Genetické algoritmy [GA]

Jiří Cigler

Obsah:

- Úvod a historie.
- Trocha z biologie.
- Základní pojmy.
- Algoritmus.
- Možnosti využití.

Historie:

- 1960: I. Rechenberg první odborná práce na toto téma "Evolution strategies"
- 1975: John Holland první genetický algoritmus.
- 1992: John Koza aplikace genetického algoritmu => genetické programování.

Z biologie:

G – geny, sada genů tvoří genotyp

Pojmy:

- Chromozóm
- Populace
- Křížení
- Mutace
- Ohodnocovaní (fitness) funkce
- Selekce
- Pravděpodobnost křížení a mutace

Chromozóm:

- Základní prvek generace.
- Možnosti reprezentace: Binárně:

Permutací přirozených čísel:

Populace:

- Množina chromozómů tvoří populace.
- Každý chromozóm uchovává jedno řešení daného problému.
- První populace je náhodně vygenerována.
- Základním parametrem: velikost populace
 - Udává počet chromozómů v populaci.

Křížení:

- Ze dvou chromozómů (otec a matka) se spojením vytvoří jeden či více nových chromozómů (potomků).
- Nejvhodnější druh spojování je náhodné vybrání místa spojení a vzájemné překřížení jednotlivých částí (genů).

Mutace:

- Používá se, aby řešení neuvázlo v lokálním optimu.
- Jde o náhodnou genetickou změnu právě vytvořeného potomka.

Právě stvoření potomci:

Ohodnocovaní (fitness) funkce:

- Udává "sílu" daného chromozómu.
 - => má velký vliv na to, které chromozómy zůstanou ještě v populaci.

Selekce:

- Darwinova teorie: "nejlepší přežijí a stvoří potomky."
- Různé metody výběru "nejlepšího":
 - Ruletové kolo (rulet wheel selection)
 - Roztřídění nejlepších (rank selection)
 - Steady-State selection
 - Elitism

Ruleta:

- Algoritmus:
 - Spočti celkovou sumu všech fitness funkcí = S
 - Generuj náhodné číslo z intervalu < 0, S > = r
 - Procházej populaci a sčítej fitness fci.
 Když r < aktuální součet zastav a vrať daný chromozóm

Pravděpodobnost křížení a mutace:

- 2 nejzákladnější parametry GA.
 - Pravděpodobnost křížení:
 - Udává četnost křížení
 - 0% → nová populace je kopií původní.
 - 100% -> každý potomek je stvořen pomocí křížení
 - Pravděpodobnost mutace:
 - Udává četnost mutace nových potomků.
 - 100% → Každý chromozóm je pozměněn
 - 0 % → Ani jeden není pozměněn.

Algoritmus:

- Náhodně vytvoř populaci o n chromozómech.
- Ohodnoť každý chromozóm fitnes funkcí f(x).
- Vytvoř novou populaci:
 - Vyber "rodiče" z populace.
 - Vytvoř z rodičů potomky.
 - Zmutuj potomky
 - Přidej potomky do populace.
- Starou populaci nahraď novou.
- Zjisti zda není dosaženo konce. Je-li tomu tak pak zastav výpočet jinak pokračuj bodem 2

Možnosti využití:

- Optimalizační úlohy typu
 - Rozvrhy.
 - Automatické navrhování mechanických systémů.
 - Chování robotů.
 - Optimalizace rozmístění komunikací, telekomunikací
 - Teorie her.
 - A spousta dalších...

Použitá literatura:

- Wikipedia otevřená encyklopedie:
 - http://en.wikipedia.org
 - http://cs.wikipedia.org
- Introduction to genetic algorithms:
 - http://cs.felk.cvut.cz/~xobitko/ga/
- Genetic algorithm for TSP
 - http://www.heatonresearch.com