Содержание

Ι	Or	пределения	11
1	Пер	овообразная, неопределенный интеграл	12
	1.1	Первообразная	12
	1.2	Неопределенный интеграл	12
2	Teo	рема о существовании первообразной	13
3	Таб	лица первообразных	14
4	Рав	номерная непрерывность	15
5	Пло	ощадь, аддитивность площади, ослабленная аддитивность	16
	5.1	Первое определение площади	16
	5.2	Второе определение площади	16
	5.3	Площадь как сумма прямоугольников	17
6	Пол	пожительная и отрицательная срезки	18
	6.1	Определение	18
	6.2	Некоторые свойства	18
	6.3	Подграфик	18
7	Опр	ределённый интеграл	19
	7.1	Определение	19
	7.2	Замечание	19

8	Среднее значение функции на промежутке	20
9	Кусочно-непрерывная функция	21
10	Почти первообразная	22
11	Дробление отрезка, ранг дробления, оснащение	2 3
12	Риманова сумма	2 4
13	Постоянная Эйлера	2 5
14	Функция промежутка. Аддитивная функция промежутка	26
15	Плотность аддитивной функции промежутка	27
16	Гладкий путь, вектор скорости, носитель пути	28
	16.1 Гладкий путь	28
	16.2 Вектор скорости	28
	16.3 Носитель пути	28
17	Длина гладкого пути	29
18	Φ ормулы для длины пути: в $\mathbb{R}^m,$ в полярных координатах, длина графика	30
	18.1 Длина пути в \mathbb{R}^m	30
	18.2 Длина графика	30
	18.3 Длина кривой в полярных координатах	30
19	Вариация функции на промежутке	31
20	Частичный предел	32

21	Верхний и нижний пределы	33
	21.1 Верхняя и нижняя огибающая	33
	21.2 Верхний и нижний пределы	33
II	Теоремы	34
22	Теорема Кантора о равномерной непрерывности	35
	22.1 Формулировка	35
	22.2 Доказательство (от противного)	35
23	Теорема Брауэра о неподвижной точке	36
	23.1 Формулировка	36
	23.2 Доказательство	36
	23.2.1 Игра "Текс"	36
	23.2.2 Сама теорема	37
	23.2.3 Доказательство	37
	23.2.4 Теперь к самой теореме	38
	23.2.5 Доска	38
24	Теорема о свойствах неопределенного интеграла	40
25	Интегрирование неравенств. Теорема о среднем	41
	25.1 Интегрирование неравенств	41
	25.1.1 Формулировка	41
	25.1.2 Доказательство	41
	25.1.3. Спецствия	41

	25.2	Теорема о среднем значении	42
		25.2.1 Формулировка	42
		25.2.2 Доказательство 1 (Кохась порофлил)	42
		25.2.3 Нормальное доказательство	42
26	Teo	рема Барроу	43
	26.1	Определение	43
	26.2	Теорема (Барроу)	43
	26.3	Доказательство	43
	26.4	Замечания	43
27	Фор	омула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций	44
	27.1	Формулировка теоремы	44
	27.2	Доказательство	44
	27.3	Для кусочно-непрерывных функций	44
28	Сво	йства определенного интеграла: линейность, интегрирование по частям, замена пе-	
	рем	енных	45
	28.1	Линейность определенного интеграла	45
		28.1.1 Формулировка	45
		28.1.2 Доказательство	45
	28.2	Интегрирование по частям	45
		28.2.1 Формулировка	45
		28.2.2 доказательство	45
	28.3	Замена переменных	46

		28.3.1 Формулировка	46
		28.3.2 Доказательство	46
		28.3.3 Замечание	46
29	Инт	гральное неравенство Чебышева. Неравенство для сумм	47
	29.1	Интегральное неравенство Чебышева	47
		29.1.1 Формулировка	47
		29.1.2 Доказательство	47
	29.2	Неравенство для сумм	47
		29.2.1 Формулировка для сумм	47
		29.2.2 Доказательство	48
30	Ирр	щиональность числа π	49
	30.1	Зспомогательный интеграл	49
	30.2	Георема	
		Георема	50
31	30.3		50
31	30.3 Фор	Доказательство (от противного)	50 50 51
31	30.3 Фор 31.1	Доказательство (от противного)	50 50 51
31	30.3 Фор 31.1 31.2	Доказательство (от противного)	50 50 51 51
	30.3 Фор 31.1 31.2 31.3	Доказательство (от противного)	50 50 51 51
	30.3 Фор 31.1 31.2 31.3	Доказательство (от противного)	50 51 51 51

33	Правило Лопиталя (с леммой)	54
	33.1 Формулировка	54
	33.2 Пример из жизни	54
	33.3 Доказательство	54
	33.4 Собственное доказательство	54
34	Теорема Штольца	56
	34.1 Формулировка	56
	34.2 Доказательство	56
35	Пример неаналитической функции	58
	35.1 Неалитическая функция	58
	35.2 Утверждение	58
	35.3 Доказательство	58
36	Интеграл как предел интегральных сумм	60
	36.1 Формулировка	60
	36.2 Доказательство	60
	36.3 Замечания	60
37	Теорема об интегральных суммах для центральных прямоугольников	62
	37.1 Формулировка	62
	37.2 Доказательство	62
38	Теорема о формуле трапеций, формула Эйлера-Маклорена	63
	38.1 Формулировка теоремы о формуле трапеций	63

	38.2 Доказательство	63
	38.3 Простейший случай формулы Эйлера-Маклорена	63
39	Асимптотика степенных сумм	65
40	Асимптотика частичных сумм гармонического ряда	66
41	Формула Валлиса	67
	41.1 Формулировка	67
	41.2 Доказательство	67
42	Формула Стирлинга	69
	42.1 Формулировка	69
	42.2 Доказательство	69
43	Теорема о вычислении аддитивной функции промежутка по плотности	70
43	Теорема о вычислении аддитивной функции промежутка по плотности 43.1 Формулировка	
43		70
	43.1 Формулировка	70
	43.1 Формулировка	70 70 71
	43.1 Формулировка	70 70 71 71
44	43.1 Формулировка	70 71 71 71
44	43.1 Формулировка 43.2 Доказательство Обобщенная теорема о плотности 44.1 Формулировка 44.2 Доказательство	70 71 71 71
44	43.1 Формулировка	70 71 71 71 71 72
44	43.1 Формулировка 43.2 Доказательство Обобщенная теорема о плотности 44.1 Формулировка 44.2 Доказательство Площадь криволинейного сектора: в полярных координатах и для параметрической кривой	70 71 71 71 71 72

	45.4	Доказательство	72
	45.5	Замечание	73
46	Изо	периметрическое неравенство	7 5
	46.1	Формулировка	75
	46.2	Доказательство	75
47	Выч	нисление длины гладкого пути	7 6
	47.1	Формулировка	76
	47.2	Доказательство	76
48	Объ	ем фигур вращения	7 8
	48.1	Формулировка	78
	48.2	Доказательство	78
49	Нер	авенство Йенсена для сумм	80
	49.1	Формулировка	80
	49.2	Доказательство	80
50	Нер	авенство Йенсена для интегралов	81
	50.1	Формулировка	81
	50.2	Доказательство	81
51	Нер	равенство Коши (для сумм и для интегралов)	82
	51.1	Неравенство для сумм	82
		51.1.1 Формулировка	82
		51.1.2 Доказательство	82

	51.2	Неравенство для интегралов	82
		51.2.1 Формулировка	82
52	Нер	авенство Гёльдера для сумм	84
	52.1	Формулировка	84
	52.2	Доказательство	84
53	Нер	авенство Гёльдера для интегралов	86
	53.1	Формулировка	86
	53.2	Доказательство	86
54	Нер	равенство Минковского	87
	54.1	Формулировка	87
	54.2	Замечания	87
	54.3	Доказательство	87
55	Сво	йства верхнего и нижнего пределов	88
	55.1	Формулировка	88
	55.2	Доказательство	88
56	Tex	ническое описание верхнего предела	90
	56.1	Формулировка	90
	56.2	Доказательство	90
57	Teo	рема о существовании предела в терминах верхнего и нижнего пределов	91
	57.1	Формулировка	91
	57.2	Доказательство	91

58 Теорема о характеризации верхнего предела как частичного				
58.1 Формулировка	92			
58.2 Доказательство	92			

Часть І

Определения

1 Первообразная, неопределенный интеграл

1.1 Первообразная

$$f:\langle a,b\rangle\to\mathbb{R}$$

 $F:\langle a,b
angle
ightarrow\mathbb{R}$ — первообразная f на $\langle a,b
angle$, если для любого $x\in\langle a,b
angle$ F дифференцируема в точке x и F'(x)=f(x).

Пример

$$f(x) = \sin x \iff F(x) = -\cos x + C$$

1.2 Неопределенный интеграл

Неопределенным интегралом функции f на промежутке $\langle a,b \rangle$ называют множество всех её первообразных.

Обозначение:
$$\int f, \int f(x) \ dx = \{F+C, C \in \mathbb{R}\}$$
, где F — любая первообразная.

2 Теорема о существовании первообразной

Пусть f непрерывна на $\langle a,b \rangle$ \Longrightarrow существует такая функция F на $\langle a,b \rangle$, что F'=f.

Доказательство

В кредит

3 Таблица первообразных

$$1. \ f(x) = k, F(x) = kx$$

2.
$$f(x) = x^n, \, F(x) = \frac{x^{n+1}}{n+1}, \,$$
где $n \neq -1$

3.
$$f(x) = \frac{1}{x}$$
, $F(x) = \ln|x|$

4.
$$f(x) = e^x$$
, $F(x) = e^x$

5.
$$f(x) = a^x$$
, $F(x) = \frac{a^x}{\ln a}$

6.
$$f(x) = \sin x, F(x) = -\cos x$$

7.
$$f(x) = \cos x, F(x) = \sin x$$

8.
$$f(x) = \frac{1}{\sin^2 x}$$
, $F(x) = -\operatorname{ctg} x$

9.
$$f(x) = \frac{1}{\cos^2 x}$$
, $F(x) = \operatorname{tg} x$

10.
$$f(x) = \frac{1}{\sqrt{1-x^2}}, F(x) = \arcsin x$$

11.
$$f(x) = \frac{1}{1+x^2}$$
, $F(x) = \arctan x$

12.
$$f(x) = \frac{1}{\sqrt{x^2 + 1}} = \ln(x + \sqrt{x^2 + 1})$$

13.
$$f(x) = \frac{1}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right|$$

4 Равномерная непрерывность

Отображение $f:X\to Y$, где X и Y — метрические пространства, а также $A\subset X$, называется равномерно непрерывным на A, если:

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ \forall x_0, x \in A : \rho(x - x_0) < \delta \Longrightarrow \rho(f(x) - f(x_0)) < \varepsilon$$

5 Площадь, аддитивность площади, ослабленная аддитивность

5.1 Первое определение площади

Пусть E — множество всех ограниченных подмножество в \mathbb{R}^2 (или множество всех фигур).

