PrivApprox

Privacy-Preserving Stream Analytics

https://privapprox.github.io

<u>Do Le Quoc</u>, Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer, Thorsten Strufe

Motivation

How to preserve users' privacy while supporting high-utility data analytics for low-latency stream processing?

State-of-the-art systems

Limitations:

- Deal with only "single-shot" batch queries
- Require synchronization between system components <a>⊗
- Require a trusted aggregator 😕

PrivApprox

Clients

PrivApprox:

- Supports **stream processing** with **low latency** ©
- Enables a truly **synchronization-free** distributed architecture ©
- Requires lower trust in aggregator ©

Outline

- Motivation
- Overview
- Design
- Evaluation

System overview

#1: Approximate computing

Idea: To achieve low latency, compute over a sub-set of data items instead of the entire data-set

#2: Randomized response

Idea: To preserve privacy, clients may not need to provide truthful answers every time

Provides **plausible deniability** for clients responding to sensitive queries; achieves **differential privacy** (RAPPOR [CCS'14])

Outline

- Motivation
- Overview
- Design
- Evaluation

Query model

Divide answer's value range into **buckets**, enforce a **binary answer** in each bucket

Query: SELECT age FROM clients WHERE city = 'Santa Clara'

Client cannot arbitrarily manipulate answers

Workflow: Submit query

Workflow: Answer query

Workflow: Answer query

#3: Anonymity and unlinkability

Idea: XOR-based Encryption

Encrypt answer M:

GenerateKey -> M_k $M \times M_k$ -> M_E

Decrypt answer M_E:

$$M_E \times OR M_k \rightarrow M$$

Implementation

Outline

- Motivation
- Overview
- Design
- Evaluation

Experimental setup

Evaluation questions

- Utility vs privacy
- Throughput & latency
- Network overhead

See the paper for more results!

Testbed

- Cluster: 44 nodes
- Dataset: NYC Taxi ride records, household electricity usage

Accuracy vs privacy

Trade-off between utility and privacy

Throughput

~8X speedup when going from one node to 20 nodes

Latency

~1.66X lower than the native execution with sampling fraction of 60%

Network overhead

~1.6X lower than the native execution with sampling fraction of 60%

Conclusion

PrivApprox: a privacy-preserving stream analytics system over distributed datasets

Privacy Zero-knowledge privacy

Practical Adaptive execution based on query budget

Efficient Randomized response & sampling techniques

Thank you!

https://privapprox.github.io