

CENTRO DE CIÊNCIAS TECNOLÓGICAS (CCT)

DEPARTAMENTO DE MATEMÁTICA (DMAT)

GRUPO COLABORATIVO DE ENSINO DE ÁLGEBRA LINEAR*

GABARITO DA SEGUNDA LISTA DE EXERCÍCIOS DE ALI-001**

ESPAÇOS VETORIAIS

RESPOSTAS:

- 1.
- a) W é fechado para a adição e não é fechado para a multiplicação por escalar.
- b) W é fechado para a adição e para a multiplicação por escalar.
- c) W não é fechado para a adição e é fechado para a multiplicação por escalar.
- d) W não é fechado para a adição e é fechado para a multiplicação por escalar.
- e) W é fechado para a adição e não é fechado para a multiplicação por escalar.
- f) W é fechado para a adição e para a multiplicação por escalar.
- g) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- h) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- i) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- j) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- k) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- 2.
- a) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- b) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- c) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- d) W não é fechado para a adição e não é fechado para a multiplicação por escalar.
- e) W é fechado para a adição e para a multiplicação por escalar.
- f) W é fechado para a adição e para a multiplicação por escalar.
- g) W é fechado para a adição e para a multiplicação por escalar.
- h) W é fechado para a adição e não é fechado para a multiplicação por escalar.
- i) W é fechado para a adição e para a multiplicação por escalar.
- j) W é fechado para a adição e para a multiplicação por escalar.
- k) W é fechado para a adição e para a multiplicação por escalar.
- * Professores participantes do Grupo Colaborativo no semestre 2023/2: Graciela Moro, Katiani da Conceição Loureiro e Marnei Luis Mandler.
- ** Este é um material de acesso livre distribuído sob os termos da licença Creative Commons BY-SA 4.0 2.

- 3. a) u + v = (0, -1) e 2. u = (-3, 4).
 - b) $\overrightarrow{0_V} = (-1.2)$.
 - c) -u = (-2 x, 4 y).
 - d) Basta verificar que (x, y) + (-2 x, 4 y) = (-1, 2).
 - e) V é um espaço vetorial.
- 4. *V* **não** é um espaço vetorial com tais operações de adição e multiplicação por escalar. O conjunto é fechado para as operações, mas não existe elemento neutro para a adição; não existe elemento oposto para a adição; e 1 não é elemento neutro para a multiplicação por escalar.
- 5. a) V é fechado para as operações de adição e multiplicação por escalar.
 - b) $\overrightarrow{0_V} = (0,1)$.
 - $c) u = \left(-x, \frac{1}{y}\right).$
 - d) V é um espaço vetorial.
- 6. a) V é fechado para as operações de adição e multiplicação por escalar.
 - b) $\vec{0} = (-1, -1) \in V$.
 - c) $-u = \left(\frac{1}{x}, \frac{1}{y}\right) \in V$.
 - d) Basta notar que 1. $(x, y) = ((-1)^2 x^1, (-1)^2 y^1) = (x, y)$.
 - e) V é um espaço vetorial para as operações dadas.
- 7. V é fechado para as operações de adição e multiplicação por escalar. O elemento neutro aditivo é o polinômio nulo 0 + 0x e o elemento oposto de p(x) = a + bx é o elemento -p(x) = -b ax. Porém, V não é um espaço vetorial, pois não são válidas a associatividade e a comutatividade da adição.
- 8. a) $\overrightarrow{0_V} = \left(\frac{1}{7}, 2\right) \in V$ é o elemento neutro de V.
 - b) O oposto aditivo de $u=(x,y)\in V$ é o elemento $-u=\left(\frac{1}{49x},\frac{4}{y}\right)\in V$.
 - c) A propriedade não é válida, pois $k(u + v) \neq ku + kv$.
 - d) A propriedade não é válida, pois $(k_1 + k_2)u \neq k_1u + k_2u$.
 - e) O conjunto W é fechado para a adição e para a multiplicação por escalar não usuais.

