PCI-DAS6402/16

PCI Bus-Compatible Data Acquisition Board

User's Guide

PCI-DAS6402/16

PCI Bus-Compatible Data Acquisition Board

User's Guide

Document Revision 7, June, 2006 © Copyright 2006, Measurement Computing Corporation

Your new Measurement Computing product comes with a fantastic extra —

Management committed to your satisfaction!

Refer to www.mccdaq.com/execteam.html for the names, titles, and contact information of each key executive at Measurement Computing.

Thank you for choosing a Measurement Computing product—and congratulations! You own the finest, and you can now enjoy the protection of the most comprehensive warranties and unmatched phone tech support. It's the embodiment of our two missions:

- To offer the highest-quality, computer-based data acquisition, control, and GPIB hardware and software available—at the best possible price.
- To offer our customers superior post-sale support—FREE. Whether providing unrivaled telephone technical and sales support on our latest product offerings, or continuing that same first-rate support on older products and operating systems, we're committed to you!

Lifetime warranty: Every hardware product manufactured by Measurement Computing Corporation is warranted against defects in materials or workmanship for the life of the product. Products found defective are repaired or replaced promptly.

Lifetime Harsh Environment Warranty®: We will replace any product manufactured by Measurement Computing Corporation that is damaged (even due to misuse) for only 50% of the current list price. I/O boards face some tough operating conditions—some more severe than the boards are designed to withstand. When a board becomes damaged, just return the unit with an order for its replacement at only 50% of the current list price. We don't need to profit from your misfortune. By the way, we honor this warranty for any manufacturer's board that we have a replacement for.

30 Day Money Back Guarantee: You may return any Measurement Computing Corporation product within 30 days of purchase for a full refund of the price paid for the product being returned. If you are not satisfied, or chose the wrong product by mistake, you do not have to keep it. Please call for an RMA number first. No credits or returns accepted without a copy of the original invoice. Some software products are subject to a repackaging fee.

These warranties are in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular application. The remedies provided herein are the buyer's sole and exclusive remedies. Neither Measurement Computing Corporation, nor its employees shall be liable for any direct or indirect, special, incidental or consequential damage arising from the use of its products, even if Measurement Computing Corporation has been notified in advance of the possibility of such damages.

Trademark and Copyright Information

TracerDAQ, Universal Library, Harsh Environment Warranty, Measurement Computing Corporation, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation.

Windows, Microsoft, and Visual Studio are either trademarks or registered trademarks of Microsoft Corporation

LabVIEW is a trademark of National Instruments.

CompactFlash is a registered trademark of SanDisk Corporation.

All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Measurement Computing Corporation neither for its use; nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or copyrights of Measurement Computing Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation. Life support devices/systems are devices or systems which, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

Table of Contents

Preface About this User's Guide	vi
What you will learn from this user's guide	
Conventions in this user's guide	
Where to find more information	
Chapter 1	
Introducing the PCI-DAS6402/16	1-1
Overview: PCI-DAS6402/16 features	1-1
Software features	1-1
PCI-DAS6402/16 block diagram	1-2
Chapter 2 Installing the PCI-DAS6402/16	2-1
What comes with your PCI-DAS6402/16 shipment?	
Hardware	
Optional components	
Unpacking the PCI-DAS6402/16	2-2
Installing the software	2-2
Installing the PCI-DAS6402/16	2-2
Configuring the PCI-DAS6402/16	2-2
Differential input mode	
Single-ended input mode	
Connecting the board for I/O operations	2-3
Pinout – main I/O connector	2-4
CablingField wiring, signal termination and conditioning	
Chapter 3 Programming and Developing Applications	3-1
Programming languages	
Packaged applications programs	
Register-level programming	
Chapter 4	
Calibrating the PCI-DAS6402/16	4-1
Overview	4-1
Calibration theory	4-1
Chapter 5 Specifications	5-1
Analog input	5-1
Accuracy	
System throughput	
Analog input drift	5-3
Noise performance	
Analog output	
Accuracy	
Analog output pacing and triggering	
Digital input/output	5-6

Interrupts	5-6
Counters	5-7
Pacer	5-7
Power consumption	5-7
Environmental	
Mechanical	5-8
Main connector and pin out	5-8
Auxiliary DIO connector and pin out	5-11

About this User's Guide

What you will learn from this user's guide

This user's guide explains how to install, configure, and use the PCI-DAS6402/16 so that you get the most out of its analog and digital I/O features.

This user's guide also refers you to related documents available on our web site, and to technical support resources.

Conventions in this user's guide

For more information on ...

Text presented in a box signifies additional information and helpful hints related to the subject matter you are reading.

Caution!	Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.
<#:#>	Angle brackets that enclose numbers separated by a colon signify a range of numbers, such as those assigned to registers, bit settings, etc.
bold text	Bold text is used for the names of objects on the screen, such as buttons, text boxes, and check boxes. For example:
	1. Insert the disk or CD and click the OK button.
italic text	<i>Italic</i> text is used for the names of manuals and help topic titles, and to emphasize a word or phrase. For example:
	The <i>Însta</i> Cal installation procedure is explained in the <i>Quick Start Guide</i> .
	<i>Never</i> touch the exposed pins or circuit connections on the board.

Where to find more information

The following electronic documents provide helpful information relevant to the operation of the PCI-DAS6402/16.

- MCC's *Specifications: PCI-DAS6402/16* (the PDF version of the *Specifications* chapter in this guide) is available on our web site at www.mccdaq.com/pdfs/PCI-DAS6402-16.pdf.
- MCC's Quick Start Guide is available on our web site at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf.
- MCC's Guide to Signal Connections is available on our web site at www.mccdaq.com/signals/signals.pdf.
- MCC's Universal Library User's Guide is available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf.
- MCC's Universal Library Function Reference is available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.
- MCC's *Universal Library for LabVIEW*[™] *User's Guide* is available on our web site at www.mccdag.com/PDFmanuals/SM-UL-LabVIEW.pdf.

PCI-DAS6402/16 User's Guide (this document) is also available on our web site at www.mccdag.com/PDFmanuals/PCI-DAS6402-16.pdf.

Introducing the PCI-DAS6402/16

Overview: PCI-DAS6402/16 features

This manual explains how to install and use the PCI-DAS6402/16.

The PCI-DAS6402/16 is a multifunction measurement and control board designed to operate in computers with PCI bus accessory slots. The architecture of the board is loosely based on the original CIO-DAS16, the standard of ISA bus data acquisition.

The PCI-DAS6402/16 provides the following features:

- 32 differential or 64 single-ended 16-bit analog inputs
- 100-pin high density I/O connector and a 40-pin auxiliary connector
- 200 kHz sample rate
- Two 16-bit analog outputs with update rates of up to 100 kHz
- One 16-bit counter
- 24 DIO bits on the auxiliary connector; four DI bits and 4 DO bits on the 100-pin connector
- Provides arbitrary waveform generation

Analog input ranges are selectable via software as bipolar or unipolar. Bipolar input ranges are $\pm 10 \text{ V}$, $\pm 5 \text{ V}$, $\pm 2.5 \text{ V}$ and $\pm 1.25 \text{ V}$. Unipolar input ranges are 0 to 10 V, 0 to 5 V, 0 to 2.5 V and 0 to 1.25 V. The PCI-DAS6402/16 has an analog trigger input. The trigger level and direction are software configurable.

The PCI-DAS6402/16 board is completely plug and play, with no switches, jumpers or potentiometers to set. All board addresses and interrupt sources are set with software.

Software features

For information on the features of *Insta*Cal and the other software included with your PCI-DAS6402/16, refer to the *Quick Start Guide* that shipped with your device. The *Quick Start Guide* is also available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf.

Check <u>www.mccdaq.com/download.htm</u> for the latest software version or versions of the software supported under less commonly used operating systems.

PCI-DAS6402/16 block diagram

PCI-DAS6402/16 functions are illustrated in the block diagram shown here.

Figure 1-1. PCI-DAS6402/16 functional block diagram

Installing the PCI-DAS6402/16

What comes with your PCI-DAS6402/16 shipment?

The following items are shipped with the PCI-DAS6402/16.

Hardware

PCI-DAS6402/16

Additional documentation

In addition to this hardware user's guide, you should also receive the *Quick Start Guide* (available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf). This booklet supplies a brief description of the software you received with your PCI-DAS6402/16 and information regarding installation of that software. Please read this booklet completely before installing any software or hardware.

Optional components

If you ordered any of the following products with your board, they should be included with your shipment.

Cables

Signal conditioning accessories
 MCC provides signal termination products for use with the PCI-DAS6402/16. Refer to the "Field wiring, signal termination and conditioning" section on page 2-9 for a complete list of compatible accessory products.

Unpacking the PCI-DAS6402/16

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the PCI-DAS6402/16 from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

If any components are missing or damaged, notify Measurement Computing Corporation immediately by phone, fax, or e-mail:

Phone: 508-946-5100 and follow the instructions for reaching Tech Support.

• Fax: 508-946-9500 to the attention of Tech Support

■ Email: techsupport@mccdag.com

Installing the software

Refer to the *Quick Start Guide* for instructions on installing the software on the *Measurement Computing Data Acquisition Software CD*. This booklet is available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf.

Installing the PCI-DAS6402/16

The PCI-DAS6402/16 board is completely plug-and-play. There are no switches or jumpers to set on the board. Configuration is controlled by your system's BIOS. To install your board, follow the steps below.

Install the MCC DAQ software before you install your board

The driver needed to run your board is installed with the MCC DAQ software. Therefore, you need to install the MCC DAQ software before you install your board. Refer to the *Quick Start Guide* for instructions on installing the software.

- 1. Turn your computer off, open it up, and insert your board into an available PCI slot.
- 2. Close your computer and turn it on.

If you are using an operating system with support for plug-and-play (such as Windows 2000 or Windows XP), a dialog box opens as the system loads, indicating that new hardware has been detected. If the information file for this board is not already loaded onto your PC, you are prompted for the disk containing this file. The *Measurement Computing Data Acquisition Software* CD supplied with your board contains this file. If required, insert the disk or CD and click **OK**.

3. To test your installation and configure your board, run the *Insta*Cal utility you installed in the previous section. Refer to the *Quick Start Guide* that came with your board www.mccdaq.com/PDFmanuals/sminstallation.pdf for information on how to initially set up and load *Insta*Cal.

If your board has been powered-off for more than 10 minutes, allow your computer to warm up for at least 15 minutes before acquiring data. This warm-up period is required in order for the board to achieve its rated accuracy. The high speed components used on the board generate heat, and it takes this amount of time for a board to reach steady state if it has been powered off for a significant amount of time.

Configuring the PCI-DAS6402/16

All of the hardware configuration options on the PCI-DAS6402/16 are software controlled. You can select some of the configuration options using *Insta*Cal, such as the analog input configuration (16 single-ended or eight differential channels), the edge used for triggering when using an external pacer and the source for the two independent counters. Once selected, any program that uses the Universal Library will initialize the hardware according to these selections.

Information on signal connections

General information regarding signal connection and configuration is available in the Guide to Signal Connections. This document is available on our web site at www.mccdaq.com/signals/signals.pdf).

Differential input mode

When all channels are configured for differential input mode, 32 analog input channels are available. In this mode, the input signal is measured with respect to the low input. The input signal is typically delivered through three wires:

- The wire carrying the signal to be measured connects to CH# HI.
- The wire carrying the reference signal connects to CH# LO.
- The third wire, typically a system ground, is connected to LLGND.

Differential input mode is the preferred configuration for applications in noisy environments or when the signal source is referenced to a potential other than PC ground.

Single-ended input mode

When all channels are configured for single-ended input mode, 64 analog input channels are available. In this mode, the input signal is referenced to the board's signal ground (LLGND). The input signal is delivered through two wires:

- The wire carrying the signal to be measured connects to CH# IN HI.
- The second wire is connected to LLGND.

with the BP40-37-x and the C37FF-x or

C37FFS-x cable

Connecting the board for I/O operations

The PCI-DAS6402/16 uses a 100-pin I/O connector (refer to Table 2-2 on page 2-4 and Table 2-3 on page 2-5). The 100-pin connector provides a much greater signal density than the traditional 37-pin connector. Make accurate notes and pay careful attention to wire connections. In a large system, a misplaced wire can create hours of unnecessary troubleshooting.

Connectors, cables – main I/O connector

Table 2-1 lists the board connectors, applicable cables, and compatible accessory products for the PCI-DAS6402/16.

Connector type	 Main connector: 100-pin high-density Robinson-Nugent Auxiliary digital connector: 40-pin header connector
Compatible cable with the main connector	C100FF-x ribbon cable. $x = length$ in feet
Compatible cables with the 40-pin auxiliary	C40FF-x cable ($x = length in feet$)
connector	C40-37F-x cable ($x = length in feet$)
	BP40-37 (Translates to a standard CIO-DIO24 type)
Compatible accessory products with the C100FF-x	 BNC-16SE BNC-16DI CIO-MINI50 CIO-TERM100 SCB-50
Compatible accessory products with the C40FF-x	CIO-MINI40
Compatible accessory products with the C40-37F-x cable or	 CIO-MINI37 SCB-37 CIO-ERB24 CIO-ERB08

SSR-RACK24

SSR-RACK08

Caution! When connecting a cable to the board's I/O connector, make sure that the arrow indicating pin 1 on the board connector lines up with the arrow indicating pin 1 on the cable connector. Incorrectly connected cables can damage the board and the I/O controller.

Pinout - main I/O connector

Table 2-2. . 32-channel differential mode pin out

Signal Name	Pin		Pin	Signal Name
GND	100	• •	50	GND
EXTERNAL INTERRUPT	99	• •	49	SSH OUT/DAC PACER OUT
A/D PACER GATE	98	• •	48	PC +5 V
EXTERNAL D/A TRIGGER/PACER GATE	97	• •	47	A/D STOP TRIGGER IN
D/A EXTERNAL PACER INPUT	96	• •	46	DIN1
A/D INTERNAL PACER OUTPUT	95	• •	45	A/D START TRIGGER IN
DIN3	94	••	44	DIN0
DIN2	93	• •	43	ANALOG TRIGGER IN
-12 V	92	• •	42	A/D EXTERNAL PACER
GND	91	• •	41	CTR1 OUT
+12 V	90	• •	40	CTR1 GATE
GND	89	• •	39	CTR1 CLK
DOUT3	88	• •	38	D/A OUT 1
DOUT2	87	• •	37	D/A GND 1
DOUT1	86	••	36	D/A OUT 0
DOUT0	85	• •	35	D/A GND 0
CH31 LO	84	• •	34	CH15 LO
CH31 HI	83	• •	33	CH15 HI
CH30 LO	82		32	CH14 LO
CH30 HI	81		31	CH14 HI
CH29 LO	80	• •	30	CH13 LO
CH29 HI	79	• •	29	CH13 HI
CH28 LO	78	• •	28	CH12 LO
CH28 HI	77	• •	27	CH12 HI
CH27 LO	76	• •	26	CH11 LO
CH27 HI	75	••	25	CH11 HI
CH26 LO	74	•••	24	CH10 LO
CH26 HI	73	••	23	CH10 HI
CH25 LO	72	• •	22	CH9 LO
CH25 HI	71	• •	21	CH9 HI
CH24 LO	70	• •	20	CH8 LO
CH24 HI	69	• •	19	CH8 HI
LLGND	68	• •	18	LLGND
CH23 LO	67	••	17	CH7 LO
CH23 HI	66	••	16	CH7 HI
CH22 LO	65		15	CH6 LO
CH22 HI	64	•••	14	CH6 HI
CH21 LO	63	••	13	CH5 LO
CH21 HI	62	•••	12	CH5 HI
CH20 LO	61		11	CH4 LO
CH20 HI	60	••	10	CH4 HI
CH19 LO	59	••	9	CH3 LO
CH19 HI	58	••	8	CH3 HI
CH19111	57	••	7	CH2 LO
CH18 HI	56	••	6	CH2 HI
CH18 HI	55	••	5	CH1 LO
CH17 HI	54		4	CH1 HI
CH17 TII	53	••	3	CH0 LO
CH16 HI	52	••	2	CH0 LO
LLGND	51		1	LLGND
LLGIND	51	• •	L'	LLUIND

PCI slot ↓

Table 2-3. 64-channel single-ended mode pin out

Signal Name	Pin		Pin	Signal Name
GND	100	• •	50	GND
EXTERNAL INTERRUPT	99	• •	49	SSH OUT/DAC PACER OUT
A/D PACER GATE	98	• •	48	PC +5 V
EXTERNAL D/A TRIGGER/PACER GATE	97	• •	47	A/D STOP TRIGGER IN
D/A EXTERNAL PACER INPUT	96	• •	46	DIN1
A/D INTERNAL PACER OUTPUT	95	• •	45	A/D START TRIGGER IN
DIN3	94	• •	44	DIN0
DIN2	93	• •	43	ANALOG TRIGGER IN
-12 V	92	• •	42	A/D EXTERNAL PACER
GND	91	• •	41	CTR1 OUT
+12 V	90	• •	40	CTR1 GATE
GND	89	• •	39	CTR1 CLK
DOUT3	88	• •	38	D/A OUT 1
DOUT2	87	• •	37	D/A GND 1
DOUT1	86	• •	36	D/A OUT 0
DOUT0	85	• •	35	D/A GND 0
CH63 IN	84	••	34	CH47 IN
CH31 IN	83	••	33	CH15 IN
CH62 IN	82	••	32	CH46 IN
CH30 IN	81	• •	31	CH14 IN
CH61 IN	80	• •	30	CH45 IN
CH29 IN	79	• •	29	CH13 IN
CH60 IN	78	• •	28	CH44 IN
CH28 IN	77	• •	27	CH12 IN
CH59 IN	76	• •	26	CH43 IN
CH27 IN	75	• •	25	CH11 IN
CH58 IN	74	••	24	CH42 IN
CH26 IN	73	• •	23	CH10 IN
CH57 IN	72	• •	22	CH41 IN
CH25 IN	71	• •	21	CH9 IN
CH56 IN	70	• •	20	CH40 IN
CH24 IN	69	• •	19	CH8 IN
LLGND	68	• •	18	LLGND
CH55 IN	67	• •	17	CH39 IN
CH23 IN	66	• •	16	CH7 IN
CH54 IN	65	• •	15	CH38 IN
CH22 IN	64	• •	14	CH6 IN
CH53 IN	63	• •	13	CH37 IN
CH21 IN	62	• •	12	CH5 IN
CH52 IN	61	• •	11	CH36 IN
CH20 IN	60	• •	10	CH4 IN
CH51 IN	59	• •	9	CH35 IN
CH19 IN	58	• •	8	CH3 IN
CH50 IN	57	• •	7	CH34 IN
CH18 IN	56	• •	6	CH2 IN
CH49 IN	55	• •	5	CH33 IN
CH17 IN	54	• •	4	CH1 IN
CH48 IN	53	• •	3	CH32 IN
CH16 IN	52	• •	2	CH0 IN
LLGND	51	• •	1	LLGND

PCI slot ↓

Signal Name	Pin		Pin	Signal Name
NC	40	• •	39	NC
NC	38	••	37	DGND
FIRSTPORTA Bit 0	36	••	35	PC +5V
FIRSTPORTA Bit 1	34	••	33	DGND
FIRSTPORTA Bit 2	32	••	31	NC
FIRSTPORTA Bit 3	30	••	29	DGND
FIRSTPORTA Bit 4	28	••	27	NC
FIRSTPORTA Bit 5	26	••	25	DGND
FIRSTPORTA Bit 6	24	••	23	NC
FIRSTPORTA Bit 7	22	••	21	DGND
FIRSTPORTC Bit 0	20	• •	19	FIRSTPORTB Bit 0
FIRSTPORTC Bit 1	18	• •	17	FIRSTPORTB Bit 1
FIRSTPORTC Bit 2	16	• •	15	FIRSTPORTB Bit 2
FIRSTPORTC Bit 3	14	••	13	FIRSTPORTB Bit 3
FIRSTPORTC Bit 4	12	••	11	FIRSTPORTB Bit 4
FIRSTPORTC Bit 5	10	••	9	FIRSTPORTB Bit 5
FIRSTPORTC Bit 6	8	••	7	FIRSTPORTB Bit 6
FIRSTPORTC Bit 7	6	••	5	FIRSTPORTB Bit 7
DGND	4	••	3	NC
PC +5V	2	••	1	NC

Table 2-4. Auxiliary/digital connector pin out

Bottom of board \

Cabling

Use a C100FF-x 100-pin cable to connect signals to the PCI-DAS6402/16 board. This cable consists of two 50-pin ribbon cables that are joined together at a 100-pin high density header connector (Figure 2-1.)

