

Notebook de Red Neuronal con Explicación Paso a Paso

Objetivo del entregable

El objetivo de este trabajo es que cada equipo implemente una red neuronal multicapa / R desde cero o usando una librería básica, pero con un fuerte enfoque pedagógico y explicativo. No basta con que funcione: deben entenderlo, documentarlo y explicarlo cuidadosamente.

Indicaciones generales

- El entregable debe ser un **Jupyter Notebook** (.ipynb) por equipo.
- Cada sección del notebook debe incluir:
 - o Código comentado línea por línea.
 - Explicaciones en texto claro.
 - Fórmulas matemáticas escritas con notación LaTeX (no obligatorio pero si deseable).
 - Visualizaciones del proceso (gráficos de datos, arquitectura de la red, errores, etc.).
 - o Reflexiones finales del equipo.
- El notebook debe verse limpio, académico y profesional.

Estructura sugerida del notebook (por si quieren guía)

1. Introducción

- ¿Qué es una red neuronal artificial?
- ¿Por qué son importantes?
- ¿Qué problema específico van a resolver (por ejemplo, clasificación de datos sintéticos o MNIST)?
- Breve explicación del dataset elegido.

2. Fundamentos teóricos

- Breve repaso del perceptrón simple.
- ¿Qué es una red neuronal multicapa?
- Explicar los siguientes conceptos con fórmulas en LaTeX:
 - Propagación hacia adelante
 - o Funciones de activación
 - o Cálculo del error
 - Retropropagación
 - o Gradiente descendiente
 - o Actualización de pesos y sesgos
- Incluir diagramas o esquemas si lo consideran necesario.

3. Preparación de datos

- · Cargar el dataset.
- Preprocesamiento de datos (normalización, codificación, etc.).
- Dividir en conjuntos de entrenamiento y prueba.
- Visualización inicial del dataset (gráficos, estadísticas descriptivas).

4. Implementación de la red neuronal

- Construcción de la arquitectura (pueden usar librerías o hacerlo desde cero).
- Explicar la elección de:
 - Número de capas
 - Número de neuronas
 - o Funciones de activación
 - Hiperparámetros (learning rate, batch size, epochs)
- Mostrar y explicar:
 - Forward pass
 - Backpropagation
 - Función de pérdida
 - Proceso de entrenamiento (incluyendo visualización del error)

5. Evaluación del modelo

- Métricas utilizadas (accuracy, precision, recall, etc.).
- Visualizar resultados:
 - o Curva de pérdida vs. epochs.
 - o Matriz de confusión.
 - o Predicciones en ejemplos concretos.