Wprowadzenie do sztucznej inteligencji | cw. 5 Damian D'Souza, Kamil Marszałek

1. Wpływ liczby neuronów na jakość aproksymacji

- współczynnik uczenia = 0.1
- rozmiar mini pakietu = 100
- I. epok = 5000

Jak wynika z wyników, zwiększenie liczby neuronów w warstwie ukrytej poprawia dokładność aproksymacji, szczególnie dla bardziej skomplikowanych funkcji. Zbyt mała liczba neuronów może nie pozwolić na wystarczająco dokładne przybliżenie, jednak nadmierne ich zwiększanie nie zawsze przynosi korzyści, a czasami może nawet obniżyć jakość wyników.

2. Wpływ liczby epok na jakość aproksymacji

- współczynnik uczenia = 0.1
- rozmiar mini pakietu = 100l. neuronów = 15

I. iteracji	wskaźnik jakości	wykres
100	0,5540	1.5 - 1.0 - 0.5 - 0.0 - -4 -2 0.0 0 2 4 4 - -0/5 - -1.0 - -1.5 - -2.0 -
200	0,4638	1.5 - 1.0 - 0.5 - -4 -2 0 0 2 4 4

Liczba epok ma kluczowe znaczenie dla jakości aproksymacji, szczególnie w przypadku złożonych funkcji. Aby uzyskać precyzyjne wyniki, należy odpowiednio dostosować liczbę epok, gdyż użycie zbyt małej powoduje słabą aproksymację.

3. Wpływ współczynnika uczenia na jakość aproksymacji

- rozmiar mini pakietu = 100
- I. neuronów = 15
- I. epok = 5000

learning rate	wskaźnik jakości	wykres
0.15	0,003	1.5 - 1.0 - 0.5 - -4 -2 0.0 0 2 4 -0 5 - -1.0 - -1.5 - -2.0 -
0.1	0,004	1.5 - 1.0 - 0.5 - -4 -2 0.0 0 2 4 -0/5 - -1.0 - -1.5 - -2.0 -

Wraz ze spadkiem współczynnika uczenia maleje jakość aproksymacji, ponieważ zmiany parametrów sieci w każdej epoce stają się zbyt małe, aby efektywnie przybliżyć funkcję. Przy niższym współczynniku uczenia konieczne jest zwiększenie liczby epok, co jednak znacząco wydłuża czas uczenia sieci.

4. Wpływ wielkości mini pakietu na jakość aproksymacji

- I. neuronów = 15
- I. epok = 1000współczynnik uczenia = 0.1

wielkość mini pakietu	wskaźnik jakości	wykres
2	0,2605	1.5 - 1.0 - 0.5 - -4 -2 0.0 0 2 4 - -0.6 - -1.0 - -1.5 - -2.0 -
3	0,0017	1.5 - 1.0 - 0.5 - -4 -2 0.0 0 2 4 -0/5 - -1.0 - -1.5 - -2.0 -

Dla każdego zestawu danych należy dobrać odpowiedni rozmiar paczki. W przypadku aproksymacji tej funkcji najlepsze wyniki uzyskano przy pakietach o rozmiarze około 5. Zbyt małe pakiety skutkowały niedokładną aproksymacją, natomiast zbyt duże również powodowały spadek jej dokładności.

Najlepszy uzyskany wynik

Parametry:

- współczynnik uczenia = 0.1
- rozmiar mini pakietu = 5
- I. epok = 5000
- I. neuronów = 15

Wskaźnik jakości aproksymacji = 0,001