Figure 2-1. C100FF-x cable

For signal connections and termination, you can use the CIO-MINI40 screw terminal board and C40FF-x cable. For connections to 37-pin screw terminal boards, you can use the C40-37F-x cable.

Figure 2-2. C40FF-x cable

Figure 2-3. C40-37F-x cable

For digital signal conditioning, you can connect the BP40-37 cable to a C37FF-x or C37FFS-x cable, and then connect one of these cables to the 37-pin connector on MCC's digital signal conditioning boards. Refer to page 2-9 for a list of compatible accessories.

Figure 2-4. BP40-37 cable

Figure 2-5. BP40-37 cable pin out

Figure 2-6. C37FF-x cable

Figure 2-7. C37FFS-x cable

40-pin to 37-pin signal mapping

Signal mapping on the C40-37F-x and the BP40-37-x cables is not 1:1. Table 2-5 lists the pin numbers of the signals on the 40-pin end and the pin numbers of the associated signals on the 37-pin end.

Table 2-5. Signal mapping on the C40-37F-x and BP40-37F cables

	40-pin cable end	37-pin cable end	
Pin	Signal Name	Pin	Signal Name
1	INTERRUPT IN	1	INTERRUPT IN
2	+5V	20	+5V
3	INTERRUPT ENABLE	2	INTERRUPT ENABLE
4	GND	21	GND
5	Port B 7	3	Port B 7
6	Port C 7	22	Port C 7
7	Port B 6	4	Port B 6
8	Port C 6	23	Port C 6
9	Port B 5	5	Port B 5
10	Port C 5	24	Port C 5
11	Port B 4	6	Port B 4
12	Port C 4	25	Port C 4
13	Port B 3	7	Port B 3
14	Port C 3	26	Port C 3
15	Port B 2	8	Port B 2
16	Port C 2	27	Port C 2
17	Port B 1	9	Port B 1
18	Port C 1	28	Port C 1
19	Port B 0	10	Port B 0
20	Port C 0	29	Port C 0
21	GND	11	GND
22	Port A 7	30	Port A 7
23	N/C	12	N/C
24	Port A 6	31	Port A 6
25	GND	13	GND
26	Port A 5	32	Port A 5
27	N/C	14	N/C
28	Port A 4	33	Port A 4
29	GND	15	GND
30	Port A 3	34	Port A 3
31	N/C	16	N/C
32	Port A 2	35	Port A 2
33	GND	17	GND
34	Port A 1	36	Port A 1
35	+5V	18	+5V
36	Port A 0	37	Port A 0
37	GND	19	GND
38	N/C		
39	N/C		
40	N/C		

Field wiring, signal termination and conditioning

You can use the following MCC screw terminal boards to terminate field signals and route them into the PCI-DAS6402/16 board using the C100FF-x cable:

- **BNC-16SE** 16-channel single-ended BNC connector box. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=101&pf_id=713.
- **BNC-16DI** Eight-channel differential BNC connector box. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=101&pf_id=714.
- **CIO-MINI50** 50-pin screw terminal board. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=102&pf_id=258.
- CIO-TERM100 100 pin, 16 x 4 screw terminal board. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=102&pf_id=281.
- SCB-50 50-conductor, shielded signal connection box. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=196&pf_id=1168.

You can use the following MCC screw terminal board to terminate field signals and route them into the PCI-DAS6402/16 board using the C40FF-x cable.

■ **CIO-MINI40** – 50-pin screw terminal board. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=102&pf_id=257.

For digital signal conditioning, you can connect the PCI-DAS6402/16 to the following boards using the C40-37F-x cable, or the BP40-37 cable with either the C37FF-x or C37FFS-x cable.

- **SCB-37** 37-conductor, shielded signal connection/screw terminal box. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=196&pf_id=1166.
- CIO-MINI37 37-pin screw terminal board. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept id=102&pf id=1543.
- CIO-ERB24 24 Form C relays, 6 Amp relay accessory board for digital signal conditioning. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=123&pf_id=241.
- CIO-ERB08 Eight Form C relays, 6 Amp relay accessory board for digital signal conditioning. Details on this product are available on our web site at http://www.mccdaq.com/cbicatalog/cbiproduct.asp?dept id=123&pf id=240.
- **SSR-RACK24** 24-position solid state relay rack. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept_id=122&pf_id=1193.
- SSR-RACK08 Eight-channel solid state relay rack. Details on this product are available on our web site at www.mccdaq.com/cbicatalog/cbiproduct.asp?dept id=122&pf id=620.

Programming and Developing Applications

After following the installation instructions in <u>Chapter 2</u>, your board should now be installed and ready for use. Although the board is part of the larger DAS family, in general there may be no correspondence among registers for different boards. Software written at the register level for other DAS models will not function correctly with your board.

Programming languages

Measurement Computing's Universal Library[™] provides access to board functions from a variety of Windows programming languages. If you are planning to write programs, or would like to run the example programs for Visual Basic[®] or any other language, please refer to the *Universal Library User's Guide* (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Packaged applications programs

Many packaged application programs, such as SoftWIRE® and HP-VEE™, now have drivers for your board. If the package you own does not have drivers for the board, please fax or e-mail the package name and the revision number from the install disks. We will research the package for you and advise how to obtain drivers.

Some application drivers are included with the Universal Library package, but not with the application package. If you have purchased an application package directly from the software vendor, you may need to purchase our Universal Library and drivers. Please contact us by phone, fax or e-mail:

■ Phone: 508-946-5100 and follow the instructions for reaching Tech Support.

■ Fax: 508-946-9500 to the attention of Tech Support

■ Email: techsupport@mccdag.com

Register-level programming

You should use the Universal Library or one of the packaged application programs mentioned above to control your board. Only experienced programmers should try register-level programming. If you need to program at the register level in your application, you can find more information in the *Register Map for the PCI-DAS6402/16 Series* (available at www.mccdaq.com/registermaps/RegMapPCI-DAS6402-16.pdf).

