Isogeny-based time-release cryptography

Parsa Tasbihgou

Supervisor: Dr. Boris Fouotsa

March 2024

Overview

- Time-release primitives
- 2 Preliminaries
- 3 Delay from isogenies
- Watermarking
- 5 Random supersingular elliptic curves
- 6 Questions

Time-release primitives

Delay encryption

- In delay encryption there are no senders or receivers
- Messages are encrypted by a session id.
- Decryption requires the associated session key.
- The session key is extracted from the session id and the "extraction" process is expected to take time T.
- Once the session key is extracted any ciphertext in the current session can be decrypted.

Delay encryption

There are 4 algorithms, λ is the security parameter and T is the delay parameter:

- Setup(λ , T) \rightarrow (ek, pk): Setup algorithm should run in time poly(λ , T).
- Extract(ek, id) \rightarrow idk: Extract is expected to run in time exactly T.
- Encaps(pk, id) \rightarrow (c, k): Encaps should run in time poly(λ).
- Decaps(pk, id, idk, c) \rightarrow k: Decaps should run in time ploy(λ).

Correctness:

$$(ek, pk) \leftarrow \text{Setup}(\lambda, T) \text{ and } idk \leftarrow \text{Extract}(ek, id) \text{ and } (c, k) = \text{Encaps}(pk, id)$$

 $\Rightarrow \text{Decaps}(pk, id, idk, c) = k.$

- Δ-indistinguishable CPA game:
 - Precomputation:
 The adversary receives (ek, pk) and outputs algorithm D.
 - Challenge: The challenger receives a random id and computes $(c, k_0) \leftarrow$ Encaps(pk, id). It also chooses a random $k_1 \in K$ and a bit b $\in \{0,1\}$ and outputs (id, c, k_b).
 - Guess:
 Algorithm D is run on (id, c, k_b). The adversary wins if D halts in time less than Δ and D(id, c, k_b) = b.

Verifiable Delay Function

A function $f: X \to Y$ such that computing f(x) is a slow and sequential process for all $x \in X$ but for any $y \in Y$ verifying f(x) = y is efficient.

- Setup $(\lambda, T) \rightarrow (ek, vk)$ Setup should run in time poly (λ, T) .
- Eval $(ek, x) \rightarrow (y, \pi)$ This process is meant to infeasible in time less than T.
- Verify $(vk, x, y, \pi) \rightarrow True$, False Verification should run in poly $(\log(T), \lambda)$.

Security of VDF

Completeness:

The honest evaluator always convinces the verifier.

Soundness:

A VDF has soundness error ϵ if for any PPT algorithm A and $x \in X$ the following holds.

$$Pr\bigg(\textit{Verify}(\textit{vk}, \textit{x}, \textit{y}', \pi') = \textit{true} \bigg| \begin{array}{l} (\textit{vk}, \textit{ek}) \leftarrow \textit{Setup}(\textit{T}, \lambda), \\ (\textit{y}', \pi') \leftarrow \textit{A}(\textit{ek}, \textit{x}), \\ \textit{y}' \neq \textit{f}(\textit{x}), \end{array} \bigg) \leq \epsilon(\lambda)$$

Sequentiality:

It is infeasible to compute f(x) for any $x \in X$ in time less than T even with poly(T) many CPUs.

Preliminaries

Isogenies

- A non-constant rational map $\phi: E \to E'$ on elliptic curves that takes \mathcal{O}_E to $\mathcal{O}_{E'}$ is an isogeny.
- An isogeny $\phi: E \to E$ from a curve into it self is called an endomorphism.
- Frobenius endomorphism is defined $\pi(x, y) = (x^q, y^q)$.
- Degree of an isogeny is size of its kernel.
- Any isogeny $\phi: E \to E'$ has a dual isogeny $\hat{\phi}: E' \to E$ of the same degree.

Endomorphisms

Set of all endomorphism on E denoted by $\operatorname{End}(E)$ forms a ring under addition and composition.

