Zusammenfassung Stochastik 3

© Tim Baumann, http://timbaumann.info/uni-spicker

Modell. Gegeben sei ein Parametrisches Modell, d. h.eine Zufallsgröße X, deren Verteilungsfunktion $P_X \in \{P_{\vartheta} \mid \vartheta \in \Theta \subset \mathbb{R}^n\}$ von einem Parameter ϑ abhängt.

Problem. Anhand einer **Stichprobe** $x_1, \ldots, x_n \in \mathbb{R}^1$ von X (d. h. x_1, \ldots, x_n sind Realisierung von iid ZGen $X_1, \ldots, X_n \sim P_X$) ist zu entscheiden, ob die sogenannte **Nullhypothese** $H_0: \vartheta \in \Theta_0 \subset \Theta$ oder eine **Gegenhypothese** $H_1: \vartheta \in \Theta_1 = \Theta \setminus \Theta_0$ angenommen oder abgelehnt werden soll.

Def. Der **Stichprobenraum** ist $(\mathbb{R}^n, \mathfrak{B}(\mathbb{R}^n), P_{\vartheta} \times \ldots \times P_{\vartheta})$

Terminologie. Die Hypothese H_i heißt **einfach**, falls $|H_i| = 1$, andernfalls **zusammengesetzt**.

Def. Ein (nichtrandomisierter) **Test** für H_0 gegen H_1 ist eine Entscheidungsregel über die Annahme von H_0 basierend auf einer Stichprobe, die durch eine messbare Abbildung $\varphi: \mathbb{R}^n \to \{0,1\}$ augedrückt wird und zwar durch

$$\varphi(x_1, \dots, x_n) = \begin{cases} 0 & \text{bei Annahme von } H_0, \\ 1 & \text{bei Ablehung von } H_0. \end{cases}$$

Def. Der Ablehungsbereich oder kritische Bereich von φ ist

$$K_n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \varphi(x_1, \dots, x_n) = 1\}.$$

Bem. Es gilt $\varphi = \mathbb{1}_{K_n}$.

Def. Ein **Fehler 1. Art** ist eine Ablehnung der Nullhypothese H_0 , obwohl H_0 richtig ist; ein **Fehler 2. Art** ist eine Annahme von H_0 , obwohl H_0 falsch ist.

Def. Die Güte- oder Machtfunktion des Tests φ ist

$$m_{\varphi}: \Theta \to [0,1], m_{\varphi}(\vartheta) := \mathbb{E}_{\vartheta} \varphi(X_1, \dots, X_n)$$

= $\mathbb{P}_{\vartheta}((X_1, \dots, X_n) \in K_n)$
= $(P_{\vartheta} \times \dots \times P_{\vartheta})(K_n)$

Die Gegenwsk. $(1-m_{\varphi}(\vartheta))$ heißt **Operationscharakteristik** von φ .

Bem. Es gilt

$$\mathbb{P}_{\vartheta}(\text{Fehler 1. Art}) = m_{\varphi}(\vartheta) \qquad \text{für } \vartheta \in \Theta_0,$$

$$\mathbb{P}_{\vartheta}(\text{Fehler 2. Art}) = 1 - m_{\varphi}(\vartheta) \text{ für } \vartheta \in \Theta_1.$$

Def. Ein Test $\varphi: \mathbb{R}^n \to \{0,1\}$ mit

$$\sup_{\vartheta \in \Theta_0} m_{\varphi}(\vartheta) \le \alpha$$

heißt α -Test o. Signifikanztest zum Signifikanzniveau $\alpha \in (0,1)$. Ein α -Test φ heißt unverfälscht (erwartungstreu, unbiased), falls

$$\inf_{\vartheta \in \Theta_1} m_{\varphi}(\vartheta) \ge \alpha.$$

Situation. Sei nun eine Stichprobenfunktion oder Teststatistik $T: \mathbb{R}^n \to \mathbb{R}^1$ gegeben. Wir wollen einen Test der einfachen Nullhypothese $H_0: \vartheta \in \Theta_0 = \{\vartheta_0\}$ entwickeln.

Def. $K_n^T \subset \mathbb{R}^1$ heißt kritischer Bereich der Teststatistik, falls

$$K_n = T^{-1}(K_n^T).$$

Bem. Es gilt

$$m_{\varphi}(\vartheta_0) = \mathbb{P}_{\vartheta_0} ((X_1, \dots, X_n) \in K_n) =$$

$$= \mathbb{P}_{\vartheta_0} ((T(X_1), \dots, T(X_n)) \in K_n^T) = \int_{K_n^T} f_T(x) \, \mathrm{d}x \le \alpha,$$

wobei f_T die Dichte von $T(X_1, \ldots, X_n)$ unter H_0 ist.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, σ bekannt und $\alpha \in (0, 1)$ vorgegeben. Zum Test von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ wählen wir als Statistik

$$T(X_1,\ldots,X_n) := \frac{\sqrt{n}}{\sigma} (\overline{X}_n - \mu_0) \text{ mit } \overline{X}_n := \frac{1}{n} (X_1 + \ldots + X_n).$$

Unter Annahme von H_0 gilt $T(X_1, \ldots, X_n) \sim \mathcal{N}(0, 1)$. Der Ablehnungsbereich der Statistik ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > z_{1-\alpha/2} \} \text{ mit } z_{1-\alpha/2} := \Phi^{-1}(1-\alpha/2).$$

Für $\alpha = 0,5$ gilt beispielsweise $z_{1-\alpha/2} \approx 1,96$.

