Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed

Jaehyoung Hong

ICML 2021 Poster

Kernel methods shows competitive performance to Neural network for some task

Kernel methods did not beat the Neural network for high-dimensional setting

✓ Today's topic: NN > Kernel method for O(1) hidden nodes, 2 layers

Compare two-layer neural network(2LNN) and random features

- $\#(sample) = N, \#(input\ dimension) = D, \#(random\ features) = P$
- Input $x = (x_r) \in \mathbb{R}^D$, Labels $y \in \{-1,1\}$: Binary classification (for simplicity)

$$\epsilon_c(\theta) = \mathbb{E}\mathbf{H}[-y\phi_{\theta}(x)]$$

 $N = O(D^2)$ needed for RF while N = O(D)for 2LNN

1. 2LNN
$$(\phi_{\theta}^{L}: \mathbb{R}^{D} \to \mathbb{R})$$

$$\chi \qquad \qquad \lambda^{k} \equiv \frac{1}{\sqrt{D}} \sum_{r=1}^{D} w_{r}^{k} x_{r} \qquad \Longrightarrow \qquad \phi_{\theta}^{L}(x) = \sum_{k=1}^{K} v^{k} g(\lambda^{k})$$

- \checkmark Trainable weight $w = (w_r^k) \in \mathbb{R}^{K \times D}$, $v = (v^k) \in \mathbb{R}^K$
- $\checkmark \frac{K}{D} = O(1)$: Small node setting, $t \equiv \frac{N}{D} = O(1)$: High dimensional setting $(D \to \infty)$
- **2. Random Features** $(\phi_{\theta}^R : \mathbb{R}^D \to \mathbb{R})$

$$x \longrightarrow u_i \equiv \frac{1}{\sqrt{D}} \sum_{r=1}^{D} F_{ir} x_r \longrightarrow z_i = \psi(u_i) \longrightarrow \phi_{\theta}^{R}(z) = \frac{1}{\sqrt{P}} \sum_{i=1}^{P} w_i z_i$$

- ✓ Trainable weight $w = (w_i) \in \mathbb{R}^P$
- $\checkmark \gamma \equiv \frac{P}{D} = O(1), N > P$

RF is similar to neural network for High signal to noise ratio(SNR) while worse for Low SNR

- $\checkmark snr = |\mu|/\sqrt{D}\sigma$ for input $x_i = \mu_i + \sigma z_i \ (z_i \sim N(0,1))$, XOR: $\mu_+ = (\pm \sqrt{D}, 0, ..., 0)$, $\mu_- = (0, \pm \sqrt{D}, 0, ..., 0)$
- ✓ oracle: Known about μ_i and labels x_i to that of nearest μ_i

RF is similar to neural network for High signal to noise ration(SNR) while worse for Low SNR

- $\checkmark snr = |\mu|/\sqrt{D}\sigma$ for input $x_i = \mu_i + \sigma z_i \ (z_i \sim N(0,1))$, XOR: $\mu_+ = (\pm \sqrt{D}, 0, ..., 0)$, $\mu_- = (0, \pm \sqrt{D}, 0, ..., 0)$
- ✓ oracle: Known about μ_i and labels to nearest μ_i

Setup for dynamics of 2LNN: Moments of λ^k

2LNN for GM classification

✓ Sample
$$(x, y)$$
 is drawn from $q(x, y) = q(y)q(x|y)$, $q(x, y) = \sum_{\alpha \in S(y)} \mathcal{P}_{\alpha} N_{\alpha}(x)$, $N_{\alpha}(x) \sim N(\frac{\mu^{\alpha}}{\sqrt{D}}, \Omega^{\alpha})$

 \checkmark Online learning, $\Delta = \sum_{k=1}^{K} v^k g(\lambda^k) - y$

$$\begin{split} \mathrm{d}w_i^k &= -\frac{\eta}{\sqrt{D}} v^k \Delta g'(\lambda^k) x_i - \frac{\eta}{\sqrt{D}} \kappa w_i^k, \\ \mathrm{d}v^k &= -\frac{\eta}{D} g(\lambda^k) \Delta - \frac{\eta}{D} \kappa v^k, \quad L^2\text{-Regularization} \\ &\quad \mathsf{SGD} \end{split}$$

✓ Static

$$\begin{split} \mathsf{pmse}(\theta) &= \mathop{\mathbb{E}}_{q(x,y)} \left(y - \phi_{\theta}(x) \right)^2 \\ &= \sum_{y} \sum_{\alpha \in \mathcal{S}(y_i)} \!\! q(y_i) \mathcal{P}_{\alpha} \mathop{\mathbb{E}}_{\alpha} \left[\sum_{k} v^k g(\lambda^k) - y \right]^2 \end{split}$$

