Міністерство освіти України

Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

3BIT

до практикуму № 3

з дисципліни

"Інфомаційні технології підтримки прийняття рішень"

на тему: "Відношення переваги при глобальній порівнюваності критеріїв"

Варіант 11

Виконала:

Студентка групи ІП-71

Каспрук Анастасія Андріївна

1. Результати.

Відношення	Опт. альтернативи за принципом домінування	Опт. альтернативиза принципом блокування
Парето	$X_R^* = \emptyset. X_R^{**} = \emptyset.$	$X_{R}^{0} = \{0, 6, 8, 12, 14, 16, 19 \}.$ $X_{R}^{00} = \{0, 6, 8, 12, 14, 16, 19 \}.$
Мажоритарне	$X_{P}^{*}=\{16\}.$	$X_{P}^{0} = \{ 16 \}.$
Лексикографічне		$X_{P}^{0} = \{ 16 \}.$
Березовського	$X_{P}^{*} = \emptyset.$	$X_{P}^{0} = \{ 6, 14, 16, 19 \}.$
Подиновського	$X_R^* = \emptyset. X_R^{**} = \emptyset.$	$X_{R}^{0} = \{ 6, 16, 19 \}. X_{R}^{00} = \{ 6, 16, 19 \}.$

2. Постановка задачі.

Задано множину з 20 альтернатив, які оцінені за множиною критеріїв $K = \{k_i\}, i = 1,...,12$.

У вхідному файлі міститься інформація:

- 1) оцінки альтернатив за критеріями множини K (20 рядків, j-й рядок це оцінки альтернативи j)
- 2) про порівнюваність критеріїв:
 - впорядкування критеріїв за спаданням важливості, яке відповідає відношенню строгогопорядку V1на множині K;
 - впорядкування класів рівноважливих критеріїв за зростанням важливості класів, яке відповідаєвідношенню квазіпорядку V2на множині К

Необхідно за інформацією про оцінки альтернатив за критеріями к1-к12 та інформацією про порівнюваність критеріїв побудувати на множині альтернатив відношенняпереваги та визначити оптимальні альтернативи, якщо:

- 1) інформація про порівнюваність критеріїв несуттєва (відн. Парето);
- 2) критерії рівноважливі (мажоритарне в.);
- 3) на множині критеріїв задане віднош. строгого порядку V1 (лексикографічне в.);
- 4) на множині критеріїв задане відношення квазіпорядку V2 (відн. Березовського);
- 5) для випадку рівноважливих критеріїв побудувати на множині альтернатив відношення Подиновського.

Завдання для варіанту 11:

```
10 1 5 1 9 2 3 9 6 7
1 1 5 1 5 2 1 9 6 7 6 4
1 1 5 1 5 2 1 8 4 7 5 4
  4 5 3 7 6 7 9 8 7 5 4
1 1 5 1 5 2 1 8 4 7 5 4
  8 5 10 5 8 10 8 7 7 5 7
8 8 5 10 7
            8 10 9
                   8
  2 5 3
          7
            8 10 3
       5
         9
            9 10
                 9
                    6
  5 5 3 4
            9 6
                 4
                   6
                      5
10 5 5 3 6 9 9 10 10
  5 4 1 5 8 7
                 3 10 4 7
  8 6 2 7 8 7 8 10
5
5 4 6 2 1 5 5 5 1 7 7
10 5 10 10 5 5 6 9 8 7 7 5
5 5 6 4 3 2 1 5 3 7 1 5
10 8 6 6 6 10 9 10 10 7 8 8
3 4 4 1 6 10 3 6 4 7 1 2
8 9 6 5 6 10 3 9 4 7 8 5
9 10 9 5 6 10 3 9 10 10 9 5
Відношення строгого порядку на мн-ні критеріїв
(впорядкування за спаданням важливості):
k1>k8>k4>k10>k12>k3>k11>k5>k2>k7>k6>k9
Відношення квазіпорядку на мн-ні критеріїв
(класи впорядковані за зростанням важливості):
{k6,k8,k12} < {k4,k5,k10,k11} < {k1,k2,k3,k7,k9}
```

3. Розв'язок.

