2024-02-20

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

- 1. 若 $iz = (1-2i)^2$,则z = ()A. 4+3i B. 4-3i C. -4+3i D. -4-3i
- 2. 已知 $(x^3 + \frac{2}{r^2})$ "的展开式中各项系数和为 243,则展开式中常数项为() A. 60
- 3. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,现据《重差》测量一个球体建筑物的高度,如图,

已知点 A 是球体建筑物与水平地面的接触点(切点),地面上 B, C两点与点A在同一条直线上,且在点A的同侧.若在B,C处分别测得 球体建筑物的最大仰角为 60° 和 20° ,且BC=100m,则该球体建筑物

的高度约为 (cos10°≈0.985) () A. 58.60m

- B. 56.74m C. 50.76m
- D. 49.25m

4. 在平行四边形 ABCD 中, $\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC}$, $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AE}$. 若 $\overrightarrow{AB} = m\overrightarrow{DF} + n\overrightarrow{AE}$,则 m+n=(

A. $\frac{1}{2}$

5. 记函数 $f(x) = \sin(\omega x + \frac{\pi}{4})(\omega > 0)$ 的最小正周期为 T. 若 $\frac{\pi}{2} < T < \pi$,且 $f(x) \le |f(\frac{\pi}{3})|$,则 $\omega = ($

- C. $\frac{15}{4}$

6.已知函数 f(x) 的定义域为 R, $y = f(x) + e^x$ 是偶函数, $y = f(x) - 3e^x$ 是奇函数,则 f(x) 的最小值为 ()

A. *e*

C. $2\sqrt{3}$

7. 已知 F_1, F_2 分别是双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点,点 P 在双曲线上, $PF_1 \perp PF_2$,圆 $O: x^2 + y^2 = \frac{9}{4}(a^2 + b^2)$,直线 PF_1 与圆 O 相交于 A,B 两点,直线 PF_2 与圆 O 相交于 M,N 两点.若四边形 AMBN的面积为 $9b^2$,则 C 的离心率为() A $\frac{5}{4}$ B. $\frac{8}{5}$ C. $\frac{\sqrt{5}}{2}$ D. $\frac{2\sqrt{10}}{5}$

- 8. 己知 $a = e^{0.02}$, $b = 1.01^2$, $c = \ln(2.02)$, 则 () A. a > b > c B. b > a > c C. a > c > b D. b > c > a
- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的 得6分, 部分选对的得部分分, 有选错的得0分.
- 9. 已知甲种杂交水稻近五年的产量(单位: t/hm²)数据为: 9.8, 10.0, 10.0, 10.0, 10.2, 乙种杂交水稻近五年的 产量(单位: t/hm²) 数据为: 9.6, 9.7, 10.0, 10.2, 10.5, 则()
- A. 甲种的样本极差小于乙种的样本极差 B. 甲种的样本平均数等于乙种的样本平均数
- C. 甲种的样本方差大于乙种的样本方差 D. 甲种的样本 60 百分位数小于乙种的样本 60 百分位数

10. 如图,正三棱锥 A-PBC 和正三棱锥 D-PBC 的侧棱长均为 $\sqrt{2}$,BC = 2. 若将 正三棱锥 A-PBC 绕 BC 旋转, 使得点 A, P 分别旋转至点 A', P' 处, 且 A', B, C, D

四点共面,点A',D分别位于BC两侧,则()A. $A'D \perp CP$ B.PP'//平面A'BDC

- C. 多面体 PP'A'BDC 的外接球的表面积为 6π D. 点 A, P 旋转运动的轨迹长相等
- 11. 己知 a > 0, $e^a + \ln b = 1$, 则()A. $a + \ln b < 0$ B. $e^a + b > 2$ C. $\ln a + e^b < 0$ D. a + b > 1
- 三、填空题:本题共3小题,每小题5分,共15分.
- 12. 已知点 P 在抛物线 $C: y^2 = 2px(p > 0)$ 上,过 P 作 C 的准线的垂线,垂足为 H,点 F 为 C 的焦点.若 $\angle HPF = 60^\circ$,点 P 的横坐标为 1,则 P = .
- 13. 已知一扇矩形窗户与地面垂直,高为 1.5m, 下边长为 1m, 且下边距地面 1 m. 若某人观察到窗户在平行光线的照射下,留在地面上的影子恰好为矩形,其面积为 1.5 m²,则窗户与地面影子之间光线所形成的几何体的体积为 m³.
- 14. "完全数"是一类特殊的自然数,它的所有正因数的和等于它自身的两倍. 寻找"完全数"用到函数 $\sigma(n): \forall n \in N^*$, $\sigma(n) 为 n$ 的所有正因数之和,如 $\sigma(6) = 1 + 2 + 3 + 6 = 12$,则 $\sigma(20) = ______; \ \sigma(6^n) = ______.$
- 四、解答题: 本题共 5 小题, 共 77 分.解答应写出文字说明、证明过程或演算步骤.
- 15. 如图,在圆台 OO_1 中, A_1B_1 ,AB分别为上、下底面直径,且 A_1B_1 //AB , $AB = 2A_1B_1$, CC_1 为异于 AA_1 , BB_1 的一条母线. (1) 若M 为AC 的中点,证明: C_1M // 平面 ABB_1A_1 ; $A_1 = A_1 + A_2 + A_3 + A_4 + A_4 + A_4 + A_5 + A_5$
- (2) 若 $OO_1 = 3$, AB = 4, $\angle ABC = 30^\circ$, 求二面角 $A C_1C O$ 的正弦值.

