L. Vandenberghe ECE133A (Fall 2018)

6. QR factorization

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- Householder algorithm

Triangular matrix

a square matrix A is **lower triangular** if $A_{ij} = 0$ for j > i

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 & 0 \\ A_{21} & A_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ A_{n-1,1} & A_{n-1,2} & \cdots & A_{n-1,n-1} & 0 \\ A_{n1} & A_{n2} & \cdots & A_{n,n-1} & A_{nn} \end{bmatrix}$$

A is **upper triangular** if $A_{ij} = 0$ for j < i (the transpose A^T is lower triangular)

a triangular matrix is **unit** upper/lower triangular if $A_{ii} = 1$ for all i

Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

Algorithm

$$x_{1} = b_{1}/A_{11}$$

$$x_{2} = (b_{2} - A_{21}x_{1})/A_{22}$$

$$x_{3} = (b_{3} - A_{31}x_{1} - A_{32}x_{2})/A_{33}$$

$$\vdots$$

$$x_{n} = (b_{n} - A_{n1}x_{1} - A_{n2}x_{2} - \dots - A_{n,n-1}x_{n-1})/A_{nn}$$

Complexity: $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ flops

Back substitution

solve Ax = b when A is upper triangular with nonzero diagonal elements

Algorithm

$$x_{n} = b_{n}/A_{nn}$$

$$x_{n-1} = (b_{n-1} - A_{n-1,n}x_{n})/A_{n-1,n-1}$$

$$x_{n-2} = (b_{n-2} - A_{n-2,n-1}x_{n-1} - A_{n-2,n}x_{n})/A_{n-2,n-2}$$

$$\vdots$$

$$x_{1} = (b_{1} - A_{12}x_{2} - A_{13}x_{3} - \dots - A_{1n}x_{n})/A_{11}$$

Complexity: n^2 flops

Inverse of a triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:

$$Ax = 0 \implies x = 0$$

this follows from forward or back substitution applied to the equation Ax = 0

• inverse of A can be computed by solving AX = I column by column

$$A \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$
 $(x_i \text{ is column } i \text{ of } X)$

- inverse of lower triangular matrix is lower triangular
- inverse of upper triangular matrix is upper triangular
- complexity of computing inverse of $n \times n$ triangular matrix is

$$n^2 + (n-1)^2 + \dots + 1 \approx \frac{1}{3}n^3$$
 flops

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- Householder algorithm

QR factorization

if $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix}$$

• vectors q_1, \ldots, q_n are orthonormal m-vectors:

$$||q_i|| = 1,$$
 $q_i^T q_j = 0$ if $i \neq j$

- diagonal elements R_{ii} are nonzero
- if $R_{ii} < 0$, we can switch the signs of R_{ii}, \ldots, R_{in} , and the vector q_i
- most definitions require $R_{ii} > 0$; this makes Q and R unique

QR factorization in matrix notation

if $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = QR$$

Q-factor

- Q is $m \times n$ with orthonormal columns $(Q^TQ = I)$
- if A is square (m = n), then Q is orthogonal $(Q^TQ = QQ^T = I)$

R-factor

- R is $n \times n$, upper triangular, with nonzero diagonal elements
- *R* is nonsingular (diagonal elements are nonzero)

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

$$= QR$$

Applications

in the following lectures, we will use the QR factorization to solve

- linear equations
- least squares problems
- constrained least squares problems

here, we show that it gives useful simple formulas for

- the pseudo-inverse of a matrix with linearly independent columns
- the inverse of a nonsingular matrix
- projection on the range of a matrix with linearly independent columns

QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix A with linearly independent columns (page 4.23)

$$A^{\dagger} = (A^T A)^{-1} A^T$$

pseudo-inverse in terms of QR factors of A:

$$A^{\dagger} = ((QR)^{T}(QR))^{-1}(QR)^{T}$$

$$= (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}$$

$$= (R^{T}R)^{-1}R^{T}Q^{T} \qquad (Q^{T}Q = I)$$

$$= R^{-1}R^{-T}R^{T}Q^{T} \qquad (R \text{ is nonsingular})$$

$$= R^{-1}Q^{T}$$

• for square nonsingular *A* this is the inverse:

$$A^{-1} = (QR)^{-1} = R^{-1}Q^T$$

Range

recall definition of range of a matrix $A \in \mathbb{R}^{m \times n}$ (page 5.16):

$$\operatorname{range}(A) = \{Ax \mid x \in \mathbf{R}^n\}$$

suppose A has linearly independent columns with QR factors Q, R

• *Q* has the same range as *A*:

$$y \in \operatorname{range}(A) \iff y = Ax \text{ for some } x$$
 $\iff y = QRx \text{ for some } x$
 $\iff y = Qz \text{ for some } z$
 $\iff y \in \operatorname{range}(Q)$

ullet columns of Q are orthonormal and have the same span as columns of A

Projection on range

• combining A = QR and $A^{\dagger} = R^{-1}Q^{T}$ (from page 6.10) gives

$$AA^{\dagger} = QRR^{-1}Q^T = QQ^T$$

note the order of the product in AA^{\dagger} and the difference with $A^{\dagger}A=I$

• recall (from page 5.17) that QQ^Tx is the projection of x on the range of Q

QR factorization of complex matrices

if $A \in \mathbb{C}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = QR$$

- $Q \in \mathbb{C}^{m \times n}$ has orthonormal columns $(Q^H Q = I)$
- $R \in \mathbb{C}^{n \times n}$ is upper triangular with real nonzero diagonal elements
- most definitions choose diagonal elements R_{ii} to be positive
- in the rest of the lecture we assume A is real

Algorithms for QR factorization

Gram–Schmidt algorithm (page 6.15)

- complexity is $2mn^2$ flops
- not recommended in practice (sensitive to rounding errors)

Modified Gram–Schmidt algorithm

- complexity is $2mn^2$ flops
- better numerical properties

Householder algorithm (page 6.25)

- complexity is $2mn^2 (2/3)n^3$ flops
- represents Q as a product of elementary orthogonal matrices
- the most widely used algorithm (used by the function qr in MATLAB and Julia)

in the rest of the course we will take $2mn^2$ for the complexity of QR factorization

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- Householder algorithm

Gram-Schmidt algorithm

Gram-Schmidt QR algorithm computes Q and R column by column

after k steps we have a partial QR factorization

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_k \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1k} \\ 0 & R_{22} & \cdots & R_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{kk} \end{bmatrix}$$

- columns q_1, \ldots, q_k are orthonormal
- diagonal elements R_{11} , R_{22} , ..., R_{kk} are positive
- columns q_1, \ldots, q_k have the same span as a_1, \ldots, a_k (see page 6.11)

Computing column k

suppose we have completed the factorization for the first k-1 columns

• column k of the equation A = QR reads

$$a_k = R_{1k}q_1 + R_{2k}q_2 + \cdots + R_{k-1,k}q_{k-1} + R_{kk}q_k$$

• regardless of how we choose $R_{1k}, \ldots, R_{k-1,k}$, the vector

$$\tilde{q}_k = a_k - R_{1k}q_1 - R_{2k}q_2 - \dots - R_{k-1,k}q_{k-1}$$

will be nonzero: a_1, a_2, \ldots, a_k are linearly independent and therefore

$$a_k \notin \text{span}\{a_1, \dots, a_{k-1}\} = \text{span}\{q_1, \dots, q_{k-1}\}$$

- q_k is \tilde{q}_k normalized: choose $R_{kk} = \|\tilde{q}_k\|$ and $q_k = (1/R_{kk})\tilde{q}_k$
- \tilde{q}_k and q_k are orthogonal to q_1, \ldots, q_{k-1} if we choose $R_{1k}, \ldots, R_{k-1,k}$ as

$$R_{1k} = q_1^T a_k, \qquad R_{2k} = q_2^T a_k, \qquad \dots, \qquad R_{k-1,k} = q_{k-1}^T a_k$$

