

목 차

개발 프로그램 사용법

2 부록 - CLOUDS 해석 이론

개발 프로그램 사용법

- 전처리를 위한 입력 과정
- 후처리 결과 확인

Pre-processing을 위한 Input 파일과 입력 방법

- 모든 Input 파일은 소스 폴더 내 Input 폴더에 존재
 - 1. 입력 파일 정의
 - 임무 형상 표 입력
 - 3. 멀티로터 제원 입력 (파라메터 입력)
 - 설계 조건 입력 (설계 모드에서만 필요한 Input)
 - 구성품 Database 입력 (설계 모드에서만 필요한 Input)
- Input 파일은 엑셀(.xlsx)파일로 관리 가능
 - ✓ 엑셀 파일 명, 엑셀 파일 내 시트 명, 특정 엑셀 포맷 요구

전처리 (Pre-processing) 입력 파일 정의 -Command 파일 임무 형상 표 입력 -임무 형상 파일 멀티로터 제원 입력 -Parameter 파일 -Propeller blade 파일 -Airfoil 파일

설계 조건 입력 -최적 설계 정의 파일

-Battery table 파일

구성품 Databse 입력 -사용자의 구성품 Database 입력

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

Oμ	l력 구분	파일 경로	파일 명	시트 명	포맷
1	파일 정의 mand 파일)	Input 폴더	User defined (기본: Command.xlsx)		Command.xlsx의 포맷 고정
임드	구 형상 표	Input/Mission 폴더	User defined		고정된 포맷으로 사용자에 의해 데이터 추가
	Parameter 파일	Input 폴더	Parameter.xlsx	User defined	고정된 포맷으로 시트 추가
	Propeller	Input 폴더	LinearizedProp.xlsx	User defined	고정된 포맷으로 시트 추가
	blade 형상	·	PropGeom.xlsx	oser defined	포 6 전 고 갓 그 포 시 그 구기
멀티 로터		단일 airfoil il Input/Airfoil 폴더	(Airfoiltools사이트에서 다운로드 받은 파일).csv	User defined	www.airfoiltools.com 포맷 고정
제원	Airfoil		Multiple Airfoil.xlsx		고정된 포맷, 시트 추가 불가능
		다중 airfoil	(MultipleAirfoil.xlsx 내 입력 될 파일명).xlsx		고정된 포맷으로 사용자에 의해 데이터 추가
	Battery table	Input 폴더	BatteryTable.xlsx	User defined	고정된 포맷으로 시트 추가
섵	설계 조건	Input 폴더	OptimizationSetting.xlsx	User defined	고정된 포맷으로 시트 추가
7	성품 DB	Input 폴더	User defined		고정된 포맷으로 사용자에 의해 데이터 추가

User defined

: Command.xlsx에서 User defined 명 입력

User defined

: Parameter.xlsx 내 변수와 연동

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

• 입력 파일 정의

입력 구분	파일 경로	파일 명	시트 명	포맷
입력 파일 정의	Input 폴더	Command.xlsx		고정

Name	Value	설명	Drop box	
Code Key	CLOUDS_beta_3.0	코드 키 입력	Analysis	
Mode	Analysis	해석(Analysis) 또는 설계(Design) 모드 입력	Analysis Design	
Mission File name	Forward Mission.xlsx	임무 형상 파일명(xlsx 확장자명 포함) 입력	THE THE	
Parameter File Sheet name	UVARC700	파라메터 입력 파일(Parameter.xlsx) 내 모델명에 해당하는 시트	명 입력	
PropGeom or LinearizedProp File Sheet name	DualSky_1655	해석 또는 설계하고자하는 프로펠러의 형상 파라메터를 아래와 같은 2가지 방법중 하나로 입력 1. 파라메터 입력 파일(Parameter.xlsx) 내 Linearized 변수가 TRUE 인 경우 -> 선형 프로펠러 형상 입력 파일(LinearizedProp.xlsx) 내 시트 명 입력 2. 파라메터 입력 파일(Parameter.xlsx) 내 Linearized 변수가 FALSE 인 경우 -> 프로펠러 형상 입력 파일(PropGeom.xlsx) 내 시트 명 입력		
OptimizationSetting File Sheet name Case1 설계 모드인 경		설계 모드인 경우, 설계 문제 정의 파일(OptimizationSetting.xlsx) 내 시트 명 입력		
Database File name	MCT_DB.xlsx	설계 모드인 경우, 최적 설계 조합을 탐색할 데이터 베이스 파일	명 입력	
Report File Name	20190707_Model_Hovering Report 폴더 내 생성되는 리포트 파일 이름 입력			

: 변수 값 입력 부분

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

• 임무 형상 표

입력 구분	파일 경로	파일 명	시트 명	포맷
임무 형상 표	Input/Mission 폴더	User defined		고정된 포맷으로 사용자에 의해 데이터 추가

✓ 단일 제자리 비행 임무(HoveringMission.xlsx) 입력 예시

Segment	Description	Value	Unit	설명
1	Туре	Н		C: Climbing(상승 비행), H: Hovering(제자리 비행), D: Descent(하강 비행), F: Forward flight(전진 비행)
1	Altitude	10	m	
1	Speed	0	m/s	
1	Time	-1	min	-1 입력 시, Parameter 파일(Parameter.xlsx)에 정의된 비행 종료 조건까지 비행 후 비행 종료
1	Payload Weight	0	gram	
1	Payload Current	0	Α	

: 변수 값 입력 부분

Pre-processing을 위한 Input 파일과 입력 방법

- 임무 형상 표
 - ✓ 다중 임무 요소(ExampleMission.xlsx) 입력 예시

	1 st	2 nd	3 rd	4 th	5 th	6 th
비행 타입	С	F	D	F	Н	D
고도	30 m	30 m	20 m	20 m	20 m	0 m
비행 속력	2 m/s	8 m/s	2 m/s	8 m/s	0 m/s	2 m/s
비행 시간	15 s	5 min	5 s	3 min	10 min	10 s
임무 장비 무게	500 g	500 g	500 g	500 g	0 g	0 g
임무 장비 소요 전류	3 A	3 A	3 A	3 A	0 A	0 A

