IN THE SPECIFICATION

Please amend the specification, as follows:

At page 4, between lines 25 and 26, please insert the following paragraphs:

The present invention relates to an internal member for a plasma treating vessel comprising a substrate and a Y_2O_3 sprayed coating covered on a surface thereof,.

The present invention also relates to an internal member for a plasma treating vessel comprising a substrate, a metal coating formed on a surface thereof as an undercoat, and a Y_20_3 sprayed coating formed on the undercoat as a top coat.

The present invention also relates to an internal member for a plasma treating vessel comprising a substrate, a metal coating formed on a surface thereof as an undercoat, a middle layer formed on the undercoat and a Y_2O_3 sprayed coating formed on the middle layer as a top coat.

The present invention also relates to a method of producing an internal member for a plasma treating vessel, which comprises covering Y_20_3 on a surface of a substrate through a spraying process to form a Y_20_3 sprayed coating, the Y_20_3 in the sprayed coating having a purity of not less than 95%.

The present invention also relates to a method of producing an internal member for a plasma treating vessel, which comprises applying at least one surface treating process selected from CVD process, PVD process and thermal spraying process to a surface of a substrate to form a composite layer composed of a layer of a metal of Ni, W, Mo or Ti or an alloy thereof as an undercoat and Y_2O_3 as a top coat.

The present invention also relates to a method of producing an internal member for a plasma treating vessel, which comprises applying at least one surface treating process selected from CVD

Application No. 09/890,251

P21030.A04

process, PVD process and thermal spraying process to a surface of a substrate to form a composite layer composed of a layer of a metal of Ni, W, Mo or Ti or an alloy thereof as an undercoat, Al_20_3 or a mixture of Al_20_3 and Y_20_3 as a middle layer and Y_20_3 as a top coat.

The $Y_2 0_3$ sprayed coating can be a coating having a porosity of 0.5-10% and a thickness of 50-2000 μm .

The metal coating as the undercoat can be a coating of one or more metals or alloys selected from Ni and an alloy thereof, W and an alloy thereof, Mo and an alloy thereof and Ti and an alloy thereof and having a thickness of $50\text{-}500~\mu m$.

The middle layer can be a layer of Al₂O₃ or a mixture of Al₂O₃ and Y₂O₃.

The middle layer can be formed by a layer having a gradient concentration such that a concentration of $A1_20_3$ is high at a side of the undercoat and a concentration of Y_20_3 is high at a side of the top coat.

A film having a strong resistance to halogen gas corrosion can be provided as an undercoat between the substrate and the Y_20_3 film.

An Al_2O_3 film can be provided between the substrate and the Y_2O_3 film.

The Y_2O_3 can have a purity of not less than 95% or not less than 98%.

The Y₂O₃ sprayed coating can consist essentially of Y₂O₃.

The Y_2O_3 sprayed coating can consist of Y_2O_3 .