Тогда площадь — это функция $\sigma:E \to [0,+\infty)$ со свойствами:

1. аддитивность

Если
$$A = A_1 \sqcup A_2$$
, то $\sigma(A) = \sigma(A_1) + \sigma(A_2)$

2. нормировка

$$\sigma(\langle a, b \rangle \times \langle c, d \rangle) = (d - c)(b - a)$$

Замечание

1. Площадь монотонна, то есть:

$$A\subset B\Rightarrow \sigma(A)\leq \sigma(B)$$

$$B = A \cup (B \setminus A)$$

$$\sigma(B) = \sigma(A) + \sigma(B \setminus A) \ge \sigma(A)$$

2. σ (вертикального отрезка) = 0

Отрезок — прямоугольник, ширина которого стремится к 0, значит и площадь также стремится к 0

5.2 Второе определение площади

$$\sigma: E \to [0, +\infty)$$

- монотонна
- нормировка
- ослабленная аддитивность:

$$E=E_1\cup E_2,\, E_1\cap E_2\;$$
 — вертикальный отрезок, E_1 и $E_2\;$ — по разные стороны этого отрезка.

$$\sigma(E) = \sigma(E_1) + \sigma(E_2)$$

5.3 Площадь как сумма прямоугольников

$$\sigma(A)=\inf\Big(\sum\sigma(P_i)\Big)$$
, где $A\subset\bigcup P_i$

6 Положительная и отрицательная срезки

6.1 Определение

Пусть
$$f:\langle a,b\rangle \to \mathbb{R}$$

$$f_{+}(x) = \max(f(x), 0)$$
 — положительная срезка

$$f_{-}(x) = \max(-f(x), 0)$$
 — отрицательная срезка

6.2 Некоторые свойства

- $f = f_{+} f_{-}$
- $f_+ + f_- = |f|$

6.3 Подграфик

Пусть $E \subset \langle a, b \rangle$

$$f(E) \ge 0$$

Тогда $\Pi\Gamma(f,E)$ — подграфик f на E, если:

$$\Pi\Gamma(f, E) = \left\{ (x, y) \in \mathbb{R}^2, x \in E, 0 \le y \le f(x) \right\}$$

7 Определённый интеграл

7.1 Определение

Определённым интегралом функции f по промежутку [a,b] называется: $f:\langle c,d\rangle\to\mathbb{R},\,[a,b]\subset\langle c,d\rangle$

$$\int_{a}^{b} f(x)dx = \sigma(\Pi\Gamma(f_{+}, [a, b])) - \sigma(\Pi\Gamma(f_{-}, [a, b]))$$

7.2 Замечание

1.
$$f \ge 0 \Rightarrow \int_a^b f \ge 0$$

2.
$$f \equiv c \Rightarrow \int_{a}^{b} f = c(b-a)$$

$$c = 0$$
 — очевидно

$$c > 0 \int_{a}^{b} = \sigma(\Pi\Gamma(c, [a, b])) = c(b - a)$$

$$c < 0 \int_{a}^{b} = -\sigma(\Pi\Gamma(f_{-}, [a, b])) = -(-c)(b - a) = c(b - a)$$

$$3. \int_{a}^{b} -f = -\int_{a}^{b} f$$

$$(-f)_+ = f_-$$

$$(-f)_{-} = f_{+}$$

4. Можно считать, что разрешён случай, когда a=b

$$\int_{a}^{a} f = 0$$

8 Среднее значение функции на промежутке

Величина
$$c=\frac{1}{b-a}\int\limits_a^b f(x)dx\;$$
 — среднее значение функции f на промежутке $\langle a,b \rangle$

9 Кусочно-непрерывная функция

Если функция f всюду непрерывна на промежутке [a,b] кроме конечного числа точек, при этом все точки разрыва I рода, то такую функцию называют кусочно-непрерывной.

10 Почти первообразная

Пусть f — кусочно-непрерывная функция на [a,b]. Тогда $F:[a,b] \to \mathbb{R}$ — почти первообразная, если существует такое F'(x), что F'(x)=f(x) для всех x кроме конечного числа точек и F(x) непрерывна на [a,b]

11 Дробление отрезка, ранг дробления, оснащение

Пусть задан невырожденный отрезок [a,b] $\mathcal{Д} p o бление \ ompes ka \ - \ \text{набор таких точек} \ x_0, \ x_1, \ \ldots, \ x_n, \ \text{что} \ a = x_0 < x_1 < x_2 < \ldots < x_n = b$ $O c h a we hue \ - \ \text{набор точек} \ \xi_1, \ \xi_2, \ \ldots, \ \xi_n, \ \text{что} \ \forall k \ \xi_k \in [x_{k-1}, x_k]$ $P a h e \ \partial p o бления \ - \ \text{величина, равная} \ \max_{k=1,\ldots,n} (x_k - x_{k-1})$

12 Риманова сумма

Пусть $f:[a,b] \to \mathbb{R},$ а также задано дробление и оснащение. Тогда $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1})$ — Риманова сумма

Если ранг дробления стремится к 0, то $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1}) \to \int\limits_a^b f(x) \ dx$. Это историческое определение интеграла

13 Постоянная Эйлера

Постоянная Эйлера — математическая константа γ , определяемая следующим образом:

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$$

14 Функция промежутка. Аддитивная функция промежутка

Пусть у нас задано $\langle a,b \rangle$. Тогда

Segm
$$\langle a, b \rangle := \{ [p, q] \subset \langle a, b \rangle \}$$

Тогда:

- 1. $\phi: \mathrm{Segm} \ \langle a,b \rangle \to \mathbb{R} \ -$ функция промежутка
- 2. $\phi: \mathrm{Segm}\ \langle a,b \rangle \to \mathbb{R},$ а также если

$$\forall [p,q] \subset \langle a,b\rangle \ \forall c \in (p,q) \Rightarrow \phi([p,q]) = \phi([p,c]) + \phi([c,q]) \ - \ \text{аддитивная функция промежутка}$$

15 Плотность аддитивной функции промежутка

Пусть $f:\langle a,b\rangle \to \mathbb{R}$ $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}$ — аддитивная функция промежутка $f = \mathrm{плотность}\ \phi,\ \mathrm{если}\ \forall \Delta \in \mathrm{Segm}\ \langle a,b\rangle \Rightarrow \inf_{x\in \Delta} f(x)\cdot l(\Delta) \leq \phi(\Delta) \leq \sup_{x\in \Delta} f(x)\cdot l(\Delta),$ где $l(\Delta)$ — длина промежутка.

16 Гладкий путь, вектор скорости, носитель пути

Путь — непрерывное отображение $\gamma:[a,b] \to \mathbb{R}^m$

- $\gamma(a)$ начало пути
- $\gamma(b)$ конец пути

16.1 Гладкий путь

$$\gamma^{(t)} = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$$

 γ_i — координатная функция пути γ

Путь $\gamma^{(t)}$ называют гладким, если все $\gamma_i \in C^1[a,b]$

16.2 Вектор скорости

$$\gamma(t_0) := \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}$$

Покоординатно: $\frac{\gamma_i(t) - \gamma_i(t_0)}{t - t_0} o \gamma_i'(t)$

$$\gamma'(t_0) = (\gamma_1'(t_0), \ \gamma_2'(t_0), \ \dots, \ \gamma_n'(t_0))$$

16.3 Носитель пути

Носитель пути — множество всех значений $\gamma([a,b])\subset \mathbb{R}^m$

17 Длина гладкого пути

Длина гладкого путь — функция l, заданная на множестве гладких путей и удовлетворяющая свойствам:

- 1. $l \ge 0$
- $2. \ l$ аддитивна:

$$\forall [a,b]$$

$$\forall \gamma [a,b]$$

$$\forall c \in [a, b]$$

$$l(\gamma) = l\left(\gamma \bigg|_{[a,c]}\right) + l\left(\gamma \bigg|_{[c,b]}\right)$$

3. $\forall \gamma, \overline{\gamma} \ -$ гладкие пути, $C_{\gamma}, C_{\overline{\gamma}} \ -$ их носители в \mathbb{R}^m

Если существует такое $T:C_{\gamma} \to C_{\overline{\gamma}}$ — сжатие, т.е.:

$$\forall M_1, M_2 \in C_{\gamma}$$

$$\rho\left(T\left(M_{1}\right),T\left(M_{2}\right)\right) \leq \rho\left(M_{1},M_{2}\right)$$

TO
$$l(\overline{\gamma}) \leq l(\gamma)$$

4. γ — линейный путь $(\gamma(t) = t\overline{v} + \overline{u})$

$$l(\gamma) = \rho(\gamma(a), \gamma(b))$$

Замечание

- 1. Длина хорды меньше длины дуги (это отображение сжатие)
- 2. При растяжении длины путей растут

Всякое сжатие является непрерывным, но для растяжений — не верно!!!

3. При движении \mathbb{R}^m длина пути не меняется (это сжатие и растяжение одновременно)

18 Формулы для длины пути: в \mathbb{R}^m , в полярных координатах, длина графика

18.1 Длина пути в \mathbb{R}^m

Пусть
$$\gamma:[a,b]\to\mathbb{R}^m,\,\gamma\in C^1$$

Утверждение:
$$l(\gamma) = \int\limits_a^b \|\gamma'(t)\| dt$$

18.2 Длина графика

Параметризация:

$$\gamma:[a,b]\to\mathbb{R}^2$$

$$t\mapsto (t,f(t))\ (f\in C^1)\ -$$
 гладкий путь

$$\gamma' = (1, f'(t))$$

$$\|\gamma'\| = \sqrt{1^2 + (f'(t))^2}$$

$$l(f) = \int^b \sqrt{1 + (f'(t))} dt$$

18.3 Длина кривой в полярных координатах

$$r=r(\varphi)$$

$$\gamma: [\varphi_0, \varphi_1] \to \mathbb{R}^2$$

$$\gamma(\varphi) = (r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)$$

$$\gamma' = (r'\cos\varphi - r\sin\varphi, r'\sin\varphi + r\cos\varphi)$$

$$\|\gamma'\|^2 = (r')^2 + r^2$$

$$l(\gamma) = \int_{\varphi_0}^{\varphi_1} \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi$$

19 Вариация функции на промежутке

Пусть
$$f:[a,b] \to \mathbb{R}$$
 — это «путь»

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$

Тогда вариация f на [a,b]

$$\operatorname{Var}_{a}^{b} f = \sup \sum_{i=1}^{n} (|f(x_{i}) - f(x_{i-1})|)$$

При этом
$$f\in C^{1}\left([a,b]\right)$$
и $\mathrm{Var}_{a}^{b}f=\int\limits_{a}^{b}|f'(t)|dt$

20 Частичный предел

a — частичный предел x_n $(a \in \overline{\mathbb{R}})$, если

$$\exists n_k: x_{n_k} \to a$$

 Π ример

- 1. $x_n = (-1)^n$, 1 частничный предел
- 2. $x_n = \sin n, \, \forall a \in [-1,1]$ частничный предел

21 Верхний и нижний пределы

21.1 Верхняя и нижняя огибающая

Пусть x_n — вещественная последовательность.

$$y_n = \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$$
 — верхняя огибающая

$$z_n = \inf(x_n, x_{n+1}, x_{n+2}, \ldots)$$
 — нижняя огибащая

Тогда:

- 1. y_n убывает $(y_n \le y_{n+1})$
- 2. z_n возрастают $(z_n \ge z_{n+1})$
- 3. Если изменить конечное число членов x_n , изменится конечное число элементов y_n и z_n , тогда существуют $\lim_{n\to\infty}y_n$ и $\lim_{n\to\infty}z_n$

21.2 Верхний и нижний пределы

Верхний предел
$$x_n$$
 — $\overline{\lim}_{n\to+\infty} x_n = \lim_{n\to+\infty} \sup x_n := \lim y_n \in \overline{\mathbb{R}}$

Нижний предел
$$x_n$$
 — $\lim_{n\to +\infty} x_n = \lim_{n\to +\infty} \inf x_n := \lim x_n \in \overline{\mathbb{R}}$

Часть II

Теоремы

22 Теорема Кантора о равномерной непрерывности

22.1 Формулировка

Пусть $f:X\to Y$ — метрические пространства, f непрерывна на X,X — компактно. Тогда f — равномерное непрерывно на X.

22.2 Доказательство (от противного)

Воспользуемся тем свойством, что если X — компактно, то X и секвенциально компактно.

Предположим противное:

$$\exists \varepsilon > 0 \ \delta = \frac{1}{n} \ \exists x_n, \ \widetilde{x_n} : \rho(x_n, \widetilde{x_n}) < \frac{1}{n} \Rightarrow \rho(f(x_n), f(\widetilde{x_n})) \geq \varepsilon$$

Тогда выберем сходящуюся подпоследовательность: $x_{n_k} \to a \in X, \ \widetilde{x_{n_k}} \to a \in X.$

Тогда
$$f(x_{n_k}) \to f(a)$$
 и $f(\widetilde{x_{n_k}}) \to f(a)$, значит

$$\rho(f(x_{n_k}),f(\widetilde{x_{n_k}})) \to 0$$
 (по неравенству треугольника)

Что и противоречит изначальному условию.

