ML Pipeline

Гущин Александр DMIA Production ML 🚀 весна 2021

Как вывести модель в продакшн?

Обычно, DS обучают модель у себя на ноутбуке, затем сами или с помощью разработчиков встраивают её в текущие системы.

Проблема: обученная локально модель может оказаться невоспроизводимой

Решение: давайте завернем скрипты по подготовке данных и обучению модели в докер и зафиксируем окружение. Это обычно и называют **ML Pipeline**.

Другие пайплайны, с которыми мы имеем дело:

- Расчет прогнозов в оффлайн, batch inference (тоже ML pipeline)
- Шаги в CI/CD (запуск ML pipeline часть CI/CD)
- Расчет сложных фичей для ускорения online inference

Будем думать о пайплайне как о наборе скриптов и зафиксированном окружении - для простоты и по причине распространенности такого подхода. Например, пайплайн в нашем курсе может выглядеть так

А его запуск выполняться так

1 ~ bash ./run_all.sh

Наша задача - заставить условный run_all.sh работать в проде на регулярной основе. Это достигается в два этапа:

- 1. Переезжаем из ноутбуков в скрипты (из Jupyter в Pycharm/VScode)
- 2. Запускаем скрипты на удаленной машине с помощью некоторой системы оркестрации (Circle CI, Airflow, Kubeflow, или даже Cron)

Чтобы быть воспроизводимым и стабильно работающим, такой пайплайн должен

- 1. не содержать рандома (заданные random seed, детерменированные вычисления)
- 2. иметь зафиксированную среду исполнения (используем контейнеры) и окружение (фиксируем зависимости и версии библиотек).

В нашем курсе мы будем выполнять этот пайплайн в рамках шага CI/CD на Gitlab.

Зачем?

Зачем создавать ML Pipeline и настраивать его регулярный запуск? Почему не обойтись без этого и не запускать всё вручную?

- 1. Непроизвольные ошибки и невоспроизводимость
- 2. Overhead на регулярные переобучения модель будет устаревать
- 3. Зависимость от конкретных людей (bus factor)

Из каких этапов должен состоять пайплайн?

ml-ops.org

*Continious Training

Step	ML Pipeline	ML API	Batch inference
Data extraction & validation & splitting			
Feature generation	V	V	
Model training	V		
Model inference		V	
Model evaluation & validation	V		

Отличие кода при обучении и применении - источник технических ошибок. Чтобы избежать этого этапы генерации признаков и инференса модели можно выделять в отдельную переиспользуемую компоненту[ы].

Написание ML Pipeline

Для написания нашего пайплайна мы можем воспользоваться одним из нескольких подходов:

- Процедурное программирование
- OOP

Каждый подход имеет свои сильные и слабые стороны.

Процедурное программирование

```
PARAMETERS = {...}
    def count vectorize data(raw data, params):
        return vectorized data
    def tfidf transform data(vectorized data, params):
        return transformed data
10
    def train sgd classifier(train data, params):
11
12
13
        return model
14
    vectorized data = count vectorize data(raw data, PARAMETERS['vect'])
15
    transformed data = tfidf transform data(vectorized data, PARAMETERS['tfidf'])
16
    model = train sqd classifier(transformed data, PARAMETERS['model'])
```

Связывать эти кусочки необязательно на Python. Часто это делают на bash (как в нашем примере выше).

OOP

Здесь мы используем sklearn. Pipeline, но можем написать и свой класс с методами fit, predict, process_data, serialize_model, etc, etc.

Как выбрать подход

- Процедурное программирование
 - Разделение на этапы более наглядно
 - Проще добавлять новую логику
 - Если логика сложная, проще ошибиться
 - В некоторых ситуациях подход необходим например, если пайплайн сложный и неоднородный и все собирается вместе скриптом на bash

OOP

- Легче осуществлять подбор оптимальных параметров и сериализовывать их
- Реализовывается в рамках одного языка, сложно "подружить" разнородные компоненты
- Легче писать тесты, более надеждый подход к разработке, особенно в сложных пайплайнах

Системы оркестрации

- они могут требовать, чтобы мы оформили наш код как-то особенно, например
 - написали Python операторы, как в Airflow,
 - собрали разные этапы в разные контейнеры, как в Kubeflow,
 - явно указали создаваемые в процессе артефакты
- в разных компаниях и командах могут использоваться разные инструменты, что обычно продиктовано особенностями инфраструктуры и задач, например
 - когда Airfow уже широко применяют в компании для других задач (ETL), используют его
 - вместе с Kubernetes (особенно на GCP) используется Kubeflow
 - Где-то есть собственные инструменты, вроде Nirvana в Яндексе

Это значит, что на работе вы столкнетесь с одним из этих инструментов. Но основы для выстраивания пайплайнов одинаковы, и для их изучения нам не потребуется ни один из них. Наш ML Pipeline будет представлять из себя набор скриптов.

Этот пакет будет выполняться локально командой вроде pipenv run_pipeline.py. Позже мы запакуем его в Docker контейнер и будем запускать как часть CI/CD на Gitlab.

Pipeline, API и пакеты

- Зачем вообще использовать здесь пакеты?
- Должен ли ML pipeline быть отделен от ML api? Почему бы не использовать **один** питоновский пакет?

Примеры:

- Один пакет (lstm_model) наш репозиторий
- Несколько пакетов (пакеты ml_api, regression_model, neural_network_model) - https://github.com/trainindata/deploying-machine-learning-models

- Плюсы подхода "совсем без пакетов":
 - 1. Удобен на начальном этапе так быстрее
 - 2. Так проще, если у вас всего один проект
- Что при этом нужно иметь в виду:
 - 1. Для pipeline могут быть нужны зависимости, которые не нужны для арі
 - 2. В разделенные pipeline и арі более проще и безопаснее вносить изменения
 - 3. Если ваша команда поддерживает несколько API для разных моделей, их может быть проще объединить в один сервис
 - 4. Разделенные pipeline и арі позволят сделать более гибкую конфигурацию например, более "прицельный" запуск CI/CD

Саммари

- 1. Процесс, который обеспечивает переобучение модели, называют ML пайплайном. Тем же термином иногда называют процесс регулярного расчета прогнозов.
- 2. ML pipeline создают, чтобы получить стабильный во времени и как можно более независимый от человеческого вмешательства процесс. На практике это значит, что ML pipeline запускается на удаленном сервере под управлением системы оркестрации.
- 3. Существует два подхода к созданию пайплайнов пайплайны в стиле ООР и в стиле процедурного программирования. Эти подходы имеют свои плюсы и минусы, а также часто используются вместе.

Семинар

- 1. Смотрим наш процедурный пайплайн, показываю, как это работает, запускаю его, показываю сохраненные артефакты. Смотрим без dvc и c dvc. Смотрим studio.
- 2. Наш первый пайплайн по паролям ООР
- 3. Ещё один OOP https://github.com/trainindata/deploying-machine-learning-models/tree/master/packages/regression_model/regression_model
- 4. Скажу, почему выбрали фунциональный (пройдусь по ± которые мы написали выше и объясню, как они проявляются для этого случая)
- 5. Наконец, покажу, как это запускается в докере https://gitlab.com/production-ml/password-complexity/-/blob/master/Dockerfile
- 6. Напомню, что в конце концов мы запустим этот пайплайн в CI/CD, а в шляпе данные будут обновляться каждый день, так что слушателям нужно будет его закодить. Выдам ДЗ