In-Place Bijective Burrows-Wheeler Transforms

Kyushu University

Tohoku University

Dominik Köppl
Daiki Hashimoto
Diptarama
Ayumi Shinohara

data structures

Burrows-Wheeler Transform (BWT)
[Burrows, Wheeler '94]

Bijective BWT (BBWT)

[Gil,Scott '12]

T = bacabbabb\$

```
T = bacabbabb$
               all suffixes
    bacabbabb$
     acabbabb$
      cabbabb$
       abbabb$
        bbabb$
         babb$
          abb$
           bb$
            b$
```

```
T = bacabbabb
                 all suffixes
      bacabbabb$
       acabbabb$
        cabbabb$
a
         abbabb$
          bbabb$
a
b
           babb$
  prev. char abb$
             bb$
a
b
              b$
b
```

T = bacabbabb\$

T = bacabbabb\$

the BBWT is the BWT of the Lyndon factorization of an input text with respect to \leq_{ω}

the BBWT is the BWT of the Lyndon factorization 1 of an input text with respect to $<_{\omega}$

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

not Lyndon words:

- abaab (rotation aabab smaller)
- abab (abab not smaller than suffix ab)

Lyndon factorization [Chen+ '58]

• input: text T =

- T_1 T_2 ... T_t
- output: factorization $T_1...T_t$ with
 - T_x is Lyndon word
 - $-T_x \geq_{\text{lex}} T_{x+1}$
 - factorization uniquely defined
 - linear time [Duval'88]

(Chen-Fox-Lyndon Theorem)

example

T = bacabbabb

Lyndon factorization: b|ac|abb|abb

- b, ac, abb, and abb are Lyndon
- b $>_{lex}$ ac $>_{lex}$ abb $≥_{lex}$ abb

\prec_{ω} order

• $u <_{\omega} w : \iff uuuuu... <_{lex} wwww...$

- ab <_{lex} aba
- aba ≺_ω ab

\prec_{ω} order

• $u <_{\omega} w : \iff uuuuu ... <_{\text{lex}} wwww...$

- \bullet ab $<_{lex}$ ab a
- aba <_ω ab

ab<mark>ababab</mark> aba<mark>abaaba</mark>

conjugates

- $T = T[1] T[2] \cdots T[n]$
- conjugates = cyclic shifts:
 - $[-T[1]T[2]\cdots T[n]$
 - $-T[2]T[3] \cdots T[n]T[1]$
 - -
 - $-T[n]T[1] \cdots T[n-1]$

b|ac|abb|abb

b ac abb abb

conjugates of all Lyndon factors

b ac abb abb

conjugates of all Lyndon factors

b ac abb abb

conjugates of all Lyndon factors

conjugates of all Lyndon factors

BBWT(T) = bbcbbaaba

conjugates of all Lyndon factors

BBWT(T) = bbcbbaabaBWT(T\$) = bbcbbb\$aaa

motivation

properties of BBWT:

- no \$ necessary
- BBWT is more compressible than BWT for various inputs

[Scott and Gill '12]

- BBWT is indexible (full text index)
- is computable in O(n) time with O(n) words

[Bannai+ '19]

however, O(n) words can be too much for large n

in-place computation

- Σ : alphabet, $\sigma := |\Sigma|$ alphabet size
- *T* : text, *n* := | *T* |
- $L := n \lg \sigma$ bits workspace
- aim: in-place computation
 transform T ↔ BWT ↔ BBWT with

$$|L| + O(\lg n)$$
 bits of workspace L

known solutions

input	output	work- space	time	reference
text	BWT	in-place	O(<i>n</i> ²)	Crash amara 1 11 F
BWT	text	in-place	O(<i>n</i> ^{2+ε})	Crochemore+ '15
text	BBWT	O(<i>n</i> lg <i>σ</i>) bits	O(n lg n/lg lg n)	Bonomo+ '14

σ: alphabet size, n: text length, ε is a constant with 0 < ε < 1

in-place conversions

- comparison model
- working space: $n \lg \sigma + O(\lg n)$ bits (including text)

