

ASTM E8/E8M-16a

金属材料拉伸试验方法1

Standard Test Methods for Tension Testing of

Metallic Materials¹

中文版

金属材料拉伸试验方法①

本标准是以固定代号 E8/E8M 发布的。其后的数字表示原文本正式通过的年号;在有修订的情况下,为最后一次的修订年号;圆括号中数字为最后一次重新确认的年号。上标符号(ε)表示与上次修改或重新确定的版本有编辑上的变化。

本标准已经被美国国防部各下属机构批准使用。

1. 范围*

- 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验,特别是对于屈服强度、屈服点伸长率、抗拉强度、伸长率和断面收缩率的测定。
- **1.2** E8 和 E8M 试样最大的区别在于原始标距,E8 中对于大多数圆形试样标距长度的要求是4D,而 E8M 是5D,实际生产中一般认为用粉末冶金(P/M)材料制成的试样可无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。
- **1.3** 除本方法规定外,可根据需要对特殊材料制定单独的技术规范及试验方法。例如:见试验方法和定义 A370 及试验方法 B557M 和 B557M。
- **1.4** 除非另有规定,室温应定为 10°C~38°C(50°F~100°F)。
- **1.5** 带国际单位制的数值与英制数值应区别对待,不同单位制的数值换算过来不完全相等, 所以每一种单位制都应该单独使用。两种单位制的混合使用就偏离了本标准。
- **1.6** 本标准并不涉及所有安全的问题,如果有,也是与它的用途相关。在使用前制定适当的安全和健康规范,确定适用的规章制度是本标准使用者的责任。

2. 引用文件

2.1 ASTM标准:^②

A356/A356M 厚壁汽轮机用铸钢、碳素钢、低合金钢和不锈钢规范。

A370 钢产品力学性能试验方法及定义

B557 锻、铸铝合金及镁合金产品拉伸试验方法

① 本试验方法由 ASTM 的 E28《力学性能试验》委员会管辖,并且,除了另外指定外,由 E28.04《单轴试验》分委员会直接负责。

现版本于 2016 年 8 月 1 日批准,2016 年 9 月出版。原版本在 1924 年批准。前一个最新版是 2016 年批准的 E8/E8M-16。DOI: 10.1520/E0008 E0008M-16A。

② 对于 ASTM 的参考标准,可登陆 ASTM 网站,<u>www.astm.org 或联系 service@astm.org 的 ASTM</u> 客户服务部。ASTM 标准年报资料,参见 ASTM 网站的本标准的文件概要页。

*变更摘要参见标准的末尾

- B557M 锻、铸铝合金及镁合金产品拉伸试验方法[公制]
- E4 试验机的力校验方法
- E6 力学试验方法相关术语定义
- E29 用标准方法确定性能所得试验数据的有效位数的推荐方法
- E83 引伸计的校验及分级方法
- E345 金属箔拉伸试验方法
- E691 实验室之间探讨确定试验方法精确度的实施指南
- E1012 在拉伸负荷下校验试样对中的方法
- D1566 橡胶相关标准术语
- E1856 评估用于从万能试验机中采取数据的电脑采集数据系统指导方法
- E2658 材料试验机的速度验证规程

3. 术语

- 3.1 通用机械测试术语的定义
- 3.1.1 术语标准E6中的机械试验术语定义适用于本试验方法。
- 3.1.1.1 这些术语包括弯曲应变,约束性,延伸率,引伸计,力值,标距,缩颈,缩截面,应力-应变图,试验机和弹性模量。
- 3.1.2 另外, 定义了以下来自术语标准E6的通用术语:
- **3.1.3** 不连续屈服,名词——轴向试验中,由于局部屈服,在塑性变形开始时观查到的力的停滞或起伏。
- 3.1.3.1 讨论——应力-应变曲线不要求显示不连续。
- 3.1.4 断裂后延伸率,名词——通过将断裂后的试样两半装配在一起后测量的延伸率。
- 3.1.5 断裂时延伸率,名词——在刚刚力值瞬间减少之前的测量的与断裂相关的延伸率。
- **3.1.6** 下屈服强度,LYS $[FL^{-2}]$ ——轴向试验中,在不考虑瞬时效应的情况下,不连续屈服过程中记录的最小应力。
- 3.1.7 缩减平行部分,名词——通常具有一个均匀横截面的试样中央中心,其可选择朝向中心具有一个小锥度,其横截面比被夹紧的端部横截面更小,不包括过渡处。
- 3.1.7.1 讨论——该属于通常在其它标准内称为平行部段。
- 3.1.7.2 讨论——E8/E8M先前版将该术语定义为"缩截部分"。
- 3.1.8 截面收缩率,名词——拉伸试样的原始横截面面积与其最小横截面面积之间的差值。

- 3.1.8.1 讨论——截面收缩率通常采用样本的原始横截面面积的百分比来表示。
- 3.1.8.2 讨论——最小横截面面积可按被测材料规定在断裂时或断裂后进行测量。
- 3.1.8.3 讨论——当应用于金属时,术语"截面收缩率"通常是指断裂后的测量值。当应用于塑料和弹性体时,通常是指断裂时的测量值。这些解释通常适用于文献中报告的截面收缩率值,此时不给出进一步的限制。 (E28.04)
- **3.1.9** 抗拉强度, S_u [FL⁻²],名词——材料所能承受的最大抗拉应力。
- **3.1.9.1** 讨论——抗拉强度通过抗拉试验至断裂时的最大力值除以试样的原始横截面面积而 计算得出。
- **3.1.10** 均匀伸长,El_u, [%]——在试样出现颈缩或断裂,或二者都出现之前承受最大力时确定的伸长。
- 3.1.10.1 讨论——均匀伸长包括弹性和塑性伸长。
- **3.1.11** 上屈服强度, UYS [FL⁻²] ——轴向试验中,伴随不连续屈服首次出现的应力最大值(首次出现拐点时的应力)。
- **3.1.12** 屈服点伸长率,YPE,名词——轴向试验中,从应力-应变曲线的不连续屈服至均匀 应变硬化转折点的出现拐点时的第一个点的应变(以百分率表示)。
- 3.1.12.1 讨论——如果发生的转折超出应变范围,YPE 端点就是在(a)曲线上出现最后一个 拐点的水平线上画切线与(b)在应力一应变曲线的应变硬化段画切线之间的交叉点。如果没有出现或接近斜率趋于零时的屈服开始的那个点,则材料的YPE为0%。
- **3.13** 屈服强度,*YS*或S_y [FL⁻²],名词——转换的工程应力,该值视为材料的塑性伸长已经开始。
- 3.1.13.1 讨论——该应力可采用以下术语来规定,即(a)线性应力-应变关系的规定偏差,
- (b) 规定达到的总伸长量,或(c) 不连续屈服期间测量的最大或最小工程应力。
- 3.2 本标准专用术语的定义:

4. 意义及用途

- **4.1** 拉伸试验是为了提供在单轴拉伸应力下材料的强度和延性数据。此数据对于材料对比、合金研制、质量控制及在某些环境中的设计可能是有用的。
- 4.2 从零件或材料上选取局部样坯加工成的标准尺寸试样的拉伸试验结果,不一定代表最终

产品或它在不同环境中工作的强度与延性性能。

4.3 本试验方法可用于商业验收试验,并已广泛地用于贸易。

5. 设备

- **5.1** 试验机——用于拉伸试验的试验机应符合方法E4的要求。用于测定抗拉强度和屈服强度的力,应在标准E4规定的试验机力使用范围内。当要求检定试验机速度时,应使用规程E2658,除非另有规定。
- 5.2 夹持装置:
- **5.2.1** 概述——传递试验机对试样施加力的各种类型的夹持装置均可使用。为保证试样标距内受到轴向拉伸应力,试样的轴线应与试验机夹头中心线重合。任何不符合此要求的情况都可能引入通常应力计算(力除以横截面积)中未考虑的弯曲应力。
- 注1: 偏心负荷的影响可由计算所附加的弯曲应力说明。对于直径为12.5mm(0.500in.)的标准试样,每 0.025mm(0.001in.)的偏心距使应力增加1.5% ,对于直径为9mm(0.350in.)的试样,这一误差每0.025 mm (0.001in.) 约增加2.5%,对于直径为6mm(0.250in.)的试样,这一误差每0.025 mm(0.001in.)约增加3.2%。
 - 注 2: 对中方法在方法E1012中给出。
- 5.2.2 楔形夹具——试验机通常备有楔形夹具,这些楔形夹具通常对于夹持塑性金属长试样和如图1所示那种扁平试样是一种合适的装置。但如果由于某种原因,一对夹具中的一个夹头夹紧时移动速度比另一个快时,可能产生不希望的弯曲应力。此时可用衬垫放在楔块后面,衬垫的厚度应相同,各平面应平滑且平行。楔块最好是通过试验机夹头支撑在衬垫整个长度上,这就需要几个不同厚度的衬垫在规定的试样厚度范围内适用。为适于夹持,希望每个楔块锯齿形面的整个长度均与试样接触。图2示出了楔形夹具和衬垫合适的装配。对于短试样和许多材料制备的试样,一般需要使用机械加工试样和特殊夹持装置以保证试样负荷尽可能完全沿拉伸轴向均匀分布(见 5.2.3, 5.2.4, 和5.2.5)。
- **5.2.3** 用于带螺纹、台肩的试样及脆性材料的夹具——图3示出了用于带螺纹端部试样夹持装置的示意图,图4示出了夹持带台肩端部试样的装置。这些夹持装置应通过适当润滑的球形座支承固定到试验机的头部。球形支承之间距离应尽可能大。
- **5.2.4** 薄板夹具——图5所示自动调节夹具对于那些不适于在一般类型楔形夹具上试验的薄形材料是比较满意的。
- **5.2.5** 线材夹具——图5和图6所示的楔形或挽勒式夹具或平面楔形夹具都可以用于夹持线材。

尺寸					
	标准证	标准试样			
	板状 40 mm	薄板状 12.5 mm	6mm		
	(1.500in.)宽	(0.500in.)宽	(0.250in.) 宽		
	mm(in.)	mm(in.)	mm(in.)		
G-标距 (注1和注2)	200.0±0.2	50.0±0.1	25.0±0.1		
0一称距(注1和注2)	(8.00±0.01)	(2.000 ± 0.005)	(1.000 ± 0.003)		
W-宽度(注3和注4)	40.0±2.0	12.5±0.2	6.0±0.1		
W一见及(注3种注4)	(1.500±0.125,-0.250)	(0.500 ± 0.010)	(0.250 ± 0.005)		
T-厚度 (注5)	材料厚度				
R-过渡圆弧半径,最小(注6)	25(1)	12.5(0.500)	6(0.250)		
L-总长度,最小(注2、注7 和注8)	450(18)	200(8)	100(4)		
A-缩减平行部分长度,最小	225(9)	57(2.25)	32(1.25)		
B-夹持部分长度,最小(注9)	75(3)	50(2)	30(1.25)		
C-夹持部分宽度,近似(注4和注9)	50(2)	20(0.750)	10(0.375)		

注1: 对于宽度40mm(1.500in.)的试样,应在试样和缩减平行部分宽度内的平面上或边上打标记以测量断后伸长率。可用一组相距25mm(1in.)的9个以上的点打标记,或用相距200mm(8in.)的一对以上的点作标记。注2: 当不要求测量宽度为40mm(1.500in.)试样的伸长率时,可使用75 mm(2.25in.)最小缩减平行部分(A)长度,其他尺寸与平板试样的尺寸相同。

注3:对于三种尺寸试样,缩减平行部分端部宽度差应分别不大于0.10、0.05 或 0.02 mm(0.004、0.002或 0.001in.)。其宽度也可以从端部至中心逐渐减小,但每个端部的宽度不应大于中心宽度的1%。

注4: 必要时,对于三种尺寸中每种尺寸的试样可使用较小的宽度(W 和 C)。在此情况下,缩减平行部分的宽度应尽量取试验材料允许的宽度,但是,除非另有特殊规定,当使用较窄试样时,产品技术条件中对伸长率的要求将不适用。

注5: 尺寸T是为可用的材料技术条件提供的试样厚度。宽度为40mm(1.500in.)的试样的最小厚度应为5mm(0.188in.),宽度为12.5mm和6mm(0.500和0.250in.)试样的最大厚度应分别为19 mm和6 mm(0.750和0.250in.)。

注6:对于宽度为40mm(1.500in.)试样,当使用仿型切削刀具加工缩减平行部分时,允许在抗拉强度690 MPa (100000psi)以下的钢试样缩减部分端部有13mm(0.500in.)最小过渡半径。

注7: 所示尺寸建议为最小值。确定最小长度时,夹具不能处于尺寸A和B间过渡部分,见注9。

注8:对于宽度为6mm(0.250in.)的试样,为了有助于施加轴向负荷,只要材料允许,总长度应尽可能大,最大至200 mm(8.00in.)。

注9: 如果可能,最好使夹持部分长度足够大,以便使试样延伸到夹具长度2/3以上的位置。如果12.5mm (0.500in.)宽的试样厚度在10 mm(0.375in.)以上,较长的夹具和相应较长的夹持部分对防止试样在夹持部分断裂是必要的。

注10: 对三种尺寸试样,试样端部应与缩减平行部分宽度中心线对称,分别在2.5、1.25、和0.13 mm(0.10、0.05和0.005in.)之内,但是,对仲裁试验和当产品技术条件有要求时,宽度为12.5mm(0.500in.)试样端部的对称应在0.2 mm(0.01in.)内。

