3121-21T2-HW1-SOLUTION

1. Question 1

You are given an array A of n distinct positive integers.

- (1) Design an algorithm which decides in time $O(n^2 \log n)$ (in the worst case) if there exist four **distinct** pairs of integers $\{m, s\}$ and $\{k, p\}$ in A such that $m^2 + s = k + p^2$ (10 points)
- (2) Solve the same problem but with an algorithm which runs in the **expected time** of $O(n^2)$. (10 points)

Solution for Question 1(a):

- (1) Square all numbers in A, storing in an array S.
- (2) Find all combinations of sum $a_i + s_j$, $i, j \in [0, n-1], i \neq j$ storing in an array C with i, j.
- (3) Sort C based on sum using merge sort, guarantee worst case O(nlogn).
- (4) Loop through C and find two adjacent elements with the same sum and distinct is, js values, and these 4 integers are the indexes of answers.
- (5) Time complexity = $O(n) + O(n^2) + O(n^2 \log n) = O(n^2 \log n)$.

Solution for Question 1(b):

- (1) Square all numbers in A, storing in an array S.
- (2) Find all combinations of sum $a_i + s_j$, $i, j \in [0, n-1], i \neq j$ storing in a hash table M, M[sum] = [(A[i], A[j]), ...].
- (3) Loop through M and in each slot find if there is more than one pair of (A[i], A[j]) that produces the same value of $(A[i])^2 + A[j]$.
- produces the same value of $(A[i])^2 + A[j]$. (4) Time complexity = $O(n) + O(n^2) + O(n^2) = O(n^2)$.

2. Question 2

You are given a set of n fractions of the form x_i/y_i $(1 \le i \le n)$, where x_i and y_i are positive integers. Unfortunately, all values y_i are incorrect; they are all of the form $y_i = c_i + E$ where numbers $c_i \ge 1$ are the correct values and E is a positive integer (equal for all y_i). Fortunately, you are also given a number S which is equal to the correct sum $S = \sum_{i=1}^n x_i/c_i$. Design an algorithm which finds all the correct values of fractions x_i/c_i and which runs in time $O(n \log \min\{y_i : 1 \le i \le n\})$. (20 points)

Solution for Question 2: In order to find all the correct values of the fractions, we need to find the value of E that all denominators were increased by. Since for all i, $y_i > c_i > 0$ and $E = y_i - c_i$ is positive, we know that

$$0 < E < \min\{y_i : 1 \le i \le n\}$$

Then, define

$$P(k) = \sum_{i=1}^{n} \frac{x_i}{y_i - k} = \sum_{i=1}^{n} \frac{x_i}{c_i + E - k}$$

which is strictly increasing for $0 < k < \min\{y_i : 1 \le i \le n\}$, with P(k) = S precisely when k = E. This means that we can binary search over this range using P(k) to find E in $O(\log \min\{y_i : 1 \le n\})$

 $i \leq n$) steps. Each step involves evaluating P once, which takes O(n) time. As such, the overall runtime of our algorithm is $O(n \log \min\{y_i : 1 \le i \le n\})$

3. Question 3

You are given an array A consisting of n positive integers, **not** necessarily all distinct. You are also given n pairs of integers (L_i, U_i) and have to determine for all $1 \le i \le n$ the number of elements of A which satisfy $L_i \leq A[m] \leq U_i$ by an algorithm which runs in time $O(n \log n)$. (20 points)

Solution for Question 3:

We first sort the array A in $O(n \log n)$ time using merge sort. For the ith query (L_i, U_i) , we do binary search twice to find the index of:

- (1) the first element with value less than L_i ; and
- (2) the last element with value greater or equal to U_i .

The difference between these indices is the answer to the *i*th query.

We can do a binary search in $O(\log n)$ time. There are n queries and we need to do $2 \times n$ binary searches. Therefore, the total time complexity is $O(n \log n)$.

