

Analog Electronics Project # 1

Design and Implementation of a Biquad

Presented for ELC 3060 Cadence Project

Presented to:

Dr. Mohammed Mobarak

T.A: Mohammed Ramadan

(3rd Year Electronics and Electrical Communication Engineers)

مجدي أحمد عباس عبد الحميد الابرق

Sec: 3 / I.D: 9210899 / BN: 36

Universal Biquadratic Filter

Derivations and Parameters

Assume for all Op-amps are ideal and in Negative Feedback $\to V_{out} = A_v(V_{in}^+ - V_{in}^-)$. Since the output is Finite, While $A_v \to \infty$, then $(V_{in}^+ - V_{in}^- = 0) \to V_{in}^+ = V_{in}^-$ We use KCL at input nodes in S-domain to approach the derivations.

OP-AMP#1(BPF)

KCL:
$$\frac{V_{HPF} - 0}{R} = \frac{0 - V_{BPF}}{\frac{1}{SC}}$$

$$\therefore V_{HPF} = -V_{BPF} SCR \longrightarrow (1)$$

Op-AMP#3(HPF)

KCL:
$$\frac{V_{LPF}-0}{R} + \frac{V_{BSF}-0}{R} = \frac{0-V_{HPF}}{R}$$

$$\therefore V_{HPF} = -V_{LPF} - V_{BSF} \rightarrow (3)$$

OP-AMP#2(LPF)

KCL:
$$\frac{V_{BPF} - 0}{R} = \frac{0 - V_{LPF}}{\frac{1}{SC}}$$

$$\therefore V_{BPF} = -V_{LPF} SCR \rightarrow (2)$$

OP-AMP#4(BSF)

KCL:
$$\frac{V_{in}}{R/H_0} + \frac{V_{BPF}}{R.Q} = \frac{-V_{BSF}}{R}$$

$$\therefore H_o V_{in} + \frac{1}{Q} V_{BPF} = -V_{BSF} \rightarrow (4)$$

From (3):
$$-V_{BSF} = V_{HPF} + V_{LPF}$$
, Sub. In (4): $\therefore H_o V_{in} + \frac{1}{Q} V_{BPF} = V_{HPF} + V_{LPF} \rightarrow (5)$

From (2):
$$V_{BPF} = -V_{LPF} SCR$$
 , From (1): $V_{HPF} = -V_{BPF} SCR$

Substitute in (5) 4 times to get $H_{LPF}(S)$, $H_{HPF}(S)$, $H_{BPF}(S)$, $H_{BSF}(S)$:

$$H_o V_{in} + \frac{1}{Q} (-V_{LPF} SCR) = -(-V_{LPF} SCR) SCR + V_{LPF} \rightarrow H_o V_{in} = \left(1 + \frac{SCR}{Q} + S^2 C^2 R^2\right) V_{LPF}$$

2nd Order LPF Transfer Function

$$\therefore H_{LPF} = \frac{V_{LPF}}{V_{in}} = \frac{H_o}{S^2 C^2 R^2 + \frac{SCR}{Q} + 1} = \frac{\frac{H_o}{C^2 R^2}}{S^2 + \frac{S}{QCR} + \frac{1}{C^2 R^2}}$$

$$H_o V_{in} + \frac{1}{Q} \left(-\frac{V_{HPF}}{SCR} \right) = V_{HPF} + \frac{-\left(-\frac{V_{HPF}}{SCR} \right)}{SCR} \to H_o V_{in} = \left(1 + \frac{1}{S^2 C^2 R^2} + \frac{1}{QSCR} \right) V_{HPF}$$

2nd Order HPF Transfer Function

$$\therefore H_{HPF} = \frac{V_{HPF}}{V_{in}} = \frac{H_o}{1 + \frac{1}{S^2 C^2 R^2} + \frac{1}{QSCR}} = \frac{H_o S^2}{S^2 + \frac{S}{QCR} + \frac{1}{C^2 R^2}}$$

$$H_o V_{in} + \frac{1}{Q} V_{BPF} = -V_{BPF} SCR + \frac{-V_{BPF}}{SCR} \rightarrow H_o V_{in} = -\left(\frac{1}{Q} + SCR + \frac{1}{SCR}\right) V_{BPF}$$

