Notes on the book: $Patrick\ Morandi,\ Field\ and\ Galois \\ Theory$

Meng-Gen Tsai plover@gmail.com

August 30, 2021

Contents

I. Galois Theory

§1. Field Extensions

Problem 1.1.

Let K be a field extension of F. By defining scalar multiplication for $\alpha \in F$ and $a \in K$ by $\alpha \cdot a = \alpha a$, the multiplication in K, show that K is an F-vector space.

Proof.

(1) K is an additive group.

(2) Show that $(\alpha\beta) \cdot a = \alpha \cdot (\beta \cdot a)$ for $\alpha, \beta \in F$ and $a \in K$. In fact,

$$(\alpha\beta) \cdot a = \alpha\beta a \in K,$$

$$\alpha \cdot (\beta \cdot a) = \alpha\beta a \in K.$$

(3) Show that $(\alpha + \beta) \cdot a = \alpha \cdot a + \beta \cdot a$ for $\alpha, \beta \in F$ and $a \in K$.

$$(\alpha + \beta) \cdot a = (\alpha + \beta)a$$
$$= \alpha a + \beta a \in K,$$
$$\alpha \cdot a + \beta \cdot a = \alpha a + \beta a \in K.$$

(4) Show that $\alpha \cdot (a+b) = \alpha \cdot a + \alpha \cdot b$ for $\alpha \in F$ and $a, b \in K$.

$$\alpha \cdot (a+b) = \alpha(a+b)$$

$$= \alpha a + \alpha b \in K,$$

$$\alpha \cdot a + \alpha \cdot b = \alpha a + \alpha b \in K.$$

(5) Show that $1 \cdot a = a$ for $a \in K$. $1 \cdot a = 1a = a \in K$.

By (1) to (5), K is an F-vector space. \square

Problem 1.2.

If K is a field extension of F, prove that [K : F] = 1 if and only if K = F.

Proof.

(1) $[K:F] = 1 \iff K = F$. Take a basis $\{1\}$ for K as an F-vector space.

(2) $[K:F] = 1 \Longrightarrow K = F$. Take a basis $\{a\}$ for K as an F-vector space where $a \in K$. Since $1 \in K$ as an F-vector space, there exists $\alpha \in F$ such that $1 = \alpha a$. $a = \alpha^{-1} \in F$, or $K \subseteq F$, or K = F.

Problem 1.3.

Let K be a field extension of F, and let $a \in K$. Show that the evaluation map $ev_a : F[x] \to K$ given by $ev_a(f(x)) = f(a)$ is a ring and and F-vector space homomorphism. (Such a map is called an F-algebra homomorphism.)

Proof.

- (1) ev_a is a ring homomorphism.
 - (a) $ev_a(f(x) + g(x)) = f(a) + g(a) = ev_a(f(x)) + ev_a(g(x)).$
 - (b) $\operatorname{ev}_a(f(x)g(x)) = g(a)g(b) = \operatorname{ev}_a(f(x))\operatorname{ev}_a(g(x)).$
 - (c) $ev_a(1) = 1$.
- (2) ev_a is an F-vector space homomorphism.
 - (a) $ev_a(f(x) + g(x)) = f(a) + g(a) = ev_a(f(x)) + ev_a(g(x)).$
 - (b) Given $c \in F$, $\operatorname{ev}_a(cf(x)) = cf(a) = c\operatorname{ev}_a(f(x))$.

Problem 1.4.

Prove Proposition 1.9: Let K be a field extension of F and let $a_1, \ldots, a_n \in K$. Then

$$F[a_1, \dots, a_n] = \{ f(a_1, \dots, a_n) : f \in F[x_1, \dots, x_n] \}$$

and

$$F(a_1, \dots, a_n) = \left\{ \frac{f(a_1, \dots, a_n)}{g(a_1, \dots, a_n)} : f, g \in F[x_1, \dots, x_n], g(a_1, \dots, a_n) \neq 0 \right\},\,$$

so $F(a_1, \ldots, a_n)$ is the quotient field of $F[x_1, \ldots, x_n]$.

Proof (Proposition 1.8).

(1) The evaluation map $\operatorname{ev}_{(a_1,\ldots,a_n)}:F[x_1,\ldots,x_n]\to K$ has image

$$\{f(a_1,\ldots,a_n): f \in F[x_1,\ldots,x_n]\},\$$

so this set is a subring of K.

(2) If R is a subring of K that contains F and a_1, \ldots, a_n , then

$$f(a_1,\ldots,a_n)\in R$$

for any $f(x_1, ..., x_n) \in F[x_1, ..., x_n]$ by closure of addition and multiplication.

(3) So $\{f(a_1,\ldots,a_n): f\in F[x_1,\ldots,x_n]\}$ is contained in all subrings of K that contains F and a_1,\ldots,a_n . Hence

$$F[a_1, \dots, a_n] = \{ f(a_1, \dots, a_n) : f \in F[x_1, \dots, x_n] \}.$$

(4) The quotient field of $F[a_1, \ldots, a_n]$ is then the set

$$\left\{\frac{f(a_1,\ldots,a_n)}{g(a_1,\ldots,a_n)}: f,g\in F[x_1,\ldots,x_n], g(a_1,\ldots,a_n)\neq 0\right\}.$$

It is clearly is contained in any subfield of K that contains $F[a_1, \ldots, a_n]$; hence, it is equal to $F(a_1, \ldots, a_n)$.

Problem 1.5.

Show that $\mathbb{Q}(\sqrt{5}, \sqrt{7}) = \mathbb{Q}(\sqrt{5} + \sqrt{7})$.

Proof.

- (1) $\mathbb{Q}(\sqrt{5}, \sqrt{7}) \supseteq \mathbb{Q}(\sqrt{5} + \sqrt{7})$ since $\sqrt{5} + \sqrt{7} \in \mathbb{Q}(\sqrt{5}, \sqrt{7})$.
- (2)

$$(\sqrt{7} + \sqrt{5})^{-1} = \frac{1}{\sqrt{7} + \sqrt{5}}$$

$$= \frac{\sqrt{7} - \sqrt{5}}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}$$

$$= \frac{\sqrt{7} - \sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5} + \sqrt{7}),$$

Or
$$\sqrt{7} - \sqrt{5} \in \mathbb{Q}(\sqrt{5} + \sqrt{7})$$
. Thus

$$\sqrt{7} = \frac{1}{2} \cdot ((\sqrt{7} + \sqrt{5}) + (\sqrt{7} - \sqrt{5})) \in \mathbb{Q}(\sqrt{5} + \sqrt{7}),$$
$$\sqrt{5} = \frac{1}{2} \cdot ((\sqrt{7} + \sqrt{5}) - (\sqrt{7} - \sqrt{5})) \in \mathbb{Q}(\sqrt{5} + \sqrt{7}).$$

Thus, $\mathbb{Q}(\sqrt{5}, \sqrt{7}) \subseteq \mathbb{Q}(\sqrt{5} + \sqrt{7})$.

