Chemical Kinetics Notes

${\bf Hankertrix}$

April 29, 2025

Contents

1	Definitions	2			
	1.1 Reaction rate	2			
	1.2 Rate law	2			
	1.3 Half-life	3			
	1.4 Transition state	3			
	1.5 Collision theory	3			
	1.6 Arrhenius equation	4			
	1.7 Elementary reaction (elementary step)	5			
	1.8 Overall reaction	5			
	1.9 Reaction mechanism				
	1.10 Molecularity	5			
	1.11 Rate-determining step	6			
	1.12 Catalyst	7			
	1.13 Homogeneous catalyst	7			
	1.14 Heterogeneous catalyst	8			
2	Characteristics of zeroth, first, and second-order reactions				
3	Zeroth-order reactions	9			
	3.1 Example	9			
4	First-order reaction	10			
	4.1 Half-life	10			
5	Second-order reaction	11			
	5.1 Half-life	11			

1 Definitions

1.1 Reaction rate

Either the **increase** in the concentration of a product per unit time or the **decrease** in the concentration of a reactant per unit time.

General reaction:

$$aA + bB \rightarrow dD + eE$$

Rate of reaction
$$=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=-\frac{1}{d}\frac{d[D]}{dt}=-\frac{1}{e}\frac{d[E]}{dt}$$

1.1.1 Example

$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

Rate of reaction =
$$\frac{1}{2} \frac{d[N_2 O_5]}{dt} = \frac{1}{4} \frac{d[N O_2]}{dt} = \frac{d[O_2]}{dt}$$

Rate of reaction =
$$k[N_2O_5]^2$$

Rate of consumption of reactant =
$$-\frac{d[N_2O_5]}{dt} = 2 \cdot k[N_2O_5]^2$$

Rate of formation of product =
$$-\frac{d[NO_2]}{dt} = 4 \cdot k[N_2O_5]^2$$

Rate of formation of product =
$$-\frac{d[O_2]}{dt} = k[N_2O_5]^2$$

1.2 Rate law

The rate law is an equation that shows the dependence of the reaction rate on the concentration of each reactant.

$$aA + bB \to \text{Products}$$

 $\text{Rate} \propto [A]^m [B]^n$
 $\text{Rate} = k[A]^m [B]^n$

k is the rate constant.

The values of the exponents in the rate law must be **determined experimentally**. They cannot be deduced from the stoichiometry of the reaction.

1.2.1 Units of the rate constant k

The units of k must be determined based on the order of the reaction. For example, given a third order reaction:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Rate = $k[NO]^2[O_2]$

Units of k for this third-order reaction:

$$k = \frac{\text{Rate}}{[NO^2][O_2]} = \frac{\frac{M}{s}}{M^2 \cdot M} = \frac{1}{M^2 s}$$

1.2.2 The rate constant k is dependent on temperature

The rate constant k is dependent on temperature and the rate of reaction usually increases when the temperature increases.

1.3 Half-life

The half-life is the **time** required for the reactant concentration to drop to **one-half** of its initial value.

1.4 Transition state

The transition state is the configuration of atoms at the maximum in the potential energy profile. This is also called the activated complex.

1.5 Collision theory

Collision theory states that as the average **kinetic energy** increases, the average **molecular speed** increases and thus the **collision rate** increases.

1.6 Arrhenius equation

$$k = Ae^{\frac{-E_a}{RT}}$$

Where:

- \bullet k is the rate constant
- ullet A is the collision frequency factor
- E_a is the activation energy
- \bullet R is the gas constant
- \bullet T is the temperature in Kelvin (K)

1.6.1 Using the Arrhenius equation

$$\ln(k) = \ln(A) + \ln\left[e^{\frac{-E_a}{RT}}\right]$$

$$\ln(k) = \ln(A) - \frac{-E_a}{RT}$$

$$\ln(k) = \frac{-E_a}{R} \frac{1}{T} + \ln(A)$$
 which is in the form: $y = mx + c$

So, we get:

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Plotting the graph of $\ln(k)$ versus $\frac{1}{T}$ gives a straight line graph with a slope (gradient) of $\frac{-E_a}{R}$.

Which gas constant (R) value to use?

