

Peerapon Vateekul, Ph.D.

peerapon.v@4amconsult.com

Outlines

- Classification
 - Confusion matrix
 - TP, FP, TN, FN
 - Accuracy, Precision, Recall, F1
 - Micro, Macro
 - ROC (graph)
- Regression
 - MSE
 - RMSE
 - **R**2

Classification

- Classification
 - Confusion matrix
 - TP, FP, TN, FN
 - Accuracy, Precision, Recall, F1
 - Micro, Macro
 - ROC (graph)

Confusion matrix

- True Positive (TP)
 - Number of positive class correctly identified as positive
 - Example: Given class is spam and the classifier has been correctly predicted it as spam.
- **False Negative (FN)**
 - Number of **positive** class **incorrectly** identified as negative.
 - Example: Given class is spam however, the classifier has been incorrectly predicted it as non-spam.
- False positive (FP)
 - Number of **negative** class **incorrectly** identified as positive.
 - Example: Given class is non-spam however, the classifier has been incorrectly predicted it as spam.
- **True Negative** (TN)
 - Number of negative class correctly identified as negative.
 - Example: Given class is spam and the classifier has been correctly predicted it as negative.

■ Accuracy

■ Precision

■ Recall

■ F1-score

Predicted Class

		Bad	Good
Actual Class	Bad	TP=45	FN=20
	Good	FP=5	TN=30

Confusion matrix command in sklearn

■ Accuracy

- Most intuitive performance measure
- The proportion of the total number of predictions that are correct
- Accuracy = (45+30)/(45+20+5+30) = 75%
- The 75% of examples are correctly classified by the classifier

Predicted Class

		Bad	Good
Actual	Bad	TP=45	FN=20
Class	Good	FP=5	TN=30

Reference: https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html

■ Recall or Sensitivity

- True Positive Rate
- It is measure of **positive** examples labeled as **positive** by classifier
- *Sensitivity* = 45/(45+20) = 69.23%
- The 69.23% bad defaults are correctly classified

Predicted Class

	_	Bad	Good
Actual Class	Bad	TP=45	FN=20
	Good	FP=5	TN=30

■ Specificity

- True Negative Rate.
- It is measure of **negative** examples labeled as **negative** by classifier
- \blacksquare specificity = 30/(30+5) = 85.71%
- The 85.71% good defaults are accurately classified

Predicted Class

		Bad	Good
Actual Class	Bad	TP=45	FN=20
	Good	FP=5	TN=30

Reference: https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html

■ Precision

- It is ratio of total number of correctly classified **positive** examples and the total number of predicted **positive** examples
- It shows correctness achieved in **positive** prediction.
- Precision = 45/(45+5) = 90%
- The 90% of examples are classified as bad defaults are actually bad defaults

Predicted Class

		Bad	Good
Actual	Bad	TP=45	FN=20
Class	Good	FP=5	TN=30

■ Fl score

- It is a weighted average of the recall (sensitivity) and precision
- F1 score might be good choice when you seek to balance between Precision and Recall
- It helps to compute recall and precision in one equation so that the problem to distinguish the models with low recall and high precision or vice versa could be solved.
 - Precision = 45/(45+5) = 90%
 - \blacksquare Recall = 45/(45+20) = 69.23%
 - \blacksquare F1-Score = 2*(90*69.23)/(90+69.23) = 78.26%

F1 Score =
$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

- Which one is the best
 - General-> Fl score
 - General + All class is equally important -> Accuracy
 - General + Some class is more important than other-> Fl score
 - Domain
 - Health care -> Recall

Macro and Micro

■ Micro

Treat all instances is equally important

■ Macro

■ Treat all **classes** is equally important

Macro and Micro

- Micro
 - Treat all instances is equally important
 - Sum up TP, FP and FN and then compute Precision, Recall, F1-score

Macro and Micro

- Macro
 - Treat all classes is equally important
 - Compute Precision, Recall, F1-score each class then compute average of them

- AUC ROC curve
 - is a performance measurement for classification problem at various thresholds settings
 - ROC is a probability curve
 - AUC represents degree or measure of separability
 - It tells how much model is capable of distinguishing between classes.
 - Higher the AUC, better the model is at predicting 0s as 0s and 1s as 1s.
 - By analogy, Higher the AUC, better the model is at distinguishing between patients with disease and no disease
- The ROC curve is plotted with TPR against the FPR where TPR is on y-axis and FPR is on the x-axis.