16. 我国风云系列卫星可以监测气象和国土资源情况.某地区水文研究人员为了了解汛期人工测雨量 x (单位: dm) 与遥测雨量 y (单位: dm) 的关系,统计得到该地区 10 组雨量数据如下:

样本号i↩	1←	2←	3←	4←	5↩	6←	7←	8←	9∈	10←
人工测雨量 x_i \ominus	5.38←	7.99€	6.37€	6.71€	7.53←	5.53←	4.18€	4.04←	6.02←	4.23€
遥测雨量 y _i ←	5.43←	8.07€	6.57€	6.14€	7.95⊖	5.56←	4.27€	4.15←	6.04←	4.49←
$ x_i - y_i \in$	0.05←	0.08€	0.2←	0.57€	0.42€	0.03←	0.09€	0.11←	0.02←	0.26€

并计算得
$$\sum_{i=1}^{10} x_i^2 = 353.6$$
, $\sum_{i=1}^{10} y_i^2 = 361.7$, $\sum_{i=1}^{10} x_i y_i = 357.3$, $\frac{-2}{x} \approx 33.62$, $\frac{-2}{y} \approx 34.42$, $\overline{xy} \approx 34.02$.

(1)求该地区汛期遥测雨量 y 与人工测雨量 x 的样本相关系数(精确到 0.01),并判断它们是否具有线性相关关系;(2)规定:数组 (x_i,y_i) 满足 $|x_i-y_i|$ < 0.1为"I 类误差";满足 0.1 $\leq x_i-y_i$ $|x_i-y_i|$ < 0.3为"II 类误差";满足 $|x_i-y_i|$ < 0.3为"II 类误差",满足 "II 类误差"。为进一步研究,该地区水文研究人员从"I 类误差"、"II 类误差"中随机抽取 3 组数据与"III 类误差"数据进行对比,记抽到"I 类误差"的数据的组数为 X,求 X 的概率分布与数学期望.

附: 相关系数
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
, $\sqrt{304.5} \approx 17.4$.

17. 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的离心率为 $\frac{\sqrt{2}}{2}$,焦距为 2,过 E 的左焦点 F 的直线 l 与 E 相交于 A 、B 两点,与直线 x = -2 相交于点 M. (1) 若 M(-2,-1),求证: $|MA| \cdot |BF| = |MB| \cdot |AF|$;(2)过点 F 作直线 l 的垂线 m 与 E 相交于 C 、D 两点,与直线 x = -2 相交于点 N. 求 $\frac{1}{|MA|} + \frac{1}{|MB|} + \frac{1}{|NC|} + \frac{1}{|ND|}$ 的最大值.

2024-02-20

- 18. 已知函数 $f(x) = ax \ln x \frac{a}{x}$. (1) 若 x > 1, f(x) > 0, 求实数 a 的取值范围;
- (2) 设 x_1, x_2 是函数f(x) 的两个极值点,证明: $|f(x_1) f(x_2)| < \frac{\sqrt{1 4a^2}}{a}$.

- 19. 若有穷数列 $A: a_1, a_2, \cdots, a_n (n > 4)$ 满足: $a_i + a_{n+1-i} = c(c \in R, i = 1, 2, \cdots, n)$,则称此数列具有性质 P_c .
- (1) 若数列 $A: -2, a_2, a_3, 2, 6$ 具有性质 P_c ,求 a_2, a_3, c 的值;(2)设数列 A 具有性质 P_0 ,且 $a_1 < a_2 < \cdots < a_n, n$ 为奇数,当 $a_i, a_i > 0$ (1 $\leq i, j \leq n$) 时,存在正整数 k,使得 $a_i a_i = a_k$,求证:数列 A 为等差数列;
- (3) 把具有性质 P_c ,且满足 $\left|a_{2k-1}+a_{2k}\right|=m$ ($k\in N^*$, $k\leq \frac{n}{2}$, m 为常数)的数列 A 构成的集合记作 $T_c(n,m)$. 求出所有的 n ,使得对任意给定的 m , c ,当数列 $A\in T_c(n,m)$ 时,数列 A 中一定有相同的两项,即存在 $a_i=a_j (i\neq j,1\leq i,j\leq n)$.

2024-02-20

_ _	冼择题.	太颢共8小颢.	每小题5分.	共40分在每小题给出的四个选项中,	只有一项是符合题目要求的

- 1. 若 $iz = (1-2i)^2$,则z = (C) A. 4+3i B. 4-3i C. -4+3i D. -4-3i
- 2. 已知 $(x^3 + \frac{2}{r^2})^n$ 的展开式中各项系数和为 243,则展开式中常数项为(B) A. 60 B. 80 C. 100 D. 120
- 3. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,现据《重差》测量一个球体建筑物的高度,如图,

已知点 A 是球体建筑物与水平地面的接触点(切点),地面上 B , C 两点与点 A 在同一条直线上,且在点 A 的同侧。若在 B , C 处分别测得球体建筑物的最大仰角为 60° 和 20° ,且 BC = 100m,则该球体建筑物

的高度约为 (cos 10° ≈ 0.985) (C) A. 58.60m B. 56.74m C. 50.76m D. 49.25m

- 4. 在平行四边形 ABCD 中, $\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC}$, $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AE}$. 若 $\overrightarrow{AB} = m\overrightarrow{DF} + n\overrightarrow{AE}$,则 m + n = (D)
- A. $\frac{1}{2}$

B. $\frac{3}{4}$

C. $\frac{5}{6}$

- D. $\frac{4}{3}$
- 5. 记函数 $f(x) = \sin(\omega x + \frac{\pi}{4})(\omega > 0)$ 的最小正周期为 T. 若 $\frac{\pi}{2} < T < \pi$,且 $f(x) \le f(\frac{\pi}{3})$ |,则 $\omega = (C)$
- A. $\frac{3}{4}$

- B. $\frac{9}{4}$
- C. $\frac{15}{4}$
- D. $\frac{27}{4}$

6.已知函数 f(x) 的定义域为 R, $y = f(x) + e^x$ 是偶函数, $y = f(x) - 3e^x$ 是奇函数,则 f(x) 的最小值为(B)

A. *e*

- B. $2\sqrt{2}$
- C. $2\sqrt{3}$

D. 26

7. 已知 F_1, F_2 分别是双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点,点 P 在双曲线上, $PF_1 \perp PF_2$,圆 $O: x^2 + y^2 = \frac{9}{4}(a^2 + b^2)$,直线 PF_1 与圆 O 相交于 A,B 两点,直线 PF_2 与圆 O 相交于 M,N 两点。若四边形 AMBN 的面积为 $9b^2$,则 C 的离心率为(D) A $\frac{5}{4}$ B. $\frac{8}{5}$ C. $\frac{\sqrt{5}}{2}$ D. $\frac{2\sqrt{10}}{5}$

- 8. 己知 $a = e^{0.02}$, $b = 1.01^2$, $c = \ln(2.02)$, 则(A)
- A. a > b > c
- B. b > a > c
- C. a > c > b
- D. b > c > a
- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 已知甲种杂交水稻近五年的产量(单位: t/hm²)数据为: 9.8, 10.0, 10.0, 10.0, 10.2, 乙种杂交水稻近五年的产量(单位: t/hm²)数据为: 9.6, 9.7, 10.0, 10.2, 10.5, 则(ABD)
- A. 甲种的样本极差小于乙种的样本极差 B. 甲种的样本平均数等于乙种的样本平均数
- C. 甲种的样本方差大于乙种的样本方差 D. 甲种的样本 60 百分位数小于乙种的样本 60 百分位数
- 10. 如图,正三棱锥 A-PBC 和正三棱锥 D-PBC 的侧棱长均为 $\sqrt{2}$,BC = 2. 若将

2024-02-20

正三棱锥 A-PBC 绕 BC 旋转,使得点 A, P 分别旋转至点 A', P' 处,且 A', B, C, D

四点共面,点A',D分别位于BC两侧,则(BC)

A. $A'D \perp CP$ B. PP'// 平面 A'BDC

C. 多面体 PP'A'BDC 的外接球的表面积为 6π

D. 点 A, P 旋转运动的轨迹长相等

kev: 如图, BC ⊥ 平面A'PD, A错;

P', P, D, A'共面, EP = EP', :: PP' / / AA', :: PP' / /平面A'BDC, B对;

点A的运动轨迹长为 $\pi-2\arccos\frac{\sqrt{3}}{3}$,点P的运动轨迹长为 $\sqrt{3}(\pi-2\arccos\frac{\sqrt{3}}{3})$,D错

11. 已知 a > 0, $e^a + \ln b = 1$, 则(ABD)A. $a + \ln b < 0$ B. $e^a + b > 2$ C. $\ln a + e^b < 0$ D. a + b > 1

key ::: a > 0, :: $e^a > 1$, :: 0 < b < 1, :: C^{\ddagger} ;

 $\therefore a+b = \ln(1-\ln b) + b$ 记为p(b)

$$\mathbb{M}p'(b) = \frac{1}{1 - \ln b} \cdot \frac{-1}{b} + 1 = \frac{-\frac{1}{b} + 1 - \ln b}{1 - \ln b} < 0, \therefore p(b) > p(1) = 1, \therefore D \mathbb{X}^{\dagger}$$

 $:: e^a > 1 + a, :: 1 - \ln b > 1 + a$ (₹ $a + \ln b < 0, A$ x);

 $:: \ln b < b - 1, :: 1 = e^a + \ln b < e^a + b - 1, :: e^a + b > 2, B$ ∀ ;

三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.

12. 已知点 P 在抛物线 $C: y^2 = 2px(p > 0)$ 上,过 P 作 C 的准线的垂线,垂足为 H,点 F 为 C 的焦点.若 $\angle HPF = 60^\circ$,

点 P 的横坐标为1,则 $P = ____.$

13. 已知一扇矩形窗户与地面垂直, 高为 1.5m, 下边长为 1m, 且下边距地面 1 m. 若某人观察到窗户在平行光线 的照射下,留在地面上的影子恰好为矩形,其面积为 1.5 m²,则窗户与地面影子之间光线所形成的几何体的体积为

$$_{---}m^3$$
. $\frac{21}{8}$

14. "完全数"是一类特殊的自然数,它的所有正因数的和等于它自身的两倍. 寻找"完全数"用到函数 $\sigma(n)$: $\forall n \in N^*$,

 $\sigma(n)$ 为 n 的所有正因数之和,如 $\sigma(6)=1+2+3+6=12$,则 $\sigma(20)=$ _______; $\sigma(6^n)=$ ______.

 $key :: 20 = 2^2 \cdot 5$, $\sigma(20) = 1 + 5 + 2 + 2 \cdot 5 + 2^2 + 2^2 \cdot 5 = 42$

$$\therefore 6^{n} = 2^{n} \cdot 3^{n}, \quad \sigma(6^{n}) = \frac{1}{2} [2^{0} \cdot (3^{0} + 3^{1} + \dots + 3^{n}) + 2^{1} \cdot (3^{0} + 3^{1} + \dots + 3^{n}) + \dots + 2^{n} \cdot (3^{0} + 3^{1} + \dots + 3^{n})]$$

$$= \frac{1}{2}(2^{0} + 2^{1} + \dots + 2^{n})(3^{0} + 3^{1} + \dots + 3^{n}) = \frac{1}{2}(2^{n+1} - 1)(3^{n+1} - 1)$$

四、解答题: 本题共 5 小题, 共 77 分.解答应写出文字说明、证明过程或演算步骤.

15. 如图,在圆台 OO_1 中, A_1B_1 ,AB分别为上、下底面直径,且 A_1B_1 /AB, $AB = 2A_1B_1$, CC_1 为异于 AA_1 , BB_1 的一

条母线. (1) 若M为AC的中点,证明: C_1M //平面 ABB_1A_1 ;

2024-02-20

(2) 若 $OO_1 = 3$, AB = 4, $\angle ABC = 30^\circ$, 求二面角 $A - C_1C - O$ 的正弦值.

【小问 1 详解】如图,连接 A_iC_i . 因为在圆台 OO_i 中,上、下底面直径分别为 A_iB_i , AB,且 A_iB_i / /AB,

所以 AA_1,BB_1,C_1C 为圆台母线且交于一点P, 所以 A,A_1,C_1,C 四点共面.

在圆台 OO_1 中,平面ABC//平面 $A_1B_1C_1$,

由平面 AA_1C_1C 个平面 ABC = AC ,平面 AA_1C_1C 个平面 $A_1B_1C_1 = A_1C_1$,得 $A_1C_1//AC$.

又 $A_1B_1//AB$, $AB = 2A_1B_1$, 所以 $\frac{PA_1}{PA} = \frac{A_1B_1}{AB} = \frac{1}{2}$, 所以 $\frac{PC_1}{PC} = \frac{PA_1}{PA} = \frac{1}{2}$, 即 C_1 为 PC 中点.

在 $\triangle PAC$ 中,又 M 为 AC 的中点,所以 C_1M / $/AA_1$.

【小问 2 详解】以O为坐标原点, OB,OO_1 分别为Y,z轴,过O且垂直于平面 ABB_1A_1 的直线为x轴,

建立如图所示的空间直角坐标系O-xyz.

因为
$$\angle ABC = 30^{\circ}$$
,所以 $\angle AOC = 60^{\circ}$.则 $A(0, -2, 0), C(\sqrt{3}, -1, 0), O_1(0, 0, 3)$.

因为
$$\overrightarrow{OC} = (\sqrt{3}, -1, 0)$$
,所以 $\overrightarrow{O_1C_1} = \frac{1}{2}\overrightarrow{OC} = (\frac{\sqrt{3}}{2}, -\frac{1}{2}, 0)$.所以 $C_1\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}, 3\right)$,所以 $\overrightarrow{C_1C} = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}, -3\right)$.

设平面
$$OCC_1$$
 的法向量为 $\overrightarrow{n_1} = (x_1, y_1, z_1)$, 所以 $\left\{ \overrightarrow{n_1} \cdot \overrightarrow{OC} = 0 \atop \overrightarrow{n_1} \cdot \overrightarrow{C_1C} = 0 \right\}$, 所以 $\left\{ \frac{\sqrt{3}}{2} x_1 - \frac{1}{2} y_1 - 3 z_1 = 0 \right\}$,

$$\Rightarrow x_1 = 1$$
, 则 $y_1 = \sqrt{3}, z_1 = 0$,所以 $\overrightarrow{n_1} = (1,3,0)$,又 $\overrightarrow{AC} = (\sqrt{3},1,0)$,

设平面 ACC_1 的法向量为 $\overrightarrow{n_2} = (x_2, y_2, z_2)$,

所以
$$\left\{ \frac{\overrightarrow{n_2} \cdot \overrightarrow{AC} = 0}{n_2 \cdot \overrightarrow{C_1C} = 0} \right\}$$
,所以 $\left\{ \frac{\sqrt{3}x_2 + y_2 = 0}{\sqrt{3}x_2 - \frac{1}{2}y_2 - 3z_2 = 0} \right\}$

$$x_2 = 1$$
, $y_2 = -\sqrt{3}$, $z_2 = \frac{\sqrt{3}}{3}$, $\text{fill } \overrightarrow{n_2} = (1, -\sqrt{3}, \frac{\sqrt{3}}{3})$,

$$\text{FTU}\cos\left\langle\overrightarrow{n_1},\overrightarrow{n_2}\right\rangle = \frac{\overrightarrow{n_1}\cdot\overrightarrow{n_2}}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|} = \frac{1\times1+\sqrt{3}\times\left(-\sqrt{3}\right)+0\times\frac{\sqrt{3}}{3}}{\sqrt{1+3}\times\sqrt{1+3+\frac{1}{3}}} = -\frac{\sqrt{39}}{13}\;.$$

设二面角
$$M - C_1 C - O$$
 大小为 θ ,则 $\cos \theta = \left| \cos \overrightarrow{n_1}, \overrightarrow{n_2} \right| = \frac{\sqrt{39}}{13}$,所以 $\sin \theta = \sqrt{1 - \cos^2 \theta} = \frac{\sqrt{130}}{13}$

所以二面角 $M-C_1C-O$ 的正弦值为 $\frac{\sqrt{130}}{13}$.

16. 我国风云系列卫星可以监测气象和国土资源情况.某地区水文研究人员为了了解汛期人工测雨量 x (单位: dm) 与遥测雨量 y (单位: dm) 的关系,统计得到该地区 10 组雨量数据如下:

样本号i←	1←	2←	3←	4←	5↩	6←	7←	8←	9∈	10€
人工测雨量 x_i \ominus	5.38←	7.99⊖	6.37€	6.71€	7.53←	5.53←	4.18€	4.04←	6.02←	4.23€
遥测雨量 y₁←	5.43←	8.07€	6.57€	6.14€	7.95€	5.56←	4.27€	4.15←	6.04←	4.49↩
$ x_i - y_i \in$	0.05←	0.08€	0.2←	0.57€	0.42←	0.03←	0.09€	0.11←	0.02←	0.26€

并计算得
$$\sum_{i=1}^{10} x_i^2 = 353.6$$
, $\sum_{i=1}^{10} y_i^2 = 361.7$, $\sum_{i=1}^{10} x_i y_i = 357.3$, $\frac{-2}{x} \approx 33.62$, $\frac{-2}{y} \approx 34.42$, $\overline{xy} \approx 34.02$.

(1)求该地区汛期遥测雨量 y 与人工测雨量 x 的样本相关系数(精确到 0.01),并判断它们是否具有线性相关关系;(2)规定:数组 (x_i,y_i) 满足 $|x_i-y_i|$ < 0.1为"I 类误差",满足 0.1 $\le x_i-y_i$ |< 0.3为"II 类误差",满足

 $|x_i - y_i| \ge 0.3$ 为"III 类误差".为进一步研究,该地区水文研究人员从"I 类误差"、"II 类误差"中随机抽取 3 组数据与"III 类误差"数据进行对比,记抽到"I 类误差"的数据的组数为 X,求 X 的概率分布与数学期望.

附: 相关系数
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
, $\sqrt{304.5} \approx 17.4$.

