Arquitectura e Integración de Aplicaciones Empresariales

José Vicente López López 26/10/2024

1 Comparación de Arquitecturas en Aplicaciones Empresariales

La siguiente tabla proporciona una comparación de cuatro arquitecturas (en capas, orientada a objetos, basada en eventos y basada en datos) en el contexto de la arquitectura e integración de aplicaciones empresariales. Cada arquitectura se evalúa en función de sus características, ventajas y desventajas.

Arquitectura	Características	Ventajas	Desventajas
Arquitectura en	- Divide el sistema en capas	- Modularidad: cada capa	- Interdependencia:
Capas	lógicas (por ejemplo,	puede desarrollarse, probarse	cualquier cambio en una
	presentación, lógica de	y mantenerse de forma	capa puede requerir ajustes
	negocio, acceso a datos).	independiente, lo que facilita	en otras capas.
	- Cada capa tiene una	el mantenimiento.	- Baja flexibilidad para
	responsabilidad específica y	- Escalabilidad horizontal	responder a cambios en las
	comunica con capas	limitada: se puede dividir la	necesidades del negocio, ya
	adyacentes.	carga entre las capas.	que las capas superiores
	- Común en sistemas	- Reutilización: los	dependen de las inferiores.
	monolíticos y web.	componentes en una capa	- Puede presentar cuellos de
		pueden ser utilizados en	botella en capas específicas,
		varias partes del sistema.	afectando el rendimiento
			general.
Arquitectura	- Basada en el paradigma de	- Alta cohesión y bajo	- Complejidad en grandes
Orientada a	Programación Orientada a	acoplamiento, permitiendo	sistemas debido a la gran
Objetos	Objetos (POO), donde cada	que los componentes sean	cantidad de objetos y
	componente es un objeto que	flexibles y adaptables.	relaciones.
	representa datos y	- Reutilización de	- Dificultad en la integración
	comportamientos.	componentes y código	con arquitecturas basadas en
	- Facilita la creación de	gracias a la herencia y	datos, ya que se necesita un
	modelos de negocio mediante	composición.	modelo relacional diferente.
	la identificación de objetos	- Facilita la comprensión y	- Sobrecarga en el
	reales (clientes, productos,	modelado de dominios	rendimiento debido a la
	pedidos, etc.).	complejos mediante la	comunicación entre objetos,
	- Los objetos colaboran entre	representación en objetos del	especialmente en sistemas
	sí a través de mensajes e	mundo real.	distribuidos.
	interfaces bien definidas.		

Arquitectura	Características	Ventajas	Desventajas
Arquitectura	- Los sistemas se organizan	- Alta escalabilidad y	- Complejidad en la gestión
Basada en	en torno a eventos que	flexibilidad, permitiendo la	de estados y en el manejo de
Eventos	indican cambios de estado en	integración de nuevos	eventos que se generan de
	los componentes.	servicios sin impactar otros	manera masiva.
	- Los eventos desencadenan	componentes.	- Dificultad para depurar y
	acciones, y los componentes	- Resiliencia: los sistemas	rastrear errores debido a la
	reaccionan de forma	son más tolerantes a fallos,	naturaleza asincrónica de los
	independiente sin requerir	ya que las interacciones se	eventos.
	comunicación directa.	realizan mediante eventos	- Dependencia en la
	- Promueve un sistema	asincrónicos.	infraestructura de mensajes
	asincrónico, donde los	- Buen rendimiento para	(brokers de mensajería), que
	eventos pueden estar	sistemas con alta	aumenta la complejidad del
	desacoplados de los servicios	concurrencia, ya que los	sistema.
	que los procesan.	eventos pueden procesarse de	
		manera independiente.	
Arquitectura	- Se enfoca en la	- Permite la unificación y	- Menor flexibilidad para
Basada en	centralización de datos,	centralización de datos, lo	cambios en el modelo de
Datos	donde la fuente de datos es	que facilita la consistencia y	datos o en la estructura del
	el núcleo y los servicios o	gobernanza de los mismos.	sistema.
	componentes acceden	- Escalabilidad en el manejo	- Problemas de rendimiento
	directamente a ellos.	de grandes volúmenes de	si los accesos concurrentes a
	- Los sistemas de	datos, útil en sistemas de big	los datos no son gestionados
	información y los servicios de	data y análisis de	correctamente.
	negocio se estructuran en	información.	- Riesgos de disponibilidad y
	torno a la manipulación de	- Simplificación en la gestión	seguridad, ya que los datos
	datos y su persistencia.	de datos, permitiendo un	centralizados pueden ser un
	- Común en sistemas de	acceso directo a la	punto de falla único.
	gestión de grandes	información en lugar de	
	volúmenes de datos, como	múltiples intermediarios.	
	almacenes de datos o		
	plataformas analíticas.		

References

- [1] G. Alonso, F. Casati, H. Kuno, y V. Machiraju, Web Services: Concepts, Architectures and Applications (Data-Centric Systems and Applications). Springer, 2010.
- [2] L. Shklar y R. Rosen, Web Application Architecture: Principles, Protocols and Practices. John Wiley & Sons, 2009.