5.18 Code Exercise 5

Max Ryoo (hr2ee)

Part 0

Set up

```
In [1]: data_dir = 'HW_5_DATA/'
In [2]: count_method = 'n' # 'c' or 'n' # n = n tokens, c = distinct token (term) count
        tf method = 'sum' # sum, max, log, double norm, raw, binary
        tf_norm_k = .5 # only used for double_norm
        idf_method = 'standard' # standard, max, smooth
        gradient cmap = 'YlGnBu' # YlGn, GnBu, YlGnBu; For tables; see https://matploti
In [3]: OHCO = ['book_id', 'chap_num', 'para_num', 'sent_num', 'token_num']
        SENTS = OHCO[:4]
        PARAS = OHCO[:3]
        CHAPS = OHCO[:2]
        BOOKS = OHCO[:1]
In [4]: bag = CHAPS
In [5]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import plotly express as px
In [6]: sns.set()
        %matplotlib inline
In [7]: TOKEN = pd.read csv(data dir + 'TOKEN.csv')
        VOCAB = pd.read csv(data dir + 'VOCAB.csv')
```

Part 1

Write a function that returns a TFIDF matrix, with the following arguments:

- 1. The tokens data frame to use.
- 2. The OHCO level to use, e.g. which "bag" to use.
- 3. The type of count to use (e.g. binary counts are regular counts).
- 4. The type of TF to use.
- 5. The type of IDF to use.

```
In [8]: def tfidf_matrix(token, ohco_level, count_method, tf_method, idf_method):
    token = token.set_index(OHCO)
    vocab = VOCAB.set_index('term_id')
```

```
## Filter
token = token[-token.term_str.isna()]
vocab = vocab[~vocab.term_str.isna()]
## Add term id to TOKEN table
token['term id'] = token.term str.map(vocab.reset index().set index('term s
## Add Max POS to VOCAB (incase of missing)
vocab['pos_max'] = token.groupby(['term_id', 'pos']).pos.count().unstack().
## Add Term Rank to VOCAB
if 'term_rank' not in vocab.columns:
    vocab = vocab.sort_values('n', ascending=False).reset_index()
    vocab.index.name = 'term rank'
    vocab = vocab.reset_index()
    vocab = vocab.set index('term id')
    vocab['term_rank'] = vocab['term_rank'] + 1
## "bag" --> ohco level
BOW = token.groupby(ohco_level+['term_id']).term_id.count().to_frame().rena
BOW['c'] = BOW.n.astype('bool').astype('int')
DTCM = BOW[count_method].unstack().fillna(0).astype('int')
## tf_method from params
if tf method == 'sum':
    TF = DTCM.T / DTCM.T.sum()
elif tf method == 'max':
    TF = DTCM.T / DTCM.T.max()
elif tf method == 'log':
    TF = np.log10(1 + DTCM.T)
elif tf method == 'raw':
    TF = DTCM.T
elif tf method == 'double norm':
    TF = DTCM.T / DTCM.T.max()
    TF = tf_norm_k + (1 - tf_norm_k) * TF[TF > 0]
elif tf method == 'binary':
    TF = DTCM.T.astype('bool').astype('int')
TF = TF.T
## Compute DF
DF = DTCM[DTCM > 0].count()
## Compute IDF
N = DTCM.shape[0]
## idf method from params
if idf method == 'standard':
    IDF = np.log10(N / DF)
elif idf method == 'max':
    IDF = np.log10(DF.max() / DF)
```

```
elif idf_method == 'smooth':
    IDF = np.log10((1 + N) / (1 + DF)) + 1

## Compute TFIDF
TFIDF = TF * IDF

## Move things to their places
vocab['df'] = DF
vocab['idf'] = IDF

BOW['tf'] = TF.stack()
BOW['tfidf'] = TFIDF.stack()

## Apply TFIDF sum to VOCAB
VOCAB['tfidf_sum'] = TFIDF.sum()
return VOCAB.sort_values('tfidf_sum', ascending=False).head(20).style.backs
```

Part 2

Use this function to get the TFIDF of the collection with books as the bag. Answer the following questions:

1. What are the top 20 words in the corpus by TFIDF sum if you use the 'n' count method (i.e. not the binary count)?

```
In [9]: tfidf_matrix(token = TOKEN, ohco_level=BOOKS ,count_method='n', tf_method='sum'
```

Out[9]:		term_id term_str		n	num	stop	p_stem	tfidf_sum
	26302	26302	pierre	1525	0	0	pierr	0.009838
	11648	11648	elinor	623	0	0	elinor	0.006763
	19306	19306	israel	519	0	0	israel	0.006504
	38673	38673	vernon	104	0	0	vernon	0.005857
	2644	2644	babbalanja	547	0	0	babbalanja	0.005394
	22176	22176	media	497	0	0	media	0.004940
	5540	5540	catherine	557	0	0	catherin	0.004324
	21823	21823	marianne	499	0	0	mariann	0.004316
	29073	29073	reginald	74	0	0	reginald	0.004167
	11812	11812	emma	787	0	0	emma	0.004055
	14479	14479	frederica	72	0	0	frederica	0.004055
	8300	8300	crawford	493	0	0	crawford	0.004000
	8901	8901	darcy	374	0	0	darci	0.003986
	11663	11663	elliot	254	0	0	elliot	0.003953
	13174	13174	fanny	865	0	0	fanni	0.003898
	35769	35769	tilney	196	0	0	tilney	0.003290
	39528	39528	weston	389	0	0	weston	0.003146
	40380	40380	yoomy	308	0	0	yoomi	0.003049
	39506	39506	wentworth	191	0	0	wentworth	0.002972
	22872	22872	mohi	301	0	0	mohi	0.002972

1. How do this words compare to the top 20 words when we use chapter as the bag? Are they the same? If different, can characterize how they are different in terms of part-of-speech?

In [10]: tfidf_matrix(token = TOKEN, ohco_level=CHAPS ,count_method='n', tf_method='sum'

	term_id	term_str	n	num	stop	p_stem	tfidf_sum
31648	31648	she	12153	0	1	she	1.349173
16730	16730	her	17020	0		her	1.331294
26302	26302	pierre	1525	0	0	pierr	1.154340
40387	40387	you	14466	0	1	you	0.756695
23260	23260	mr	3420	0	0	mr	0.706684
17566	17566	i	27810	0	1	i	0.664376
39540	39540	whale	1180	0	0	whale	0.594694
23261	23261	mrs	2664	0	0	mr	0.593591
35574	35574	thou	916	0	0	thou	0.586061
36885	36885	um	12	0	0	um	0.501435
2644	2644	babbalanja	547	0	0	babbalanja	0.498785
22107	22107	me	7654	0	1	me	0.489280
35417	35417	thee	662	0	0	thee	0.473432
23450	23450	my	10644	0	1	my	0.465872
22176	22176	media	497	0	0	media	0.464082
19278	19278	isabel	399	0	0	isabel	0.462332
40399	40399	your	4111	0	1	your	0.461802
32157	32157	sir	1845	0	0	sir	0.458684

When using the book and chapter as the bag, we can quickly see that the top 20 worlds are completely different. There are actually no overlaps and even from the tfidf_sum we can see that the range of values for the top 20 words for each bag is completely different as well.

0

0

miss

captain

0.457160

0.442218

In []:

22714

5293

22714

5293

miss

captain

1987

1508

0

0

Out[10]: