1. Электрический ток

Урок 15

Закон сохранения заряда. Закон Ома

Направленное движение электрических зарядов q – ток J.

$$J = dq/dt$$
.

Вектор плотности тока $\mathbf{j} = \rho \mathbf{v} = e n \mathbf{v}$.

Закон Ома в дифференциальной форме: $\mathbf{j} = \sigma \mathbf{E}$.

Для линейных проводников закон Ома J = U/R, где $R = \ell/(\sigma S)$.

Закон сохранения заряда в интегральной форме

$$dq/dt = -\oint j_{1n}dS,$$

а в дифференциальной форме: $\partial \rho/dt = -\operatorname{div} \mathbf{j}$.

Для стационарных токов div $\mathbf{j} = 0$, откуда следует граничное условие $j_{1n}|=j_{2n}|$.

Из потенциальности поля **E** следует $E_{1\tau}|=E_{2\tau}|$ или $\frac{j_{1\tau}}{\sigma_1}|=\frac{j_{2\tau}}{\sigma_2}|$. Потенциал ф удовлетворяет уравнению Пуассона

$$\Delta \varphi = -4\pi \rho$$
, где $\mathbf{E} = -\nabla \varphi$, $E_{1\tau}| = E_{2\tau}|$, $\sigma_1 E_{1n}| = \sigma_2 E_{2n}|$.

По найденному E и закону Oма $j = \sigma E$ находим вектор плотности тока j.

Правила Кирхгофа $\sum J_i = 0$, $\sum \mathcal{E}_k = \sum J_i R_i$.

Закон Джоуля–Ленца: мощность $N=\overline{\int}\,\sigma E^2 dV=\int \frac{j^2}{\sigma} dV.$

Вольт-амперная характеристика для вакуумного диода – закон «3/2»: $j=\frac{1}{9\pi}\sqrt{\frac{2e}{m}}\frac{U^{3/2}}{d^2}$

Заметим, что $Jd\ell=\mathbf{j}dV=
ho\mathbf{v}dV=rac{dq}{dV}\mathbf{v}dV=\mathbf{v}dq.$ 1.1. На полый металлический цилиндр, радиус крышек-торцов которого

равен а, падает параллельно оси цилиндра однородный поток электронов. Заряд электрона – e, скорость – v, число электронов в единице объема -n. Собираемый заряд через амперметр, подсоединенный к центру нижнего торца, уходит на землю. Найти распределение тока на торцах $j_{1,2}(R)$.

Решение

$$\frac{evn\pi r^2}{2\pi r} = j_1 = \frac{envr}{2}$$
$$j_2 = \frac{evn\pi a^2}{2\pi r} = \frac{evna^2}{2r}$$

 $j_{\text{верх}} = envr/2, j_{\text{нижн}} = enva^2/2r.$

1.2. (Задача 3.2) Пучок заряженных частиц с массой m, зарядом q и скоростью v_0 каждая влетает в пространство с электрическим полем $\mathbf E$ в направлении вдоль поля и проходит в нем путь ℓ . Найти плотность тока пучка на выходе, если на входе она равна j_0 , а также скорость и плотность числа частиц в пучке.

Решение

$$j = j_0$$

$$\frac{mv^2}{2} = \frac{mv_0^2}{2} + qE\ell$$

$$v = \sqrt{v_0^2 + \frac{2qE\ell}{m}}$$

$$n = \frac{j_0}{qv} = \frac{n_0v_0}{v}$$

$$\mathbf{j} = \mathbf{j}_0, v = \sqrt{v_0^2 + 2qE\ell/m}, n = j_0/(qv).$$

1.3. (Задача 3.3) В бесконечную проводящую с проводимостью σ и проницаемостью ε среду помещен заряд Q. Найти время релаксации, т. е. время, в течение которого заряд в этой точке уменьшится в e раз.

