Homework 4.

(Due Apr. 30)

Problem 16 (Exercise 4.14). Let I = [0,1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

Problem 17 (Exercise 4.18). Every rational x can be written in the form x = m/n, where n > 0, and m and n are integers without any common divisors. When x = 0, we take n = 1. Consider the function f defined on \mathbb{R}^1 by

$$f(x) = \begin{cases} 0 & (x \text{ irrational}), \\ \frac{1}{n} & \left(x = \frac{m}{n}\right). \end{cases}$$

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point.

Problem 18 (Exercise 4.21). Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Prove that there exists $\delta > 0$ such that $d(p,q) > \delta$ if $p \in K$, $q \in F$. Show that the conclusion may fail for two disjoint closed sets if neither is compact.

Problem 19 (Exercise 5.1). Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is constant.

Problem 20 (Exercise 5.3). Suppose g is a real function on \mathbb{R}^1 , with bounded derivative (say $|g'| \leq M$). Fix $\epsilon > 0$, and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough. (A set of admissible values of ϵ can be determined which depends only on M.)