MSML610: Advanced Machine Learning

Reasoning Over Time

Instructor: Dr. GP Saggese - gsaggese@umd.edu

References:

- AIMA 14: Probabilistic reasoning over time
- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

• Reasoning Over Time

- Definitions
- Defining Temporal Inference Tasks
- Solving Temporal Inference Tasks
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

- Reasoning Over Time
 - Definitions
 - Defining Temporal Inference Tasks
 - Solving Temporal Inference Tasks
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Reference

• AIMA: 14

Static vs Dynamic Probabilistic Reasoning

Static probabilistic reasoning

- Random variables have a fixed value over time
- E.g., when repairing a car:
 - Whatever is broken stays broken during the diagnosis
 - Observed evidence remains fixed

Dynamic probabilistic reasoning

- Random variables change over time, e.g.,
 - Tracking the location of a plane
 - Tracking the economic activity of a nation
- E.g., treating a diabetic patient
 - Goal: assess the state of the patient and decide on insulin dose
 - Evidence: previous insulin doses, food intake, blood sugar (which change over time)
 - Dependency on time (e.g., metabolic activity and time of day)

Agents in Partially Observable Environments

- Agents in partially observable environments track the current state using transition model and sensor information
 - 1. Belief state
 - Store possible world states
 - Use probability theory to quantify belief
 - Belief state is the posterior distribution of the current state given all evidence so far
 - 2. Belief state + Transition model
 - Predict how the world might evolve in the next step
 - 3. Sensor model + Percepts
 - Update belief state
- Time is handled by making each quantity a function of time

Agent: Model Components

- 1. State of the world: \underline{X}_t
 - Typically not observable directly
- 2. Prior probability of the state at time 0: X₀
- 3. Evidence variables: **E**,
 - Observable
- 4. Transition model: $Pr(\underline{X}_t | \underline{X}_{0:t-1})$
 - Models how the world evolves
 - Specifies the probability distribution of the state $\underline{\mathbf{X}}_t$, given all previous values
- 5. **Sensor model**: $Pr(\underline{\boldsymbol{E}}_t|\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{0:t-1})$
 - Models how the evidence variables \underline{E}_t are generated

Discrete vs Continuous Time Models

Discrete time models

- View world as time slices ("snapshots")
 - Assume equal time intervals, equispaced samples
 - Label times t = 0, 1, 2, ...
- Each slice contains random variables:
 - Hidden RVs (e.g., X_t)
 - Observable RVs (e.g., $\underline{\boldsymbol{E}}_t$)
 - $\underline{X}_{a:b}$ represents variables in [a, b]

Continuous time models

- Model uncertainty over continuous time with stochastic differential equations (SDEs)
- Discrete time models approximate SDEs

Markov Property

• In general, current state \underline{X}_t depends on a growing number of past states:

$$\Pr(\underline{\boldsymbol{X}}_t|\textit{history}) \triangleq \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{0:t-1}) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_0,\underline{\boldsymbol{X}}_1,...,\underline{\boldsymbol{X}}_{t-1})$$

- Of course, there can't be dependency from the future \underline{X}_{t+k} k>1
- Markov property: current state depends (conditionally) only on a finite fixed number of k previous states:

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{0:t-1}) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_0,\underline{\boldsymbol{X}}_1,...,\underline{\boldsymbol{X}}_{t-k-1},\underline{\boldsymbol{X}}_{t-k},...,\underline{\boldsymbol{X}}_{t-1}) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-k:t-1},\underline{\boldsymbol{X}}_{t-k-1},...,\underline{\boldsymbol{X}}_{t-k-1},$$

Markov Process

Markov processes (aka Markov chains) have the Markov property

$$\Pr(\underline{\boldsymbol{X}}_t|history) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-k:t-1}) \ \forall k, t$$

• First-order Markov process: current state \underline{X}_t depends only on the previous state \underline{X}_{t-1} :

$$\Pr(\underline{\boldsymbol{X}}_t|history) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-1}) \ \forall k, t$$

- The next state depends only on the previous state, not the full history
- The system "forgets" everything except the immediate last state
- Bayesian network for a first-order Markov process:

- ullet E.g., probability of rain today depends only on yesterday, $\Pr(R_t|R_{t-1})\ orall t$
- Second-order Markov process: current state \underline{X}_t depends only on \underline{X}_{t-1} and \underline{X}_{t-2}

Time-Homogeneous Process

- Even with the Markov assumption, there in an infinite number of probability distributions $\Pr(\underline{X}_t | \underline{X}_{t-1:t-k})$, one for each t
- Time-homogeneous (aka stationarity): probability remains constant by translation over t

$$\Pr(\underline{\mathbf{X}}_t | \underline{\mathbf{X}}_{0:t-1}) = \Pr(\underline{\mathbf{X}}_{t-k} | \underline{\mathbf{X}}_{0:t-k-1}) \ \forall k, t$$

- · Even if process evolves, governing laws remain unchanged
- E.g., in the real-world, most physical laws are constant

First-Order Time-Homogeneous Process

- First-order time-homogeneous:
 - First-order Markov property:

$$\Pr(\underline{X}_t|history) = \Pr(\underline{X}_t|\underline{X}_{t-1})$$

Time-homogeneous:

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{0:t-1}) = \Pr(\underline{\boldsymbol{X}}_{t-k}|\underline{\boldsymbol{X}}_{0:t-k-1}) \ \forall k,t$$

• Putting both properties together, one conditional probability table suffices:

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-1}) = \Pr(\underline{\boldsymbol{X}}_{t-k}|\underline{\boldsymbol{X}}_{t-k-1}) \ \forall k,t$$

• E.g., rain probability for today depends only on yesterday and is constant: $\Pr(R_t|R_{t-1}) = f(R_{t-1}) \ \forall t$

Sensor Model

- Aka "observation model"
- In general, evidence variables $\underline{\boldsymbol{E}}_t$ depend on:
 - Previous state of the world X_{0.1}
 - Previous sensor values $\underline{\boldsymbol{E}}_{0:t-1}$

$$\Pr(\underline{\boldsymbol{E}}_t|\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{0:t-1})$$

- Sensor Markov property
 - Assume sensor value <u>E</u>_t depends only on current state <u>X</u>_t, not on previous sensor values

$$\Pr(\underline{\boldsymbol{E}}_t|\underline{\boldsymbol{X}}_{0:t},\underline{\underline{\boldsymbol{E}}_{0:t-1}}) = \Pr(\underline{\boldsymbol{E}}_t|\underline{\boldsymbol{X}}_t)$$

• In a Bayesian network, even if \underline{X}_t and \underline{E}_t are contemporaneous, the arrow goes from $\underline{X}_t \to \underline{E}_t$ since the world causes the sensor to take on particular values

Sensor Model: Rain Example

- In a Bayesian network, $\underline{X}_t \to \underline{E}_t$ as the world causes the sensor to take specific values
 - E.g., $Rain_t \rightarrow Umbrella_t$, since rain "causes" the umbrella to appear
- Inference goes the other direction: "see the umbrella, guess if it's raining"
- E.g.,
 - The transition model is

$$Pr(Rain_t|Rain_{t-1})$$

- $Pr(R_t|R_{t-1} = T) = 0.7$
- $Pr(R_t|R_{t-1}=F)=0.4$
- The sum doesn't have to be 1 since it's a conditional probability
- The sensor model is
 - $Pr(Umbrella_t|Rain_t)$
 - $Pr(U_t|R_t = T) = 0.9$ (people forget the umbrella)
 - $Pr(U_t|R_t = F) = 0.2$ (people are paranoid)

Prior Probability

- Complete system specification needs the prior probability of the state variables at initial time $Pr(\underline{X}_0)$
 - Represents initial belief about system state before observations
 - Crucial for initializing state estimation process
- E.g.,
 - \underline{X}_0 represents position and velocity of a moving object
 - Pr(X₀) could be a Gaussian distribution centered around an initial guess of object's position and velocity with uncertainty

First-Order Markov Process: Joint Distribution

- Model a sequence of states $\underline{X}_0, \underline{X}_1, ..., \underline{X}_t$ and observations $\underline{E}_1, ..., \underline{E}_t$ over time, i.e., $\Pr(\underline{X}_{0:t}, \underline{E}_{1:t})$
 - Express the joint distribution of *n* random variables using the chain rule:

$$Pr(Y_1, ..., Y_n) = \prod_{i=1}^n Pr(Y_i|Y_{0:i-1})$$

 Bayesian networks factorize joint distribution according to graph dependencies

$$Pr(Y_1,...,Y_n) = \prod_{i=1}^n Pr(Y_i|parents(Y_i))$$

• First-order Markov assumption:

$$\Pr(\underline{\boldsymbol{X}}_i|\underline{\boldsymbol{X}}_{0:i-1}) = \Pr(\underline{\boldsymbol{X}}_i|\underline{\boldsymbol{X}}_{i-1})$$

• First-order Markov sensor model:

$$\Pr(\underline{\boldsymbol{E}}_i|\underline{\boldsymbol{X}}_{0:i},\underline{\boldsymbol{E}}_{1:i-1}) = \Pr(\underline{\boldsymbol{E}}_i|\underline{\boldsymbol{X}}_i)$$

First-Order Markov Process: Intuition

 Putting everything together, the joint distribution probability for a time-homogeneous first-order Markov process:

$$\begin{split} \Pr(\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{1:t}) &= \Pr(\underline{\boldsymbol{X}}_{0}) \prod_{i=1}^{t} \Pr(\underline{\boldsymbol{X}}_{i}|\underline{\boldsymbol{X}}_{i-1}) \Pr(\underline{\boldsymbol{E}}_{i}|\underline{\boldsymbol{X}}_{i}) \\ &= \operatorname{prior} \times \prod_{i} \operatorname{transition model} \times \operatorname{sensor model} \end{split}$$

Remarks:

- The state evolves probabilistically from the previous state (transition model)
- This structure reduces complexity and enables tractable inference

How to represent this process?

