

On-line Recognition of Handwritten Mathematical Symbols

Bachelor's thesis of Martin Thoma Martin Thoma | 5th of June, 2014

$$1 + \frac{1}{1 + 1} \qquad \frac{1 + \sqrt{5}}{2}$$

Contents

1 What is my Bachelor's thesis about?

- Preprocessing and Features
- **Evaluation**

What is my Bachelor's thesis about?

- Recognition of handwritten mathematical symbols
- On-line recognition, not OCR!
- Given a series of points (x(t), y(t), b(t))I want to get the LATEX command.

Why did I work on this topic?

- LATEX is easy as soon as you know the \commands.
- It's hard to find the LATEX command of single symbols.
- It's much harder to find complete formulas.

For now: recognition of isolated symbols.

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Normalizing

- Scaling
- Shifting
- Resampling

Noise reduction

- Smoothing (e.g. moving average)
- Dot reduction
- Filtering (by distance, speed or angle)

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

Features

Local Features

- Coordinates
- Speed
- Binary pen pressure
- Direction
- Curvature
- Bitmap-environment
- Hat-Feature

Global Features

- # of dots (i, j, ..., ..., ...)
- # of strokes
- Center point coordinates
- Bitmap
- Bounding box (width, height, time)
- Re-curvature per stroke s $\left(\frac{\mathsf{height}(s)}{d(s[0],s[-1])}\right)$
- Ink

Baseline Systems

Preprocessing: Scaling, shifting and linear interpolation

Features: Coordinates of 80 points (4 strokes with 20 points each)

Learning: MLP, 1000 epochs, LR $\eta=0.1$, Momentum $\alpha=0.1$

Custom	Tanalami	Classification error			
System	Topology	TOP1	TOP3	MER	
$\overline{B_1}$	160:500:369	23.34 %	6.80 %	6.64 %	
B_2	160:500:500:369	$\underline{21.51\%}$	5.75%	5.67%	
B_3	160:500:500:500:369	21.93%	$\underline{5.74\%}$	$\underline{5.64\%}$	

Table: Baseline systems with three different classification error measures. All errors were measured on the test set.

Merged symbols (MER error)

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Base s	symbol	equivalent symbols		
L TEX	Rendered	LATEX	Rendered	
\sum	\sum	\$\Sigma\$	Σ	
\prod	Π	\$\Pi\$	Π	
		\$\sqcap\$	П	
\coprod	\coprod	<pre>\$\amalg\$</pre>	П	
		\$\sqcup\$	\sqcup	
\perp	\perp	\$\bot\$	\perp	
\models	=	\$\vDash\$	⊨	
I		\mid		
\Delta	Δ	\$\triangle\$	\triangle	
		<pre>\$\vartriangle\$</pre>	Δ	

Merged symbols (MER error)

Base sy	/mbol	equivalent symbols		
MTEX	Rendered	LAT _E X	Rendered	
\I		<pre>\$\parallel\$</pre>		
$\backslash \mathtt{ohm}$	Ω	\$\Omega\$	Ω	
\setminus	\	\$\backslash\$	\	
\checked	✓	\$\checkmark\$	\checkmark	
\&	&	\$\with\$	&	
\#	#	\$\sharp\$	#	
\S	§	\$\mathsection\$	§	
\nabla	∇	\triangledown	∇	
\lhd	\triangleleft	\$\triangleleft\$	⊲	
		<pre>\$\vartriangleleft\$</pre>	\triangleleft	
\emptyset	\oiint	\$\varoiint\$	\mathcal{G}	

Merged symbols (MER error)

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

Base syn	nbol	equivalent symbols		
L TEX	Rendered	LATEX	Rendered	
\mathbb{R}	\mathbb{R}	\$\mathds{R}\$	\mathbb{R}	
\mathbb{Q}	\mathbb{Q}	\mathds{Q}	$\mathbb Q$	
\mathbb{Z}	$\mathbb Z$	\mathds{Z}	${\mathbb Z}$	
\mathbb{A}	${\cal A}$	\mathscr{A}	\mathscr{A}	
\mathbb{D}	${\cal D}$	\mathscr{D}	\mathscr{D}	
\mathbb{N}	$\mathcal N$	\mathscr{N}	\mathscr{N}	
\mathbb{R}	${\cal R}$	\mathscr{R}	${\mathscr R}$	
\propto	\propto	<pre>\$\varpropto\$</pre>	Œ	