By
$$(1)(2)$$
, $\mathbb{Q}(\sqrt{5}, \sqrt{7}) = \mathbb{Q}(\sqrt{5} + \sqrt{7})$. \square

Problem 1.9.

If K is an extension of F such that [K : F] is prime, show that there are no intermediate fields between K and F.

Proof. Let L be any field such that $F \subseteq L \subseteq K$. By Proposition 1.20,

$$[K:F] = [K:L][L:F].$$

Since [K:F] is prime, [K:L]=1 or [L:F]=1. By Problem 1.2, L=K or L=F, or there are no intermediate fields between K and F. \square

Problem 1.11.

If K is an algebraic extension of F and if R is a subring of K with $F \subseteq R \subseteq K$, show that R is a field.

Proof.

- (1) R is a domain since R is contained in a field K. To show R is a field, it suffices to show that every nonzero element $\alpha \in R$ has an inverse in R.
- (2) Since $\alpha \in R \subseteq K$ is algebraic over F, there is a minimal polynomial

$$f(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0$$

such that $f(\alpha) = 0$, where each $b_i \in F$ and $b_0 \neq 0$ by the minimality of f.

(3) Note that

$$f(\alpha) = 0$$

$$\iff b_n \alpha^n + b_{n-1} \alpha^{n-1} + \dots + b_0 = 0$$

$$\iff b_n \alpha^n + b_{n-1} \alpha^{n-1} + \dots + b_1 \alpha = -b_0$$

$$\iff \alpha(b_n \alpha^{n-1} + b_{n-1} \alpha^{n-2} + \dots + b_1) = -b_0$$

$$\iff \alpha(\underbrace{(-b_0)^{-1} b_n \alpha^{n-1} + (-b_0)^{-1} b_{n-1} \alpha^{n-2} + \dots + (-b_0)^{-1} b_1}_{:=\alpha'}) = 1.$$

Hence $\alpha' \in F[\alpha] \subseteq R$. Therefore α' is the inverse of α in R.

Problem 1.12.

Show that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic as fields but are isomorphic as vector spaces over \mathbb{Q} .

Proof.

(1) Show that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic as fields. (Reductio ad absurdum) If $\varphi : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3})$ were an isomorphism as fields, then φ is an identity map on \mathbb{Q} , and

$$\varphi(\sqrt{2}) = a + b\sqrt{3} \text{ for some } a, b \in \mathbb{Q}$$

$$\Longrightarrow \varphi(\sqrt{2})\varphi(\sqrt{2}) = (a + b\sqrt{3})^2$$

$$\Longrightarrow \varphi(\sqrt{2}\sqrt{2}) = (a + b\sqrt{3})^2$$

$$\Longrightarrow \varphi(2) = a^2 + 3b^2 + 2ab\sqrt{3}$$

$$\Longrightarrow 2 = a^2 + 3b^2 + 2ab\sqrt{3}.$$

If $2ab \neq 0$, then $\sqrt{3} = \frac{2-a^2-3b^2}{2ab} \in \mathbb{Q}$, which is absurd. Hence 2ab = 0.

(a) a = 0. Write $b = \frac{m}{n} \in \mathbb{Q}$ where $m, n \in \mathbb{Z}$ and (m, n) = 1. Hence

$$2n^2 = 3m^2.$$

So $2 \mid 3m^2$, $2 \mid m^2$, $2 \mid m$. So $4 \mid 2n^2$, $2 \mid n^2$, $2 \mid n$. Hence $2 \mid (m, n)$, contrary to the assumption that (m, n) = 1.

(b) b=0. $2=a^2$. Write $a=\frac{m}{n}\in\mathbb{Q}$ where $m,n\in\mathbb{Z}$ and (m,n)=1. Similar to the argument in (a), we will reach a contradiction.

By (a)(b), no such isomorphism φ , that is, $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic as fields.

(2) Show that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are isomorphic as \mathbb{Q} -vector spaces. $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$. There is a natural map $\varphi:\mathbb{Q}(\sqrt{2})\to\mathbb{Q}(\sqrt{3})$ defined by $\varphi(a+b\sqrt{2})=a+b\sqrt{3}$. Clearly φ is well-defined, linear, injective and surjective.

Problem 1.16.

Let \mathbb{A} be the algebraic closure of \mathbb{Q} in \mathbb{C} . Prove that $[\mathbb{A}:\mathbb{Q}]=\infty$.

Proof (Example 1.16). By Example 1.16, $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}]=n$. Therefore,

$$[\mathbb{A}:\mathbb{Q}] = [\mathbb{A}:\mathbb{Q}(\sqrt[n]{2})][\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = [\mathbb{A}:\mathbb{Q}(\sqrt[n]{2})]n$$

for arbitrary $n \in \mathbb{Z}^+$. Hence $[\mathbb{A} : \mathbb{Q}] = \infty$. \square

Proof (Example 1.16). Given a prime number p. By Example 1.16, $[\mathbb{Q}(\rho):\mathbb{Q}] = p-1$ where $\rho = \exp(2\pi i/p)$. Therefore,

$$[\mathbb{A}:\mathbb{Q}] = [\mathbb{A}:\mathbb{Q}(\rho)][\mathbb{Q}(\rho):\mathbb{Q}] = [\mathbb{A}:\mathbb{Q}(\rho)](p-1)$$

for arbitrary prime p. Hence $[\mathbb{A} : \mathbb{Q}] = \infty$. \square

Problem 1.23.

Recall that the characteristic of a ring R with identity is the smallest positive integer n for which $n \cdot 1 = 0$, if such an n exists, or else the characteristic is 0. Let R be a ring with identity. Define $\varphi : \mathbb{Z} \to R$ by $\varphi(n) = n \cdot 1$, where 1 is the identity of R. Show that φ is a ring homomorphism and that $\ker(\varphi) = m\mathbb{Z}$ for a unique nonnegative integer m, and show that m is the characteristic of R.

Proof.

- (1) φ is a ring homomorphism.
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b)$. $\varphi(a+b) = (a+b) \cdot 1 = a \cdot 1 + b \cdot 1 = \varphi(a) + \varphi(b)$.
 - (b) $\varphi(ab) = \varphi(a)\varphi(b)$. $\varphi(ab) = (ab) \cdot 1 = (a \cdot 1)(b \cdot 1) = \varphi(a)\varphi(b)$ since $1 \times 1 = 1$. (Here \times is the multiplication operator of R.)
- (2) $\ker(\varphi) = m\mathbb{Z}$ for a unique nonnegative integer m. Since $\ker(\varphi)$ is an ideal of a PID \mathbb{Z} , there is a unique nonnegative integer m such that $\ker(\varphi) = m\mathbb{Z}$.
- (3) m is the characteristic of R. There are only two possible cases, char(R) = 0 or else char(R) > 0.
 - (a) char(R) = 0. $ker(\varphi) = 0$. Thus m = 0 = char(R).
 - (b) char(R) = n > 0. $n \in ker(\varphi)$, so m > 0 and $m \mid n$. By the minimality of n, m = n = char(R).

Problem 1.24.

