CLAIMS:

1. The use of a compound of Formula (I),

$$R^5$$
 R^4
 R^4
 R^4
 R^4

5

10

Formula (I)

wherein:

R¹ is selected from: hydrogen, optionally substituted C₁₋₆alkyl, optionally substituted aryl or optionally substituted arylC₁₋₆alkyl, wherein the optional substituents are selected from C₁₋₄alkyl, nitro, cyano, fluoro and C₁₋₄alkoxy;

 ${f R}^2$ is an optionally substituted mono or bi-cyclic aromatic ring, wherein the optional substituents are 1, 2 or 3 substituents independently selected from: cyano, ${f R}^e{f R}^f{f N}$ -, ${f C}_{1\text{-}6}$ alkyl, ${f C}_{1\text{-}6}$ alkoxy, halo, halo ${f C}_{1\text{-}6}$ alkyl or halo ${f C}_{1\text{-}6}$ alkoxy wherein ${f R}^e$ and ${f R}^f$ are independently selected from hydrogen, ${f C}_{1\text{-}6}$ alkyl or aryl;

15 R³ is selected from a group of Formula (IIa) to Formula (IId):

where **R**⁶ and **R**^{6a} are independently selected from hydrogen, fluoro, optionally substituted C₁₋₆alkyl, C₁₋₆alkoxy, or **R**⁶ and **R**^{6a} taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms or **R**⁶ and **R**^{6a} taken together and the carbon atom to which they are attached form a carbonyl group;

or when A is not a direct bond the group

forms a carbocyclic ring of 3-7

carbon atoms or a heterocyclic ring containing one or more heteroatoms;

or the group

5

15

20

25

forms a heterocyclic ring containing 3-7 carbon atoms and one

or more heteroatoms;

 \mathbf{R}^7 is selected from: hydrogen or C_{1-6} alkyl;

R⁸ is selected from:

(i) hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, haloC₁₋₆alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxy, hydroxyC₁₋₆alkyl, cyano, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, C₁₋₆alkyl-S(O_n)-, -O-**R**^b, -N**R**^b**R**^c, -C(O)-**R**^b, -C(O)O-**R**^b, -CON**R**^b**R**^c,

NH-C(O)-**R**^b or -S(O_n)N**R**^b**R**^c,
where **R**^b and **R**^c are independently selected from hydrogen and C₁₋₆alkyl optionally substituted with hydroxy, amino, N-C₁₋₄alkylamino,
N,N-di-C₁₋₄alkylamino, HO-C₂₋₄alkyl-NH- or HO-C₂₋₄alkyl-N(C₁₋₄alkyl)-;

(ii) nitro when **B** is a group of Formula (IV) and **X** is CH and **p** is 0;

(iii) carbocyclyl (such as C_{3-7} cycloalkyl or aryl) or aryl C_{1-6} alkyl each of which is optionally substituted by $\mathbf{R^{12}}$, or $\mathbf{R^{13}}$;

(iv) heterocyclyl or heterocyclylC₁₋₆alkyl each of which is optionally substituted by up to 4 substituents independently selected from R¹² or R¹³, and where any nitrogen atoms within a heterocyclyl group are, where chemically allowed, optionally in their oxidised (N→O, N-OH) state;

A is selected from:

- (i) a direct bond;
- (ii) optionally substituted C₁₋₅alkylene wherein the optional substituents are independently selected from: hydroxy, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, aryl or arylC₁₋₆alkyl;
- (iii) a carbocyclic ring of 3-7 atoms:
- (iv) a carbonyl group or $-C(O)-C(\mathbf{R}^{\mathbf{d}}\mathbf{R}^{\mathbf{d}})$ -, wherein $\mathbf{R}^{\mathbf{d}}$ is independently selected from hydrogen and C_{1-2} alkyl;

