Lecture 6: Graphs

CS 5006/7: Algorithms, C and Systems

Adrienne Slaughter, Joe Buck

Northeastern University

February 12, 2019

- 1 Basic Definitions
- 2 Path Finding
- 3 Topological Ordering
- 4 Strongly Connected Components
- 5 Summary

Topics

- Intro/definitions
- Paths and Djikstra (REVIEW)
- Acyclic graphs and topological ordering
- Connectivity in Directed Graphs

What is a Graph?

A graph is simply a collection of nodes plus edges

- Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = vertex)
- Formal Definition:
 - \blacksquare A graph G is a pair (V, E) where
 - \blacksquare V is a set of vertices or nodes
 - \blacksquare *E* is a set of edges that connect vertices

An Example

Here is a directed graph G = (V, E)

- Each edge is a pair (v_1, v_2) , where v_1, v_2 are vertices in V
 - $V = \{A, B, C, D, E, F\}$
 - $E = \{(A, B), (A, D), (B, C), (C, D), (C, E), (D, E)\}$

Terminology: Undirected Graph

- Two vertices u and v are **adjacent** in an undirected graph G if $\{u,v\}$ is an edge in G
 - lacktriangledown edge $e = \{u, v\}$ is **incident** with vertex u and vertex v
- The *degree* of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - \blacksquare denoted with deg(v)

Terminology: Directed Graph

- \blacksquare Vertex u is *adjacent to* vertex v in a directed graph G if (u,v) is an edge in G
 - \blacksquare vertex u is the initial vertex of (u, v)
- **Vertex** v is **adjacent from** vertex u
 - \blacksquare vertex v is the **terminal** (or end) vertex of (u, v)
- Degree
 - *in-degree* is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

Kinds of Graphs

- directed vs undirected
- weighted vs unweighted
- simple vs non-simple
- sparse vs dense
- cyclic vs acyclic
- labeled vs unlabeled

Directed vs Undirected

- Undirected if edge (x, y) implies edge (y, x).
 - otherwise directed
- Roads between cities are usually undirected (go both ways)
- Streets in cities tend to be directed (one-way)

Weighted vs Unweighted

- Each edge or vertex is assigned a numerical value (weight).
- A road network might be labeled with:
 - length
 - drive-time
 - speed-limit
- In an unweighted graph, there is no distinction between edges.

Simple vs Not simple

- Some kinds of edges make working with graphs complicated
- A *self-loop* is an edge (x, x) (one vertex).
- An edge (x, y) is a **multiedge** if it occurs more than once in a graph.

Sparse vs Dense

- Graphs are sparse when a small fraction of vertex pairs have edges between them
- Graphs are dense when a large fraction of vertex pairs have edges
- There's no formal distinction between sparse and dense

Cyclic vs Acyclic

- An acyclic graph contains no cycles
- A *cyclic* graph contains a cycle
- Trees are connected, acyclic, undirected graphs
- Directed acyclic graphs are called DAGs

Labeled vs Unlabeled

- Each vertex is assigned a unique name or identifier in a labeled graph
 - In an unlabeled graph, there are no named nodes
- Graphs usually have names e.g., city names in a transportation network
- We might ignore names in graphs to determine if they are isomorphic (similar in structure)

Graph Representation

Two ways to represent a graph in code:

- Adjacency List
 - A list of nodes
 - Every node has a list of adjacent nodes
- Adjacency Matrix
 - A matrix has a column and a row to represent every node
 - All entries are 0 by default
 - \blacksquare An entry G[u,v] is 1 if there is an edge from node u to v

Adjacency List

For each v in V, L(v) = list of w such that (v, w) is in E:

Storage space:

$$\begin{aligned} a|V| + b|E| \\ a = size of(node) \\ b = size of(\text{ linked list element}) \end{aligned}$$

Adjacency Matrix

Storage space: $|V|^2$

Adjacency Matrix

Storage space: $|V|^2$

Does this matrix represent a directed or undirected graph?

• Faster to test if (x, y) is in a graph?

