DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Wirtschaftspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz

PATENTSCHRIFT

(19) **DD** (11) **243 031**

4(51) C 07 F 7/18

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlich

(21)WP C 07 F / 283 415 3 (22)29, 11, 85 (44)

18.02.87

VEB Chemiewerk Nünchritz, 8403 Nünchritz, Meißner Straße 59, DD (71)

Dathe, Sigrid, Dr. rer. nat. Dipl.-Chem.; Dathe, Christian, Dr. rer. nat. Dipl.-Chem.; Beyer, Horst, Dr. rer. nat. (72) Dipl.-Chem.; Seifert, Sonja, Dipl.-Chem.; Frenzel, Gottfried, Dr. rer. nat. Dipl.-Chem.; Schlapa, Joachim, Dr.ing. Dipl.-Ing., DD

Verfahren zur Herstellung von Triorganosiliciumverbindungen (54)

(57) Die Erfindung betrifft ein Verfahren zur Herstellung von Triorganosiliciumverbindungen der allgemeinen Formel R₃ Si O X,

wobei R = Alkyl, Aryl und/oder Alkenyl

X = R' oder SiR₃

R' = Alkyl

bedeuten.

Vorwiegend werden Vinyldiorganoalkoxysilane und 1,3-Divinyl-1,1,3,3-tetraorgano-disiloxane hergestellt. Die Herstellung erfolgt durch Grignardierung eines Gemisches aus Organochlorsilanen und Organoalkoxysilanen oder aus Organoalkoxysilanen allein. Es werden Ausbeuten bis 90 % d. Th. erreicht. Die Triorganosiliciumverbindungen sin Zwischenprodukte in der siliciumorganischen Chemie. Sie werden z. B. zum Abbruch von Organopolysiloxanketten eingesetzt oder finden Anwendung zur Herstellung additionsvernetzender Siliconkautschukmischungen.

4 Seite

ISSN 0433-6461

Erfindungsanspruch:

1. Verfahren zur Herstellung von Triorganosiliciumverbindungen der allgemeinen Formel

R₃ Si O X,

wobei

R = Alkyl, Aryl und/oder Alkenyl

 $X = R' \text{ oder } SiR_3$

R' = Alkyl

bedeuten,

dadurch gekennzeichnet, daß ein Gemisch aus Organochlorsilanen der allgemeinen Formel

Rn Si Clan

und aus Organoalkoxysilanen der allgemeinen Formel

R, Si (OR')4-

worin

n = 1 oder 2

bedeutet.

das ein Verhältnis von SiCl- zu Si(OR')-Gruppen von gleich oder kleiner 1 aufweist, oder Organoalkoxysilane der angegebenen Formel mit einem Überschuß an Grignardverbindung der allgemeinen Formel

R Mg Hal

in einem organischen Lösungsmittel bei Temperaturen kleiner gleich 340 K umgesetzt wird und nach wäßriger Aufarbeitung die Triorganosiliciumverbindungen isoliert werden.

- 2. Verfahren gemäß Punkt 1, dadurch gekennzeichnet, daß die Organochlor- und Organoalkoxysilane gleiche Organogruppen aufweisen.
- 3. Verfahren gemäß Punkt 1 und 2, dadurch gekennzeichnet, daß die Triorganosiliciumverbindungen Diorganovinylsiliciumverbindungen sind.
- Verfahren gemäß Punkt 1 bis 3, dadurch gekennzeichnet, daß die Organoalkoxysilane Organoethoxy- oder Organopropoxysilane sind.
- 5. Verfahren gemäß Punkt 1 bis 4, dadurch gekennzeichnet, daß als organische Lösungsmittel Diethylether, Methyl-tert-Butylether oder Tetrahydrofuran eingesetzt werden.
- 6. Verfahren gemäß Punkt 1 bis 5, dadurch gekennzeichnet, daß als Grignardverbindung Methylmagnesiumchlorid oder Phenylmagnesiumbromid eingesetzt und die Grignardreaktion bei 290 K bis 320 K durchgeführt wird.
- 7. Verfahren gemäß Punkt 1 bis 5, dadurch gekennzeichnet, daß als Grignardverbindung Vinylmagnesiumchlorid eingesetzt und die Grignardreaktion bei 240 K bis 300 K durchgeführt wird.

Anwendungsgebiet der Erfindung

Die Erfindung betrifft die Herstellung von Triorganosiliciumverbindungen, insbesondere von Vinyldiorganoalkoxysilanen bzw. 1,3-Divinyl-1,1,3,3-tetraorgano-disiloxanen. Diese Produkte sind Zwischenprodukte in der siliziumorganischen Chemie. Sie werden zum Abbruch von Organopolysiloxanketten eingesetzt und finden bevorzugt zur Herstellung additionsvernetzender Siliconkautschukmischungen Anwendung.

