y6 - Y67(Sp))^2} = 0.894$$
 [M]

$$\phi S6 := 2 \cdot \pi + atan \left(\frac{Y6}{X6} \right) - \phi 6 (Sp) = 280.317 \cdot deg$$
 [град]

Определение положений точек

$$XS6(S) := X56(S) + LS6 \cdot cos(\varphi S6 + \varphi 6(S))$$

$$YS6(S) := Y56(S) + LS6 \cdot sin(\varphi S6 + \varphi 6(S))$$

В таблице 2.1 и 2.2 приведены результаты геометрического анализа МН (координаты точек по осям X и Y, а также углы наклона звеньев)

Таблица 2.1 - Результаты геометрического анализа (углы наклона звеньев)

[M]	[град]	[град]	[град]	[град]	[град]	[град]
	φ34(S)	_ φ3(S) _	φ4(S)	φ5(S) _	φ6(S) _	φ7(S) _
S =	deg	deg	deg	deg	deg	deg
0.420	-18.2	-40.2	-86.7	-15.7	86.6	-7.7
0.448	-8.4	-30.4	-86.8	-9.1	88.4	1.2
0.476	0.3	-21.7	-86.6	-3.1	90.5	9.3
0.503	8.5	-13.5	-86.3	2.4	92.8	17.1
0.531	16.6	-5.4	-85.7	7.8	95.5	24.8
0.559	24.5	2.5	-85.1	13.0	98.5	32.4
0.587	32.6	10.6	-84.1	18.1	102.0	40.1
0.614	41.0	19.0	-83.0	23.2	106.0	48.0
0.642	49.7	27.7	-81.4	28.1	110.6	56.1
0.670	59.2	37.2	-79.4	33.0	115.9	64.3

Таблица 2.2 - Результаты геометрического анализа (координаты точек)

[M]	[M]	[M]	[M]	[M]	[M]	[M]
S =	X23(S) =	Y23(S) =	X23s(S) =	Y23s(S) =	X34(S) =	Y34(S) =
0.420	0.403	0.983	0.636	0.920	0.559	1.010
0.448	0.422	1.011	0.668	0.932	0.571	1.064
0.476	0.436	1.038	0.694	0.948	0.575	1.114
0.503	0.445	1.065	0.717	0.966	0.571	1.160
0.531	0.449	1.093	0.736	0.986	0.562	1.205
0.559	0.450	1.121	0.752	1.009	0.546	1.247
0.587	0.447	1.149	0.764	1.034	0.524	1.287
0.614	0.439	1.177	0.774	1.062	0.495	1.325
0.642	0.427	1.205	0.779	1.092	0.460	1.360
0.670	0.409	1.233	0.780	1.125	0.416	1.391
[M]	[M]	[M]	[M]	[M]	[M]	[M]
S =	X34s(S) =	Y34s(S) =	=X45(S) =	Y45(S) =	X45s(S) =	Y45s(S) =
0.420	0.559	1.010	0.597	0.350	0.597	0.350
0.448	0.571	1.064	0.609	0.404	0.609	0.404
0.476	0.575	1.114	0.614	0.454	0.614	0.454
0.503						
0.505	0.571	1.160	0.615	0.500	0.615	0.500
0.531	0.571 0.562	1.160 1.205	0.615 0.611			0.500 0.545
		—		0.500	0.615	
0.531	0.562	1.205	0.611	0.500 0.545	0.615 0.611	0.545
0.531 0.559	0.562 0.546	1.205 1.247	0.611 0.603	0.500 0.545 0.588	0.615 0.611 0.603	0.545 0.588
0.531 0.559 0.587	0.562 0.546 0.524	1.205 1.247 1.287	0.611 0.603 0.591	0.500 0.545 0.588 0.629	0.615 0.611 0.603 0.591	0.545 0.588 0.629

