Évaluation de révision.

Questions de cours.

Question de cours n°1 Donner trois CNS pour qu'un endomorphisme soit diagonalisable.

Question de cours n°2 Donner les ensembles image, les lois, les espérances et les variances des lois de Bernoulli, binomiale, géométrique et de Poisson.

Question de cours n°3 Énoncer le théorème de convergence dominée à paramètre continu.

Question de cours n°4 Énoncer précisément le théorème de dérivation terme à terme de la somme d'une série de fonctions.

Un peu de calcul.

Calcul n°1 Via le changement de variable $u = \frac{1}{t}$, calculer $I = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^a)}$ où $a \in \mathbb{R}_+$.

Calcul n°2 Diagonaliser $A = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$.

Calcul n°3 Résoudre sur $]0, +\infty[$ l'équation $x^2y'' + xy' + y = 0$ en effectuant le changement de variable $t = \ln x$.

Calcul n°4

- 1) Soit f la fonction définie sur $\mathbb{R}\setminus\{-1,2\}$ par $f(x)=\frac{1}{-x^2+x+2}$.
 - a) Trouver $a, b \in \mathbb{R}$ tel que, pour tout $x \in \mathbb{R} \setminus \{-1, 2\}$, on a $f(x) = \frac{a}{1+x} + \frac{b}{2-x}$.
 - b) Développer la fonction f en série entière et préciser le rayon de convergence.
- 2) Rayon de convergence et somme de $\sum_{n\geq 0} \frac{(n+1)(n-2)}{n!} x^n$.

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Soit f une fonction continue sur $[a, +\infty[$ telle que $\int_a^{+\infty} f(t) dt$ converge. Notons
$F(x) = \int_{x}^{+\infty} f(t) \mathrm{d}t.$
Question n°2 Soient f et g deux fonctions continues sur l'intervalle $[0, +\infty[$, telles que $\int_1^{+\infty} (f+g)(t) dt$ converge.
\square Alors $\int_1^{+\infty} f(t) dt$ et $\int_1^{+\infty} g(t) dt$ convergent.
\square Pour tout réel λ , $\int_{1}^{+\infty} (f + \lambda g)(t) dt$ converge.
\square Alors par linéarité, $\int_{1}^{+\infty} (f+g)(t) dt = \int_{1}^{+\infty} f(t) dt + \int_{1}^{+\infty} g(t) dt$.
\square Alors $f + g$ admet une limite en $+\infty$ et cette limite est nulle.
Question n°3 Pour tout réel x on note f la fonction $t \longmapsto \mathrm{e}^{-2t} \sqrt{1 + x^2 \mathrm{e}^{2t}}$. On peut dire que $\int_0^{+\infty} f(t) \mathrm{d}t$ converge, \square car f est continue sur $[0, +\infty[$ et $\lim_{t \to +\infty} f(t) = 0$. \square car f est continue sur $[0, +\infty[$ et $f(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$. \square car f est continue sur $[0, +\infty[$ et $f(t) \underset{t \to +\infty}{\sim} \mathrm{e}^{-t}$. \square car f est continue sur $[0, +\infty[$ et $f(t) \underset{x \to +\infty}{\sim} x^2$.
Question n°4 Soient f et g deux fonctions continues sur $[0, +\infty[$. \Box Si f et g sont intégrables sur $[0, +\infty[$ alors fg est intégrable sur $[0, +\infty[$. \Box Si f et g sont intégrables sur $[0, +\infty[$ alors $f-g$ est intégrable sur $[0, +\infty[$. \Box Si $f+g$ est intégrable sur $[0, +\infty[$, alors f et g sont intégrables sur $[0, +\infty[$. \Box Si f^2 et g^2 sont intégrables sur $[0, +\infty[$ alors fg est intégrable sur $[0, +\infty[$.
Question n°5 Soit A une matrice carrée d'ordre 3 telle que $A^3 = 2A^2$. \square Alors $A^3 - 2A^2$ est un polynôme annulateur de A \square Alors $X^3 - 2X^2 = 0$ est un polynôme annulateur de A \square Alors $A^2(A-2) = 0$, donc A est la matrice nulle ou $A = 2$. \square Alors les valeurs propres de A sont 0 et 2 .

- \square J est une matrice de rang 1.
- \square 1 est une valeur propre de J.
- \square Le noyau de J est égal à ((1,-1,0,0),(1,0,-1,0),(1,0,0,-1)).
- \Box Jadmet exactement 2 valeurs propres et J est diagonalisable.

Question n°7 Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

- \square 0 est une valeur propre de A car 0 est un des coefficients diagonaux de A.
- \Box -1 est une valeur propre de A car les colonnes de $A+I_3$ sont toutes égales.
- \square 2 est une valeur propre de A car la somme des coefficients par ligne est égale à 2.
- \square A est une matrice inversible.

