	<pre>def DoKFold(model, X, y, k, random_state=146, scaler=None): '''Function will perform K-fold validation and return a list of K training and testing scores, including R^2 as well as MSE. Inputs: model: In akleary model with defined list! and largered methods</pre>
	model: An sklearn model with defined 'fit' and 'score' methods X: An N by p array containing the features of the model. The N rows are observations, and the p columns are features. y: An array of length N containing the target of the model k: The number of folds to split the data into for K-fold validation random_state: used when splitting the data into the K folds (default=146) scaler: An sklearn feature scaler. If none is passed, no feature scaling will be performed Outputs: train_scores: A list of length K containing the training scores test_scores: A list of length K containing the testing scores train_mse: A list of length K containing the MSE on training data test_mse: A list of length K containing the MSE on testing data
	<pre>from sklearn.model_selection import KFold kf = KFold(n_splits=k,shuffle=True,random_state=random_state) train_scores=[] test_scores=[] train_mse=[] test_mse=[] for idxTrain, idxTest in kf.split(X): Xtrain = X[idxTrain,:] Xtest = X[idxTest,:]</pre>
	<pre>xtest = x[ldxTest,:] ytrain = y[idxTrain] ytest = y[idxTest] if scaler != None: Xtrain = scaler.fit_transform(Xtrain) Xtest = scaler.transform(Xtest) model.fit(Xtrain,ytrain) train_scores.append(model.score(Xtrain,ytrain)) test scores.append(model.score(Xtest,ytest))</pre>
	<pre># Compute the mean squared errors ytrain_pred = model.predict(Xtrain) ytest_pred = model.predict(Xtest) train_mse.append(np.mean((ytrain-ytrain_pred)**2)) test_mse.append(np.mean((ytest-ytest_pred)**2)) return train_scores,test_scores,train_mse,test_mse def CompareClasses(actual, predicted, names=None): '''Function returns a confusion matrix, and overall accuracy given: Input: actual - a list of actual classifications</pre>
	<pre>predicted - a list of predicted classifications</pre>
	<pre>conf_mat.index=y_names conf_mat.index.name='Predicted' conf_mat.columns=y_names conf_mat.columns.name = 'Actual' print('Accuracy = ' + format(accuracy, '.2f')) return conf_mat, accuracy def GetColors(N, map_name='rainbow'): '''Function returns a list of N colors from a matplotlib colormap</pre>
	For a list of available colormaps:
	Input: points (array) groups (an integer label for each point) colors (one rgb tuple for each group) ec (edgecolor for markers, default is black) ax (optional handle to an existing axes object to add the new plot on top of) Output: handles to the figure (fig) and axes (ax) objects ''' import matplotlib.pyplot as plt import numpy as np # Create a new plot, unless something was passed for 'ax'
	<pre>if ax == 'None': fig,ax = plt.subplots() else: fig = plt.gcf() for i in np.unique(groups): idx = (groups==i) ax.scatter(points[idx,0], points[idx,1],color=colors[i],</pre>
	<pre>ax.legend(bbox_to_anchor=[1, 0.5], loc='center left') return fig, ax df = pd.read_csv('./data/lbr_persons.csv') df.head() Unnamed: 0 location size wealth gender age education</pre>
n [46]:	<pre>0 1 6 11 1 1 54</pre>
n [48]:	<pre>df.head() print(df.shape) (48219, 6) #seperate X and y variables X = df.copy().drop('education', axis = 1) y = df.copy()['education']</pre>
it[172]: i [173]: it[173]:	<pre>y.mean() 0.6653393890375163 y.median() 0.0 print(y.unique()) [2 3 0 1 9 8]</pre>