[M]	[M]	[M]	[M]	[M]	[M]	[M]
S =	X56(S) =	Y56(S) =	X67(S) =	Y67(S) =	X67s(S) =	Y67s(S) =
0.420	1.131	0.200	1.167	0.794	1.167	0.794
0.448	1.157	0.316	1.173	0.911	1.173	0.911
0.476	1.168	0.423	1.163	1.018	1.163	1.018
0.503	1.169	0.524	1.140	1.118	1.140	1.118
0.531	1.160	0.620	1.104	1.213	1.104	1.213
0.559	1.143	0.713	1.055	1.301	1.055	1.301
0.587	1.119	0.802	0.995	1.384	0.995	1.384
0.614	1.087	0.887	0.922	1.459	0.922	1.459
0.642	1.048	0.968	0.838	1.524	0.838	1.524
0.670	1.003	1.043	0.744	1.579	0.744	1.579
[M]	[M]	[M]				
S =	XS6(S) =	YS6(S) =				
0.420	1.996	0.305				
0.448	2.018	0.449				
0.476	2.024	0.586				
0.503	2.017	0.722				
0.531	1.999	0.857				
0.559	1.968	0.994				
0.587	1.924	1.133				
0.614	1.867	1.273				
0.642	1.795	1.416				
0.670	1.706	1.557				
_						

3 КИНЕМАТИЧЕСКИЙ АНАЛИЗ

3.1 Аналог угловой скорости поворотного рычага

Определение передаточных отношений

$$\text{U43(S)} := \frac{\text{L34} \cdot \sin(\phi 5(S) - \phi 34(S))}{\text{L4} \cdot \sin(\phi 4(S) - \phi 5(S))} \quad \text{U53(S)} := \frac{\text{L34} \cdot \sin(\phi 34(S) - \phi 4(S))}{\text{L5} \cdot \sin(\phi 5(S) - \phi 4(S))}$$

$$\text{U65(S)} := \frac{\text{L56} \cdot \sin(\varphi 7(S) - \varphi 5(S))}{\text{L6} \cdot \sin(\varphi 6(S) - \varphi 7(S))} \qquad \text{U75(S)} := \frac{\text{L56} \cdot \sin(\varphi 5(S) - \varphi 6(S))}{\text{L7} \cdot \sin(\varphi 7(S) - \varphi 6(S))}$$

Определение аналогов угловых скоростей звеньев МН

$$d\phi 3(S) := \frac{2 \cdot S}{\sqrt{4 \cdot L13^2 \cdot L3^2 - \left(S^2 - L13^2 - L3^2\right)^2}}$$

 $\varphi 41(S) := d\varphi 3(S) \cdot U43(S) \qquad \qquad \varphi 61(S) := d\varphi 3(S) \cdot U65(S) \cdot U53(S)$

 $\varphi 51(S) := d\varphi 3(S) \cdot U53(S) \qquad \qquad \varphi 71(S) := d\varphi 3(S) \cdot U75(S) \cdot U53(S)$

Определение передаточного числа оси подвеса I56(S)

 $\mathsf{I56}(\mathsf{S}) := \mathsf{d} \varphi \mathsf{3}(\mathsf{S}) \cdot \mathsf{U53}(\mathsf{S}) \cdot \mathsf{L56} \cdot \mathsf{cos}(\varphi \mathsf{5}(\mathsf{S}))$

Определение основного передаточного числа IS6(S)

$$IS6(S) := I56(S) + \phi61(S) \cdot LS6 \cdot \cos(\phi6(S) + \phiS6)$$

График изменения аналога угловой скорости звена L3 приведен на рисунке 3.1

Рисунок 3.1 - График изменения аналога угловой скорости звена L3

График изменения коэффициента передаточного числа на оси подвеса и основного передаточного числа приведен на рисунке 3.2

