§ 1 Matrices A any mug. Recall from prev. lecture: $Hom_A(A^m, A^n) \cong M_{u \times m}(A)$ $f \longrightarrow (f(e_1) \cdots f(e_m))$ view as column vectors In particular, the general linear group of A $GL_n(A) := M_n(A)^{\times} := \{ S \in M_n(A) \mid \exists T s. \&. ST = 1_n \}$ agrees with the automorphism group Aut A-Module (A"). For a makix $S \in M_n(A)$, one defines by the resual formulas $det(S), tr(S) \in A$ $char(S, X) := det(X \cdot 1_n - S) \in A[X].$ There are Gln(A)- conjugation invariant, just like for vector Lem 1 The matrix SEMn(A) is shreetible det(s) her in A*, i.e. is invertible. Proof or H S.T = 1, then det(s). det(T) = 1 If det(S) E AX, then we may note down its shrese: $S^{-1} = \frac{1}{\text{det}(S)} \hat{S}$

where $\hat{S} = (t_{ij})$ is the <u>adjoint matrix</u>

leave out j-th row $t_{ij} = (-1)^{7+j}$ det (S_{ji}) and i-th volume.

The point is that definition of \hat{S} does not inshe further division. Moreover, the check that $S.\hat{S} = det(S).1_n$ is purely algebraic and holds in any ring.

For an ideal $\alpha \in A$ and an A-module M, we define $\alpha M := (a \cdot m \mid a \in A, m \in M)$

This is an A-submodule. Moreover, the construction is compatible with A-linear maps: Any $f: M \longrightarrow N$ which to a map $f: \sigma M \longrightarrow \sigma N$.

Observation

($f: M \rightarrow N$ surjective) $\rightarrow D$ ($f: M/O_{1}M \rightarrow N/O_{1}N$ surjective)

Cor 2 Assume $f: A^{m} \rightarrow A^{n}$ is surjective. Then $m \ge n$.

Ju particular, $A^{m} \cong A^{n} \iff n = m$. ($A \ne 0$)

Proof Pick any max ideal $m \subseteq A$. Then K := A/m is

a field and $\overline{f}: A^m/m = \chi^m \longrightarrow A^n/m^n = \chi^n$ surjective by the observation. Now we are in the case of vector spaces, and the claim to clear. I Recall An (ixi)-nuhor of an (nxm)-mahix S is an (i×i)-mahix that auser by striking n-i rows & m-i columns. Write $S_{I,J}$ $I \subseteq \{1,...,n\}$, $J \subseteq \{1,...,m\}$, II = |J| = 2 for the number of rows I and col_{J} . Cor 3 Let S: A" - A" be an A-linear may. Let $I(S) = \left(\text{det} \left(S_{I,J} \right) \right) \mid I \mid = |J| = n \right).$ Then S sujective -> I(s) = A. Pool Assume S surjective, let m < A be a max ideal. By previous observation, (S mod m): $\chi(m)^m - \chi(m)^n$ is a surjective map of x(m)-vector spaces. Hence (S mod m) $\in M_{n\times m}(\chi(m))$ has an invertible $(n\times n)$ -mihor, meaning det $(S_{I,J}) \notin M$ for surfable I,J.

Thus $I(S) \notin M$. This applies to all max ideals M, so I(S) = A. \square

Rule The converse implication $I(S) = A \longrightarrow S$ surjective holds as well. We will discuss this in defaul soon.

Example $A^m - A$, $e_i - f_i$ being sujective is equivalent to $(f_1, -, f_m) = A$.

§ 2 The elementary disor theerem

Lem 4 Let $S, T \in M_{n \times m}(A)$. Assume there are $L \in GL_n(A)$, $R \in GL_m(A)$ s.th. LSR = T. Then L

and Ronduce isomorphisms

I: cokes (S) ~~ cokes (T)

 $\mathbb{R} \mid_{\ker(T)} : \ker(T) \xrightarrow{\sim} \ker(S).$

Proof The middle square commuter, hence the dotted arrows

exist: $k\omega(S) \longrightarrow A^m \longrightarrow A^n \longrightarrow \omega k\omega(S)$ $R^{-1}|k\omega(S)| \downarrow \qquad \qquad \qquad \qquad \downarrow L$ $k\omega(T) \longrightarrow A^m \longrightarrow A^n \longrightarrow \omega k\omega(T)$

P,L isomorphisms & R/ke(T), I rosmorphisms.