23 Теорема Брауэра о неподвижной точке

23.1 Формулировка

Пусть $f:B(0,1)\subset \mathbb{R}^m \to B(0,1)$ — непрерывная, тогда

 $\exists x_0 : f(x_0) = x_0$

23.2 Доказательство

23.2.1 Игра "Текс"

Пусть есть поле $n \times m$, состоящее из правильных шестиугольников (гексов). Также два игрока на каждом своём ходу красят гексы в белый или чёрный цвет. Тогда для любой раскраски найдётся либо чёрная тропинка, соединяющая верхнюю и нижнюю часть поля, либо белая тропинка, соединяющая левую и правую часть поля.

Доказывается от противного

23.2.2 Сама теорема

Теперь заменим гексы на обычную координатную плоскость, причём игра, по сути, останется такой же. Теперь перейдём к самой теореме.

Шар с лёгкостью заменяется на обычный квадрат $[0,1] \times [0,1]$

Пусть $f:[0,1]^2 \to [0,1]^2$ — непрерывна. Тогда

$$\exists a \in [0,1]^2, f(a) = a$$

$$a \in [0, 1]^2$$

$$a = (a_1, a_2)$$

$$f(x) \in \mathbb{R}^2$$

$$f(x) = (f(x)_1, f(x)_2)$$

23.2.3 Доказательство

Пусть ρ — функция, заданная на $[0,1]^2 \times [0,1]^2$

$$\rho(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$$
 — непрерывна на $[0,1]^2$

$$x_n \to a$$

$$y_n \to b$$

$$\rho(x_n, y_n) \to \rho(a, b)$$

Очевидно, что для любых $x,y:x \neq y \Rightarrow \rho(x,y)>0$

23.2.4 Теперь к самой теореме

Пусть для любого $x \in [0,1]^2$ $f(x) \neq x$. Тогда $\rho(x,f(x)) > 0$, но ρ непрерывно по x и $[0,1]^2$ — компакт, значит по теореме Вейерштрасса существует такое $\varepsilon > 0$, что

$$\min_{x \in [0,1]^2} \rho(x, f(x)) = \varepsilon > 0$$

По теореме Кантора для этого ε найдётся такая δ (будем считать, что $\sqrt{2}\delta<\varepsilon$), что

$$\forall x, \widehat{x} \in [0, 1]^2 : ||x - \widehat{x}|| < \delta \cdot \sqrt{2} \Rightarrow ||f(x) - f(\widehat{x})|| < \varepsilon$$

Берём
$$\frac{1}{n} < \varepsilon$$

23.2.5 Доска

Узел
$$(l,k) o \left(\frac{l}{n},\frac{k}{n}\right) \in [0,1]^2$$

$$0 \le l, k \le n$$

Красим узлы

v — логический узел, $v = (v_1, v_2)$

$$c(v) = \min \left\{ i : \left\| f\left(\frac{v}{n}\right)_i - \frac{v_i}{n} \right\| \ge \varepsilon \right\}$$

По лемме об игре в гексы есть одноцветная тропинка.

Путь $v^0 -$ начальная точка тропинки, $v^N -$ конечная.

$$v_1^0 = 0$$

$$f\left(\frac{v^0}{n}\right) \in [0,1]^2$$
, T.e. $f\left(\frac{v^0}{n}\right)_1 \geq 0$
$$\varepsilon \leq f\left(\frac{v^0}{n}\right)_1$$

Аналогично для $v_1^N=1$

$$f\left(\frac{v^N}{n}\right)_1 \le 1$$

$$f\left(\frac{v^N}{n}\right)_1 - \frac{v_1^N}{n} \le -\varepsilon$$

$$f\left(\frac{v^0}{n}\right)_1 - \frac{v_1^0}{n} \ge \varepsilon$$

Поскольку для любых x верно, что $|f(x)_1-x_1|\geq \varepsilon$, то из этого следует, что какой-то прыжок был длиной не меньше 2ε , но такое невозможно, поскольку по условию если $\|x-\widehat{x}\|<\frac{1}{n}$, то $\|f(x)-f(\widehat{x})\|<\varepsilon$

24 Теорема о свойствах неопределенного интеграла

Пусть $f,\,g$ имеют первообразную на $\langle a,b \rangle.$ Тогда:

1.
$$\int f + \int g = \int (f + g)$$
$$\forall \alpha \in \mathbb{R} \int (\alpha f) = \alpha \int f$$

2. $\forall \varphi: \langle c, d \rangle \rightarrow \langle a, b \rangle, \, \varphi$ дифференцируема

$$\int f(arphi(t))arphi'(t)dt = F(arphi(t)) + C$$
, где F — первообразная f

3.
$$\forall \alpha, \beta \in \mathbb{R}, \ \alpha \neq 0 : \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$$

4. f, g — дифференцируемы на $\langle a, b \rangle$

 $f' \cdot g$ имеет первообразную на $\langle a,b \rangle$

Тогда $f \cdot g'$ тоже имеет первообразную и

$$\int f'g = fg - \int fg'$$

Доказательство

1.
$$(F+G)' = f+g$$

$$(\alpha F)' = \alpha f$$

2.
$$(F(\varphi(t)))' = f(\varphi(t))\varphi'(t)$$

3.
$$\left(\frac{1}{\alpha}F(\alpha x + \beta)\right)' = f(\alpha x + \beta)$$

4.
$$(fg)' = f'g + fg'$$
, r.e. $fg = \int f'g + \int fg'$

25 Интегрирование неравенств. Теорема о среднем

25.1 Интегрирование неравенств

25.1.1 Формулировка

$$f, g \in C[a, b], f \leq g \Rightarrow \int_{a}^{b} f \leq \int_{a}^{b} g$$

25.1.2 Доказательство

Если $0 \le f \le g$

$$\int\limits_a^b f = \sigma(\Pi\Gamma(f,[a,b])) \leq \sigma(\Pi\Gamma(g,[a,b])) = \int\limits_a^b g$$

В общем случае

$$\Pi\Gamma(f_+,[a,b])\subset\Pi\Gamma(g_+,[a,b])$$

$$\Pi\Gamma(f_{-}, [a, b]) \supset \Pi\Gamma(g_{-}, [a, b])$$

$$\sigma(\Pi\Gamma(f_+,[a,b])) - \sigma(\Pi\Gamma(f_-,[a,b])) \leq \sigma(\Pi\Gamma(g_+,[a,b])) - \sigma(\Pi\Gamma(g_-,[a,b]))$$

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

25.1.3 Следствия

1.
$$f \in C[a, b]$$

$$\min_{[a,b]} f \cdot (b-a) \le \int_{a}^{b} f \le \max_{[a,b]} f \cdot (b-a)$$

2.
$$f \in C[a, b]$$

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

t.k.
$$-\int\limits_{-}^{b}|f|\leq\int\limits_{-}^{b}f\leq\int\limits_{-}^{b}|f|$$

25.2 Теорема о среднем значении

25.2.1 Формулировка

Пусть f непрерывна на $[a,b]\Rightarrow \exists c\in [a,b]:\int\limits_a^b f=f(c)(b-a)$

25.2.2 Доказательство 1 (Кохась порофлил)

Просто берём прямую и двигаем её сверху вниз, тем самым по теореме о бутерброде мы найдём такое значение c, что $\int\limits_{-b}^{b}f=f(c)(b-a)$

25.2.3 Нормальное доказательство

Если a=b — очевидно.

Пусть a < b

$$\min f \le \frac{1}{b-a} \int_{a}^{b} f \le \max f$$

по теореме Больцано-Коши о промежуточном значении

$$\exists c : \frac{1}{b-a} \cdot \int_{a}^{b} f = f(c)$$

$$\int_{a}^{b} f = f(c)(b - a)$$

26 Теорема Барроу

26.1 Определение

 $f \in C[a,b], \varphi : [a,b] \to \mathbb{R}$

$$\varphi(x) = \int_{a}^{x} f(t)dt$$

Интеграл с верхним переменным пределом

26.2 Теорема (Барроу)

В условиях определения оказывается, что φ — диффиринцируема на [a,b] и $\varphi'(x)=f(x)$ для любого $x\in [a,b]$

26.3 Доказательство

Фиксируем x и при y>x

$$\lim_{y\to x+0}\frac{\varphi(y)-\varphi(x)}{y-x}=\lim_{y\to x+0}\frac{1}{y-x}\left(\int\limits_a^yf-\int\limits_a^xf\right)=\lim_{y\to x+0}\frac{1}{y-x}\int\limits_x^yf=\lim_{y\to x+0}f(c)=f(x)$$

 $\exists c \in [x,y] \ -$ следует из теоремы о среднем значении.

Аналогично доказываем, что $\lim_{y \to x-0} = \ldots = f(c)$

26.4 Замечания

• Интеграл с нижним переменным пределом

$$\psi(x) = \int\limits_{x}^{b} f$$
. Тогда $\psi'(x) = -f$

• Эта теорема также доказывает теорему о существовании неопределенного интеграла.

27 Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций

27.1 Формулировка теоремы

Пусть f кусочно-непрерывна на [a,b], F — первообразная f.

Тогда
$$\int_{a}^{b} f = F(b) - F(a)$$

27.2 Доказательство

 φ (из теоремы Барроу) — тоже первообразная, значит

$$\exists c: F = \varphi + c$$

$$F(b) - F(a) = \Phi(b) - \Phi(a) = \int_{a}^{b} f - \int_{a}^{a} f = \int_{a}^{b} f$$

$$\int_{a}^{b} f = F(b) - F(a)$$

При
$$a > b \int\limits_a^b f \stackrel{\text{def}}{=} - \int\limits_b^a f$$

27.3 Для кусочно-непрерывных функций

Для кусков функции распишем формулу Ньютона-Лейбница, получим телескопическую сумму, останется только F(b)-F(a)

28 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных

28.1 Линейность определенного интеграла

28.1.1 Формулировка

$$f, g \in C[a, b], \alpha, \beta \in \mathbb{R}$$

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

28.1.2 Доказательство

Из формулы Ньютона-Лейбница

$$\int_{a}^{b} f = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Для $F,\,G: \alpha F + \beta G\,\,$ — первообразная $\alpha f + \beta g$

$$\left(\alpha F(x) + \beta G(x)\right)\Big|_a^b = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a) = \alpha (F(b) - F(a)) + \beta (G(b) - G(a)) = \alpha \int_a^b f + \beta \int_a^b g(a) da$$

28.2 Интегрирование по частям

28.2.1 Формулировка

$$f,g \in C[a,b]$$
. Тогда

$$\int_{a}^{b} fg' = fg \bigg|_{a}^{b} - \int_{a}^{b} f'g$$

28.2.2 доказательство

Из свойств для неопределенного интеграла

$$\int_{a}^{b} fg' = \left(\int fg'\right)\Big|_{a}^{b} = \left(fg - \int f'g\right)\Big|_{a}^{b} = fg\Big|_{a}^{b} - \int_{a}^{b} f'g$$

28.3 Замена переменных

28.3.1 Формулировка

 $f \in C(\langle a, b \rangle)$

$$\varphi: \langle \alpha, \beta \rangle \to \langle a, b \rangle$$

$$\varphi \in C^1(\langle a, b \rangle)$$

$$[p,q] \in \langle \alpha,\beta \rangle$$

Тогда
$$\int\limits_{p}^{q}f(\varphi(t))\varphi'(t)\ dt=\int\limits_{\varphi(p)}^{\varphi(q)}f(x)\ dx$$

28.3.2 Доказательство

Пусть F — первообразная f

$$F(\varphi(t))$$
 — первообразная $f(\varphi(t))\varphi'(t)$ на $[p,q]$

Тогда обе части: $F(\varphi(q)) - F(\varphi(p))$

28.3.3 Замечание

- 1. Возможен случай $\varphi([p,q])\supset [\varphi(p),\varphi(q)]$
- 2. В другую сторону

$$\int_{u}^{v} f(x) \ dx = \int_{u}^{q} f(\varphi(t))\varphi'(t) \ dt$$

Тогда подбираем такие p и q, что когда t ходит от p до q и $\varphi(t)$ ходит от v до u

