

Soal

- I Jika $f, g \in \mathcal{R}[a, b]$, maka $f^2, f + g$, dan f g masing-masing teintegral Riemann di [a, b]. Menggunakan fakta tersebut, buktikan jika $f, g \in \mathcal{R}[a, b]$ maka $fg \in \mathcal{R}[a, b]$.
- 2 Diberikan

$$f(x) = \left\{ \begin{array}{ll} 1 & \text{untuk } 0 \leq x \leq 1, \\ 0 & \text{untuk } 1 < x \leq 2 \end{array} \right., \quad g(x) = \left\{ \begin{array}{ll} 0 & \text{untuk } 0 \leq x \leq 1, \\ 1 & \text{untuk } 1 < x \leq 2 \end{array} \right..$$

Selidiki apakah f terintegral Riemann-Stieltjes pada [0,2].

3 Tentukan fungsi limit barisan f untuk barisan $\langle f_n \rangle$ dengan

$$f_n(x) = \begin{cases} 1 - nx, & 0 \le x < \frac{1}{n}, \\ 0, & \frac{1}{n} \le x \le 1 \end{cases}$$

untuk $0 \le x \le 1$ dan $n \in \mathbb{N}$. Masing-masing f_n kontinu pada [0,1], apakah f juga kontinu? Apakah $f_n \to f$ seragam pada [0,1]?

4 Misalkan (X, d_1) dan (Y, d_2) merupakan ruang metrik, himpunan $E \subset X$ dan untuk setiap $n \in \mathbb{N}$, $f_n : E \to Y$. Tuliskan definisi f_n konvergen seragam pada E.

SOAL NOMOR

Jika $f,g\in\mathcal{R}[a,b]$, maka $f^2,f+g$, dan f-g masing-masing teintegral Riemann di [a,b]. Menggunakan fakta tersebut, buktikan jika $f,g\in\mathcal{R}[a,b]$ maka $fg\in\mathcal{R}[a,b]$.

Solusi:

Diketahui $f, g \in \mathcal{R}[a, b]$. Ini berarti $f+g, f-g \in \mathcal{R}[a, b]$ sehingga diperoleh pula $(f+g)^2, (f-g)^2 \in \mathcal{R}[a, b]$. Akibatnya,

$$fg = \frac{(f+g)^2 - (f-g)^2}{4} \in \mathcal{R}[a,b]$$

seperti yang ingin dibuktikan.

Diberikan

$$f(x) = \begin{cases} 1 & \text{untuk } 0 \le x \le 1, \\ 0 & \text{untuk } 1 < x \le 2 \end{cases}, \quad g(x) = \begin{cases} 0 & \text{untuk } 0 \le x \le 1, \\ 1 & \text{untuk } 1 < x \le 2 \end{cases}$$

Selidiki apakah f terintegral Riemann-Stieltjes pada [0,2].

Solusi:

Akan dibuktikan bahwa $f \notin \mathcal{RS}(g)[0,2]$. Pilih $\varepsilon = 1$. Ambil sebarang partisi $P := \{x_0, x_1, \ldots, x_n\} \in \mathcal{P}[0,2]$, maka terdapat bilangan asli k dengan $1 \le k \le n$ yang memenuhi $1 \in [x_k, x_{k+1}]$. Ini berarti $M_i(f) = m_i(f) = 1$ untuk setiap $i \le k$ dan $M_j(f) = m_j(f) = 0$ untuk setiap $j \ge k + 2$. Jadi,

$$U(f;g,P) - L(f;g,P) = \sum_{i=1}^{k} (M_i(f) - m_i(f)) \Delta g_i + (M_{k+1}(f) - m_{k+1}(f)) \Delta g_{k+1}$$

$$+ \sum_{j=k+2}^{n} (M_j(f) - m_j(f)) \Delta g_j$$

$$= \sum_{i=1}^{k} (1 - 1) \Delta g_i + (1 - 0) \Delta g_{k+1} + \sum_{j=k+2}^{n} (0 - 0) \Delta g_j$$

$$= \Delta g_k$$

$$= g(x_{k+1}) - g(x_k)$$

$$= 1 - 0$$

$$= 1$$

$$\geq \varepsilon$$

seperti yang ingin dibuktikan.

Tentukan fungsi limit barisan f untuk barisan $\langle f_n \rangle$ dengan

$$f_n(x) = \begin{cases} 1 - nx, & 0 \le x < \frac{1}{n}, \\ 0, & \frac{1}{n} \le x \le 1 \end{cases}$$

untuk $0 \le x \le 1$ dan $n \in \mathbb{N}$. Masing-masing f_n kontinu pada [0,1], apakah f juga kontinu? Apakah $f_n \to f$ seragam pada [0,1]?

Solusi:

Untuk setiap $x \in [0,1]$, akan dibuktikan bahwa f(x) = 0. Untuk x = 0, perhatikan bahwa $f_n(0) = 1 - n(0) = 1$ untuk setiap $n \in \mathbb{N}$ sehingga $f_n(0)$ konvergen ke 1. Untuk $x \in (0,1]$, akan dibuktikan bahwa f_n konvergen ke 0. Ambil sebarang $\varepsilon > 0$, menurut Archimedes terdapat $N \in \mathbb{N}$ sedemikian sehingga $\frac{1}{x} < N$. Untuk setiap bilangan asli $n \geq N$, yaitu $\frac{1}{n} \leq \frac{1}{N} < x$ sehingga berlaku

$$|f_n(x) - 0| = |0 - 0| = 0 < \varepsilon$$

yang menunjukkan $f_n(x) \to 0$. Jadi,

$$\lim_{n \to \infty} f_n(x) = \begin{cases} f(x) = \begin{cases} 1, & x = 0 \\ 0, & 0 < x \le 1 \end{cases}.$$

Ini menunjukkan f tidak kontinu di x=0. Akan ditunjukkan f_n tidak konvergen seragam ke f. Perhatikan bahwa untuk setiap $n\in\mathbb{N}$, dengan memilih $x=\frac{1}{2n}$ yang mana $0\leq x<\frac{1}{n}$ berlaku

$$M_n = \sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \left| 1 - n \cdot \frac{1}{2n} - 0 \right| = \frac{1}{2}.$$

Karena ini berlaku untuk setiap $n \in \mathbb{N}$, $\lim_{n \to \infty} M_n \ge \frac{1}{2}$ yang mana $\lim_{n \to \infty} M_n \ne 0$. Ini menunjukkan f_n [tidak konvergen seragam] pada [0, 1].

Misalkan (X, d_1) dan (Y, d_2) merupakan ruang metrik, himpunan $E \subset X$ dan untuk setiap $n \in \mathbb{N}$, $f_n : E \to Y$. Tuliskan definisi f_n konvergen seragam pada E.

Solusi:

Barisan $\langle f_n \rangle$ konvergen seragam pada E dengan $f_n \to f$, jika untuk setiap $\varepsilon > 0$ terdapat $N \in \mathbb{N}$ sehingga untuk setiap $n \geq N$ dan setiap $x \in E$ berlaku $d_2(f_n(x), f(x)) < \varepsilon$.