- 9. a) W é um subespaço vetorial de V.
 - b) W não é um subespaço vetorial de V, pois não é fechado para a multiplicação por escalar.
- c) W não é um subespaço vetorial de V, pois não é fechado para adição nem para a multiplicação por escalar.
 - d) W é um subespaço vetorial de V.
 - e) W é um subespaço vetorial de V.
- f) W não é um subespaço vetorial de V, pois não é fechado para adição nem para a multiplicação por escalar.
 - g) W é um subespaço vetorial de V.
 - h) W é um subespaço vetorial de V.
- i) W não é um subespaço vetorial de V, pois não é fechado para adição nem para a multiplicação por escalar.
 - j) W não é um subespaço vetorial de V, pois não é fechado para adição.
 - k) W é um subespaço vetorial de V.
 - 1) W é um subespaço vetorial de V.
- 10. a) $W = \{(x, y) \in \mathbb{R}^2; y = x^3\}$ não é um subespaço vetorial de V, pois não é fechado para a adição nem para a multiplicação por escalar.
 - b) $W = \{A \in M(2,2), A^T = A\}$ é um subespaço vetorial de V.
 - c) $W = \{f : \mathbb{R} \to \mathbb{R}; f(-x) = f(x)\}\$ é um subespaço vetorial de V.
- d) $W = \{p: \mathbb{R} \to \mathbb{R}, \ p(x) = a + bx + cx^2, \ a, b, c \in \mathbb{R}, \ c \neq 0\}$ não é um subespaço vetorial de V, pois não é fechado para a adição e para a multiplicação por escalar.
- 11. a) W é um subespaço vetorial de V.
 - b) W não é um subespaço vetorial de V.
 - c) W não é um subespaço vetorial de V.
 - d) W é um subespaço vetorial de V.
 - e) W é um subespaço vetorial de V.
- 12. k = -125; $v = -35v_1 5v_2$.
- 13. B **não** é combinação linear de A_1, A_2, A_3, A_4 . No entanto, C pode ser escrita de infinitas formas como combinação linear de A_1, A_2, A_3, A_4 . Tais formas são dadas por $C = (2 3d)A_1 + (-25 5d)A_2 + (16 4d)A_3 + dA_4$, com $d \in \mathbb{R}$. Nessa situação, a matriz A_4 poderia ser descartada, sem causar prejuízo à combinação linear de C, pois tomando-se d = 0 tem-se que $C = 2A_1 25A_2 + 16A_3$.

14. Uma matriz simétrica de ordem 2×2 é da forma $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, com $a, b, d \in \mathbb{R}$. Tal matriz pode ser escrita como

$$A = \frac{-a}{5}A_1 + \frac{b}{3}A_2 + \frac{d}{9}A_3.$$

15. q(x) não pode ser escrito como combinação linear de p_1 , p_2 , p_3 e p_4 . Já p(x) pode ser escrito de infinitas formas como combinação linear de p_1 , p_2 , p_3 e p_4 . Tais formas são dadas por

$$p(x) = \left(\frac{3}{2} - a_3\right)p_1(x) + (-4 - a_3)p_2(x) + a_3p_3(x) + \left(\frac{10}{4} + a_3\right)p_4(x),$$

em que $a_3 \in \mathbb{R}$.

- 16. Se u e v são combinações lineares de $v_1, v_2, v_3 \in V$ então existem escalares a_1, a_2, a_3 e b_1, b_2, b_3 tais que $u = a_1v_1 + a_2v_2 + a_3v_3$ e $v = b_1v_1 + b_2v_2 + b_3v_3$. Com isso, w = -5u + 8v pode ser escrito como uma combinação linear de v_1, v_2, v_3 como $w = (-5a_1 + 8b_1)v_1 + (-5a_2 + 8b_2)v_2 + (-5a_3 + 8b_3)v_3$.
- 17. a) *u*, *v*, *w* são LI, pois não são coplanares. Para ver isso, basta tomar os vetores que são equipolentes a *u*, *v*, *w* e que possuem sua origem na origem do sistema cartesiano.
- b) u, v, w são LD, pois são coplanares. Para ver isso, basta tomar os vetores que são equipolentes a u, v, w que possuem origem na origem do sistema cartesiano.
- 18. β é LD.
- 19. β é LD; $v_3 = 3v_1 + 4v_2$.
- 20. Uma possibilidade é $\alpha = \{(1, 1, 3), (1, 2, 1), (0, 1, 3)\}.$
- 21. As colunas da matriz formam um conjunto LD. O sistema homogêneo AX = 0 possui infinitas soluções, pois é SPI.
- 22. a) α é LD.
- b) α é LD.
- c) α é LI.
- d) α é LD.

