§ 40. Положительно определенные квадратичные формы

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Понятие положительно определенной формы

Квадратичную форму $f(x_1,x_2,\ldots,x_n)$ над полем F можно рассматривать как отображение из множества F^n в F, которое каждому упорядоченному набору скаляров $(x_1^0,x_2^0,\ldots,x_n^0)\in F^n$ ставит в соответствие скаляр $f(x_1^0,x_2^0,\ldots,x_n^0)\in F$. Этот скаляр естественно называть значением формы $f(x_1,x_2,\ldots,x_n)$ на наборе значений переменных $(x_1^0,x_2^0,\ldots,x_n^0)$. Набор значений переменных $(x_1^0,x_2^0,\ldots,x_n^0)$ называется ненулевым, если найдется $i\in\{1,2,\ldots,n\}$ такой, что $x_i^0\neq 0$.

Во многих приложениях важную роль играют формы над полем \mathbb{R} , значение которых на любом ненулевом наборе значений переменных больше 0. Их изучению и посвящен данный параграф.

Определение

Квадратичная форма $f(x_1,x_2,\ldots,x_n)$ над полем \mathbb{R} , значение которой на любом ненулевом наборе значений переменных положительно, называется положительно определенной.

• Всюду далее в этом параграфе рассматриваются только квадратичные формы над полем \mathbb{R} . В явном виде это, как правило, оговариваться не будет.

1-й критерий положительной определенности (1)

1-й критерий положительной определенности

Пусть квадратичная форма $f=f(x_1,x_2,\ldots,x_n)$ имеет канонический вид $t_1y_1^2+t_2y_2^2+\cdots+t_ny_n^2$. Форма f положительно определена тогда и только тогда, когда $t_1,t_2,\ldots,t_n>0$.

Qоказательство. Пусть форма f приводится к указанному в формулировке критерия каноническому виду невырожденной линейной заменой переменных

$$\begin{cases} x_1 = b_{11}y_1 + b_{12}y_2 + \dots + b_{1n}y_n, \\ x_2 = b_{21}y_1 + b_{22}y_2 + \dots + b_{2n}y_n, \\ \dots \\ x_n = b_{n1}y_1 + b_{n2}y_2 + \dots + b_{nn}y_n. \end{cases}$$
(1)

Нам понадобится также обратная замена:

$$\begin{cases} y_{1} = c_{11}x_{1} + c_{12}x_{2} + \cdots + c_{1n}x_{n}, \\ y_{2} = c_{21}x_{1} + c_{22}x_{2} + \cdots + c_{2n}x_{n}, \\ \vdots \\ y_{n} = c_{n1}x_{1} + c_{n2}x_{2} + \cdots + c_{nn}x_{n}. \end{cases}$$
(2)

Она тоже невырождена.

1-й критерий положительной определенности (2)

Heoбxoдимость. Предположим, что $t_i\leqslant 0$ для некоторого i. Положим $y_i'=1$ и $y_j'=0$ для всех $j=1,2,\ldots,n,$ $j\neq i.$ Подставим в левые части равенств (2) y_1' вместо $y_1,$ y_2' вместо $y_2,$ $\ldots,$ y_n' вместо $y_n.$ Получим неоднородную крамеровскую систему линейных уравнений

$$\begin{cases}
c_{11}x_{1} + c_{12}x_{2} + \cdots + c_{1n}x_{n} = 0, \\
c_{21}x_{1} + c_{22}x_{2} + \cdots + c_{2n}x_{n} = 0, \\
\vdots \\
c_{i-1}x_{1} + c_{i-1}x_{2} + \cdots + c_{i-1}x_{n} = 0, \\
c_{i1}x_{1} + c_{i2}x_{2} + \cdots + c_{in}x_{n} = 1, \\
c_{i+1}x_{1} + c_{i+1}x_{2} + \cdots + c_{i+1}x_{n} = 0, \\
\vdots \\
c_{n1}x_{1} + c_{n2}x_{2} + \cdots + c_{nn}x_{n} = 0.
\end{cases}$$
(3)

Матрица этой крамеровской системы совпадает с матрицей замены (2). Поскольку эта замена невырождена, получаем, что определитель системы (3) отличен от нуля. По теореме Крамера система (3) имеет единственное решение (x_1',x_2',\ldots,x_n') . Это решение — ненулевое, так как система (3) неоднородна. Поскольку $f(x_1,x_2,\ldots,x_n)=t_1y_1^2+t_2y_2^2+\cdots+t_ny_n^2$, имеем

$$f(x'_1, x'_2, \ldots, x'_n) = t_1(y'_1)^2 + t_2(y'_2)^2 + \cdots + t_n(y'_n)^2 = t_i \leq 0.$$

Следовательно, форма f не является положительно определенной. Необходимость доказана.

