EE387 – BASIC SIGNAL REPRESENTATION AND CONVOLUTION

LIYANAGE D.P. E/15/202 SEMESTER 06

PART 1: Basic Signal Representation in MATLAB

1. Write a Matlab program and necessary functions to generate the following signal:

$$y(t) = r(t+3) - 2r(t+1) + 3r(t) - u(t-3)$$

Then plot it and verify analytically that the obtained figure is correct.

```
clear all;
Ts=0.01;
t = -5:Ts:5;
y1 = ramp(t, 3, 3);
y2 = ramp(t, -6, 1);
y3 = ramp(t, 3, 0);
y4 = ustep(t, -3);
y = y1-2*y2+3*y3-y4;
plot(t,y,'k');
axis([-5 5 -1 7]);
grid
function y = ramp(t, m, ad)
% t: length of time
% m: slope of the ramp function
% ad: advance (positive), delay (negative) factor
% Write your code
for k = 1: length(t)
   x = t+ad;
   if x(k) >= 0
       y(k) = x(k) *m;
    else
       y(k) = 0;
   end
end
function y = ustep(t,ad)
% Write your code
for k = 1:length(t)
    x = t+ad;
    if x(k) >= 0
       y(k) = 1;
    else
       y(k) = 0;
    end
end
```


2. For the damped sinusoidal signal $x(t) = 3e^{-t}\cos(4\pi t)$ write a MATLAB program to generate x(t) and its envelope, then plot.

```
function [y,yup,ylo] = dampsig(t)

y = 3.*exp(-t).*cos(4.*pi.*t);
yup = 3*exp(-t);
ylo = -3*exp(-t);
end

Ts=0.01; t= -5:Ts:5;
[y,yup,ylo] = dampsig(t)
plot(t,y)
hold on
plot(t,yup,'r')
plot(t,ylo,'g')
```


PART 2: Time-Domain Convolution

Creating a rectangular pulse in MATLAB

```
function x = rect(t)
    for k = 1: length(t)
        if t(k) >= -0.5 \&\& t(k) < 0.5
            x(k) = 1;
        else
            x(k) = 0;
        end
    end
end
f s = 100
T s = 1/f s
t = [-5:T s:5]
x1 = rect(t)
plot(t, x1)
hold
axis([-2 2 -1 2]);
xlabel( 'time (sec)' ) ;
ylabel( 'x 1(t)' );
title ('Plot 1: A rectangular pulse');
```


Elementary signal operations x2 = rect(t-1);plot(t, x2);axis([-2 2 -1 2]);0.5 -0.5 -0.5 x3 = rect(t/2);plot(t, x3);axis([-2 2 -1 2]);1.5 0.5 -0.5 -0.5 x4 = rect(t) + 0.5*rect(t-1);x5 = rect(-t) + 0.5 * rect(-t-1);x6 = rect(1-t) + 0.5*rect(-t);subplot(3,2,1)plot(t, x1)axis([-2 2 -1 2]);

```
xlabel( 'time (sec)' )
ylabel('x_1(t) = rect(t)')
subplot(3,2,3)
plot(t, x2)
axis([-2 2 -1 2]);
xlabel( 'time (sec)' )
ylabel('x 2(t) = x 1(t-1)')
subplot(3,2,5)
plot(t, x3)
axis( [-2 2 -1 2]);
xlabel( 'time (sec)' )
ylabel('x 3(t) = rect(t/2)')
subplot(3,2,2)
plot(t, x4)
axis([-2 2 -1 2]);
xlabel( 'time (sec)' )
ylabel('x 4(t) = rect(t) + (1/2) rect(t-1)')
subplot(3,2,4)
plot(t, x5)
axis([-2 2 -1 2]);
xlabel( 'time (sec)' )
ylabel('x 5(t) = x 4(-t)')
subplot(3,2,6)
plot(t, x6)
axis([-2 2 -1 2]);
xlabel( 'time (sec)' )
ylabel('x_2(t) = x 4(1-t)')
```


Convolution

```
t_y = -10:T_s:10;
plot( t_y, y)
```



```
y1 = T_s*conv(x1,x1);
plot(t_y, y1);
axis([-2 2 -1 2]);
xlabel('time (sec)');
ylabel('y_1(t)');
title('Figure : y_1(t) = x_1(t)*x_1(t)');
```


