# Topology and Continuity

Paulo Fagandini



The **open ball** centered around  $x_0 \in \mathbb{R}^n$  and radius r > 0 is defined as

$$B(x_0, r) = \{x \in \mathbb{R}^n | ||x - x_0|| < r\}$$

while the **closed ball** centered around  $x_0$  and radius r > 0 is

$$\overline{B}(x_0, r) = \{x \in \mathbb{R}^n | ||x - x_0|| \le r\}$$

- ▶ Let  $A \subset \mathbb{R}^n$ .  $x_0 \in A$  is **interior**, if there is  $\epsilon > 0$  such that  $B(x_0, \epsilon) \subseteq A$ .
- ▶ Let  $A \subseteq \mathbb{R}^n$ , the **interior** of A, denoted as int(A), is the set of all its interior points,  $int(A) = \{x \in A | \exists \epsilon > 0, B(x_0, \epsilon) \subseteq A\}$ .
- ▶ The set  $A \subseteq \mathbb{R}^n$  is **open** if  $A \setminus int(A) = \emptyset$ .
- ▶ The set A is **closed** if  $A^c$  is open.

- ▶ The **closure** of A, denoted as  $\overline{A}$ , is the smallest closed set that contains A.
- ▶ The **boundary** of *A*, denoted as  $\partial A$ , is defined as  $\overline{A} \setminus int(A)$ .

#### **Definition**

 $A \subset \mathbb{R}^n$  is **bounded** if there is an open ball that contains A.

#### **Definition**

A set  $A \subseteq \mathbb{R}^n$  is said to be **compact** if it is closed and bounded.

A **sequence** is any function  $f : \mathbb{N} \to \mathbb{R}$ .

## **Definition**

The sequence  $x_t$  **converges** to  $x_0$  if, for any open ball B containing  $x_0$ , exists  $t_{\epsilon} \in \mathbb{N}$  such that for  $t \geq t_{\epsilon}$ ,  $x_t \in B$ . It is denoted as  $x_t \to x_0$ .  $x_0$  is called the **limit** of  $x_t$ .

# Conjecture

If a sequence converges, then its limit is unique.

A **sequence** is any function  $f : \mathbb{N} \to \mathbb{R}$ .

# **Definition**

The sequence  $x_t$  **converges** to  $x_0$  if, for any open ball B containing  $x_0$ , exists  $t_{\epsilon} \in \mathbb{N}$  such that for  $t \geq t_{\epsilon}$ ,  $x_t \in B$ . It is denoted as  $x_t \to x_0$ .  $x_0$  is called the **limit** of  $x_t$ .

# Conjecture

If a sequence converges, then its limit is unique.

You know what is coming, ...

A **sequence** is any function  $f : \mathbb{N} \to \mathbb{R}$ .

## **Definition**

The sequence  $x_t$  **converges** to  $x_0$  if, for any open ball B containing  $x_0$ , exists  $t_{\epsilon} \in \mathbb{N}$  such that for  $t \geq t_{\epsilon}$ ,  $x_t \in B$ . It is denoted as  $x_t \to x_0$ .  $x_0$  is called the **limit** of  $x_t$ .

# Conjecture

If a sequence converges, then its limit is unique.

You know what is coming, ... ... Quiz! Think on a way to prove it... 10 min.

Assume it is not unique, so:

1.  $x_t \rightarrow x_0$  and also  $x_t \rightarrow x_1$ , and  $x_1 \neq x_0$ .