注11: 对于每一种试样,所有过渡圆弧半径应彼此在1.25 mm(0.05in.)公差内, 并且在特定端部的两过渡圆弧弧度的中心应在2.5 mm(0.10in.)公差内彼此固定(垂直于中心线内)。

注12: 除了仲裁试验外,允许使用整个长度上侧边平行的试样,但应: (a) 使用公差上限; (b) 有足够的标记数以供测定伸长率; (c) 测定屈服强度时使用合适的引伸计。如果断裂发生在靠夹紧装置一端的2W距离内,测定的抗拉强度可能并不代表该材料性能。在验收试验中,如果性能满足规定最低要求,则不必重新试验。但如果低于最低要求,则试验报废,应重新进行试验。

图1 矩形拉伸试验试样

- **5.3** 尺寸测量装置——用于测量直线尺寸的千分尺或其他装置,至少应有每个要求测量尺寸最小单位一半的精度。
- **5.4** 引伸计——用于拉伸试验的引伸计应符合标准E83对本试验方法试验步骤一章规定级别引伸计。引伸计应在相应于屈服强度和断裂(如果测定)时的应变范围内使用和校准。

图2 用于扁平试样的带衬垫的楔形夹具

图3 用于带螺纹端部试样的夹持装置

5.4.1 标距等于或小于试样名义标距(如图示的"G-标距"尺寸)的引伸计可用来测定屈服性能。对于等截面的试样(例如具有全截面的丝材、线材和棒材试样),测定屈服性能的引伸计标距不应超过夹具间距离的80%。用于测量断裂时伸长的引伸计标距应等于试样规定的名义标距。

6. 试样

- 6.1 概述:
- 6.1.1 试样尺寸——应按试验材料产品技术条件规定,采用实际全尺寸或经机械加工的试样。
- 6.1.2 位置——除非另有规定, 试样的轴线应在原始材料内按如下方法定位:
- 6.1.2.1 对于厚度、直径或平面间距离小于或等于40 mm(1.500in.)的产品在中心位置取样。
- **6.1.2.2** 对于厚度、直径或平面间距离大于40 mm(1.500in.)的产品在中心至表面的中间位置取样。
- **6.1.3** 试样加工——不正确的试样制备通常会导致不令人满意或错误的试验结果。因此,注意试样制备是很重要的,特别是加工过程中,要保证试验结果最大的精确度和最小的偏差。
- **6.1.3.1** 制备试样的缩减部分(包括过渡处)应避免冷加工、缺口、刀痕、沟槽、凹槽、毛刺、粗糙表面或边角、过热或其它可能对性能测量造成有害影响的状态。
 - 注 3: 对缩减部分的冲压或剪切可能延边缘产生严重的冷加工或剪切毛刺,应予加工去除。
- **6.1.3.2** 在矩形截面试样的缩减平行部分内,磨抛或磨削后的边或角不应导致试样横截面积值与计算面积值产生很大差异。

图4 用于带台肩端部试样的夹持装置

图5 板材和线材试样的夹具

图 6 用于线材试验的缓冲装置

- 6.1.3.3 对于脆性材料,标距两端应使用半径大的过渡圆弧。
- **6.1.3.4** 为确保断裂发生在标距内,试样的横截面积在缩减平行部分的中部应为最小。由于这个原因,允许在以下部分规定的每种试样的缩减平行部分有一个小的锥度。
- **6.1.4** 试样表面光洁度——当材料以不同于制造状态的表面条件试验时,试样的表面光洁度 应按适用的产品标准规定。

注4: 应特别注意高强度材料和低韧性材料的表面光洁度的均匀性和质量,因为这是使试验结果产生误

差的一个因素。

- **6.2** 平板试样——图1示出了标准的平板形试样,这种试样用于板材、型材和平板材料公称厚度在5 mm(0.188in.)以上的金属材料试验。当产品标准有规定时,也可用如6.3、6.4和6.5 提供的其它型式的试样。
- 6.3 薄板试样:
- **6.3.1** 图1所示为标准薄板型试样。这种试样用于薄板、板材、扁平线材、带材、条、环、矩形和型材的公称厚度在0.13mm~19 mm(0.005~0.750in.)范围内的金属材料试验。当产品标准允许时,也可使用如6.2、6.4和6.5中规定的其他类型试样。
 - 注 5: 试验方法E345可用于厚度在0.15 mm(0.0059in.) 以下的材料的拉伸试验。
- **6.3.2** 可使用图7所示的用销钉固定端部。为了避免薄的和高强度材料的弯曲,必须在夹持端部使用刚性加强板。
- 6.4 圆柱形试样:
- **6.4.1** 图8所示标准的直径为12.5mm(0.500in.)圆柱试样十分普遍地用于铸造和锻造金属材料试验。
- **6.4.2** 图 8 还示出了与标准试样成比例的小尺寸试样。当试验材料不能制成标准试样或图 1 所示试样时,可以使用这些小尺寸的圆试样。也可以使用其他尺寸的小尺寸圆试样。对任何小尺寸试样而言,符合 E8, 把测量伸长率用的标距长度取为试样直径的 4 倍;符合 E8M, 把测量伸长率用的标距长度取为试样直径的 5 倍,很是重要。
- **6.4.3** 试样标距以外的端部形状,应与材料和试验机头部或夹具相配合,以便使力能延轴向施加。图9示出了能获得满意结果的各种端部形状的试样。
- **6.5** 薄板、带材、扁线材和板材试样——试验薄板、带材、扁线材和板材时,可使用下列合适的材料公称厚度试样形式之一:
- **6.5.1** 对公称厚度0.13 mm~5mm(0.005~0.1875in.)的材料,可使用6.3中规定的薄板试样。
- **6.5.2**对公称厚度5 mm~12.5mm(0.1875~0.500in.)的材料,可使用6.3中规定的薄板试样或6.2 规定的平板试样。
- **6.5.3** 对于公称厚度12.5mm~19 mm(0.500~0.750in.)的材料,可使用6.3条中的薄板试样,也可使用6.2条中的平板试样,或者6.4条中所述的最大有效尺寸的圆柱形试样。
- **6.5.4** 对于公称厚度19 mm(0.750in.)或以上的材料,可使用6.2条的平板试样或6.4条中所述的最大有效尺寸的圆柱形试样。
- 6.5.4.1 如果产品标准允许,厚度为19 mm(0.750in.)或以上的材料可使用改型了的薄板试样进

行试验,以适应图1所示形状。这种改型试样厚度必须加工到10±0.50 mm(0.400±0.020in.), 并且必须在全部缩减平行部分的0.1 mm(0.004in.)之内保持均匀。在有争议情况下,应使用圆柱形试样作为仲裁试样。

- 6.6 线材、条材和棒材试样:
- **6.6.1** 对于圆形钢丝、盘条和棒材,无论如何,应使用钢丝、盘条和棒材的全截面试样,用于测量直径小于4mm(0.125in.)的线材伸长率的标距应符合产品标准规定。除非另有规定,在试验直径等于或大于4mm(0.125in.)的钢丝、盘条和棒材时,应使用五倍于直径的标距。试样总长度至少应等于标距加上使用的夹具所要求的材料的长度。
- **6.6.2** 对八角形、六角形或方形截面的线材,按6.6.1对圆形横截面盘条和棒材试样的要求是不适用的。对八角形、六角形或方形横截面的盘条或棒材应使用下列一种试样:

尺寸, mm(in.)		
G-标距	50.0±0.1(2.000±0.005)	
W-宽度 (注 1)	12.5±0.2(0.500±0.010)	
T-最大厚度(注 2)	16(0.625)	
R-最小过渡半径(注 3)	13(0.5)	
L一最小总长度	200(8)	
A-缩减平行部分最小长度	57(2.25)	
B-夹紧部分最小长度	50(2)	
C一夹紧部分近似宽度	50(2)	
D-销孔的最小直径(注 4)	13(0.5)	
E一销至边的近似距离	40(1.5)	
F一孔至圆角的最小距离	13(0.5)	

- 注1:缩减平行部分端部宽度差应不大于0.1 mm(0.002in.)。从端部至中心的宽度可有一个逐渐的锥度,但两个端部的宽度不应大于中部宽度的1%。
- 注2: 尺寸T 是在适用的产品技术条件中注明的试样厚度。
- 注3:对于一些材料,过渡半径可大于13 mm(0.500in.)。
- 注4: 销孔必须处于缩减平行部分中心线的± 0.05 mm(0.002in.)内。
- 注5: 可使用C、D、E、F和L的尺寸偏差,使断裂发生于标距内。

图7 标距50mm(2in.)用销钉固定的拉伸试样

尺寸, mm [in.] 标距长度为直径 4 倍(E8)的试样 与标准试样成比例的小尺寸试样 试样1 试样5 试样 2 试样3 试样 4 50.0 ± 0.1 36.0 ± 0.1 24.0 ± 0.1 16.0 ± 0.1 10.0 ± 0.1 G-标距长度 $[2.000 \pm 0.005]$ $[1.400 \pm 0.005]$ $[1.000 \pm 0.005]$ $[0.640 \pm 0.005]$ $[0.450 \pm 0.005]$ 12.5 ± 0.2 9.0 ± 0.1 6.0 ± 0.1 4.0±0.1 2.5±0.1 D-直径(注1) $[0.350 \pm 0.007]$ $[0.250 \pm 0.005]$ $[0.113 \pm 0.002]$ $[0.500 \pm 0.010]$ $[0.160 \pm 0.003]$ R—圆角半径,最小 10 [0.375] 8 [0.25] 6 [0.188] 4 [0.156] 2 [0.094] A—缩减平行部分长度,最小(注2) 56 [2.25] 45 [1.75] 30 [1.25] 20 [0.75] 16 [0.625]

尺寸, mm [in.]					
标距长度为直径 5 倍(E8M)的试样					
	试样 1	试样 2	试样 3	试样 4	试样 5
G—标距长度	62.5 ± 0.1	45.0 ± 0.1	30.0 ± 0.1	20.0 ± 0.1	12.5 ± 0.1
G—你起下及	$[2.500 \pm 0.005]$	$[1.750 \pm 0.005]$	$[1.250 \pm 0.005]$	$[0.800 \pm 0.005]$	$[0.565 \pm 0.005]$
D—直径(注1)	12.5 ± 0.2	9.0±0.1	6.0±0.1	4.0±0.1	2.5±0.1
D—且位(注 I)	$[0.500 \pm 0.010]$	$[0.350 \pm 0.007]$	$[0.250 \pm 0.005]$	$[0.160 \pm 0.003]$	$[0.113 \pm 0.002]$
R—圆角半径,最小	10 [0.375]	8 [0.25]	6 [0.188]	4 [0.156]	2 [0.094]
A—缩减平行部分长度,最小(注2)	75 [3.0]	54 [2.0]	36 [1.4]	24 [1.0]	20 [0.75]

注1:缩减平行部分可以具有从两端向中心逐渐减小的斜锥度,其两端在直径上不能比中心(控制尺寸)部位大1%。

注2: 如需要,可增加缩减平行部分的长度,使之适应合适标距长度的伸长仪。测量伸长率的标记,无论如何也得打在标距范围内。

注3:标距长度和圆角应如所示的那样,但端部都可以是任意形状以适应试验机夹持头,并使负荷作用在中心线上(见图9)。如果试样的端部是用楔形夹头夹住,则在可能条件下使夹紧段的长度长一些,以使试样伸进夹头的长度达到夹头长度的三分之二或更长一些。

注4: 图8和图9所示圆形试样,其标距等于公称直径的4倍 [E8] 或5倍 [E8M]。在一些产品标准中,其他 试样也可以用,除非能保持4与1之比 [E8] 或5与1之比 [E8M] (在尺寸公差之内),伸长率数值就不能 与从标准试样所获得的值相比。

注5: 直径小于6mm [0.250in] 的试样限于在下述情况使用:即当所试验的材料不足以获得更大的试样,或者双方同意作为验收试验。小尺寸试样要求使用适合的设备和在机加工和试验中都更加熟练的技术。注6:只对英寸/磅单位,常常使用直径约0.505、0.357、0.252、0.160和0.113in五种尺寸试样,原因是允许从负载的应力很容易计算,因为相应的横截面面积分别等于或接近于0.200、0.100、0.0500、0.0200和0.0100in²。因此,当实际直径值与这些值基本一致时,应力(或强度)简单的计算,可以分别乘上计算因子5、10、20、50和100进行计算。(这5个直径米制相当值,没有用截面面积再乘上因子的相应方便结果。)

图8 12.5mm(0.500in)标准圆形拉伸试样及与标准试样成比例的小尺寸试样示例

尺寸,mm [in.] 标距长度为直径 4 倍(E8)的试样					
	试样 1	试样 2	试样 3	试样 4	试样 5
G—标距长度	50 ± 0.1	50±0.1	50±0.1	50±0.1	50±0.1
G—你起下沒	$[2.000 \pm 0.005]$				
D—直径(注1)	12.5 ± 0.2				
D—且任(注 I)	$[0.500 \pm 0.010]$				
R—圆角半径,最小	10 [0.375]	10 [0.375]	2 [0.0625]	10 [0.375]	10 [0.375]
A 6空間並行効ハV麻	56 [2.25]	56 [2.25]	100 [4]	56 [2.25]	56 [2.25]
A—缩减平行部分长度	最小	最小	大约	最小	最小
L—总长,大约	145 [5]	155 [5.5]	155 [5.5]	140 [4.75]	255 [9.5]
p 岩如尺序(分2)	35 [1.375]	25 [1]	20 [0.75]	15 [0.5]	75 [3]
B—端部长度(注 3)	大约	大约	大约	大约	最小
C—端部直径	20 [0.75]	20 [0.75]	20 [0.75]	22 [0.875]	20 [0.75]
E—过渡段长度, 大约		15 [0.625]		20 [0.75]	15 [0.625]
F—过渡段直径		15 [0.625]		15 [0.625]	15 [0.625]

