Engenharia de Computação Fundamentos de Programação

Aula 12 - Matrizes

Prof. Muriel de Souza Godoi muriel@utfpr.edu.br

- Já sabemos utilizar um vetor para salvar um conjunto de valores
- Vamos explorar outra possibilidade:
 - Utilizar um vetor para salvar um conjunto de vetores!
- Pode ser visualizado como uma tabela ou matriz
 - Também conhecidos como vetores multidimensionais

- Permitem a manipulação de elementos de uma matriz.
 - Podem ser interpretados como sendo um vetor de vetores
- Declaração: int matriz[3][4];
 - int: o tipo de dado contido da matriz
 - matriz: o nome da variável
 - [3][4]: o tamanho
 - 3 linhas e 4 colunas

as	0
linha <	
	2

	0	1	2	3						
	3		10							
		5		7						
	3									

coluna

Atribuindo valores a posições específicas:

```
matriz[0][2] = 10;
• matriz[1][1] = 5;
• matriz[2][0] = 3;
matriz[0][0] = matriz[2][0];
                                   coluna
• matriz[1][3] = 7;
                              0
                                         2
                         0
                              3
                                         10
                 linha
                                    5
                              3
```


Matrizes maiores podem ser inicializadas através de estruturas de repetição

- Preenchimento de matrizes
 - Matrizes maiores podem ser inicializadas através de estruturas de repetição

```
int l,c;
int matriz[3][4];
int contador = 1;
//Preenchendo a matriz
for (l=0; l < 3; l++){
   for (c=0; c < 4; c++){
     matriz[l][c] = contador++;
   }//for
}//for</pre>
```

	0	1	2	3
0	1	2	3	4
1	5	6	7	8
2	9	10	11	12

- Exibição de Matrizes
 - Para exibir pode-se utilizar a mesma estrutura de laços for aninhado

```
//Exibindo a matriz
for (l=0; l < 3; l++){
    for (c=0; c < 4; c++){
        printf(" %4i", matriz[l][c]);
    }//for
    printf("\n");
}//for</pre>
```

• 1) Crie uma matriz identidade com dimensões 5 x 5;

• 2) Faça um algoritmo que leia uma matriz 3 por 3 (3x3) e retorna a soma dos elementos da sua diagonal principal e da sua diagonal secundária;

- 3) Construa um programa que leia uma matriz de tamanho 5 x 5 e escreva:
 - O valor e a localização (linha, coluna) do maior valor encontrado na matriz.

- Multiplicando uma matriz por um escalar
 - Uma matriz C é criada com seus elementos gerados a partir da multiplicação de cada célula da matriz A pelo número escalar

$$C_{x,y} = A_{x,y} * escalar$$

 Exercício 4) Faça um programa que multiplique por 5 a matriz A (preenchida a partir do teclado) para gerar a matriz C.

	0	A	2				0	C	2
0	3	7	10	* 5	<u> </u>	0	15	35	50
1	1	5	0	3		1	5	25	0

- Somando/Subtraindo duas matrizes
 - Para somar/subtrair 2 matrizes A e B, ambas devem ter o mesmo número de linhas e colunas (mesma ordem). A matriz resultante C tem a mesma ordem.
 - A soma/subtração ocorre entre os elementos correspondentes da célula A com a célula B (mesma coordenada)

$$C_{x,y} = A_{x,y} \pm B_{x,y}$$

 Exercício 5) Faça um programa que some as matrizes A e B, gerando C

	0	_	2			0	B	2		0	Ç	2
0	3	7	10	+	0	2	3	4	0	5	10	14
1	1	5	0		1	6	0	2	1	7	5	2

- Multiplicação de matrizes
 - Condição: o número de colunas da matriz da esquerda é o mesmo número de linhas da matriz da direita
 - Se A é uma matriz m por n e D é uma matriz n por p, então seu produto AD é a matriz m por p (m linhas e p colunas)
 - Fórmula: $AD_{x,y} = A_{x,0}D_{0,y} + A_{x,1}D_{1,y} + A_{x,2}D_{2,y} + A_{x,3}D_{3,y}...$
- Exercício 6) Faça um programa que multiplique as matrizes A e D abaixo gerando matriz AD

