# Løsningsforslag + Teori Øving 4 $\label{eq:simen}$ Simen Hustad

October 3, 2021



Figure 1: Dank meme

**a**)

Kjerneregelen for to variabler x og y er gitt ved:

$$\tau'(t) = T_x(\vec{r}(t))x'(t) + T_y(\vec{r}(t))y'(t)$$
 (1)

Skrevet litt mer forståelig:

$$z'(t) = f_x(x, y) * x'(t) + f_y(x, y) * y'(t)$$

$$f_x = \frac{\delta f}{\delta x}$$
  $x'(t) = \frac{\delta x}{\delta t}$   $f_y = \frac{\delta f}{\delta y}$   $y'(t) = \frac{\delta y}{\delta t}$ 

For å løse oppgaven må dere regne ut  $f_x(x, y)$  og  $f_y(x, y)$ . Deretter setter dere inn i uttrykket for z'(t) over.

b)

Sammenhenger mellom kartesiske og sylinderkoordinater:

$$x = rcos(\theta)$$
$$y = rsin(\theta)$$
$$z = z$$

Vi kan dermed betrakte x og y som funksjoner av r og  $\theta$ . Da kan vi gjøre følgende:

$$\frac{\delta z}{\delta x} = \frac{\delta z}{\delta x(r,\theta)} \qquad \qquad \frac{\delta z}{\delta y} = \frac{\delta z}{\delta y(r,\theta)}$$
$$x'(\theta) = -r * \sin(\theta) \qquad \qquad y'(\theta) = r * \cos(\theta)$$
$$x'(r) = \cos(\theta) \qquad \qquad y'(r) = \sin(\theta)$$

Finner da bidraget til r og  $\theta$  fra både x og y ved bruk av kjerneregelen:

$$z = g(r, \theta)$$

$$z'(\theta) = g_x(r, \theta) * x'(\theta) + g_y(r, \theta) * y'(\theta)$$

$$z'(r) = g_x(r, \theta) * x'(r) + g_y(r, \theta) * y'(r)$$

Spesifikt for oppgaven sin del:

$$\frac{\delta z}{\delta \theta} = \frac{\delta z}{\delta x} * x'(\theta) + \frac{\delta z}{\delta y} * y'(\theta)$$

$$\frac{\delta z}{\delta \theta} = \frac{\delta z}{\delta x} * (-r * sin(\theta)) + \frac{\delta z}{\delta y} * (r * cos(\theta))$$

$$\frac{\delta z}{\delta r} = \frac{\delta z}{\delta x} * x'(r) + \frac{\delta z}{\delta y} * y'(r)$$

$$\frac{\delta z}{\delta r} = \frac{\delta z}{\delta x} * (cos(\theta)) + \frac{\delta z}{\delta y} * (sin(\theta))$$

**a**)

En vektor er gitt ved  $\vec{v} = (v_x, v_y)$ . For å finne tilsvarende enhetsvektor:

$$\vec{v} = \frac{(v_x, v_y)}{|(v_x, v_y)|}$$

$$\vec{v} = \frac{(v_x, v_y)}{\sqrt{v_x^2 + v_y^2}}$$
(2)

Tolkningen av det som skjer over er at man endrer koordinatene i vektoren slik at *lengden* av vektoren blir 1. Retningen (vinkelen) til vektoren forblir uendret.

Stigningstallet til grafen f i punktet  $\vec{p}$  som peker i retning  $\vec{v}$  er gitt ved skalarproduktet:

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v} = |\nabla f(\vec{p})||\vec{v}|cos(\theta)$$
 (3)

Den høyeste stigningen til grafen f i et punkt  $\vec{p}$  er gitt når retningen  $\vec{v}$  peker samme retning som gradienten  $\nabla f(\vec{p})$  (fordi da er  $\cos(\theta)$  lik 1). I tillegg vet vi at  $\vec{v}$  er en enhetsvektor med lengde 1:

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v} = |\nabla f(\vec{p})|$$

For at dette stykket skal gå opp må (dette har med skalaprodukt å gjøre):

$$\vec{v} = \frac{\nabla f(\vec{p})}{|\nabla f(\vec{p})|} \tag{4}$$

For å løse oppgaven kan vi da bruke oppgitt stigningsverdier til punktet. For enkelhetsskyld kaller vi stigning i x for  $v_x$ , og stigning i y for  $v_y$ :

$$\nabla f(\vec{p}) = (v_x, v_y)$$

$$\vec{v} = \frac{\nabla f(\vec{p})}{|\nabla f(\vec{p})|}$$

$$\vec{v} = \frac{(v_x, v_y)}{|(v_x, v_y)|}$$

**b**)

Den minste stigningen til grafen f er i motsatt retning av den maksimale retningen, gitt ved:

$$D_{\vec{v}}f(\vec{p}) = -\nabla f(\vec{p}) * \vec{v} = -|\nabla f(\vec{p})|$$

Dermed blir:

$$\vec{v}_{min} = -\vec{v}_{max} = -\frac{(v_x, v_y)}{|(v_x, v_y)|}$$

**c**)

Sørøst retning tilsvarer å bevege seg østover (x-retning) og sørover (-y-retning):

$$\vec{v} = \frac{(1,-1)}{|(1,-1)|} = \frac{1}{\sqrt{2}}(1,-1)$$

Nordvest retning tilsvarer å bevege seg vestover (-xretning) og nordover (y-retning):

$$\vec{v} = \frac{(-1,1)}{|(-1,1)|} = \frac{1}{\sqrt{2}}(-1,1)$$

Finner da stigningstallet til f gitt retning  $\vec{v}$  i punktet  $\vec{p}$ . Bruker som tidligere at stigning i x er  $v_x$ , og stigning i y er  $v_y$ :

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v}$$
  
$$D_{\vec{v}}f(\vec{p}) = (v_x, v_y) * \vec{v}$$

Da er det bare å bytte ut  $\vec{v}$  med ønsket retning og regne ut skalarproduktet. Skalarprodukt regnes slik på generell form:

$$\vec{x} * \vec{y} = [x_1, y_1, z_1] * [x_2, y_2, z_2]$$
  
 $\vec{x} * \vec{y} = x_1 x_2 + y_1 y_2 + z_1 z_2$ 

d)

Et generelt plan kan beskrives ved bruk av skalarproduktet mellom normalvektoren til planet og en linje på planet. Likningen til planet er på formen:

$$\vec{n}=[a,b,c]$$
 Normalvektor 
$$\vec{x}=[x,y,z]$$
 Punkt på planet 
$$\vec{x}-\vec{p}=[x-x_0,y-y_0,z-z_0]$$
 Linje på planet 
$$\vec{n}*(\vec{x}-\vec{p})=0$$
 Skalarprodukt 
$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$
 Likning

Ettersom gradienten til en flate eller kurve beskriver normalvektoren:

$$\vec{n} * (\vec{x} - \vec{p}) = 0$$

$$\nabla f(\vec{p}) * (\vec{x} - \vec{p}) = 0$$
(5)

I oppgaven jobber vi med en funksjon av to variabler, mens et plan krever tre variabler. Bruker fortsatt stigning i x som  $v_x$  og stigning i y som  $v_y$ . En litt cheeky operasjon:

$$z = h(x, y)$$

$$g(x, y, z) = z - h(x, y) = 0$$

$$\nabla g(x, y, z) = \left(\frac{\delta g}{\delta x}, \frac{\delta g}{\delta y}, \frac{\delta g}{\delta z}\right)$$

$$\nabla g(x, y, z) = (-h_x(x, y), -h_y(x, y), 1)$$

$$\nabla g(x, y, z) = (-\nabla h(x, y), 1)$$

$$\nabla g(x, y, z) = (-v_x, -v_y, 1)$$
(6)

Normalvektoren til tangentplanet blir dermed:

$$\vec{n} = \nabla g(a, b, c)$$
$$\nabla g(a, b, c) = (-v_x, v_y, 1)$$

Finner da likning for tangentplanet:

$$\vec{n} * (\vec{x} - \vec{p}) = 0$$

$$\nabla g * (\vec{x} - \vec{p}) = (-v_x, -v_y, 1) * ((x, y, z) - (x_0, y_0, z_0)) = 0$$

$$-v_x x - v_y y + z = -v_x x_0 - v_y y_0 + z_0$$

Merk: Alle verdier på høyre siden er konstante.

