

UNIT III

Relational Database Design

Equivalence of FD Sets

FD Membership Test

Let F be the FD set with FD X → Y

• FD X \rightarrow Y is implied in F iff

X+ determines Y in FD set F

i.e. FD X \rightarrow Y is implied in F iff X+ = {.....Y.....}

FD Membership Test Example

Relation R (A, B, C, D)

Is AB
$$\rightarrow$$
 D a member of F = { AB \rightarrow C, BC \rightarrow D}?

 $AB+ = ABCD : AB \rightarrow D$ is a member of F.

Relation R (A, B, C, D)

Is
$$C \rightarrow AB$$
 a member of $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$?

 $C+ = \{ C, D, A \} :: C \rightarrow A \text{ is implied but } C \rightarrow B \text{ is not implied}$

 $:: C \rightarrow AB$ is not a member of F

Equivalence of FD Sets

- Two sets of FDs F and G are equivalent if:
 - every FD in F is implied in G, and
 - every FD in G is implied in F
- **Definition:**
 - a) F covers G ($F \supseteq G$) if every FD in G is implied in F.
 - b) Similarly, G covers F ($G \supseteq F$) if every FD in F in implied in G.
- F and G are equivalent if F covers G and G covers F

Equivalence of FD Sets Example

Consider the following two sets of FDs

$$F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$$

 $G = \{A \rightarrow CD, E \rightarrow AH\}$

Check whether or not they are equivalent.

Solution

Proof that G is covered by F:

 $\{A\} + = \{A, C, D\}$ (with respect to F), which covers $A \rightarrow CD$ in G

 $\{E\}$ + = $\{E, A, D, H, C\}$ (with respect to F), which covers $E \rightarrow AH$ in G

Proof that F is covered by G:

 $\{A\} + = \{A, C, D\}$ (with respect to G), which covers $A \rightarrow C$ in F

 $\{A, C\} + = \{A, C, D\}$ (with respect to G), which covers $AC \rightarrow D$ in F

 $\{E\}$ + = $\{E, A, H, C, D\}$ (with respect to G), which covers $E \rightarrow AD$ and $E \rightarrow H$ in F

Equivalence of FD Sets Drill

1. A relation R (A , C , D , E , H) is having two functional dependencies sets F and G as shown-

$$F = \{ A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H \}$$

 $G = \{ A \rightarrow CD, E \rightarrow H \}$

Check if F and G are equivalent?

2. Are these two FD sets equivalent or not?

FD1 = {AB
$$\rightarrow$$
 C, D \rightarrow E, E \rightarrow C}
FD2 = {AB \rightarrow C, D \rightarrow E, AB \rightarrow E, E \rightarrow C}

Solution Equivalence of FD Sets Drill

1. Determining whether F covers G-

$$(A)^{+} = \{A, C, D\}$$
 // using set F
 $(E)^{+} = \{A, C, D, E, H\}$ // using set F

Thus, we conclude F covers G i.e. $F \supseteq G$

Determining whether G covers F-

Thus, we conclude G does not cover F

Solution Equivalence of FD Sets Drill

2. FD2 covers FD 1

FD1 does not cover FD 2 as AB \rightarrow E is not implied in FD 1.

Thus, FD1 ≠ FD2

Practice Drill

Ques: Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values.

$$F = \{ CH \rightarrow G, A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG \}$$

is a set of functional dependencies (FDs)

How many candidate keys does the relation R have?

Solution

A+ = ABCEFGH which is all attributes except D.

B+ = ABCEFGH which is all attributes except D.

E+ = ABCEFGH which is all attributes except D.

F+ = ABCEFGH which is all attributes except D.

So, there are total 4 candidate keys AD, BD, ED and FD

Practice Drill

Consider a relation with schema R(A,B,C,D)

FDs are $\{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$.

- a. What are some of the nontrivial FDs that can be inferred from the given FDs?
- b. What are all candidate keys of R?

Solution

a) Some of the non-trivial FDs:

 $C \rightarrow ACD$ $D \rightarrow AD$ $AB \rightarrow ABCD$

 $AC \rightarrow ACD$ $BC \rightarrow ABCD$ $BD \rightarrow ABCD$

 $CD \rightarrow ACD$ $ABC \rightarrow ABCD$ $ABD \rightarrow ABCD$

BCD → ABCD

b) Attribute Closure:

 $A \rightarrow A$ $B \rightarrow B$ $C \rightarrow ACD$ $D \rightarrow AD$

 $AB \rightarrow ABCD$ $AC \rightarrow ACD$ $AD \rightarrow AD$ $BC \rightarrow ABCD$

 $BD \rightarrow ABCD$ $CD \rightarrow ACD$ $ABC \rightarrow ABCD$

 $ABD \rightarrow ABCD$ $ACD \rightarrow ACD$ $BCD \rightarrow ABCD$

Thus, candidate keys are: AB, BC, and BD

Thanks!!

