大学数学试卷 2022.1.4

一、 简答题(每小题7分,共4题,计28分)

1. 计算行列式
$$\begin{vmatrix} 20 & 22 & 0 & 0 \\ 22 & 20 & 0 & 0 \\ 16 & 30 & 1 & 4 \\ 30 & 16 & 4 & 1 \end{vmatrix}$$
 的值.

- 2. 求与向量 $\alpha = (1, 1, 1)^T$, $\beta = (2, 0, 1)^T$ 均正交且长度为3的向量.
- 3. 3阶实对称矩阵 A 的三个特征值为 -1,1,3. 求二次型 $f(x,y,z) = (x,y,z)A^*(x,y,z)^{\rm T}$ 的正惯性指数 和负惯性指数,其中 A^* 是 A 的伴随矩阵.

4. 已知
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 4 & 1 \end{pmatrix}$$
,求 \mathbf{R}^3 的子空间 $V = \{Ax \mid x \in \mathbf{R}^3\}$ 的维数.

- 二、(本题12分) 求向量组 $\alpha_1 = (1,-1,2,4)$ T, $\alpha_2 = (0,3,1,2)$ T, $\alpha_3 = (3,0,7,14)$ T, $\alpha_4 = (1,-1,2,0)$ T, $\alpha_5 = (2,1,5,6)$ T的秩,找到它的一个极大线性无关组并将其余向量表达为这组极大线性无关组的线性组合.
- 三. (本题12分) 设 A,B,C 是三个 n 阶实方阵,满足 $\mathbf{r}(AB)=\mathbf{r}(B)$. 试证明 $\mathbf{r}(ABC)=\mathbf{r}(BC)$.

四. (本题12分) 令
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}$$
, 其中 a,b,c,d 是两两不等的正实数. (1) 计算 A^2,A^3,A^4 ; (2) 求 B 的所有特征值及其重数.

- 五. (本题12分) 线性空间 \mathbf{R}^4 中有两组基底 $\varepsilon_1 = (1,1,1,1)^{\mathrm{T}}, \varepsilon_2 = (1,1,-1,-1)^{\mathrm{T}}, \varepsilon_3 = (1,-1,1,-1)^{\mathrm{T}}, \varepsilon_4 = (1,-1,-1,1)^{\mathrm{T}}$ 和 $\eta_1 = (1,1,0,1)^{\mathrm{T}}, \eta_2 = (2,1,3,1)^{\mathrm{T}}, \eta_3 = (1,1,0,0)^{\mathrm{T}}, \eta_4 = (0,1,-1,-1)^{\mathrm{T}}.$
 - (1) 求从基底 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 到基底 $\eta_1, \eta_2, \eta_3, \eta_4$ 的过渡矩阵 P;
 - (2) $\vec{x} \zeta = (1,0,0,2)^T$ 在基底 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的坐标.
- \therefore (本题12分) 令 A 为 n 阶实对称矩阵.
 - (1) 证明对于任意的正整数 k,必然存在实对称矩阵 B 使得 $B^{2k+1} = A$;
 - (2) 若存在实矩阵C满足 $A = C^2$,是否可以说明A是半正定矩阵?若是,给出证明.若不是,给出例子.

1

七. (本题12分) 具有待定系数 a > 0 的二次型 $f(x, y, z) = 2x^2 + 13y^2 + 13z^2 + 2ayz$ 经过正交变换 可变为标准形 $g(u, v, w) = 8u^2 + 2v^2 + 18w^2$. 求 a 并找出一个这样的正交变换.

大学数学试卷 答案 2022.1.4

- 一、 简答题(每小题7分,共4题,计28分)
- 1. 计算行列式 $\begin{vmatrix} 20 & 22 & 0 & 0 \\ 22 & 20 & 0 & 0 \\ 16 & 30 & 1 & 4 \\ 30 & 16 & 4 & 1 \end{vmatrix}$ 的值.

解:
$$\begin{vmatrix} 20 & 22 & 0 & 0 \\ 22 & 20 & 0 & 0 \\ 16 & 30 & 1 & 4 \\ 30 & 16 & 4 & 1 \end{vmatrix} = \begin{vmatrix} 20 & 22 \\ 22 & 20 \end{vmatrix} \cdot \begin{vmatrix} 1 & 4 \\ 4 & 1 \end{vmatrix} = (20^2 - 22^2)(1^2 - 4^2) = 1260.$$

- 2. 求与向量 $\alpha = (1,1,1)^{\mathrm{T}}, \beta = (2,0,1)^{\mathrm{T}}$ 均正交且长度为3的向量. 解:符合条件的向量 $(a,b,c)^{\mathrm{T}}$ 满足 $\begin{cases} a+b+c=0,\\ 2a+c=0,\\ a^2+b^2+c^2=9. \end{cases}$

解得 $(a,b,c)^{\mathrm{T}} = (\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, -\sqrt{6})^{\mathrm{T}}$ 或 $(-\frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2}, \sqrt{6})^{\mathrm{T}}$. 解法二: 设满足正交的向量为 x,则有 $\begin{pmatrix} \alpha^{\mathrm{T}} x \\ \beta^{\mathrm{T}} x \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix} x = \theta$.

