Lecture 3 Circuit Theorems

Outline

- Linearity property
- Superposition
- Thevenin's theorem
- Source transformation
- Norton's theorem
- Power transfer

Linear Circuit

A linear circuit consists of only <u>linear elements</u> (resistors, capacitors and inductors), <u>linear dependent sources</u>, and <u>independent sources</u>.

In a circuit,

Excitation: Sources

Response: Voltage or current in the branches

Linearity Property

- Linearity is a combination of
 - homogeneity (scaling) property

additivity property

Lecture 3

Example of homogeneity (scaling) property

Lecture 3

Superposition

 The <u>superposition principle</u> states that the voltage across (or current through) an element in <u>a linear circuit</u> is the algebraic sum of the voltages across (or currents through) that element <u>due to each independent source</u> acting alone.

Applying Superposition

- The steps are:
 - 1. <u>Turn off all other **independent** sources except for the source of interest</u>. Find the output (voltage or current) due to that active source.
 - Turn off means to replace <u>independent</u> voltage source by short <u>circuit</u> (0 V), <u>independent current source by open circuit</u> (0 A).
 - 2. Repeat step 1 for each **independent** source.
 - 3. Find the total contribution by adding algebraically all the contributions due to the **independent** sources.

Note that

- Using superposition means <u>applying one independent source at a time.</u>
- 2) Dependent sources are left alone.

Open Circuit and Short Circuit

- Turn off an independent voltage source means
 - *v*=0
 - Replace by wire
 - Short circuit
- Turn off an independent <u>current</u> source means
 - **■** *i*=0
 - Cut off the branch
 - Open circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display $8\ \Omega$ $4\ \Omega \ \buildrel v$ $3\ A$

Lecture 3

Example: Superposition

Example: Superposition

Contribution from I_0 alone

Contribution from V_0 alone

$$R_1 = 5 \Omega$$

$$V_0 = 45 \text{ V} + \frac{1}{2}$$

$$I_1 = 2 A$$

$$I = I_1 + I_2 = 2 - 3 = -1 \text{ A}$$

$$I_2 = -3 \text{ A}$$

Why Superposition?

- Because it entails solving a circuit multiple times, this source-superposition method may not be attractive.
- But it is useful to evaluate the sensitivity of a response to specific sources in the circuit.

$$I = aI_0 + bV_0$$

Lecture 3

How about Power absorbed by R₂

- Power due to I_0 , $P_1 = ?$
- Power due to $V_0, P_2 = ?$
- Power due to both V_0 and I_0 , P = ?

Lecture 3

Practice 1

• Find i_0 in the circuit shown below.

Practice 2

• Express node voltage e_1 as a function of two voltage sources V_1 , V_2 and one current source I.

Outline

- Linearity property
- Superposition
- Thevenin's theorem
- Source transformation
- Norton's theorem
- Power transfer

Example

- Q1: If $R_2 = 1\Omega$, I = ?
- Q2: What if $R_2 = 5\Omega$, I = ?
- ??

Thevenin's Theorem – Motivation

- In many circuits, only one element (called the load) is variable while others are fixed.
 - An example is the household outlet: different appliances may be plugged into the outlet, each presenting a different resistance.
 - Ordinarily one has to re-analyze the circuit for the load change.
 - This problem can be avoided by circuit theorem (e.g. <u>Thevenin's</u> theorem), which provides a technique to replace the fixed part of the circuit with an equivalent circuit.

Equivalent Circuit Concept

 A network of voltage sources, current sources, and resistors can be replaced by an <u>equivalent circuit</u> which has identical <u>terminal properties</u> (/-V characteristics) without affecting the operation of the rest of the circuit.

Thevenin's Theorem (1880s, Leon Thevenin, French)

 Thevenin's theorem states that a two terminal circuit (including resistors, linear dependent sources, and independent sources.) may be replaced with a voltage source in series with a resistor:

24

Thévenin equivalent circuit

Lecture 3 [Source: Berkeley]

How Do We Find Thévenin Equivalent Circuits?

Method 1: Equivalent Resistance

- 1. Analyze circuit to find v_{oc}
- 2. Deactivate all independent sources by replacing voltage sources with short circuits and current sources with open circuits.
- 3. Simplify circuit to find equivalent resistance.

Equivalent-Resistance Method

Note: This method does not apply to circuits that contain dependent sources.

Example

- Use Thévenin Equivalent Circuits
- Q1: If $R_2 = 1\Omega$, I = ?
- Q2: What if $R_2 = 5\Omega$, I = ?

Practice Thévenin Equivalent Circuit

(Circuit has no dependent sources)

How Do We Find Thévenin Equivalent Circuits?

Method 2: Open/short circuit

- 1. Analyze circuit to find v_{oc}
- 2. Analyze circuit to find i_{sc}

$$v_{\mathrm{Th}} = v_{\mathrm{oc}}$$
 $R_{\mathrm{Th}} = \frac{v_{\mathrm{Th}}}{i_{\mathrm{sc}}}$

Note: This method is applicable to any linear circuit, whether or not it contains dependent sources.

Example

Practice

Lecture 3

How Do We Find Thévenin Equivalent Circuits?

Method 3:

Step 1. Still
$$v_{\mathrm{Th}} = v_{\mathrm{oc}}$$

Step 2. External-Source Method

If a circuit contains both dependent and independent sources, $R_{\rm Th}$ can be determined by (a) deactivating independent sources (only), (b) adding an external source $v_{\rm ex}$, and then (c) solving the circuit to determine $i_{\rm ex}$. The solution is $R_{\rm Th} = v_{\rm ex}/i_{\rm ex}$.

Example

Example

I-V Characteristic of Thévenin Equivalent

[Source: Berkeley] Lecture 3

Norton's Theorem

Norton equivalent circuit

I-V Characteristic of Norton Equivalent

Source Transformation

- A source transformation is the process of replacing "a voltage source v_s in series with a resistor R" by "a current source i_s in parallel with a resistor R", or vice versa. $V_s/i_s = R$
- These transformations work because the two sources have equivalent behavior at their terminals:
 - If the sources are turned off, resistance at the terminals are both R
 - If the terminals are short circuited, the currents is the same.

• Q1: If $R_2 = 1\Omega$, I = ?

• Q2: What if $R_2 = 5\Omega$?

Lecture 3

Max Power Transfer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Example

- (1) Calculate the value of R, at which maximum power transferred to R holds.
- (2) Calculate the percentage/ratio: P_R/P_{total}

