Group 15 - LAB 2

Einar Lennelöv | Mustafa Al-Janabi

3.1 Batch mode training using least squares

Analysis of absolute error

RBF units linearly spaced.

0.1: 22 units 0.01 31 units 0.001 42 units

Decay of mean absolute error on square2.

Average over 10 trials.

0.1: 27 units 0.01 60 units 0.001 70 units

Step transformed RBF output on square

Residual error over the number of RBFs, #data-points=64, RBF-variance=0.1

Linearly spaced RBFs:

Step transformed RBF output on square

4 intelligently spaced RBFs: 0 MSE for step transformed output. Useful for classification.

Transformed vs non-transformed RBF output

3.2 Regression with noise

Linspaced vs random RBF placement

MSE plotted against number of RBF nodes

Comparison of different RBF widths

MSE plotted against number of RBF nodes

Variance comparison for square with data noise of 10%

3.3 Competitive learning (CL) to initialise RBF units

Ordinary CL vs Leaky CL

4 RBFs on sin2 data

Ordinary CL

Leaky CL

2d competitive learning

RBF network on 2d data

Highly sensitive to RBF width and number of nodes

4.1 Topological ordering of animal species

Animal Ordering

4.2 Cyclic tour

Travelling Salesperson Problem

4.3 Data clustering: votes of MPs

Votes of MPs

By party, gender, and district

Parties

Genders

Districts