

Institute of Distance and Open Learning

Vidya Nagari, Kalina, Santacruz East – 400098.

CERTIFICATE

This is to certify that **Mr. Omkar B Auti** of **Master in Computer Application** (MCA) Semester I has completed the specified term work in the subject of **Image Processing** satisfactorily within this institute as laid down by University of Mumbai during the academic year 2023 to 2024.

			
Subject In-charge	External Examiner	Coordinator – M.C.A	

IP INDEX

Practical No	Title		
1	Basics		
	a. Program to access image properties – Dimension, height, width,		
	number of channels, image size, accessing and modifying any pixel		
	b. Program to study the effects of reducing the spatial resolution of a		
	digital image		
	c. Program to study the effects of varying the number of intensity levels		
	in a digital image		
	d. Program to perform image addition for noise reduction.		
	e. Program to compare images using subtraction for enhancing the		
	difference between images		
2	Basic Intensity Transformation functions		
	a. Image Negative		
	b. Thresholding		
	c. Log Transformation		
	d. Gray Level Slicing		
	e. Bit Plane Slicing		
3	a. Program to plot Histogram of an image		
	b. Program to plot Histogram of Low Contrast, Bright, dark and High		
	Contrast Images		
	c. Program to apply Histogram Equalization		
4	Image Smoothing in Spatial Domain		
	a. Averaging		
	b. Min Filter		
	c. Max Filter		
	d. Median Filter		
5	Image Sharpening in Spatial Domain		
	a. First Order derivative		
	b. Second Order Derivative		
6	Image Smoothing in Frequency Domain using Low Pass Filters		
7	Image Sharpening in Frequency Domain using High Pass Filters		
8	Color Image Processing		
	a. Program to read a color image and segment into RGB planes,		
	histogram of color image		
	b. Program for converting from one color model to another model		
9	Morphological Image Processing		
	a. Program to apply erosion, dilation, opening, closing		
	b. Program for detecting boundary of an image		
10	Image Segmentation		
	a. Program for Edge detection using Sobel, Prewitt, Marr-Hildreth and		
	Canny		

1. Basics

a. Program to access image properties – Dimension, height, width, number of channels, image size, accessing and modifying any pixel

```
clear all;
i = imread("D:\IP\images\baboon.png")
imshow(i);

s= size(i);
disp("Dimension: ", s)
disp("Height: ", s(1));
disp("Width: ", s(2))
disp("No. of channels: ", s(3));
disp(i(100,100));
i(100,100) = 222;
disp(i(100,100));
```

```
--> exec('D:\IP\practical-1A.sce', -1)

512. 512. 3.

Dimension:

512.

Height:

512.

Width:

3.

No. of channels:

134
```

Var - i 🔣					
	99	100	101		
99	97	106	191		
100	92	222	130		
101	90	40	88		
102	177	178	155		
103	152	109	93		
104	114	157	187		

b. Program to study the effects of reducing the spatial resolution of a digital image

```
i = imread("D:\IP\images\Lena_dark.png")
disp("Size of original image: ", size(i));
subplot(3,3,1);
imshow(i);
title("Original Image");

j1 = imresize(i, 0.8);
disp("Size of resized image: ", size(j1));
subplot(3,3,2);
```

```
imshow(j1);
title("Resized Image 0.8");
j2 = imresize(i, 0.7);
disp("Size of resized image: ", size(j2));
subplot(3,3,3);
imshow(j2);
title("Resized Image 0.7");
j3 = imresize(i, 0.6);
disp("Size of resized image: ", size(j3));
<u>subplot</u>(3,3,4);
imshow(j3);
title("Resized Image 0.6");
j4 = imresize(i, 0.5);
disp("Size of resized image: ", size(j4));
<u>subplot(3,3,5);</u>
imshow(j4);
title("Resized Image 0.5");
j5 = imresize(i, 0.4);
disp("Size of resized image: ", size(j5));
subplot(3,3,6);
imshow(j5);
title("Resized Image 0.4");
j6 = imresize(i, 0.3);
disp("Size of resized image: ", size(j6));
subplot(3,3,7);
imshow(j6);
title("Resized Image 0.3");
j7 = imresize(i, 0.2);
disp("Size of resized image: ", size(j7));
subplot(3,3,8);
imshow(j7);
title("Resized Image 0.2");
j8 = imresize(i, 0.1);
disp("Size of resized image: ", size(j8));
subplot(3,3,9);
imshow(j8);
title("Resized Image 0.1");
```


