

VoLTE 经验总结

1 广州 VOLTE 网络质量现状

经过近三个月的优化工作,广州 ATU 网格内,掉话率逐步改善,从 11.5%(四月)下降至 3.27%(七月);接通率从 93.1%提升至 6 月份的 96.6%,七月份下降至 89.46%。

测试时间	网络	接通率(%)	掉话率(%)	eSRVCC 成功率(%)
四月集团	爱立信	96.3	11.48	100
测试指标	中兴	93.1	11.66	98
六月份拉	爱立信	96.87	2.98	100
网自测	中兴	96.63	4.95	96.16
七月份拉	爱立信	87.8	1.32	98.8
网自测	中兴	90.02	3.94	94.1

七月份测试期间核心网的 IOT 测试也在进行;较多 invite 500、SIP unknown、MT CSFB 等异常问题导致的连续多次未接通。广东公司计划在本周对广州 IMS 进行华为 IMS 替换爱立信 IMS 的操作,故七月份测试遇到的异常 IMS 相关问题分析进度暂缓。

2 广州 VoLTE 测试问题优化进展

2.1 异频重定向掉话问题验证(问题解决)

背景:中兴 eNodeB 在 P01 版本下,因邻区缺失导致异频重定向掉话,该问题需升级 P02 版本解决。

网格 44、45 测试过程中未发生异频重定向掉话,信令上分析测试过程中出现过多次连续上报异频 A3 的测报,未切换也未发生重定向,P02 版本禁止 QCI 1 业务异频重定向功能生效。

(Measid=3)连续5次上报PCI=478的测量消息,因为邻区没配置未发生切换,且重定向未发生。

2.2 异系统重定向掉话问题验证(问题解决)

背景:中兴 eNodeB 在 P01 版本下, VoLTE 发生重定向掉话, 该问题需升级 P02 版本解决。

网格 44、45 基础覆盖较差,以往拉网测试均会发生多次系统重定向掉话,7月24日,网格 44、45 完成 P02 版本升级,升级后重定向掉话问题解决,拉网测试掉话率改善明显。

网格	测试日期	接通成功率	拨打次数	成功次数	掉话次数	掉话率
311	升级前	92.86%	112	104	7	6.73%
44	升级后	98.70%	77	76	0	0.00%
45	升级前	94.44%	72	68	. 微量早	5.88%
45	升级后	92.31%	52	48	1	2.08%

P02版本禁止QCI 1业务重定向功能打开,终端上报A2(盲重定向门限)或B2事件(2G邻区信息错误)等前期会导致重定向的情况下,网络均未下发重定向,VoLTE业务保持通话结束后自动挂机,未产生掉话事件

2.3 TM3/8 转换掉话问题验证(问题解决)

背景:中兴 eNodeB 在 P01 版本下, VoLTE 业务过程中发生 TM3 到 TM8 模式转换, 因为基站提前转换导致终端掉话, 该问题需升级 P02 版本解决。

8月3日, 网格45 所有升级站点打开 TM3/8 自适应, 验证 VoLTE 业务在 TM3 与 TM8 进行转换时是否掉话,测试结果如下:

网格 45 遍历拉网测试中出现 26 次 TM3 向 TM8 的模式转换,转换正常未发生异常。

2.4 X2 开启告警验证(问题解决)

背景:广州前期因中兴网管告警问题未打开 X2 接口,导致跨站重建立不可用,需升级 P02版本对 X2 告警量进行抑制。

8月5日, 网格44、45 所有升级站点打开X2接口功能, 指定开启X2 自配置站点213个, 8月6日统计站点X2 偶联条数共计4604条。

网格	测试日期	接通成功率	拨打次数	成功次数	掉话次数	掉话率	TM3/8转 换次数	TM3/8转换掉 话次数
45	TM3/8打开	95.24%	42	40	1	2.50%	26	LICOPI

告警问题:

网格 44、45 开启 X2 后,8月6日网管出现60多条 X2 断链告警,告警主要原因:

- a、传输不通,部分微站无法与宏站正常建链;
- b、个别小区被蔽塞不能正常建链;

升级后 EMS 网管上只出 X2 断链告警,并且所有基站仅出 1条(多条 X2 断链), 无 SCTP 断链告警,网管上可明确区分 X2 与 S1 告警,告警量大幅下降。

2.5 X2 开启跨站重建立功能验证

P02 版本支持无邻区的跨站重建立,在 X2 链路建立后,对于无邻区跨站重建立带来一定的增益,提高跨站重建立的效率;

X2 开启,网格 44 统计 VoLTE 拉网发生重建立请求共 14 次,跨站重建成功 6 次; 从性能指标统计来看, RRC 重建成功率从 50%左右提升至 80%左右。

终端在广州长隆汽修部F-ZLH-2(1895,400)下行失步

终端在广州南奥D-ZLH-101(37900,464)发起重建立成功

原理:目标小区通过终端上报的 PCI 查找该站点保存的有 X2 关系的邻站所有小区信息,向所有相同 PCI 小区索取上下文。

3 广州 VOLTE 优化经验

3.1 日常优化工作

日常优化工作主要从无线覆盖优化、参数优化、系统内外邻区优化,功能优化四个方面着手,与 ATU 路网、工程建设紧密配合,提升整体网络质量。

大项	内容	进展	实施效果
无线覆盖 优化	弱覆盖优化	弱覆盖路段优化调整 400多处	覆盖问题明显减少
	重叠覆盖优化	路网优化小组调整 天馈300多处	ATU下载速率提升 5%
	高干扰优化、TOP最 差小区优化	TOP站点干扰整治、 性能TOP小区处理	高干扰小区占比明显 下降
	不同QCI在RLC层优 先级优化	修改全网QCI5的优 先级	VOLTE呼叫接通率有 效提升
参数优化	QCI 5 PDCP 丢弃时 长优化	修改全网QCI5 PDCP丢弃时长为无 穷大	VOLTE呼叫接通率有 效提升
	eSRVCC门限优化	终端测量能力限制, B2-1切换门限调整到 -110	eSRVCC及时切换 次数提高,掉话率下 降
	SBC TCP重传次数优化	最大重传次数从15次 改为5次,最大重传 隔间从十几分钟改为 15s	VOLTE呼叫接通率有 效提升
系统内/外 邻区优化	根据工程参数、MRS 数据、路网通邻区分 析进行4G邻区优化	增加系统邻区8850多 对	所添加邻区均有效
	根据工程参数、重定 向2G邻区匹配、 4G/2G测试数据匹配 等进行2G邻区优化	增加系统邻区1200多 对	所添加邻区均有效
	2G邻区合理性优化	删除同频同BSIC邻区 500多对	删除后切换异常明显 降低
功能优化	中兴基站重定向功能 优化	基站升级新版本P02	由于重定向引起的未接通、掉话明显减少
	MME专载保持功能 优化(试点)	爱立信MME开启专载保存功能,当上下行释放携带UE-LOST原因值,保留专载2s	提高专载恢复成功率
	专载流程与切换冲突 优化	专载建立、专载释放 与切换冲突优化	减少流程冲突中引起 的掉话未接通

3.2 RLC 优先级优化

现象:呼叫建立与切换过程冲突,专载被 MME 释放。呼叫建立过程中专载建立与切换几乎同时发生, MME 未收到 NAS 专载完成消息导致释放专载,终端回复 invite580(也有上发 CANCLE 的情况),专载丢失形成未接通事件。

原因分析: QCI5 设置的 RLC 优先级为 2, 高于 SRB=2(传送 NAS 层消息)配置为 3. 导致 NAS 的层 3 消息已经比 MR 要早,但是因为优先级比 MR 和 SIP 低,未及时发送。

优化措施:降低 QCI 5 优先级,确保 SIP 消息及时上传,修改后此类问题改善明显。

QCI	1	2	3	4	5	6	7	8	9	SRB1	SRB2
优先级(默认)	2	3	4	5	1	6	7	8	9	1	3
优先级(修改 值)	4	5	1	2	3	6	7	Œ	微信	号ahr_	ാദ

