Problem Statement:

A real estate agent want to help to predict the house price for regions in USA.He gave us the dataset to work on to use Linear Regression modelCreate a Model that helps him to estimate of what the house would sell for

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv("winequality.csv")
 df

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
	•••					•••					
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [4]: | df.head()

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4 (_	_	_	_	_	_	_	_	_		•

Data cleaning and Pre-Processing

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
16	alcohol	1599 non-null	float64
11	l quality	1599 non-null	int64
_			

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [6]: df.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.46779
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.89532
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.00000
4							

```
df.dropna(axis='columns')
In [7]:
Out[7]:
                                                             free
                                                                     total
                        volatile citric residual
                                                chlorides
                                                           sulfur
                                                                   sulfur
                                                                          density
                                                                                    pH sulphates alcol
                 acidity
                         acidity
                                 acid
                                         sugar
                                                          dioxide
                                                                  dioxide
              0
                          0.700
                                 0.00
                                                                     34.0 0.99780 3.51
                    7.4
                                           1.9
                                                   0.076
                                                             11.0
                                                                                             0.56
                          0.880
                                 0.00
                                                   0.098
                                                             25.0
                                                                     67.0 0.99680 3.20
                                                                                             0.68
              1
                    7.8
                                           2.6
              2
                          0.760
                                 0.04
                                                   0.092
                                                             15.0
                                                                     54.0 0.99700 3.26
                                                                                             0.65
                    7.8
                                           2.3
              3
                   11.2
                          0.280
                                 0.56
                                           1.9
                                                   0.075
                                                             17.0
                                                                     60.0
                                                                          0.99800
                                                                                   3.16
                                                                                             0.58
              4
                    7.4
                          0.700
                                 0.00
                                           1.9
                                                   0.076
                                                             11.0
                                                                     34.0
                                                                          0.99780 3.51
                                                                                             0.56
             ...
                     ...
                             ...
                                            ...
                                                                                               ...
                    6.2
                          0.600
                                                   0.090
                                                                     44.0 0.99490 3.45
           1594
                                 0.08
                                           2.0
                                                             32.0
                                                                                             0.58
                                                                                                      1
           1595
                          0.550
                                                             39.0
                                                                     51.0 0.99512 3.52
                                                                                             0.76
                    5.9
                                 0.10
                                           2.2
                                                   0.062
                                                                                                      1
           1596
                    6.3
                          0.510
                                 0.13
                                           2.3
                                                   0.076
                                                             29.0
                                                                     40.0 0.99574 3.42
                                                                                             0.75
           1597
                    5.9
                          0.645
                                 0.12
                                           2.0
                                                   0.075
                                                             32.0
                                                                     44.0 0.99547 3.57
                                                                                             0.71
                                                                                                      1
           1598
                                                   0.067
                                                             18.0
                                                                     42.0 0.99549 3.39
                                                                                             0.66
                    6.0
                          0.310
                                 0.47
                                           3.6
                                                                                                      1
          1599 rows × 12 columns
         a = df.dropna(axis='columns')
In [8]:
          a.columns
'pH', 'sulphates', 'alcohol', 'quality'],
                 dtype='object')
In [9]: | df.columns
Out[9]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
                  'pH', 'sulphates', 'alcohol', 'quality'],
                 dtype='object')
```

EDA and VISUALIZATION

In [10]: sns.pairplot(df)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1d3d2b57b20>


```
In [11]: | sns.distplot(df['density'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='density', ylabel='Density'>

Plot Using Heat Map

```
In [13]: sns.heatmap(df1.corr())
Out[13]: <AxesSubplot:>
```


To Train The Model-Model Building

we are going to train Linera Regression Model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output) we could ignore address column as it required for our model

To Split my dataset into training and test data

```
In [20]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [21]: from sklearn.linear_model import LinearRegression
    lr= LinearRegression()
    lr.fit(x_train,y_train)
Out[21]: LinearRegression()
```

localhost:8888/notebooks/Linear Regression-winequality.ipynb

```
In [22]: lr.intercept_
Out[22]: 78.07581406695047

In [23]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
Out[23]: Co-efficient
```

	Co-efficient
fixed acidity	0.095666
volatile acidity	-1.002742
citric acid	-0.261561
residual sugar	0.051312
chlorides	-1.804997
free sulfur dioxide	0.004852
total sulfur dioxide	-0.003235
density	-75.724863
рН	-0.050751
sulphates	1.050029
alcohol	0.232803

