PREDICTING THE US 2020 PRESIDENTIAL ELECTIONS

NATIONAL POPULAR VOTE

Database

For every year since 1968:

- MacroEconomic data drawn from FRED
- Polls drawn from 5.38

Dataset: 26 features and 18 observations (one per election year)

How to handle such situation with sparse data?

Modelling

Favor sparse-like models:

- Feature Engineering combing different predictors
- PCA
- Lasso-Like models
- Cross Validation based on Accuracy

Results

Lasso Regression, with accuracy score 0.73 Predictions:

- For Donald Trump: NPV = 46.525 +/- 1.39
- For Joe Biden: NPV = 52.46 +/- 1.88

- A. Ghost State Approach
- B. Multi State Approach

Database

- 9 Features, 444 Observations (394 for Train/CV, 50 for Test)
- Polling data (5.38), Macroeconomic data (FRED)

Modelling

Tested Models:

- LogisticRegressionCV, DecisionTreeClassifier, RandomForestClassifier, AdaBoostClassifier, NeuralNetwork
- Feature Engineering using Polynomial Features, PCA
- Lasso Regularization, Dropout, EarlyStopping
- Cross-Validation based on classification accuracy for parameters tunning and model selection

	LogisticRegressionCV	DecisionTreeClassifier	RandomForestClassifier	AdaBoostClassifier	SequentialNeuralNetwork
Accuracy	0.88585	0.88075	0.8987	0.87831	0.8992

• Cross-validation accuracies dictated by the data, rather than model's expressive power LogisticRegressionCV chosen as final model for the Ghost State Approach

- A. Ghost State Approach
- B. Multi State Approach

Model Interpretation

- polls_month_11 most important feature
- pairwise correlation between polls
- positive relationship: rep_house_proportion, state_loyalty
- negative relationship: population density
- multicolinearity: popular_vote_percentage

- A. Ghost State Approach
- B. Multi State Approach

Predict each state seperately

Not swing states

- Deterministic approach
- Based on loyalty feature of the state

Predict each state seperately Construct the dataframes

Correlation matrix from The Economist

Swing states

- More data points → add correlated states
- Model can learn the correlation between states

A. Ghost State Approach

B. Multi State Approach

Overall results

Average feature weighs for PC 1 Average feature weighs for PC 2 Average feature weighs for PC 3 Weight Features Features month_10 month_9 popular_vote_percentage Rep_House_Prop

Average feature importance across all swing states models

→ The models doesn't rely on polls

ENSEMBLE LEARNING

Database

Use the output from the Multi State Model and the Ghost State Model

 Probabilities output on every election for every state for the two models

Dataset: 394 examples, 2 features

Modelling

Favor interpretable results:

- Logistic Regression (being a weighted sum of the two predictors)
- Cross Validation based on Accuracy

Results

- Final model: 0.98 classification accuracy
- Misclassified state: Arizona
- Weights to the different models: 4.89 for the single state, 0.92 for the multi state