사회통계 _{상관분석}

김현우, PhD¹

¹ 충북대학교 사회학과 조교수

진행 순서

- 상관분석 톺아보기
- 상관계수 유의성 검정
- 3 상관분석의 실제 활용

두 양적변수 사이의 관계를 살펴볼 때는 상관분석을 수행한다.

- 상관분석(correlation analysis)은 상관계수(correlation coefficient)를 구하는 기법이다.
- 상관계수를 이해하려면 먼저 분산(variance)과 공분산(covariance)을 돌이켜 볼 필요가 있다.
- 먼저 분산의 식을 돌이켜보자.

$$Var(X) = \sigma_X^2 = \frac{1}{N} \sum_{i=1}^n (X_i - \mu)^2$$
$$= \frac{1}{N} \sum_{i=1}^N (X_i - \mu)(X_i - \mu)$$

• 변수가 하나 주어져 있을 때 편차(deviation)를 구해 제곱하여 분산을 구했는데, 아래처럼 살짝 바꾸면 곧바로 공분산이 된다.

$$Cov(X,Y) = \sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y)$$

- 공분산과 분산의 아이디어는 거의 똑같다! 다만 X_i 하나의 편차를 제곱하는 대신, X_i 와 Y_i 의 편차를 서로 곱했을 뿐이다.
- 두 변수의 편차끼리 곱할 때, 모두 양수(+)이거나 음수(-)이면 공분산은 양수(+)가 되고, 어느 한쪽이 양수(+)이고 다른 쪽이 음수(-)이면 공분산은 음수(-)가 된다.
- 엑셀에서 COVARIANCE.P(·) 함수로 모집단의 공분산을 구할 수 있다. 표본의 공분산은 COVARIANCE.S(·) 함수로 구할 수 있다.
- 공분산은 흥미로운 아이디어를 제시하고 있지만 명확한 단점이 있었다.
- Cov(X,Y)는 X 내부(within X)의 분산과 Y 내부(within Y)의 분산이 다를 수 있다는 점을 고려하지 않았으므로 그 자체로는 해석이 어려웠다.

Karl Pearson은 공분산의 단점을 보완하는 천재적인 접근을 제시했다.

- 그는 두 변수 X와 Y의 각각의 표준편차(분산이 아니고!)를 분모로 각각 나누어줌으로서 X 내부의 분산과 Y 내부의 분산이 다를 수 있는 가능성을 제거하고 표준화를 이루었다.
- 뿐만 아니라, 일부러 분산이 아닌 표준편차로 나누어주었기 때문에 표준화된 값은 절묘하게 -1과 1사이로 두 변수가 얼마나 강한 상관관계를 가지고 있는지 보여준다.
- 이것이 이른바 피어슨의 적률상관계수(Pearson's product-moment correlation coefficient)이다. 줄여서 상관계수 ρ다. ρ는 rho라고 읽는다.

$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

상관계수의 해석은 매우 간단하지만 혼동하지 않도록 주의해야 한다.

- 상관계수는 반드시 -1과 1사이에 놓인다. $\rho=0$ 는 무상관(no correlation), $\rho=1$ 은 완전상관(perfect correlation)이라고 한다.
- 상관계수가 0보다 크면 두 변수는 서로 같은 방향(정방향)으로 움직인다. 즉 "X가 증가하면 Y도 증가한다."
- 상관계수가 0보다 작으면 두 변수는 서로 다른 방향(역방향)으로 움직인다. 즉 "X가 증가하면 Y는 감소한다."
- 왜 이렇게 해석되는지 공분산의 분자 $\sum (x \mu_X)(y \mu_Y)$ 를 잘 들여다보자.
- 상관계수가 1에 가까울수록 (그리고 -1에 가까울수록) 두 변수는 더욱 밀접한 상관관계를 갖게 된다.

• 해석할 때는 0과 1 사이를 사분위수로 나누고 각각 리커트 4점 척도로 의미를 부여한다. 물론 0과 -1 사이에서도 마찬가지이다.

