CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning

Fall 2023

Lecture 18: November 2

Lecturer: Csaba Szepesvári Scribes: Vedant Vyas

Note: Larger template courtesy of UC Berkeley EECS dept. (link to directory)

Disclaimer: These notes have <u>not</u> been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

18.1 Leave One Out (L.O.O) Stability

Definition 18.1. $k: Z^n \cup Z^{n+1} \to \mathcal{M}_1(\mathbb{R}^{\mathbb{Z}})$ is ε -LOO (Leave One Out) stable with $\varepsilon: \mathbb{Z}^{n+1} \cup \mathbb{Z} \to [0, \infty)$ if $\forall z_{1:n+1} \in Z^{n+1} \mu_k(z_{1:n}, z_{n+1}) \leq \mu_k(z_{1:n+1}, z_{n+1}) + \varepsilon(z_{1:n+1}, z_{n+1})$

Proposition 18.2. Assume $\mu_k(z_{1:n+1}^{i\leftrightarrow n+1}, z_{n+1}) = \mu_k(z_{1:n+1}, z_{n+1})$ and $\varepsilon(z_{1:n+1}^{i\leftrightarrow n+1}, z_{n+1}) = \varepsilon(z_{1:n+1}, z_{n+1})$ & K is ε -LOO stable then

$$\mathbb{E}\left[\mu_{k}\left(z_{1:n}, z_{n+1}\right)\right] \leq \mathbb{E}P_{n+1}\mu_{k}\left(z_{1:n+1}\right) + \mathbb{E}P_{n+1}\varepsilon\left(z_{1:n+1}\right)$$

Note: From our assumptions on μ_k we can get complete symmetry as to swap $i \leftrightarrow j$, we can do $i \leftrightarrow n+1$, and then $n+1 \leftrightarrow j$

Proof.

$$\begin{split} z_{1:n+1}^{i \leftrightarrow n+1} &= (z_1, , , , z_{i-1}, z_{n+1}, z_i) \\ (z_{1:n+1}^{i \leftrightarrow n+1}, z_i) &\overset{P}{=} (z_{1:n+1}, z_{n+1}) \qquad \text{(Same joint distribution)} \\ (\mu_k + \varepsilon)(z_{1:n+1}^{i \leftrightarrow n+1}, z_i) &\sim (\mu_k + \varepsilon)(z_{1:n+1}, z_{n+1}) \\ \text{So, } \mu_k(z_{1:n}, z_{n+1}) &\leq (\mu_k + \varepsilon)(z_{1:n+1}, z_{n+1}) \\ &\overset{P}{=} (\mu_k + \varepsilon)(z_{1:n+1}^{i \leftrightarrow n+1}, z_i) \end{split}$$

Taking expectation on both sides, and averaging over i would lead to the desired result

18.2 First Order Optimality

Lemma 18.3. $f: C \to \mathbb{R}, C \subseteq \mathbb{R}^d$ closed, convex, $C \neq \emptyset$

$$x^* \in \underset{x \in C}{\operatorname{argmin}} f(x).$$

(1.)
$$\exists \theta \in \partial f(x^*) \text{ s.t. } \theta^T(x - x^*) \geq 0.$$

(2.) Assume
$$f$$
 is $\lambda - SOC$, $\tilde{\tau} \in \partial f(x)$, $\tilde{\theta}^{\top}(x^* - x) \ge -g \|x - x^*\|$ for some $g > 0 \Rightarrow \|x - x^*\| \le \frac{g}{\lambda}$.

Proof.

$$f'(x^*; x - x^*) = \theta^\top (x - x^*)$$
 for some $\theta \in \partial f(x)$

18-2 Lecture 18: November 2

$$f(x^*) \ge f(x) + \tilde{\theta}^\top (x^* - x) + \frac{\lambda}{2} ||x^* - x||^2$$
$$\ge f(x) - g||x - x^*|| + \frac{\lambda}{2} ||x^* - x||^2$$

$$\begin{split} f(x) & \geq f(x^*) + \theta^\top (x - x^*) + \frac{\lambda}{2} \|x - x^*\|^2 \\ & \geqslant f(x^*) + \frac{\lambda}{2} \|x - x^*\|^2 \quad \quad \text{(Using 1)} \end{split}$$

$$g\|x-x_*\|\geqslant \lambda\|x-x^*\|^2$$
 Q.E.D.

