HNCO

0.20

Generated by Doxygen 1.9.1

1 Namespace Index	1
1.1 Namespace List	1
2 Hierarchical Index	3
2.1 Class Hierarchy	3
3 Class Index	7
3.1 Class List	7
4 Namespace Documentation	13
4.1 hnco Namespace Reference	13
4.1.1 Detailed Description	18
4.1.2 Typedef Documentation	18
4.1.2.1 sparse_bit_vector_t	18
4.1.3 Function Documentation	18
4.1.3.1 bm_add_columns()	18
4.1.3.2 bm_add_rows()	19
4.1.3.3 bm_identity() [1/2]	19
4.1.3.4 bm_identity() [2/2]	19
4.1.3.5 bm_invert()	20
4.1.3.6 bm_multiply()	20
4.1.3.7 bm_rank()	21
4.1.3.8 bm_row_echelon_form()	21
4.1.3.9 bm_set_column()	21
4.1.3.10 bm_solve()	22
4.1.3.11 bm_solve_upper_triangular()	23
4.1.3.12 bm_transpose() [1/2]	24
4.1.3.13 bm_transpose() [2/2]	24
4.1.3.14 bv_add() [1/2]	25
4.1.3.15 bv_add() [2/2]	
4.1.3.16 bv_from_size_type()	26
4.1.3.17 bv_from_stream()	26
4.1.3.18 bv_from_string()	27
4.1.3.19 bv_from_vector_bool()	27
4.1.3.20 bv_to_size_type() [1/2]	27
4.1.3.21 bv_to_size_type() [2/2]	28
4.1.3.22 bv_to_vector_bool()	28
4.1.3.23 is_in_range() [1/2]	29
4.1.3.24 is_in_range() [2/2]	29
4.1.3.25 load_from_archive()	
4.1.3.26 perm_identity()	
4.1.3.27 perm_random()	30
4.1.3.28 save_to_archive()	31

4.1.3.29 sbv_flip()	31
4.1.3.30 sbv_is_valid() [1/2]	31
4.1.3.31 sbv_is_valid() [2/2]	32
4.2 hnco::algorithm Namespace Reference	32
4.2.1 Detailed Description	35
4.2.2 Function Documentation	35
4.2.2.1 pv_add()	35
4.2.2.2 pv_average()	35
4.2.2.3 pv_bound()	36
4.2.2.4 pv_init()	36
4.2.2.5 pv_sample()	36
4.2.2.6 pv_uniform()	37
4.2.2.7 pv_update() [1/2]	37
4.2.2.8 pv_update() [2/2]	38
4.3 hnco::algorithm::fast_efficient_p3 Namespace Reference	38
4.3.1 Detailed Description	38
4.4 hnco::algorithm::walsh_moment Namespace Reference	38
4.4.1 Detailed Description	39
4.5 hnco::app Namespace Reference	39
4.5.1 Detailed Description	40
4.6 hnco::exception Namespace Reference	40
4.6.1 Detailed Description	40
4.7 hnco::function Namespace Reference	40
4.7.1 Detailed Description	43
4.7.2 Function Documentation	43
4.7.2.1 compute_fast_walsh_transform()	43
4.7.2.2 compute_walsh_transform()	43
4.8 hnco::function::controller Namespace Reference	45
4.8.1 Detailed Description	45
4.9 hnco::function::modifier Namespace Reference	46
4.9.1 Detailed Description	46
4.10 hnco::logging Namespace Reference	46
4.10.1 Detailed Description	46
4.11 hnco::map Namespace Reference	46
4.11.1 Detailed Description	48
4.11.2 Typedef Documentation	48
4.11.2.1 transvection_sequence_t	48
4.11.3 Function Documentation	48
4.11.3.1 ts_is_valid() [1/2]	48
4.11.3.2 ts_is_valid() [2/2]	49
4.11.3.3 ts_multiply() [1/2]	49
4.11.3.4 ts_multiply() [2/2]	50

4.11.3.5 ts_random()	50
4.11.3.6 ts_random_commuting()	51
4.11.3.7 ts_random_disjoint()	51
4.11.3.8 ts_random_non_commuting()	52
4.11.3.9 ts_random_unique_destination()	52
4.11.3.10 ts_random_unique_source()	53
4.12 hnco::neighborhood Namespace Reference	53
4.12.1 Detailed Description	54
4.13 hnco::random Namespace Reference	54
4.13.1 Detailed Description	54
4.14 hnco::representation Namespace Reference	54
4.14.1 Detailed Description	55
4.14.2 Function Documentation	55
4.14.2.1 difference_is_safe()	55
5 Class Documentation	57
5.1 AbstractMaxSat Class Reference	57
5.1.1 Detailed Description	58
5.1.2 Member Function Documentation	58
5.1.2.1 load()	58
5.1.2.2 load_()	58
5.1.2.3 save()	59
5.1.2.4 save_()	59
5.1.3 Member Data Documentation	60
5.1.3.1 _expression	60
5.2 AdditiveGaussianNoise Class Reference	60
5.2.1 Detailed Description	61
5.3 AffineMap Class Reference	61
5.3.1 Detailed Description	62
5.3.2 Member Function Documentation	63
5.3.2.1 is_surjective()	63
5.3.2.2 load()	63
5.3.2.3 random()	63
5.3.2.4 save()	64
5.4 Algorithm Class Reference	64
5.4.1 Detailed Description	66
5.4.2 Member Function Documentation	66
5.4.2.1 finalize()	66
5.4.2.2 set_solution()	67
5.4.2.3 update_solution()	67
5.4.3 Member Data Documentation	67
5.4.3.1 functions	67

5.5 AlgorithmFactory Class Reference	68
5.5.1 Detailed Description	68
5.5.2 Member Function Documentation	68
5.5.2.1 make()	68
5.6 BiasedCrossover Class Reference	69
5.6.1 Detailed Description	69
5.6.2 Member Function Documentation	70
5.6.2.1 breed()	70
5.7 BmPbil < GibbsSampler > Class Template Reference	70
5.7.1 Detailed Description	73
5.7.2 Member Enumeration Documentation	73
5.7.2.1 anonymous enum	73
5.7.2.2 anonymous enum	74
5.7.3 Member Function Documentation	74
5.7.3.1 set_selection_size()	74
5.8 Cache Class Reference	74
5.8.1 Detailed Description	76
5.8.2 Constructor & Destructor Documentation	76
5.8.2.1 Cache()	76
5.8.3 Member Function Documentation	76
5.8.3.1 provides_incremental_evaluation()	76
5.9 CallCounter Class Reference	77
5.9.1 Detailed Description	78
5.10 CommandLineAlgorithmFactory Class Reference	78
5.10.1 Detailed Description	79
5.10.2 Member Function Documentation	79
5.10.2.1 make()	79
5.11 CommandLineApplication Class Reference	79
5.11.1 Detailed Description	80
5.11.2 Constructor & Destructor Documentation	80
5.11.2.1 CommandLineApplication()	80
5.12 CommandLineFunctionFactory Class Reference	81
5.12.1 Detailed Description	82
5.13 CompactGa Class Reference	82
5.13.1 Detailed Description	83
5.14 CompleteSearch Class Reference	83
5.14.1 Detailed Description	84
5.15 ComplexToDouble < T > Struct Template Reference	84
5.15.1 Detailed Description	84
5.16 Controller Class Reference	85
5.16.1 Detailed Description	86
5.16.2 Member Function Documentation	86

5.16.2.1 provides_incremental_evaluation()	86
5.17 Crossover Class Reference	86
5.17.1 Detailed Description	87
5.17.2 Member Function Documentation	87
5.17.2.1 breed()	87
5.18 DeceptiveJump Class Reference	87
5.18.1 Detailed Description	88
5.18.2 Member Function Documentation	89
5.18.2.1 get_maximum()	89
5.18.2.2 has_known_maximum()	89
5.19 DecoratedFunctionFactory Class Reference	89
5.19.1 Detailed Description	90
5.19.2 Member Function Documentation	90
5.19.2.1 make_function_controller()	90
5.20 Decorator Class Reference	91
5.20.1 Detailed Description	92
$5.21\ Dyadic Complex Representation < T > Class\ Template\ Reference$	92
5.21.1 Detailed Description	93
5.21.2 Constructor & Destructor Documentation	93
5.21.2.1 DyadicComplexRepresentation() [1/2]	93
5.21.2.2 DyadicComplexRepresentation() [2/2]	94
$5.22\ Dyadic Float Representation < T > Class\ Template\ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	94
5.22.1 Detailed Description	95
5.22.2 Constructor & Destructor Documentation	95
5.22.2.1 DyadicFloatRepresentation() [1/2]	95
5.22.2.2 DyadicFloatRepresentation() [2/2]	96
5.22.3 Member Function Documentation	96
5.22.3.1 compute_lengths()	96
$5.23 \ DyadicInteger Representation < T > Class \ Template \ Reference \\ \\ \\ \\ \\$	97
5.23.1 Detailed Description	98
5.23.2 Constructor & Destructor Documentation	98
5.23.2.1 DyadicIntegerRepresentation() [1/2]	98
5.23.2.2 DyadicIntegerRepresentation() [2/2]	98
5.24 PermutationRepresentation::Element Struct Reference	99
5.24.1 Detailed Description	99
5.25 EqualProducts Class Reference	100
5.25.1 Detailed Description	101
5.25.2 Member Function Documentation	101
5.25.2.1 generate()	101
5.25.2.2 load()	102
5.25.2.3 random()	102
5.25.2.4 save()	102

5.26 ProgressTracker::Event Struct Reference	103
5.26.1 Detailed Description	103
5.27 ExtendedHypercubeIterator Class Reference	103
5.27.1 Detailed Description	104
5.28 Factorization Class Reference	104
5.28.1 Detailed Description	106
5.28.2 Constructor & Destructor Documentation	106
5.28.2.1 Factorization()	106
5.28.3 Member Function Documentation	106
5.28.3.1 load()	106
5.29 FfgenOptions Class Reference	107
5.29.1 Detailed Description	112
5.30 FirstAscentHillClimbing Class Reference	112
5.30.1 Detailed Description	113
5.31 FourPeaks Class Reference	114
5.31.1 Detailed Description	115
5.31.2 Member Function Documentation	115
5.31.2.1 get_maximum()	115
5.31.2.2 has_known_maximum()	116
5.32 Function Class Reference	116
5.32.1 Detailed Description	118
5.32.2 Member Function Documentation	118
5.32.2.1 describe()	118
5.32.2.2 evaluate()	119
5.32.2.3 evaluate_incrementally()	119
5.32.2.4 evaluate_safely()	119
5.32.2.5 get_maximum()	120
5.32.2.6 provides_incremental_evaluation()	120
5.32.2.7 update()	120
5.33 FunctionFactory Class Reference	121
5.33.1 Detailed Description	121
5.34 FunctionMapComposition Class Reference	121
5.34.1 Detailed Description	123
5.34.2 Constructor & Destructor Documentation	123
5.34.2.1 FunctionMapComposition()	123
5.34.3 Member Function Documentation	123
5.34.3.1 get_maximum()	123
5.34.3.2 has_known_maximum()	124
5.35 FunctionPlugin Class Reference	124
5.35.1 Detailed Description	125
5.35.2 Constructor & Destructor Documentation	125
5 35 2.1 EunctionPlugin()	125

5.36 Generator Struct Reference
5.36.1 Detailed Description
5.36.2 Member Function Documentation
5.36.2.1 reset()
5.36.2.2 set_seed()
5.37 GeneticAlgorithm Class Reference
5.37.1 Detailed Description
5.37.2 Constructor & Destructor Documentation
5.37.2.1 GeneticAlgorithm()
5.38 HammingBall Class Reference
5.38.1 Detailed Description
5.38.2 Constructor & Destructor Documentation
5.38.2.1 HammingBall()
5.39 HammingSphere Class Reference
5.39.1 Detailed Description
5.39.2 Constructor & Destructor Documentation
5.39.2.1 HammingSphere()
5.40 HammingSphereIterator Class Reference
5.40.1 Detailed Description
5.40.2 Constructor & Destructor Documentation
5.40.2.1 HammingSphereIterator()
5.41 Hboa Class Reference
5.41.1 Detailed Description
5.41.2 Member Data Documentation
5.41.2.1 _pimpl
5.42 Hea< Herding > Class Template Reference
5.42.1 Detailed Description
5.42.2 Constructor & Destructor Documentation
5.42.2.1 Hea()
5.42.3 Member Function Documentation
5.42.3.1 set_reset_period()
5.42.3.2 set_selection_size()
5.43 Hiff Class Reference
5.43.1 Detailed Description
5.43.2 Member Function Documentation
5.43.2.1 get_maximum()
5.43.2.2 has_known_maximum()
5.44 HncoEvaluator Class Reference
5.44.1 Detailed Description
5.45 HncoOptions Class Reference
5.45.1 Detailed Description
5.46 Human Class Reference

5.46.1 Detailed Description
5.47 Hypercubelterator Class Reference
5.47.1 Detailed Description
5.48 Implementation Struct Reference
5.48.1 Detailed Description
5.49 Injection Class Reference
5.49.1 Detailed Description
5.49.2 Constructor & Destructor Documentation
5.49.2.1 Injection()
5.50 IntegerCategoricalRepresentation Class Reference
5.50.1 Detailed Description
5.50.2 Constructor & Destructor Documentation
5.50.2.1 IntegerCategoricalRepresentation()
5.51 IterativeAlgorithm Class Reference
5.51.1 Detailed Description
5.51.2 Constructor & Destructor Documentation
5.51.2.1 IterativeAlgorithm()
5.51.3 Member Function Documentation
5.51.3.1 loop()
5.51.3.2 maximize()
5.51.3.3 set_num_iterations()
5.52 Iterator Class Reference
5.52.1 Detailed Description
5.53 Jump Class Reference
5.53.1 Detailed Description
5.53.2 Member Function Documentation
5.53.2.1 get_maximum()
5.53.2.2 has_known_maximum()
5.54 Labs Class Reference
5.54.1 Detailed Description
5.55 LastEvaluation Class Reference
5.55.1 Detailed Description
5.56 LeadingOnes Class Reference
5.56.1 Detailed Description
5.56.2 Member Function Documentation
5.56.2.1 get_maximum()
5.56.2.2 has_known_maximum()
5.57 LinearCategoricalRepresentation Class Reference
5.57.1 Detailed Description
5.57.2 Constructor & Destructor Documentation
5.57.2.1 LinearCategoricalRepresentation()
5.58 Linear Function Class Reference

5.58.1 Detailed Description	78
5.58.2 Member Function Documentation	78
5.58.2.1 generate()	78
5.58.2.2 has_known_maximum()	78
5.58.2.3 load()	79
5.58.2.4 provides_incremental_evaluation()	79
5.58.2.5 random()	79
5.58.2.6 save()	30
5.59 LinearMap Class Reference	30
5.59.1 Detailed Description	31
5.59.2 Member Function Documentation	31
5.59.2.1 is_surjective()	32
5.59.2.2 load()	32
5.59.2.3 random()	32
5.59.2.4 save()	33
5.60 LocalSearchAlgorithm < Neighborhood > Class Template Reference	33
5.60.1 Detailed Description	34
5.61 LogContext Class Reference	35
5.61.1 Detailed Description	35
5.62 Logger Class Reference	35
5.62.1 Detailed Description	36
5.62.2 Constructor & Destructor Documentation	36
5.62.2.1 Logger()	36
5.62.2.2 ~Logger()	37
5.63 LongPath Class Reference	37
5.63.1 Detailed Description	38
5.63.2 Member Function Documentation	39
5.63.2.1 get_maximum()	39
5.63.2.2 has_known_maximum()	39
5.64 LowerTriangularWalshMoment2 Struct Reference	39
5.64.1 Detailed Description	90
5.64.2 Constructor & Destructor Documentation	90
5.64.2.1 LowerTriangularWalshMoment2()	90
5.64.3 Member Function Documentation	€1
5.64.3.1 bound()	€1
5.64.3.2 display()	91
5.64.3.3 scaled_difference()	91
5.64.3.4 update() [1/2]19	92
5.64.3.5 update() [2/2]19) 2
5.65 LowerTriangularWalshMoment2GibbsSampler Class Reference	93
5.65.1 Detailed Description	94
5.66 LowerTriangularWalshMoment2Herding Class Reference	94

5.66.1 Detailed Description
5.66.2 Constructor & Destructor Documentation
5.66.2.1 LowerTriangularWalshMoment2Herding()
5.67 Ltga Class Reference
5.67.1 Detailed Description
5.67.2 Member Data Documentation
5.67.2.1 _pimpl
5.68 Map Class Reference
5.68.1 Detailed Description
5.68.2 Member Function Documentation
5.68.2.1 is_surjective()
5.69 MapComposition Class Reference
5.69.1 Detailed Description
5.69.2 Constructor & Destructor Documentation
5.69.2.1 MapComposition()
5.69.3 Member Function Documentation
5.69.3.1 is_surjective()
5.70 MapgenOptions Class Reference
5.70.1 Detailed Description
5.71 MaxNae3Sat Class Reference
5.71.1 Detailed Description
5.71.2 Member Function Documentation
5.71.2.1 load()
5.72 MaxSat Class Reference
5.72.1 Detailed Description
5.72.2 Member Function Documentation
5.72.2.1 random() [1/2]
5.72.2.2 random() [2/2]
5.73 Mimic Class Reference
5.73.1 Detailed Description
5.74 Mmas Class Reference
5.74.1 Detailed Description
5.75 Modifier Class Reference
5.75.1 Detailed Description
5.76 MuCommaLambdaEa Class Reference
5.76.1 Detailed Description
5.76.2 Constructor & Destructor Documentation
5.76.2.1 MuCommaLambdaEa()
5.77 MultiBitFlip Class Reference
5.77.1 Detailed Description
5.77.2 Constructor & Destructor Documentation
5.77.2.1 MultiBitFlip()

5.77.3 Member Function Documentation	14
5.77.3.1 bernoulli_trials()	14
5.77.3.2 rejection_sampling()	15
5.78 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference	15
5.78.1 Detailed Description	16
5.78.2 Constructor & Destructor Documentation	16
5.78.2.1 MultivariateFunctionAdapter()	16
5.79 MuPlusLambdaEa Class Reference	17
5.79.1 Detailed Description	18
5.79.2 Constructor & Destructor Documentation	18
5.79.2.1 MuPlusLambdaEa()	18
5.80 NearestNeighborIsingModel1 Class Reference	19
5.80.1 Detailed Description	21
5.80.2 Member Function Documentation	21
5.80.2.1 evaluate()	21
5.80.2.2 generate()	21
5.80.2.3 load()	22
5.80.2.4 provides_incremental_evaluation()	22
5.80.2.5 random()	22
5.80.2.6 save()	23
5.81 NearestNeighborIsingModel2 Class Reference	23
5.81.1 Detailed Description	25
5.81.2 Member Function Documentation	25
5.81.2.1 evaluate()	26
5.81.2.2 generate()	26
5.81.2.3 load()	26
5.81.2.4 provides_incremental_evaluation()	27
5.81.2.5 random()	27
5.81.2.6 save()	27
5.82 Needle Class Reference	28
5.82.1 Detailed Description	29
5.82.2 Member Function Documentation	29
5.82.2.1 get_maximum()	29
5.82.2.2 has_known_maximum()	29
5.83 Negation Class Reference	30
5.83.1 Detailed Description	31
5.83.2 Member Function Documentation	31
5.83.2.1 provides_incremental_evaluation()	31
5.84 Neighborhood Class Reference	32
5.84.1 Detailed Description	33
5.84.2 Constructor & Destructor Documentation	33
5.84.2.1 Neighborhood()	33

5.84.3 Member Function Documentation	34
5.84.3.1 map()	34
5.84.3.2 mutate()	34
5.85 NeighborhoodIterator Class Reference	35
5.85.1 Detailed Description	35
5.85.2 Constructor & Destructor Documentation	35
5.85.2.1 NeighborhoodIterator()	35
5.86 NkLandscape Class Reference	36
5.86.1 Detailed Description	37
5.86.2 Member Function Documentation	37
5.86.2.1 generate()	37
5.86.2.2 load()	38
5.86.2.3 random()	38
5.86.2.4 random_structure()	38
5.86.2.5 save()	39
5.87 NpsPbil Class Reference	39
5.87.1 Detailed Description	41
5.88 OnBudgetFunction Class Reference	41
5.88.1 Detailed Description	43
5.88.2 Member Function Documentation	43
5.88.2.1 evaluate()	43
5.88.2.2 evaluate_incrementally()	43
5.88.2.3 update()	44
5.89 OneMax Class Reference	44
5.89.1 Detailed Description	45
5.89.2 Member Function Documentation	45
5.89.2.1 get_maximum()	46
5.89.2.2 has_known_maximum()	46
5.89.2.3 provides_incremental_evaluation()	46
5.90 OnePlusLambdaCommaLambdaGa Class Reference	47
5.90.1 Detailed Description	48
5.90.2 Constructor & Destructor Documentation	48
5.90.2.1 OnePlusLambdaCommaLambdaGa()	48
5.91 OnePlusOneEa Class Reference	49
5.91.1 Detailed Description	50
5.91.2 Constructor & Destructor Documentation	50
5.91.2.1 OnePlusOneEa()	50
5.91.3 Member Function Documentation	51
5.91.3.1 set_num_iterations()	51
5.92 ParameterLessPopulationPyramid Class Reference	51
5.92.1 Detailed Description	52
5.92.2 Member Data Documentation	52

5.92.2.1 _pimpl
5.93 ParsedModifier Class Reference
5.93.1 Detailed Description
5.93.2 Constructor & Destructor Documentation
5.93.2.1 ParsedModifier()
5.94 ParsedMultivariateFunction< Parser > Class Template Reference
5.94.1 Detailed Description
5.94.2 Constructor & Destructor Documentation
5.94.2.1 ParsedMultivariateFunction()
5.95 Partition Class Reference
5.95.1 Detailed Description
5.95.2 Member Function Documentation
5.95.2.1 generate()
5.95.2.2 load()
5.95.2.3 random()
5.95.2.4 save()
5.96 Pbil Class Reference
5.96.1 Detailed Description
5.97 Permutation Class Reference
5.97.1 Detailed Description
5.97.2 Member Function Documentation
5.97.2.1 is_surjective()
5.97.2.2 load()
5.97.2.3 save()
5.98 PermutationFunctionAdapter< Fn > Class Template Reference
5.98.1 Detailed Description
5.98.2 Constructor & Destructor Documentation
5.98.2.1 PermutationFunctionAdapter()
5.99 PermutationRepresentation Class Reference
5.99.1 Detailed Description
5.99.2 Constructor & Destructor Documentation
5.99.2.1 PermutationRepresentation()
5.100 Plateau Class Reference
5.100.1 Detailed Description
5.100.2 Member Function Documentation
5.100.2.1 get_maximum()
5.100.2.2 has_known_maximum()
5.101 Population Class Reference
5.101.1 Detailed Description
5.101.2 Constructor & Destructor Documentation
5.101.2.1 Population()
5.101.3 Member Function Documentation

5.101.3.1 comma_selection() [1/2]	70
5.101.3.2 comma_selection() [2/2]	71
5.101.3.3 get_best_bv() [1/4]	71
5.101.3.4 get_best_bv() [2/4]	72
5.101.3.5 get_best_bv() [3/4]	72
5.101.3.6 get_best_bv() [4/4]	72
5.101.3.7 get_best_value() [1/2]	73
5.101.3.8 get_best_value() [2/2]	73
5.101.3.9 get_worst_bv() [1/2]	73
5.101.3.10 get_worst_bv() [2/2]	74
5.101.3.11 plus_selection() [1/2]	74
5.101.3.12 plus_selection() [2/2]	74
5.101.4 Member Data Documentation	75
5.101.4.1 _lookup	75
5.102 PriorNoise Class Reference	75
5.102.1 Detailed Description	76
5.102.2 Member Function Documentation	76
5.102.2.1 get_maximum()	76
5.102.2.2 has_known_maximum()	77
5.102.2.3 provides_incremental_evaluation()	77
5.103 ProgressTracker Class Reference	77
5.103.1 Detailed Description	79
5.103.2 Member Function Documentation	79
5.103.2.1 get_last_improvement()	30
5.103.3 Member Data Documentation	30
5.103.3.1 _record_evaluation_time	30
5.104 ProgressTrackerContext Class Reference	30
5.104.1 Detailed Description	31
5.105 Projection Class Reference	31
5.105.1 Detailed Description	32
5.105.2 Constructor & Destructor Documentation	32
5.105.2.1 Projection()	32
5.105.3 Member Function Documentation	33
5.105.3.1 is_surjective()	33
5.106 PvAlgorithm Class Reference	33
5.106.1 Detailed Description	35
5.107 PythonFunction Class Reference	35
5.107.1 Detailed Description	36
5.107.2 Constructor & Destructor Documentation	36
5.107.2.1 PythonFunction()	36
5.108 Qubo Class Reference	37
5 108 1 Detailed Description	ąρ

5.108.2 Member Function Documentation
5.108.2.1 load() [1/2]
5.108.2.2 load() [2/2]
5.108.3 Member Data Documentation
5.108.3.1 _q
5.109 RandomLocalSearch Class Reference
5.109.1 Detailed Description
5.109.2 Member Function Documentation
5.109.2.1 set_patience()
5.109.3 Member Data Documentation
5.109.3.1 _patience
5.110 RandomSearch Class Reference
5.110.1 Detailed Description
5.111 RandomSelection Class Reference
5.111.1 Detailed Description
5.111.2 Constructor & Destructor Documentation
5.111.2.1 RandomSelection()
5.112 RandomWalk Class Reference
5.112.1 Detailed Description
5.113 Restart Class Reference
5.113.1 Detailed Description
5.114 Ridge Class Reference
5.114.1 Detailed Description
5.114.2 Member Function Documentation
5.114.2.1 get_maximum()
5.114.2.2 has_known_maximum()
5.115 ScalarToDouble < T > Struct Template Reference
5.115.1 Detailed Description
5.116 SimulatedAnnealing Class Reference
5.116.1 Detailed Description
5.116.2 Member Function Documentation
5.116.2.1 init_beta()
5.117 SingleBitFlip Class Reference
5.117.1 Detailed Description
5.118 SingleBitFlipIterator Class Reference
5.118.1 Detailed Description
5.118.2 Constructor & Destructor Documentation
5.118.2.1 SingleBitFlipIterator()
5.119 SinusSummationCancellation Class Reference
5.119.1 Detailed Description
5.120 SixPeaks Class Reference
5 120 1 Detailed Description

5.120.2 Member Function Documentation
5.120.2.1 get_maximum()
5.120.2.2 has_known_maximum()
5.121 StandardBitMutation Class Reference
5.121.1 Detailed Description
5.121.2 Constructor & Destructor Documentation
5.121.2.1 StandardBitMutation() [1/2]
5.121.2.2 StandardBitMutation() [2/2]
5.121.3 Member Function Documentation
5.121.3.1 set_mutation_rate()
5.122 SteepestAscentHillClimbing Class Reference
5.122.1 Detailed Description
5.123 StopOnMaximum Class Reference
5.123.1 Detailed Description
5.123.2 Constructor & Destructor Documentation
5.123.2.1 StopOnMaximum()
5.124 StopOnTarget Class Reference
5.124.1 Detailed Description
5.124.2 Constructor & Destructor Documentation
5.124.2.1 StopOnTarget()
5.124.3 Member Function Documentation
5.124.3.1 evaluate()
5.124.3.2 evaluate_incrementally()
5.124.3.3 update()
5.125 StopWatch Class Reference
5.125.1 Detailed Description
5.126 Sudoku Class Reference
5.126.1 Detailed Description
5.126.2 Member Function Documentation
5.126.2.1 load()
5.126.2.2 load_()
5.126.2.3 random()
5.126.2.4 save()
5.127 SummationCancellation Class Reference
5.127.1 Detailed Description
5.127.2 Constructor & Destructor Documentation
5.127.2.1 SummationCancellation()
5.127.3 Member Function Documentation
5.127.3.1 has_known_maximum()
5.128 SymmetricWalshMoment2 Struct Reference
5.128.1 Detailed Description
5.128.2 Constructor & Destructor Documentation

5.128.2.1 SymmetricWalshMoment2()
5.128.3 Member Function Documentation
5.128.3.1 average()
5.128.3.2 bound()
5.128.3.3 display()
5.128.3.4 scaled_difference()
5.128.3.5 update() [1/2]
5.128.3.6 update() [2/2]
5.129 SymmetricWalshMoment2GibbsSampler Class Reference
5.129.1 Detailed Description
5.130 SymmetricWalshMoment2Herding Class Reference
5.130.1 Detailed Description
5.130.2 Constructor & Destructor Documentation
5.130.2.1 SymmetricWalshMoment2Herding()
5.131 TargetReached Class Reference
5.131.1 Detailed Description
5.132 TournamentSelection Class Reference
5.132.1 Detailed Description
5.132.2 Constructor & Destructor Documentation
5.132.2.1 TournamentSelection()
5.132.3 Member Function Documentation
5.132.3.1 select()
5.133 Translation Class Reference
5.133.1 Detailed Description
5.133.2 Member Function Documentation
5.133.2.1 is_surjective()
5.133.2.2 load()
5.133.2.3 save()
5.134 Transvection Struct Reference
5.134.1 Detailed Description
5.134.2 Member Function Documentation
5.134.2.1 is_valid()
5.134.2.2 multiply() [1/2]
5.134.2.3 multiply() [2/2]
5.134.2.4 random()
5.134.2.5 random_non_commuting()
5.135 Trap Class Reference
5.135.1 Detailed Description
5.135.2 Constructor & Destructor Documentation
5.135.2.1 Trap()
5.135.3 Member Function Documentation
5.135.3.1 get_maximum()

5.135.3.2 has_known_maximum()
5.136 TsAffineMap Class Reference
5.136.1 Detailed Description
5.136.2 Member Enumeration Documentation
5.136.2.1 SamplingMode
5.136.3 Member Function Documentation
5.136.3.1 is_surjective()
5.136.3.2 load()
5.136.3.3 random()
5.136.3.4 save()
5.137 Tsp Class Reference
5.137.1 Detailed Description
5.137.2 Member Function Documentation
5.137.2.1 generate()
5.137.2.2 load()
5.137.2.3 load_()
5.137.2.4 random()
5.137.2.5 save()
5.138 Umda Class Reference
5.138.1 Detailed Description
5.139 UniformCrossover Class Reference
5.139.1 Detailed Description
5.139.2 Member Function Documentation
5.139.2.1 breed()
5.140 UniformSelection Class Reference
5.140.1 Detailed Description
5.140.2 Constructor & Destructor Documentation
5.140.2.1 UniformSelection()
5.141 UniversalFunction Class Reference
5.141.1 Detailed Description
5.142 UniversalFunctionAdapter Class Reference
5.142.1 Detailed Description
5.142.2 Constructor & Destructor Documentation
5.142.2.1 UniversalFunctionAdapter()
5.143 WalshExpansion Class Reference
5.143.1 Detailed Description
5.143.2 Member Function Documentation
5.143.2.1 generate()
5.143.2.2 load()
5.143.2.3 random()
5.143.2.4 save()
5 144 WalchEvnansion1 Class Reference

5.144.1 Detailed Description	361
5.144.2 Member Function Documentation	361
5.144.2.1 generate()	361
5.144.2.2 has_known_maximum()	361
5.144.2.3 load()	362
5.144.2.4 provides_incremental_evaluation()	362
5.144.2.5 random()	362
5.144.2.6 save()	363
5.145 WalshExpansion2 Class Reference	363
5.145.1 Detailed Description	365
5.145.2 Member Function Documentation	365
5.145.2.1 generate()	365
5.145.2.2 generate_ising1_long_range()	365
5.145.2.3 generate_ising1_long_range_periodic()	366
5.145.2.4 load()	366
5.145.2.5 random()	367
5.145.2.6 save()	367
5.145.3 Member Data Documentation	368
5.145.3.1 _quadratic	368
5.146 WalshTerm Struct Reference	368
5.146.1 Detailed Description	368
5.146.2 Member Data Documentation	369
5.146.2.1 feature	369
Index	371

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

TITICO	
Top-level HNCO namespace	3
hnco::algorithm	
Algorithms	12
hnco::algorithm::fast_efficient_p3	
Algorithms from the FastEfficientP3 library	18
hnco::algorithm::walsh_moment	
Algorithms using Walsh moments	18
hnco::app	
Classes for applications	19
hnco::exception	
Exceptions	-0
hnco::function	
Functions defined on bit vectors	-0
hnco::function::controller	
Controllers	-5
hnco::function::modifier	
Modifiers	-6
hnco::logging	
Logging	-6
hnco::map	
Maps	-6
hnco::neighborhood	
Neighborhoods for local search	3
hnco::random	
Random numbers	<u>5</u> 4
hnco::representation	
Representations	54

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Algorithm
CompleteSearch
IterativeAlgorithm
Local Search Algorithm < neighborhood:: Neighborhood Iterator >
FirstAscentHillClimbing
SteepestAscentHillClimbing
LocalSearchAlgorithm< neighborhood::Neighborhood>
RandomLocalSearch
RandomWalk
SimulatedAnnealing
GeneticAlgorithm
Human
LocalSearchAlgorithm < Neighborhood >
Mimic
MuCommaLambdaEa
OnePlusLambdaCommaLambdaGa
PvAlgorithm
CompactGa
Mmas
NpsPbil
Pbil
Umda
RandomSearch
Restart
BmPbil < GibbsSampler >
Hea < Herding >
OnePlusOneEa
Hboa
Ltga
ParameterLessPopulationPyramid
AlgorithmFactory
CommandLineAlgorithmFactory
CommandLineApplication

4 Hierarchical Index

$Complex To Double < T > \ \dots \dots$	84
Crossover	86
BiasedCrossover	69
UniformCrossover	350
DecoratedFunctionFactory	89
DyadicComplexRepresentation < T >	
DyadicComplexRepresentation < double >	
DyadicFloatRepresentation < T >	
DyadicFloatRepresentation < double >	
DyadicIntegerRepresentation < T >	
DyadicIntegerRepresentation< int >	
PermutationRepresentation::Element	
Evaluator	
HncoEvaluator	142
ProgressTracker::Event	
exception	
std::runtime error	
LastEvaluation	173
TargetReached	
FfgenOptions	
Function	
AbstractMaxSat	
MaxNae3Sat	
MaxSat	
DeceptiveJump	
Decorator	
Controller	
Cache	
CallCounter	
OnBudgetFunction	
ProgressTracker	
StopOnTarget	
StopOnMaximum	312
Modifier	210
AdditiveGaussianNoise	60
FunctionMapComposition	121
Negation	230
ParsedModifier	253
PriorNoise	275
EqualProducts	100
Factorization	104
FourPeaks	114
FunctionPlugin	124
Hiff	
Jump	170
Labs	171
LeadingOnes	173
LinearFunction	176
LongPath	187
MultivariateFunctionAdapter < Fn, Rep, Conv >	
NearestNeighborlsingModel1	219
NearestNeighborIsingModel2	
Needle	
NkLandscape	236
OneMax	
Partition	
PermutationFunctionAdapter< Fn >	263

2.1 Class Hierarchy 5

Plateau	
PythonFunction	285
Qubo	
Ridge	
SixPeaks	
SummationCancellation	
SinusSummationCancellation	304
Trap	338
UniversalFunctionAdapter	354
WalshExpansion	356
WalshExpansion1	359
WalshExpansion2	363
FunctionFactory	121
CommandLineFunctionFactory	81
Generator	
HncoOptions	
Implementation	
IntegerCategoricalRepresentation	
Iterator	
ExtendedHypercubeIterator	
Hypercubelterator	
NeighborhoodIterator	
HammingSphereIterator	
SingleBitFlipIterator	
- ,	
LinearCategoricalRepresentation	
LogContext	
ProgressTrackerContext	
Logger	
LowerTriangularWalshMoment2	
LowerTriangularWalshMoment2GibbsSampler	
LowerTriangularWalshMoment2Herding	
Map	
AffineMap	
Injection	
LinearMap	
MapComposition	
Permutation	
Projection	
Translation	
TsAffineMap	
MapgenOptions	
Neighborhood	232
MultiBitFlip	213
HammingBall	130
HammingSphere	131
StandardBitMutation	308
SingleBitFlip	302
ParsedMultivariateFunction < Parser >	254
PermutationRepresentation	265
Population	
RandomSelection	
TournamentSelection	
UniformSelection	
ScalarToDouble < T >	
StopWatch	
Sudoku	

6 Hierarchical Index

SymmetricWalshMoment2	323
SymmetricWalshMoment2GibbsSampler	327
SymmetricWalshMoment2Herding	328
Transvection	335
Гsp	345
JniversalFunction	353
NalshTerm	368

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AbstractMaxSat	
Abstract class for MaxSat-like functions	57
AdditiveGaussianNoise	
Additive Gaussian Noise	60
AffineMap	
Affine map	61
Algorithm	
Abstract search algorithm	64
AlgorithmFactory	
Algorithm factory	68
BiasedCrossover	
Biased crossover	69
BmPbil < GibbsSampler >	
Boltzmann machine PBIL	70
Cache	
Cache	74
CallCounter	
Call counter	77
CommandLineAlgorithmFactory	
Command line algorithm factory	78
CommandLineApplication	
Command line application	79
CommandLineFunctionFactory	
Command line function factory	81
CompactGa	
Compact genetic algorithm	82
CompleteSearch	
Complete search	83
ComplexToDouble < T >	
Convert a complex to a double	84
Controller	
Function controller	85
Crossover	
Crossover	86
DeceptiveJump	
Deceptive jump	87

8 Class Index

DecoratedFunctionFactory	
Decorated function factory	89
Decorator	0.4
Function decorator	91
Dyadic complex representation	92
DyadicFloatRepresentation< T >	
Dyadic float representation	94
DyadicIntegerRepresentation< T >	
Dyadic integer representation	97
PermutationRepresentation::Element Element	99
EqualProducts	33
	100
ProgressTracker::Event	
	103
ExtendedHypercubeIterator	400
Extended Hypercube iterator	103
	104
FfgenOptions	
	107
FirstAscentHillClimbing	
	112
FourPeaks Four Peaks	114
Function	
Function	116
FunctionFactory	
	121
FunctionMapComposition Composition and a map	121
FunctionPlugin	121
·	124
Generator	
	126
GeneticAlgorithm Constitution algorithm	107
Genetic algorithm	127
· · · · · · · · · · · · · · · · · · ·	130
HammingSphere	
9 1	131
HammingSphereIterator	400
Hamming sphere neighborhood iterator	133
	135
Hea< Herding >	
Herding evolutionary algorithm	137
Hiff	
•	140
HncoEvaluator Evaluator for HNCO functions	142
HncoOptions	
	143
Human	
	160
Hypercube iterator Hypercube iterator	161
	101

3.1 Class List

Implemer	ntation	
		162
Injection	Injection	100
	ategoricalRepresentation	102
	Integer categorical representation	164
IterativeA		165
Iterator	neralive search	100
	Iterator over bit vectors	168
Jump	Jump	170
Labs	·	
LastEvalu	Low autocorrelation binary sequences	171
	Last evaluation	173
LeadingC		
	Leading ones	1/3
	Linear categorical representation	175
LinearFu	nction Linear function	176
LinearMa		170
	Linear map	180
	rchAlgorithm< Neighborhood > Local search algorithm	183
LogConte	ext	
	Log context	185
Logger	Logger	185
LongPath		
	Long path	187
	Lower triangular Walsh moment	189
	angularWalshMoment2GibbsSampler	100
	Gibbs sampler with lower triangular Walsh moments	193
	Herding with lower triangular Walsh moment	194
Ltga	Linkage Tree Genetic Algorithm	196
Мар	Linkage free deficite Algorithm	130
	•	197
MapCom	Map composition	199
MapgenC	Deptions	
MaxNae3	1 10	201
		203
MaxSat	MANGAT	004
Mimic	MAX-SAT	204
	Mutual information maximizing input clustering	206
Mmas	Max-min ant system	200
Modifier	iviax-iiiii aiii systeiii	209
	Function modifier	210
	naLambdaEa (mu, lambda) EA	211
	· · · · · · · · · · · · · · · · · · ·	

10 Class Index

MultiBitFlip							
Multi bit flip							213
MultivariateFunctionAdapter< Fn, Rep, Conv >							
Multivariate function adapter							215
MuPlusLambdaEa							047
(mu+lambda) EA		• •	• •		٠.	٠	217
Nearest neighbor Ising model in one dimension							219
NearestNeighborlsingModel2		• •	• •		• •	•	2.0
Nearest neighbor Ising model in two dimensions							223
Needle							
Needle in a haystack							228
Negation							
Negation			٠.		٠.	٠	230
Neighborhood Neighborhood							232
NeighborhoodIterator		• •	• •		٠.	•	202
Neighborhood iterator							235
NkLandscape							
NK landscape							236
NpsPbil							
Population-based incremental learning with negative and positive selection .							239
OnBudgetFunction							044
Function with a limited number of evaluations			٠.		٠.	٠	241
OneMax							244
OnePlusLambdaCommaLambdaGa						•	277
(1+(lambda, lambda)) genetic algorithm							247
OnePlusOneEa							
(1+1) EA							249
ParameterLessPopulationPyramid							
Parameter-less Population Pyramid			٠.		٠.	•	251
ParsedModifier Parsed modifier							253
ParsedMultivariateFunction < Parser >		• •	• •			•	200
Parsed multivariate function							254
Partition							
Partition							256
Pbil							
Population-based incremental learning			٠.		٠.	٠	259
Permutation Permut							261
PermutationFunctionAdapter< Fn >		• •	• •		٠.		201
Permutation function adapter							263
PermutationRepresentation							
Permutation representation							265
Plateau							
Plateau			٠.		٠.		266
Population							268
Population		• •	• •		٠.	•	200
Prior noise							275
ProgressTracker	•	-	-	•	•		
ProgressTracker							277
ProgressTrackerContext							
Log context for ProgressTracker							280
Projection							004
Projection							281

3.1 Class List

PvAlgorit		
	· · · · · · · · · · · · · · · · · · ·	283
PythonFu		285
Qubo	Tythorn function	200
	Quadratic unconstrained binary optimization	287
Randoml	LocalSearch	
Randoms		290
nanuonik		292
Random	Selection	
	Random selection	293
Random		294
Restart	natiouti walk	294
	Restart	296
Ridge		
CoolorTo	Ridge	297
Scalal 10		299
Simulate	dAnnealing	
	ě	300
SingleBit		302
SinaleBit	FlipIterator	302
- 3		303
SinusSur	mmationCancellation	
SixPeaks		304
Sixreaks		306
Standard	BitMutation	
_		308
Steepest	AscentHillClimbing Steepest ascent hill climbing	311
StopOnM		311
		312
StopOnT		
StopWate	·	314
Olopvvali		317
Sudoku		
0		317
Summati	onCancellation Summation cancellation	320
Symmetr	icWalshMoment2	020
	,	323
Symmetr	icWalshMoment2GibbsSampler	007
Symmetr	Gibbs sampler with symmetric Walsh moments	327
Cymmen	· · · · · · · · · · · · · · · · · · ·	328
TargetRe	ached	
Taureas	3	330
iournam	entSelection Tournament selection	330
Translatio		550
		333
Transvec		205
	Transvection	335

12 Class Index

Trap		
	Trap	338
TsAffine	Мар	
	Transvection sequence affine map	341
Tsp		
	Traveling salesman problem	345
Umda		
	Univariate marginal distribution algorithm	348
Uniform	Crossover	
	Uniform crossover	350
Uniform:	Selection	
	Uniform selection	351
Universa	alFunction	
	Universal function	353
Universa	alFunctionAdapter	
	Universal function adapter	354
WalshEx	kpansion	
	Walsh expansion	356
WalshEx	kpansion1	
	Walsh expansion of degree 1	359
WalshEx	kpansion2	
	Walsh expansion of degree 2	363
WalshTe	erm erm	
	Walsh transform term	368

Namespace Documentation

4.1 hnco Namespace Reference

top-level HNCO namespace

Namespaces

· algorithm

Algorithms.

app

Classes for applications.