Рисунок 3.2 - График изменения передаточных чисел

♦- Передаточное число на оси подвеса

В таблице 3.1 приведены результаты кинематического анализа

Таблица 3.1 - Результаты кинематического анализа

	•				г 1	r 1
[M]	[-]	[-]	[-]	[-]	[-]	[-]
S =	U43(S) =	U53(S) =	U65(S) =	U75(S) =	I56(S) =	IS6(S) =
0.420	-0.023	0.666	0.244	1.337	4.459	5.404
0.448	0.006	0.679	0.312	1.354	3.984	5.031
0.476	0.030	0.681	0.381	1.378	3.723	4.897
0.503	0.052	0.675	0.455	1.408	3.544	4.867
0.531	0.075	0.663	0.538	1.445	3.400	4.895
0.559	0.099	0.644	0.632	1.488	3.267	4.955
0.587	0.126	0.619	0.739	1.538	3.132	5.029
0.614	0.156	0.585	0.862	1.596	2.985	5.096
0.642	0.192	0.541	1.001	1.661	2.817	5.126
0.670	0.235	0.484	1.155	1.729	2.621	5.074
[M]	[-]	[-]	[-]	[-]	[-]	
[M] S =				[-] \$\phi61(S) =		
S =	$d\phi 3(S) =$	φ41(S) =	φ51(S) =	ϕ 61(S) =	ϕ 71(S) =	
S = 0.420	$d\phi 3(S) = 6.719$	φ41(S) =	φ51(S) =	φ61(S) =	φ71(S) = 5.983	
S = 0.420 0.448	$d\phi 3(S) = \frac{6.719}{5.743}$	ϕ 41(S) = $\frac{-0.155}{0.034}$	φ51(S) = 4.475 3.898	ϕ 61(S) = $\frac{1.092}{1.216}$	φ71(S) = 5.983 5.280	
S = 0.420 0.448 0.476	$d\phi 3(S) = \frac{6.719}{5.743}$ 5.294	ϕ 41(S) = $\frac{-0.155}{0.034}$ 0.158	φ51(S) = 4.475 3.898 3.603	φ61(S) = 1.092 1.216 1.372	φ71(S) = 5.983 5.280 4.965	
S = 0.420 0.448 0.476 0.503	$d\phi 3(S) = \\ 6.719 \\ 5.743 \\ 5.294 \\ 5.079$		φ51(S) = 4.475 3.898 3.603 3.427		φ71(S) = 5.983 5.280 4.965 4.826	
S = 0.420 0.448 0.476 0.503 0.531	$d\phi 3(S) = \\ \hline 6.719 \\ 5.743 \\ \hline 5.294 \\ \hline 5.079 \\ \hline 5.002$	φ41(S) = -0.155 0.034 0.158 0.266 0.375	φ51(S) = 4.475 3.898 3.603 3.427 3.316	$ \phi61(S) = \frac{1.092}{1.216} \\ 1.372 \\ 1.560 \\ 1.783 $	φ71(S) = 5.983 5.280 4.965 4.826 4.790	
S = 0.420 0.448 0.476 0.503 0.531 0.559	$d\phi 3(S) = \\ \hline 6.719 \\ 5.743 \\ \hline 5.294 \\ \hline 5.079 \\ \hline 5.002 \\ \hline 5.028$	φ41(S) = -0.155 0.034 0.158 0.266 0.375 0.498	φ51(S) = 4.475 3.898 3.603 3.427 3.316 3.240	φ61(S) = 1.092 1.216 1.372 1.560 1.783 2.047	φ71(S) = 5.983 5.280 4.965 4.826 4.790 4.820	
S = 0.420 0.448 0.476 0.503 0.531 0.559 0.587	dφ3(S) = 6.719 5.743 5.294 5.079 5.002 5.028 5.146	φ41(S) = -0.155 0.034 0.158 0.266 0.375 0.498 0.647	φ51(S) = 4.475 3.898 3.603 3.427 3.316 3.240 3.184	φ61(S) = 1.092 1.216 1.372 1.560 1.783 2.047 2.354	φ71(S) = 5.983 5.280 4.965 4.826 4.790 4.820 4.899	

