DATA ANALYTICS LECTURE NO: 05

Experiment, Trial, Elementary Event, Event

- **Experiment**: A process that produces outcomes
 - More than one possible outcome
 - Only one outcome per trial.
- **Trial**: One repetition of the process.
- Elementary Event: cannot be decomposed or broken down into other events.
- **Event**: an outcome of an experiment
 - May be an elementary event, or
 - May be an aggregate of elementary events.
 - Usually represented by an uppercase letter e.g., A, E1 etc

An example experiment

- Experiment: randomly select, without replacement, two families from the residents of a town.
- Elementary event: The sample includes families A and C
- Event: Each family in the sample has children in the household
- Event: The sample families own a total of four automobiles.

Tiny Town Population				
Family Children in Household Number of Automobiles				
A B C D	Yes Yes No Yes	3 2 1 2		

Sample Space

- The set of all elementary events for an experiment
- Methods for describing a sample space
 - Roster or listing
 - Tree diagram
 - Set builder notation
 - Venn diagram

Sample Space: Roster example

- **Experiment**: randomly select, without replacement, two families from the resident of a tiny town.
- Each ordered pair in the sample space is an elementary event, for example (D,C)

Family	Children in Household	Number of Automobiles
Α	Yes	3
В	Yes	2
C	No	1
D	Yes	2

Listing of Sample Space	e
(A,B), (A,C), (A,D),	
(B,A), (B,C), (B,D),	
(C,A), (C,B), (C,D),	
(D,A), (D,B), (D,C)	

Sample Space: Tree diagram for random sample of two families.

Sample Space: Set notation for randomly sample of two families

- $S = \{(x,y)\} \mid x \text{ is the family selected on the first draw, and y is the family selected on the second draw.}$
- Concise description of large sample spaces.

Sample Space

Useful for discussion of general principles and concepts.

Mutually Exclusive Events

- Events with no common outcomes.
- Occurrence of one event precludes the occurrence of the other event

$$X = \{ 1, 7, 8 \}$$

 $Y = \{ 2, 4, 5, 9, 6 \}$
 $X \cap Y = \{ \}$

$$P(X \cap Y) = 0$$

Independent Events

- Occurrence of one event does not affect the occurrence or non-occurrence of the other event.
- The condition probability of X given Y is equal to the marginal probability of X.
- The condition probability of Y given X is equal to the marginal probability of Y.

$$P(X|Y) = P(X)$$
 and $P(Y|X) = P(Y)$

Collectively Exhaustive Events

Contains all elementary events for an experiment.

Complementary Events

All elementary events not in the event A are in its complementary events.

Counting the possibilities

- mn Rule
- Sampling from a population with replacement
- Combinations: Sampling from a population without replacement

mn Rule

- If an operation can be done m ways and a second operation can be done n ways, then three are mn ways for the two operations to occur in order.
- This rule is easily extend to the k stages, with a number of ways equal to

$$\circ$$
 $n_1.n_2.n_3...$ n_k

Example: Toss two coins. The total number of sample events is 2 x 2 = 4

Sampling from a population with replacement

- A tray contains 1000 individual tax returns. If 3 returns are randomly selected with replacement from the tray, how many possible samples are there?
- $(N)^n = (1000)^3 = 1,000,000,000$

Combinations

 A tray contains 1000 individual tax returns. If 3 returns are randomly selected without replacement from the tray, how many possible samples are there?

$$\left(\frac{N}{n}\right) = \frac{N!}{n!(N-n)!} = \frac{1000!}{3!(1000-3)!} = 166,167,000$$

Four types of probability

Marginal	Union	Joint	Conditional
P(X)	$P(X \cup Y)$	$P(X \cap Y)$	P(X Y)
The probability of X occurring	The probability of X or Y occurring	The probability of X and Y occurring	The probability of X occurring given that Y has occurred
X			V

General law of Addition

$$P(XUY) = P(X)+P(Y) - P(X \cap Y)$$

Design for improving productivity?

Problem

- A company conducted a survey for the American Society of Interior designers in which workers were asked which changes in office design would increase productivity.
- Respondents were allowed to answer more than one type of design change.

Reducing noise would increase productivity	70%
More storage space would increase productivity	67%
Both	56%

Problem

- If one of the survey respondents was randomly selected and asked what office design changes would increase worker productivity.
 - What is the probability that this person would select reduction noise or more storage space?

