Site Frequency Spectrum (SFS)

Tyler Linderoth Physalia lcWGS course 2025

Neutral, constant-size population SFS

Lineages coalesce at rate 1/N. N is the effective population size.

Lineages coalesce at rate 1/N. N is the effective population size.

Let's play the guess the bioinformatic problem game

SFS for a sample of 4 diploid individuals Case 1

SFS for a sample of 4 diploid individuals Case 1

SFS for a sample of 4 diploid individuals Case 2

Derived allele frequency

SFS for a sample of 4 diploid individuals Case 2

Derived allele frequency

SFS for a sample of 4 diploid individuals Case 3

SFS for a sample of 4 diploid individuals Case 3

SFS for a sample of 4 diploid individuals Case 4

SFS for a sample of 4 diploid individuals Case 4

Likelihood function for the SFS

SFS =
$$\mathbf{P} = (p_0, p_1, p_2, p_3, p_4, ..., p_{2n})$$

 p_k : probability that a random site in the genome has k derived alleles n = diploid sample size

SFS =
$$\mathbf{P} = (p_0, p_1, p_2, p_3, p_4, ..., p_{2n})$$

X: observed data (sequencing reads)

$$P(X, G|P) = \sum_{k=0}^{2n} P(X, G|K=k) P(K=k|P)$$

G: genotype vector =
$$(G_1, G_2, G_3, ..., G_n)$$

K: number of derived alleles in genotype vector **G**

$$P(X, \mathbf{G}|\mathbf{P}) = \sum_{k=0}^{2n} P(X, \mathbf{G}|K=k) P(K=k|\mathbf{P})$$

$$= p_k$$

$$P(a,b|c) = P(a|b)P(b|c) \quad \text{Recall that SFS} = \mathbf{P} = (p_0, p_1, ..., p_{2n})$$

$$= \sum_{k=0}^{2n} P(X|\mathbf{G})P(\mathbf{G}|K=k) P(K=k|\mathbf{P})$$

$$P(X, \boldsymbol{G}|\boldsymbol{P}) = \sum_{k=0}^{2n} P(X, \boldsymbol{G}|K=k) P(K=k|\boldsymbol{P})$$

$$= p_k$$

$$P(a,b|c) = P(a|b)P(b|c) \quad \text{Recall that SFS} = \boldsymbol{P} = (p_0, p_1, ..., p_{2n})$$

$$= \sum_{k=0}^{2n} P(X|\boldsymbol{G})P(\boldsymbol{G}|K=k) P(K=k|\boldsymbol{P})$$

$$\downarrow \quad \text{Consider the each individual's data and genotype independently.}$$

$$= \sum_{k=0}^{2n} \left(\prod_{i=1}^{n} P(X_i|G_i) \right) P(\boldsymbol{G}|K=k) P(K=k|\boldsymbol{P})$$

$$P(X, \boldsymbol{G}|\boldsymbol{P}) = \sum_{k=0}^{2n} \left(\prod_{i=1}^{n} P(X_i|G_i) \right) p(\boldsymbol{G}|K=k) P(K=k|\boldsymbol{P})$$

Probability based on the number of ways to have k derived alleles in \boldsymbol{G} out of the total number of ways to to arrange k derived alleles among 2n sampled chromosomes. — > Assumes HWE

Example for 4 diploid individual with derived allele A and ancestral allele a.

$$k = 4$$

$$m = \#$$
 heterozygotes = 2

$$2^m = 2^2$$

= 4 combinations

$$P(G|K=k) = \frac{2^{m}}{\binom{2n}{k}} = \frac{2^{2}}{\binom{8}{4}} = \frac{4}{70}$$

$$P(X, \boldsymbol{G}|\boldsymbol{P}) = \sum_{k=0}^{2n} \left(\prod_{i=1}^{n} P(X_i|G_i) \right) p(\boldsymbol{G}|K=k) P(K=k|\boldsymbol{P})$$

Allow for unknown genotypes (consider the likelihood for all possible genotypes)

$$P(X|\mathbf{P})=$$

$$\sum_{k=0}^{2n} P(K=k|\mathbf{P}) \sum_{G_1 \in \{0,1,2\}} \cdots \sum_{G_n \in \{0,1,2\}} P(G|K=k) \prod_{i=1}^{n} P(X_i|G_i)$$

Summing over the uncertainty of the identity of genotypes contained in **G**

Likelihood of **P** considering site *v*

$$P(X^{\nu}|\boldsymbol{P}) =$$

$$\sum_{k=0}^{2n} P(K=k|\mathbf{P}) \sum_{G_1 \in \{0,1,2\}} \cdots \sum_{G_i \in \{0,1,2\}} P(G^{v}|K=k) \prod_{i=1}^{n} P(X_i^{v}|G_i^{v})$$

Assume sites are independent

Likelihood of **P** considering all sites (the SFS)

$$P(X|P) =$$

$$\prod_{v=1}^{\text{all sites}} \sum_{k=0}^{2n} P(K=k|\mathbf{P}) \sum_{G_1 \in \{0,1,2\}} \cdots \sum_{G_d \in \{0,1,2\}} P(G^v|K=k) \prod_{d=1}^{n} P(X_i^v|G_i^v)$$

Product over all sites

Folding the SFS when ancestral state is unknown

Folding the SFS when ancestral state is unknown

How to estimate posterior probabilities of allele frequencies: allele frequency likelihoods

ANGSD -doSaf 1: Table of allele frequency likelihoods

	0	1	2	3	4	. 2n ←	- 4 dorived
	U		2	ა	4	 . 2n <	# derived alleles
site1	0.00	-2.24	-4.53	-6.99	-9.63	-232.69	alicies
site2	0.00	-2.24	-4.53	-6.99	-9.63	-232.69	
site3	-76.63	-37.87	-10.42	0.00	-9.59	-467.13	
site4	0.00	-2.24	-5.53	-6.99	-9.63	-237.55	
•							
•							
site <i>m</i>	0.00	-8.62	-19.22	-30.67	-43.27	-626.78	

$$P(\theta|X) = P(X|\theta)P(\theta)$$

How to estimate posterior probabilities of allele frequencies: Allele frequency prior probabilities

Population genetic summary statistics derived from the SFS

2-dimensional SFS

Population j derived allele frequency

Population j derived allele frequency (z)

Probability of k derived alleles in pop i and z derived alleles in pop j

Likelihood of w derived alleles in pop i at site v

Likelihood of z derived alleles in pop j at site v

$$E(a|X) = \sum_{k=0}^{2n} \sum_{z=0}^{2n} a_{popi,popj}^{w,z} P(X_{i,v}|K_{i,v}=w) P(X_{j,v}|K_{j,v}=z) Q_{i,j}^{w,z}$$

$$E(b|X) = \sum_{k=0}^{2n} \sum_{z=0}^{2n} b_{popi, popj}^{w, z} P(X_{i, v}|K_{i, v} = k) P(X_{j, v}|K_{j, v} = z) Q_{i, j}^{w, z}$$

Identifying loci under selection

Exercise. Estimating the SFS and summary statistics