- A Bayesian network can represent a temporal model by modeling time with indices t, i.e., "unrolling the model"
- **Problem**: Infinite t, even assuming the Markov property

Improving Approximation of Real-World Systems

- Is first-order Markov process a reasonable approximation of reality?
 - A particle following a random walk is well represented by Markov process (by definition)
 - In the umbrella example the rain depends only on what happened the previous day
- How to improve the approximation
 - 1. Increase the order of the Markov process model
 - E.g., to model "rarely rains more than two days in a row", we need a second-order Markov model Pr(Rain_t|Rain_{t-1}, Rain_{t-2})
 - 2. Increase the number of state variables
 - E.g., add Seasont to incorporate the historical records
 - This makes the transition model more complicated
 - 3. Increase the number of sensor variables
 - E.g., Locationt, Temperaturet, Humidityt, Pressuret
 - This can simplify modeling of the state

- Reasoning Over Time
 - Definitions
 - Defining Temporal Inference Tasks
 - Solving Temporal Inference Tasks
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Inference Tasks in Temporal Models

• There are several possible applications

Task	Description	Estimate
Filtering Prediction	Estimate <i>current</i> state given past / current obs Estimate <i>future</i> state given past / current obs	$ \begin{array}{l} \Pr(\underline{\boldsymbol{X}}_t \underline{\boldsymbol{E}}_{1:t}) \\ \Pr(\underline{\boldsymbol{X}}_{t+k} \underline{\boldsymbol{E}}_{1:t}) \text{ for } k > 0 \\ \Pr(\underline{\boldsymbol{X}}_k \underline{\boldsymbol{E}}_{1:T}) \text{ for } T < k \end{array} $
Smoothing	Estimate past state given past, current, and future obs	$\Pr(\underline{X}_k \underline{E}_{1:T}) \text{ for } T < k$
Most likely explanation	Find most probable sequence of states given the evidence	$argmax_{\underline{\mathbf{x}}_{1:T}} Pr(\underline{\boldsymbol{X}}_{1:t} \underline{\boldsymbol{E}}_{1:t})$
Learning	Learn model parameters or structure from data	heta of a model

• Let's consider each of these applications in details

Task 1: Filtering

• **Filtering** (aka "state estimation") computes the posterior distribution of the *current state* given *all evidence to date*:

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{E}}_{1:t}=\underline{\boldsymbol{e}}_{1:t})$$

- E.g., estimate the probability of rain today, given all umbrella observations so far Pr(Raint|Umbrella1:t)
- Filtering needed by a rational agent to track the current state of the world:
 - Agent believes current state $Pr(\underline{X}_{t-1})$ at time t-1
 - New evidence \underline{e}_t arrives for time t
 - Agent updates belief about current state $Pr(\underline{X}_t)$ at time t
- The term "filtering" refers to filtering out noise in a signal by estimating system parameters

Task 2: Prediction

• **Prediction** involves predicting the posterior distribution over a *future* state, given all evidence to date:

$$\Pr(\underline{\boldsymbol{X}}_{t+k}|\underline{\boldsymbol{e}}_{1:t})$$
 with $k>0$

• E.g., compute the probability of rain three days from now:

$$Pr(Rain_{t+3}|Umbrella_{0:t})$$

Prediction helps rational agents evaluate actions based on expected outcomes

Task 3: Smoothing

Smoothing compute posterior distribution over a past state given all
past, present, and future evidence:

$$\Pr(\underline{\boldsymbol{X}}_{k}|\underline{\boldsymbol{e}}_{1:t})$$
 with $0 \leq k < t$

- Note: you have information about the "future" of the evidence, but not the state
- Smoothing provides a better state estimate by incorporating more future evidence
- E.g., compute the probability it rained last Wednesday, given all observations up to today
- The term "smoothing" refers to the state estimate being smoother than filtering

Task 4: Most-Likely Explanation

• Most-likely explanation finds the sequence of states $\underline{X}_{1:t}$ most likely to have generated observations $\underline{\boldsymbol{E}}_{1:t}$:

$$\mathsf{argmax}_{\underline{\boldsymbol{X}}_{1:t}} \mathsf{Pr}(\underline{\boldsymbol{X}}_{1:t} | \underline{\boldsymbol{E}}_{1:t})$$

- E.g.,
 - Umbrella appeared on 3 days, not on the fourth
 - Most likely explanation: rained for 3 days, then stopped
- Applications
 - Speech recognition: most likely sequence of words given sounds
 - Digital processing: reconstruct bit strings over a noisy channel

Task 5: Learning

- Learning involves estimating the transition model $\Pr(\underline{X}_t | \underline{X}_{0:t-1})$ and the sensor model $\Pr(\underline{E}_i | \underline{X}_i)$ from observations
- Learning benefits from smoothing rather than filtering for better state estimates
 - Smoothing uses all data to estimate states, leading to more accurate models
 - E.g., in weather prediction, smoothing uses past, present, and future data to better estimate current weather state

- Reasoning Over Time
 - Definitions
 - Defining Temporal Inference Tasks
 - Solving Temporal Inference Tasks
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Solving Task 1: Filtering

- Filtering computes the posterior distribution of the *current state* given all evidence to date, i.e., $\Pr(\underline{X}_t | \underline{E}_{1:t} = \underline{e}_{1:t})$
- A practical filtering algorithm updates the current state estimate \underline{X}_{t+1} using the previous state \underline{X}_t and the new evidence \underline{e}_{t+1}
 - Instead of recomputing each state by going over the entire history of the percepts
 - Aka "recursive state estimation"

$$Pr(\underline{X}_{t+1}|\underline{e}_{1:t+1}) = f(Pr(\underline{X}_t|\underline{e}_{1:t}),\underline{e}_{t+1})$$

$$NextState = f(PreviousState,\underline{e}_{t+1})$$

- Why?
 - Time and space requirements for updating must be constant for a (finite) agent to keep track of current state indefinitively
- Is it possible?
 - What is the formula f(...)?

Recursive Filtering: Update Formula

- Compute the state at time t+1 with all the evidence up to that time
- Assume that state and evidence are scalar and not vector

$$\begin{split} & \text{Pr}(X_{t+1}|e_{1:t+1}) \\ & = \text{Pr}(X_{t+1}|e_{1:t},e_{t+1}) \\ & = \alpha \, \text{Pr}(e_{t+1}|X_{t+1},e_{1:t}) \, \text{Pr}(X_{t+1}|e_{1:t}) \\ & = \alpha \, \text{Pr}(e_{t+1}|X_{t+1},e_{1:t}) \, \text{Pr}(X_{t+1}|e_{1:t}) \\ & = \alpha \, \text{Pr}(e_{t+1}|X_{t+1}) \, \text{Pr}(X_{t+1}|e_{1:t}) \\ & = \alpha \, \text{Pr}(e_{t+1}|X_{t+1}) \, \sum_{x_t} \, \text{Pr}(X_{t+1}|x_t,e_{1:t}) \, \text{Pr}(x_t|e_{1:t}) \end{split} \quad \text{Condition on current state} \\ & = \alpha \, \text{Pr}(e_{t+1}|X_{t+1}) \, \sum_{x_t} \, \text{Pr}(X_{t+1}|x_t) \, \text{Pr}(x_t|e_{1:t}) \end{split} \quad \text{Markov assumption}$$

It has the expected form:

$$\Pr(X_{t+1}|e_{1:t+1}) = f(\Pr(X_t|e_{1:t}), e_{t+1})$$

Recursive Filtering: Update Formula

• The update formula for the state is:

$$\Pr(X_{t+1}|e_{1:t+1}) = \alpha \Pr(e_{t+1}|X_{t+1}) \sum_{x_t} \Pr(X_{t+1}|x_t) \Pr(x_t|e_{1:t})$$

- The next state is "Sensor model x Transition model x Recursive state"
 - Sensor model: $Pr(e_{t+1}|X_{t+1})$
 - Transition model: $Pr(X_{t+1}|x_t)$
 - Recursive term: $Pr(x_t|e_{1:t})$

Recursive Filtering: Intuition

Recursive state estimation updates the state belief as new evidence arrives

$$\Pr(X_{t+1}|e_{1:t+1}) = \alpha \Pr(e_{t+1}|X_{t+1}) \sum_{x_{t+1}} \Pr(X_{t+1}|x_{t}) \Pr(x_{t}|e_{1:t})$$

in two steps

 Prediction step: Use the transition model to predict the next state based on the current belief

$$\Pr(X_{t+1}|e_{1:t}) = \sum_{x_t} \Pr(X_{t+1}|x_t) \Pr(x_t|e_{1:t})$$

- Intuition: Project the current belief forward using the model of system evolution
- 2. Update step: Incorporate the new observation to refine the prediction

$$\Pr(X_{t+1}|e_{1:t+1}) = \alpha \Pr(e_{t+1}|X_{t+1})\Pr(X_{t+1}|e_{1:t})$$

- Intuition: Correct the prediction using the likelihood of the new evidence
- Maintain $Pr(X_t|e_{1:t})$, the probability of the current state given all past evidence
 - E.g., in a weather model, if it was likely to rain today and rain usually continues, the prediction leans toward rain tomorrow

Forward update

• We achieved:

$$\begin{aligned} \Pr(\underline{\boldsymbol{X}}_{t+1}|\underline{\boldsymbol{e}}_{1:t+1}) &= \alpha \Pr(\underline{\boldsymbol{e}}_{t+1}|\underline{\boldsymbol{X}}_{t+1}) \sum_{\boldsymbol{x}_t} \Pr(\underline{\boldsymbol{X}}_{t+1}|\underline{\boldsymbol{x}}_t) \Pr(\underline{\boldsymbol{x}}_t|\underline{\boldsymbol{e}}_{1:t}) \\ &= f(\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{e}}_{1:t}),\underline{\boldsymbol{e}}_{t+1}) \end{aligned}$$

• The filtered estimate $\underline{f}_{1:t} = \Pr(\underline{X}_t | \underline{e}_{1:t})$ is propagated forward and updated by each transition and new observation

$$\underline{\boldsymbol{f}}_{1:t+1} = Forward(\underline{\boldsymbol{f}}_{1:t}, \underline{\boldsymbol{e}}_{t+1})$$

starting with the initial condition $\underline{\boldsymbol{f}}_{1:0} = \Pr(\underline{\boldsymbol{X}}_0)$

- This is called "forward update"
- This process allows efficient online inference without storing the full history
 - Time and space requirements for updating is constant
 - A (finite) agent can keep track of current state indefinitively

Solving Task 2: Prediction

- Prediction is equivalent to filtering without updating the state with new evidence, since there is no evidence
 - Only the transition model is needed, not the sensor model
- The rule predicting state \underline{X}_{t+k+1} given state \underline{X}_{t+k} and evidence $\underline{E}_{1:t}$ is:

$$\Pr(\underline{\boldsymbol{X}}_{t+k+1}|\underline{\boldsymbol{e}}_{1:t}) = \sum_{\underline{\boldsymbol{X}}_{t+k}} \Pr(\underline{\boldsymbol{X}}_{t+k+1}|\underline{\boldsymbol{X}}_{t+k}) \Pr(\underline{\boldsymbol{X}}_{t+k}|\underline{\boldsymbol{e}}_{1:t})$$

- This equation can be used recursively to advance over time
 - Predicting even a few steps ahead generally incurs large uncertainty

Solving Task 3: Smoothing

 You want to calculate the probability distribution over the hidden state at time k, given all evidence up to time t (in the future!)

$$\Pr(X_k|e_{1:t})$$
 where $0 \le k < t$

- Filtering gives $Pr(X_k|e_{1:k})$ using past and present evidence
- Smoothing refines the estimate of past states using later evidence
- Example
 - You're tracking whether it was raining yesterday
 - You had some evidence up to yesterday (e.g., a cloudy sky)
 - Today you see puddles on the ground
 - That new observation supports the idea that yesterday was raining

Task 3: Smoothing: Update Formula

- Using the same math as for filtering and the two key assumptions of Markov process and Markov sensor
- Forward Pass (aka filtering):
 - Move forward through time, using the filtering algorithm to compute:

$$f_{1:k} = \Pr(X_k|e_{1:k})$$

- This gives you a "best guess" of the state at time k, based only on evidence up to k
- Backward Pass (aka smoothing):
 - Move backward through time from time t, computing:

$$b_{k+1:t} = \Pr(e_{k+1:t}|X_k)$$

- ullet This captures how likely the future evidence is, given a particular value of X_k
- Combine them:
 - Multiply forward and backward messages to get:

$$\Pr(X_k|e_{1:t}) \propto f_{1:k} \times b_{k+1:t}$$

Task 4: Most Likely Explanation: Intuition 1/2

- You are tracking the weather (sunny or rainy) based on whether someone carries an umbrella
 - You can't see Weather directly (hidden state), but you observe umbrellas (which is a noisy observation)
 - You have 5 observations Umbrella = [T, T, F, T, T]
- Question: what is the most likely sequence of *Weather* states that explains the *Umbrella* observations?
 - You know something about:
 - the transition model (i.e., "it tends to rain several days in a row")
 - the sensor model (i.e., "people often forget the umbrella")
- Mathematically:

$$\mathsf{argmax}_{\mathsf{x}_{1:t}} \mathsf{Pr}(\mathsf{x}_{1:t}|\mathsf{e}_{1:t}) = \mathsf{argmax}_{\mathit{Weather}_{1:t}} \mathsf{Pr}(\mathit{Weather}_{1:t}|\mathit{Umbrella}_{1:t})$$

Task 4: Most Likely Explanation: Intuition 2/2

- Naive approach: Use smoothing to choose the most likely state at each time step
 - Cons
 - Might lead to an implausible overall path
 - Suboptimal since the question addresses joint probability and we are not using all the information (only one step at the time!)
- Viterbi algorithm:
 - Constructs a path through a state-time graph with states as nodes and transitions as edges
 - Finds the most likely entire path through the hidden states
- Key difference:
 - In speech recognition, find the most likely word sequence behind a noisy audio signal
 - Smoothing: Best guess per time step (may miss non-English words or suboptimal sequence)
 - Viterbi: Best overall path (maximizes joint probability of the entire sequence)

Viterbi Algorithm: Intuition

- Goal: Find the most likely sequence of hidden states given observations
- 1. Initialization
 - At t = 1, estimate probability of starting in each state using initial state distribution and observation likelihood
- 2. Recursion via dynamic programming
 - For each t > 1, for each state x_t :
 - Compute maximum probability path to x_t from any previous state
 - Use:
 - $Pr(x_t|x_{t-1})$: transition model
 - $Pr(e_t|x_t)$: sensor model
 - Best path probability to x_{t-1} from prior step
 - Store probability and corresponding back-pointer to x_{t-1}
- 3. Termination and backtrace
 - At final time t = T, identify state with highest final probability
 - Trace back through stored pointers to reconstruct optimal path

Viterbi Algorithm: Example 1/2

- You observe a friend carrying an umbrella over 3 days
 - Umbrella = [Yes, Yes, No]
- You want to infer the most likely sequence of hidden Weather states
 - States: $S = \{Sunny, Rainy\}$ (weather)
 - Observations: $O = \{Yes, No\}$ (umbrella)
 - Initial Probabilities:

$$Pr(Sunny) = 0.6$$
, $Pr(Rainy) = 0.4$

Transition Probabilities:

$$\begin{split} & \mathsf{Pr}(\mathsf{Sunny} \to \mathsf{Sunny}) = 0.7, \quad \mathsf{Pr}(\mathsf{Sunny} \to \mathsf{Rainy}) = 0.3 \\ & \mathsf{Pr}(\mathsf{Rainy} \to \mathsf{Sunny}) = 0.4, \quad \mathsf{Pr}(\mathsf{Rainy} \to \mathsf{Rainy}) = 0.6 \end{split}$$

Observation (Emission) Probabilities:

$$\begin{split} & \text{Pr}(\text{Yes}|\text{Sunny}) = 0.1, \quad \text{Pr}(\text{No}|\text{Sunny}) = 0.9 \\ & \text{Pr}(\text{Yes}|\text{Rainy}) = 0.8, \quad \text{Pr}(\text{No}|\text{Rainy}) = 0.2 \end{split}$$

