

GEOS 639 – INSAR AND ITS APPLICATIONS GEODETIC IMAGING AND ITS APPLICATIONS IN THE GEOSCIENCES

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu With Contributions by Gareth Funning, University of California Riverside

Lecture 10: On the Use of InSAR in Geophysics

GEOPHYSICAL MODELING FROM GEODETIC DATA

By **geophysical modeling**, we mean using idealized representations of the Earth to gain insight into its properties and processes

By **geodetic data**, we mean data that measure deformation (changes in shape) of the Earth's surface – e.g. InSAR, GPS/GNSS, differential lidar, optical image correlation...

InSAR RESULTS NEEDED FOR GEOPHYSICAL MODELING

InSAR Inputs for Geophysical Modeling

InSAR Deformation Rate Information

• Two Example Approaches to Arrive at a Deformation Rate Map

Single Co-Seismic / Co-Eruptive InSAR Pair

- Standard InSAR pair processing and phase unwrapping
- Assumption: Signal is large compared to noise from atmosphere, decorrelation, residual topography
- Coherence sufficient

InSAR pair of Peulik volcano showing ~17 cm of uplift centered on the volcano's southwest flank from October 1996 to October 1997

Time Series Solution

- Perform SBAS time series inversion
- Segment deformation time series into phases of consistent behavior → model each phase with linear rate
- Solve for geophysical parameters for each phase separately

Remember: InSAR Is Only Sensitive to the Line-Of-Sight Component of the 3-D Motion Vector

• An individual SAR interferogram measures deformation in one dimension, in the radar line-of-sight

Remember: InSAR Is Only Sensitive to the Line-Of-Sight Component of the 3-D Motion Vector

• An individual SAR interferogram measures deformation in one dimension, in the radar line-of-sight

The Unit Pointing Vector

- u = ground displacement vector
- p = pointing vector (from satellite to ground target)
- p is controlled by the satellite trajectory, beam mode (incidence angle) and position of the pixel within the swath

The Unit Pointing Vector

 \hat{p} = <u>unit</u> pointing vector (from satellite to ground target)

Range Change

the scalar (dot) product of $m{u}$ and $m{\hat{p}}$ is the "range change" ($m{r}$) we measure in interferograms

$$r = \mathbf{u} \times \hat{\mathbf{p}}$$

$$= |\mathbf{u}||\hat{\mathbf{p}}|\cos q$$

$$= |\mathbf{u}|\cos q$$

therefore, the key to modeling InSAR data is having a code that can simulate the displacements $oldsymbol{u}$

AN EXAMPLE OF THE USE OF INSAR IN GEOPHYSICS VOLCANIC DEFORMATION

The Deformation Modeling Problem

The Deformation Modeling Problem

forward model

design matrix

inverse model

$$(\mathbf{S}) = \mathbf{G}^{inv} \mathbf{d}$$

Solving for Model Parameters using Model Inversion

$$G \cdot x = b$$

• If the covariance matrix for errors in the observation (b) is Σ_b , then the weighted least-squares (maximum likelihood) solution for x is

$$\hat{x} = \left[G^T \cdot \Sigma_b^{-1} \cdot G \right]^{-1} \cdot \left[G^T \cdot \Sigma_b^{-1} \cdot b \right]$$

and the covariance matrix for the estimated vector components is

$$\Sigma_{x} = \left[G^{T} \cdot \Sigma_{b}^{-1} \cdot G \right]^{-1}$$

• In the case where we assume that observation errors are independent and have equal standard deviations, σ , we get

$$\Sigma_{x} = \sigma^{2} \big[G^{T} \cdot G \big]^{-1}$$

- The square roots of the diagonal terms of Σ_x are the standard errors of the estimated parameters

What is the Forward Model in Volcano Deformation?

Predicts deformation (\underline{u}) caused by magma intrusion (relates magma intrusion to deformation)

intrusion

 $\underline{u} = f(model \ parameters)$

elasto-static behavior

$$\mu \nabla^2 u_i + \frac{\mu}{(1-2v)} \left[\frac{\partial^2 u_k}{\partial x_i \partial y_k} \right] = -F_i$$

What Is the Forward Model?

Simple Model: Inflating Point Source Model

• A component of deformation vector (u_i) and the displacement at the free surface $(x_3 = 0)$ takes the form

$$u_i(x_1 - x_1', x_2 - x_2', -x_3') = C \frac{x_i - x_i'}{|R^3|}$$

- x_i' is a source location, C is a combination of material properties and source strength, and R is the distance from the source to the surface location
- C is defined as follows:

$$\boldsymbol{C} = \Delta P (1 - \nu) \frac{r_s^3}{G} = \Delta \boldsymbol{V} \frac{(1 - \nu)}{\pi}$$

Unknown (target) parameters marked in red

- $-\Delta P$ change in pressure of magma chamber
- $-\Delta V$ change in volume of magma chamber
- ν Poisson's ratio (material property)
- r_s radius of the sphere
- *G* shear modulus of country rock (material property)

Think - Pair - Share:

Limitations of Mogi Models

Let's look at the Mogi model equations one more time

$$u_i(x_1 - x_1', x_2 - x_2', -x_3') = C \frac{x_i - x_i'}{|R^3|}$$
 with $C = \Delta P(1 - \nu) \frac{r_s^3}{G} = \Delta V \frac{(1 - \nu)}{\pi}$

- Activity 1: Discuss the limitations that may be brought on by how the variables ν and G are used in these equations.
- Activity 2: Discuss the limitations that may be brought on by how the source geometry is captured in the equations.

