

Final project

Recommender system

- Develop and evaluate a collaborative filter recommender system using the MovieLens dataset(s)
- Explicit feedback collaborative filter
 - o Small version: 9000 movies × 600 users
 - Full version: 58000 movies × 280000 users

Project structure

- You can work in groups of up to 3
 - Groups are self-organizing on Brightspace and GitHub Classroom
 - You need to join a group on Brightspace before accessing the assignment
 - You'll need to manage group membership yourselves on both platforms
- Grading:
 - 80% for basic recommender implementation
 - 20% extension(s) of your choice
- Groups of 1 or 2 must do 1 extension for full credit Groups of 3 must do 2 extensions

80%: basic recommender requirements

- Data partitioning (train, validation, test)
- Baseline popularity model
- Latent factor model
- Ranking evaluation

20%: Extensions

Pick from these, or propose your own idea:

- Benchmark Spark ALS against single-machine implementations
- Accelerated / approximate search
- Cold-start model using tag genome data
- Qualitative error analysis and visualization

Data partitioning

Do this first!

Write it as a script and save the results out to separate files to save time.

- Partition each user's history into training, validation, and test
- Use **validation** data to estimate generalization performance
- Only use test at the very end when you're finished.
 Do not let test performance influence your modeling that's cheating!

Evaluation

- MovieLens has explicit feedback, but we'll evaluate with ranking metrics
 - meanAP @ 100 (top 100 predictions)
 - Include others as needed: NDCG@100 would be a good choice
- You can also use RMSE both for optimization and as an evaluation criterion, but it shouldn't be your only metric

Hyper-parameters to tune

- Bias model:
 - \circ Damping factors β
- Latent factor model:
 - Rank (dimensionality)
 - Regularization penalty
- The range of these parameters is up to you to explore
 - o General tip: start with small values and increase until validation performance degrades
 - Which metric you use for validation is up to you, but document and justify your choice

Deadlines and submission

- 2022-04-29: Checkpoint submission
 - You should have the popularity baseline working on small and large datasets
 - Preliminary results of latent factor model on small dataset
- 2022-05-17: Final submission (no extensions)
 - Submit full report as PDF via brightspace
 - Include link to your group's github repository
 - Full list of requirements is in the project README

General tips

- When consulting spark documentation, make sure to use version 3.0.1
 - Bookmark this to avoid being mislead by googling!
- Start small and start early!
 - Fitting on the large dataset can take quite a while
 - Shake out the bugs on the small set first
 - Develop locally on your own machines to start out
- Explore the data and experiment
 - Don't leap into modeling before getting familiar with the data
 - Read the documentation (README.txt) for each dataset!
 - Actually look at your popularity model's predictions using titles, not identifiers!
- Use other software as necessary
 - Don't rely only on spark it's one tool among many.