Module 3:

Linear Models for Classification

(Part B)

Lecture Objectives

Learn Probabilistic Generative Models

Learn Probabilistic Discriminative Models

Probabilistic Generative Models

Discriminative vs Generative Classifiers

Discriminative classifiers

Approach 1: Search for a decision boundary that separates class labels.

Discriminative vs Generative Classifiers

Discriminative classifiers

• Approach 2: Try to learn $p(C_k|\mathbf{x})$ directly

Discriminative vs Generative Classifiers

Generative classifiers

- Try to model $p(\mathbf{x}|C_k)$ (How does data look like for a class C_k)
 - this can actually be used to **generate** the input data

Model:

- $p(\mathbf{x}|y = \text{Tuna})$: model the distributions of features of Tuna
- $p(\mathbf{x}|y = \text{Bass})$: model the distributions of features of Bass

Probabilistic Generative Models

Classification via Bayes' rule (also called Bayes classifier)

Idea: To get $p(C_k|\mathbf{x})$, use $p(\mathbf{x}|C_k) \& p(C_k)$ via Bayes' theorem:

$$p(C_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|C_{k})p(C_{k})}{p(\mathbf{x})}$$

• Prediction Rule: If we calculate $p(C_k|x)$ in order to make a prediction, we don't have to actually need to calculate denominator, since

$$\operatorname{argmax}_{C_{k}} p (C_{k} | \mathbf{x}) = \operatorname{argmax}_{C_{k}} \frac{p(\mathbf{x} | C_{k}) p(C_{k})}{p(\mathbf{x})}$$
$$= \operatorname{argmax}_{C_{k}} p (\mathbf{x} | C_{k}) p(C_{k})$$

Class-Conditional Probability Density Function (PDF)

Class-Conditional Probability Density Function (PDF)

- Let x be a continuous random variable (e.g. length in fish)
- $p(x|C_k)$ the class-conditional probability density function (PDF) the probability of x given that the state of nature of C_k
- Example: p(length|Tuna) and p(length|Bass) describe the differences in **length** between populations of Tuna and Bass

Gaussian Discriminative Analysis

Gaussian Discriminant Analysis

- A generative learning model assuming that class-conditional PDF $p(\mathbf{x}|C_k)$ is distributed according to a normal (Gaussian) distribution.
- This classifier is also called Gaussian Bayes Classifier

A simple case is when inputs are just 1-dimensional:

$$p(\mathbf{x}|C_k) = \frac{1}{\sqrt{2\pi}\sigma_{C_k}} \exp\left(-\frac{(\mathbf{x} - \mu_{C_k})^2}{2\sigma_{C_k}^2}\right)$$
 with parameters:
• mean μ_{C_k}
• variance $\sigma_{C_k}^2$

- Note that we have different parameters for different classes

Univariate Gaussian Distribution

Fitting a Gaussian Distribution to Data

Assume that the class-conditional PDF is a Gaussian:

$$p(\mathbf{x}|C_k) = \frac{1}{\sqrt{2\pi}\sigma_{C_k}} \exp\left(-\frac{(\mathbf{x} - \mu_{C_k})^2}{2\sigma_{C_k}^2}\right)$$

How to fit a Gaussian distribution to the training data?

- Given training examples $\{x_n, t_n\}_{n=1,...N}$ with $t_n \in \{C_1, C_2\}$, we need to estimate the **model parameters** $\{(\mu_{C_1}, \sigma^2_{C_1}), (\mu_{C_2}, \sigma^2_{C_2})\}$
- **Divide** the training set \mathcal{D} into two classes: \mathcal{D}_1 and \mathcal{D}_2
- For each class C_k , we need to fit a **Gaussian** to model $p(x|C_k)$ on \mathcal{D}_k

Finding parameters using MLE in Gaussians

How to find parameters that fit a Gaussian distribution to my training data?

Try Maximum Likelihood Estimation (MLE) for a Gaussian

$$p(\mathbf{x_1}, ..., \mathbf{x_n} | C_k) = \prod_{n=1}^{N} p(\mathbf{x_n} | C_k) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\mathbf{x_n} - \mu)^2}{2\sigma^2}\right)$$

Note: for simplicity of notation, we drop subscript \mathcal{C}_k

What's the next step?

