CTM - TD 4

Réactions acido-basiques

I - Acide fort, base forte

- 1. Calculer le pH et les concentrations des espèces présentes à l'équilibre dans une solution d'acide chlorhydrique à la concentration $C_a = 1,0 \cdot 10^{-2} \, \text{mol L}^{-1}$.
- 2. Même question pour une solution d'hydroxyde de sodium de concentration $C_b = 2.0 \cdot 10^{-1} \, \text{mol} \, \text{L}^{-1}$.

II - Acide fort ou faible

Une solution d'acide benzoïque C_6H_5COOH , de concentration $C = 10^{-2} \text{ mol L}^{-1}$, a un pH de 3,1.

- 1. Montrer que cet acide est faible.
- 2. Déterminer le p K_a du couple acide-base.

III - Dissociation d'un acide faible

L'acide formique de formule HCO_2H (noté AH) est un monoacide faible de pK_a égal à 3,8.

- 1. Dresser le diagramme de prédominance des espèces acido-basiques en fonction du pH de la solution.
- 2. Calculer le taux de dissociation α de l'acide d'une solution d'acide formique dont la concentration initiale est égale à $c_0 = 10^{-1} \, \text{mol} \, \text{L}^{-1}$.
- 3. Quelle est la valeur du pH lue sur un pH-mètre trempé dans la solution précédente?

IV - Diagramme de distribution

On donne ci-dessous le diagramme de distribution des espèces acido-basiques de l'acide sulfureux H₂SO₃.

- 1. Attribuer les courbes (a), (b) et (c) aux espèces acido-basiques de l'acide sulfureux, en justifiant.
- 2. Déterminer les valeurs des constantes d'acidité successives des couples acido-basiques de l'acide sulfureux.
- 3. Tracer le diagramme de prédominance des espèces acido-basiques de l'acide sulfureux.
- 4. On considère une solution de pH = 3, telle que la concentration totale en espèces soufrées soit égale à $c_t = 2.0 \cdot 10^{-3} \,\text{mol}\,\text{L}^{-1}$. Calculer les concentrations de chacune des espèces soufrées dans la solution.

V - État d'équilibre d'un ampholyte

La glycine est un acide aminé de formule $H_3N^+ - CH_2 - COO^-$, notéAH. Il participe à deux couples acidebasiques : AH_2^+/AH de $pK_{a1} = 2, 3$ et AH/A^- de $pK_{a2} = 9, 6$.

- 1. Dresser le diagramme de prédominance des espèces acido-basiquesen fonction du pH de la solution.
- 2. Déterminer l'état d'équilibre d'une solution aqueuse dans laquelle la glycine est introduite à la concentration initiale $c_0 = 1, 0 \cdot 10^{-1} \text{ mol L}^{-1}$
- 3. Déterminer le pH final de la solution.

VI - Titrage de l'acide sulfurique

Une solution (A), de volume $V_a = 100 \,\mathrm{mL}$, contient de l'acide sulfurique à la concentration C_a . Cette solution est dosée par une solution (B) de soude, à la concentration $C_b = 0.1 \,\mathrm{mol}\,\mathrm{L}^{-1}$.

L'acide sulfurique est fort pour sa première acidité, mais faible pour sa seconde : $pK_a = 2$.

1. Écrire les réactions de dissolution de l'acide sulfurique H_2SO_4 et de l'hydroxyde de sodium NaOH dans l'eau. En déduire les quantités en ions HSO_4^- et H_3O^+ dans (A), et d'autre part la quantité en ions HO^- dans un volume V_b de solution (B).

On verse un volume $V_b = 20 \,\mathrm{mL} \,\mathrm{de} \,(B) \,\mathrm{dans} \,(A)$.

- 2. Écrire les équations des réactions susceptibles de se produire dans le mélange.
- 3. Déterminer l'ordre dans lequel s'effectuent ces réactions.
- 4. Sachant que pour $V_b = 20 \,\mathrm{mL}$, l'équivalence de la deuxième réaction est atteinte, en déduire la valeur de C_a .

VII - Mélange d'acides et de bases

Dans un litre d'eau à $298\,\mathrm{K}$, on introduit $0.15\,\mathrm{mol}$ de chlorure d'hydrogène HCl, $0.10\,\mathrm{mol}$ d'hydrogénosulfure de sodium NaHS et $0.15\,\mathrm{mol}$ d'acétate de sodium CH₃COONa, noté de manière abrégé AcONa par la suite. Déterminer la composition du système et le pH à l'équilibre.

```
\begin{array}{l} \textit{Donn\'ees \`a} \ T = 298 \, \mathrm{K} : \\ \mathrm{p} K_{\mathrm{a}1} = \mathrm{p} K_{\mathrm{a}} (\mathrm{H_2S/HS^-}) = 7,0 \, ; \ \mathrm{p} K_{\mathrm{a}2} = \mathrm{p} K_{\mathrm{a}} (\mathrm{HS^-/S^{2^-}}) = 13,0 \, ; \ \mathrm{p} K_{\mathrm{a}3} = \mathrm{p} K_{\mathrm{a}} (\mathrm{AcOH/ACO^-}) = 4,8. \end{array}
```