Automata and Turing Machines

6CCS3COM Computational Models

Josh Murphy

Contents

- Finite-state automata
- Pushdown automata
- Turing Machines

Formal languages

- ullet An **alphabet** ${\mathcal X}$ is a *finite* set of atomic symbols.
 - $\mathcal{X} = \{x_0, x_1, ..., x_n\}$
 - e.g. $B = \{0, 1\}$
 - e.g. $C = \{a, b, c, d, ..., z\}$
- A word (or string) $w \in \mathcal{X}^*$, over an alphabet \mathcal{X} , is a *finite* sequence of symbols taken from \mathcal{X} .
 - $\epsilon \in \mathcal{X}^*$, the empty string is a valid word over any alphabet.
 - e.g. All binary strings, $B^* = \{0, 1, 00, 01, 10, 11, ...\}$
 - e.g. All lowercase character strings, $C^* = \{a, aa, abc, hello, ...\}$
- A language \mathcal{L} is a subset of words.
 - $\mathcal{L} \subseteq \mathcal{X}^*$
 - e.g. All binary numbers, $N = \{0, 1, 10, 11, ...\} \subseteq B^*$
 - e.g. English words, $E = \{a, hello, ...\} \subseteq C^*$
 - Usually defined by a grammar, rather than an explicit set.
- Does a given word belong to a given language?
 - Solvable by abstract machines

Chomsky hierarchy

- Depending on the form of the language, identifying valid words can be of varying difficulty.
- The Chomsky hierarchy categorises languages into collections according to their difficulty.

Туре	Abstract Machine
Type-0	Turing Machine
Type-1	Linear-bounded Turing Machine
Type-2	Pushdown Automata
Type-3	Finite Automata

Easiest

 Each level of the hierarchy has a corresponding abstract machine, which have varying memory capabilities.

Finite Automata

- $\mathcal{X} = \{5p, 10p, 20p\}$
- \bullet $\,\mathcal{L}=$ any sequence of coins adding exactly to 20p.

• Is [**5**, **10**, **5**] a valid word?

• Is [5, 10, 5] a valid word?

• Is [**5**, **10**, **5**] a valid word?

- Is [**5**, **10**, **5**] a valid word?
 - Automaton says: Yes! It terminates in an accepting state.

- Is [**10**, **5**] a valid word?
 - Automaton says: **No!** It terminates in a non-accepting state.
- Is [10, 5, 10] a valid word?
 - Automaton says: No! There is not a valid transition.

Finite automata: formal definition

- A **finite automaton** is a tuple $(\mathcal{X}, \mathcal{Q}, q_i, \mathcal{F}, \delta)$, where:
 - X is an alphabet (finite set of atomic symbols);
 - $Q = \{q_0, q_1, ..., q_n\}$ is a finite set of states;
 - $q_i \in \mathcal{Q}$ is the initial state;
 - $F \subseteq \mathcal{Q}$ is the set of accepting states; and
 - $\delta: \mathcal{Q} \times \mathcal{X} \to \mathcal{Q}$ is the transition function.
- The language associated with a finite automaton A is the set of words it accepts, denoted L(A).

Exercise

- 1. Draw the automaton ($\{a\}$, $\{q_0, q_1\}$, q_0 , $\{q_0\}$, δ) where:
 - $\delta(q_0, a) = q_1$
 - $\delta(q_1, a) = q_0$
- 2. Give an informal description of the language the above automaton is associated with.
- 3. Build a finite automaton, with $\mathcal{X} = \{0, 1\}$, to recognise:
 - The language of the strings of 0s of any length.
 - The language of the strings of 0s and 1s that contain a 1 in the 2nd position.

Non-deterministic finite automata

- Our previous definition of finite automata was deterministic: the co-domain of the transition was a single state.
- Finite automata can also be non-deterministic: the co-doamin of the transition can be a set of states.
- A non-deterministic finite automaton is a tuple $(\mathcal{X}, \mathcal{Q}, q_i, F, \delta)$, where:
 - X is an alphabet (finite set of atomic symbols);
 - $Q = \{q_0, q_1, ..., q_n\}$ is a finite set of states;
 - $q_i \in \mathcal{Q}$ is the initial state;
 - $F \subseteq \mathcal{Q}$ is the set of accepting states; and
 - $\delta: \mathcal{Q} \times (\mathcal{X} \cup \epsilon) \to \mathcal{P}(\mathcal{Q})$ is the transition function, where:
 - $\mathcal{P}(\mathcal{Q})$ is the power set of \mathcal{Q}).
 - $\bullet \ \epsilon$ is an empty transition label that can be taken at any point when reading a word.
- A word is accepted if there is any trace from the initial state to an
 accepting state.