End

Preprocessing: Connect strokes

System	Classification error					
o y o com	TOP1	change	TOP3	change	MER	change
$B_{1,\theta=5 \text{ px}} \\ B_{2,\theta=5 \text{ px}} \\ B_{3,\theta=5 \text{ px}}$	23.27 % 21.20 % 21.80 %	$-0.07\%\ -0.31\%\ -0.13\%$	6.50 % 5.59 % 5.54 %	$-0.30\%\ -0.16\%\ -0.20\%$	6.37 % 5.50 % 5.47 %	-0.27 % -0.17 % -0.17 %
$B_{1,\theta=10~\mathrm{px}}$ $B_{2,\theta=10~\mathrm{px}}$ $B_{3,\theta=10~\mathrm{px}}$	23.17 % 20.97 % 21.34 %	-0.17 % -0.54 % -0.59 %	6.61 % 5.43 % 5.42 %	-0.19 % -0.32 % -0.32 %	6.47 % 5.34 % 5.33 %	-0.17 % -0.33 % -0.31 %
$B_{1,\theta=20~\mathrm{px}}$ $B_{2,\theta=20~\mathrm{px}}$ $B_{3,\theta=20~\mathrm{px}}$	22.81 % 21.61 % 21.71 %	-0.53 % 0.10 % -0.22 %	6.28 % 5.79 % 5.55 %	-0.52 % 0.04 % -0.19 %	6.19 % 5.69 % 5.45 %	$-0.45\%\ 0.02\%\ -0.19\%$

Table: Models B_1 – B_4 with additionally applied stroke connect algorithm.

Evaluation

End

Learning: Supervised layer-wise pretraining

Martin Thoma - On-line Recognition of Handwritten Mathematical Symbols

System	Classification error					
System:	TOP1	change	TOP3	change	MER	change
$\overline{B_1}$	23.34 %		6.80%		6.64%	
$B_{2,p}$	19.89%	-1.62%	4.76%	-0.99%	4.68%	-0.99%
$B_{3,p}$	$\underline{19.43\%}$	-2.50%	$\underline{4.64\%}$	-1.10%	$\underline{4.54\%}$	-1.10%

Table: Supervised layer-wise pretraining, 1000 epochs per layer

Optimized classifier

Preprocessing: Connect strokes, scale, shift and linear interpolation **Features:** Coordinates of 80 points (4 strokes with 20 points each),

re-curvature per stroke, ink, stroke count, aspect ratio

Learning: MLP, 1000 epochs, LR $\eta = 0.1$, Momentum $\alpha = 0.1$,

supervised layer-wise pretraining

System	Classification error					
G) 555	TOP1	change	TOP3	change	MER	change
$B_{1,c}$	20.96%	-2.38%	5.24%	-1.56%	5.13%	-1.51%
$B_{2,c}$	18.26%	-3.25%	4.07%	-1.68%	3.98%	-1.69%
$B_{3,c}$	$\underline{18.19\%}$	-3.74%	$\underline{4.06\%}$	-1.68%	3.99%	-1.65%

Table: Error rates of the complex recognizer systems.

HWRT and write-math.com

Two software projects were created:

- write-math.com: A website where on-line handwritten data gets collected and classified
- hwrt: The handwriting recognition toolkit is a Python project for handwriting recognition

This presentation and the bachelor's thesis will be at martin-thoma.com/write-math.

Image Sources

- Server by RRZEicons
- Desktop Computer by Ed g2s, Ironbrother, Kierancassel and Msgj
- Server by Mimooh

Thanks for Your Attention!

What is my Bachelor's thesis about?

Preprocessing and Features

Evaluation 5th of June, 2014 End 000