N-B

or when R^3 is a group of Formula (IIa) or (IIb), the group

forms a

heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

or when \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId), the group

forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

- 5 **B** is selected from:
 - (i) a direct bond;
 - (ii) a group of Formula (IV)

$$X - (CH_2)_p$$

Formula (IV)

wherein:

15

20

X is selected from N or CH,

wherein at position (a) Formula (IV) is attached to the nitrogen atom and the $(CH_2)_p$ group is attached to \mathbb{R}^8 ; and

(iii) a group independently selected from: optionally substituted C₁₋₆alkylene, optionally substituted C₃₋₇cycloalkyl, optionally substituted C₃₋₆alkenylene, optionally substituted C₃₋₆alkynyl, (C₁₋₅alkyl)_{aa}-S(O_n)-(C₁₋₅alkyl)_{bb}-, -(C₁₋₅alkyl)_{aa}-C(O)-(C₁₋₅alkyl)_{bb}- or (C₁₋₅alkyl)_{aa}-O-(C₁₋₅alkyl)_{bb}, or -(C₁₋₅alkyl)_{aa}-C(O)NH-(C₁₋₅alkyl)_{bb}-

where \mathbf{R}^{17} is hydrogen or $C_{1\text{-4}}$ alkyl, or where \mathbf{R}^{17} and the $(C_{1\text{-5}}$ alkyl)_{aa} or $(C_{1\text{-5}}$ alkyl)_{bb} chain can be joined to form a heterocyclic ring, wherein aa and bb are independently 0 or 1 and the combined length of $(C_{1\text{-5}}$ alkyl)_{aa} and $(C_{1\text{-5}}$ alkyl)_{bb} is less than or equal to C_{5} alkyl and wherein the optional substituents are independently selected from \mathbf{R}^{12} ; or the group $-\mathbf{B}$ - \mathbf{R}^{8} represents a group of Formula (V)

Formula (V);

or the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from R¹² and R¹³:

or the group

5

forms a heterocyclic ring containing 3-7 carbon atoms and

one or more heteroatoms;

R¹¹ is selected from: hydrogen, optionally substituted C₁₋₆alkyl, N(R²³R²⁴) or NC(O)OR²⁵, where R²³, R²⁴ and R²⁵ are independently selected from: hydrogen, hydroxy, optionally substituted C₁₋₆alkyl, optionally substituted aryl, optionally substituted arylC₁₋₆alkyl, an optionally substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl or optionally substituted heterocyclylC₁₋₆alkyl or R²³ and R²⁴ taken together with the nitrogen atom to which they are attached, can form an optionally substituted ring of 3-10 atoms,

wherein the optional substituents are selected from R^{12} and where K and R^8 are as defined herein;

J is a group of the formula: $-(CH_2)_s$ -L- $-(CH_2)_s$ - or $-(CH_2)_s$ -C(O)- $-(CH_2)_s$ -L- $-(CH_2)_s$ -wherein when s is greater than 0, the alkylene group is optionally substituted,

$$R^{7}$$

$$\downarrow_{\mathcal{L}_{1}}$$

$$\rightarrow \mathcal{L}_{2}$$

or the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from R¹² and R¹³;

K is selected from: a direct bond, $-(CH_2)_{s1}$ -, $-(CH_2)_{s1}$ -O- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -C(O)- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -S(O_n)- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -N(R^{17a})- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -C(O)N(R^{17a})- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -N(R^{17a})C(O)- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -N(R^{17a})C(O)N(R^{17a})- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -OC(O)- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -C(O)O- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -N(R^{17a})C(O)O- $(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -OC(O)N(R^{17a})- $-(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -OS(O_n)- $-(CH_2)_{s2}$ -, or $-(CH_2)_{s1}$ -S(O_n)-O- $-(CH_2)_{s2}$ -,

