LØSNINGER

DANMARKS TEKNISKE UNIVERSITET

Skriftlig prøve, den 9. december 2016 Side 1

Kursus navn: Diskret Matematik Kursus nr.: 01017

Tilladte hjælpemidler: Alle hjælpemidler er tilladt.

Vægtning af opgaverne:

Opgave 1: 10%

Opgave 2: 20%

Opgave 3: 20%

Opgave 4: 5%

Opgave 5: 15%

Opgave 6: 10%

Opgave 7: 12%

Opgave 8: 8%

Alle opgaver besvares ved at udfylde de dertil indrettede tomme pladser på de følgende sider. Som opgavebesvarelse afleveres blot disse sider i udfyldt stand. Hvis der opstår pladsmangel kan man eventuelt benytte ekstra papir som vedlægges opgavebesvarelsen. Husk bordnummer, navn, studienummer, fødselsdato og arknummer på samtlige afleverede ark.

Bord	Kursus nr.: 01017	Dato: 9. december 2016	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	_
	Navn:		

Opgave 1 (Formalisering og gyldighed i udsagnslogik) 10%

Lad s betegne udsagnet "Peter er sur" og r betegne udsagnet "Peter har en rød sweater på".

1. Formalisér følgende udsagn i udsagnslogik, benyttede de to propositionssymboler s og r:

Hvis Peter er sur og har en rød sweater på, så er han sur hvis og kun hvis han har en rød sweater på.

LØSNING.

$$s \wedge r \rightarrow (s \leftrightarrow r)$$

2. Brug en sandhedstabel til at afgøre om formlen fra foregående spørgsmål er gyldig.

LØSNING.

s	r	$s \wedge r$	$s \leftrightarrow r$	$s \wedge r \rightarrow (s \leftrightarrow r)$
T	T	Т	T	T
T	F	F	F	T
F	T	F	F	T
F	F	F	T	T

Formlen er sand i alle rækker, altså gyldig.

Opgave 2 (Tableauer og modeller i prædikatlogik) 20%

1. Betragt følgende formel:

$$\forall x \neg \exists y P(x, y) \rightarrow \neg \exists y \forall x P(x, y).$$

Brug tableaumetoden til at afgøre om den er gyldig eller ej. Argumentér for dit svar.

LØSNING.

Bord	Kursus nr.: 01017	Dato: 9. december 2016	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	_
	Navn:		_

2. Betragt f ølgende formel:

$$\neg \exists y \forall x P(x,y) \rightarrow \forall x \neg \exists y P(x,y).$$

Vis at formlen **ikke** er gyldig ved at bestemme en passende modmodel \mathcal{F} . Argumentér for at \mathcal{F} faktisk **er** en modmodel af formlen.

LØSNING.

$$dom(\mathcal{F}) = \mathbb{R}$$

 $P^{\mathcal{F}} = \underline{\ }$ er større end $\underline{\ }$

Da gælder at antecedenten er sand: Der findes ikke et y så alle x er større (der findes ikke et mindste reelle tal). Samtidig er konsekventen falsk: Det er falsk at der for alle x ikke findes et y som er mindre (for x = 1 findes f.eks. y = 0).

Opgave 3 (Prædikatlogik) 20%

Sæt kryds ved de af nedenstående påstande som er sande. Det er ikke nødvendigt at argumentere for dine svar i denne opgave.

Bord Kursus nr.: 01017 Dato: 9. december 2016 Ark nr.

Kursusnavn: Diskret Matematik
Studienr.: _____ Fødselsdato: _____

LØSNING.

 $1 | \mathbf{X} | \models \forall x \forall y P(x, y) \leftrightarrow \forall y \forall x P(x, y).$

Navn: _____

 $2 \bowtie \exists x \exists y P(x, y) \leftrightarrow \exists y \exists x P(x, y).$

 $\exists \ \Box \models \forall x \exists y P(x,y) \leftrightarrow \exists y \forall x P(x,y).$

 $4 \square \models \forall x \exists y P(x, y) \leftrightarrow \forall y \exists x P(x, y).$

 $5 \square \models \forall x \neg \exists y P(x,y) \leftrightarrow \neg \exists y \forall x P(x,y)$. Hint: Se på din besvarelse til Opgave 2.

 $6 \mid \times \mid \models \forall x \neg \exists y P(x, y) \leftrightarrow \forall y \neg \exists x P(x, y).$

7 | Formlen $\forall x \forall y P(x, y)$ er logisk ækvivalent med formlen $\forall y \forall x P(x, y)$.

8 \square Formlen $\forall x \exists y P(x, y)$ er logisk ækvivalent med formlen $\exists y \forall x P(x, y)$.

9 \square Lad \mathcal{F} være fortolkningen med $dom(\mathcal{F}) = \mathbb{R}$ og $P^{\mathcal{F}} = \bot$ er større end eller lig \bot . Domænet er altså de reelle tal, og P(x,y) står for $x \ge y$. Da gælder $\mathcal{F} \models \forall x \exists y P(x,y) \leftrightarrow \exists y \forall x P(x,y)$.

10 \boxtimes Lad \mathcal{F} være fortolkningen med $dom(\mathcal{F}) = \mathbb{N}$ og $P^{\mathcal{F}} = \underline{\ }$ er større end eller lig $\underline{\ }$. Domænet er altså de naturlige tal, og P(x,y) står for $x \geqslant y$. Da gælder $\mathcal{F} \models \forall x \exists y P(x,y) \leftrightarrow \exists y \forall x P(x,y)$.

