

Modelica_Fluid Library

Version 1.0

January 2009

Users Guide and Reference

Modelica Association http://www.Modelica.org

Licensed by the Modelica Association (http://www.Modelica.org/) under the Modelica License 2 Copyright © 2002-2009, ABB, DLR, Dynasim, Modelon, TU Braunschweig, TU Hamburg-Harburg, Politecnico di Milano.

This is a <u>free</u> document and the use is completely at <u>your own risk</u>; it can be redistributed and/or modified under the terms of the Modelica license 2, see the license conditions (including the disclaimer of warranty) at http://www.modelica.org/licenses/ModelicaLicense2.

Modelica® is a registered trademark of the Modelica Association

Contents

Modelica_Fluid	<u>9</u>
Modelica Fluid.UsersGuide	10
UsersGuide.Overview	
UsersGuide.GettingStarted	
UsersGuide.ComponentDefinition	
UsersGuide.ComponentDefinition.FluidConnectors.	
UsersGuide.ComponentDefinition.BalanceEquations	
UsersGuide.ComponentDefinition.UpstreamDiscretization	
UsersGuide.ComponentDefinition.RegularizingCharacteristics	
UsersGuide.ComponentDefinition.WallFriction	
UsersGuide.ComponentDefinition.ValveCharacteristics	
UsersGuide.BuildingSystemModelsUsersGuide.BuildingSystemModels.SystemComponent	<u>23</u>
UsersGuide BuildingSystemModels ModiumDefinition	<u>25</u>
UsersGuide.BuildingSystemModels.MediumDefinition	
UsersGuide.BuildingSystemModels.CustomizingModel	
UsersGuide ReleaseNotes	
UsersGuide.ModelicaLicense2	
UsersGuide.Contact	<u>39</u>
Modelica_Fluid.Examples	40
Examples.PumpingSystem	
Examples.HeatingSystem	
Examples.DrumBoiler	
Examples.DrumBoiler.DrumBoiler.	
Examples.DrumBoiler.BaseClasses	
Examples.DrumBoiler.BaseClasses.EquilibriumDrumBoiler	
Examples Tanks	
Examples.Tanks.ThreeTanks	
Examples.Tanks.TanksWithOverflow	
Examples.Tanks.EmptyTanks	
Examples.ControlledTankSystem	
Examples.ControlledTankSystem.ControlledTanks	
Examples.ControlledTankSystem.Utilities	
Examples.ControlledTankSystem.Utilities.TankController	
Examples.ControlledTankSystem.Utilities.NormalOperation	
Examples.ControlledTankSystem.Utilities.RadioButton	50
Examples.AST BatchPlant	
Examples.AST_BatchPlant.BatchPlant_StandardWater	<u>53</u>
Examples.AST BatchPlant.BaseClasses	
Examples.AST_BatchPlant.BaseClasses.TriggeredTrapezoid	
Examples.AST BatchPlant.BaseClasses.setReal	
Examples.AST_BatchPlant.BaseClasses.TankWith3InletOutletArraysWithEvaporatorCondensor	
Examples.AST BatchPlant.BaseClasses.InnerTank	
Examples.AST BatchPlant.BaseClasses.Controller	
Examples.AST BatchPlant.BaseClasses.ControllerUtilities	
Examples.AST BatchPlant.BaseClasses.ControllerUtilities.Adapter Inference	
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Adapter_Superposition	
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Block_Recipe_TBD	
Examples.AST BatchPlant.BaseClasses.ControllerUtilities.BlockMain	
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Buffer_Recipe_TBD	58
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.BufferMain	58
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Port_Actuators	

Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Port_IdleTanks	
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Port_Sensors	
Examples.AST_BatchPlant.BaseClasses.Init	<u>59</u>
Examples.AST_BatchPlant.BaseClasses.TankWithTopPorts	
Examples.AST_BatchPlant.Test	<u>61</u>
Examples.AST_BatchPlant.Test.OneTank	
Examples.AST_BatchPlant.Test.TwoTanks	<u>61</u>
Examples.AST_BatchPlant.Test.TankWithEmptyingPipe1	
Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2	
Examples.AST_BatchPlant.Test.TanksWithEmptyingPipe1	
Examples.AST_BatchPlant.Test.TanksWithEmptyingPipe2	
Examples.IncompressibleFluidNetwork	
Examples.BranchingDynamicPipes	
Examples.HeatExchanger	
Examples.HeatExchanger.HeatExchangerSimulation	
Examples.HeatExchanger.BaseClasses	
Examples.HeatExchanger.BaseClasses.BasicHX	
Examples.HeatExchanger.BaseClasses.WallConstProps	
Examples.TraceSubstancesExamples.TraceSubstances.RoomCO2	
Examples.TraceSubstances.RoomCO2 Examples.TraceSubstances.RoomCO2WithControls	
Examples.InverseParameterization	
Examples.Explanatory	
Examples.Explanatory.MomentumBalanceFittings	
Modelica_Fluid.System	
Modelica Fluid.Vessels	7.0
Vessels.ClosedVolume Vessels.OpenTank	
Vessels.BaseClasses	
Vessels.BaseClasses.PartialLumpedVessel	
Vessels.BaseClasses.HeatTransfer	
Vessels.BaseClasses.HeatTransfer.PartialVesselHeatTransfer	
Vessels.BaseClasses.HeatTransfer.IdealHeatTransfer	
Vessels.BaseClasses.HeatTransfer.ConstantHeatTransfer	
Vessels.BaseClasses.VesselPortsData	
Vessels.BaseClasses.VesselFluidPorts a	
Vessels.BaseClasses.VesselFluidPorts_b	
-	
Modelica_Fluid.Pipes	
Pipes.StaticPipe	
Pipes.DynamicPipe	
Pipes Base Classes Portial Straight Pipe	
Pipes Base Classes Partial Straight Pipe	
Pipes.BaseClasses.PartialTwoPortFlowPipes.BaseClasses.FlowModels	
Pipes.BaseClasses.FlowModels.PartialStaggeredFlowModel	
Pipes.BaseClasses.FlowModels.NominalLaminarFlow	
Pipes.BaseClasses.FlowModels.PartialGenericPipeFlow	
Pipes.BaseClasses.FlowModels.NominalTurbulentPipeFlow	
Pipes.BaseClasses.FlowModels.TurbulentPipeFlow	
Pipes.BaseClasses.FlowModels.DetailedPipeFlow	
Pipes.BaseClasses.HeatTransfer	
Pipes.BaseClasses.HeatTransfer.PartialFlowHeatTransfer	98
Pipes.BaseClasses.HeatTransfer.IdealFlowHeatTransfer	
Pipes.BaseClasses.HeatTransfer.ConstantFlowHeatTransfer	
Pipes.BaseClasses.HeatTransfer.PartialPipeFlowHeatTransfer	
Pipes.BaseClasses.HeatTransfer.LocalPipeFlowHeatTransfer	

Pipes.BaseClasses.CharacteristicNumbers	
Pipes.BaseClasses.CharacteristicNumbers.ReynoldsNumber	
Pipes.BaseClasses.CharacteristicNumbers.ReynoldsNumber_m_flowflow	<u>103</u>
Pipes.BaseClasses.CharacteristicNumbers.NusseltNumber	<u>103</u>
Pipes.BaseClasses.WallFriction	104
Pipes.BaseClasses.WallFriction.PartialWallFriction	105
Pipes.BaseClasses.WallFriction.PartialWallFriction.massFlowRate_dp	
Pipes.BaseClasses.WallFriction.PartialWallFriction.massFlowRate_dp_staticHead	
Pipes.BaseClasses.WallFriction.PartialWallFriction.pressureLoss_m_flowflow	
Pipes.BaseClasses.WallFriction.PartialWallFriction.pressureLoss_m_flow_staticHead	
Pipes.BaseClasses.WallFriction.NoFriction.	108
Pipes.BaseClasses.WallFriction.NoFriction.massFlowRate dp	
Pipes.BaseClasses.WallFriction.NoFriction.pressureLoss_m_flow	
Pipes.BaseClasses.WallFriction.NoFriction.massFlowRate_dp_staticHead	
Pipes.BaseClasses.WallFriction.NoFriction.pressureLoss_m_flow_staticHead	
Pipes.BaseClasses.WallFriction.Laminar	
Pipes.BaseClasses.WallFriction.Laminar.massFlowRate_dp	
Pipes.BaseClasses.WallFriction.Laminar.pressureLoss_m_flow	
Pipes.BaseClasses.WallFriction.Laminar.massFlowRate_dp_staticHead	
Pipes.BaseClasses.WallFriction.Laminar.pressureLoss_m_flow_staticHead	
Pipes.BaseClasses.WallFriction.QuadraticTurbulent	
Pipes.BaseClasses.WallFriction.QuadraticTurbulent.massFlowRate_dp	
Pipes.BaseClasses.WallFriction.QuadraticTurbulent.pressureLoss_m_flow	
Pipes.BaseClasses.WallFriction.QuadraticTurbulent.massFlowRate_dp_staticHead	
Pipes.BaseClasses.WallFriction.QuadraticTurbulent.pressureLoss_m_flow_staticHead	
Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent	
Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent.massFlowRate_dp	
Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent.pressureLoss_m_flow	
Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent.massFlowRate_dp_staticHead	
Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent.pressureLoss_m_flow_staticHead	
Pipes.BaseClasses.WallFriction.Detailed	
Pipes.BaseClasses.WallFriction.Detailed.massFlowRate_dp	
Pipes.BaseClasses.WallFriction.Detailed.pressureLoss_m_flowflow	
Pipes.BaseClasses.WallFriction.Detailed.massFlowRate_dp_staticHead	
Pipes.BaseClasses.WallFriction.Detailed.pressureLoss_m_flow_staticHead	
Pipes.BaseClasses.WallFriction.TestWallFrictionAndGravity	<u>126</u>
Modelica Fluid.Machines	128
Machines.SweptVolume	
	<u>120</u>
Machines.PumpMachines.ControlledPump	
Machines.PrescribedPump	
Machines.BaseClassesMachines.BaseClasses.PartialPump	
Machines.BaseClasses.PumpCharacteristics	
Machines.BaseClasses.PumpCharacteristics.baseFlow	
Machines.BaseClasses.PumpCharacteristics.basePower	
Machines.BaseClasses.PumpCharacteristics.baseEfficiency	
Machines.BaseClasses.PumpCharacteristics.linearFlow	
Machines.BaseClasses.PumpCharacteristics.quadraticFlow	
Machines.BaseClasses.PumpCharacteristics.polynomialFlow	
Machines.BaseClasses.PumpCharacteristics.constantEfficiency	
Machines.BaseClasses.PumpCharacteristics.linearPower	
Machines.BaseClasses.PumpCharacteristics.quadraticPower	
Machines.BaseClasses.assertPositiveDifference	<u>139</u>
Modelica_Fluid.Valves	139
Valves.ValveIncompressible	
vaivos. vaiveiniounipiessipie	<u>ı+</u> ∪

	<u>141</u>
Valves ValveCompressible	
Valves.ValveLinear	<u>143</u>
Valves.ValveDiscrete	<u>144</u>
Valves.BaseClasses	<u>145</u>
Valves.BaseClasses.PartialValve	<u>145</u>
Valves.BaseClasses.ValveCharacteristics	<u>147</u>
Valves.BaseClasses.ValveCharacteristics.baseFun	<u>147</u>
Valves.BaseClasses.ValveCharacteristics.linear	
Valves.BaseClasses.ValveCharacteristics.one	
Valves.BaseClasses.ValveCharacteristics.quadratic	
Valves.BaseClasses.ValveCharacteristics.equalPercentage	<u>148</u>
Modelica_Fluid.Fittings	140
Fittings.SimpleGenericOrifice	
Fittings.SharpEdgedOrifice	
Fittings.AbruptAdaptor	
Fittings.MultiPort	
Fittings.TeeJunctionIdeal.	
Fittings.TeeJunctionVolume	· · · · · · · · · · · · · · · · · · ·
Fittings.BaseClasses.	
Fittings.BaseClasses.lossConstant_D_zeta	
Fittings.BaseClasses.QuadraticTurbulent	
Fittings.BaseClasses.QuadraticTurbulent.LossFactorData	
Fittings.BaseClasses.QuadraticTurbulent.massFlowRate_dp	
Fittings.BaseClasses.QuadraticTurbulent.massFlowRate_dp_and_Re	
Fittings.BaseClasses.QuadraticTurbulent.pressureLoss m flow	
Fittings.BaseClasses.QuadraticTurbulent.pressureLoss_m_flow_and_Re	
Fittings.BaseClasses.QuadraticTurbulent.BaseModel	
Fittings.BaseClasses.QuadraticTurbulent.TestWallFriction	
Fittings.BaseClasses.QuadraticTurbulent.BaseModelNonconstantCrossSectionArea	
Fittings.BaseClasses.QuadraticTurbulent.pressureLoss_m_flow_totalPressure	
Fittings.BaseClasses.PartialTeeJunction	<u>164</u>
•	
Modelica_Fluid.Sources	<u>164</u>
Modelica_Fluid.Sources Sources.FixedBoundary	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T Sources.MassFlowSource_h	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses Sources.BaseClasses	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses Sources.BaseClasses.PartialSource Modelica_Fluid.Sensors	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses.PartialSource Modelica_Fluid.Sensors Sensors.Pressure	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses. Sources.BaseClasses.PartialSource Modelica_Fluid.Sensors. Sensors.Pressure. Sensors.Density.	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses. Sources.BaseClasses.PartialSource. Modelica_Fluid.Sensors. Sensors.Pressure. Sensors.Density Sensors.DensityTwoPort.	
Modelica_Fluid.Sources Sources.FixedBoundary Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses.PartialSource Modelica_Fluid.Sensors Sensors.Pressure Sensors.Density Sensors.DensityTwoPort Sensors.Temperature	
Modelica_Fluid.Sources. Sources.FixedBoundary Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses Sources.BaseClasses.PartialSource. Modelica_Fluid.Sensors. Sensors.Pressure Sensors.Density Sensors.DensityTwoPort Sensors.Temperature Sensors.TemperatureTwoPort	
Modelica_Fluid.Sources Sources.FixedBoundary	
Modelica_Fluid.Sources. Sources.FixedBoundary Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses. Sources.BaseClasses.PartialSource. Modelica_Fluid.Sensors Sensors.Pressure Sensors.Density Sensors.DensityTwoPort Sensors.Temperature Sensors.TemperatureTwoPort Sensors.SpecificEnthalpy Sensors.SpecificEnthalpyTwoPort	
Modelica_Fluid.Sources Sources.FixedBoundary. Sources.Boundary_pT	
Modelica_Fluid.Sources Sources.FixedBoundary	
Modelica_Fluid.Sources. Sources.FixedBoundary. Sources.Boundary_pT. Sources.Boundary_ph. Sources.MassFlowSource_T. Sources.MassFlowSource_h. Sources.BaseClasses. Sources.BaseClasses.PartialSource. Modelica_Fluid.Sensors. Sensors.Pressure. Sensors.Density. Sensors.DensityTwoPort. Sensors.Temperature. Sensors.TemperatureTwoPort. Sensors.SpecificEnthalpy. Sensors.SpecificEnthalpyTwoPort. Sensors.SpecificEntropy Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.TraceSubstances.	
Modelica_Fluid.Sources. Sources.FixedBoundary. Sources.Boundary_pT. Sources.Boundary_ph. Sources.MassFlowSource_T. Sources.MassFlowSource_h. Sources.BaseClasses. Sources.BaseClasses.PartialSource. Modelica_Fluid.Sensors. Sensors.Pressure. Sensors.Density. Sensors.DensityTwoPort. Sensors.Temperature. Sensors.TemperatureTwoPort. Sensors.SpecificEnthalpy. Sensors.SpecificEnthalpy.TwoPort. Sensors.SpecificEntropy. Sensors.SpecificEntropy. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.SpecificEntropyTwoPort. Sensors.TraceSubstances. Sensors.TraceSubstances. Sensors.TraceSubstances.	
Modelica_Fluid.Sources Sources.FixedBoundary_pT Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses.PartialSource Modelica_Fluid.Sensors Sensors.Pressure Sensors.Density Sensors.DensityTwoPort Sensors.Temperature. Sensors.TemperatureTwoPort. Sensors.SpecificEnthalpy. Sensors.SpecificEnthalpyTwoPort. Sensors.SpecificEntropy. Sensors.SpecificEntropy. Sensors.SpecificEntropyTwoPort. Sensors.TraceSubstances Sensors.TraceSubstances Sensors.TraceSubstancesTwoPort. Sensors.MassFlowRate	
Modelica_Fluid.Sources Sources.FixedBoundary_ Sources.Boundary_pT Sources.Boundary_ph Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses. Sensors.Pressure. Sensors.Pressure. Sensors.Density. Sensors.Temperature. Sensors.SpecificEnthalpy. Sensors.SpecificEnthalpy. Sensors.SpecificEnthalpyTwoPort. Sensors.SpecificEntropy. Sensors.SpecificEntropyTwoPort. Sensors.TraceSubstances. Sensors.TraceSubstances. Sensors.MassFlowRate. Sensors.VolumeFlowRate.	
Modelica_Fluid.Sources Sources.FixedBoundary_pT Sources.Boundary_pT Sources.MassFlowSource_T Sources.MassFlowSource_h Sources.BaseClasses Sources.BaseClasses.PartialSource Modelica_Fluid.Sensors Sensors.Pressure Sensors.Density Sensors.DensityTwoPort Sensors.Temperature. Sensors.TemperatureTwoPort. Sensors.SpecificEnthalpy. Sensors.SpecificEnthalpyTwoPort. Sensors.SpecificEntropy. Sensors.SpecificEntropy. Sensors.SpecificEntropyTwoPort. Sensors.TraceSubstances Sensors.TraceSubstances Sensors.TraceSubstancesTwoPort. Sensors.MassFlowRate	

	Sensors.BaseClasses	178
	Sensors.BaseClasses.PartialAbsoluteSensor	178
	Sensors.BaseClasses.PartialFlowSensor	
V	Modelica_Fluid.Interfaces	
	Interfaces.FluidPort	
	Interfaces.FluidPort_a	
	Interfaces.FluidPort_b	
	Interfaces.FluidPorts_a	<u>181</u>
	Interfaces.FluidPorts_b	
	Interfaces.PartialTwoPort	
	Interfaces.PartialTwoPortTransport	
	Interfaces.HeatPorts_a	<u>183</u>
	Interfaces.HeatPorts_b	<u>183</u>
	Interfaces.PartialHeatTransfer	<u>183</u>
	Interfaces.PartialLumpedVolume	<u>184</u>
	Interfaces.PartialLumpedFlow	<u>184</u>
	Interfaces.PartialDistributedVolume	185
	Interfaces.PartialDistributedFlow	186
IV	Nodelica_Fluid.Types	
	Types.HydraulicConductance	
	Types.HydraulicResistance	
	Types.Dynamics	
	Types.CvTypes	
	Types.PortFlowDirection	
	Types.ModelStructure	<u>189</u>
R/	Nodelica Fluid.Utilities	400
IV		
	Utilities.checkBoundary	
	Utilities.regRoot	
	Utilities.regRoot_der	
	Utilities.regSquare	
	Utilities.regPow	
	Utilities.regRoot2	
	Utilities.regSquare2	
	Utilities.regStep	<u>196</u>
	Utilities.evaluatePoly3_derivativeAtZero	
	Utilities.regFun3	
	Utilities.cubicHermite	
	Utilities.cubicHermite_withDerivative	<u>199</u>
M	Modelica_Fluid.lcons	200
.4	Icons.VariantLibrary	
	Icons.BaseClassLibrary	
	Icons ObsoleteFunction	
	100113.000016161 UH6U0H	

Modelica Fluid

Modelica Fluid, 1.0: One-dimensional thermo-fluid flow models using the Modelica. Media media description (requires package Modelica 3.0 or later, and stream connector support in the Modelica tool)

Information

The Modelica Fluid library is a free Modelica package provided under the Modelica License 2. The library contains components describing 1-dimensional thermo-fluid flow in networks of vessels, pipes, fluid machines, valves and fittings. A unique feature is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica. Media library. This means especially that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used. The goal is to include the Modelica Fluid library in the Modelica standard library as Modelica.Fluid.

In the next figure, several features of the library are demonstrated with a simple heating system with a closed flow cycle. By just changing one configuration parameter in the system object the equations are changed between steady-state and dynamic simulation with fixed or steady-state initial conditions.

With respect to previous versions, the design of the connectors has been changed, using the recently developed concept of streams connectors that results in much more reliable simulations (see an overview and a rationale here). This extension will be included in Modelica 3.1. As of Jan. 2009, the streams concept is supported in Dymola 7.1. Dymola 7.2 (announced for Feb. 2009) is recommended since connections to vectors of connectors are much more convenient due to a new annotation. Other tool vendors will support the streams concept as well.

The following parts are useful, when newly starting with this library:

- UsersGuide.
- <u>UsersGuide.ReleaseNotes</u> summarizes the changes of the library releases.
- **Examples** contains examples that demonstrate the usage of this library.

Licensed by the Modelica Association under the Modelica License 2

Copyright © 2002-2009, ABB, DLR, Dynasim, Modelon, TU Braunschweig, TU Hamburg-Harburg,

Politecnico di Milano.

This Modelica package is <u>free</u> software and the use is completely at <u>your own risk</u>; it can be redistributed and/or modified under the terms of the Modelica license 2, see the license conditions (including the disclaimer of warranty) <u>here</u> or at http://www.Modelica.org/licenses/ModelicaLicense2.

Extends from Modelica. Icons. Library (Icon for library).

Package Content

Name	Description
<u> UsersGuide</u>	Users Guide
<u>Examples</u>	Demonstration of the usage of the library
System System	System properties and default values (ambient, flow direction, initialization)
<u>Vessels</u>	Devices for storing fluid
Pipes Pipes	Devices for conveying fluid
Machines Machines	Devices for converting between energy held in a fluid and mechanical energy
<u> </u>	Components for the regulation and control of fluid flow
Fittings	Adaptors for connections of fluid components and the regulation of fluid flow
Sources Sources	Define fixed or prescribed boundary conditions
Sensors Sensors	Ideal sensor components to extract signals from a fluid connector
<u>Interfaces</u>	Interfaces for steady state and unsteady, mixed-phase, multi-substance, incompressible and compressible flow
<u>Types</u>	Common types for fluid models
<u>Utilities</u>	Utility models to construct fluid components (should not be used directly)
<u>Icons</u>	Library of resuable icons

Modelica_Fluid.UsersGuide

The library Modelica_Fluid is a free Modelica package provided under the Modelica License 2. The library contains components describing 1-dimensional thermo-fluid flow in networks of pipes. A unique feature is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means especially that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used. The goal is to include the Modelica_Fluid library in the Modelica standard library as Modelica.Fluid.

Package Content

Name	Description
<u>1</u> Overview	Overview
i GettingStarted	Getting started
i ComponentDefinition	Component definition
<u>BuildingSystemModels</u>	Building system models

i ReleaseNotes	Release notes
i ModelicaLicense2	Modelica License 2
i Contact	Contact

UsersGuide.Overview

The Modelica Fluid library provides basic interfaces and components to model 1-dimensional thermo-fluid flow in networks of pipes. It is not the intention that this library covers all application cases because the fluid flow area is too large and because for special applications it is possible to implement libraries with simpler component interfaces. Instead, the goal is that

the Modelica Fluid library provides a reasonable set of components and that it demonstrates how to implement components of a fluid flow library in Modelica, in particular to cope with difficult issues such as connector design, reversing flow and initialization. It is planned to include more components in the future. User proposals are welcome.

This library has the following main features:

- The connectors Modelica Fluid.Interfaces.FluidPort a/ b are designed for one-dimensional flow of a single substance or of a mixture of substances with optional multiple phases. All media models from Modelica. Media can be utilized when connecting components. For one substance media, the additional arrays for multiple substance media have zero dimension and are therefore removed from the code during translation. The general connector definition therefore does not introduce an overhead for special cases.
- All the components of the Modelica_Fluid library are designed that they can be utilized for all media models from Modelica. Media if this is posssible. For example, all media can be utilized for the Modelica Fluid. Sensors/Sources components. For some components only special media are possible, since additional functionality is required. For example, Modelica Fluid.Components.Evaporator requires a two phase medium (extending from Modelica.Media.Interfaces.PartialTwoPhaseMedium).
- In order to simplify the initialization in the components, there is the restriction that only media models are supported that have T, (p,T), (p,h), (T,X), (p,T,X) or (p,h,X) as independent variables. Other media models would be possible, e.g., with (T,d) as independent variables. However, this requires to rewrite the code for the component initialization. (Note, T is temperature, p is pressure, d is density, h is specific enthalpy, and X is a mass fraction vector).
- All components work for **incompressible** and **compressible** media. This is implemented by a small change in the initialization of a component, if the medium is incompressible. Otherwise, the equations of the components are not influenced by this property.
- All components allow fluid flow in both directions, i.e., reversing flow is supported. However, it is possible to declare that the flow through a component only has the design direction, in order to obtain faster simulation code.
- Two or more components can be connected together. This means that the pressures of all connected ports are equal and the mass flow rates sum up to zero. Specific enthalpy, mass fractions and trace substances are mixed according to the mass flow rates.
- The momentum balance and the energy balance are only fulfilled exactly if two ports of equal diameter are connected. In all other cases, the balances are approximated, because kinetic and friction effect are neglected. An explicit fitting or junction should be used if these are important for the specific problem at hand. In all circuits where friction dominates, or components such as pumps determine the flow rate, kinetic pressure is typically irrelevant. You can consider the Modelica Fluid. Examples. Explanatory. Momentum Balance Fittings model (and its documentation) to see one case where the momentum balance essentially depends on kinetic pressure, so it is

necessary to use explicit fittings in order to obtain correct results.

 Given the above-mentioned limitations, there is no restriction how components can be connected together. The resulting simulation performance however often strongly depends on the model structure and modeling assumptions made. In particular the direct connection of fluid volumes generally results in high-index DAEs for the pressures. The direct connection of flow models generally results in systems of implicit nonlinear algebraic equations.

UsersGuide.GettingStarted

Please explore the Examples, which provide simple models for a broad variety of applications.

UsersGuide.ComponentDefinition

In this section it is described how the components of the Modelica_Fluid library are implemented. If you would like to introduce new components either in Modelica_Fluid or your own library, you should be aware of the issues discussed in this section.

This section is partly based on the following paper:

Elmqvist H., Tummescheit H., and Otter M.:

Object-Oriented Modeling of Thermo-Fluid Systems. Modelica 2003 Conference, Linköping, Sweden, pp. 269-286, Nov. 3-4, 2003. Download from: http://www.modelica.org/Conference2003/papers/h40 Elmgvist fluid.pdf

Please note that the design of the connectors has been changed with respect to the design presented in that paper.

Package Content

Name	Description	
i FluidConnectors	Fluid connectors	
<u>BalanceEquations</u>	Balance equations	
<u> UpstreamDiscretization</u>	Upstream discretization	
i RegularizingCharacteristics	Regularizing characteristics	
<u>i</u> WallFriction	Wall friction	
<u>ValveCharacteristics</u>	Valve characteristics	

<u>UsersGuide.ComponentDefinition</u>.FluidConnectors

In this section the design of the fluid connectors is explained.

A major design goal is that components can be arbitrarily connected and that the important balance equations are automatically fulfilled when 2 or more components are connected together at one point as shown in the next figure:

In such a case the balance equations define ideal mixing, i.e., the upstream discretization scheme of each component uses values that result from ideal mixing in an infinitely small time period. If more realistic modelling is desired that takes into account mixing losses, an explicit model has to be used in the connection point.

Single substance media

For a single substance medium, the connector definition in Modelica Fluid.Interfaces.FluidPort reduces to

```
connector FluidPort
     replaceable package Medium = Modelica.Media.Interfaces.PartialMedium
              "Medium model of the fluid";
     flow Medium.MassFlowRate m flow;
              "Mass flow rate from the connection point into the component";
    Medium.AbsolutePressure p
              "Thermodynamic pressure in the connection point";
     stream Medium. Specific Enthalpy h outflow
               "Specific thermodynamic enthalpy close to the connection point if
m flow < 0";
  end FluidPort;
```

The first statement defines the Medium flowing through the connector. In a medium, medium specific types such as "Medium.AbsolutePressure" are defined that contain medium specific values for the min, max and nominal attributes. Furthermore, Medium. Mass Flow Rate is defined as:

```
type MassFlowRate =
  Modelica.SIunits.MassFlowRate(quantity="MassFlowRate." + mediumName);
```

With the current library design, it is necessary to explictly select the medium model for each component in a circuit. This model is then propagated to the ports, and a Modelica translator will check that the quantity and unit attributes of connected interfaces are identical. Therefore, an error occurs, if connected FluidPorts do not have a medium with the same medium name. In the future, automatic propagation of fluid models through the ports will be introduced, but this still not possible with Modelica 3.0.

The thermodynamic pressure is an effort variable, which means that the connection of two or more ports states that the port pressures are the same.

The mass flow rate is a *flow* variable, which means that the connection of two or more ports states that the sum of all flow rates is zero.

The last variable is a *stream* variable, i.e., a specific quantity carried by the flow variable. The quantity on the connector always corresponds to the value close to the connection point, assuming that the fluid is flowing out of the connector, regardless of the actual direction of the flow. This helps avoiding singularities when the mass flow goes through zero. The stream properties for the other flow direction can be inquired with the built-in operator inStream(..), while the value of the stream variable corresponding to the actual flow direction can be inquired through the built-in operator actualStream(..).

The actual equations corresponding to these operators are introduced and solved automatically by the tool. In principle, they correspond to the balance equation $sum(flow_variable) = 0$ and $sum(flow_variable*stream_variable_at_connection) = 0$ applied to the set of connected ports. In this case the first equation is the mass balance $sum(m_flow) = 0$, and the second is the energy balance at the connection point $sum(m_flow*h_connection) = 0$.

In the simpler case of a one-to-one connections between port_a and port_b, inStream(port_a.h_outflow) just returns port_b.h_outflow. For multiple-way connections, mixing equations are generated, and special care is taken in order to avoid discontinuities around zero flow rates. For more details, see this <u>presentation</u> which illustrates the stream concept rationale and the underlying technicalities.

A connector should have only the minimal number of variables to describe the interface, otherwise there will be connection restrictions in certain cases. Therefore, in the connector no redundant variables are present, e.g., the temperature T is not present because it can be computed from the connector variables pressure p and specific enthalpy h.

Here are two simple examples to illustrate modeling with stream connectors. The first one is a rigid adiabatic volume mixing two flows, where the kinetic and gravitational terms in the energy balance are neglected for simplicity.

```
model MixingVolume "Volume that mixes two flows"
  replaceable package Medium = Modelica.Media.Interfaces.PartialPureSubstance;
  FluidPort port a, port b;
  parameter Modelica. SIunits. Volume V "Volume of device";
 Modelica.SIunits.Mass m "Mass in device";
Modelica.SIunits.Energy U "Inner energy in device";
  Medium.BaseProperties medium(preferredMediumStates=true) "Medium in the
device";
equation
  // Definition of port variables
 port_a.p = medium.p;
port b.p = medium.n:
                  = medium.p;
  port b.p
  port a.h outflow = medium.h; // The stream variable always corresponds to the
  port b.h outflow = medium.h; // properties of the fluid holdup (outgoing
flow)
  // Total quantities
  m = V*medium.d;
  U = m*medium.u;
   // Mass and energy balance (actualStream(..) is a built-in operator for
streams to
  // compute the right h, depending on the flow direction)
  der(m) = port a.m flow + port b.m flow;
  der(U) = port_a.m_flow*actualStream(port_a.h outflow) +
           port b.m flow*actualStream(port b.h outflow);
end MixingVolume;
```

The second example is the model of a component describing a lumped pressure loss between two ports, with no energy storage and no heat transfer. An isenthalpic transformation is assumed (changes in kinetic and potential energy between inlet and outlet are neglected)

```
model PressureLoss "Pressure loss component"
  replaceable package Medium=Modelica.Media.Interfaces.PartialPureSubstance;
  FluidPort port a, port b:
```

```
Medium. ThermodynamicState port_a_state_inflow "State at port_a if inflowing";
 Medium. ThermodynamicState port_b_state_inflow "State at port_b if inflowing";
 Medium density d a, d b "Density at ports a and b if inflowing";
  replaceable function f "Function to compute the mass flow rate";
equation
  // Medium states for inflowing fluid
 port a state inflow = Medium.setState phX(port a.p,
inStream(port a.h outflow));
 port b state inflow = Medium.setState phX(port b.p,
inStream(port b.h outflow));
  // Mass balance
 0 = port a.m flow + port b.m flow;
  // Instantaneous propagation of enthalpy flow between the ports with
  // isenthalpic state transformation (no storage and no loss of energy)
 port a.h outflow = inStream(port b.h outflow);
 port b.h outflow = inStream(port a.h outflow);
 // (Regularized) Momentum balance
 port a.m flow = f(port_a.p, port_b.p, d_a, d_b);
end PressureLoss;
```

If many such components are connected in series between two models with storage, the specific enthalpies are propagated in both directions and available to all pressure loss components, without problems when the mass flow goes through zero. The function f then uses either d_a or d_b depending on the sign of port_a.pport b.p, with a suitable regularization around zero to avoid discontinuities.

Please note that these models are highly idealized in order to explain the stream connector concept. Device models in the library are much more complete, handling issues such as initialization, steady vs. dynamic modelling, heat transfer from the outside, etc.

Multiple-substance media

Modelica_Fluid can handle models where the fluid contains multiple substances, so that its composition can be characterized by mass fraction vectors.

```
connector FluidPort
  replaceable package Medium = Modelica.Media.Interfaces.PartialMedium
      "Medium model of the fluid";
   flow Medium.MassFlowRate m flow;
      "Mass flow rate from the connection point into the component"
  Medium.AbsolutePressure p
      "Thermodynamic pressure in the connection point";
   stream Medium.SpecificEnthalpy h_outflow
       "Specific thermodynamic enthalpy close to the connection point if m_flow
< 0";
   stream Medium.MassFraction Xi outflow[Medium.nXi]
      "Independent mixture mass fractions m i/m close to the connection point
if m flow < 0";
  stream Medium.ExtraProperty C outflow[Medium.nC]
       "Properties c i/m close to the connection point if m flow < 0";
 end FluidPort;
```

The mass fraction vectors Xi and C are also stream quantities, as they are carried by the mass flow rate. The corresponding connection equations are sum(m flow*Xi) and sum(m flow*C), which correspond to mass balances for the single substances. The vector Xi contains the mass fractions of the main components of the fluid, and is used together with p and h to determine the thermodynamic state of the fluid. The vector C contains the mass fraction of the trace components, which are accounted for in mass balances, but is ignored when computing the fluid properties. This allows to easily declare and use medium models with trace components starting from existing medium models (e.g. adding CO₂ traces to Moist Air for air conditioning models).

Approximations in balance equations at connection point

Summing up, when two or more ports of the type FluidPort are connected, the following equations are generated by the tool:

It is very important to bear in mind that

- the mass balances are always exact;
- the momentum and energy balance are only exact when two port with the same diameter are connected, because there is no friction and no change in fluid velocity.

In all other cases, i.e., different port diameters and/or multple port connections:

- The momentum balance does not consider friction effects and changes of pressure due to changes in velocity.
- There might thus be errors in the momentum balance of the order of magnitude of the dynamic pressure $\rho v^2/2$.
- The energy balance does not consider the kinetic terms (gravity terms cancel out due to the infinitesimal size of the connection volume). There might thus be errors in the momentum balance of the order of magnitude of the kinetic energy v^2/2.

In many applications, where fluid speeds are low and thermal phenomena are mainly of interest, these approximations are commonly made and lead to acceptable results. In all other cases, explicit fitting and junction models should be used, that model explicitly all the kinetic phenomena with the appropriate level of detail.

UsersGuide.ComponentDefinition.BalanceEquations

For one-dimensional flow along the coordinate "x", the following partial differential equations hold

Mass balance	$\frac{\partial(\rho A)}{\partial t} + \frac{\partial(\rho A v)}{\partial x} = 0$	
Momentum balance	+=-A	
Energy balance 1	$\frac{\partial(\rho(u+\frac{v^2}{2})A)}{\partial t} + \frac{\partial(\rho v(u+\frac{p}{\rho}+\frac{v^2}{2})A)}{\partial x} = -A\rho vg\frac{\partial z}{\partial x} + \frac{\partial}{\partial x}(kA\frac{\partial T}{\partial x}) + \dot{Q}_e$	
Pipe friction	$F_F = \frac{1}{2} \rho v v fS$	
	x: independent spatial coordinate (flow is along coordinate x)	
	t: time	
	v(x,t): mean velocity	
	p(x,t): mean pressure T(x,t): mean temperature	
	T(X,t). Modificomporation	

```
ρ(x,t): mean density
u(x,t): specific internal energy
z(x): height over ground
A(x): area perpendicular to direction x
g: gravity constant
f: Fanning friction factor
S: circumference
```

An alternative energy balance can be derived by multiplying the momentum balance with "v" and substracting it from the energy balance 1 above. This results in the "energy balance 2":

Energy balance 2
$$\frac{\partial (\rho uA)}{\partial t} + \frac{\partial (\rho v(u + \frac{p}{\rho})A)}{\partial x} = vA \frac{\partial p}{\partial x} + vF_F + \frac{\partial}{\partial x}(kA \frac{\partial T}{\partial x}) + \dot{Q}_e$$

This formulation separates the internal energy of the fluid from the kinetic energy of fluid flow. The internal energy is treated by the energy balance 2, the kinetic energy is treated by the momentum balance equally well. The evaluation of medium properties, which are independent of the kinetic energy, and the formulation of many fluid models is simplified with the energy balance 2. The overall conservation of energy is achieved by considering the mutual dependencies of energy and momentum balance.

Some components in the library, like DynamicPipe, provide a rigorous implementation of mass, momentum and energy balance, using the energy balance 2 equation. Other components, like Valves and Fittings, neglect the impact of changes of the kinetic energy and potential energy on the energy balance, because they are usually irrelevant compared to changes due to heat flows. The StaticPipe component neglects the effect of kinetic energy, but includes the potential energy in the balance, which might be substantial.

All modelling assumptions and simplifications are stated in the component documentation; please note that some of the assumptions might be stated in the base classes the component inherits from.

<u>UsersGuide.ComponentDefinition</u>.UpstreamDiscretization

When implementing a Fluid component, the difficult arises that the value of intensive quantities (such as p, T, p) shall be accessed from the **upstream** volume. For example, if the fluid flows from volume A to volume B, then the intensive quantities of volume B have no influence on the fluid between the two volumes. On the other hand, if the flow direction is reversed, the intensive quantities of volume A have no influence on the fluid between the two volumes.

In the Modelica Fluid library, such a situation is handeled with the following code fragment (from Interfaces.PartialTwoPortTransport):

```
replaceable package Medium =
                 Modelica.Media.Interfaces.PartialMedium
                 annotation(choicesAllMatching = true);
  Interfaces.FluidPort a port a(redeclare package Medium = Medium);
  Interfaces.FluidPort b port b(redeclare package Medium = Medium);
 Medium. Thermodynamic State port a state inflow
                  "Medium state close to port a for inflowing mass flow";
 Medium. ThermodynamicState port b state inflow
                  "Medium state close to port b for inflowing mass flow";
equation
  // Isenthalpic state transformation (no storage and no loss of energy)
 port a.h outflow = inStream(port b.h outflow);
 port b.h outflow = inStream(port a.h outflow);
 port a.Xi outflow = inStream(port b.Xi outflow);
```

```
port b.Xi outflow = inStream(port a.Xi outflow);
    // Mass balance
   port a.m flow + port b.m flow = 0;
    // Medium states for inflowing medium
   port a state inflow = Medium.setState phX(port a.p, port b.h outflow,
port b.Xi outflow);
   port b state inflow = Medium.setState phX(port b.p, port a.h outflow,
port a.Xi outflow);
    // Densities close to the parts when mass flows in to the respective port
   port a rho inflow = Medium.density(port a state inflow);
   port b rho inflow = Medium.density(port b state inflow);
   // Pressure drop correlation (k ab, k ba are the loss factors for the two
flow
    // directions; e.g. for a circular device: k = 8*zeta/(pi*diameter)^2)^2
   m flow = Utilities.regRoot2(port a.p - port b.p, dp small,
                                port a rho inflow/k1, port b rho inflow/k2);
```

The medium states for inflowing media can be used to compute density and dynamic viscosity which in turn can be use to formulate the pressure drop equation. The standard pressure drop equation

```
dp = port a - port b;
m flow = \sqrt{(zeta*diameter)})*if dp >= 0 then \sqrt{(dp)}
                                             else -sqrt(-dp)
```

cannot be used, since the function has an infinite derivative at dp=0. Instead the region around zero mass flow rate must be regularized using one of the regularization functions of Modelica Fluid. Utilities. This requires to have density and/or other medium properties for both flow directions at the same time. These media properties can be computed from the medium states of the inflowing fluid at the two ports.

