Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/006742

International filing date: 06 April 2005 (06.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: RU

Number: 2004-122213

Filing date: 21 July 2004 (21.07.2004)

Date of receipt at the International Bureau: 25 August 2005 (25.08.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-5, 123995 Телефон 240 60 15. Телекс 114818 ПДЧ. Факс 243 33 37

Ham № 20/12 - 525

«13» июля 2005 г.

СПРАВКА

Федеральный институт промышленной собственности (далее - Институт) настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы, реферата и чертежей заявки № 2004122213 на выдачу патента на полезную модель, поданной в Институт в июле месяце 21 дня 2004 года (21.07.2004).

Название полезной модели:

Источник спонтанного вакуумного ультра-

фиолетового излучения

Заявитель:

Институт сильноточной электроники

CO PAH (RU)

Действительные авторы:

Ломаев Михаил Иванович (RU)

Лисенко Андрей Александрович (RU)

Скакун Виктор Семенович (RU)

Шитц Дмитрий Владимирович (RU)

Тарасенко Виктор Федотович (RU)

Йошио Матсумото (ЈР)

Заведующий отделом 20,

А.Л.Журавлев

2004122213

Источник спонтанного вакуумного ультрафиолетового излучения.

Изобретение относится к светотехнике и может быть использовано в микроэлектронике при обработке и чистке поверхности посредством ее облучения (ultraviolet cleaning and ultraviolet surface reformation).

Источник спонтанного излучения в вакуумной ультрафиолетовой (ВУФ) области спектра представляет собой газоразрядное устройство, обеспечивающее получение излучение в ВУФ области спектра, в частности, на В-Х переходах инертных газов. Принцип работы источника основан на протекании электрического тока в газе, в результате чего в газоразрядной плазме посредством протекания различных плазмохимических реакций формируются эксимерные молекулы. Особенностью этих молекул является, во-первых, наличие устойчивой связи данных молекул лишь в возбужденном состоянии, а основное состояние является разлетным. Это обуславливает излучение в широких спектральных интервалах (наиболее интенсивна В-Х полоса). Во-вторых, кинетика плазмохимических реакций такова, что формирование эксимерных молекул сопровождается преимущественно безизлучательными процессами, в то время как уменьшение концентрации данных молекул обеспечивается преимущественно радиационными переходами в основное состояние. Это предопределяет высокую эффективность излучения, а также тот факт, что до ~ 80 % мощности излучения газоразрядной плазмы может быть сосредоточено в полосе В-Х перехода используемой эксимерной молекулы.

Известны источники спонтанного излучения в ВУФ диапазоне спектра, в которых в качестве рабочей среды используются водород (дейтерий) [1], инертные газы и их смесь с водородом при низком давлении, что позволяет получать излучение на резонансных переходах данных газов [2], а также инертные газы при высоком давлении — для получения излучения на В-Х переходах димеров инертных газов [3, 4, 5 и др.]. В последнем случае источники характеризуются большим световым потоком.

Для возбуждения ламп ВУФ и УФ диапазонов при высоком давлении газа используются различные способы — электронный пучок [6], коронный [7, 8] и барьерный [9, 10 и др.] разряды. Использование электронного пучка вызывает необходимость применения диафрагмы, разделяющей вакуумный диод электронной пушки и камеру, заполненную рабочим газом. Это, наряду с формированием электронного пучка, значительно усложняет устройство в целом. Для зажигания коронного разряда можно применить значительно более простой источник питания, в качестве которого может выступить сетевой повышающий трансформатор. Однако, для стабилизации коронного разряда постоянного тока используется ограничительное сопротивление. Это приводит к приблизительно ~ 50 % потере мощности возбуждения. В случае многоострийного варианта разрядной камеры потери на ограничительном резисторе могут составить значительные величины. Кроме того, условия, оптимальные для формирования эксимерных молекул, имеются лишь в части разрядного объема коронного разряда [7].

Известна конструкция источника излучения [5, 11], не включающая окно для вывода излучения. При этом разряд формируется в пространстве между несколькими параллельно установленными чередующимися по полярности протяженными электродами, заключенными в диэлектрические трубки. Недостатком данной конструкции источника является малая величина емкости помещенных в диэлектрик электродов и, соответственно, высокое напряжения пробоя. Снижение напряжения пробоя вызывает необходимость уменьшения давле-

ния, что ведет к уменьшению рабочего давления газа. При этом известно, что димеры инертных газов эффективно формируются при повышенном давлении рабочего газа.

Наиболее близким по техническому решению, выбранному в качестве прототипа, является источник ВУФ диапазона, описанный в [9]. В данной работе при возбуждении Хе в однобарьерном разряде впервые эффективность излучения составила 60 %. Столь высокие величины эффективности были подтверждены в более поздней работе [10]. Согласно авторам работы [9], одним из основных условий эффективной работы данного источника является выбор режима возбуждения, обеспечивающего преимущественно возбуждение атомов ксенона и минимальные энергетические потери в паразитных процессах. Кроме того, необходимо формировать однородный разряд, что достигается использованием генератора питания с коротким временем нарастания напряжения. Конструктивно источник в работе [9] представляет собой отпаянную кварцевую (тип кварца Suprasil) колбу цилиндрической формы, заполненную ксеноном, внутрь которой помещен металлический стержневой катод. Анод выполнен в виде сетки, размещенной на внешней поверхности колбы. Излучение газоразрядной плазмы, возникающей между катодом и внутренней поверхностью колбы, проходит через стенки колбы, сетку и далее распространяется на облучаемый объект.

