LISTING OF THE CLAIMS

The following listing of the claims replaces all prior versions and listings of claims for this application. Within this listing of the claims, claims 1 and 2 are currently amended. While claims 47-56 are withdrawn as drawn to a non-elected invention, these claims are the subject of a petition requesting their rejoinder.

- 1. (Currently amended) A polymer prepared by polymerization of a monomer mixture, the mixture comprising:
- (a) at least one first olefinic monomer containing an acetal or ketal linkage, the acid-catalyzed cleavage of which renders the polymer soluble in aqueous base; and
- (b) at least one second olefinic monomer selected from (i) an olefinic monomer containing a pendant fluorinated hydroxyalkyl group [[R^H]], (ii) an olefinic monomer containing a pendant fluorinated alkylsulfonamide group [[R^S]], and (iii) combinations thereof.
- 2. (Currently amended) The polymer of claim 1, wherein the acetal or ketal linkage is contained within an acid-cleavable substituent R^{CL} in the first olefinic monomer, the acid-cleavable substituent R^{CL} having the structure

(I)
$$-(L^{1})_{m}-(X)_{n}-(L^{2})_{q}-R^{1}$$

in which:

m, n, and q are independently zero or 1;

 L^1 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^1 is optionally substituted and/or heteroatom-containing C_1 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^2 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acetal-containing and ketal-containing substituents.

- 3. (Original) The polymer of claim 2, wherein:
- L^1 is selected from C_1 - C_{12} alkylene, and heteroatom-containing C_1 - C_{12} alkylene;
- X is C₃-C₁₈ alicyclic;
- L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene; and
- R^1 has the structure -(CO)-O-CR⁴R⁵-O-CR⁶R⁷R⁸ in which R^4 , R^5 , R^6 , R^7 , and R^8 are selected so as to render R^1 acid-cleavable.
 - 4. (Original) The polymer of claim 3, wherein:
- R^4 , R^5 , R^6 , R^7 , and R^8 are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl, and further wherein any two of R^4 , R^5 , R^6 , R^7 , and R^8 may be linked to form a cyclic group.
 - 5. (Original) The polymer of claim 4, wherein:
 - L¹ is selected from C₁-C₁₂ alkylene, and heteroatom-containing C₁-C₁₂ alkylene;
 - X is C₆-C₁₂ alicyclic; and
- L^2 is of the formula -CR⁹R¹⁰- wherein R⁹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R¹⁰ is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl.
- 6. (Original) The polymer of claim 1, wherein the second olefinic monomer contains a pendant fluorinated hydroxyalkyl group R^H.
 - 7. (Original) The polymer of claim 6, wherein R^H has the structure -L³-CR¹¹R¹²-OH, in which:
- L^3 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_3 - C_{15} alicyclic, C_3 - C_{15} fluoroalicyclic, and combinations thereof;
 - R^{11} is selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl; and
- R^{12} is C_1 - C_{24} alkyl or fluorinated C_1 - C_{24} alkyl, with the proviso that at least one of R^{11} and R^{12} is fluorinated; and further wherein R^{11} and R^{12} can be taken together to form a ring.
- 8. (Original) The polymer of claim 7, wherein R^{11} is selected from hydrogen, C_1 - C_{12} alkyl, and C_1 - C_{12} haloalkyl, and R^{12} is C_1 - C_{12} alkyl or fluorinated C_1 - C_{12} alkyl.

- 9. (Original) The polymer of claim 8, wherein R^{11} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{12} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl.
- 10. (Original) The polymer of claim 9, wherein R^{11} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and R^{12} is C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, or perfluorinated C_1 - C_4 alkyl.
 - 11. (Original) The polymer of claim 10, wherein R¹¹ and R¹² are both trifluoromethyl.
- 12. (Original) The polymer of claim 1, wherein the second olefinic monomer contains a pendant fluorinated alkylsulfonamide group R^S.
- 13. (**Original**) The polymer of claim 12, wherein R^S has the structure -L³-SO₂-NHR¹⁶, in which: L³ is selected from C₁-C₁₂ alkylene, substituted C₁-C₁₂ alkylene, C₁-C₁₂ heteroalkylene, substituted C₁-C₁₂ heteroalkylene, C₃-C₁₅ alicyclic, C₃-C₁₅ fluoroalicyclic, combinations thereof; and R¹⁶ is selected from C₁-C₂₄ alkyl and substituted C₁-C₂₄ alkyl, C₁-C₂₄ fluoroalkyl and substituted C₁-C₂₄ fluoroalkyl.
- 14. (Original) A polymer comprising a first olefinic monomer unit having the structure of formula (II)