- 비행 타입
 - C: Climing (상승 비행)
 - F: Forward flight (전진 비행)
 - D: Descent (하강 비행)
 - H: Hovering (제자리 비행)
- 단위는 엑셀 파일 내 입력 포맷 준수
- 해당 임무 요소종료 시의 고도 값 입력
- 하강 비행 시 비행 속력은음수 값 입력

Seg	ıme	ent	Description	Value	Unit	
		1	Туре	С		
		1	Altitude	30	m	
		1	Speed	2	m/s	
		1	Time	0.25	min	
		1	Payload Weight	500	gram	
		1	Payload Current	3	Α	
		2	Туре	F		
		2	Altitude	30	m	
		2	Speed	8	m/s	
		2	Time	5	min	
		2	Payload Weight	500	gram	
		2	Payload Current	3	Α	
		3	Type	D		
		3	Altitude	20	m	
		3	Speed	-2	m/s	
	3		Time	0.083	min	
	3		Payload Weight	500 gram		
	L	3	Payload Current	3	Α	
		4	Type	F		
		4	Altitude	20	m	
		4	Speed	8	m/s	Ш
	╝	4	Time		min	Ш
		4	Payload Weight	500	gram	
	┙	4	Payload Current	3	Α	
		5	71	Н		
		5	Altitude	20	m	
		5	Speed	0	m/s	
		5	Time	10	min	
		5	Payload Weight	0	gram	
	Ĺ	5	Payload Current	0	Α	Ш
		6	Type	D		Ц
		_	Altitude	0		Ш
		6	Speed		m/s	
		6	_	0.167	min	
		6	Payload Weight	0	gram	
		6	Payload Current	0	Α	П

Pre-processing을 위한 Input 파일과 입력 방법

• 멀티로터 제원, Parameter 파일

입력	입력 구분 파일 경로		파일 명	시트 명	포맷
멀티 로터 제원	Parameter 파일	Input 폴더	Parameter.xlsx	User defined	고정된 포맷으로 시트 추가

✓ 6가지 그룹, 48가지 입력 변수로 구성

	Group	Variable	Value	Unit	설명
	Rotor	Diameter	16	inch	프로펠러 지름
	Rotor	Pitch		inch	프로펠러 피치
프로펠러 그룹—	KOLOI	PILCII	5.5	Inch	-1 입력 시 T-motor 프로펠러의 반지름에 따른 피기
	Rotor	Linearized	FALSE		선형 프로펠러 형상 유무 선택(TRUE or FALSE)
	KOLOI	Linearized	FALSE		프로펠러 블레이드 스팬 방향 별 비틀림, 코드 길이
모터 그룹—	Motor	SpeedConst	380	Kv	모터 상수
	Motor	Pole	24		모터 극수
배터리 그룹-	Battery	Capacity	11	Ah	배터리 용량
메디디 그룹	Battery	CellNumber	6		배터리 셀 개수
	Frame	BarDiameter_outer	0.025	m	프레임 모터 지지대 외경
프레임 그룹—	Frame	BarDiameter_inner	0.023	m	프레임 모터 지지대 내경
=네라그팝	Frame	DiagonalLength	700	mm	프레임 대각 길이
					-1 입력 시 프레임 대각 길이는 프로펠러 Diameter
ESC 그룹	ESC	MaxAmp	50	A	전자 변속기 최대 허용 전류량
E2C 7.8	ESC	InnerResistance	-1	ohm	전자 변속기 내부 저항
Avionics 그룹 —	Avionics	Amp	0.5	A	항전 장비 소요 전류량
중량 그룹	Weight	OEW	4010	aram	운항 공허 중량
요요 그룹	weight	CEVV	4910	gram	-1 입력 시 구성품(프로펠러, 모터, 프레임, 배터리,
무게중심 그룹	CG	RotorCG	0.06	m	프로펠러의 Center of gravity와 프레임 윗면 간 거
구세중심 그룹	CG	MotorCG	0.05	m	모터의 Center of gravity와 프레임 윗면 간 거리 (+
		7 4 7 0 7 8 8 8		이 그리으	예시 그림으로써, 실제 48가지 파라메터 변수 존재
		: 변수 값 입력 부분		- 귀 그림는	에서 그림으로까, 글에 40가지 파다메다 친구 근제

Pre-processing을 위한 Input 파일과 입력 방법

• 멀티로터 제원, Parameter 파일

✓ 프로펠러 그룹

			1	
Group	Variable	Value	Unit	설명
Rotor	Diameter	16	inch	프로펠러 지름
Rotor	Pitch		inch	프로펠러 피치
KOLOI	FILCTI	5.5	IIICII	-1 입력 시 T-motor 프로펠러의 반지름에 따른 피치 추세를 기준으로 추정 (Pitch=0.2782*Diameter+0.7439)
Rotor	Linearized	FALSE		선형 프로펠러 형상 유무 선택(TRUE or FALSE)
KOLOI	Lilleanzeu	FALSE		프로펠러 블레이드 스팬 방향 별 비틀림, 코드 길이 분포 정의(TRUE일 경우 LinearizedProp.xlsx 내 입력값 기준, FALSE일 경우 PropGeom.xlsx 내 입력값 기준)
Rotor	AirfoilName	s1091-il		프로펠러 Airfoil 명
KOLOI	Alliolinairie	51091-11		Input/Airfoil 폴더 내 airfoil data 명, 혹은 인터넷이 연결되어있을 경우 www.airfoiltools.com 내 airfoil 명 입력
Rotor	Bnum	2		프로펠러 깃 개수
Datas	Nuctor	4		로터 개수
Rotor	Nrotor	4		4: Quadrotor, 6: Hexarotor, 8: Octorotor)
Datas	Dhusa	2		프로펠러 재질
Rotor	Ptype	3		0: 나무, 1: 플라스틱, 2: 나일론 플라스틱, 3: 카본, 4: long fiber composite