2nd Order BPF Transfer Function

$$\therefore H_{BPF} = \frac{V_{BPF}}{V_{in}} = \frac{-H_o}{\frac{1}{Q} + SCR + \frac{1}{SCR}} = \frac{-H_o \frac{S}{CR}}{S^2 + \frac{S}{QCR} + \frac{1}{C^2R^2}}$$

From (3):
$$V_{BSF} = -\left(\left(-V_{BPF} SCR\right) + \left(-\frac{V_{BPF}}{SCR}\right)\right) \rightarrow V_{BPF} = \frac{V_{BSF}}{SCR + \frac{1}{SCR}}$$

From (4):
$$H_o V_{in} + \frac{1}{Q} \frac{V_{BSF}}{SCR + \frac{1}{SCR}} = -V_{BSF} \rightarrow -H_o V_{in} = \left(1 + \frac{1}{Q} \frac{1}{SCR + \frac{1}{SCR}}\right) V_{BSF}$$

2nd Order BSF Transfer Function

$$\therefore H_{BSF} = \frac{V_{BSF}}{V_{in}} = \frac{-H_0}{1 + \frac{1}{Q_{SCR} + \frac{1}{SCR}}} = \frac{-H_0\left(S^2 + \frac{1}{C^2R^2}\right)}{S^2 + \frac{S}{QRC} + \frac{1}{C^2R^2}}$$

PARAMETERS

 H_o : DC gain (The Magnitude response be shifted vertically upwards or downwards by 20 log |H|).

Q: Quality factor of filter.

 ω_o : Cut - off Frequency, From Transfer function $\omega_o = \left(\frac{1}{RC}\right)$.

BW: Bandwidth of the filter, represent the coefficient of S in denominator of the transfer function

$$BW = \frac{\omega_o}{Q} = \frac{1}{QRC}$$

Components Design

Parameters	Its Values
f_o	1 MHz
$oldsymbol{Q}$	2.2
H_o	1
$\boldsymbol{\omega}_o = 2\pi \boldsymbol{f}_o$	$6.283 \times 10^6 \ rad/sec$

$$RC = \frac{1}{\omega_0} = 1.592 \times 10^{-7} \text{ sec } \rightarrow (1)$$

In integrated circuit (IC) design, the values of components are converted into physical area on the chip. For instance, capacitance (C) is measured at $(fF/\mu m^2)$, and capacitor sizes commonly ranges between 10 picofarads (pF) with dimensions of $(100 \,\mu m \times 100 \,\mu m)$ to 100 femtofarads (fF) with dimensions of $(10 \,\mu m \times 10 \,\mu m)$. For resistors, larger ones amplify thermal noise power, following the equation S(f) = 4KTR, where K is Boltzmann's constant, T is temperature in Kelvin, and R is resistance. Conversely, smaller resistors generate higher current and power consumption. Typically, resistors measure in the kilo ohms range.

To Summarize that $C \propto Area$, $R \propto \frac{1}{Power\ Consumption}$, So we take the optimal values of R & C to optain small area and small power consumption

Let the nominal value for $R=10~k\Omega$ and from (1): C=15.92~pF.

Components Design	Its Values
R	$10~k\Omega$
C	15.92 <i>pF</i>
R/H	$10~k\Omega$
Q.R	$22~k\Omega$

Task 3

CADENCE SIMULATION

IDEAL OP - AMP SCHEMATIC

Ideal Op - amp is modeled as a Voltage Controlled Voltage Source (VCVS) with Voltage

Gain = 10000 , and with
$$|V_{out}| < 1 \ \ (V_{max} = 1 \ \ , V_{min} = -1)$$

Note: Since we don't have any pole. Therefore, we don't need a Buffer Stage as $(R_{out}=0)$.