尺寸,mm [in.] 标距长度为直径 5 倍(E8M)的试样					
	试样 1	试样 2	试样 3	试样 4	试样 5
C 标照长度	62.5 ± 0.1				
□ G—标距长度	$[2.500 \pm 0.005]$				
D 古久 (注 1)	12.5 ± 0.2				
D—直径(注 1)	$[0.500 \pm 0.010]$				
R—圆角半径,最小	10 [0.375]	10 [0.375]	2 [0.0625]	10 [0.375]	10 [0.375]
▲ /存居亚尔刘八尺庄	75 [3]	75 [3]	75 [3]	75 [3]	75 [3]
A—缩减平行部分长度	最小	最小	大约	最小	最小
L—总长,大约	145 [5]	155 [5.5]	155 [5.5]	140 [4.75]	255 [9.5]
	35 [1.375]	25 [1]	20 [0.75]	15 [0.5]	75 [3]
B—端部长度(注3)	大约	大约	大约	大约	最小
C—端部直径	20 [0.75]	20 [0.75]	20 [0.75]	22 [0.875]	20 [0.75]
E—过渡段长度,大约		15 [0.625]		20 [0.75]	15 [0.625]
F—过渡段直径		15 [0.625]		15 [0.625]	15 [0.625]

- 注1: 缩减平行部分可以具有端部向中心逐渐减小的锥度,端部在直径上不能比中心部位大出1%。
- 注2: 在试样1和试样2上,允许任何标准的螺纹,若利于良好对准以及有助于保证试样将在缩减平行部分的范围内拉断的话。
- 注3: 如有可能,把试样5的夹紧段长度做得足够大,使其伸进夹头的长度等于或超过夹头长度的三分之二。 注4: 图9中的表中用SI单位制表示的值被认为与英寸/磅单位制的值是分开的。在每个单位制表示的值是不 能准确的等同,因此各个单位制必须独立使用。

图9 标准圆形拉伸试样的各种端部型式

6.6.2.1 全横截面积(注6)——允许用砂布、砂纸或机器将整个试验部分横截面积少量减少,以保证断裂发生在标记之内。对于直径或平面之间距离不超过5mm(0.188in.)的材料,在不改变横截面积形状条件下,横截面积可以减少到不小于原始横截面积的90%。对于直径或平面之间距离超过5mm(0.188in.)的材料,在不改变横截面积形状条件下,直径或平面之间距离的减少可不超过0.25 mm(0.010in.)。对于平面间距离不超过5mm(0.188in.)的八角形或六角形盘条或棒材,可做一个横截面积不小于最大内接圆面积的90%圆。在缩减平行部分端部,过渡圆弧半径最好应为10mm(0.375in.),但不能小于3 mm(0.125in.)。对于大于5mm(0.188in.)的方形、八角形或六角形棒材,平面间可做一个不少于原始平面间距离直径不小于0.25mm(0.010in.)的圆。

注6: 为了使断裂发生在标记之内,可用图10示出的相似夹具将铜或铜合金试样端部压平至原始尺寸的 10%~50%。压平试样相对端部时应注意保证四个压平表面平行和试样轴线同一侧二个平行表面位于同一平面。

- **6.6.2.2** 对于盘条和棒材, 6.4中规定的最大适用圆柱形试样尺寸可以代替全横截面积试样。除非产品标准中另有规定,试样应平行于轧制或挤压方向。
- 6.7 矩形截面棒材试样——试验矩形截面试样时,可使用以下任一种类型试样:
- **6.7.1** 全横截面积——允许用砂布、砂纸或机加工以减小整个试样试验部分宽度,以使断裂发生在标记之内,但减少后有宽度不应小于原始宽度的90%。长度不小于20 mm(3/4in.)缩减平行部分的中间长度两边应相互平行,并保证试样纵向轴线的偏差在0.05 mm(0.002in.)之内。缩减平行部分端部的圆角半径最好为10 mm(3/8in.),但不小于3mm(1/8in.)。

图10 压平全尺寸位伸试样端部的压紧夹具

- **6.7.2** 矩形截面厚度应足够小以配合试验机夹具,但宽度太大时可切去一部分以配合夹具,切后表面应经机加工或切割并应磨光以保证在要求部分断裂。减少后的宽度应不小于原始棒材厚度。也可使用6.2、6.3和6.4中规定的任一种类型试样。
- **6.8** 型材、构件及其它——试验上述部分未包括的各种形状试样时,可使用6.2、6.3和6.4中规定的任一种类型试样。
- 6.9 管材试样(注7):
- **6.9.1** 对于所有小管(注7),尤其是公称外径尺寸在25 mm(1in.)及其以下的小管,经常也指大尺寸的,除非因试验设备限制,应使用全尺寸管段做为拉伸试样,这是标准贯例。将滑动配合的金属塞头插入这种管材试样两端内足够的深度,以便使试验机钳口能牢固地夹持试样。塞头不应伸到测量伸长的试样部分内,除非产品标准中另有规定,伸长的测量应超过5D长。图11示出塞头合适的形状、塞头在试样中的位置及试样在试验机夹具上的位置。

注7: 术语"管"一般用于表示管产品,包括钢管、管材和管道。

6.9.2 对于不能用全截面进行试验的大直径管,应按图12所示切取纵向拉伸试样。从焊接管上切取的试样应与焊缝位置呈90°。若管壁厚度小于20 mm(0.750in.),试样的形状和尺寸可采用图13示出的或如6.4.2中规定及图8示出的与12.5mm(0.500in.)标准试样成比例的小试样。图13示出的试样类型,可用表面外型与管子曲率相应的夹具进行试验。当带有弯曲表面的夹具不适用时,可在不加热的状态下压平试样端部。如果管壁厚度等于或大于20 mm(0.750in.),可使用图8所示的标准试样。

注1--塞头的直径从试验机垫片限定线至弯曲部分应稍有锥度

图11 用于试验管材的金属塞头、试验机夹头上的试样及试样中塞头的位置

注1一试样坏料的棱边应切得相互平行

图12 从大直径管上切取纵向拉伸试样的位置

注8:来自管子和公称管的试样固定(如机加工时那样)或压平试样端部(夹紧)时,应注意既不能使缩减部分出现任何变形,也不能出现冷作硬化,因为这将改变状力学性能。

- **6.9.3** 管材的横向拉伸试样可从图14所示的管子端部切下的管环制备,可按图4切开后的A或切开前的B将试样压平。对于壁厚小于20 mm(0.750in.)的大管横向拉伸试样,应采用图8所示小试样或图13试样2所示的尺寸和形状。当使用后一种试样时,只要从表面除去的厚度不大于管壁公称厚度的15 %,可对试样表面或两面机加工以保证均匀厚度。对于壁厚等于或大于20 mm(0.750in.)的大管,应采用如图8所示标准试样来做横向拉伸试验。对于大的焊接管横向拉伸试样,为测量焊接强度,应在其长度中间垂直于焊缝的部位取样。
- **6.10** 锻造试样——为了试验锻件,应使用6.4中规定的最大圆柱形试样。如果不能使用圆柱形试样,应使用6.5规定的最大尺寸试样。
- **6.10.1** 对于锻件,应使用适当的产品标准推荐的试样,可从锻件的最主要部分或最厚部分截取试样,也可从锻件延展部分或有代表性部分截取。当没有其他要求时,试样的轴线应与晶粒流变方向平行。
- **6.11** 铸造试样——图8或图15所示的两种标准试样都可用于铸造试样,除非在产品标准中另有规定。
- 6.11.1 铸造试样应按图16和表1所示截取
- 6.12 可锻铁试样——为了试验可锻铸铁,应使用图17所示试样,除非产品标准中另有规定。
- 6.13 模铸试样——为了试验模铸件,应使用图18所示试样,除非产品标准中另有规定。
- 6.14 粉末冶金材料(P/M)试样——为了试验粉末冶金材料(P/M),应使用图19和图20所示试样,除非产品标准中另有规定。当按图19制样时,可通过机器夹口在夹具端部压入浅的横向槽或隆起。由于形状和其他原因,不加工的扁平拉伸试样(图19),在热处理状态下抗拉强度比经机加工如复合和加工的圆柱形拉伸试样(图20)要大50%到85%。

7. 试验步骤

- **7.1** 试验机的准备——在机器启动时或长时间未启用之后,为使因条件的改变而产生的问题 减到最少,应检查试验机或将其预热到正常的操作温度。
- 7.2 试样尺寸的测量:
- 7.2.1 为了测定试样的横截面面积,应测量缩减平行部分中心处的横截面的尺寸。对于仲裁试验样品,当发现有最小的横截面面积之时,并且,它们的最小尺寸在 5mm [0.188in]以下时,则应测量和记录该尺寸:
- (1) 对横截面尺寸≥5mm [0.200in] 的拉伸试验试样,应测量并记录到最接近的 0.02mm [0.001in];
- (2)5mm [0.200in] > 横截面尺寸≥2.5mm [0.100in] 的拉伸试验试样,应精确到 0.01mm [0.0005in];
- (3)2.5mm[0.100in]>横截面尺寸≥0.5mm[0.020in]的拉伸试验试样,应精确到 0.002mm [0.0001in];
- (4) 横截面尺寸<0.5mm [0.020in] 的拉伸试验试样,当可行时,应至少精确到1%,但是,在任何情况下应至少精确到0.002mm [0.0001in]。
- 注9: 精确而准确测量试样尺寸是拉伸试验最关键的步骤之一,它取决于试样的几何形状。更多的资料见附录X2。

注10:由于产品制造过程中粗化的表面,如热轧、金属涂层等,可能导致计算的截面积不准确,计算出的面积将大于测量尺寸得出的面积。因此,对于由加工而形成粗糙表面的拉伸试样的横截面积尺寸,测量和记录应精确至0.02 mm(0.001in.)。

注11: 对于金属涂层产品的测量相关资料见X2.9。

- **7.2.2** 通过称量一个长度不小于最大横截面积尺寸20倍的试样重量,来确定具有均匀但不对称横截面积的全尺寸拉伸试样的横截面积。
- 7.2.2.1 测的重量至少应精确至0.5%。
- 7.2.2.2 横截面积等于试样重量除以长度与材料密度的乘积。
- **7.2.3** 当使用如图13所示管的试样时,其横截面积应按如下确定: 如果D/W≤6时:

$$A = \left[\left(\frac{W}{4} \right) \times \sqrt{(D^2 - W^2)} \right] + \left[\left(\frac{D^2}{4} \right) \times \arcsin\left(\frac{W}{D} \right) \right] - \left[\left(\frac{W}{4} \right) \times \sqrt{(D - 2T)^2 - W^2} \right] - \left[\left(\frac{D - 2T}{2} \right)^2 \times \arcsin\left(\frac{W}{D - 2T} \right) \right]$$

$$(1)$$

式中:

A=精确的横截面面积, mm²(in.²);

W=缩减平行部分上试样的宽度, mm(in.);

D=管子的测定出的外径, mm(in.), 以及;

T=试样的测定壁厚, mm(in.)。

反正弦 (arcsin) 函数值应为弧度(值)。

如果D/W>6,可使用精确的公式,或使用下列的公式:

$$A=W\times T \tag{2}$$

式中:

A=大约的横截面面积, mm²(in²);

W=缩减平行部分上试样的宽度, mm(in.), 以及;

T=试样的测定壁厚, mm(in.)。

注 12: 关于从大直径管子制品上取试样,做测量和计算的注意事项,见 X2.8。

- 7.3 试样标距的标记:
- **7.3.1** 测量伸长率的标距应按被试验材料的产品标准规定,应轻轻打点作标记、轻轻用分线规刻线,或最好用墨水划线。对缺口影响敏感较强的材料和小试样,使用快干墨水有助于断裂后原始标记的定位。
- 7.3.2 对于规定伸长率为3 %或以下的材料,试验前测量的原始标距长度偏差为0.05 mm (0.002in.)。
- 7.4 试验机调零:
- 7.4.1 试验机应以如下方法安装:力的指针为零表明作用在试样上的力为零。通过试样夹具 (见注13)传递的力(预负荷)应由力的测量系统指示出,除非在试验之前预负荷被人为地 移去。人工移除试样上预负荷,象通过零点校准仪移动指针或通过数学方法删去设计程序的 方法是禁止的,因为这将影响试验结果的准确性。