【小问 1 详解】因为
$$r = \frac{\sum\limits_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{10} (x_i - \overline{x})^2 \sum\limits_{i=1}^{10} (y_i - \overline{y})^2}} = \frac{\sum\limits_{i=1}^{10} x_i y_i - 10\overline{x}\overline{y}}{\sqrt{\left(\sum\limits_{i=1}^{10} x_i^2 - 10\overline{x}^2\right) \times \left(\sum\limits_{i=1}^{10} y_i^2 - 10\overline{y}^2\right)}}$$

代入已知数据,得
$$r = \frac{357.3 - 10 \times 34.02}{\sqrt{(353.6 - 10 \times 33.62) \times (361.7 - 10 \times 34.42)}} = \frac{17.1}{\sqrt{304.5}} \approx 0.98$$

【小问 2 详解】依题意,"I 类误差"有 5 组,"II 类误差"有 3 组,"III 类误差"有 2 组. 若从"I 类误差"和"II 类误差"数据中抽取 3 组,

抽到"I 类误差"的组数 X 的所有可能取值为 0, 1, 2, 3.

$$\text{Iff } P(X=0) = \frac{C_3^3}{C_8^3} = \frac{1}{56} \; , \quad P(X=1) = \frac{C_5^1 C_3^2}{C_8^3} = \frac{15}{56} \; , \quad P(X=2) = \frac{C_5^2 C_3^1}{C_8^3} = \frac{30}{56} = \frac{15}{28} \; ,$$

$$P(X=3) = \frac{C_5^3 C_3^0}{C_5^3} = \frac{10}{56} = \frac{5}{28}$$
.所以 X 的概率分布为

2024-02-20

X	0	1	2	3	
P	$\frac{1}{56}$	15 56	15 28	$\frac{5}{28}$	

所以 X 的数学期望 $E(X) = 1 \times \frac{15}{56} + 2 \times \frac{15}{28} + 3 \times \frac{5}{28} = \frac{15}{8}$.

另解: 因为 $X \sim H(3,5,8)$, 所以 $E(X) = \frac{3 \times 5}{8} = \frac{15}{8}$.

17. 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的离心率为 $\frac{\sqrt{2}}{2}$,焦距为 2,过 E 的左焦点 F 的直线 l 与 E 相交于 A 、 B 两点,

与直线 x = -2 相交于点 M. (1) 若 M(-2,-1), 求证: $|MA| \cdot |BF| = |MB| \cdot |AF|$;

(2) 过点 F 作直线 l 的垂线 m 与 E 相交于 C、D 两点,与直线 x = -2 相交于点 N. 求 $\frac{1}{|MA|} + \frac{1}{|MB|} + \frac{1}{|NC|} + \frac{1}{|ND|}$ 的最大值.

(1) 证明: 由己知得
$$\begin{cases} \frac{c}{a} = \frac{\sqrt{2}}{2} \\ 2c = 2 \end{cases}$$
 得 $a = \sqrt{2}, b = c = 1, \therefore$ 椭圆 $E : \frac{x^2}{2} + y^2 = 1$

设之
$$AFx = \theta$$
,则 $|FA| = \frac{1}{\sqrt{2} - \cos \theta}$, $|FB| = \frac{1}{\sqrt{2} + \cos \theta}$, $|FM| = \frac{1}{\cos \theta}$, $(\theta = \frac{\pi}{4})$

$$|\mathit{MA}| = \frac{1}{\sqrt{2} - \cos \theta} + \frac{1}{\cos \theta} = \frac{\sqrt{2}}{(\sqrt{2} - \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{\sqrt{2}}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{\sqrt{2}}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{\sqrt{2}}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{\sqrt{2} + \cos \theta} = \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{\cos \theta} - \frac{1}{(\sqrt{2} + \cos \theta) \cos \theta}, |\mathit{MB}| = \frac{1}{(\sqrt{2$$

$$\therefore |MA| \cdot |BF| = \frac{\sqrt{2}}{(\sqrt{2} - \frac{\sqrt{2}}{2}) \cdot \frac{\sqrt{2}}{2}} \cdot \frac{1}{\sqrt{2} + \frac{\sqrt{2}}{2}} = \frac{4}{3}, |MB| \cdot |AF| = \frac{\sqrt{2}}{(\sqrt{2} + \frac{\sqrt{2}}{2}) \cdot \frac{\sqrt{2}}{2}} \cdot \frac{1}{\sqrt{2} - \frac{\sqrt{2}}{2}} = \frac{4}{3}$$

