INTRODUÇÃO À PROGRAMAÇÃO

Prof.^a Priscilla Abreu

priscilla.braz@rj.senac.br

Roteiro de Aula

- Objetivo da aula
- Vetores unidimensionais

Objetivo da aula

Compreender o funcionamento e manipulação de vetores.

INTRODUÇÃO

Tipos de dados compõem uma área essencial no contexto de algoritmos e também de estrutura de dados.

QUAIS TIPOS DE DADOS VOCÊS JÁ CONHECEM?

COMO ESSES TIPOS DE DADOS PODEM SER DEFINIDOS E UTILIZADOS?

INTRODUÇÃO

Tipos de dados

Primitivos: a partir dos quais podemos definir os demais

Compostos: constituídos de dados primitivos e/ou estruturas agrupados.

- Tipos primitivos
 - inteiro, real, lógico (boolean), caracter
- Tipos compostos
 - Conjunto de informações agrupadas de uma forma coerente (com alguma relação entre elas)
 - Ex.: lista de chamada da turma.

Para cada variável de tipo primitivo, armazenamos um valor por vez!!!

INTRODUÇÃO

- Exemplos:
 - Tipos primitivos:
 - int idade;
 - float altura;
 - Tipos compostos:
 - float notas[50];
 - aluno alunos[50];

Nome

Matricula

Nota1

Nota2

Endereço

PARA PENSAR...

Considere a seguinte situação:

Suponha que você precise fazer um programa para cadastrar as notas de 20 alunos de uma determinada turma, calcular a média da turma e contabilizar quantos alunos tiveram nota acima da média da turma. Como você resolveria essa situação?"

PENSANDO...

Quantidade de notas a serem lidas: 20

Preciso de 20 variáveis? float nota1, nota2, ..., nota20 ????

Uma só variável para leitura de notas? float nota

Outra forma?

PENSANDO...

Uso de vetores!

O que são vetores???

VETOR

- É uma coleção de variáveis do mesmo tipo, referenciada por um nome comum;
- Um elemento específico é acessado através de um índice;
- São também denominados de tipos estruturados homogêneos unidimensionais.

VETOR

Declaração de um vetor em C:

Análise e Desenvolvimento de Sistemas 2021.2

VETOR

Quantidade de posições de memória para essa variável

- float vetNotas[50];
- Na declaração de vetor, o que está entre colchetes deve ser um número constante.

Assim, não é correto fazer algo como:

- int n = 20;
- float x[n]; /* não é permitido declarar colocando uma variável */

VOLTANDO À SITUAÇÃO...

Solução para o problema das múltiplas variáveis de mesmo tipo: um vetor.

Através da posição acessamos cada elemento do vetor.

VOLTANDO À SITUAÇÃO...

Solução para o problema das múltiplas variáveis de mesmo tipo: um vetor.

VOLTANDO À SITUAÇÃO...

Que outras variáveis serão necessárias?

- Variável para percorrer o vetor e acessar cada posição;
- Quantidade de notas acima da média;
- Média.

```
int i, qtde; float media;
```


SOLUÇÃO PARCIAL...

```
#include <stdio.h>
int main(){
    int i, qtde;
    float notas[20],media;
    media = 0;
    qtde = 0;
    ...
}
```

Teremos uma variável chamada notas, que terá 20 posições na memória. Isto é, 20 notas poderão ser armazenadas.

Precisamos fazer a leitura das notas...

Como armazenar em um vetor???

ACESSANDO UM ELEMENTO...

Coloca-se o nome da variável e entre [] coloca-se o índice, que indica a posição do elemento.

O índice é uma constante inteira, uma variável inteira ou um cálculo que resulte em valor inteiro.

Exemplos:

- notas[1] = 10;
- vetor[5] = 30.4;
- i = 0;
- notas[i] = 7.5;

ACESSANDO VÁRIOS ELEMENTOS...

Cada vetor tem um único nome de variável, o que modifica é apenas a posição de cada elemento no vetor.

USO DE ESTRUTURA DE REPETIÇÃO!!!

ACESSANDO VÁRIOS ELEMENTOS...

9.5	10	8	9.4	3.5	2.9	7	8	6.8	10
notas[0]	notas[1]	notas[2]	notas[3]	notas[4]	notas[5]	notas[6]	notas[7]	notas[8]	notas[9]

VARIAÇÃO

índice

As posições seguem a sequência de 0...19

ACESSANDO VÁRIOS ELEMENTOS...

9.5	10	8	9.4	3.5	2.9	7	8	6.8	10
notas[0]	notas[1]	notas[2]	notas[3]	notas[4]	notas[5]	notas[6]	notas[7]	notas[8]	notas[9]

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
    \
```


ACESSANDO VÁRIOS ELEMENTOS...

0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i );
    scanf("%f", &notas[i]);
}</pre>
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 0

5.8									
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Introdu
Informe a nota 1: 5.8_
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 1

5.8	9.2								
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1'

Informe a nota 1: 5.8

Informe a nota 2: 9.2
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 2

5.8	9.2	10							
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Int
Informe a nota 1: 5.8
Informe a nota 2: 9.2
Informe a nota 3: 10
```


ACESSANDO VÁRIOS ELEMENTOS...

$$i = 3$$

5.8	9.2	10	8.5						
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Introde
Informe a nota 1: 5.8
Informe a nota 2: 9.2
Informe a nota 3: 10
Informe a nota 4: 8.5
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 4

