TWO IMPORTANT MODELS IN CLOSED DOMAIN QUESTION ANSWER CHATBOT

David Tong(ytong82@berkeley.edu)

TWO MODELS FOR CLOSED DOMAIN CHATBOTS

Closed Domain Chatbots

- Designed to chat about a specific topic
- Expect for accurate answers
- Target for specific customers and economic values

Question Answering Model

• Responsible for providing accurate answers

Emotion Detection Model

- Detect customers emotion change
- Decide when people customer support will involve

QUESTION ANSWERING MODEL

Baseline Model

• DISTILBERT - distilbert-base-uncased

Dataset

SQuAD 2.0

Metrics

- EM
- F1

Type I Improvements

- Use model with more trainable parameters
 - ALBERT albert-base-v2
- Use model with better training target, suitable for start and end span answer task
 - SpanBERT SpanBERT/spanbert-large-cased

Type II Improvements

- Use ensemble model
 - Skim-Read Model
 - Elbow Method

HIGHLIGHT

Skim-Read Model

- Skim Part
 - o Predict if a question is answerable
- Read Part
 - o Predict start and end span of an answer in the text

Model	Model Type	Improvement Type	EM	F1
DISTILBERT distilbert-base-uncas ed	Discriminative Model	Baseline	64.9457	68.3097
ALBERT albert-base-v2	Discriminative Model	Improved Type 1	78.2111	81.2822
SpanBERT SpanBERT/spanbert- large-cased	Discriminative Model	Improved Type 1	83.1382	86.3032
T5 t5-small	Generative Model	Improved Type 1	N/A	N/A

Skim-Read Model David-Tong/squad2-s kim-read-predictor Skim Model Logistic Regression	Ensemble Model	Improved Type 2	83.381	86.519
Skim-Read Model David-Tong/squad2-s kim-read-predictor Elbow Method	Ensemble Model	Improved Type 2	84.0984	87.0521

EMOTION DETECTION MODEL

Baseline Model

• 1-stage classification model

Dataset

• GoEmotions

Metrics

- Accuracy
- Macro Avg
- Weighted Avg

2-Stage Classification Model

Type I Improvement

• 2-stage classification using Parrot's emotion model

Type II Improvement

2-stage classification using emotion clustering model

HIGHLIGHT

Emotion Clustering

- Logic behind data
 - Use the text with multiple labels to calculate linkages among emotions
 - Multiple emotions labeled for the same text indicate a close relationship among them.
- Hierarchical Clustering
 - 58009 samples transposed to be 58009 features of an emotion
 - Use correlation to measure similarity between two emotions
 - Use distance of 1.05 as threshold to group emotions

Two-Stage classification doesn't bring improvement in performance but even a little downgrade in performance.

Data based clustering has a different model from psychological emotion classification model.

Model		F1		
		accuracy	macro avg	weighted avg
One-Stage Classification bert-base-cased	Baseline	0.60	0.49	0.59
Two-Stage Classification (Parrott's Emotions model)	Improved Type 1	0.57	0.48	0.57
Two-Stage Classification (Data Clustering Modell)	Improved Type 2	0.58	0.45	0.57

LOOK FORWARD

Question Answering Model

Use generative models like GPT or T5

Emotion Detection Model

- Remove neutral labeled data, focus on emotion and classification
- Use other clustering method and compare clustering results with existing psychological classification models
- Cast emotions to a 2D plane and watch relationships among them.