ID	Actual	Prob
хl	1	0.90
x2	1	0.87
x 3	0	0.71
x4	1	0.65
x5	0	0.55
x 6	1	0.42
x7	1	0.21
x8	0	0.11
x 9	0	0.05
x10	0	0.02

Criteria	TP	TP Rate	FN	FN Rate
1.0	0	0.00	0	0.00
0.9	1	0.20	0	0.00
0.8	2	0.40	0	0.00
0.7	2	0.40	1	0.20
0.6	3	0.60	1	0.20
0.5	3	0.60	2	0.40
0.4	4	0.80	2	0.40
0.3	4	0.80	2	0.40
0.2	5	1.00	2	0.40
0.1	5	1.00	3	0.60
0.0	5	1.00	5	1.00

ID	Actual	Prob
xl	1	0.90
x 2	1	0.87
x 3	0	0.71
x4	1	0.65
x 5	0	0.55
x 6	1	0.42
x7	1	0.21
x8	0	0.11
x 9	0	0.05
x10	0	0.02

Criteria	TP	TP Rate	FN	FN Rate
1.0	0	0.00	0	0.00
0.9	1	0.20	0	0.00
0.8	2	0.40	0	0.00
0.7	2	0.40	1	0.20
0.6	3	0.60	1	0.20
0.5	3	0.60	2	0.40
0.4	4	0.80	2	0.40
0.3	4	0.80	2	0.40
0.2	5	1.00	2	0.40
0.1	5	1.00	3	0.60
0.0	5	1.00	5	1.00

ID	Actual	Prob
хl	1	0.90
x 2	1	0.87
x 3	(0)	0.71
x4	l	0.65
x5	0	0.55
x6	1	0.42
x 7	1	0.21
8x	0	0.11
x 9	0	0.05
x10	0	0.02

Criteria	TP	TP Rate	FN	FN Rate
1.0	0	0.00	0	0.00
0.9	1	0.20	0	0.00
0.8	2	0.40	0	0.00
0.7	2	0.40	(1)	0.20
0.6	3	0.60	1	0.20
0.5	3	0.60	2	0.40
0.4	4	0.80	2	0.40
0.3	4	0.80	2	0.40
0.2	5	1.00	2	0.40
0.1	5	1.00	3	0.60
0.0	5	1.00	5	1.00

ID	Actual	Prob
хl	1	0.90
x2	1	0.87
x 3	(0)	0.71
x4		0.65
x5	(0)	0.55
x 6	1	0.42
x7	1	0.21
x8	0	0.11
x 9	0	0.05
x10	0	0.02

1.0	0	0.00	0	0.00
0.9	1	0.20	0	0.00
0.8	2	0.40	0	0.00
0.7	2	0.40	1	0.20
0.6	3	0.60	1	0.20
0.5	3	0.60	2	0.40
0.4	4	0.80	2	0.40
0.3	4	0.80	2	0.40
0.3	4 5	0.80	2	0.40 0.40

1.00

TP Rate

TP

5

FN

5

FN Rate

1.00

Criteria

0.0

Criteria	TP	TP Rate	FN	FN Rate
1.0	0	0.00	0	0.00
0.9	1	0.20	0	0.00
0.8	2	0.40	0	0.00
0.7	2	0.40	1	0.20
0.6	3	0.60	1	0.20
0.5	3	0.60	2	0.40
0.4	4	0.80	2	0.40
0.3	4	0.80	2	0.40
0.2	5	1.00	2	0.40
0.1	5	1.00	3	0.60
0.0	5	1.00	5	1.00

+

Regression

- Regression
 - MSE
 - RMSE
 - **R**2

$$MSE = \frac{1}{n} \sum \left(y - \widehat{y} \right)^{2}$$
The square of the difference between actual and

- Mean Square Error (MSE)
 - Average of the square of the errors

ID	Actual	Predict	Error	Sqrt Error	Sum Sqrt Error	MSE
xl	1	0.90	0.10	0.01		0.19
x2	1	0.87	0.13	0.02	1.93	
x 3	0	0.71	-0.71	0.50		
x4	1	0.65	0.35	0.12		
x 5	0	0.55	-0.55	0.30		
x6	1	0.42	0.58	0.34		
x7	1	0.21	0.79	0.62		
x8	0	0.11	-0.11	0.01		
x 9	0	0.05	-0.05	0.00		
x10	0	0.02	-0.02	0.00		

Reference: https://www.dataquest.io/blog/understanding-regression-error-metrics/

predicted

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

- Root Mean Square Error (RMSE)
 - Square root of the mean square error

ID	Actual	Predict	Error	Error^2	Sum Error^2	MSE	RMSE
xl	1	0.90	0.10	0.01	1.93	0.19	0.44
x 2	1	0.87	0.13	0.02			
x 3	0	0.71	-0.71	0.50			
x4	1	0.65	0.35	0.12			
x 5	0	0.55	-0.55	0.30			
x 6	1	0.42	0.58	0.34			
x 7	1	0.21	0.79	0.62			
x8	0	0.11	-0.11	0.01			
x 9	0	0.05	-0.05	0.00			
x10	0	0.02	-0.02	0.00			

$$R^2 = 1 - \frac{Unexplained\ Variation}{Total\ Variation}$$

■ R Square

- Coefficient of determination
- Evaluates the scatter of the data points around the fitted regression line
- higher R-squared values represent smaller differences between the observed data and the fitted values
- Always between 0 and 100
- Usually, the larger the R². the better the regression model fits vour observations.

■ The R-squared for the regression model on the left is 15%, and for the model on the right it is 85%.

+

Any Questions?