ORCA: A Distributed Serving System for Transformer-Based Generative Models

Presented by Yu et al., at Seoul National University and FriendliAI at MLSys 2022

Reviewed by Won Jong Jeon

12/8/2022

Overview

- Serving for large-scale transformer-based models
 - Request-based scheduling preventing early return of finished requests to clients
 - · Solution: iterative scheduling
 - Issue with batching from iterative scheduling
 - Solution: selective batching of requests in the same phase
- Distributed architecture
 - Intra-layer and inter-layer parallelism
 - Engine master and worker processes
 - Minimizing CPU-GPU synchronization (compared to Megatron-LM and FastTransformer) by separate NCCL and gRPC communication for GPU and CPU respectively.
- 36.9x throughput improvement at the same of latency compared to Nvidia's FastTransformer
- Cost of serving with 400 GPT3 175B instances for same target median latency and throughput
 - Baseline 190.6M/year vs. Orca \$5.7M/year

Figure 2: Overall workflow of serving a generative language model with existing systems.

Figure 4: System overview of ORCA. Interactions between components represented as dotted lines indicate that the interaction takes place at every iteration of the execution engine.

Figure 7: An illustration of the distributed architecture of ORCA's execution engine using the parallelization configura-

Model serving system

- Main components of model serving system
 - Scheduler: responsible for:
 - Creating a batch of requests by retrieving requests from a queue
 - · Scheduling the execution engine
 - Examples: Nvidia Triton Inference Server, TensorFlow Serving
 - Execution engine
 - Processing the received batch by running multiple iterations of the model
 - Returning the generated text back
 - Example: Nvidia FastTransformer
- Prior work
 - Triton: grouping multiple client request into a batch
 - FastTransformer: Conducting the inference procedure in the batched manner

Figure 2: Overall workflow of serving a generative language model with existing systems.

Serving of transformer-based models

- Example of inference procedure (Figure 1a): 3 iterations
 - 1st iteration: taking all the input tokens ("I think this") and generating the next token ("is")
 - 2nd & 3rd iteration (increment phase): taking the output token of 1st iteration and generating the next token.
- Transformer layer used in GPT model (Figure 2)
 - Attention operation computes a weighted average of the tokens, so that each token in the sequence is aware of each other.
- Example of early-finished requests (Figure 3)
 - Two requests batched in one, each has different # of iterations
 - Request x₂ finishes earlier than request x₁, limiting the efficiency of batched execution

Figure 3: An illustration for a case where the requests have the same input length but some requests finish earlier than others. Shaded tokens represent input tokens. "-" denotes inputs and outputs of extra computation imposed by the scheduling.

Challenge #1: Early-finished and late-joining requests

- Request-based scheduling (Figure 2)
 - Each request in a batch may require different # of iterations.
 - Preventing an early return of the finished request to the client, causing substantial amount of extra latency
- Solution: Iteration-level scheduling in ORCA (Figure 4)
 - Step 1: scheduler selecting requests from Request Pool to run next
 - Step 2: scheduler invoking execution engine to execute one iteration for the selected requests
 - Step 3: scheduler receiving results for the scheduled iteration
 - How to select the requests at every iteration?

Figure 2: Overall workflow of serving a generative language model with existing systems.

Figure 4: System overview of ORCA. Interactions between

Challenge #2: Batching of an arbitrary set of requests

- Naively, batching is only applicable when the two selected requests are in the same phase:
 - With the same # of input tokens (in case of initialization phase)
 - Or with the same token index (in case of increment phase)
- This restriction significantly reduces the likelihood of batching in real-world workloads.
- Solution: selective batching
 - Aware of the different characteristics of each operation
 - Splitting the batch and processing each request individually for the Attention operation, while applying token-wise (instead of requestwise) batching to other operations
 - Additional Split and Merge operation before and after Attention
 - Attention K/V manager: maintaining keys and values separately for each request until the request has finished processing

Figure 5: An illustration of ORCA execution engine running a Transformer layer on a batch of requests with selective batching. We only depict the QKV Linear, Attention, and Attention Out Linear operations for simplicity.

Distributed architecture

- Parallelization techniques for Transformer model (Figure 6)
 - Intra-layer: splitting matrix multiplications over multiple GPUs
 - Inter-layer: splitting Transformer layers over multiple GPUs
 - Also used in FasterTransformer
- Components (Figure 7)
 - Worker process
 - Responsible for an inter-layer partition of the model
 - Each worker manages one or more CPU threads each dedicated for controlling a GPU
 - Controller: Handing over the information received from the engine master to the GPUcontrolling threads
 - Engine master
 - Forwarding the received information about the scheduled batch to the first worker process.
- Optimizations
 - Minimizing GPU-GPU synchronization
 - Separate communication channels to NCCL for exchanging intermediate tensor data and gRPC for control messages between the engine master and worker controller

Figure 6: An example of intra- and inter- layer parallelism. A

Figure 7: An illustration of the distributed architecture of ORCA's execution engine using the parallelization configura-

Scheduling algorithm

- How to select the requests at every iteration
 - Ensuring iteration-level first-come first-serve (FCFS) policy
 - Batch size: maximizing throughput while satisfying latency budget
 - GPU memory constraint: reusing intermediate results across multiple operations
- In short, the scheduler selects at most "max batch size" requests based on the arrival time, while reserving enough space for storing keys and values to a request when the request is scheduled for the first time.
- Pipeline parallelism
 - Previous work: Splitting a batch of requests to multiple microbatches for pipeline efficiency (fewer pipeline bubbles)
 - ORCA: No need to divide a batch into microbatches, thanks to iteration-based scheduling

(b) FasterTransformer execution pipeline.

Evaluation

- Performance of ORCA execution engine without scheduler (Figure 9)
 - ft(n) and orca(n): processing time for requests with n input tokens
 - Similar (or slightly worse) execution time with 13B model
 - 47% faster with 175B model, thanks to control-data plan separation
- End-to-End performance (Figure 10)
 - ft(max_bs, mbs) with a maximum batch size max_bs and a microbatch size of mbs.
 - Median end-to-end latency normalized by the # of generated tokens and throughput
 - FastTransformer 0.185 reqs/s, ORCA 6.81 req/s (36.9x speedup)

Figure 9: Execution time of a batch of requests using FasterTransformer and the ORCA engine without the scheduling component.

Figure 10: Median end-to-end latency normalized by the number of generated tokens and throughput. Label "orca(max_bs)" rep-

MindSpore Serving perspective

- Distributed inference support
 - Multiple cards are supported in inference phase for large scale neural networks.
 - Only Ascend 910 inference is supported (with HCCL).
 - No GPU with NCCL?
 - No multiple nodes are supported?
- Generic scheduling + model execution engine
 - Request-based FCFS scheduling with batch adjustment
 - Multiple requests are split and combined to meet batch size requirement of the model.
 - No iteration-based scheduling support
- Better Transformer support ? (like in PyTorch 2.0)
 - FlashAttention (Stanford U): optimization for IO access patterns
 - xFormers (FAIR): memory efficient SDPA (Scaled Dot-Product Attention) kernels

