

AP8048C Datasheet

Audio Application Processor (ARM Cortex-M3 based)

Rev_{0.6}

DISCLAIMER

All information and data contained in this document are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this document invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on delivered development samples delivered. By this publication, Shanghai Mountain View Silicon Co., Ltd.("MVSILICON") does not assume responsibility for patent infringements or other rights of third parties that may result from its use.

No part of this publication may be reproduced, photocopied, stored in a retrieval system, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Shanghai Mountain View Silicon Co., Ltd.

Shanghai Mountain View Silicon Co., Ltd. assumes no responsibility for any errors contained herein.

Revision History

Date	Revision	Description
2013-10-9	V0.1	Initial
2013-10-21	V0.11	Change pin47 description
2013-11-4	V0.2	Change pin19's name
2014-03-18	V0.3	Change power supply voltage value
2014-04-11	V0.4	Add the pin function table, LDO330 V-I chart
		and the store/reflow requirements
2016-01-18	V0.5	Revised the description of chip features
2016-03-20	V0.6	Add the Codec's functional block

Contents

1. Overview	l
1.1 Features	1
1.2 CODEC Functional Block	2
2. Pin Description	2
2.1 Pin Description	3
3. Package	5
3.1 Package Diagram	5
3.2 Package Dimension Parameter	6
4. Electrical Specification	7
4.1 Absolute Maximum Ratings (Note 1)	7
4.2 Recommended Operating Conditions	7
4.3 Electrical Characteristics	7
4.4 LDO33O driving capability	7
4.5 Audio Performance	8
5. Store and Reflow	11
Contact Information	12
Figures 1. CODEGE 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
Figure 1 CODEC Functional Block.	
Figure 2 Package Diagram (LQFP48-7x7mm / TOP View)	
Figure 3 LQFP48-7x7mm Package Dimension Parameter	
Figure 4 LDO33O driving capability	
Tables	
Table 1 Pin Description	3
Table 2 GPIO Pin Function.	3
Table 3 Absolute Maximum Ratings	7
Table 4 Recommended Operating Conditions	7
Table 5 Electrical Characteristics	7
Table 6 Audio DAC Performance	8
Table 7 DAC LINE-IN (high quality) Channel Characteristics	9
Table 8 LINE-IN (normal quality) Channel Characteristics	
Table 9 MIC Channel Characteristics	10

1. Overview

As a highly integrated SoC for audio application processing, AP8048C integrates ARM Cortex-M3, OTG, SD/MMC card controller, SARADC, audio DAC, audio ADC, RTC and IR decoder in a single chip. AP8048C supports Bluetooth stack, various audio decoders, encoders, and effects. In general AP8048C offers low power consumption, flexible and more powerful wireless audio player solution.

1.1 Features

- ARM Cortex-M3, running @ 96MHz, with 128K byte SRAM
- Embedded LDO, with 3.3V output
- OTG 2.0 full-speed controller
- SD/MMC card controller
- 12-bit SARADC
- Low power RTC with NVM to save external RTC & EEPROM
- High speed UART with flow control
- Multiple PWM outputs
- IR (NEC) decoder
- Multiple GPIOs for various purposes
- Code encryption mechanism in SPI-flash
- Support FAT16/FAT32 file system
- Bluetooth stack including A2DP, AVRCP, HFP, SPP, OBEX etc
- Audio input and output
 - Stereo 20-bit high quality Audio DAC, SNR ≥95dB
 - Stereo 16-bit high quality Sigma Delta ADC, SNR ≥90dB
 - Programmable preamp gain for input from microphone and line-in
 - Programmable ALC / Noise Gate
 - Built-in headphone driver with "capless" option
 - >40mW output power into $16\Omega / 3.3V$
 - \bullet THD –80dB at 20mW, SNR 90dB with 16Ω load
 - Tone generator
 - I2S digital audio input/output
 - 9 sample rates supported: 8kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48kHz
- Audio Algorithms
 - Decoders: MP2/MP3, WMA, FLAC(8/16/24bit), AAC/MP4/M4A, WAV(IMA-ADPCM and raw PCM), AIF, AIFC
 - Encoder: MP2/MP3, IMA-ADPCM