[191]:	Look at the Data #Look at a heat map of the X data import seaborn as sns plt.figure(figsize=(12,12)) sns.heatmap(X.corr(), xticklabels=X.columns, yticklabels=X.columns, vmin=-1, vmax=1, cmap='bwr', annot=Tru
	- 0.11 1.00 0.12 0.02 -0.12 -0.25
	- 0.11 0.12 1.00 0.01 -0.02 -0.00 -0.05 -0
	0.750.01 -0.12 -0.02 0.02 1.001.00
[189]:	<pre>sns.pairplot(X[['location', 'size', 'wealth', 'gender', 'age']]) plt.savefig('pair_plot.png') plt.show()</pre>
	8
	20 10 10 10 10 10 10 10 10 10 10 10 10 10
	2
	#split data into training and testing date from sklearn.model_selection import train_test_split as tts Xtrain, Xtest, ytrain, ytest = tts(X,y, test_size=.4, random_state=146)
[53]:	<pre>#fit and train logisitic regression on raw data lr = LR(random_state=146, max_iter=5000) lr.fit(Xtrain,ytrain) y_pred = lr.predict(Xtest) #create a dictionaries to put all the accuracies in a dictionary accuracies = dict() from sklearn.metrics import accuracy_score #compute accuracy of LR on raw data</pre>
[55]:	<pre>#compute accuracy of LR on raw data acc = accuracy_score(ytest,y_pred) print('Accuracy of LR on Raw tts data: ' + str(acc)) accuracies['Raw'] = acc Accuracy of LR on Raw tts data: 0.5702509332227291 #Now standardize the dat using minmax ss from sklearn.preprocessing import MinMaxScaler as MMS</pre> mms = MMS()
ı [57] :	<pre>Xtrain_mms = mms.fit_transform(Xtrain) Xtest_mms = mms.transform(Xtest) #compute accuracy for mms data lr = LR(random_state=146, max_iter=5000) lr.fit(Xtrain_mms,ytrain) y_pred = lr.predict(Xtest_mms)</pre> acc = accuracy_score(ytest,y_pred)
ı [59] :	<pre>accuracies['MMS']= acc print('Accuracy of LR on mms: ' + str(acc)) Accuracy of LR on mms: 0.5701990875155537 # use Standard Scaler instead from sklearn.preprocessing import StandardScaler as SS ss = SS() Xtrain_ss = ss.fit_transform(Xtrain) Xtest_ss = ss.transform(Xtest)</pre>
	<pre>lr = LR(random_state=146, max_iter=5000) lr.fit(Xtrain_ss,ytrain) y_pred = lr.predict(Xtest_ss) acc = accuracy_score(ytest,y_pred) accuracies['SS']= acc print('Accuracy of LR on ss: ' + str(acc)) Accuracy of LR on ss: 0.5703027789299046 #Use RobustScaler</pre>
ı [62]:	<pre>from sklearn.preprocessing import RobustScaler as RS rs = RS() Xtrain_rs = rs.fit_transform(Xtrain) Xtest_rs = rs.transform(Xtest) lr = LR(random_state=146, max_iter=5000) lr.fit(Xtrain_rs,ytrain) y_pred = lr.predict(Xtest_rs) acc = accuracy_score(ytest,y_pred) accuracies['RS'] = acc</pre>
ı [63] :	<pre>print('Accuracy of LR on rs: ' + str(acc)) Accuracy of LR on rs: 0.5701990875155537 #Use Normalizer from sklearn.preprocessing import Normalizer as NZ nz = NZ() Xtrain_nz = rs.fit_transform(Xtrain) Xtest_nz = rs.transform(Xtest)</pre>
	<pre>lr = LR(random_state=146, max_iter=5000) lr.fit(Xtrain_nz,ytrain) y_pred = lr.predict(Xtest_nz) acc = accuracy_score(ytest,y_pred) accuracies['NZ']= acc print('Accuracy of LR on rs: ' + str(acc)) Accuracy of LR on rs: 0.5701990875155537</pre> accuracies
t[65]:	<pre>{'Raw': 0.5702509332227291, 'MMS': 0.5701990875155537, 'ss': 0.5703027789299046, 'Rs': 0.5701990875155537, 'NZ': 0.5701990875155537} max_lracc = max(accuracies.values()) max_lracc</pre>
	<pre>print('Avg train score on lr_ss: ' + str(np.mean(train_scores_ss))) print('Avg test score on lr_ss: ' + str(np.mean(test_scores_ss))) Avg train score on lr_ss: 0.5723579156895722 Avg test score on lr_ss: 0.5722226964586584 #perform a lr on tsne data for rr #perform k-fold on raw data lr = LR(random state=146, max iter=5000)</pre>