If the above component is connected between two volumes, i.e., the independent medium variables in port_a and port b are usually states, then port a.h and port b.h are either states (i.e., known quantities in the model) or are computed from states. In either case they are "known". In such a situation, all equations can be directly evaluated without any problems. Zero or reversed mass flow rate does not pose any problems because the medium properties are always computed for both flow directions and are then used in the regularization function.

If 3 or more components are connected together, it can be shown that a system of non-linear algebraic equations appear. The equations are written by purpose in such a form, that a tool can select mass flow rates and pressures as iteration variables of this system. The advantage is that these iteration variables are continuous and even often differentiable. The alternative to use the medium states as iteration variables is not good, because T,h,d are discontinuous for reversing flow direction.

<u>UsersGuide.ComponentDefinition</u>.RegularizingCharacteristics

Pressure drop equations and other fluid characteristics are usually computed by semiempirical equations. Unfortunately, the developers of semi-empirical equations nearly never take into account that the equation might be used in a simulation program. As a consequence, these semi-empirical equations can nearly never be used blindly but must be slightly modified or adapted in order that obvious simulation problems are avoided. Below, examples are given to demonstrate what problems occur and how to regularize the characteristics:

Square root function

In several empirical formulae, expressions of the following form are present, e.g., for turbulent flow in a pipe:

$$y = if x < 0 then -sqrt(abs(x)) else sqrt(x)$$

A plot of this characteristic is shown in the next figure:

The difficulty with this function is that the derivative at x=0 is infinity. In reality, such a function does not exist. E.g., for pipe flow, the flow becomes laminar for small velocities and therefore around zero the sqrt() function is replaced by a linear function. Since the laminar region is usually of not much practical interest, the above approximation is used.

The direct implementation above does not work in Modelica, because an event is generated when x < 0changes sign. In order to detect this event, an event iteration takes place. During the event iteration, the active if-branch is not changed. For example, assume that x is positive (= "else" branch) and shall become negative. During the event iteration x is slightly negative and the else branch, i.e., sqrt(x), is evaluated. Since this results in an imaginary number, an error occurs. It would be possible to fix this, by using the noEvent() operator to explicitly switch of an event:

```
y = if noEvent(x < 0) then -sqrt(abs(x)) else sqrt(x)
```

Still, it is highly likely that good integrators will not work well around x=0, because they will recognize that the derivative changes very sharply and will reduce the step size drastically.

There are several solutions around this problem: Around x=0, the sqrt() function can be replaced by a polynomial of 3rd order which is determined in such a way that it smoothly touches the sqrt() function, i.e., the whole function is continuous and continuously differentiable. In the Modelica_Fluid library, implementations of such critical functions are provided in sublibrary Modelica Fluid. Utilities. The above sqrt() type function is computed by function Utilities.regRoot(). This function is defined as:

```
y := x/(x*x+delta*delta)^0.25;
```

where "delta" is the size of the small region around zero where the sqrt() function is approximated by another function. The plot of the function above is practically identical to the one of the original function. However, it has a finite derivative at x=0 and is differentiable upto any order. With the default value of delta=0.01, the difference between the function above and regRoot(x) is 16% around x=0.01, 0.25% around x=0.1 and 0.0025% around x=1.

UsersGuide.ComponentDefinition.WallFriction

One important special case for a pressure loss is the friction at the wall of a pipe under the assumption of guasi steady state flow (i.e., the mass flow rate varies only slowly). In this section it is explained how this case is handeled in the Modelica Fluid library for pipes with nonuniform roughness, including the smooth pipe as a special case (see

<u>Pipes.BaseClasses.WallFriction</u>. The treatment is non-standard in order to get a numerically well-posed description.

For pipes with circular cross section the pressure drop is computed as:

```
\begin{array}{lll} dp &=& \lambda \, (\text{Re}, \Delta) \, * \, (\text{L/D}) \, * \rho * v * \, | \, v | \, /2 \\ &=& \lambda \, (\text{Re}, \Delta) \, * \, 8 \, * \, \text{L} \, / \, (\pi^2 \, * \, \text{D}^5 \, * \, \rho) \, * \, \text{m\_flow} \, | \, \text{m\_flow} \, | \\ &=& \lambda 2 \, (\text{Re}, \Delta) \, * \, \text{k2} \, * \, \text{sign} \, (\text{m\_flow}) \, ; \\ \\ \text{with} \\ \text{Re} &=& |v| \, * \, D \, * \, \rho / \mu \\ &=& |m\_flow| \, * \, 4 \, / \, (\pi \, * \, D \, * \, \mu) \\ \\ \text{m\_flow} &=& A \, * \, v \, * \, \rho \\ A &=& \pi \, * \, (D/2) \, ^2 \\ \lambda 2 &=& \lambda \, * \, \text{Re} \, ^2 \\ k 2 &=& L \, * \, \mu \, ^2 \, / \, (2 \, * \, D \, ^3 \, * \, \rho) \\ \end{array}
```

where

- · L is the length of the pipe.
- D is the diameter of the pipe. If the pipe has not a circular cross section, D = 4*A/P, where A is the cross section area and P is the wetted perimeter.
- $\lambda = \lambda(Re,\Delta)$ is the "usual" wall friction coefficient.
- $\lambda 2 = \lambda^* \text{Re}^2$ is the used friction coefficient to get a numerically well-posed formulation.
- Re = $|v|^*D^*\rho/\mu$ is the Reynolds number.
- $\Delta = \delta/D$ is the relative roughness where " δ " is the absolute "roughness", i.e., the averaged height of asperities in the pipe (δ may change over time due to growth of surface asperities during service, see [Idelchick 1994, p. 85, Tables 2-1, 2-2]).
- ρ is the upstream density.
- µ is the upstream dynamic viscosity.
- · v is the mean velocity.

The first form with λ is used and presented in textbooks, see "blue" curve in the next figure:

This form is not suited for a simulation program since $\lambda = 64/\text{Re}$ if Re < 2000, i.e., a division by zero occurs for zero mass flow rate because Re = 0 in this case. More useful for a simulation model is the friction coefficient $\lambda 2 = \lambda^* Re^2$, because $\lambda 2 = 64^* Re$ if Re < 2000 and therefore no problems for zero mass flow rate occur. The characteristic of λ2 is shown in the next figure and is used in Modelica_Fluid:

The pressure loss characteristic is divided into three regions:

Region 1: For Re ≤ 2000, the flow is laminar and the exact solution of the 3-dim. Navier-Stokes equations (momentum and mass balance) is used under the assumptions of steady flow, constant pressure gradient and constant density and viscosity (= Hagen-Poiseuille flow) leading to λ2 = 64*Re. Therefore:

$$dp = 128*\mu*L/(\pi*D^4*\rho)*m_flow$$

Region 3: For Re ≥ 4000, the flow is turbulent. Depending on the calculation direction (see "inverse formulation" below) either of two explicite equations are used. If the pressure drop dp is assumed to be known, λ2 = |dp|/k2. The Colebrook-White equation [Colebrook 1939; Idelchik 1994, p. 83, eq. (2-9)]:

$$1/sqrt(\lambda) = -2*lg(2.51/(Re*sqrt(\lambda)) + 0.27*\Delta)$$

gives an implicit relationship between Re and λ . Inserting $\lambda 2 = \lambda^* Re^2$ allows to solve this equation analytically for Re:

Re =
$$-2*$$
sqrt(λ 2)*lg(2.51/sqrt(λ 2) + 0.27* Δ)

Finally, the mass flow rate m_flow is computed from Re via m_flow = $Re^*\pi^*D^*\mu/4^*sign(dp)$. These are the **red** curves in the diagrams above.

If the mass flow rate is assumed known (and therefore implicitly also the Reynolds number), then λ2 is computed by an approximation of the inverse of the Colebrook-White equation [Swamee and Jain 1976; Miller 1990, p. 191, eq.(8.4)] adapted to λ2:

```
\lambda 2 = 0.25* (Re/lg(\Delta/3.7 + 5.74/Re^0.9))^2
```

The pressure drop is then computed as dp = $k2*\lambda2*sign(m_flow)$. These are the **blue** curves in the diagrams above.

Region 2: For 2000 ≤ Re ≤ 4000 there is a transition region between laminar and turbulent flow. The value of $\lambda 2$ depends on more factors as just the Reynolds number and the relative roughness. therefore only crude approximations are possible in this area.

The deviation from the laminar region depends on the relative roughness. A laminar flow at Re=2000 is only reached for smooth pipes. The deviation Reynolds number Re1 is computed according to [Samoilenko 1968; Idelchik 1994, p. 81, sect. 2.1.21] as:

```
Re1 = 745 \times e^{(if \Delta \le 0.0065)} then 1 else 0.0065/\Delta)
```

These are the **blue** curves in the diagrams above.

Between Re1=Re1(δ/D) and Re2=4000, λ 2 is approximated by a cubic polynomial in the "lg(λ 2) -Ig(Re)" chart (see figures above) such that the first derivative is continuous at these two points. In order to avoid the solution of non-linear equations, two different cubic polynomials are used for the direct and the inverse formulation. This leads to some discrepancies in λ2 (= differences between the red and the blue curves). This is acceptable, because the transition region is anyway not precisely known since the actual friction coefficient depends on additional factors and since the operating points are usually not in this region.

The absolute roughness δ has usually to be estimated. In [Idelchik 1994, pp. 105-109, Table 2-5; Miller 1990, p. 190, Table 8-1] many examples are given. As a short summary:

Smooth pipes Drawn brass, coper, aluminium, glass, etc.		δ = 0.0025 mm
	New smooth pipes	δ = 0.025 mm
Steel pipes	Mortar lined, average finish	δ = 0.1 mm
	Heavy rust	δ = 1 mm
	Steel forms, first class workmanship	δ = 0.025 mm
Concrete pipes	Steel forms, average workmanship	δ = 0.1 mm
	Block linings	δ = 1 mm

The equations above are valid for incompressible flow. They can also be applied for compressible flow up to about Ma = 0.6 (Ma is the Mach number) with a maximum error in λ of about 3 %. The effect of gas compressibility in a wide region can be taken into account by the following formula derived by Voronin [Voronin 1959; Idelchick 1994, p. 97, sect. 2.1.81]:

$$\lambda \text{ comp} = \lambda * (1 + (\kappa-1)/2 * Ma^2)^(-0.47)$$

where κ is the isentropic coefficient (for ideal gases, κ is the ratio of specific heat capacities cp/cv). An appreciable decrease in the coefficent "λ comp" is observed only in a narrow transonic region and also at supersonic flow velocities by about 15% [Idelchick 1994, p. 97, sect. 2.1.81]. This effect is not yet included in Modelica Fluid. Another restriction is that the pressure drop model is valid only for steady state or slowly changing mass flow rate. For large fluid acceleration, the pressure drop depends additionally on the frequency of the changing mass flow rate.

Inverse formulation

In the "Advanced menu" it is possible via parameter "from dp" to define in which form the pressure drop equation is actually evaluated (**default** is from_dp = **true**):

```
= false: dp = f2(m_flow)
```

"from_dp" can be useful to avoid nonlinear systems of equations in cases where the inverse pressure loss function is needed.

Summary

A detailed pressure drop model for pipe wall friction is provided in the form m_flow = $f1(dp, \Delta)$ or dp = $f2(m_flow, \Delta)$. These functions are continuous and differentiable, are provided in an explicit form without solving non-linear equations, and do behave well also at small mass flow rates. This pressure drop model can be used stand-alone in a static momentum balance and in a dynamic momentum balance as the friction pressure drop term. It is valid for incompressible and compressible flow up to a Mach number of 0.6.

References

Colebrook F. (1939):

Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. no. 4, 14-25.

Idelchik I.E. (1994):

<u>Handbook of Hydraulic Resistance</u>. 3rd edition, Begell House, ISBN 0-8493-9908-4 Miller D. S. (1990):

Internal flow systems. 2nd edition. Cranfield:BHRA(Information Services).

Samoilenko L.A. (1968):

Investigation of the Hydraulic Resistance of Pipelines in the Zone of Transition from Laminar into Turbulent Motion. Thesis (Cand. of Technical Science), Leningrad.

Swamee P.K. and Jain A.K. (1976):

Explicit equations for pipe-flow problems. Proc. ASCE, J.Hydraul. Div., 102 (HY5), pp. 657-664. Voronin F.S. (1959):

Effect of contraction on the friction coefficient in a turbulent gas flow. Inzh. Fiz. Zh., vol. 2, no. 11, pp. 81-85.

<u>UsersGuide.ComponentDefinition</u>.ValveCharacteristics

The control valves in <u>Valves</u> have the parameters **Kv** and **Cv**. They are defined as unit-less variables, but in the description text a unit is given. The reason for this definition is the following:

The basic equation for valves is:

```
q = Av*sqrt(dp/rho)
```

In SI units, [q] is m3/s, [dp] is Pascal, [rho] is [kg/m3], and Av is an area, thus [Av] = m2. Basically, the equation stems from Bernoulli's law. Av is roughly 1.4 times the area of the valve throat. Now, usually valves aren't so big that their throat area is of the order of magnitude of square meters - depending on the applications it is from a few square millimeters to a few square centimeters. Therefore, in the common engineering practice, the following equations are used:

Europe:

```
q = Kv \ sqrt(dp/(rho/rho0)) , with [q] = m3/h, [dp] = bar US: q = Cv \ sqrt(dp/(rho/rho0)) , with [q] = USG/min, [dp] = psi
```

In both cases rho0 is the density of cold water at 4 °C, 999 kg/m3. Note that these equations use relative, not absolute densities.

It turns out that Kv = 1e6/27.7*Av and Cv = 1e6/24*Av, so both US and EU engineers get more or less the same numbers (just by sheer luck), with a range between a few units and a few hundred units for typical industrial applications, and everybody is happy.

Now, we've got two problems here. First, depending on the unit, we change the equation: with SI units, we use the density, with non-SI units, we use the relative density. So the quantities (not only the units!) of Av and Cv/Kv are different.

Second, the units of Kv and Cv are usually labelled "m3/h" and "USG/min", but as a matter of fact they are different, as can be seen from the equations above: they are actually m3/(h*sqrt(bar)) and USG/ (min*sqrt(psi)). If I have a valve with Kv = 10 m3/h, it means I get 10 m3/h "for a pressure drop of 1 bar". Unfortunately, this is not correct from the point of view of strict dimensional analysis, but nobody uses sqrt(Pa) or sqrt(bar).

You might think this is crazy (it is, expecially when you try to explain it), but as a matter of fact the valve coefficient is never given in square meters in any catalog or datasheet; Cv is still the most used (even in Europe), followed by Kv. So, it will be very inconvenient for users to type in Av in square meters.

The pragmatic approach used in Modelica Fluid.ControlValves is to accept the fact that m3/h and USG/min are not the real units of Cv and Kv, so we can't use the general unit conversion mechanism, put them just as mnemonic labels in the comment, use non-dimensional coefficients in the interface, and then define properly dimensioned unit conversion within the model

<u>UsersGuide</u>.BuildingSystemModels

This section is a quick primer explaining how to build a system model using Modelica Fluid. It covers some key issues, such as the System component, the definition of medium models in the system, and the typical customizations available in the Modelica Fluid models.

Package Content

Name	Description
i SystemComponent	System component
1 MediumDefinition	Definition of the medium models
<u>CustomizingModel</u>	Customizing a system model

<u>UsersGuide.BuildingSystemModels</u>.SystemComponent

The Modelica Fluid library is designed so that each model of a system must include an instance system of the System component at the top level, in the same way as the World model of the MultiBody Library. The System component contains the parameters that describe the environment surrounding the components (ambient pressure and temperature, gravity acceleration), and also provides default settings for many parameters which are used consistently by the models in the library. These parameters are then propagated to the individual components using the inner/outer variable mechanism. In case the system model is structured hieararchically, it is possible to either put a single System component at the top level, or possibly to put many of them at different levels, which will only influence the system components from that level down.

All the parameters defined in the System model are used as default values for the parameters of the individual components of the system model. Note that it is always possible to ovverride these defaults locally by changing the value of the parameters in the specific component instance.

- The General tab of the System model allows to set the default environment variables (pressure. temperature and gravity) used by all the components.
- The Assumptions tab allows to change the default modelling assumptions used by all the components (see the section *Customizing a system model later*)

- The *Initialization* tab allows to define default start values for mass flow rates, pressures and temperatures in the model; this can be useful to help nonlinear solver converge to the solution of any nonlinear system of equations that involves such variables, by providing meaningful guess values.
- The *Advanced* tab contains default values for parameters used in the advanced settings of some components.

Remember to always add a System component at the top level of your system model, otherwise you will get errors when compiling the model. The tool will automatically name it system, so that it is recognised by all other components.

<u>UsersGuide.BuildingSystemModels</u>.MediumDefinition

All the models in Modelica_Fluid compute fluid properties by using medium models defined by Modelica.Media packages. Custom fluid models can also be used, provided they extend the interfaces defined in Modelica.Media.Interfaces.

All the components in Modelica_Fluid use a *replaceable* medium package, called Medium: the model is written for a generic fluid, and a specific fluid model can then be specified when building a system model by redeclaring the package. This can be done in different ways:

- If several components use the same medium, it is possible to select all of them within a GUI, and set them simultaneously (as they are all named Medium).
- It is also possible to declare one or more (possibly replaceable) medium packages in the model, and then use them to set up the individual components.

<u>UsersGuide.BuildingSystemModels</u>.CustomizingModel

Once a system model has been built, it is possible to obtain different approximations by appropriately setting the defaults in the System component (and/or the settings of specific components.

The Assumptions | allowFlowReversal parameter determines whether reversing flow conditions (i.e. flow direction opposite to design direction) are modelled or not. By default, reversing flow conditions are considered by the models, but this causes a significant increase of complexity in the equations, due to the conditional equations depending on the flow direction. If you know in advance that the flow in a certain component (or in the whole system) will always be in the design direction, then setting this parameter to false will produce a much faster and possibly more robust simulation code.

The flags in the Assumptions | Dynamics tab allow different degrees of approximation on the mass, energy, and momentum equations of the components.

- DynamicFreeInitial: dynamic equations are considered (nonzero storage), no initial equations are provided, and the start values are used as guess values.
- FixedInitial: dynamic equations are considered (nonzero storage) and initial equations are included, fixing the states to the start values provided by the component parameters.
- SteadyStateInitial: dynamic equations are considered (nonzero storage), initial equations are included, declaring that the state derivatives are zero (steady-state initialization) and the start values are used as guess values for the nonlinear solver.
- SteadyState: algebraic (or static) balance equations are considered (no storage) and the start values are used as guess values for the nonlinear solver.

It is then possible to neglect the storage of mass, momentum, and energy in the whole system (or just in parts of it) just by a few mouse clicks in a GUI, and also to change the type of initialization when considering dynamic models. Please note that some combinations of the options might be contradictory, and will therefore trigger compilation errors.

UsersGuide.ReleaseNotes

Version 1.0, 2009-01-28

Modelica Fluid was refactored and finalized for the release:

- Refactoring of the code
 - This became necessary as the previous release Modelica Fluid Streams Beta3 still reflected the long development history, while the basic concepts had been crystalized. Please consult the subversion control (SVN) logs for individual changes.
- Device oriented package names The former sub-packages Junctions and PressureLosses have been combined into the new subpackage Fittings. The former Pumps and Volumes. SweptVolume have become the initial version of fluid Machines. The former Volumes package is now called Vessels.
- Complete implementation of one-dimenstional fluid flow The balance equations as documented in UsersGuide.ComponentDefinition.BalanceEquations are now completely implemented. The implementations with generic boundary flow and source terms find in:
 - Interfaces.PartialDistributedVolume, Interfaces.PartialLumpedVolume: Energy, Mass and Substance balances
 - Interfaces.PartialDistributedFlow, Interfaces.PartialLumpedFlow: Momentum balance Specific models combine the balances and define the boundary flow and source terms as appropriate. For instance
 - <u>Vessels.OpenTank</u> extends from <u>Interfaces.PartialLumpedVolume</u>,
 - Fittings.SimpleGenericOrifice extends from Interfaces.PartialLumpedFlow, besides Interfaces.PartialTwoPortTransport,
 - Pipes.DynamicPipe is based on Interfaces.PartialDistributedVolume and Interfaces.PartialDistributedFlow, besides Interfaces.PartialTwoPort.

All non-trivial mass and energy balances of Vessels, Machines and Fittings have been replaced with PartialLumpedVolume. The mass and energy balances of Pipes are based on PartialDistributedVolume.

- See Examples.BranchingDynamicPipes for an example utilizing the complete balance equations.
- New approach for the connection of distributed flow models The staggered grid approach offers different choices for the connection approach. So far the preferred modeling was to put full mass balances into the pipes and expose half momentum balances through the ports (ModelStructure a_v_b). This resulted in nonlinear equation systems for pressure/flow correlations in connection sets. A new default ModelStructure av vb has been introduced putting full momentum balances into the models and exposing half mass balances through the ports (av vb replaces the former avb). This way the nonlinear equation systems are avoided. High-index DAEs need to be treated instead in connection sets. Alternatively a Fitting like SuddenExpansion can be introduced to account for different cross flow areas of connected flow
- New Vessels.BaseClasses.PartialLumpedVessel treating the ports, including hydraulic resistances, for ClosedVolume, SimpleTank and SweptVolume.
- Clarification of modeling assumptions The documentation has been extended to better explain the modeling assumptions made. In particular the section <u>UsersGuide.ComponentDefinition.FluidConnectors</u> now makes clear that the ports represent the thermodynamic enthalpy, as opposed to stagnation enthalpy, and thermodynamic or static pressure, as opposed to total pressure. An new package Explanatory has been added to the examples to show the difference beteen static pressure and total pressure and possible implications. See Examples. Explanatory. Momentum Balance Fittings.
- System (former Ambient) The use of the global System object has been extended towards common default values for modeling assumptions, initialization, and advanced settings that are different for each application of the library but should nevertheless provide default values for reasons of convenience. In particular steady-state initialization and complete steady-state simulation can now be specified system-wide. A new Types.Init.Dynamics has been introduced, combining steady-state and initial conditions. The former Types.Init has become obsolete.

See Examples. Heating System.

Extension of pumps for better consideration of zero flow and heat transfer with environment
The simplified mass and energy balances have been replaced with a rigorous formulation. Moreover
an optional heat transfer model can be configured for heat exchanged with the environment or the
housing.

See Machines.BaseClasses.PartialPump

Refinement of valves for flow reversal

All valves now use upstream discretization for reverting flow conditions.

Finalization of trace substrances

Modelica_Fluid now provides a sound implementation for trace substances, which can easily be added to existing Media models, in order to study their evolution in a fluid system. See Examples.TraceSubstances.RoomCO2WithControls.

· Vectorized ports for volumes

The ports of models that typically have large volumes, like Vessels and Sources, have been vectorized. Formerly the connection of multiple flow models to the same port of such volume models resulted in unintended mixing equations for stream variables in connection sets outside the volumes. The mixing takes place inside the volumes when using multiple ports. Moreover a Fittings.MultiPort has been introduced. It can be attached to components like pipes, which don't have vectorized ports on their own.

Inverse parameterization of flow models with nominal operational conditions
 Flow models have been added or extended to support the parameterization with nominal values
 (Machines.ControlledPump, Orifices.SimpleGenericOrifice,
 Pipes.BaseClasses.FlowModels.NominalTurbulentFlow). They are intended for early phases of
 system modeling, if geometries and flow characteristics are of secondary interest. As these models
 use the same interfaces, base classes and naming conventions, they can easily be replaced with
 more detailed models as more information shall be taken into account later on.

Replaceable HeatTransfer models

See Examples.InverseParameterization.

The Vessels and the Machines now have replaceable HeatTransfer models, besides the Pipes. All HeatTransfer models are optional. The heat transfer models are parameterized with the Medium and the ThermodynamicState of involved flow segments.

See Interfaces.PartialHeatTransfer.

All examples are working now (using Dymola 7.1).

The number of examples has been extended with the former critical test cases HeatingSystem and IncompressibleFluidNetwork. Moreover the HeatExchangers have been moved into Examples.

Version 1.0 Streams Beta 3, 2008-10-12

Modelica_Fluid was further improved:

Volumes, tanks, junctions

Added asserts to require that ports are connected at most once. If a user would perform more than one connection, ideal mixing takes place for the connected components and this is nearly never what the user would like to have

Ambient

Renamed Ambient to System, including adaptation of models. Introduced default values system.flowDirection and as a comment system.initType. system.flowDirection is used in two port components as default.

GenericJunction

Corrected specification of flowDirection.

Added a HeatPort.

PartialDistributedFlow models

Adapted determination of velocities to usage of upstream properties at ports.

Corrected and unified initialization of p_start[*] values.

DistributedPipe models

Changed treatment of port densities and viscosities to the treatment of the lumped pipe model. This way events are avoided if the mass flow rate crosses or approaches zero. Correct determination of Reynolds numbers.

Added test model DistributedPipeClosingValve.

ControlValves

Changed flowCharacteristic into valveCharacteristic

Removed parameter Kv and added dp_nom, m_flow_nom from linear and discrete valve interfaces. Added test cases.

Adapted Examples to new LinearValve and DiscreteValve, using nominal values instead of Kv. Changed default flow coefficient selection to OpPoint

- Fixed units for Kv and Cv in control valve models.
- Updated tests for valves.
- Bug in Modelica Fluid.Test.TestComponents.Pumps.TestWaterPump2 corrected (complicated redeclaration issue).
- Adapted AST BatchPlant so that "Check" is sucessful. Simulation fails after 600 s.
- Introduced density pTX(Medium.p default, Medium.T default, Medium.X default) as default value for nominal densities (previously it was a literal such as 1000).
- **Pumps**

Updated energy balance equations for pumps (no division by zero anymore, fixed several bugs related to Np).

Added two more test cases for pumps.

Fixed pump initialization options.

PartialPump

Explanation for the energy balanced added as comment

"h=0" replaced by "h=Medium.h_default" since otherwise an assert is triggered if "h=0" is not in the medium range.

Fluid ports positioned in the middle line and using the same size as for all other components.

Pumps.Pump

Resized input connector, so that it has the same size as the standard input connectors.

Changed icon text to input connector to "N in [rpm]".

Added unit 1/min to the external and internal input connector.

PartialValve

fillcolor=white added to icon

made line Thickness = Single, since icon does not look nice sometimes

All components

Changed %name color from black to blue (is a conversion bug, since Modelica 2 has blue as default color whereas Modelica 3 has black and Dymola is not taking care off this).

Sources

Made icon elements unvisible, if corresponding input is disabled.

- Valves, Pipes, PressureLosses, HeatExchangers, two port senors
 - Added an arrow in the icon for the "design flow direction" from port a to port b.
- Moved default initialization in "System" in to a comment, since no effect yet
- Added the explanation from Francesco for Kv, Cv for valves in the users guide and added links in the corresponding valves to this description

"Check" for the library is successful. "Check with Simulation" (i.e., simulating all test models in the library) is successful with the exceptions:

Examples.AST BatchPlant.BatchPlant StandardWater

Need to be fixed in a later release (requires quite a lot of work).

Test.TestOverdeterminedSteadvStateInit.Test5

Test.TestOverdeterminedSteadyStateInit.Test6

These are test cases where too much initial conditions are given. The goal is to work on methods how this can be handled. So, this is a principal problem that these models do not simulate.

Version 1.0 Streams Beta 2, 2008-10-08

Modelica Fluid was transformed to Modelica 3 and to Modelica Standard library 3.0 (by automatic conversion). Further changes:

- · Emulated enumerations changed to real enumerations.
- Improved ControlValves code

- Introduced stream connectors with stream keyword (was previously an annotation)
- Introduced inStream() instead of inflow()
- Introduced m_flow*actualStream(h_outflow) instead of streamFlow() or semiLinear(m_flow, inStream(h_outflow), medium.h)
- Removed Modelica_Fluid.Media and all references to it (since now available in Modelica.Media of MSL3.0).
- Fixed PartialLumpedVolume for media with multiple substances
- New function "Utilities.RegFun3" for regularization with static head
- Fix density in static head models with the new RegFun3 functions (ticket 7)
- Minor bug in MixingVolume corrected:

V_lumped and Wb_flow have been set as modifiers when extending from PartialLumpedVolume, although they are not declared as input. This is not allowed in Modelica 3. Fixed by replacing the modifiers by equations.

Modelica Fluid.Sources.FixedBoundary

Introduced p_default, T_default, h_default as default values, since otherwise warnings will always be printed because parameter value is missing.

Modelica Fluid.Sources.Boundary pT

Modelica Fluid.Sources.Boundary ph

Modelica Fluid.Sources.MassFlowSource T

Changed default values of parameters reference_p, reference_T to p_default, T_default (some have been xx_default, some reference_xx, it seems best to always use the same approach)

Modelica_Fluid.Pipes.BaseClasses.PartialDistributedFlow

Added default value for parameter "rho_nominal" = Medium.density_pTX(Medium.p_default, Medium.T_default, Medium.X_default) in order to avoid unnecessary warning messages. Should be replaced by "Medium.rho default", once available.

Modelica Fluid.Pipes.DistributedPipe

Modelica Fluid.Pipes.DistributedPipeSb

Modelica Fluid.Pipes.DistributedPipeSa

Added default value for parameter "mu_nominal" (computed with default values of p,T,X from dynamicViscosity(...))

 Modelica_Fluid.Pipes.BaseClasses.PartialDistributedFlowLumpedPressure Replaced default value "rho_nominal=0.01" by Medium.density_pTX(Medium.p_default, Medium.T_default, Medium.X_default)

Modelica Fluid.Volumes.OpenTank

Modelica Fluid. Volumes. Tank

Corrected icons of ports (wrongly sized by automatic conversion from Modelica 2 to Modelica 3).

Examples.BranchingDistributedPipes

Modelica Fluid.Test.TestComponents.Junctions.TestGenericJunction

Modelica_Fluid.Test.TestComponents.Pipes.TestDistributedPipe01

Parameters dp nom, m flow nom are not defined in junction components. Values provided.

PressureLosses.BaseClasses.QuadraticTurbulent.BaseModel

No default or start values for "parameter LossFactorData data" Changed the model to "partial model" to avoid warning messages

Version 1.0 Streams Beta 1, 2008-05-02

Changed connectors to stream connectors and adapted the following sublibraries:

- Volumes
- PressureLosses
- Sensors
- Sources
- ControlValves
- HeatExchangers
- Junctions
- Pipes
- Pumps
- Test and Exampleas (most of the examples and tests are simulating)

Other changes:

- Introduced HeatPorts with vectorized icon in Modelica Fluid.Interfaces
- Deleted Modelica Fluid.WorkInProgress since it seems to be too much work to convert it to stream
- Added Modelica Fluid. Media (contains Constant Liquid Water medium because functions are missing in Modelica. Media),
- Added two additional test cases with LumpedPipes (to identify problems with hierarchically connected stream connectors).
- Deleted TestPortVolumes since PortVolumes can no longer be implemented with stream connectors
- Leakage flow introduced for valves
- Drumboiler Example corrected
- Regularization for sensors (T,h,...), in order that no discontinuity for bi-directional flow
- Density computation in static head corrected
- New functions Utilities.regUnitStep, regStep
- New components (TestComponents.Sensors.TestOnePortSensors1/.TestOnePortSensors2I, TestRegStep)
- PartialTwoPortTransport
 - Introduced port a.T, port b.T (for plotting)
 - Removed initialization menu
 - Introduced dp start, m flow start
 - Removed previous start values of PartialTwoPortTransport in all models
- PartialPump: Removed p nom, since no longer needed (only dp nom)
- Made "%name" in the icons of all components unified (and better looking)
- Changed default value of leackage flow of valves to zero.
- Fixed Modelica Fluid. Junctions. MassFlowRatio so that it compiles (inflow(..) currently only supported for scalars, not for vectors)
- Added script libraryinfo.mos, in order that Modelica Fluid appears in the Dymola library window automatically (provided library is in MODELICAPATH)
- Replaced semiLinear(..) by streamFlow(..) (not yet at all places)
- Introduced check-boxes in parameter menu of Sources (is more convenient to use)
- TwoPortTransport
 - Computation of V_flow and optionally port_a_T, port_b_T. Error in temperature calculation corrected
- Tank:
 - Default of bottom pipe diameter changed from 0 to 0.1, since otherwise a division by zero (if not connected and not changed).
- Modelica Fluid.ControlValves.ValveVaporizing: Due to changes in PartialTwoPortTransport, port a T inflow does no longer exist and the usage to it is removed.
- Modelica Fluid.Test.TestComponents.Sensors.TestTemperatureSensor: Due to changes in PartialTwoPortTransport, p_start does no longer exist and the usage to it is
- VersionBuild introduced, as well as automatic update of VersionBuild/VersionDate

Version 1.0 Beta 4, 2008-04-26

Changes according to the Modelica Design Meetings since the last beta version. This version is used to "freeze" the current development, in order to change to a version with a new connector design using stream variables.

Version 1.0 Beta 3, 2007-06-05

Changes according to the Modelica Design Meetings since the Modelica'2006 conference, especially, improved initialization, changed Source components (input connectors must be enabled), improved tank component, moved test models from Examples to new package Test, many more test models, etc. This version is slightly non-backward compatible to version 1.0 Beta 2.

Version 1.0 Beta 2, 2006-08-28

Package considerably restructured and some new components added. New examples (ControlledTankSystem, AST_BatchPlant).

Version 0.96, 2006-01-08

- · New package Modelica Fluid.PressureLosses.
- New package Modelica_Fluid.WorkInProgress.
- New components in Modelica_Fluid.Components: ShortPipe, OpenTank, ValveDiscrete, StaticHead.
- · New components in Modelica Fluid. Examples.
- · Improved users guide.

Version 0.910, 2005-10-25

Changes as decided on 41th-45th Modelica Design Meetings (details, see minutes).

Version 0.900, 2004-10-18

Changes as decided on 40th Modelica Design Meeting in Dresden (see also minutes)

Version 0.794, 2004-05-31

- Sensors.mo, Examples/DrumBoiler.mo: extend sensors with user choice for measurement unit.
- Components.mo, Types.mo: moved components and types to package Examples.
- Moved Examples from file Modelica_Fluid/package.mo to Modelica.Media/Examples subdirectory
 and created separate file per sub-package. This shall simplify the maintenance of examples by
 different authors
- Moved Interfaces from file Modelica_Fluid/package.mo to Modelica_Fluid/Interfaces.mo

Version 0.793, 2004-05-18

- Removed "semiLinear" function since available as Modelica 2.1 built-in operator in Dymola.
- Minor bug in "Components.ShortPipe" corrected.
- Bug in "Components.Orifice" corrected (dp was previously calculated in Interfaces.PartialTwoPortTransport, but this was removed and not updated in Orifice).

Version 0.792, 2003-11-07

This is the first consolidated version made up from several changes for Modelica'2003. Modelica_Fluid is still quite far away from a library that could be included in the Modelica standard library.

Previous Releases

- Oct., 2003
 - by Martin Otter: Adapted to latest design of the Modelica. Media library. by Ruediger Franke: Included sensor components and Modelica_Fluid. Examples. DrumBoiler example.
- Sept., 2003
 - by Martin Otter: Changes according to the decisions of the Modelica design meeting in Dearborn, Sept. 2-4, 2003. Fluid library splitt in to two packages: Modelica.Media that contains the media models and Modelica_Fluid that contains fluid flow components. Modelica.Media is independent of Modelica_Fluid and my be used also from other packages that may have a different design as Modelica_Fluid.
- Aug., 2003
 by Martin Otter: Improved documentation, PortVicinity (now called semiLinear) manually expanded, two different volume types, replaced number of massFractions from n to n-1 in order that usage of

model for single substances is easier and in order that no special cases have to be treated in the equations (previously the massFraction equations had to be removed for single substance flow; now they are removed automatically, since the dimensions are zero, and not one as previously), included asserts to check the validity of the medium models, included the dynamic viscosity in the medium models, adapted the examples and medium models to the changes in Interfaces, improved menus according to the new features in Dymola 5.1. Added "Components ShortPipe" that contains a detailed model of the frictional losses in pipes over a very wide range.

- by Martin Otter: Included several elementary components and a model for moisted air. Some elementary components, such as FixedAmbient, are adapted versions from the SimpleFlow fluid library of Anton Haumer.
- Dec., 2002 by Hubertus Tummescheit: Improved version of the high precision water model (Copy from ThermoFluid library, code reorganization, enhanced documentation, additional functions).
- Nov. 30, 2002 by Martin Otter: Improved the design from the design meeting: Adapted to Modelica standard library 1.5, added "choicesAllMatching=true" annotation, added short documentation to "Interfaces", added packages "Examples" and "Media" (previously called "Properties") from previous versions and adapted them to the updated "Interfaces" package.
- Nov. 20-21, 2002 by Hilding Elmqvist, Mike Tiller, Allan Watson, John Batteh, Chuck Newman, Jonas Eborn: Improved at the 32nd Modelica Design Meeting.
- Nov. 11, 2002 by Hilding Elmqvist, Martin Otter: improved version.
- Nov. 6, 2002 by Hilding Elmqvist: first version of the basic design.

UsersGuide.ModelicaLicense2

This page contains the "Modelica License 2" which was released by the Modelica Association on Nov. 19, 2008. It is used for all material from the Modelica Association provided to the public after this date. It is recommended that other providers of free Modelica packages license their library also under "Modelica License 2". Additionally, this document contains a description how to apply the license and has a "Frequently Asked Questions" section.

The Modelica License 2 (in other formats: standalone html, pdf, odt, doc)

How to Apply the Modelica License 2

Frequently Asked Questions

The Modelica License 2

Preamble. The goal of this license is that Modelica related model libraries, software, images, documents, data files etc. can be used freely in the original or a modified form, in open source and in commercial environments (as long as the license conditions below are fulfilled, in particular sections 2c) and 2d). The Original Work is provided free of charge and the use is completely at your own risk. Developers of free Modelica packages are encouraged to utilize this license for their work.