Votage Source is Modeled as a Short Circuit in Small Signal Model.

UNIVERSAL BIQUADRATIC FILTER

Frequency Response

LPF RESPONSE

$$\text{Replace } (S=j\omega) \text{ , } H_{LPF}(S) = \frac{H_0 \, \omega_0^2}{S^2 + \frac{\omega_0}{Q} \, S + \omega_0^2} \, \rightarrow \, H_{LPF}(\omega) = \frac{\omega_0^2}{\left(\omega_0^2 - \omega^2\right) + j \frac{\omega\omega_0}{Q}} \text{ , } \left|H_{LPF}(\omega)\right| = \frac{\omega_0^2}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\frac{\omega\omega_0}{Q}\right)^2}}$$

For Max Magnitude:
$$\vdots \frac{d|H(\omega)|}{d\omega} = 0 \text{ , } 2(\omega_o^2 - \omega^2)(-2\omega) + 2\left(\frac{\omega\omega_o}{\varrho}\right)\left(\frac{\omega_o}{\varrho}\right) = 0 \rightarrow \omega_{peak} = \omega_o\sqrt{1 - \frac{1}{2\varrho^2}}$$

Frequency
$$(\omega_o)$$
 $\omega \to 0$ $\omega \to \infty$ $\omega \to \omega_o \left(H_{LPF}(\omega) = \frac{Q}{j}\right)$ $\omega \to \omega_{peak} \left(Q > \frac{1}{\sqrt{2}}\right)$

				V =
$ H_{LPF}(\omega) $	1	0	Q	$\frac{Q^2}{\sqrt{Q^2 - \frac{1}{4}}} > Q_{slightly}$
$\angle H_{LPF}(\omega)$	0°	-180°	-90°	$\frac{Q^2}{\sqrt{Q^2 - \frac{1}{4}}} = 2.25 > 2.2$

P.O.C	Simulation	Theoretically
Cut off Freq. (ω_o)	From Phase Plot: @ Phase = -90° $f_o = 1 MHz$ $\omega_o = 2\pi f_o$ $\omega_o = 6.3 \times 10^6 rad/sec$	$C=15.92~pF$, $H_o=1$, $Q=2.2$, $R=10~k\Omega$, $\omega_o=\frac{1}{RC}=6.3\times 10^6~rad/sec$
DC Gain (H)	@ Low Frequency $ H_{LPF}(\omega_{low}) = 20 \log H $ $H_o = 0 \ dB = 1$	$H_o = \left(\frac{10 k}{10 k}\right) = 1$
Quality Factor	From Magnitude Plot: $@\omega_o$ Cut off Freq. $ H_{LPF}(\omega_o) = H_oQ = 6.84128 \ dB$ $Q = 6.84128 \ dB = 2.198$	$Q = \left(\frac{QR}{R}\right) = \frac{22 k}{10k} = 2.2$
Peaking Freq (ω_{peak}) From Magnitude Plot: $@f_{peak} = 954.993 \ kHz$ $V_{peak} = 7.07022 \ dB$ $V_{peak} = 2.257$		$f_{peak} = f_o \sqrt{1 - \frac{1}{2Q^2}} = 946.94 \text{ kHz}$ $V_{peak} = \frac{Q^2}{\sqrt{Q^2 - \frac{1}{4}}} = 2.259$

HPF RESPONSE

H_HPF_FR

Replace
$$(S = j\omega)$$
, $H_{HPF}(S) = \frac{H_0 S^2}{S^2 + \frac{\omega_0}{Q} S + \omega_0^2} \rightarrow H_{HPF}(\omega) = \frac{-\omega^2}{\left(\omega_0^2 - \omega^2\right) + j\frac{\omega\omega_0}{Q}}$, $|H_{HPF}(\omega)| = \frac{\omega^2}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\frac{\omega\omega_0}{Q}\right)^2}}$

