

การแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 20 ณ มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวังสนามจันทร์ ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 16 พฤษภาคม 2567 เวลา 8.00 - 13.00 น.

สายอักขระของเลขโดดฐานสอง (Bit String)

Binary System หรือ ระบบเลขฐานสอง เข้ามามีบทบาทอย่างมีนัยสำคัญในวงการวิทยาศาสตร์ ในช่วงศตวรรษที่ 17 โดย Gottfried Wilhelm Leibniz ระบบดังกล่าวสามารถนำมาใช้ทดแทนข้อความ คำสั่ง หรือข้อมูลต่าง ๆ ด้วยสายอักขระของเลขโดดฐานสอง (bit string) ซึ่งเป็นสายอักขระที่ประกอบด้วย อักขระ "0" และ "1" ทั้งนี้ในยุคปัจจุบันซึ่งถือว่าเป็นยุคดิจิทัล (digital) ซึ่งมีการดำเนินการต่าง ๆ ใน รูปแบบของ binary มากมาย เช่น ในการจัดการด้านสารสนเทศ (information) ข้อมูลทั้งหลายมักถูกแปลง ให้อยู่ในรูป binary เป็นหลัก ทำให้การสืบค้น ทำซ้ำ และแก้ไขข้อมูลทำได้อย่างสะดวกสบายมากขึ้น และ ด้วยการก้าวกระโดดของเทคโนโลยีทำให้ปัจจุบันเราสามารถส่งข้อมูล binary ในรูปแบบของกระแสข้อมูล (streaming) ได้อย่างง่ายดาย

อย่างไรก็ตามเพื่อเป็นการพัฒนาการส่งข้อมูลในรูปแบบของกระแสข้อมูลให้มีความเสถียรมากขึ้น จำเป็นต้องมีการวิเคราะห์ว่าข้อมูล bit string ที่ถูกส่งในรูปแบบของกระแสข้อมูลนั้นถูกลดทอนคุณภาพลง เพียงใด การวิเคราะห์การลดทอนคุณภาพของ bit string ทำได้ดังนี้

- 1. ผู้เชี่ยวชาญจะประเมินรูปแบบ (pattern) ของ bit string ต่าง ๆ ว่าแต่ละ pattern นั้น ๆ ถือว่า ลดทอนคุณภาพมากน้อยเพียงไหน ด้วยค่าน้ำหนัก C ค่าหนึ่ง
- 2. ข้อมูล bit string ที่ถูกจัดส่งจะถูกลดทอนคุณภาพด้วยกรณีดังต่อไปนี้
 - อักขระ "1" ภายใน bit string ถูกปรับแก้ให้เป็น อักขระ "0" ได้ แต่การปรับแก้จะทำได้ครั้งละ 1 หรือ 2 อักขระ เท่านั้น
 - สำหรับการปรับแก้ให้อักขระ "1" เป็น อักขระ "0" พร้อมกัน 2 อักขระ จะต้องเป็นกรณีที่เป็น อักขระ "1" ติดกัน 2 ตัวเท่านั้น ("11" ปรับแก้เป็น "00")
- การลดทอนคุณภาพแต่ละขั้นตอนในข้อที่ 2. จะดำเนินการต่อเนื่องไปเรื่อย ๆ จน bit string มี อักขระทั้งหมดเป็น "0" ทุกตัว จะถือว่าจบกระบวนการลดทอนคุณภาพ
- 4. ในแต่ละรอบในการลดทอนคุณภาพ หาก bit string ก่อนการลดทอนคุณภาพไปตรงกับ pattern ที่ผู้เชี่ยวชาญประเมินไว้รูปแบบใด ผู้เชี่ยวชาญจะทำการรวมค่าน้ำหนัก C ของ pattern ดังกล่าวไป เรื่อย ๆ จนจบการลดทอนคุณภาพ เรียกผลรวมดังกล่าวว่า "ค่าประเมินการลดทอนคุณภาพ"
- 5. "ค่าลดทอนคุณภาพ" ของ bit string นั้น เป็น "ค่าประเมินการลดทอนคุณภาพ" ที่<u>มากที่สุด</u>ของ bit string นั้น

งานของคุณ

เมื่อกำหนดค่า N ซึ่งเป็นความยาวของ bit string และ pattern จำนวน 2^N รูปแบบ พร้อมกับค่าน้ำหนัก ของ pattern เหล่านั้น แล้วจงเขียนโปรแกรมเพื่อคำนวณว่า "ค่าลดทอนคุณภาพ" ของ bit string จำนวน Q ตัวที่ต้องการ มีค่าเท่ากับเท่าไหร่

ข้อมูลนำเข้า (Input)

มีจำนวน $2^N + 1 + Q$ บรรทัด

บรรทัดที่ 1	มีจำนวนเต็ม 2 จำนวน ได้แก่ จำนวนเต็ม N แทนความยาว bit string โดยที่ $2 \le N \le 20$ คั่นด้วยช่องว่าง และตามด้วยจำนวนเต็ม Q แทนจำนวน bit string ที่ต้องการให้หา "ค่าลดทอน คุณภาพ" $1 \le Q < 100,000$
บรรทัดที่ 2 ถึง บรรทัดที่ 2 ^N + 1	แต่ละบรรทัดประกอบด้วย 2 ข้อมูลได้แก่ bit string ความยาว N ซึ่งแทน pattern ที่แตกต่างกัน คั่นด้วยช่องว่าง และตามด้วยค่าน้ำหนัก C_i โดย $-500,000 \le C_i \le 1,000,000$ ข้อมูลดังกล่าวเป็นข้อมูลของ pattern ที่เป็นไปได้ทั้งหมด และมีข้อมูล 1 บรรทัด ที่ pattern มี bit ภายในเป็น 0 ทั้งหมด จะมีค่าน้ำหนักเป็น 0 เสมอ
บรรทัดที่ $2^N + 2$ ถึง บรรทัดที่ $2^N + 1 + Q$	บรรทัดที่ 2^N+1+i มีข้อมูล bit string ความยาว N ตัวที่ i $(i=1,,Q)$

