INSTITUTO SUPERIOR TÉCNICO

Análise e Síntese de Algoritmos

Ano Lectivo 2018/2019

Repescagem 1º Teste - versão A

RESOLUÇÃO

I. (2,5 + 2,5 + 2,5 + 2,5 + 2,5 + 2,5 = 15,0 val.)

I.a)

	x_2	<i>x</i> ₃	x_8	x_{11}	<i>x</i> ₁₂
$rank[x_i]$	2	0	0	1	0
$p[x_i]$	x_1	x_1	x_1	x_2	x_{11}

I.b)

	A	В	С	D	Е	F	G	Н	I
d()	0	1	2	5	4	3	6	7	8
low()	0	0	0	0	0	0	4	4	4

Nº Componentes Fortemente Ligados: 1

I.c)

Ordem vértices	1	2	3	4	5	6
v	A	В	D	Е	C	F

Caminho Mais Curto Errado: A,B,D,F

I.d)

Custo MST	6X + Y
Número MST Diferentes	9

I.e)

Expressão	$T(n) = 4 * T(n/2) + O(\lg n)$
Majorante	$O(n^2)$

I.f)

		A	В	С	D	Е
	h()	1	1	8	2	9
ĺ	Corte:	$\{s,C,D,E\}/\{A,B,t\}$ ou $\{s,C,E\}/\{A,B,D,t\} \mid f(S,T) =$				14

II. (2,0 + 3,0 = 5,0 val.)

II.a) $\langle XXX \rangle$ II.b) $\langle XXX \rangle$

I. (2,5 + 2,5 + 2,5 + 2,5 + 2,5 + 2,5 = 15,0 val.)

I.a) Considere o seguinte conjunto de operações sobre conjuntos disjuntos:

Use a estrutura em árvore para representação de conjuntos disjuntos com a aplicação das heuristicas de união por categoria e compressão de caminhos. Para os elementos $x_2, x_3, x_8, x_{11}, x_{12}$, indique os valores de categoria $(rank[x_i])$ e o valor do seu pai na árvore $(p[x_i])$.

Nota: Na operação Make-Set(x), o valor da categoria de x é inicializado a 0. Na operação de Union(x,y), em caso de empate, considere que o representante de y é que fica na raíz.

I.b) Considere o seguinte grafo dirigido.

Aplique o algoritmo de Tarjan ao grafo da figura. Inicie a travessia no vértice A. Durante a aplicação do algoritmo considere que os vértices são sempre analisados por ordem lexicográfica (ou seja, A, B, C...).

Indique os valores de d e low para todos os vértices do grafo. Considere que os valores de d e low começam em 0. Indique ainda o número de componentes fortemente ligados no grafo.

I.c) Considere o grafo dirigido e pesado da figura.

Aplique o algoritmo de Dijkstra ao grafo, considerando o vértice *A* como origem. Indique a ordem pela qual os vértices são removidos da fila de prioridade durante a execução do algoritmo. Em caso de empate, considere os vértices por ordem lexicográfica.

Como existem arcos com pesos negativos, é possível que o algoritmo não produza resultados correctos. Caso haja algum caminho calculado que não seja um caminho mais curto, indique o caminho incorrectamente calculado desde a origem ao destino. Caso contrário, indique "Nenhum" na sua resposta.

I.d) Considere o grafo não dirigido e pesado da figura.

Sabendo que 2X > Y > X > 0, calcule o peso de uma árvore abrangente de menor custo (MST) do grafo. Indique o número de árvore abrangentes de menor custo diferentes que podemos formar no grafo.

I.e) Considere a função recursiva:

```
int f(int n)
{
  int i = 0, j = n;

  if (n <= 1) return 1;

  while(j > 0) {
    i++;
    j = j / 2;
  }

  for (int k = 0; k < 4; k++)
    j += f(n/2);

  while (i > 0) {
    j = j + 2;
    i--;
  }
  return j;
}
```

Indique a expressão (recursiva) que descreve o tempo de execução da função em termos do número n, e de seguida, utilizando os métodos que conhece, determine o menor majorante assimptótico.

I.f) Considere a rede de fluxo da figura onde *s* e *t* são respectivamente os vértices fonte e destino na rede. Aplique o algoritmo Relabel-To-Front na rede de fluxo. Considere que a lista de vértices é inicializada por ordem alfabética e que os vizinhos de cada vértice também estão ordenados alfabeticamente. Assim, as listas de vizinhos dos vértices intermédios são as seguintes:

$$N[A] = < B, C, E, s > N[B] = < A, D, E, t > N[C] = < A, D, E, s > N[D] = < B, C, E, t > N[E] = < A, B, C, D >$$

Indique a altura final de cada vértice. Indique ainda o corte mínimo da rede e o valor do fluxo máximo.

II.
$$(2,0 + 3,0 = 5,0 \text{ val.})$$

II.a) Considere um grafo G = (V, E) dirigido. Um grafo diz-se semi-ligado se entre quaisquer dois vértices $u, v \in V$ existe um caminho de u para v ou existe um caminho de v para u.

Por exemplo, o grafo da figura abaixo é semi-ligado.

Por outro lado, o grafo seguinte não é semi-ligado porque entre os vértices A e D não existe nenhum caminho em qualquer dos sentidos.

Proponha um algoritmo eficiente que recebe um grafo e determina se o grafo é semi-ligado. Indique a complexidade do algoritmo proposto.

Solução:

II.b) Considere um conjunto D de disciplinas com dimensão m. Cada disciplina $d_i \in D$ tem um número limitado de inscrições. Seja $\lim(d_i)$ o número máximo de alunos que se pode inscrever à disciplina d_i $(1 \le i \le m)$.

Seja A um conjunto de alunos com dimensão n. Cada aluno tem que se inscrever a 5 disciplinas. No entanto, como há limites nas inscrições, os alunos podem candidatar-se a um número superior a 5 disciplinas. Seja $cand(a_j)$ o conjunto de disciplinas a que o aluno a_j $(1 \le j \le n)$ se candidata a frequentar. Pode assumir que o número de disciplinas a que cada aluno se candidata é pelo menos 5, ou seja, $|cand(a_j)| \ge 5$.

Proponha um algoritmo eficiente que dado um conjunto D de disciplinas (onde cada disciplina tem um número limitado de inscrições) e um conjunto de alunos A (onde cada aluno se candidata a pelo menos 5 disciplinas), determina uma possível atribuição dos alunos às disciplinas de tal forma que cada aluno está inscrito precisamente a 5 disciplinas. Note que cada aluno a_j apenas pode ser inscrito nas disciplinas a que se cadidata $(cand(a_j))$. Caso não seja possível inscrever cada aluno a 5 disciplinas, o seu algoritmo deve retornar "Impossível".

Indique a complexidade do algoritmo proposto.

Solução: