"Not enough speed"

Y13 UNIT 4 TEST 1

4.1 KINETICS

BAHATI NJEMA!

Answer all questions Total 50 marks

Name:		
	Mark for Section A/37	
	Mark for section B/13	
	Total:/50	
	Grade	

SECTION A

	A chemical reaction is first order with respect to compound \mathbf{X} and second order with respect to compound \mathbf{Y} .					
(i)	Write the ra	ate equation for this	s reaction.			
(ii)	What is the	overall order of the				
(iii)	By what fa doubled?	ctor will the rate inc	crease if the conce	ntrations of X and Y are both		
init	ial rate of the	reaction that takes p		compounds, A and B . And a at constant temperature.		
]	Experiment	[A]/mol dm ⁻³	[B]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹		
	1	0.2	0.2	3.5×10^{-4}		
	2	0.4	0.4	1.4×10^{-3}		
	3	0.8	0.4	5.6×10^{-3}		
(i)	reached you Overall ord Explanation Determine	ur conclusion. der of reaction n		een A and B . Explain how you		
	•					
		•				
(iii)	Explanatio	•				

	(iv)	Calculate the value of	the rate constant, stating its units.	
				(Total 11 ma
		ysis of methyl propanoa as found to be	te was studied in acidic conditions	s at 25°C and the rate
		rate = k[C]	CH ₃ CH ₂ COOCH ₃][H ⁺]	
(a)		he data below to calculate its units.	ate the value of the rate constant, k	k, at this temperature.
	In	itial rate of reaction / mol dm ⁻³ s ⁻¹	Initial concentration of methyl propanoate / mol dm ⁻³	Initial concentration of hydrochloric acid / mol dm ⁻³
		1.15×10^{-4}	0.150	0.555
	Rate	constant		
	Units	·		
	•••••			
(b)	the vo		repeated at the same temperature, ixture was doubled. Calculate the	
				(Total 4 ma

3. (a) The following table shows the results of three experiments carried out at the same temperature to investigate the rate of the reaction between compounds $\bf P$ and $\bf Q$.

	Experiment 1	Experiment 2	Experiment 3
Initial concentration of P /mol dm ⁻³	0.50	0.25	0.25
Initial concentration of Q /mol dm ⁻³	0.36	0.36	0.72
Initial rate/mol dm ⁻³ s ⁻¹	7.6×10^{-3}	1.9×10^{-3}	3.8×10^{-3}

Use the data in the table to deduce the order with respect to **P** and the order with respect to **Q**. Order with respect to **P** Order with respect to $oldsymbol{Q}$ In a reaction between **R** and **S**, the order of reaction with respect to **R** is one, the order of reaction with respect to S is two and the rate constant at temperature T_1 has a value of $4.2 \times 10^{-4} \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$. Write a rate equation for the reaction. Calculate a value for the initial rate of reaction when the initial concentration of \mathbf{R} is 0.16 mol dm⁻³ and that of \mathbf{S} is 0.84 mol dm^{-3} . Rate equation Calculation In a second experiment performed at a different temperature, T_2 , the initial (ii) rate of reaction is 8.1×10^{-5} mol dm⁻³s⁻¹ when the initial concentration of **R** is 0.76 mol dm⁻³ and that of **S** is 0.98 mol dm⁻³. Calculate the value of the rate constant at temperature T_2 .

Deduce which of T_1 and T_2 is the higher temperature.

(Total 8 marks)

(2)

4.	(a)	The initial rate of the reaction between compounds A and B was measured in a series of
		experiments at a fixed temperature. The following rate equation was deduced.

$$rate = k[\mathbf{A}][\mathbf{B}]^2$$

Complete the table of data below for the reaction between ${\bf A}$ and ${\bf B}$. (i)

Expt	Initial [A] /mol dm ⁻³	Initial [B] /mol dm ⁻³	Initial rate /mol dm ⁻³ s ⁻¹
1	4.80×10^{-2}	6.60×10^{-2}	10.4×10^{-3}
2	4.80×10^{-2}	3.30×10^{-2}	
3		13.2×10^{-2}	5.20×10^{-3}
4	1.60×10^{-2}		10.4×10^{-3}

	(ii)	Using the data for experiment 1, calculate a value for the rate constant, k , and state its units.	
		Calculation	
		Units	(6)
(b)		how the value of the rate constant, k , would change, if at all, if the concentration of \mathbf{A} increased in a series of experiments.	
	•••••	(Total 7 ma	(1) rks)
		(Total / mas	i Kaj
Iodine	e and p	propanone react in acid solution according to the equation	
		$I_2 + CH_3COCH_3 \rightarrow CH_3COCH_2I + HI$	
The ra	ate equ	uation for the reaction is found to be	

5.

rate =
$$k [CH_3COCH_3][H^+]$$

(a)	Deduce the order of reaction with respect to iodine and the overall order of reaction.	
	Order with respect to iodine	
	Overall order	(2)

(b) At the start of the experiment, the rate of reaction was found to be $2.00\times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1} \text{ when the concentrations of the reactants were as shown below.}$

Reactant	Concentration / mol dm ⁻³
CH ₃ COCH ₃	1.50
I_2	2.00×10^{-2}
H ⁺	3.00×10^{-2}

	Use these data to calculate a value for the rate constant and deduce its units.	
	Rate constant	
	Units	(3)
(c)	How can you tell that H ⁺ acts as a catalyst in this reaction?	(0)
		(2) (Total 7 marks)

SECTION B

6. The reaction between hydrogen and iodine can be represented by the following equation:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $\Delta H = +52 \text{ kJ mol}^{-1}$

Kinetic data are available for both forward and reverse reactions. A series of experiments to investigate the kinetics of the forward reaction was carried out at a constant temperature. The results are shown in **Figure 1**.

Experiment	Initial concentration of H ₂ / mol dm ⁻³	Initial concentration of I ₂ / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	2.0×10^{-3}	3.0×10^{-3}	1.2×10^{-6}
2	6.0×10^{-3}	3.0×10^{-3}	3.6×10^{-6}
3	6.0×10^{-3}	6.0×10^{-3}	7.2×10^{-6}

Figure 1

(a) Explain the meaning of each of the following terms:

(i) rate of reaction; (1)

(ii) rate constant; (1)

(iii) overall order of reaction. (2)

(b) (i) Use the results in **Figure 1** to work out the order of the forward reaction with respect to both hydrogen and iodine, explaining your reasoning.

(ii) Write the rate equation for the reaction between hydrogen and iodine. (1)

(iii) Calculate the value of the rate constant for the forward reaction and give its units.

(3)

(c) The experiment was repeated with the following initial concentrations for reactants:

$$[H_2] = 4.0 \times 10^{-3} \text{ mol dm}^{-3}$$
 $[I_2] = 5.0 \times 10^{-3} \text{ mol dm}^{-3}$

Calculate the initial rate of the reaction.

(1) (Total 13 marks)

(4)