3.3 QCI 5 PDCP DiscardTimer 时长优化

现象:终端业务建立过程中,出现 SIP 信息传递丢失的问题,导致收到网络下发 的 INVITE500 或者 580 等原因值释放。

原因分析:UE 在无线信道较差的情况下,SIP 信令发送或接收不完整或者无法 及时传递,导致 IMS 相关定时器超时而发起会话 cancel。经过分析,由于 QCI5 的 pdcp 丢弃时长过小,在无线覆盖较差的地方,上行时延会变大,容易导致 QCI5 信令丢包。

数据被丢弃

```
### Windows Company of Company o
```


丢弃定时器过小

优化措施:

QCI5 PDCP DiscardTimer 由 300ms 修改为无穷大

优化效果:

VoLTE 无线接通率提升明显

3.4 SBC 传输协议 TCP 重传次数优化

背景:被叫从2G返回4G后,主叫起呼,被叫首先bye消息,紧接着接连收到多条上一次呼叫的invite,被叫回复bye481\invite486\invite580,呼叫失败。优化措施:爱立信SBC对TCP配置进行了修改:最大重传次数从15次改为5次,最大重传隔间从十几分钟改为15s,此类问题已解决。

SIP信令异常,本次呼叫收到上次呼叫的SIP信令

爱立信IMS传输协议TCP配置默认15次,SIP消息未送达,TCP协议会一直做重传尝试,且每次重传不成功,下次等待重传时间会double,重传时间一直增加,最多会到十几分钟。

BYE消息重传机制

3.5 系统间邻区优化

广州 LTE 网络的 GSM 邻区关系根据工程参数、共站 2G 邻区同向小区继承进行规划,同时根据 4G、2G 道路测试数据匹配进行邻区补充:

4G 弱信号路段与 2G 拉网服务小区匹配:利用第三方拉网测试数据,将 4G 和 2G 拉网信号强度、经纬度、服务小区等信息导出。通过经纬将 4G 弱信号 (RSRP<-110dbm)与 2G 强信号(RXLOV>-95dbm)在 50 米范围内拟合,根据拟合度对 2G 邻区进行补漏工作

5月份第一轮拟合数据,剔除现网已配置的邻区关系,补漏483对; 6月份第二轮拟合数据,剔除现网已配置的邻区关系,补漏邻区关系487对。 eSRVCC切换提升明显,且由于2G邻区不准确导致的异系统重定向大大减少。

3.6 重定向掉话

中兴区域掉话最严重属于重定向掉话,在中兴基站算法中,以下三种可能发生重定向,重定向释放 RRC 后,专载同时被拆除, VoLTE 业务产生掉话。

3.7 上行 PUSCH 功控参数优化

背景:4月集团在中兴区域拉网测试发现上行 PUSCH 发射功率偏高,对现网参数检查发现,中兴区域上行期望功率值设置过高。

优化措施: 进行功控相关参数优化,

现网配置: p0NominalPUSCH =-75; puschPCAdjType=0

优化值: p0NominalPUSCH =-87; puschPCAdjType=2

- ●同等路损情况下,参数修改后,ue发射功率大约下降2~3dB。
- ●目前终端平均上行发射功率仍高于 10db , 仍需中兴完善现有功控方式。

修改后, PUSCH TxPower (10dbm 以上) 占比由 40%下降到 30%左右。

3.8 RTP 丢包率优化

背景: 4月份测试中,中兴区域 RTP 丢包率偏高,个别网格甚至达到 2%以上。

原因分析:在无线质量较好的情况下基本无丢包;无线质量较差的情况下上行丢包现象较为严重,PDCP重传时间超时,数据包将被丢弃;

外场测试表明 QCI 1 PDCP Discardtimer 配置与 RTP 丢包率及 Jitter 有密切关系, QCI 1 PDCP Discardtimer 配置越大, RTP 丢包率越低,但 Jitter 也随之变大。

- ●MOS 值与 RTP 丢包及 Jitter 关系都较大,目前广州正在 601P02 版本下进行 100ms / 300ms / 500ms / 750ms / 1500ms / infinity 完整的对比验证。
- ●进一步联合中兴公司定位 RTP 丢包率偏高的问题,并推动产品功能算法改进。

