DeepSeek 爆火 详细报告

回顾DeepSeek的爆火过程

向老板报告DeepSeek爆火的系统知识

AI人工智能基地

2025.2.5

目录

01

DeepSeek爆火时 间线 02

各国名人对 DeepSeek的观点 03

DeepSeek爆火的 原因分析 04

DeepSeek的创新 点

05

当前大模型存在 的问题 06

当前大模型国家 间的竞争格局 07

全球各大AI公司 优劣势分析 80

未来人工智能的 发展预测

DeepSeek爆火时间线 从开源到全球领先的关键节点 AI人工智能基地

DeepSeek-V2的开源

2024年5月,DeepSeek-V2引领价格战

第二代模型

DeepSeek-V2总 参数达2360亿, API定价低至每百 万tokens输入1元。

价格战

DeepSeek的低价 策略引发中国AI大 模型市场价格战。

技术优势

DeepSeek-V2在 多项评测中表现 优异,超越同类 开源模型。

市场反应

DeepSeek的低价 策略迅速吸引市 场关注。

DeepSeek-V3的突破

2024年12月,DeepSeek-V3参数激增

总参数达6710亿

DeepSeek-V3总参数大幅提升,训练成本仅为557.6万美元。

技术进步

DeepSeek-V3的技术突破为后续发展奠定基础。

性能超越

在多项评测中超越Qwen2.5-72B和 LLaMA 3.1-405B。

开源影响

开源策略促进技术社区的合作与创新。

DeepSeek-R1的发布

2025年1月, DeepSeek-R1性能媲美OpenAl

DeepSeek应用的上线

2025年1月,DeepSeek应用全球上线

全球用户增长
DeepSeek应用在全球和美国的日活跃用户数增长超110%。

国运级评价
游戏科学CEO冯骥评价
DeepSeek为国运级科技成果。

中果商店登顶
DeepSeek应用登顶苹果应用商店免费下载排行榜。

回际关注
DeepSeek的崛起引发国际社会的广泛关注。

国际排名与评价

DeepSeek在全球大模型排名中的表现

排名第三

DeepSeek-R1在国际大模型排名中升至第三。

风格控制第一

在风格控制类模型中与OpenAI并列第一。

国际认可

DeepSeek的技术实力获得国际社会的广泛认可。

用户增长

DeepSeek应用在全球范围内的用户数快速增长。

1月24日: 国际排名提升

全球用户增长显著

01

全球第三

DeepSeek-R1基准测试升至全球第三。

02

用户增长

全球和美国的平均日活跃用户增长超110%。

截止2月5日:应用商店多日保持登顶

全球下载量领先

01 02

下载榜首

DeepSeek登顶苹果中国和美国应用商店。

持续领先

根据Appfigures数据,保持全球领先地位。 在超过140个国家中排行第一位

各国名人对DeepSeek 的观点

科技领袖的评价与展望

马斯克的质疑

对硬件配置与资源分配的质疑

01

技术奇迹质疑

马斯克质疑DeepSeek的成功是否完全依赖技术突破。

02

资源分配不透明

暗示AI行业内部资源分配存在不透明性。

03

成本与性能质疑

对DeepSeek宣称的成本和性能真实性提出疑问。

04

算力支持

怀疑DeepSeek背后有强大算力支持。

Sam Altman的赞赏

反思OpenAl站在开源的对立面,采用降价和免费策略,加快推出新O3模型上线

Alexandr Wang的对比

中美AI竞赛的新局面

提出加大对中国技术封锁

DeepSeek的AI大模型与美国最好模型性能相当。

竞争态势

美国在AI竞赛中可能失去领先地位。

中国在AI领域以更便宜、更快的产品迎头赶上。

改变一切

DeepSeek的发布可能改变中美AI竞争格局。

Dario Amodei的深入分析

对DeepSeek训练细节的质疑

芯片使用质疑

质疑DeepSeek宣称的芯片使用数量。

训练时间差

Claude 3.5 Sonnet领先DeepSeek七个月。

训练方法尊重

尊重DeepSeek的训练模型方法。

技术领先性

强调Anthropic在技术上的领先。

马克·贝尼奥夫的惊叹

低成本高性能的突破

突破ChatGPT

DeepSeek突破了ChatGPT的技术成就。

超级计算机替代

不需要英伟达超级计算机即可实现成就。

经济高效

低成本、高性能模式的积极意义。

技术成就

感叹DeepSeek的惊人技术成就。

蒂姆·库克的高度评价

推动效率的创新

01

创新推动

1. DeepSeek是推动效率的AI创新。

02

行业进步