✓ 유의 사항

: 변수 값 입력 부분

- → Rotor, Linearized 입력 값이 TRUE 일 경우: LinearizedProp.xlsx 내 입력 값 기준
- → Rotor, Linearized 입력 값이 FALSE 일 경우: PropGeom.xlsx 내 입력 값 기준
- → Rotor, AirfoilName 입력 값은 Input/Airfoil 폴더 내 data 또는 airfoiltools.com 내 airfoil 명 입력

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 프로펠러 그룹 Linearized 입력 값과 Pre-processing 파일 연동

Ç	입력 구분	파일 경로	파일 명	시트 명	포맷
멀티 로터 제원	Propeller blade 형상	Input 폴더	Linearized Prop.xlsx Prop Geom.xlsx	- User defined	고정된 포맷으로 시트 추가
	Linearized Roto θ_{root} θ_{max} C_{max} r_{cons}	r Blade c _{tip} Parameter.xls Rotor, Linear → Linearizec 입력 값 기준	ized = TRUE IProp.xlsx 내	Rotor Blade Geometry C, θ r	Parameter.xlsx 내 Rotor, Linearized = FALSE → PropGoem.xlsx 내 입력 값 기준
	A 8 1 Variable Value U 2 rRoot 0.050 3 cRoot 0.085 4 thetaRoot 0.010 D 5 rcMax 0.351 6 cMax 0.194 7 rthetaMax 0.222 7 thetaMax 2.2.597 D 9 cTip 0.040 10	(Roof cut-out 캐시에서의 비율된 각) 최대 코드 길이 무지원 위치 (허브~최대 코드 길이 위치)/(반지름) 무자원화된 최대 코드 길이 (최대 코드 길이)/(반지름) 최대 비틀림 각 무자원 위치 (허브~최대 비틀림 각 위치)/(반지름) 함데 비틀림 각 블레이드 끝단에서 무자원화된 코드 길((끝단에서의 코드 길이)/(반지름)		A B C 1 r/R c/R beta 2 0.049 0.113 3 0.098 0.122 4 0.148 0.140 5 0.197 0.160 6 0.246 0.179 7 0.295 0.194 8 0.344 0.202 9 0.394 0.204 10 0.443 0.201 11 0.492 0.195 12 0.541 0.187 13 0.591 0.179 14 0.640 0.168 15 0.689 0.158 16 0.738 0.147 17 0.787 0.136	0.000 12.871 12.871 보레이드 스팬 방향(r/R) 별 입력 값 25.102 23.539 20.670 • 반지름으로 무차원화 된 코드 길이 • 비틀림 각(degree) 15.423 13.986 10.313 9.600 9.566
	프로펠러	모터 》 배터리	프레임 ESC 11	Avionics	중량 》 CG

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 프로펠러 그룹 AirfoilName 입력 값과 Pre-processing 파일 연동

입	력 구분	파일 경로	파일 명	시트 명	포맷
멀티 로터 제원	Airfoil	Input/Airfoil 폴더	*.CSV	User defined	www.airfoiltools.com 포맷 고정

✓ 인터넷이 연결되어 있을 경우

www.airfoiltools.com 접속 → Airfoil 검색 → Airfoil details 클릭 → Airfoil 명 확인

→ Parameter 파일 내 Rotor, AirfoilName = Airfoil 명 입력

Parameter 파일 내 Rotor, AirfoilName = c141a-il

(Airfoil data csv 파일 입력 불필요)

중량

CG

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 인터넷이 연결되어 있지 않을 경우
 - → Reynolds number 50000, 100000, 200000, 500000, 1000000에 해당하는 csv 파일 5개 세트가 Input/Airfoil 폴더 내 존재해야함
 - → csv 파일 포맷은 www.airfoiltools.com에서 다운로드 받은 csv 파일 형식을 따름

→ 위의 예시의 경우, Parameter 파일 내 Rotor, AirfoilName 입력 값 = clarky-il

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 모터 그룹

Group	Variable	Value	Unit	설명
Motor	SpeedConst	380	Kv	모터 상수
Motor	Pole	24		모터 극수
Motor	InnerResistance	0.075	lohm	모터 내부 저항 -1 입력 시 모터 상수, 모터 무게에 따른 추정
Motor	NoloadCurrent	0.5	Α	모터 무부하 전류 (11.1V 기준) -1 입력 시 모터 상수, 모터 무게에 따른 추정

: 변수 값 입력 부분

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 배터리 그룹

Group	Variable	Value	Unit	설명
Battery	Capacity	11	Ah 배터리 용량	
Battery	CellNumber	6		배터리 셀 개수
Battery	MaxContiCrate	25	C-rate	배터리 최대 방전율
Dattani	Heater	TDUE		배터리 냉각 방지 유무
Battery	ttery Heater TRUE			(TRUE: 온도 저하에 따른 배터리 전압 강하 고려 X, FALSE: 온도 저하에 따른 배터리 전압 강하 고려)
Battery	SOC_start	100	%	비행 시작 전, 배터리 state of charge
Battery	SOC_end	27.7	%	비행 종료 후, 배터리 state of charge (비행은 SOC or cut-off voltage 만족 시 종료)
Battery	CellVolt_end	3.4	V	비행 종료 후, 배터리 전압 (비행은 SOC or cut-off voltage 만족 시 종료)
Battery	DischargeChartName	ThunderPower		Input/BatteryTable.xlsx 내 시트 명 입력
battery	Discharge Chartivallie	Thunderrower		배터리 Depth of discharge - C-rate에 따른 전압 표