Theorem 18.4. $G = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad G(z) = \{g_w : w \in C\}, C \subseteq \mathbb{R}^d \text{ closed and convex. } w \mapsto g_w(z) \quad (W_1, \|\cdot\|_2) \to (\mathbb{R}, |\cdot|) \quad (W_1, \|\cdot\|_2) \to (W_1, \|\cdot\|_2) \to$

 $h: \mathbb{R}^d \to \mathbb{R}; \quad \bar{g}_w(z) = g_w(z) + h(w).$

Assume $\omega \mapsto P_{z_{1:n}} \bar{g}_w$ is λ -SOC (λ Strongly Convex) ; $\forall z_{1:n} \in Z^n$

$$\mathcal{A}(z_{1:n}) := \underset{w \in C}{\operatorname{argmin}} P_{z_{1:n}} \bar{g}_w = \underset{w \in C}{\operatorname{argmin}} P_{z_{1:n}} g_w + h(w)$$
$$\mathcal{A}(z_{1:n+1}) = \underset{w \in C}{\operatorname{argmin}} P_{z_{1:n+1}} g_w + \frac{n}{n+1} h(w)$$

Then: 1.) A is $\varepsilon\left(z_{1:n+1},z_{n+1}'\right)=\frac{G\left(z_{n}'+1\right)^{2}}{\lambda(n+1)}-LOO$ Stable

2.) \mathcal{A} is $\frac{2\|G\|_{\infty}^2}{\lambda n}$ uniformly stable 3.) $z_{1:n} \sim p^{\otimes n}$. Then, for $w_n = \mathcal{A}(z_{1:n})$,

$$\mathbb{E}Pg_{w_n} \leq \inf_{\omega \in C} \left(Pg_w + h(\omega)\right) + \frac{\mathbb{E}G^2(z_1)}{\lambda(n+1)}$$

Proof.

Part 1: L.O.O Stability

Let
$$Z_{1:n+1} \sim P^{\otimes n+1}$$

$$L_n(w) = P_{z_{1:n}} \bar{g}_w$$

$$w_n = \mathcal{A}(z_{1:n}) = \operatorname{argmin}_w L_n(w)$$

$$L_{n+1}(w) = P_{z_{1:n+1}} g + \frac{n}{n+1} h(w)$$

$$w_{n+1} = \mathcal{A}(z_{1:n+1}) = \operatorname{argmin}_w L_{n+1}(w)$$

Assume L_n, L_{n+1} are differentiable. By F.O.O. Lemma (18.4): $\theta_n := \nabla L_n(w_n)$ s.t.

$$\theta_n^{\top} \left(w_{n+1} - w_n \right) \geqslant 0. \quad (*)$$

Lecture 18: November 2

$$\begin{aligned} &\text{Now, } L_{n+1}(w) = \frac{n}{n+1} L_n(w) + \frac{1}{n+1} g_w \left(z_{n+1} \right), \\ &\nabla L_{n+1} \left(w_n \right) = \frac{n}{n+1} \nabla L_n \left(w_n \right) + \frac{1}{n+1} \nabla g_{w_n} \left(z_{n+1} \right), \\ &\Rightarrow \nabla L_{n+1} \left(w_n \right)^T \left(w_{n+1} - w_n \right) \overset{(*)}{\geqslant} \frac{1}{n+1} \nabla g_{w_n} \left(z_{n+1} \right)^\top \left(w_{n+1} - w_n \right), \\ &\geqslant -\frac{G \left(z_{n+1} \right)}{n+1} \left\| w_{n+1} - w_n \right\|, \\ &\downarrow \\ &\| \nabla g_w \| \leqslant G, \end{aligned} \qquad \text{(Cauchy Schwartz)}.$$

Now by using F.O.O Lemma (Part 2), we get

$$\Rightarrow \|W_{n+1} - W_n\| \le \frac{G(z_{n+1})}{\lambda(n+1)}$$

$$\Rightarrow g_{w_n}(z_{n+1}) - g_{w_{n+1}}(z_{n+1}) \le G(z_{n+1}) \|w_n - w_{n+1}\|$$

$$\le \frac{G^2(z_{n+1})}{\lambda(n+1)}$$

$$\Rightarrow \mathcal{A} \text{ is } \frac{Q^2}{\lambda(t+1)} - L \cdot O.O \text{ stable}$$

Part 2: Uniform Stability Proof for Uniform stability follows similary but with the use of $\|\cdot\|_{\infty}$

Part 3: Symmetry

$$\begin{split} \mathcal{A}\left(z_{1:n+1}^{i\leftrightarrow n+1}\right) &= \mathcal{A}\left(z_{1:n+1}\right),\\ &\quad \varepsilon\left(z_{1:n+1}^{i\oplus n+1}\right) = \varepsilon\left(z_{1}:n-1\right). \end{split}$$
 LOO Theorem:
$$Z_{1:n} \sim P^{\otimes n}; W_{n}: A\left(Z_{1:n}\right), W_{n+1} = A\left(Z_{1:n+1}\right).\\ &\quad \mathbb{E}Pg_{w_{n}} \leq \mathbb{E}P_{n+1}g_{w_{n+1}} + \mathbb{E}P_{n+1}\varepsilon\left(z_{n:n+1}\right)\\ &\leq \mathbb{E}L_{n+1}\left(w_{n+1}\right) + \frac{\mathbb{E}G^{2}\left(z_{1}\right)}{\lambda(n+1)}\\ &\leq \mathbb{E}L_{n+1}(\omega) + \frac{1}{n+1}h(\omega) + \frac{\mathbb{E}G^{2}\left(z_{1}\right)}{\lambda(n+1)}\\ &= Pg_{w} + h(\omega) + \frac{\mathbb{E}G^{2}\left(z_{1}\right)}{\lambda(n+1)} \end{split}$$