Bem. Es gilt

$$\begin{split} t \in (K_n^T)^c &\iff |t| \le z_{1-\alpha/2} &\iff |\overline{X}_n - \mu_0| \le \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \\ &\iff \mu_0 \in \left[\overline{X}_n - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \overline{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right]. \end{split}$$

Letzteres Intervall wird Konfidenzintervall für μ_0 zum Konfidenzniveau $1-\alpha$ genannt.

Bsp. Sei wieder $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 aber diesmal unbekannt. Zum Testen von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ verwenden wir

$$\hat{T}(X_1,...,X_n) = \frac{\sqrt{n}}{S_n} (\overline{X}_n - \mu_0), \quad S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Dabei ist S_n die (korrigierte) Stichprobenvarianz. Man kann zeigen, dass $\hat{T}(X_1,\ldots,X_n)\sim t_{n-1}$ unter H_0 . Dabei ist t_m die Student'sche t-Verteilung mit m Freiheitsgraden.

Der Ablehnungsbereich ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > t_{n-1,1-\alpha/2} \}.$$

Bem. S_n^2 und \overline{X}_n sind unabhängig für $n \geq 2$.

Diskussion. • Je kleiner α ist, desto "nullhypothesenfreundlicher" ist der Test. Häufig verwendet wird $\alpha \in \{10\%, 5\%, 1\%, 0, 5\%\}$.

• Einseitige Tests: Die Gegenhypothese zu $H_0: \mu = \mu_0$ ist $H_1: \mu > \mu_0$. Die Nullhypothese wird nur abgelehnt, falls zu große Stichprobenmittelwerte \overline{x}_n vorliegen. Es ist dann $K_n^T = (z_{1-\alpha}, \infty)$.

Def. Es seien $X_1, \ldots, X_n \sim \mathcal{N}(0,1)$. Dann heißt die Summe $X_1^2 + \ldots + X_n^2 \sim \chi_n^2$ Chi-Quadrat-verteilt mit n Freiheitsgraden.

Def. Falls $X \sim \mathcal{N}(0,1)$ und $Y_n \sim \chi_n^2$ unabhängig sind, so heißt

$$\frac{X}{\sqrt{\frac{Y_n}{n}}} \sim t_n$$

t-verteilt mit *n*-Freiheitsgraden.

Lem. $\frac{n-1}{\sigma^2} S_n^2 \sim \chi_{n-1}^2$

Kor. \hat{T} aus dem zweiten obigen Bsp ist tatsächlich t-verteilt.

Def. Seien $Y_{n_i} \sim \chi_{n_i}^2$, i = 1, 2 zwei unabhängige ZGen. Dann heißt

$$\frac{Y_{n_1}/n_1}{Y_{n_2}/n_2} \sim F_{n_1,n_2}$$

F-verteilt (wie Fisher) mit (n_1, n_2) Freiheitsgraden.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit μ unbekannt. Wir testen $H_0: \sigma = \sigma_0$ vs. $H_1: \sigma \neq \sigma_0$ mit

$$T := \frac{n-1}{\sigma_0^2} S_n^2$$

Unter Annahme von H_0 gilt $T \chi_{n-1}^2$. Falls μ bekannt ist, muss man

$$\widetilde{T} := \frac{n}{\sigma_0^2} \widetilde{S}_n^2, \quad \widetilde{S}_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

als Statistik wählen. Unter Annahme von H_0 ist $\widetilde{T} \sim \chi_n^2$.

Bsp. Seien Stichproben $X_1^{(1)}, \ldots, X_{n_1}^{(1)} \sim \mathcal{N}(\mu_1, \sigma_1^2)$ und $X_1^{(2)}, \ldots, X_{n_2}^{(2)} \sim \mathcal{N}(\mu_2, \sigma_2^2)$ gegeben. Wir wollen $H_0: \sigma_1 = \sigma_2$ gegen $H_1: \sigma_1 \neq \sigma_2$ testen. Dazu verwenden wir

$$T = \frac{S_{X^{(1)}}^2}{S_{X^{(2)}}^2}, \quad S_{X^{(j)}}^2 \coloneqq \frac{1}{n-1} \sum_{i=1}^{n_j} \left(X_i^{(j)} - \overline{X}_n^{(j)} \right)^n.$$

Falls H_0 gilt, so ist $T \sim F_{n_1-1,n_2-1}$.

