

CÁLCULO I

Tópico 1 – Funções

Notas de Aula

Tópico 1. Funções

1.1 – Funções: Definição, representações e Determinação do Domínio

O conceito de função, junto com sua representação gráfica, é certamente um dos mais importantes em Matemática e tem lugar de destaque em outras áreas do conhecimento. Frequentemente, se observa que uma grandeza é função de outra e, então, tenta-se encontrar uma fórmula razoável para representar essa função. A busca de uma função que representa uma determinada situação é chamada modelagem matemática (e a função escolhida é o modelo matemático).

Inicialmente, estudaremos as ideias intuitivas ligadas à noção de função, e em seguida, iremos estudar mais formalmente esse importante conceito.

Exemplo 1. O número de litros de gasolina e o preço a pagar.

Suponha que o preço do litro da gasolina seja R\$ 5,00. Complete a tabela e represente

as informações graficamente.

Número de litros	Preço a pagar
0	
1	
2	
i	:
Х	P =

Representação gráfica:				

Nessa situação, o preço a pagar é calculado *em função* do número de litros. Assim temos que:

- O número de litros é a *variável*

Uma função, de uma variável x, é uma relação que associa a cada valor de x um único número f(x), chamado de valor da função em x. A variável x é chamada de variável independente. O conjunto dos valores que a variável independente pode assumir é chamado de domínio da função. A imagem da função é o conjunto de valores que a função assume.

Exemplo 2. Um retângulo tem 450 m² de área. Seja x a medida de um dos lados do retângulo. Expresse o perímetro em função de x e o determine domínio contextual dessa função.

Exemplo 3. Deseja-se construir uma caixa sem tampa, de base quadrada, a partir de uma folha de papel cartaz quadrada de lados medindo 50 cm. Para a construção da caixa, é necessário retirar de cada canto da folha de papel cartaz um quadrado de lado x. Qual o volume da caixa em função de x? Quais são os valores permitidos para variável x nesse contexto?

NOTAÇÃO, REPRESENTAÇÕES E ZEROS

Como o valor y é determinado a partir do valor de x, dizemos que y é função de x e escrevemos y = f(x), onde

- \checkmark f é o nome da função,
- \checkmark x é a variável independente e
- \checkmark y a variável dependente.

Uma função possui várias representações: gráfico, lei, fórmula, tabela ...

É interessante pensar na função como uma *máquina*. Se x estiver no domínio da função, quando x entra na máquina ele será aceito como entrada e a máquina produzirá uma saída f(x) de acordo com a regra que define a função.

Observe que nem toda curva no plano cartesiano será o gráfico de uma função. Lembre-se que no conceito de função, temos que para cada valor de x temos um único valor de y relacionado. Portanto, nenhuma reta vertical poderá cruzar o gráfico de uma função mais de uma vez.

Chamamos de zeros ou raízes da função os valores de x, para os quais temos f(x) = 0.

Exemplo 4. Observe os gráficos e verifique quais podem ou não representar funções.

Exemplo 5. Sendo $f: R \to R$ a função definida por f(x) = 3x - 5, determine:

- a) f(-1)
- b) f(4)
- c) x tal que f(x) = 4.

DOMÍNIO E IMAGEM

O domínio da função é um conjunto de possíveis valores da variável independente e a imagem é o conjunto correspondente de valores da variável dependente.

Os domínios e as imagens de muitas funções são intervalos ou combinações de intervalos. Esses intervalos podem ser abertos, fechados ou semi-abertos e finitos ou infinitos. Complete a tabela abaixo (com alguns exemplos):

Notação de conjunto	Representação na reta	Notação de intervalo
$A = \{x \in IR / 1 \le x \le 5\}$		
B = $\{x \in IR / 1 < x < 5\}$		
$C = \{x \in IR / x > 5\}$		
$D = \{x \in IR / x \le 2\}$		

Exemplo 6. Considere a função cujo gráfico é representado abaixo.

Determine:

a) os zeros da f.

b) f(-2).

c) x, tal que f(x) = -2.

d) x, tal que f(x) < 0.

e) o domínio e a imagem de f.