5.8	9.2	10	8.5	7.0					
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Introc
Informe a nota 1: 5.8
Informe a nota 2: 9.2
Informe a nota 3: 10
Informe a nota 4: 8.5
Informe a nota 5: 7.0
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 5

,	5.8	9.2	10	8.5	7.0	10				
	0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Introdup
Informe a nota 1: 5.8
Informe a nota 2: 9.2
Informe a nota 3: 10
Informe a nota 4: 8.5
Informe a nota 5: 7.0
Informe a nota 6: 10_
```


ACESSANDO VÁRIOS ELEMENTOS...

$$i = 6$$

5.8	9.2	10	8.5	7.0	10	7.7			
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
Informe a nota 1: 5.8
Informe a nota 2: 9.2
Informe a nota 3: 10
Informe a nota 4: 8.5
Informe a nota 5: 7.0
Informe a nota 6: 10
Informe a nota 7: 7.7
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 7

5.8	9.2	10	8.5	7.0	10	7.7	8.0		
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Introd
Informe a nota 1: 5.8
Informe a nota 2: 9.2
Informe a nota 3: 10
Informe a nota 4: 8.5
Informe a nota 5: 7.0
Informe a nota 6: 10
Informe a nota 7: 7.7
Informe a nota 8: 8.0
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 8

5.8	9.2	10	8.5	7.0	10	7.7	8.0	4.6	
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\Introd

Informe a nota 1: 5.8

Informe a nota 2: 9.2

Informe a nota 3: 10

Informe a nota 4: 8.5

Informe a nota 5: 7.0

Informe a nota 6: 10

Informe a nota 7: 7.7

Informe a nota 8: 8.0

Informe a nota 9: 4.6
```


ACESSANDO VÁRIOS ELEMENTOS...

$$i = 9$$

5.8	9.2	10	8.5	7.0	10	7.7	8.0	4.6	9.0
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\I

Informe a nota 1: 5.8

Informe a nota 2: 9.2

Informe a nota 3: 10

Informe a nota 4: 8.5

Informe a nota 5: 7.0

Informe a nota 6: 10

Informe a nota 7: 7.7

Informe a nota 8: 8.0

Informe a nota 9: 4.6

Informe a nota 10: 9.0
```


ACESSANDO VÁRIOS ELEMENTOS...

i = 10

Fim da repetição!!!

5.8	9.2	10	8.5	7.0	10	7.7	8.0	4.6	9.0
0	1	2	3	4	5	6	7	8	9

```
for (i=0; i<=9; i++){
    printf("Informe a nota %d:", i+1 );
    scanf("%f", &notas[i]);
}</pre>
```

```
C:\Users\prisc\OneDrive\SENAC\2020.1\IntrodupÒo Ó Programap

Informe a nota 1: 5.8

Informe a nota 2: 9.2

Informe a nota 3: 10

Informe a nota 4: 8.5

Informe a nota 5: 7.0

Informe a nota 6: 10

Informe a nota 7: 7.7

Informe a nota 8: 8.0

Informe a nota 9: 4.6

Informe a nota 10: 9.0

Process exited after 1284 seconds with return value 0

Pressione qualquer tecla para continuar. . . _
```


SOLUÇÃO...

```
#include <stdio.h>
int main(){
    int i, qtde;
    float notas[20],media;
    media = 0;
    qtde = 0;
...
```


SOLUÇÃO...

```
for(i=0;i<20;i++){
    printf("Informe uma nota: ");
    scanf("%f",&notas[i]);
    media = media + notas[i];
}
media = media /20;</pre>
```

Faz a leitura de cada nota e soma na variável media.

Após a leitura de todas as notas, calcula a media.

SOLUÇÃO...

Faz a contagem de quantas notas ficaram acima da média.

EXEMPLO

Faça um programa que leia 20 números inteiros e após a leitura imprima os números informados.

EXEMPLO

```
#include <stdio.h>
#define max 5
int main(){
  int valores[max];
  int i;
  for (i=0;i<max;i++){
     printf("Digite um número:");
     scanf("%d",&valores[i]);
  for (i=0;i<max;i++){
     printf("Valor[%d]: %d \n",i,valores[i]);
```


EXEMPLO

Elabore um programa em C que leia 2 vetores com 5 valores inteiros cada e determine o vetor soma.

v1	2	5	3	10	15	
v2	8	3	7	4	3	
vSoma	10	8	10	14	18	

EXEMPLO

```
#include <stdio.h>
#define max 5
int main(){
   int v1[max], v2[max],vSoma[max];
   int i;
   printf("\nPrimeiro vetor\n");
   for (i=0;i<max;i++){
      printf("Digite um número:");
      scanf("%d",&v1[i]);
   }</pre>
```


EXEMPLO

```
printf("\nSegundo vetor\n");
for (i=0;i<max;i++){
  printf("Digite um número:");
  scanf("%d",&v2[i]);
//Vetor Soma
for(i=0; i<max; i++){
     vSoma[i] = v1[i] + v2[i];
     printf("%d\n",vSoma[i]);
```


VETORES

Vimos que podemos armazenar um conjunto de valores na memória do computador através do uso de vetores (arrays).

O vetor é uma forma simples de organizarmos dados na memória do computador.

Com vetores, os valores são armazenados na memória do computador em sequência, um após o outro, e podemos livremente acessar qualquer valor do conjunto.