# Assume it is not unique, so:

- 1.  $x_t \rightarrow x_0$  and also  $x_t \rightarrow x_1$ , and  $x_1 \neq x_0$ .
- $2. \ \exists t_{\epsilon}^0, t_{\epsilon}^1 \in \mathbb{N} \ \text{such that for} \ t_{\epsilon}^* > \max\{t_{\epsilon}^0, t_{\epsilon}^1\} \ x_t \in B(t_0, \epsilon) \ \text{and} \ x_t \in B(t_1, \epsilon) \ \forall t > t^*.$

# Assume it is not unique, so:

- 1.  $x_t \rightarrow x_0$  and also  $x_t \rightarrow x_1$ , and  $x_1 \neq x_0$ .
- $2. \ \exists t_{\epsilon}^0, t_{\epsilon}^1 \in \mathbb{N} \ \text{such that for} \ t_{\epsilon}^* > \max\{t_{\epsilon}^0, t_{\epsilon}^1\} \ x_t \in B(t_0, \epsilon) \ \text{and} \ x_t \in B(t_1, \epsilon) \ \forall t > t^*.$
- 3. Let  $|x_0 x_1| = \delta$ . Choose  $\epsilon = \delta/2$ . So there is  $t^*$  such that  $|x_t x_0| < \delta/2$  and  $|x_t x_1| < \delta/2$ .

# Assume it is not unique, so:

- 1.  $x_t \rightarrow x_0$  and also  $x_t \rightarrow x_1$ , and  $x_1 \neq x_0$ .
- 2.  $\exists t_{\epsilon}^0, t_{\epsilon}^1 \in \mathbb{N}$  such that for  $t_{\epsilon}^* > \max\{t_{\epsilon}^0, t_{\epsilon}^1\} \ x_t \in B(t_0, \epsilon)$  and  $x_t \in B(t_1, \epsilon) \ \forall t > t^*$ .
- 3. Let  $|x_0 x_1| = \delta$ . Choose  $\epsilon = \delta/2$ . So there is  $t^*$  such that  $|x_t x_0| < \delta/2$  and  $|x_t x_1| < \delta/2$ .

$$|x_0-x_1| = |x_0-x_t+x_t-x_1| = |(x_0-x_t)+(-x_1+x_t)| \le |x_0-x_t|+|x_1-x_t| < 2\epsilon = \delta$$
, contradiction!



- ▶ The sequence  $x_t$  is **increasing** if for any  $t \in \mathbb{N}$ ,  $x_t \leq x_{t+1} \in \mathbb{R}$ .
- ▶ If  $x_t$  is increasing, it is called **bounded from above** if  $x_t \leq c, \forall t \in \mathbb{N}$ .

# Conjecture

If the sequence  $x_t$  is increasing and bounded from above, then it converges.

Let  $x_t$  be a sequence. A **subsequence** of  $x_t$  is a sequence built by removing some of the elements of  $x_t$  without changing its order. Let  $\phi: \mathbb{N} \to \mathbb{N}$  be increasing, then  $y_t = x_{\phi(t)}$  is a subsequence of  $x_t$ .

## **Definition**

Given a sequence  $x_t$ ,  $x^*$  is a **cluster point** of  $x_t$ , if there is a subsequence of  $x_t$  that converges to  $x^*$ .

# Conjecture

A bounded sequence converges if and only if it has only one cluster point.

Let  $x_1^*, x_2^*, ..., x_p^*$  be cluster points of  $x_t$ .

#### **Definition**

- ▶ The **upper bound** of  $x_t$  is defined as  $\max\{x_1^*, x_2^*, ..., x_p^*\}$ .
- ▶ The **lower bound** of  $x_t$  is defined as min $\{x_1^*, x_2^*, ..., x_p^*\}$ .

# Conjecture

Let  $A \subseteq \mathbb{R}^n$ .

- ▶ *A* is closed if and only if any convergent sequence  $x_t \subseteq A$  has its limit in *A*. If  $x_t \subseteq A, x_t \to x_0 \Leftrightarrow x_0 \in A$ .
- ▶ *A* is compact if and only if for any sequence  $x_t \subseteq A$ , there is a convergent subsequence.
- $\blacktriangleright \ \overline{A} = \{x^* | \exists x_t \in A, x_t \to x^*\}$

Let  $A, C \subseteq \mathbb{R}^n$  such that  $C \subseteq A$ . We'll say that C is **dense** in A if and only if  $\overline{C} = A$ .