Gram-Schmidt algorithm

Given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n

Algorithm

for k = 1 to n

$$R_{1k} = q_1^T a_k$$

$$R_{2k} = q_2^T a_k$$

$$\vdots$$

$$R_{k-1,k} = q_{k-1}^T a_k$$

$$\tilde{q}_k = a_k - (R_{1k}q_1 + R_{2k}q_2 + \dots + R_{k-1,k}q_{k-1})$$

$$R_{kk} = ||\tilde{q}_k||$$

$$q_k = \frac{1}{R_{kk}} \tilde{q}_k$$

example on page 6.8:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

First column of Q and R

$$\tilde{q}_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \qquad R_{11} = \|\tilde{q}_1\| = 2, \qquad q_1 = \frac{1}{R_{11}} \tilde{q}_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

Second column of Q and R

- compute $R_{12} = q_1^T a_2 = 4$
- compute

$$\tilde{q}_2 = a_2 - R_{12}q_1 = \begin{bmatrix} -1 \\ 3 \\ -1 \\ 3 \end{bmatrix} - 4 \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

normalize to get

$$R_{22} = \|\tilde{q}_2\| = 2,$$
 $q_2 = \frac{1}{R_{22}}\tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$

Third column of Q and R

- compute $R_{13} = q_1^T a_3 = 2$ and $R_{23} = q_2^T a_3 = 8$
- compute

$$\tilde{q}_3 = a_3 - R_{13}q_1 - R_{23}q_2 = \begin{bmatrix} 1\\3\\5\\7 \end{bmatrix} - 2 \begin{bmatrix} -1/2\\1/2\\-1/2\\1/2 \end{bmatrix} - 8 \begin{bmatrix} 1/2\\1/2\\1/2\\1/2 \end{bmatrix} = \begin{bmatrix} -2\\-2\\2\\1/2 \end{bmatrix}$$

normalize to get

$$R_{33} = \|\tilde{q}_3\| = 4,$$
 $q_3 = \frac{1}{R_{33}}\tilde{q}_3 = \begin{vmatrix} -1/2 \\ -1/2 \\ 1/2 \end{vmatrix}$

Final result

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$
$$= \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

Complexity

Complexity of cycle k (of algorithm on page 6.17)

- k-1 inner products with a_k : (k-1)(2m-1) flops
- computation of \tilde{q}_k : 2(k-1)m flops
- computing R_{kk} and q_k : 3m flops

total for cycle k: (4m-1)(k-1) + 3m flops

Complexity for $m \times n$ factorization:

$$\sum_{k=1}^{n} ((4m-1)(k-1) + 3m) = (4m-1)\frac{n(n-1)}{2} + 3mn$$

$$\approx 2mn^2 \text{ flops}$$

Numerical experiment

we use the following MATLAB code

```
[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n
    R(1:k-1,k) = Q(:,1:k-1)' * A(:,k);
    v = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
    R(k,k) = norm(v);
    Q(:,k) = v / R(k,k);
end;
```

- we apply this to a square matrix A of size m = n = 50
- A is constructed as A = USV with U, V orthogonal, S diagonal with

$$S_{ii} = 10^{-10(i-1)/(n-1)}, \quad i = 1, \dots, n$$

Numerical experiment

plot shows deviation from orthogonality between q_k and previous columns

$$e_k = \max_{1 \le i < k} |q_i^T q_k|, \quad k = 2, ..., n$$

loss of orthogonality is due to rounding error

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- Householder algorithm

Householder algorithm

- the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
- less sensitive to rounding error than Gram–Schmidt algorithm
- computes a 'full' QR factorization

$$A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} Q & \tilde{Q} \end{bmatrix}$$
 orthogonal

