

M Rajasekar

Department of Electronics and Communication Engineering

Routing algorithms: Bellman-Ford Algorithm

M Rajasekar

Department of Electronics and Communication Engineering

Routing algorithms: Bellman-Ford Algorithm

Distance vector algorithm (Bellman-Ford algorithm)

- Implemented in asynchronous manner
- It is distributed and iterative

$$D_x = [D_x(y): y \text{ in } N]$$

- For node x the distance vector is given by $D_y = [D_y(y): y \text{ in } N]$
- Neighbor v sends its distance vector to x

$$D_x(y) = \min_{v} \{c(x, v) + D_v(y)\} \quad \text{for each node } y \text{ in } N$$

- Node x updates all neighbors in N
- Above process repeats till convergence

Routing algorithms: Bellman-Ford Algorithm

<u>Distance vector algorithm (Bellman-Ford algorithm)</u>

```
Initialization:
      for all destinations y in N:
         D_{\nu}(y) = c(x,y) /* if y is not a neighbor then c(x,y) = \infty */
      for each neighbor w
         D_{y}(y) = ? for all destinations y in N
6
      for each neighbor w
78
         send distance vector D_v = [D_v(y): y in N] to w
9
   loop
10
      wait (until I see a link cost change to some neighbor w or
             until I receive a distance vector from some neighbor w)
11
12
13
      for each y in N:
14
         D_{v}(y) = \min_{v} \{c(x,v) + D_{v}(y)\}
15
      if D (y) changed for any destination y
16
         send distance vector D_x = [D_x(y): y \text{ in N}] to all neighbors
17
18
19 forever
```


Routing algorithms: Bellman-Ford Algorithm

Distance vector algorithm (Bellman-Ford algorithm)

Assuming synchronous update

For node x:

$$D_x(y) = \min \left[c(x, y) + D_y(y), c(x, z) + D_z(y) \right]$$

$$D_x(z) = \min \left[c(x, z) + D_z(z), c(x, y) + D_y(z) \right]$$

For node y:

$$D_y(x) = \min[c(y, x) + D_x(x), c(y, z) + D_z(x)]$$

$$D_y(z) = \min[c(y, x) + D_x(z), c(y, z) + D_z(z)]$$

For node z:

$$D_z(x) = \min \left[c(z, x) + D_x(x), c(z, y) + D_y(x) \right]$$

$$D_z(y) = \min \left[c(z, x) + D_x(y), c(z, y) + D_y(z) \right]$$

Routing algorithms: Bellman-Ford Algorithm

Distance vector algorithm (Bellman-Ford algorithm)

Assuming synchronous update

Node x table

cost to				cost to				cost to						
100		х	у	Z			Х	y	Z			х	y	Z
	х	0	2	7		х	0	2	3)		х	0	2	3
E 0	у	00	00	00	E	у	2	0	1	8	у	2	0	1
=	z	00	00	00	+=	z	7	1	0	+	z	3	1	0

Node y table

	cost to			cc	ost	to		X	co	ost	to
	x y z	M		х	y	Z	١		Х	y	Z
x	00 00 00	V	x	0	2	7	V	х	0	2	3
E y	2 0 1	W	Бу	2	0	1	Y	E y	2	0	1
≠ z	00 00 00	M	z	7	1	0	٨	≠ z	3	1	0
		Λ					/\				

$$c(x,y) = c(y,x) = 2$$

$$c(y,z) = c(z,y) = 1$$

$$c(z,x) = c(x,z) = 7$$

Use the expressions given in previous slide

Node z table

	cost to	X	cost to			C	ost	to
	x y z	\ / /r	x y z			х	у	Z
х	00 00 00	_ x	0 2 7	/	х	0	2	3
E y	00 00 00	ē y	2 0 1	E O	у	2	0	1
± z	7 1 0	≠ z	3 1 0	+	Z	3	1	0

Routing algorithms: Bellman-Ford Algorithm

Effect of changes in link cost

Initial distance vectors will be the same for x, y and z

2000000	X	y	Z
$D_x(\cdot)$	0	4	5
$D_{y}(\cdot)$	4	0	1
$D_z(\cdot)$	5	1	0

$$c(x,y) = c(y,x) = 1$$

$$c(y,z) = c(z,y) = 1$$

$$c(z,x) = c(x,z) = 50$$

Suppose link cost c(x,y) changes to 1 and is detected by y The new table for y is given by

	X	y	Z
$D_x(\cdot)$	0	4	5
$D_{y}(\cdot)$	1	0	1
$D_z(\cdot)$	5	1	0

$$D_y(x) = \min[c(y,x) + D_x(x), c(y,z) + D_z(x)] = \min[1 + 0,1 + 5] = 1$$

$$D_{v}(z) = \min[c(y, x) + D_{x}(z), c(y, z) + D_{z}(z)] = \min[1 + 5, 1 + 0] = 1$$

Routing algorithms: Bellman-Ford Algorithm

Effect of changes in link cost

Based on the broadcast from $D_v()$, x and z update as follows

Routing algorithms: Bellman-Ford Algorithm

PES UNIVERSITY ONLINE

Effect of changes in link cost

Initial distance vectors will be the same for x, y and z

	X	y	Z
$D_x(\cdot)$	0	4	5
$D_{y}(\cdot)$	4	0	1
$D_z(\cdot)$	5	1	0

$$c(x,y) = c(y,x) = 60$$

$$c(y,z) = c(z,y) = 1$$

$$c(z,x) = c(x,z) = 50$$

b.

- Suppose link cost c(x,y) changes to 60 and is detected by y
- The new table for y is given by

	X	у	z
$D_x(\cdot)$	0	4	5
$D_{y}(\cdot)$	6	0	1
$D_z(\cdot)$	5	1	0

$$D_y(x) = \min[c(y, x) + D_x(x), c(y, z) + D_z(x)] = \min[60 + 0.1 + 5] = 6$$

$$D_y(z) = \min[c(y, x) + D_x(z), c(y, z) + D_z(z)] = \min[60 + 5.1 + 0] = 1$$

Routing algorithms: Bellman-Ford Algorithm

- Based on the broadcast from D_y(), x and z update as follows
- Based on $D_x()$ and $D_z()$, x, y and z update

Routing algorithms: Bellman-Ford Algorithm

- Only y's distance vector changed, so broadcast D_v to x and z
- Based on $D_x()$ and $D_y()$, x, y and z update
- As only z's distance vector changed, z broadcasts to both x and y

So, the nodes y and z alternatively broadcast and keep updating their distance vectors. In total, it takes 44 iterations to finally converge

Routing algorithms: Bellman-Ford Algorithm

Numerical 1:

Consider the 6-node network shown below, with the given link costs:

- 1. When the algorithm converges, what are the distance vectors from router 'V' to all routers? Write your answer as u,v,w,x,y
- 2. What are the initial distance vectors for router 'U'? Write your answer as u,v,w,x,y and if a distance is ∞ , write 'x'
- 3. The phrase 'Good news travels fast' is very applicable to distance vector routing when link costs decrease; what is the name of the problem that can occur when link costs increase?

Routing algorithms: Bellman-Ford Algorithm

PES UNIVERSITY ONLINE

SOLUTION

- 1. When the algorithm converges, router V has distance vectors (u,v,w,x,y) = (7,0,8,7,11)
- 2. The initial distance vectors of router U are: (u,v,w,x,y) = (0,7,x,x,x) where x is ∞
- 3. It is called the 'Count to Infinity' problem.

THANK YOU

M Rajasekar

Department of Electronics and Communication Engineering

rajasekarmohan@pes.edu