29 Интегральное неравенство Чебышева. Неравенство для сумм

29.1 Интегральное неравенство Чебышева

29.1.1 Формулировка

$$I_f = \frac{1}{b-a} \int_a^b f$$

 $f,g\in C[a,b]$ — монотонно возрастают

Тогда $I_f \cdot I_y \leq I_{fg}$

$$\int\limits_a^b f \cdot \int\limits_a^b g \leq (b-a) \int\limits_a^b fg \ - \ \text{неравенство Чебышева}$$

29.1.2 Доказательство

$$\forall x, y \in [a, b] \ (f(x) - f(y))(g(x) - g(y)) \ge 0$$

Проинтегрируем по переменной x по отрезку [a,b]

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

$$I_{fg} - f(y)I_g - I_fg(y) + f(y)g(y) \ge 0$$

Интегрируем по y на $[a,b]: \frac{1}{b-a}\int\limits_a^b$

$$I_{fg} - I_f \cdot I_g - I_f \cdot I_g + I_{fg} \ge 0$$

$$I_{fg} \ge I_f \cdot I_g$$

29.2 Неравенство для сумм

29.2.1 Формулировка для сумм

Пусть задана последовательность $a_n:a_1\geq a_2\geq\ldots\geq a_n$ и $b_n:b_1\geq b_2\geq\ldots\geq b_n.$ Тогда

$$\frac{1}{n}\sum_{k=1}^{n}a_kb_k \ge \left(\frac{1}{n}\sum_{k=1}^{n}a_k\right)\left(\frac{1}{n}\sum_{k=1}^{n}b_k\right)$$

29.2.2 Доказательство

По неравенству Чебышёва

$$I_{fg} \ge I_f I_g$$

Пусть
$$I_f = \frac{1}{n} \int_0^n f = \frac{1}{n} \sum a_k$$

$$f(x) = a_{[x+1]}, \, x \in [0,n]$$
 (где $[x]$ — округление к ближайшему целому вниз)

$$I_g = \frac{1}{n} \int_{0}^{n} g = \frac{1}{n} \sum b_k$$

$$g(x) = b_{[x+1]}, x \in [0, n]$$

Отсюда следует, что

$$\frac{1}{n} \sum a_k b_k \ge \left(\frac{1}{n} \sum a_k\right) \left(\frac{1}{n} \sum b_k\right)$$

30 Иррациональность числа π

30.1 Вспомогательный интеграл

Пусть
$$H_n = \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt$$

$$H_n = \begin{bmatrix} f = \left(\frac{\pi^2}{4} - t^2\right)^n & g = \sin t \\ f' = -2nt \left(\frac{\pi^2}{4} - t^2\right)^{n-1} & g' = -\cos t \end{bmatrix}$$

$$H_n = \frac{1}{n!} \left(\frac{\pi^2}{4} - t^2 \right)^n \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{1}{n!} 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t(\frac{\pi^2}{4} - t^2)^{n-1} \sin t \, dt$$

$$H_n = \frac{1}{n!} 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t(\frac{\pi^2}{4} - t^2)^{n-1} \sin t \ dt$$

$$H_n = \begin{bmatrix} f = t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} & g = -\cos t \\ f' = \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2(n-1)t^2 \left(\frac{\pi^2}{4} - t^2\right)^{n-2} & g' = \sin t \end{bmatrix}$$

$$f' = \left(\frac{\pi^2}{4} - t^2\right)^{n-1} + 2(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-2}$$

$$f' = (2n - 1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n - 1) \left(\frac{\pi^2}{4} - t^2\right)^{n-2}$$

$$\frac{2}{(n-1)!}t\left(\frac{\pi^2}{4}-t^2\right)^{n-1}(-\cos t)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}-\frac{2}{(n-1)!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left((2n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-1}-\frac{\pi^2}{2}(n-2)\left(\frac{\pi^2}{4}-t^2\right)^{n-2}\right)\cos t\,dt$$

Пусть $n \ge 2$, тогда

$$H_n = (4n-2)H_{n-1} - \pi^2 H_{n-2} = \dots + H_2 + \dots + H_0$$

$$H_0 = 2$$

$$H_1 = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{t}{f} \frac{g'}{\sin t} = 2t(-\cos t) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \, dt = 4$$

30.2 Теорема

Число π^2 — иррациональное (и тогда π тоже)

30.3 Доказательство (от противного)

Пусть
$$\frac{1}{n!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{\pi^2}{4}-t^2\right)^n\cos t=P_n(\pi^2),$$
 где P_n — многочлен с целыми коэффициентами.

 $\deg P \le n$

Этого не может быть

Пусть
$$\pi^2 = \frac{m}{k} \in \mathbb{Q}$$
. Тогда $k^n P_n\left(\frac{m}{k}\right)$ — целое число

Значит
$$k^n \cdot P_n\left(\frac{m}{k}\right) \ge 1$$
, т.е.

$$\frac{k^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt \ge 1$$

$$\frac{k^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt \le \frac{k^n}{n!} \left(\frac{\pi^2}{4}\right)^n \cdot \pi \xrightarrow[n \to +\infty]{} 0$$

31 Формула Тейлора с остатком в интегральной форме

31.1 Формулировка

Пусть
$$\langle a, b \rangle \in \overline{\mathbb{R}}, f \in c^{n+1}(\langle a, b \rangle)$$

 $x, x_0 \in \langle a, b \rangle$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt$$

31.2 Доказательство (по индукции)

•
$$n = 0$$
: $f(x) = f(x_0) = \int_{x_0}^{x} f'(t) dt$

По формуле Ньютона-Лейбница

• Переход от n к n+1

$$f(x) + T_n + \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt = \begin{bmatrix} u'(x - t)^n & u = -\frac{(x - t)^{n+1}}{n+1} \\ v = f^{n-1} & v' = f^{(n+2)} \end{bmatrix}$$

$$T_n + \frac{1}{n!} \left(-\frac{(x - t)^{n+1}}{(n+1)} \cdot f^{(n+1)}(t) \Big|_{t=x_0}^{t=x} + \int_{x_0}^x \frac{(x - t)^{n+1}}{n+1} \cdot f^{(n+2)}(t) dt \right)$$

$$T_n + \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + \frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} f^{(n+2)}(t) dt$$

31.3 Послесловие

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n$$

$$f(t) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k + R_n$$

$$F$$
 — первообразная $\displaystyle f\int\limits_{x_0}^x f(t) \ dt = F(x) - F(x_0)$

$$F(x) - F(x_0) = \sum_{k=0}^{n} \int_{x_0}^{x} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k dt + \int_{x_0}^{x} R_n = \frac{(t - x_0)^{k+1}}{k+1} \Big|_{t=x_0}^{t=x}$$

$$\sum_{k=0}^{n} \frac{F^{(k+1)}(x_0)}{(k+1)!} (x - x_0)^{k+1} + \int_{x=0}^{x} R_n$$

Мы имеем право формально интегрировать формулу Тейлора

32 Лемма об ускоренной сходимости

32.1 Формулировка

Пусть $f,\,g:D \to \mathbb{R},\,a\,$ — предельная точка $D \subset \mathbb{R},\,a \in \overline{\mathbb{R}}$

Пусть также существует $U(a): f(a) \neq 0$ и $g(a) \neq 0$ в $\dot{U}(a)$

Пусть $\lim_{x \to a} f(x) = 0$ и $\lim_{y \to a} g(x) = 0$ (Также возможен вариант, что $\lim_{x \to a} f(x) = +\infty$ и $\lim_{y \to a} g(x) = +\infty$)

Тогда для любой последовательности $x_k \to a, x_k \in D, x_k \neq a$ найдётся такая последовательность $y_k \to a$ $(y_k \in D, y_k \neq a)$, что

$$\lim_{k\to +\infty}\frac{f(y_k)}{g(x_k)}=0 \ \text{и} \ \lim_{k\to +\infty}\frac{f(y_k)}{f(x_k)}=0$$

32.2 Доказательство

1. Пусть $f, g \to 0$, тогда можно добиться того, что $\left| \frac{f(y_k)}{f(x_k)} \right| < \frac{1}{k}$ и $\left| \frac{f(y_k)}{q(x_k)} \right| < \frac{1}{k}$

Тогда найдётся такое K, что $\left|\frac{f(x_k)}{f(x_{2019})}\right|<\frac{1}{2019}$ для любых $k>K\Rightarrow y_{2019}=x_k$

Продолжаем так до бесконечности

$$\left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k}$$

$$\exists i > k \left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k} \Rightarrow y_k := x_i$$

Теперь пусть
$$\left| \frac{f(x_i)}{g(x_k)} \right| < \frac{1}{k}$$
 при $x \to +\infty$ и $\left| \frac{f(x_i)}{g(x_k)} \right| < \frac{1}{k}$ также при $i \to +\infty$

Тогда для каждого k найдётся такое K, что для всех i>K выполняется сразу оба условия, значит присвоим $y_k:=x_i$, где i — какое-то число большее K.

2. Пусть $f, g \to +\infty$. Считаем, что f > 0 и g > 0. Пусть $f(x_k)$ и $g(x_k)$ — возрастающие последовательности (остальные случаи рассматриваются аналогично). Тогда

$$i = \min n : \begin{cases} f(x_n) \ge \sqrt{g(x_k)} \\ f(x_n) \ge \sqrt{f(x_k)} \end{cases}$$

Возьмём $y_k := x_{i-1}$

Тогда
$$\dfrac{f(y_k)}{f(x_k)}<\dfrac{\sqrt{f(x_k)}}{f(x_k)}=\dfrac{1}{\sqrt{f(x_k)}}\to 0$$

$$\frac{f(y_k)}{g(x_k)} < \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \to 0$$

33 Правило Лопиталя (с леммой)

33.1 Формулировка

Пусть f,g — дифференцируемы на $(a,b), g' \neq 0$ на (a,b) и существует $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$

Тогда
$$\lim_{x \to a} \frac{f(x)}{g(x)} = A$$

33.2 Пример из жизни

Пусть $f, g: [0, +\infty) \to \mathbb{R}$

Пусть f — сколько прошёл студент,

g — сколько прошёл Кохась.

Тогда $f, g \to +\infty$, но если сравним скорости f' и g', то легко узнать, на сколько больше прошёл Кохась, чем студент.

33.3 Доказательство

 $g' \neq 0 \Rightarrow g'$ сохраняет знак (по теореме Дарбу), значит g — строго монотонна

1. $g \to +\infty \Rightarrow g > 0$ в окрестности точки a

 $2. g \rightarrow 0,$

 $g\uparrow\Rightarrow g>0$ в окрестности точки a

 $g\downarrow\Rightarrow g<0$ в окрестности точки a

33.4 Собственное доказательство

Берём последовательность $y_k \to a$ из леммы.

По теореме Коши $\exists \xi_k \in [x_k, y_k]$ (не факт, что $x_k \leq y_k$)

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)}$$

Домножаем правую и левую часть на $\dfrac{g(x_k)-g(y_k)}{g(x_k)}$

$$\frac{f(x_k)}{g(x_k)} = \frac{f(y_k)}{g(x_k)} + \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

$$\frac{f(x_k)}{g(x_k)} \to \frac{f'(\xi_k)}{g'(\xi_k)}$$

34 Теорема Штольца

34.1 Формулировка

Пусть $x_n, y_n \to 0$

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \left[\frac{0}{0} \right]$$

Тогда если существует $\lim_{n \to +\infty} \frac{x_n - x_{n-1}}{y_n - y_n - 1} = a \in [0, +\infty]$

Также y_n — строго монотонна (если a=0, то x_n — тоже строго монотонна)

Тогда
$$\exists \lim_{n \to +\infty} \frac{x_n}{y_n} = a$$

34.2 Доказательство

1. Пусть $a>0,\ a$ — конечное, тогда можно считать, что $y_n\geq y_{n-1}$ из монотонности и $x_n\geq x_{n-1}$ при больших n.

