

Εθνικό Μετσόβιο Πολμτέχνειο

3η Γραπτή Άσκηση

Αλγόριθμοι & Πολυπλοκότητα

Σπουδαστής: Διονύσης ΖΗΝΔΡΟΣ (06601) <dionyziz@gmail.com> Διδάσκοντες: Στάθης ΖΑΧΟΣ Δημήτρης ΦΩΤΑΚΗΣ

Άσκηση 1

Για να ελέγξουμε αν ο γράφος είναι διμερής, χρωματίζουμε μία αχμή αυθαίρετα και στη συνέχεια για κάθε χρωματισμένη αχμή χρωματίζουμε τους γείτονές της με το αντίθετο χρώμα έως ότου ολοκληρωθεί η διαδικασία ή καταλήξουμε σε αντίφαση.

Algorithm 1 Άσκηση 1

```
1: procedure BIPARTITE(V, E)
         for v \in V do
 2:
              color[v] \leftarrow \emptyset
 3:
          q \leftarrow \{V[0]\}
 4:
          color[V[0]] \leftarrow \top
 5:
          while q \neq \emptyset do
 6:
              s \leftarrow remove and return an element of q
 7:
              paint \leftarrow \neg color[s]
 8:
              for neighbour t of s do
 9:
                   if color[t] \neq \emptyset then
10:
                        if color[t] \neq paint then
11:
12:
                             \mathbf{return} \perp
                   else
13:
                        color[t] \leftarrow paint
14:
                        q \leftarrow q \cup \{t\}
15:
         return \top
16:
```

Άσκηση 2

Algorithm 2 Άσκηση 2

```
1: procedure ShortestCount(V, E, s, t)
        for v \in V do
 2:
             visited[v] \leftarrow 0
 3:
             distance[v] \leftarrow \infty
 4:
        visited[s] \leftarrow 1
 5:
        distance[s] \leftarrow 0
 6:
        q \leftarrow \text{EmptyQueue}()
 7:
        Push(q, s)
 8:
 9:
        while \neg \text{Empty}(q) do
             u \leftarrow \text{Pop}(q)
10:
             if u = t then
11:
12:
                 return visited[t]
             for neighbour v of u do
13:
                 if distance[v] = \infty then
14:
                     Push(q, u)
15:
                 if distance[u] + 1 \leq distance[v] then
16:
                     distance[v] \leftarrow distance[u] + 1
17:
18:
                     visited[v] \leftarrow visited[v] + visited[u]
```

Άσκηση 3

 (α)

Ο γράφος της άσκησης 4 με $L=\{C\}$ είναι ένα παράδειγμα γράφου που έχει διαφορετικό $\mathbf{E}\Sigma\Delta$ υπό περιορισμούς.

 (β)

Algorithm 3 Άσκηση 3

```
1: procedure ConstraintedMST(V, E, L)
        if |V| \leq 2 then
 2:
             return E
 3:
 4:
         for v \in V do
             adj[v] \leftarrow \emptyset
 5:
             best[v] \leftarrow \infty
 6:
         for e = (u, v, w) \in E do
 7:
             if u \in L \oplus v \in L then
 8:
                 for s \in \{u, v\} do
 9:
                      if s \in L then
10:
                          if w < best[s] then
11:
                               best[s] \leftarrow w
12:
                               adj[s] \leftarrow \{e\}
13:
             else
14:
                 adj[v] \leftarrow adj[v] \cup \{e\}
15:
         return PRIM(V, adj)
16:
```

Άσκηση 4

 (α)

Ο ακόλουθος γράφος έχει μοναδικό ΕΣΔ, αλλά περιέχει ακμές ίδιου βάρους:

 (β)

Ο γράφος του υποερωτήματος (α) έχει μοναδικό ΕΣΔ αλλά περιέχει ακμές ίδιου βάρους που είναι οι ελάχιστες που διασχίζουν την ίδια τομή.

Λήμμα. Κάθε ακμή ενός ΕΣΔ ενός συνεκτικού μη κατευθυνόμενου ζυγισμένου γράφου είναι η ελάχιστη που διασχίζει κάποιο κόψιμο.

