May 5, 2023

(LSTM)

Word embeddings in a nutshell

Long Short-Term Meniory

When you penalize your Natural Language Generation model for large sentence lengths

Recorp:

Rew > V [-0,00]

* Recurrent Neural Networks (RNNs).

-> What problems do they solve?

* Variable input /output lengths. * Explicit encoding of context - hidden state.

→ Types?

one-to-one * one-to-many + Many-to-one * Many-to-many

→ Training?

Backpropagation through time (BPTT).

Aginda:

* A new type of Architecture: dong Short-term Memory (LSTM).

> 10 hy? RNN training is difficult because of vanishing/emploding gradients.

* application: Text dummarization.

- -> Encoder Decoder Architecture.
- > Input, Forget and Output Gates.
- -> gated Recurrent Units.
- ROUGE sore.

dets understand the Industry Requirement!

Practical Implementation. c_{t-1} c_t tanh tanh h_{t-1} W_f W_c Input word at fine step t.

Conceptual Enplanation.

Lorg-term menorg

Thort - term memory.

Operations:

short-term to long-term.

(ii) Forget operation: Allow unnecessary information to be removed from the long-ferm.

(111) Output operation: Rétriere in po from long ferm-

Input gate: How information flows into long-tern memory.

sen som: elights input.

Content info from warrent word.

The elementwise $\begin{bmatrix} 0.1 & 0.5 & 0.3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ -0.7 & -0.3 & 0.7 \end{bmatrix}.$

Output gate:

Hidden State

Which of the following statements is correct about Hidden State?

Jeelback: Include more détailed explanation.