Dr. Andreas Wachtel

Lab. 5, Gradiente Conjugado (pág. 1 de 3)

Objetivos:

- Comparar los algoritmos del gradiente conjugado.
- ullet Ver que llegan en ℓ iteraciones, donde ℓ es el número de eigenvalores distintos.

Recordamos la teoría. Sean $A \in \mathbb{R}^{n \times n}$ simétrica positiva definida y $\vec{b} \in \mathbb{R}^n$.

Vimos que la única solución del sistema

$$A\vec{x} = \vec{b}$$

también es el único mínimo de la función

$$\phi(\vec{x}) \coloneqq \frac{1}{2} \vec{x}^{\top} A \vec{x} - \vec{x}^{\top} \vec{b}$$
.

Sabemos que

- $\nabla \phi(\vec{x}) = A\vec{x} \vec{b} =: \vec{r}(\vec{x})$
- Dada una dirección \vec{d} , la solución del problema

$$\min_{\alpha \in \mathbb{R}} \phi(\vec{\boldsymbol{x}} + \alpha \vec{\boldsymbol{d}})$$

es

$$\alpha_\star = -\frac{\vec{\boldsymbol{d}}^T \nabla \phi(\vec{\boldsymbol{x}})}{\vec{\boldsymbol{d}}^T A \vec{\boldsymbol{d}}} = -\frac{\vec{\boldsymbol{d}}^T \vec{\boldsymbol{r}}(\vec{\boldsymbol{x}})}{\vec{\boldsymbol{d}}^T A \vec{\boldsymbol{d}}} \; .$$

• Tomando un vector canónico, digamos \vec{e}_i , tenemos

$$\alpha_{\star} = \frac{-[\vec{r}(\vec{x})]_j}{A_{jj}} \,.$$

y el nuevo punto $\vec{x} + \alpha_{\star} \vec{e}_{j}$ solo cambia en una entrada.

Observaciones y algoritmos.

- Si $A \in \mathbb{R}^{n \times n}$ es diagonal y positiva definida, entonces los vectores canónicos son A-conjugados. En este caso, el método de direcciones conjugadas (con los vectores canónicos como base A-conjugada) coincide con el método de descenso por coordenadas para funciones cuadráticas cuya hessiana A es diagonal y positiva definida.
- En seguida describimos el método de descenso cíclico por coordenadas para funciones cuadráticas cuya hessiana es positiva definida (no necesariamente diagonal).

Algoritmo: Descenso cíclico (para cuadráticas)

Dados $A \in \mathbb{R}^{n \times n}$ simétrica positiva definida y $\vec{b}, \vec{x}_0 \in \mathbb{R}^n$.

Sean $\left\{ \vec{e}_{j}\right\} _{j}$ los vectores canónicos.

Iniciar $\vec{r}_0 \leftarrow A\vec{x}_0 - \vec{b}$, $k \leftarrow 0$, $j \leftarrow 1$

 $\textit{Mientras} \;\; \|\vec{\boldsymbol{r}}_k\| > tol$

$$\begin{aligned} \alpha_k &\leftarrow -\frac{\vec{\boldsymbol{r}}_k^T \vec{\boldsymbol{e}}_j}{\vec{\boldsymbol{e}}_j^T A \vec{\boldsymbol{e}}_j} \\ \vec{\boldsymbol{x}}_{k+1} &\leftarrow \vec{\boldsymbol{x}}_k + \alpha_k \vec{\boldsymbol{e}}_j \\ \vec{\boldsymbol{r}}_{k+1} &\leftarrow A \vec{\boldsymbol{x}}_{k+1} - \vec{\boldsymbol{b}} \\ j &\leftarrow 1 + \operatorname{mod}(j, n) \\ k &\leftarrow k + 1 \end{aligned}$$

fin (mientras)

Ejercicio:

■ Implementar el algoritmo Descenso cíclico, tal que, no se usan operaciones con vectores para calcular α_k y \vec{x}_{k+1} .

Algoritmo 3 (CG versión 1). Ver notas en la página 64.

Algoritmo 3 (CG versión práctica). La versión 1 con las nuevas formulas para α_k y β_{k+1} , ver la página 65.

Experimentos.

- 1) El algoritmo del descenso cíclico termina en n iteraciones cuando A es diagonal. Haga un experimento.
- 2) Use las dos versiones del algoritmo CG (versión 1 y versión práctica) y para resolver el sistema $A\vec{x} = \vec{b}$.
 - \blacksquare verifique si los algoritmos llegan en n iteraciones.
 - compare los residuos y las soluciones.
 - Supuestamente, la versión práctica es más precisa. ¿Lo puedes ver en los resultados?

Para ese experimento tome la matriz (tri-diagonal) $A \in \mathbb{R}^{50 \times 50}$ del spline cúbico (sobre una malla equidistante), es decir

$$A = \begin{pmatrix} 2 & 1 & & \\ 1 & 2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 2 \end{pmatrix}$$
 \text{\text{\text{útil: np.diag}}}

y $\vec{\boldsymbol{b}} \in \mathbb{R}^{50}$ el vector de unos.

3) En el primer paso el método CG es el método de mayor descenso. Vimos que este (último) método llega en un paso si los eigenvalores de A son iguales, es decir, los conjuntos de nivel de ϕ en \mathbb{R}^n son bolas.

Si se restringe ϕ a un eigenespacio $\operatorname{Eig}_{\lambda}(A) = \{\vec{\boldsymbol{v}} : A\vec{\boldsymbol{v}} = \lambda\vec{\boldsymbol{v}}\}$ sus conjuntos de nivel son bolas en $\mathbb{R}^{\dim(\operatorname{Eig}_{\lambda}(A))}$. Eso da la intuición, que para cada eigenvalor alcanza un paso para encontrar el mínimo en esta bola.

Verifique esta intuición:

a) Usar np.random.rand para construir una matriz aleatoria W. Use python para encontrar la factorización QR de W. Luego define A simétrica pos. def. por

$$A := QDQ^T$$
 para alguna diagonal D .

- b) Escoger D tal que tenga un eigenvalor, 2, 5, 10, n eigenvalores distintos pero con dimensión más grande.
- c) ver cuantas iteraciones requiere el algoritmo CG.
- 4) Un ejemplo extremadamente mal condicionado para n > 7.

Usar A = LA.pascal(n); b = np.ones(n); (Entonces
$$\vec{x}^* = \vec{e}_1$$
 para todo n).

El descenso ciclico que empieza en $\vec{x}_0 = \vec{0}$ encuentra la solución en un solo paso. Pero, debido a errores de redondeo, los algoritmos CG no siempre llegan en n iteraciones a la solución. Hacer dos plots

residuos vs. paso(k) y error en norma máxima vs. paso(k).