Optimal ancilla-free Clifford+T approximation of z-rotations

QIP 2015

Neil J. Ross and Peter Selinger Dalhousie University, Halifax, Canada

Gate complexity, in numbers.

Precision	Solovay-Kitaev	Lower bound
	$O(\log^{3.97}(1/\epsilon))$	$3\log_2(1/\varepsilon) + K$
$\epsilon = 10^{-10}$	$\approx 4,000$	≈ 102
$\epsilon = 10^{-20}$	$\approx 60,000$	≈ 198
$\epsilon = 10^{-100}$	$\approx 37,000,000$	≈ 998
$\epsilon = 10^{-1000}$	$\approx 350,000,000,000$	≈ 9966

Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995): Geometry.

$$ABA^{-1}B^{-1}$$
.

• New efficient synthesis algorithms (ca. 2012): Algebraic number theory.

$$a + b\sqrt{2}$$
.

Part I: Grid problems

The ring $\mathbb{Z}[\sqrt{2}]$

Consider $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

This is a ring (addition, subtraction, multiplication).

It has a form of *conjugation*: $(a + b\sqrt{2})^{\bullet} = a - b\sqrt{2}$.

The map "•" is an automorphism:

$$(\alpha + \beta)^{\bullet} = \alpha^{\bullet} + \beta^{\bullet}$$
$$(\alpha - \beta)^{\bullet} = \alpha^{\bullet} - \beta^{\bullet}$$
$$(\alpha\beta)^{\bullet} = \alpha^{\bullet}\beta^{\bullet}$$

Finally, $\alpha^{\bullet}\alpha = \alpha^2 - 2b^2$ is an integer, called the *norm* of α .

The automorphism "•"

The function $\alpha \mapsto \alpha^{\bullet}$ is *extremely non-continuous*. In fact, it can never happen that $|\alpha - \beta|$ and $|\alpha^{\bullet} - \beta^{\bullet}|$ are small at the same time (unless $\alpha = \beta$).

Proof. Let
$$\alpha - \beta = a + b\sqrt{2}$$
. Then

$$|\alpha - \beta| \cdot |\alpha^{\bullet} - \beta^{\bullet}| = |(\alpha + b\sqrt{2})(\alpha - b\sqrt{2})| = |\alpha^2 - 2b^2|.$$

If $\alpha \neq \beta$ this is an integer ≥ 1 .

Definition. Let B be a set of real numbers. The *grid* for B is the set

$$grid(B) = \{\alpha \in \mathbb{Z}[\sqrt{2}] \mid \alpha^{\bullet} \in B\}.$$

Definition. Let B be a set of real numbers. The *grid* for B is the set

$$grid(B) = \{\alpha \in \mathbb{Z}[\sqrt{2}] \mid \alpha^{\bullet} \in B\}.$$

Definition. Let B be a set of real numbers. The *grid* for B is the set

$$grid(B) = \{\alpha \in \mathbb{Z}[\sqrt{2}] \mid \alpha^{\bullet} \in B\}.$$

Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find $\alpha \in \mathbb{Z}[\sqrt{2}]$ such that

$$\alpha \in A$$
 and $\alpha^{\bullet} \in B$.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

The ring $\mathbb{Z}[\sqrt{2}]$ is *dense* in the real numbers.

Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find $\alpha \in \mathbb{Z}[\sqrt{2}]$ such that

$$\alpha \in A$$
 and $\alpha^{\bullet} \in B$.

Equivalently, find $a, b \in \mathbb{Z}$ such that:

$$a + b\sqrt{2} \in A$$
 and $a - b\sqrt{2} \in B$.

It is clear that there will be solutions when |A| and |B| are large. The number of solutions is $O(|A| \cdot |B|)$ in that case.

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

Solution: Scaling. $\lambda = 1 + \sqrt{2}$ is a unit of the ring $\mathbb{Z}[\sqrt{2}]$, with $\lambda^{-1} = \sqrt{2} - 1$. So multiplication by λ maps $\mathbb{Z}[\sqrt{2}]$ to itself. So we can equivalently consider the problem for $\lambda^n A$ and $\lambda^{\bullet n} B$, which takes us back to the "fat" case.

