PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 97/20040
C12N 9/10, 15/82, A01H 5/06	A1	(43) International Publication Date:	5 June 1997 (05.06.97)
(21) International Application Number: PCT/SES (22) International Filing Date: 28 November 1996 (2) (30) Priority Data: 9504272-7 9601506-0 19 April 1996 (19.04.96) (71) Applicant (for all designated States except US): AMYL HB [SE/SE]; c/o Svalöf Weibull AB, S-268 81 Sval (72) Inventors; and (75) Inventors/Applicants (for US only): EK, Bo [SE/S] hagen, S-740 30 Björklinge (SE). KHOSNODI, [SE/SE]; Bandstolsvägen 3, 2 tr., S-756 48 Uppsal LARSSON, Clas-Tomas [SE/SE]; Flogstavägen 55 752 73 Uppsala (SE). LARSSON, Håkan [SE/SE]; F bygatan 58, S-753 24 Uppsala (SE). RASK, Lars Säves väg 14, S-752 63 Uppsala (SE). (74) Agent: AWAPATENT AB; P.O. Box 5117, S-200 71 (SE).	28.11.9 5) S OGEN Bov (SE Jamsh ala (SE B II, S Hamma [SE/SE	BA, BB, BG, BR, BY, CA, C model), DE, DE (Utility mode EE, EE (Utility model), ES, FI HU, IL, IS, JP, KE, KG, KP, LT, LU, LV, MD, MG, MK, N PT, RO, RU, SD, SE, SG, SI, IM, TR, TT, UA, UG, US, L LS, MW, SD, SZ, UG), Eurasia KZ, MD, RU, TJ, TM), Europe DK, ES, FI, FR, GB, GR, IE, OAPI patent (BF, BJ, CF, CG, NE, SN, TD, TG). Published With international search report	H, CN, CU, CZ, CZ (Utility H, CN, CU, CZ, CZ (Utility model), DK, DK (Utility model), FI (Utility model), GB, GE, KR, KZ, LC, LK, LR, LS, MN, MW, MX, NO, NZ, PL, SK, SK (Utility model), TJ, Z, VN, ARIPO patent (KE, an patent (AM, AZ, BY, KG, an patent (AT, BE, CH, DE, IT, LU, MC, NL, PT, SE), CI, CM, GA, GN, ML, MR,

(54) Title: STARCH BRANCHING ENZYME II OF POTATO

(57) Abstract

The present invention relates to an amino acid sequence of second starch branching enzyme (SBE II) of potato and a fragment thereof as well as to the corresponding isolated DNA sequences. Furthermore, the invention relates to vectors comprising such an isolated DNA sequence, to processes for production of transgenic potatoes, and to the use of said potatoes for the production of starch. The starch obtained will show a changed pattern of branching of amylopectin as well as a changed amylose/amylopectin ratio.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishir.g international applications under the PCT.

		6 7	United Kingdom	MW	Malawi
М	Armenia	GB		MX	Mex:co
T	Austria	GE	Georgia	NE	Nige:
N U	Australia	GN	Guinea	NL	Netherlands
BB	Barbados	GR	Greece	NO	Norvay
BE	Belgium	HU	Hungary	NZ	New Zealand
BF	Burkina Faso	IE	Ireland	PL	Poland
BG	Bulgaria	IT	Italy	PT	Portugal
BJ	Benin	JР	Japan	RO	Romania
BR	Brazil	KE	Kenya	RU	Russian Federation
BY	Belarus	KG	Kyrgystan	SD	Sudi n
CA	Canada	KP	Democratic People's Republic	SE	Swe len
CF	Central African Republic		of Korea	SG	Singapore
CG	Congo	KR	Republic of Korea	SI	Slovenia
CH	Switzerland	KZ	Kazakhsian	SK	Slovakia
CI	Côte d'Ivoire	IJ	Liechtenstein	SN	Sent gal
CM	Cameroon	LK	Sri Lanka	SZ	Swaziland
CN	China	LR	Liberia	TD	Cha-i
CS	Czechoslovakia	LT	Lithuania	TG	Tog >
CZ	Czech Republic	LU	Luxembourg	TJ	Taji cistan
DE	Germany	LV	Latvia	TT	Trinidad and Tobago
DK	Denmark	MC	Monaco	UA	Ukr tine
EE	Estonia	MD	Republic of Moldova	UG	Uganda
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vie Nam
GA	Gabon	MR	Mauritania		

1

STARCH BRANCHING ENZYME II OF POTATO

The present invention relates to a novel starch branching enzyme of potato. More specifically, the present invention relates to an amino acid sequence of a second starch branching enzyme (SBE II) of potato and a fragment thereof as well as their corresponding DNA sequences. Furthermore, the invention relates to vectors comprising such DNA sequences, to processes for production of transgenic potatoes, and to the use of said potatoes for the production of starch.

Starch is a complex mixture of different molecule forms differing in degree of polymerization and branching of the glucose chains. Starch consists of amylose and amylopectin, whereby the amylose consists of an essentially linear α -1,4-glucan and amylopectin consists of α -1,4-glucans connected to each other via α -1,6-linkages and, thus, forming a branched polyglucan. Thus, starch is not a uniform raw material.

Starch is synthesized via at least three enzymatic reactions in which ADP glucose phosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21) and starch branching enzyme (EC 2.4.1.18) are involved. Starch branching enzyme (SBE, also called Q-enzyme) is believed to have two different enzymatic activities. It catalyzes both the hydrolysis of α -1,4-glucosidic bonds and the formation of α -1,6-glucosidic bonds during synthesis of the branched component in starch, i.e. amylopectin.

Plant starch is a valuable source of renewable raw material used in, for example, the chemical industry (Visser and Jacobsen, 1993). However, the quality of the starch has to meet the demands of the processing industry wherein uniformity of structure is an important criterion. For industrial application there is a need of plants only containing amylose starch and plants only containing amylopectin starch, respectively.