Bi,	цно	ЭШЕ	н	19	Па	ape	; T() :												
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	1	1	1 1 1		1						0	0					0			0
1		1	1	Ō	$ar{1}$		Ō				0	0					0	0	0	0
2			1		$\overline{f 1}$							0								0
3	0		1	$ar{1}$	1						0	0	0	0	0	0	0	0	0	0
4	0		ī	0	ī	0	0	0			0	0	0	0	0	0	0	0	0	0
5	0		1 1	Ō	1 1	$ar{f 1}$	Ö	0			0	0	0	0	0	0	0	0	0	0
2345678910	0	0		$ar{f 1}$	1	1	1	1			0	0	0	0	0	0	0	0	0	0
7	0	0	0	Й	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ĕ	0	1	1	0	1	0		1	1	1	0	0	0	0	0	Ö	0	0	0	0
7		0	Ō	0	0				Ō	1	0	0	0	0	0	0	0	0	0	0
		1 0	1 0		1 0			0		1 0	1 0	1 1	0	0	0	0	0	0	0	0
11 12	0	٥	1	0	บ 1	0	٥	0	0	0	0	1	ש 1	Մ 1	0	0	0	0	0	0
12	٥	Ö	Ö	Ö	Ö	٥	٥	٥	Ö	0	0	Ō	ō	4	0	0	Ö	Ö	٥	0
14	Ö	1	ĭ	ŏ	ĭ	ŏ	ŏ	Ö	ŏ	ö	Ö	Ö	Ö	1 1	1	1	ö	Ö	Ö	Ö
12	ŏ	ò	ò	ŏ	ò	ŏ	ŏ	ŏ	ŏ	ŏ	Ö	Ö	Ö	ō	ō	1	ö	Ö	Ö	Ö
16	ŏ	ĭ	ĭ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	ĭ	ĭ	ĭ	ö	ĭ	ŏ	ī	ĭ		Ö	Ö
13 14 15 16 17	ŏ	ō	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ō	ō	ō	Ö	ō	Ö	ō	ō	7	ŏ	ŏ
ī Ř	ŏ	ŏ	ĭ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	ŏ	Ť		ŏ
19	ŏ	ĭ	ī	ŏ	ī	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ī	ŏ	1 1 1	${\color{red}1\\1}$	ĭ
							•	_							•					
	0	1 P	2	3	4 P	5 N	6	7	8	9 N	10	11	12 N	13	14	15	16	17	18	19
0	Ι	P	2 P P	7	P	7	<u>6</u> Z Z 0	×	7		N	ZZ	7	N	N	7	N	N	N	N
1	0	\mathbf{I}	P	N	P	7	N	N		Ν	0	N	N	N	0	N	0	N	М	0
2	2		Ī	0	Ī P	2	0	N		Ν	0	N	LU.	N	0	N	0	N	0	0
12345678910	N	N	Ā	Ĭ	P	N	Ō	ù	N	N	N	zzzzzzz	N	a i	N	a i	N	a i	М	N
4	0	0	Ĩ	Ш	Ī	ā	ē	N		N	0	ì	0		0	ì	0		0	0
5	ì	N	Ĭ.	N	Ľ	Ï	Ô	N	ù	N	N		N				2222		Z Z Z Z	zzzz
<u> </u>	Ĥ	Ņ	К	Н	г	г	Ï	ŗ	Ň	N	Ņ			ì		ı i	ì	ı i		•
3	H	N P	М	Ĥ	М	H	Щ	Ï	Щ	М	Ņ									8
ŏ	H	Ľ	Н	H	r	н	н	r	Ÿ	N P I	N		Z Z Z Z Z	1	zzzzzzzz					•
3 (0)	н	N P N	Н	н	ĸ	н	н	н	Щ	H	0 I	N P	•	•	•	•	0	•	•	•
	н			н		н	н	н	н	P N	Ö	I	п	•	•	•	Ö	•	•	•
45	н	н	Н	н	н	н	н	н	н	н	N	- L	0 I	-	-	-	N	-	+	+
12	H	٠	Į.	٠	Į.	٠	H	Ŋ	H	7.7	Ž	P	Ö	Ŧ	0	+	O	ð	ZZZZZ	zzzzz
14	*	В	В	H	В	H	+	Н	•	•	+	+	N	P	Ï	1	Ň	•	ì	ì
15		'n	'n	Ŋ,	'n	÷	3	Ñ	ij	ij.	•	•	•	Ň	ō	Ť	ò	3	Ö	Ò
16	ij	ZZAZA	P	ij	P	÷	÷	ij	ij	N P	N N P	N N P	•	P	Ň	Þ	Ï	P	Ň	Ň
17	Ñ	Ñ	19199 2 9 2 9 2 9 2	Ñ	PPZPZPZPZPZ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ô	ZZZZZZZZZZZZZ	ö	Ö
18	ZZZZZZZZZZZZZZZ	Ñ	Ë	Ñ	Ë	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Z Z Z	P N P P	Ň	P	Ĭ	ŏ
11 12 13 14 15 16 17 18	Ñ	N P	P P	<u>∞244444444444444449200000000000000000000</u>	P P	◎⊣宀ヱヱヱヱヱヱヱヱヱヱヱ	H0ZZZZZZZZZZZ	***************************************		7.7.7	Z Z Z	222	zzzzzz	ZZZZZZZZZZPHPZPZZZ	Ñ	P	ZZ	P P	Ī P	Ĭ
																_		_	_	

Оптимізація за домінуванням:

 $I \neq \emptyset$, тому шукаємо X_R^* та X_R^{**} . $X_R^* = \emptyset$, оскільки немає рядка зі всіма одиницями. $X_R^{**} = \emptyset$, оскільки немає рядка зі всіма одиницями, $X_R^* = \emptyset$.

Оптимізація за блокуванням:

 $I \neq \emptyset$, тому шукаємо X^0_R та X^{00}_R . $X^0_R = \{0, 6, 8, 12, 14, 16, 19\}$, оскільки у відповідних стовпцях присутні тільки нулі та І.