- 92 -

-(CH₂)_{s1}-S(O)₂N(\mathbf{R}^{17a})-(CH₂)_{s2}-or -(CH₂)_{s1}-N(\mathbf{R}^{17a})S(O)₂-(CH₂)_{s2}-; wherein the -(CH₂)_{s1}- and -(CH₂)_{s2}- groups are independently optionally substituted by hydroxy or C₁₋₄alkyl and wherein when s1>1 or s2>1 then the CH₂ group can optionally be a branched chain.;

where \mathbf{R}^{17a} is hydrogen or C_{1-4} alkyl;

 ${f L}$ is selected from optionally substituted aryl or optionally substituted heterocyclyl;

 \mathbf{R}^4 is selected from hydrogen, C_{1-4} alkyl or halo;

R⁵ is selected from a group of Formula III-a; III-b; III-c; III-d; III-e; III-f, III-g, III-h, III-i, or III-j, III-k, III-l, III-m, III-n or III-o

wherein:

15

het represents an optionally substituted 3- to 8-membered heterocyclic ring containing from 1 to 4 heteroatoms independently selected from O, N and S,

- 93 -

wherein the optional substituents are selected from 1-2 groups selected from \mathbf{R}^{12} and \mathbf{R}^{13} ; and

Q is selected from a direct bond or –[C($R^{16}R^{16a})$]1-2-; R^{14} and R^{15} are selected from:

- 5 (i) $\mathbf{R^{14}}$ selected from hydrogen; optionally substituted C_{1-8} alkyl; optionally substituted aryl; $-\mathbf{R^d}$ -Ar, where $\mathbf{R^d}$ represents C_{1-8} alkylene and Ar represents optionally substituted aryl; and optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; and $\mathbf{R^{15}}$ is selected from hydrogen; optionally substituted C_{1-8} alkyl and optionally substituted aryl;
 - (ii) wherein the group of Formula (III) represents a group of Formula III-a, III-b, III-i, III-I or III-m, then the group NR¹⁴(-R¹⁵) represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; or
- wherein the group of Formula (III) represents structure III-e, represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 4 heteroatoms independently selected from O, N and S;

 $\mathbf{R^{16}}$ and $\mathbf{R^{16a}}$ are independently selected from:

20

- (i) hydrogen or optionally substituted C₁₋₈alkyl; or
 - (ii) R¹⁶ and R^{16a} together with the carbon to which they are attached form an optionally substituted 3 to 7-membered cycloalkyl ring;

 $\label{eq:R12} \textbf{R}^{12} \text{ is independently selected from: halo, hydroxy, hydroxy} C_{1\text{-6}alkyl, oxo, cyano,} \\ \text{cyano} C_{1\text{-6}alkyl, nitro, carboxyl, } C_{1\text{-6}alkyl, C_{1\text{-6}alkoxy}, C_{1\text{-6}alkoxy}C_{1\text{-4}alkyl,} \\ \text{cyano} C_{1\text{-6}alkyl, nitro, carboxyl, } C_{1\text{-6}alkyl, C_{1\text{-6}alkoxy}, C_{1\text{-6}alkoxy}C_{1\text{-4}alkyl,} \\ \text{cyano} C_{1\text{-6}alkyl, nitro, carboxyl, } C_{1\text{-6}alkyl, C_{1\text{-6}alkoxy}, C_{1\text{-6}alkoxy}, \\ \text{cyano} C_{1\text{-6}alkyl, nitro, carboxyl, } C_{1\text{-6}alkyl, Nitro, C_{1\text{-6}alkyl, Nitr$