Calibrating the PCI-DAS6402/16

Overview

The PCI-DAS6402/16 provides self-calibration of the analog inputs and outputs, eliminating the need for external equipment and user adjustments. All adjustments are made via 8-bit calibration DACs and digital potentiometers that are referenced to an on-board factory-calibrated standard. The board is fully calibrated at the factory with calibration coefficients stored in nvRAM. At run time, these calibration factors are loaded into system memory and are automatically retrieved each time a different DAC/ADC range is specified.

You can recalibrate any time using factory voltage standards by selecting the **Calibrate** option in *Insta*Cal. A full calibration typically requires less than two minutes. We strongly recommend that you turn your computer on, and allow at least 60 minutes for the internal computer case temperature to stabilize prior to calibrating the board.

Calibration theory

Offset calibration for the analog front end is performed via adjustments of the ADC itself. Front-end gain adjustment is performed only via the ADC reference. This strategy was chosen since the gain tolerance of the in-amp circuit is quite good and there is adequate gain tuning range using only the ADC.

Analog input calibration is shown in Figure 4-1.

Figure 4-1. Analog input calibration

The analog output circuits are calibrated for gain and offset. Gain calibration of the analog outputs is performed via DAC reference front-end calibration system.

Analog output calibration is shown in Figure 4-2. This circuit is duplicated for both DAC0 and DAC1.

Figure 4-2. Analog output calibration

Specifications

Typical for 25 °C unless otherwise specified. Specifications in *italic text* are guaranteed by design.

Analog input

Table 1. Analog input specifications

A/D converter type	AD976A, successive approximation ADC		
Resolution	16 bits		
Number of channels	64 single ended; 32 differential		
Input ranges (SW	Bipolar: ±10 V, ±5 V, ±2.5 V, ±1.25 V		
programmable)	Unipolar: 0 to 10 V, 0 to 5 V, 0 to 2.5 V, 0 to 1.25 V		
Polarity	Unipolar/Bipolar, software selectable		
A/D pacing (SW	Internal counter – ASIC		
programmable)	External source (A/D external pacer)		
	Software polled		
Burst mode	Software selectable option, burst rate = $5 \mu S$. Valid for a fixed input range only.		
A/D gate sources	External digital (A/D Pacer Gate)		
	External analog (Analog Trigger In)		
A/D gating modes	External digital: Programmable, active high or active low, level, or edge		
	External analog: Software-configurable for:		
	Above or below reference		
Positive or negative hysteresis			
	■ In or out of window Trigger levels set by D/A OUT 0 and/or D/A OUT 1.		
A/D trigger sources	External digital (A/D start trigger in and A/D stop trigger in)		
A/D trigger sources	2 1 20 1		
A/D toi accoring a secondary	External analog (analog trigger in)		
A/D triggering modes	External digital: Software-configurable for rising or falling edge.		
	External analog: Software-configurable for positive or negative slope.		
	Trigger levels set by D/A OUT 0 and/or D/A OUT 1.		
	Pre-/post-trigger: Unlimited number of pre-trigger samples, 16 Meg post-trigger samples. Compatible with both digital and analog trigger options.		
Data transfer	From 8k RAM buffer via DMA (demand or non-demand mode) using scatter gather.		
Data transfer	Programmed I/O		
Configuration memory	8K words		
Channel/gain queue	Up to 8K elements. Programmable channel, gain, and offset.		
A/D conversion time			
Calibration	5 μS		
Camoration	Auto-calibration, calibration factors for each range stored on board in non-volatile RAM.		

Accuracy

200 kHz sampling rate, single channel operation and a 60 minute warm-up. Accuracies are listed for operational temperatures within ± 2 °C of internal calibration temperature. Calibrator test source high side tied to Channel 0 High and low side tied to Channel 0 Low. Low-level ground is tied to Channel 0 Low at the user connector.

Table 2. Absolute accuracy

Range	Absolute accuracy
±10.000 V	±3.0 LSB
±5.000 V	±3.0 LSB
±2.500 V	±4.5 LSB
±1.250 V	±4.5 LSB
0 V to +10.000 V	±3.0 LSB
0 V to +5.000 V	±3.0 LSB
0 V to +2.500 V	±4.5 LSB
0 V to +1.250 V	±4.5 LSB

Table 3. Accuracy components

Range	Gain error	Offset error	DLE	ILE
±10.00 V	±1.5 max	±1.5 max	±1.75 max	±2 max
±5.000 V	±1.5 max	±1.5 max	±1.75 max	±2 max
±2.500 V	±2.0 max	±2.5 max	±1.75 max	±2 max
±1.250 V	±2.0 max	±2.5 max	±1.75 max	±2 max
0 to +10.00 V	±1.5 max	±1.5 max	±1.75 max	±2 max
0 to +5.000 V	±1.5 max	±1.5 max	±1.75 max	±2 max
0 to +2.500 V	±1.5 max	±3.0 max	±1.75 max	±2 max
0 to +1.250 V	±1.5 max	±3.0 max	±1.75 max	±2 max

Each PCI-DAS6402/16 is tested at the factory to assure the board's overall error does not exceed accuracy limits described in Table 2 above.

As shown in Table 3, total analog input error is a combination of gain, offset, differential linearity and integral linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case errors are realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

System throughput

Table 4. System throughput specifications

Condition	Calibration coefficients	ADC rate (max)
1. Single channel, single input range.	Per specified range	200 kHz
2. Multiple channel, single input range	Per specified range	200 kHz
3. Single channel, multiple input ranges. All samples in unipolar OR bipolar mode.	Default to value for cbAInScan() range	200 kHz
4. Multiple channels, multiple input ranges. All samples in unipolar OR bipolar mode.	Default to value for cbAInScan() range	200 kHz
5. Multiple channels, multiple input ranges, switching Unipolar/bipolar mode	Default to value for cbAInScan() range	200 kHz
6. Multiple channel, single input range, switching Unipolar/bipolar mode.	Default to value for cbAInScan() range	200 kHz

Note 1: For conditions 1-2 above, specified accuracy is maintained at rated throughput. Conditions 3-6 apply calibration coefficients which correspond to the range value selected in cbAInScan(). These coefficients remain unchanged throughout the scan. Errors of up to 25 counts may be incurred when switching gains while in bipolar or unipolar mode only (conditions 3 and 4). Errors of up to 100 counts may be incurred when mixing unipolar/bipolar modes (conditions 5 and 6).

Crosstalk

Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the maximum rate. A full scale 100 Hz triangle wave is input on Channel 1; Channel 0 is tied to Analog Ground at the 100 pin user connector. The table below summarizes the influence of Channel 1 on Channel 0 with the effects of noise removed. The residue on Channel zero is described in LSBs.