✓ 유의 사항

: 변수 값 입력 부분

→ Battery, DischargeChartName 입력 값은 BatteryTable.xlsx 내 시트 명 입력

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 배터리 그룹 DischargeChartName 입력 값과 Pre-processing 파일 연동

입	력 구분	파일 경로	파일 명	시트 명	포맷
멀티 로터 제원	Battery table	Input 폴더	BatteryTable.xlsx	User defined	고정된 포맷으로 시트 추가

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 프레임 그룹

C	V . 1.1	V 1	11. 2	서면
Group	Variable	Value	Unit	설명
Frame	BarDiameter_outer	0.025	m	프레임 모터 지지대 외경
Frame	BarDiameter_inner	0.023	m	프레임 모터 지지대 내경
Frame DiagonalLength 700 mm		m m	프레임 대각 길이	
		700	ITIITI	-1 입력 시 프레임 대각 길이는 프로펠러 Diameter와 Tip clearance ratio에 의해 결정
Frame	Ti Cl Dii			Tip clearance ratio (Tip clearance 길이 / 프로펠러 반경)
Frame	TipClearanceRatio	0.6		-1 입력 시 tip clearance ratio는 0.6 기준으로 프레임 대각 길이 결정)
Frame	LoadFactor	2		프레임 하중 계수 (프로펠러 회전으로 인해 발생되는 추력에 대한 프레임 파단 여유 마진)
Frame	UltimateStrength	0.9591	Gpa	프레임 극한 강도
Frame	ReqSafetyFactor	2		프레임 안전계수
Frame	CentPlateRatio	0.94		프레임 센터 플레이트 최대 반경 대비 프레임 센터 플레이트 반경 비율

변수 값 입력 부분

R: 프로펠러 반경

TC: tip clearance, 인접한 프로펠러 끝 단 사이 거리

 r_{tip} : 프로펠러 반경 비율 대비 tip clearance

(Parameter 파일 내 Frame, TipClearanceRatio)

 R_{Cmax} : 프로펠러와 간섭이 발생하지 않는 최대 반경

 R_C : 실제 센터 플레이트 반경

 r_{c} : 프레임 센터 플레이트 최대 반경 대비 프레임 센터 플레이트 반경 비율 (Parameter 파일 내 Frame, CentPlateRatio 변수)

프로펠러	모터	배터리	프레임	ESC	Avionics	중량	CG	
------	----	-----	-----	-----	----------	----	----	--

- 멀티로터 제원, Parameter 파일
 - ✓ ESC 그룹

Group	Variable	Value	Unit	설명
ESC	MaxAmp	50	А	전자 변속기 최대 허용 전류량
ESC	InnerResistance	-1	ohm	전자 변속기 내부 저항

: 변수 값 입력 부분

✓ Avionics 그룹

Group	Variable	Value	Unit	설명
Avionics	Amp	0.5	A	항전 장비 소요 전류량

: 변수 값 입력 부분

변수 값 입력 부분

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 중량 그룹

Weight	OEW	4010	gram	운항 공허 중량
weignt	CEVV	4510	gram	-1 입력 시 구성품(프로펠러, 모터, 프레임, 배터리, 변속기) 무게의 합
Weight	RWeight	1	aram	프로펠러 개당 무게
weight	Kweignt	-1	gram	-1 입력 시 프로펠러 재질, 직경에 따른 무게 추정
Majaht	MMaiabt	160	aram	모터 개당 무게
Weight	MWeight	100	gram	-1 입력 시 모터 상수, 무게 트랜드에 따른 무게 추정
Majaht	MWeightTrend	М		모터 무게 트랜드
Weight MWeightTrend	IVI		L: Light, M: Middle, H: Heavy	
Weight	Mainht DM/ninht	-1	aram	배터리 무게
weight	BWeight		gram	-1 입력 시 배터리 용량, 셀 개수에 따른 무게 추정
Majaht	FWo ight	1	aram	프레임 무게
Weight	FWeight	-1	gram	-1 입력 시 프레임 지지대 형상, 대각 길이에 따른 무게 추정
Weight	EWeight	1	aram	전자 변속기 무게
weight	Evveignt	-1	gram	-1 입력 시 최대 허용 전류량에 따른 무게 추정
Weight	FCCWeight	72	gram	Flight Control Computer 무게
Weight	GPSWeight	50	gram	GPS 무게
Weight	CommunicationWeight	37	gram	통신 장비 무게
Weight	SystemInstallWeight	841	gram	시스템 추가 무게
Weight	ArmAttachment	321.6	gram	지지대 접합을 위한 구성품 무게

✓ 유의 사항

- → 모터 무게 추정 시, 모터 무게는 Light(L), Middle(M), Heavy(H) 트랜드에 의한 추정 식으로 계산
- → 모터 내부 저항, 무부하 전류를 추정할 경우, 모터 무게와 모터 상수에 의해 추정
- → 운항 공허 중량(OEW)이 추정 값이 아닐 경우, 입력된 값 기준으로 전체 무게 계산
- → FCC, GPS, Communication, System install, Arm attachment 무게는 Dummy payload와 같은 단순한 무게 추가로 고려

모터 배터리 프레임 중량 프로펠러 ESC **Avionics** CG

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 중량 그룹, 모터 무게 트랜드 (Weight, MWeightTrend)
 - → 약 600가지의 BLDC모터(T-motor, DualSky, EMAX, KDEDirect, SunnySky, Turnigy 등) 모터 상수 별 무게의 추정 식을 Light, Middle, Heavy 트랜드로 나누어 추정

$$Weight = a_n K v^{-0.927}$$

- $\rightarrow a_n < 45,528.9$: Light Group
- → $45,528.9 \le a_n \le 89,812.1$: Middle Group
- → 89,812.1 < a_n : Heavy Group

