COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 2Bhttps://eduassistpro.gistouto.au/rivals

Add WeChat edu_assist_pro

Pre-lecture exercise: Where is Felix? (Page 1)

- You have two boxes: Box 1 and Box 2, as well as a cat called Felix
- The two boxes are connected by a tunnel
- Felix likes to hide inside these boxes and travels between them using the tunnel.
- Felix is a very fast cat so the probability of finding him in the tunnel is zero
- You know Felix is in one of the boxes but you don't know which one

https://eduassistpro.github.io/

T1, 2021 COMP9334

Pre-lecture exercise: Where is Felix? (Page 2)

Notation:

- Prob[A] = probability that event A occurs
- Prob[A | B] = probability that event A occurs given event B

You do know

- Felix is in one Anthighaxenta Phintes O Exam Help
- Prob[Felix is in Bo
- Prob[Felix will be ihttps://eduassistpro.githမည့်.ipát time 0] = 0.4
- Prob[Felix will be in Box Wettime 1 edu_assist_proat time 0] = 0.2

Calculate

Prob[Felix is in Box 1 at time 1]

T1, 2021 COMP9334

Pre-lecture exercise: Where is Felix? (Page 3)

- You want to calculate: Prob[Felix is in Box 1 at time 1]
- Hint: There are two ways that Felix can end up in Box 1 at time 1
 - Felix is in Box Assignment Broject Exam HelpR
 - Felix is in Box 2 at https://eduassistpro.github.io/
- After you've figured out the above, you will need:

Reminder:

```
Prob[A or B] = Prob[A] + Prob[B] – Prob[A and B]
Prob[A and B] = Prob[A] Prob[B | A]
```

(Special case: A and B are mutually exclusive)
Prob[A or B] = Prob[A] + Prob[B] if Prob[A and B] = 0

T1, 2021 COMP9334

Performance analysis

- Modelling a computer system as a network of queues
- Operational analysis
 - Can be used to find performance bound
 - Assignment Project Exam Help
- What if you want ce?
 - Need to con https://eduassistpro.github.io/
 - Probability distribution of t
 Probability distribution of t

COMP9334 T1, 2021 5

Exponential inter-arrival with rate λ

We assume that successive arrivals are independent

Probability that inter-arrival time is between x and $x + \delta x$ = $\lambda \exp(-\lambda x) \delta x$

Poisson distribution

- The following are equivalent
 - The inter-arrival time is independent and exponentially distributed with parameter $\boldsymbol{\lambda}$
 - The number of arrivals in an interval T is a Poisson distribution with parameter λAssignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Mean inter-arrival time = 1 / λ
- Mean number of arrivals in time interval $T = \lambda T$
- Mean arrival rate = λ

Sample queueing problems

- Consider a call centre
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is $1/\mu$ (in, e.g. seconds)

Assignment Project Exam Heall centre:

Arrivals

If all https://eduassistpro.github.jo/
lf all https://eduassistpro.github.jo/
entre can put
at most nadditional edu_assist_pro
lf a call arrives when sand holding
slots are used, the call is rejected.

- Queueing theory will be able to answer these questions:
 - What is the probability that a call is rejected? (This lecture)
 - What is the mean waiting time for a call? (Next lecture)

Let us start simple

- We will start by looking at a call centre with one operator and no holding slot
 - This may sound unrealistic but we want to show how we can solve a typical queueing network problem

Analysis strategy

- The analysis will consider what happens over a small time interval $\boldsymbol{\delta}$
- This is so that we can consider only two possibilities in each time interval

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Poisson distribution

- Consider a small time interval δ
 - This means δ^n (for n >= 2) is negligible
- An interpretation of Poisson arrival:
 - Probability Assignment Roject Exam Help
 - Probability [1 https://eduassistpro.github.io/
 - Probability [2 or more arrival Add WeChat edu_assist_pro
- This interpretation can be derived from:

$$Pr[k \text{ arrivals in a time interval } T] = \frac{(\lambda T)^{\kappa} exp(-\lambda T)}{k!}$$

Service time distribution

- Service time = the amount of processing time a job requires from the server
- We assume that the service time distribution is exponential with parameter $\boldsymbol{\mu}$
 - The probability it is a partition of the probability it is a partition.

https://eduassistpro.github.io/

- Here: μ = service rate where we will be with the description with the service rate of the description of the service rate of the description of
- Another interpretation of exponen time:
 - Consider a small time interval δ
 - Probability [a job will finish its service in next δ seconds] = μ δ
 - Probability [a job will **not** finish its service in next δ seconds] =

Call centre with 1 operator and no holding slots

- Let us see how we can solve the queuing problem for a very simple call centre with 1 operator and no holding slots
- What happens to a call that arrives when the operator is busy?
 - Assignment Project Exam Help
- What happens t idle?
 https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro
- We are interested to find the probability that an arriving call is rejected.

