(a) 验证正则奇点

$$a_2(x) y'' + a_1(x) y' + a_0(x) y = 0$$

写成标准型:

除以 $a_2(x)$,得到

$$y'' + P(x)\,y' + Q(x)\,y = 0, \qquad P(x) = rac{a_1(x)}{a_2(x)}, \; Q(x) = rac{a_0(x)}{a_2(x)}.$$

指出 $x_0=0$ 处,P(x)奇点阶数为1(pole of order 1),Q(x)奇点阶数为2,所以是正则奇点。

(b) 求解 $(0,\infty)$

读取 p_j, q_j :

$$egin{align} f(x) = (x-x_0) \, rac{a_1(x)}{a_2(x)}, & g(x) = (x-x_0)^2 \, rac{a_0(x)}{a_2(x)}. \ & f(x) = p_0 + p_1(x-x_0) + p_2(x-x_0)^2 + \cdots, \ & g(x) = g_0 + g_1(x-x_0) + g_2(x-x_0)^2 + \cdots. \ \end{cases}$$

(可选,被"读取 p_j,q_j "包含)求Laurent展开后的系数 p_0,q_0

$$p_0 = \lim_{x o x_0} (x - x_0) \, P(x), \quad q_0 = \lim_{x o x_0} (x - x_0)^2 \, Q(x),$$

解指数方程(Indicial Equation)

$$r(r-1) + p_0 r + q_0 = 0,$$

解得两根 $r_1 \geq r_2$ 。令 $\Delta r = r_1 - r_2$ 。

构造第一条级数解 y_1

$$y_1(x) = (x-x_0)^{r_1} \sum_{n=0}^{\infty} c_n \, (x-x_0)^n, \quad c_0 = 1.$$

递推公式(注意分子从 $n \geq 1$ 开始,不包含 p_0, q_0 项):

$$c_n = -rac{\displaystyle\sum_{j=1}^n igl[p_j \, (n+r_1-j) + q_j igr] \, c_{\, n-j}}{(n+r_1)(n+r_1-1) + p_0 \, (n+r_1) + q_0}.$$

写出 $y_1(x)$ 。

注:Sample1在此处写出了前三项,其余项用 Σ 形式表示,个人认为只需写出第一项(n=0)即可(因为第一项不能用展开式正确表示,其余项均可用级数表示)。

另注:在求解的时候,注意级数是否会在较小的有限项内变为0,即 $c_m=0$,那么,往后的所有递推项都为0(在一阶递推的情况下,高阶递推较难看出,一般就假设不会归零)。

构造第二条解 y_2

根据 Δr 分三种情况:

1. $\Delta r
otin \mathbb{Z}$

$$y_2(x) = (x-x_0)^{r_2} \sum_{n=0}^\infty ilde{c}_n \, (x-x_0)^n, \quad ilde{c}_0 = 1,$$

递推式同上,将 $r_1 \rightarrow r_2$ 即可。

- 2. $\Delta r = m \in \mathbb{Z}^+$
 - 。 **先尝试** 同方法构造 \tilde{c}_n 。
 - o 检查在递推式中 $N=n=m=r_1-r_2$ 处,递推关系的分子是否也为 0。若分子也为 0,则无需引入对数。这个方程对 c_m 不加任何限制,为计算简便,指定 $c_m=0$ 。
 - 若在 n=m 处出现"分母=0 且分子 \neq 0",则需引入对数解:

$$y_2 = y_1 \ln(x-x_0) + (x-x_0)^{r_1} \sum_{n=0}^{\infty} d_n \, (x-x_0)^n.$$

注:此处对数项没有系数A,是因为在取 y_1 解的时候已经把第0项设为1。

o d_n **递推**(取对数项前系数为 1):

$$d_{n} = -rac{2\left(n+r_{1}-1
ight)c_{n-1}+\sum_{j=1}^{n}p_{j}\left(n+r_{1}-j
ight)c_{\left(n-j
ight)}}{(n+r_{1})(n+r_{1}-1)+p_{0}\left(n+r_{1}
ight)+q_{0}},\quad n\geq0,$$

其中 $c_{-1}=0$ (即一般来说, $d_0=0$)。

3. **重根** $\Delta r = 0$

必含对数,直接套用上式构造 y_2 。

Alternative Method 构造第二条解 y_2 (统一参数化递推)