- 23. Os elementos são LD.
- 24. Os elementos são LD.
- 25. a) H é um plano em \mathbb{R}^3 que passa pela orig. A equação do plano é y=x.
 - b) $H = ger\{(1,1,0), (0,0,1)\}.$
 - c) H não é gerado pelos elementos (2, 2, 0) e (-1, 1, 0). Tais elementos geram o plano z = 0.
- 26. a) Verdadeira. b) Verdadeira.
- 27. $ger\{A_1, A_2, A_3\} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); a+b-2c+2d=0 \right\}.$
- 28. a) W é um subespaço vetorial de P_3 .
- b) $W = ger\{-1 + x, 7 3x^2 + x^3\}$.

29. a) $v \in S$, pois v é uma combinação linear dos geradores de S.

b)
$$v = (x, y, z, t) \in S$$
 se e somente se $t - z = 0$, ou seja, $t = z$.

- c) Uma base para $S \in \beta = \{(1, -1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 0)\}$ e dim(S) = 3.
- d) $S \neq \mathbb{R}^4$, pois dim $(S) = 3 \neq 4 = \dim(\mathbb{R}^4)$.

30. a)
$$\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 e $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. b) $\begin{bmatrix} -27 \\ -22 \\ 1 \end{bmatrix}$ c) $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$31. \ U = ger \left\{ \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \qquad W = ger \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \right\}$$
 e
$$U \cap W = ger \left\{ \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix} \right\}.$$

32. Para
$$k = 1$$
 ou $k = -\frac{3}{2}$.

33.
$$U \cap W = \{a + bx + cx^2 + dx^3 \in P_3; c = -a \in b = 2c - 3d\}.$$

34. Uma base para
$$W \in \beta_W = \{5, -2, 1, 0, 0\}, (-4, 3, 0, 2, 1)\}$$
 e dim $(W) = 2$.

35. a) Uma base para
$$W \in \beta_W = \left\{ \begin{bmatrix} 0 & 1 \\ 5 & 0 \end{bmatrix}, \begin{bmatrix} -6 & 0 \\ -12 & 1 \end{bmatrix} \right\} \text{ e dim}(W) = 2.$$

b)
$$\alpha = \{\begin{bmatrix} -6 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 12 & 0 \\ 24 & -2 \end{bmatrix}\}$$
 também é uma base para W .

36. a)
$$W = \{a + bx + cx^2 + dx^3 \in P_3 ; 2a - 6b + c - 8d = 0\}.$$

b) Uma base para
$$W \in \beta_W = \{1 - 2x^2, x + 6x^2, x^2 + x^3\}$$
 e dim $(W) = 3$.

37.

- a) Existem diversos contraexemplos. Você consegue exibir um deles?
- b) Existem diversos exemplos que satisfazem a condição desejada. Você consegue exibir um deles?

38. Se
$$dim(U) = 2 e dim(W) = 3$$
, então

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W) = 5 - \dim(U \cap W).$$

Como U+W é um subespaço de \mathbb{R}^4 , tem-se que $\dim(U+W) \leq \dim(\mathbb{R}^4) = 4$. Assim

$$\dim(U \cap W) = 5 - \dim(U + W) \ge 5 - 4 = 1.$$

Caso $\dim(U \cap W) = 2$, então obtém-se que $\dim(U + W) = 3$. Além disso, a dimensão de $U \cap W$ não pode ser 3, pois U tem dimensão 2.

39. Se $\dim(U) = 7$ e $\dim(W) = 6$, então

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W) = 13 - \dim(U \cap W).$$

Como U + W é um subespaço de P_9 , tem-se que $\dim(U + W) \le \dim(P_9) = 9 + 1 = 10$. Assim

$$dim(U \cap W) = 13 - dim(U + W) \ge 13 - 10 = 3.$$

Portanto, a interseção entre U e W é pelo menos três, o que garante que eles possuem, obrigatoriamente, pelo menos um subespaço tridimensional em comum.