4. Question 4

You are given an array containing a sequence of $2^n - 1$ consecutive positive integers starting with 1 except that one number was skipped; thus the sequence is of the form $1, 2, 3, \ldots, k-1, k+1, \ldots, 2^n$. You have to determine the missing term accessing at most O(n) many elements of A. (20 points)

Solution for Question 4:

Let's denote the array as A. It can be inferred that:

- (1) for all i = 1, 2, ..., k 1, we have A[i] = i.
- (2) for all $i = k, k + 1, ..., 2^n 1$, we have A[i] = i + 1.

Clearly, if A[j] = j then also for all i < j we have A[i] = i and if A[j] > j then for all i > j we have A[i] > i. Thus the task is to find the smallest index i such that A[i] > i and we can do this with a binary search in $O(\log (2^n - 1)) = O(n)$ time.

5. Question 5

Read about the asymptotic notation in the review material and determine if f(n) = O(q(n)) or g(n) = O(f(n)) or both (i.e., $f(n) = \Theta(g(n))$) or neither of the two, for the following pairs of functions

- (1) $f(n) = \log_2(n); \quad g(n) = \sqrt[10]{n};$ (6 points)
- (2) $f(n) = n^n$; $g(n) = 2^{n \log_2(n^2)}$; (3) $f(n) = n^{1 + \cos(\pi n)}$; g(n) = n. (6 points)
- (8 points)

You might find useful L'Hôpital's rule: if $f(x), g(x) \to \infty$ and they are differentiable, then $\lim_{x\to\infty} f(x)/g(x)$ $\lim_{x\to\infty} f'(x)/g'(x)$

Solution for Question 5:

(a) To show that f(n) = O(g(n)) it is enough to show that $\lim_{n\to\infty} f(n)/g(n) = 0$ because this clearly implies that f(n) < g(n) whenever n is large enough. Note that $f(x), g(x) \to \infty$ when $x \to \infty$ and they are both differentiable, so we can apply L'Hopital's rule to this limit formula. In the equations below $\ln n$ denotes the log with the natural basis e; we also use the formula for change of basis: $\log_2 n = \ln n \ln_2 e$

$$\lim_{n \to \infty} f(n)/g(n)$$

$$= \lim_{n \to \infty} f'(n)/g'(n)$$

$$= \lim_{n \to \infty} \frac{(\log_2 n)'}{(n^{\frac{1}{10}})'}$$

$$= \lim_{n \to \infty} \frac{(\ln n \log_2 e)'}{(n^{\frac{1}{10}})'}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n} \log_2 e}{\frac{1}{10} n^{-\frac{9}{10}}}$$

$$= \lim_{n \to \infty} \frac{10 \log_2 e}{n^{1/10}}$$

$$= 0$$

Hence, since we have established that g(n) grows much faster than f(n), we have f(n) = O(g(n)) but g(n) is not O(f(n)).

(b) First, we rewrite both f(n) and g(n) into an exponent of 2:

$$f(n) = 2^{n \log_2 n}$$
$$g(n) = 2^{2n \log_2 n}$$

Hence we have

$$\lim_{n \to \infty} g(n)/f(n)$$

$$= \lim_{n \to \infty} 2^{2n \log_2 n - n \log_2 n}$$

$$= \lim_{n \to \infty} 2^{n \log_2 n}$$

$$= \infty$$

Therefore, f(n) = O(g(n)) but g(n) is not O(f(n))

(c) Aleks has messed up this one; he meant to write $n^{1+\cos(\pi n)}$ in which case the following reasoning applies:

For n odd, we have $f(n) = n^{1-1} = 1$ and hence f(n) = O(g(n)) but $g(n) \neq O(f(n))$. For n even, we have $f(n) = n^{1+1} = n^2$ and hence g(n) = O(f(n)) but $f(n) \neq O(g(n))$.

Thus, for arbitrary n, we have neither f(n) = O(g(n)) nor g(n) = O(f(n)) (2 points).

However, for $n^{1+\sin(\pi n)}$ we have $\sin(\pi n)=0$ for all integers n. Thus, $n^{1+\sin(\pi n)}=n$ and consequently $f(n)=\Theta(g(n))$.

Marking note for Question 5: for (c) part full credit is given for both "solutions" despite the fact that only one is correct as the problem is stated.