Indexing Sequences def Print(s): >>> Print ("bread") # Print the items of the sequence 's', one per line [see Handout #4] for i in range (len(s)): print(s[i]) #----def PrintReversed(s) : >>> PrintReversed("bread") # Print the items of the sequence 's', one per line, in reverse order lastindex = len(s) - 1 for i in range(len(s)): print(s[lastindex - i]) #----def IsSorted(s): >>> IsSorted("abcdefq") True # Is sequence 's' sorted in ascending order? [see Handout #7] >>> IsSorted("aaaaaaa") for i in range (len(s) - 1): True if s[i + 1] < s[i]: return False >>> IsSorted("abcedfg") False return True #----def AddLists(numbers1, numbers2) : >>> AddLists([3, 1, 5], [2, 8, 2]) [5, 9, 7] # The list formed by adding corresponding items # in numeric lists 'numbers1' and 'numbers2'; >>> AddLists([], []) # assume that both lists have the same number of items return [numbers1[i] + numbers2[i] for i in range(len(numbers1))] def Rotate(lst, n): >>> Rotate([5, 2, 7, 4, 1, 8], 3) [4, 1, 8, 5, 2, 7] # A copy of list 'lst' rotated leftwards by 'n' items; # assume that $0 \ll n \ll len(lst) - 1$ >>> Rotate([5, 2, 7, 4, 1, 8], 0) [5, 2, 7, 4, 1, 8] rotate = [] >>> Rotate([5, 2, 7, 4, 1, 8], 5) for i in range(n, len(lst)) : [8, 5, 2, 7, 4, 1] rotate += [lst[i]] for i in range(0, n) : rotate += [lst[i]] return rotate