REA1121

Mathematics for programming

Outline

- Review of Matrix II
- Dot product of vectors
- Basis for and dimension of vector spaces
- Exercises

REVIEW OF MATRIX II

- Linear combination
- Vector space and subspace
- Linear independence

- Linear combination
 - Combine scalar multiplication and addition of vectors
 - -cv + dw is an linear combination of v and w, when c and d are any scalars.

$$c\mathbf{v} + d\mathbf{w} = c \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + d \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{v} & \mathbf{w} \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$

- Vector space
 - A **real vector space** \mathbb{R}^n , is a set of vectors together with rules for vector addition and for multiplication by real numbers.
 - The space \mathbb{R}^n consists of all column vectors \boldsymbol{v} with n components.
 - 8 conditions required of every vector space
- Subspace
 - A **subspace** of a vector space is a set of vectors (including $\bf 0$) that satisfies two requirements: If $\bf v$ and $\bf w$ are vectors in the subspace and $\bf c$ is any scalar, then
 - v+w is in the subspace
 - cv is in the subspace

- Linear independence
 - The sequence of vectors v_1, \dots, v_n is **linearly** independent if the only combination that gives the zero vector is $0v_1 + 0v_2 + \dots + 0v_n$.
 - $-x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$ only happens when all x's are zero.
 - If a combination gives 0, when the x's are not all zero, the vectors are dependent.
 - The columns of a matrix A are *linearly independent* when the only solution to Ax = 0 is x = 0. No other combination Ax of the columns gives the zero vector.

DOT PRODUCT

Dot product

DEFINITION The *dot product* of $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 is the number $\mathbf{v} \cdot \mathbf{w}$:

$$\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 = \boldsymbol{v}^T \boldsymbol{w}$$

- Dot product is also known as
 - scalar product
 - inner product
 - projection product

The *dot product* of
$$v = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$:

The **dot product** of
$$v = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$:

$$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -4 + 4 = 0$$

$$\boldsymbol{w} \cdot \boldsymbol{v} = ?$$

The **dot product** of
$$v = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$:

$$\mathbf{v} \cdot \mathbf{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -4 + 4 = 0$$

$$\boldsymbol{w} \cdot \boldsymbol{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = -4 + 4 = 0$$

$$v \cdot w = w \cdot v$$

The **dot product** of
$$v = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$:

$$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -4 + 4 = 0$$

- We have three types of goods to buy and sell.
- Their prices are (p_1, p_2, p_3) for each unit the "price vector" p.
- The quantities we buy or sell are (q_1, q_2, q_3) -positive when we sell, negative when we buy the "quantity vector" q.
- How much is the total income?

- We have three types of goods to buy and sell.
- Their prices are (p_1, p_2, p_3) for each unit the "price vector" \boldsymbol{p} .
- The quantities we buy or sell are (q_1, q_2, q_3) -positive when we sell, negative when we buy the "quantity vector" \boldsymbol{q} .
- How much is the total income?

$$\boldsymbol{q} \cdot \boldsymbol{p} = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} \cdot \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = q_1 p_1 + q_2 p_2 + q_3 p_3$$

Dot product

$$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = v_1 w_1 + v_2 w_2$$

$$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = v_1 w_1 + v_2 w_2 + v_3 w_3$$

$$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{i=1}^n v_i w_i$$

The dot product of a vector $\boldsymbol{v} = [v_1 \\ v_2]$ with itself

$$\mathbf{v} \cdot \mathbf{v} = v_1 v_1 + v_2 v_2 = v_1^2 + v_2^2$$

The dot product of a vector $\boldsymbol{v} = [v_1 \\ v_2]$ with itself

$$\mathbf{v} \cdot \mathbf{v} = v_1 v_1 + v_2 v_2 = v_1^2 + v_2^2 = \left(\sqrt{v_1^2 + v_2^2}\right)^2$$

DEFINITION The *length* ||v|| of a vector v is the square root of $v \cdot v$

$$\|v\| = \sqrt{v \cdot v}$$

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1 v_1 + v_2 v_2} = \sqrt{v_1^2 + v_2^2}$$

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1 v_1 + v_2 v_2 + v_3 v_3}$$

$$= \sqrt{v_1^2 + v_2^2 + v_3^2}$$

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1 v_1 + v_2 v_2 + \dots + v_n v_n}$$

$$= \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} = \sqrt{\sum_{i=1}^n v_i^2}$$

Determine $\|v\|$

1.
$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

2.
$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

3.
$$v = \begin{bmatrix} \frac{7}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

Unit vector

DEFINITION A *unit vector* \boldsymbol{u} is a vector whose length equals one.

$$\boldsymbol{u} \cdot \boldsymbol{u} = 1$$

Unit vector

DEFINITION A *unit vector* u is a vector whose length equals one.

$$\mathbf{u} \cdot \mathbf{u} = 1$$

Unit vector

• $u = \frac{v}{\|v\|}$ is a *unit vector* in the same direction as v.

$$\boldsymbol{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\boldsymbol{u} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$

