Лекция 5

Elizaveta Kuznetsova

05 October 2021

Напоминание

Опредление 1. Дерево - свзяный граф без циклов |E|+1=|V|

Рис. 1: Дерево

Полный граф - любые пары разных вершин соединены $\forall u \neq u \in V$

Рис. 2: Полный граф

Если вершин n |V| = n, то ребер:

- 1. C_n^2 ребер выбираем пары $\frac{n(n-1)}{2}$
- 2. степени всех вершин n-1

$$\sum_{v \in V} deg(v) = 2|E|$$

$$\Rightarrow n-1=2|E|$$

Планарные графы

Опредление 2. Граф G - планарный, если его можно нарисовать на плоскости так, чтобы ребра не пересекались

Рис. 3: Планарный граф

Теорема 1 (Формула Эйлера). Если планарный граф G=(V,E) нарисован на плоскости, у него можно посчитать грани Пусть граней - f, |V|=n, |E|=m

Рис. 4:

Тогда
$$n-m+f=2$$
 I $4-4+2=2$ II $6-7+3=2$ III $7-9+4=2$

Рис. 5: У дерева 1 грань

Рис. 6: Вокруг грани всегда есть цикл. Дерево без циклов

$$n - m + f = n - (n - 1) + 1 = 2$$

Переход: G, G' - связные планарные графы. Для G не знаем, верно ли. Для G': если у G' меньше ребер \Rightarrow верно.

G - не дерево \Rightarrow есть цикл. Берем любое ребро цикла, вокруг него 2 грани. Удалим ребро, получим G', который тоже связен и планарен.

$$n' = n, m' = m - 1, f' = f - 1$$

По индукции предполагаем: $n' - m' + f' = 2$
 $\Rightarrow n - (m - 1) + (f - 1) = 2$
 $\Rightarrow n - m + f = 2$

Следствие:

- 1. Неважно. как рисовать планарный граф, количество граней постоянно
- 2. Теорема работает для многогранника

Рис. 7: Теорема Эйлера для куба

$$8-12+6=2$$

- 3. Если G планарен (не обязательно связен) n-m+f=1+|Количество компонент связности|
- 4. У каждой грани вокруг ≥ 3 ребра

Рис. 8:

Рис. 9: Количество ребер вокруг грани

 $3f \leq \sum_{g}$ количество ребер вокруг $g \leq 2m$ $\Rightarrow 3f \leq 2m$ Но $n-m+f \leq 2$ $3n-3m+3f \leq 6$ $3n-3m+2m \geq 6 \Rightarrow 3n-m \geq 6$ $\Rightarrow m \leq 3n-6$ в связном планарном графе. Следствие: Полный граф при n=5 не планарен.

Рис. 10: Планарный полный граф n=4

 \mathcal{A} оказательство. K_5 - полный граф $n=5, m=\frac{5*4}{2}=10$ $10\leq 3*5-6=9$ - неверно

Утверждение:Граф $K_{3,3}$ тоже не планарен

Рис. 11: Граф $K_{3,3}$

Доказательство. $n=6,\ m=9,\ 9\leq 3*6-6$ - не противоречит Сколько граней, если планарен? $6-9+f=2\Rightarrow f=5$ В $K_{3,3}$ все циклы четные (ходим лево-право или право-лево) \Rightarrow у грани ≥ 4 ребра. $4f\leq \sum$ ребер у грани $\leq 2m$ $\Rightarrow m\geq 2f,\$ но $9\not\geq 2*5$

Теорема 2 (Теорема Понтрягина-Кудряковского). Граф G - планарен, если он не содержит подграфов, стягивающихся к K_5 и $K_{3,3}$

Рис. 12: Не планарен. Стягивается к $K_{3,3}$

Рис. 13: Не планарен. Содержит K_5 . Граф $K_{3,3}$ тоже есть

Хроматизм

Опредление 3. Пусть G=(V,E) - граф. Раскраска графа G в k цветов - это функция $c\colon V\to\{1,...,k\}$

Причем, если есть ребро (U, V), то $c(U) \not\models c(V)$

Рис. 14: 1 - раскраска. 2 - не раскраска

Какие графы можно раскрасить в 1 цвет?

Рис. 15: Граф без ребер

Какие графы можно раскрасить в 2 цвета?

Опредление 4. Граф G - двудольный, если его можно раскрасить в 2 цвета

Рис. 16: 1 - двудольный 2 - не двудольный

Рис. 17: $K_{3,3}$ - двудольный

Замечание Двудольные графы часто рисуют из двух частей(долей)

Рис. 18: $K_{3,3}$ - двудольный

G - двудолен \Leftrightarrow все циклы имеют четную длину

 $\ensuremath{\mathcal{A}\!\mathit{okaзатeльcmso}}$. 1. Двудолен \Rightarrow все циклы четные

Рис. 19: В цикле поровну цветов 1 и 2

2. Все циклы четные \Rightarrow двудолен. "Подвесим" граф за вершину.

Рис. 20: Назначаем цвета по уровням

Почему обратные ребра не учитываем?

Рис. 21:

Иначе будет нечетный цикл, а у нас четный