 $:|MA|\cdot|BF|=|MB|\cdot|AF|$,证毕

(2) 解: 如图,由 (1) 得
$$|FC| = \frac{1}{\sqrt{2} - \cos(\theta + \frac{\pi}{2})} = \frac{1}{\sqrt{2} + \sin \theta}, |FD| = \frac{1}{\sqrt{2} - \sin \theta},$$

$$\sqrt{2 - \cos(\theta + \frac{\pi}{2})} \qquad \sqrt{2 + \sin(\theta)}$$

$$|FN| = \frac{1}{\cos(\frac{\pi}{2} - \theta)} = \frac{1}{\sin(\theta)} (\theta \in (0, \frac{\pi}{2})),$$

$$|NC| = \frac{1}{\sin \theta} - \frac{1}{\sqrt{2} + \sin \theta} = \frac{\sqrt{2}}{(\sqrt{2} + \sin \theta)\sin \theta}, |ND| = \frac{1}{\sin \theta} + \frac{1}{\sqrt{2} - \sin \theta} = \frac{\sqrt{2}}{(\sqrt{2} - \sin \theta)\sin \theta},$$

$$\text{III} \frac{1}{|\mathit{MA}|} + \frac{1}{|\mathit{MB}|} + \frac{1}{|\mathit{NC}|} + \frac{1}{|\mathit{NC}|} = \frac{(\sqrt{2} - \cos\theta)\cos\theta}{\sqrt{2}} + \frac{(\sqrt{2} + \cos\theta)\cos\theta}{\sqrt{2}} + \frac{(\sqrt{2} - \sin\theta)\sin\theta}{\sqrt{2}} + \frac{(\sqrt{2} + \sin\theta)\sin\theta}{\sqrt{2}}$$

$$=2\cos\theta+2\sin\theta=2\sqrt{2}\sin(\theta+\frac{\pi}{4})\leq 2\sqrt{2}($$
当且仅当 $\theta=\frac{\pi}{4}$ 时,取 $=$),∴所求最大值为 $2\sqrt{2}$

18. 已知函数 $f(x) = ax - \ln x - \frac{a}{x}$. (1) 若 x > 1, f(x) > 0, 求实数 a 的取值范围;

(2) 设
$$x_1, x_2$$
 是函数 $f(x)$ 的两个极值点,证明: $|f(x_1) - f(x_2)| < \frac{\sqrt{1 - 4a^2}}{a}$.

$$\therefore f(x) > f(1) = 0, \therefore a$$
的取值范围为[$\frac{1}{2}$, + ∞)

(2) 证明: 由 (1) 得
$$f'(x) = 0 \Leftrightarrow ax^2 - x + a = 0 \Leftrightarrow a = \frac{x}{x^2 + 1}$$
 记为 $p(x)(x > 0)$,

$$\mathbb{M}p'(x) = \frac{1 - x^2}{(x^2 + 1)^2} > 0 \iff 0 < x < 1,$$

$$\therefore p(x)$$
在(0,1)上递增,(1,+∞)上递减, $\therefore p(x)_{max} = p(1) = \frac{1}{2}$

而
$$\lim_{x \to +\infty} p(x) = 0, p(0) = 0, 不妨设x_1 < x_2,$$

$$\therefore a \in (0, \frac{1}{2}), 且 0 < x_1 < 1 < x_2, 且 x_1, x_2 是 方程 a x^2 - x + a = 0 的 两根,且 \begin{cases} x_1 + x_2 = \frac{1}{a} \\ x_1 x_2 = 1 \end{cases}$$

$$\therefore |f(x_1) - f(x_2)| = |ax_1 - \ln x_1 - \frac{a}{x_1} - ax_2 + \ln x_2 + \frac{a}{x_2}| = |ax_1 - \ln x_1 - ax_2 + \ln x_2 - ax_2 + ax_1|$$

$$= |2a(x_1 - x_2) + \ln \frac{x_2}{x_1}| = |\frac{2x_2}{x_2^2 + 1} \cdot \frac{1 - x_2^2}{x_2} + 2\ln x_2| = 2\left|\frac{1 - x_2^2}{1 + x_2^2} + \ln x_2\right| = 2(\ln x_2 + \frac{1 - x_2^2}{1 + x_2^2})$$

$$(\stackrel{\text{th}}{\boxtimes} p(x) = \frac{1}{2} \ln x + \frac{1-x}{1+x}(x > 1), \quad \text{ln} p'(x) = \frac{1}{2x} + \frac{-2}{(1+x)^2} = \frac{(x-1)^2}{2x(1+x)^2} > 0, \quad p(x) > p(1) = 0)$$

$$\overline{\text{mi}} \frac{\sqrt{1 - 4a^2}}{a} = x_2 - x_1 = x_2 - \frac{1}{x_2}$$

要证:
$$|f(x_1) - f(x_2)| < \frac{\sqrt{1 - 4a^2}}{a}$$
,只要证明: $2(\ln x_2 + \frac{1 - x_2^2}{1 + x_2^2}) < x_2 - \frac{1}{x_2} \cdots (*)$

则
$$q'(x) = \frac{2}{x} + \frac{-8x}{(1+x)^2} - 1 - \frac{1}{x^2} = -(1 - \frac{1}{x})^2 - \frac{8x}{(1+x^2)^2} < 0, \therefore q(x) < q(1) = 0, \therefore (*)$$
成立,证毕

