Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 20 febbraio 2015

matricola			nome		cognome
	corso di laure	ea		anno accademico	di immatricolazione
	Votazione:	Т1	E1		
		T2	E2		
		12	E3		

Compito A

- T1) Si definisca quando una matrice quadrata \mathbf{A} (di forma $n \times n$) è diagonalizzabile. Si dimostri: se \mathbf{A} è diagonalizzabile, allora \mathbb{C}^n possiede una base composta da autovettori di \mathbf{A} .
- T2) Si diano le definizioni di rango di una matrice e l'enunciato del teorema "nullità più rango". Si dimostri che, se \mathbf{A} è una matrice $m \times n$, allora il rango di \mathbf{A} è uguale al rango di $\mathbf{A}^H \mathbf{A}$. (Suggerimento: si considerino $N(\mathbf{A})$ e $N(\mathbf{A}^H \mathbf{A})$.)
- E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 2 & 0 & 4 & 4 \\ 2 & 0 & 2\alpha & 4 \\ 2 & 0 & 2\alpha & 2\alpha - 1 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 2$ si trovi una base ortogonale di $C(\mathbf{A}_2)$. Inoltre si interpreti \mathbf{A}_2 come la matrice completa di un sistema lineare e si trovino tutte le soluzioni del sistema.

- E2) Sia $\mathscr{B} = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$, dove $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Si verifichi che \mathscr{B} è una base di \mathbb{C}^3 . Si consideri l'applicazione lineare $f \colon \mathbb{C}^3 \to \mathbb{C}^3$ tale che $f(\mathbf{v}_1) = \mathbf{v}_1 + 2\mathbf{v}_3$, $f(\mathbf{v}_2) = \mathbf{v}_3$, $f(\mathbf{v}_3) = \mathbf{v}_3$.
 - (1) Si trovi la matrice **B** associata a f rispetto alla base canonica sul dominio e sul codominio.
 - (2) Si calcoli il rango di f.
 - (3) Il vettore $\mathbf{w} = [0 \ 1 \ 1]^T$ appartiene all'immagine di f? Se sì, si trovi un vettore $\mathbf{v} \in \mathbb{C}^3$ tale che $f(\mathbf{v}) = \mathbf{w}$.
 - (4) Si trovi una base dello spazio nullo e dell'immagine di f.
- E3) Si consideri la matrice $(\beta \in \mathbb{C})$

$$\mathbf{B}_{\beta} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \beta - 2 & -1 & \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Si dica per quali valori di β la matrice è diagonalizzabile; si determini, quando esiste, una base di \mathbb{C}^4 formata da autovettori di \mathbf{B}_{β} . Esiste una base ortogonale di \mathbb{C}^4 formata da autovettori di \mathbf{B}_1 ?