Заметим обидный факт, что $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ и $\frac{a}{b} : \frac{c}{d} = \frac{a:c}{b:d}$, но $\frac{a}{b} + \frac{c}{d} \neq \frac{a+c}{b+d}$. Кохасю обидно, поэтому будем считать, что $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$. Если вы с этим не согласны, то окей, но заметим, что справедливо:

$$0 < \alpha < \frac{a}{b} < \beta$$

$$0 < \alpha < \frac{c}{d} < \beta$$

$$\alpha < \frac{a+c}{b+d} < \beta$$

Вернёмся к самой теореме

$$\forall \varepsilon > 0 \ (\varepsilon < a) \ \exists N_1 \ \forall n > N \ge N_1$$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

$$a - \varepsilon < \frac{x_{N+2} - x_{N+1}}{y_{N+2} - y_{N+1}} < a + \varepsilon$$

:

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Складываем всё

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

Устремляем n к $+\infty$

$$a - \varepsilon \le \frac{x_N}{y_N} < a + \varepsilon$$

2. Если $a=+\infty$ — аналогично

$$\forall E > 0 \ \exists N_1, \ \forall n > N \ge N_1 \ \frac{x_{N+1} - x_N}{y_{N+1} - y_N} > E$$

$$E < \frac{x_n - X_N}{y_n - y_N}$$

$$E \le \frac{x_N}{y_N}$$

- 3. Если a=0, то $\lim_{n\to +\infty} \frac{y_n}{x_n} = +\infty$
- 4. Если a < 0 меняем знаки

35 Пример неаналитической функции

35.1 Неалитическая функция

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

35.2 Утверждение

f — бесконечное дифференцируема на \mathbb{R}

$$(\forall x \in \mathbb{R} \quad \forall k \in \mathbb{N} \quad \exists f^{(k)}(x))$$

35.3 Доказательство

Если $x \neq 0$ — то очевидно

Пусть x = 0, тогда для любого $k \; \exists f^{(k)}(0) = 0$

Из теоремы Лагранжа:

Если
$$\exists \lim_{x \to a+0} f'(x) = \lim_{x \to a-0} f'(x) = L$$
, где $L \in \mathbb{R}$, то

f — дифференцируема и f'(a) = L

$$f'(x) = \frac{2}{x^3} \cdot e^{\left(-\frac{1}{x^2}\right)}, x \neq 0$$

$$\lim_{x \to 0} \frac{\frac{1}{x^3}}{e^{\left(\frac{1}{x^2}\right)}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{-\frac{3}{x^4}}{-\frac{2}{x^3}e^{\left(\frac{1}{x^2}\right)}} = \lim_{x \to 0} \frac{3}{2} \cdot \frac{\frac{1}{x}}{e^{\left(\frac{1}{x^2}\right)}} = \lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{2}{x^3}e^{\left(\frac{1}{x^2}\right)}} = \lim_{x \to 0} \cdot x \cdot e^{\left(-\frac{1}{x^2}\right)} \to 0$$

$$\lim_{x \to 0} \frac{1}{x^k} \cdot e^{\left(-\frac{1}{x^2}\right)} = \left(\lim_{x \to 0} \frac{\frac{1}{x^2}}{e^{\left(\frac{1}{x^2} \cdot \frac{2}{k}\right)}}\right)^{\frac{k}{2}} = \left(\lim_{x \to 0} \frac{-\frac{1}{x^3}}{-\frac{4}{k} \cdot \frac{1}{x^3} \cdot e^{\left(\frac{1}{x^3}\right)}}\right)^{\frac{k}{2}} = 0$$

Итого

$$f'(x) = \frac{2}{x^3} \cdot e^{\left(-\frac{1}{x^2}\right)}, x \neq 0$$

$$f'(0) = 0$$

Аналогично

$$f'' = -\frac{6}{x^4} \cdot e^{\left(-\frac{1}{x^2}\right)} - \frac{4}{x^5} \cdot e^{\left(-\frac{1}{x^2}\right)}, \ x \neq 0$$

$$\lim_{x \to 0} f''(x) = 0 \Rightarrow f''(0) = 0$$

$$x \neq 0$$
 $f^{(k)}(x) = P_k\left(\frac{1}{x}\right) \cdot e^{\left(-\frac{1}{x^2}\right)}$

$$\lim_{x \to 0} f^{(k)}(x) = 0 \Rightarrow f^{(k)}(0) = 0$$

36 Интеграл как предел интегральных сумм

36.1 Формулировка

Пусть $f \in C[a, b]$

Тогда $\forall \varepsilon > 0 \; \exists \delta > 0 \;$ что для любого дробления $\mathcal{T} \; a = x_0 < x_1 < \ldots < x_n = b \;$ ранга меньше δ и любого оснащения $\xi_1, \xi_2, \ldots, \xi_n$

$$\left| \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) - \int_{a}^{b} f(x) \ dx \right| < \varepsilon$$

36.2 Доказательство

1. Поделим на отрезки в соответствии с дроблением. Очевидно, что $\int\limits_a^b = \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k}$. Тогда рассмотрим разность

$$\int\limits_{x_{k-1}}^{x_k} f(\xi_k) \; dx - \int\limits_{x_{k-1}}^{x_k} f(x) \; dx$$

$$\int\limits_{x_{k-1}}^{x_k} (f(\xi_k) - f(x) \; dx) \to 0, \text{ t.k. } x_{k-1} \to x_k, \text{ a } \xi_k \in [x_{k-1}, x_k]$$

2. По теореме Кантора о равномерной непрерывности

$$\forall \varepsilon>0 \ \exists \delta>0 \ \forall x_1,x_2: |x_1-x_2|<\delta \ |f(x_1)-f(x_2)|<\frac{\varepsilon}{b-a} \ \text{«Китайский } \varepsilon \text{»}$$

Берём $x_0, x_1, \dots, x_n, \xi_1, \xi_2, \dots, \xi_n$

$$\left| \sum_{k=1}^{n} - \int_{a}^{b} \right| = \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(\xi_{k}) \ dx - \sum_{k=1}^{n} f(x) \ dx \right| = \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(\xi_{k}) - f(x)) \ dx \right| \le \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f(\xi_{k}) - f(x)| \ dx$$

 $|\xi_k - x_k| < \delta$ для любых $[x_{k-1}, x_k]$ (по условию)

$$\leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} \frac{\varepsilon}{b-a} \ dx = \int_{a}^{b} \frac{\varepsilon}{b-a} \ dx = \varepsilon$$

36.3 Замечания

1.
$$\int_{a}^{b} f(x) dx = \lim_{\lambda(\mathcal{T}) \to 0} \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$$

2.
$$\omega(\delta) := \sup_{x,t|x-t|<\delta} |f(x)-f(t)|$$
 — модуль непрерывной функции f

По теореме Кантора f~-непрерывна $\Longrightarrow \omega(\delta) \xrightarrow[f \to 0]{} 0$

 $\omega(\delta)$ монотонно убывает на отрезке

$$\sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(\xi_k) - f(x)| dx \le \sum \int \omega(\delta) dx = \omega(\delta)(b-a)$$

Пусть f — дифференцируема на [a,b] $|f'| \leq M$

$$|f(x)-f(t)| \leq M \, |x-t| \, \, -$$
 следствие из теоремы Лагранжа

$$|f(\xi_k) - f(x)| \le M\delta |\xi_k - x|$$

$$\left| \sum - \int \right| \le M \delta(b - a)$$

37 Теорема об интегральных суммах для центральных прямоугольников

37.1 Формулировка

Пусть
$$f \in C^2[a,b]$$
 $a = x_0 < x_1 < \ldots < x_n = b$

$$\delta := \max |x_k - x_{k-1}|$$

Тогда

$$\left| \sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right) (x_i - x_{i-1}) - \int_{a}^{b} f(x) \ dx \right| \le \frac{\delta^2}{8} \cdot \int_{a}^{b} (f'')$$

37.2 Доказательство

$$\int_{x_{i-1}}^{x_i} f(x) \ dx = \int_{x_{i-1}}^{\xi_i} + \int_{\xi_i}^{x_i} = \begin{bmatrix} u = f & u' = f' \\ v' = 1 & v = x - x_{i-1} \end{bmatrix} \text{ if } \begin{bmatrix} u = f & u' = f' \\ v' = 1 & v = x - x_i \end{bmatrix}$$

$$f(x)(x-x_{i-1})\Big|_{x=x_{i-1}}^{x=\xi_i} - \int_{x_{i-1}}^{\xi_i} f'(x)(x-x_{i-1}) dx + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=x_i} - \int_{\xi_i}^{x_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - f(x)(x-x_i)\Big|_{x=\xi_i$$

$$f(\xi_i)(x_i - \xi_i) - \left(f'(x) \frac{(x - x_{c-1})^2}{2} \Big|_{x = x_{i-1}}^{x = \xi_i} - \int_{x_{i-1}}^{\xi_i} f''(x) \frac{(x - x_{i-1})^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int$$

$$f(\xi_i)(x_i - x_{i-1}) + \int_{x_{i-1}}^{x_i} f''(x) \varphi(x) dx$$

$$\varphi(x) = \begin{cases} \frac{(x - x_{i-1})^2}{2}, & x \in [x_{i-1}, \xi_i] \\ \frac{(x - x_i)^2}{2}, & x \in [\xi_i, x_i] \end{cases}$$

Тогда $\varphi(x)$ определена на [a,b]

$$\left| \sum_{i=1}^{n} f\left(\frac{x_{i-1} - x_{i}}{2}\right) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx \right| = \left| \sum_{i=1}^{n} \left(f(x_{i})(x_{i} - x_{i-1}) - \int_{x_{i-1}}^{x_{i}} f \right) \right| = \left| \sum_{i=1}^{n} \left(-\int_{x_{i-1}}^{x_{i}} f''(x)\varphi(x) dx \right) \right| = \left| \int_{a}^{b} f''(x)\varphi(x) dx \right| \le \int_{a}^{b} |f''(x)|\varphi(x)| dx \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''(x)| dx$$

Поскольку
$$\max \varphi(x) = \frac{(\frac{\delta}{2})^2}{2} = \frac{\delta^2}{8}$$

38 Теорема о формуле трапеций, формула Эйлера-Маклорена

38.1 Формулировка теоремы о формуле трапеций

Пусть
$$f \in C^2[a,b]$$
 $a = x_0 < x_1 < \ldots < x_n = b$ $\delta = \max(x_i - x_{i-1})$

Тогда
$$\left|\sum_{i=1}^n \frac{f(x_{i-1})+f(x_i)}{2}(x_i-x_{i-1})-\int\limits_a^b f(x)\ dx\right|\leq \frac{\delta^2}{8}\int\limits_a^b |f''|$$

38.2 Доказательство

$$\int_{x_{i-1}}^{x_i} f(x) = \begin{bmatrix} u = f & u' = f' \\ v'1 = 1 & v = x - \xi_i \end{bmatrix}$$

$$f(x)(x - \xi_i) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'(x)(x - \xi_i) - f(x_{i-1})(x_{i-1} - \xi_i) - \left(f'(x) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'' \frac{(x - \xi_i)^2}{2} dx \right) = (f(x_i) + f(x_{i-1})) \frac{x_i - x_{i-1}}{2} - \left(f'(x) - \frac{1}{2} \psi(x) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f''(-\frac{1}{2} \psi(x)) dx \right)$$

$$\begin{bmatrix} u = f' & u' = f'' \\ v' = (x - \xi_i) & \psi(x) = (x - x_{i-1})(x_i - x) \end{bmatrix} \quad x \in [x_{i-1}, x_i] \text{ Ha } [a, b]$$

$$v = -\frac{1}{2}\psi(x)$$

$$(f(x_i) + f(x_{i-1}) \cdot \frac{(x_i - x_{i-1})}{2} - \frac{1}{2} \int_{x_{i-1}}^{x_i} f'' \psi(x) dx$$

$$\frac{1}{2} \int_{a}^{b} |f''(x)| \, \psi(x) \, dx \le \frac{\delta^2}{8} \int_{a}^{b} |f''|$$

38.3 Простейший случай формулы Эйлера-Маклорена

$$m,n\in\mathbb{Z}$$
 $f\in C^2[m,n]$. Тогда

$$\int_{-\infty}^{n} f(x) \ dx = (\sum_{i=m}^{n})^{\nabla} f(i) - \frac{1}{2} \int_{m}^{n} f''(x) \{x\} (1 - \{x\}) \ dx$$