Viterbi Algorithm: Example 2/2

Viterbi table

Day	State	Probability	Backpointer
1	Sunny	$0.6 \times 0.1 = 0.06$	_
	Rainy	$0.4 \times 0.8 = 0.32$	_
2	Sunny	$max(0.06 \times 0.7, 0.32 \times 0.4) \times 0.1 = 0.0128$	Rainy
	Rainy	$\max(0.06 \times 0.3, \ 0.32 \times 0.6) \times 0.8 = 0.1536$	Rainy
3	Sunny	$\max(0.0128 \times 0.7, \ 0.1536 \times 0.4) \times 0.9 = 0.0553$	Rainy
	Rainy	$\max(0.0128 \times 0.3, \ 0.1536 \times 0.6) \times 0.2 = 0.0184$	Rainy

- Final most probable state
 - Sunny (Day 3)
- Find the most likely sequence
 - Rainy \rightarrow Rainy \rightarrow Sunny

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Algorithms for Specific Models

- General temporal probabilistic reasoning makes minimal assumptions:
 - Markov property for transitions
 - Markov property for sensor model
 - No constraints on:
 - Mathematical form of transition/sensor models
 - Nature of state and evidence variables (discrete or continuous)
- Improve efficiency and accuracy by exploiting specific model structures:
 - Hidden Markov Models (HMMs):
 - State is a single discrete variable
 - Transition and observation models are discrete probability tables
 - Enables fast algorithms like Viterbi, forward-backward, etc
 - Kalman Filters:
 - State variables are continuous and normally distributed
 - Linear Gaussian models for transitions and observations
 - Allows exact, efficient updates using matrix operations
- Tailored algorithms can be orders of magnitude faster and more accurate than general methods

Hidden Markov Model: Formulation

- Hidden Markov Model (HMM): Temporal model with simplified structure for efficiency
 - State model:
 - System state at time t is a discrete random variable $X_t \in \{1, \dots, S\}$
 - E.g., in umbrella world, $X_t = Rain_t$ with states $\{Rain, Sunny\}$
 - Can combine multiple variables into one "mega-state" variable
 - Transition model $Pr(X_t|X_{t-1})$:
 - Transition matrix $\underline{\boldsymbol{T}}$ of size $S \times S$
 - Entry $T_{ij} = \Pr(X_t = j | X_{t-1} = i)$: probability of transitioning from state i to j
 - Sensor model:
 - Defined as $Pr(E_t|X_t=i)$ for each state i
 - Representable as a vector or diagonal matrix **O**
 - No assumptions about number or type (discrete/continuous) of observation variables
- Benefit
 - Enables efficient algorithms like forward, backward, and Viterbi

Hidden Markov Model: Example

 E.g., if Rain = T is state 1 and Rain = F is state 2, then the transition matrix for the umbrella world

becomes the transition model

$$\underline{\underline{T}} = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$$

• On day 1 we observe $U_1 = T$ and on day 3, $U_3 = F$, we have the observation matrices

$$\underline{\mathbf{\mathcal{Q}}}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix} \quad \underline{\mathbf{\mathcal{Q}}}_3 = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.8 \end{pmatrix}$$

Hidden Markov Model: Algorithms

 Using matrix representation all the forward / backward computations become matrix operations:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{b}_{k+1:t} &= \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t} \end{aligned}$$

- Express inference tasks (e.g., filtering, smoothing) as efficient matrix multiplication
- Specialized algorithms to improve time and space complexity

Hidden Markov Model: Algorithms

- Baum-Welch
 - Special case of Expectation-Maximization (EM) algorithm
 - Pros: Converges to local maximum of likelihood
 - Cons: Only point-estimation, no uncertainty estimation
- Viterbi
 - Finds most likely sequence of hidden states
 - Pros: Fast approximation of BW
 - Cons: Returns local optimum
- Gradient-based methods
 - Use gradient descent to optimize parameters
 - Pros: Fast
 - Cons: Needs differentiable model
 - E.g., PyTorch / TensorFlow probability
- HMM with MCMC
 - Learn posterior distribution of parameters using Bayesian inference
 - Pros: Flexible, accounts for uncertainty
 - Cons: Computationally expensive
 - E.g., PyMC

Hidden Markov Model: Applications

- HMMs model systems with hidden states producing observable outputs
- Audio / speech
 - Speech recognition: map audio to phonemes, words
 - Speaker identification: model vocal traits to recognize a speaker
 - Music generation and transcription
- Biology / genomics
 - Gene prediction: find DNA regions
 - Protein structure prediction
- Finance / economics
 - Market regime detection: bull/bear markets, volatility regimes
 - Credit scoring: observe purchases, estimate financial health (hidden variable)

Hidden Markov Model: Applications

- Security / anomaly detection
 - User behavior modeling: detect anomalous login patterns or usage
 - Intrusion detection: model normal traffic to spot attacks
 - Fraud detection: identify unusual transactions
- NLP
 - Part-of-speech tagging: map words to syntactic roles
 - Named entity recognition: identify entities, people, places
- Operations and process monitoring
 - Predictive maintenance: model machine health from sensor readings
 - Process monitoring: detect deviation from normal operations
 - Customer behavior modeling: understand customer intent
- Environmental monitoring
 - Weather prediction: infer atmospheric state from observed variables

Hidden Markov Model: Limitations

- Short memory
 - Markov assumption: current state depends only on previous state
 - Inefficient for long-range dependencies
- Predefined, fixed number of states
 - Mis-estimating states leads to underfitting or overfitting
- Stationarity assumption
 - Transition and sensor probabilities constant over time
- Use atomic representation
 - States are labels with no internal structure
 - Hard to interpret with many states or unclear state meanings
- Training is computationally expensive for large datasets
 - Struggles with sparse data
- Alternatives
 - Bayesian networks using factored representation
 - Deep learning handles complex temporal dependencies and long-term relationships

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Markov Random Fields

- A Markov Random Field is a probabilistic graphical model
 - Represents a joint distribution using an undirected graph
 - Nodes = random variables
 - Edges = relationships (dependencies) between variables
 - Key idea: Markov property
 - Each variable is conditionally independent of non-neighbors given its neighbors
 - Model spatial and contextual dependencies
 - Capture local interactions that combine into a global structure
- Example: Image de-noising
 - Each pixel tends to have similar intensity to its neighbors
 - Noise introduces local inconsistencies
 - MRF models smoothness while respecting observed data
- Example: Social networks
 - Friends influence each other's behavior
 - Dependencies exist only among connected individuals

Markov Random Fields: Model Form

- $Pr(X) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(X_C)$
- X: set of all random variables in the model
- C: set of cliques in the graph (fully connected subset of nodes)
- ψ_C(X_C): potential function for clique C
 - Assigns a positive score to each possible configuration of variables in
 - Clique potentials ψ_C encode preferences or constraints
 - Intuition: measures "compatibility" of values
 - High $\psi_{\mathcal{C}} =$ compatible configuration
 - Low $\psi_{\mathcal{C}} = \text{unlikely configuration}$
- Z: partition function
 - Ensures probabilities sum to 1
 - Usually very hard to compute for large graphs

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Markov Logic Networks: Intuition

- Intuition:
 - Logic rules are often soft (have exceptions) rather than absolute (true or false)
- Example: Social network friendships
 - Rule: "Friends of friends are likely friends"
 - Not always true, but often holds
- Example: Natural language processing
 - Rule: "Every sentence has a subject" weighted by importance
- Markov Logic Networks
 - Unify knowledge representation (logic) with uncertainty handling (probability)
 - Allow violations of rules but penalize them probabilistically
- Applications:
 - Information extraction
 - Entity resolution
 - Relational learning
- Main challenge: inference and learning are computationally expensive

Markov Logic Networks: Basics

- A Markov Logic Network (MLN) combines:
 - First-order logic (expressing knowledge with rules and quantifiers)
 - Markov Random Fields (modeling uncertainty with probabilities)
- Each element is a pair (F_i, w_i)
 - F_i: a first-order logic formula
 - E.g., "Friends(x, y) \Longrightarrow Similar(x, y)"
 - w_i : a weight measuring the strength of belief in F_i
 - Higher w_i = formula more important in shaping the probability distribution
- Semantics:
 - An MLN defines a probability distribution over possible worlds
 - A world = a complete assignment of truth values to all ground atoms
 - If a world satisfies many high-weight formulas, it becomes more probable
- Joint distribution:
 - $Pr(X = x) = \frac{1}{7} exp \left(\sum_i w_i n_i(x) \right)$
 - $n_i(x)$ = number of true groundings of formula F_i in world x
 - Example: If F_i = "Friends(x,y) \rightarrow Similar(x,y)" and in world x this holds for 7 pairs (x, y) out of 10, then $n_i(x) = 7$
- Special cases:
 - If all weights w_i → ∞: only worlds where all formulas are satisfied have nonzero probability → recovers classical logic
 - If all weights are finite: allows some violations but assigns them lower probability

