CMOS Fabrication and Layout

- Transistors are fabricated on a thin silicon wafer that serve as both a mechanical support and electrical common point called substrate
- Fabrication process (a.k.a. Lithography) is similar to printing press
 - On each step, different materials are deposited or etched
- Easiest way to understand physical layout is to look at the wafer from two perspectives:
 - Top-section
 - Cross-section

Photo Lythography

"Carving pictures in stone using light"

FIG 3.1 Photomasking with a negative resist (lens system between mask and wafer omitted to improve clarity and avoid diffracting the reader ©)

Inverter Cross Section

 V_{DD}

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection (parasitic diode)
- Use heavily doped well and substrate contacts

FIG 1.34 Inverter cross-section with well and substrate contacts. Color version on inside front cover.

Let's add some color ...

Transistors and wires are defined by masks

GND

Inverter Mask Set

Six masks:

- n-well
- poly silicon
- n+ diffusion
- p+ diffusion
- Contact
- Metal

Fabrication Steps

- Start with blank wafer
- Build invert from bottom up

p substrate

n-well Formation

- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 to grow SiO₂ on top of Si wafer put the Si with H₂O or O₂ in oxidation furnace at 900 1200 C
 - (Remove layer where n-well should be built)
 - (Implant or diffuse n dopants into exposed wafer)
 - (Strip off SiO₂)

p substrate

SiO,

Deposit silicon-oxide and photoresist

- Photoresist is a light-sensitive organic polymer
- Softens where exposed to light

NOTE: The silicon oxide is just to protect the wafer

Photo-Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etching

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone: nasty stuff!!!
- Only attacks oxide where resist has been exposed

	Photor	esist
	SiO ₂	
p substrate		

The n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implantation
 - Blast wafer with beam of As ions
 - lons blocked by SiO₂, only enter exposed Si

Strip protective oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

Gate oxide and Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon patterning

Use same lithography process to pattern polysilicon

Self-aligned polysilicon gate process

- The polysilicon gate serves as a mask to allow precise alignment of the source and drain with the gate
- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- n-diffusion forms nMOS source, drain, and n-well contact

Formation of the n-diffusions

- Pattern oxide and form n+ regions
- Self-aligned process (poysilicon gate) "blocks" diffusion under the gate
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

The n-diffusions

- Historically dopants were diffused
- Usually ion implantation today (but regions are still called diffusion)

Strip off oxide to complete patterning step

The p-diffusions

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to create the devices' terminals
- Cover chip with thick field oxide (FOX)
- Etch oxide where contact cuts are needed

Metallization

- Sputter on aluminum over whole wafer, filling the contacts as well
- Pattern to remove excess metal, leaving wires

Fabrication Steps Summary (1/3)

Fabrication Steps Summary (2/3)

Fabrication Steps Summary (3/3)

FIG 1.38 Cross-sections while manufacturing p-diffusion, contacts, and metal

Basic Fabrication Steps in a nutshell

- Though a mask transfer an "image" of the design to the wafer
- Do something to imaged parts of the wafer
 - Implant add impurities to change electrical properties
 - Deposit deposit metal, insulator or other layers
 - Grow Oxide place silicon in oxidizing ambient
 - Etch Cut into surface of topmost layer(s)
 - Polish Make surface of wafer flat
- Strip Off imaging material (resist) and proceed to next step

Layout Design

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μm in 0.6 μm process

Layout Design Rules Conservative rules to get started!

FIG 1.39 Simplified λ -based design rules for layouts with z-metal layers (MOSIS)

Design Rules Summary

- Metal and diffusion have minimum width and spacing of 4λ
- Contacts are 2λ x 2λ and must be surrounded by 1λ on the layers above and below
- Polysilicon uses a width of 2λ
- Polysilicon overlaps diffusions by 2λ where a transistor is desired and has spacing or 1λ away where no transistor is desired
- Polysilicon and contacts have a spacing of 3λ from other polysilicon or contacts
- N-well surrounds pMOS transistors by 6λ and avoid nMOS transistors by 6λ

Logic Gates layout

- Layout can be very time consuming
- Design gates to fit together nicely
- Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

The power and ground lines are called supply rails

Inverter Layout

Transistor dimensions specified as W / L ratio

Minimum size is 4λ / 2λ, sometimes

called 1 unit

FIG 1.40 Inverter with dimensions labeled

• In $f = 0.6 \mu m$ process, this is 1.2 μm wide, 0.6 μm long

Inverter Standard Cell Layout

Usually the pMOS has width 2 or 3 times the width of the nMOS

Inverter Standard Cell Area (1/2)

Inverter Standard Cell Area (2)

3-input Standard Cell NAND

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

FIG 1.43 Stick diagrams of inverter and 3-input NAND gate. Color version on inside front cover.

Wiring Tracks

- A wiring track is the space required for a wire
 - 4λ width, 4λ spacing from neighbor = 8λ pitch
 - Transistors also consume one wiring track

Well Spacing

- Wells must surround transistors by 6λ
 - Implies 12λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- Horizontal 4×8 = 32
- Estimate area by counting wiring tracks
- Vertical 5×8 = 40

- Multiply by 8 to express in λ

