

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΥΠΟΛΟΓΙΣΤΩΝ – 7º ΕΞΑΜΗΝΟ

Δημητρίου Αγγελική - ΑΜ: 03117106

Τζομάκα Αφροδίτη - ΑΜ: 03117107

Ομάδα Β8

<u>5η Εργαστηριακή Άσκηση</u>

Η αναφορά αυτή περιλαμβάνει τους κώδικες σε c που γράφηκαν για τα δύο ζητούμενα της άσκησης καθώς και την assembly εκδοχή τους που προέκυψε αυτόματα από τον debugger. Η assembly συνοδεύεται με αναλυτικά σχόλια πλάι από κάθε εντολή τα οποία εξηγούν τη ροή των προγραμμάτων.

ZHTHMA 5.1

```
#define GPIO_SWs
                                    //RISCV little endian
                    0x80001400
#define GPIO LEDs
                   0x80001404
                                    //2LSBytes for LEDs, 2MSBytes for Switches
#define GPIO_INOUT 0x80001408
#define READ_GPIO(dir) (*(volatile unsigned *)dir)
#define WRITE GPIO(dir, value) {(*(volatile unsigned *)dir) = (value);}
int main (void)
    int io def = 0xFFFF; //Input from switches, Output at LEDs
   int sw_val, tmp;
   WRITE_GPIO(GPIO_INOUT, io_def);
   while(1)
       sw val = READ GPIO(GPIO SWs);
       sw_val = sw_val >> 16; //Shift into lower 16bits
        tmp = sw_val & 0x0F; //Mask the 4 LSBs
        sw_val = sw_val >> 12; //To bring 4 MSBs to 4 LSBs
        sw_val += tmp;
        if (sw val >= 0x10)
                              //Checking for overflow
           sw val = 0x10;
        WRITE_GPIO(GPIO_LEDs, sw_val);
```

		Πρώτα εκτελείται το write που θέτει εισόδους και εξόδους.
0x00000090: 37 17 00 80	lui a4,0x80001	Αρχικά, τοποθετώντας τον κατάλληλο αριθμό στα πιο σημαντικά bits του α4, ο ίδιος έχει πλέον τον αριθμό 0x80001000 (θα χρησιμοποιηθεί ως βάση για να γράφουμε ή διαβάζουμε από τις διευθύνσεις που αφορούν την πρόσβαση σε led και switches).
0x00000094: c1 67 0x00000096: fd 17	lui a5,0x10 addi a5,a5,-1	Με την ίδια λογική στον α5 τοποθετείται ο αριθμός 0x00010000 που με την αφαίρεση του 1 γίνεται 0x0000ffff που θέλουμε να γράψουμε
0x00000098: 23 24 f7 40	sw a5,1032(a4) # 0x80001408	στην 80001408 που ορίζει είσοδο, έξοδο Η εγγραφή του α5 γίνεται εν τέλει στη σωστή διεύθυνση με προσθήκη offset 1032 ή 0x408.
0x0000009c: 29 a0	j 0xa6 <main+22></main+22>	Κάνουμε jump στο κομμάτι που διαβάζει από switches.
0x0000009e: 37 17 00 80 0x000000a2: 23 22 f7 40	lui a4,0x80001 sw a5,1028(a4) # 0x80001404	Τοποθετούμε στον α4 τη βάση για τη διεύθυνση όπου θα γράψουμε με offset 1028 ή 0x404 γράφουμε στη διεύθυνση των leds την τιμή που είναι αποθηκευμένη στον α5.
0x000000a6: b7 17 00 80 0x000000aa: 03 a7 07 40	lui a5,0x80001 lw a4,1024(a5) # 0x80001400	Τοποθετούμε τώρα στον α5 τη βάση για τη διεύθυνση από όπου θα διαβάσουμε με offset 1024 ή 0x400 διαβάζουμε από τη διεύθυνση των switches την τιμή τους και την τοποθετούμε στον α4.
0x000000ae: 93 57 07 41	srli a5,a4,0x10	Ολίσθηση κατά 16 bits της τιμής που διαβάστηκε στην είσοδο, τα 4 lsb της εισόδου έρχονται στα lsb και η τιμή τοποθετείται στον α5.
0x000000b2: bd 8b 0x000000b4: 71 87	andi a5,a5,15 srli a4,a4,0x1c	Μάσκα στα 4 lsb. Ολίσθηση κατά 12 bits της τιμής που διαβάστηκε στα 4 msb της εισόδου για να έρθει στα 4 lsb του α4.
0x000000b6: ba 97	add a5,a5,a4	Πρόσθεση των 2 τιμών και τοποθέτηση στον a5.
0x000000b8: 3d 47 0x000000ba: e3 52 f7 fe	li a4,15 bgeu a4,a5,0x9e <main+14></main+14>	Τοποθέτηση του 15 στον α4 και σύγκριση του αθροίσματος με αυτόν για εύρεση υπερχείλισης. Όταν δεν υπάρχει υπερχείλιση (α5<16) απλά γίνεται μετάβαση στο κομμάτι που γράφει στα led
0x000000be: c1 47 0x000000c0: f9 bf	li a5,16 j 0x9e <main+14></main+14>	Όταν υπάρχει υπερχείλιση, πρώτα φορτώνουμε στον α5 το 16 που ανάβει το πέμπτο led (μόνο αυτό) και δείχνουμε την τιμή αυτή στα led. Προφανώς προκύπτει συνεχής λειτουργία του προγράμματος.

