Variable continua

CEPAL

14/2/2022

Lectura de la base

```
encuesta <- readRDS("../Data/encuesta.rds")</pre>
```

Definir diseño de la muestra con srvyr

```
library(srvyr)

diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk,
    nest = T
)
```

Histograma ponderado para la variable ingreso

```
svyhist(
  ~ Income ,
  diseno,
  main = "",
  col = "grey80",
   xlab = "Histograma del ingreso"
)
```

Histograma ponderado para la variable ingreso

Comparación de histogramas

```
data("BigCity", package = "TeachingSampling")
par(mfrow = c(1,3))
svyhist( ~ Income,
  diseno, main = "Ponderado",
  col = "green"
hist(encuesta$Income,
 main = "Sin ponderar",
  col = "red", prob = TRUE
hist( BigCity$Income,
  main = "Poblacional",
  col = "purple", prob = TRUE,
 xlim = c(0, 2500), breaks = 200
```

Comparación de histogramas

Sub-grupos

Extraer sub-grupos de la encuesta.

```
sub_Urbano <- diseno %>% filter(Zone == "Urban")
sub_Rural <- diseno %>% filter(Zone == "Rural")
sub_Mujer <- diseno %>% filter(Sex == "Female")
sub_Hombre <- diseno %>% filter(Sex == "Male")
```

Histograma ponderado en sub-grupos

```
par(mfrow = c(1,2))
svyhist(
  ~ Income ,
  subset (sub_Mujer, Age >= 18),
  main = "",
  col = "grey80",
 xlab = "Histograma del ingreso"
svyhist(
  ~ Income ,
  subset (sub_Urbano, Age >= 18),
  main = "",
  col = "grey80",
 xlab = "Histograma del ingreso"
```

Histograma ponderado en sub-grupos

Boxplot ponderado del ingreso por sub-grupos

```
par(mfrow = c(1,2))
svyboxplot(
  Income ~1 .
  sub_Urbano,
  col = "grey80",
  ylab = "Ingreso",
 xlab = "Urbano")
svyboxplot(
  Income ~ 1 ,
  sub Rural,
  col = "grey80",
  ylab = "Ingreso",
 xlab = "Rural"
```

Boxplot ponderado del ingreso por sub-grupos

Boxplot ponderado del ingreso por sub-grupos alternativa

Boxplot ponderado del ingreso por sub-grupos alternativa

Estimación de totales e intervalos de confianza del ingreso

svytotal (~Income, diseno, deff=T) %>%
 data.frame()

	total	Income	deff
Income	93991744	4799513	7.408

confint(svytotal (~Income, diseno, deff=T))

	2.5 %	97.5 %
Income	84584871	103398616

Estimación de totales e intervalos de confianza del gasto

svytotal (~Expenditure, diseno, deff=T) %>%
data.frame()

	total	Expenditure	deff
Expenditure	58161637	3077914	16.24

confint(svytotal (~Expenditure, diseno, deff=T))

	2.5 %	97.5 %
Expenditure	52129036	64194238

Estimación de totales por sub-grupos

Sex	Total	Total_se	Total_low	Total_upp
Female	49267737	2684653	43951855	54583618
Male	44724007	2693747	39390119	50057895

Estimación de la media e intervalo de confianza del ingreso

svymean(~Income, diseno, deff=T) %>%
data.frame()

	mean	Income	deff
Income	625.5	23.44	3.989

confint(svymean (~Income, diseno, deff=T))

	2.5 %	97.5 %
Income	579.6	671.4

Estimación de la media e intervalo de confianza del gasto

svymean (~Expenditure, diseno, deff=T) %>%
data.frame()

	mean	Expenditure	deff
Expenditure	387.1	13.51	7.065

confint(svymean (~Expenditure, diseno, deff=T))

	2.5 %	97.5 %
Expenditure	360.6	413.5

Estimación de la media por sub-grupos

diseno %>% group_by(Sex) %>% summarise(Media = survey_mean(Expenditure, level = 0.95, vartype = c("se", "ci")))

Sex	Media	Media_se	Media_low	Media_upp
Female	388.8	13.65	361.7	415.8
Male	385.2	14.75	356.0	414.4

diseno %>% group_by(Zone) %>% summarise(Media = survey mean(Expenditure, level = 0.95,

vartype = c("se", "ci")))

