# FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen

Aufgabenblatt 1: Formale Sprachen und Endliche Automaten

**Präsenzaufgabe 1.1:** Wir betrachten den Monoid  $(\Sigma^*, \cdot, \epsilon)$  mit  $\Sigma = \{a, b, c\}$ .

Betrachte die Teilmengen  $X, Y \subseteq \Sigma^*$  mit  $X = \{a, ab, \epsilon\}$  und  $Y = \{c, bc, ac\}$ .

1. Bestimmen Sie  $\Sigma^2$ .

**Lösung:** Die Notation ist nicht ganz eindeutig, da wir sie sowohl für das kartesische Produkt  $\Sigma \times \Sigma$  als auch für das Komplexprodukt  $\Sigma \cdot \Sigma$  verwenden.

Im Kontext eines Alphabetes  $\Sigma$  ist typischerweise das Komplexprodukt  $\Sigma \cdot \Sigma$  gemeint.

$$\Sigma \cdot \Sigma = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$$

Das kartesische Produkt ergibt sich zu  $\Sigma \times \Sigma = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ 

Wir erkennen, dass beide Produktmengen isomorph sind. Das dies nicht mehr gilt, wenn wir von Alphabeten zu beliebigen Mengen übergehen, zeigen die beiden folgenden Teilaufgaben.

2. Bestimmen Sie  $X \times Y$  und  $|X \times Y|$ .

**Lösung:** 
$$X \times Y = \{(a,c), (a,bc), (a,ac), (ab,c), (ab,bc), (ab,ac), (\epsilon,c), (\epsilon,bc), (\epsilon,ac)\}$$
  
 $|X \times Y| = |X| \cdot |Y| = 3 \cdot 3 = 9.$ 

3. Bestimmen Sie  $X \cdot Y$  und  $|X \cdot Y|$ .

**Lösung:**  $X \cdot Y = \{ac, abc, aac, \underline{abc}, abbc, abac, c, bc, \underline{ac}\} = \{ac, abc, aac, abbc, abac, c, bc\}$  Doppelte Einträge sind unterstrichen.

$$|X \cdot Y| = 7$$

4. Bestimmen Sie  $X^+$  und  $X^*$ .

**Lösung:** 
$$X^+ = \{w \mid w = a...a(ab)a...a(ab)a...a \cdots a...a(ab)a...a\} = (\{a\}^*\{ab\})^*\{a\}^* = \{a\}^*(\{ab\}\{a\}^*)^*\{a\}^*$$
  $X^+ = X^+ \cup \{\epsilon\} = X^*$ 

#### Präsenzaufgabe 1.2:

1. Geben Sie die formale Notation des folgenden DFA  $A_1$  an und bestimmen Sie  $L(A_1)$ .



**Lösung:**  $A_1 = (Q, \Sigma, \delta, z_0, F)$  mit  $Q = \{z_0, z_1, z_2\}$ ,  $\Sigma = \{a, b, c\}$ ,  $F = \{z_2\}$  und  $\delta : Q \times \Sigma \to Q$  ist definiert durch  $(z_0, a) \mapsto z_1$ ,  $(z_1, b) \mapsto z_2$  und  $(z_2, c) \mapsto z_1$  (für alle anderen Argumente ist  $\delta$  undefiniert).

Akzeptierte Sprache:

$$L(A_1) = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N} : w = ab(cb)^n \} = \{ab\}\{cb\}^*$$

2. Sei  $M_1 = \{w \in \{a, b\}^* \mid w \text{ beginnt mit } a \text{ und endet mit } b\}$ . Konstruieren Sie einen NFA A, so dass  $L(A) = M_1$  gilt.

**Lösung:** Der NFA  $A_3$  aus Teilaufgabe (4) akzeptiert diese Sprache.



3. Gegeben ist der folgende DFA  $A_2$ . Sei  $M_2 = \{10\}\{10\}^*$ . Beweisen Sie  $L(A_2) = M_2$ , indem Sie zwei Inklusionen beweisen.



