- R-1.1 Graph the functions 12n, $6n \log n$, n^2 , n^3 , and 2^n using logarithmic scale for the x-and y-axes; that is, if the function value f(n) is y, plot this as a point with x-coordinate at $\log n$ and y-coordinate at $\log y$.
- R-1.2 Algorithm A uses $10n \log n$ operations, while algorithm B uses n^2 operations. Determine the value n_0 such that A is better than B for $n \ge n_0$.
- R-1.6 Order the following list of functions by the big-O notation.

	\mathcal{C}	5	2 /2
$n \log n$	log log <i>n</i>	1/n	$4n^{3/2}$
5 <i>n</i>	$2n\log^2 n$	2^{n}	4 ⁿ
n^3	$n^2 \log n$	$4^{\log n}$	\sqrt{n}

R-1.10 Give a big-O characterization, in terms of *n*, of the running time of the Loop1 method below:

Algorithm Loop1(n)

$$s \leftarrow 0$$

for $i \leftarrow 1$ to n do
 $s \leftarrow s + i$

R-1.14 Perform a similar analysis for method Loop5 below:

Algorithm Loop5(n)

$$s \leftarrow 0$$

for $i \leftarrow 1$ to n^2 do
for $j \leftarrow 1$ to i do
 $s \leftarrow s + i$

Prove:

$$\log_b x^a = a \log_b x$$