Rapport TpH

Oxana USHAKOVA

December 6, 2016

Notation

- ullet S Stock price, also called Spot price (or any underlying asset)
- ullet X value of an option, depending on time and spot price
- \bullet r risk-free rate
- ullet d dividend yield
- μ drift rate of S the rate at which the average of S changes
- \bullet T_0,T initial and final time
- • θ - long variance : as t tends to infinity, the expected value of ν tends to θ
- $\bullet~\kappa$ the rate at which ν reverts to θ
- $\bullet~\xi$ the volatility of volatility

Remarque historique

Avant Black-Scholes il y avait plusieur tentatives de trouver un bon modèle pour option pricing. Parmi d'autres on s'intéresse au modèle de Louis Bachelier décrit en "Théorie de la spéculation" (1900):

$$X_0 = x_0$$
$$X_t = \mu + rt + \sigma W_t$$

On voit tout de suite que ce modèle est additif et donc admet le résultat **négatif**. Vu que en réalité les prix sont toujours positifs la nouvelle génération des modèles (Samuelson, Black-Scholes, etc) sont multiplicatifs.

Diffusion de Black-Scholes et Chain Rule

Voici la diffusion de Black-Scholes:

$$dX_t = \mu X_t dt + \sigma X_t dW_t, X_0 > 0 \tag{1}$$

Soit $f(t,x) = \ln x, f \in \mathbb{C}^2$ et $Y_t = \ln X_t$. Alors:

$$dY_t = \frac{1}{X_t}dX_t + \frac{1}{2}(-\frac{1}{X_t^2})(dX_t)^2 = \mu dt + \sigma dW_t - \frac{1}{2}\frac{1}{X_t^2}\sigma^2X_t^2dt = (\mu - \frac{1}{2}\sigma^2)dt + \sigma dW_t. \tag{2}$$

On applique la lemme d'Ito:

$$Y_t - Y_0 = \int_0^T dY_t = (\mu - \frac{1}{2}\sigma^2) \int_0^T dt + \sigma \int_0^t dW_t = (\mu - \frac{1}{2}\sigma^2)T + \sigma W_t$$
 (3)

Et voila la solution:

$$X_t = e^{Y_T} = e^{Y_0 + (\mu - \frac{1}{2}\sigma^2)T + \sigma dW_t} = S_0 e^{(\mu - \frac{1}{2}\sigma^2)T + \sigma dW_t}$$
(4)

Contrats avec Toto

Avant de trouver les prix demandés, regardons sur les payoffs de call et de put de notre point de vue (acheteur = "long") et de point de vue de Toto (vendeur = "short").

Voici les justes prix pour call/put options dans les cas où l'argent est placé/pas placé. On appele e^{-rT} - "discounting factor".

Simulations

Les EDP stochastiques dont on parle en ce TpH sont particulièrement intéressantes pour les marchés financiers. Comme c'était dit avant, le modèle de Black-Scholes n'est pas le seul :

	Diffusion	Jump Element	Stochastic Element	Pure Jump
Black-Scholes	yes	no	no	no
Heston	yes	no	yes (volatility)	no
Vasicek	yes	no	yes (interest rate)	no
Merton	yes	yes	no	no
Bates	yes	yes	yes (volatility)	no
CGMY,etc	no	no	no	yes

En gros, tous les modlès peuvent être divisés en trois types: modèles à diffusion, à diffusion et sauts, à sauts. C'est également intéressant pour nous de voir le soustype "avec un élément stochastique" - par exemple, le processus de Ornstein-Uhlenbeck est en fait le modèle de Vasicek : modèle à diffusion à un élément stochastique (interest rate). De même on a le modèle de Heston : modèle à diffusion à un élément stochastique (volatility).

Black-Scholes et Merton

D'abord, le bruit:

```
public BS(double droite, double S, double X, double r, double d, double
sigma, double T) {
    Xs.add(0.);
    Ys.add(0.);

    int i = 0;
    while (Xs.get(i) < droite) {
        Xs.add(Xs.get(i) + T);
        Ys.add( S * Math.exp((r - d) * T - 0.5 * sigma * sigma * T + sigma
* rd.nextGaussian() * Math.sqrt(T)));
        i++;
    }
}</pre>
```


