VIRGINIA TECH...

Ability Evaluation of Counties against COVID-19 in United States

WENJUN HAN

01

Introduction

Covid-19 and Pandemic

- March 11 WHO declared pandemic
- Caused nearly 3 million deaths around the world
- Total identified cases in US is nearly 30 million
- Health needs is estimated go beyond the capacity of US hospitals

Research Goals

Evaluate the ability of counties against COVID-19 and identify vulnerable counties

02

Data

Data Description

Data Title	Description
Total Cases	Data on cumulative coronavirus cases by county and by day
Total Deaths	Data on cumulative coronavirus deaths by county and by day
Underlying medical conditions	Percentage estimates of the prevalence for any of five underlying medical conditions that increase the risk for severe COVID-19-associated illness (obesity, diabetes, heart disease, Chronic obstructive pulmonary disease (COPD), Chronic kidney disease(CKD))
County Population	Population estimation in 2019 by county
County Population of age 60+	Total population of elder people who aged 60+
Percent of population aged 60+	Percentage of population of elder aged 60+
Total ICU beds number	Number of ICU beds in the county
Residents aged 60+ per ICU bed	County residents Aged 60+ Per Each ICU Bed
GDP by dollars	Real gross domestic product by thousands of chained dollars(2019)
Poverty Condition	Individuals (all ages) in the county classified as living in poverty (2019)(log-transformed)

Data Exploration

Original Data

state	county	icu beds	total population	population aged 60+	percent of population aged 60+	residents aged 60+ per each icu bed	gdp _dollars	cases	deaths	obesity	heart_disease	COPD	diabetes	CKD	poverty
Alabama	Autauga	6	55036	10523	19.1	1754.0	1501769	5683	69.0	35.8	7.9	8.6	12.9	3.1	10.916415
Alabama	Baldwin	51	203360	53519	26.3	1049.0	6140514	18211	224.0	29.7	7.8	8.6	12.0	3.2	12.279579
Alabama	Barbour	5	26201	6150	23.5	1230.0	762856	1956	40.0	40.7	11.0	12.1	19.7	4.5	9.997843
Alabama	Bibb	0	22580	4773	21.1	8470.0	389547	2309	52.0	38.7	8.6	10.0	14.1	3.3	9.914032
Alabama	Blount	6	57667	13600	23.6	2267.0	869049	5720	100.0	34.0	9.2	10.5	13.5	3.4	10.954973

Data Summary

	icu beds	population	people aged 60+	%people aged 60+	residents aged 60+ per each icu bed	GDP	cases	deaths	obesity	Heart Disease	COPD	diabetes	CKD	poverty
count	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00	2,967.00
mean	23.10	100,073.07	20,980.69	24.94	5,132.19	5,743,794.47	8,227.42	132.55	35.03	8.64	9.11	13.07	3.45	10.23
std	84.00	327,317.68	61,097.24	5.53	3,619.17	24,207,952.06	31,440.97	495.70	4.47	1.75	2.34	2.70	0.56	1.49
min	0.00	74.00	29.00	5.80	10.00	22,870.00	1.00	0.00	15.20	3.50	3.50	6.10	1.80	5.02
25%	0.00	10,919.50	2,820.50	21.40	1,176.50	376,257.50	864.50	14.00	32.50	7.50	7.35	11.20	3.10	9.27
50%	0.00	25,574.00	6,262.00	24.60	8,470.00	963,407.00	2,074.00	36.00	35.40	8.60	8.90	12.80	3.40	10.11
75%	12.00	66,275.00	15,814.00	27.90	8,470.00	2,734,368.50	5,399.00	87.00	37.90	9.80	10.60	14.80	3.80	11.07
max	2,126.00	10,105,722.00	1,800,341.00	64.20	8,470.00	726,943,301.00	1,121,349.00	16,854.00	49.90	15.10	19.90	25.60	5.90	16.11

Large Difference between County

Data Pre-possessing

- Directly use cases, deaths, population, GDP is not suitable due to large variation between counties
- Death ratio instead of Deaths
 - Death ratio = Deaths/Population
- Cases ratio instead of Cases
 - Cases ratio = Cases/Population
- Z-Score Normalization is applied

state	county	icu beds	total population	population aged 60+	percent of population aged 60+	residents aged 60+ per each icu bed	gdp _dollars	obesity	heart_disease	COPD	diabetes	CKD	poverty	cases ratio	deaths ratio
Alabama	Autauga	-0.204	-0.138	-0.171	-1.056	-0.934	-0.175	0.173	-0.425	- 0.217	-0.061	- 0.622	0.463	0.647	-0.266
Alabama	Baldwin	0.332	0.316	0.533	0.246	-1.128	0.016	- 1.193	-0.483	-0.217	-0.394	-0.444	1.378	0.174	-0.420
Alabama	Barbour	-0.215	-0.226	-0.243	-0.261	-1.078	-0.206	1.271	1.351	1.278	2.455	1.879	-0.154	-0.339	0.012
Alabama	Bibb	-0.275	-0.237	-0.265	-0.695	0.922	-0.221	0.823	-0.024	0.381	0.383	-0.265	-0.210	0.613	0.800
Alabama	Blount	-0.204	-0.130	-0.121	-0.242	-0.792	-0.201	-0.230	0.319	0.594	0.161	-0.086	0.489	0.507	0.222

