

Nome: Gustavo Vigo Titenis - 30420_______ Data: 18 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	65.64	65.49	65.52	65.6	65.48	65.72	65.57	65.48	65.55
A	Medição 2	65.67	65.69	65.52	65.53	65.4	65.6	65.56	65.55	65.64
	Medição 3	65.6	65.61	65.63	65.52	65.6	65.58	65.36	65.48	65.63
	Medição 1	65.72	65.48	65.38	65.5	65.61	65.65	65.47	65.5	65.48
В	Medição 2	65.43	65.54	65.46	65.54	65.38	65.47	65.42	65.7	65.51
	Medição 3	65.62	65.6	65.73	65.55	65.54	65.73	65.58	65.57	65.64
	Medição 1	65.52	65.52	65.65	65.78	65.64	65.74	65.55	65.41	65.46
С	Medição 2	65.87	65.6	65.62	65.6	65.55	65.6	65.52	65.61	65.48
	Medição 3	65.56	65.57	65.67	65.49	65.32	65.54	65.49	65.56	65.4

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

1	Peso m (gramas)	200	300	400	500	600	700	800	900
	(0 /								
	Comprimento l (cm)	4.01	5.86	6.38	6.56	8.73	8.78	9.77	10.49

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 21°C e 27°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

	N	1	2	3	4	5	6	7	8
	$V_a(V)$	9.53	9	9.73	10.36	10.35	10.85	9.5	10.63
Ì	$I_a (mA)$	96.228	89.423	97.474	104.505	102.995	109.278	94.933	107.221

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.