Solution

- Let N represent the event "reducing noise".
- Let S represent the event "more storage/filling space".
- The probability of a person responding with N or S can be symbolized statistically as a union probability by using the law of addition.

P(NUS)

Solution

$$P(NUS) = P(N) + P(S) - P(N \cap S)$$

$$P(N) = .70$$

 $P(S) = .67$
 $P(N \cap S) = .56$
 $P(N \cup S) = .70 + .67 - .56$
 $= 0.81$

Office design problem: Probability Matrix

Increase Storage Space

Noise Reduction

	Yes	No	Total
Yes	0.56	0.14	0.70
No	0.11	0.19	0.30
Total	0.67	0.33	1.00

Joint Probability using a contingency Table

Law of Conditional probability

$$P(N) = .70$$

$$P(N \cap S) = .56$$

$$P(S|N) = \frac{P(N \cap S)}{P(N)}$$

$$= \frac{.56}{.70}$$

$$= .80$$

Office design problem

Increase Storage Space

Noise Reduction

	Yes	No	Total
Yes	0.56	0.14	0.70
No	0.11	0.19	0.30
Total	0.67	0.33	1.00

$$P(\overline{N}|S) = \frac{P(\overline{N} \cap S)}{P(S)} = \frac{0.11}{0.67}$$
$$= 0.164$$

Problem

- A company data reveal that 155 employees worked one of four types of positions.
- Shown here again is the raw values matrix (also called a contingency table)
 with the frequency counts for each category
- Subtotals and totals containing a breakdown of these employees by type of position and by gender.

Contingency Table

COMPANY HUMAN RESOURCE DATA Gender

Type of Position

	Male	Female	Total
Managerial	8	3	11
Professional	31	13	44
Technical	52	17	69
Clerical	9	22	31
Total	100	55	155

Solution

 If an employee of the company is selected randomly, what is the probability that the employee is female or a professional worker?

$$P(FUP_{w}) = P(F) + P(P_{w}) - P(F \cap P_{w})$$

$$P(FUP_w) = 0.355 + 0.284 - 0.084 = 0.555$$

Problem

- Shown here are the raw values matrix and corresponding probability matrix for the results of a national survey of 200 executives who were asked to identify the geographic location of their company and their company's industry type.
- The executives were only allowed to select one location and one industry type

Raw Values Matrix

Geographic Location

Industry Type

	Northeast D	Southeast E	Midwest F	West G	Total
Finance A	24	10	8	14	56
Manufacturing B	30	6	22	12	70
Communication C	28	18	12	16	74
Total	82	18	42	42	200

Questions

- What is the probability that the respondent is from the Midwest (F)?
- 2. What is the probability that the respondent is from the communications industry (C) or from the Northeast (D)?
- 3. What is the probability that the respondent is from the southeast (E) or from the finance industry (A)?

Probability Matrix

Geographic Location

Industry Type

	Northeast D	Southeast E	Midwest F	West G	Total
Finance A	0.12	0.05	0.04	0.07	0.28
Manufacturing B	0.15	0.03	0.11	0.06	0.35
Communication C	0.14	0.09	0.06	0.08	0.37
Total	0.41	0.17	0.21	0.21	1.00

Mutually Exclusive Events

COMPANY HUMAN RESOURCE DATA

Gender

Type of Position

	Male	Female	Total
Managerial	8	3	11
Professional	31	13	44
Technical	52	17	69
Clerical	9	22	31
Total	100	55	155

Law of Multiplication

• What will happen if event X and Y are independent event?

$$P(X\cap Y) = P(X).P(Y|X) = P(Y).P(X|Y)$$

- A company has 140 employees, of which 30 are supervisors.
- Eighty of the employees are married, and 20% of the married employees are supervisors.
- If a company employee is randomly selected, what is the probability that the employee is married and is a supervisor?

		Married		
		Yes	No	Subtotal
Supervisor	Yes	0.1143		30
	No			110
	Subtotal	80	60	140

$$P(M) = 80/140 = 0.5714$$

 $P(S|M) = 0.20$
 $P(M\cap S) = P(M). P(S|M)$
 $= (0.5714)(0.20) = 0.1143$

Special law of multiplication for independent Events

General Law:

$$P(X \cap Y) = P(X).P(Y|X) = P(Y).P(X|Y)$$

Special Law:

If events X and Y are independent, P(X) = P(X|Y), and P(Y) = P(Y|X)Consequently, $P(X \cap Y) = P(X).P(Y)$

Law of Conditional Probability

The conditional probability of X given Y is the joint probability of X and Y divided by the marginal probability of Y.