DETERMINAÇÃO DO DOMÍNIO

Para determinar o domínio de uma função é fundamental lembrar que, no conjunto dos reais (IR),

✓ uma divisão só existe quando o denominador é ≠ 0; e

 \checkmark uma raiz de índice par só existe quando o radicando é ≥ 0

Exemplo 7. Determine o domínio (campo de existência) das seguintes funções:

$$a) f(x) = \frac{x}{x+2}$$

$$b) f(x) = x^2 + 1$$

$$c) f(x) = \sqrt{2x - 5}$$

$$d) f(x) = \frac{3x+4}{\sqrt{3-2x}}$$

ATIVIDADES DE AULA

1) O preço da passagem do ônibus urbano comum na Cidade de Porto Alegre é de R\$ 4,80. Com base nesse dado, complete a tabela a seguir:

Número de passagens	1	2	6	9
Valor a ser pago				

Agora responda as questões.

- (a) É possível determinar o número de passagens vendidas, se o valor pago foi R\$ 273,60?
- (b) O que é constante nesse problema?
- (c) O que é variável nesse problema?
- (d) Se representarmos por y o valor a ser pago e por x o número de passagens vendidas, escreva a relação matemática que modela essa situação (a equação que fornece y em função de x).
- 2) O preço a pagar por uma corrida de táxi depende da distância percorrida. A tarifa P é composta por duas partes: uma parte taxa, denominada bandeirada e uma parte variável que depende do número de quilômetros rodados. Suponha que a bandeirada custe R\$ 10,00 e o quilômetro rodado, R\$ 1,20.
- (a) Quanto se pagará por uma corrida em que o táxi rodou 10 km?
- (b) Sabendo que a corrida custou R\$ 72,40, calcule a distância percorrida pelo táxi.
- (c) Expresse o preço P em função da distância d percorrida.
- 3) Um automóvel vai percorrer a distância de 480 km, em uma trajetória retilínea, utilizando uma velocidade constante. Preencha a tabela abaixo e responda as questões a seguir:

Tempo (horas)	2	3	4	5
Velocidade (Km/h)				

- (a) O que acontece com a velocidade quando se dobra ou triplica o tempo?
- (b) O que é constante nesse problema?
- (c) O que é variável nesse problema?
- (d) Se representarmos por v a velocidade em km/h, e por t o tempo em horas, escreva a relação matemática que modela essa situação (a equação que fornece v em função de t).
- 4) Um corpo é considerado em movimento em física, neste caso ele é chamado um móvel, quando sua posição S varia no tempo. Imagine uma trajetória retilínea com 200 metros de comprimento, cujo um dos trechos está esquematizado abaixo:

S₀ em física é a Posição Inicial do móvel, ou seja, o ponto da trajetória de onde ele iniciou o movimento. Vamos, portanto, supor que nosso móvel (o corpo em movimento) iniciou seu movimento na origem da trajetória, 0 metro (Ponto de Referência). Esse movimento foi feito com velocidade constante de 5 m/s até atingir a posição S₄. Baseado nesses, responda as questões seguintes:

(a) Preencha a tabela abaixo.

Tempo de Percurso (s)	4	8	12	16
Posição do móvel				

- (b) Se representarmos por S a posição do móvel e por t o tempo de percurso estabeleça a relação matemática que modele a posição do móvel após t segundos.
- 5) Uma população de bactérias dobra a cada hora. Se inicialmente temos 10 bactérias, então:
- a) qual será o número de bactérias após 3 horas?
- b) após quantas horas teremos 320 bactérias?
- c) se "N" é o número de bactérias daqui a "t" horas, expresse N em função de t.
- 6) O número de habitantes de uma cidade é hoje igual a 7.000 e cresce a uma taxa de 3% ao ano.
- a) Qual o número de habitantes daqui a 2 anos?
- b) Qual o número de habitantes daqui a 10 anos?
- c) Se "N" é o número de habitantes daqui a "t" anos, expresse N em função de t.
- 7) Considere um quadrado de lado ℓ , perímetro P e área A. Nessas condições, expresse:
- a) P em função de ℓ
- b) ℓ em função de P
- c) A em função de ℓ
- d) A em função de P
- 8) O volume de um cilindro de raio r e altura h é dado por $V = \pi r^2 h$. Sabendo que esse cilindro é equilátero (h = 2r), expresse:
- a) o volume "V" em função do raio "r".
- b) o volume "V" em função da altura "h".
- 9) Um retângulo tem uma área de 16 m². Expresse o perímetro do retângulo como uma função do comprimento "x" de um de seus lados.
- 10) Um retângulo tem perímetro 20 m. Expresse a área do retângulo como uma função do comprimento "x" de um de seus lados.

11) Sendo a função real de variável real definida por $f(x) = x^2 - 10x + 8$, determine:

c) x, tal que
$$f(x) = -1$$
.