Setup for dynamics of 2LNN: Moments of λ^k

2LNN for GM classification

Average over the inputs x pmse(
$$\theta$$
) = $\mathbb{E} \left[\sum_{k=1}^{K} v^k g\left(\frac{w^k x}{\sqrt{D}}\right) - y \right]^2$ Zoom into each cluster pmse(θ) = $\sum_{clusters} \mathbb{E} \left[\left(\sum_{k=1}^{K} v^k g\left(\frac{w^k x}{\sqrt{D}}\right) - y \right)^2 | x \sim \mathcal{N}(\frac{\mu_\alpha}{\sqrt{D}}, \Sigma_\alpha) \right]$

Expectation over cluster α

$$\operatorname{pmse}(\theta) = \sum_{\substack{\text{clusters} \\ \lambda_{\alpha} \\ \text{Average over} \\ \text{the local fields}}} \mathbb{E}\left[\left(\sum_{k=1}^{K} v^{k} g\left(\lambda^{k}\right) - y\right)^{2} | x \sim \mathcal{N}(\frac{\mu_{\alpha}}{\sqrt{D}}, \Sigma_{\alpha})\right]$$

- \checkmark λ^k are jointly Gaussian when averages are evaluated over just a single distribution in the mixture
- ✓ pmse is determined by the moments of λ^k

Setup for dynamics of 2LNN: Moments of λ^k

2LNN for GM classification

✓ Order parameters: Moments of λ^k

$$M_{\alpha}^{k} \equiv \mathop{\mathbb{E}}_{\alpha} \lambda^{k} = \frac{1}{D} \sum_{r} w_{r}^{k} \mu_{r}^{\alpha},$$

$$Q_{\alpha}^{k\ell} \equiv \mathop{\rm Cov}_{\alpha}\left(\lambda^k,\lambda^\ell\right) = \frac{1}{D} \sum_{r,s} w_r^k \Omega_{rs}^{\alpha} w_s^\ell.$$

✓ Since any average over a Gaussian is fcn of two moments,

$$\lim_{D\to\infty}\mathsf{pmse}(\theta)\to\mathsf{pmse}(Q,M,v).$$

✓ Pmse of network $\approx (Q, M, v)$ dynamics

Dynamics of weight are determined by order parameters

- · Moments of functions of weakly correlated variables has explicit form
- t = N/D can be regarded as continuous time variable for online learning

Let r.v. $x, y \in \mathbb{R}$, jointly Gaussian & weakly correlated:

$$P(x,y) = \frac{1}{2\pi\sqrt{\det M_2}} \exp\left[-\frac{1}{2} \begin{pmatrix} x - \bar{x} & y - \bar{y} \end{pmatrix} M_2^{-1} \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix}\right], \qquad M_2 = \begin{pmatrix} C_x & \epsilon M_{12} \\ \epsilon M_{12} & C_y \end{pmatrix}$$

$$= \frac{1}{2\pi\sqrt{C_x C_y}} e^{-\frac{1}{2C_x}(x - \bar{x})^2 - \frac{1}{2C_y}(y - \bar{y})^2} \left[1 - \epsilon(x - \bar{x}) \left(C_x^{-1} M_{12} C_y^{-1}\right) (y - \bar{y}) + O\left(\epsilon^2\right)\right]$$

$$\stackrel{\mathbb{E}}{=} \left[f(x)g(y)\right] = \underset{x}{\mathbb{E}} \left[f(x)\right] \underset{y}{\mathbb{E}} \left[g(y)\right]$$

$$+ \epsilon \underset{x}{\mathbb{E}} \left[f(x)(x - \bar{x})\right] \left(C_x^{-1} M_{12} C_y^{-1}\right) \underset{y}{\mathbb{E}} \left[g(y)(y - \bar{y})\right] + O(\epsilon^2).$$

• Dynamics of second layer $(\Omega_{\alpha} = \Omega)$

$$\mathbb{E} \, dv^{k} = \sum_{\alpha \in \mathcal{S}(+)} \mathcal{P}_{\alpha} \, dv_{\alpha^{+}}^{k} + \sum_{\alpha \in \mathcal{S}(-)} \mathcal{P}_{\alpha} \, dv_{\alpha^{-}}^{k},$$

$$dv_{\alpha}^{k} = \frac{\eta}{D} \mathbb{E} \, y_{\alpha} g(\lambda^{k}) - \frac{\eta}{D} \sum_{j} v^{j} \mathbb{E} \, g(\lambda^{k}) g(\lambda^{j}) - \frac{\eta}{D} \kappa v^{k}.$$

✓ Dynamics of weight are determined by order parameters / Expectation of activation function is estimated by MC methods

Order parameters and weights from ODE are agreed with simulation(Single run of SGD)