• the full Q-factor is constructed as a product of orthogonal matrices

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} = H_1 H_2 \cdots H_n$$

each H_i is an $m \times m$ symmetric, orthogonal 'reflector' (page 5.10)

Reflector

$$H = I - 2vv^T \qquad \text{with } ||v|| = 1$$

- Hx is reflection of x through hyperplane $\{z \mid v^Tz = 0\}$ (see page 5.10)
- *H* is symmetric
- *H* is orthogonal
- matrix-vector product Hx can be computed efficiently as

$$Hx = x - 2(v^T x)v$$

complexity is 4p flops if v and x have length p

Reflection to multiple of unit vector

given nonzero p-vector $y = (y_1, y_2, \dots, y_p)$, define

$$w = \begin{bmatrix} y_1 + \operatorname{sign}(y_1) || y || \\ y_2 \\ \vdots \\ y_p \end{bmatrix}, \quad v = \frac{1}{\|w\|} w$$

- we define sign(0) = 1
- vector w satisfies

$$||w||^2 = 2(w^T y) = 2||y||(||y|| + |y_1|)$$

• reflector $H = I - 2vv^T$ maps y to multiple of $e_1 = (1, 0, ..., 0)$:

$$Hy = y - \frac{2(w^T y)}{\|w\|^2} w = y - w = -\text{sign}(y_1) \|y\| e_1$$

Geometry

the reflection through the hyperplane $\{x \mid w^Tx = 0\}$ with normal vector

$$w = y + \operatorname{sign}(y_1) ||y|| e_1$$

maps y to the vector $-\text{sign}(y_1)||y||e_1$

Householder triangularization

• computes reflectors H_1, \ldots, H_n that reduce A to triangular form:

$$H_nH_{n-1}\cdots H_1A=\left[\begin{array}{c} R\\0\end{array}\right]$$

• after step k, the matrix $H_k H_{k-1} \cdots H_1 A$ has the following structure:

(elements in positions i, j for i > j and $j \le k$ are zero)

Householder algorithm

the following algorithm overwrites A with $\begin{bmatrix} R \\ 0 \end{bmatrix}$

Algorithm: for k = 1 to n,

1. define $y = A_{k:m,k}$ and compute (m - k + 1)-vector v_k :

$$w = y + \text{sign}(y_1) ||y|| e_1, \qquad v_k = \frac{1}{||w||} w$$

2. multiply $A_{k:m,k:n}$ with reflector $I - 2v_k v_k^T$:

$$A_{k:m,k:n} := A_{k:m,k:n} - 2v_k(v_k^T A_{k:m,k:n})$$

(see page 109 in textbook for 'slice' notation for submatrices)

Comments

• in step 2 we multiply $A_{k:m,k:n}$ with the reflector $I - 2v_k v_k^T$:

$$(I - 2v_k v_k^T) A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n})$$

• this is equivalent to multiplying A with $m \times m$ reflector

$$H_k = \begin{bmatrix} I & 0 \\ 0 & I - 2v_k v_k^T \end{bmatrix} = I - 2 \begin{bmatrix} 0 \\ v_k \end{bmatrix} \begin{bmatrix} 0 \\ v_k \end{bmatrix}^T$$

• algorithm overwrites A with

$$\left[\begin{array}{c} R \\ 0 \end{array}\right]$$

and returns the vectors v_1, \ldots, v_n , with v_k of length m - k + 1

example on page 6.8:

$$A = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = H_1 H_2 H_3 \begin{bmatrix} R \\ 0 \end{bmatrix}$$

we compute reflectors H_1 , H_2 , H_3 that triangularize A:

$$H_3H_2H_1A = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \\ 0 & 0 & 0 \end{bmatrix}$$

First column of R

• compute reflector that maps first column of A to multiple of e_1 :

$$y = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad w = y - \|y\|e_1 = \begin{bmatrix} -3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad v_1 = \frac{1}{\|w\|}w = \frac{1}{2\sqrt{3}} \begin{bmatrix} -3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