12) Considere as funções $f(x) = 3x^2 - x + 5$ e g(x) = -2x + 9, definidas de IR em IR e determine:

a)
$$f(0) + g(1)$$
.

b) x, tal que
$$g(x) = 1$$
.

c) x, tal que
$$f(x) = g(x)$$
.

13) Considere a função y = f(x) cujo gráfico é representado abaixo.

Determine

- a) os zeros da f.
- b) f(2).
- c) x, tal que f(x) = 6.
- d) x, tal que f(x) > 0.
- e) o domínio e a imagem de f.

14) Qual o domínio das seguintes funções:

$$a) f(x) = \frac{x}{2x-1}$$

b)
$$f(x) = \frac{2-3x}{7x+14}$$
 c) $f(x) = \frac{\sqrt[3]{x-4}}{4}$

$$c) f(x) = \frac{\sqrt[3]{x-4}}{4}$$

$$d) f(x) = \sqrt{2x - 6}$$

d)
$$f(x) = \sqrt{2x-6}$$
 e) $y = \frac{\sqrt{x-1}}{x} + \frac{2x}{\sqrt{x+4}}$

EXERCÍCIOS ANTON H., BIVENS I., DAVIS S. CÁLCULO. VOLUME 1 (10ª ED)

Exercícios de compreensão 0.1 (p.11): 2, 4 e 5

Exercícios 0.1 (p.14): 29 e 31

1.2 – Funções Polinomiais

As funções mais simples são as potências de x com expoentes inteiros não negativos

1 , x ,
$$x^2$$
 , x^3 , x^4 ,...

Se uma quantidade finita delas é multiplicada por constantes e os resultados são somados, obtemos um polinômio

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

O grau do polinômio é o maior expoente de x que aparece nele; se $a_n \neq 0$, o grau de P(x) é n.

Nessa secção vamos revisar as funções polinomiais até grau 2.

Introdução: um motoboy cobra para fazer uma entrega R\$ 3,00 por cada km percorrido até o local, além de uma taxa fixa de R\$ 2,00. Sendo "x" a quantidade de km percorridos e "y" o preço total pago pela entrega, expresse y em função de x, complete a tabela e esboce o gráfico.

Exemplos:

a)
$$f(x) = 5x - 4$$
, onde $a =$ e b =

b)
$$f(x) = -x + 3$$
, onde $a = e b =$

c)
$$f(x) = -2x$$
, onde $a = e b =$

d)
$$f(x) = 4$$
, onde $a =$ e $b =$

Informações importantes:

1°) O **coeficiente angular** a é a taxa segundo a qual a reta sobe (.....) ou desce (.....). Cada vez que x aumenta 1, temos que y aumenta ou diminui |a| unidades.

- 2°) Se o coeficiente angular é zero (a=0), então a função é
- 3°) O **coeficiente linear** b é a altura onde a reta intercepta o eixo
- 4°) O **zero (ou raiz)** da função é geometricamente o ponto onde a reta intercepta o eixo

5°) Cálculo do **coeficiente angular** tendo **dois pontos** da reta:

Exemplo 1. Esboce o gráfico das seguintes funções:

a)
$$y = 3$$

b)
$$f(x) = \begin{cases} 2, & \text{se } x \ge 0 \\ -1, & \text{se } x < 0 \end{cases}$$

Exemplo 2. Esboce o gráfico da reta y = -2x + 1, mostrando os pontos onde a mesma intercepta os eixos x e y.

Exemplo 3. Determine a equação da reta representada abaixo:

FUNÇÃO QUADRÁTICA

<u>Definição</u>: é uma função do tipo $f(x) = ax^2 + bx + c$, onde $a \in IR^*$, $b \in IR$ e $c \in IR$. O gráfico dessa função é uma curva chamada de **parábola**.

Informações importantes:

(1º) A concavidade da parábola depende do valor do coeficiente "a".

(2°) O *coeficiente "c"* é a altura onde a parábola intercepta o

(3°) Os **zeros ou raízes da função** da função quadrática são os números reais x tais que f(x)=0. Ou seja, são as soluções da equação $ax^2+bx+c=0$, que são dadas pela chamada fórmula de Bhaskara:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Geometricamente, as raízes reais são os pontos onde a curva intercepta o eixo x e a quantidade de raízes depende do valor obtido para o radicando $\Delta = b^2 - 4ac$.