尺寸							
	试样1	试样 2	试样 3	试样 4	试样 5	试样 6	试样 7
	mm [in.]	mm [in.]	mm [in.]	mm [in.]	mm [in.]	mm [in.]	mm [in.]
G—标距长度	50.0 ± 0.1	50.0 ± 0.1	200.0 ± 0.2	50.0 ± 0.1	100.0 ± 0.1	50.0 ± 0.1	100.0 ± 0.1
	[2.000±	[2.000±	[8.00 ±	[2.000±	[4.000±	[2.000 ±	[4.000 ±
	0.005]	0.005]	0.01]	0.005]	0.005]	0.005]	0.005]
W宽度 (注 1)	12.5 ± 0.2	40.0 ± 2.0	40.0 ± 0.2	20.0 ± 0.7	20.0 ± 0.7	25.0 ± 1.5	25.0 ± 1.5
	[0.500 ±	[1.5 ±	[1.5 ±	[0.750 ±	[0.750 ±	[1.000 ±	[1.000 ±
	0.010]	0.125-0.25]	0.125,-0.25]	0.031]	0.031]	0.062]	0.062]
T—厚度			ij	样的测定厚度	Ē		
R—圆角半径,最小	12.5 [0.5]	25 [1]	25 [1]	25 [1]	25 [1]	25 [1]	25 [1]
A—缩减平行部分长度, 最小	60 [2.25]	60 [2.25]	230 [9]	60 [2.25]	120 [4.5]	60 [2.25]	120 [4.5]
B—夹紧部分的长度,最小(注2)	75 [3]	75 [3]	75 [3]	75 [3]	75 [3]	75 [3]	75 [3]
C—夹紧部分的宽度,大约(注3)	20 [0.75]	50 [2]	50 [2]	25 [1]	25 [1]	40 [1.5]	40 [1.5]

注1: 对于各种试样,缩减平行部分的端部在宽度上的不同应不大于0.5%。从试样的中心到端部可以带有渐进的斜锥度,但是,在每一端应不得大于中心部分宽度的1%。

注2: 如有可能,希望使夹紧段的长度长一些以使试样伸进夹头的长度达到夹头长度的三分之二或更长一些。注3: 试样的两端在宽度上应与缩减平行部分的中心线相对称,且对于试样1、4和5在1.0mm [0.05in] 以内,对试样2、3、6和7对称度应在2.5mm [0.10in] 以内。

注4: 对每种类型的试样,所有的圆角半径应互等,公差在1.25mm(0.05in)以内,并且,每端的两个圆角曲率中心应与试样中心线互相垂直交叉(在垂直于中心线的线上),公差在2.5mm(0.10in)以内。

注5: 对于圆形的管段,横截面的面积应以尺寸W和T相乘计算得出。如果尺寸W相对于管状截面的比大出约六分之一时,使用这一方法计算横截面面积的误差是可以评估的,在这种情况下,必须使用精确的计算公式(见7.2.3)确定其面积。

注6: G/W < 4的试样,不宜用于伸长率的确定。

注7:除了仲裁试验外,试样允许做成整个长度与侧面相平行,条件是: (a)使用上述的公差; (b)假定有足够数量的测定伸长率用的标记刻痕;以及(c)当测定屈服强度时,使用了合适的伸长仪。如果拉断发生在距离夹紧装置边缘小于2W的距离内,测定得到的拉伸性能可能并不代表该材料。在合格验收试验时,如果拉伸性能符合规定的最小要求,则不要求进一步进行试验,但是,如果低于最小要求,则试验应作废,并重新试验。

图13 大直径管状产品用的拉伸试样

图14 从管产品上切取管环中横向拉伸试样的位置

TO TO THE PARTY OF					
尺寸					
	试样 1	试样 2	试样 3		
	mm(in)	mm(in)	mm(in)		
D-直径	12.5±0.2	20.0±0.4	30.0± 0.6		
D ^一 且任	(0.500 ± 0.010)	(0.750 ± 0.015)	(1.25±0.02)		
R-圆弧半径,最小	25(1)	25(1)	50(2)		
A-缩减平行部分长度,最小		应等于或大于直径 D			
L-总长度,最小	95(3.75)	100(4)	160(6.375)		
B-端部长度,近似	25(1)	25(1)	45(1.75)		
C一端部直径,近似	20(0.75)	30(1.125)	48(1.875)		
E-肩部长度,最小	6(0.25)	6(0.25)	8(0.312)		
F-台肩直径	16.0±0.4	24.0±0.4	36.5±0.4		
	(0.625 ± 0.016)	(0.94 ± 0.016)	(1.438±0.016)		
H-缩减部分长度加内圆角,最小	32(1.25)	38(1.5)	60(2.25)		

注1:缩减平行部分(尺寸A和D)和凸台段(尺寸E、F和R)应如图所示,但两端部可以是任何形状,以适应试验机夹持装置,并使力可是轴向的。通常,端部车成螺纹并具有上面规定尺寸B和C。

图15 铸铁用的标准拉伸试样

注13: 由试样夹具产生的预负荷可能是自然状态下的拉伸或压缩,产生如此结果可能是由于:

- 夹具的设计
- 一 夹持装置的制造 (粘合、装配等)
- 过大的夹持力
- 控制系统的敏感性

注 14: 操作者有责任去观察预负荷来校验以使夹具能顺利地操作。除非另有规定,预夹持瞬时(冲击)力建议不超过材料通常屈服强度的20%,静止预负荷建议不超过通常屈服强度的10%。

7.5 试样的夹持:

7.5.1 对于有缩减部分的试样,试样的夹持应只限于夹持部分,因为夹持在缩减部分或过渡 圆弧中可对试验结果产生重大影响。

7.6 试验速度:

- 7.6.1 试验速度可按如下规定: (a) 试样的应变速度, (b) 试样的应力速度, (c) 试验过程中试验机两头分开的速度, (d) 完成部分时间或整个试验所经历的时间, 或(e) 空载十字头速度(不加负荷时试验机十字头移动速度)。
- 7.6.2 其它适用规范可能要求检定试验机速度。在这类场合,除非另有规定,检定应按照规程D2658来执行,同时试验机满足E级或更高要求。
- 注15:一些材料/应用场合对试验速度十分敏感,然而其它材料/应用场合则对试验速度不敏感。在通用 拉伸试验中,试验速度的显著变化通常是可容忍的。
- 7.6.3 对速度和方法的选择规定一个适当的范围是产品委员会的责任。合适的试验速度范围应规定为:对使用不同速度引起不同结果的材料所得到的试验结果应符合要求。这种情况下,以下几节所规定的一个或几个用来确定试验速度的方法,取决于材料和所要求的试验结果。
 - 注 16: 由于材料对速度的敏感性和温度一时间效应,试验速度对试验结果有一定影响。
- 7.6.3.1 应变速度——应变速度允许范围应使用mm/mm/min(in./in./min)表示。一些试验机具有测量和控制应变速度的装置,但在没有这些装置的试验机上,平均应变速度可用计时装置通过观测产生已知增量应变所需的时间来测定。
- **7.6.3.2** 应力速度——应力速度允许范围应用兆帕/秒来规定。许多试验机都备有测速或指示装置来测定和控制应力速度,但是在没有这种装置的情况下,应力的平均速度可用秒表通过观察产生已知增量应力所需时间来测定。
- 7.6.3.3 试验过程中夹头分离速度——试验期间试验机夹头分离速度允许范围,应规定为缩减平行部分长度的毫米/毫米/秒(或夹具间距离,因为试样还没有颈缩)。分离速度范围可通过对各种类型和尺寸试样规定不同范围来明确限定。许多试验机均备有试验期间测量和控制试验机夹头分离速度的指示装置,但是没有此装置时,平均夹头分离速度可使用适当测量装置和秒表在试验时测定。
 - 注 17: 这个规定"横梁速度"测试方法,以前被称为"测试期机头分离速率"。
 - 注 18: 没有横梁的机器或没有固定横梁的机器,把"横梁速度"可解释为夹具分离速率。

图16 铸造试验块

表 1 铸件试块设计细节(见图 16)

注1:大而重的钢铸件试块:图 16 的试块是用于大而重的钢铸件。但是,如果需要,铸造车间可任选比标准试块更大的横截面积和长度。本条文不适用于 A 356/A 356M 标准。

分支	的设计.125 mm[5 in]		冒口设计
1. L(长度)	最小125 mm[5 in],也可由铸造 车间任选更长的长度,以容纳附加 的试棒(见注1)。	1. L(长度)	冒口基部长度应与支的上部长度相等,因此,冒口上部尺寸取决于加到冒口上斜度的量。
2. 拔模斜度	由铸造车间选定使用,以及端部的 斜度。	2. 宽度	多支试块基部宽度应是 n (57 mm) - 16 mm [n (2.25 in) -0.625 in]。式中,n 为附到试块上的支数,因此,上部冒口宽度取决于加到冒口上斜度的量。
3. 高度	32 mm[1.25 in] _o		
4. 上部宽度	32 mm[1.25 in](见注1)。		
5. 下部圆弧半径	最大13 mm[0.5 in]。		
6. 各支间距	分支将使用 13 mm [0.5 in] 的圆弧半径。		
7. 试棒位置	拉伸、弯曲和冲击试棒从试样块各 分支的下部切取(见注2)。	3. T(冒口拔模 斜度)高度	最小高度51mm[2 in]。最大高度由铸造车间选定,这是因为:(a)许多冒口是外露的;(b)为了可
8. 支数	附在试块上的分支数,由铸造车间选定,它们按第6项要求的间距尺寸等间距布置。		靠起见,对不同化学成分可要求不同的冒口高度;(c)为了可靠起见,对不同浇铸温度可要求不同的冒口高度。
9. Rs	铸造半径,大约从0到2 mm[0.062 in]。		

尺寸, mm (in.)				
D—直径	16(0.625)			
R—圆角半径	8(0.312)			
A—缩减平行部分长度	64(2.5)			
L一总长	190(7.5)			
B一端部长度	64(2.5)			
C—端部直径	20(0.75)			
E—圆角过镀段长度	5(0.188)			

图17 可锻铸铁用的标准拉伸试样

- **7.6.3.4** 试验时间——从加荷开始(或从某规定应力开始)至断裂瞬间达最大负荷或达到其它规定应力所经历的时间允许范围,应用分或秒规定。试验时间可用秒表来确定。
- 7.6.3.5 十字头空载移动速度——在不加荷的情况下,试验机十字头移动速度的允许范围,应按每缩减平行部分长度(或没有缩减部分试样夹具间距离)的米/米/秒规定。对于各种类型和尺寸的试样可进一步限定不同范围的十字头速度。平均十字头速度可使用适当的长度和时间测量装置在试验中测定。

注19: 对于没有横梁或具有固定横梁的试验机,词汇"空载横梁速度"可以解释为意指:夹具分离开的空载速率。

尺寸, mm(in.)				
G—标距长度	50.0±0.1(2.000±0.005)			
D-直径(见注)	6.4±0.1(0.250±0.005)			
R-圆角半径,最小	75(3)			
A缩减平行部分长度,最小	60(2.25)			
L一总长,最小	230(9)			
B-夹头之间的长度,最小	115(4.5)			
C一端部直径,大约	10(0.375)			

注1: 从缩减平行部分的端部至中央可有一个过渡的锥度, 但端部不应超过中央直径的0.1mm。

图18 模铸件的标准拉伸试样

压力区域=645mm²[1.00in.²]

尺寸, mm [in.]				
G—标距长度	25.4±0.08 [1.000±0.003]			
D—中心处的宽度	5.72±0.03 [0.225±0.001]			
W—缩减平行部分的宽度	5.97±0.03 [0.235±0.001]			
T—压缩的厚度范围	3.56~6.35 [0.140~0.250]			
R—圆弧半径	25.4 [1]			
A—缩减平行部分一半的长度	31.8 [1.25]			
B—夹持长度	80.95±0.03 [3.187±0.001]			
L—总长	89.64±0.03 [3.529±0.001]			
C—夹持部分宽度	8.71±0.03 [0.343±0.001]			
F—夹持部分的半宽	4.34±0.03 [0.171±0.001]			
E—端部圆弧半径	4.34±0.03 [0.171±0.001]			

注:除了尺寸G和T外,所规定的尺寸是模具的尺寸。

图19 粉末冶金(P/M)产品的标准板状未机加工拉伸试样

未机加工压实体的大约压制面积=752mm2(1.166in2)

- 1. 粗机加工缩减平行部分到直径为 6.35mm(0.25in);
- 2. 精整车削到直径为 4.75/4.85mm(0.187/0.191in.), 以及圆弧和斜(锥)度。
- 3. 用 00 号刚玉砂布抛光。
- 4. 用研磨粉布做研磨。

尺寸, mm (in.)				
G—标距长度	25.4±0.08 (1.000±0.003)			
D—缩减平行部分中心处的直径	4.75±0.03(0.187±0.001)			
H—标距长度两端直径	4.85±0.03(0.191±0.001)			
R—圆弧半径	6.35±0.13(0.250±0.005)			
A—缩减平行部分的长度	47.63±0.13(1.875±0.003)			
L—总长(模槽长度)	75(3),公称			
B—端部的长度	7.88±0.13(0.310±0.005)			
C—压缩的厚度	10.03±0.13(0.395±0.005)			
W—模槽宽度	10.03±0.08(0.395±0.003)			
E—肩部的长度	6.35±0.13(0.250±0.005)			
F—肩部的直径	7.88±0.03(0.310±0.001)			
J—端部圆弧半径	1.27±0.13(0.050±0.005)			

