240970107

Vikith B Kotian

```
In [ ]: # EXERCISE 1:
        # Data Analysis using mtcars
In [5]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        df = pd.read_csv("./Materials/mtcars.csv")
In [6]: #1. Find the car with the best mpg
        best_mpg = df[df['mpg'] == df['mpg'].max()]
        print(best_mpg)
                     model
                             mpg cyl disp hp drat
                                                          wt
                                                              qsec
                                                                   ٧S
                                                                        am
                                                                            gear
                                                                                  ca
        rb
        19
                                    4 71.1 65 4.22 1.835 19.9
                                                                               4
           Toyota Corolla 33.9
                                                                     1
                                                                         1
In [7]: #2. Find the car with the worst mpg
        worst_mpg = df[df['mpg'] == df['mpg'].min()]
        print(worst_mpg)
                          model
                                  mpg cyl
                                             disp
                                                    hp
                                                        drat
                                                                 wt
                                                                      qsec vs
                                                                                 am
        \
                                                   205 2.93 5.250
        14
             Cadillac Fleetwood 10.4
                                         8 472.0
                                                                     17.98
                                                                             0
                                                                                 0
           Lincoln Continental
                                10.4
                                         8 460.0 215 3.00 5.424
        15
                                                                     17.82
                                                                                 0
            gear
                 carb
        14
               3
                     4
        15
               3
                     4
In [8]:
        #3. Find the car with the best horsepower
        best_hp = df[df['hp'] == df['hp'].max()]
        print(best_hp)
                    model
                            mpg
                                 cyl
                                       disp
                                              hp
                                                  drat
                                                              qsec
                                                                    ٧S
                                                                        am
                                                                            gear
                                                                                  ca
        rb
        30
           Maserati Bora 15.0
                                   8 301.0 335 3.54 3.57
                                                              14.6
                                                                         1
                                                                                5
        8
In [9]: #4. Find 5 number summary of displacement
        df['disp'].describe()[['min', '25%', '50%', '75%', 'max']]
Out[9]: min
                71.100
               120.825
        25%
        50%
               196,300
        75%
               326.000
               472.000
        max
        Name: disp, dtype: float64
```

```
In [12]: #7. Draw a histogram of miles per gallon
    plt.hist(df['mpg'], bins=10, color='grey', edgecolor='black')
    plt.title('Histogram of MPG')
    plt.xlabel('MPG')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [13]: #8. Boxplot of mpg for each cylinder type
sns.boxplot(x='cyl', y='mpg', data=df)
plt.title('MPG by Cylinder Count')
plt.xlabel('Cylinders')
plt.ylabel('MPG')
plt.show()
```



```
In [14]: #9. Create a crosstab displaying count of automatic vs. manual cars
pd.crosstab(df['am'], columns='count')
```

Out[14]: col_0 count

Automatic 19

Manual 13

```
In [15]: #10. Create a crosstab displaying count of "am vs cyl"
pd.crosstab(df['am'], df['cyl'])
```

Out[15]: cyl 4 6 8

am

Automatic 3 4 12

Manual 8 3 2

```
In [16]: #11. What is the correlation between the weight of the car and mpg
    correlation = df['wt'].corr(df['mpg'])
    print("Correlation between weight of the car and mpg:", correlation)
```

Correlation between weight of the car and mpg: -0.8676593765172279

EXERCISE 2:

In [17]: #Descriptive Analytics and Visualization

```
In [7]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         df = pd.read_csv('./Materials/bollywood.csv')
 In [8]: #1. How many records are present in the dataset?
         print("Number of records: ",df.shape[0])
         Number of records: 149
 In [9]: #2. How many movies got released in each genre? Sort number of releases in each
         df['Genre'].value_counts()
 Out[9]: Genre
         Comedy
                      36
                      35
          Drama
         Thriller
                      26
         Romance
                      25
         Action
                      21
         Thriller
                       3
         Action
                       3
         Name: count, dtype: int64
In [10]: #3. Which genre had highest number of releases?
         df['Genre'].value_counts().idxmax()
Out[10]: 'Comedy'
In [11]: #4. How many movies in each genre got released in different release times like
         pd.crosstab(df['Genre'], df['ReleaseTime'])
Out[11]:
          ReleaseTime FS HS LW
               Genre
               Drama
                      4
                          6
                              1 24
               Action
                      3
                          3
                              3 12
                                  3
               Action
                      0
                          0
                              0
                          5
                              5 23
              Comedy
                      3
             Romance
                          3
                              4 15
              Thriller
                          1
                              1 20
              Thriller
                      0
                          0
                              1
                                2
```

```
In [13]:
         #5. Which month of the year, maximum number movie releases are seen? (Note: Ex
         # Convert Release Date column to datetime
         df['Release Date'] = pd.to_datetime(df['Release Date'], format='%d-%b-%y')
         # Extract month
         df['Month'] = df['Release Date'].dt.month
         # Count number of releases per month
         month_counts = df['Month'].value_counts().sort_values(ascending=False)
         print("Movie releases per month:\n", month_counts)
         print("\nMonth with maximum releases:", month_counts.idxmax(), "with", month_c
         Movie releases per month:
          Month
         1
               20
         3
               19
         5
               18
         7
               16
         2
               16
         4
               11
         9
               10
         6
               10
         11
               10
                9
         10
         8
                8
         12
                 2
         Name: count, dtype: int64
         Month with maximum releases: 1 with 20 movies
In [14]: #6. Which month of the year typically sees most releases of high budgeted movi
         high budget = df[df['Budget'] >= 25]
         high_budget['Month'].value_counts().sort_values(ascending=False)
Out[14]: Month
         2
               9
         1
               8
         3
               7
         8
               7
         11
               6
         7
               6
         9
               5
               5
         6
         4
               4
         10
               4
         5
               3
         12
               2
         Name: count, dtype: int64
```

```
In [15]: #7. Which are the top 10 movies with maximum return on investment (ROI)? Calcu
df['ROI'] = (df['BoxOfficeCollection'] - df['Budget']) / df['Budget']
df[['MovieName', 'ROI']].sort_values(by='ROI', ascending=False).head(10)
```

Out[15]:

	MovieName	ROI
64	Aashiqui 2	8.166667
89	PK	7.647059
132	Grand Masti	7.514286
135	The Lunchbox	7.500000
87	Fukrey	6.240000
58	Mary Kom	5.933333
128	Shahid	5.666667
37	Humpty Sharma Ki Dulhania	5.500000
101	Bhaag Milkha Bhaag	4.466667
115	Chennai Express	4.266667

In [16]: #8. Do the movies have higher ROI if they get released on festive seasons or l
df.groupby('ReleaseTime')['ROI'].mean()

Out[16]: ReleaseTime

FS 0.973853 HS 0.850867 LW 1.127205 N 0.657722

Name: ROI, dtype: float64

In [17]: #9. Is there a correlation between box office collection and YouTube likes? Is
corr = df['BoxOfficeCollection'].corr(df['YoutubeLikes'])
print("Correlation:", corr)

Correlation: 0.6825165877731297

In [18]: #10. Which genre of movies typically sees more YouTube likes? Draw boxplots fo
plt.figure(figsize=(10,6))
 sns.boxplot(x='Genre', y='YoutubeLikes', data=df)
 plt.xticks(rotation=45)
 plt.title('YouTube Likes by Genre')
 plt.show()

In [23]: #12. During 2013-2015 period, highlight the genre of movies and their box offi
 plt.figure(figsize=(10,6))
 sns.boxplot(x='Genre', y='BoxOfficeCollection', data=df)
 plt.xticks(rotation=45)
 plt.title('Box Office Collection by Genre')
 plt.show()

In [24]: #13. Visualize the Budget and Box office collection based on Genre.
plt.figure(figsize=(10,6))
sns.scatterplot(x='Budget', y='BoxOfficeCollection', hue='Genre', data=df)
plt.title('Budget vs Box Office Collection by Genre')
plt.show()

In [25]: #14. Find the distribution of movie budget for every Genre.
plt.figure(figsize=(10,6))
sns.boxplot(x='Genre', y='Budget', data=df)
plt.xticks(rotation=45)
plt.title('Budget Distribution by Genre')
plt.show()


```
In [26]: #15. During 2013-2015, find the number of movies released in every year. Also,
    df['Release Date'] = pd.to_datetime(df['Release Date'], format='%d-%m-%Y')
    df['Year'] = df['Release Date'].dt.year
    year_counts = df['Year'].value_counts().sort_index()

    plt.plot(year_counts.index.to_numpy(), year_counts.values, marker='o')
    plt.title('Number of Movies Released (2013-2015)')
    plt.xlabel('Year')
    plt.ylabel('Number of Movies')
    plt.show()
```