c. Program to study the effects of varying the number of intensity levels in a digital image

```
i = imread("D:\IP\images\people.jpg")
<u>subplot</u>(3,2,1);
imshow(i);
title("Original Image");
i = double(i);
k1 = (i*255)/128;
<u>subplot(3,2,2);</u>
imshow(uint8(k1));
title("Quantization 128");
k2 = (i*255)/64;
subplot(3,2,3);
k2 = uint8(k2);
imshow(k2);
title("Quantization 64");
k3 = (i*255)/32;
<u>subplot(3,2,4);</u>
```

```
imshow(uint8(k3));
title("Quantization 32");
k4 = (i*255)/16;
subplot(3,2,5);
imshow(uint8(k4));
title("Quantization 16");
k5 = (i*255)/8;
subplot(3,2,6);
imshow(uint8(k5));
title("Quantization 8");
```


d. Program to perform image addition for noise reduction.

```
i = imread("D:\IP\images\image3.JPG")
i = imnoise(i, 'salt & pepper', 0.001);
subplot(1,2,1);
imshow(i);
title("Noisy Image");

k = imadd(i, 50);
subplot(1,2,2);
imshow(k);
title("After performing addition");
```


e. Program to compare images using subtraction for enhancing the difference between images

```
i = imread("D:\IP\images\tool1.png")
j = imread("D:\IP\images\tool2.png");
subplot(2,2,1);
imshow(i);
title("Image 1");
subplot(2,2,2);
imshow(j);
title("Image 2");

k = imabsdiff(i, j);
subplot(2,2,3);
imshow(k);
title("After performing subtraction");
```


2. Basic Intensity Transformation functions

a. Image Negative

```
i = imread("D:\IP\images\checkerbox.png");
c = 255; //L-1
b = c-i; //L-1-r (r = intensity)

subplot(1,2,1);
imshow(i);
title("Original Image");

subplot(1,2,2);
imshow(b);
title("Image Negative");
```


b. Thresholding

```
clear all;
img = imread("D:\IP\images\puffin.png");
subplot(1,2,1);
imshow(i);
title("Original Image");

z = double(img);
[row col] = size(img);
k = 50;
for i = 1:1:row
    for j = 1:1:col
```

```
if((z(i,j) > k))
             z(i,j) = 255;
        else
             z(i,j) = 0;
end
end
end
<u>subplot</u>(1,2,2);
imshow(uint8(z));
title("Thresholding");
     c. Log Transformation
clear all;
i = imread("D:\IP\images\log.tif");
r = double(i)/255;
c = 1; //constant
gamma = 3;
s = c * r.^gamma;
<u>subplot</u>(2,2,1);
imshow(i);
title("Original Image");
<u>subplot(2,2,2);</u>
imshow(s);
title("Log Transformation");
```



```
clear all;
i = imread("D:\IP\images\moon.tif");
r = double(i)/255;
c = 1; //constant
```

```
gamma = 3;
s = c * r.^gamma;

<u>subplot(2,2,1);
imshow(i);
title("Original Image");

subplot(2,2,2);
imshow(s);
title("Power Law Transformation");</u>
```


- d. Gray Level Slicing
 - a. With background

```
clear all;
img = imread("D:\IP\images\seed.tif");
subplot(1,2,1);
imshow(i);
title("Original Image");
z = double(img);
[row col] = size(img);
for i = 1:1:row
    for j = 1:1:col
        if((z(i,j) > 50) \& (z(i,j) < 100))
            z(i,j) = 200;
        else
            z(i,j) = img(i,j);
end
end
end
```

```
subplot(1,2,2);
imshow(uint8(z));
title("Grey level slicing with background");
```


b. Without Background

```
clear all;
img = imread("D:\IP\images\seed.tif");
<u>subplot</u>(1,2,1);
imshow(i);
title("Original Image");
z = double(img);
[row col] = size(img);
for i = 1:1:row
    for j = 1:1:col
        if((z(i,j) > 50) \& (z(i,j) < 100))
            z(i,j) = 222;
        else
            z(i,j) = 10;
end
end
end
```

```
subplot(1,2,2);
imshow(uint8(z));
title("Grey level slicing without background");
```