- 19. 若有穷数列 $A: a_1, a_2, \cdots, a_n (n > 4)$ 满足: $a_i + a_{n+1-i} = c(c \in R, i = 1, 2, \cdots, n)$,则称此数列具有性质 P_c .
- (1) 若数列 $A: -2, a_2, a_3, 2, 6$ 具有性质 P_c , 求 a_2, a_3, c 的值;
- (2) 设数列 A 具有性质 P_0 ,且 $a_1 < a_2 < \dots < a_n$,n 为奇数,当 a_i , $a_j > 0$ $(1 \le i, j \le n)$ 时,存在正整数 k ,使得
- $a_i a_i = a_k$, 求证:数列 A 为等差数列;
- (3) 把具有性质 P_c ,且满足 $\left|a_{2k-1} + a_{2k}\right| = m$ ($k \in N^*$, $k \leq \frac{n}{2}$,m 为常数)的数列 A 构成的集合记作 $T_c(n,m)$.求出所

2024-02-20

有的 n,使得对任意给定的 m,c,当数列 $A \in T_c(n,m)$ 时,数列 A 中一定有相同的两项,即存在 $a_i = a_j (i \neq j, 1 \leq i, j \leq n)$.

(2) 证明:::数列A具有性质 P_0 ,且 $a_1 < a_2 < \cdots < a_n$,n为奇数,

$$\therefore a_i + a_{n+1-i} = 0 (i = 1, 2, \dots, n), \Leftrightarrow n = 2m + 1,$$

$$\therefore a_1 < a_2 < \dots < a_m < a_{m+1} = 0 < a_{m+2} < \dots < a_{2m+1}$$

$$: a_i - a_i = a_k, \exists a_i, a_i > 0 (1 \le i < j \le n, k \in N^*),$$

$$\therefore a_{m+3} - a_{m+2}, a_{m+4} - a_{m+2}, \cdots, a_{2m+1} - a_{m+2}$$
 共 $m-1$ 项均为数列 A 中的项,

$$\overrightarrow{\text{mid}} 0 < a_{m+3} - a_{m+2} < a_{m+4} - a_{m+2} < \dots < a_{2m+1} - a_{m+2} < a_{2m+1}$$

$$\therefore a_{m+3} - a_{m+2} = a_{m+2}, a_{m+4} - a_{m+2} = a_{m+3} \\ \exists \Box a_{m+4} - a_{m+3} = a_{m+2}, \cdots, a_{2m+1} - a_{m+2} = a_{2m} \\ \exists \Box a_{2m+1} - a_{2m} = a_{m+2}, \cdots, a_{2m+1} - a_{m+2} = a_{2m} \\ \exists \Box a_{2m+1} - a_{2m} = a_{m+2}, \cdots, a_{2m+1} - a_{m+2} = a_{2m} \\ \exists \Box a_{m+2} - a_{m+2} = a_{m+2}, \cdots, a_{2m+1} - a_{m+2} = a_{2m} \\ \exists \Box a_{m+2} - a_{2m} = a_{2m$$

$$\therefore a_{m+2}, a_{m+3}, \cdots, a_{2m+1}$$
成公差为 a_{m+2} 的等差数列,即 $a_i = ia_{m+2} (i = m+2, m+3, \cdots, 2m+1)$

$$\therefore a_i = -a_{2m+2-i} (i = 1, 2, \dots, m), \therefore a_{i+1} - a_i = a_{m+2} (i = 1, 2, \dots, 2m),$$

:.数列A为等差数列

(3)
$$mathred{H}$$
: $a_1 = 4k + 2(k \in N^*) \text{ iff}, \quad A: a_1, a_2, \dots, a_{2k-1}, a_{2k}, a_{2k+1}, a_{2k+3}, \dots, a_{4k+1}, a_{4k+2}, \dots$

:: 数列A具有性质
$$P_c$$
,且 $|a_{2k-1} + a_{2k}| = m = c$ |即 $c = \pm m$,

$$\stackrel{\text{"}}{=} c = m$$
时,由 $a_1 + a_2 = m$,且 $a_{4k+2} + a_1 = m$,∴ $a_{4k+2} = a_2$,

$$A: -2k, 2k-1, -2k+2, 2k-3, \dots, -2, 1, -1, 2, \dots, -2k+1, 2k$$
没有相同的项

当
$$n = 2k + 3(k \in N^*)$$
时,取 $c = 0, m = 1$,

$$A = (-1)^{k+1}(k+1), (-1)^k k, (-1)^{k-1}(k-1), \dots, -1, 0, 1, -2, \dots, (-1)^{k-2}(k-1), (-1)^{k-1}k, (-1)^k (k+1)$$
没有相同项综上: $n = 4k + 2, k \in N^*$.