3.9 MME 专载保存功能(可选)

功能描述: 在基站发起 UE-lost 原因值的上下文释放请求时, MME 保持专载 2s不释放, 等待空口重建。

验证情况:已在 GZMME1602 下成功验证了该功能。当时无线环境较差,UE 发起 RRC 重建失败,通过 MME 专载 QCI1 保持功能使得在新发起的业务过程中,RRC 重配中建立包括专载 QCI1 的 3 条 DRB,不会发生掉话。(本次测试中专载保持时长约 1.358s)

功能总结:

- 1) 当无线环境较差时, UE 发生 RRC 重建, 若 RRC 重建成功, 手机将不会掉话。
- 2) MME 侧也可以在 RRC 重建失败后,通过 MME 专载 QCI1 保持功能使得在新发起的业务过程中,专载 QCI1 继续保持,也可使得手机不掉话。
- 3) 此功能为爱立信 MME 非必选功能,建议打开。但是该功能不在集采目录, 暂时无法采购。

3.10 专载释放与切换冲突,通话结束未收到专载释放掉话

[问题描述] :在拉网测试过程中,通话挂机后,主叫上报 BYE 消息,IMS 回 BYE200 消息前后,同时手机发生切换,未收到 EPS 专载释放请求,1s 后软件统计掉话。 [问题分析]:经分析 MME log,发现 MME 未收到 PGW 下发的 delete bearer request 消息。当 X2 切换触发 SGW-initiated bearer modification procedure

(完整信令是 CCR-CCA),如果此时 SIP 挂机触发 PCRF 也发 RAR 给 PGW,由于 Gx 链路时延等原因,使得 RAR 先于 CCA 到达 PGW,根据协议规定,PGW会继续 SGW-initiated bearer modification procedure 而 reject RAR (result code DIAMETER OUT OF SPACE)。

[优化措施]: 当前解决办法:

- (1)缩短 DRA 时延配置。
- (2)修改 SAPC 到 DRA 链路为主-备模式,保证 CCA 和 RAR 走同一路径和到达 PGW 的先后顺序。

[优化结果]: 近期调整后的网格测试,暂时没有发现 BYE200 消息前后发生的切换没释放 QCI 1 专载的情况。

3.11 通话结束 MME 收到 del bearer req , 专载释放与切换冲突 , 基站未下发 NAS

[问题描述]:通话挂机后,主叫上报 BYE 消息, IMS 回 BYE200 消息前后,同时手机发生切换, EPS 专载没有释放,1s 后软件统计掉话。

[问题分析]: 主叫挂机后, MME 收到 del bearer req, 下发 Deactivate EPS bearer context Request 给源 eNB 携带 NAS 释放专载,但同时源 eNB 触发 X2 切换,向 MME 响应 ERAB release response (X2-Handover-Triggered), NAS 消息未下发到手机。根据协议 36.413 中 8.6.2.4 有描述当 eNB 在触发 X2 切换时, eNB 将不传递 NAS 消息。

[优化措施]:属测试软件统计问题,建议软件加以剔除该问题。

4 存在问题和建议

设备功能问题:

- ●切换冲突问题:基站无法解码 SIP 消息, UE 专载建立完成的 NAS 消息上报时间无法确认,基站侧难以彻底解决,需要核心网做相应的功能优化,
- ●呼叫过程 eSRVCC: IMS 不支持呼叫过程中发生 eSRVCC, 在 4g 网络覆盖达到 2g 规模之前,该问题都不可避免存在。

终端 eSRVCC 测量性能提升

4G 弱覆盖比例较高:广州网格范围内黑点路段 603 个,是 VoLITE 业务问题多发路段,大部分需要加站解决,专项整治计划进度和质量不在项目把控范围。而目前芯片在测量 GSM 邻区的时延较长,存在 LTE 弱信号拖死掉话的较大概率。