 $X_{R}^{00} = \{ 0, 6, 8, 12, 14, 16, 19 \}$, оскільки у відповідних стовпцях всі нулі, окрім клітинок, що характеризують пару альтернативи з самою собою.

```
1ажоритарне відношення:
                                                                                                                                                                  1200000010101000001011
                                                                                                                                                                                                                     15100101111101110101011
                                                                                                                                                                                                                                       <mark>6</mark>000000000000000000000
                                                                                                                                                                                                                                                                                           1900000000000000
                                                                                                                                                 100010110111010101011
                                                                                                                                                                                   1300010111111110111011
                                                                                                                                                                                                     <mark>4</mark>00000010101010001001
                                                                                                                                                                                                                                                        121001011111010111101011
                                                                                                                                                                                                                                                                          <mark>1</mark>800000010101000101001
                                                                                                                                 *000000H00000000
                                                                                 ^1001011011101010
                                                                     ,00000040004040404044
                                                          *110101111111111111111
                                              00000440404040404044
                                    1
1
0
                                                                                                                   00010110101010111011
            10101111101011
                       111111111111011
                                    111111111111111
                                                                                            1
0
1
1
                                                                                                        1001
                                                                                                                                                                                                                                                                                                1000
                                                                                 1
                                    *********************
                                                                     <u>,</u> z==+=+=+z+=+z++
                                                                                                                                <mark>-</mark>-----x-x-x-----
                                                                                                                                                 1
1
                                                                                                                                                                                    <mark>4</mark>000000000000000%000000
                                                                                                                                                                                                                      <mark>1</mark>540040444044404X4X44
                                                                                                                                                                                                                                       60000000000000z000
                                                                                                                                                                                                                                                        <mark>1</mark>8000000000000000000%0
                                                                                                                                                                                                                                                                                           X00404404X4444404044
                         42040444444444424
```

 $I = \emptyset$, тому шукаємо X_{P}^* .

 X_{P}^{*} ={16}, оскільки у рядку 16 всі одиниці, окрім клітинки, що характеризує пару (16, 16).

Оптимізація за блокуванням:

 $I = \emptyset$, тому шукаємо X^0_P .

 $X_{P}^{0} = \{16\}$, оскільки у стовпці 16 всі нулі.

```
Лексикографічне відношення:
0 1 2 3 4 5 6 7 8 9 10 11
                                                                                                                                                                        13100001111010101111011
                                                                                                                                                                                                                       1
1
                                                                                                                                                                                                                                       1
7100101111010111111011
                                                                                                                                                                                                                                                       1
8
10000010101000101001
                                                                                                                                                                                                                                                                      19100000000001000101000
                                                                                                                                                        121000011110100010101011
                                                                                                                                                                                       <mark>4</mark>0000000000100001000
                                                                                                                                                                                                       1
1
                                                                                                             100101111010111111111
                                                                                                   10000010001000101001
                                                                                                                                             11111111111110111111111
              0000000000000000000000000
                        10010111111011111111
                                                                                                                             00000000000000000000000
                                  1101011111110111111111
                                                                                       10000110101000101011
                                             100001111010111111011
                                                                  10000010101000101011
                                                                             100000000001000101001
                                                        1111110111111111
                                   244242444444444444
                                                                                        <u>^</u>40000040X40400040404
                                                                                                             *****************
                                                                  6
                                                                                                                        <mark>4</mark>000000000000%0000
                                                                                                                                                                                                       1
1
                                                                                                                                                                                                                                       .20000000000000000000000
```

 $I = \emptyset$, тому шукаємо X_P^* .

 $X_{P}^{*}=\{16\}$, оскільки у рядку 16 всі одиниці, окрім клітинки, що характеризує пару (16, 16).

Оптимізація за блокуванням:

 $I = \emptyset$, тому шукаємо X^0_P .

 $X_{P}^{0} = \{ 16 \}$, оскільки у стовпці 16 всі нулі.

```
Відношення
                                                          Березовського:
                                                                                                                                                                                                               <mark>1</mark>500000000000010101011
                                                                                                                                                                                                                              1600000000000000000000
                                                                                                                                                                                                                                               1700010110101010101011
                                                                                                                                                                                                                                                               18000000000000000001
                                                                                                                             1300000000000010101000
                                                                                                                                                                                                                                                                                190000000000000000000
                                                                                                                                             100000000001010001000
                                                                                                                                                             1200000000000001000
                                                                                                                                                                                             14000000000000000000
                                                                                                      <u></u>
                                                                                0000000000000000000000
                                                                                           -0000044040000000000
                                               00000040004040004000
                                                                     00000
              00000000000000000000000000
                                    1
1
0
                                                                                                                00000110101010101000
                                                          10
                                                          1
0
1
                                    1
0
1
                         10110111010101001
                                    1111101010101011
                                                          1111101010101011
                                                                     10000000000000
                                                                                                                                                                                                                                               NZ0000ZZZZOZOZOZOAOZZ
                                                                                                                                                                                              400020222202220202022
                                                                                                                                                                                                               1
1
1
1
1
                                                                                                                                                                                                                              <mark>6</mark>00000222200000202022
                                                                                                                                                                                                                                                                                ^z00z0zzzzzzzzzzoz00z
                                                                                                                 <u>• 2002044242424242422</u>
                                                                                                                                             ~~~~~~~~~~~~~~~~~~~~~~
                                                                                           ******************
                                                                     Z00000Z000ZZZZZZZZZZ
              Z00Z0XXXXXXXXXXXXXXXXXXX
                          4Z04044Z444Z4Z4Z4Z2
```

 $I = \emptyset$, тому шукаємо X_P^* .

 $X_{P}^{*} = \emptyset$, оскільки нема рядку зі всіма одиницями, окрім клітинки, що характеризує пару альтернативи з самою собою.

Оптимізація за блокуванням:

 $I = \emptyset$, тому шукаємо X_{P}^{0} .