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)} = \frac{P(Y|X) . P(X)}{P(Y)}$$

Conditional Probability

 A conditional probability is the probability of one event, given that another event has occurred:

Where P(A and B) = joint probability of A and B

P(A) = marginal probability of A

P(B) = marginal probability of B

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD Player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC?
- We want to find P(CD | AC).

Probability Matrix

	CD	No CD	Total
AC	0.2	0.5	0.7
No AC	0.2	0.1	0.3
Total	0.4	0.6	1.0

$$P(CD \mid AC) = \frac{P(CD \text{ and } AC)}{P(AC)} = \frac{2}{7} = 0.2857$$

Solution: Decision Tree

Independent Events

- If X and Y are independent events, the occurrence of Y doesn't affect the probability of X occurring.
- If X and Y are independent events, the occurrence of X doesn't affect the probability of Y occurring.

If X and Y are independent events P(X|Y) = P(X), and P(Y|X) = P(Y)

Statistical Independence

Two events are independent if and only if:

$$\circ P(A|B) = P(A)$$

• Events A and B are independent when the probability of one event is not affected by the other event.

Independent Events Demonstration

Geographic Location

Industry Type

	Northeast D	Southeast E	Midwest F	West G	Total
Finance A	0.12	0.05	0.04	0.07	0.28
Manufacturing B	0.15	0.03	0.11	0.06	0.35
Communication C	0.14	0.09	0.06	0.08	0.37
Total	0.41	0.17	0.21	0.21	1.00

Test the matrix for the 200 executive responses to determine whether industry type is independent of geographic location.

Cont'd

$$P(A|G) = \frac{P(A \cap G)}{P(G)} = \frac{0.07}{0.21} = 0.33$$

$$P(A|G) = 0.33$$

Where as
$$P(A) = 0.28$$

Hence
$$P(A|G) \neq P(A) = 0.28$$

Revision of Probabilities: Bayes Rule

- An extension to the conditional law of probabilities.
- Enables revision of original probabilities with new information.

$$P(X_1|Y) = \frac{P(Y|X_1)P(X_1)}{P(Y|X_1)P(X_1) + P(Y|X_2)P(X_2) + \ldots + P(Y|X_n)P(X_n)}$$

- A particular type of printer ribbon is produced by only two companies, company A and company B.
- Suppose A produces 65% of the ribbons and B produces 35%.
- 8% of the ribbons produced by A are defective and 12% of the B ribbons are defective.
- A customer purchases a new ribbon. What is the probability that A produced the ribbon? What is the probability that B produced the ribbon?

Solution

$$P(A) = 0.65$$

$$P(B) = 0.35$$

$$P(def|A) = 0.08$$

$$P(def|B) = 0.12$$

$$P(A|def) = \frac{P(def|A) P(A)}{P(def|A) P(A) + P(def|B) P(B)}$$

$$= \frac{(0.08(0.65))}{(0.08(0.65)) + (0.12(0.35))} = 0.553$$

$$P(B|def) = \frac{P(def|B) P(B)}{P(def|A) P(A) + P(def|B) P(B)}$$

$$= \frac{(0.12(0.35))}{(0.08(0.65)) + (0.12(0.35))} = 0.447$$

Ribbon Problem with Bayes' Rule

Event	Prior probability P(E _i)	Conditional Probability P(def E _i)	Joint Probability P(E∩def)	Revised Probability P(E _i def)
Company A	0.65	0.08	0.052	0.052/0.094=0.553
Company B	0.35	0.12	0.042	0.042/0.094=0.447

- Machines A, B, and C all produce the same two parts, X and Y. Of all the parts produced, machine A produces 60%, machine B produces 30%, and machine C produces 10%. In addition
 - 40% of the parts made by the machine A are part X.
 - 50% of the parts made by machine B are part X.
 - 70% of the parts made by machine C are part X.
- A part produced by this company is randomly sampled and is determined to be an X part.
- With the knowledge that it is an X part, revise the probabilities that the part came from machine A, B or C.

Solution

Event	Prior P(E _i)	Condition $P(X E_i)$	Joint prob; P(X∩E _i)	Posterior
А	0.60	0.40	(0.60)(0.40)=0.24	0.24/0/46=0.52
В	0.30	0.50	0.15	0.15/0.46=0.33
С	0.10	0.70	0.07	0.07/0.46=0.15
			P(X) = 0.46	