Решение Пусть в момент времени t внутри объема V, куда первоначально был помещен заряд Q_0 , находится заряд Q(t). За время dt из объема вытечет количество заряда

$$dQ = -\left(\int\limits_{S} (\mathbf{j} \, d\mathbf{s})\right) dt \,,$$

где $\int_S (\mathbf{j} \, d\mathbf{s})$ — полный ток через поверхность S, ограничивающий объем V; \mathbf{j} — вектор плотности тока на этой поверхности. Используя дифференциальный закон Ома $\mathbf{j} = \sigma \mathbf{E}$, находим, что

$$\frac{dQ}{dt} = -\frac{\sigma}{\varepsilon} \int_{S} (\mathbf{D} \, d\mathbf{s}) = -\frac{\sigma}{\varepsilon} \, 4\pi Q.$$

Решая это дифференциальное уравнение и используя начальное условие $Q(0) = Q_0$, получаем

$$Q = Q_0 e^{-\frac{4\pi\sigma}{\varepsilon}t} = Q_0 e^{-\frac{t}{\tau}},$$

откуда видно, что заряд уменьшается в e раз за время $\tau = \varepsilon/4\pi\sigma$.

1.4. В неоднородной проводящей среде с проводимостью $\sigma(\mathbf{r})$ и диэлектрической проницаемостью $\varepsilon(\mathbf{r})$ поддерживается стационарное распределение токов $\mathbf{j}(\mathbf{r})$. Найти объемное распределение зарядов $\rho(\mathbf{r})$ в этой среде.

Решение По закону Ома в дифференциальной форме $j = \sigma E$. По закону сохранения заряда в стационарном случае $\text{div } \mathbf{j} = 0$, т. е.

$$\operatorname{div}(\sigma \mathbf{E}) = \sigma \operatorname{div} \mathbf{E} + \mathbf{E} \operatorname{grad} \sigma = 0;$$

откуда

$$\operatorname{div} \mathbf{E} = -\mathbf{E}(\operatorname{grad} \sigma)/\sigma. \tag{1}$$

По теореме Гаусса в дифференциальной форме div $\mathbf{D}=4\pi\rho$; откуда

$$\rho = \frac{1}{4\pi} \operatorname{div}(\varepsilon \mathbf{E}) = \frac{1}{4\pi} (\mathbf{E} \cdot \operatorname{grad} \varepsilon + \varepsilon \operatorname{div} \mathbf{E}).$$

Взяв $\operatorname{div} \mathbf{E}$ из (1), получим

$$\rho = \frac{\mathbf{E}}{4\pi\sigma}(\sigma \operatorname{grad} \varepsilon - \varepsilon \operatorname{grad} \sigma) = \frac{\mathbf{j}}{4\pi\sigma^2}(\sigma \operatorname{grad} \varepsilon - \varepsilon \operatorname{grad} \sigma).$$

Отметим, что $\rho\equiv 0$ при $\frac{{\rm grad}\, \epsilon}{\epsilon}=\frac{{\rm grad}\, \sigma}{\sigma}.$ В отсутствие поляризуемости среды, когда ее свойства описываются лишь через проводимость $\sigma(\mathbf{r})$, получаем

$$\rho(\mathbf{r}) = -\frac{(\mathbf{j} \cdot \operatorname{grad} \sigma)}{4\pi\sigma^2}$$

при $\frac{\partial \rho}{\partial t} = 0$.

1.5. (Задача 3.4) Найти закон преломления линий тока на плоской поверхности раздела двух сред с проводимостями σ_1 и σ_2 .

Решение

В стационарном случае ${\rm div}\,{f j}=0,$ откуда $j_{1n}|=j_{2n}|.$ Нормальные составляющие к границе раздела двух сред непрерывны, иначе на границе будет изменяться заряд. С другой стороны, ${\rm rot}\,{f E}=0,$ откула следует непрерывности темпер альной составляющей напряженности электрического поля

$$E_{1\tau}=E_{2\tau}$$
. Так как $\mathbf{j}=\sigma\mathbf{E}$, то

$$j_{1\tau} = \sigma_1 E_{1\tau}, \qquad j_{2\tau} = \sigma_2 E_{2\tau} = j_{1\tau} \frac{\sigma_2}{\sigma_1}.$$

Поскольку $j_{1\tau}/j_{1n}=\operatorname{tg}\alpha$ (см. рисунок), то

$$\frac{\operatorname{tg}\,\alpha_1}{\operatorname{tg}\,\alpha_2} = \frac{\sigma_1}{\sigma_2}\,.$$

1.6. (Задача 3.5) Пространство между бесконечно длинными коаксиальными идеально проводящими цилиндрами радиусов a, b заполнено веществом с проводимостью $\sigma(r) = \alpha r^n$. Найти распределение потенциала в пространстве между цилиндрами и сопротивление на единицу длины. Потенциалы цилиндров: U(a) = 0, $U(b) = U_0$.