4 РАСЧЕТ ГРУЗОПОДЪЕМНОСТИ

Определение силы на ГЦ

$$Fgc(S) := P6 \cdot IS6(S)$$

Площадь поршня ГЦ

$$Sgc := 0.25 \cdot \pi \cdot D_{gc}^{2}$$

Развиваемая ГЦ давление в процессе работы МН

$$Pgc(S) := \frac{Fgc(S)}{k_{gc} \cdot Sgc \cdot \eta}$$

Грузоподъемность на оси подвеса и в точке приложения ЦМ НМ

$$G56(S) := \frac{k_{gc} \cdot P_{gc_max} \cdot \eta \cdot Sgc}{I56(S)} \qquad GS6(S) := \frac{k_{gc} \cdot P_{gc_max} \cdot \eta \cdot Sgc}{IS6(S)}$$

График изменения грузоподъемности приведен на рисунке 4.1

⊖ ⊖ ⊖ Грузоподъемность на оси подвеса♦ ⊕ ◆ Грузоподъемность в точке ЦМ НМ

Рисунок 4.1 - График изменения грузоподъемности

График изменения силы на ГЦ приведен на рисунке 4.2, а график изменения давления в ГЦ приведен на рисунке 4.3

Рисунок 4.2 - График изменения силы на ГЦ

Рисунок 4.3 - График изменения давления на ГЦ

Запас грузпоподъемнести равен

$$\Delta GS65(S) := \frac{GS6(S) - P6}{P6} \cdot 100$$

Результаты анализа МН на грузоподъемность приведены в таблице 4.1

Таблица 4.1 - Результаты анализа МН на грузоподъемность

[M]	[H]	[∏a]	[H]	[H]	[H]
S =	Fgc(S) =	Pgc(S) =	G56(S) =	GS6(S) =	Δ GS65(S) =
0.420	148598	17596806	33139	27349	-0.6
0.448	138350	16383199	37094	29375	6.8
0.476	134665	15946833	39694	30178	9.7
0.503	133852	15850600	41697	30362	10.4
0.531	134603	15939567	43466	30192	9.8
0.559	136254	16135054	45232	29826	8.5
0.587	138296	16376836	47183	29386	6.9
0.614	140142	16595475	49511	28999	5.5
0.642	140956	16691883	52459	28831	4.8
0.670	139522	16522047	56377	29128	5.9
					

5 СИЛОВОЙ АНАЛИЗ

5.1 Система уравнений для третьей структурной силовой группы

Группа Ассура I (6,7) приведена на рисунке 5.1

Рисунок 5.1 - Группа Ассура I (6,7)

$$R56x(S) + R07x(S) = 0$$

$$R56y(S) + R07y(S) - P6 = 0$$

$$R07x(S) \cdot (Y07 - Y67(S)) + R07y(S) \cdot (X67(S) - X07) = 0$$

$$R56x(S) \cdot (Y67(S) - Y56(S)) \dots = 0$$

$$+ -R56y(S) \cdot (X67(S) - X56(S)) - P6 \cdot (XS6(S) - X67(S))$$

Вспомогательные величины

$$a1(S) := Y07 - Y67(S)$$
 $d1(S) := X67(S) - X56(S)$
 $b1(S) := X67(S) - X07$ $e1(S) := XS6(S) - X67(S)$
 $c1(S) := Y67(S) - Y56(S)$

Определение реакции R56

$$\begin{split} R56x(S) &:= \frac{P6 \cdot b1(S) \cdot (d1(S) + e1(S))}{a1(S) \cdot d1(S) + b1(S) \cdot c1(S)} \\ R56y(S) &:= -\frac{P6 \cdot e1(S) - R56x(S) \cdot c1(S)}{d1(S)} \\ R56(S) &:= \sqrt{R56x(S)^2 + R56y(S)^2} \end{split}$$

Определение реакции R07

R07x(S) := -R56x(S) R07y(S) := P6 - R56y(S)
R07(S) :=
$$\sqrt{R07x(S)^2 + R07y(S)^2}$$

Определение реакции R67

$$R67x(S) := R56x(S) \qquad R67y(S) := R56y(S) - P6$$

$$R67(S) := \sqrt{R67x(S)^2 + R67y(S)^2}$$

Проверка

5.2 Система уравнений для второй структурной силовой группы

Группа Ассура II (4,5) приведена на рисунке 5.2

Рисунок 5.2 - Группа Ассура II (4,5)