解得基础解系为 $(-1,-1,2)^{\mathrm{T}}$,单位化为 $\frac{\sqrt{6}}{6}(-1,-1,2)^{\mathrm{T}}$,所求向量为 $(-\frac{\sqrt{6}}{2},-\frac{\sqrt{6}}{2},\sqrt{6})^{\mathrm{T}}$.

- 3. 3阶实对称矩阵 A 的三个特征值为 -1,1,3. 求二次型 $f(x,y,z)=(x,y,z)A^*(x,y,z)^{\mathrm{T}}$ 的正惯性指数 和负惯性指数,其中 A^* 是 A 的伴随矩阵.
- 解: $|A| = (-1) \times 1 \times 3 = -3 \neq 0$,故有 $A^* = |A|A^{-1} = -3A^{-1}$,则 A^* 的三个特征值为 3, -3, -1. 又 $(A^*)^{\mathrm{T}} = (-3A^{-1})^{\mathrm{T}} = -3(A^{\mathrm{T}})^{-1} = -3A^{-1} = A^*$,故 A^* 是实对称矩阵,为二次型 f(x,y,z) 的矩阵,且有特征值 3, -3, -1,所以二次型 f(x,y,z) 的正惯性指数为1,负惯性指数为2.
- 解法二: 实对称 A 有特征值 -1,1,3,故有正交矩阵 Q 使得 $Q^{\mathrm{T}}AQ=\mathrm{diag}(-1,1,3)=B$,即 $A=QBQ^{\mathrm{T}}$. $|A|=(-1)\times 1\times 3=-3\neq 0$,故 $A^*=|A|A^{-1}=-3A^{-1}=-3(QB^{-1}Q^{\mathrm{T}})=Q\mathrm{diag}(3,-3,-1)Q^{\mathrm{T}}$, 令 $(x,y,z)^{\mathrm{T}} = Q(u,v,w)^{\mathrm{T}}$,则有 $f(x,y,z) = (u,v,w)\mathrm{diag}(3,-3,-1)(u,v,w)^{\mathrm{T}} = 3u^2 - 3v^2 - w^2$, 即二次型正惯性指数为1,负惯性指数为2.
- 4. 己知 $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 4 & 1 \end{pmatrix}$,求 \mathbf{R}^3 的子空间 $V = \{Ax \mid x \in \mathbf{R}^3\}$ 的维数.

解: $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 得 $\mathbf{r}(A) = 2$. 故 $V = \{Ax \mid x \in \mathbf{R}^3\}$ 的维数=A的列秩= $\mathbf{r}(A) = 2$.

解法二: 因为 |A| = 0, $\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3 \neq 0$, 故 $\mathbf{r}(A) = 2$, 故 $V = \{Ax \mid x \in \mathbf{R}^3\}$ 的维数=A的列秩= $\mathbf{r}(A) = 2$.

解法三: $A = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,故 α_1, α_2 可以作为列向量组 $\alpha_1, \alpha_2, \alpha_3$ 的一个极大无关组,即 $V = \{Ax \mid x \in \mathbf{R}^3\} = \operatorname{span}\{\alpha_1, \alpha_2, \alpha_3\}$ 的一组基,故 $\dim(V) = 2$. 解法四: 令 $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 4 & 1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3)$,则易知向量 α_2, α_2 线性无关,且有 $\alpha_3 = \frac{1}{3}\alpha_1 + \frac{1}{3}\alpha_2$,

故 α_1, α_2 是 $V = \{Ax \mid x \in \mathbf{R}^3\} = \operatorname{span}\{\alpha_1, \alpha_2, \alpha_3\}$ 的一组基,于是 $\dim(V) = 2$.