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

Solution: Scaling. $\lambda = 1 + \sqrt{2}$ is a unit of the ring $\mathbb{Z}[\sqrt{2}]$, with $\lambda^{-1} = \sqrt{2} - 1$. So multiplication by λ maps $\mathbb{Z}[\sqrt{2}]$ to itself. So we can equivalently consider the problem for $\lambda^n A$ and $\lambda^{\bullet n} B$, which takes us back to the "fat" case.

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

Solution: Scaling. $\lambda = 1 + \sqrt{2}$ is a unit of the ring $\mathbb{Z}[\sqrt{2}]$, with $\lambda^{-1} = \sqrt{2} - 1$. So multiplication by λ maps $\mathbb{Z}[\sqrt{2}]$ to itself. So we can equivalently consider the problem for $\lambda^n A$ and $\lambda^{\bullet n} B$, which takes us back to the "fat" case.

Solution of 1-dimensional grid problems

Theorem. Let A and B be finite real intervals. There exists an efficient algorithm that enumerates all solutions of the grid problem for A and B.

Consider the ring $\mathbb{Z}[\omega]$, where $\omega = e^{i\pi/4} = (1+i)/\sqrt{2}$. $\mathbb{Z}[\omega]$ is a subset of the complex numbers, which we can identify with the Euclidean plane \mathbb{R}^2 .

Definition. Let B be a bounded convex subset of the plane. Just as in the 1-dimensional case, the *grid* for B is the set

$$grid(B) = {\alpha \in \mathbb{Z}[\omega] \mid \alpha^{\bullet} \in B}.$$

Consider the ring $\mathbb{Z}[\omega]$, where $\omega = e^{i\pi/4} = (1+i)/\sqrt{2}$. $\mathbb{Z}[\omega]$ is a subset of the complex numbers, which we can identify with the Euclidean plane \mathbb{R}^2 .

Definition. Let B be a bounded convex subset of the plane. Just as in the 1-dimensional case, the *grid* for B is the set

$$grid(B) = \{\alpha \in \mathbb{Z}[\omega] \mid \alpha^{\bullet} \in B\}.$$

Consider the ring $\mathbb{Z}[\omega]$, where $\omega = e^{i\pi/4} = (1+i)/\sqrt{2}$. $\mathbb{Z}[\omega]$ is a subset of the complex numbers, which we can identify with the Euclidean plane \mathbb{R}^2 .

Definition. Let B be a bounded convex subset of the plane. Just as in the 1-dimensional case, the *grid* for B is the set

$$grid(B) = \{\alpha \in \mathbb{Z}[\omega] \mid \alpha^{\bullet} \in B\}.$$

Given bounded convex subsets A and B of the plane, the 2-dimensional grid problem is to find $\mathfrak{u} \in \mathbb{Z}[\omega]$ such that

The easiest case: upright rectangles

If $A = [x_0, x_1] \times [y_0, y_1]$ and $B = [x'_0, x'_1] \times [y'_0, y'_1]$, the problem reduces to two 1-dimensional problems:

 $\alpha \in [x_0, x_1], \quad \alpha^{\bullet} \in [x'_0, x'1] \quad \text{and} \quad \beta \in [y_0, y_1], \quad \beta^{\bullet} \in [y'_0, y'_1],$ where $\mathfrak{u} = \alpha + i\beta \in \mathbb{Z}[\omega]$. (This means $\alpha, \beta \in \mathbb{Z}[\sqrt{2}]$ or $\alpha, \beta \in \mathbb{Z}[\sqrt{2}] + 1/\sqrt{2}$).

Also easy: upright sets

The *uprightness* of a set A is the ratio of its area to the area of its bounding box. If A and B are upright, the grid problem reduces to that of rectangles.

Also easy: upright sets

The *uprightness* of a set A is the ratio of its area to the area of its bounding box. If A and B are upright, the grid problem reduces to that of rectangles.

The hardest case: long and skinny, not upright

Convex sets that are not upright are long and skinny. In this case, finding grid points is a priori a hard problem.

Our solution: grid operators

A linear operator $G: \mathbb{R}^2 \to \mathbb{R}^2$ is called a *grid operator* if $G(Z[\omega]) = Z[\omega]$.

Some useful grid operators:

$$\mathbf{R} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{K} = \frac{1}{\sqrt{2}} \begin{bmatrix} -\lambda^{-1} & -1 \\ \lambda & 1 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Proposition. Let G be a grid operator. Then the grid problem for A and B is equivalent to the grid problem for G(A) and $G^{\bullet}(B)$.