Определение реакций R65x и R65y

$$R65x(S) := -R56x(S)$$
 $R65y(S) := -R56y(S)$

Определение реакции R34

$$\begin{split} &R05x(S) + R34x(S) - R65x(S) = 0 \\ &R05y(S) + R34y(S) - R65y(S) = 0 \\ &-R34x(S) \cdot (Y34(S) - Y45(S)) + R34y(S) \cdot (X34(S) - X45(S)) = 0 \\ &-R05x(S) \cdot (Y05 - Y45(S)) - R05y(S) \cdot (X45(S) - X05) - H(S) = 0 \\ &H(S) = R65x(S) \cdot (Y45(S) - Y56(S)) + R65y(S) \cdot (X56(S) - X45(S)) \end{split}$$

Вспомогательные величины

$$a2(S) := Y34(S) - Y45(S) \qquad \qquad c2(S) := Y05 - Y45(S) \\ b2(S) := X34(S) - X45(S) \qquad \qquad d2(S) := X45(S) - X05$$

$$b2(S) := X34(S) - X45(S)$$
 $d2(S) := X45(S) - X05(S)$

$$e2(S) := R65x(S) \cdot (Y45(S) - Y56(S)) + R65y(S) \cdot (X56(S) - X45(S))$$

Определение реакции R05

$$R05x(S) := -\frac{b2(S) \cdot e2(S) - R65x(S) \cdot a2(S) \cdot d2(S) + R65y(S) \cdot b2(S) \cdot d2(S)}{a2(S) \cdot d2(S) + b2(S) \cdot c2(S)}$$

$$R05y(S) := -\frac{e2(S) + R05x(S) \cdot c2(S)}{d2(S)}$$

$$R05(S) := \sqrt{R05x(S)^2 + R05y(S)^2}$$

Определение реакции R34

$$R34x(S) := \frac{b2(S) \cdot e2(S) + R65x(S) \cdot b2(S) \cdot c2(S) + R65y(S) \cdot b2(S) \cdot d2(S)}{a2(S) \cdot d2(S) + b2(S) \cdot c2(S)}$$

$$R34y(S) := \frac{R34x(S) \cdot a2(S)}{b2(S)}$$

$$R34y(S) := \frac{R34x(S) \cdot a2(S)}{b2(S)}$$

$$R34(S) := \sqrt{R34x(S)^2 + R34y(S)^2}$$

Определение реакции R45

$$R45x(S) := R34x(S)$$

$$R45y(S) := R34y(S)$$

R45y(S) := R34y(S)
R45(S) :=
$$\sqrt{R45x(S)^2 + R45y(S)^2}$$

▶ Проверка

5.3 Система уравнений для первой структурной силовой группы

Группа Ассура I (2,3) приведена на рисунке 5.3

Рисунок 5.3 - Группа Ассура I (2,3)

Определение реакций R43x и R43y

$$\begin{array}{l} {\sf R43x}(S) := -{\sf R34x}(S) & {\sf R43y}(S) := -{\sf R34y}(S) \\ {\sf R01x}(S) + {\sf R03x}(S) - {\sf R43x}(S) = 0 \\ {\sf R01y}(S) + {\sf R03y}(S) - {\sf R43y}(S) = 0 \\ {\sf R01x}(S) \cdot ({\sf Y23}(S) - {\sf Y01}) - {\sf R01y}(S) \cdot ({\sf X23}(S) - {\sf X01}) = 0 \\ -{\sf R03x}(S) \cdot ({\sf Y03} - {\sf Y23}(S)) + {\sf R03y}(S) \cdot ({\sf X03} - {\sf X23}(S)) - {\sf H}(S) = 0 \\ {\sf H}(S) = {\sf R43x}(S) \cdot ({\sf Y23}(S) - {\sf Y34}(S)) + {\sf R43y}(S) \cdot ({\sf X34}(S) - {\sf X23}(S)) \\ \end{array}$$