2 案例分析

2.1 典型案例

案例 1: LTE 弱覆盖, eSRVCC 切换不及时掉话

10:57:29.710 基站下发异频异系统测量报告,包含 2G 频点及 B2 门限(LTE:-110, GERAN:-95)

10:57:38.479, 主叫达到 B2 门限

10:57:42.109, 主叫 RSRP 已恶化至-117dBm, SINR 至-3, 但终端仍没有上报 B2 事件 10:58:05.587, RTP 包不能正常收发, 10s 后 RTP inactivity 定时器触发, 会话中断, 出现掉话:

```
2015 Apr 20 10:57:38.479 [F3] 0xB193 LTR
Version 1
Number of SubPackets = 1
SubPacket ID = 25
Serving Cell Measurement Result
      Version = 7
SubPacket Size = 84 bytes
      E-ARFCN
Physical Cell ID
                                                           = 38350
   Physical Cell ID
Serving Cell Index
Reserved = 0
Current SFN
Cell Timing[0]
Cell Timing[1]
Cell Timing SFN[0]
Cell Timing SFN[1]
Inst RSRP Rx[0]
Inst RSRP Rx[1]
Inst RSRP Rx[1]
Inst RSRP Rx[1]
                                                               341
                                                           = PCell
                                                              173078
173078
                                                          = 388
= 388
                                                              -110.56 dBm
                                                           - -111 13 dBm
- -110.56 dBm
      Inst RSRQ RX[0]
Inst RSRQ Rx[1]
                                                          - -10 19 dB

- -8 25 dB

- -8 25 dB

- -8 38 dBm

- 82 88 dBm
     = 4.90 dB
= 5.50 dB
= -80.38 dBm
```



```
2015 Apr 20 10:57:42.109 [68] 0xB193 LTE
Version = 1
Number of SubPackets = 1
SubPacket ID = 25
Serving Cell Measurement Result
       Version = 7
SubPacket Size = 84 bytes
       E-ARFCN
                                                                     - 38350
      E-ARFCN
Physical Cell ID
Serving Cell Index
Reserved = 0
Current SFN
                                                                         341
                                                                     - PCell
                                                                        751
173083
173083
751
751
     Current SFN
Cell Timing[0]
Cell Timing[1]
Cell Timing SFN[0]
Cell Timing SFN[1]
Inst RSRP Rx[0]
Inst RSRP Rx[1]
Inst RSRP Rx[1]
                                                                         -117.75 dBm
-117.63 dBm
-117.63 dBm
       Inst RSRQ Rx[0]
Inst RSRQ Rx[1]
Inst RSRQ
Inst RSRQ
Inst RSSI Rx[0]
Inst RSSI Rx[1]
                                                                         -14 44 dB
-12 75 dB
-12 75 dB
                                                                         -83.31 dBm
                                                                           84.88 dBm
    Residual Frequency Error
FTL SNR Rx[0]
FIL SNR Rx[1]
                                                                         0
                                                                         -3.10 dB
                                                                     = 2.20 dB
= -83.31 dBm
       Inst RSSI
```

```
2015 Apr 20 10:58:05.587 [A5] 0x1831 IMS Volte Session End
Version = 1
Dialled String Length = 63
Dialled String = tel:17820500065; phone-context=ims.mnc007.mcc460.
Direction = MO
Call Id Length = 56
Call Id = 1166109427_175384120@2409:8809:8300:a8:e01:9b1a:fdd:402
Type = 0
Originating Uri Length = 55
Originating Uri = sip:+8617820500137@gd.ims.mnc000.mcc460.3gppnet
Terminating Uri Length = 63
Terminating Uri = tel:17820500065; phone-context=ims.mnc007.mcc460
End Cause = RTP inactivity
Call Setup Delay = 3354
```

解决建议:

- ①规范 LTE 频点配置,清理多余异频频点,缩短终端测量周期;
- ②终端芯片提高测量能力,尽快实现 CDRX 休眠期测量功能。

案例 2: VoLTE 单通现象

VolTE 单通现象分为两类: 一是 VolTE 打 VolTE 单通,二是 VolTE 拨打 GSM 单通。经分析,第一类主要是终端问题,第二类主要是网络问题。

