Análise Numérica

Aula 3 — Método da Newton

Prof. Adriano Barbosa

FACET — UFGD

28 de novembro de 2016

Método de Newton

Equação da reta:

$$y-y_0=m(x-x_0)$$

Ponto: $(x_0, y_0) = (p_0, f(p_0))$

Inclinação: $m = f'(p_0)$ Novo ponto: $(p_1, 0)$

$$0 - f(p_0) = f'(p_0)(p_1 - p_0)$$

$$\Rightarrow p_1 = p_0 - \frac{f(p_0)}{f'(p_0)}$$

Método de Newton

De modo geral:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

para $n \geqslant 1$ e $f'(p_{n-1}) \neq 0$

Implementação

```
1\ \%\ \text{entrada}
2 p0 = -1.1;
                         % aproximação inicial
    tol = 1e-5;
                         % tolerancia
4 N = 50;
                       % maximo de iteracoes
  f = Q(x) \sin(x); % funcao

df = Q(x) \cos(x); % derivada de f
6
8 % inicialização
9
   saida = 1;
10
11 % calculando
12
   i = 1;
   while (i \ll N)
13
        p = p0 - (f(p0) / df(p0));
14
        if abs(p - p0) < tol
16
             disp(p);
             saida = 0;
17
18
             break;
19
        end
20
        i = i + 1;
        p0 = p;
21
22
23
24 if (saida == 1)
25
        disp('Numero maximo de iteracoes alcancado.');
26
```

Critérios de parada

Outros critérios de parada podem ser aplicados:

$$|p_n - p_{n-1}| < \varepsilon$$

$$\frac{|p_n - p_{n-1}|}{|p_n|} < \varepsilon, \ p_n \neq 0$$

$$|f(p_n)| < \varepsilon$$

Exemplo

Encontrar um zero de $f(x) = \cos x - x$.

$$f(0) = 1$$
 $f\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}$

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} = p_{n-1} - \frac{\cos(p_{n-1}) - p_{n-1}}{-\sin(p_{n-1}) - 1}$$

n	p_n
0	0.7853981635
1	0.7395361337
2	0.7390851781
3	0.7390851332
4	0.7390851332

Convergência

Teorema:

Seja $f \in C^2[a,b]$. Se $p \in (a,b)$ com f(p)=0 e $f'(p) \neq 0$, então existe $\delta > 0$ tal que o método de Newton gera uma sequência $\{p_n\}_n$ que converge para p qualquer que seja a aproximação inicial $p_0 \in [p-\delta,p+\delta]$.

Convergência

O Teorema garante que o método de Newton converge para aproximações iniciais suficientemente próximas do zero da função.

Na prática o método convergirá rapidamente ou divergirá claramente.

Extensões

Extensões do método de Newton:

- Método da Secante
- Método da Falsa Posição

Método da Secante

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

se p_{n-2} é próximo de p_{n-1} , então

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

logo

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \approx p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

Implementação

```
1 % entrada
   p0 = -1.1;
                       % aproximação inicial
   p1 = 1.5;
                       % segunda aproximação inicial
 4
   tol = 1e-5;
                       % tolerancia
  N = 50;
5
                       % maximo de iteracoes
   f = Q(x) \sin(x);
                       % funcao
6
7
   % inicializacao
8
9
   saida = 1;
10
   % calculando
11
   i = 2;
12
   q0 = f(p0);
13
   q1 = f(p1);
while (i \le N)
14
15
        p = p1 - (q1 * (p1 - p0) / (q1 - q0));
16
        if abs(p-p1) < tol
18
            disp(p);
            saida = 0;
19
20
            break;
21
        end
22
        i = i + 1;
23
        p0\ =\ p1\,;
        q0 = q1;
24
25
        p1 = p;
        q1 = f(p);
26
27
28
29
    if (saida == 1)
        disp('Numero maximo de iteracoes alcancado.');
30
```

Exemplo

Encontrar um zero de $f(x) = \cos x - x$.

$$p_n = p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos(p_{n-1}) - p_{n-1})}{(\cos(p_{n-1}) - p_{n-1}) - (\cos(p_{n-2}) - p_{n-2})}$$

n	p_n		
0	0.5		
1	0.7853981635		
2	0.7363841388		
3	0.7390581392		
4	0.7390851493		
5	0.7390851332		

Secant		Newton	
n	p_n	n	p_n
0	0.5	0	0.7853981635
1	0.7853981635	1	0.7395361337
2	0.7363841388	2	0.7390851781
3	0.7390581392	3	0.7390851332
4	0.7390851493	4	0.7390851332
5	0.7390851332		

Método da Falsa Posição

Similar ao método da Secante, garantindo que o zero da função está sempre entre iterações sucessivas:

- Escolha p_0 e p_1 tais que $f(p_0)f(p_1) < 0$
- Calcule p_2 como a interseção entre o segmento que liga $(p_0, f(p_0))$ e $(p_1, f(p_1))$ e o eixo x
- Se $f(p_2)f(p_1) < 0$, calcule p_3 como a interseção entre o segmento que liga $(p_1, f(p_1))$ e $(p_2, f(p_2))$ e o eixo x
- Caso contrário, calcule p_3 como a interseção entre o segmento que liga $(p_0, f(p_0))$ e $(p_2, f(p_2))$ e o eixo x

•

Implementação

```
% entrada
    p0 = -1.1;
                         % aproximação inicial
3
                         % segunda aproximacao inicial
    p1 = 1.5;
4
    tol = 1e-5;
                        % tolerancia
5
   N = 50;
                        % maximo de iteracoes
    f = Q(x) \sin(x);
                        % funcao
6
8
   % inicializacao
9
    saida = 1;
10
   % calculando
11
12
   i = 2;
   q0 = f(p0);
13
    q1 = f(p1);
while (i <= N)
14
15
        p = p1 - (q1 * (p1 - p0) / (q1 - q0));
16
        if abs(p - p1) < tol
17
18
             disp(p);
19
             saida = 0;
20
             break;
21
        end
22
        i = i + 1;
23
        q = f(p);
        if (q * q1 < 0)
 p0 = p1;
24
25
26
            q0 = q1;
27
        end
28
        p1 \,=\, p\,;
29
        q1 = q;
30
    end
31
   if (saida == 1)
32
        disp('Numero maximo de iteracoes alcancado.');
33
34
```

Exemplo

	False Position	Secant	Newton
n	p_n	p_n	p_n
0	0.5	0.5	0.7853981635
1	0.7853981635	0.7853981635	0.7395361337
2	0.7363841388	0.7363841388	0.7390851781
3	0.7390581392	0.7390581392	0.7390851332
4	0.7390848638	0.7390851493	0.7390851332
5	0.7390851305	0.7390851332	
6	0.7390851332		