ZADANIA Z ALGEBRY I LOGIKI Zestaw 4^1

1. Które z poniższych funkcji są różnowartościowe, a które są 'na'? Jeśli funkcja jest bijekcją wyznaczyć funkcję odwrotną.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$,

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3$

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2^x$

(d)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2^x + x$,

(e)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{2x}{x^2 + 1}$,
(f) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x2^{x-1}$

(f)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^{2x-1},$$

(g)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} \sqrt{x+1} & \text{dla } x \ge 0, \\ 2x & \text{dla } x < 0, \end{cases}$

(g)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 = x^2$,
(g) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \sqrt{x+1} & \text{dla } x \ge 0, \\ 2x & \text{dla } x < 0, \end{cases}$
(h) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \frac{x}{x+1} & \text{dla } x \ne -1, \\ 1 & \text{dla } x = -1, \end{cases}$

2. Dla jakiej wartości parametru a funkcja

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ egin{array}{ll} \frac{x+1}{x-2} & \mathrm{dla} & x \neq 2, \\ a & \mathrm{dla} & x = 2, \end{array} \right.$$

jest bijekcją? Wyznaczyć funkcję odwrotną.

3. Wypisać wszystkie funkcje przekształcające zbiór {1,2} w siebie. Skonstruować tabelkę składania tych funkcji.

4. Wypisać wszystkie bijekcje zbioru {1,2,3} na siebie. Skonstruować tabelkę składania tych funkcji. Dla każdej funkcji wyznaczyć funkcję odwrotną.

5. Udowodnić, że złożenie iniekcji jest iniekcją, a złożenie surjekcji jest surjekcją. Wywnioskować stąd, że złożenie bijekcji jest bijekcją.

6. Niech $f: X \to X$ będzie odwzorowaniem różnowartościowym, a $g: X \to X$ X dowolnym odwzorowaniem. Niech przy tym $f \circ g = f$. Udowodnić, że wtedy $q = id_X$.

7. Niech $f: X \to X$ będzie odwzorowaniem 'na', a $g: X \to X$ dowolnym odwzorowaniem. Niech przy tym $g \circ f = f$. Udowodnić, że wtedy $g = id_X$.

¹Większość zadań pochodzi ze zbioru W. Marek, J.Onyszkiewicz "Elementy logiki matematycznej i teorii mnogości w zadaniach", PWN, Warszawa 1991.

- **8.** Załóżmy, że $f:X\to Y,\,g:Y\to Z$ są odwzorowaniami takimi, że $g\circ f$ jest 'na', zaś g jest odwzorowaniem różnowartościowym. Udowodnić, że f jest 'na'.
- **9.** Podać przykład odwzorowania $f: X \to X$ takiego, że $f \circ f = f$ i $f \neq id_X$.
- **10.** Podać przykład odwzorowania $f: X \to X$, które jest 'na' i które nie jest różnowartościowe. Czy taki przykład istnieje gdy zbiór jest skończony?
- **11.** Podać przykład odwzorowania $f: X \to X$, które jest różnowartościowe i które nie jest 'na'. Czy taki przykład istnieje gdy zbiór jest skończony?
- 12. Czy funkcja $f:\{0,1\}^4 \to \{0,1\}^4$, $f(a_1a_2a_3a_4) = \bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4$, gdzie $\bar{a}=1-a$ jest bijekcją? Obliczyć f(1101). Wyznaczyć $\underbrace{f\circ f\circ\ldots\circ f}_n$ dla wszystkich n naturalnych. Wyznaczyć $f(\{1111,0101\})$ oraz $f^1(\{1101,1101,1100\})$
- **13.** Dana jest funkcja $f: X \to Y$ oraz podzbiory $A_1, A_2 \subset X, B_1, B_2 \subset Y$. W miejsce kropek wstawić jeden ze znaków $\subset, \supset, =$:
- (a) $f(A_1 \cup A_2) \dots f(A_1) \cup f(A_2)$,
- (b) $f(A_1 \cap A_2) \dots f(A_1) \cap f(A_2)$,
- (c) $f^{-1}(B_1 \cup B_2) \dots f(B_1) \cup f(B_2)$,
- (d) $f^{-1}(B_1 \cap B_2) \dots f(B_1) \cap f(B_2)$,