```
In [24]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[24]: <matplotlib.collections.PathCollection at 0x1d3db538e50>


```
In [25]: lr.score(x_test,y_test)
```

Out[25]: 0.28802105194791683

ACURACY

```
In [26]: from sklearn.linear_model import Ridge,Lasso
In [27]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
         rr.score(x_train,y_train)
Out[27]: 0.37049292434774606
In [28]: rr.score(x_test,y_test)
Out[28]: 0.29628724440116716
In [29]: la = Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[29]: Lasso(alpha=10)
In [30]: la.score(x_test,y_test)
Out[30]: -0.00023154654113533013
In [31]: from sklearn.linear model import ElasticNet
         en = ElasticNet()
         en.fit(x_train,y_train)
Out[31]: ElasticNet()
In [32]:
         print(en.coef_)
                                                0.
                                                            -0.
                                                                         0.00156272
         [ 0.
                       -0.
                                    0.
           -0.00489567 -0.
                                   -0.
                                                0.
                                                             0.
                                                                       1
In [33]:
         print(en.intercept_)
         5.844068197708214
```

In [34]:
 print(en.predict(x_test))

```
[5.75553111 5.77511379 5.81938234 5.37481655 5.67825071 5.71480303
5.43200187 5.75553111 5.77001061 5.67991081 5.80115486 5.32075666
5.79625919 5.61314166 5.6918874 5.67032698 5.25784562 5.37127608
5.77001061 5.39450936 5.20951146 5.79469647 5.45210971 5.32700754
5.37752696 5.75688632 5.74417705 5.72240912 5.60626824 5.62699862
5.38607323 5.6877244 5.80938348 5.31429827 5.71335045 5.63022144
5.78334241 5.70574436 5.74022157 5.44137818 5.78334241 5.67866573
5.77292854 5.7698031 5.3939842 5.59033616 5.7419918 5.55491878
5.65407725 5.77001061 5.67991081 5.59178875 5.59064105 5.62699862
5.76667766 5.6785556 5.62991655 5.7964667 5.69282759 5.76824038
5.76375973 5.22263575 5.48054354 5.76532245 5.74240682 5.76490743
5.72907502 5.55314855 5.61960005 5.77136582 5.63699747 5.6332495
5.70928483 5.23649271 5.73865885 5.53887656 5.77844674 5.54023177
5.54981559 5.81448667 5.71886866 5.69480533 5.56043698 5.3728388
5.77355107 5.78823808 5.73105276 5.6785556 5.79625919 5.5976246
5.74730249 5.50971005 5.69595302 5.60231276 5.64262581 5.75063544
5.67991081 5.26639189 5.71261778 5.74886521 5.63272434 5.74042908
5.44565132 5.74532475 5.65897292 5.63272434 5.42512845 5.45137704
5.25117972 5.75334586 5.7964667 5.64251568 5.61408184 5.79313375
5.5286702 5.41075909 5.79959214 5.65908305 5.73105276 5.74553226
5.73574092 5.76375973 5.74886521 5.35732174 5.7698031 5.75396839
5.77532131 5.79490399 5.59960234 5.44211085 5.7341782 5.39784231
5.75573863 5.17327678 5.60512055 5.67751804 5.79469647 5.44137818
5.80625804 5.7686554 5.72532704 5.77313605 5.70949234 5.7964667
5.55825173 5.77844674 5.74396954 5.76042678 5.74355452 5.74824268
5.79313375 5.62991655 5.38961369 5.6440784 5.80292509 5.74886521
5.57783441 5.76042678 5.58638068 5.54846039 5.65533508 5.77844674
5.63387203 5.3225269 5.44804408 5.53221066 5.64387089 5.7553236
5.69793077 5.74157677 5.73220046 5.7686554 5.7631372 5.75313835
5.3939842
          5.73220046 5.35596654 5.76844789 5.75490858 5.69126487
5.7898008
           5.65064692 5.64522609 5.67480763 5.63897522 5.6543949
5.5250196 5.7075146 5.79136352 5.73261548 5.26117858 5.3063873
5.75042793 5.72261663 5.74334701 5.76469992 5.56804307 5.72709728
5.70772211 5.77823923 5.49200774 5.73886636 5.79469647 5.7208464
5.7063669 5.78823808 5.77021812 5.70282644 5.60523068 5.77355107
5.71126257 5.64564112 5.79469647 5.77313605 5.76490743 5.55085316
