1. A six people committee is chosen at random from 5 girls and 15 boys. Conditioned on there being at least one girl on the committee, what is the expected number and the variance of boys?

Solution: Let G be the (unconditional) number of girls on the committee. By the conditional expectation formula, we have

$$E[G] = E[G|G = 0] P(G = 0) + E[G|G > 0](1 - P(G = 0)).$$

By linearity of expectation, $E[G] = E[G_1] + E[G_2] + E[G_3] + E[G_4] + E[G_5] + E[G_6]$, where G_i , $i = \{1, 2, 3, 4, 5, 6\}$ are random events of whether the i^{th} committee member is a girl. $E[G] = 6 \cdot (5/20) = 3/2$. On the other hand, G = 0 occurs only when all six members are boys, so by the product formula:

$$P(G = 0) = \frac{15}{20} \cdot \frac{14}{19} \cdot \frac{13}{18} \cdot \frac{12}{17} \cdot \frac{11}{16} \cdot \frac{10}{15} \approx 0.129.$$

Therefore:

$$E[G|G > 0] = \frac{E[G]}{1 - P(G = 0)} \approx \frac{3/2}{1 - 0.129} \approx 1.722.$$

If B is the number of boys then B + G = 6 so by linearity of expectation again

$$E[B|G > 0] = 6 - E[G|G > 0] \approx 4.278.$$

$$Var(B \mid G > 0) = E(B^2 \mid G > 0) - E(B \mid G > 0)^2 \approx 0.569.$$

- 2. Let X and Y be independent random variables with PMFs P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 1/4 and P(Y = 6) = P(Y = 7) = 1/2. Let M = X + Y and N = Y X.
 - (a) What is the PMF of M given N?

Solution: We first calculate the joint PMF $P_{MN}(m,n)$: of M and N:

$m \backslash n$	2	3	4	5	6
7	0	0	0	$\frac{1}{8}$	0
8	0	0	$\frac{1}{8}$	0	$\frac{1}{8}$
9	0	$\frac{1}{8}$	ŏ	$\frac{1}{8}$	ŏ
10	$\frac{1}{8}$	ŏ	$\frac{1}{8}$	ŏ	0
11	ŏ	$\frac{1}{8}$	ŏ	0	0

Then we calculate the marginal PMF $P_N(n)$ of N:

The conditional PMF $P_{M|N}(M=m|N=n)$ is then $\frac{P_{MN}(m,n)}{P_{N}(n)}$:

$m \setminus n$	2	3	4	5	6
7	0	0	0	$\frac{1}{2}$	0
8	0	0	$\frac{1}{2}$	$\bar{0}$	1
9	0	$\frac{1}{2}$	$\bar{0}$	$\frac{1}{2}$	0
10	1	$\bar{0}$	$\frac{1}{2}$	$\bar{0}$	0
11	0	$\frac{1}{2}$	$\bar{0}$	0	0

(b) Are M and N independent? Justify your answer.

Solution: No. For example, $P_{MN}(7,2) = 0$, $P_{M}(7) = 1/8$, and $P_{N}(2) = 1/8$, so $P_{MN}(7,2) \neq P_{M}(7) P_{N}(2)$.

(c) What is the expectation of M given N < 2?

Solution: Since the probability space of N < 2 is \emptyset , $P(\emptyset) = 0$. $E(\emptyset) = 0$.

(d) What is the expectation of M given N < 4?

Solution: We first calculate the joint PMF $P_{MN|N<4}(m,n)$ of M and N given N<4. This is obtained from the joint PMF of M and N by discarding the columns n=4, n=5 and n=6. And rescaling so that the probabilities add up to one:

$m \backslash n$	2	3
7	0	0
8	0	0
9	0	$\frac{1}{3}$
10	$\frac{1}{3}$	Ŏ
11	ő	$\frac{1}{3}$

Then, we obtain the conditional PMF $P_{M|N<4}(m)$ by adding up the rows of this table:

The conditional expectation is:

$$E[M|N < 4] = 9 \cdot \frac{1}{3} + 10 \cdot \frac{1}{3} + 11 \cdot \frac{1}{3} = 10.$$

- 3. You roll a fair 6-sided die until you get an ordered sequence of $\{3,5,5,1\}$ in 4 recent rounds.
 - (a) What is the probability of you stopping at round n? Justify you answer.

