UCSD Embedded C Assignment 8

By

Hsuankai Chang

hsuankac@umich.edu

Step 1. Startup STM32CubeIDE and create new STM32 project

Step 2. Access board selector and type in the board you use, click Next

Step 3. Enter the project name then click Next

Step 4. See the firmware package name and version

Step 5. Click yes to initialize all peripherals to default

Step 6. When in .ioc file, click System view

Step 7. Check the setting for I2C2 to communicate with HTS221 sensor

Step 8. Generate code

Step 9. In core/include folder, create user_hts221.h file to store necessary macros

Step 10. In main.c file, create private function prototypes

```
main.c × h user hts221.h
 55 UART HandleTypeDef huart3;
 57 PCD HandleTypeDef hpcd USB OTG FS;
 59 /* USER CODE BEGIN PV */
 61 /* USER CODE END PV */
 63 /* Private function prototypes -----*/
 64 void SystemClock_Config(void);
 65 static void MX_GPIO_Init(void);
 66 static void MX_DFSDM1_Init(void);
 67 static void MX_I2C2_Init(void);
 68 static void MX_QUADSPI_Init(void);
 69 static void MX SPI3 Init(void);
 70 static void MX_USART1_UART_Init(void);
 71 static void MX_USART3_UART_Init(void);
 72 static void MX_USB_OTG_FS_PCD_Init(void);
 73 /* USER CODE BEGIN PFP */
 74 static void Temperature Sensor Init(uint16 t DeviceAddr);
 75 static void Humidity_Sensor_Init(uint16_t DeviceAddr);
 76 static void Sensor_Write_Multiple(uint8 t Addr, uint8 t Reg, uint8 t Value);
 77 static uint8 t Sensor_Read(uint8 t Addr, uint8 t Reg);
 78 static uint16 t Sensor_Read_Multiple(uint8 t Addr, uint8 t Reg, uint8 t *Buffer, uint16 t Length);
 79 static HAL_StatusTypeDef I2Cx_WriteMultiple(I2C_HandleTypeDef *i2c_handler, uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length);
 80 static HAL StatusTypeDef I2Cx ReadMultiple(I2C HandleTypeDef *i2c handler, uint8 t Addr, uint16 t Reg, uint16 t MemAddress, uint8 t *Buffer, uint16 t Length);
 81 static float Read_Temp_Sensor(uint16 t DeviceAddr);
 82 static float Read_Humidity_Sensor(uint16 t DeviceAddr);
 83 /* USER CODE END PFP */
 85⊜ /* Private user code -----*/
 86 /* USER CODE BEGIN 0 */
 88 /* USER CODE END 0 */
 900 /**
 91 * @brief The application entry point.
 92 * @retval int
```

Step 11. In main.c file, write the function definition for read/write to and from sensor using I2C

```
675 /* USER CODE BEGIN 4 */
676@ static HAL_StatusTypeDef I2Cx_ReadMultiple(I2C_HandleTypeDef *i2c_handler, uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length)
678 HAL StatusTypeDef status = HAL OK;
679
680
      status = HAL I2C Mem Read(i2c handler, Addr, (uint16 t)Reg, MemAddress, Buffer, Length, 1000);
681
      /* Check the communication status */
      if(status != HAL OK)
684
        /* De-initialize the I2C communication bus */
        HAL I2C DeInit(&hi2c2);
687
688
      return status;
689 }
691⊜static HAL StatusTypeDef I2Cx_WriteMultiple(I2C HandleTypeDef *i2c handler, uint8 t Addr, uint16 t Reg, uint16 t MemAddress, uint8 t *Buffer, uint16 t Length)
692 {
693 HAL StatusTypeDef status = HAL OK;
694
695
      status = HAL_I2C_Mem Write(i2c_handler, Addr, (uint16_t)Reg, MemAddress, Buffer, Length, 1000);
      /* Check the communication status */
      if(status != HAL OK)
699
        /* De-initialize the I2C communication bus */
701
        HAL I2C DeInit(&hi2c2);
702
703
      return status;
704 }
705
```

