EASE Ontologies

Hands-On (last minute)

What is an Ontology?

- Set of logical statements ("axioms" / "assertions")
- Formulated in some formal ontology language
- Knowledge base for declarative memory
 - What is a X?
 - How do X and Y relate?
- Can be reasoned about
- Careful: Reasoning can be computationally expensive

Reasoning Example I

- 1. Every European city is a place
- 2. <u>Bremen</u> is a <u>European city</u>

=> Bremen is a <u>place</u>

Reasoning Example II

- 1. <u>European citizen</u> = <u>human</u> that <u>lives in</u> a <u>European city</u>
- 2. <u>Bremen</u> is a <u>European city</u>
- 3. Anna is a human
- 4. Anna lives in Bremen

=> Anna is a European citizen

Reasoning Example III

- 1. Every <u>European citizen</u> is <u>European</u> or <u>has</u> a <u>visa</u>
- 2. Every <u>European</u> is a <u>Human</u>
- 3. <u>VisaOwner</u> = <u>has</u> a <u>visa</u>
- 4. Every <u>VisaOwner</u> is a <u>Human</u>

=> Every <u>European citizen</u> is a <u>Human</u>

Reasoning Example IV

- 1. Every <u>European citizen</u> is <u>European</u> or <u>has</u> a <u>visa</u>
- 2. <u>Danny</u> is a <u>European citizen</u>
- 3. <u>Danny</u> is not <u>European</u> and does not <u>have</u> a <u>visa</u>

=> Error!

OWL

- Web Ontology Language
- W3C Standard to define Ontologies
- Standard for most formal ontologies
- TBox Knowledge about classes of things (classes)
- RBox Knowledge about their relations (object properties)
- ABox Knowledge about class instances (individuals)

OWL Axioms

TBox – Knowledge about classes of things ("classes")

RBox – Knowledge about their relations ("object properties")

ABox – Knowledge about class instances ("individuals")

Вох	Assertion Name	Semantic	Example
ТВох	SubClass Of	Every <u>C</u> is a <u>D</u>	Every <u>Dog</u> is an <u>Animal</u>
ТВох	Equivalent To	Every <u>C</u> is a <u>D</u> and vice-versa	Every <u>Town</u> is a <u>City</u> and vice-versa
ABox	Туре	<u>a</u> is a <u>C</u>	OlafScholz is a Chancellor
ABox	Object property	<u>r(a,b</u>)	<u>Donald loves Daisy</u>
RBox	SubPropertyOf (Chain)	$\underline{r}(\underline{x},\underline{y})$ and $\underline{s}(\underline{y},\underline{z})$, then $\underline{t}(\underline{x},\underline{z})$	$\underline{momOf}(x,y) \& \underline{sisterOf}(y,z) => \underline{auntOf}(x,z)$
		•••	•••

Let's replace simple classes (C,D) by more complex ones!

Syntax (in Protégé)	Semantic	Example
C and D	Objects with both the class <u>C</u> and <u>D</u>	Flower and Red
Not(C)	Objects that are not of class C	not(Human)
C or D	Objects with any of the classes <u>C</u> and <u>D</u>	Dog or Cat
r some C	Objects that are related to some object of class C via r	loves some Human

We can even nest these for complex assertions, e.g.:

Looser = human and not(hasWon some Price)

Reasoning Example V

- Every <u>child loves</u> <u>chocolate</u>
- 2. <u>Cool child</u> = <u>loves</u> <u>chocolate</u> and <u>spinach</u>
- 3. Mom's Blattspinat is a Spinach
- 4. <u>Tim</u> is a <u>child</u> and <u>loves Mom`s Blattspinat</u>

=> <u>Tim</u> is a <u>Cool Child</u>

Syntax (in Protégé)	Example	
C and D	Flower and Red	
Not(C)	not(Human)	
C or D	Dog or Cat	
r some C	loves some Human	

Box	Assertion Name	Semantic	Example
TBox	SubClass Of	Every <u>C</u> is a <u>D</u>	Every <u>Dog</u> is an <u>Animal</u>
TBox	Equivalent To	Every <u>C</u> is a <u>D</u> & vice-versa	Every <u>Town</u> is a <u>City</u> and vice-versa
ABox	Туре	<u>a</u> is a <u>C</u>	OlafScholz is a Chancellor
ABox	Object property	<u>r(a,b</u>)	<u>Donald</u> <u>loves</u> <u>Daisy</u>
RBox	SubPropertyOf	<u>r(x,y)</u> and <u>s(y,z)</u> , then <u>t(x,z</u>)	<pre>momOf(x,y) & sisterOf(y,z) => auntOf(x,z)</pre>

Reasoning Example VI

Syntax (in Protégé)	Example
C and D	Flower and Red
Not(C)	not(Human)
C or D	Dog or Cat
r some C	loves some Human

- 1. Errol lives in Mexico City
- 2. <u>Mexico City</u> is the <u>capital of Mexico</u>
- 3. Whoever <u>lives in</u> a <u>capital of</u> a country is a <u>citizen of</u> that

=> Errol is a citizen of Mexico

Вох	Assertion Name	Semantic	Example
ТВох	SubClass Of	Every <u>C</u> is a <u>D</u>	Every <u>Dog</u> is an <u>Animal</u>
ТВох	Equivalent To	Every <u>C</u> is a <u>D</u> & vice-versa	Every <u>Town</u> is a <u>City</u> and vice-versa
ABox	Туре	<u>a</u> is a <u>C</u>	OlafScholz is a Chancellor
ABox	Object property	<u>r(a,b</u>)	<u>Donald</u> <u>loves</u> <u>Daisy</u>
RBox	SubPropertyOf	<u>r(x,y)</u> and <u>s(y,z)</u> , then <u>t(x,z</u>)	<pre>momOf(x,y) & sisterOf(y,z) => auntOf(x,z)</pre>

Your turn!

Go through the reasoning examples I-IV and replicate them in Protégé.

Download: https://protege.stanford.edu/

- You already know everything about OWL & Protégé?
 - Visit https://github.com/ease-crc/soma
 - Clone or Download as Zip
 - Open owl/SOMA-ALL.owl in Protege

SOMA

- SOcio-physical Model of Activities
- Main Ontology of EASE
- Common vocabulary for all components
- Declarative Memory of Knowrob (minus dynamic ABox)
- Vocabulary of Episodic Memory (NEEMs)
- https://github.com/ease-crc/soma
 - Clone or Download as Zip
 - Open owl/SOMA-ALL.owl in Protege

SOMA

Seperates physical events with the interpretation thereof

Explore SOMA a bit

IN PROTÉGÉ, SEARCH FOR <u>TASK</u> AND VISIT THE *TAXONOMY*

WHAT MENTAL TASKS ARE THERE?

DO YOU UNDERSTAND THE COMMENTS?