$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, u = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{14} \\ 2/\sqrt{14} \\ 3/\sqrt{14} \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, u = \frac{1}{\sqrt{30}} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{30} \\ 2/\sqrt{30} \\ 3/\sqrt{30} \\ 4/\sqrt{30} \end{bmatrix}$$

$$\beta = \alpha + \theta$$

$$u_r = \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix}$$

$$i_r = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$

$$u_r \cdot i_r$$
= $\cos \beta \cos \alpha + \sin \beta \sin \alpha$
= $\cos(\beta - \alpha)$
= $\cos \theta$

• For any two unit vectors $m{i}$ and $m{u}$,

$$\mathbf{u} \cdot \mathbf{i} = \cos \theta$$

heta is the angle between them

• For any two vectors \boldsymbol{v} and \boldsymbol{w} ,

$$\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|} \cdot \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|} = \cos \theta$$

$$\boldsymbol{v} \cdot \boldsymbol{w} = \|\boldsymbol{v}\| \|\boldsymbol{w}\| \cos \theta$$

Determine the angles between the pairs of vectors

$$\begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}$$
 and $\begin{bmatrix} -1/2 \\ \sqrt{3}/2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

$$\begin{bmatrix} \sqrt{2}/2 \\ 1/2 \\ -1/2 \end{bmatrix} \text{ and } \begin{bmatrix} -\sqrt{2}/2 \\ 1/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

BASIS FOR AND DIMENSION OF VECTOR SPACES

Span

DEFINITION A set of vectors *spans* a space if their linear combination fill the space.

•
$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ span ...?

•
$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$ span ...?

•
$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{w}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ span ...?

- $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ span the full two-dimensional space \mathbf{R}^2 .
- $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$ also span the full space \mathbf{R}^2 .
- $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{w}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ only span a line in \mathbf{R}^2 .

- In 3-dimensional space \mathbb{R}^3 ,
 - two non-zero vectors from the origin may span
 - a ____, if they are *linearly dependent*
 - a ____, if they are linearly independent
 - three non-zero vectors from the origin may span
 - a _____, if any of them is linearly dependent on any other one
 - a ____, if two of them are *linearly independent* and another one is *linearly dependent* on the two
 - a _____, if the set is linearly independent

- In 3-dimensional space \mathbb{R}^3 ,
 - two non-zero vectors from the origin may span
 - a line, if they are *linearly dependent*
 - a plane, if they are linearly independent
 - three non-zero vectors from the origin may span
 - a line, if any of them is linearly dependent on any other one
 - a plane, if two of them are linearly independent and another one is linearly dependent on the two
 - a space, if the set is linearly independent

Basis for vector spaces

- Two vectors can't span all of ${\bf R}^3$, even if they are independent.
- Four vectors can't be independent, even if they span ${\bf R}^3$.
- We need enough (but not more) independent vectors to span the space.

Basis for vector spaces

DEFINITION A *basis* for a vector space is a sequence of vectors with two properties:

- The basis vectors are linearly independent,
- They span the space.
- Any vector \boldsymbol{v} in the space is a combination of the basis vectors, because they span the space.
- The combination that produces \boldsymbol{v} is unique, because the basis vectors are independent.

- The columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2 .
- The basis vectors $i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are independent. They span \mathbf{R}^2 .

• The columns of the 3×3 identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 are the "standard basis" i, j, k .

• The columns of the
$$n \times n$$
 identity matrix
$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 give the "standard basis" for \mathbf{R}^n .

How many basis are there for any subspace of \mathbb{R}^n ?

How many bases are there for any subspace of \mathbb{R}^n ?

- Suppose a matrix A consisting of n basis vectors
- The only solution to Ax = 0 is $x = A^{-1}0 = 0$
- A is necessarily invertible.
- The solution to Ax = b, where b is any vector in the subspace, is $x = A^{-1}b$.

The columns of *every invertible* n by n matrix give a basis for any subspace of \mathbb{R}^n .

Dimension of vector spaces

 As there are many choices for the basis vectors, does the *number* of basis vectors change?

Dimension of vector spaces

DEFINITION The *dimension of a space* is the number of vectors in every basis.

- All bases for a vector space contains the same number of vectors.
- The dimension of the space \mathbb{R}^n is n.

For vectors
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$,

- What space V do they span?
- What is the dimension of V?

For vectors
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$,

- What space V do they span?
 - The space **V** contains all vectors $\begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$, it is the xy plane in \mathbf{R}^3 .
- What is the dimension of V?
 - The dimension of V is 2, as the basis contains 2 vectors.