Вспомогательные величины

$$\begin{array}{ll} a3(S) := Y23(S) - Y01 & c3(S) := Y03 - Y23(S) \\ b3(S) := X23(S) - X01 & d3(S) := X03 - X23(S) \\ e3(S) := R43x(S) \cdot (Y23(S) - Y34(S)) + R43y(S) \cdot (X34(S) - X23(S)) \end{array}$$

Определение реакций R03

$$\begin{aligned} \text{R03x(S)} &:= \frac{\text{b3(S)} \cdot \text{e3(S)} + \text{R43x(S)} \cdot \text{a3(S)} \cdot \text{d3(S)} - \text{R43y(S)} \cdot \text{b3(S)} \cdot \text{d3(S)}}{\text{a3(S)} \cdot \text{d3(S)} - \text{b3(S)} \cdot \text{c3(S)}} \\ \text{R03y(S)} &:= \frac{\text{e3(S)} + \text{R03x(S)} \cdot \text{c3(S)}}{\text{d3(S)}} \end{aligned}$$

$$R03(S) := \sqrt{R03x(S)^2 + R03y(S)^2}$$

Определение реакций R01

$$R01x(S) := -\frac{b3(S) \cdot e3(S) + R43x(S) \cdot b3(S) \cdot c3(S) - R43y(S) \cdot b3(S) \cdot d3(S)}{a3(S) \cdot d3(S) - b3(S) \cdot c3(S)}$$

$$\begin{aligned} &R01y(S) := \frac{R01x(S) \cdot a3(S)}{b3(S)} \\ &R01(S) := \sqrt{R01x(S)^2 + R01y(S)^2} \end{aligned}$$

$$R01(S) := \sqrt{R01x(S)^2 + R01y(S)^2}$$

Определение реакций R23

$$R23x(S) := R01x(S)$$
 $R23y(S) := R01y(S)$

R23(S) :=
$$\sqrt{R23x(S)^2 + R23y(S)^2}$$

Проверка

Результаты силового анализа МН приведены в таблице 5.1

Таблица 5.1 - Результаты силового анализа МН

[M]	[H]	[H]	[H]	[H]	[H]
S =	R56x(S) =	R56y(S) =	R07x(S) =	R07y(S) = 1	R23x(S) =
0.420	39721	22161	-39721	5339	-4358
0.448	39831	28353	-39831	-853	2304
0.476	39494	34001	-39494	-6501	5903
0.503	38671	39414	-38671	-11914	7848
0.531	37275	44695	-37275	-17195	8641
0.559	35190	49836	-35190	-22336	8486
0.587	32289	54722	-32289	-27222	7445
0.614	28458	59121	-28458	-31621	5509
0.642	23655	62669	-23655	-35169	2635
0.670	17985	64891	-17985	-37391	-1195
[M]	[H]	[H]	[H]	[H]	[H]
S =	R23y(S) =	R05x(S) =	R05y(S) =	R34x(S) =	R34y(S) =
0.420	148534	-43972	50886	4251	-73047
0.448	138330	-44120	47212	4290	-75565
0.476	134535	-44151	44248	4656	-78249
0.503	133622	-43984	41794	5313	-81208
0.531	134326	-43558	39811	6283	-84506
0.559	135990	-42817	38326	7627	-88162
0.587	138095	-41730	37397	9440	-92118
0.614	140034	-40313	37050	11855	-96171
0.642	140932	-38682	37198	15027	-99867
0.670	139517	-37105	37480	19120	-102371