ZHTHMA 4.2

```
#define GPIO_SWs 0x80001400 //RISCV little endian
#define GPIO LEDs 0x80001404
#define GPIO_INOUT 0x80001408 //2LSBytes for LEDs, 2MSBytes for Switches
#define DELAY 0x300000
#define READ_GPIO(dir) (*(volatile unsigned *)dir)
#define WRITE_GPIO(dir, value)
        (*(volatile unsigned *)dir) = (value);
int main(void)
    int io_def = 0xFFFF; //Input from switches, Output at LEDs
    int flag = 0xFFFF; //Flag for blinking
unsigned int sw_val, tmp, msb, out_val, cnt, i, del, neg;
    WRITE_GPIO(GPIO_INOUT, io_def);
    sw_val = READ_GPIO(GPIO_SWs); //Read from switches
    while (1)
        msb = sw_val & 0x80000000; //mask msb of input
        neg = ~(sw_val >> 16); //Shift into lower 16bits and complement
        tmp = neg;
            if (tmp \& 0x01 == 1)
                cnt++;
            tmp = tmp >> 1;
        } while (tmp != 0xFFFF);
            out_val = neg & flag;
            WRITE_GPIO(GPIO_LEDs, out_val); //Display
            del = DELAY;
            i = 0;
            while (i < del)
                i++;
            flag = flag ^ 0xFFFF;
        } while (cnt != 0);
        WRITE_GPIO(GPIO_LEDs, 0x00);
        //sw_val = READ_GPIO(GPIO_SWs);
            sw_val = READ_GPIO(GPIO_SWs);
        } while ((sw_val & 0x80000000) == msb);
```

0x00000090: b7 17 00 80	lui	a5,0x80001	Όπως στην προηγούμενη
0x00000094: 41 66	lui	a2,0x10	άσκηση ορίζουμε είσοδο-έξοδο
0x00000096: 7d 16	addi	a2,a2,-1	με αυτές τις 4 εντολές.
0x00000098: 23 a4 c7 40	SW	a2,1032(a5) # 0x80001408	
0x0000009c: 83 a7 07 40	lw	a5,1024(a5)	Αποθηκεύεται στον α5 το περιεχόμενο των switches (θέση 0x80001 + 0x400 offset)
0x000000a0: a1 a8	j	0xf8 <main+104></main+104>	Πηγαίνει στις αρχικοποιήσεις
			Κομμάτι προγράμματος που μετράμε τους άσσους στην άρνηση:
0x000000a2: 85 83	srli	a5,a5,0x1	Ολίσθηση του α5(tmp) μια μονάδα δεξιά (στα MSB τοποθετούνται μηδενικά - unsigned).
0x000000a4: 41 67	lui	a4,0x10	
0x000000a6: 7d 17	addi	a4,a4,-1	Στον α4 έχουμε 0xffff (0x10000 - 0x1).
0x000000a8: 63 87 e7 00	beq	a5,a4,0xb6 <main+38></main+38>	Όσο ο α5 δεν είναι 0xffff (έχει προηγηθεί άρνηση της αρχικής
0000000 12 67 17 00	11	-4 -F 1	τιμής της εισόδου),
0x0000000ac: 13 f7 17 00 0x000000b0: 6d db	andi begz	a4,a5,1 a4,0xa2 <main+18></main+18>	βάζουμε μάσκα στο τελευταίο bit του α5, τον μεταφέρουμε
oxooooooo: oa ab	beqz	44,0x42 < 1114111+16>	στον α4 και αν είναι 0 (δε
			βρήκαμε άσσο) θα συνεχίσουμε το shift.
0x000000b2: 85 06	addi	a3,a3,1	Αλλιώς αυξάνουμε των μετρητή
0x000000b4: fd b7	j	0xa2 <main+18></main+18>	των άσσων και συνεχίζουμε το shift.
0x000000b6: 86 06	slli	a3,a3,0x1	Πολλαπλασιάζουμε το άθροισμα των άσσων γιατί οι διαφορετικές καταστάσεις που θα βρεθούν τα leds είναι διπλάσιες από τα αναβοσβήματα.
0x000000b8: 31 a0	j	0xc4 <main+52></main+52>	Πηγαίνει στο κομμάτι που φτιάχνει την τιμή εξόδου.
0x000000ba: c1 67	lui	a5,0x10	Στον α5 το 0xffff.
0x00000bc: fd 17	addi	a5,a5,-1	
0x000000be: 3d 8e	xor	a2,a2,a5	Στον α2 μπαίνει το χοτ του ίδιου με το 0xffff δηλαδή παίζει το ρόλο του flag που δείχνει αν τα leds ανάβουν ή σβήνουν βάζοντας την κατάλληλη μάσκα σε αυτά.
0x000000c0: fd 16	addi	a3,a3,-1	Ο α3 έχει πόσες φορές θα
0x000000c2: 91 ce	beqz	a3,0xde <main+78></main+78>	ανάψουν ή σβήσουν τα φώτα, άρα κάθε φορά μειώνεται κατά
			1. Όταν μηδενιστεί πάμε στο επόμενο βήμα.
0x000000c4: b3 77 b6 00	and	a5,a2,a1	Ο a1 έχει την άρνηση της εισόδου, του βάζουμε τη σωστή μάσκα για άναμμα ή σβήσιμο.