상관계수	상관관계의 해석
[-1, -0.75]	매우 강한 역방향
[-0.75, -0.5]	다소 강한 역방향
[-0.5, -0.25]	다소 약한 역방향
[-0.25, 0]	매우 약한 역방향
[0, 0.25]	매우 약한 정방향
[0.25, 0.5]	다소 약한 정방향
[0.5, 0.75]	다소 강한 정방향
[0.75, 1]	매우 강한 정방향

예제 1. fullauto.csv를 사용하여 차체회전반경(turn)과 전장(length) 간의 상관계수를 구하고 이를 해석하시오. 상관관계를 나타내는 그래프를 함께 제시하시오.

- 먼저 두 변수의 의미를 코드북(codebook)에서 파악하자.
- 이제 두 변수의 자료유형을 확인해야 한다. 빈도분포표 혹은 히스토그램을 그려서 이를 확인하자.
- 두 변수는 양적변수이므로 엑셀 함수로는 CORREL(·) 혹은 PEARSON(·)을 사용하여 상관계수를 구하다.
- 상관계수에 따르면 두 변수 사이에는 상관관계가 있는가? (있다면) 어느 방향으로 얼마나 강한 상관관계가 있는가?
- 물론 앞서 제시한 식을 직접 이용할 수도 있다. 두 변수 사이의 공분산을 구한 다음, 각 변수의 표준편차의 곱으로 나누어주면 마찬가지로 상관계수를 구할 수 있다.

상관계수에 대해서도 유의성 검정을 할 수 있다.

• 상관계수에 대해서는 대체로 양측검정을 수행하므로 가설 구조는 다음과 같다.

$$H_0: \rho = 0$$
$$H_a: \rho \neq 0$$

- 귀무가설이 참이라는 가정 아래 무한히 계속 표본을 뽑아 그것들의 상관계수 r을 구해보면 이것은 t 분포를 따른다.
- 이 t 분포의 꼴은 n-2의 자유도로 결정된다(Why?).
- 필요에 따라 $\rho>0$ 이나 $\rho<0$ 같은 단측검정을 수행할 수도 있지만 좀처럼 쓰이지 않는다.

• 검정통계량 t 값을 구하고 유의확률 $(p ext{-value})$ 을 계산한다.

$$t = \frac{r - \rho}{\sigma_r} = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = r\sqrt{\frac{n - 2}{1 - r^2}}$$

- 이때 σ_r 은 표본상관계수의 표준오차(standard error)이다.
- 즉 (1) 표본상관계수 r가 커지고 (2) 표본 크기 n이 커질수록 t 값이 커져 귀무가설을 기각하기 쉬워진다.

예제 2. fullauto.csv를 다시 사용하여 차량 가격(price)과 가성비(mpg) 간의 상관계수를 구하고 이를 해석하시오. 상관관계를 나타내는 그래프를 함께 제시하시오. 또한 99.9% 신뢰수준에서 가설검정을 수행하시오.

• 양측검정을 수행하며, 주어진 가설 구조는 다음과 같다:

$$H_0: \rho = 0$$
$$H_a: \rho \neq 0$$

• 엑셀에서 CORREL(·) 함수로 두 변수 사이의 상관계수를 구한다.

$$r = -0.459$$

• 검정통계량 t 값은 다음과 같다.

$$t = r\sqrt{\frac{n-2}{1-r^2}} = -4.389$$

- t 분포의 양쪽 꼬다리의 "곡선 밑 면적"을 구하고 싶다(Why?).
- 그러므로 엑셀에서 T.DIST(-4.389, 72, TRUE)와 1-T.DIST(4.389, 72, TRUE)를 입력해 나온 값들을 더해 유의확률(p-value)을 구한다.
- p < 0.001 이므로 99.9% 신뢰수준에서 통계적으로 유의하게 귀무가설을 기각한다.
- 정말로 외제차 가성비와 가격 사이에는 다소 약한 역(-)의 상관관계가 존재하는 것 같다!

유의확률에 관한 정보를 요약하기 위해 이제부터 *을 붙이기로 한다.

- 유의확률이 0.001보다 작으면 상관계수 옆에 별 3개(***), 0.01보다 작으면 별 2개(**), 0.05보다 작으면 별 1개(*), 0.1보다 작으면 대거(dagger) 하나(†)를 붙일 수 있다.
- 이런 표식은 결국 "통계적으로 유의하게 귀무가설을 기각할 수 있음"을 의미한다.
- 이것은 완전히 관습의 문제이고 심지어 사람마다 다르다. 어떤 사람은 아예 붙이지 않기도 한다.
- 아까 나의 그림에서는 그냥 유의하다는 사실을 알리기 위해 별 하나로 퉁쳤다.

