Работу выполнили

Бурнышев Павел и Борисов Никита, 676 гр.

Маршрут Х № 5

под руководством

21 октября 2017 г.,

Алескерова И.А.

Лабораторная работа № 3.4.2:

Закон Кюри-Вейсса

Цель работы:

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри. Это возможно, так как для гадолиния точка Кюри лежит в пределах комнатных температур.

Теория

Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствии поля располагались в пространстве хаотичным образом. При повышении температуры Т возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае(в постоянном магнитном поле по закону Кюри):

$$\chi = \frac{C}{T},\tag{1}$$

где С - постоянная Кюри.

Ферромагнитные вещества, которые при понижении температуры становятся парамагнитными должны подчиняться закону Кюри-Вейсса:

$$\chi = \frac{1}{T - \Theta_p} \tag{2}$$

где Θ_p - температура, близкая к температуре Кюри.

Нашей задачей является проверка выполнения закона Кюри-Вейсса. Зная, что при изменении температуры должна меняться магнитная восприимчивость гадолиния, а, следовательно, и самоиндукция катушка, будем замерять период колебания τ в колебательном контуре в зависимости от температуры вещества T. Разность между температурой в термостате $T_{\text{изм.}}$ и реальной температурой вещества можно оценить с помощью термопары ΔU и коэффициента установки k. Проверим выполнение соотношения:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)},\tag{3}$$

где τ_0 – период колебаний в отсутствии образца.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 - ее самоиндукцию в отсутствие образца, получим

$$(L-L_0)\sim \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{4}$$

где С - ёмкость контура автогенератора.

Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C},\tag{5}$$

Из формул (4) и (5) получаем, что

$$(L - L_0) \sim (\tau^2 - \tau_0^2) \Longrightarrow \chi \sim (\tau^2 - \tau_0^2).$$

Закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)}.\tag{6}$$

Экспериментальная установка

Рис. 1: Схема экспериментальной установки

1 - $Катушка \ c$ образцом, 2 - $cтеклянный \ cocyd \ c$ $mpaнсформаторным \ маслом, <math>3$ - $вода \ в$ mepмостате,

4 - ртутный термометр, 5 - термостат

Параметры установки: k=24град/мВ ; $\tau_0=8.252$ мкс – период колебаний в отсутствии образца.

Задания

Проводим измерения в диапазоне от 14 до 40 градусов Цельсия. После подготовки приборов к работе оценим допустимую ЭДС термопары U_0 при условии, что допустимая разность температур рабочей жидкости и образца равна $\Delta T=0.5^{\circ}C$:

$$U_0 = \frac{\Delta T}{k} = 21 \text{ MB};$$

Погрешности измерений: $\delta T = 0.1^{\circ}C;~\delta(U) = 0.0005~B;~\delta(\tau) = 0.001~\text{мкс};~\delta(\frac{1}{\tau^2 - \tau_0^2}) = \frac{\sqrt{2} \cdot \delta(\tau)}{\tau \cdot (\tau^2 - \tau_0^2)}.$ Температуру образца мы меряем по формуле $T_{\text{изм}} = T_{\text{терм}} - \Delta U \cdot k$.

τ , MKC	$-\Delta U, 10^{-3}$ мВ	$T_{\text{терм}}, {}^{\circ}C$	T, ° C	$\tau^2 - \tau_0^2$, MKC ²	$\frac{1}{\tau^2 - \tau_0^2}, \frac{1}{\text{MKC}^2}$	$\delta(\frac{1}{\tau^2 - \tau_0^2}), \frac{1}{\text{HHc}^2}$
10.159	18	14.3	13.69	35.109	0.028482	0.028
10.09	20	15	14.52	33.712	0.029633	0.029
9.957	19	16.5	16.05	31.046	0.03221	0.032
9.886	18	17.1	16.67	29.637	0.033741	0.033
9.733	20	18.1	17.6	26.635	0.037543	0.037
9.582	19	19.1	18.65	23.719	0.04216	0.042
9.4	18	20.1	19.67	20.264	0.049347	0.049
9.172	20	21.1	20.6	16.030	0.062383	0.062
9.004	19	22	21.54	12.976	0.077062	0.077
8.83	20	23.1	22.6	9.873	0.101282	0.101
8,475	19	24	23.5	8.397	0.119339	0.119
8.596	19	26.2	25.74	5.795	0.172541	0.172
8.541	19	28	27.74	4.853	0.206051	0.206
8.487	20	30.1	29.62	3.933	0.254216	0.254
8.458	17	32.05	31.64	3.442	0.290507	0.290
8.43	19	34.2	33.74	2.969	0.336769	0.337
8.411	17	35.9	35.92	2.649	0.377442	0.377
8.387	20	39.9	39.42	2.246	0.445183	0.445

Таблица 1: Данные с установки

Строим график зависимости $1/(\tau^2-\tau_0^2)=f(T)$ для определения парамагнитной точки Кюри Θ_p для гадолиния. Точку найдем с помощью экстраполяции.

Рис. 2: Зависимость $1/(\tau^2 - \tau_0^2) = f(T)$

Таблица 2: Коэффициенты линейной зависимости и их погрешности, найденные методом наименьших квадратов

	Final set of parameters	Asymptotic Standard Error
a	0.017637	+/- 0.0008391 (4.777%)
b	-0.276391	+/- 0.02128 (7.701%)

Используя эти данные экстраполируем значение зависимости температуры, при которой значение $\frac{1}{\tau^2-\tau_0^2}$ обратится в 0. Согласно соотношению (6) именно эта температура будет искомой парамагнитной точкой Кюри Θ_p для гадолиния. Решаем уравнение:

$$ax + b = 0$$
; $0.017637 \cdot \Theta_p = 0.276391$

$$\Theta_p = 15.77 \, ^{\circ}C \approx 15.8 \, ^{\circ}C$$

Найдем погрешность полученного значения:

$$\delta(\Theta_p) = \Theta_p \cdot \sqrt{(\frac{\delta a}{a})^2 + (\frac{\delta b}{b})^2} = 15.8 \cdot \sqrt{0.008130} = 15.8 \cdot 0.09 = 1.5^{\circ}C.$$

Получаем итоговый ответ:

$$\Theta_p = 15.8 \pm 1.5 \, ^{\circ}C$$
 (7)

Вывод

Результатом работы стало получение парамагнитной точки Кюри Θ_p для гадолиния. Результат с учетом погрешности точно попал в искомое значение ($\Theta_{\text{гал}}=16\,^{\circ}C$ согласно таблицам). Погрешность составила не более 10% так как в работе точно были прописаны необходимые условия для измерений: необходимое напряжение и разность температур между термометром и измеряемым объектом.