Predicting the Severity of Pedestrian Collisions in the City of Toronto

2023-01-09

Key Points:

- 1. Location specific variables and age 65 or more are important drivers of the likelihood of fatality or major injury from pedestrian collision.
- 2. The model under-performed relative to chance, thus statistical inference from the model will be unreliably.
- 3. In the absence of reliable information, the qualitative insights from the model could be important in designing policies for road safety in the City of Toronto.
- 4. More future work, including more data collection and feature engineering, could help solve the poor predictive performance of the model.

1. Background

Road safety is important for any society. It can enhance economic growth by ensuring the safe movements of resources, including human capital, across an economy. For this reason, the City of Toronto's Vision Zero Road Safety Plan is critical for the sustenance of its economy. Therefore, the goal of this project is to support this plan by investigating the factors that influence the probability that a pedestrian collision will result in serious injury or fatality.

2. Modelling Methodology

I extracted pedestrian collision data from the involved_persons data (maintained the data where involved_persons was equal to pedestrian). The outcome variable in this project is a binary variable, which equals 1 if the pedestrian collision resulted in major injury or fatality and 0 otherwise. Therefore, I used a classification algorithm (Random Forest) to model the probability that the outcome variable is equal to 1. The analysis was conducted with the R statistical programming language. To ensure the complete reproducibility of the results of this study, I employed the "Renv" package to document all the packages, including their metadata, I used in the project. Also, I used GitHub and Git to version control the project and to promote collaboration. More information on data wrangling, including dealing with missing and empty information, creating the final set of explanatory dummy variables, and duplicate rows, is provided in the file: exploration.pdf located in the root folder of this project. However, some of the major activities I conducted in this step are:

1. serious injury or fatal pedestrian collisions account for about 11% of the information in the outcome variable. Estimating the model with such data could result in unreliable inference. I used the

Synthetic Minority Oversampling Technique (SMOTE) to solve the imbalance problem. After the SMOTE analysis, the 11% statistic increased to about 24%.

- 2. conducted hyper-parameter tuning on mtry and min_n Random Forest algorithm (RF) parameters; mtry is the number of variables randomly selected as candidates in each split, min_n is the minimum number of data points in each node required for it to be split further. This was to ensure that I get a best-fit RF.
- 3. included latitude and longitude explanatory variables to account for location specific information in the model, they were normalized.
- 4. Person's correlation matrix among the explanatory variables did not show any likely multicollinearity problem in the model.
- 5. I set aside 20% of the data as my test data (the remaining 80% was my training data) to be used in the last final model performance analysis. Further, I set aside 20% of the training data as my validation set to conduct model performance analysis immediately after the model estimation. The validation set and test data provided robust ways to generate performance metrics.

3. Findings

Latitude and longitude are the most important factors that drive likelihood of incidence of mortality or mojor injury from pedestrian collisions. These variables captured location attributes in the model. Therefore, it is not surprising that the 4 of the next 5 important variables are location specific (collision_inter_row, collision midblock, dark and no traffic control. Collision_inter_row is when vehicle went through or turned left or right at an interception and hit a pedestrian while walking without a row. Collision_midblock means the collision occured at mid block intersection. Dark is a when there is little or no light. All the model variables are defined in the exploration.pdf in thr root folder. Also, the age (65 or more years) is an important variable in the model. The least important variable is bad weather. The variable importance plot is shown in Figure 1.

Figure 1: Variable Importance Plot

4. Model Accuracy

Qualitatively, Figure 1 provides important insights into drivers of the likelihood of fatality or major injury from pedestrian collisions. In the absence of more robust statistical estimates, they could guide policy formulation toward road safety. Figure 2 (ROC curve) shows that the model under-performs relative to chance since the curve is significantly below the 45 degrees diagonal line. Even though the performance metric is unreliable given the imbalanced nature of the model data, the information it provided was expected.

Figure 2: Receiver Operating Characteristic Curve

5. Future Work

In the future, given more time and resources, I would collect more data which will be a plausible best solution to the imbalance data problem than using a second-best synthetic resampling procedure like SMOTE. Also, I will investigate the poor model performance further. Some of the actions I may consider undertaking are: 1. comparing several classification machine learning algorithms. 2. explore more hyper-parameter tuning of algorithms parameter space. 3. conduct more feature engineering and maybe use principal component analysis to combine several variables.

6. Data Quality Issue

One major data quality issue is the number of missing and empty information in many of the columns in the data. These columns could have provided key information in the feature engineering and selection process. Their omissions further worsened the data imbalanced problem for this study. There were also many duplicate rows, particularly in the involved_persons data; although this problem was a minor one because I noticed it and solved the problem before model estimation.