 $X_{P}^{0} = \{6, 14, 16, 19\},$ оскільки у відповідних стовпцях всі нулі.

```
Відношення Подиновського:
                                                                                                                                            1000000000001000001001
                                                                                                                                                                               1200000010000010001000
                                                                                                                                                                                                                     <mark>4</mark>0000001000000101000
                                                                                                                                                                                                                                       151001011111111111111011
                                                                                                                                                                                                                                                          1
1
                                                                                                                                                                                                                                                                            171000011110111010101111
                                                                                                                  100000110101110101011
                                                                                                                                                                                                  1300010110101011101011
                                                                                                                                                                                                                                                                                                                 19000000000000000000000
                                                                                         <u>.</u>000000100000000000000
                                                                                                     <mark>^</del>00000111101010101011</mark>
                                                                *11111111111111010101011
                                                                            <mark>,</mark>000001100000000001000
                                                    00010110101000101011
                            1101011111111010101011
                                                                                                                                                                                                                                                                                                    00000010101000101011
                10000010101000101011
                                        1111111111111010101011
                                                     **Z00+042404Z20404Z44
                                                                             <sup>l)</sup>Z0000HH0Z0Z0Z0Z0H0ZZ
                                                                                                      <u>^</u>Z00Z04444Z4Z4Z404044
                                                                                                                  |
|-----|
|-----|
                                                                                                                                                                               1
1
                                                                                                                                                                                                   <mark>1</mark>10010441414141404044
                                                                                                                                                                                                                     400000Z40Z0Z0Z0H0400Z
                                                                                                                                                                                                                                                          <mark>6</mark>00000%0000000000%
                )+00Z0Z4Z4Z4ZZ2004044
                                         **************
```

 $I \neq \emptyset$, тому шукаємо X_R^* та X_R^{**} .

 $X_{R}^{*} = \emptyset$, оскільки немає рядка зі всіма одиницями.

 $X_{R}^{**} = \emptyset$, оскільки немає рядка зі всіма одиницями, $X_{R}^{*} = \emptyset$.

Оптимізація за блокуванням:

 $I \neq \emptyset$, тому шукаємо X^0_R та X^{00}_R . $X^0_R = \{ 6, 16, 19 \}$, оскільки у відповідних стовпцях присутні тільки нулі та І. $X_{R}^{00} = \{6, 16, 19\}$, оскільки у відповідних стовпцях всі нулі, окрім клітинок, що характеризують пару альтернативи з самою собою.

4. Лістинг програми.

Посилання на github-репозиторій з кодом:

https://github.com/KasprukNastia/decisions/tree/master/Lab3

Клас CriteriaRelation

```
/// <summary>
  /// Клас, що описує значення критеріїв для альтернатив
  /// </summary>
  public class CriteriaRelation
    /// <summary>
    /// Значення критеріїв для альтернатив
    /// </summary>
    public int[][] Evaluations { get; }
    /// <summary>
    /// Упорядкована за спаданням важливості множина критеріїв
    /// </summary>
    public IReadOnlyCollection<int> CriteriasImportance { get; }
    /// <summary>
    /// Класи впорядковані за зростанням важливості
    /// </summary>
    public IReadOnlyCollection<IReadOnlyCollection<int>>> CriteriasImportancesClasses { get; }
    /// <summary>
    /// К-сть критеріїв
    /// </summary>
    public int CriteriasCount { get; }
    /// <summary>
    /// К-сть альтернатив
    /// </summary>
    public int AlternativesCount { get; }
    /// <summary>
    /// Матриця дельта векторів
    /// </summary>
    private List<int>[][] _deltaVectors;
    /// <summary>
    /// Матриця дельта векторів
    /// </summary>
    public List<int>[][] DeltaVectors
      get
        if ( deltaVectors != null)
           return deltaVectors;
         deltaVectors = new List<int>[AlternativesCount][];
        for (int i = 0; i < AlternativesCount; i++)
           _deltaVectors[i] = new List<int>[AlternativesCount];
        for (int i = 0; i < AlternativesCount; i++)
           _deltaVectors[i][i] = Enumerable.Repeat(0, AlternativesCount).ToList();
           for (int j = i + 1; j < AlternativesCount; j++)
             _deltaVectors[i][j] = Evaluations[i].Select((elem, index) => elem - Evaluations[j][index]).ToList();
             _deltaVectors[j][i] = _deltaVectors[i][j].Select(elem => elem * -1).ToList();
```

```
}
    return deltaVectors;
  }
/// <summary>
/// Матриця сигма векторів
/// </summary>
private List<int>[][] _sigmaVectors;
/// <summary>
/// Матриця сигма векторів
/// </summary>
public List<int>[][] SigmaVectors
  get
    if(_sigmaVectors != null)
       return _sigmaVectors;
     _sigmaVectors = new List<int>[AlternativesCount][];
    for (int i = 0; i < AlternativesCount; i++)</pre>
       _sigmaVectors[i] = new List<int>[AlternativesCount];
    for (int i = 0; i < AlternativesCount; i++)
       _sigmaVectors[i][i] = Enumerable.Repeat(0, CriteriasCount).ToList();
       for (int j = i + 1; j < AlternativesCount; j++)
         _sigmaVectors[i][j] = DeltaVectors[i][j].Select(elem => elem > 0 ? 1 : elem == 0 ? 0 : -1).ToList();
         _sigmaVectors[j][i] = _sigmaVectors[i][j].Select(elem => elem * -1).ToList();
    return _sigmaVectors;
  }
}
/// <summary>
/// Значення критеріїв для альтернатив, упорядковані за спаданням важливості критеріїв
/// </summary>
private CriteriaRelation _sortedCriteriaRelation;
/// <summary>
/// Значення критеріїв для альтернатив, упорядковані за спаданням важливості критеріїв
/// </summary>
public CriteriaRelation SortedCriteriaRelation
{
  get
    if ( sortedCriteriaRelation != null)
       return sortedCriteriaRelation;
    int[][] sortedEvaluations = new int[AlternativesCount][];
    for (int i = 0; i < AlternativesCount; i++)</pre>
       sortedEvaluations[i] = new int[CriteriasCount];
    int counter = 0;
    foreach (int criteria in CriteriasImportance)
       for (int j = 0; j < AlternativesCount; j++)
         sortedEvaluations[j][counter] = Evaluations[j][criteria];
       counter++;
```

```
_sortedCriteriaRelation = new CriteriaRelation(sortedEvaluations);
    return sortedCriteriaRelation;
  }
}
/// <summary>
/// Відношення Парето
/// </summary>
private Relation _paretoRelation;
/// <summary>
/// Відношення Парето
/// </summary>
public Relation ParetoRelation
{
  get
    if ( paretoRelation != null)
       return _paretoRelation;
    int[][] paretoRelation = new int[AlternativesCount][];
    for (int i = 0; i < AlternativesCount; i++)</pre>
       paretoRelation[i] = new int[AlternativesCount];
    for(int i = 0; i < AlternativesCount; i++)
       for(int j = 0; j < AlternativesCount; j++)
         // альтернатива і переважає ј, якщо сигма вектор пари (i,j) не містить значень -1
         if (SigmaVectors[i][j].Any(elem => elem == -1))
           paretoRelation[i][j] = 0;
         else
           paretoRelation[i][j] = 1;
      }
    }
    _paretoRelation = new Relation(paretoRelation);
    return _paretoRelation;
  }
}
/// <summary>
/// Мажоритарне відношення
/// </summary>
private Relation _majorityRelation;
/// <summary>
/// Мажоритарне відношення
/// </summary>
public Relation MajorityRelation
  get
    if (_majorityRelation != null)
       return _majorityRelation;
    int[][] majorityRelation = new int[AlternativesCount][];
    for (int i = 0; i < AlternativesCount; i++)
       majorityRelation[i] = new int[AlternativesCount];
    for (int i = 0; i < AlternativesCount; i++)
       for (int j = 0; j < AlternativesCount; j++)
         // альтернатива і переважає ј, якщо сума елементів вектору сигма більша нуля
         if (SigmaVectors[i][j].Sum() > 0)
```

```
majorityRelation[i][j] = 1;
         else
           majorityRelation[i][j] = 0;
      }
    _majorityRelation = new Relation(majorityRelation);
    return _majorityRelation;
}
/// <summary>
/// Лексикографічне відношення
/// </summary>
private Relation _lexicographicRelation;
/// <summary>
/// Лексикографічне відношення
/// </summary>
public Relation LexicographicRelation
  get
    if (_lexicographicRelation != null)
       return _lexicographicRelation;
    int[][] lexicographicRelation = new int[AlternativesCount][];
    for (int i = 0; i < AlternativesCount; i++)
       lexicographicRelation[i] = new int[AlternativesCount];
    for (int i = 0; i < AlternativesCount; i++)
       for (int j = 0; j < AlternativesCount; j++)
         for each (int\ elem\ in\ Sorted Criteria Relation. Sigma Vectors [i][j])
           // альтернатива і переважає ј, якщо сигма вектор має на своєму початку
           // будь-яку кількість нулів, а потім одиницю
           if (elem == 0)
             continue;
           if(elem == 1)
             lexicographicRelation[i][j] = 1;
             lexicographicRelation[i][j] = 0;
           break;
      }
    _lexicographicRelation = new Relation(lexicographicRelation);
    return _lexicographicRelation;
}
/// <summary>
/// Відношення Березовського
/// </summary>
private Relation _BerezovskyRelation;
/// <summary>
/// Відношення Березовського
/// </summary>
public Relation BerezovskyRelation
{
  get
    if (_BerezovskyRelation != null || CriteriasImportancesClasses.Count == 0)
```

```
return BerezovskyRelation;
    List<CriteriaRelation> criteriaRelationsByClasses =
      new List<CriteriaRelation>(CriteriasImportancesClasses.Count);
    int[][] sortedEvaluations;
    int counter:
    // Формування CriteriaRelation для кожного з класів CriteriasImportancesClasses
    foreach (IReadOnlyCollection<int> criteriaClass in CriteriasImportancesClasses)
      sortedEvaluations = new int[AlternativesCount][];
      for (int i = 0; i < AlternativesCount; i++)
         sortedEvaluations[i] = new int[criteriaClass.Count];
      counter = 0;
      foreach (int criteria in criteriaClass)
         for (int j = 0; j < AlternativesCount; j++)
           sortedEvaluations[j][counter] = Evaluations[j][criteria];
         counter++;
      criteriaRelationsByClasses.Add(new CriteriaRelation(sortedEvaluations));
    }
    Relation currentBerezovskyRelation = criteriaRelationsByClasses.First().ParetoRelation;
    List<char> possibleCharacteristics = new List<char> { 'P', 'N', 'I' };
    Relation currentClassParetoRelation;
    int[][] nextBerezovskyRelation;
    // Ітераційний процес для формування відношення Березовського
    for (int criteriaClass = 1; criteriaClass < criteriaRelationsByClasses.Count; criteriaClass++)
      currentClassParetoRelation = criteriaRelationsByClasses[criteriaClass].ParetoRelation;
      nextBerezovskyRelation = new int[AlternativesCount][];
      for (int i = 0; i < AlternativesCount; i++)
         nextBerezovskyRelation[i] = new int[AlternativesCount];
      for (int i = 0; i < AlternativesCount; i++)
         for (int j = 0; j < AlternativesCount; j++)
         {
           if ((currentClassParetoRelation.Characteristic[i][j].Equals('P') &&
             possibleCharacteristics.Any(c => c.Equals(currentBerezovskyRelation.Characteristic[i][j]))) | |
             (currentClassParetoRelation.Characteristic[i][j].Equals('I') &&
             currentBerezovskyRelation.Characteristic[i][j].Equals('P')))
             nextBerezovskyRelation[i][j] = 1;
             nextBerezovskyRelation[j][i] = 0;
           else if (currentClassParetoRelation.Characteristic[i][i].Equals('I') &&
             currentBerezovskyRelation.Characteristic[i][j].Equals('I') &&
             criteriaClass != criteriaRelationsByClasses.Count - 1)
             nextBerezovskyRelation[i][j] = nextBerezovskyRelation[j][i] = 1;
           else
             nextBerezovskyRelation[i][j] = 0;
      currentBerezovskyRelation = new Relation(nextBerezovskyRelation);
    }
     BerezovskyRelation = currentBerezovskyRelation;
    return BerezovskyRelation;
/// <summary>
```

