6.14 4) (a) Résolvons le système
$$\begin{cases} 2x - y = 0 \\ x = 0 \end{cases}$$
:
$$\begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \stackrel{L_1 \leftrightarrow L_2}{\Longrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \end{pmatrix} \stackrel{L_2 \to -L_2 + 2L_1}{\Longrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
Puisque
$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$
, on a obtenu $\operatorname{Ker}(h) = \{(0; 0)\} = \{0\}$.

- (b) Vu que $h: \mathbb{R}^2 \to \mathbb{R}^2$ et que h est injective, il s'ensuit que h est surjective, d'après l'exercice 6.11. Ainsi $\text{Im}(h) = \mathbb{R}^2$.
- 6) (a) Résolvons le système $\begin{cases} x y = 0 \\ 0 = 0 \end{cases}$

Le système est déjà échelonné : y est une variable libre ; on pose $y=\alpha$ et on obtient la solution générale :

$$\begin{cases} x = \alpha \\ y = \alpha \end{cases} \iff \begin{pmatrix} x \\ y \end{pmatrix} = \alpha \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Par conséquent $\operatorname{Ker}(h) = \{(\alpha; \alpha) : \alpha \in \mathbb{R}\} = \Delta\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$.

(b)
$$h((1;0)) = (1-0;0) = (1;0)$$

 $h((0;1)) = (0-1;0) = (-1;0)$

Échelonnons la matrice $\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ x & y \end{pmatrix} \quad \overset{\mathbf{L}_2 \to \mathbf{L}_2 + \mathbf{L}_1}{\Longrightarrow} \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & y \end{pmatrix}$

Ainsi $\operatorname{Im}(h) = \Delta\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \{(x;y) \in \mathbb{R}^2 : y = 0\}$

8) (a) Résolvons le système
$$\begin{cases} x = 0 \\ y = 0 : \\ x - y = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \xrightarrow{L_3 \to L_3 - L_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix} \xrightarrow{L_3 \to L_3 + L_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

La solution $\begin{cases} x = 0 \\ y = 0 \end{cases}$ signifie $Ker(h) = \{(0, 0)\} = \{0\}.$

(b)
$$h((1;0)) = (1;0;1-0) = (1;0;1)$$

 $h((0;1)) = (0;1;0-1) = (0;1;-1)$

Échelonnons la matrice $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ x & y & z \end{pmatrix} \xrightarrow{L_3 \to L_3 - x L_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & y & -x + z \end{pmatrix}$

$$\stackrel{\mathbf{L}_3 \to \mathbf{L}_3 - y \, \mathbf{L}_2}{\Longrightarrow} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -x + y + z \end{pmatrix}$$

On a trouvé
$$\operatorname{Im}(h)=\Pi\left(\begin{pmatrix}1\\0\\1\end{pmatrix};\begin{pmatrix}0\\1\\-1\end{pmatrix}\right)$$

$$=\left\{(x\,;y\,;z)\in\mathbb{R}^3:-x+y+z=0\right\}$$

- 9) (a) Si l'on résout le système $\begin{cases} x &= 0 \\ y = 0 \end{cases} \text{ par rapport aux variables } x,y,z,$ on constate immédiatement que z est une variable libre et que la solution générale est $\begin{cases} x = 0 \\ y = 0 \\ z = \alpha \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$ C'est pourquoi $\operatorname{Ker}(h) = \left\{ (0\,;0\,;\alpha) : \alpha \in \mathbb{R} \right\} = \Delta \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$
 - (b) On a $h: \mathbb{R}^3 \to \mathbb{R}^2$. Le théorème du rang implique : $\dim(\operatorname{Im}(h)) = \dim(\mathbb{R}^3) - \dim(\operatorname{Ker}(h)) = 3 - 1 = 2 = \dim(\mathbb{R}^2)$. Ainsi h est surjective : $\operatorname{Im}(h) = \mathbb{R}^2$.
- 10) (a) Résolvons le système $\begin{cases} x + 2y &= 0 \\ -2y + z = 0 \end{cases} :$ $\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -2 & 1 & 0 \end{pmatrix} \stackrel{L_2 \to -\frac{1}{2}L_2}{\Longrightarrow} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \end{pmatrix}$ $\stackrel{L_1 \to L_1 2L_2}{\Longrightarrow} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \end{pmatrix}$

Comme z est une variable libre, on pose $z=2\,\alpha$ et on obtient la solution générale $\begin{cases} x=-2\,\alpha\\ y=&\alpha\\ z=&2\,\alpha \end{cases} \iff \begin{pmatrix} x\\y\\z \end{pmatrix} = \alpha \cdot \begin{pmatrix} -2\\1\\2 \end{pmatrix}.$

Donc Ker
$$(h) = \{(-2\alpha; \alpha; 2\alpha) : \alpha \in \mathbb{R}\} = \Delta \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$$
.