T = bacabbabb\$

	L
\$	b
a	b
a	C
a	b
b	b
b	b
b	\$
b	a
b	a
C	a

can calculate with rank and select on *F* and *L*

 $F.rank_{Fij}(F[i])$

FL mapping:

 $FL(i) = L.select_{F[i]}(F.rank_{F[i]}(F[i]))$

backward search

```
T = bacabbabb$
                                              2 a
                                              3 a
                                                          b 5
                                              2 b
                                              3 b
                                              4 b
                                                          a 1
                                              5 b
                         F.rank<sub>Fiil</sub>(F[i])
```

backward search

$$T = bacabbabb$$
\$

F.rank_{F[i]}(F[i])

backward search

$$T = bacabbabb$$
\$

F.rank_{F[i]}(F[i])

backward search

 $F.rank_{F[i]}(F[i])$

$L.rank_{L[i]}(L[i])$

backward search

F.rank $_{F[i]}(F[i])$

$L.rank_{L[i]}(L[i])$

backward search

LF mapping:

 $LF(i) := F.select_{L[i]}(L.rank_{L[i]}(i))$

= F.select_{L[i]}(1) + L.rank_{L[i]}(i)-1

F.rank_{F[i]}(F[i])

backward search

LF mapping:

 $LF(i) := F.select_{L[i]}(L.rank_{L[i]}(i))$

= F.select_{L[i]}(1) + L.rank_{L[i]}(i)-1

 $= |\{j : L[j] < L[i]\}| + L.rank_{L[i]}(i)$

 $F.rank_{F[i]}(F[i])$

LF: time complexity

If we store BWT(T) in L:

- L[i] = BWT[i]: O(1) time
 - \Rightarrow for any $c: L.rank_c(i)$ in O(n) time

$$- LF(i) = \left| \{ j : L[j] < L[i] \} \right| + L.rank_{L[i]}(i)$$

$$O(n) \text{ time} \qquad O(n) \text{ time}$$

FL: time complexity

- $FL(i) = L.select_{F[i]}(F.rank_{F[i]}(F[i]))$ = $L.select_{F[i]}(i - |\{j : L[j] < F[i]\}|)$
- If we know F[i]: FL(i) in O(n) time
- however, the fastest in-place computation of F[i] takes $O(n^{1+\epsilon})$ time

[Munro,Raman '96]

for any constant ε with $0 < \varepsilon < 1$

road map

- comparison model
- working space: $n \lg \sigma + O(\lg n)$ bits (including text)

```
for each Lyndon factor T_x with x = 1 up to t:

prepend T_x[|T_x|] to BBWT

p \leftarrow 1 (insert position in BBWT)

for each i = |T_x|-1 down to 1:

p \leftarrow LF(p) + 1

insert T_x[i] at BBWT[p]
```

[Bonomo+ <u>'14</u>]

T = bacabbabb

- Lyndon factorization:b|ac|abb|abb
- first: insert b

T = bacabbabb

- Lyndon factorization:b|ac|abb|abb
- first: insert b

T = bacabbabb

- Lyndon factorization:
 - b ac abb abb
- first: insert b

how to calculate?

	F	L	
1	а	b	1
2	a	b	2
3	a	С	1
1	b	b	3
2	b	b	4
3	b	а	1
4	b	а	2
5	b	b	5
1	С	а	3

BBWT(
$$T_1 T_2$$
)

$$T = b |ac| abb |abb| = T_1 T_2 T_3 T_4$$

$$\begin{array}{c|cccc}
F & L \\
\hline
b & b & 1
\end{array}$$

BBWT(
$$T_1 T_2$$
)

$$T = b |ac|abb|abb| = T_1 T_2 T_3 T_4$$

$BBWT(T_1 T_2)$

$$T = b |ac|abb|abb| = T_1 T_2 T_3 T_4$$

BBWT(
$$T_1 T_2 T_3$$
)

$$T = b | ac | abb | abb$$

	F	L	
1	a	С	1
1	b	b	1
1	С	а	1

BBWT(
$$T_1 T_2 T_3$$
)

T = b | ac | abb | abb

	F	L			F	L	
1	а	С	1	1	a	b	1
1	b	b	1	1	b	С	1
1	С	а	1	2	b	b	2
				1	С	а	1

BBWT(
$$T_1 T_2 T_3$$
)

