Contrôle continu 2

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours) Soit E un espace vectoriel et $\|\cdot\|$, $\|\cdot\|'$: $E \to [0, +\infty[$ deux normes équivalentes sur E. Montrer que toute suite $(u_k)_{k\in\mathbb{N}}$ de E qui converge pour la norme $\|\cdot\|'$ converge aussi pour la norme $\|\cdot\|'$.

Exercice 2. (Projection de \mathbb{R}^2 sur \mathbb{R}) Dans cet exercice, il est fortement recommandé de dessiner, et de se souvenir qu'un dessin n'est jamais une preuve. Si X est un espace vectoriel normé, «B(x, r[» désigne la boule ouverte de centre $x \in X$ et de rayon r > 0. On rappelle que pour une application $p: X \to Y$, et pour $A \subset X$, l'image de A par p est l'ensemble $p(A) = \{y \in Y, \exists x \in A, y = p(x)\} = \{p(x), x \in A\}.$

Soit $p: \mathbb{R}^2 \to \mathbb{R}$ la première projection (p(x,y) = x). On munit \mathbb{R}^2 de la norme euclidienne et \mathbb{R} de la valeur absolue.

1. Montrer que dans \mathbb{R} , $B(a, \epsilon[=]a - \epsilon, a + \epsilon[$.

2. Montrer que $p(B((x,y),\epsilon[)=B(x,\epsilon[$. En déduire que l'image d'un ouvert de \mathbb{R}^2 par p est un ouvert de \mathbb{R} .

3. Montrer que $F=\{(x,y), xy=1\}$ est un fermé de \mathbb{R}^2 mais que p(F) n'est pas fermé.

Exercice 3. (La deltoïde) Soit la courbe paramétrée Γ définie par $\begin{cases} x(t) = 2\cos t + \cos 2t \\ y(t) = 2\sin t - \sin 2t \end{cases}$ pour $t \in [-\pi, \pi]$

1. Étudier la parité des fonctions $x(\cdot)$ et $y(\cdot)$. Quelle(s) symétrie(s) cela implique-t-il sur le support de la courbe Γ ?

2. Calculer Γ' , Γ'' et Γ''' .

3. Soit $t \in [-\pi, \pi[$. Montrer que $\cos(t) - \cos(2t) = 0$ a trois solutions t = 0 et $t = 2\pi/3$ et $t = -2\pi/3$.

4. Calculer la position des points stationnaires. Donner leur nature ainsi que le comportement local de la courbe en leur voisinage (faire un petit dessin à chaque fois).

5. Calculer les tangentes aux points stationnaires et montrer qu'elles s'intersectent toutes en un même et unique point.

6. Compléter le tableau de variations suivant :

t	$-\pi$	$-2\pi/3$	0	$2\pi/3$	π
signe de $x'(t)$					
variation de $x(t)$					
signe de $y'(t)$					
variation de $y(t)$					

7. Sur le graphique suivant, tracer la courbe Γ ainsi que les tangentes étudiées aux questions précédentes. Indication : on commencera par tracer les tangentes aux points stationnaires (ces points apparaissent déjà sur le graphique).

8. La courbe $(\Gamma, [-\pi, \pi[)$ est-elle paramétrée par l'abscisse curviligne ? *Indication : c'est la justification qui sera notée*.

9. (Question Bonus) Montrer que la longueur de Γ est 16. Indication : aucun point ne sera donné pour la définition de la longueur, c'est bel et bien le calcul qui sera évalué.