- C₁₋₆alkoxycarbonylC₀₋₄alkyl, C₁₋₆alkanoylC₀₋₄alkyl, C₁₋₆alkanoyloxyC₀₋₄alkyl, C₂₋₆alkenyl, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxy, aryl, arylC₁₋₆alkyl, heterocyclyl, heterocyclylC₁₋₆alkyl, aminoC₀₋₄alkyl, <u>N</u>-C₁₋₄alkylaminoC₀₋₄alkyl, <u>N</u>, <u>N</u>-di-C₁₋₄alkylaminoC₀₋₄alkyl, carbamoyl, <u>N</u>-C₁₋₄alkylcarbamoylC₀₋₂alkyl, <u>N</u>,
 - $\underline{\mathbf{N}}$ -di- C_{1-4} alkylaminocarbamoyl C_{0-2} alkyl, aminocarbonyl C_{0-4} alkyl,
- $$\begin{split} \underline{\mathbf{N}}\text{-}C_{1\text{-}6}\text{alkyaminocarbonyl}C_{0\text{-}4}\text{alkyl}, & \underline{\mathbf{N}}\text{-}\mathbf{N}\text{-}C_{1\text{-}6}\text{alkyaminocarbonyl}C_{0\text{-}4}\text{alkyl}, \\ & C_{1\text{-}6}\text{alkyl}\text{-}\mathbf{S}(O)_{n}\text{-}\mathrm{amino}C_{0\text{-}4}\text{alkyl}\text{-}, & \mathrm{aryl}\text{-}\mathbf{S}(O)_{n}\text{-}\mathrm{amino}C_{0\text{-}2}\text{alkyl}\text{-}, \\ & C_{1\text{-}3}\text{perfluoroalkyl}\text{-}\mathbf{S}(O)_{n}\text{-}\mathrm{amino}C_{0\text{-}2}\text{alkyl}\text{-}; & C_{1\text{-}6}\text{alkylamino}\text{-}\mathbf{S}(O)_{n}\text{-}C_{0\text{-}2}\text{alkyl}\text{-}, \end{split}$$

- 94 -

arylamino- $S(O)_n$ - C_{0-2} alkyl-, C_{1-3} perfluoroalkylamino- $S(O)_n$ - C_{0-2} alkyl-,

C₁₋₆alkanoylamino-S(O)_n-C₀₋₂alkyl-; arylcarbonylamino-S(O)_n-C₀₋₂alkyl-,

 $C_{1\text{-}6}$ alkyl- $S(O)_n$ - $C_{0\text{-}2}$ alkyl-, aryl- $S(O)_n$ - $C_{0\text{-}2}$ alkyl-, $C_{1\text{-}3}$ perfluoroalkyl-,

 $C_{1\text{--}3} perfluoroalkoxy C_{0\text{--}2} alkyl; \textbf{R}^{9}\text{'}OC(O)(CH_2)_{w^-}, \textbf{R}^{9}\text{''}\textbf{R}^{10}\text{''}N(CH_2)_{w^-},$

R⁹'R¹⁰'NC(O)(CH₂)_w-, R⁹R¹⁰NC(O)N(R⁹)(CH₂)_w-, R⁹OC(O)N(R⁹)(CH₂)_w-, or halo, wherein w is an integer between 0 and 4 and R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, R⁹' and R¹⁰' are independently selected from C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, and R⁹" and R¹⁰" are C₃₋₇carbocyclyl; wherein an amino group within R¹² is optionally substituted by C₁₋₄alkyl;

 R^{13} is $C_{1\text{-4}}$ alkylaminocarbonyl wherein the alkyl group is optionally substituted by 1, 2 or 3 groups selected from R^{12} , or R^{13} is a group $-C(O)-R^{18}$ and R^{18} is selected from an amino acid derivative or an amide of an amino acid derivative;

M is selected from -CH₂-CH₂- or -CH=CH-;

n is an integer from 0 to 2;

p is an integer from 0 to 4;

s, s1 and s2 are independently selected from an integer from 0 to 4, and

s1+s2 is less than or equal to 4;

t is an integer between 0 and 4; and

20 or a salt, solvate or pro-drug thereof, in the manufacture of a medicament for

- (a) antagonising gonadotropin releasing hormone activity;
- (b) administration to a patient, for reducing the secretion of luteinizing hormone by the pituitary gland of the patient; and
- (c) administration to a patient, for therapeutically treating and/or preventing a sex hormone
 related condition in the patient.
 - 2. A compound of formula (IA) which is a compound of formula (I) as defined in claim 1, with the proviso that when