注:红圈为RTP包抓包位置

序号	问题描述	问题分析及解决
1	三星S6拨打 VoLTE电话 概率性单通	SBC上抓包发现手机发送数据包连续,但是还原后无任何声音,疑似三星S6单通。手机升级后问题解决。
2	三星S6呼叫 保持过程中 接听VoLTE 电话单通	A号码(三星S6)拨打B号码,通话过程中C号码拨打A号码,A保持B,接听C,此时C听不到A。手机与网络同时抓包,定位为三星S6版本问题,升级版本后问题解决
3	VoLTE拨打 GSM单通	在SBC上抓取的数据包还原后有声音,但是IMMGW抓包还原后无声,定位为SBC版本缺陷,升级版本后问题解决

案例 3: eNodeB 参数配置不合理,导致 eSRVCC 失败 问题现象:

终端发生 eSRVCC 时,在 LTE 向 GSM 切换过程中产生掉话。

问题分析:

终端可以正常收到测控消息,并上报测量报告,且掉话发生在向 GSM 切换过程中,是 GSM 或者和基站侧参数设置问题。

问题解决:

基站 BsCAccess-ID 项中的管理状态为 Locked,设置有误。将该状态修改为 Unlock 后,对该站点进行重启后发现 eSRVCC 功能正常。

2.2 空口信令判断案例

案例 1: RRC 重建失败,无线网问题

现象:切换失败导致 RRC 释放,重建 RRC 未成功,重新进行 RRC 申请,QCI=1 的承载未建立成功,导致掉话

分析:呼叫重建失败后,新小区重新申请 RRC,未能建立 VOLTE 专载,导致掉话。该流程均由 ENODEB 控制执行。而切换失败的原因往往是无线环境问题、参数配置不合理、邻区漏配、非竞争随机接入异常等,均为无线网问题。

结论:切换失败与RRC 重申请流程均与EUTRAN 相关,因此认定为无线网问题。

案例 2: 基站异常导致双端无下行信令及 RTP 包断传,无线网问题

现象:主被叫 VOLTE 接通后,在同一小区同时发生缺失下行信令 20 秒,此后数秒发生终端上发 bye request 挂断。

分析: 丢信令之前,主被叫双端处于同一小区,且 RTP 包双向传输正常。丢信令期间,终端测量信息完整,但在 2 秒后发生 RTP 包只有终端向网络单向传输,未再有任何网络下发的 RTP 包,高度怀疑基站临时故障导致。

结论:软件显示丢信令,但通过进一步分析确认应为基站故障导致。无线网问题。

案例 3: VOLTE 接通下发生 IMS 注册掉话, IMS 网络问题

现象: VOLTE 接通后,被叫发生 IMS 注册且成功,此时主叫收到网络下发的 bye request 内含注册超时字样

分析: 按照 3GPP 协议,终端应在 3000 秒上发注册,本次华为 SBC 于 3600 秒才收到注册

请求,此时 IMS 认为注册超时,对主叫下发了 sip bye 消息释放了。

但通过进一步确认,终端实际于 600 秒前已上发了注册消息(UDP),但此时恰好在 G 网下,未收到回复:

注:同样类型的掉话也有 600 秒前处于 LTE 网 (TCP),而未收到 OK 或未鉴权回复的情况结论:前 10 分钟的注册失败,导致了后续的 IMS 通话中释放,虽然终端前一次的失败处理机制可能存在问题,但仍然体现出 IMS 对通话中发生注册时直接释放会话的措施欠妥。

2.3 网元流程判断案例

案例 1:被叫收到寻呼但未收到 INVITE 请求,核心网问题

现象: 主叫上发了 invite,被叫收到了寻呼且建立 RRC 成功,此时应收到下行的 invite,但始终未收到。

分析:被叫响应寻呼并进行了 RRC 申请,表明 MME 已收到由 SGW 触发的数据业务请求,

即 sip invite 消息应由 IMS 网元的 SBC 下发给了 PGW、SGW。

- ①Sip invite 消息由 IMS 网元 SBC 下发到被叫核心网网元 PGW
- ②PGW 转发给 SGW, SGW 通过 S11 触发 MME 进行寻呼被叫
- ③被叫被寻呼到,并完成 RRC 连接与建立默认承载所需 RAB,接收数据

