Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2007. Supporting Information for *Macromol. Rapid Commun.*, 2007, 28, 2217.

Synthesis of polyelectrolytes bearing phosphorylcholine moieties

Andreas Reisch, Jean-Claude Voegel, Gero Decher, Pierre Schaaf*and Philippe J. Mésini*

2-{2-[2-(2-N-tertButoxycarbonylamino-ethoxy)-ethoxy}-ethoxy}-ethylphosphorylcholine (BOCNH(EO)₄PC): the method described for BOC(EO)₃PC was applied to BOCNH(EO)₄OH (0.67 g, 2.29 mmol) as the starting material and afforded BOCNH(EO)₄PC as a white powder (0.59 g, 55 % yield).

¹H NMR (D₂ □ 00 Mhz) :δ = 4.34 (br m, 2H, POC H_2 CH₂N), 4.06 (br m, 2 H, POC H_2 CH₂O), 3.81-3.68 (m, 8 H, C H_2 OC H_2 CH₂O, C H_2 N(CH₃)₃), 3.62 (t, 2 H, J = 5.4 Hz, OC H_2 CH₂N), 3.29 (t, 2 H, J = 5.4 Hz, C H_2 N), 3.26 (s, 9H, N(C H_3)₃), 1.47 (s, 9H, C(C H_3)₃). ¹³C NMR (D₂ □, 100 Mhz : δ = 158.8 (CO), 81.6 (C(CH₃)₃), 70.8 (d, J = 7.7 Hz, POCH₂CH₂O), 70.4, 70.3, 70.3, 70.1, (OCH₂CH₂), 66.7 (m, CH₂N(CH₃)₃) , 65.5 (d, J = 5.9 Hz, POC H_2 CH₂O), 60.1 (d, J = 5.1 Hz, POC H_2 CH₂N), 54.7 (t, J = 3.9 Hz, N(CH₃)₃), 40.3 (CH₂N), 28.4 (C(CH₃)₃. IR (ATR) V_{max} : 3365 , 3240 (V NH), 2977 (V CH₃), 2935 (V_{as} CH₂), 2874 (V_{as} CH₂), 1689 (amide I), 1522 (amide II), 1482 (V_{as} (CH₃)₃N⁺), 1455, 1419, 1366 (V₅ CH₃), 1238, 1137, 1086 (V₅ PO₂ ¬), 1058, 970, 953 (V_{as} (CH₃)₃N⁺), 925, 875, 781 cm⁻¹.

$PGA(EO)_3PC 35$:

¹H NMR (D₂ 400 MHz): $\delta = 4.34$ (broad s, POC H_2 CH₂N, NHCHCO), 4.05 (broad m, POC H_2 CH₂O), 3.78-3.67 (m, C H_2 OC H_2 CH₂O, C H_2 N(CH₃)₃), 3.63 (t, J = 5.6 Hz, OC H_2 CH₂N), 3.40 (t, J = 5.6 Hz, C H_2 N), 3.24 (s, N(C H_3)₃, 2.33 (broad s, C H_2 CO), 2.07

(broad s, CHC H_2 CH₂), 1.97 (broad s, CHC H_2 CH₂). ¹³C NMR (D₂O, 100 MHz) : δ = 180.6 (CO), 175.5 (CO), 174.2 (CO), 173.8 (CO), 70.7 (d, J = 7.7 Hz, POCH₂CH₂), 70.3, 70.1, 69.4, (OCH₂CH₂), 66.6 (m, CH₂N(CH₃)₃), 65.5 (d, J = 5.5, POC H_2 CH₂O), 60.1 (d, J = 4.5 Hz, POCH₂CH₂N), 54.6 (t, J = 3.7 Hz, N(CH₃)₃), 54.1 (CH), 53.7 (CH), 39.5 (CH₂N), 33.2 (CH₂CO), 32.4 (CH₂CO), 28.05 (CHCH₂CH₂), 27.8 (CHCH₂CH₂). IR (sol. D₂O) ν _{max} : 3406, 1697 (v COO), 1645 (amide I), 1566 (amide II), 1458, 1404, 1366, 1086 (ν _s PO₂), 1064, 973, 953 (ν _{as} (CH₃)₃N⁺), 799 cm⁻¹.

PGA(EO)₄**PC** 16: this compound is synthesized as described above for PGA(EO)₃PC with PGA (153 mg, 1.01 mmol of monomer units) and BOCNH(EO)₄PC (179 mg, 0.39 mmol, 0.38 equiv.) . PGA(EO)₄PC 16 is obtained as a white powder (150 mg, yield 71%): 1 H NMR (D₂O, 400 MHz) : δ = 4.33 (broad s, POC H_2 CH₂N, NHCHCO), 4.03 (broad m, POC H_2 CH₂O), 3. 80 – 3. 66 (m, C H_2 OC H_2 CH₂O, C H_2 N(CH₃)₃), 3.61 (t, J = 5.58 Hz, OC H_2 CH₂N), 3.39 (broad s, C H_2 N), 3.22 (s, N(C H_3)₃), 2.37 (broad s, C H_2 CO), 2.07 (broad s, CHC H_2 CH₂), 1.97 (broad s, CHC H_2 CH₂). 13 C NMR (D₂O, 100 MHz) : δ = 180.6 (CO), 175.5 (CO), 174.2 (CO), 173.8 (CO), 70.7 (d, J=7.63 Hz, POCH₂CH₂O), 70.3, 70.2, 70.1, 69.5 (OCH₂CH₂), 66.7 (m, CH₂N(CH₃)₃), 65.6 (d, J=5.41 Hz, POCH₂CH₂O), 60.1 (d, *J* = 5.11 Hz, POC H_2 CH₂N), 56.4 (broad s, CH), 54.7 (t, J=3.63 Hz, N(CH₃)₃), 39.6 (CH₂N), 32.4 (CH₂CO), 32.0 (CH₂CO), 26.2 (broad s, CHCH₂CH₂). IR (sol. D₂O) v_{max} : 3406, 1697 (v COO), 1644 (amide I), 1564 (amide II), 1482 (δ_{as} (CH₃)₃N⁺), 1463, 1447, 1405, 1086 (v_s PO₂), 1066, 972, 956 (v_{as} (CH₃)₃N⁺), 798 cm⁻¹.

PAA(**EO**)₃**PC 25**: this compound is synthesized as described above for PGA(EO)₃PC 35 with PAA (77 mg, 1.06 mmol of monomer units) and BOCNH(EO)₃PC (110 mg, 0.27 mmol, 0.25 equiv.) as the starting materials. Pure PAA(EO)₃PC 25 is obtained as a white powder (126 mg, 82% yield). ¹H NMR (D₂O, 400 Mhz): $\delta = 4.32$ (broad s, POC H_2 CH₂N, CH₂C H_3),

4.03 (broad m, POC H_2 CH₂O), 3. 79–3. 65 (m, C H_2 OC H_2 CH₂O, C H_2 N(CH₃)₃), 3.60 (broad s), 3.37 (broad s, C H_2 N), 3.23 (s, N(C H_3)₃), 2.22 (broad s), 2.08 (broad s), 1.74 (broad s), 1.57 (broad s), (C H_2 CH). ¹³C NMR (D₂O, 100 Mhz): δ = 182.0 (CO), 181.8 (CO), 177.3 (CO), 70.1 (d, J = 7.7 Hz, POC H_2 CH₂O), 69.7, 69.5, 68.8, (OC H_2 CH₂), 65.9 (m, C H_2 N(CH₃)₃), 64.9 (d, J = 5.1 Hz, POC H_2 CH₂O), 59.4 (d, J = 4.8 Hz, POC H_2 CH₂N), 54.0 (t, J = 3.3 Hz, N(C H_3)₃, 44.0 (broad s), 42.6 (broad s), 38.8 (broad s), 36.1 (broad s) (C H_2 CH).

PLLSuc(EO)₃PC 35:

¹H NMR (D₂ 400 MHz): $\delta = 4.33$ (broad s, POC H_2 CH₂N, CH₂CH), 4.05 (broad m, POC H_2 CH₂O), 3. 78 -3. 67 (broad m, C H_2 OC H_2 CH₂O, C H_2 N(CH₃)₃), 3.64 (t, J = 5.3 Hz, OCH₂CH₂N), 3.25 (s, N(C H_3)₃), 3.40 (t, J = 5.3 Hz, OCH₂CH₂NHCO), 3.17 (m, C H_2 NHCO), 3.02 (t, J = 7.11 Hz, C H_2 NH₂), 2.54 (broad s, COC H_2 CH₂CO), 1.72 (broad m), (CH CH_2 CH₂CH₂CH₂N), 1.49 (broad m). ¹³C NMR (D₂ , 100MHz $\delta = 174.5$ (CO), 173.7 (CO), 173.5 (CO), 70.1 (d, J = 7.8 Hz, OCH₂CH₂OP), 69.7, 69.4, 68.8, (OCH₂CH₂), 66.0 (m, CH₂N(CH₃)₃), 64.9 (d, J = 5.9 Hz, POC H_2 CH₂O), 59.4 (d, J = 4.78 Hz, POC H_2 CH₂N), 54.0 (t, J = 3.81 Hz, N(CH₃)₃), 53.4 (CH), 39.2 (CH₂NH₂), 39.1 (CH₂NHCO), 39.0 (OCH₂CH₂NHCO), 31.2, 31.2, (COCH₂CH₂CO), 30.6, 27.9, 26.5, 22.4, 22.2, (CHCH₂CH₂CH₂CH₂CH₂N).

Figure S1. Spectrum of crude PC(EO)₃NH₃Cl.

Figure S2. Section of the COSY spectrum of BOCNH(EO)₃PC.

Figure S3a. COSY spectrum of PGA(EO)₃PC 80.

Figure S3b. ¹H-¹³C correlation spectrum of PGA(EO)₃PC 80

Figure S4. SEC measurements. Green: PGA; blue PGA(EO)₄PC 16; red: PGA(EO)₃PC 35.