Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

Yu-Hsin Chen¹, Tushar Krishna¹, Joel Emer^{1,2}, Vivienne Sze¹ ¹ Massachusetts Institute of Technology, Cambridge, MA ² NVIDIA, Westford, MA

NVIDIA

1. Motivation

• Accelerators are required to run state-of-the-art CNNs at high throughput and low power/energy

3. Eyeriss Architecture

• 168 PEs with Reconfigurable Dataflow Mapping to Maximize Data Reuse

4000 μm

• Data Compression (Reduce DRAM BW) and Zero Skipping (Reduce Processing Power)

2. Key to High Efficiency

Focus on the most computation and energy demanding block – Convolutional (CONV) layers

4. Implementation

		1 7 000 0111		
Technology	TSMC 65nm LP 1P9M	4000 μm		
Core Area	3.5mm×3.5mm	ੁਰੂ ਹੁ Spatial PE Array		
Gate Count	1852 kGates (NAND2)			
On-Chip Buffer	108 KB			
# of PEs	168			
Scratch Pad / PE	0.5 KB			
Supply Voltage	0.82 – 1.17 V			
Core Frequency	100 – 250 MHz			
Peak Performance	33.6 – 84.0 GOPS (2 OP = 1 MAC)	PCIE		
Word Bit-width	16-bit Fixed-Point			
Filter Size*	1 – 32 [width] 1 – 12 [height]			
# of Filters*	1 – 1024			
# of Channels*	1 – 1024			
Stride Range	1–12 [horizontal] 1, 2, 4 [vertical]	Jetson TK1 VC707 + E		

5. Benchmark / Demo

AlexNet Performance Benchmark

Batch Size = 4 (227×227 frame) 200 MHz Core / 60 MHz Link

Layer	Power (mW)	Latency (ms)	# of MAC (MOPs)	Active # of PEs (%)	Buffer Data Access (MB)	DRAM Data Access (MB)
1	332	20.9	422	154 (92%)	18.5	5.0
2	288	41.9	896	135 (80%)	77.6	4.0
3	266	23.6	598	156 (93%)	50.2	3.0
4	235	18.4	449	156 (93%)	37.4	2.1
5	236	10.5	299	156 (93%)	24.9	1.3
Total	278	115.3	2663	148 (88%)	208.5	15.4

Eyeriss Caffe System Demo

1000-Class Image Classification with AlexNet

Link:
https://vimeo.com/154012013