소표본만 벗어나도 상관계수의 유의성 검정에 사실 큰 의미가 없다.

- 위 식을 곰곰히 들여다보면 눈치챌 수 있는 부분인데, 예컨대 n=50 정도로 작은 샘플에서 r=0.3 정도의 값만 나와주어도 이미 95% 신뢰수준에서 통계적으로 유의하다(Why?).
- 오늘날 경험적 사회과학 연구에서 n=50 짜리 연구는 없다. 게다가 r=0.3는 거의 없는 수준의 상관관계에 불과하다.
- 그러다보니 상관분석의 경우에는 구태여 별을 붙이지 않는 경우도 있다.

상관계수를 보고할 때는 반드시 함께 산점도를 그려야 한다.

- 상관계수는 기본적으로 두 변수간 선형적 관계의 강도(strength of the linear relationship)를 나타내 보인다.
- 다시 말해, 두 변수 사이에 선형적이지 않은 관계, 즉 비선형적 관계(nonlinear relationship)가 있는 경우에는 상관계수가 오해를 불러온다.
- 애시당초 두 변수 사이가 U자형, 역U자형, W자형 등등이 아니라는 보장이 어디에 있을까?

예제 3. fullauto.csv를 사용하여 후방좌석길이(rseat)과 배기량(displ) 사이의 상관계수 r을 확인하고 산점도(scatterplot)를 그리시오.

- 극단치(outliers)가 있는 경우 상관계수는 여기에 민감하게 영향받음을 알 수 있다.
- 그러므로 (극단치의 존재를 식별해내기 위해서라도) 반드시 산점도를 그려보아야 한다.
- 필요하다면 극단치를 제거한 뒤에 다시 상관계수를 계산하는 것이 바람직할 수도 있다(물론 제거 여부를 꼭 밝혀두어야 한다).

모든 변수들 사이의 관계를 한 번에 살펴보기 위해 상관계수행렬을 만든다.

- 원칙적으로 숫자형 변수가 두 개 사이의 관계를 볼 때 상관분석을 수행한다. 하지만 여러 개 있어도 큰 문제가 없다.
- 만약 10개의 변수가 있으면 쌍대비교(pairwise comparison)를 45번(= $_{10}C_2$)하면 그만이다(Why?).
- 그렇지만 45번을 매번 따로따로 보고하면 좀 보기 흉할 것 같다.
- 그러므로 여기서는 차라리 변수들을 쭉 나열한 뒤, 상관계수를 요약해서 보고하는 상관계수행렬(correlation coefficient matrix)을 한 번에 만드는 쪽이 낫다.

예제 4. fullauto.csv를 사용하여 모든 숫자형 변수들 price, mpg, hdroom, rseat, trunk, weight, length, turn, displ, gratio의 상관계수행렬을 만드시오.

- 변수는 모두 10개이므로 45개의 상관계수를 보고하게 된다.
- 엑셀에서 [데이터]-[데이터 분석]을 통해 "상관 분석"을 선택한다. "첫째 행 이름표 사용"을 고려하여 적절하게 자료를 하이라이트한다.
- 나온 결과에서 셀의 크기와 소숫점을 적절히 컨트롤한다.
- 많은 연구 보고서와 논문에서는 기술통계(descriptive statistics)의 일환으로 상관계수행렬을 제시하는 편이다.
- 다만 상관계수행렬은 한 페이지를 통째로 잡아먹기 때문에 근래에는 보고하지 않는 경우도 많아졌다.
- 여기에 더해 상관계수 옆에 별을 잔뜩 붙이다보면 페이지 공간을 쓸떼없이 더 차지하고 유의성 검정이 사실 별 의미도 없다.

학술논문을 통해 상관계수행렬이 실제로 어떻게 활용되는지 살펴보자.

