

KTH MECHATRONICS ADVANCED COURSE

MF2063, HT 2018 FINAL REPORT

ESS-NW/ESS-CAR

Jonas Ekman Yini Gao Jacob Kimblad LEON FERNANDEZ FREDRIK HYYRYNEN YIFAN RUAN

Abstract

Abstract starts here, what should be included:

The problem issue subject being addressed

How the problem is tackled

Overview of the results, and indication as to what level they solve the problem.

Implications of the results

MF2063 KTH Mechatronics Advanced Cours	se
ESS-CAR/ESS-NW	
Leon Fernandez, leonfe@kth.se	

Final Report Version 1 2(12)

Contents

1	Introduction	5
	1.1 Background	5
	1.1.1 Background subsection blabla	5
	1.2 Project Description	5
	1.2.1 Project Description sub blabla	5
	1.3 Delimitations	5
	1.4 Readers guide / Report disposition	5
2	Literature Review and State of the Art	6
3	Methodology	7
	3.1 Engineering approaches?	7
	3.2 Tool-chains?	7
	3.3 Project management	7
4	Implementation	8
	4.1 System overview	8
	4.2 Communication between Beaglebones	8
	4.3 Communication between Beaglebone and Arduino	8
	4.4 Implementing the OS	8
	4.5 Implementing Arduinos	8
	4.6 Sensors	8
	4.6.1 Ultrasonic sensor	8
	4.6.2 Reflective object sensor	8
	4.6.3 Camera	8
	4.7 Controlling actuators	8
	4.7.1 Steering servo	8
	4.7.2 Motor ESC	8
5	Verification and Validation	9
6	Results	10
U		10
7	Discussion and Conclusion	11
8	Future Work	12

List of Figures

List of Tables

1 Introduction

This report presents the process and results of two projects "Embedded Service for Self-adaptive Network" (ESS-NW) and "Embedded Service for Self-adaptive Car" (ESS-CAR). This chapter describes the background of the two projects, then give a description of the projects' goals and motivation. Following this a short discussion of the delimitations we faced during the process of the project. A report disposition is presented in the end of this chapter.

- 1.1 Background
- 1.1.1 Background subsection blabla
- 1.2 Project Description
- 1.2.1 Project Description sub blabla
- 1.3 Delimitations
- 1.4 Readers guide / Report disposition

2 Literature Review and State of the Art

3 Methodology

- 3.1 Engineering approaches ?
- 3.2 Tool-chains?
- 3.3 Project management

4 Implementation

4.1 System overview

maybe put communication diagram here

- 4.2 Communication between Beaglebones
- 4.3 Communication between Beaglebone and Arduino
- 4.4 Implementing the OS
- 4.5 Implementing Arduinos
- 4.6 Sensors
- 4.6.1 Ultrasonic sensor
- 4.6.2 Reflective object sensor
- 4.6.3 Camera
- 4.7 Controlling actuators
- 4.7.1 Steering servo
- 4.7.2 Motor ESC

5 Verification and Validation

6 Results

7 Discussion and Conclusion

8 Future Work