

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

JUNE/JUNIE 2022

MATHEMATICS P2/WISKUNDE V2 MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 15 pages. *Hierdie nasienriglyn bestaan uit 15 bladsye*.

1.1	В	✓ answer/antwoord	(1)
1.2	В	✓ answer/antwoord	(1)
1.3	75%	✓ answer/antwoord	(1)
1.4	Nothing. It remains the same. No change in standard deviation.	✓ reason/rede	
	Niks. Dit bly dieselfde. Geen verandering in		
	standaardafwyking.		(1)
1.5			
	$Semi - IQR: IKV = \frac{75 - 30}{2}$		
	$Semi - IQR: IKV = {2}$	✓ answer/antwoord	
	Semi $-$ IQR: IKV $=$ 22,5		(1)
			[5]

2.1	Tyd 60 : 90 ≤ 120 :	ne taken geneem $\leq t \leq 90$ $\leq t \leq 120$ $\leq t \leq 150$ $\leq t \leq 180$ $\leq t \leq 210$	No. of pupils Aantal leerlinge 3 6 7 8 6	Cumulative frequency Kummulatiewe frekwensie 3 9 16 24 30	✓ for values vir waardes	(1)
2.2	25 Cumalitive frequency 15 Company 25 Compan	A	Time taken to co	mplete course. 30 24 C 150 B 180 210 240 en in seconds	✓ anchor point/ ankerpunt (60;0) ✓ (120; 9) ✓ (150; 16) ✓ (210; 30)	(4)
2.3	2.3.1	See diagra	m above / Sien dias	gram hierho	✓ A	(1)
2.3	2.3.1		m above / Sien dias m above / Sien dias		✓ B	(1)
	2.3.3		m above / Sien diag m above / Sien diag		✓ C	(1)
	2.3.3	See diagra	in acover sien ang	51 WILL 1880 1 0 0		[8]
						[ս]

3.1	Median score / Mediaan telling = $2x$	✓ answer/antwoord	(1)
3.2	Mean/Gemiddelde = $\frac{\sum x}{n}$ = $\frac{4(x+3) + 3(2x) + 2(x-1) + 2(6)}{11}$ = $\frac{12x + 22}{11}$	✓ substitution/vervanging ✓ simplification/vereenvoudiging ✓ answer/antwoord	
2.2	T. 6 1 1 1 1 1 1 1		(3)
3.3	Use of a calculator where the four values are as follows: Gebruik van 'n sakrekenaar waar die vier waardes soos volg is:		
	8; 10; 4 and/en 6	✓ four values/vier waardes	
	$sd(\sigma) = \sqrt{5}$	✓ answer/antwoord	(2)
			[6]

4.5 $m_{AC} = \frac{5+4}{-4+1}$ $m_{AC} = -3$ Line parallel to AC has same gradient. Lyn ewewydig aan AC het dieselfde gradient. $y = -3x + c$ $8 = -3(5) + c$ $c = 23$ $y = -3x + 23$ \checkmark equation of line/vergelyking $van \ lyn$ (4) 4.6 $x \text{ intercept of CD} : x \ af snit \ van \ CD$ $2x - 2 = 0$ $x = 1$ $m_{BC} = 1$ Equation of Altitude/Vergelyking $van \ hoogtelyn$ $y = -x + c$ $c = 1$ $van \ begin{align*} & x \ an \ $	4.4	$D(x; y) = \frac{x-1}{2} = 2 \qquad \frac{y-4}{2} = 2 x - 1 = 4 \qquad y - 4 = 4 x = 5 \qquad y = 8 D(5; 8)$	$\checkmark x = 5$ $\checkmark y = 8$	(2)
	4.5	$m_{AC} = -3$ Line parallel to AC has same gradient. Lyn ewewydig aan AC het dieselfde gradient. y = -3x + c 8 = -3(5) + c c = 23	formula/vervanging in gradiënt formule $ \checkmark m_{AC} = -3 $ $ \checkmark c = 23 $ $ \checkmark equation of line/vergelyking$	(4)
$x-afsnit \ van \ CD = x-afsnit \ van \ hoogtelyn \tag{6}$	4.6	2x - 2 = 0 x = 1 $m_{BC} = 1$ Equation of Altitude/Vergelyking van hoogtelyn y = -x + c 5 = -(-4) + c c = 1 $\therefore y = -x + 1$ x intercept of Altitude / x -afsnit van hoogtelyn x = 1	 ✓ x = 1 ✓ m_{BC} = 1 ✓ gradient of altitude -1 gradiënt van hoogtelyn -1 ✓ substitution of point vervanging van punt ✓ equation of altitude vergelyking van hoogtelyn 	

5.4	<i>K</i> (5; 0)	✓ <i>K</i> (5;0)	
			(1)
5.5	$AK = \sqrt{32}$	$\checkmark AK = \sqrt{32}$	
	Area of/van $\triangle AMK = \frac{1}{2} AK \times AM$	$\checkmark AM = \sqrt{8}$	
	Area of/van $\triangle AMK = \frac{1}{2} \sqrt{32} \times \sqrt{8}$		
	Area of/ $van \Delta AMK = 8 \text{ units}^2/eenhede^2$	✓ 8 units²/eenhede²	(3)
			[16]

