GRAVITY

Table of Contents

Calling Syntax	
/O Variables	
Example	
Hypothesis	
imitations	
Version Control	
Group Members	2
Function	
<i>Y</i> alidity	
Main Calculations	
Output Data	

Calcula a matriz $G(\Theta)$ para determinação do vetor de forças dinâmicas τ . Derivada das equações da dinâmica do movimento a partir da seção 6.7 do Craig.

Calling Syntax

gravity=gravity(theta)

I/O Variables

```
IN Double Array theta: Joint angles [ 	heta_1 	heta_2 	heta_3] [degrees degrees]
```

OU Double List **gravity**: $G(\Theta)$ 3x1 Gravity matrix

Example

```
theta = [-30\ 30\ 10];
```

gravity=gravity(theta)

Hypothesis

RRR planar robot.

Limitations

A "Forma do usuário" é específica para o exercício de simulação e não tem validade para qualquer configuração de robô. Considera o robô planar com os valores de comprimentos dos ligamentos = {0.5, 0.3, 0} e Massas = {4.6, 2.3, 1} fixos.

Version Control

1.0; Grupo 04; 2025/31/05; First issue.

Group Members

· Guilherme Fortunato Miranda

13683786

· João Pedro Dionizio Calazans

13673086

Function

function gravity=gravity(theta)

Validity

Not apply

Main Calculations

```
theta = theta*pi/180;

g = 9.8;

L = [0.5,0.3,0];

M = [4.6,2.3,1];
```

Output Data

Published with MATLAB® R2024b