T = b | ac | abb | abb

	F	L			F	L			F	L	
1	a	С	1	1	а	b	1	1	a	b	1
1	b	b	1	1	b	С	1	1	b	С	1
1	С	а	1	2	b	b	2	2	b	b	2
				1	С	a	1	3	b	b	3
								1	С	a	1

BBWT(T_1 T_2 T_3)

T = b | ac | abb | abb

	F	L			F	L			F	L			F	L	
1	а	С	1	1	а	b	1	1	а	b	1	1	а	b	1
1	b	b	1	1	b	С	1	1	b	С	1	2	а	С	1
1	С	а	1	2	b	b	2	2	b	b	2	1	b	b	2
_				1	С	a	1	3	b	b	3	2	b	b	3
								1	С	a	1	3	b	a	1
												1	С	a	2

bacabbabb

- |bacabbabb
- b | acabbabb

- |bacabbabb
- b|acabbabb
- bac | abbabb

- |bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb

- |bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb
- cbaabb | abb

- bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb
- cbaabb | abb

H

- |bacabbabb
- b | acabbabb
- bac | abbabb
- cba | abbabb
- cbaabb | abb

bbcbbaaba

c b a a b b

67

BWT → BBWT

BWT → BBWT in-place

- Duval's algorithm
 - computes Lyndon factorization
 - it runs in $O(n t_L)$ time, where t_L is the time for accessing an entry of T
- algorithm uses linear scans from any T[i] to T[i+1]
- ⇒ emulate this with FL mapping
- \Rightarrow O($n^{2+\epsilon}$) time only with L storing BWT

BWT → BBWT in situ

T = b |ac|abb|abb

	F	L	
1	\$	b	1
1	a	b	2
2	a	C	1
3	a	b	3
1	b	b	4
2	b	b	5
3	b	\$	1
4	b	a	1
5	b	a	2
1	C	а	3

BWT → BBWT in situ

T = b | ac | abb | abb

BWT → BBWT in situ

T = b | ac | abb | abb

with FL mapping + Duval
 we detect the first Lyndon
 factor b | a ...

T = b | ac | abb | abb

• aim: create cycle b → b

T = b | ac | abb | abb

- aim: create cycle b → b
- since FL maps \$ to T[1] we want to exchange \$ and b

T = b | ac | abb | abb

- aim: create cycle b → b
- since FL maps \$ to *T*[1] we want to exchange \$ and b
- however: might not work
- need to fix red arrows

- since there are two red arrows:
- switch below the exchanged b the next two entries

- the cycle moved below the exchange
- ⇒ modified LF mapping just "moved"

•
$$T_1 \ge_{\text{lex}} T_2 \ge_{\text{lex}} \dots \ge_{\text{lex}} T_t$$

 $\Rightarrow T[1..] >_{\text{lex}} T[T_1]..]$

• $T_1 \ge_{\text{lex}} T_2 \ge_{\text{lex}} \cdots \ge_{\text{lex}} T_t$ $\Rightarrow T[1..] >_{\text{lex}} T[T_1 | T_1 | ..]$

- $T_1 \ge_{\text{lex}} T_2 \ge_{\text{lex}} \cdots \ge_{\text{lex}} T_t$ $\Rightarrow T[1..] >_{\text{lex}} T[T_1]..]$
- need to change red arrows

the number of e's between the exchanged \$ and e = the number of entries to switch after the e in F that mapped to the exchanged e


```
b
           b 2
1 a
2 a
           C 1
3 a
           b 3
1 b
2 b
           b
              4
3 b
           a
4 b
           a 2
5 b
           b
              5
           a 3
```


open problems

can we get rid of the FL mapping?
 (use only LF mapping)

 $O(n^{1+\epsilon})$ time in comparison model

- trade-off algorithm for time ↔ space
- Is the number of distinct Lyndon words of *T* bounded by the runs in the BBWT of *T*?

if so:

O(r) words run-length compressed BBWT-index if r = o(n) (r: runs in BBWT)

in-place conversions

working space: $n \lg \sigma + O(\lg n)$ bits (including text)

in-place conversions

working space: $n \lg \sigma + O(\lg n)$ bits (including text)