E-prop maths

Werner van der Veen

October 29, 2020

1 Proof: BPTT to E-prop

The main equation to be proved:

$$\frac{dE}{dW_{ji}} = \sum_{t} \frac{dE}{dz_{j}^{t}} \cdot \left[\frac{dz_{j}^{t}}{dW_{ji}} \right]_{\text{local}} \tag{1}$$

We start with the classical factorization of the loss gradients in an unrolled RNN:

$$\frac{dE}{dW_{ji}} = \frac{dE}{d\mathbf{h}_{j}^{t'}} \cdot \frac{\partial \mathbf{h}_{j}^{t'}}{\partial W_{ji}} \tag{2}$$

The summation indicates that weights are shared in an unrolled RNN.

We now decompose the first term into a series of learning signals $L_j^t = \frac{dE}{dz_j^t}$ and local factors $\frac{\partial \mathbf{h}_j^{t-t'}}{\partial \mathbf{h}_j^t}$ for t since the event horizon t':

$$\frac{dE}{d\mathbf{h}_{j}^{t'}} = \underbrace{\frac{dE}{dz_{j}^{t'}}}_{L_{j}^{t'}} \underbrace{\frac{\partial z_{j}^{t'}}{\partial \mathbf{h}_{j}^{t'}}} + \frac{dE}{d\mathbf{h}_{j}^{t'+1}} \underbrace{\frac{\partial \mathbf{h}_{j}^{t'+1}}{\partial \mathbf{h}_{j}^{t'}}}$$
(3)

Note that this equation is recursive. If we substitute the equation (3) into the classical factorization (2), we get:

$$\frac{dE}{dW_{ji}} = \sum_{t'} \left(L_j^{t'} \frac{\partial z_j^{t'}}{\partial \mathbf{h}_j^{t'}} + \frac{dE}{d\mathbf{h}_j^{t'+1}} \frac{\partial \mathbf{h}_j^{'t+1}}{\partial \mathbf{h}_j^{'t}} \right) \cdot \frac{\partial \mathbf{h}_j^{t'}}{\partial W_{ji}}$$
(4)

$$= \sum_{t'} \left(L_j^{t'} \frac{\partial z_j^{t'}}{\partial \mathbf{h}_j^{t'}} + \left(L_j^{t'+1} \frac{\partial z_j^{t'+1}}{\partial \mathbf{h}_j^{t'+1}} + (\cdots) \frac{\partial \mathbf{h}_j^{t'+2}}{\partial \mathbf{h}_j^{t'+1}} \right) \frac{\partial \mathbf{h}_j^{'t+1}}{\partial \mathbf{h}_j^{'t}} \right) \cdot \frac{\partial \mathbf{h}_j^{t'}}{\partial W_{ji}}$$
(5)

We write the term in parentheses into a second term indexed by t:

$$\frac{dE}{dW_{ji}} = \sum_{t'} \sum_{t>t'} L_j^t \frac{\partial z_j^t}{\partial \mathbf{h}_j^t} \frac{\partial \mathbf{h}_j^t}{\partial \mathbf{h}_j^{t-1}} \cdots \frac{\partial \mathbf{h}_j^{t+1}}{\partial \mathbf{h}_j^{t'}} \cdot \frac{\partial \mathbf{h}_j^{'t}}{\partial W_{ji}}$$
(6)

We then exchange the summation indices to pull out the learning signal L_j^t . This expresses the loss as a sum of learning signals multiplied by something we define as the eligibility trace. This eligibility trace consists of $\frac{\partial z_j^t}{\partial \mathbf{h}_j^t}$ and the eligibility vector ϵ_{ji}^t :

$$\frac{dE}{dW_{ji}} = \sum_{t} L_{j}^{t} \underbrace{\frac{\partial z_{j}^{t}}{\partial \mathbf{h}_{j}^{t}}}_{t \geq t'} \underbrace{\sum_{t \geq t'} \frac{\partial \mathbf{h}_{j}^{t}}{\partial \mathbf{h}_{j}^{t-1}} \cdots \frac{\partial \mathbf{h}_{j}^{t+1}}{\partial \mathbf{h}_{j}^{t'}} \cdot \frac{\partial \mathbf{h}_{j}^{'t}}{\partial W_{ji}}}_{e_{ji}^{t}} \tag{7}$$

This is the main e-prop equation.

2 Single-layer e-prop in pseudocode (LIF)

In LIF,
$$\{\mathbf{h}_{j}^{t}, \epsilon_{ji}^{t}\} \subset \mathbb{R}$$
.

for t in T do
$$z_{j}^{t} \leftarrow \begin{cases} 0, & \text{if } t - t_{z_{j}} < \delta t_{\text{ref}}. \\ H(v_{j}^{t} - v_{\text{th}}), & \text{otherwise}. \end{cases}$$

$$I_{j}^{t} \leftarrow \sum_{i} W_{ji} z_{i}^{t} + \sum_{u} W_{ju} u(t)$$

$$v_{j}^{t+1} \leftarrow \alpha v_{j}^{t} + I_{j}^{t} - z_{j}^{t} \alpha v_{j}^{t} - z_{j}^{t-\delta t_{\text{ref}}} \alpha v_{j}^{t}$$

$$\epsilon_{ji}^{t+1} = \alpha (1 - z_{j} - z_{j}^{t-\delta t_{\text{ref}}}) \epsilon_{ji}^{t} + z_{i}^{t}$$