	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
	2 raízes reais e distintas	2 raízes reais e iguais	não existem raízes reais
a > 0	x ₁	x ₁ = x ₂ x	x
a < 0	x ₁	x₁= x₂	×

 $(4^{\rm o})$ Toda parábola é composta de dois ramos simétricos em relação a uma reta chamada de eixo de simetria. O ponto comum à parábola e ao eixo de simetria é o ponto V, chamado de $\emph{v\'ertice}$ da função quadrática.

As coordenadas do vértice $V(x_V, y_V)$ são dadas por:

$$x_{v} = -\frac{b}{2a}$$
 e $y_{v} = f(x_{v})$ ou $y_{v} = -\frac{\Delta}{4a}$.

(5º) Imagem e Valores extremos da função quadrática

Exemplo 4. Faça um esboço das funções abaixo mostrando

- os interceptos
- o vértice
- valor máximo ou mínimo
- domínio e imagem.

a)
$$f(x) = x^2 - 6x + 5$$

b)
$$f(x) = -x^2 + 4x - 10$$

Exemplo 5. Resolva as inequações de 2º grau:

a)
$$x^2 - 4x > 0$$

b)
$$-x^2 + 2x - 10 < 0$$

ATIVIDADES DE AULA

1) Faça um esboço do gráfico das funções, mostrando os interceptos de x e y:

a)
$$y = -x + 2$$

b)
$$y = x + 4$$

c)
$$y = 2x - 1$$

2) Determine a equação das seguintes retas:

a)

b)

- 3) A equivalência entre as escalas de temperatura geralmente é obtida por meio de uma função polinomial do 1º grau, ou seja, uma função da forma y = a.x + b. Um grupo de estudantes da escola politécnica da PUCRS desenvolveu uma nova unidade de medida para temperaturas: o grau Otavius.
- A correspondência entre a escala Otavius (O) e a escala Celsius (C) é a seguinte:

°O	°C
6	18
60	36

- Sendo f a função que expressa a temperatura em Celsius (C) em função da temperatura em Otavius) determine a lei dessa função.
- 4) Uma barra de metal uniforme tenha 50 cm de comprimento e esteja isolada lateralmente, enquanto as temperaturas nos extremos sejam mantidas a 25°C e 85°C, respectivamente. Suponha que o eixo x seja escolhido conforme a figura abaixo e a temperatura y em cada ponto desse eixo possa ser determinada em função de x por meio de uma função polinomial do 1° grau, ou seja, uma função da forma y = ax + b.

- Nessas condições determine a lei da função, para $0 \le x \le 50$.
- 5) A locadora A aluga um carro por R\$ 30,00 a diária mais R\$ 0,20 por km rodado. A locadora B o faz por R\$ 40,00 a diária mais R\$ 0,10 por km rodado. Qual locadora você escolheria, se você pretendesse alugar um carro por um dia e pagar o menos possível? Justifique algebricamente e graficamente.

6) Faça o esboço dos gráficos de cada uma das seguintes funções mostrando os interceptos e o vértice.

a)
$$y = x^2 - 4x + 3$$

b)
$$y = x^2 + 2x + 2$$

c)
$$y = -x^2 + 4x - 4$$

7) A trajetória da bola, num chute a gol, descreve uma parábola. Supondo que $h(t) = -t^2 + 6t$, onde h é a altura dada em metros e t é o tempo dado em segundos, responda:

- a) Em que instante a bola atinge a altura máxima?
- b) Qual a altura máxima atingida pela bola?
- 8) Um fazendeiro pretende usar 80 metros de cerca para proteger um bosque retangular às margens de um riacho, como mostra a figura.
- a) Determine a área da região cercada em função de x, indicando seu domínio.
- b) Qual o valor máximo possível para essa área? Represente a graficamente essa função.

9) Sabe-se que o lucro total de uma empresa é dado pela fórmula L = R - C, em que L é o lucro total, R é a receita total e C é o custo total da produção. Numa empresa que produziu x unidades verificou-se que: $R(x) = 6000x - x^2$ e $C(x) = x^2 - 2000x$.