}

```
/// Відношення Подиновського
/// </summary>
private Relation PodinovskyRelation;
/// <summary>
/// Відношення Подиновського
/// </summary>
public Relation PodinovskyRelation
  get
    if ( PodinovskyRelation != null)
      return _PodinovskyRelation;
    // Сортування значень критеріїв для кожної з альтернатив
    int[][] sortedEvaluations = new int[AlternativesCount][];
    for (int i = 0; i < AlternativesCount; i++)
      sortedEvaluations[i] = Evaluations[i].OrderByDescending(e => e).ToArray();
    var podinovskyCriteriaRelation = new CriteriaRelation(sortedEvaluations);
    // Отримання відношення Парето для відсортованих критеріїв
    _PodinovskyRelation = podinovskyCriteriaRelation.ParetoRelation;
    return PodinovskyRelation;
  }
}
public CriteriaRelation(int[][] evaluations,
  HashSet<int> criteriasImportance = null,
  List<HashSet<int>> criteriasImportancesClasses = null)
  Evaluations = evaluations ?? throw new ArgumentNullException(nameof(evaluations));
  AlternativesCount = evaluations.Length;
  if (AlternativesCount > 0)
    CriteriasCount = evaluations[0].Length;
  if (criteriasImportance == null)
    criteriasImportance = Enumerable.Range(0, CriteriasCount).ToHashSet();
  else
    CriteriasImportance = criteriasImportance;
    if (criteriasImportance.Count != CriteriasCount)
      throw new ArgumentException($"The number of criterias does not match");
    if (CriteriasImportance.Any(elem => elem < 0 | | elem >= CriteriasImportance.Count))
      throw new ArgumentException($"{nameof(criteriasImportance)} contains not existing criteria");
  }
  CriteriasImportancesClasses = criteriasImportancesClasses;
  for (int i = 1; i < AlternativesCount; i++)
    if (evaluations[i].Length != CriteriasCount)
      throw new ArgumentException($"Evaluation must be provided only for {CriteriasCount} criterias");
```

