2 Матриці

2.1 Означення. Матрицею називається таблиця, що складається із елементів a_{ij} , розташованих у m рядках і n стовпцях. Якщо a_{ij} - числа, то матриця називається числовою.

Вимірність матриці позначається $m \times n$. Матриці позначають великими літерами A, B тощо. Наприклад,

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 3 & 2 & 0 \end{pmatrix}$$
 - матриця вимірності 2×3 , оскільки є два рядки і три стовпці.

Якщо m=n, то матриця називається квадратною і замість вимірності матриці кажуть порядок матриці, наприклад, квадратна матриця n-го порядку має вигляд:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$

Для квадратної матриці можна обчислити визначник $\Delta = \det A$. Якщо $\det A \neq 0$, то матриця називається невиродженою, якщо $\det A = 0$, то A — вироджена матриця.

Зауваження. Позначення квадратної матриці і її визначника — різні. Матрицю записують за допомогою круглих дужок, скорочено: $A = (a_{ij}), i, j = 1,2,...,n$. Визначник матриці A записують за допомогою прямих дужок, скорочено: $\det A = \left|a_{ij}\right|, i, j = 1,2,...,n$.

Квадратна матриця називається діагональною, якщо усі елементи матриці, крім елементів, що стоять на головній діагоналі, ϵ нулі:

$$D = \begin{pmatrix} d_{11} & 0 & \dots & 0 \\ 0 & d_{22} & \dots & 0 \\ 0 & 0 & \dots & d_{nn} \end{pmatrix}.$$

Діагональна матриця називається одиничною, якщо всі елементи, що стоять на головній діагоналі $d_{kk} = 1, \ k = \overline{1,n}$:

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Матриця називається нульовою, якщо усі її елементи – нулі: $a_{ij}=0,\;i=1,...,m,\;j=1,...,n$.

$$0 = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

Матриця A називається стовпцевою, якщо її вимірність $m \times 1$. Матриця B називається рядковою, якщо її вимірність $1 \times n$:

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix}, \qquad B = (a_{11} \quad a_{12} \quad \dots \quad a_{1n}).$$

Матриця A дорівнює матриці B, тобто A=B, якщо вимірності матриць однакові і кожен елемент матриці A дорівнює відповідному елементу матриці B, тобто $a_{ij}=b_{ij}$ для всіх i та j.

2.2 Дії над матрицями

2.2.1 Додавання матриць.

Сумою C матриць A та B однакової вимірності називається матриця, кожен елемент якої ϵ сумою відповідних елементів матриць A та B:

$$c_{ij} = a_{ij} + b_{ij}, \quad i = 1, 2, ..., n; \quad j = 1, 2, ..., m.$$

Приклад № 4. Знайти суму матриць

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \\ 5 & 7 \end{pmatrix} \text{ Ta } B = \begin{pmatrix} -1 & 4 \\ 2 & -3 \\ -4 & 3 \end{pmatrix}.$$

Розв'язання. Вимірності матриць A та B: $m \times n = 3 \times 2$ однакові. Тому можна знайти їх суму. Маємо

$$C = A + B = \begin{pmatrix} 2 & 3 \\ 1 & 2 \\ 5 & 7 \end{pmatrix} + \begin{pmatrix} -1 & 4 \\ 2 & -3 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 2 - 1 & 3 + 4 \\ 1 + 2 & 2 - 3 \\ 5 - 4 & 7 + 3 \end{pmatrix} = \begin{pmatrix} 1 & 7 \\ 3 & -1 \\ 1 & 10 \end{pmatrix}.$$

2.2.2 Множення матриці на число.

При множення матриці на число λ потрібно кожен елемент матриці

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

помножити на це число:

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \dots & \dots & \dots & \dots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}.$$

Приклад № 5. Знайти –3A, якщо
$$A = \begin{pmatrix} 2 & 4 & -2 & -1 \\ 3 & -2 & 1 & -4 \end{pmatrix}$$
.

Розв'язання. У цьому прикладі λ =-3. Маємо:

$$-3A = -3\begin{pmatrix} 2 & 4 & -2 & -1 \\ 3 & -2 & 1 & -4 \end{pmatrix} = \begin{pmatrix} -6 & -12 & 6 & 3 \\ -9 & 6 & -3 & 12 \end{pmatrix}.$$

Наслідок. За знак матриці A можна виносити число тільки тоді, коли це число є множником кожного елемента матриці A.

