Package 'nmw'

October 20, 2017

nmw-package	Understanding Nonlinear Mixed Effects Modeling for Population Pharmacokinetics
Index	7
CovStep EstStep	
R topics docum	ented:
Repository Date 2017-10-20 00:01	:02 KST
URL https://cran.r NeedsCompilation no	-project.org/package=nmw
Maintainer Kyun-Seo	p Bae <k@acr.kr></k@acr.kr>
Author Kyun-Seop Ba	e
Copyright 2017, Kyun	-Seop Bae
License GPL-3	
Depends R (>= 3.0.0), ByteCompile yes	numDeriv
ware works. NON tion', 'First Order	s how NONMEM(R) http://www.iconplc.com/innovation/nonmem/ soft- NMEM's classical estimation methods like 'First Order(FO) approxima- Conditional Estimation(FOCE)', and 'Laplacian approximation' are explained.
Title Understanding No Pharmacokinetics	onlinear Mixed Effects Modeling for Population

Description

Version 0.1.2

This shows how NONMEM(R) < http://www.iconplc.com/innovation/nonmem/> software works.

2 nmw-package

Details

This package explains 'First Order(FO) approximation' method, 'First Order Conditional Estimation(FOCE)' method, and 'Laplacian(LAPL)' method of NONMEM software.

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

NONMEM Users guide

Examples

```
DataAll = Theoph
colnames(DataAll) = c("ID", "BWT", "DOSE", "TIME", "DV")
DataAll[,"ID"] = as.numeric(as.character(DataAll[,"ID"]))
nTheta = 3
nEta = 3
nEps = 2
THETAinit = c(2, 50, 0.1)
OMinit = matrix(c(0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2), nrow=nEta, ncol=nEta)
SGinit = diag(c(0.1, 0.1))
LB = rep(0, nTheta)
UB = rep(1000000, nTheta)
FGD = deriv(~DOSE/(TH2*exp(ETA2))*TH1*exp(ETA1)/(TH1*exp(ETA1) - TH3*exp(ETA3))*
             (exp(-TH3*exp(ETA3)*TIME)-exp(-TH1*exp(ETA1)*TIME)),
            c("ETA1", "ETA2", "ETA3"),
            function.arg=c("TH1", "TH2", "TH3", "ETA1", "ETA2", "ETA3", "DOSE", "TIME"),
            hessian=(e$METHOD == "LAPL"))
H = deriv(~F + F*EPS1 + EPS2, c("EPS1", "EPS2"), function.arg=c("F", "EPS1", "EPS2"), func=TRUE)
PRED = function(THETA, ETA, DATAi)
 FGDres = FGD(THETA[1], THETA[2], THETA[3], ETA[1], ETA[2], ETA[3], DOSE=320, DATAi[,"TIME"])
 Gres = attr(FGDres, "gradient")
 Hres = attr(H(FGDres, 0, 0), "gradient")
  if (e$METHOD == "LAPL") {
    Dres = attr(FGDres, "hessian")
    Res = cbind(FGDres, Gres, Hres, Dres[,1,1], Dres[,2,1], Dres[,2,2], Dres[,3,])
  colnames(Res) = c("F", "G1", "G2", "G3", "H1", "H2", "D11", "D21", "D22", "D31", "D32", "D33")
  } else {
    Res = cbind(FGDres, Gres, Hres)
    colnames(Res) = c("F", "G1", "G2", "G3", "H1", "H2")
  }
  return(Res)
}
###### First Order Approximation Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, nTheta=nTheta,
```

CovStep 3

```
LB=LB, UB=UB, Pred=PRED, METHOD="ZERO")
(EstRes = EstStep())
                               # 4 sec
(CovRes = CovStep())
                               # 2 sec
PostHocEta() # Using e$FinalPara from EstStep()
####### First Order Conditional Estimation with Interaction Method
#InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, nTheta=nTheta,
         LB=LB, UB=UB, Pred=PRED, METHOD="COND")
#(EstRes = EstStep())
                                # 4.64 min
#(CovRes = CovStep())
                                # 1.14 min
#get("EBE", envir=e)
####### Laplacian Approximation with Interacton Method
#InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, nTheta=nTheta,
         LB=LB, UB=UB, Pred=PRED, METHOD="LAPL")
#(EstRes = EstStep())
                              # 4.53 min
                               # 1.09 min
#(CovRes = CovStep())
#get("EBE", envir=e)
```

CovStep

Covariance Step

Description

It calculates standard errors and various variance matrices with the e\$FinalPara after estimation step.

Usage

CovStep()

Details

Because EstStep uses nonlinear optimization, covariance step is separated from estimation step. It caculcates variance-covariance matrix of estimates on the original scale.

Value

Time consumed time

Standard Error standard error of the estimates in the order of theta, omega, and sigma Covariance Matrix of Estimates

covariance matrix of estimates in the order of theta, omega, and sigma. This is $inverse(R) \times S \times inverse(R)$ by default.

