Semi-Supervised Semantic Image Segmentation with Self-correcting Networks

Mostafa S. Ibrahim^{1*}, Arash Vahdat², Mani Ranjbar³, William G. Macready⁴

¹Simon Fraser University

²NVIDIA

³Sportlogiq

⁴Sanctuary AI

^{*}Work done while interning at D-Wave Systems

Content

- Fast Intro to Semantic Segmentation
- Our Semi-supervised Semantic Segmentation

Semantic Segmentation

Label every pixel!

Don't differentiate instances (cows)

Semantic Segmentation: Apps

- Road Scene Understanding / Autonomous cars
- Editing images / Robots domain
- Medical purposes: e.g. segmenting tumours, dental

Image credit: <u>cityscapes dataset</u>
Apps credit: <u>Torr Vision Group</u>

Semantic Segmentation: Datasets

PASCAL VOC

- 20 classes
- 3.5k/1.5k trainval/test images
- Accurate Segmentation
- Evaluation Server
- 9k train Aux
 - missing segmented parts
 - under/over segmentations

Image credit

Semantic Segmentation: Datasets

COCO

- 80 classes
- 300k images
- Not so accurate boundaries
- Missing Segmented objects

Semantic Segmentation: AutoEncoder Styles

Semantic Segmentation: Deeplab v3+

Image credit: Google blog Vincent Dumoulin

• Input is image x = (WxHx3)

• Output is map y = (WxH).

Output per pixel is one of K classes

On right: One hot encoding

- Given x, our goal is to find map y that maximizes joint dist p(y|x;θ)
- This will typically be interactable.
- To make it simpler, assume a <u>factorial distribution</u> over n pixels

- Now, just compute cross entropy for every pixel independently
 - Typically Ground truth for CE is one-hot coding
 - But it also can be any distribution over K classes

- Network <u>logits</u> ⇒ Softmax activation ⇒ probability ⇒ CE(p1, p2)
 - tf.nn.<u>softmax cross entropy with logits</u>(labels, logits)

Image credit: Article

Our Semi-supervised setup

Framework Overview

- Ancillary segmentation network
 - Generate Initial segmentation (logits) for the weak-set
 - Network Input: image & bounding boxes
 - Network Output: segmentation labels (logits)
- Primary segmentation network
 - Standard Segmentation + Refine logits during training
 - Self correction: 2 approaches for refining logits

Ancillary Segmentation Model

- Input: an image (x) and bounding boxes (b)
- Output: segmentation mask (y)
- Model: p_{anc}(y|x, b)
 - Encoder-decoder-based segmentation network
 - Extra sub-network for encoding bounding boxes
 - Bbox representation is injected <u>after</u> the encoder
 - Inject on several scales
- This is very strong, as network knows more about ground truth

Ancillary segmentation model using the full-set

Ancillary segmentation model: Bbox Encoder

- Bbox Encoder
 - Input: 3D binary tensor for C+1 classes (bboxes marked)
 - Output: heatmap representation for the bboxes (for a scale)

No Self-Correction Approach

- Use the generated logits of from the ancillary model
 - No refining for the logits
- Train Primary segmentation network p(y|x)
 - Dataset: full-set (discrete labels) + weak-set(logits)

Full model: fixed weak-set logits

Self-Correction: 2 approaches

- Goal: Refine predictions made by the ancillary model when training the primary network
 - Combine the ancillary logits & with primary logits
 - $\circ q(y|x, b) = Combine(p_{anc}(y|x, b), p(y|x))$
- Two self-correction approaches:
 - Linear Self-Correction
 - Convolutional Self-Correction

Full model: refining weak-set logits

Linear Self-Correction

- Find q(y|x, b) that is close to both $p_{anc}(y|x, b) & p(y|x)$
 - But primary model is weak in early iterations
 - Use α for weighting the 2 terms
 - \circ α blending (e.g. from 30 to 0.50)

Linear Self-Correction

- Find factorial distribution q_{min}:
 - $\bigcirc KL(q(y|x, b) || p(y|x)) + \alpha KL(q(y|x, b) || p_{ans}(y|x, b))$
- Expand and rearrange Find q_{min}:
 - $0 \quad 1/(1+\alpha) \quad \mathsf{KL}(\mathbf{q}(\mathbf{y}|\mathbf{x},\,\mathbf{b}) \mid\mid [\mathbf{p}(\mathbf{y}|\mathbf{x})\,.\,\mathbf{p}_{\mathsf{ans}}(\mathbf{y}|\mathbf{x},\,\mathbf{b})^{\alpha}]^{1/(1+\alpha)})$
 - The weighted geometric mean of the two distributions
- For a softmax activation, combined logits are: $(\boldsymbol{l}_m + \alpha \, \boldsymbol{l}_m^{anc})/(\alpha+1)$
- So just anneal α during training and compute the above logits per pixel!

Linear Self-Correction

$$\max_{\boldsymbol{\phi}} \qquad \sum_{\boldsymbol{\mathcal{F}}} \log p(\boldsymbol{y}^{(f)}|\boldsymbol{x}^{(f)};\boldsymbol{\phi}) + \\ \sum_{\boldsymbol{\mathcal{W}}} \sum_{\boldsymbol{y}} q(\boldsymbol{y}|\boldsymbol{x}^{(w)},\boldsymbol{b}^{(w)}) \log p(\boldsymbol{y}|\boldsymbol{x}^{(w)};\boldsymbol{\phi}).$$
 (5)

- Above is just 2 calls for tf.losses.softmax_cross_entropy
 - softmax_cross_entropy_with_logits(one-hot from the ground truth, p's logits)
 - softmax_cross_entropy_with_logits(softmax(q's logits), p's logits)
- Be careful: <u>Stop gradient</u> on q's logits before applying CE

Convolutional Self-Correction

- To avoid tuning the α hyperparameter, use a small network to learn the merging:
 - Input: logits of $p_{anc}(y|x, b) & p(y|x)$
 - Output: factorial distribution: q_{conv} (y|x, b)
- Cons: careful 3-stage training procedure

Results on PASCAL VOC 2012

Data	Split	Method	Val	Test
F	VV		00.01	0.1.64
1464	9118	No Self-Corr.	80.34	81.61
1464	9118	Lin. Self-Corr.	81.35	81.97
1464	9118	Conv. Self-Corr.	82.33	82.72
1464	9118	EM-fixed Ours [41]	79.25	-
10582	-	Vanilla DeepLabv3+ [9]	81.21	-
1464	9118	BoxSup-MCG [12]	63.5	-
1464	9118	EM-fixed [41]	65.1	_
1464	9118	$M \cap G+ [26]$	65.8	_
1464	9118	FickleNet [30]	65.8	_
1464	9118	Song <i>et al</i> . [50]	67.5	_
10582	-	Vanilla DeepLabv1 [6]	69.8	_

# images in ${\cal F}$	200	400	800	1464
Ancillary Model	81.57	83.56	85.36	86.71
No Self-correction		79.19		
Lin. Self-correction	79.43	79.59	80.69	81.35
Conv. Self-correction	78.29	79.63	80.12	82.33

- Surprisingly, our semi-supervised models outperform the fully supervised model.
- See the paper for our analysis

Results on Cityscapes validation set

Data Split		Method	mIOU	
F	W	Method	moo	
914	2061	No Self-Corr.	75.44	
914	2061	Lin. Self-Correction	76.22	
914	2061	Conv. Self-Correction	79.46	
914	2061	EM-fixed [41]	74.97	
2975	-	Vanilla DeepLabv $3+_{ours}$	77.49	

# images in ${\cal F}$	200	450	914
Ancillary Model	79.4	81.19	81.89
No Self-correction	73.69	75.10	75.44
Lin. Self-correction			
Conv. Self-correction	69.38	77.16	79.46

The ancillary model can successfully correct the labels for missing or over segmented objects in these images (marked by ellipses).

Recall: 9k noisy dataset in pascal

Input Image

Ground-truth

Ancillary Heatmap

Input Image

Ground-truth

Ancillary Heatmap

Thoughts

- Ancillary model
 - Don't use handcrafted rules if the network can do it :)
 - Careful injection for bbox encoder to use pretrained models
 - Its high initial performance made it hard for refinement modules to really perform stronger
- Self-correction is useful for noisy ground truth
- Cons: Model not suitable for classes that span whole image (e.g. sky)
- Competing with SOTA in this problem/setup is hard, as all approaches close to fully-supervised performance

Linear Self-Correction: Math

