Введение в Data Science Занятие 8. Expectation Maximization

Николай Анохин Михаил Фирулик

25 апреля 2014 г.

TEXHOCOEPA @mail.ru

K-Means и EM

Задача модуля

Задача кластеризации

Дано

- lacktriangle обучающая выборка $old X = (old x_1, \dots, old x_N)$
- ightharpoonup количество кластеров K

Задача

Разбить обучающую выборку на K непересекающихся кластеров так, чтобы точки внутри одного кластера были близки, а точки из разных кластеров отдалены

Критерий качества

Пусть

- μ_k "типичный" представитель кластера k (центроид)
- ▶ r_{nk} переменная принадлежности \mathbf{x}_n к кластеру C_k

$$r_{nk} = egin{cases} 1, \ ext{если} \ \mathbf{x}_n \in \mathcal{C}_k \ 0, \ ext{если} \ \mathbf{x}_n
ot\in \mathcal{C}_k \end{cases}$$

Требуется выбрать μ_k и r_{nk} , которые **минимизируют**

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

Оптимизация критерия

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

Наблюдение: оптимизировать одновременно и по μ_k и по r_{nk} трудно \mathcal{U} дея: оптимизируем итеративно по очереди

Е При фиксированных μ_k подбираем оптимальные r_{nk} Члены с разными n друг от друга не зависят, откуда

$$r_{nk}^* = egin{cases} 1, \; ext{если} \; k = rg \min_j \|\mathbf{x}_n - \mu_j\|^2 \ 0, \; ext{иначе} \end{cases}$$

М При фиксированных r_{nk} подбираем оптимальные μ_k

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Алгоритм k-means

```
kmeans (\mathbf{X}, K):
    Случайно задать \mu_k
    while (not converged):
        for n \in 1 \dots N:
        r_{nk}^* = int(k == \arg\min_j \|\mathbf{x}_n - \mu_j\|^2)
        for k \in 1 \dots K:
        \mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}
        return \mu_k, r_{nk}
```

техносфера@mail.ru

Модификации

 На каждом шаге работаем с b случайно выбранными объектами из каждого кластера (mini-batch k-means)

▶ Критерий качества (k-medoids)

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \nu(\mathbf{x}_n, \mu_k)$$

 μ_k – один из объектов в кластере

Что если вхождение \mathbf{x} в кластер C_k описывается вероятностной функцией $p(\mathbf{x}|\theta_k)$?

Задача

Кластеризовать объекты алгоритмом k-means

Многомерное гауссовское распределение

Плотность вероятности

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

 μ – среднее, Σ – матрица ковариации

Смесь гауссовских распределений

Введем скрытую переменную $\mathbf{z} = (z_1, \dots, z_K)$ – бинарный случайный вектор размерности K, такой что

- 1. $z_k \in \{0, 1\}$
- 2. $\sum_{k} z_{k} = 1$

Тогда

$$ho(z_k=1)=\pi_k, \;\;
ho(\mathbf{z})=\prod_{k=1}^K \pi_k^{z_k}$$

Гауссовское предположение

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k), \ \ p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

"Ответственность" k-го компонента за расположение объекта x

$$\gamma(z_k) = p(z_k|\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \Sigma_j)}$$

Принцип максимального правдоподобия

Log-likelihood

$$\ln p(\mathbf{X}|\pi,\mu,\mathbf{\Sigma}) = \sum_{n=1}^{N} \ln \left[\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\mu_k,\Sigma_k) \right]$$

(Промежуточное) решение

$$N_k = \sum_{n=1}^N \gamma(z_{nk}), \quad \mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$
$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k)^T (\mathbf{x}_n - \mu_k)$$
$$\pi_k = \frac{N_k}{N_k}$$

ЕМ-алгоритм: гауссовский случай

E Expectation: при фиксированных μ_k, Σ_k, π_k

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

M Maximization: при фиксированных $\gamma(z_{nk})$

$$N_k = \sum_{n=1}^N \gamma(z_{nk}), \quad \mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

S Остановиться при достижении сходимости

ЕМ-алгоритм: общий случай

Задача

Пусть известно распределение $P(\mathbf{X}, \mathbf{Z}|\theta)$, где \mathbf{x} – наблюдаемые переменные, а \mathbf{z} – скрытые. Требуется найти θ , максимизирующее $P(\mathbf{X}|\theta)$.

 E вычислить $P(\mathbf{Z}|\mathbf{X}, \theta^{old})$ при фиксированном θ^{old} M вычислить $\theta^{new} = \arg\max_{\theta} \mathcal{Q}(\theta, \theta^{old})$, где

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) = E_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}))$$

Улучшение: ввести априорное распределение $p(\theta)$

EM и K-means

Пусть
$$\Sigma_k = \epsilon I$$
, тогда
$$p(\mathbf{x}|\mu_k, \Sigma_k) = \frac{1}{\sqrt{2\pi\epsilon}} \exp(-\frac{1}{2\epsilon} \|\mathbf{x} - \mu_\mathbf{k}\|^2)$$

$$\gamma(z_{nk}) = \frac{\pi_k \exp(-\frac{1}{2\epsilon} \|\mathbf{x} - \mu_\mathbf{k}\|^2)}{\sum_j \pi_j \exp(-\frac{1}{2\epsilon} \|\mathbf{x} - \mu_\mathbf{j}\|^2)} \to r_{nk}$$

$$E_\mathbf{Z}[\ln p(\mathbf{X}, \mathbf{Z}|\mu, \Sigma, \pi)] \to -\sum_{n=1}^N \sum_{k=1}^K r_{nk} \|\mathbf{x}_n - \mu_k\|^2 + C$$

k-means: итог

- + Скорость
- + Простота
- Локальная сходимость
- Эллиптические кластеры

Домашнее задание 1

k-means и модификации

Реализовать алгоритм кластеризации k-means или одну из его модификаций (k-medoids, mini-batch) и протестировать на данных задачи модуля.

Ключевые даты

- До 2014/04/26 00.00 выбрать ответственного
- До 2014/05/03 00.00 предоставить решение (после половина очков)

Задача модуля

Источник	Цель	Признаки
lost-fm	Кластеризовать музыкальных	Текстовое описа-
	исполнителей так, чтобы в кла-	ние, совместное
	стерах находились исполнители	участие в фестива-
	одного жанра	лях
Rotten Barres	Кластеризовать фильмы, так	Текстовое опи-
	чтобы в кластерах находились	сание, общий
	фильмы одного жанра	актерский состав

На выходе. Построение и отбор признаков, реализация 2-3 алгоритмов кластеризации, визуализация кластеров, мини-отчет

Выполнение. Группы по 2-3 человека

Баллы. 20 (индивидуально) + 10 (групповые – поровну)

На сегодня

- 1. Запускаем код из папки clustering
- 2. Делимся на группы
- 3. Выбираем, к какой задаче лежит душа
 - ► Для LastFM

 Документация http://www.lastfm.ru/api/intro

 Задача: для каждого исполнителя загрузить список фестивалей
 - ▶ Для Rotten Tomatoes

 Документация http://developer.rottentomatoes.com/docs

 Задача: для каждого фильма загрузить список жанров
- 4. Думаем о добром метриках расстояния