P.O.C	Simulation	Theoretically
Cut off Freq. (ω_o)	From Phase Plot: @ Phase = 90° $f_o = 1 \ MHz$ $\omega_o = 2\pi f_o$ $\omega_o = 6.3 \times 10^6 \ rad/sec$	$C=15.92~pF$, $H_o=1$, $Q=2.2$, $R=10~k\Omega$, $\omega_o=\frac{1}{RC}=6.3\times 10^6~rad/sec$
DC Gain (H)	@ High Frequency $\left H_{HPF}\left(\omega_{infinity}\right)\right = 20 \log H $ $H_o = 0 \ dB = 1$	$H_o = \left(\frac{10 k}{10 k}\right) = 1$
$ \begin{array}{l} \textbf{Quality Factor} & \textbf{From Magnitude Plot:} \\ @\omega_o \ \text{Cut off Freq.} \\ H_{HPF}(\omega_o) = H_o Q = 6.84794 \ dB \\ Q = 6.84794 \ dB = 2.199 \\ \\ \textbf{From Magnitude Plot:} \\ @\ f_{peak} = 1.04713 \ kHz \\ V_{peak} = 7.06927 \ dB \\ V_{peak} = 2.257 \\ \end{array} $		$Q = \left(\frac{QR}{R}\right) = \frac{22 k}{10k} = 2.2$
		$f_{peak} = f_o \sqrt{1 - \frac{1}{2Q^2}} = 946.94 \text{ kHz}$ $V_{peak} = \frac{Q^2}{\sqrt{Q^2 - \frac{1}{4}}} = 2.259$

BPF RESPONSE

$$\text{Replace } (S=j\omega)\text{, } H_{BPF}(S) = \frac{\frac{\omega_{o}}{Q}S}{S^{2} + \frac{\omega_{o}}{Q}S + \omega_{o}^{2}} \rightarrow H_{BPF}(\omega) = \frac{j\frac{\omega\omega_{o}}{Q}}{(\omega_{o}^{2} - \omega^{2}) + j\frac{\omega\omega_{o}}{Q}} \text{ , } |H_{BPF}(\omega)| = \frac{\frac{\omega\omega_{o}}{Q}}{\sqrt{(\omega_{o}^{2} - \omega^{2})^{2} + \left(\frac{\omega\omega_{o}}{Q}\right)^{2}}}$$

Frequency (ω_o)

 $\omega \rightarrow 0$

 $\omega \rightarrow \infty$

 $\omega \rightarrow \omega_o \ (H_{BPF}(\omega) = 1)$

$ H_{BPF}(\omega) $	0	1	1
$\angle H_{BPF}(\omega)$	90°	-90°	0°

$$@(\omega \rightarrow \omega_{1,2}(-3 dBs from peaking))$$

$$|H_{BPF}(\omega)| = \frac{\frac{\omega\omega_o}{Q}}{\sqrt{\left(\omega_o^2 - \omega^2\right)^2 + \left(\frac{\omega\omega_o}{Q}\right)^2}} = \frac{1}{\sqrt{2}} \rightarrow 2\left(\frac{\omega\omega_o}{Q}\right)^2 = (\omega_o^2 - \omega^2)^2 + \left(\frac{\omega\omega_o}{Q}\right)^2 \rightarrow (\omega_o^2 - \omega^2)^2 = \left(\frac{\omega\omega_o}{Q}\right)^2$$

$$\omega^{2} + \frac{\omega\omega_{o}}{Q} - \omega_{o}^{2} = 0 \to \omega_{1,2} = \frac{\pm \frac{\omega_{o}}{Q} + \sqrt{\left(\frac{\omega_{o}}{Q}\right)^{2} + 4\omega_{o}^{2}}}{2} = \pm \frac{\omega_{o}}{2Q} + \omega_{o}\sqrt{1 + \frac{1}{4Q^{2}}}$$

$$\therefore BW = \omega_2 - \omega_1 = \frac{\omega_o}{Q}$$

$$\therefore \omega_o^2 = \omega_2 \, \omega_1$$

$$H_{BPF}(S) = \frac{\frac{\omega_o}{Q}S}{S^2 + \frac{\omega_o}{Q}S + \omega_o^2}$$
 But The Transfer function is $H_{BPF}(S) = \frac{-H_oQ\left(\frac{S}{RC}\right)}{S^2 + \frac{S}{QRC} + \frac{1}{C^2R^2}}$