• Faster to test if (x, y) is in a graph?

adjacency matrix

- Faster to test if (x, y) is in a graph?
- 2 Faster to find the degree of a vertex?

adjacency matrix

- Faster to test if (x, y) is in a graph?
- 2 Faster to find the degree of a vertex?

- adjacency matrix
- 2 adjacency list

- Faster to test if (x, y) is in a graph?
- 2 Faster to find the degree of a vertex?
- 3 Less memory on small graphs?

- adjacency matrix
- 2 adjacency list

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?

- adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?

- adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?

- adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?
- 6 Edge insertion or deletion?

- adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?
- 6 Edge insertion or deletion?

- adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)
- **5** adjacency matrices O(1) vs O(d)

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?
- **5** Edge insertion or deletion?
- **6** Faster to traverse the graph?

- adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)
- **5** adjacency matrices O(1) vs O(d)

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?
- **5** Edge insertion or deletion?
- **6** Faster to traverse the graph?

- 1 adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)
- 6 adjacency matrices O(1) vs O(d)
- 6 adjacency list

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?
- **5** Edge insertion or deletion?
- **6** Faster to traverse the graph?
- Better for most problems?

- 1 adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)
- 6 adjacency matrices O(1) vs O(d)
- 6 adjacency list

- Faster to test if (x, y) is in a graph?
- Paster to find the degree of a vertex?
- 3 Less memory on small graphs?
- 4 Less memory on big graphs?
- **5** Edge insertion or deletion?
- **6** Faster to traverse the graph?
- Better for most problems?

- 1 adjacency matrix
- 2 adjacency list
- 3 adjacency list (m+n) vs (n2)
- 4 adjacency matrices (a little)
- 6 adjacency matrices O(1) vs O(d)
- 6 adjacency list
- adjacency list

Analyzing Graph Algorithms

- Space and time are analyzed in terms of:
 - Number of vertices m = |V|
 - Number of edges n = |E|
- Aim for polynomial running times.
- But: is $O(m^2)$ or $O(n^3)$ a better running time?
 - depends on what the relation is between n and m
 - the number of edges m can be at most $n^2 \le n^2$.
 - \blacksquare connected graphs have at least $m \ge n-1$ edges
- Stil do not know which of two running times (such as m^2 and n^3) are better,
- Goal: implement the basic graph search algorithms in time O(m+n).
 - lacksquare This is linear time, since it takes O(m+n) time simply to read the input.
- Note that when we work with connected graphs, a running time of O(m+n) is the same as O(m), since $m \ge n-1$.

Graph Traversals

Two basic traversals:

- Breadth First Search (BFS)
- Depth First Search (DFS)

BFS

Example...

BFS: The Algorithm

- Start at the start.
- Look at all the neighbors. Are any of them the destination?
- If no:
 - Look at all the neighbors of the neighbors. Are any of them the destination?
 - Look at all the neighbors of the neighbors of the neighbors. Are any of them the destination?

BFS: Runtime

- If you search the entire network, you traverse each edge at least once: O(|E|)
 - That is, O(number of edges)
- Keeping a queue of who to visit in order.
 - \blacksquare Add single node to queue: O(1)
 - For all nodes: O(number of nodes)
 - lacksquare O(|V|)
- \blacksquare Together, it's O(V+E)

- Depth first search needs to check which nodes have been output or else it can get stuck in loops.
- In a connected graph, a BFS will print all nodes, but it will repeat if there are cycles and may not terminate
- As an aside, in-order, pre-order and postorder traversals only make sense in binary trees, so they aren't important for graphs. However, we do need some way to order our out-vertices (left and right in BST).

Traverse, psuedocode

```
void traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
        if (u is not marked visited) {
            mark u
            pending.add(u)
        }
        remains add(u)
        }
        remains add(u)
        remains
```

Using

- Assuming we can add and remove from our "pending" DS in O(1) time, the entire traversal is O(|E|)
- Traversal order depends on what we use for our pending DS.
 - Stack : DFS
 - Queue: BFS
- These are the main traversal techniques in CS, but there are others!

