+ Поехали :)

Теория вероятностей! 2019-09-27

Личные	Идентификационный номер	
Фамилия:		
Имя:		
Подпись:		
		3
	Проверено	
В этом блоке не нужно ничего	менять.	
Тип Код экзам		
030 19092700)778	
Отмечайте ответы аккуратно крес	стиком: 🛚 Не отмечено: 🗌	или
Этот лист будет сканироваться. Н Засчитываюця только корректно		1спользуйте синюю или чёрную ручку.
Ответы 1 - 15	Ответы 16 - 30	
а б ц д е 1 🔲 🔲 🔲	а б ц д е 16 🗌 🔲 🔲 🗀]
2 🔲 🔲 🔲 🔲	17 🔲 🔲 🔲 🗀]
3 🗌 🗎 🗎 🗎	18 🗌 📗 🔲 🗀]
4 🔲 🔲 🔲 🔲	19	
5	20	
6 🗌 🗎 🗎 🗎	21 🔲 🔲 🔲 🗀]
7 🗌 🗎 🗎 🗎	22 🔲 🔲 🔲 🗀]
8	23 🔲 🔲 🔲 🗀]
9	24	
10 📙 📙 📙	25	
11 🔲 🔲 🔲 🔲	26]
12 🔲 🔲 🔲 🔲	27 🔲 🔲 🔲 🗀	
13	28	
	29]
15 📗 📗 📗 📗	30 <u> </u> <u> </u> <u> </u> <u> </u> <u>е</u>	1

- 1. Пусть X_1, \ldots, X_n случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Известно, что оценка максимального правдоподобия параметра λ равна \bar{X} . Чему равна оценка максимального правдоподобия для $1/\lambda$?
 - (a) $\ln \bar{X}$
 - (б) \bar{X}/n
 - (ц) $1/\bar{X}$
 - (д) \bar{X}
 - (e) $e^{\bar{X}}$
- 2. Имееця случайная выборка размера 50 из нормального распределения. При проверке гипотезы о равенстве дисперсии заданному значению при неизвестном математическом ожидании используеця статистика, имеющая распределение
 - (a) χ_{49}^2
 - (б) t_{n-2}
 - (ц) $F_{49,50}$
 - (д) N(0,1)
 - (e) t_{n-1}
- 3. Случайная выборка состоит из одного наблюдения X_1 , которое имеет плотность распределения

$$f(x; \theta) = \begin{cases} \frac{1}{\theta^2} x e^{-x/\theta} & \text{при } x > 0, \\ 0 & \text{при } x \leq 0, \end{cases}$$

где $\theta>0$. Чему равна оценка неизвестного параметра θ , найденная с помощью метода максимального правдоподобия?

- (a) X_1
- (б) In X₁
- (ц) $X_1/2$
- (д) $\frac{X_1}{\ln X_1}$
- (e) $1/\ln X_1$
- 4. Последовательность оценок $\hat{\theta}_n$ называеця состоятельной для параметра θ , если
 - (a) $\hat{ heta}_n \overset{P}{ o} heta$ при $n o \infty$
 - (6) $Var(\hat{\theta}_n) = (\theta)^2/n$
 - (ц) $\mathbb{E}(\hat{\theta}_n) = \theta$
 - (д) $\mathbb{E}((\hat{ heta}_n- heta)^2) o 0$ при $n o\infty$
 - (e) $\mathbb{E}((\hat{\theta}_n \theta)^2) \leq \mathbb{E}((\tilde{\theta} \theta)^2)$ для всех $\tilde{\theta} \in K$
- 5. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2 40 раз и 3 20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Пирсона равно
 - (a) 4
 - (б) 7
 - (ц) 6
 - (д) 5
 - (e) 8

- 6. Пусть $X_1, ..., X_n$ случайная выборка из распределения Бернулли с параметром $p \in (0; 1)$. Чему равна информация Фишера о параметре p, заключенная в двух наблюдениях случайной выборки?
 - (a) $\frac{2}{p(1-p)}$
 - (б) 2*p*
 - (ц) 2p(1-p)
 - $(д) \frac{2}{p}$
 - (e) 2(1-p)
- 7. Нормальные случайные величины $X \sim \mathcal{N}(2,5)$ и $Y \sim \mathcal{N}(5,2)$ имеют совместное нормальное распределение. Они независимы, если:
 - (a) Corr(X, Y) = -1
 - (6) Var(XY) = Cov(X, Y)
 - (ц) $\mathbb{E}(XY) = 10$
 - (д) $\mathbb{P}(X > Y) = \mathbb{P}(Y > X)$
 - (e) Corr(X, Y) = 1
- 8. Математическое ожидание оценки дисперсии $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ для выборки из распределения Пуассона с $\lambda = 3$, равняеця
 - (a) 1
 - (б) 9/n
 - (ц) 3
 - (д) 3/n
 - (e) 9
- 9. Пусть $X_1, \, \dots, \, X_n$ случайная выборка из распределения с плотностью распределения

$$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0; \theta], \\ 0 & \text{при } x \notin [0; \theta], \end{cases}$$