Решение

$$\begin{aligned} \operatorname{div} \mathbf{j} &= 0 \\ \operatorname{div} (\sigma \mathbf{E}) &= -(\nabla, \sigma \nabla \phi) = 0 \\ \sigma \Delta \phi + (\nabla \sigma, \nabla \phi) &= 0 \end{aligned}$$

В цилиндрической системе координат $\frac{\partial}{\partial \varphi}=0, \ \frac{\partial}{\partial z}=0.$

$$\alpha r^{n} \frac{1}{r} \frac{d}{dr} \left(r \frac{d\varphi}{dr} \right) + \alpha n r^{n-1} \frac{d\varphi}{dr} = 0$$
$$r^{n} \frac{d^{2} \varphi}{dr^{2}} + (n+1) r^{n-1} \frac{d\varphi}{dr} = 0$$
$$\varphi(r) = Ar^{k} + B$$

 $k_1 = -n, k_2 = 0, \varphi(a) = U_0, \varphi(b) = 0$

$$\varphi(r) = U_0 \frac{\left(\frac{b}{r}\right)^n - 1}{\left(\frac{b}{a}\right)^n - 1}$$

Ток на единицу длины вдоль z

$$I = 2\pi r j = -2\pi r \sigma(r) \nabla \varphi = 2\pi U_0 \frac{\alpha b^n}{\left(\frac{b}{a}\right)^n - 1} = \frac{U_0}{R}$$
$$R = \frac{\left(\frac{b}{a}\right)^n - 1}{2\pi \sigma_{\text{max}}}$$

При $\sigma = const$ задача о токе соответствует $\Delta \phi = 0$. Это можно использовать для аналогового (модельного) решения уравнения Лапласа. $\phi(r) = U_0[1 - (a/r)^n]/[1 - (a/b)^n]/[1 - (a/b$

1.7. (Задача 3.7) Из толстой длинной трубы с радиусами a и b, сделанной из

материала с проводимости σ , вырезана вдоль оси часть с угловым размером α_0 . К продольным плоскостям разреза подведено напряжение U. Найти распределение плотности тока j(r) по сечению отрезка трубы и сопротивление единицы длины. Краевыми эффектами пренебречь.

Решение В цилиндрической системе координат $j=j_{\alpha}$. Поскольку плотность тока j_{α} зависит только от r, то $E_{\alpha}=j_{\alpha}/\sigma$ зависит тоже только от r. Тогда через интеграл по дуге определенного радиуса разность потенциалов или напряжение запишется так:

$$U = \int_{0}^{(2\pi - \alpha_0)r} (\mathbf{E} d\mathbf{r}) = E_{\alpha}(r)(2\pi - \alpha_0)r,$$

откуда

$$E_{\alpha}(r) = \frac{U}{(2\pi - \alpha_0)r}$$

и, следовательно,

$$j_{\alpha}(r) = \frac{U\sigma}{(2\pi - \alpha_0)r}.$$

Найдем величину тока на единицу длины трубы:

$$J = \int_{a}^{b} j_{\alpha}(r) dr = \frac{U \sigma \ln b/a}{2\pi - \alpha_{0}}.$$

Поскольку J=U/R, то из последнего выражения следует, что сопротивление единицы длины трубы:

$$R = \frac{2\pi - \alpha_0}{\sigma \ln b/a} \,.$$

1.8. (Задача 3.9) Найти стационарное поле E в плоском конденсаторе с напряжением U, диэлектрик которого состоит из двух слоев толщины ℓ_1 , ℓ_2 с диэлектрическими постоянными ϵ_1 , ϵ_2 и проводимостями σ_1 , σ_2 . Определить свободный и связанный заряды на границе раздела сред.

