```
import pandas as pd
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re

df = pd.read_csv("/content/myntra.csv")
```

at

	ID	Name	Price	MRP	Rating	Total	Discount	Seller
0	1	Men Solid Oversized Cotton	532	1299.0	4.1	5300	59	Difference of Opinion
1	2	Men Cotton Pure Cotton T-shirt	274	499.0	4.2	25400	45	Roadster
2	3	Women Pure Cotton T-shirt	551	1199.0	4.5	3400	54	DILLINGER
3	5	Printed Round Neck Pure Cotton T-shirt	494	899.0	4.2	3800	45	Roadster
4	6	Boys Pack of 5 T-shirt	699	4995.0	4.1	1200	86	HELLCAT
20243	20246	Boys Slim Fit Jeans	714	1099.0	4.4	139	35	TALES & STORIES
20244	20247	Floral Linen Cotton Shirt	719	1799.0	4.3	9	60	U.S. Polo Assn. Kids
20245	20248	Infants Pack Of 3 T-shirts	1259	1399.0	0.0	0	10	Ed-a-Mamma Baby
20246	20249	Boys Casual Cotton Shirt	769	1099.0	4.5	12	30	Ed-a-Mamma
20247	20250	Boys Batman Printed T-shirt	314	899.0	3.8	52	65	YK Justice League

20248 rows × 8 columns

```
# Data Preprocessing
# Handling missing values
print("\nMissing values before cleaning:")
print(df.isnull().sum())
# Drop rows with missing values
df.dropna(inplace=True)
```

```
Missing values before cleaning:
ID 0
Name 0
Price 0
MRP 0
Rating 0
Total 0
Discount 0
Seller 0
dtype: int64
```

```
# Clean the data
def clean_text(text):
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    text = text.lower()
    return text
# Apply cleaning function to the 'name' column
df['Name'] = df['Name'].apply(clean_text)
# Display the first few rows of the cleaned dataframe
print("\nCleaned data:")
print(df.head())
```

```
Cleaned data:
  ID
                                      Name Price
                                                     MRP Rating Total \
                                            532 1299.0
0
   1
                 men solid oversized cotton
                                                            4.1
                                                                  5300
1
   2
              men cotton pure cotton tshirt
                                             274
                                                  499.0
                                                             4.2 25400
2
   3
                   women pure cotton tshirt
                                              551 1199.0
                                                             4.5
                                                                   3400
3
     printed round neck pure cotton tshirt
                                                  899.0
                                                            4.2
                                                                   3800
4
                      boys pack of tshirt
                                             699 4995.0
                                                             4.1
                                                                  1200
  Discount
                          Seller
        59 Difference of Opinion
0
                        Roadster
1
        45
2
                        DILLINGER
        54
3
        45
                         Roadster
4
        86
                         HELLCAT
```

```
# Feature Engineering
# Convert text features into numerical representations
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(df['Name'])
# Compute Item Similarity
item_similarity = cosine_similarity(tfidf_matrix, tfidf_matrix)
# Recommendation Generation
def get_similar_items(item_idx, top_n=5):
    sim_scores = list(enumerate(item_similarity[item_idx]))
   sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
   top_similar_items = sim_scores[1:top_n+1] # Exclude the item itself
   return top_similar_items
\# Example: Recommend similar items for the item at index 0
print('item:')
print(df.iloc[0]['Name'])
similar_items = get_similar_items(0)
for idx, score in similar_items:
   print(f"Similar Item: {df.iloc[idx]['Name']} (Similarity Score: {score})")
     men solid oversized cotton
     Similar Item: men solid oversized cotton (Similarity Score: 1.0)
     Similar Item: men solid oversized cotton (Similarity Score: 1.0)
     Similar Item: cotton oversized tshirt (Similarity Score: 0.7597237790035756)
     Similar Item: cotton oversized tshirt (Similarity Score: 0.7597237790035756)
     Similar Item: cotton oversized tshirt (Similarity Score: 0.7597237790035756)
Start coding or generate with AI.
```