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
 - g-h Filter
 - One Dimensional Kalman Filters
 - Multivariate Gaussians
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Tracking Objects

- Many problems can be formulated as tracking objects
- Examples
 - Navigation of aircraft, drones, autonomous cars
 - Robotics: arm kinematics to predict the position of joints
 - Sensor fusion: merge multiple sensor readings
 - Finance: predict economic variables (e.g., stock prices)
 - Computer vision: track moving objects across video
- Kalman filter
 - Used for state estimation in dynamic systems with noisy, uncertain measurements
 - Track over time using predictions (model) and observations

Some Guiding Principles

- The world is noisy
 - E.g., a car might swerve around a pothole or brake for a pedestrian
 - E.g., wind or ice might change the car's path
- Sensors are noisy
 - A kitchen scale gives different readings for the same object
- Knowledge is uncertain
 - You alter beliefs based on evidence strength
- Use past information and system knowledge to estimate future information
 - E.g., if a car moves at a certain speed at time t, the speed at time t+1 is likely close to the previous speed
- Data is better than a guess, even if noisy
 - Never discard information, no matter how poor
 - E.g., two sensors, even if one is less accurate, are better than one

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
 - g-h Filter
 - One Dimensional Kalman Filters
 - Multivariate Gaussians
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Example of Weight: Blending Predictions and Measurements

- Imagine going to the gym to gain muscle mass
 - Estimate your weight over time
- You could:
 - 1. Predict your weight
 - Track calorie intake and energy expense
 - Compute expected weight gain
 - Cons: Difficult to track food intake and exercise accurately
 - 2. Measure your weight
 - Use a scale
 - Cons: Scale is noisy, water weight fluctuates, different clothes
- Prediction doesn't match measurements
 - At time *t* − 1
 - Estimate: $\hat{x}_{t-1} = 158$
 - At time *t*:
 - Scale measures 164
 - Estimate $\hat{x}_{t|t-1} = 159$ based on calorie intake
- What's your real weight?
 - You need to blend prediction and measurement

Example of Weight: Correct Gain_Rate

Blend the estimates like:

$$\mathsf{estimate} = 0.6 \times \mathsf{prediction} + (1-0.6) \times \mathsf{measurement}$$

You believe the prediction is more likely correct than the measurement

Algorithm

- 1. Start with an initial guess
 - Assume it's correct for now
- 2. Predict the next weight based on the model
- 3. Measure the weight
- 4. Estimate the next weight by merging values:
 - The prediction is always between the prediction and the measurement
- 5. Go back to first step

Example of Weight:

- The black line is the actual weight, i.e., ground truth
- The initial guess is 160 lbs
- The red line is the prediction from previous day's weight
- The measurements are the circles
- The blue line is the estimate from the filter
 - Always falls between measurement and prediction
- It's not impressive since the prediction model describes the ground truth, so you don't need the measurements

Example of Weight: Learning Gain_Rate

- Consider when the model predicts a gain of -10lb/day, which is incorrect
 - Estimates diverge from measurements
- The filter needs a correct guess of the weight change rate
 - Also the rate of change can vary over time
- Solution: estimate the rate of change from measurements
 - "Data is better than a guess, even if it's noisy"
 - Refine the estimate of the gain rate:

```
\mathsf{new} \ \mathsf{gain} = \mathsf{old} \ \mathsf{gain} + 0.3 \ \mathsf{(measurement - prediction)} \ / \ 1 \ \mathsf{day}
```

 The "state" is given by weight and gain_rate, so you need to predict and update both

g-h Filter

- The previous algorithm is called g-h filter
 - g: scaling used to blend predicted state and measurement
 - h: scaling used to update the parameter of the system model based on the measurements
- g-h filters have different values of g and h to achieve different properties
 - E.g., pick g to minimize the transient error when the derivative of the signal has a step (i.e., a discontinuity of the slope)
 - Many filters (including Kalman filter) are just generalizations of a g-h filter

Control Theory Nomenclature

- State space models were developed in control theory, so there is a different nomenclature
- System: object you want to estimate/track
- Filter: algorithm to estimate the state of the system
- State of the system x: current values you are interested in
 - E.g., weight
 - Part of the state might be hidden (i.e., not observable)
 - \bullet You cannot observe the entire state directly, only measure it indirectly
- Measurement z: the measured value of the system
 - It is observable
 - It can be inaccurate
 - E.g., 99.3kg instead of 100kg
- State estimate x est: filter estimate of the state
- System model: mathematical model of the system
 - E.g., "weight today = weight yesterday + weight gain"
 - The system model is typically imperfect

g-h Filter Algorithm: Pseudo-Code ::: Columns

::::

- 1. Initialization
 - Initialize the state of the filter
 - Initialize your belief in the state
- 2 Predict
 - Use system model to predict state at next time step
 - Adjust belief to account for uncertainty in prediction
- 3. Update
 - Get measurement and associated belief about its accuracy
 - Use as estimate of the next state a point between estimated state and measurement :::: :::: {.column width=40%}

Interpretation of g

- If g = 0:
 - The filter follows the system model, ignoring the measurements
- If g increases:
 - The filter follows the measurements more, ignoring the prediction
 - Useful when measurements are accurate and the system model is inaccurate
- If g = 1:
 - The filter follows only the measurements, ignoring the system model

Interpretation of *h*

- You might need to estimate some model parameters from data, e.g.,
 - The change of weight
 - The rate of change of the measurements
 - The speed of the car on different terrains
- If h = 0:
 - The filter follows the previous values of the rate of change of the underlying model
 - I.e., it adapts slowly to the change of the signals
- If *h* = 1:
 - The filter reacts to the transient rapidly if the signal varies significantly with respect to the time step
- Note: an incorrect initial state (e.g., initial value/rate of change) is similar to a changing state

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
 - g-h Filter
 - One Dimensional Kalman Filters
 - Multivariate Gaussians
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Updating Belief Using Gaussians

• The Bayes theorem tells that:

```
posterior = normalized(prior \times likelihood)
```

- If the prior and the likelihood are Gaussian the result is also Gaussian (conjugate prior)
 - The belief and probability are represented as a Gaussian
 - We can encode the PDF in terms of mean and std dev
 - Updating belief is equivalent to sum and multiplication of Gaussians
- Algorithm:

```
# Create prior (using current estimate and system model)
prior = predict(x, process_model)

# Create likelihood (using measurement).
likelihood = gaussian(z, sensor_var)

# Update belief using prior and likelihood
posterior = update(prior, likelihood)
```

Sum of Gaussians

• The sum of two independent Gaussians

Normal
$$(\mu_1, \sigma_1^2)$$

Normal (μ_2, σ_2^2)

is a Gaussian $Normal(\mu, \sigma^2)$ with:

$$\mu = \mu_1 + \mu_2$$
$$\sigma^2 = \sigma_1^2 + \sigma_2^2$$

- The mean is the sum of the mean (by linearity)
- The variance always increases

Product of Gaussians

The product of two independent Gaussians

Normal
$$(\mu_1, \sigma_1^2)$$

Normal (μ_2, σ_2^2)

is a Gaussian $N(\mu, \sigma^2)$ with:

$$\mu = \frac{\mu_1 \sigma_2^2 + \mu_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$
$$\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

• Interpretation:

- The variance may be reduced as more information is incorporated
- If one Gaussian N_1 is much narrower than the other (i.e., one measure is more accurate), the result is pushed towards N_1
- If two Gaussians are similar (i.e., two measures corroborate each other),
 the result becomes more certain

Kalman Gain

- Assume that:
 - x is the model prediction
 - z indicates the measurements
- The mean of the posterior is:

$$\mu = \frac{\sigma_x^2 \mu_z + \sigma_z^2 \mu_x}{\sigma_x^2 + \sigma_z^2} = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_z^2} \mu_z + \frac{\sigma_z^2}{\sigma_x^2 + \sigma_z^2} \mu_x = K \mu_z + (1 - K) \mu_x$$

- The Kalman Gain K:
 - Is the scaling term that mixes the prediction and the measurement
 - Depends on the ratio of uncertainty of prior and measurement

Kalman Pseudo-Algorithm

- The typical formulation of the Kalman filter is in terms of the "orthogonal projection" approach to minimize mean squared error
 - Instead of a Bayesian formulation
- Typical symbols used in Kalman literature:
 - x: state
 - P: variance of state (uncertainty, belief)
 - f(): system model
 - Q: system model error
 - z: measurement
 - R: measurement noise

Initialization

- Initialize state of filter $x = x_0$
- Initialize belief in the state $P = P_0$

Predict

- Use system model to predict state at the next time step x = f(x)
- Adjust belief to account for uncertainty in prediction P = P + Q