Opgave 4 (Rekursion) 5%

Funktionen f(n) er for $n \in \mathbb{N}$ rekursivt defineret ved

$$f(n) = \begin{cases} 1 & \text{for } n = 0, \\ \sum_{k=0}^{n-1} f(k) & \text{for } n = 1, 2, 3, \dots \end{cases}$$

Bestem f(4).

LØSNING. Der gælder f(0) = 1, og for de øvrige n er f(n) to gange summen af de foregående funktionsværdier. Vi kan derfor lave en tabel:

Det fremgår af tabellen, at f(4) = 54.

Bord Kursus nr.: 01017 Dato: 9. december 2016 Ark nr.

Kursusnavn: Diskret Matematik

Studienr.: ______ Fødselsdato: ______

Navn: ______

Opgave 5 (Induktion) 15%

Funktionen f(n) er for $n \in \mathbb{N}$, rekursivt defineret ved

$$f(n) = \begin{cases} 6 & \text{for } n = 0, \\ 4f(n-1) - 3 & \text{for } n = 1, 2, 3, \dots \end{cases}$$

Bevis ved induktion at der gælder

$$f(n) = 1 + 5 \cdot 4^n$$

for alle $n \in \mathbb{N}$.

LØSNING. Vi viser at ligningen gælder for alle $n \in \mathbb{N}$ ved induktion. Basistilfældet er for n = 0. Ifølge den rekursive definition er f(0) = 6. Samtidig er $1 + 5 \cdot 4^0 = 1 + 5 = 6$. Så ligningen er opfyldt for n = 0. Induktionstrin. Vi antager, at der for et vist $n \in \mathbb{N}$ gælder at

$$f(n) = 1 + 5 \cdot 4^n,$$

dette er vores induktionsantagelse. Vi skal vise at

$$f(n+1) = 1 + 5 \cdot 4^{n+1}.$$

Ifølge den rekursive definition er

$$f(n+1) = 4f(n) - 3.$$

Induktionsantagelsen fortæller os nu at

$$f(n+1) = 4(1+5\cdot 4^n) - 3 = 4 - 3 + 5\cdot 4\cdot 4^n = 1 + 5\cdot 4^{n+1}.$$

Det var det vi skulle vise, så hermed er induktionstrinnet gennemført. Ifølge induktionsprincippet gælder ligningen altså for alle $n \in \mathbb{N}$. QED.

Opgave 6 (Euklids Algoritme) 10%

Håndkør Euklids algoritme og find sfd(343, 105), samt tal s, t således at

$$s \cdot 343 + t \cdot 105 = \text{sfd}(343, 105).$$

Husk at tydeligt at angive facit (sfd(343, 105), s og t).

LØSNING. Euklids algoritme giver anledning til følgende skema.

\overline{k}	r_k	s_k	t_k
0	343	1	0
1	105	0	1
2	28	1	-3
3	21	-3	10
4	7	4	-13
5	0	*	*
Side 5			

Af skemaet kan vi aflæse at sfd(343, 105) = 7, og at

$$4 \cdot 343 - 13 \cdot 105 = 7.$$

Vi kan altså tage s = 4 og t = -13.

Opgave 7 (Kongruensligninger) 12%

Betragt følgende system af kongruensligninger

$$\begin{cases} x \equiv 4 \pmod{14} \\ x \equiv 2 \pmod{3} \end{cases}$$

Find løsningsmængden. Husk at angive passende mellemregninger.

LØSNING. Vi bruger Euklids udvidede algoritme

k	r_k	s_k	t_k
0	14	1	0
1	3	0	1
2	2	1	-4
3	1	-1	5
4	0	*	*

Vi kan aflæse at

$$sfd(14,3) = 1 = -1 \cdot 14 + 5 \cdot 3.$$

Vi kan derfor bruge den Kinesiske Restklassesætning, og får at løsningsmængden er

$$L = (-1 \cdot 14 \cdot 2 + 5 \cdot 3 \cdot 4) + (14 \cdot 3)\mathbb{Z} = 32 + 42\mathbb{Z}.$$

Opgave 8 (Polynomier) 8%

Følgende viser forløbet af Euklids algoritme, brugt på polynomierne

$$N(x) = 8x^3 + 20x + 8$$
$$M(x) = 4x^3 + 8x + 4$$

$r_k(x)$	forklaring
$8x^3 + 20x + 8$	N(x)
$4x^3 + 8x + 4$	M(x)
4x	$da 8x^3 + 20x + 8 = 2(4x^3 + 8x + 4) + 4x$
4	$da 4x^3 + 8x + 4 = (x^2 + 2)(4x) + 4$
0	$da 4x = x \cdot 4$

Bord	Kursus nr.: 01017	Dato: 9. december 2016	Ark nr.			
nr.	Kursusnavn: Diskret Matematik					
	Studienr.:	Fødselsdato:	_			
	Navn:					

1. Angiv sfd(N(x), M(x)).

2. Redegør for om N(x) og M(x) har fælles rødder.

LØSNING.

- 1. Vi kan aflæse af næstnederste linje, at sfd(N(x), M(x)) = 4.
- 2. Da polynomiet D(x) = 4 ikke har nogen rødder, følger det af Sætning 6.3, at N(x) og M(x) ikke har fælles rødder.