예시) T-motor U7 KV420 모터

→ 420 Kv, 255 gram

$$\rightarrow a_n = \frac{Weight(g)}{Kv^{-0.927}} = \frac{255}{420^{-0.927}} = 68,911.6$$

→ Weight trend=Middle group

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

- 멀티로터 제원, Parameter 파일
 - ✓ 무게중심 그룹

Group	Variable	Value	Unit	설명
CG	RotorCG	0.06	m	프로펠러의 Center of gravity와 프레임 윗면 간 거리 (+방향=프로펠러 추력 벡터 방향)
CG	MotorCG	0.05	m	모터의 Center of gravity와 프레임 윗면 간 거리 (+방향=프로펠러 추력 벡터 방향)
CG	BatteryCG	-0.06	m	배터리의 Center of gravity와 프레임 윗면 간 거리 (+방향=프로펠러 추력 벡터 방향)
CG	ESCCG	-0.01	m	전자 변속기의 Center of gravity와 프레임 윗면 간 거리 (+방향=프로펠러 추력 벡터 방향)
CG	FrameCG	-0.02	m	프레임의 Center of gravity와 프레임 윗면 간 거리 (+방향=프로펠러 추력 벡터 방향)
CG	PayloadCG	-0.12	m	임무 장비의 Center of gravity와 프레임 윗면 간 거리 (+방향=프로펠러 추력 벡터 방향)

- ✓ 유의 사항
 - → Axisymmetric 형상 및 무게 분포 가정: 무게중심 점은 기체 중심 축 방향에 존재
 - → 전진 비행 시에만 무게중심 입력 값이 자세 해석에 이용

7		ㅁ티	배터리	표레이	ECC	Avionics	주 랴	CG
	ᄼᅟᆖᅩᄀᅼᄗᅟ	/ 모디	/ 메디디	/ 프데임	/ ESC	Avionics	/ 궁당	/ (6

개발 프로그램 내 구성 요소

Pre-processing을 위한 Input 파일과 입력 방법

• 설계 조건

입력 구분	파일 경로	파일 명	시트 명	포맷
설계 조건	Input 폴더	OptimizationSetting.xlsx	User defined	고정된 포맷으로 시트 추가

✓ 3가지 그룹, 12가지 입력 변수로 구성

	Group	Variable	Selected	Lower	Upper	Unit	설명
	DesignVariable	RotorDiameter	TRUE	13.0	20.0	inch	프로펠러 설계 변수 - Selected: 설계 시, 프로펠러 직경에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정) - Lower. 프로펠러 직경 설계 변수의 하한 - Upper. 프로펠러 직경 설계 변수의 상한
설계 변수 그룹 —	Design Variable	RotorPitch	FALSE			inch	프로펠러 피치 설계 변수 - Selected: 설계 시, 프로펠러 피치에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정) - Lower. 프로펠러 피치 설계 변수의 하한 - Upper. 프로펠러 피치 설계 변수의 상한
	Design Variable	MotorSpeedConst	TRUE	200.0	800.0	Kv	모터 상수 설계 변수 - Selected: 설계 시, 모터 상수에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정) - Lower. 모터 상수 설계 변수의 하한 - Upper. 모터 상수 설계 변수의 상한
설계 제약 조건 그룹—	Constraint	OEW	TRUE		10000.0	gram	운용 공허 하중 제약 조건 - Selected: 설계 시, 최대/최소 운용 공허하중 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower. 운용 공허 하중 제약의 하한 - Upper. 운용 공허 하중 제약의 상한
211 711 7 12 7 18	Constraint	DutyRatio_Hovering	TRUE	30.0	70.0	%	제자리 비행 시, 모터 구동 Duty 비 제약 조건 - Selected: 설계 시, 제자리 비행 임무에서의 Duty 비 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower. 모터 구동 Duty 비 제약 하한 - Upper. 모터 구동 Duty 비 제약 상한
설계 목적 그룹—	Objective	OptimizationObjective	1				최적 설계 목적 - Selected=0: 단일 임무 요소를 수행하는 경우, 비행 시간 최대화 목적 - Selected=1: 단일 임무 요소 또는 다중 임무 요소를 수행하는 경우, 운용 공허 하중 최소화 목적

- 위 그림은 예시 그림으로써, 실제 12가지 입력 변수 존재

Pre-processing을 위한 Input 파일과 입력 방법

설계 조건, 설계 변수 그룹(Design Variable)

Group	Variable	Selected	Lower	Upper	Unit	설명
		TRUE		20.0		프로펠러 설계 변수
Daniam)/ariabla	Data D'anata		12.0			- Selected: 설계 시, 프로펠러 직경에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정)
DesignVariable	RotorDiameter		13.0		inch	- Lower: 프로펠러 직경 설계 변수의 하한
						- Upper: 프로펠러 직경 설계 변수의 상한
						프로펠러 피치 설계 변수
DesignVariable	esignVariable RotorPitch	FALSE				- Selected: 설계 시, 프로펠러 피치에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정)
Designvariable	KOTOTPILCTI	FALSE		linch		- Lower: 프로펠러 피치 설계 변수의 하한
						- Upper: 프로펠러 피치 설계 변수의 상한
						모터 상수 설계 변수
DesignVariable	MotorSpeedConst	TRUE	200.0	800.0	Kv	- Selected: 설계 시, 모터 상수에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정)
Designvariable	MotorspeedConst					- Lower: 모터 상수 설계 변수의 하한
						- Upper. 모터 상수 설계 변수의 상한
				3 6		배터리 셀 개수 설계 변수
DesignVariable	BatteryCell	TRUE	,		711	- Selected: 설계 시, 배터리 셀 개수에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정)
Designvariable	battery Cell	TROL	3		0 / 1	- Lower: 배터리 셀 개수 설계 변수의 하한
						- Upper: 배터리 셀 개수 설계 변수의 상한
						배터리 용량 설계 변수
DesignVariable	Ratton/Capacity	TRUE	10.0	15.0	۸h	- Selected: 설계 시, 배터리 용량에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정)
Designvariable	BatteryCapacity	TRUE	10.0	15.0	All	- Lower: 배터리 용량 설계 변수의 하한
						- Upper: 배터리 용량 설계 변수의 상한
		TRUE	30.0	70.0		전자 변속기 최대 허용 전류 설계 변수
DesignVariable	ESCMaxAmp				А	- Selected: 설계 시, 전자 변속기 최대 허용 전류에 대한 설계 변수 선택 유무 (TRUE: 선택, FALSE: 입력된 파라메터 값으로 고정)
Designvariable	ESCIVIAXAITIP					- Lower: 전자 변속기 최대 허용 전류 설계 변수의 하한
						- Upper: 전자 변속기 최대 허용 전류 설계 변수의 상한