Zone	Media	Media_se	Media_low	Media_upp
Rural	286.7	12.52 20.97	261.9	311.5 521.2
Urban	479.6	20.97	438.1	521.2

Estimación de medias por sub-grupos

Zone	Sex	Media	Media_se	Media_low	Media_upp
Rural	Female	288.9	13.67	261.8	316.0
Rural	Male	284.3	12.34	259.9	308.8
Urban	Female	477.4	19.78	438.2	516.6
Urban	Male	482.2	24.31	434.1	530.4

Estimación de la desviación estándar de los ingresos por sub-grupo

```
(tab_sd <- diseno %>% group_by(Zone) %>%
    summarise(Sd = sqrt(
    survey_var(
        Income,
        level = 0.95,
        vartype = c("se", "ci"),
    )
))))
```

Zone	Sd	Sd_se	Sd_low	Sd_upp
Rural	337.5	183.6	217.1	425.0
Urban	725.3	457.4	334.4	969.8

Estimación de la desviación estándar de los ingresos por sub-grupo

```
(tab_sd <- diseno %>% group_by(Zone, Sex) %>%
   summarise(Sd = sqrt(
   survey_var(
       Income,
       level = 0.95,
       vartype = c("se", "ci"),
   )
))) %>% data.frame()
```

Zone	Sex	Sd	Sd_se	Sd_low	Sd_upp
Rural	Female	334.8	194.0	193.7	432.0
Rural	Male	340.5	176.5	233.0	421.4
Urban	Female	739.4	502.4	216.7	1022.9
Urban	Male	709.3	422.7	386.4	925.6

Estimación de la mediana para gastos

```
diseno %>% summarise(Mediana =
  survey_median(
    Expenditure,
    level = 0.95,
    vartype = c("se", "ci"),
    ))
```

Mediana	Mediana_se	Mediana_low	Mediana_upp
310.6	11.72	289.5	335.9

Estimación de la mediana por sub-grupo

```
diseno %>% group_by(Zone) %>%
  summarise(Mediana =
  survey_median(
    Expenditure,
    level = 0.95,
    vartype = c("se", "ci"),
    ))
```

Zone	Mediana	Mediana_se	Mediana_low	Mediana_upp
Rural	257.8	12.80	231.5	282.8
Urban	399.4	24.91	359.3	458.8

Estimación de la mediana por sub-grupo

```
diseno %>% group_by(Sex) %>%
  summarise(Mediana =
  survey_median(
    Expenditure,
    level = 0.95,
    vartype = c("se", "ci"),
  ))
```

Sex	Mediana	Mediana_se	Mediana_low	Mediana_upp
Female	328.7	12.37	294.6	343.6
Male	299.5	11.91	286.7	333.8

Estimación de quantile para el gasto

```
diseno %>%
  summarise(
    Q = survey_quantile(
    Expenditure,
    quantiles = 0.5,
    level = 0.95,
    vartype = c("se", "ci"),
    interval_type = "score"
))
```

Q_q50	Q_q50_se	Q_q50_low	Q_q50_upp
310.6	12.12	289.5	337.5

Estimación de quantile para el gasto por sub-grupo

```
diseno %>% group_by(Sex) %>%
  summarise(
    Q = survey_quantile(
    Expenditure,
    quantiles = 0.25,
    level = 0.95,
    vartype = c("se", "ci"),
    interval_type = "score"
))
```

Sex	Q_q25	Q_q25_se	Q_q25_low	Q_q25_upp
Female	217.7	10.12	197.3	237.4
Male	205.3	10.62	191.6	233.7

Estimación de quantile para el gasto por sub-grupo

```
diseno %>% group_by(Zone) %>%
  summarise(
    Q = survey_quantile(
    Expenditure,
    quantiles = 0.25,
    level = 0.95,
    vartype = c("se", "ci"),
    interval_type = "score"
))
```

Zone	Q_q25	Q_q25_se	Q_q25_low	Q_q25_upp
Rural	173.1	10.798	149.3	192.6
Urban	272.9	8.918	259.0	294.6

Estimación de la razón entre el gasto y el ingreso

```
diseno %>% summarise(
   Razon = survey_ratio(
      numerator = Expenditure,
      denominator = Income,
      level = 0.95,
   vartype = c("se", "ci")
   ))
```