Forward Model: Inflating Point Source

VERTICAL DISPLACEMENT

HORIZONTAL DISPLACEMENT

 $\alpha \ll d$

D. Dzurisin, 2007 Courtesy of M. Lisowski

Forward Model: Inflating Point Source

D. Dzurisin, 2007 Courtesy of M. Lisowski

Forward Model: Sill Model

Forward Model: Dike Model

Ultimate Goal of Deformation Modeling:

Minimize

$$\sum [u_i(x, y) \bullet los_i(x, y) - obs_i(x, y)]^2$$

 u_i is a theoretical calculation of ground surface deformation vector (i=1, 2, 3) los_i is the InSAR line-of-sight vector obs_i is the observed deformation (InSAR image) (x, y) is the image coordinate

Non-linear inversion!!!!

Find the best-fitting Model Parameters

Grid Search: A Simple Approach

- 1. Loop through model parameters
- 2. calculate the residual (observed modeled) for each set of model parameters
- 3. Find the set of model parameters that renders the smallest residual

→ best-fitting model parameters

Next Week: A Jupyter Notebook Lab for Estimating Source Parameters

What we will do in the lab:

- We will define a search space for source model location
- We will assume that source depth and magma volume change are known and fixed
- For each set of x and y coordinate parameters:
 - We will run a forward model to produce predicted surface deformation results
 - Calculate difference (residuals) between predicted and measured deformation
- Best fitting model parameters are those that minimize residuals between observations & model prediction

Mt. Peulik Example

Spherical Point Source Model (Mogi Source)

$$u_i(x_1 - x_1', x_2 - x_2', -x_3') = C \frac{x_i - x_i'}{|R^3|}$$

Where x_i' is source location, C is a combination of material properties and source strength, and R is the distance from the source to the surface location

- Best fit Source parameters:
 - Depth: $6.5 \pm 0.2 km$; Volume change: $0.043 \pm 0.002 km^3$

OTHER MORE GENERAL DISPLACEMENT MODELS

The Okada Model

• General solution for rectangular (1985) and point (1992) sources in an elastic half space

Bulletin of the Seismological Society of America, Vol. 75, No. 4, pp. 1135-1154, August 1985

Pros

- Analytical solution, fast to compute
- Can model shear (fault slip) and opening (dike or sill intrusion/collapse)

Cons

- Again, simplifying assumptions are not necessarily realistic
- Cannot tesselate into complex surfaces

SURFACE DEFORMATION DUE TO SHEAR AND TENSILE FAULTS IN A HALF-SPACE

By Yoshimitsu Okada*

Finite Element Models (FEMs)

 Can compute displacements and stresses for generalized solids and sources

Good

- Can incorporate heterogeneous material properties, nonplanar geometries, realistic topography
- Can incorporate more complex rheologies (e.g. viscoelasticity)

Less good

- Making meshes is complicated and slow
- Computing displacements is expensive (minutes to hours)

Gorkha, Nepal earthquake source region (7 million tetrahedral elements!)

Finite Element Models (FEMs)

 Can compute displacements and stresses for generalized solids and sources

Good

- Can incorporate heterogeneous material properties, nonplanar geometries, realistic topography
- Can incorporate more complex rheologies (e.g. viscoelasticity)

Less good

- Making meshes is complicated and slow
- Computing displacements is expensive (minutes to hours)

Boundary Element Models

 Numerical method in which quantities are computed on surfaces rather than in volumes

Yay

- Faster than FEMs
- Polygonal elements can allow complex source geometries
- Can compute stresses, use driving stresses

Nay

- Does not allow heterogeneous material properties
- Slower than analytical codes

Fault surfaces which change in both strike and dip can be meshed without creating gaps.

Polygonal elements easily replicate the irregular boundary of a hydraulic fracture.

A spherical void can be modeled by assembling hexagonal and pentagonal elements in the manner of a soccer ball.

poly3d manual

Data Down Sampling

 InSAR data are highly spatially correlated – you do not need every pixel to capture information on a process

 Typically more data points → longer computation time → down sampling can make modeling more efficient

• For example, quadtree decomposition (right) can divide an unwrapped interferogram into a set of regions with similar variance

Linear vs Non-Linear Inverse Modeling

Linear Inverse Modeling

- If you have
 - Fixed model geometry
 - Linear relationship between model parameters and surface displacements
- Things are fairly straightforward!
 - Model simplifies to a matrix inversion problem:

$$egin{aligned} d &= Gm \ m &= \left(G^TG
ight)^{-1}G^Td \end{aligned}$$
 a matrix of Green's functions

Linear vs Non-Linear Inverse Modeling

Non-Linear Inverse Modeling

UNIVERSITY OF ALASKA FAIRBANKS

- Unfortunately, not everything has a linear relationship with displacement!
 - changes in position/depth
 - changes in dimensions
 - changes in orientation
- In these cases, we may use an optimization approach:
 - forward model displacements using guessed model parameters
 - calculate the fit of the forward model to the data
 - vary the model parameters until a good fit is obtained (e.g. by using an algorithm!)

What's Next?

• This is what awaits next:

Next week Tuesday: Lab on Mogi source inversion from InSAR