2LNN learns XOR inputs when first weight vectors approach the four means

C: First weight finds four means (Maximal angle)

D: Decrease pmse

Predicting long-time performance using ansatz also agreed with simulation

- Long time performance of ODE: Asymptotic fixed point
- Scale $K^2 + 4K$ equations for each time step
- Ansatz (e.g. symmetry) reduce parameters to K

Over-parametrization do not improve test error, but has acceleration effect

Dynamics of RF

- Assume $N \gg P$, for any finite D,P, running the algorithm upto convergence (\approx Taking the limit $t \to \infty$)
 - ρ_{τ} are the eigenvalues of the feature's covariance matrix $\Omega_{ij} = \mathbb{E}z_i z_j$, with associated eigenvector Γ_{τ} . $\widetilde{\Phi}_{\tau} \equiv \sum_{i=1}^{P} \Gamma_{\tau i} \Phi_i / \sqrt{P}$

$$\mathrm{pmse}_{t \to \infty} = \frac{1}{2} \Big(1 - \sum_{\tau} \frac{\tilde{\Phi}_{\tau}^2}{\rho_{\tau}} \Big),$$

$$M_{\alpha} = \sum_{i=1}^{P} \frac{\hat{w}_{i} \mathbb{E}_{\alpha}[z_{i}]}{\sqrt{P}}, \ Q_{\alpha} = \sum_{i=1}^{P} \frac{\hat{w}_{i} \hat{w}_{j}}{P} \operatorname{Cov}_{\alpha}(z, z).$$

$$\epsilon_{ct\to\infty} = \frac{1}{2} \left(1 - \sum_{\alpha} \mathcal{P}_{\alpha} y \operatorname{erf} \left(\frac{M_{\alpha}}{\sqrt{2Q_{\alpha}}} \right) \right)$$

Classification error of RF for various values shows that $P \approx D^2$ features are required

- ✓ Indeed, classification error is fcn of $\sigma D^{\frac{1}{2}}/\min(N,P)^{1/4}$
- ✓ If $N = O(D) \& \sigma \gg N^{\frac{1}{4}}/D^{1/2}$, performance degrades to no more than random guess

In Low SNR setting($snr \sim O(1)$), the transformation of the means is only linear

•
$$\frac{|\mu|}{\sqrt{D}} \sim O(1) \& \sigma \sim O(1) \rightarrow \frac{F_{ir}\mu_r}{D} \sim O(\frac{1}{\sqrt{D}})$$

$$a \equiv \mathbb{E} \psi (\sigma \zeta) , \quad b \equiv \mathbb{E} \zeta \psi (\sigma \zeta) , \quad c^2 \equiv \mathbb{E} \psi (\sigma \zeta)^2$$

$$\mathbb{E} z_i = a + b \sum_{r=1}^D \frac{F_{ir}\mu_r}{\sigma D}$$

$$\cot(z_i, z_j) = \begin{cases} c^2 - a^2, & i = j, \\ b^2 \sum_r \frac{F_{ir}F_{jr}}{D} & i \neq j. \end{cases}$$

- ✓ Transformation of the means is only linear
- ✓ RF cannot separate XOR inputs with Low SNR setting in feature space
 - ✓ RF only separate when the centres of data are separated enough

Convergence of RF to kernel methods shows that kernel methods also fails for Low SNR setting

• Rahimi & Recht, 2008;2009 $(D, P \rightarrow \infty)$ and then $\gamma \rightarrow \infty$

$$K(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{P} \sum_{i=1}^{P} \mathbb{E}_{F} \left[\psi \left(\sum_{r=1}^{D} \frac{x_{r} F_{ir}}{\sqrt{D}} \right) \psi \left(\sum_{s=1}^{D} \frac{y_{s} F_{is}}{\sqrt{D}} \right) \right]$$

With Low SNR setting

$$c^{2} = \mathbb{E} K(\sigma \omega_{1}, \sigma \omega_{1}), \quad a^{2} = \mathbb{E} K(\sigma \omega_{1}, \sigma \omega_{2}),$$

$$b^{2} = D\sigma^{2} \left[-a^{2} + \mathbb{E} K \left(\frac{\mu}{\sqrt{D}} + \sigma \omega_{1}, \frac{\mu}{\sqrt{D}} + \sigma \omega_{2} \right) \right]$$

$$\mathbb{E} z_{i} = a + b \sum_{r=1}^{D} \frac{F_{ir} \mu_{r}}{\sigma D}$$

$$cov(z_{i}, z_{j}) = \begin{cases} c^{2} - a^{2}, & i = j, \\ b^{2} \sum_{r} \frac{F_{ir} F_{jr}}{D} & i \neq j. \end{cases}$$

2LNN is better than RF for GM classification

Summary

