Appunti sui Codici di Reed Muller

Giovanni Barbarino

Capitolo 1

Codici di Reed-Muller

I codici di Reed-Muller sono codici lineari su \mathbb{F}_q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità supporremo in questo caso di lavorare su \mathbb{F}_2 . Consideriamo quindi lo spazio vettoriale $(\mathbb{F}_2)^s$ ed enumeriamone gli elementi

$$(\mathbb{F}_2)^s = \{v_1, \dots, v_{2^s}\}$$

Dato un polinomio $f \in \mathbb{F}_2[x_0, \dots, x_{s-1}]$, possiamo associargli il vettore di $\mathbb{F}_2^{2^s}$ costituito da $(f(v_1), \dots, f(v_{2^s}))$.

Definizione 1.1. Il codice di Reed-Muller $\mathcal{R}(m,r)$ di lunghezza 2^m e ordine r è il sottospazio di $(\mathbb{F}_2)^{2^m}$ dato dai vettori

$$(f(v_1),\ldots,f(v_{2^m}))$$

al variare di f tra i polinomi di grado $\leq r$ in $\mathbb{F}_2[x_0,\ldots,x_{m-1}]$.

Studiamo la dimensione di un codice di Reed-Muller. Indichiamo i polinomi di grado $\leq r$ con $\mathbb{F}_2[x_0,\ldots,x_{m-1}]_{\leq r}$. Consideriamo l'applicazione lineare

$$\varphi \colon \mathbb{F}_2[x_0, \dots, x_{m-1}] \longrightarrow \mathbb{F}_2^{2^m}$$

$$f \longmapsto (f(v_1), \dots, f(v_{2^m}))$$

Allora $Ker(\varphi)$ è l'ideale generato da $(x_i^2 - x_i)$, ¹ e dunque il codice ha dimensione uguale al numero di monomi liberi da quadrati di grado $\leq r$:

$$1 + \binom{m}{1} + \binom{m}{2} + \dots + \binom{m}{r}$$

Esempio. Il codice $\mathcal{R}(m,0)$ è formato dai vettori $(0,\ldots,0)$ e $(1,\ldots,1)$ e dunque è il codice di ripetizione. Il codice $\mathcal{R}(m,m)$ è invece il codice formato da tutti gli elementi di $\mathbb{F}_2^{2^m}$ perché

$$\sum_{i=0}^{m} \binom{m}{i} = 2^m$$

e dunque la dimensione del codice è uguale alla dimensione dello spazio vettoriale.

¹per dimostrarlo, la maniera piú semplice é per induzione sul numero di variabili

Cerchiamo ora di capire quale sia la distanza di $\mathcal{R}(m,r)$. Intanto, notiamo che il polinomio $f=x_0x_1\dots x_{r-1}$ è tale che $\varphi(f)$ abbia 2^m-2^{m-r} componenti nulle. Questo mostra che la distanza di un codice di Reed-Muller $\mathcal{R}(m,r)$ è $\leq 2^{m-r}$. Per mostrare l'altra disuguaglianza, utilizziamo il seguente lemma:

Lemma 1.2. Sia $f \in \mathbb{F}_2[x_0, \dots, x_{m-1}]$ di grado s (se f = 0, si può considerare $s = +\infty$). Allora $\#V(f) \leq 2^m - 2^{m-s}$.

Dimostrazione. Osserviamo immediatamente che, se $\tilde{s} \leq s$, allora $2^m - 2^{m-\tilde{s}} \leq 2^m - 2^{m-s}$, quindi basta dimostrarlo con f di grado s.

Dimostriamo prima il risultato per gli f con monomi squarefree, per induzione sul numero di variabili. Per m=1 il risultato è ovvio $(f\in\{0,\,1,\,x,\,x+1\})$. Supponendo la tesi vera per m, osserviamo che, per f con monomi squarefree, si può sempre scrivere

$$f(x_0,\ldots,x_m) = x_m f_1(x_0,\ldots,x_{m-1}) + (1-x_m) f_0(x_0,\ldots,x_{m-1}),$$

dove $f_{\ell}(x_0,\ldots,x_{m-1})=f(x_0,\ldots,x_{m-1},\ell)$. Si osserva che, a seconda che x_m sia 0 o 1, le radici di f annullano uno tra f_0 e f_1 , dunque

$$\#V(f) = \#V(f_0) + \#V(f_1)$$

e banalmente $\#V(f_0), \#V(f_1) \leq 2^m$. Se $f_0, f_1 \neq 0$, allora per ipotesi induttiva

$$\#V(f_0), \#V(f_1) \le 2^m - 2^{m-s} \implies \#V(f) \le 2^{m+1} - 2^{m+1-s}$$

Se wlog $f_1=0$, in particolare $\deg(f_0)\leq s-1$ e per ipotesi induttiva $\#V(f_0)\leq 2^m-2^{m-s+1}$ (è un polinomio di grado al più s-1 in m variabili), da cui $\#V(f)\leq 2^m-2^{m-s+1}+2^m=2^{m+1}-2^{m+1-s}$.