Очевидно TM , что это формула трапеции.

$$[a,b] \leftrightarrow [m,n] \ x_0 = m, x_1 = m+1, \dots, x_{last} = n$$

$$\{x\}\,(1-\{x\})\$$
— парабола между двумя целыми точками

39 Асимптотика степенных сумм

$$1^{p} + 2^{p} + \dots + n^{p} = \int_{a}^{n} x^{p} dx + \frac{n^{p} + 1}{2} + \frac{1}{2} \int_{1}^{n} (x^{p})'' \{x\} (1 - \{x\}) dx$$

$$1^{p} + 2^{p} + \dots + n^{p} = \frac{n^{p+1}}{p+1} - \frac{1^{p+1}}{p+1} + \frac{n^{p}}{2} + \frac{1}{2} + \frac{p(p-1)}{2} \int_{1}^{n} x^{p-2} \{x\} (1 - \{x\}) dx$$

$$1^{p} + 2^{p} + \dots + n^{p} = \frac{n^{p+1}}{p+1} + \frac{n^{p}}{2} + O(\max(1, n^{p-1}))$$

40 Асимптотика частичных сумм гармонического ряда

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \int_{1}^{n} \frac{1}{x} dx + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{1}{x^{3}} \{x\} (1 - \{x\}) dx$$

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{\{x\} (1 - \{x\})}{x^3} dx$$

Интеграл постоянной возрастает и ограничен сверху $\frac{1}{4}\int\limits_{1}^{n}\frac{1}{x^{3}}dx=-\frac{1}{x^{2}}\cdot\frac{1}{8}\bigg|_{x=1}^{x=n}<\frac{1}{8}$

Всё, что правее логарифма — постоянная Эйлера или γ

Итого

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \gamma + o(1)$$

41 Формула Валлиса

41.1 Формулировка

$$\lim_{n \to \infty} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{1}{2n+1} = \frac{\pi}{2}$$

41.2 Доказательство

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \begin{bmatrix} u = \sin^{n-1} x & u' = (n-1)\sin^{n-2} x \cos x \\ v' = \sin x dx & v = -\cos x \end{bmatrix}$$

$$-\cos x \sin^{n-1} x \Big|_{0}^{\frac{\pi}{2}} + (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \cos^{2} x dx = (n-1) \int_{0}^{\frac{\pi}{2}} (\sin^{n-2} x - \sin^{n} x) dx = (n-1)(I_{n-2} - I_{n})$$

$$I_{n} = \frac{n-1}{n} I_{n-2}$$

$$I_{0} = \int_{0}^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2}$$

$$I_{1} = \int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_{0}^{\frac{\pi}{2}} = 1$$

$$I_{n} = \frac{n-1}{n} I_{n-2} = \frac{n-1}{n} \cdot \frac{n-3}{n-4} I_{n-4} = \dots$$

Посчитаем отдельно для случая чётного и нечётного n

$$I_{2n+1} = \frac{2n}{2n+1} \cdot 2n - 22n - 1 \cdot \dots \cdot 1 = \frac{(2n)!!}{(2n+1)!!}$$

$$I_{2n} = \frac{2n-1}{2n} \cdot 2n - 32n - 2 \cdot \frac{\pi}{2} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}$$

Так как при
$$x \in \left[0, \frac{\pi}{2}\right]$$
 $\sin^{2k+1} x \leq \sin^{2k}$

To и
$$I_{n+1} \leq I_n$$

Также,
$$I_{2n+1} \le I_{2n} \le I_{2n-1}$$

$$\frac{(2n)!!}{(2n+1)!!} \le \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \le \frac{(2n-2)!!}{(2n-1)!!}$$

Разность правой и левой части стремится к 0, значит

$$\exists \lim_{k \to +\infty} \frac{1}{2k} \left(\frac{(2k)!!}{(2k-1)!!} \right)^2 = \frac{\pi}{2}$$

42 Формула Стирлинга

42.1 Формулировка

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

42.2 Доказательство

$$\sqrt{\pi} = \frac{1}{\sqrt{k}} \frac{(2k)!!}{(2k-1)!!} = \lim_{k \to +\infty} \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k)}{1 \cdot 3 \cdot \dots \cdot (2k-1)} \cdot \frac{1}{\sqrt{k}}$$

$$\sqrt{\pi} = \lim \frac{(2 \cdot 4 \cdot \dots \cdot (2k))^2}{(2k)!} \cdot \frac{1}{\sqrt{k}} = \lim \frac{2^{2k} (k!)^n}{(2k)!} \cdot \frac{1}{\sqrt{k}}$$

$$\sqrt{\pi} = \lim_{k \to \infty} \frac{2^{2k} (k^k \cdot e^{-k} \sqrt{k} \cdot c)^2}{\sqrt{k} (2k)^{2k} e^{-2k} \sqrt{2k} \cdot c} = \lim_{k \to \infty} \frac{2^{2k} \cdot k^{2k} \cdot e^{-2k} \cdot k \cdot c^2}{\sqrt{2} \cdot k \cdot 2^{2k} \cdot k^{2k} \cdot e^{-2k} \cdot c} = \frac{c}{\sqrt{2}}$$

$$c = \sqrt{2\pi}$$

43 Теорема о вычислении аддитивной функции промежутка по плотности

43.1 Формулировка

Пусть заданы f и ϕ, f — непрерывна, ϕ — аддитивная функция промежутка, f — плотность ϕ

Тогда
$$\forall [p,q] \subset \langle a,b \rangle \ \phi([p,q]) = \int\limits_{p}^{q} f(x) \ dx$$

43.2 Доказательство

Можно принять за факт, что у нас дан промежуток [a,b] (если это не так, то уменьшим его чуть-чуть и переобозначим)

$$F(x) = \begin{cases} 0, & x = a \\ & - \text{первообразная } f \end{cases}$$
 $\phi([a,x]), \quad x > a$

$$\inf_{[x,x+h]} f \leq \frac{\phi([x,x+h])}{h} \leq \sup_{[x,x+h]} f$$

$$x: F'_+(x) = \lim_{h \to 0+0} \frac{F(x+h) - F(x)}{h} = \lim \frac{\phi([a,x+h]) - \phi([a,x])}{h} = \lim \frac{\phi([x,x+h])}{h} = \lim_{h \to 0+0} f(x+\Theta h) = f(x),$$
 где

$$0 \le \Theta \le 1$$

$$\Theta = \Theta(h)$$

Аналогично посчитаем и $F'_{-}(x)$

$$\phi([p,q]) = F(q) - F(p) = \int_{p}^{q} f(x) dx$$

44 Обобщенная теорема о плотности

44.1 Формулировка

Пусть $f:\langle a,b\rangle \to \mathbb{R}$ — непрерывная функция, $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}$ — аддитивная функция.

Пусть $\forall \Delta \subset \text{Segm } \langle a,b \rangle$ заданы числа $m_{\Delta},\ M_{\Delta}.$

1.
$$m_{\Delta} \cdot l(\Delta) \leq \phi(\Delta) \leq M_{\Delta} \cdot l(\Delta)$$

2.
$$\forall x \in \Delta \ m_{\Delta} \leq f(x) \leq M_{\Delta}$$

3.
$$\forall x \in \langle a, b \rangle \ M_{\Delta} - m_{\Delta} \to 0$$
, если $l(\Delta) \to 0$, $x \in \Delta$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \Delta \in \text{Segm} \quad \langle a, b \rangle : x \in \Delta, \quad l(\Delta) < \delta$$

$$|M_{\Delta} - m_{\Delta}| < \varepsilon$$

Тогда
$$f$$
 — плотность ϕ (и $\forall [p,q] \ \phi([p,q]) = \int\limits_{p}^{q} f(x) \ dx)$

44.2 Доказательство

$$F(x) = \begin{cases} 0, & x = 0\\ \phi([a, x]), & x > a \end{cases}$$

Дифференцируем F_+

$$m_{\Delta} \le \frac{F(x+h) - F(x)}{h} \le M_{\Delta}$$

$$\left| \frac{F(x+h) - F(x)}{n} - f(x) \right| \le |M_{\Delta} - m_{\Delta}| \xrightarrow[h \to 0]{} 0, \ \Delta = [x, x+h]$$

$$\frac{F(x+h) - F(x)}{h} \xrightarrow[h \to 0]{} f(x)$$

Аналогично и с F_{-}

45 Площадь криволинейного сектора: в полярных координатах и для параметрической кривой

45.1 Введение

Площадь подграфика $f:\langle a,b \rangle \to \mathbb{R}$ — непрерывная, $f\geq 0$

$$\phi([p,q]) = \sigma\Pi\Gamma(f,[p,q]) \ -$$
аддитивная функция. Мы знаем, что $\phi([p,q]) = \int\limits_p^q f(x) \ dx, \ f \ -$ плотность

45.2 Пример

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\sigma(\text{эллипса})=2\sigma(\Pi\Gamma(b\sqrt{1-\frac{x^2}{a^2}},[-a,a]))=2\cdot\int\limits_{-a}^ab\sqrt{1-\frac{x^2}{a^2}}dx$$

Путь
$$\gamma: [\alpha, \beta] \to \mathbb{R}^2, x = a \cos t$$

$$[0, 2\pi] \longmapsto (a\cos t, b\sin t)$$

$$2\int_{-\pi}^{0} b\sqrt{1-\cos^{2}t}/a(-\sin t) \ dt = 2ab\int_{-\pi}^{0} -\sin^{2}t \ dt = 2ab\int_{0}^{\pi} \sin^{2}t \ dt = 2ab\int_{0}^{\pi} \frac{1-\cos 2t}{2} \ dt = \pi ab$$

45.3 Теорема

$$[\alpha, \beta] \subset [0, 2\pi)$$

$$\rho: [\alpha,\beta] \to \mathbb{R} \,\, -$$
 непрерывная, $\rho \geq 0$

$$A = \{(r, \phi) : \phi \in [\alpha, \beta] \ 0 \le r \le \rho(\phi)\}$$
 — «Аналог ПГ»

Тогда
$$\sigma(A) = \frac{1}{2} \int_{-\pi}^{\beta} \rho^2(\phi) \ d\phi$$

45.4 Доказательство

 $[\alpha,\beta]\longmapsto \sigma(A)\ -$ функция промежутка $Segm[\alpha,\beta]\ -$ аддитивная функция.