	train_scores_raw,test_scores_raw,mse_train_scores_raw,mse_test_raw = DoKFold(lr,X.values,y.values,20) print('Avg train score on lr_raw: ' + str(np.mean(train_scores_raw))) print('Avg test score on lr_raw: ' + str(np.mean(test_scores_raw))) Avg train score on lr_raw: 0.5723557326647731 Avg test score on lr_raw: 0.5722226878535619 The maximum accuracy for a logisitic regression was reached with the use of Standard scaler. In fact, doing K-fold validation, we see that has an even heigher training and testing score than any of the accuracies reported for the other cases, including running on raw data
1 [96]:	<pre>Perform K-NN model prediction values, counts = np.unique(ytrain, return_counts = True) values array([0, 1, 2, 3, 8, 9])</pre>
it[97]: [101]:	<pre>counts array([16170, 7212, 4975, 522, 1, 51]) cols = ['location', 'size', 'wealth', 'gender', 'age'] #perfom a K-NN model on raw data, find best k from a range of 0-15 from sklearn.neighbors import KNeighborsClassifier as KNN</pre>
	<pre>k_range = range(1,20) ktest_raw_scores = dict() ktrain_raw_scores = dict() for k in k_range: knn = KNN(n_neighbors = k) #, weights='distance' knn.fit(Xtrain,ytrain) acc_train = knn.score(Xtrain,ytrain) ktrain_raw_scores[k]=acc_train y_pred = knn.predict(Xtest) acc = accuracy_score(ytest,y_pred)</pre>
[132]:	<pre>ktest_raw_scores[k] = acc ##Raw scores to better without inverse weighting lis_train = [] for val in ktrain_raw_scores.values(): lis_train.append(val) lis_test=[] for val in ktest_raw_scores.values(): lis_test.append(val)</pre>
[133]:	<pre>#graph comparison k_range = np.arange(1, 20, 1) plt.plot(k_range, lis_train,'-xk', label='Training') plt.plot(k_range, lis_test,'-xr', label='Testing') plt.xlabel('\$k\$') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() #I would use 6/7 neighbors</pre>
	0.90 -
[139]:	#find best number of neibors for ss from sklearn.neighbors import KNeighborsClassifier as KNN k_range = np.arange(1,20,1) Xtrain_ss = ss.fit_transform(Xtrain) Xtest ss = ss.transform(Xtest)
	<pre>ktrain_ss_scores =[] ktest_ss_scores = [] for k in k_range: knn = KNN(n_neighbors = k) knn.fit(Xtrain_ss,ytrain) acc_train = knn.score(Xtrain_ss,ytrain) ktrain_ss_scores.append(acc_train) y_pred = knn.predict(Xtest_ss) acc = accuracy_score(ytest,y_pred) ktest_ss_scores.append(acc)</pre>
	<pre>#plot scores plt.plot(k_range, ktrain_ss_scores,'-xk', label='Training') plt.plot(k_range,ktest_ss_scores,'-xr', label='Testing') plt.xlabel('\$k\$') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() #again use 6</pre>
	0.90 -
[143]:	0.65
[190]:	0.6847781003732891 0.6961323102447118
	<pre>for k in k_range: knn = KNN(n_neighbors = k) knn.fit(Xtrain_mms,ytrain) acc_train = knn.score(Xtrain_mms,ytrain) ktrain_mms_scores.append(acc_train) y_pred = knn.predict(Xtest_mms) acc = accuracy_score(ytest,y_pred) ktest_mms_scores.append(acc)</pre> #plot scores
	<pre>plt.plot(k_range, ktrain_mms_scores,'-xk', label='Training') plt.plot(k_range, ktest_mms_scores,'-xr', label='Testing') plt.xlabel('\$k\$') plt.ylabel('Fraction correctly classified') plt.legend() plt.savefig('KNN_N_Neighbors.png') plt.show() #again use 6</pre> **- Training
	0.90 -
[144]:	#KNN for Nz #do same for minmax k_range = np.arange(1,20,1) nz = NZ() Xtrain_nz = nz.fit_transform(Xtrain) Xtest_nz = nz.transform(Xtest)
	<pre>#plot scores plt.plot(k_range, ktrain_nz_scores,'-xk', label='Training') plt.plot(k_range,ktest_nz_scores,'-xr', label='Testing') plt.xlabel('\$k\$') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() #again use 6</pre>