· exception

Exceptions.

• function

Functions defined on bit vectors.

logging

Logging.

• map

Maps.

· neighborhood

Neighborhoods for local search.

• random

Random numbers.

representation

Representations.

Classes

class Iterator

Iterator over bit vectors

• class Hypercubelterator

Hypercube iterator.

• class ExtendedHypercubeIterator

Extended Hypercube iterator.

class StopWatch

Stop watch.

Functions

```
    template < class A , class B >
        bool have_same_size (const A &a, const B &b)
        Check whether two containers have the same size.
    template < class T >
        T square (T x)
        Generic square function.
    double logistic (double x)
        Logistic function (sigmoid)
    template < typename lter >
        std::string join (lter begin, lter end, std::string const &separator)
        Convert to string and join elements of a container (from SO)
```

Load from and save to boost archives

```
    template<typename T > void load_from_archive (T &object, std::string path, std::string name)
        Load from a boost archive.
    template<typename T > void save_to_archive (const T &object, std::string path, std::string name)
        Save to a boost archive.
```

Range checking

```
    bool is_in_range (int i, int a, int b)
        Check whether an index is in a given range.

    bool is_in_range (int i, int n)
```

Check whether an index is in a given range.

Intervals

```
    bool is_in_interval (double x, double a, double b)
        Check whether a float value belongs to a given interval.
    template<typename T >
        T clip_value (T x, T low, T high)
        Clip value between two bounds.
```

Types and functions related to bit matrices

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output bit_matrix_t parameters are passed by reference and must have the right size for the considered function.

Input object parameters are passed by const reference.

```
    using bit_matrix_t = std::vector < bit_vector_t >
        Bit matrix.
    bit_matrix_t bm_rectangular (int nrows, int ncols)
        Make a rectangular bit matrix.
```

• bit_matrix_t bm_square (int n)

Make a square bit matrix. void bm_identity (bit_matrix_t &M) Set a matrix to the identity matrix. bit matrix t bm identity (int n) Make an identity bit matrix. void bm_transpose (bit_matrix_t &N, const bit_matrix_t &M) Transpose a bit matrix. bit matrix t bm transpose (const bit matrix t &M) Transpose a bit matrix. void bm_display (const bit_matrix_t &M, std::ostream &stream) Display bit matrix. bool bm_is_valid (const bit_matrix_t &M) Check whether a bit matrix is valid. int bm_num_rows (const bit_matrix_t &M) Number of rows. int bm num columns (const bit matrix t &M) Number of columns. bool bm_is_square (const bit_matrix_t &M) Check whether the matrix is a square matrix. bool bm is identity (const bit matrix t &M) Check whether the matrix is the identity matrix. bool bm_is_upper_triangular (const bit_matrix_t &M) Check whether the matrix is upper triangular. void bm_resize (bit_matrix_t &M, int nrows, int ncols) Resize a bit matrix. void bm_resize (bit_matrix_t &M, int nrows) Resize a bit matrix and make it a square matrix. void bm_clear (bit_matrix_t &M) Clear bit matrix. void bm random (bit matrix t &M) Sample a random bit matrix. void bm_swap_rows (bit_matrix_t &M, int i, int j) Swap two rows. void bm_add_rows (bit_matrix_t &M, int dest, int src) Add two rows. void bm_add_columns (bit_matrix_t &M, int dest, int src) Add two columns. void bm_set_column (bit_matrix_t &M, int j, const bit_vector_t &bv) Set column. void bm_row_echelon_form (bit_matrix_t &A) Compute a row echelon form of a matrix. int bm rank (const bit matrix t &A) Compute the rank of a matrix. bool bm_solve (bit_matrix_t &A, bit_vector_t &b) Solve a linear system. bool bm_solve_upper_triangular (bit_matrix_t &A, bit_vector_t &b) Solve a linear system in upper triangular form.

Invert a bit matrix.

bool bm_invert (bit_matrix_t &M, bit_matrix_t &N)

Multiply a bit matrix and a bit vector.

void bm_multiply (bit_vector_t &y, const bit_matrix_t &M, const bit_vector_t &x)

Types and functions related to bit

```
using bit_t = std::uint8_t

Bit.
bit_t bit_flip (bit_t b)

Flip bit.
bit_t bit_random (double p)

Sample a random bit.
```

Types and functions related to bit vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output bit_vector_t parameters are passed by reference and must have the right size for the considered function.

Input bit_vector_t parameters are passed by const reference.

```
using bit vector t = std::vector< bit t >
      Bit vector.

    std::string by domain (const bit vector t &x)

     Display bit vector.

    void by display (const bit vector t &v, std::ostream &stream)

      Display bit vector.

    bool bv_is_valid (const bit_vector_t &x)

      Check whether the bit vector is valid.

    bool bv_is_zero (const bit_vector_t &x)

      Check whether the bit vector is zero.

    int bv_hamming_weight (const bit_vector_t &x)

      Hamming weight.

    int bv_hamming_weight (const std::vector< bool > &x)

      Hamming weight.

    int bv_hamming_distance (const bit_vector_t &x, const bit_vector_t &y)

      Hamming distance between two bit vectors.

    bit_t bv_dot_product (const bit_vector_t &x, const bit_vector_t &y)

      Dot product.

    bit t bv dot product (const bit vector t &x, const std::vector < bool > &y)

      Dot product.

    void bv_clear (bit_vector_t &x)

      Clear bit vector.

    void by flip (bit vector t &x, int i)

      Flip a single bit.

    void bv_flip (bit_vector_t &x, const bit_vector_t &mask)

      Flip many bits.

    void bv_random (bit_vector_t &x)

      Sample a random bit vector.

    void bv_random (bit_vector_t &x, int k)

      Sample a random bit vector with given Hamming weight.

    void bv_add (bit_vector_t &dest, const bit_vector_t &src)

      Add two bit vectors.
```

Types and functions related to permutations

Read a bit vector from a stream.

```
    using permutation_t = std::vector < int >
        Permutation type
    bool perm_is_valid (const permutation_t &permutation)
        Check that a vector represents a permutation.
    void perm_identity (permutation_t &s)
        Identity permutation.
    void perm_random (permutation_t &s)
        Sample a random permutation.
    void perm_display (const permutation_t &permutation, std::ostream &stream)
        Display a permutation.
```

Types and functions related to sparse bit vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Input object parameters are passed by const reference.

using sparse_bit_vector_t = std::vector< int >

```
Sparse bit vector.
bool sbv_is_valid (const sparse_bit_vector_t &sbv)

Check that a sparse bit vector is valid.
bool sbv_is_valid (const sparse_bit_vector_t &sbv, int n)

Check that a sparse bit vector is valid.
void sbv_flip (bit_vector_t &x, const sparse_bit_vector_t &sbv)

Flip many bits of a bit vector.
void sbv_display (const sparse_bit_vector_t &v, std::ostream &stream)

Display sparse bit vector.
sparse_bit_vector_t sbv_from_bv (const bit_vector_t &bv)

Convert a bit vector to a sparse bit vector.
```

4.1.1 Detailed Description

top-level HNCO namespace

4.1.2 Typedef Documentation

4.1.2.1 sparse_bit_vector_t

```
using sparse_bit_vector_t = std::vector<int>
```

Sparse bit vector.

A sparse bit vector is represented as an vector containing the indices of its non-zero components. The indices must be sorted in ascending order.

A sparse bit vector does not know the dimension of the space it belongs to.

Definition at line 50 of file sparse-bit-vector.hh.

4.1.3 Function Documentation

4.1.3.1 bm_add_columns()

```
void bm_add_columns (
          bit_matrix_t & M,
          int dest,
          int src )
```

Add two columns.

Equivalent to dest = dest + src.

Parameters

М	Bit matrix
dest	Destination column
src	Source column

Warning

M is modified by the function.

Definition at line 187 of file bit-matrix.cc.

4.1.3.2 bm_add_rows()

Add two rows.

Equivalent to dest = dest + src.

Parameters

М	Bit matrix
dest	Destination row
src	Source row

Definition at line 178 of file bit-matrix.cc.

4.1.3.3 bm_identity() [1/2]

```
void bm_identity ( bit\_matrix\_t \ \& \ \textit{M} \ )
```

Set a matrix to the identity matrix.

Precondition

bm_is_square(M)

Definition at line 39 of file bit-matrix.cc.

4.1.3.4 bm_identity() [2/2]

Make an identity bit matrix.

Parameters

n Dimension

Returns

An order n identity matrix

Definition at line 50 of file bit-matrix.cc.

4.1.3.5 bm_invert()

Invert a bit matrix.

Parameters

М	Bit matrix	
Ν	Inverse bit matrix	

Precondition

```
bm_is_square(M)
bm_is_square(N)
bm_num_rows(M) == bm_num_rows(N)
```

Returns

true if M is invertible

Warning

M is modified by the function. Provided that M is invertible, after returning from the function, M is the identity matrix and N is the computed inverse matrix.

Definition at line 316 of file bit-matrix.cc.

4.1.3.6 bm_multiply()

```
void bm_multiply (
                bit_vector_t & y,
                const bit_matrix_t & M,
                 const bit_vector_t & x )
```

Multiply a bit matrix and a bit vector.

Computes y = Mx.

Parameters

У	Output bit vector	
М	M Bit matrix	
Х	Bit vector	

Definition at line 360 of file bit-matrix.cc.

4.1.3.7 bm_rank()

Compute the rank of a matrix.

Precondition

A must be in row echelon form.

Definition at line 244 of file bit-matrix.cc.

4.1.3.8 bm_row_echelon_form()

Compute a row echelon form of a matrix.

Warning

A is modified by the function.

Definition at line 213 of file bit-matrix.cc.

4.1.3.9 bm_set_column()

```
void bm_set_column (
          bit_matrix_t & M,
           int j,
           const bit_vector_t & bv )
```

Set column.

Set a column to a given bit vector.

Parameters

М	Bit matrix
j	Column index
bv	Bit vector

Precondition

```
bm_num_rows(M) == bv.size()
```

Definition at line 202 of file bit-matrix.cc.

4.1.3.10 bm_solve()

```
bool bm_solve (
                bit_matrix_t & A,
                bit_vector_t & b )
```

Solve a linear system.

Solve the linear equation Ax = b.

Parameters

Α	Matrix	
b	Right hand side	

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 262 of file bit-matrix.cc.

4.1.3.11 bm_solve_upper_triangular()

Solve a linear system in upper triangular form.

Solve the linear equation Ax = b.

Parameters

Α	Upper triangular matrix
b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
bm_is_upper_triangular(A)
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 295 of file bit-matrix.cc.

4.1.3.12 bm_transpose() [1/2]

```
void bm_transpose (
                bit_matrix_t & N,
                 const bit_matrix_t & M )
```

Transpose a bit matrix.

Precondition

```
bm_num_columns(N) == bm_num_rows(M)
bm_num_rows(N) == bm_num_columns(M)
```

Definition at line 59 of file bit-matrix.cc.

4.1.3.13 bm_transpose() [2/2]

Transpose a bit matrix.

Parameters

Μ	Bit matrix
---	------------

Returns

Transposed bit matrix

Definition at line 73 of file bit-matrix.cc.

4.1.3.14 bv_add() [1/2]

```
void bv_add (
                bit_vector_t & dest,
                const bit_vector_t & src )
```

Add two bit vectors.

Equivalent to dest = dest + src.

Parameters

dest	Destination bit vector	
src Source bit vector		

Warning

Vectors must be of the same size.

Definition at line 124 of file bit-vector.cc.

4.1.3.15 bv_add() [2/2]

```
void bv_add (
                bit_vector_t & dest,
                const bit_vector_t & x,
                 const bit_vector_t & y )
```

Add two bit vectors.

Equivalent to dest = x + y.

Parameters

dest	Destination bit vector	
Х	First operand	
V	Second operand	

Generated by Doxygen

Warning

Vectors must be of the same size.

Definition at line 133 of file bit-vector.cc.

4.1.3.16 bv_from_size_type()

Convert a size_t to a small bit vector.

Parameters

X	Output bit vector
и	Unsigned integer representing a bit vector

Precondition

```
x.size() <= 8 * sizeof(std::size_t)
```

Warning

Depending on the size of the output bit vector, some bits might be lost. The original bit vector can be reconstructed only if it is small and the unsigned integer u is the result of bv_to_size_type.

Definition at line 201 of file bit-vector.cc.

4.1.3.17 bv_from_stream()

Read a bit vector from a stream.

Parameters

stream	Input stream

Returns

A bit_vector_t

Definition at line 232 of file bit-vector.cc.

4.1.3.18 bv_from_string()

Read a bit vector from a string.

Parameters

```
str Input string
```

Returns

```
A bit_vector_t
```

Definition at line 216 of file bit-vector.cc.

4.1.3.19 bv_from_vector_bool()

```
void bv_from_vector_bool (
          bit_vector_t & x,
          const std::vector< bool > & y )
```

Convert a bool vector to a bit vector.

Warning

Vectors must be of the same size.

Definition at line 156 of file bit-vector.cc.

4.1.3.20 bv_to_size_type() [1/2]

Convert a small bit vector to a size_t.

x[0] is the least significant bit.

Parameters

```
x Input bit vector
```

Returns

An unsigned integer representing x

Precondition

```
x.size() <= 8 * sizeof(std::size_t)
```

Definition at line 169 of file bit-vector.cc.

4.1.3.21 bv_to_size_type() [2/2]

Convert a slice of a small bit vector to a size_t.

x[start] is the least significant bit.

x[stop-1] is the most significant bit.

Parameters

X	Input bit vector
start	Start bit
stop	Stop bit

Returns

An unsigned integer representing x[start], ..., x[stop-1]

Precondition

```
start in [0, x.size())
stop in [start+1, x.size()]
(stop - start) <= 8 * sizeof(std::size_t)</pre>
```

Definition at line 184 of file bit-vector.cc.

4.1.3.22 bv_to_vector_bool()

```
void bv_to_vector_bool (
          std::vector< bool > & y,
          const bit_vector_t & x )
```

Convert a bit vector to a bool vector.

Warning

Vectors must be of the same size.

Definition at line 143 of file bit-vector.cc.

4.1.3.23 is_in_range() [1/2]

Check whether an index is in a given range.

Parameters

i	Index
а	Lower bound
b	Upper bound (excluded)

Returns

```
true if i \ge a and i < b
```

Definition at line 45 of file util.hh.

4.1.3.24 is_in_range() [2/2]

Check whether an index is in a given range.

The lower bound is implicit and is equal to 0.

Parameters

i	Index
n	Upper bound (excluded)

Returns

true if
$$i \ge 0$$
 and $i < n$

Definition at line 56 of file util.hh.

4.1.3.25 load_from_archive()

Load from a boost archive.

Parameters

object	Object to load
path	Path of the file
name	Class name

Definition at line 44 of file serialization.hh.

4.1.3.26 perm_identity()

Identity permutation.

Warning

This function does not set the size of the permutation.

Definition at line 47 of file permutation.hh.

4.1.3.27 perm_random()

Sample a random permutation.

Warning

This function does not set the size of the permutation.

Definition at line 57 of file permutation.hh.

4.1.3.28 save_to_archive()

Save to a boost archive.

Parameters

object	Object to save
path	Path of the file
name	Class name

Definition at line 64 of file serialization.hh.

4.1.3.29 sbv_flip()

```
void sbv_flip (
                bit_vector_t & x,
                const sparse_bit_vector_t & sbv )
```

Flip many bits of a bit vector.

Parameters

Х	Input-output bit vector
sbv	Bits to flip

Definition at line 54 of file sparse-bit-vector.cc.

4.1.3.30 sbv_is_valid() [1/2]

Check that a sparse bit vector is valid.

A sparse bit vector is valid if:

- Its elements are non negative.
- Its elements are sorted in non-descending order.

Definition at line 32 of file sparse-bit-vector.cc.

4.1.3.31 sbv_is_valid() [2/2]

Check that a sparse bit vector is valid.

A sparse bit vector is valid if:

- · Its elements are non negative.
- · Its elements are sorted in non-descending order.
- Its elements are valid indices w.r.t. the given dimension.

Parameters

sbv	Input sparse bit vector
n	Dimension

Definition at line 43 of file sparse-bit-vector.cc.

4.2 hnco::algorithm Namespace Reference

Algorithms.

Namespaces

• fast_efficient_p3

Algorithms from the FastEfficientP3 library.

· walsh_moment

Algorithms using Walsh moments.

Classes

class Algorithm

Abstract search algorithm.

class CompleteSearch

Complete search.

class Restart

Restart.

· class Crossover

Crossover

• class UniformCrossover

Uniform crossover.

· class BiasedCrossover

Biased crossover.

· class GeneticAlgorithm

Genetic algorithm.

· class MuCommaLambdaEa

(mu, lambda) EA.

• class MuPlusLambdaEa

(mu+lambda) EA.

· class OnePlusLambdaCommaLambdaGa

(1+(lambda, lambda)) genetic algorithm.

• class OnePlusOneEa

(1+1) EA.

· class Human

Human

· class IterativeAlgorithm

Iterative search.

· class FirstAscentHillClimbing

First ascent hill climbing.

· class LocalSearchAlgorithm

Local search algorithm.

· class RandomLocalSearch

Random local search.

class RandomWalk

Random walk.

· class SimulatedAnnealing

Simulated annealing.

· class SteepestAscentHillClimbing

Steepest ascent hill climbing.

class Mimic

Mutual information maximizing input clustering.

class Population

Population

· class CompactGa

Compact genetic algorithm.

• class Mmas

Max-min ant system.

class NpsPbil

Population-based incremental learning with negative and positive selection.

· class Pbil

Population-based incremental learning.

class PvAlgorithm

Probability vector algorithm.

· class Umda

Univariate marginal distribution algorithm.

class RandomSearch

Random search.

· class RandomSelection

Random selection.

• class UniformSelection

Uniform selection.

· class TournamentSelection

Tournament selection.

Typedefs

```
    using solution_t = std::pair< bit_vector_t, double >
    Type of a solution.
```

Functions

```
    template < class T >
        bool matrix_is_symmetric (const std::vector < std::vector < T > > &A)
            Check for symmetric matrix.
    template < class T >
        bool matrix_is_strictly_lower_triangular (const std::vector < std::vector < T > > &A)
            Check for strictly lower triangular matrix.
    template < class T >
        bool matrix_has_diagonal (const std::vector < std::vector < T > > &A, T x)
            Check for diagonal elements.
    template < class T >
        bool matrix_has_range (const std::vector < std::vector < T > > &A, T inf, T sup)
            Check for element range.
    template < class T >
        bool matrix_has_dominant_diagonal (const std::vector < std::vector < T > > &A)
            Check for element range.
```

Type and function related to index-value pairs

Type and functions related to probability vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output pv_t parameters are passed by reference and must have the right size for the considered function.

Input object parameters are passed by const reference.

```
    void pv_add (pv_t &pv, const bit_vector_t &x)
        Accumulate a bit vector into a probability vector.
    void pv_average (pv_t &pv, int count)
        Average.
    template < class T >
        void pv_update (pv_t &pv, double rate, const T &x)
        Update a probability vector.
    void pv_update (pv_t &pv, double rate, const pv_t &x, const pv_t &y)
        Update a probability vector.
```

• void pv_bound (pv_t &pv, double lower_bound, double upper_bound)

Bound the elements of a probability vector.

4.2.1 Detailed Description

Algorithms.

4.2.2 Function Documentation

4.2.2.1 pv_add()

Accumulate a bit vector into a probability vector.

Equivalent to pv += x

Parameters

pv	Probability vector
Х	Bit vector

Definition at line 58 of file probability-vector.cc.

4.2.2.2 pv_average()

Average.

Equivalent to pv = pv / count.

Parameters

pv	Probability vector
count	Number of accumulated bit vectors

Definition at line 67 of file probability-vector.cc.

4.2.2.3 pv_bound()

Bound the elements of a probability vector.

Parameters

pv	Probability vector
lower_bound	Lower bound
upper_bound	Upper bound

Definition at line 82 of file probability-vector.cc.

4.2.2.4 pv_init()

Initialize.

All the elements of the probability vector are set to 0.

Parameters

```
pv Probability vector
```

Definition at line 74 of file probability-vector.hh.

4.2.2.5 pv_sample()

```
void pv_sample ( \label{eq:bit_vector_t & x, const pv_t & pv }
```

Sample a bit vector.

Parameters

X	Sampled bit vector
pv	Probability vector

Definition at line 46 of file probability-vector.cc.

4.2.2.6 pv_uniform()

Probability vector of the uniform distribution.

All the elements of the probability vector are set to 1/2.

Parameters

```
pv Probability vector
```

Definition at line 66 of file probability-vector.hh.

4.2.2.7 pv_update() [1/2]

```
void pv_update ( \begin{array}{cccc} pv\_t & \& & pv, \\ & & \text{double } rate, \\ & & \text{const } pv\_t & \& & x, \\ & & & \text{const } pv\_t & \& & y \end{array})
```

Update a probability vector.

Equivalent to pv += rate(x - y)

Parameters

pv	Probability vector
rate	Rate
X	Attractor probability vector
У	Repulsor probability vector

Definition at line 73 of file probability-vector.cc.

4.2.2.8 pv_update() [2/2]

Update a probability vector.

Equivalent to pv += rate * (x - pv)

Parameters

pv	Probability vector
rate	Rate
Х	Attractor bit vector

Definition at line 103 of file probability-vector.hh.

4.3 hnco::algorithm::fast_efficient_p3 Namespace Reference

Algorithms from the FastEfficientP3 library.

Classes

• class Hboa

Hierarchical Bayesian Optimization Algorithm.

class HncoEvaluator

Evaluator for HNCO functions.

struct Implementation

Implementation

· class Ltga

Linkage Tree Genetic Algorithm.

· class ParameterLessPopulationPyramid

Parameter-less Population Pyramid.

4.3.1 Detailed Description

Algorithms from the FastEfficientP3 library.

4.4 hnco::algorithm::walsh_moment Namespace Reference

Algorithms using Walsh moments.

Classes

· class BmPbil

Boltzmann machine PBIL.

· class LowerTriangularWalshMoment2GibbsSampler

Gibbs sampler with lower triangular Walsh moments.

· class SymmetricWalshMoment2GibbsSampler

Gibbs sampler with symmetric Walsh moments.

· class Hea

Herding evolutionary algorithm.

· class LowerTriangularWalshMoment2Herding

Herding with lower triangular Walsh moment.

· class SymmetricWalshMoment2Herding

Herding with symmetric Walsh moment.

struct LowerTriangularWalshMoment2

Lower triangular Walsh moment.

struct SymmetricWalshMoment2

Symmetric Walsh moment.

4.4.1 Detailed Description

Algorithms using Walsh moments.

4.5 hnco::app Namespace Reference

Classes for applications.

Classes

· class AlgorithmFactory

Algorithm factory.

· class CommandLineAlgorithmFactory

Command line algorithm factory.

• class CommandLineApplication

Command line application.

class DecoratedFunctionFactory

Decorated function factory.

class FunctionFactory

Function factory.

class CommandLineFunctionFactory

Command line function factory.

class HncoOptions

Command line options for hnco.

class FfgenOptions

Command line options for ffgen.

class MapgenOptions

Command line options for mapgen.

Functions

- std::ostream & operator<< (std::ostream &stream, const HncoOptions &options)

 Print a header containing the parameter values.
- $\bullet \quad \text{std::ostream \& operator}{<<} (\text{std::ostream \& stream, const FfgenOptions \& options}) \\$

Print a header containing the parameter values.

• std::ostream & operator<< (std::ostream &stream, const MapgenOptions &options)

Print a header containing the parameter values.

4.5.1 Detailed Description

Classes for applications.

4.6 hnco::exception Namespace Reference

Exceptions.

Classes

class LastEvaluation

Last evaluation.

class TargetReached

Target reached.

4.6.1 Detailed Description

Exceptions.

4.7 hnco::function Namespace Reference

Functions defined on bit vectors.

Namespaces

controller

Controllers.

· modifier

Modifiers.

Classes

· class SummationCancellation

Summation cancellation.

class SinusSummationCancellation

Summation cancellation with sinus.

class EqualProducts

Equal products.

· class Factorization

Factorization.

class FourPeaks

Four Peaks.

class SixPeaks

Six Peaks.

· class NearestNeighborIsingModel1

Nearest neighbor Ising model in one dimension.

class NearestNeighborIsingModel2

Nearest neighbor Ising model in two dimensions.

class Jump

Jump.

class DeceptiveJump

Deceptive jump.

class Labs

Low autocorrelation binary sequences.

· class LinearFunction

Linear function.

class LongPath

Long path.

class AbstractMaxSat

Abstract class for MaxSat-like functions.

class MaxSat

MAX-SAT.

class MaxNae3Sat

Max not-all-equal 3SAT.

· class NkLandscape

NK landscape.

• class ParsedMultivariateFunction

Parsed multivariate function.

class Partition

Partition.

• class FunctionPlugin

Function plugin

class PythonFunction

Python function.

· class Qubo

Quadratic unconstrained binary optimization.

class Sudoku

Sudoku

class OneMax

OneMax.

• class LeadingOnes

Leading ones.

· class Needle

Needle in a haystack.

· class Hiff

Hierarchical if and only if.

· class Ridge

Ridge.

class Plateau

Plateau.

· class Trap

Trap.

class Tsp

Traveling salesman problem.

class WalshExpansion1

Walsh expansion of degree 1.

class WalshExpansion2

Walsh expansion of degree 2.

· class WalshExpansion

Walsh expansion.

struct ScalarToDouble

Convert a scalar to a double.

• struct ComplexToDouble

Convert a complex to a double.

· class Decorator

Function decorator

class Function

Function

• class MultivariateFunctionAdapter

Multivariate function adapter.

• class PermutationFunctionAdapter

Permutation function adapter.

· class UniversalFunctionAdapter

Universal function adapter.
• class UniversalFunction

Universal function.

struct WalshTerm

Walsh transform term.

Functions

- void compute_walsh_transform (function::Function *function, std::vector< function::WalshTerm > &terms)

 Compute the Walsh transform of the function.
- void compute_fast_walsh_transform (function::Function *function, std::vector< function::WalshTerm > &terms)

Compute the Walsh transform of the function using a fast Walsh transform.

- bool bv_is_locally_maximal (const bit_vector_t &bv, Function &fn, neighborhood::NeighborhoodIterator &it)

 Check whether a bit vector is locally maximal.
- bool bv_is_globally_maximal (const bit_vector_t &bv, Function &fn)

Check whether a bit vector is globally maximal.

4.7.1 Detailed Description

Functions defined on bit vectors.

4.7.2 Function Documentation

4.7.2.1 compute_fast_walsh_transform()

Compute the Walsh transform of the function using a fast Walsh transform.

Let f be a fitness function defined on the hypercube $\{0,1\}^n$. Then it can be expressed as $\sum_u c_u \chi_u$ where $c_u = \langle f, \chi_u \rangle$, $\langle f, g \rangle = \frac{1}{2^n} \sum_x f(x)g(x)$, $\chi_u(x) = (-1)^{x \cdot u}$, and $x \cdot u = \sum_i x_i u_i$ (mod 2). In the respective sums, we have x and u in the hypercube and i in $\{1, \dots, n\}$.

We have dropped the normalizing constant 2^n since we are mostly interested in ratios $|c_u/c_{\max}|$, where c_{\max} is the coefficient with the largest amplitude. It is also helpful to achieve exact computations in the case of functions taking only integer values.

Parameters

function	Function the Walsh transform of which to compute
terms	Vector of non zero terms of the Walsh transform

Warning

The time complexity is exponential in the dimension n. It requires 2^n function evaluations and $n2^n$ additions, which is faster than compute_walsh_transform.

The size of the Walsh transform is potentially exponential in the dimension n. For example, if n = 10 then the number of terms is at most 1024.

Definition at line 77 of file function.cc.

4.7.2.2 compute_walsh_transform()

Compute the Walsh transform of the function.

Let f be a fitness function defined on the hypercube $\{0,1\}^n$. Then it can be expressed as $\sum_u c_u \chi_u$ where $c_u = \langle f, \chi_u \rangle, \langle f, g \rangle = \frac{1}{2^n} \sum_x f(x) g(x), \chi_u(x) = (-1)^{x \cdot u}$, and $x \cdot u = \sum_i x_i u_i$ (mod 2). In the respective sums, we have x and u in the hypercube and i in $\{1, \dots, n\}$.

We have dropped the normalizing constant 2^n since we are mostly interested in ratios $|c_u/c_{\max}|$, where c_{\max} is the coefficient with the largest amplitude. It is also helpful to achieve exact computations in the case of functions taking only integer values.

Parameters

function	Function the Walsh transform of which to compute
terms	Vector of non zero terms of the Walsh transform

Warning

The time complexity is exponential in the dimension n. The computation is done with two nested loops over the hypercube. It requires 2^n function evaluations and 2^{2n} dot products and additions.

The size of the Walsh transform is potentially exponential in the dimension n. For example, if n = 10 then the number of terms is at most 1024.

Definition at line 33 of file function.cc.

4.8 hnco::function::controller Namespace Reference

Controllers.

Classes

· class Controller

Function controller.

class StopOnTarget

Stop on target.

class StopOnMaximum

Stop on maximum.

· class CallCounter

Call counter.

• class OnBudgetFunction

Function with a limited number of evaluations.

• class ProgressTracker

ProgressTracker.

class Cache

Cache.

Functions

std::ostream & operator<< (std::ostream &stream, const ProgressTracker::Event &event)
 Insert formatted output.

4.8.1 Detailed Description

Controllers.

4.9 hnco::function::modifier Namespace Reference

Modifiers.

Classes

· class Modifier

Function modifier.

· class Negation

Negation.

• class FunctionMapComposition

Composition of a function and a map.

• class AdditiveGaussianNoise

Additive Gaussian Noise.

· class ParsedModifier

Parsed modifier.

class PriorNoise

Prior noise.

4.9.1 Detailed Description

Modifiers.

4.10 hnco::logging Namespace Reference

Logging.

Classes

class LogContext

Log context.

• class ProgressTrackerContext

Log context for ProgressTracker.

• class Logger

Logger.

4.10.1 Detailed Description

Logging.

4.11 hnco::map Namespace Reference

Maps.

Classes

class Map

Мар

class Translation

Translation.

class Permutation

Permutation.

class LinearMap

Linear map.

class AffineMap

Affine map.

class MapComposition

Map composition.

· class Injection

Injection.

class Projection

Projection.

class TsAffineMap

Transvection sequence affine map.

· struct Transvection

Transvection.

Types and functions related to transvections

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output transvection_sequence_t parameters are passed by reference.

Input object parameters are passed by const reference.

• using transvection_sequence_t = std::vector < Transvection >

Transvection sequence.

bool transvections_commute (const Transvection &a, const Transvection &b)

Check whether two transvections commute.

• bool transvections_are_disjoint (const Transvection &a, const Transvection &b)

Check whether two transvections are disjoint.

bool ts_is_valid (const transvection_sequence_t &ts)

Check validity.

• bool ts_is_valid (const transvection_sequence_t &ts, int n)

Check validity.

• void ts_display (const transvection_sequence_t &ts, std::ostream &stream)

Display a transvection sequence.

• void ts random (transvection sequence t &ts, int n, int t)

Sample a random transvection sequence.

void ts_random_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of commuting transvections.

void ts random unique source (transvection sequence t &ts, int n, int t)

Sample a random sequence of transvections with unique source.

void ts_random_unique_destination (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of transvections with unique destination.

void ts_random_disjoint (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of disjoint transvections.

- void ts_random_non_commuting (transvection_sequence_t &ts, int n, int t)
 - Sample a random sequence of non commuting transvections.
- void ts_multiply (bit_vector_t &x, const transvection_sequence_t &ts)

Multiply a vector by a transvection sequence from the left.

void ts_multiply (bit_matrix_t &M, const transvection_sequence_t &ts)

Multiply a matrix by a transvection sequence from the left.

4.11.1 Detailed Description

Maps.

4.11.2 Typedef Documentation

4.11.2.1 transvection_sequence_t

```
using transvection_sequence_t = std::vector<Transvection>
```

Transvection sequence.

The general linear group of a linear space of dimension n over the finite field F_2 is the group of invertible n by n bit matrices.

Any invertible bit matrix can be expressed as a finite product of transvections.

Finite transvection sequences can then represent all invertible bit matrices.

Definition at line 166 of file transvection.hh.

4.11.3 Function Documentation

4.11.3.1 ts_is_valid() [1/2]

```
bool ts_is_valid ( {\tt const\ transvection\_sequence\_t\ \&\ ts\ )}
```

Check validity.

Parameters

ts Transvection sequence

Definition at line 150 of file transvection.cc.

4.11.3.2 ts_is_valid() [2/2]

Check validity.