Наприклад,

$$\begin{pmatrix} 8 & 4 & 2 \\ -2 & 4 & 8 \end{pmatrix} = \begin{vmatrix} \text{Число 2 } \epsilon \text{ множником} \\ \text{усіх елементів матриці} \end{vmatrix} = 2 \begin{pmatrix} 4 & 2 & 1 \\ -1 & 2 & 4 \end{pmatrix}.$$

2.2.3 Множення двох матриць

Матрицю A можна помножити на матрицю B, якщо кількість стовпців матриці A дорівнює кількості рядків матриці B, тобто якщо вимірність матриці A $m \times k$, а матриці B - $k \times n$, тоді вимірність матриці C така:

$$(a_{ij})_{m\times\underline{\mathbf{k}}}\cdot(b_{ij})_{\underline{\mathbf{k}}\times\mathbf{n}}=(c_{ij})_{m\times\mathbf{n}}.$$

Елемент c_{ij} матриці $C = A \cdot B$ дорівнює сумі добутків елементів i-го рядка матриці A на відповідні елементи j-го стовпця матриці B:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}. (1.7)$$

Приклад № 6. Знайти добуток матриць

$$A = \begin{pmatrix} 2 & 3 & 1 \\ -2 & 2 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 0 & -1 & 2 \\ -1 & 2 & 0 & 1 \\ 0 & 1 & -1 & -2 \end{pmatrix}$$

Розв'язання. Вимірність матриці A: 2×3 ; вимірність матриці B: 3×4 . Тоді 2×4 - вимірність матриці $C = A \cdot B$. Отже, матриці A та B можна перемножити. Дістаємо:

$$C = A \cdot B = \begin{pmatrix} 2 & 3 & 1 \\ -2 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 & -1 & 2 \\ -1 & 2 & 0 & 1 \\ 0 & 1 & -1 & -2 \end{pmatrix} = \begin{vmatrix} \text{Використовуємо} \\ \text{формули} (1.7) \end{vmatrix} =$$

$$\begin{pmatrix} 2 \cdot 4 + 3 \cdot (-1) + 1 \cdot 0 & 2 \cdot 0 + 3 \cdot 2 + 1 \cdot 1 \\ -2 \cdot 4 + 2 \cdot (-1) + (-1) \cdot 0 & -2 \cdot 0 + 2 \cdot 2 + (-1) \cdot 1 \end{vmatrix} =$$

$$= 2 \cdot (-1) + 3 \cdot 0 + 1 \cdot (-1) & 2 \cdot 2 + 3 \cdot 1 + 1 \cdot (-2) \\ -2 \cdot (-1) + 2 \cdot 0 + (-1) \cdot (-1) & -2 \cdot 2 + 2 \cdot 1 + (-1) \cdot (-2) \end{pmatrix} = \begin{pmatrix} 8 - 3 & 6 + 1 & -2 - 1 & 4 + 3 - 2 \\ -8 - 2 & 4 - 1 & 2 + 1 & -4 + 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 7 & -3 & 5 \\ -10 & 3 & 3 & 0 \end{pmatrix}.$$

Зауваження. **1.** Квадратні матриці одного порядку можна завжди перемножати.

2. Добуток матриць A та B залежить від того, яка матриця ϵ першим множником, тобто у загальному випадку

$$A \cdot B \neq B \cdot A$$
.

2.2.4 Обернена матриця

Оберненою матрицею до квадратної матриці A називається матриця A^{-1} , що задовольняє умову

$$A^{-1}A = AA^{-1} = E.$$

При цьому $\det A \neq 0$.

