Deep Learning for Natural Language Processing

- NLP problems employed shallow machine learning models and time-consuming, hand-crafted features.
- Recent popularity and success of word embeddings neural-based models have achieved superior results.

Deep Learning for Natural Language Processing

- Can text be input in Deep Learning?
 - NO
- Can number be input in Deep Learning?
 - Yes

What is word encoding?

Convert text to number

What is One Hot Encoding? Convert text to Vector

	thank	you	love		unique word	encoding
thank	1	0	0		thank	[1, 0, 0]
you	0	1	0		you	[0, 1, 0]
love	0	0	1	,	love	[0, 0, 1]

One Hot Encoding doesn't have similarity

One Hot Encoding doesn't have similarity

cosine similarity also 0 since angle is 90 degree

Embedding

Embedding is dense vector with similarity

man [([1, 0, 0, 0]	[1, 2]		man	
	[0, 1, 0, 0]	[1, 3]		man	
					woman
queen [[0, 0, 1, 0]	[5, 1]		king	queen
woman [0	[0, 0, 0, 0]	[5, 3]	+		

Word2vec approach to represent the meaning of word

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word

Represent the meaning of word – word2vec

There are 2 basic neural network models:

- Continuous Bag of Word (CBOW): use a window of word to predict the middle word
- Skip-gram (SG): use a word to predict the surrounding ones in window.

The Continuous Bag Of Words and the Skip Gram Model

- Take a 3 layer neural network. (1 input layer + 1 hidden layer + 1 output layer)
- Feed it a word and train it to predict its neighbouring word.
- Remove the last (output layer) and keep the input and hidden layer.
- Now, input a word from within the vocabulary. The output given at the hidden layer is the 'word embedding' of the input word.

A training sample generation with a window size of 2.

Implementation using Tensorflow

Collect Data

Data Preprocessing

king strong man queen wise woman boy young man girl young woman prince young king princess young queen man strong woman pretty prince boy king princess girl queen

Unique words in the corpus

```
{ 'boy',
 'girl',
 'king',
 'man',
 'pretty',
 'prince',
 'princess',
 'queen',
 'strong',
 'wise',
```

Generate Context word

```
['king', 'strong']
['king', 'man']
['strong', 'king']
['strong', 'man']
['man', 'king']
['man', 'strong']
['queen', 'wise']
['queen', 'woman']
['wise', 'queen']
['wise', 'woman']
```

Collect Data

	input	label
0	king	strong
1	king	man
2	strong	king
3	strong	man
4	man	king

Collect Data

```
[[0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
```

References

- Distributed Representations of Words and Phrases Tomas Mikolov and their Compositionality
- Stanford CS224d: Deep Learning for NLP http://cs224d.stanford.edu/index.html
- The best "word2vec Parameter Learning Explained", Xin Rong https://ronxin.github.io/wevi/
- Word2Vec Tutorial The Skip-Gram Model http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- https://www.youtube.com/watch?v=64qSgA66P-8
- https://github.com/minsuk-heo/