: 변수 값 입력 부분

- ✓ Selected=TRUE or FALSE 선택으로 설계하고자 하는 구성품 선택
- ✓ Upper/Lower 값 입력으로 설계 변수의 상/하한 설정(설계 공간 정의)

설계 제약 조건 설계 변수 설계 목적

Pre-processing을 위한 Input 파일과 입력 방법

• 설계 조건, 설계 제약 조건 그룹(Constraint)

Group	Variable	Selected	Lower	Upper	Unit	설명
Constraint	OEW	TRUE		10000.0		운용 공허 하중 제약 조건 - Selected: 설계 시, 최대/최소 운용 공허하중 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower: 운용 공허 하중 제약의 하한 - Upper: 운용 공허 하중 제약의 상한
Constraint	DutyRatio_Hovering	TRUE	30.0	70.0		제자리 비행 시, 모터 구동 Duty 비 제약 조건 - Selected: 설계 시, 제자리 비행 임무에서의 Duty 비 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower: 모터 구동 Duty 비 제약 하한 - Upper: 모터 구동 Duty 비 제약 상한
Constraint	DutyRatio_Climbing	FALSE			%	상승 비행 시, 모터 구동 Duty 비 제약 조건 - Selected: 설계 시, 상승 비행 임무에서의 Duty 비 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower: 모터 구동 Duty 비 제약 하한 - Upper: 모터 구동 Duty 비 제약 상한
Constraint	DutyRatio_Descent	FALSE			%	하강 비행 시, 모터 구동 Duty 비 제약 조건 - Selected: 설계 시, 하강 비행 임무에서의 Duty 비 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower: 모터 구동 Duty 비 제약 하한 - Upper: 모터 구동 Duty 비 제약 상한
Constraint	DutyRatio_ForwardFlight	FALSE			%	전진 비행 시, 모터 구동 Duty 비 제약 조건 - Selected: 설계 시, 전진 비행 임무에서의 Duty 비 제약 유무 (TRUE: 선택, FALSE: 제약 없음) - Lower: 모터 구동 Duty 비 제약 하한 - Upper: 모터 구동 Duty 비 제약 상한

: 변수 값 입력 부분

- ✓ Selected=TRUE or FALSE 선택으로 적용하고자 하는 제약 조건 선택
 - → Duty ratio 제약조건: 해당 비행 타입에서, 모터 최대 회전 수 대비 비행 중 회전 수 비율

설계 변수 설계 제약 조건 설계 목적

Pre-processing을 위한 Input 파일과 입력 방법

• 설계 조건, 설계 목적 그룹(Objective)

Group	Variable	Selected	Lower	Upper	Unit	설명
						최적 설계 목적
Objective	OptimizationObjective	1				- Selected=0: 단일 임무 요소를 수행하는 경우, 비행 시간 최대화 목적
						- Selected=1: 단일 임무 요소 또는 다중 임무 요소를 수행하는 경우, 운용 공허 하중 최소화 목적

: 변수 값 입력 부분

- ✓ Selected=0 입력 시
 - → 첫번째 임무 요소 기준, 비행 시간 최대화
 - → 단일 임무 요소 기준으로 비행 시간 최대화 목적
- ✓ Selected=1 입력 시
 - → 단일 및 다중 임무 요소 기준, 운용 공허 하중 최소화
 - → 해당 임무를 수행하기에 가장 적합한 멀티로터 설계 목적

설계 변수 설계 제약 조건 설계 목적

Pre-processing을 위한 Input 파일과 입력 방법

• 구성품 데이터베이스

입력 구분	파일 경로	파일 명	시트 명	포맷
구성품 DB	Input 폴더	User defined		고정된 포맷으로 사용자에 의해 데이터 추가

- ✓ 총 4종류의 구성품 Database (Propeller, Battery, ESC, Motor)
 - → 입력된 Database 내에서 최적 설계 해와 가장 가까운 구성품 조합 도출
- ✓ Example_DB.xlsx 내 데이터 포맷 준수
 - → 엑셀 시트로 구성품 종류 구분

4	A	В	C	D	E	F	G
1			Weight	No. Blade	Diameter	Pitch	Material
2	Vendor Name	Item Name	g		in	in .	• •
3	KDE Direct	KDE-CF305-DP	105.8	2	30.5	9.7	Carbon
4	T-motor	FA15.2x5-PAIR	27.5	2	15.2	5	Carbon
5	T-motor	G30x10.5-PAIR	132	2	30	10.5	Carbon
6	T-motor	G34x11-PAIR	160	2	34	11	Carbon
7	T-motor	G36x11.5-PAIR	193	2	36	11.5	Carbon
8	APC	LP415512	119.9	4	15.5	12	APC Long Fiber Composite
9							
10							
11							
12							
13							
14							
15							
16							
17							
*	Frame Propeller Batter	y ESC Motor ⊕			1 4		

