which process goes to CPU? (Ready -> Running)

Scheduling Algorithms Preemptive l for greater responsiveness and priority reasons) 1. SRTF: Shortest Remaining

> Non - preemptive

- 1. FCFS (First Come First Seave)
- 2. SJF (Shortest Job First)
- 3. LJF (Longest Job Axst)
- 4. HRRN (Highest Response Ratio Next)
- 5. Multilevel queve
- 2. LRTF : Longest Remaining Time First
- 3. Round Robin
- 4. Priority Based

CPU Scheduling

- 1. Arrival Time: Time at which process enters the ready queve
- 2. Busst Time: Time required by a process to get executed on CPU.
- 3. Completion Time: Time at which process completes its execution
- 4. Turn Around Time: Completion Time Arrival Time
- 5. Waiting Time: TAT Burst Time
- 6. Response Time: [The time at which a process gets CPU first time] Arrival

FCFS (First Come First Serve)

(siteria : Arrival Time

Mode: Preemptive

Process No	Arrival Time	Burst Time	Completion Time	TAT	ωT	RT
Pi	0	2	2_	2	0	0
P2	١	2_	ч	3	1	1
P3	5	3	8	3	0	0
PY	6	Ч	12	6	2	2

GANT						
GANT	PI	P2		B		Py
0		2	ч	5	8	12

SJF (Shortest Job First)

$$TAT = CT - AT$$

 $WT = TAT - BT$

Process No	Arrival Time	Burst Time	Completion Time	TAT	ωT	RT
Pr	1	3	6	5	2	2
P2	2	Ч	16	8	Ч	Ч
P3	١	2	3	2	6	0
ρų	Ч	Ч	14	10	6	6
•			•		•	

GANT						
CHART	//////	P3	Pi	P2	ľч	
	5 <u> </u>	3	6	10		

Avg
$$TAT = 25 = 6.25$$

Avg $WT = 12 = 3$

WT and RT are same in case of non-precentive because the process gets executed compretely when it gets the CPU

SRTF (Shortest Remaining Time First)

Criteria: Burst Time Mode: Preemptive

Process No	Arrival Time	Burst Time	Completion Time	TAT	ωT	RT
Pr	0	5	q	9	Ч	0
P2	1	3	ų'	3	0	0
f3	2	Ч	13	11	フ	7
ρч	Ч	1	5	1	0	0

Aug TAT =
$$\frac{24}{4} = 6$$

Aug WT = $\frac{11}{4} = 2.75$
Aug RT = $\frac{7}{2} = 1.79$

0.	Process No	Arrival Time	Burst Time
<u></u>	Pı	0	7
	P2	1	Ч
	РЗ	2	8

The Gantt chart for preemptive SJF scheduling algorithm is?

Round Robin

Process No	Arrival Time	torival Time Boost Time Completion Tim				
Pı	0	5	12	12	7	0
P2	1	Ч	h	10	6	- 1
РЗ	2	2	6	Ч	2	2
ρų	Ч	1	q	5	Ч	Ч

Criteria: Time Quantum > Unit of time the CPU will execute

Mode: Preemptive a process before switching to

another process

Time Quantum = 2

Save running process -> bring new process

PCB (Process Control Block)

(Has all the information of process) =

Every process has its own pcb

Ready Queve P1 P2 P3 P1 P4 P2 P1

Rumiy Queve P1 12 P3 P1 P4 P2 P1
8 2 4 6 8 9 11 12

How many context swithes?

Preemptive Priority

Priorite	Process No	Arrival Time	Burst Time	Completion Time	TAT	ωT
0	Pı	0	5	12	12	7
20	P2	1	Ч	8	7	3
30	P3	2	2	Ч	2	0
7	ρι	Ч)	5	1	0

Higher no, higher priority

P1 P2 P3 P4 P2 P1 0 1 2 4 5 8 12

(riteria: Priority Mode: Preemptive

Min Burst Time (CPU & I/O)

						find CT	
Process	АТ	Priority	دوں	耳/0	CPU	СТ	Lower no, higher priority
Pi	٥	2 '	1	5	3	10	7.0
P2	2	3	3	3	1	15	Mode: preemptive
P3	3	1	2	3	l	9	(riteria: priority based
Py	3	ч	2	4	١	18	

P3 I/0

Py 1/0

Pi	1//	/// P2		P3	P ₃	12	Pı	Pi	Ps		P, P;		Py	Py		// [2 //	// P	4	
0	1_	2	3	4		\$	٤	7	8	9	lo	h	12	2 (3	14	IS	17	18	
P ₁ I/0											P ₂	7	o							

Multi-level que ve Scheduling

System Process

Theractive Process

Batch Process

Lowest priority

Instead of having one ready queue, we have multiple queue

We are categorizing the processes according to their different reallife scenario

But if there are too many system processes, batch process will not get its toom due to low priority

Multilevel Feedback Oneve Scheduling (Solution for multi-level queve schedulig)

