Deutsch-Jozsa Algorithm

Algorithm: Deutsch-Jozsa

Inputs: (1) A black box U_f which performs the transformation $|x\rangle|y\rangle \to |x\rangle|y \oplus f(x)\rangle$, for $x \in \{0, \dots, 2^n - 1\}$ and $f(x) \in \{0, 1\}$. It is promised that f(x) is either constant for all values of x, or else f(x) is balanced, that is, equal to 1 for exactly half of all the possible x, and 0 for the other half.

Outputs: 0 if and only if f is constant.

Runtime: One evaluation of U_f . Always succeeds.

Procedure:

1.
$$|0\rangle^{\otimes n}|1\rangle$$
 initialize state

2. $\rightarrow \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$ create superposition using Hadamard gates

3. $\rightarrow \sum_{x} (-1)^{f(x)}|x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$ calculate function f using U_f

4. $\rightarrow \sum_{x} \sum_{x} \frac{(-1)^{x \cdot z + f(x)}|z\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$ perform Hadamard transform

5. $\rightarrow z$ measure to obtain final output

measure to obtain final output z

Figure 1: Quantum Circuit representing the Deutsch-Jozsa Algorithm.