0x000000c8: 37 17 00 80 0x000000cc: 23 22 f7 40	lui sw	a4,0x80001 a5,1028(a4) # 0x80001404	Δείχνουμε το αποτέλεσμα στα leds όπως στην προηγούμενη άσκηση.
0x000000d0: 81 47	li	a5,0	Εισάγουμε καθυστέρηση: Στον α5 η αρχική τιμή μετρητή
0x000000d2: 37 07 30 00	lui	a4,0x300	«δευτερολέπτων», στον α4 η επιθυμητή καθυστέρηση.
0x000000d6: e3 f2 e7 fe 0x000000da: 85 07	bgeu addi	a5,a4,0xba <main+42> a5,a5,1</main+42>	Όσο δεν είναι ίσα απλά αυξάνουμε τον α5 κατά 1, αλλιώς φτιάχνουμε σωστά το flag.
0x000000dc: dd bf	j	0xd2 <main+66></main+66>	
0x000000de: b7 17 00 80 0x0000000e2: 23 a2 07 40	lui sw 0x8000	a5,0x80001 zero,1028(a5) # 1404	Μηδενίζουμε τα leds.
0x000000e6: b7 17 00 80 0x000000ea: 83 a7 07 40	lui lw	a5,0x80001 a5,1024(a5) # 0x80001400	Με αυτές τις εντολές διαβάζονται τα switches και η καινούρια τιμή εισόδου τοποθετείται στον a5
0x000000ee: 37 07 00 80 0x000000f2: 7d 8f	lui and	a4,0x80000 a4,a4,a5	Τοποθετείται μάσκα στο MSB της καινούριας τιμής των διακοπτών
0x000000f4: e3 09 a7 fe	beq	a4,a0,0xe6 <main+86></main+86>	Η προηγούμενη τιμή συγκρίνεται με το MSB της αρχικής εισόδου που αποθηκεύσαμε κατά την αρχικοποίηση. Όσο είναι ίδια ξαναδιαβάζουμε
0.00000000 05.05.00.00		0.0.0000	Αρχικοποιήσεις:
0x000000f8: 37 05 00 80 0x000000fc: 7d 8d	lui and	a0,0x80000 a0,a0,a5	Για να κρατήσουμε το msb βάζουμε κατάλληλη μάσκα στην είσοδο (α5) και το αποτέλεσμα μένει στον α0
0x000000fe: c1 83 0x00000100: 93 c5 f7 ff	srli not	a5,a5,0x10 a1,a5	Στον α1 μπαίνει η άρνηση της εισόδου αφού γίνει shift 16 bit (η τιμή των switches αποθηκεύεται αρχικά στα 16
0x00000104: ae 87	mv	a5,a1	ανώτερα bit) Ένα αντίγραφο κρατιέται στον a5 (tmp)
0x00000106: 5d b7	j	0xac <main+28></main+28>	Επιστρέφει στο μέτρημα άσσων