Vorlage

N. Egger

25. Juli 2018

Inhaltsverzeichnis

T		cken auf wanden
	1.1	Platten
		1.1.1 Elastische Plattentheorie Schnittkräfte und Spannungen
		1.1.2 Streifenmethode
		1.1.3 Plattentafeln
		1.1.4 Querdehnung
		1.1.5 Auflagerreaktionen
		1.1.6 Bewehrung
2		z- und Flachdecken
	2.1	Tragverhalten
	2.2	Biegemomente Ermittlung
	2.3	Biegemomente Ermittlung
3	Fun	ndamente
	3.1	Entwurfsregeln
		Romossung

Decken auf Wänden

Flächentragwerke:

- Scheibe
- Platte:
 - Ebene, Tragwerk, Biegesteifigkeit EI > 0
 - keine Belastung in Plattenebene
 - Lagerung: Linienlagerung, Punktlagerung
 - Lastabtrag in 2 Richtungen

1.1 Platten

einachsig gespannte Platten:

freie Ränder oder Seitenverhältnis > $\frac{1}{2}$ Bemessung wie Balken, meist Plattenstreifen 1m

zweiachsig gepsannte Platten:

3-4 seitig gelagert, Seitenverhältnis $< \frac{1}{2}$ bemessung als platte erforderlich

- Schale
- Faltwerk
- **Fundamente**
 - Einzelfundamente
 - Streifenfundamente
 - Flachfundamente
 - → elastisch gebettet auf dem Untergrund

1.1.1 Elastische Plattentheorie Schnittkräfte und Spannungen

Biegemomente und Normalkräft

$$m_{x/y} = \int_{-h/2}^{+h/2} \sigma_{x/y} z \cdot dz \rightarrow \sigma_{x/y} = \frac{m_{x/y}}{I} z$$

m_x wirkt in x-Richtung, dreht um y-Achse

Drillmomente und Drillschubspannungen

$$m_{xy} = \int_{-h/2}^{+h/2} \tau_{xy} z \cdot ds \to \tau_{xy} = \frac{m_{xy}}{I} z$$

 $\tau_{xy} = \tau_{yx} \rightarrow m_{xy} = m_{yx}$

Querkräfte und Querschubspannungen

$$\tau_{xz} = 1.5 \frac{v_x}{h}$$

$$\tau_{yz} = 1.5 \frac{v_y}{h}$$

Streifenmethode

Gleichgewicht: $q = q_x + q_y$ Verträglichkeit: grösste Plattendruchbiegung: $w_x = w_y$

$$\rightarrow w = \frac{M}{EI}; w_x = \frac{5 \cdot q_x \cdot l_x^4}{384 \cdot E \cdot I} \rightarrow \text{Verträglichkeit: } q_x \cdot l_x^4 = q_y \cdot l_y^4$$

1.1.3 Plattentafeln

- 3-/4-seitig • Czerny: gelagert, Gleichlasten, Querdehnung = 0
- Stiglat/Wippel: versch. Lasten und Lagerungen, drillsteif
- Pieper/Martens: Drillsteif und drillweich, Angaben für Z'swirken angrenzender Platten

1.1.4 Querdehnung

Drillsteife Quadratplatte nach elastischer Plattentheo-jedem Punkt erfüllt rie, Eckkräfte

→ Drillmomente haben grosse Momente und konzen-Momente und Durchbiegung trierte Reaktionen im Eckbereich zur Folge

→ Falls keine Eckkräft aufgenommen werden können, entstehen kleinere Drillmomente und grössere Feldmoment

→ Insbesondere Decken über dem obersten Geschoss e= eingespannt können öft nicht in der Ecke verankert werden

Annahme: Platte mit elastischer Biegesteifigkeit, ohne Drillsteifigkeitm Durchbiegungsverträglichkeit an

ightarrow Momente in Feldmitte $m_x=m_y=rac{q\cdot l^2}{12}\Rightarrow$ viel grössere

Durchlaufende Platten:

- Rechteckplatten mit beliebigen Stützweitenverhältnisse → Berechnung nach Pieper/Martens
- Rechteckplatten mit geringen Stützweitenunterscheiden $(l_{min}/l_{max} > 0.75) \rightarrow Belastungsumord$ nungsverfahren

1.1.5 Auflagerreaktionen

Entlang Bruchlinie Einzugsgebiete bestimmen → Einzugsgebietsflächen wirken je auf ein Auflager

N. Egger 25. Juli 2018 Vorlage (V1.1) Seite 3 von 4

1.1.6 Bewehrung

Querkraftbemessung: SIA 262 4.3.3.1.3 \rightarrow Gl. 35 erfüllt, Mindestbewehrung bei dünnen Platten nicht nötig

Biegebewehrung: SIA 262 5.5.3

Drillbewehrung: bei drillsteif berechneten Platte (z.b. Czerny) → Drillweich: mehr Biegemomente & Verformung

Bewehrung bei Aussparung:

- kleine Öffnung (bis zu doppelter Plattendicke): kein wesentlicher Einfluss auf Tragverhalten
- mehrere kleine Öffnungen ungünstige Anordnung oder schmale Schlitze: Wirkung wie grosse Öffnung
- mehrere kleine Öffnungen in Plattenecken: Verlust Drillsteifigkeit (mehr Feldmomente)
- mittlere Öffnungen: geringer Einfluss auf Tragverhalten (konstruktive Massnahmen mit erhöhtem Aufwand)
- mittlere Öffnungen z.b. Kamine: Ober- und Unterseite der Platte separat betrachten
- grosse Öffnungen (z.b. Treppen): konstruktivee Massnahmen basierend auf rechnerischem Nachweis

Pilz- und Flachdecken 2

Def.: unterzugslose Decken, die direkt auf Stützen mit oder ohne Stützenkopfverstärkung (Pilze) gelagert sind.

