Novel Techniques in Private Telemetry Analysis

Trey Scheid tscheid@ucsd.edu

Tyler Kurpanek tkurpane@ucsd.edu **Bradley Nathanson** bnathanson@ucsd.edu

Christopher Lum

Yu-Xiang Wang
yuxiangw@ucsd.edu

cslum@ucsd.edu

Abstract

Your abstract goes here.

For your Quarter 1 Project, you won't link a website, but will link your code. For your Quarter 2 Proposal, you won't link either of these. For your actual Quarter 2 Project, you'll link both of these.

Website: https://endurable-gatsby-6d6.notion.site/DP-Telemetry-14556404e74780818747cbe76de2e04a?pvs=4[Notion until actual site is created]

Code: https://github.com/Trey-Scheid/Novel-Techniques-in-Private-Data-Analysis

1	Introduction
2	Methods
3	Results
4	Discussion
5	Conclusion
6	MTEX Typesetting Examples
	References
	Appendices

- 1 Introduction
- 2 Methods
- 3 Results
- 4 Discussion
- 5 Conclusion
- **6** Fig. Typesetting Examples
- 6.1 Land Basics
 - Here's a regular bulleted list item.
 - And another.

Here's a hyperlink. If you want to use a numbered list, you can experiment with:

- 1. This.
- 2. This.
- 3. And this.

Here's how you might include a snippet of actual code:

If you want to use syntax highlighting, look into the minted package. def f(x):

return 2 * x + 3

Here's how you might format a single equation:

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

And a chain of equations:

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2x_i \bar{x} + \bar{x}^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{2}{n} \bar{x} \sum_{i=1}^{n} x_i + \frac{\bar{x}^2}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2\bar{x}^2 + \bar{x}^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$$

6.2 Figure Examples

Here are some example figures. Figure 1 presents a scatter plot.

Figure 1: Yes, put a few words or sentences here explaining what is in the figure.

Figure 2 presents some summaries of the performance of our model. The left panel of Figure 2 presents something. The right panel of Figure 2 presents some other things.

6.3 Table Examples

Table 1 presents some summary of the data.

Table 2 presents some summaries of the performance of our model.

Figure 2: You can put figures side-by-side as well.

Table 1: Some Table Caption

Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	~100 ~10 up to 10 ⁶

Table 2: Some Other Table Caption

Method	Modality	Edit distance	BLEU	METEOR	Precision	Recall	F1
PDF	All	0.255	65.8	82.1	77.1	81.4	79.2
GROBID	All	0.312	55.6	71.9	74.0	72.1	73.0
	Tables	0.626	25.1	64.5	61.4	80.7	69.7
+ LaTeX OCR	Plain text	0.363	57.4	69.2	82.1	70.5	75.9
	Math	0.727	0.3	5.0	11.0	8.6	9.7
	All	0.071	89.1	93.0	93.5	92.8	93.1
Nougat base (350M*)	Tables	0.211	69.7	79.1	75.4	80.7	78.0
Nougal base (330M)	Plain text	0.058	91.2	94.6	96.2	95.3	95.7
	Math	0.128	56.9	75.4	76.5	76.6	76.5

6.4 Equations and Algorithms Examples

Algorithm 1 implements Fuzzy K-means.

Algorithm 1: Fuzzy K-means clustering algorithm

- 1. Choose primary centroids v_k
- 2. Compute the membership degree of all feature vectors in all clusters

$$u_{ki} = \frac{1}{\sum_{j=1}^{K} \left(\frac{D^2(x_i - \nu_k)}{D^2(x_i - \nu_j)}\right)^{\frac{2}{m-1}}}$$
(1)

Algorithm 2 calculates net activation.

Algorithm 2: Computing Net Activation

Input: $x_1, ..., x_n, w_1, ..., w_n$ **Output:** y, the net activation

 $y \leftarrow 0$;

for $i \leftarrow 1$ to n do

$$y \leftarrow y + w_i * x_i;$$

In Variational Autoencoder (VAE), we directly maximize the Evidence Lower Bound (ELBO) using the following Equations 2–4.

$$\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$
(2)

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p(z)}{q_{\phi}(z \mid x)} \right]$$
(3)

$$= \underbrace{\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})]}_{\text{reconstruction term}} - \underbrace{\mathcal{D}_{\text{KL}}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))}_{\text{prior matching term}}$$
(4)

6.5 Inline Citation Examples

Citation in text (no parentheses): use \cite{citekey}. For example, ?, ?.

Citation in parentheses: use \citep{citekey}. For example: (?), (?).

Appendices

A	1.1 Training Details
A	.2 Additional Figures
A	a.3 Additional Tables
A.1	Training Details
A.2	Additional Figures
A.3	Additional Tables