где $\theta>0$. Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

- (a) $\sqrt{\sum_{i=1}^{n} X_{i}^{2}}$
- (6) $\sqrt{\frac{2}{n} \sum_{i=1}^{n} X_i^2}$
- (ц) $\frac{3}{2}\bar{X}$
- (д) $\sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$
- (e) $\frac{2}{3}\bar{X}$
- 10. Даны выборки объёма n из равномерного на отрезке [0,1] распределения. Выборочный начальный момент второго порядка стремиця по вероятности при $n \to \infty$ к
 - (a) 1/3
 - (б) 1
 - (4) 1/4
 - (д) 1/2
 - (e) 1/12

- 11. Каждый из трёх толстяков, независимо друг от друга, за день съедает количество пищи, являющееся хи-квадрат случайной величиной с тремя степенями свободы. Какой суммарный объем съеденного тремя толстяками за день будет превышен с вероятностью 0.05?
 - (a) 0.35
 - (б) 16.92
 - (ц) 3.32
 - (д) 7.81
 - (e) 21.66
- 12. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбираеця 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?
 - (a) $F_{20.30}$
 - (б) t_{48}
 - (ц) χ^2_{48}
 - (д) $F_{29,19}$
 - (e) χ^2_{49}
- 13. Если функция правдоподобия пропорциональна $a^2(1-a)^6$, априорная плотность пропорциональна $\exp(-a)$, то апостериорная плотность параметра a пропорциональна
 - (a) $0.5a^2(1-a)^6 + 0.5 \exp(-a)$
 - (б) $\frac{\exp(-a)}{a^2(1-a)^6}$
 - $(\mu) \frac{a^2(1-a)^6}{\exp(-a)}$
 - (д) $0.5a^2(1-a)^6 + 0.5 \exp(a)$
 - (e) $\frac{a^2(1-a)^6}{\exp(a)}$
- 14. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2 40 раз и 3 20 раз. Андрей Николаевич хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Колмогорова равно
 - (a) 2/5
 - (б) 2/15
 - (4) 3/4
 - (д) 1/4
 - (e) 3/5
- 15. Пусть X_1, \ldots, X_n случайная выборка и $\ell(\theta)$ её логарифмическая функция правдоподобия. Тестируеця гипотеза $H_0: \theta=1$. Известно, что $\max_{\theta} \ell(\theta)=-10$, а $\ell(1)=-20$. Чему равно значение статистики отношения правдоподобия?
 - (a) 20
 - (б) O
 - (ц) 10
 - (д) -20
 - (e) -10

- 16. При построении доверительного интервала для отношения дисперсий в двух выборках размером в 25 и 16 наблюдений было получено значение тестовой статистики 5. Если оценка дисперсии по одной из выборок равна 3, то другая оценка дисперсии может быть равна
 - (a) 41
 - (б) 80
 - (ц) 0.8
 - (д) 0.6
 - (e) 30
- 17. Пусть $X \sim \mathcal{N}(0,1)$ и $Y \sim \chi^2(4)$ независимые стандартная нормальная и хи-квадрат с четырьмя степенями свободы случайные величины соотвецтвенно. Вероятность $\mathbb{P}(X^2 > Y)$ равна
 - (a) 0.322
 - (б) 0.592
 - (ц) 0.679
 - (д) 0.643
 - (e) 0.791
- 18. П-значение теста и мощность теста
 - (а) Равны
 - (б) Не связаны никаким строгим соотношением
 - (ц) П-значение всегда больше мощности
 - (д) П-значение всегда меньше мощности
 - (е) Дают в сумме 1
- 19. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2 40 раз и 3 20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. При верной H_0 критерий Пирсона имеет распределение
 - (a) χ_1^2
 - (б) χ_3^2
 - (ц) $\mathcal{N}(0;1)$
 - (д) χ^2_{99}
 - (e) χ_2^2
- 20. Вася считает, что контрольные по макроэкономике и статистике нравяця студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика 50. При проверке этой гипотезы, тестовая статистика может иметь распределение
 - (a) t_{100}
 - (б) $\mathcal{N}(0,1)$
 - (4) t_{99}
 - (д) t₉₈
 - (e) t_{198}