解法五: $|\lambda E - A| = \lambda(\lambda + 1)(\lambda - 4)$, A 的特征值为 $\lambda_1 = 0$, $\lambda_2 = -1$, $\lambda_3 = 4$,对应特征向量 ξ_1, ξ_2, ξ_3 线性无关. 对 \mathbf{R}^3 的任意向量 x 有 $x = k_1\xi_1 + k_2\xi_2 + k_3\xi_3$,则 $Ax = k_2\lambda_2\xi_2 + k_3\lambda_3\xi_3 \in \text{span}\{\xi_2, \xi_3\}$,

故 $V \subseteq \text{span}\{\xi_2, \xi_3\}$,又对任意 $y = k_2 \xi_2 + k_3 \xi_3$ 有 $x = \frac{k_2}{\lambda_2} \xi_2 + \frac{k_3}{\lambda_3} \xi_3$, Ax = y,故 $V \supseteq \text{span}\{\xi_2, \xi_3\}$.

```
故 V = \text{span}\{\xi_2, \xi_3\}, \dim(V) = 2.
```

二、 (本题12分) 求向量组 $\alpha_1 = (1, -1, 2, 4)$ T, $\alpha_2 = (0, 3, 1, 2)$ T, $\alpha_3 = (3, 0, 7, 14)$ T, $\alpha_4 = (1, -1, 2, 0)$ T, $\alpha_5 = (3, 0, 7, 14)$ T, $\alpha_6 = (3, 0, 7, 14)$ T, $\alpha_8 = (3, 0, 7, 14)$ T, $\alpha_8 = (3, 0, 7, 14)$ T, $\alpha_9 = (3, 0,$ $(2,1,5,6)^{T}$ 的秩,找到它的一个极大线性无关组并将其余向量表达为这组极大线性无关组的线性组合.

$$\mathbf{\text{解}:} \ (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

向量组的秩为3, $\alpha_1, \alpha_2, \alpha_4$ 是向量组的一个极大线性无关组. $\alpha_3 = 3\alpha_1 + \alpha_2, \alpha_5 = \alpha_1 + \alpha_2 + \alpha_4$.

三. (本题12分) 设 A, B, C 是三个 n 阶实方阵,满足 $\mathbf{r}(AB) = \mathbf{r}(B)$. 试证明 $\mathbf{r}(ABC) = \mathbf{r}(BC)$.

证: 只要证明 $ABCx = \theta$ 与 $BCx = \theta$ 同解.

显然若 x 满足 $BCx = \theta$, 则有 $ABCx = A\theta = \theta$, 即 x 也满足 $ABCx = \theta$.

反之若 x 满足 $ABCx = \theta$, 令 $\xi = Cx$, 则 ξ 满足 $AB\xi = \theta$.

易知 $By = \theta$ 的解空间是 $ABy = \theta$ 的解空间的子集,

由 r(AB) = r(B) 知 $ABy = \theta$ 与 $By = \theta$ 解空间维数相同, 故 $By = \theta$ 与 $ABy = \theta$ 同解,

于是由 $AB\xi = \theta$ 可得 $B\xi = BCx = \theta$,即 x 满足 $BCx = \theta$.

故 $ABCx = \theta$ 与 $BCx = \theta$ 同解, 从而有 r(ABC) = r(BC).

证法二: 我们有 $r(ABC) \le r(BC)$.

$$\begin{array}{c} \mathbb{X} \ \operatorname{r}(AB) + \operatorname{r}(BC) = \operatorname{r}\begin{pmatrix} AB & O \\ O & BC \end{pmatrix} \leq \operatorname{r}\begin{pmatrix} AB & O \\ B & BC \end{pmatrix} = \operatorname{r}\begin{pmatrix} \begin{pmatrix} E & -A \\ O & E \end{pmatrix}\begin{pmatrix} AB & O \\ B & BC \end{pmatrix} = \operatorname{r}\begin{pmatrix} O & -ABC \\ B & BC \end{pmatrix} \\ = \operatorname{r}\begin{pmatrix} \begin{pmatrix} O & -ABC \\ B & BC \end{pmatrix}\begin{pmatrix} E & -C \\ O & E \end{pmatrix} \end{pmatrix} = \operatorname{r}\begin{pmatrix} \begin{pmatrix} O & -ABC \\ B & O \end{pmatrix} = \operatorname{r}(B) + \operatorname{r}(-ABC) = \operatorname{r}(B) + \operatorname{r}(ABC). \end{array}$$

证法三: 先证明当 $B = \operatorname{diag}(E_r, O)$ 时有 $\operatorname{r}(ABC) = \operatorname{r}(BC)$.

