TEST

OLE ANDRE BIRKEDAL

Abstract. hei hei

1. Algebraic geometry

In this section we define the fundamental objects in algebraic geometry and state some facts about their structure. We will then move on to the theory of curves and Weil divisors.

Definition 1. Projective n-space over a field k denoted \mathbb{P}^n is the set of all (n+1)-tuples

$$(x_0,\ldots,x_n)\in\mathbb{A}^{n+1}$$

modulo the equivalence relation given by $(x_0, \ldots, x_n) \sim (y_0, \ldots, y_n)$ if there exists $\lambda \in k$ such that $x_i = \lambda y_i$. The equivalence class $\{(x_0, \ldots, x_n)\}$ is denoted $[x_0, \ldots, x_n]$. Here $\mathbb{A}^n = \{(x_1, \ldots, x_n) : x_i \in \bar{k}\}$ is the affine n-space.

Let $Gal(\bar{k}/k)$ be the galois group of \bar{k}/k . This group acts on \mathbb{A}^n , such that when $\sigma \in Gal(\bar{k}/k)$ and $P \in \mathbb{A}^n$ we define $\sigma(P) = (\sigma(x_1), \dots, \sigma(x_n))$. Now we define the set of k-rational points in \mathbb{A}^n to be those fixed under action by the galois group

$$\mathbb{A}^n(k) = \{P \in \mathbb{A}^n : \sigma(P) = P \, \forall \, \sigma \in \operatorname{Gal}(\bar{k}/k)\}$$

Similarly we define the set of k-rational points in \mathbb{P}^n to be

$$\mathbb{P}^n(k) = \{ P \in \mathbb{P}^n : \sigma(P) = P \,\forall \, \sigma \in Gal(\bar{k}/k) \}$$

Definition 2. A polynomial $f \in \bar{k}[X]$ is said to be homogeneous of degree d if for all $\lambda \in \bar{k}$ we have.

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$$

Furthermore an ideal $I \subseteq \bar{k}[X]$ is said to be homogeneous if it is generated by homogeneous polynomials.

Definition 3. A projective algebraic set is of the form

$$V_I = \{ P \in \mathbb{P}^n : f(P) = 0 \,\forall homogeneous \, f \in I \}$$

Given such a set V we associate to it an ideal $I(V) \in \bar{k}[X]$ generated by

$$\{f \in \bar{k} : f \ homogeneous \ and \ f(P) = 0 \ \forall P \in V\}$$

Definition 4. A projective algebraic set is called a projective variety if the homogeneous ideal defined above is a prime ideal in $\bar{k}[x]$.

Definition 5. Let V/k be a projective variety (i.e. V defined over k), then the projective coordinate ring of V/k is defined by

$$k[V] = \frac{k[x]}{I(V/k)}$$

Note that since I(V/k) is a prime ideal, the coordinate ring is an integral domain. This enables us to form the quotient field of k[V] which we denote k(V), and it is called the function field of V.

1

A rather interesting ideal to keep in mind is given by

$$M_p = \{ f \in \bar{k}[V] : f(P) = 0 \}$$

This is a maximal ideal because the map $\phi: \bar{k}[V] \to \bar{k}$ given by $f \mapsto f(P)$ has kernel exactly M_p . It is clearly onto, so it induces an isomorphism

$$\tilde{\phi}: \bar{k}[V]/M_p \to \bar{k}$$

Definition 6. The localization of $\bar{k}[V]$ at M_p is given by

$$\bar{k}[V]_P = \{ h \in \bar{k}[V] : h = f/g \, f, g \in \bar{k}[V] \, and \, g(P) = 0 \}$$

The functions in $\bar{k}[V]_P$ are all defined at P.

Example 1. If V is a variety given by a single non-constant polynomial equation

$$f(x_1, \dots, x_n) = 0$$

then the dimension of the variety dim(V) is n-1. The (projective) varieties we will study are called elliptic curvevs and are given by polynomial equations

$$E: y^2 = x^3 + ax + b$$

They correspond to polynomials of the form $f(x,y) = x^3 + ax + b - y^2$ so dim(E) = 1. We say curves are projective varieties of dimension 1.

The objects we will be working on are projective varieties, but they are not very interesting unless we define maps between them.

Definition 7. Let V_1 and V_2 be projective varieties, a rational map $\phi: V_1 \to V_2$ is a set of maps $\{\phi_0, \ldots, \phi_n\}$ with $\phi_i \in \bar{k}(V_1)$ such that for every $P \in V_1$ we define

$$\phi(P) = [\phi_0(P), \dots, \phi_n(P)] \in V_2$$

Such a rational map is called a morphism if it is defined at every point P.

The varieties and the morphisms between them make up a category, so our next definition of an isomorphism will be the general one found in category theory.

Definition 8. Two varieties V and W are isomorphic denoted $V \simeq W$ if there exist morphisms $\phi: V \to W$ and $\psi: W \to V$ such that $\phi \psi = 1_W$ and $\psi \phi = 1_V$. If the rational functions ψ and ϕ are defined over k we say that V and W are isomorphic over k. If not, they are isomorphic over some field extension of k (i.e. \bar{k}).

Recall that curves are projective varieties of dimension one. Even more special are elliptic curves, which are curves with *genus* equal to 1. This will be introduced later on. These are in practise the only curves we will be working with.