**e**)

For å finne likningen til tangentlinjen i punktet  $\vec{p}$  gjør vi nesten det samme som for planet, men enklere og i to dimensjoner. Husk at:

$$\nabla h(x,y) = (v_x, v_y)$$
 Normalvektor 
$$\vec{x} - \vec{p} = (x - x_0, y - y_0)$$
 Tangentlinje 
$$\vec{n} * (\vec{x} - \vec{p}) = 0$$
 Skalaprodukt

Grunnen til det ikke blir noe g(x, y, z) = z - h(x, y) hibi jibis er fordi vi leter etter en tangentlinje (en linje kan beskrives med to koordinater) og vi har allerede gradienten til både x og y.

$$\vec{n} * (\vec{x} - \vec{p}) = 0$$

$$\nabla h(x, y) * (\vec{x} - \vec{p}) = 0$$

$$(v_x, v_y) * ((x, y) - (x_0, y_0)) = 0$$

$$v_x x + v_y y = v_x x_0 + v_y y_0$$

f)

Stigningstallet til f i retning  $\vec{v}$  fra punktet  $\vec{p}$  er gitt ved skalarproduktet:

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v} = |\nabla f(\vec{p})||\vec{v}|cos(\theta)$$

Når vi ser på tangentlinjen til f i punktet  $\vec{p}$  vet vi fra forrige oppgave at  $\nabla f(\vec{p})$  er normalvektoren til tangentlinjen, og dermed også gradienten til denne tangentlinjen. Dette betyr at  $\nabla f(\vec{p})$  står 90° på retningen tangentlinjen beveger seg i, slik at:

$$D_{\vec{v}}f(\vec{p}) = |\nabla f(\vec{p})||\vec{v}|cos(90^\circ)$$
$$D_{\vec{v}}f(\vec{p}) = 0$$

Intuitivt kan du tenke deg at tangentlinjen er en nivåkurve til funksjonen, og høyden til nivåkurven er konstant langs hele kurven. Derfor har kurven ingen stigning langs tangentlinjen.

**a**)

Første del av oppgaven er relativt rett frem. De fire oppgitte punktene er som følger:

$$T(x_0, y_0, z_0) = \text{Utgangspunkt}$$
 (pun intended)  
 $T(x_1, y_0, z_0) = \text{Endring i x}$   
 $T(x_0, y_1, z_0) = \text{Endring i y}$   
 $T(x_0, y_0, z_1) = \text{Endring i z}$ 

Her finner man de første verdiene av å sette inn i lineariseringen:

$$\frac{\delta T}{\delta x} = \frac{T(x + \Delta x, y, z) - T(x, y, z)}{\Delta x}$$

Merk: Formelen over er definisjonen av den deriverte, men ettersom endringen,  $\Delta x$ , ikke går mot null er dette i praksis en linearisering.

b)

Vi husker fra tidligere at stigningen til grafen er det samme som gradienten til grafen (det nevnes også i oppgaven). Formelen for stigning til grafen f i retning  $\vec{v}$  fra punktet  $\vec{p}$  er slik (også beskrevet i formel 3):

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v} = |\nabla f(\vec{p})||\vec{v}|cos(\theta)$$

Når vi ser på den maksimale stigningen, vil  $\vec{v}$  gå i samme retning som gradienten  $\nabla f$  til funksjonen f og vi får følgende sammenheng (utledet i formel 4):

$$\vec{v} = \frac{\nabla f(\vec{p})}{|\nabla f(\vec{p})|}$$

Her er retningen  $\vec{v}$  den retningen som gir maksimal stigning til grafen f i punktet  $\vec{p}$ . Merk at denne retningsvektoren er også en enhetsvektor.