30

2

Processes for altering the amylose/amylopectin ratio in starch have already been proposed. For example, in WO95/04826 there is described DNA sequences encoding debranching enzymes with the ability to reduce or increase the degree of branching of amylopectin in transgenic plants, e.g. potatoes.

In WO92/14827 plasmids are described having DNA sequences that after insertion into the genome of the plants cause changes in the carbohydrate concentration and the carbohydrate composition in regenerated plants. These changes can be obtained from a sequence of a pranching enzyme that is located on these plasmids. This branching enzyme is proposed to alter the amylose/amylopectin ratio in starch of the plants, especially in commercially used plants.

10

15

20

25

30

W092/14827 describes the only hitherto known starch branching enzyme in potato and within the art it is not known whether other starch branching enzymes are involved in the synthesis of branched starch of potato.

In Mol Gen Genet (1991) 225:289-296, Visser et al., there is described inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Inhibition of the enzyme in potato tuber starch was up to 100% in which case amylose-free starch was provided.

However, the prior known methods for inhibiting amylopectin have not been that successful and, therefore, alternative methods for inhibiting amylopectin are still highly desirable (Müller-Röber and Koßmann, 1994; Martin and Smith, 1995).

The object of the present invention is to enable altering the degree of amylopectin branching and the amylopectin/amylose ratio in potato starch.

According to the present invention this object is achieved by providing a novel isolated DNA sequence encoding a second starch branching enzyme, SBE II, and

fragments thereof, which after insertion into the genome of the plants cause changes in said branching degree and ratio in regenerated plants.

Within the scope of the present invention there is also included the amino acid sequence of SBE II and fragments thereof.

Also variants of the above DNA sequence resulting from the degeneracy of the genetic code are encompassed.

The novel DNA sequence encoding SBEII, comprising
3074 nucleotides, as well as the corresponding amino acid
sequence comprising 878 amino acids, are shown in SEQ ID
No. 1. One 1393 nucleotides long fragment of the above DNA
sequence, corresponding to nucleotides 1007 to 2399 of the
DNA sequence in SEQ ID No. 1, as well as the corresponding
amino acid sequence comprising 464 amino acids, are shown
in SEQ ID No. 2.

Furthermore, there are provided vectors comprising said isolated DNA-sequences and regulatory elements active in potato. The DNA sequences may be inserted in the sense or antisense (reversed) orientation in the vectors in relation to a promoter immediately upstream from the DNA sequence.

Also there is provided a process for the production of transgenic potatoes with a reduced degree of branching of amylopectin starch, comprising the following steps:

a) transfer and incorporation of a vector according to the invention into the genome of a potato cell, and
b) regeneration of intact, whole plants from the transformed cells.

Finally, the invention provides the use of said transgenic potatoes for the production of starch.

20

25

The invention will be described in more detail below in association with an experimental part and the accompanying drawings, in which

Fig. 1 shows SDS polyacrylamide electrophoresis of proteins extracted from starch of normal potato (lane A)

4

and transgenic potato (lane B). Excised protein bands are marked with arrows. Lane M: Molecular weight marker proteins (kDa).

Fig. 2 shows 4 peptide sequences derived from digested proteins from potato tuber starch.

EXPERIMENTAL PART

10

15

20

25

30

35

Isolation of starch from potato tubers

Potato plants (Solanum tuberosum) were grown in the field. Peeled tubers from either cv. Early Puritan or from a transgenic potato line essentially lacking granule-bound starch synthase I (Svalöf Weibull AB, international application number PCT/SE91/00892), were homogenized at 4°C in a fruit juicer. To the "juice fraction", which contained a large fraction of the starch, was immediately added Tris-HCl, pH 7.5, to 50 mM, Na-dithionite to 30 mM and ethylenedinitrilotetraacetic acid (EDTA) to 10 mM. The starch granules were allowed to sediment for 30 min and washed 4x with 10 bed volumes of washing buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA). The starch, which was left on the bench at +4°C for 30 min to sediment between every wash, was finally washed with 3 \times 3 bed volumes of acetone, air dried over night, and stored at -20°C. Extraction of proteins from tuber starch

Stored starch (20 g) was continuously mixed with 200 ml extraction buffer (50 mM Tris-HCl, pH 7.5, 2% (w/v) sodium dodecyl sulfate (SDS), 5 mM EDTA) by aspiration with a pipette at 85°C until the starch was gelatinized. The samples were then frozen at -70°C for 1 hour. After thawing at 50°C, the samples were centrifuged for 20 min at 12,000xg at 10°C. The supernatants were collected and re-centrifuged at 3,000xg for 15 min. The final supernatants were filtered through 0.45 μ filters and 2.25 volumes of ice-cold acetone were added. After 30 min incubation at 4°C, the protein precipitates were collected by centrifugation (3,000xg for 30 min at 4°C), and

dissolved in 50 mM Tris-HCl, pH 7.5. An aliquot of each preparation was analyzed by SDS poly-acrylamide gel electrophoresis according to Laemmli (1970) (Fig. 1). The proteins in the remaining portions of the preparations were concentrated by precipitation with trichloroacetic acid (10%) and the proteins were separated on an 8% SDS polyacrylamide gel Laemmli, (1970). The proteins in the gel were stained with Coomassie Brilliant Blue R-250 (0.2% in 20% methanol, 0.5% acetic acid, 79.5% H_2O).

10 In gel digestion and sequencing of peptides

The stained bands marked with arrows in Fig. 1 corresponding to an apparent molecular weight of about 100 kDa were excised and washed twice with 0.2M $\rm NH_4HCO_3$ in 50% acetonitrile under continuous stirring at 35°C for 20 min.