- 한내창 (2020)의 〈표1〉을 꼼꼼히 살펴보자.
- 비본질적 종교성의 측정도구로 몇 가지 측정문항을 사용하였는가? 그것들은 각각 무엇인가?
- 다음으로 〈표2〉 표는 혼전성수용도에서 교육수준에 이르기까지 10개의 변수들 사이에 상관계수가 어떠한가를 보여준다.
- 혼전성수용도와 가장 큰 상관계수를 보이는 변수는 무엇인가? 혼외성수용도와 가장 큰 상관계수를 보이는 변수는 무엇인가? 혼전 및 혼외성수용도 사이에는 통계적으로 유의한 상관관계가 있나? 가장 큰 상관계수를 보이는 두 변수는 무엇인가?

한내창. 2010. "종교와 성태도 간 관계." 한국사회학 44(5): 114-138.

〈표 1〉 분석 모델에 포함된 변인들의 간략한 기술적 내용

(표기/ 문식 모델에 포임된 면인들의 간약만 기술식 내용						
구분	변수명	문항수	값	평균/SD	α	
종속	1. 혼전성수용도	1	1-4	2.40/ 1.05	-	
변수	2. 혼외성수용도	1	1-4	1.39/ 0.73	-	
독립 변수	3. 신봉종교	1	-	-	-	
	4. 종교서비스참여	1	월평균빈도	1.69/ 2.61		
	5. 기도빈도	1	월평균빈도	10. 28/19. 51	-	
	6. 기타활동참여	1	월평균빈도	0.88/ 2.03		
	7. 주관적종교성	1	1- 7	3.94/ 1.77	-	
	8. 본질적종교성	1	1- 5	2. 27/ 1. 33		
	9. 비본질적종교성	4	4-20	15. 41/ 3. 02	0.81	
통제 변수	10. 성	1	-	-	-	
	11. 연령(18-91)	1	만 나이	45. 73/34. 82	-	
	12. 교육수준	1	교육년수	12. 43/ 4. 26	-	

- 1. 남녀가 결혼 전에 성관계를 갖는 것이 옳다고 생각하십니까?
- 2. 결혼한 사람이 배우자가 아닌 사람과 성관계를 갖는 것이 옳습니까?
- 3. 귀하는 어떤 종교를 가지고 계십니까?
- 4. 귀하는 얼마나 자주 불공 또는 예배드리러 가십니까?
- 5. 귀하는 얼마나 자주 기도하십니까?
- 6. 귀하는 현재 종교의식(예배나 법회 등)에 참석하는 것 외에 교회, 성당, 절 등에서 하는 모임이나 활동에 얼마나 자주 참여하십니까?
- 7. 귀하는 자신이 얼마나 종교적이라고 생각하십니까?
- 8. 나에겐 오직 신이 존재하기 때문에 삶이 의미가 있다.
- 9. 중교생활을 하는 것은 내적 평화와 행복을 얻는데 도움이 된다 중교생활을 하는 것은 친구들 사귀는데 도움이 된다 중교생활을 하는 것은 어렵거나 슬플 때 위안을 얻는데 도움이 된다 중교생활을 하는 것은 나와 잘 맞는 사람을 만나는데 도움이 된다

〈표 2〉 주요 변인들 간 피어슨 단순 상관계수

	1	2	3	4	5
 혼전성수용도 	-				
 혼외성수용도 	. 34***				
 법회 · 예배참석 	22***	09***	-		
 기도빈도 	18***	10***	. 63***		
5. 기타활동 참석	15***	07**	. 68***	. 53***	
6. 자기평가종교성	17***	06**	.58***	. 52***	. 44***
7. 본질적종교성	20***	09***	. 58***	. 53***	. 44***
8. 비본질적종교성	02	04	. 35***	. 33***	. 30***
9. 연령	41***	09***	. 14***	. 15***	.07**
10. 교육수준	. 29***	.09***	01	02	. 04

[※] 유의수준: ***p <0.001 **p <0.01 *p <0.05

〈표 2: 계속〉 주요 변인들 간 피어슨 단순 상관계수

	6	7	8	9
6. 자기평가종교성	-			
7. 본질적종교성	.56***	-		
8. 비본질적종교성	. 40***	. 34***		
9. 연령	. 14***	. 16***	.00	-
10. 교육수준	05*	08**	.09***	62***

[※] 유의수준: ***p ⟨0.001 **p ⟨0.01 *p ⟨0.05