 \therefore Magnitude Shifts up by $20 \log |QH_o| \cong 6.848 \, dB$, Phase Shifts down by -180°

P.O.C	Simulation	Theoretically
Cut off Freq. (ω_o)	From Phase Plot: @ Phase = -180° $f_o = 1 \ MHz$ $\omega_o = 2\pi f_o$ $\omega_o = 6.3 \times 10^6 \ rad/sec$	$C=15.92~pF$, $H_o=1$, $Q=2.2$, $R=10~k\Omega$, $\omega_o=\frac{1}{RC}=6.3\times 10^6~rad/sec$
3 dB $f_{1,2}$	$f_1 = 799.212 kHz$ $f_2 = 1.25027 MHz$ Note: $\sqrt{f_1 f_2} = 0.99962 MHz \cong 1 MHz$	$f_{1,2} = \pm \frac{f_o}{2Q} + f_o \sqrt{1 + \frac{1}{4Q^2}}$ $f_1 = 1.253 \text{ MHz}$ $f_2 = 798.23 \text{ kHz}$
DC Gain (H)	From Magnitude Plot: @ ω_o Cut off Freq. $ H_{BPF}(\omega_o) = H_oQ = 6.84461 dB$ $20 \log H_o + 20 \log Q = 6.84461 dB$ $20 \log H_o = -0.00384 dB$ $H_o \cong 1$	$H_o = \left(\frac{10 k}{10 k}\right) = 1$
Bandwidth BW $BW = f_2 - f_1 = 451.058 kHz$		$BW = \frac{f_o}{Q} = 454.55 \ kHz$
Quality Factor	$Q = \frac{f_o}{BW} = \frac{1 MHz}{451.058 MHz} = 2.217$	$Q = \left(\frac{QR}{R}\right) = \frac{22 k}{10k} = 2.2$

BSF RESPONSE

$$\text{Replace } (S = j\omega) \text{, } H_{BSF}(S) = \frac{S^2 + \omega_0^2}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2} \rightarrow H_{BSF}(\omega) = \frac{(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2) + j\frac{\omega\omega_0}{Q}} \text{ , } |H_{BSF}(\omega)| = \frac{(\omega_0^2 - \omega^2)}{\sqrt{(\omega_0^2 - \omega^2)^2 + \left(\frac{\omega\omega_0}{Q}\right)^2}}$$

Frequency (ω_o)	$\omega o 0$	$oldsymbol{\omega} ightarrow\infty$	$\omega ightarrow \omega_o$	$\omega ightarrow \omega_o^o$	$m{\omega} ightarrow m{\omega}_{\scriptscriptstyle au}^o$	
$ H_{BSF}(\omega) $	1	1	0	0	0	
$\angle H_{BSF}(\omega)$	0°	0°	0°	-90°	90°	

$$@(\omega \rightarrow \omega_{1,2}(-3 dBs from peaking))$$

$$\omega_{1,2} = \frac{\pm \frac{\omega_o}{Q} + \sqrt{\left(\frac{\omega_o}{Q}\right)^2 + 4\omega_o^2}}{2} = \pm \frac{\omega_o}{2Q} + \omega_o \sqrt{1 + \frac{1}{4Q^2}}$$

$$\therefore BW = \omega_2 - \omega_1 = \frac{\omega_o}{Q} \qquad \qquad \therefore \omega_o^2 = \omega_2 \, \omega_1$$

