Self-organized Multi-robot Task Allocation

Md Omar Faruque Sarker

PhD Student Cognitive Robotics Research Centre Newport Business School University of Wales, Newport

12 October 2010

Outline

- **Introduction**
- 2 Task Allocation by Attractive Field Model (AFM)
- Communication Models
- Implementation
- Results
- **6** Conclusions

Multi-robot Task Allocation (MRTA)

What is MRTA?

In a multi-tasking environment dynamically allocate appropriate tasks to appropriate robots considering the changes in task-requirements, team-performance and environment.

Why MRTA is difficult?

In typical large distributed multi-robot teams:

- No centralized planner or coordinator
- Robots have limited ability
 - → to sense, communicate and interact locally
- Robots have limited world-views
 - → knowledge of past, present and future actions of others

Major Approaches for MRTA

Explicit allocation

Through explicit modelling of environment, tasks, robot capabilities. Some forms are: knowledge based, market based, role/value based, control theoretic.

- Pros: Straight-forward to design, implement and analyse formally.
- Cons: Not suitable for large teams (> 10) and heavy dependency on explicit global broadcast communication.

Self-organized allocation

Through emergent group behaviour produced by the local interaction and implicit or local communication. Most common form is: response threshold based approach.

- Pros: Suitable for large teams, no explicit model, implicit/local communication
- Cons: Difficult to design, implement, analyse and limited to one specific global task.

Self-organization

What is Self-organization?

Pattern formation in both biological and physical systems through the interactions internal to the system (Camazine et al. 2001).

Why Self-organized approach to MRTA?

- Implementing simple agent behaviours is economical
 → no sophisticated cognitive agents.
- Easily scalable for large robot-teams and tasks
 → no explicit modelling of environment.
- Fault-tolerant
 - → no leaders, templates or blue-prints.
- Energy-efficient
 - → no costly communication or computation overhead.

Ingredients of Self-organization

Self-regulation of an Agent

Figure: Three major interfaces of a self-organized agent

Self-organization in birds nesting

een erganization in en de riceting		
Simple behavioural rules	Follow: "I nest close where you nest	
	unless overcrowded"	
Local communication	Communications through local broad- cast signals	
Local interactions	Courtship display with neighbours	

Attractive Field Model (AFM)

Features of AFM

- Interdisciplinary: From the observation of ant, human and robotic social systems.
- Abstraction: Sufficient abstraction to accommodate different sensing and communication models.

Requirements of AFM

- Concurrence: The simultaneous presence of several options or tasks, at least a single task and the option of not doing any task.
- Continuous flow of information: Establish a flow of information to perceive tasks and receive feedback on system performance.
- Sensitization: Each individual must have different levels of preference or sensitivity to the available tasks.
- Forgetting: A mechanism by which the sensitisation levels are reduced or forgotten e.g. a slow general decay of sensitisation.

AFM as a Bipartite Network

Figure: The attractive filed model (AFM)

Source nodes (o)	tasks to be allocated to agents
Agent nodes (x)	E.g., ants, humans, or robots
Black solid edges	attractive fields that cor- respond to an agent's perceived stimuli from each task
Green edges	attractive fields of no- task option shown as a particular task (w)
Black dashed edges	not edges, but represent how each agent is allo- cated to a single task.

Properties of Agents under AFM

The probability of an agent choosing to perform a task:

$$P_{j}^{i} = \frac{S_{j}^{i}}{\sum_{j=0}^{J} S_{j}^{i}}$$
 where, $S_{0}^{i} = S_{RW}^{i}$ (1)

The strength of an attractive field varies according to the sensitivity of the agent is to that task, k_j^i , the distance between the task and the agent, d_{ij} , and the *urgency*, ϕ_i of the task.

$$S_{j}^{i} = tanh\{\frac{k_{j}^{i}}{d_{ij} + \delta}\phi_{j}\}\tag{2}$$

Delta distance δ , is a small constant, to avoid division by zero, in the case when a robot has reached to a task.

AFM and Self-organization

Positive feedback through learning
 Example: Increasing task-sensitization of agents

If task is done:
$$k_j^i \rightarrow k_j^i + k_{INC}$$
 (3)

 Negative feedback through forgetting Exampel: Decreasing task-sensitization of agents

If task is not done:
$$k_j^i \rightarrow k_j^i - k_{DEC}$$
 (4)

- Multiple interactions through continuous flow of information.
- Randomness through stochastic task-selection.

Related issues for using AFM in real-world application

Figure: Modelling real-world application to a laboratory scenario

Map tasks & robot capabilities

- workload ⇔ task-urgency
- 2 work done ⇔ task-urgency decrease
- 3 work pending ⇔ task-urgency increase

Enable continuous flow of info

- Centralized communication
- Local communication
 - Stigmergic communication

Other issues

- Enable learning/forgetting in controller
- Perception of distance ⇔ localization
- Provide multiple tasks (include random-walk)

A Manufacturing Shop-Floor Interpretation of AFM

Work (APMW)

Figure: Production and maintenance cycle of a manufacturing shop-floor

Centralized and Local Communication Models

Figure: A centralized communication scheme

Centralized Model	Local Model
Global broadcast	Local peer-to-peer
messaging	messaging
Communicate	Communicate when
synchronously	peer(s) come in
	close contact (inside
	range r _{comm})
Modelled after	Modelled after
Polistes wasps:	Polybia wasps:
global sensing	local sensing local
no peer-to-peer	communication
communication	

