

N-channel 600 V, 60 m Ω typ., 42 A MDmesh M2 Power MOSFET in a TO-247 long leads package

Features

Order code	V _{DS}	R _{DS(on)} max.	l _D
STWA48N60M2	600 V	70 mΩ	42 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Product status STWA48N60M2

Device summary			
Order code STWA48N60M2			
Marking	48N60M2		
Package	TO-247 long leads		
Packing	Tube		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I _D	Drain current (continuous) at T _C = 25 °C	42	Α
I _D	Drain current (continuous) at T _C = 100 °C	26	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	168	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	300	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	temperature range - 55 to 150	
Tj	Operating junction temperature range	- 55 (0 150	°C

- 1. Pulse width limited by safe operating area.
- 2. $I_{SD} \le 42$ A, $di/dt \le 400$ A/ μs ; $V_{DS(peak)} < V_{(BR)DSS}$, $V_{DD} = 400$ V
- 3. $V_{DS} \le 480 \text{ V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.42	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	50	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive $ (\text{pulse width limited by } T_{j\text{max.}}) $	7	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	1	J

DS11409 - Rev 4 page 2/12

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off-states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
	Zero-gate voltage	V _{GS} = 0 V, V _{DS} = 600 V			1	μA
I _{DSS}	drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _C = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	V _{DS} = V _{GS} , I _D = 250 μA	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 21 A		60	70	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	3060	-	pF
C _{oss}	Output capacitance	V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz	-	143	-	pF
C _{rss}	Reverse transfer capacitance		-	4.3	-	pF
C oss eq. (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	-	630	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4.6	-	Ω
Qg	Total gate charge	V_{DD} = 480 V, I_{D} = 42 A, V_{GS} = 0 to 10 V (see Figure 14. Test circuit for gate charge	-	70	-	nC
Q _{gs}	Gate-source charge		-	10.5	-	nC
Q _{gd}	Gate-drain charge	behavior)	-	31	-	nC

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d (on)}	Turn-on delay time	V_{DD} = 300 V, I_D = 21 A, R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	18.5	-	ns
t _r	Rise time		-	17	-	ns
t _{d(off)}	Turn-off delay time		-	119	-	ns
t _f	Fall time		-	13	-	ns

DS11409 - Rev 4 page 3/12

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		42	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		168	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 21 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 42 A, di/dt = 100 A/μs V _{DD} = 60 V (see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	487		ns
Q _{rr}	Reverse recovery charge		-	9.1		μC
I _{RRM}	Reverse recovery current		-	37.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 42 A, di/dt = 100 A/μs	-	605		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 15. Test circuit for inductive load	-	12.5		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times)	-	41.5		Α

^{1.} Pulse width limited by safe operating area.

DS11409 - Rev 4 page 4/12

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 3. Output characteristics V_{GS} = 8, 9, 10 V 120 100 6 V 80 60 5 V 40 20 4 V 12 16 20 V_{DS} (V) 8

DS11409 - Rev 4 page 5/12

Figure 7. Capacitance variations

Figure 8. Output capacitance stored energy

Figure 9. Normalized gate threshold voltage vs temperature

Figure 10. Normalized on-resistance vs temperature

Figure 11. Normalized $V_{(BR)DSS}$ vs temperature

Figure 12. Source-drain diode forward characteristics

DS11409 - Rev 4 page 6/12

AM01471v1

3 Test circuits

Figure 15. Test circuit for inductive load switching and diode recovery times

V_D

2200
3.3

V_{DD}

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS11409 - Rev 4 page 7/12

4 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 long leads package information

Figure 19. TO-247 long leads package outline

BACK VIEW

8463846_5

DS11409 - Rev 4 page 8/12

Table 8. TO-247 long leads package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
A	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
Е	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
M	0.35		0.95
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25
aaa		0.04	0.10

DS11409 - Rev 4 page 9/12

Revision history

Table 9. Document revision history

Date	Revision	Changes
01-Dec-2015	1	First release.
20-Jan-2017	2	Updated Table 2: "Absolute maximum ratings", Table 4: "Avalanche characteristics", Table 5: "On /off-states", Table 6: "Dynamic" and Table 7: "Switching times". Updated Section 2.2: "Electrical characteristics (curves)".
19-Mar-2020	3	Updated <i>Table 6. Switching times</i> . Minor text changes.
14-Oct-2024	4	Updated Section 4.1: TO-247 long leads package information. Minor text changes.

DS11409 - Rev 4 page 10/12

Contents

1	Elec	ctrical ratings	2
2	Elec	ctrical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	7
4	Pac	kage information	8
	4.1	TO-247 long leads package information	8
Rev	/ision	history	.10

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

DS11409 - Rev 4 page 12/12