- Breadth-first always finds shortest length paths, i.e., "optimal solutions"
- \blacksquare Better for "what is the shortest path from x to y"
 - But depth-first can use less space in finding a path
- If longest path in the graph is p and highest out- degree is d then DFS stack never has more than d*p elements
- But a queue for BFS may hold O(|V|) nodes

DFS

BFS vs DFS: Problems

BFS Applications

- Connected components
- Two-coloring graphs

DFS Applications

- Finding cycles
- Topological Sorting
- Strongly Connected Components

Single-Source Shortest Path

- Input Directed graph with non-negative weighted edges, a starting node s and a destination node d
- Problem Starting at the given node s, find the path with the lowest total edge weight to node d
- Example A map with cities as nodes and the edges are distances between the cities. Find the shortest distance between city 1 and city 2.

Djikstra's Algorithm: Overview

- Find the "cheapest" node— the node you can get to in the shortest amount of time.
- Update the costs of the neighbors of this node.
- Repeat until you've done this for each node.
- Calculate the final path.

Djikstra's Algorithm: Formally

```
\begin{array}{ll} \operatorname{DJIKSTRA}(G,w,s) \\ 1 & \operatorname{INITIALIZE-SINGLE-SOURCE}(G,s) \\ 2 & S = \emptyset \\ 3 & Q = G.V \\ 4 & \mathbf{while} \ Q \neq \emptyset \\ 5 & u = \operatorname{Extract-min}(Q) \\ 6 & S = S \cup \{u\} \\ 7 & \mathbf{for} \ \operatorname{each} \ \operatorname{vertex} \ v \in G.Adj[u] \\ 8 & \operatorname{Relax} \ (u,v,w) \end{array}
```

DJIKSTRA(G, w, s)

- 1 $\triangleright G$ is a graph
- $3 \triangleright s$ is the starting node
- 4 **for** each vertex $u \in G$
- 5 $u.d = w(s, u) \triangleright \text{ where } w(s, u) = \infty \text{ if there is no edge } (s, u).$
- 6 $S = \emptyset \triangleright$ Nodes we know the distance to
- 7 Q = G.V
 ightharpoonup min-Priority Queue starting with all our nodes, ordered by dis
- 8 while $Q \neq \emptyset$
- 9 $u = \text{Extract-min}(Q) \triangleright \text{Greedy step: get the closest node}$
- 10 $S = S \cup \{u\}$ > Set of nodes that have shortest-path-distance found
- 11 **for** each vertex $v \in G.Adj[u]$
- 12 Relax (u, v, w)

Relax(u, v, w)

- 1 $\triangleright u$ is the start node
- 2 $\triangleright v$ is the destination node
- $3 \triangleright w$ is the weight function

Djikstra's: A walkthrough

- Find the "cheapest" node— the node you can get to in the shortest amount of time.
- Update the costs of the neighbors of this node.
- Repeat until you've done this for each node.
- Calculate the final path.

Breadth First Search: distance = 7

Step 1: Find the cheapest node

- 1 Should we go to A or B?
 - Make a table of how long it takes to get to each node from this node.
 - We don't know how long it takes to get to Finish, so we just say infinity for now.

Node	Time to Node
Α	6
В	2
Finish	∞

Step 2: Take the next step

- Calculate how long it takes to get (from Start) to B's neighbors by following an edge from B
 - We chose B because it's the fastest to get to.
 - Assume we started at Start, went to B, and then now we're updating Time to Nodes.

Node	Time to Node
А	ø5
В	2
Finish	<i>∞</i> 7

Step 3: Repeat!

- 1 Find the node that takes the least amount of time to get to.
 - We already did B, so let's do A.
 - Update the costs of A's neighbors
 - Takes 5 to get to A; 1 more to get to Finish

Node	Time to Node
Α	ø5
В	2
Finish	76

Section 3

Topological Ordering

Topological Ordering

Input: Directed acyclic graph G = (V, E)

Problem: Find a linear ordering of the vertices V such that for each

edge (i, j) in E, vertex i is to the left of j.