For any positive integer n, give an example of a ring of characteristic n.

Proof. The ring $\mathbb{Z}/n\mathbb{Z}$. \square

Problem 1.25.

If R is an integral domain, show that either char(R) = 0 or char(R) is prime.

Proof.

- (1) 1 has infinite order. char(R) = 0. (Nothing to do.)
- (2) 1 has finite order n. Want to show n is prime. If n = ab where $a, b \in \mathbb{Z}^+$, then

$$0 = n \cdot 1 = (a \cdot 1)(b \cdot 1).$$

Since R is an integral domain, $a \cdot 1 = \text{or } b \cdot 1 = 0$. By the minimality of n, $a \ge n$ or $b \ge n$. a = n or b = n. That is, n is prime.

§2. Automorphisms

Problem 2.1.

Show that the only automorphism of \mathbb{Q} is the identity.

Proof. Given any $\sigma \in Aut(\mathbb{Q})$.

- (1) Show that $\sigma(1) = 1$. Since $1^2 = 1$, $\sigma(1)\sigma(1) = \sigma(1)$. $\sigma(1) = 0$ or 1. There are only two possible cases.
 - (a) Assume that $\sigma(1) = 0$. So

$$\sigma(a) = \sigma(a \cdot 1) = \sigma(a) \cdot \sigma(1) = \sigma(a) \cdot 0 = 0$$

for any $a \in \mathbb{Q}$. That is, $\sigma = 0 \in \operatorname{Aut}(\mathbb{Q})$, which is absurd.

- (b) Therefore, $\sigma(1) = 1$.
- (2) Show that $\sigma(n) = n$ for all $n \in \mathbb{Z}^+$. Write $n = 1 + 1 + \dots + 1$ (n times 1). Applying the additivity of σ , we have

$$\sigma(n) = \sigma(1) + \sigma(1) + \dots + \sigma(1) = 1 + 1 + \dots + 1 = n.$$

(Might use induction on n to eliminate \cdots symbols.)

(3) Show that $\sigma(n) = n$ for all $n \in \mathbb{Z}$. By the additivity of σ , $\sigma(-n) = -\sigma(n) = -n$ for $n \ge 0$. The result is established.

For any $a = \frac{n}{m} \in \mathbb{Q}$ $(m, n \in \mathbb{Z}, n \neq 0)$, applying the multiplication of σ on am = n, that is, $\sigma(a)\sigma(m) = \sigma(n)$. By (3), we have $\sigma(a)m = n$, or

$$\sigma(a) = \frac{m}{n} = a$$

provided $n \neq 0$, or σ is the identity. \square

Problem 2.2.

Show that the only automorphism of \mathbb{R} is the identity. (Hint: If σ is an automorphism, show that $\sigma|_{\mathbb{Q}} = id$, and if a > 0, then $\sigma(a) > 0$. It is an interesting fact that there are infinitely many automorphisms of \mathbb{C} , even thought $|\mathbb{C}:\mathbb{R}| = 2$. Why is this fact not a contradiction to this problem?)

Proof (Hint). Given any $\sigma \in Aut(\mathbb{R})$.

- (1) Apply the same argument in Problem 2.1, we have $\sigma|_{\mathbb{Q}} = \mathrm{id}$. Notice that $\sigma(a) \neq 0$ for any $a \neq 0$.
- (2) Show that $\sigma(a) > 0$ if a > 0. Given any a > 0. Write $a = \sqrt{a}\sqrt{a}$ (well-defined) and then apply σ on the both sides,

$$\sigma(a) = \sigma(\sqrt{a})\sigma(\sqrt{a}) = \sigma(\sqrt{a})^2 > 0$$

(since $\sqrt{a} \neq 0$ and thus $\sigma(\sqrt{a})$ cannot be zero).

- (3) Show that $\sigma(a) > \sigma(b)$ if a > b. It is a corollary to (2) by applying σ on a b > 0. $(\sigma(a b) > 0$, or $\sigma(a) \sigma(b) > 0$, or $\sigma(a) > \sigma(b)$.)
- (4) For any real number $x \in \mathbb{R}$, choose two sequences $\{p_n\}, \{q_n\}$ of rational numbers such that $p_n < x < q_n$ and $p_n, q_n \to x$ as $n \to \infty$. Take σ on the inequality, $\sigma(p_n) < \sigma(x) < \sigma(q_n)$. So $p_n < \sigma(x) < q_n$ since $\sigma|_{\mathbb{Q}} = \mathrm{id}$. Let $n \to \infty$, we get $x \le \sigma(x) \le x$, or $\sigma(x) = x$.

Supplement. Automorphisms of the Complex Numbers. by Paul B. Yale (Pomona College) [Link].

Problem 2.4.

Let B be an integral domain with quotient field F. If $\sigma: B \to B$ is a ring automorphism, show that σ induces a ring automorphism $\sigma': F \to F$ defined by $\sigma'(a/b) = \sigma(a)/\sigma(b)$ if $a, b \in B$ with $b \neq 0$.

Proof.

- (1) Show that σ' is well-defined.
 - (a) $\sigma': F \to F$ is defined. $\sigma(a), \sigma(b) \in B$ since σ is a homomorphism. $\sigma(b) \neq 0$ since $b \neq 0$ and σ is a one-on-one homomorphism.
 - (b) σ' is independent of the representation of $a/b \in F$. Suppose a/b = c/d where $a, b, c, d \in B$ and $b, d \neq 0$. Hence,

$$a/b = c/d \iff ad = bc$$

$$\iff \sigma(ad) = \sigma(bc)$$

$$\iff \sigma(a)\sigma(d) = \sigma(b)\sigma(c) \qquad (\sigma: \text{ homomorphism})$$

$$\iff \sigma(a)/\sigma(d) = \sigma(c)/\sigma(d) \qquad (\sigma(b), \sigma(d) \neq 0)$$

$$\iff \sigma'(a/b) = \sigma'(c/d).$$

- (2) Show that σ' is a ring homomorphism.
 - (a) Show that $\sigma'(a/b + c/d) = \sigma'(a/b) + \sigma'(c/d)$. $\sigma'(a/b + c/d) = \sigma'((ad + bc)/(bd))$ $= \sigma(ad + bc)/\sigma(bd)$ $= (\sigma(a)\sigma(d) + \sigma(b)\sigma(c))/(\sigma(b)\sigma(d)) \quad (\sigma: \text{ homomorphism})$ $= \sigma(a)/\sigma(b) + \sigma(c)/\sigma(d)$

$$= \sigma'(a/b) + \sigma'(c/d).$$

(b) Show that $\sigma'(a/b \cdot c/d) = \sigma'(a/b) \cdot \sigma'(c/d)$.

$$\begin{split} \sigma'(a/b \cdot c/d) &= \sigma'((ac)/(bd)) \\ &= \sigma(ac)/\sigma(bd) \\ &= (\sigma(a)\sigma(c))/(\sigma(b)\sigma(d)) \qquad (\sigma\colon \text{homomorphism}) \\ &= \sigma(a)/\sigma(b) \cdot \sigma(c)/\sigma(d) \\ &= \sigma'(a/b) \cdot \sigma'(c/d). \end{split}$$

