Exercise 5

task a)

Make a table similar to the lecture:

n	N(<i>€</i>)	ϵ
######################		
0	1	1
1	4	1/3
2	16	1/9

Box-Counting dimension is given by:

$$D = \lim_{\epsilon \to \infty} \frac{l \, n \, (N(\epsilon))}{l \, n \, (1/\epsilon)} = \frac{l \, n \, (4^n)}{l \, n \, (3^n)} = \frac{n \star l \, n \, (4)}{n \star l \, n \, (3)} = \frac{l \, n \, (4)}{l \, n \, (3)}$$

task b)

We have $\lambda_a = 1/4$, $\lambda_b = 1/2$, and for each ϵ we have $N_{box}(\epsilon) = 4 * N_a(\epsilon) + 1 * N_b(\epsilon)$

From self similarity we have:

$$N_{b o x}(\epsilon/\lambda_a) = N_a(\epsilon)$$

 $N_{b o x}(\epsilon/\lambda_b) = N_b(\epsilon)$

D0 is defined from: $N_{box}(\epsilon) = A \epsilon^{-D_0}$

Putting everything together we get:

$$A \, \epsilon^{-D_0} = 4 * A \, (\epsilon/\lambda_a)^{-D_0} + A \, (\epsilon/\lambda_b)^{-D_0}$$

$$=> \\ \epsilon^{-D_0} = 4 * (\epsilon/\lambda_a)^{-D_0} + (\epsilon/\lambda_b)^{-D_0}$$

$$=> \\ 1 = 4 * (1/\lambda_a)^{-D_0} + (1/\lambda_b)^{-D_0}$$

$$=> \\ 1 = 4 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 4 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 2 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 4 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 4 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0}$$

$$=> \\ 1 = 6 * \lambda_a^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda_b^{D_0} + \lambda$$