Correlation Matrix of Estimates

correlation matrix of estimates in the order of theta, omega, and sigma

Inverse Covariance Matrix of Estimates

inverse covariance matrix of estimates in the order of theta, omega, and sigma

Eigen Values eigen values of covariance matrix

R Matrix R matrix of NONMEM, second derivative of log likelihood function with respect

to esimation parameters

S Matrix S matrix of NONMEM, sum of individual cross-product of first derivative of log

likelihood function with respect to esimation parameters

4 EstStep

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

NONMEM Users Guide

See Also

```
EstStep, InitStep
```

Examples

```
# Only after InitStep and EstStep
#CovStep()
```

EstStep

Estimation Step

Description

This estimates upon the conditions with InitStep.

Usage

EstStep()

Details

It does not have arguments. All necessary arguments are stored in the e environment. It assumes "INTERACTION" between eta and epsilon for "COND" and "LAPL" options. The output is basically same with NONMEM output.

Value

Initial OFV initial value of objective function
Time time consumed for this step

Optim the raw output from optim function

Final Estimates

final estimates in the original scale

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

NONMEM Users Guide

See Also

InitStep

InitStep 5

Examples

```
# Only After InitStep
#EstStep()
```

InitStep

Initialization Step

Description

It recevies parameters for the estimation and stores them into e environment.

Usage

Arguments

DataAll	Data for all subjects. It should contain columns which Pred function uses.
THETAinit	Theta initial values
OMinit	Omega matrix initial values
SGinit	Sigma matrix initial values
nTheta	Number of thetas
LB	Lower bounds for theta vector
UB	Upper bounds for theta vector

Pred Prediction function name

METHOD one of the estimation methods "ZERO", "COND", "LAPL"

Details

Prediction function should return not only prediction values(F or IPRED) but also G (first derivative with respect to etas) and H (first derivative of Y with respect to epsilon). For the "LAPL", prediction function should return second derivative with respect to eta also. All objective functions assume NONMEM "INTERACTION" option for "COND" and "LAPL" option. Omega matrix should be full block one. Sigma matrix should be diagonal one.

Value

This does not return values, but stores necessary values into the environment e.

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

NONMEM Users Guide

6 InitStep

Examples

```
DataAll = Theoph
colnames(DataAll) = c("ID", "BWT", "DOSE", "TIME", "DV")
DataAll[,"ID"] = as.numeric(as.character(DataAll[,"ID"]))
nTheta = 3
nEta = 3
nEps = 2
THETAinit = c(2, 50, 0.1) # Initial estimate
OMinit = matrix(c(0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2), nrow=nEta, ncol=nEta)
OMinit
SGinit = matrix(c(0.1, 0, 0, 0.1), nrow=nEps, ncol=nEps)
SGinit
LB = rep(0, nTheta) # Lower bound
UB = rep(1000000, nTheta) # Upper bound
FGD = deriv(~DOSE/(TH2*exp(ETA2))*TH1*exp(ETA1)/(TH1*exp(ETA1) - TH3*exp(ETA3))*
             (exp(-TH3*exp(ETA3)*TIME)-exp(-TH1*exp(ETA1)*TIME)),
            c("ETA1","ETA2","ETA3"),
            function.arg=c("TH1", "TH2", "TH3", "ETA1", "ETA2", "ETA3", "DOSE", "TIME"),
            func=TRUE.
            hessian=(e$METHOD == "LAPL"))
H = deriv(~F + F*EPS1 + EPS2, c("EPS1", "EPS2"), function.arg=c("F", "EPS1", "EPS1"), func=TRUE)
PRED = function(THETA, ETA, DATAi)
{
 FGDres = FGD(THETA[1], THETA[2], THETA[3], ETA[1], ETA[2], ETA[3], DOSE=320, DATAi[,"TIME"])
 Gres = attr(FGDres, "gradient")
 Hres = attr(H(FGDres, 0, 0), "gradient")
  if (e$METHOD == "LAPL") {
    Dres = attr(FGDres, "hessian")
    Res = cbind(FGDres, Gres, Hres, Dres[,1,1], Dres[,2,1], Dres[,2,2], Dres[,3,])
  colnames(Res) = c("F", "G1", "G2", "G3", "H1", "H2", "D11", "D21", "D22", "D31", "D32", "D33")
    Res = cbind(FGDres, Gres, Hres)
    colnames(Res) = c("F", "G1", "G2", "G3", "H1", "H2")
  }
  return(Res)
}
####### First Order Approximation Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, nTheta=nTheta,
         LB=LB, UB=UB, Pred=PRED, METHOD="ZERO")
######## First Order Conditional Estimation with Interaction Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, nTheta=nTheta,
         LB=LB, UB=UB, Pred=PRED, METHOD="COND")
####### Laplacian Approximation with Interacton Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, nTheta=nTheta,
         LB=LB, UB=UB, Pred=PRED, METHOD="LAPL")
```

Index

```
*Topic Covariance Step
CovStep, 3

*Topic Estimation Step
EstStep, 4

*Topic Initialization Step
InitStep, 5

*Topic Nonlinear Mixed Effects
Modeling
nmw-package, 1

*Topic Population Pharmacokinetics
nmw-package, 1

CovStep, 3

EstStep, 4, 4

InitStep, 4, 5

nmw (nmw-package), 1
nmw-package, 1
```