$$h_{j}^{t+1} \leftarrow \begin{cases} -\gamma, & \text{if } t - t_{z_{j}} < \delta t_{\text{ref}}. \\ \gamma \max\left(0, 1 - \left|\frac{v_{j}^{t+1} - v_{\text{th}}}{v_{\text{th}}}\right|\right), & \text{otherwise}. \end{cases}$$

$$e_{ji}^{t+1} \leftarrow h_{j}^{t+1} \epsilon_{ji}^{t+1}$$

$$y_{k}^{t} = \kappa y_{k}^{t-1} + \sum_{j} W_{kj}^{\text{out}} z_{j}^{t} + b_{k}^{\text{out}}$$

$$W \leftarrow W - \eta \sum_{t} \left(\sum_{k} B_{jk} \left(y_{k}^{t} - y_{k}^{*,t}\right)\right) e_{ji}^{t}$$
end for

ALIF steps 3

$$I_{j}^{t} = \sum_{t \neq j} W_{ji}^{\text{rec}} z_{i}^{t} + \sum_{i} W_{ji}^{\text{in}} x_{i}^{t+1}$$
(8)

$$A_j^t = v_{\rm th} + \beta a_j^t \tag{9}$$

$$z_j^t = H\left(v_j^t - A_j^t\right) \tag{10}$$

$$\psi_j^t = \frac{1}{v_{\rm th}} 0.3 \max \left(0, 1 - \left| \frac{v_j^t - A_j^t}{v_{\rm th}} \right| \right) \tag{11}$$

$$y_k^t = \kappa y_k^{t-1} + \sum_j W_{kj}^{\text{out}} z_j^t + b_k^{\text{out}}$$

$$\tag{12}$$

$$e_{ii}^{t} = \psi_{i}^{t} \left(\epsilon_{ii,v}^{t} - \beta \epsilon_{ii,a}^{t} \right) \tag{13}$$

$$e_{ji}^{t} = \psi_{j}^{t} \left(\epsilon_{ji,v}^{t} - \beta \epsilon_{ji,a}^{t} \right)$$

$$\bar{e}_{ji}^{t} = \kappa \bar{e}_{ji}^{t-1} + e_{ji}^{t}$$

$$(13)$$

$$v_j^{t+1} = \alpha v_j^t + I_j^t - z_j v_{\text{th}}$$

$$\tag{15}$$

$$a_j^{t+1} = \rho a_j^t + z_j^t \tag{16}$$

$$\epsilon_{ji,v}^{t+1} = \alpha \epsilon_{ji,v}^t + z_i^t \tag{17}$$

$$\epsilon_{ji,a}^{t+1} = \psi_j^t \epsilon_{ji,v}^t + \left(\rho - \psi_j^t \beta\right) \epsilon_{ji,a}^t \tag{18}$$

$$\Delta W_{ji}^{\text{rec}} = -\eta \sum_{t} \left(\sum_{k} B_{jk} \left(y_k^t - y_k^{*,t} \right) \right) \bar{e}_{ji}^t$$
 (19)

(20)

Given at time t, with given observable state z_i^t (simplified):

$$v_{j}^{t+1} = \alpha v_{j}^{t} + \sum_{t \neq j} W_{ji}^{\text{rec},t} z_{i}^{t} + \sum_{i} W_{ji}^{\text{in}} x_{i}^{t+1} - H \left(v_{j}^{t} - v_{\text{th}} - \beta a_{j}^{t} \right) v_{\text{th}}$$
 (21)

$$a_j^{t+1} = \rho a_j^t + H\left(v_j^t - v_{\text{th}} - \beta a_j^t\right) \tag{22}$$

$$\epsilon_{ji,v}^{t+1} = \alpha \epsilon_{ji,v}^t + z_i^t \tag{23}$$

$$\epsilon_{ji,a}^{t+1} = \frac{1}{v_{\text{th}}} 0.3 \max \left(0, 1 - \left| \frac{v_j^t - v_{\text{th}} - \beta a_j^t}{v_{\text{th}}} \right| \right) \epsilon_{ji,v}^t$$
 (24)

$$+ \left(\rho - \frac{1}{v_{\rm th}} 0.3 \max\left(0, 1 - \left| \frac{v_j^t - v_{\rm th} - \beta a_j^t}{v_{\rm th}} \right| \right) \beta\right) \epsilon_{ji,a}^t \tag{25}$$

$$\bar{e}_{ji}^{t} = \kappa \bar{e}_{ji}^{t-1} + \frac{1}{v_{\text{th}}} 0.3 \max \left(0, 1 - \left| \frac{v_j^t - v_{\text{th}} - \beta a_j^t}{v_{\text{th}}} \right| \right) \left(\epsilon_{ji,v}^t - \beta \epsilon_{ji,a}^t \right)$$
(26)

$$y_k^t = \kappa y_k^{t-1} + \sum_{j} W_{kj}^{\text{out}} z_j^t + b_k^{\text{out}}$$
 (27)

$$W_{ji}^{\text{rec},t+1} = W_{ji}^{\text{rec},t} - \eta \sum_{t} \left(\sum_{k} B_{jk} \left(y_k^t - y_k^{*,t} \right) \right) \bar{e}_{ji}^t$$
 (28)

(29)

Effects of \mathbf{h} on W:

$$\frac{\partial v_j^t}{\partial W_{ji}} = \epsilon_{ji,v}^{t-1} \tag{30}$$

$$\frac{\partial u_j^t}{\partial W_{ii}} = 0 \tag{31}$$