The gas constant can be either:

 \bullet R value: 8.314

Units: $J K^{-1} \text{ mol}^{-1}$, $m^3 Pa K^{-1} \text{ mol}^{-1}$

• R value: 0.0821

Units: $L \operatorname{atm} K^{-1} \operatorname{mol}^{-1}$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

For the term $\frac{-E_a}{R}$, the final units should be K. If $R=8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}$, the units for E_a should be $\mathrm{J\,mol^{-1}}$. If $R=0.0821\,\mathrm{L\,atm\,K^{-1}\,mol^{-1}}$, the units for E_a should be $\mathrm{L\,atm\,mol^{-1}}$.

Elementary reaction (elementary step) 1.7

A single step in a reaction mechanism. An elementary reaction describes an individual molecular event.

1.8 Overall reaction

The overall reaction described the reaction stoichiometry and is a summation of elementary reactions.

1.9 Reaction mechanism

The reaction mechanism is a sequence of reaction steps that describes the pathway from reactants to products.

1.9.1 Example

$$NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$$
 Elementary reaction

$$NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$$
 Elementary reaction

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$
 Overall reaction

1.10Molecularity

Molecularity is a classification of an elementary reaction based on the number of molecules or atoms on the reactant side of the chemical equation.

1.10.1 Unimolecular reaction

$$O_3^*(g) \to O_2(g) + O(g)$$

Rate = $k[O_3]$

1.10.2 Bimolecular reaction

$$O_3(g) + O(g) \rightarrow 2O_2(g)$$

Rate = $k[O_3][O]$

1.10.3 Termolecular reaction

$$O(g) + O(g) + M(g) \rightarrow O_2(g) + M(g)$$

Rate = $k[O]^2[M]$

1.11 Rate-determining step

The rate-determining step is the **slow step** in a reaction mechanism since it acts as a bottleneck and limits the rate at which reactants can be converted to products.

1.12 Catalyst

A catalyst is a substance that increases the rate of a reaction without itself being consumed in the reaction. A catalyst is used in one step and regenerated in a later step.

1.12.1 Example

 $I^{-}(aq)$ is acting as a catalyst in the reaction below as it is regenerated and not used up:

$$H_2O_2(aq) + I^-(aq) o H_2O(l) + IO^-(aq)$$
 Rate-determining step $H_2O_2(aq) + IO^-(aq) o H_2O(l) + O^2(g) + I^-(aq)$ Fast step $2H_2O_2(aq) o 2H_2O(l) + O_2(g)$ Overall reaction

Since the catalyst is involved in the **rate-determining step**, it often appears in the rate law. The rate law for the reaction above is:

Rate =
$$k[H_2O_2][I^-]$$

1.12.2 Effect of a catalyst

A catalyst will **decrease** the **activation energy** (E_a) of a reaction and there will usually be **two transition states** in the reaction, which means 2 humps in the energy level diagram for the reaction. The first hump will be **larger** than the second one as the first hump represents the activation energy for the reaction.

1.13 Homogeneous catalyst

A homogeneous catalyst is a catalyst that exists in the **same phase** as the reactants.

1.14 Heterogeneous catalyst

A catalyst that exists in a **different phase** from that of the reactants.

1.14.1 Example mechanism

Using a metal catalyst for the reaction between H_2 and C_2H_4 :

- 1. H_2 and C_2H_4 are adsorbed on the metal surface.
- 2. The H-H bond breaks as H-metal bonds form, and the H atoms move about on the surface.
- 3. One H atom forms a bond to a C atom of the adsorbed C_2H_4 to give a metal-bonded C_2H_5 group. A second H atom bonds to the C_2H_5 group.
- 4. The resulting C_2H_6 molecule is desorbed from the surface.

