Parameter Server on Flink an approach for model-parallel machine learning

27/09/2018

Distributed Computing and Analytics Workshop

Dániel Berecz bdaniel@info.ilab.sztaki.hu

About us

- Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
- Data Science group
- Strong industry ties
 - Ericsson, Bosch, Portugal Telekom, etc.

Agenda

- 1. Model-parallel training
- 2. Parameter Server on Flink Streaming

Model-parallel training

model-parallel

Parameter Server on Flink

Parameter Server

Parameter Server API

ps.pull(paramId)

Parameter Server API

server nodes

ps.pull(paramId)
ps.push(paramId, paramUpdate)

def onRecv(data): Unit

Parameter Server API

server nodes

ps.pull(paramId)
ps.push(paramId, paramUpdate)

def onRecv(data): Unit
def onPullRecv(paramId, paramValue)


```
def onRecv(r: Rating) = {
```



```
def onRecv(r: Rating) = {
  waitQueues(r.itemId).add(r)
```



```
def onRecv(r: Rating) = {
   waitQueues(r.itemId).add(r)
   ps.pull(r.itemId)
}
```



```
def onRecv(r: Rating) = {
    waitQueues(r.itemId).add(r)
    ps.pull(r.itemId)
}
```



```
def onRecv(r: Rating) = {
    waitQueues(r.itemId).add(r)
    ps.pull(r.itemId)
}
```



```
def onRecv(r: Rating) = {
    waitQueues(r.itemId).add(r)
    ps.pull(r.itemId)
}
```



```
def onRecv(r: Rating) = {
    waitQueues(r.itemId).add(r)
    ps.pull(r.itemId)
}
```

```
def onPullRecv(paramId: Int,
               param: Vector) = {
 val itemId = paramId
 val item = param
 val (r, userId, _) =
   waitQueues(itemId).pop()
 val user = users(userId)
 val (userDelta, itemDelta) =
   updateWithSGD(user, item, r)
```



```
def onRecv(r: Rating) = {
    waitQueues(r.itemId).add(r)
    ps.pull(r.itemId)
}
```

```
def onPullRecv(paramId: Int,
               param: Vector) = {
 val itemId = paramId
 val item = param
 val (r, userId, ) =
   waitQueues(itemId).pop()
 val user = users(userId)
 val (userDelta, itemDelta) =
   updateWithSGD(user, item, r)
 users(userId) += userDelta
```



```
def onRecv(r: Rating) = {
    waitQueues(r.itemId).add(r)
    ps.pull(r.itemId)
}
```

```
def onPullRecv(paramId: Int,
               param: Vector) = {
 val itemId = paramId
 val item = param
 val (r, userId, _) =
   waitQueues(itemId).pop()
 val user = users(userId)
 val (userDelta, itemDelta) =
   updateWithSGD(user, item, r)
 users(userId) += userDelta
 ps.push(itemId, itemDelta)
```


Integration with Flink

Implementation: Loops API

Implementation: Loops API

Framework and library

- Framework
 - Easy to implement new algorithms

- Library
 - Matrix Factorization
 - Factorization Machine
 - Passive Aggressive
 - Sketch

Thank you for your attention

Source code:

https://github.com/FlinkML/flink-parameter-server

Dániel Berecz

bdaniel@info.ilab.sztaki.hu

Gábor Hermann mail@gaborhermann.com

https://github.com/rpalovics/Alpenglow

M. Li, et al.: "Scaling Distributed Machine Learning with the Parameter Server" 2014.

K. Crammer, et al.: "Online Passive-Aggressive Algorithms" 2006.

S. Schelter, et al.: "Factorbird - A Parameter Server Approach to Distributed Matrix Factorization." 2014.

R. Gemulla, et al. "Large-scale matrix factorization with distributed stochastic gradient descent" 2011.

Backups

Batch? Streaming?

Batch vs streaming?

Batch vs streaming? Offline vs online?

Online on streaming

Online on streaming

Batch + online combination

Batch + online combination

- 30M music listening Last.fm dataset
- Weekly batch training
- Evaluation weekly average
 - on every incoming listening
- Around 45.000 users

Batch on Flink Streaming

- Movielens 1M movie rating dataset
- Using 6 nodes, 4 cores each