Solution: We have $P(n=4) = \frac{1}{6^4}$. For n=5, since n=4 will never be achieved if the last four rolls are $\{3,5,5,1\}$, then $P(n=5) = \frac{1}{6^4}$. In this way, we can get $P(n=6) = \frac{1}{6^4}$, $P(n=7) = \frac{1}{6^4}$.

Let $n \in \mathbf{N}^+, n \geq 8$ be the target event, we must ensure $\{3,5,5,1\}$ didn't emerge in all subsequences n-4, n-5, ...,1, which means P(n)=(1-P(n-4)-P(n-5)-...P(1)) $P_{seq}, P_{seq}=\frac{1}{6^4}$.

Then we have:

$$P(n)(n) = \begin{cases} 0, & 1 \le n \le 3\\ (1 - \sum_{i=1}^{n-4} P(i)) \frac{1}{6^4}, & n \ge 4 \end{cases}$$

(Reminder: Since the sequence $\{3,5,5,1\}$ has no identical subsequences, the event of n is not independent of the event of n+1.)

(b) What is the expected value of the number of total rounds?

Solution: Let E be the expected number of rolls until $\{3,5,5,1\}$ and let E_{355} be the expected number of rolls until $\{3,5,5,1\}$ when we start with a rolled $\{3,5,5\}$, let E_{35} be the expected number of rolls until $\{3,5,5,1\}$ when we start with a rolled $\{3,5,5,1\}$, let E_3 be the expected number of rolls until $\{3,5,5,1\}$ when we start with a rolled $\{3,5,5,1\}$, let E_3

1) Start from E_3 : If the next dice value is 3, the current subsequence is still $\{3\}$, the event continues. If it is 5, the new subsequence is still $\{3, 5\}$, the event transforms into the same with E_{35} . Otherwise, there are no valid subsequences, the event transforms into the same with E.

- 2) Start from E_{35} : If the next dice value is 3, the new subsequence is $\{3\}$, the event transforms into the same with E_3 . If it is 5, the new subsequence is still $\{3, 5, 5\}$, the event transforms into the same with E_{355} . Otherwise, the event transforms into the same with E.
- 3) Start from E_{355} : If the next dice value is 3, the new subsequence is $\{3\}$, the event transforms into the same with E_3 . If it is 1, the new subsequence is $\{3, 5, 5, 1\}$, terminated. Otherwise, the event transforms into the same with E.
- 4) Start from E: If the next dice value is 3, the new subsequence is $\{3\}$, the event transforms into the same with E_3 . Otherwise, the event is still E.

Then we have:

$$E_3 = \frac{1}{6}(E_3 + 1) + \frac{4}{6}(E + 1) + \frac{1}{6}(E_{35} + 1)$$

$$E_{35} = \frac{1}{6}(E_3 + 1) + \frac{4}{6}(E + 1) + \frac{1}{6}(E_{355} + 1)$$

$$E_{355} = \frac{1}{6}(E_3 + 1) + \frac{4}{6}(E + 1) + \frac{1}{6}$$

$$E = \frac{1}{6}(E_3 + 1) + \frac{5}{6}(E + 1)$$

Solve the equation, we have $E = 1296, E_{355} = 1080, E_{35} = 1260, E_3 = 1290$

(c) What is the expected value if the number of total rounds is less than or equal to 10?

Solution:

$$\begin{split} \mathbf{P}(n\leqslant 10) &= \frac{1}{6^4} \cdot 4 + (1 - \frac{1}{6^4}) \frac{1}{6^4} + (1 - \frac{1}{6^4} - \frac{1}{6^4}) \frac{1}{6^4} + (1 - \frac{1}{6^4} - \frac{1}{6^4} - \frac{1}{6^4}) \frac{1}{6^4} \\ &= \frac{9066}{1679616} \approx 0.00539766. \\ \mathbf{E}(n \mid n\leqslant 10) &= [\frac{1}{6^4} \cdot (4 + 5 + 6 + 7) + (1 - \frac{1}{6^4}) \frac{1}{6^4} \cdot 8 + (1 - \frac{1}{6^4} - \frac{1}{6^4}) \frac{1}{6^4} \cdot 9 \\ &\quad + (1 - \frac{1}{6^4} - \frac{1}{6^4} - \frac{1}{6^4}) \frac{1}{6^4} \cdot 10] / \mathbf{P}(n\leqslant 10) \\ &= \frac{63448}{9066} \approx 6.99845577. \end{split}$$