Charakteristik der bekannten technischen Lösungen

Zur Herstellung von Triorganosiliciumverbindungen sind mehrere Verfahren bekannt, bei denen di- bzw. trifunktionelle Gruppen der Ausgangsstoffe mit Hilfe einer Grignardierung durch Organogruppen ersetzt werden. Es ist sehr schwierig, den Reaktionsablauf so zu gestalten, daß Triorganosiliciumverbindungen erhalten werden. Darum sind die Ausbeuten aller bekannten Verfahren sehr unbefriedigend. So werden bei Umsetzung von Methylmagnesiumchlorid in Diethylether mit Vinyltrichlorsilan 24% d. Th., mit Methylvinyldichlorsilan 46% d. Th. Vinyldimethylchlorsilan erhalten. Vinylerung von Dimethyldichlorsilan mit Vinylmagnesiumchlorid oder -bromid in Tetrahydrofuran gibt mit 58% d. Th. Vinyldimethylchlorsilan. Methylierung von Vinyltriethoxysilan mit Methylmagnesiumbromid bringt 6% d. Th. Vinyldimethylethoxysilan und 57% d. Th. Vinylmethyldiethoxysilan, das mit Methyljodid und Magnesium in Diethylether zu Vinyldimethylethoxysilan umgesetzt, zu 1,3-Divinyl-1,1,3-tetramethyl-disiloxan hydrolysiert und ohne Isolierung mittels Chlorwasserstoff mit 46%iger Ausbeute zu Vinyldimethylchlorsilan weiterverarbeitet wird. Die Vinylierung von 1,3-Dichlor-1,1,3,3-tetramethyl-disiloxan mit Vinylmagnesiumchlorid bzw. Vinylchlorid und Magnesium in Tetrahydrofuran, unter Umständen mit anderen Lösungsmitteln gemischt, gibt nur 14% d. Th. 1,3-Divinyl-1,1,3,3-tetramethyl-disiloxan und große Mengen an alpha,omega-Divinyl-(dimethyl)-polysiloxan. Außer reaktionsbedingten Ausbeuteminderungen, z.B. Perorganylierung, unvollständige Organylierung der zu ersetzenden funktionellen Gruppen, treten auch zum Teil nicht unerhebliche Verluste bei der Aufarbeitung auf Nicht umgesetzte

di- bzw. trifunktionelle Ausgangsstoffe stören die Aufarbeitung mit Wasser, da sie durch Kondensation erhebliche Mengen an monofunktionellen Triorganosilanen binden. Es müssen also alle Si-Verbindungen von den entstandenen Salzen abgetrennt werden, bevor diese in Wasser gelöst werden können.

Ziel der Erfindung

Ziel der Erfindung ist die Herstellung von Triorganosiliciumverbindungen, insbesondere von Vinyldiorganoalkoxysilanen und 1,3-Divinyl-1,1,3,3-tetraorgano-disiloxanen, mit Hilfe eines einfachen Verfahrens in hohen Ausbeuten.

Darlegung des Wesens der Erfindung

Es wurde gefunden, daß es möglich ist, Triorganosiliciumverbindungen in hohen Ausbeuten herzustellen, wenn man ein Gemisch aus Organochlor- und Organoalkoxysilanen oder Organoalkoxysilane allein einem Überschuß von Grignardlösung zugibt. Überraschenderweise kommt es dabei weder zu einer Perorganylierung noch verbleiben di- bzw. trifunktionelle Siliciumverbindungen. Dadurch wird es möglich, eine wäßrige Aufarbeitung sofort, ohne vorherige Abtrennung der Organosiliciumverbindungen vorzunehmen. Eine ausbeutemindernde, zusätzliche Verfahrensstufe entfällt. Bei der Durchführung der Herstellung der monofunktionellen Triorganisiliciumverbindungen verfährt man wie folgt: Ein Gemisch aus Organochlorsilanen der allgemeinen Formel

Rn Si Cla - 4

und aus Organoalkoxysilanen der allgemeinen Formel

R, Si (OR')4 - n,

wobei

R = Alkyl, Aryl und/oder Alkenyl

R' = Alkyi

n = 1 oder 2 bedeuten,

das ein Verhältnis SiCI- zu Si(OR')-Gruppen gleich oder kleiner 1 aufweist und bei dem die Organo-Gruppen der Organochlorund Organoalkoxysilane identisch sind, wird bei Temperatüren kleiner gleich 340 K zu einer in einem organischen Lösungsmittel gelösten Grignardverbindung der allgemeinen Formel

R Mg Hal

getropft. Anschließend erfolgt die wäßrige Aufarbeitung des Reaktionsgemisches, bei der auch die überschüssige Grignardverbindung beseitigt wird. Aus der organischen Phase wird das Triorganoalkoxysilan isoliert oder bei entsprechender Hydrolyseführung in das Disiloxan übergeführt. Es werden Verbindungen der allgemeinen Formel

R₃Si O X erhalten,

wobei

X = R' oder SiR₃

R' = Alkyl

bedeuten.

