IFT6113, Assignment 2: Theory, 40 pts

October 4, 2024

Deadline: 23:59 October 22nd

Submission: send your writeup in PDF format by a private post in Piazza. Make sure it is readable.

Problem 1 (20 pts)

Recall the Taubin matrix defined in class for approximating mesh curvature:

$$M_p = \int_{-\pi}^{\pi} k_{\theta} T_{\theta} T_{\theta}^{\top} d\theta$$

- 1. Prove that the surface normal at p is an eigenvector of M_p . What is the corresponding eigenvalue?
- 2. Show that the other two eigenvectors are the principal curvature directions. What are the corresponding eigenvalues?

Problem 2 (20 pts)

Prove that the shortest curve connecting two points on a plane is a straight line segment, using Gateaux derivative.

Suppose you are given a regular plane curve $\gamma:[0,1]\to\mathbb{R}^2$ connecting two fixed points on the plane. Assume $\gamma(0)=A,\,\gamma(1)=B.$

The functional we want to minimize is the arc length of γ :

$$\mathcal{S}[\gamma(t)] = \int_0^1 \|\gamma'(t)\|_2 dt$$

Take an arbitrary vector field $\mathbf{v}:[0,1]\to\mathbb{R}^2$ along γ (think of \mathbf{v} as of a displacement vector, or *variation*). Let's look at a family of different curves $\gamma_h(t)=\gamma(t)+h\mathbf{v}(t)$. Here h is a scalar parameter that can be thought of how much we displace the initial curve in the direction \mathbf{v} . For each h, this formula will define a different curve, but their endpoints should stay on the same place. So we assume $\mathbf{v}(0)=\mathbf{0}, \mathbf{v}(1)=\mathbf{0}$.

- 1. Take the Gateaux derivative $\frac{d}{dh}S[\gamma + h\mathbf{v}]\big|_{h=0}$.
- 2. Now recall the notion of arc length parameterization $s(t) = \int_0^t \|\gamma'(x)\|_2 dx$. How the functional changes if we substitute arc length parameterization? How the Gateaux derivative from (1) changes?
- 3. For the curve γ to be shortest, it must satisfy must satisfy $\frac{d}{dh}\mathcal{S}[\gamma+h\mathbf{v}]\big|_{h=0}=0$ for any \mathbf{v} . Now use integration by parts and show that only straight lines satisfy this requirement.