1-й критерий положительной определенности (3)

Достаточность. Пусть x_1', x_2', \ldots, x_n' — произвольный ненулевой набор значений переменных формы f. Подставив их в равенства (2), получим набор y_1', y_2', \ldots, y_n' значений переменных y_1, y_2, \ldots, y_n . Если $y_1' = y_2' = \cdots = y_n' = 0$, то, подставив эти значения в правые части равенств (1), получим, что $x_1' = x_2' = \cdots = x_n' = 0$. Следовательно, набор y_1', y_2', \ldots, y_n' — ненулевой. Поскольку, по условию, $t_1, t_2, \ldots, t_n > 0$, имеем

$$f(x_1',x_2',\ldots,x_n')=t_1(y_1')^2+t_2(y_2')^2+\cdots+t_n(y_n')^2>0.$$

Следовательно, форма f положительно определена.

Критерий Сильвестра (1)

Для того, чтобы сформулировать еще один критерий положительной определенности формы, нам понадобится одно новое понятие.

Определение

Пусть $A=(a_{ij})$ — квадратная матрица порядка n. Миноры этой матрицы, расположенные в ее первых k строках и первых k столбцах (для всех $k=1,2,\ldots,n$) называются *угловыми минорами* матрицы A. Угловой минор порядка k обозначается через Δ_k .

В частности, $\Delta_1 = a_{11}$ и $\Delta_n = |A|$.

Критерий Сильвестра (2-й критерий положительной определенности)

Квадратичная форма положительно определена тогда и только тогда, когда все угловые миноры ее матрицы положительны.

Доказательство. Пусть $f(x_1, x_2, \dots, x_n)$ — квадратичная форма, а $A = (a_{ij})$ — ее матрица. Проведем доказательство индукцией по n.

База индукции очевидна: форма от одной переменной имеет вид $a_{11}x_1^2$. Ясно, что она положительно определена тогда и только тогда, когда $a_{11}>0$, а единственным угловым минором матрицы $A=(a_{11})$ этой формы является число a_{11} .

Критерий Сильвестра (2)

extstyle ex

$$f(x_1, x_2, \dots, x_n) = g(x_1, x_2, \dots, x_{n-1}) + a_{nn}x_n^2 + + 2a_{1n}x_1x_n + 2a_{2n}x_2x_n + \dots + 2a_{n-1}x_{n-1}x_n,$$
(4)

где $g(x_1,x_2,\ldots,x_{n-1})$ — сумма всех слагаемых формы $f(x_1,x_2,\ldots,x_n)$, не содержащих x_n . Обозначим угловые миноры матрицы A через $\Delta_1,\Delta_2,\ldots,\Delta_n$.

Heoбходимость. Предположим, что форма f положительно определена. Если форма $g(x_1,x_2,\ldots,x_{n-1})$ не является положительно определенной, то существует ненулевой набор значений переменных $(x_1',x_2',\ldots,x_{n-1}')$ такой, что $g(x_1',x_2',\ldots,x_{n-1}') \leqslant 0$. Тогда

$$f(x'_1, x'_2, \ldots, x'_{n-1}, 0) = g(x'_1, \ldots, x'_{n-1}) \leq 0,$$

что противоречит положительной определенности формы f. Таким образом, форма g положительно определена. По предположению индукции, ее угловые миноры, совпадающие с минорами $\Delta_1, \Delta_2, \ldots, \Delta_{n-1}$, положительны. Сделаем замену X=TY, которая приводит форму f к каноническому виду, и обозначим через D (диагональную) матрицу полученной формы. Из 1-го критерия положительной определенности вытекает, что |D|>0. В силу следствия о знаке определителя матрицы формы (см. § 39), $\Delta_n=|A|>0$.

Критерий Сильвестра (3)

Достаточность. Предположим теперь, что $\Delta_1, \Delta_2, \ldots, \Delta_n > 0$. Угловыми минорами формы $g(x_1, x_2, \ldots, x_{n-1})$ являются миноры $\Delta_1, \Delta_2, \ldots, \Delta_{n-1}$. Поскольку все они положительны, по предположению индукции форма $g(x_1, x_2, \ldots, x_{n-1})$ положительно определена. Пусть

— невырожденная линейная замена переменных, которая приводит форму g к каноническому виду $b_{11}y_1^2+b_{22}y_2^2+\cdots+b_{n-1}$. Поскольку форма g положительно определена, из 1-го критерия положительной определенности вытекает, что

$$b_{11}, b_{22}, \dots, b_{n-1}, b_{n-1} > 0.$$
 (6)

Критерий Сильвестра (4)

