

Traitement numérique des signaux

«In fact, any operation that can be completely described to the required accuracy (if numerical) in a finite number of steps using the words « if », « or », « and », etc, can be done automatically with relays.»

A Symbolic Analysis of Relay and Switching Circuits, 1937

CLAUDE ELWOOD SHANNON (1916-2001)

PLAN DU COURS

Ι	Ech	antillonnage - Conversion analogique numérique (CAN)	3
	I.1	Principe général	3
	I.2	Quelques détails : l'échantillonneur et le C.A.N	4
		a - Echantillonneur bloqueur par capacité	4
		b - CAN à quantification uniforme : pleine échelle (Full Scale) - erreur de codage	5
	I.3	Analyse spectrale d'un signal échantillonné	6
		a - Rappel : spectre d'un peigne de Dirac	6
		b - Spectre d'un signal échantillonné $f_{ech}(t)$	7
		${\bf c}$ - Reconstitution d'un signal à partir de son échantillonnage (technique passe-	
		bas) - théorème de Nyquist-Shannon	8
		d - Non respect du théorème de Nyquist-Shannon : le repliement de spectre et	
		les fréquences "fantômes" (Expérience de cours/Simulation Python)	9
II	Not	ions de base sur le filtrage numérique des signaux	10
	II.1	Principe	11
	II.2	Mise en oeuvre	12

CHAPITRE II. TRAITEMENT NUMÉRIQUE DES SIGNAUX

	a - Filtrage numérique temporel (Expérience de cours/Simulation Python) $$	12
	b - Filtrage numérique spectral	15
III Con	aplément TP : notions de fenêtrage	15
III.1	Principe	15
III.2	Exemples d'exploitation	16