Решение Есть ток утечки $\sigma_1 E_1 = \sigma_2 E_2$. $l_1 E_1 + l_2 E_2 = V$ - полное падение напряжения.

$$E_{1,2} = \frac{\sigma_{2,1}V}{l_1\sigma_2 + l_2\sigma_1}$$

Обратите внимание, что $1, 2 \to 2, 1$. На границе между слоями свободный заряд.

$$S\left(D_{2n}-D_{1n}\right)=4\pi\,\sigma_{\text{своб}},$$

откуда

$$\begin{split} \sigma_{\text{\tiny CBO6}} &= \frac{V \left(\sigma_1 \varepsilon_2 - \sigma_2 \varepsilon_1 \right)}{4 \pi \left(l_1 \sigma_2 + l_2 \sigma_1 \right)} \\ \sigma_{\text{\tiny CBS3}} &= \sigma' = \frac{1}{4 \pi} \left[\left(D_{2n} - E_{2n} \right) - \left(D_{1n} - E_{1n} \right) \right] \end{split}$$

Это все следует из

$$j_{1n} = j_{2n}$$

$$\sigma_1 E_{n1} = \sigma_2 E_{n2}$$

$$D_{n2} - D_{n1} \neq 0 = D_{n1} \left(\frac{\sigma_1}{\sigma_2} \frac{\varepsilon_2}{\varepsilon_1} - 1 \right)$$

К положительно заряженной обкладке конденсатора прилегает первый слой.

1.9. (Задача 3.18) Заземление осуществляется с помощью идеально проводящего шара радиуса a, наполовину утопленного в землю (проводимость земли $\sigma_1 = \text{const}$). Слой земли радиуса b, концентрический с шаром и прилегающий к нему, имеет искусственно повышенную проводимость σ_2 . Найти сопротивление такого заземлителя.

Решение Получим общее соотношение для сопротивления заземления

$$\int \mathbf{D}d\mathbf{s} = 4\pi Q = 4\pi CV = \varepsilon \int \mathbf{E}d\mathbf{s} = \frac{\varepsilon}{\sigma} \int \mathbf{j}d\mathbf{s} = \frac{\varepsilon}{\sigma}I$$

Считая C емкостью в вакууме и $\varepsilon = 1$.

$$4\pi CV = \frac{I}{\sigma}$$
$$V = IR$$

Тогда сопротивление заземления

$$R = \frac{1}{4\pi C\sigma}.$$

Емкость полусферы – $C_{\text{сф/2}} = \frac{b}{2}$ Емкость половины сферического конденсатора

$$2\left(\frac{1}{a} - \frac{1}{b}\right) = \frac{1}{C_{\text{cdpk/2}}}.$$

$$R = \frac{1}{4\pi} \left\{ \frac{1}{\sigma_1} \frac{2}{b} + \frac{2}{\sigma_2} \left(\frac{1}{a} - \frac{1}{b}\right) \right\}.$$

1.10. (Задача 3.19) Концы некоторой цепи заземлены с помощью двух идеально проводящих сфер (радиусы их a_1 и a_2), наполовину утопленных в землю, служащей вторым проводом. Расстояние между этими сферами $\ell \gg a_1$, a_2 , проводимость земли – σ . Найти сопротивление между заземлителями.

Решение

$$I_1 = \frac{\varphi_1}{R_1} = 4\pi C_1 \sigma_1 \varphi_1$$

$$I_2 = \frac{\varphi_2}{R_2} = -4\pi C_2 \sigma_2 \varphi_2$$

$$I_1 = I_2 = I$$

$$\varphi_1 - \varphi_2 = \frac{I}{4\pi} \left(\frac{1}{\sigma_1 C_1} + \frac{1}{\sigma_2 C_2} \right) = IR$$

$$R \approx \frac{1}{2\pi \sigma} \left(\frac{1}{a_1} + \frac{1}{a_2} \right)$$

1.11. (Задача 3.21) Оценить сопротивление заземления, выполненного в форме пластины с размерами $\ell\gg a\gg h$. Оценить напряженность электрического поля вокруг этого заземления, если заземление находится на глубине $r\gg \ell$. Найти «шаговое» напряжение (длина шага λ) вблизи этого заземления.