Проверим, что
$$\frac{1}{2}\rho^2(\phi)$$
 — плотность

$$[\gamma, \delta]$$
 — строим $A_{\gamma, \delta}$

$$\sigma(A_{\gamma,\delta}) \leq \sigma($$
Круговой сектор $(0, \max_{[\gamma,\delta]} \rho(\phi), [\gamma,\delta]))$

$$\sigma(A_{\gamma,\delta}) \geq \sigma($$
Круговой сектор $(0, \min_{[\gamma,\delta]} \rho(\phi), [\gamma,\delta]))$

$$\min_{[\gamma,\delta]} \frac{1}{2} \rho(\phi) l([\gamma,\delta]) \leq \sigma(A_{\gamma,\delta}) \leq \max_{[\gamma,\delta]} \frac{1}{2} \rho(\phi) l([\gamma,\delta])$$

По определению плотности

45.5 Замечание

$$(x(t), y(t))$$
 $t \in [a, b]$

$$x = r \cos \phi$$

$$y = r \sin \phi$$

$$r = \sqrt{x^2 + y^2}$$

$$\phi = \operatorname{arctg} \frac{y}{x}$$

$$\begin{cases} r(t) = x(t)^2 + y(t)^2 \\ \phi = \arctan \frac{y}{x} \end{cases}$$
— параметрическое задание того же пути в полярных координатах

$$\sigma A = \frac{1}{2} \int_{\phi_0}^{\phi_1} r^2(\phi) \ d\phi = \frac{1}{2} \int_{t_0}^{t_1} (x(t)^2 + y(t)^2) (\operatorname{arctg} \frac{y(t)}{x(t)}) \ dx = \frac{1}{2} \int_{t_0}^{t_1} (x^2 + y^2) \frac{1}{1 + \frac{y^2}{x^2}} - \frac{y'x - x'y}{x^2} \ dt = \frac{1}{2} \int_{t_0}^{t_1} (y'(t)x(t) - x'(t)y(t))$$

$$\phi = \arctan \frac{y(t)}{x(t)}$$

Площадь круга

$$x = \cos t$$

$$y = \sin t$$

$$S = \frac{1}{2} \int_{0}^{2\pi} \cos^2 t - (-\sin t) \sin t \, dt = \frac{1}{2} \int_{0}^{2\pi} 1 = \frac{2\pi}{2} = \pi$$

$$x = \cos t$$

$$y = -\sin t$$

$$S = \frac{1}{2} \int_{0}^{2\pi} -\cos^2 t - \sin^2 t \ dt = -\pi$$

Она ловит ориентированную площадь

$$x = x(t) = a\cos t$$

$$y = y(t) = b\sin t$$

$$\sigma = \int_{a}^{b} y(x) \ dx = \int_{a}^{b} y \ dx$$

$$\sigma$$
(эллипса) = $\int\limits_{-a}^a y(x) \ dx = \int\limits_{-a}^a y \ dx = \int\limits_{\pi}^0 y(t) x'(t) dy$

$$x = x(t)$$

46 Изопериметрическое неравенство

46.1 Формулировка

Пусть G — замкнутая выпуклая фигура в \mathbb{R}^2

$$diamG < 1 \ (diamG = \sum_{x,y \in G} \rho(x,y))$$

Тогда
$$\sigma(G) \leq \frac{\pi}{4}$$

46.2 Доказательство

$$f(x) = \sum \left\{ t : \left[(x,0), (x,t) \right] \cap G = \varnothing \right\}$$

$$g(x)$$
 — аналогично

$$f(x)$$
 — выпуклая

$$\phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$r(-\frac{\pi}{2}) = r(\frac{\pi}{2}) = 0$$

 $r(\phi)$ — непрерывная функция от ϕ

$$\sigma(G) = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\phi) \ d\phi = \frac{1}{2} \left(\int_{-\frac{\pi}{2}}^{0} + \int_{0}^{\frac{\pi}{2}} \right)$$

$$\frac{1}{2} \int_{0}^{\frac{\pi}{2}} r^{2} (\phi - \frac{\pi}{2}) + r^{2} (\phi) \ d\phi = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} AB^{2} \ d\phi \le \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \ d\phi = \frac{\pi}{4}$$

47 Вычисление длины гладкого пути

47.1 Формулировка

Пусть $\gamma: [a,b] \to \mathbb{R}^m, \, \gamma \in C^1$.

Тогда
$$l(\gamma) = \int\limits_a^b \|\gamma'(t)\| dt$$

47.2 Доказательство

Будем дополнительно считать, что $\gamma' \neq 0$

 γ — инъективно. Если это не так, то разобьём на несколько частей, и каждую из них посчитаем отдельно.

 $\phi: Segm[a,b] \to \mathbb{R}$

$$[p,q] \to l\left(\gamma|_{[p,q]}\right)$$

Пусть ϕ — аддитивная функция промежутка по аксиоме 2. Проверим, что $\|\gamma'(t)\|$ — её плотность

Это значит, что $\forall \Delta: \exists m_\Delta, M_\Delta$ и выполняются следующие свойства:

1.
$$l(\Delta)m_{\Delta} \leq \phi(\Delta) \leq M_{\Delta}l(\Delta)$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}, x \in \Delta$$

3.
$$\Delta \to x \ M_\Delta - m_\Delta \to 0$$

$$\Delta \supset [a, b], \, \gamma(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$$

$$m_i(\Delta) = \min_{t \in \Delta} |\gamma_i'(t)|$$

$$M_i(\Delta) = \max_{\Delta} |\gamma_i'(t)|$$

$$m_{\Delta} = \sqrt{\sum m_i(\Delta)^2}$$

$$M_{\Delta} = \sqrt{\sum M_i \Delta^2}$$

Очевидно, что при любом $t\in \Delta$ $m_\Delta \leq \|\gamma'(t)\| \leq M_\Delta$, где $\|\gamma'(t)\| = \sqrt{\sum (\gamma_i'(t))^2}$

При $\Delta \to x \; M_\Delta - m_\Delta \to 0$ по непрерывности $\gamma_i'(t)$ в точке t=x.

Проверим, что $m_{\Delta}l(\Delta) \leq \phi(\Delta) \leq M_{\Delta}l(\Delta)$

$$\widetilde{\gamma}:\Delta \to \mathbb{R}^m$$
 $\widetilde{\gamma}(t)=(M_1(\Delta)t,M_2(\Delta)t,\ldots,M_m(\Delta)t)=M\cdot t$, где $M=(M_1(\Delta),M_2(\Delta),\ldots,M_m(\Delta))$

Отображение $T:C_{\gamma}\to C_{\overline{\gamma}}\ \gamma(t)\mapsto \overline{\gamma}(t)$ — проверим, что расстяжение

$$\rho(\gamma(t_0), \gamma(t_1)) = \sqrt{\sum_{i=1}^n (\gamma_i(t_0) - \gamma_i(t_1))^2} = \sqrt{\sum (\gamma_i'(\mathcal{T}_i))^2 (t_0 - t_1)^2} \leq \sqrt{\sum M_i \Delta^2 |t_0 - t_1|} = \rho(T(\gamma(t_0)), T(\gamma(t_1))),$$

$$l(\gamma|_{\Delta}) \leq l(\widetilde{\gamma})$$
, r.e. $\phi(\Delta) \leq M_{\Delta}l(\Delta)$.

Аналогично $\phi(\Delta) \geq m_{\Delta} l(\Delta)$ — сжатие.

Значит $\|\gamma'\|$ — плотность

48 Объем фигур вращения

48.1 Формулировка

Обозначим фигуры, полученную вращением по оси x за $T_x(A) = \left\{ (x,y,z) : (x,\sqrt{y^2+z^2}) \in A \right\}$

По оси
$$y - T_y(A) = \left\{ (x, y, z) : (\sqrt{x^2 + z^2}, y^2) \in A \right\}$$

Пусть $f \in C[a,b], f \ge 0$

Тогда:

1.
$$V(T_x(\Pi\Gamma(f, [a, b]))) = \pi \int_a^b f^2(x) dx$$

2.
$$[a,b] \supset [0,+\infty) \ V(T_y(\Pi\Gamma(f,[a,b]))) = 2\pi \int_a^b x f(x) \ dx$$

48.2 Доказательство

 $\phi:\Delta\in Segm([a,b])\mapsto V(T_{x\ or\ y}(\Pi\Gamma(f,\Delta)))\ -\text{аддитивная функция}.$

$$\pi \min_{x \in \Delta} f(x) \cdot l(\Delta) = V(F_{\Delta}) \le \phi(\Delta) \le V(\varepsilon_{\Delta}) = \pi \max_{x \in \Delta} f(x) \cdot l(\Delta)$$

 $arepsilon_{\Delta}$ — цилиндр прямой круговой

$$\varepsilon_{\Delta} = T_x(\Pi\Gamma(\max_{\Delta} f, \Delta)) = \Delta B(0, \max_{\Delta} f) \in \mathbb{R}^3$$

 $\mathbb{R} \times \mathbb{R}^2$

$$\phi(\Delta)$$
 — плотность, $\pi \int_a^b f^2(x) dx$

 $\Delta: m_{\Delta}, M_{\Delta}$

1.
$$m_{\Delta}l(\Delta) \le \phi(\Delta) \le M_{\Delta}l(\Delta)$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}, x \in \Delta$$

3.
$$\Delta \to x \ M_{\Delta} - m_{\Delta} \to 0$$

$$V(T_y(\Pi\Gamma(f,[a,b]))) = 2\pi \int_a^b x \cdot f(x)dx$$

$$F_{\Delta} = T_y(\Pi\Gamma(\min_{\Delta} f, \Delta))$$

$$\phi(\Delta) \leq V(\varepsilon_{\Delta}) = \sigma(ring) \cdot \max_{\Delta} f = \pi(q^2 - p^2) \cdot \max_{[p,q]} f = \pi(p+q) \max f(p-q) \leq \pi \cdot \max_{x \in [p,q]} (2x) \cdot \min_{x \in [p,q]} f(x) \cdot (q-p)$$

Аналогично

$$\pi \min_{x \in [p,q]} \cdot \min_{x \in [p,q]} f(x)(q-p)$$

1.
$$m_{\Delta}l(\Delta) \le \phi(\Delta) \le M_{\Delta}l(\Delta)$$

$$\phi(\Delta) = \pi \cdot 2x \cdot f(x) \le \pi \max(2x) \cdot \max(x)$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}$$

3.
$$p \to x_0, q \to x_0 \pi \cdot 2x_0 \cdot f(x_0)$$

49 Неравенство Йенсена для сумм

49.1 Формулировка

Пусть f — выпукла на $\langle a,b \rangle$. Тогда

$$\forall x_1, x_2, \dots, x_n \in \langle a, b \rangle$$

$$\forall \alpha_1, \alpha_2, \dots, \alpha_n \ge 0, \sum_{i=1}^n \alpha_i = 1$$

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_n f(x_n)$$

49.2 Доказательство

Если все x совпадают, то тривиально.

Пусть
$$x^* = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$$

$$x_{\min} \sum_{i=1}^{n} \alpha_i \le x^* \le x_{\max} \sum_{i=1}^{n} \alpha_i$$

$$a \le x_{\min} \le x^* \le x_{\max} \le b$$

К любой выпуклой функции можно провести опорную прямую $y = l(x) : f(x) \ge l(x)$, при $x = x_0$ $f(x_0) = l(x_0)$

Проведём к x^* опорную прямую l(x) = kx + b

$$f(x^*) = l(x^*) = k \sum_{i=1}^{n} \alpha_i x_i + b = \sum_{i=1}^{n} k \alpha_i x_i + \sum_{i=1}^{n} b \alpha_i = \sum_{i=1}^{n} \alpha_i (kx_i + b) = \sum_{i=1}^{n} \alpha_i l(x_i) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

50 Неравенство Йенсена для интегралов

50.1 Формулировка

Пусть f — выпукла и непрерывна на $\langle A, B \rangle$

 $\varphi:[a,b] o \langle A,B \rangle$ — непрерывна

$$\lambda:[a,b] o [0,+\infty], \int\limits_a^b \lambda = 1$$
 — непрерывна

Тогда
$$f\left(\int\limits_a^b\lambda(x)\varphi(x)dx
ight)\leq\int\limits_a^b\lambda(x)f(\varphi(x))dx$$

50.2 Доказательство

 $m := \inf \varphi(x)$

 $M := \sup \varphi(x)$

$$c := \int_{a}^{b} \lambda(x)\varphi(x)dx \le \int_{a}^{b} \lambda(x)dx \cdot M = M \le b$$

 $c \geq m = a$ — аналогично, значит $c \in \langle a, b \rangle$

Если m=M — тривиально

Пусть y = kx + b — опорная прямая к графику f в точке c

$$f(C) = kC + b = k \int_{a}^{b} \lambda \varphi + b \int_{a}^{b} \lambda = \int_{a}^{b} \lambda (k\varphi + b) \le \int_{a}^{b} \lambda (f \circ \varphi)$$

$$f\left(\int\limits_{a}^{b}\lambda\varphi\right)\leq\int\limits_{a}^{b}\lambda(f\circ\varphi)$$

51 Неравенство Коши (для сумм и для интегралов)

51.1 Неравенство для сумм

51.1.1 Формулировка

Пусть $a_1, a_2, \ldots, a_n > 0$

Тогда
$$\frac{a_1+a_2+\ldots+a_n}{n} \geq \sqrt[n]{a_1a_2\ldots a_n}$$

51.1.2 Доказательство

$$\ln(\frac{1}{n}a_1 + \frac{1}{n}a_2 + \dots + \frac{1}{n}a_n) \ge \frac{1}{n}\ln(a_1a_2\dots a_n) = \frac{1}{n}\ln a_1 + \frac{1}{n}\ln a_2 + \dots + \frac{1}{n}\ln a_n$$

$$x_1 = a_1$$

$$x_2 = a_2$$

. . .