D'altra parte, se f non fosse a monomi squarefree, chiamando \tilde{f} il polinomio di grado $\tilde{s} \leq s$ ottenuto rendendo squarefree i monomi di f, le valutazioni di f e \tilde{f} coincidono, quindi $\#V(f) = \#V(\tilde{f})$. Applicando il risultato a \tilde{f} , otteniamo

$$\#V(f) < 2^m - 2^{m-\tilde{s}} < 2^m - 2^{m-s}.$$

Interpolazione Sfruttiamo l'interpolazione polinomiale in più variabili. Sia *c* il messaggio ricevuto e supponiamo di voler ricostruire il messaggio del mittente.

Per prima cosa, troviamo un polinomio con monomi liberi da quadrati tale che c sia il vettore delle valutazioni sui punti di $(\mathbb{F}_2)^m$. Questo é possibile farlo tramite interpolazione multivariata: dato $v \in (\mathbb{F}_2)^m$ chiamiamo L_v il polinomio

$$L_v(x) = (1 + x_0 + v_0)(1 + x_1 + v_1)\dots(1 + x_{m-1} + v_{m-1})$$

che ha la proprietà $L_v(x)=1\iff x=v.$ Da questo, possiamo scrivere il polinomio interpolatore di c come

$$p_c(x) = \sum_{c_v=1} L_v(x)$$

Notiamo che $p_c(x)$ é un polinomio con monomi liberi da quadrati, dunque é l'unico di questo tipo che interpoli c. Se il suo grado é minore o uguale ad r, allora abbiamo ricostruito il messaggio originale.

Notiamo anche che imporre $p_c(v) = c_v$ é una condizione lineare sui coefficienti di $p_c(x)$, dunque per ricostruire un polinomio del codice, basta imporre tante condizioni quanto é la dimensione del codice.

L'interpolazione ci permette di dire se un messaggio è stato corrotto o meno, ma la decodifica vera e propria è più complicata, e la vedremo nel prossimo capitolo.

Definizione Ricorsiva I codici di Reed Muller si possono caratterizzare anche in maniera ricorsiva. Abbiamo giá detto che $\mathcal{R}(m,0)$ sono i codici di ripetizione, e $\mathcal{R}(m,k) \cong \mathbb{F}_2^m$ per $k \geq m$. Cerchiamo di ricavare $\mathcal{R}(m,k)$ con m > k in relazione a quelli con k minori.

Preso un polinomio p(x) con monomi squarefree su $\mathbb{F}_2[x_0,\ldots,x_{m-1}]$ di grado minore o uguale a k, lo spezziamo nei monomi che contengono x_0 , e quelli che non lo contengono, ossia $p(x) = p_0(x) + x_0 p_1(x)$. Il relativo messaggio del codice $\mathcal{R}(m,k)$ puó essere spezzato in due parti: le valutazioni con $x_0 = 0$ e quelle con $x_1 = 1$, indicandole con $c = (c_0, c_1)$.

- $p_0(x)$ non contiene x_0 , dunque le sue valutazioni non dipendono dalla prima variabile, dunque saranno del tipo (α, α) , ma visto che $p_0(x)$ puó essere visto come un polinomio in $\mathbb{F}_2[x_1, \ldots, x_{m-1}]$ di grado minore o uguale a k, allora α appartiene a $\mathcal{R}(m-1,k)$.
- le valutazioni di $x_0p_1(x)$ saranno del tipo $(0,\beta)$, ma visto che $p_1(x)$ non contiene x_0 , puó essere visto come un polinomio in $\mathbb{F}_2[x_1,\ldots,x_{m-1}]$ di grado minore o uguale a k-1, dunque β appartiene a $\mathcal{R}(m-1,k-1)$.