1. 定义参数化递推

$$F(s) = s(s-1) + p_0 s + q_0$$

并令

$$a_0(r) = 1, \quad a_n(r) = -rac{1}{F(r+n)} \sum_{k=0}^{n-1} ig[(r+k) \, p_{\,n-k} + q_{\,n-k} ig] \, a_k(r) \quad (n \geq 1).$$

2. 生成两条基解

o 取
$$r=r_1$$
:

$$y_1(x) = (x-x_0)^{r_1} \sum_{n=0}^\infty a_n(r_1) \, (x-x_0)^n.$$

o 取 $r=r_2$:

$$ilde{y}_2(x) = (x-x_0)^{r_2} \sum_{n=0}^\infty a_n(r_2) \, (x-x_0)^n.$$

- 3. 整数差情形 ($\Delta r = r_1 r_2 = m \in \mathbb{Z}^+$)
 - 。 若 $F(r_2+m)=0$ 且对应求和分子也为 0,则 $ilde{y}_2$ 自然**截断**成多项式解,无需对数。
 - 若 $F(r_2 + m) = 0$ 且分子 $\neq 0$,则必须引入对数项:

$$y_2(x) = y_1(x)\, \ln(x-x_0) + (x-x_0)^{r_1} \sum_{n=0}^\infty d_n\, (x-x_0)^n,$$

并可用类似方式递推确定 $\{d_n\}$ 。

4. **重根情形** ($\Delta r = 0$) 必含对数,直接套用上式构造 y_2 。

写出通解

$$y(x) = C_1 y_1(x) + C_2 y_2(x).$$

如果级数可以简化为有理/有理函数时,需要给出简式。

收敛半径与有效区间

用比值法检验比较方便:

$$\lim_{n o\infty}\Bigl|rac{a_{n+1}}{a_n}\Bigr|=0,$$

从而证明收敛半径为 $R=\infty$ 。

注:老白的这道题一般都在第一问就说明了只有0是正则奇点,而以0为中心的Frobenius级数,如果系数在整个复平面都解析(即 **没有别的奇点**,只有可能在∞处发生增长),那最近奇点就是∞。所以一般甚至不需要用收敛半径讨论,只需要最简单的一句话陈述即可。

(c) 解的延拓

负半轴 $(-\infty, x_0)$ 上的延拓

偶数指数 r=2k

$$(-x)^r = (-x)^{2k} = (-1)^{2k} x^{2k} = x^{2k},$$

解在负半轴上不变。

奇数指数 r=2k+1

$$(-x)^r = (-x)^{2k+1} = (-1)^{2k+1}x^{2k+1} = -x^{2k+1}$$

解在负半轴上会整体**取相反数**。

非整数指数 $r \notin \mathbb{Z}$

为了在负半轴上仍保持解为实数,通常选用主值分支

$$(-x)^r = |x|^r,$$

注:在Sample解析中,对于偶数指数,因为解不变,所以没有显式写出;对于奇指数,因为整体取反,所以显式写出;对于非整数指数,为了不引入额外的复相位,一般选用主值分支,也就是直接取绝对值。

另注:简便起见,所有级数内的正负号等冗余的参数内容,都被集成到 a_n 中,不显式写出。

全实轴 ℝ 上的通解

删去 $y_1(x), y_2(x)$ 中二阶导数在x=0不连续的解,就是全实数域通解。

注: 如果 $y_1(x), y_2(x)$ 均不符合要求,则通解为y(x) = 0。

比较简单,不详细说。这里只给出两个积分公式:

• 对于:

$$y' + p(t)y = 0$$

积分为:

$$y(t) = C e^{-\int p(t) dt}$$

• 对于:

$$y' + p(t)y = q(t)$$

积分为:

$$y(t) = e^{-\int p(t) \, \mathrm{d}t} \Bigl(\int q(x) e^{\int p(t) \, \mathrm{d}t} \mathrm{d}t + C \Bigr)$$

