Hausaufgabe 2

Aufgabe 6

Die Endzustände wurden so gewählt damit die akzeptierenden Läufe von L(A) enthalten sind und die akzeptierenden Läufe von L(B) nicht.

Aufgabe 7

Sei $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ ein DFA mit Sprache $L(\mathcal{A})$. Wir definieren den ε -NFA $\mathcal{B} := (Q', \Sigma', \Delta, q_{-1}, F)$, wobei $Q' := Q \cup \{q_{-1}\}, \Sigma' := \Sigma \cup \{\varepsilon\}$ und

$$\Delta := \{ (q, a, q') \mid \delta(q, a) = q' \} \cup \{ (q_{-1}, \varepsilon, f) \mid f \in F \}$$

für $q, q' \in Q$ und $a \in \Sigma$.

Wir zeigen zuerst $L_{\text{suff}}(\mathcal{A}) \subseteq L(\mathcal{B})$.

Sei $w \in L_{\text{suff}}(\mathcal{A})$ gegeben. Seien ferner $m, n \in \mathbb{N}$.

Dann existiert ein $u \in L(\mathcal{A})$ sodass $uw \in L(\mathcal{A})$. Durch $u \in L(\mathcal{A})$ existiert ein Lauf von \mathcal{A} über u; $(r_0, r_1 \cdots r_m)$ sodass $r_0 = q_0$ und $r_n \in F$. Ferner gibt es durch $uw \in L(\mathcal{A})$ eine Zustandsfolge $(x_0, \sigma_1, x_1, \sigma_2 \cdots \sigma_n, x_n)$ sodass $x_0 = r_m, x_n \in F$ und $(\sigma_1, \sigma_2, \cdots \sigma_n) = w$. Nun können wir den Lauf $(q_{-1}, \varepsilon, x_0, \sigma_1, x_1, \sigma_2, x_2, \cdots \sigma_n, x_n)$ in \mathcal{B} angeben. Da beide Automaten die selben Endzustände haben und q_{-1} der Startzustand von \mathcal{B} ist, folgt daraus $w \in L(\mathcal{B})$.

Wir zeigen nun $L(\mathcal{B}) \subseteq L_{\text{suff}}(\mathcal{A})$.

Sei $w \in L(\mathcal{B})$ gegeben. Sei ferner $n \in \mathbb{N}$.

Dann existiert ein Lauf $r := (r_0, \sigma_1, r_1, \sigma_2 \cdots, \sigma_n, r_n)$ in \mathcal{B} mit $r_0 = q_{-1}$, $\sigma_1 = \varepsilon$, $(\sigma_2 \cdots \sigma_n) = w$ und $r_1, r_n \in F$. Da F eben die Endzustände von \mathcal{A} sind, gibt es auch ein Wort $u \in L(\mathcal{A})$ sodass der Lauf von \mathcal{A} über u eben an $r_1 \in F$ endet. Nun lässt sich der Lauf von w ohne die ε -Transition $(r_1, \sigma_2, \cdots \sigma_n, r_n)$ einwandfrei an den von u in dem DFA \mathcal{A} anhängen um zu einem Weitern Endzustand von \mathcal{A} zu kommen. Es folgt $uw \in L(\mathcal{A})$ und damit $w \in L_{\text{suff}}(\mathcal{A})$.

Insgesamt gilt also $L(\mathcal{B}) = L_{\text{suff}}(\mathcal{A})$. Aus der Vorlesung ist bekannt, dass alle Sprachen, welche ε -NFA-erkennbar sind auch DFA-erkennbar sind.

Aufgabe 8

a)

b)

Alle läufe von \mathcal{A} auf dem Wort bbba: $(q_0, b, q_0, b, q_0, b, q_1, a, q_2)$

 $(q_0, b, q_1, b, q_0, b, q_1, a, q_2)$

c)

$$E(\mathcal{A}, w) := \{q_0, q_1\}$$

Das Wort *cbbca* wird akzeptiert.