

Equipe - Classificação de Espécies de Pássaros

Alunos:

Thayná Ferreira Lopes Mabylly Kauany Neres da Silva

Sumário

- Introdução
- Metodologia
 - Dataset
 - Métodos de literatura:
 InceptionResNetV2
 - Métodos próprio

- Resultados
 - Literatura x Próprios
 - Nossos resultados
- Conclusão
 - Compilado dos resultados
 - Impacto e valor estratégico
 - Visão de futuro e inovação
- Referências

Introdução

• Resumo do problema

Classificação de imagens para identificar espécies de pássaros.

- Porque esse problema?
 - Desafio de distinguir espécies visualmente semelhantes.
 - o Dataset rico para aplicar e comparar técnicas de segmentação.
- Objetivo geral

Comparar a segmentação própria com a segmentação já disponível no dataset "200 Bird Species with 11,788 Images"

Dataset

• Base de dados: 200 Bird Species (11.788 imagens, Kaggle)

Selecionadas 10 classes com 60 imagens cada (600 no total) todas no

formato jpg, com exemplo visual por espécie.

Number of images per label

Dataset

- Resultado da análise
 - o Todas as imagens com segmentações válidas, labels e split definidos.
 - Nenhuma imagem corrompida e apenas uma duplicada.
 - Estatísticas de altura, largura e canais.

	Largura	ALtura	Canal
Média	385.35	469.68	3
Desvio	71.12	61.55	0
Minimo	136	167	3
Máximo	500	500	3

InceptionResNetV2

- Base: combina as arquiteturas Inception e ResNet, permitindo redes muito profundas sem perda de desempenho.
- Ideia principal: captura padrões em diferentes escalas usando convoluções paralelas e conexões residuais (skip connections).
- Destaque: alcança alta acurácia em tarefas de classificação de imagens em larga escala.
- Motivo da escolha: modelo de referência em transfer learning, ideal para comparar com nosso método mais leve.

Métodos Próprios

- Fine-tuning com InceptionResNetV2
 - Reutilizamos pesos pré-treinados no ImageNet e ajustamos as camadas finais para 10 classes de pássaros.
 - Congelamos as camadas iniciais para reduzir o custo computacional e focar o treino nas últimas camadas.
- Regularização e Data Augmentation
 - Aplicamos Dropout e Weight Decay para evitar overfitting.
 - Usamos Data Augmentation com rotações, ajustes de brilho e recortes (Cutout).
- Otimização de Hiperparâmetros
 - Testamos diferentes learning rates e batch sizes, além de usar o scheduler ReduceLROnPlateau para ajustar a taxa de aprendizado conforme o desempenho.

Literatura x Próprios

Acuracia literatura: 0.9707 Loss literatura: 0.1600

Acurácia: 0.7823

Loss: 0.8479

Nossos resultados

	precision	recall	f1-score	support
001.Black_footed_Albatross	0.88	0.58	0.70	12
002.Laysan_Albatross	0.69	0.92	0.79	12
004.Groove_billed_Ani	0.67	0.83	0.74	12
010.Red_winged_Blackbird	1.00	1.00	1.00	12
011.Rusty_Blackbird	0.58	0.58	0.58	12
013.Bobolink	0.46	0.50	0.48	12
014.Indigo_Bunting	0.92	1.00	0.96	12
021.Eastern_Towhee	1.00	0.83	0.91	12
025.Pelagic_Cormorant	0.92	0.92	0.92	12
026.Bronzed_Cowbird	0.78	0.58	0.67	12
accuracy			0.78	120
macro avg	0.79	0.78	0.77	120
weighted avg	0.79	0.78	0.77	120

Nossos resultados

Verdadeiro: 011.Rusty_Blackbird Previsto: 011.Rusty_Blackbird

Verdadeiro: 025.Pelagic_Cormorant Previsto: 025.Pelagic_Cormorant

Verdadeiro: 004.Groove_billed_Ani Previsto: 004.Groove_billed_Ani

Verdadeiro: 014.Indigo_Bunting Previsto: 014.Indigo_Bunting

Verdadeiro: 011.Rusty_Blackbird Previsto: 011.Rusty_Blackbird

Verdadeiro: 002.Laysan_Albatross Previsto: 002.Laysan_Albatross

Verdadeiro: 026.Bronzed_Cowbird Previsto: 026.Bronzed_Cowbird

Verdadeiro: 011.Rusty_Blackbird Previsto: 011.Rusty_Blackbird

Verdadeiro: 013.Bobolink Previsto: 013.Bobolink

Impacto e Valor Estratégico

- Monitoramento Ambiental Inteligente
 - O Substituição de inspeções manuais por análise automatizada.
 - Economia de Custos e Redução de Tempo em campo.
- Inventário Rápido em Escala
 - Processamento de milhares de imagens em minutos.
 - o Apoio a órgãos governamentais (fiscalização) e empresas (EIA/RIMA).
- Ciência Cidadã e Pesquisa
 - Otimização do trabalho de biólogos (foco em análise complexa).

Visão de Futuro e Inovação

- Robustez
 - o Expansão do dataset para maior número de espécies.
- Evolução Tecnológica
 - Implementação de Object Detection (localização do pássaro na imagem).
- Otimização para o Campo
 - Redução do modelo para Edge Computing (drones e câmeras de campo).

Referências Bibliográficas

IKKIOCEAN. Bird Species Classification Using DL. Kaggle Notebook. Disponível em: <u>VEERALAKRISHNA.</u> 200 Bird Species with 11,788 Images [base de dados]. Kaggle, 2025. <u>Disponível em: https://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images/data.</u> Acesso em: 24 set. 2025. Acesso em: 07 out. 2025.

VEERALAKRISHNA. 200 Bird Species with 11,788 Images [base de dados]. Kaggle, 2025. Disponível em: <u>https://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images/data.</u>
<u>Acesso em: 24 set. 2025.</u>. Acesso em: 24 set. 2025.