Razon	Razon_se	Razon_low	Razon_upp
0.6188	0.0195	0.5801	0.6575

Estimación de la razón entre hombres y mujeres

```
diseno %>% summarise(
   Razon = survey_ratio(
      numerator = (Sex == "Female"),
      denominator = (Sex == "Male"),
      level = 0.95,
   vartype = c("se", "ci")
   ))
```

Razon	Razon_se	Razon_low	Razon_upp
1.114	0.0498	1.016	1.213

Estimación de la razón entre hombres y mujeres en la zona rural

```
sub_Rural %>% summarise(
   Razon = survey_ratio(
    numerator = (Sex == "Female"),
    denominator = (Sex == "Male"),
    level = 0.95,
   vartype = c("se", "ci")
   ))
```

Razon	Razon_se	Razon_low	Razon_upp
1.068	0.0779	0.9119	1.224

Estimación de la razón del gastos y los ingreso entre las mujeres

```
sub_Mujer %>% summarise(
   Razon = survey_ratio(
      numerator = Expenditure,
      denominator = Income,
      level = 0.95,
   vartype = c("se", "ci")
   ))
```

Razon	Razon_se	Razon_low	Razon_upp
0.6249	0.0229	0.5796	0.6702

Estimación de la razón del gasto y los ingresos entre los hombres

```
sub_Hombre %>% summarise(
   Razon = survey_ratio(
     numerator = Expenditure,
     denominator = Income,
     level = 0.95,
   vartype = c("se", "ci")
   ))
```

Razon	Razon_se	Razon_low	Razon_upp
0.6121	0.0185	0.5754	0.6488

Estimación del índice de GINI

La estimación del índice de GINI se realiza haciendo uso de la librería convey

```
library(convey)
diseno_gini <- convey_prep(diseno)
svygini( ~Income, design = diseno_gini) %>%
  data.frame()
```

	gini	Income
Income	0.4102	0.0159

```
svygini( ~Expenditure, design = diseno_gini) %>%
  data.frame()
```

	gini	Expenditure
Expenditure	0.3427	0.0107

Estimación del índice de GINI por sub-grupo

Pruebas de diferencia medias de los ingresos entre hombres y mujeres

```
svyttest(Income ~ Sex, diseno)
##
##
    Design-based t-test
##
## data: Income ~ Sex
## t = 0.35, df = 118, p-value = 0.7
## alternative hypothesis: true difference in mean is not
## 95 percent confidence interval:
## -33.41 47.60
## sample estimates:
## difference in mean
                7.096
##
```

Pruebas de diferencia medias de los ingresos entre hombres y mujeres en la zona urbana

```
svyttest(Income ~ Sex, sub_Urbano)
##
##
    Design-based t-test
##
## data: Income ~ Sex
## t = 0.43, df = 63, p-value = 0.7
## alternative hypothesis: true difference in mean is not of
## 95 percent confidence interval:
## -53.84 83.74
## sample estimates:
## difference in mean
##
                14.95
```

Pruebas de diferencia medias de los ingresos entre hombres y mujeres mayores a 18 años

```
svyttest(Income ~ Sex, diseno %>% filter(Age > 18))
##
##
   Design-based t-test
##
## data: Income ~ Sex
## t = 0.51, df = 118, p-value = 0.6
## alternative hypothesis: true difference in mean is not
## 95 percent confidence interval:
## -39.22 66.62
## sample estimates:
## difference in mean
                 13.7
##
```

Contrastes

	Region	Income	se	ci_l	ci_u
Norte	Norte	527.4	43.69	441.8	613.1
Sur	Sur	627.1	53.44	522.4	731.8
Centro	Centro	768.0	82.86	605.6	930.4
Occidente	Occidente	575.5	53.08	471.4	679.5
Oriente	Oriente	650.2	32.70	586.2	714.3

```
# Paso 1: diferencia de estimaciones (Norte - Sur)
527 - 627
```

[1] -100

contrastes

Paso 2: error estándar de la diferencia
vcov(prom_region)

	Norte	Sur	Centro	Occidente	Oriente
Norte	1909	0	0	0	0
Sur	0	2856	0	0	0
Centro	0	0	6867	0	0
Occidente	0	0	0	2817	0
Oriente	0	0	0	0	1069

$$sqrt(1909 + 2856 - 2*0)$$

[1] 69.03

contrastes

	contrast	diff_NS
diff_NS	-99.66	69.03

Contrastes

	contrast	SE
Norte_sur	1155	69.03
centro	768	82.86
Occidente_Oriente	1226	62.34

```
sqrt(1909 + 2856 - 2*0) ; sqrt(6867);
## [1] 69.03
## [1] 82.87
sqrt(2817 + 1069 - 2*0)
```

