

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Departamento de Computação - DACOM Prof. Dr. Diego Bertolini Disciplina: BCC35-G - Inteligência Artificial

Atividade 03: - Data: 23/03/2023 Conteúdo: Busca Heurística

Data de Entrega: 27/03/2023 até às 23:59hs.

Material de apoio:

01 - Capítulo 03 e 04 - Livro Inteligência Artificial (dowload aqui).

Obs. O livro completo encontra-se na biblioteca online de UTFPR.

Seção: 4.1 (Busca Gulosa e Busca A*), 4.3 (Busca Local, Subida da Encosta, Têmpera Simulada).

Simulação Puzzle: https://tristanpenman.com/demos/n-puzzle/

Descrição da Atividade

Considere o seguinte grafo "dirigido" (mapa). O nó A representa o estado inicial e o nó G representa o objetivo a ser alcançado. As ações permitidas são representadas pelos arcos de cada nó (por exemplo, do nó C só é possível ir para os nós B, D e E). O custo do caminho de um nó para outro está indicado pelo número associado a cada arco (por exemplo, o custo de ir de B para D é 38). O custo estimado (via alguma função heurística) de cada nó em relação ao nó objetivo está indicado pelo número dentro de cada círculo representando o nó (por exemplo, o custo estimado de sair de B para chegar em G é de 26).

- (a) Desenhe a árvore de busca para este grafo. Coloque os nós em ordem alfabética da esquerda para a direita. Se quiser, adicione o custo do caminho de cada arco, como também o valor da função heurística para cada nó (isto irá ajudar na solução dos próximos itens).
- (b) Qual o caminho ótimo do nó inicial para o nó objetivo?
- (c) Na busca do nó objetivo G, que nós são expandidos usando as seguintes estratégias de busca mostre a árvore de busca para cada caso. OBS.: empates são resolvidos expandindo os filhos e analisando a melhor heurística destes.
 - i. Busca Gulosa (Expande os nós que se encontram mais próximos do objetivo (uma linha reta conectando os dois pontos no caso de distâncias)
 - ii. A*(Combina o custo do caminho g(n) com o valor da heurística h(n); g(n) = custo do caminho do nó inicial até o nó n; h(n) = valor da heurística do nó n até um nó objetivo (distância em linha reta no caso de distâncias espaciais) f(n) = g(n) + h(n)

OBSERVAÇÃO: PARA O A* USAR A DISTÂNCIA DE B ATÉ G COMO 28 E NÃO 26 COMO ESTÁ NO EXEMPLO!

2) Desenhe a árvore de busca para o problema do Puzzle de 8 peças, considerando a busca A*. Utilize uma heurística qualquer para resolver este problema. Demonstre o caminho do estado inicial até o estado objetivo.

Estado Inicial					Estado Meta			
1		3			1	2	3	
4	2	5			4	5	6	
7	8	6			7	8		
			•					

3) Considere o seguinte mapa (fora de escala)

Distância	em linha reta até R
Α	240
В	186
С	182
D	163
E	170
F	150
G	165
Н	139

I	120
J	130
K	122
L	104
M	100
N	77
О	72
P	65
Q	65
R	0

Usando o algoritmo A^* determine uma rota de A até R, usando as seguintes funções de custo g(n) = a distância entre cada cidade (mostrada no mapa) e h(n) = a distância em linha reta entre duas cidades. Estas distâncias são dadas na tabela abaixo. Como resposta, apresente a rota que será tomada e o custo total.