The Modelica License applies to any Original Work that contains the following licensing notice adjacent to the copyright notice(s) for this Original Work:

Licensed by <name of Licensor> under the Modelica License 2

1. Definitions.

- 1. "License" is this Modelica License.
- 2. "Original Work" is any work of authorship, including software, images, documents, data files, that contains the above licensing notice or that is packed together with a licensing notice referencing it.
- 3. "Licensor" is the provider of the Original Work who has placed this licensing notice adjacent to the copyright notice(s) for the Original Work. The Original Work is either directly provided by the owner of the Original Work, or by a licensee of the owner.
- 4. "Derivative Work" is any modification of the Original Work which represents, as a whole, an original work of authorship. For the matter of clarity and as examples:
 - 1. Derivative Work shall not include work that remains separable from the Original Work, as well as merely extracting a part of the Original Work without modifying it.
 - 2. Derivative Work shall not include (a) fixing of errors and/or (b) adding vendor specific Modelica annotations and/or (c) using a subset of the classes of a Modelica package, and/or (d) using a different representation, e.g., a binary representation.
 - 3. Derivative Work shall include classes that are copied from the Original Work where declarations, equations or the documentation are modified.
 - 4. Derivative Work shall include executables to simulate the models that are generated by a Modelica translator based on the Original Work (of a Modelica package).
- 5. "Modified Work" is any modification of the Original Work with the following exceptions: (a) fixing of errors and/or (b) adding vendor specific Modelica annotations and/or (c) using a subset of the classes of a Modelica package, and/or (d) using a different representation, e.g., a binary representation.
- 6. "Source Code" means the preferred form of the Original Work for making modifications to it and all available documentation describing how to modify the Original Work.
- 7. "You" means an individual or a legal entity exercising rights under, and complying with all of the terms of, this License.
- 8. "Modelica package" means any Modelica library that is defined with the "package <Name> ... end <Name>; "Modelica language element.
- **2. Grant of Copyright License.** Licensor grants You a worldwide, royalty-free, non-exclusive, sublicensable license, for the duration of the copyright, to do the following:
 - 1. To reproduce the Original Work in copies, either alone or as part of a collection.
 - 2. To create Derivative Works according to Section 1d) of this License.
 - 3. To distribute or communicate to the public copies of the <u>Original Work</u> or a <u>Derivative Work</u> under <u>this License</u>. No fee, neither as a copyright-license fee, nor as a selling fee for the copy as such may be charged under this License. Furthermore, a verbatim copy of this License must be included in any copy of the Original Work or a Derivative Work under this License.

 For the matter of clarity, it is permitted A) to distribute or communicate such copies as part of a (possible commercial) collection where other parts are provided under different licenses and a
 - (possible commercial) collection where other parts are provided under different licenses and a license fee is charged for the other parts only and B) to charge for mere printing and shipping costs.

 4. To distribute or communicate to the public copies of a <u>Derivative Work</u>, alternatively to Section 2c),
 - under <u>any other license</u> of your choice, especially also under a license for commercial/proprietary software, as long as You comply with Sections 3, 4 and 8 below.
 - For the matter of clarity, no restrictions regarding fees, either as to a copyright-license fee or as to a selling fee for the copy as such apply.
 - 5. To perform the Original Work publicly.
 - 6. To display the Original Work publicly.
- **3. Acceptance.** Any use of the Original Work or a Derivative Work, or any action according to either Section 2a) to 2f) above constitutes Your acceptance of this License.
- **4. Designation of Derivative Works and of Modified Works.** The identifying designation of Derivative Work and of Modified Work must be different to the corresponding identifying designation of the Original Work. This means especially that the (root-level) name of a Modelica package under this license must be changed if the package is modified (besides fixing of errors, adding vendor specific Modelica annotations, using a subset of the classes of a Modelica package, or using another representation, e.g. a binary representation).
- **5. Grant of Patent License.** Licensor grants You a worldwide, royalty-free, non-exclusive, sublicensable license, under patent claims owned by the Licensor or licensed to the Licensor by the owners of the Original

Work that are embodied in the Original Work as furnished by the Licensor, for the duration of the patents, to make, use, sell, offer for sale, have made, and import the Original Work and Derivative Works under the conditions as given in Section 2. For the matter of clarity, the license regarding Derivative Works covers patent claims to the extent as they are embodied in the Original Work only.

- 6. Provision of Source Code. Licensor agrees to provide You with a copy of the Source Code of the Original Work but reserves the right to decide freely on the manner of how the Original Work is provided. For the matter of clarity, Licensor might provide only a binary representation of the Original Work. In that case. You may (a) either reproduce the Source Code from the binary representation if this is possible (e.g., by performing a copy of an encrypted Modelica package, if encryption allows the copy operation) or (b) request the Source Code from the Licensor who will provide it to You.
- 7. Exclusions from License Grant. Neither the names of Licensor, nor the names of any contributors to the Original Work, nor any of their trademarks or service marks, may be used to endorse or promote products derived from this Original Work without express prior permission of the Licensor. Except as otherwise expressly stated in this License and in particular in Sections 2 and 5, nothing in this License grants any license to Licensor's trademarks, copyrights, patents, trade secrets or any other intellectual property, and no patent license is granted to make, use, sell, offer for sale, have made, or import embodiments of any patent

No license is granted to the trademarks of Licensor even if such trademarks are included in the Original Work, except as expressly stated in this License. Nothing in this License shall be interpreted to prohibit Licensor from licensing under terms different from this License any Original Work that Licensor otherwise would have a right to license.

8. Attribution Rights. You must retain in the Source Code of the Original Work and of any Derivative Works that You create, all author, copyright, patent, or trademark notices, as well as any descriptive text identified therein as an "Attribution Notice". The same applies to the licensing notice of this License in the Original Work. For the matter of clarity, "author notice" means the notice that identifies the original author(s).

You must cause the Source Code for any Derivative Works that You create to carry a prominent Attribution Notice reasonably calculated to inform recipients that You have modified the Original Work.

In case the Original Work or Derivative Work is not provided in Source Code, the Attribution Notices shall be appropriately displayed, e.g., in the documentation of the Derivative Work.

9. Disclaimer of Warranty.

The Original Work is provided under this License on an "as is" basis and without warranty, either express or implied, including, without limitation, the warranties of non-infringement, merchantability or fitness for a particular purpose. The entire risk as to the quality of the Original Work is with You. This disclaimer of warranty constitutes an essential part of this License. No license to the Original Work is granted by this License except under this disclaimer.

- 10. Limitation of Liability. Under no circumstances and under no legal theory, whether in tort (including negligence), contract, or otherwise, shall the Licensor, the owner or a licensee of the Original Work be liable to anyone for any direct, indirect, general, special, incidental, or consequential damages of any character arising as a result of this License or the use of the Original Work including, without limitation, damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses. This limitation of liability shall not apply to the extent applicable law prohibits such limitation.
- 11. Termination. This License conditions your rights to undertake the activities listed in Section 2 and 5, including your right to create Derivative Works based upon the Original Work, and doing so without observing these terms and conditions is prohibited by copyright law and international treaty. Nothing in this License is intended to affect copyright exceptions and limitations. This License shall terminate immediately and You may no longer exercise any of the rights granted to You by this License upon your failure to observe the conditions of this license.
- 12. Termination for Patent Action. This License shall terminate automatically and You may no longer exercise any of the rights granted to You by this License as of the date You commence an action, including a cross-claim or counterclaim, against Licensor, any owners of the Original Work or any licensee alleging that the Original Work infringes a patent. This termination provision shall not apply for an action alleging patent infringement through combinations of the Original Work under combination with other software or hardware.
- 13. Jurisdiction. Any action or suit relating to this License may be brought only in the courts of a jurisdiction wherein the Licensor resides and under the laws of that jurisdiction excluding its conflict-of-law provisions.

The application of the United Nations Convention on Contracts for the International Sale of Goods is expressly excluded. Any use of the Original Work outside the scope of this License or after its termination shall be subject to the requirements and penalties of copyright or patent law in the appropriate jurisdiction. This section shall survive the termination of this License.

14. Attorneys' Fees. In any action to enforce the terms of this License or seeking damages relating thereto, the prevailing party shall be entitled to recover its costs and expenses, including, without limitation, reasonable attorneys' fees and costs incurred in connection with such action, including any appeal of such action. This section shall survive the termination of this License.

15. Miscellaneous.

- 1. If any provision of this License is held to be unenforceable, such provision shall be reformed only to the extent necessary to make it enforceable.
- 2. No verbal ancillary agreements have been made. Changes and additions to this License must appear in writing to be valid. This also applies to changing the clause pertaining to written form.
- 3. You may use the Original Work in all ways not otherwise restricted or conditioned by this License or by law, and Licensor promises not to interfere with or be responsible for such uses by You.

How to Apply the Modelica License 2

At the top level of your Modelica package and at every important subpackage, add the following notices in the info layer of the package:

Licensed by <Licensor> under the Modelica License 2 Copyright © <year1>-<year2>, <name of copyright holder(s)>.

This Modelica package is <u>free</u> software and the use is completely at <u>your own risk</u>; it can be redistributed and/or modified under the terms of the Modelica license 2, see the license conditions (including the disclaimer of warranty) <u>here</u> or at <u>http://www.modelica.org/licenses/ModelicaLicense2</u>.

Include a copy of the Modelica License 2 under Library.UsersGuide.ModelicaLicense2 (use http://www.modelica.org/licenses/ModelicaLicense2.mo). Furthermore, add the list of authors and contributors under library>.UsersGuide.Contact.

For example, sublibrary Modelica. Blocks of the Modelica Standard Library may have the following notices:

Licensed by Modelica Association under the Modelica License 2 Copyright © 1998-2008, Modelica Association.

This Modelica package is <u>free</u> software and the use is completely at <u>your own risk</u>; it can be redistributed and/or modified under the terms of the Modelica license 2, see the license conditions (including the disclaimer of warranty) <u>here</u> or at <u>http://www.modelica.org/licenses/ModelicaLicense2</u>.

For C-source code and documents, add similar notices in the corresponding file.

For images, add a "readme.txt" file to the directories where the images are stored and include a similar notice in this file.

In these cases, save a copy of the Modelica License 2 in one directory of the distribution, e.g., http://www.modelica.org/licenses/ModelicaLicense2.html in directory https://www.modelica.org/licenses/ModelicaLicense2.html in directory

Frequently Asked Questions

This section contains questions/answer to users and/or distributors of Modelica packages and/or documents under Modelica License 2. Note, the answers to the questions below are not a legal interpretation of the Modelica License 2. In case of a conflict, the language of the license shall prevail.

Using or Distributing a Modelica Package under the Modelica License 2

What are the main differences to the previous version of the Modelica License?

- 1. Modelica License 1 is unclear whether the licensed Modelica package can be distributed under a different license. Version 2 explicitly allows that "Derivative Work" can be distributed under any license of Your choice, see examples in Section 1d) as to what qualifies as Derivative Work (so, version 2 is clearer).
- 2. If You modify a Modelica package under Modelica License 2 (besides fixing of errors, adding vendor specific Modelica annotations, using a subset of the classes of a Modelica package, or using another representation, e.g., a binary representation), you must rename the root-level name of the package for your distribution. In version 1 you could keep the name (so, version 2 is more restrictive). The reason of this restriction is to reduce the risk that Modelica packages are available that have identical names, but different functionality.
- 3. Modelica License 1 states that "It is not allowed to charge a fee for the original version or a modified version of the software, besides a reasonable fee for distribution and support". Version 2 has a similar intention for all Original Work under Modelica License 2 (to remain free of charge and open source) but states this more clearly as "No fee, neither as a copyright-license fee, nor as a selling fee for the copy as such may be charged". Contrary to version 1. Modelica License 2 has no restrictions on fees for Derivative Work that is provided under a different license (so, version 2 is clearer and has fewer restrictions).
- 4. Modelica License 2 introduces several useful provisions for the licensee (articles 5, 6, 12), and for the licensor (articles 7, 12, 13, 14) that have no counter part in version 1.
- 5. Modelica License 2 can be applied to all type of work, including documents, images and data files, contrary to version 1 that was dedicated for software only (so, version 2 is more general).

Can I distribute a Modelica package (under Modelica License 2) as part of my commercial Modelica modeling and simulation environment?

Yes, according to Section 2c). However, you are not allowed to charge a fee for this part of your environment. Of course, you can charge for your part of the environment.

Can I distribute a Modelica package (under Modelica License 2) under a different license?

No. The license of an unmodified Modelica package cannot be changed according to Sections 2c) and 2d). This means that you cannot <u>sell</u> copies of it, any distribution has to be free of charge.

Can I distribute a Modelica package (under Modelica License 2) under a different license when I first encrypt the package?

No. Merely encrypting a package does not qualify for Derivative Work and therefore the encrypted package has to stay under Modelica License 2.

Can I distribute a Modelica package (under Modelica License 2) under a different license when I first add classes to the package?

No. The package itself remains unmodified, i.e., it is Original Work, and therefore the license for this part must remain under Modelica License 2. The newly added classes can be, however, under a different license.

Can I copy a class out of a Modelica package (under Modelica License 2) and include it unmodified in a Modelica package under a commercial/proprietary license?

No, according to article 2c). However, you can include model, block, function, package, record and connector classes in your Modelica package under Modelica License 2. This means that your Modelica package could be under a commercial/proprietary license, but one or more classes of it are under Modelica License 2. Note, a "type" class (e.g., type Angle = Real(unit="rad")) can be copied and included unmodified under a commercial/proprietary license (for details, see the next question).

Can I copy a type class or part of a model, block, function, record, connector class, out of a Modelica package (under Modelica License 2) and include it modified or unmodified in a Modelica package under a commercial/proprietary license

Yes, according to article 2d), since this will in the end usually qualify as Derivative Work. The reasoning is the following: A type class or part of another class (e.g., an equation, a declaration, part of a class description) cannot be utilized "by its own". In order to make this "usable", you have to add additional code in order that the class can be utilized. This is therefore usually Derivative Work and Derivative Work can be provided

under a different license. Note, this only holds, if the additional code introduced is sufficient to qualify for Derivative Work. Merely, just copying a class and changing, say, one character in the documentation of this class would be no Derivative Work and therefore the copied code would have to stay under Modelica License 2.

Can I copy a class out of a Modelica package (under Modelica License 2) and include it in <u>modified</u> form in a <u>commercial/proprietary</u> Modelica package?

Yes. If the modification can be seen as a "Derivative Work", you can place it under your commercial/proprietary license. If the modification does not qualify as "Derivative Work" (e.g., bug fixes, vendor specific annotations), it must remain under Modelica License 2. This means that your Modelica package could be under a commercial/proprietary license, but one or more parts of it are under Modelica License 2.

Can I distribute a "save total model" under my commercial/proprietary license, even if classes under Modelica License 2 are included?

Your classes of the "save total model" can be distributed under your commercial/proprietary license, but the classes under Modelica License 2 must remain under Modelica License 2. This means you can distribute a "save total model", but some parts might be under Modelica License 2.

Can I distribute a Modelica package (under Modelica License 2) in encrypted form?

Yes. Note, if the encryption does not allow "copying" of classes (in to unencrypted Modelica source code), you have to send the Modelica source code of this package to your customer, if he/she wishes it, according to article 6.

Can I distribute an executable under my commercial/proprietary license, if the model from which the executable is generated uses models from a Modelica package under Modelica License 2?

Yes, according to article 2d), since this is seen as Derivative Work. The reasoning is the following: An executable allows the simulation of a concrete model, whereas models from a Modelica package (without pre-processing, translation, tool run-time library) are not able to be simulated without tool support. By the processing of the tool and by its run-time libraries, significant new functionality is added (a model can be simulated whereas previously it could not be simulated) and functionality available in the package is removed (e.g., to build up a new model by dragging components of the package is no longer possible with the executable).

Is my modification to a Modelica package (under Modelica License 2) a Derivative Work?

It is not possible to give a general answer to it. To be regarded as "an original work of authorship", a derivative work must be different enough from the original or must contain a substantial amount of new material. Making minor changes or additions of little substance to a preexisting work will not qualify the work as a new version for such purposes.

Using or Distributing a Modelica Document under the Modelica License 2

This section is devoted especially for the following applications:

- 1. A Modelica tool extracts information out of a Modelica package and presents the result in form of a "manual" for this package in, e.g., html, doc, or pdf format.
- 2. The Modelica language specification is a document defining the Modelica language. It will be licensed under Modelica License 2.
- 3. Someone writes a book about the Modelica language and/or Modelica packages and uses information which is available in the Modelica language specification and/or the corresponding Modelica package.

Can I sell a manual that was basically derived by extracting information automatically from a Modelica package under Modelica License 2 (e.g., a "reference guide" of the Modelica Standard Library):

Yes. Extracting information from a Modelica package, and providing it in a human readable, suitable format, like html, doc or pdf format, where the content is significantly modified (e.g. tables with interface information are constructed from the declarations of the public variables) qualifies as Derivative Work and there are no restrictions to charge a fee for Derivative Work under alternative 2d).

Can I copy a text passage out of a Modelica document (under Modelica License 2) and use it unmodified in my document (e.g. the Modelica syntax description in the Modelica Specification)?

Yes. In case you distribute your document, the copied parts are still under Modelica License 2 and you are not allowed to charge a license fee for this part. You can, of course, charge a fee for the rest of your document.

Can I copy a text passage out of a Modelica document (under Modelica License 2) and use it in modified form in my document?

Yes, the creation of Derivative Works is allowed. In case the content is significantly modified this qualifies as Derivative Work and there are no restrictions to charge a fee for Derivative Work under alternative 2d).

Can I sell a printed version of a Modelica document (under Modelica License 2), e.g., the Modelica Language Specification?

No. if you are not the copyright-holder, since article 2c) does not allow a selling fee for a (in this case physical) copy. However, mere printing and shipping costs may be recovered.

UsersGuide.Contact

The Modelica_Fluid library (this Modelica package) is developed by many people from different organizations (see list below). It is licensed under the Modelica License 2 by:

Modelica Association (Ideella Föreningar 822003-8858 in Linköping) c/o PELAB, IDA, Linköpings Universitet S-58183 Linköpina Sweden

email: Board@Modelica.org web: http://www.Modelica.org

The development of the Modelica_Fluid package is organized by

Francesco Casella Rüdiger Franke Dipartimento di Elettronica e Informazione ABB AG Politecnico di Milano PTSP-E22 Via Ponzio 34/5 and Kallstadter Str. 1 I-20133 Milano, Italy D-68163, Germany

email: casella@elet.polimi.it email: ruediger.franke@de.abb.com

Acknowledgements:

The development of this library has been a collaborative effort and many have contributed.

- The previous design of this library (until beginning of 2008) was based on the paper Elmqvist H., Tummescheit H., and Otter M.: Object-Oriented Modeling of Thermo-Fluid Systems. Modelica 2003 Conference, Linköping, Sweden, pp. 269-286, Nov. 3-4, 2003.
 - This design has been partly changed, especially by the introduction of the streams concept.
- The Fluid library development was organized in 2002-2004 by Martin Otter, since 2004 it is organized by Francesco Casella, and since 2008 it is organized jointly by Francesco Casella and Rüdiger Franke.
- Francesco Casella included several components of his ThermoPower library with some rewriting. The stream connector concept used in Modelica Fluid is based on a similar concept developed by him for the ThermoPower library.
- Rüdiger Franke initiated the stream connector concept as an extension and improved version of the ThermoPower concept. In Nov. 2008 - Jan. 2009 he greatly restructured and improved the library.

40 UsersGuide.Contact

- Michael Wetter introduced trace constituents in Modelica_Fluid consistently and provided corresponding examples under Examples.TraceSubstances.
- The following people contributed to the fluid component models, examples, and the further design of the library (alphabetical list):
 John Batteh, Francesco Casella, Jonas Eborn, Hilding Elmqvist, Rüdiger Franke, Manuel Gräber, Henning Knigge, Sven Erik Mattsson, Chuck Newman, Hans Olsson, Martin Otter, Katrin Prölß, Christoph Richter, Michael Sielemann, Mike Tiller, Hubertus Tummescheit, Allan Watson, Michael Wetter.

Partial financial support of ABB and DLR by BMBF (BMBF Förderkennzeichen: 01IS07022F) for the further development of this library within the ITEA project EUROSYSLIB is highly appreciated.

Modelica_Fluid.Examples

Demonstration of the usage of the library

Information

Extends from Modelica. Icons. Library (Icon for library).

Package Content

Name	Description
PumpingSystem PumpingSystem	Model of a pumping system for drinking water
<u>HeatingSystem</u>	Simple model of a heating system
<u>DrumBoiler</u>	Drum boiler example, see Franke, Rode, Krueger: On-line Optimization of Drum Boiler Startup, 3rd International Modelica Conference, Linkoping, 2003
Tanks	Library demonstrating the usage of the tank model
ControlledTankSystem	Tank system with controller, start/stop/shut operation and diagram animation
AST_BatchPlant	Model of the experimental batch plant at Process Control Laboratory at University of Dortmund (Prof. Engell)
IncompressibleFluidNetwork	Multi-way connections of pipes and incompressible medium model
<u>BranchingDynamicPipes</u>	Multi-way connections of pipes with dynamic momentum balance, pressure wave and flow reversal
HeatExchanger	Demo of a heat exchanger model
<u>TraceSubstances</u>	Library demonstrating the usage of trace substances
InverseParameterization	Demonstrates the parameterization of a pump and a pipe for given nominal values
Explanatory	A set of examples illustrating when special attention has to be paid

Examples.PumpingSystem

Model of a pumping system for drinking water

Example

Information

Water is pumped from a source by a pump (fitted with check valves), through a pipe whose outlet is 50 m

Modelica_Fluid Library 1.0 (January 2009)

higher than the source, into a reservoir. The users are represented by an equivalent valve, connected to the reservoir.

The water controller is a simple on-off controller, regulating on the gauge pressure measured at the base of the tower; the output of the controller is the rotational speed of the pump, which is represented by the output of a first-order system. A small but nonzero rotational speed is used to represent the standby state of the pumps, in order to avoid singularities in the flow characteristic.

Simulate for 2000 s. When the valve is opened at time t=200, the pump starts turning on and off to keep the reservoir level around 2 meters, which roughly corresponds to a gauge pressure of 200 mbar

If using Dymola, turn off "Equidistant time grid" to avoid numerical errors.

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.HeatingSystem

Simple model of a heating system

Example

Information

Simple heating system with a closed flow cycle. It is set up for steady-state initial values. After 2000s of simulation time the valve fully opens. A simple idealized control is embedded into the respective components, so that the heating system can be regulated with the valve: the pump controls the pressure, the burner controls the temperature.

One can investigate the temperatures and flows for different settings of system.energyDynamics (see Assumptions tab of the system object). With

system.energyDynamics==Types.Dynamics.SteadyState all but one dynamic states are eliminated. The left state tank.m is to account for the closed flow cycle. It is constant as outflow and inflow are equal in a steady-state simulation.

Note that a closed flow cycle generally causes circular equalities for the mass flow rates and leaves the pressure undefined. This is why the tank.massDynamics, i.e. the tank level determining the port pressure, is modified locally to Types.Dynamics.FixedInitial.

Also note that the tank is thermally isolated againts its ambient. This way the temperature of the tank is also well defined for zero flow rate in the heating system, e.g. for valveOpening.offset=0 at the beginning of a simulation. The pipe however is assumed to be perfectly isolated. If steady-state values shall be obtained with the valve fully closed, then a thermal coupling between the pipe and its ambient should be defined as well.

Moreover it is worth noting that the idealized direct connection between the heater and the pipe, resulting in equal port pressures, is treated as high-index DAE, as opposed to a nonlinear equation system for connected pressure loss correlations. A pressure loss correlation could be additionally introduced to model the fitting between the heater and the pipe, e.g. to adapt different diameters.

Extends from Modelica.lcons.Example (Icon for an example model).

Parameters

Туре	Name	Description
replaceable package Medium		

Connectors

Туре	Name	Description
replaceable package Medium		

Examples.DrumBoiler

Drum boiler example, see Franke, Rode, Krueger: On-line Optimization of Drum Boiler Startup, 3rd **International Modelica Conference, Linkoping, 2003**

Package Content

Name	Description
<u>DrumBoiler</u>	Complete drum boiler model, including evaporator and supplementary components
BaseClasses	Additional components for drum boiler example

Examples.DrumBoiler.DrumBoiler

Complete drum boiler model, including evaporator and supplementary components

drum boiler

Information

Extends from Modelica. Icons. Example (Icon for an example model).

Connectors

Туре	Name	Description
------	------	-------------

44 Examples.DrumBoiler.DrumBoiler

output RealOutput	T_S	
output RealOutput	p_S	
output RealOutput	qm_S	
output RealOutput	V_I	

Examples.DrumBoiler.BaseClasses

Additional components for drum boiler example

Package Content

Name	Description
EquilibriumDrumBoiler	Simple Evaporator with two states, see Astroem, Bell: Drum-boiler dynamics, Automatica 36, 2000, pp.363-378

Examples.DrumBoiler.BaseClasses.EquilibriumDrumBoiler

Simple Evaporator with two states, see Astroem, Bell: Drum-boiler dynamics, Automatica 36, 2000, pp.363-378

Information

Model of a simple evaporator with two states. The model assumes two-phase equilibrium inside the component; saturated steam goes out of the steam outlet.

References: Astroem, Bell: Drum-boiler dynamics, Automatica 36, 2000, pp.363-378

Extends from Interfaces.PartialTwoPort (Partial component with two ports).

Parameters

Туре	Name	Description		
replaceable package Medium		Medium in the component		
Mass	m_D	mass of surrounding drum metal [kg]		
SpecificHeatCapacity	cp_D	specific heat capacity of drum metal [J/(kg.K)]		
Volume	V_t	total volume inside drum [m3]		
Assumptions	Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
Dynamics				
<u>Dynamics</u>	energyDynamics	Formulation of energy balance		
<u>Dynamics</u>	massDynamics	Formulation of mass balance		
Initialization				
AbsolutePressure	p_start	Start value of pressure [Pa]		
Volume	V_I_start	Start value of liquid volumeStart value of volume [m3]		

Connectors

Туре	Name	Description
replaceable package Medium		Medium in the component
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)

FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
HeatPort_a	heatPort	
output RealOutput	V	liquid volume

Examples.Tanks

Library demonstrating the usage of the tank model

Package Content

Name	Description
<u>ThreeTanks</u>	Demonstrating the usage of SimpleTank
<u>TanksWithOverflow</u>	Two tanks connected with pipes at different heights
<u>EmptyTanks</u>	Show the treatment of empty tanks

Examples.Tanks.ThreeTanks

Demonstrating the usage of SimpleTank

Information

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.Tanks.TanksWithOverflow

Two tanks connected with pipes at different heights

Example

Information

The mass flow rate to the upper tank is controlled by the static pressure at its bottom. The fluid flows through a pipe and forced by different heights from the upper tank to the lower tank.

Additional fluid flows through an overflow pipe if the level of the upper tank exceeds 10m. Initially the overflow enters the lower tank above its fluid level; later on the fluid level exceeds the overflow port.

Note that the number of solver intervals has been increased, accounting for the long simulation time horizon. Otherwise the simulation may fail due to too large steps subject to events. Alternatively the simulation accuracy could be increased in order to avoid errors.

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.Tanks.EmptyTanks

Show the treatment of empty tanks

Information

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.ControlledTankSystem

Tank system with controller, start/stop/shut operation and diagram animation

Package Content

Name	Description
<u>ControlledTanks</u>	Demonstrating the controller of a tank filling/emptying system
<u>Utilities</u>	

$\underline{Examples.ControlledTankSystem}. ControlledTanks$

Demonstrating the controller of a tank filling/emptying system

Example

Information

With this example, the controller of a tank filling/emptying system is demonstrated.

The basic operation is to fill and empty the two tanks:

1. Valve 1 is opened and tank 1 is filled.

48 Examples.ControlledTankSystem.ControlledTanks

- 2. When tank 1 reaches its fill level limit, valve 1 is closed.
- 3. After a waiting time, valve 2 is opened and the fluid flows from tank 1 into tank 2.
- 4. When tank 1 reaches its minimum level, valve 2 is closed.
- 5. After a waiting time, valve 3 is opened and the fluid flows out of tank 2
- 6. When tank 2 reaches its minimum level, valve 3 is closed

The above "normal" process can be influenced by three buttons:

- Button **start** starts the above process. When this button is pressed after a "stop" or "shut" operation, the process operation continues. .
- Button **stop** stops the above process by closing all valves. Then, the controller waits for further input (either "start" or "shut" operation).
- Button **shut** is used to shutdown the process, by emptying at once both tanks by opening valve 2 and valve 3. When this is achieved, the process goes back to its start configuration where all 3 valves are closed. Clicking on "start", restarts the process.

The demo-run uses the following button presses:

- Button start pressed at 20 s.
- Button stop pressed at 220 s
- Button start pressed at 280 s
- Button **stop** pressed at 650 s
- Button shut pressed at 700 s
- Simulate for 900 s

This example is based on

Dressler I. (2004):

Code Generation From JGrafchart to Modelica. Master thesis, supervisor: Karl-Erik Arzen, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, March 30, 2004

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.ControlledTankSystem.Utilities

Package Content

Name	Description	
TankController	Controller for tank system	
NormalOperation NormalOperation	Normal operation of tank system (button start pressed)	
RadioButton	Button that sets its output to true when pressed and is reset when an element of 'reset' becomes true	

$\underline{\textbf{Examples}.\textbf{ControlledTankSystem}.\textbf{Utilities}}.\textbf{TankController}$

Controller for tank system

Type Name	Description
-----------	-------------

Height	maxLevel	Fill level of tank 1 [m]
Height	minLevel	Lowest level of tank 1 and 2 [m]
Time	waitTime	Wait time, between operations [s]

Connectors

Туре	Name	Description
input BooleanInput	start	
input BooleanInput	stop	
input BooleanInput	shut	
input RealInput	level1	
input RealInput	level2	
output BooleanOutput	valve1	
output BooleanOutput	valve2	
output BooleanOutput	valve3	

Examples.ControlledTankSystem.Utilities.NormalOperation

Normal operation of tank system (button start pressed)

Information

Extends from Modelica. StateGraph. PartialCompositeStep (Superclass of a subgraph, i.e., a composite step that has internally a StateGraph).

Parameters

Туре	Name	Description	
Height	maxLevel	Fill level of tank 1 [m]	
Height	minLevel	Lowest level of tank 1 and 2 [m]	
Time	waitTime	Wait time between operations [s]	
Excepti	Exception connections		
Integer	nSuspend	Number of suspend ports	
Integer	nResume	Number of resume ports	

Connectors

Туре	Name	Description
Step_in	inPort	
Step_out	outPort	
CompositeStep_suspend	suspend[nSuspend]	
CompositeStep_resume	resume[nResume]	
input RealInput	level1	

$\underline{\textbf{Examples.} \textbf{ControlledTankSystem.} \textbf{Utilities}}. \textbf{RadioButton}$

Button that sets its output to true when pressed and is reset when an element of 'reset' becomes true

Information

Parameters

Type	Name	Description
Time	e buttonTimeTable[:] Time instants where button is pressend [s]	
Time varying expressions		
Boolean	reset[:]	Reset button to false, if an element of reset becomes true

Connectors

Туре	Name	Description
output BooleanOutput	on	

Examples.AST_BatchPlant

Model of the experimental batch plant at Process Control Laboratory at University of Dortmund (Prof. Engell)

Information

The process under consideration is an evaporation plant for a student lab at the Process Control Laboratory (AST) of the University of Dortmund that evaporates a water sodium chloride mixture so that a higher concentrated solution is produced. The task of the students is to learn how to program the process control system. A picture of the batch plant is shown in the figure below.

The flow sheet diagram is shown in the next figure.

Pure water from tank B1 and concentrated sodium chloride solution from tank B2 are mixed in a mixing tank B3. After buffering in tank B4 the mixture flows to the evaporator B5. Here the water sodium chloride mixture is evaporated until the desired con-centration is reached. The steam is condensed in the condenser K1 and cooled afterwards in the cooling tank B6. The concentrated solution is also led to a cooling tank B7. The cooled fluids are pumped back to the charging vessels by the pumps P1 and P2. Be-tween the tanks several valves are present that are regulated by a central control system.

Package Content

Name	Description
BatchPlant_StandardWater	
<u>BaseClasses</u>	
<u>Test</u>	Test of used tank models

$\underline{\textbf{Examples.AST_BatchPlant}}. \textbf{BatchPlant_StandardWater}$

Information

54 Examples.AST BatchPlant.BatchPlant StandardWater

Extends from Modelica.lcons.Example (Icon for an example model).

Parameters

Туре	Name	Description
replaceable package BatchMedium		Component media
Length	pipeDiameter	[m]

Connectors

Туре	Name	Description
replaceable package BatchMedium Component media		

Examples.AST_BatchPlant.BaseClasses

Package Content

Name	Description
TriggeredTrapezoid	Triggered trapezoid generator
<u> ■ setReal</u>	Set output signal to a time varying Real expression
TankWith3InletOutletArraysWithEvaporatorCondensor	Tank with Heating and Evaporation
InnerTank	
Controller	
ControllerUtilities	
<u>Init</u>	Enumeration to define initialization options
<u>TankWithTopPorts</u>	Tank with inlet/outlet ports and with inlet ports at the top

Examples.AST_BatchPlant.BaseClasses.TriggeredTrapezoid

Triggered trapezoid generator

Information

The block TriggeredTrapezoid has a boolean input and a real output signal and requires the parameters amplitude, rising, falling and offset. The output signal **y** represents a trapezoidal signal dependent on the input signal **u**.

The behaviour is as follows: Assume the initial input to be false. In this case, the output will be *offset*. After a rising edge (i.e. the input changes from false to true), the output is rising during *rising* to the sum of *offset* and *amplitude*. In contrast, after a falling edge (i.e. the input changes from true to false), the output is falling during *falling* to a value of *offset*.

Note, that the case of edges before expiration of rising or falling is handled properly.

Extends from Modelica.Blocks.Interfaces.partialBooleanBlockIcon (Basic graphical layout of logical block).

Туре	Name	Description

Real	amplitude	Amplitude of trapezoid
Time	rising	Rising duration of trapezoid [s]
Time	falling	Falling duration of trapezoid [s]
Real	offset	Offset of output signal

Connectors

Туре	Name	Description
input BooleanInput	u	Connector of Boolean input signal
output RealOutput	у	Connector of Real output signal
output BooleanOutput	y_high	

Examples.AST_BatchPlant.BaseClasses.setReal

Set output signal to a time varying Real expression

Information

Parameters

Type Name Description				
Time varying input signal				
RealInput u Set value of Real input				

Connectors

Type Name Description				
Time varying input signal				
input RealInput u Set value of Real input				

Examples.AST_BatchPlant.BaseClasses.TankWith3InletOutletArraysWithEvaporatorCon densor

Tank with Heating and Evaporation

Information

This tank has the same geometric variables as TankWith3InletOutletArrays plus the feature of a HeatPort and the possibility of evaporation. (Assumption: The gas is condensed emidiatly afterwards so that a liquid boiling fluid is created.)

The tank can be initialized with the following options:

- GuessValues: no explicit initial conditions
- InitialValues: initial values of temperature (or specific enthalpy), composition and level are specified
- SteadyStateHydraulic: initial values of temperature (or specific enthalpy) and composition are specified; the initial level is determined so that levels and pressure are at steady state.

Full steady state initialization is not supported, because the corresponding intial equations for temperature/enthalpy are undetermined (the flow rate through the port at steady state is zero).

Type Name Description

56 Examples.AST_BatchPlant.BaseClasses.TankWith3InletOutletArraysWithEvaporatorCondensor

Area	crossArea	Tank area [m2]
Area	top_pipeArea[n_TopPorts]	Area of outlet pipe [m2]
Area	side_pipeArea[n_SidePorts]	Area of outlet pipe [m2]
Area	bottom_pipeArea[n_BottomPorts]	Area of outlet pipe [m2]
Height	height	Height of Tank [m]
Volume	V0	Volume of the liquid when the level is zero [m3]
Real	side_heights[n_SidePorts]	
Real	bottom_heights[n_BottomPorts]	
Real	top_heights[n_TopPorts]	
AbsolutePressure	p_ambient	Tank surface pressure [Pa]
Temperature	T_ambient	Tank surface Temperature [K]
Integer	n_TopPorts	number of Top connectors
Integer	n_SidePorts	number of side connectors
Integer	n_BottomPorts	number of bootom connectors
Real	min_level_for_heating	
Initialization		
Height	level_start	Initial tank level [m]
<u>Init</u>	initType	Initialization option
Boolean	use_T_start	Use T_start if true, otherwise h_start
Temperature	T_start	Start value of temperature [K]
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]

Connectors

Туре	Name	Description
FluidPort_b	BottomFluidPort[n_BottomPorts]	
FluidPort_a	TopFluidPort[n_TopPorts]	
FluidPort_b	SideFluidPort[n_SidePorts]	
FluidPort_b	Condensed	
HeatPort_a	heatPort	

$\underline{\textbf{Examples}.\textbf{AST}_\textbf{BatchPlant}.\textbf{BaseClasses}}.\textbf{InnerTank}$

Parameters

Туре	Name	Description
MassFraction	Xi[Medium.nXi]	Actual mass fractions of fluid in tank [kg/kg]

Connectors

Type	Name	Description
FluidPort_a	port	

•

Examples.AST_BatchPlant.BaseClasses.Controller

Parameters

Туре	Name	Description
Real	w_dilution	
Real	w_concentrate	
Real	startTime	
Real	T5_batch_level	

Connectors

Туре	Name	Description
Port_Sensors	sensors	
Port Actuators	actuators	

Examples.AST_BatchPlant.BaseClasses.ControllerUtilities

Package Content

Name	Description
Adapter_Inference	
Adapter_Superposition	
► Block_Recipe_TBD	
■ BlockMain	
Buffer_Recipe_TBD	
<u>BufferMain</u>	
Port_Actuators	
Port_IdleTanks	
Port_Sensors	

 $\underline{\textbf{Examples.AST_BatchPlant.BaseClasses.ControllerUtilities}}. Adapter_Inference$

 $\underline{\textbf{Examples.AST_BatchPlant.BaseClasses.ControllerUtilities}}. Adapter_Superposition$

 $\underline{Examples.AST_BatchPlant.BaseClasses.ControllerUtilities}.Block_Recipe_TBD$

Type	Name	Description
Real	startTime	
Real	w_dilution	
Real	w_concentrat	
Real	T3_batch_level	

58 Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Block_Recipe_TBD

Real T5_batch_level	
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.BlockMain	
Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Buffer_Recipe_TBD	

 $\underline{Examples. AST_BatchPlant. BaseClasses. Controller Utilities}. Buffer Main$

<u>Examples.AST_BatchPlant.BaseClasses.ControllerUtilities</u>.Port_Actuators

Contents

<u>Examples.AST_BatchPlant.BaseClasses.ControllerUtilities</u>.Port_IdleTanks

Contents

Type	Name	Description
Boolean	T5_idle	
Boolean	T7_idle	

Examples.AST_BatchPlant.BaseClasses.ControllerUtilities.Port_Sensors

Contents

Туре	Name	Description
Real	LIS_301	
Real	QI_302	
Real	LIS_501	
Real	QIS_502	
Real	TI_503	
Real	LIS_601	
Real	TIS_602	
Real	LIS_701	
Real	TIS_702	

Examples.AST_BatchPlant.BaseClasses.Init

Enumeration to define initialization options

Information

Integer type that can have the following values (to be selected via choices menu):

Types.Init.	Meaning
GuessValues	GuessValues Guess values (not fixed) for p, T or h, X, C
InitialValues	Initial values for p, T or h, X, C
SteadyStateMomentum	Steady state momentum
SteadyStateHydraulic	Hydraulic steady state (der(p)=0), guess value for p, initial values for T or h, X, C
SteadyState	Steady state (guess values for p, T or h, X, C)

Examples.AST_BatchPlant.BaseClasses.TankWithTopPorts

Tank with inlet/outlet ports and with inlet ports at the top

Information

Model of a tank that is open to the environment at the fixed pressure p ambient. The tank is filled with a single or multiple-substance liquid, assumed to have uniform temperature and mass fractions.

At the top of the tank over the maximal fill level **height** a vector of FluidPorts, called **topPorts**, is present. The assumption is made that fluid flows always in to the tank via these ports (and never back in to the

connector).

The vector of connectors **ports** are fluid ports at the bottom and side of the tank at a defineable height. Fluid can flow either out of or in to this port. The fluid level of the tank may be below one of these ports. This case is approximated by introducing a large pressure flow coefficient so that the mass flow rate through this port is very small in this case.

If the tank starts to over flow (i.e., level > height), an assertion is triggered.

When the diagram layer is open in the plot environment, the level of the tank is dynamically visualized. Note, the speed of the diagram animation in Dymola can be set via command **animationSpeed()**, e.g., animationSpeed(speed = 10)

Extends from Interfaces.PartialLumpedVolume (Lumped volume with mass and energy balance).