Example: Non-deterministic finite automata

- Is **1011** a valid word?
 - $p \rightarrow^1 q$, non-accepting trace
 - $p \rightarrow^1 p \rightarrow^0 p \rightarrow^1 q$, non-accepting trace
 - $p \rightarrow^1 p \rightarrow^0 p \rightarrow^1 p \rightarrow^1 q$, accepting trace
 - ullet $p
 ightharpoonup^1 p
 ightharpoonup^0 p
 ightharpoonup^1 p
 ightharpoonup^1 p$, non-accepting trace
- Automaton says: **Yes!** There is at least one accepting trace.

Non-deterministic vs. deterministic finite automata

- Non-deterministic and deterministic finite automata are computationally equivalent.
 - A language can be recognised by a non-deterministic finite automata iff the language can be recognised by a deterministic finite automata.
- Exercise: Build a deterministic finite automaton that recognises the same language as the non-deterministic automaton on the previous slide.

The power of finite automata

- Finite automata have no 'memory'.
 - They can have no knowledge of previous state.
- This limits the languages a finite automata can be associated with.
 - Only the simplest languages in the Chomsky hierarchy can be associated with them.
 - These are called **regular languages**.
- So, what determines if a language is regular?
 - Regular languages are closed under basic set operations (e.g. union and intersection).
 - A language that is not pumpable is not regular. In other words, a regular language must be pumpable.

Pumping Lemma

Not examinable

Pumping Lemma:

- Let L be a regular language. There exists a constant n such that if z is any given word in L with more than n symbols, then there are three words u, v, w such that z can be written as the concatenation uvw where:
 - the length of uv is less than or equal to n,
 - ullet the length of v is greater than or equal to 1, and
 - for any $i \ge 0$, $uv^i w \in L$ where v^i represents the word v repeated i times.
- If a language does not obey the pumping lemma then it cannot be associated with a finite automata.

Exercise

- 1. Build a finite automata that recognises the language, with $\mathcal{X} = \{(,)\}$, that has balanced parentheses.
 - e.g. (()()) is recognised but ((())() is not.

Pushdown Automata

Pushdown automata

- Pushdown automata (PDA) are finite automata but with a stack.
 - This makes them more powerful, and allows them to be associated with more languages in the Chomsky hierarchy.

Stacks

- Stacks are a specialised form of memory, where:
 - only the top element of the stack can be read (pop) and in the process it is removed from the stack, and
 - new elements must be added to the top of the stack (push).
- Stacks in PDA store symbols.
 - The stack starts empty.
 - Each transition, a symbol can be popped from the stack, and a symbol can be pushed to the stack.
 - \bullet We assume we can always push and pop empty ϵ on the stack, without modifying the stack.

PDA: formal definition

- A **PDA** is a tuple $(\mathcal{X}, \mathcal{Q}, \Gamma, q_i, F, \delta)$, where:
 - \mathcal{X} is an alphabet (finite set of atomic symbols);
 - $Q = \{q_0, q_1, ..., q_n\}$ is a finite set of states;
 - Γ is the set of symbols that can be stored on the stack;
 - $q_i \in \mathcal{Q}$ is the initial state;
 - ullet $F\subseteq \mathcal{Q}$ is the set of accepting states; and
 - $\delta: \mathcal{Q} \times (\mathcal{X} \cup \epsilon) \times (\Gamma \cup \epsilon) \to \mathcal{Q} \times (\Gamma \cup \epsilon)$ is the transition function. Pop Push
- The transition function now maps a (state, letter, symbol) to a (state, symbol).
 - The symbol in the domain is the symbol to be popped.
 - The symbol in the codomain is the symbol to be pushed.
 - If the symbol is ϵ (empty) then nothing is to be popped/pushed.
- We also allow transitions to be labelled ϵ .
 - Note: this makes PDAs non-deterministic.
- A word is accepted if there is any trace from the initial state to an
 accepting state.