• Maximise the likelihood, or minimise its negative:

$$-\ln p(\mathbf{x_1}, ..., \mathbf{x_n} | C_k) = -\ln \left(\prod_{n=1}^N \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\mathbf{x_n} - \mu)^2}{2\sigma^2}\right) \right) =$$

$$\sum_{n=1}^N \ln(\sqrt{2\pi}\sigma) + \sum_{n=1}^N \frac{(\mathbf{x_n} - \mu)^2}{2\sigma^2}$$

Finding parameters using MLE in Gaussians

To find the parameters μ and σ^2 , let's use the derivatives with respect to μ and σ^2 and set them to zero:

$$\frac{\partial(-\ln p(\mathbf{x}_1, ..., \mathbf{x}_n | C_k))}{\partial \mu} = 0 \qquad \qquad \mu = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\frac{\partial(-\ln p(\mathbf{x}_1, ..., \mathbf{x}_n | C_k))}{\partial \sigma^2} = 0 \qquad \qquad \qquad \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2$$

Finding parameters using MLE in Gaussians

In summary, we can compute the parameters of a Gaussian distribution for each class C_k by using the training data points \mathcal{D}_k associated to classes

MLE estimates of parameters for a Gaussian distribution:

$$\mu_{C_k} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{C_k})^2$$

How to use parameters? Remember

$$p(\mathbf{x}|C_k) \approx p(\mathbf{x}|\mu_{C_k}, \sigma_{C_k}^2)$$

Posterior Probability

Compute the posterior probability:

• Given a new sample \mathbf{x} , we choose C_1 :

$$p(C_1|\mathbf{x}) > p(C_2|\mathbf{x}) \iff p(\mathbf{x}|C_1)p(C_1) > p(\mathbf{x}|C_2)p(C_2)$$

How to calculate $p(C_k)$?

$$p(C) = \begin{cases} \phi, & \text{if } C = C_k \\ 1 - \phi, & \text{otherwise} \end{cases}$$
 Bernoulli Distribution:
$$p(C_k) = \phi^{C_k} (1 - \phi)^{1 - C_k}$$

Bernoulli Distribution:

$$p(C_k) = \phi^{C_k} (1 - \phi)^{1 - C_k}$$

 C_k is 1 if it's the class with probability Φ C_k is 0 otherwise

Summary (Our learning problem)

What is our learning objective?

• Given the training set, learn the parameters to fully specify the joint distribution $p(\mathbf{x}, C_k)$

What are the model parameters?

$$\mathbf{w} = (\phi, \mu_{C_k}, \sigma_{C_k}^2)$$

How to define the likelihood function of the joint distribution:

$$\prod_{n=1}^{N} p(\mathbf{x_n}, C_k; \mu_{C_k}, \sigma_{C_k}^2, \phi) = \prod_{n=1}^{N} p(\mathbf{x_n} | C_k; \mu_{C_k}, \sigma_{C_k}^2) p(C_k; \phi)$$

Summary (Our learning problem)

How to find such parameters?

Apply log and calculate the partial derivative with respect to each of the parameters

$$\prod_{n=1}^{N} p(\mathbf{x_n}, C_k; \mu_{C_k}, \sigma_{C_k}^2, \phi) = \prod_{n=1}^{N} p(\mathbf{x_n} | C_k; \mu_{C_k}, \sigma_{C_k}^2) p(C_k; \phi)$$

 Do this separately since the left and right probabilities depend on different parameters.

$$p(\mathbf{x_n}|C_k;\mu_{C_k},\sigma_{C_k}^2) \qquad \qquad \text{Previous Slides!}$$

$$p(C_k;\phi) \qquad \qquad \phi = \frac{1}{N}\sum_{n=1}^N 1\{t_n = C_k\}$$

Probabilistic Generative Models via Multivariate Gaussian Distribution

Gaussian Discriminant Analysis for Multivariate Inputs

Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

- Assume that the class-conditional PDF $p(\mathbf{x}|C_k)$ is distributed according to a multivariate normal (Gaussian) distribution.
- **x**: a vector-valued random variable $\mathbf{x} = (x_1, ..., x_D)$

$$p(\mathbf{x}|C_k) \approx p(\mathbf{x}|\boldsymbol{\mu_{C_k}}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu_{C_k}})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu_{C_k}})\right)$$

- Parameterized by k D-dimensional mean vector μ_{C_k} and a D x D covariance matrix Σ , $|\Sigma|$ is the determinant of Σ
- Note: each class has a different μ_{C_k} , but all share the same Σ !