- (b) On a $h: \mathbb{R}^3 \to \mathbb{R}^2$. Le théorème du rang implique : $\dim(\operatorname{Im}(h)) = \dim(\mathbb{R}^3) - \dim(\operatorname{Ker}(h)) = 3 - 1 = 2 = \dim(\mathbb{R}^2)$. Ainsi h est surjective : $\operatorname{Im}(h) = \mathbb{R}^2$.
- 11) (a) Le système $\begin{cases} z=0\\ y=0 \text{ possède } (0\,;0\,;0) \text{ pour unique solution.}\\ x=0 \end{cases}$ C'est pourquoi $\operatorname{Ker}(h)=\{(0\,;0\,;0)\}=\{0\}.$

(b) On a $h: \mathbb{R}^3 \to \mathbb{R}^3$.

h est ainsi un endomorphisme.

De plus, h est injective, car $Ker(h) = \{0\}$.

Donc h est aussi surjective, vu l'exercice 6.11.

Par conséquent $Im(h) = \mathbb{R}^3$.

12) (a) En résolvant le système $\begin{cases} 0=0\\ x=0 \text{ par rapport aux variables } x,y,z,\\ 2\,x=0 \end{cases}$

on constate qu'il y a deux variables libres y et z. La solution générale

s'écrit donc
$$\begin{cases} x = 0 \\ y = \alpha \\ z = \beta \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

D'où Ker $(h) = \{(0; \alpha; \beta) : \alpha, \beta \in \mathbb{R}\} = \{(x; y; z) \in \mathbb{R}^3 : x = 0\}$

$$= \Pi\left(\begin{pmatrix}0\\1\\0\end{pmatrix}; \begin{pmatrix}0\\0\\1\end{pmatrix}\right)$$

(b) h((1;0;0)) = (0;1;2)

$$h((0;1;0)) = (0;0;0)$$

$$h((0;0;1)) = (0;0;0)$$

Il apparaît aussitôt que $\operatorname{Im}(h) = \{(0; \alpha; 2\alpha) : \alpha \in \mathbb{R}\} = \Delta \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$.

14) (a) Résolvons le système $\begin{cases} x - y = 0 \\ -x + y = 0 \end{cases}$:

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \xrightarrow{L_2 \to L_2 + L_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On remarque que y est une variable libre. On pose $y = \alpha$ et on obtient la solution générale $\begin{cases} x = \alpha \\ y = \alpha \end{cases} \iff \begin{pmatrix} x \\ y \end{pmatrix} = \alpha \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Par conséquent $\operatorname{Ker}(h) = \{(\alpha; \alpha) : \alpha \in \mathbb{R}\} = \Delta\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$

(b) h((1;0)) = (1-0;0-1) = (1;-1)

$$h((0;1)) = (0-1;1-0) = (-1;1)$$

Échelonnons la matrice $\begin{pmatrix} 1 & -1 \\ -1 & 1 \\ x & y \end{pmatrix} \quad \overset{\mathbf{L}_2 \to \mathbf{L}_2 + \mathbf{L}_1}{\Longrightarrow} \quad \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 0 & x + y \end{pmatrix}.$

Ainsi
$$\operatorname{Im}(h) = \Delta\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right) = \left\{(\alpha; -\alpha) : \alpha \in \mathbb{R}\right\}$$
$$= \left\{(x; y) \in \mathbb{R}^2 : x + y = 0\right\}$$

16) (a) Résolvons, par rapport aux variables
$$x, y, z$$
, le système
$$\begin{cases} x - z = 0 \\ -2x + 2z = 0 \end{cases}$$

$$\left(\begin{array}{cc|c} 1 & 0 & -1 & 0 \\ -2 & 0 & 2 & 0 \end{array}\right) \quad \stackrel{L_2 \to L_2 + 2L_1}{\Longrightarrow} \quad \left(\begin{array}{cc|c} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

On remarque que y et z sont des variables libres ; on pose $z=\alpha$ et $y=\beta$, de sorte que la solution générale s'écrit :

$$\begin{cases} x = \alpha \\ y = \beta \\ z = \alpha \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\operatorname{Ker}(h) = \left\{ (\alpha\,;\beta\,;\alpha) : \alpha,\beta \in \mathbb{R} \right\} = \left\{ (x\,;y\,;z) \in \mathbb{R}^3 : x = z \right\}$$

$$=\Pi\left(\begin{pmatrix}1\\0\\1\end{pmatrix};\begin{pmatrix}0\\1\\0\end{pmatrix}\right)$$

(b)
$$h((1;0;0)) = (1-0;2\cdot 0-2\cdot 1) = (1;-2)$$

$$h((0;1;0)) = (0-0;2\cdot 0-2\cdot 0) = (0;0)$$

$$h((0;0;1)) = (0-1;2\cdot 1-2\cdot 0) = (-1;2)$$

Échelonnons la matrice
$$\begin{pmatrix} 1 & -2 \\ -1 & 2 \\ x & y \end{pmatrix}$$
 $\stackrel{\text{L}_2 \to \text{L}_2 + \text{L}_1}{\Longrightarrow}$ $\begin{pmatrix} 1 & -2 \\ 0 & 0 \\ 0 & 2x + y \end{pmatrix}$

D'où
$$\operatorname{Im}(h) = \Delta \left(\begin{pmatrix} 1 \\ -2 \end{pmatrix} \right) \left\{ (\alpha; -2\alpha) : \alpha \in \mathbb{R} \right\}$$
$$= \left\{ (x; y) \in \mathbb{R}^2 : 2x + y = 0 \right\}$$