Основным недостатком данного источника является невозможность получения излучения с длинами волн короче ~ 160 нм вследствие поглощения кварцем такого излучения. Использование инертных газов Аг и Кг в подобной конструкции источника (длины волн максимумов спектрального распределения В-Х полосы, соответственно, 126 и 146 нм) нецелесообразно по причине поглощения кварцевой колбой такого излучения.

Задачей полезной модели является изменение конструкции источника излучения таким образом, чтобы одновременно обеспечить получение и использование излучения на В-Х переходах димеров Аг или Кг с максимумами спектрального распределения на длинах волн, соответственно, 126 и 146 нм при повышенном давлении газа.

Технический эффект достигается тем, что, в источнике спонтанного вакуумного ультрафиолетового излучения, содержащем рабочую газовую среду, анод и катод, разделенные диэлектриком, согласно предлагаемой модели, газовой средой является Аг или Кг, а электродный блок источника, состоящий из анода, плотно окруженного диэлектриком, и сегментированного проволочного катода, помещается вместе с облучаемым объектом в герметичный объем, заполненный Аг или Кг.

Кроме того, для увеличения направленности излучения часть катода может быть выполнена в виде отражающей поверхности.

Кроме того, для создания аксиально-симметричного потока излучения анод, плотно окруженный диэлектриком, и катод выполняются коаксиальными, а катод выполнен в форме спирали.

Кроме того, для увеличения мощности излучения источник излучения может включать несколько анодов, установленных параллельно, и одного сегментированного катода.

При подаче напряжения на электроды между сегментами катода и поверхностью диэлектрика, плотно охватывающего анод, возникает объемный и поверхностный газовый разряд, соответственно, в пространстве между проволочками катода и поверхностью диэлектрика и на поверхности диэлектрика. Положительный эффект конструкции состоит в том, что формируемое в однобарьерном разряде излучение распространяется непосредственно от газоразрядной плазмы на облучаемый объект. Это позволяет не использовать выходное окно для выхода излучения, так как излучение В-Х переходов димеров инертных газов соответствует ВУФ области спектра, которое сильно поглощается большинством оптических материалов, традиционно используемых при изготовлении источников излучения.

На фиг. 1а приведена конструкция источника излучения, а на фиг. 1б - блок-схема устройства в целом, включающего собственно источник излучения и генератор возбуждения. На фиг. 2 приведены поперечное (фиг.2а) и продольное (фиг.2б) сечения источника излучения в

случае коаксиальной конструкции.

Источник содержит анод 1, заключенный в диэлектрическую кварцевую трубку 2. В качестве катода 3 выступают сегменты проволоки, расположенные перпендикулярно продольной оси анода 1 (фиг. 1а). или спираль из проволоки 3, установленная соосно аноду (фиг. 2). Часть заземленного катода 4, выполненная в форме полуцилиндра, используется в качестве отражателя (фиг. 1). Подобный отражатель может быть использован и для конструкции источника, изображенной на фиг. 2. На анод 1 подаются импульсы высокого напряжения положительной полярности от генератора 5.

Примеры исследования функциональной способности предлагаемой конструкции источника излучения.

Возбуждение Аг и Кг осуществлялось однобарьерным разрядом, формируемым между катодом, изготовленным из сегментов проволоки диаметром 1 мм, и анодом, помещенным в кварцевую трубку с толщиной стенки 1,5 мм. Внешний диаметр трубки составлял 23 мм. Электродный блок располагался в герметичной камере, заполняемой рабочим газом — Аг или Кг. Давление газа в камере измерялось образцовым вакуумметром ВО. Внешний вид разряда регистрировался визуально или фотографированием. Возбуждение газа осуществлялось при подаче импульсов высокого напряжения (до нескольких киловольт) положительной полярности длительностью ~ 2 мкс на анод источника от генератора импульсов. Катод при этом был заземлен. Частота следования импульсов напряжения варьировалась от 10 до 100 кГц. Средняя мощность возбуждения изменялась в пределах от единиц до десятков ватт, как варьированием частоты, так и изменением напряжения импульсов возбуждения.

