深度學習期末報告 - 動漫風格轉換

王俊貴 108321018 王奇立 108321006 楊曜瑋 107321011

一、 使用的資料集

a. 自建亞洲人臉資料集

使用網路自建的亞洲人臉資料集,將其中女性的人臉挑選出來,之後經過程式進行前處理,將人臉的部分切割並且擺正之後進行訓練。

自建亞洲人臉資料集

預處理過後的資料集

b. 人臉產生器所產出的照片

由網路上的人臉產生器提取各項特徵進行排列組合的結果,但也因此會感覺整體照片會長得很像,好處是產生的照片皆是正臉,就算不進行預處理也能直接使用。

人臉產生器資料集

▶ 小結

因為上述兩種資料集在訓練後進行比較,發現結果差異不大,基於 自建亞洲人臉資料集的人臉擁有較豐富的素材,因此我們後續皆採用此 資料集進行訓練。

二、 Model 架構

a. CycleGAN

由兩組 GAN 所構成,總共有兩個 generator (一個負責產生假的 A 資料、一個負責產生假的 B 資料),兩組 GAN 各帶有一組 discriminator 負責分辨資料的真偽。目的是透過 generator 產生假資料,並由 discriminator 判斷真假,相互進行訓練,以達到較佳的訓練效果。

CycleGAN 流程示意圖

b. Model 各層架構

Layer type	#	Layer type	#
ReflectionPad2d	190	ResnetBlock	4
Conv2d	205	Linear	52
InstanceNorm2d	183	adaLIN	8

ReLU	204	SoftAdaLIN	8
ConvBlock	56	ResnetSoftAdaLINBlock	4
HourGlass	4	Tanh	1
HourGlassBlock	4	Upsample	2
LIN	2	總計	927 layers

c. 参數量

d. Loss function

I. MSE_Loss: Mean Square Error

$$L(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} (y - \hat{y}_i)^2$$

II. L1 Loss:輸出和模板之間相對應的元素相減後的總和

$$L1LossFunction = \sum_{i=1}^{n} |y_{true} - y_{predicted}|$$

III. BCEWithLogitsLoss: Binary Cross Entropy + sigmoid

$$CE = -\sum_{i=1}^{C'=2} t_i log(f(s_i)) = -t_1 log(f(s_1)) - (1 - t_1) log(1 - f(s_1))$$

e. AdaLIN

將 Attention Feature Maps 放到 fully connected layer 學習兩個參數: scale 的 γ 以及 shift 的 β 映射到位於目標風格的 space,讓神經網路自己選擇應該要用 Instance Norm 或是 Layer Norm 。

$$\begin{split} AdaLIN(a,\gamma,\beta) &= \gamma \cdot (\rho \cdot \hat{a_I} + (1-\rho) \cdot \hat{a_L}) + \beta, \\ \hat{a_I} &= \frac{a - \mu_I}{\sqrt{\sigma_I^2 + \epsilon}}, \hat{a_L} = \frac{a - \mu_L}{\sqrt{\sigma_L^2 + \epsilon}}, \\ \rho &\leftarrow clip_{[0,1]}(\rho - \tau \Delta \rho) \end{split}$$

AdaLIN 示意圖

f. Optimizer

使用 Adam Opitmizer

	Learning rate	Betas	Weight decay
Generator optimizer	0.0001	(0.5, 0.999)	0.0001
Discriminator optimizer	0.0001	(0.5, 0.999)	0.0001

g. CAM

在結束 convolution 後,套入一層 GAP 層(Global Average Pooling Layer),每一張特徵圖經過 GAP 的轉換後將特徵圖的訊息壓縮成一個一個的神經元,因此經過 GAP 轉換後的每一個神經元分別對應到了最後一層的某一張特徵圖,而 GAP 層所連接的權重即可視為每一張特徵圖對於模型預測類別的重要性,最後將每一張特徵圖依照其對應的權重進行加權即得到 CAM (Class Activation Map)。

CAM 流程圖

CAM 權重疊加方式

三、 CAM 機制的影響

因為我們推估,加入 CAM 機制,可以有效提升特徵提取的能力,因此將 CAM 的權重分別設為 1000 及 0 進行比較。然而卻會發現,加入 CAM,反而使得整體效果變差了,與我們的推測有所不同。

CAM 權重 = 0, epochs = 8000

CAM 權重 = 1000, epochs = 8000

CAM 權重 = 0, epochs = 13490

CAM 權重 = 1000, epochs = 13950

四、 成果展示&發現

a. 測試結果

測試結果				
epoch				
訓練	3000	7000	11950	
次數				
測試結果				
epoch				
訓練	15950	23000	25000	
次數				
	測試結果一			

測試結果				
epoch				
訓練	3000	7000	11950	
次數				
測試結果				
epoch				
訓練	15950	23000	25000	
次數				
	測試結果二			

A2B 變化過程

b. 數據分析

Discriminator Loss 經常不穩定的跳來跳去,Generator Loss 則是有趨於 0 的趨勢,實際看過也確實 Generator 產生的效果越來越好。

Generator Loss

Discriminator Loss

c. 問題與發現

- II. 當 epoch 數提高,特徵提取會從原先發散至整張圖片背景逐漸集中於 人的臉部,能有效提升成效。
- III. 根據參考的資料,原先預設是要跑 100 萬次 epoch,然而我們跑了 25000 次 epoch後,其實就有不錯的效果。

d. 組員大頭照結果 (25000 epochs, CAM = 1000)

部分特徵(眉毛、眼睛)還是有些瑕疵,但是整體輪廓已經很清楚, 並且眼鏡也有很好的書出來。

五、 結論

- a. Epoch 數越高,能有效強化特徵提取效果,在風格轉換上能做到更加地 精細,使成果越趨完美。
- b. CAM 好像在風格轉換上的幫助有限,甚至有反效果。
- C. 有機會可嘗試加入不同性別、種族,抑或是不同風格的訓練資料,看看 會不會有更好的效果。
- d. 参考資料上沒有一個明確判斷風格轉換是否完全的指標,但在網路上查 詢到可以判斷 loss 是否有明確改變,如果沒有的話,epoch 就提早停止, 未來有機會可以嘗試看看加入這個判斷機制去找到適當的訓練次數。