A Taxonomy of MRTA Solutions

Figure: Classification of MRTA solutions based on task-allocation and communication strategies

Figure: Information flow caused by different levels of communication and interaction

Hybrid-event Driven Architecture on D-Bus

Figure: Hardware and software setup for centralized communication experiments

Tracking e-puck robots

(a) SwisTrack multi-robot tracker

(b) E-puck robot

(c) E-puck marker

Results: Shop-floor Work-load and Active Workers

Figure: Changes in task-urgency

Shop-floor work-load:

Sum of changes in task-urgencies of all M tasks at $(q+1)^{th}$ step:

$$\Delta \Phi_{j,q+1} = \sum_{j=1}^{M} (\phi_{j,q+1} - \phi_{j,q})$$
 (5)

Figure: Shop-floor work-load

Active worker ratio:

Active workers in all tasks Total available workers

(6)

Results: Shop-floor Work-load and Active Workers

Figure: Shop-floor workload under CCM

Figure: Active worker ratio under CCM

Figure: Shop-floor work-load under LCM

Figure: Active worker ratio under LCM

Results: Task-Performance

Table: Shop-floor production and maintenance task performance

Series	APCD	APMW (time-step)
A. Centralized communication, 8 robots, 2 tasks, 2 m ² area	1.22	1
B. Centralized communication, 16 robots, 4 tasks, 4 m ² area	2.3	3
C. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =0.5m	1.42	5
D. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =1m	1.46	2

Results: Task-specialization

Overall group task-specialization in terms of peak values of sensitization of all robots:

$$K_{\text{avg}}^{G} = \frac{1}{N} \sum_{i=1}^{N} \max_{j=1}^{M} \left(k_{j,q}^{i} \right)$$
 (7)

Time-step values (q) taken to reach those peak values for all robots:

$$Q_{avg}^{G} = \frac{1}{N} \sum_{i=1}^{N} q_{k=k_{max}}^{i}$$
 (8)

Table: Task-specialization values of the robots

Series	K _{avg} (SD)	Q _{avg} (SD)
Α	0.40 (0.08)	38 (13)
В	0.30 (0.03)	18 (5)
С	0.39 (0.17)	13 (7)
D	0.27 (0.1)	11 (5)

Results: Energy-usage

Table: Sum of translations of robots in our experiments.

Series	Average translation (m)	SD
A. Centralized communication, 8 robots, 2 tasks, 2 <i>m</i> ² area	2.631	0.804
B. Centralized communication, 16 robots, 4 tasks, 4 <i>m</i> ² area	13.882	3.099
C. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =0.5m	4.907	1.678
D. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =1m	4.854	1.592

Results: Communication Loads

Figure: Frequency of TaskInfo signalling under Series A

Figure: Frequency of TaskInfo signalling under Series B

Figure: Frequency of TaskInfo signalling under Series C

Figure: Frequency of TaskInfo signalling under Series D

Conclusions

- AFM solves the MRTA issue for a relatively large group
 - → under both centralized and local communication strategies.
- Task-performance varies under different strategies
 - \rightarrow for small group, task-performance degrades in centralized communication
 - \rightarrow for large group, local communication increases task-specialization and significantly reduces motions.
- AFM can model complex multi-tasking environment
 → such as a dynamic manufacturing shop-floor.
- Maximizing information flow is not useful
 - \rightarrow under a stochastic task-allocation process, more information tends to cause more task-switching behaviours.

General Contributions

- Self-organization in artificial systems
 - \rightarrow Self-organized allocation produces specialized workers even when the group size is *small* (< 10).
- Role of communication in self-organization
 - \rightarrow Local communication in task-allocation outperforms centralized one in terms of group level task-specialization and energy usage.
- Large-scale system development
 - → Bottom-up de-coupled construction of *large* artificial system yields higher advantages particularly, flexibility and integration with inter-operable elements.

Specific Contributions

- Interpreted AFM
 - → as a basic mechanism for multi-robot task-allocation
- Validated the effectiveness of AFM
 - → with reasonably large number of real robots
- Compared the performances of two communication and sensing strategies:
 - Centralized communication like Polistes wasps
 - Local communication like Polybia wasps
- Developed a flexible multi-robot control architecture
 - \rightarrow using **D-Bus** inter-process communication
- Classified MRTA solutions focusing three major issues:
 - Organization of task-allocation
 - Communication and
 - Interaction

Future works

- Deploying our task-allocation model in various task settings
 - \rightarrow e.g. dynamic tasks, co-operative tasks, heterogeneous tasks.
- Find optimum communication range
 - → as a property of self-regulation of individuals.
- Real-world implementation
 - \rightarrow e.g. warehouse automation, manufacturing shop-floor or any other multi-tasking environment.
- Studying the role of formal structure on non-formal self-organization
 - → see in next few slides.

How long do you think they'll take to organize themselves in rows and start the Prayer?

Figure: The crowd of 3 million Muslims preparing for Prayer at the holy mosque Kaaba.

Figure: They are from countries all over the world with different languages, and not trained for any military drills.

But when the Prayer time comes...

Figure: The leader of the congregation (*Sheikh Sudais of Makkah*) stands up and says **ESTAWOO** == Arrange Yourselves

What happens then...?

Figure: Within seconds, the whole scene changed

Figure: The crowd of 3 million Muslims arranged themselves in organized rows in NO TIME!