(3) Show that σ' is injective.

$$\sigma'(a/b) = 0 \iff \sigma(a)/\sigma(b) = 0$$

$$\iff \sigma(a) = 0$$

$$\iff a = 0 \qquad (\sigma: injective)$$

$$\iff a/b = 0/b = 0 \in F$$

(4) Show that σ' is a surjective. Given any $c/d \in F$, want to show there is $a/b \in F$ such that $\sigma'(a/b) = c/d$.

$$c/d \in F \Longrightarrow c, d \in B$$

 $\Longrightarrow \exists a, b \in B \text{ such that } \sigma(a) = c, \sigma(b) = d \quad (\sigma: \text{ surjective})$
 $\Longrightarrow \exists a, b \in B \text{ such that } \sigma(a)/\sigma(b) = c/d$
 $\Longrightarrow \exists a, b \in B \text{ such that } \sigma'(a/b) = c/d.$

II. Some Galois Extensions

§10. Hilbert Theorem 90 and Group Cohomology

Supplement.

- (1) Corollary 10.4 (Cohomological Hilbert Theorem 90). Let K be a cyclic Galois extension of F. Then $H^1(\text{Gal}(K/F), K^{\times}) = 0$.
- (2) (Exercise 10.24 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition.) Let $\omega = \sum a_i(\mathbf{x}) dx_i$ be a 1-form of class \mathcal{C}'' in a convex open set $E \subseteq \mathbb{R}^n$. Assume $d\omega = 0$ and prove that ω is exact in E. Hence the first de Rham cohomology $H^1_{\mathrm{dR}}(E) = 0$.
- (3) $H^1_{dR}(E) = 0$ if E is simply connected. (The converse is not true.)
- (4) (Exercise 10.21 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition.) Consider the 1-form

$$\eta = \frac{xdy - ydx}{x^2 + y^2}$$

$$in \ \mathbb{R}^2 - \{\mathbf{0}\}.$$

(a) Carry out the computation that leads to

$$\int_{\gamma} \eta = 2\pi \neq 0,$$

and prove that $d\eta = 0$.

(b) Let $\gamma(t) = (r\cos t, r\sin t)$, for some r > 0, and let Γ be a \mathcal{C}'' -curve in $\mathbb{R}^2 - \{\mathbf{0}\}$, with parameter interval $[0, 2\pi]$, with $\Gamma(0) = \Gamma(2\pi)$, such that the intervals $[\gamma(t), \Gamma(t)]$ do not contain $\mathbf{0}$ for any $t \in [0, 2\pi]$. Prove that

$$\int_{\Gamma} \eta = 2\pi.$$

(c) Take $\Gamma(t) = (a\cos t, b\sin t)$ where a > 0, b > 0 are fixed. Show that

$$\int_0^{2\pi} \frac{ab}{a^2 \cos^2 t + b^2 \sin^2 t} dt = 2\pi.$$

(d) Show that

$$\eta = d\left(\arctan\frac{y}{x}\right)$$

in any convex open set in which $x \neq 0$, and that

$$\eta = d\left(-\arctan\frac{x}{y}\right)$$

in any convex open set in which $y \neq 0$. Explain why this justifies the notation $\eta = d\theta$, in spite of the fact that η is not exact in $\mathbb{R}^2 - \{0\}$.

(5) (Exercise 10.22 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition.) Define ζ in $\mathbb{R}^3 - \{\mathbf{0}\}$ by

$$\zeta = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{r^3}$$

where $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$, let D be the rectangle given by $0 \le u \le \pi$, $0 \le v \le 2\pi$, and let Σ be the 2-surface in \mathbb{R}^3 , with parameter domain D, given by

 $x = \sin u \cos v,$ $y = \sin u \sin v,$ $z = \cos u.$

- (a) Prove that $d\zeta = 0$ in $\mathbb{R}^3 \{\mathbf{0}\}$.
- (b) Let S denote the restriction of Σ to a parameter domain $E\subseteq D$. Prove that

$$\int_{S} \zeta = \int_{E} \sin u \, du \, dv = A(S),$$

where A denotes area, as in Section 10.46. Note that this contains

$$\int_{\Sigma} \zeta = \int_{D} \sin u \, du \, dv = 4\pi \neq 0$$

as a special case.

(c) Suppose g, h_1, h_2, h_3 , are C''-functions on [0, 1], g > 0. Let $(x, y, z) = \Phi(s, t)$ define a 2-surface Φ , with parameter domain I^2 , by

$$x = g(t)h_1(s),$$
 $y = g(t)h_2(s),$ $z = g(t)h_3(s).$

Prove that

$$\int_{\Phi} \zeta = 0.$$

Note the shape of the range of Φ : For fixed s, $\Phi(s,t)$ runs over an interval on a line through $\mathbf{0}$. The range of Φ thus lies in a "cone" with vertex at the origin.

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose $f \in \mathcal{C}''(D)$, f > 0. Let Ω be the 2-surface with parameter domain E, defined by

$$\Omega(u, v) = f(u, v)\Sigma(u, v).$$

Define S as in (b) and prove that

$$\int_{\Omega} \zeta = \int_{S} \zeta = A(S).$$

(e) Put $\lambda = -\frac{z}{r}\eta$, where

$$\eta = \frac{xdy - ydx}{x^2 + y^2}.$$

Then λ is a 1-form in the open set $V \subseteq \mathbb{R}^3$ in which $x^2 + y^2 > 0$. Show that ζ is exact in V by showing that

$$\zeta = d\lambda$$
.

- (f) Is ζ exact in the complement of every line through the origin?
- (6) (Exercise 10.23 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition.) Fix n. Define $r_k = (x_1^2 + \cdots + x_k^2)^{\frac{1}{2}}$ for $1 \le k \le n$, let E_k be the set of all $\mathbf{x} \in \mathbb{R}^n$ at which $r_k > 0$, and let ω_k be the (k-1)-form defined in E_k by

$$\omega_k = (r_k)^{-k} \sum_{i=1}^k (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_k$$

Note that $\omega_2 = \eta$, $\omega_3 = \zeta$ in the terminology of Exercise 10.21 and Exercise 10.22. Note also that

$$E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n = \mathbb{R}^n$$
.

- (a) Prove that $d\omega_k = 0$ in E_k .
- (b) For k = 2, ..., n, prove that ω_k is exact in E_{k-1} , by showing that

$$\omega_k = d(f_k \omega_{k-1}) = df_k \wedge \omega_{k-1}$$

where $f_k(\mathbf{x}) = (-1)^k g_k\left(\frac{x_k}{r_k}\right)$ where

$$g_k(t) = \int_{-1}^{t} (1 - s^2)^{\frac{k-3}{2}} ds$$
 $(-1 < t < 1).$

- (c) Is ω_n exact in E_n ?
- (7) $H_{dR}^{n-1}(\mathbb{R}^n \{\mathbf{0}\}) = \mathbb{R}^1$. (Compare to (5)(6)(7).)