Example: Scheduling of tasks that have precedence constraints

Example: Class Ordering

- Vertices are classes, and edges represent pre-reqs
- A *topological ordering* is any ordering that is a valid sequence of courses

Toposort: Example Input

Toposort: Example Output

Toposort: Convince yourself

- Nodes are ordered in a linear fashion
- All the (directed) edges point to "future" nodes
- No edges are "pointing back"

■ Why only DAGs?

- Why only DAGs?
 - A cycle means there's no correct answer

- Why only DAGs?
 - A cycle means there's no correct answer
- Can every DAG be topo sorted?

- Why only DAGs?
 - A cycle means there's no correct answer
- Can every DAG be topo sorted?
 - Yes.

- Why only DAGs?
 - A cycle means there's no correct answer
- Can every DAG be topo sorted?
 - Yes.
- Is there always a unique answer?

- Why only DAGs?
 - A cycle means there's no correct answer
- Can every DAG be topo sorted?
 - Yes.
- Is there always a unique answer?
 - No, DAGs can be sorted in different ways

- Why only DAGs?
 - A cycle means there's no correct answer
- Can every DAG be topo sorted?
 - Yes.
- Is there always a unique answer?
 - No, DAGs can be sorted in different ways
 - Especially when there are fewer constraints

Figuring out how to graduate

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

Toposort: The Algorithm

- Mark each vertex with its in-degree
- While there are vertices not yet in the final output:
 - Choose a vertex v with labeled in-degree of 0
 - Output v and conceptually remove it from the graph
 - For each vertex u adjacent to v:
 - Decrement the in-degree of u

Node	In-Degree
Α	1
В	1
С	2
D	2
Е	2
F	2
G	0

Output order:

First, calculate the in-degree of each node.

Node	In-Degree
Α	1
В	1
С	2
D	2
E	2
F	2
G	0

Output order:

Start with the node with in-degree of $\boldsymbol{0}$

Node	In-Degree
Α	10
В	1
С	2
D	2
Е	2
F	2/1
G	0

Output order:

<G

Output that node, "remove it from the graph", decrementing the in-degree for each node it points to.

Node	In-Degree
Α	1/0
В	10
С	2/1
D	2
E	2
F	2/1
G	0

Repeat.

Output order:

<G, A

Node	In-Degree
Α	10
В	10
С	210
D	2/1
Е	2
F	2/1
G	0

Output order:

$$<$$
G , A , B

Node	In-Degree
Α	10
В	10
С	21 0
D	2/1
Е	2 1
F	210
G	0

Output order:

$${<}G$$
 , A , B , C

Node	In-Degree
Α	10
В	10
С	21 0
D	2 1
Е	21210
F	210
G	0

Output order:

$${<}G\;,\,A\;,\,B\;,\,C\;,\,F$$

Node	In-Degree
Α	10
В	10
С	210
D	21210
E	21210
F	210
G	0

Output order:

<G , A , B , C , F , E

Node	In-Degree
Α	10
В	10
С	210
D	2/1/2/10
Е	21210
F	210
G	0

Output order:

<G , A , B , C , F , E , D >

Toposort Notes

- Always need a vertex with in-deg 0 to start
- And we will always have one because there are no cycles!
 - When we have more than one vertex with in-deg 0, it doesn?t matter which we choose.
- This is how we get more than one correct answer

Toposort: Implementation Details

- Don't want to have to search for a zero-degree node every time
- Keep the "pending" 0-deg nodes in a list/stack/queue/etc
- Note, your choice of data structure impacts order or output, but not correctness or efficiency
 - ...as long as push/pop =O(1)

Section 4

Strongly Connected Components

A directed graph is **strongly connected** if there is a directed path between any two vertices.

A directed graph is **strongly connected** if there is a directed path between any two vertices.

The *strongly connected components* of a graph is a partition of the vertices into subsets (maximal) such that each subset is strongly connected.

Strongly Connected Components

The Input: Directed or Undirected graph G

The Problem: Identify the components of G where vertices x and y are members of different components if no path exists from x to y in G.

In an undirected graph G, components are connected or not.

In a directed graph G, components can be **strongly connected** or not.