Update

- ullet Get measurement z and belief about its accuracy R
- Compute residual between estimated state x and z: y = z x
- Compute scaling factor (Kalman K) based on accuracy of prediction P and measurement R

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
 - g-h Filter
 - One Dimensional Kalman Filters
 - Multivariate Gaussians
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Multivariate State

- Often the state variable is multivariate, e.g.,
 - Position and velocity of a dog (probably uncorrelated)
 - Height and weight of an adult (correlated)
- Variance is a measure of how a population varies, e.g.,
 - Variance = 0 means constant
 - Large variance means lots of variation
- Covariance are correlated variances
 - E.g., height and weight are generally positively correlated
- Covariance matrix
 - The diagonal contains the variance for each variable
 - ullet The off-diagonal elements contain the covariance between i and j variables
 - The covariance matrix is symmetric
- Correlation allows prediction
 - E.g., "as winter comes you predict you will spend more on heating your house"

Multivariate Gaussian

- The marginal of a multivariate Gaussian is 1-d Gaussian
- Consider a contour plot (i.e., the intersection of a 2-d Gaussian z = f(x, y) with a plane z = c)
 - The contour plot is always an ellipses

Multiplying Two Multivariate Gaussians

- Given two multivariate Gaussians $\sim Normal(\underline{\mu}_i, \underline{\underline{\Sigma}}_i)$
- The product of the Gaussians is still Gaussian $\sim Normal(\underline{\mu},\underline{\Sigma})$

$$\underline{\underline{\mu}} = \underline{\underline{\Sigma}}_{2} (\underline{\underline{\Sigma}}_{1} + \underline{\underline{\Sigma}}_{2})^{-1} \underline{\underline{\mu}}_{1} + \underline{\underline{\Sigma}}_{1} (\underline{\underline{\Sigma}}_{1} + \underline{\underline{\Sigma}}_{2})^{-1} \underline{\underline{\mu}}_{2}$$

$$\underline{\underline{\Sigma}} = \underline{\underline{\Sigma}}_{1} (\underline{\underline{\Sigma}}_{1} + \underline{\underline{\Sigma}}_{2})^{-1} \underline{\underline{\Sigma}}_{2}$$

Note: this is a generalization of the 1-d case to multivariate

$$\mu = \frac{\mu_1 \sigma_2^2 + \mu_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$
$$\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

replacing:

- σ^2 with covariance matrix Σ
- Division with matrix inversion

Multivariate Filtering

- Covariance structure helps improve the estimate, e.g.,
 - You know an airplane direction can't change quickly
 - Knowing an approximate value for the velocity helps constrain possible next positions
- E.g., airplane
 - You are tracking a plane moving in a direction (1-d problem)
 - At time 1, you are fairly certain about the position x = 0, but you don't know the velocity
 - You plot position and velocity on an x-y plane
 - The covariance matrix between position and velocity is narrow and tall
 - It is narrow on the x-axis since you know that the position is around x=0
 - It is tall on the y-axis because of your lack of knowledge about velocity
 - After 1 sec, you get a position update of x = 5
 - You can infer that the velocity is 5/s
 - The covariance matrix is then stretched diagonally

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
 - Tracking a Dog with a Kalman Filter
 - Non-Linear Filtering
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Notation

- A Bayesian notation a|b means "a given the evidence of b"
 - The prior is $\hat{\underline{x}}_{t|t-1}$, since you know only the information at time t-1, i.e., the previous state
 - The posterior is $\hat{\underline{x}}_{t|t}$, since you know all the information at time t, i.e., the measurement

• A simpler notation:

- Indicate the "prior" version of the variables (i.e., after the system update) with an overline (E.g., \overline{x} , \overline{X})
- Omit the indices t + 1 and t and use an assignment notation (representing "update in place" of a variable):

$$x = x + 1$$

instead of the mathematical notation using a different variable for each time step:

$$x_{t+1} = x_t + 1$$

- With this notation:
 - The prior is $\overline{x} = \hat{x}_{t|t-1}$
 - The posterior is $x = \hat{x}_{t|t}$

Multivariate Kalman Filter

- With the previous notation:
 - State update: $\overline{x} = Fx + Bu$
 - State uncertainty: $\overline{P} = FPF^T + Q$
 - Residual: $y = z H\overline{x}$
 - Kalman gain: $\mathbf{K} = \overline{\mathbf{P}} \mathbf{H}^T (\mathbf{H} \overline{\mathbf{P}} \mathbf{H}^T + \mathbf{R})^{-1}$
 - Updated state: $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{K}\mathbf{y}$
 - Update state uncertainty: $P = (I KH)\overline{P}$
- Where
 - x and P are the state mean and covariance
 - F is the state transition function
 - Q is the system error (i.e., the noise in the model assessment)
 - B and u model the control inputs to the system
 - **H** is the measurement function
 - z and R are the measurement mean and covariance
 - y is the residual
 - K is the Kalman gain
- Use the system model to predict the next state
 - When we multiply ${\bf F}$ to ${\bf x}$ we get the prior (i.e., the state before seeing any measurement)
- Form an estimate between the prior and the measurement

From Univariate to Multivariate Kalman Filter

• Let's compare

Definition	Univariate (Bayesian)	Univariate (Kalman)	Multivariate (Kalman)
State update	$\overline{\mu} = \mu + \mu_f$	$\overline{x} = x + dx$	$\overline{x} = Fx + Bu$
State uncertainty	$\overline{\sigma}^2 = \sigma^2 + \sigma_f^2$	$\overline{P} = P + Q$	$\overline{P} = FPF^T + Q$
Residual		$y=z-\overline{x}$	$y = z - H\overline{x}$
Kalman gain		$K = \frac{\overline{P}}{\overline{P} + R}$	$K = \overline{P}H^T(H\overline{P}H^T + R)^{-1}$
Updated state	$\hat{\mu} = \frac{\overline{\sigma}^2 \mu_z + \sigma_z^2 \overline{\mu}}{\overline{\sigma}^2 + \sigma_z^2}$	$x = \overline{x} + Ky$	$x = \overline{x} + Ky$
Upd. state uncertainty	$\sigma^2 = \frac{\overline{\sigma}^2 \sigma_z^2}{\overline{\sigma}^2 + \sigma_z^2}$	$P = (1 - K)\overline{P}$	$P = (I - KH)\overline{P}$

Designing a Kalman filter

- The designer of the model needs to design:
 - The form of the state \underline{x} and \underline{P}
 - ullet The system model $\underline{\underline{F}}$ and $\underline{\underline{Q}}$
 - The measurement \underline{z} and \underline{R}
 - The measurement function <u>H</u>
 - The control inputs $\underline{\underline{B}}$ and $\underline{\underline{u}}$ if there are control inputs

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
 - Tracking a Dog with a Kalman Filter
 - Non-Linear Filtering
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Tracking 1D Dog: Problem formulation

- There is a dog moving on a 1-d track
- (Nuvolo)
- The dog moves approximately 1 meter per step
 - The velocity has variance due to noise/imperfect model specification
- There is a sensor that measures the position of the dog
 - The sensor has a certain error
- Time is discrete

Tracking Dog: Predict Step

- At each step, the position is described with a Gaussian distribution $Normal(\mu, \sigma^2)$
- The position is part of the system's state, along with the velocity
 - The position is "observed" by a sensor
 - The velocity is a "hidden" variable
 - You could use more variables (E.g., acceleration, jerk, etc.)

Tracking Dog: Design State Covariance

- Initialize variances to reasonable values
 - E.g., $\sigma_{position} = 500m$ due to uncertainty about initial position
 - Top speed for a dog is 21 m/s, so set $3\sigma_{velocity} = 21$
 - Assume covariances to be zero due to unknown initial correlation between position and velocity
 - ullet is diagonal

Tracking Dog: Design System Model

Describe mathematically the behavior of the system

$$x_{t+1} = x_t + v\Delta t$$

- No model to predict how dog velocity changes over time
 - Assume it remains constant

$$\dot{x}_{t+1} = \dot{x}_t$$

- This is not correct, but if velocity doesn't change much, the filter will perform well
- Put the model in matrix form $\underline{\mathbf{x}}_{t+1} = \underline{\underline{\mathbf{F}}}\underline{\mathbf{x}}_t$

Tracking Dog: Predicting the System

- If we predict the system without measurements:
 - The state follows the system model
 - The state uncertainty grows
 - This is true even without system error (noise)

Tracking Dog: Design System Noise

- Consider a car driving on a road with cruise control on
- It should travel at constant speed:

$$x_t = \dot{x}_{t-1} \Delta t + x_{t-1}$$

- In reality, it is affected by unknown factors:
 - The cruise control is not perfect
 - Wind, hills, potholes affect the car
 - Passengers roll down windows, changing the drag profile of the car
- Model this as:

$$\dot{x}_t = \dot{x}_{t-1} + w$$

- Model all of this with a covariance matrix $\underline{\underline{Q}} = \mathbb{E}[\underline{\underline{w}} \cdot \underline{\underline{w}}^T]$:
 - Assume the noise is iid, has zero mean, and is independent from the system
 - For these reasons, you don't have to change the position, only the velocity

Tracking Dog: Design the Control Function

Incorporate control inputs to predict state based on this information

$$\Delta \underline{\overline{x}} = \underline{\underline{Bu}}$$

- E.g., in the case of the car
 - Steering
 - Acceleration
- E.g., in the case of the dog, control inputs can be
 - The voice of its master
 - Seeing a squirrel

Tracking Dog: Design the Measurement Function

- Kalman filter computes the update step in the measurement space
- If the measurement is in the same units as the state, the residual is simple to compute:

residual = measured position - predicted position

- E.g., assume we are tracking the position of the dog using a sensor that outputs a voltage
 - We cannot compute the residual as:

measure voltage - predicted position

- We need to convert the position into voltage
- The Kalman space allows to have a measurement matrix $\underline{\underline{H}}$ to convert the state into a measurement

$$\underline{y} = \underline{z} - \underline{\underline{H}}\underline{\overline{x}}$$

Why Working in Measurement and Not in State Space?

