

Examen Primer Parcial de Introducción a la Programación Grado en Ingeniería Informática. 11/11/2016 Departamento de Informática

Nombre	DNI

1. (**1.5**) ¿Cuál sería la salida del siguiente programa?

```
package org.ip.primerparcial2017;
public class PrimerEjercicio {
  public static void main(String[] args) {
     int numero, suma = 0;
    numero = 10;
     suma = 0;
     for (int i = 0; (i < 2 * numero); i = i + 2) {
       suma += i;
    System.out.println("Resultado = " + suma);
     int otraSuma = 0;
     for (int i = 0; (i < numero); i++) {
       otraSuma += (2 * i);
     System.out.println("Otro resultado = " + otraSuma);
     if (suma != otraSuma)
       System.out.println("FALSE");
       System.out.println("TRUE");
  }
}
```

Debe exponerlo y justificarlo todo razonada y correctamente. De no hacerlo así, el ejercicio no estará bien. No sirve responder aleatorioamente TRUE o FALSE si justificarlo de forma razonada.

Respuesta

Se trata de un programa que consta de dos bucles para realizar la suma de un número de valores que generan dichos bucles en función de una variable *i* que se irá incrementando hasta un valor cota que pende de una variable *numero* inicializada a 10.

Primer bucle: for (int i = 0; (i < 2 * numero); i = i + 2) \Rightarrow genera valores para i = 0, 2, 4, 6, 8, 10, 12, 14, 16 y 18, que son los que acumula. La iteración para i = 20 no entra en el bucle, ya que (20 < 20) es falso. Y la suma de todos los valores de *i* generados es **90**.

Segundo bucle: for (int i = 0; (i < numero); i++) \Rightarrow genera valores para i = 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. La iteración para <math>i = 10 no entra en el bucle, ya que (10 < 10) es falso. Pero los valores que acumula son (i * 2), y la suma de los valores generados (0, 2, 4, 6, 8, 10, 12, 14, 16 y 18) es **90**.

Ya que como, suma = 90 y otraSuma = 90, la condición es **TRUE** y la salida también lo es.

2. (1.5) Implementar un programa que muestre una variación de la serie de Fibonacci estudiada en clase de teoría y en las sesiones de prácticas. Para ello, a partir de un valor n, entero no negativo ($n \ge 0$) que se introducirá por teclado, se generará dicha serie sabiendo que:

```
f_0 = 0

f_1 = 1

f_2 = 2

Para i \ge 3

f_i = f_{i-1} + f_{i-2} - f_{i-3}
```

Implementar un método que genere dicha serie para un *numeroTerminos* dado. Debe tener en cuenta que la función no devuelve ningún tipo de resultado. La clase se creará en el paquete **org.ip.primerparcial2017**. El nombre de la clase y del archivo java debe ser **FibonacciExamen**, y la cabecera del método a implementar tiene que ser la siguiente:

```
public static void variacionFibonacci(int numeroTerminos)
```

Por último, debe de implementar también la función main que hay en la clase FibonacciExamen, que llame al método variacionFibonacci y que sea capaz de devolver la salida que se indica a continuación:

Ejemplo de ejecución:


```
¿Hasta qué término de la serie quieres mostrar?

-3
¿Hasta qué término de la serie quieres mostrar?

-1
¿Hasta qué término de la serie quieres mostrar?

10
0 1 2 3 4 5 6 7 8 9 10
```

Respuesta

```
package org.ip.primerparcial2017;
import java.util.Scanner;
public class FibonacciExamen {
  public static void variacionFibonacci(int numeroTerminos) {
     if (numeroTerminos == 0) {
        System.out.printf("%d", 0);
     else if (numeroTerminos == 1) {
        System.out.printf("%d %d", 0, 1);
     else if (numeroTerminos == 2) {
        System.out.printf("%d %d %d", 0, 1, 2);
     }
     else {
        int fiMenosTres = 0; // f0
        int fiMenosDos = 1; // f1
        int fiMenosUno = 2; // f2
        System.out.printf("%d %d %d ", fiMenosTres, fiMenosDos, fiMenosUno);
        int i = 3;
        int\ fi = fiMenosUno + fiMenosDos - fiMenosTres;
        while (i <= numeroTerminos) {
           System.out.printf("%d ", fi);
           fiMenosTres = fiMenosDos;
           fiMenosDos = fiMenosUno;
           fiMenosUno = fi;
           fi = fiMenosUno + fiMenosDos - fiMenosTres;
           i++;
     }
   }
```

```
public static void main(String[] args) {
    int numeroTerminos; // número de términos a mostrar
    Scanner entrada = new Scanner(System.in);
    do {
        System.out.println("¿Hasta qué término de la serie quieres mostrar?");
        numeroTerminos = entrada.nextInt();
    } while (numeroTerminos < 0);
    variacionFibonacci(numeroTerminos);
    System.out.println();
}</pre>
```