重庆理工大学考试试卷

2017~2018 学年第1 学期

班级 姓名 ___ 考试科目_____ 高等数学(机电) A卷 闭卷 判断题(正确的在答题纸上打"~",错误的打"x"。本题共10个小题, 每小题 3 分, 共 30 分) 1、函数 $y = \frac{1}{\sqrt{3-x}} + \arcsin \frac{3-2x}{5}$ 的定义域是 $\{x | -1 \le x < 3\}$; $2 \lim_{n \to \infty} (-1)^n = 1;$ $3 \cdot \lim_{x \to 4} \frac{x^2 - 6x + 8}{x^2 - 5x + 4} = \frac{2}{3}$; $4 \cdot \lim_{x \to \infty} (1 - \frac{1}{x})^x = e;$ 5、x=0是函数 $f(x)=\sin x \sin \frac{1}{x}$ 的可去间断点; 6、函数 f(x) = |x| 在 x = 0 处不仅连续,而且可导; 7、设 $y = f(e^x)$,且f'(x)存在,则 $y' = f'(e^x)e^x$; 8、设 $y = e^{2x} \sin x$, 则 $\frac{d^2y}{dx^2} = -4e^{2x} \sin x$; 9、函数 $f(x) = 2x^3 - 9x^2 + 12 - 3$ 在[1,2]上单调增加; 10、设函数 f(x) 的原函数存在, k 为常数,则 $\int k f(x) dx = k \int f(x) dx$ 。 二、填空题(本题共10个小题,每小题3分,共30分) $1 \cdot \lim_{x \to \infty} \frac{2x^2 + x + 1}{3x^2 + 1} = \underline{\hspace{1cm}};$ $2 \cdot \lim_{x \to 0} \frac{\sin 3x}{x} = \underline{\hspace{1cm}};$ 3、 $y = \frac{e^{2x}}{r}$,则 $y' = ______$; $4 \cdot y = e^{\sin x}$, $\iint dy =$ 5、曲线 $y = x^4 - 3$ 在点 (1,-2) 处的切线方程为______;

重庆理工大学考试试卷

2017~2018 学年第1学期

班级	姓名	_ 考试科目	高等数学(机电)	A 卷	<u>闭卷</u>

- 6、双曲线 $y = \frac{1}{x}$ 在 (1,1) 处的曲率为_____;
- $7. \int \sin^2 x \cos x dx = \underline{\hspace{1cm}};$
- $8. \int_{-\pi}^{\pi} \frac{x^4 \sin x}{1 + x^2} dx = \underline{\hspace{1cm}};$
- 9、设 $\frac{d}{dx}\int_0^{x^2}\sqrt{1+t^2}dt=$ ______;
- 三、计算题(本题共5小题,每小题6分,共30分)
- 1、求由方程 $e^y + xy e = 0$ 所确定的隐函数的导数 $\frac{dy}{dx}$;
- 2、当 $-1 \le x \le 4$ 时,求函数 $y = 2x^3 3x^2$ 的最大值;
- 3、求 $\int x \cos x dx$;
- 5、计算抛物线 $y=x^2$ 与直线 y=2x+3 所围成的图形的面积。

四、证明题(本题共10分)

若函数 f(x) 在 (a,b) 内具有二阶导数,且 $f(x_1) = f(x_2) = f(x_3)$,其中 $a < x_1 < x_2 < x_3 < b$,证明: 在 (x_1,x_3) 内至少存在一点 ξ ,使得 $f^{\dagger}(\xi) = 0$ 。