Parameters

ts	Transvection sequence
n	Dimension

Definition at line 156 of file transvection.cc.

4.11.3.3 ts_multiply() [1/2]

```
void ts_multiply (
          bit_matrix_t & M,
           const transvection_sequence_t & ts )
```

Multiply a matrix by a transvection sequence from the left.

Parameters

ts	Transvection sequence
М	Bit matrix

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 366 of file transvection.cc.

4.11.3.4 ts_multiply() [2/2]

```
void ts_multiply ( \label{eq:bit_vector_t & x,}  const transvection_sequence_t & ts )
```

Multiply a vector by a transvection sequence from the left.

Parameters

ts	Transvection sequence
X	Bit vector

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 356 of file transvection.cc.

4.11.3.5 ts_random()

Sample a random transvection sequence.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
t >= 0
```

Definition at line 172 of file transvection.cc.

4.11.3.6 ts_random_commuting()

Sample a random sequence of commuting transvections.

This function ensures that all transvections in the sequence commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
t >= 0
```

Warning

```
If t > floor(n / 2) then t is set to floor(n / 2).
```

If t = floor(n / 2) then the space and time complexity of $ts_random_commuting$ is quadratic in the dimension t.

Definition at line 183 of file transvection.cc.

4.11.3.7 ts_random_disjoint()

Sample a random sequence of disjoint transvections.

Two transvections τ_{ij} and τ_{kl} are said to be disjoint if the pairs {i,j} and {k,l} are disjoint.

If 2t > n then the sequence length is set to the largest t such that 2t <= n.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n>1\\
```

t >= 0

Definition at line 311 of file transvection.cc.

4.11.3.8 ts_random_non_commuting()

Sample a random sequence of non commuting transvections.

This function ensures that two consecutive transvections do not commute.

Parameters

ts	Transvection sequence	
n	Dimension	
t	Length of the sequence	

Precondition

```
n > 1
```

t >= 0

Definition at line 341 of file transvection.cc.

4.11.3.9 ts_random_unique_destination()

Sample a random sequence of transvections with unique destination.

A transvection sequence with unique destination is such that, for each source, there is a unique destination.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Definition at line 278 of file transvection.cc.

4.11.3.10 ts_random_unique_source()

Sample a random sequence of transvections with unique source.

A transvection sequence with unique source is such that, for each destination, there is a unique source.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 245 of file transvection.cc.

4.12 hnco::neighborhood Namespace Reference

Neighborhoods for local search.

Classes

• class NeighborhoodIterator

Neighborhood iterator.

· class SingleBitFlipIterator

Single bit flip neighborhood iterator.

class HammingSphereIterator

Hamming sphere neighborhood iterator.

· class Neighborhood

Neighborhood.

· class SingleBitFlip

One bit neighborhood.

· class MultiBitFlip

Multi bit flip.

• class StandardBitMutation

Standard bit mutation.

class HammingBall

Hamming ball.

class HammingSphere

Hamming sphere.

4.12.1 Detailed Description

Neighborhoods for local search.

There are two unrelated kinds of neighborhoods, those for random local search and those for exhaustive local search.

4.13 hnco::random Namespace Reference

Random numbers.

Classes

struct Generator

Random number generator.

4.13.1 Detailed Description

Random numbers.

4.14 hnco::representation Namespace Reference

Representations.

Classes

· class LinearCategoricalRepresentation

Linear categorical representation.

• class IntegerCategoricalRepresentation

Integer categorical representation.

• class DyadicComplexRepresentation

Dyadic complex representation.

class DyadicFloatRepresentation

Dyadic float representation.

· class DyadicIntegerRepresentation

Dyadic integer representation.

class PermutationRepresentation

Permutation representation.

Functions

```
    template < class T >
        bool difference_is_safe (T a, T b)

    Check whether the difference is safe.
```

4.14.1 Detailed Description

Representations.

4.14.2 Function Documentation

4.14.2.1 difference_is_safe()

Check whether the difference is safe.

The template parameter T must be an integral type such as int or long.

The difference b - a is safe if it can be represented by the type of a and b, i.e. there is no overflow.

Parameters

а	Smallest value
b	Greatest value

Precondition

a < b

Definition at line 56 of file integer.hh.

Chapter 5

Class Documentation

5.1 AbstractMaxSat Class Reference

Abstract class for MaxSat-like functions.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for AbstractMaxSat:

Public Member Functions

AbstractMaxSat ()

Default constructor.

• int get_bv_size () const override

Get bit vector size.

• void display (std::ostream &stream) const override

Display the expression.

Load and save instance

• void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Protected Member Functions

```
• void load_ (std::istream &stream)
```

Load an instance.

• void save_ (std::ostream &stream) const

Save an instance.

Protected Attributes

```
    std::vector< std::vector< int > > _expression
    Expression.
```

• int _num_variables

Number of variables.

5.1.1 Detailed Description

Abstract class for MaxSat-like functions.

Definition at line 36 of file max-sat.hh.

5.1.2 Member Function Documentation

5.1.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 87 of file max-sat.hh.

5.1.2.2 load_()

Load an instance.

Parameters

stream	Input stream
--------	--------------

Exceptions

```
std::runtime_error
```

Definition at line 61 of file max-sat.cc.

5.1.2.3 save()

Save instance.

Parameters

Exceptions

```
std::runtime_error
```

Definition at line 99 of file max-sat.hh.

5.1.2.4 save_()

Save an instance.

Parameters

```
stream Outputstream
```

Definition at line 153 of file max-sat.cc.

5.1.3 Member Data Documentation

5.1.3.1 expression

std::vector<std::vector<int> > _expression [protected]

Expression.

An expression is represented by a vector of clauses. A clause is represented by a vector of literals. A literal is represented by a non null integer; if the integer is positive then the literal is a variable; if it is negative then it is the logical negation of a variable.

Definition at line 47 of file max-sat.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.2 AdditiveGaussianNoise Class Reference

Additive Gaussian Noise.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for AdditiveGaussianNoise:

Public Member Functions

• AdditiveGaussianNoise (Function *function, double stddev)

Constructor

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Information about the function

• int get_bv_size () const override Get bit vector size.

Private Attributes

 std::normal_distribution< double > _dist Normal distribution.

Additional Inherited Members

5.2.1 Detailed Description

Additive Gaussian Noise.

Definition at line 170 of file modifier.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.3 AffineMap Class Reference

Affine map.

#include <hnco/maps/map.hh>

Inheritance diagram for AffineMap:

Public Member Functions

void random (int rows, int cols, bool surjective)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

• int get_input_size () const override

Get input size.

· int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

· void display (std::ostream &stream) const override

Display.

Load and save map

• void load (std::string path)

Load map.

• void save (std::string path) const

Save map.

Private Member Functions

template < class Archive >
 void save (Archive & ar, const unsigned int version) const
 Save.

template < class Archive > void load (Archive & ar, const unsigned int version)

Load.

Private Attributes

• bit_matrix_t _bm

Bit matrix.

• bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

5.3.1 Detailed Description

Affine map.

An affine map f from F_2^m to F_2^n is defined by f(x) = Ax + b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

Definition at line 331 of file map.hh.

5.3.2 Member Function Documentation

5.3.2.1 is_surjective()

```
bool is_surjective ( ) const [override], [virtual]
```

Check for surjective map.

Returns

```
true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 156 of file map.cc.

5.3.2.2 load()

Load map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 405 of file map.hh.

5.3.2.3 random()

Random instance.

Parameters

rows	Number of rows	
cols	Number of columns	
surjective	Flag to ensure a surjective map	

Exceptions

```
std::runtime_error
```

Definition at line 119 of file map.cc.

5.3.2.4 save()

Save map.

Parameters

Exceptions

```
std::runtime_error
```

Definition at line 412 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.4 Algorithm Class Reference

Abstract search algorithm.

#include <hnco/algorithms/algorithm.hh>

Inheritance diagram for Algorithm:

Public Member Functions

• Algorithm (int n)

Constructor.

virtual ∼Algorithm ()

Destructor.

• void set_log_context (logging::LogContext *log_context)

Set the log context.

Optimization

- virtual void maximize (const std::vector< function::Function * > &functions)=0
 Maximize.
- virtual void finalize ()

Finalize.

const solution_t & get_solution ()

Get the solution.

Protected Member Functions

void set_functions (const std::vector< function::Function * > &functions)

Set functions.

• int get_bv_size ()

Get bit vector size.

Managing solution

• void random_solution ()

Random solution.

void set_solution (const bit_vector_t &bv, double value)

Set solution.

void set_solution (const bit_vector_t &bv)

```
Set solution.
```

void update_solution (const bit_vector_t &bv, double value)

Update solution (strict)

void update_solution (const solution_t &s)

Update solution (strict)

void update_solution (const bit_vector_t &bv)

Update solution (strict).

Protected Attributes

```
    std::vector< function::Function * > _functions
```

Functions.

• function::Function * _function

Function.

• solution_t _solution

Solution.

Parameters

```
    logging::LogContext * _log_context = nullptr
Log context.
```

5.4.1 Detailed Description

Abstract search algorithm.

All algorithms maximize some given function, sometimes called a fitness function or an objective function.

Definition at line 46 of file algorithm.hh.

5.4.2 Member Function Documentation

5.4.2.1 finalize()

```
virtual void finalize ( ) [inline], [virtual]
```

Finalize.

Does nothing.

It is usually overridden by algorithms which do not keep _solution up-to-date. In case _function throws a Last ← Evaluation exception, the algorithm might leave _solution in an undefined state. This can be fixed in this member function.

Reimplemented in RandomLocalSearch, OnePlusOneEa, ParameterLessPopulationPyramid, Ltga, and Hboa.

Definition at line 143 of file algorithm.hh.

5.4.2.2 set_solution()

Set solution.

Warning

Evaluates the function once.

Definition at line 45 of file algorithm.cc.

5.4.2.3 update_solution()

Update solution (strict).

Warning

Evaluates the function once.

Definition at line 69 of file algorithm.cc.

5.4.3 Member Data Documentation

5.4.3.1 _functions

```
std::vector<function::Function *> _functions [protected]
```

Functions.

Each thread has its own function.

Definition at line 54 of file algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/algorithm.hh
- lib/hnco/algorithms/algorithm.cc

5.5 AlgorithmFactory Class Reference

Algorithm factory.

#include <hnco/app/algorithm-factory.hh>

Inheritance diagram for AlgorithmFactory:

Public Member Functions

virtual hnco::algorithm::Algorithm * make (int bv_size)=0
 Make an algorithm.

5.5.1 Detailed Description

Algorithm factory.

Definition at line 32 of file algorithm-factory.hh.

5.5.2 Member Function Documentation

5.5.2.1 make()

```
virtual hnco::algorithm::Algorithm* make ( int bv\_size ) [pure virtual]
```

Make an algorithm.

Parameters

bv size Bit vector size	
---------------------------	--

Implemented in CommandLineAlgorithmFactory.

The documentation for this class was generated from the following file:

• lib/hnco/app/algorithm-factory.hh

5.6 BiasedCrossover Class Reference

Biased crossover.

```
#include <hnco/algorithms/ea/crossover.hh>
```

Inheritance diagram for BiasedCrossover:

Public Member Functions

• BiasedCrossover ()

Constructor.

- void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)
 Breed.
- void set_bias (double b)
 Set bias.

Private Attributes

 std::bernoulli_distribution _bernoulli_dist Bernoulli distribution.

5.6.1 Detailed Description

Biased crossover.

Definition at line 75 of file crossover.hh.

5.6.2 Member Function Documentation

5.6.2.1 breed()

Breed.

Each offspring's bit is copied from second parent with a fixed probability (the crossover bias), from first parent otherwise.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 45 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- lib/hnco/algorithms/ea/crossover.cc

5.7 BmPbil < GibbsSampler > Class Template Reference

Boltzmann machine PBIL.

#include <hnco/algorithms/walsh-moment/bm-pbil.hh>

Inheritance diagram for BmPbil < GibbsSampler >:

Public Types

- enum { SAMPLING_ASYNCHRONOUS , SAMPLING_ASYNCHRONOUS_FULL_SCAN , SAMPLING_SYNCHRONOUS }
- enum { RESET_NO_RESET , RESET_ITERATION , RESET_BIT_VECTOR }

Public Member Functions

BmPbil (int n, int population_size)
 Constructor.

Setters for parameters

- void set_selection_size (int x)
 - Set the selection size.
- void set_learning_rate (double x)
 - Set the learning rate.
- void set_num_gs_steps (int x)

Set the number of gibbs sampler steps.

void set_num_gs_cycles (int x)

Set the number of gibbs sampler cycles.

void set_negative_positive_selection (bool x)

Set negative and positive selection.

void set_sampling (int x)

Set the sampling mode.

void set_mc_reset_strategy (int x)

Set the MC reset strategy.

Setters for logging

- void set_log_norm_infinite (bool x)
 - Log infinite norm of the model parameters.
- void set_log_norm_1 (bool x)

Log 1-norm of the model parameters.

Protected Member Functions

void set_something_to_log ()

Set flag for something to log.

void sample (bit_vector_t &x)

Sample a bit vector.

· void sample_asynchronous ()

Asynchronous sampling.

void sample_asynchronous_full_scan ()

Asynchronous sampling with full scan.

void sample_synchronous ()

Synchronous sampling.

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

void log () override

Log.

Protected Attributes

Population _population

Population.

• GibbsSampler::Moment _model_parameters

Model parameters.

• GibbsSampler <u>_gibbs_sampler</u>

Model.

• GibbsSampler::Moment _walsh_moment_all

Parameters averaged over all individuals.

• GibbsSampler::Moment _walsh_moment_best

Parameters averaged over selected individuals.

GibbsSampler::Moment _walsh_moment_worst

Parameters averaged over negatively selected individuals.

std::uniform_int_distribution< int > _choose_bit

Uniform distribution on bit_vector_t components.

permutation_t _permutation

Permutation.

Parameters

• int _selection_size = 1

Selection size (number of selected individuals in the population)

• double <u>learning_rate</u> = 1e-3

Learning rate.

• int _num_gs_steps = 100

Number of gibbs sampler steps.

• int _num_gs_cycles = 1

Number of gibbs sampler cycles.

bool _negative_positive_selection = false

Negative and positive selection.

- int _sampling = SAMPLING_ASYNCHRONOUS Sampling mode.
- int _mc_reset_strategy = RESET_NO_RESET MC reset strategy.

Logging

• bool <u>log_norm_infinite</u> = false

Log infinite norm of the model parameters.

• bool <u>log_norm_1</u> = false

Log 1-norm of the model parameters.

5.7.1 Detailed Description

 $\label{lem:constraint} \begin{tabular}{ll} template < class $GibbsSampler > $\\ class $hnco::algorithm::walsh_moment::BmPbil < $GibbsSampler > $\\ \end{tabular}$

Boltzmann machine PBIL.

The BM model is slightly different from the one given in the reference below. More precisely, 0/1 variables are mapped to -1/+1 variables as in Walsh analysis.

Reference:

Arnaud Berny. 2002. Boltzmann machine for population-based incremental learning. In ECAI 2002. IOS Press, I von.

Definition at line 50 of file bm-pbil.hh.

5.7.2 Member Enumeration Documentation

5.7.2.1 anonymous enum

anonymous enum

Enumerator

SAMPLING_ASYNCHRONOUS	Asynchronous sampling.	
	A single component of the internal state is randomly selected then updated by Gibbs sampling. This step i repeated _num_gs_steps times.	
SAMPLING_ASYNCHRONOUS_FULL_SCAN	Asynchronous sampling with full scan.	
	To sample a new bit vector, a random permutation is and all components of the internal state are updated Gibbs sampling in the order defined by the permutati	by
SAMPLING_SYNCHRONOUS	Synchronous sampling.	
Generated by Doxygen	The full internal state is updated in one step from probability vector made of the very marginal probabi	
	used in Gibbs sampling.	

Definition at line 54 of file bm-pbil.hh.

5.7.2.2 anonymous enum

anonymous enum

Enumerator

RESET_NO_RESET	No reset.
RESET_ITERATION	Reset MC at the beginning of each iteration.
RESET_BIT_VECTOR	Reset MC before sampling each bit vector.

Definition at line 82 of file bm-pbil.hh.

5.7.3 Member Function Documentation

5.7.3.1 set_selection_size()

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 309 of file bm-pbil.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/walsh-moment/bm-pbil.hh

5.8 Cache Class Reference

Cache.

#include <hnco/functions/controllers/controller.hh>

5.8 Cache Class Reference 75

Inheritance diagram for Cache:

Public Member Functions

• Cache (Function *function)

Constructor.

• bool provides_incremental_evaluation () const

Check whether the function provides incremental evaluation.

• double get_lookup_ratio ()

Get lookup ratio.

Evaluation

• double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Private Attributes

• std::unordered_map< std::vector< bool >, double > _cache

Cache.

• $std::vector < bool > \underline{key}$

Key.

• int _num_evaluations

Evaluation counter.

• int _num_lookups

Lookup counter.

Additional Inherited Members

5.8.1 Detailed Description

Cache.

This is a naive approach, in particular with respect to time complexity. Moreover, there is no control on the size of the database.

There is no default hash function for std::vector<char> hence the need to first copy a bit_vector_t into a std ::vector

::vector

bool>, for which such a function exists, before inserting it or checking its existence in the map.

Definition at line 339 of file controller.hh.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 Cache()

```
Cache (
     Function * function ) [inline]
```

Constructor.

Parameters

function Decorated functio	n
----------------------------	---

Definition at line 358 of file controller.hh.

5.8.3 Member Function Documentation

5.8.3.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Controller.

Definition at line 367 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.9 CallCounter Class Reference

Call counter.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for CallCounter:

Public Member Functions

- CallCounter (Function *function)
 - Constructor.
- int get_num_calls ()

Get the number of calls.

Evaluation

- double evaluate (const bit_vector_t &)
 - Evaluate a bit vector.
- double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Protected Attributes

int _num_calls
 Number of calls.

5.9.1 Detailed Description

Call counter.

Definition at line 149 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.10 CommandLineAlgorithmFactory Class Reference

Command line algorithm factory.

#include <hnco/app/algorithm-factory.hh>

Inheritance diagram for CommandLineAlgorithmFactory:

Public Member Functions

- CommandLineAlgorithmFactory (const HncoOptions &options)
 - Constructor.
- hnco::algorithm::Algorithm * make (int bv_size)

Make an algorithm.

Private Attributes

 const HncoOptions & _options HNCO options.

5.10.1 Detailed Description

Command line algorithm factory.

Definition at line 42 of file algorithm-factory.hh.

5.10.2 Member Function Documentation

5.10.2.1 make()

```
Algorithm * make ( int bv_size ) [virtual]
```

Make an algorithm.

Parameters

```
bv_size Bit vector size
```

Implements AlgorithmFactory.

Definition at line 81 of file algorithm-factory.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/app/algorithm-factory.hh
- · lib/hnco/app/algorithm-factory.cc

5.11 CommandLineApplication Class Reference

Command line application.

```
#include <hnco/app/application.hh>
```

Public Member Functions

CommandLineApplication (const HncoOptions & Soptions, FunctionFactory & Function_factory, AlgorithmFactory & Soptions, FunctionFactory & Function_factory, AlgorithmFactory & FunctionFactory

Constructor.

• void run ()

Run the application.

Private Member Functions

```
    void init ()
```

Initialization.

void make_functions ()

Make all functions.

• void load_solution ()

Load a solution.

void print information ()

Print information about the function.

• void make_algorithm ()

Make algorithm.

• void maximize ()

Maximize the function.

void print results (double total time, bool target reached)

Print results

void manage_solution (const bit_vector_t &bv)

Manage solution.

Private Attributes

• const HncoOptions & _options

HNCO options.

· DecoratedFunctionFactory _decorated_function_factory

Decorated functin factory.

AlgorithmFactory & _algorithm_factory

Algorithm factory.

std::vector< function::Function * > _fns

All functions.

• function::Function * fn = nullptr

Main function.

• hnco::algorithm::Algorithm * _algorithm = nullptr

Algorithm.

• logging::ProgressTrackerContext * _log_context = nullptr

Log context.

5.11.1 Detailed Description

Command line application.

Definition at line 34 of file application.hh.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 CommandLineApplication()

Constructor.

Parameters

options	HNCO options
function_factory	Function factory
algorithm_factory	Algorithm factory

Definition at line 89 of file application.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/application.hh
- lib/hnco/app/application.cc

5.12 CommandLineFunctionFactory Class Reference

Command line function factory.

#include <hnco/app/function-factory.hh>

Inheritance diagram for CommandLineFunctionFactory:

Public Member Functions

- CommandLineFunctionFactory (const HncoOptions & options)
 Constructor.
- hnco::function::Function * make ()
 Make a function.

Private Attributes

• const HncoOptions & _options HNCO options.

5.12.1 Detailed Description

Command line function factory.

Definition at line 40 of file function-factory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/function-factory.hh
- lib/hnco/app/function-factory.cc

5.13 CompactGa Class Reference

Compact genetic algorithm.

#include <hnco/algorithms/pv/compact-ga.hh>

Inheritance diagram for CompactGa:

Public Member Functions

• CompactGa (int n)

Constructor.

Setters

• void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

std::vector < bit_vector_t > _candidates
 Candidates.

Parameters

• double <u>learning_rate</u> = 1e-3 Learning rate.

5.13.1 Detailed Description

Compact genetic algorithm.

Reference:

Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. 1999. The Compact Genetic Algorithm. IEEE Trans. on Evolutionary Computation 3, 4 (November 1999), 287–297.

Definition at line 41 of file compact-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/compact-ga.hh
- lib/hnco/algorithms/pv/compact-ga.cc

5.14 CompleteSearch Class Reference

Complete search.

#include <hnco/algorithms/complete-search.hh>

Inheritance diagram for CompleteSearch:

Public Member Functions

· CompleteSearch (int n)

Constructor.

void maximize (const std::vector< function::Function * > &functions)
 Maximize.

Additional Inherited Members

5.14.1 Detailed Description

Complete search.

Definition at line 34 of file complete-search.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/complete-search.hh
- lib/hnco/algorithms/complete-search.cc

5.15 ComplexToDouble < T > Struct Template Reference

Convert a complex to a double.

```
#include <hnco/functions/converter.hh>
```

Public Types

using codomain_type = std::complex < T >
 Codomain type.

Public Member Functions

double operator() (std::complex < T > z)
 Convert to double.

5.15.1 Detailed Description

```
\label{template} \begin{split} & \text{template}\!<\!\text{class T}\!> \\ & \text{struct hnco::} & \text{function::} & \text{ComplexToDouble}\!<\!\text{T}> \end{split}
```

Convert a complex to a double.

Definition at line 44 of file converter.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/converter.hh

5.16 Controller Class Reference

Function controller.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Controller:

Public Member Functions

• Controller (Function *function)

Constructor.

Information about the function

• int get_bv_size () const

Get bit vector size.

• double get_maximum () const

Get the global maximum.

bool has_known_maximum () const

Check for a known maximum.

· bool provides_incremental_evaluation () const

Check whether the function provides incremental evaluation.

Evaluation

double evaluate_safely (const bit_vector_t &x)
 Safely evaluate a bit vector.

Additional Inherited Members

5.16.1 Detailed Description

Function controller.

Definition at line 42 of file controller.hh.

5.16.2 Member Function Documentation

5.16.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true if the decorated function does

Reimplemented from Function.

Reimplemented in Cache.

Definition at line 66 of file controller.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.17 Crossover Class Reference

Crossover

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for Crossover:

Public Member Functions

virtual ~Crossover ()
 Destructor.

virtual void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)=0

Breed

5.17.1 Detailed Description

Crossover

Definition at line 35 of file crossover.hh.

5.17.2 Member Function Documentation

5.17.2.1 breed()

Breed.

The offspring is the crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implemented in BiasedCrossover, and UniformCrossover.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ea/crossover.hh

5.18 DeceptiveJump Class Reference

Deceptive jump.

#include <hnco/functions/collection/jump.hh>

Inheritance diagram for DeceptiveJump:

Public Member Functions

· DeceptiveJump (int by size, int gap)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

int _gap
 Gap.

5.18.1 Detailed Description

Deceptive jump.

This is a jump function with a deceptive gap as defined in "Analyzing evolutionary algorithms" by Thomas Jansen, where it is called Jump_k. Algorithms in the neighborhood of the maximizer (which is the all one bit vector) are taken away from it.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 85 of file jump.hh.

5.18.2 Member Function Documentation

5.18.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
_bv_size + _gap
```

Reimplemented from Function.

Definition at line 108 of file jump.hh.

5.18.2.2 has known maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 104 of file jump.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/jump.hh
- lib/hnco/functions/collection/jump.cc

5.19 DecoratedFunctionFactory Class Reference

Decorated function factory.

```
#include <hnco/app/decorated-function-factory.hh>
```

Public Member Functions

• DecoratedFunctionFactory (const HncoOptions & options, FunctionFactory & function_factory)

Constructor.

hnco::function::Function * make_function_modifier ()

Make a function modifier.

• hnco::function::Function * make_function_controller (hnco::function::Function *function)

Make a function controller.

hnco::map::Map * get_map ()

Get map.

hnco::function::controller::ProgressTracker * get_tracker ()

Get tracker controller.

hnco::function::controller::Cache * get cache ()

Get Cache controller.

hnco::function::controller::StopOnTarget * get_stop_on_target ()

Get StopOnTarget controller.

Private Member Functions

hnco::function::Function * make_function ()
 Make a function.

Private Attributes

• const HncoOptions & _options

HNCO options.

· FunctionFactory & _function_factory

Factory function.

hnco::map::Map * _map = nullptr

Мар

• hnco::function::controller::ProgressTracker * _tracker = nullptr

Tracker controller.

hnco::function::controller::Cache * _cache = nullptr

Cache controller.

hnco::function::controller::StopOnTarget * _stop_on_target = nullptr

StopOnTarget controller.

5.19.1 Detailed Description

Decorated function factory.

Definition at line 35 of file decorated-function-factory.hh.

5.19.2 Member Function Documentation

5.19.2.1 make_function_controller()

Make a function controller.

Parameters

function	Decorated function
----------	--------------------

Definition at line 254 of file decorated-function-factory.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/app/decorated-function-factory.hh
- lib/hnco/app/decorated-function-factory.cc

5.20 Decorator Class Reference

Function decorator

#include <hnco/functions/decorator.hh>

Inheritance diagram for Decorator:

Public Member Functions

• Decorator (Function *function)

Constructor.

Display

- void display (std::ostream &stream) const override Display.
- void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Protected Attributes

Function * _function
 Decorated function.

5.20.1 Detailed Description

Function decorator

Definition at line 34 of file decorator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/decorator.hh

5.21 DyadicComplexRepresentation < T > Class Template Reference

Dyadic complex representation.

#include <hnco/representations/complex.hh>

Inheritance diagram for DyadicComplexRepresentation < T >:

Public Types

using domain_type = std::complex < T >
 Domain type.

Public Member Functions

DyadicComplexRepresentation (DyadicFloatRepresentation < T > real_part, DyadicFloatRepresentation < T > imaginary_part)

Constructor.

DyadicComplexRepresentation (DyadicFloatRepresentation < T > rep)

Constructor.

· int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

· void display (std::ostream &stream) const

Display.

Private Attributes

DyadicFloatRepresentation< T > _real_part

Representation of the real part.

DyadicFloatRepresentation
 T > _imaginary_part

Representation of the imaginary part.

5.21.1 Detailed Description

```
template < class T>
```

class hnco::representation::DyadicComplexRepresentation < T >

Dyadic complex representation.

Definition at line 46 of file complex.hh.

5.21.2 Constructor & Destructor Documentation

5.21.2.1 DyadicComplexRepresentation() [1/2]

Constructor.

Parameters

real_part	Representation of real part
imaginary_part	Representation of imaginary part

Definition at line 64 of file complex.hh.

5.21.2.2 DyadicComplexRepresentation() [2/2]

```
\label{eq:complexRepresentation} \mbox{DyadicFloatRepresentation} < \mbox{T} > \mbox{rep} \mbox{)} \mbox{ [inline]}
```

Constructor.

Parameters

rep Representation of both real and imaginary parts

Definition at line 73 of file complex.hh.

The documentation for this class was generated from the following file:

• lib/hnco/representations/complex.hh

5.22 DyadicFloatRepresentation < T > Class Template Reference

Dyadic float representation.

#include <hnco/representations/float.hh>

Inheritance diagram for DyadicFloatRepresentation < T >:

Public Types

using domain_type = T
 Domain type.

Public Member Functions

- DyadicFloatRepresentation (T lower_bound, T upper_bound, int num_bits)
- DyadicFloatRepresentation (T lower_bound, T upper_bound, T precision)

Constructor.

· int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

void display (std::ostream &stream) const

Display.

Private Member Functions

• T affine_transformation (T x)

Affine transformation.

• void compute_lengths (int num_bits)

Compute lengths.

Private Attributes

• std::vector< T > _lengths

Lengths of dyadic intervals.

T _lower_bound

Lower bound of the interval.

• T_length

Length of the interval.

5.22.1 Detailed Description

```
template<class T>
```

class hnco::representation::DyadicFloatRepresentation < T >

Dyadic float representation.

Definition at line 44 of file float.hh.

5.22.2 Constructor & Destructor Documentation

5.22.2.1 DyadicFloatRepresentation() [1/2]

Constructor.

The represented interval is [lower_bound, upper_bound).

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
num_bits	Number of bits per float number

Definition at line 87 of file float.hh.

5.22.2.2 DyadicFloatRepresentation() [2/2]

Constructor.

The represented interval is [lower_bound, upper_bound).

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
precision	Precision

Definition at line 105 of file float.hh.

5.22.3 Member Function Documentation

5.22.3.1 compute_lengths()

Compute lengths.

Parameters

num_bits	Number of bits per float number
----------	---------------------------------

Definition at line 62 of file float.hh.

The documentation for this class was generated from the following file:

• lib/hnco/representations/float.hh

5.23 DyadicIntegerRepresentation < T > Class Template Reference

Dyadic integer representation.

#include <hnco/representations/integer.hh>

Inheritance diagram for DyadicIntegerRepresentation < T >:

Public Types

using domain_type = T
 Domain type.

Public Member Functions

• DyadicIntegerRepresentation (T lower_bound, T upper_bound, int num_bits)

Constructor.

• DyadicIntegerRepresentation (T lower_bound, T upper_bound)

Constructor.

• int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

void display (std::ostream &stream) const

Display.

Private Member Functions

void set num bits complete (T lower bound, T upper bound)

The the number of bits of a complete representation.

Private Attributes

int _num_bits

Number of bits.

• int _num_bits_complete

Number of bits for a complete representation.

• T_lower_bound

Lower bound of the interval.

• T _upper_bound

Upper bound of the interval.

5.23.1 Detailed Description

```
template < class T >
```

class hnco::representation::DyadicIntegerRepresentation < T >

Dyadic integer representation.

Definition at line 78 of file integer.hh.

5.23.2 Constructor & Destructor Documentation

5.23.2.1 DyadicIntegerRepresentation() [1/2]

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

num_bits	Number of bits per integer
lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval

Definition at line 115 of file integer.hh.

5.23.2.2 DyadicIntegerRepresentation() [2/2]

 ${\tt DyadicIntegerRepresentation} \ \ ($

```
T lower_bound,
T upper_bound ) [inline]
```

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval

Definition at line 135 of file integer.hh.

The documentation for this class was generated from the following file:

· lib/hnco/representations/integer.hh

5.24 PermutationRepresentation::Element Struct Reference

Element.

#include <hnco/representations/permutation.hh>

Public Attributes

· int index

Index.

• int value

Value.

5.24.1 Detailed Description

Element.

Definition at line 44 of file permutation.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/representations/permutation.hh

5.25 EqualProducts Class Reference

Equal products.

#include <hnco/functions/collection/equal-products.hh>

Inheritance diagram for EqualProducts:

Public Member Functions

• EqualProducts ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

• template<class Generator > void generate (int n, Generator generator)

Instance generator.

void random (int n)

Random instance.

Load and save instance

• void load (std::string path)

Load instance.

· void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _numbers
 Numbers.

Friends

· class boost::serialization::access

5.25.1 Detailed Description

Equal products.

Partition a finite set of positive numbers into two subsets such that the product of numbers in the first subset is the closest to the product of numbers in the second subset. This is equivalent to the partition problem applied to the logarithms of the given numbers.

The function computes the negation of the distance between the product of numbers corresponding to ones in the bit vector and the product of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 59 of file equal-products.hh.

5.25.2 Member Function Documentation

5.25.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator ) \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 91 of file equal-products.hh.

5.25.2.2 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 124 of file equal-products.hh.

5.25.2.3 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the uniform distribution on [0,1).

Parameters

n Size of bit vector

Definition at line 106 of file equal-products.hh.

5.25.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 131 of file equal-products.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/equal-products.hh
- lib/hnco/functions/collection/equal-products.cc

5.26 ProgressTracker::Event Struct Reference

Event

#include <hnco/functions/controllers/controller.hh>

Public Attributes

int num_evaluations
 Number of evaluations.

· double value

Value.

5.26.1 Detailed Description

Event

Definition at line 231 of file controller.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.27 ExtendedHypercubelterator Class Reference

Extended Hypercube iterator.

#include <hnco/iterator.hh>

Inheritance diagram for ExtendedHypercubeIterator:

Public Member Functions

ExtendedHypercubeIterator (int n)

Constructor.

• bool has_next () override

Has next bit vector.

· const bit_vector_t & next () override

Next bit vector.

Additional Inherited Members

5.27.1 Detailed Description

Extended Hypercube iterator.

Similar to Hypercube. In dimension 0, an Hypercubelterator does not contain any element. However, in dimension 0, an ExtendedHypercubelterator contains a unique element which is the vector of size 0. An ExtendedHypercubelterator is helpful when the enumerated vectors are seen as prefixes or suffixes hence can be empty. This is used, in particular, in compute_fast_walsh_transform.

Definition at line 97 of file iterator.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/iterator.hh
- · lib/hnco/iterator.cc

5.28 Factorization Class Reference

Factorization.

#include <hnco/functions/collection/factorization.hh>

Inheritance diagram for Factorization:

Public Member Functions

· Factorization ()

Constructor.

• Factorization (const std::string number)

Constructor.

∼Factorization ()

Destructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· void display (std::ostream &stream) const override

Display

void describe (const bit_vector_t &x, std::ostream &stream) override

Describe a bit vector.

Load and save instance

void load (std::string path)
 Load instance.

Private Member Functions

· void init ()

Init GMP data structures.

• void clear ()

Clear GMP data structures.

void set_number (const std::string number)

Set number.

void convert (const bit_vector_t &x)

Convert a bit vector into two numbers.

Private Attributes

mpz_t _number

Number to factorize.

mpz_t _first_factor

First factor.

• mpz_t _second_factor

Second factor.

mpz_t _product

Product.

• std::string _first_factor_string

First factor in binary form.

• std::string _second_factor_string

Secon factor in binary form.

• size_t _number_size

Number size in bits.

size_t _first_factor_size

First factor size in bits.

· size_t _second_factor_size

Second factor size in bits.

• int _bv_size

Bit vector size.

5.28.1 Detailed Description

Factorization.

Reference:

Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library (5.0.5 ed.).

```
http://gmplib.org/.
```

Definition at line 29 of file factorization.hh.

5.28.2 Constructor & Destructor Documentation

5.28.2.1 Factorization()

Constructor.

Parameters

number Number to factorize written in decimal form

Definition at line 82 of file factorization.hh.

5.28.3 Member Function Documentation

5.28.3.1 load()

Load instance.

The file referenced by the path is a text file which contains exactly one natural number written in base 10 without any space

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 102 of file factorization.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/factorization.hh
- lib/hnco/functions/collection/factorization.cc

5.29 FfgenOptions Class Reference

Command line options for ffgen.

