COMPUTABILITY (27/11/2023)

Rice's Theorem

every property of proframs which comounts the I/O behaviour is undecidable

" P is terminating on every imput "

" P has some fixed $m \in IN$ as an output"

" P computes a function f "

" the length of piquam P is ≤ 10 " decidable

What is a behavioural property of a program?

A = IN

1 set of programs
(program property)

T = { m | Pm is terminating on every imput } = { m | Pm is total }

ONE = {m | Pm is a sound implementation of II}
= {m | qm is II}

 $A \in IN$ (program property) is a behavioural property if for all proproms $m \in IN$ the fact that $m \in A$ or $m \notin A$ $\underline{only\ depends}\ om\ P_m$

Def. (saturated /extensional set):
$$A \subseteq IN$$
 is saturated (extensional)

If for all $m_1 m \in IN$

If $m \in A$ and $p_m = p_m$ then $m \in A$

A saturated if $A = \{m \mid p_m \text{ satisfies a property of functions}\}$
 $= \{m \mid p_m \in A\}$

where $A \subseteq \mathcal{F}_m$ set of all functions

 $= \{m \mid p_m \in A\}$

Examples

*
$$T = \{m \mid P_m \text{ is terminating on every imput}\}$$

$$= \{m \mid P_m \text{ is total}\}$$

$$= \{m \mid P_m \in \mathcal{T}\} \qquad \mathcal{T} = \{f \in \mathcal{F} \mid f \text{ total}\}$$

* ONE = { m | Pm is a sound implementation of
$$1$$
}

= { m | $\varphi_m = 1$ } = { m | $\varphi_m \in \{1\}$ }

× LEN 10 = { m }
$$Pm$$
 has Pm has Pm ≤ 10 }

 $Pm \in LEN 10$
 $pm \in LEN 10$

e.g.
$$m = \chi(Z(1)) \in LEN10$$

$$m = \begin{cases} \begin{cases} Z(1) \\ Z(1) \end{cases} \end{cases} > 11$$

$$\begin{cases} Z(1) \\ Z(1) \end{cases} \end{cases} > 11$$

$$\mathcal{K} = \{ \{ \{ \{ \{ \{ \{ \} \} \} \} \} \} \}$$

it seems that K is not saturated

formolly I should find min & IN

$$m \in K$$
 $\varphi_m(m) \downarrow$

$$m \notin K$$
 $q_m(m) \uparrow$ and $q_m = q_m$

if we were able to show that there is program m = IN s.t.

$$\varphi_{m}(x) = \begin{cases}
1 & \text{if } x = m \\
\uparrow & \text{otherwise}
\end{cases}$$

we com comclude

- 2) for a computable function there are infinitely many programs hence there is $m \neq m$ s.t. $Q_m = Q_m$

K is not saturated!

$$\stackrel{\text{2}}{\longrightarrow} P \longrightarrow \underset{\text{1} \neq x \neq P}{\text{1} \neq x \neq P} \text{ then } \uparrow$$

$$def P(\infty) :$$

$$if \infty = "def P(\infty) :$$

(*)

Rice's Theozem:

Let A = N

if A is saturated $A \neq \emptyset$, $A \neq 1N$

them A is not recursive

foorg

we show K <m A

(since K is not recursive m. A mot secursive)

Let $e \in \mathbb{N}$ be s.t. $e \in \mathbb{N}$ \(\text{proguam for the function always} \) unde fined

1 Assume & ≠ A

let es E A (it exists since A = Ø)

define

$$g(x,y) = \begin{cases} \varphi_{e_1}(y) & \text{if } x \in K \\ \varphi_{e_2}(y) & \text{if } x \in \overline{K} \end{cases}$$

$$= \begin{cases} \varphi_{e_1}(y) & \text{if } x \in K \\ \uparrow & \text{if } x \in \overline{K} \end{cases} \qquad \begin{bmatrix} \varphi_{x}(x) \downarrow \\ \downarrow & \text{if } \chi \in \overline{K} \end{bmatrix}$$

=
$$\varphi_{e_1}(y)$$
 · $\mathbb{I}\left(\varphi_{\alpha}(x)\right)$
 \uparrow 1 · $\int_{\gamma} \varphi_{\alpha}(x) \psi$
 \uparrow otherwise

computable!

