Sprint Review

PDF File Manipulation using PDFtools Library in R

- library(pdftools)- pdfpages <- pdf_text("HotelReview12.31.17.pdf"). [3] "Performance by Industry Segments\nFor the Week of: December 31, 2017 - January 06, RevPar by Chain Scale - Current Week RevPar by Chain Scale - Running 28 Days\n This Year Last Year This Year Last Year\n \$250 \$25**0**\n \$200 \$200 11 \$150 \$150\n \$100 \$100\n \$50 \$50\n \$0 \$0\n Total United Luxury Upper Midscale Independents Total United Economy Luxury er Midscale Economy Independents\n Midscale States Midscale\n 0cc (%) Running 28 Days\n (\$) Percent Change (%) 0cc (%) RevPAR (\$) Percent Change (5)\n 2016 2017 2016 0cc ADR 2017 2017 2016 2017 2016 0cc ADR 48.7 60.59 47.1 124.33 117.50 55.29 119.90 50.4 49.4 117.96 60.48 58.31 .7\nChain Scale\nLuxury 59.8 55.4

- pagebreaks = strsplit(pdfpages, "\n")

-Print(pagebreaks)

- pdfpage3 <- pagebreaks[[3]]
- What are the [[double brackets]]?
- I'm so glad you asked

Delete all of the lines with no data

```
datapage = pdfpage3[-(1:10)]
datapage = datapage[-(1:5)]
datapage = datapage[-(2)]
datapage = datapage[-(9)]
datapage = datapage[-(15)]
datapage = datapage[-(21)]
datapage = datapage[-(46:48)]
```

Efficient?
Maybe not.

... All suggestions welcome

datapage ---- before str_extract_all

[38] "Philadelphia, PA-NJ			54.3	46.3	122.52	108.80	66.50	50
.39	17.2	12.6	32.0	51.3	48.0	111.62	108.60	57.21
52.15	6.7	2.8	9.7"					
[39] "Phoenix, AZ			53.1	51.4	111.30	114.44	59.11	58
.79	3.4	-2.7	0.5	54.9	52.4	106.61	107.46	58.49
56.27	4.8	-0.8	4.0"					
[40] "San	Diego, CA		62.9	52.7	127.18	115.54	79.95	60
.84	19.4	10.1	31.4	61.4	59.3	122.90	120.19	75.47

datapage = $str_extract_all(datapage,"[+-]?([0-9]*[.])?[0-9]+")$

[[38]] [1] "54.3" [14] "57.21"	"46.3" "52.15"	"122.52" "6.7"		"66.50" "9.7"	"50.39"	"17.2"	"12.6"	"32.0"	"51.3"	"48.0"	"111.62" "108	.60"
[[39]] [1] "53.1" [14] "58.49"	"51.4" "56.27"	"111.30" "4.8"		"59.11" "4.0"	"58.79"	"3.4"	"-2.7"	"0.5"	"54.9"	"52.4"	"106.61" "107	.46"
[[40]] [1] "62.9" [14] "75.47"	"52.7" "71.28"		"115.54" "2.3"	"79.95" "5.9"	"60.84"	"19.4"	"10.1"	"31.4"	"61.4"	"59.3"	"122.90" "120	.19"

Beautiful Organized Strings

"Unlist()" the data = turns all of the strings into one big string.

```
"47.1"
    "48.7"
                        "124.33"
                                  "117.50"
                                            "60.59"
                                                      "55.29"
                                                                "3.6"
                                                                          "5.8"
                                                                                    "9.6"
                                                                                                       "49.4"
                                                                                             "50.4"
                                                                                                                 "119.90"
                                                                                                                           "117.96"
    "60.48"
               "58.31"
                        "2.0"
                                  "1.7"
                                                      "59.8"
                                                                "55.4"
                                                                                             "239.02"
                                                                                                       "191.28"
                                                                                                                           "15.9"
                                                                          "399.93"
                                                                                   "345.10"
                                                                                   "2.5"
                                                                                                       "53.6"
    "25.0"
               "60.7"
                        "58.8"
                                                               "216,22"
                                                                         "3.3"
                                                                                             "5.8"
                                                                                                                 "51.2"
                                                                                                                           "171.81"
                                  "376.80"
                                            "367.71" "228.82"
    "160.67" "92.04"
                                  "4.6"
                                                                                   "164.81" "161.97" "90.60"
                        "82.29"
                                            "6.9"
                                                      "11.8"
                                                                "55.0"
                                                                          "53.9"
                                                                                                                 "87.23"
                                                                                                                           "2.1"
    "1.8"
               "3.9"
Γ537
                        "52.2"
                                  "49.9"
                                            "131.38" "123.01"
                                                                "68.54"
                                                                          "61.35"
                                                                                    "4.6"
                                                                                             "6.8"
                                                                                                       "11.7"
                                                                                                                 "56.0"
                                                                                                                           "54.3"
                                                      "2.1"
                                                                "5.2"
                                                                          "46.4"
                                                                                             "102.28" "97.57"
    "128.21" "125.63"
                        "71.74"
                                  "68.21"
                                            "3.1"
                                                                                    "44.2"
                                                                                                                 "47.46"
                                                                                                                           "43.11"
```