Nessas condições determine:

- a) a equação do lucro em função de x.
- b) quantas unidades devem ser produzidas para que o lucro seja máximo.
- c) o valor do lucro máximo.
- 10) Construir o gráfico das seguintes funções com mais de uma sentença:

a)
$$f(x) = \begin{cases} x + 2, \text{ se } x < 0 \\ 2, \text{ se } x \ge 0 \end{cases}$$

b)
$$f(x) = \begin{cases} x^2 - 4, \text{ se } x \le 0 \\ -x + 3, \text{ se } x > 0 \end{cases}$$

c)
$$f(x) = \begin{cases} -2, \text{ se } x \le -2\\ x, \text{ se } -2 < x < 2\\ 2, \text{ se } x \ge 2 \end{cases}$$

EXERCÍCIOS ANTON H., BIVENS I., DAVIS S. CÁLCULO. VOLUME 1 (10ª ED)

Exercícios 0.1 (p.13): 7, 23

Exercícios de revisão do capítulo 0 (p.63): 1, 3, 5, 7

1.3 – OBTENDO NOVAS FUNÇÕES A PARTIR DE ANTIGAS

> Operações aritméticas sobre funções

Sendo f e g funções podemos obter f+g, f-g, f.g e f/g, ditas, respectivamente, função soma, função diferença, função produto e função quociente, abaixo definidas:

$$(1) (f + g)(x) = f(x) + g(x)$$

$$(2)(f-g)(x) = f(x) - g(x)$$

$$(3) (f \cdot g)(x) = f(x) \cdot g(x)$$

$$(4)\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Em todos os casos o domínio da função resultante consiste na intersecção dos domínios das funções f e g. Porém, no caso 4, também devem ser excluídos do domínio os valores de x que anulam a função g.

Exemplo 1. Sendo f(x) = 3x + 4, g(x) = x - 1 e $h(x) = \frac{2}{x - 1}$ (com $x \ne 1$), determine as funções pedidas em cada caso indicando seus domínios.

a)
$$(f - g)(x) =$$

b)
$$(f/g)(x) =$$

c)
$$(g.h)(x) =$$

Composição de funções

Outra maneira de se combinar duas funções f e g consiste em substituir g(x) em todas as ocorrências da variável x em f(x). A função resultante é chamada de composta de f(x) e g(x) e denotada por $(f \circ g)(x)$ ou f(g(x)). O domínio de $f \circ g$ é o conjunto de valores de x tais que $x \in \mathsf{Dom}_{\mathsf{g}}$ e $g(x) \in \mathsf{Dom}_{\mathsf{f}}$.

Exemplo 2. Sendo f(x) = 2x + 1 e $g(x) = \sqrt{x}$ (com $x \ge 0$), determine:

a)
$$f(g(4)) =$$

b)
$$f(g(x)) =$$

c)
$$g \circ f =$$

Exemplo 3. Expresse a função $h(x) = (x+1)^2$ como uma composição de duas funções.

EXERCÍCIOS ANTON H., BIVENS I., DAVIS S. CÁLCULO. VOLUME 1 (10ª ED)

Exercícios 0.2 (p.24): 27, 29, 31, 35, 37, 39

- > Algumas funções importantes e seus gráficos
- ❖ A família y = x^p

❖ A função valor absoluto

> Movimentos gráficos

Translações

(a) Vertical

Considere a função $y = \sqrt{x}$ e esboce o gráfico de $y = \sqrt{x} + 2$.

Considere a função $y = \sqrt{x}$ e esboce o gráfico de $y = \sqrt{x+2}$.

Como poderíamos obter o gráfico da função

 $y = \sqrt{x} - 2$?.....

Como poderíamos obter o gráfico da função

$$y = \sqrt{x-2}$$
 ?

Conclusão: dada uma função y = f(x) e sendo $k \in IR$, uma constante positiva, o gráfico de

- y = f(x) + k é obtido transladando o gráfico de f "k" unidades para
- y = f(x) k é obtido transladando o gráfico de f "k" unidades para
- y = f(x + k) é obtido transladando o gráfico de f "k" unidades para
- y = f(x k) é obtido transladando o gráfico de f "k" unidades para

Exemplo 4. A função $f(x) = x^2$ está representada graficamente abaixo. Em cada caso, esboce o gráfico de y = g(x) partindo do gráfico de f.

Exemplo 5. Complete a tabela:

	Função mãe	Função filha	Deslocamento na "mãe" que gera a "filha"
a)	$f(x) = \log x$	$g(x) = \log(x+1)$	
b)	$f(x) = \log x$	g(x) =	1 unidade para cima
c)	$f(x) = x^3$	$g(x) = x^3 - 2$	
d)	$f(x) = x^3$	g(x) =	2 unidades para direita
e)	f(x) =	$g(x) = \cos(x - 2) + 1$	

Exemplo 6. Esboce o gráfico da função g(x) = |x - 2| + 1, partindo do gráfico da função

$$f(x) = |x|.$$

Reflexões

Considere a função $y = \sqrt{x}$ e esboce:

a) o gráfico de
$$y = -\sqrt{x}$$
.

b) o gráfico de $y = \sqrt{-x}$

Conclusão: dada uma função y = f(x), o gráfico de

- y = f(x) é obtido através da reflexão do gráfico de f no eixo
- y = f(-x) é obtido através da reflexão do gráfico de f no eixo

Exemplo 7. Considere a função y = f(x), cujo gráfico está representado abaixo.

