

DUAL LOW-VOLTAGE POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 1.8V
- LOWCROSSOVER DISTORTION
- LOW QUIESCENT CURRENT
- BRIDGE OR STEREO CONFIGURATION

DESCRIPTION

The TDA2822D is a monolithic integrated circuit in 8 lead (SO-8) package. It is intended for use as dual audio power amplifier in portable cassette players, radios and CD players

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	15	V
lo	Peak Output	1	Α
P _{tot}	Total Power Dissipation T _{amb} = 50°C	0.5	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

APPLICATION CIRCUIT

May 1991 1/6

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description		Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max	200	°C/W

Figure 1: Stereo Application and Test Circuit

Figure 2: Bridge Application and Test Circuit

ELECTRICAL CHARACTERISTICS ($V_S = 6V$; $T_{amb} = 25$ °C, unless otherwise specified. STEREO (Test circuit of fig. 1).

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
Vs	Supply Voltage			1.8		15	V
l _d	Total Quiescent Drain Current					15	mA
Vo	Quiescent Output Voltage				2.7		٧
		V _S = 3V			1.2		V
l _b	Input Bias Current				100		nA
Po	Output Power (each channel) (f = 1KHz, d = 10%)	R _L = 32Ω	$V_S = 9V$ $V_S = 6V$ $V_S = 4.5V$ $V_S = 3V$ $V_S = 2V$		300 120 60 20 5		mW
		$R_L = 16\Omega$	V _S = 6V	170	220		mW
		$R_L = 8\Omega$	V _S = 6V	300	380		mW
		$R_L = 4\Omega$	$V_S = 4.5V$ $V_S = 3V$		320 110		mW mW
d	Distortion	$R_L = 32\Omega$	P _O = 40mW		0.2		%
		$R_L = 16\Omega$	P _O = 75mW		0.2		%
		$R_L = 8\Omega$	P _O = 150mW		0.2		%
G_V	Closed Loop Voltage Gain	f = 1KHz		36	39	41	dB
ΔG_V	Channel Balance					±1	dB
Ri	Input Resistance	f = 1KHz		100			ΚΩ
e _N	Total Input Noise	$R_s = 10k\Omega$ B = Curve A			2		μV
		$R_s = 10k\Omega$	B = 22Hz to 22KHz		2.5		μV
SVR	Supply Voltage Rejection	f = 100Hz	$C1 = C2 = 100 \mu F$	24	30		dB
Cs	Channel Separation	f = 1KHz			50		dB

BRIDGE (Test circuit of fig.2)

Vs	Supply Voltage			1.8		15	V
ld	Total Quiescent Drain Current	R _L = ∞				15	mA
Vos	Output Offset Voltage (between the outputs)	$R_L = 8\Omega$				±80	mV
I _b	Input Bias Current				100		nA
Po	Output Power (f = 1KHz, d = 10%)	R _L = 32Ω	$V_S = 9V$ $V_S = 6V$ $V_S = 4.5V$ $V_S = 3V$ $V_S = 2V$	320 50	1000 400 200 65 8		mW
		$R_L = 16\Omega$	V _S = 6V V _S = 3V		800 120		mW mW
		$R_L = 8\Omega$	$V_S = 4.5V$ $V_S = 3V$		700 220		mW mW
		$R_L = 4\Omega$	V _S = 3V V _S = 2V		350 80		mW mW
d	Distortion	$R_L = 8\Omega$ $P_O = 0.5W$ $f = 1KHz$			0.2		%
G∨	Closed Loop Voltage Gain	f = 1KHz			39		dB
Ri	Input Resistance	f = 1KHz		100			ΚΩ
e _N	Total Input Noise	$R_s = 10k\Omega$ B = Curve A			2.5		μV
		$R_s = 10k\Omega$ B = 22Hz to 22KHz			3		μV
SVR	Supply Voltage Rejection	f = 100Hz			40		dB
В	Power Bandwidth (-3dB)	$R_L = 8\Omega$ $P_O = 1W$			120		KHz