Решение

Temerate
$$C \approx \frac{l}{2\left(\pi + \ln l/a\right)}$$

$$I = \frac{U}{R}$$

$$R = \frac{2\left(\pi + \ln l/a\right)}{4\pi\sigma l} \approx \frac{1}{2\pi\sigma l}$$

$$\int E ds = E \cdot 4\pi R^2 = \frac{1}{\sigma} \int j ds = \frac{1}{\sigma} I$$

$$E = \frac{1}{4\pi R^2} \frac{U \cdot 2\pi\sigma l}{\pi + \ln l/a} \frac{1}{\sigma} \approx \frac{lU}{2R^2 \ln l/a}$$

$$IR = U$$

$$\Delta U_{\text{mar}} = E\lambda$$

$$R = \frac{\pi + \ln \ell/a}{2\pi\sigma \ell}, \ E \simeq \frac{U\ell}{2r^2 \ln \ell/a}, \ \Delta U_{\text{mar}} \simeq \frac{U\ell\lambda}{2r^2 \ln \ell/a}.$$

Решение 3.18.

Из уравнения Лапласа электрический потенциал

$$\varphi = \begin{cases} \frac{A_1}{r}, & r > b \\ \frac{A_2}{r} + B_2, & a < r < b \end{cases}$$

где r – расстояние до центра полусферы, A_1 , A_2 , B_2 – неизвестные коэффициенты.

Из непрерывности на границах электрического потенциала и тока

$$\begin{cases} \frac{A_1}{b} = \frac{A_2}{b} + B_2 \\ \frac{A_2}{a} + B_2 = U \\ \sigma_1 \frac{A_1}{b^2} = \sigma_2 \frac{A_2}{b^2} \end{cases}$$

откуда

$$A_{1} = \frac{U}{1/b + \frac{\sigma_{1}}{\sigma_{2}}(1/a - 1/b)}$$

Плотность тока

$$j = \sigma_1 \frac{A_1}{r^2} = \frac{U/r^2}{\frac{1}{\sigma_1 b} + \frac{1}{\sigma_2} \left(\frac{1}{a} - \frac{1}{b}\right)}.$$

Ток

$$I = 2\pi r^2 j = \frac{2\pi U}{\frac{1}{\sigma_1 b} + \frac{1}{\sigma_2} \left(\frac{1}{a} - \frac{1}{b}\right)}.$$

Сопротивление заземлителя

$$R = U / I = \frac{1}{2\pi} \left[\frac{1}{\sigma_1 b} + \frac{1}{\sigma_2} \left(\frac{1}{a} - \frac{1}{b} \right) \right]$$

Сопротивление заземлителя не зависит от диэлектрической проницаемости. Граничные условия для диэлектрической проницаемости выполняются за счёт появления свободного заряда на границе радиуса b плотностью:

$$\sigma_{coob} = \frac{D_{1}(b) - D_{2}(b)}{4\pi} = \frac{\varepsilon_{1}A_{1} - \varepsilon_{2}A_{2}}{4\pi b^{2}} = \frac{U}{4\pi b^{2}} \cdot \frac{\frac{\varepsilon_{1}}{\sigma_{1}} - \frac{\varepsilon_{2}}{\sigma_{2}}}{\frac{1}{\sigma_{1}b} + \frac{1}{\sigma_{2}}\left(\frac{1}{a} - \frac{1}{b}\right)}$$

Ответ:

Сопротивление заземлителя $R = \frac{1}{2\pi} \left[\frac{1}{\sigma_1 b} + \frac{1}{\sigma_2} \left(\frac{1}{a} - \frac{1}{b} \right) \right]$ (не зависит от диэлектрической проницаемости).

Комментарий (о главном секрете геофизиков).

В отсутствие электролита ($\sigma_1 = \sigma_2$) сопротивление заземлителя $R = \frac{1}{2\pi\sigma_1 a}$. С другой

стороны, при b>>a (и b σ_1 >>a σ_2) сопротивление заземлителя $R \approx \frac{1}{2\pi\sigma_2 a}$. То есть удельная

проводимость формации σ_1 замещается на удельную проводимость электролита σ_2 , которая может быть много больше. В качестве электролита наиболее часто используют солёную воду. Например, удельная проводимость океанской воды в среднем 4 См/м, в то время как удельная проводимость песчаных дюн в пустыне или вечномёрзлых грунтов на Крайнем Севере может быть не более 10^{-3} См/м. В таких условиях при отсутствии электролита геофизики при проведении измерений писают на электроды для обеспечения контакта (достаточно низкого сопротивления) заземлителя. Это и есть главный секрет геофизиков.