Туре	Name	Description	
Height	height	Maximum level of tank before it overflows [m]	
Area	crossArea	Area of tank [m2]	
Volume	V0	Volume of the liquid when level = 0 [m3]	
replaceable packa	ge Medium	Medium in the component	
Volume	fluidVolume	Volume [m3]	
<u>VesselPortsData</u>	portsData[nPorts]	Data of inlet/outlet ports at side and bottom of tank	
Assumptions			
Ambient			
AbsolutePressure	p_ambient	Tank surface pressure [Pa]	
Temperature	T_ambient	Tank surface Temperature [K]	
Dynamics	Dynamics		
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer			
Boolean	use_HeatTransfer	= true to use the HeatTransfer model	
Initialization			
Height	level_start	Start value of tank level [m]	
AbsolutePressure	p_start	Start value of pressure [Pa]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
Advanced			
Port properties			
Real	hysteresisFactor	Hysteresis for empty pipe = diameter*hysteresisFactor	
Boolean	stiffCharacteristicForEmptyPort	=true, if steep pressure loss characteristic for empty pipe port	
Real	zetaLarge	Large pressure loss factor if mass flows out of empty pipe port	
MassFlowRate	m_flow_small	Regularization range at zero mass flow rate [kg/s]	

Connectors

Туре	Name	Description
VesselFluidPorts_		Inlet ports over height at top of tank (fluid flows only from the port in to the tank)
<u>a</u>	Ortsj	lie laik)
VesselFluidPorts_b		inlet/outlet ports at bottom or side of tank (fluid flows in to or out of port; a port might be above the fluid level)
HeatPort_a	heatPort	

Examples.AST_BatchPlant.Test

Test of used tank models

Package Content

Name	Description
<u>OneTank</u>	Tank with one time-varying top inlet mass flow rate and a bottom outlet into the ambient
<u>TwoTanks</u>	
TankWithEmptyingPipe1	Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient
TankWithEmptyingPipe2	Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient
TanksWithEmptyingPipe1	Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient
TanksWithEmptyingPipe2	Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient

Examples.AST_BatchPlant.Test.OneTank

Tank with one time-varying top inlet mass flow rate and a bottom outlet into the ambient

Examples.AST_BatchPlant.Test.TwoTanks

Parameters

Type	Name	Description
Boolean	stiffCharacteristicForEmptyPort	

Examples.AST_BatchPlant.Test.TankWithEmptyingPipe1

Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient

Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2

Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient

Examples.AST_BatchPlant.Test.TanksWithEmptyingPipe1

Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient

Examples.AST BatchPlant.Test.TanksWithEmptyingPipe2

Demonstrates a tank with one constant top inlet mass flow rate and a bottom outlet into the ambient

Parameters

Туре	Name	Description
Boolean	stiffCharacteristicForEmptyPort	

Examples.IncompressibleFluidNetwork

Multi-way connections of pipes and incompressible medium model

Information

This example demonstrates two aspects: the efficient treatment of multi-way connections and the usage of an incompressible medium model.

Normally one would expect bad equation systems in multi-way connections and possibly introduce mixing volumes to work around this. Here the problem is treated with the the modelStructure=av vb in the DynamicPipe model. Each pipe exposes the states of the outer fluid segments to the respective fluid ports. Consequently the pressures of all connected pipe segments get lumped together into one mass balance spanning the whole connection set. With the stream concept in the fluid ports, the energy and substance balances remain independent in the connected pipe segments.

The model does not contain pressure dynamics as an incompressible medium is used (Essotherm650). Pressure dynamics becomes present with a compressible medium model (e.g. StandardWater).

Extends from Modelica. Icons. Example (Icon for an example model).

Parameters

Туре	Name	Description
replaceable package Medium		

Connectors

Туре	Name	Description
replaceable package Medium		

Examples.BranchingDynamicPipes

Multi-way connections of pipes with dynamic momentum balance, pressure wave and flow reversal

Information

This model demonstrates the use of distributed pipe models with dynamic energy, mass and momentum balances. At time=2s the pressure of boundary4 jumps, which causes a pressure wave and flow reversal.

Change system.momentumDynamics on the Assumptions tab of the system object from DynamicFreeInitial to SteadyState, in order to assume a steady-state momentum balance. This is the default for all models of the library.

Change the Medium from MoistAir to StandardWater, in order to investigate a medium with significantly different density. Note the static head caused by the elevation of the pipes.

Note, pipe4.modelStructure = av_b, i.e., the pipe has no volume at port_b. It is not possible to have a volume at port_b, since otherwise the pressure of the volume is defined by the connected boundary source. This in turn means that the derivative of the pressure of the boundary source is needed, since the volume requires this derivative. It is, however, not possible to compute this derivative because the input pressure is changing disontinuously and its derivative would be a dirac impulse.

Extends from Modelica. Icons. Example (Icon for an example model).

Parameters

Туре	Name	Description
replaceable package Medium		

Connectors

Туре	Name	Description
replaceable package Medium		

Examples.HeatExchanger

Demo of a heat exchanger model

Package Content

Name	Description
<u>HeatExchangerSimulation</u>	simulation for the heat exchanger model
<u>BaseClasses</u>	Additional models for heat exchangers

Examples.HeatExchanger.HeatExchangerSimulation

simulation for the heat exchanger model

Information

Extends from Modelica.Icons.Example (Icon for an example model).

Parameters

Т	уре	Name	Description
replaceable package Medium			

Connectors

Туре	Name	Description
replaceable package Medium		

Examples.HeatExchanger.BaseClasses

Additional models for heat exchangers

Package Content

Name	Description
------	-------------

-	Simple heat exchanger model
<u> WallConstProps</u>	Pipe wall with capacitance, assuming 1D heat conduction and constant material properties

Examples.HeatExchanger.BaseClasses.BasicHX

Simple heat exchanger model

Information

Simple model of a heat exchanger consisting of two pipes and one wall in between. For both fluids geometry parameters, such as heat transfer area and cross section as well as heat transfer and pressure drop correlations may be chosen. The flow scheme may be concurrent or counterflow, defined by the respective flow directions of the fluids entering the component. The design flow direction with positive m_flow variables is counterflow.

Туре	Name	Description	
Integer	nNodes	Spatial segmentation	
Length	length	Length of flow path for both fluids [m]	
Length	s_wall	Wall thickness [m]	
Fluid 1			
Area	crossArea_1	Cross sectional area [m2]	
Length	perimeter_1	Flow channel perimeter [m]	
Area	area_h_1	Heat transfer area [m2]	
Length	roughness_1	Absolute roughness of pipe (default = smooth steel pipe) [m]	
Fluid 2			
Area	crossArea_2	Cross sectional area [m2]	
Length	perimeter_2	Flow channel perimeter [m]	
Area	area_h_2	Heat transfer area [m2]	
Length	roughness_2	Absolute roughness of pipe (default = smooth steel pipe) [m]	
Solid material properti	es		
Density	rho_wall	Density of wall material [kg/m3]	
SpecificHeatCapacity	c_wall	Specific heat capacity of wall material [J/(kg.K)]	
ThermalConductivity	k_wall	Thermal conductivity of wall material [W/(m.K)]	
Assumptions			
Boolean	allowFlowReversal	allow flow reversal, false restricts to design direction (port_a -> port_b)	
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance, if pressureLoss options available	
Initialization			
Wall			
Temperature	Twall_start	Start value of wall temperature [K]	

Temperature	dT	Start value for pipe_1.T - pipe_2.T [K]
Boolean	use_T_start	Use T_start if true, otherwise h_start
Fluid 1		
AbsolutePressure	p_a_start1	Start value of pressure [Pa]
AbsolutePressure	p_b_start1	Start value of pressure [Pa]
Temperature	T_start_1	Start value of temperature [K]
SpecificEnthalpy	h_start_1	Start value of specific enthalpy [J/kg]
MassFraction	X_start_1[Medium_1.n X]	Start value of mass fractions m_i/m [kg/kg]
MassFlowRate	m_flow_start_1	Start value of mass flow rate [kg/s]
Fluid 2		
AbsolutePressure	p_a_start2	Start value of pressure [Pa]
AbsolutePressure	p_b_start2	Start value of pressure [Pa]
Temperature	T_start_2	Start value of temperature [K]
SpecificEnthalpy	h_start_2	Start value of specific enthalpy [J/kg]
MassFraction	X_start_2[Medium_2.n X]	Start value of mass fractions m_i/m [kg/kg]
MassFlowRate	m_flow_start_2	Start value of mass flow rate [kg/s]

Connectors

Туре	Name	Description
FluidPort_b	port_b1	
FluidPort_a	port_a1	
FluidPort_b	port_b2	
FluidPort_a	port_a2	

Examples.HeatExchanger.BaseClasses.WallConstProps

Pipe wall with capacitance, assuming 1D heat conduction and constant material properties

Information

Simple model of circular (or any other closed shape) wall to be used for pipe (or duct) models. Heat conduction is regarded one dimensional, capacitance is lumped at the arithmetic mean temperature. The spatial discretization (parameter n) is meant to correspond to a connected fluid model discretization.

Туре	Name	Description
Integer	n	Segmentation perpendicular to heat conduction
Length	S	Wall thickness [m]
Area	area_h	Heat transfer area [m2]
Density	rho_wall	Density of wall material [kg/m3]
SpecificHeatCapacity	c_wall	Specific heat capacity of wall material [J/(kg.K)]
ThermalConductivity	k_wall	Thermal conductivity of wall material [W/(m.K)]
Mass	m[n]	Distribution of wall mass [kg]
Temperature	T_start	Wall temperature start value [K]

68 Examples.HeatExchanger.BaseClasses.WallConstProps

Temperature	dT	Start value for port_b.T - port_a.T [K]
Assumptions		
Dynamics		
<u>Dynamics</u>	energyDynamics	Formulation of energy balance

Connectors

Туре	Name	Description
HeatPort_a	heatPort_a[n]	Thermal port
HeatPort_a	heatPort_b[n]	Thermal port

Examples.TraceSubstances

Library demonstrating the usage of trace substances

Package Content

Name	Description
RoomCO2	Demonstrates a room volume with CO2 accumulation
RoomCO2WithControls	Demonstrates a room volume with CO2 controls

Examples.TraceSubstances.RoomCO2

Demonstrates a room volume with CO2 accumulation

Information

This example consists of a volume with a carbon dioxide concentration that corresponds to about 1000 PPM. There is a fresh air stream with a carbon dioxide concentration of about 300 PPM. The fresh air stream is such that the air exchange rate is about 5 air changes per hour. After 1 hour of ventilation, the volume's carbon dioxide concentration is close to the concentration of the fresh air.

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.TraceSubstances.RoomCO2WithControls

Demonstrates a room volume with CO2 controls

Information

This example illustrates a room volume with a CO2 source and a fresh air supply with feedback control. The CO2 emission rate is proportional to the room occupancy, which is defined by a schedule. The fresh air flow rate is controlled such that the room CO2 concentration does not exceed 1000 PPM (=1.519E-3 kg/kg). The fresh air has a CO2 concentration of 300 PPM which corresponds to a typical CO2 concentration in the outside air.

The CO2 emission from the occupants is implemented as a mass flow source. Depending on the activity and size, a person emits about 8.18E-6 kg/s CO2. In the model, this value is multiplied by the number of occupants. Since the mass flow rate associate with the CO2 source model contributes to the volume's energy balance, this mass flow rate should be kept small. Thus, in the source model, we set the CO2 concentration to $C=\{100\}\ kg/kg$, and scaled the mass flow rate using

m flow =
$$1/100 * nPeo * 8.18E-6 kg/(s*person)$$

where nPeo is the number of people in the room. This results in a mass flow rate that is about 5 orders of magnitudes smaller than the supply air flow rate, and hence its contribution to the volume's energy balance is negligible.

Extends from Modelica. Icons. Example (Icon for an example model).

Examples.InverseParameterization

Demonstrates the parameterization of a pump and a pipe for given nominal values

Information

A pump, an orifice and two pipes are parameterized with simple nominal values. Note that pipe1 and pipe2 use the flowModel NominalTurbulentFlow and NominalLaminarFlow, respectively, which do not require the specification of geometry data. Instead pathLengths_nominal are obtained internally for given nominal pressure loss and nominal mass flow rate.

The pump controls a pressure ramp from 1.9 bar to 2.1 bar. This causes an appropriate ramp on the mass flow rate of the orifice, which has a boundary pressure of 1 bar. Flow reversal occurs in the pipes, which have a boundary pressure of 2 bar. The Command plotResults can be used to see the pump speed N, which is controlled ideally to obtain the pressure ramp. Moreover the internally obtained nominal design values that fulfill the nominal operating conditions as well as the Reynolds number, m_flows_turbulent, and dps fg turbulent are plotted.

Note that the large value for pipe2.flowModel.pathLengths_nominal[1] is only meaningful under the made assumption of laminar flow, which is hardly possible for a real pipe.

Once the geometries have been designed, the NominalTurbulentPipeFlow correlations can easily be replaced with TurbulentPipeFlow or DetailedPipeFlow correlations. Similarily the ControlledPump can be replaced with a PrescribedPump to investigate a real controller or with a Pump with rotational shaft to investigate inertia effects.

Extends from Modelica. Icons. Example (Icon for an example model).

Туре	Name	Description
replaceable package Medium		

Connectors

Туре	Name	Description
replaceable package Medium		

Examples. Explanatory

A set of examples illustrating when special attention has to be paid

Package Content

Name	Description
MomentumBalanceFittings	Illustrating a case in which kinetic terms play a major role in the momentum balance

Examples. Explanatory. Momentum Balance Fittings

Illustrating a case in which kinetic terms play a major role in the momentum balance

Information

This example shows the use of a sudden expansion / contraction model, which is connected to two boundary conditions prescribing static pressure. Notice that the prescribed static pressure on the right boundary is higher than on the left one. Still, the fluid flows from left to right.

The reason for this is that the boundary conditions model infinite reservoirs with an infinite diameter and thus zero flow velocity. The sudden expansion model does however have two ends with finite diameters, and, as explained in the Overview of the Users' Guide, the momentum balance is not fulfilled exactly for this type of connections. Using a simple connect () -statement, the difference of the kinetic terms is neglected, which is not reasonable in the present model: At the left boundary condition it is zero, and on the left side of the sudden expansion it has a non-zero value. It is not reasonable to neglect it in the shown model, because there is little friction and therefore these kinetic effects dominate. Consequently, only modelling these effects explicitly leads to the correct results.

To do so, two additional sudden expansions / contractions are included in the model. The diameter is set to inf close to the boundaries and the proper values close to the original model. These additional components now introduce exact momentum balances and the results are as expected.

The total pressures offer an additional perspective on the model. After setting the parameter show totalPressures on the Advanced tab of the AbruptAdaptors to true, the total pressures are included in said models and may be plotted. This allows to confirm that the total pressure always reduces along the flow direction, even in the upper model.

Extends from Modelica. Icons. Example (Icon for an example model).

Modelica_Fluid.System

System properties and default values (ambient, flow direction, initialization)

Information

A system component is needed in each fluid model to provide system-wide settings, such as ambient conditions and overall modeling assumptions. The system settings are propagated to the fluid models using the inner/outer mechanism.

A model should never directly use system parameters. Instead a local parameter should be declared, which uses the global setting as default. The only exception currently made is the gravity system.g.

Туре	Name	Description		
Environment	Environment			
AbsolutePressure	p_ambient	Default ambient pressure [Pa]		
Temperature	T_ambient	Default ambient temperature [K]		
Acceleration	g	Constant gravity acceleration [m/s2]		
Assumptions				
Boolean	allowFlowReversal	<pre>= false to restrict to design flow direction (port_a -> port_b)</pre>		
Dynamics				
<u>Dynamics</u>	energyDynamics	Default formulation of energy balances		
<u>Dynamics</u>	massDynamics	Default formulation of mass balances		
<u>Dynamics</u>	momentumDynamics	Default formulation of momentum balances, if options available		
Initialization				

MassFlowRate	m_flow_start	Default start value for mass flow rates [kg/s]
AbsolutePressure	p_start	Default start value for pressures [Pa]
Temperature	T_start Default start value for temperatures [K]	
Advanced		
MassFlowRate	m flow email	Default small laminar mass flow rate for regularization of zero flow [kg/s]
AbsolutePressure		Default small pressure drop for regularization of laminar and zero flow [Pa]

Modelica Fluid. Vessels

Devices for storing fluid

Information

Extends from Icons. VariantLibrary (Icon for a library that contains several variants of one component).

Package Content

Name	Description
ClosedVolume	Volume of fixed size, closed to the ambient, with inlet/outlet ports
OpenTank	Simple tank with inlet/outlet ports
<u>BaseClasses</u>	Base classes used in the Vessels package (only of interest to build new component models)

Vessels.ClosedVolume

Volume of fixed size, closed to the ambient, with inlet/outlet ports

Information

Ideally mixed volume of constant size with two fluid ports and one medium model. The flow properties are computed from the upstream quantities, pressures are equal in both nodes and the medium model if use portsData=false. Heat transfer through a thermal port is possible, it equals zero if the port remains unconnected. A spherical shape is assumed for the heat transfer area, with V=4/3*pi*r^3, A=4*pi*r^2. Ideal heat transfer is assumed per default; the thermal port temperature is equal to the medium temperature.

If use portsData=true, the port pressures represent the pressures just after the outlet (or just before the inlet) in the attached pipe. The hydraulic resistances portsData.zeta in and portsData.zeta out determine the dissipative pressure drop between volume and port depending on the direction of mass flow. See VesselPortsData and [Idelchik, Handbook of Hydraulic Resistance, 2004].

Extends from Vessels.BaseClasses.PartialLumpedVessel (Lumped volume with a vector of fluid ports and replaceable heat transfer model).

Туре	Name	Description
replaceable package Medium		Medium in the component
Volume	fluidVolume	Volume [m3]
Volume	V	Volume [m3]

74 Vessels.ClosedVolume

Ports	Ports		
Boolean	use_portsData	= false to neglect pressure loss and kinetic energy	
<u>VesselPortsData</u>	portsData[nPorts]	Data of inlet/outlet ports	
Assumptions			
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer			
Boolean	use_HeatTransfer	= true to use the HeatTransfer model	
replaceable model	HeatTransfer	Wall heat transfer	
Initialization			
AbsolutePressure	p_start	Start value of pressure [Pa]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
MassFraction ExtraProperty		Start value of mass fractions m_i/m [kg/kg] Start value of trace substances	
		_ : 0 0:	
ExtraProperty		_ : 0 0:	

Connectors

Туре	Name	Description	
VesselFluidPorts_b	ports[nPorts]	Fluid inlets and outlets	
HeatPort_a	heatPort		

Vessels.OpenTank

Simple tank with inlet/outlet ports

Information

Model of a tank that is open to the ambient at the fixed pressure p ambient.

The vector of connectors **ports** represents fluid ports at configurable heights, relative to the bottom of tank. Fluid can flow either out of or in to each port.

The following assumptions are made:

- The tank is filled with a single or multiple-substance medium having a density higher than the density of the ambient medium.
- The fluid has uniform density, temperature and mass fractions
- No liquid is leaving the tank through the open top; the simulation breaks with an assertion if the liquid level growths over the height.

The port pressures represent the pressures just after the outlet (or just before the inlet) in the attached pipe. The hydraulic resistances portsData.zeta_in and portsData.zeta_out determine the dissipative pressure drop between tank and port depending on the direction of mass flow. See <u>VesselPortsData</u> and *[Idelchik, Handbook of Hydraulic Resistance, 2004]*.

With the setting use_portsData=false, the port pressure represents the static head at the height of the respective port. The relationship between pressure drop and mass flow rate at the port must then be

provided by connected components; Heights of ports as well as kinetic and potential energy of fluid enering or leaving are not taken into account anymore.

Extends from Vessels.BaseClasses.PartialLumpedVessel (Lumped volume with a vector of fluid ports and replaceable heat transfer model).

Parameters

Туре	Name	Description
Height	height	Height of tank [m]
Area	crossArea	Area of tank [m2]
replaceable packag	ge Medium	Medium in the component
Volume	fluidVolume	Volume [m3]
Ports		
Boolean	use_portsData	= false to neglect pressure loss and kinetic energy
<u>VesselPortsData</u>	portsData[nPorts]	Data of inlet/outlet ports
Assumptions		
Ambient		
AbsolutePressure	p_ambient	Tank surface pressure [Pa]
Temperature	T_ambient	Tank surface Temperature [K]
Dynamics		
<u>Dynamics</u>	energyDynamics	Formulation of energy balance
<u>Dynamics</u>	massDynamics	Formulation of mass balance
Heat transfer		
Boolean	use_HeatTransfer	= true to use the HeatTransfer model
replaceable model	HeatTransfer	Wall heat transfer
Initialization		
Height	level_start	Start value of tank level [m]
AbsolutePressure	p_start	Start value of pressure [Pa]
Boolean	use_T_start	= true, use T_start, otherwise h_start
Temperature	T_start	Start value of temperature [K]
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]
ExtraProperty	C_start[Medium.nC]	Start value of trace substances
Advanced		
Port properties		
MassFlowRate	m_flow_small	Regularization range at zero mass flow rate [kg/s]

Connectors

Туре	Name	Description	
VesselFluidPorts_b	ports[nPorts]	Fluid inlets and outlets	
HeatPort_a	heatPort		

Vessels.BaseClasses

Base classes used in the Vessels package (only of interest to build new component models)

Package Content

Name	Description
• PartialLumpedVessel	Lumped volume with a vector of fluid ports and replaceable heat transfer model
HeatTransfer HeatTransfer	HeatTransfer models for vessels
<u> VesselPortsData</u>	Data to describe inlet/outlet ports at vessels: diameter Inner (hydraulic) diameter of inlet/outlet port height Height over the bottom of the vessel zeta_out Hydraulic resistance out of vessel, default 0.5 for small diameter mounted flush with the wall zeta_in Hydraulic resistance into vessel, default 1.04 for small diameter mounted flush with the wall
	Fluid connector with filled, large icon to be used for horizontally aligned vectors of FluidPorts (vector dimensions must be added after dragging)
VesselFluidPorts_b	Fluid connector with outlined, large icon to be used for horizontally aligned vectors of FluidPorts (vector dimensions must be added after dragging)

Vessels.BaseClasses.PartialLumpedVessel

Lumped volume with a vector of fluid ports and replaceable heat transfer model

.....

Information

This base class extends PartialLumpedVolume with a vector of fluid ports and a replaceable wall HeatTransfer model.

The following modeling assumption are made:

- · homogenous medium, i.e. phase seperation is not taken into account,
- no kinetic energy in the fluid, i.e. kinetic energy dissipates into the internal energy,
- · pressure loss definitions at vessel ports assume incompressible fluid,
- outflow of ambient media is prevented at each port assuming check valve behavior. If fluidlevel < portsData_height[i] and ports[i].p < vessel_ps_static[i] massflow at the port is set to 0.

Each port has a (hydraulic) diameter and a height above the bottom of the vessel, which can be configured using the portsData record. Alternatively the impact of port geometries can be neglected with use_portsData=false. This might be useful for early design studies. Note that this means to assume an infinite port diameter at the bottom of the vessel. Pressure drops and heights of the ports as well as kinetic and potential energy fluid entering or leaving the vessel are neglected then.

The following variables need to be defined by an extending model:

- input fluidVolume, the volume of the fluid in the vessel,
- vessel_ps_static[nPorts], the static pressures inside the vessel at the height of the corresponding ports, at zero flow velocity, and
- Wb_flow, work term of the energy balance, e.g. p*der(V) if the volume is not constant or stirrer power.

An extending model should define:

• parameter vesselArea (default: Modelica.Constants.inf m2), the area of the vessel, to be related to cross flow areas of the ports for the consideration of dynamic pressure effects.

Optionally the fluid level may vary in the vessel, which effects the flow through the ports at configurable portsData height[nPorts]. This is why an extending model with varying fluid level needs to define:

- input fluidLevel (default: 0m), the level the fluid in the vessel, and
- parameter fluidLevel max (default: 1m), the maximum level that must not be exceeded. Ports at or above fluidLevel_max can only receive inflow.

An extending model should not access the portsData record defined in the configuration dialog, as an access to portsData may fail for use portsData=false or nPorts=0. Instead the predefined variables

- portsData diameter[nPorts],
- portsData height[nPorts],
- portsData_zeta_in[nPorts], and
- portsData zeta out[nPorts]

should be used if these values are needed.

Extends from Interfaces.PartialLumpedVolume (Lumped volume with mass and energy balance).

Parameters

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Ports			
Boolean	use_portsData	= false to neglect pressure loss and kinetic energy	
<u>VesselPortsData</u>	portsData[nPorts]	Data of inlet/outlet ports	
Assumptions			
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer	Heat transfer		
Boolean	use_HeatTransfer	= true to use the HeatTransfer model	
Initialization			
AbsolutePressure	p_start	Start value of pressure [Pa]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
Advanced			
Port properties			
MassFlowRate	m_flow_small	Regularization range at zero mass flow rate [kg/s]	

Connectors

Туре	Name	Description
VesselFluidPorts_b	ports[nPorts]	Fluid inlets and outlets
HeatPort_a	heatPort	

Vessels.BaseClasses.HeatTransfer

HeatTransfer models for vessels

Information

Heat transfer correlations for pipe models

Package Content

Name	Description
PartialVesselHeatTransfer	Base class for vessel heat transfer models
i dealheat transier	IdealHeatTransfer: Ideal heat transfer without thermal resistance
ConstantHeatTransfer	ConstantHeatTransfer: Constant heat transfer coefficient

Vessels.BaseClasses.HeatTransfer.PartialVesselHeatTransfer

Base class for vessel heat transfer models

•

Information

Base class for vessel heat transfer models.

Extends from Interfaces.PartialHeatTransfer (Common interface for heat transfer models).

Parameters

Туре	Name	Description
Ambient		
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]
Temperature	T_ambient	Ambient temperature [K]
Internal Interface		
replaceable package Medium		Medium in the component
Integer	n	Number of heat transfer segments
Boolean	use_k	= true to use k value for thermal isolation

Connectors

Type	Name	Description		
HeatPorts_a	heatPorts[n]	Heat port to component boundary		

Vessels.BaseClasses.HeatTransfer.IdealHeatTransfer

IdealHeatTransfer: Ideal heat transfer without thermal resistance

Information

Ideal heat transfer without thermal resistance.

Extends from PartialVesselHeatTransfer (Base class for vessel heat transfer models).

Parameters

Type Name		Description	
Ambient			

Modelica_Fluid Library 1.0 (January 2009)

CoefficientOfHeatTransfer k		Heat transfer coefficient to ambient [W/(m2.K)]		
Temperature	T_ambient	Ambient temperature [K]		
Internal Interface				
replaceable package Medium		Medium in the component		
Integer n		Number of heat transfer segments		
Boolean use_k		= true to use k value for thermal isolation		

Connectors

Туре	Name	Description		
HeatPorts_a	heatPorts[n]	Heat port to component boundary		

Vessels.BaseClasses.HeatTransfer.ConstantHeatTransfer

ConstantHeatTransfer: Constant heat transfer coefficient

Information

Simple heat transfer correlation with constant heat transfer coefficient.

Extends from PartialVesselHeatTransfer (Base class for vessel heat transfer models).

Parameters

Type Name		Description		
CoefficientOfHeatTransfer alpha0		constant heat transfer coefficient [W/(m2.K)]		
Ambient				
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]		
Temperature	T_ambient	Ambient temperature [K]		
Internal Interface				
replaceable package Medium		Medium in the component		
Integer	n Number of heat transfer segments			
Boolean	use_k	= true to use k value for thermal isolation		

Connectors

Type Name		Description		
<u>HeatPorts_a</u>	heatPorts[n]	Heat port to component boundary		

Vessels.BaseClasses.VesselPortsData

Data to describe inlet/outlet ports at vessels: diameter -- Inner (hydraulic) diameter of inlet/outlet port height -- Height over the bottom of the vessel zeta_out -- Hydraulic resistance out of vessel, default 0.5 for small diameter mounted flush with the wall zeta_in -- Hydraulic resistance into vessel, default 1.04 for small diameter mounted flush with the wall

Information

Vessel Port Data

This record describes the **ports** of a **vessel**. The variables in it are mostly self-explanatory (see list below);

only the ζ loss factors are discussed further. All data is quoted from Idelchik (1994).

Outlet Coefficients

If a straight pipe with constant cross section is mounted flush with the wall, its outlet pressure loss coefficient will be $\zeta = 0.5$ (Idelchik, p. 160, Diagram 3-1, paragraph 2).

If a straight pipe with constant cross section is mounted into a vessel such that the entrance into it is at a distance b from the wall (inside) the following table can be used. Herein, δ is the tube wall thickness (Idelchik, p. 160, Diagram 3-1, paragraph 1).

			b / D_hyd				
		0.000	0.005	0.020	0.100	0.500-∞	
δ / D_hyd	0.000	0.50	0.63	0.73	0.86	1.00	
	0.008	0.50	0.55	0.62	0.74	0.88	
	0.016	0.50	0.51	0.55	0.64	0.77	
	0.024	0.50	0.50	0.52	0.58	0.68	
	0.040	0.50	0.50	0.51	0.51	0.54	

Pressure loss coefficients for outlets, entrance at a distance from wall

If a straight pipe with a circular bellmouth inlet (collector) without baffle is mounted flush with the wall then its pressure loss coefficient can be established from the following table. Herein, r is the radius of the bellmouth inlet surface (Idelchik, p. 164 f., Diagram 3-4, paragraph b)

			r/D	_hyd		
						≥0.20
ζ	0.44	0.31	0.22	0.15	0.06	0.03

Pressure loss coefficients for outlets, bellmouth flush with wall

If a straight pipe with a circular bellmouth inlet (collector) without baffle is mounted at a distance from a wall then its pressure loss coefficient can be established from the following table. Herein, r is the radius of the bellmouth inlet surface (Idelchik, p. 164 f., Diagram 3-4, paragraph a)

			r/D	_hyd		
	0.01	0.03	0.05	0.08	0.16	≥0.20
ζ	0.87	0.61	0.40	0.20	0.06	0.03

Pressure loss coefficients for outlets, bellmouth at a distance of wall

Inlet Coefficients

If a straight pipe with constant circular cross section is mounted flush with the wall, its vessel inlet pressure loss coefficient will be according to the following table (Idelchik, p. 209 f., Diagram 4-2 with $A_port/A_vessel = 0$ and Idelchik, p. 640, Diagram 11-1, graph a). According to the text, m = 9 is appropriate for fully developed turbulent flow.

			n	n		
	1.0	2.0	3.0	4.0	7.0	9.0
ζ	2.70	1.50	1.25	1.15	1.06	1.04

Pressure loss coefficients for inlets, circular tube flush with wall For larger port diameters, relative to the area of the vessel, the inlet pressure loss coefficient will be according to the following table (Idelchik, p. 209 f., Diagram 4-2 with m=7).

	A_port / A_vessel					
	0.0	0.1	0.2	0.4	0.6	8.0
ζ	1.04	0.84	0.67	0.39	0.18	0.06

Pressure loss coefficients for inlets, circular tube flush with wall

References

Idelchik I.E. (1994):

Handbook of Hydraulic Resistance. 3rd edition, Begell House, ISBN 0-8493-9908-4

Extends from Modelica.lcons.Record (Icon for a record).

Parameters

Type	Name	Description
Diameter	diameter	Inner (hydraulic) diameter of inlet/outlet port [m]
Height	height	Height over the bottom of the vessel [m]
Real	Zeia OIII	Hydraulic resistance out of vessel, default 0.5 for small diameter mounted flush with the wall
Real	zeia in	Hydraulic resistance into vessel, default 1.04 for small diameter mounted flush with the wall

<u>Vessels.BaseClasses</u>.VesselFluidPorts_a

Fluid connector with filled, large icon to be used for horizontally aligned vectors of FluidPorts (vector dimensions must be added after dragging)

Parameters

Туре	Name	Description
replaceable package Medium		Medium model

Contents

Туре	Name	Description
flow MassFlowRate	m_flow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	p	Thermodynamic pressure in the connection point [Pa]
stream SpecificEnthalpy	h_outflow	Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction		Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Medium. nC]	Properties c_i/m close to the connection point if m_flow < 0

<u>Vessels.BaseClasses</u>.VesselFluidPorts_b

Fluid connector with outlined, large icon to be used for horizontally aligned vectors of FluidPorts (vector dimensions must be added after dragging)

Parameters

Type	Name	Description
replaceable p	ackage Medium	Medium model

Contents

flow MassFlowRate	m_flow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	р	Thermodynamic pressure in the connection point [Pa]
stream SpecificEnthalpy	h_outflow	Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction	Xi_outflow[Mediu m.nXi]	Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Mediu m.nC]	Properties c_i/m close to the connection point if m_flow < 0

Modelica Fluid.Pipes

Devices for conveying fluid

Information

Extends from <u>Icons.VariantLibrary</u> (Icon for a library that contains several variants of one component).

Package Content

Name	Description	
<u>StaticPipe</u>	Basic pipe flow model without storage of mass or energy	
<u>DynamicPipe</u>	Dynamic pipe model with storage of mass and energy	
BaseClasses	Base classes used in the Pipes package (only of interest to build new component models)	

Pipes.StaticPipe

Basic pipe flow model without storage of mass or energy

Information

Model of a straight pipe with constant cross section and with steady-state mass, momentum and energy balances, i.e. the model does not store mass or energy. There exist two thermodynamic states, one at each fluid port. The momentum balance is formulated for the two states, taking into account momentum flows, friction and gravity. The same result can be obtained by using DynamicPipe with steady-state dynamic settings. The intended use is to provide simple connections of vessels or other devices with storage, as it is done in:

- Examples.Tanks.EmptyTanks
- · Examples.InverseParameterization.

Numerical Issues

With the stream connectors the thermodynamic states on the ports are generally defined by models with storage or by sources placed upstream and downstream of the static pipe. Other non storage components in the flow path may yield to state transformation. Note that this generally leads to nonlinear equation systems if multiple static pipes, or other flow models without storage, are directly connected.

Extends from Pipes.BaseClasses.PartialStraightPipe (Base class for straight pipe models).

Parameters

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Geometry	Geometry		
Real	nParallel	Number of identical parallel pipes	
Length	length	Length [m]	
Boolean	isCircular	= true if cross sectional area is circular	
Diameter	diameter	Diameter of circular pipe [m]	
Area	crossArea	Inner cross section area [m2]	
Length	perimeter	Inner perimeter [m]	
Height	roughness	Average height of surface asperities (default: smooth steel pipe) [m]	
Static head	Static head		
Length	height_ab	Height(port_b) - Height(port_a) [m]	
Pressure loss			
replaceable model	replaceable model FlowModel Wall friction, gravity, momentum flow		
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Initialization			
AbsolutePressure	p_a_start	Start value of pressure at port a [Pa]	
AbsolutePressure	p_b_start	Start value of pressure at port b [Pa]	
MassFlowRate	m_flow_start	Start value for mass flow rate [kg/s]	

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Pipes. Dynamic Pipe

Dynamic pipe model with storage of mass and energy

Information

Model of a straight pipe with distributed mass, energy and momentum balances. It provides the complete balance equations for one-dimensional fluid flow as formulated in <u>UsersGuide.ComponentDefinition.BalanceEquations.</u>

The partial differential equations are treated with the finite volume method and a staggered grid scheme for momentum balances. The pipe is split into nNodes equally spaced segments along the flow path. The default value is nNodes=2. This results in two lumped mass and energy balances and one lumped momentum balance across the dynamic pipe.

Note that this generally leads to high-index DAEs for pressure states if dynamic pipes are directly connected to each other, or generally to models with storage exposing a thermodynamic state through the port. This may not be valid if the dynamic pipe is connected to a model with non-differentiable pressure, like a Sources.Boundary_pT with prescribed jumping pressure. The modelStructure can be configured as appropriate in such situations, in order to place a momentum balance between a pressure state of the pipe and a non-differentiable boundary condition.

The default modelStructure is av vb (see Advanced tab). The simplest possible alternative symetric

84 Pipes.DynamicPipe

configuration, avoiding potential high-index DAEs at the cost of the potential introduction of nonlinear equation systems, is obtained with the setting nNodes=1, $modelStructure=a_v_b$. Depending on the configured model structure, the first and the last pipe segment, or the flow path length of the first and the last momentum balance, are of half size. See the documentation of the base class $\frac{\text{Pipes.BaseClasses.PartialTwoPortFlow}}{\text{Pipes.BaseClasses.PartialTwoPortFlow}}, also covering asymmetric configurations.}$

The HeatTransfer component specifies the source term <code>Qb_flows</code> of the energy balance. The default component uses a constant coefficient for the heat transfer between the bulk flow and the segment boundaries exposed through the <code>heatPorts</code>. The <code>HeatTransfer</code> model is replaceable and can be exchanged with any model extended from BaseClasses.HeatTransfer.PartialFlowHeatTransfer.

The intended use is for complex networks of pipes and other flow devices, like valves. See e.g.

- · Examples.BranchingDynamicPipes, or
- Examples.IncompressibleFluidNetwork.

Extends from <u>Pipes.BaseClasses.PartialStraightPipe</u> (Base class for straight pipe models), <u>BaseClasses.PartialTwoPortFlow</u> (Base class for distributed flow models).

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Geometry			
Real	nParallel	Number of identical parallel pipes	
Length	length	Length [m]	
Boolean	isCircular	= true if cross sectional area is circular	
Diameter	diameter	Diameter of circular pipe [m]	
Area	crossArea	Inner cross section area [m2]	
Length	perimeter	Inner perimeter [m]	
Height	roughness	Average height of surface asperities (default: smooth steel pipe) [m]	
Length	lengths[n]	lengths of flow segments [m]	
Area	crossAreas[n]	cross flow areas of flow segments [m2]	
Length	dimensions[n]	hydraulic diameters of flow segments [m]	
Height	roughnesses[n]	Average heights of surface asperities [m]	
Static head			
Length	height_ab	Height(port_b) - Height(port_a) [m]	
Length	dheights[n]	Differences in heigths of flow segments [m]	
Pressure loss			
replaceable model FlowModel Wall friction		Wall friction, gravity, momentum flow	
Assumptions	Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Dynamics	Dynamics		
<u>Dynamics</u>	energyDynamics	Formulation of energy balances	
<u>Dynamics</u>	massDynamics	Formulation of mass balances	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balances	
Heat transfer			
Boolean	use_HeatTransfer	= true to use the HeatTransfer model	
Initialization			
AbsolutePressure	p_a_start	Start value of pressure at port a [Pa]	

p_b_start	Start value of pressure at port b [Pa]	
use_T_start	Use T_start if true, otherwise h_start	
T_start	Start value of temperature [K]	
h_start	Start value of specific enthalpy [J/kg]	
X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
C_start[Medium.nC]	Start value of trace substances	
m_flow_start	Start value for mass flow rate [kg/s]	
Advanced		
nNodes	Number of discrete flow volumes	
modelStructure	Determines whether flow or volume models are present at the ports	
useLumpedPressure	=true to lump pressure states together	
useInnerPortProperties	=true to take port properties for flow models from internal control volumes	
	use_T_start T_start h_start X_start[Medium.nX] C_start[Medium.nC] m_flow_start nNodes modelStructure useLumpedPressure	

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
HeatPorts_a	heatPorts[nNodes]	

Pipes.BaseClasses

Base classes used in the Pipes package (only of interest to build new component models)

Package Content

Name	Description
PartialStraightPipe	Base class for straight pipe models
■ <u>■ PartialTwoPortFlow</u>	Base class for distributed flow models
FlowModels	Flow models for pipes, including wall friction, static head and momentum flow
HeatTransfer	Heat transfer for flow models
<u>CharacteristicNumbers</u>	Functions to compute characteristic numbers
WallFriction	Different variants for pressure drops due to pipe wall friction

Pipes.BaseClasses.PartialStraightPipe

Base class for straight pipe models

Information

Base class for one dimensional flow models. It specializes a PartialTwoPort with a parameter interface and icon graphics.