Definition 9. Let C be a curve and $P \in C$ a non-singular point on the curve. A valuation on $\bar{k}[C]_P$ is given by

$$ord_P : \bar{k}[C]_P \to \{0, 1, 2, \ldots\} \cup \{\infty\}$$

$$ord_P(f) = max\{d \in \mathbb{Z} : f \in M_P^d\}$$

This is called the order of f at P. Letting $ord_P(f/g) = ord_P(f) - ord_P(g)$ we can extend the definition to the entire quotient ring $\bar{k}(C)$

$$ord_P: \bar{k}(C) \to \mathbb{Z} \cup \{\infty\}$$

The definition of order agrees with the one found in complex analysis. If $ord_P(f) < 0$ f has a pole at P and we write $f(P) = \infty$. If $ord_P(f) \ge 0$ f has a zero and is defined at P, so f(P) can be calculated.

Proposition 1. Let C be a smooth curve. If $f \in \bar{k}(C)$ is not the constant function, then f has finitely many poles and zeros.

TEST 3

Proof. FIXME. Prop 1.2 AEC.

Definition 10. The divisor group of a curve C is the free abelian group generated by points of C, denoted Div(C). A divisor $D \in Div(C)$ is of the form

$$D = \sum_{P \in C} n_P(P)$$

with $n_P \in \mathbb{Z}$ and $n_P = 0$ for almost all P.

With this in mind we can define the degree of a divisor as the sum of its coefficients. We also define the sum of a divisor as the sum in the group $E(\bar{k})$, so

$$deg(D) = deg(\sum_{P \in C} n_P(P)) = \sum_{P \in C} n_P \in \mathbb{Z}$$
$$sum(D) = sum(\sum_{P \in C} n_P(P)) = \sum_{P \in C} n_P P \in E(\bar{k})$$

These functions enable us to define the subgroup of divisors of degree zero, $Div^0(C) \subset Div(C)$, so $Div^0(C) = \{D \in Div(C) : deg(D) = 0\}$.

Now let C be a smooth curve and $f \in \overline{k}(C)$ a non-zero function. Since f has finitely many poles and zeros (Prop. 1) we can define the divisor of a function as

$$div(f) = \sum_{P \in C} ord_P(f)(P)$$

Note that ord_P is a valution we have $ord_P(fg) = ord_P(f) + ord_P(g)$ for non-zero $f, g \in \bar{k}(C)$. Thus we get a group homomorphism

$$div: \bar{k}(C)^* \to Div(C)$$

Definition 11. The principal divisors of C are the divisors of the form D = div(f) for some non-zero $f \in \bar{k}(C)$. This is exactly the image of the function div and we denote this set by Prin(C). Note that since divisors of rational functions have the same number of poles and zeros (when counted correctly), we have deg(div(f)) = 0. $[EGET\ TEOREM?]$

Two divisors are said to be equivalent denoted $D_1 \sim D_2$ if their difference is a principal divisor, $D_1 - D_2 = div(f)$ for some f. In addition we can put a partial ordering on Div(C), saying that a divisor D is positive $\sum n_P(P) = D \ge 0$ if $n_P \ge 0$ for every $P \in C$. Furthermore we write $D_1 \ge D_2$ to indicate that $D_1 - D_2$ is positive.

Theorem 1.

$$sum: Pic^0(C) \to E(\bar{k})$$

is a group isomorphism

2. Frobnius and finite fields

Throughout this section our fields k will be finite, so let char(k) = p for a prime p. This means that $k = \mathbb{F}_q$ for some $q = p^r$.

Definition 12. The frobenius endomorphism is the q^{th} -power map

$$\phi: k \to k$$
$$x \mapsto x^q$$

which induces a map on curves as follows

$$\phi: E(k) \to E(k)$$
$$(x_0, \dots, x_n) \mapsto (x_0^q, \dots, x_n^q)$$

Proposition 2. The degree map

$$deg: Hom(E_1, E_2) \to \mathbb{Z}$$

is a positive quadratic form.

Proof. Clearly deg(f) = deg(-f). The only thing that takes a proof is the bilinearity of the pairing

$$End(E_1, E_2) \times End(E_1, E_2) \rightarrow \mathbb{Z}$$

 $(\phi, \psi) \mapsto deg(\phi + \psi) - deg(\phi) - deg(\psi)$

For this proof we will make extentive use of the dual isogeny, but first notice that we have an injection of multiplication by n maps:

$$[]: \mathbb{Z} \to End(E_1)$$

A calculation then yields

$$[<\phi,\psi>] = [deg(\phi+\psi)] - [deg(\phi)] - [deg(\psi)]$$

$$= (\phi + \psi)(\phi + \psi) - \hat{\phi}\phi - \hat{\psi}\psi$$

$$= \hat{\phi}\psi + \hat{\psi}\phi$$

The pairing is then shown to be linear in the first varible, the second variable is similar.

$$[<\phi_1 + \phi_2, \psi >] = \hat{\psi}(\phi_1 + \phi_2) + (\phi_1 + \phi_2)\psi$$

$$= (\hat{\psi}\phi_1 + \hat{\phi_1}\psi) + (\hat{\psi}\phi_2 + \hat{\phi_2}\psi)$$

$$= [<\phi_1, \psi >] + [<\phi_2, \psi >]$$

Theorem 2. Let ϕ be the q^{th} frobenius map. Then the map $1 - \phi$ is separable, and $\#ker(1 - \phi) = deg(1 - \phi)$.

Proof. Proofs by the means of galois theory are given in [silverman-reference], more elementary proofs are available in [lawrence-ref]. \Box

Lemma 1. (Cauchy-Schwartz inequality). Let A be an abelian group and

$$d:A\to\mathbb{Z}$$

a positive definite quadratic form. Then for all $\psi, \phi \in A$ the following holds

$$|d(\psi - \phi) - d(\phi) - d(\psi)| \le 2\sqrt{d(\phi)d(\psi)}$$