Stat 134: Section 23

Adam Lucas

April 29th, 2019

Conceptual Review

- a. What is the computational formula for covariance?
- b. If X and Y are independent, what is Cov(X,Y)?
- c. Use bilinearity of covariance to expand Cov(aX + Y, Y + Z), where a is a constant.

Problem 1

Let X have uniform distribution on $\{-1,0,1\}$ and let $Y = X^2$. Are X and Y uncorrelated? Are X and Y independent? Explain carefully. *Ex 6.4.5 in Pitman's Probability*

Problem 2

Let A and B be two possible results of a trial, not necessarily mutually exclusive. Let N_A and N_B be the number of times A and Brespectively occur in n i.i.d. copies of this trial. Show that if N_A and N_B are uncorrelated, then events A and B are independent. Ex 6.4.13 in Pitman's Probability

What is this problem asking us to show? How does this connect to $Cov(N_A, N_B)$?

Problem 3

Let *S* and *T* be random variables with variances σ^2 , τ^2 respectively. Suppose $Corr(S, T) = \rho$. Find Var(3S + 2T). (Hint: begin by finding Cov(S, T) based on the provided information.)