 $\Leftrightarrow B = \operatorname{diag}(E_r, O), A = (A_1, A_2), A_1 \in \mathbf{R}^{n \times r}, A_2 \in \mathbf{R}^{n \times (n-r)},$

则由 $AB = (A_1, O)$ 知 $\mathbf{r}(AB) = \mathbf{r}(A_1) = \mathbf{r}(B) = r$,即 A_1 为列满秩,于是存在可逆矩阵 P 使得 $PA_1 = \begin{pmatrix} E_r \\ O \end{pmatrix}$,从而有 $P(A_1, O) = \operatorname{diag}(E_r, O)$.

故 $\operatorname{r}(ABC) = \operatorname{r}((A_1, O)C) = \operatorname{r}(P(A_1, O)C) = \operatorname{r}(\operatorname{diag}(E_r, O)C) = \operatorname{r}(BC).$

当 B 为任意 n 阶矩阵时,令 $\mathbf{r}(B) = r$,则有 $B = P \operatorname{diag}(E_r, O)Q$,其中 P, Q 为 n 阶可逆矩阵. 于是由上面的结论,有

 $r(ABC) = r((AP)\operatorname{diag}(E_r, O)(QC)) = r(\operatorname{diag}(E_r, O)QC) = r(P\operatorname{diag}(E_r, O)QC) = r(BC).$

四. (本题12分) 令
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}$$
, 其中 a, b, c, d 是两两不等的正实数.

(1) 计算 A^2, A^3, A^4 ; (2) 求 B 的所有特征值及其重数.

解: (1)
$$A^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, A^3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, A^4 = E.$$

$$\begin{aligned} &(2) \ |\lambda E - B| \\ &= \begin{vmatrix} \lambda - a & -b & -c & -d \\ -d & \lambda - a & -b & -c \\ -c & -d & \lambda - a & -b \end{vmatrix} = \begin{vmatrix} \lambda - a - c & -b - d & \lambda - a - c & -b - d \\ -b - d & \lambda - a - c & -b - d & \lambda - a - c \end{vmatrix} \\ &-b - c & -d & \lambda - a \end{vmatrix} = \begin{vmatrix} \lambda - a - c & -b - d & \lambda - a - c \\ -b - d & \lambda - a - c & -b - d & \lambda - a \end{vmatrix} \\ &= \begin{vmatrix} \lambda - a - c & -b - d & 0 & 0 \\ -b - d & \lambda - a - c & 0 & 0 \\ -c & -d & \lambda - a + c & -b + d \\ -b & -c & b - d & \lambda - a + c \end{vmatrix} = \begin{vmatrix} \lambda - a - c & -b - d \\ -b - d & \lambda - a - c \end{vmatrix} \cdot \begin{vmatrix} \lambda - a + c & -b + d \\ b - d & \lambda - a + c \end{vmatrix} \\ &= ((\lambda - a - c)^2 - (b + d)^2)((\lambda - a + c)^2 + (b - d)^2) \\ &= (\lambda - a - c - b - d)(\lambda - a - c + b + d)(\lambda - a + c - (b - d)i)(\lambda - a + c + (b - d)i) = 0, \end{aligned}$$

故特征值 $\lambda = a + c + b + d, a + c - b - d, a - c + (b - d)i, a - c - (b - d)i,$ 均为一重特征值.

(2)的解法二: 易知 $B = aE + bA + cA^2 + dA^3$,

令
$$f(x) = a + bx + cx^2 + dx^3$$
, 则 $B = f(A)$, 于是 $\lambda(B) = f(\lambda(A))$.

由
$$|\lambda E - A| = \begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ -1 & 0 & 0 & \lambda \end{vmatrix} = \lambda^4 - 1 = 0$$
,可得 A 的特征值 $\lambda = 1, -1, i, -i$.

于是 $\lambda(B) = f(\lambda(A)) = a + b + c + d, a - b + c - d, a - c + (b - d)i, a - c - (b - d)i,$ 均为一重特征值.

- 五. (本题12分) 线性空间 \mathbf{R}^4 中有两组基底 $\varepsilon_1 = (1,1,1,1)^{\mathrm{T}}, \varepsilon_2 = (1,1,-1,-1)^{\mathrm{T}}, \varepsilon_3 = (1,-1,1,-1)^{\mathrm{T}}, \varepsilon_4 = (1,-1,-1,1)^{\mathrm{T}}$ 和 $\eta_1 = (1,1,0,1)^{\mathrm{T}}, \eta_2 = (2,1,3,1)^{\mathrm{T}}, \eta_3 = (1,1,0,0)^{\mathrm{T}}, \eta_4 = (0,1,-1,-1)^{\mathrm{T}}.$
 - (1) 求从基底 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 到基底 $\eta_1, \eta_2, \eta_3, \eta_4$ 的过渡矩阵 P;
 - (2) $\vec{x} \zeta = (1,0,0,2)^T$ 在基底 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的坐标.
- $\mathbf{\mathfrak{M}}: (1) (\eta_1, \eta_2, \eta_3, \eta_4) = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4) P, \ P = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)^{-1} (\eta_1, \eta_2, \eta_3, \eta_4)$

