

Técnicas Digitales II

Excepciones

Excepciones

- Las Excepciones pueden ser vistas como funciones que son llamadas de manera no programada o en un momento no previsto.
- Pueden ser causadas por el Hardware o el Software.
- Si bien en algunos casos puede ser descripta como un error en el programa que desencadena una excepción, se verá que esto no es siempre así.
- No debe confundirse con el manejo de excepciones que realizan los lenguajes de alto nivel para la administración de errores.

Tipos de Excepciones

 Las excepciones de hardware provocada por dispositivos de I/O como un teclado es llamada INTERRUPCIONES.

Ejemplo: el procesador recibe la notificación de que una tecla fue presionada, el procesador puede detener lo que está haciendo y determinar que tecla se presionó, guardar esa información para referencia futura y reanudar el programa principal.

Tipos de Excepciones

- Las excepciones de hardware provocada por dispositivos de I/O como un teclado es llamada INTERRUPCIONES.
- Las excepciones de software son llamadas traps, en particular las denominadas "llamadas al sistema" son importantes, permitiendo invocar funciones del SO con alto privilegio.

Ejemplo: El programa encuentra una condición de error, producida por una instrucción que no existe, el programa salta a un código en el SO, que puede elegir emular la instrucción o terminar con el programa.

Tipos de Excepciones

- Las excepciones de hardware provocada por dispositivos de I/O como un teclado es llamada INTERRUPCIONES.
- Las excepciones de software son llamadas traps, en particular los denominados llamadas al sistema son importantes, permitiendo invocar funciones del SO con alto privilegio.
- Otras causas de excepciones son reset o lecturas de memoria no existente.

Llamado

Similar a una función estándar

- Debe guardar la dirección de retorno.
- Saltar a la dirección del código que atiende a la excepción.
- Restaura a los valores antes de entrar al código.
- Retorna a la dirección desde donde fue llamada.

Llamado

Diferencias con una función estándar

- El salto está determinado por una tabla de vectores a los manejadores de excepciones.
- Además en el momento de llamada, ciertos registros claves son reemplazados para mantener los valores originales intactos.
- Se cambian los privilegios, permitiendo a las excepciones acceder a partes protegidas de la memoria.

Privilegios

- ARM puede operar en varios modos de ejecución con diferentes niveles de privilegios.
- Estos diferentes modos, permiten que se produzcan diferentes excepciones sin corromper el estado del microprocesador.

Privilegios

 Los modos de ejecución, están guardados en los bit mas bajos del CPSR

PL0, no puede acceder a partes protegidas de memoria

PL1, accede a todo el sistema.

MODO	CPSR
User	10000
Supervisor	10011
Abort	10111
Undefined	11011
Interrupt (IRQ)	10010
Fast Interrupt (FIQ)	10001

3	3	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	7	6	5	4	31	2 1	.10	
1	0	9	8	7	6	5	4	3	2		0	9	8	🗦	6	5	4	3	$\bar{2}$	1	0										K
N	Z	С	V																					1	F	T	ſ	Мο	de	5	
						_		_					_																		

Registro de Estado ARM7TDMI

Tabla de Vectores de Excepciones

- En Arm cuando una excepción ocurre el procesador salta a un elemento de a la tabla de vectores de excepción.
- El elemento a donde salta depende del origen de la excepción.

Excepción	Direc	MODO
Reset	0x00	Supervisor
Instrucción indefinida	0x04	Indefinido
Llamada al Supervisor	0x08	Supervisor
Prefetch Abort (error de instrucción)	0x0C	Abort
Data Abort (error en la lectura o escritura)	0x10	Abort
Reservado	0x14	N/A
Interrupción	0x18	IRQ
Interrupción Rápida	0x1C	FIQ

Tabla de Vectores de Excepciones

Cuando una interrupción ocurre el procesador salta a la dirección 0x0000018

Cuando se enciende el procesador, comenzará en la dirección 0x00000000

Excepción	Direc	MODO
Reset	0x00	Supervisor
*****	•••	
Interrupción	0x18	IRQ
Interrupción Rápida	0x1C	FIQ

En cada vector de excepción, generalmente se encuentra un branch a la función que atiende a la excepción, comúnmente llamada manejador de excepción

Registros Resguardados

- El manejo de los registros en una excepción, debe permitir que finalizada la misma se pueda regresar a la posición y estado que estaba el procesador antes de que esta ocurriera.
 - El registro LR debe mantenerse intacto.
 - El CPSR debe mantener las banderas con el valor original antes de saltar.
 - El SP no debe ser corrompido si la excepción ocurre durante un manejo del Stack.