• overwrite A with product of $I - 2v_1v_1^T$ and A

$$A := (I - 2v_1v_1^T)A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}$$

Second column of R

• compute reflector that maps $A_{2:4,2}$ to multiple of e_1 :

$$y = \begin{bmatrix} 4/3 \\ 2/3 \\ 4/3 \end{bmatrix}, \quad w = y + \|y\|e_1 = \begin{bmatrix} 10/3 \\ 2/3 \\ 4/3 \end{bmatrix}, \quad v_2 = \frac{1}{\|w\|}w = \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$$

• overwrite $A_{2:4,2:3}$ with product of $I - 2v_2v_2^T$ and $A_{2:4,2:3}$:

$$A := \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_2v_2^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}$$

Third column of R

• compute reflector that maps $A_{3:4,3}$ to multiple of e_1 :

$$y = \begin{bmatrix} 16/5 \\ 12/5 \end{bmatrix}, \quad w = y + \|y\|e_1 = \begin{bmatrix} 36/5 \\ 12/5 \end{bmatrix}, \quad v_3 = \frac{1}{\|w\|}w = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

• overwrite $A_{3:4,3}$ with product of $I - 2v_3v_3^T$ and $A_{3:4,3}$:

$$A := \begin{bmatrix} I & 0 \\ 0 & I - 2v_3v_3^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

Final result

$$H_{3}H_{2}H_{1}A = \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_{2}v_{2}^{T} \end{bmatrix} (I - 2v_{1}v_{1}^{T})A$$

$$= \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_{2}v_{2}^{T} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

Complexity

Complexity in cycle k (of algorithm on page 6.30): the dominant terms are

- (2(m-k+1)-1)(n-k+1) flops for product $v_k^T(A_{k:m,k:n})$
- (m-k+1)(n-k+1) flops for outer product with v_k
- (m-k+1)(n-k+1) flops for subtraction from $A_{k:m,k:n}$

sum is roughly 4(m-k+1)(n-k+1) flops

Total for computing R and vectors v_1, \ldots, v_n :

$$\sum_{k=1}^{n} 4(m-k+1)(n-k+1) \approx \int_{0}^{n} 4(m-t)(n-t)dt$$

$$= 2mn^{2} - \frac{2}{3}n^{3} \text{ flops}$$

Q-factor

the Householder algorithm returns the vectors v_1, \ldots, v_n that define

$$\left[\begin{array}{cc} Q & \tilde{Q} \end{array}\right] = H_1 H_2 \cdots H_n$$

- ullet usually there is no need to compute the matrix [Q $ilde{Q}$] explicitly
- the vectors v_1, \ldots, v_n are an economical representation of $[Q \ \tilde{Q}]$
- ullet products with [Q $ilde{Q}$] or its transpose can be computed as

$$\left[\begin{array}{cc} Q & \tilde{Q} \end{array}\right] x = H_1 H_2 \cdots H_n x$$

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix}^T y = H_n H_{n-1} \cdots H_1 y$$

Multiplication with Q-factor

• the matrix-vector product $H_k x$ is defined as

$$H_k x = \begin{bmatrix} I & 0 \\ 0 & I - 2v_k v_k^T \end{bmatrix} \begin{bmatrix} x_{1:k-1} \\ x_{k:m} \end{bmatrix} = \begin{bmatrix} x_{1:k-1} \\ x_{k:m} - 2(v_k^T x_{k:m}) v_k \end{bmatrix}$$

- complexity of multiplication $H_k x$ is 4(m-k+1) flops:
- complexity of multiplication with $H_1H_2\cdots H_n$ or its transpose is

$$\sum_{k=1}^{n} 4(m-k+1) \approx 4mn - 2n^2 \text{ flops}$$

• roughly equal to matrix-vector product with $m \times n$ matrix (2mn flops)