Question n°8 Soit E un \mathbb{K} espace vectoriel de dimension finie n. Soit $f \in \mathcal{L}(E)$. On suppose que $Sp(f) = \{\lambda_1, \dots, \lambda_r\}$.

- \square Notons pour tout entier i de $[\![1,r]\!]$, e_i un vecteur propre associé à λ_i , alors la famille (e_1,\cdots,e_r) est une base de E.
- \square Alors $\forall i \in [1, r], \dim(E_f(\lambda_i) \geqslant 1.$
- \square Alors les sous-espaces propres $E_f(\lambda_1), \dots, E_f(\lambda_r)$ sont en somme directe.
- \square Alors $\chi_f(X) = \prod_{i=1}^r (X \lambda_i)$.

Question n°9 Soit f un endomorphisme de E, un espace vectoriel de dimension finie.

- \square Si $\chi_f(X)$ est scindé sur $\mathbb R$ alors f est diagonalisable sur $\mathbb R.$
- \square Si f est diagonalisable sur $\mathbb C$ alors $\chi_f(X)$ est scindé à racines simples.
- \square Si f n'est pas bijectif, alors 0 est une racine de $\chi_f(X)$.
- \square $\chi_f(X)$ est un polynôme de degré n et de coefficient dominant égal à 1.

Question n°10 Soient X_1, \dots, X_n des variables aléatoires indépendantes et de même loi.

- $\square \text{ Alors } \forall x \in \mathbb{R}, \ P((X_1 \leqslant x) \cap (X_2 \leqslant x) \cap \dots \cap (X_n \leqslant x)) = \prod_{i=1}^n P(X_i \leqslant x) = P(X_1 \leqslant x)^n.$
- \square Alors $\forall x \in \mathbb{R}$, $P(\min(X_1, \dots, X_n) \geqslant x) = \bigcap_{k=1}^n P(X_1 \geqslant x)$.
- \square Alors $X_1+\cdots+X_n$ suit la même loi de $nX_1.$
- \square Si X_1 admet une variance, alors $X_1 + \cdots + X_n$ admet une variance et $V(X_1 + \cdots + X_n) = nV(X_1)$.

Question n°11 Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé. Soit X une variable aléatoire discrète sur $(\Omega, \mathscr{A}, \mathbb{P})$ telle que $X(\Omega) = \mathbb{N}$. Soit Y une variable aléatoire réelle sur $(\Omega, \mathscr{A}, \mathbb{P})$.

- \square Pour tout réel x, $\mathbb{P}(Y \leqslant x) = \sum_{k=0}^{n} \mathbb{P}(X = k) \mathbb{P}_{(X=k)}(Y \leqslant x)$.
- \square pour tout réel x, $(Y \le x)$, (Y > x) est un système complet d'événements.
- $\square \ \ \text{Pour tout entier} \ n, \ \mathbb{P}\left((Y\leqslant 1)\cap (X=n)\right) = \mathbb{P}(X=n)\mathbb{P}_{(X=n)}(Y\leqslant 1).$
- \square Pour tout entier n, (X = n) est un élément de \mathscr{A} .

Question n°12 Soit X une variable aléatoire admettant une espérance et une variance non nulle.

- \square D'après l'inégalité de Markov, $\forall a > 0, P(X \ge a) \le \frac{E(X)}{a}$.
- \square Pour tout couple de réels (a,b), aX+b admet une espérance et V(aX+b)=aV(X)+b.
- \square Alors la variable aléatoire X(X-1) admet une espérance et $E(X(X-1)) = V(X) + E(X)^2 E(X)$.
- \square La variable aléatoire $X^* = \frac{X E(X)}{\sqrt{V(X)}}$ est une variable aléatoire centrée réduite.

Exercices classiques.

Exercice classique n°1

- 1) Soit X un ensemble, (g_n) une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} . Donner la définition de la convergence uniforme de la suite de fonctions (g_n) vers la fonction g.
- 2) On pose $f_n(x) = \frac{n+2}{n+1} e^{-nx^2} \cos(x\sqrt{n})$.
 - a) Étudier la convergence simple de la suite de fonctions (f_n) .
 - b) La suite de fonctions (f_n) converge-t-elle uniformément sur $[0, +\infty[$?
 - c) Soit a > 0. La suite de fonctions (f_n) converge-t-elle uniformément sur $[a, +\infty[$?
 - d) La suite de fonctions (f_n) converge-t-elle uniformément sur $]0, +\infty[$?

Exercice classique n°2 Soit (u_n) une suite de réels strictement positifs, pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n u_k$ et $v_n = \frac{u_n}{S_n}$. L'objectif est de comparer la nature de $\sum u_n$ et $\sum v_n$.

On pourra traiter les cas où $\sum u_n$ converge ou diverge, et dans ce dernier étudier la série de terme général $w_n = \ln\left(1 - \frac{u_n}{S_n}\right)$ pour $n \geqslant 1$.