18-4 Lecture 18: November 2

Example)

$$\begin{array}{l} \underset{l}{hingeloss} \\ l\left(f_{1}(x,y)\right) = \max(1 - f(\tilde{x})y,0), y \in \pm 1 \\ f_{w}(\alpha) = w^{\top}\psi(x), w \in \mathbb{R}^{d} \\ g(w) = \frac{\lambda}{2}\|w\|^{2}; \quad h = 0. \end{array}$$

Then
$$\mathbb{E}\left[P\ell \circ f_{w_n}\right] \leq \inf_{w} Pl \circ f_w + \frac{\lambda}{2} \|w\|^2 + \frac{\mathbb{E}\left(\|\psi(X)\| + \sqrt{2\lambda}\right)^2}{\lambda(n+1)}$$

Proof. Consider the function defined by

$$g_{\omega}(x,y) = \ell(f_{w_1}(x,y)) + \frac{\lambda}{2} ||\omega||^2.$$
 (18.1)

The mapping $\omega \mapsto g_w(z)$ induces a gradient

$$\nabla g_{w(1)} = \underbrace{l'(fw, z)}_{\in \{0, 1\}} \psi + \underbrace{\lambda \omega}_{\text{unbounded}}.$$
(18.2)

Given $z_{1:n} \in \mathbb{Z}^n$ and $w_n \in \operatorname{argmin} L_n(w)$, we have

$$\frac{\lambda}{2} \|w_n\|^2 \le L_n(w_n) \le L_n(0) \le 1 \Rightarrow \|w_n\| \le \sqrt{\frac{2}{\lambda}},$$
 (18.3)

where

properties hold:

$$\mathcal{A}(z_{1:n}) = \operatorname{argmin}_{w \in C} L_n(w) \quad \text{and} \quad C = \left\{ w : ||w|| \le \sqrt{\frac{2}{\lambda}} \right\}. \tag{18.4}$$

Theorem 18.5. Assume $\forall z \in Z$, the mapping $w \mapsto g_w(z)$ is λ -strongly convex and L-smooth. Then the following

 $\mathcal{A}\left(z_{1:n}\right) = \operatorname{argmin} P_{z_{1:n}} g_w,$ (18.5)

$$A(z_{1:n+1}) = \operatorname{argmin}_{w} P_{z_{1:n+1}} g_{w}, \tag{18.6}$$

$$\varepsilon\left(z_{1:n+1}, z_{n+1}'\right) = \left(1 + \frac{L}{2\lambda n}\right) \frac{\|\nabla g_{\mathcal{A}(z_{1:m})}\left(z_{n+1}'\right)\|_{2}^{2}}{\lambda n}.$$
(18.7)

1. A is ε -L.O.O stable.

2. If $L \leq 0.2\lambda n$, then

$$\mathbb{E}Pg_{\omega_n} \le \inf_{\omega} \left(Pg_{\omega} + \frac{2.2}{\lambda n} P \|\nabla g_{\omega}\|_2^2 \right). \tag{18.8}$$

Example: let the loss function l and regularization term g be defined as:

$$l(f_1(x,y)) = (f(x) - y)^2,$$

 $g(w) = \frac{\lambda}{2} ||w||_2^2.$

Lecture 18: November 2

Then, the model f parameterized by weights w, and the composite objective function g_{ω} can be expressed as:

$$\begin{split} f &= f_w = w^\top \psi, \\ g_\omega(z) &= l\left(f_w, z\right) + g(\omega), \text{ implying strong convexity } (\lambda - \text{SOC}). \\ \nabla g_w(z) &= 2\left(f_w(x) - y\right)\psi(x) + \lambda \omega, \\ \nabla^2 g_w(z) &= 2\psi(x)^\top \psi(x) + \lambda I, \\ \lambda_{\max}\left(\nabla^2 g_\omega(z)\right) &\leq 2\|\psi(x)\|^2 + \lambda. \end{split}$$

We define the Lipschitz constant L as:

$$L := \sup_{x} \left(2\|\psi(x)\|^2 + \lambda \right).$$

If $L \leq 0.2\lambda n$, it follows that:

$$\mathbb{E} P g_{w_n} \le \inf_{\omega} \left(P g_{\omega} + \frac{8.8}{\lambda n} \times \mathbb{E} \| \psi(X)^2 \| (f_w(x) - y)^2 \right).$$

Assuming there exists a w_* such that:

$$\mathbb{E}\left[\left(f_{w_*}(X)-Y\right)^2\mid X\right]\leq 0^2 \text{ almost surely (a.s.)},$$

We can deduce that:

$$\mathbb{E} P g_{w_n} \le \sigma^2 + \frac{\lambda}{2} \|w_*\|_2^2 + \frac{8.8\sigma^2}{\lambda n} \mathbb{E} \|\psi(x)\|^2.$$

H.W: Compare to result that does not use smoothness!

18.3 Bibliography