(onclusion We can classify finitely presented A-module (to some degree) by clampying the double corets $GL_n(A) \stackrel{M_n \times m}{(A)} GL_m(A).$

Write $S \sim S' = 3 L \in GL_n(A)$, $R \in GL_n(A)$ s.H. S' = LSR.

Thun 5 (Elementary Drisor Thun) Zeb A be a PID and $S \in M_{n\times m}(A)$. Then there are runique ryp to with $a_1 \mid a_2 \mid \cdot - \mid a_k \in A$, $k = muh \{n, m\}$, s.th.

 $S \sim \begin{pmatrix} a_n \\ a_k \end{pmatrix}$ resp. $S \sim \begin{pmatrix} a_1 \\ a_k \end{pmatrix}$ $\begin{pmatrix} a_n \\ a_k \end{pmatrix}$

Thun 6 (Structure Thun for fin. gen. modula over PDs)

Leb A be a PID and M a fin. gen. A-module. Then

there are unique $l, r \ge 0$ and unique up to runto $a, |a_2| \cdots |a_l| \ne 0$ s.th. $M \subseteq A/(a_1) \oplus \cdots \oplus A/(a_l)$ $e A/(a_l)$

Proof of Thun 6 Since M is Jun gen, can Jud a sujection 9: A ->> M. A PID = A wetherian = ker (4) so fu gen, so can find S: A" -> ker(4), which means $M \cong coker(S)$. By lem 4, M up to isomorphism only depends on S rup to equivalence ~. So by Thu 5, may anume S diagonal with eleventary duisors a, | an | ... | ae 70, a_{l+1} = ... = a_k = 0. Then $M \cong A(a_1) \oplus \cdots \oplus A(a_2) \oplus A$ The mighener is part of Exorcise Sheet 4.] Proof of Thu 5 Write g = gcd in the following, see the appendix for a secap on the gcd. Claim Put $a_1 := g(S)$. Then there is $S_1 \in \mathcal{M}_{(n-1)\times(m-1)}(A)$ $S \sim \begin{pmatrix} a_1 & 0 & -- & 0 \\ \vdots & S_1 & \end{pmatrix}$

Porry this clare proves the theorem:

- ·) If $L \in M_n(A)$, $R \in M_m(A)$ are any, then g(S)|g(LSR)because the gcd of some elements divides all their linear confination. If $L \in GL_n(A)$, $R \in GL_n(A)$, then also $g(LSR) | g(L^{-1}LSRR^{-1}) = g(S), so g(S) = g(LSR)$ Thus if So (an Si) as in the claim, then $a_1 = g(S) = g(a_1 S_1) | g(S_1)$. Then an inductive arguneut implies existence of 9, 1 az 1 · · · 1 ak.
- ·) The same argument however shows the migreners: Howely, of $S \sim \begin{pmatrix} a_1 & a_k \\ 0 \end{pmatrix}$ or $\begin{pmatrix} a_1 & a_k \\ 0 \end{pmatrix}$,

then $a_1 = g(x_1) = g(x_2) = g(x_3)$, so $a_1 = g(x_1)$

unquely determined up to unit.

Moreover, if $\begin{pmatrix} a & 0 & -0 \\ 0 & S_1 \end{pmatrix} \sim \begin{pmatrix} a & 0 & -0 \\ 0 & S_1 \end{pmatrix}$, then

Sin Si, so mignenen of az I...lak follows again by reduction.

