

Project 03 STDP LEARNING RULE

Hosein Khodadi | Computational Neuro-Science | 1400/2/31 95222028

STDP Unsupervised Learning Rule

In 1st exercise of this project we were supposed to implement STDP unsupervised learning rule in python and plot weight differences per various values of time differences. And here's the results:

• Parameters:

$$A + = 5$$
, $A - = -5$, $tau + = 2$, $tau - = 2$, initial weight $= 5$

$$R = 0.1$$
, $C = 0.4$, threshold = -55, rest potential = -70

Figure 1

• Parameters:

$$A + = 5$$
, $A - = -5$, $tau + = 1$, $tau - = 4$, initial weight $= 5$

$$R = 0.1$$
, $C = 0.4$, threshold = -55, rest potential = -70

Figure 2

• Parameters:

A + = 2, A - = -4, tau + = 1, tau - = 1, initial weight = 1

R = 0.1, C = 0.4, threshold = -55, rest potential = -70

As we can see in the above plots, the A+ and A- parameters determine the maximum and minimum value of the weight differences that actually happens when time difference is about zero (respectively).(It's obvious according to formulas too!)

And the tau parameter actually influences the slope of the curves. As the value of this parameter increases, the curves will be smoother and less sloping. (see Figure 3)

SPIKING NEURAL NETWORK

In 2nd exercise of this project we were supposed to make a spiking neural network with excitatory neurons which has 2 layers, input and output. The input layer has 10 neurons and the output layer has 2 neurons.

We have to pass two different input patterns in specified distances. And we expect each of the output neurons learn one of the input patterns.

For this purpose I used (normal) Gaussian distribution for random initial weights.

• Parameters :

Time
$$\rightarrow$$
 T = 10000, dt = 0.1, between pattern distance = 2

Weights
$$\rightarrow$$
 mu = 1, sigma = 0.25

Initial random weights =		
[[1.14593345	1.44421825]	
[1.19003622	1.47681242]	
[1.1187294	0.71126059]	
[0.57795523	0.71400719]	
[1.57771627	1.09690716]	
[0.73734623	1.39396207]	
[0.80752106	0.74859935]	
[0.94842908	0.9291287]	
[0.79924486	1.1727716]	
[0.47380368	1.15905091]]	

Final weights =	
[[88.6826518	88.9810369]
[65.5150078	64.6858848]
[87.2760545	86.9706605]
[64.9029268	63.9230795]
[89.1144346	88.6337258]
[87.1041536	87.7608442]
[88.4009395	88.3421182]
[87.3152365	87.2960108]
[88.3926633	88.7662905]
[64.7887192	63.6480674]]

Patterns
$$\rightarrow$$
 pattern1 = [0, 0, 0, 0, 0, 3, 1, 3, 1, 3] pattern2 = [1, 2, 3, 2, 1, 0, 0, 0, 0, 0]

Neuron
$$\rightarrow$$
 R = 0.4 C = 0.1 threshold = -55 u_rest = -70 alpha = 0.8

Learning \rightarrow A+ = 0.001 A- = 0.001 tau+ = 1000 tau- = 1000

• Parameters :

Time
$$\rightarrow$$
 T = 10000, dt = 0.1, between pattern distance = 2

Weights
$$\rightarrow$$
 mu = 1, sigma = 0.25

Initial random weights =		
[[0.22909422	0.88247571]	
[1.58008655	1.25181331]	
[0.75150489	0.928775]	
[0.9734172	0.55462373]	
[0.70673328	1.08774961]	
[1.233864	0.93135555]	
[0.83148271	1.07267115]	
[1.214666	1.35181282]	
[1.01935229	0.79159291]]	

Final weights =	
[[87.82251578	88.47595762]
[65.93100567	64.48479285]
[88.34492645	88.52225691]
[65.32433632	63.78760328]
[88.30015484	88.68123152]
[88.77058548	88.4681373]
[65.15245792	64.27770661]
[88.75138748	88.888 ₅₉₄₅₇]
[65.07685328	64.19762952]
[88.55607377	88.32837466]]

Patterns
$$\rightarrow$$
 pattern1 = [1, 2, 1, 2, 1, 0, 0, 0, 0, 0] pattern2 = [0, 0, 0, 0, 0, 1, 2, 1, 2, 1]

Neuron
$$\rightarrow$$
 R = 0.4 C = 0.1 threshold = -55 u_rest = -70 alpha = 0.7

Learning
$$\rightarrow$$
 A+ = 0.001 A- = 0.01 tau+ = 1000 tau- = 100

• Parameters :

Time
$$\rightarrow$$
 T = 10000, dt = 0.1, between pattern distance = 2

Weights
$$\rightarrow$$
 mu = 1, sigma = 0.25

Initial random weights =		
[[0.67605296	0.61464157]	
[1.11226719	0.72526769]	
[0.55116799	1.12035966]	
[1.10781065	1.39715989]	
[1.20964698	1.06685188]	
[0.77663751	0.65424702]	
[0.96428846	1.56898547]	
[0.93634102	1.32285098]	
[0.76623838	0.80457598]	
[1.15427243	1.04782725]	

Final weights =	
[[88.26944477	88.20805254]
[65.4664232	64.02439279]
[86.91795376	87.4871621]
[87.47459642	87.76396233]
[65.56380299	64.36597697]
[88.37002932	88.24765799]
[65.29850061	64.84816668]
[88.47303275	88.85956186]
[65.10045053	64.08375718]
[88.69096416	88.58453813]]

Patterns
$$\rightarrow$$
 pattern1 = [1, 2, 1, 1, 2, 1, 0, 0, 0, 0] pattern2 = [0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1]

Neuron
$$\rightarrow$$
 R = 0.4 C = 0.1 threshold = -55 u_rest = -70 alpha = 0.7

Learning
$$\rightarrow$$
 A+ = 0.001 A- = 0.01 tau+ = 1000 tau- = 100

Since it's an unsupervised learning method it seems that this doesn't work properly well and it usually learns only one pattern (first pattern) or both patterns at the same time. But it's learning something at least! :D