Gait Recognition in Mobile Security

Chase R. Ottomoeller

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

December 6, 2014 Senior Seminar, Morris

The Big Picture

What is Mobile Security?

- Information Storage
- Device Access

How is mobile security evolving?

- No More Passwords
- Something You Are
- Unobtrusive Access

Outline

- Background
- Preprocessing the data
- Feature Extraction
- Gait Classification
- Results

Outline

- Background
 - Biometrics
- Preprocessing the data
- Feature Extraction
- Gait Classification
- 6 Results

Biometrics

- Biometrics
- Gait Recognition
- Why Gait is Better

Fixed Method Approach

- Phone Clipped to Waist
- Walked Down 18.5
 Meter Hallway

Unfixed Method Approach

- Phone in more natural location (pocket, handbag, backpack)
- Experiment done in real-world environments

Outline

- Background
- Preprocessing the data
 - Fixed Preprocessing
 - Unfixed Preprocessing
- Feature Extraction
- Gait Classification
- 6 Results

Linear Interpolation and Zero Normalization

- Walk Extraction
- Linear Interpolation (cure fitting)

Zero Normalization

Unfixed Method Overview

- Three Experiments:
 - Training Walking Detector
 - Evaluating Supervised Training Data
 - Unsupervised Training

Framing

- Framing
 - Separating Data into Equal Sections
 - Frame Length: 5.12 seconds
 - Each Frame contains 512 Samples

Projection

Framing

- Each sample is projected onto a global coordinate system. a = (x, y, z)
- Each a is projected into a vertical, and horizontal vector
- Estimate Direction of Gravity
- Not all frames will be used

Outline

- Background
- Preprocessing the data
- Feature Extraction
- Gait Classification
- 6 Results

Fixed Method Feature Extraction

- Four Steps:
 - Cycle Length Estimation
 - Cycle Detection
 - Cycle length normalization
 - Omitting Unusual Cycles

Cycle Length Estimation

- Detect start gait cycles with Salience Vectors
- Distance Between Data Points
- Minimum and Maximum Salience Vector

Cycle Detection

- Detecting Individual Cycles
- Start of each cycle is based on the minimum salience vector
- Spike around points 750, 1150, 1450, 1650
- Long cycles are split again using the same method

Cycle Length Normalization

- The distance of each cycle is measured from the start of one cycle to the start of the following.
- Cycles need to be of a set length for later Gait Analysis
- Linear Interpolation

Omitting Unusual Cycles

- Unusual Gait Cycles
- Dynamic Time Warping (DTW): an algorithm used to measure similarity between two sequences
- Cycles with an acceleration half that of the average are dropped

Feature Extraction I

- Frequency Domain using Spectrum Analysis
- Walking 1-2Hz vs Running >3Hz
- These features are used in the next step

Walking Detection

- Three classifications using a decision tree:
 - Walking: 1-2Hz
 - Non-Walking: >3Hz (running, biking, in moving vehicle)
 - Random Movements: >0Hz (transitional movements, short spikes)

Feature Extraction II

- Once Walking Detection confirms that the frame contains walking data, more relevant features are extracted for data.
- Two sets of features extracted:
 - Fundamental Frequency of Movement
 - Autocorrelation Features

Fundamental Frequencies

- This first set of features computed in this stage is the Compressed Sub-band Cepstral Coefficients (CSCC)
- CSCC based of off feature set for audio analysis.
- CSCC evolves 3 steps:
 - The energy spectrum is computed using the Fast Fourier Transform (FFT)
 - 2) Then the energy spectrum is mapped into 26 bands
 - 3) The discrete cosine transform of the sub-band energy is taken to form a 12-dimension vector representation

Fundamental Frequencies

- The second set of features are computed by Autocorrelation
- Useful to find periodicity and cadence of the gait
- Used instead of segmentation because the unfixed position of the phone creates noise
- CSCC features are extracted form the autocorrelation to summarize the shape and structure of the frame

Figure 2: (a) projected vertical component. (b) normalized autocorrelation of the vertical component. (c) projected horizontal component. (d) normalized autocorrelation of the horizontal component.

Outline

- Background
- Preprocessing the data
- Feature Extraction
- Gait Classification
- 6 Results

Gait Classification

- Fixed Method Gait Classification
 - Template-based
 - Machine Learning
- Fixed Method Gait Classification
 - Gausian Mixture Model-Universal Background Model

Template-based

- Feature Cycle (the best cycle with the lowest DTW distance)
- Probe Cycles (the remaining cycles)
- Two classes are made:genuine and imposter
- 50% of the Prove cycles must vote genuine

Machine Learning

- Extracted gait cycles are split into two groups: 80% go into a training set, 20% go into a testing data set
- The DTW distance matrix is computed from the training data set
- DTW distance matrix is used by a kernel function. This makes the data linearly separable.
- A hyperplane is used to separate the data into two classes: genuine and imposter
- The class with the most votes
 Ottomoeller (U of Minn, Morris)

Machine Learning

- UBM Training large source of data
- Users gait model is generated relating the odds of one event to the odds of another
- Maximum-a-Posteriori (MAP) is used to adjust Gaussian components and mixture weight to personalize the UBM model
- MAP is also used by recording false negatives

Conclusions

Outline

- Background
- Preprocessing the data
- Feature Extraction
- Gait Classification
- Results

References

