Fakultät für Technik Bachelor-Studiengang "Technische Informatik" Diplom-Studiengang "Elektrotechnik/Informationstechnik"

Klausur im Fach Signale und Systeme 09.07.2007

Prüfer: Prof. Dr.-Ing. Norbert Höptner

Hilfsmittel: Vorlesungsskripten, Mitschriften (incl. gelöster Übungsaufgaben), Fachbücher, Taschenrechner (nicht programmierbar, nicht grafikfähig)

Name:

Matrikelnummer:

Semester:

Bearbeitungszeit: 90 Minuten

Geben Sie bitte auf allen Blättern Matrikelnummer und Name an.

1. Aufgabe (15 Punkte)

Bestimmen Sie für die si-Funktion $g(t) = si(\pi t/T)$

- a) das Energiedichtespektrum
- b) die Autokorrelationsfunktion
- c) die Energie.

2. Aufgabe (10 Punkte)

Gegeben sei eine Schar von Gleichspannungen $x(n,t) = a_n$. Die Amplitude a_n kann entsprechend einer Gleichverteilung einen der Werte -1 V oder 3 V annehmen.

- a) Wie groß ist der Scharmittelwert?
- b) Wie groß ist die Varianz?
- c) Wie groß sind die Zeitmittelwerte?

Ist der Prozess ergodisch?

3. Aufgabe (20 Punkte)

Es sei das folgende Signal *s*(*t*) gegeben:

- a) Ist das Signal *s*(*t*) kausal? (Begründung)
- b) Zerlegen Sie das Signal s(t) in einen geraden Signalanteil $s_g(t)$ und ungeraden Signalanteil $s_u(t)$.
- c) Begründen Sie, ob das Spektrum S(t) des Signals s(t) einen Real- und einen Imaginärteil oder aber nur einen Realteil oder nur einen Imaginärteil besitzt?
- d) Bestimmen Sie das Spektrum X(f) des Signals x(t) mit
 - x(t) = 0 für t < T und t > 2T
 - x(t) = s(t) sonst.

4. Aufgabe (10 Punkte)

Ist das System y(t) = x(-t)

- a) linear?
- b) zeitinvariant?
- c) kausal?

Begründen Sie Ihre Antworten (wenn möglich, auch mathematisch)!

5. Aufgabe (15 Punkte)

Ein abgetastetes Signal besitzt eine maximale Frequenzkomponente von 100 kHz.

- a) Bestimmen Sie die minimal mögliche Abtastfrequenz f_{a1}.
- b) Bestimmen Sie (unter Verletzung des Abtasttheorems) die Abtastfrequenz fa2 so, dass durch die Abtastung die oben genannte maximale Frequenzkomponente von 100 kHz auf 125 kHz "abgebildet" wird.
- c) Sie wollen für das mit fa1 abgetastete Signal den Frequenzgang mit einer minimalen Frequenz-Auflösung von 100 Hz mittels DFT errechnen. Wieviele Abtastwerte n₁ müssen Sie für die DFT verwenden?
- d) Welche Zahl von Abtastwerten n₂ müssen Sie für die entsprechende FFT-Berechnung verwenden?

6. Aufgabe (20 Punkte)

Gegeben sei eine Nullstelle z_{01} =0,5 eines FIR-Filters 2. Ordnung.

- a) Bestimmen Sie die weitere Nullstelle z₀₂ so, dass ein linearphasiges FIR-Filter entsteht.
- b) Bestimmen Sie die Übertragungsfunktion H(z) in Polynomdarstellung.
- c) Geben Sie die Direktstruktur des linearphasigen FIR-Filters an und bestimmen Sie die darin enthaltenen Koeffizienten.
- d) Bestimmen Sie die Impulsantwort h(n).
- e) Auf das System H(z) werde die Eingangsfolge $x(n)=\{3,1,2\}$, sonst 0, gegeben. Bestimmen Sie die Antwortfolge y(n) (Tabelle!).