数据驱动基于路径的船舶排期优化算法

总体思路

• 将问题分解为路径生成和路径选择

• 路径生成

- 利用历史数据生成
- 使用基于网络的路径搜索
- 路径选择
 - 利用0-1数学规划模型计算

路径生成

- 路径定义
 - 靠港顺序, 包括时间、装卸货等信息
- 基于历史数据生成
- 基于网络的路径搜索
 - 节点
 - 货盘的起始港口和到达港口
 - 连接(弧)
 - 起始港口-起始港口
 - 起始港口-到达港口
 - 到达港口-起始港口
 - 到达港口-到达港口
 - 深度优先搜索路径
 - 保证路径的可行性

路径选择

决策变量

$$x_{v,r} = \begin{cases} 1 & \text{如果船舶 } v \text{ 选择路径 } r \\ 0 & \text{否则} \end{cases}$$

参数

$$c_{v,r}$$

船舶v选择路径r的成本

$$\phi_{r,p} = \begin{cases} 1 & \text{如果路径r运输过程中服务货盘p} \\ 0 & \text{否则} \end{cases}$$

目标函数和约束

 $\min \sum_{v \in V} \sum_{r \in R} c_{v,r} x_{v,r}$

优化目标,包括但不限于运行成本

$$\sum_{x,p} X_{x,r} = 1$$

 $\forall v \in V$

每条船舶选择一条路径

$$\sum_{v \in V} \sum_{r \in R} \phi_{r, \rho} x_{v, r} = 1$$

每个货盘被一艘船舶服务

$$X_{r,r} \in \{0,1\}$$

算法的优势

- 可解释性
 - 业务人员能够清晰的看到每条候选路径的特征
 - 计算路径的相关性能指标, 评价路径的合理性。
 - 基于历史数据生成的路径较能符合业务人员的排期习惯。
- 灵活性
 - 路径生成过程中能够考虑各种数学模型较难描述的约束条件
 - 船舶的加油及保养计划能够方便地添加入路径
- 最优性
 - 在一定条件下,能够获得方案离最优方案可能的最大距离