(a) 齐次方程 y'=Ay

求特征多项式

$$\chi_A(\lambda) = \det(\lambda I - A) = 0$$

- **多重实根** → 继续检查是否存在足够独立特征向量。
- **复根** → 必成共轭对,先取复特征向量,再化成实解对。

注:在求行列式时,尽量先消元,把一部分entries变成0,可以大大简化计算。但是,不要为了消元乘以分数,这反而会使计算变得复杂。

分类讨论

λ情形	基本向量	对应基解
単实根 λ	v	$e^{\lambda t}v$
重实根,满秩	v_1,\dots,v_m	同上,个数等于重数
重实根,缺陷 (Jordan k阶)	先求主向量 v ,再递推广义向量 w : $(A-\lambda I)w=v$	$e^{\lambda t}(v+tw)$ (更高阶依此类推)
共轭复根 $lpha\pmeta i$	复向量 v	取实部/虚部: $e^{lpha t} igl[\cos(eta t) \mathrm{Re}\{v\} - \sin(eta t) \mathrm{Im}\{v\}igr]$ 等两条独立实解

写出 $A-\lambda I$ 之后,做Gaussian Elimination,得到齐次方程组,再求解子空间特征向量。

例如得到RREF:

$$\begin{pmatrix} 3 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix},$$

对应的齐次方程组为:

$$\left\{ egin{aligned} 3x_1+2x_2-x_3&=0,\ 2x_2+2x_3&=0. \end{aligned}
ight.$$

求解得到最简特征向量:

$$v_1 = egin{pmatrix} 1 \ -1 \ 1 \end{pmatrix}$$

关于共轭复根形式的简单套公式:

$$\lambda=lpha+ieta,\quad ar{\lambda}=lpha-ieta,$$

特征向量第n个分量为

$$v_n = a_n + i \, b_n.$$

两条实解的第n分量:

• 实部解 (Real part)

$$y_n^{(1)}(t) = e^{\alpha t} (a_n \cos(\beta t) - b_n \sin(\beta t)).$$

• 虚部解 (Imaginary part)

$$y_n^{(2)}(t) = e^{\alpha t} (a_n \sin(\beta t) + b_n \cos(\beta t)).$$

组装基解矩阵

$$\Phi(t) = egin{bmatrix} y_1(t) & y_2(t) & \ldots \end{bmatrix} \in \operatorname{GL}_n(\mathbb{R}), \quad \Phi(0) = I$$

对于长度为2的Jordan链:

$$y_2(t) = e^{\lambda t} v_2 + t e^{\lambda t} v_1,$$

对于长度为3的Jordan链:

$$y_3(t) = e^{\lambda t} \Big(v_3 + t \, v_2 + rac{t^2}{2} \, v_1 \Big) = e^{\lambda t} v_3 \, + \, t \, e^{\lambda t} v_2 \, + \, rac{t^2}{2} \, e^{\lambda t} v_1.$$

(b) 非齐次方程 $y' = Ay + b(t), \ y(0) = y_0$

$$y'(t) = Ay(t) + b(t), \qquad A \in \mathbb{R}^{n imes n},$$

b(t) 是 **多项式向量**(非多项式暂不讨论)。

把b(t)写成多项式 $b(t) = b_0 + tb_1 + \cdots + t^m b_m$ 。 记最高次数 m。

找 particular 解

设
$$y_p(t) = w_0 + tw_1 + \dots + t^m w_m$$
 (与 $b(t)$ 同次数)。

把 y_p 代入原方程,将两边按 t 的幂次配对,得到 $\,$ m+1 组线性方程

$$\left\{egin{aligned} Aw_m &= -b_m, \ Aw_{m-1} &= w_m - b_{m-1}, \ dots \ Aw_0 &= w_1 - b_0. \end{aligned}
ight.$$

从最高次往低次顺序求 $w_m, w_{m-1}, \ldots, w_0$ 。

若某一步出现 $Aw=\mathrm{RHS}$ 而A不可逆,就把等式视为可解条件;若无解,则提高猜测解的次数(因为样卷中并没有出现A不可逆的情况,暂不提及)。

拼通解+用初值定系数

$$y(t)=y_p(t)+\sum_{j=1}^r c_j\,y_j(t)$$

$$y''(t) + ay'(t) + by(t) = f(t), \quad y(0) = y_0, \ y'(0) = y_1,$$

表示 f(t) 为分段函数

矩形:

$$f(t) = A\big(u(t-t_1) - u(t-t_2)\big)$$

斜坡:

$$f(t) = \underbrace{(t-t_0)\,u(t-t_0)}_{ ext{斜坡}} - \underbrace{(t-t_1)\,u(t-t_1)}_{ ext{斜坡终止}}$$

