Indian Institute of Technology, Bhilai

Instructor: Dr. Avijit Pal

IC 152 Linear Algebra

1. Let A be a real $n \times n$ orthogonal matrix, that is , $A^tA = AA^t = I_n$ the $n \times n$ identity matrix. Which of the following statements are true? Justify your answer.

- (a) $\langle Ax, Ay \rangle = \langle x, y \rangle, \ \forall x, y \in \mathbb{R}^n.$
- (b) All eigenvalues are either +1 or -1.
- (c) The rows of A form an orthonormal basis for \mathbb{R}^n .
- 2. Let $W = \text{span}\{(i,0,1)\}$ in \mathbb{C}^3 . Find the orthonormal basis for W and W^{\perp} .
- 3. Determine whether the following is a IPS over the given vector space.
 - (a) $\langle (a,b),(c,d)\rangle = ac bd$, on \mathbb{R}^2 .
 - (b) $\langle A, B \rangle = \operatorname{tr}(A + B)$, on $M_{2 \times 2}(\mathbb{R})$.
 - (c) $\langle f(x), g(x) \rangle = \int_0^1 f'(t)g(t)dt$, on P(R), where \prime denote the differentiation.
- 4. Let V = C([-1,1]). Suppose W_e and W_o denote the subspace of V consisting of even and odd functions respectively. Prove that $W_e^{\perp} = W_o$, where the inner product is defined as

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

5. Let $\{(1,-1,1,1),(1,0,1,0),(0,1,0,1)\}$ be a linearly independent set in $\mathbb{R}^4(\mathbb{R})$. Find an orthonormal set v_1,v_2,v_3 such that

$$span\{(1,-1,1,1),(1,0,1,0),(0,1,0,1)\} = span\{v_1,v_2,v_3\}.$$