

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

The Pontryagin's Minimum Principle (PMP): Examples

Pontryagin's minimum principle: Example 1

DC motor optimal control

- Plant: An armature-controlled DC motor
- Use the minimum principle to find the armature voltage $e_a(t)$ such that the motor angular velocity ω changes from $\omega(0)=0$ rad/sec at t=0 to $\omega(1)=10$ rad/sec while minimizing the energy dissipated in the armature resistor, R_a
- No constraints on e_a
- The energy dissipated in the armature resistor is

$$J = \int_0^1 R_a i_a(t)^2 dt,$$

where i_a is the armature current.

- Represent the expression for the energy dissipated in the armature resistor in terms of ω and e_a
- Apply Ohm's law to the armature circuit to get

$$e_a - K_b \omega = R_a i_a$$

The Hamiltonian function

Hence

$$J = \int_0^1 R_a i_a(t)^2 dt = \int_0^1 \frac{(e_a - K_b \omega)^2}{R_a} dt.$$

The Hamiltonian function

$$H = \frac{(e_a - K_b \omega)^2}{R_a} + p \left(-\frac{K_i K_b}{R_a I_{eq}} \omega + \frac{K_i}{I_{eq} R_a} e_a \right)$$

• No constraints on e_a , we can find the optimal control by solving the equation

$$0 = \frac{\partial H}{\partial e_a} = \frac{2(e_a - K_b \omega)}{R_a} + \frac{K_i}{I_{ea}R_a} p$$

• Hence,

$$e_a = 2\omega - p$$

Costate equation

The costate equation

$$\dot{p} = -\frac{\partial H}{\partial \omega} = \frac{2K_b\left(e_a - K_b\omega\right)}{R_a} + \frac{K_iK_b}{R_aI_{eq}}p = 2(e_a - 2\omega) + 2p$$

Substituting gives

$$\dot{p}=0$$

• Hence,

$$p(t) = constant = c$$

Therefore,

$$e_a = 2\omega - c$$

Hence

$$\dot{\omega} = -c$$

Optimal control

• Solving $\dot{\omega} = -c$ yields

$$\omega(t) = -ct + \omega(0) = -ct$$

because $\omega(0) = 0$

- Use the boundary condition $\omega(1) = 10$ to find c = -10
- Hence, the optimal armature voltage

$$e_a^*(t) = 20t + 10$$

Example 2

The plant

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$= \mathbf{A}\mathbf{x} + \mathbf{b}u$$

The performance index

$$J=\int_0^{t_f}dt$$

The control is required to satisfy

$$|u(t)| \leq 1$$

for all $t \in [0, t_f]$

- This constraint means that the control must have magnitude no greater than 1
- Objective: find admissible control minimizing J that transfers the system from a given initial x_0 to the origin

Solving the costate equation

The Hamiltonian function

$$H = 1 + \boldsymbol{p}^{\top} (\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\boldsymbol{u})$$

$$= 1 + \begin{bmatrix} p_1 & p_2 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{u} \end{pmatrix}$$

$$= 1 + p_1 x_2 + p_2 \boldsymbol{u}$$

• The costate equations are

$$\left[\begin{array}{c}\dot{p}_1\\\dot{p}_2\end{array}\right]=-\left[\begin{array}{c}\frac{\partial H}{\partial x_1}\\\frac{\partial H}{\partial x_2}\end{array}\right]=\left[\begin{array}{c}0\\-p_1\end{array}\right]$$

Solving the costate equations

$$p_1 = d_1$$
 and $p_2 = -d_1t + d_2$,

where d_1 and d_2 are integration constants

Admissible control

Find an admissible control minimizing the Hamiltonian

$$\arg_{u} \min H = \arg_{u} \min(1 + p_{1}x_{2} + p_{2}u)
= \arg_{u} \min(p_{2}u)
= \begin{cases} u(t) = 1 & \text{if } p_{2} < 0 \\ u(t) = ? & \text{if } p_{2} = 0 \\ u(t) = -1 & \text{if } p_{2} > 0 \end{cases}$$

- If $p_2 = 0$ is not sustained over an interval time, the control law is piecewise constant taking the values 1 or -1
- This control law has at most two intervals of constancy because the argument is a linear function, $-d_1t + d_2$, that changes its sign at most once
- This type of control is called a *bang-bang control* because it switches back and forth between its extreme values

Bang-bang control

 Implement the bang-bang control law using a relay element, which is a signum function, as

$$u^*(t) = -\operatorname{sgn}(p_2^*) = -\operatorname{sgn}(-d_1t + d_2),$$

where "sgn" is the label for the signum function defined as

$$\operatorname{sgn}(z) = \left\{ egin{array}{ll} rac{z}{|z|} & \operatorname{or} & rac{|z|}{z} & \operatorname{if} & z
eq 0 \\ & 0 & \operatorname{if} & z = 0 \end{array}
ight. = \left\{ egin{array}{ll} 1 & \operatorname{if} & z > 0 \\ 0 & \operatorname{if} & z = 0 \\ -1 & \operatorname{if} & z < 0 \end{array}
ight.$$

- System trajectories for u = 1 and u = -1 are families of parabolas
- Only one parabola from each family passes through the specified terminal point $\mathbf{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathsf{T}}$ in the state plane

Trajectories for u = 1

Trajectories for u = -1

Switching curve

 Segments of the two parabolas through the origin form the switching curve,

$$x_1 = -\frac{1}{2}x_2^2\operatorname{sgn}(x_2)$$

- If an initial state is above the switching curve, then u = -1 is used until the switching curve is reached
- Then, u = 1 is used to reach the origin
- For an initial state below the switching curve, the control u=1 is used first to reach the switching curve, and then the control is switched to u=-1
- Implement the above control action as u = -sgn(v), where

$$v = v(x_1, x_2) = x_1 + \frac{1}{2}x_2^2 \operatorname{sgn}(x_2)$$

is the equation describing the switching curve

The closed-loop system

The switching curve

$$v = v(x_1, x_2) = x_1 + \frac{1}{2}x_2^2 \operatorname{sgn}(x_2)$$

- Can use $u = -\operatorname{sgn}(v)$ to synthesize a closed-loop system such that starting at an arbitrary initial state in the state plane, the trajectory will always be moving in an optimal fashion towards the origin
- Once the origin is reached, the trajectory will stay there.

Phase portrait of the closed-loop system