Faça o esboço do gráfico das seguintes funções:

a)
$$y = -f(x)$$

b)
$$y = f(-x)$$

Exemplo 8. Faça um esboço do gráfico da função y = -|x| + 1, partindo do gráfico de y = |x|.

EXERCÍCIOS ANTON H., BIVENS I., DAVIS S. CÁLCULO. VOLUME 1 (10ª ED)

Exercícios de compreensão 0.2 (p.24): 3

Exercícios 0.2 (p.24): 9, 13, 15, 17, 23

ATIVIDADES DE AULA

1) (Ufsj/2013) Na figura a seguir, são dados os gráficos de y = f(x) (mais escurecido) e de outras quatro funções.

Com base no gráfico, é CORRETO afirmar que

- a) (IV) representa a função y = f(-x)
- b) (II) representa a função y = f(x) + 4
- c) (III) representa a função y = f(x+3)
- d) (I) representa a função y = f(x+4)

2) (PUCRS) Uma função f cujo domínio é o intervalo [-1,3] é representada abaixo:

O gráfico que melhor representa a função g(x) = f(x + 2):

3) (Mack) Na figura abaixo, temos o esboço do gráfico da função y = f(x).

O gráfico que melhor representa y = f(x - 1) + 1 é:

a)

b)

d)

e)

4) (UFRGS) O gráfico abaixo representa a função y = f(x).

Os quatros gráficos abaixo, são obtidos através de uma transformação no gráfico de f:

Numere de 1 até 4 a linha abaixo, fazendo corresponder a cada um dos gráficos acima, sua lei de formação.

$$(\)\ y=-f(x)$$

$$() y = 2.f(x)$$

()
$$y = 2.f(x)$$
 () $y = f(x) + 1$ () $y = f(x) - 1$

()
$$y = f(x) - 1$$

A sequência correta é:

b)
$$2 - 4 - 3 - 1$$

c)
$$2 - 1 - 4 - 3$$

d)
$$3-4-1-2$$
 e) $1-2-3-4$

e)
$$1 - 2 - 3 - 4$$

1.4 – Funções trigonométricas

Unidade de medida para ângulos e arcos: usualmente os arcos trigonométricos são representados em graus ou em radianos. O radiano informa a quantidade de raios que "cabem no arco". Temos a seguinte equivalência:

O arco de 1 volta possui 360° ou 2π rad.

Desenho do arco		$\overline{}$
Medida em		
graus		
Medida em		
radianos		

Relação usada para transformação:º ↔ rad

Circunferência trigonométrica:

- É uma circunferência com centro na origem do sistema de coordenadas e raio unitário (r =).
- Todos os arcos trigonométricos tem origem no ponto (1, 0).
- Arcos positivos são marcados no sentido e arcos negativos são marcados no sentido

Seno e cosseno de um arco:

sen α =		
$\cos \alpha =$		

Relação fundamental da trigonometria:

Importante:

	0 rad	π/2 rad	π rad	3π/2 rad	2π rad
sen					
cos					

Vamos inicialmente esboçar o gráfico da função f(x) = sen x.

Exemplo 1. Considere a função y = sen x e esboce y = 2 sen x.

Exemplo 2. Considere a função y = sen x e esboce y = sen (2 x).

Conclusões sobre o gráfico de y = A.sen(Bx), sendo A e B números positivos.

- o valor de A altera a por A.
- o valor de B altera o por B.

A função cosseno e a família $y = A \cos(Bx)$

Vamos esboçar o gráfico da função real de variável real $f(x) = \cos x$.

Importante: assim como na função seno, os parâmetros A e B irão alterar a amplitude e o período, respectivamente.

