Cryptography 1/17

Reagan Shirk January 17, 2020

Last Time

- Bit complexity very important in cryptography
- Easy and hard the gap between easy and hard is huge in cryptography
 - You want the right people to have easy access, the wrong people to have hard access
- Size of representations an integer has a size
 - -N = integer, n = size
 - $-n = log_2(N)$
 - You want to make sure that your algorithm is polynomial in n, not N

Multiplication

- Mathematically, we look for $M \times N$
 - This algorithm is v bad when the numbers are big, you end up with an exponential time algorithm
- What is the better algorithm?
 - Long multiplication easy to implement in binary
 - The binary numbers have n bits, so the complexity is $O(n^2)$
 - Why is it n^2 ?
 - * With binary numbers of length n, the result will be length 2n and you will have to perform n number of operations, and somehow this comes to n^2
 - · Ohhh because each operation requires O(n) so you have n operations that require n time and end up with n^2 overall
- There's also a divide and conquer method called Karatsuba that has $O(n^{1.585})$
- FFT is even better with $O(nlog^2(n))$
- We want to get to O(n) in the future but we haven't gotten there yet
- We've gone over multiplication and addition, what next?
 - Not subtraction, it's the same as addition
 - Division? You can do long division, it's an $O(n^2)$ algorithm that's very similar to multiplication
- This is all if you use binary, what if you use something else? Like messages
 - You can convert the message into a binary number

Base Change

- Turn decimal into binary, etc
- We have to do this in our homework
- Base 26 because of the alphabet
 - Divide number by 26
- ASCII unicode

Primes and Divisors

- Unique factorization: an integer can be written uniquely as a product of primes, up to reordering, I still don't entirely understand this
- Divisors:
 - -a is a divisor of n if there exists a k in \mathbb{Z} such that n=ak
 - * This is denoted as a|n
 - * If two integers do not divide, it's written as $n \nmid a$
- Theorem (we should be able to prove):
 - If a|b and b|c, then we conclude that a|c, assuming that $a,b,c\in\mathbb{Z}$
 - * This shows that division is transitive
 - If a|b and b|a, then we conclude that |a| = |b|
 - If a|b and a|c, then we conclude that a|b+c
- Proof of third theorem:

$$a|b \Rightarrow \exists k_1 \in \mathbb{Z}$$
 st $b = k_1 a$
 $a|c \Rightarrow \exists k_2 \in \mathbb{Z}$ st $c = k_2 a$
 $\Rightarrow b + c = k_1 a + k_2 a = (k_1 + k_2) a$
Let $k_1 + k_2 = d \Rightarrow (I \text{ added this step for clarity})$
 $b + c = da = 7 a|b + c$

- Aside: In sage, if you need the set notation for something, it's just the letter twice
 - i.e. $\mathbb{Z} = ZZ$
- No idea what he's talking about but I'll write it down
 - In general, you can factor a number n into $n = P_1^{e_1} \cdots P_n^{e_n}$, which means the number of divisors of n is $2(e_1 + 1)(e_2 + 1) \cdots (e_n + 1)$