Рассмотрим замену переменных

$$\begin{cases} x_{1} = t_{11}y_{1} + t_{12}y_{2} + \cdots + t_{1\,n-1}y_{n-1} & , \\ x_{2} = t_{21}y_{1} + t_{22}y_{2} + \cdots + t_{2\,n-1}y_{n-1} & , \\ \dots & \dots & \dots & \dots & \dots \\ x_{n-1} = t_{n-1\,1}y_{1} + t_{n-1\,2}y_{2} + \cdots + t_{n-1\,n-1}y_{n-1} & , \\ x_{n} = y_{n}. \end{cases}$$

$$(7)$$

Обозначим матрицу замены (7) через T, а матрицу замены (5) — через T'. Разлагая определитель матрицы T по последней строке, имеем:

$$|T| = \begin{vmatrix} t_{11} & t_{12} & \dots & t_{1\,n-1} & 0 \\ t_{21} & t_{22} & \dots & t_{2\,n-1} & 0 \\ \dots & \dots & \dots & \dots & \dots \\ t_{n-1\,1} & t_{n-1\,2} & \dots & t_{n-1\,n-1} & 0 \\ 0 & 0 & \dots & 0 & 1 \end{vmatrix} = \begin{vmatrix} t_{11} & t_{12} & \dots & t_{1\,n-1} \\ t_{21} & t_{22} & \dots & t_{2\,n-1} \\ \dots & \dots & \dots & \dots \\ t_{n-1\,1} & t_{n-1\,2} & \dots & t_{n-1\,n-1} \end{vmatrix} = |T'|.$$

Поскольку замена (5) невырождена, получаем, что $|T|=|T'| \neq 0$, т. е. замена (7) тоже невырождена.

Критерий Сильвестра (5)

Замена (7) переводит форму $f(x_1, x_2, \dots, x_n)$ в форму

где $b_{in}=a_{1n}t_{1i}+a_{2n}t_{2i}+\cdots+a_{n-1}{}_{n}t_{n-1}{}_{i}$ для всех $i=1,2,\ldots,n-1$.

Критерий Сильвестра (6)

Выделив полный квадрат по каждой из переменных $y_1, y_2, \ldots, y_{n-1},$ получим:

$$h(y_1, y_2, \dots, y_n) = b_{11} \left(y_1 + \frac{b_{1n}}{b_{11}} \cdot y_n \right)^2 + b_{22} \left(y_2 + \frac{b_{2n}}{b_{22}} \cdot y_n \right)^2 + \\ + \dots + b_{n-1} {}_{n-1} \left(y_{n-1} + \frac{b_{n-1}}{b_{n-1}} \cdot y_n \right)^2 + \\ + \left(a_{nn} - \frac{b_{1n}^2}{b_{11}} - \frac{b_{2n}^2}{b_{22}} - \dots - \frac{b_{n-1}^2}{b_{n-1}} \right) y_n^2.$$

Сделаем замену переменных

$$\begin{cases} y_1 = z_1 - \frac{b_{1n}}{b_{11}} \cdot z_n, \\ y_2 = z_2 - \frac{b_{2n}}{b_{22}} \cdot z_n, \\ \dots \\ y_{n-1} = z_{n-1} - \frac{b_{n-1}}{b_{n-1}} \cdot z_n, \\ y_n = z_n. \end{cases}$$
(8)

Критерий Сильвестра (7)

Матрица этой замены имеет вид

$$\begin{pmatrix} 1 & 0 & \dots & 0 & -\frac{b_{1n}}{b_{11}} \\ 0 & 1 & \dots & 0 & -\frac{b_{2n}}{b_{22}} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & -\frac{b_{n-1}}{b_{n-1}} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Ee определитель равен 1. Следовательно, замена (8) невырождена. Ясно, что

$$y_1 + \frac{b_{1n}}{b_{11}} \cdot y_n = z_1, y_2 + \frac{b_{2n}}{b_{22}} \cdot y_n = z_2, \dots, y_{n-1} + \frac{b_{n-1}}{b_{n-1}} \cdot y_n = z_{n-1}, y_n = z_n.$$

Поэтому после применения замены (8) форма $h(y_1,y_2,\ldots,y_n)$ перейдет в форму

$$q(z_1, z_2, \ldots, z_n) = b_{11}z_1^2 + b_{22}z_2^2 + \cdots + b_{n-1}z_{n-1}^2 + b_{nn}z_n^2,$$

где $b_{nn}=a_{nn}-rac{b_{1n}^2}{b_{11}}-rac{b_{2n}^2}{b_{22}}-\cdots-rac{b_{n-1\,n}^2}{b_{n-1\,n-1}}.$ Обозначим матрицу этой формы через D.

Критерий Сильвестра (8)

Форма $q(z_1,z_2,\ldots,z_n)$ получена из формы $f(x_1,x_2,\ldots,x_n)$ последовательным применением замен (7) и (8). По условию $|A|=\Delta_n>0$. В силу следствия о знаке определителя матрицы формы (см. § 39), |D|>0. Матрица D диагональна, а на ее главной диагонали стоят числа $b_{11},b_{22},\ldots,b_{nn}$. Следовательно, $|D|=b_{11}b_{22}\cdots b_{nn}>0$. Учитывая (6), получаем, что форма $f(x_1,x_2,\ldots,x_n)$ положительно определена в силу 1-го критерия положительной определенности.