- Effects:
 - Echo
 - ◆ Reverb
 - ◆ MV3D
 - ♠ MVBASS
 - ◆ Pitch shifter
 - ◆ Parametric EQ
 - Dynamic Range Compression (DRC)
 - ◆ Acoustic Echo Cancellation (AEC)
 - ◆ Programmable frequency shifter for howling prevention
 - ◆ Fast and accurate howling detection and suppression
- Serial wire debug (SWD) interface
- Firmware updatable through SD/USB drive

1.2 CODEC Functional Block

Figure 1 CODEC Functional Block

Notes.

- Adjust the system volume either through DRC pre-gain (DRC on) or mixer gain (DRC off).
- 2. Direct control of DAC digital volume is NOT recommended

2. Pin Description

AP8048C is a CMOS device. Floating level on input signals causes unstable device operation and abnormal current consumption. Pull-up or Pull-down resistors should be used appropriately for input or bidirectional pins.

Notation	Description
I	Input
0	Output
I/O	Bidirectional
PWR	Power
GND	Ground

2.1 Pin Description

Table 1 Pin Description

7.	T 5: //	T.m.	Table 11 in Description				
Pin name	Pin#	Type	Description				
	Audio CODEC interface pins						
DAC_R	6	AO	audio right channel output				
DAC_L	7	AO	audio left channel output				
DACVMID	5	AI	Internal voltage reference				
DAC_LINER	9	AI	Audio aux right in (high quality)				
DAC_LINEL	10	AI	Audio aux left in (high quality)				
MICIN	11	AI	MIC input				
MICBIAS	12	AI	MIC voltage reference				
			GPIO/MCU IO pins				
GPIO_A[10]	20	I/O	GPIO PORT, bank A				
GPIO_A[21:13]	29:21	I/O	GPIO PORT, bank A				
GPIO_A[25:24]	31:30	I/O	GPIO PORT, bank A				
GPIO_B[6:2]	36:32	I/O	GPIO PORT, bank B				
GPIO_B[9:8]	38:37	I/O	GPIO PORT, bank B				
GPIO_B[26:20]	46:40	I/O	GPIO PORT, bank B				
GPIO_B[30]/	47	I/O	GPIO PORT, bank B				
GPIO_B[27]							
GPIO_C[11]	48	I/O	GPIO PORT, bank C				
GPIO_C[14:12]	3:1	I/O	GPIO PORT, bank C				
			CLK pins				
XIN	14	I	32.768KHz Crystal oscillator input for PLL				
XOUT	13	О	32.768KHz Crystal oscillator output for PLL				
			Power/Ground pins				
DVSS	39	GND	ground for digital				
LDOIN	16	PWR	LDO power in				
LDO33O	15	PWR	LDO 3.3V out				
LDO12O	18	PWR	LDO 1.2V out				
RTCVDD	19	PWR	power for RTC				
DACVDD	8	PWR	power for DAC				
DACAVSS	4	GND	ground for DAC				
		-	MISC pins				
POWER KEY	17	I	Power Key				
			1				

Table 2 GPIO Pin Function

Pin Name	Other Function Assignment
GPIO_A[10]	IRO / PWCO / PWM3 / WAKEUP
GPIO A[13]	FSH HOLD