6.2	$\sin(-\beta) + \sin(360^{\circ} - \beta)$		
	$\frac{\sin(\beta) + \sin(\beta)}{\sin(180^\circ - \beta) + \sin 180^\circ}$		
	$-\sin\beta + (-\sin\beta)$	$\checkmark - \sin \beta$	
	$=\frac{\sin\beta+(\sin\beta)}{\sin\beta+0}$	$\checkmark - \sin \beta$	
		$\checkmark \sin \beta$	
	$=\frac{-2\sin\beta}{}$	✓ simplification	
	$\equiv \frac{1}{\sin \beta}$	vereenvoudiging	
	=-2	✓ answer/antwoord	(5)
6.3	$2p\tan\left(\frac{\theta}{2}\right) = \sin(2\theta)$		
	$2p \tan \left(\frac{\pi}{2}\right) = \sin(2\theta)$		
	(82°)	✓ substitution/vervanging	
	$2p \tan\left(\frac{82^{\circ}}{2}\right) = \sin(2 \times 82^{\circ})$		
		✓ simplification/vereenvoudiging	(0)
	$p = \frac{\sin 162^{\circ}}{2 \tan 41^{\circ}}$	✓ answer/antwoord	(3)
	p = 0.16		
6.4	$4 \sin \theta \cdot \cos^3 \theta - 4 \cos \theta \cdot \sin^3 \theta$		
0.1	$= \sin 4\theta$	✓ common factor/gemene faktor	
	$LHS/LK = 4\sin\theta \cdot \cos^3\theta$	$\checkmark 2 \times 2 \sin \theta \cos \theta$	
	$-4\cos\theta.\sin^3\theta$	$\checkmark (\cos 2\theta)$	
	$= 4 \sin \theta \cdot \cos \theta (\cos^2 \theta - \sin^2 \theta)$	$\sqrt{\sin 2\theta}$.	
	$= 2 \times 2 \sin \theta \cos \theta (\cos 2\theta)$	$\checkmark 2. \sin 2\theta. \cos 2\theta$	
	$= 2 \times 2 \sin \theta \cos \theta (\cos 2\theta)$ $= 2 \cdot \sin 2 \theta \cdot \cos 2\theta$	✓ answer/antwoord	
	$= \sin 4\theta$	and well and word	
	— 3III TO		
	= RHS/RK		(6)
			[24]

7.1	$\cos 3x = \sin(x - 30^{\circ})$ $\cos 3x = \cos[90^{\circ} - (x - 30^{\circ})]$ $\cos 3x = \cos[120 - x]$ $3x = 120 - x \text{ (ref angle)}$ $3x = 120^{\circ} - x + k.360^{\circ} \text{ OR/OF } 3x = 360^{\circ} - [120^{\circ} - x]k.360^{\circ}$ $4x = 120^{\circ} + k.360^{\circ}$ $x = 30^{\circ} + k.90^{\circ}$ $2x = 240^{\circ} + k.360^{\circ}$ $x = 120^{\circ} + k.180^{\circ}$ $x = 30^{\circ} + k.90^{\circ}$	✓ Co- ratio Ko-verhoud. ✓ ref angle verwys. ∠ ✓ quadrant 1 kwadrant 1 ✓ quadrant 4 kwadrant 4 ✓ 30° ✓ -60°	
		✓ 120°	(7)

7.2

- ✓ Shape of f. ✓ x intercepts ✓ start and end points Vorm van f x afsnitte begin en eindpunte
- ✓ Shape of g. ✓ x intercepts ✓ start and end points Vorm van g x afsnitte begin en eindpunte

7.3 $-30^{\circ} < x < 30^{\circ}$ $OR/OF \quad 30^{\circ} < x < 90^{\circ}$ $OR/OF \quad 150^{\circ} < x < 180^{\circ}$

	(6)
$\checkmark\checkmark -30^{\circ} < x < 30^{\circ}$	
$\checkmark 30^{\circ} < x < 90^{\circ}$	
\checkmark	(4)
	[17]

Copyright reserved/Kopiereg voorbehou

(dieselfde basis DE, dieselfde hoogte)

DE || BC

Area of $\triangle ADE$ Area of $\triangle ADE$ $\frac{1}{\text{Area of }\Delta \text{BDE}} = \frac{1}{\text{Area of }\Delta \text{CED}}$

$$\therefore \frac{AD}{BD} = \frac{AE}{CE}$$

(6)

11.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
11.2.1	In ΔKOP and $/en$ ΔKLM $\widehat{K} = \widehat{K}$ [common] / [gemeen] $\widehat{O}_1 = \widehat{L}$ [corresponding angles = ; OP LM] [ooreenkomstige hoeke = ; OP LM] $\widehat{P}_1 = \widehat{M}$ [corresponding angles = , OP LM] [ooreenkomstige hoeke = ; OP LM] $\therefore \Delta \text{KOP} \Delta \text{KLM} [A; A; A]$	✓ S/R ✓ S/R ✓ R	(3)
11.2.2	$\frac{KO}{KL} = \frac{OP}{LM}$ [similarity : $gelykvormig$] $\frac{KO}{KL} = \frac{KY}{KX}$ [line parallel to one side of Δ] $\therefore \frac{KY}{KX} = \frac{OP}{LM}$	✓ S/R ✓ S/R	(2)
11.2.3		✓ S ✓ S ✓ S ✓ S ✓ S/R	(6) [17]
	TOTAL/Z	TOTAAL:	150