- After each washing, the liquid was removed and the gel pieces were allowed to dry by evaporation in a fume hood. The completely dried gel pieces were then separately placed on parafilm and 2 μ l of 0.2M NH₄CO₃, 0.02% Tween-20 were added. Modified trypsin (Promega, Madison,
- WI,USA) (0.25 μg in 2 μl) was sucked into the gel pieces whereafter 0.2M NH₄CO₃ was added in 5 μl portions until they had resumed their original sizes. The gel slices were further divided into three pieces and transferred to an Eppendorf tube. 0.2M NH₄CO₃ (200 μl) was added and the
- proteins contained in the gel pieces were digested over night at 37°C (Rosenfeld et al. 1992). After completed digestion, trifluoroacetic acid was added to 1% and the supernatants removed and saved. The gel pieces were further extracted twice with 60% acetonitrile, 0.1% tri-
- fluoroacetic acid (200 μ l) under continuous shaking at 37°C for 20 min. The two supernatants from these extractions were combined with the first supernatant. The gel pieces were finally washed with 60% acetonitrile, 0.1% trifluoroacetic acid, 0.02% Tween-20 (200 μ l). Also these
- 35 supernatants were combined with the other supernatants and the volume was reduced to 50 μl by evaporation. The

5

10

15

extracted peptides were separated on a SMART® chromatography system (Pharmacia, Uppsala, Sweden) equipped with a μ RPC C2/C18 SC2.1/10 column. Peptides were eluted with a gradient of 0 - 60% acetonitrile in water/0.1% trifluoroacetic acid over 60 min with a flow rate of 100 μ l/min. Peptides were sequenced either on an Applied Biosystems 470A gas phase sequenator with an on line PTH-amino acid analyzer (120A) or on a model 476A according to the instructions of the manufacturer (Applied Biosystems, Foster City, CA, USA).

Four of the peptides sequenced gave easily interpretable sequences (Fig. 2). A data base search revealed that these four peptides displayed similarity to starch branching enzymes and interestingly, the peptides were more related to starch branching enzyme II from other plant species than to starch branching enzyme I from potato.

Construction of oligonucleotides encoding peptides 1 and 2.

Degenerated oligonucleotides encoding peptide 1 and peptide 2 were synthesized as forward and reverse primers, respectively:

Oligonucleotide 1: 5'-gtaaaacgacggccagt-TTYGGNGTNTGGGARATHTT-3' (Residues 2 to 8 of peptide 1)

Oligonucleotide 2: 5'-aattaaccctcactaaaggg-CKRTCRAAYTCYTGIARNCC-3' (Residues 2 to 8 of peptide 2, reversed strand)

wherein

H is A, C or T, I is inosine; K is G or T; N is A, C, G or T; R is A or G; Y is C or T; bases in lower case were added as tag sequences.

7

Purification of mRNA from potato tuber, synthesis of cDNA and PCR amplification of a cDNA fragment corresponding to potato starch branching enzyme II.

Total RNA from mature potato tubers ($S.\ tuberosum\ cv.$ Amanda) was isolated as described (Logemann et al. 1987). First strand cDNA was synthesized using 2 μg of total RNA and 60 pmol of oligo- dT_{30} as downstream primer. The primer was annealed to the polyA of the mRNA at 60°C for 5 min. The extension of the cDNA was performed according to the technical manual of the manufacturer using the Riboclone® cDNA Synthesis System M-MLV (H-)(Promega).

cDNA encoding the novel starch branching enzyme II according to the invention was amplified in a Perkin-Elmer GeneAmp® 9600 PCR thermocycler (Perkin-Elmer Cetus

- Instruments, CT, USA) using the two degenerate primers designed from the peptides 1 and 2 (see above) under the following conditions: 1 mM dNTP, 1 μ M of each primer and an alicot of the cDNA described above in a total reaction volume of 20 μ l with 1x AmpliTaq® buffer and 0,8 U
- AmpliTaq® (Perkin-Elmer Cetus). The cycling conditions were: 96°C for 1', 80°C while the enzyme was added as a hotstart (approximately 15'), an unintended drop to 25°C, five cycles of 94°C for 20", 45°C for 1', ramp to 72°C for 1' and 72°C for 2', and 30 cycles of 94°C for 5", 45°C for
- 25 30", and 72°C for (2'+2" per cycle) and completed with 72°C for 10' prior to chilling to 4°C.

A sample of this reaction (0.1 μ l) was reamplified using the cycling conditions: 96°C for 1', 80°C while the enzyme was added as a hotstart (approximately 5'), five cycles of 94°C for 20'', 45°C for 1', and 72°C for 2', and 25 cycles of 94°C for 5'', 45°C for 30'', and 72°C for (2' + 2'' per cycle) and completed with 72°C for 10' prior to chilling to 4°C. After completion of the PCR amplification, the reaction was loaded on a 1.5% Seakem® agarose gel (FMC Bioproducts, Rockland, ME, USA). After

electrophoresis and staining with ethidium bromide a major

30

35

8

band with an apparent size of 1500 bp was exclsed and the fragment was eluted by shaking in water (200 µl) for 1 h. This fragment was used as template in sequencing reactions after reamplification using primers corresponding to the tag sequences (in oligonucleotides 1 and 2), purification by agarose gel electrophoresis as above and extraction from the gel using the Qiaex® gel extraction kit according to the manufacturer's instructions (DIAGEN GmbH, Hilden, Germany). The sequencing reactions were done using the DyeDeoxy® Terminator Cycle Sequencing kits (Perkin-Elmer Cetus Instruments) using tag sequences and internal primers. The sequencing reaction were analyzed on an Applied Biosystems 373A DNA sequencer according to the manufacturer's protocols. The sequence was edited and comprised 1393 bp.

10

15

20

25

30

35

To complete the determination of the sequence of starch branching enzyme II, the 5' and 3' ends of the full length cDNA were amplified from the same total RNA as above using rapid amplification of cDNA ends, RACE, methodology with specific primers from the 1393 bp sequence. In the 3' end amplification, an oligo $T_{29}\mathsf{G}$ primer was used against the poly A tail and in the 5' end, the 5'/3' RACE kit from Boehringer Mannheim (Cat. No. 1734792) was used. The fragments from these amplifications were sequenced in the same way as above using integnal and end primers. The sequences from the two ends were aligned together with the 1393 base pairs to give a composite full length cDNA sequence. Primers were designed from this sequence to amplify the whole coding region in one part. Partial sequencing of the amplified coding cDNA confirmed the presence of a cDNA corresponding to the composite sequence. The full length cDNA is 3074 bp and the translated sequence comprises 878 amino acids. The mature protein comprises 830 amino acids.