Solution (1)

- There are two possibilities for the operator:
 - Busy or
 - Idle
- Let
 - State 0 = Operatornistiale Projecal Example Income ?
 - State 1 = Oper the call centre = ?

 https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 $P_1(t) = \text{Prob. 1 call in the call centre at time } t$

Solution (2)

We try to express $P_0(t + \Delta t)$ in terms of $P_0(t)$ and $P_1(t)$

- No call at call centre at t + ∆t can be caused by
 - No call at timeAssignment BrojectiExtam-Htplpr
 - 1 call at time t and https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Question: Why do we NOT have to consider the following possibility: No customer at time t & 1 customer arrives in [t, t + Δ t] & the call finishes within [t, t + Δ t].

Solution (3)

Similarly, we can show that

$$P_1(t + \Delta t) = P_0(t)\lambda \Delta t + P_1(t)(1 - \mu \Delta t)$$

If we let Δt → Agsiggmant Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$\frac{dP_1(t)}{dt} = P_0(t)\lambda - P_1(t)\mu$$

Solution (4)

We can solve these equations to get

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Solution (5)

We can solve these equations to get

Assignment Project Exam Help

https://eduassistpro.github.io/

• This is too complicated, let us lo dy state solution

$$P_0 = P_0(\infty) = \frac{\mu}{\lambda + \mu}$$

$$P_1 = P_1(\infty) = \frac{\lambda}{\lambda + \mu}$$

Solution (5)

- From the steady state solution, we have
 - The probability that an arriving call is rejected
 - = The probability that the operator is busy
 - =

Assignment Project Exam Help

https://eduassistpro.github.io/

- Let us check whether it makes edu_assist_pro
 - For a constant μ , if the arrival rat eases, will the probability that the operator is busy go up or down?
 - Does the formula give the same prediction?

An alternative interpretation

We have derived the following equation:

$$P_0(t + \Delta t) = P_0(t)(1 - \lambda \Delta t) + P_1(t)\mu \Delta t$$

• Which can be rewritten as: Assignment Project Exam Help

https://eduassistpro.github.io/

At steady state: Add WeChat edu_assist_pro

Change in Prob in State 0 = 0

$$\Rightarrow 0 = -P_0 \lambda \Delta t + P_1 \mu \Delta t$$

Rate of leaving state 0

Rate of entering state 0

Faster way to obtain steady state solution (1)

- Transition from State 0 to State 1
 - Caused by an arrival, the rate is λ
- Transition from State 1 to State 0
 - Caused by a completed service, the rate is μ
- State diagramssegnesentatioject Exam Help
 - Each circle is a
 - Label the arc b https://eduassistpro.github.ig/

COMP9334 T1, 2021

Faster way to obtain steady state solution (2)

- Steady state means
 - rate of transition out of a state = Rate of transition into a state
- We have for state 0:

Assignment Project/Exam Help

https://eduassistpro.github.io/

Faster way to obtain steady state solution (3)

- We can do the same for State 1:
- Steady state means
 - Rate of transition into a state = rate of transition out of a state
- We have for state 1:

Assignment Project/Exam Help

https://eduassistpro.github.io/

Faster way to obtain steady state solution (4)

- ullet We have one equation $\ \lambda P_0 = \mu P_1$
- We have 2 unknowns and we need one more equation.
- Since we must be either one of the two states:

Assignment Project Exam Help

https://eduassistpro.github.io/

Solving these two equations, we g steady state solution as before Add WeChat edu_assist_pro

$$P_0 = \frac{\mu}{\lambda + \mu} \qquad P_1 = \frac{\lambda}{\lambda + \mu}$$

Summary

- Solving a queueing problem is not simple
- It is harder to find how a queue evolves with time
- It is simpler to find how a queue behaves at steady state
 Procedure: Assignment Project Exam Help
 - - Draw a diag https://eduassistpro.github.io/
 - Add arcs be
 - Derive flow balance we direct edu assiste pro
 - Rate of entering a state = Rat
 - Solve the equation for steady state probability