2 Characteristics of zeroth, first, and second-order reactions

	Zeroth-Order	First-Order	Second-Order
Rate law	$-\frac{\Delta[A]}{\Delta t} = k$	$-\frac{\Delta[A]}{\Delta t} = k[A]$	$-\frac{\Delta[\mathbf{A}]}{\Delta t} = k[\mathbf{A}]^2$
Integrated Rate Law	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$\ln\left[\mathbf{A}\right]_t = -kt + \ln\left[\mathbf{A}\right]_0$	$\frac{1}{[\mathbf{A}]_t} = kt + \frac{1}{[\mathbf{A}]_0}$
Linear graph	[A] versus t	ln [A] versus t	$\frac{1}{[A]}$ versus t
	$[A]_0 \text{Slope} = -k$ $[A]$	$ \ln [A]_0 $ Slope = $-k$	$\frac{1}{[A]}$ Slope = k
Graphical determination of k	k = -(Slope)	k = -(Slope)	k = Slope
Half-life	$t_{1/2} = \frac{[A]_0}{2k}$ (not constant)	$t_{1/2} = \frac{0.693}{k}$ (constant)	$t_{1/2} = \frac{1}{k[A]_0}$ (not constant)

3 Zeroth-order reactions

For a zeroth-order reaction, the rate is **independent** of the concentration of the reactant.

$$A \to \text{Products}$$

$$\text{Rate} = k[A]^0 = k$$

$$-\frac{\Delta[A]}{\Delta t} = k$$

The **integrated rate law** for a zeroth-order reaction is:

$$[A]_t = -kt + [A]_0$$
, which is in the form: $y = mx + c$

Where $[A]_t$ is the concentration of A at time t and $[A]_0$ is the initial concentration of A.

A plot of [A] versus **time** gives a straight-line graph and the **slope** (gradient) will be -k.

3.1 Example

$$2NH_3(g) \to N_2(g) + 3H_2(g)$$

Rate = $k[NH_3]^0 = k$

3.1.1 Explanation (not very important)

Most of the NH_3 molecules are in the gas phase above the surface and are unable to react. As the NH_3 molecules on the surface decompose, they are replaced by molecules form the gas phase, so the number of NH_3 molecules on the surface remains constant. Because only the NH_3 molecules on the surface react under these conditions, the reaction rate is independent of the total concentration of NH_3 .

4 First-order reaction

$$A \rightarrow \text{Products}$$

Rate =
$$k[A]$$

$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

Deriving the **integrated rate law**:

$$\ln\left(\frac{[A]_t}{[A]_0} = -kt\right)$$

$$\ln[A]_t - \ln[A]_0 = -kt$$

Hence, the integrated rate law is:

 $ln[A]_t = -kt + ln[A]_0$, which is in the form: y = mx + c

$$[A]_t = e^{-kt} + [A]_0$$

Where $[A]_t$ is the concentration of A at time t and $[A]_0$ is the initial concentration of A.

A plot of ln[A] versus **time** gives a straight-line graph and the **slope** (gradient) will be -k.

4.1 Half-life

Finding the half life of a first-order reaction:

$$A \rightarrow \text{Products}$$

Rate =
$$k[A]$$

$$\ln\left(\frac{[A]_t}{[A]_0} = -kt\right)$$

When $t = t_{\frac{1}{2}}$ and $[A]_{t_{\frac{1}{2}}} = \frac{[A]_0}{2}$:

$$\ln\frac{1}{2} = -kt_{\frac{1}{2}}$$

Hence, the half-life of a first-order reaction is:

$$t_{\frac{1}{2}} = \frac{\ln 2}{k}$$

The half-life of a first-order reaction is **independent** of the initial concentration. Each successive half-life is an equal period of time.

5 Second-order reaction

$$A \to \text{Products}$$

$$\text{Rate} = k[A]^2$$

$$-\frac{\Delta[A]}{\Delta t} = k[A]^2$$

The **integrated rate law** of a second-order reaction is:

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$
 which is in the form: $y = mx + c$

Where $[A]_t$ is the concentration of A at time t and $[A]_0$ is the initial concentration of A.

A plot of ln[A] versus **time** gives a curve. However, plotting $\frac{1}{[A]}$ versus **time** gives a straight-line graph with the **slope** (gradient) will be k.

5.1 Half-life

Finding the half life of a second-order reaction:

$$A \rightarrow \text{Products}$$

$$Rate = k[A]$$
$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

When $t = t_{\frac{1}{2}}$ and $[A]_{t_{\frac{1}{2}}} = \frac{[A]_0}{2}$:

$$\frac{2}{[A]_0} = kt_{\frac{1}{2}} + \frac{1}{[A]_0}$$

Hence, the half-life of a second-order reaction is:

$$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$$

For a second-order reaction, the half-life is **dependent** on the initial concentration. Each successive half-life is **twice** as long as the preceding one.