Pearson Correlation Analysis

	icu beds	population	people aged 60+	%people aged 60+	residents aged 60+ per each icu bed	gdp _dollars	obesity	heart_disease	COPD	diabetes	CKD	poverty	cases ratio	deaths ratio
icu beds	1.000	0.924	0.922	-0.209	-0.328	0.887	-0.214	-0.267	-0.216	-0.146	-0.188	0.527	-0.003	-0.043
population	0.924	1.000	0.988	-0.220	-0.284	0.954	-0.245	-0.296	-0.245	-0.173	-0.218	0.541	-0.024	-0.059
people aged 60+	0.922	0.988	1.000	-0.181	-0.304	0.931	-0.267	-0.281	-0.236	-0.174	-0.208	0.568	-0.044	-0.058
%people aged 60+	-0.209	-0.220	-0.181	1.000	0.315	-0.201	-0.026	0.594	0.320	0.259	0.499	-0.453	-0.285	0.039
residents aged 60+ per each icu bed	-0.328	-0.284	-0.304	0.315	1.000	-0.237	0.197	0.336	0.190	0.220	0.303	-0.680	0.017	0.089
gdp _dollars	0.887	0.954	0.931	-0.201	-0.237	1.000	-0.251	-0.283	-0.243	-0.169	-0.211	0.469	-0.032	-0.055
obesity	-0.214	-0.245	-0.267	-0.026	0.197	-0.251	1.000	0.549	0.575	0.690	0.540	-0.308	0.239	0.256
heart_disease	-0.267	-0.296	-0.281	0.594	0.336	-0.283	0.549	1.000	0.884	0.831	0.892	-0.501	-0.050	0.217
COPD	-0.216	-0.245	-0.236	0.320	0.190	-0.243	0.575	0.884	1.000	0.784	0.727	-0.294	-0.058	0.121
diabetes	-0.146	-0.173	-0.174	0.259	0.220	-0.169	0.690	0.831	0.784	1.000	0.916	-0.328	0.045	0.292
CKD	-0.188	-0.218	-0.208	0.499	0.303	-0.211	0.540	0.892	0.727	0.916	1.000	-0.448	-0.015	0.298
poverty	0.527	0.541	0.568	-0.453	-0.680	0.469	-0.308	-0.501	-0.294	-0.328	-0.448	1.000	-0.080	-0.182
cases ratio	-0.003	-0.024	-0.044	-0.285	0.017	-0.032	0.239	-0.050	-0.058	0.045	-0.015	-0.080	1.000	0.467
deaths ratio	-0.043	-0.059	-0.058	0.039	0.089	-0.055	0.256	0.217	0.121	0.292	0.298	-0.182	0.467	1.000

PCA

- First 6 components are selected
- Variance ratio: (total ~91.8%)

[0.43765049 0.15518187 0.13522841 0.08474972 0.06695598 0.03996605]

Percentage of Variance vs. Number of Component

03

Modeling

Γ Method

Cluster Algorithm

Separate counties into groups

Supervised Learning

Train and test model

Resource Allocation

Provide reference for decision-making

09 / METHODS

Method Flow Chart

K-Means Cluster Hierarchical Algorithm Clustering **DBSCAN**

KNN

Decision Tree

Classification Algorithm

Random Forest

Logistic Regression

Clustering: K-means

- Plan to have 3 clusters: Low risk, Moderate risk,
 High risk
- K-means algorithm assigns labeling as 0,1,2
- PCA data component 1 and component 2 for figure

Data Details

GROUP	%aged 60+	Elderly per ICU	%obesity	%heart disease	%diabetes	poverty	Cases ratio	Deaths ratio
0	26.1	5996	34.8	8.5	12.4	9.7	0.086	0.0015
1	27	6384	38.4	10.6	16.2	9.58	0.084	0.0019
2	20	2002	31.4	6.6	10.5	11.9	0.081	0.0011