Обернена матриця
$$A^{\text{-1}}$$
 до матриці A $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

третього порядку обчислюється за формулою

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{12} & A_{31} \\ A_{21} & A_{22} & A_{32} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$
(1.8)

де A_{ij} (i, j = 1,2,3) - алгебраїчні доповнення відповідних елементів a_{ij} визначника матриці A:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Приклад № 7. Знайти матрицю, обернену до матриці А, якщо

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 3 & 1 \end{pmatrix}.$$

Розв'язання. Застосовуємо формулу (1.8). Знайдемо визначник матриці A. Маємо

$$\det A = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 3 & 1 \end{vmatrix} = 0 - 2 - 3 - 0 - 12 - 1 = -18 \neq 0.$$

Обернена матриця існує. Знаходимо алгебраїчні доповнення елементів визначника матриці A. Дістаємо

$$A_{11} = \begin{vmatrix} 0 & 2 \\ 3 & 1 \end{vmatrix} = -6; \qquad A_{12} = -\begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = -(1 - (-2)) = -3;$$

$$A_{13} = \begin{vmatrix} 1 & 0 \\ -1 & 3 \end{vmatrix} = 3; \qquad A_{21} = -\begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} = -(1 + 3) = -4;$$

$$A_{22} = \begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} = 2 - 1 = 1 \quad A_{23} = -\begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} = -(6 + 1) = -7;$$

$$A_{31} = \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2; \qquad A_{32} = -\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = -(4 + 1) = -5$$

$$A_{33} = \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = -1.$$

Тоді

$$A^{-1} = -\frac{1}{18} \begin{pmatrix} -6 & -4 & 2 \\ -3 & 1 & -5 \\ 3 & -7 & -1 \end{pmatrix} = \begin{pmatrix} \frac{6}{18} & \frac{4}{18} & -\frac{2}{18} \\ \frac{3}{18} & -\frac{1}{18} & \frac{5}{18} \\ -\frac{3}{18} & \frac{7}{18} & \frac{1}{18} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{9} & -\frac{1}{9} \\ \frac{1}{6} & -\frac{1}{18} & \frac{5}{18} \\ -\frac{1}{6} & \frac{7}{18} & \frac{1}{18} \end{pmatrix}.$$

Приклад № 8. Знайти матрицю X, якщо AX=B і $A=\begin{pmatrix} 4 & 1 \\ 2 & -1 \end{pmatrix}$,

$$B = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}.$$

. Помножимо обидві частини рівняння AX=B на матрицю A^{-1} . Тоді A^{-1} AX= $A^{-1}B$ або $X=A^{-1}B$, оскільки A^{-1} A=E і EX=E. Знаходимо A^{-1} . Маємо $\det A=\begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix}=-4-2=-6$.

Знаходимо алгебраїчні доповнення елементів визначника матриці A. Дістаємо

$$A_{11}=-1,\quad A_{12}=-2,\quad A_{21}=-1,\quad A_{22}=4.$$
 Маємо $A^{-1}=-\frac{1}{6}\begin{pmatrix} -1 & -1 \\ -2 & 4 \end{pmatrix}=\frac{1}{6}\begin{pmatrix} 1 & 1 \\ 2 & -4 \end{pmatrix}.$ Тоді $X=\frac{1}{6}\begin{pmatrix} 1 & 1 \\ 2 & -4 \end{pmatrix}\begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}=\frac{1}{6}\begin{pmatrix} 3+1 & 1+0 \\ 6-4 & 2-0 \end{pmatrix}=\frac{1}{6}\begin{pmatrix} 4 & 1 \\ 2 & 2 \end{pmatrix}.$

3 Системи лінійних алгебраїчних рівнянь

Система

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = h_1, \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = h_2, \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = h_3.
\end{cases} (1.9)$$

називається неоднорідною, якщо принаймні одна із правих частин рівнянь h_i , i=1,2,3, не дорівнює нулю. Якщо всі $h_1=h_2=h_3=0$, то така система називається однорідною. Коефіцієнти системи a_{ij} , i,j=1,2,3 - числа, x_1 , x_2 , x_3 - невідомі.

Кількість рівнянь визначає порядок системи. Система (1.9) – система третього порядку.

Визначник, складений із коефіцієнтів при невідомих, називається головним визначником системи (1.9):

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}. \tag{1.10}$$

3.1 Розв'язання неоднорідної системи лінійних рівнянь, якщо $\Delta \neq 0$.

Якщо $\Delta \neq 0$, то існує єдиний розв'язок x_1, x_2, x_3 системи (1.10), який можна знайти

- за формулами Крамера;