Задача №6

Элемент **W** образует три бинарных соединения A_1 , A_2 , A_3 , имеющих одинаковый стехиометрический состав. Данные вещества имеют широкое применение, например, A_1 используется в качестве мягкого восстановителя, A_2 и A_3 применяются в качестве полупроводников. Однако, прямым взаимодействием получить вещества A_1 - A_3 достаточно сложно, так как образуются побочные продукты - соединения B_1 , B_2 , B_3 . Для синтеза соединений A_1 - A_3 используют белые кристаллы вещества **К**.

10,000 г вещества **К** аккуратно растворили в 200 мл воды. Образовавшийся раствор разделили на три равные части. К первой части добавили раствор аммиака до рH = 10 (реакция 1). Выпавший осадок отфильтровали и прокалили в атмосфере аргона (реакция 2). При этом получили 1,991 г вещества A_1 . К второй части раствора добавили раствор, содержащий 1,05-кратный избыток сульфида натрия (реакция 3). При этом получили 2,227 г вещества A_2 . К третьей части раствора добавили 100 мл раствора гидразина N_2H_4 и 1,167 г простого вещества

L (реакция 4). В результате получили 2,920 г вещества A₃. Во всех случаях, при добавлении нитрата серебра к фильтрату наблюдалось выпадение белого творожистого осадка.

- 1) Определите элемент **W**, рассчитайте состав веществ **K**, A_1 , A_2 , A_3 и определите простое вещество **L**. (При расчётах молярные массы атомов необходимо округлять до целых).
 - 2) Напишите уравнения реакций 1-4.
- Определите соединения B₁-B₃ и напишите уравнения реакций их получения взаимодействием соответствующих простых.

<u>Решение</u>

T.к. при добавлении к фильтрату нитрата серебра наблюдалось выпадение белого творожистого осадка, то соль K — это хлорид.

Тогда можно составить следующую схему синтеза:

$$\Im Cl_n \to \Im (OH)_n \to \Im_2 O_n$$

$$\Im Cl_n \rightarrow \Im_2 S_n$$

Так как исходный раствор разделили на три равные части, то

$$\nu(\Im_2 O_n) = \nu(\Im_2 S_n)$$
, тогда

$$\frac{1,99}{2X+16n} = \frac{2,226}{2X+32n} \Rightarrow X = 59,46n$$

При n = 2, X = 119 г/моль, что соответствует олову (Sn)

Тогда, $A_1 - SnO$, $A_2 - SnS$

$$A_3 - SnL$$
, $M(SnL) = 2,92 \times 135/1,99 = 198$ г/моль, $M(L) = 79$ г/моль – Se

 $A_3 - SnSe$

$$M(K) = \frac{10 \times 135}{3 \times 1.99} = 226$$
 г/моль

Если K — хлорид олова (II), M(SnCl₂) = 119 + 71 = 190 г/моль.

Тогда М(остатка в K) = 226 - 190 = 36 г/моль, что соответствует 2 молекулам воды, следовательно K – SnCl₂.2H₂O

Тогда $B_1 - SnO_2$, $B_2 - SnS_2$, $B_3 - SnSe_2$

W	A 1	A ₂	A 3	L	K	B 1	B ₂	B 3
Sn	SnO	SnS	SnSe	Se	SnCl ₂ .2H ₂ O	SnO ₂	SnS ₂	SnSe ₂

Уравнения реакций:

 $SnCl_2 + 2NH_3 + 2H_2O \rightarrow Sn(OH)_2 + 2NH_4Cl$

 $Sn(OH)_2 \rightarrow SnO + H_2O$

 $SnCl_2 + Na_2S \rightarrow SnS + 2NaCl$

 $2SnCl_2 + 2Se + N_2H_4 \rightarrow 2SnSe + N_2 + 4HCl$

ИЛИ

 $2SnCl_2 + 2Se + 5N_2H_4 \rightarrow 2SnSe + N_2 + 4N_2H_5Cl$

 $Sn + O_2 \rightarrow SnO_2$

 $Sn + 2S \rightarrow SnS_2$

 $Sn + 2Se \rightarrow SnSe_2$

Система оценивания:

Расчёт элемента X , вещества L и веществ $A_1 - A_3$ по 2 балла	10 баллов
Расчёт вещества К	3 балла
Вещества $B_1 - B_3$ по 0.5 балла	1,5 балла
Реакции 1-4 по 1 баллу	4 балла
Реакции получения $B_1 - B_3$ по $0,5$ балла	1,5 балла

Итого: 20 баллов