Clustering: Hierarchical Clustering

- Hierarchical clustering algorithm classify them to two clusters
- Assigned labels: 0 and 1
- PCA data component 1 and component 2 for figure

)	ata D	etails				-4 - -7.5 -!	5.0 -2.5 0.	0 2.5 5.0	• Cluster 0 • Cluster 1
	GROUP	%aged 60+	Elderly per ICU	%obesity	%heart disease	%diabetes	poverty	Cases ratio	Deaths ratio
	0	23	3909	33	7.43	11.3	10.8	0.082	0.0012
	1	27	6429	37	9.92	15	9.6	0.088	0.0018

Clustering: DBSCAN

- Assigned labels: [0,1], [-1,0,1]
- DBSCAN is not suitable for the data since no pattern/shape

Classification: KNN

- 5-fold cross validation
- Evaluation through classification report

K-means + KNN

Hierarchical + KNN

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.92	0.94	0.93	1354	0	0.91	0.99	0.95	1527
1	0.93	0.93	0.93	885					
2	0.96	0.93	0.95	728	1	0.99	0.90	0.94	1440
accuracy			0.93	2967	accuracy			0.94	2967
macro avg	0.94	0.93	0.93	2967	macro avg	0.95	0.94	0.94	2967
weighted avg	0.93	0.93	0.93	2967	weighted avg	0.95	0.94	0.94	2967

Classification: Decision Tree

- 5-fold cross validation
- Evaluation through classification report

K-means + DT

Hierarchical + DT

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.92	0.90	0.91	1354	0	0.90	0.89	0.89	1527
1	0.92	0.94	0.93	885	1	0.88	0.90	0.89	1440
2	0.91	0.92	0.92	728	-	0.00	0.50	0.05	2110
accuracy			0.92	2967	accuracy	0.00	0.00	0.89	2967
macro avg	0.92	0.92	0.92	2967	macro avg	0.89	0.89	0.89	2967
weighted avg	0.92	0.92	0.92	2967	weighted avg	0.89	0.89	0.89	2967

Classification: Random Forest

- 5-fold cross validation
- Evaluation through classification report

K-means + RF

Hierarchical + RF

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.92	0.95	0.94	1354	_				
1	0.97	0.94	0.95	885	0	0.90	0.95	0.92	1527
2	0.94	0.93	0.93	728	1	0.95	0.89	0.91	1440
accuracy			0.94	2967	accuracy			0.92	2967
macro avg	0.94	0.94	0.94	2967	macro avg	0.92	0.92	0.92	2967
weighted avg	0.94	0.94	0.94	2967	weighted avg	0.92	0.92	0.92	2967

Classification: Logistic Regression

- 5-fold cross validation
- Evaluation through classification report

K-means + LR

Hierarchical + LR

	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1 2	0.96 0.94 0.95	0.93 0.98 0.96	0.95 0.96 0.95	1354 885 728	9 1	0.89 0.90	0.91 0.88	0.90 0.89	1527 1440
accuracy macro avg weighted avg		0.96 0.95	0.95 0.95 0.95	2967 2967 2967	accuracy macro avg weighted avg	0.89 0.89	0.89 0.89	0.89 0.89 0.89	2967 2967 2967

Classification: Logistic Regression

K-means + LR

Confusion Matrix

Moderate risk	1263	54	37
High risk	15	870	0
Low risk	31	0	697
	Moderate risk	High risk	Low risk

03

Conclusion

Conclusion

- Goal: Evaluate the ability of counties against COVID-19, identify vulnerable counties
- A clustering + supervised learning model is selected for county classification(K-means + Logistic Regression)
- Successfully identify counties that are vulnerable to COVID with high precision
- Can be a powerful tool for decision makers to allocate the priority of medical resources

Reference & Resource

https://covid.cdc.gov/covid-data-tracker/#underlying-med-conditions
https://covid.cdc.gov/covid-data-tracker/#county-view
https://www.kaggle.com/fireballbyedimyrnmom/us-counties-covid-19-dataset
https://www.kaggle.com/jaimeblasco/icu-beds-by-county-in-the-us
https://www.kaggle.com/laurindogarcia/covid-19-race-gender-poverty-risk-us-county
https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html

https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/

Reference & Resource

Ezekiel J Emanuel, Govind Persad, Ross Upshur, Beatriz Thome, MichaelParker, Aaron Glickman, Cathy Zhang, Connor Boyle, Maxwell Smith, and James P Phillips. 2020. Fair allocation of scarce medical resources in the time of Covid-19.

Nezir Aydin and Gökhan Yurdakul. 2020. Assessing countries' performances against COVID-19 via WSIDEA and machine learning algorithms. Applied Soft Computing 97 (2020), 106792.

Thank you!