- The problem is that it is possible to convert state into measurement, but not vice versa because of the hidden variables
 - E.g., transform position (discarding velocity) into voltage
 - If the sensor doesn't read velocity how do we estimate the measured velocity

Tracking Dog: Design the Measurement

- Typically \underline{z} is easy since it just contains the measurements from the sensor
- The measurement noise matrix \underline{R} can be difficult to estimate
 - Noise can be not Gaussian
 - There can be a bias in the sensor
 - The error can be not symmetrical (e.g., temperature sensor is less precise as the temperature increases)

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
 - Tracking a Dog with a Kalman Filter
 - Non-Linear Filtering
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Optimality

Assumptions:

- Everything is linear
- System and sensor noise is Gaussian
- Under these assumptions, the Kalman filter is optimal in a least square sense
- The Kalman filter is a mathematical model of the world
 - The output is only as accurate as the model of the world

The World Is Non-Linear

- The Kalman filter uses linear equations and can only handle linear problems
- The world is non-linear:
 - System model can be non-linear:
 - Many physical systems are described by non-linear differential equations
 - E.g., a ball flying through air is affected by drag, leading to non-linear behaviors
 - Measurements can be non-linear:
 - To measure the height on a plane, you can measure the distance of the plane from the radar. Given the Pythagorean theorem, you get:

$$x = \sqrt{\mathsf{dist}^2 - \mathsf{height}^2}$$

 Rarely does a physical system have equations that can be solved analytically

Extended Kalman Filter

- Aka EKF
- EKF is a nonlinear version of the Kalman filter
 - Linearize the differential equations to compute the Jacobian (i.e., matrix of partial derivatives) at the point of the current estimate
 - Used for estimating the state of a nonlinear dynamic system
- Pros
 - Use the linear Kalman machinery
- Cons:
 - Analytical solution:
 - Difficult or impossible
 - Numerical solution:
 - Expensive computationally
 - Errors can compound forcing the filter to diverge (unstable)

Unscented Kalman Filter

- Aka UKF
- It is superior to EKF in almost every way

Intuition of Sampling Techniques

- ullet Assume you have a distribution X and a non-linearity ϕ
- For every measurement:
 - Generate many points from X
 - Pass them through the non-linear function ϕ
 - Approximate the result (E.g., compute mean and variance)

Problem:

- "How many points are needed to build an accurate output distribution"?
- Even if n=500,000 points are enough for 1 dimension, for k dimensions you might need n^k points (curse of dimensionality)

Unscented Transform

- Unscented transform estimates the result of applying a non-linear transformation to a probability distribution characterized by a finite number of moments (e.g., mean and covariance)
 - E.g., compute the non-linear transform of a distribution, given mean and covariance estimate
 - Called "unscented" since "it doesn't stink."

Intuition

- Given a PDF C with mean μ and covariance Σ
- Encode mean and covariance in a set of points (sigma points) that represent a discrete PMF D with the same mean $\underline{\mu}$ and covariance $\underline{\Sigma}$
- \bullet Propagate the discrete PMF D by applying the non-linear function $\overline{\phi}$ to each point of the PMF
- The mean and covariance of $\phi(D)$ approximate the mean and covariance of $\phi(C)$

Unscented Transform: 1D Case

- The idea is that we need 3 sigma points for a 1-d Gaussian
 - One point for the mean
 - Two points around the mean
- Each point has a weight

Unscented Transform: Sigma Points

- ullet Consider a distribution F and a non-linearity ϕ
- There are algorithms to generate points and weights (given the mean and covariance of F) to evaluate mean and covariance of F transformed through ϕ
- In *n* dimensions, we need 2n+1 points $\underline{\mathbf{x}}_i$ and weights w_i^m, w_i^c

$$\sum_{i} w_{i}^{m} = 1$$

$$\sum_{i} w_{i}^{c} = 1$$

$$\mu(\phi) = \sum_{i} w_{i}^{m} \phi(\underline{x}_{i})$$

$$\Sigma(\phi) = \sum_{i} w_{i}^{c} (\phi(\underline{x}_{i}) - \mu(\phi)) (\phi(\underline{x}_{i}) - \mu(\phi))^{T}$$

Note that selecting the sigma points has not a single solution

Monte Carlo Sampling

- Use a finite number of randomly sampled points to represent the problem
- Run the points through the transformation (e.g., non-linear function / system you are modeling)
- Compute the results on the transformed points

Particle Filters

- Aka Sequential Monte Carlo (SMC) methods
- Monte Carlo algorithms to solve problems in Bayesian statistical inference (e.g., in filtering problems)
- The goal is to compute posterior distributions of the states, given some data

Generic particle filter algorithm

- 1. Randomly generate particle
- Particles have all state variable that needs to be estimated (e.g., position, velocity)
- Each particle has a weight representing the probability that it represents the actual state of the system
- 2. Predict next state of the particles
- 3. Update weighting
- Update the weighting of the particles based on the measurements
- Particles that match closely the measurements are weighted higher
- 4. Resample
- Discard highly improbable particle
- 5. Compute estimate
- Compute weighted mean and covariance of the particles to get an estimate of the state and uncertainty

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

Dynamic Bayesian Networks (DBNs)

- DBNs extend Bayesian networks to model temporal processes
- Main idea
 - "Unroll" the model over time
 - Capture intra-slice (within time) and inter-slice (across time) dependencies
- Each time slice includes:
 - State variables X_t
 - Evidence variables E_t
- Assumptions
 - First-order Markov process: current state depends only on the previous state
 - First-order sensor Markov process: evidence depends only on current state
 - Stationarity: each time slice is the same, both structure and parameters do not change over time
 - Structure and CPTs (Conditional Probability Tables) are the same across slices (time-homogeneous model)
 - No Gaussian distribution

DBNs vs HMMs

- DBNs generalize Hidden Markov Models (HMMs)
- HMMs are a special case with a single hidden and evidence variable per time step
- DBNs model more complex systems than HMMs by:
 - Using multiple state variables
 - Enables modeling large systems like robot localization with many state components
 - Exploiting sparse connections among variables yielding compact model
 - HMM: transition matrix of size $O(d^{2n})$
 - DBN: size $O(nd^k)$ with k bounded parents per variable

DBNs vs Kalman Filters

- DBNs generalize Kalman filters
- Every Kalman filter can be represented in a DBN with:
 - Continuous variables
 - Linear / Gaussian conditional distributions
- Not every DBN can be represented by a Kalman filter, since:
 - DBN variables can mix discrete/continuous and non-Gaussian
 - Allow arbitrary conditional dependencies among variables
- Pros of DBNs
 - DBNs are applicable to broader domains including:
 - Fault diagnosis in networks
 - Complex system monitoring
- Pros of Kalman filters:
 - Optimal for linear systems with Gaussian noise
 - Support exact inference, DBNs often require approximate methods

Constructing a DBN

- Key components of a DBN
 - Prior distribution of state $Pr(X_0)$
 - Transition model $Pr(X_{t+1}|X_t)$
 - Sensor model $Pr(E_t|X_t)$
 - Transition and sensor models are time-homogeneous
- Network topology includes:
 - Intra-slice topology
 - Inter-slice links

DBN Example: Tracking a Robot (1/3)

- Problem:
 - Tracking a robot moving randomly on a line X over time
- Initial model:
 - Position X_t and velocity X_t as state variables
 - Update via Newton's laws
 - Easy to generalize for 2d or 3d by using a X_t
- Issue:
 - Velocity changes over time
 - Battery exhaustion affects velocity systematically
 - Effect depends on cumulative energy use
 - Violates the Markov property (future depends on full history)
- Solution:
 - Include battery level $Battery_t$ in the state X_t
 - Restores the Markov assumption
 - · Allows motion prediction considering energy constraints
 - Enables coherent reasoning about motion and power consumption over time
- New requirement for state:
 - $S_t = (X_t, \dot{X}_t, \mathsf{BatteryLevel}_t)$
 - $E_t = (GPS_t, BMeter_t)$