Multivariate Gaussian Distribution Densities

Posterior Probability

Interestingly, the posterior probability takes the following form:

• For the case with K=2,

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp^{-(\mathbf{w} \cdot \mathbf{x} + w_0)}}$$

$$= \sigma(\mathbf{w} \cdot \mathbf{x} + w_0), \text{ with}$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{C_1} - \boldsymbol{\mu}_{C_2})$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_{C_1}^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{C_1} + \frac{1}{2}\boldsymbol{\mu}_{C_2}^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{C_2} + \ln \frac{p(C_1)}{p(C_2)}$$

Finding parameters using MLE in Gaussians (Binary)

What is our objective?

• Given training examples $\{\mathbf{x}_n, t_n\}_{n=1,...N}$ with $t_n \in \{C_0, C_1\}$, we need to estimate the model parameters

What are the model parameters in the model for multivariate features?

$$p(\mathbf{x}|C_k) \approx p(\mathbf{x}|\boldsymbol{\mu_{C_k}}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}|C_k) = p(\mathbf{x}|C_k; \boldsymbol{\mu_{C_k}}, \boldsymbol{\Sigma})$$

$$\mathbf{w} = (\boldsymbol{\mu_{C_k}}, \boldsymbol{\Sigma})$$

$$p(C) = \begin{cases} \phi, & \text{if } C = C_k \\ 1 - \phi, & \text{otherwise} \end{cases} \quad \mathbf{w} = (\phi, \boldsymbol{\mu}_{C_k}, \Sigma)$$

Finding parameters using MLE in Gaussians (Binary)

Find the parameters that satisfy the following:

$$\operatorname{argmax}_{\mathbf{w}} \prod_{n=1}^{N} p(\mathbf{x}_n | C_k; \boldsymbol{\mu}_{C_k}, \boldsymbol{\Sigma}) p(C_k; \boldsymbol{\phi})$$

$$\varphi = \frac{N_1}{N_1 + N_2}$$

$$\boldsymbol{\mu}_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n \boldsymbol{x}_n$$

$$\mathbf{S}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1}^{N} (\mathbf{x}_n - \mu_1)(\mathbf{x}_n - \mu_1)^T$$

$$\boldsymbol{\mu}_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - t_n) \boldsymbol{x}_n$$

$$\mathbf{S}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2}^{N} (\mathbf{x}_n - \mu_2)(\mathbf{x}_n - \mu_2)^T$$

$$t_n = 1$$
, if x_n is in C_1
 $t_n = 0$, if x_n is in C_2

Visualization

Prediction Rule

Simply:

$$p(C_1|\mathbf{x}) > p(C_2|\mathbf{x}) \longrightarrow p(\mathbf{x}|C_1)p(C_1) > p(\mathbf{x}|C_2)p(C_2)$$

Alternatively:

$$a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$
 Predict C_1 if $a > 0$, and C_2 otherwise

Decision Boundary

Let

$$a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

Plug the Gaussian class densities into the variable "a":

$$a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} \qquad p_{\theta}(x|C_k) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

$$= \ln \frac{p(\mathbf{x}|C_1)}{p(\mathbf{x}|C_2)} + \ln \frac{p(C_1)}{p(C_2)}$$

$$= \ln \frac{exp[-\frac{1}{2}(x - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu}_1)]}{exp[-\frac{1}{2}(x - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu}_2)]} + \ln \frac{p(C_1)}{p(C_2)}$$

$$= \frac{1}{2}(x - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu}_2) - \frac{1}{2}(x - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu}_1) + \ln \frac{p(C_1)}{p(C_2)}$$

$$= \frac{1}{2}(x - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu}_2) - \frac{1}{2}(x - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1}(x - \boldsymbol{\mu}_1) + \ln \frac{p(C_1)}{p(C_2)}$$

Decision Boundary

$$a = \ln \frac{exp[-\frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1)]}{exp[-\frac{1}{2}(x - \mu_2)^T \Sigma^{-1}(x - \mu_2)]} + \ln \frac{p(C_1)}{p(C_2)}$$

$$= \frac{1}{2}(x - \mu_2)^T \Sigma^{-1}(x - \mu_2) - \frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1) + \ln \frac{p(C_1)}{p(C_2)}$$

Where we note that the quadratic term $x^T \Sigma^{-1} x$ is cancelled. Hence a takes a simple linear form

$$a=wx + w_0$$

$$w = \Sigma^{-1}(\mu_1 - \mu_2)$$

$$w_0 = \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 - \frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \ln \frac{p(C_1)}{p(C_2)}$$

Note: "a" takes a simple linear form. This means the induced decision boundary is linear.