Comparisons of the consensus sequence with the EMBL and GenBank databases showed 68% identity to potato starch

9

branching enzyme I and about 80% identity to starch branching enzyme II from other plant species. The present inventors therefore denote the enzyme encoded by the new branching enzyme sequence potato starch branching enzyme II.

Transformation of potato plants

5

10

15

20

25

The isolated full length cDNA of potato starch branching enzyme II and other functionally active fragments in the range of 50-3 074 bp are cloned in reverse orientation behind promoters active in potato tubers. By the term "functionally active" is meant fragments that will affect the amylose/amylopectin ratio in potato starch. The DNA and amino acid sequence of SBE II according to the invention as well as one fragment of the DNA and corresponding amino acid sequence are shown in SEQ ID No. 1 and 2, respectively.

The promoters are selected from, for example, the patatin promoter, the promoter from the potato granule-bound starch synthase I gene or promoters isolated from potato starch branching enzymes I and II genes.

The constructs are cloned by techniques known in the art either in a binary Ti-plasmid vector suitable for transformation of potato mediated by Agrobacterium tumefaciens, or in a vector suitable for direct transformation using ballistic techniques or - electroporation. It is realized that the sense (see below) and antisense constructs must contain all necessary regulatory elements.

Transgenic potato plants transcribe the inverse starch branching enzyme II construct specifically in tubers, leading to antisense inhibition of the enzyme. A reduction and changed pattern of the branching of amylopectin as well as a changed amylose/amylopectin ratio thereby occur in tuber starch.

The antisense construct for potato starch branching enzyme II is also used in combination with antisense

10

constructs for potato starch branching enzyme I, for potato granule-bound starch synthase II, for potato soluble starch synthases II and III, for potato starch disproportionating enzyme (D-enzyme) or for potato starch debranching enzyme to transform potato to change the degree of branching of amylopectin and the amylose/amylopectin ratio. This gives new and valuable raw material to the starch processing industry.

The full-length cDNA sequence encoding the enzyme is, in different constructs, cloned in sense orientation behind one or more of the promoters mentioned above, and the constructs are transferred into suitable transformation vectors as described above and used for the transformation of potato. Regenerated transformed potato plants will produce an excess of starch branching enzyme II in the tubers leading to an increased degree and changed pattern of branching of amylopectin or to inhibition of transcription of endogenous starch branching enzyme II transcription due to co-suppression, resulting in a decreased branching of amylopectin.

WO 97/20040

PCT/SE96/01558

11

References

Müller-Röber, B., Koßmann, J., (1994) Approaches to influence starch quantity and starch quality in transgenic plants. Plant Cell Environm. 17, 601-613.

Martin, C., Smith, A. (1995) Starch Biosynthesis. Plant Cell 7, 971-985.

10

Laemmli, U.K. (1979) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680-685.

- Logemann, J., Schell, J. and Willmitzer, L. (1987) Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 16-20.
- Rosenfeld, J., Capdeville, J, Guillemot, J.C., Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173-179.
- Visser, R.G.F., Jacobsen, E. (1993) Towards modifying 25 plants for altered starch content and composition. TibTech 11, 63-68.

PCT/SE96/01558 WO 97/20040

SEO ID No. 1

Sequenced molecule: cDNA
Name: beII gene (branching enzyme II) from Solanum
tuberosum (potato)
Length of sequence: 3074 bp

AAACCTCCTC CACTCAGTCT TTGTTTCTCT CTCTCTTCAC GCTTCTCTG GCGCCTTG/A CTCAGCAATT TGACACTCAG TTAGTTACAC TNCCATCACT TATCAGATCT CTATTTTT.C TCTTAATTCC AACCAAGGAA TGAATAAAAA GATAGATTTG TAAAAACCCT AAGGAGAG/A GAAGAAAA ATG GTG TAT ACA CTC TCT GGA GTT CGT TTT CCT ACT GTT CC/A Met Val Tyr Thr Leu Ser Gly Val Arg Phe Pro Thr Val Pro -45 -40 -35	60 120 180 230
TCA GTG TAC AAA TCT AAT GGA TTC AGC AGT AAT GGT GAT CGG AGG AAT Ser Val Tyr Lys Ser Asn Gly Phe Ser Ser Asn Gly Asp Arg Asn -30 -25 -20	278
GCT AAT NTT TCT GTA TTC TTG AAA AAG CAC TCT CTT TCA CGG AAG ATC Ala Asn Xaa Ser Val Phe Leu Lys Lys His Ser Leu Ser Arg Lys Ile -15 -10 -5	326
TTG GCT GAA AAG TCT TCT TAC AAT TCC GAA TCC CGA CCT TCT ACA GTT Leu Ala Glu Lys Ser Ser Tyr Asn Ser Glu Ser Arg Pro Ser Thr Val 1 5 10	374
GCA GCA TCG GGG AAA GTC CTT GTG CCT GGA ACC CAG AGT GAT AGC TCC Ala Ala Ser Gly Lys Val Leu Val Pro Gly Thr Gln Ser Asp Ser Ser 15 20 25 30	422
TCA TCC TCA ACA GAC CAA TTT GAG TTC ACT GAG ACA TCT CCA GAA AAT Ser Ser Ser Thr Asp Gln Phe Glu Phe Thr Glu Thr Ser Pro Glu Asn 35 40 45	470
TCC CCA GCA TCA ACT GAT GTA GAT AGT TCA ACA ATG GAA CAC GCT AGC Ser Pro Ala Ser Thr Asp Val Asp Ser Ser Thr Met Glu His Ala Ser 50 55 60	518
CAG ATT AAA ACT GAG AAC GAT GAC GTT GAG CCG TCA AGT GAT CTT ACA Gln Ile Lys Thr Glu Asn Asp Asp Val Glu Pro Ser Ser Asp Leu Thr 65 70 75	566
GGA AGT GTT GAA GAG CTG GAT TTT GCT TCA TCA CTA CAA CTA CAA GAA Gly Ser Val Glu Glu Leu Asp Phe Ala Ser Ser Leu Gln Leu Gln Glu 80 85 90	614
GGT GGT AAA CTG GAG GAG TCT AAA ACA TTA AAT ACT TCT GAA GAG ACF. Gly Gly Lys Leu Glu Glu Ser Lys Thr Leu Asn Thr Ser Glu Glu Thr 95 100 105 116	662
ATT ATT GAT GAA TCT GAT AGG ATC AGA GAG AGG GGC ATC CCT CCA CCT. Ile Ile Asp Glu Ser Asp Arg Ile Arg Glu Arg Gly Ile Pro Pro Pro 115 120 125	710
GGA CTT GGT CAG AAG ATT TAT GAA ATA GAC CCC CTT TTG ACA AAC TAT Gly Leu Gly Gln Lys Ile Tyr Glu Ile Asp Pro Leu Leu Thr Asn Tyr 130 135 140	758
CGT CAA CAC CTT GAT TAC AGG TAT TCA CAG TAC AAG AAA CTG AGG GAG Arg Gln His Leu Asp Tyr Arg Tyr Ser Gln Tyr Lys Lys Leu Arg Glu 145 150 155	806

