두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Rokey Dan	제출자 성명	한준모
참여 명단	이호준, 한준모		
모임 일시	2025 년 4 월 15 일 16 시 30 분 ~ 15 시 30 분(총 1 시간)		
장소	Discord	출석 인원	2
학습목표	Modern Robotics 11 장 로봇 제어 및 논문 리뷰		
학습내용	제 11 장 로봇 제어 (Robot Control) 11.1 제어 시스템 개요 11.2 오차 동역학 11.2.1 오차 응답 11.2.2 선형 오차 동역학 11.3 속도 입력 기반의 운동 제어		

11.3.1 단일 관절의 운동 제어 11.3.2 다관절 로봇의 운동 제어 11.3.3 작업 공간(Task-Space)의 운동 제어 11.4 토크 또는 힘 입력 기반의 운동 제어 11.4.1 단일 관절의 운동 제어 11.4.2 다관절 로봇의 운동 제어 11.4.3 작업 공간(Task-Space)의 운동 제어 11.5 힘 제어 11.6 하이브리드 운동–힘 제어 11.6.1 자연 제약과 인위적 제약 11.6.2 하이브리드 운동-힘 제어기 11.7 임피던스 제어 11.7.1 임피던스 제어 알고리즘 11.7.2 어드미턴스 제어 알고리즘 11.8 저수준 관절 힘/토크 제어

오늘 공부 내용은 제어 부분이었다.

제어 part 는 개인적으로(한준모) 제어공학을 통해 학교에서 깊이 있게 공부를 했던 분야 이기도해서 큰 어려움이 있지는 않았지만 앞에서 공부했던 기구학을 제어에 넣으니 너무 복잡하고 어려웠다. 하지만 제어기를 직접 설계를 하지는 않을 테니 전체적인 feedforward control, PID control, hybrid motion-force control, impedance control 에 대한 전체적인 흐름과 기초적이 내용에 치중하여 공부를 진행하였다.

활동평가

우선 간단하게 요약하자면 feedforward 와 PID는 정상상태 오차를 줄이기 위한 제어 라고 할 수 있고 hybrid는 방향에 따라 가속도 여부를 결정하는 제어라고 볼 수 있다. 물론 특이점에서는 힘제어를 사용할 수 없다. 마지막으로임피던스 제어는 이 힘제어를 실제로 사용하기 위해 극한 값을 둔 제어라고 할수 있고 가속도를 제어하여 태스크 공간에서의 행동을 제어하는 역할을 한다.

이후 논문 리뷰를 하였고 Flow matching 에 대한 논문 리뷰를 진행하였다.
이는 생성형 모델로 단순히 이미지를 생성하는 GAN 과는 다르게 가우시안
분포를 띄는 Source 분포로부터 Target 분포까지의 Path 를 학습하여
target 을 생성하는 생성형 모델이다. 즉 분포를 학습하여 또다른 새로운
분포를 만든다고 할 수 있다. 기존에 diffusion model 이 있었지만 속도가 너무
느린탓에 나온 것이 Flow model 이고 이는 flow matching 을 통해 (쉽게
말하자면) 경로를 최대한 선형화 하여 ODE를 적게 풀고 속도를 빠르게 만든
모델이다. 그리고 이 Model 을 로봇의 action-reaction 에 연관지어 사용을 한
최근 논문인 ARFlow를 통해 더 빨라지고 부드러워진 반응 결과를 알 수 있다.

	최근 Figure 회사에서 이러한 방식을 이용해 action-reaction 을 구성한다고		
	한다.		
	논문을 읽다 보니 점점 흥미가 생기고 더 읽어보고 자세한 수식도 이해를 해보고 싶다. 하지만 너무 공부 할 게 많다		
과제	- 모던 로보틱스 12 장		
	- 발표 파트		
	1.1~3 : 위석환		
	1.4~7 : 이호준		
	2 : 한준모		
	3 : 장연호		
	- 논문 리뷰		
향후 계획	04/22(화) 모여서 각 담당 부분 발표하기 (형식 자유)		
	추가 발표 논문 서칭 후 발표 (형식 자유, 논문 자유)		
	이후 04/29 13 장 공부 예정 <마지막 modern robotics study>		
	그 다음주는 시험 기간으로 쉬어갑니다.		
	Modern Robotics 이후로는 논문 리뷰를 이어가볼 생각입니다.		

- Doosan roboicst 순응 제어 힘제어

https://manual.doosanrobotics.com/ko/user/2.12/2.-A-Series/-48#id-(2.12-ko_KR)%EC%88%9C%EC%9D%91/%ED%9E%98%EC%A0%9C%EC%96%B4%EC%9D%B4%ED%95%B4%ED%95%98%EA%B8%B0-%ED%9E%98(Force)%EC%A0%9C%EC%96%B4

첨부 자료

- Flow matching Guide and Code

https://arxiv.org/pdf/2412.06264

- ARFlow

https://arflow2025.github.io/