S62390 | March 19, 2024, GTC

Accelerating Generative AI with TensorRT-LLM To Enhance Seller Experience at Amazon

Vishwanath Kumaraswamy
Sr. SDE, Amazon Catalog

Haohang Huang
Sr. Al Engineer, NVIDIA DevTech

Customers know what they want.

Measurements

Camera Body Only

Product Variations

Style: Camera + 24-200mm + FTZ II Mount Adapter

Camera + 24-200mm + FTZ II Mount Adapter

Camera + 24-50mm + FTZ II Mount Adapter

Camera Body Only + FTZ II M

Product details boosts seller's business

What's in Our Arsenal?

AWS G4 (T4)

AWS G5 (A10G)

P5
Amazon EC2

AWS P5 (H100)

AWS P4 (A100)

TensorRT- LLM

Triton Inference Server

In-flight batching

Quantization Precisions

Features of TensorRT-LLM

$$X_1$$
 X_2 X $A_{1,1}$ $A_{1,2}$ $A_{1,3}$ $A_{1,4}$ $A_{2,2}$ $A_{2,3}$ $A_{2,4}$ $A_{2,4}$ $A_{2,4}$ $A_{2,4}$ $A_{2,5}$ $A_{2,6}$ $A_{2,6}$

Tensor Parallelization

AMAZON CATALOG GEN AI PERFORMANCE

Check out our Science paper https://arxiv.org/abs/2309.05920

What's Next

• INT4 Activation-aware Weight Quantization (AWQ)

- Speculative Decoding
- Continued Collaboration

Dive deep into TensorRT-LLM

TensorRT-LLM Design

LLM Inference

NVIDIA solution for scalable LLM Inference, built on top of

- TensorRT to leverage its deep learning compiler for building and executing LLM models/graphs
- FasterTransformer to leverage its optimized kernels for performance
- NCCL for scalable inference with for multi-node, multi-GPU communication
- Other components for the customizations of LLM inference, such as CUTLASS

TensorRT-LLM aims to provide the best LLM inference performance on NVIDIA GPU with great flexibility & usability

Open-Source Access

Maintaining access and "hackability" in TensorRT-LLM

- TensorRT-LLM is open source under Apache2
 - · Python APIs for model definition & weight loading
 - All plugins/kernels except those with a risk of exposing HW information, e.g. FMHA, batch manager
 - Pre/post-processing tokenizers & samplers are OSS
 - Etc.
- · Construct models with entirely OSS APIs & kernels
- TensorRT Compilation will remain closed source to the public

TensorRT-LLM Workflow

Create, Build, Execute

- Instantiate model and load the weights
 - Load pre-built models or define via TensorRT-LLM Python APIs
- Build & serialize the engines
 - Compile to optimized implementations via TensorRT
 - Saved as a serialized engine
- Load the engines and run optimized inference!
 - Execute in Python, C++, or Triton

0. Trained Model in FW

NeMo, HuggingFace, or from DL Frameworks

1. Model Initialization

Load example model, or create one via python APIs

2. Engine Building

Optimized model via TensorRT and custom kernels

TensorRT-LLM Engine

TRT Engine

Plugins

3. Execution

Load & execute in Triton Sever, C++, or Pythor

Unified Workflow

Unified TensorRT-LLM checkpoint format

Model Coverage

Rapid evolution in Gen Al era

- · Encoder-only models
 - BERT, RoBERTa
- · Decoder-only models
 - GPT, LLaMa, Mixtral, Gemma, Starcoder, ChatGLM, & more
- Encoder-Decoder Models
 - T5 family, BART family, Fairseg NMT, Whisper
- State Space Model (SSM)
 - Mamba
- Multimodal Models
 - BLIP2 w/ OPT, BLIP2 w/ T5, LLaVA, VILA, Nougat, Qwen-VL

TensorRT-LLM aims at a **performant**, **robust**, & **extensible solution** for LLM deployments

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., ... Hu, X. (2023). Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. arXiv [Cs.CL]. Retrieved from http://arxiv.org/abs/2304.13712

