Experiment-2

Student Name: RAVI UID:23BCS10340

Branch: CSE
Section/Group: KRG-3A
Semester: 5th
Date of Performance: 25 JUL
Subject Name: ADBMS
Subject Code: 23CSP-333

1) Problem Statement :

Organizational Hierarchy Explorer

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships. The company maintains a centralized Employee relation that holds: Each employee's ID, name, department, and manager ID (who is also an employee in the same table).

Your task is to generate a report that maps employees to their respective managers, showing:

The employee's name and department

Their manager's name and department (if applicable)

This will help the HR department visualize the internal reporting hierarchy.

TOOLS USED: Microsoft SQL Server

SQL CODE:

```
CREATE TABLE Employee (
EmpID INT PRIMARY KEY,
EmpName VARCHAR(50) NOT NULL,
Department VARCHAR(50) NOT NULL,
ManagerID INT NULL
);
```

ALTER TABLE Employee ADD CONSTRAINT FK_Manager FOREIGN KEY (ManagerID) REFERENCES Employee(EmpID);

INSERT INTO Employee (EmpID, EmpName, Department, ManagerID)

CHANDIGARH

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

VALUES

- (1, 'Ravi', 'HR', NULL),
- (2, 'Sneha', 'Finance', 1),
- (3, 'Karan', 'IT', 1),
- (4, 'Meena', 'Finance', 2),
- (5, 'Arjun', 'IT', 3),
- (6, 'Pooja', 'HR', 1);

SELECT

- E1.EmpName AS [Employee Name],
- E1.Department AS [Employee Dept],
- E2.EmpName AS [Manager Name],
- E2.Department AS [Manager Dept]

FROM Employee AS E1

LEFT JOIN Employee AS E2

ON E1.ManagerID = E2.EmpID;

OUTPUT:

Employee Name	Employee Dept	Manager Name	Manager Dept
Ravi	HR	NULL	NULL
Sneha	Finance	Ravi	HR
Karan	п	Ravi	HR
Meena	Finance	Sneha	Finance
Arjun	ІТ	Karan	ІТ
Pooja	HR	Ravi	HR

2) Problem Statement:

Financial Forecast Matching with Fallback Strategy

You are a Data Engineer at **FinSight Corp**, a company that models Net Present Value (NPV) projections for investment decisions. Your system maintains two key datasets:

1. **Year_tbl:** Actual recorded NPV's of various financial instruments over different years:

ID: Unique Financial instrument identifier.

YEAR: Year of record

NPV: Net Present Value in that year

2. **Queries_tbl:** A list of instrument-year pairs for which stakeholders are requesting NPV values:

ID: Financial instrument identifier

YEAR: Year of interest.

Find the NPV of each query from the Queries table. Return the output order by ID and Year in the sorted form.

However, not all **ID-YEAR combinations** in the Queries table are present in the Year_tbl. If an NPV is missing for a requested combination, assume it to be 0 to maintain a consistent financial report.

TOOLS USED: Microsoft SQL Server

SQL CODE:

CREATE TABLE YEAR_TABLE(

ID INT.

YEAR INT,

NPV INT

);

Discover. Learn. Empower.
INSERT INTO YEAR_TABLE(ID,YEAR,NPV)

TIOLICI TO TEM_TIMEL(ID, TEM, INT V
VALUES
(1,2018,100),
(7,2020,30),
(13,2019,40),
(1,2019,113),
(2,2008,121),
(3,2009,12),
(11,2020,99),
(7,2019,0);
CREATE TABLE QUERIES_TABLE(
ID INT,
YEAR INT
);
INSERT INTO QUERIES_TABLE(ID,YEAR)
VALUES
(1,2019),
(2,2008),
(3,2009),
(7,2018),
(7,2019),

Discover. Learn. Empower.

(7,2020),

(13,2019);

SELECT Q.ID,Q.YEAR,ISNULL(Y.NPV,0) AS[NPV]

FROM QUERIES_TABLE AS Q

LEFT OUTER JOIN

YEAR_TABLE AS Y

ON

Q.ID = Y.ID

AND

Y.YEAR = Q.YEAR;

OUTPUT:

ID	YEAR	NPV
1	2019	113
2	2008	121
3	2009	12
7	2018	0
7	2019	0
7	2020	30
13	2019	40