- Is **0011** a valid word?
- Transition notation: (a, b); c
 - a: the next character of the word
 - b : the symbol to be popped from the stack
 - ullet c: the symbol to be pushed to the stack

• Is **0011** a valid word?

• Is **0011** a valid word?

• Is $00 \in 11$ a valid word?

• Is **0011** a valid word?

• Is **0011** a valid word?

- Is **0011**€ a valid word?
 - Automaton says: Yes!

Exercises

- 1. Is ϵ a valid word?
- 2. Is **1100** a valid word?
- 3. Is **00011** a valid word?
- 4. **Challenge:** Build a PDA that recognises the language, with $\mathcal{X} = \{(,)\}$, that has balanced parentheses.

The power of PDA

- PDA have a limited (stack) memory.
- This limits the languages a PDA can be associated with.
 - PDA are strictly more powerful than finite automata.
 - PDA can recognise Type-2 and Type-3 languages in the Chomsky hierarchy.
 - These are called **context-free languages**.
- So, what determines if a language is context-free?
 - There is a similar pumping lemma for PDA that demonstrate their limitation (see textbook, p.23, for intuition of this proof).

Turing Machines

Turing Machines

- Turing Machines (TM) are similar to finite automata, but they have an infinite tape for memory.
- TMs also have a **head** that moves left and right along the tape.
 - The head can write a symbol to the tape.
 - The head can **read** a symbol from the tape.

TM: formal definition

- A **TM** is a tuple $(\mathcal{X}, \mathcal{Q}, \Gamma, q_i, F, \delta)$, where:
 - ullet ${\cal X}$ is an alphabet (finite set of atomic symbols);
 - $Q = \{q_0, q_1, ..., q_n\}$ is a finite set of states;
 - Γ is the set of symbols that can be stored on the tape, we assume $\{\circ, \bullet\} \subseteq \Gamma$, which are *blank* and *marker* symbols;
 - $q_i \in \mathcal{Q}$ is the initial state;
 - ullet $\{q_{\mathsf{accept}},q_{\mathsf{reject}}\}\subseteq\mathcal{Q}$ are terminating states; and
 - $\delta: \mathcal{Q} \times \Gamma \to \mathcal{Q} \times \Gamma \times \{\leftarrow, \rightarrow\}$ is the transition function.
- The transition function now maps a (state, symbol) to a (state, symbol, direction).
 - The direction tells the head which way to move.
 - Transition notation: read / write / move
- The initial state of the tape is the input word.
- Iff the TM reaches q_{accept} then the word is accepted.

TM Example

• Exercise: What is the language associated with this TM?

Variants of TM

- There are many variations to TMs, for example:
 - Non-deterministic transitions.
 - Different head movements.
 - Multiple tapes.
 - Multi-dimensional tapes.
 - Symbols (purest form has just two symbols: 0, 1).
- All variants of TMs are computationally equivalent.

The Universal TM

- Turing machines can be encoded onto a tape.
- This allows a TM $\,U$ to take another TM $\,A$ as input.
 - U can simulate A
 - U can attempt to establish properties of A (e.g. if it halts or not.
 - *U* is called **Universal Turing Machine**.

The power of TM

- TMs are strictly more powerful than PDA.
- TMs can be associated with Type-0 languages in the Chomsky hierarchy.
- These are called **recursively-enumerable languages**.
- However, remember the **Halting Problem**!
 - There are languages that are not recognisable, even by a TM!

TMs as partial functions

- TMs implement partial functions.
 - They map words to (word, boolean) tuples.
- Since TMs can get caught in continuous loops, its possible for a TM to not return an output for a given word.
 - Hence why they are only partial functions.
- A total function that can be implemented by a TM is called **Turing** computable.
- Turing and Church proved all computable functions can be defined in terms of TM.
 - If a function is computable, it is Turing computable!

TMs and Imperative Programming

- TMs are the theoretical basis of **imperative programming**.
 - e.g. Java, Python, C...
- Soon, we will look at an equivalent model of computation that is the basis of functional programming
 - e.g. Haskel, Lisp, WolframAlpha...