Meta-PointNet

Deep learning for 3D Vision Final Project

2022.06.01

Presenter: SangYeong Jo

Introduction

PointNet

- Point cloud
 - It is collected set of points from RBG-D or Lidar sensor
 - It is difficult to handle because they are individual, unrelated, and not in regular format
 - It is usually required to be trasnsformed into a 3D voxel grid
- Input permutation-invariant model
 - Simple symmetric function to aggregate the information
 - Alignment approach for all input data

Introduction

- SampleNet
 - Philosophy
 - Reduce the size of point cloud for computational efficiency and communications cost
 - Sampling Method
 - Farthest point sampling
 - Maximal coverage of the input
 - Minimal geometric error
 - Learnable sampling approach

Introduction

- Model-Agnostic Meta-Learning (MAML)
 - Meta learning approach
 - Few-shot learning
 - Learn to learn
 - Inner loop
 - It learns tasks with updating weights temporally
 - Outer loop
 - It update model parameter using loss from temporal updated weights

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(T): distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- Sample batch of tasks T_i ∼ p(T)
- 4: for all T_i do
- 5: Sample K datapoints $D = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}\$ from T_i
- Evaluate ∇_θL_{T_t}(f_θ) using D and L_{T_t} in Equation (2) or (3)
- Compute adapted parameters with gradient descent: θ'_i = θ − α∇_θ L_{T_t}(f_θ)
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: end for
- 10: Update θ ← θ − β∇_θ ∑_{T_t∼p(T)} L_{T_t}(f_{θ'_t}) using each D'_i and L_{T_t} in Equation 2 or 3
- 11: end while

Proposed Method

- Meta-PointNet (Proposed)
 - Principle
 - With fewer raw point cloud
 - Random partial samples

Experiment

- Dataset
 - 3D Point Cloud Classification on ModelNet40
- Protocol
 - Same protocol following both PointNet and SampleNet
 - Batch: 32, Learning rate: 0.01, Optimizer: Adam, decay rate: 0.7, etc.
- Comparison
 - In the scenario of fewer number of points
 - In the Scenario of shuffled points

Result

- Comparison
 - Reproducted performance with fewer number of points
 - Meta-PointNet outperforms SampleNet
 - Interesting result
 - The result with number of 512 shows better performance than 1024

Meta-PointNet

# of points	Accuracy
1024	86.5
512	86.8
256	84.1
128	83.9

SampleNet

# of points	Accuracy
1024	81.9
512	82.3
256	81.3
128	78.6

Result

- Comparison
 - Reproducted performance with shuffled point
 - Meta-PointNet outperforms SampleNet

Meta-PointNet

Epochs # of points Accuracy 250 1024 85.6 500 1024 85.6

SampleNet

Epochs	# of points	Accuracy
250	1024	81.3
500	1024	81.7

Thank you