注1: 试样的标距长度和圆角半径应做成如图所示。所示出的端部设计来提供实际上最小的压制面积。可以接受其他的端部设计,并且,在一些场合下为高强度烧结材料所要求。

注2: 建议试样采用剖分开的集合体来夹紧,并支承在肩部之上。集合体支承的圆弧边缘应不小于试样的圆角半径。

注3: 直径D和H应同心, 其总指示偏离(TIR)应在0.03mm [0.001in]范围内, 且无刻痕和工具痕。

图20 粉末冶金(P/M)产品用的标准圆形机加工拉伸试验试样

7.6.4 测定屈服特性时的试验速度——除非另有规定,任何常规试验速度可使用至规定屈服强度一半或规定抗拉强度四分之一,以其中最小者为准。在这一点以上的速度应在规定的范围内。如果用来确定屈服强度、屈服点伸长、抗拉强度和断面收缩率时要求不同速度范围,应在产品标准中说明。在没有规定试验速度范围的情况下,应使用下述一般规则,附件X4给出了控制方法选择的指南。

注 20: 在以上和下列段落中, 屈服特性可包括屈服强度和屈服点伸长率。

7.6.4.1 控制方法 A——当测定屈服性能时应力速率方法 用这种方法,应力的速率应在

1.15MPa 到 11.5MPa/s [10000 到 100000psi/分钟]之间。当正在试验的试样开始产生屈服时,为了保持应力速率,就要求试验机的速度不应增加。不建议试验机在通过屈服使用力的信号闭环控制操作,但该力的信号闭环控制,可用于测试的线性弹性部分。

注 21: 当确定屈服性能,使用闭环应力控制,保持恒定应力速率或控制应力速率,不是本方法的目的,但只是通过设置横梁速度,以达到目标应力率在弹性区域。当被测试样本开始屈服,应力率降低,在样品具有不连续的屈服的情况下,甚至可能成为负值。为使整个屈服过程保持一个恒定的应力速率,要求试验机在极高的速度下运行,在大多数,这是既不实际,也不可取。在操作中,是比较简单的,在试验的线性弹性的区域,使用应变速率、横梁速度或空载横梁速度接近所需的应力速率。例如,使用应变速率为 1.15至 11.5MPa/s 之间除以正在试验材料的公称杨氏模量。作为另一个例子,通过实验方法,可以找出在刚发生屈服之前的所希望应力速率的横梁速度,并且,通过这一被测定屈服性能区域来保持横梁速度。当这些方法,在刚发生屈服之前都能提供相似的应力和应变速率时,但在测定屈服性能的区域内,应力和应变速率通常可以完全不同。

注 22: 多年来,对显示出很低应变速率敏感性的测试材料,如一些钢材和铝,此方法已被默认的方法。 7.6.4.2 控制方法B——当测定屈服性能时应变速率控制方法在此方法中,测试机应使用伸长 仪信号在闭环控制中运行。应变速率应当设置和维持在0.015±0.006mm/mm/分钟[in/in/分钟]。

注23: 当测试机运行在封闭环的应变控制时,如果控制参数设置不正确,如果没有设置适当的安全限制,或者如果伸长仪滑落,因为意外的横梁运动可能会发生,必须遵守适当预防措施。

注24: 对航空航天、高温合金、钛的应用和有规定时,常常要求应变速率在0.005mm/mm/分钟[in/in/分钟],必须遵循上述的要求,否则不要求。

7.6.4.3 控制方法C——当测定屈服性能时横梁速度控制方法 测试机应设置横梁速度等于原来缩减平行部分的0.015±0.003mm/mm/分钟[in/in/分钟](图1、图7、图8、图9、图13、图15、图17、图18和图20的规格A和图19规格A的2倍)或对无缩减截面的样品,为夹具之间的距离。

注25: 建议横梁速度用于不连续的屈服区域的控制。

注26:使用不同的控制方法可以产生不同的屈服测试结果,特别是如果测试材料存在应变速率灵敏。 为了达到最佳重现其中可能是应变速率敏感的材料的情况下,应该使用同样的控制方法。7.6.4.2或7.6.4.3 描述的方法,在应变速率敏感的材料情况下,将倾向于类似的结果。7.6.4.1所述的控制方法应该避免为应 变速率敏感材料,如果在其他试验机或其他的实验室再现类似测试结果,它是可取的。

7.6.5 测定抗拉强度时的试验速度——在没有规定试验速度范围情况下,下列一般规则适用

于要求伸长率大于5%的材料。当只测定抗拉强度时,或记录下屈服现象之后,试验机的速度应设定在每分钟缩减平行部分长度(或对于没有颈缩试样的夹具间距离)的0.05和0.5 mm/mm (或in./in.)之间。换句话说,可用引伸计和应变速度仪设定应变在0.05和0.5 mm/mm/min(或in./in./min)之间。

注 27: 对于要求的伸长率小于或等于5%的材料,试验机的速度可始终保持在测量屈服特性的速度。

注 28: 对于许多材料抗拉强度和伸长率对试验速度很敏感 (见附录X1),超出了以上所给出的试验速度范围可能对试验结果造成很大影响。

7.7 屈服强度的测定——用7.7.1 到 7.7.4规定的任何一种方法测定屈服强度。使用引伸计仅是用来校验测定屈服强度的应变范围(见5.4)。

注 29: 例如,校验过的应变范围为0.2%到2.0% 适用于许多材料测量屈服强度。

注 30: 那些不能靠引伸计来确定屈服现象的材料(如细线材)是有问题的,并且超出了本标准的范围。

注 31:表示为屈服点伸长(YPE)的材料与没有YPE的类似材料相比,其屈服特性通常很少重复和再现。残余变形和载荷下伸长(EUL)屈服强度可能显著地受到残余变形或伸长与应力一应变曲线相交区域发生的应力的波动影响。因此,测定上屈服强度或下屈服强度(或两者)对这种材料来说可能是较好的,尽管这些特性能依赖于诸如试验机刚度和对准以及试验速度这样的可变因素。

7.7.1 残余变形法——在应力—应变图 (图21) 中划出Om 等于规定的残余变形值,划mn 平行于OA,这样就确定出mn与应力—应变图交点r。在报告用此方法得到的屈服强度时,规定的残余变形值应在屈服强度术语后的括号内注明。因此:

用这种方法时,应使用B2级或更好的引伸计(见E 83规定)。

图21 用残余变形和总伸长率确定屈服强度的应力-应变曲线

图22 示出了与膝盖顶部相应的上屈服强度的应力-应变曲线

注 32: 有两种类型的引伸计: 平均的和非平均的,使用哪一种取决于被试验产品。对于大多数机加工试样,两者类型的差异极小。然而,对于一些锻件和管截面,测定的屈服强度会产生显著差异。由于这些情况,推荐使用平均型引伸计。

注 33: 当所测屈服性能有争议时,要求用偏置法测定屈服强度作为仲裁试验方法。

注 34: 在实践中,由于许多原因,应力-应变曲线的直线部分(图21所述的直线OA)可以不经过应力-应变图的原点。附录X5显示了非理想行为示例,同时推荐了依据这些非理想应力-应变图计算屈服强度的方法。

7.7.2 载荷下伸长法(EUL)——通过载荷下伸长法可按如下两种方式测定屈服强度: (1) 分析应力-应变图用规定伸长值来确定应力值,或(2) 使用能显示出规定伸长产生的装置,以便可确定应力的产生,也可见7.7.2.1。图21示出了载荷下伸长法。规定伸长下的应力应按如下报告:

用于测定伸长率的引伸计和其他装置应满足或超过B2级对相关应变的要求(见规程 E83),除非如果观察到使用低放大倍数的C级装置有帮助,例如在测定YPE时。如果使用C 级装置,该情况必须随着结果一起进行报告。

注 35: 应规定合适的总伸长值。对于规定屈服强度低于550 MPa(80000psi)的钢,合适的值为标距的0.005 mm/mm (或in./in.)(0.5 %)。对于更高屈服强度的钢,应使用更大伸长率或偏置法。

7.7.2.1 当没有其它更合适的测量伸长装置时,可使用分线规的两脚或相似的装置去测定试样上两标记间可观测到伸长的一个点。标距应为50 mm(2in.)。在可观测到伸长时相应负

荷的应力可记录为近似的负荷下伸长屈服强度。

- **7.7.3** 适用于出现不连续屈服的材料的方法——绘制应力一应变(或负荷一伸长)曲线。用如下方法确定上屈服强度或下屈服强度:
- **7.7.3.1** 在不连续屈服开始处记录最大负荷时的应力作为上屈服强度。如图22和图23所示。如果在不连续屈服开始时观测到多个峰值,认为第一个峰值是上屈服强度(见图23)。
- **7.7.3.2** 记录不连续屈服过程中观测到的最小应力(不计瞬时效应)为下屈服强度。这些在图23示出。
- 7.7.3.3 对于可能显示不连续屈服的材料,需要使用便于测量屈服点伸长的低倍率自动记录 仪,可使用C级引伸计。当这样做时而材料没有显示出不连续屈服时,可用载荷下伸长法测 定屈服强度来代替,并使用应力-应变曲线(见载荷下伸长法)。
- **7.7.4** 负荷暂停法(对于有不连续屈服的材料)——在均匀变形速率下对试样施加一逐渐增加的力。当力暂停时,记录下相应的应力为上屈服强度。
 - 注 36: 负荷暂停法就是以前叫做指针暂停法、悬梁落下法和载荷暂停法。
- 7.8 屈服点伸长——用应力一应变曲线计算屈服点伸长或用上屈服强度(出现第一个平台)与产生均匀加工硬化(见E6的YPE术语定义和图23)冲击间测定不同应变来计算。
- 注 37: 材料的应力一应变曲线仅表示出发生屈服点伸长的示意图,可能在屈服开始的位置有个弯曲而没有出现斜率为零的点 (图 24)。这种材料没有YPE,但可显示出偏移的特征。材料显示出的这种可测YPE的偏移,在某种应用中,可能在成型过程中获得的表面质量是不可接受的。

图23 示出了屈服点伸长率和上、下屈服强度的应力-应变曲线

图24 带有变形但是无YPE的应力-应变曲线

- 7.9 均匀伸长(如果要求):
- 7.9.1 均匀伸长应包括塑性和弹性伸长。
- 7.9.2 均匀伸长应使用符合E83规定的引伸计用自动的方法测定。均匀伸长率低于5%的材料用B2级或B2级以上的引伸计。对于均匀伸长率大于或等于5%但低于50%的材料,使用C级或C级以上的引伸计。对于均匀伸长率大于或等于50%的材料使用D级或D级以上的引伸计。7.9.3 从试验过程中得到力——伸长曲线产生的最大负荷点的伸长确定均匀伸长。
- 7.9.3.1 某些材料显现一个伴随试验中最大负荷时获得的屈服点伸长的点。这种情况下,均匀伸长不在屈服点测定,而是在颈缩出现之前最大负荷下确定。(见图 25)。
- **7.9.3.2** 某些材料的应力一应变曲线上在最大力附近显现出长的平稳段。对于这种材料,应在平稳段中心测定均匀伸长,如图26所示(并参见下面注38)。

注 38: 当用数字计算方法确定均匀伸长时,应力一应变值的干扰通常来自曲线平稳段区间内记录下来的许多小的、局部的峰和谷,为消除这个干扰,要求按下列方法:

- 记录下测定的最大力(不连续屈服后)。
- 记录下在最大力前后估算系列力值。
- 用数字计算的方法定义为"曲线平稳段"包括在力的峰值量的0.5%之内的所有连续的力值点。
- 在"平稳段"的中点作为应变确定均匀伸长。
- **7.9.3.3** 讨论——注38的值0.5%是人为给出的。在精确的方法中,应选用足够大到能有效地判定力的平稳期的最小值。这就要求约5倍的由于噪声而产生的力的波动范围的百分数。实践表明这个值的范围从0.1%到1.0%是可接受的。

7.10 抗拉强度——用试验过程中最大力除以试样的原始横截面积计算抗拉强度。

图25 在上屈服强度为所记录到的最大应力时的应力-应变曲线

图26 测定在最大载荷下呈现为高原地形的薄钢板材料的均匀伸长率用的载荷-应变曲线

注39: 如果上屈服强度是被记录下的最大应力,且应力-应变曲线类似于图25,则建议把在不连续产生 屈服后的最大应力报告作为拉伸强度。当发生这种情况时,拉伸强度的测定,应按参试方的协议。

7.11 伸长率:

7.11.1 伸长率可从依据断后伸长率测量值或直接依据断裂伸长率测量值计算得出。可报告任意一个值,但是应报告所用方法。当对伸长率结果存在争议时,各方应协定采用哪一种方法来获得结果。

注 40: 伸长率的结果对如下变化非常敏感: (a) 试验速度, (b) 试样几何形状(标距,尺寸、宽度和厚度),(c) 热损耗(由夹具,引伸计或与缩减平行部分相关的其他装置引起),(d) 缩减平行部分的表面质量(特别是毛刺和划痕),(e) 对中,(f) 过渡圆弧和锥度。断裂伸长率和断后伸长率是不可互换的参数。由断裂伸长率方法获得的结果通常是更具重复性的。相关各方在比较试验或符合性试验中应使以上条款标准化,并且建议避免使用可传递试样热量的的辅助装置(如引伸计支座等)。对于影响这些变化的更多资料见附录X1。