		Asp										Ser			TAT	854
	Lys		GGT								Ile				GAG Glu 190	902
			Gly							Ile					Asn	950
Trp	Asp	Ala	AAT Asn 210	Ala	Asp	Ile	Met	Thr 215	Arg	Asn	Glu	Phe	Gly 220	Val	Trp	998
Glu	Ile	Phe 225		Pro	Asn	Asn	Val 230	Asp	Gly	Ser	Pro	Ala 235	Ile	Pro	His	1046
Gly	Ser 240	Arg	GTG Val	Lys	Ile	Arg 245	Met	Asp	Thr	Pro	Ser 250	Сĵ	Val	Lys	Asp	1094
Ser 255	Ile	Pro	GCT Ala	Trp	11e 260	Asn	Tyr	Ser	Leu	Gln 265	Leu	Pro	Asp	Glu	Ile 270	1142
			GGA Gly													1190
			CCA Pro 290													1238
			GGA Gly													1286
			GAT Asp													1334
GCG Ala 335	GTG Val	CAA Gln	ATT Ile	ATG Met	GCT Ala 340	ATT Ile	CAA Gln	GAG Glu	CAT His	TCT Ser 345	TAT Tyr	TAT Tyr	GCT Ala	AGT Ser	TTT Phe 350	1382
Gly	TAT Tyr	CAT His	GTC Val	ACA Thr 355	AAT Asn	TTT Phe	TTN Xaa	GCA Ala	CCA Pro 360	AGC Ser	AGC Ser	OGT Arg	TTT Phe	GGA Gly 365	ACN Thr	1430
Pro	Asp	Asp	CTT Leu 370	Lys	Ser	Leu	Ile	Asp 375	Lys	Ala	His	Glu	Leu 380	Gly	Ile	1478
Val	Val	Leu 385	ATG Met	Asp	Ile	Val	His 390	Ser	His	Ala	Ser	Asn 395	Asn	Thr	Leu	1526
GAT Asp	GGA Gly 400	CTG Leu	AAC Asn	ATG Met	TTT Phe	GAC Asp 405	GGC	ACA Thr	GAT Asp	AGT Ser	TGT Cys 410	TAC Tyr	TTT Phe	CAC His	TCT Ser	1574

GGA Gly 415	GCT Ala	CGT Arg	GGT Gly	TAT Tyr	CAT His 420	TGG Trp	ATG Met	TGG Trp	GAT Asp	TCC Ser 425	CGC Ar g	CTC Leu	TTT Phe	AAC Asn	TAT Tyr 430	1622
GGA Gly	AAC Asn	TGG Trp	GAG Glu	GTA Val 435	CTT Leu	AGG Arg	TAT Tyr	CTT Leu	CTC Leu 440	TCA Ser	AAT Asn	GCG Ala	AGA Arg	TGG Trp 445	TGG Trp	1670
TTG Leu	GAT Asp	GAG Glu	TTC Phe 450	AAA Lys	TTT Phe	GAT Asp	GGA Gly	TTT Phe 455	AGA Arg	TTT Phe	GAT Asp	GGT Gly	GTG Val 460	ACA Thr	TCA Ser	1718
Met	Met	Tyr 465	Thr	His	His	Gly	Leu 470	TCG Ser	Val	Gly	Phe	Thr 475	Gly	Asn	Tyr	1766
Glu	Glu 480	Tyr	Phe	GЉ	Leu	Ala 485	Thr	GAT Asp	Val	Asp	Ala 490	Val	Val	Tyr	Leu	1814
Met 495	Leu	Val	Asn	Asp	Leu 500	Ile	His	GGG Gly	Leu	Phe 505	Pro	Asp	Ala	Ile	Th <i>r</i> 510	1862
Ile	Gly	Glu	Asp	Val 515	Ser	Gly	Met	Pro	Thr 520	Phe	Xaa	Ile	Pro	Val 525		1910
Asp	Gly	Gly	Val 530	СĵЪ	Phe	Asp	Tyr	Arg 535	Leu	His	Met	Ala	Ile 540	Ala	GAT Asp	1958
Lys	Trp	11e 545	Glu	Leu	Leu	Lys	Lys 550	Arg	Asp	Glu	Asp	555	Arg	, Val	GGT Gly	2006
Asp	11e 560	Val	. His	Thr	Leu	Th: 565	Asn	n Axg	Arg	Trp	570	Glu	Lys	s Cys	GTT Val	2054
Ser 575	Туг	Ala	a Glu	. Ser	His 580	Asp	Glr	n Ala	Leu	Val 585	Gly	/ Asp) Lys	s Thi	T ATA T Ile 590	2102
Ala	Phe	Tr	Leu	595	. Asp	Ly	: As _I	o Met	600	Ası	> Ph€	e Met	. Ala	60:		2150
Arc	Pro	Se:	f Thi	r Sea	r Leu	ı Ile	e Ası	61:	g Gly 5	y Ile	e Ala	a Leu	1 Hi:	s Ly O	S Met	2198
Ile	e Ar	g Le	u Va. 5	1 Th	r Met	: G1	y Lei 63:	ս Gl 0	y Gl	y Gl	u Gl	y Ty: 63!	r Le	u As	T TTC	2246
Met	64	y As O	n Gl	u Ph	e Gly	9 Hi 64	s Pr 5	o Gl	u Tr	p Il	e As 65	p Ph	e Pr	o Ar	G GCT g Ala	2294
GA: G1: 65	u Gl	A CA n Hi	C CT s Le	c TC u Se	T GA r As 66	p Gl	C TC y Se	A GT r Va	A AT 1 Il	T CC e Pr 66	o G1	A AA y As	n Gl	A TT	C AGT e Ser 670	2342

