

Unit 12

—Design Sequential Circuits with Flip Flops

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

例7:利用D触发器设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为余3码。

■ 转换器的输入和输出都是最低位优先

X Input (BCD)				<i>Z</i> Outp			
t_3	t_2	t ₁	t_0	t ₃	t_2	t ₁	t_0
	0	0	0		0	1	1
	0	0	1		1	0	0
	0	1	0		1	0	1
	0	1	1		1	1	0
	1	0	0		1	1	1
	1	0	1		0	0	0
	1	1	0		0	0	1
	1	1	1		0	1	0
	0	0	0		0	1	1
	0	0	1		1	0	0

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

<i>t₁ t₀时刻</i> 输出
1 1
00
01
1 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	01 1
001	100
010	101
011	110
100	111
101	000
110	001
111	010

t ₃ t ₂ t ₁ t ₀ 时刻 输入	t ₃ t ₂ t ₁ t ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

		X nput BCD)			<i>Z</i> Out exce		
$\overline{t_3}$	t ₂	t ₁	t_0	t ₃	t_2	t ₁	t_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

1. 原始状态图及状态表

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀时刻</i> 输出
00	11
01 10	00 01
11	10

1	t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
	000	<mark>01</mark> 1
1	001	10 0
1	010	101
1	011	110
1	100	111
1	101	000
1	110	001
	111	<mark>01</mark> 0

$t_0 = 0$ Reset	
	1/1
$t_2 0$ $t_1 0$ $t_2 0$ $t_3 0$ $t_4 0$	0,1,0
	K P

t ₃ t ₂ t ₁ t ₀ 时刻 输入	<i>t₃t₂t₁t₀</i> 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1 011
1001	1 100

2. 状态化简

	Input Sequence Received				Preser	
	(Least Significant	Present	Next Sta	ate	Output	(Z)
Time	Bit First)	State	X = 0	1	X = 0	1
$\overline{t_0}$	reset	A	В	C	1	0
_	0	В	D	F	1	0
<i>t</i> ₁	1	C	E	G	0	1
	00	D	Н	L	0	1
	01	E	1	M	1	0
t ₂	10	F	J	N	1	0
	11	G	K	Ρ	1	0
	000	Н	A	A	0	1
	001	1	A	A	0	1
	010	J	A	_	0	_
_	011	K	A	_	0	_
t_3	100	L	A	_	0	_
I	101	M	A	_	1	_
l	110	N	A	_	1	_
	111	P	Α	_	1	_

		Nex	t	Prese	nt
	Present	Stat	e	Output	(Z)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	C	1	0
$\overline{t_1}$	В	D	Ε	1	0
	С	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	Ε	Н	Μ	1	0
$\overline{t_3}$	Н	Α	Α	0	1
	М	Α	_	1	_

3. 状态分配

		Next Preser		nt	
	Present	Stat	e	Output	(<i>Z</i>)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	С	1	0
t_1	В	D	Ε	1	0
	С	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	Ε	Н	Μ	1	0
t ₃	Н	Α	Α	0	1
	M	Α	_	1	_

4. 状态转换真值表

			Q ₁ +Q) ₂ +Q ₃ +	Z	
		$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
	A	000	100	101	1	0
	В	100	1 1 1	110	1	0
	C	101	110	110	0	1
	D	1 1 1	0 1 1	0 1 1	0	1
	Ε	110	0 1 1	010	1	0
	Н	0 1 1	000	000	0	1
	Μ	010	000	X X X	1	х
	_	0 0 1	XXX	XXX	Х	Х

4. 状态转换真值表

		$Q_1^+Q_2^+Q_3^+$		Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
Α	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	Х	Χ

5. 卡诺图化简

10

Х

Χ

10

X

Χ

0

 $Z = X'Q'_3 + XQ_3$

01, 11

0

0

10

$$D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2'$$

Χ

11

10

6. 电路实现

7. 无关项检查

 $\begin{cases} D_1 = Q_1^+ = Q_2' \\ D_2 = Q_2^+ = Q_1 \\ D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2' \\ Z = X' Q_3' + X Q_3 \end{cases}$

将无关状态 $Q_3Q_2Q_1=100$ 代入次态方程和输出方程计算

电路可以自启动

例8: 迭代电路设计——利用D触发器设计一个比较器,能对两个n位

1. 原始状态图及状态表

对于第 i 个单元,设状态——

 $S_0: X = Y$ 时

S₁: X > Y 时

S₂: X < Y 时

Z₂、Z₃、Z₃分别取值为1

- □由n个比较子单元(cell)构成
- □ 从高位到低位,逐位对应比较,并将前一位比 较的结果传送给下一位
- □ 第i个单元的比较结果: X = Y, X > Y, or X < Y.