It is left to prove the claim, which requires the:
Construction of suitable (2x2)-matrices:

- Tet $a_1b \in A$, not both = 0. $(a_1b) = (g(a_1b)) \quad \text{implies there are}$ $r_1s \quad \text{with} \quad ra + sb = g(a_1b). \quad \text{Then necessarily}$ $(r_1s) = 1, e.g. \quad \text{by the 2nd description in lem 6.}$ This means there are $u_1v_1s_1s_2t_1s_3t_1s_4t_1s_$
- ·) If $(-v u) \in GL_2(A)$, then g(ra+sb, -va+ub) = g(a,b) for all $a,b \in A$.

 (This is a special case of g(S) = g(LSR) $\forall L_iR_i$)

Proof of the claim: Apply the following algorithm. If S = O, then we are done.

Otherse, swap rows/obs s.th. $s_{11} \neq O$ and proceed as follows:

1) Pick
$$T = \begin{pmatrix} r & s \\ -v & u \end{pmatrix} \in GL_2(A)$$
 S.d. $rs_{11} + ss_{21} = g(s_n, s_{21})$.

Via $\begin{pmatrix} T & 1 \\ 1_{n-2} \end{pmatrix}$, $S \sim \begin{pmatrix} g(s_{11}, s_{21}) \\ * & * \end{pmatrix}$.

2) via $\begin{pmatrix} \frac{1}{g(s_n, s_{21})} & 1 \\ -\frac{g(s_n, s_{21})}{g(s_n, s_{21})} & 1 \end{pmatrix}$, $S \sim \begin{pmatrix} g(s_n, s_{21}) \\ * & * \end{pmatrix}$

3) Repeat for first obum: $S \sim \begin{pmatrix} g(1)^* & 1 \\ 0 & * \\ 0 & * \end{pmatrix}$

4) Same with top row by right multiplication: $S \sim \begin{pmatrix} g(1)^* & 1 \\ 0 & * \\ 0 & * \end{pmatrix}$

5) Let a := lop left corner. If a = g(s), near done. Otherwore, there is some S_{ij} s.th. $g(a, S_{ij})$ divides a property. In this case, add col of S_{ij} to 1st column and start over at 1). The new lop left corner obtained in step 4) properly divides a, so the algorithm known after fittely many riterations. \square Claim + T_{lim} .

gcd (2,3,5)=1, so not yet done in upper left comer.

$$\sim \begin{pmatrix} 2 \\ 3 & 3 \\ 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 1 & 3 \\ 5 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 \\ 2 \\ 5 & 5 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 3 \\ -6 \\ -10 \end{pmatrix} \sim \begin{pmatrix} 1 \\ -6 \\ -10 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

In ptic, when
$$\begin{pmatrix} 2 \\ 3 \\ 4 5 \end{pmatrix} \cong 2h \oplus Z$$
.

Rule At @, one could have continued more directly.

The order have follows instead the algorithm on the previous pacy.

Example 2
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} \sim \begin{pmatrix} 2 \\ 3 \end{pmatrix} \sim \begin{pmatrix} -1 & -3 \\ 3 & 3 \end{pmatrix}$$
 $\sim \begin{pmatrix} -1 & -3 \\ -6 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 6 \end{pmatrix}$. This reflects the isomorphism $26 \approx 2h \times 2/3$.

& Appendix on the gcd: For O+a ∈ A any, Tr ∈ A prime, put $V_{\pi}(a) := \sup_{n \to \infty} \{n \ge 0 \mid \pi^n \mid a \}.$ Let $PIh := \frac{1}{\pi} \in A$ prime $\frac{3}{4}$.

Thus $\alpha = \text{unib} \cdot T$ π π by the prime factorization of α .

Lem 6 The following three definitions of the gcd, which is only defined up to unit, concide:

- $A) \quad (a,b) = (g_1(a,b))$
- 2) $g_2(a,b) = \prod_{a,b} \pi(a), \nu_{\pi}(b)$
- 3) $g_3(a,b) = any element of A s.t.$ $cla, clb \longrightarrow clg_3(a,b).$

Proof $g_2 = g_3$ is clear. For $g_1 = g_2$: (a/gz, b/gz) = A because a/gz and b/gz have us common prime factor, so are not contained in a common nous ideal. Thus (a,b) = (gz)