		Weight	Minimum Voltage	Maximu m Voltage	Maximum Continuous Current (180s)	Maximum Continuous Power (180s)	Kv	Internal Resistanc e	Idle Current (@10V)
Vendor Name ▼	Item Name	g -	٧ -	٧ -	A 🔽	w -	rpm/V →	mΩ ▽	A ~
KDE Direct	KDE1806XF-2350	18	7.4	17.4	18	-	2350	117	0.4
T-Motor	MT1306KV3100	11.2	3.7	7.4	6	44	3100	62	0.2
T-Motor	MN805SKV120	620	22.2	44.4	65	3200	120	48	1.6
T-Motor	U7KV490	258	11.1	29.6	44	1300	490	21	1.1
T-Motor	U11KV120	730	22.2	44.4	80	4000	120	57	0.7
Detrun Tech-Dynam	BM2812M-KV700	70	7.4	11.1	13	160	700	184	0.65
Detrun Tech-Dynam	TC-M-9218-KV100	650	29.6	51.8	45	3000	100	50	1.2
DualSky	XM6360EA-11	626	37	37	78	2875	200	28	1.3
DualSky	XM6360EA-12	617	30	51	68	3022	184	34	1.1
GARTT	ML3508-700KV	105	11.1	14.8	28	460	700	74.6	0.5
GARTT	MT008-530KV	505	11.1	44.4	95	4200	530	20	4
Scorpion	HK-3014-900KV	119	22.2	22.2	28	650	900	65	1.09
Scorpion	SII-6530-150KV	1043	44.4	44.4	95	4220	150	32	1.15
Turnigy	MAX1.20	622	29.6	29.6	65	1924	280	27	1.55
Turnigy	MAX1.40	715	29.6	37	75	2775	228	29	1.25

변수 값 입력 부분

Database, Motor, Maximum Continuous Power 데이터를 모르는 경우, 하이픈(-) 입력 가능 나머지 Data들은 필수로 채워져야 함

Post-processing 결과 파일 확인 방법

- Post-processing 결과
 - ✓ 보고서, 3가지의 그래프 생성
 - → HTML 그래프 파일을 열어, zoom in/out, pan, autoscale 기능으로 분석 가능

후처리 (Post-processing)

보고서 파일 출력

프로펠러-모터 성능그래프

임무 요소 별 성능 변화 그래프

속력, 임무장비 중량 변화에 따른 비행 시간 변화 그래프

출력 파일 구분	파일 경로	파일 명	유의 사항		
보고서	Report	Command 파일에서 사용자가 설정한 이름 (txt 파일)	파일 명 앞에 YYYY-MM-DD + 해석 완료 시점 의 시간 명이 자동으로 추가		
프로펠러-모터 성능 그래프	PostProcessing				
임무 요소 별 성능 변화 그래프	PostProcessing	Command 파일에서 사용자가 설정한 이름 (html 파일)	(예시: 20190707_21h10m30s_**.txt)		
속력, 임무장비 중량 변화에 따른 비행 시간 변화 그래프	PostProcessing	(1141111 平 2)			

Post-processing 결과 파일 확인 방법

- Post-processing 결과
 - ✓ 프로펠러-모터 성능 그래프 (RMPerf.html)
 - → Static thrust 기준, 요구 추력에 따른 단일 프로펠러-모터 성능 변화 그래프

Post-processing 결과 파일 확인 방법

- Post-processing 결과
 - ✓ 임무 요소 별 성능 변화 그래프
 - → 임무 요소 수행 시 프로펠러-모터 회전수, 모터 효율, 배터리 용량 잔여율, 비행 자세 각 그래프
 - → 배터리 용량 잔여율 기준: 입력된 임무 요소 수행 직후

Post-processing 결과 파일 확인 방법

- Post-processing 결과
 - ✓ 속력, 임무장비 중량 변화에 따른 비행 시간 변화 그래프 (Carpet plot)

2 부록

- CLOUDS 해석 정확도 검증
- 구성품 중량 추정
- 자세 해석 방법론
- 모터 지지대 구조 해석 방법론
- 프로펠러 공력 해석 방법론
- 전기 회로 해석 방법론

CLOUDS 해석 정확도 검증

- 실제 비행 시험과 CLOUDS 해석 간 비교
 - ✓ 13가지 비행 조건
 - → DJI matrice-100, KARI matrice-100, DevKopter 모델
 - → 다양한 배터리 용량 및 임무 중량
 - ✓ 비교 결과, 제자리 비행 시간에 대해
 - -3~3분 해석 오차 발생

부록

02

구성품 중량 추정

- 입력: 각 구성품 별 대표 파라미터
- 출력: 각 구성품 중량
 - ✓ 프로펠러, 모터, ESC, LiPo 배터리, 전선, 동체 프레임

Carbon 프로펠러

- $W_R = \{0.0931(D_{rotor})^2 0.8022D_{rotor} + 3.0456\}N_{blade}$ Nylon reinforced plastic 프로펠러
- $W_R = \{0.2947(D_{rotor})^2 27103D_{rotor} + 9.7619\}N_{blade}$ Wood 프로펠러
- $W_R = \{0.08884(D_{rotor})^2\}N_{blade}$

Carbon

▲ Trend of rotor weight (carbon)

 $a_n < 45,528.9$: Light Group

모터: $W_M = a_n K v^{-0.927}$ 45,528.9 $\leq a_n \leq$ 89,812.1 : Middle Group

 $89,812.1 < a_n$

: Heavy Group

▲ Trend of BLDC motor weight

02 \ 부록

구성품 중량 추정

- 입력: 각 구성품 별 대표 파라미터
- 출력: 각 구성품 중량
 - ✓ 프로펠러, 모터, ESC, LiPo 배터리, 전선, 동체 프레임

ESC: $W_{ESC} = 0.965 A_{max}$

▲ Trend of ESC weight

배터리: $W_{Battery} = (24.458N_{cell} + 4.2417)Capacity$ (2~10 Cell 범위)