Problem 10.1.

Let M be a G-module. Show that the boundary map $\delta_n : C^n(G, M) \to C^{n+1}(G, M)$ defined in this section is a homomorphism.

Proof.

(1) δ_n is defined by

$$\delta_n(f)(\sigma_1, \dots, \sigma_{n+1}) = \sigma_1 f(\sigma_2, \dots, \sigma_{n+1})$$

$$+ \sum_{i=1}^n (-1)^i f(\sigma_1, \dots, \sigma_i \sigma_{i+1}, \dots, \sigma_{n+1})$$

$$+ (-1)^{n+1} f(\sigma_1, \dots, \sigma_n)$$

if n > 0. If n = 0, then the map $\delta_0 : M = C^0(G, M) \to C^1(G, M)$ is defined by $\delta_0(m)(\sigma) = \sigma m - m$.

- (2) It suffices to show that $\delta_n(f+g) = \delta_n(f) + \delta_n(g)$ for all n and all n-cochains f and g.
- (3) If n = 0, then

$$\delta_0(f+g)(\sigma) = \sigma(f+g) - (f+g)$$

$$= \sigma f + \sigma g - f - g \qquad (M: G\text{-module})$$

$$= (\sigma f - f) + (\sigma g - g) \qquad (M: \text{abelian group})$$

$$= \delta_0(f) + \delta_0(g).$$

(4) If $n \ge 1$, then

$$\begin{split} &\delta_{n}(f+g)(\sigma) \\ &= \sigma_{1}(f+g)(\sigma_{2},\ldots,\sigma_{n+1}) + \sum_{i=1}^{n} (-1)^{i}(f+g)(\sigma_{1},\ldots,\sigma_{i}\sigma_{i+1},\ldots,\sigma_{n+1}) \\ &+ (-1)^{n+1}(f+g)(\sigma_{1},\ldots,\sigma_{n}) \\ &= \sigma_{1}f(\sigma_{2},\ldots,\sigma_{n+1}) + \sigma_{1}g(\sigma_{2},\ldots,\sigma_{n+1}) \\ &+ \sum_{i=1}^{n} (-1)^{i}f(\sigma_{1},\ldots,\sigma_{i}\sigma_{i+1},\ldots,\sigma_{n+1}) \\ &+ \sum_{i=1}^{n} (-1)^{i}g(\sigma_{1},\ldots,\sigma_{i}\sigma_{i+1},\ldots,\sigma_{n+1}) \\ &+ (-1)^{n+1}f(\sigma_{1},\ldots,\sigma_{n}) + (-1)^{n+1}g(\sigma_{1},\ldots,\sigma_{n}) \\ &= \left\{ \sigma_{1}f(\sigma_{2},\ldots,\sigma_{n+1}) + \sum_{i=1}^{n} (-1)^{i}f(\sigma_{1},\ldots,\sigma_{i}\sigma_{i+1},\ldots,\sigma_{n+1}) \right. \\ &+ (-1)^{n+1}f(\sigma_{1},\ldots,\sigma_{n}) \right\} + \left\{ \sigma_{1}g(\sigma_{2},\ldots,\sigma_{n+1}) \\ &+ \sum_{i=1}^{n} (-1)^{i}g(\sigma_{1},\ldots,\sigma_{i}\sigma_{i+1},\ldots,\sigma_{n+1}) + (-1)^{n+1}g(\sigma_{1},\ldots,\sigma_{n}) \right\} \\ &= \delta_{n}(f)(\sigma) + \delta_{n}(g)(\sigma). \end{split}$$

(Here note that $C^n(G, M)$ is an abelian group).

Problem 10.2.

With notation as in the previous problem, show that $\delta_{n+1} \circ \delta_n$ is the zero map.

Proof.

(1) If n = 0, then

$$\begin{split} (\delta_1 \circ \delta_0)(f)(\sigma_1, \sigma_2) &= \delta_1(\delta_0(f))(\sigma_1, \sigma_2) \\ &= \sigma_1 \delta_0(f)(\sigma_2) - \delta_0(f)(\sigma_1 \sigma_2) + \delta_0(f)(\sigma_1) \\ &= \sigma_1(\sigma_2 f - f) - (\sigma_1 \sigma_2 f - f) + (\sigma_1 f - f) \\ &= 0. \end{split}$$

(2) If $n \ge 1$, then we write

$$(\delta_{n+1} \circ \delta_n)(f)(\sigma_1, \dots, \sigma_{n+2})$$

$$= \delta_{n+1}(\delta_n(f))(\sigma_1, \dots, \sigma_{n+2})$$

$$= \underbrace{\sigma_1 \delta_n(f)(\sigma_2, \dots, \sigma_{n+2})}_{\text{Part } (3)}$$

$$+ \sum_{j=1}^{n+1} \underbrace{(-1)^j \delta_n(f)(\sigma_1, \dots, \sigma_j \sigma_{j+1}, \dots, \sigma_{n+2})}_{\text{Parts } (4)(5)(6)}$$

$$+ \underbrace{(-1)^{n+2} \delta_n(f)(\sigma_1, \dots, \sigma_{n+1})}_{\text{Part } (7)}.$$

(3) The first term is

$$\sigma_1 \delta_n(f)(\sigma_2, \dots, \sigma_{n+2})$$

$$= \sigma_1 \sigma_2 f(\sigma_3, \dots, \sigma_{n+2})$$

$$+ \sum_{i=1}^n (-1)^i \sigma_1 f(\sigma_2, \dots, \sigma_{i+1} \sigma_{i+2}, \dots, \sigma_{n+2})$$

$$+ (-1)^{n+1} \sigma_1 f(\sigma_2, \dots, \sigma_{n+1}).$$

(4) The first term (j = 1) in the summation is

$$(-1)^{1}\delta_{n}(f)(\sigma_{1}\sigma_{2},\ldots,\sigma_{n+2})$$

$$= -\sigma_{1}\sigma_{2}f(\sigma_{3},\ldots,\sigma_{n+2})$$

$$+ f(\sigma_{1}\sigma_{2}\sigma_{3},\ldots,\sigma_{n+2}) - \sum_{i=2}^{n} (-1)^{i}f(\sigma_{1}\sigma_{2},\ldots,\sigma_{i+1}\sigma_{i+2},\ldots,\sigma_{n+2})$$

$$- (-1)^{n+1}f(\sigma_{1}\sigma_{2},\ldots,\sigma_{n+1})$$

(5) The jth term for $2 \le j \le n$ in the summation is

$$(-1)^{j} \delta_{n}(f)(\sigma_{1}, \dots, \sigma_{j}\sigma_{j+1}, \dots, \sigma_{n+2})$$

$$= (-1)^{j} \sigma_{1} f(\sigma_{2}, \dots, \sigma_{j}\sigma_{j+1}, \dots, \sigma_{n+2})$$

$$+ (-1)^{j} \sum_{i=1}^{j-2} (-1)^{i} f(\sigma_{1}, \dots, \sigma_{i}\sigma_{i+1}, \dots, \sigma_{j}\sigma_{j+1}, \dots, \sigma_{n+2})$$

$$+ (-1)^{j} (-1)^{j-1} f(\sigma_{1}, \dots, \sigma_{j-1}\sigma_{j}\sigma_{j+1}, \dots, \sigma_{n+2})$$

$$+ (-1)^{j} (-1)^{j} f(\sigma_{1}, \dots, \sigma_{j}\sigma_{j+1}\sigma_{j+2}, \dots, \sigma_{n+2})$$

$$+ (-1)^{j} \sum_{i=j+1}^{n} (-1)^{i} f(\sigma_{1}, \dots, \sigma_{j}\sigma_{j+1}, \dots, \sigma_{i+1}\sigma_{i+2}, \dots, \sigma_{n+2})$$

$$+ (-1)^{j} (-1)^{n+1} f(\sigma_{1}, \dots, \sigma_{j}\sigma_{j+1}, \dots, \sigma_{n+1}).$$