and a second olefinic monomer unit having the structure of formula (III)

wherein:

m, n, and q are independently zero or 1;

 L^1 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^1 is optionally substituted and/or heteroatom-containing C_1 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^2 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acetal-containing and ketal-containing substituents;

 L^3 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_3 - C_{15} alicyclic, C_3 - C_{15} fluoroalicyclic, and combinations thereof;

 R^{11} is selected from hydrogen, $C_1\text{-}C_{24}$ alkyl, and substituted $C_1\text{-}C_{24}$ alkyl;

 R^{12} is C_1 - C_{24} alkyl or fluorinated C_1 - C_{24} alkyl, with the proviso that at least one of R^{11} and R^{12} is fluorinated; and further wherein R^{11} and R^{12} can be taken together to form a ring;

 R^{13} and R^{13A} are independently selected from hydrogen, fluorine, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy; and

 R^{14} and R^{14A} are independently selected from hydrogen, fluorine, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl; and

 R^{15} and R^{15A} are independently selected from hydrogen, fluorine, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of L^1 , R^{13} , R^{14} , and R^{15} may be taken together to form a ring and any two of L^3 , R^{13A} , R^{14A} , and R^{15A} may be taken together to form a ring.

15. (Original) The polymer of claim 14, wherein

 L^1 is selected from C_1 - C_{12} alkylene, and heteroatom-containing C_1 - C_{12} alkylene;

X is C₃-C₁₈ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene;

R¹ has the structure -(CO)-O-CR⁴R⁵-O-CR⁶R⁷R⁸ in which R⁴, R⁵, R⁶, R⁷, and R⁸ are selected so as to render R¹ acid-cleavable;

R¹¹ is selected from hydrogen, C₁-C₁₂ alkyl, and C₁-C₁₂ haloalkyl; and

 R^{12} is C_1 - C_{12} alkyl or fluorinated C_1 - C_{12} alkyl; and further wherein R^{11} and R^{12} can be taken together to form a ring.

16. (Original) The polymer of claim 15, wherein

 R^4 , R^5 , R^6 , R^7 , and R^8 are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl, and further wherein any two of R^4 , R^5 , R^6 , R^7 , and R^8 may be linked to form a cyclic group;

 R^{11} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl; and

 R^{12} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl; and further wherein R^{11} and R^{12} can be taken together to form a ring.

17. (Original) The polymer of claim 16, wherein

L¹ is selected from C₁-C₆ alkylene, and heteroatom-containing C₁-C₆ alkylene;

X is C₆-C₁₂ alicyclic; and

 L^2 is of the formula $-CR^9R^{10}$ - wherein R^9 is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R^{10} is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl;

 R^{11} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{12} is C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, or perfluorinated C_1 - C_4 alkyl.

18. (Original) The polymer of claim 17, wherein R^{11} and R^{12} are both trifluoromethyl.

