Определение 1. Пусть F — поле. Обозначим $X(F) = \{n \in \mathbb{N} \mid \overbrace{1 + \ldots + 1} = 0\}$. Если множество X(F) не пусто, $xapa\kappa mepucmu\kappa o \ \ \$ поля F называют число $\chi(F) = \min X(F)$. В противном случае говорят, что $\chi(F) = 0$.

Задача 1. Пусть $\chi(F) > 0$. Верно ли, что $\chi(F)$ — простое число?

Задача 2. Пусть поле F бесконечно. Обязательно ли $\chi(F) = 0$?

Задача 3. Можно ли поле $\{a+b\sqrt{2}\mid a,b\in\mathbb{Q}\}$ упорядочить другим (не обычным) способом?

Утверждение 1. (Принцип вложенных интервалов) Пусть дана последовательность вложенных интервалов $(a_1,b_1)\supset (a_2,b_2)\supset\dots$ Тогда пересечение $\bigcap_{n=1}^{\infty}(a_n,b_n)$ не пусто.

Задача 4. Верен ли принцип вложенных интервалов в полном поле?

ДЗ №16-17

Домашняя работа

декабрь 2013г.

Определение 1. Пусть F — поле. Обозначим $X(F) = \{n \in \mathbb{N} \mid \overbrace{1 + \ldots + 1}^n = 0\}$. Если множество X(F) не пусто, xарактеристикой поля F называют число $\chi(F) = \min X(F)$. В противном случае говорят, что $\chi(F) = 0$.

Задача 1. Пусть $\chi(F) > 0$. Верно ли, что $\chi(F)$ — простое число?

Задача 2. Пусть поле F бесконечно. Обязательно ли $\chi(F) = 0$?

Задача 3. Можно ли поле $\{a+b\sqrt{2}\mid a,b\in\mathbb{Q}\}$ упорядочить другим (не обычным) способом?

Утверждение 1. (Принцип вложенных интервалов) Пусть дана последовательность вложенных интервалов $(a_1,b_1)\supset (a_2,b_2)\supset\dots$ Тогда пересечение $\bigcap_{n=1}^{\infty}(a_n,b_n)$ не пусто.

Задача 4. Верен ли принцип вложенных интервалов в полном поле?

ДЗ №16-17

Домашняя работа

декабрь 2013г.

Определение 1. Пусть F — поле. Обозначим $X(F) = \{n \in \mathbb{N} \mid \overbrace{1 + \ldots + 1}^{\infty} = 0\}$. Если множество X(F) не пусто, xарактеристикой поля F называют число $\chi(F) = \min X(F)$. В противном случае говорят, что $\chi(F) = 0$.

Задача 1. Пусть $\chi(F) > 0$. Верно ли, что $\chi(F)$ — простое число?

Задача 2. Пусть поле F бесконечно. Обязательно ли $\chi(F)=0$?

Задача 3. Можно ли поле $\{a+b\sqrt{2}\mid a,b\in\mathbb{Q}\}$ упорядочить другим (не обычным) способом?

Утверждение 1. (Принцип вложенных интервалов) Пусть дана последовательность вложенных интервалов $(a_1,b_1)\supset (a_2,b_2)\supset\dots$ Тогда пересечение $\bigcap_{n=1}^{\infty}(a_n,b_n)$ не пусто.

Задача 4. Верен ли принцип вложенных интервалов в полном поле?