I oppgave a) fant vi en tilnærming til gradienten  $\nabla T$ . For å finne enhetsvektoren kan vi bare dele hver koordinat til gradienten på lengden av gradienten, som beskrevet i formelen overfor. Vi får da:

$$\vec{v}_{max} = \frac{\nabla T}{|\nabla T|}$$

$$\vec{v}_{max} = \frac{\left(\frac{\delta T}{\delta x}, \frac{\delta T}{\delta y}, \frac{\delta T}{\delta z}\right)}{|\nabla T|}$$

**c**)

For å finne stigningstallet  $D_{\vec{v}}$  til grafen f når vi beveger oss i retning  $\vec{v}$  fra punktet  $\vec{p}$  kan vi bruke skalarproduktet fra formel 3:

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v} = |\nabla f(\vec{p})||\vec{v}|cos(\theta)$$

Vi får da:

$$D_{\vec{v}}f(\vec{p}) = [x, y, z] * [x_1, y_1, z_1]$$
  
$$D_{\vec{v}}f(\vec{p}) = xx_1 + yy_1 + zz_1$$

HUSK:  $\vec{v}$  er en enhetsvektor. Pass på å omgjøre den oppgitte vektoren til en enhetsvektor som beskrevet i formel 2.

d)

Linearisering brukes gjerne når vi ikke vet eksplisitte uttrykk, (for eksempel f(x,y) = 2x+y), men vi vet verdier og sammenhenger (som for eksempel at f(1,2) = 10 mens f(2,1) = 20). Linearisering kan være et kraftig verktøy for å analysere en funksjon f med tilnærmede verdier rundt et arbeidspunkt  $\vec{p}$ .

Den generelle fremstillingen for linearisering til en funksjon med flere variabler skrives slik:

$$w = f(\vec{x})$$

$$w \approx f(\vec{p}) + \nabla f(\vec{p}) * (\vec{x} - \vec{p})$$
(7)

Forklaring:

| $ec{p}$             | Arbeidspunkt                         |
|---------------------|--------------------------------------|
| $\vec{x}$           | Generelt punkt (x, y, z)             |
| $f(\vec{p})$        | Verdi til $f$ i punktet $\vec{p}$    |
| $\nabla f(\vec{p})$ | Gradienten til $f$ i punkt $\vec{p}$ |
| *                   | Skalarprodukt                        |

Ved å sette inn kjente verdier i formel 7 får vi en likning på formen:

$$w \approx ax + by + cz + C$$

**a**)

Stigning til grafen er det samme som gradienten til grafen. Retningen som gir maksimal stigning (formel 4) er beskrevet slik:

$$\vec{v} = \frac{\nabla f(\vec{p})}{|\nabla f(\vec{p})|}$$

Gradienten til en funksjon f i punktet  $\vec{p}$  med variabler  $x_1, x_2...x_n$  finner man slik:

$$\nabla f(\vec{p}) = \left(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2} \dots \frac{\delta f}{\delta x_n}\right) \tag{8}$$

Skrevet på en mer kjent måte:

$$\nabla f(\vec{p}) = (\frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}, \frac{\delta f}{\delta z})$$
$$\nabla f(\vec{p}) = (f_x(\vec{p}), f_y(\vec{p}), f_z(\vec{p}))$$

HUSK:  $\vec{v}$  er en enhetsvektor med koordinater (x, y, z) og  $\nabla f$  er en vektor med samme dimensjon som  $\vec{v}$ , altså (x, y, z) (kan vær andre dimensjoner, men ikke tenkt på det akkurat nå).