- End(E) is isomorphic to a maximal order in the quaternion algebra $B_{p,\infty}$.
- End_{\mathbb{F}_p}(E) is isomorphic to $\mathbb{Z}[\sqrt{-p}]$ or $\mathbb{Z}[\frac{1+\sqrt{-p}}{2}]$.
- $\{j(E)|E \text{ is supersingular}\} \leftrightarrow \{\text{Maximal orders in } B_{p,\infty}\}$
- $\{[\phi]|\phi \text{ is isogeny on } E\} \leftrightarrow \{\operatorname{cl}(\operatorname{End}(E))\}$

\mathbb{F}_p -restricted supersingular isogeny graph

- Number of *j*-invariants defined over \mathbb{F}_p is about \sqrt{p} .
- If $\left(\frac{-\rho}{\ell}\right)=1$ there are exactly two isogenies.
- If $\ell=2$ and $p\equiv 7 \mod 8$, curves on the floor have one ascending isogeny and curves on the surface have two horizontal isogenies and one descending isogeny.

Figure: p = 103

Delay from isogenies

De Feo et al. isogeny-based VDF

- Trusted setup(p): Sample a random supersingular curve E/\mathbb{F}_p .
- Setup(p, N, E, T): Get an isogeny walk $\phi : E \to E'$ of degree ℓ^T . Compute a point $P \in E(\mathbb{F}_P)$ of order N. Output $(\phi, E, P, \phi(P))$.
- Evaluation($Q \in E'[N]$): Evaluate $\hat{\phi}(Q)$.
- Verification $(P, \phi(P), Q)$: Check $e_N(P, \hat{\phi}(Q)) = e'_N(\phi(P), Q)$.

$$E_1$$
 E_2 E_3 E_4 E_7 E_7 E_7 E_7

Isogeny Δ -shortcut game

Security of the isogeny-based VDF is defined by the following game.

• Precomputation:

The adversary receives (N, p, E, E', ϕ) and outputs an algorithm S.

- Challenge: The challenger outputs a random point $Q \in E'[N]$.
- Guess:

The adversary wins if S(Q) halts in time less that Δ and $S(Q) = \hat{\phi}(Q)$.

Isogeny-based VDF security

- There are at least 4 ways to evaluate an isogeny chain faster:
 - Parallelization
 - Specialized hardware
 - Optimized formulas
 - Find a shorter isogeny

• It is possible to convince the verifier without evaluating $\phi(Q)$. The verification is $e_N(P,Q')=e_N'(\phi(P),Q)$. Let $Q_0\in E[N]$ such that $e_N(P,Q_0)$ generates μ_N . Compute $x=\log_{e_N(P,Q_0)}e_N'(\phi(P),Q)$ then $Q'=xQ_0$.

Isogeny-based VDF security

- If $\operatorname{cl}(\operatorname{End}_{\mathbb{F}_p}(E))$ is known, a short basis $B=(\mathcal{I}_{\ell_1},\mathcal{I}_{\ell_2},...,\mathcal{I}_{\ell_n})$ can be computed so every ideal has a representative with small ℓ_{∞} -norm.
- If $\operatorname{End}(E)$ or $\operatorname{End}(E')$ is known then the isogeny ϕ could be translated into an ideal and converted into an ideal of small norm and finally translated to an isogeny of small degree.
- A quantum adversary can compute the class group in polynomial time and a classical adversary can do it in sub-exponential time.
- Random Walks in the full isogeny graph.

Summery of shortcut attacks

	Classical over \mathbb{F}_p	Classical over \mathbb{F}_{p^2}	Quantum over \mathbb{F}_p	Quantum over \mathbb{F}_{p^2}
Computing shortcut	$L_p(1/2)$	$O(\rho^{1/2})$	polylog(p)	$O(p^{1/4})$
Pairing inversion	$L_p(1/3)$	$L_p(1/3)$	polylog(p)	polylog(p)

To achieve λ bits of security, N should be a prime with 2λ bits and p a prime with λ^3 bits of the form p = Nf - 1.

