BUDGET UNCERTAINTY IN A COORDINATED VACCINE MARKET

Nicholas Morris, PhD Candidate

Rochester Institute of Technology

Collaborators: Ruben Proano, Galo Mosquera, José Batista

Funded by the Bill and Melinda Gates Foundation – Grant Number: OP1152241

Agenda

- Problem Introduction
- Research Questions
- Hypotheses
- Methods
- Results
- Conclusions

Figure 3: Member States that have and have not achieved national coverage of ≥ 90% for all vaccines included in the national infant immunization schedule in 2012

Figure 19: Member States that have achieved national coverage of ≥90% for all vaccines included in the national infant immunization schedule, 2013

Figure 21: Member States that achieved national coverage of ≥ 90% for all vaccines included in their national infant immunization schedule in 2014

Figure 2.9: Member States that achieved national coverage of ≥ 90% for all vaccines included in the national infant immunization schedule, 2015a

No (116 Member States or 60%) Not available Not applicable

[2]

Vaccine Affordability

 "Inadequate financing and difficult access to supply are currently seen as a bottleneck for countries achieving and sustaining national, regional and global immunization goals" [2]

- Complex & lengthy development
- High set-up costs forces batch production
- Difficulties forecasting demand

- High Prices v. Limited Income
- Millions of children do not receive basic immunization
- High income countries buy82% of the value, but are only20% of the volume

TRADE-OFFS

[5]

Current Vaccine Market

Fully Coordinated Vaccine Market

 "Pooled procurement mechanisms manage to secure lower prices than self-procuring countries, except for self-procuring countries purchasing very large volumes" [2]

Antigen Bundling Problem – Objective

Antigen Bundling Problem – Constraints

Demand	Antigen demand must be satisfied at each market segment			
Affordable Pricing	Vaccines must be priced below their reservation price in each market segment			
Tiered Based Pricing	Vaccines are priced higher for market segments with higher GNI per capita			
Demand Elasticity	Vaccine demand resistantly decreases as its price reaches its reservation price			
Combination Vaccine Value	The savings from a combination vaccine must be higher than the savings from any group of vaccines that could satisfy the same demand			
Profitable Pricing	Revenue from vaccine sales must ensure a given ROI to vaccine providers			
Supply	Supply Providers cannot supply vaccines exceeding their manufacturing capacities			

Antigen Bundling Problem – An Optimization Process

Antigen Bundling Problem – Key Findings

- Total social surplus only depends on the choice and quantity of vaccines to buy and not on their price
- Increasing market segmentations improve affordability and profitability in the face of reservation price uncertainty

Vaccine Pricing

Paper Name	Authors	Year	Scope	Approach
Pediatric vaccine procurement policy: The monopsonist's problem	Matthew J. Robbins, Sheldon H. Jacobson	2011	USA	Deterministic Optimization
Making combination vaccines more accessible to low-income countries: The antigen bundle pricing problem	Ruben A. Proano, Sheldon H. Jacobson, Wenbo Zhang	2011	Global	Deterministic Optimization
The Weighted Set Covering Game: A Vaccine Pricing Model for Pediatric Immunization	Matthew J. Robbins, Sheldon H. Jacobson, Uday V. Shanbhag,	2014	USA	Game Theory
A bilevel formulation of the pediatric vaccine pricing problem	Matthew J. Robbins, Brian J. Lunday	2015	USA	Game Theory
Asymmetric Bertrand-Edgeworth-Chamberlin Competition with Linear Demand: A Pediatric Vaccine Pricing Model	Matthew J. Robbins, Sheldon H. Jacobson, Banafsheh Behzad	2015	USA	Game Theory
A symmetric capacity-constrained differentiated oligopoly model for the United States pediatric vaccine market with linear demand	Matthew J. Robbins, Brian J. Lunday	2016	USA	Game Theory
Informing pediatric vaccine procurement policy via the pediatric formulary design, pricing, and production problem	Sheldon H. Jacobson, Banafsheh Behzad	2016	USA	Deterministic Optimization

Positive Income Elasticity

 The income elasticity for vaccine expenditure is 0.336 for 84 countries from 2010 to 2011 [3]

Research Questions

Budget Uncertainty

 When countries face a reduction in budget, how is the welfare of consumers and providers affected? How can the behavior of budget reduction be modeled?

Hypothesis

Reservation Price

 If a market's vaccine budget decreases then their reservation price decreases.

