Geometria różniczkowa Lista 1

- 1. Niech $\gamma:(a,b)\to \mathbf{R}^2$ będzie niezdegenerowaną krzywą gładką a s(d) długością krzywej $\gamma((0,d))$. Różniczkując $\gamma\circ s^{-1}$ pokaż, że $|\gamma\circ s^{-1}|=1$.
- 2. Równanie Freneta: jeżeli γ jest sparametryzowana łukowo, $T(s) = \gamma'(s)$, N jest wektorem takim, że (T, N) jest bazą ortonormalną zorientowaną dodatnio, to $N' = -\kappa_{\gamma}T$.
- 3. Niech $f(x,y) = (x-x_0)^2 + (y-y_0)^2 R^2$ (zerami tej funkcji są punkty okręgu $C(x_0,y_0,R)$), i niech $\gamma: (a,b) \to \mathbf{R}^2$ będzie krzywą gładką, $\gamma'(0) \neq 0$. Udowodnij, że $C(x_0,y_0,R)$ jest ściśle styczny do γ w $\gamma(0)$ wtedy i tylko wtedy, gdy

$$f(\gamma(0)) = \frac{d}{dt}\Big|_{t=0} f(\gamma(t)) = \frac{d^2}{dt^2}\Big|_{t=0} f(\gamma(t)) = 0.$$

Używając tego warunku wyznacz okrąg ściśle styczny do paraboli $y=x^2$ w punkcie (1,1).

- 4. Wymyśl jeszcze jakąś definicję okręgu ściśle stycznego. Udowodnij jej równoważność z poprzednimi definicjami.
- 5. Udowodnij, że jeśli krzywizna γ w $\gamma(0)$ ma niezerową pochodną, to (dla dostatecznie małego ϵ) zbiory $\gamma((-\epsilon,0))$ i $\gamma((0,\epsilon))$ znajdują się po przeciwnych stronach okręgu ściśle stycznego do γ w $\gamma(0)$.
- 6. Udowodnij, że jeśli krzywa γ leży wewnątrz (na zewnątrz) okręgu stycznego do niej w $\gamma(0)$, to jej krzywizna w $\gamma(0)$ jest nie mniejsza (nie większa) od krzywizny owego okręgu.
- 7. Podaj przykład okręgu, który ma dwa punkty wspólne z parabolą $y=x^2$, przy czym w dokładnie jednym z nich jest do niej styczny.
- 8. Uzasadnij, że krzywa o rosnącej krzywiźnie nie ma samoprzecięć.
- 9. Wyprowadź wzór na krzywiznę krzywej zadanej parametrycznie $(\gamma(t) = (\gamma_1(t), \gamma_2(t)))$ wyrażający ją przez pochodne funkcji γ_1 , γ_2 (bez założenia, że krzywa jest sparametryzowana łukowo). Wyprowadź wzór na krzywiznę wykresu funkcji y = f(x).
- 10. Znajdź krzywe w \mathbb{R}^3 o stałej krzywiźnie i torsji.
- 11. Uzasadnij, że jeśli krzywa γ w ${\bf R}^3$ jest sparametryzowana łukowo, to

$$\tau = \frac{1}{\kappa^2} \langle \gamma' \times \gamma'', \gamma''' \rangle.$$

12. Niech $\kappa > 0$ oraz τ będą dowolnymi funkcjami na odcinku [a,b], $p \in \mathbf{R}^3$ i niech B będzie dodatnio zorientowaną bazą ortonormalną w \mathbf{R}^3 . Pokaż, że istnieje dokładnie jedna krzywa $\gamma : [a,b] \to \mathbf{R}^3$ sparametryzowana łukowo taka, że $\kappa_{\gamma} = \kappa, \tau_{\gamma} = \tau, \gamma(a) = p$ oraz B to trójnóg Freneta γ w punkcie a.