Inflight Batching

Maximizing GPU Utilization during LLM Serving

TensorRT-LLM provides custom Inflight Batching to optimize GPU utilization during LLM Serving

- Replaces completed requests in the batch
 - Evicts requests after EoS & inserts a new request
- Improves throughput, time to first token, & GPU utilization
- Integrated directly into the TensorRT-LLM Triton backend
- Accessible though the TensorRT-LLM Batch Manager

KV Cache Optimizations

Paged & Quantized KV Cache

Paged KV Cache improves memory consumption & utilization

- Stores keys & values in non-contiguous memory space
- Allows for reduced memory consumption of KV cache
- Allocates memory on demand

Quantized KV Cache improves memory consumption & perf

- Reduces KV Cache elements from 16b to 8b (or less!)
- Reduces memory transfer improving performance
- Supports INT8 / FP8 KV Caches

Both allow for increased peak performance

TensorRT-LLM optimizes inference on NVIDIA GPUs ...

Block 0	TensorRT	LLM	optimizes	inference
Block 1	on	NVIDIA	GPUs	
Block 2				
Block 3				

Traditional KV Caching

B_0	TensorRT	LLM	optimizes	inference
B_1				
B_2	on	NVIDIA	GPUs	
Вз				

Paged KV Cache

Bo	TRT	LLM	opt	inf	on	NVIDIA	GPUs	
B ₁								
B ₂								
Вз								

Quantized Paged KV Cache

Allocated Free

KV Cache & Attention Techniques

(Sliding) Window Attention, & Streaming LLM

- Allow for longer (sometimes unlimited) sequence length
 - Reduces KV Cache Memory usage
 - Avoids OOM Errors
- (Sliding) Windowed Attention evict tokens based on arrival
 - Significantly reduces memory usage
 - Can negatively impact accuracy or require recomputing KV
- Streaming-LLM allows for unlimited sequence length
 - Does not evict Attention Sinks (important elements)
 - KV Cache stays constant size
 - Does not require recompute & does not impact accuracy
 - Particularly beneficial for multi-turn (i.e. chat) use cases

KV Cache Reusage

System Prompt Caching & Block reusage

Allows for interactive/ turn based systems & System Prompts

- Load prior KV cachce blocks to avoid recomupation
 - Saves significant compute
 - Reduces Start-up time
- Block resuage allows for turn-based (chat) applications
 - Allows for additional options for intelligently reusing blocks
- System prompts allows for a preset KV cache for the LLM
 - E.g. to give rules, personality, or prior knowledge

Quantization

How to Chose a Precision

- Weight quantization reduces memory footprint & traffic
 - Reduces latency
 - Can fit larger models
 - Costs compute time to unpack the weights
- Activation quantization saves on compute
 - Improves throughput
 - Can run larger batch sizes
- WXAY = weights quantized to X bits, and activations to Y
- Quantization documentation. Currently, all PTQ (post-training quantization) methods

Method	Performance small batch BS <=4	Improvement large batch BS>=16	Accuracy impact	Calibration time
FP8 (W8A8)	Medium	Medium	Very low / None	O(1min)
INT8 SQ (W8A8)	Medium	Medium	Medium	O(1min)
INT8 WO (W8A16)	Medium	None	Low	None
INT4 WO (W4A16)	High	None	High	None
INT4 AWQ (W4A16)	High	None	Low	O(10min)
INT4 GPTQ (W4A16)	High	None	Low	O(10min)
INT4-FP8 AWQ (W4A8)	High	Medium	Low	O(10min)

SQ = Smooth Quant
WO = Weight Only

AWQ = Activation Aware Quantization

INT4/INT8 weight-only

INT8 weight-only, for example

- Quantize only weights to INT8
- Storage in INT8, compute in fp16/bf16, i.e. W8A16
- 2x reduction in weight storage
 - Few memory traffics
 - High throughput with large batch sizes
- Straightforward and easy to be implemented
- Good generalization ability

SQ (SmoothQuant)