$$x_n = a_n$$

$$\alpha_1 = \alpha_2 = \ldots = \alpha_n = \frac{1}{n}$$

$$f(\sum \alpha_i x_i) \geq \sum \alpha f(x_i),$$
 поскольку функция l
п — вогнута

51.2 Неравенство для интегралов

51.2.1 Формулировка

$$rac{1}{b-a}\int\limits_a^b f$$
 — среднее арифметическое f на $[a,b]$

$$\exp\left(\frac{1}{b-a}\int\limits_a^b \ln f\right)$$
 — среднее геометрическое функции f $(f>0)$

Тогда если $f\in C[a,b
angle,\,f>0$

$$\exp\left(\frac{1}{b-a}\int\limits_a^b \ln f\right) \le \frac{1}{b-a}\int\limits_a^b f$$

$$\frac{1}{b-a} \int_{a}^{b} \ln f \le \ln \left(\frac{1}{b-a} \int_{a}^{b} f \right)$$

$$\ln \longleftrightarrow f$$
 — вогнутая

$$f \longleftrightarrow \varphi$$

$$\frac{1}{b-a}\longleftrightarrow\lambda$$

52 Неравенство Гёльдера для сумм

52.1 Формулировка

Пусть
$$p > 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$

$$q = \frac{p}{p-1}$$

 $a_i, b_i > 0$ для всех i = 1..n

Тогда
$$\sum_{i=1}^n a_i b_i \leq (\sum a_i^p)^{\frac{1}{p}} (\sum b_i^q)^{\frac{1}{q}}$$

Если $(a_1^p, a_2^p, \dots, a_n^p) \parallel (b_1^q, b_2^q, \dots, b_n^q)$ — равенство

52.2 Доказательство

 $x^p \,\,$ — строго выпукла при p>1 и x>0

$$(x^p)'' = p(p-1)x^{p-2} > 0$$

По неравенству Йенсена $\sum_{i=1}^n \alpha_i x_i)^p \leq \sum_{i=1}^n \alpha_i x_i^p$

$$\alpha_i := \frac{b_i^q}{\sum b_i^q}$$

$$\alpha_i > 0, \sum \alpha_i = 1$$

Выберем такие x_i , что

$$\alpha_i \cdot x_i = a_i \cdot b_i$$

$$x_i = \frac{a_i b_i}{\alpha_i} = \frac{a_i b_i}{b_i^q} \sum_{j=1}^n b_j^q = a_i b_i^{1-q} \sum_{j=1}^n b_j^q = a_i b_i^{1-\frac{p}{p-1}} \sum_{j=1}^n b_j^q = a_i b_i^{\frac{p-1-p}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{-\frac{1}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{-\frac{1}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{\frac{p-1-p}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^q = a_i \cdot b_$$

Тогда $\alpha_i x_i = a_i b_i$

$$(\sum_{i=1}^{n} \alpha_i x_i)^p = (\sum_{i=1}^{n} a_i b_i)^p$$

Тогда
$$\alpha_i x_i^p = a_i^p (\sum_{i=1}^n b_i^q)^{p-1}$$

Тогда
$$\sum_{i=1}^n \alpha_i x_i^p = (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{p-1} = (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{\frac{p}{q}}$$

Тогда
$$(\sum_{i=1}^n a_i b_i)^p \le (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{\frac{p}{q}}$$

Возведём в степень $\frac{1}{p}$ и получим исходное неравенство

53 Неравенство Гёльдера для интегралов

53.1 Формулировка

Пусть
$$\frac{1}{p} + \frac{1}{q} = 1, p > 1$$

Пусть также $f,\,g\in C[a,b]$ и $f,g\geq 0$ на [a,b]. Тогда

$$\int\limits_a^b |fg| \leq (\int\limits_a^b |f|^p)^{\frac{1}{p}} (\int\limits_a^b |g|^q)^{\frac{1}{q}}$$

53.2 Доказательство

Делим [a,b] на n равных частей

$$x_k = a + k \cdot \frac{b - a}{n} \ \Delta x_k = x_k - x_{k-1} = \frac{b - a}{n}$$

$$\xi_k := x_k$$

$$a_k := |f(x_k)| (\Delta x_k)^{\frac{1}{p}}$$

$$b_k := |g(x_k)| (\Delta x_k)^{\frac{1}{q}}$$

$$a_k \cdot b_k = |f(x_k)g(x_k)| \cdot \Delta x_k$$

$$\sum_{k=1}^{n} |f(x_k)g(x_k)| \Delta x_k \le (\sum |f(x_k)|^p \Delta x_k)^{\frac{1}{p}} (\sum |g(x_k)|^q \Delta x_k)^{\frac{1}{q}}$$

Из неравенства Гёльдера для сумм

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q}\right)^{\frac{1}{q}}$$

54 Неравенство Минковского

54.1 Формулировка

Пусть $p \ge 1$

Тогда
$$\left(\sum_{i=1}^n|a_i+b_i|^p\right)^{\frac{1}{p}}\leq \left(\sum|a_i|^p\right)^{\frac{1}{p}}+\left(\sum|b_i|^p\right)^{\frac{1}{p}}$$
 $a_i,b_i\in\mathbb{R}$

54.2 Замечания

- Здесь нет буквы q
- ullet Неравенство Минковского означает, что $(a_1,a_2,\ldots,a_n)\mapsto \left(\sum |a_i|^p\right)^{\frac{1}{p}}$ является нормой

54.3 Доказательство

При p=1 — очевидно

p>1 — применим Гёльдера

Пусть $a_i, b_i > 0$

$$\sum |a_{i}||a_{i} + b_{i}|^{p-1} \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\sum |b_{i}||a_{i} + b_{i}|^{p-1} \leq \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\sum |a_{i} + b_{i}|^{p} \leq \sum (|a_{i}| + |b_{i}|)|a_{i} + b_{i}|^{p} \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{p}} \leq \ldots \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}}$$

55 Свойства верхнего и нижнего пределов

55.1 Формулировка

Пусть x_n, x_n' — произвольные последовательности. Тогда

- 1. $\underline{\lim} x_n \le \overline{\lim} x_n$
- 2. $\forall n \quad x_n \leq x'_n$. Тогда

$$\overline{\lim} x_n \le \overline{\lim} x_n'$$

$$\underline{\lim} \, x_n \le \underline{\lim} \, x_n'$$

3. $\forall \lambda > 0$

$$\overline{\lim}(\lambda x_n) = \lambda \cdot \overline{\lim} \, x_n$$

$$\underline{\lim}(\lambda x_n) = \lambda \cdot \underline{\lim} \, x_n$$

4.
$$\overline{\lim}(-x_n) = -\underline{\lim}(x_n)$$

$$\underline{\lim}(-x_n) = -\overline{\lim}(x_n)$$

5.
$$\overline{\lim}(x_n + x'_n) \le \overline{\lim} x_n + \overline{\lim} x'_n$$

$$\underline{\lim}(x_n + x_n') \ge \underline{\lim} \, x_n + \underline{\lim} \, x_n'$$

Если правые части имеют смысл

6. $t_n \to l \in \overline{\mathbb{R}}$

$$\overline{\lim}(x_n + t_n) = \overline{\lim} \, x_n + \lim t_n$$

Если правая часть имеет смысл

7. $t_n \to l > 0, l \in \mathbb{R}$

$$\overline{\lim}(x_n + t_n) = l \cdot \overline{\lim} x_n$$

- 1. Следует из того факта, что $z_n \leq x_n \leq y_n$
- $2. \ y_n \le y_n'$

3.
$$\sup(\lambda A) = \lambda \sum_{a} (a)$$

$$4. \sup(-A) = -\inf(A)$$

5.
$$\sum (x_n + x_n', x_{n+1} + x_{n+1}; , \ldots) \le y_n + y_n'$$
, т.к. это верхняя граница для всех сумм над sup

6.
$$l \in \mathbb{R}$$
, тогда $\forall \varepsilon > 0 \exists N_0 : \forall k > N_0$

$$x_k + l - \varepsilon < x_k + t_k < x_k + l_k + \varepsilon$$

$$y_n+l-\varepsilon \leq \sum (x_n+t_n,x_{n+1}+t_{n+1},ldots) \leq y_n+l+\varepsilon, \text{ при } N \to +\infty$$

$$(\overline{\lim} x_n) + l - \varepsilon \le \overline{\lim} (x_n + y_n) \le (\overline{\lim} x_n) + l + \varepsilon$$

7. Без доказательства

56 Техническое описание верхнего предела

56.1 Формулировка

- 1. $\overline{\lim} x_n = +\infty \Longleftrightarrow x_n$ не ограничена сверху
- 2. $\overline{\lim} x_n = -\infty \iff x_n \to -\infty$
- 3. $\overline{\lim} x_n = l \in \mathbb{R} \Longrightarrow$:
 - $\forall \varepsilon > 0 : \exists N : \forall n > N \quad x_n < l + \varepsilon$
 - $\forall \varepsilon > 0$ неравенство $x_n > l \varepsilon$ выполняется для бесконечного множества номеров n

- 1. Очевидно, что $x_n < y_n$, y_n убывает Таким образом, если $\lim y_n = +\infty \Longrightarrow y_n = +\infty \Longleftrightarrow x_n$ не ограничена сверху
- $2. \ y_n \rightarrow -\infty, \, \forall E: \exists N: \forall n > N \ x_n \leq y_n < E \Rightarrow \forall E > 0: \exists N: \forall n > N: x_n < E, \, \forall n > N: y_n \leq E$
- 3. $x_n \leq y_n, y_n \to l$
 - \Rightarrow) $\forall \varepsilon>0:\exists N: \forall n>Nx_n\leq y_n< l+\varepsilon$ Если $\exists N_0: \forall N_0 \forall n< l-\varepsilon$, то $\forall n>N_0 y_n=\sup(\ldots)\leq l-\varepsilon$ и тогда $y_n\to l$
 - \Leftarrow) $\forall \varepsilon : \exists N : \forall n > Ny_n \le l + \varepsilon, y_n$ супремум $x_k \ge l \varepsilon \Rightarrow y_n \ge l \varepsilon \Rightarrow y_n \to l$

57 Теорема о существовании предела в терминах верхнего и нижнего пределов

57.1 Формулировка

Пусть существует $\lim x_n = l \in \overline{\mathbb{R}}$, тогда и только тогда $\overline{\lim} x_n = \underline{\lim} x_n = l$

- ullet \Rightarrow) $\lim x_n = +\infty \Longleftrightarrow \underline{\lim} x_n = +\infty \Rightarrow \underline{\lim} \leq \overline{\lim} x_n = +\infty$ $\lim x_n = -\infty \Longleftrightarrow \underline{\lim} x_n \leq \overline{\lim} = -\infty$ $\lim x_n \in \mathbb{R}$ очевидно
- \Leftarrow) $z_n \le x_n \le y_n$, то по теореме о сжатой последовательности $x_n \to l$, поскольку $z_n \to l$ и $y_n \to l$

58 Теорема о характеризации верхнего предела как частичного

58.1 Формулировка

- 1. Пусть l частный предел x_n , тогда $\varliminf x_n \leq l \leq \varlimsup x_n$
- 2. Существуют такие $n_k, \, m_k, \,$ что $\lim x_{n_k} = \overline{\lim} \, x_n$ и $\lim x_{m_k} = \underline{\lim} \, x_n$

1. Пусть
$$x_{n_j} \to l$$

$$z_{n_j} \le x_{n_j} \le y_{n_j}$$
, где $z_{n_j} o \varliminf x_n, \, x_{n_j} o l, \, y_{n_j} o \varlimsup x_n$

2.
$$\overline{\lim} x_k = \pm \infty$$
 — очевидно

$$\overline{\lim} x_k = l \in \mathbb{R}$$
 — очевидно

Для
$$arepsilon = rac{1}{k} \; \exists x_{n_k} : l - rac{1}{k} \leq x_{n_k} \leq l + rac{1}{k}$$