e. Bit Plane Slicing

```
clear all;
//i = imread("D:\IP\images\checkerbox.png");
img = imread("D:\IP\images\coins.png");
[r,c] = size(img);
for i = 1:r
    for j = 1:c
         MSB(i,j) = bitand(img(i, j), bin2dec('10000000'));
         LSB(i,j) = \underline{bitand}(img(i, j), \underline{bin2dec}('00000001'));
         Second(i,j) = \underline{bitand}(img(i, j), \underline{bin2dec}('01000000'));
         Third(i,j) = \underline{bitand}(img(i, j), \underline{bin2dec}('001000000'));
         Fourth(i,j) = \underline{bitand}(\underline{img}(i, j), \underline{bin2dec}('000100000'));
         Fifth(i,j) = bitand(img(i, j), bin2dec('00001000'));
         Sixth(i,j) = \underline{bitand}(img(i, j), \underline{bin2dec}('00000100'));
         Seventh(i,j) = bitand(img(i, j), bin2dec('000000010'));
end
end
subplot(4,4,1);
imshow(MSB);
title("Bit Plane 7");
```

```
<u>subplot(4,4,2);</u>
imshow(Second);
title("Bit Plane 6");
subplot(4,4,3);
imshow(Third);
title("Bit Plane 5");
<u>subplot</u>(4,4,4);
imshow(Fourth);
title("Bit Plane 4");
<u>subplot(4,4,5);</u>
imshow(Fifth);
title("Bit Plane 3");
<u>subplot</u>(4,4,6);
imshow(Seventh);
title("Bit Plane 2");
<u>subplot</u>(4,4,7);
imshow(LSB);
title("Bit Plane 1");
```

Graphic window number 0

Bit Plane 7

Bit Plane 3

Bit Plane 6

Bit Plane 2

Bit Plane 5

Bit Plane 1

Bit Plane 4

3. Program to plot Histogram

a. Program to plot Histogram of an image

```
clc;
clear;
a = imread("D:\IP\images\Lena_dark.png");
subplot(2,2,1);
imshow(a);
title("Original Image");
[r,c] = size(a);
h = zeros(1,256); //array of zeroes to store count of different
intensities
for i=1:r
    for j=1:c
        if (a(i,j) == 0)
            a(i,j) = 1;
        end
        k = a(i,j);
        h(k) = h(k) + 1;
    end
end
subplot(2,2,2);
plot(h);
title("Histogram of the Image");
```


b. Program to plot Histogram of Low Contrast, Bright, dark and High Contrast Images **Low Contrast** –

```
clear all;
figure;
a=imread("D:\IP\images\seed.tif");
subplot(1,2,1);
imshow(a);
title("Low Contrast Image");
subplot(1,2,2);
h2=imhist(a);
plot(h2);
```


Bright Image -

```
clear all;
a=imread("D:\IP\images\seed.tif");
figure;
a=a+100;
subplot(1,2,1);
imshow(a);
title("Bright Image");
subplot(1,2,2);
h3=imhist(a);
plot(h3);
```


Dark Image -

```
clear all;
figure;
a=imread("D:\IP\images\seed.tif");

a=a-80;
subplot(1,2,1);
imshow(a);
title("Dark Image");
subplot(1,2,2);
h3=imhist(a);
plot(h3);
```


High Contrast Image –

```
clear all;
```

```
figure;
a=imread("D:\IP\images\seed.tif");

mmin = min(a(:));
mmax = max(a(:));
lmin = 0;
lmax = 255;

a1 = (a-mmin) * ((lmax-lmin)/(mmax-mmin))+lmin;
subplot(1,2,1);
imshow(a1);
title("High Contrast Image");
subplot(1,2,2);
h5=imhist(a1);
plot(h5);
```


- 4. Image Smoothing in Spatial Domain
 - a. Averaging
 - b. Min Filter
 - c. Max Filter
 - d. Median Filter

```
clc;
clear all;
a = imread("D:\IP\images\moon.tif");
c = imnoise(a, 'gaussian', 0.003);
d=double(a);
b=d;
[r,c] = size(a);
for i=2:r-1
    for j=2:c-1
        a1 = d(i-1,j-1) + d(i-1,j) + d(i-1,j+1) + d(i,j-1) + d(i,j) +
d(i,j+1) + d(i+1,j-1) + d(i+1,j) + d(i+1,j+1);
        b(i,j) = a1*(1/9);
    end
end
subplot(1,3,1);
imshow(a);
title("Original Image");
subplot(1,3,2);
imshow(c);
title("Noisy image");
subplot(1,3,3);
imshow(uint8(b));
title("Filtered image");
```

- 5. Image Sharpening in Spatial Domain
 - a. First Order derivative
 - b. Second OrderDerivative