Instruction Type	Instruction Count	Cycles per Instruction	cycles
Integer arithmetic	45,000	1	45000
Data transfer	32,000	2	64000
Floating point	15,000	2	30000
Control transfer	8000	2	16000

- Total no: of cycles required to execute complete program
 - **→** 45000+64000+30000+16000
 - → 155000 cycles

C=155000 cycles

• Effective CPI= C/Ic

→ 155000/100000

CPI = 1.55

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

- MIPS rate= f/CPI*10⁶ = 40/ 1.55*10⁶ = 40*10⁶/1.55*10⁶ = 25.8
- Given f=40 MHz $\rightarrow \tau = 1/40$

 $T = Ic * CPI * \tau$

= 100000*1.55*1/40

= 100000*1.55*0.025

= 3875

= 3.875 ms

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

5

Q2:

3 enhancement with the following speed up are proposed for a new architecture

- Speedup $_1 = 30$
- Speedup $_2$ = 20
- Speedup $_3 = 15$

If enhancement 1 and 2 are each usable for 25% of the time, what fraction of the time must enhancement 3 be used to achieve an overall speed up of 10?

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

ŝ

Q2:

Consider the design of a three level memory hierarchy with the following specifications for memory characteristics:

Memory level	Access time	Capacity	Cost/Kbyte
Cache	t1=25 ns	s1=512 Kbytes	c1=\$1.25
Main Memory	t2=903 ns	s2=32 Mbytes	c2=\$0.2
Disk array	t3=4 ms	s3 =39.8 Gbytes	c3=\$0.0002

Hit ratio of cache memory is h1=0.98 and a hit ratio of main memory is h2=0.9.

- (i) Calculate the effective access time.
- (ii) Calculate the total memory cost.

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

11

Effective access time

```
T_{eff}=h1t1+(1-h1)h2t2+(1-h1)(1-h2)h3t3
```

=0.98*25x10⁻⁹+.02*.9*903x10⁻⁹+.02*.1*1*4x10⁻³

 $=24.5 \times 10^{-9} + 16.254 \times 10^{-9} + .008 \times 10^{-3}$

 $=40.754 \times 10^{-9} + .008 \times 10^{-3}$

=40.754x10⁻⁹ +8000x10⁻⁹

 $= 8040.754 \times 10^{-9}$

= $8.04 \mu sec.$

EDULINE

12

Prepared By Mr.EBIN PM, AP, IESCE

Q3:

Determine the frequency of the pipeline if the stage delays are $\tau 1 = 3$ ns, $\tau 2 = \tau 3 = 5$ ns and $\tau 4 = 8$ ns and the latch delay is 1 ns.

Prepared By Mr.EBIN PM, AP, IESCE

$$\tau_{max} = 8 \text{ns}$$
 $d = 1 \text{ns}$
 $\tau = \tau_{max} + d = 8 \cdot 10^{-9} + 1 \cdot 10^{-9} = 9 \cdot 10^{-9}$

$$f = \frac{1}{\tau} = \frac{1}{9 \cdot 10^{-9}} = 111.11 \text{ MHz}$$

EDULINE

17