CP-Algorithms

_
Search

Balanced Ternary

Table of Contents

- Conversion algorithm
- Practice Problems

This is a non-standard but still positional **numeral system**. Its feature is that digits can have one of the values **-1**, **0** and **1**. Nevertheless, its base is still **3** (because there are three possible values). Since it is not convenient to write **-1** as a digit, we'll use letter **Z** further for this purpose. If you think it is quite a strange system - look at the picture - here is one of the computers utilizing it.

So here are few first numbers written in balanced ternary:

- 0 0
- 1 1
- **2 1Z**
- 3 10
- 4 11
- 5 **1ZZ**
- 6 **1Z0**
- **7 1Z1**
- 8 10Z
- 9 100

This system allows you to write negative values without leading minus sign: you can simply invert digits in any positive number.

- -1 Z
- -2 **Z1**
- -3 **Z**0
- **-4** ZZ
- -5 **Z11**

Note that a negative number starts with **z** and positive with **1**.

Conversion algorithm

It is easy to represent a given number in **balanced ternary** via temporary representing it in normal ternary number system. When value is in standard ternary, its digits are either 0 or 1 or 2. Iterating from the lowest digit we can safely skip any 0s and 1s, however 2 should be turned into 2 with adding 1 to the next digit. Digits 3 should be turned into 0 on the same terms - such digits are not present in the number initially but they can be encountered after increasing some 2s.

Example 1: Let us convert **64** to balanced ternary. At first we use normal ternary to rewrite the number:

$$64_{10} = 02101_3$$

Let us process it from the least significant (rightmost) digit:

- 1,0 and 1 are skipped as it is.(Because 0 and 1 are allowed in balanced ternary)
- 2 is turned into **z** increasing the digit to its left, so we get **1Z101**.

The final result is **17101**.

Let us convert it back to the decimal system by adding the weighted positional values:

$$1Z101 = 81 \cdot 1 + 27 \cdot (-1) + 9 \cdot 1 + 3 \cdot 0 + 1 \cdot 1 = 64_{10}$$

Example 2: Let us convert **237** to balanced ternary. At first we use normal ternary to rewrite the number:

$$237_{10} = 22210_3$$

Let us process it from the least significant (rightmost) digit:

- o and 1 are skipped as it is.(Because o and 1 are allowed in balanced ternary)
- 2 is turned into Z increasing the digit to its left, so we get 23Z10.
- 3 is turned into 0 increasing the digit to its left, so we get 30Z10.
- 3 is turned into 0 increasing the digit to its left(which is by default 0), and so we get 100Z10.

The final result is 100Z10.

Let us convert it back to the decimal system by adding the weighted positional values:

$$100Z10 = 243 \cdot 1 + 81 \cdot 0 + 27 \cdot 0 + 9 \cdot (-1) + 3 \cdot 1 + 1 \cdot 0$$

Practice Problems

• Topcoder SRM 604, Div1-250

(c) 2014-2019 translation by http://github.com/e-maxx-eng 07:80/112