Connected Components: Algorithm Overview

Connected Components in an undirected graph

- Use either DFS or BFS
- Set the component_id for each node to 0.
- Set cur_component = 1.
- Start traversing:
 - For every node, set the component_id = cur_component.
 - When there are no more nodes to traverse, increment cur_component.

Simple for undirected... but what about directed??

Transpose Graph

- $G^T = (V, E^T):$
 - $\blacksquare E^T = \{(u, v) : (v, u) \text{ in } E\}$
 - lacksquare E^T consists of the edges in G with their directions reversed
- lacksquare G and G^T have the same strongly connected components

${\cal G}$ and ${\cal G}^T$

Strongly Connected Components: The Algorithm

- lacktriangle Call DFS(G) to compute finishing times f[u] for each vertex u
- **2** Compute G^T
- $oldsymbol{3}$ Call $DFS(G^T)$, but follow the vertices in order of decreasing f[u]
- Output the vertices of each tree in the depth- first forest of step 3 as a separate component

Calculating Finish time

- When doing a graph traversal, there's a step that you start evaluating a node v and it's adjacency list.
- The finish time marks when the search finish's exploring v's adjacency list.

A DFS tree representing a traversal of the graph starting at Node A.

Node ID	f(u)
Α	
В	
С	
D	
E	
F	
G	
Н	

Calculating Finish time

- When doing a graph traversal, there's a step that you start evaluating a node v and it's adjacency list.
- The finish time marks when the search finish's exploring *v*'s adjacency list.
- In the following graph, the start times are marked in green; the finish times are marked in purple.

A DFS tree representing a traversal of the graph starting at Node A.

Node ID	f(u)
Α	
В	
С	
D	
E	
F	
G	
Н	

Calculating Finish time

- When doing a graph traversal, there's a step that you start evaluating a node v and it's adjacency list.
- The finish time marks when the search finish's exploring v's adjacency list.
- In the following graph, the start times are marked in green; the finish times are marked in purple.

A DFS tree representing a traversal of the graph starting at Node A.

Node ID	f(u)
A	16
В	15
С	4
D	14
Е	10
F	9
G	8
Н	13

Step 2: Computer G^T

A number of ways to do this, but whatever way, make sure the edges are reversed.

Step 3: Do DFS on G^T

- Find the node with the LAST finish time
- DFS to all the other nodes you can, without visiting a node twice
- Those are all Component 1.
- While there are more nodes that haven't been visited, repeat.

Node ID	f(u)
Α	16
В	15
С	4
D	14
Е	10
F	9
G	8
Н	13

 G^{T}

Node ID	f(u)
А	16
В	15
С	4
D	14
Е	10
F	9
G	8
Н	13

Node ID	f(u)
Α	16
В	15
С	4
D	14
Е	10
F	9
G	8
Н	13

Node ID	f(u)
Α	16
В	15
С	4
D	14
Е	10
F	9
G	8
Н	13

Node ID	f(u)
Α	16
В	15
С	4
D	14
Е	10
F	9
G	8
Н	13

Node ID	f(u)
Α	16-1
В	<i>1</i> 5-1
С	A -1
D	<i>1</i> 4-1
Е	10
F	9
G	8
Н	13

Node ID	$\int f(u)$
Α	16-1
В	<i>1</i> 5-1
С	A -1
D	14-1
Е	10
F	9
G	8
Н	13

Node ID	f(u)
Α	16-1
В	15-1
С	A -1
D	14-1
Е	10
F	9
G	8
Н	13-1

Node ID	f(u)
Α	16-1
В	15-1
С	A -1
D	14-1
E	10
F	9
G	8
Н	13-1

Node ID	f(u)
Α	16-1
В	15-1
С	A -1
D	14-1
E	10
F	9
G	8
Н	13-1

 G^T

Node ID	f(u)
Α	16-1
В	15-1
С	A -1
D	14-1
E	10
F	9
G	8
Н	13-1

Section 5

Summary

Summary

What problems did we work on today?

- Sorting
- Strongly Connected Components

- Basic Definitions
- 2 Path Finding
- 3 Topological Ordering
- 4 Strongly Connected Components
- 5 Summary