Lecture 1: Stat/Math 395

6.1

Joint Distributions

⇒ If we flip I coin, with probability P of being heads what distribution does this follow?

Denote X as the R.V. S.t. XNBer(P)

P(x)= P×(1-P)^{1-x} { probability mass function

→ P(0)=1-P, P(1)=P

 \Rightarrow What if we flip two coins? Let X_1 be coin 1 Let X_2 be coin a What is $P(X_1,X_2)$? 3 joint probability mass function

Joint Probability Mass Function

Let $X_1, X_2, ..., X_n$ be discrete RV's defined on the Same Sample space, Ω , then the Joint PMF is defined as:

$$P(X_1, X_2, \dots, X_n) = P(X_1 = X_1, X_2 = X_2, \dots, X_n = X_n)$$

· Properties of the joint PMF:

①
$$p(x_1,...,x_n) \ge 0 \ \forall \ x_1,x_2,...,x_n \in \Omega$$

Ex) Lets flip 2 coins with probability p of getting a heads as before

Let X, be the result of coin 1 (0 for T, 1 for H)
" "X2"
" Coin 2

$$P(X_{1}, X_{2}) = X_{1} \frac{|A|}{|A|} \frac{|A$$

Expectation of Joint PMF's

$$E(g(X_1,...,X_n))=\sum_{x_1...x_n}g(X_1,...,X_n)P(X_1,...,X_n)$$

Ex) Consider a 3 sided die which you roll twice, recording each roll as X_1 and X_2 Let $Y \in \{0,1\}$ 3.t.

$$y = I(X_1 \ge X_2) = \begin{cases} 1 & X_1 \ge X_2 \\ 0 & X_1 < X_2 \end{cases}$$

indicator

Variable

What is $P(X_1, Y)$?

X_{I}	ΙУ	ρ(x,, y)
1	,	$\frac{1}{3} \cdot (P(x_2 \le 1) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$
2	1	$\frac{1}{3} \cdot (P(X_2 \le 2)) = \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{9}$
3	١	$\frac{1}{3} \cdot P(X_2 \le 3) = \frac{1}{3} \cdot 1 = \frac{1}{3}$
1	0	1/3.P(X2>1)=1/3.23=24
2	0	13. P(X2 >2)= 3. 13= 9
3	0	$\frac{1}{3} \cdot P(x_2 + 3) = \frac{1}{3} \cdot 0 = 0$

Let $g(X_{1}, y) = (X_{1})y$ What is $E(g(X_{1}, y))$? $E(g(X_{1}, y)) = \sum_{X_{1}, y} X_{1}y \cdot P(X_{1}, y)$ $= 1 \cdot (\frac{1}{9}) \cdot 2 \cdot (\frac{2}{9}) \cdot 3 \cdot (\frac{1}{3})$ $= \frac{14}{9}$

Marginal Joint PMF

If we have $p(X_1, X_2, ..., X_n)$, how do we evaluate $p(X_i = x_i)$?

> Marginal PMF of Xi:

 $P_{X_{i}}(k) = \sum_{X_{i},...,X_{i-1},X_{i+1},...,X_{n}} P(X_{i},...,X_{i-1},K,X_{i+1},...,X_{n})$

hold Xi Constant and Sum all other Possibilities

Lemma

The pmf of Xi is the marginal pmf of Xi