WO 97/20040															PCT/	SE96/01558
TAT	GAT	AAA	TGC	AGA	CGG	AGA	TTT	GAC	CIG	GGA	GAT	GCA	GAA	TAT	TTA	2390
Tyr	Asp	Lys	Суз	Arg	Arg	Arg	Phe	Asp	Leu	Gly	Asp	Ala	Glu	Tyr	Leu	
				675					680	ŀ				685		
AGA	TAC	CGT	GGG	TTG	CAA	GAA	TTT	GAC	CGG	GCI	ATG	CAG	TAT	CTT	GAA	2438
Arg	Tyr	Arg	690	Leu	GID	Glu	Phe			Ala	Met	Gln		Leu	Glu	
			030					695					700			
GAT	AAA	TAT	GAG	TTT	ATG	ACT	TCA	ههی	CAC	CAG	ידייני	ата	TCB	CCA	AAG	2400
Asp	Lys	Tyr	Glu	Phe	Met	Thr	Ser	Glu	His	G3n	Phe	Tle	Ser	7.00	Lare	2486
_	_	705					710					715	-		Dy 3	
GAT	GAA	GGA	GAT	AGG	ATG	ATT	GTA	TTT	GAA	AAA	GGA	AAC	CTA	GTT	TTT	2534
Asp	Glu	Gly	Asp	Arg	Met	Ile	Val	Phe	Glu	Lys	Gly	Asn	Leu	Val	Phe	
	720					725					730					
כדיר	بلعدين	יית מ	desirab	CNC	TICC.	202										
Val	Phe	Asn	Phe	His	TOG	The	AAA	AGC	TAT	TCA	GAC Asp	TAT	CGC	ATA	GGC	2582
735		AJII	1116		740	TIII	гуз	ser	ıyr	3er	Asp	туг	Arg	He		
										743					750	
TGC	CTG	AAG	CCT	GGA	AAA	TAC	AAG	GTT	GCC	TTG	GAC	TCA	GAT	GAT	CCA	2630
Cys	Leu	Lys	Pro	Gly	Lys	Tyr	Lys	Val	Ala	Leu	Asp	Ser	Asp	Asp	Pro	2030
				755					760		-		-	765		
CTT	TTT	GGT	GGC	TTC	GGG	AGA	ATT	GAT	CAT	AAT	GCC	GAA	TAT	TTC	ACC	2678
Lieu	Pne	GIA	770	Pne	CIÀ	Arg	He		His	Asn	Ala	Glu		Phe	Thr	
			,,,					775					780			
TTT	GAA	GGA	TGG	TAT	GAT	GAT	CGT	CCT	CGT	TCA	ATT	ATG	CTC:	тат	CCA	2721
Phe	Glu	Gly	Trp	Tyr	Asp	Asp	Arq	Pro	Ara	Ser	Ile	Met.	Val	Tur	Δla	2721
		785			-	_	790		_			795		-1-		
CT −	AGT	AGA	ACA	GCA	GTG	GTC	TAT	GCA	CTA	GTA	GAC	AAA	GAA	GAA	GAA	2774
Pro	Ser	Arg	Thr	Ala	Val		Туг	Ala	Leu	Val	Asp	Lys	Glu	Glu	Glu	
	800					805					810					
GAA	GAD	GAA	a a o	CT2	CCA	מיזים	CTP N	C2 2	C2.2	~~~	GTA	~~~				
Glu	Glu	Glu	Glu	Val	Ala	Val	Val	Glu	GAA	Unl	Val	GIA Val	Clas	GAA	GAA	2822
815					820					825	*41	Vai	Gru	GIG	830	
TGA	ACGA	A CT	TGTG	ATCG	CGT	TGAA	AGA	TTTG	AAGG	CT A	CATA	GAGC	T TC	TTGA	CGTA	2880

momo		m> =	maa	.												
TCIG	GCAA	IA T	TGCA	CARC	T CT	TGGC	GGAA	TTT	CATG	TGA	CAAA	AGGT	TT G	CAAT	TCTTT	2940
TCGA	TCD D	ло II Гт т	MGIG MTCT	CAAC	G AT	HCCCC HTAC	GCAG ACCC	AGA	TCAA	GIG	CTGC	ACAA	AC A	TATG	TAAAA	3000
TAAA	TTGT	CA T	CIC	~~~		. GGG	nuu	GCT	ı CAG	-AG	GITT	IGCT	TA G	1'GAG	TTCTG	3060
																3074

PCT/SE96/01558 WO 97/20040

SEO ID No. 2

Sequenced molecule: cDNA
Name: beII gene fragment (branching enzyme II) from
Solanum tuberosum (potato)
Length of sequence: 1393 bp