GPIO A[14]	FSH SCK
	FSH SI
GPIO_A[15]	_
GPIO_A[16]	FSH_WP
GPIO_A[17]	FSH_SO
GPIO_A[18]	FSH_CS
GPIO_A[19]	SD1_DAT / SPIM1_MISO
GPIO_A[20]	SD1_CLK / SPIM1_CLK
GPIO_A[21]	SD1_CMD / SPIM1_MOSI
GPIO_A[24]	BUART_RX / USB1_DP
GPIO_A[25]	BUART_TX / USB1_DM
GPIO_B[2]	MCLK0_IN / MCLK0_OUT
GPIO_B[3]	I2S0_LRCK / PCM0_SYNC / SD2_DAT / SPIM2_MISO
GPIO_B[4]	I2S0_BCLK / PCM0_CLK / SD2_CLK / SPIM2_CLK
GPIO_B[5]	ADC0 / I2S0_DO / PCM0_DO / SD2_CMD / SPIM2_MOSI / WAKEUP
GPIO_B[6]	ADC1 / I2S0_DIN / PCM0_DIN / PWM4 / UART_RX / WAKEUP
GPIO_B[8]	BUART_RX / PWM6
GPIO_B[9]	BUART_TX / PWM7
GPIO_B[20]	PWM7 / SD3_CMD / SPIM3_MOSI / SPIS_MOSI
GPIO_B[21]	PWM6 / SD3_CLK / SPIM3_CLK / SPIS_CLK
GPIO_B[22]	ADC3 / PWM5 / SD3_DAT / SPIM3_MISO / SPIS_MISO / WAKEUP
GPIO_B[23]	ADC4 / PWM4 / SPIS_CS / WAKEUP
GPIO_B[24]	ADC5 / I2S1_LRCK / PCM1_SYNC / PWM3 / WAKEUP
GPIO_B[25]	ADC6 / I2S1_BCLK / PCM1_CLK / PWM2 / WAKEUP
GPIO_B[26]	I2S1_DO / PCM1_DO / PWM1
GPIO_B[27]	I2S1_DIN / PCM1_DIN / PWM0
GPIO_B[30]	32K_OUT1 / BUART_CTS
GPIO_C[11]	LINE2_L(normal quality)
GPIO_C[12]	LINE2_R(normal quality) / SWV
GPIO_C[13]	LINE1_L(normal quality) / SWCLK
GPIO_C[14]	LINE1_R(normal quality) / SWD

Notes.

- 3. 47 Pin is a double bonding pin combined from GPIO_B[27] and GPIO_B[30], so only one of them can be activated at any given time, the other one should be set as an input without pull-down or pull-up.
- 4. All GPIOs can be used as external interrupt pins.
- 5. For each of the following modules, only one port group can be activated at any given time, e.g., either I2S0 or I2S1 can be activated, but not both at the same time.

Module	Port Groups
I2S	I2S0, I2S1
PCM	PCM0, PCM1
SD	SD1, SD2, SD3
SPIM	SPIM1, SPIM2, SPIM3

6. For the following modules, there are two scenarios:

Scenario 1, the signal bus can be activated separately, e.g., use BUART_TX or BUART_RX only; Scenario 2, only one port can be allocated to the signal bus at any given time, e.g., BUART_RX can be allocated to GPIO_A[24] or GPIO_B[8].

Module	Signal Bus	Ports

	BUART_TX	GPIO_A[25], GPIO_B[9]
BUART	BUART_RX	GPIO_A[24], GPIO_B[8]
	BUART_CTS	GPIO_B[30]

3. Package

3.1 Package Diagram

Figure 2 Package Diagram (LQFP48-7x7mm / TOP View)

3.2 Package Dimension Parameter

Figure 3 LQFP48-7x7mm Package Dimension Parameter

4. Electrical Specification

4.1 Absolute Maximum Ratings (Note 1)

Table 3 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Storage Temperature	TEMP_STG	-65 to 150	C

4.2 Recommended Operating Conditions

Table 4 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	LDOIN	3.35	5.0	5.5	V
IO Input Voltage	VIN	0		3.6	V
Operating Free Air Temperature	TEMP_OPR	-40		85	C

4.3 Electrical Characteristics

Table 5 Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIH	Input High Voltage		1.6		3.6	V
VIL	Input Low Voltage		-0.3		1.4	V
VOH	Output high voltage	@IOH=2mA	3.0			V
VOL	Output low voltage	@IOL=2mA			0.3	V
IL	Input leakage current		-10		10	uA
P_PLAY current	Current consumption when playing	Playing mode		30		mA
RTC current	Current consumption for RTC &			16		uA
	NVM					

