Projeto Final - Sistemas Inteligentes (2018.1) Chess (King-Rook vs. King)

Germano Pires de Carvalho gpc2@cin.ufpe.br

Lucas Aurelio Gomes Costa lagc@cin.ufpe.br

Andre Soares da Silva Filho assf@cin.ufpe.br

I. Introdução

A base de dados escolhida consiste em 28056 instâncias de posições em um tabuleiro de xadrez. Estas instâncias são feitas a partir dos 6 atributos:

- Coluna do rei branco
- Linha do rei branco
- Coluna da torre branca .
- Linha da torre branca
- Coluna do rei preto
- Linha do rei preto

A classificação é realizada pela quantidade de passos necessarios ao lado branco vencer ou empatar a partida com limite de 16 passos

Como pode ser visto nos atributos, esta base de dados é toda formada por atributos discretos com 18 atribuições diferentes contando empate e de 0 a 16 passos. Isso faz com que algoritmos com alta afinidade com atributos discretos

A distribuição das instâncias em classes sem uso de um algoritmo é bem desbalanceada com a classe máxima possuindo 4553 instâncias para 14 passos e mínima possuindo 27 instâncias para 0 passos

Fig. 1. Divisão das classes sem uso de algoritmo

II. RESULTADOS OBTIDOS: CLASSIFICADORES

Depois de vários testes com os algoritmos de classificação, usando parâmetros diferentes obtemos os seguintes resultados em relação à acurácia:

Acurácia média dos classificadores		
SVM	47.63%	
MLP Momentum fixo	55%	
MLP Learning rate fixo	45.35%	
KNN Sem Distância Ponderada	80.64%	
KNN Com Distância Ponderada	100%	

Árvore de Decisão Sem Binary split	87.07%
Árvore de Decisão Com Binary split	92.29%

Tempo build médio dos classificadores		
SVM	1786.48s	
MLP Momentum fixo	371.56s	
MLP Learning rate fixo	366.98s	
KNN Sem Distância Ponderada	0.002s	
KNN Com Distância Ponderada	0.002s	
Árvore de Decisão Sem Binary split	3.38s	
Árvore de Decisão Com Binary split	2.27s	

Tempo de teste médio dos classificadores		
SVM	930.08s	
MLP Momentum fixo	0.63s	
MLP Learning rate fixo	0.47s	
KNN Sem Distância Ponderada	50.59s	
KNN Com Distância Ponderada	52.93s	
Árvore de Decisão Sem Binary split	0.25s	
Árvore de Decisão Com Binary split	0.36s	

A. SVM

No SVM foram usados os casos Normalized Poly,Poly,Puk e RBF onde o poly se destacou muito pelo seu pequeno tempo de teste e build relativo aos outros casos. A acurácia variou entre o menor valor de 33% para o RBF e o maior de 69.12% para o Puk. O caso RBF não gerou uma precisão média pois houveram vários casos em

que não foram retornados o valor da precisão da classificação

Tempo Build	380.78s	374.39s	370.24s	342.52s
-------------	---------	---------	---------	---------

SVM (C = 1)	SVM (C = 1)				
Vetor	Normalized Poly	Poly	Puk	RBF	
Acurácia	52.79%	35.63%	69.12%	33.00%	
Precisão	53.70%	35.10%	69.50%	?	
Tempo Teste	801.98s	1.11s	1545.91s	1371.32s	
Tempo Build	2111.42s	264.23s	2407.72s	2362.57s	

B. MLP

No MLP tanto para o caso em que usamos momentum 0.2 fixo e taxa de aprendizado variante quanto para o caso com taxa de aprendizado 0.5 fixo e momentum variante resultaram em uma acurácia próxima a um classificador aleatório.Em ambos os casos o tempo de build foi muito elevado. Para o segundo caso, taxa de aprendizado fixo, houveram alguns casos em que não foram possíveis gerar um resultado para a precisão da classificação, além disso quando se usou momentum 1 a acurácia se mostrou drasticamente menor quando comparada aos outros casos.

Multi Layer Perceptron (MLP) (momentum 0.2)				
Learning rate	0.1	0.5	0.9	
Acurácia	55.89%	55.66%	54.76%	53.69%
Precisão	56.20%	55.70%	55.70%	54.00%
Tempo Teste	0.63s	0.97s	0.44s	0.51s
Tempo Build	368.08 s	385.15s	366.04s	366.99s

Multi Layer Perceptron (MLP) (Learning rate 0.5)				
Momentum	0.1	0.3	0.6	1
Acurácia	55.09%	55.29%	54.81%	16.22%
Precisão	?	55.50%	54.90%	?
Tempo Teste	0.4s	0.41s	0.64s	0.45s

C. KNN

O KNN embora o K não tenha tido uma grande variação teve uma acurácia decrescente rapidamente quando não usado a distância ponderada, já quando usado teve uma ótima acurácia. Mantendo um tempo ótimo de build , quase instantâneo, em ambos os casos.