30

forms an aromatic carbocyclic ring of 3-7 carbon atoms or an

aromatic heterocyclic ring containing one or more heteroatoms, or

(ii) when R³ is a group of Formula (IIa) or (IIb), and the group

forms an

aromatic heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms; or

(iii) when R³ is a group of Formula (IIa), (IIb), (IIc) or (IId), and the group

forms an aromatic heterocyclic ring containing 3-7 carbon atoms and one

5 or more heteroatoms, or

(iv) when the group

forms an aromatic heterocyclic ring containing 3-7 carbon

atoms and one or more heteroatoms and A is a direct bond;

then \mathbb{R}^5 is other than a group III-o.

10 3. A compound according to claim 2 wherein the group A is selected from (i) a direct bond or (ii) optionally substituted C₁₋₅alkylene wherein the optional substituents are independently selected from: hydroxy, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, aryl or arylC₁₋₆alkyl.

4. A compound according to claim 2 or claim 3 which includes a group R¹³ and wherein the group R¹³ is -C(O)-R¹⁸, and R¹⁸ is selected from an amino acid derivative or an amide of an amino acid derivative; or a salt, solvate or pro-drug thereof.

5. A compound according to any one of claims 2 to 4 wherein \mathbb{R}^1 is selected from

20 hydrogen, optionally substituted C₁₋₆alkyl or optionally substituted arylC₁₋₆alkyl, wherein the optional substitutuents are selected from: fluoro and C₁₋₄alkoxy.

- 6. A compound according to any one of claims 2 to 5 wherein \mathbb{R}^2 is phenyl, optionally susbstituted by one or more groups selected from methyl, ethyl, methoxy, ethoxy, tert-butoxy, F or Cl.
- 5 7. A compound according to any one of claims 2 to 6 wherein \mathbb{R}^3 is selected from a group of formula (IIc) or formula (IId).
 - 8. A compound according to any one of claims 2 to 7 wherein \mathbb{R}^4 is selected from hydrogen, methyl, ethyl, chloro or bromo.
 - 9. A compound according to any one of claims 2 to 8 wherein \mathbb{R}^5 is selected from a group of Formula III-a, III-g, III-h, III-i, III-j, III-k, III-l: or III-o

wherein R^{16} , R^{16a} , R^{14} and R^{15} are as defined in claim 1.

10

15

20

10. A compound according to claim 9 wherein R⁵ is a group of formula

11. A compound according to any one of claims 2 to 10 wherein M is -CH₂-CH₂-.

- 97 -

12. A compound of Formula (Ia)

$$R^5$$
 R^4
 R^4
 R^1

Formula (Ia)

wherein:

5 R³ is selected from a group of Formula (IIa) or Formula (IIb):

$$\begin{array}{c}
R^7 \\
N-B-R^8
\end{array}$$

Formula (IIa)

Formula (IIb)

 \mathbf{R}^7 is selected from: hydrogen or C_{1-6} alkyl;

B is a group of Formula (IV)

$$X - (CH_2)_p$$

10

Formula (IV)

and p, A, X, M, R^1 , R^2 , R^4 , R^5 R^6 , R^6 , R^8 , and R^{11} are as defined above for a compound of Formula (I)

or a salt, solvate or pro-drug thereof.

15

13. A compound of Formula (Ic)

$$R^5$$
 M R^3 R^2 R^4 R^4 R^1

Formula (Ic)

wherein:

20 R³ is selected from a group of Formula (IIc) or Formula (IId):

wherein

R⁷
N-J-

the group 'Z together forms an optionally substituted heterocyclic ring

containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from \mathbf{R}^{12} and \mathbf{R}^{13} ;

and A, M, J, R¹, R², R⁴, R⁵ R⁶, R^{6a}, R⁸, and R¹² and R¹³ are as defined in claim 1, or a salt, solvate or pro-drug thereof.