 $H_{BSF}(S) = \frac{S^2 + \omega_0^2}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2}$ But The Transfer function is $H_{BSF}(S) = \frac{-H_0\left(S^2 + \frac{1}{C^2R^2}\right)}{S^2 + \frac{S}{QRC} + \frac{1}{C^2R^2}}$

 \therefore Magnitude Shifts by $20 \log |H_o| \cong 0 \ dB$, Phase Shifts down by -180°

P.O.C	Simulation	Theoretically
Cut off Freq. (ω_o)	From Magnitude Plot @ Notch: @ Magnitude = $-52.4324 \ dB$ $f_o = 1 \ MHz$ $\omega_o = 2\pi f_o$ $\omega_o = 6.3 \times 10^6 \ rad/sec$	$C = 15.92 \ pF$, $H_o = 1$, $Q = 2.2$, $R = 10 \ k\Omega$, $\omega_o = \frac{1}{RC} = 6.3 \times 10^6 \ rad/sec$
3 dB $f_{1,2}$	$f_1 = 794.328 \ kHz$ $f_2 = 1.25406 \ MHz$ Note: $\sqrt{f_1 f_2} = 0.9981 \ MHz \cong 1 \ MHz$	$f_{1,2} = \pm \frac{f_o}{2Q} + f_o \sqrt{1 + \frac{1}{4Q^2}}$ $f_1 = 1.253 \text{ MHz}$ $f_2 = 798.23 \text{ kHz}$
DC Gain (H)	From Magnitude Plot: @ ω_o Cut off Freq. $ H_{BSF}(\omega_{low}) = H_o = 0 \ dB$ $20 \log H_o = 0 \ dB$ $H_o \cong 1$	$H_o = \left(\frac{10 k}{10 k}\right) = 1$
Bandwidth BW $BW = f_2 - f_1 = 459.732 kHz$		$BW = \frac{f_o}{Q} = 454.55 \ kHz$
Quality Factor	$Q = \frac{f_o}{BW} = \frac{1 MHz}{459.732 kHz} = 2.175$	$Q = \left(\frac{QR}{R}\right) = \frac{22 k}{10k} = 2.2$

Transient Response Sine Wave

 $V_{sine}\left(Amplitude = 100~mV~, Frequency = f_o = 1~MHz~, V_{out} = V_{in} imes H(\omega_o)
ight)$

DFT Analysis For input Sine Wave

LPF RESPONSE

LPF Transfer Function for Sine input Waveform in Transient Response

LPF in Transient Response Show the Phase difference

$$\Delta\theta = \frac{\Delta T \, (\textit{Between I/O peaks})}{T \, (\textit{period})} \times 2\pi = \frac{0.2923 \, \mu \, \textit{s}}{1 \, \mu \, \textit{s}} \times 360^{\circ} \rightarrow \approx \frac{1}{4} \, \textit{cycle} \approx -90^{\circ}$$

HPF RESPONSE

HPF Transfer Function for Sine input Waveform in Transient Response

HPF in Transient Response Show the Phase difference

$$\Delta\theta = \frac{\Delta T \, (\textit{Between I/O peaks})}{T \, (\textit{period})} \times 2\pi = \frac{0.2273 \, \mu \, s}{1 \, \mu \, s} \times 360^{\circ} \rightarrow \approx \frac{1}{4} \, \textit{cycle} \approx +90^{\circ}$$