Proof. $\alpha \in A$ iff $G(\alpha) \in G(A)$, and $\alpha^{\bullet} \in B$ iff $G(\alpha)^{\bullet} \in G^{\bullet}(B)$.

Effect of a grid operator

$$\mathbf{B} = \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{bmatrix} \quad \mathbf{B}^{\bullet} = \begin{bmatrix} 1 & -\sqrt{2} \\ 0 & 1 \end{bmatrix}$$

Effect of a grid operator

$$\mathbf{B} = \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{bmatrix} \quad \mathbf{B}^{\bullet} = \begin{bmatrix} 1 & -\sqrt{2} \\ 0 & 1 \end{bmatrix}$$

Demo

Solution of 2-dimensional grid problems

Main Theorem. Let A and B be bounded convex sets with non-empty interior. Then there exists a grid operator G such that G(A) and $G^{\bullet}(B)$ are 1/6-upright.

Moreover, if A and B are M-upright, then G can be efficiently computed in O(log(1/M)) steps.

Corollary (Solution of 2-dimensional grid problems). Let A and B be bounded convex sets with non-empty interior. There exists an efficient algorithm that enumerates all solutions of the grid problem for A and B.

Part II: An algorithm for optimal Clifford+T approximations

The single-qubit Clifford+T group

The Clifford+T group on one qubit is generated by the Hadamard gate H, the phase gate S, the scalar $\omega=e^{i\pi/4}$, and the T- or $\pi/8$ -gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix},$$

$$\omega = e^{i\pi/4} = \frac{1+i}{\sqrt{2}}, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}.$$

Matsumoto-Amano normal form

Every Clifford+T operator can be written of the form

$$CTCTCTCTCT...TC$$
,

where the " \mathcal{C} " are Clifford operators. However, this representation is far from unique.

Theorem (Matsumoto and Amano 2008). Every Clifford+T operator $W: \mathbb{C}^2 \to \mathbb{C}^2$ can be uniquely written of the form

$$W = (T \mid \epsilon) (HT \mid SHT)^* C.$$

Example.

 $W = T HT SHT SHT HT SHT HT SHT HT SHT SSS\omega^7$

We can measure the "length" of an operator W in terms of its T-count; for example, the above W has T-count 11.

Information-theoretic lower bound on the T-count

Corollary (Matsumoto and Amano 2008). There are exactly $192 \cdot (3 \cdot 2^n - 2)$ distinct single-qubit Clifford+T operators of T-count at most n.

Corollary. To approximate an arbitrary operator up to ϵ requires T-count at least $K + 3 \log_2(1/\epsilon)$ in the typical case.

Proof. Since SU(2) is a 3-dimensional real manifold, it requires $\Omega(1/\epsilon^3)$ epsilon-balls to cover. Let n be the T-count. Using Matsumoto and Amano's result, we have

$$192 \cdot (3 \cdot 2^{n} - 2) \ge \frac{c}{\epsilon^3},$$

hence

$$n \ge K + 3 \log_2(1/\epsilon)$$
.

Exact synthesis of Clifford+T operators

Theorem (Kliuchnikov, Maslov, Mosca). Let $W = \begin{pmatrix} u & v \\ t & s \end{pmatrix}$ be a unitary operator. Then W is a Clifford+T operator if and only if $u, v, t, s \in \frac{1}{\sqrt{2}^k}\mathbb{Z}[\omega]$.

Example.

$$\frac{1}{\sqrt{27}} \begin{pmatrix} -3 + 4\sqrt{2} + (3 + 5\sqrt{2}) i & 3 + (-1 + 3\sqrt{2}) i \\ -3 - \sqrt{2} + (3 - 2\sqrt{2}) i & 9 - (1 + 3\sqrt{2}) i \end{pmatrix}$$

= T HT SHT SHT HT SHT HT SHT HT SHT SSS ω^7

Moreover, if $\det W = 1$, then the T-count of the resulting operator is equal to 2k - 2.

The approximate synthesis problem

Problem. Given an operator $U \in SU(2)$ and $\epsilon > 0$, find a Clifford+T operator W of small T-count, such that $||W - U|| \le \epsilon$.

Basic construction

We will approximate a z-rotation

$$R_{z}(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix}$$

by a matrix of the form

$$W = \frac{1}{\sqrt{2}^k} \begin{pmatrix} u & -t^{\dagger} \\ t & u^{\dagger} \end{pmatrix},$$

where $u, t \in \mathbb{Z}[\omega]$.