Questo ci dice che le valutazioni di p(x) sono $(\alpha, \alpha + \beta)$, con $\alpha \in \mathcal{R}(m-1, k)$ e $\beta \in \mathcal{R}(m-1, k-1)$. Questo ci dá una definizione equivalente:

Definizione 1.3. I codici di Reed Muller $\mathcal{R}(m,k)$ sono definiti come

- $\mathcal{R}(m,0)$ sono i codici di ripetizione di lunghezza 2^m .
- se $k \geq m$, allora $\mathcal{R}(m,k)$ é isomorfo a \mathbb{F}_2^k .
- $\mathcal{R}(m,k)$ con k < m é ricavato ricorsivamente come

$$\{v \in \mathbb{F}_2^m : v = (\alpha, \alpha + \beta), \ \alpha \in \mathcal{R}(m-1, k), \ \beta \in \mathcal{R}(m-1, k-1)\}$$

Da questa definizione possiamo dare una dimostrazione simile che la distanza di $\mathcal{R}(m-1,k)$ sia 2^{m-k} , sempre per induzione sul numero di variabili. Infatti notiamo che $\mathcal{R}(m,0)$ ha distanza 2^m , mentre $\mathcal{R}(k,k)$ ha distanza 1. Dato che $\mathcal{R}(m,k)$ contiene tutte le stringhe del tipo (α,α) , con $\alpha \in \mathcal{R}(m-1,k)$ allora la distanza é al massimo

$$dist(\mathcal{R}(m,k)) \leq 2 \cdot dist(\mathcal{R}(m-1,k)) = 2^{m-k}$$

Dato che $\mathcal{R}(m-1,k-1)\subseteq\mathcal{R}(m-1,k)$, ogni elemento del codice $\mathcal{R}(m,k)$ é composto da due stringhe di $\mathcal{R}(m-1,k)$, da cui la distanza può calare solo se una delle stringhe α o $\alpha+\beta$ è nulla, ossia se

$$c = (0, \beta)$$
 oppure $c = (\beta, 0)$

ma in entrambi i casi, $\beta \in \mathcal{R}(m-1,k-1)$, dunque il suo peso è comunque maggiore o uguale alla distanza del codice, che è $2^{(m-1)-(k-1)}=2^{m-k}$.

Capitolo 2

Decodifica

Scriviamo ora la decodifica per un codice di Reed-Muller. Per farlo, descriviamo un metodo di decodifica più generale.

Se v è un vettore ortogonale ad un codice binario C, lo chiamiamo $test\ di$ parità. Notiamo che, dato un qualsiasi vettore x,

$$x \in C \implies x^t v = 0$$

dunque diciamo che il test di parità fallisce su x se $x^t v = 1$.

Definizione 2.1. Sia C un codice, e $\{v_1,\ldots,v_r\}$ dei test di parità. Questi si dicono concentrati sulla coordinata i se $v_j^{(i)}=1$ per ogni vettore, mentre ogni altra coordinata ha al massimo un vettore che non si annulla su di essa.

Lemma 2.2. Sia C un codice, e $\{v_1, \ldots, v_r\}$ concentrati sulla coordinata i. Se $\widetilde{c} = c + e$ con $c \in C$ ed e un errore di peso al massimo $\lfloor \frac{r}{2} \rfloor$, allora $e_i = 1$ se e solo più della metà dei test di parità falliscono.

Dimostrazione. Se $e_i = 0$, allora i bit di errore fanno fallire al massimo la metà dei test di parità. Viceversa, se $e_i = 1$, i test che non falliscono sono meno della metà, per lo stesso motivo.

Corollario 2.3. Se un codice C possiede set di r test di parità concentrati su ogni coordinata, allora riesce a correggere $\lfloor \frac{r}{2} \rfloor$ errori

Osservazione~2.4. Per i codici ciclici, basta trovare rtest di parità concentrati su una sola coordinata.

Lemma 2.5. In un codice C di lunghezza n, se è possibile trovare set di r test di parità concentrati su ogni coordinata, allora

$$r \leq \frac{n-1}{d^{\perp}-1}$$

dove d^{\perp} è la distanza del codice duale a C.

Dimostrazione. Notiamo che se abbiamo un set di r test di parità $\{v_1,\ldots,v_r\}$ concentrati su una coordinata, allora necessariamente la somma dei pesi di v_i meno 1 deve fare al massimo n-1, ma dato che i v_i stanno nel codice duale, la tesi segue.

Notiamo che questo bound non è molto buono, dunque cerchiamo un metodo per migliorarlo.