Table 5. Crosstalk specifications

Condition	Crosstalk	Per channel rate	ADC rate
Same range to same range	3 LSB pk-pk	100 kHz	200 kHz
Any range to any range	6 LSB pk-pk	100 kHz	200 kHz

Analog input drift

Table 6. Analog input drift specifications

Analog input full-scale gain drift	0.25 LSB/°C max
Analog input zero drift	0.21 LSB/°C max
Overall analog input drift	0.46 LSB/°C max
Common mode range	±10 V
CMRR @ 60 Hz	-80 dB min
Input impedance	10 MegOhm min
Absolute maximum input voltage	■ Channel 0: ±15 V, power on or off ■ Channels 1-63: -40 V to +55 V, power on or off
Warm-up time	60 minutes

PCI-DAS6402/16 User's Guide Specifications

Noise performance

Table 7 below summarizes the noise performance for the PCI-DAS6402/16. Noise distribution is determined by gathering 50K samples with inputs tied to ground at the user connector.

Table 7. Board noise performance

Range	Standard Deviation	% within ±2 counts	% within ±1 count	MaxCounts	LSBrms*
±10.00 V	0.8	98%	78%	9	1.4
±5.000 V	0.8	98%	78%	9	1.4
±2.500 V	0.8	98%	78%	9	1.4
±1.250 V	0.9	97%	73%	10	1.5
0 to +10.00 V	0.9	97%	73%	10	1.5
0 to +5.000 V	0.9	97%	73%	10	1.5
0 to +2.500 V	0.9	97%	73%	10	1.5
0 to +1.250 V	1.0	95%	68%	11	1.7

^{*} RMS noise is defined as the peak-to-peak bin spread divided by 6.6

Analog output

Table 8. Analog output specifications

A/D converter type	AD669BR
Resolution	16-bits
Number of Channels	2
Voltage ranges	±10 V, ±5 V, 0 to 10 V, 0 to 5 V. Each channel independently programmable.
Monotonicity	Guaranteed monotonic over temperature
Analog output full-scale gain drift	±0.55 LSB/°C
Analog output zero drift	10 V ranges: ±0.25 LSB/°C; 5 V ranges: ±0.45 LSB/°C
Overall analog output drift	10 V ranges: ±0.8 LSB/°C; 5 V ranges: ±1.0 LSB/°C
Slew rate	10 V Ranges: 5 V/μs; 5 V ranges: 2.5 V/μs;
Settling time	20 V step to .0008%:13 μs max; 10 V step to .0008%:6 μs typ
Current drive	±15 mA
Output short-circuit duration	Indefinite @ 25 mA
Output coupling	DC
Output impedance	0.1 ohms
Power up and reset	DACs cleared to 0 volts ±75 mV max

Accuracy

Table 9. Absolute accuracy specifications

Range	Absolute accuracy
±10.000 V	±4.0 LSB
±5.000 V	±4.0 LSB
0 to +10.000 V	±4.0 LSB
0 to +5.000 V	±4.0 LSB

PCI-DAS6402/16 User's Guide Specifications

Table 10. Typical accuracy specifications

Range	Typical accuracy
±10.000 V	±3.5 LSB
±5.000 V	±3.5 LSB
0 to +10.00 V	±3.5 LSB
0 to +5.000 V	±3.5 LSB

Accuracy components

Table 11. Accuracy component specifications

Range	Gain error (LSB)	Offset error (LSB)	DLE (LSB)	ILE (LSB)
±10.000 V	±2.0 max, ±1.5 typ	±2.0 max, ±1.0 typ	±1.0 max, ±0.5 typ	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$
±5.000 V	$\pm 2.0 \text{ max}, \pm 1.5 \text{ typ}$	$\pm 2.0 \text{ max}, \pm 1.0 \text{ typ}$	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$
0 to +10.00 V	$\pm 2.0 \text{ max}, \pm 1.5 \text{ typ}$	$\pm 2.0 \text{ max}, \pm 1.0 \text{ typ}$	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$
0 to +5.000 V	$\pm 2.0 \text{ max}, \pm 1.5 \text{ typ}$	$\pm 2.0 \text{ max}, \pm 1.0 \text{ typ}$	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$	$\pm 1.0 \text{ max}, \pm 0.5 \text{ typ}$

Each PCI-DAS6402/16 is tested at the factory to assure the board's overall error does not exceed ±4.0 LSB.

Total analog output error is a combination of gain, offset, integral linearity, and differential linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction. Although an examination of the chart and a summation of the maximum theoretical errors shows that the board could theoretically exhibit a ± 6.0 LSB error, our testing assures this error is never realized in a board that we ship.

Typical accuracy is derived directly from the various component typical errors. This typical, maximum error calculation for the PCI-DAS6402/16 yields ± 3.5 LSB. However, this again assumes that each of the errors contributes in the same direction and the ± 3.5 LSB specification is quite conservative.

Analog output pacing and triggering

Table 12. Analog output pacing and triggering specifications

D/A pacing	Internal counter – ASIC	
(SW programmable)	External source (D/A external pacer)	
	Software paced	
D/A gate sources	External digital (external D/A trigger/pacer gate)	
(SW programmable)	External analog (analog trigger in)	
D/A gating modes	External digital: Programmable, active high or active low, level or edge	
	 External analog: Software-configurable for above or below reference. Gating levels set by 	
	DAC0 or DAC1	
D/A trigger sources	External digital (external D/A trigger/pacer gate)	
	Software triggered	
D/A triggering modes	External digital: Software-configurable for rising or falling edge.	
Data transfer	From 16k RAM buffer via DMA (demand or non-demand mode) using scatter gather.	
	■ Programmed I/O	
	 Update DACs individually or simultaneously (SW selectable) 	
Throughput	100 kHz max per channel, 2 channels simultaneous	

Digital input/output

Table 13. Digital input/output specifications (main connector)

Digital type (main connector)	Output: 74LS175	
	Input: 74LS244	
Configuration	4 inputs, 4 outputs (DIN0 through DIN3; DOUT0 to DOUT3)	
Output high voltage ($IOH = -0.4 \text{ mA}$)	2.7 V min	
Output low voltage ($IOL = 8 \text{ mA}$)	0.5 V max	
Input high voltage	2.0 V min, 7 volts absolute max	
Input low voltage	0.8 V max, -0.5 volts absolute min	

Table 14. Digital input/output specifications (DIO connector)

Digital type (digital I/O connector)	82C55
Number of I/O	24 (FIRSTPORTA Bit 0 through FIRSTPORTC Bit 7)
Configuration	2 banks of 8 and 2 banks of 4 or
	■ 3 banks of 8 or
	■ 2 banks of 8 with handshake
Input high voltage	2.0 V min, 5.5 V absolute max
Input low voltage	0.8 V max, -0.5 V absolute min
Output high voltage ($IOH = -2.5 \text{ mA}$)	3.0 V min
Output low voltage ($IOL = 2.5 \text{ mA}$)	0.4 V max
Power-up / reset state	Input mode (high impedance)