Observation. The error is a function of \mathfrak{u} (and not of \mathfrak{t}). Indeed, setting $z=e^{-i\theta/2}$ and $\mathfrak{u}'=\frac{\mathfrak{u}}{\sqrt{2}^k}$, we have

$$\left\|\frac{1}{\sqrt{2}^{k}}\begin{pmatrix} u & -t \\ t & u^{\dagger} \end{pmatrix} - R_{z}(\theta)\right\| \leq \epsilon \quad \text{iff} \quad \vec{u}' \cdot \vec{z} \geq 1 - \frac{\epsilon^{2}}{2}.$$

The problem then reduces to:

- (1) Finding $u \in \mathbb{Z}[\omega]$ such that $\frac{u}{\sqrt{2}^k} \in \mathcal{R}_{\varepsilon}$, with small k;
- (2) Solving the Diophantine equation $t^{\dagger}t + u^{\dagger}u = 2^k$.

Diophantine equations are computationally easy (if we can factor)

Consider a Diophantine equation of the form

$$t^{\dagger}t = \xi \tag{1}$$

where $\xi \in \mathbb{Z}[\sqrt{2}]$ is given and $t \in \mathbb{Z}[\omega]$ is unknown.

Necessary condition. The equation (??) has a solution only if $\xi \ge 0$ and $\xi^{\bullet} \ge 0$.

Theorem. There exists a probabilistic polynomial time algorithm which decides whether the equation (??) has a solution or not, and produces the solution if there is one, provided that the algorithm is given the prime factorization of $n = \xi^{\bullet} \xi$.

This is okay, because factoring random numbers is not as hard as worst-case numbers.

The candidate selection problem

The only remaining problem is to find suitable \mathfrak{u} . Note that $\xi^{\bullet}=(2^k-\mathfrak{u}^{\dagger}\mathfrak{u})^{\bullet}\geq 0$ iff $\mathfrak{u}^{\bullet}/\sqrt{2^k}$ is in the unit disk.

Candidate selection problem. Find $k \in \mathbb{N}$ and $\mathfrak{u} \in \mathbb{Z}[\omega]$ such that

- 1. $u/\sqrt{2^k}$ is in the epsilon-region \mathcal{R}_{ϵ} ;
- 2. $u^{\bullet}/\sqrt{2^k}$ is in the unit disk;

But this is a 2-dimensional grid problem, so can be solved efficiently.

Algorithm 1

- (1) For all $k \in \mathbb{N}$, enumerate all $\mathfrak{u} \in \mathbb{Z}[\omega]$ such that $\mathfrak{u}/\sqrt{2^k} \in \mathcal{R}_{\varepsilon}$ and $\mathfrak{u}^{\bullet}/\sqrt{2^k} \in \overline{\mathcal{D}}$.
- (2) For each \mathfrak{u} :
 - (a) Compute $\xi = 2^k u^{\dagger}u$ and $n = \xi^{\bullet}\xi$.
 - (b) Attempt to find a prime factorization of n.
 - (c) If a prime factorization is found, attempt to solve the equation $t^{\dagger}t=\xi$.
- (3) When step (2) succeeds, output W.

Results

- In the presence of a factoring oracle (e.g., a quantum computer), Algorithm 1 is *optimal* in an absolute sense: it finds the solution with the smallest possible T-count whatsoever, for the given θ and ϵ .
- In the absence of a factoring oracle, Algorithm 1 is *nearly optimal*: it yields T-counts of $\mathfrak{m} + O(\log(\log(1/\epsilon)))$, where \mathfrak{m} is the second-to-optimal T-count.
- The algorithm yields an *upper bound* and a *lower bound* for the T-count of each problem instance.
- The runtime is polynomial in $\log(1/\epsilon)$.

Gate complexity, in numbers.

Precision	Solovay-Kitaev	Lower bound	This algorithm
$\epsilon = 10^{-10}$	$\approx 4,000$	102	102
$\epsilon = 10^{-20}$	$\approx 60,000$	198	200
$\epsilon = 10^{-100}$	$\approx 37,000,000$	998	1000
$\epsilon = 10^{-1000}$	$\approx 350,000,000,000$	9966	9974

The end.

arXiv:1403.2975