ARM, Resguarda el contenido de estos registros críticos, permitiendo luego restaurar el valor previo a la excepción. En particular el registro Status hace una copia al saved program status register (SPSRs)

Registros Resguardados

User	FIQ	IRQ	SVC	Undef	Abort
r0	r0	r0	r0	r0	r0
r1	r1	r1	r1	r1	r1
r2	r2	r2	r2	r2	r2
r3	r3	r3	r3	r3	r3
r4	r4	r4	r4	r4	r4
r5	r5	r5	r5	r5	r5
r6	r6	r6	r6	r6	r6
r7	r7	r7	r7	r7	r7
r8	r8	r8	r8	r8	r8
r9	r9	r9	r9	r9	r9
r10	r10	r10	r10	r10	r10
r11	r11	r11	r11	r11	r11
r12	r12	r12	r12	r12	r12
r13(sp)	r13(sp)	r13(sp)	r13(sp)	r13(sp)	r13(sp)
r14(lr)	r14(lr)	r14(lr)	r14(lr)	r14(lr)	r14(lr)
r15(pc)	r15(pc)	r15(pc)	r15(pc)	r15(pc)	r15(pc)
cpsr	cpsr	cpsr	cpsr	cpsr	cpsr
Cosi	spsr /	spsr	spsr	spsr	spsr
	3531	3931	3631	3931	3031

Para mejorar la velocidad en las interrupciones rápidas, los registros R8-R12, son también resguardados, permitiendo al manejador de interrupción comenzar inmediatamente.

Manejador de Excepciones (Entrada)

- Una vez ocurrida la excepción, se desencadena los siguientes procesos
- 1. Se guarda el CPSR en el SPSR.
- 2. Se establecen los modos y privilegios de acuerdo al tipo de excepción.
- 3. Se activa el bit *mascara de interrupción* en el CPSR de modo que el manejador de la excepción no sea interrumpido.
- 4. Se guarda la dirección de retorno en el nuevo LR.
- 5. Salta al vector de la tabla correspondiente.

Manejador de Excepciones (Salida)

- La tabla posee en general un branch al manejador de excepción.
- El manejador en general guardará registros en el stack, atienda a la excepción y recupera los registros guardados.
- Finalmente un MOV PC,LR desencadena lo siguiente:
- 1. Copia el SPCR al CPSR.
- 2. Copia el LR de resguardo al PC.
- 3. Recupera el modo de ejecución y los niveles de privilegios antes de la excepción.

Instrucciones relacionadas a excepciones

- · Una aplicación opera en general con bajos privilegios.
- El uso de excepciones de software comúnmente se aplica para llamadas al sistema operativos.

Uso del SVC

- 1. Los parámetros son copiados a registros
- 2. La instrucción SVC (Supervisor Call) generar una excepción que aumenta los privilegios
- 3. El SO examina los parámetros y realiza la función solicitada
- 4. Se retorna a la aplicación

Instrucciones relacionadas a excepciones

- En algunas situaciones es necesario acceder al registro CPSR
- Esto se puede realizar con los privilegios mas altos mediante las funciones MSR (move to register from special register) y MRS (move to special register from register)
- El uso mas habitual es durante el arranque, se cambia a diferentes modos para configurar el SP en cada uno de ellos.

Arranque del procesador

- En el arranque el procesador salta al vector de reset y comienza la ejecución del boot loader en modo supervisor.
- En ese punto se configura memoria, inicializa los SP y se lee el SO de la memoria flash o disco.
- El SO eventualmente cargará un programa, cambiando a un modo sin privilegios (user mode) y saltando a el arranque de el programa.

Bibliografía

Harris & Harris. Digital design and computer architecture: ARM edition. Elsevier, 2015. Capítulo 6.

William Hohl & Christopher Hinds. ARM assembly language. Fundamentals and techniques. 2nd edition. CRC press, 2015. Capítulo 14.

¿ Preguntas ?