Extends from Interfaces.PartialTwoPort (Partial component with two ports).

Parameters

Type	Name	Description	
replaceab	le package Medium	Medium in the component	
Geometry			
Real	nParallel	Number of identical parallel pipes	
Length	length	Length [m]	
Boolean	isCircular	= true if cross sectional area is circular	
Diameter	diameter	Diameter of circular pipe [m]	
Area	crossArea	Inner cross section area [m2]	
Length	perimeter	Inner perimeter [m]	
Height	roughness	Average height of surface asperities (default: smooth steel pipe) [m]	
Static hea	Static head		
Length	height_ab		
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Pipes.BaseClasses.PartialTwoPortFlow

Base class for distributed flow models

Information

Base class for distributed flow models. The total volume is split into nNodes segments along the flow path. The default value is nNodes=2.

Mass and Energy balances

The mass and energy balances are inherited from <u>Interfaces.PartialDistributedVolume</u>. One total mass and one energy balance is formed across each segment according to the finite volume approach. Substance mass balances are added if the medium contains more than one component.

An extending model needs to define the geometry and the difference in heights between the flow segments (static head). Moreover it needs to define two vectors of source terms for the distributed energy balance:

- Qb_flows[nNodes], the heat flow source terms, e.g. conductive heat flows across segment boundaries, and
- Wb flows[nNodes], the work source terms.

Momentum balance

The momentum balance is determined by the FlowModel component, which can be replaced with any model extended from BaseClasses.FlowModels.PartialStaggeredFlowModel. The default setting is DetailedPipeFlow. This considers

- pressure drop due to friction and other dissipative losses, and
- · gravity effects for non-horizontal devices.
- variation of flow velocity along the flow path, which occur due to changes in the cross sectional area or the fluid density, provided that flowModel.use Ib flows is true.

Model Structure

The momentum balances are formulated across the segment boundaries along the flow path according to the staggered grid approach. The configurable modelStructure determines the formulation of the boundary conditions at port a and port b. The options include (default: av vb):

- av vb: Symmetric setting with nNodes-1 momentum balances between nNodes flow segments. The ports port a and port b expose the first and the last thermodynamic state, respectively. Connecting two or more flow devices therefore may result in high-index DAEs for the pressures of connected flow segments.
- a v b: Alternative symmetric setting with nNodes+1 momentum balances across nNodes flow segments. Half momentum balances are placed between port a and the first flow segment as well as between the last flow segment and port b. Connecting two or more flow devices therefore results in algebraic pressures at the ports. The specification of good start values for the port pressures is essential for the solution of large nonlinear equation systems.
- av b: Unsymmetric setting with nNodes momentum balances, one between nth volume and port b, potential pressure state at port a
- a vb: Unsymmetric setting with nNodes momentum balance, one between first volume and port a, potential pressure state at port b

When connecting two components, e.g. two pipes, the momentum balance across the connection point reduces to

```
pipe1.port b.p = pipe2.port a.p
```

This is only true if the flow velocity remains the same on each side of the connection. Consider using a fitting for any significant change in diameter or fluid density, if the resulting effects, such as change in kinetic energy, cannot be neglected. This also allows for taking into account friction losses with respect to the actual geometry of the connection point.

Extends from Interfaces.PartialTwoPort (Partial component with two ports), Interfaces.PartialDistributedVolume (Base class for distributed volume models).

Type	Name	Description	
replaceable package Medium		Medium in the component	
Integer	n	Number of discrete volumes	
Volume	fluidVolumes[n]	Discretized volume, determine in inheriting class [m3]	
Geometry			
Real	nParallel	Number of identical parallel flow devices	
Length	lengths[n]	lengths of flow segments [m]	
Area	crossAreas[n]	cross flow areas of flow segments [m2]	
Length	dimensions[n]	hydraulic diameters of flow segments [m]	
Height	roughnesses[n]	Average heights of surface asperities [m]	
Static head			
Length	dheights[n]	Differences in heigths of flow segments [m]	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balances	
<u>Dynamics</u>	massDynamics	Formulation of mass balances	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balances	

Initialization			
AbsolutePressure	p_a_start	Start value of pressure at port a [Pa]	
AbsolutePressure	p_b_start	Start value of pressure at port b [Pa]	
Boolean	use_T_start	Use T_start if true, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
MassFlowRate	m_flow_start	Start value for mass flow rate [kg/s]	
Advanced			
Integer	nNodes	Number of discrete flow volumes	
ModelStructure	modelStructure	Determines whether flow or volume models are present at the ports	
Boolean	useLumpedPressure	=true to lump pressure states together	
Boolean	useInnerPortProperties	=true to take port properties for flow models from internal control volumes	

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Pipes.BaseClasses.FlowModels

Flow models for pipes, including wall friction, static head and momentum flow

Package Content

Name	Description
NatialStaggeredFlowModel	Base class for momentum balances in flow models
NominalLaminarFlow	NominalLaminarFlow: Linear pressure loss for nominal values
PartialGenericPipeFlow	GenericPipeFlow: Pipe flow pressure loss and gravity with replaceable WallFriction package
NominalTurbulentPipeFlow	NominalTurbulentPipeFlow: Quadratic turbulent pressure loss for nominal values
<u>TurbulentPipeFlow</u>	TurbulentPipeFlow: Pipe wall friction in the quadratic turbulent regime (simple characteristic, mu not used)
<u> </u>	DetailedPipeFlow: Pipe wall friction in the laminar and turbulent regime (detailed characteristic)

<u>Pipes.BaseClasses.FlowModels</u>.PartialStaggeredFlowModel

Base class for momentum balances in flow models

Information

This paratial model defines a common interface for m=n-1 flow models between n device segments. The flow models provide a steady-state or dynamic momentum balance using an upwind discretization scheme

per default. Extending models must add pressure loss terms for friction and gravity.

The fluid is specified in the interface with the thermodynamic states [n] for a given Medium model. The geometry is specified with the pathLengths [n-1] between the device segments as well as with the crossAreas[n] and the roughnesses[n] of the device segments. Moreover the fluid flow is characterized for different types of devices by the characteristic dimensions [n] and the average velocities vs[n] of fluid flow in the device segments. See

Pipes.BaseClasses.CharacteristicNumbers.ReynoldsNumber for examplary definitions.

The parameter Re turbulent can be specified for the least mass flow rate of the turbulent regime. It defaults to 4000, which is appropriate for pipe flow. The m flows turbulent[n-1] resulting from Re turbulent can optionally be calculated together with the Reynolds numbers Res[n] of the device segments (show Res=true).

Using the thermodynamic states[n] of the device segments, the densities rhos[n] and the dynamic viscosities mus[n] of the segments as well as the actual densities rhos act[n-1] and the actual viscosities mus act[n-1] of the flows are predefined in this base model. Note that no events are raised on flow reversal. This needs to be treated by an extending model, e.g. with numerical smoothing or by raising events as appropriate.

Extends from Interfaces.PartialDistributedFlow (Base class for a distributed momentum balance).

Parameters

Туре	Name	Description	
Integer	m	Number of flow segments	
ReynoldsNumber	Re_turbulent	Start of turbulent regime, depending on type of flow device [1]	
Advanced			
Boolean	useUpstreamScheme	= false to average upstream and downstream properties across flow segments	
Boolean	use_lb_flows	= true to consider differences in flow of momentum through boundaries	
Diagnostics			
Boolean	show_Res	= true, if Reynolds numbers are included for plotting	
Internal Interface			
Integer	n	Number of discrete flow volumes	
Geometry			
Real	nParallel	number of identical parallel flow devices	
Static head			
Acceleration	g	Constant gravity acceleration [m/s2]	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (states[1] -> states[n+1])	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance	
Initialization			
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]	
AbsolutePressure	p_a_start	Start value for p[1] at design inflow [Pa]	
AbsolutePressure	p_b_start	Start value for p[n+1] at design outflow [Pa]	

Pipes.BaseClasses.FlowModels.NominalLaminarFlow

NominalLaminarFlow: Linear pressure loss for nominal values

Information

This model defines a simple lineaer pressure loss assuming laminar flow for specified $dp_nominal$ and m flow nominal.

Select show_Res = true to analyze the actual flow and the lengths of a pipe that would fulfill the specified nominal values for given geometry parameters crossAreas, dimensions and roughnesses.

Extends from <u>Pipes.BaseClasses.FlowModels.PartialStaggeredFlowModel</u> (Base class for momentum balances in flow models).

Parameters

Type	Name	Description	
ReynoldsNumber	Re_turbulent	Start of turbulent regime, depending on type of flow device [1]	
AbsolutePressure	dp_nominal	Nominal pressure loss [Pa]	
MassFlowRate	m_flow_nominal	Mass flow rate for dp_nominal [kg/s]	
Advanced			
Boolean	useUpstreamScheme	= false to average upstream and downstream properties across flow segments	
Boolean	use_lb_flows	= true to consider differences in flow of momentum through boundaries	
Diagnostics			
Boolean	show_Res	= true, if Reynolds numbers are included for plotting	
Internal Interface			
replaceable packa	ge Medium	Medium in the component	
Integer	n	Number of discrete flow volumes	
Geometry			
Real	nParallel	number of identical parallel flow devices	
Static head			
Acceleration	g	Constant gravity acceleration [m/s2]	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (states[1] -> states[n+1])	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance	
Initialization			
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]	
AbsolutePressure	p_a_start	Start value for p[1] at design inflow [Pa]	
AbsolutePressure	p_b_start	Start value for p[n+1] at design outflow [Pa]	

Pipes.BaseClasses.FlowModels.PartialGenericPipeFlow

GenericPipeFlow: Pipe flow pressure loss and gravity with replaceable WallFriction package

Information

This model describes pressure losses due to **wall friction** in a pipe and due to **gravity**. Correlations of different complexity and validity can be seleted via the replaceable package **WallFriction** (see parameter menu below). The details of the pipe wall friction model are described in the <u>UsersGuide</u>. Basically, different variants of the equation

```
dp = \lambda (Re, \Delta) * (L/D) * \rho * v * |v|/2.
```

By default, the correlations are computed with media data at the actual time instant. In order to reduce nonlinear equation systems, the parameters **use_mu_nominal** and **use_rho_nominal** provide the option to compute the correlations with constant media values at the desired operating point. This might speed-up the simulation and/or might give a more robust simulation.

Extends from Pipes.BaseClasses.FlowModels.PartialStaggeredFlowModel (Base class for momentum balances in flow models).

Parameters

Туре	Name	Description		
ReynoldsNumber	Re_turbulent	Start of turbulent regime, depending on type of flow device [1]		
AbsolutePressure	dp_nominal	Nominal pressure loss (for nominal models) [Pa]		
MassFlowRate	m_flow_nominal	Mass flow rate for dp_nominal (for nominal models) [kg/s]		
Boolean	from_dp	= true, use m_flow = f(dp), otherwise dp = f(m_flow)		
AbsolutePressure	dp_small	Within regularization if dp < dp_small (may be wider for large discontinuities in static head) [Pa]		
MassFlowRate	m_flow_small	Within regularization if m_flows < m_flow_small (may be wider for large discontinuities in static head) [kg/s]		
Advanced				
Boolean	useUpstreamScheme	= false to average upstream and downstream properties across flow segments		
Boolean	use_lb_flows	= true to consider differences in flow of momentum through boundaries		
Diagnostics				
Boolean	show_Res	= true, if Reynolds numbers are included for plotting		
Internal Interface				
replaceable packa	ge Medium	Medium in the component		
Integer	n	Number of discrete flow volumes		
Geometry				
Real	nParallel	number of identical parallel flow devices		
Static head				
Acceleration	g	Constant gravity acceleration [m/s2]		
Assumptions				
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (states[1] -> states[n+1])		
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance		
Initialization				
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]		
AbsolutePressure	p_a_start	Start value for p[1] at design inflow [Pa]		
AbsolutePressure	p b start	Start value for p[n+1] at design outflow [Pa]		

<u>Pipes.BaseClasses.FlowModels</u>.NominalTurbulentPipeFlow

NominalTurbulentPipeFlow: Quadratic turbulent pressure loss for nominal values

Information

This model defines the pressure loss assuming turbulent flow for specified $dp_nominal$ and $m_flow_nominal$. It takes into account the fluid density of each flow segment and obtaines appropriate $pathlengths_nominal$ values for an inverse parameterization of the $\underline{TurbulentPipeFlow}$ model. Per default the upstream and downstream densities are averaged with the setting useUpstreamScheme = false, in order to avoid discontinuous $pathlengths_nominal_values$ in the case of flow reversal.

The geometry parameters <code>crossAreas</code>, <code>diameters</code> and <code>roughnesses</code> do not effect simulation results of this nominal pressure loss model. As the geometry is specified however, the optionally calculated Reynolds number as well as <code>m_flows_turbulent</code> and <code>dps_fg_turbulent</code> become meaningful and can be related to <code>m_flow_small</code> and <code>dp_small</code>.

Optional Variables if show_Res

Туре	Name	Description
ReynoldsNumber	Res[n]	Reynolds numbers of pipe flow per flow segment
MassriowRate	-]	mass now rates at start of turbulent region for Re_turbulent=4000
AbsolutePressure	dps_fg_turbulent[n-1]	pressure losses due to friction and gravity corresponding to m_flows_turbulent

Extends from <u>Pipes.BaseClasses.FlowModels.PartialGenericPipeFlow</u> (GenericPipeFlow: Pipe flow pressure loss and gravity with replaceable WallFriction package).

Туре	Name	Description	
Length	pathLengths_internal[n - 1]	pathLengths used internally; to be defined by extending class [m]	
AbsolutePressure	dp_nominal	Nominal pressure loss (for nominal models) [Pa]	
MassFlowRate	m_flow_nominal	Mass flow rate for dp_nominal (for nominal models) [kg/s]	
Boolean	from_dp	= true, use m_flow = f(dp), otherwise dp = f(m_flow)	
AbsolutePressure	dp_small	Within regularization if dp < dp_small (may be wider for large discontinuities in static head) [Pa]	
MassFlowRate	m_flow_small	Within regularization if m_flows < m_flow_small (may be wider for large discontinuities in static head) [kg/s]	
Advanced			
Boolean	useUpstreamScheme	= false to average upstream and downstream properties across flow segments	
Boolean	use_lb_flows	= true to consider differences in flow of momentum through boundaries	
Diagnostics			
Boolean	show_Res	= true, if Reynolds numbers are included for plotting	
Wall friction			
replaceable packa	ge WallFriction	Wall friction model	
Internal Interface			
replaceable package Medium		Medium in the component	
Integer n		Number of discrete flow volumes	
Geometry			
Real	nParallel	number of identical parallel flow devices	
Static head			
Acceleration	g	Constant gravity acceleration [m/s2]	

Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (states[1] -> states[n+1])	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance	
Initialization			
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]	
AbsolutePressure	p_a_start	Start value for p[1] at design inflow [Pa]	
AbsolutePressure	p_b_start	Start value for p[n+1] at design outflow [Pa]	

Connectors

Type Name		Description	
Wall friction			
replaceable pad	Wall friction model		

Pipes.BaseClasses.FlowModels.TurbulentPipeFlow

TurbulentPipeFlow: Pipe wall friction in the quadratic turbulent regime (simple characteristic, mu not used)

Information

This model defines only the quadratic turbulent regime of wall friction: dp = k*m flow*|m flow|, where "k" depends on density and the roughness of the pipe and is not a function of the Reynolds number. This relationship is only valid for large Reynolds numbers. The turbulent pressure loss correlation might be useful to optimize models that are only facing turbular flow.

Extends from Pipes.BaseClasses.FlowModels.PartialGenericPipeFlow (GenericPipeFlow: Pipe flow pressure loss and gravity with replaceable WallFriction package).

Type	Name	Description	
Length	pathLengths_internal[n - 1]	pathLengths used internally; to be defined by extending class [m]	
AbsolutePressure	dp_nominal	Nominal pressure loss (for nominal models) [Pa]	
MassFlowRate	m_flow_nominal	Mass flow rate for dp_nominal (for nominal models) [kg/s]	
Boolean	from_dp	= true, use m_flow = f(dp), otherwise dp = f(m_flow)	
AbsolutePressure	dp_small	Within regularization if dp < dp_small (may be wider for large discontinuities in static head) [Pa]	
MassFlowRate	m_flow_small	Within regularization if m_flows < m_flow_small (may be wider for large discontinuities in static head) [kg/s]	
Advanced	Advanced		
Boolean	useUpstreamScheme	= false to average upstream and downstream properties across flow segments	
Boolean	use_lb_flows	= true to consider differences in flow of momentum through boundaries	
Diagnostics			
Boolean	show_Res	= true, if Reynolds numbers are included for plotting	
Wall friction			
replaceable package WallFriction		Wall friction model	

94 Pipes.BaseClasses.FlowModels.TurbulentPipeFlow

Internal Interface			
replaceable package Medium		Medium in the component	
Integer	n	Number of discrete flow volumes	
Geometry			
Real	nParallel	number of identical parallel flow devices	
Static head			
Acceleration	g	Constant gravity acceleration [m/s2]	
Assumptions	Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (states[1] -> states[n+1])	
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance	
Initialization			
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]	
AbsolutePressure	p_a_start	Start value for p[1] at design inflow [Pa]	
AbsolutePressure	p_b_start	Start value for p[n+1] at design outflow [Pa]	

Connectors

Туре	Type Name		
Wall friction			
replaceable pad	Wall friction model		

Pipes.BaseClasses.FlowModels.DetailedPipeFlow

DetailedPipeFlow: Pipe wall friction in the laminar and turbulent regime (detailed characteristic)

Information

This component defines the complete regime of wall friction. The details are described in the <u>UsersGuide</u>. The functional relationship of the friction loss factor λ is displayed in the next figure. Function massFlowRate_dp() defines the "red curve" ("Swamee and Jain"), where as function pressureLoss_m_flow() defines the "blue curve" ("Colebrook-White"). The two functions are inverses from each other and give slightly different results in the transition region between Re = 1500 .. 4000, in order to get explicit equations without solving a non-linear equation.

Additionally to wall friction, this component properly implements static head. With respect to the latter, two cases can be distinguished. In the case shown next, the change of elevation with the path from a to b has the opposite sign of the change of density.

In the case illustrated second, the change of elevation with the path from a to b has the same sign of the change of density.

Extends from Pipes.BaseClasses.FlowModels.PartialGenericPipeFlow (GenericPipeFlow: Pipe flow pressure loss and gravity with replaceable WallFriction package).

Туре	Name	Description	
Length	pathLengths_internal[n - 1]	pathLengths used internally; to be defined by extending class [m]	
AbsolutePressure	dp_nominal	Nominal pressure loss (for nominal models) [Pa]	
MassFlowRate	m_flow_nominal	Mass flow rate for dp_nominal (for nominal models) [kg/s]	
Boolean	from_dp	= true, use m_flow = f(dp), otherwise dp = f(m_flow)	
AbsolutePressure	dp_small	Within regularization if dp < dp_small (may be wider for large discontinuities in static head) [Pa]	
MassFlowRate	m_flow_small	Within regularization if m_flows < m_flow_small (may be wider for large discontinuities in static head) [kg/s]	
Advanced	Advanced		
Boolean	useUpstreamScheme	= false to average upstream and downstream properties across flow segments	
Boolean	use_lb_flows	= true to consider differences in flow of momentum through boundaries	
Diagnostics			

98 Pipes.BaseClasses.FlowModels.DetailedPipeFlow

Boolean	show_Res	= true, if Reynolds numbers are included for plotting			
Wall friction	Wall friction				
replaceable packa	ge WallFriction	Wall friction model			
Internal Interface					
replaceable packa	ge Medium	Medium in the component			
Integer	n	Number of discrete flow volumes			
Geometry					
Real	nParallel	number of identical parallel flow devices			
Static head					
Acceleration	g	Constant gravity acceleration [m/s2]			
Assumptions					
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (states[1] -> states[n+1])			
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance			
Initialization					
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]			
AbsolutePressure	p_a_start	Start value for p[1] at design inflow [Pa]			
AbsolutePressure	p_b_start	Start value for p[n+1] at design outflow [Pa]			

Connectors

Type Name		Description	
Wall friction			
replaceable pad	Wall friction model		

Pipes.BaseClasses.HeatTransfer

Heat transfer for flow models

Information

Heat transfer correlations for pipe models

Package Content

Name	Description
PartialFlowHeatTransfer	base class for any pipe heat transfer correlation
idealFlowHeatTransfer	IdealHeatTransfer: Ideal heat transfer without thermal resistance
<u>ConstantFlowHeatTransfer</u>	ConstantHeatTransfer: Constant heat transfer coefficient
PartialPipeFlowHeatTransfer	Base class for pipe heat transfer correlation in terms of Nusselt number heat transfer in a circular pipe for laminar and turbulent one-phase flow
LocalPipeFlowHeatTransfer	LocalPipeFlowHeatTransfer: Laminar and turbulent forced convection in pipes, local coefficients

$\underline{Pipes.Base Classes.Heat Transfer}. Partial Flow Heat Transfer$

base class for any pipe heat transfer correlation

Information

Base class for heat transfer models of flow devices.

The geometry is specified in the interface with the <code>surfaceAreas[n]</code>, the <code>roughnesses[n]</code> and the lengths[n] along the flow path. Moreover the fluid flow is characterized for different types of devices by the characteristic dimensions[n+1] and the average velocities vs[n+1] of fluid flow. See Pipes.BaseClasses.CharacteristicNumbers.ReynoldsNumber for examplary definitions.

Extends from Interfaces.PartialHeatTransfer (Common interface for heat transfer models).

Parameters

Туре	Name	Description	
Ambient			
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]	
Temperature	T_ambient	Ambient temperature [K]	
Internal Interface	Internal Interface		
replaceable package Medi	um	Medium in the component	
Integer	n	Number of heat transfer segments	
Boolean	use_k	= true to use k value for thermal isolation	
Geometry			
Real	nParallel	number of identical parallel flow devices	

Connectors

Type	Name	Description
HeatPorts_a	heatPorts[n]	Heat port to component boundary

Pipes.BaseClasses.HeatTransfer.IdealFlowHeatTransfer

IdealHeatTransfer: Ideal heat transfer without thermal resistance

Information

Ideal heat transfer without thermal resistance.

Extends from PartialFlowHeatTransfer (base class for any pipe heat transfer correlation).

Туре	Name	Description
Ambient		
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]
Temperature	T_ambient	Ambient temperature [K]
Internal Interface		
replaceable package Medi	um	Medium in the component
Integer	n	Number of heat transfer segments
Boolean	use_k	= true to use k value for thermal isolation
Geometry		
Real	nParallel	number of identical parallel flow devices

Connectors

Type	Name	Description
HeatPorts_a	heatPorts[n]	Heat port to component boundary

Pipes.BaseClasses.HeatTransfer.ConstantFlowHeatTransfer

ConstantHeatTransfer: Constant heat transfer coefficient

Information

Simple heat transfer correlation with constant heat transfer coefficient, used as default component in Extends from PartialFlowHeatTransfer (base class for any pipe heat transfer correlation).

Parameters

Туре	Name	Description
CoefficientOfHeatTransfer	alpha0	heat transfer coefficient [W/(m2.K)]
Ambient		
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]
Temperature	T_ambient Ambient temperature [K]	
Internal Interface		
replaceable package Medi	um	Medium in the component
Integer	n	Number of heat transfer segments
Boolean	use_k	= true to use k value for thermal isolation
Geometry		
Real	nParallel	number of identical parallel flow devices

Connectors

Type Name		Name	Description
	HeatPorts a	heatPorts[n]	Heat port to component boundary

$\underline{\textbf{Pipes.BaseClasses.HeatTransfer}}. \textbf{PartialPipeFlowHeatTransfer}$

Base class for pipe heat transfer correlation in terms of Nusselt number heat transfer in a circular pipe for laminar and turbulent one-phase flow

Information

Base class for heat transfer models that are expressed in terms of the Nusselt number and which can be used in distributed pipe models.

Extends from PartialFlowHeatTransfer (base class for any pipe heat transfer correlation).

Туре	Name	Description
CoefficientOfHeatTransfer	alpha0	guess value for heat transfer coefficients [W/(m2.K)]
Ambient		
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]

Temperature	T_ambient Ambient temperature [K]			
Internal Interface				
replaceable package Medi	replaceable package Medium Medium in the component			
Integer	n	Number of heat transfer segments		
Boolean	use_k = true to use k value for thermal isolation			
Geometry				
Real	nParallel	number of identical parallel flow devices		

Connectors

Туре	Name	Description	
HeatPorts_a	heatPorts[n]	Heat port to component boundary	

<u>Pipes.BaseClasses.HeatTransfer</u>.LocalPipeFlowHeatTransfer

LocalPipeFlowHeatTransfer: Laminar and turbulent forced convection in pipes, local coefficients

Information

Heat transfer model for laminar and turbulent flow in pipes. Range of validity:

- · fully developed pipe flow
- · forced convection
- · one phase Newtonian fluid
- (spatial) constant wall temperature in the laminar region
- $0 \le \text{Re} \le 1\text{e}6$, $0.6 \le \text{Pr} \le 100$, $d/L \le 1$
- The correlation holds for non-circular pipes only in the turbulent region. Use diameter=4*crossArea/perimeter as characteristic length.

The correlation takes into account the spatial position along the pipe flow, which changes discontinuously at flow reversal. However, the heat transfer coefficient itself is continuous around zero flow rate, but not its derivative.

References

Verein Deutscher Ingenieure (1997):

VDI Wärmeatlas. Springer Verlag, Ed. 8, 1997.

Extends from PartialPipeFlowHeatTransfer (Base class for pipe heat transfer correlation in terms of Nusselt number heat transfer in a circular pipe for laminar and turbulent one-phase flow).

Туре	Name	Description	
CoefficientOfHeatTransfer	alpha0	guess value for heat transfer coefficients [W/(m2.K)]	
Ambient			
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]	
Temperature	T_ambient	Ambient temperature [K]	
Internal Interface			
replaceable package Medi	um	Medium in the component	
Integer	n	Number of heat transfer segments	
Boolean	use_k	= true to use k value for thermal isolation	

102 Pipes.BaseClasses.HeatTransfer.LocalPipeFlowHeatTransfer

Geometry		
Real	nParallel	number of identical parallel flow devices

Connectors

Type Name		Description	
<u>HeatPorts_a</u>	heatPorts[n]	Heat port to component boundary]

Pipes.BaseClasses.CharacteristicNumbers

Functions to compute characteristic numbers

Package Content

Name	Description
(f) ReynoldsNumber	Return Reynolds number from v, rho, mu, D
ReynoldsNumber_m_flow	Return Reynolds number from m_flow, mu, D, A
(f) NusseltNumber	Return Nusselt number

$\underline{Pipes.Base Classes. Characteristic Numbers}. Reynolds Number$

Return Reynolds number from v, rho, mu, D

Information

Calculation of Reynolds Number

Re =
$$|v|\rho D/\mu$$

a measure of the relationship between inertial forces (vp) and viscous forces (D/μ).

The following table gives examples for the characteristic dimension D and the velocity v for different fluid flow devices:

Device Type	Characteristic Dimension D	Velocity v
Circular Pipe	diameter	m_flow/ρ/crossArea
Rectangular Duct	4*crossArea/perimeter	m_flow/ρ/crossArea
Wide Duct	distance between narrow, parallel walls	m_flow/ρ/crossArea
Packed Bed	diameterOfSpericalParticles/(1-fluidFractionOfTotalVolume)	m_flow/p/crossArea (without particles)
Device with rotating agitator	diameterOfRotor	RotationalSpeed*diameterOfRot or

Inputs

Туре	Name	Description
Velocity	v	Mean velocity of fluid flow [m/s]
Density	rho	Fluid density [kg/m3]
DynamicViscosity	mu	Dynamic (absolute) viscosity [Pa.s]
Length	D	Characteristic dimension (hydraulic diameter of pipes) [m]

Outputs

Туре	Name	Description
ReynoldsNumber	Re	Reynolds number [1]

<u>Pipes.BaseClasses.CharacteristicNumbers</u>.ReynoldsNumber_m_flow

Return Reynolds number from m_flow, mu, D, A

Information

Simplified calculation of Reynolds Number for flow through pipes or orifices; using the mass flow rate m flow instead of the velocity ${\tt v}$ to express inertial forces.

```
Re = |m flow|*diameter/A/\mu
with
  m_flow = v*\rho*A
```

See also Pipes.BaseClasses.CharacteristicNumbers.ReynoldsNumber.

Inputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate [kg/s]
DynamicViscosity	mu	Dynamic viscosity [Pa.s]
Length	D	Characteristic dimension (hydraulic diameter of pipes or orifices) [m]
Area	Α	Cross sectional area of fluid flow [m2]

Outputs

Туре	Name	Description
ReynoldsNumber	Re	Reynolds number [1]

Pipes.BaseClasses.CharacteristicNumbers.NusseltNumber

Return Nusselt number

Information

Nusselt number Nu = alpha*D/lambda

Inputs

Туре	Name	Description
CoefficientOfHeatTransfer	alpha	Coefficient of heat transfer [W/(m2.K)]
Length	D	Characteristic dimension [m]
ThermalConductivity	lambda	Thermal conductivity [W/(m.K)]

Outputs

Туре	Name	Description
NusseltNumber	Nu	Nusselt number [1]

Pipes.BaseClasses.WallFriction

Different variants for pressure drops due to pipe wall friction

Information

This package provides functions to compute pressure losses due to **wall friction** in a pipe. Every correlation is defined by a package that is derived by inheritance from the package WallFriction.PartialWallFriction. The details of the underlying pipe wall friction model are described in the <u>UsersGuide</u>. Basically, different variants of the equation

$$dp = \lambda (Re, \Delta) * (L/D) * \rho * v * |v|/2$$

are used, where the friction loss factor λ is shown in the next figure:

Package Content

Name	Description
	Partial wall friction characteristic (base package of all wall friction characteristics)
NoFriction	No pipe wall friction, no static head

Laminar	Pipe wall friction in the laminar regime (linear correlation)
QuadraticTurbulent	Pipe wall friction in the quadratic turbulent regime (simple characteristic, mu not used)
LaminarAndQuadraticTurbulent	Pipe wall friction in the laminar and quadratic turbulent regime (simple characteristic)
<u>Detailed</u>	Pipe wall friction in the whole regime (detailed characteristic)
TestWallFrictionAndGravity	Pressure loss in pipe due to wall friction and gravity (only for test purposes; if needed use Pipes.StaticPipe instead)

<u>Pipes.BaseClasses.WallFriction</u>.PartialWallFriction

Partial wall friction characteristic (base package of all wall friction characteristics)

Information

Package Content

Name	Description
use_mu=true	= true, if mu_a/mu_b are used in function, otherwise value is not used
use_roughness=true	= true, if roughness is used in function, otherwise value is not used
use_dp_small=true	= true, if dp_small is used in function, otherwise value is not used
use_m_flow_small=true	= true, if m_flow_small is used in function, otherwise value is not used
dp_is_zero=false	= true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used)
massFlowRate_dp	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction
massFlowRate_dp_staticHead	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head
pressureLoss_m_flow	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction
f pressureLoss m flow stati	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head

$\underline{\textbf{Pipes.BaseClasses.WallFriction}.\textbf{PartialWallFriction}.\textbf{massFlowRate_dp}$

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction

Information

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Туре	Name	ame Description	
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]	
Density	rho_a	Density at port_a [kg/m3]	

106 Pipes.BaseClasses.WallFriction.PartialWallFriction.massFlowRate_dp

Density	rho_b	Density at port_b [kg/m3]		
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]		
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]		
Length	length	Length of pipe [m]		
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]		
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]		
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]		

Outputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

$\underline{\textbf{Pipes.BaseClasses.WallFriction.PartialWallFriction}}. massFlowRate_dp_staticHead$

Return mass flow rate m_flow as function of pressure loss dp, i.e., $m_flow = f(dp)$, due to wall friction and static head

Information

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

$\underline{Pipes.BaseClasses.WallFriction.PartialWallFriction}.pressureLoss_m_flow$

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction

Information

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_sma	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

 $\underline{\textbf{Pipes.BaseClasses.WallFriction.PartialWallFriction}}. pressure Loss_m_flow_static Head$

Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head

Information

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

Pipes.BaseClasses.WallFriction.NoFriction

No pipe wall friction, no static head

Information

This component sets the pressure loss due to wall friction to zero, i.e., it allows to switch off pipe wall friction.

Extends from <u>PartialWallFriction</u> (Partial wall friction characteristic (base package of all wall friction characteristics)).

Package Content

Name	Description	
f massFlowRate_dp	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction	
f pressureLoss_m_flow	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction	
massFlowRate_dp_staticHead	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head	
pressureLoss_m_flow_staticHead	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head	
Inherited		
use_mu=true	= true, if mu_a/mu_b are used in function, otherwise value is not used	
use_roughness=true	= true, if roughness is used in function, otherwise value is not used	
use_dp_small=true	= true, if dp_small is used in function, otherwise value is not used	
use_m_flow_small=true	= true, if m_flow_small is used in function, otherwise value is not used	
dp_is_zero=false	= true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used)	

Pipes.BaseClasses.WallFriction.NoFriction.massFlowRate_dp

Return mass flow rate m_flow as function of pressure loss dp, i.e., $m_flow = f(dp)$, due to wall friction

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction).

Inputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]

4	^	•
7	"	u

DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]	
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]	
Length	length	Length of pipe [m]	
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]	
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]	

Outputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

<u>Pipes.BaseClasses.WallFriction.NoFriction</u>.pressureLoss_m_flow

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length		Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate		Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

Pipes.BaseClasses.WallFriction.NoFriction.massFlowRate_dp_staticHead

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall

friction and static head).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

$\underline{\textbf{Pipes.BaseClasses.WallFriction.NoFriction}}. pressure Loss_m_flow_static Head$

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction and static head

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction and static head).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description	
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]	

Pipes.BaseClasses.WallFriction.Laminar

Pipe wall friction in the laminar regime (linear correlation)

Information

This component defines only the laminar region of wall friction: dp = k*m flow, where "k" depends on density and dynamic viscosity. The roughness of the wall does not have an influence on the laminar flow and therefore argument roughness is ignored. Since this is a linear relationship, the occurring systems of equations are usually much simpler (e.g. either linear instead of non-linear). By using nominal values for density and dynamic viscosity, the systems of equations can still further be reduced.

In UsersGuide the complete friction regime is illustrated. This component describes only the Hagen-Poiseuille equation.

Extends from PartialWallFriction (Partial wall friction characteristic (base package of all wall friction characteristics)).

Package Content

Name	Description
f massFlowRate_dp	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction
f pressureLoss_m_flow	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction
massFlowRate_dp_staticHead	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head
f pressureLoss m flow stati	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head
	Inherited
use_mu=true	= true, if mu_a/mu_b are used in function, otherwise value is not used
use_roughness=true	= true, if roughness is used in function, otherwise value is not used
use_dp_small=true	= true, if dp_small is used in function, otherwise value is not used
use_m_flow_small=true	= true, if m_flow_small is used in function, otherwise value is not used
dp_is_zero=false	= true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used)

Pipes.BaseClasses.WallFriction.Laminar.massFlowRate_dp

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction

Information

Extends from (Return mass flow rate m flow as function of pressure loss dp, i.e., m flow = f(dp), due to wall friction).

Inputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Type	Name	Description		
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]		

$\underline{Pipes.BaseClasses.WallFriction.Laminar}.pressureLoss_m_flow$

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_sma	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

$\underline{\textbf{Pipes.BaseClasses.WallFriction.Laminar}}. massFlowRate_dp_staticHead$

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

<u>Pipes.BaseClasses.WallFriction.Laminar.pressureLoss_m_flow_staticHead</u>

Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height	Gravity times (Height(port_b) - Height(port_a))

114 Pipes.BaseClasses.WallFriction.Laminar.pressureLoss m flow staticHead

	_ab	
Length		Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

Pipes.BaseClasses.WallFriction.QuadraticTurbulent

Pipe wall friction in the quadratic turbulent regime (simple characteristic, mu not used)

Information

This component defines only the quadratic turbulent regime of wall friction: dp = k*m_flow*|m_flow|, where "k" depends on density and the roughness of the pipe and is no longer a function of the Reynolds number. This relationship is only valid for large Reynolds numbers.

In <u>UsersGuide</u> the complete friction regime is illustrated. This component describes only the asymptotic behaviour for large Reynolds numbers, i.e., the values at the right ordinate where λ is constant.

Extends from <u>PartialWallFriction</u> (Partial wall friction characteristic (base package of all wall friction characteristics)).

Package Content

Name	Description
f massFlowRate_dp	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction
f pressureLoss_m_flow	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction
massFlowRate_dp_staticH	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow =
ead	f(dp), due to wall friction and static head
f pressureLoss_m_flow_stati	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp =
cHead	f(m_flow), due to wall friction and static head
	Inherited
use_mu=true	= true, if mu_a/mu_b are used in function, otherwise value is not used
use_roughness=true	= true, if roughness is used in function, otherwise value is not used
use_dp_small=true	= true, if dp_small is used in function, otherwise value is not used
use_m_flow_small=true	= true, if m_flow_small is used in function, otherwise value is not used
dp_is_zero=false	= true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used)

Pipes.BaseClasses.WallFriction.QuadraticTurbulent.massFlowRate_dp

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

$\underline{Pipes.BaseClasses.WallFriction.QuadraticTurbulent}.pressureLoss_m_flow$

Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_sma	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type Name Description

Pressure	dp	Pressure loss (dn = no	rt an - nort	b p) [Pa]
i i occurro	ωp	1 10000410 1000 (AP PO	it_u.p poit	_0.0/ [. 0]

<u>Pipes.BaseClasses.WallFriction.QuadraticTurbulent</u>.massFlowRate_dp_staticHead

Return mass flow rate m_flow as function of pressure loss dp, i.e., $m_flow = f(dp)$, due to wall friction and static head

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., $m_flow = f(dp)$, due to wall friction and static head).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Туре	Name	Description		
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]		

<u>Pipes.BaseClasses.WallFriction.QuadraticTurbulent.pressureLoss_m_flow_staticHead</u>

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction and static head

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction and static head).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]

Modelica_Fluid Library 1.0 (January 2009)

Length	length	Length of pipe [m]	
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]	
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))	
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]	
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]	

Outputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent

Pipe wall friction in the laminar and quadratic turbulent regime (simple characteristic)

Information

This component defines the quadratic turbulent regime of wall friction: dp = k*m flow*|m flow|, where "k" depends on density and the roughness of the pipe and is no longer a function of the Reynolds number. This relationship is only valid for large Reynolds numbers. At Re=4000, a polynomial is constructed that approaches the constant λ (for large Reynolds-numbers) at Re=4000 smoothly and has a derivative at zero mass flow rate that is identical to laminar wall friction.

Extends from PartialWallFriction (Partial wall friction characteristic (base package of all wall friction characteristics)).

Package Content

Name	Description	
f massFlowRate_dp	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction	
f pressureLoss_m_flow	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction	
massFlowRate_dp_staticHead	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head	
pressureLoss_m_flow_staticHead	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head	
Inherited		
use_mu=true	= true, if mu_a/mu_b are used in function, otherwise value is not used	
use_roughness=true	= true, if roughness is used in function, otherwise value is not used	
use_dp_small=true	= true, if dp_small is used in function, otherwise value is not used	
use_m_flow_small=true	= true, if m_flow_small is used in function, otherwise value is not used	
dp_is_zero=false	= true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used)	

<u>Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent</u>.massFlowRate_dp

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., $m_flow = f(dp)$, due to wall friction).

Inputs

Туре	Name	Description	
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]	
Density	rho_a	Density at port_a [kg/m3]	
Density	rho_b	Density at port_b [kg/m3]	
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]	
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]	
Length	length	Length of pipe [m]	
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]	
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]	
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]	

Outputs

Type Name		Description	
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]	

 $\underline{Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent}.pressureLoss_m_flow$

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate		Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description
------	------	-------------

Pressure dp	Pressure loss	$(dp = port_a.p -$	port_b.p) [Pa]
-------------	---------------	--------------------	----------------

 $\underline{Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent}.massFlowRate_dp_stat$ icHead

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

 $\underline{\textbf{Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent}}. pressureLoss_m_flow_$ staticHead

Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head

Information

Extends from (Return pressure loss dp as function of mass flow rate m flow, i.e., dp = f(m flow), due to wall friction and static head).