Exemplo 3. Determine a amplitude e o período e faça um esboço do gráfico:

a)
$$f(x) = 5.sen(3x)$$

b)
$$f(x) = sen(x/2)$$

c)
$$f(x) = -2.\cos(x)$$

Observação: mais tarde trabalharemos com outras funções trigonométricas, abaixo definidas.

$$tg \ x = \frac{sen \ x}{\cos x}$$
 $cossec \ x = \frac{1}{\sin x}$ $sec \ x = \frac{1}{\cos x}$ $cotg \ x = \frac{1}{\operatorname{tg} x}$

ATIVIDADES DE AULA

- 1) Associe corretamente as funções com os gráficos correspondentes.
- a) y = 3.sen x
- b) y = cos(3x)
- c) y = sen(x/3)

- d) y = 3.sen(3x)
- e) $y = 3.\cos x$
- f) $y = 3.\cos(3x)$

2) (Fuvest) A figura a seguir mostra parte do gráfico da função:

- a) sen x
- b) 2 sen (x/2)
- c) 2 sen x
- d) 2 sen 2x
- e) sen 2x

3) (UFRGS) A função que melhor se adapta ao gráfico abaixo é:

a)
$$y = sen(x/2)$$

b)
$$y = cos(x/2)$$

c)
$$y = sen(2x)$$

d)
$$y = \cos(2x)$$

e)
$$y = sen x$$

4) (UCS) A função que melhor se adapta ao gráfico abaixo é:

a)
$$y = 3 + senx$$

b)
$$y = 3 \text{ senx}$$

c)
$$y = 3 \text{ sen } (3x)$$

d)
$$y = 3 \text{ sen } (x/2)$$

e)
$$y = 3 \operatorname{sen}(x/3)$$

5) (Mack) O gráfico a seguir é de uma função do tipo f(x) = a.sen (b.x). Os números a e b são, respectivamente:

d)
$$-1 e -2$$

EXERCÍCIOS ANTON H., BIVENS I., DAVIS S. CÁLCULO. VOLUME 1 (10ª ED)

Exercícios de compreensão 0.3 (p.35): 5

Exercícios 0.2 (p.24): 9, 13, 15, 17, 23

Exercícios 0.3 (p.37): 31 e 35

1.5 – Funções Inversas, Função Exponencial e Função Logarítmica

FUNÇÃO INVERSA

Uma função tem inversa somente quando é bijetora, isto é:

- ✓ cada valor de x está associado a apenas um valor de y; e
- ✓ cada valor de y está associado a apenas um valor de x.

Exemplo 1. Determine se as funções, definidas de IR em IR, tem inversa.

a)
$$f(x) = x^2$$

b)
$$f(x) = 2x + 1$$

A função inversa "desfaz" a operação feita pela função. Isto é, se a função f transforma "a" em "b", então a inversa transforma "b" em "a".

Para encontrarmos a lei da função inversa a partir da lei da função devemos:

- ✓ trocar x por y e y por x;
- ✓ isolar o "novo" y.

Notação: representamos a inversa de y = f(x) por $y = f^{1}(x)$.

Exemplo 2. Encontre a lei da inversa das seguintes funções:

$$a) f(x) = \frac{x+5}{3}$$

$$b) f(x) = x^3 - 1$$

FUNÇÃO EXPONENCIAL

É toda função f: IR \rightarrow (0;+ ∞) definida por $f(x) = b^x$, onde b \in IR, b > 0 e b \neq 1. Para compreender melhor as características desse tipo de função, vamos fazer o esboço do gráfico de algumas funções exponenciais.

Exemplo 3. Esboce o gráfico de $y = b^x$ sendo b = 2, b = 3, b = 1 e b = 1/2.

Conclusões sobre a função $f(x) = b^x$

(1) Sobre o crescimento ou decrescimento

- (2) A função sempre intercepta o eixo, no ponto (....,....), e não intercepta o eixo
- (3) O domínio da função é e a imagem é

O NÚMERO e

De todas as bases possíveis para função exponencial, há uma mais conveniente para os propósitos de cálculo diferencial e integral: **a base e**. Somente para essa base, a reta tangente em x = 0, tem inclinação (ou coeficiente angular) igual a 1.

Observando os gráficos de y = 2^x e de y = 3^x e as inclinações das tangentes em x = 0, podemos concluir que o valor de **e** está entre 2 e 3.

e = 2,71828182845904523536...

Foi o matemático suiço Leonhard Euler que escolheu usar a letra e para representar essa base, provavelmente por ser a primeira letra da palavra exponencial.

A função $f(x) = e^x$ é chamada de **função exponencial natural**.

