

Please cancel claims 32 and 43 and amend claims 29 and 40 as follows:

CLAIMS (Complete set)

1 – 28. (canceled)

29. (currently amended) A die, comprising:

a first conductor carrying a power supply voltage;

a second conductor carrying a ground voltage; and

a semiconductor decoupling capacitor to provide decoupling capacitance between the first and second conductors, the semiconductor decoupling capacitor including:

(a) a gate electrode coupled to the first conductor to receive the power supply voltage,

(b) a diffusion coupled to the second conductor to receive the ground voltage, and

(c) a body to receive the ground voltage through the diffusion, the semiconductor decoupling capacitor thereby being in depletion mode[.].

wherein the diffusion is a first diffusion and the semiconductor decoupling capacitor further includes a second diffusion coupled to the second conductor to receive the ground voltage and wherein the body receives the ground voltage through the first and second diffusions.

30. (previously presented) The die of claim 29, wherein gate electrode is p-type and the diffusion and the body are n-type.

31. (previously presented) The die of claim 29, wherein gate electrode is p-type and the diffusion and the body are n-type, with the diffusion being more heavily doped than the body.

32. (Canceled)

33. (previously presented) The die of claim 32, wherein the first and second diffusions are source/drain diffusions.

34. (Previously presented) The die of claim 32, wherein the first and second diffusions are more heavily doped than the body.

35. (previously presented) The die of claim 29, wherein the semiconductor decoupling capacitor has a flatband voltage and wherein the power supply voltage has a smaller absolute value than does the flatband voltage.

36. (previously presented) The die of claim 29, wherein gate electrode is p-type and the diffusion and the body are n-type, and wherein the diffusion is a body tap diffusion and the semiconductor decoupling capacitor further includes first and second source/drain diffusions that

are p-type.

37. (previously presented) The die of claim 36, wherein the first and second source/drain diffusions are coupled to the second conductor to receive the ground voltage.

38. (previously presented) The die of claim 36, wherein the body tap diffusion and first and second source/drain diffusions are more heavily doped than the body.

39. (previously presented) The die of claim 36, wherein the semiconductor decoupling capacitor has a flatband voltage and wherein the power supply voltage has a smaller absolute value than does the flatband voltage.

40. (Currently amended) A die, comprising:

a first conductor carrying a power supply voltage;

a second conductor carrying a ground voltage; and

a semiconductor decoupling capacitor to provide decoupling capacitance between the first and second conductors, the semiconductor decoupling capacitor including:

(a) a gate electrode coupled to the second conductor to receive the ground voltage,

(b) a diffusion coupled to the first conductor to receive the power supply voltage,

(c) a body to receive the power supply voltage through the diffusion, the semiconductor decoupling capacitor thereby being in depletion mode,

(d) a substrate, and

(e) an insulation between the substrate and the body[.].

wherein the diffusion is a first diffusion and the semiconductor decoupling capacitor further includes a second diffusion coupled to the first conductor to receive the power supply voltage and wherein the body receives the power supply voltage through the first and second diffusions.

41. (previously presented) The die of claim 40, wherein gate electrode is n-type and the diffusion and the body are p-type.

42. (previously presented) The die of claim 40, wherein gate electrode is n-type and the diffusion and the body are p-type, with the diffusion being more heavily doped than the body.

43. (Canceled)

44. (previously presented) The die of claim 43, wherein the first and second diffusions are source/drain diffusions.

45. (Previously presented) The die of claim 43, wherein the first and second diffusions are more heavily doped than the body.

46. (previously presented) The die of claim 40, wherein the semiconductor decoupling capacitor has a flatband voltage and wherein the power supply voltage has a smaller absolute value than does the flatband voltage.

47. (previously presented) The die of claim 40, wherein gate electrode is n-type and the diffusion and the body are p-type, and wherein the diffusion is a body tap diffusion and the semiconductor decoupling capacitor further includes first and second source/drain diffusions that are n-type.

48. (previously presented) The die of claim 47, wherein the first and second source/drain diffusions are coupled to the second conductor to receive the ground voltage.

49. (previously presented) The die of claim 47, wherein the body tap diffusion and first and second source/drain diffusions are more heavily doped than the body.

50. (previously presented) The die of claim 47, wherein the semiconductor decoupling capacitor has a flatband voltage and wherein the power supply voltage has a smaller absolute value than does the flatband voltage.