Stat 312: Lecture 26 Contingency Tables

Moo K. Chung mchung@stat.wisc.edu

October 22, 2014

Concepts

- 1. Two-way contingency table: suppose there are I populations and each population is classified into J categories. Let n_{ij} be the number of observed elements in population i which fall into category j. We denote $n_{\bullet j} = \sum_{i=1}^{I} n_{ij}$ and $n_{i\bullet} = \sum_{j=1}^{J} n_{ij}$.
- 2. Testing for *homogeneity*. Let p_{ij} be the proportion of the elements in population i which fall into category j. Note that $\sum_{j=1}^{J} p_{ij} = 1$. We want to test if the proportions in the different categories are the same for all populations, i.e.

$$H_0: p_{1j} = p_{2j} = \cdots = p_{Ij} \text{ for all } j.$$

- 3. The *expected* number of element $\mathbb{E}N_{ij}$ in population i which falls into category j. $\mathbb{E}N_{ij} = n_{i\bullet}p_{ij}$. Under the null hypothesis, $p_{ij} = \cdots = p_{Ij} = p_j$. So $\mathbb{E}N_{ij} = n_{i\bullet}p_j$. We estimate p_j by pooling I samples together. $\hat{p}_j = n_{\bullet j}/n$.
- 4. Test statistic:

$$\chi^2 = \sum_{i,j} \frac{(n_{ij} - \mathbb{E}N_{ij})^2}{\mathbb{E}N_{ij}} \sim \chi^2_{(I-1)(J-1)}.$$

In-class problems

Example. Suppose that 20 out of 50 females and 10 out of 40 males are depressed in a sample. Determine if the frequency of depression is related to

sex.

Solution. Following the notations above, we are interested in testing H_0 : $p_{11}=p_{21}, p_{12}=p_{22}.$ n=90. Under H_0 , we estimate $\hat{p}_1=(20+10)/(20+10+30+30)=1/3$ and $\hat{p}_2=1-p_1=2/3$. The test statistic value is $\chi^2=$

The cutoff value $\chi^2_{\alpha,1}$ for α -level test can be computed from N(0,1).

$$\begin{split} \alpha &= P(\chi_1^2 > \chi_{\alpha,1}^2) = P(Z^2 > \chi_{\alpha,1}^2) = 2P(Z > \chi_{\alpha,1}). \\ \text{So } \chi_{\alpha,1}^2 &= Z_{\alpha/2}^2. \text{ For } \alpha = 0.05, \chi_{\alpha,1}^2 = 1.96^2. \end{split}$$

Self-study problems

Example 14.13.