ФИО: Медяков Даниил Олегович

Номер задачи: 8

Решение:

Для начала проверим, можем ли мы пользоваться критерием согласия χ^2 для этой задачи. Поскольку $n=72\geq 50$ и $\nu=\{9,20,14,8,11,10\}$, то есть каждая $\nu_j\geq 5$, то мы можем пользоваться критерием согласия χ^2 . Мы проверяем гипотезу H_1 о симметричности игрального кубика, а значит, исходя из этой гипотезы и условия, мы имеем следующие параметры:

$$\begin{cases} N = 6 \\ p_j^0 = \frac{1}{6}, j = \overline{1, 6} \\ n = 72 \\ \nu = \{9, 20, 14, 8, 11, 10\} \end{cases}$$

Теперь мы готовы вычислить статистику T_{χ^2} :

$$T_{\chi^2} = \sum_{j=1}^{N} \frac{\left(\nu_j - np_j^0\right)^2}{np_j^0} = \frac{3^2 + 8^2 + 2^2 + 4^2 + 1^2 + 2^2}{12} = 8, 16.$$

При том, что наша гипотеза H_1 верна, мы получаем сходимость $T_{\chi^2} \xrightarrow[n \to \infty]{H_1,d} \chi^2(N-1)$. В тоже время t_α удовлетворяет условию на уровень значимости, то есть $\mathbb{P}(T_{\chi^2} \geq t_\alpha) = \alpha \Rightarrow \mathbb{P}(T_{\chi^2} < t_\alpha) = F_{\chi^2}(t_\alpha) = 1-\alpha$. Тогда t_α суть $(1-\alpha)$ квантиль распределения $\chi^2(N-1)$. В нашем случае:

$$t_{0,01} = \chi^2(5)_{0,99} = 15, 1.$$

Получили $T_{\chi^2}=8,16<15,1=t_{\alpha},$ то есть мы не попадаем в критическую область $\Omega_{\mathrm{kp.}}=\{x\in\Omega\mid T_{\chi^2}(x)\geq t_{\alpha}\},$ а значит гипотезу H_1 не отклоняем.