- 7.11.2 断后伸长率的测量:
- 7.11.2.1 遵循7.3节标距标记程序以及图1,图7,图8,图13,图15,图17,图18,图19或图20内所示的相应标距公差要求。特别关注低伸长率材料的要求。
- **7.11.2.2** 将试样两半对接在一起,然后测量试验之前所作的标距标记之间的距离,从而测量得出伸长率。
- 7.11.2.3 当规定伸长率大于3%时,将拉断的试样两端仔细地拼合在一起,测量标记间距离,标距小于等于50mm(2in.)时精确到0.25mm(0.01in.),标距大于50mm(2in.)时精确度至少达0.5%。可使用百分刻度为标距0.5%的测量仪器读数。
- 7.11.2.4 当规定伸长率小于或等于3%时,除掉妨碍已断试样两端对接在一起或妨碍进行最后测量的局部碎片。将已断试样两端相配的表面对接在一起,沿试样轴向施加一个足以使断裂试样两端拼合在一起的力。只要试样仍保持接触,可小心地去掉这个力。测量试样原始标距,精确到0.05 mm [0.002 in.],同时报告伸长率,精确到0.2%。除非测量伸长率大于3%,此时可使用7.11.2.3条规定的程序来代替。
 - 注41: 对于铝合金试样,施加约15MPa(2000psi)的力会得到满意的结果。
- 注42: 由于将断裂两端拼合在一起缺乏准确性,按7.11.2所述用人工方法测得的断后伸长率可能与按7.11.3所述用引伸计测定的断后伸长率不同。
- 7.11.3 断裂伸长率的测量:
- 7.11.3.1 断裂伸长率应包括弹性和塑性伸长率。
- 注43:除非试样在断裂点没有缩颈,弹性应变修正要求了解在引伸计连接点之间沿着试样长度的可变 应变分布,但这超出了本标准的范围。
- 7.11.3.2 断裂伸长可用自动和人工方法测定,测定时使用应变范围经校验过的引伸计(见5.4.1)。对于伸长率小于5%的材料,使用B2级或B2级以上的引伸计;对于伸长率大于或等于5%但小于50%的材料,使用C级或C级以上的引伸计;对于伸长率为50%或更高的材料,使用D级或D级以上的引伸计。在所有情况下,引伸计标距应是要求的试样的名义标距。
- 7.11.3.3 对瞬间失效的材料,断裂伸长率应取为刚好在力瞬间减小之前的应变。

7.11.3.4 对不显示力瞬间减小的材料,断裂伸长率应取为刚好当力降至本试验期间所遇到的最大力的10%以下时所测量的应变。

7.11.4 试样的更换:

7.11.4.1 断裂伸长率或断后伸长率可能受断裂位置的影响,并与标记的或引伸计定义的标距有关。如果任何断裂部分发生在标距(7.14.5)以外,或位于标距标记或引伸计接触点内少于伸长标距的25%处,则该伸长率值可能异常地低,不能代表材料性能。如果在验收试验中这样测量的伸长率满足规定的最低要求,且数值不满足本要求,则可不必再进行试验。否则,试验报废,然后测试一个更换试样。

7.11.5 报告:

7.11.5.1 报告原始标距G和增大百分比。

7.11.5.2 如果本试验期间将除了引伸计之外的任何装置放置在接触试样缩减截面的位置,则还需对此予以报告。

7.12 断面收缩率:

- 7.12.1 用来计算断面收缩率的截面(见7.11.2 和 7.11.3)应为断裂处的最小横截面。
- **7.12.2** 原始横截面为圆形的试样——将断裂试样两端拼合在一起测量缩减部分直径,与原始测量精度相同。

注44: 由于各向异性,拉伸应变过程中,圆形截面经常不能保持圆形。形状通常是椭圆的,因此,面积可用 π · dı·dz/4来计算,其中: dı 和 dz 分别为较长直径和较短直径。

7.12.3 原始横截面为矩形的试样——将断裂试样两端拼合在一起测量最小截面处的厚度和宽度。与原始测量精确度相同。

注 45: 因为受矩形试样棱角变形的影响,原始平板表面的中心尺寸会小于棱角处的尺寸。这些表面的形状经常假设为抛物线。当做这种假设时,有效厚度 t_e 可用 $(t_1+4t_2+t_3)/6$ 计算,其中 t_1 和 t_3 为角的厚度, t_2 为宽度中间的厚度。有效宽度可同样计算。

- **7.12.4** 应在7.12.2 或 7.12.3确定的尺寸基础上计算收缩面积。由此测得的面积与原始横截面积的差值与原始面积的百分比率就是断面收缩率。
- 7.12.5 如果任何断裂的平行截面发生在标距中间一半以外处,或缩减平行部分内打点处或划线标记处,则得到的面积缩减值不能代表材料的真实特征。在验收试验中,如果按此计算的面积收缩满足规定的最低要求,则不需要重新试验。但如果面积收缩低于最低要求,则试验结果无效,并应重新进行试验。

- **7.12.6** 面积收缩的测量结果应按E29规定的方法和产品标准中规定的任何方法进行修约。在没有规定方法的情况下,推荐0~10%范围内的面积收缩试验值修约精确到0.5%,大于等于10%的试验结果精确到1%。
- 7.13 报告屈服强度和抗拉强度试验值的修约——试验值应使用E29规定的方法和产品标准规定的方法进行修约。在没有规定试验值修约方法时,推荐使用下列段落中描述的方法之一:
- 7.13.1 试验值小于500MPa(50000psi),修约精确到1MPa(100psi);试验值在500MPa(50000psi)到1000MPa(100000psi),修约精确到5MPa(500psi);试验值大于等于1000MPa(100000psi),修约精确到10MPa(1000psi)。

注 46: 对于钢产品,见试验方法和定义A 370。

7.13.2 对于所有试验值,修约到1MPa(100psi)。

注 47: 对于铝和镁合金产品,见方法B557。

- 7.13.3 对于所有试验数值,修约到5MPa(500psi)。
- 7.14 更换试样——下列几种情况中试样可报废并且从同一批材料中重新取样:
- 7.14.1 原试样机加工表面差,
- 7.14.2 原试样尺寸错误,
- 7.14.3 由于机加工操作有误使试样的性能发生改变,
- 7.14.4 试验方法有误,
- 7.14.5 断裂在标距之外,
- 7.14.6 测伸长率时,断在标距中心一半之外,
- 7.14.7 试验设备运转不正常。

注 48: 不宜选用一些有材料缺陷类型的试样作为拉伸试样。当试验过程中借助于超声波、着色渗透剂、 X射线照相等方法暴露出像裂缝、鳞片、气孔等缺陷时,应考虑用其他的方法和试样,没有缺陷才是可接 受的。

8. 报告

- 8.1 应按8.2 (或8.2和8.3) 报告出产品标准中没有给出的材料的相关资料。
- 8.2 如有要求,报告的试验资料应包括如下内容:
- 8.2.1 所用的参考标准,即E8或E8M。
- 8.2.2 材料和样品特征。
- 8.2.3 试样种类(第6部分)。

- 8.2.4 屈服强度和确定屈服强度的方法(见7.7)。
- 8.2.5 屈服点伸长 (见7.8)。
- 8.2.6 抗拉强度 (见7.10)。
- 8.2.7 伸长率(报告原始标距、百分比增量和用来确定伸长率的方法)(见7.11)。
- 8.2.8 如有要求,均匀伸长率(见7.9)。
- 8.2.9 如有要求,报出面积的缩减,(见7.12)。
- 8.3 要求合适的试验资料应包括:
- 8.3.1 试样试验部分尺寸。
- 8.3.2 用来计算取自大直径管产品试样横截面积的公式。
- 8.3.3 用来测量试验的速度和方法。(见7.6)。
- **8.3.4** 用来修约试验结果的方法。(见7.13)。
- 8.3.5 更换试样的原因 (见7.14)。

9. 精确度和偏差

9.1 精确度——实验室之间的试验步骤[®]对于大多数普遍测量拉伸参数给出下列偏差系数值:

偏差系数,%

变化系数,%	拉伸强度	屈服强度 (残余变形=0.02%)	屈服强度 (残余变形=0.02%)	伸长率 (标距长度=4倍直径	断面收缩率
$CV\%_r$	0.9	2.7	1.4	2.8	2.8
CV%R	1.3	4.5	2.3	5.4	4.6

CV%r: 在一个实验室内, 重复性系数变化的百分数。

CV%R: 在实验室之间,重复性系数变化的百分数。

- **9.1.1** 所示值为六种常规试验金属的试验平均值,精选出包括以上每种性能的大部分公称范围。当比较这些材料时,发现偏差系数有很大不同。因此,以上这些值不应用来以严、宽、制造工艺去判定规定材料的复验间差异是否比预期的要大。提供这些值供使用本试验方法的人员去评定,概括地说,仅作为推荐使用。
- **9.2** 偏差——试验方法E8/E8M中测定拉伸特性的方法没有偏差,因为这些特性可能只按照一个试验方法被限定。

[®]配套值可在附录 1 中查到,更多数据从 ASTM 总部买到。要求 RR: E28-1004。

10. 关键词

10.1 准确度;弯曲应力;不连续屈服;横梁下降;偏心力,弹性伸长;伸长率;负荷下伸长;引伸计;力;十字头分离速度;标距;力暂停法;伸长百分率;塑性伸长;预负荷;应力速度;应变速度;缩减平行部分;面积收缩;敏感性;应变;应力;校准;抗拉强度;拉伸试验;屈服点伸长;屈服强度。

附录

(资料性附录)

X1. 影响拉伸试验结果的因素

- **X1.1** 拉伸试验强度和延性测量的精确度和偏差取决于是否严格遵守指定试验方法并受设备和材料因素、试样制备和试验、测量误差的影响。
- **X1.2** 对于相同材料的复验协商一致取决于材料的均匀性、试样制备的重复性、试验条件和拉伸试验参数的测定。
- **X1.3** 可影响试验结果的设备因素包括:拉伸试验机的刚性、减震能力、固有的频率和运动部件重量;力的指针精确度和试验机不同范围内力的使用;适当的加力速度、用合适的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(通过夹具、引伸计或辅助装置)等等。
- **X1.4** 能影响试验结果的材料因素包括:试验材料的代表性和均匀性、取样方案、试样制备(表面光洁度,尺寸精确度,标缩减平行部分端部内的无意过渡圆弧(底切),标距内锥度,弯曲试样,螺纹质量等等)。
- **X1.4.1** 有些材料对试样表面光洁度非常敏感(见注4) 必须研磨至理想光洁度,或者抛光至得到正确结果。
- **X1.4.2** 对于铸造的、轧制的、锻造的或其他非加工表面状态的试样,试验结果可能受表面特性影响(见注10)。
- **X1.4.3** 取自部件或构件附属部位的试样,像外延部分或冒口,或者独立生产的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的试验结果。
- **X1.4.4** 试样尺寸可能影响试验结果。对于圆柱形的或矩形的试样,改变试样尺寸一般对屈服强度和抗拉强度影响很小,但如果出现改变,则可影响上屈服强度、伸长率和断面收缩率。用下式比较不同试样测定的伸长率值:

$$L_0/(A_0)^{-1/2}$$
 (X1.1)

其中:

 L_0 = 试样的原始标距;和

- A_0 = 试样的原始横截面积。
- **X1.4.4.1** 具有较小的 $L_0/(A_0)^{1/2}$ 比值的试样一般会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,情况即如此。
- **X1.4.4.2** 保持 $L_0/(A_0)^{1/2}$ 比值固定最小值,但影响不大。因为增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和试验条件。
- **X1.4.5** 标距内有一个允许的1%的锥度可导致伸长率值降低。1%的锥度会使伸长率降低 15%。
- **X1.4.6** 应变速度的改变可影响屈服强度、抗拉强度和伸长率值,尤其对于应变速度敏感性高的材料。通常屈服强度和抗拉强度会随应变速度增加而增加,虽然对抗拉强度的影响不显著,伸长率值一般随应变速度增加而降低。
- **X1.4.7** 脆性材料要求小心制备试样、要有高质量的表面光洁度、标距端部大的过渡圆弧、夹持部分大尺寸螺纹,不允许较深的打点或划痕作标距标记。
- **X1.4.8** 用压扁管产品做试验能改变材料的特性,通常,在被压扁区域的不均匀性可能影响试验结果。
- **X1.5** 影响试验结果的测量误差包括: 试验力、引伸计、千分尺、分规及其他测量装置的校准, 图表记录装置的调整和调零等等。
- **X1.5.1** 对于铸造、轧制、锻造或其他非机加工表面试样尺寸的测量,由于表面光滑度的不规则可能不精确。
- **X1.5.2** 具有各向异性变形特性的材料断后横截面可显示出不圆,测量结果的准确性会受影响(见注44)。
- **X1.5.3** 矩形横截面试样的棱角受变形过程的约束,试验后原始平面可为抛物面形状,这将影响最后横截面积测量的准确性(见注45)。
- **X1.5.4** 如果任何断裂部分发生在标距中间以外,或出现在标距打点或划线标记上,伸长率和面积收缩值可能不代表材料性能。断在夹具处或夹具内的线材试样不能得出代表材料性能的试验结果。
- X1.5.5 使用台肩端头的("圆头的"拉伸)得到的偏置屈服强度值比螺纹试样低0.02%。
- **X1.6** 因为不能得到具有符合规定拉伸性能值的标准材料,则不能精确地规定拉伸试验的偏差。然而,通过用精心地设计和控制实验室之间的分析,可以获得一个合理的拉伸试验结果的精密度定义。
- X1.6.1 实验室之间试验的试验步骤3是在六种不同材料的每个试样上进行,这六种试样每一

个都在六个不同实验室制备和试验。表X1.1~X1.6为精确的统计表,就像E691中规定的定义,如: 抗拉强度、0.02% 屈服强度、0.2% 屈服强度,4D伸长率,5D时伸长率和面积收缩率。每个表中第一列为进行试验的六种材料,第二列为实验室获得的平均结果的平均值,第三列和第五列为重复性和复验性标准偏差,第四列和第六列为这些标准偏差的偏差系数,第七列和第八列为95% 重复性和复验性极限值。

