

KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY

TEORIE ELEKTRICKÝCH STROJŮ 2

Laboratorní cvičení

ZS 2017/2018

Metody měření momentu setrvačnosti

Měřící tým: Jan Kaska Jan Leffler Miloš Straka

Petr Kotek Martin Macháček

Vlastimil Ledvina Filip Ráček

Cvičení: Čt 5-6 Elaborát zpracoval: Jan Kaska

Datum měření: 5.10.2017 **Datum vypracování:** 6.11.2017

1 Zadání

Stanovte moment setrvačnosti soustrojí metodou přídavného setrvačníku. Moment setrvačnosti tohoto setrvačníku určete analytickým výpočtem nebo numericky.

2 Postup měření

Měření momentu setrvačnosti vychází z rovnice $\frac{J_r}{t_1} = \frac{J_r + J_s}{t_2}$, ze které je následně vyjádřen moment setrvačnosti soustrojí $J_r = J_s \cdot \frac{t_1}{t_2 - t_1}$. Moment setrvačnosti přídavného setrvačníku lze určit ze změřených rozměrů a hustoty daného materiálu buďto analyticky, anebo numericky, jako je tomu v našem případě. Dále je třeba určit časy t_1 a t_2 . Zde se vychází z rovnosti $M_E = M_T + M_J + M_Z$, kde M_E je elektromagnetický moment, M_T moment způsobený třením, M_J moment daný setrvačností soustrojí a M_Z je moment zátěžný. Momenty M_E a M_Z jsou zde nulové, protože motor je napájen pouze při rozběhu na požadované otáčky a při doběhu běží naprázdno. Rovnice se tedy zjednoduší na tvar $M_T + M_J = 0$, tedy $k_T \cdot \omega + J \cdot \frac{d\omega}{dt}$. Řešením této diferenciální rovnice je funkce $\omega(t) = \omega_0 \cdot e^{\frac{-k_T}{J} \cdot t}$, která po zlogaritmování obou stran přejde do přímkového tvaru, tedy $\ln(\omega(t)) = \ln(\omega_0) + \left(\frac{-k_T}{I}\right) \cdot t$.

Samotné měření potom probíhá jednou s přídavným setrvačníkem a jednou bez něho. V obou případech je motor roztočen na stejné otáčky, které jsou vždy na začátku kontrolovány optickým měřidlem. Čidlo otáček na hřídeli soustrojí je přes D/A převodník připojeno k digitálnímu osciloskopu. Po odpojení napájení je zaznamenáván průběh poklesu otáček až do úplného zastavení soustrojí. Tento průběh má zprvu přímkový tvar dle výše uvedené rovnice. V této oblasti je vybrána hodnota otáček pro kterou jsou odečteny časy t_1 a t_2 pro samotné soustrojí a pro soustrojí s přídavným setrvačníkem.

3 Štítek měřeného stroje

Tab. 1: Štítek měřeného stroje

- 110 1 - 1 10 11 11 11 11 11 11 11 1 1 1		
MOT3~	typ: AP 90L - 4	č. 2358531
Tvar - M 121	15 kW	28 kg
Y/A 380 / 220 V	3,6 / 6,2 A	50 Hz
1430 ot/min	Izolace: E	Rok v. 1971

4 Schéma zapojení

5 Naměřené a vypočítané hodnoty

Určení momentu setrvačnosti přídavného setrvačníku

Px = 0.0583

Py = 0.0583

Pz = 0.1158

Lxz = 0.0000

Lyz = 0.0000

177 = 0.0583

Ixz = 0.0000

Iyz = 0.0000

Izz = 0.0583

Obr. 1: Rozměry setrvačníku

Konstanta převodu napětí na otáčky

$$n = k \cdot U$$

$$k = \frac{n_{(t=0)}}{U_{max}} = \frac{1475}{2,2} \doteq 670,45 \text{ ot} \cdot \text{min}^{-1} \cdot \text{V}^{-1}$$

Příklad výpočtu:

$$n_{(t=22)} = k \cdot U_{(t=22)} = 670,45 \cdot 0,98 \doteq 657 \text{ ot} \cdot \text{min}^{-1}$$

Určení momentu setrvačnosti soustrojí

Časy t_1 a t_2 pro zvolené otáčky n = 600 ot · min⁻¹:

$$t_1 = 17,5 \text{ s}$$

$$t_2 = 35,9 \text{ s}$$

Moment setrvačnosti soustrojí:

$$J_r = J_s \cdot \frac{t_1}{t_2 - t_1} = 0.1158 \cdot \frac{17.5}{35.9 - 17.5} \doteq 0.11 \text{ kg} \cdot \text{m}^2$$

6 Grafy

Graf 1: Průběh otáček zpomalujícího soustrojí v čase

Graf 2: Průběh otáček soustrojí v čase s logaritmickou svislou osou

7 Závěr

Nejprve byly změřeny rozměry přídavného setrvačníku, ze kterých byl, na základě znalosti použitého materiálu, numericky určen jeho moment setrvačnosti. Tento moment vyšel $0,1158~{\rm kg\cdot m^2}$. Následně byl digitálním osciloskopem zaznamenáván průběh poklesu otáček soustrojí do úplného zastavení a to jak s přídavným setrvačníkem, tak bez něj. Výsledný průběh je zřetelný z grafu 1. V grafu 2 pak byla svislá osa otáček změněna na logaritmickou a z oblasti kde ještě přibližně platí lineární závislost byla zvolena hodnota $600~{\rm ot\cdot min^{-1}}$. Pro tuto hodnotu byly odečteny časy t_1 a t_2 . Tyto časy byly nakonec spolu s momentem setrvačnosti přídavného setrvačníku dosazeny do vzorce pro výpočet momentu setrvačnosti soustrojí, tento moment vyšel $0,11~{\rm kg\cdot m^2}$.