```
#include <ffgen-options.hh>
```

Public Member Functions

• FfgenOptions (int argc, char *argv[])

Constructor.

int get_bv_size () const

Get bv_size.

void set_bv_size (int x)

Set bv_size.

• bool set_bv_size () const

Get set-flag for bv_size.

· double get_coupling_constant () const

Get coupling_constant.

void set_coupling_constant (double x)

Set coupling_constant.

bool set_coupling_constant () const

Get set-flag for coupling_constant.

• double get_ep_upper_bound () const

Get ep_upper_bound.

void set_ep_upper_bound (double x)

Set ep_upper_bound.

• bool set_ep_upper_bound () const

Get set-flag for ep_upper_bound.

double get_field_constant () const

Get field_constant.

void set_field_constant (double x)

Set field_constant.

• bool set_field_constant () const

Get set-flag for field_constant.

• int get_function () const

Get function.

void set_function (int x)

Set function.

• bool set_function () const

Get set-flag for function.

• double get lin distance () const

Get lin_distance.

void set_lin_distance (double x)

Set lin_distance.

· bool set lin distance () const

Get set-flag for lin_distance.

• int get_lin_generator () const

Get lin generator.

void set_lin_generator (int x)

Set lin_generator.

• bool set_lin_generator () const

Get set-flag for lin_generator.

• double get_lin_initial_weight () const

Get lin_initial_weight.

void set_lin_initial_weight (double x)

Set lin_initial_weight.

· bool set lin initial weight () const

Get set-flag for lin_initial_weight.

• double get_lin_ratio () const

Get lin ratio.

void set_lin_ratio (double x)

Set lin_ratio.

• bool set_lin_ratio () const

Get set-flag for lin_ratio.

• int get_ms_num_clauses () const

Get ms_num_clauses.

void set ms num clauses (int x)

Set ms_num_clauses.

• bool set ms num clauses () const

Get set-flag for ms_num_clauses.

• int get_ms_num_literals_per_clause () const

Get ms_num_literals_per_clause.

void set_ms_num_literals_per_clause (int x)

Set ms_num_literals_per_clause.

• bool set_ms_num_literals_per_clause () const

Get set-flag for ms_num_literals_per_clause.

int get_nk_k () const

Get nk_k.

void set_nk_k (int x)

Set nk_k.

bool set_nk_k () const

Get set-flag for nk k.

• int get_nn1_generator () const

Get nn1_generator.

void set_nn1_generator (int x)

Set nn1_generator.

bool set_nn1_generator () const

Get set-flag for nn1_generator.

• int get_nn2_generator () const

Get nn2_generator.

void set_nn2_generator (int x)

Set nn2_generator.

• bool set_nn2_generator () const

Get set-flag for nn2_generator.

• int get_nn2_num_columns () const

Get nn2_num_columns.

void set_nn2_num_columns (int x)

Set nn2_num_columns.

• bool set_nn2_num_columns () const

Get set-flag for nn2_num_columns.

int get_nn2_num_rows () const

Get nn2_num_rows.

void set_nn2_num_rows (int x)

Set nn2_num_rows.

• bool set_nn2_num_rows () const

Get set-flag for nn2_num_rows.

int get_part_upper_bound () const

Get part_upper_bound.

void set_part_upper_bound (int x)

Set part_upper_bound.

bool set_part_upper_bound () const

Get set-flag for part_upper_bound.

std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• int get_seed () const

Get seed.

void set_seed (int x)

Set seed.

· bool set_seed () const

Get set-flag for seed.

• double get_stddev () const

Get stddev.

void set_stddev (double x)

Set stddev.

• bool set_stddev () const

Get set-flag for stddev.

int get_sudoku_num_empty_cells () const

Get sudoku_num_empty_cells.

void set_sudoku_num_empty_cells (int x)

Set sudoku_num_empty_cells.

bool set_sudoku_num_empty_cells () const

Get set-flag for sudoku_num_empty_cells.

· int get walsh2 generator () const

Get walsh2_generator.

void set_walsh2_generator (int x)

Set walsh2_generator.

bool set_walsh2_generator () const

Get set-flag for walsh2_generator.

· double get walsh2 ising alpha () const

Get walsh2_ising_alpha.

void set_walsh2_ising_alpha (double x)

Set walsh2 ising alpha.

· bool set_walsh2_ising_alpha () const

Get set-flag for walsh2_ising_alpha.

• int get_walsh_num_features () const

Get walsh_num_features.

void set_walsh_num_features (int x)

Set walsh_num_features.

• bool set_walsh_num_features () const

Get set-flag for walsh_num_features.

• bool with_ms_planted_solution () const

Get ms_planted_solution.

void set_ms_planted_solution ()

Set ms planted solution.

· bool with_periodic_boundary_conditions () const

Get periodic_boundary_conditions.

· void set_periodic_boundary_conditions ()

Set periodic_boundary_conditions.

Private Member Functions

· void print help (std::ostream &stream) const

Print help message.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

std::string _exec_name

Name of the executable.

std::string _version

Name Version.

• int _bv_size

Size of bit vectors.

- bool <u>opt_bv_size</u>
- double _coupling_constant

Coupling constant.

- bool opt_coupling_constant
- · double _ep_upper_bound

Upper bound of numbers.

- bool _opt_ep_upper_bound
- double _field_constant

Field constant.

- bool _opt_field_constant
- int _function

Type of function.

- bool _opt_function
- · double _lin_distance

Common distance of arithmetic progression.

- bool <u>opt_lin_distance</u>
- · int_lin_generator

Type of LinearFunction generator.

- · bool opt lin generator
- · double _lin_initial_weight

Initial weight.

- bool _opt_lin_initial_weight
- double _lin_ratio

Common ratio of geometric progression.

- bool _opt_lin_ratio
- int _ms_num_clauses

Number of clauses.

- · bool _opt_ms_num_clauses
- int _ms_num_literals_per_clause

Number of literals per clause.

- · bool_opt_ms_num_literals_per_clause
- int nk k

Each bit is connected to k other bits.

- bool _opt_nk_k
- int _nn1_generator

Type of NearestNeighborIsingModel1 generator.

- bool <u>opt_nn1_generator</u>
- int _nn2_generator

Type of NearestNeighborlsingModel2 generator.

- · bool _opt_nn2_generator
- int _nn2_num_columns

Number of columns.

- bool _opt_nn2_num_columns
- int _nn2_num_rows

Number of rows.

- bool opt_nn2_num_rows
- int _part_upper_bound

Upper bound of numbers.

- bool _opt_part_upper_bound
- std::string _path

Path (relative or absolute) of a function file.

- bool _opt_path
- int seed

Seed for the random number generator.

- bool _opt_seed
- double <u>stddev</u>

Standard deviation.

- · bool_opt_stddev
- int _sudoku_num_empty_cells

Number of empty cells.

- bool _opt_sudoku_num_empty_cells
- int walsh2 generator

Type of WalshExpansion2 generator.

- · bool _opt_walsh2_generator
- double _walsh2_ising_alpha

Dyson-Ising: exponential decay parameter for long range interactions.

- bool opt_walsh2_ising_alpha
- · int walsh num features

Number of features.

- · bool opt walsh num features
- bool _ms_planted_solution

Generate an instance with a planted solution.

• bool _periodic_boundary_conditions

Periodic boundary conditions.

Friends

std::ostream & operator<< (std::ostream &, const FfgenOptions &)
 Print a header containing the parameter values.

5.29.1 Detailed Description

Command line options for ffgen.

Definition at line 11 of file ffgen-options.hh.

The documentation for this class was generated from the following files:

- app/ffgen-options.hh
- · app/ffgen-options.cc

5.30 FirstAscentHillClimbing Class Reference

First ascent hill climbing.

#include <hnco/algorithms/ls/first-ascent-hill-climbing.hh>

Inheritance diagram for FirstAscentHillClimbing:

Public Member Functions

FirstAscentHillClimbing (int n, neighborhood::Neighborhood)terator *neighborhood)
 Constructor.

Protected Member Functions

• void iterate () override Single iteration.

Additional Inherited Members

5.30.1 Detailed Description

First ascent hill climbing.

Definition at line 34 of file first-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/first-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/first-ascent-hill-climbing.cc

5.31 FourPeaks Class Reference

Four Peaks.

#include <hnco/functions/collection/four-peaks.hh>

Inheritance diagram for FourPeaks:

Public Member Functions

• FourPeaks (int bv_size, int threshold)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

· int threshold

Threshold.

int _maximum

Maximum.

5.31.1 Detailed Description

Four Peaks.

It is defined by

```
f(x) = \max\{head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- R(x) is the reward;
- R(x) = n if (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has four maxima, of which exactly two are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 60 of file four-peaks.hh.

5.31.2 Member Function Documentation

5.31.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 88 of file four-peaks.hh.

5.31.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 84 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/four-peaks.hh
- lib/hnco/functions/collection/four-peaks.cc

5.32 Function Class Reference

Function

#include <hnco/functions/function.hh>

Inheritance diagram for Function:

Public Member Functions

virtual ~Function ()
 Destructor.

Information about the function

• virtual int get_bv_size () const =0

Get bit vector size.

· virtual double get maximum () const

Get the global maximum.

virtual bool has_known_maximum () const

Check for a known maximum.

• virtual bool provides_incremental_evaluation () const

Check whether the function provides incremental evaluation.

Evaluation

• virtual double evaluate (const bit_vector_t &)=0

Evaluate a bit vector.

virtual double evaluate_incrementally (const bit_vector_t &x, double value, const sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

virtual double evaluate safely (const bit vector t &x)

Safely evaluate a bit vector.

virtual void update (const bit_vector_t &x, double value)

Update states after a safe evaluation.

Display

- virtual void display (std::ostream &stream) const
- virtual void describe (const bit_vector_t &x, std::ostream &stream)
 Describe a bit vector.

5.32.1 Detailed Description

Function

Definition at line 45 of file function.hh.

5.32.2 Member Function Documentation

5.32.2.1 describe()

Describe a bit vector.

The member function Function::describe is not declared const for the same reason Function::evaluate is not: it might need to decode the given bit vector hence use some pre-allocated memory buffer.

Reimplemented in FunctionMapComposition, Decorator, Partition, Factorization, UniversalFunctionAdapter, PermutationFunctionAdapter< Fn >, and MultivariateFunctionAdapter< Fn, Rep, Conv >.

Definition at line 134 of file function.hh.

5.32.2.2 evaluate()

Evaluate a bit vector.

This member function is not declared const and is not supposed to be thread-safe. In particular, in order to evaluate a bit vector, it might require some data member to store temporary results. In case of parallel evaluation, there should be a copy of the function per thread, as is done in Population::evaluate in parallel.

Implemented in SinusSummationCancellation, SummationCancellation, UniversalFunctionAdapter, PermutationFunctionAdapter < Fr MultivariateFunctionAdapter < Fn, Rep, Conv >, PriorNoise, ParsedModifier, AdditiveGaussianNoise, FunctionMapComposition, Negation, WalshExpansion, WalshExpansion2, WalshExpansion1, Plateau, Ridge, Hiff, Needle, LeadingOnes, OneMax, Qubo, Partition, NkLandscape, MaxNae3Sat, MaxSat, LinearFunction, Labs, DeceptiveJump, Jump, NearestNeighborIsingModel2, NearestNeighborIsingModel1, SixPeaks, FourPeaks, Factorization, EqualProducts, Cache, ProgressTracker, OnBudgetFunction, CallCounter, StopOnTarget, Trap, PythonFunction, FunctionPlugin, and LongPath.

5.32.2.3 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

```
std::runtime error
```

Reimplemented in Negation, ProgressTracker, OnBudgetFunction, CallCounter, StopOnTarget, NearestNeighborIsingModel2, NearestNeighborIsingModel1, WalshExpansion1, OneMax, and LinearFunction.

Definition at line 95 of file function.hh.

5.32.2.4 evaluate_safely()

Safely evaluate a bit vector.

Must neither throw any exception nor update global states (e.g. maximum) in function controllers. It is used in Population::evaluate in parallel inside a OMP parallel for loop.

By default, calls evaluate.

Reimplemented in Controller.

Definition at line 109 of file function.hh.

5.32.2.5 get_maximum()

```
virtual double get_maximum ( ) const [inline], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented in PriorNoise, FunctionMapComposition, WalshExpansion1, Plateau, Ridge, Hiff, Needle, LeadingOnes, OneMax, LinearFunction, DeceptiveJump, Jump, SixPeaks, FourPeaks, SummationCancellation, Controller, Trap, and LongPath.

Definition at line 61 of file function.hh.

5.32.2.6 provides_incremental_evaluation()

```
virtual bool provides_incremental_evaluation ( ) const [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented in PriorNoise, Negation, WalshExpansion1, OneMax, LinearFunction, NearestNeighborIsingModel2, NearestNeighborIsingModel1, Cache, and Controller.

Definition at line 71 of file function.hh.

5.32.2.7 update()

Update states after a safe evaluation.

By default, does nothing.

Reimplemented in ProgressTracker, OnBudgetFunction, CallCounter, and StopOnTarget.

Definition at line 115 of file function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/function.hh

5.33 FunctionFactory Class Reference

Function factory.

#include <hnco/app/function-factory.hh>

Inheritance diagram for FunctionFactory:

Public Member Functions

virtual hnco::function::Function * make ()=0
 Make a function.

5.33.1 Detailed Description

Function factory.

Definition at line 33 of file function-factory.hh.

The documentation for this class was generated from the following file:

• lib/hnco/app/function-factory.hh

5.34 FunctionMapComposition Class Reference

Composition of a function and a map.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for FunctionMapComposition:

Public Member Functions

- FunctionMapComposition (Function *function, hnco::map::Map *map)

 Constructor.
- double evaluate (const bit_vector_t &) override
 Evaluate a bit vector.

Information about the function

- int get_bv_size () const override
 - Get bit vector size.
- double get_maximum () const override
 - Get the global maximum.
- bool has_known_maximum () const override

Check for a known maximum.

Display

void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Private Attributes

- hnco::map::Map * _map
 - Мар.
- bit_vector_t _bv

Image of bit vectors under the map.

Additional Inherited Members

5.34.1 Detailed Description

Composition of a function and a map.

Definition at line 100 of file modifier.hh.

5.34.2 Constructor & Destructor Documentation

5.34.2.1 FunctionMapComposition()

```
FunctionMapComposition (
          Function * function,
          hnco::map::Map * map ) [inline]
```

Constructor.

Precondition

```
map->get_output_size() == function->get_bv_size()
```

Exceptions

std::runtime_error

Definition at line 115 of file modifier.hh.

5.34.3 Member Function Documentation

5.34.3.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 135 of file modifier.hh.

5.34.3.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true if the function has a known maximum and the map is bijective.

Reimplemented from Function.

Definition at line 145 of file modifier.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.35 FunctionPlugin Class Reference

Function plugin

#include <hnco/functions/collection/plugin.hh>

Inheritance diagram for FunctionPlugin:

Public Member Functions

• FunctionPlugin (int bv_size, std::string path, std::string name)

Constructor.

• ∼FunctionPlugin ()

Destructor.

• int get_bv_size () const

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Private Types

```
    using extern_function_t = double(*)(const bit_t *, size_t)
    Type of an extern function.
```

Private Attributes

```
• int _bv_size
```

Bit vector size.

void * _handle

Handle returned by dlopen.

• extern_function_t _extern_function

Extern function.

5.35.1 Detailed Description

Function plugin

Definition at line 34 of file plugin.hh.

5.35.2 Constructor & Destructor Documentation

5.35.2.1 FunctionPlugin()

Constructor.

Parameters

bv_size	Size of bit vectors	
path	Path to a shared library	
name Name of a function of the shared librar		

Definition at line 35 of file plugin.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/plugin.hh
- · lib/hnco/functions/collection/plugin.cc

5.36 Generator Struct Reference

Random number generator.

```
#include <hnco/random.hh>
```

Static Public Member Functions

• static void set_seed (unsigned n)

Set seed.

• static void set_seed ()

Set seed.

• static void reset ()

Reset engine.

• static double uniform ()

Sample random number with uniform distribution.

• static double normal ()

Sample random number with normal distribution.

• static bool bernoulli ()

Sample random number with Bernoulli distribution.

Static Public Attributes

• static std::mt19937 engine

Mersenne Twister engine.

static unsigned seed = std::mt19937::default_seed
 Seed.

5.36.1 Detailed Description

Random number generator.

Definition at line 34 of file random.hh.

5.36.2 Member Function Documentation

5.36.2.1 reset()

```
void reset ( ) [static]
```

Reset engine.

Using static member seed.

Definition at line 45 of file random.cc.

5.36.2.2 set_seed()

void set_seed () [static]

Set seed.

Uses std::chrono::system_clock.

Definition at line 39 of file random.cc.

The documentation for this struct was generated from the following files:

- · lib/hnco/random.hh
- · lib/hnco/random.cc

5.37 GeneticAlgorithm Class Reference

Genetic algorithm.

#include <hnco/algorithms/ea/genetic-algorithm.hh>

Inheritance diagram for GeneticAlgorithm:

Public Member Functions

• GeneticAlgorithm (int n, int mu)

Constructor.

Setters

void set_mutation_rate (double p)

Set the mutation rate.

void set_crossover_probability (double x)

Set the crossover probability.

void set_tournament_size (int x)

Set the tournament size.

void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

Protected Member Functions

Loop

• void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

• TournamentSelection _parents

Parents.

• TournamentSelection _offsprings

Offsprings.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

• std::bernoulli_distribution _do_crossover

Do crossover.

• UniformCrossover _crossover

Uniform crossover.

Parameters

• double _mutation_rate

Mutation rate.

• double _crossover_probability = 0.5

Crossover probability.

• int _tournament_size = 10

Tournament size.

• bool _allow_no_mutation = false

Allow no mutation.

5.37.1 Detailed Description

Genetic algorithm.

- · Tournament selection for reproduction
- · Uniform crossover
- · Standard bit mutation
- (mu, mu) selection (offspring population replaces parent population)

Reference:

J. H. Holland. 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

Definition at line 51 of file genetic-algorithm.hh.

5.37.2 Constructor & Destructor Documentation

5.37.2.1 GeneticAlgorithm()

```
GeneticAlgorithm (
         int n,
         int mu ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors	
mu	u Population size	

Definition at line 108 of file genetic-algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/genetic-algorithm.hh
- · lib/hnco/algorithms/ea/genetic-algorithm.cc

5.38 HammingBall Class Reference

Hamming ball.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingBall:

Public Member Functions

HammingBall (int n, int r)
 Constructor.

Private Member Functions

void sample_bits ()
 Sample bits.

Private Attributes

std::uniform_int_distribution < int > _choose_k
 Choose the distance to the center.

Additional Inherited Members

5.38.1 Detailed Description

Hamming ball.

Choose k uniformly on [1..r], where r is the radius of the ball, choose k bits uniformly among n and flip them.

Definition at line 302 of file neighborhood.hh.

5.38.2 Constructor & Destructor Documentation

5.38.2.1 HammingBall()

```
\label{eq:ball} \begin{array}{ll} \mbox{HammingBall (} \\ & \mbox{int } n, \\ & \mbox{int } r \mbox{ ) } \mbox{ [inline]} \end{array}
```

Constructor.

Parameters

n	Size of bit vectors	
r	Radius of the ball	

Definition at line 318 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.39 HammingSphere Class Reference

Hamming sphere.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingSphere:

Public Member Functions

• HammingSphere (int n, int r)

Constructor.

void set_radius (int r)

Set radius.

Private Member Functions

void sample_bits ()
 Sample bits.

Private Attributes

int _radius

Radius of the sphere.

Additional Inherited Members

5.39.1 Detailed Description

Hamming sphere.

Uniformly choose r bits among n and flip them, where r is the radius of the sphere.

Definition at line 334 of file neighborhood.hh.

5.39.2 Constructor & Destructor Documentation

5.39.2.1 HammingSphere()

```
HammingSphere (
          int n,
          int r) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of the sphere

Definition at line 350 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.40 HammingSpherelterator Class Reference

Hamming sphere neighborhood iterator.

```
#include <hnco/neighborhoods/neighborhood-iterator.hh>
```

Inheritance diagram for HammingSphereIterator:

Public Member Functions

```
• HammingSphereIterator (int n, int r)
```

Constructor.

• bool has_next () override

Has next bit vector.

· const bit_vector_t & next () override

Next bit vector.

Private Attributes

```
• int _radius
```

Radius of the ball.

sparse_bit_vector_t _bit_indexes

Bit indexes.

Additional Inherited Members

5.40.1 Detailed Description

Hamming sphere neighborhood iterator.

The Hamming sphere iterator is implemented using an array of indexes which indicate the bits to flip in the given origin.

For example, in dimension n = 4 and with radius = 2, the sequence of indexes is as follows (assuming indexes start at 1):

- 12 (first state, bits 1 and 2 are flipped)
- 13
- 14
- · 23 (last index cannot be increased, first index is increased and second index is reset)
- 24
- 34

Reference: https://en.wikipedia.org/wiki/Combination#Enumerating_k-combinations

Definition at line 96 of file neighborhood-iterator.hh.

5.40.2 Constructor & Destructor Documentation

5.40.2.1 HammingSphereIterator()

Constructor.

5.41 Hboa Class Reference 135

Parameters

n	Size of bit vectors
r	Radius of Hamming Ball

Definition at line 72 of file neighborhood-iterator.cc.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.41 Hboa Class Reference

Hierarchical Bayesian Optimization Algorithm.

#include <hnco/algorithms/fast-efficient-p3/hboa.hh>

Inheritance diagram for Hboa:

Public Member Functions

• Hboa (int n)

Constructor.

• ∼Hboa ()

Destructor.

 $\bullet \ \ \ void\ maximize\ (const\ std::vector < function::Function *> \& functions)\\$

Maximize.

• void finalize ()

Finalize.

• void set_population_size (int n)

Set population size.

Private Attributes

Implementation * _pimpl

Pointer to implementation.

int _population_size = 10

Population size.

Additional Inherited Members

5.41.1 Detailed Description

Hierarchical Bayesian Optimization Algorithm.

Implementation of the Hierarchical Bayesian Optimization Algorithm and helper classes based on the publication: Pelikan, M. and Goldberg, D. (2006). Hierarchical bayesian optimization algorithm. In Scalable Optimization via Probabilistic Modeling, volume 33 of Studies in Computational Intelligence, pages 63–90. Springer Berlin Heidelberg.

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 48 of file hboa.hh.

5.41.2 Member Data Documentation

5.41.2.1 _pimpl

Implementation* _pimpl [private]

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 59 of file hboa.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/fast-efficient-p3/hboa.hh
- lib/hnco/algorithms/fast-efficient-p3/hboa.cc

5.42 Hea< Herding > Class Template Reference

Herding evolutionary algorithm.

#include <hnco/algorithms/walsh-moment/hea.hh>

Inheritance diagram for Hea< Herding >:

Public Member Functions

Hea (int n, int population_size)
 Constructor.

Setters

- void set_margin (double x)
 - Set the moment margin.
- void set_selection_size (int x)

Set the selection size.

void set_reset_period (int x)

Set the reset period.

void set_learning_rate (double x)

Set the learning rate.

void set_bound_moment (bool x)

Set the bound moment after update.

void set_randomize_bit_order (bool b)

Randomize bit order.

Setters for logging

void set_log_herding_error (bool b)

Log herding error (moment discrepancy)

void set_log_target_norm (bool b)

Log target 2-norm (distance to uniform moment)

void set_log_delta_norm (bool b)

Log delta (moment increment) 2-norm.

void set_log_target (bool b)

Log target moment as a symmetric matrix.

Private Member Functions

Loop

• void init () override

Initialization.

· void iterate () override

Single iteration.

• void set_something_to_log ()

Set flag for something to log.

· void log () override

Log.

Private Attributes

• Herding::Moment _target

Target moment.

• Herding::Moment _selection

Moment of selected individuals.

• algorithm::Population _population

Population

· Herding _herding

Herding.

• double _herding_error

Herding error (moment discrepancy)

double _target_norm

Target 2-norm (distance to uniform moment)

• double _delta_norm

Delta (moment increment) 2-norm.

Parameters

• double _margin

Moment margin.

• int _selection_size = 1

Selection size.

• int <u>_reset_period</u> = 0

Reset period.

• double _learning_rate = 1e-4

Learning rate.

• bool _bound_moment = false

Bound moment after update.

Logging

• bool <u>log_herding_error</u> = false

Log herding error (moment discrepancy)

• bool <u>log_target_norm</u> = false

Log target 2-norm (distance to uniform moment)

• bool <u>log_delta_norm</u> = false

Log delta 2-norm (moment increment)

bool <u>log_target</u> = false

Log target moment as a symmetric matrix.

Additional Inherited Members

5.42.1 Detailed Description

 $\label{lem:constraint} \begin{tabular}{ll} template < class Herding > \\ class hnco::algorithm::walsh_moment::Hea < Herding > \\ \end{tabular}$

Herding evolutionary algorithm.

Reference:

Arnaud Berny. 2015. Herding Evolutionary Algorithm. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO Companion '15). ACM, New York, NY, USA, 1355–1356.

Definition at line 47 of file hea.hh.

5.42.2 Constructor & Destructor Documentation

5.42.2.1 Hea()

```
Hea (
          int n,
          int population_size ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
population_size	Population size

_margin is initialized to 1 / n.

Definition at line 200 of file hea.hh.

5.42.3 Member Function Documentation

5.42.3.1 set_reset_period()

```
void set_reset_period (
          int x ) [inline]
```

Set the reset period.

Parameters

 $x \le 0$ means no reset.

Definition at line 229 of file hea.hh.

5.42.3.2 set_selection_size()

```
void set_selection_size ( \quad \text{int } x \text{ ) [inline]}
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 221 of file hea.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/walsh-moment/hea.hh

5.43 Hiff Class Reference

Hierarchical if and only if.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Hiff:

5.43 Hiff Class Reference 141

Public Member Functions

• Hiff (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

int _depth

Tree depth.

5.43.1 Detailed Description

Hierarchical if and only if.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 170 of file theory.hh.

5.43.2 Member Function Documentation

5.43.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
(i + 1) * 2^i where 2^i = bv_size
```

Reimplemented from Function.

Definition at line 195 of file theory.hh.

5.43.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 191 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.44 HncoEvaluator Class Reference

Evaluator for HNCO functions.

#include <hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh>

Inheritance diagram for HncoEvaluator:

Public Member Functions

- HncoEvaluator (hnco::function::Function *function)
 Constructor.
- float evaluate (const std::vector< bool > &x)
 Evaluate a bit vector.

Private Attributes

hnco::function::Function * _function

HNCO function.

hnco::bit_vector_t _bv

Argument of HNCO function.

5.44.1 Detailed Description

Evaluator for HNCO functions.

Definition at line 36 of file hnco-evaluator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh

5.45 HncoOptions Class Reference

Command line options for hnco.

#include <hnco/app/hnco-options.hh>

Public Member Functions

• HncoOptions (int argc, char *argv[])

Constructor.

• int get_algorithm () const

Get algorithm.

void set_algorithm (int x)

Set algorithm.

· bool set_algorithm () const

Get set-flag for algorithm.

int get_bm_mc_reset_strategy () const

Get bm mc reset strategy.

void set_bm_mc_reset_strategy (int x)

Set bm_mc_reset_strategy.

• bool set_bm_mc_reset_strategy () const

Get set-flag for bm_mc_reset_strategy.

• int get_bm_num_gs_cycles () const

Get bm_num_gs_cycles.

• void set_bm_num_gs_cycles (int x)

Set bm_num_gs_cycles.

bool set_bm_num_gs_cycles () const

Get set-flag for bm_num_gs_cycles.

• int get_bm_num_gs_steps () const

Get bm_num_gs_steps.

void set_bm_num_gs_steps (int x)

Set bm_num_gs_steps.

• bool set_bm_num_gs_steps () const

Get set-flag for bm_num_gs_steps.

• int get bm sampling () const

Get bm_sampling.

void set_bm_sampling (int x)

Set bm_sampling.

bool set bm sampling () const

Get set-flag for bm_sampling.

• int get_budget () const

Get budget.

void set_budget (int x)

Set budget.

• bool set_budget () const

Get set-flag for budget.

• int get_bv_size () const

Get bv_size.

void set_bv_size (int x)

Set bv_size.

· bool set by size () const

Get set-flag for bv_size.

std::string get_description_path () const

Get description path.

void set_description_path (std::string x)

Set description_path.

· bool set_description_path () const

Get set-flag for description_path.

• int get_ea_lambda () const

Get ea_lambda.

void set ea lambda (int x)

Set ea_lambda.

• bool set_ea_lambda () const

Get set-flag for ea_lambda.

• int get_ea_mu () const

Get ea_mu.

void set_ea_mu (int x)

Set ea_mu.

• bool set_ea_mu () const

Get set-flag for ea_mu.

• std::string get_expression () const

Get expression.

• void set_expression (std::string x)

Set expression.

• bool set_expression () const

Get set-flag for expression.

• std::string get_fn_name () const

Get fn_name.

void set_fn_name (std::string x)

Set fn_name.

• bool set_fn_name () const

Get set-flag for fn_name.

int get_fn_num_traps () const
 Get fn_num_traps.

void set_fn_num_traps (int x)

Set fn_num_traps.

bool set_fn_num_traps () const

Get set-flag for fn_num_traps.

• int get_fn_prefix_length () const

Get fn_prefix_length.

void set_fn_prefix_length (int x)

Set fn_prefix_length.

bool set_fn_prefix_length () const

Get set-flag for fn_prefix_length.

int get_fn_threshold () const

Get fn_threshold.

void set_fn_threshold (int x)

Set fn_threshold.

bool set_fn_threshold () const

Get set-flag for fn_threshold.

• std::string get_fp_expression () const

Get fp_expression.

void set_fp_expression (std::string x)

Set fp_expression.

• bool set_fp_expression () const

Get set-flag for fp_expression.

double get_fp_lower_bound () const

Get fp_lower_bound.

void set_fp_lower_bound (double x)

Set fp_lower_bound.

• bool set_fp_lower_bound () const

Get set-flag for fp_lower_bound.

• int get_fp_num_bits () const

Get fp_num_bits.

void set_fp_num_bits (int x)

Set fp_num_bits.

• bool set_fp_num_bits () const

Get set-flag for fp_num_bits.

• double get_fp_precision () const

Get fp_precision.

• void set_fp_precision (double x)

Set fp_precision.

• bool set_fp_precision () const

Get set-flag for fp_precision.

• double get_fp_upper_bound () const

Get fp_upper_bound.

void set_fp_upper_bound (double x)

Set fp_upper_bound.

• bool set_fp_upper_bound () const

Get set-flag for fp_upper_bound.

• int get_function () const

Get function.

void set_function (int x)

Set function.

· bool set_function () const

Get set-flag for function.

· double get ga crossover bias () const

Get ga_crossover_bias.

void set_ga_crossover_bias (double x)

Set ga_crossover_bias.

bool set_ga_crossover_bias () const

Get set-flag for ga_crossover_bias.

double get_ga_crossover_probability () const

Get ga crossover probability.

void set_ga_crossover_probability (double x)

Set ga_crossover_probability.

• bool set_ga_crossover_probability () const

Get set-flag for ga_crossover_probability.

int get_ga_tournament_size () const

Get ga_tournament_size.

void set_ga_tournament_size (int x)

Set ga_tournament_size.

• bool set ga tournament size () const

Get set-flag for ga_tournament_size.

· int get_hea_reset_period () const

Get hea reset period.

void set_hea_reset_period (int x)

Set hea_reset_period.

• bool set_hea_reset_period () const

Get set-flag for hea_reset_period.

double get_learning_rate () const

Get learning_rate.

void set learning rate (double x)

Set learning_rate.

bool set_learning_rate () const

Get set-flag for learning_rate.

• int get_map () const

Get map.

void set_map (int x)

Set map.

• bool set_map () const

Get set-flag for map.

int get_map_input_size () const

Get map_input_size.

void set_map_input_size (int x)

Set map_input_size.

bool set_map_input_size () const

Get set-flag for map input size.

• std::string get_map_path () const

Get map_path.

• void set_map_path (std::string x)

Set map_path.

• bool set_map_path () const

Get set-flag for map_path.

• int get_map_ts_length () const

Get map_ts_length.

void set_map_ts_length (int x)

Set map_ts_length.

• bool set_map_ts_length () const

Get set-flag for map_ts_length.

• int get_map_ts_sampling_mode () const

Get map_ts_sampling_mode.

void set_map_ts_sampling_mode (int x)

Set map_ts_sampling_mode.

bool set_map_ts_sampling_mode () const

Get set-flag for map_ts_sampling_mode.

double get_mutation_rate () const

Get mutation_rate.

void set_mutation_rate (double x)

Set mutation_rate.

• bool set_mutation_rate () const

Get set-flag for mutation_rate.

• int get_neighborhood () const

Get neighborhood.

void set_neighborhood (int x)

Set neighborhood.

bool set_neighborhood () const

Get set-flag for neighborhood.

• int get_neighborhood_iterator () const

Get neighborhood_iterator.

void set_neighborhood_iterator (int x)

Set neighborhood_iterator.

• bool set_neighborhood_iterator () const

Get set-flag for neighborhood_iterator.

• double get_noise_stddev () const

Get noise_stddev.

• void set_noise_stddev (double x)

Set noise_stddev.

• bool set_noise_stddev () const

Get set-flag for noise_stddev.

int get_num_iterations () const

Get num_iterations.

void set_num_iterations (int x)

Set num_iterations.

• bool set_num_iterations () const

Get set-flag for num_iterations.

• int get_num_threads () const

 $Get \ num_threads.$

void set_num_threads (int x)

Set num_threads.

• bool set_num_threads () const

Get set-flag for num_threads.

• std::string get path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

· double get pn mutation rate () const

Get pn_mutation_rate.

void set_pn_mutation_rate (double x)

Set pn_mutation_rate.

bool set pn mutation rate () const

Get set-flag for pn_mutation_rate.

• int get_pn_neighborhood () const

Get pn neighborhood.

void set_pn_neighborhood (int x)

Set pn_neighborhood.

• bool set_pn_neighborhood () const

Get set-flag for pn_neighborhood.

· int get_pn_radius () const

Get pn_radius.

void set_pn_radius (int x)

Set pn_radius.

· bool set pn radius () const

Get set-flag for pn_radius.

• int get_population_size () const

Get population size.

void set_population_size (int x)

Set population_size.

• bool set_population_size () const

Get set-flag for population_size.

int get_pv_log_num_components () const

Get pv_log_num_components.

void set pv log num components (int x)

Set pv_log_num_components.

bool set_pv_log_num_components () const

Get set-flag for pv_log_num_components.

• int get_radius () const

Get radius.

void set_radius (int x)

Set radius.

• bool set_radius () const

Get set-flag for radius.

int get_rep_categorical_representation () const

Get rep_categorical_representation.

void set_rep_categorical_representation (int x)

Set rep_categorical_representation.

bool set_rep_categorical_representation () const

Get set-flag for rep categorical representation.

• int get_rep_num_additional_bits () const

Get rep_num_additional_bits.

void set_rep_num_additional_bits (int x)

Set rep_num_additional_bits.

• bool set_rep_num_additional_bits () const

Get set-flag for rep_num_additional_bits.

5.45 HncoOptions Class Reference std::string get_results_path () const Get results_path. void set_results_path (std::string x) Set results_path. bool set_results_path () const Get set-flag for results_path. • int get_rls_patience () const Get rls_patience. void set_rls_patience (int x) Set rls_patience. • bool set_rls_patience () const Get set-flag for rls_patience. double get_sa_beta_ratio () const Get sa_beta_ratio. void set_sa_beta_ratio (double x) Set sa_beta_ratio. bool set_sa_beta_ratio () const Get set-flag for sa_beta_ratio. • double get_sa_initial_acceptance_probability () const Get sa_initial_acceptance_probability. • void set_sa_initial_acceptance_probability (double x) Set sa_initial_acceptance_probability. bool set_sa_initial_acceptance_probability () const Get set-flag for sa_initial_acceptance_probability. int get_sa_num_transitions () const Get sa_num_transitions. void set_sa_num_transitions (int x) Set sa_num_transitions. bool set_sa_num_transitions () const Get set-flag for sa_num_transitions. • int get_sa_num_trials () const Get sa_num_trials. void set_sa_num_trials (int x) Set sa_num_trials. • bool set_sa_num_trials () const Get set-flag for sa_num_trials. · unsigned get seed () const Get seed. void set_seed (unsigned x) Set seed. · bool set seed () const Get set-flag for seed. • int get_selection_size () const Get selection_size. void set_selection_size (int x) Set selection_size. bool set_selection_size () const

Get set-flag for selection_size. std::string get solution path () const

void set_solution_path (std::string x)

Get solution_path.

Set solution_path. bool set_solution_path () const Get set-flag for solution_path. · double get target () const Get target. void set_target (double x) Set target. · bool set target () const Get set-flag for target. · bool with_additive_gaussian_noise () const Get additive gaussian noise. void set_additive_gaussian_noise () Set additive_gaussian_noise. • bool with_allow_no_mutation () const Get allow_no_mutation. void set_allow_no_mutation () Set allow_no_mutation. • bool with_bm_log_norm_1 () const Get bm_log_norm_1. void set_bm_log_norm_1 () Set bm_log_norm_1. · bool with_bm_log_norm_infinite () const Get bm log norm infinite. void set_bm_log_norm_infinite () Set bm_log_norm_infinite. · bool with_bm_negative_positive_selection () const Get bm_negative_positive_selection. • void set_bm_negative_positive_selection () Set bm_negative_positive_selection. · bool with cache () const Get cache. void set cache () Set cache. • bool with_cache_budget () const Get cache budget. void set_cache_budget () Set cache_budget. · bool with_concrete_solution () const Get concrete_solution. void set_concrete_solution () Set concrete_solution. bool with_fn_display () const Get fn_display. void set_fn_display () Set fn display. • bool with_fn_get_bv_size () const Get fn_get_bv_size. void set_fn_get_bv_size () Set fn_get_bv_size.

· bool with_fn_get_maximum () const

Get fn_get_maximum.

```
    void set_fn_get_maximum ()

     Set fn_get_maximum.
• bool with_fn_has_known_maximum () const
      Get fn_has_known_maximum.

    void set_fn_has_known_maximum ()

     Set fn_has_known_maximum.
• bool with_fn_provides_incremental_evaluation () const
      Get fn_provides_incremental_evaluation.

    void set_fn_provides_incremental_evaluation ()

     Set fn_provides_incremental_evaluation.
· bool with fn walsh transform () const
      Get fn_walsh_transform.

    void set_fn_walsh_transform ()

     Set fn_walsh_transform.

    bool with_hea_bound_moment () const

     Get hea_bound_moment.

    void set_hea_bound_moment ()

     Set hea bound moment.
• bool with_hea_log_delta_norm () const
     Get hea_log_delta_norm.

    void set_hea_log_delta_norm ()

     Set hea_log_delta_norm.
· bool with_hea_log_herding_error () const
     Get hea_log_herding_error.

    void set_hea_log_herding_error ()

     Set hea_log_herding_error.

    bool with_hea_log_target () const

     Get hea_log_target.

    void set_hea_log_target ()

     Set hea_log_target.

    bool with_hea_log_target_norm () const

     Get hea_log_target_norm.

    void set_hea_log_target_norm ()

     Set hea_log_target_norm.
· bool with_hea_randomize_bit_order () const
      Get hea_randomize_bit_order.

    void set hea randomize bit order ()

     Set hea_randomize_bit_order.
• bool with_incremental_evaluation () const
      Get incremental_evaluation.
· void set incremental evaluation ()
     Set incremental_evaluation.
· bool with_load_solution () const
     Get load_solution.

    void set_load_solution ()

     Set load_solution.
· bool with_log_improvement () const
     Get log_improvement.

    void set log improvement ()

     Set log_improvement.

    bool with_map_display () const
```

Get map_display.

void set_map_display ()

Set map_display.

• bool with_map_random () const

Get map_random.

void set_map_random ()

Set map_random.

bool with_map_surjective () const

Get map_surjective.

void set_map_surjective ()

Set map surjective.

• bool with_mmas_strict () const

Get mmas_strict.

void set_mmas_strict ()

Set mmas_strict.

• bool with_negation () const

Get negation.

void set_negation ()

Set negation.

· bool with parsed modifier () const

Get parsed_modifier.

void set_parsed_modifier ()

Set parsed modifier.

bool with_pn_allow_no_mutation () const

Get pn_allow_no_mutation.

• void set_pn_allow_no_mutation ()

Set pn_allow_no_mutation.

• bool with_print_defaults () const

Get print_defaults.

• void set print defaults ()

Set print_defaults.

• bool with_print_description () const

Get print_description.

void set_print_description ()

Set print_description.

• bool with_print_header () const

Get print_header.

• void set_print_header ()

Set print_header.

bool with_print_results () const

Get print_results.

void set_print_results ()

Set print_results.

bool with_print_solution () const

Get print solution.

void set_print_solution ()

Set print_solution.

• bool with_prior_noise () const

Get prior_noise.

• void set_prior_noise ()

Set prior_noise.