- 40. a) Basta mostrar que W é fechado para a adição e multiplicação por escalar.
 - b) Uma base para $W \in \beta_W = \left\{ \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \right\}$ e dim(W) = 1.
- 41. a) $u = (x, y, z) \in U$ se e somente se -2x y + 3z = 0.
 - b) $u = (x, y, z) \in W$ se e somente se 5x y + 3z = 0.
 - c) $\beta_{U \cap W} = \{(0,3,1)\}, \dim(U \cap W) = 1.$ $\beta_{U+W} = \{(1,-2,0), (1,1,1), (-1,1,2)\}, \dim(U+W) = 3.$
 - d) $U + W = \mathbb{R}^3$, pois $\dim(U + W) = 3 = \dim(\mathbb{R}^3)$. A soma não é direta, pois $U \cap W \neq \emptyset$.
- 42. a) Uma base para $S \in \beta_S = \left\{ \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix} \right\} e \dim(S) = 2.$
- b) Tal base para M(2,2) deve ser formada por quatro matrizes LI's, sendo que duas delas devem ser os elementos obtidos no item anterior.
- 43. a) Uma base é $\beta_{W_1} = \{(1, 0, 0, 6), (0, 1, 0, 2), (0, 0, 1, -3)\}$ e dim $(W_1) = 3$.
 - b) Uma base é $\beta_{W_2} = \{(-25, 5, 0, -14), (15, 0, 5, 9)\}$ e dim $(W_2) = 2$.
 - c) Uma base é $\beta_{W_1 \cap W_2} = \{(8, 11, 21, 7)\}$ e dim $(W_1 \cap W_2) = 1$.
 - d) Uma base é $\beta_{W_1+W_2} = \{(1,0,0,6), (0,1,0,2), (0,0,1,-3), (-25,5,0,-14)\}$ e dim $(W_1+W_2)=4$.
- 44. a) W_1 e W_2 são subespaços vetoriais de M(2,2).
 - b) i) Uma base é $\beta_{W_1} = \left\{ \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ e dim $(W_1) = 2$.
 - ii) Uma base é $\beta_{W_2} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\} \text{ e dim}(W_2) = 3.$
 - iii) Uma base é $\beta_{W_1 \cap W_2} = \left\{ \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ e dim $(W_1 \cap W_2) = 1$.
 - iv) Uma base é $\beta_{W_1+W_2} = \left\{ \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ e dim $(W_1 + W_2) = 4$.
- 45. a) $p(x) = a + bx + cx^2 + dx^3 \in W_1$ se e somente se 3a + b + 3c + d = 0.
 - b) $p(x) = a + bx + cx^2 + dx^3 \in W_2$ se e somente se b + 2c + 4d = 0.
 - c) i) Uma base é $\beta_{W_1} = \{1 3x^3, x x^3, x^2 3x^3\}$ e dim $(W_1) = 3$.
 - ii) Uma base é $\beta_{W_2} = \{1, -2x + x^2, -4x + x^3\}$ e dim $(W_2) = 3$.
 - iii) Uma base é $\beta_{W_1 \cap W_2} = \{1 + 6x 3x^2, 11x + 3x^2 + x^3\}$ e dim $(W_1 \cap W_2) = 2$.
 - iv) Uma base é $\beta_{W_1+W_2} = \{1 3x^3, x x^3, x^2 3x^3, 1\}$ e dim $(W_1 + W_2) = 4$.
- 46. a) Uma base é $\beta_{W_1} = \{1 + 2x, x + x^2, -x + x^3\}$ e dim $(W_1) = 3$.
 - b) Uma base é $\beta_{W_2} = \{1, -3x + x^2, 4x + x^3\}$ e dim $(W_2) = 3$.
 - c) Uma base é $\beta_{W_1 \cap W_2} = \{-2 3x + x^2, 5 + 8x + 2x^3\}$ e dim $(W_1 \cap W_2) = 2$.
 - d) Uma base é $\beta_{W_1+W_2} = \{1+2x, x+x^2, -x+x^3, 1\}$ e dim $(W_1+W_2)=4$.