T CTG CCA AAT AAT GTG GAT GGT TCT CCT GCA ATT CCT CAT GGG TCC AGA Leu Pro Asn Asn Val Asp Gly Ser Pro Ala Ile Pro His Gly Ser Arg 1 5 10 15	49
GTG AAG ATA CGT ATG GAC ACT CCA TCA GGT GTT AAG GAT TCC ATT CCT Val Lys Ile Arg Met Asp Thr Pro Ser Gly Val Lys Asp Ser Ile Pro 20 25 30	97
GCT TGG ATC AAC TAC TCT TTA CAG CTT CCT GAT GAA ATT CCA TAT AAT Ala Trp Ile Asn Tyr Ser Leu Gln Leu Pro Asp Glu Ile Pro Tyr Asn 35 40 45	145
GGA ATA TAT TAT GAT CCA CCC GAA GAG GAG AGG TAT ATC TTC CAA CAC Gly Ile Tyr Tyr Asp Pro Pro Glu Glu Glu Arg Tyr Ile Phe Gln His 50 55 60	193
CCA CGG CCA AAG AAA CCA AAG TCG CTG AGA ATA TAT GAA TCT CAT ATT Pro Arg Pro Lys Lys Pro Lys Ser Leu Arg Ile Tyr Glu Ser His Ile 65 70 75 80	241
GGA ATG AGT AGT CCG GAG CCT AAA ATT AAC TCA TAC GTG AAT TTT AGA Gly Met Ser Ser Pro Glu Pro Lys Ile Asn Ser Tyr Val Asn Phe Arg 85 90 95	289
GAT GAA GTT CTT CCT CGC ATA AAA AAG CTT GGG TAC AAT GCG GTG CAA Asp Glu Val Leu Pro Arg Ile Lys Lys Leu Gly Tyr Asn Ala Val Glr 100 105 110	337
ATT ATG GCT ATT CAA GAG CAT TCT TAT TAT GCT AGT TTT GGT TAT CAT He Met Ala He Gln Glu His Ser Tyr Tyr Ala Ser Phe Gly Tyr His 115 120 125	385
GTC ACA AAT TTT TTN GCA CCA AGC AGC CGT TTT GGA ACN CCC GAC GAC Val Thr Asn Phe Xaa Ala Pro Ser Ser Arg Phe Gly Thr Pro Asp Asp 130 135 140	433
CTT AAG TCT TTG ATT GAT AAA GCT CAT GAG CTA GGA ATT GTT GTT CTC Leu Lys Ser Leu Ile Asp Lys Ala His Glu Leu Gly Ile Val Val Leu 145 150 150	481
ATG GAC ATT GTT CAC AGC CAT GCA TCA AAT AAT ACT TTA GAT GGA CTG Met Asp Ile Val His Ser His Ala Ser Asn Asn Thr Leu Asp Gly Leu 165 170 175	529
AAC ATG TTT GAC GGC ACA GAT AGT TGT TAC TTT CAC TCT GGA GCT CGT Asn Met Phe Asp Gly Thr Asp Ser Cys Tyr Phe His Ser Gly Ala Arg 180 185 190	577
GGT TAT CAT TGG ATG TGG GAT TCC CGC CTC TTT AAC TAT GGA AAC TG3 Gly Tyr His Trp Met Trp Asp Ser Arg Leu Phe Asn Tyr Gly Asn Trp 195 200 205	625
GAG GTA CTT AGG TAT CTT CTC TCA AAT GCG AGA TGG TGG TTG GAT GA3 Glu Val Leu Arg Tyr Leu Leu Ser Asn Ala Arg Trp Trp Leu Asp Glu 210 215 220	673

	Lys										Thr				TAT Tyr 240	721
										Gly					TAC	769
TTT Phe	GGA Gly	CTC	GCA Ala 260	ACT	GAT Asp	GTG Val	GAT Asp	GCT Ala 265	GTT Val	GTG Val	TAT Tyr	CTG Leu	Met 270	Leu	GTC Val	812
AAC Asn	GAT Asp	CTT Leu 275	Ile	CAT His	GGG	CTT Leu	TTC Phe 280	CCA Pro	GAT Asp	GCA Ala	ATT	ACC Thr 285	ATT	Gly	GAA Glu	865
Asp	Val 290	Ser	Gly	Met	Pro	Thr 295	Phe	Xaa	Ile	Pro	Val 300	Gln	Asp	Gly	Gly	913
Val 305	Gly	Phe	Asp	Tyr	Arg 310	Leu	His	Met	Ala	Ile 315	Ala	Asp	Lys	Trp	320	961
Glu	Leu	Leu	Lys	Lys 325	Arg	GAT Asp	Glu	Asp	Trp 330	Arg	Val	Gly	Asp	11e 335	Val	1019
His	Thr	Leu	Thr 340	Asn	Arg	AGA Arg	Trp	Ser 345	Glu	Lys	Суз	Val	Ser 350	Tyr	Ala	1057
Glu	Ser	His 355	Asp	Gln	Ala	CTA Leu	Val 360	Gly	Asp	Lys	Thr	Ile 365	Ala	Phe	Trp	1105
Leu	Met 370	Asp	Lys	Asp	Met	TAT Tyr 375	Asp	Phe	Met	Ala	Leu 380	Asp	Arg	Pro	Ser	1153
Thr 385	Ser	Leu	Ile	Asp	Arg 390	GGG Gly	Ile	Ala	Leu	His 395	Lys	Met	Ile	Arg	Leu 400	1201
Val	Thr	Met	Gly	Leu 405	Gly	GGA Gly	Glu	Gly	Tyr 410	Leu	Asn	Phe	Met	Gly 415	Asn	1249
Glu	Phe	Gly	His 420	Pro	Glu	TGG Trp	Ile	Asp 425	Phe	Pro	Arg	Ala	Glu 430	Gln	His	1297
Leu	Ser	Asp 435	Gly	Ser	Val	ATT Ile	Pro 440	Gly	Asn	Gln	Phe	Ser 445	Tyr	Asp	Lys	1345
TGC Cys	AGA Arg 450	CGG Arg	AGA Arg	TTT Phe	GAC Asp	CTG Leu 455	GGA Gly	GAT Asp	GCA Ala	GAA Glu	TAT Tyr 460	TTA Leu	AGA Arg	TAC Tyr	CGT Arg	1393