```
· bool with_pv_log_entropy () const
     Get pv_log_entropy.
void set_pv_log_entropy ()
     Set pv_log_entropy.
bool with_pv_log_pv () const
     Get pv_log_pv.
void set_pv_log_pv ()
     Set pv_log_pv.

    bool with_record_evaluation_time () const

      Get record_evaluation_time.
• void set_record_evaluation_time ()
     Set record_evaluation_time.
• bool with_restart () const
     Get restart.
void set_restart ()
     Set restart.
• bool with_rls_strict () const
     Get rls_strict.
void set_rls_strict ()
     Set rls_strict.
• bool with_rw_log_value () const
     Get rw_log_value.
void set_rw_log_value ()
     Set rw_log_value.
· bool with_save_description () const
     Get save_description.

    void set_save_description ()

     Set save_description.
• bool with_save_results () const
     Get save_results.
void set_save_results ()
     Set save results.
· bool with_save_solution () const
     Get save_solution.
void set_save_solution ()
     Set save_solution.

    bool with_stop_on_maximum () const

      Get stop_on_maximum.

    void set_stop_on_maximum ()

     Set stop_on_maximum.

    bool with_stop_on_target () const

      Get stop_on_target.
void set_stop_on_target ()
     Set stop_on_target.
```

Private Member Functions

 void print_help (std::ostream &stream) const *Print help message.*

void print_help_fp (std::ostream &stream) const

Print help message for section fp.

void print_help_rep (std::ostream &stream) const

Print help message for section rep.

void print_help_pn (std::ostream &stream) const

Print help message for section pn.

void print_help_map (std::ostream &stream) const

Print help message for section map.

void print_help_ls (std::ostream &stream) const

Print help message for section Is.

void print_help_sa (std::ostream &stream) const

Print help message for section sa.

void print help ea (std::ostream &stream) const

Print help message for section ea.

• void print_help_eda (std::ostream &stream) const

Print help message for section eda.

void print_help_hea (std::ostream &stream) const

Print help message for section hea.

void print_help_bm (std::ostream &stream) const

Print help message for section bm.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string _exec_name

Name of the executable.

• std::string version

Name Version.

int _algorithm

Type of algorithm.

- bool opt_algorithm
- int _bm_mc_reset_strategy

Markov chain reset strategy.

- bool _opt_bm_mc_reset_strategy
- int _bm_num_gs_cycles

Number of Gibbs sampler cycles per bit vector.

- bool <u>opt_bm_num_gs_cycles</u>
- int _bm_num_gs_steps

Number of Gibbs sampler steps per bit vector.

- bool _opt_bm_num_gs_steps
- int _bm_sampling

Sampling mode for the Boltzmann machine.

- bool opt_bm_sampling
- · int budget

Number of allowed function evaluations (<= 0 means indefinite)

bool _opt_budget

int _bv_size

Size of bit vectors.

- bool opt bv size
- std::string _description_path

Path of the description file.

- bool _opt_description_path
- int _ea_lambda

Offspring population size.

- bool _opt_ea_lambda
- int _ea_mu

Parent population size.

- · bool opt ea mu
- std::string _expression

Expression of the variable x.

- bool <u>opt_expression</u>
- std::string _fn_name

Name of the function in the dynamic library.

- bool _opt_fn_name
- int _fn_num_traps

Number of traps.

- bool _opt_fn_num_traps
- int _fn_prefix_length

Prefix length for long path.

- · bool opt fn prefix length
- · int _fn_threshold

Threshold (in bits) for Jump, Four Peaks, and Six Peaks.

- bool _opt_fn_threshold
- std::string _fp_expression

Expression to parse.

- bool opt fp expression
- double _fp_lower_bound

Lower bound.

- bool_opt_fp_lower_bound
- int _fp_num_bits

Number of bits in the dyadic representation of a number.

- bool <u>opt_fp_num_bits</u>
- double _fp_precision

Precision of the dyadic representation of a number.

- bool _opt_fp_precision
- double _fp_upper_bound

Upper bound.

- bool <u>opt_fp_upper_bound</u>
- · int function

Type of function.

- bool _opt_function
- double _ga_crossover_bias

Crossover bias.

- bool opt ga_crossover_bias
- · double _ga_crossover_probability

Crossover probability.

- bool _opt_ga_crossover_probability
- int _ga_tournament_size

Tournament size.

- bool _opt_ga_tournament_size
- · int _hea_reset_period

Reset period (<= 0 means no reset)

- · bool _opt_hea_reset_period
- double _learning_rate

Learning rate.

- bool opt_learning_rate
- · int _map

Type of map.

- bool _opt_map
- · int _map_input_size

Input size of linear and affine maps.

- bool <u>opt_map_input_size</u>
- std::string _map_path

Path of a map file.

- bool_opt_map_path
- · int _map_ts_length

Transvection sequence length.

- bool _opt_map_ts_length
- int _map_ts_sampling_mode

Transvection sequence sampling mode.

- bool _opt_map_ts_sampling_mode
- · double _mutation_rate

Mutation rate relative to by size.

- bool_opt_mutation_rate
- · int _neighborhood

Type of neighborhood.

- · bool opt neighborhood
- int _neighborhood_iterator

Type of neighborhood iterator.

- bool _opt_neighborhood_iterator
- · double noise stddev

Noise standard deviation.

- · bool _opt_noise_stddev
- int _num_iterations

Number of iterations (<= 0 means indefinite)

- bool opt num iterations
- · int num threads

Number of threads.

- bool _opt_num_threads
- std::string _path

Path of a function file.

- bool _opt_path
- double _pn_mutation_rate

Mutation rate relative to by size.

- bool _opt_pn_mutation_rate
- int _pn_neighborhood

Type of neighborhood.

- bool opt pn neighborhood
- · int pn radius

Radius of Hamming ball or sphere.

- bool_opt_pn_radius
- int _population_size

Population size.

- bool opt population size
- int _pv_log_num_components

Number of probability vector components to log.

- bool _opt_pv_log_num_components
- · int radius

Radius of Hamming ball or sphere.

- · bool opt radius
- int _rep_categorical_representation

Categorical representation.

- bool _opt_rep_categorical_representation
- · int rep num additional bits

Number of additional bits per element for permutation representation.

- bool_opt_rep_num_additional_bits
- std::string _results_path

Path of the results file.

- bool_opt_results_path
- · int _rls_patience

Number of consecutive rejected moves before ending the search (<= 0 means infinite)

- bool opt rls patience
- · double sa beta ratio

Ratio for beta or inverse temperature.

- bool _opt_sa_beta_ratio
- · double _sa_initial_acceptance_probability

Initial acceptance probability.

- bool _opt_sa_initial_acceptance_probability
- int _sa_num_transitions

Number of accepted transitions before annealing.

- bool _opt_sa_num_transitions
- int _sa_num_trials

Number of trials to estimate initial inverse temperature.

- bool _opt_sa_num_trials
- unsigned <u>seed</u>

Seed for the random number generator.

- · bool_opt_seed
- int _selection_size

Selection size (number of selected individuals)

- · bool_opt_selection_size
- std::string _solution_path

Path of the solution file.

- bool opt_solution_path
- double <u>_target</u>

Target.

- bool _opt_target
- bool _additive_gaussian_noise

Additive Gaussian noise.

bool _allow_no_mutation

Allow no mutation with standard bit mutation.

• bool bm log norm 1

Log 1-norm of the parameters.

· bool _bm_log_norm_infinite

Log infinite norm of the parameters.

bool _bm_negative_positive_selection

Negative and positive selection.

· bool _cache

Cache function evaluations.

· bool _cache_budget

Set cache on budget.

· bool _concrete_solution

At the end, print or save the solution in the domain of the concrete function.

· bool fn display

Display the function and exit.

bool _fn_get_bv_size

Print the size of bit vectors.

bool _fn_get_maximum

If the maximum is known then print it and exit with status 0 else exit with status 1.

bool _fn_has_known_maximum

Does the function have a known maximum?

• bool _fn_provides_incremental_evaluation

Does the function provide incremental evaluation?

• bool _fn_walsh_transform

Compute the Walsh transform of the function.

· bool _hea_bound_moment

Bound moment after update.

bool _hea_log_delta_norm

Log delta (moment increment) 2-norm.

bool _hea_log_herding_error

Log herding error (moment discrepancy)

bool _hea_log_target

Log target moment as a symmetric matrix.

bool _hea_log_target_norm

Log target 2-norm (distance to uniform moment)

• bool hea_randomize_bit_order

Randomize bit order.

• bool incremental evaluation

Incremental evaluation.

bool _load_solution

Load a solution from a file.

· bool _log_improvement

Log improvement.

bool _map_display

Display the map and exit.

bool _map_random

Sample a random map.bool _map_surjective

Ensure that the sampled linear or affine map is surjective.

bool _mmas_strict

Strict (>) max-min ant system.

· bool negation

Negation (hence minimization) of the function.

• bool _parsed_modifier

Parsed modifier.

bool _pn_allow_no_mutation

Allow no mutation with standard bit mutation.

· bool _print_defaults

Print the default parameters and exit.

bool _print_description

Print a description of the solution.

· bool _print_header

At the beginning, print the header.

bool _print_results

Print results.

• bool _print_solution

Print the solution.

· bool _prior_noise

Prior noise.

bool _pv_log_entropy

Log entropy of probability vector.

bool _pv_log_pv

Log probability vector.

• bool _record_evaluation_time

Record evaluation time.

bool restart

Restart any algorithm an indefinite number of times.

bool _rls_strict

Strict (>) random local search.

• bool _rw_log_value

Log bit vector value during random walk.

bool _save_description

At the end, save a description of the solution in a file.

bool _save_results

At the end, save results in a file.

bool _save_solution

At the end, save the solution in a file.

• bool _stop_on_maximum

Stop on maximum.

· bool _stop_on_target

Stop on target.

Friends

std::ostream & operator<< (std::ostream &, const HncoOptions &)

Print a header containing the parameter values.

5.45.1 Detailed Description

Command line options for hnco.

Definition at line 11 of file hnco-options.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/hnco-options.hh
- lib/hnco/app/hnco-options.cc

5.46 Human Class Reference

Human

#include <hnco/algorithms/human.hh>

Inheritance diagram for Human:

Public Member Functions

• Human (int n)

Constructor.

Protected Member Functions

void parse_bit_vector ()
 Parse bit vector.

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

• bit_vector_t _candidate Candidate.

5.46.1 Detailed Description

Human

Definition at line 32 of file human.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/human.hh
- lib/hnco/algorithms/human.cc

5.47 Hypercubelterator Class Reference

Hypercube iterator.

#include <hnco/iterator.hh>

Inheritance diagram for Hypercubelterator:

Public Member Functions

• Hypercubelterator (int n)

Constructor.

• bool has_next () override

Has next bit vector.

const bit_vector_t & next () override

Next bit vector.

Additional Inherited Members

5.47.1 Detailed Description

Hypercube iterator.

Implemented as a simple binary adder.

Definition at line 69 of file iterator.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/iterator.hh
- · lib/hnco/iterator.cc

5.48 Implementation Struct Reference

Implementation

#include <hnco/algorithms/fast-efficient-p3/implementation.hh>

Public Attributes

· Configuration configuration

Configuration.

std::shared_ptr< HncoEvaluator > evaluator

Evaluator.

std::shared_ptr< Middle_Layer > middle_layer
 Middle layer.

5.48.1 Detailed Description

Implementation

Definition at line 37 of file implementation.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/algorithms/fast-efficient-p3/implementation.hh

5.49 Injection Class Reference

Injection.

#include <hnco/maps/map.hh>

Inheritance diagram for Injection:

Public Member Functions

- Injection (const std::vector< int > &bit_positions, int output_size)
 Constructor.
- void map (const bit_vector_t &input, bit_vector_t &output) override
 Map
- int get_input_size () const override

Get input size.

int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Private Attributes

std::vector < int > _bit_positions
 Bit positions.

• int _output_size

Output size.

5.49.1 Detailed Description

Injection.

An injection copies the bits of input x to given positions of output y.

```
Let I = \{i_1, i_2, \dots, i_m\} be a subset of \{1, 2, \dots, n\}.
```

An injection f from F_2^m to F_2^n , where $n \ge m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_{i_j} = x_j$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 493 of file map.hh.

5.49.2 Constructor & Destructor Documentation

5.49.2.1 Injection()

Constructor.

The input size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the output to where input bits are copied
output_size	Output size

Precondition

```
output_size >= bit_positions.size()
```

Definition at line 176 of file map.cc.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.50 IntegerCategoricalRepresentation Class Reference

Integer categorical representation.

```
#include <hnco/representations/categorical.hh>
```

Public Types

using domain_type = std::size_t
 Domain type.

Public Member Functions

• IntegerCategoricalRepresentation (int num_categories)

Constructor.

• int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a category.

void display (std::ostream &stream) const

Display.

Private Attributes

int _num_categories

Number of categories.

int _num_bits

Number of bits.

5.50.1 Detailed Description

Integer categorical representation.

Definition at line 142 of file categorical.hh.

5.50.2 Constructor & Destructor Documentation

5.50.2.1 IntegerCategoricalRepresentation()

```
IntegerCategoricalRepresentation (
                int num_categories ) [inline]
```

Constructor.

Parameters

num_categories	Number of categories
----------------	----------------------

Definition at line 159 of file categorical.hh.

The documentation for this class was generated from the following file:

· lib/hnco/representations/categorical.hh

5.51 IterativeAlgorithm Class Reference

Iterative search.

#include <hnco/algorithms/iterative-algorithm.hh>

Inheritance diagram for IterativeAlgorithm:

Public Member Functions

• IterativeAlgorithm (int n)

Constructor.

Optimization

void maximize (const std::vector < function::Function * > &functions) override
 Maximize.

Setters

• void set_num_iterations (int x) Set the number of iterations.

Protected Member Functions

Loop

· virtual void init ()

Initialize.

• virtual void iterate ()=0 Single iteration.

• virtual void log ()

Log.

• virtual void loop () final *Loop.*

Protected Attributes

```
· int _iteration
```

Current iteration.

• bool <u>_last_iteration</u> = false

Last iteration.

• bool <u>_something_to_log</u> = false

Something to log.

Parameters

```
• int _num_iterations = 0 
Number of iterations.
```

5.51.1 Detailed Description

Iterative search.

Definition at line 32 of file iterative-algorithm.hh.

5.51.2 Constructor & Destructor Documentation

5.51.2.1 IterativeAlgorithm()

```
IterativeAlgorithm (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 83 of file iterative-algorithm.hh.

5.51.3 Member Function Documentation

5.51.3.1 loop()

```
void loop ( ) [final], [protected], [virtual]
```

Loop.

Calls init() then enter the main loop which, at each iteration, calls iterate() then log() only if _something_to_log is true

Definition at line 28 of file iterative-algorithm.cc.

5.51.3.2 maximize()

Maximize.

Calls set_functions() then loop.

Implements Algorithm.

Definition at line 53 of file iterative-algorithm.cc.

5.51.3.3 set_num_iterations()

Set the number of iterations.

Parameters

```
x Number of iterations
```

Warning

```
x \le 0 means indefinite
```

Definition at line 109 of file iterative-algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/iterative-algorithm.hh
- · lib/hnco/algorithms/iterative-algorithm.cc

5.52 Iterator Class Reference

Iterator over bit vectors

```
#include <hnco/iterator.hh>
```

Inheritance diagram for Iterator:

Public Member Functions

• Iterator (int n)

Constructor.

virtual ∼lterator ()

Destructor.

· virtual void init ()

Initialization.

• virtual bool has_next ()=0

Has next bit vector.

• virtual const bit_vector_t & next ()=0

Next bit vector.

Protected Attributes

bit_vector_t _current

Current bit vector.

• bool _initial_state = true

Flag for initial state.

5.52.1 Detailed Description

Iterator over bit vectors

Definition at line 34 of file iterator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/iterator.hh

5.53 Jump Class Reference

Jump.

#include <hnco/functions/collection/jump.hh>

Inheritance diagram for Jump:

Public Member Functions

• Jump (int bv_size, int gap)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

· int _bv_size

Bit vector size.

int _gap

Gap.

5.53.1 Detailed Description

Jump.

Reference:

H. Mühlenbein and T. Mahnig. 2001. Evolutionary Algorithms: From Recombination to Search Distributions. In Theoretical Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, and Alex Rogers (Eds.). Springer Berlin Heidelberg, 135–174.

Definition at line 41 of file jump.hh.

5.54 Labs Class Reference 171

5.53.2 Member Function Documentation

5.53.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 64 of file jump.hh.

5.53.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 60 of file jump.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/jump.hh
- lib/hnco/functions/collection/jump.cc

5.54 Labs Class Reference

Low autocorrelation binary sequences.

#include <hnco/functions/collection/labs.hh>

Inheritance diagram for Labs:

Public Member Functions

• Labs (int n)

Constructor.

void set_merit_factor_flag (bool b)

Set merit factor flag.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Protected Member Functions

double compute_autocorrelation (const bit_vector_t &)

Compute autocorrelation.

Protected Attributes

• std::vector< int > _sequence

Binary sequence written using 1 and -1.

• bool _merit_factor_flag = false

Merit factor flag.

5.54.1 Detailed Description

Low autocorrelation binary sequences.

Reference:

S Mertens. 1996. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 18 (1996), L473.

```
http://stacks.iop.org/0305-4470/29/i=18/a=005
```

If _merit_factor_flag is true then the function returns n / (2 \ast autocorrelation) else it returns -autocorrelation.

Definition at line 44 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/labs.hh
- lib/hnco/functions/collection/labs.cc

5.55 LastEvaluation Class Reference

Last evaluation.

#include <hnco/exception.hh>

Inheritance diagram for LastEvaluation:

5.55.1 Detailed Description

Last evaluation.

Definition at line 33 of file exception.hh.

The documentation for this class was generated from the following file:

• lib/hnco/exception.hh

5.56 LeadingOnes Class Reference

Leading ones.

#include <hnco/functions/collection/theory.hh>
Inheritance diagram for LeadingOnes:

Public Member Functions

LeadingOnes (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.56.1 Detailed Description

Leading ones.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 100 of file theory.hh.

5.56.2 Member Function Documentation

5.56.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 123 of file theory.hh.

5.56.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 119 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.57 LinearCategoricalRepresentation Class Reference

Linear categorical representation.

```
#include <hnco/representations/categorical.hh>
```

Public Types

using domain_type = std::size_t
 Domain type.

Public Member Functions

• LinearCategoricalRepresentation (int num categories)

Constructor.

• int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a category.

void display (std::ostream &stream) const

Display.

Private Attributes

```
· int _num_categories
```

Number of categories.

• int _nrows

Number of rows.

• int _ncols

Number of columns.

bit_matrix_t _A

Linear code as a bit matrix.

bit_vector_t _y

Output category.

bit_vector_t _x

Input bit vector.

5.57.1 Detailed Description

Linear categorical representation.

Definition at line 43 of file categorical.hh.

5.57.2 Constructor & Destructor Documentation

5.57.2.1 LinearCategoricalRepresentation()

Constructor.

Parameters

num_categories | Number of categories

Definition at line 72 of file categorical.hh.

The documentation for this class was generated from the following file:

· lib/hnco/representations/categorical.hh

5.58 LinearFunction Class Reference

Linear function.

#include <hnco/functions/collection/linear-function.hh>

Inheritance diagram for LinearFunction:

Public Member Functions

· LinearFunction ()

Constructor.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

void random (int n)

Random instance.

Load and save instance

• void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Information about the function

• int get by size () const override

Get bit vector size.

• double get_maximum () const override

Get the global maximum.

• bool has_known_maximum () const override

Check for a known maximum.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

 void display (std::ostream &stream) const override Display.

Private Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
Serialize.

Private Attributes

std::vector< double > _weightsWeights.

Friends

· class boost::serialization::access

5.58.1 Detailed Description

Linear function.

Definition at line 39 of file linear-function.hh.

5.58.2 Member Function Documentation

5.58.2.1 generate()

```
void generate (  \quad \text{int } n, \\ \quad \text{Generator } generator \; ) \quad [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 70 of file linear-function.hh.

5.58.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 135 of file linear-function.hh.

5.58.2.3 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 99 of file linear-function.hh.

5.58.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 140 of file linear-function.hh.

5.58.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

n Size of bit vectors

Definition at line 82 of file linear-function.hh.

5.58.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 106 of file linear-function.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/linear-function.hh
- lib/hnco/functions/collection/linear-function.cc

5.59 LinearMap Class Reference

Linear map.

#include <hnco/maps/map.hh>

Inheritance diagram for LinearMap:

Public Member Functions

· void random (int rows, int cols, bool surjective)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

Map

• int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Load and save map

• void load (std::string path)

Load map.

• void save (std::string path) const

Save map.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const Save.

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

bit_matrix_t _bm Bit matrix.

Friends

· class boost::serialization::access

5.59.1 Detailed Description

Linear map.

A linear map f from ${\cal F}_2^m$ to ${\cal F}_2^n$ is defined by f(x)=Ax, where A is an n x m bit matrix.

Definition at line 248 of file map.hh.

5.59.2 Member Function Documentation

5.59.2.1 is_surjective()

```
bool is_surjective ( ) const [override], [virtual]
```

Check for surjective map.

Returns

```
true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 110 of file map.cc.

5.59.2.2 load()

Load map.

Parameters

path F	Path of the file
--------	------------------

Exceptions

```
std::runtime_error
```

Definition at line 311 of file map.hh.

5.59.2.3 random()

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

std::runtime_error

Definition at line 81 of file map.cc.

5.59.2.4 save()

Save map.

Parameters

Exceptions

std::runtime_error

Definition at line 318 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.60 LocalSearchAlgorithm< Neighborhood > Class Template Reference

Local search algorithm.

#include <hnco/algorithms/ls/local-search-algorithm.hh>

 $Inheritance\ diagram\ for\ Local Search Algorithm < \ Neighborhood >:$

Public Member Functions

LocalSearchAlgorithm (int n, Neighborhood *neighborhood)
 Constructor.

Setters

void set_random_initialization (bool b)

Set random initialization.

void set_starting_point (const bit_vector_t &x)
 Set the starting point.

Protected Member Functions

Loop

 void init () override Initialize.

Protected Attributes

• bit_vector_t _starting_point

Starting point.

• Neighborhood * _neighborhood

Neighborhood.

Parameters

• bool <u>_random_initialization</u> = true Random initialization.

5.60.1 Detailed Description

template < class Neighborhood > class hnco::algorithm::LocalSearchAlgorithm < Neighborhood >

Local search algorithm.

Definition at line 33 of file local-search-algorithm.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ls/local-search-algorithm.hh

5.61 LogContext Class Reference

Log context.

#include <hnco/logging/log-context.hh>

Inheritance diagram for LogContext:

Public Member Functions

virtual std::string to_string ()=0
 Get context.

5.61.1 Detailed Description

Log context.

A log context gives an algorithm more information about what is going on during optimization than what can be gained through its function. In particular, its function may not be a function controller. Information is provided through a log context in the form of a string.

Definition at line 41 of file log-context.hh.

The documentation for this class was generated from the following file:

· lib/hnco/logging/log-context.hh

5.62 Logger Class Reference

Logger.

#include <hnco/logging/logger.hh>

Public Member Functions

```
    Logger ()
        Default constructor.

    Logger (LogContext *context)
        Constructor.

    std::ostringstream & line ()
        Get the line.

    virtual ~Logger ()
        Destructor.
```

Static Public Member Functions

```
    static std::ostream & stream ()
        Get the stream.
    static void set_stream (std::ostream *stream)
        Set the stream.
```

Private Attributes

 std::ostringstream _line Line.

Static Private Attributes

```
    static std::ostream * _stream = &std::cout
    Output stream.
```

5.62.1 Detailed Description

Logger.

Simple logger inspired by the Log class published in Dr. Dobb's:

```
https://www.drdobbs.com/cpp/logging-in-c/201804215
```

Definition at line 43 of file logger.hh.

5.62.2 Constructor & Destructor Documentation

5.62.2.1 Logger()

Constructor.

The constructor converts the context to a string which it writes at the beginning of the line.

Parameters

context	Log context
---------	-------------

Definition at line 69 of file logger.hh.

5.62.2.2 ~Logger()

```
virtual ~Logger ( ) [inline], [virtual]
```

Destructor.

Send the line to the output stream and add an end of line.

Definition at line 81 of file logger.hh.

The documentation for this class was generated from the following files:

- lib/hnco/logging/logger.hh
- lib/hnco/logging/logger.cc

5.63 LongPath Class Reference

Long path.

#include <hnco/functions/collection/long-path.hh>

Inheritance diagram for LongPath:

Public Member Functions

• LongPath (int bv_size, int prefix_length)

Constructor.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

 int get_bv_size () const Get bit vector size.

bool has_known_maximum () const

Check for a known maximum.

• double get_maximum () const

Get the global maximum.

Private Attributes

int _bv_size

Bit vector size.

· int _prefix_length

Prefix length.

5.63.1 Detailed Description

Long path.

Long paths have been introduced by Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Here we mostly follow the definition given by Thomas Jansen (see references below).

As an example, here is the 2-long path of dimension 4:

- 0000
- 0001
- 0011
- 0111
- 1111
- 1101
- 1100

The fitness is increasing along the path. The fitness on the complementary of the path is defined as a linear function pointing to the beginning of the path.

To help with the detection of maximum, we have dropped the constant n^2 whose sole purpose was to make the function non negative.

References:

Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb, "Long Path Problems", PPSN III, 1994.

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 62 of file long-path.hh.

5.63.2 Member Function Documentation

5.63.2.1 get_maximum()

```
double get_maximum ( ) const [virtual]
```

Get the global maximum.

Let n be the bit vector size and k the prefix length which must divide n. Then the maximum is $k2^{n/k} - k + 1$.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 62 of file long-path.cc.

5.63.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [virtual]
```

Check for a known maximum.

Let n be the bit vector size and k the prefix length which must divide n.

We have to check that the maximum can be represented exactly as a double, that is, it must be lower or equal to 2^{53} . We are a little bit more conservative with the following test.

If $\log_2(k) + n/k \le 53$ then returns true else returns false.

Reimplemented from Function.

Definition at line 52 of file long-path.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/long-path.hh
- lib/hnco/functions/collection/long-path.cc

5.64 LowerTriangularWalshMoment2 Struct Reference

Lower triangular Walsh moment.

#include <hnco/algorithms/walsh-moment/walsh-moment.hh>

Public Member Functions

LowerTriangularWalshMoment2 (int n)

Constructor.

void display (std::ostream &stream)

Display Walsh moment.

· void init ()

Initialize Walsh moment.

void add (const bit vector t &bv)

Add a bit vector to a Walsh moment.

void average (int count)

Average each Walsh moment.

• void update (const LowerTriangularWalshMoment2 &wm, double rate)

Update a Walsh moment.

 void update (const LowerTriangularWalshMoment2 &wm1, const LowerTriangularWalshMoment2 &wm2, double rate)

Update a Walsh moment.

void scaled_difference (double lambda, const LowerTriangularWalshMoment2 &wm1, const LowerTriangularWalshMoment2 &wm2)

Compute a scaled difference between two moments.

void bound (double margin)

Bound Walsh moment.

• double norm_1 () const

1-norm of the Walsh moment

• double norm 2 () const

2-norm of the Walsh moment

• double norm_infinite () const

infinite-norm of the Walsh moment

• double distance (const LowerTriangularWalshMoment2 &wm) const

distance between the Walsh moment and another Walsh moment

Public Attributes

• std::vector< double > first_moment

First moment.

• std::vector< std::vector< double >> second_moment

Second moment.

5.64.1 Detailed Description

Lower triangular Walsh moment.

Definition at line 37 of file walsh-moment.hh.

5.64.2 Constructor & Destructor Documentation

5.64.2.1 LowerTriangularWalshMoment2()

```
LowerTriangularWalshMoment2 ( int n)
```

Constructor.

Parameters

```
n Size of bit vector
```

Definition at line 32 of file walsh-moment.cc.

5.64.3 Member Function Documentation

5.64.3.1 bound()

Bound Walsh moment.

Ensure that the distance from each Walsh moment to the -1/1 bounds is greater or equal to the given margin.

Parameters

```
margin Distance from the -1/1 bounds
```

Definition at line 161 of file walsh-moment.cc.

5.64.3.2 display()

```
void display (
          std::ostream & stream )
```

Display Walsh moment.

A LowerTriangularWalshMoment2 is displayed as a full symmetric matrix with diagonal entries equal to first moments and off-diagonal entries equal to second moments.

Definition at line 43 of file walsh-moment.cc.

5.64.3.3 scaled_difference()

Compute a scaled difference between two moments.

This member function implements:

```
self = lambda * wm1 - wm2
```

It is mostly useful in herding (Hea).

Parameters

lambda	Scale
wm1	First Walsh moment
wm2	Second Walsh moment

Definition at line 142 of file walsh-moment.cc.

5.64.3.4 update() [1/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - self)
```

Parameters

wm	Target Walsh moment
rate	Learning rate

Postcondition

```
\label{lem:cond_moment_interval} For all i, is_in_interval(first_moment[i], -1, 1) \\ For all j < i, is_in_interval(second_moment[i][j], -1, 1) \\
```

Definition at line 104 of file walsh-moment.cc.

5.64.3.5 update() [2/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - wm2)
```

The resulting entries are not necessarily those of a Walsh moment, that is

```
is_in_interval(first_moment[i], -1, 1) or
```

```
is_in_interval(second_moment[i][j], -1, 1)
```

might fail for some i, j.

Parameters

wm1	Target Walsh moment
wm2	Walsh moment to move away from
rate	Learning rate

Definition at line 122 of file walsh-moment.cc.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/walsh-moment/walsh-moment.hh
- · lib/hnco/algorithms/walsh-moment/walsh-moment.cc

5.65 LowerTriangularWalshMoment2GibbsSampler Class Reference

Gibbs sampler with lower triangular Walsh moments.

#include <hnco/algorithms/walsh-moment/gibbs-sampler.hh>

Public Types

using Moment = LowerTriangularWalshMoment2
 Walsh moment type.

Public Member Functions

- LowerTriangularWalshMoment2GibbsSampler (int n, const LowerTriangularWalshMoment2 &mp)
 Constructor.
- · void init ()

Initialize.

· void update (int i)

Update state.

void update_sync ()

Update state synchronously.

const bit_vector_t & get_state ()

Get the state of the Gibbs sampler.

Private Attributes

• const LowerTriangularWalshMoment2 & _model_parameters

Model parameters.

bit_vector_t _state

State of the Gibbs sampler.

pv_t _pv

Probability vector for synchronous Gibbs sampling.

5.65.1 Detailed Description

Gibbs sampler with lower triangular Walsh moments.

Definition at line 38 of file gibbs-sampler.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.hh
- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.cc

5.66 LowerTriangularWalshMoment2Herding Class Reference

Herding with lower triangular Walsh moment.

```
#include <hnco/algorithms/walsh-moment/herding.hh>
```

Public Types

using Moment = LowerTriangularWalshMoment2
 Walsh moment type.

Public Member Functions

LowerTriangularWalshMoment2Herding (int n)

Constructor.

void init ()

Initialization.

void sample (const LowerTriangularWalshMoment2 &target, bit_vector_t &x)

Sample a bit vector.

• double error (const LowerTriangularWalshMoment2 &target)

Compute the error.

Getters

 const LowerTriangularWalshMoment2 & get_delta () const Get delta.

Setters

void set_randomize_bit_order (bool x)
 Randomize bit order.

Protected Attributes

• LowerTriangularWalshMoment2 _delta

Delta moment.

• LowerTriangularWalshMoment2 _count

Counter moment.

• LowerTriangularWalshMoment2 _error

Error moment.

permutation_t _permutation

Permutation.

• int _time

Time.

Parameters

bool _randomize_bit_order = false
 Randomize bit order.

5.66.1 Detailed Description

Herding with lower triangular Walsh moment.

Definition at line 37 of file herding.hh.

5.66.2 Constructor & Destructor Documentation

5.66.2.1 LowerTriangularWalshMoment2Herding()

Constructor.

Parameters

n | Size of bit vectors

Definition at line 74 of file herding.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/herding.hh
- lib/hnco/algorithms/walsh-moment/herding.cc

5.67 Ltga Class Reference

Linkage Tree Genetic Algorithm.

#include <hnco/algorithms/fast-efficient-p3/ltga.hh>

Inheritance diagram for Ltga:

Public Member Functions

• Ltga (int n)

Constructor.

• ~Ltga ()

Destructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize.

· void finalize ()

Finalize.

• void set_population_size (int n)

Set population size.

Private Attributes

• Implementation * _pimpl

Pointer to implementation.

• int _population_size = 10

Population size.

Additional Inherited Members

5.67.1 Detailed Description

Linkage Tree Genetic Algorithm.

Implementation of the Linkage Tree Genetic Algorithm Designed to match the variant in the paper: "Hierarchical problem solving with the linkage tree genetic algorithm" by D. Thierens and P. A. N. Bosman

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 47 of file Itga.hh.

5.67.2 Member Data Documentation

5.67.2.1 _pimpl

Implementation* _pimpl [private]

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 57 of file Itga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/fast-efficient-p3/ltga.hh
- lib/hnco/algorithms/fast-efficient-p3/ltga.cc

5.68 Map Class Reference

Мар

#include <hnco/maps/map.hh>

Inheritance diagram for Map:

Public Member Functions

virtual ∼Map ()

Destructor.

• virtual void map (const bit_vector_t &input, bit_vector_t &output)=0

Мар

• virtual int get_input_size () const =0

Get input size.

• virtual int get_output_size () const =0

Get output size.

• virtual bool is_surjective () const

Check for surjective map.

· virtual void display (std::ostream &stream) const

Display.

5.68.1 Detailed Description

Мар

Definition at line 46 of file map.hh.

5.68.2 Member Function Documentation

5.68.2.1 is_surjective()

```
virtual bool is_surjective ( ) const [inline], [virtual]
```

Check for surjective map.

Returns

false

Reimplemented in TsAffineMap, Projection, Injection, MapComposition, AffineMap, LinearMap, Permutation, and Translation.

Definition at line 66 of file map.hh.

The documentation for this class was generated from the following file:

· lib/hnco/maps/map.hh

5.69 MapComposition Class Reference

Map composition.

#include <hnco/maps/map.hh>

Inheritance diagram for MapComposition:

Public Member Functions

• MapComposition ()

Default constructor.

MapComposition (Map *outer, Map *inner)

Constructor.

void map (const bit_vector_t &input, bit_vector_t &output) override

Мар

• int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Private Attributes

Map * _outer

Outer map.

• Map * _inner

Inner map.

bit_vector_t _bv

Temporary bit vector.

5.69.1 Detailed Description

Map composition.

The resulting composition f is defined for all bit vector x by f(x) = outer(inner(x)).

Definition at line 424 of file map.hh.

5.69.2 Constructor & Destructor Documentation

5.69.2.1 MapComposition()

Constructor.

Parameters

outer	outer map
inner	inner map

Precondition

```
outer->get_input_size() == inner->get_output_size()
```

Definition at line 448 of file map.hh.

5.69.3 Member Function Documentation

5.69.3.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true if both maps are surjective

Reimplemented from Map.

Definition at line 472 of file map.hh.

The documentation for this class was generated from the following file:

• lib/hnco/maps/map.hh

5.70 MapgenOptions Class Reference

Command line options for mapgen.