5.5976246 5.66012062 5.57376879 5.56085201 5.81604938 5.80115486
5.46856695 5.56960579 5.43200187 5.81448667 5.40710849 5.68928712
5.71751345 5.72553456 5.54397974 5.6096012 5.78334241 5.54648264
5.7341782 5.41981776 5.66439375 5.63887784 5.62054023 5.77157333
5.69928598 5.70595188 5.81115371 5.73907387 5.6652238 5.70792962
5.49346032 5.5606445 5.79313375 5.46721174 5.61647461 5.81115371
5.45387994 5.77490628 5.67053449 5.74001405 5.67397758 5.57523413
5.7141805 5.53085545 5.53680144 5.62814632 5.70261893 5.75709383
5.41200416 5.63543475 5.80469533 5.50888
                                            5.77844674 5.32877777
5.66637149 5.74532475 5.78823808 5.63251683 5.25159475 5.2429511
5.66876426 5.74396954 5.43335707 5.7831349 5.809591
5.58387777 5.54002425 5.48346147 5.36669806 5.54887541 5.77334356
5.7130328 5.3002338 5.6532472 5.61377695 5.77178084 5.73594843
5.64012291 5.66324605 5.28804969 5.70011602 5.69480533 5.68595417
5.64938909 5.67657786 5.27867338 5.79313375 5.72282414 5.48877216
5.76490743 5.74573977 5.63939024 5.66543131 5.73771866 5.42648366
5.76042678 5.43294205 5.76490743 5.74313949 5.79469647 5.72907502
5.38242263 5.81938234 5.59856478 5.67386744 5.4507545 5.80448781
5.80469533 5.79313375 5.7408441 5.78000946 5.64522609 5.70438916
5.60346045 5.35419631 5.62970903 5.75136811 5.44555394 5.79959214
5.62897636 5.72105391 5.7341782 5.78021698 5.73907387 5.72001635
```

```
Linear Regression-winequality - Jupyter Notebook
          5.63929286 5.70792962 5.71126257 5.77532131 5.62345816 5.74573977
          5.56429509 5.6718897 5.7408441 5.67324491 5.70376662 5.66012062
          5.66533393 5.72886751 5.76490743 5.55616385 5.68970215 5.70397413
          5.57356127 5.75886406 5.64324835 5.71792847 5.74907272 5.68834694
          5.79979966 5.64230817 5.63230931 5.27867338 5.6585579 5.70167874
          5.37867466 5.57376879 5.2972185 5.64991425 5.61116391 5.63658245
          5.69126487 5.72240912 5.72574207 5.54435246 5.29232283 5.4905424
          5.28430172 5.76355222 5.67772555 5.25221728 5.5645026 5.44471113
          5.67616283 5.41586227 5.56928814 5.4749152 5.34898299 5.68480648
          5.74157677 5.7196987 5.59252142 5.70574436 5.36961599 5.78490513
          5.80292509 5.77803172 5.78177969 5.75219816 5.42138048 5.76532245
          5.75199065 5.71105506 5.72730479 5.4599233 5.79469647 5.64481107
          5.77688402 5.76355222 5.75199065 5.79469647 5.18264034 5.5909587
          5.74553226 5.79490399 5.61897751 5.72553456 5.75001291 5.65189199
          5.66595647 5.77844674 5.75688632 5.80782076 5.65897292 5.55043813
          5.63543475 5.5606445 5.77511379 5.78823808 5.72771981 5.78823808
          5.81115371 5.67365993 5.60001737 5.73594843 5.61939254 5.77355107
          5.58095985 5.80625804 5.67501514 5.58689308 5.67574781 5.65522495
          5.71324031 5.75063544 5.65949808 5.37773447 5.67699288 5.65032928
          5.74219931 5.73594843 5.80469533 5.30367689 5.48148373 5.70501169
          5.66220849 5.58356013 5.589811
                                            5.67386744 5.7196987 5.72261663
          5.74553226 5.70595188 5.65251453 5.6507443 5.81115371 5.57075348
          5.73105276 5.7964667 5.63366452 5.76709268 5.80448781 4.48782153]
In [35]: print(en.score(x test,y test))
         0.01857441769029211
In [36]: # Evaluation Metrics
         from sklearn import metrics
In [37]: print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
         Mean Absolute Error: 0.5440139286687178
```

print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction)) In [38]:

Mean Squared Error: 0.5017195747690457

In [39]: print("Root Mean Squared Error:",np.sqrt(metrics.mean squared error(y test,pred

Root Mean Squared Error: 0.7083216605251076