HPF DFT Analysis

P.O.C	Transient Simulation	AC Simulation
Amplitudes	$V_{in} = 100 \text{ mV}$ $V_{LPF} = 100 \times 2.19283 \text{ mV} = 219.3 \text{ mV}$ $V_{HPF} = 100 \times 2.19433 \text{ mV} = 219.4 \text{ mV}$	$ H_{LPF}(\omega_o) = H_o Q = Q$ $ H_{HPF}(\omega_o) = H_o Q = Q$ Q = 2.198 $V_{LPF} = V_{in} \times Q = 219.8 \text{ mV}$ $V_{HPF} = V_{in} \times Q = 219.9 \text{ mV}$
Delay Phase Shift	V_{HPF} and V_{LPF} are 180° Out of Phase V_{in} peak @ $t = 3.23697~\mu~s$ V_{LPF} peak @ $t = 3.51461~\mu~s$ V_{HPF} peak @ $t = 3.00967~\mu~s$ $T_{period} = 1~\mu~s \rightarrow \lambda = 360^\circ$ $\Delta T_{peak}(LPF - HPF) = 0.5~\mu~s = \frac{\lambda}{2} = 180^\circ$ $\Delta T_{peak}(V_{in} - V_{out}) = 0.25~\mu~s = \frac{\lambda}{4} = 90^\circ$	@ ω_o Cut off Freq. $\theta_{HPF} = 90^\circ$ $\theta_{LPF} = -90^\circ$ $V_{HPF} = V_{in} Q \angle 90^\circ$ $V_{LPF} = V_{in} Q \angle -90^\circ$
Comments	V_{HPF} Leads V_{in} by 90° V_{LPF} Lags V_{in} by 90° V_{HPF} Leads V_{LPF} by 180°	Between V_{LPF} and V_{HPF} 180° Phase Difference

Transient Response Square Wave

$$V_{source}$$
 Pulse Wave $\left(V_{one}=100~mV$, $V_{zero}=-100~mV$, $T=rac{1}{f_o}=1~\mu$ S $ight)$

BPF RESPONSE

BPF Transfer Function for Square input Waveform in Transient Response

BPF DFT Analysis

(Highest Components is at $f = f_o$ While Other Harmonics get Rejected)

BSF RESPONSE

BSF Transfer Function for Square input Waveform in Transient Response

BSF DFT Analysis (All Components Seems Rejected Except at $f = f_o$)

COMMENTS

Analysis of Square Pulse Use Fourier Series Coefficient:

$$\begin{split} a_o &= \frac{Area}{T} \ , b_n = 0 \ (even) \ , a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega_o t) \ dt \ = \frac{2}{n\pi} \sin\left(\frac{n\pi}{2}\right) \left(n:odd\right) \\ V_{in}(t) &= 2a_o \left[\frac{1}{2} + \sum \frac{2}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos(n\omega_o t)\right] = 2a_o \left[\frac{1}{2} + \frac{2}{\pi} \left(\cos(\omega_o t) - \frac{1}{3}\cos(3\omega_o t) + \frac{1}{5}\cos(5\omega_o t) - \dots\right)\right] \\ V_{out}(t) &= 2a_o \left[\frac{1}{2} H(0) + \frac{2}{\pi} \left(\cos(\omega_o t) H(\omega_o) - \frac{1}{3}\cos(3\omega_o t) H(3\omega_o) + \frac{1}{5}\cos(5\omega_o t) H(5\omega_o) - \dots\right)\right] \end{split}$$

These Frequency Components are (Pass, Amplified, Rejected)

Frequency	BPF	BSF
$ \omega = 0 $	$H_{BPF}(0) = 0$ (Rejected)	$H_{BSF}(0) = 1$ (Pass)
$@ \omega = \omega_o$	$H_{BPF}(\omega_o) = Q$ (Pass and amplified)	$H_{BSF}(\omega_o) = 0$ (Rejected and Blocked)
$@ \omega = 3\omega_o$	$H_{BPF}(3\omega_o)$ (Rejected by Some dB)	$H_{BSF}(3\omega_o) = 1$ (Pass)
@ $\omega=5\omega_o$,	All Higher Harmonics are Rejected	All Higher Harmonics Pass
N.T. 4	'	

Notes:

- **BPF Signal:** Slightly Distorted Sine Wave as BPF amplified Component at $f = f_o$ And Reject the Other Components.
- **BSF Signal:** Rectangular Pulse Subtract a Sine Wave From it as BSF Reject the Component at $f = f_0$ and Pass all Other Components.

The END Thank You