Homework 4

import the homecides data

create new columns including city_name and unsolved, filter out Tulsa, AL because it doens't exist

```
homicides <- homicides %>%
  mutate(city_name = paste(city, state, sep = ", ")) %>%
  filter(city_name != "Tulsa, AL")
```

create total cases and unsolved cases for each city

estimate the proportion of unsolved homicide cases in Baltimore, MD

estimate	conf.low	conf.high
0.6455607	0.6275625	0.6631599

perform same test on all other cities

recreate the given plot

```
all_unsolved %>%
  select(city_name, estimate, conf.low, conf.high) %>%
  mutate(city_name = reorder(city_name, estimate)) %>%
  ggplot(aes(x = estimate, y = city_name)) +
  geom_point(color = "white") +
  geom_errorbarh(xmin = all_unsolved$conf.low,
                 xmax = all_unsolved$conf.high,
                 height = 0,
                 color = "white") +
  scale_x_continuous(breaks = c(0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8),
                     label = c("20.0\%", "30.0\%", "40.0\%",
                               "50.0%", "60.0%", "70.0%", "80.0%")) +
  labs(x = "Percent of homicides that are unsolved",
       y = "") +
  ggtitle("Unsolved homicides by city",
          subtitle = "Bars show 95% confidence interval") +
  theme_dark()
```

Unsolved homicides by city Bars show 95% confidence interval