**b**)

Stigningstallet  $D_{\vec{v}}$  til grafen f i retning  $\vec{v}$  fra punktet  $\vec{p}$  er beskrevet slik (formel 3):

$$D_{\vec{v}}f(\vec{p}) = \nabla f(\vec{p}) * \vec{v} = |\nabla f(\vec{p})||\vec{v}|cos(\theta)$$

Siden vi ser på maksimal stigning blir vinkelen  $\theta = 0$ .  $|\vec{v}| = 0$  ettersom  $\vec{v}$  er en enhetsvektor. Vi får da:

$$D_{\vec{v}}f(\vec{p}) = |\nabla f(\vec{p})|$$

**c**)

En tangentflate kan beskrives ved hjelp av normalvektoren  $\vec{n}$  og en linje på planet  $\vec{x} - \vec{p}$  gjennom punktet  $\vec{p}$ . Vi vet fra formel 5 at normalvektoren til tangentplanet i punktet  $\vec{p}$  er gradienten  $\nabla f$  til funksjonen f i punktet  $\vec{p}$ :

$$\nabla f(\vec{p}) * (\vec{x} - \vec{p}) = 0$$

$$\vec{x} = (x, y, z)$$

$$(9)$$

Oppgaven prøver å forvirre ved å si at  $T(x, y, z) = T(x_0, y_0, z_0)$ . I praksis blir dette som å følge formel 9 uten å tenke mer over utsagnet. Her er uansett en forklaring hvorfor:

$$T(x,y,z) = T(x_0,y_0,z_0)$$
 Likning for plan  $T(\vec{p}) - T(\vec{p_0}) = 0$  Skrevet om  $T(\vec{p}) - T(\vec{p_0}) = 0 = g(\vec{p})$  Definerer en ny funksjon  $g(\vec{p})$ 

Tar i bruk det generelle uttrykket for gradient (formel 8):

$$\nabla g(\vec{p}) = (\frac{\delta g}{\delta x}(\vec{p}), \frac{\delta g}{\delta y}(\vec{p}), \frac{\delta g}{\delta z}(\vec{p}))$$
$$\nabla g(\vec{p}) = \nabla T(\vec{p})$$

Gradienten  $\nabla g(\vec{p})$  til funksjonen  $g(\vec{p})$  er den samme som gradienten  $T(\vec{p})$ , ettersom  $T(\vec{p}_0)$  er en konstant og blir lik 0 når vi deriverer. Tolkningen av denne konklusjonen er at hvis vi spenner ut et plan fra punktet  $T(\vec{p}_0)$  i retning  $T(\vec{p})$  vil normalvektoren til planet  $\vec{n} = \nabla g(\vec{p})$  forbli den samme som normalvektoren til punktet  $T(\vec{p})$ .

Alle deler av denne oppgaven kan løses ved å bare gjennomføre det oppgaven sier :).

For å finne Jacobimatrisen til en invertert funksjon, kan vi invertere Jacobimatrisen. Da bruker vi generell matriseinvertering. Vi ser kun på 2x2 matriser:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{detA} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

**a**)

Vi ønsker å finne Jacobimatrisen til transformasjonen:

$$(h \circ f)(x,y) = \begin{bmatrix} s(u(x,y)) & s(v(x,y)) \\ t(u(x,y)) & t(v(x,y)) \end{bmatrix}$$

Jacobimatrisen til transformasjonen finner vi ved bruk av kjerneregelen:

$$D((h \circ f)(x, y)) = D(h \circ f)(x, y) * Df(x, y)$$

For oppgaven sin del har vi allerede fått oppgitt både Df(x,y) og  $D(h \circ f)(x,y)$ . Den første matrisen Df(x,y) er relativt åpenbar å se i oppgaveteksten (det er den første matrisen med tall :) ). Den andre matrisen er Jacobimatrisen til h som en funksjon av f som en funksjon av f som en funksjon av f op f. Den andre matrisen med tall i oppgaven er

nemlig denne matrisen. Da er det bare å gjennomføre matrisemultiplikasjonen. Her er de generelle reglene for matrisemultiplikasjon i to dimensjoner:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$B = \begin{bmatrix} k & j \\ m & n \end{bmatrix}$$

$$A * B \neq B * A$$

$$A * B = \begin{bmatrix} a * k + b * m & a * j + b * n \\ c * k + d * m & c * j + d * n \end{bmatrix}$$

$$AB = \begin{bmatrix} ak + bm & aj + bn \\ ck + dm & cj + dn \end{bmatrix}$$

Implisitt derivasjon er når vi deriverer et uttrykk med en variabel som ikke nødvendigvis tilhører uttrykket. Det er vanlig å se implisitt derivasjon i sammenhenger hvor vi ønsker å derivere med hensyn på tiden t. I dette tilfelle ønsker vi å derivere med hensyn på z.

