- Report on last week
 - I could improve policy on RL for optimal self-triggered control

There is no guarantee that this policy is the best policy ...

- Wide interval around origin and frequent otherwise
- Stabilize the system

- This week
 - Discuss the next step for master thesis
 - Check that
 - evaluation function for learned policy is larger than that for initial policy
 - approximation accuracy of value function $V^{\pi}(s)$
 - learned policy's dependence for initial policy

- 1: Comparison of evaluation function
 - Policies

$$\pi_{init}(s) = \begin{bmatrix} lqr(s) \\ 0.2 \end{bmatrix}$$
 v.s. $\pi_{RL}(s)$: learned policy

- Evaluation criteria: $J(\pi) = \mathbb{E}_{s_0} [\sum_{i=0}^{\infty} \gamma^i r(s_i, \pi(s_i))]$
- Result

$$J(\pi_{init}) = -14.769 < J(\pi_{RL}) = 45.092$$

- 2: Approximation accuracy of value function $V^{\pi}(s)$
 - $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$
 - Agent fits $Q(s, a|\omega)$ to approximate $Q^{\pi}(s, a)$
 - Evaluation criteria

Does $Q(s,\pi(s)|\omega)$ approximates $\sum_{i=0}^{\infty} \gamma^i \, r(s_i,\pi(s_i))$ well?

• acc_reward learned_critic definition of $V^{\pi}(s)$

- 3: Learned policy's dependence for initial policy
 - Initial policies

$$\pi_{init}(s) : \frac{\begin{bmatrix} lqr(s) \\ 0.01 \end{bmatrix}}{\pi_1}, \frac{\begin{bmatrix} lqr(s) \\ 0.1 \end{bmatrix}}{\pi_2}, \frac{\begin{bmatrix} lqr(s) \\ 0.5 \end{bmatrix}}{\pi_3}, \frac{\begin{bmatrix} lqr(s) \\ 1.0 \end{bmatrix}}{\pi_4}$$

- 3 patterns of learning
 - adaptive interval and stabilizing: π_2 , π_3 , π_4 %interval around origin point is different

- constant interval (minimum) and stabilizing
- constant interval (minimum) and unstabilizing π_1, π_2, π_4