What is claimed is: 1. A radio receiver comprising 1 2 first and second antennas connected to RF processing circuitry by an RF switch; 3 an RF switch control switched incrementally in response to a sequence of scheduled 5 packet bursts. 6 2. The radio receiver of claim 1, wherein: 1 the RF switch control schedules sequence bursts prescribed by a QoS defined by a MAC 2 protocol. 3. The radio receiver of claim 2, wherein: a MAC processor is synchronized with transmission of a base station. 4. The radio receiver of claim 1, wherein: the antennas are switched so that each antenna receives a related packet burst. 5. A method of maintaining a controlled QoS in a wireless communication system, 1 comprising steps of: 2 receiving communications from a transceiver at a transmission station by wireless 3 transceivers at receiving stations having switched protocol diversity reception operational modes; 4 communications being formatted as multiple packet bursts; 5 enabling a first antenna to receive a first packet burst; 6

Mary Mary Mr. Mr.

4)) E

The Pull Hall

7	enabling a second antenna to receive a second packet burst;
8	recording the received bursts as soft information in a storage medium;
9	combining the soft information from the first and second bursts into a single message.
1	6. The method of claim 5 wherein:
2	each packet burst contains a same complete message.
1	7. The method of claim 5 wherein:
2	each packet burst contains a portion of a space-time coded message spread across the first and second packet bursts.
1 2	8. A method of achieving a QoS control in a wireless LAN communication system, comprising steps of:
3	transmitting a message contained within a plurality of packet bursts occurring at spaced time intervals;
5	receiving the packet burst individually at a plurality of antennas.
1	9. The method of claim 8 wherein;
2 3 4	each of the plurality of the antennas is connected to a radio receiver at separate times relative to other receiving antennas.
1	10. The method of claim 8, wherein:

2	including a complete message within each packet burst.
1	11. The method of claim 8 wherein:
2	a message is spread across the plurality of packet bursts by space-time coding.
1	12. The method of claim 8 wherein:
2	the process of signal transmitting combines a protocol with signal processing.
2 3 4	13. A communication system for coupling a transmitter and a receiver adapted for receiving at least first and second signal bursts by first and second antennas respectively, and responding to the two signal bursts to communicate a single unified message at the receiver; whereby:
5	the first and second signal bursts are sequentially separated in time;
6 7	the first and second antennas are sequentially enabled to communicate to storage at the receiver;
8 9	enabling a representation of the unified message by responding to the first and second signals.
1	14. The communication system of claim 13, wherein:
2	the first and second signal bursts are identical packets of a common message.
1	15. The communication system of claim 13, wherein:

2	the first and second signal bursts are each a part of a space-time coded message spread
3	across two bursts; and
4	a common message is derived from the sequential signal bursts received by the first and
5	second antennas.
1	16. The communication system of claim 13, wherein:
2	enabling includes retaining the first and second signal bursts in a storage medium and
3	processing to deliver the single unified message.
_1	17. The communication system of claim 13, wherein:
2	deriving the common message includes selecting a message from one of the receiving
3	antennas.
1	18. The communication system of claim 13, wherein:
2	deriving the common message includes decoding a space-time coded signal spread across
3	and received by both the first and second antennas.
1	19. The method of claim 8, including a further step of:
2	notifying a transmitter at a transmitting end by a receiving end of the number of antennas
3	and radio receivers at the receiving end.
1	20. The method of claim 8, including a further step of:
2	a receiver notifying a transmitter that it accepts and responds to protocol-assisted
3	diversity operations.

1

- 21. The method of claim 8, including a further step of:
- 2 upon reconstruction of a received message sending a message to the transmitting end to
- 3 cease further message bursts.