Dpto. de Matemáticas.

PROBLEMAS. HOJA 5. Epidemiología.

1. Considerar el modelo (SIS): Susceptible. Infectado. Susceptible.

$$\begin{cases} S'(t) = -\beta IS + \alpha I \\ I'(t) = \beta IS - \alpha I \end{cases}$$

- a) Interpreta el modelo si S son susceptibles e I son Infectados.
- b) Comprobar que N = S + I es constante como función de t.
- c) Sustituyendo ahora S=N-I en la segunda comprobar que I(t) es una ecuación logística. Estudiar su comportamiento cualitativo y resolverla explícitamente.

Solución:

- b) S' + I' = 0
- c) $I'(t) = \beta I(N-I) \alpha I = \beta I(N-\alpha/\beta-I)$. Puntos de equilibrio, $x_0 = 0$, $x_1 = N \beta/\alpha$. Entonces:
 - Si $N > \beta/\alpha$, hay epidemia. La población tiende a x_1 infectados. La enfermedad se hace endémica.
 - Si $N < \beta/\alpha$, no hay epidemia. La población tiende a 0 infectados.
 - Si $\alpha = N\beta$, el número de infectados se extingue. No hay epidemia.
- 2. Considera el modelo SIR

$$\begin{cases} \dot{x} = -rxy \\ \dot{y} = rxy - \gamma y \end{cases}$$

- Demuestra que no es un sistemas Hamiltoniano.
 - **Solución** Se resuelve en el punto 3.
- Sea $\mu(x,y)>0$. Demuestra que el sistema $(\dot{x},\dot{y})=\vec{F}(x,y)$ tiene las mismas trayectorias que el sistema $(\dot{x},\dot{y})=\mu(x,y)\vec{F}(x,y)$ para $\mu(x,y):\mathbb{R}^2\to\mathbb{R}$ suave y no negativa. (Por tanto, las trayectorias del sistema dado por \vec{F} viven en los conjuntos de nivel de integral primera para el sistema dado por $\mu\vec{F}$.)

Solución: El μ se cancela en el calculo de trayectorias.

• Encuentra integrales primeras para SIR.

Solución: SIR $\vec{F}=(f(x,y),g(x,y))=(-rxy,-\gamma y+rxy)$. Notemos que $\vec{F}=(xh_1(y),yh_2(x))$, por lo que

$$\operatorname{div} \vec{F} = h_1(y) + h_2(x) \neq 0$$

y no es hamiltoniano. Podemos adivinar que el factor integrante 1/(xy) funciona directamente $(\frac{1}{xy}\vec{F}=(\frac{h_1(y)}{y},\frac{h_2(x)}{x})$ que tiene obviamente divergencia 0) pero hagamos el cálculo. Recordemos que,

$$\operatorname{div}\mu\vec{F} = \langle \nabla \mu, \vec{F} \rangle + \mu \operatorname{div}F, \tag{1}$$

que en nuestro caso nos da

$$0 = \operatorname{div}(\mu \vec{F}) = (h_1 + h_2)\mu + x\mu_x h_1 + y\mu_y h_2 = h_1(\mu + x\mu_x) + h_2(\mu + y\mu_y)$$

Resolviendo $(\mu + x\mu_x) = 0 = (\mu + y\mu_y)$, llegamos a $\mu(x,y)xy = k$, con k constante (k = 1).

Una vez hallado el factor integrante, hallamos las correspondientes integrales primeras H:

$$H_y = \frac{f(x,y)}{xy} = -r, \qquad -H_x = \frac{-\gamma + rx}{x},$$

entonces

$$H(x,y) = -r(x+y) + \gamma \log(x)$$

Que coinciden con las ecuaciones de las trayectorias calculadas en la teoría.

3. En el modelo SIR supongamos que los miembros de S se vacunan con una tasa λ proporcional a su número. Entonces,

$$\begin{cases} \frac{dS}{dt} = -rSI - \lambda S \\ \frac{dI}{dt} = rSI - \gamma I \end{cases}$$

Estudiar el comportamiento cualitativo y en particular concluír que S(t) tiende a 0 cuando $t \to \infty$, para cualquier par de soluciones de este sistema.

Solución:

Observación 1: Los ejes son soluciones así pues el primer cuadrante es invariante.

Observación 2: El (0,0) es punto crítico asintóticamente estable.

Observación 3: La única nullclina relevante es $x=\frac{\gamma}{r}$. A su derecha \dot{x} es negativa así que las trayectorias acaban a su izquierda. Pero en esa región tanto \dot{x} como \dot{y} son negativas.