Assignment 7

Digital Communication System-I

May 2023

Q 1: For a given SNR per bit, which of the following will have lowest bit error probability for orthogonal signalling

Please answer the following questions:

(a) True(b) False

(a) 2.27×10^{-5} (b) 3.4×10^{-3}

with non-coherent detection?
(a) $M = 4$
(b) $M = 8$
(c) $M = 16$
(d) $M=32$
Q 2:Choose the correct option In the non-coherent case, the equivalent baseband model has a phase shift component $e^{j\phi}$ corresponding to the noise term.
(a) True
(b) False
\mathbf{Q} 3: For a bit rate of 30 kbps, if the smallest transmitted frequency in a non-coherent binary MSK is 800 KHz, then the other transmitted frequency is
(a) 830 KHz
(b) 770 KHz
(c) 740 KHz
(d) 860 KHz
Q 4: Let $X \sim \mathcal{N}(1,1)$ and $Y \sim \mathcal{N}(4,1)$ be independent random variables, then $\sqrt{X^2 + Y^2}$ is distributed as
(a) $\mathcal{N}(\sqrt{5},1)$
(b) $Rice(\sqrt{17}, 1)$
(c) $Rice(4,1)$
(d) $\operatorname{Rice}(\sqrt{10},1)$
Q 5: For carrier modulated signals under AWGN channel, the random time asynchronism between the clocks of the transmitter and the receiver, t_d can cause large phase shifts

Q 6: Find out the probability of error for binary orthogonal FSK with noncoherent detection, if the SNR is 10 dB.

- (c) 6.7×10^{-3}
- (d) None of the above

Q 7: Which of the following statement is true?

- (a) For error probabilities less than 10^{-4} , the difference between the performance of coherent and noncoherent detection of binary orthogonal is less than 0.8 dB
- (b) The orthogonality under noncoherent detection guarantees orthogonality under coherent detection
- (c) For carrier modulated signals, an optimal noncoherent detector is an envelope detector.
- (d) All of the above

Q 8: For equal-probable and equal-energy carrier modulated signals with baseband equivalent received signal r_l over AWGN,

$$\langle s_{m,\ell}(t-t_d), \phi_{i,\ell}(t) \rangle \approx \langle s_{m,\ell}(t), \phi_{i,\ell}(t) \rangle$$

and ϕ uniform over $[0, 2\pi)$. The non coherent detection will be

- (a) $\hat{m} = \arg \max_{1 \le m \le M} \operatorname{Re} [r_{\ell} s_{m,\ell}]$
- (b) $\hat{m} = \arg \max_{1 \le m \le M} |r_{\ell} s_{m,\ell}|$
- (c) $\hat{m} = \max_{1 \le m \le M} |r_{\ell} s_{m,\ell}|$
- (d) $\hat{m} = \arg \max_{1 \le m \le M} \operatorname{Im} [r_{\ell} s_{m,\ell}]$

Q 9: If the transmitted binary data $c = 0 \ 0 \ 1 \ 0 \ 0 \ 1$, then find out the carrier phase at modulator output of DPSK system. Assume initial bit is zero.

- (a) $0.0 \pi \pi \pi 0$
- (b) $\pi \ 0 \ 0 \ \pi \ 0 \ 0$
- (c) $\pi 00 \pi 0\pi$
- (d) $\pi \pi 0 \pi 0 \pi$

Q 10: Which of the following statement about DPSK is not true?

- (a) The information sequence determines the relative phase between adjacent symbol intervals
- (b) The information sequence determines the absolute phase at different symbol intervals
- (c) Phase ambiguity from a PLL will have no effect on the performance of DPSK system
- (d) None of these