10 14. A compound selected from:

 $3-[3,3-Dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl) butyl]-4-[2-\{4-(morpholin-4-1), 2-(morpholin-4-1), 3-(morpholin-4-1)]-1-[2-(morpholin-4-1), 3-(morpholin-4-1)]-1-[2-(morpholin-4-1), 3-(morpholin-4-1), 3-(morpholin-$

ylcarbonyl)piperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)but-2-en-1-yl]-4-

[1s-methyl-2-(n'-isopropoxycarbonyl-3-pyrid-4-yl-pyrrolidin-1-ylcarboximidamido) ethyl]-5-

15 (3,5-dimethylphenyl)-1h-pyrrole;

3-[3,3-Dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-

[1S-methyl-2-(N'-isopropoxy carbonyl-3-pyrid-4-yl-pyrrolidin-1-yl carboximidamido)

ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

3-[3,3-Dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(pyrrolidin-1-

20 ylcarbonyl)piperazin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

ylcarbonyl)piperazin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(4-hydroxypiperidin-1-

 $y l carbonyl) piperidin-1-yl \} ethyl]-5-(3,5-dimethyl phenyl)-1 h-pyrrole;\\$

25 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-

 $(1,1-dioxo-isothiazolidin-2-ylcarbonyl)-4-methoxy-piperidin-1-yl\} ethyl]-5-(3,5-dioxo-isothiazolidin-2-ylcarbonyl)-4-methoxy-piperidin-1-yl$

dimethylphenyl)-1h-pyrrole;

- 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{1-benzyl-pyrrodin-3-ylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-(2-{4-n-isopropylureidophenyl}ethylamino)ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;
 5 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{4-(pyrid-4-yl)piperidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{3-(pyrid-4-yl)ppyrrolidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole; and
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{410 phenylpiperidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole.
 - 15. A process for preparing a compound of formula (I) as defined in claim 1, or a compound according to any one of claims 2 to 14, said process comprising a step selected from (a) to (h):
- 15 (a) reaction of a compound of formula **XXXII** with a compound of formula H-R³',

$$R^5$$
 M R^4 R^1

XXXII

R^{6a} R^{6a} A and R^{6a} A L¹

wherein X^1 is selected from:

group; and

H-R^{3'} is selected from:

; L¹ is a displaceable

20 (b) reaction of a compound of formula XXXIII with a compound of formula L^2-R^3 ",

wherein

5

the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from \mathbf{R}^{12} and \mathbf{R}^{13} ;

and A, M, J, R^1 , R^2 , R^4 , R^5 R^6 , R^{6a} , R^8 , and R^{12} and R^{13} are as defined in claim 1, or a salt, solvate or pro-drug thereof.

10 14. A compound selected from:

3-[3,3-Dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(morpholin-4-ylcarbonyl)piperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)but-2-en-1-yl]-4-

[1s-methyl-2-(n'-isopropoxycarbonyl-3-pyrid-4-yl-pyrrolidin-1-ylcarboximidamido) ethyl]-5-

15 (3,5-dimethylphenyl)-1h-pyrrole;

3-[3,3-Dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-

[1S-methyl-2-(N'-isopropoxycarbonyl-3-pyrid-4-yl-pyrrolidin-1-ylcarboximidamido) ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

20 ylcarbonyl)piperazin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

2-chloro-3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(pyrrolidin-1-ylcarbonyl)piperazin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(4-hydroxypiperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;

25 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(1,1-dioxo-isothiazolidin-2-ylcarbonyl)-4-methoxy-piperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{1-benzyl-pyrrodin-3-ylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;
3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-(2-{4-n-isopropylureidophenyl}ethylamino)ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;
5 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{4-(pyrid-4-yl)piperidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole;
3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{3-(pyrid-4-yl)ppyrrolidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole; and
3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{4-phenylpiperidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1h-pyrrole.

