

CLAIMS

What is claimed is:

1. 1. A wireless networked conferencing system, comprising:
 - 2 a base unit, including a network interface, for receiving a signal representative of acoustic information from a remote endpoint over a network,
 - 4 and a filter system, for filtering the received signal to produce a high-frequency component signal and a low-frequency component signal;
 - 6 a first audio driver, electrically coupled to the filter system, for receiving the low-frequency component signal and reproducing acoustic information represented thereby;
 - 9 a transmitter, coupled to the filter system, for transmitting the high-frequency component signal over a wireless channel; and
 - 11 a console, including a console receiver for receiving the high-frequency component signal transmitted over the wireless channel, and a second audio driver, coupled to the receiver, for reproducing the acoustic information represented by the signal;
 - 15 whereby power consumption of the second audio driver is reduced by eliminating the need to reproduce frequencies of the acoustic information by the second audio driver.

- 1 2. The system of claim 1, further comprising a delay module, coupled to the filter
 - 2 system, for delaying by a delay duration the low-frequency component signal
 - 3 relative to the high-frequency component signal.
-
- 1 3. The system of claim 2, wherein the delay duration is approximately 5
 - 2 milliseconds.
-
- 1 4. The system of claim 2, wherein the delay duration is adjustable.
-
- 1 5. The system of claim 4, wherein the delay duration is selected based on an
 - 2 acoustic response characterization of a room.
-
- 1 6. The system of claim 2, wherein the filter system and the delay module are
 - 2 embodied in a digital processor.
-
- 1 7. The system of claim 6, wherein the base unit further includes a codec, for
 - 2 digitizing the signal for processing by the digital processor.

1 8. The system of claim 1, wherein the filter system includes:
2 a high-pass crossover filter, for outputting the high-frequency component
3 signal; and
4 a low-pass crossover filter, for outputting the low-frequency component
5 signal.

1 9. The system of claim 8, wherein a crossover frequency associated with the
2 high-pass crossover filter and the low-pass crossover filter is approximately 400
3 hertz.

1 10. The system of claim 1, wherein the console further includes:
2 at least one microphone, for generating a local signal representative of
3 local acoustic information; and
4 a console transmitter, coupled to the microphone, for transmitting the
5 local signal over a second wireless channel to a base receiver coupled to the base
6 unit.

1 11. The system of claim 10, wherein the at least one microphone is coupled to the
2 console receiver via a processor configured to perform an echo cancellation
3 process on the local signal.

1 12. A networked conferencing system, comprising:

2 a base unit, including a network interface for receiving a signal

3 representative of acoustic information from a remote endpoint over a network,

4 and a filter system, for filtering the received signal to produce a high-frequency

5 component signal and a low-frequency component signal;

6 a first audio driver coupled to the filter system, for receiving the low-

7 frequency component signal and reproducing audio information represented

8 thereby; and

9 a console, electrically coupled to the base unit and located separate

10 therefrom, the console including a second audio driver for reproducing the

11 acoustic information represented by the high-frequency component signal;

12 whereby power consumption of the second audio driver is reduced by

13 eliminating the need to reproduce frequencies of the acoustic information by the

14 second audio driver.

1 13. The system of claim 12, further comprising a delay module coupled to the

2 filter system, for delaying the low frequency component signal relative to the

3 high frequency component signal.

1 14. A method for reducing power consumption of a console in a conferencing
2 system, comprising the steps of:

3 receiving a signal representative of acoustic information from a remote
4 endpoint;

5 filtering the received signal to produce a high-frequency component
6 signal and a low-frequency component signal;

7 passing the low-frequency component signal to a first audio driver for
8 reproduction of the acoustic information represented thereby;

9 transmitting the high-frequency component signal over a wireless
10 channel;

11 receiving, at the console, the high-frequency component signal
12 transmitted over the wireless channel; and

13 reproducing the acoustic information represented by the high frequency
14 component signal at a second audio driver located at the console.

1 15. The method of claim 14, further comprising the step of delaying the low-
2 frequency component signal relative to the high-frequency component signal by
3 a delay duration.

1 16. The method of claim 15, further comprising the step of adjusting the delay
2 duration in accordance with measured acoustic response characteristics of an
3 environment in which the system is located.

- 1 17. A method for reducing power consumption of an internally powered audio
- 2 device of an audio system, comprising the steps of:
 - 3 filtering a received signal to produce a high-frequency component signal
 - 4 and a low-frequency component signal;
 - 5 passing the low-frequency component signal to a first audio driver for
 - 6 reproduction of acoustic information represented thereby;
 - 7 transmitting the high-frequency component signal over a wireless channel
 - 8 to the internally powered audio device; and
 - 9 reproducing acoustic information represented by the high frequency
 - 10 component signal at a second audio driver located at the internally powered
 - 11 audio device, the reproducing thereby reducing the power requirement of the
 - 12 internally powered audio device by eliminating the need to reproduce
 - 13 predefined frequencies of the signal at the second audio driver.

1 18. A wireless networked conferencing system, comprising:

2 means for receiving a signal representative of acoustic information from a

3 remote endpoint;

4 means for filtering the signal to produce a low-frequency component

5 signal and a high-frequency component signal;

6 means for transmitting the high-frequency component signal over a

7 wireless channel; and

8 means for reproducing the acoustic information represented by the high-

9 frequency component signal at a first audio driver and reproducing the acoustic

10 information represented by the low-frequency component signal at a second

11 audio driver.

1 19. The system of claim 18, further comprising means for delaying the low-

2 frequency component signal relative to the high-frequency component by a delay

3 duration.

1 20. The system of claim 19, further comprising means for adjusting the delay

2 duration in accordance with measured acoustic response characteristics of an

3 environment in which the system is located.