Ettersom derivasjon er en lineær operasjon, kan vi gjennomføre implisitt derivasjon på ett ledd om gangen. En vanlig fallgruve ved implisitt derivasjon er å glemme kjerneregelen: altså å gange uttrykket med den deriverte av kjernen.

Implisitt derivasjon er best forståelig ved bruk av eksempel.

HUSK:  $z'(x) = \frac{dz}{dx}$ . De er like, og kan brukes om hverandre.

#### Eksempel 1

Vi har en funksjon f(x,y) = g(x) + h(y) hvor g(x) og h(y) er vilkårlige funksjoner som er avhengig av x og y.

$$f(x,y) = g(x) + h(y)$$

Hvis vi skal derivere uttrykket med hensyn på en variabel t kan vi bruke implisitt derivasjon. Vi må da huske kjerneregelen!

$$\frac{df}{dt} = \frac{dg}{dt} * x'(t) + \frac{dh}{dt} * y'(t)$$

Eventuelt kunne vi derivert uttrykket med hensyn på y:

$$\frac{df}{dy} = \frac{dg}{dy} * x'(y) + \frac{dh}{dy} * y'(y)$$
$$\frac{df}{dy} = \frac{dg}{dy} * x'(y) + \frac{dh}{dy}$$

Ettersom y'(y) = 1, samme som vanlig derivasjon, blir uttrykket litt annerledes. Fremgangsmåten er lik.

#### Eksempel 2

Vi har uttrykket z + x + y = 0. Dette uttrykket kan løses z = g(x, y) = -x - y, slik at vi da antar z som en funksjon av x og y. Da kan vi derivere z med hensyn på x og y respektivt:

$$\frac{d(z)}{dx} + \frac{d(x)}{dx} + \frac{d(y)}{dx} = \frac{d(0)}{dx}$$
$$\frac{dz}{dx} + 1 + 0 = 0$$
$$z'(x) + 1 = 0$$

Siden vi vet hva z er kan vi også sette inn for z'(x):

$$z'(x) = -x'(x) - y'(x) = -1 - 0 = -1$$

Vi ser att dette stemmer ettersom:

$$z'(x) + 1 = 0$$
  
-1 + 1 = 0

Når du kan implisitt derivasjon er oppgavene litt mer rett frem. Deriver uttrykkene med hensyn på x, hvor z = z(x, y) er avhengig av x og y (altså ikke en konstant når du deriverer). Deretter løser du uttrykket du får med hensyn på  $\frac{dz}{dx}$ . Gjenta det samme for y. Kan vise med min egen oppgave som eksempel:

#### Eksempel 3

$$z^{4} + y^{4} + x^{3} - 18x^{2} + 108x - 216 = 0$$

$$\frac{d(z^{4})}{dx} + \frac{d(y^{4})}{dx} + \frac{d(x^{3})}{dx} + \frac{d(-18x^{2})}{dx} + \frac{d(108x)}{dx} + \frac{d(-216)}{dx} = \frac{d(0)}{dx}$$

$$4z^{3} * z'(x) + 0 + 3x^{2} * x'(x) - 36x * x'(x) + 108 + 0 = 0$$

$$4z^{3} * \frac{dz}{dx} + 3x^{2} - 36x + 108 = 0$$

$$4z^{3} * \frac{dz}{dx} = 36x - 3x^{2} - 108$$

$$\frac{dz}{dx} = \frac{36x - 3x^{2} - 108}{4z^{3}}$$