Outbrain Click Prediction

Team: 1丁讚讚讚

Outline

- Model
- Feature Extraction
- Evaluation
- Experiments

Model

- Factorization Machine (FM)
- Weighted FM
- List-wise Framework

objective function

$$\min_{\mathbf{w}} - \sum_{i=1}^{L} (y_i \log p + (1-y_i) \log (1-p) + \frac{\lambda}{2} ||\mathbf{w}||^2)$$

$$p = sigmoid(\phi(\mathbf{w}, \mathbf{x}))$$

$$\phi(w,x) = \sum_{j_1,j_2 \in C_2} \langle w_{x_{j_1}}, w_{x_{j_2}} \rangle$$

L: number of instances

λ: regularization parameter

- Each "interaction" has different importance
- Sum → Weighted Sum

more weights?

more weights?

example

FM-NN

Neuron Network?

List-wise Framework

- Consider the other ads
 - like or not (element-wise) → prefer which (list-wise)
- a display_id has N ads (N_{max}=12)

List-wise Framework

Softmax

& cross entropy or other cost functions

Feature Extraction

- Categorical Features
- Hash Trick

Categorical Features

an instance display_doc_id display_id ad_doc_topic_id ad_doc_id ad_id display_doc_topic_id

Categorical Features

an instance

display_doc_topic_id

If display_id = 19 and ad_id = 19? => the same embedding?

Hash Trick

Hash string: "\$category_\$value"

example

$$ad_id=19$$

$$hash("display_id_19") = 61$$

$$hash("ad_id_19") = 37$$

Hash Trick

hash("display_id_19") = 61

 $hash("ad_id_19") = 37$

hash("display_doc_id_6") = 2

an instance

Evaluation

- Validation Set
- Evaluation Function

Validation Set

UTC-4

training data

2016/6/14 ~ 2016/6/26

testing data

2016/6/14 ~ 2016/6/26 | 2016/6/27 ~ 2016/6/28

almost 1·1

split data with the distribution

split training data

2016/6/14 ~ 2016/6/24

62*106

validation data

2016/6/14 ~ 2016/6/24 | 2016/6/25 ~ 2016/6/26

24*106

Evaluation Function

- leaderboard: MAP@12
 - Mean Average Precision at 12
- MRR = MAP when N_{relevant} = 1
 - Mean Reciprocal Rank

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}$$

Evaluation Function

- leaderboard: MAP@12
 - Mean Average Precision at 12
- MRR = MAP when $N_{relevant} = 1$ nank 1 2 3 nank
 - Mean Reciprocal Rank

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}$$

	MAP@12 _{Kaggle}
element-wise + 7 features	0.66153
element-wise + 10 features	0.67309
list-wise + 10 features	0.67419

different frameworks and features

+"leak" feature and others

element-wise + 7 features

element-wise + 10 features

0.66153

0.67309

+ 10 features

different frameworks and features

different frameworks and features

	MAP@12 _{Kaggle}
list-wise + 10 features + dim 4	0.67419
list-wise + 10 features + dim 8	0.67652
list-wise + 10 features + dim 64	0.67816

different embedding dimensions

Any Questions?