- 47. a) Uma base é $\beta_{W_1 \cap W_2 \cap W_3} = \{(-1, -6, -2, -4, 1)\}$ e $\dim(W_1 \cap W_2 \cap W_3) = 1$.
- b) Uma base é $\beta_{W_1+W_3}=\{(1,0,2,0,-1),(0,1,0,0,0),(0,0,0,1,0),(1,0,0,2,0),(0,0,1,0,0)\}$ e $\dim(W_1+W_3)=5.$
 - c) $W_1 + W_2 = \mathbb{R}^5$, pois $\dim(W_1 + W_2) = 5 = \dim(\mathbb{R}^5)$. Porém, a soma não é direta, pois $\dim(W_1\cap W_2)=2, \text{ já que } W_1\cap W_2=ger\{(0,1,0,1,0),(-1,-2,-2,0,1)\}, \text{ ou seja, } W_1\cap W_2\neq\emptyset.$
- 48. a) $p(x) = a + bx + cx^2 + dx^3 \in U$ se e somente se 4a 3b + 2c = 0.
 - b) i) Uma base é $\beta_U = \{1 2x^2, 2x + 3x^2, x^3\}$ e dim(U) = 3.
 - ii) Uma base é $\beta_W = \{x, x^2, x^3\}$ e dim(W) = 3.
 - iii) Uma base é $\beta_{U\cap W}=\{2x+3x^2,x^3\}$ e dim $(U\cap W)=2$.
 - iv) Uma base é $\beta_{U+W} = \{1 2x^2, 2x + 3x^2, x^3, x\}$ e dim(U+W) = 4.
- 49. a) Uma base é $\beta_{W_1} = \left\{ \begin{bmatrix} 34 & 13 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 53 & 19 \\ 0 & 1 \end{bmatrix} \right\} e \dim(W_1) = 2.$
 - b) Uma base é $\beta_{W_2} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -5 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -4 \end{bmatrix} \right\}$ e dim $(W_2) = 3$.
 - c) Uma base é $\beta_{W_1 \cap W_2} = \left\{ \begin{bmatrix} 393 & 149 \\ 10 & 1 \end{bmatrix} \right\}$ e dim $(W_1 \cap W_2) = 1$.
 - d) Uma base é $\beta_{W_1+W_2} = \left\{ \begin{bmatrix} 34 & 13 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 53 & 19 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -5 \end{bmatrix} \right\}$ e dim $(W_1 + W_2) = 4$.
- 50. a) $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in W$ se e somente se b 2c + d = 0.
 - b) i) Uma base é $\beta_U = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ e dim(U) = 3.
 - ii) Uma base é $\beta_W = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \right\}$ e dim(W) = 3.
 - iii) Uma base é $\beta_{U \cap W} = \left\{ \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \right\}$ e dim $(U \cap W) = 2$.
 - iv) Uma base é $\beta_{U+W} = \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \}$ e dim(U+W) = 4.
- 51. a) i) $[I]_{\beta}^{\beta_1} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$.
- ii) $[I]_{\beta_1}^{\beta} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$.
- iii) $[I]_{\beta_2}^{\beta} = \frac{1}{6} \begin{bmatrix} \sqrt{3} & 3 \\ \sqrt{3} & -3 \end{bmatrix}$. iv) $[I]_{\beta_2}^{\beta} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- b) $[v]_{\beta} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, $[v]_{\beta_1} = \frac{1}{2} \begin{bmatrix} -5 \\ 1 \end{bmatrix}$ $[v]_{\beta_2} = \frac{1}{2} \begin{bmatrix} \sqrt{3} 2 \\ \sqrt{3} + 2 \end{bmatrix}$
- $[v]_{\beta_3} = \frac{1}{2} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

- c) i) $[u]_{\beta} = \begin{bmatrix} -4\\4 \end{bmatrix}$ ii) $[u]_{\beta_2} = \frac{1}{3} \begin{bmatrix} -2\sqrt{3} + 6\\2\sqrt{3} 62 \end{bmatrix}$
- iii) $[u]_{\beta_3} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$.

52. a)
$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$$
.

b)
$$[v]_{\beta} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 e $[w]_{\beta} = \begin{bmatrix} -3 \\ 1/2 \end{bmatrix}$.

As representações geométricas dos elementos v, w e v + w estão na figura abaixo:

53. a)
$$[I]_{\alpha}^{\beta} = \begin{bmatrix} -1 & 2 \\ 4 & -7 \end{bmatrix}$$
.

b)
$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 7 & 2 \\ 4 & 1 \end{bmatrix}$$
.

c) Em relação à base α , as coordenadas dos vetores posição dos vértices do quadrilátero *CDEF* são:

$$[C]_{\alpha} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}; \quad [D]_{\alpha} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}; \quad [E]_{\alpha} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}; \quad [F]_{\alpha} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

