EE324 CONTROL SYSTEMS LAB

Problem Sheet 4

Yatish Vaman Patil | 190070076

Question 1: Transfer Function for Complex Interconnected System

Part A)

In this part, we are given the following interconnected systems

The above-interconnected systems are simplified using the following Scilab Code

Scilab code for the same:

```
//Part A
s=%s;
p1=1/s^2;
p2=50*s/(s^2+s+100);
p3=s-2;
G1=p1*p2*p3;
Ans_a= syslin('c',G1/(1+G1));
disp(Ans_a);
```

Closed-Loop Transfer Function Obtained:

Part B)

In this part, we are given the following interconnected system

Scilab code for the same:

```
//Part B
s=%s;
m1=s;
m2=1/s;
G2=m1*m1+m2;
G3=2;
G4=G2/(1+G3*G2);
Ans_b= syslin('c',G4*m2);
disp(Ans_b);
```

Closed-Loop Transfer Function Obtained:

Part C)

In this part, we are given the following interconnected system

Scilab code for the same:

```
//Part C
s=%s;
n1=s;
n2=2*s;
n3=1/(s+1);
G5=n1+n2;
G6=s/(s+1);
G7=G5*G6;
G8=G7+n2;
G9=n3/(1+5*n3);
G10=G8*G9;
Ans_c=syslin('c',G10/(1+G10));
disp(Ans_c);
```

Closed-Loop Transfer Function Obtained:

Question 2: Root Locus Analysis and Stability of System

Part A)

In this question, we are given the following plant Gs

$$Gs = \frac{10}{s(s+2)(s+4)}$$

This plant is connected in series with proportionality gain K. This K*Gs plant is connected in a negative feedback loop. Hence Closed Loop Transfer Function(Ts) becomes

$$Ts = \frac{K * Gs}{1 + K * Gs}$$

Scilab code for the same:

Part B)

This section will plot poles of a closed-loop transfer function for the gain value K from o to 100.

Scilab code for the same:

```
s=%s;
Gs=<u>syslin('c',10/(s*(s+2)*(s+4)));
evans(Gs,100);</u>
```

Part C)

This section will estimate K's value for which the closed-loop system's poles appear on an imaginary axis. From the above root locus, we can observe that pole crosses the imaginary axis at some k>0. When the poles of the system go into RHP, the system becomes unstable.

From the above figure, we can approximate that two closed-loop system poles are imaginary for k=4.8.

Part D)

We have the following closed-loop transfer function

$$Ts = \frac{K * Gs}{1 + K * Gs}$$
$$Gs = \frac{10}{s(s+2)(s+4)}$$

So now Ts becomes

$$Ts = \frac{10k}{s^3 + 6s^2 + 8s + 10k}$$

Characteristic Polynomial is

$$Ps=s^3 + 6s^2 + 8s + 10k$$

We will now use Routh-Hurwitz Criterion

Routh Table for the above Polynomial is

s ³	1	8	0
s ²	6	10k	0
s ¹	$\frac{48 - 10k}{6}$	0	0
s ^o	10k	0	0

For all the poles of the system to lie in LHP or Imaginary axis

$$\frac{48-10k}{6} \ge 0 \text{ and } 10k>0$$

$$k < 4.8$$

Hence for k=4.8, poles of the CL system are the Imaginary axis. i.e. system is on the verge of instability

Question 3: Routh-Hurwitz Criterion

In this part, we have to use the special command in Scilab called "routh_t" for obtaining routh tables of given polynomials

```
s=%s;
P1=s^5 + 3*s^4 + 5*s^3 + 4*s^2 + s + 3;
[r1,num1] = routh t(P1);

P2=s^5 + 6*s^3 + 5*s^2 + 8*s + 20;
[r2,num2] = routh t(P2);

P3=s^5 - 2*s^4 + 3*s^3 - 6*s^2 + 2*s - 4;
[r3,num3] = routh t(P3);
```

```
P4=s^6 + s^5 - 6*s^4 + s^2 + s - 6;
[r4,num4] = routh t(P4);

mprintf("For Polynomial P1=s^5+3*s^4+5*s^3+4*s^2+s+3 ==> Sign
Changes=%g",num1);
disp(r1);
mprintf("\nFor Polynomial P2=s^5+6*s^3+5*s^2+8*s+20 ==> Sign
Changes=%g",num2);
disp(r2);
mprintf("\nFor Polynomial P3=s^5-2*s^4+3*s^3-6*s^2+2*s-4 ==> Sign
Changes=%g",num3);
disp(r3);
mprintf("\nFor Polynomial P4=s^6+s^5-6*s^4+s^2+s-6 ==> Sign
Changes=%g",num4);
disp(r4);
```

Routh Tables:

1) P1=s^5+3*s^4+5*s^3+4*s^2+s+3

	1	2	3
1	1	5	1
2	3	4	3
3	3.6667	0	0
4	4	3	0
5	-2.75	0	0
6	3	0	0

For Polynomial P1=s^5+3*s^4+5*s^3+4*s^2+s+3 ==> Sign Changes=2

2) P2=s^5+6*s^3+5*s^2+8*s+20

For Polynomial P2=s^5+6*s^3+5*s^2+8*s+20 ==> Sign Changes=2

3)P3=s^5-2*s^4+3*s^3-6*s^2+2*s-4

	1	2	3
1	1	3	2
2	-2	-6	-4
3	-8	-12	-0
4	-3	-4	0
5	-1.3333	0	0
6	-4	0	0

For Polynomial P3=s^5-2*s^4+3*s^3-6*s^2+2*s-4 ==> Sign Changes=1

4)P4=s^6+s^5-6*s^4+s^2+s-6

For Polynomial P4=s^6+s^5-6*s^4+s^2+s-6 ==> Sign Changes=3

Question 4: Routh Table

Part A)

In this part, we have to construct a six degree polynomial such that the entire corresponding to s^3 of its Routh Table should be zero.

If even Polynomial is a factor of the original Polynomial, there exists a row in Routh Table with all entries as zero.

If the entire corresponding to s^3 is zero, then the degree of that even Polynomial is 4.

Let the even Polynomial with degree 4 be
$$Ps1=s^4 + 4s^2 + 5$$

Now we require polynomial with degree 6. We can get this Polynomial by multiplying non-even 2-degree Polynomial to the above Polynomial.

$$Ps2=s^2 + 2s + 3$$

So our 6 degrees required Polynomial is

$$Ps = s^6 + 2s^5 + 7s^4 + 8s^3 + 17s^2 + 10s + 15$$

We can verify the above results using Scilab

Routh Table:

	1	2	3	4
1	1	7	17	15
2	2	8	10	0
3	3	12	15	0
4	12	24	0	0
5	6	15	0	0
6	-6	0	0	0
7	15	0	0	0

```
s=%s;
P1=s^6 + 2*s^5 + 7*s^4 + 8*s^3 + 17*s^2 + 10*s + 15;
[r1,num1] = routh t(P1);
```

Part B)

In this part, we have to find an 8-degree polynomial whose s^3 row in Routh Table is zero. We will follow the same process as in Part A.

If the entire corresponding to s^3 is zero, then the degree of that even Polynomial is 4.

Let the even Polynomial with degree 4 be
$$Ps1=s^4+s^2+1$$

Now we require polynomial with degree 8. We can get this Polynomial by multiplying non-even 4-degree Polynomial to the above Polynomial.

$$Ps2=s^4 + 4s^3 + 3s^2 + 5s + 8$$

So our 6 degrees required Polynomial is

$$Ps = s^8 + 4s^7 + 4s^6 + 9s^5 + 12s^4 + 9s^3 + 11s^2 + 5s + 8$$

We can verify the above results using Scilab

Routh Table:

	1	2	3	4	5
1	1	4	12	11	8
2	4	9	9	5	0
3	1.75	9.75	9.75	8	0
4	-13.2857	-13.2857	-13.2857	0	0
5	8	8	8	0	0
6	32	16	0	0	0
7	4	8	0	0	0
8	- 4 8	0	0	0	0
9	8	0	0	0	0

```
s=%s;
P2=(s^4+s^2+1)*(s^4+4*s^3+3*s^2+5*s+8);
[r2,num2] = routh_t(P2);
```

Part C)

In this part, we have to find a 6-degree polynomial such that the first entry of the s^3 row of its Ruth Table is zero.

Here we have to build the Routh Table from bottom to top according to specifications

Step 1] Assume entries of s^3 rows be

2	_	•	•
C 2)	
J	•	_	U

Step 2] We can assume entries in s^4 rows at random with the constraint of no more than the first three entries should be non zero

s ⁴	2	3	5
s^3	0	2	0

Step 3] Now, we have to choose s^5 row such that the first entry of s^3 is 0 and the second entry is 2

s ⁵	4	6	12	0
s ⁴	2	3	5	0
s^3	0	2	0	0

Step 4] Same iteration for s^6 row now

s ⁶	1	3.5	6	5	0
s ⁵	4	6	12	0	0
s ⁴	2	3	5	0	0
s^3	0	2	0	0	0

Hence our required equation is

$$Ps = s^6 + 4s^5 + 3.5s^4 + 6s^3 + 6s^2 + 12s + 5$$

We can verify this result using Scilab also

```
s=%s;
P3=s^6 + 4*s^5 + 3.5*s^4 + 6*s^3 + 6*s^2 + 12*s + 5;
[r3,num3] = routh t(P3);
```

Routh Table:

1	3.5	6	5
-		-	-
1	1	1	1
4	6	12	0
-	-		-
1	1	1	1
2	3	5	0
-	-	-	-
1	1	1	1
eps	2	0	0
	-	-	-
1	1	1	1
-4 +3eps	5	0	0
	-	-	-
eps	1	1	1
-8 +6eps -5eps*	0	0	0
	-	-	-
-4 +3eps	1	1	1
5	0	0	0
-	-	-	-
1	1	1	1