COMP9334 T1, 2021 25

Don't forget the probabilistic interpretation

Change in probability in State 0

$$P_0(t + \Delta t) - P_0(t) = -P_0(t)\lambda \Delta t + P_1(t)\mu \Delta t$$

Assignment Project Exam Help https://eduassistpro.github.io/

Rate of leaving state Ochat edu assisentering state O

$$\Rightarrow 0 = -P_0 \lambda \Delta t + P_1 \mu \Delta t$$

Prob[Leaving State 0 | State 0]

Prob[Entering State 0 | State 1]

A call centre with 1 operator and 1 holding slot

 We want to determine the probability that an arriving call will be rejected

Analysing the queueing problem

- The system can be in one of the following three states
 - State 0 = 0 call in the system (= the operator is idle)
 - State 1 = 1 call in the system (= Operator busy. Holding slot empty.)
 - State 2 = 2 calls in the system (= Operator busy. Holding slot occupied.)
 Assignment Project Exam Help
- Define the probabi occurs

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$P_1 = \text{Probability in State 1}$$

$$P_2 = Probability in State 2$$

The transition probabilities

- Consider a small time interval δ
 - Given the system is in State 1
 - What is the probability that it will move to State 0?
 - What is the probability that it will move to State 2?
- Transiting from State 1 State 2 State 2 State 1
 - This can only o
 - Conditional pro https://eduassistpro.github.jo/
- Transiting from State We Char edu assist pro
 - This can only occur when
 - Conditional probability for this to occur = ______
- Prob [State 1 → State 0 | State 1] = ______

Exercise: The transition probabilities

- Can you work out the following transition probabilities
 - Prob [State 0 → State 1 | State 0] =
 - Prob [State 0 → State 2 | State 0] =
 - Prob [State 2 → State 0 | State 2] =
 - Prob [State 25 state 11 Protect Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

The state transition diagram

- Given the following transition probabilities (over a small time interval δ)
 - Prob [*State 0* → *State 1* | *State 0*] =
 - Prob [State 0 → State 2 | State 0] =
 - Prob [State 1 → State 0 | State 1] =
 - Prob [*State 1* → *State 2* | *State 1*] =
 - Prob [State 2] = State 0 | State 2] = Prob [State 2] = State 1 | State 2] = State 2 | State 3 | State 3
- We draw the follow https://eduassistpro.github.io/ transition probability / δ

 - Note 2: Arcs with Aerodrate archat edu_assist_pro

T1, 2021 **COMP9334**

Setting up the balance equations (1)

- For steady state, we have
 - Prob of transiting into a "box" = Prob of transiting out of a "box"
 - Rate of transiting into a "box" = Rate of transiting out of a "box"
- Note a "box" can include one or more state
- The "box" is the dotted square shown below

Prob out of silgnment Project Fram Help

https://eduassistpro.github.io $P_0 = \mu P_1$

Add WeChat edu_assist_pro

Exercise: Setting up the balance equations (2)

- Set up the balance equations for the
 - Red box

The balance equations

There are three balance equations

Assignment Project Exam Help

https://eduassistpro.github.io/

- Add WeChat edu_assist_pro
 Note that these three equations early
 - early independent
 - First equation + Third equation = Second equation
- There are 3 unknowns (P₀, P₁, P₂) but we have only 2 equations
- We need 1 more equation. What is it?

COMP9334 T1, 2021 34

Solving for the steady state probabilities

- An addition equation: Sum(Probabilities) = 1
- Solve the following equations for the steady state probabilities P₀, P₁, P₂:

$$\lambda P_0 = \mu P_1$$
Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

By solving these 3 equations, we have

Steady state probabilities

 By solving the equations on the previous slide, we have the steady state probabilities are:

• If we know the values of λ
Assignment Projecta From Hwer can find the https://eduassistpro.github.lo/ prob
Add WeChat edu_assist_pro expressions make sense?

$$P_2 = \frac{\left(\frac{\lambda}{\mu}\right)^2}{1 + \frac{\lambda}{\mu} + \left(\frac{\lambda}{\mu}\right)^2}$$

Summary and References

- Summary
 - Poisson queues with 1 server + (0 or 1) holding slot
 - How to solve the steady state solution
- Recommendersi regardingt Project Exam Help
 - https://eduassistpro.github.io/ ections 3.3 to 3.4.3 Queues with P
 - Bertsekas and
 - Note: I derived the formulash edu_assistinuore Markov chain but Bertsekas and Gallager use arkov chain

COMP9334 T1, 2021 37