Optimization of analytical methods for photodegradation products of PAH and phthalate esters adsorbed on microplastics

Katarina Čubej^{1*}, Samo Bordon¹, Jena Jamšek², Oliver Bajt², Helena Prosen¹

Faculty of Chemistry and Chemical technology, University of Ljubljana, Ljubljana, Slovenia ² National Institute of Biology – Marine Biology Station Piran, Piran, Slovenia * Corresponding author: katarina.cubej@gmail.com

Microplastics (MPs) are particles smaller than 5 mm in diameter and present a global environmental pollution problem. MPs serve as vectors for organic pollutants and therefore modify their photodegradation pathways [1]-[3].

The aim of this research was the optimization of analytical methods for photodegradation products adsorbed on MPs for two groups of important environmental pollutants: phthalate esters and polycyclic aromatic hydrocarbons.

HPLC method Standard solutions used **PHTHALATES** Final procedure: phthalic acid (a) Column: monomethyl phthalate (b) phthalates: HLB 900 dimethylphthalate (d) PAH: LC-8 monobutylphthalate (g) 700 dibutyl phthalate (k) original 600 **PAH** 2,7-naphthalenediol (c) 400 acenaphtenequinone (e) increases SPE yield* 300 2-naphtol (f) Washing step: 200 naphthalene (h) 5 mL MQ acenaphtene (i) Elution solvent: phenanthrene (j) 10 12 16 20 fluoranthene (l) time [min] PAH: 2 mL ACN HPLC-DAD chromatogram of mix of analytes with concentration 10 mg/L in 10 % ACN in MQ at 270 nm

Solid Phase Exctraction

Optimised for both groups separately

- pH value of the sample:
- Ion strength of the sample: 38 % NaCl (sea salinity)
- phthalates: 2 mL MeOH

*did not use it on model samples to avoid formation of adducts

LC-MS/MS method and TOF MS analysis

The complete optimised method was applied to model aqueous samples. Identities of peaks were proposed based on fragmentation patterns and confirmed with additional high-resolution MS analysis.

Electrooxidation of dibutyl phthalate

Photodegradation of PAH adsorbed on MP's particles

CONCLUSION

With the optimised method, some structures of degradation products of dibutyl phthalate and PAH were successfully determined.

Reference

- [1] Y. Yu, W. Y. Mo, T. Luukkonen: Adsorption Behaviour and Interaction of Organic Micropollutants with Nano and Microplastics A Review. Sci. Total Environ. 2021, 797, 149140.
- [2] L. Fu, J. Li, G. Wang, Y. Luan, W. Dai: Adsorption Behavior of Organic Pollutants on Microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207.
- [3] J. Huang, P. Duan, L. Tong, W. Zhang: Influence of Polystyrene Microplastics on the Volatilization, Photodegradation and Photoinduced Toxicity of Anthracene and Pyrene in Freshwater and Artificial Seawater. Sci. Total Environ. 2022, 819, 152049.