JEZYK MGCNY

zespół {PandP}

ATO JUZ NIE KICKSTARTER?

ANONIE

naszym zadaniem było przygotowanie aplikacji pomagającej zrozumieć, co chce przekazać niema osoba.

O mln

szacuje się, że liczba osób głuchych w Polsce sięga około 500 tys., a 900 tys. Polaków ma poważny uszczerbek słuchu

Z JAKIMI PROBLEMAMI MUSELISMY SIĘ ZMIERZYĆ?

JESLI CHODZI O MODEL

szybkość predykcji

wysoka precyzja

JESLI CHODZI O APLIKACJE

działanie real-time łatwość użycia

dostosowanie do danych

WIEC JAK TO ZROBILISMY?

Skorzystaliśmy z technologii pythonowych:

OpenCV
Tensorflow - Keras
Numpy
Pandas
TkInter

01

dane treningowe

Dane treningowe

	label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9
0	3	107	118	127	134	139	143	146	150	153
1	6	155	157	156	156	156	157	156	158	158
2	2	187	188	188	187	187	186	187	188	187
3	2	211	211	212	212	211	210	211	210	210
4	13	164	167	170	172	176	179	180	184	185

5 rows × 785 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27455 entries, 0 to 27454
Columns: 785 entries, label to pixel784

dtypes: int64(785) memory usage: 164.4 MB

Label: 16

dane 01 treningowe

02

architektura modelu

Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	26, 26, 32)	320
activation (Activation)	(None,	26, 26, 32)	0
max_pooling2d (MaxPooling2D)	(None,	13, 13, 32)	0
conv2d_1 (Conv2D)	(None,	11, 11, 64)	18496
activation_1 (Activation)	(None,	11, 11, 64)	0
max_pooling2d_1 (MaxPooling2	(None,	5, 5, 64)	0
flatten (Flatten)	(None,	1600)	0
dense (Dense)	(None,	100)	160100
activation_2 (Activation)	(None,	100)	0
dropout (Dropout)	(None,	100)	0
dense_1 (Dense)	(None,	24)	2424
activation_3 (Activation)	(None,	24)	0
Total params: 181,340			
Trainable params: 181,340			
Non-trainable params: 0			

na tym etapie

loss: 0.349

accuracy: 0.941

01 dane treningowe

02 architektura modelu

ulepszanie modelu

Model: "sequential_7"						
Layer (type)	Output	Shape	Param #			
conv2d_21 (Conv2D)	(None,	28, 28, 16)	160			
max_pooling2d_21 (MaxPooling	(None,	14, 14, 16)	0			
conv2d_22 (Conv2D)	(None,	14, 14, 32)	4640			
max_pooling2d_22 (MaxPooling	(None,	7, 7, 32)	0			
conv2d_23 (Conv2D)	(None,	7, 7, 64)	18496			
max_pooling2d_23 (MaxPooling	(None,	3, 3, 64)	0			
flatten_7 (Flatten)	(None,	576)	0			
dense_21 (Dense)	(None,	128)	73856			
dropout_14 (Dropout)	(None,	128)	0			
dense_22 (Dense)	(None,	64)	8256			
dropout_15 (Dropout)	(None,	64)	0			
dense_23 (Dense)	(None,	24)	1560			
Total params: 106,968 Trainable params: 106,968 Non-trainable params: 0	_=====					

na tym etapie

loss: 0.329

accuracy: 0.969

01 dane treningowe

02 architektura modelu

03 ulepszanie modelu

augmentacja danych treningowych

na tym etapie

loss: 0.162 accuracy: 0.975

2. PRZYGOTOWALIŚMY APLIKACJĘ

za pomocą OpenCV przechwytujemy obraz z kamerki

2. PRZYGOTOWALIŚMY APLIKACJĘ

za pomocą OpenCV przechwytujemy obraz z kamerki

również za pomocą OpenCV przekształcamy obraz do postaci, którą przyjmie model

2. PRZYGOTOWALIŚMY APLIKACJĘ

01

za pomocą OpenCV przechwytujemy obraz z kamerki

również za pomocą OpenCV przekształcamy obraz do postaci, którą przyjmie model

obraz podajemy na wejściu modelu, predykcję wyświetlamy bezpośrednio na ekranie

przygotowaliśmy moduł do samodzielnego tworzenia datasetu treningowego

NASZ ZESPÓŁ

MATEUSZ ZAWADZKI

PAWEŁ DAWICKI

PAWEŁ ALICKI

BARTOSZ STASIAK