

Prof. Dr. Markus Banagl Mathematisches Institut Im Neuenheimer Feld 205 69120 Heidelberg Telefon (06221) 54-14211 E-Mail banagl@mathi.uni-heidelberg.de Heidelberg, den 19. Januar 2022

ALGEBRAISCHE TOPOLOGIE I ÜBUNGSAUFGABEN 11

DEADLINE: Do. 27. Jan. 2022, 15:00.

- 1. Es sei Σ_g eine geschlossene, orientierbare Fläche vom Geschlecht $g \geq 2$ (eine Sphäre mit g Henkeln). Berechnen Sie die Homologie von Σ_g . Hinweis: Dies wurde in der Vorlesung für g=0 und g=1 schon gemacht. Verwenden Sie zelluläre Homologie.
- 2. Sei X ein CW-Komplex mit Skeletten X^n , $n \geq 0$. Zeigen Sie mit Hilfe der Eilenberg-Steenrod Axiome, dass die singuläre Homologiegruppe $H_n(X^n,X^{n-1})$ isomorph zur n-ten zellulären Kettengruppe $C_n^{\rm zell}(X)$ ist.
- 3. Zeigen Sie, dass unter der Identifizierung $C_n^{\mathrm{zell}}(X) \cong H_n(X^n, X^{n-1})$ der vorhergehenden Aufgabe der in der Vorlesung definierte Randoperator $\partial_n: C_n^{\mathrm{zell}}(X) \to C_{n-1}^{\mathrm{zell}}(X)$ übereinstimmt mit der Komposition

$$H_n(X^n, X^{n-1}) \xrightarrow{\delta} H_{n-1}(X^{n-1}) \xrightarrow{i_*} H_{n-1}(X^{n-1}, X^{n-2}),$$

wobei δ der Verbindungshomomorphismus in der langen exakten Homologiesequenz des Paares (X^n,X^{n-1}) ist und i_* die von der Inklusion $i:(X^{n-1},\varnothing)\hookrightarrow (X^{n-1},X^{n-2})$ induzierte Abbildung.