```
#include <mapgen-options.hh>
```

Public Member Functions

• MapgenOptions (int argc, char *argv[])

Constructor.

• int get_input_size () const

Get input_size.

void set_input_size (int x)

Set input_size.

· bool set_input_size () const

Get set-flag for input_size.

int get_map () const

Get map.

void set_map (int x)

Set map.

• bool set_map () const

Get set-flag for map.

• int get_output_size () const

Get output_size.

void set_output_size (int x)

Set output_size.

· bool set_output_size () const

Get set-flag for output_size.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• int get_seed () const

Get seed.

void set seed (int x)

Set seed.

• bool set_seed () const

Get set-flag for seed.

• int get_ts_length () const

Get ts_length.

void set_ts_length (int x)

Set ts_length.

• bool set_ts_length () const

Get set-flag for ts_length.

int get_ts_sampling_mode () const

Get ts_sampling_mode.

void set_ts_sampling_mode (int x)

Set ts_sampling_mode.

· bool set_ts_sampling_mode () const

Get set-flag for ts_sampling_mode.

· bool with_surjective () const

Get surjective.

void set_surjective ()

Set surjective.

Private Member Functions

· void print help (std::ostream &stream) const

Print help message.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string exec name

Name of the executable.

std::string _version

Name Version.

• int _input_size

Input bit vector size.

- bool _opt_input_size
- int map

Type of map.

- bool _opt_map
- int _output_size

Output bit vector size.

- · bool opt output size
- std::string _path

Path (relative or absolute) of a map file.

- bool _opt_path
- int seed

Seed for the random number generator.

- bool opt seed
- · int _ts_length

Transvection sequence length.

- bool opt_ts_length
- int _ts_sampling_mode

Transvection sequence sampling mode.

- bool opt_ts_sampling_mode
- · bool _surjective

Ensure that the sampled linear or affine map is surjective.

Friends

std::ostream & operator<< (std::ostream &, const MapgenOptions &)

Print a header containing the parameter values.

5.70.1 Detailed Description

Command line options for mapgen.

Definition at line 11 of file mapgen-options.hh.

The documentation for this class was generated from the following files:

- app/mapgen-options.hh
- app/mapgen-options.cc

5.71 MaxNae3Sat Class Reference

Max not-all-equal 3SAT.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for MaxNae3Sat:

Public Member Functions

MaxNae3Sat ()

Default constructor.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• void load (std::string path)

Load instance.

Additional Inherited Members

5.71.1 Detailed Description

Max not-all-equal 3SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 162 of file max-sat.hh.

5.71.2 Member Function Documentation

5.71.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 177 of file max-sat.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.72 MaxSat Class Reference

MAX-SAT.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for MaxSat:

Public Member Functions

MaxSat ()

Default constructor.

• void random (int n, int k, int c)

Random instance.

• void random (const bit_vector_t &solution, int k, int c)

Random instance with satisfiable expression.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Additional Inherited Members

5.72.1 Detailed Description

MAX-SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 119 of file max-sat.hh.

5.72.2 Member Function Documentation

5.72.2.1 random() [1/2]

Random instance with satisfiable expression.

Warning

Since the expression is satisfiable, the maximum of the function is equal to the number of clauses in the expression. However, this information is lost in the save and load cycle as the archive format only manages the expression itself.

Parameters

solution	Solution
k	Number of literals per clause
С	Number of clauses

Definition at line 218 of file max-sat.cc.

5.72.2.2 random() [2/2]

```
\begin{array}{c} \text{void random (} \\ & \text{int } n, \\ & \text{int } k, \\ & \text{int } c \text{ )} \end{array}
```

Random instance.

Parameters

n	Size of bit vectors
k	Number of literals per clause
С	Number of clauses

Definition at line 190 of file max-sat.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.73 Mimic Class Reference

Mutual information maximizing input clustering.

5.73 Mimic Class Reference 207

#include <hnco/algorithms/mimic.hh>

Inheritance diagram for Mimic:

Public Member Functions

Mimic (int n, int population_size)
 Constructor.

Setters

• void set_selection_size (int selection_size)

Set the selection size.

Protected Member Functions

void sample (bit_vector_t &bv)

Sample a bit vector.

void compute_conditional_entropy (int index)

Compute conditional entropy.

• void update_model ()

Update model.

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

Population _population

Population.

• permutation_t _permutation

Permutation.

std::array< pv_t, 2 > _parameters

Model parameters.

pv_t _mean

Mean of selected bit vectors.

• std::vector< double > _entropies

Conditional entropies.

std::array< std::array< int, 2 >, 2 > _table

Contingency table.

• double _lower_bound

Lower bound of probability.

• double <u>upper_bound</u>

Upper bound of probability.

Parameters

• int _selection_size Selection size.

5.73.1 Detailed Description

Mutual information maximizing input clustering.

This implementation differs from the algorithm described in the reference below in that it constrains all probabilities (marginal and conditional) to stay away from the values 0 and 1 by a fixed margin equal to 1 / n, as usually done in algorithms such as Pbil or Umda.

Reference:

Jeremy S. De Bonet and Charles L. Isbell and Jr. and Paul Viola, MIMIC: Finding Optima by Estimating Probability Densities, in Advances in Neural Information Processing Systems, 1996, MIT Press.

Definition at line 52 of file mimic.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/mimic.hh
- · lib/hnco/algorithms/mimic.cc

5.74 Mmas Class Reference 209

5.74 Mmas Class Reference

Max-min ant system.

#include <hnco/algorithms/pv/mmas.hh>

Inheritance diagram for Mmas:

Public Member Functions

• Mmas (int n)

Constructor.

Setters

- void set_compare (std::function< bool(double, double)> x)
 Set the binary operator for comparing evaluations.
- void set_learning_rate (double x)

Set the learning rate.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

bit_vector_t _x

Candidate solution.

Parameters

- std::function< bool(double, double)> _compare = std::greater_equal<double>()
 Binary operator for comparing evaluations.
- double _learning_rate = 1e-3 Learning rate.

5.74.1 Detailed Description

Max-min ant system.

Reference:

Thomas Stützle and Holger H. Hoos. 2000. MAX-MIN Ant System. Future Generation Computer Systems 16, 8 (2000), 889-914.

Definition at line 42 of file mmas.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/mmas.hh
- lib/hnco/algorithms/pv/mmas.cc

5.75 Modifier Class Reference

Function modifier.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Modifier:

Public Member Functions

Modifier (Function *function)
 Constructor.

Additional Inherited Members

5.75.1 Detailed Description

Function modifier.

Definition at line 39 of file modifier.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/modifiers/modifier.hh

5.76 MuCommaLambdaEa Class Reference

(mu, lambda) EA.

#include <hnco/algorithms/ea/mu-comma-lambda-ea.hh>

Inheritance diagram for MuCommaLambdaEa:

Public Member Functions

MuCommaLambdaEa (int n, int mu, int lambda)
 Constructor.

Setters

- void set_mutation_rate (double p)
 Set the mutation rate.
- void set_allow_no_mutation (bool b)
 Set the flag_allow_no_mutation.

Protected Member Functions

Loop

void init () override
 Initialize.

 void iterate () override
 Single iteration.

Protected Attributes

• Population _parents

Parents.

· Population _offsprings

Offsprings.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

std::uniform_int_distribution < int > _select_parent
 Select parent.

Parameters

```
• double _mutation_rate 
 Mutation rate.
```

• bool _allow_no_mutation = false Allow no mutation.

5.76.1 Detailed Description

(mu, lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file mu-comma-lambda-ea.hh.

5.76.2 Constructor & Destructor Documentation

5.76.2.1 MuCommaLambdaEa()

```
MuCommaLambdaEa (
        int n,
        int mu,
        int lambda ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 89 of file mu-comma-lambda-ea.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/mu-comma-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-comma-lambda-ea.cc

5.77 MultiBitFlip Class Reference

Multi bit flip.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for MultiBitFlip:

Public Member Functions

MultiBitFlip (int n)

Constructor.

Protected Member Functions

void bernoulli_trials (int k)

Sample a given number of bits using Bernoulli trials.

• void rejection_sampling (int k)

Sample a given number of bits using rejection sampling.

Additional Inherited Members

5.77.1 Detailed Description

Multi bit flip.

Definition at line 185 of file neighborhood.hh.

5.77.2 Constructor & Destructor Documentation

5.77.2.1 MultiBitFlip()

```
MultiBitFlip (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 208 of file neighborhood.hh.

5.77.3 Member Function Documentation

5.77.3.1 bernoulli_trials()

```
void bernoulli_trials ( \quad \text{int } k \text{ ) } \quad [\text{protected}]
```

Sample a given number of bits using Bernoulli trials.

Parameters 4 8 1

k Number of bits to sample

Definition at line 34 of file neighborhood.cc.

5.77.3.2 rejection_sampling()

```
\begin{tabular}{ll} \beg
```

Sample a given number of bits using rejection sampling.

Parameters

k Number of bits to sample

Definition at line 52 of file neighborhood.cc.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.78 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference

Multivariate function adapter.

#include <hnco/functions/multivariate-function-adapter.hh>

Inheritance diagram for MultivariateFunctionAdapter< Fn, Rep, Conv >:

Public Member Functions

MultivariateFunctionAdapter (Fn *fn, std::vector< Rep > reps)
 Constructor.

Information about the function

int get_bv_size () const override

Get bit vector size.

Evaluation

 double evaluate (const bit_vector_t &bv) override Evaluate.

Display

- void display (std::ostream &stream) const override Display.
- void describe (const bit_vector_t &bv, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)
 Unpack a bit vector into values.

Private Attributes

• Fn * _function

Multivariate function.

std::vector< Rep > _representations

Representations.

std::vector< typename Rep::domain_type > _variables

Variables.

· Conv converter

Converter from codomain to double.

5.78.1 Detailed Description

```
template<class Fn, class Rep, class Conv> class hnco::function::MultivariateFunctionAdapter< Fn, Rep, Conv>
```

Multivariate function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary multivariate function. This is achieved using a composition:

- Representations (Rep): hypercube -> domain
- Multivariate function (Fn): product of domains -> codomain
- Converter (Conv): codomain -> double

Definition at line 46 of file multivariate-function-adapter.hh.

5.78.2 Constructor & Destructor Documentation

5.78.2.1 MultivariateFunctionAdapter()

```
MultivariateFunctionAdapter (  \mbox{Fn * } fn, \\  \mbox{std::vector} < \mbox{Rep } > reps \mbox{ ) [inline]}
```

Constructor.

Parameters

fn	Multivariate function
reps	Representations

Definition at line 86 of file multivariate-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/multivariate-function-adapter.hh

5.79 MuPlusLambdaEa Class Reference

(mu+lambda) EA.

#include <hnco/algorithms/ea/mu-plus-lambda-ea.hh>

Inheritance diagram for MuPlusLambdaEa:

Public Member Functions

MuPlusLambdaEa (int n, int mu, int lambda)
 Constructor.

Setters

- void set_mutation_rate (double p)
 Set the mutation rate.
- void set_allow_no_mutation (bool b) Set the flag _allow_no_mutation.

Protected Member Functions

Loop

```
    void init () override
        Initialize.

    void iterate () override
        Single iteration.
```

Protected Attributes

• Population _parents

Parents.

Population _offsprings

Offsprings.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

std::uniform_int_distribution < int > _select_parent
 Select parent.

Parameters

```
    double _mutation_rate
        Mutation rate.

    bool _allow_no_mutation = false
```

Allow no mutation.

5.79.1 Detailed Description

```
(mu+lambda) EA.
```

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 40 of file mu-plus-lambda-ea.hh.

5.79.2 Constructor & Destructor Documentation

5.79.2.1 MuPlusLambdaEa()

```
MuPlusLambdaEa (
          int n,
          int mu,
           int lambda ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 89 of file mu-plus-lambda-ea.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/mu-plus-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-plus-lambda-ea.cc

5.80 NearestNeighborlsingModel1 Class Reference

Nearest neighbor Ising model in one dimension.

#include <hnco/functions/collection/ising/nearest-neighbor-ising-model-1. \leftarrow hh>

Inheritance diagram for NearestNeighborIsingModel1:

Public Member Functions

· NearestNeighborIsingModel1 ()

Constructor.

• void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

Instance generators

- template < class CouplingGen, class FieldGen >
 void generate (int n, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.
- void random (int n)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

· void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

 void display (std::ostream &stream) const override Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

template < class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _coupling

Coupling with nearest neighbor to the right.

• std::vector< double > _field

External field.

bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

· class boost::serialization::access

5.80.1 Detailed Description

Nearest neighbor Ising model in one dimension.

Its expression is of the form

$$f(x) = \sum_{i} J_{i,i+1} (1 - 2x_i)(1 - 2x_{i+1}) + \sum_{i} h_i (1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} J_{i,i+1}(-1)^{x_i + x_{i+1}} + \sum_{i} h_i(-1)^{x_i}$$

where $J_{i,i+1}$ is the interaction between adjacent sites i and i+1 and h_i is the external magnetic field interacting with site i.

In the case of periodic boundary conditions, the sum i+1 is mod ${\bf n}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is Walsh Expansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 63 of file nearest-neighbor-ising-model-1.hh.

5.80.2 Member Function Documentation

5.80.2.1 evaluate()

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 44 of file nearest-neighbor-ising-model-1.cc.

5.80.2.2 generate()

```
void generate (
          int n,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 124 of file nearest-neighbor-ising-model-1.hh.

5.80.2.3 load()

Load instance.

Parameters

path Path of the instance to load	
-----------------------------------	--

Exceptions

```
std::runtime_error
```

Definition at line 158 of file nearest-neighbor-ising-model-1.hh.

5.80.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 199 of file nearest-neighbor-ising-model-1.hh.

5.80.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

n Size of bit vector

Definition at line 140 of file nearest-neighbor-ising-model-1.hh.

5.80.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 165 of file nearest-neighbor-ising-model-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-1.hh
- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-1.cc

5.81 NearestNeighborlsingModel2 Class Reference

Nearest neighbor Ising model in two dimensions.

#include <hnco/functions/collection/ising/nearest-neighbor-ising-model-2. \leftarrow hh>

Inheritance diagram for NearestNeighborIsingModel2:

Public Member Functions

• NearestNeighborIsingModel2 ()

Constructor.

void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

Instance generators

template < class CouplingGen, class FieldGen >
 void generate (int num_rows, int num_columns, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.

void random (int num_rows, int num_columns)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

· void display (std::ostream &stream) const override

Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const Save.

• template<class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• void resize (int num_rows, int num_columns)

Resize data structures.

Private Attributes

std::vector< std::vector< double >> _coupling_right

Coupling with nearest neighbor to the right.

std::vector< std::vector< double >> _coupling_below

Coupling with nearest neighbor below.

std::vector< std::vector< double >> _field

External field.

bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

· class boost::serialization::access

5.81.1 Detailed Description

Nearest neighbor Ising model in two dimensions.

We are considering a rectangular lattice in which each site has (at most) four neighbors (left, right, above, below).

The expression of the function is of the form

$$f(x) = \sum_{(i,j)} J_{ij}(1-2x_i)(1-2x_j) + \sum_i h_i(1-2x_i)$$

or equivalently

$$f(x) = \sum_{(i,j)} J_{ij}(-1)^{x_i + x_j} + \sum_{i} h_i(-1)^{x_i}$$

where the first sum is over adjacent sites (i, j), J_{ij} is the interaction between adjacent sites i and j, and h_i is the external magnetic field interacting with site i.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is WalshExpansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 65 of file nearest-neighbor-ising-model-2.hh.

5.81.2 Member Function Documentation

5.81.2.1 evaluate()

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 47 of file nearest-neighbor-ising-model-2.cc.

5.81.2.2 generate()

```
void generate (
          int num_rows,
          int num_columns,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

num_rows	Number of rows
num_columns	Number of columns
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 132 of file nearest-neighbor-ising-model-2.hh.

5.81.2.3 load()

Load instance.

Parameters

path	Path of the instance to load
•	

Exceptions

std::runtime_error

Definition at line 170 of file nearest-neighbor-ising-model-2.hh.

5.81.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 216 of file nearest-neighbor-ising-model-2.hh.

5.81.2.5 random()

```
void random (
                int num_rows,
                int num_columns ) [inline]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

num_rows	Number of rows
num_columns	Number of columns

Definition at line 152 of file nearest-neighbor-ising-model-2.hh.

5.81.2.6 save()

Save instance.

Parameters

path	Path of the instance to save

Exceptions

std::runtime_error

Definition at line 177 of file nearest-neighbor-ising-model-2.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-2.hh
- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-2.cc

5.82 Needle Class Reference

Needle in a haystack.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Needle:

Public Member Functions

• Needle (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.82.1 Detailed Description

Needle in a haystack.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 135 of file theory.hh.

5.82.2 Member Function Documentation

5.82.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

1

Reimplemented from Function.

Definition at line 158 of file theory.hh.

5.82.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 154 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.83 Negation Class Reference

Negation.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Negation:

Public Member Functions

• Negation (Function *function)

Constructor.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

Evaluation

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Additional Inherited Members

5.83.1 Detailed Description

Negation.

Use cases:

- for algorithms which minimize rather than maximize a function
- · for functions one wishes to minimize
- when minimization is needed inside an algorithm

Definition at line 60 of file modifier.hh.

5.83.2 Member Function Documentation

5.83.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 79 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.84 Neighborhood Class Reference

Neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for Neighborhood:

Public Member Functions

• Neighborhood (int n)

Constructor.

virtual ~Neighborhood ()

Destructor.

virtual void set_origin (const bit_vector_t &x)

Set the origin.

• virtual const bit_vector_t & get_origin () const

Get the origin.

virtual const bit_vector_t & get_candidate () const

Get the candidate bit vector.

virtual const sparse_bit_vector_t & get_flipped_bits () const

Get flipped bits.

virtual void propose ()

Propose a candidate bit vector.

virtual void keep ()

Keep the candidate bit vector.

· virtual void forget ()

Forget the candidate bit vector.

virtual void mutate (bit_vector_t &bv)

Mutate.

virtual void map (const bit_vector_t &input, bit_vector_t &output)

Мар.

Protected Member Functions

virtual void sample_bits ()=0
 Sample bits.

Protected Attributes

```
· bit_vector_t _origin
```

Origin of the neighborhood.

• bit_vector_t _candidate

candidate bit vector

 $\bullet \quad \mathsf{std}{::}\mathsf{uniform_int_distribution}{<} \ \mathsf{int} > \underline{\mathsf{index_dist}} \\$

Index distribution.

• sparse_bit_vector_t _flipped_bits

Flipped bits.

5.84.1 Detailed Description

Neighborhood.

A neighborhood maintains two points, _origin and _candidate. They are initialized in the same state by set_origin. A Neighborhood class must implement the member function sample_bits which samples the bits to flip in _origin to get a _candidate. The following member functions take care of the modifications:

```
· propose: flip _candidate
```

- · keep: flip _origin
- · forget flip _candidate

After keep or forget, _origin and _candidate are in the same state again.

A Neighborhood class can also behave as a mutation operator through the member functions mutate and map.

Definition at line 61 of file neighborhood.hh.

5.84.2 Constructor & Destructor Documentation

5.84.2.1 Neighborhood()

```
Neighborhood ( \label{eq:neighborhood} \text{ int } n \text{ ) } \quad [\text{inline}]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 86 of file neighborhood.hh.

5.84.3 Member Function Documentation

5.84.3.1 map()

Мар.

The output bit vector is a mutated version of the input bit vector.

Parameters

input	Input bit vector
output	Output bit vector

Definition at line 151 of file neighborhood.hh.

5.84.3.2 mutate()

Mutate.

In-place mutation of the bit vector.

Parameters

Definition at line 137 of file neighborhood.hh.

The documentation for this class was generated from the following file:

lib/hnco/neighborhoods/neighborhood.hh

5.85 NeighborhoodIterator Class Reference

Neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for NeighborhoodIterator:

Public Member Functions

• NeighborhoodIterator (int n)

Constructor.

virtual void set_origin (const bit_vector_t &x)
 Set origin.

Additional Inherited Members

5.85.1 Detailed Description

Neighborhood iterator.

A neighborhood iterator allows to iterate over bit vectors in the neighborhood of a given origin. The origin itself should not belong to the neighborhood.

Definition at line 38 of file neighborhood-iterator.hh.

5.85.2 Constructor & Destructor Documentation

5.85.2.1 NeighborhoodIterator()

```
\begin{tabular}{lll} Neighborhood Iterator ( & & & int $n$ ) & [inline] \end{tabular}
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 47 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.86 NkLandscape Class Reference

NK landscape.

#include <hnco/functions/collection/nk-landscape.hh>

Inheritance diagram for NkLandscape:

Public Member Functions

• NkLandscape ()

Default constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

 void display (std::ostream &stream) const override Display.

Instance generators

template < class Generator > void generate (int n, int k, Generator generator)

Instance generator.

• void random (int n, int k)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

```
    template < class Archive > void serialize (Archive & ar, const unsigned int version)
    Serialize.
```

• void random_structure (int n, int k)

Random structue.

Private Attributes

```
    std::vector< std::vector< int > > _neighbors
    Bit neighbors.
```

std::vector< std::vector< double >> _partial_functions
 Partial functions.

Friends

· class boost::serialization::access

5.86.1 Detailed Description

NK landscape.

Reference:

S. A. Kauffman. 1993. The origins of order: self-organisation and selection in evolution. Oxford University Press.

Definition at line 45 of file nk-landscape.hh.

5.86.2 Member Function Documentation

5.86.2.1 generate()

Instance generator.

Parameters

n	Size of bit vector
k	Number of neighbors per bit
generator	Generator for partial function values

Definition at line 89 of file nk-landscape.hh.

5.86.2.2 load()

Load instance.

Parameters

Exceptions

```
std::runtime_error
```

Definition at line 126 of file nk-landscape.hh.

5.86.2.3 random()

```
\begin{tabular}{ll} \beg
```

Random instance.

Partial function values are sampled from the normal distribution.

Parameters

n	Size of bit vector
k	Number of neighbors per bit

Definition at line 107 of file nk-landscape.hh.

5.86.2.4 random structure()

```
void random_structure (  \mbox{int } n, \\ \mbox{int } k \;) \;\; \mbox{[private]}
```

Random structue.

Parameters

n	Size of bit vector
k	Number of neighbors per bit

Definition at line 32 of file nk-landscape.cc.

5.86.2.5 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 133 of file nk-landscape.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/nk-landscape.hh
- lib/hnco/functions/collection/nk-landscape.cc

5.87 NpsPbil Class Reference

Population-based incremental learning with negative and positive selection.

```
#include <hnco/algorithms/pv/nps-pbil.hh>
```

Inheritance diagram for NpsPbil:

Public Member Functions

NpsPbil (int n, int population_size)
 Constructor.

Setters

- void set_selection_size (int x)
 - Set the selection size.
- void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

Loop

- void init () override
 - Initialize.
- void iterate () override

Single iteration.

Protected Attributes

Population _population

Population.

pv_t _mean_best

Mean of best individuals.

pv_t _mean_worst

Mean of worst individuals.

Parameters

- int _selection_size = 1 Selection size.
- double <u>learning_rate</u> = 1e-3 *Learning rate*.

5.87.1 Detailed Description

Population-based incremental learning with negative and positive selection.

Reference:

Arnaud Berny. 2001. Extending selection learning toward fixed-length d-ary strings. In Artificial Evolution (Lecture Notes in Computer Science), P. Collet and others (Eds.). Springer, Le Creusot.

Definition at line 42 of file nps-pbil.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/nps-pbil.hh
- · lib/hnco/algorithms/pv/nps-pbil.cc

5.88 OnBudgetFunction Class Reference

Function with a limited number of evaluations.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for OnBudgetFunction:

Public Member Functions

• OnBudgetFunction (Function *function, int budget)

Constructor.

Evaluation

• double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

• void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

· int _budget

Budget.

Additional Inherited Members

5.88.1 Detailed Description

Function with a limited number of evaluations.

Definition at line 186 of file controller.hh.

5.88.2 Member Function Documentation

5.88.2.1 evaluate()

```
double evaluate ( {\tt const\ bit\_vector\_t\ \&\ x\ )} \quad [{\tt virtual}]
```

Evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 97 of file controller.cc.

5.88.2.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 106 of file controller.cc.

5.88.2.3 update()

Update after a safe evaluation.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 115 of file controller.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- · lib/hnco/functions/controllers/controller.cc

5.89 OneMax Class Reference

OneMax.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for OneMax:

Public Member Functions

OneMax (int bv_size)

Constructor.

Information about the function

• int get by size () const override

Get bit vector size.

double get_maximum () const override

Get the global maximum.

bool has_known_maximum () const override

Check for a known maximum.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

void display (std::ostream &stream) const override

Display.

Evaluation

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

5.89.1 Detailed Description

OneMax.

References:

Heinz Mühlenbein, "How genetic algorithms really work: I. mutation and hillclimbing", in Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, 1992

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file theory.hh.

5.89.2 Member Function Documentation

5.89.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 61 of file theory.hh.

5.89.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 65 of file theory.hh.

5.89.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 70 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.90 OnePlusLambdaCommaLambdaGa Class Reference

(1+(lambda, lambda)) genetic algorithm.

#include <hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh>

Inheritance diagram for OnePlusLambdaCommaLambdaGa:

Public Member Functions

OnePlusLambdaCommaLambdaGa (int n, int lambda)
 Constructor.

Setters

- void set_mutation_rate (double p)
 - Set the mutation rate.
- void set_crossover_bias (double x)

Set the crossover bias.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

Population _offsprings

Offsprings.

• std::binomial_distribution< int > _radius_dist

Radius distribution.

• neighborhood::HammingSphere _mutation

Mutation operator.

bit_vector_t _parent

Parent.

• BiasedCrossover _crossover

Biased crossover.

Parameters

double _mutation_rate

Mutation rate.

• double _crossover_bias

Crossover bias.

5.90.1 Detailed Description

(1+(lambda, lambda)) genetic algorithm.

Reference:

Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science 567 (2015), 87–104.

Definition at line 49 of file one-plus-lambda-comma-lambda-ga.hh.

5.90.2 Constructor & Destructor Documentation

5.90.2.1 OnePlusLambdaCommaLambdaGa()

Constructor.

By default, _mutation_rate is set to lambda / n and _crossover_bias to 1 / lambda.

Parameters

n	Size of bit vectors
lambda	Offspring population size

Definition at line 103 of file one-plus-lambda-comma-lambda-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh
- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.cc

5.91 OnePlusOneEa Class Reference

(1+1) EA.

#include <hnco/algorithms/ea/one-plus-one-ea.hh>

Inheritance diagram for OnePlusOneEa:

Public Member Functions

• OnePlusOneEa (int n)

Constructor.

void maximize (const std::vector< function::Function * > &functions) override
 Maximize.

• void finalize () override

Finalize.

Setters

• void set_num_iterations (int x)

Set the number of iterations.

void set_mutation_rate (double p)

Set the mutation rate.

void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Private Attributes

• neighborhood::StandardBitMutation _neighborhood

Neighborhood.

• RandomLocalSearch _rls

Random local search.

Parameters

```
• int _num_iterations = 0
```

Number of iterations.

• double _mutation_rate

Mutation rate.

• bool <u>_allow_no_mutation</u> = false

Allow no mutation.

• bool _incremental_evaluation = false

Incremental evaluation.

Additional Inherited Members

5.91.1 Detailed Description

```
(1+1) EA.
```

(1+1) EA is implemented as a RandomLocalSearch with a StandardBitMutation neighborhood and infinite patience. Thus the class OnePlusOneEa is derived from Algorithm instead of IterativeAlgorithm.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 45 of file one-plus-one-ea.hh.

5.91.2 Constructor & Destructor Documentation

5.91.2.1 OnePlusOneEa()

```
OnePlusOneEa (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

_mutation_rate is initialized to 1 / n.

Definition at line 80 of file one-plus-one-ea.hh.

5.91.3 Member Function Documentation

5.91.3.1 set_num_iterations()

Set the number of iterations.

Parameters

x Number of iterations

 $x \le 0$ means indefinite

Definition at line 111 of file one-plus-one-ea.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ea/one-plus-one-ea.hh

5.92 ParameterLessPopulationPyramid Class Reference

Parameter-less Population Pyramid.

```
#include <hnco/algorithms/fast-efficient-p3/p3.hh>
```

Inheritance diagram for ParameterLessPopulationPyramid:

Public Member Functions

ParameterLessPopulationPyramid (int n)

Constructor.

~ParameterLessPopulationPyramid ()

Destructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize.

void finalize ()

Finalize.

Private Attributes

• Implementation * pimpl

Pointer to implementation.

Additional Inherited Members

5.92.1 Detailed Description

Parameter-less Population Pyramid.

Implemention of the Parameter-less Population Pyramid (P3 for short).

Author: Brian W. Goldman

Reference:

"Fast and Efficient Black Box Optimization using the Parameter-less Population Pyramid" by B. W. Goldman and W. F. Punch

Integrated into HNCO by Arnaud Berny

Definition at line 53 of file p3.hh.

5.92.2 Member Data Documentation

5.92.2.1 _pimpl

```
Implementation* _pimpl [private]
```

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 64 of file p3.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/fast-efficient-p3/p3.hh
- lib/hnco/algorithms/fast-efficient-p3/p3.cc

5.93 ParsedModifier Class Reference

Parsed modifier.

#include <hnco/functions/modifiers/parsed-modifier.hh>

Inheritance diagram for ParsedModifier:

Public Member Functions

ParsedModifier (Function *function, std::string expression)
 Constructor.

Information about the function

int get_bv_size () const override
 Get bit vector size.

Evaluation

double evaluate (const bit_vector_t &) override
 Evaluate a bit vector.

Private Attributes

• FunctionParser _fparser

Function parser.

• double _values [1]

Array of values.

Additional Inherited Members

5.93.1 Detailed Description

Parsed modifier.

Let f be the original function. Then the modified function is equivalent to $g \circ f$, where g is a real function defined by an expression g(x) provided as a string.

Definition at line 40 of file parsed-modifier.hh.

5.93.2 Constructor & Destructor Documentation

5.93.2.1 ParsedModifier()

Constructor.

Parameters

function	Decorated function
expression	Expression to parse

Definition at line 31 of file parsed-modifier.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/parsed-modifier.hh
- · lib/hnco/functions/modifiers/parsed-modifier.cc

5.94 ParsedMultivariateFunction < Parser > Class Template Reference

Parsed multivariate function.

```
#include <hnco/functions/collection/parsed-multivariate-function.hh>
```

Public Types

- using domain_type = typename Parser::value_type
 Domain type.
- using codomain_type = typename Parser::value_type
 Codomain type.

Public Member Functions

• ParsedMultivariateFunction (std::string expression)

Constructor.

· void display (std::ostream &stream) const

Display the problem.

codomain_type evaluate (const std::vector< domain_type > &x)

Evaluate.

void describe (const std::vector< domain type > &x, std::ostream &stream)

Describe a solution.

• int get_num_variables ()

Get the number of variables.

Private Attributes

Parser _fparser

Function parser.

• std::vector< std::string > _variable_names

Variable names.

std::string _expression

Expression.

5.94.1 Detailed Description

```
template < class Parser > class hnco::function::ParsedMultivariateFunction < Parser >
```

Parsed multivariate function.

Uses the C++ library "Function Parser" (fparser):

```
http://warp.povusers.org/FunctionParser/fparser.html
```

Warning

The function string syntax depends on the chosen parser.

Definition at line 48 of file parsed-multivariate-function.hh.

5.94.2 Constructor & Destructor Documentation

5.94.2.1 ParsedMultivariateFunction()

Constructor.

Parameters

expression	Expression to parse
- 	

Definition at line 71 of file parsed-multivariate-function.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/collection/parsed-multivariate-function.hh

5.95 Partition Class Reference

Partition.

#include <hnco/functions/collection/partition.hh>

Inheritance diagram for Partition:

Public Member Functions

• Partition ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

• void random (int n, int upper_bound)

Random instance.

Load and save instance

```
    void load (std::string path)
        Load instance.

    void save (std::string path) const
        Save instance.
```

Display

- void display (std::ostream &stream) const override

 Display
- void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

```
    template < class Archive > void serialize (Archive & ar, const unsigned int version)
    Serialize.
```

Private Attributes

std::vector < int > _numbers
 Multiset of positive integers.

Friends

· class boost::serialization::access

5.95.1 Detailed Description

Partition.

Partition a finite multiset of positive integers into two subsets such that the sum of numbers in the first subset is the closest to the sum of numbers in the second subset.

The function computes the negation of the distance between the sum of numbers corresponding to ones in the bit vector and the sum of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Definition at line 52 of file partition.hh.

5.95.2 Member Function Documentation

5.95.2.1 generate()

```
void generate (  \qquad \qquad \text{int } n, \\ \\ \text{Generator } generator \text{ ) } \text{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 84 of file partition.hh.

5.95.2.2 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 120 of file partition.hh.

5.95.2.3 random()

```
void random (
          int n,
          int upper_bound ) [inline]
```

Random instance.

The numbers are sampled from the uniform distribution on [1..upper_bound].

Parameters

n	Size of bit vector
upper_bound	Upper bound of positive integers

Definition at line 100 of file partition.hh.

5.96 Pbil Class Reference 259

5.95.2.4 save()

Save instance.

Parameters

path | Path of the instance to save

Exceptions

std::runtime_error

Definition at line 127 of file partition.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/partition.hh
- · lib/hnco/functions/collection/partition.cc

5.96 Pbil Class Reference

Population-based incremental learning.

```
#include <hnco/algorithms/pv/pbil.hh>
```

Inheritance diagram for Pbil:

Public Member Functions

Pbil (int n, int population_size)
 Constructor.

Setters

void set_selection_size (int x)
 Set the selection size.

void set_learning_rate (double x)
 Set the learning rate.

Protected Member Functions

Loop

- void init () override
 Initialize.
- void iterate () override Single iteration.

Protected Attributes

• Population _population Population.

pv_t _mean

Mean of selected bit vectors.

Parameters

int _selection_size = 1
 Selection size.
 double _learning_rate = 1e-3
 Learning rate.

5.96.1 Detailed Description

Population-based incremental learning.

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 42 of file pbil.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/pv/pbil.hh
- · lib/hnco/algorithms/pv/pbil.cc

5.97 Permutation Class Reference

Permutation.

#include <hnco/maps/map.hh>

Inheritance diagram for Permutation:

Public Member Functions

• void random (int n)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

Мар

• int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Load and save map

• void load (std::string path)

Load map.

• void save (std::string path) const

Save map.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

• permutation_t _permutation Permutation.

Friends

· class boost::serialization::access

5.97.1 Detailed Description

Permutation.

A permutation is a linear map f from F_2^n to itself defined by f(x)=y, where $y_i=x_{\sigma_i}$ and σ is a permutation of 0, 1, ..., n - 1.

Definition at line 167 of file map.hh.

5.97.2 Member Function Documentation

5.97.2.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 218 of file map.hh.

5.97.2.2 load()

Load map.

Parameters

path Path of the file

Exceptions

std::runtime_error

Definition at line 229 of file map.hh.

5.97.2.3 save()

Save map.

Parameters

path Path of the file

Exceptions

std::runtime_error

Definition at line 236 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.98 PermutationFunctionAdapter< Fn > Class Template Reference

Permutation function adapter.

#include <hnco/functions/permutation-function-adapter.hh>

Inheritance diagram for PermutationFunctionAdapter< Fn >:

Public Member Functions

• PermutationFunctionAdapter (Fn *fn, representation::PermutationRepresentation rep)

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &bv) override

Evaluate

· void display (std::ostream &stream) const override

Display.

• void describe (const bit_vector_t &bv, std::ostream &stream) override

Describe a bit vector.

Private Member Functions

void unpack (const bit vector t &bv)

Unpack a bit vector into a permutation.

Private Attributes

• Fn * function

Permutation function.

• representation::PermutationRepresentation _representation

Permutation representation.

• permutation_t _permutation

Permutation.

5.98.1 Detailed Description

template < class Fn >

class hnco::function::PermutationFunctionAdapter< Fn >

Permutation function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary function over permutations. This is achieved using a permutation representation.

Definition at line 42 of file permutation-function-adapter.hh.

5.98.2 Constructor & Destructor Documentation

5.98.2.1 PermutationFunctionAdapter()

```
PermutationFunctionAdapter (  \mbox{Fn * fn,} \\ \mbox{representation::PermutationRepresentation } rep \mbox{ ) [inline]}
```

Constructor.

Parameters

fn	Multivariate function
rep	Permutation representation

Definition at line 66 of file permutation-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/permutation-function-adapter.hh

5.99 PermutationRepresentation Class Reference

Permutation representation.

#include <hnco/representations/permutation.hh>

Classes

struct Element

Element.

Public Member Functions

• PermutationRepresentation (int num_elements, int num_additional_bits)

Constructor.

• int get_num_elements () const

Get number of elements.

· int size () const

Size of the representation.

• void unpack (const bit_vector_t &bv, int start, hnco::permutation_t &permutation)

Unpack bit vector into a permutation.

· void display (std::ostream &stream) const

Display.

Private Attributes

std::vector< Element > _elements
 Elements.

• int _num_bits

Number of bits per element.

• int _representation_size

Representation size.

5.99.1 Detailed Description

Permutation representation.

Definition at line 39 of file permutation.hh.

5.99.2 Constructor & Destructor Documentation

5.99.2.1 PermutationRepresentation()

```
PermutationRepresentation (
          int num_elements,
          int num_additional_bits ) [inline]
```

Constructor.

Each element is represented by an integer encoded using $std::ceil(std::log(num_elements) / std::log(2)) + num_ additional_bits.$

Parameters

num_elements	Number of elements
num_additional_bits	Number of additional bits per element

Definition at line 73 of file permutation.hh.

The documentation for this class was generated from the following file:

• lib/hnco/representations/permutation.hh

5.100 Plateau Class Reference

Plateau.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Plateau:

Public Member Functions

• Plateau (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.100.1 Detailed Description

Plateau.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 242 of file theory.hh.

5.100.2 Member Function Documentation

5.100.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

bv size + 2

Reimplemented from Function.

Definition at line 265 of file theory.hh.

5.100.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 261 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.101 Population Class Reference

Population

#include <hnco/algorithms/population.hh>

Inheritance diagram for Population:

Public Member Functions

Population (int population_size, int n)

Constructor.

· int size () const

Size.

• void random ()

Initialize the population with random bit vectors.

Get bit vectors for non const populations

```
    bit_vector_t & get_bv (int i)
```

Get a bit vector.

bit_vector_t & get_best_bv ()

Get best bit vector.

• bit_vector_t & get_best_bv (int i)

Get best bit vector.

• bit_vector_t & get_worst_bv (int i)

Get worst bit vector.

Get bit vectors for const populations

• const bit_vector_t & get_bv (int i) const

Get a bit vector.

• const bit_vector_t & get_best_bv () const

Get best bit vector.

const bit_vector_t & get_best_bv (int i) const

Get best bit vector.

const bit_vector_t & get_worst_bv (int i) const

Get worst bit vector.

Get sorted values

double get_best_value (int i) const

Get best value.

· double get_best_value () const

Get best value.

Evaluation and sorting

• void evaluate (function::Function *function)

Evaluate the population.

void evaluate_in_parallel (const std::vector< function::Function * > &functions)

Evaluate the population in parallel.

· void shuffle ()

Shuffle the lookup table.

• void sort ()

Sort the lookup table.

void partial_sort (int selection_size)

Partially sort the lookup table.

Selection

void plus_selection (const Population &offsprings)

Plus selection.

void plus_selection (Population &offsprings)

Plus selection.

void comma_selection (const Population &offsprings)

Comma selection.

• void comma_selection (Population &offsprings)

Comma selection.

Protected Attributes

```
    std::vector< bit_vector_t > _bvs
        Unsorted population of bit vectors.
    std::vector< index_value_t > _lookup
        Lookup table.
```

5.101.1 Detailed Description

Population

Definition at line 50 of file population.hh.

5.101.2 Constructor & Destructor Documentation

5.101.2.1 Population()

```
Population (
                int population_size,
               int n ) [inline]
```

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 72 of file population.hh.

5.101.3 Member Function Documentation

5.101.3.1 comma_selection() [1/2]

```
void comma_selection ( {\tt const\ Population\ \&\ } offsprings\ )
```

Comma selection.

Implemented with a copy.

Precondition

Offspring population must be partially sorted.

Warning

The function does not break ties randomly (workaround: shuffle offsprings).

Definition at line 116 of file population.cc.

5.101.3.2 comma_selection() [2/2]

Comma selection.

Implemented with a swap. Should be faster than comma_selection with a copy.

Precondition

Offspring population must be partially sorted.

Warning

The function does not break ties randomly (workaround: shuffle offsprings). Modifies its argument.

Definition at line 130 of file population.cc.

5.101.3.3 get_best_bv() [1/4]

```
bit_vector_t& get_best_bv ( ) [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 95 of file population.hh.