(2) 设所求坐标为 x,则有 $(\eta_1, \eta_2, \eta_3, \eta_4)x = \zeta$,于是有

$$x = (\eta_1, \eta_2, \eta_3, \eta_4)^{-1} \zeta = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 3 & 0 & -1 \\ 1 & 1 & 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ -0.5 & 0.5 & 0.5 & 0 \\ 3 & -2 & -1 & -1 \\ -1.5 & 1.5 & 0.5 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1/2 \\ 1 \\ -3/2 \end{pmatrix}.$$

解得
$$P = \frac{1}{4} \begin{pmatrix} 3 & 7 & 2 & -1 \\ 1 & -1 & 2 & 3 \\ -1 & 3 & 0 & -1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$
.

 Λ . (本题12分) 令 A 为 n 阶实对称矩阵.

- (1) 证明对于任意的正整数 k,必然存在实对称矩阵 B 使得 $B^{2k+1} = A$;
- (2) 若存在实矩阵C满足 $A = C^2$,是否可以说明A是半正定矩阵?若是,给出证明.若不是,给出例子.
- 证: (1) A 实对称,则有正交矩阵 Q 使得 $Q^{T}AQ = \operatorname{diag}(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}) = D$,其中 D 是实对角矩阵.
- 证: (1) A 实对称,则有止交矩阵 Q 使得 $Q^{+}AQ = \operatorname{diag}(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}) = D$,共中 D 定头利用起阵. 令 $B = Q\operatorname{diag}({}^{2k+\sqrt[4]{\lambda_{1}}})^{2k+\sqrt[4]{\lambda_{2}}}, \cdots, {}^{2k+\sqrt[4]{\lambda_{n}}})Q^{\mathrm{T}}$,易知 B 实对称. 且有 $B^{2k+1} = Q(\operatorname{diag}({}^{2k+\sqrt[4]{\lambda_{1}}})^{2k+\sqrt[4]{\lambda_{2}}}, \cdots, {}^{2k+\sqrt[4]{\lambda_{n}}}))^{2k+1}Q^{\mathrm{T}} = QDQ^{\mathrm{T}} = Q(Q^{\mathrm{T}}AQ)Q^{\mathrm{T}} = A$. (2) 不是. 取反对称矩阵 $C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,则 $A = C^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ 是实对称矩阵,但不是半正定矩阵. (2) 解法二: 不是. 设实矩阵 $C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in \mathbf{R}$,则实对称矩阵 $A = C^{2} = \begin{pmatrix} a^{2} + bc & (a+d)b \\ (a+d)c & d^{2} + bc \end{pmatrix}$. 故有 (a+d)b = (a+d)c,不妨取 a+d=0,则 $A = \begin{pmatrix} a^{2} + bc & 0 \\ 0 & a^{2} + bc \end{pmatrix}$. 可取 a,b,c 的值使得 $a^2 + bc < 0$, 比如取 a = d = 0, b = 1, c = -1, 则 A = -E 不是半正定矩阵.
- 七. (本题12分) 具有待定系数 a > 0 的二次型 $f(x, y, z) = 2x^2 + 13y^2 + 13z^2 + 2ayz$ 经过正交变换

可变为标准形 $g(u,v,w) = 8u^2 + 2v^2 + 18w^2$. 求 a 并找出一个这样的正交变换.

解: 二次型
$$f(x,y,z)$$
 的矩阵为 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 13 & a \\ 0 & a & 13 \end{pmatrix}$,

经过正交变换得到的标准形
$$g(u,v,w)$$
 的矩阵为 $B=\begin{pmatrix}8&0&0\\0&2&0\\0&0&18\end{pmatrix}$. 故 A 正交相似于 B . 于是 $|A|=2(13^2-a^2)=|B|=8\times2\times18$,因为 $a>0$,故解得 $a=5$. 对于 $A=\begin{pmatrix}2&0&0\\0&13&5\\0&5&13\end{pmatrix}$,正交相似于 B ,故 A 有特征值 $\lambda=8,2,18$.

对应于
$$\lambda = 8, 2, 18$$
 的单位特征向量为 $\beta_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \beta_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$