Inputs

Type	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]

120 Pipes.BaseClasses.WallFriction.LaminarAndQuadraticTurbulent.pressureLoss_m_flow_staticHead

DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

Pipes.BaseClasses.WallFriction.Detailed

Pipe wall friction in the whole regime (detailed characteristic)

Information

This component defines the complete regime of wall friction. The details are described in the <u>UsersGuide</u>. The functional relationship of the friction loss factor λ is displayed in the next figure. Function massFlowRate_dp() defines the "red curve" ("Swamee and Jain"), where as function pressureLoss_m_flow() defines the "blue curve" ("Colebrook-White"). The two functions are inverses from each other and give slightly different results in the transition region between Re = 1500 .. 4000, in order to get explicit equations without solving a non-linear equation.

Additionally to wall friction, this component properly implements static head. With respect to the latter, two cases can be distinguished. In the case shown next, the change of elevation with the path from a to b has the opposite sign of the change of density.

In the case illustrated second, the change of elevation with the path from a to b has the same sign of the change of density.

Extends from PartialWallFriction (Partial wall friction characteristic (base package of all wall friction characteristics)).

Package Content

Name	Description		
1 massFlowRate_dp	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction		
f pressureLoss_m_flow	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction		
f massFlowRate_dp_staticH ead	Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head		
f pressureLoss_m_flow_staticHead	Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head		
	Inherited		
use_mu=true	= true, if mu_a/mu_b are used in function, otherwise value is not used		
use_roughness=true	= true, if roughness is used in function, otherwise value is not used		
use_dp_small=true	= true, if dp_small is used in function, otherwise value is not used		
use_m_flow_small=true	= true, if m_flow_small is used in function, otherwise value is not used		
dp_is_zero=false	= true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used)		

<u>Pipes.BaseClasses.WallFriction.Detailed</u>.massFlowRate_dp

Return mass flow rate m_flow as function of pressure loss dp, i.e., $m_flow = f(dp)$, due to wall friction

Information

Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction).

Inputs

Туре	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]

Outputs

Туре	Name	Description	
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]	

Pipes.BaseClasses.WallFriction.Detailed.pressureLoss_m_flow

Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction

Information

Extends from (Return pressure loss dp as function of mass flow rate m_flow , i.e., $dp = f(m_flow)$, due to wall friction).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]
Length	length	Length of pipe [m]
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy

	if use_roughness = false) [m]
MassFlowRate	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]

<u>Pipes.BaseClasses.WallFriction.Detailed</u>.massFlowRate_dp_staticHead

Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head

Inputs

Туре	Name	Description	
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]	
Density	rho_a	Density at port_a [kg/m3]	
Density	rho_b	Density at port_b [kg/m3]	
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]	
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]	
Length	length	Length of pipe [m]	
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]	
Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))	
Length	roughness	Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]	
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small (dummy if use_dp_small = false) [Pa]	

Outputs

Туре	Name	Description	
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]	

$\underline{\textbf{Pipes.BaseClasses.WallFriction.Detailed}}. pressure Loss_m_flow_static Head$

Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head

Inputs

Type	Name	Description	
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]	
Density	rho_a	Density at port_a [kg/m3]	
Density	rho_b	Density at port_b [kg/m3]	
DynamicViscosity	mu_a	Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s]	
DynamicViscosity	mu_b	Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s]	
Length	length	Length of pipe [m]	
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]	

126 Pipes.BaseClasses.WallFriction.Detailed.pressureLoss_m_flow_staticHead

Real	g_times_height _ab	Gravity times (Height(port_b) - Height(port_a))
Length		Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m]
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small (dummy if use_m_flow_small = false) [kg/s]

Outputs

Type	Name	Description	
Pressure	dp	Pressure loss (dp = port_a.p - port_b.p) [Pa]	

Pipes.BaseClasses.WallFriction.TestWallFrictionAndGravity

Pressure loss in pipe due to wall friction and gravity (only for test purposes; if needed use Pipes.StaticPipe instead)

Information

This model describes pressure losses due to **wall friction** in a pipe and due to gravity. It is assumed that no mass or energy is stored in the pipe. Correlations of different complexity and validity can be seleted via the replaceable package **WallFriction** (see parameter menu below). The details of the pipe wall friction model are described in the <u>UsersGuide</u>. Basically, different variants of the equation

$$dp = \lambda (Re, \Delta) * (L/D) * \rho * v * |v|/2$$

are used, where the friction loss factor λ is shown in the next figure:

By default, the correlations are computed with media data at the actual time instant. In order to reduce nonlinear equation systems, parameter use_nominal provides the option to compute the correlations with constant media values at the desired operating point. This might speed-up the simulation and/or might give a more robust simulation.

Extends from Interfaces.PartialTwoPortTransport (Partial element transporting fluid between two ports without storage of mass or energy).

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Length	length	Length of pipe [m]	
Diameter	diameter	Inner (hydraulic) diameter of pipe [m]	
Length	height_ab	Height(port_b) - Height(port_a) [m]	
Length	roughness	Absolute roughness of pipe (default = smooth steel pipe) [m]	
Boolean	use_nominal	= true, if mu_nominal and rho_nominal are used, otherwise computed from medium	
DynamicViscosity	mu_nominal	Nominal dynamic viscosity (e.g. mu_liquidWater = 1e-3, mu_air = 1.8e-5) [Pa.s]	
Density	rho_nominal	Nominal density (e.g. rho_liquidWater = 995, rho_air = 1.2) [kg/m3]	
Assumptions	Assumptions		

128 Pipes.BaseClasses.WallFriction.TestWallFrictionAndGravity

Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Advanced			
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]	
Boolean	show_Re = true, if Reynolds number is included for plotting		
Boolean	from_dp	= true, use m_flow = f(dp), otherwise dp = f(m_flow)	
AbsolutePressure	dp_small	Within regularization if dp < dp_small (may be wider for large discontinuities in static head) [Pa]	
Diagnostics			
Boolean	show_T = true, if temperatures at port_a and port_b are computed		
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed	

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Modelica_Fluid. Machines

Devices for converting between energy held in a fluid and mechanical energy

Information

Extends from Icons. VariantLibrary (Icon for a library that contains several variants of one component).

Package Content

Name	Description
• <u>SweptVolume</u>	varying cylindric volume depending on the postition of the piston
Pump Pump	Centrifugal pump with mechanical connector for the shaft
ControlledPump	Centrifugal pump with ideally controlled mass flow rate
PrescribedPump	Centrifugal pump with ideally controlled speed
<u>BaseClasses</u>	Base classes used in the Machines package (only of interest to build new component models)

Machines.SweptVolume

varying cylindric volume depending on the postition of the piston

Information

Mixing volume with varying size. The size of the volume is given by:

- · cross sectional piston area
- · piston stroke given by the flange position s
- clearance (volume at flang position = 0)

Losses are neglected. The shaft power is completely converted into mechanical work on the fluid.

The flange position has to be equal or greater than zero. Otherwise the simulation stops. The force of the flange results from the pressure difference between medium and ambient pressure and the cross sectional piston area. For using the component, a top level instance of the ambient model with the inner attribute is needed.

The pressure at both fluid ports equals the medium pressure in the volume. No suction nor discharge valve is included in the model.

The thermal port is directly connected to the medium. The temperature of the thermal port equals the medium temperature. The heat capacity of the cylinder and the piston are not includes in the model.

Extends from Vessels.BaseClasses.PartialLumpedVessel (Lumped volume with a vector of fluid ports and replaceable heat transfer model).

Parameters

Type	Name	Description	
Area	pistonCrossArea	cross sectional area of pistion [m2]	
Volume	clearance	remaining volume at zero piston stroke [m3]	
replaceable packa	ge Medium	Medium in the component	
Volume	fluidVolume	Volume [m3]	
Ports			
Boolean	use_portsData	= false to neglect pressure loss and kinetic energy	
<u>VesselPortsData</u>	portsData[nPorts]	Data of inlet/outlet ports	
Assumptions			
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer			
Boolean	use_HeatTransfer	= true to use the HeatTransfer model	
replaceable model	HeatTransfer	Wall heat transfer	
Initialization			
AbsolutePressure	p_start	Start value of pressure [Pa]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
Advanced			
Port properties			
MassFlowRate	m_flow_small	Regularization range at zero mass flow rate [kg/s]	

Connectors

Туре	Name	Description
VesselFluidPorts_b	ports[nPorts]	Fluid inlets and outlets
HeatPort_a	heatPort	
Flange_b	flange	translation flange for piston

Machines.Pump

Centrifugal pump with mechanical connector for the shaft

Information

This model describes a centrifugal pump (or a group of nParallel pumps) with a mechanical rotational connector for the shaft, to be used when the pump drive has to be modelled explicitly. In the case of nParallel pumps, the mechanical connector is relative to a single pump.

The model extends PartialPump

Extends from Machines.BaseClasses.PartialPump (Base model for centrifugal pumps).

Туре	Name	Description		
replaceable package	Medium	Medium in the component		
Characteristics				
Integer	nParallel	Number of pumps in parallel		
replaceable function	flowCharacteristic	Head vs. V_flow characteristic at nominal speed and density		
AngularVelocity_rp m	N_nominal	Nominal rotational speed for flow characteristic [1/min]		
Density	rho_nominal	Nominal fluid density for characteristic [kg/m3]		
Boolean	use_powerCharacteristi c	Use powerCharacteristic (vs. efficiencyCharacteristic)		
replaceable function	powerCharacteristic	Power consumption vs. V_flow at nominal speed and density		
replaceable function	efficiencyCharacteristic	Efficiency vs. V_flow at nominal speed and density		
Assumptions				
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
Boolean	checkValve	= true to prevent reverse flow		
Volume	V	Volume inside the pump [m3]		
Dynamics				
<u>Dynamics</u>	energyDynamics	Formulation of energy balance		
<u>Dynamics</u>	massDynamics	Formulation of mass balance		
Heat transfer				
Boolean	use_HeatTransfer	= true to use a HeatTransfer model, e.g. for a housing		
replaceable model H	leatTransfer	Wall heat transfer		
Initialization				
AbsolutePressure	p_a_start	Guess value for inlet pressure [Pa]		
AbsolutePressure	p_b_start	Guess value for outlet pressure [Pa]		
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]		
Boolean	use_T_start	= true, use T_start, otherwise h_start		
Temperature	T_start	Start value of temperature [K]		
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]		
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]		
ExtraProperty	C_start[Medium.nC]	Start value of trace substances		
Advanced				
Diagnostics				

Boolean	show NPSHa	= true to compute Net Positive Suction Head available
	O	

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
HeatPort_a	heatPort	
Flange_a	shaft	

Machines.ControlledPump

Centrifugal pump with ideally controlled mass flow rate

Information

This model describes a centrifugal pump (or a group of nParallel pumps) with ideally controlled mass flow rate or pressure.

Nominal values are used to predefine an exemplary pump characteristics and to define the operation of the pump. The input connectors m flow set or p set can optionally be enabled to provide time varying set points.

Use this model if the pump characteristics is of secondary interest. The actual characteristics can be configured later on for the appropriate rotational speed N. Then the model can be replaced with a Pump with rotational shaft or with a PrescribedPump.

Extends from Machines.BaseClasses.PartialPump (Base model for centrifugal pumps).

Type	Name	Description
replaceable package Medium		Medium in the component
AbsolutePressure	p_a_nominal	Nominal inlet pressure for predefined pump characteristics [Pa]
AbsolutePressure	p_b_nominal	Nominal outlet pressure, fixed if not control_m_flow and not use_p_set [Pa]
MassFlowRate	m_flow_nominal	Nominal mass flow rate, fixed if control_m_flow and not use_m_flow_set [kg/s]
Boolean	control_m_flow	= false to control outlet pressure port_b.p instead of m_flow
Boolean	use_m_flow_set	= true to use input signal m_flow_set instead of m_flow_nominal
Boolean	use_p_set	= true to use input signal p_set instead of p_b_nominal
Characteristics		
Integer	nParallel	Number of pumps in parallel
replaceable function flowCharacteristic		Head vs. V_flow characteristic at nominal speed and density
AngularVelocity_rp m	N_nominal	Nominal rotational speed for flow characteristic [1/min]
Density	rho_nominal	Nominal fluid density for characteristic [kg/m3]
Boolean	use_powerCharacteristi c	Use powerCharacteristic (vs. efficiencyCharacteristic)
replaceable function powerCharacteristic		Power consumption vs. V_flow at nominal speed and density
replaceable function efficiencyCharacteristic		Efficiency vs. V_flow at nominal speed and density

Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Boolean	checkValve	= true to prevent reverse flow	
Volume	V	Volume inside the pump [m3]	
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer			
Boolean	use_HeatTransfer	= true to use a HeatTransfer model, e.g. for a housing	
replaceable model HeatTransfer		Wall heat transfer	
Initialization			
AbsolutePressure	p_a_start	Guess value for inlet pressure [Pa]	
AbsolutePressure	p_b_start	Guess value for outlet pressure [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction			
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
Advanced			
Diagnostics			
Boolean	show_NPSHa	= true to compute Net Positive Suction Head available	

Connectors

Туре	Name	Description	
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)	
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)	
HeatPort_a	heatPort		
input RealInput	m_flow_set	Prescribed mass flow rate	
input RealInput	p_set	Prescribed outlet pressure	
Characteristics			
replaceable function flowCharacteristic		Head vs. V_flow characteristic at nominal speed and density	

Machines.PrescribedPump

Centrifugal pump with ideally controlled speed

Information

This model describes a centrifugal pump (or a group of nParallel pumps) with prescribed speed, either fixed or provided by an external signal.

The model extends PartialPump

If the ${\tt N_in}$ input connector is wired, it provides rotational speed of the pumps (rpm); otherwise, a constant

rotational speed equal to n_const (which can be different from $N_nominal$) is assumed.

Extends from Machines.BaseClasses.PartialPump (Base model for centrifugal pumps).

Parameters

Туре	Name	Description	
replaceable package	e Medium	Medium in the component	
Boolean	use_N_in	Get the rotational speed from the input connector	
AngularVelocity_rp m	N_const	Constant rotational speed [1/min]	
Characteristics			
Integer	nParallel	Number of pumps in parallel	
replaceable function	flowCharacteristic	Head vs. V_flow characteristic at nominal speed and density	
AngularVelocity_rp m	N_nominal	Nominal rotational speed for flow characteristic [1/min]	
Density	rho_nominal	Nominal fluid density for characteristic [kg/m3]	
Boolean	use_powerCharacteristi c	Use powerCharacteristic (vs. efficiencyCharacteristic)	
replaceable function	powerCharacteristic	Power consumption vs. V_flow at nominal speed and density	
replaceable function	efficiencyCharacteristic	Efficiency vs. V_flow at nominal speed and density	
Assumptions			
Boolean	allowFlowReversal	<pre>= true to allow flow reversal, false restricts to design direction (port_a -> port_b)</pre>	
Boolean	checkValve	= true to prevent reverse flow	
Volume	V	Volume inside the pump [m3]	
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer			
Boolean	use_HeatTransfer	= true to use a HeatTransfer model, e.g. for a housing	
replaceable model HeatTransfer		Wall heat transfer	
Initialization			
AbsolutePressure	p_a_start	Guess value for inlet pressure [Pa]	
AbsolutePressure	p_b_start	Guess value for outlet pressure [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
Advanced			
Diagnostics			
Boolean	show_NPSHa	= true to compute Net Positive Suction Head available	

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)

134 Machines.PrescribedPump

FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
HeatPort_a	heatPort	
input RealInput	N_in	Prescribed rotational speed [1/min]

Machines.BaseClasses

Base classes used in the Machines package (only of interest to build new component models)

Package Content

Name	Description
PartialPump	Base model for centrifugal pumps
PumpCharacteristics	Functions for pump characteristics
(f) assertPositiveDifference	

Machines.BaseClasses.PartialPump

Base model for centrifugal pumps

Information

This is the base model for pumps.

The model describes a centrifugal pump, or a group of nParallel identical pumps. The pump model is based on the theory of kinematic similarity: the pump characteristics are given for nominal operating conditions (rotational speed and fluid density), and then adapted to actual operating condition, according to the similarity equations.

Pump characteristics

The nominal hydraulic characteristic (head vs. volume flow rate) is given by the the replaceable function flowCharacteristic.

The pump energy balance can be specified in two alternative ways:

- use_powerCharacteristic = false (default option): the replaceable function efficiencyCharacteristic (efficiency vs. volume flow rate in nominal conditions) is used to determine the efficiency, and then the power consumption. The default is a constant efficiency of 0.8.
- use_powerCharacteristic = true: the replaceable function powerCharacteristic (power consumption vs. volume flow rate in nominal conditions) is used to determine the power consumption, and then the efficiency. Use powerCharacteristic to specify a non-zero power consumption for zero flow rate.

Several functions are provided in the package PumpCharacteristics to specify the characteristics as a function of some operating points at nominal conditions.

Depending on the value of the checkValve parameter, the model either supports reverse flow conditions, or includes a built-in check valve to avoid flow reversal.

It is possible to take into account the heat capacity of the fluid inside the pump by specifying its volume V; this is necessary to avoid singularities in the computation of the outlet enthalpy in case of zero flow rate. If zero flow rate conditions are always avoided, this dynamic effect can be neglected by leaving the default value V=0, thus avoiding a fast state variable in the model.

Dynamics options

Steady-state mass and energy balances are assumed per default, neglecting the holdup of fluid in the pump.

Dynamic mass and energy balance can be used by setting the corresponding dynamic parameters. This might be desirable if the pump is assembled together with valves before port_a and behind port_b. If both valves are closed, then the fluid is useful to define the thermodynamic state and in particular the absolute pressure in the pump. Note that the flowCharacteristic only specifies a pressure difference.

Heat transfer

The boolean paramter use <code>HeatTransfer</code> can be set to true if heat exchanged with the environment should be taken into account or to model a housing. This might be desirable if a pump with realistic powerCharacteristic for zero flow operates while a valve prevents fluid flow.

Diagnostics of Cavitation

The boolean parameter show NPSHa can set true to compute the Net Positive Suction Head available and check for cavitation, provided a two-phase medium model is used.

Extends from Interfaces.PartialTwoPort (Partial component with two ports), Interfaces.PartialLumpedVolume (Lumped volume with mass and energy balance).

Туре	Name	Description	
replaceable package	e Medium	Medium in the component	
Volume	fluidVolume	Volume [m3]	
Characteristics			
Integer	nParallel	Number of pumps in parallel	
AngularVelocity_rp m	N_nominal	Nominal rotational speed for flow characteristic [1/min]	
Density	rho_nominal	Nominal fluid density for characteristic [kg/m3]	
Boolean	use_powerCharacteristi c	Use powerCharacteristic (vs. efficiencyCharacteristic)	
Assumptions			
Boolean	allowFlowReversal	<pre>= true to allow flow reversal, false restricts to design direction (port_a -> port_b)</pre>	
Boolean	checkValve	= true to prevent reverse flow	
Volume	V	Volume inside the pump [m3]	
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Heat transfer			
Boolean	use_HeatTransfer	= true to use a HeatTransfer model, e.g. for a housing	
Initialization			
AbsolutePressure	p_a_start	Guess value for inlet pressure [Pa]	
AbsolutePressure	p_b_start	Guess value for outlet pressure [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
AbsolutePressure	p_start	Start value of pressure [Pa]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	
Advanced			

136 Machines.BaseClasses.PartialPump

Diagnostics		
Boolean	show_NPSHa	= true to compute Net Positive Suction Head available

Connectors

Туре	Name	Description
HeatPort_a	heatPort	

<u>Machines.BaseClasses</u>.PumpCharacteristics

Functions for pump characteristics

Package Content

Name	Description
f baseFlow	Base class for pump flow characteristics
f basePower	Base class for pump power consumption characteristics
f baseEfficiency	Base class for efficiency characteristics
f linearFlow	Linear flow characteristic
f quadraticFlow	Quadratic flow characteristic
f polynomialFlow	Polynomial flow characteristic
(f) constantEfficiency	Constant efficiency characteristic
f linearPower	Linear power consumption characteristic
f quadraticPower	Quadratic power consumption characteristic

$\underline{Machines.Base Classes.Pump Characteristics}.base Flow$

Base class for pump flow characteristics

Type	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]

Outputs

Type	Name	Description
Height	head	Pump head [m]

$\underline{Machines. Base Classes. Pump Characteristics}. base Power$

Base class for pump power consumption characteristics

Inputs

Туре	Name	Description
VolumeFlowRate	V flow	Volumetric flow rate [m3/s]

Outputs

Туре	Name	Description
Power	consumption	Power consumption [W]

$\underline{Machines. Base Classes. Pump Characteristics}. base Efficiency$

Base class for efficiency characteristics

Inputs

Type	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]

Outputs

Туре	Name	Description
Real	eta	Efficiency

<u>Machines.BaseClasses.PumpCharacteristics</u>.linearFlow

Linear flow characteristic

Inputs

Туре	Name	Description
VolumeFlowRat e	V_flow	Volumetric flow rate [m3/s]
VolumeFlowRat e	V_flow_nominal[2]	Volume flow rate for two operating points (single pump) [m3/s]
Height	head_nominal[2]	Pump head for two operating points [m]

Outputs

Туре	Name	Description
Height	head	Pump head [m]

$\underline{Machines. Base Classes. Pump Characteristics}. quadratic Flow$

Quadratic flow characteristic

Inputs

Туре	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]
VolumeFlowRate	V_flow_nominal[3]	Volume flow rate for three operating points (single pump) [m3/s]
Height	head_nominal[3]	Pump head for three operating points [m]

Outputs

Type Name Description	Type	 Description 	n
-----------------------	------	---------------------------------	---

Height head Pump head [m]

$\underline{Machines. Base Classes. Pump Characteristics}. polynomial Flow$

Polynomial flow characteristic

Inputs

Туре	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]
VolumeFlowRate	V_flow_nominal[:	Volume flow rate for N operating points (single pump) [m3/s]
Height	head_nominal[:]	Pump head for N operating points [m]

Outputs

		Description
Height	head	Pump head [m]

$\underline{Machines.BaseClasses.PumpCharacteristics}.constantEfficiency$

Constant efficiency characteristic

Inputs

Туре	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]
Real	eta_nominal	Nominal efficiency

Outputs

Туре	Name	Description
Real	eta	Efficiency

$\underline{Machines.BaseClasses.PumpCharacteristics}. In ear Power$

Linear power consumption characteristic

Inputs

Туре	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]
VolumeFlowRate	V_flow_nominal[2]	Volume flow rate for two operating points (single pump) [m3/s]
Power	W_nominal[2]	Power consumption for two operating points [W]

Outputs

Туре	Name	Description
Power	consumption	Power consumption [W]

$\underline{Machines. Base Classes. Pump Characteristics}. quadratic Power$

Quadratic power consumption characteristic

Inputs

Type	Name	Description
VolumeFlowRate	V_flow	Volumetric flow rate [m3/s]
VolumeFlowRate	V_flow_nominal[3]	Volume flow rate for three operating points (single pump) [m3/s]
Power	W_nominal[3]	Power consumption for three operating points [W]

Outputs

Туре	Name	Description
Power	consumption	Power consumption [W]

Machines.BaseClasses.assertPositiveDifference

Inputs

Туре	Name	Description
Pressure	р	[Pa]
Pressure	p_sat	[Pa]
String	message	

Outputs

Type	Name	Description
Pressure	dp	[Pa]

Modelica_Fluid.Valves

Components for the regulation and control of fluid flow

Information

Extends from Loops: VariantLibrary (Icon for a library that contains several variants of one component).

Package Content

Name	Description
<u>ValveIncompressible</u>	Valve for (almost) incompressible fluids
<u>ValveVaporizing</u>	Valve for possibly vaporizing (almost) incompressible fluids, accounts for choked flow conditions
<u>ValveCompressible</u>	Valve for compressible fluids, accounts for choked flow conditions
<u>ValveLinear</u>	Valve for water/steam flows with linear pressure drop
<u>ValveDiscrete</u>	Valve for water/steam flows with linear pressure drop
BaseClasses	Base classes used in the Valves package (only of interest to build new

comp	onent	models)
------	-------	---------

Valves. ValveIncompressible

Valve for (almost) incompressible fluids

Information

Valve model according to the IEC 534/ISA S.75 standards for valve sizing, incompressible fluids.

This model assumes that the fluid has a low compressibility, which is always the case for liquids. It can also be used with gases, provided that the pressure drop is lower than 0.2 times the absolute pressure at the inlet, so that the fluid density does not change much inside the valve.

If checkValve is false, the valve supports reverse flow, with a symmetric flow characteric curve. Otherwise, reverse flow is stopped (check valve behaviour).

The treatment of parameters **Kv** and **Cv** is explained in detail in the <u>Users Guide</u>.

Extends from **BaseClasses.PartialValve** (Base model for valves).

Parameters

Type	Name	Description
replaceable package Medium		Medium in the component
replaceable function valveCharacteristic Inherent flow characteristic		
Flow Coefficient		
<u>CvTypes</u>	CvData	Selection of flow coefficient
Area	Av	Av (metric) flow coefficient [m2]
Real	Kv	Kv (metric) flow coefficient [m3/h]
Real	Cv	Cv (US) flow coefficient [USG/min]
Nominal operating	point	
Pressure	dp_nominal	Nominal pressure drop [Pa]
MassFlowRate	m_flow_nominal	Nominal mass flowrate [kg/s]
Density	rho_nominal	Nominal inlet density [kg/m3]
Real	opening_nominal	Nominal opening
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Boolean	checkValve	Reverse flow stopped
Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]
Pressure	dp_small	Regularisation of zero flow [Pa]
Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed

Connectors

Type Name Description

FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
input RealInput	opening	Valve position in the range 0-1

Valves. Valve Vaporizing

Valve for possibly vaporizing (almost) incompressible fluids, accounts for choked flow conditions

Information

Valve model according to the IEC 534/ISA S.75 standards for valve sizing, incompressible fluid at the inlet, and possibly two-phase fluid at the outlet, including choked flow conditions.

The model operating range includes choked flow operation, which takes place for low outlet pressures due to flashing in the vena contracta; otherwise, non-choking conditions are assumed.

This model requires a two-phase medium model, to describe the liquid and (possible) two-phase conditions.

The default liquid pressure recovery coefficient F1 is constant and given by the parameter F1 nominal. The relative change (per unit) of the recovery coefficient can be specified as a given function of the valve opening by replacing the FlCharacteristic function.

If checkValve is false, the valve supports reverse flow, with a symmetric flow characteric curve. Otherwise, reverse flow is stopped (check valve behaviour).

The treatment of parameters **Kv** and **Cv** is explained in detail in the <u>Users Guide</u>.

Extends from BaseClasses.PartialValve (Base model for valves).

Туре	Name	Description
replaceable package Medium		Medium in the component
replaceable function	n valveCharacteristic	Inherent flow characteristic
Real	FI_nominal	Liquid pressure recovery factor
replaceable function	n FICharacteristic	Pressure recovery characteristic
Flow Coefficient		
<u>CvTypes</u>	CvData	Selection of flow coefficient
Area	Av	Av (metric) flow coefficient [m2]
Real	Kv	Kv (metric) flow coefficient [m3/h]
Real	Cv	Cv (US) flow coefficient [USG/min]
Nominal operating point		
Pressure	dp_nominal	Nominal pressure drop [Pa]
MassFlowRate	m_flow_nominal	Nominal mass flowrate [kg/s]
Density	rho_nominal	Nominal inlet density [kg/m3]
Real	opening_nominal	Nominal opening
Assumptions		
Boolean	allowFlowReversal	<pre>= true to allow flow reversal, false restricts to design direction (port_a -> port_b)</pre>
Boolean	checkValve	Reverse flow stopped
Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]

142 Valves. Valve Vaporizing

MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]
Pressure	dp_small	Regularisation of zero flow [Pa]
Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed

Connectors

Туре	Name	Description
replaceable package M	edium	Medium in the component
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
input RealInput	opening	Valve position in the range 0-1
replaceable function FICharacteristic		Pressure recovery characteristic

Valves. Valve Compressible

Valve for compressible fluids, accounts for choked flow conditions

Information

Valve model according to the IEC 534/ISA S.75 standards for valve sizing, compressible fluid, no phase change, also covering choked-flow conditions.

This model can be used with gases and vapours, with arbitrary pressure ratio between inlet and outlet.

The product Fk*xt is given by the parameter Fxt_full, and is assumed constant by default. The relative change (per unit) of the xt coefficient with the valve opening can be specified by replacing the xtCharacteristic function.

If <code>checkValve</code> is false, the valve supports reverse flow, with a symmetric flow characteric curve. Otherwise, reverse flow is stopped (check valve behaviour).

The treatment of parameters **Kv** and **Cv** is explained in detail in the <u>Users Guide</u>.

Extends from <u>BaseClasses.PartialValve</u> (Base model for valves).

Туре	Name	Description
replaceable package Medium		Medium in the component
replaceable function valveCharacteristic		Inherent flow characteristic
Real	Fxt_full	Fk*xt critical ratio at full opening
replaceable function xtCharacteristic		Critical ratio characteristic
Flow Coefficient		
<u>CvTypes</u>	CvData	Selection of flow coefficient
Area	Av	Av (metric) flow coefficient [m2]
Real	Kv	Kv (metric) flow coefficient [m3/h]
Real	Cv	Cv (US) flow coefficient [USG/min]

Nominal operating point			
dp_nominal	Nominal pressure drop [Pa]		
m_flow_nominal	Nominal mass flowrate [kg/s]		
rho_nominal	Nominal inlet density [kg/m3]		
opening_nominal	Nominal opening		
p_nominal	Nominal inlet pressure [Pa]		
allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
checkValve	Reverse flow stopped		
Advanced			
dp_start	Guess value of dp = port_a.p - port_b.p [Pa]		
m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]		
m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]		
dp_small	Regularisation of zero flow [Pa]		
Diagnostics			
show_T	= true, if temperatures at port_a and port_b are computed		
show_V_flow	= true, if volume flow rate at inflowing port is computed		
	dp_nominal m_flow_nominal rho_nominal opening_nominal p_nominal allowFlowReversal checkValve dp_start m_flow_start m_flow_small dp_small show_T		

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
input RealInput	opening	Valve position in the range 0-1
replaceable function xtCharacteristic		Critical ratio characteristic

Valves. Valve Linear

Valve for water/steam flows with linear pressure drop

Information

This very simple model provides a pressure drop which is proportional to the flowrate and to the opening input, without computing any fluid property. It can be used for testing purposes, when a simple model of a variable pressure loss is needed.

A medium model must be nevertheless be specified, so that the fluid ports can be connected to other components using the same medium model.

The model is adiabatic (no heat losses to the ambient) and neglects changes in kinetic energy from the inlet to the outlet.

Extends from Interfaces.PartialTwoPortTransport (Partial element transporting fluid between two ports without storage of mass or energy).

Type	Name	Description
replaceable package Medium		Medium in the component

144 Valves. Valve Linear

dp_nominal	Nominal pressure drop at full opening [Pa]		
m_flow_nominal	Nominal mass flowrate at full opening [kg/s]		
allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
Advanced			
dp_start	Guess value of dp = port_a.p - port_b.p [Pa]		
m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]		
m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]		
Diagnostics			
show_T	= true, if temperatures at port_a and port_b are computed		
show_V_flow	= true, if volume flow rate at inflowing port is computed		
	m_flow_nominal allowFlowReversal dp_start m_flow_start m_flow_small show_T		

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
input RealInput	opening	=1: completely open, =0: completely closed

Valves.ValveDiscrete

Valve for water/steam flows with linear pressure drop

Information

This very simple model provides a (small) pressure drop which is proportional to the flowrate if the Boolean open signal is **true**. Otherwise, the mass flow rate is zero. If opening_min > 0, a small leakage mass flow rate occurs when open = **false**.

This model can be used for simplified modelling of on-off valves, when it is not important to accurately describe the pressure loss when the valve is open. Although the medium model is not used to determine the pressure loss, it must be nevertheless be specified, so that the fluid ports can be connected to other components using the same medium model.

The model is adiabatic (no heat losses to the ambient) and neglects changes in kinetic energy from the inlet to the outlet.

In a diagram animation, the valve is shown in "green", when it is open.

Extends from Interfaces.PartialTwoPortTransport (Partial element transporting fluid between two ports without storage of mass or energy).

Type	Name	Description
replaceable package Medium		Medium in the component
Pressure	dp_nominal	Nominal pressure drop at full opening=1 [Pa]
MassFlowRate	m_flow_nominal	Nominal mass flowrate at full opening=1 [kg/s]
Real	opening_min	Remaining opening if closed, causing small leakage flow
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)

Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]
Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
input BooleanInput	open	

Valves.BaseClasses

Base classes used in the Valves package (only of interest to build new component models)

Package Content

Name	Description
PartialValve	Base model for valves
<u>ValveCharacteristics</u>	Functions for valve characteristics

Valves.BaseClasses.PartialValve

Base model for valves

Information

This is the base model for the ValveIncompressible, ValveVaporizing, and ValveCompressible valve models. The model is based on the IEC 534 / ISA S.75 standards for valve sizing.

The model optionally supports reverse flow conditions (assuming symmetrical behaviour) or check valve operation, and has been suitably regularized, compared to the equations in the standard, in order to avoid numerical singularities around zero pressure drop operating conditions.

The model assumes adiabatic operation (no heat losses to the ambient); changes in kinetic energy from inlet to outlet are neglected in the energy balance.

Modelling options

The following options are available to specify the valve flow coefficient in fully open conditions:

- $\bullet \quad \texttt{CvData} \ = \ \texttt{Modelica_Fluid.Types.CvTypes.Av:} \ \textbf{the flow coefficient is given by the metric} \ \texttt{Av} \\$ coefficient (m^2).
- CvData = Modelica Fluid. Types. CvTypes. Kv: the flow coefficient is given by the metric Kv coefficient (m³/h).
- CvData = Modelica Fluid. Types. CvTypes. Cv: the flow coefficient is given by the US Cv coefficient (USG/min).
- CvData = Modelica Fluid. Types. CvTypes. OpPoint: the flow is computed from the nominal operating point specified by p nominal, dp nominal, m flow nominal, rho nominal, opening nominal.

The nominal pressure drop $dp_nominal$ must always be specified; to avoid numerical singularities, the flow characteristic is modified for pressure drops less than $b*dp_nominal$ (the default value is 1% of the nominal pressure drop). Increase this parameter if numerical problems occur in valves with very low pressure drops.

If <code>checkValve</code> is true, then the flow is stopped when the outlet pressure is higher than the inlet pressure; otherwise, reverse flow takes place. Use this option only when neede, as it increases the numerical complexity of the problem.

The valve opening characteristic <code>valveCharacteristic</code>, linear by default, can be replaced by any user-defined function. Quadratic and equal percentage with customizable rangeability are already provided by the library.

The treatment of parameters **Kv** and **Cv** is explained in detail in the <u>Users Guide</u>.

Extends from <u>Interfaces.PartialTwoPortTransport</u> (Partial element transporting fluid between two ports without storage of mass or energy).

Parameters

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Flow Coefficient			
<u>CvTypes</u>	CvData	Selection of flow coefficient	
Area	Av	Av (metric) flow coefficient [m2]	
Real	Kv	Kv (metric) flow coefficient [m3/h]	
Real	Cv	Cv (US) flow coefficient [USG/min]	
Nominal operating	point		
Pressure	dp_nominal	Nominal pressure drop [Pa]	
MassFlowRate	m_flow_nominal	Nominal mass flowrate [kg/s]	
Density	rho_nominal	Nominal inlet density [kg/m3]	
Real	opening_nominal	Nominal opening	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Boolean	checkValve	Reverse flow stopped	
Advanced	Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]	
Pressure	dp_small	Regularisation of zero flow [Pa]	
Diagnostics			
Boolean	show_T	= true, if temperatures at port_a and port_b are computed	
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed	

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
input RealInput	opening	Valve position in the range 0-1

<u>Valves.BaseClasses</u>.ValveCharacteristics

Functions for valve characteristics

Package Content

Name	Description
f baseFun	Base class for valve characteristics
f linear	Linear characteristic
① one	Constant characteristic
f quadratic	Quadratic characteristic
(f) equalPercentage	Equal percentage characteristic

<u>Valves.BaseClasses.ValveCharacteristics</u>.baseFun

Base class for valve characteristics

Inputs

Type	Name	Description
Real	pos	Opening position (per unit)

Outputs

Type	Name	Description
Real	rc	Relative flow coefficient (per unit)

Valves.BaseClasses.ValveCharacteristics.linear

Linear characteristic

Inputs

Туре	Name	Description
Real	pos	Opening position (per unit)

Outputs

Type	Name	Description
Real	rc	Relative flow coefficient (per unit)

Valves.BaseClasses.ValveCharacteristics.one

Constant characteristic

Inputs

Туре	Name	Description
Real	pos	Opening position (per unit)

Outputs

Type	Name	Description
Real	rc	Relative flow coefficient (per unit)

<u>Valves.BaseClasses.ValveCharacteristics</u>.quadratic

Quadratic characteristic

Inputs

Type	Name	Description
Real	pos	Opening position (per unit)

Outputs

Type	Name	Description
Real	rc	Relative flow coefficient (per unit)

<u>Valves.BaseClasses.ValveCharacteristics</u>.equalPercentage

Equal percentage characteristic

Information

illorillation

This characteristic is such that the relative change of the flow coefficient is proportional to the change in the opening position:

d(rc)/d(pos) = k d(pos).

The constant k is expressed in terms of the rangeability, i.e. the ratio between the maximum and the minimum useful flow coefficient:

rangeability = $\exp(k) = rc(1.0)/rc(0.0)$.

The theoretical characteristic has a non-zero opening when pos = 0; the implemented characteristic is modified so that the valve closes linearly when pos < delta.

Extends from baseFun (Base class for valve characteristics).

Inputs

Туре	Name	Description
Real	pos	Opening position (per unit)
Real	rangeability	Rangeability
Real	delta	

Outputs

Туре	Name	Description	
Real	rc	Relative flow coefficient (per unit)	

Modelica Fluid. Fittings

Adaptors for connections of fluid components and the regulation of fluid flow

Information

Extends from Icons. VariantLibrary (Icon for a library that contains several variants of one component).

Package Content

Name	Description
<u>►</u> <u>SimpleGenericOrifice</u>	Simple generic orifice defined by pressure loss coefficient and diameter (only for flow from port_a to port_b)
SharpEdgedOrifice	Pressure drop due to sharp edged orifice (for both flow directions)
<u>AbruptAdaptor</u>	Pressure drop in pipe due to suddenly expanding or reducing area (for both flow directions)
■ MultiPort	Multiply a port; useful if multiple connections shall be made to a port exposing a state
* TeeJunctionIdeal	Splitting/joining component with static balances for an infinitesimal control volume
LegunctionVolume TeeJunctionVolume	Splitting/joining component with static balances for a dynamic control volume
<u>BaseClasses</u>	Base classes used in the Fittings package (only of interest to build new component models)

Fittings.SimpleGenericOrifice

Simple generic orifice defined by pressure loss coefficient and diameter (only for flow from port_a to port_b)

Information

This pressure drop component defines a simple, generic orifice, where the loss factor ζ is provided for one flow direction (e.g., from loss table of a book):

$$\Delta p = 0.5*\zeta*\rho*v*|v|$$

= $8*\zeta/(\pi^2*D^4*\rho) * m_flow*|m_flow|$

where

- Δp is the pressure drop: Δp = port a.p port b.p
- D is the diameter of the orifice at the position where ζ is defined (either at port a or port b). If the orifice has not a circular cross section, D = 4*A/P, where A is the cross section area and P is the wetted perimeter.
- ζ is the loss factor with respect to D that depends on the geometry of the orifice. In the turbulent flow regime, it is assumed that ζ is constant.
 - For small mass flow rates, the flow is laminar and is approximated by a polynomial that has a finite derivative for m flow=0.
- v is the mean velocity.
- ρ is the upstream density.

