Fig.1


```
30
(c1) reward(Color, Value): - color(Color); value(Value);
     color(Color):- red(Color).
(c2)
(c3)
     color(Color):- black(Color).
(c4) ! value(Value):- face(Value).
     value(Value):- numbered(Value).
(c5)
     red(Color):- Color = hearts.
(c6)
(c7)
     red(Color):- Color = diamonds.
(c8) | black(Color):- Color = spades.
(c9) | black(Color): - Color = clubs.
(c10) face(Value): - Value = king.
(c11); face(Value): - Value = queen.
(c12); face(Value): - Value = knight.
(c13) numbered(Value):- Value = 1.
(c14); numbered(Value):- Value = 2.
(c15) numbered (Value): - Value = 3.
(c16); numbered(Value): - Value = 4.
(c17); numbered(Value):- Value = 5.
(c18) numbered(Value):- Value = 6.
(c19) numbered (Value): - Value = 7.
(c20)! numbered (Value): - Value = 8.
(c21) numbered (Value): - Value = 9.
(c22) numbered(Value): - Value = 10.
```

Fig.3

Fig.4

Input:
 an example label e,
 a proof tree T,
 proof tree label t,
 a set of database tables D
Output:
 a set of database tables D

For each sequence $n_0, ..., n_k$ in the tree T, where n_0 is the root of T and n_{i+1} is a child of n_i in T, for all $0 \le i < k$, do

Let n be a table name obtained by a function from the sequence of pairs $(c_0,1), (c_1,s_1), \ldots, (c_k,s_k)$, where c_i is the clause used in node n_i , for $0 \le i \le k$ and where s_i is the s_i :th child of n_{i-1} , for $0 < i \le k$.

If there is no table named n in D, create such a table with name n and two fields, Example and Tree, and add the table to D.

Add the tuple Example = e and Tree = t to the table named n.

41

Fig.5

Fig.6

Fig. 7

```
Input:
 a partial proof tree T,
 an example label e,
Output:
a database query Q —72
Let D be the empty set
Let C be an empty conjunction
For each sequence n_0, ..., n_k in the partial proof tree T, where n_0 is the root of T and
n_{i+1} is a child of n_i in T, for all 0 \le i \le k, do
 Let n be a table name obtained by a function from the sequence of pairs
 (c_0,1), (c_1,s_1), \ldots, (c_k,s_k), where c_i is the clause used in node n_i, for 0 \le i \le k
       and where s_i is the s_i:th child of n_{i-1}, for 0 < i \le k.
 Add n to D
 Add the conjunct n.Example = e to C
Let C' = C
For each conjunct n_i. Example = e in C = (n0.Example = e) AND ... AND
(n_m.Example = e), where i < m, do
 Add the conjunct n_i. Tree = n_{i+1}. Tree to C'
Let Q = 'SELECT * FROM' + D + 'WHERE' + C'
```

Fig. 8

Fig.9

Replacement sheet 8/10

Fig. 10

SELECT *

FROM c1_1_c2, c1_2_c4

WHERE c1_1_c2.Example = 'e1'

AND c1_2_c4.Example = 'e1'

Fig. 11

Fig. 12

```
88
(r2) reward(Weight, Length):-
                     Weight > 3,
                     split_number(Weight),
                     Length =< 8.2,
                     split_number(Length).
```

Fig 13.

Fig. 14

Table s1 Example Tree e2 t2 Table s1_1 split_number Example Tree e2 t2 Table s1_2 split_number Tree Example e2 t2 4

Fig. 15

