ViT Sequential Tuning Results on CIFAR-10

Tuning Summary

The following table summarizes the best configuration found at each stage of the sequential hyperparameter tuning process for a standard Vision Transformer (ViT) on the CIFAR-10 dataset. Each tuning run within a stage used 20 epochs. The overall best configuration from the tuning phase is used for a final 60-epoch training run.

Table 1: Best Results per Tuning Stage (20 Epochs/Run)

Stage	Goal	Best Config ID	Selected Parameter	Best Val Acc	Test Acc
1	Patch Size	Stage1_Patch_4	patch_size=4	0.7134	0.7106
2	Model Params	Stage2_Model_wider	arch=wider*	0.8030	0.7952
3	Data Augmentation	Stage3_Aug_Mild	aug=Mild**	0.8008	0.7994
4	Pos. Embedding	Stage4_Pos_sinusoidal	PE=sinusoidal	0.8154	0.8165
Overall Best Config from Tuning (Stage 4) 0.8154				0.8154	0.8165

^{*}Best architecture from Stage 2 (wider): embed_dim=384, depth=8, num_heads=12.

Note: Test accuracy corresponds to the model weights achieving the best validation accuracy during that specific run.

Final Model Training

The overall best configuration identified during tuning (Stage4_Pos_sinusoidal) was then trained for a longer duration (60 epochs). The results of this final training run should be reported separately (e.g., from the results_vit_concat_aug_final_train directory outputs).

^{**}Best augmentation from Stage 3 (Mild): ['random_crop', 'horizontal_flip'].