▲ Trend of LiPo battery weight

부록

02

구성품 중량 추정

• 입력: 각 구성품 별 대표 파라미터

출력: 각 구성품 중량

✓ 프로펠러, 모터, ESC, LiPo 배터리, 전선, 동체 프레임

전선: $W_{wiring} = 0.05(W_M + W_R + W_{ESC} + W_{Battery} + W_{Avio})$

추진시스템 (프로펠러, 모터, ESC 배터리) + 전자장비 중량의 5 % 가정 (Referred from EMST)

동체 프레임: $W_{frame} = f(Wheelbase, Center plate radius),[1]$

▲ Trend of Quadrotor frame weight

02 부록

CLOUDS 자세 해석 방법론

- 입력: 멀티로터의 추정된 총 중량
- 출력: 각 프로펠러에서 요구되는 추력, 전진 비행 시 자세 각
 - ✓ 전진 비행 시, X-형태의 전진 형상, Steady-level 비행으로 가정

✓ x, z 축 힘평형 및 pitching 모멘트 평형

$$\Sigma F_x = \left(\Sigma_{i=1}^{N_{rotor}} T_i\right) sin\theta - Drag = 0$$
 , $\underline{Drag} = f(Re, \theta_{pitch})$

$$\Sigma F_z = \left(\Sigma_{i=1}^{N_{rotor}} T_i\right) cos\theta - W_{total} = 0$$
 Matrice-100 풍동실험데이터 사용 (KARI)
$$\Sigma M_y = 2\left(T_{N_{rotor}/2} - T_1\right) (L + R_{center}) sin\left(\frac{(N_{rotor}-2)}{2N_{rotor}}\pi\right) - W_{total} C G_R sin\theta = 0$$

🄷 CLOUDS 프레임 지지대 구조 해석 방법론

- 입력: 각 로터의 요구 추력
- 출력: 동체 프레임의 모터 지지대의 파단 유무
 - ✓ 1-D Euler beam theory

$$\checkmark$$
 $\sigma_{max} = \pm \frac{g_f \, T_{req} \, L(D_{rod}/2)}{I_{zz}}$ (g_f : load factor, T_{req} : required thrust)

$$I_{zz} = \frac{\pi}{64} \left(D_{rod}^4 - d_{rod}^4 \right)$$

$$\checkmark$$
 $\sigma_{allow} = \frac{\sigma_{ult}}{n_{safe}}$ (n_{safe} : safety factor)

✓
$$\sigma_{allow} < \sigma_{max}$$
 → 지지대의 파단 발생

▲ Schematic of structure analysis

부록

02

CLOUDS 프로펠러 공력 해석

- 입력: 각 프로펠러의 요구 추력
- 출력: 프로펠러 회전속도, 기계 동력
 - ✓ 제자리비행: Blade Element Momentum Theory (BEMT) [2,3]
 - ✓ Calculate inflow ratio $\lambda \rightarrow dC_{T,BET} = dC_{T,local MT}$

–
$$dC_{T,BET} = \frac{1}{2}\sigma C_l r^2 dr$$
, $dC_{T,local\,MT} = 4\lambda(\lambda - \lambda_c) r dr$

- $C_T = \int_X^B 4\lambda(\lambda \lambda_c) r dr$ (B: Tip loss factor, X: Root-cutout ratio)
- $C_P = \int_X^B dC_{P_i} + \int_X^1 dC_{P_o}$ $dC_{P_i} = \kappa dC_T$, $dC_{P_o} = \frac{1}{2}\sigma C_d r^3$
- ✓ 전진 비행: Blade Element Theory (BET) + Uniform inflow model [2,3]

부록

02

CLOUDS 전기 회로 해석 방법론

- 입력: 프로펠러 RPM, 기계 동력
- 출력: 모터 효율, 전력, 전류, 배터리 전류 등
 - ✓ 모터 전압: V_m , $V_{m_{avg}}$

$$V_{m} = V_{b} - I_{m}(R_{ESC} + N_{Rotor}R_{b})$$
 $V_{b} = N_{cell}V_{c}$
 V_{c} : Voltage per cell
 N_{cell} : Number of cells

$$\checkmark V_{m_{avg}} = D_t V_b - I_{m_{avg}} (R_{ESC} + N_{Rotor} R_b)$$

- ✓ 모터 전력: $P_E = P_{Mech} + losses$
 - ✓ Iron loss [4]: $V_{emf}I_0$ ✓ Mechanical loss [5]: 기계동력의 1 %
 - ✓ Copper loss [4]: $I_m^2 R_m$ ✓ Stray loss [5]: 기계동력의 0.5 %

$$P_E = V_m I_m = V_{mavg} I_{mavg}$$

△ Schematics of electric circuit of EPS [3]

△ Schematic of BLDC motor [13]

🄷 CLOUDS 전기 회로 해석 방법론

- 입력: 프로펠러 RPM, 기계 동력
- 출력: 모터 효율, 전력, 전류, 배터리 전류 등
 - ✓ 배터리 모델: ThunderPower battery 실험치
 - ✓ SOC (State of Charge), C-rate에 따른 방전 실험 테이블 이용
 - ✓ 온도에 따른 전압강하 고려: NDARC [6] model 사용
 - \checkmark $V_R = f(SOC, C rate, Temperture)$

▲ Battery discharge curve*

CLOUDS 전기 회로 해석 방법론

- 입력: 프로펠러 RPM, 기계 동력
- 출력: 모터 효율, 전력, 전류, 배터리 전류 등
 - ✓ 전기 해석 모듈 비교 (T-motor datasheet, eCalc)

T-Motor 3 model

with T-motor datasheet

eCalc

Case1: 1.2 kg quadrotor Case2: 6.2 kg quadrotor Case3: 15.0 kg octarotor

△ Comparison with results calculated by eCalc