AM TUT 7 Aryq Nair-16010421063

Q1) Motrix A= [421063 0 0] 0 421063 0 0 421063

1A-XI/= |421063-1 0 0 42/063-1 0 0 421063-1

Characteristic equation (421063- λ) x (421063- λ) = 0

= 42/268 with algobric multiplicity '3's

Figen Value is 42/063 with algebric multiplicity '3'.

\[= \le 42/063, 42/063 \rightarrow 42/063 \rightarrow \]

For x = 42/063, $[A-I\lambda]X=0$ [A-42/063I] = 0 $[O O O] [x_1] O$

00001/2

Rank = 0 Number of parameters = 3-0=3

Let x=t, $x_2=s$ and $x_3=u$ x[t] x=t 0 0 0 0 0 0 0 0

Eigen vector of given matrix

$$X_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $X_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
 $X_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

iii) To verify linear independance vectors

K[1,0,0]+t2[0,1,0]+K3[0,0,1]=0

 $k_1 + 0 + 0 = 0$ $0 + k_2 + 0 = 0$ $0 + 0 + k_3 = 0$

Therefore eigen vectors are linearly independent,

Hence Proved

1	
92)	a= 63
	b=64
	C-65 a+b+C = 192
	PE 13 14 15 14 15 14 15 14
	i) A= [63 64 65] = P
	64 65 63
	L 65 63 64 J
	PE 1220 1227 1227
	ii) $ P-\lambda I = 0$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	63-1 64 65
	64 65-1 63 = 0
	65 63 64-1
	Y E S J L GREET MARKET TO FREE S S S S S S S S S S S S S S S S S S
	$-\lambda^{3} + 192\lambda^{2} + 3\lambda - 576 = 0$
- 313	Product of roots = -d = 576 = -576 - 0
	899927 1999 (a) 1 1/59299
	ax (athte) x 13 x - 13 = (192) x 1 - 3
- od	= -576 - 0
	Result () and (2) are some equal
	lum of roots = -192 = 192 -3
	-1254548 532454 532454-
	(a+b+c)+53-53=1921
	Result (1) and (1) is soon equal.
	Hence eigen value are 192, 53, -53
1	Hence we prove that matrix A has eigen
	values (atbto), 13,-13
	VOLUES TOTAL PURSE VOLUES

ļ	Characteristic	equation	
	Characteristic	19222-32	+576=0

iii)

$$p^2 = \begin{bmatrix} 12290 & 12287 & 12287 \\ 12287 & 12290 & 12287 \\ 12287 & 12287 & 12290 \end{bmatrix}$$

$$P^{3}=P^{2}P=\begin{bmatrix} 12290 & 12287 & 12287 & 63 & 64 & 65 \\ 12287 & 12290 & 12287 & 64 & 65 & 63 \\ 12287 & 12287 & 12290 & 65 & 63 & 64 \end{bmatrix}$$

$$P^3 = \begin{bmatrix} 2359293 & 2359296 & 2359299 \\ 2359296 & 2359299 & 2359293 \\ 2359299 & 2359293 & 2359296 - \end{bmatrix}$$

Cayley Hamilton Theorem will be verified when $p^3 - 192p^2 - 3p + 5767 = 0$

	1	2359680	2359/04	2359104	31000
		2359104	23 596 80	2359104	= 192 p2
1		2359104	2359104	2359680	

3P=	[189	192	195	7
	192	195	189	1
	195	189	192	1

576I=	576	0	0	7
	6	576	0	1
	0	0	576	

1235968A-

LHS

ı				
	1	2359293-2359680-189+576	2359296-2359104-192+0	2359299-2359104-195+0
	1	2359296-2359104-192+0	2 359299 -2359680-195+576	
	L	2359299-2359104-195+0	2359293-2359104-189+0	2359296-2359680-192+576
ı				

10	0	0
0	0	0
10	0	0

L 45= 0

LHS-RHS

Henre Cayley-Hamiton Theorem is verified for matrix 1p?

Harred Ligar John

Mary Mary Carle That

volus Carbies By