ข้อมูลส่งออก (Output)

มี Q บรรทัด

ı	,	,
	บรรทัดที่ <i>i</i>	แต่ละบรรทัดมีจำนวนเต็ม 1 จำนวนแทน " ค่าลดทอนคณภาพ " ของ
		bit string ตัวที่ i ($i=1,,Q$)
		Dit string was $t (t = 1,, Q)$

ตัวอย่าง

ตัวอย่างที่	ข้อมูลนำเข้า	ข้อมูลส่งออก
1	2 2	7
	10 -5	-5
	01 3	
	00 0	
	11 4	
	11	
	10	

คำอธิบายตัวอย่างที่ 1

จากตัวอย่างที่ 1 เป็น bit string ที่มีความยาว N=2 โดย pattern ทั้ง $2^N=2^2=4$ ได้แก่ "10", "01", "00"และ "11" ซึ่งมีค่าน้ำหนักดังแสดงในตัวอย่างที่ 1 สำหรับ bit string ที่ต้องการให้หาค่าลดทอนมี จำนวน Q=2 ได้แก่

- bit string **"11"** สำหรับ bit string นี้ มีขั้นตอนการลดทอนคุณภาพที่หลากหลาย เช่น เริ่มจาก "11" ตรงกับ pattern ที่มีค่าน้ำหนัก 4 ซึ่งการลดทอนคุณภาพอาจจะเปลี่ยนเป็น "00" ภายในครั้งเดียวได้ เลย ผลรวมค่าลดทอนคุณภาพคือ 4 นอกจากนี้ยังมีขั้นตอนการลดทอนคุณภาพอื่นอีกเช่น กรณีที่มี ขั้นตอนการลดทอนคุณภาพที่เริ่มจาก "11" ตรงกับ pattern ที่มีค่าน้ำหนัก 4 จากนั้นมีการเปลี่ยน เป็น "01" ตรงกับ pattern ที่มีค่าน้ำหนัก 3 และเปลี่ยนเป็น "00" ผลรวมค่าลดทอนคุณภาพคือ 7 สำหรับ กรณีนี้ถือว่าเป็นกรณีที่ "ค่าประเมินการลดทอนคุณภาพ" มีค่ามากที่สุดเมื่อเทียบกับขั้นตอนการ ลดทอนคุณภาพอื่น ๆ ดังนั้นถือว่า "ค่าลดทอนคุณภาพ" สำหรับ bit string **"11" เท่ากับ 7**
- สำหรับ bit string "10" ตรงกับ pattern ที่มีค่าน้ำหนัก -5 และการลดทอนคุณภาพทำเพียงครั้งเดียว กลายเป็น bit string "00" ดังนั้นสำหรับ bit string นี้มี "ค่าลดทอนคุณภาพ" เท่ากับ -5

ตัวอย่างที่	ข้อมูลนำเข้า	ข้อมูลส่งออก
2	3 2	14
	001 9	10
	000 0	
	100 9	
	010 1	
	101 1	
	110 2	
	111 3	
	011 1	
	111	
	011	

ตัวอย่างที่	ข้อมูลนำเข้า	ข้อมูลส่งออก
3	3 3	3
	000 0	3
	001 1	6
	010 1	
	011 2	
	100 1	
	101 2	
	110 2	
	111 3	
	101	
	110	
	111	
4	3 4	3
	000 0	2
	001 1	6
	010 -1	9
	011 2	
	100 4	
	101 -2	
	110 2	
	111 3	
	011	
	101	
	110	
	111	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB
คะแนนสูงสุดของโจทย์	100 คะแนน

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

กลุ่ม ชุดทดสอบที่	คะแนนสูงสุด ของกลุ่มชุดทดสอบนี้	เงื่อนไข
1	16	n ≤ 5 และ Q = 1
2	8	$n \leq 10, Q=1$ และ $C_i>0$ (ยกเว้น bit string ที่ประกอบด้วย 0 ทั้งหมด จะมีค่า $C_i=0$)
3	13	$n \leq 20, Q \leq 10$ และ $\mathcal{C}_i > 0$ (ยกเว้น bit string ที่ประกอบด้วย 0 ทั้งหมด จะมีค่า $\mathcal{C}_i = 0$)
4	5	$\mathcal{C}_i = \mathcal{C}_j > 0$ สำหรับทุก i,j (ยกเว้น bit string ที่ประกอบด้วย 0 ทั้งหมด จะมีค่า $\mathcal{C}_i = 0$)
5	5	$\mathcal{C}_i = \mathcal{C}_j < 0$ สำหรับทุก i,j (ยกเว้น bit string ที่ประกอบด้วย 0 ทั้งหมด จะมีค่า $\mathcal{C}_i = 0$)
6	17	ก ≤ 20 และ Q ≤ 100
7	36	ไม่มีเงื่อนไขอื่น