4. You play 10 rounds of roulette with 1 green, 18 reds, 18 blacks. If you choose green, you may win 3 times of what you bet or lose 3 times of what you bet. For red and black, you may win 1 time of what you bet or lose 1 time of what you bet. You invest \$100 and bet 10% of your balance on each color randomly (with the same probability) in every round. What is your average balance after 10 rounds?

Solution: Let X_i be the average balance after round i. $X_0 = 100$. W_i be the event of win in round i. By the conditional expectation formula, we have:

$$\begin{split} & \mathrm{E}\left(X_{1}\right) = & \mathrm{E}(X_{1} \mid A)\,\mathrm{P}(A) + \mathrm{E}(X_{1} \mid A^{c})\,\mathrm{P}(A^{c}) \\ & = & \frac{1}{3}(1.1 \times X_{0} \times \frac{18}{37}) + \frac{1}{3}(1.1 \times X_{0} \times \frac{18}{37}) + \frac{1}{3}(1.3 \times X_{0} \times \frac{1}{37}) \\ & + \frac{1}{3}(0.9 \times X_{0} \times \frac{19}{37}) + \frac{1}{3}(0.9 \times X_{0} \times \frac{19}{37}) + \frac{1}{3}(0.7 \times X_{0} \times \frac{36}{37}) \\ & = & \frac{1003}{1110}X_{0} \approx 0.9036036X_{0} \end{split}$$

Then, $E(X_{10}) = \frac{1003}{1110}^{10} X_0 = (\frac{1003}{1110}^{10}) 100 \approx 36.28937949.$

- 5. Let T be the number of times a 20-sided die is rolled until a 6 appears.
 - (a) What is your average value after 20 rounds?

Solution: Since dice value in the 20th round is known, if $T \leq 20$ happened, rolling has been terminated. Otherwise, T > 20, continue to roll the dice. By the conditional expectation formula, we have:

$$E(T) = E(T \mid T \le 20) P(T \le 20) + E(T \mid T > 20) P(T > 20)$$

$$P(T \le 20) = \sum_{i=0}^{19} \left(\frac{19}{20}\right)^i \left(\frac{1}{20}\right) = 1 - \left(\frac{19}{20}\right)^{20} \approx 0.64151408. \ P(T > 20) = 1 - P(T \le 20) = \left(\frac{19}{20}\right)^{20} \approx 0.35848592. \ E(T) = 20. \ Then:$$

$$E(T \mid T \leq 20) = \sum_{i=1}^{20} \left(\frac{19}{20}\right)^{i-1} \left(\frac{1}{20}\right) i / P(T \leq 20) = 20 - \frac{20 \cdot 19^{20}}{20^{20} - 19^{20}} \approx 8.82375508.$$

$$E(T \mid T > 20) = \frac{E(T) - E(T \mid T \leq 20) P(T \leq 20)}{P(T > 20)} \approx 40.$$

(b) What is the expected value of T conditioned on all rolls producing even numbers?

Solution: Let A be the event of all rolls producing even numbers. $E(T \mid A) = \sum_{i=1}^{+\infty} i \cdot P(T = i \mid A)$. Based on Bayes rule, we have:

$$P(A) = \sum_{i=1}^{+\infty} P(A \cap (T = i))$$

$$= \sum_{i=1}^{+\infty} (\frac{9}{20})^{i-1} \cdot \frac{1}{20}$$

$$= \frac{1}{20} \cdot \frac{1}{1 - \frac{9}{20}}$$

$$= \frac{1}{11}$$

Then,

$$E(T \mid A) = \sum_{i=1}^{+\infty} P(A \cap (T = i)) / P(A)$$
$$= \sum_{i=1}^{+\infty} i \cdot 11 \cdot (\frac{9}{20})^{i-1} \cdot \frac{1}{20}$$
$$= \frac{20}{11} \approx 1.81818182.$$