Since the pressure loss factor zeta is provided only for a mass flow from port_a to port_b, the pressure loss is not correct when the flow is reversing. If reversing flow only occurs in a short time interval, this is most likely uncritical. If significant reversing flow can appear, this component should not be used.

Extends from Interfaces.PartialTwoPortTransport (Partial element transporting fluid between two ports without storage of mass or energy), Interfaces.PartialLumpedFlow (Base class for a lumped momentum balance).

Parameters

Туре	Name	Description
replaceable package Medium		Medium in the component
Length	pathLength	Length flow path [m]
Diameter	diameter	Diameter of orifice [m]
Real	zeta	Loss factor for flow of port_a -> port_b
Boolean	use_zeta	= false to obtain zeta from dp_nominal and m_flow_nominal
AbsolutePressure	dp_nominal	Nominal pressure drop [Pa]
MassFlowRate	m_flow_nominal	Mass flow rate for dp_nominal [kg/s]
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Dynamics		
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance
Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]
Boolean	from_dp	= true, use m_flow = f(dp) else dp = f(m_flow)
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small [Pa]
Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

<u>Fittings.</u>SharpEdgedOrifice

Pressure drop due to sharp edged orifice (for both flow directions)

Information

Extends from <u>BaseClasses.QuadraticTurbulent.BaseModel</u> (Generic pressure drop component with constant turbulent loss factor data and without an icon).

Туре	Name	Description
replaceable packa	ge Medium	Medium in the component
<u>LossFactorData</u>	data	Loss factor data
Length	length	Length of orifice [m]
Diameter	diameter	Inner diameter of pipe (= same at port_a and port_b) [m]

leastDiameter	Smallest diameter of orifice [m]		
alpha	Angle of orifice [deg]		
Assumptions			
allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
dp_start	Guess value of dp = port_a.p - port_b.p [Pa]		
m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]		
m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]		
from_dp	= true, use m_flow = f(dp) else dp = f(m_flow)		
use_Re	= true, if turbulent region is defined by Re, otherwise by dp_small or m_flow_small		
dp_small	Turbulent flow if dp >= dp_small [Pa]		
Diagnostics			
show_T	= true, if temperatures at port_a and port_b are computed		
show_V_flow	= true, if volume flow rate at inflowing port is computed		
show_Re	= true, if Reynolds number is included for plotting		
	alpha allowFlowReversal dp_start m_flow_start m_flow_small from_dp use_Re dp_small show_T show_V_flow		

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Fittings.AbruptAdaptor

Pressure drop in pipe due to suddenly expanding or reducing area (for both flow directions)

Information

 $Extends \ from \ \underline{BaseClasses.QuadraticTurbulent.BaseModelNonconstantCrossSectionArea} \ (Generic \ pressure$ drop component with constant turbulent loss factor data and without an icon, for non-constant cross section area).

Туре	Name	Description	
replaceable package Medium		Medium in the component	
<u>LossFactorData</u>	data	Loss factor data	
Diameter	diameter_a	Inner diameter of pipe at port_a [m]	
Diameter	diameter_b	Inner diameter of pipe at port_b [m]	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Advanced			
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]	

152 Fittings.AbruptAdaptor

AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small [Pa]		
Diagnostics	Diagnostics			
Boolean	show_T	= true, if temperatures at port_a and port_b are computed		
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed		
Boolean	show_Re	= true, if Reynolds number is included for plotting		
Boolean	show_totalPressure s	= true, if total pressures are included for plotting		
Boolean	show_portVelocities	= true, if port velocities are included for plotting		

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Fittings.MultiPort

Multiply a port; useful if multiple connections shall be made to a port exposing a state

Information

This model is useful if multiple connections shall be made to a port of a volume model exposing a state, like a pipe with ModelStructure av_vb. The mixing is shifted into the volume connected to port_a and the result is propageted back to each ports b.

If multiple connections were directly made to the volume, then ideal mixing would take place in the connection set, outside the volume. This is normally not intended.

Connectors

Туре	Name	Description
FluidPort_a	port_a	
FluidPorts_b	ports_b[nPorts_b]	

Fittings.TeeJunctionIdeal

Splitting/joining component with static balances for an infinitesimal control volume

Information

This model is the simplest implementation for a splitting/joining component for three flows. Its use is not required. It just formulates the balance equations in the same way that the connect symmantics would formulate them anyways. The main advantage of using this component is, that the user does not get confused when looking at the specific enthalpy at each port which might be confusing when not using a splitting/joining component. The reason for the confusion is that one exmanins the mixing enthalpy of the infinitesimal control volume introduced with the connect statement when looking at the specific enthalpy in the connector which might not be equal to the specific enthalpy at the port in the "real world".

Extends from <u>Fittings.BaseClasses.PartialTeeJunction</u> (Base class for a splitting/joining component with three ports).

Parameters

Туре	Name	Description
replaceable package Medium		Medium in the component

Connectors

Туре	Name	Description
FluidPort_a	port_1	
FluidPort_b	port_2	
FluidPort_a	port_3	

Fittings.TeeJunctionVolume

Splitting/joining component with static balances for a dynamic control volume

Information

This model introduces a mixing volume into a junction. This might be useful to examine the non-ideal mixing taking place in a real junction.

Extends from Fittings.BaseClasses.PartialTeeJunction (Base class for a splitting/joining component with three ports), Interfaces.PartialLumpedVolume (Lumped volume with mass and energy balance).

Parameters

Туре	Name	Description	
replaceable packa	ge Medium	Medium in the component	
Volume	fluidVolume	Volume [m3]	
Volume	V	Mixing volume inside junction [m3]	
Assumptions			
Dynamics			
<u>Dynamics</u>	energyDynamics	Formulation of energy balance	
<u>Dynamics</u>	massDynamics	Formulation of mass balance	
Initialization			
AbsolutePressure	p_start	Start value of pressure [Pa]	
Boolean	use_T_start	= true, use T_start, otherwise h_start	
Temperature	T_start	Start value of temperature [K]	
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]	
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]	
ExtraProperty	C_start[Medium.nC]	Start value of trace substances	

Connectors

Туре	Name	Description
FluidPort_a	port_1	
FluidPort_b	port_2	
FluidPort_a	port_3	

Fittings.BaseClasses

Base classes used in the Fittings package (only of interest to build new component models)

Package Content

Name	Description
f lossConstant_D_zeta	Return the loss constant 8*zeta/(pi^2*D^4)
	Pressure loss components that are mainly defined by a quadratic turbulent regime with constant loss factor data
PartialTeeJunction	Base class for a splitting/joining component with three ports

Fittings.BaseClasses.lossConstant_D_zeta

Return the loss constant 8*zeta/(pi^2*D^4)

f

Information

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Туре	Name	Description
Diameter	D	Diameter at port_a or port_b [m]
Real	zeta	Constant pressure loss factor with respect to D (i.e., either port_a or port_b)

Outputs

Туре	Name	Description	
Real		Loss constant (= 8*zeta/ (pi^2*D^4))	

Fittings.BaseClasses.QuadraticTurbulent

Pressure loss components that are mainly defined by a quadratic turbulent regime with constant loss factor data

Information

This library provides pressure loss factors of a pipe segment (orifice, bending etc.) with a minimum amount of data. If available, data can be provided for **both flow directions**, i.e., flow from port_a to port_b and from port_b to port_a, as well as for the **laminar** and the **turbulent** region. It is also an option to provide the loss factor **only** for the **turbulent** region for a flow from port_a to port_b. Basically, the pressure drop is defined by the following equation:

$$\Delta p = 0.5*\zeta*\rho*v*|v|$$

= 0.5*\zero/A^2 * (1/\rho) * m_flow*|m_flow|
= 8*\zero/(\pi^2*D^4*\rho) * m flow*|m flow|

where

- Δp is the pressure drop: Δp = port_a.p port_b.p
- · v is the mean velocity.
- ρ is the density.

- ζ is the loss factor that depends on the geometry of the pipe. In the turbulent flow regime, it is assumed that ζ is constant and is given by "zeta1" and "zeta2" depending on the flow direction.
- D is the diameter of the pipe segment. If this is not a circular cross section, D = 4*A/P, where A is the cross section area and P is the wetted perimeter.

Package Content

Name	Description
<u>LossFactorData</u>	Data structure defining constant loss factor data for dp = zeta*rho*v* v /2 and functions providing the data for some loss types
massFlowRate_dp	Return mass flow rate from constant loss factor data and pressure drop (m_flow = f(dp))
massFlowRate_dp_and_Re	Return mass flow rate from constant loss factor data, pressure drop and Re (m_flow = f(dp))
f pressureLoss_m_flow	Return pressure drop from constant loss factor and mass flow rate (dp = f(m_flow))
f pressureLoss_m_flow_and_Re	Return pressure drop from constant loss factor, mass flow rate and Re (dp = f(m_flow))
<u>BaseModel</u>	Generic pressure drop component with constant turbulent loss factor data and without an icon
TestWallFriction	Pressure drop in pipe due to wall friction (only for test purposes; if needed use Pipes.StaticPipe instead)
<u>BaseModelNonconstantCrossSectionArea</u>	Generic pressure drop component with constant turbulent loss factor data and without an icon, for non-constant cross section area
f pressureLoss_m_flow_totalPressure	Return pressure drop from constant loss factor and mass flow rate (dp = f(m_flow))

Fittings.BaseClasses.QuadraticTurbulent.LossFactorData

Data structure defining constant loss factor data for dp = zeta*rho*v*|v|/2 and functions providing the data for some loss types

Information

This record defines the pressure loss factors of a pipe segment (orifice, bending etc.) with a minimum amount of data. If available, data should be provided for both flow directions, i.e., flow from port a to port_b and from port_b to port_a, as well as for the laminar and the turbulent region. It is also an option to provide the loss factor **only** for the **turbulent** region for a flow from port_a to port_b.

The following equations are used:

```
\Delta p = 0.5 * \zeta * \rho * v * |v|
   = 0.5*\zeta/A^2*(1/\rho)*mflow*|mflow|
   = 8*\zeta/(\pi^2*D^4*\rho) * m flow*|m flow|
      Re = |v|*D*\rho/\mu
```

flow type	ζ =	flow region
turbulent	zeta1 = const.	Re ≥ Re_turbulent, v ≥ 0
	zeta2 = const.	Re ≥ Re_turbulent, v < 0
laminar	c0/Re	both flow directions, Re small; c0 = const.

where

- Δp is the pressure drop: Δp = port_a.p port_b.p
- · v is the mean velocity.
- ρ is the density.
- ζ is the loss factor that depends on the geometry of the pipe. In the turbulent flow regime, it is assumed that ζ is constant and is given by "zeta1" and "zeta2" depending on the flow direction. When the Reynolds number Re is below "Re_turbulent", the flow is laminar for small flow velocities. For higher velocities there is a transition region from laminar to turbulent flow. The loss factor for laminar flow at small velocities is defined by the often occuring approximation c0/Re. If c0 is different for the two flow directions, the mean value has to be used (c0 = (c0 ab + c0 ba)/2).
- The equation " $\Delta p = 0.5 ^* \zeta^* \rho^* v^* |v|$ " is either with respect to port_a or to port_b, depending on the definition of the particular loss factor ζ (in some references loss factors are defined with respect to port_a, in other references with respect to port_b).
- Re = |v|*D_Re*p/\mu = |m_flow|*D_Re/(A_Re*\mu) is the Reynolds number at the smallest cross section area. This is often at port_a or at port_b, but can also be between the two ports. In the record, the diameter D_Re of this smallest cross section area has to be provided, as well, as Re_turbulent, the absolute value of the Reynolds number at which the turbulent flow starts. If Re_turbulent is different for the two flow directions, use the smaller value as Re_turbulent.
- D is the diameter of the pipe. If the pipe has not a circular cross section, D = 4*A/P, where A is the cross section area and P is the wetted perimeter.
- A is the cross section area with $A = \pi(D/2)^2$.
- µ is the dynamic viscosity.

The laminar and the transition region is usually of not much technical interest because the operating point is mostly in the turbulent regime. For simplification and for numercial reasons, this whole region is described by two polynomials of third order, one polynomial for m_flow \geq 0 and one for m_flow < 0. The polynomials start at Re = |m_flow|*4/(π *D_Re* μ), where D_Re is the smallest diameter between port_a and port_b. The common derivative of the two polynomials at Re = 0 is computed from the equation "c0/Re". Note, the pressure drop equation above in the laminar region is always defined with respect to the smallest diameter D_Re.

If no data for c0 is available, the derivative at Re = 0 is computed in such a way, that the second derivatives of the two polynomials are identical at Re = 0. The polynomials are constructed, such that they smoothly touch the characteristic curves in the turbulent regions. The whole characteristic is therefore **continuous** and has a **finite**, **continuous first derivative everywhere**. In some cases, the constructed polynomials would "vibrate". This is avoided by reducing the derivative at Re=0 in such a way that the polynomials are guaranteed to be monotonically increasing. The used sufficient criteria for monotonicity follows from:

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from Modelica.lcons.Record (Icon for a record).

Туре	Name	Description
Diameter	diameter_a	Diameter at port_a [m]
Diameter	diameter_b	Diameter at port_b [m]
Real	zeta1	Loss factor for flow port_a -> port_b
Real	zeta2	Loss factor for flow port_b -> port_a
ReynoldsNumber	Re_turbulent	Loss factors suited for Re >= Re_turbulent [1]
Diameter	D_Re	Diameter used to compute Re [m]
Boolean	zeta1_at_a	dp = zeta1*(if zeta1_at_a then rho_a*v_a^2/2 else rho_b*v_b^2/2)
Boolean	zeta2_at_a	dp = -zeta2*(if zeta2_at_a then rho_a*v_a^2/2 else rho_b*v_b^2/2)
Boolean	zetaLaminarKnown	= true, if zeta = c0/Re in laminar region
Real	c0	zeta = c0/Re; dp = zeta*rho_Re*v_Re^2/2, Re=v_Re*D_Re*rho_Re/

	mu Re)
	1114_110)

Fittings.BaseClasses.QuadraticTurbulent.massFlowRate_dp

Return mass flow rate from constant loss factor data and pressure drop (m flow = f(dp))

Information

Compute mass flow rate from constant loss factor and pressure drop (m flow = f(dp)). For small pressure drops (dp < dp small), the characteristic is approximated by a polynomial in order to have a finite derivative at zero mass flow rate.

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Type	Name	Description
Pressure	dp	Pressure drop (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
<u>LossFactorData</u>	data	Constant loss factors for both flow directions
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small [Pa]

Outputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

Fittings.BaseClasses.QuadraticTurbulent.massFlowRate_dp_and_Re

Return mass flow rate from constant loss factor data, pressure drop and Re (m_flow = f(dp))

Information

Compute mass flow rate from constant loss factor and pressure drop (m flow = f(dp)). If the Reynoldsnumber Re ≥ data.Re turbulent, the flow is treated as a turbulent flow with constant loss factor zeta. If the Reynolds-number Re < data.Re turbulent, the flow is laminar and/or in a transition region between laminar and turbulent. This region is approximated by two polynomials of third order, one polynomial for m flow ≥ 0 and one for m flow < 0. The common derivative of the two polynomials at Re = 0 is computed from the equation "data.c0/Re".

If no data for c0 is available, the derivative at Re = 0 is computed in such a way, that the second derivatives of the two polynomials are identical at Re = 0. The polynomials are constructed, such that they smoothly touch the characteristic curves in the turbulent regions. The whole characteristic is therefore continuous and has a finite, continuous first derivative everywhere. In some cases, the constructed polynomials would "vibrate". This is avoided by reducing the derivative at Re=0 in such a way that the polynomials are guaranteed to be monotonically increasing. The used sufficient criteria for monotonicity follows from:

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Туре	Name	Description
Pressure	dp	Pressure drop (dp = port_a.p - port_b.p) [Pa]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b [Pa.s]
<u>LossFactorData</u>	data	Constant loss factors for both flow directions

Outputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]

Fittings.BaseClasses.QuadraticTurbulent.pressureLoss_m_flow

Return pressure drop from constant loss factor and mass flow rate (dp = f(m flow))

Information

Compute pressure drop from constant loss factor and mass flow rate (dp = $f(m_flow)$). For small mass flow rates($|m_flow| < m_flow_small$), the characteristic is approximated by a polynomial in order to have a finite derivative at zero mass flow rate.

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
LossFactorData	data	Constant loss factors for both flow directions
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small [kg/s]

Outputs

Type	Name	Description
Pressure	dp	Pressure drop (dp = port_a.p - port_b.p) [Pa]

Fittings.BaseClasses.QuadraticTurbulent.pressureLoss_m_flow_and_Re

Return pressure drop from constant loss factor, mass flow rate and Re $(dp = f(m_flow))$

Information

Compute pressure drop from constant loss factor and mass flow rate (dp = f(m_flow)). If the Reynolds-number Re \geq data.Re_turbulent, the flow is treated as a turbulent flow with constant loss factor zeta. If the Reynolds-number Re < data.Re_turbulent, the flow is laminar and/or in a transition region between laminar and turbulent. This region is approximated by two polynomials of third order, one polynomial for m_flow \geq 0 and one for m_flow < 0. The common derivative of the two polynomials at Re = 0 is computed from the equation "data.co/Re".

If no data for c0 is available, the derivative at Re = 0 is computed in such a way, that the second derivatives of the two polynomials are identical at Re = 0. The polynomials are constructed, such that they smoothly touch the characteristic curves in the turbulent regions. The whole characteristic is therefore continuous and has a finite, continuous first derivative everywhere. In some cases, the constructed polynomials would "vibrate". This is avoided by reducing the derivative at Re=0 in such a way that the polynomials are guaranteed to be monotonically increasing. The used sufficient criteria for monotonicity follows from:

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a	Density at port_a [kg/m3]
Density	rho_b	Density at port_b [kg/m3]
DynamicViscosity	mu_a	Dynamic viscosity at port_a [Pa.s]
DynamicViscosity	mu_b	Dynamic viscosity at port_b [Pa.s]
<u>LossFactorData</u>	data	Constant loss factors for both flow directions

Outputs

Туре	Name	Description
Pressure	dp	Pressure drop (dp = port_a.p - port_b.p) [Pa]

Fittings.BaseClasses.QuadraticTurbulent.BaseModel

Generic pressure drop component with constant turbulent loss factor data and without an icon

Information

This model computes the pressure loss of a pipe segment (orifice, bending etc.) with a minimum amount of data provided via parameter data. If available, data should be provided for both flow directions, i.e., flow from port_a to port_b and from port_b to port_a, as well as for the laminar and the turbulent region. It is also an option to provide the loss factor only for the turbulent region for a flow from port a to port b.

The following equations are used:

$$\Delta p = 0.5*\zeta*\rho*v*|v|$$

= 0.5*\zero /A^2 * (1/\rho) * m_flow*|m_flow|
Re = |v|*D*\rho/\mu

flow type	ζ =	flow region
turbulent	zeta1 = const.	Re ≥ Re_turbulent, v ≥ 0
	zeta2 = const.	Re ≥ Re_turbulent, v < 0
laminar	c0/Re	both flow directions, Re small; c0 = const.

where

- Δp is the pressure drop: Δp = port a.p port b.p
- · v is the mean velocity.
- p is the density.

- ζ is the loss factor that depends on the geometry of the pipe. In the turbulent flow regime, it is assumed that ζ is constant and is given by "zeta1" and "zeta2" depending on the flow direction. When the Reynolds number Re is below "Re_turbulent", the flow is laminar for small flow velocities. For higher velocities there is a transition region from laminar to turbulent flow. The loss factor for laminar flow at small velocities is defined by the often occuring approximation c0/Re. If c0 is different for the two flow directions, the mean value has to be used (c0 = (c0_ab + c0_ba)/2).
- The equation " $\Delta p = 0.5 \zeta^* \rho^* v^* |v|$ " is either with respect to port_a or to port_b, depending on the definition of the particular loss factor ζ (in some references loss factors are defined with respect to port_a, in other references with respect to port_b).
- Re = |v|*D_Re*p/\mu = |m_flow|*D_Re/(A_Re*\mu) is the Reynolds number at the smallest cross section area. This is often at port_a or at port_b, but can also be between the two ports. In the record, the diameter D_Re of this smallest cross section area has to be provided, as well, as Re_turbulent, the absolute value of the Reynolds number at which the turbulent flow starts. If Re_turbulent is different for the two flow directions, use the smaller value as Re_turbulent.
- D is the diameter of the pipe. If the pipe has not a circular cross section, D = 4*A/P, where A is the cross section area and P is the wetted perimeter.
- A is the cross section area with A = π(D/2)².
- µ is the dynamic viscosity.

The laminar and the transition region is usually of not much technical interest because the operating point is mostly in the turbulent regime. For simplification and for numercial reasons, this whole region is described by two polynomials of third order, one polynomial for m_flow \geq 0 and one for m_flow < 0. The polynomials start at Re = |m_flow|*4/(π *D_Re* μ), where D_Re is the smallest diameter between port_a and port_b. The common derivative of the two polynomials at Re = 0 is computed from the equation "c0/Re". Note, the pressure drop equation above in the laminar region is always defined with respect to the smallest diameter D_Re.

If no data for c0 is available, the derivative at Re = 0 is computed in such a way, that the second derivatives of the two polynomials are identical at Re = 0. The polynomials are constructed, such that they smoothly touch the characteristic curves in the turbulent regions. The whole characteristic is therefore **continuous** and has a **finite**, **continuous first derivative everywhere**. In some cases, the constructed polynomials would "vibrate". This is avoided by reducing the derivative at Re=0 in such a way that the polynomials are guaranteed to be monotonically increasing. The used sufficient criteria for monotonicity follows from:

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from <u>Interfaces.PartialTwoPortTransport</u> (Partial element transporting fluid between two ports without storage of mass or energy), <u>Interfaces.PartialLumpedFlow</u> (Base class for a lumped momentum balance).

Туре	Name	Description
replaceable package Medium		Medium in the component
Length	pathLength	Length flow path [m]
<u>LossFactorData</u>	data	Loss factor data
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Dynamics		
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance
Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]

MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]	
Boolean	from_dp	= true, use m_flow = f(dp) else dp = f(m_flow)	
Boolean	use_Re	= true, if turbulent region is defined by Re, otherwise by dp_small or m_flow_small	
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small [Pa]	
Diagnostics	Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed	
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed	
Boolean	show_Re	= true, if Reynolds number is included for plotting	

Connectors

Type	Name	Description	
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)	
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)	

Fittings.BaseClasses.QuadraticTurbulent.TestWallFriction

Pressure drop in pipe due to wall friction (only for test purposes; if needed use Pipes.StaticPipe instead)

Information

Extends from BaseModel (Generic pressure drop component with constant turbulent loss factor data and without an icon).

Type	Name	Description
replaceable package Medium		Medium in the component
<u>LossFactorData</u>	data	Loss factor data
Length	length	Length of pipe [m]
Diameter	diameter	Inner diameter of pipe [m]
Length	roughness	Absolute roughness of pipe (> 0 required, details see info layer) [m]
Assumptions		
Boolean	allowFlowReversal	<pre>= true to allow flow reversal, false restricts to design direction (port_a -> port_b)</pre>
Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]
Boolean	from_dp	= true, use m_flow = f(dp) else dp = f(m_flow)
Boolean	use_Re	= true, if turbulent region is defined by Re, otherwise by dp_small or m_flow_small
AbsolutePressure dp_small		Turbulent flow if dp >= dp_small [Pa]
Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed
Boolean	show_Re	= true, if Reynolds number is included for plotting

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Fittings.BaseClasses.QuadraticTurbulent.BaseModelNonconstantCrossSectionArea

Generic pressure drop component with constant turbulent loss factor data and without an icon, for non-constant cross section area

Information

This model computes the pressure loss of a pipe segment (orifice, bending etc.) with a minimum amount of data provided via parameter **data**. If available, data should be provided for **both flow directions**, i.e., flow from port_a to port_b and from port_b to port_a, as well as for the **laminar** and the **turbulent** region. It is also an option to provide the loss factor **only** for the **turbulent** region for a flow from port_a to port_b.

The following equations are used:

$$\Delta p = 0.5*\zeta*\rho*v*|v|$$

= 0.5*\zero /A^2 * (1/\rho) * m_flow*|m_flow|
Re = |v|*D*\rho/\mu

flow type ζ =		flow region
turbulent zeta1 = const.		Re ≥ Re_turbulent, v ≥ 0
	zeta2 = const.	Re ≥ Re_turbulent, v < 0
laminar	c0/Re	both flow directions, Re small; c0 = const.

where

- Δp is the pressure drop: $\Delta p = port a.p port b.p$
- · v is the mean velocity.
- p is the density.
- ζ is the loss factor that depends on the geometry of the pipe. In the turbulent flow regime, it is assumed that ζ is constant and is given by "zeta1" and "zeta2" depending on the flow direction. When the Reynolds number Re is below "Re_turbulent", the flow is laminar for small flow velocities. For higher velocities there is a transition region from laminar to turbulent flow. The loss factor for laminar flow at small velocities is defined by the often occuring approximation c0/Re. If c0 is different for the two flow directions, the mean value has to be used (c0 = (c0_ab + c0_ba)/2).
- The equation " $\Delta p = 0.5 \cdot \zeta p \cdot v |v|$ " is either with respect to port_a or to port_b, depending on the definition of the particular loss factor ζ (in some references loss factors are defined with respect to port_a, in other references with respect to port_b).
- Re = |v|*D_Re*p/\mu = |m_flow|*D_Re/(A_Re*\mu) is the Reynolds number at the smallest cross section area. This is often at port_a or at port_b, but can also be between the two ports. In the record, the diameter D_Re of this smallest cross section area has to be provided, as well, as Re_turbulent, the absolute value of the Reynolds number at which the turbulent flow starts. If Re_turbulent is different for the two flow directions, use the smaller value as Re_turbulent.
- D is the diameter of the pipe. If the pipe has not a circular cross section, D = 4*A/P, where A is the cross section area and P is the wetted perimeter.
- A is the cross section area with $A = \pi(D/2)^2$.
- µ is the dynamic viscosity.

The laminar and the transition region is usually of not much technical interest because the operating point is mostly in the turbulent regime. For simplification and for numercial reasons, this whole region is described by two polynomials of third order, one polynomial for m_flow \geq 0 and one for m_flow < 0. The polynomials start at Re = |m_flow|*4/(π *D_Re* μ), where D_Re is the smallest diameter between port_a and port_b. The common derivative of the two polynomials at Re = 0 is computed from the equation "c0/Re". Note, the

pressure drop equation above in the laminar region is always defined with respect to the smallest diameter D_Re.

If no data for c0 is available, the derivative at Re = 0 is computed in such a way, that the second derivatives of the two polynomials are identical at Re = 0. The polynomials are constructed, such that they smoothly touch the characteristic curves in the turbulent regions. The whole characteristic is therefore continuous and has a finite, continuous first derivative everywhere. In some cases, the constructed polynomials would "vibrate". This is avoided by reducing the derivative at Re=0 in such a way that the polynomials are guaranteed to be monotonically increasing. The used sufficient criteria for monotonicity follows from:

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from Interfaces.PartialTwoPortTransport (Partial element transporting fluid between two ports without storage of mass or energy), Interfaces.PartialLumpedFlow (Base class for a lumped momentum balance).

Parameters

Туре	Name	Description
replaceable package Medium		Medium in the component
Length	pathLength	Length flow path [m]
<u>LossFactorData</u>	data	Loss factor data
Assumptions		
Boolean JallowelowReversal I		= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Dynamics		
<u>Dynamics</u> momentumDynamics		Formulation of momentum balance
Advanced		
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]
AbsolutePressure	dp_small	Turbulent flow if dp >= dp_small [Pa]
Diagnostics		
Boolean	show_T	= true, if temperatures at port_a and port_b are computed
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed
Boolean	show_Re	= true, if Reynolds number is included for plotting
Boolean	show_totalPressures	= true, if total pressures are included for plotting
Boolean	show_portVelocities	= true, if port velocities are included for plotting

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

<u>Fittings.BaseClasses.QuadraticTurbulent.pressureLoss_m_flow_totalPressure</u>

Return pressure drop from constant loss factor and mass flow rate (dp = f(m flow))

Information

Compute pressure drop from constant loss factor and mass flow rate (dp = $f(m_flow)$). For small mass flow rates($|m_flow| < m_flow_small$), the characteristic is approximated by a polynomial in order to have a finite derivative at zero mass flow rate.

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Туре	Name	Description
MassFlowRate	m_flow	Mass flow rate from port_a to port_b [kg/s]
Density	rho_a_des	Density at port_a, mass flow in design direction a -> b [kg/m3]
Density	rho_b_des	Density at port_b, mass flow in design direction a -> b [kg/m3]
Density	rho_b_nondes	Density at port_b, mass flow against design direction a <- b [kg/m3]
Density	rho_a_nondes	Density at port_a, mass flow against design direction a <- b [kg/m3]
<u>LossFactorData</u>	data	Constant loss factors for both flow directions
MassFlowRate	m_flow_small	Turbulent flow if m_flow >= m_flow_small [kg/s]

Outputs

Type	Name	Description		
Pressure	dp	Pressure drop (dp = port_a.p - port_b.p) [Pa]		

Fittings.BaseClasses.PartialTeeJunction

Base class for a splitting/joining component with three ports

Connectors

Туре	Name	Description
FluidPort_a	port_1	
FluidPort_b	port_2	
FluidPort_a	port_3	

Modelica_Fluid.Sources

Define fixed or prescribed boundary conditions

Information

Package **Sources** contains generic sources for fluid connectors to define fixed or prescribed ambient conditions.

Extends from Loops: Loops: Loops:

Package Content

Name	Description
FixedBoundary	Boundary source component
Doulival v D I	Boundary with prescribed pressure, temperature, composition and trace substances

Boundary_ph	Boundary with prescribed pressure, specific enthalpy, composition and trace substances
Wassi lowsource_1	Ideal flow source that produces a prescribed mass flow with prescribed temperature, mass fraction and trace substances
MassFlowSource_h	Ideal flow source that produces a prescribed mass flow with prescribed specific enthalpy, mass fraction and trace substances
<u>BaseClasses</u>	Base classes used in the Sources package (only of interest to build new component models)

Sources. Fixed Boundary

Boundary source component

Information

Model **FixedBoundary** defines constant values for boundary conditions:

- Boundary pressure or boundary density.
- Boundary temperature or boundary specific enthalpy.
- Boundary composition (only for multi-substance or trace-substance flow).

Note, that boundary temperature, density, specific enthalpy, mass fractions and trace substances have only an effect if the mass flow is from the Boundary into the port. If mass is flowing from the port into the boundary, the boundary definitions, with exception of boundary pressure, do not have an effect.

Extends from <u>Sources.BaseClasses.PartialSource</u> (Partial component source with one fluid connector).

Parameters

Туре	Name	Description	
replaceable packa	ge Medium	Medium model within the source	
Boundary pressure	e or Boundary d	ensity	
Boolean	use_p	select p or d	
AbsolutePressure	р	Boundary pressure [Pa]	
Density	d	Boundary density [kg/m3]	
Boundary temperature or Boundary specific enthalpy			
Boolean	use_T	select T or h	
Temperature	Т	Boundary temperature [K]	
SpecificEnthalpy	h	Boundary specific enthalpy [J/kg]	
Only for multi-substance flow			
MassFraction	X[Medium.nX]	Boundary mass fractions m_i/m [kg/kg]	
Only for trace-substance flow			
ExtraProperty	C[Medium.nC]	Boundary trace substances	

Connectors

Туре	Name	Description
FluidPorts_b	ports[nPorts]	

Sources.Boundary_pT

Boundary with prescribed pressure, temperature, composition and trace substances

Information

Defines prescribed values for boundary conditions:

- Prescribed boundary pressure.
- · Prescribed boundary temperature.
- Boundary composition (only for multi-substance or trace-substance flow).

If use_p_in is false (default option), the p parameter is used as boundary pressure, and the p_in input connector is disabled; if use_p_in is true, then the p parameter is ignored, and the value provided by the input connector is used instead.

The same thing goes for the temperature, composition and trace substances.

Note, that boundary temperature, mass fractions and trace substances have only an effect if the mass flow is from the boundary into the port. If mass is flowing from the port into the boundary, the boundary definitions, with exception of boundary pressure, do not have an effect.

Extends from Sources.BaseClasses.PartialSource (Partial component source with one fluid connector).

Parameters

Туре	Name	Description
replaceable packa	ge Medium	Medium model within the source
Boolean	use_p_in	Get the pressure from the input connector
Boolean	use_T_in	Get the temperature from the input connector
Boolean	use_X_in	Get the composition from the input connector
Boolean	use_C_in	Get the trace substances from the input connector
AbsolutePressure	р	Fixed value of pressure [Pa]
Temperature	Т	Fixed value of temperature [K]
MassFraction	X[Medium.nX]	Fixed value of composition [kg/kg]
ExtraProperty	C[Medium.nC]	Fixed values of trace substances

Connectors

Туре	Name	Description
FluidPorts_b	ports[nPorts]	
input RealInput	p_in	Prescribed boundary pressure
input RealInput	T_in	Prescribed boundary temperature
input RealInput	X_in[Medium.nX]	Prescribed boundary composition
input RealInput	C_in[Medium.nC]	Prescribed boundary trace substances

Sources.Boundary_ph

Boundary with prescribed pressure, specific enthalpy, composition and trace substances

Information

Defines prescribed values for boundary conditions:

- · Prescribed boundary pressure.
- Prescribed boundary temperature.
- Boundary composition (only for multi-substance or trace-substance flow).

If use_p_{in} is false (default option), the p parameter is used as boundary pressure, and the p_{in} input connector is disabled; if use_p_{in} in is true, then the p parameter is ignored, and the value provided by the

input connector is used instead.

The same thing goes for the specific enthalpy and composition

Note, that boundary temperature, mass fractions and trace substances have only an effect if the mass flow is from the boundary into the port. If mass is flowing from the port into the boundary, the boundary definitions, with exception of boundary pressure, do not have an effect.

Extends from Sources.BaseClasses.PartialSource (Partial component source with one fluid connector).

Parameters

Туре	Name	Description
replaceable packa	ge Medium	Medium model within the source
Boolean	use_p_in	Get the pressure from the input connector
Boolean	use_h_in	Get the specific enthalpy from the input connector
Boolean	use_X_in	Get the composition from the input connector
Boolean	use_C_in	Get the trace substances from the input connector
AbsolutePressure	р	Fixed value of pressure [Pa]
SpecificEnthalpy	h	Fixed value of specific enthalpy [J/kg]
MassFraction	X[Medium.nX]	Fixed value of composition [kg/kg]
ExtraProperty	C[Medium.nC]	Fixed values of trace substances

Connectors

Туре	Name	Description
FluidPorts_b	ports[nPorts]	
input RealInput	p_in	Prescribed boundary pressure
input RealInput	h_in	Prescribed boundary specific enthalpy
input RealInput	X_in[Medium.nX]	Prescribed boundary composition
input RealInput	C_in[Medium.nC]	Prescribed boundary trace substances

Sources.MassFlowSource_T

Ideal flow source that produces a prescribed mass flow with prescribed temperature, mass fraction and trace substances

Information

Models an ideal flow source, with prescribed values of flow rate, temperature, composition and trace substances:

- · Prescribed mass flow rate.
- Prescribed temperature.
- Boundary composition (only for multi-substance or trace-substance flow).

If use m flow in is false (default option), the m flow parameter is used as boundary pressure, and the m flow in input connector is disabled; if use m flow in is true, then the m flow parameter is ignored, and the value provided by the input connector is used instead.

The same thing goes for the temperature and composition

Note, that boundary temperature, mass fractions and trace substances have only an effect if the mass flow is from the boundary into the port. If mass is flowing from the port into the boundary, the boundary definitions, with exception of boundary flow rate, do not have an effect.

Extends from Sources.BaseClasses.PartialSource (Partial component source with one fluid connector).

Parameters

Туре	Name	Description
replaceable pac	kage Medium	Medium model within the source
Boolean	use_m_flow_in	Get the mass flow rate from the input connector
Boolean	use_T_in	Get the temperature from the input connector
Boolean	use_X_in	Get the composition from the input connector
Boolean	use_C_in	Get the trace substances from the input connector
MassFlowRate	m_flow	Fixed mass flow rate going out of the fluid port [kg/s]
Temperature	Т	Fixed value of temperature [K]
MassFraction	X[Medium.nX]	Fixed value of composition [kg/kg]
ExtraProperty	C[Medium.nC]	Fixed values of trace substances

Connectors

Туре	Name	Description
FluidPorts_b	ports[nPorts]	
input RealInput	m_flow_in	Prescribed mass flow rate
input RealInput	T_in	Prescribed fluid temperature
input RealInput	X_in[Medium.nX]	Prescribed fluid composition
input RealInput	C_in[Medium.nC]	Prescribed boundary trace substances

Sources.MassFlowSource_h

Ideal flow source that produces a prescribed mass flow with prescribed specific enthalpy, mass fraction and trace substances

Information

Models an ideal flow source, with prescribed values of flow rate, temperature and composition:

- · Prescribed mass flow rate.
- · Prescribed specific enthalpy.
- Boundary composition (only for multi-substance or trace-substance flow).

If use_m_flow_in is false (default option), the m_flow parameter is used as boundary pressure, and the m_flow_in input connector is disabled; if use_m_flow_in is true, then the m_flow parameter is ignored, and the value provided by the input connector is used instead.

The same thing goes for the temperature and composition

Note, that boundary temperature, mass fractions and trace substances have only an effect if the mass flow is from the boundary into the port. If mass is flowing from the port into the boundary, the boundary definitions, with exception of boundary flow rate, do not have an effect.

Extends from Sources.BaseClasses.PartialSource (Partial component source with one fluid connector).

Туре	Name	Description
replaceable pack	age Medium	Medium model within the source
Boolean	use_m_flow_in	Get the mass flow rate from the input connector
Boolean	use_h_in	Get the specific enthalpy from the input connector
Boolean	use_X_in	Get the composition from the input connector

Boolean	use_C_in	Get the trace substances from the input connector
MassFlowRate	m_flow	Fixed mass flow rate going out of the fluid port [kg/s]
SpecificEnthalpy	h	Fixed value of specific enthalpy [J/kg]
MassFraction	X[Medium.nX]	Fixed value of composition [kg/kg]
ExtraProperty	C[Medium.nC]	Fixed values of trace substances

Connectors

Туре	Name	Description
FluidPorts_b	ports[nPorts]	
input RealInput	m_flow_in	Prescribed mass flow rate
input RealInput	h_in	Prescribed fluid specific enthalpy
input RealInput	X_in[Medium.nX]	Prescribed fluid composition
input RealInput	C_in[Medium.nC]	Prescribed boundary trace substances

Sources.BaseClasses

Base classes used in the Sources package (only of interest to build new component models)

Package Content

Name	Description
■ PartialSource	Partial component source with one fluid connector

Sources.BaseClasses.PartialSource

Partial component source with one fluid connector

Information

Partial component to model the volume interface of a source component, such as a mass flow source. The essential features are:

- The pressure in the connection port (= ports.p) is identical to the pressure in the volume.
- The outflow enthalpy rate (= port.h_outflow) and the composition of the substances (= port.Xi_outflow) are identical to the respective values in the volume.

Connectors

Туре	Name	Description
FluidPorts_b	ports[nPorts]	

Modelica Fluid.Sensors

Ideal sensor components to extract signals from a fluid connector

Information

Package Sensors consists of idealized sensor components that provide variables of a medium model and/or fluid ports as output signals. These signals can be, e.g., further processed with components of the Modelica.Blocks library. Also more realistic sensor models can be built, by further processing (e.g., by attaching block Modelica.Blocks.FirstOrder to model the time constant of the sensor).

For the thermodynamic state variables temperature, specific entalpy, specific entropy and density the fluid library provides two different types of sensors: **regular one port** and **two port** sensors.