Table 15. Simultaneous sample and hold specifications

SSH output	TTL-compatible output, HOLD is asserted from start of the conversion for Channel 0 through conversion of the last channel in the scan. Available at user connector (SSH OUT / D/A PACER OUT). This pin is software selectable as SSH OUT or D/A PACER OUT.	
SSH polarity	HOLD high (default) or HOLD low, software selectable	

Interrupts

Table 16. Interrupt specifications

Interrupts	PCI INTA# - mapped to IRQn via PCI BIOS at boot-time		
Interrupt enable	Programmable through PLX9080		
ADC interrupt sources	DAQ_ACTIVE:	Interrupt is generated when a DAQ sequence is active.	
(sw programmable)	DAQ_STOP:	Interrupt is generated when A/D Stop Trigger In is detected.	
	DAQ_DONE:	Interrupt is generated when a DAQ sequence completes.	
	DAQ_FIFO_1/4_FULL:	Interrupt is generated when ADC FIFO is ¼ full.	
	DAQ_SINGLE:	Interrupt is generated after each conversion completes.	
	DAQ_EOSCAN:	Interrupt is generated after the last channel is converted in multi- channel scans.	
	DAQ_EOSEQ:	Interrupt is generated after each interval delay during multi- channel scans.	
DAC interrupt sources	DAC_ACTIVE:	Interrupt is generated when DAC waveform circuitry is active.	
(sw programmable)	DAC_DONE:	Interrupt is generated when a DAC sequence completes.	
	DAC_FIFO_1/4_EMPTY:	Interrupt is generated DAC FIFO is ¼ empty.	
	DAC_HIGH_CHANNEL:	Interrupt is generated when the DAC high channel output is updated.	
	DAC_RETRANSMIT:	Interrupt is generated when the end of a waveform sequence has occurred in retransmit mode.	
External interrupt	Interrupt is generated via edge-sensitive transition on the External Interrupt pin. Rising/falling edge polarity software selectable.		

PCI-DAS6402/16 User's Guide Specifications

Counters

Table 17. Counter specifications

User counter type	82C54		
Configuration	One down counter, 16 bits. Counters 2 and 3 not used.		
Counter 1 source	External from connector (CTR1 CLK)		
Counter 1 gate	Available at connector (CTR1 GATE).		
Counter 1 output	Available at connector (CTR1 OUT).		
Clock input frequency	10 MHz max		
High pulse width (clock input)	k input) 30 nS min		
Low pulse width (clock input)	50 nS min		
Gate width high	50 nS min		
Gate width low 50 nS min			
Input low voltage	0.8 V max		
Input high voltage	2.0 V min		
Output low voltage	0.4 V max		
Output high voltage	3.0 V min		

Pacer

Table 18. Pacer specifications

ADC pacer type	ASIC	
Configuration	1 down counter, 24 bits (1 scan interval, 1 sample interval)	
ADC pacer Source	40 MHz	
ADC pacer Gate	Internally controlled by software/hardware trigger.	
ADC pacer Out	ADC pacer clock, available at user connector (A/D pacer out)	
DAC Pacer type	ASIC	
Configuration	1 down counter, 24 bits (1 scan interval, 1 sample interval)	
DAC pacer source	40 MHz or 100 kHz internal source. Software selectable	
DAC pacer gate	Internally controlled by software/hardware trigger.	
DAC pacer out	DAC pacer clock. Available at connector. (SSH OUT / D/A PACER OUT). This pin is software selectable as SSH OUT or D/A PACER OUT.	
Internal pacer crystal oscillator	40 MHz	
Frequency accuracy	50 ppm	

Power consumption

Table 19. Power consumption specifications

+5 V 2.9A typical, 3.3 max	
----------------------------	--

Environmental

Table 20. Environmental specifications

Operating temperature range	0 to 70 °C
Storage temperature range	-40 to 100 °C
Humidity	0 to 95% non-condensing

Mechanical

Table 21. Mechanical specifications

Card dimensions	312 mm (L) x 100.6 mm (W) x 16 mm (H)

Main connector and pin out

Table 22. Main connector specifications

Connector type	100-pin high-density unshielded Robinson Nugent	
Compatible cables	C100FF-x cable ($x = length$ in feet)	
Compatible accessory products	BNC-16SE	
	BNC-16DI	
	CIO-MINI50	
	CIO-TERM100	
	SCB-50	

Table 23. 32-channel differential mode pin out

Pin	Signal name	Pin	Signal name	
1	LLGND	51	LLGND	
2	CH0 HI	52	CH16 HI	
3	CH0 LO	53	CH16 LO	
4	CH1 HI	54	CH17 HI	
5	CH1 LO	55	CH17 LO	
6	CH2 HI	56	CH18 HI	
7	CH2 LO	57	CH18 LO	
8	CH3HI	58	CH19 HI	
9	CH3 LO	59	CH19 LO	
10	CH4 HI	60	CH20 HI	
11	CH4 LO	61	CH20 LO	
12	CH5 HI	62	CH21 HI	
13	CH5 LO	63	CH21 LO	
14	CH6 HI	64	CH22 HI	
15	CH6 LO	65	CH22 LO	
16	CH7 HI	66	CH23 HI	
17	CH7 LO	67	CH23 LO	
18	LLGND	68	LLGND	
19	CH8 HI	69	CH24 HI	
20	CH8 LO	70	CH24 LO	
21	CH9 HI	70	CH25 HI	
22	CH9 LO	72	CH25 LO	
	CH10 HI	73	CH26 HI	
23				
24 25	CH10 LO	74 75	CH26 LO CH27 HI	
	CH11 HI			
26	CH11 LO	76	CH27 LO	
27	CH12 HI	77	CH28 HI	
28	CH12 LO	78	CH28 LO	
29	CH13 HI	79	CH29 HI	
30	CH13 LO	80	CH29 LO	
31	CH14 HI	81	CH30 HI	
32	CH14 LO	82	CH30 LO	
33	CH15 HI	83	CH31 HI	
34	CH15 LO	84	CH31 LO	
35	D/A GND 0	85	DOUT0	
36	D/A OUT 0	86	DOUT1	
37	D/A GND 1	87	DOUT2	
38	D/A OUT 1	88	DOUT3	
39	CTR1 CLK	89	GND	
40	CTR1 GATE	90	+12V	
41	CTR1 OUT	91	GND	
42	A/D EXTERNAL PACER	92	-12V	
43	ANALOG TRIGGER IN	93	DIN2	
44	DIN0	94	DIN3	
45	A/D START TRIGGER IN	95	A/D INTERNALPACER OUTPUT	
46	DIN1	96	D/A EXTERNAL PACER INPUT	
47	A/D STOP TRIGGER IN	97	EXTERNAL D/A TRIGGER/PACER GATE	
48	PC +5V	98	A/D PACER GATE	
49	SSH OUT / D/A PACER OUT	99	EXTERNAL INTERRUPT	
50	GND	100	GND	

