Ser. No. 10/575,331 Amdt. dated December 4, 2007 Reply to Office action of June 15, 2007

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of the Claims

- 1. (currently amended) Method of communication in respect of transmitting/receiving stations in a wireless communication network, in which method first multi-receiver frames are exchanged between a station and a plurality of other stations, the first multi-receiver frames indicating the source and the destination of the transmitting and the receiving station and second mono-receiver frames are exchanged between a transmitting station and a receiving station, the first frames being transmitted in an omnidirectional manner, wherein the second frames are transmitted in a directional manner determined by the first multi-receiver frames and in that the transmission in a omnidirectional manner is effected in a more robust fashion than the transmission in a directional manner.
- 2. (previously presented) Method according to claim 1, wherein the most robust transmission is effected at a lower throughput than the least robust transmission.
- 3. (previously presented) Method according to claim 1, wherein the monoreceiver frames are modulated by a modulation with a first number of phases and in that the multi-receiver frames are modulated by a modulation with a second number of phases, and in that the first number of phases is higher than the second number of phases.
- 4. (previously presented) Method according to claim 3, wherein the monoreceiver frames are modulated by a modulation with more than two phases and in that the multi-receiver frames are modulated by a two phases modulation.

Ser. No. 10/575,331 Amdt. dated December 4, 2007 Reply to Office action of June 15, 2007

- 5. (previously presented) Method according to claim 1, wherein the monoreceiver frames are coded with a first forward error correction rate and the multireceiver frames are coded with a second forward error correction, and in that the first rate is higher than the second rate.
- 6. (previously presented) Method according to claim 5, wherein the monoreceiver frames and the multi-receiver frames are modulated by the same modulation.
- 7. (previously presented) Method according to claim 1, wherein the transmission is in compliance with one of the standard belonging to the set comprising:
 - Hiperlan type 2; and
 - IEEE 802.11a
- 8. (previously presented) Method according to claim 1, wherein the transmission is in compliance with IEEE 802.11g.
- 9. (currently amended) Transmitting and/or receiving station for a wireless communication network, wherein said station comprises means to transmit and/or receive multi-receiver frames in an omnidirectional manner indicating the source and the destination of the transmitting and the receiving station and means to transmit and/or receive mono-receiver frames in a directional manner, determined by the first multi-receiver frames, the transmission in a omnidirectional manner being effected in a more robust fashion than the transmission in a directional manner.
- 10. (previously presented) Station according to claim 9, wherein the mono-receiver frames are modulated by a modulation with a first number of phases and in that the multi-receiver frames are modulated by a modulation with a second number of phases, and in that the first number of phases is higher than the second number of phases.

Ser. No. 10/575,331 Amdt. dated December 4, 2007 Reply to Office action of June 15, 2007

- 11. (previously presented) Station according to claim 10, wherein the monoreceiver frames are modulated by a modulation with more than two phases and in that the multi-receiver frames are modulated by a two phases modulation.
- 12. (previously presented) Station according to claim 9, wherein the monoreceiver frames are coded with a first forward error correction rate and in that the multi-receiver frames are coded with a second forward error correction, and in that the first rate is higher than the second rate.
- 13. (previously presented) Station according to claim 12, wherein the monoreceiver frames and the multi-receiver frames are modulated by the same modulation.
- 14. (previously presented) Station according to claim 9, wherein it comprises at least one omnidirectional antenna and one or more directional antennas.
- 15. (previously presented) Station according to claim 9, wherein it comprises four directional antennas oriented at 90° with respect to one another.
- 16. (previously presented) Station according to claim 9, wherein the transmission is in compliance with one of the standard belonging to the set comprising:
 - Hiperlan type 2; and
 - IEEE 802.11a
- 17. (previously presented) Station according to claim 9, wherein the transmission is in compliance with IEEE 802.11g
- 18. (previously presented) Wireless communication network wherein it comprises several transmitting and/or receiving stations claim 9.