	Sex	Income	se	ci_l	ci_u
Female	Female	622.1	24.13	574.9	669.4
Male	Male	629.2	27.08	576.2	682.3

```
svycontrast(prom_sexo, list(diff_Sexo = c(1, -1))) %>%
data.frame()
```

	contrast	diff_Sexo
diff_Sexo	-7.096	20.45

vcov(prom_sexo)

	Female	Male
Female	582.3	448.5
Male	448.5	733.2

```
# Note que el error estandar de la diferencia es igual a sqrt(582 + 733 - 2*449)
```

[1] 20.42

	Region	Income	se	ci_l	ci_u
Norte	Norte	14023740	1674859	10741075	17306404
Sur	Sur	16623420	1959403	12783061	20463779
Centro	Centro	18143894	2749370	12755229	23532560
Occidente	Occidente	20164710	2563552	15140241	25189179
Oriente	Oriente	25035980	1503357	22089454	27982505

	contrast	Agregado_NCS
Agregado_NCS	48791054	3768746

```
# Note que el error estandar de la diferencia es igual a sqrt(582 + 733 - 2*449)
```

```
## [1] 20.42
```

Contrastes

vcov(sum_region)

	Norte	Sur	Centro	Occidente	Orier
Norte	2.805e+12	0.000e+00	0.000e+00	0.000e+00	0.00e+
Sur	0.000e + 00	3.839e + 12	0.000e + 00	0.000e + 00	0.00e +
Centro	0.000e + 00	0.000e + 00	7.559e + 12	0.000e + 00	0.00e +
Occidente	0.000e + 00	0.000e + 00	0.000e + 00	6.572e + 12	0.00e +
Oriente	0.000e + 00	0.000e + 00	0.000e + 00	0.000e + 00	2.26e+

```
sqrt(2805154074898 + 3839259031856 + 7559032807016 )
```

```
## [1] 3768746
```

(prom_edad <- svyby(~Income, ~CatAge, diseno, svymean, na.)

	CatAge	Income	se
0-5	0-5	602.2	69.91
16-30	16-30	654.8	25.42
31-45	31-45	655.5	40.14
46-60	46-60	614.2	46.88
6-15	6-15	595.5	34.36
Más de 60	Más de 60	580.3	74.52

	contrast	agregado_edad
agregado_edad	617.1	25.67

0-5

16-30

vcov(prom_edad)

0-5	4887.84	22.12	-1289.4	863.5	-1377.8	198.
16-30	22.12	646.08	453.7	441.5	347.1	856.
31-45	-1289.37	453.72	1610.9	290.4	819.6	1336.
46-60	863.52	441.50	290.4	2197.5	102.6	487.
6-15	-1377.76	347.09	819.6	102.6	1180.5	268.
Más de 60	198.02	856.17	1336.7	487.6	268.1	5553.
+ 2* 2* 2*	t(4888 + 6 2*22 + 2* 454 + 2*46 290 + 2*86 103 + 2*46 268)	(-1289) 41 + 2*3 20 + 2*1	+ 2*864 347 + 2*8	+ 2*(-1	1 + 5553 387) + 2*	189 +

31-45

46-60

6-15

Más de 60

[1] 25.65

	Sex	Income/Expenditure	se.Income/Expenditure	ci_l
Female	Female	1.600	0.0586	1.486
Male	Male	1.634	0.0495	1.537

	contrast	diff_sex
diff_sexo	-0.0334	0.038

vcov(razon_sexo)

	Female	Male
Female Male	0.0034	0.0022
IVIAIC	0.0022	0.0024

```
sqrt(0.0034 + 0.0024 - 2*0.0022)
```

```
## [1] 0.03742
```

Correlación de variables

library(jtools)

v	•		
		Income	Expenditure
	Income	1.0000	0.7082
	Expenditure	0.7082	1.0000

svycor(~ Income + Expenditure, design = diseno)\$cors %>%

svycor(~ Income + Expenditure, design = sub Mujer) \$cors %

Income

svycor(~ Income + Expenditure, design = sub Hombre)\$cors ? Income Expenditure 1.0000 0.7333 Income Expenditure 0.7333 1.0000