COL380

Introduction to Parallel & Distributed Programming

Measure Performance

- A function of: input size, number of processors
 - → communication, dependencies
- Scaling
- How fast does a job complete?
 - → Elapsed wall time (Latency)
 - compute + communicate + synchronize
- · How many jobs complete in a given time?
 - → Throughput

Performance Metrics

Exec time using 1 processor system
$$(t_1)$$

Speedup,
$$S_p =$$

Exec time using p processors (t_p)

Efficiency,
$$\mathscr{E}_p = \frac{S_p}{p}$$

Cost,
$$C_p = p \times t_p$$

Cost Optimal if $C_p = t_1$

Look out for inefficiency:

$$t_1 = n^3$$

 $t_p = n^2$, for $p = n^2$
 $C_p = n^4$

$$\overline{\mathbf{o}}_{p} = p \times t_{p} - t_{1}$$

Parameterize with "p"

- Algorithms scale up to a processor count, p
 - → A larger value of p raises the expectation that the algorithm scales well
- To execute using fewer processors p# < p:
 - Simulate each step (that uses up to p processors)
 - Group into p sets, one for each processor
 - Each set takes [p/p#] or [p/p#] steps
 - The time taken for original step = $O(\lceil p/p^{\#}\rceil)$
- The total time taken $t(n,p^{\#}) = O(t(n,p) * \lceil p/p^{\#} \rceil)$

Work =
$$\sum_{t(n,p)} p_i$$

processors executing step i

Amdahl's Law

- f = fraction of the problem that is sequential
- \Rightarrow (1 f) = fraction that is parallel

Best parallel time

$$t_{par} = t_{seq} \left(f + \frac{1 - f}{p} \right)$$

- \rightarrow Fraction (1-f) equally shared by p processors
- Speedup with p processors:

$$S_p = \frac{1}{f + \frac{1 - f}{p}}$$

Amdahl's Law

$$S_p = \frac{1}{f + \frac{1 - f}{p}} \rightarrow \mathbf{0}$$

- Speed-up due to p processors
- Upper bound on speedup at p = ∞

$$S_{\infty} = \frac{1}{f}$$

$$f = 10\%, S_{\infty} \rightarrow 1 / 0.1 = 10$$

Example Scaling

Speedup saturates and efficiency drop (Amdahl's law) But the limit depends on n: size of the problem

Speedup versus the number of processing elements for adding a list of numbers

Gustaffson's Law

- Observation: applications seem to exceed Amdahl's speed-up
 - → (i.e., assumption are too restrictive)
- As p increases, the opportunity for parallelization can also increase

Karp Flatt metric

$$S_{p} = \frac{1}{f + \frac{1 - f}{p}}$$

$$\Rightarrow S_{p} = \frac{p}{pf + 1 - f}$$
(Amdahl's law)

Estimate the fractional part

$$\Rightarrow \frac{p}{S_p} - 1 = (p - 1)f$$

$$\Rightarrow f = \begin{pmatrix} \frac{1}{S_p} - \frac{1}{p} \\ \frac{1}{1 - \frac{1}{p}} \end{pmatrix}$$

 $\Rightarrow f = \begin{pmatrix} \frac{1}{S_p} - \frac{\Gamma}{p} \\ \frac{1}{S_p} - \frac{\Gamma}{p} \end{pmatrix}$ Measure speedup, estimate the sequential fraction

Isoefficiency: Measure of Scalability

Rate at which problem size must grow (as a function of p) to maintain constant efficiency

$$t(n,1) = \mathcal{F}(n)$$
 "problem size"

- \rightarrow If *n* need not grow with $p \Rightarrow$ Strongly scalable
 - Weakly scalable, otherwise
 - ▶ *Lower* rate of growth \Rightarrow *More* Scalable

$$\mathscr{E}(n,p) = \frac{t(n,1)\dagger}{p \ t(n,p)} = k$$

Example:

$$t(n,p) = \Theta\left(\frac{n}{p} + \log p\right)$$

$$t(n,1) = \Theta(n)$$
 $\mathcal{I}(p) = \Omega(p \log p)$

Measure of problem size:
$$n(p) = \mathcal{I}(p)$$
 $s.t.\mathscr{E} = k$

Isoefficiency Function
$$\mathcal{I}(p) = \Omega(\overline{o}(p))$$