19. (Original) A polymer comprising a first olefinic monomer unit having the structure of formula (II)

and a second olefinic monomer unit having the structure of formula (IV)

(IV)
$$\begin{array}{c|c} & & & & R^{15A} \\ \hline R^{14A} & & & L^3 \\ \hline O_2S & & & NH \\ \hline R^{16} & & & & \end{array}$$

wherein:

m, n, and q are independently zero or 1;

 L^1 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^1 is optionally substituted and/or heteroatom-containing C_1 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^2 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acetal-containing and ketal-containing substituents;

 L^3 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_3 - C_{15} alicyclic, C_3 - C_{15} fluoroalicyclic, and combinations thereof;

 R^{13} and R^{13A} are independently selected from hydrogen, fluorine, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy; and

 R^{14} and R^{14A} are independently selected from hydrogen, fluorine, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl;

 R^{15} and R^{15A} are independently selected from hydrogen, fluorine, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of L^1 , R^{13} , R^{14} , and R^{15} may be taken together to form a ring and any two of L^3 , R^{13A} , R^{14A} , and R^{15A} may be taken together to form a ring; and

 R^{16} is selected from C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl, C_1 - C_{24} fluoroalkyl and substituted C_1 - C_{24} fluoroalkyl.

20. (Original) The polymer of claim 19, wherein:

 L^1 is selected from C_1 - C_{12} alkylene, and heteroatom-containing C_1 - C_{12} alkylene;

X is C_3 - C_{18} alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene; and

R¹ has the structure -(CO)-O-CR⁴R⁵-O-CR⁶R⁷R⁸ in which R⁴, R⁵, R⁶, R⁷, and R⁸ are selected so as to render R¹ acid-cleavable.

21. (Original) The polymer of claim 20, wherein

 R^4 , R^5 , R^6 , R^7 , and R^8 are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl, and further wherein any two of R^4 , R^5 , R^6 , R^7 , and R^8 may be linked to form a cyclic group.

22. (Original) The polymer of claim 21, wherein

 L^1 is selected from C_1 - C_6 alkylene, and heteroatom-containing C_1 - C_6 alkylene;

X is C₆-C₁₂ alicyclic; and

 L^2 is of the formula -CR⁹R¹⁰-, wherein R⁹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R¹⁰ is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl.

23. (Original) The polymer of claim 1, wherein the monomer mixture comprises two or more different first olefinic monomers.

- 24. (Original) The polymer of claim 1, wherein the monomer mixture further comprises at least one additional olefinic monomer.
- 25. (Original) The polymer of claim 23, wherein monomer mixture further comprises at least one additional olefinic monomer.
- 26. (Original) The polymer of claim 24, wherein the at least one additional olefinic monomer is selected from (i) a monomer containing an acid-cleavable substituent R^{CL*}; (ii) a monomer containing an acid-inert, polar substituent, R^P; (iii) a monomer containing an acid-inert, nonpolar substituent, R^{NP}; and (iv) combinations thereof.
- 27. (Original) The polymer of claim 26, comprising monomer units substituted with R^P and optionally R^{NP} .
- 28. (Original) The polymer of claim 26, comprising monomer units substituted with R^{NP} and optionally R^{P} .
 - 29. (Original) The polymer of claim 26, wherein R^{CL*} has the structure

(V)
$$-(L^{1*})_{m*}-(X*)_{n*}-[(L^{2*})_{q*}-R^{1*}]_{r*}$$

in which:

m*, n*, and q* are independently zero or 1;

r* is an integer of at least 1;

 $L^{1^{\bullet}}$ is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when $L^{1^{\bullet}}$ is optionally substituted and/or heteroatom-containing C_1 - C_{12} alkylene, $L^{1^{\bullet}}$ may be linear, branched, or cyclic;

X* is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^{2^*} is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^{2^*} is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^{2^*} may be linear, branched, or cyclic; and

R^{1*} is selected from acid-cleavable ester, oligomeric ester, ether, carbonate, and orthoester substituents.

