Vertex of the Quadratic

Given a quadratic $p(r) = a r^2 + b r + c$ compute its value at $r_1 = -\frac{b}{2a}$ namely $p(r_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{r}_{1^+}\mathsf{h}$, namely

 $p(r_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = p(r_1 + h) - p(r_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$p(r) = 3 r^2 - 12 r - 61$