Клас Relation

```
/// <summary>
/// Клас, що описує відношення
/// </summary>
public class Relation
  /// <summary>
  /// Зв'язки відношення
  /// </summary>
  public int[][] Connections { get; }
  /// <summary>
  /// Розмірність відношення
  /// </summary>
  public int Dimension { get; }
  private char[][] _characteristic;
  /// <summary>
  /// Характеристика відношення у множинах 'І', 'Р', 'N'
  /// </summary>
  public char[][] Characteristic
    get
       if (_characteristic != null)
         return _characteristic;
       _characteristic = new char[Dimension][];
       for (int i = 0; i < Dimension; i++)
         _characteristic[i] = new char[Dimension];
      for (int i = 0; i < Dimension; i++)
         for(int j = i; j < Dimension; j++)
         {
           if(Connections[i][j] == 1 && Connections[j][i] == 1)
              _characteristic[i][j] = _characteristic[j][i] = 'I';
           else if(Connections[i][j] == 0 && Connections[j][i] == 0)
              _characteristic[i][j] = _characteristic[j][i] = 'N';
           else if (Connections[i][j] == 1 && Connections[j][i] == 0)
              _characteristic[i][j] = 'P';
             _characteristic[j][i] = '0';
           else if (Connections[i][j] == 0 \&\& Connections[j][i] == 1)
              _characteristic[j][i] = 'P';
              _characteristic[i][j] = '0';
       return _characteristic;
  }
  public Relation(int[][] connections)
    Connections = connections ?? throw new ArgumentNullException(nameof(connections));
    Dimension = connections.Length;
```

```
for(int i = 0; i < Dimension; i++)
    if (connections[i].Length != Dimension)
      throw new ArgumentException($"{nameof(connections)} must be represented as a square matrix");
    for (int j = 0; j < Dimension; j++)
      if (connections[i][j] != 0 && connections[i][j] != 1)
         throw new ArgumentException($"{nameof(connections)} must be represented only as 0 or 1 digits");
  }
}
/// <summary>
/// Отримання верхнього перерізу для вершини vertex
/// </summary>
public HashSet<int> GetUpperSection(int vertex)
  if (vertex < 0 | | vertex >= Dimension)
    throw new ArgumentException($"The vertex {vertex} does not belong to the relation");
  HashSet<int> upperSection = new HashSet<int>();
  for (int i = 0; i < Dimension; i++)
    if (Connections[i][vertex] == 1)
      upperSection.Add(i);
  return upperSection;
/// <summary>
/// Отримання нижнього перерізу для вершини vertex
/// </summary>
public HashSet<int> GetLowerSection(int vertex)
  if (vertex < 0 | | vertex >= Dimension)
    throw new ArgumentException($"The vertex {vertex} does not belong to the relation");
  HashSet<int> lowerSection = new HashSet<int>();
  for (int i = 0; i < Dimension; i++)
    if (Connections[vertex][i] == 1)
      lowerSection.Add(i);
  }
  return lowerSection;
}
/// <summary>
/// Приведення відношення до рядка
/// </summary>
public override string ToString() =>
  string.Join(Environment.NewLine, Connections.Select(arr => string.Join(' ', arr)));
/// <summary>
/// Приведення характеристики відношення до рядка
/// </summary>
public string CharateristicToString() =>
  string.Join(Environment.NewLine, Characteristic.Select(arr => string.Join(' ', arr)));
```

}

Клас Program

```
class Program
    static void Main(string[] args)
      CriteriaRelation criteriaRelation = ReadCriteriaRelation();
      Console.WriteLine("Сигма вектори:");
      PrintCriteriaRelationVectors(criteriaRelation, () => criteriaRelation.SigmaVectors);
      Console.WriteLine("Відношення Парето:");
      PrintRelation(criteriaRelation.ParetoRelation, () => criteriaRelation.ParetoRelation.Connections);
      PrintRelation(criteriaRelation.ParetoRelation, () => criteriaRelation.ParetoRelation.Characteristic);
      Console.WriteLine("Мажоритарне відношення:");
      PrintRelation(criteriaRelation.MajorityRelation, () => criteriaRelation.MajorityRelation.Connections);
      PrintRelation(criteriaRelation.MajorityRelation, () => criteriaRelation.MajorityRelation.Characteristic);
      Console.WriteLine("Лексикографічне відношення:");
      PrintRelation(criteriaRelation.LexicographicRelation, () => criteriaRelation.LexicographicRelation.Connections);
      Print Relation (criteria Relation. Lexicographic Relation, () => criteria Relation. Lexicographic Relation. Characteristic); \\
      Console.WriteLine("Відношення Березовського:");
      \label{lem:printRelation} PrintRelation (criteria Relation. Berezovsky Relation, () => criteria Relation. Berezovsky Relation. Connections);
      PrintRelation(criteriaRelation.BerezovskyRelation, () => criteriaRelation.BerezovskyRelation.Characteristic);
      Console.WriteLine("Відношення Подиновського:");
      PrintRelation (criteria Relation. Podinov sky Relation, () => criteria Relation. Podinov sky Relation. Connections); \\
      PrintRelation(criteriaRelation.PodinovskyRelation, () => criteriaRelation.PodinovskyRelation.Characteristic);
      WriteResults(criteriaRelation);
    }
    public static CriteriaRelation ReadCriteriaRelation()
      string directoryPath = Directory.GetParent(Directory.GetCurrentDirectory()).Parent.Parent.FullName;
      string fileName = $"{directoryPath}\\relations_var11.txt";
      string[] allFileLines = File.ReadAllLines(fileName);
      int[][] relation = new int[20][];
      for (int i = 0; i < 20; i++)
         relation[i] = allFileLines[i].Split(' ')
           .Where(s => !string.IsNullOrWhiteSpace(s))
           .Select(s => int.Parse(s))
           .ToArray();
      }
      HashSet<int> criteriasImportance =
         new HashSet<int> { 1, 8, 4, 10, 12, 3, 11, 5, 2, 7, 6, 9 }.Select(c => c - 1).ToHashSet();
      List<HashSet<int>> criteriasImportancesClasses =
         new List<HashSet<int>>
           new HashSet<int> { 6, 8, 12 }.Select(c => c - 1).ToHashSet(),
           new HashSet<int> { 4, 5, 10, 11}.Select(c => c - 1).ToHashSet(),
           new HashSet<int> { 1, 2, 3, 7, 9}.Select(c => c - 1).ToHashSet()
         };
      return new CriteriaRelation(relation, criteriasImportance, criteriasImportancesClasses);
    public static void WriteResults(CriteriaRelation criteriaRelation)
      string directoryPath = Directory.GetParent(Directory.GetCurrentDirectory()).Parent.Parent.FullName;
      string fileName = $"{directoryPath}\\Var11-КаспрукАнастасія.txt";
      File.AppendAllLines(fileName,
         new List<string>
           "1",
```

```
criteriaRelation.ParetoRelation.ToString(),
       "2",
       criteriaRelation.MajorityRelation.ToString(),
       criteriaRelation.LexicographicRelation.ToString(),
       "4",
       criteriaRelation.BerezovskyRelation.ToString(),
       criteriaRelation.PodinovskyRelation.ToString(),
    });
}
public static void PrintRelation<T>(Relation relation, Func<T[][]> printingSelector)
  T[][] toPrint = printingSelector();
  Console.ForegroundColor = ConsoleColor.Green;
  Console.WriteLine($" {string.Join('', Enumerable.Range(0, relation.Dimension))}");
  for (int i = 0; i < relation.Dimension; i++)
    Console.Write($"{i}{string.Concat(Enumerable.Repeat('', 3 - i.ToString().Length))}");
    Console.ForegroundColor = ConsoleColor.White;
    for (int j = 0; j < relation.Dimension; j++)
      Console. Write (\$''\{toPrint[i][j]\}\{string.Concat(Enumerable.Repeat('', (j+1).ToString().Length))\}'');
    Console.WriteLine();
    Console.ForegroundColor = ConsoleColor.Green;
  Console.ForegroundColor = ConsoleColor.White;
  Console.WriteLine();
public static void PrintCriteriaRelationVectors(CriteriaRelation criteriaRelation, Func<List<int>[][]> printingSelector)
  List<int>[][] toPrint = printingSelector();
  for (int i = 0; i < criteriaRelation.AlternativesCount; i++)
    for(int j = 0; j < criteriaRelation.AlternativesCount; j++)</pre>
       Console.WriteLine($"[{i}][{j}]: {string.Join('', toPrint[i][j])}");
    }
  Console.WriteLine();
```