Bevorzugt werden Vinyldiorganoalkoxysilane und 1,3-Divinyl-1,1,3,3-tetraorgano-disiloxane hergestellt, wobei die Vinylgruppe entweder mit dem Gemisch der Organochlor- und Organoalkoxysilane oder mit der Grignardverbindung eingeführt wird. Die Reindestillation dieser Verbindungen bereitet besonders bei Einsatz von niedrigsiedenden Ethern als Lösungsmittel und verdunnter Salzsäure zur Hydrolyse infolge großer Siedepunktsdifferenzen der Reaktionsprodukte keine Schwierigkeiten. Als Organochlor- bzw. Organoalkoxysilane werden beispielsweise folgende Verbindungen eingesetzt: Methylvinyldichlorsilan, -diethoxysilan, -dimethoxysilan, -dipropoxysilan; Dimethyl-dichlorsilan, -diethoxysilan, -dimethoxysilan, -dipropoxysilan; Diethyl-dichlorsilan, -diethoxysilan, -die

Als Grignardverbindung sind z.B. Methylmagnesiumchlorid, Phenylmagnesiumbromid und Vinylmagnesiumchlorid geeignet. Es können alle Arten von Grignardverbindungen eingesetzt werden.

Als organische Lösungsmittel sind bevorzugt niedrig siedende Ether, wie Diethylether, Tetrahydrofuran und Methyl-tert.-Butylether einzusetzen.

Zur wäßrigen Aufarbeitung findet vorwiegend wäßrige Salzsäure Anwendung.

Es werden Ausbeuten bis 90 % d. Th. erzielt.

Die nach diesem Verfahren erhaltenen Triorganoalkoxysilane und Hexaorgano-disiloxane sind Zwischenprodukte in der siliciumorganischen Chemie und werden unter anderem als Kettenabbrecher für Siliconöle und als Ausgangssubstanzen für Copolymerisate verwendet. Sie sind wichtige Rohstoffe für Additions-Siliconkautschuke.

Die nachfolgenden Beispiele demonstrieren das Verfahren, ohne alle möglichen Varianten berücksichtigen zu können.

Ausführungsbeispiel

In einem 6-I-Sulfierkolben werden 6 Mol Grignardverbindung (RMgHal) in 3 bis 41 Ether vorgelegt und unter Rühren und eventuell Kühlen (die Reaktionstemperatur darf 320K nicht übersteigen) eine Mischung aus 2 Mol Diorganodichlorsilan und 2 Mol Diorganodialkoxysilan zugetropft. Bei einer Zutropfdauer von 30 bis 60 Minuten ist die Reaktion in der Regel nach Beendigung des Zutropfens vollständig, andernfalls wird bis zur neutralen Reaktion weiter gerührt. Die Reaktionsbedingungen sind abhängig von den Reaktanten und Lösungsmitteln. Der erhaltene Salzbrei wird anschließend mit 11 verdünnter Salzsäure, bei Verwendung von Tetrahydrofuran als Lösungsmittel mit 11 Wasser, unter Kühlen und Rühren bei Etherrückfluß gelöst. Von der organischen, mit Wasser gewaschenen Phase wird der Ether abdestilliert und das verbleibende Rohprodukt nach Abtrennen von Wasserspuren über eine entsprechende Kolonne fraktioniert.

Gleiche Ergebnisse werden auch erhalten, wenn von 4 Mol Diorganodialkoxysilanen ausgegangen wird. In der folgenden Tabelle sind die Reaktionsbedingungen und die Ergebnisse einiger Beispiele zusammengestellt.

Tabelle

Grignardverbindung	Si-organische Ausgangssubstanzen	Lösungsmittel	Temp. ±5 K	Ausbeute % d. Th.
MeMgCl	MeViSiCl ₂ + MeViSi(OEt) ₂	Et₂O	310	91 l
MeMaCl	MeViSiCl ₂ + MeViSi(OEt) ₂	BuOMe	310	1 88
MeMgCl	MeViSiCl ₂ + MeViSi(OEt) ₂	THF	305	90 11
MeMgCl	-+ MeViSi(OEt) ₂	Et ₂ O	310	87 1
PhMgBr .	MeViSiCl ₂ + MeViSi(OEt) ₂	Et ₂ O	310	86 111
MeMqCl	MeViSiCl ₂ + MeViSi(OPr) ₂	Et ₂ O	310	89 l
•	MeSiCl ₂ + Me ₂ Si(OEt) ₂	THF	260	25 1
ViMgCl	MISOIOIZ I MIOZOITOCTIZ		•	54 11

Zeichenerklärung:

Me = Methyl

Et = Ethyl

Pr = n-Propyl

Vi = Vinyl

Bu = t-Butyl

Ph = Phenyl

THF = Tetrahydrofuran

 $I = (Me_2ViSi)_2O$

II = Me₂ViSiOEt

III = (MePhViSi)20