[M]	[H]	[H]	[H]	[H]	[H]
S =	R45x(S) =	R45y(S) =	R03x(S) =	R03y(S) =	R01x(S) =
0.420	4251	-73047	106	-75487	-4358
0.448	4290	-75565	-6594	-62765	2304
0.476	4656	-78249	-10559	-56286	5903
0.503	5313	-81208	-13161	-52414	7848
0.531	6283	-84506	-14924	-49820	8641
0.559	7627	-88162	-16112	-47827	8486
0.587	9440	-92118	-16885	-45977	7445
0.614	11855	-96171	-17364	-43863	5509
0.642	15027	-99867	-17662	-41065	2635
0.670	19120	-102371	-17925	-37146	-1195
[M]	[H]	[H]	[H]	[H]	[H]
S =	R01y(S) =	R56(S) =	R07(S) =	R03(S) =	R05(S) =
0.420	148534	45484	40078	75488	67252
0.448	138330	48892	39840	63110	64619
0.476	134535	52114	40026	57268	62508
0.503	133622	55217	40464	54041	60674
0.531	134326	58198	41050	52007	59010
0.559	135990	61008	41680	50469	57465
0.587	138095	63538	42233	48980	56034
0.614	140034	65613	42541	47175	54753
0.642	140932	66985	42384	44702	53665
0.670	139517	67337	41492	41245	52740
[M]	[H]	[H]	[H]	[H]	[H]
S =	R34(S) =	R23(S) =	R45(S) =	R01(S) =	Fgc(S) =
0.420	73170	148598	73170	148598	148598
0.448	75687	138350	75687	138350	138350
0.476	78388	134665	78388	134665	134665
0.503	81382	133852	81382	133852	133852
0.531	84739	134603	84739	134603	134603
0.559	88491	136254	88491	136254	136254
0.587	92601	138296	92601	138296	138296
0.614	96899	140142	96899	140142	140142
0.642	100991	140956	100991	140956	140956
0.670	104141	139522	104141	139522	139522

Рисунок 5.4 - Результаты силового анализа МН

6 РАСЧЕТ УПРАВЛЯЕМОСТИ МСХА

Расчетная схема для расчета управляемости МСХА приведена на рисунке 6.1

Рисунок 6.1 - Расчетная схема для определения управляемости МСХА

Запишем уравнение сил, действующих на МСХА

$$-$$
Pгр + Rа $-$ Рмсха + Rb $-$ P6 = 0

откуда

$$Rb = Prp - Ra + Pyec + P6$$

$$Prp \cdot (a + Lb) - Ra \cdot L + Pmcxa \cdot b - P6 \cdot Xs6 = 0$$

откуда

$$Ra(S) := \frac{Prp \cdot (a + L) + Pmcxa \cdot b - P6 \cdot XS6(S)}{L}$$

$$Rb(S) := Prp + Pmcxa + P6 - Ra(S)$$

Запас по устойчивости

$$\Delta \text{Ra}(S) := \frac{\text{Ra}(S)}{\text{P6} + \text{Pmcxa} + \text{Prp}} \cdot 100 \qquad \Delta \text{Rb}(S) := \frac{\text{Rb}(S)}{\text{P6} + \text{Pmcxa} + \text{Prp}} \cdot 100$$

График изменения запаса устойчивости, приходящейся на управляемые колеса, приведен на рисунке 6.2

Рисунок 6.2 - График изменения запаса устойчивости на управляемых колесах

Максимальная грузоподъемность

Ramin :=
$$0.2 \cdot (P6 + PMCXA + Prp)$$

$$GS6max(S) := \frac{Pmcxa \cdot b + Prp \cdot (a + L) - Ramin}{XS6(S)}$$

Результаты анализа МН на устойчивость приведены в таблице 6.1.

Таблица 6.1 - Результаты анализа МН на устойчивость

[M]	[H]	[H]	[%]	[%]	[H]
S =	Ra(S) =	Rb(S) =	$\Delta Ra(S) =$	$\Delta Rb(S) =$	GS6max(S) =
0.420	21725	69775	23.7	76.3	50547
0.448	21522	69978	23.5	76.5	50001
0.476	21465	70035	23.5	76.5	49849
0.503	21528	69972	23.5	76.5	50015
0.531	21701	69799	23.7	76.3	50483
0.559	21987	69513	24.0	76.0	51272
0.587	22391	69109	24.5	75.5	52430
0.614	22922	68578	25.1	74.9	54035
0.642	23593	67907	25.8	74.2	56210
0.670	24416	67084	26.7	73.3	59128