5. Опис класів. Перелік розроблених функцій на методів.

Клас	Властивість	Опис	Тип значення,		
			що повертає		
CriteriaRel	Evaluations	Значення критеріїв для	int[][]		
ation		альтернатив			
	CriteriasImportance	Упорядкована за спаданням	IReadOnlyCollectio		
		важливості множина критеріїв	n <int></int>		
	CriteriasImportancesClasses	Класи критеріїв впорядковані	IReadOnlyCollectio		
		за зростанням важливості	n <ireadonlycollect< td=""></ireadonlycollect<>		
			ion <int>></int>		
	CriteriasCount	К-сть критеріїв	int		
	AlternativesCount	К-сть альтернатив	int		
	DeltaVectors	Матриця дельта векторів	List <int>[][]</int>		
	SigmaVectors	Матриця сигма векторів	List <int>[][]</int>		
	SortedCriteriaRelation	Значення критеріїв для	CriteriaRelation		
		альтернатив, упорядковані за			
		спаданням важливості критеріїв			
	ParetoRelation	Відношення Парето	Relation		
	MajorityRelation	Мажоритарне відношення	Relation		
	LexicographicRelation	Лексикографічне відношення	Relation		
	BerezovskyRelation	Відношення Березовського	Relation		
	PodinovskyRelation	Відношення Подиновського	Relation		

Клас	Ф-ція/Метод	Параметри	Опис	Значення,	
				що повертає	
Relation	GetUpperSectio	int vertex – номер вершини	Отримання	HashSet <int> -</int>	
	n		верхнього	верхній	
			перерізу для	переріз	
			вершини		
	GetLowerSectio	int vertex – номер вершини	Отримання	HashSet <int> -</int>	
	n		нижнього	нижній	
			перерізу для	переріз	
			вершини		

6. Висновки.

В будь-яких системах з обмеженими ресурсами виникають задачі їх раціонального розподілу, що, враховуючи велику кількість обмежень та критеріїв вибору, зробити складно. Методи оптимізації застосовуються як у повсякденному житті (розрахунок бюджету, оптимізація витрат), так і при функціонуванні держави, підприємств, об'єктів інфраструктури (вибір оптимального портфелю інвестицій, розрахунок бюджету країни, мінімізація часу виконання проекту, витрати на рекламу тощо).

У даній лабораторній роботі ми мали можливість навчитися розв'язувати задачі багатокритеріальної опитимізації при глобальній порявнюваності критеріїв.

Враховуючи інформацію про порівнюваність критеріїв, шукати оптимальні альтернативи можна по-різному:

- якщо інформація про порівнюваність критерії несуттєва, шукати оптимальні альтернативи можна побудувавши на множині альтернатив відношення Парето;
- > якщо критерії рівноважливі, треба будувати мажоритарне відношення;
- якщо на множині критеріїв задано відношення строгого порядку, варто будувати лексикографічне відношення;
- якщо на множині критеріїв задано відношення квазіпорядку, треба будувати відношення Березовського;
- **>** для випадку рівноважливих критеріїв можна побудувати на множині альтернатив відношення Подиновського.

Після побудови відновідного відношення на множині альтернатив, далі шукати на ньому оптимальні альтернативи наййзручніше використовуючи принципи домінування або блокування.

У результаті ми навчилися шукати оптимальні альтернативи для відношень переваги при глобальній порівнюваності критеріїв та змогли знайти рішення задачі у відповідності з варіантом.