Team Amalgam Moolloy v0.3

Joseph Hong, Chris Kleynhans, Ming-Ho Yee, Atulan Zaman

Exact, discrete, multi-objective optimization

No approximations

- As opposed to continuous variables
- Examples: types of materials, fixed sizes

- As opposed to single-objective optimization
- Multiple objectives may conflict
 - Example: Cost vs Performance

Project and Customer

Project: Optimize Moolloy

Customer: Professor Derek Rayside

Significance

Professor Bryan Tolson, Civil Engineering

- Pipe network problem
- River problem
- Landfill problem

Significance

- NASA's Decadel Survey
 - Ten-year satellite launch plan
 - Find a schedule that maximizes scientific value

Plan

- Prepare test cases and benchmarks
 - Correctness
 - Improved performance

Plan

- Prepare test cases and benchmarks
 - Correctness
 - Improved performance
- Refactor existing Moolloy code over winter term

Plan

- Prepare test cases and benchmarks
 - Correctness
 - Improved performance
- Refactor existing Moolloy code over winter term
- Choose an idea
 - Implement it
 - Run through benchmarks

Ideas

Parallel decomposition

Ideas

- Parallel decomposition
- Input space reduction
 - Maybe some possibilities can be eliminated from the search?

Gotchas

Not been done before

Many different ideas to try out

Gotchas

Not been done before

Many different ideas to try out

Not done by us

- Finding problems that work with well Moolloy
 - "Landfill problem" involves differential equations,
 each takes 2 min to solve

Environment

A subset of the <u>Joel Test</u>

- Source control: ECE-hosted SVN and Git
- Bug database/tracking: Trello
- Communication: email, Google Docs, Skype

Summary

- Project: Make it faster
- Customer: Professor Derek Rayside
- Significance: civil engineering, aerospace