Exercises

```
1) a)
       subplot(2,2,1)
       xn = [1, 2, 4]
       n = 0:2
       stem(n,xn)
       axis([-2 4 -1 5]);
       xlabel( 'n');
       ylabel('Figure : x(n)');grid
       subplot(2,2,2)
       hn = [1, 1, 1, 1, 1]
       n = 0:4
       stem(n,hn)
       axis([-2 5 -1 6]);
       xlabel( 'n');
       ylabel('Figure : h(n)');grid
       subplot(2,2,3)
       yn = conv(xn, hn);
       length(yn) = 7
       n = 0:6
       stem(n,yn)
       axis([-2 7 -1 8]);
       xlabel( 'n');
       ylabel('Figure : y(n) = x(n)*h(n)');grid
```



```
b) subplot(2,2,1)
    xn = [1,2,3,4,5]
    n = 0:4
    stem(n,xn)
    axis([-1 5 0 6]);
    xlabel('n');
```

```
ylabel('Figure : x(n)');
subplot(2,2,2)
hn = [1]
n = 0
stem(n,hn)
axis([-1 1 0 2]);
xlabel( 'n');
ylabel('Figure : h(n)');
subplot(2,2,3)
yn = conv(xn, hn);
length(yn) = 5
n = 0:4
stem(n,yn)
axis([-1 5 0 6]);
xlabel( 'n');
ylabel('Figure : y(n) = x(n)*h(n)');
```



```
subplot(2,2,1)
xn = [1,2,0,2,1]
n = 0:4
stem(n,xn)
axis([-1 5 0 3]);
grid
xlabel('n');
ylabel('Figure : x(n)');

subplot(2,2,2)
hn = [1,2,0,2,1]
n = 0:4
stem(n,hn)
```

```
axis( [-1 5 0 3]);
grid
xlabel( 'n');
ylabel('Figure : h(n)');

subplot(2,2,3)
yn = conv(xn,hn);
length(yn) = 9
n = 0:8
stem(n,yn)
axis( [-1 9 0 11]);
grid
xlabel( 'n');
ylabel('Figure : y(n) = x(n)*h(n)');
```


	2)																			
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12
								1	0.5	0.25	0.125									
x9	x8	х7	х6	x5	x4	х3	x2	x1												
	x9	x8	х7	х6	х5	x4	х3	x2	x1											
		х9	x8	х7	х6	х5	x4	х3	x2	x1										
			х9	x8	х7	х6	х5	x4	х3	x2	x1									
				х9	x8	х7	х6	х5	x4	х3	x2	x1								
					x9	x8	x7	х6	х5	x4	х3	x2	x1							
						x9	x8	x7	х6	х5	x4	х3	x2	x1						
							х9	x8	х7	х6	x5	x4	х3	x2	x1					
								x9	x8	х7	х6	х5	x4	х3	x2	x1				
									х9	x8	x7	х6	х5	x4	х3	x2	x1			
										х9	x8	x7	х6	х5	x4	х3	x2	x1		
											x9	x8	x7	х6	х5	x4	х3	x2	x1	
												x9	x8	x7	х6	x5	x4	х3	x2	x1

$$y[0] = 1 = 1 * x1$$

 $x1 = 1$

```
y[1] = 2 = 1*x2 + 0.5*x1
x2 = 1.5
y[2] = 2.5 = 1*x3 + 0.5*x2 + 0.25*x1
x3 = 1.5
y[3] = 3 = 1*x4 + 0.5*x3 + 0.25*x2 + 0.125*x1
x4 = 1.75
y[4] = 3 = 1*x5 + 0.5*x4 + 0.25*x3 + 0.125*x2
x5 = 1.5625
y[5] = 3 = 1*x6 + 0.5*x5 + 0.25*x4 + 0.125*x3
x6 = 1.59375
y[6] = 2 = 1*x7 + 0.5*x6 + 0.25*x5 + 0.125*x4
x7 = 0.59375
y[7] = 1 = 1*x8 + 0.5*x7 + 0.25*x6 + 0.125*x5
x8 = 0.109375
y[8] = 0 = 1*x9 + 0.5*x8 + 0.25*x7 + 0.125*x6
x9 = -0.40234375
function [x] = hyt(n)
   for k = 1: length(n)
       if n(k) >= 0 && n(k) < 4
          x(k) = (0.5).^n(k);
       else
          x(k) = 0;
       end
   end
end
subplot(2,2,1)
xn = [1,1.5,1.5,1.75,1.5625,1.59375,0.59375,0.109375,-0.40234375]
n = 0:8
stem(n, xn)
xlabel( 'n');
ylabel('Figure : x(n)');
axis([-1 9 -1 2]);
subplot(2,2,2)
n = 0:3;
hn = hyt(n)
stem(n,hn)
xlabel( 'n');
ylabel('Figure : h(n)');
axis([-1 4 -1 2]);
subplot(2,2,3)
yn = [1, 2, 2.5, 3, 3, 3, 2, 1, 0]
n = 0:8
stem(n,yn)
xlabel( 'n');
ylabel('Figure : y(n) = x(n)*h(n)');
```