30. (Original) The polymer of claim 29, wherein:

r* is 1 or 2;

L1* is selected from C1-C12 alkylene, and heteroatom-containing C1-C12 alkylene;

X* is C₃-C₁₈ alicyclic;

 $L^{2^{\bullet}}$ is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene; and

 R^{1*} is selected from -(CO)-O- R^{4*} , -[Q^{1*}-(CO)-O-]_{h*}- R^{5*} , -O- R^{6*} , and -O-(CO)-O- R^{7*} ;

h* is an integer in the range of 2 to 8 inclusive,

Q1* is C1-C12 alkylene or C1-C12 fluoroalkylene,

R^{4*} and R^{6*} are selected from (a) hydrocarbyl substituents with a tertiary carbon attachment point, (b) substituents having the structure -CR^{8*}R^{9*}-O-CR^{10*}R^{11*}R^{12*}, and (c) substituents having the structure -CR^{13*}(OR^{14*})₂;

 R^{5*} , R^{7*} , and R^{14*} are selected from C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl; and

 R^{8^*} , R^{9^*} , R^{10^*} , R^{11^*} , R^{12^*} , and R^{13^*} are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl, and further wherein any two of R^{8^*} , R^{9^*} , R^{10^*} , R^{11^*} , and R^{12^*} may be linked to form a cyclic group.

31. (Original) The polymer of claim 30, wherein:

L^{1*} is selected from C₁-C₆ alkylene, and heteroatom-containing C₁-C₆ alkylene;

X* is C₆-C₁₂ alicyclic; and

 L^{2^*} is of the formula -CR^{9*}R^{10*}-, wherein R^{9*} is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R^{10*} is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl.

32. (Original) The polymer of claim 31, wherein R^{1*} is of the formula -(CO)-O-R^{4*}, wherein R^{4*} is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r* is 1, then R^{CL*} has the structure

(VI)
$$-(L^{1*})_{m^{*-}}(X^{*})_{n^{*-}}(CR^{9*}R^{10*})_{q^{*-}}(CO)-O-R^{4*}.$$

Application No. 10/729,169 Amendment dated June 21, 2006 Reply to Office Action of March 27, 2006

33. (Original) The polymer of claim 31, wherein R^{1*} is of the formula -O-R^{6*}, wherein R^{6*} is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r* is 1, then R^{CL*} has the structure

(VII)
$$-(L^{1*})_{m*}-(X*)_{n*}-(CR^{9*}R^{10*})_{q*}-O-R^{6*}.$$

- 34. **(Original)** The polymer of claim 32, wherein R^{4*} is selected from t-butyl, 2-methyl-2-norbornyl, 2-methyl-2-adamantyl, 2-ethyl-2-adamantyl, isobornyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecyl, 1-methylcyclohexyl, 1-ethylcyclohexyl, 1-butylcyclohexyl, 1-methylcyclopentyl, 1-ethylcyclopentyl, and 1-butylcyclopentyl.
- 35. (Original) The polymer of claim 33, wherein R^{6*} is selected from t-butyl, 2-methyl-2-norbornyl, 2-methyl-2-adamantyl, 2-ethyl-2-adamantyl, isobornyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecyl, 1-methylcyclohexyl, 1-ethylcyclohexyl, 1-butylcyclohexyl, 1-methylcyclopentyl, 1-ethylcyclopentyl, and 1-butylcyclopentyl.
 - 36. (Original) The polymer of claim 26, wherein R^P has the structure

(VIII)
$$-(L^3)_{m1}-(Y)_{n1}-(L^4)_{q1}-R^{18}$$

in which:

m1, n1, and q1 are independently zero or 1;

 L^3 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^3 is optionally substituted and/or heteroatom-containing C_1 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

Y is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^4 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, and further wherein when L^4 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^4 may be linear, branched, or cyclic; and

R¹⁸ is an acid-inert polar organic group containing a heteroatom with a Pauling electronegativity greater than about 3.00.

37. (Original) The polymer of claim 36, wherein:

 L^3 is selected from C_1 - C_{12} alkylene, and heteroatom-containing C_1 - C_{12} alkylene;

Y is C₃-C₁₈ alicyclic; and

 L^4 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene.