(6) The last term (j = n + 1) in the summation is

$$(-1)^{n+1}\delta_n(f)(\sigma_1, \dots, \sigma_n, \sigma_{n+1}\sigma_{n+2})$$

$$= (-1)^{n+1}\sigma_1 f(\sigma_2, \dots, \sigma_{n+1}\sigma_{n+2})$$

$$+ (-1)^{n+1} \sum_{i=1}^{n-1} (-1)^i f(\sigma_1, \dots, \sigma_i\sigma_{i+1}, \dots, \sigma_{n+1}\sigma_{n+2})$$

$$+ (-1)^{n+1} (-1)^n f(\sigma_1, \dots, \sigma_n\sigma_{n+1}\sigma_{n+2})$$

$$+ (-1)^{n+1} (-1)^{n+1} f(\sigma_1, \dots, \sigma_n).$$

(7) The last term is

$$(-1)^{n+2}\delta_n(f)(\sigma_1, \dots, \sigma_{n+1})$$

$$= (-1)^{n+2}\sigma_1 f(\sigma_2, \dots, \sigma_{n+1})$$

$$+ (-1)^{n+2} \sum_{i=1}^n (-1)^i f(\sigma_1, \dots, \sigma_i \sigma_{i+1}, \dots, \sigma_{n+1})$$

$$+ (-1)^{n+2} (-1)^{n+1} f(\sigma_1, \dots, \sigma_n).$$

(8) Hence we have $(\delta_{n+1} \circ \delta_n)(f)(\sigma_1, \dots, \sigma_{n+2}) = 0$.

Supplement.

(1) (Theorem 10.20 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition.) If ω is a k-form of class \mathscr{C}'' in some open set $E \subseteq \mathbb{R}^n$, then $d^2\omega = 0$.

(2) (Exercise 10.16 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition.) If $k \geq 2$ and $\sigma = [\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k]$ is an oriented affine k-simplex, prove that $\partial^2 \sigma = 0$, directly from the definition of the boundary operator ∂ . Deduce from this that $\partial^2 \Psi = 0$ for every chain Ψ .

Problem 10.3.

Let M be a G-module, and let $f \in Z^2(G, M)$. Show that $f(1,1) = f(1,\sigma) = \sigma^{-1}f(\sigma,1)$ for all $\sigma \in G$.

Proof.

(1) $f \in Z^2(G, M)$ if and only if $\delta_2(f) = 0$. So

$$\delta_2(f)(\sigma_1, \sigma_2, \sigma_3) = \sigma_1 f(\sigma_2, \sigma_3) - f(\sigma_1 \sigma_2, \sigma_3) + f(\sigma_1, \sigma_2 \sigma_3) - f(\sigma_1, \sigma_2)$$

$$= 0$$

for any $\sigma_1 \sigma_2, \sigma_3 \in G$.

(2) Take $\sigma_1 = \sigma_2 = 1$ and $\sigma_3 = \sigma$ to get

$$f(1,\sigma) - f(1,\sigma) + f(1,\sigma) - f(1,1) = 0.$$

So $f(1,1) = f(1,\sigma)$.

(3) Take $\sigma_1 = \sigma$ and $\sigma_2 = \sigma_3 = 1$ to get

$$\sigma f(1,1) - f(\sigma,1) + f(\sigma,1) - f(\sigma,1) = 0.$$

So
$$\sigma f(1,1) = f(\sigma,1)$$
 or $f(1,1) = \sigma^{-1} f(\sigma,1)$.

Problem 10.4.

If E is a group with an abelian normal subgroup M, and if G = E/M, show that the action of G on M given by $\sigma m = eme^{-1}$ if $eM = \sigma$ is well-defined and makes M into a G-module.

Proof.

(1) Show that $G \times M \to M$ defined by $\sigma m = eme^{-1}$ is independent of the choice of the coset representation of $\sigma = eM$. Suppose $\sigma = e_1M = e_2M$. $e_2 = e_1m_1$ for some $m_1 \in M$.

(2) Therefore

$$e_2 m e_2^{-1} = (e_1 m_1) m (e_1 m_1)^{-1} = e_1 m_1 m m_1^{-1} e_1^{-1} = e_1 m e_1^{-1}.$$

Here $(e_1m_1)^{-1} = m_1^{-1}e_1^{-1}$ holds in a group E and $m_1mm_1^{-1} = m$ since M is an abelian group.

- (3) Show that M is a G-module where $G \times M \to M$ is defined by $\sigma m = eme^{-1}$.
 - (a) Show that 1m = m. $1m = 1m1^{-1} = m$ where $1 = 1M \in G = E/M$.
 - (b) Show that $\sigma(\tau m) = (\sigma \tau)m$. Write $\sigma = e_{\sigma}M$ and $\tau = e_{\tau}M$. Hence $\sigma \tau = e_{\sigma}e_{\tau}M$ and

$$\sigma(\tau m) = \sigma(e_{\tau} m e_{\tau}^{-1})$$

$$= e_{\sigma}(e_{\tau} m e_{\tau}^{-1}) e_{\sigma}^{-1}$$

$$= (e_{\sigma} e_{\tau}) m (e_{\sigma} e_{\tau})^{-1}$$

$$= (\sigma \tau) m.$$

(c) Show that $\sigma(m_1 + m_2) = \sigma m_1 + \sigma m_2$.

$$\sigma(m_1 + m_2) = e(m_1 + m_2)e^{-1}$$
$$= em_1e^{-1} + em_2e^{-1}$$
$$= \sigma m_1 + \sigma m_2$$

where $\sigma = eM$ for some $e \in E$.

Problem 10.5.

With E, M, G as in the previous problem, if e_{σ} is a coset representative of σ , show that the function defined by $f(\sigma,\tau)=e_{\sigma}e_{\tau}e_{\sigma}^{-1}$ is a 2-cocycle.