Em relação à base β , as coordenadas dos vetores posição dos vértices do quadrilátero *CDEF* são:

$$[C]_{\beta} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}; \quad [D]_{\beta} = \begin{bmatrix} -16 \\ -9 \end{bmatrix}; \quad [E]_{\beta} = \begin{bmatrix} -19 \\ -11 \end{bmatrix}; \quad [F]_{\beta} = \begin{bmatrix} 20 \\ 11 \end{bmatrix}.$$

d) Como $[K]_{\alpha} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $[L]_{\alpha} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ e $[M]_{\alpha} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$, os vetores posições dos vértices K, L e M são dados, respectivamente, por $v_K = -1v_1 - 1v_2$; $v_L = 3v_1 + 2v_2$ e $v_M = 0v_1 + 4v_2 = 4v_2$. Com isso, o triângulo KLM está representado na figura abaixo:

54. a)
$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/8 & 0 \\ 0 & 0 & 0 & 0 & 1/16 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 8 & 0 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

b)
$$[p]_{\beta} = \begin{bmatrix} \frac{1}{2} \\ 1 \\ \frac{3}{4} \\ \frac{1}{2} \\ \frac{5}{16} \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 8 \\ 16 \\ 12 \\ 8 \\ 5 \end{bmatrix}$$
 e $[q]_{\alpha} = \begin{bmatrix} -2 \\ 6 \\ -20 \\ 56 \\ 64 \end{bmatrix}$.

55. a)
$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 1 & 11 \\ 1 & -1 & 1 \\ -1 & 1 & -11 \end{bmatrix}$$
 e $[I]^{\beta}_{\alpha} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 1/2 & -11/12 & -5/12 \\ 0 & 1/12 & 1/12 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 6 & 0 & -6 \\ 6 & -11 & -5 \\ 0 & 1 & 1 \end{bmatrix}$.

b)
$$[A]_{\alpha} = \frac{1}{12} \begin{bmatrix} 6\pi + 11e \\ 6\pi \\ e \end{bmatrix}$$
.

c)
$$[B]_{\beta} = \begin{bmatrix} 94\\34\\86 \end{bmatrix}$$
.

56.
$$\beta = \{(1, -2, -2), (0, 1, 1), (0, -1, -2)\}.$$

57. a)
$$\beta = \left\{ \begin{bmatrix} -\frac{5}{4} & -\frac{3}{2} \\ \frac{1}{2} & 0 \end{bmatrix}, \begin{bmatrix} \frac{3}{4} & \frac{3}{2} \\ \frac{1}{2} & 0 \end{bmatrix}, \begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ -\frac{1}{2} & 0 \end{bmatrix} \right\}.$$

b)
$$[A]_{\alpha} = \begin{bmatrix} 0 \\ -3 \\ -1 \end{bmatrix}$$
.

58. a)
$$[I]_{\alpha}^{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_{3 \times 3}.$$

b) Basta mostrar que β é LI, pois dim(V) = 3.

c)
$$[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
.

d)
$$[w]_{\alpha} = \begin{bmatrix} 3 \\ 3 \\ -1 \end{bmatrix}$$
.

59. a)
$$[I]_{\alpha}^{\beta} = \begin{bmatrix} 0 & -3 & -6 \\ -1 & -3 & -5 \\ 3 & 5 & 11 \end{bmatrix}$$
.

b)
$$[v]_{\alpha} = \begin{bmatrix} 1 \\ 8 \\ -20 \end{bmatrix}$$
.

c)
$$[I]^{\alpha}_{\beta} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & -\frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{3}{4} & \frac{1}{4} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 8 & -3 & 3 \\ 4 & -18 & -6 \\ -4 & 9 & 3 \end{bmatrix}.$$
 d) $[v]_{\beta} = \begin{bmatrix} -\frac{7}{12} \\ -\frac{7}{6} \\ \frac{5}{12} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} -7 \\ -14 \\ 5 \end{bmatrix}.$

60.

- a) Verdadeira.
- b) Verdadeira.
- c) Verdadeira.
- d) Falsa. W é uma reta em \mathbb{R}^3 que passa pela origem.
- e) Verdadeira, pois $p(x) = -17p_1(x) + 12p_2(x)$.
- f) Falsa. O conjunto β é LD.
- g) Verdadeira.
- h) Verdadeira.
- i) Falsa. Se o conjunto β for LD, não formará uma base para o subespaço gerado.
- j) Verdadeira.
- k) Verdadeira.
- l) Verdadeira, pois $[I]^{\alpha}_{\beta}$ e $[I]^{\beta}_{\alpha}$ são matrizes inversas e o resultado desejado decorre de propriedade de determinantes: $\det(A^{-1}) = \frac{1}{\det(A)}$.