在產鄉電大灣

学生实验实习报告册

学年学期: 2020-2021 学年 □春 √ 秋学期

课程名称: 信号处理实验

学生学院: 通信与信息工程学院

专业班级: 01011803

学生学号: 2018210199

学生姓名: 邓巨凡

联系电话: ______19823323158

重庆邮电大学教务处制

课程名称	信号处理实验	课程编号	A2010550
实验地点	实验室 YF304	实验时间	第七周周二一二节
校外指导	邵凯	校内指导	邵凯
教师	40 BL	教师	10 10 10 10 10 10 10 10 10 10 10 10 10 1
实验名称	系统响应及系统稳定性		
评阅人签		成绩	
字			

一、实验目的

- 1. 学会运用 MATLAB 求解离散时间系统的零状态响应;
- 2. 学会运用 MATLAB 求解离散时间系统的单位取样响应;
- 3. 学会运用 MATLAB 求解离散时间系统的卷积和。

二、实验原理

本次实验通过 matlab 中所提供的已有函数对响应以及卷积和进行求解

离散时间 LTI 系统可用线性常系数差分方程来描述,即

$$\sum_{i=0}^{N} a_i y(n-i) = \sum_{j=0}^{M} b_j x(n-j)$$
 (2-1)

其中, a_i (i=0, 1, ..., N) 和 b_i (j=0, 1, ..., M) 为实常数。

MATLAB 中函数 filter 可对式 (13-1) 的差分方程在指定时间范围内的输入序列所产生的响应进行求解。函数 filter 的语句格式为

$$y=filter(b,a,x)$$

其中, x 为输入的离散序列; y 为输出的离散序列; y 的长度与 x 的长度一样; b 与 a 分别为差分方程右端与左端的系数向量。

系统的单位取样响应定义为系统在 $\delta(n)$ 激励下系统的零状态响应,用h(n)表示。MATLAB 求解单位取样响应可利用函数 filter,并将激励设为单位抽样序列。例如,求解实例 2-1 中系统的单位取样响应时,MATLAB 源程序为:

函数一: filter(b, a, x)

其中,x 未输入的离散序列,y 未输出的离散序列,y 的长度和 x 的长度一样,b 和 a 分别为差分方程右端与左端的系数向量

由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处理领域被广泛应用。离散时间信号的卷积定义为

$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$
 (2-2)

可见,离散时间信号的卷积运算是求和运算,因而常称为"卷积和"。

MATLAB 求离散时间信号卷积和的命令为 conv, 其语句格式为

y=conv(x,h)

其中, x 与 h 表示离散时间信号值的向量; y 为卷积结果。用 MATLAB 进行卷积和运算时, 无法实现无限的累加, 只能计算时限信号的卷积。

函数二: conv(x, h)

其中,x 和 h 表示离散时间信号值的向量,y 为卷积结果,并且函数假定两个序列都从 0 开始,需要进行一定的设置。

三、实验程序及结果分析

实验一:

(1) 代码:

 $a=[3 \ 4 \ 1];$

 $b=[1 \ 1];$

impz(b, a, 30);

grid on;

title('系统单位取样响应和h1(n)');

实验结果:

实验结论: 趋于平稳

(2) 代码

a=[2.5 6 10];

b=[1];

```
impz(b, a, 30);
grid on;
title('系统单位取样响应和h1(n)');
            Figure 1
            文件(F) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)
            🖺 🗃 📓 🔌 | 🔈 🔍 🤏 🖑 🐿 🐙 🔏 - | 🛃 | 🔲 🔡 🖿 🛄
                               系统单位取样响应和h1(n)
               0.5
               -0.5
               -1.5 <sup>L</sup>
                                10
                                       15
                                              20
                                                     25
                                   n (samples)
实验结果:
实验结论: 趋于不平稳
实验二:
代码:
nx = -1:5;
nh=-2:10;
x=uDT(nx)-uDT(nx-5);
h=0.875. \hat{h}.*(uDT(nh)-uDT(nh-10));
y=conv(x, h);
ny1=nx(1)+nh(1);
ny2=nx (end)+nh (end);
ny=ny1:ny2;
subplot (311)
stem(nx, x, 'fill'), grid on
xlabel('n')
title('x(n)')
axis([-4 16 0 3])
subplot (312)
stem(nh, h, 'fill'), grid on
xlabel('n')
title('h(n)')
axis([-4 16 0 3])
subplot (313)
stem(ny, y, 'fill'), grid on
xlabel('n')
title ('y(n) = x(n) *h(n)')
```


实验结果:

四、思考题

```
实验代码:
x=[3, 11, 7, 0, -1, 4, 2];
```

nx = -3:3;

h=[2, 3, 0, -5, 2, 1];

nh=-1:4;

yb=nx(1)+nh(1);

ye=nx (end) +nh (end);

y=yb:ye;

g=conv(x, h)

grid on;

 $axis([-3 \ 4 \ -50 \ 50])$

stem(y, g);

实验结果:

卷积计算:

>> sy2_3

g =

6 31 47 6 -51 -5 41 18 -22 -3 8 2

>>