"Smooth" $\mathbf{Y} = (\mathbf{X} \operatorname{diag}(\mathbf{s})^{-1}) \cdot (\operatorname{diag}(\mathbf{s})\mathbf{W}) = \hat{\mathbf{X}}\hat{\mathbf{W}}$

- Easy to quantize weights vs. Hard to quantize activations w/ outliers
- Smooth is performed offline, migrating the quantization difficulty from activations to weights

"Quantization"

- Per-tensor or per-channel for weights
- Per-tensor or per-token for activation
- SmoothQuant is a typical algorithm of HW&SW codesign
- Efficient to be implemented on GPU

GPTQ

- A layer-wise quantization algorithm minimizing a layer-wise reconstruction loss
 - Loss function $||WX W_qX||$
- Quantization
 - Quantize weights only to INT4, compute in fp16, W4A16
 - Compatible with essentially any choice of quantization grid, such as grouping
- Co-design for efficient deployment with GPU
 - Lazy batch-updates to improve the compute intensity

AWQ (Activation-aware Weight Quantization)

- Weights are not equally important for LLM's performance. 0.1%~1% salient weights
- Salient weights are determined by activation distribution instead of weight distribution – "Activationaware"
- Scale up the salient weight before quantization
 - Scalers are determined solely by activation
 - Per-(output) channel scaling
- Grouped quantization along the input channel direction
 - Similar as the GPTQ but with no weight reconstruction

Output channel

Quantization

How to Chose a Precision

- Best precision varies by application
 - FP8 activations generally provides best performance → Hopper Transformer Engine
- Small batch: bandwidth bound
 - WO is preferred
- · Large batch: bandwidth and compute bound,
 - Activation quantization is needed. Try FP8 → INT8 SQ → AWQ → GPTQ
- KV cache quantization is also recommended, FP8 / INT8

Method	Performance small batch BS <=4	large batch BS>=16	Accuracy impact	Calibration time
FP8 (W8A8)	Medium	Medium	Very low / None	O(1min)
INT8 SQ (W8A8)	Medium	Medium	Medium	O(1min)
INT8 WO (W8A16)	Medium	None	Low	None
INT4 WO (W4A16)	High	None	High	None
INT4 AWQ (W4A16)	High	None	Low	O(10min)
INT4 GPTQ (W4A16)	High	None	Low	O(10min)
INT4-FP8 AWQ (W4A8)	High	Medium	Low	O(10min)

SQ = Smooth Quant
WO = Weight Only

AWQ = Activation Aware Quantization

Multi-GPU Multi-Node

Sharding Models across GPUs

- Supports Tensor & Pipeline parallelism
- Allows for running very large models (tested up to 530B)
- Supports multi-GPU (single node) & multi-node
- TensorRT-LLM handles communication between GPUs
- Examples are parametrized for sharding across GPUs

Tensor Parallel

Pipeline Parallel

Optimized Attention

Custom Implementations for Attention

- Custom optimized CUDA kernels for Attention
 - Similar to FlashAttentionV2
- Optimized for A100 & H100
- Kernels for Encoder & Decoder, as well as context
- Supports MHA, MQA, GQA

LoRA & Customization

Efficiently Supporting Customer User Experience

- Low-Rank Adaptation (LoRA) & Prompt tuned models are support in TensorRT-LLM
- Support multiple customers with a single model
- Dynamically swap LoRAs at runtime

And Much More

- Speculative decoding
- Chunked context
- SLoRA, QLoRA
- ..
- Continued collaboration with Amazon team for all the exciting features

Acknowledgements

Robert Tekiela

VP, Selection & Catalog Systems, Amazon Selection & Catalog Sys

Mary Beth Westmoreland

VP, WW Seller Partner Experiences

&

Amazon Catalog System Services
Organization

NVIDIA Amazon Account Team

Kshitiz Gupta, Jiahong Liu, Eliuth Triana, Anish Mohan

NVIDIA TensorRT-LLM Team

Nick Comly, June Yang

NVIDIA DevTech Team

Julien Demouth, Chandler Zhou, Murat Guney