- 21. Рассмотрим алгоритм Метрополиса-Гастингса для получения выборки параметра с апостериорной плотностью пропорциональной t^2 . Предлагаемый переход из a в b задаёця правилом, b=a+Z, где $Z\sim \mathcal{N}(0;4)$. Вероятность одобрения перехода из точки 0.5 в точку 0.3 равна
 - (a) 0.6
 - (б) 1
 - (ц) 0.5
 - (д) 0.64
 - (e) 0.36
- 22. Оценка $\hat{\theta}_n$ называеця эффективной оценкой параметра θ в классе оценок K, если
 - (a) $Var(\hat{\theta}_n) = (\theta)^2/n$
 - (б) $\mathbb{E}((\hat{\theta}_n \theta)^2) \to 0$ при $n \to \infty$
 - (ц) $\mathbb{E}((\hat{ heta}_n- heta)^2)\leq \mathbb{E}((ilde{ heta}- heta)^2)$ для всех $ilde{ heta}\in K$
 - (д) $\mathbb{E}(\hat{\theta}_n) = \theta$
 - (e) $\hat{ heta}_n \stackrel{\mathbb{P}}{ o} heta$ при $n o \infty$
- 23. Дана реализация выборки: -1, 1, 0, 2. Эмпирическая (выборочная) функция распределения в точке x = 0.5 принимает значение равное
 - (a) 0.25
 - (б) O
 - (ц) 1
 - (д) 0.8
 - (e) 0.5
- 24. Рассмотрим хи-квадрат случайную величину с *п* степенями свободы. Укажите множество всех возможных значений, принимаемых данной случайной величиной с ненулевой вероятностью:
 - (a) [0, n]
 - (б) $(0, \infty)$
 - $\left(\mathsf{u}\right)\ \left\{x\in R: \sum_{i=1}^n x^2=1\right\}$
 - (д) $\{0, 1, ..., n\}$
 - (e) $[0, n^2]$
- 25. При построении доверительного интервала для разности долей при больших выборках размеров m и n используеця распределение
 - (a) $F_{m-1,n-1}$
 - (б) t_{m+n}
 - (ц) N(0;1)
 - (д) $F_{n,m}$
 - (e) t_{m+n-2}
- 26. Вася считает, что контрольные по макроэкономике и статистике нравяця студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика 50. При расчётах Вася получил П-значение равное 0.0038. Это означает, что гипотеза
 - (a) отвергаеця на уровне значимости 5%, но не отвергаеця на 1%
 - (б) отвергаеця на уровне значимости 1%, но не отвергаеця на 5%
 - (ц) не отвергаеця на любом возможном уровне значимости
 - (д) отвергаеця на любом возможном уровне значимости
 - (e) отвергаеця на уровне значимости 1%

- 27. Вася считает, что контрольные по макроэкономике и статистике нравяця студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика 50. При расчётах Вася получил П-значение равное 0.0038. Это означает, что гипотеза
 - (а) отвергаеця на уровне значимости 1%
 - (б) не отвергаеця на любом возможном уровне значимости
 - (u) отвергаеця на уровне значимости 5%, но не отвергаеця на 1%
 - (д) отвергаеця на уровне значимости 1%, но не отвергаеця на 5%
 - (е) отвергаеця на любом возможном уровне значимости
- 28. Случайные величины X и Y имеют совместное нормальное распределение, а $x \in [1,2]$ константа. При любом x верно неравенство
 - (a) $Corr(X, Y) \neq 0$
 - (6) $Var(Y|X = x) \ge Var(Y)$
 - (ц) $\mathbb{E}(Y|X=x) \geq \mathbb{E}(Y)$
 - (д) $\mathbb{E}(Y|X=x) \leq \mathbb{E}(Y)$
 - (e) $Var(Y|X = x) \leq Var(Y)$
- 29. Истинное значение параметра θ равно 2, в случайной выборке 100 наблюдений, а информация Фишера о параметре θ , заключенная в одном наблюдении равна $I_1(\theta) = 9$. Распределение оценки максимального правдоподобия $\hat{\theta}$ похоже на
 - (a) $\mathcal{N}(2, 1/900)$
 - (б) $\mathcal{N}(2, 9)$
 - (ц) $\mathcal{N}(2, 1/3)$
 - $(д) \mathcal{N}(2, 1/9)$
 - (e) $\mathcal{N}(2, 1/30)$
- 30. По 100 наблюдениям за нормально распределенной случайной величиной с известной дисперсией, Вася проверял гипотезу $H_0: \mu=10$ при альтернативной гипотезе $H_1: \mu>10$. По данным оказалось, что выборочное среднее $\bar{X}=12$. Вася рассчитал тестовую статистику и П-значение. После этого Вася решил попробовать изменить альтернативную гипотезу на $H_1: \mu \neq 10$. П-значение при этом:
 - (а) Упало вдвое
 - (б) Выросло, насколько неизвестно
 - (ц) Не изменилось
 - (д) Выросло вдвое
 - (е) Упало, насколько неизвестно