Table 24. 64-channel single-ended mode pin out

Pin	Signal name	Pin	Signal name	
1	LLGND	51	LLGND	
2	CH0 IN	52	CH16 IN	
3	CH32 IN	53	CH48 IN	
4	CH1 IN	54	CH17 IN	
5	CH33 IN	55	CH49 IN	
6	CH2 IN	56	CH18 IN	
7	CH34 IN	57	CH50 IN	
8	CH3 IN	58	CH19 IN	
9	CH35 IN	59	CH51 IN	
10	CH4 IN	60	CH20 IN	
11	CH36 IN	61	CH52 IN	
12	CH5 IN	62	CH21 IN	
13	CH37 IN	63	CH53 IN	
14	CH6 IN	64	CH22 IN	
15	CH38 IN	65	CH54 IN	
16	CH7 IN	66	CH23 IN	
17	CH39 IN	67	CH55 IN	
18	LLGND	68	LLGND	
19	CH8 IN	69	CH24 IN	
20	CH40 IN	70	CH56 IN	
21	CH9 IN	71	CH25 IN	
22	CH41 IN	72	CH57 IN	
23	CH10 IN	73	CH26 IN	
24	CH42 IN	74	CH58 IN	
25	CH11 IN	75	CH27 IN	
26	CH43 IN	76	CH59 IN	
27	CH12 IN	77	CH28 IN	
28	CH44 IN	78	CH60 IN	
29	CH13 IN	79	CH29 IN	
30	CH45 IN	80	CH61 IN	
31	CH14 IN	81	CH30 IN	
32	CH46 IN	82	CH62 IN	
33	CH46 IN	83	CH31 IN	
34	CH47 IN	84	CH31 IN	
35	D/A GND 0	85	DOUT0	
36	D/A GND 0	86	DOUT1	
37	D/A GND 1	87		
38	D/A OUT 1	88	DOUT2	
39	CTR1 CLK	89	DOUT3 GND	
40	CTR1 CLK CTR1 GATE	90	+12V	
41	CTRT GATE CTR1 OUT	90	GND	
42	A/D EXTERNAL PACER	92	-12V	
42	ANALOG TRIGGER IN	92	DIN2	
43	DINO	93	DIN3	
44	A/D START TRIGGER IN	95	A/D INTERNALPACER OUTPUT	
	DIN1	95		
46			D/A EXTERNAL PACER INPUT	
47	A/D STOP TRIGGER IN	97	EXTERNAL D/A TRIGGER/PACER GATE	
48	PC +5V	98	A/D PACER GATE	
49	SSH OUT / D/A PACER OUT	99	EXTERNAL INTERRUPT	
50	GND	100	GND	

PCI-DAS6402/16 User's Guide Specifications

Auxiliary DIO connector and pin out

Table 25. DIO connector specifications

Connector type	40-pin header connector	
Compatible cables	 C40FF-x (x = length in feet) C40-37F-x (x = length in feet) BP40-37 (translates to a standard CIO-DIO24 type) 	
Compatible accessory products with the C40FF-x cable	CIO-MINI40	
Compatible accessory products	CIO-MINI37	
with the C40-37F-x cable	SCB-37	
or	CIO-ERB24	
with the BP40-37 and the	CIO-ERB08	
C37FF-x or C37FFS-x cable	SSR-RACK24	
	SSR-RACK08	

Table 26. Digital I/O connector pin out

Pin	Signal name	Pin	Signal name
1	NC	2	PC +5V
3	NC	4	DGND
5	FIRSTPORTB Bit 7	6	FIRSTPORTC Bit 7
7	FIRSTPORTB Bit 6	8	FIRSTPORTC Bit 6
9	FIRSTPORTB Bit 5	10	FIRSTPORTC Bit 5
11	FIRSTPORTB Bit 4	12	FIRSTPORTC Bit 4
13	FIRSTPORTB Bit 3	14	FIRSTPORTC Bit 3
15	FIRSTPORTB Bit 2	16	FIRSTPORTC Bit 2
17	FIRSTPORTB Bit 1	18	FIRSTPORTC Bit 1
19	FIRSTPORTB Bit 0	20	FIRSTPORTC Bit 0
21	DGND	22	FIRSTPORTA Bit 7
23	NC	24	FIRSTPORTA Bit 6
25	DGND	26	FIRSTPORTA Bit 5
27	NC	28	FIRSTPORTA Bit 4
29	DGND	30	FIRSTPORTA Bit 3
31	NC	32	FIRSTPORTA Bit 2
33	DGND	34	FIRSTPORTA Bit 1
35	PC +5V	36	FIRSTPORTA Bit 0
37	DGND	38	NC
39	NC	40	NC

CE Declaration of Conformity

Manufacturer: Measurement Computing Corporation

Address: 10 Commerce Way

Suite 1008

Norton, MA 02766

USA

Category: Electrical equipment for measurement, control and laboratory use.

Measurement Computing Corporation declares under sole responsibility that the product

PCI-DAS6402/16

to which this declaration relates is in conformity with the relevant provisions of the following standards or other documents:

EU EMC Directive 89/336/EEC: Electromagnetic Compatibility, EN55022 (1995), EN55024 (1998)

Emissions: Group 1, Class B

■ EN55022 (1995): Radiated and Conducted emissions.

Immunity: EN55024

Callagage

- EN61000-4-2 (1995): Electrostatic Discharge immunity, Criteria A.
- EN61000-4-3 (1997): Radiated Electromagnetic Field immunity Criteria A.
- EN61000-4-4 (1995): Electric Fast Transient Burst immunity Criteria A.
- EN61000-4-5 (1995): Surge immunity Criteria A.
- EN61000-4-6 (1996): Radio Frequency Common Mode immunity Criteria A.
- EN61000-4-8 (1994): Power Frequency Magnetic Field immunity Criteria A.
- EN61000-4-11 (1994): Voltage Dip and Interrupt immunity Criteria A.

Declaration of Conformity based on tests conducted by Chomerics Test Services, Woburn, MA 01801, USA in September, 2001. Test records are outlined in Chomerics Test Report #EMI3053.01.

We hereby declare that the equipment specified conforms to the above Directives and Standards.

Carl Haapaoja, Director of Quality Assurance

Measurement Computing Corporation 10 Commerce Way

Suite 1008

Norton, Massachusetts 02766

(508) 946-5100

Fax: (508) 946-9500

E-mail: info@mccdaq.com www.mccdaq.com