1. 原始状态图及状态表

	S_i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
X = Y	S_0	<i>S</i> ₀	S ₂	S ₀	S ₁	0 1 0
X > Y	S_1	S ₁	S_1	S_1	S_1	0 0 1
X < Y	S_2	S_2	S_2	S_2	S_2	1 0 0

在第i个(前一个)单元 有比较结果的前提下,根据输入取值,可以确定第 i+1个单元的比较结果

对于第 i 个单元, 设状态

S₀: X = Y时 S₁: X > Y时 S₂: X < Y时

Z₁ 、Z₂ 、 Z₃ 分别取值为1

2. 状态化简

3. 状态分配

 $S_0: 00$

 $S_1: 01$

需要两个触发器, 用 a,b来表示

 $S_2: 10$

4. 状态转换真值表

	$a_{i+1}b_{i+1}$						
a _i b _i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$		
0 0	00	10	00	01	0 1 0		
0 1	01	01	01	01	0 0 1		
1 0	10	10	10	10	1 0 0		

5. 卡诺图化简

6. 电路实现

7. 无关项检查 (略)

例9:利用D触发器设计一个同步时序电路,当输入序列以010或1001 结尾时(允许重叠检测),输出Z为1,否则Z=0.

1. Mealy型原始状态图构建

(1) 子序列010检测的状态设定

 S_0 一初始复位状态,表示没有任何输入

S₁──表示序列以"0"结束

S。——表示序列以"10"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

(1) 010检测的局部状态图

(2) 子序列1001检测的状态设定

 S_0 ——初始复位状态,表示没有任何输入

S₁——表示序列以 "0" 结束

S₂——表示序列以"10"结束

S。——表示序列以"010"结束,此时输出标志 Z=1。

S₄——表示接收到1001序列的第一个"**1"**

S。——表示序列以"100"结束。

重叠检测: 010中的10

可以被1001检测重用

重叠检测: 010中的10

可以被1001检测重用

- (2) 子序列1001检测的状态设定
 - S_0 —初始复位状态,表示没有任何输入
 - S₁——表示序列以 "0" 结束
 - S₂——表示序列以"10"结束
 - S₃——表示序列以"010"结束, 此时输出标志 Z=1。
 - S₄——表示接收到1001序列的第一个"1"
 - S₅——表示序列以"100"结束。

- 2. 状态化简(略)
- 3.状态分配(略)
- 4.状态转换真值表(略)
- 5.卡诺图化简(略)
- 6. 电路实现(略)

重叠检测: 1001中的 01可以被010检测重用

(3)010及1001检测的完整状态图

例10:某同步时序电路如下所示,按图接线后,试验得到如下的循环状态。经检查:触发器工作正常,试分析故障所在。

1. 获得正确状态图

① 输入方程

$$J_0 = \overline{Q_2}^n$$
, $K_0 = 1$
 $J_1 = K_1 = Q_0^n$
 $J_2 = Q_0^n Q_1^n$, $K_2 = 1$

② 次态方程

$$\begin{aligned} \mathbf{Q}_0^{n+1} &= \overline{\mathbf{Q}}_0^n \overline{\mathbf{Q}}_2^n \\ \mathbf{Q}_1^{n+1} &= \mathbf{Q}_1^n \oplus \mathbf{Q}_0^n \\ \mathbf{Q}_2^{n+1} &= \mathbf{Q}_0^n \mathbf{Q}_1^n \overline{\mathbf{Q}}_2^n \end{aligned}$$

③ 正确的状态转换图

④ 电路功能:模5加法计数器,可自启动

2. 故障分析

① 触发器工作正常: 说明——电源和地线接触良好、时钟信号CP正常送入 故障只可能在进位链或驱动回路中

 $Q_2^{n+1} = Q_0^n Q_1^n \overline{Q_2}^n$

② 分析各触发器状态: 次态方程 $Q_0^{n+1} = \overline{Q_0}^n \, \overline{Q_2}^n$ 触发器FF1 $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ $Q_2^{n+1} = Q_1^n \oplus Q_0^n$ $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ $Q_2^{n+1} = Q_1^n \oplus Q_0^n$

2. 故障分析

② 分析各触发器状态:

结论:

2. 故障分析

③ 针对触发器0分析:

?

K₀接触不良?

J₀接触不良?

TTL电路管脚悬空 等效为高电平1

 \overline{Q}_2 没有接入, J_0 悬 空等效为高电平1 伽少婴亦武

Ko没问题

触发器变成T', 符合故障现象

Q₂没有