

# Cognitive Neuroscience for Al Developers

Week 11 – Motor control



## The motor system







Daniel Wolpert – TED Talk

#### Two kinds of behaviors





**Types of Muscle** 





Smooth muscle

#### How do we elicit behavior?





## How to gain torque and force?







regardless of which motor units are stimulated.



**b** The tension applied to the tendon remains fairly constant, even though individual motor units cycle between contraction and relaxation.

## Spinal cord reflex





## Brain to spinal cord pathways





#### Brain regions involved in motor generation







#### Important motor areas of the cerebral cortex





#### Streams in motor control





## Basal ganglia





### Basal ganglia - disorders









https://theconversation.com/parkinsons-fourunusual-signs-you-may-be-at-risk-112035

© zenith02

#### Internal models









Internal Models. Figure 1 Examples of the two most basic types of internal models and their placement within a control system. (a) A forward model can be used within a feedback control system to provide a prediction of the trajectory that results from a particular motor command being sent to a particular motor plant. This can be used to compensate for plant properties without waiting for actual feedback about the resulting movement to return from the periphery. Thus, a forward model can be used to implement zero-lag feedback control. (b) If an inverse model of the plant has been learned, then it can be used to generate the required motor command to produce a given desired trajectory. Thus, an inverse model can be used to implement accurate feed-forward control.

### Control theory







#### PID controller



Proportional, Integral, Differential Now Past Future



Effect of K



K needs to be tuned for each application!

## Brain-Machine-Interfaces (BMI)









bidirectional

Tremault5 (Deviant art)

### BMI interfaces - challenges



Invasiveness

Placement of BMI

Motion

Biocompatibility

Durability

Complexity/Bandwidth

# The patient M.N.















#### Brain-Machine-Interface (BMI)