- The regular one port sensors have the advantage of easy introduction and removal from a model, as no connections have to be broken. A potential drawback is that the obtained value jumps as flow reverts. <u>Test.TestComponents.Sensors.TestTemperatureSensor</u> provides a test case, which demonstrates this.
- The two port sensors offer the advantages of an adjustable regularized step function around zero flow. Moreover the obtained result is restricted to the value flowing into port_a if allowFlowReversal is false.

Extends from Icons. VariantLibrary (Icon for a library that contains several variants of one component).

Package Content

Name	Description
Pressure	Ideal pressure sensor
On Density	Ideal one port density sensor
DensityTwoPort	Ideal two port density sensor
Temperature	Ideal one port temperature sensor
<u>ImperatureTwoPort</u>	Ideal two port temperature sensor
SpecificEnthalpy	Ideal one port specific enthalpy sensor
SpecificEnthalpyTwoPort	Ideal two port sensor for the specific enthalpy
SpecificEntropy	Ideal one port specific entropy sensor
SpecificEntropyTwoPort	Ideal two port sensor for the specific entropy
TraceSubstances	Ideal one port trace substances sensor
** TraceSubstancesTwoPort	Ideal two port sensor for trace substance
MassFlowRate	Ideal sensor for mass flow rate
<u>√</u> VolumeFlowRate	Ideal sensor for volume flow rate
RelativePressure	Ideal relative pressure sensor
RelativeTemperature	Ideal relative temperature sensor
<u>BaseClasses</u>	Base classes used in the Sensors package (only of interest to build new component models)

Sensors.Pressure

Ideal pressure sensor

₽p

Information

This component monitors the absolute pressure at its fluid port. The sensor is ideal, i.e., it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialAbsoluteSensor</u> (Partial component to model a sensor that measures a potential variable), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Parameters

Туре	Name	Description
replaceable p	ackage Medium	Medium in the sensor

Connectors

Туре	Name	Description
FluidPort_a	port	
output RealOutput	р	Pressure at port [Pa]

Sensors.Density

Ideal one port density sensor

Information

This component monitors the density of the fluid passing its port. The sensor is ideal, i.e. it does not influence the fluid.

If using the one port sensor please read the <u>Information</u> first.

Extends from Sensors.BaseClasses.PartialAbsoluteSensor (Partial component to model a sensor that measures a potential variable), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Parameters

Туре	Name	Description
replaceable p	ackage Medium	Medium in the sensor

Connectors

Туре	Name	Description
FluidPort_a	port	
output RealOutput	d	Density in port medium [kg/m3]

Sensors.DensityTwoPort

Ideal two port density sensor

Information

This component monitors the density of the fluid flowing from port_a to port_b. The sensor is ideal, i.e. it does not influence the fluid.

Extends from Sensors.BaseClasses.PartialFlowSensor (Partial component to model sensors that measure flow properties), Modelica. Icons. Rotational Sensor (Icon representing rotational measurement device).

Type	Name	Description
replaceable pad	ckage Medium	Medium in the component
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a ->

172 Sensors.DensityTwoPort

	port_b)
Advanced	
MassFlowRate	For bi-directional flow, density is regularized in the region m_flow < m_flow_small (m_flow_small > 0 required) [kg/s]

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	d	Density of the passing fluid [kg/m3]

Sensors. Temperature

Ideal one port temperature sensor

Information

This component monitors the temperature of the fluid passing its port. The sensor is ideal, i.e. it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialAbsoluteSensor</u> (Partial component to model a sensor that measures a potential variable).

Parameters

Туре	Name	Description
replaceable package Medium		Medium in the sensor

Connectors

Туре	Name	Description
FluidPort_a	port	
output RealOutput	Т	Temperature in port medium [K]

Sensors.TemperatureTwoPort

Ideal two port temperature sensor

Information

This component monitors the temperature of the passing fluid. The sensor is ideal, i.e. it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialFlowSensor</u> (Partial component to model sensors that measure flow properties).

Туре	Name	Description
replaceable package Medium		Medium in the component
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a ->

	port_b)
Advanced	
MassFlowRate	For bi-directional flow, temperature is regularized in the region m_flow < m_flow_small (m_flow_small > 0 required) [kg/s]

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	Т	Temperature of the passing fluid [K]

Sensors. Specific Enthalpy

Ideal one port specific enthalpy sensor

Information

This component monitors the specific enthalpy of the fluid passing its port. The sensor is ideal, i.e. it does not influence the fluid.

Extends from Sensors.BaseClasses.PartialAbsoluteSensor (Partial component to model a sensor that measures a potential variable), Modelica.lcons.RotationalSensor (Icon representing rotational measurement device).

Parameters

Туре	Name	Description
replaceable p	ackage Medium	Medium in the sensor

Connectors

Туре	Name	Description
FluidPort_a	port	
output RealOutput	h out	Specific enthalpy in port medium [J/kg]

Sensors.SpecificEnthalpyTwoPort

Ideal two port sensor for the specific enthalpy

Information

This component monitors the specific enthalpy of a passing fluid. The sensor is ideal, i.e. it does not influence the fluid.

Extends from Sensors.BaseClasses.PartialFlowSensor (Partial component to model sensors that measure flow properties), Modelica. Icons. Rotational Sensor (Icon representing rotational measurement device).

Туре	Name	Description
replaceable package Medium		Medium in the component
Assumptions		

174 Sensors.SpecificEnthalpyTwoPort

Boolean	lallowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
Advanced				
MassFlowRate		For bi-directional flow, specific enthalpy is regularized in the region m_flow < m_flow_small (m_flow_small > 0 required) [kg/s]		

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	h_out	Specific enthalpy of the passing fluid [J/kg]

Sensors.SpecificEntropy

Ideal one port specific entropy sensor

Information

This component monitors the specific entropy of the fluid passing its port. The sensor is ideal, i.e. it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialAbsoluteSensor</u> (Partial component to model a sensor that measures a potential variable), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Parameters

Туре	Name	Description
replaceable p	ackage Medium	Medium in the sensor

Connectors

Туре	Name	Description
FluidPort_a	port	
output RealOutput	s	Specific entropy in port medium [J/(kg.K)]

Sensors.SpecificEntropyTwoPort

Ideal two port sensor for the specific entropy

Information

This component monitors the specific entropy of the passing fluid. The sensor is ideal, i.e. it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialFlowSensor</u> (Partial component to model sensors that measure flow properties), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Туре	Name	Description
replaceable package Medium		Medium in the component
Assumptions		

Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)		
Advanced				
MassFlowRate	m_flow_small	For bi-directional flow, specific entropy is regularized in the region m_flow < m_flow_small (m_flow_small > 0 required) [kg/s]		

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	s	Specific entropy of the passing fluid [J/(kg.K)]

Sensors.TraceSubstances

Ideal one port trace substances sensor

Information

This component monitors the trace substances contained in the fluid passing its port. The sensor is ideal, i.e. it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialAbsoluteSensor</u> (Partial component to model a sensor that measures a potential variable), Modelica. Icons. Rotational Sensor (Icon representing rotational measurement device).

Parameters

Type	Name	Description
replacea	ble package Medium	Medium in the sensor
String	substanceName	Name of trace substance

Connectors

Туре	Name	Description
FluidPort_a	port	
output RealOutput	С	Trace substance in port medium

Sensors. Trace Substances Two Port

Ideal two port sensor for trace substance

Information

This component monitors the trace substance of the passing fluid. The sensor is ideal, i.e. it does not influence the fluid.

Extends from Sensors.BaseClasses.PartialFlowSensor (Partial component to model sensors that measure flow properties), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Туре	Name	Description
replaceable pac	kage Medium	Medium in the component

176 Sensors.TraceSubstancesTwoPort

String	substanceName	Name of trace substance			
Assumptions					
Boolean	allowFlowReversal = true to allow flow reversal, false restricts to design direction (port_a -> port_b)				
Advanced					
MassFlowRate	m_flow_small	For bi-directional flow, trace substance is regularized in the region m_flow < m_flow_small (m_flow_small > 0 required) [kg/s]			

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	С	Trace substance of the passing fluid

Sensors.MassFlowRate

Ideal sensor for mass flow rate

Information

This component monitors the mass flow rate flowing from port_a to port_b. The sensor is ideal, i.e., it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialFlowSensor</u> (Partial component to model sensors that measure flow properties), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Parameters

Type Name		Description
replaceable package Medium		Medium in the component
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	m_flow	Mass flow rate from port_a to port_b [kg/s]

Sensors.VolumeFlowRate

Ideal sensor for volume flow rate

Information

This component monitors the volume flow rate flowing from port_a to port_b. The sensor is ideal, i.e. it does not influence the fluid.

Extends from <u>Sensors.BaseClasses.PartialFlowSensor</u> (Partial component to model sensors that measure flow properties), Modelica.Icons.RotationalSensor (Icon representing rotational measurement device).

Parameters

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Advanced			
MassFlowRate	m_flow_small	For bi-directional flow, density is regularized in the region m_flow < m_flow_small (m_flow_small > 0 required) [kg/s]	

Connectors

Туре	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)
output RealOutput	V_flow	Volume flow rate from port_a to port_b [m3/s]

Sensors.RelativePressure

Ideal relative pressure sensor

Information

The relative pressure "port_a.p - port_b.p" is determined between the two ports of this component and is provided as output signal. The sensor should be connected in parallel with other equipment, no flow through the sensor is allowed.

Extends from Modelica. Icons. Translational Sensor (Icon representing translational measurement device).

Connectors

Туре	Name	Description
FluidPort_a	port_a	
FluidPort_b	port_b	
output RealOutput	p_rel	Relative pressure signal [Pa]

Sensors.RelativeTemperature

Ideal relative temperature sensor

Information

The relative temperature "T(port_a) - T(port_b)" is determined between the two ports of this component and is provided as output signal. The sensor should be connected in parallel with other equipment, no flow through the sensor is allowed.

Extends from Modelica. Icons. Translational Sensor (Icon representing translational measurement device).

Connectors

Type	Name	Description
FluidPort_a	port_a	

178 Sensors.RelativeTemperature

FluidPort_b	port_b	
output RealOutput	T_rel	Relative temperature signal [K]

Sensors.BaseClasses

Base classes used in the Sensors package (only of interest to build new component models)

Package Content

Name	Description
PartialAbsoluteSensor •	Partial component to model a sensor that measures a potential variable
<u>PartialFlowSensor</u>	Partial component to model sensors that measure flow properties

Sensors.BaseClasses.PartialAbsoluteSensor

Partial component to model a sensor that measures a potential variable

•

Information

Partial component to model an **absolute sensor**. Can be used for pressure sensor models. Use for other properties such as temperature or density is discouraged, because the enthalpy at the connector can have different meanings, depending on the connection topology. Use PartialFlowSensor instead. as signal.

Connectors

Type	Name	Description
FluidPort_a	port	

Sensors.BaseClasses.PartialFlowSensor

Partial component to model sensors that measure flow properties

Information

Partial component to model a **sensor** that measures any intensive properties of a flow, e.g., to get temperature or density in the flow between fluid connectors.

The model includes zero-volume balance equations. Sensor models inheriting from this partial class should add a medium instance to calculate the measured property.

Extends from Interfaces.PartialTwoPort (Partial component with two ports).

Parameters

Туре	Name	Description
replaceable package Medium		Medium in the component
Assumptions		
BOOLEAN JAIIOWEIOWREVERSAL		= true to allow flow reversal, false restricts to design direction (port_a -> port_b)

Connectors

Type	Name	Description
1 JPC	Haine	Description

Modelica_Fluid Library 1.0 (January 2009)

FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort b	port b	Fluid connector b (positive design flow direction is from port_a to port_b)

Modelica_Fluid.Interfaces

Interfaces for steady state and unsteady, mixed-phase, multi-substance, incompressible and compressible flow

Information

Extends from Modelica. Icons. Library (Icon for library).

Package Content

Name	Description	
FluidPort	Interface for quasi one-dimensional fluid flow in a piping network (incompressible or compressible, one or more phases, one or more substances)	
FluidPort_a	Generic fluid connector at design inlet	
O FluidPort_b	Generic fluid connector at design outlet	
FluidPorts_a	Fluid connector with filled, large icon to be used for vectors of FluidPorts (vector dimensions must be added after dragging)	
FluidPorts_b	Fluid connector with outlined, large icon to be used for vectors of FluidPorts (vector dimensions must be added after dragging)	
PartialTwoPort	Partial component with two ports	
PartialTwoPortTransport	Partial element transporting fluid between two ports without storage of mass or energy	
HeatPorts_a	HeatPort connector with filled, large icon to be used for vectors of HeatPorts (vector dimensions must be added after dragging)	
HeatPorts_b	HeatPort connector with filled, large icon to be used for vectors of HeatPorts (vector dimensions must be added after dragging)	
PartialHeatTransfer	Common interface for heat transfer models	
<u>PartialLumpedVolume</u>	Lumped volume with mass and energy balance	
<u>PartialLumpedFlow</u>	Base class for a lumped momentum balance	
<u>PartialDistributedVolume</u>	Base class for distributed volume models	
<u>PartialDistributedFlow</u>	Base class for a distributed momentum balance	

Interfaces.FluidPort

Interface for quasi one-dimensional fluid flow in a piping network (incompressible or compressible, one or more phases, one or more substances)

Contents

Туре	Name	Description
flow MassFlowRate	m tiow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	p	Thermodynamic pressure in the connection point [Pa]

180 Interfaces.FluidPort

stream SpecificEnthalpy		Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction		Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Medium. nC]	Properties c_i/m close to the connection point if m_flow < 0

Interfaces.FluidPort_a

Generic fluid connector at design inlet

Parameters

Туре	Name	Description
replaceable package Medium		Medium model

Contents

Туре	Name	Description
flow MassFlowRate	m_flow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	р	Thermodynamic pressure in the connection point [Pa]
stream SpecificEnthalpy	h_outflow	Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction		Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Medium. nC]	Properties c_i/m close to the connection point if m_flow < 0

Interfaces.FluidPort_b

Generic fluid connector at design outlet

Parameters

Туре	Name	Description
replaceable package Medium		Medium model

Contents

Туре	Name	Description
flow MassFlowRate	m_flow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	p	Thermodynamic pressure in the connection point [Pa]
stream SpecificEnthalpy		Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction	Xi_outflow[Medium .nXi]	Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Medium. nC]	Properties c_i/m close to the connection point if m_flow < 0

Interfaces.FluidPorts_a

Fluid connector with filled, large icon to be used for vectors of FluidPorts (vector dimensions must be added after dragging)

Parameters

Туре	Name	Description
replaceable p	Medium model	

Contents

Туре	Name	Description
flow MassFlowRate	m_flow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	р	Thermodynamic pressure in the connection point [Pa]
stream SpecificEnthalpy	h_outflow	Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction	Xi_outflow[Medium .nXi]	Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Medium. nC]	Properties c_i/m close to the connection point if m_flow < 0

Interfaces.FluidPorts_b

Fluid connector with outlined, large icon to be used for vectors of FluidPorts (vector dimensions must be added after dragging)

Parameters

Туре	Name	Description
replaceable p	Medium model	

Contents

Туре	Name	Description
flow MassFlowRate	m_flow	Mass flow rate from the connection point into the component [kg/s]
AbsolutePressure	p	Thermodynamic pressure in the connection point [Pa]
stream SpecificEnthalpy	h_outflow	Specific thermodynamic enthalpy close to the connection point if m_flow < 0 [J/kg]
stream MassFraction	Xi_outflow[Medium .nXi]	Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0 [kg/kg]
stream ExtraProperty	C_outflow[Medium. nC]	Properties c_i/m close to the connection point if m_flow < 0

Interfaces.PartialTwoPort

Partial component with two ports

Information

This partial model defines an interface for components with two ports. The treatment of the design flow

direction and of flow reversal are predefined based on the parameter allowFlowReversal. The component may transport fluid and may have internal storage for a given fluid Medium.

An extending model providing direct access to internal storage of mass or energy through port_a or port_b should redefine the protected parameters port_a_exposesState and port_b_exposesState appropriately. This will be visualized at the port icons, in order to improve the understanding of fluid model diagrams.

Parameters

Type	Name	Description
Assumptions		
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Interfaces.PartialTwoPortTransport

Partial element transporting fluid between two ports without storage of mass or energy

Information

This component transports fluid between its two ports, without storing mass or energy. Energy may be exchanged with the environment though, e.g. in the form of work. PartialTwoPortTransport is intended as base class for devices like orifices, valves and simple fluid machines.

Three equations need to be added by an extending class using this component:

- the momentum balance specifying the relationship between the pressure drop dp and the mass flow rate m flow,
- port b.h outflow for flow in design direction, and
- port a.h outflow for flow in reverse direction.

Extends from PartialTwoPort (Partial component with two ports).

Parameters

Туре	Name	Description	
replaceable package Medium		Medium in the component	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (port_a -> port_b)	
Advanced			
AbsolutePressure	dp_start	Guess value of dp = port_a.p - port_b.p [Pa]	
MassFlowRate	m_flow_start	Guess value of m_flow = port_a.m_flow [kg/s]	
MassFlowRate	m_flow_small	Small mass flow rate for regularization of zero flow [kg/s]	
Diagnostics			
Boolean	show_T	= true, if temperatures at port_a and port_b are computed	
Boolean	show_V_flow	= true, if volume flow rate at inflowing port is computed	

Connectors

Type	Name	Description
FluidPort_a	port_a	Fluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_b	port_b	Fluid connector b (positive design flow direction is from port_a to port_b)

Interfaces.HeatPorts_a

HeatPort connector with filled, large icon to be used for vectors of HeatPorts (vector dimensions must be added after dragging)

Contents

Туре	Name	Description	
Temperature	Т	Port temperature [K]	
flow HeatFlowRate	Q_flow	Heat flow rate (positive if flowing from outside into the component) [W	

Interfaces.HeatPorts_b

HeatPort connector with filled, large icon to be used for vectors of HeatPorts (vector dimensions must be added after dragging)

Contents

Type	Name	Description	
Temperature	Т	Port temperature [K]	
flow HeatFlowRate	Q_flow	Heat flow rate (positive if flowing from outside into the component) [W]	

Interfaces.PartialHeatTransfer

Common interface for heat transfer models

Information

This component is a common interface for heat transfer models. The heat flow rates Q flows [n] through the boundaries of n flow segments are obtained as function of the thermodynamic states of the flow segments for a given fluid Medium, the surfaceAreas[n] and the boundary temperatures heatPorts[n].T.

The heat loss coefficient k can be used to model a thermal isolation between heatPorts. T and T ambient.

An extending model implementing this interface needs to define one equation: the relation between the predefined fluid temperatures Ts[n], the boundary temperatures heatPorts[n]. T, and the heat flow rates Q flows[n].

Parameters

Туре	Name	Description
Ambient		
CoefficientOfHeatTransfer	k	Heat transfer coefficient to ambient [W/(m2.K)]
Temperature	T_ambient	Ambient temperature [K]

184 Interfaces.PartialHeatTransfer

Internal Interface		
Integer	n	Number of heat transfer segments
Boolean	use_k	= true to use k value for thermal isolation

Connectors

Туре	Name	Description
HeatPorts_a	heatPorts[n]	Heat port to component boundary

Interfaces.PartialLumpedVolume

Lumped volume with mass and energy balance

Information

Interface and base class for an ideally mixed fluid volume with the ability to store mass and energy. The following boundary flow and source terms are part of the energy balance and must be specified in an extending class:

- Qb flow, e.g. convective or latent heat flow rate across segment boundary, and
- Wb_flow, work term, e.g. p*der(fluidVolume) if the volume is not constant.

The component volume fluidVolume is an input that needs to be set in the extending class to complete the model.

Further source terms must be defined by an extending class for fluid flow across the segment boundary:

- Hb flow, enthalpy flow,
- mb flow, mass flow,
- mbxi flow, substance mass flow, and
- mbC flow, trace substance mass flow.

Parameters

Туре	Name	Description
Assumptions		
Dynamics		
<u>Dynamics</u>	energyDynamics	Formulation of energy balance
<u>Dynamics</u>	massDynamics	Formulation of mass balance
Initialization		
AbsolutePressure	p_start	Start value of pressure [Pa]
Boolean	use_T_start	= true, use T_start, otherwise h_start
Temperature	T_start	Start value of temperature [K]
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]
ExtraProperty	C_start[Medium.nC]	Start value of trace substances

Interfaces.PartialLumpedFlow

Base class for a lumped momentum balance

Information

Interface and base class for a momentum balance, defining the mass flow rate m flow of a given Medium in a flow model.

The following boundary flow and force terms are part of the momentum balance and must be specified in an extending model (to zero if not considered):

- Ib flow, the flow of momentum across model boundaries,
- F p[m], pressure force, and
- F fg[m], friction and gravity forces.

The length of the flow path pathLength is an input that needs to be set in an extending class to complete the model.

Parameters

Туре	Name	Description	
replaceable pad	ckage Medium	Medium in the component	
Assumptions			
Boolean	allowFlowReversal	= true to allow flow reversal, false restricts to design direction (m_flow >= 0)	
Dynamics	Dynamics		
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance	
Initialization	Initialization		
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]	

Connectors

Type	Name	Description
replaceable package Medium		Medium in the component

Interfaces.PartialDistributedVolume

Base class for distributed volume models

Information

Interface and base class for n ideally mixed fluid volumes with the ability to store mass and energy. It is inteded to model a one-dimensional spatial discretization of fluid flow according to the finite volume method. The following boundary flow and source terms are part of the energy balance and must be specified in an extending class:

- Qb_flows[n], heat flow term, e.g. conductive heat flows across segment boundaries, and
- Wb flows[n], work term.

The component volumes fluidVolumes [n] are an input that needs to be set in an extending class to complete the model.

Further source terms must be defined by an extending class for fluid flow across the segment boundary:

- Hb flows[n], enthalpy flow,
- mb flows[n], mass flow,
- mbXi flows[n], substance mass flow, and
- mbC flows[n], trace substance mass flow.

Parameters

Туре	Name	Description
Integer	n	Number of discrete volumes
Assumptions		
Dynamics		
<u>Dynamics</u>	energyDynamics	Formulation of energy balances
<u>Dynamics</u>	massDynamics	Formulation of mass balances
Initialization		
AbsolutePressure	p_a_start	Start value of pressure at port a [Pa]
AbsolutePressure	p_b_start	Start value of pressure at port b [Pa]
Boolean	use_T_start	Use T_start if true, otherwise h_start
Temperature	T_start	Start value of temperature [K]
SpecificEnthalpy	h_start	Start value of specific enthalpy [J/kg]
MassFraction	X_start[Medium.nX]	Start value of mass fractions m_i/m [kg/kg]
ExtraProperty	C_start[Medium.nC]	Start value of trace substances

Interfaces.PartialDistributedFlow

Base class for a distributed momentum balance

Information

Interface and base class for m momentum balances, defining the mass flow rates $m_{flows}[m]$ of a given Medium in m flow segments.

The following boundary flow and force terms are part of the momentum balances and must be specified in an extending model (to zero if not considered):

- Ib_flows[m], the flows of momentum across segment boundaries,
- Fs p[m], pressure forces, and
- Fs_fg[m], friction and gravity forces.

The lengths along the flow path pathLengths [m] are an input that needs to be set in an extending class to complete the model.

Parameters

Туре	Name	Description	
replaceable pad	kage Medium	Medium in the component	
Integer	m	Number of flow segments	
Assumptions			
Boolean	allowFlowReversal	<pre>= true to allow flow reversal, false restricts to design direction (m_flows >= zeros(m))</pre>	
Dynamics			
<u>Dynamics</u>	momentumDynamics	Formulation of momentum balance	
Initialization	Initialization		
MassFlowRate	m_flow_start	Start value of mass flow rates [kg/s]	

Connectors

Type	Name	Description

replaceable package Medium Medium in the component

Modelica_Fluid. Types

Common types for fluid models

Information

Package Content

Name	Description	
<u>HydraulicConductance</u>	Real type for hydraulic conductance	
<u>HydraulicResistance</u>	Real type for hydraulic resistance	
<u>Dynamics</u>	Enumeration to define definition of balance equations	
<u>CvTypes</u>	Enumeration to define the choice of valve flow coefficient	
<u>PortFlowDirection</u>	Enumeration to define whether flow reversal is allowed	
<u>ModelStructure</u>	Enumeration with choices for model structure in distributed pipe model	

Types.HydraulicConductance

Real type for hydraulic conductance

Parameters

Type	Name	Description
	quantity	
	unit	

Types.HydraulicResistance

Real type for hydraulic resistance

Parameters

Туре	Name	Description
	quantity	
	unit	

Types. Dynamics

Enumeration to define definition of balance equations

Information

Enumeration to define the formulation of balance equations (to be selected via choices menu):

Dynamics.	Meaning
DynamicFreeInitial	Dynamic balance, Initial guess value

188 Types.Dynamics

FixedInitial	Dynamic balance, Initial value fixed	
SteadyStateInitial	Dynamic balance, Steady state initial with guess value	
SteadyState	Steady state balance, Initial guess value	

The enumeration "Dynamics" is used for the mass, energy and momentum balance equations respectively. The exact meaning for the three balance equations is stated in the following tables:

Mass balance		
Dynamics.	Balance equation	Initial condition
DynamicFreeInitial	no restrictions	no initial conditions
FixedInitial	no restrictions	if Medium.singleState then no initial condition else p=p_start
SteadyStateInitial	no restrictions	if Medium.singleState then no initial condition else der(p)=0
SteadyState	der(m)=0	
no initial conditions		

Energy balance		
Dynamics.	Balance equation	Initial condition
DynamicFreeInitial	no restrictions	no initial conditions
FixedInitial	no restrictions	T=T_start or h=h_start
SteadyStateInitial	no restrictions	der(T)=0 or der(h)=0
SteadyState	der(U)=0	
no initial conditions		

Momentum balance		
Dynamics.	Balance equation Initial condition	
DynamicFreeInitial	no restrictions	no initial conditions
FixedInitial	no restrictions	m_flow = m_flow_start
SteadyStateInitial	no restrictions	der(m_flow)=0
SteadyState	der(m_flow)=0	
no initial conditions		

In the tables above, the equations are given for one-substance fluids. For multiple-substance fluids and for trace substances, equivalent equations hold.

Medium.singleState is a medium property and defines whether the medium is only described by one state (+ the mass fractions in case of a multi-substance fluid). In such a case one initial condition less must be provided. For example, incompressible media have Medium.singleState = **true**.

Types.CvTypes

Enumeration to define the choice of valve flow coefficient

Information

Enumeration to define the choice of valve flow coefficient (to be selected via choices menu):

CvTypes.	Meaning	
Av	Av (metric) flow coefficient	
Kv	Kv (metric) flow coefficient	

	Cv (US) flow coefficient	
OpPoint	Av defined by operating point	

The details of the coefficients are explained in the Users Guide.

Types.PortFlowDirection

Enumeration to define whether flow reversal is allowed

Information

Enumeration to define the assumptions on the model for the direction of fluid flow at a port (to be selected via choices menu):

PortFlowDirection.	Meaning	
Entering	Fluid flow is only entering the port from the outside	
Leaving	Fluid flow is only leaving the port to the outside	
Bidirectional	No restrictions on fluid flow (flow reversal possible)	

The default is "PortFlowDirection.Bidirectional". If you are completely sure that the flow is only in one direction, then the other settings may make the simulation of your model faster.

Types.ModelStructure

Enumeration with choices for model structure in distributed pipe model

Information

Enumeration to define the discretization structure of distributed pipe models according to the staggered grid scheme:

ModelStructure.	Meaning
av_vb	port_a - volume - flow model - volume - port_b
a_v_b	port_a - flow model - volume - flow model - port_b
av_b	port_a - volume - flow model - port_b
a_vb	port_a - flow model - volume - port_b

The default is "ModelStructure.av vb", i.e., the distributed pipe has "volumes" at its both ends. The advantage is that connections of the pipe to flow models (like fittings) lead to the desirable structure of alternating volume and flow models, which means that no non-linear algebraic equations occur.

Direct connections of distributed pipes with this option means that two volumes are directly connected together. Due to the stream concept this means that the pressures of the two connected volumes are identical, but the temperatures are not set equal (this corresponds to volumes that are connected together with a very short distance and it needs some time until different volume temperatures are equilibrated). Since the pressures of the volumes are identical, the number of states is reduced and index reduction takes place (which means that medium equations depending on pressure are differentiated and the number of required initial conditions is reduced by one).

The default option "av_vb" cannot be used, if the dynamic pipe is connected to a model with nondifferentiable pressure, like a Sources.Boundary_pT with prescribed jumping pressure. The modelStructure can be configured as appropriate in such situations, in order to place a momentum balance between a pressure state of the pipe and a non-differentiable boundary condition (e.g. if the jumping pressure component is connected to port_a, use model structure ModelStructure.a_vb).

Modelica_Fluid.Utilities

Utility models to construct fluid components (should not be used directly)

Information

Extends from Modelica. Icons. Library (Icon for library).

Package Content

Name	Description
f checkBoundary	Check whether boundary definition is correct
	Anti-symmetric square root approximation with finite derivative in the origin
f regRoot_der	Derivative of regRoot
<u>f</u> regSquare	Anti-symmetric square approximation with non-zero derivative in the origin
	Anti-symmetric power approximation with non-zero derivative in the origin
1 regRoot2	Anti-symmetric approximation of square root with discontinuous factor so that the first derivative is finite and continuous
f regSquare2	Anti-symmetric approximation of square with discontinuous factor so that the first derivative is non-zero and is continuous
<u>f regStep</u>	Approximation of a general step, such that the characteristic is continuous and differentiable
evaluatePoly3_derivative AtZero	Evaluate polynomial of order 3 that passes the origin with a predefined derivative
f regFun3	Co-monotonic and C1 smooth regularization function
① cubicHermite	Evaluate a cubic Hermite spline
f cubicHermite_withDerivat ive	Evaluate a cubic Hermite spline, return value and derivative

<u>Utilities</u>.checkBoundary

Check whether boundary definition is correct

Inputs

Type	Name	Description
String	mediumName	
String	substanceNames[:]	Names of substances
Boolean	singleState	
Boolean	define_p	
Real	X_boundary[:]	
String	modelName	

Utilities.regRoot

Anti-symmetric square root approximation with finite derivative in the origin

Information

This function approximates sqrt(abs(x))*sgn(x), such that the derivative is finite and smooth in x=0.

Function	Approximation	Range
y = regRoot(x)	$y \sim = sqrt(abs(x))*sgn(x)$	abs(x) >> delta
y = regRoot(x)	y ~= x/sqrt(delta)	abs(x) << delta

With the default value of delta=0.01, the difference between sqrt(x) and regRoot(x) is 16% around x=0.01, 0.25% around x=0.1 and 0.0025% around x=1.

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Туре	Name	Description	
Real	x		
Real	delta	Range of significant deviation from sqrt(abs(x))*sgn(x)	

Outputs

Туре	Name	Description
Real	у	

<u>Utilities</u>.regRoot_der

Derivative of regRoot

Information

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Type	Name	Description
Real	х	
Real	delta	Range of significant deviation from sqrt(x)
Real	dx	Derivative of x

Outputs

-	Гуре	Name	Description
F	Real	dy	

Utilities.regSquare

Anti-symmetric square approximation with non-zero derivative in the origin

Information

This function approximates $x^2 sgn(x)$, such that the derivative is non-zero in x=0.

Function	Approximation	Range
y = regSquare(x)	y ~= x^2*sgn(x)	abs(x) >> delta
y = regSquare(x)	y ~= x*delta	abs(x) << delta

192 Utilities.regSquare

With the default value of delta=0.01, the difference between x^2 and regSquare(x) is 41% around x=0.01, 0.4% around x=0.1 and 0.005% around x=1.

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Type	Name	Description
Real	x	
Real	delta	Range of significant deviation from $x^2*sgn(x)$

Outputs

Туре	Name	Description
Real	у	

Utilities.regPow

Anti-symmetric power approximation with non-zero derivative in the origin

Information

This function approximates $abs(x)^a*sign(x)$, such that the derivative is positive, finite and smooth in x=0.

Function	Approximation	Range
y = regPow(x)	$y \sim = abs(x)^a*sgn(x)$	abs(x) >> delta
y = regPow(x)	y ~= x*delta^(a-1)	abs(x) << delta

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Туре	Name	Description
Real	x	
Real	а	
Real	delta	Range of significant deviation from x^a*sgn(x)

Outputs

Туре	Name	Description
Real	у	

Utilities.regRoot2

Anti-symmetric approximation of square root with discontinuous factor so that the first derivative is finite and continuous

Information

Approximates the function

$$y = if x \ge 0$$
 then $sqrt(k1*x)$ else $-sqrt(k2*abs(x))$, with $k1$, $k2 > 0$

in such a way that within the region -x_small $\le x \le x$ _small, the function is described by two polynomials of third order (one in the region -x_small .. 0 and one within the region 0 .. x_small) such that

- The derivative at x=0 is finite.
- The overall function is continuous with a continuous first derivative everywhere.
- If parameter use_yd0 = false, the two polynomials are constructed such that the second derivatives at x=0 are identical. If use_yd0 = **true**, the derivative at x=0 is explicitly provided via the additional argument yd0. If necessary, the derivative yd0 is automatically reduced in order that the polynomials are strict monotonically increasing [Fritsch and Carlson, 1980].

Typical screenshots for two different configurations are shown below. The first one with k1=k2=1:

and the second one with k1=1 and k2=3:

The (smooth) derivative of the function with k1=1, k2=3 is shown in the next figure:

194 Utilities.regRoot2

Literature

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from Modelica.lcons.Function (Icon for a function).

Inputs

Type	Name	Description
Real	х	abscissa value
Real	x_small	approximation of function for x <= x_small
Real	k1	y = if x > = 0 then sqrt(k1*x) else -sqrt(k2* x)
Real	k2	y = if x > = 0 then sqrt(k1*x) else -sqrt(k2* x)
Boolean	use_yd0	= true, if yd0 shall be used
Real	yd0	Desired derivative at x=0: dy/dx = yd0

Outputs

Туре	Name	Description
Real	y	ordinate value

Utilities.regSquare2

Anti-symmetric approximation of square with discontinuous factor so that the first derivative is non-zero and is continuous

Information

Approximates the function

$$y = if x \ge 0$$
 then $k1*x*x$ else $-k2*x*x$, with $k1$, $k2 > 0$

in such a way that within the region $-x_small \le x \le x_small$, the function is described by two polynomials of

third order (one in the region -x_small .. 0 and one within the region 0 .. x_small) such that

- The derivative at x=0 is non-zero (in order that the inverse of the function does not have an infinite derivative).
- The overall function is continuous with a continuous first derivative everywhere.
- If parameter use yd0 = false, the two polynomials are constructed such that the second derivatives at x=0 are identical. If use yd0 = true, the derivative at x=0 is explicitly provided via the additional argument yd0. If necessary, the derivative yd0 is automatically reduced in order that the polynomials are strict monotonically increasing [Fritsch and Carlson, 1980].

A typical screenshot for k1=1, k2=3 is shown in the next figure:

The (smooth, non-zero) derivative of the function with k1=1, k2=3 is shown in the next figure:

Literature

Fritsch F.N. and Carlson R.E. (1980):

Monotone piecewise cubic interpolation. SIAM J. Numerc. Anal., Vol. 17, No. 2, April 1980, pp. 238-246

Extends from Modelica. Icons. Function (Icon for a function).

Inputs

Туре	Name	Description
Real	х	abscissa value
Real	x_small	approximation of function for x <= x_small
Real	k1	$y = (if x \ge 0 then k1 else k2)*x* x $
Real	k2	$y = (if x \ge 0 then k1 else k2)*x* x $

196 Utilities.regSquare2

Boolean	use_yd0	= true, if yd0 shall be used
Real	yd0	Desired derivative at x=0: dy/dx = yd0

Outputs

Туре	Name	Description
Real	у	ordinate value

Utilities.regStep

Approximation of a general step, such that the characteristic is continuous and differentiable

Inputs

Type	Name	Description	
Real	x	Abscissa value	
Real	y1	Ordinate value for x > 0	
Real	y2	Ordinate value for x < 0	
Real	x_small	Approximation of step for -x_small <= x <= x_small; x_small > 0 required	

Outputs

Type	Name	Description
Real	у	Ordinate value to approximate $y = if x > 0$ then y1 else y2

<u>Utilities</u>.evaluatePoly3_derivativeAtZero

Evaluate polynomial of order 3 that passes the origin with a predefined derivative

Information

Extends from Modelica.Icons.Function (Icon for a function).

Inputs

Туре	Name	Description
Real	x	Value for which polynomial shall be evaluated
Real	x1	Abscissa value
Real	y1	y1=f(x1)
Real	y1d	First derivative at y1
Real	y0d	First derivative at f(x=0)

Outputs

Туре	Name	Description
Real	у	

Utilities.regFun3

Co-monotonic and C1 smooth regularization function

Information

Approximates a function in a region between x0 and x1 such that

- The overall function is continuous with a continuous first derivative everywhere.
- The function is co-monotone with the given data points.

In this region, a continuation is constructed from the given points (x0, y0), (x1, y1) and the respective derivatives. For this purpose, a single polynomial of third order or two cubic polynomials with a linear section in between are used [Gasparo and Morandi, 1991]. This algorithm was extended with two additional conditions to avoid saddle points with zero/infinite derivative that lead to integrator step size reduction to zero.

This function was developed for pressure loss correlations properly addressing the static head on top of the established requirements for monotonicity and smoothness. In this case, the present function allows to implement the exact solution in the limit of $x1-x0 \rightarrow 0$ or $y1-y0 \rightarrow 0$.

Typical screenshots for two different configurations are shown below. The first one illustrates five different settings of xi and yid:

The second graph shows the continous derivative of this regularization function:

Literature

Gasparo M. G. and Morandi R. (1991):

Piecewise cubic monotone interpolation with assigned slopes. Computing, Vol. 46, Issue 4, December 1991, pp. 355 - 365.

Inputs

Туре	Name	Description
Real	х	Abscissa value
Real	x0	Lower abscissa value
Real	x1	Upper abscissa value

Real	y0	Ordinate value at lower ordinate value
Real	y1	Ordinate value at upper ordinate value
Real	y0d	Derivative at lower abscissa value
Real	y1d	Derivative at upper abscissa value

Outputs

Type	Name	Description
Real	у	Ordinate value
Real		Slope of linear section between two cubic polynomials or dummy linear section slope if single cubic is used

<u>Utilities</u>.cubicHermite

Evaluate a cubic Hermite spline

Inputs

Туре	Name	Description
Real	х	Abscissa value
Real	x1	Lower abscissa value
Real	x2	Upper abscissa value
Real	y1	Lower ordinate value
Real	y2	Upper ordinate value
Real	y1d	Lower gradient
Real	y2d	Upper gradient

Outputs

Type	Name	Description
Real	у	Interpolated ordinate value

<u>Utilities.cubicHermite_withDerivative</u>

Evaluate a cubic Hermite spline, return value and derivative

Inputs

Туре	Name	Description
Real	Х	Abscissa value
Real	x1	Lower abscissa value
Real	x2	Upper abscissa value
Real	y1	Lower ordinate value
Real	y2	Upper ordinate value
Real	y1d	Lower gradient
Real	y2d	Upper gradient

Outputs

Type Name Description	
-----------------------	--

200 Utilities.cubicHermite_withDerivative

Real	у	Interpolated ordinate value
Real	dy_dx	Derivative dy/dx at abscissa value x

Modelica_Fluid.Icons

Library of resuable icons

Information

Extends from Modelica.lcons.Library (Icon for library).

Package Content

Name	Description
<u>VariantLibrary</u>	Icon for a library that contains several variants of one component
BaseClassLibrary	Icon for library
① ObsoleteFunction	Icon for an interal function

Icons.VariantLibrary

Icon for a library that contains several variants of one component

Icons.BaseClassLibrary

Icon for library

Icons.ObsoleteFunction

Icon for an interal function

Information

This icon is designed for a function