Aπόδειξη. Έστω τέτοιος γράφος G=(V,E,w) με ένα $\mathbf{E}\Sigma\Delta$ του $T\subseteq E$ και έστω ότι υπάρχει κάποια ακμή $e=(u,v)\in T$ τέτοια ώστε να μην υπάρχει

κόψιμο του Γ το οποίο να είναι η ελάχιστη που το διασχίζει. Τότε έστω K το $E\Sigma\Delta$ που κατασκευάζει ο αλγόριθμος του Kruskal. Κατά την εκτέλεση του αλγορίθμου, υπάρχει κάποιο βήμα κατά το οποίο γίνεται ένωση των ανεξάρτητων συνόλων που περιέχουν τους κόμβους u και v μέσω κάποιας ακμής f η οποία είναι ελάχιστη σε ένα κόψιμο το οποίο διασχίζει και η e και άρα w(f) < w(e). Όμως στο T η ακμή e μπορεί να αντικατασταθεί από την f και το δέντρο να παραμείνει συνεκτικό και με βάρος $w(T \cup \{f\} \setminus \{e\}) < w(T)$. Άρα το T δεν είναι $E\Sigma\Delta$, κάτι το οποίο αποτελεί αντίφαση.

Λήμμα. Κάθε συνεκτικός μη κατευθυνόμενος ζυγισμένος γράφος στον οποίο για κάθε τομή η ακμή ελάχιστου βάρους που τη διασχίζει είναι μοναδική έχει μοναδικό $E\Sigma\Delta$.

Aπόδειξη. Έστω τέτοιος γράφος G=(V,E,w) και δύο ΕΣΔ του, $T\subseteq E$ και $T'\subseteq E$, με $T\neq T'$ και w(T)=w(T').

Τότε, επειδή $T \neq T$, θα υπάρχει κάποια ακμή e = (u,v) με $e \in T \land e \not\in T'$. Από το παραπάνω λήμμα, η e θα είναι η ελάχιστη που διασχίζει κάποιο κόψιμο του T, έστω S.

Τώρα, επειδή το T' είναι συνεχτιχό δέντρο, θα υπάρχει μοναδιχό μονοπάτι από τον χόμβο u στον χόμβο v που διασχίζει το S με χάποια αχμή, έστω $e'\neq e$. Αφού w(e)< w(e'), αντιχαθιστώντας την αχμή e' με την e στο T' παίρνουμε ένα συνεχτιχό δέντρο με βάρος $w(T'\cup\{e\}\setminus\{e'\})< w(T')$. Άρα το T' δεν είναι ελάχιστο συνεχτιχό δέντρο, χάτι το οποίο αποτελεί αντίφαση.

Άρα το ΕΣΔ είναι μοναδικό. \Box

(γ)

Λήμμα. Το $E\Sigma\Delta$ ενός συνεκτικού ζυγισμένου μη κατευθυνόμενου γράφου είναι μοναδικό ανν κάθε ακμή του είναι η μοναδική ελάχιστη σε κάποιο κόψιμο του γράφου.

 $A\pi\delta\delta\epsilon$ ιξη. Έστω G=(V,E,w) ένας τέτοιος γράφος και έστω K ένα ΕΣ Δ

Θα δείξουμε ότι αν κάθε ακμή του K είναι η μοναδική ελάχιστη σε κάποιο κόψιμο, τότε το δέντρο είναι μοναδικό. Πράγματι, έστω ότι υπάρχει $\mathrm{E}\Sigma\Delta T \neq K$. Τότε θα υπάρχει ακμή $e=(u,v)\in K\wedge e\not\in T$. Από την υπόθεση, υπάρχει κόψιμο S το οποίο η e διασχίζει ως μοναδική ελάχιστη. Επειδή το T είναι συνδετικό, θα υπάρχει μοναδικό μονοπάτι που συνδέει τους κόμβους u και v το οποίο διασχίζει το κόψιμο S χρησιμοποιώντας κάποια ακμή $f\neq e$. Επειδή η e είναι ελάχιστη, θα είναι w(e)< w(f). Αντικαθιστώντας την f με την e στο T προχύπτει $\mathrm{E}\Sigma\Delta$ με $w(T\cup\{e\}\setminus\{f\})< w(T)$ κάτι το οποίο αποτελεί αντίφαση. Άρα το K είναι μοναδικό.