5.101.3.4 get_best_bv() [2/4]

```
const bit_vector_t& get_best_bv ( ) const [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 127 of file population.hh.

5.101.3.5 get_best_bv() [3/4]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 103 of file population.hh.

5.101.3.6 get_best_bv() [4/4]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 135 of file population.hh.

5.101.3.7 get_best_value() [1/2]

```
double get_best_value ( ) const [inline]
```

Get best value.

Precondition

The population must be sorted.

Definition at line 164 of file population.hh.

5.101.3.8 get_best_value() [2/2]

```
double get_best_value ( \quad \text{int } i \text{ ) const [inline]}
```

Get best value.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 158 of file population.hh.

5.101.3.9 get_worst_bv() [1/2]

Get worst bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 111 of file population.hh.

5.101.3.10 get_worst_bv() [2/2]

Get worst bit vector.

Parameters

```
i Index in the sorted population
```

Precondition

The population must be sorted.

Definition at line 143 of file population.hh.

5.101.3.11 plus_selection() [1/2]

Plus selection.

Implemented with a copy.

Precondition

Both populations must be completely sorted.

Warning

The function does not break ties randomly (workaround: shuffle parents and offsprings).

Definition at line 78 of file population.cc.

5.101.3.12 plus_selection() [2/2]

Plus selection.

Implemented with a swap. Should be faster than plus_selection with a copy.

Precondition

Both populations must be completely sorted.

Warning

The function does not break ties randomly (workaround: shuffle parents and offsprings). Modifies its argument.

Definition at line 97 of file population.cc.

5.101.4 Member Data Documentation

5.101.4.1 _lookup

```
std::vector<index_value_t> _lookup [protected]
```

Lookup table.

If p is an element of _lookup, then p.first is the index of the corresponding bit vector in the unsorted population whereas p.second is its value.

Definition at line 63 of file population.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/population.hh
- lib/hnco/algorithms/population.cc

5.102 PriorNoise Class Reference

Prior noise.

#include <hnco/functions/modifiers/prior-noise.hh>

Inheritance diagram for PriorNoise:

Public Member Functions

PriorNoise (Function *fn, neighborhood::Neighborhood *nh)
 Constructor.

Information about the function

• int get_bv_size () const override

Get bit vector size.

double get_maximum () const override

Get the global maximum.

• bool has known maximum () const override

Check for a known maximum.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

Evaluation

 double evaluate (const bit_vector_t &) override Evaluate a bit vector.

Private Attributes

• neighborhood::Neighborhood * _neighborhood

Neighborhood.

bit_vector_t _noisy_bv

Noisy bit vector.

Additional Inherited Members

5.102.1 Detailed Description

Prior noise.

Definition at line 37 of file prior-noise.hh.

5.102.2 Member Function Documentation

5.102.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 69 of file prior-noise.hh.

5.102.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 75 of file prior-noise.hh.

5.102.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Function.

Definition at line 79 of file prior-noise.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/prior-noise.hh
- lib/hnco/functions/modifiers/prior-noise.cc

5.103 ProgressTracker Class Reference

ProgressTracker.

```
#include <hnco/functions/controllers/controller.hh>
```

Inheritance diagram for ProgressTracker:

Classes

struct Event

Event

Public Member Functions

• ProgressTracker (Function *function)

Constructor.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

• void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Get information

• const Event & get_last_improvement ()

Get the last improvement.

• double get_evaluation_time ()

Get evaluation time.

Setters

• void set_log_improvement (bool x)

Log improvement.

• void set_record_evaluation_time (bool b)

Record evaluation time.

Protected Member Functions

• void update_last_improvement (double value)

Update last improvement.

Protected Attributes

• Event _last_improvement

Last improvement.

• StopWatch _stop_watch

Stop watch.

Parameters

• bool <u>log_improvement</u> = false

Log improvement.

• bool <u>_record_evaluation_time</u> = false

Record evaluation time.

5.103.1 Detailed Description

ProgressTracker.

A ProgressTracker is a CallCounter which keeps track the last improvement, that is its value and the number of evaluations needed to reach it.

Definition at line 226 of file controller.hh.

5.103.2 Member Function Documentation

5.103.2.1 get_last_improvement()

```
const Event& get_last_improvement ( ) [inline]
```

Get the last improvement.

Warning

If _last_improvement.num_evaluations is zero then _function has never been called. The Event returned by get_last_improvement has therefore no meaning.

Definition at line 302 of file controller.hh.

5.103.3 Member Data Documentation

5.103.3.1 _record_evaluation_time

```
bool _record_evaluation_time = false [protected]
```

Record evaluation time.

Only relevant for ProgressTracker::evaluate.

Definition at line 260 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- · lib/hnco/functions/controllers/controller.cc

5.104 ProgressTrackerContext Class Reference

Log context for ProgressTracker.

```
#include <hnco/logging/log-context.hh>
```

Inheritance diagram for ProgressTrackerContext:

Public Member Functions

• ProgressTrackerContext (hnco::function::controller::ProgressTracker *pt)

Constructor.

• std::string to_string ()

Get context.

Private Attributes

hnco::function::controller::ProgressTracker * _pt
 Progress tracker.

5.104.1 Detailed Description

Log context for ProgressTracker.

Definition at line 50 of file log-context.hh.

The documentation for this class was generated from the following file:

• lib/hnco/logging/log-context.hh

5.105 Projection Class Reference

Projection.

#include <hnco/maps/map.hh>

Inheritance diagram for Projection:

Public Member Functions

```
    Projection (const std::vector< int > &bit_positions, int input_size)
    Constructor.
```

void map (const bit_vector_t &input, bit_vector_t &output) override
 Map

• int get_input_size () const override Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Private Attributes

```
    std::vector< int > _bit_positions
    Bit positions.
```

• int _input_size Input size.

5.105.1 Detailed Description

Projection.

The projection y of a bit vector x is x where we have dropped a given set of components.

```
Let I = \{i_1, i_2, \dots, i_m\} be a subset of \{1, 2, \dots, n\}.
```

A projection f from F_2^n to F_2^m , where $n \geq m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_j = x_{i_j}$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 549 of file map.hh.

5.105.2 Constructor & Destructor Documentation

5.105.2.1 Projection()

Constructor.

The output size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the input from where output bits are copied
input_size	Input size

Precondition

```
input_size >= bit_positions.size()
```

Definition at line 196 of file map.cc.

5.105.3 Member Function Documentation

5.105.3.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 587 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.106 PvAlgorithm Class Reference

Probability vector algorithm.

#include <hnco/algorithms/pv/pv-algorithm.hh>

Inheritance diagram for PvAlgorithm:

Public Member Functions

• PvAlgorithm (int n)

Constructor.

Setters for logging

- void set_log_entropy (bool x)
 - Log entropy.
- void set_log_num_components (int x)

Set the number of probability vector components to log.

void set_log_pv (bool x)

Log probability vector.

Protected Member Functions

void set_something_to_log ()
 Set flag for something to log.

Loop

• void log () override Log.

Protected Attributes

pv_t _pv

Probability vector.

• double _lower_bound

Lower bound of probability.

• double _upper_bound

Upper bound of probability.

Logging

• bool <u>log_entropy</u> = false Log entropy.

• bool <u>log_pv</u> = false

Log probability vector.

• int _log_num_components = 5

Number of probability vector components to log.

5.106.1 Detailed Description

Probability vector algorithm.

Definition at line 33 of file pv-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/pv-algorithm.hh
- · lib/hnco/algorithms/pv/pv-algorithm.cc

5.107 PythonFunction Class Reference

Python function.

#include <hnco/functions/collection/python-function.hh>

Inheritance diagram for PythonFunction:

Public Member Functions

• PythonFunction (std::string path, std::string name)

Constructor.

• ∼PythonFunction ()

Destructor.

• int get_bv_size () const

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Private Attributes

```
pybind11::object _scope
```

Module.

• Function * _function

Function.

5.107.1 Detailed Description

Python function.

Uses pybind11.

The constructor initializes the python interpreter and the destructor finalizes it.

The python code must import the hnco module (built separately) to allow for communication between C++ and python. It must also define a derived class that inherits Function and an instance of it.

Definition at line 47 of file python-function.hh.

5.107.2 Constructor & Destructor Documentation

5.107.2.1 PythonFunction()

```
PythonFunction (
          std::string path,
          std::string name )
```

Constructor.

Parameters

path	Path of the python file
name	Name of the Function instance defined in the python file

Definition at line 32 of file python-function.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/python-function.hh
- lib/hnco/functions/collection/python-function.cc

5.108 Qubo Class Reference

Quadratic unconstrained binary optimization.

#include <hnco/functions/collection/qubo.hh>

Inheritance diagram for Qubo:

Public Member Functions

• Qubo ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Load and save instance

void load (std::string path)
 Load instance.

Private Member Functions

void load (std::istream &stream)

Load an instance.

Private Attributes

std::vector< std::vector< double >> _q
 Matrix.

5.108.1 Detailed Description

Quadratic unconstrained binary optimization.

Its expression is of the form $f(x) = \sum_i Q_{ii} x_i + \sum_{i < j} Q_{ij} x_i x_j = x^T Q x$, where Q is an n x n upper-triangular matrix.

Qubo is the problem addressed by qbsolv. Here is its description as given on github:

Qbsolv, a decomposing solver, finds a minimum value of a large quadratic unconstrained binary optimization (QUBO) problem by splitting it into pieces solved either via a D-Wave system or a classical tabu solver.

There are some differences between WalshExpansion2 and Qubo:

- WalshExpansion2 maps 0/1 variables into -1/1 variables whereas Qubo directly deals with binary variables.
- Hence, there is a separate linear part in WalshExpansion2 whereas the linear part in Qubo stems from the diagonal elements of the given matrix.

qbsolv aims at minimizing quadratic functions whereas hnco algorithms aim at maximizing them. Hence Qubo::load negates all elements so that maximizing the resulting function is equivalent to minimizing the original Qubo.

References:

Michael Booth, Steven P. Reinhardt, and Aidan Roy. 2017. Partitioning Optimization Problems for Hybrid Classical/Quantum Execution. Technical Report. D-Wave.

```
https://github.com/dwavesystems/qbsolv
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
```

Definition at line 74 of file qubo.hh.

5.108.2 Member Function Documentation

Load an instance.

Exceptions

```
std::runtime_error
```

Definition at line 37 of file qubo.cc.

5.108.2.2 load() [2/2]

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 105 of file qubo.hh.

5.108.3 Member Data Documentation

5.108.3.1 _q

```
\verb|std::vector<| std::vector<| double>| > \_q [private]|
```

Matrix.

n x n upper triangular matrix.

Definition at line 82 of file qubo.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/qubo.hh
- lib/hnco/functions/collection/qubo.cc

5.109 RandomLocalSearch Class Reference

Random local search.

#include <hnco/algorithms/ls/random-local-search.hh>

Inheritance diagram for RandomLocalSearch:

Public Member Functions

- RandomLocalSearch (int n, neighborhood::Neighborhood *neighborhood)
- void finalize () override

Constructor.

Finalize.

Setters

- void set_compare (std::function< bool(double, double)> x)
 Set the binary operator for comparing evaluations.
- void set_patience (int x)

Set patience.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Protected Member Functions

· void iterate_full ()

Single iteration with full evaluation.

• void iterate_incremental ()

Single iteration with incremental evaluation.

Loop

- void init () override
 - Initialize.
- void iterate () override

Single iteration.

Protected Attributes

· int _num_failures

Number of failure.

Parameters

- std::function< bool(double, double)> _compare = std::greater_equal<double>()
 Binary operator for comparing evaluations.
- int patience = 50

Patience.

• bool _incremental_evaluation = false

Incremental evaluation.

5.109.1 Detailed Description

Random local search.

Definition at line 36 of file random-local-search.hh.

5.109.2 Member Function Documentation

5.109.2.1 set_patience()

```
void set_patience (
          int x ) [inline]
```

Set patience.

Number of consecutive rejected moves before ending the search.

Parameters

If $x \le 0$ then patience is considered infinite.

Definition at line 104 of file random-local-search.hh.

5.109.3 Member Data Documentation

5.109.3.1 patience

```
int _patience = 50 [protected]
```

Patience.

Number of consecutive rejected moves before ending the search.

Definition at line 55 of file random-local-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/random-local-search.hh
- lib/hnco/algorithms/ls/random-local-search.cc

5.110 RandomSearch Class Reference

Random search.

#include <hnco/algorithms/random-search.hh>

Inheritance diagram for RandomSearch:

Public Member Functions

• RandomSearch (int n) Constructor.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

bit_vector_t _candidate
 Candidate.

5.110.1 Detailed Description

Random search.

Definition at line 31 of file random-search.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/random-search.hh
- · lib/hnco/algorithms/random-search.cc

5.111 RandomSelection Class Reference

Random selection.

#include <hnco/algorithms/random-selection.hh>

Inheritance diagram for RandomSelection:

Public Member Functions

• RandomSelection (int population_size, int n)

Constructor.

• virtual void init ()

Initialize.

• virtual const bit_vector_t & select ()=0

Select an individual in the population.

Additional Inherited Members

5.111.1 Detailed Description

Random selection.

Definition at line 34 of file random-selection.hh.

5.111.2 Constructor & Destructor Documentation

5.111.2.1 RandomSelection()

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 44 of file random-selection.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/random-selection.hh

5.112 RandomWalk Class Reference

Random walk.

#include <hnco/algorithms/ls/random-walk.hh>

Inheritance diagram for RandomWalk:

Public Member Functions

• RandomWalk (int n, neighborhood::Neighborhood *neighborhood) Constructor.

Setters

- void set_incremental_evaluation (bool x)
 Set incremental evaluation.
- void set_log_value () Set log.

Protected Member Functions

- · void iterate_full ()
 - Single iteration with full evaluation.
- void iterate_incremental ()

Single iteration with incremental evaluation.

Loop

- void iterate () override
 - Single iteration.
- void log () override Log.

Protected Attributes

· double _value

Value of the last visited bit vector.

Parameters

 bool _incremental_evaluation = false Incremental evaluation.

5.112.1 Detailed Description

Random walk.

The algorithm simply performs a random walk on the graph implicitly given by the neighborhood. At each iteration, the chosen neighbor does not depend on its evaluation. However optimization takes place as in random search, that is the best visited bit vector is remembered.

Definition at line 41 of file random-walk.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/random-walk.hh
- lib/hnco/algorithms/ls/random-walk.cc

5.113 Restart Class Reference

Restart.

#include <hnco/algorithms/decorators/restart.hh>

Inheritance diagram for Restart:

Public Member Functions

Restart (int n, Algorithm *algorithm)
 Constructor.

Protected Member Functions

Loop

• void iterate () override Single iteration.

Protected Attributes

Algorithm * _algorithm
 Algorithm.

5.113.1 Detailed Description

Restart.

Restart an Algorithm an indefinite number of times. Should be used in conjonction with OnBudgetFunction or StopOnMaximum.

Definition at line 38 of file restart.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/decorators/restart.hh
- lib/hnco/algorithms/decorators/restart.cc

5.114 Ridge Class Reference

Ridge.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Ridge:

Public Member Functions

• Ridge (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.114.1 Detailed Description

Ridge.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 207 of file theory.hh.

5.114.2 Member Function Documentation

5.114.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

2 * _bv_size

Reimplemented from Function.

Definition at line 230 of file theory.hh.

5.114.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 226 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.115 ScalarToDouble < T > Struct Template Reference

Convert a scalar to a double.

```
#include <hnco/functions/converter.hh>
```

Public Types

using codomain_type = T
 Codomain type.

Public Member Functions

double operator() (T x)
 Convert to double.

5.115.1 Detailed Description

```
template < class T > struct hnco::function::ScalarToDouble < T >
```

Convert a scalar to a double.

Definition at line 32 of file converter.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/converter.hh

5.116 SimulatedAnnealing Class Reference

Simulated annealing.

#include <hnco/algorithms/ls/simulated-annealing.hh>

Inheritance diagram for SimulatedAnnealing:

Public Member Functions

• SimulatedAnnealing (int n, neighborhood::Neighborhood *neighborhood) Constructor.

Setters

- void set_num_transitions (int x)
 - Set the number of accepted transitions before annealing.
- void set num trials (int x)
 - Set the Number of trials.
- void set_initial_acceptance_probability (double x)
 - Set the initial acceptance probability.
- void set_beta_ratio (double x)

Set ratio for beta.

Protected Member Functions

void init_beta ()
 Initialize beta.

Loop

 void init () override Initialize.

• void iterate () override Single iteration.

Protected Attributes

• double _beta

Inverse temperature.

· double _current_value

Current value.

· int _transitions

Number of accepted transitions.

Parameters

• int _num_transitions = 50

Number of accepted transitions before annealing.

• int _num_trials = 100

Number of trials.

• double _initial_acceptance_probability = 0.6

Initial acceptance probability.

• double beta ratio = 1.2

Ratio for beta.

5.116.1 Detailed Description

Simulated annealing.

Reference:

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (May 1983), 671–680.

Definition at line 42 of file simulated-annealing.hh.

5.116.2 Member Function Documentation

5.116.2.1 init_beta()

```
void init_beta ( ) [protected]
```

Initialize beta.

Requires (2 * _num_trials) evaluations. This should be taken into account when using OnBudgetFunction.

Definition at line 34 of file simulated-annealing.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/simulated-annealing.hh
- lib/hnco/algorithms/ls/simulated-annealing.cc

5.117 SingleBitFlip Class Reference

One bit neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for SingleBitFlip:

Public Member Functions

SingleBitFlip (int n)
 Constructor.

Private Member Functions

void sample_bits ()
 Sample bits.

Additional Inherited Members

5.117.1 Detailed Description

One bit neighborhood.

Definition at line 163 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

5.118 SingleBitFlipIterator Class Reference

Single bit flip neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for SingleBitFlipIterator:

Public Member Functions

• SingleBitFlipIterator (int n)

Constructor.

bool has_next () override

Has next bit vector.

• const bit_vector_t & next () override

Next bit vector.

Private Attributes

size_t _index
 Index of the last flipped bit.

Additional Inherited Members

5.118.1 Detailed Description

Single bit flip neighborhood iterator.

Definition at line 56 of file neighborhood-iterator.hh.

5.118.2 Constructor & Destructor Documentation

5.118.2.1 SingleBitFlipIterator()

```
SingleBitFlipIterator (
          int n ) [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 68 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.119 SinusSummationCancellation Class Reference

Summation cancellation with sinus.

#include <hnco/functions/collection/cancellation.hh>

Inheritance diagram for SinusSummationCancellation:

Public Member Functions

• SinusSummationCancellation (int n)

Constructor.

double evaluate (const bit_vector_t &x) override

Evaluate a bit vector.

Additional Inherited Members

5.119.1 Detailed Description

Summation cancellation with sinus.

Reference:

M. Sebag and M. Schoenauer. 1997. A society of hill-climbers. In Proc. IEEE Int. Conf. on Evolutionary Computation. Indianapolis, 319–324.

Definition at line 101 of file cancellation.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/cancellation.hh
- lib/hnco/functions/collection/cancellation.cc

5.120 SixPeaks Class Reference

Six Peaks.

#include <hnco/functions/collection/four-peaks.hh>

Inheritance diagram for SixPeaks:

Public Member Functions

• SixPeaks (int bv_size, int threshold)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

· int threshold

Threshold.

• int _maximum

Maximum.

5.120.1 Detailed Description

Six Peaks.

It is defined by

```
f(x) = \max\{head(x, 0) + tail(x, 1) + head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 0) is the length of the longest prefix of x made of zeros;
- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- tail(x, 1) is the length of the longest suffix of x made of ones;
- R(x) is the reward;
- R(x) = n if (head(x, 0) > t and tail(x, 1) > t) or (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has six maxima, of which exactly four are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

J. S. De Bonet, C. L. Isbell, and P. Viola. 1996. MIMIC: finding optima by estimating probability densities. In Advances in Neural Information Processing Systems. Vol. 9. MIT Press, Denver.

Definition at line 128 of file four-peaks.hh.

5.120.2 Member Function Documentation

5.120.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 156 of file four-peaks.hh.

5.120.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 152 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/four-peaks.hh
- lib/hnco/functions/collection/four-peaks.cc

5.121 StandardBitMutation Class Reference

Standard bit mutation.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for StandardBitMutation:

Public Member Functions

• StandardBitMutation (int n)

Constructor.

• StandardBitMutation (int n, double p)

Constructor.

• void set_mutation_rate (double p)

Set mutation rate.

Setters

• void set_allow_no_mutation (bool b) Set the flag_allow_no_mutation.

Private Member Functions

```
void sample_bits ()
```

Sample bits.

· void bernoulli process ()

Bernoulli process.

Private Attributes

• std::bernoulli_distribution _bernoulli_dist

Bernoulli distribution (biased coin)

• std::binomial_distribution< int > _binomial_dist

Binomial distribution.

bool _rejection_sampling = false

Rejection sampling.

Parameters

• bool <u>_allow_no_mutation</u> = false *Allow no mutation*.

Additional Inherited Members

5.121.1 Detailed Description

Standard bit mutation.

Each component of the origin bit vector is flipped with some fixed probability. Unless stated otherwise, if no component has been flipped at the end, the process is started all over again. Thus the number of flipped bits follows a pseudo binomial law.

Definition at line 222 of file neighborhood.hh.

5.121.2 Constructor & Destructor Documentation

5.121.2.1 StandardBitMutation() [1/2]

```
StandardBitMutation (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

The Bernoulli probability is set to 1 / n.

Definition at line 257 of file neighborhood.hh.

5.121.2.2 StandardBitMutation() [2/2]

Constructor.

Parameters

n	Size of bit vectors
р	Bernoulli probability

Definition at line 267 of file neighborhood.hh.

5.121.3 Member Function Documentation

5.121.3.1 set_mutation_rate()

```
void set_mutation_rate ( \label{eq:condition} \mbox{double } p \mbox{ ) } \mbox{ [inline]}
```

Set mutation rate.

Sets _rejection_sampling to true if E(X) < sqrt(n), where X is a random variable with a binomial distribution B(n, p), that is if np < sqrt(n) or p < 1 / sqrt(n).

Definition at line 278 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.122 SteepestAscentHillClimbing Class Reference

Steepest ascent hill climbing.

#include <hnco/algorithms/ls/steepest-ascent-hill-climbing.hh>

Inheritance diagram for SteepestAscentHillClimbing:

Public Member Functions

• SteepestAscentHillClimbing (int n, neighborhood::NeighborhoodIterator *neighborhood) Constructor.

Protected Member Functions

 void iterate () override Single iteration.

Protected Attributes

std::vector < bit_vector_t > _candidates
 Potential candidate.

5.122.1 Detailed Description

Steepest ascent hill climbing.

Definition at line 34 of file steepest-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.cc

5.123 StopOnMaximum Class Reference

Stop on maximum.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnMaximum:

Public Member Functions

• StopOnMaximum (Function *function)

Constructor.

Additional Inherited Members

5.123.1 Detailed Description

Stop on maximum.

Definition at line 136 of file controller.hh.

5.123.2 Constructor & Destructor Documentation

5.123.2.1 StopOnMaximum()

```
StopOnMaximum (
          Function * function ) [inline]
```

Constructor.

Precondition

function->has_known_maximum()

Definition at line 143 of file controller.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.124 StopOnTarget Class Reference

Stop on target.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnTarget:

Public Member Functions

• StopOnTarget (Function *function, double target)

Constructor.

• const algorithm::solution_t & get_trigger ()

Get trigger.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

```
    double _target
        Target.
        algorithm::solution_t _trigger
        Trigger.
```

Additional Inherited Members

5.124.1 Detailed Description

Stop on target.

The member function eval throws an exception TargetReached when the value of its decorated function reaches a given target.

Warning

The target is detected using the greater or equal operator hence the result should be taken with care in case of non integer (floating point) function values.

Definition at line 92 of file controller.hh.

5.124.2 Constructor & Destructor Documentation

5.124.2.1 StopOnTarget()

Constructor.

Parameters

function	Decorated function
target	Target

Definition at line 107 of file controller.hh.

5.124.3 Member Function Documentation

5.124.3.1 evaluate()

Evaluate a bit vector.

Exceptions

TargetReached

Implements Function.

Definition at line 33 of file controller.cc.

5.124.3.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 46 of file controller.cc.

5.124.3.3 update()

Update after a safe evaluation.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 59 of file controller.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.125 StopWatch Class Reference

```
Stop watch.
```

```
#include <hnco/stop-watch.hh>
```

Public Member Functions

Private Attributes

```
    double _total_time = 0
        Total time.

    clock_t _start
        Start time.
```

5.125.1 Detailed Description

Stop watch.

Definition at line 31 of file stop-watch.hh.

The documentation for this class was generated from the following file:

· lib/hnco/stop-watch.hh

5.126 Sudoku Class Reference

Sudoku

#include <hnco/functions/collection/sudoku.hh>

Public Types

• using domain_type = std::size_t

Domain type.

• using codomain_type = double

Codomain type.

Public Member Functions

• Sudoku ()

Default constructor.

void random (int c)

Random instance.

• int get_num_variables ()

Get the number of variables.

• void display (std::ostream &stream) const

Display the problem.

void describe (const std::vector< domain_type > &x, std::ostream &stream)

Describe a solution.

double evaluate (const std::vector< domain_type > &x)

Evaluate a solution.

Private Member Functions

void write_variables (const std::vector< domain_type > &x)
 Write variables.

Private Attributes

• std::vector< std::vector< char >> _problem_instance

Problem instance.

std::vector< std::vector< domain_type >> _candidate

Candidate.

• $std::vector < int > _counts$

Counts.

int _num_variables

Number of variables.

Load and save instance

void load_ (std::istream &stream)

Load an instance.

· void save_ (std::ostream &stream) const

Save an instance.

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

5.126.1 Detailed Description

Sudoku

Definition at line 34 of file sudoku.hh.

5.126.2 Member Function Documentation

5.126.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 100 of file sudoku.hh.

5.126.2.2 load_()

Load an instance.

Exceptions

std::runtime_error

Definition at line 57 of file sudoku.cc.

5.126.2.3 random()

```
void random ( \quad \text{int } c \ )
```

Random instance.

Parameters

```
c Number of empty cells
```

Definition at line 96 of file sudoku.cc.

5.126.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 112 of file sudoku.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/sudoku.hh
- lib/hnco/functions/collection/sudoku.cc

5.127 SummationCancellation Class Reference

Summation cancellation.

#include <hnco/functions/collection/cancellation.hh>

Inheritance diagram for SummationCancellation:

Public Member Functions

• SummationCancellation (int n)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &x) override

Evaluate a bit vector.

Protected Member Functions

void convert (const bit_vector_t &x)

Convert a bit vector into a real vector.

Protected Attributes

• int _bv_size

Bit vector size.

• std::vector< double > _buffer

Buffer.

5.127.1 Detailed Description

Summation cancellation.

Encoding of a signed integer:

- bit 0: sign
- bits 1 to 8: two's complement representation

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 46 of file cancellation.hh.

5.127.2 Constructor & Destructor Documentation

5.127.2.1 SummationCancellation()

```
\label{eq:continuous} \begin{tabular}{ll} Summation Cancellation ( \\ & int \ n \ ) & [inline] \end{tabular}
```

Constructor.

The bit vector size n must be a multiple of 9. The size of _buffer is then n / 9.

Parameters

```
n Size of the bit vector
```

Definition at line 68 of file cancellation.hh.

5.127.3 Member Function Documentation

5.127.3.1 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 81 of file cancellation.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/cancellation.hh
- · lib/hnco/functions/collection/cancellation.cc

5.128 SymmetricWalshMoment2 Struct Reference

Symmetric Walsh moment.

#include <hnco/algorithms/walsh-moment/walsh-moment.hh>

Public Member Functions

• SymmetricWalshMoment2 (int n)

Constructor.

· void display (std::ostream &stream)

Display Walsh moment.

• void init ()

Initialize Walsh moment.

void add (const bit_vector_t &bv)

Add a bit vector to a Walsh moment.

void average (int count)

Average each Walsh moment.

void update (const SymmetricWalshMoment2 &wm, double rate)

Update a Walsh moment.

void update (const SymmetricWalshMoment2 &wm1, const SymmetricWalshMoment2 &wm2, double rate)

Update a Walsh moment.

void scaled_difference (double lambda, const SymmetricWalshMoment2 &wm1, const SymmetricWalshMoment2 &wm2)

Compute a scaled difference between two moments.

· void bound (double margin)

Bound Walsh moment.

double norm_1 () const

1-norm of the Walsh moment

• double norm 2 () const

2-norm of the Walsh moment

• double norm_infinite () const

infinite-norm of the Walsh moment

double distance (const SymmetricWalshMoment2 &wm) const

distance between the Walsh moment and another Walsh moment

Public Attributes

```
    std::vector< double > first_moment
```

std::vector< std::vector< double >> second_moment
 Second moment.

5.128.1 Detailed Description

Symmetric Walsh moment.

Definition at line 144 of file walsh-moment.hh.

5.128.2 Constructor & Destructor Documentation

5.128.2.1 SymmetricWalshMoment2()

```
\label{eq:continuous} {\tt SymmetricWalshMoment2} \mbox{ (} \\ \mbox{int } n \mbox{ )}
```

Constructor.

Parameters

```
n Size of bit vector
```

Definition at line 236 of file walsh-moment.cc.

5.128.3 Member Function Documentation

5.128.3.1 average()

```
void average ( \quad \text{int } count \ )
```

Average each Walsh moment.

Postcondition

matrix_is_symmetric(second_moment)

Definition at line 296 of file walsh-moment.cc.

5.128.3.2 bound()

```
void bound ( \mbox{double } \mbox{\it margin })
```

Bound Walsh moment.

Ensure that the distance from each Walsh moment to the -1/1 bounds is greater or equal to the given margin.

Parameters

margin	Distance from the -1/1 bounds
--------	-------------------------------

Definition at line 378 of file walsh-moment.cc.

5.128.3.3 display()

```
void display ( {\tt std::ostream~\&~stream~)}
```

Display Walsh moment.

A SymmetricWalshMoment2 is displayed as a full symmetric matrix with diagonal entries equal to first moments and off-diagonal entries equal to second moments.

Definition at line 247 of file walsh-moment.cc.

5.128.3.4 scaled_difference()

Compute a scaled difference between two moments.

This member function implements:

```
self = lambda * wm1 - wm2
```

It is mostly useful in herding (Hea).

Parameters

lambda	Scale
wm1	First Walsh moment
wm2	Second Walsh moment

Definition at line 357 of file walsh-moment.cc.

5.128.3.5 update() [1/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - self)
```

Parameters

wm	Target Walsh moment
rate	Learning rate

Postcondition

```
For all i, is_in_interval(first_moment[i], -1, 1)

For all i != j, is_in_interval(second_moment[i][j], -1, 1)

matrix_is_symmetric(second_moment)
```

Definition at line 314 of file walsh-moment.cc.

5.128.3.6 update() [2/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - wm2)
```

The resulting entries are not necessarily those of a Walsh moment, that is

```
is_in_interval(first_moment[i], -1, 1) or
is_in_interval(second_moment[i][j], -1, 1)
might fail for some i != j.
```

Parameters

wm1	Target Walsh moment
wm2	Walsh moment to move away from
rate	Learning rate

Definition at line 335 of file walsh-moment.cc.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/walsh-moment/walsh-moment.hh
- · lib/hnco/algorithms/walsh-moment/walsh-moment.cc

5.129 SymmetricWalshMoment2GibbsSampler Class Reference

Gibbs sampler with symmetric Walsh moments.

#include <hnco/algorithms/walsh-moment/gibbs-sampler.hh>

Public Types

using Moment = SymmetricWalshMoment2
 Walsh moment type.

Public Member Functions

• SymmetricWalshMoment2GibbsSampler (int n, const SymmetricWalshMoment2 &mp)

Constructor.

· void init ()

Initialize.

· void update (int i)

Update state.

void update_sync ()

Update state synchronously.

const bit_vector_t & get_state ()

Get the state of the Gibbs sampler.

Private Attributes

const SymmetricWalshMoment2 & _model_parameters

Model parameters.

bit_vector_t _state

State of the Gibbs sampler.

pv_t _pv

Probability vector for synchronous Gibbs sampling.

5.129.1 Detailed Description

Gibbs sampler with symmetric Walsh moments.

Definition at line 75 of file gibbs-sampler.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.hh
- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.cc

5.130 SymmetricWalshMoment2Herding Class Reference

Herding with symmetric Walsh moment.

```
#include <hnco/algorithms/walsh-moment/herding.hh>
```

Public Types

using Moment = SymmetricWalshMoment2
 Walsh moment type.

Public Member Functions

• SymmetricWalshMoment2Herding (int n)

Constructor.

• void init ()

Initialization.

void sample (const SymmetricWalshMoment2 &target, bit_vector_t &x)

Sample a bit vector.

• double error (const SymmetricWalshMoment2 &target)

Compute the error.

Getters

 const SymmetricWalshMoment2 & get_delta () const Get delta.

Setters

void set_randomize_bit_order (bool x)
 Randomize bit order.

Protected Attributes

SymmetricWalshMoment2 _delta

Delta moment.

• SymmetricWalshMoment2 _count

Counter moment.

• SymmetricWalshMoment2 _error

Error moment.

permutation_t _permutation

Permutation.

• int _time

Time.

Parameters

bool _randomize_bit_order = false
 Randomize bit order.

5.130.1 Detailed Description

Herding with symmetric Walsh moment.

Definition at line 112 of file herding.hh.

5.130.2 Constructor & Destructor Documentation

5.130.2.1 SymmetricWalshMoment2Herding()

```
SymmetricWalshMoment2Herding (
    int n ) [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 149 of file herding.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/herding.hh
- lib/hnco/algorithms/walsh-moment/herding.cc

5.131 TargetReached Class Reference

Target reached.

#include <hnco/exception.hh>

Inheritance diagram for TargetReached:

5.131.1 Detailed Description

Target reached.

Definition at line 40 of file exception.hh.

The documentation for this class was generated from the following file:

• lib/hnco/exception.hh

5.132 TournamentSelection Class Reference

Tournament selection.

#include <hnco/algorithms/random-selection.hh>

Inheritance diagram for TournamentSelection:

Public Member Functions

- TournamentSelection (int population_size, int n) Constructor.
- const bit_vector_t & select () override
 Select an individual in the population.

Setters

• void set_tournament_size (int x)

Set the tournament size.

Private Attributes

std::uniform_int_distribution < int > _choose_individual
 Random index.

Parameters

• int _tournament_size = 10 Tournament size.

Additional Inherited Members

5.132.1 Detailed Description

Tournament selection.

Definition at line 82 of file random-selection.hh.

5.132.2 Constructor & Destructor Documentation

5.132.2.1 TournamentSelection()

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 104 of file random-selection.hh.

5.132.3 Member Function Documentation

5.132.3.1 select()

```
const bit_vector_t & select ( ) [override], [virtual]
```

Select an individual in the population.

The selection only requires that the population be evaluated, not necessarily sorted.

Precondition

The population must be evaluated.

Implements RandomSelection.

Definition at line 38 of file random-selection.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/random-selection.hh
- lib/hnco/algorithms/random-selection.cc

5.133 Translation Class Reference

Translation.

#include <hnco/maps/map.hh>

Inheritance diagram for Translation:

Public Member Functions

- void map (const bit_vector_t &input, bit_vector_t &output) override
- int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

· void display (std::ostream &stream) const override

Display.

• void random (int n)

Random instance.

void set_bv (const bit_vector_t &bv)

Set the translation vector.

Load and save map

- void load (std::string path)
 - Load map
- void save (std::string path) const

Save map.

Private Member Functions

- template < class Archive > void save (Archive & ar, const unsigned int version) const
- template < class Archive > void load (Archive & ar, const unsigned int version)

Load

Private Attributes

bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

5.133.1 Detailed Description

Translation.

A translation is an affine map f from F_2y^n to itself defined by f(x)=x+b, where b is an n-dimensional bit vector.

Definition at line 80 of file map.hh.

5.133.2 Member Function Documentation

5.133.2.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 122 of file map.hh.

5.133.2.2 load()

Load map.

Parameters

path | Path of the file

Exceptions

```
std::runtime_error
```

Definition at line 147 of file map.hh.

5.133.2.3 save()

Save map.

Parameters

```
path | Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 154 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.134 Transvection Struct Reference

Transvection.

```
#include <hnco/maps/transvection.hh>
```

Public Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
```

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Load.

bool is_valid () const

Check validity.

• bool is_valid (int n) const

Check validity.

• void display (std::ostream &stream) const

Display transvection.

• void random (int n)

Sample a random transvection.

• void random_non_commuting (int n, const Transvection &a)

Sample a random transvection.

void multiply (bit_vector_t &x) const

Multiply a bit vector from the left.

void multiply (bit_matrix_t &M) const

Multiply a bit matrix from the left.

Public Attributes

· int row index

Row index.

· int column index

Column index.

5.134.1 Detailed Description

Transvection.

We only consider transvections defined by matrices $\tau_{ij} = I_n + B_{ij}$, where I_n is the $n \times n$ identity matrix and B_{ij} is the matrix whose (i,j) entry is 1 and other entries are zero. Such a matrix is also sometimes called a shear matrix.

Transvections generate invertible matrices over the finite field F_2 .

Definition at line 63 of file transvection.hh.

5.134.2 Member Function Documentation

5.134.2.1 is_valid()

```
bool is_valid ( \quad \quad \text{int } n \text{ ) const}
```

Check validity.

Parameters

n Dimension

Definition at line 48 of file transvection.cc.

5.134.2.2 multiply() [1/2]

```
void multiply (
          bit_matrix_t & M ) const
```

Multiply a bit matrix from the left.

Parameters

```
M Bit matrix
```

Precondition

```
is_valid()
is_valid(bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 117 of file transvection.cc.

5.134.2.3 multiply() [2/2]

```
void multiply (
          bit_vector_t & x ) const
```

Multiply a bit vector from the left.