Consider  $f: \mathbb{R}^m \to \mathbb{R}^n$ . f(x) converges to  $\alpha \in \mathbb{R}^n$  when  $x \in \mathbb{R}^m$  goes to  $x_0 \in \mathbb{R}^m$ , if for any sequence  $x_n \to x_0$ ,  $f(x_n) \to \alpha$ . This is written as  $\lim_{x \to x_0} f(x) = a$ .

#### **Definition**

 $f: \mathbb{R}^m \to \mathbb{R}^m$  is **continuous** in  $x_0 \in \mathbb{R}^m$  if, for any sequence  $x_t \to x_0$  it holds that  $f(x_t) \to f(x_0)$ 

#### **Definition**

If  $f: \mathbb{R}^m \to \mathbb{R}^n$  is continuous for all  $x_0 \in A \subseteq \mathbb{R}^m$ , then it is continuous in A.

A more conventional definition of continuity is:

#### **Definition**

A function is said to be **continuous** on the set  $S \subseteq \mathbb{R}^n$  if for every  $a \in S$ , and any  $\epsilon > 0$  there exists  $\delta$  such that for any  $x \in S$  that satisfies  $|x - a| \le \delta$  implies  $|f(x) - f(a)| \le \epsilon$ .

# Conjecture

The sum, product, division or composition of continuous functions is continuous.

# Conjecture

Let  $A \subseteq \mathbb{R}^m$ , and given  $\mathcal{F} = \{f : A \to \mathbb{R}^m, f \text{ continuous in } A\}$ , it holds that  $\mathcal{F}$  is a vector space.

# Conjecture

Let  $K \subseteq \mathbb{R}^n$  be compact and  $f : \mathbb{R}^n \to \mathbb{R}^m$  a continuous function. Then f(K) is compact.

Let  $K \subseteq \mathbb{R}^n$  and  $f : K \to \mathbb{R}$ . The **maximum** $(x_M)$  and the **minimum** $(x_m)$  of f are defined as:

- $ightharpoonup f(x_M) \ge f(x) \quad \forall x \in K$
- $ightharpoonup f(x_m) \le f(x) \quad \forall x \in K$

These are also known as global maximum and global minimum

# Conjecture

Let  $f: K \to \mathbb{R}$  be continuous and K compact, then  $x_M$  and  $x_m$  exist.

A set A is said to be connected if, for any  $a, b \in A$ , there is a continuous function  $\phi : [0,1] \to A$ , such that  $\phi(0) = a$  and  $\phi(1) = b$ .

## Theorem Bolzano

Let  $f: \mathbb{R} \to \mathbb{R}$  continuous. Let  $a, b \in \mathbb{R}$  such that f(a) < 0 and f(b) > 0, then there is  $c \in \mathbb{R}$  such that f(c) = 0.

#### **Theorem** Weierstrass

Let  $[a,b] \subseteq \mathbb{R}$ , let  $f:[a,b] \to \mathbb{R}$  continuous. Then for any  $u \in (a,b)$ , there is at least one c such that f(c) = u.



# Brouwer fixed point theorem in $\mathbb R$

#### **Theorem**

Let  $f: K \to K$  continuous, with  $K \subseteq \mathbb{R}$  compact and convex.<sup>1</sup> Then there is  $\overline{x}$  such that  $f(\overline{x}) = \overline{x}$ .

# Proof.

- ▶ Let  $f: [0,1] \rightarrow [0,1]$  continuous.
- $\blacktriangleright \text{ Let } g(x) = f(x) x.$
- ▶ g(0) = f(0) 0 = f(0), but  $f(0) \ge 0$ , so  $g(0) \ge 0$
- ▶ g(1) = f(1) 1, but  $f(1) \le 1$ , so  $f(1) 1 \le 0$ , or  $g(1) \le 0$ .
- ▶ Then, because of the proposition we just saw, there must be  $\overline{x}$  such that  $g(\overline{x}) = 0$ , or  $f(\overline{x}) = \overline{x}$ .



<sup>&</sup>lt;sup>1</sup>A.k.a. interval.