Arquitectura 2023

Explicación 1

Subrutinas y pasaje de parámetros

Objetivos: Comprender la utilidad de las **subrutinas** y la comunicación con el programa principal a través de una **pila**.

Escribir programas en el lenguaje assembly del simulador MSX88. Ejecutarlos y verificar los resultados, analizando el flujo de información entre los distintos componentes del sistema.

Pila

- Sector de la memoria con acceso LIFO.
- Se requiere un registro Puntero de Pila (SP). Este se encuentra (de forma implícita) en la cabeza de la pila.

Ejemplo en Assembly

Recordar

Siempre se apilan
registros de 16 bits)

Ejemplo:

ORG 3000H

Datos **DB** 55h, 33h, 44h, 22h

ORG 2000H

MOV BX, 3000H

MOV AX, [BX]

PUSH AX

MOV BX, 3002H

MOV CX, [BX]

PUSH CX

POP AX

POP CX

HLT

END

Subrutinas

Módulos de programas que brindan economía (código usado varias veces) y modularidad (subdivisión en unidades pequeñas).

Puede invocarse desde cualquier punto de un programa mediante instrucción **CALL.** Para retornar de la subrutina se utiliza la instrucción **RET**

Pueden requerir pasaje de argumentos (parámetros)

- por valor (copia de una variable)
- por referencia (dirección de la variable)

MSX88

MSX88 ofrece al usuario múltiples formas de analizar la evolución dinámica de los distintos elementos que conforman un sistema microprocesador simulado, durante la ejecución de un programa.

El kit de aprendizaje MSX88, está compuesto por las siguientes herramientas:

- ASM88: Ensamblador para la CPU SX88.
- **LINK88**: Programa montador para el MSX88
- MSX88: Emulador del sistema microcomputador, cuya CPU es SX88.

MSX88 - bloques constitutivos

- CPU SX88:

Versión simplificada de la CPU 8088 de Intel.

· Memoria:

En total existen 64 Kbytes.

· Periferia:

Múltiples conexiones son posibles entre ésta y los dos bloques anteriores.

· Programa monitor:

Pequeño sistema operativo de que dispone MSX88.

MSX88 - Lenguaje de máquina

Instrucciones

Las instrucciones del SX88 están codificadas con cero, uno o dos operandos. Los operandos pueden ser: **registro, memoria, dato inmediato**.

Las operaciones **nunca** puede realizarse entre **memoria y memoria**.

Modos de direccionamiento:

- Direccionamiento inmediato.
- Direccionamiento directo.

En la instrucción se indica la dirección real de memoria en la que está contenido el operando. Si este ocupa varias posiciones de memoria, figurará la dirección más baja.

- Direccionamiento indirecto a través del registro BX.

La dirección de memoria donde está el operando viene determinada por BX.

MSX88 - TIPOS DE INSTRUCCIONES

Desde un punto de vista funcional se pueden distinguir los siguientes tipos de instrucciones:

- Instrucciones de transferencia de datos: MOV.
- Instrucciones aritmético-lógicas:
 - Instrucciones aritméticas: ADD, ADC, SUB, SBB.
 - Instrucciones lógicas: AND, OR, XOR, NEG, NOT.
- Instrucciones de comparación: CMP.
- Instrucciones de incremento/decremento: INC, DEC.
- Instrucciones de manejo de la Pila: PUSH, POP
- Instrucciones de cambio de flujo de programa:
 - Instrucciones de salto incondicional: JMP.
 - □ Instrucciones de salto condicional: JZ, JNZ, JS, JNS, JC, JNC, JO, JNO.
- Instrucciones asociadas a subrutinas: CALL, RET.
- Instrucciones de control: NOP, HLT.

Ej 1)

Multiplicación de números sin signo.

Escribir un programa que calcule el producto entre dos números sin signo almacenados en la memoria del microprocesador:

1.1) Sin hacer llamados a subrutinas, resolviendo el problema desde el programa principal;

: Ме	emoria de	Datos	5		
, -			1000H		
	NUM1	DB	05H		
	NUM2	DB	03H		
; Ме	emoria de	Instru	ıcciones		
		ORG	2000H		
		MOV	AL, NUM1		
		CMP	CMP AL, 0		
		JZ FI	JZ FIN		
		MOV	MOV AH, 0		
		MOV DX, 0			
		MOV	CL, NUM2		
LOC	P:	CMP	CL, 0		
		JZ FI	N		
		ADD	DX, AX		
		DEC	CL		
		JMP	LOOP		
FIN	:	HLT			
		END	ı		

	-					
	1000H		5H			
	1001H	3H				
	1002H					
	1003H					
	'					
AX	0	5H				
AX BX						
СХ				0H		
CX DX	0		FH			
_						

1.2) **Llamando a una subrutina MUL** para efectuar la operación, pasando los parámetros por **valor** desde el programa principal a través de registros;

1.3) Llamando a una subrutina MUL, pasando los parámetros por referencia desde el programa principal a través de registros.

2) Escribir un programa que calcule el producto entre dos números sin signo almacenados en la memoria del microprocesador llamando a una subrutina MUL, pero en este caso pasando los

parámetros por valor y por referencia a través de la pila.							0	SP
						7FF1H	0	
; Memoria de datos ORG 1000H						7FF2H	04H	SP
NUM1 DW 5H	MUL:	ORG 3000H ; Sui PUSH BX	brutina MU	L		7FF3H	10	
NUM2 DW 3H	WIGE.	MOV BX, SP		1000H	05H	7FF4H	CL	SP
RES DW ?		PUSH CX PUSH AX	NUM1 ≺	1001H	00H	7FF5H	СН	
; Programa principal		PUSH DX ADD BX, 6		1002H	03H	7FF6H	BL	SP
ORG 2000H		MOV CX, [BX]	NUM2 <	1003H	00H	7FF7H	ВН	
MOV AX, NUM1 PUSH AX		ADD BX, 2 MOV AX, [BX]		1004H	0FH ?	7FF8H	IP retorno L	SP
MOV AX, NUM2	SUMA:	ADD DX, AX	RES -	1005H	00 2	7FF9H	IP retorno H	
PUSH AX	- 0	DEC CX JNZ SUMA		100011	<i>"</i>	7FFAH	04H	SP
MOV AX, OFFSET R PUSH AX	ES	SUB BX, 4 MOV AX, [BX]				7FFBh	10H	
MOV DX, 0		MOV BX, AX	AX	00	05H	7FFCH	03H	SP
CALL MUL		MOV [BX], DX POP DX	вх	ВН	BL	7FFDH	00H	
POP AX POP AX		POP AX	ואם	011	Cl	7FFEH	05H	SP
POP AX		POP CX POP BX	СХ	СН	CL	7FFFH	00H	
HLT		RET	DX	0	0	8000H		SP
END			-70					

2 Preguntas