Lecture Notes: Sets, Operations, and Maps

1 Sets

$$\mathbb{N} = \{0,1,2,\ldots\} \qquad \qquad \text{Natural numbers}$$

$$\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\} \qquad \qquad \text{Integers}$$

$$\mathbb{Q} = \left\{\frac{k}{n} \mid k,n \in \mathbb{N}, n \neq 0\right\} \qquad \qquad \text{Rational numbers}$$

$$\mathbb{R} = \qquad \qquad \text{Real numbers}$$

$$\mathbb{C} = \{a+bi \mid a,b \in \mathbb{R}\} \qquad \qquad \text{Complex numbers}$$
 where i is the $imaginary \ unit$ characterized by $i^2 = -1$.
$$\mathbb{R}^d = \{(a_1,a_2,\ldots,a_d) \mid a_i \in \mathbb{R}\} \qquad \qquad \text{d-dimensional space}$$

$$\mathbb{R}^\infty = \{(a_0,a_1,a_2,\ldots) \mid a_i \in \mathbb{R}\} \qquad \qquad \text{Space of infinite sequences of real numbers}$$

2 Set Operations

Let A, B be *sets*.

$$\begin{split} A \cup B &= \{c \,|\, c \in A \text{ or } c \in B\} \\ A \cap B &= \{c \,|\, c \in A \text{ and } c \in B\} \\ A \backslash B &= \{c \,|\, c \in A \text{ and } c \notin B\} \end{split}$$
 Intersection
$$\Delta B = A \cup B \backslash (A \cap B)$$
 Difference Symmetric difference

3 Indexed Families of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be an *indexed family of sets* (index set I).

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \}$$
 Union over the index set
$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \}$$
 Intersection over the index set

4 Maps (Functions)

A *map* or *function* is a rule that assigns to each element of a set A a unique element of a set B. Let A, B be sets. A map f is an assignment: to each $a \in A$, f assigns a unique $b \in B$, which is called the *value of f at a* and is denoted by f(a).

Note: f assigns to each $a \in A$ a value, but there may exist $b \in B$ that is not f(a) for any $a \in A$.

- A is called the *domain* (of definition) of f. - B is called the *target space* of f.

If $A' \subset A$, then the map f' (0.15)

$$f': A' \to B$$
$$a \mapsto f'(a) = f(a)$$

is called the *restriction of f to A'^* (denoted by $f' = f|_{A'}$).

5 Examples of Maps

- 1. $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sin(x)$ $f = \sin(x)$
- 2. $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ $x \mapsto \frac{1}{x}$
- 3. $g: \mathbb{R} \to \mathbb{R}$

$$x \mapsto \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- 4. $f: V \to \text{set of subspaces of } V \qquad v \mapsto span(v)$
- 5. $D: P(\mathbb{R}) \to P(\mathbb{R})$ $p(x) \mapsto p'(x) = p'$ *derivative*