4.4 LDO33O driving capability

Figure 4 LDO33O driving capability

Note. Not fully tested, characterized only; 2, LDOIN=5V, T_A=25°C

4.5 Audio Performance

Table 6 Audio DAC Performance

PARAMETER	TEST CONDITIONS	MIN	TYP	MA X	UNIT
Dynamic Range	No Filter		93.6/93.6		dB
	With A-Weighted Filter		95/95		dB
Signal-to-Noise Ratio	No Filter		95.5/95.6		dB
	With A-Weighted Filter		98/98		dB
THD+N	Peak THD+N (@0dBFS)		-81/-81		dB
	0dBFS		-75/-75		dB
Frequency Response			0.06		dBV
Output Swing			0.993		Vrms
Inter-channel Gain Mismatch			0.003		dB
Volume Control Step			TBD		dB
Volume Control Range			TBD		dB
Group Delay			80		us
Inter-channel Phase Deviation			0.01		degree
Crosstalk			-99/-98		dB

The measured output audio spectrum when the output is at -60 dBV

AP8048C Audio Application Processor

Table 7 DAC LINE-IN (high quality) Channel Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Dynamic Range	No Filter		88/88		dB
	With A-Weighted Filter		90/90		dB
Signal-to-Noise Ratio	No Filter		88/88		dB
	With A-Weighted Filter		90/90		dB
THD+N	Peak THD+N (@-2.4dBFS)		-84/-84		dB
Volume Control Step			TBD		dB
Volume Control Range			TBD		dB
Group Delay			26		fs
Power Consumption			7.6		mW
Power Supply Rejection Ratio	1kHz, 300mVrms		55		dB

The measured audio spectrum when the analog input is at -2.6 dBV

AP8048C Audio Application Processor

Table 8 LINE-IN (normal quality) Channel Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Dynamic Range	No Filter		86		dB
	With A-Weighted Filter		88		dB
Signal-to-Noise Ratio	No Filter		85		dB
	With A-Weighted Filter		87		dB
THD+N	Peak THD+N (@-12dBFS)		-75		dB
Group Delay			26		fs
Power Consumption			7.6		mW
Power Supply Rejection Ratio	1kHz, 300mVrms		55		dB

Table 9 MIC Channel Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Dynamic Range	No Filter		87.5/87.5		dB
	With A-Weighted Filter		90/90		dB
Signal-to-Noise Ratio	No Filter		85.5/85.5		dB
	With A-Weighted Filter		88.5/88.5		dB
THD+N	Peak THD+N (@-2dBFS)		-82/-82		dB
Group Delay			26		fs
Crosstalk			TBD		dB
Power Consumption			7.6		mW
Power Supply Rejection Ratio	1kHz, 300mVrms		55		dB

Note:

1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits.

5. Store and Reflow

AP8048C is a moisture sensitive component. The moisture sensitivity classification is Class 3.

It's important that the parts are handled under precaution and a proper manner.

The handling, baking and out-of-pack storage conditions of the moisture sensitive components are described in IPC/JEDC S-STD-033A.

The Technologies recommends utilizing the standard precautions listed below.

- 1. Calculated shelf life in Sealed Bag: 12 months at <40°C and <90% relative humidity(RH)
- 2. Peak Package Body Temperature: 250°C
- 3. After bag is opened, devices that will be subjected to reflow solder of other high temperature process must be:
 - a. Mounted within 168 hours of factory condition $\leq 30^{\circ}$ C / 60% RH
 - b. Stored at <10% RH if not used
- 4. Devices require baking, before mounting if:
 - a. Humidity indicator card is >10% when read at 23±5°C immediately after moisture barrier bag is opened
 - b. Items 3a or 3b is not met
- 5. If baking is required, please refer to J-STD-033 standard for low temperature (40°C) baking requirement in Tape/Reel form.

Contact Information

Shanghai Mountain View Silicon Co Ltd

Shanghai Headquarter:

Suite 4C, Hengyue International Building 3, 1238 Zhangjiang Road,

Shanghai, P.R. China Zip code: 201203

Tel: 86-21-68549851/68549853/68549857

Fax: 86-21-61630162

Shenzhen Sales & Technical Support Office:

Suite 6A Olympic Plaza, Shangbao Road, Futian District,

Shenzhen, Guangdong, P.R. China

Zip code: 518034

Tel: 86-755-83522955 Fax: 86-755-83522957

Email: support@mvsilicon.com Website: http://www.mvsilicon.com