Proof. It suffices to show that $\delta_2(f)(\sigma, \tau, v) = 0$ for any $\sigma, \tau, v \in G$. That is,

$$\begin{split} &\delta_{2}(f)(\sigma,\tau,\upsilon) \\ &= \sigma f(\tau,\upsilon) f(\sigma\tau,\upsilon)^{-1} f(\sigma,\tau\upsilon) f(\sigma,\tau)^{-1} \\ &= \sigma f(\tau,\upsilon) f(\sigma,\tau\upsilon) f(\sigma\tau,\upsilon)^{-1} f(\sigma,\tau)^{-1} \\ &= \sigma f(\tau,\upsilon) f(\sigma,\tau\upsilon) f(\sigma\tau,\upsilon)^{-1} f(\sigma,\tau)^{-1} \\ &= \sigma (e_{\tau}e_{\upsilon}e_{\tau}^{-1}_{\tau\upsilon}) (e_{\sigma}e_{\tau\upsilon}e_{\sigma\tau\upsilon}^{-1}) (e_{\sigma\tau}e_{\upsilon}e_{\sigma\tau\upsilon}^{-1})^{-1} (e_{\sigma}e_{\tau}e_{\tau}e_{\sigma\tau}^{-1})^{-1} \\ &= (e_{\sigma}e_{\tau}e_{\upsilon}e_{\tau}^{-1}e_{\sigma}^{-1}) (e_{\sigma}e_{\tau\upsilon}e_{\sigma\tau\upsilon}^{-1}) (e_{\sigma\tau\upsilon}e_{\upsilon}^{-1}e_{\sigma\tau}^{-1}) (e_{\sigma\tau}e_{\tau}^{-1}e_{\sigma}^{-1}) \\ &= 1. \end{split}$$

Problem 10.6.

Suppose that M is a G-module. For each $\sigma \in G$, let $m_{\sigma} \in M$. Show that the cochain f defined by $f(\sigma, \tau) = m_{\sigma} + \sigma m_{\tau} - m_{\sigma\tau}$ is a coboundary.

Proof.

- (1) To show f is a 2-coboundary, it suffices to show that there is a $g \in C^1(G, M)$ such that $f = \delta_1(g)$.
- (2) Actually, we can define $g: G \to M$ by $\sigma \mapsto m_{\sigma}$. So

$$\delta_1(g)(\sigma,\tau) = \sigma g(\tau) - g(\sigma\tau) + g(\sigma) = \sigma m_\tau - m_{\sigma\tau} + m_\sigma = f(\sigma,\tau)$$

for all $\sigma, \tau \in G$. Hence $f \in B^2(G, M)$.

Problem 10.7.

If M is a G-module and $f \in Z^2(G, M)$, show that $E_f = M \times G$ with multiplication defined by

$$(m,\sigma)(n,\tau) = (m \cdot \sigma n \cdot f(\sigma,\tau), \sigma \tau)$$

makes E_f into a group.

Proof.

- (1) The multiplication is a binary operation on E_f .
- (2) (Associativity) Show that

$$((m,\sigma)(n,\tau))(k,\upsilon) = (m,\sigma)((n,\tau)(k,\upsilon)).$$

for all $(m, \sigma), (n, \tau), (k, \upsilon)$. Note that

$$((m,\sigma)(n,\tau))(k,\upsilon) = (m \cdot \sigma n \cdot f(\sigma,\tau), \sigma \tau)(k,\upsilon)$$
$$= (m \cdot \sigma n \cdot f(\sigma,\tau) \cdot \sigma \tau k \cdot f(\sigma \tau,\upsilon), \sigma \tau \upsilon)$$
$$= (m \cdot \sigma n \cdot \sigma \tau k \cdot f(\sigma,\tau) \cdot f(\sigma \tau,\upsilon), \sigma \tau \upsilon)$$

and

$$\begin{split} (m,\sigma)((n,\tau)(k,\upsilon)) &= (m,\sigma)(n\cdot\tau k\cdot f(\tau,\upsilon),\tau\upsilon) \\ &= (m\cdot\sigma(n\cdot\tau k\cdot f(\tau,\upsilon))\cdot f(\sigma,\tau\upsilon),\sigma\tau\upsilon) \\ &= (m\cdot\sigma n\cdot\sigma\tau k\cdot\underbrace{\sigma f(\tau,\upsilon)\cdot f(\sigma,\tau\upsilon)}_{=f(\sigma,\tau)\cdot f(\sigma\tau,\upsilon)},\sigma\tau\upsilon) \end{split}$$

(since $f \in Z^2(G, M)$).

(3) (Identity element) Show that there exists an element

$$1 := (f(1,1)^{-1}, 1) \in E_f$$

such that $1(m,\sigma)=(m,\sigma)1=(m,\sigma)$ for every $(m,\sigma)\in E_f$. Same as Problem 10.3. Note that

$$(m,\sigma)(f(1,1)^{-1},1) = (m \cdot \sigma \underbrace{f(1,1)^{-1}}_{=\sigma^{-1}f(\sigma,1)^{-1}} \cdot f(\sigma,1),\sigma)$$

$$= (m \cdot \sigma(\sigma^{-1}f(\sigma,1)^{-1}) \cdot f(\sigma,1),\sigma)$$

$$= (m \cdot (\sigma\sigma^{-1})f(\sigma,1)^{-1} \cdot f(\sigma,1),\sigma)$$

$$= (m,\sigma)$$

and

$$(f(1,1)^{-1},1)(m,\sigma) = (f(1,1)^{-1} \cdot m \cdot f(1,\sigma),\sigma)$$

= $(f(1,\sigma)^{-1} \cdot m \cdot f(1,\sigma),\sigma)$
= (m,σ) .

(4) Note. To find the identity element, we need to find (n,τ) such that $(m,\sigma)(n,\tau)=(m,\sigma)$. So

$$(m,\sigma)(n,\tau) = (m \cdot \sigma n \cdot f(\sigma,\tau), \sigma \tau) = (m,\sigma)$$

implies that $\tau = 1 \in G$ and thus $m \cdot \sigma n \cdot f(\sigma, 1) = m$. Hence

$$n = \sigma^{-1} f(\sigma, 1)^{-1} = (\sigma^{-1} f(\sigma, 1))^{-1} = f(1, 1)^{-1}$$

(in the multiplicative notation).

