## Case Study

**DMResources Limited - personalized micro credits** 

**Default risk model** 

## Diego André García

Sr. Data Modelling | Data Science | Statistics

Tel: +52 7444 1598 94



## THE PROBLEM:

### PROFIT AFFECTED BY UNEXPECTED DEFAULT RATE

### **50.3% CLIENTS IN DEFUALT**

Higher-than-expected credit risk demands higher reserves which in turn reduces capital availability and profit

Poor lending procedures open the door to liability with regulators

When it comes to digital automation some of the best tools for growth and profit in banking have been on credit underwriting automated models

## THE RESULTS:

### **NEW DATA COLLECTION REQUIRED!**

### **KEY FINDINGS**

Proposed allocation procedures lead to decreases of 15% in defaults

Low predictive power on variables led to poor results in any model tested. But still, some applicable results

Creating **new data collection efforts** is a must for increasing accuracy and insights

#### **Surprising!**

(Using those predictions with high certainty can lead to real improvements, even with low predictive power)

#### **Unexpected!**

(Typical variables like Gender, Partner, and Dependents were not significant enough, unlike the general population)

## **MODEL REVIEW**

## LASSO LOGISTIC REGRESSION

# Dataset 80% 20% Training Testing

Other models tested

 Random Forests
 SVM

#### **TOTAL**

65% Accuracy

**75%** Sensibility

**55%** Specificity

HIGH CONFIDENCE PREDICTIONS\*

**75%** Accuracy

**80%** Sensibility

71% Specificity

## **Feature Importance**



## **RESULTS REVIEW**

## EXPECTED DEFAULT RATE DECREASE



Using the highest confidence positive predictions to not allocate credit\*

↓ 1160 Less Defaults

**14.7%** Decrease in Default Rate

## POTENTIAL NEW DATA POINTS

Industry wide used metrics



**AGE** 

## Appendix 1

| _    | _                              |           |                                                                |
|------|--------------------------------|-----------|----------------------------------------------------------------|
| Rank | New data points                | Dificulty | Description                                                    |
| 1    | Monthly Income                 | Medium    | Monthly Income                                                 |
| 2    | Debt ratio                     | Medium    | Monthly debt payments, alimony, living costs divided by income |
| 3    | Number of open credit<br>lines |           | Number of Open loans and Lines of credit                       |
| 4    | Job industry                   | Low       | Job industry e.g. Finance, Education, Retail, etc.             |
| 5    | Age                            | Low       | Date of birth                                                  |
| 6    | Education                      | Low       | Highest level of formal education finished                     |
| 7    | Address                        | Low       | Complete address with ZIP code                                 |
| 8    | Local Credit Score             | Low       | Local Credit Score                                             |

For more information, visit <a href="https://github.com/diegoandregarciam/Accenture\_Case">https://github.com/diegoandregarciam/Accenture\_Case</a>