DSZOB, cvičenie 2.

Zadanie:

Úloha 1 – Základné generovanie signálov

Vygenerujte a vhodne vizualizujte nasledovné signály (vzorkovacia frekvencia 44.1 kHz, časový úsek 3 sekundy):

- 1. Sínusový signál s frekvenciou zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou = 0,7.
- 2. Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,2:0,5>.
- 3. Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,1:0,4>.
- 4. Generujte zložený signál ako súčet z predchádzajúcich vygenerovaných signálov.
- 5. K zloženému signálu aditívne pripočítajte šum s magnitúdou z rozsahu <0,01:0,05>.

(pomôcka: funkcia rand() alebo randn())

Vygenerované signály si vypočujte po sebe v poradí generovania (zložený signál na záver).

Vygenerované signály vizualizujte!

Pozn.: Môžete sa pokúsit o akord (vid tab. dole)

Tab. Temperované ladenie - frekvencie

	0	1	2	3	4	5	6	7	8	9
c	16,35	32,7	65, 4	130,8	261,6	523,2	1046,4	2092,8	4185,6	8371,2
cis	17,32	34,64	69, 29	138,58	277,16	554,31	1108,62	2217,24	4434,49	8868,98
d	18,35	36,7	73, 41	148,82	293,64	587,27	1174,54	2349,09	4698,18	9396,35
dis	19,44	38,89	77,77	155,55	311,1	622,19	1244,39	2488,77	4977,55	9955,09
e	20,6	41,2	82,4	164,8	329,6	659,19	1318,38	2636,76	5273,53	10547,05
f	21,82	43,65	87,3	174,6	349,19	698,39	1396,78	2793,55	5587,11	11174,21
fis	23,12	46, 24	92, 49	184,98	369,96	739,92	1479,83	2959,67	5919,33	11838,66
g	24,5	48,99	97,99	195,98	391,96	783,91	1567,83	3135,66	6271,31	12542,63
gis	25,95	51,91	103,82	207,63	415,26	830,53	1661,06	3322,11	6844,23	13288,45
а	27,5	54,99	109,99	219,98	440,00	879,91	1759,83	3519,66	7039,31	14078,62
ais	29,13	58, 26	116,53	233,06	466,12	932,24	1864,47	3728,95	7457,89	14915,78
h	30,88	61,73	123,46	248,92	493,84	987,67	1975,34	3950,68	7901,36	15802,72

Príklady akordov / Tóny, z ktorých sa skladá:

- Cdur / C, E, G
- Gdur / G, H, D
- Amoll / A, C, E

Postup vhodne dokumentuje (Code/Text bloky)!

Riešenie:

```
fs = 44100;
sx = 0:1/fs:3;
sy1 = 0.7*sin(2*pi*sx*4185.6);
sy2 = 0.15*sin(2*pi*sx*3135.66)+.35;
sy3 = 0.15*sin(2*pi*sx*1479.83)+.25;
sy4 = sy1 + sy2 + sy3;
sy5 = sy4 + rand(1, 44100*3 + 1)*0.04 + 0.01;
```

```
figure;
subplot(2,2,1)
plot(sx, sy1)
xlim([0 0.001])
title("signal 1")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,2,2)
plot(sx, sy2)
xlim([0 0.001])
title("signal 2")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,2,3)
plot(sx, sy3)
xlim([0 0.001])
title("signal 3")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,2,4)
plot(sx, sy4)
xlim([0 0.001])
title("signal 4")
xlabel("time[s]")
ylabel("magnitude")
```



```
figure;
subplot(2,1,1)
plot(sx, sy4)
xlim([0 0.00025])
title("signal 4")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,1,2)
plot(sx, sy5)
xlim([0 0.00025])
title("signal 5")
xlabel("time[s]")
ylabel("magnitude")
```


Pridaním šumu k signálu vidíme rozdiely. Tento pri pôvodne zvolených frekvenciách nie je až tak hmatateľný, ale posun je pozorovateľný napríklad medzi 15 a 20 ms.

```
% sound(sy1, fs)
% sound(sy2, fs)
% sound(sy3, fs)
% sound(sy4, fs)
% sound(sy5, fs)
```

Úloha 2

Znížte vzorkovaciu frekvenciu u Vami vygenerovaného signálu:

- na polovicu
- na štvrtinu
- na hranicu danú Nyquistovým teorémom
- a aj s porušením Nyquistovho teorému.

Vizualizujte dané signály v jednom grafe. Signál si vypočujte a vyhodnoťte kvalitu.

Pomôcky: funkcia: downsample()

```
sy_2 = downsample(sy5, 2);
sx_2 = downsample(sx, 2);
```

```
sy_4 = downsample(sy5, 4);
sx_4 = downsample(sx, 4);

sy_nyq_gt = downsample(sy5, 5);
sx_nyq_gt = downsample(sx, 5);

sy_nyq_lt = downsample(sy5, 6);
sx_nyq_lt = downsample(sx, 6);
```

```
figure;
subplot(2,2,1)
plot(sx, sy5, sx_2, sy_2)
xlim([0 0.001])
title("fs /2")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,2,2)
plot(sx, sy5, sx_4, sy_4)
xlim([0 0.001])
title("fs /4")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,2,3)
plot(sx, sy5, sx_nyq_gt, sy_nyq_gt)
xlim([0 0.001])
title("fs greater than nyquist theorem")
xlabel("time[s]")
ylabel("magnitude")
subplot(2,2,4)
plot(sx, sy5, sx_nyq_lt, sy_nyq_lt)
xlim([0 0.001])
title("fs less than nyquist theorem")
xlabel("time[s]")
ylabel("magnitude")
```


Postupným znižovaním vzorkovacej frekvencie dostávame signál ktorý menej a menej zodpovedá pôvodnému, ale kým dodržíme nyquistov teorém signál stále aspoň približne kopíruje tvar pôvodného signálu a dobrou aproximáciou krivky signálu je ho možné zreprodukovať. Porušením nyquistovho teorému dostávame signál, ktorý vôbec nemusí zodpovedať pôvodnému a teda pôvodný signál nie je možné zreprodukovať.

```
% sound(sy_2, fs/2)
% sound(sy_4, fs/4)
% sound(sy_nyq_gt, fs/5)
% sound(sy_nyq_lt, fs/6)
```