Orthonormal basis

- A set of vectors v_1, \dots, v_n that meet the following requirements:
 - Basis
 - The basis vectors are linearly independent,
 - They span the space.
 - Orthogonal to each other
 - $v_i \cdot v_j = 0$, when $i \neq j$, $1 \leq i, j \leq n$
 - Unit vectors
 - $||v_i|| = 1, 1 \le i \le n$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Orthonormal basis

- Determining the coordinates of a vector with respect to a basis is generally NOT easy.
- With orthonormal basis, it is as easy as dot product of vectors
 - Projection of vectors

In the Oxy system, the coordinates of P: (x, y) $x = r \cos \varphi$, $y = r \sin \varphi$ In the Ox'y' system, the coordinates of P: (x', y') $x' = r \cos(\varphi - \theta)$, $y' = r \sin(\varphi - \theta)$

$$x' = r \cos \varphi \cos \theta + r \sin \varphi \sin \theta$$
$$= x \cos \theta + y \sin \theta$$

$$y' = r \sin \varphi \cos \theta - r \cos \varphi \sin \theta$$

= $y \cos \theta - x \sin \theta$

$$x' = r \cos \varphi \cos \theta + r \sin \varphi \sin \theta$$
$$= x \cos \theta + y \sin \theta$$

$$y' = r \sin \varphi \cos \theta - r \cos \varphi \sin \theta$$

= $y \cos \theta - x \sin \theta$

$$B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad X' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$X' = BX, \quad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Coordinate system Orthonormal basis Oxy u, v

Ox'y' u', v'

$$u' = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 $v' = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

Coordinate system

Orthonormal basis

Oxy

u, v

Ox'y'

 $\boldsymbol{u}', \boldsymbol{v}'$

$$u' = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 $v' = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}'^T \cdot \boldsymbol{P} \\ \boldsymbol{u}'^T \cdot \boldsymbol{P} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}'^T \\ \boldsymbol{v}'^T \end{bmatrix} \boldsymbol{P} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

EXERCISE

- Pick any numbers that add to x + y + z = 0. Find the angle between your vector $\mathbf{v} = [x \ y \ z]^T$ and the vector $\mathbf{w} = [z \ x \ y]^T$.
- Explain why $\frac{v \cdot w}{\|v\| \|w\|}$ is always $-\frac{1}{2}$.

Describe the subspace of \mathbf{R}^3 (is it a line or plane or \mathbf{R}^3 ?) spanned by

- (a) the two vectors $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$ and $\begin{bmatrix} -1 & -1 & 1 \end{bmatrix}^T$
- (b) the three vectors $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ and $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$
- (c) all vectors in ${\bf R}^3$ with whole number components
 - (d) all vectors with positive components.

Find a basis for each of these subspaces of \mathbf{R}^4

- (a) All vectors whose components are equal.
- (b) All vectors whose components add to zero.
- (c) All vectors that are perpendicular to
- $[1 \quad 1 \quad 0 \quad 0]^T \text{ and } [1 \quad 0 \quad 1 \quad 1]^T.$

- Find a basis for the space **S** of vectors $[a \ b \ c \ d]^T$ with a + c + d = 0 and also for the space **T** with a + b = 0 and c = 2d.
- What is the dimension of the intersection $S \cap T$?

The columns of matrix A form a set of vectors

matrix A form a set of vectors
$$A = \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{30}}{30} \\ \frac{2\sqrt{5}}{5} & \frac{\sqrt{6}}{3} & \frac{\sqrt{30}}{15} \\ 0 & \frac{\sqrt{6}}{6} & -\frac{\sqrt{30}}{6} \end{bmatrix}$$

- a) Are they basis vectors?
- b) Are they orthogonal to each other?
- c) Do they form a orthonormal basis?
- d) If c) is correct, try to find the coordinates of $p = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ with respect to the bases given in A.

• For a specific example, pick $v = \begin{bmatrix} 1 & 2 & -3 \end{bmatrix}^T$ and then $w = \begin{bmatrix} -3 & 1 & 2 \end{bmatrix}^T$. In this example,

$$\cos \theta = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\|[\boldsymbol{w}]} = \frac{-7}{\sqrt{14}\sqrt{14}} = -\frac{1}{2}$$
$$\theta = 120^{\circ}$$

• This always happens when x + y + z = 0:

$$\mathbf{v} \cdot \mathbf{w} = xy + xz + yz$$

$$= \frac{1}{2} ((x + y + z)^2 - (x^2 + y^2 + z^2))$$

$$= 0 - \frac{1}{2} ||\mathbf{v}|| ||\mathbf{w}||$$

- a) Line in \mathbb{R}^3
- b) Plane in \mathbb{R}^3
- c) All of \mathbb{R}^3
- d) All of \mathbf{R}^3

- Note. The bases are not unique!
- a) $[1 1 1]^T$ for the space of all constant vectors $[c c c c]^T$
- b) $\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T$ for the space of vectors with sum of components = 0
- c) $[1 -1 -1 0]^T$, $[1 -1 0 -1]^T$ for the space perpendicular to $[1 1 0 0]^T$, $[1 0 1]^T$

Bases for S:

$$\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T$$
 $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$
 $\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T$

Bases for T:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}^T$$
 $\begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}^T$

• Solutions to the three equations simultaneously: $c[3 -3 -2 -1]^T$, c is a number, so the dimension of $S \cap T$ is 1.

- Yes, the columns vectors of A form a orthonormal basis for \mathbf{R}^3 .
- The coordinates with respect to the this basis:

$$A^{T}\boldsymbol{p} = \begin{bmatrix} \frac{3\sqrt{5}}{5} \\ \frac{\sqrt{6}}{3} \\ -\frac{2\sqrt{30}}{15} \end{bmatrix}$$