Frictional Forces

- Depends on the surfaces in contact
- Depends on /Proportional to the Normal Reaction, N
 - Independent of the area of contact
 - Object at rest: Static friction
 - Object in motion: Kinetic friction

• Static Friction, f_s

A horizontal force F is applied to a body placed on a ho. Surface. When F is small, it does not move. Even when F is increased, the body may still not move, showing that the frictional force has also increased. But at a certain value of F, the body just stats sliding. This shows that the Frictional force cannot increased beyond a certain value. This is called the max force of Static Friction Fs or Limiting friction

$f_s \leq \mu_s N$

- Just enough force to keep object at rest.
- μ_s is coefficient of static friction
- · N is the normal force

Kinetic Friction, f_k

$$f_k = \mu_k N$$

- μ_k is coefficient of kinetic friction
- Friction force opposes direction of motion
- N is the normal force

Coefficients of Friction

$$f \le \mu_s N$$

$$f = \mu_k N$$

$$\mu_s > \mu_k$$

	μ_s	μ_k
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Rubber on concrete	1.0	0.8
Wood on wood	0.25 - 0.5	0.2
Glass on glass	0.94	0.4
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow	_	0.04
Metal on metal (lubricated)	0.15	0.06
Ice on ice	0.1	0.03
Teflon on Teflon	0.04	0.04
Synovial joints in humans	0.01	0.003

Example 6

The man pushes/pulls with a force of 200 N. The child and sled combo has a mass of 30 kg and the coefficient of kinetic friction is 0.15. For each case:

What is the frictional force opposing his efforts?

What is the acceleration of the child? f=59 N, $a=3.80 \text{ m/s}^2$ / f=29.1 N, $a=4.8 \text{ m/s}^2$

Example 7

Given $m_1 = 10 \text{ kg}$ and $m_2 = 5 \text{ kg}$:

- a) What value of μ_s would stop the block from sliding?
- b) If the box is sliding and μ_k = 0.2, what is the acceleration?
- c) What is the tension of the rope?
 - a) $\mu_s = 0.5$ b) a=1.96 m/s² c)
 - c) 39.25 N

Example 8

What is the minimum μ_s required to prevent a sled from slipping down a hill of slope 30 degrees?