Parameters

Precondition

```
is_valid()
is_valid(x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 105 of file transvection.cc.

5.134.2.4 random()

```
void random ( \quad \text{int } n \ )
```

Sample a random transvection.

Parameters

```
n Dimension
```

Precondition

n > 1

Definition at line 61 of file transvection.cc.

5.134.2.5 random_non_commuting()

```
void random_non_commuting (  \qquad \qquad \text{int } n, \\  \qquad \qquad \text{const Transvection & } a \text{ )}
```

Sample a random transvection.

This member function ensures that the sampled transvection does not commute with some given one.

Parameters

n	Dimension
а	Given transvection

Precondition

n > 1

Definition at line 77 of file transvection.cc.

The documentation for this struct was generated from the following files:

- · lib/hnco/maps/transvection.hh
- lib/hnco/maps/transvection.cc

5.135 Trap Class Reference

Trap.

#include <hnco/functions/collection/trap.hh>

Inheritance diagram for Trap:

Public Member Functions

• Trap (int bv_size, int num_traps)

Constructor.

• int get_bv_size () const

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum () const

Check for a known maximum.

• double get_maximum () const

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

• int _num_traps

Number of traps.

int _trap_size

Trap size.

5.135.1 Detailed Description

Trap.

Reference:

Kalyanmoy Deb and David E. Goldberg. 1993. Analyzing Deception in Trap Functions. In Foundations of Genetic Algorithms 2, L. Darrell Whitley (Ed.). Morgan Kaufmann, San Mateo, CA, 93–108.

Definition at line 43 of file trap.hh.

5.135.2 Constructor & Destructor Documentation

5.135.2.1 Trap()

Constructor.

Parameters

bv_size	Bit vector size
num_traps	Number of traps

Warning

bv_size must be a multiple of num_traps

Definition at line 64 of file trap.hh.

5.135.3 Member Function Documentation

5.135.3.1 get_maximum()

```
double get_maximum ( ) const [inline], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 88 of file trap.hh.

5.135.3.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 84 of file trap.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/trap.hh
- lib/hnco/functions/collection/trap.cc

5.136 TsAffineMap Class Reference

Transvection sequence affine map.

```
#include <hnco/maps/map.hh>
```

Inheritance diagram for TsAffineMap:

Public Types

enum SamplingMode {
 Unconstrained , CommutingTransvections , UniqueSource , UniqueDestination ,
 DisjointTransvections , NonCommutingTransvections }

Sampling mode.

Public Member Functions

• void random (int n, int t, SamplingMode mode)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

Map

• int get_input_size () const override

Get input size.

int get_output_size () const override

Get output size.

• bool is surjective () const override

Check for surjective map.

· void display (std::ostream &stream) const override

Display.

• void inverse ()

Inverse.

Load and save map

• void load (std::string path)

Load map.

• void save (std::string path) const

Save map.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

• template < class Archive >

void load (Archive &ar, const unsigned int version)

Load.

Private Attributes

• transvection_sequence_t _ts

Transvection sequence

bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

5.136.1 Detailed Description

Transvection sequence affine map.

An affine map f from F_2^m to F_2^n is defined by f(x) = Ax + b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

In TsAffineMap, A is a finite product of transvections represented by a transvection_sequence_t.

Definition at line 601 of file map.hh.

5.136.2 Member Enumeration Documentation

5.136.2.1 SamplingMode

```
enum SamplingMode
```

Sampling mode.

Enumerator

Unconstrained	Unconstrained.
CommutingTransvections	Commuting transvections.
UniqueSource	Transvection sequence with unique source
UniqueDestination	Transvection sequence with unique destination
DisjointTransvections	Disjoint transvections.
NonCommutingTransvections	Non commuting transvections.

Definition at line 637 of file map.hh.

5.136.3 Member Function Documentation

5.136.3.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 680 of file map.hh.

5.136.3.2 load()

Load map.

Parameters

path	Path of the file
------	------------------

Exceptions

```
std::runtime_error
```

Definition at line 697 of file map.hh.

5.136.3.3 random()

Random instance.

Parameters

n	Dimension
t	Length of sequence of transvections
mode	Sampling mode

Definition at line 217 of file map.cc.

5.136.3.4 save()

Save map.

Parameters

path	Path of the file

Exceptions

std::runtime_error

Definition at line 704 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.137 Tsp Class Reference

Traveling salesman problem.

#include <hnco/functions/collection/tsp.hh>

Public Member Functions

• Tsp ()

Default constructor.

• int get_num_elements () const

Get the number of elements.

void display (std::ostream &stream) const

Display the problem.

void describe (const hnco::permutation_t &permutation, std::ostream &stream)

Describe a solution.

double evaluate (const hnco::permutation_t &permutation)

Evaluate a solution.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

void random (int n)
 Random instance.

Private Types

enum { ATT , EUC_2D }

Private Member Functions

- void compute_distances ()
- void compute_distances_att ()
- void compute_distances_euc_2d ()

Private Attributes

- std::string _name
- std::string _comment
- · int num cities
- $std::vector < float > _x$
- std::vector< float > _y
- int **_edge_weight_type** = ATT
- $\bullet \quad \mathsf{std} :: \mathsf{vector} < \mathsf{std} :: \mathsf{vector} < \mathsf{float} >> _\mathsf{distances}$

Distances.

Load and save instance

void load_ (std::istream &stream)

Load an instance.

- void load_coordinates (std::istream &stream)
- void save_ (std::ostream &stream) const

Save an instance.

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

5.137.1 Detailed Description

Traveling salesman problem.

Source: TSPLIB 95, Gerhard Reinelt

Definition at line 40 of file tsp.hh.

5.137.2 Member Function Documentation

5.137.2.1 generate()

```
void generate (  \qquad \qquad \text{int } n, \\ \\ \text{Generator } generator \text{ ) } \text{ [inline]}
```

Instance generator.

Parameters

n	Number of vertices
generator	Generator for distances

Definition at line 94 of file tsp.hh.

5.137.2.2 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 129 of file tsp.hh.

5.137.2.3 load_()

Load an instance.

Exceptions

std::runtime_error

Definition at line 32 of file tsp.cc.

5.137.2.4 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

Distances are sampled from the normal distribution.

Parameters

```
n Number of vertices
```

Definition at line 113 of file tsp.hh.

5.137.2.5 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 141 of file tsp.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/tsp.hh
- lib/hnco/functions/collection/tsp.cc

5.138 Umda Class Reference

Univariate marginal distribution algorithm.

#include <hnco/algorithms/pv/umda.hh>

Inheritance diagram for Umda:

Public Member Functions

• Umda (int n, int population_size)

Constructor.

Setters

void set_selection_size (int x)
 Set the selection size.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

• Population _population Population.

Parameters

• int _selection_size = 1 Selection size.

5.138.1 Detailed Description

Univariate marginal distribution algorithm.

Reference:

H. Mühlenbein. 1997. The equation for response to selection and its use for prediction. Evolutionary Computation 5, 3 (1997), 303–346.

Definition at line 41 of file umda.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/pv/umda.hh
- lib/hnco/algorithms/pv/umda.cc

5.139 UniformCrossover Class Reference

Uniform crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for UniformCrossover:

Public Member Functions

void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)
 Breed.

5.139.1 Detailed Description

Uniform crossover.

Definition at line 56 of file crossover.hh.

5.139.2 Member Function Documentation

5.139.2.1 breed()

Breed.

The offspring is the uniform crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 30 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- lib/hnco/algorithms/ea/crossover.cc

5.140 UniformSelection Class Reference

Uniform selection.

#include <hnco/algorithms/random-selection.hh>

Inheritance diagram for UniformSelection:

Public Member Functions

- UniformSelection (int population_size, int n) Constructor.
- const bit_vector_t & select () override
 Select an individual in the population.

Private Attributes

 std::uniform_int_distribution < int > _choose_individual Random index.

Additional Inherited Members

5.140.1 Detailed Description

Uniform selection.

Definition at line 58 of file random-selection.hh.

5.140.2 Constructor & Destructor Documentation

5.140.2.1 UniformSelection()

Constructor.

Parameters

population_size	Population size
п	Bit vector size

Definition at line 71 of file random-selection.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/random-selection.hh
- · lib/hnco/algorithms/random-selection.cc

5.141 UniversalFunction Class Reference

Universal function.

#include <hnco/functions/universal-function.hh>

Public Member Functions

virtual ∼UniversalFunction ()

Destructor.

virtual double evaluate (const bit_vector_t &boolean_vars, const std::vector< int > &integer_vars, const std::vector< double >> &complex_vars, const std::vector< std::complex< double >> &complex_vars, const std::vector< int > &categorical_vars, const std::vector< permutation_t > permutation_vars)=0

Evaluate the function.

· virtual void display (std::ostream &stream) const

Display the function.

virtual void describe (const bit_vector_t &boolean_vars, const std::vector< int > &integer_vars, const std::vector< double >> &float_vars, const std::vector< std::complex< double >> &complex_vars, const std::vector< int > &categorical_vars, const std::vector< permutation_t > permutation_vars, std::ostream &stream)

Describe variables in the context of the function.

5.141.1 Detailed Description

Universal function.

A universal function is a function taking parameters of all types (boolean, integer, float, complex, categorical, permutation) and returning a double.

Definition at line 40 of file universal-function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/universal-function.hh

5.142 UniversalFunctionAdapter Class Reference

Universal function adapter.

#include <hnco/functions/universal-function-adapter.hh>

Inheritance diagram for UniversalFunctionAdapter:

Public Member Functions

UniversalFunctionAdapter (UniversalFunction *fn, int num_boolean_vars, std::vector< representation::DyadicIntegerRepresent
int >> integer_reps, std::vector< representation::DyadicFloatRepresentation< double >> float_reps,
std::vector< representation::DyadicComplexRepresentation< double >> complex_reps, std::vector<
representation::LinearCategoricalRepresentation > categorical_reps, std::vector< representation::PermutationRepresentation
> permutation_reps)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &bv) override

Evaluate a bit vector.

· void display (std::ostream &stream) const override

Display

void describe (const bit_vector_t &bv, std::ostream &stream) override

Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)

Unpack bit vector into variables.

Private Attributes

```
• UniversalFunction * function
```

Universal function.

 $\bullet \quad \text{std}:: vector < \text{representation}:: DyadicIntegerRepresentation} < int >> _integer_reps$

Integer representations.

• std::vector< representation::DyadicFloatRepresentation< double >> _float_reps

Float representations.

std::vector< representation::DyadicComplexRepresentation< double >> _complex_reps

Complex representations.

 $\bullet \quad std:: vector < representation:: Linear Categorical Representation > _categorical_reps$

Categorical representations.

• std::vector< representation::PermutationRepresentation > _permutation_reps

Permuation representations.

bit_vector_t _boolean_vars

Boolean variables.

• std::vector< int > _integer_vars

Integer variables.

std::vector< double > _float_vars

Float variables.

std::vector< std::complex< double >> _complex_vars

Complex variables.

std::vector< int > _categorical_vars

Categorical variables.

• std::vector< permutation_t > _permutation_vars

Permutation variables.

· int by size

Bit vector size.

5.142.1 Detailed Description

Universal function adapter.

A universal function adapter turns a universal function into a regular hnco function defined on bit vectors.

Definition at line 45 of file universal-function-adapter.hh.

5.142.2 Constructor & Destructor Documentation

5.142.2.1 UniversalFunctionAdapter()

Constructor.

Parameters

fn	Universal function
num_boolean_vars	Number of boolean variables
integer_reps	Integer representations
float_reps	Float representations
complex_reps	Complex representations
categorical_reps	Categorical representations
permutation_reps	Permutation representations

Replace reps with {} if there is no corresponding variable. For example, if there is no categorical variable,

UniversalFunctionAdapter(fn, num_boolean_vars, integer_reps, float_reps, complex_reps, {}, permutation_reps)

Definition at line 132 of file universal-function-adapter.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/universal-function-adapter.hh

5.143 WalshExpansion Class Reference

Walsh expansion.

#include <hnco/functions/collection/walsh/walsh-expansion.hh>

Inheritance diagram for WalshExpansion:

Public Member Functions

· WalshExpansion ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

· double evaluate (const bit vector t &) override

Evaluate a bit vector.

void display (std::ostream &stream) const override

Display.

void set terms (const std::vector< function::WalshTerm > terms)

Set terms.

Instance generators

• template<class Generator >

void generate (int n, int num_features, Generator generator)

Instance generator.

· void random (int n, int num features)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

· void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)

Private Attributes

std::vector< function::WalshTerm > _terms
 Terms.

Friends

· class boost::serialization::access

5.143.1 Detailed Description

Walsh expansion.

Its expression is of the form

$$f(x) = \sum_{u} a_u (-1)^{x \cdot u}$$

where the sum is over a subset of $\{0,1\}^n$ and $x \cdot u = \sum_i x_i u_i$ is mod 2. The real numbers a_u are the coefficients of the expansion and the bit vectors u are its feature vectors.

Definition at line 52 of file walsh-expansion.hh.

5.143.2 Member Function Documentation

5.143.2.1 generate()

```
void generate (
          int n,
          int num_features,
          Generator generator ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
num_features	Number of feature vectors
generator	Coefficient generator

Definition at line 85 of file walsh-expansion.hh.

5.143.2.2 load()

Load instance.

Parameters

path	Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 130 of file walsh-expansion.hh.

5.143.2.3 random()

Random instance.

The coefficients are sampled from the normal distribution.

Parameters

n	Size of bit vector
num_features	Number of feature vectors

Definition at line 111 of file walsh-expansion.hh.

5.143.2.4 save()

Save instance.

Parameters

path Pa	th of the instance to save
---------	----------------------------

Exceptions

std::runtime_error

Definition at line 137 of file walsh-expansion.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/walsh/walsh-expansion.hh
- lib/hnco/functions/collection/walsh/walsh-expansion.cc

5.144 WalshExpansion1 Class Reference

Walsh expansion of degree 1.

#include <hnco/functions/collection/walsh/walsh-expansion-1.hh>
Inheritance diagram for WalshExpansion1:

Public Member Functions

• WalshExpansion1 ()

Constructor.

Instance generators

template < class Generator >
 void generate (int n, Generator generator)
 Instance generator.

void random (int n)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• double get_maximum () const override

Get the global maximum.

• bool has_known_maximum () const override

Check for a known maximum.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

Private Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _linear
 Linear part.

Friends

· class boost::serialization::access

5.144.1 Detailed Description

Walsh expansion of degree 1.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i}$$

Definition at line 49 of file walsh-expansion-1.hh.

5.144.2 Member Function Documentation

5.144.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator \mbox{)} \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 81 of file walsh-expansion-1.hh.

5.144.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 149 of file walsh-expansion-1.hh.

5.144.2.3 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 113 of file walsh-expansion-1.hh.

5.144.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 154 of file walsh-expansion-1.hh.

5.144.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

n Size of bit vectors

Definition at line 95 of file walsh-expansion-1.hh.

5.144.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 120 of file walsh-expansion-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/walsh/walsh-expansion-1.hh
- lib/hnco/functions/collection/walsh/walsh-expansion-1.cc

5.145 WalshExpansion2 Class Reference

Walsh expansion of degree 2.

#include <hnco/functions/collection/walsh/walsh-expansion-2.hh>

Inheritance diagram for WalshExpansion2:

Public Member Functions

• WalshExpansion2 ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class LinearGen, class QuadraticGen >
 void generate (int n, LinearGen linear_gen, QuadraticGen quadratic_gen)
 Instance generators.

void random (int n)

Instance generator.

• void generate_ising1_long_range (int n, double alpha)

Generate one dimensional Ising model with long range interactions.

• void generate_ising1_long_range_periodic (int n, double alpha)

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
Serialize.

· void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _linear

Linear part.

std::vector< std::vector< double >> _quadratic

Quadratic part.

Friends

· class boost::serialization::access

5.145.1 Detailed Description

Walsh expansion of degree 2.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i) + \sum_{i < j} a_{ij} (1 - 2x_i) (1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i} + \sum_{i < j} a_{ij} (-1)^{x_i + x_j}$$

Definition at line 49 of file walsh-expansion-2.hh.

5.145.2 Member Function Documentation

5.145.2.1 generate()

```
void generate (
          int n,
          LinearGen linear_gen,
          QuadraticGen quadratic_gen ) [inline]
```

Instance generators.

Parameters

п	Size of bit vectors
linear_gen	Generator for the linear part
quadratic_gen	Generator for the quadratic part

Definition at line 93 of file walsh-expansion-2.hh.

5.145.2.2 generate_ising1_long_range()

```
void generate_ising1_long_range (
                int n,
                 double alpha )
```

Generate one dimensional Ising model with long range interactions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{ij} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij}=|i-j|$, and $J(n)=n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 82 of file walsh-expansion-2.cc.

5.145.2.3 generate ising1 long range periodic()

```
void generate_ising1_long_range_periodic (  \mbox{int } n, \\ \mbox{double } alpha \mbox{ )}
```

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{ij} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij} = \min\{|i-j|, n-|i-j|\}$, and $J(n) = n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 103 of file walsh-expansion-2.cc.

5.145.2.4 load()

```
void load (
```

```
std::string path ) [inline]
```

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 184 of file walsh-expansion-2.hh.

5.145.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Instance generator.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vector
```

Definition at line 115 of file walsh-expansion-2.hh.

5.145.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 191 of file walsh-expansion-2.hh.

5.145.3 Member Data Documentation

5.145.3.1 _quadratic

```
std::vector<std::vector<double> > _quadratic [private]
```

Quadratic part.

Represented as a lower triangular matrix (without its diagonal).

Definition at line 71 of file walsh-expansion-2.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/walsh/walsh-expansion-2.hh
- · lib/hnco/functions/collection/walsh/walsh-expansion-2.cc

5.146 WalshTerm Struct Reference

Walsh transform term.

```
#include <hnco/functions/walsh-term.hh>
```

Public Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
Serialize.

Public Attributes

- std::vector< bool > feature
 Feature.
- double coefficient

Coefficient.

5.146.1 Detailed Description

Walsh transform term.

Definition at line 35 of file walsh-term.hh.

5.146.2 Member Data Documentation

5.146.2.1 feature

std::vector<bool> feature

Feature.

Implemented with a vector bool instead of a bit_vector_t to reduce the memory consumption.

Definition at line 42 of file walsh-term.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/walsh-term.hh

Index

```
_expression
                                                          hnco, 18
     AbstractMaxSat, 60
                                                     bm identity
functions
                                                          hnco, 19
    Algorithm, 67
                                                     bm invert
_lookup
                                                          hnco, 20
     Population, 275
                                                     bm_multiply
patience
                                                          hnco, 20
     RandomLocalSearch, 292
                                                     bm_rank
                                                          hnco, 21
_pimpl
    Hboa, 136
                                                     bm row echelon form
    Ltga, 197
                                                          hnco, 21
    ParameterLessPopulationPyramid, 252
                                                     bm set column
                                                          hnco, 21
    Qubo, 289
                                                     bm solve
quadratic
                                                          hnco, 22
    WalshExpansion2, 368
                                                     bm_solve_upper_triangular
_record_evaluation_time
                                                          hnco, 22
     ProgressTracker, 280
                                                     bm_transpose
                                                          hnco, 24
\simLogger
    Logger, 187
                                                     BmPbil < GibbsSampler >, 70
                                                          RESET_BIT_VECTOR, 74
AbstractMaxSat, 57
                                                          RESET ITERATION, 74
     _expression, 60
                                                          RESET NO RESET, 74
    load, 58
                                                          SAMPLING_ASYNCHRONOUS, 73
    load , 58
                                                          SAMPLING_ASYNCHRONOUS_FULL_SCAN, 73
    save, 59
                                                          SAMPLING SYNCHRONOUS, 73
    save_, 59
                                                          set_selection_size, 74
AdditiveGaussianNoise, 60
                                                     bound
AffineMap, 61
                                                          LowerTriangularWalshMoment2, 191
    is surjective, 63
                                                          SymmetricWalshMoment2, 324
    load, 63
                                                     breed
    random, 63
                                                          BiasedCrossover, 70
    save, 64
                                                          Crossover, 87
Algorithm, 64
                                                          UniformCrossover, 351
     functions, 67
                                                     bv add
    finalize, 66
                                                          hnco, 25
    set solution, 66
                                                     bv_from_size_type
    update_solution, 67
                                                          hnco, 26
AlgorithmFactory, 68
                                                     bv_from_stream
    make, 68
                                                          hnco, 26
average
                                                     bv_from_string
    SymmetricWalshMoment2, 324
                                                          hnco, 27
                                                     bv_from_vector_bool
bernoulli trials
                                                          hnco, 27
    MultiBitFlip, 214
                                                     by to size type
BiasedCrossover, 69
                                                          hnco, 27, 28
    breed, 70
                                                     bv_to_vector_bool
bm add columns
                                                          hnco, 28
    hnco, 18
bm_add_rows
                                                     Cache, 74
```

Cache, 76	save, 102
provides_incremental_evaluation, 76	evaluate
CallCounter, 77	Function, 118
comma_selection	NearestNeighborlsingModel1, 221
Population, 270, 271	NearestNeighborlsingModel2, 225
CommandLineAlgorithmFactory, 78	OnBudgetFunction, 243
make, 79	StopOnTarget, 315
CommandLineApplication, 79	evaluate_incrementally
CommandLineApplication, 80	Function, 119
CommandLineFunctionFactory, 81	OnBudgetFunction, 243
CommutingTransvections	StopOnTarget, 316
TsAffineMap, 343	evaluate_safely
CompactGa, 82	Function, 119
CompleteSearch, 83	ExtendedHypercubeIterator, 103
ComplexToDouble < T >, 84	
compute_fast_walsh_transform	Factorization, 104
hnco::function, 43	Factorization, 106
compute_lengths	load, 106
DyadicFloatRepresentation< T >, 96	feature
compute_walsh_transform	WalshTerm, 369
hnco::function, 43	FfgenOptions, 107
Controller, 85	finalize
provides_incremental_evaluation, 86	Algorithm, 66
Crossover, 86	FirstAscentHillClimbing, 112
breed, 87	FourPeaks, 114
	get_maximum, 115
DeceptiveJump, 87	has_known_maximum, 115
get_maximum, 89	Function, 116
has_known_maximum, 89	describe, 118
DecoratedFunctionFactory, 89	evaluate, 118
make_function_controller, 90	evaluate_incrementally, 119
Decorator, 91	evaluate_safely, 119
describe	get_maximum, 119
Function, 118	provides_incremental_evaluation, 120
difference_is_safe	update, 120
hnco::representation, 55	FunctionFactory, 121
DisjointTransvections	FunctionMapComposition, 121
TsAffineMap, 343	FunctionMapComposition, 123
display	get_maximum, 123
LowerTriangularWalshMoment2, 191	has_known_maximum, 124
SymmetricWalshMoment2, 325	FunctionPlugin, 124
DyadicComplexRepresentation	FunctionPlugin, 125
DyadicComplexRepresentation< T >, 93, 94	
DyadicComplexRepresentation < T >, 92	generate
DyadicComplexRepresentation, 93, 94	EqualProducts, 101
DyadicFloatRepresentation	LinearFunction, 178
DyadicFloatRepresentation< T >, 95, 96	NearestNeighborlsingModel1, 221
DyadicFloatRepresentation< T >, 94	NearestNeighborlsingModel2, 226
compute_lengths, 96	NkLandscape, 237
DyadicFloatRepresentation, 95, 96	Partition, 257
DyadicIntegerRepresentation	Tsp, 346
DyadicIntegerRepresentation< T >, 98	WalshExpansion, 358
DyadicIntegerRepresentation< T >, 97	WalshExpansion1, 361
DyadicIntegerRepresentation, 98	WalshExpansion2, 365
, ,	generate_ising1_long_range
EqualProducts, 100	WalshExpansion2, 365
generate, 101	generate_ising1_long_range_periodic
load, 101	WalshExpansion2, 366
random, 102	Generator, 126

reset, 126	set_reset_period, 139
set_seed, 126	set_selection_size, 140
GeneticAlgorithm, 127	Hiff, 140
GeneticAlgorithm, 129	get_maximum, 141
get_best_bv	has_known_maximum, 141
Population, 271, 272	hnco, 13
get_best_value	bm_add_columns, 18
Population, 272, 273	bm_add_rows, 18
get_last_improvement	bm_identity, 19
ProgressTracker, 279	bm_invert, 20
get_maximum	bm_multiply, 20
DeceptiveJump, 89	bm_rank, 21
FourPeaks, 115	bm_row_echelon_form, 21
Function, 119	bm_set_column, 21
FunctionMapComposition, 123	bm_solve, 22
Hiff, 141	bm_solve_upper_triangular, 22
Jump, 171	bm_transpose, 24
LeadingOnes, 174	bv_add, 25
LongPath, 189	bv_from_size_type, 26
Needle, 229	bv_from_stream, 26
OneMax, 245	bv_from_string, 27
Plateau, 267	bv_from_vector_bool, 27
PriorNoise, 276	bv_to_size_type, 27, 28
Ridge, 298	bv_to_vector_bool, 28
SixPeaks, 307	is_in_range, 29
Trap, 340	load_from_archive, 30
get_worst_bv	perm_identity, 30
Population, 273	perm_random, 30
	save_to_archive, 30
HammingBall, 130	sbv_flip, 31
HammingBall, 131	sbv_is_valid, 31
HammingSphere, 131	sparse_bit_vector_t, 18
HammingSphere, 133	hnco::algorithm, 32
HammingSphereIterator, 133	pv_add, <mark>35</mark>
HammingSphereIterator, 134	pv_average, 35
has_known_maximum	pv_bound, 36
DeceptiveJump, 89	pv_init, 36
FourPeaks, 115	pv_sample, 36
FunctionMapComposition, 124	pv_uniform, 37
Hiff, 141	pv update, 37
Jump, 171	hnco::algorithm::fast_efficient_p3, 38
LeadingOnes, 174	hnco::algorithm::walsh moment, 38
LinearFunction, 178	hnco::app, 39
LongPath, 189	hnco::exception, 40
Needle, 229	hnco::function, 40
OneMax, 246	compute_fast_walsh_transform, 43
Plateau, 268	compute_walsh_transform, 43
PriorNoise, 276	hnco::function::controller, 45
Ridge, 298	hnco::function::modifier, 46
SixPeaks, 307	hnco::logging, 46
SummationCancellation, 322	hnco::map, 46
Trap, 340	transvection_sequence_t, 48
WalshExpansion1, 361	ts_is_valid, 48, 49
Hboa, 135	ts_multiply, 49
_pimpl, 136	ts_random, 50
Hea	ts_random_commuting, 50
Hea< Herding >, 139	ts_random_disjoint, 51
Hea< Herding >, 137	ts_random_non_commuting, 52
Hea, 139	is_random_non_community, 32

ts_random_unique_destination, 52	random, 182
ts_random_unique_source, 53	save, 183
hnco::neighborhood, 53	load
hnco::random, 54	AbstractMaxSat, 58
hnco::representation, 54	AffineMap, 63
difference_is_safe, 55	EqualProducts, 101
HncoEvaluator, 142	Factorization, 106
HncoOptions, 143	LinearFunction, 179
Human, 160	LinearMap, 182
Hypercubelterator, 161	MaxNae3Sat, 204
Implementation, 162	NearestNeighborlsingModel1, 222
init beta	NearestNeighborIsingModel2, 226
SimulatedAnnealing, 301	NkLandscape, 238 Partition, 258
Injection, 162	Permutation, 262
Injection, 163	Qubo, 288, 289
IntegerCategoricalRepresentation, 164	Sudoku, 319
IntegerCategoricalRepresentation, 165	Translation, 334
is_in_range	TsAffineMap, 343
hnco, 29	Tsp, 347
is_surjective	WalshExpansion, 358
AffineMap, 63	WalshExpansion1, 361
LinearMap, 181	WalshExpansion2, 366
Map, 198	load_
MapComposition, 200	AbstractMaxSat, 58
Permutation, 262	Sudoku, 319
Projection, 283	Tsp, 347
Translation, 334	load_from_archive
TsAffineMap, 343	hnco, 30
is_valid	LocalSearchAlgorithm< Neighborhood >, 183
Transvection, 336	LogContext, 185
IterativeAlgorithm, 165 IterativeAlgorithm, 167	Logger, 185
loop, 167	~Logger, 187
maximize, 168	Logger, 186 LongPath, 187
set num iterations, 168	get_maximum, 189
Iterator, 168	has_known_maximum, 189
	loop
Jump, 170	IterativeAlgorithm, 167
get_maximum, 171	LowerTriangularWalshMoment2, 189
has_known_maximum, 171	bound, 191
	display, 191
Labs, 171	LowerTriangularWalshMoment2, 190
LastEvaluation, 173	scaled_difference, 191
LeadingOnes, 173	update, 192
get_maximum, 174 has_known_maximum, 174	LowerTriangularWalshMoment2GibbsSampler, 193
LinearCategoricalRepresentation, 175	LowerTriangularWalshMoment2Herding, 194
Linear Categorical Representation, 176	LowerTriangularWalshMoment2Herding, 195
LinearFunction, 176	Ltga, 196
generate, 178	_pimpl, 197
has_known_maximum, 178	make
load, 179	
provides_incremental_evaluation, 179	AlgorithmFactory, 68 CommandLineAlgorithmFactory, 79
random, 179	make_function_controller
save, 180	DecoratedFunctionFactory, 90
LinearMap, 180	Map, 197
is_surjective, 181	is_surjective, 198
load, 182	map
	•

Neighborhood, 234	load, 238
MapComposition, 199	random, 238
is_surjective, 200	random_structure, 238
MapComposition, 200	save, 239
MapgenOptions, 201	NonCommutingTransvections
maximize	TsAffineMap, 343
IterativeAlgorithm, 168	NpsPbil, 239
MaxNae3Sat, 203	14p31 bii, 200
load, 204	OnBudgetFunction, 241
MaxSat, 204	evaluate, 243
	evaluate incrementally, 243
random, 205, 206	update, 243
Mimic, 206	OneMax, 244
Mmas, 209	get_maximum, 245
Modifier, 210	has_known_maximum, 246
MuCommal ambdaFa, 211	provides_incremental_evaluation, 246
MuCommaLambdaEa, 212	OnePlusLambdaCommaLambdaGa, 247
MultiBitFlip, 213	OnePlusLambdaCommaLambdaGa, 248
bernoulli_trials, 214	OnePlusOneEa, 249
MultiBitFlip, 214	
rejection_sampling, 214	OnePlusOneEa, 250
multiply	set_num_iterations, 251
Transvection, 336, 337	ParameterLessPopulationPyramid, 251
MultivariateFunctionAdapter	_pimpl, 252
MultivariateFunctionAdapter< Fn, Rep, Conv >,	ParsedModifier, 253
216	ParsedModifier, 254
MultivariateFunctionAdapter< Fn, Rep, Conv >, 215	ParsedMultivariateFunction
MultivariateFunctionAdapter, 216	
MuPlusLambdaEa, 217	ParsedMultivariateFunction < Parser >, 255
MuPlusLambdaEa, 218	ParsedMultivariateFunction < Parser >, 254
mutate	ParsedMultivariateFunction, 255
Neighborhood, 234	Partition, 256
N	generate, 257
NearestNeighborlsingModel1, 219	load, 258
evaluate, 221	random, 258
generate, 221	save, 258
load, 222	Pbil, 259
provides_incremental_evaluation, 222	perm_identity
random, 222	hnco, 30
save, 223	perm_random
NearestNeighborIsingModel2, 223	hnco, 30
evaluate, 225	Permutation, 261
generate, 226	is_surjective, 262
load, 226	load, 262
provides_incremental_evaluation, 227	save, 263
random, 227	PermutationFunctionAdapter
save, 227	PermutationFunctionAdapter $<$ Fn $>$, 265
Needle, 228	PermutationFunctionAdapter< Fn >, 263
get_maximum, 229	PermutationFunctionAdapter, 265
has_known_maximum, 229	PermutationRepresentation, 265
Negation, 230	PermutationRepresentation, 266
provides_incremental_evaluation, 231	PermutationRepresentation::Element, 99
Neighborhood, 232	Plateau, 266
map, 234	get_maximum, 267
mutate, 234	has_known_maximum, 268
Neighborhood, 233	plus_selection
NeighborhoodIterator, 235	Population, 274
NeighborhoodIterator, 235	Population, 268
NkLandscape, 236	_lookup, 275
generate, 237	comma_selection, 270, 271
-	

get_best_bv, 271, 272	Partition, 258
get_best_value, 272, 273	Sudoku, 319
get_worst_bv, 273	Transvection, 337
plus_selection, 274	TsAffineMap, 344
Population, 270	Tsp, 347
PriorNoise, 275	WalshExpansion, 358
get_maximum, 276	WalshExpansion1, 362
has_known_maximum, 276	WalshExpansion2, 367
provides_incremental_evaluation, 277	random_non_commuting
ProgressTracker, 277	Transvection, 338
_record_evaluation_time, 280	random_structure
get_last_improvement, 279	NkLandscape, 238
ProgressTracker::Event, 103 ProgressTrackerContext, 280	RandomLocalSearch, 290 _patience, 292
Projection, 281	set_patience, 291
is_surjective, 283	RandomSearch, 292
Projection, 282	RandomSelection, 293
provides incremental evaluation	RandomSelection, 294
Cache, 76	RandomWalk, 294
Controller, 86	rejection_sampling
Function, 120	MultiBitFlip, 214
LinearFunction, 179	reset
NearestNeighborlsingModel1, 222	Generator, 126
NearestNeighborlsingModel2, 227	RESET_BIT_VECTOR
Negation, 231	BmPbil< GibbsSampler >, 74
OneMax, 246	RESET_ITERATION
PriorNoise, 277	BmPbil< GibbsSampler >, 74
WalshExpansion1, 362	RESET_NO_RESET
pv_add	BmPbil< GibbsSampler >, 74
hnco::algorithm, 35	Restart, 296
pv_average	Ridge, 297
hnco::algorithm, 35	get maximum, 298
pv_bound	has known maximum, 298
hnco::algorithm, 36	
pv init	SAMPLING_ASYNCHRONOUS
hnco::algorithm, 36	BmPbil< GibbsSampler >, 73
pv_sample	SAMPLING_ASYNCHRONOUS_FULL_SCAN
hnco::algorithm, 36	BmPbil< GibbsSampler >, 73
pv_uniform	SAMPLING_SYNCHRONOUS
hnco::algorithm, 37	BmPbil< GibbsSampler >, 73
pv_update	SamplingMode
hnco::algorithm, 37	TsAffineMap, 343
PvAlgorithm, 283	save
PythonFunction, 285	AbstractMaxSat, 59
PythonFunction, 286	AffineMap, 64
	EqualProducts, 102
Qubo, 287	LinearFunction, 180
_q, 289	LinearMap, 183
load, 288, 289	NearestNeighborIsingModel1, 223
random	NearestNeighborIsingModel2, 227
	NkLandscape, 239
AffineMap, 63 EqualProducts, 102	Partition, 258
LinearFunction, 179	Permutation, 263 Sudoku, 320
Linear Map, 182	Translation, 335
MaxSat, 205, 206	TsAffineMap, 344
NearestNeighborlsingModel1, 222	Tsp, 348
NearestNeighborIsingModel2, 227	WalshExpansion, 359
NkLandscape, 238	WalshExpansion1, 363
	TraionExpandion1, 000

WalshExpansion2, 367	save, 320
save	SummationCancellation, 320
AbstractMaxSat, 59	has_known_maximum, 322
save_to_archive	SummationCancellation, 322
hnco, 30	SymmetricWalshMoment2, 323
sbv_flip	average, 324
hnco, 31	bound, 324
sbv_is_valid	display, 325
hnco, 31	scaled_difference, 325
ScalarToDouble < T >, 299	SymmetricWalshMoment2, 324
scaled_difference	update, 326
LowerTriangularWalshMoment2, 191	SymmetricWalshMoment2GibbsSampler, 327
SymmetricWalshMoment2, 325	SymmetricWalshMoment2Herding, 328
select	SymmetricWalshMoment2Herding, 329
TournamentSelection, 332	,
set_mutation_rate	TargetReached, 330
StandardBitMutation, 310	TournamentSelection, 330
set_num_iterations	select, 332
IterativeAlgorithm, 168	TournamentSelection, 332
OnePlusOneEa, 251	Translation, 333
set patience	is_surjective, 334
RandomLocalSearch, 291	load, 334
set_reset_period	save, 335
Hea< Herding >, 139	Transvection, 335
set seed	is_valid, 336
Generator, 126	multiply, 336, 337
set_selection_size	random, 337
BmPbil< GibbsSampler >, 74	random_non_commuting, 338
Hea< Herding >, 140	transvection_sequence_t
set solution	hnco::map, 48
Algorithm, 66	Trap, 338
SimulatedAnnealing, 300	get_maximum, 340
init_beta, 301	has_known_maximum, 340
SingleBitFlip, 302	Trap, 340
SingleBitFlipIterator, 303	ts_is_valid
SingleBitFlipIterator, 304	hnco::map, 48, 49
SinusSummationCancellation, 304	ts_multiply
SixPeaks, 306	hnco::map, 49
get_maximum, 307	ts_random
has_known_maximum, 307	hnco::map, 50
sparse_bit_vector_t	ts_random_commuting
hnco, 18	hnco::map, 50
StandardBitMutation, 308	ts_random_disjoint
set_mutation_rate, 310	hnco::map, 51
StandardBitMutation, 309, 310	ts_random_non_commuting
SteepestAscentHillClimbing, 311	hnco::map, 52
StopOnMaximum, 312	ts_random_unique_destination
StopOnMaximum, 313	hnco::map, 52
StopOnTarget, 314	ts_random_unique_source
evaluate, 315	hnco::map, 53
evaluate_incrementally, 316	TsAffineMap, 341
StopOnTarget, 315	CommutingTransvections, 343
update, 316	DisjointTransvections, 343
StopWatch, 317	is_surjective, 343
Sudoku, 317	load, 343
load, 319	NonCommutingTransvections, 343
load_, 319	random, 344
random, 319	SamplingMode, 343
	save, 344

```
Unconstrained, 343
     UniqueDestination, 343
     UniqueSource, 343
Tsp, 345
    generate, 346
    load, 347
    load, 347
    random, 347
    save, 348
Umda, 348
Unconstrained
    TsAffineMap, 343
UniformCrossover, 350
    breed, 351
UniformSelection, 351
    UniformSelection, 352
UniqueDestination
    TsAffineMap, 343
UniqueSource
     TsAffineMap, 343
UniversalFunction, 353
UniversalFunctionAdapter, 354
    UniversalFunctionAdapter, 355
update
     Function, 120
    LowerTriangularWalshMoment2, 192
    OnBudgetFunction, 243
    StopOnTarget, 316
    SymmetricWalshMoment2, 326
update solution
    Algorithm, 67
WalshExpansion, 356
    generate, 358
    load, 358
    random, 358
    save, 359
WalshExpansion1, 359
    generate, 361
    has_known_maximum, 361
    load, 361
    provides_incremental_evaluation, 362
    random, 362
    save, 363
WalshExpansion2, 363
    _quadratic, 368
    generate, 365
    generate_ising1_long_range, 365
    generate_ising1_long_range_periodic, 366
    load, 366
    random, 367
    save, 367
WalshTerm, 368
    feature, 369
```