1. 对行业有积极进步的贡献。

03

开源模型

1. 认可DeepSeek的开源性。

04

计算效率

1. 推理时间计算效率超高。

马克·安德森的惊叹

开源模型的厚礼

技术突破

DeepSeek-R1是最令人惊叹的技术突破之一。

开源决定

开源模型的决定是送给世界的厚礼。

行业影响

对AI行业未来有深远影响。

技术领先

称赞DeepSeek的技术先进性。

Satya Nadella的认可

开源与创新的结合

出色模型

DeepSeek的新模型极为出色。

开源创新

认可DeepSeek的开源性与创新结合。

成本下降

AI成本下降是必然趋势。

行业启示

DeepSeek为行业带来新的启示。

唐纳德·特朗普的警示

对美国产业的警钟

竞争集中01

强调美国需要集中精力赢得竞争。

高效经济DeepSeek模型高效且经济。

积极发展认为这是一种积极的发展。

产业警示
DeepSeek的出现给美国产业敲响了警钟。

扎克伯格的谨慎态度

学习之处

• DeepSeek有许多值得学习之处。

未来判断

• 对AI未来的意义判断为时尚早。

技术先进

• DeepSeek技术非常先进。

行业担忧

• 担忧开源模型影响美国科技领先地位。

乔恩·斯图尔特的夸赞

中国AI的命名艺术

亚历克斯·迪马基的见解

技术路线的新启示

吉姆·范的赞赏

阿尔文·王·格雷林的观察

周鸿祎的展望 中国AI的崛起

富凯的积极评价

AI模型对芯片市场的影响

高效模型

DeepSeek推出高效AI模型。

成本降低

有助于降低AI应用成本。

商机增加

为阿斯麦带来更多商机。

行业影响

对芯片市场有积极影响。

DeepSeek爆火的原因 分析

成功背后的关键因素

免费使用策略

降低用户门槛的关键

01

02

03

04

用户吸引力

免费使用策略迅速吸引了大量 用户,尤其是成本敏感群体。

市场定位

高性价比策略满足了广泛用户的需求,加速市场渗透。

用户增长

用户数量在短时间内实现爆发式增长,市场份额快速提升。

竞争优势

相比竞争对手,免费策略形成差异化竞争优势。

开源架构优势

技术开放与成本降低

硬件成本

开源架构显著降低硬件成本, 提升性价比。

灵活部署

提供灵活的部署选项,满足不同用户需求。

技术共享

开源促进技术开放与共享,加速技术普及。

打破垄断

开源打破少数企业对 AI 技术的垄断,推动行业进步。

技术创新与卓越性能

DeepSeek R1 的技术突破

自媒体与国际环境

自媒体平台精准营销,迅速提升品牌知名度。

国际竞争

契合全球科技发展趋势, 注入行业新活力。

名人效应

科技领袖的关注与认可, 提升品牌影响力。

传播与影响力的提升

市场契合

技术与市场定位高度契合,满足各方需求。

云厂支持

拓展服务版图

02

03

云服务合作

获得微软、亚马逊等云厂支持, 拓展服务范围。

便捷体验

提供便捷高效的云服务使用体验,提升用户满意度。

服务扩展

广泛的云合作扩展了 DeepSeek 的服务版图。

用户便利

用户能够更便捷地使用 DeepSeek 的服务。

硬件兼容性

广泛适配多元算力

硬件支持

支持英伟达、AMD、华为等硬件设备,兼容性 强。

多元算力

满足不同硬件配置用户的需求,适应多元计算环境。

用户覆盖

广泛兼容性提升用户覆盖面,满足各类用户需求。

技术适应性

强大的硬件兼容能力,适应不同技术环境。

努力故事与创始人背景

个人经历与品牌共鸣

国际环境与名人效应

科技竞争中的新星

科技竞争

契合全球科技发展,满足先进AI需求。

名人关注

科技领袖的关注提升品牌影响力。

DeepSeek的创新点 技术突破与优化策略 AI人工智能基地

高效训练架构

提升训练效率的基础

专属集群

构建"萤火"集群,提升训练效率。

优化注意力机制

设计MLA,减少缓存,提高推理效率。

专家模型架构

提升复杂任务处理能力

共享专家

引入共享专家和细粒度专家分配 机制。

路由算法

解决负载均衡问题,提高资源利用率。

DualPipe算法

通信与计算的协同优化

精准调控

绕过CUDA限制,提升资源利用效率。

带宽差异

针对带宽差异采取策略,提升性能。

精细化FP8

提升训练效率的技术创新

01

混合精度

大幅减少计算和通信量,降低成本。

02

MTP提升

通过MTP提升训练密度,加速模型收敛。

当前大模型存在的问题 挑战与限制 AI人工智能基地

高昂成本

硬件与数据的高投入

硬件投入

训练需海量计算资源, 硬件采购成本高。

数据成本

优质数据获取困难, 标注成本高。

高能耗问题