38. (Original) The polymer of claim 37, wherein:

L³ is selected from C₁-C₆ alkylene, and heteroatom-containing C₁-C₆ alkylene;

Y is C₆-C₁₂ alicyclic; and

 L^4 is of the formula -CR²¹CR²²- wherein R²¹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R²² is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl, such that R^P has the structure

(IX)
$$-(L^3)_{m1}-(Y)_{n1}-(CR^{21}R^{22})_{q1}-R^{18}.$$

- 39. (Original) The polymer of claim 38, wherein the heteroatom within R^{18} is O or N.
- 40. (Original) The polymer of claim 39, wherein R^{18} is selected from hydroxyl, carboxyl, C_1 - C_{12} alkoxy, C_1 - C_{12} fluoroalkoxy, hydroxyl-substituted C_1 - C_{12} alkoxyalkyl, hydroxyl-substituted C_1 - C_{12} alkoxyalkyl, fluorinated hydroxyl-substituted C_2 - C_{12} alkoxyalkyl, hydroxyl-substituted C_1 - C_{12} alkyl, hydroxyl-substituted C_1 - C_1 alkyl, hydroxyl-substituted C_1 - C_1 alkyl, carboxyl-substituted C_1 - C_1 alkyl, carboxyl-substituted C_1 - C_1 fluoroalkyl, C_2 - C_1 acyl, fluorinated C_2 - C_1 acyl, hydroxyl-substituted C_2 - C_1 acyl, fluorinated hydroxyl-substituted C_2 - C_1 acyloxy, fluorinated C_2 - C_1 acyloxy, hydroxyl-substituted C_2 - C_1 acyloxy, fluorinated hydroxyl-substituted C_2 - C_1 acyloxy, amino, mono- and di- $(C_1$ - C_1 alkyl)-substituted amino, amido, mono- and di- $(C_2$ - C_1 alkyl) amido, sulfonamido, N-heteroalicyclic, oxo-substituted N-heterocyclic, and, where the substituents permit, combinations of two or more of the foregoing.
- 41. (Original) The polymer of claim 26, wherein R^P is selected from lactone, anhydride, sulfonamide, fluoroalkanol, alkanol, alicyclic alkanol, esters, ethers, and a combination thereof.
- 42. (Original) The polymer of claim 26, wherein R^{NP} is C_1 - C_{18} hydrocarbyl or fluorinated C_1 - C_{18} hydrocarbyl.

43. (Original) The polymer of claim 14, wherein the first olefinic monomer unit is derived from a monomer having a structure selected from the formulae

$$R^{15}$$
 R^{15}
 R^{15}

- 44. (Original) The polymer of claim 43, wherein R^{15} is selected from hydrogen, fluorine, C_1 - C_{24} alkyl, and fluorinated C_1 - C_{24} alkyl.
- 45. (Original) The polymer of claim 19, wherein the first olefinic monomer unit is derived from a monomer having a structure selected from the formulae

$$R^{15}$$
 R^{15}
 R^{15}

- 46. (Original) The polymer of claim 45, wherein R^{15} is selected from hydrogen, fluorine, C_1 - C_{24} alkyl, and fluorinated C_1 - C_{24} alkyl.
- 47. (Withdrawn) A lithographic photoresist composition comprising the polymer of claim 1 and a photoacid generator.

- 48. (Withdrawn) The composition of claim 47, further comprising an additive selected from dissolution modifying additives, basic compounds, photospeed control agents, crosslinking agents, surfactants, adhesion promoters, and anti-foaming agents.
- 49. (Withdrawn) The composition of claim 48, wherein the dissolution modifying additive is a dissolution inhibitor.
 - 50. (Withdrawn) The composition of claim 47, further comprising an additional polymer.
- 51. (Withdrawn) The composition of claim 50, wherein the polymer is selected from fluorine-containing polymers and non-fluorine-containing polymers.
 - 52. (Withdrawn) The composition of claim 47, further comprising a solvent.
- 53. (Withdrawn) The composition of claim 47, wherein the photoacid generator is an onium salt selected from sulfonium salts and iodonium salts.
- 54. (Withdrawn) A lithographic photoresist composition comprising the polymer of claim 14 and a photoacid generator.
- 55. (Withdrawn) A lithographic photoresist composition comprising the polymer of claim 19 and a photoacid generator.
- 56. (Withdrawn) A polymer blend composition comprising the polymer of claim 1 and at least one additional polymer.