BRADLEY UNIVERSITY

Electrical and Computer Engineering ECE443/543 — March 7, 2024

Test 1

Instructions

- 1. Put on your name first.
- 2. Write only on the front side of the paper.
- 3. Assemble your work for each problem in logical order.
- 4. Justify all your conclusions.
- 5. You must work on it independently. Open-book and open-notes.

	3 T	
Full	Name:	

Problem 1. (10 points) Consider the following different types of graphs of five agents.

- 1) Identify the undirected graph, the balanced graph, the weakly connected graph, and the strongly connected graph.
- 2) For graphs (a) and (c), find the corresponding adjacency matrix \mathcal{A} , degree matrix \mathcal{D} , and Laplacian matrix \mathcal{L} . (Hint: Assume A is a binary matrix, that is, $a_{ij} = 1$ if there is a link.)
- 3) Is there a spanning tree in graph (c)? If so, point it out.

Problem 2. (10 points) Consider the following graph. Find the Laplacian matrix L (Assume the adjacency matrix is a binary matrix). Draw a picture to show how its eigenvalues are localized in the complex plane.

Figure 1: A sensing/communication graph of four agents

Problem 3. (10 points) Consider the cooperative control of four agents

$$\dot{x}_i = u_i, \quad i = 1, 2, 3, 4, 5$$
 (1)

where $x_i \in \Re$, and $u_i \in \Re$. Initial conditions are $x_1(0) = 3$; $x_2(0) = 2$; $x_3(0) = 6$; $x_4(0) = -2$, $x_5(0) = -5$. Let the cooperative control for agent i be

$$u_i = \sum_{j=1}^{5} a_{ij}(x_j - x_i) \tag{2}$$

where a_{ij} are nonnegative constants depending on sensing/communication topologies. (You are free to choose the values for a_{ij} accordingly.)

- Consider four different sensing/communication topologies given in the above figure, respectively. For each of them, show whether under control (2), the system consensus will be reached? If so, what is the consensus value?
- Write a Matlab code to simulate the system under the communication topologies given in the above figure, respectively. For each sensing/communication topology, plot the system responses for all agents $x_i(t)$ into one figure.

Problem 4: (10 points) Given the following Laplacian matrix

$$\mathcal{L} = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Write a Matlab program to use the distributed algorithm to estimate its left eigenvector corresponding to eigenvalue 0.