Les marches aléatoires des modèles Black-Scholes (diffusion) et Merton (jump-diffusion).

```
public BS(double droite, double S, double X, double r,double d, double sigma, double T,double l,double k, double theta) {
    Xs.add(0.);
    Ys.add(S);
    //note that mu=r-d
    int i = 0;
    while (Xs.get(i) < droite) {
        Xs.add(Xs.get(i) + T);
        //BS model
        Ys.add(Ys.get(i) + Ys.get(i) * (r - d ) * T + Ys.get(i) * sigma * Math.sqrt(T) * rd.nextGaussian());
        //Merton model: l = nb des sauts par an, k = taille de sauts (% de prix)
        Ys.add(Ys.get(i) + Ys.get(i) * (r - d - l * k) * T + Ys.get(i) * sigma * Math.sqrt(T) * rd.nextGaussian()+Math.sqrt(T)*mrd.nextPoisson(l));
        i++;
    }
}</pre>
```


Barrier option avec Monte Carlo

Le contrat de Toto s'appele "vanilla" option, un contrat très basic. Actuellement, il y a dizaines de types des options qui forment la classe des options dites "exotics". Par exemple, une "barrier" option - cette option peut être exécutée ssi le prix d'actif sousjacent touche/ne touche pas un barrier donné.

Comparons les prix de "barrier" ooption trouvés par Monte Carlo et de "vanilla" option trouvés par les formules analytiques (cf. Annexe).

Payoff d'un Barrier Option:

Implémentation en Java:

```
// estimate a barrier option by Monte Carlo simulation
public static double call(double S, double X, double r,double d, double sigma, double T, double B)
{
  int N = 10000;
  double sum = 0.0;
  for (int i = 0; i < N; i++) {
    Random rd = new Random();
    double eps = rd.nextGaussian();
    double price = S * Math.exp((r-d) * T - 0.5 * sigma * sigma * T + sigma * eps * Math.sqrt(T));
    if (price < B){
        double value = Math.max(price - X, 0);
        sum += value;}
    }
    double mean = sum / N;
    return Math.exp(-r * T) * mean;
}</pre>
```

```
// Black-Scholes formula
public static double callPrice(double S, double X, double r,double d, double sigma, double T)
{
    double d1 = (Math.log(S / X) + (r + sigma * sigma / 2) * T) / (sigma * Math.sqrt(T));
    double d2 = d1 - sigma * Math.sqrt(T);
    return Math.exp(-d * T)*S * MyRandom.Phi(d1) - X * Math.exp(-r * T) * MyRandom.Phi(d2);
}
```

Phi(x) – revoie l'approximation de Taylor de la fonction de répartition du loi Normale.

Voici le résultat pour "up and out" barrier option et vanilla option: au premier cas la valeur du barrier est inférieur à Strike, donc l'option vaut toujours zero.

```
S0 = 100.0, Strike = 110.0, barrier 1 = 105.0, barrier 2 = 155.0
BS 0.3353001289550601
MC à barrier 1 up and in 0.0
MC à barrier 2 up and in 0.34768741304018536
```

Vasicek / Ornstein-Unlenbeck

Le processus de Ornstein-Uhlenbeck décrit le mouvement d'un particule qui revient vers le centre (μ) . En finance, ce processus est inclut dans le modèle de Vasicek utilisé en pricing des options dont le prix dépend de taux (Credit Derivatives) - la taux d'intérêt r suit le processu d'Orstein-Unhelbeck.

```
public OrUh(double droite, double mu, double sigma, double T, double theta) {
    Xs.add(0.);
    Ys.add(0.);
    int i = 0;
    while (Xs.get(i) < droite) {
        Xs.add(Xs.get(i) + T);
        Ys.add(Ys.get(i) + theta * (mu - Ys.get(i)) * T + sigma* Ys.get(i) * Math.sqrt(T) * rd.nextGaussian());
        i++;
    }
}</pre>
```

Implémentation en 1D et 2D:

Heston

Le modèle de Heston comme le modèle de Vasicek a un élément stochastique mais cette fois - la volatilité. Ici on donne que le code (no output produced).

```
public Heston(double droite, double mu, double theta, double kappa, double e, double T) {

    Xs.add(0.);
    Ys.add(0.03);
    int i = 0;

    while (Xs.get(i) < droite) {
        Xs.add(xs.get(i) + T);
        r.add(xs.get(i) + kappa * (theta - r.get(i)) * T + e * Math.sqrt(r.get(i)) * Math.sqrt(T) * rd.nextGaussian());
        Ys.add(Ys.get(i) + Ys.get(i) * mu * T + Ys.get(i) * Math.sqrt(r.get(i)) * Math.sqrt(T) * rd.nextGaussian());
        i++;
    }
}</pre>
```