DBN Example: Tracking a Robot (2/3)

- The DBN structure models both intra-slice (within time) and inter-slice (across time) dependencies
- Intra-slice dependencies:
 - Position X_t influences velocity \dot{X}_t
 - BatteryLevel_t influences velocity \dot{X}_t
 - Battery_{t+1} depends on Battery_t and \dot{X}_t
 - BMeter_t depends on Battery_t
 - GPS $_t$ depends on X_t
- Inter-slice dependencies:
 - Position X_{t+1} depends on Position X_t and velocity \dot{X}_t
 - Velocity \dot{X}_{t+1} depends on \dot{X}_t and Battery,

DBN Example: Tracking a Robot (3/3)

Replicate for Multiple Time Slices:

- Create slices for t = 0, 1, 2, ... with the above variables and dependencies
- Group each time slice vertically or horizontally for clarity

Unrolling:

 Visualize the full DBN by unrolling these slices over the desired number of time steps (e.g., three slices for t = 0, 1, 2)

Inference in DBNs

- DBNs are Bayesian networks and we can use the same inference algorithms
 - "Unroll" the DBN over time (i.e., replicate slices for each time step) and apply standard BN inference
 - We can't unroll "forever", but we limit to a certain number of slices to approximate a fixed amount of time dependency
- Use recursive methods to get a constant time and space update complexity
 - Variable elimination with temporal ordering
 - At time step t+1 add slice t+2 and remove slice t so one has always two slices to do inference
 - Maintains constant memory by keeping only two slices at a time
- Complexity:
 - Exponential in number of state variables $(O(nd^{n+k}))$
 - More efficient than full HMM representation $(O(d^{2n}))$
- Even though we can use DBNs to represent very complex temporal processes with many sparsely connected variables, we cannot reason efficiently and exactly about those processes
 - The prior joint distribution over all the variables is factorizable into its constituents CPTs

• The posterior joint distribution conditioned on observation sequence is not 5/129

Approximate Inference in DBNs

- Particle Filtering:
 - Represent belief state with weighted samples (particles)
 - Steps: propagate, weight, resample
- Benefits:
 - Focuses computation on high-probability regions
 - Maintains manageable memory and time per step
- Challenges:
 - Approximation error
 - Sensitive to transition and observation model assumptions
- Used when exact inference is computationally impractical
- Real-world application: robot localization, speech recognition

DBN to Represent Changing Model

- We can model the fact that the system can change over time
 - Transient failure: a sensor reads wrong measures
 - Persistent failure model: we can model it with additional variables (e.g., SensorBroken)

DBN: Inference

 We can unroll the DBN and get a BayesNet and then perform exact or approximate inference with the known methods (e.g., MCMC)

DBN: Optimization for Inference

- Many optimizations are possible, e.g.,
 - Instead of running each sample through the entire DBN one can run all the samples evaluating one slice at a time to compute the posterior distribution

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference
 - Expectation-Maximization (EM) Algorithm

- Reasoning Over Time
- HMMs
- Markov Random Fields
- Markov Logic Network
- State Space Models and Kalman Filter
- Multivariate Kalman Filters
- Dynamic Bayesian networks
- State Space Model
- Variational Inference
 - Expectation-Maximization (EM) Algorithm

EM Algorithm: Intuition and Applications

- Expectation-Maximization (EM) is a method for learning with hidden or missing data
 - Useful when some variables influencing the data are not directly observed
 - Works by iteratively improving parameter estimates
 - Alternates between estimating missing data and optimizing parameters
- Two main steps:
 - E-step (Expectation): Estimate distribution over hidden variables using current parameters
 - M-step (Maximization): Update parameters to maximize expected log-likelihood from the E-step
- Used in diverse settings:
 - Unsupervised clustering (e.g., Gaussian Mixture Models)
 - Learning with incomplete data in Bayesian networks
 - Hidden Markov Models (HMMs)
- Key property: EM increases data likelihood at each iteration
- Converges to a local maximum of the likelihood function
- No need for a step size parameter unlike gradient descent

EM Algorithm: Mechanics and Example in Gaussian Mixture Models

- Goal: Recover parameters of Gaussian components from unlabeled data
- E-step:
 - Compute $p_{ij} = P(C = i \mid x_i)$ using Bayes' rule
 - $p_{ii} \propto P(x_i \mid C = i)P(C = i)$
 - Calculate effective count: $n_i = \sum_i p_{ij}$
- M-step:
 - Update means: $\mu_i \leftarrow \sum_j p_{ij} x_j / n_i$
 - Update covariances: $\Sigma_i \leftarrow \sum_i p_{ij} (x_j \mu_i) (x_j \mu_i)^T / n_i$
 - Update weights: $w_i \leftarrow n_i/N$
- Intuition: Softly assign points to components, then re-estimate the components
- Example scenario:
 - 500 data points from a mix of 3 Gaussians
 - EM reconstructs original distribution closely after iterations
- Limitations:
 - Sensitive to initialization
 - May converge to poor local optima
 - Component collapse or merging can occur

Introduction to the Expectation–Maximization (EM) Algorithm

Purpose of EM Algorithm

- Iterative method for finding maximum likelihood or maximum a posteriori (MAP) estimates in statistical models with latent variables
- Particularly useful when data is incomplete or has missing values

Key Concepts

- Observed Data (X): The data we can directly observe
- Latent Variables (Z): Hidden or unobserved variables that influence the observed data
- Parameters (θ): Unknown parameters to be estimated

• Challenge Addressed

- Direct maximization of the likelihood function $p(\mathbf{X}|\theta)$ is often intractable due to the presence of latent variables
- EM Algorithm Overview
 - Alternates between estimating the expected value of the log-likelihood (E-step) and maximizing this expectation (M-step)

Applications

 Widely used in clustering (e.g., Gaussian Mixture Models), natural language processing, and image reconstruction

The EM Algorithm: Step-By-Step

- Initialization
 - Start with initial guesses for the parameters $heta^{(0)}$
- E-Step (Expectation Step)
 - Compute the expected value of the log-likelihood function, with respect to the conditional distribution of the latent variables given the observed data and current parameter estimates:
 - $Q(\theta|\theta^{(t)}) = \mathbb{E}_{\mathbf{Z}|\mathbf{X},\theta^{(t)}}[\log p(\mathbf{X},\mathbf{Z}|\theta)]$
- M-Step (Maximization Step)
 - Maximize the expected log-likelihood found in the E-step to update the parameters:
 - $\theta^{(t+1)} = \operatorname{arg\,max}_{\theta} Q(\theta|\theta^{(t)})$
- Iteration
 - Repeat E and M steps until convergence, i.e., until the parameters stabilize or the increase in likelihood is below a threshold

Mathematical Foundation of EM

Likelihood with Latent Variables

- The marginal likelihood of the observed data is:
 - $p(X|\theta) = \int p(X,Z|\theta)dZ$
- Intractability
 - The integral is often difficult to compute due to the complexity introduced by the latent variables
- EM Solution
 - EM circumvents this by iteratively applying the E and M steps to find parameter estimates that locally maximize the likelihood
- Convergence
 - Each iteration of EM is guaranteed to increase the likelihood function, ensuring convergence to a local maximum

Example: Gaussian Mixture Models (GMM)

Problem Setup

 Data is assumed to be generated from a mixture of Gaussian distributions, each with its own mean and covariance

Latent Variables

 Each data point is associated with a latent variable indicating the Gaussian component from which it was generated

• E-Step in GMM

 Compute the posterior probabilities (responsibilities) that each data point belongs to each Gaussian component

M-Step in GMM

 Update the parameters (means, covariances, and mixing coefficients) of each Gaussian component using the responsibilities computed in the E-step

Iteration

Repeat E and M steps until the parameters converge

Properties and Limitations of EM

Advantages

- Can handle missing or incomplete data effectively
- Provides a framework for parameter estimation in complex models

Limitations

- Converges to a local maximum, which may not be the global maximum
- Sensitive to initial parameter estimates; poor initialization can lead to suboptimal solutions

Extensions and Variants

- Variational Bayes: Provides a fully Bayesian approach by estimating distributions over parameters
- Generalized EM (GEM): Relaxes the requirement of fully maximizing the expected log-likelihood in the M-step
- Expectation Conditional Maximization (ECM): Breaks the M-step into several conditional maximization steps

Practical Considerations

- Multiple runs with different initializations can help in finding better solutions
- Monitoring the increase in likelihood can help in determining convergence