Fizyka dla Informatyki Stosowanej Zestaw nr 3

- 1. Sprawdzić, które z sił: $\vec{F} = (2xz^2 2y, -2x 6yz, 2x^2z 3y^2), \vec{G} = (x^2z, -xy, 5), \vec{H} = (-2x yz, z xz, y xy),$ są zachowawcze i znaleźć odpowiadające im potencjały.
- 2. Obliczyć pracę siły \vec{G} z poprzedniego zadania przy przejściu z punktu (-1,0,0) do punktu (1,0,0) (a) po odcinku wzdłuż osi x, (b) po górnej części okręgu leżącego w płaszczyźnie xy. Okrąg ma promień 1 i środek w początku układu współrzędnych.
- 3. Na sznurku o długości l wisi drewniany kloc o masie M. O jaki kąt odchyli się sznurek, jeśli kloc zostanie trafiony poziomo pociskiem karabinowym o masie m, lecącym z prędkością v? Zakładamy, że pocisk zatrzymuje się w klocu, a kloc nie obróci się po trafieniu pociskiem. Masę sznurka pomijamy.
- 4. Po równi pochyłej o wysokości h i kącie nachylenia θ zsuwa się klocek o masie m. Po osiągnięciu podstawy równi ciało porusza się dalej, aż do całkowitego zatrzymania się. Znaleźć energię kinetyczną klocka u podstawy równi i miejsce, gdzie klocek się zatrzyma. Jak długo trwa ruch klocka do momentu zatrzymania się? Współczynnik tarcia klocka o podłoże w czasie całego ruchu wynosi f.
- 5. Cząstka o masie m_1 zderza się ze spoczywającą cząstką o masie m_2 (LAB) i rozprasza się pod kątem θ_1 . Początkowa energia kinetyczna cząstki o masie m_1 przed zderzeniem wynosi T. Zderzenie jest elastyczne (sprężyste), więc całkowita energia kinetyczna układu przed zderzeniem i po zderzeniu jest taka sama. Znaleźć podstawowe równanie, z którego można policzyć $p_1 = |\vec{p_1}|$ w zależności od kąta θ_1 . Dla $m_1 = m_2$, rozważyć dokładnie przypadki (zderzenia centralne) (a) θ_1 = 0 stopni oraz (b) θ_1 = 180 stopni. Ile wynosi sumaryczna energia kinetyczna obu cząstek T_{cm} w układzie środka masy (CM), gdzie przed i po zderzeniu całkowity pęd układu wynosi zero ?

6. Wagon z zawieszonym u sufitu wahadłem matematycznym o długości l porusza się poziomo z przyspieszeniem a. Znaleźć okres drgań wahadła przy małych wychyleniach z położenia równowagi.

- 7. Policzyć poprawkę do przyspieszenia ziemskiego \vec{g} , pochodzącą od ruchu obrotowego Ziemi wokół własnej osi. Przyjąć szerokość geograficzną północną $\phi = 50$ stopni.
- 8. Wyznaczyć położenie środka masy układu trzech mas punktowych $m_1 = 1$ kg, $m_2 = 2$ kg, $m_3 = 3$ kg, które mają następujące wektory położenia: $\vec{r}_1 = (1, 2, 0)$ m, $\vec{r}_2 = (3, 2, 0)$ m, $\vec{r}_3 = (-4, 1, 0)$ m.
- 9. Wyznaczyć masę i położenie środka masy górnej połowy jednorodnej obręczy w kształcie okręgu o równaniu $x^2+y^2=R^2$ i gęstości liniowej λ .
- 10. Wyznaczyć masę i położenie środka masy jednorodnej półkuli o promieniu R i gęstości objętościowej ρ .
- 11. Znaleźć środek masy dla jednorodnego koła, w którym wycięto kolisty otwór.

- 12. Podać równanie rządzące ruchem rakiety, która startuje z powierzchni Ziemi i znajduje się w czasie swego ruchu w stałym ziemskim polu grawitacyjnym. Przyjąć, że masa rakiety maleje liniowo z czasem, a prędkość wyrzucanych gazów względem rakiety jest stała w czasie.
- 13. Na gładkim stole znajdują się dwie masy, m_1 i m_2 , połączone sprężyną o współczynniku sprężystości k i zaniedbywalnej długości. Jak będzie wyglądał (w jednym wymiarze) ruch układu przy następujących warunkach początkowych: $x_1(t=0)=0$, $x_1'(t=0)=0$, $x_2(t=0)=d$, $x_2'(t=0)=v_0$? ($x_1(t)$ i $x_2(t)$ to położenia obu mas.)

Jacek Golak