PMAT 319 Winter 2016. Questions For Midterm

- 1. Give the definitions of a translation, a halfturn, a transformation, a collineation, a dilatation, a reflection in a line, a rotation, a glide reflection.
- **2.** Prove that a translation is a transformation.
- **3.** Prove that a translation is a collineation.
- **4.** Prove that a halfturn is a transformation.
- **5.** Prove that a halfturn is a collineation.
- **6.** Let $\tau: \mathbb{R}^2 \to \mathbb{R}^2$ be the translation defined by $\tau(x,y) = (x+1,y+2)$. Let P = (1,1). Find the point $Q \in \mathbb{R}^2$ so that $\tau = \sigma_Q \sigma_P$.
- 7. Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by $\alpha(x,y) = (x+y,x-y)$.
 - (a) Is α a transformation? Prove your answer.
 - (b) Let l be the line with equation 2x y = 0. Is $\alpha(l)$ a line? Prove your answer.
 - (m) Let m be the line with equation y = 5. Is $\alpha(m)$ a line? Prove your answer.
- **8.** Let A = (1, 1), B = (3, 2) and C = (4, 4).
 - (a) Is $\tau_{AB}\sigma_C$ a halfturn? if so, find the point P so that $\tau_{AB}\sigma_C = \sigma_P$.
 - (b) Is $\sigma_C \tau_{AB}$ a halfturn? if so, find the point Q so that $\sigma_C \tau_{AB} = \sigma_Q$.
 - (c) Compute $\sigma_C \tau_{AB} \sigma_C(x, y)$ and $\tau_{\sigma_C(A)\sigma_C(B)}(x, y)$.
- **9.** Make sure you can prove "star" theorems: Theorem 5.1, Theorem 5.2 and Theorem 7.2.
- **10.** Prove that if m, n, l are parallel lines then $\sigma_l \sigma_n \sigma_m$ is a reflection in a line.
- **11.** Prove that if m, n, l are lines that are concurrent at a point then $\sigma_l \sigma_n \sigma_m$ is a reflection in a line.
- 12. Prove that if m, n, l are lines that are neither concurrent at a point nor mutually parallel then $\sigma_l \sigma_n \sigma_m$ is a glide reflection.
- **13.** Let ABCD be a square. Let $a = \overleftrightarrow{AB}$, $b = \overleftrightarrow{BC}$, $c = \overleftrightarrow{CD}$, $d = \overleftrightarrow{DA}$, $m = \overleftrightarrow{BD}$ and $l = \overleftrightarrow{AC}$.
- (a) Show that $\alpha = \sigma_d \sigma_c \sigma_b \sigma_a$ is a product of two reflections. Thus, α is either a rotation or a translation. Describe α .
 - (b) Repeat (a) but with $\alpha = \sigma_c \sigma_d \sigma_a \sigma_b$.
 - (c) Repeat (a) but with $\alpha = \sigma_d \sigma_b \sigma_c \sigma_a$.
 - (d) Repeat (a) but with $\alpha = \sigma_a \sigma_b \sigma_c \sigma_a$.
 - (e) Repeat (a) but with $\alpha = \sigma_c \sigma_m \sigma_l \sigma_a$.
 - (f) Repeat (a) but with $\alpha = \sigma_m \sigma_l \sigma_a \sigma_m$.
 - (g) Show that $\beta = \sigma_l \sigma_m \sigma_l$ is a reflection. Describe the line of reflection of β .
 - (h) Show that $\zeta = \sigma_b \sigma_m \sigma_a$ is a reflection. Describe the line of reflection of ζ .
 - (i) Show that $\varphi = \sigma_a \sigma_m \sigma_a$ is a reflection. Describe the line of reflection of φ .
- **14.** Let ABC be an equilateral triangle. Let M be the midpoint of \overline{AB} . Let $a = \overrightarrow{BC}$, $b = \overrightarrow{AC}$, $c = \overrightarrow{AB}$ and $m = \overrightarrow{AM}$.
 - (a) Show that $\alpha = \sigma_a \sigma_m \sigma_c$ is a glide reflection. What is the axis of α ?
 - (b) Show that $\beta = \sigma_c \sigma_b \sigma_a$ is a glide reflection. What is the axis of β ?

- (c) Let $\delta = \rho_{B,120^{\circ}} \rho_{A,120^{\circ}}$. Is δ a rotation or a translation? Describe δ .
- (d) Let $\eta = \rho_{B,120^{\circ}} \rho_{A,60^{\circ}}$. Is η a rotation or a translation? Describe η .
- (e) Repeat (a) but with $\alpha = \sigma_c \sigma_m \sigma_l \sigma_a$.
- (f) Repeat (a) but with $\alpha = \sigma_m \sigma_l \sigma_a \sigma_m$.
- **15**. Let ABCD be a square. Let $a = \overrightarrow{AD}$, b be the perpendicular bisector of \overline{AB} , $c = \overrightarrow{CD}$ and d be the perpendicular bisector of \overline{AD} . We know that $\gamma_1 = \sigma_c \sigma_b \sigma_a$ and $\gamma_2 = S_a S_d S_c$ are glide reflections.
- (a) What is $\sigma_b \gamma_1$? Draw a sketch and explain.
- (b) What is $\sigma_{\overleftrightarrow{BC}}\gamma_1$? Draw a sketch and explain.
- (c) What is $\gamma_2 \gamma_1$? Draw a sketch and explain.
- **16.** Suppose that G is a subgroup of $\mathcal{I}(\mathbb{R}^2)$. Let ABCD be a square in \mathbb{R}^2 . Let m be the line through B and D. Let n be the line through B and is perpendicular to m. Prove that if $\rho_{A,90^{\circ}}$ and σ_m are elements of G then $\rho_{C,90^{\circ}}$, $\rho_{B,180^{\circ}}$ and σ_n are also elements of G.
- 5. For each of the following statements, determine whether the statement is TRUE or FALSE and give a brief explanation.
- (a) The product of two glide-reflections is always a rotation.
- (b) If α and β are isometries os \mathbb{R}^2 so that $\alpha^2 = \beta^2$ then $\alpha = \beta$.
- (c) The product of two rotations is always a rotation.
- (d) The product of two translations is always a translation.
- (e) The product of a translation and a glide-reflection is always a glide-reflection.
- (f) The product of a translation and a line reflection is always a glide-reflection.
- (g) If a frieze group contains a glide reflection γ then γ^2 generates the subgroup of all translations in the frieze group.
- (h) The group generated by a glide-reflection is always infinite.
- (i) The group generated by a halfturn and a line reflection is always infinite.
- (j) The group generated by a rotation is always finite.