1. Introduction and Objective

The banking sector plays a significant role in the economy of India. This project aims to analyze key financial indicators of public and private sector banks in India. We'll use data science techniques to:

Compare performance metrics of different banks Visualize trends in key metrics like assets, liabilities, profits, etc. Apply a machine learning model to predict bank performance based on specific features.

```
import pandas as pd
import numpy as np
data = {
'Bank Name': ['SBI', 'HDFC', 'ICICI', 'PNB', 'Axis Bank', 'Canara Bank', 'Kotak Mahindra', 'Bank of Baroda', 'Yes Bank', 'IDBI'], 'Sector': ['Public', 'Private', 'Private', 'Private',
'Public', 'Private', 'Public', 'Private', 'Public'],
     'Total Assets': [500000, 450000, 430000, 350000, 400000, 300000,
310000, 320000, 220000, 200000], # In crores
     'Liabilities': [300000, 270000, 250000, 200000, 230000, 190000,
180000, 170000, 150000, 140000], # In crores
     'Profit': [10000, 15000, 12000, 8000, 11000, 6000, 7000, 9000,
2000, 3000], # In crores
     'NPA': [3.5, 1.8, 2.1, 4.5, 2.0, 4.0, 1.5, 3.8, 5.5, 5.0], # Non-
Performing Assets (NPA) percentage
    'Market Share': [23.5, 10.1, 9.7, 8.9, 7.6, 6.2, 4.9, 6.8, 2.5,
2.0] # Market share percentage
}
df = pd.DataFrame(data)
df.head()
                Sector Total Assets
                                         Liabilities Profit
   Bank Name
                                                                 NPA
                                                                      Market
Share
          SBI
                 Public
                                500000
                                               300000
                                                         10000
                                                                 3.5
23.5
1
         HDFC
               Private
                                450000
                                               270000
                                                         15000
                                                                 1.8
10.1
2
        ICICI Private
                                430000
                                               250000
                                                         12000
                                                                 2.1
9.7
3
          PNB
                 Public
                                                          8000
                                                                 4.5
                                350000
                                               200000
8.9
4 Axis Bank Private
                                400000
                                               230000
                                                         11000 2.0
7.6
```

Statistical Summary

		·· /			
df.des	cribe()				
	Total Assets	Liabilities	Profit	NPA	Market
Share					
count	10.000000	10.00000	10.000000	10.000000	
10.000000					
mean	348000.000000	208000.00000	8300.000000	3.370000	
8.220000					
std	97616.027828	52873.01349	4001.388648	1.434534	
6.042222					
min	200000.000000	140000.00000	2000.000000	1.500000	
2.000000					
25%	302500.000000	172500.00000	6250.000000	2.025000	
5.225000					
50%	335000.000000	195000.00000	8500.000000	3.650000	
7.200000					
75%	422500.000000	245000.00000	10750.000000	4.375000	
9.500000					
max	500000.000000	300000.00000	15000.000000	5.500000	
23.500000					

Profit Distribution among banks

```
# Profit distribution plot
plt.figure(figsize=(10, 6))
sns.histplot(df['Profit'], bins=10, kde=True, color='blue')
plt.title('Profit Distribution of Banks')
plt.xlabel('Profit (in crores)')
plt.ylabel('Frequency')
plt.show()
```


NPA Vs Profit

```
# Scatter plot for NPA vs Profit
plt.figure(figsize=(10, 6))
sns.scatterplot(x='NPA', y='Profit', hue='Sector', data=df,
palette='Set1')
plt.title('NPA vs Profit by Sector')
plt.xlabel('NPA (%)')
plt.ylabel('Profit (in crores)')
plt.show()
```


Market Share of Banks

```
# Pie chart of market share by bank
plt.figure(figsize=(8, 8))
plt.pie(df['Market Share'], labels=df['Bank Name'], autopct='%1.1f%%',
startangle=90, colors=sns.color_palette('Paired', 10))
plt.title('Market Share of Banks')
plt.show()
```

Market Share of Banks

Machine Learning model for predicting bank profit

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

X = df[['Total Assets', 'Liabilities', 'NPA', 'Market Share']]
y = df['Profit']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```

```
y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, color='green')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()],
    'k--', lw=2)
plt.title('Actual vs Predicted Profit')
plt.xlabel('Actual Profit (in crores)')
plt.ylabel('Predicted Profit (in crores)')
plt.show()
Mean Squared Error: 9099733.3333333333
```


Conclusion

In this project, we successfully created a synthetic dataset to analyze the Indian banking sector. We visualized the key financial metrics of public and private banks, compared trends, and implemented a Random Forest Regression model to predict bank profits. The model demonstrated a reasonable ability to predict bank profitability based on features like total assets, liabilities, NPA percentage, and market share.

Further work can include adding more features or experimenting with different machine learning models to improve predictive accuracy.					