25

30

CLAIMS

- 1. An amino acid sequence of starch branching enzyme
 5 II (SBE II) comprising the amino acid sequence as shown in
 SEQ ID No. 1.
 - 2. Fragments of the amino acid sequence of starch branching enzyme II (SBEII).
- 3. A fragment according to claim 2, having the amino acid sequence as shown in SEQ ID No. 2.
 - 4. An isolated DNA sequence encoding starch branching enzyme II (SBE II) of potato comprising the nucleotide sequence as shown in SEQ ID No. 1 variants thereof resulting from the degeneracy of the genetic code.
- 5. Fragments of the isolated DNA sequence encoding starch branching enzyme II (SBEII) of potato.
 - 6. A fragment according to claim 5, comprising the nucleotide sequence as shown in SEQ ID No. 2.
- 7. A vector comprising the whole or a functionally active part of the isolated DNA sequence claimed in any one of claims 4-6 and regulatory elements active in potato.
 - 8. A vector according to claim 7, wherein the DNA sequence is in the antisense (reversed) orientation in relation to a promoter immediately upstream from the DNA sequence.
 - 9. A process for the production of transgenic potatoes with either an increased or a decreased degree of branching of amylopectin starch, c h a r a c t e r i z e d in that it comprises the following steps:
 - a) transfer and incorporation of a vector according to claim 7 into the genome of a potato cell, and
 - b) regeneration of intact, whole plants from the transformed cells.
 - 35 10. A process for the production of transgenic potatoes with a reduced degree of branching of amylopectin

19

starch, characterized in that it comprises the following steps:

- a) transfer and incorporation of a vector according to claim 8 into the genome of a potato cell, and
- 5 b) regeneration of intact, whole plants from the transformed cells.

15

- 11. A process according to claim 10, wherein the vector also comprises an antisense construct of starch branching enzyme I (SBE I).
- 10 12. A process according to claims 10 or 11, wherein the vector also comprises an antisense construct of potato granule bound starch synthase II.
 - 13. A process according to one or more of claims 10-12, wherein the vector also comprises an antisense construct of potato soluble starch synthases II and III.
 - 14. A process according to one or more of claims 10-13, wherein the vector also comprises an antisense construct of potato starch disproportionating enzyme (Denzyme).
- 20 15. A process according to one or more of claims 10-14, wherein the vector also comprises an antisense construct of potato starch debranching enzyme.
 - 16. A transgenic potato obtainable by the process according to any one of claims 9-15.
- 25 17. Use of transgenic potatoes according to claim 16 for the production of starch.

SUBSTITUTE SHEET

FIG. 2

Peptide 1. EFGVWEIFLPN

Peptide 2. HGLQEFDRA

Peptide 3. ENDGIAAKADE

Peptide 4. YEIDPEI/LTN

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 96/01558

A. CLASS	IFICATION OF SUBJECT MATTER		
IPC6: C	12N 9/10, C12N 15/82, A01H 5/06 International Patent Classification (IPC) or to both natio	onal classification and IPC	
B. FIELDS	S SEARCHED		
Minimum do	cumentation scarched (classification system followed by cl	assification symbols)	
IPC6: C	12N	have becomente are included in	the fields searched
Documentati	on searched other than minimum documentation to the e	kient that such documents are molocour.	
	I,NO classes as above		
Electronic da	ala base consulted during the international search (name o	f data base and, where practicable, searc	h terms used)
	, BIOSIS, EMBL/GENBANK/DDBJ		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		T
Category*	Citation of document, with indication, where appr	opriate, of the relevant passages	Relevant to claim No.
х	WO 9504826 A1 (INSTITUT FÜR GENBI FORSCHUNG BERLIN GMBH), 16 Fe (16.02.95), see abstract and	ebruary 1995	1-17
x	WO 9214827 A1 (INSTITUT FÜR GENBI FORSCHUNG BERLIN GMBH), 3 Ser see page 5, line 1–7 and exam	ot 1992 (03.09.92),	1-17
A	SE 467160 B (AMYLOGENE HANDELSBOOM (01.06.92)	LAG), 1 June 1992	1-17
Furth	ner documents are listed in the continuation of Box	C. X See patent family ann	ex.
"A" docum	al categories of cited documents: nent defining the general state of the art which is not considered of particular relevance	"T" later document published after the i date and not in conflict with the ap- the principle or theory underlying the	ne invention
"E" erlier	document but published on or after the international filing date ment which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	"X" document of particular relevance: ti considered novel or cannot be cons step when the document is taken all	one
"O" docum	l reason (as specified) nent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance: to considered to involve an inventive combined with one or more other sheing obvious to a person skilled in	step when the document is uch documents, such combination the art
the pri	ne actual completion of the international search	Date of mailing of the internationa 0 1 -03- 1997	
		0 1 103 1337	
27 Feb	oruary 1997 d mailing address of the ISA/	Authorized officer	
	Patent Office		
Box 505	5, S-102 42 STOCKHOLM	Yvonne Siösteen Telephone No. + 46 8 782 25 0	n
I Farmer !!-	No. + 46 8 666 02 86	i Telephone No. +40 8 /82 23 U	J

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/SE 96/01558

	ocument urch report	Publication date	Pater me	Publication date	
WO-A1-	9504826	16/02/95	AU-A-	7535294	28/02/95
			EP-A-	0713531	29/05/96
			CA-A-	2169174	16/02/95
			DE-A-	4327165	16/02/95
			HU-A-	73740	30/09/96
			HU-D-	9600285	00/00/00
			IL-D-	110583	00/00/00
O-A1-	9214827	03/09/92	AU-B-	663072	28/09/95
			AU-A-	1226592	15/09/92
			CA-A-	2104123	14/08/92
			DE-A-	4104782	20/08/92
			EP-A-	0571427	01/12/93
			HU-A-	65740	28/07/94
E-B-	467160	01/06/92	AU-A-	9109791	22/07/92
			EP-A-	0563201	06/10/93
			PL-B-	169859	30/09/96
			SE-A-	9004095	01/06/92
			WO-A-	9211375	09/07/92

Form PCT/ISA/210 (patent family annex) (July 1992)