Methods

Reservation Price

Pick a market segmentation & pick a market that will face the effects of budget reduction

Pick which vaccines will experience a price drop due to budget reduction

Pick the reduction in reservation price for each of the chosen vaccines

Solve the ABP for this particular instance

Methods

Reservation Price – My Specific Experiment

- Repeated General Factorial Design
 - 3 [price drops] *
 4 [vaccine portions] *
 4 [MARR rates] *
 26 [markets]
 = 1248 [scenarios]
 - 1248 [scenarios] *50 [replications]= 62400 [runs]

Reservation Price Method – Total Social Surplus

 When countries face a reduction in budget, increasing the market segmentations improves the expected value and variability of total welfare

Total Social Surplus

Reservation Price Method – Total Consumer Surplus

 When countries face a reduction in budget, increasing market segmentations improves the expected value and variability of consumer surplus

Total Consumer Surplus

Reservation Price Method – Total Provider Profit

- When countries face a reduction in budget, 8 market segmentations improves the expected value but increases the variability of provider profit
- Provider profit is noisy, harder to estimate

Total Provider Profit

Hypothesis

Birth Cohort

 If a country's vaccine budget decreases then the portion of their children that get vaccinated decreases.

Methods

Birth Cohort

Pick a market segmentation & pick a market that will face the effects of budget reduction

Pick which countries will experience a cohort drop due to budget reduction

Pick the reduction in birth cohort for each of the chosen countries

Solve the ABP for this particular instance

Methods

Birth Cohort – My Specific Experiment

- Repeated General Factorial Design
 - 3 [cohort drops] *
 4 [country portions] *
 4 [MARR rates] *
 26 [markets]
 = 1248 [scenarios]
 - 1248 [scenarios] *50 [replications]= 62400 [runs]

Birth Cohort Method – Total Social Surplus

- When countries face a reduction in budget, increasing the market segmentations improves the expected value and variability of total welfare
- The minimum value of total welfare is approximately ½ billion USD larger than in the reservation price method

Total Social Surplus

Birth Cohort Method – Total Consumer Surplus

- When countries face a reduction in budget, increasing market segmentations improves the expected value and variability of consumer surplus
- The distribution of consumer surplus is very similar to the reservation price method

Total Consumer Surplus

Birth Cohort Method – Total Provider Profit

- When countries face a reduction in budget, 8 market segmentations improves the expected value but increases the variability of provider profit
- The variability is less than in the reservation price method

Total Provider Profit

Reservation Price v. Birth Cohort

- Mapping budget uncertainties to birth cohort changes or reservation price changes will both provide similar behavior. However, reflecting budget uncertainties as a birth cohort fluctuations provides results with:
 - 1. Lower variances Easier to predict
 - 2. Higher Total Social Surplus Budget uncertainty has less impact
 - 3. Higher Total Consumer Surplus Budget uncertainty has less impact
 - 4. Higher Total Provider Profit Budget uncertainty has less impact
 - 5. More balanced market share between providers and consumers Budget uncertainty has less impact

USA Vaccine Budget – Lower Income Countries

 A reduction in USA vaccine budget can yield up to a ½ billion USD loss in total welfare (-13%) for lower income countries

Change in Lower Income Welfare

Conclusions

What have we learned?

- Increasing market segmentations continues to show better results for the ABP
- We have developed a framework to implicitly explore the effects of budget uncertainty in a coordinated vaccine market without explicating stating the budget value
- As the price paid for vaccines continues to become more transparent across countries, developing an explicit estimate of vaccine budget on a country level becomes possible
- Risk of budget uncertainty may not be best represented by reservation price or birth cohort, and there is growing availability of public data on countries that could be used for a data mining exercise

Questions?

Nicholas Morris, PhD Candidate

Rochester Institute of Technology

References

- Making combination vaccines more accessible to low-income countries The antigen bundle pricing problem [1]
- Global Vaccine Action Plan Secretariat Annual Reports 2012-2016 [2]
- Income elasticity of vaccines spending versus general healthcare spending [3]
- Economics The Economy Today Schiller, Gebhardt, 14e, Elasticy [4]
- WHO. "Vaccine Market: Global Vaccine Demand." World Health Organization, WHO, n.d. Web. 18 Oct 2017.
 http://www.who.int/immunization/programmes_systems/procurement/market/global_demand/en/ [5]