训练与推理的 能耗挑战

训练能耗

训练消耗大量电量,环境压力大。

推理能耗

高并发应用下, 总能耗相当可观。

可解释性难题

决策过程的透明性

内部机制

复杂内部机制导致决策过程不可解释。

解释方法

缺乏通用解释方法,限制模型优化。

数据相关挑战

数据质量与偏差问题

数据质量

• 低质量数据误导模型学习。

数据偏差

• 训练数据反映现实世界偏差,影响模型公平性。

当前大模型国家间的竞 争格局

全球AI技术的竞合态势

美国技术优势

科研实力与科技巨头支持

科研实力

顶尖高校在基础研究方面领先。

科技巨头

谷歌、微软等提供强大资源支持。

中国技术追赶

产学研结合的快速进步

欧洲技术特点

科研底蕴与特定领域优势

探索与应用的多元 化

俄罗斯

注重国防和安全领域的大模型应用。

日韩

结合本土优势发展大模型技术。

全球各大AI公司优劣势 分析

企业间的竞争与合作

Meta的AI布局

社交巨头的AI战略

用户规模

Meta旗下平台月活用户达数十亿。

数据丰富,品牌影响力大。

大模型产品

LLaMA在自然语言处理上有显 著成果。

AI应用

AI用于内容推荐、广告投放等领域。

市值

截至2025年2月4日,市值1.78万 亿美元。

AI技术深度和专注度不足。

Google的AI实力

搜索巨头的AI创新

微软的AI合作

软件巨头的AI战略

用户基础

Windows、Office等产品用户庞大。

大模型产品

与OpenAI合作,整合GPT系列模型。

优势

强大的软件和云计算基础。

市值

截至2025年2月4日,市值3.06万亿美元。

AI应用

AI赋能Office 365、Azure等产品。

劣势

AI技术自研相对较弱。

OpenAI的创新

新兴AI公司的突破

用户基础

ChatGPT拥有大量全球用 户。

市值

估值超过1500亿美元。

大模型产品

GPT系列是行业标杆。

AI应用

拓展到图像生成、语音识 别等领域。

优势

技术领先,吸引顶尖AI人 才。

劣势

商业模式尚在探索。

字节跳动的AI战略

阿里巴巴的AI应用

电商巨头的AI布局

用户基础

淘宝、天猫等产品用户庞大。

市值

截至2025年2月4日,总市值1.86万亿港元。

大模型产品

通义干问在自然语言处理上有表现。

AI应用

应用于电商、金融、云计算等领域。

优势

电商和金融数据丰富,云计算能力强。

劣势

AI产品用户体验有时不够流畅。

腾讯的AI布局

社交与游戏的AI融合

百度的AI突破

搜索巨头的AI创新

1 用户基础

百度搜索、百度地图等产品用户 多。

2 市值

截至2025年2月4日,总市值 2450.17亿港元。

3 大模型产品

文心一言在自然语言处理有特色。

4 AI应用

涵盖搜索、自动驾驶、智能音箱 等领域。

5 优势

自然语言处理技术积累深厚。

AI产品认知度有待提高。

中美AI对比

中美AI公司的优势与劣势分析

技术创新与研发能力

中美AI技术的对比

01

美国优势

技术积累深厚,基础研究强。

02

中国优势

特定场景应用能力强,创新能力突出。

03

美国劣势

资源分散,标准化程度低。

04

中国劣势

技术深度不足,标准化有待提升。

AI应用领域 中美AI应用的对比

美国优势

01.

美国劣势

短视频、社交等领域商业化能力强。

02.

应用领域广泛,全球化布局强。

03.

中国劣势

04.

核心领域仍需加强。

某些垂直领域应用薄弱。

中国优势

数据资源与用户量中美用户数据的对比

Amet autem laoreet eirmod voluptua dignissim nonumy.

01

美国优势

用户数据丰富,支持大模型训练。

02

中国优势

用户量庞大,数据资源丰富。

03

美国劣势

数据文化局限性。

04

中国劣势

数据主要集中在中文。

用户体验与服务

中美用户体验的对比

AI技术的趋势与前景

大模型训练与数据更新

效率与准确性的提升

训练效率

数据更新

训练效率显著提升, 更新频率加快。

数据更新准确性提高,反映最新信息。

驱动模式转变

技术与市场的双驱动

产品与销售

注重市场需求,推动技术应用。

开源生态

开源竞争激活市场,加速技术发展。

硬件兼容性提升

适配更多硬件设备

推理端适配

推理端优先适配各类硬件,满足应用需求。

训练端兼容

训练端逐步兼容更多硬件类型。

多模态能力拓展

智能体大爆发

应用生态的繁荣

智能体涌现

各类智能体如雨后春笋般涌现。

应用生态

不同行业的应用不断涌现,形成复杂生态系统。