Αντίστροφα, έστω ότι το K είναι μοναδικό. Τότε ο αλγόριθμος του Kruskal θα δώσει το K. Έστω, τώρα, ότι υπάρχει κάποια ακμή $e \in K$ που δεν είναι ελάχιστη σε κανένα κόψιμο του G. Τότε ο αλγόριθμος δεν θα μπορούσε να

την έχει επιλέξει ποτέ, και άρα $e \not\in K$. Αυτό αποτελεί αντίφαση, και άρα όλες οι ακμές είναι ελάχιστες σε κάποιο κόψιμο.

 (δ)

Άσκηση 5

 (α)

Λήμμα. Σε ένα συνεκτικό κατευθυνόμενο ζυγισμένο γράφο, για κάθε κύκλο υπάρχει ΕΣΔ που δεν περιέχει την ακμή μέγιστου βάρους του κύκλου αυτού.

Aπόδειξη. Έστω τέτοιος γράφος G=(V,E,w) με χάποιον χύχλο C χαι έστω ένα $E\Sigma\Delta$ $T\subseteq E$ που περιέχει την αχμή e μέγιστου βάρους του C. Τότε έστω το δάσος $T\setminus\{e\}$ που θα αποτελείται από δύο συνδεδεμένους υπογράφους. Θα υπάρχει μία αχμή $f\in E$ που θα συνδέει αυτούς τους δύο συνδεδεμένους υπογράφους με $f\neq e$ χαι άρα $w(f)\leq w(e)$. Αντιχαθιστώντας την e με την f στο T προχύπτει ένα συνεχτιχό δέντρο με βάρος $w(T\cup\{f\}\setminus\{e\})\leq w(T)$. Άρα το $T\cup\{f\}\setminus\{e\}$ είναι $E\Sigma\Delta$.

 (β)

Λήμμα. Ο αντίστροφος αλγόριθμος του Kruskal είναι ορθός.

Aπόδειξη. Σε κάθε βήμα i, ο αλγόριθμος διατηρεί τον ελάχιστου κόστους συνδετικό υπόγραφο G_i με ακριβώς j(i)=m-i+1 ακμές. Πράγματι, στο 1ο βήμα, ο υπόγραφος είναι ίσος με τον αρχικό γράφο και άρα συνδετικός και ελάχιστος. Έστω ότι ο υπόγραφος είναι συνδετικός και ελάχιστος στο i-οστό βήμα. Τότε έστω e=(u,v) η επόμενη ακμή που θα επιλεγεί.

Στην περίπτωση που η e είναι γέφυρα του G_i ανάμεσα σε δύο συνδεδεμένα τμήματα C_1 και C_2 , δηλαδή διασχίζει το κόψιμο $S=(C_1,C_2)$ του αρχικού γράφου, η ακμή αυτή δε θα λείπει από κανέναν ελάχιστο συνδετικό υπογράφο G_k με k>i. Αυτό φαίνεται ως εξής. Έστω ότι η e έλειπε από τον G_k τότε αυτός θα περιείχε κάποια ακμή $f\neq e$ που διασχίζει το S για να είναι συνδεδεμένος. Όμως θα είναι w(f)>w(e) διότι, λόγω άπληστης ιδιότητας, η f είχε αφαιρεθεί πριν το i-οστό βήμα αφού η e ήταν γέφυρα του G_i . Αντικαθιστώντας την f με την e λαμβάνουμε ένα συνδετικό υπόγραφο ίδιου πλήθος ακμών με βάρος $w(G_k \cup \{e\} \setminus \{f\}) < w(G_k)$. Άρα το G_k δεν θα ήταν ελάχιστο χωρίς την ύπαρξη της e. Συνεπώς μπορούμε με ασφάλεια να διατηρήσουμε την e στον υπογράφο και να προχωρήσουμε στην επόμενη ακμή στο ίδιο βήμα.

Στην περίπτωση που η e δεν είναι γέφυρα του G_i τότε ανήχει σε ένα χύχλο του G_i . Εργαζόμενοι παρόμοια όπως στο παραπάνω θεώρημα, είναι εμφανές ότι η e δεν ανήχει στον υπόγραφο G_{i+1} . Την αφαιρούμε, λοιπόν, χαι προχωράμε στο επόμενο βήμα.

Χρησιμοποιώντας, τώρα, τη μαθηματική επαγωγή, έχουμε αποδείξει την αμετάβλητη ιδιότητα της επανάληψης. Τέλος, ο ελάχιστος συνδετικός υπόγραφος με ακριβώς n-1 είναι $\mathrm{E}\Sigma\Delta$.

(γ)