By smm theorem there is S: IN > IN total and computable s.t. Ya, y

$$\varphi_{S(x)}(y) = g(x,y) = \begin{cases} \varphi_{e_1}(y) & \text{if } x \in K \\ \varphi_{e_2}(y) & \text{if } x \in \overline{K} \end{cases}$$

S is the reduction function for K≤m A

if
$$x \in K$$
 them $\varphi_{S(x)}(y) = g(x,y) = \varphi_{e_1}(y)$ $\forall y$
i.e. $\varphi_{S(x)} = \varphi_{e_1}$. Since $e_1 \in A$ and A saturated A Six) $\in A$

if
$$x \notin K$$
 then $\varphi_{S(x)}(y) = g(x,y) = \varphi_{e_0}(y)$ by i.e. $\varphi_{S(x)} = \varphi_{e_0}$. Since $e_0 \notin A$ and A solunoted A solunot

Hence S is the reduction function for K ≤ m A and since K not recursive, we deduce A not recursive.

A saturated (since A is saturated)

$$\bar{A} \neq \phi$$
 (since $A \neq N$)

$$\tilde{A} \neq N \quad (\wedge \quad A \neq \emptyset)$$

 \sim by (1) applied to \overline{A} we deduce \overline{A} mot rewrsive \sim A mot rewrsive (since A rewrsive \sim \overline{A} rewrsive)

Output problem

- Bm saturated, in fact

$$B_{m} = \{ x \mid \varphi_{x} \in \mathcal{B}_{m} \}$$

$$\mathcal{B}_{m} = \{f \mid m \in \operatorname{cod}(f)\}$$

WAY TO USE RICE THEOREM

- write the initial set in a way that all functions which compute all programs x are in a certain subset of functions (new Bn)
- this set of function contains all the functions that respect something and this something is the initial request
- => the idea is writing a property of functions and not a property of programs, if we are not able to do it we cannot use rice theorem
- prove that it is not empty
- prove that it is different from the set N
- \bowtie (in the exam this is trivial but we need to argue about it)

e.g. let
$$e_1 \in \mathbb{N}$$
 be, s.t. $\varphi_{e_1}(y) = y \quad \forall y \quad \text{no} \quad m \in E_{e_1} = \mathbb{N}$
 $\rightarrow e_1 \in \mathbb{B}_m \neq \emptyset$

$-B_m \neq N$

e.g. let
$$e_z \in IN$$
 s.t. $\varphi_{e_z}(y) = m \ (\neq m)$ $\forall y$

$$e_z \in B_m \qquad (since m \notin E_{e_z} = qm)$$

By Rice's Pheodern Bm is not securoive.

EXAMPLE :

$$I = \{x \in \mathbb{N} \mid P_x \text{ has infinitely many possible outputs}\}$$

= $\{x \in \mathbb{N} \mid E_x \text{ is infinite}\}$

* saturated

$$I = \{x \mid \varphi_x \in \mathcal{Y}\}$$
with $\mathcal{Y} = \{f \mid ad(f) \mid imfinite\}$

If
$$e_2$$
 is as before \sim $Ee_2 = \{m\}$ \sim $e_2 \notin I$

I mot recursive, by Rice's theorem.

```
Example
```

$$A = \{ x \mid x \in W_z \cap E_z \}$$

saturated?

$$A = \{ x \mid \varphi_x \in A \}$$

$$A = \{ f \mid ? \in \text{dom}(f) \cap \text{cad}(f) \}$$
we do not know what to put here

probably mot saturated

we do mot use Rice

We $K \leq_m A$, i.e. that there is a total computable function $s: \mathbb{N} \to \mathbb{N}$ s.t.

$$S(x) \in W_{S(x)}$$
 $\varphi_{S(x)}(s(x)) \bigvee$

and
$$S(x) \in E_{S(x)}$$
 --- $\varphi_{S(x)}(y) = S(x)$ for some y

we define

$$g(x_{i}y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases}$$

$$= y \cdot 1 (\varphi_{x}(x))$$

$$= y \cdot 1 (\psi_{v}(x_{i}x)) \qquad \text{computable}$$

By smm theorem there is S: IN -> IN total computable s.t.

$$\varphi_{S(\pi)}(y) = g(\pi,y) = \begin{cases} y & \text{if } x \in K \\ 1 & \text{otherwise} \end{cases}$$

S is the reduction function

- if x e K them
$$\varphi_{S(x)}(y) = \varphi(x,y) = y$$
 $\forall y$

Hemæ

$$S(x) \in W_{S(x)} \cap \overline{E}_{S(x)} = N$$
 . Thus $S(x) \in A$ N

- If $x \notin K$ thun $q_{S(x)}(y) = g(x,y) \uparrow \forall y$ Hence $S(x) \notin W_{S(x)} \cap E_{S(x)} = \emptyset$

Thus S(x) \neq A

Thus $K \leq_m A$, and, since K mot recursive, also A is not recursive.