根据中心极限定理, $x_iN(\mu_i,\sigma_i)$ 的和服从于 $\mu = \sum \mu_i, \sigma = \sum \sigma_i$ 的正态分布。因此 PPT 中的公式 $d = \sum_{1}^{N} w(n) \to 0$ 应该改为 $d = \sum_{1}^{N} w(n) \to N(0,N)$ 。由 PPT 可以得**公式** (1):

$$\sum_{1}^{N} y(n) = Nhx(1) + \sum_{1}^{N} \omega(n)$$
 (1)

在**公式** (1) 中,第一项 Nhx 的数量级正比于 k_1N ,而第二项 $\sum_{1}^{N}\omega(n)$ 的数量级出现概率在 90% 以上的数据正比于 $k_2\sqrt{N}$ 。同时 k_1 是常数,且大小与 k_2 是一个固定的常数,且 $k_1 << k_2$ 。

当 $N=10^6$ 是,而第二项 $\sum_{1}^{N}\omega(n)$ 的数量级出现概率在 90% 以上的数据大小为 10^3 ,而第一项 Nkx 大小仅为 10^0 ,要想达到计算出的 BER 大小"可接受",则 N 应放大 10^6 倍,此时 N 的数量级已经来到了 10^{12} ,这个数量级在同学们的计算机上面是完全不可计算的。因此只能采取放大 h 的措施,让 h 放大到 10^{-3} 以上,同时 $N=10^6$ 才能使 BER 的大小可接受,但当 $N=10^6$ 时,运算时间已经以分钟计,当需要将 N 从一个比较小的值向 10^6 画图时,运算时间也是不可接受的,因此理论上需要将 h 放大到 10^{-2} ,整个过程才是可以仿真的。