P. Maurer

ENS Rennes

Recasages: 229, 261, 262

Référence : Gourdon, Analyse pour le théorème de Dini.

Le reste était inspiré d'un doc sur internet (auteur à retrouver).

Théorème de Glivenko-Cantelli

On se donne $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

Lemme 1. (Second théorème de Dini).

Soit [a,b] un intervalle fermé de \mathbb{R} , $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $f_n:[a,b]\to\mathbb{R}$ croissantes. On suppose que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction $f:[a,b]\to\mathbb{R}$ continue. Alors $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

Démonstration. Soit $\varepsilon > 0$. Comme f est continue sur le compact [a,b], elle y est uniformément continue par théorème de Heine. Il existe donc $\delta > 0$ tel que pour tout $x,y \in [a,b]$, si $|x-y| \le \delta$, alors $|f(x)-f(y)| \le \varepsilon$.

On se donne une subdivision $(x_i)_{1 \le i \le m}$ avec $a = x_1 < \cdots < x_m = b$ de pas $\eta = \delta/2$, et $x \in [a, b]$. Il existe donc $i \in [1, m-1]$ tel que $x_i \le x \le x_{i+1}$. Pour $n \in \mathbb{N}$, une inégalité triangulaire donne

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(x_i)| + |f_n(x_i) - f(x_i)| + |f(x_i) - f(x)|.$$

En notant $N \in \mathbb{N}$ un entier tel que $|f_n(x_i) - f(x_i)| \le \varepsilon$ dès que $n \ge N$, on a donc

$$\forall n \ge N \quad |f_n(x) - f(x)| \le f_n(x) - f_n(x_i) + 2\varepsilon$$

$$\le f_n(x_{i+1}) - f_n(x_i) + 2\varepsilon$$

$$= f_n(x_{i+1}) - f(x_{i+1}) + f(x_{i+1}) - f(x_i) + f(x_i) - f_n(x_i) + 2\varepsilon.$$

Reste à choisir un $N_1 \ge N$ tel que $|f_n(x_{i+1}) - f(x_{i+1})| \le \varepsilon$ quand $n \ge N_1$, et on obtient

$$\forall n \ge N_1 \quad |f_n(x) - f(x)| \le 5\varepsilon.$$

Donc pour $n \ge N_1$, on a $\sup_{x \in [a,b]} |f_n(x) - f(x)| \le 5\varepsilon$, ce qui conclut la preuve.

Théorème 2. (Glivenko-Cantelli).

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables réelles aléatoires indépendantes, de même loi. On note F la fonction de répartition commune des X_n et, pour $n\in\mathbb{N}^*$, F_n la fonction de répartition empirique de X_n , c'est-à-dire :

$$\forall x \in \mathbb{R} \quad \forall \omega \in \Omega \quad F_n(x)(\omega) := \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_k(\omega) \le x\}}.$$

Alors, \mathbb{P} -presque sûrement, F_n converge uniformément vers F, c'est-à-dire :

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \underset{n \to +\infty}{\overset{\mathbb{P} - p.s}{\to}} 0.$$

Démonstration.

L'idée générale est d'utiliser le second théorème de Dini et la croissance des F_n pour conclure. Il y a trois problème à régler :

- Les F_n sont définies sur \mathbb{R} et non pas sur un compact.
- La fonction F, a priori, n'est pas continue.
- Il faut intégrer les questions de théorie de la mesure pour avoir une convergence presque sûre.

Etape 1 : On va utiliser la fonction quantile pour résoudre les deux premiers problèmes.

Si X est une variable aléatoire réelle, on rappelle que sa fonction quantile est définie sur [0,1] par $F_X^{\leftarrow}(u) = \inf\{x \in \mathbb{R} : F_X(x) \geq u\}$. On va démontrer que :

- 1. On a $F_X^{\leftarrow}(u) \leq x \iff u \leq F_X(x)$.
- 2. Si $U \sim \mathcal{U}([0,1])$, alors la variable aléatoire $F_X^{\leftarrow}(U)$ suit la même loi que X.
- 1. \Longrightarrow Si $F_X^{\leftarrow}(u) \leq x$, il existe $y \leq x$ tel que $F_X(y) \geq u$. Par croissance de F_X , On en déduit $F_X(x) \geq F_X(y) \geq u$.

 \subseteq Si $u \leq F_X(x)$, alors $x \in \{x \in \mathbb{R} : F_X(x) \geq u\}$ donc $x \leq F_X^{\leftarrow}(u)$ par définition de la borne inférieure.

2. Soit $U \sim \mathcal{U}([0,1])$. D'après le point 1, pour tout $x \in \mathbb{R}$ on a $F_X^{\leftarrow}(U) \leq x \iff U \leq F_X(x)$. On en déduit que $\mathbb{P}(F_X^{\leftarrow}(U) \leq x) = \mathbb{P}(U \leq F_X(x)) = F_X(x)$, donc $F_X^{\leftarrow}(U)$ et X ont la même loi.

