La energía cinética de un objeto de masa m, que se mueve con velocidad v, es directamente proporcional al cuadrado de su velocidad.

$$E_{\rm c} = \frac{1}{2} m \cdot v^2$$

La energía potencial gravitatoria de un satélite de masa m, que gira alrededor de un astro de masa M, en una órbita de radio r, es inversamente proporcional al radio de la órbita.

$$E_{\rm p} = -G \frac{M \cdot m}{r}$$

Donde *G* es la constante de la gravitación universal.

La energía mecánica de un cuerpo de masa *m*, que se encuentra en órbita de radio *r* alrededor de un astro de masa *M*, es la suma de sus energías cinética y potencial.

$$E = E_c + E_p = \frac{1}{2} m \cdot v^2 + \left(-G \frac{M \cdot m}{r} \right)$$

La <u>velocidad de un satélite</u> que gira a una distancia *r* alrededor de un astro de masa *M* es:

$$v = \sqrt{\frac{G \cdot M}{r}}$$

Sustituyendo v^2 , la expresión de la energía cinética queda:

$$E_{c} = \frac{1}{2} m \cdot v^{2} = \frac{1}{2} G \frac{M \cdot m}{r}$$

La expresión de la energía mecánica queda:

$$E = E_{c} + E_{p} = \frac{1}{2} m \cdot v^{2} - G \frac{M \cdot m}{r} = \frac{1}{2} G \frac{M \cdot m}{r} - G \frac{M \cdot m}{r} = -\frac{1}{2} G \frac{M \cdot m}{r}$$

La energía mecánica de un satélite en órbita es igual a la mitad de la energía potencial.

$$E = \frac{1}{2}E_{\rm p}$$

La energía mecánica de un satélite en órbita también es igual a la energía cinética cambiada de signo.

$$E = -E_c$$