

Fig. 4 – Bos & Wallinga (2012)

u

Fig. 4 – Bos & Wallinga (2012)

Fig. 4 – Bos & Wallinga (2012)

Histogram

Histogram

No L_x curves detected

No T_x curves detected

Density: g-values (%/decade)

Growth curve

 $D_e = 977.38 \pm 105.65$ | fit: EXP

Χ

LxTxData\$Dose

RLum.Data.Image

OSL (UVVIS)

RLum.Data.Spectrum

IR-RF $D_e = 623.25 [600.63; 635.8]$ RF_nat + RF_reg 2.0e+03 IR-RF [cts/1.3 s] 1.8e + 031.6e + 031.4e+03Ш 100 200 300 400 500 600 700 0

Time [s]

IR-RF $D_e = 610.17 [567.19; 653.15]$ RF_nat + RF_reg 2.0e+03 IR-RF [cts/1.3 s] 1.6e + 031.4e+03Ш 610.17 600 0 100 200 300 400 500 700 Time [s]

Growth curve

 $D_e = 1668.25 \pm 49.22$ | fit: EXP

Growth curve

 $D_e = 406.38 \pm 48.54$ | fit: EXP

TL pseudoIRSL1 pseudoIRSL2

T [°C]

help("analyse_pIRIRSequence")

T [°C]

D_e from MC simulation

Test dose response

 $D_e = 1668.25 \pm 47.59$ | fit: EXP

$\ensuremath{D_{e}}$ from MC simulation

Summarised Dose Response Curves

Sensitivity change

Rejection criteria

USER combined

IRSL combined

OSL combined

OSL

OSL

OSL

Monte Carlo Simulation

$$n = |\hat{\mu} = 43|\hat{\sigma} = 20|\frac{\hat{\sigma}}{\sqrt{n}} = 2|v = 0.73$$

D_e distribution

Standardised estimate

Profile log likelihood for σ_{OD}

Fast Ratio

Fuchs & Lang (2001)

No L_x curves detected

No $T_{\boldsymbol{x}}$ curves detected

Density: g-values (%/decade)

Measured dose response curve

 $D_e = 130.97 \pm 14.16$ | fit: EXP

Simulated dose response curve

 $D_e = 315.72 \pm 46.64$ | fit: EXP

Dose response curves

Dose (Gy)

 $\dot{D} = 7 \pm 0 \frac{Gy}{ka}$

 $\dot{D}_{Reader} = 0.134 \pm 0.007 \frac{Gy}{s}$

 $log_{10} (\rho') = -5.41 \pm -0.89$

 $\left(\frac{n}{N}\right) = 0.15 \pm 0.11$

 $D_{E,sim} = 315.72 \pm 46.64 \text{ Gy}$

 $= 0.36 \pm 0.06$

 $D_{0,sim} = 622.48 \pm 32.22 \text{ Gy}$

 $Age_{sim} = 45.1 \pm 7.03 \text{ ka}$

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

3-parameter Minimum Age Model

Standardised estimate

Source Dose Rate Prediction

help("calc_SourceDoseRate")

D_e distribution

Thermal Lifetime Contour Plot

Thermal Lifetime Density Plot

gSGC and resulting De

Background

D_e distribution

Standardised estimate

Profile log likelihood for σ_{OD}

TL (UVVIS)

help("merge_RLum.Data.Curve")

TL (UVVIS)

TL (UVVIS)

Profile log likelihood for σ_{OD}

Profile log likelihood for σ_{OD}

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

De distribution

Standardised estimate

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

Dose recovery test

Example data

| n = 5 | weighted mean = 1.01 | | n = 5 | weighted mean = 1 |

Example data

 $D_e = 1737.88 \pm 57.45$ | fit: EXP

 $D_e = 1737.88 \pm 54.9$ | fit: EXP

 $D_e = 1737.88 \pm 64.53$ | fit: EXP

D_e from MC simulation

n = 100 , valid fits = 100

 $D_e = 109.74 \pm 2$ | fit: EXP

Histogram

Histogram of De-values

Example data set

Dose distribution

NR(t) Plot

NR(t) Plot

help("plot_NRt")

TnTx(t) Plot

TL combined

TL combined

unkown curve type

RLum.Data.Image

RLum.Data.Spectrum

help("plot_RLum.Data.Spectrum")

RLum.Data.Spectrum

RLum.Data.Spectrum

unkown curve type

0.0

0.1

0.2

p0

0.3

0.4

Monte Carlo Simulation

$$n = |\hat{\mu} = 45|\hat{\sigma} = 21|\frac{\hat{\sigma}}{\sqrt{n}} = 2|v = 0.84|$$

Precision

Data precision

D_e distribution

Density

OSL

OSL

OSL

D_{e} distribution n = 62 | mean = 66 ("Entering 120 | 100 | 1 Standardised estimate 2 60 $D_{\rm e}$ [Gy] 40

20

D_e distribution

Standardised estimate

