CS4023 Midterm Exam (15%), 16 Oct 2009

Version B
Student Name:
Student ID:
Course/Year:
Part A – Linux Skills (2%)
Step 1. Create a directory called labExamXYZ in your home directory where XYZ is your ID number.
Step 2. Change into this directory and create a file named linux_commands.txt. Open this file with a text editor (e.g., emacs or vi) and type any 5 Linux commands, each on a separate line; save the file.
Step 3. Create a backup copy of the linux_commands.txt file called linux_commands_16_10_09.txt
Step 4. Add the following line to your backup file as the last line: Backup of my work on Linux commands
Step 5. Create a log file called logFile.txt to store a long listing of all the files and directories (including hidden files) in your home directory.
Step 6. Remove the read and write permissions of other users of your system for the linux_commands.txt file.
Step 7. Create an archived backup (e.g. zip, tar) of your labExamXYZ folder.
Step 8. Be able to demonstrate on the command line which processes are using memory and CPU time on your system.

Part B – General OS Questions (13%)

Q1. Multiprogramming operating systems are designed to

(1 mark)

- a. schedule multiple processes on multiple CPUs
- b. support programming in multiple programming languages
- c. maximize CPU usage
- d. serve multiple interactive users
- e. none of the above

Q2. POSIX is to UNIX the same as

(1 mark)

- a. Pthreads to MS Windows
- b. Java API to MS Windows
- c. Windows API to MS Windows
- d. Windows API to the Java VM
- e. none of the above

Q3. Give a short definition of **system call**:

(2 marks)

Q4. What will be printed on the screen by the following code:

(2 marks)

```
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int x = 9;
int main()
{
    pid_t pid = fork();
    if (pid == 0) x = 10;
    x = x - 1;
    printf("x = %d ", x);
    exit(0);
}
```

```
a. x = 9 x = 9
```

b.
$$x = 9 x = 8$$

c.
$$x = 10 x = 9$$

d.
$$x = 8 x = 8$$

e.
$$x = 10 x = 8$$

Q5. A process P is waiting for a specific I/O event to occur. Once the event has occurred, the state of P will change from <i>waiting</i> to:	
a. running	
b. ready	
c. new	
d. terminated	
e. the state will not change	
Q6 – Q8. Which statements are generally WRONG ? There might be more that statement in a question. Explain any assumptions you make.	n one wrong
Q6. Microkernels:	(2 marks)
a. are easier to port to new architectures	(2 mar ns)
b. are easier to maintain	
c. minimize the performance overhead of user to kernel space communication	ition
d. have less code running in kernel mode	
e. are more secure	
Explanation:	
Q7. Context Switch:	(2 marks)
a. is the switching of the CPU from one process to another	
b. is the switching of a process from one CPU to another	
c. can occur in kernel mode	
d. can occur in user mode	
e. can rely on a hardware support	
Explanation:	
Q8. Message passing IPC:	(2 marks)
a. can be direct or indirect b. is generally faster than shared memory IDC	
b. is generally faster than shared memory IPCc. involves establishing a communication link	
d. requires more complicated process/thread synchronization than shared	memory IPC
e. involves exchange of messages via send and receive system calls	memory if C
Evaluation:	
Explanation:	