(5) (Inverse element) Show that for each $(m, \sigma) \in E_f$, there exists an element

$$(n,\tau) := \left(\sigma^{-1}\left\{f(\sigma,\sigma^{-1})^{-1} \cdot m^{-1} \cdot f(1,1)^{-1}\right\}, \sigma^{-1}\right) \in E_f$$

such that $(m, \sigma)(n, \tau) = (n, \tau)(m, \sigma) = 1$, where 1 is the identity element in E_f . (To find the inverse element, we might apply the same argument in part (4).) A direct calculation with the fact that $f \in Z^2(G, M)$ gives

$$\begin{split} &(m,\sigma)\left(\sigma^{-1}\left\{f(\sigma,\sigma^{-1})^{-1}\cdot m^{-1}\cdot f(1,1)^{-1}\right\},\sigma^{-1}\right)\\ &=\left(m\cdot\sigma\left(\sigma^{-1}\left\{f(\sigma,\sigma^{-1})^{-1}\cdot m^{-1}\cdot f(1,1)^{-1}\right\}\right)\cdot f(\sigma,\sigma^{-1}),1\right)\\ &=\left(m\cdot f(\sigma,\sigma^{-1})^{-1}\cdot m^{-1}\cdot f(1,1)^{-1}\cdot f(\sigma,\sigma^{-1}),1\right)\\ &=\left(f(1,1)^{-1},1\right) \end{split}$$

and

$$\begin{split} &\left(\sigma^{-1}\left\{f(\sigma,\sigma^{-1})^{-1}\cdot m^{-1}\cdot f(1,1)^{-1}\right\},\sigma^{-1}\right)(m,\sigma)\\ &=\left(\sigma^{-1}\left\{f(\sigma,\sigma^{-1})^{-1}\cdot m^{-1}\cdot f(1,1)^{-1}\right\}\cdot \sigma^{-1}m\cdot f(\sigma^{-1},\sigma),1\right)\\ &=\left(\sigma^{-1}f(\sigma,\sigma^{-1})^{-1}\cdot f(\sigma^{-1},\sigma)\cdot \sigma^{-1}f(1,1)^{-1},1\right)\\ &=\left(f(1,1)^{-1}\cdot \underbrace{\sigma^{-1}f(1,1)\cdot \sigma^{-1}f(1,1)^{-1}}_{=1},1\right)\\ &=\left(f(1,1)^{-1},1\right). \end{split}$$

Here we take $(\sigma_1, \sigma_2, \sigma_3) \mapsto (\sigma^{-1}, \sigma, \sigma^{-1})$ in part (1) of the proof of Problem 10.3 to get

$$\sigma^{-1} f(\sigma, \sigma^{-1})^{-1} \cdot f(\sigma^{-1}, \sigma) = f(1, \sigma^{-1})^{-1} \cdot f(\sigma^{-1}, 1)$$
$$= f(1, 1)^{-1} \cdot \sigma^{-1} f(1, 1).$$

Problem 10.8.

If M is a G-module, show that the group extensions constructed from 2-cocycles $f, g \in Z^2(G, M)$ are isomorphic if f and g are cohomologous.

Proof.

- (1) Say $f \cdot g^{-1} = \delta_1(h)$ for some $h \in B^1(G, B)$, i.e., $f(\sigma, \tau) \cdot g^{-1}(\sigma, \tau) = \delta_1(h)(\sigma, \tau) = \sigma h(\tau) \cdot h(\sigma \tau)^{-1} \cdot h(\sigma).$
- (2) By the help of h, define a map $\alpha: E_f \to E_g$ by $\alpha((m,\sigma)) = (m \cdot h(\sigma), \sigma).$

Now it suffices to show that α is a group isomorphism.

(3) Show that α is a group homomorphism. Note that

$$\alpha((m,\sigma)(n,\tau)) = \alpha((m \cdot \sigma n \cdot f(\sigma,\tau), \sigma \tau))$$
$$= (m \cdot \sigma n \cdot f(\sigma,\tau) \cdot h(\sigma \tau), \sigma \tau)$$

and

$$\alpha((m,\sigma))\alpha((n,\tau)) = (m \cdot h(\sigma), \sigma)(n \cdot h(\tau), \tau)$$

$$= (m \cdot h(\sigma) \cdot \sigma(n \cdot h(\tau)) \cdot f(\sigma, \tau), \sigma\tau)$$

$$= (m \cdot \sigma n \cdot f(\sigma, \tau) \cdot \underbrace{\sigma h(\tau) \cdot h(\sigma)}_{=h(\sigma\tau)}, \sigma\tau). \tag{(1)}$$

Hence $\alpha((m,\sigma)(n,\tau)) = \alpha((m,\sigma))\alpha((n,\tau)).$

- (3) Show that α is injective. $\alpha((m,\sigma)) = \alpha((n,\tau))$ implies that $(m \cdot h(\sigma), \sigma) = (n \cdot h(\tau), \tau)$. So $\sigma = \tau$, $h(\sigma) = h(\tau)$, and thus m = n.
- (4) Show that α is surjective. Given any $(m, \sigma) \in E_q$, we have

$$\alpha((m \cdot h(\sigma)^{-1}, \sigma)) = (m, \sigma).$$

Problem 10.9.

In the crossed product construction given in this section, show that the multiplicative identity is $f(1,1)^{-1}x_{id}$.

Proof.

(1)

$$(f(1,1)^{-1}x_{id}) \sum_{\sigma \in G} a_{\sigma} x_{\sigma} = \sum_{\sigma \in G} f(1,1)^{-1} id(a_{\sigma}) f(id,\sigma) x_{id \cdot \sigma}$$
$$= \sum_{\sigma \in G} f(1,1)^{-1} a_{\sigma} f(1,\sigma) x_{\sigma}$$
$$= \sum_{\sigma \in G} a_{\sigma} x_{\sigma}$$

for all $\sum_{\sigma \in G} a_{\sigma} x_{\sigma} \in A = (K/F, G, f)$.

(2)

$$\left(\sum_{\sigma \in G} a_{\sigma} x_{\sigma}\right) (f(1,1)^{-1} x_{\mathrm{id}}) = \sum_{\sigma \in G} a_{\sigma} \sigma(f(1,1)^{-1}) f(\sigma, \mathrm{id}) x_{\sigma \cdot \mathrm{id}}$$

$$= \sum_{\sigma \in G} a_{\sigma} \sigma f(1,1)^{-1} f(\sigma,1) x_{\sigma}$$

$$= \sum_{\sigma \in G} a_{\sigma} x_{\sigma}$$

for all $\sum_{\sigma \in G} a_{\sigma} x_{\sigma} \in A = (K/F, G, f)$.

Problem 10.10.

A normalized cocycle is a cocycle f that satisfies $f(1,\sigma) = \sigma^{-1}f(\sigma,1) = 1$ for all $\sigma \in G$. Let A = (K/F, G, f) be a crossed product algebra. Show that $x_{id} = 1$ if and only if f is a normalized cocycle.

Proof.

f is a normalized cocycle

$$\iff f(1,\sigma) = \sigma^{-1}f(\sigma,1) = 1 \text{ for all } \sigma \in G$$

 $\iff f(1,1) = 1$ (Problem 10.3)

$$\iff$$
 the multiplicative identity is $f(1,1)^{-1}x_{\mathrm{id}} = x_{\mathrm{id}}$. (Problem 10.9)

Problem 10.11.

In the construction of group extensions, show that if $e_{\rm id}$ is chosen to be 1, then the resulting cocycle is a normalized cocycle.

Proof. Suppose $f\in Z^2(G,M)$. In Problem 10.5, we take $\sigma=\tau=\operatorname{id}$ in $f(\sigma,\tau)=e_\sigma e_\tau e_{\sigma\tau}^{-1}$ to reach

$$f(1,1) = e_{id}e_{id}e_{id}^{-1} = e_{id} = 1.$$

Problem 10.10 implies that f is a normalized cocycle. \square