isogeny-based delay encryption

- Trusted setup(λ): Generate a random supersingular curve E/\mathbb{F}_p .
- Untrusted setup(E, T):
 - **1** Start from E, get an ℓ^T -isogeny $\phi: E \to E'$.
 - ② Choose a random point $P \in E[N]$ and evaluate $\phi(P)$.
 - **3** Publish ek = (E', ϕ), pk = (E', P, ϕ (P)).
- Extract(E, E', ϕ, id):
 - **1** Output $\hat{\phi}(Q = H_1(id))$.
- Encaps($E, E', P, \phi(P), id$):
 - **1** Sample uniformly $r \in \mathbb{Z}_N$.
 - 2 Compute $k = e'_N(\phi(P), Q)^r$.
 - **3** Output (rP, k).
- Decaps $(E, E', \hat{\phi}(Q), rP)$:
 - **1** Compute $k = e_N(rP, \hat{\phi}(Q))$.

Bilinear isogeny shortcut game

Bilinear isogeny shortcut game:

- Precomputation: The adversary receives (N, p, E, E', ϕ) and outputs an algorithm S.
- Challenge: The challenger samples random $P \in E[N], Q \in E'[N]$.
- Guess: Run S(P,Q). The adversary wins of S halts in time less that Δ and $S(P,Q)=e_N(P,\hat{\phi}(Q))=e_N'(\phi(P),Q)$.

If the bilinear isogeny shortcut game is Δ' -hard, delay encryption is Δ -CPA IND where $\Delta \in \Delta' - o(\Delta')$ and H_1 is a random oracles.

Watermarking

Watermarking I

- Tie the evaluation of a VDF to the evaluator.
- A watermarking method is complete if the honest evaluator always convinces the honest verifier.
- A Watermarking method has soundness error ϵ if there is an adversary that given $\hat{\phi}(Q)$ and a watermarking, can generate a new valid watermarking in time $(1 \epsilon)T$.
- When the VDF evaluation has a proof, the proof can be signed to be tied to the evaluator.
- The isogeny-based VDF doesn't have a proof.

Watermarking II

- $(E, E', E_{mid}, P, P_{mid} = \phi_1(P), \phi(P))$ is published as the setup.
- ② Participant i selects a random element $s_i \in \mathbb{Z}_N$ as secret key and publishes $S_i = s_i \phi(P)$ as their public key.
- \circ *i* publishes a proof of knowledge of the secret key s_i .
- **9** *i* publishes $Q_{mid}^i = s_i Q_{mid}$ as her proof.
- **5** Verification: $e_N^{mid}(P_{mid}, Q_{mid}^i) = e_N'(S_i, Q)$.

Watermarking III

• Just compute $Q_{mid} = \hat{\phi}_2(Q)$ or $Q_{mid} = \phi_1^{-1}(\hat{\phi}(Q))$.

• Soundness error is $\frac{1}{2}$.

• Split the walk into n segments. Soundness error is $\frac{1}{n}$ and proof length is n

New watermarking

The setup for the delay encryption doesn't change.

- ② Participant i chooses a secret key $s_i \in \mathbb{Z}_N^*$ and publishes her public key $S_i = (vk_i, ek_i) = (s_i\phi(P), s_i^{-1}(rP)).$
- i publishes a non-interactive zero-knowledge proof of knowledge for s_i.
- *i* publishes $Q_i = s_i \hat{\phi}(Q)$ as her watermarked evaluation.
- Verify correctness and identity: $e_N(P, Q_i) = e'_N(vk_i, Q)$.
- **1** The session key is $k = e_N(s_i^{-1}rP, Q_i)$.

Random supersingular elliptic curves

Distributed trust

- **1** Start from $E_0: y^2 = x^3 x$.
- Participant i checks all previous proofs.
- **3** Perform a random walk of length $c \log(p)$ to get isogeny $\phi_i : E_{i-1} \to E_i$.
- **1** Publish a proof of knowledge for ϕ_i .

The proof has to be knowledge-sound when one of $End(E_{i-1})$ or $End(E_i)$ is known.

Proof of isogeny knowledge

Let F be a deterministic function that takes two curves E, E' as input and outputs two points $P \in E[(N, \pi - 1)]^o$, $Q \in E'[(N, \pi + 1)]^o$.

