Question Number	Scheme	Marks
1.	$0.5\mathbf{v} - 0.5 \ (-20\mathbf{i}) = 15\mathbf{i} + 10\mathbf{j}$	M1 A1
	$\Rightarrow \mathbf{v} = 10\mathbf{i} + 20\mathbf{j}$	A1
	$\therefore \text{ Speed} = \sqrt{(10^2 + 20^2)} \approx 22.4 \text{ m s}^{-1}$	M1 A1 ft (5)
		(5 marks)
2.	$F \times 0.02$, = $\frac{1}{2} \times 0.006 (400^2 - 250^2)$	M1 A1, M1 A1
	F≈14600 N	A1 ft (5)
		(5 marks)
3. (a)	$\mathbf{u} = (3t^2 - 3)\mathbf{i} + 8t\mathbf{j}$	M1 A1 (2)
(b)	$//^{e} \mathbf{i} + \mathbf{j} \Rightarrow 3t^{2} - 3 = 8t$	M1
	$3t^2 - 8t - 3 = 0$	A1 ft
	(3t+1)(t-3) = 0	M1 A1
	$t = -\frac{1}{3}, 3$ $t = 3$	A1 ft (5)
		(7 marks)
4.	$R(\uparrow) R = mg + 3mg = 4mg$	M1 A1
	$R(\rightarrow) S = F$	B1
	$M(A) mg.a \sin \alpha + 3 mg. 2a \sin a =$ $S.2a \cos \alpha$	M1 A1
	$\rightarrow S = \frac{7}{2} mg \tan \alpha$	A1 ft
	$\therefore F = S = \frac{7}{2} mg \tan \alpha, R = 4mg$	
	$F \le \frac{1}{4}R \Rightarrow \frac{7}{2}mg \tan \alpha \le mg \Rightarrow \tan \alpha \le \frac{2}{7}$	M1 M1 A1 (9)
		(9 marks)

Question Number	Scheme		Marks	
5. (a)	$F = 2000 + 4800g.\frac{1}{20}$, = 4352 N		M1 A1, A1	
	$P = 12 \times 4652 \text{ W} \approx 52.2 \text{ kW}$	M1 A1 ft	(5)	
	2000 \(\alpha\) \(\alpha\) \(\dag{4800g}\)			
(b)	4800a = 4352 - 2000	M1 A1 ft		
	$a = 0.49 \text{ m s}^{-2}$	A1	(3)	
(c)	Max speed $\frac{52224}{V} = 2000$	M1 A1		
	$V \approx 26.1 \text{ ms}^{-1}$	A1	(3)	
		(11 m	arks)	
6. (a)	Initial vertical speed = " $u \sin \alpha$ " = $25 \frac{5}{13} \text{ ms}^{-1}$	B1		
	$"v^2 = u^2 + 2as" 100 = 2gh$	M1		
	$h = \frac{100}{2g} \approx 5.1 \mathrm{m}$	A1		
	∴ Ht $+ 5.1 + 0.8 = 5.9 \text{ m}$	A1 ft	(4)	
(b)	\leftrightarrow Horizontal speed = " $u \cos \alpha$ " = 24 ms ⁻¹	B1		
	Time to window $36 = 24t \Rightarrow t = 1.5s$	M1 A1		
	$h = 0.8 + 10 \times 1.5 - \frac{1}{2} \times 9.8 \times 1.5^2$	M1 A1 A	1 ft	
	≈ 4.8 m	A1	(7)	
(c)	One of, e.g., air resistance; spin of ball; variation in g; wind.	B1	(1)	
			(12 marks)	

	stion nber		Sch	eme		Mark	S
7.	(a)	Ht of $\Delta =$	$\sqrt{(15^2-9^2)}$			M1	
		=	12 cm			A1	
		Area	324	108	432	M1 A1	
		Distance of CM from AE	9	$18 + \frac{1}{3}.12 = 22$	$\frac{-}{x}$	B1 B1 ft	
			9.324 + 22.	$108 = 432 \overset{-}{x}$		M1 A1	
				$\bar{x} = 12.25 \text{ cm}$		A1	(9)
	(b)	Distance of G from B	BD = 9 cm			B1	
		tan	$\theta = \frac{18 - 12.25}{9}$			M1 A1	
			$\theta = 32.6^{\circ}$			A1	(4)
						(13 ma	arks)

Question Number	Scheme	Mark	Marks	
8.	$\frac{3u}{}$ $\frac{2u}{}$			
	${v}$			
(a)	3mu - 2mu = 2mw - mv	M1 A1		
	4eu = w + v	M1 A1		
	Solve $w = \frac{1}{3}(1+4e)u$	M1 A1	(6)	
(b)	$v = \frac{1}{3}(8e - 1)u$	M1 A1		
	$v > 0 \Rightarrow e > \frac{1}{8}$	A1	(3)	
(c)	rebound speed of $B = \frac{1}{6}(1+4e)u$	B1		
	2^{nd} collision $\Rightarrow \frac{1}{6}(1+4e)u > \frac{1}{3}(8e-1)u$	M1		
	1 + 4e > 16e - 2			
	3 > 12 <i>e</i>			
	$e < \frac{1}{4}$	M1 A1	(4)	
		(13 m	arks)	