Design of a Sequence Detector Worked Example

Implemented Using the Moore Machine Design Process

Flip-Flop Characteristic Equations

This is a reminder of the 4 types of flip-flops and their associated characteristic equations.

The Moore Machine

- The Moore machine was named after Edward Moore
- It has the characteristic of associating its outputs with the states
 - The outputs are represented within the vertex or in close proximity to the vertex

Moore Machine State Graph and State Table

Present State	Next State		Z
	X = 0	X = 1	
S0	S0	S1	0
S1	S1	S0	1

Notice the vertices. The state name is shown along with the output value Z. The Moore machine state graph is always represented in this fashion. Notice that the output Z is not dependent on the input X.

Macro View of the Sequence Detector

This sequence detector will be designed to recognize the pattern "1010". The behavior of the machine calls for the Z output to equal 1 whenever the programmed pattern is observed in the input bit stream X.

Example:

X = 0011011001010110

Z = 000000000001000

Source: Fundamentals of Logic Design by Charles H. Roth

Design Strategy

- For the design of the sequence detector, we will select the Moore machine model
- For this design, we will use the following process:
 - 1. Generate the state graph
 - 2. Create the state table
 - 3. Create the state transition table
 - 4. Generate the input expressions for the DFF
 - 5. Realize the final logic design

Generate the State Graph

LEGEND:

State

Output Z

Pattern: 1010

Note: The Moore machine graph has one more state than the Mealy machine implementation. Since the output is represented within a state, an additional state must be created because it is the only state that can show an output of '1' for this FSM.

Create the state table

Present State	Next State		Z
	X = 0	X = 1	
S0	S0	S1	0
S1	S2	S1	0
S2	S0	S3	0
S3	S4	S1	0
S4	S0	S1	1

Notice that the Moore machine model has an output value ${\bf Z}$ that is not dependent on the value of ${\bf X}$.

Create the State Transition Table

State Table

Present State		Next State		Z	
			X =	0 X = 1	
	S0		S0	S1	0
	S1		S2	S1	0
	S2		S0	S3	0
	S3		S4	S1	0
	\S4/		S0	S1	1
T			-		

State Transition Table

•				
Present State	Next State	Z		
	X = 0 X = 1	-		
000	000 001	0		
001	010 001	0		
010	000 011	0		
011	100 001	0		
100	000 001	1		

Let S0 = 000			
S1 = 001			
S2 = 010			
S3 = 011			
S4 = 100			

Generate the Input Expressions for the DFF

11

X

10

0

0

0

Present State	Next State		Z
	X = 0	X = 1	
000	000	001	0
001	010	001	0
010	000	011	0
011	100	001	0
100	000	001	1

Realize the final logic design

