Problem sheet 2

Issued 31 October 2022, due 21 November 2022.

Coursework forms 25% of the assessment for this unit and will be comprised of 2 problem sheets of which this is the second. In this sheet each of five problems carries the same weight.

1.

- (i) How many maps are there from $\{1, 2\}$ to $\{1, 2, 3\}$?
- (ii) How many injective maps are there from $\{1, 2\}$ to $\{1, 2, 3\}$?
- (iii) How many bijective maps there are from $\{1, 2\}$ to $\{1, 2, 3\}$?
- (iv) How many maps are there from $\{1, 2, 3\}$ to $\{2, 3\}$?
- (v) How many surjective maps are there from $\{1, 2, 3\}$ to $\{2, 3\}$?
- **2.** Let N denote the set of all *positive* (greater than zero) integers.
- (i) Give an example of a bijective map from N to N which is not the *identity* map.
- (ii) Give an example of a bijective map from the set of all even integers to the set of all odd integers.
- (iii) Give an example of a surjective map from N to Z.
- (iv) Give an example of an injective map from \mathbf{Z} to \mathbf{N} .
- **3.** Among the following relations R on \mathbf{Z} identify those that are maps from \mathbf{Z} to \mathbf{Z} . Justify your answer in each case.
- (i) $R = \{(x, y) | x = y + 2\};$
- (ii) $R = \{(x, y) | x = y^2\};$
- (iii) $R = \{(x, y) | x^2 = y\};$
- (vi) $R = \left\{ (x, y) | x = \frac{y^{\frac{1}{3}}}{2} \right\}.$
- **4.** Each of the following defines a relation on **Z**. In each case determine if the relation is reflexive, symmetric, or transitive. Justify your answers.
- (i) x + y is an odd integer;
- (ii) x + y is an even integer;
- (iii) xy is an odd integer;
- (iv) x + xy is an even integer.
- **5.** Consider the subset relation \subset on the set $A = \{\{b\}, \{c\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}\}$.
- (a) Is \subset a partial order on A, a strict partial order on A, or neither? Justify your answer.
- (b) Is \subset a total order on A? Justify your answer.
- (c) Decide whether there are maximal elements, and whether there are minimal elements, in A with respect to \subset . If such elements exist, list them all.