Topologie - Opdracht 5

Luc Veldhuis - 2538227

Maart 2017

1. Bepaal de samenhangscomponenten een padsamenhangscomponenten van (R, \mathcal{T}_{speld}) . (\mathcal{T}_{speld}) is de speldentopologie, zie ook opdrachten week 2, Q2).

Neem willekeurig een $x,y\in A\subseteq \mathbb{R}$ met $x\neq y$. Neem zonder verlies van algemeenheid aan dat x< y. Neem $\epsilon=y-x$. Dan weten we door de basis van de spelden topologie dat er gebieden bestaan, $U=(\infty,x+\frac{1}{2}\epsilon)$ en $V=[y-\frac{1}{2}\epsilon,\infty)$ die open zijn. Hieruit volgt dat $A\subseteq U\cup V$, $A\cap U\cap V=\emptyset$ en $A\cap U\neq\emptyset\neq A\cap V$.

A is dus onsamenhangend, dus $x \not\sim y$. Omdat we x en y willekeurig hebben genomen geldt er dat voor elke $x, y \in \mathbb{R}$ dat als $x \neq y$ dan $x \not\sim y$.

Dit is de definitie van een totaal onsamenhangende topologische ruimte. Voor een totaal onsamenhangende ruimte geldt dat de samenhangscomponenten alle 1-punts verzamelingen zijn. Oftewel de samenhangscomponenten zijn: $\{\{x\}|x\in\mathbb{R}\}.$

Omdat geldt voor wegsamenhangs componenten dat als $x \sim_{whs} y \Rightarrow x \sim y$, dan geldt ook $x \not\sim y \Rightarrow x \not\sim_{whs}$. Dus geen enkel punt is wegsamenhangend met een ander punt. Dus de padsamenhangscomponenten zijn hetzelfde als de samenhangscomponenten. Namelijk $\{\{x\}|x\in\mathbb{R}\}.$

2. Laat X een locaal samenhangende topologische ruimte zijn. Toon aan, dat de samenhangscomponenten van X open en gesloten zijn.

Uit stelling 5.19 uit het dictaat weten we dat elke samenhangscomponent gesloten is.

Volgens de definitie van lokale samenhang geldt dat een topologische ruimte X lokaal samenhangend heet als er voor elke $x \in X$ en elke open omgeving U van x een samenhangende open omgeving V van x bestaat zo dat $V \subseteq U$.

Dus elke x in een samenhangscomponent W zit in een open samenhangscomponent Y, maar als $x \in V$ en ook $x \in Y$, dan W = Y, want W is de collectie van alle x en y zodat $x \sim y$, maar dit is ook de definitie van de verzameling Y en de relatie \sim is een equivalentie relatie.

Hieruit volgt dat elk samenhangscomponent van X zowel open als gesloten is.

3. Gegeven zijn twee samenhangende topologische ruimten X en Y en echte deelversamelingen $A \subsetneq X$ en $B \subsetneq Y$. Laat zien, dat $X \times Y - A \times B$ samenhangend is.

Neem W de verzameling $X \times Y - A \times BW$.

Omdat we weten dat $A \subsetneq X$ en $B \subsetneq Y$, is er een $x_0 \in X$ zodat $x_0 \notin A$ en een $y_0 \in Y$ zodat $y_0 \notin B$.

Omdat we weten dat $X, Y, \{x_0\}, \{y_0\}$ samenhangend zijn, zijn volgens 5.30 ook de verzamelingen $\{x_0\} \times Y$ en $X \times \{y_0\}$ samenhangend.

Volgens 5.10, is ook de vereniging $V = (\{x_0\} \times Y) \cup (X \times \{y_0\})$ samenhangend want $x_0 \in X$ en $y_0 \in Y$ dus $(\{x_0\} \times Y) \cap (X \times \{y_0\}) \neq \emptyset$. Neem nu een willekeurig punt $(x, y) \in W$. Er zijn nu 3 gevallen.

• Stel $x \in A$, $y \notin B$. Dit betekend dat we een nieuwe verzameling kunnen construeren $T_0 = X \times \{y\} \subseteq W$ die weer samenhangend is. Ook weten we dat $T_0 \cup V$ weer samenhangend

- is volgens 5.10 want $y \in Y$, dus $(X \times \{y\}) \cap V \neq \emptyset$. Dus er geldt nu dat voor elke $(x_0, y_0) \in V$ en $(x, y) \in T_0$ dat $(x_0, y_0) \sim (x, y)$.
- Stel $x \notin A$, $y \in B$. Dit betekend dat we een nieuwe verzameling kunnen construeren $T_1 = \{x\} \times Y \subseteq W$ die weer samenhangend is. Ook weten we dat $T_1 \cup V$ weer samenhangend is volgens 5.10 want $x \in X$, dus $(\{x\} \times Y) \cap V \neq \emptyset$. Dus er geldt nu dat voor elke $(x_0, y_0) \in V$ en $(x, y) \in T_1$ dat $(x_0, y_0) \sim (x, y)$.
- Stel $x \notin A$, $y \notin B$. Dit betekend dat we een nieuwe verzameling kunnen construeren $T_2 = \{x\} \times Y \subseteq W$ die weer samenhangend is. Ook weten we dat $T_2 \cup V$ weer samenhangend is volgens 5.10 want $x \in X$ en $y \in Y$, dus $(\{x\} \times Y) \cap V \neq \emptyset$. Dus er geldt nu dat voor elke $(x_0, y_0) \in V$ en $(x, y) \in T_1$ dat $(x_0, y_0) \sim (x, y)$.
- Het geval als $x \in A$, $y \in B$ bestaat niet, want dan zou $(x, y) \in A \times B$, maar dit zit niet in W.

Elk element in W valt in 1 van deze gevallen.

Er geldt dus voor elk punt $(x_1, y_1), (x_2, y_2) \in W$ dat $(x_1, y_1) \sim (x_0, y_0) \in V$ en dat $(x_2, y_2) \sim (x, y) \in V$. Omdat V samenhangt geldt voor $(x, y), (x_0, y_0) \in V$ dat $(x, y) \sim (x_0, y_0)$. Uit de equivalentie van \sim geldt nu voor $(x_1, y_1), (x_2, y_2) \in W$ dat $(x_1, y_1) \sim (x_2, y_2)$. Omdat nu elk element in W samenhangt met elk ander element in W volgt nu uit stelling 5.12 uit het dictaat dat W samenhangend is.