结论: 收到寻呼消息表示 sip invite 数据包已经到达了 LTE 核心网,未能继续下发当前怀疑 是 sip 数据在 S/PGW 异常丢失。

案例 2: 重配置消息释放 DRB 承载,无线网与核心网配合问题

现象:被叫上发 sip183 后,在激活 EPS 承载之前,终端上报了 1 条 A3 测报,激活 EPS 后,发生切换重配置消息中释放了 QCI=1 的 DRB。

分析:起呼时 MME 进行激活 EPS 承载流程过程中,恰好发生 S1 切换时,由于 EPS 承载建立未完成,MME 在切换准备阶段,对下发到目标小区的切换准备的请求消息中不携带 QCI=1 的 VOLTE 专载,导致 VOLTE 专载源小区完成的情况下,在目标小区被释放,切换完成后呼叫中断

- ①切换准备时,MME 向目标小区发切换请求, RAB 建立请求表只有 2 条, 无 OCI=1 的专载
- ②目标小区收到 MME 的切换请求后,回复的切换确认消息里仅有 2 条 RAB 建立
- ③MME 向源小区下发的切换命令消息中,只建立 2 条承载,导致 ENODEB 释放了 QCI=1 的 VOLTE 专载。

结论:切换与 EPS 激活流程碰撞,无线网与核心网配合问题。在进行激活 EPS 专载过程中,发生切换时,均会造成上述问题,目前还无较好的解决办法。

2.4 网络设备问题案例总结

案例 1: 中兴 ENODEB 异频重定向掉话,无线网问题

现象: 主被叫 VOLTE 接通后,服务小区信号较差,但未配置异频邻区;通过重定向消息 RRC connection release 携带频点,由 D 频段重定向到 F 频段,但 VOLTE 呼叫不支持重定向方式的 RTP 包接续,导致掉话。

设备: 中兴 ENODEB

分析:中兴设备为了防止邻区漏配情况下,影响用户在 LTE 数据业务下的感知质量,默认具备异频重定向功能,但未曾考虑对 VOLTE 呼叫的接续保持。

结论:完善邻区配置,在 VOLTE 呼叫区域考虑关闭中兴设备的异频重定向功能。

案例 2: 华为基站到卡特切换导致的 RTP 包传输中断问题,无线网问题

现象:主被叫接通状态下,在发生一次由华为设备到卡特设备的切换后,20 秒后主被叫终端同时上发了 bye request 消息,网络侧回复 bye(487 Request Terminated),后网络去激活了 EPS 承载,掉话。

设备: 华为 ENODEB 与卡特 ENODEB

分析: PDCP SN SIZE 长度有 12bit 和 7bit,目前华为基站配置为 12bit,贝尔配置为 7bit,两个厂家配置数据不统一。华为 enodeb 设备具有自适应功能。

①在华为小区起呼时,切换到卡特小区时,卡特无自适应功能,PDCP SN 不一致导致组包混乱。

②当在贝尔小区起呼时,切换到华为小区时,华为 PDCP SN 自适应为 7bit,通话正常。

结论:临时解决方案:华为 PDCP SN Size 修改为 7bit,进行拉网测试主叫呼叫 56 次,未出现终端主动上发 bye 的掉话。异常掉话及切换后单通问题基本解决

案例 3: 爱立信 IMS 网元 CS 域呼叫处理能力不足问题, IMS 网络问题

现象:在做互通测试过程中,主叫 VOLTE 起呼后,被叫始终在 TD 下未收到寻呼消息,主叫收到网络侧下发 trying 后,立即收到网络下发的 invtie 604 (Does Not Exist Anywhere),呼叫失败。

设备: 爱立信 IMS

分析: 空口信令仅能确认, 被叫端处于 TD 网, 发 INVITE 到 MGCF, MGCF 回复 604 Does Not Exist Anywhere。该问题为爱立信 IMS 网元 MGCF 默认配置仅能同时容纳 32 个 CS 域呼叫, 导致互通测试过程中,由于容量不足,造成大量连续未接通。

