

Recall the three row operations,	
* replacement * scaling	
* interchange.	
$A NA_2 NA_3 NA_4 NA_5$	
Can we find an elementary matrix E such that EA = A5.	
Example: $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $\sqrt{\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}}$ $\sqrt{\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}}$ $\sqrt{\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}}$ $\sqrt{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}$ $\sqrt{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}$ A_{1} A_{2} A_{3} A_{4} A_{5}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} $ $ \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} $	
$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} = E_2 $ $ E_2 A_2 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = A_3 $	
$\begin{bmatrix} 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \end{bmatrix} = E_3$ $E_3A_3 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} = A_4$	
$\begin{bmatrix} 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 \end{bmatrix} = E_{4} \qquad E_{4} A_{4} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = A_{5}$	
Manco, $A_5 = E_4 A_4 = E_4 (E_3 A_2) = E_4 E_3 (E_2 A_2) = E_4 E_3 E_2 (E_1 A)$ = $E_4 E_3 E_2 E_1 A = EA$.	
Chech: $E = = \begin{bmatrix} 2 & -37 \\ -1 & 2 \end{bmatrix}$ $EA = \begin{bmatrix} 2 & -37 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 37 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 07 \\ 0 & 1 \end{bmatrix}$	
So, E takes us to the reduced echelon form of A.	
So, E & obtained by applying the same row aperations on the identity matrix.	_
An nxn matrix A is invertible if there exists an nxn matrix C such that CA = In and AC = In.	
This c is the inverse of A. The inverse of a matrix is unique. Notation: A	