	0.90 — — Training — Testing 0.80 — 0.75 — 0.75 — 0.70 — 0.65 — 0
t[145]:	0.65 0.60 2.5 5.0 7.5 10.0 12.5 15.0 17.5 ktest_nz_scores[6] 0.6488490253007051
[146]:	<pre>#KNN for RS k_range = np.arange(1,20,1) rs = RS() Xtrain_rs = rs.fit_transform(Xtrain) Xtest_rs = rs.transform(Xtest) ktrain_rs_scores = [] ktest_rs_scores = [] for k in k_range: knn = KNN(n_neighbors = k) knn.fit(Xtrain_rs,ytrain) acc_train = knn.score(Xtrain_rs,ytrain)</pre>
	<pre>acc_train = knn.score(Xtrain_rs,ytrain) ktrain_rs_scores.append(acc_train) y_pred = knn.predict(Xtest_rs) acc = accuracy_score(ytest,y_pred) ktest_rs_scores.append(acc) #plot scores</pre>
	<pre>plt.plot(k_range, ktrain_rs_scores,'-xk', label='Training') plt.plot(k_range,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('\$k\$') plt.ylabel('Fraction correctly classified')</pre>
	<pre>plt.plot(k_range, ktest_rs_scores, '-xr', label='Testing') plt.xlabel('\$k\$') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores[6]</pre> ** Training ** Testing
+ [146] +	plt.plot(k_range,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk\$') plt.ylabel('Fraction correctly classified') plt.show() ktest_nz_scores[6] ## Taining ## Testing 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.
	plt.plot(K_range,ktest_rs_scores,'-xr', label='Testing') plt.ylabel('\$x8') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores[6] ## Taining ## Esting 0.6488490253007051 #perform kfold for n=6 mms to ensure validaty knn = knN(n neighbors=6) k_range = np.arange(2,20,1) mms = MMS() train_scores mms_knn,test_scores mms_knn,mse_train_scores_mms_knn,mse_test_mms_knn = DoKFold(knn,X.va.ues,y.values,20,scaler=mms) print('Avg train score on lr_raw: ' + str(np.mean(train_scores_mms_knn))) print('Avg test score on lr_raw: ' + str(np.mean(train_scores_mms_knn)))
	plt.plot(k_range, ktest_rs_scores,'-xr', label='Testing') plt.ylabel('\$k\$') plt.lagend() plt.show() ktest_nz_scores[6] ** Taining ** Testing 0.00 0.05 0.05 0.06488490253007051 ** ** ** ** ** ** ** ** **
[194]:	plt.xlabel('\$x8') plt.xlabel('\$x8') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores[6] Taining Tain
[194]:	plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining
[194] :	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('krange,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk3') plt.legend() plt.show() ktest_nz_scores[6] ## Taining
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('krange,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk3') plt.legend() plt.show() ktest_nz_scores[6] ## Taining
[194]:	plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining
[194]:	plt.ylabel('\$Rs') plt.ylabel('Fraction correctly classified') plt.ylabel('Fraction correctly classified') plt.legend() plt.show() ktest_nz_scores(6) ## Taining ## T
[194]:	plt.ylabel('krange,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk3') plt.legend() plt.show() ktest_nz_scores[6] ## Taining
[194]:	plt.ylabel('krange,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk3') plt.legend() plt.show() ktest_nz_scores[6] ## Taining
[194] :	plt.ylabel('krange,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk3') plt.legend() plt.legend() plt.show() ktest_nz_scores[6] Taning Taning Taning Taning Testing 0.6488490253007051 ##################################
	plt.ylabel('krange,ktest_rs_scores,'-xr', label='Testing') plt.xlabel('Sk3') plt.legend() plt.show() ktest_nz_scores[6] ## Taining