Sem Distância Ponderada					
K	21				
Acurácia	100%	83.25%	82.21%	57.12%	
Precisão	100%	84.10%	83.10%	57.20%	
Tempo Teste	47.55s	49.28s	48.31s	57.22s	
Tempo Build	0s	0s	0s	0.01s	

Com Distância Ponderada				
K	5	21		
Acurácia	100%	100%	100%	100%
Precisão	100%	100%	100%	100%
Tempo Teste	48.76s	51.44s	52.98s	58.57s
Tempo Build	0s	0s	0.01s	0.01s

D. Árvore de Decisão

Na Árvore de Decisão foi usada a presença ou não do parâmetro Binary Split e a técnica de poda da árvore que resultou em uma piora da acurácia. O tempo de build variou entre 1,5 e 3,5 segundos sendo maior com a poda, e se distanciando bastante do tempo instantâneo do KNN.

Parâmetro: Binary Split				
Prune	sem	com		
Acurácia	92.88%	91.71%		
Precisão	93.00%	91.70%		

Tempo teste	0.23s	0.49s
Tempo Build	1.75s	2.8s

Parâmetro :Sem Binary Split				
Prune	sem	com		
Acurácia	87.92%	86.23%		
Precisão	88.20%	86.40%		
Tempo teste	0.39s	0.11s		
Tempo Build	3.25s	3.52s		

III. RESULTADOS OBTIDOS: CLUSTERIZADORES

Como nosso modelo possui cerca de 28000 instâncias e 18 classes diferentes as construções das classificações, em alguns casos foram realmente lentas embora termos usados para os clusters um sistema um pouco melhor, deixamos várias horas o sistema em execução, mas uma queda súbita de energia fez cancelar a execução. Para não deixarmos de utilizá-los usamos apenas 8 clusters em uma tentativa de generalizar a classificação.

A. Expectation-maximization

Para o EM vimos que a classificação não foi boa, na verdade foi muito ruim, errando 78% da classificação, apesar disso o algoritmo demonstrou uma relação de maior agrupamento com o cluster 6 que representa a classe de 14 passos, que possui a maior quantidade de instâncias classificadas sem o uso de algoritmo. e 45% usando EM, esta taxa alta de erro se deve ao número baixo de clusters, provavelmente.

O lado positivo foi o tempo, que para esse caso custou 4.34 segundos.

```
Cluster 0 <-- ten
Cluster 1 <-- thirteen
Cluster 2 <-- draw
Cluster 3 <-- eleven
Cluster 4 <-- nine
Cluster 5 <-- eight
Cluster 6 <-- fourteen
Cluster 7 <-- twelve

Incorrectly clustered instances : 22061.0 78.6348 %
```

Fig. 2 Tabela de clusters EM com a taxa de erro de agrupamento das instâncias

Fig. 3. Tabela de proporção entre clusters, com destaque para o sexto que representa a classe "14 passos" com 4553 instancias

B. K-means

O K-means conseguiu valor ainda pior de classificação que o EM com 84% de error , ele também sofreu do mesmo ocorrido, com o uso dos 8 clusters não foi apresentada a relação que o EM atingiu entre o maior cluster e a classe de maior proporção. O lado forte comparado ao EM é que o seu tempo de clusterização é quase 10 vezes menor sendo de 0.45 segundos.

```
Cluster 0 <-- nine
Cluster 1 <-- fourteen
Cluster 2 <-- draw
Cluster 3 <-- eleven
Cluster 4 <-- twelve
Cluster 5 <-- fifteen
Cluster 6 <-- ten
Cluster 7 <-- thirteen

Incorrectly clustered instances : 23833.0 84.951 %
```

Fig. 4 Tabela de clusters K-means com a taxa de erro de agrupamento das instâncias

Fig. 5. Tabela de proporção entre clusters, agora o primeiro cluster que representa a classe "14 passos" não possui a relação de proporção que havia no EM.

C. Misturas Gaussianas

Infelizmente não foi possível testar este algoritmo tendo em vista que ele não estava presente no WEKA nem para baixar uma biblioteca do WEKA que o possuísse.

IV. QUESTÃO EXTRA

A. A base

A base escolhida foi a Wilt data set, com 4889 instâncias e 6 atributos, esta base pode ser encontrada pode ser encontrada em [3].

B. KNN

O KNN teve um desempenho similar ao apresentado na base de dados escolhida pela equipe, apenas o tempo tomado foi significativamente menor, mas isso provavelmente se deve ao tamanho reduzido da base de dados e do sistema que é melhor.

Com Distância Ponderada					
K	1	3	5	21	
Acurácia	100%	100%	100%	99.76%	
Precisão	100%	100%	100%	99.80%	
Tempo Teste	0.64s	0.81s	0.95s	0.92s	
Tempo Build	0s	0s	0.01s	0s	

C. Expectation-maximization

O em atingiu um resultado de aproximadamente 88% de acurácia, diferente do péssimo resultado atingido sobre nossa base de dados com apenas 22%.

Clustered Instances 0 3892 (90%) 1 447 (10%) Log likelihood: -23.45865 Class attribute: class Classes to Clusters: 0 1 <-- assigned to cluster 0 | W 74 3818 447 | n Cluster 0 <-- n Cluster 1 <-- No class Incorrectly clustered instances : 521.0 12.0074 %

REFERENCES

- [1] http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
- [2] https://www.ieee.org/conferences/publishing/templates.html
- [3] http://archive.ics.uci.edu/ml/datasets/Wilt