X1.6.2 偏差系数的平均值(下面每个表中的第四和第六列)允许对拉伸试验参数的重复性(实验室内的精密度)和复验性(实验室间的精密度)进行相关的比较。这表明韧性测量值显示出重复性和复验性比强度测量值要少。把可重复的和可复验的从小到大总排序是:4D内伸长率,5D内伸长率,面积收缩率,0.02%屈服强度偏移,0.2%屈服强度偏移和抗拉强度。注意排序是在对重复性和复验性偏差系数平均值具有同样要求下进行,并且期望复验性(实验室之间精密度)比重复性(实验室内精密度)要少。

X1.6.3 没有能在实验室之间研究做出的关于偏差的解释,因为没有对这些试样做出符合标准的试验结果。然而,试验结果研究显示一个实验室对于大多数试样持续显示出高于强度平均值和低于延性平均值。另一个试验室对于所有试样始终低于抗拉强度结果平均值。

表X1.1 精确统计一抗拉强度, MPa(ksi)

- 注 1: X 为每组平均数的平均值,它是试验参数重要平均值。
 - s_r 为重复性标准偏差(实验室内的精密度),
 - s_r/X 为偏差系数,以百分数表示,
 - s_R 为复验性标准偏差(实验室之间的精密度),
 - s_R/X 为偏差系数,以百分数表示,
 - r 为95%重复性极限值,
 - R 为95%复验性极限值。

材料	X	s_r	s _r /X,%	SR	s _R /X,%	r	R
EC-H19	176.9 [25.66]	4.3 [0.63]	2.45	4.3 [0.63]	2.45	12.1 [1.76]	12.1 [1.76]
2024-T351	491.3 [71.26]	6.1 [0.88]	1.24	6.6 [0.96]	1.34	17.0 [2.47]	18.5 [2.68]
ASTM A105	596.9 [86.57]	4.1 [0.60]	0.69	8.7 [1.27]	1.47	11.6 [1.68]	24.5 [3.55]
AISI 316	694.6 [100.75]	2.7 [0.39]	0.39	8.4 [1.22]	1.21	7.5 [1.09]	23.4 [3.39]
Inconel 600	685.9 [99.48]	2.9 [0.42]	0.43	5.0 [0.72]	0.72	8.2 [1.19]	13.9 [2.02]
SAE 51410	1253.0 [181.73]	0.25 [0.46]	0.25	7.9 [1.14]	0.63	8.9 [1.29]	22.1 [3.20]
		平均值:	0.91		1.30		

表 X1.2 精确统计-0.02 % 屈服强度, MPa(ksi)

材料	X	Sr	s _r /X,%	SR	s _R /X,%	r	R
EC-H19	111.4 [16.16]	4.5 [0.65]	4.00	8.2 [1.19]	7.37	12.5 [1.81]	23.0 [3.33]
2024-T351	354.2 [51.38]	5.8 [0.84]	1.64	6.1 [0.89]	1.73	16.3 [2.36]	17.2 [2.49]
ASTM A105	411.1 [59.66]	8.3 [1.20]	2.02	13.1 [1.90]	3.18	23.2 [3.37]	36.6 [5.31]
AISI 316	336.1 [48.75]	16.7 [2.42]	4.97	31.9 [4.63]	9.49	46.1 [6.68]	89.0 [12.91]
Inconel 600	267.1 [38.74]	3.2 [0.46]	1.18	5.2 [0.76]	1.96	8.8 [1.28]	14.7 [2.13]
SAE 51410	723.2 [104.90]	16.6 [2.40]	2.29	21.9 [3.17]	3.02	46.4 [6.73]	61.2 [8.88]
		平均值:	2.68		4.46		

表 X1.3 精确统计-0.2 % 屈服强度, MPa (psi)

材料	X	Sr	s _r /X,%	\$ _R	s _R /X,%	r	R
EC-H19	158.4 [22.98]	3.3 [0.47]	2.06	3.3 [0.48]	2.07	9.2 [1.33]	9.2 [1.33]
2024-T351	362.9 [52.64]	5.1 [0.74]	1.41	5.4 [0.79]	1.49	14.3 [2.08]	15.2 [2.20]
ASTM A105	402.4 [58.36]	5.7 [0.83]	1.42	9.9 [1.44]	2.47	15.9 [2.31]	27.8 [4.03]
AISI 316	481.1 [69.78]	6.6 [0.95]	1.36	19.5 [2.83]	4.06	18.1 [2.63]	54.7 [7.93]
Inconel 600	268.3 [38.91]	2.5 [0.36]	0.93	5.8 [0.85]	2.17	7.0 [1.01]	16.3 [2.37]
SAE 51410	967.5 [140.33]	8.9 [1.29]	0.92	15.9 [2.30]	1.64	24.8 [3.60]	44.5 [6.45]
		平均值:	1.35		2.32		

表X1.4 精确统计—E8样本4D延伸率,%

注1-缩减平行部分长度 = 6D。

材料	X	Sr	s _r /X,%	SR	s _R /X,%	r	R
EC-H19	17.42	0.64	3.69	0.92	5.30	1.80	2.59
2024-T351	19.76	0.58	2.94	1.58	7.99	1.65	4.43
ASTM A105	29.10	0.76	2.62	0.98	3.38	2.13	2.76
AISI 316	40.07	1.10	2.75	2.14	5.35	3.09	6.00
Inconel 600	44.28	0.66	1.50	1.54	3.48	1.86	4.31
SAE 51410	14.48	0.48	3.29	0.99	6.83	1.34	2.77
		平均值:	2.80		5.39		

表X1.5 精确统计—E8M样本5D延伸率,%

注1-缩减平行部分长度 = 6D。

材料	X	S_{Γ}	s _r /X,%	SR	s _R /X,%	r	R
EC-H19	14.60	0.59	4.07	0.66	4.54	1.65	1.85
2024-T351	17.99	0.63	3.48	1.71	9.51	1.81	4.81
ASTM A105	25.63	0.77	2.99	1.30	5.06	2.15	3.63
AISI 316	35.93	0.71	1.98	2.68	7.45	2.00	7.49
Inconel 600	41.58	0.67	1.61	1.60	3.86	1.88	4.49
SAE 51410	13.39	0.45	3.61	0.96	7.75	1.25	2.89
		平均值:	2.96		6.36		

表X1.6 精确统计—断面收缩率,%

材料	X	Sr	sr/X,%	SR	s _R /X,%	r	R
EC-H19	79.15	1.93	2.43	2.01	2.54	5.44	5.67
2024-T351	30.41	2.09	6.87	3.59	11.79	5.79	10.01
ASTM A105	65.59	0.84	1.28	1.26	1.92	2.35	3.53
AISI 316	71.49	0.99	1.39	1.60	2.25	2.78	4.50
Inconel 600	59.34	0.67	1.14	0.70	1.18	1.89	1.97
SAE 51410	50.49	1.86	3.69	3.95	7.81	5.21	11.05
		平均值:	2.80		4.58		

X2. 试样尺寸的测量

- **X2.1** 试样尺寸的测量是拉伸试验的关键,并且随着试样尺寸的减小变得越来越重要,因为一个已知确定的误差会变为更大的相应(成比率的)误差。应慎重选择测量装置和步骤,以便使测量误差最小化并提供好的重复性和复验性。
- **X2.2** 如有可能,相关测量误差应保持或低于1%。理论上,这1%误差应不仅包括测量装置的分辨率,而且包括一般被看作是重复性和复验性的可变性。(重复性是指在重复性的试验中获得相似测量结果的操作能力。复现性是多次操作获得测量结果的能力。)
- **X2.3** 通过GR和R研究的方法有效地评价标准的重复性和复现性(GR和R)是非常可取的。一项GR和R的研究包括让多个操作者同时对一个部件一这里是试样一进行二到三次测量,通常用计算机来分析包括把观测的测量偏差与允许偏差相比较就是确定一致性。高的GR和 R 百分率(大于20%)说明相对于允许偏差有更大的变异性,反之,低的百分率(10%或以下)说明相反。这个分析也独立地用来预测重复性和复现性。
- **X2.4** 在GR和R研究中非技术人员用不同种类和不同型号的手动千分尺给出了从大约10% (优秀的) 到将近100%(基本上无效)的多种结果,以0.075 mm(0.003in.)尺寸允许偏差为基准。因此,建议使用者要非常小心地去选择装置、制定测量程序、培训操作人员。
- **X2.5** 用一个0.075 mm(0.003in.)允许偏差,一个10% GR和R结果(特别的好,甚至对于数字的手动千分尺读到0.001 mm(0.00005in.)) 表明由于重复性和复现性总偏差修约为0.0075 mm(0.0003in.)。只有当测量的所有尺寸大于或等于0.75 mm(0.03in.)时,它才小于或等于1%。用这种装置测量0.25 mm(0.01in.)厚的平板拉伸试样的相应误差可为3%,这比力和应变的测量值大得多。
- **X2.6** 尺寸的测量误差可视为用来监视拉伸试验步骤的统计过程控制(SPC)图表出现不可控征兆的原因。这已成为经验:造成实验室使用SPC操作法和在试验0.45 mm到6.35 mm(0.018~0.25in.)扁平轧材料时用最好的手动千分尺是适用的(从GR和R观点看)。
- **X2.7** 在选择和评定测量装置和步骤时应考虑影响(有时是显著地)GR和R的因素,包括: **X2.7.1** 分辨率,
- X2.7.2 偏差,
- X2.7.3 调零,
- X2.7.4 测量头种类(平的、圆的还是尖的),
- X2.7.5 部件和测量头表面清洁度,

- X2.7.6 使用者对测量装置的维修和保养,
- **X2.7.7** 温度的稳定性,
- X2.7.8 涂层的清除,
- X2.7.9 操作者的试验技术,
- X2.7.10 用于校准夹持力的棘轮或其它装置。
- X2.8 平的测量头通常适用于测量平板或圆柱试样尺寸,它有相当光滑的表面。一个例外就是必须用圆的或尖的测量头测量取自大直径管(见图13)的曲面试样的厚度,避免厚度过大的误差。(另一个涉及到这种曲面的试样是可通过使用等式A=W×T 而采用的误差,见7.2.3) X2.9 通常应将复层产品制备的扁平试样夹持端的复层清除,以保证精确的测量基体金属厚度,假设(a)所要求的是基体金属性能,(b)复层对产品的强度没有明显影响,并且(c)复层的清除很容易完成(有些复层可通过化学溶除法容易地清除)。另外,可用其它的方法保留复层和测定基体金属厚度。在可能出现这个问题的地方,比较试验或性能试验的所有各方应在测量之前就是否清除复层方面的意见达成一致。
- **X2.10** 如何考虑确定以上影响尺寸测量过程作为一个示例,应考虑到有0.40 mm(0.015in.)厚的漆的平轧钢试样测量情况,。如可能,测量之前应除去涂料。使用的测量装置应有平的测量头,应能读出0.0025 mm(0.0001in.)或更好的精度,应具有很好的重复性和复现性。因为GR和R有很重要的关系,它可能对具可校准使用的夹持力特点的装置的使用有好处,应避免没有数字显示装置以防止读数错误。使用装置之前和定期在使用过程中,应清洗测量头,并应校准或调零(如使用电子装置)或两者。最后,应定期培训和审查操作人员,使测量装置能够正确地和持续地使用。

X3. 建议选定实验室进行拉伸试验的依据

- X3.1 范围
- **X3.1.1** 如果试验室按试验方法E8/E8M进行试验,以下规定了鉴定者可比较检验设备去鉴定实验室的技术能力的特点。
- X3.2 准备
- **X3.2.1** 实验室应按照确认了的步骤使机器或其它制备的试样能符合试验方法E8/E8M相应的允许偏差和要求。特别重要的是关于尺寸和缩减部分表面质量的要求,在标准正文和图中可找到相关要求。
- X3.2.2 使用标记的地方,试验室应使用有证明文件的作标记步骤,使标记和标距能遵照试

验方法E8/E8M规定的允许偏差和指标。

X3.2.2.1 使用作标记步骤不应对试验结果产生有害影响。

注 X3.1: 断裂频繁发生在标记处可能是标记划痕刻得过深或太尖锐也会影响试验结果。

X3.3 试验设备

- **X3.3.1** 如试验方法E8/E8M附录部分规定,为了使影响试验结果的弯曲应力减至最小,试样的轴线应与试验机头部的中心线相重合。
- **X3.3.2** 应满足标准E4和E83设备检验要求。资料表明检验工作是严密的而且技术正确才是适用的。
- X3.3.2.1 检验报告应说明力和伸长读数是在规定时间进行的,完全按规定操作进行的。
- **X3.3.3** 使用的引伸计应符合试验方法E8/E8M所有关于用于结果测量装置分级的所有要求。例如,引伸计不符合E83规定的B2级要求不能用于偏置屈服强度的确定。
- **X3.3.4** 在用计算机处理或自动化试验设备投入常规运行之前,或程序软件的修改之后,建议核实适当的操作和结果处理方式后进行测量。可从E1856查到相关资料。
- **X3.3.5** 应选择千分尺及其他装置测量试样尺寸,按照并使用试验方法E8/E8M关于测量的附录的要求的方法。对于这些装置应溯源国际标准,并采取适当的措施以防止由于测量误差、分辨率和修约的结果产生的误差大于1%。