结论: 爱立信 IMS 网元 MGCF 默认配置容量偏小,发生以上问题后,经过扩容已达可处理 2、3G 呼叫 320 个。

案例 4: 华为 EPC 修改 EPS 与切换碰撞, 拒绝承载修改。

核心网问题

现象: 主叫 VOLTE 起呼后,收到网络回复 trying,激活了 EPS 承载后,又进行了 1 次 EPS 承载的修改,此时主叫侧在发生了 1 次 LTE 的切换后,收到 IMS 网络下发的 sip503 消息,服务不可得。

设备: 华为 EPC

分析:某地在激活 EPS 完成后,仍需要进行 2 次 EPS 承载的修改,本次呼叫时第 2 次 EPS 的修改(空口信令不可见)恰好与切换同时发生,当 IMS 要求核心网 PCRF 需要对 EPS 承载进行修改时,由于切换具有更高的优先级,华为 EPC 拒绝了承载更新,而只执行切换,导致 IMS 下发 sip 503 消息中断呼叫

该市合适的 COI=1 的 EPS 承载建立需要 3 个步骤:

- ①CQI=1 的初始 EPS 承载建立, GBR=40kbps 但 TFT 无 IPV6 地址
- ②修改 GBR49kbps 支持高清语音并对 TFT 内的增加 IPV6 地址以及 UDP 端口进行修改
- ③在现有 TFT 中再新建两个 ptf。

结论: 冗余的 EPS 承载修改 TFT,一方面导致了呼叫建立时延长;同时增加了与切换发生冲突的几率;华为 EPC 在切换与修改 EPS 承载冲突时,不具备同时处理或排队处理的能力,导致直接以"资源临时不可得"拒绝了承载更新。一方面建议降低 EPS 承载修改次数,减少切换碰撞几率与时延;另一方面建议华为 EPC 进行升级。

案例 5: 华为 EPC、中兴 IMS 协议理解不一致。IMS 网络问题(升级 SBC 解决故归此类)现象: VOLTE 起呼后,EPS 承载激活完成,有一定几率 1 秒后直接收到网络直接下发 sip 500 消息(Server Internal Error),中断呼叫。

设备:华为 EPC、中兴 IMS

分析: EPC 按照 3GPP 规范产生的计费标识中包含"Oa"的内容,但在 IMS 网络中,按照 SIP 协议将"Oa"解析成换行符,造成对计费标识的误读。导致中兴 IMS 网与华为 EPC 网元 PCRF 对 RX 接口中字符格式理解不一致;中兴不支持 PCRF 通过 Rx 接口返回的不可见字符,导致了 IMS 直接下发了内部服务器错误

经过 IMS 内部信令跟踪:

- ①中兴 IMS 网元 SCSCF 返回 500 错误,原因为收到 SBC 转发的 invite request 消息携带的 PCV 头部有问题,发现换行符(0A),导致 S-CSCF 网元上解码认为头部结束,从而认为不合语法规范,获取 ecid 失败
- ②华为 EPC 网元 PCRF 通过 Rx 接口返回接入网络计费标识
- (Access-Network-Charging-Identifier-value),至中兴 IMS SBC,而后中兴 SBC 通过 ecid 参数来 HEXDIG 编码上述计费标识信息

ecid = "ecid" EQUAL 1*HEXDIG+

29.214 协议: The Access-Network-Charging-Identifier-Value AVP (AVP code 503) is of type OctetString, and contains a charging identifier

结论:即 3GPP 该计费标识可以包含字符串形式,中兴按 IMS SIP 协议理解 ecid 只能是可见字符,对字符串形式不进行 HEXDIG 转换,导致了上述问题。临时解决方案,中兴 SBC 进行相应的版本或补丁解决,支持不可见字符。

微信扫描以下二维码,免费加入【5G 俱乐部】,还赠送整套:5G 前沿、NB-IoT、4G+(Vol.TE)资料。