- 15. A process for preparing a compound of formula (I) as defined in claim 1, or a compound according to any one of claims 2 to 14, said process comprising a step selected from (a) to (h):
- 15 (a) reaction of a compound of formula **XXXII** with a compound of formula H-**R**³',

$$R^{5}$$
 R^{4}
 R^{1}

XXXII

 R^{6a} R^{6a} R^{6a} A and R^{6a} A

wherein X^1 is selected from:

group; and

: L¹ is a displaceable

H-R^{3'} is selected from:

20 (b) reaction of a compound of formula XXXIII with a compound of formula L^2 - R^3 ",

XXXIII

wherein X^2 is selected from: ; L^2 is a displaceable group and R^{7a} is selected from the definition of R^7 or R^{22} above, and L^2 - R^3 " is selected from: L^2 -B- R^8 , L^2 -J-K- R^8 and L^2 - R^{21}

- 5 (c) for compounds of Formula (I) or (IA) wherein \mathbb{R}^7 is other than part of a heterocyclic ring or hydrogen, reaction of a compound of Formula (I) or (IA) wherein \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId) and \mathbb{R}^7 is hydrogen with a group of formula \mathbb{L}^3 - \mathbb{R}^{7a} , wherein \mathbb{R}^{7a} is as defined above for \mathbb{R}^7 with the exclusion of hydrogen and \mathbb{L}^3 is a displaceable group;
- 10 (d) for compounds of Formula (I) or (IA) wherein **R**⁴ is hydrogen, reduction of a thienopyrrole of Formula XXXVIII

$$R^{5}$$
 R^{1}
 R^{2}

XXXVII

(e) for compounds of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIc) or (IId) and

roup together forms an optionally substituted nitrogen-containing execution of a compound of Formula

heterocyclic ring containing 4-7 carbons atoms, reaction of a compound of Formula XXXIVa or XXXIVb, with a compound of Formula L⁶-K-R⁸, wherein L⁶ is a displaceable group

$$\begin{array}{c} -101 - \\ \\ R^{5} - M \\ \\ R^{4} - R^{2} \end{array}$$

$$\begin{array}{c} R^{5} - M \\ \\ R^{4} - R^{2} \end{array}$$

$$\begin{array}{c} R^{5} - M \\ \\ R^{4} - R^{2} \end{array}$$

$$\begin{array}{c} R^{5} - M \\ \\ R^{4} - R^{2} \end{array}$$

$$\begin{array}{c} XXXIVb \end{array}$$

(f) for compounds of Formula (I) wherein R^3 is a group of Formula (IIc) or (IId), reaction of a compound of Formula XXXVa or XXXVb, with a compound of Formula L^7 - K^7 - R^8 , wherein L^7 is a displaceable group, and wherein the groups K^7 and K^7 comprise groups which when reacted together form K,

5

$$R^{6a}$$
 R^{6a}
 R^{6a}

(g) reaction of a compound of Formula XXXVI with an electrophillic compound of the formula L^8 - R^3 , wherein L^8 is a displaceable group

$$R^5$$
 M R^4 R^1 R^2

10 (h) reaction of a compound of Formula XXXIX with an appropriate electrophilic reagent to give a compounds of Formula (I)

$$R^5$$
 M R^2 R^2

XXXIX

and thereafter if necessary, carrying out one or more of the following steps:

15 i) converting a compound of the Formula (I) into another compound of the Formula (I); ii) removing any protecting groups;

- 102 -

- iii) forming a salt, pro-drug or solvate.
- 16. A pharmaceutical formulation comprising a compound according to any one of claims 2 to 14, or salt, pro-drug or solvate thereof, and a pharmaceutically acceptable diluent or 5 carrier.
 - 17. A method of antagonising gonadotropin releasing hormone activity in a patient, comprising administering a compound of formula (I) or (IA), or salt, pro-drug or solvate thereof, to a patient.

10

18. A compound according to any one of claims 2 to 14 for use as a medicament.