Etape 2: On se ramène à montrer le théorème sur des variables uniformes sur [0,1].

Supposons le théorème prouvé pour une suite $(U_n)_{n\in\mathbb{N}}$ de variables i.i.d de loi $\mathcal{U}([0,1])$. On se donne F une fonction de répartition quelconque, et pour tout $n\in\mathbb{N}$, on pose $X_n=F^{\leftarrow}(U_n)$.

Alors les variables $(X_n)_{n\in\mathbb{N}}$ ont pour fonction de répartition commune F d'après ce qui précède, et de plus, on a, pour $n\geq 1$:

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| = \sup_{x \in \mathbb{R}} \left| \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{F^{\leftarrow}(U_n) \le x\}} - F(x) \right|$$

$$= \sup_{x \in \mathbb{R}} \left| \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{U_n \le F(x)\}} - F(x) \right|$$

$$\leq \sup_{s \in [0,1]} \left| \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{U_n \le s\}} - s \right|.$$

Comme $s\mapsto s$ est la fonction de répartition de la loi uniforme sur [0,1], on en déduit alors que \mathbb{P} -presque sûrement, on a $\sup_{s\in[0,1]}\left|\frac{1}{n}\sum_{k=1}^n\mathbf{1}_{\{U_n\leq s\}}-s\right|\underset{n\to+\infty}{\to}0$, et donc $\sup_{x\in\mathbb{R}}\left|F_n(x)-F(x)\right|\underset{n\to+\infty}{\to}0$.

Etape 3 : On prouve le théorème pour une suite de variables uniformes sur [0, 1].

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires i.i.d de loi uniforme sur [0,1]. D'après la loi forte des grands nombres, pour tout $s \in [0,1]$, il existe $N_s \in \mathcal{F}$ tel que $\mathbb{P}(N_s) = 0$ et pour tout $\omega \in X \setminus N_s$,

$$\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{\{U_n(\omega) \le s\}} \underset{n \to +\infty}{\longrightarrow} \mathbb{P}(U_n(\omega) \le s)$$

$$= s$$

Cela est en particulier vrai pour $s \in [0,1] \cap \mathbb{Q}$, et on pose ainsi $\mathcal{N} = \bigcup_{s \in [0,1] \cap \mathbb{Q}} N_s$. Cette union étant dénombrable, \mathcal{N} vérifie $\mathbb{P}(\mathcal{N}) \leq \sum_{s \in [0,1] \cap \mathbb{Q}} \mathbb{P}(N_s) \leq 0$, donc $\mathbb{P}(\mathcal{N}) = 0$. Par ailleurs, pour tout

$$\omega \in X \setminus \mathcal{N}$$
, on a $\omega \in \bigcap_{s \in [0,1] \cap \mathbb{Q}} X \setminus N_s$ donc $\frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{U_n(\omega) \leq s\}} \underset{n \to +\infty}{\to} s$.

Donnons nous un réel $s \in]0,1[$ et $\varepsilon > 0$. Par densité de $]0,1[\cap \mathbb{Q}$ dans]0,1[, on peut trouver deux rationnels $p, q \in]0, 1[\cap \mathbb{Q}$ tels que $s - \varepsilon \le p \le s \le q \le s + \varepsilon$.

Par croissance de $F_n = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{U_n \leq s\}}$, on a $F_n(p) \leq F_n(s) \leq F_n(q)$. Aussi, pour $\omega \in X \setminus \mathcal{N}$, il vient

$$F_n(p)(\omega) \le F_n(s)(\omega) \le F_n(q)(\omega).$$

Donc $s-\varepsilon \leq p \leq \limsup_n F_n(s)(\omega)$ et $\liminf_n F_n(s)(\omega) \leq q \leq s+\varepsilon$. Ceci étant vrai pour tout $\varepsilon > 0$, on en déduit que $\limsup_n F_n(s)(\omega) = s$, et ce pour tout $\omega \in X \setminus \mathcal{N}$.

Fixons un $\omega \in X \setminus \mathcal{N}$. La suite de fonctions $(F_n(\cdot)(\omega))_n$ converge simplement vers $s \mapsto s$, qui est continue sur le compact [0,1]. D'après le second théorème de Dini, on en déduit que $(F_n(\cdot)(\omega))_n$ converge uniformément vers $s \mapsto s$, donc $\sup_{s \in [0,1]} |F_n(s)(\omega) - s| \underset{n \to +\infty}{\to} 0$. Ceci étant vrai pour tout $\omega \in X \setminus \mathcal{N}$, on en déduit que sup $|F_n(s) - s|$ converge \mathbb{P} -presque sûrement vers zéro, ce qui termine la preuve du théorème.