Definizione 2.6. Sia C un codice di lunghezza n, S un sottoinsieme degli indici da 1 a n, e $\{v_1, \ldots, v_r\}$ dei test di parità. Questi si dicono concentrati su S se $v_j^{(i)} = 1$ per ogni vettore e per ogni $i \in S$, mentre ogni altra coordinata ha al massimo un vettore che non si annulla su di essa.

Notiamo che, con la stessa dimostrazione, vale un risultato simile al lemma sopra

Lemma 2.7. Sia C un codice, e $\{v_1, \ldots, v_r\}$ concentrati sul S. Se $\widetilde{c} = c + e$ con $c \in C$ ed e un errore di peso al massimo $\lfloor \frac{r}{2} \rfloor$, allora $\sum_{i \in S} e_i = 1$ se e solo più della metà dei test di parità falliscono.

Grazie a questi nuovi strumenti, possiamo attuare una decodifica di $maggio-ranza\ logica\ ad\ L\ step.$ Descriviamo questo metodo:

- Dato C un codice binario, e $c \in C$, sia $\widetilde{c} = c + e$ un messaggio corrotto, con al massimo t errori
- Con 2t test di parità concentrati su S, possiamo ricavare la somma degli errori su S.
- Preso adesso un R un sottoinsieme degli indici, se troviamo 2t insiemi S_i calcolati al passo precedente, la cui intersezione sia R, e tali che S_i/R siano disgiunti, possiamo ricavare la somma degli errori su R nella stessa maniera sopra, ossia a maggioranza.
- Possiamo ripetere il processo prendendo 2t insiemi R_i per calcolare la somma degli errori su un insieme più piccolo, e così via fino a calcolare l'errore su un singolo indice.

Vediamo dunque come si applica questo algoritmo ai codici di Reed Muller. Abbiamo bisogno prima di un po' di lemmi preparatori.

Lemma 2.8. Dato $V \subseteq \mathbb{F}_2^m$ un sottospazio affine di dimensione m-r, allora il polinomio con monomi squarefree che si annulla esattamente sul suo complementare ha grado r.

Dimostrazione. Il sottospazio V è definito da r equazioni lineari affini $f_1, \ldots f_r$, e il prodotto $(1 - f_1) \ldots (1 - f_r)$ è un polinomio di grado $\leq r$ che si annulla esattamente sul complementare di V. Se però avesse grado minore di r, allora apparterrebbe a $\mathcal{R}(m, r-1)$, che ha distanza maggiore di 2^{m-r} .

Lemma 2.9. Visti come sottospazi di $(\mathbb{F}_2)^{2^m}$, l'ortogonale del codice $\mathcal{R}(m,k)$ è $\mathcal{R}(m,m-k-1)$

Dimostrazione. Notiamo che su ogni campo, la somma delle dimensioni di un sottospazio e del suo ortogonale è la dimensione dello spazio ambiente. Dato che

$$\dim \mathcal{R}(m,k) + \dim \mathcal{R}(m,m-k-1) = 2^m$$

allora basta far vedere che prese due stringhe, una dalla base di ogni codice, queste sono ortogonali. Siano dunque $c_1 \in \mathcal{R}(m,k)$ e $c_2 \in \mathcal{R}(m,m-k-1)$

due stringhe di base, dove la base è composta dai monomi squarefree. Chiamati $p_1(x)$ e $p_2(x)$ i rispettivi monomi, allora il prodotto componente per componente di c_1 e c_2 (che chiameremo c) sarà associato al monomio $p(x) = p_1(x)p_2(x)$ di grado < m. Riducendolo ad un monomio squarefree, avrà grado r < m, ma dato che è ancora è un monomio, allora il peso di c sarà c^{m-r}, che è pari, e pertanto c₁ e c₂ sono ortogonali.

Questi due lemmi ci dicono che un qualsiasi spazio affine di dimensione r+1 fornisce un vettore ortogonale a $\mathcal{R}(m,r)$.

Prendiamo dunque V spazio affine di dimensione $s \leq r$. esistono esattamente $\geq 2^{m-r}-1$ spazi affini W_i di dimensione s+1 che contengono V, e l'intersezione di due di essi è esattamente V. Inoltre, per motivi di dimensione, W_i/V sono disgiunti. Nel caso s=r, abbiamo trovato un set di $2^{m-r}-1$ test di parità concentrati su V, mentre nel caso s < r possiamo iterativamente trovare comunque abbastanza sottospazi concentrati su V. Ciò vuol dire che possiamo applicare la decodifica a logica maggioritaria a (t+1) step (perchè dobbiamo arrivare al singolo punto, che ha dimensione zero).