X3.4 方法

- **X3.4.1** 试验机零负荷示数表明试样上力的状态为零,与试验方法E8/E8M的试验机部分"调零"一章所述的方法相同。
- 注X3.2: 各试验之间均应保持零读数。这可能包括预定试验数之后或每次试验之后在零负荷条件下, 指示值超出预期值时进行调零。
- **X3.4.2** 当有要求时,试验室应能证明(也许通过时间、负荷、偏置测量或引伸计测量,或两者都有)所用试验速度符合试验方法E8/E8M的要求,或其他更高要求的标准。
- **X3.4.3** 当有要求时,试验室应能证明用来测定屈服强度的偏置和伸长符合试验方法E8/E8M 的要求,并能作图以说明负荷与期望的偏置应变或总应变相符。
- 注 X3.3: 用引伸计放大倍数进行计算时要小心,因为制造者可能报告应变放大率,即与应力应变曲线上X轴不是伸长的应变偏移有关。对引伸计放大率感兴趣的使用者或鉴定者可用校准设备测定伸长率与曲线比例之间的比例关系,或者可检验用已知公称模量的试样的试验计算杨氏模量报告出。
- X3.4.4 伸长率的测定应符合试验方法E8/E8M的要求。

注 X3.4: 试验方法E8/E8M允许测量和报告断裂时的伸长代替断后伸长率,通常自动化装置这样做。

- X3.4.5 当有要求时,面积收缩应按试验方法E8/E8M要求测定。
- **X3.4.6** 记录、计算和报告数值及试验结果的方法应符合试验方法E8/E8M所有适当的要求。 此外,这个方法无论应用在何处也应按照已被广泛接受的好的实验室操作规程的规定。如以 下详细说明的:
- **X3.4.6.1** 当记录数据时,操作人员应记录下所有测定的数值,加上对无法确定的最初数值的最好估算。(如果已知结果大约为26和27中间,结果应记录为26.5(不是26、27或26.475)。
- **X3.4.6.2** 当进行计算时,有关人员应避免修约错误。这可能要通过进行一次大的计算来完成,而不是用各个独立的结果进行多次计算。换言之,如果做多步计算,中间的结果在用于后来的计算之前不能被修约。
- X3.4.6.3 修约中,无需保留用比最小有效数字测量或用于计算的数字点更精确的有效数字。
- X3.5 试验材料及结果的保留
- **X3.5.1** 应根据实验室试验的特征和频率保留试验材料及结果。可保证确定时间周期的保留条款包括:
- **X3.5.1.1** 原始数据和类型,
- X3.5.1.2 力-伸长或应力-应变曲线,
- X3.5.1.3 计算机输出曲线和试验结果,
- X3.5.1.4 保存在计算机磁盘或硬盘驱动器上的数据和结果,
- X3.5.1.5 己断试样,
- X3.5.1.6 剩余材料、
- X3.5.1.7 试验报告
- X3.5.1.8 鉴定报告和鉴定证明。
- X3.6 环境
- **X3.6.1** 所有试验设备的安装与连接都应对采集原始数据、应力一应变曲线和仪器操作振动影响和电子干扰减至最小。
- X3.7 控制
- **X3.7.1** 控制过程和操作规程应包括所有试样制备、拉伸试验和结果报告的方式。涉及到试验资料的文件应易于使用。
- **X3.7.2** 应保存用于试样制备和拉伸试验的设备的清楚的、简单的操作规程。这些规程应适用于所有有资格的操作者阅读。
- X3.7.3 所有适用的检验设备应满足如X3.3.2中详述的要求。

- **X3.7.4** 建议用专门的研究和程序监视控制拉伸试验,因为拉伸试验结果容易受操作者、测量装置和试验设备的影响,这种程序的例子至少包括:
- X3.7.4.1 循环研究、熟练试验或交叉检验,
- X3.7.4.2 重复性和复现性(R和R)研究,
- X3.7.4.3 控制图,
- X3.7.4.4 对于每个结果典型报告中典型试验不确定性的确定

注 X3.5: 对于非破坏性试验,重复性和复现性通常通过实施标准的R和R研究来测量,如试验方法 E8/E8M附录X2所述。这些研究包括用独立的部件或试样对试验结果的重复测定,所以标准的R和Rs不直接 反映机器的性能,这些性能是通过破坏性试验获得的。(甚至两件最好的试样间的准确差异也会以与获得 的优异两个相比要差的R和R结果显现出)然而,考虑到这些局限性进行准R和R研究,可能对分析误差的 根源和改善试验结果的可靠性有帮助。

X4 试验速度的附加资料和实例

- **X4.1** 许多材料对应变速率是敏感的,即是说,材料的屈服强度或拉伸强度是被变形材料的应变速率的函数。由试验方法E8/E8M允许的最慢,然后最高速度测试,有些材料的屈服强度可以百分之十以上的变化。为了重现屈服试验结果,对应变速率敏感材料,在屈服确定期间,应变速率保持相似是重要的。
- **X4.2** 当没有其他指导,需要使用试验方法E8/E8M时,以下段落进一步阐释各种控制方法。 当指定其他试验速度要求时,这种速度必须遵循以符合此测试方法。例如,航空航天规格通 常要求的试验速度,当应变速率等于0.005±0.002mm/mm/分钟(in/in/分钟)时,确定的屈服 强度;当有指定时,试验速度必须遵循以符合这一标准。
- **X4.2.1** 控制方法A—确定屈服性能的应力速率法——多年来,试验方法E8/E8M的控制方法已成默认控制方法。在这种方法中,试验机的横梁速度在曲线的线性弹性部分是可调整,以达到预期的应力速率(或速度设置到已知达到预期的应力速率的预定值)。材料开始屈服时,横梁速度是不可调整的。虽然负荷节奏指示和压力速率指示可以是有益的,这种控制方法的优点是它不需要传感器本身以外的任何负荷指示。这种控制方法试样在屈服状态下应变速率有限制,取决于应力应变曲线的斜率(切向模量)和试验机刚度。正因为如此,当确定屈服时,试样的应变速率可受试样的大小不同、试样的配置不同,夹具的配置不同和试验机不同而不同。对应变速率敏感的材料,应变速率不同可影响屈服强度的再现性。
- X4.2.1.1 这种方法不打算用闭环力控制来运行试验机,因为材料开始屈服时,试验机将加快,

可能达到它的最高速度。但是,在测试的弹性区域期间使用闭环力控制,在屈服前开关切换到等效的横梁速度是一个可以接受的方法。

- X4.2.1.2 控制方法B—确定屈服性能的应变速率控制法——这种方法通常由有闭环控制系统的试验机完成,它从伸长计反馈自动调整试验机的速度。然而,一些熟练的操作人员将应变速率指示器连接到伸长计上进行监视并手动调整试验机的速度,以维持所需的应变速率的试验速度。为了在测试过程中保持恒定应变速率控制,当试样开始屈服时试验机横梁速度要严格的慢下来。这种方法有三个优点。(1)达到屈服的时间很短(约20至40秒)。(2)屈服强度试验结果的再现性从机器到机器和实验室到实验室都很好。(3)与控制方法C的结果的一致性很好,因为当确定试样的屈服强度时应变速率是类似的。这种方法有三个缺点。(1)测试设备一般比较昂贵。(2)适当控制和安全取决于控制参数的正确设置,并保持完善的伸长计(即伸长计意外滑移可能导致横梁意想不到的运动)。适当的安全限制必须设置,以确保人员和设备的安全。(3)当材料有屈服点或屈服间断时,在闭环的应变速率控制的机器可以表现不正常。这种控制方法对屈服间断的材料不建议使用。
- **X4.2.3** 控制方法C—确定屈服性能的横梁速度控制法——这种方法对任何具有相当不错的可以控制横梁速度的试验机上完成。这种方法有三个优点。(1)从机器到机器和实验室到实验室再现性是好的。(2)与控制方法B的结果的一致性很好,因为当确定试样的屈服强度时应变速率是类似的。(3)对屈服间断的材料,控制试验机的方法是极好。本控制方法的缺点是,这种方法达到屈服的试验时间可超过3分钟,这取决于被测试材料和试验机包括其夹具组件的一致性。
- **X4.2.3.1** 用公制单位SI如何运用到控制方法C的实例——在图13的测试样品1如下。缩减平行部分长度,也就是,图13中的尺寸A等于60mm。每控制方法C要确定横梁速度,用60mm乘上0.015mm/mm/分钟达到横梁速度为0.9mm/分钟。
- **X4.2.3.2** 用美国惯用制单位如何运用控制方法C的实例——在图13的测试样品1如下。缩减平行部分长度,也就是,图13中的尺寸A等于2.25in。每控制方法C要确定横梁速度,用2.25in乘上0.015in/in/分钟达到横梁速度为0.034in/分钟。

X5. 当应力-应变曲线偏离理想行为时的屈服强度计算

- **X5.1** 在许多场合,应力-应变曲线偏离图21所示的理想行为。为通过残余变形法(7.7.1)或载荷下伸长法(7.7.2)计算屈服强度,宜适当分析这些偏差。
- X5.2 图X5.1图示了一种具有理想行为和五种偏离理想行为类型的应力-应变曲线。当这些偏

差产生时,本附录推荐了计算残余变形和载荷下伸长屈服强度的方法。

X5.3 图X5.1a显示了理想行为。直线OA与应力-应变曲线的直线部分重叠,其与应力-应变曲线的交点为原点O。对残余变形法,在距OA与应变轴交点距离为X处,直线mn平行于OA。对载荷下伸长法,在距OA与应变轴交点距离为Y处,直线pg从应变轴垂直延伸。

X5.4 图X5.1b图示了当引伸计系附到试样时,如果稍微移动引伸计使得产生负应变,此时可能产生的行为。

图X5.1 应力-应变示意图

- X5.5 图X5.1c图示了当施加力时,如果引伸计在试样上滑动,此时可能发生的行为。
- X5.6 图X5.1d图示了由于不对中或残余应力, 当施加力对试样矫直时, 此时可能发生的行为。
- **X5.7** 图X5.1e图示了施加力时如果试样在夹具内滑动,同时干扰引伸计时,此时可能发生的行为。
- X5.8 图X5.1f图示了弯曲试样或卷形放置试样有时发生的行为。
- X5.9 在所有五种非理想场合,应力-应变曲线直线部分不再与应力-应变曲线的原点O相交。

反而,直线O'A在点O'与应变轴相交。在残余变形法内,在距点O'的距离为X处,直线mn平行于O'A,且弹性加载直线O'A与应变轴相交。在载荷下伸长法内,在距点O'的距离为Y处,直线pq从应变轴垂直延伸。

变更摘要

E28委员会确定由于上一版(E8/E8M-16)对本标准的使用有影响而选择修改本标准。(2016年8月1日批准)

- (1) 修订2.1和5.1节。
- (2) 新增7.6.2节和注15。
- (3) 增加了属于缩减平行部分(3.1.7),并在本试验方法全文内替代了术语"缩减部分"。 E28委员会确定由于上一版(E8/E8M-15a)对本标准的使用有影响而选择修改本标准。 (2016年7月15日批准)
 - (1) 修订图9。
 - (2) 修订图15。
 - (3) 修订图17。
 - (4) 修订图19。

E28委员会确定由于上一版(E8/E8M-15)对本标准的使用有影响而选择修改本标准。(2015年5月1日批准)

- (1) 新增附录X5。
- (2) 修订7.7节。
- (3) E8/E8M-15的图22已与图21合并。

E28委员会确定由于上一版(E8/E8M-13a)对本标准的使用有影响而选择修改本标准。(2013年7月1日批准)

(1) 修订7.11节。

E28委员会确定由于上一版(E8/E8M-13)对本标准的使用有影响而选择修改本标准。 (2013年7月1日批准)

- (1) 修订3.1.4节。
- (2) 新增3.1.5节。

E28委员会确定由于上一版(E8/E8M – 11)对本标准的使用有影响而选择修改本标准。 (2013年6月1日批准)

(1) 替换3.1节。

- (2) 新增3.1.2节。
- (3) 对3.1.3节重新调整。
- (4) 对3.1.4节重新调整。
- (5) 新增3.1.7, 3.1.8, 3.1.12节。
- (6) 对3.1.11节重新调整。
- (7) 新增3.2.1节。
- (8) 新增注33。

ASTM 国际不对与本标准中提及的任何项目相关的任何专利权的有效性发表意见。特此建议本标准的用户确定任何此类专利权的有效性,侵犯此类专利的风险全部由用户自行承担。

责任技术委员会有权在任何时候对本标准进行修订,并且必须每5年重新审核一次。若无修订,则要 么重新批准,要么撤销。欢迎您对本标准或其他标准提出意见,请向ASTM 国际总部发表您的意见。您的 意见将会在责任技术委员会的会议上受到仔细考虑,而且您可能将被邀请参加这个会议。如果您觉得您的 意见没有被公正对待,则应按下列地址将您的意见告知ASTM 标准委员会。

本标准的版权归ASTM国际所有,地址: 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States。如果需要本标准的个别重印版(单本或多本),可通过以上地址联系ASTM,也可致电610-832-9585,或传真至610-832-9555,或发电子邮件至service@astm.org,或访问美国试验与材料协会网站(www.astm.org)。拷贝本标准的权利也可从版权结算中心获得,地址: 222 Rosewood Drive, Danvers, MA 01923, 电话: (978) 646-2600; 网址: http://www.copyright.com/。