

SimPowerSystems Hands-on Workshop: Modeling and Simulation of Electrical Power Systems with SimPowerSystems™

Carlos Osorio
Principal Application Engineer
MathWorks - Natick, MA

Outline

- Simulink-based electrical components
- Modifying Specialized Technology library components
- Simscape Language and Simscape Components library
- Simscape and SimPowerSystems interfaces
- Model sharing and IP protection

Controlled voltage and current sources

>> controlled voltage source

The *voltage* across the source terminals equals the input Simulink signal, regardless of the current requirement

The *current* through the source terminals equals the input Simulink signal, regardless of the voltage requirement

>> controlled_current_source

Photovoltaic solar cell example

Where:

- I_{ph} Solar induced current (proportional to irradiance)
- \hat{V}_{s} Diode saturation current (exponential behavior)
- N Diode quality factor (emission coefficient)
- V_t Thermal voltage kT/q (k: Boltzmann constant, T: device temperature)
- R_p Shunt resistance (models leakage currents, primarily due to defects)
- $R_{\rm s}$ Series resistance (models bulk and contact resistances)

Photovoltaic solar cell example

>> sps_solarcell

Photovoltaic solar cell example

>> sl_solarcell

Modifying Specialized Technology library components

Custom synchronous machine example

Break the link and save the original block to a user defined library i.e. mySMBlocks_userDefinedLib

Modifying Specialized Technology library components

Custom synchronous machine example

Copy the underlying machine model library to a new user defined library i.e. spsSynchronousMachineModel → mySMModels_userDefinedLib

Modifying Specialized Technology library components

Custom synchronous machine example

Modify any of the blocks in this new library and update the configurable subsystem template blocks i.e. mySMModels_userDefinedLib Replace the configurable subsystem templates under the mask of the original block with your modified templates i.e. mySMBlock

Simscape Language and Simscape Components library

Three-phase electrical domain

>> simscape_custom_generator

Simscape and SimPowerSystems interfaces

>> sps2se pvinverter avg

Pmpp @ 800 W/m2 = 64.9 W Pmpp @ 600 W/m2 = 47.7 W

>> sps2se_pvinverter_det

Simscape and SimPowerSystems interfaces

Interfacing electrical domains


```
>> sps2se pvinverter avg
```

>> sps2se pvinverter det

Simscape Editing Mode

- Share SimPowerSystems models with other Simscape users
- Simulate, analyze and generate code without requiring an extra SimPowerSystems license

Function	Full Mode	Restricted Mode
Add or delete regular Simulink blocks	Yes	Yes
Change Simulink solver, simulate	Yes	Yes
Change numerical parameters	Yes	Yes
Access PowerGUI functions, settings	Yes	Yes
Generate code	Yes	Yes
Add/delete blocks from SimPowerSystems	Yes	No
Make or break physical connections	Yes	No
Change block parameterization options	Yes	No

Protected model reference

>> pvinverter_det_vsub

Protected model reference

Convert the subsystem to an **Atomic** unit Block Parameters (Subsystem)

▼ Treat as atomic unit

PV Panel Maximum Power
Pmpp @ 1000 W/m2 = 82.5 W
Pmpp @ 800 W/m2 = 64.9 W
Pmpp @ 600 W/m2 = 47.7 W

Specify the inport/outport signal attributes – data type, port dimensions, sample time, etc. – of the atomic unit explicitly

Create the appropriate <bus object> data type for any bus ports

Change the solver to *FixedStepDiscrete*Add Rate Transition blocks where needed

Check the **Inline parameters** option Configuration Parameters → Optimization → Signals...

>> pvinverter det asub

Protected model reference

5

Convert the subsystem to a **Reference Model** Subsystem & Model Reference → Convert Subsystem to...

Switch the **Simulation Mode** of the referenced model to **Accelerator**Block Parameters (ModelReference)

On the referenced model **powergui**

→ Configure parameters menu check the Use TLC file... option

>> pvinverter_det_mrefacc

Protected model reference

7

Create the Protected Model

Subsystem & Model Reference → Create Protected Model ...

Photovoltaic Panel - Three Phase Power Inverter Protected Model Reference

>> pvinverter_det_pmref