Prover
$$\operatorname{Let}(P,Q) = F(E,E').$$
 Choose a random $r \in \mathbb{Z}_{\mathbb{N}}^*$.
$$\operatorname{Send} r$$
 Let $R = r\phi(P)$ and $S = r\hat{\phi}(Q)$.
$$\operatorname{Send}(R,S).$$
 Let $(P,Q) = F(E,E')$.
$$\operatorname{Check} R \in E'[(N,\pi-1)]^o.$$

$$\operatorname{Check} S \in E[(N,\pi+1)]^o.$$

$$\operatorname{Check} e_N(P,S) = e'_N(R,Q).$$

Notice that r is not used in verification

How to cheat?

- (P,Q) = F(E,E') is fixed (for fixed E and E').
- ② The prover picks $P' \in E'[(N, \pi 1)]$ and $Q' \in E[(N, \pi + 1)]$. This is done once and P' and Q' are fixed.
- **3** Let $\alpha = e_N(P, Q')$ and $\beta = e'_N(P', Q)$ and $x = \log_\alpha \beta$ then $\alpha^x = \beta$ and $e_N(P, xQ') = e'_N(P', Q)$.
- Now if the prover sets R = P' and S = xQ' the verifier will be convinced $e_N(P, S) = e'_N(R, Q)$.
- **5** (aR, aS) is a valid response for any $a \in \mathbb{Z}_N$, so the malicious prover can generate many responses.

Sketch of a proof

Prover:

- choose random $P \in E[(N, \pi 1)]$ and $r_1, r_2, r, r' \in \mathbb{Z}_N^*$.
- Send $C_P = Com(P, r_1), C_{\phi(P)} = Com(\phi(P), r_2), rP, r'\phi(P)$
- Send ZKPoK* of r and r'.

Verifier:

- check $rP \in E[(N, \pi 1)] \land r'\phi(P) \in E'[(N, \pi 1)]$ and proofs.
- ullet Choose a random bit $b \in \{0,1\}$ and send it to the prover.
- b = 0: Sample $Q \in E'[(N, \pi + 1)]$ and send it to Prover.
- If b=1: Sample $Q \in E[(N, \pi+1)]$ and send it to Prover.

Prover:

- If b = 0 check $Q \in E'[(N, \pi + 1)]$ o.w. $Q \in E[(N, \pi + 1)]$.
- If b = 0: Send $(P, r_1, r'\hat{\phi}(Q))$.
- b = 1: Send $(\phi(P), r_2, \frac{r}{d}\phi(Q))$, where $d = \deg \phi$.

Verifier:

- b = 0: Check $Com(P, r_1) = C_P$, $e_N(P, r'\hat{\phi}(Q)) = e'_N(r'\phi(P), Q)$.
- b = 1: $Com(\phi(P), r_2) = C_{\phi(P)}, e_N(rP, Q) = e'_N(\phi(P), \frac{r}{d}\phi(Q)).$

Is this enough?

 Not proving knowledge of isogeny, but knowledge of action on N-torsion and degree mod N.

- $e_N(P, \deg(\phi)Q) = e'_N(\phi(P), \phi(Q)).$
- Knowledge of degree is important, because knowledge of action is trivial.
- To recover an isogeny from torsion information we need $\sqrt{\deg(\phi)}$ points.
- $N \simeq 2^{2\lambda} << 2^{\lambda^3/2} \simeq \sqrt{\deg(\phi)}$
- Maybe less points are sufficient for oriented isogenies.

Remarks

- Basso et al. gave a proof of isogeny knowledge based on SIDH squares.
- Their proof reveals the degree of the secret isogeny. No problem over \mathbb{F}_{p^2} .
- For CSIDH, $|e_i|$ can be computed. For CSIDH-512 there are 2^{74} possibilities.
- Use SeaSign, but it has very high computation time.
- CSI-FiSh requires the class group to be known which breaks sequentiality.
- Jao and Mokrani propose an interactive proof.
- Their proof has linear interaction in the number of participants.
- (Quantum) CGL-SNARG based VDF
- (Quantum) High degree isogenies and Kani's criterion

Questions