Nachteile

- höherer Beton- und Stahlverbrauch
- grössere Durchbiegung
- höhere Beanspruchung im Stützenbereich (Durchstanzen)

2.1 Tragverhalten

Punktgestützte Platten tragen Lasten nicht nur in 2 Richtungen, sondern rotationssymmetrisch um die Stützen ab

Modell

gen

Biegemomente kräfte über und Streifen Querabtra-

- 1. Radialmomente m_r um Stütze \rightarrow ringförmige Risse
- 2. Tangentialmomente $m_t \rightarrow Biegeris$ se in Radialrichtung
- 3. an Unterseite mehraxialer Spannungszustand im Beton → Schubris-
- 4. Einschnürung der Druckzone → Durchstanzversagen

2.3

SIA 261 4.3

N. Egger

Vorteile

- ebene Betonunterfläche vereinfache Schalung & Bewehrung verlegen → beschleunigt Bauablauf
- Installationen werden nicht durch Unterzüge behindert → Tragwerksplanung kann starten, vor Leitungsführungsplanungabschluss
- grosse Stützenabstände möglich
- Flexibilität für spätere Änderungen
- geringere Konstruktionshöhe

Biegemomente Ermittlung

1. FEM

2. Methode der stellvertretenden Rahmen

- gleichmässig verteilte Lasten (nicht für Einzellasten)
- zwei sich gegenseitig durchdringenden, biegesteif mit den stützen verbundenen Rahmen
- senkrecht stehende Rahmen haben je die volle Last abzutragen
- Biegesteifigkeit Stützen gering → Annahme: Durchlaufträger
- ohne Drillmomente, trotzdem statisch sichere Bemessung

25. Juli 2018

3 Fundamente

Aufgaben

- Bindeglied zwischen Bauwerk und Baugrund
- Sichere Lasteinleitung der Bauwerkslasten in den Baugrund
- Bemessung, so dass keine Überschreitung
 - der Tragfähigkeit des Bauteils und derjenigen des Bodens
 - von zulässigen Setzungen, Verkippungen
- Boden-Bauwerks-Interaktion
- Aktivierung von Auflagerreaktionen erfordert Verformungen des Baugrunds

Arten

- Flachgründungen (Einzel-, Streifen-, Plattenfundamente)
- Tiefgründungen (Pfahlfundationen, KPP)
- ggf. Zusatzmassnahmen (Baugrundverbesserung, Bodenersatz, ...)

3.1 Entwurfsregeln

- 1. Abmessungen im Grundriss
 - (a) Zulässige Bodenpressungen oder Sohldrücke: Annahme σ_{zul} : zwischen 0.05 $\frac{N}{mm^2}$ und 0.6 $\frac{N}{mm^2}$ \rightarrow abhängig von:
 - Baugrundbeschaffenheit, Fundationstiefe, Topographie
 - resultierenden Verformungen (Setzungen, Setzungsdifferenzen)
 - lokalen Tragsicherheitsberechnungen
 - Betrachtung der Gesamtstabilität (z.B. Kippen, Gleiten; Bauzustände)
 - (b) Setzungen, Setzungsdifferenzen
 - Berücksichtigung der Vorbelastung des Baugrundes durch Aushubmaterial
 - benachbarte Fundamente möglichst gleiches Setzungsverhalten
 - (c) Kippsicherheit und weiteres
 - keine klaffende Fuge für ständige Lasten: Exzentrizität der Resultierenden in-

- nerhalb 1. Kernweite (= «Kern»): $\frac{e_x}{b_x}$ + $\frac{e_y}{b_y} \leqslant \frac{1}{6}$
- Begrenzung Exzentrizität innerhalb 2. Kernweite für ständige + veränderliche Lasten: Fundament soll bis zu seinem Schwerpunkt durch Druck belastet bleiben: $\left(\frac{e_x}{b_x}\right)^2 + \left(\frac{e_y}{b_y}\right)^2 \leqslant \frac{1}{9}$
- Berücksichtigung exzentrischer Lastangriff Abschätzung Fundamentabmessung durch Reduktion der Fundamentfläche: $A_{red} = (a 2e_a)(b 2e_b)$

2. Fundamentdicke

- (a) Mindestdicken (i.d.R. >200 bis 250mm)
 - Einzelfundament: $\frac{h_m}{b} \approx \frac{1}{4} \div \frac{1}{6} \geqslant h_{min}$
 - Streifenfundamente, Fundamentbalken: $\frac{h_m}{I} \approx \frac{1}{8} \geqslant h_{min}$
 - Plattenfundamente: $\frac{h_m}{l} \approx \frac{1}{25} \div \frac{1}{30} \geqslant h_{min}$
- (b) Anforderungen aus Biegung (meist bewehrt)
- (c) Anforderungen aus Querkraft (Durchstanznachweis gem. Flachdecken)
- 3. Fundamenttiefe
 - Bodenbeschaffenheit (z.B. Tiefe der tragfähigen Schichten)
 - Zulässige Bodenpressungen
 - Setzungen
 - Frosteindringtiefe: $t \ge 0.80$ m

3.2 Bemessung

- 1. Ermittlung der Sohldruckverteilung
- 2. Biegebemessung
- 3. Schubbemessung
- 4. Konstruktive Durchbildung