Use chind to create columns in a data.frame!

Hoteldata = cbind.data.frame(split(datapagetest, rep(1:18, times=length(datapagetest)/18)), stringsAsFactors=F)

```
10
                                                             11
                                                                    12
                                                                            13
                                                                                   14
                                                                                          15
                                                                                               16
                                                                                                    17
                                                                                                         18
                                            5.8
48.7 47.1 124.33 117.50
                         60.59
                                55.29
                                                  9.6 50.4 49.4 119.90 117.96
                                                                                60.48
                                                                                       58.31
                        239.02 191.28
                                       7.8 15.9 25.0 60.7 58.8 376.80 367.71
                                                                              228.82 216.22
59.8 55.4 399.93 345.10
53.6 51.2 171.81 160.67
                         92.04
                                82.29
                                        4.6
                                            6.9
                                                 11.8 55.0 53.9 164.81 161.97
                                                                               90.60
                                                                                       87.23
52.2 49.9 131.38 123.01
                         68.54
                                61.35
                                       4.6
                                            6.8 11.7 56.0 54.3 128.21 125.63
                                                                                71.74
                                                                                       68.21
46.4 44.2 102.28
                  97.57
                         47.46
                                43.11
                                       5.0
                                            4.8 10.1 49.7 48.2 101.22
                                                                        99.20
                                                                                50.35
                                                                                       47.82
                                                                                              3.2
                                                                                                        5.3
```

Name row and columns using

Names() - for columns row.names() - for rows

AND....

BEHOLD!!!!!

^	CurrentWeek_2017_Occ ‡	CurrentWeek_2016_Occ	CurrentWeek_2017_ADR [‡]	CurrentWeek_2016_ADR ÷	CurrentWeek_2017_RevPar [‡]	CurrentWeek_2016_RevPar [‡]
Total United States	48.7	47.1	124.33	117.50	60.59	55.29
ChainScale_Luxury	59.8	55.4	399.93	345.10	239.02	191.28
ChainScale_Upper Upscale	53.6	51.2	171.81	160.67	92.04	82.29
ChainScale_Upscale	52.2	49.9	131.38	123.01	68.54	61.35
ChainScale_Upper Midscale	46.4	44.2	102.28	97.57	47.46	43.11
ChainScale_Midscale	44.0	42.3	81.57	77.19	35.88	32.65
ChainScale_Economy	46.7	45.0	60.47	57.11	28.24	25.72
ChainScale_Independents	48.2	47.7	129.78	127.82	62.55	61.00
Class_Luxury	56.1	55.1	338.60	304.72	189.98	167.86
Class_Upper_Upscale	52.6	50.5	174.61	166.19	91.83	84.00
Class_Upscale	51.9	49.8	135.43	127.14	70.34	63.28
Class_Upper_Midscale	46.9	45.0	107.29	103.96	50.29	46.80
Class_Midscale	44.3	42.9	90.15	87.17	39.91	37.37
Class_Economy	46.9	45.6	69.45	67.01	32.54	30.58
Location_Urban	53.6	50.9	156.18	138.97	83.74	70.76
Location_Suburban	47.8	46.3	97.33	99.52	46.51	46.05
Location_Airport	58.4	56.2	104.45	100.02	60.98	56.25
Location_Interstate	41.3	40.6	78.41	75.22	32.38	30.55
Location_Resort	60.6	58.7	219.28	198.48	132.92	116.57
Location_Small_Metro/Town	39.7	38.3	95.21	89.70	37.81	34.34
Anaheim	70.6	64.7	150.20	134.26	105.97	86.85
Atlanta	55.3	53.7	105.77	94.97	58.53	51.04
Roston	4R 1	41 5	137 40	128 05	66 12	53 17

Fin