Exemplo 4. Faça o esboço do gráfico das funções:

a)
$$y = (1/3)^x + 1$$

LOGARITMOS

Definição: sendo N > 0, b > 0 e b ≠ 1, temos que

Observações:

(1°) Em log b N = x, "b" é a e x é o e x é o

(2º) Logaritmos decimais: são logaritmos de base 10.

Notação:

(3º) Logaritmos naturais: são logaritmos de base e.

Notação:

Exemplo 5. Calcule os logaritmos:

b)
$$\log_5\left(\frac{1}{25}\right)$$

c)
$$\ln \sqrt{e}$$

Propriedades operatórias:

$$(\mathsf{P1})\log_b(x\cdot y) =$$

(P2)
$$\log_b \left(\frac{x}{y}\right) =$$

$$(\mathsf{P3})\log_b(x^n) =$$

Exemplo 6. Usando log 2 = a e log 3 = b, calcule em função de a e b:

- a) log 54
- b) log (9/2)

Exemplo 7. Resolva as seguintes equações:

a)
$$\log x = 1$$

b)
$$\ln (x + 1) = 5$$

c)
$$e^x = 4$$
, usando que ln 2 = 0,7

APLICAÇÕES DA FUNÇÃO EXPONENCIAL

O crescimento (ou decrescimento) exponencial é característico de certos fenômenos naturais. No entanto, de um modo geral não se apresenta na forma $\mathbf{b}^{\mathbf{x}}$, mas sim modificado por constantes características do fenômeno, como em $f(x) = \mathbf{C} \cdot e^{kx}$.

Exemplo 8. Suponha que uma substância radioativa se desintegra de modo que a massa existente após t anos é dada, em gramas, por $Q(t) = 20e^{-0.05t}$. Nessas condições, responda:

- a) qual a quantidade inicial?
- b) após quantos anos a massa da substancia será 5 g? (use: ln 0,25 = -1,38)

FUNÇÃO LOGARÍTMICA

É a função f: $(0;+\infty)$ → IR definida por $f(x) = \log_b x$, onde b ∈ IR, b > 0 e b ≠ 1.

(1) Sobre o crescimento ou decrescimento

- (2) A função sempre intercepta o eixo, no ponto (....,....), e não intercepta o eixo
- (3) O domínio da função é e a imagem é

EXERCÍCIOS ANTON H., BIVENS I., DAVIS S. CÁLCULO. VOLUME 1 (10ª ED)

Exercícios 0.4 (p.49): 9, 11, 13

Exercícios de compreensão 0.5 (p.61): 1, 3 e 4

Exercícios 0.5 (p.61): 5, 9, 17, 19, 21, 25, 27, 49, 59

Gabarito da questão 50: a) 12 b) $\cong 9,63$ c) $\cong 12,6$ h

ATIVIDADES DE AULA

1) Resolva as equações exponenciais

a)
$$2^x = 8$$

b)
$$9^x = 27$$

c)
$$5^x = \frac{1}{125}$$

d)
$$10^x = 0.01$$

e)
$$2^{x} = \sqrt{2}$$

2) Calcule os logaritmos.

a)
$$\log_7 49$$

b)
$$\log_2\left(\frac{1}{16}\right)$$

c)
$$\ln\left(\frac{1}{e}\right)$$

d)
$$\ln e^5$$

e)
$$\log_3 \sqrt{3}$$

f)
$$\log_5\left(\frac{1}{125}\right)$$

g)
$$\ln(\sqrt[3]{e})$$

h)
$$ln e$$

3) Resolva as equações:

a)
$$\log(x-1) = 2$$

b)
$$\ln x = 0$$
 c) $e^x = 3$

c)
$$e^{x} = 3$$

- 4) O valor de uma obra de arte comprada por R\$ 1.000,00, t anos após a compra é dado por $V(t) = 1000e^{0.2t}$. Nessas condições, responda:
- a. Qual o valor da obra de arte 5 anos após a compra? (use e = 2,72)
- b. Após quanto tempo o valor é o dobro do inicial? (use $\ln 2 = 0.7$)
- 5) A função $S(t) = 500e^{0.04t}$ fornece o saldo de uma caderneta de poupança após t anos. Responda:
- a. Qual o valor depositado inicialmente?
- b. Após quantos anos o saldo na poupança será o triplo do inicial? (use ln 3 = 1,1)
- 6) Faça um esboço do gráfico das seguintes funções:

a)
$$y = 10^x + 1$$

b)
$$y = 3^{x-1}$$

c)
$$y = -e^{x}$$

$$d) y = log (x - 1)$$

e)
$$y = \ln (-x)$$