AUD401

Dynamic Audio for Digital Media Lecture 5 ~ Audio Processing

Dr Christos Michalakos c.michalakos@abertay.ac.uk

So far

- 1. Digital Sound / Sampling
- 2. Playing Back Files
- 3. Basic Oscillators
- 4. Sound Synthesis
- 5. Basic DSP (Delays, Flanger etc)

Today

- 1. Pitch Shifting
- 2. Reverb

What's the speed of sound?

"If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you."

Leonardo Da Vinci

Particles

Arrangement of particles

Movement of particles

Diagram

Gas

Far apart

Random arrangement

Move quickly in all directions

Arrangement of particles
Movement of particles

Diagram

Far apart

Random arrangement

Move quickly in all directions

343.2 m/s

Arrangement of particles

Movement of particles

Diagram

Gas

Far apart

Random arrangement

Move quickly in all directions

343.2 m/s

on 20 Celcius (?)

	Liquid	Gas
Arrangement of particles	Close together Random arrangement	Far apart Random arrangement
Movement of particles	Move around each other	Move quickly in all directions
Diagram		

343.2 m/s

on 20 Celcius (?)

	Liquid	Gas
Arrangement of particles	Close together	Far apart
	Random arrangement	Random arrangemen
Movement of particles	Move around each other	Move quickly in all directions
Diagram		
	1,484 m/s	343.2 m/s
	about 4.3 times as fast!	on 20 Celcius (?)

	Solid	Liquid	Gas
Arrangement of particles	Close together	Close together	Far apart
	Regular pattern	Random arrangement	Random arrangement
Movement of particles	Vibrate on the spot	Move around each other	Move quickly in all directions
Diagram			
		1,484 m/s	343.2 m/s
		about 4.3 times as fast!	on 20 Celcius (?)

	Solid	Liquid	Gas
Arrangement of particles	Close together	Close together	Far apart
	Regular pattern	Random arrangement	Random arrangement
Movement of particles	Vibrate on the spot	Move around each other	Move quickly in all directions
Diagram			
	5,120 m/s	1,484 m/s	343.2 m/s
	about 15 times as fast!	about 4.3 times as fast!	on 20 Celcius (?)

What is Frequency?

The Doppler Effect

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

F, is the observed frequency

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

F, is the observed frequency

Fo, is the emitted frequency

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

F, is the observed frequency

Fo, is the emitted frequency

c; is the velocity of waves in the medium;

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

F, is the observed frequency

Fo, is the emitted frequency

c; is the velocity of waves in the medium;

Vr, is the velocity of the receiver relative to the medium positive if the receiver is moving towards the source (and negative in the other direction);

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

F, is the observed frequency

Fo, is the emitted frequency

c; is the velocity of waves in the medium;

Vr, is the velocity of the receiver relative to the medium positive if the receiver is moving towards the source (and negative in the other direction);

Vs, is the velocity of the source relative to the medium; positive if the source is moving away from the receiver (and negative in the other direction).

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_{\rm c}$$

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

$$F = Fo$$

$$f = \left(\frac{c + v_r}{c + v_s}\right) f_0$$

Let's assume that Vs = 0.7c

$$f = \left(\frac{c + v_{\rm r}}{c + v_{\rm s}}\right) f_0$$

Let's assume that Vs = 0.7c

$$f = \frac{c+0}{c-0.7c} f_0 = 3.33 f_0$$
$$f = \frac{c-0}{c+0.7c} f_0 = 0.59 f_0$$

while it's approaching

while it's moving away

× 10³ Doppler Effect NBreaking the sound barrier

$$f = \left(\frac{c + v_r}{c + v_s}\right) f_0$$

Therefore

We can use this process in Pd to create a Pitch Shifter!

(by cheating nature a little bit)

Making a Pitch Shifter using Delays

Reverberation

Reverberation

Complex patterns of delays

Due to sound bouncing off surfaces

Reverberation

Early Reflections

Reverberation

Late Reflections

Type - are you emulating the reverb of a real space (like a room or a hall), or are you emulating a hardware reverb unit (like plate or spring reverb).

Spring

Plate

Type - are you emulating the reverb of a real space (like a room or a hall), or are you emulating a hardware reverb unit (like plate or spring reverb).

Room size - affects the length of the reverb time, and maybe the stereo image.

Type - are you emulating the reverb of a real space (like a room or a hall), or are you emulating a hardware reverb unit (like plate or spring reverb).

Room size - affects the length of the reverb time, and maybe the stereo image.

Early reflections level - the first group of reflections you hear are probably most significant. The lower the early reflection level, the further away from the instrument you feel.

Type - are you emulating the reverb of a real space (like a room or a hall), or are you emulating a hardware reverb unit (like plate or spring reverb).

Room size - affects the length of the reverb time, and maybe the stereo image.

Early reflections level - the first group of reflections you hear are probably most significant. The lower the early reflection level, the further away from the instrument you feel.

Pre-delay - the length of time it takes before you start to hear the early reflections.

Type - are you emulating the reverb of a real space (like a room or a hall), or are you emulating a hardware reverb unit (like plate or spring reverb).

Room size - affects the length of the reverb time, and maybe the stereo image.

Early reflections level - the first group of reflections you hear are probably most significant. The lower the early reflection level, the further away from the instrument you feel.

Pre-delay - the length of time it takes before you start to hear the early reflections.

Decay time - the length of time it takes for the reverb to die down.

Use the freeverb~ object in Pd

Inception The App