对两边做 Laplace 变换

$$\mathcal{L}{y''}$$
 = $s^2Y(s) - sy(0) - y'(0)$, $\mathcal{L}{y'}$ = $sY(s) - y(0)$

则方程变为

$$(s^2 + a s + b)Y(s) - [s y_0 + y_1 + a y_0] = F(s).$$

解出

$$Y(s) = rac{F(s) + \left[s \, y_0 + y_1 + a \, y_0
ight]}{s^2 + a \, s + b}.$$

写出F(s)

注:对于含有时移的变量, $u(t-t_k)g(t)$: $\mathcal{L}\{u(t-t_k)g(t-t_k)\}=e^{-t_ks}G(s)$ 。

部分分式展开

将 Y(s) 拆成若干项形如: $\frac{P}{s-\lambda}$, $\frac{Q}{(s-\lambda)^2}$, $\frac{R}{s^2+\omega^2}$...

逆 Laplace 变换

无延迟项 \rightarrow 在全域 $[0,\infty)$ 生效;

延迟项 $e^{-t_k s} H(s) \to$ 逆变换后乘以 $u(t-t_k)$ 、并替换 $t\mapsto t-t_k$:

$$\mathcal{L}^{-1}\{e^{-t_k s} H(s)\} = u(t-t_k) \; h(t-t_k).$$

拼接分段表达式

对每一个分界点 \$t 1,按以下方法组合:

$$y(t) = egin{cases} y_0(t), & 0 \leq t < t_1, \ y_0(t) + y_1(t), & t_1 \leq t < t_2, \ y_0(t) + y_1(t) + y_2(t), & t_2 \leq t < t_3, \ \dots \end{cases}$$

其中 y_1, y_2, \ldots 分别来自各 $e^{-t_k s}$ 延迟项。

常用 Laplace 对照表

原函数 $g(t)$	$\mathcal{L}\{g(t)\}$
1	1/s
t^n	$n!/s^{n+1}$
$e^{-lpha t}$	1/(s+lpha)
$\cos(\omega t)$	$s/(s^2+\omega^2)$
$\sin(\omega t)$	$\omega/(s^2+\omega^2)$
$u(t-t_k)$	$e^{-t_k s}/s$
$(t-t_k)u(t-t_k)$	$e^{-t_k s}/s^2$

(a) 齐次方程通解

•
$$y^{(4)} + a_3 y^{(3)} + a_2 y'' + a_1 y' + a_0 y = 0$$

写特征多项式

$$P(r) = r^4 + a_3 r^3 + a_2 r^2 + a_1 r + a_0,$$

计算所有根 r_k 及其重数 m_k 。

分根情况生成基础解

根型	基础解	
单实根 r	e^{rt}	
重实根 r ,重数 m	$e^{rt},\; te^{rt},\; t^2e^{rt},\ldots,t^{m-1}e^{rt}$	
共轭复根 $r=lpha\pmeta i$	$e^{\alpha t}\cos \beta t, \ e^{\alpha t}\sin \beta t$	
重复共轭复根(极少考)	对每个重数再乘 t,t^2,\dots	

齐次通解

完整的公式很难表达,如下是两个示例,照规律代入即可:

• 根为r=2 (二重), $r=1\pm 3i$ (简单复根):

$$y(t) = (C_1 + C_2 t)e^{2t} + e^t(C_3 \cos 3t + C_4 \sin 3t)$$

• 根为 r = 0 (单实根)、r = -2 (二重):

$$y(t) = C_1 e^{0 \cdot t} + (C_2 + C_3 t) e^{-2t}$$

(b) 非齐次方程特解(待定系数+根重修正)

$$y^{(4)} + a_3 y^{(3)} + a_2 y'' + a_1 y' + a_0 y = g(t)$$

把 g(t) 拆成「可叠加」若干项

常见原子项与首选试探型对照:

中的单项	首选试探	说明
常数 K	常数 A	若 $P(0) \neq 0$
$e^{\mu t}$	$Ae^{\mu t}$	首查 μ 是否为根
$t^n e^{\mu t}$	$(B_0+B_1t+\cdots+B_nt^n)e^{\mu t}$	多项式阶 = <i>n</i>

g(t)中的单项	首选试探	说明
$e^{\mu t}\sin\omega t$ 或 $e^{\mu t}\cos\omega t$	$e^{\mu t}(A\cos\omega t+B\sin\omega t)$	复数等价
单纯 $\sin \omega t$ 、 $\cos \omega t$	上式取 $\mu=0$	