Однобарьерный разряд в Аг и Кг зажигался в широком диапазоне экспериментальных условий: давление газа - от десятков - сотен Тор до 1 атм, напряжении - от единиц до нескольких киловольт, расстояние между катодом (сегменты проволоки) и поверхностью кварцевой трубки, покрывающей анод, от 0 до 10мм. При этом основным отличием горения разряда для данных конструкций источников состоит в том, что в случае конструкции, изображенной на фиг. 1, плазма разряда преимущественно локализована в местах наименьшего расстояния между проволочными сегментами катода и поверхностью кварцевой трубки (или в местах касания проволок катода поверхности кварцевой трубки). При этом целесообразно облучать плоский объект и располагать его вблизи от проволок катода. При необходимости равномерного облучения больших поверхностей лампа может быть собрана из совокупности параллельно установленных анодов и общего катода. Во втором случае разряд локализуется между спиралью-катодом и поверхностью кварцевой трубки. Излучение разряда при этом аксиально симметрично. Данцая конструкция источника оптимальна для облучения криволинейных полуцилиндрических поверхностей. При необходимости возможна установка отражателя излучения. В обоих случаях формируемое в однобарьерном разряде излучение ВУФ диапазона распространяется без поглощения в материале стенки колбы источника излучения от газоразрядной плазмы на облучаемый объект.

Источники информации

- 1. А. Н. Зайдель, Е. Я. Шрейдер Спектроскопия вакуумного ультрафиолета/Изд-во "Наука", Гл. ред. физ.-мат. лит-ры, Москва, 1967.
- 2. Л. П. Шишацкая, С.А. Яковлев, Г.А. Волкова / ВУФ лампы с большой излучающей поверхностью / Оптический журнал, т. 65, № 12, с. 93- 95, 1998.
- 3. Y. Tanaka Continuous emission spectra of rare gases in the vacuum ultraviolet region / J. Opt. Soc. Amer. Vol. 45, N 9, pp. 710-713, 1955.
- 4. Волкова Г. А., Кириллова Н. Н., Павловская Е. Н., Подмошенский И. В., Яковлева А. В. Лампа для облучения в вакуумной ультрафиолетовой области спектра / Бюл. изобр. № 41, с. 179, 1982.
- 5. Ulrich Kogelschatz. Silent-discharge driven excimer UV sources and their applications / Applied Surface Science, V. 54, pp. 410-423, 1992.
- 6. Wieser, et al. Electron beam irradiation of gases and light source using the same. US Patent No. 6.052.401, April 18, 2000.
- 7. Salvermoser et al. High electric field, high pressure light source. US Patent No. 6.400.089, June 4, 2002.
- 8. Salvermoser, M., Murnick, D. E. Efficient, stable, corona discharge 172 nm xenon excimer light source / Jour. of Appl. Physics, Vol. 94, No. 6, 15 Sept. p. 3722 -31, 2003.
- 9. Vollkommer, L. Hitzschke. Dielectric Barrier Discharge / The 8th Internatinal Symposium on the Science and Technology of LIGHT SOURCIES LS-8. Greifswald. Germany, 30 Aug. 3 Sept. 1998. p. 51-60, 1998.
- 10. R.P. Mildren, R.J. Carman Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation / J. Phys. D: Appl. Phys. 34 (2001) L1 L6, 2001.
- 11. H. Esrom and U. Kogelschatz / Appl. Surf. Sci. Vol. 54, pp. 440, 1992.

Формула полезной модели

Источник спонтанного вакуумного ультрафиолетового излучения.

- П. 1. Источник спонтанного вакуумного ультрафиолетового излучения, возбуждаемый однобарьерным электрическим разрядом, содержащий в газовой рабочей среде разделенные диэлектриком анод и катод, отличающийся тем, что рабочей средой являются Ar или Kr, диэлектрик плотно размещен на аноде, а катод выполнен в виде проволочных сегментов.
- П. 2. Источник излучения по п.1, отличающийся тем, что часть катода выполнена в виде отражающей поверхности.
- П. 3. Источник излучения по п. 1,2 отличающийся тем, что электроды, разделенные диэлектриком, выполнены коаксиально, а катод выполнен в форме спирали.

Источник спонтанного вакуумного ультрафиолетового излучения.

Фигура 1.

Источник спонтанного вакуумного ультрафиолетового излучения.

Фигура 2.

Реферат

Источник спонтанного вакуумного ультрафиолетового излучения.

Изобретение относится к светотехнике и может быть использовано при создании и применении эффективных источников спонтанного излучения в вакуумной ультрафиолетовой области спектра, в частности, в микроэлектронике при обработке и чистке поверхности посредством ее облучения. Источник излучения, возбуждаемый однобарьерным электрическим разрядом, содержит в аргоновой или криптоновой среде разделенные диэлектриком 2 анод 1 и катод 3, при этом, диэлектрик плотно размещен на аноде, а катод выполнен в виде проволочных сегментов. Кроме того, часть катода может быть выполнена в виде отражающей поверхности 4. В источнике излучения электроды могут быть выполнены коаксиальными, а катод выполнен в форме спирали. Для уменьшения напряжения пробоя и отсутствия поглощения излучения электродный блок источника излучения помещается вместе с облучаемым объектом в герметичный объем, заполненный рабочим газом. В источнике использован газ аргон или криптон, для которых максимумы спектрального распределения излучения на В-Х переходах димеров соответствуют 126 и 147 нм. 2 илл.