Lotka-Volterra

Le modèle de Lotka-Volterra est un couple d'équations différentielles non-linéaires du premier ordre, et sont couramment utilisées pour décrire la dynamique de systèmes biologiques dans lesquels un prédateur et sa proie interagissent.

```
public LV2D(double droite, double T, double eps) {
    Xs.add(0.);
    Ys.add(0.);
    int i = 0;
    while (Xs.get(i) < droite) {
        Xs.add(Xs.get(i)+Xs.get(i)*T-Xs.get(i)*Ys.get(i)*T+eps*Xs.get(i)*Math.sqrt(T)*rd.nextGaussian());
        Ys.add(Ys.get(i)-Ys.get(i)*T+Ys.get(i)*Xs.get(i)*T+eps*Ys.get(i)*Math.sqrt(T)*rd.nextGaussian());
        i++;
    }
}</pre>
```

Java heap space

2D et 3D

Passont à 2D: on peut mettre Wiener en Ox et Oy ou on peut ajouter des des v.a., des dépendences entre l'abscisses et l'ordonnées, etc pour générer des jolies marches comme celles-ci:

```
while (Xs.get(i) < droite) {
    double z=rand.nextPoisson(0.005);
    Xs.add(Xs.get(i) + Math.sqrt(pas) * rand.nextGaussian() + z);
    Ys.add(Ys.get(i) + Math.sqrt(pas) * rand.nextGaussian() + z);
    i++;
}
</pre>
```

Wiener:

Wiener avec Poisson:

Dépendance de Oy de Ox:

Maintenant - 3D: ici le couleur représente la troisème dimension, ça peut être la dimension en espace, la temperature, la rotation, etc.

Annexe

Solution Analytique

En utilisant :

$$\begin{aligned} \bullet & \quad d_1 &= \frac{\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}} \\ \bullet & \quad d_2 &= \frac{\ln\left(\frac{S_0}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T} \\ \\ [\mathit{call}] &= \exp\{-rT\} * \mathbb{E}\left[\max\left(S_0 * e^{\left(r - d - \frac{\sigma^2}{2}\right)T + x * \sigma\sqrt{T}}, 0\right)\right] \\ &= \exp\{-rT\} * \int_{-d_2}^{\infty} \left(S_0 * e^{\left(r - d - \frac{\sigma^2}{2}\right)T + x * \sigma\sqrt{T}} - K\right) * \frac{1}{\sqrt{2\pi}} * e^{\frac{x^2}{2}} dx \; (\clubsuit) \\ &= \int_{-d_2}^{\infty} e^{-rT} * e^{rT} * e^{-dT} * e^{-\frac{\sigma^2T}{2}} * e^{x * \sigma\sqrt{T}} * S_0 * \frac{1}{\sqrt{2\pi}} * e^{\frac{x^2}{2}} dx - \int_{-d_2}^{\infty} K * \frac{1}{\sqrt{2\pi}} * e^{\frac{x^2}{2}} dx \\ &* e^{-rT} dx = e^{-dT} * S_0 * \frac{1}{\sqrt{2\pi}} \int_{-d_2}^{\infty} e^{-\frac{\left(x - \sigma\sqrt{T}\right)^2}{2}} dx - e^{-rT} * K * \frac{1}{\sqrt{2\pi}} \int_{-d_2}^{\infty} e^{\frac{x^2}{2}} dx \\ &= e^{-dT} * S_0 * \left(1 - \mathcal{N}\left(-d_2 - \sigma\sqrt{T}\right)\right) - e^{-rT} * K * \left(1 - \mathcal{N}\left(-d_2\right)\right) \\ &= e^{-dT} * S_0 * \mathcal{N}(d_1) - e^{-rT} * K * \mathcal{N}(d_2). \end{aligned}$$

Trouvons les bornes (♣):

$$\begin{split} &(S_0*e^{\left(r-d-\frac{\sigma^2}{2}\right)T+x*\sigma\sqrt{T}})>K\\ &e^{\left(r-d-\frac{\sigma^2}{2}\right)T+x*\sigma\sqrt{T}}>K/S_0\\ &\left(r-d-\frac{\sigma^2}{2}\right)T+x*\sigma\sqrt{T}>\ln(\frac{K}{S_0})\\ &x>\frac{\ln(\frac{K}{S_0})-\left(r-d-\frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}\\ &x>-\frac{\ln(\frac{K}{S_0})+\left(r-d-\frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}=-d_2 \end{split}$$