检查根重冲突

若试探中指数 μ 恰好是特征多项式的根,且重数为 m,把整个试探再乘 t^m 。

例:右端含 $5e^{2t}$,而 2 是二重根;所以试探用 $t^2(B_0)e^{2t}$

把试探代入原方程,按同类函数系数解未知常数

• 常数项g(t) = K

代入原方程求解A。

• 纯指数 $g(t) = A e^{\mu t}$

代入原方程求解A。

• 多项式imes指数 $g(t)=(b_0+b_1t+\cdots+b_nt^n)e^{\mu t}$

代入原方程求解A。

• 指数×正弦 / 余弦 $g(t) = A \, e^{\mu t} \cos(\omega t)$ 或 $B \, e^{\mu t} \sin(\omega t)$

注意: $\mu=0$ 时要补上 t^m 。

对于非齐次项 $f(t) = Ae^{\mu t}\cos(\omega t) + Be^{\mu t}\sin(\omega t)$

第一步: 利用欧拉公式转换

$$egin{aligned} Ae^{\mu t}\cos\omega t &= rac{A}{2}(e^{(\mu+i\omega)t}+e^{(\mu-i\omega)t})\ Be^{\mu t}\sin\omega t &= rac{B}{2i}(e^{(\mu+i\omega)t}-e^{(\mu-i\omega)t}) \end{aligned}$$

第二步: 合并同类项 (对于仅有sin和cos中一项时可以省略)

$$f(t) = \left(\frac{A}{2} + \frac{B}{2i}\right)e^{(\mu + i\omega)t} + \left(\frac{A}{2} - \frac{B}{2i}\right)e^{(\mu - i\omega)t}$$
$$= \frac{A - iB}{2}e^{(\mu + i\omega)t} + \frac{A + iB}{2}e^{(\mu - i\omega)t}$$

第三步:对特征算子P(D)求解

设
$$P(D)[e^{(\mu\pm i\omega)t}]=P(\mu\pm i\omega)e^{(\mu\pm i\omega)t}$$

则特解形式为:

$$y_p(t) = C_+ e^{(\mu + i\omega)t} + C_- e^{(\mu - i\omega)t}$$

其中:

•
$$P(\mu+i\omega)C_+=rac{A-iB}{2}$$

•
$$P(\mu - i\omega)C_- = \frac{A+iB}{2}$$

第四步: 计算系数

$$C_{+}=rac{A-iB}{2P(\mu+i\omega)}, \quad C_{-}=rac{A+iB}{2P(\mu-i\omega)}$$

重要性质:由于 P 有实系数,所以 $P(\mu-i\omega)=\overline{P(\mu+i\omega)}$,且 $C_-=\overline{C_+}$

第五步: 转换回实数形式

设 $C_+ = u + iv$ (其中u, v为实数),则:

$$y_p(t) = (u+iv)e^{(\mu+i\omega)t} + (u-iv)e^{(\mu-i\omega)t}$$

$$=e^{\mu t}[(u+iv)e^{i\omega t}+(u-iv)e^{-i\omega t}]$$

 $=e^{\mu t}[2u\cos\omega t-2v\sin\omega t]$ 最终实特解形式:

$$A = 2u, \qquad B = -2v,$$

即可写成

$$y_p(t) = e^{\mu t} ig(A \cos \omega t + B \sin \omega t ig)$$

回代所有求出的特解,写成 $y_p(t)$

非齐次通解

$$y(t) = y_h(t) + y_p(t)$$

其中 y_p 为各子项特解之和。

形如:

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + c_3 e^{2t} \cos t + c_4 e^{2t} \sin t + \frac{1}{34} t^2 e^{-2t} + \frac{1}{5} e^{-2t} \cos t + \frac{2}{5} e^{-2t} \sin t$$

"指数平移"性质:

$$(D+a)ig[e^{-at}\,g(t)ig]=rac{d}{dt}ig(e^{-at}g(t)ig)+a\,e^{-at}g(t)=e^{-at}\,rac{d}{dt}g(t).$$