**Lösung:** Für den Beweis sind zwei Inklusionen zu zeigen:  $L(A_2) \subseteq M_2$  und  $M_2 \subseteq L(A_2)$ .

- (a) Behauptung:  $L(A_2)\subseteq M_2$ , d.h. jedes Wort, das  $A_2$  akzeptiert, ist in  $M_2$ . Induktion über die Länge n=|w| des akzeptierten Wortes w.
  - Ind.Beginn für n=0: Da  $A_2$  kein Wort w der Länge 0 akzeptiert (der Start- ist kein Endzustand), ist nichts zu zeigen.
  - Ind.Annahme: Die Behauptng gelte für alle Worte  $|w| \leq n$ .
  - Ind.Schritt von n zu n+1: Wenn  $A_2$  das Wort w mit |w|=n+1 akzeptiert, dann endet das Wort in  $z_2$  und das letzte Zeichen war eine 0. Dann war das vorletzte Zeichen eine 1 und wir waren entweder im Startzustand  $z_0$  oder in  $z_2$ . Im ersten Fall war das Wort w=10 und dies ist in  $M_2$ ; im zweiten Fall haben wir ein Wort der Form w=w'10 und w' wurde akzeptiert.

Da  $|w'|=n-1\leq n$ , ist die Ind.Annahme anwendbar und w' ist in  $M_2$ , und dann ist auch w=w'10 in  $M_2$ .

Also gilt die Ind. Behauptung für alle n, d.h. für alle akzeptierten Worte.

- (b)  $M_2\subseteq L(A_2)$ , d.h. jedes Wort aus  $M_2$  führt in  $A_2$  in einen Endzustand. Sei  $w=(10)(10)^n$ . Nach dem Lesen von 10 befindet sich  $A_2$  im Endzustand  $z_2$ . Ein weiteres 10 führt von  $z_2$  wieder zu  $z_2$ . Also auch die n-fache Wiederholung. Also werden alle Worte aus  $M_2$  akzeptiert.
- 4. Konstruieren Sie den Potenzautomaten (nach dem 2. Verfahren, das nur die initial Zusammenhangskomponente erzeugt) zu folgenden NFA  $A_3$ .



**Lösung:** Die initiale Zusammenhangskomponente des Potenzautomaten ergibt sich wie folgt. Beachten Sie, dass der Potenzautomat stets vollständig ist.



# Übungsaufgabe 1.3: Sei $\Sigma$ ein Alphabet und $X,Y,Z\subseteq\Sigma^*$ beliebige Sprachen.

von 4

Beweisen oder widerlegen Sie folgende Gleichungen, indem Sie zwei Inklusionsbeziehungen beweisen oder ein Gegenbeispiel angeben.

- 1.  $(X \cup Y) \cdot Z = (X \cdot Z) \cup (Y \cdot Z)$
- $2. \ (X \cdot Y) \cup Z = (X \cup Z) \cdot (Y \cup Z)$
- 3.  $(X^*)^* = X^*$
- 4.  $(X \cup Y)^* = X^* \cup Y^*$
- 5. Als Bonusaufgabe (1 Extrapunkt):  $(X \cdot Y)^* \cdot X = X \cdot (Y \cdot X)^*$

## Übungsaufgabe 1.4:

von 4

1. Geben Sie einen NFA  $A_1$  an, der die folgende Sprache akzeptiert:

 $L_1 := \{w \in \{0,1\}^* \mid w$  enthält eine gerade Anzahl von 0 und eine ungerade Anzahl von 1  $\}$ 

2. Geben Sie einen NFA  $A_2$  an, der die folgende Sprache akzeptiert:

$$L_2 := \{ w \in \{a, b\}^* \mid \text{ in jedem Anfangsstück } u \text{ von } w \text{ gilt: } 0 \le |u|_a - |u|_b \le 3 \}$$

Hierbei bezeichnet  $|w|_x$  die Anzahl des Auftretens des Zeichens x in einem Wort w.

Geben Sie zu jedem Zustand q der Automaten eine inhaltliche Interpretation an, d.h. eine Eigenschaft, die gilt, wenn das bislang eingelesene Anfangsstück des Wortes nach q geführt hat.

### Übungsaufgabe 1.5:

von 4

1. Konstruieren Sie den Potenzautomaten zu folgendem NFA A.



2. Sei  $\delta$  die Überführungsfunktion eines vollständigen DFA und  $\delta^*$  seine Erweiterung (vgl. Def. 13.2).

Beweisen Sie für alle Zeichen  $x \in \Sigma$ , Worte  $w \in \Sigma^*$  und alle Zustände  $q \in Q$ :

$$\delta^*(q, wx) = \delta(\delta^*(q, w), x)$$

Hinweis: Verwenden Sie eine Induktion über |w|.

Informationen und Unterlagen zur Veranstaltung unter:

http://www.informatik.uni-hamburg.de/WSV/teaching/vorlesungen/FGI1\_SoSe12.shtml

Version vom 5. April 2012

Bisher erreichbare Punktzahl: 12