Bsp. Situation wie im letzten Beispiel mit $\sigma_1 = \sigma_2$. Wir testen $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$ mit

$$T = \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}} \cdot \frac{\overline{X}_{n_1}^{(1)} - \overline{X}_{n_2}^{(2)}}{S_{n_1, n_2}}, \quad S_{n_1, n_2}^2 = \frac{(n_1 - 1)S_{X^{(1)}}^2 + (n_2 - 1)S_{X^{(2)}}^2}{n_1 + n_2 - 2}$$

Unter H_0 gilt $T \sim t_{n_1+n_2-2}$.

Bsp. Seien $\binom{X_1}{Y_1}, \dots, \binom{X_n}{Y_n} \sim \mathcal{N}\left(\binom{\mu_1}{\mu_2}, \binom{\sigma_1^2 & \sigma_1 \sigma_2 \rho}{\sigma_1 \sigma_2 \rho & \sigma_2^2}\right)$.

Wir testen $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$ mit

$$T := \frac{\sqrt{n-2} \cdot \hat{\rho}_n}{\sqrt{1-\hat{\rho}_n^2}}, \quad \hat{\rho}_n := \frac{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)(Y_i - \overline{Y}_n)}{S_{X,n} \cdot S_{Y,n}}.$$

Falls H_0 richtig ist, so gilt $T \sim t_{n-2}$.

Um $H_0: \rho = \rho_0 \in (0,1)$ vs. $H_1: \rho \neq \rho_0$ zu testen, kann man

$$T = \frac{\sqrt{n-3}}{2} \left(\log \frac{1+\hat{\rho}_n}{1-\hat{\rho}_n} - \log \frac{1+\rho_0}{1-\rho_0} \right)$$

verwenden. Für n groß gilt $T \sim \mathcal{N}(0,1)$ unter H_0 .

Lem. Seien (X_n) , (Y_n) zwei Folgen von ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$ mit $X_n \xrightarrow[n \to \infty]{\mathbb{P}} c = \text{const (d. h. } \forall \epsilon > 0 : \mathbb{P}(|X_n - c| > \epsilon) \to 0)$ und $Y_n \xrightarrow[n \to \infty]{d} Y$ (d. h. $\mathbb{P}(Y_n \leq y) \to \mathbb{P}(Y \leq y)$ für alle Stetigkeitspunkte y der VF $y \mapsto \mathbb{P}(Y \leq y)$). Dann gilt:

$$X_n + Y_n \xrightarrow{d} c + Y$$
, $X_n \cdot Y_n \xrightarrow{d} c \cdot Y$, $Y_n / X_n \xrightarrow{d} Y / c$ (falls $c \neq 0$)
und allgemeiner $f(X_n, Y_n) \xrightarrow{d} f(c, Y)$ für jede Fkt $f \in \mathcal{C}(\mathbb{R}^2, \mathbb{R})$.

Bem. Unabhängigkeit von (X_n) und (Y_n) wird nicht vorausgesetzt!

Situation. Sei $T_n = T(X_1, \dots, X_n)$ eine Statistik. Falls der ZGWS für T_n die Form

$$\sqrt{n}(T_n - \vartheta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, g(\vartheta))$$

besitzt, so benötigen wir für Hypothesentests eine Möglichkeit, die Abhängigkeit der Varianz von Parameter ϑ zu beseitigen. Man sagt, man führt eine **varianzstabilisierende Transformation** durch. Wir suchen dazu eine stetig diff'bare Funktion $f: \Theta \to \mathbb{R}^1$, sodass

$$\sqrt{n}(f(T_n) - f(\vartheta)) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

Man zeigt, dass dafür gelten muss:

$$f'(\vartheta) = \frac{1}{\sqrt{g(\vartheta)}}, \text{ also } f(\theta) = \int \frac{d\vartheta}{\sqrt{g(\vartheta)}}.$$

Bspe. • Sei
$$X \sim \operatorname{Exp}(\mu)$$
, $\hat{\mu}_n := \frac{1}{\overline{X}_n}$. Dann gilt
$$\sqrt{n}(\overline{X}_n - \frac{1}{\mu}) \xrightarrow{d} \mathcal{N}(0, g(\frac{1}{\mu})) \quad \text{mit} \quad g(\vartheta) := \vartheta^2.$$
 $\rightsquigarrow \text{Mit } f(\theta) := \int \frac{\mathrm{d}\vartheta}{\sqrt{g(\vartheta)}} = \int \frac{\mathrm{d}\vartheta}{\vartheta} = \log \theta$ gilt $\sqrt{n}(\log(\overline{X}_n - \log(\frac{1}{\mu}))) \xrightarrow{n \to \infty} \mathcal{N}(0, 1)$.

 \bullet Wir wollen eine unbek. Wahrscheinlichkeit pschätzen, etwa durch Wurf einer Münze. Der ZGWS von de-Moirre-Laplace besagt

$$\sqrt{n}(\hat{p}_n - p) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, p(1-p)),$$

wobei \hat{p}_n die relative Häufigkeit ist. Zur Stabilisierung der Varianz verwenden wir nun

$$f(\theta) := \int \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = 2\arcsin(\sqrt{\theta}).$$