Calcolabilità e linguaggi formali Compitino B

11 Novembre 2013

Esercizio 1

Sia $A = \{0, 1, 2\}$ un alfabeto. Definire una MdT che termina la computazione su una stringa $\alpha \in A^*$ sse $\alpha = (001)^n$ per $n \ge 0$ (per esempio, $(001)^0 = \epsilon$ (stringa vuota), $(001)^1 = 001$, $(001)^2 = 001001$, $(001)^3 = 001001001$, etc).

Soluzione

```
Sia q_0 lo stato iniziale della MdT, q_{ciclo} uno stato di loop e q_F uno stato finale. Indichiamo con \square il carattere blank. q_011q_{ciclo}D q_000q_1D q_000q_1D q_011q_{ciclo}D q_100q_2D q_111q_{ciclo}D q_111q_{ciclo}D q_200q_{ciclo}D q_201q_{ciclo}D q_211q_0D q_211q_0D q_211q_0D q_{ciclo}D (c un carattere qualsiasi)
```

Esercizio 2

Enunciare e dimostrare il primo teorema di Rice.

Esercizio 3

Definire un programma funzionale iterativo che calcola la seguente funzione

$$f(x,y) = \begin{cases} x, & \text{se } y = 0\\ y, & \text{se } y \neq 0 \end{cases}$$

Si hanno a disposizione le seguenti funzioni: segno sg, segno negato \overline{sg} .

Soluzione

Sia
$$f = P_{1,1}^1||(P_{1,1}^1 \cap sg \cap \bar{s}g) \; ; \; exp(P_{2,2}^2||0)||P_{1,1}^1 \; ; exp(P_{1,1}^2||0); P_{1,1}^2 \; x, 0 \mapsto x, 0, 0, 1 \mapsto x, 0, 1 \mapsto x, 0 \mapsto x$$
 Sia $y \neq 0$ Allora $x, y \mapsto x, y, 1, 0 \mapsto y, 0, 0 \mapsto y, 0 \mapsto y$

Esercizio 4

Definire un programma funzionale ricorsivo che calcola la funzione $f(x,y) = (xy)^2 + 2 + x$. Specificare g, h tali che f = REC(g,h). Si hanno a disposizione le seguenti funzioni: segno sg, segno negato \overline{sg} , addizione + e prodotto *.

Soluzione

$$f(x,0) = 2 + x \text{ e } f(x,y+1) = (x(y+1))^2 + 2 + x = (xy+x)^2 + 2 + x = (xy)^2 + x^2 + 2xyx + 2 + x = f(x,y) + x^2 + 2xyx.$$
 Allora $g(x) = 2 + x \text{ e } h(x,y,x) = z + x^2 + 2xyx.$

Esercizio 5

Applicare il primo teorema di Rice all'insieme $I = \{x : \{5,7\} \supseteq dom(\phi_x)\}$ ed al suo complementare.

Soluzione

I rispetta le funzioni. I programmi della funzione vuota sono in I, mentre i programmi della funzione identica sono in \bar{I} . Quindi per Rice 1 I non e' semidecidibile e \bar{I} non e' decidibile.