Logistic Regression?

- **Directly** model the prediction of y (target) on x (input) as a **conditional probability**: p(y|x)
- Compared with non-probabilistic linear regression
 - Map input to a continuous target value
 - But the continuous target value is constrained to [0, 1]
 - Add one activation function logistic function
- This approach is known as logistic regression

Logistic Regression Function:

 Assume that a particular function form: sigmoid applied to a linear function of the data:

$$y(\mathbf{x}) = f(\mathbf{w}^{T}\mathbf{x}), f(z) = \frac{1}{1 + \exp^{(-z)}}$$

How to model class probability via logistic function (binary classification 0 & 1)

•
$$p(C = 1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x})$$
 with $\sigma(z) = \frac{1}{1 + \exp^{(-z)}}$

If we substitute

$$p(C = 1|\mathbf{x}) = \frac{1}{1 + \exp^{(-\mathbf{w}^T \mathbf{x})}} = \frac{\exp^{(\mathbf{w}^T \mathbf{x})}}{1 + \exp^{(\mathbf{w}^T \mathbf{x})}}$$

$$p(C = 0|\mathbf{x}) = 1 - \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})} = \frac{\exp(-\mathbf{w}^T \mathbf{x})}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

Learning Model Parameters

How can we visualise the decision boundary for logistic regression?

Decision Boundary: $\mathbf{w}^T \mathbf{x} = 0$

Example

Probability of passing an exam versus hours of study

- Given hours a student studies, estimate the probability that the student will pass the exam?
- Training data: A group of 20 students spend between 0 and 6 hours studying for an exam

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

Learned model: $y(hours) = \sigma(\mathbf{w}^{i}\mathbf{x}) = \sigma(-4.078 + 1.5x)$ Our focus: Learn \mathbf{w} for our model

Hours of study	Probability of passing exam						
1	0.07						
2	0.26						
3	0.61						
4	0.87						
5	0.97						

How can we learn the model parameters w

• Training data: $\{(x_1, t_1), \dots, (x_n, t_n)\}$, $t_n = 1$ (class 1) and 0 (class 2) (just for explanation)

The maximum likelihood function:

$$\mathcal{L}(\boldsymbol{w}) := \log \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}$$

$$y(\boldsymbol{x}) := p(\mathcal{C}_1 | \boldsymbol{x}) = \sigma(\boldsymbol{w} \cdot \boldsymbol{x}).$$

$$\frac{\partial}{\partial \boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = 0 \Rightarrow \sum_{n=1}^{N} (t_n - \sigma(\boldsymbol{w} \cdot \boldsymbol{x})) \boldsymbol{x} = \boldsymbol{0}$$

Gradient Descent

Putting all together (plugging the update into gradient descent):

$$\mathcal{L}(w) := \log \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}$$

Stochastic gradient descent for logistic regression:

- Initialise the parameters to zero
- Do the following until $|\mathcal{L}(\boldsymbol{w}^{(\tau+1)}) \mathcal{L}(\boldsymbol{w}^{(\tau)})| < \epsilon$
 - For each training data point (\mathbf{x}_n, t_n) , update \mathbf{w} :

$${m w}^{(au+1)} := {m w}^{(au)} - \eta^{(au)} (y_n - t_n) {m x}_n$$

where $(y_n - t_n) \boldsymbol{x}_n$ is the gradient of the error function

Logistic Regression Wrap-up (compared with probabilistic generative models)

- Quick to train
- Fast at classification
- Good accuracy for many simple data sets
- Resistant to overfitting
- Model parameters can be thought as indicators of feature importance

Tutorial (Week 6)

- Bayesian classifier
- Logistic regression