Step 12. In main.c file, create API function to use those read and write functions

```
706@ static uint8 t Sensor_Read(uint8 t Addr, uint8 t Reg)
707 {
      uint8 t read value = 0;
708
709
710
      I2Cx ReadMultiple(&hi2c2, Addr, Reg, I2C MEMADD SIZE 8BIT, (uint8 t*)&read value, 1);
711
712
      return read value;
713 }
714
715@ static uint16 t Sensor_Read_Multiple(uint8 t Addr, uint8 t Reg, uint8 t *Buffer, uint16 t Length)
716 {
     return I2Cx ReadMultiple(&hi2c2, Addr, (uint16 t)Reg, I2C MEMADD SIZE 8BIT, Buffer, Length);
718 }
719
720@ static void Sensor_Write_Multiple(uint8 t Addr, uint8 t Reg, uint8 t Value)
721 {
        I2Cx WriteMultiple(&hi2c2, Addr, (uint16 t)Reg, I2C MEMADD SIZE 8BIT, (uint8 t*)&Value, 1);
722
723 }
72/
```

Step 13. Write functions for initialization. Since I2C initialization and GPIO pin alternate function configuration, priority setting, etc. already done in MX_I2C2_Init function, we don't need to do it again

```
5@ static void Temperature Sensor Init(uint16 t DeviceAddr)
       uint8_t tmp;
     /* Read CTRL REG1 */
      tmp = Sensor_Read(DeviceAddr, HTS221_CTRL_REG1);
      /* Enable BDU */
     tmp &= ~HTS221_BDU_MASK;
      tmp |= (1 << HTS221 BDU BIT);
    /* Set default ODR */
      tmp &= ~HTS221 ODR MASK;
      tmp |= (uint8 t)0x01; /* Set ODR to 1Hz */
    /* Activate the device */
      tmp |= HTS221 PD MASK;
      /* Apply settings to CTRL REG1 */
      Sensor Write Multiple(DeviceAddr, HTS221 CTRL REG1, tmp);
5 }
7⊖ static void Humidity Sensor Init(uint16 t DeviceAddr)
      uint8 t tmp;
      /* Read CTRL REG1 */
      tmp = Sensor Read(DeviceAddr, HTS221 CTRL REG1);
      /* Enable BDU */
      tmp &= ~HTS221 BDU MASK;
      tmp |= (1 << HTS221 BDU BIT);
     /* Set default ODR */
      tmp &= ~HTS221_ODR_MASK;
      tmp |= (uint8_t)0x01; /* Set ODR to 1Hz */
      /* Activate the device */
      tmp |= HTS221_PD_MASK;
      /* Apply settings to CTRL REG1 */
      Sensor Write Multiple(DeviceAddr, HTS221 CTRL REG1, tmp);
7 }
```

Step 14. Implement read data from temperature and humidity sensor

```
static float Read_Temp_Sensor(uint16 t DeviceAddr)
  int16_t T0_out, T1_out, T_out, T0_degC_x8_u16, T1_degC_x8_u16;
  int16 t T0 degC, T1 degC;
 uint8 t buffer[4], tmp;
  float tmp f;
  Sensor Read Multiple(DeviceAddr, (HTS221 TO DEGC X8 | 0x80), buffer, 2);
  tmp = Sensor Read(DeviceAddr, HTS221_T0_T1_DEGC_H2);
  T0 degC x8 u16 = (((uint16 t)(tmp \& 0x03)) << 8) | ((uint16 t)buffer[0]);
  T1 degC x8 u16 = (((uint16 t)(tmp \& 0x0C)) << 6) | ((uint16 t)buffer[1]);
  T0 degC = T0 degC \times8 u16 \Rightarrow 3;
  T1 degC = T1 degC \times 8 u16 \Rightarrow 3;
  Sensor Read Multiple(DeviceAddr, (HTS221 T0 OUT L | 0x80), buffer, 4);
  T0 out = (((uint16 t)buffer[1]) << 8) | (uint16 t)buffer[0];
  T1 out = (((uint16 t)buffer[3]) << 8) | (uint16 t)buffer[2];
  Sensor Read Multiple(DeviceAddr, (HTS221 TEMP OUT L REG | 0x80), buffer, 2);
  T out = (((uint16 t)buffer[1]) << 8) | (uint16 t)buffer[0];
  tmp f = (float)(T out - T0 out) * (float)(T1 degC - T0 degC) / (float)(T1 out - T0 out) + T0 degC;
  return tmp f;
```

```
static float Read Humidity Sensor(uint16 t DeviceAddr)
  int16 t H0 T0 out, H1 T0 out, H T out;
  int16 t H0 rh, H1 rh;
  uint8 t buffer[2];
  float tmp f;
  Sensor Read Multiple(DeviceAddr, (HTS221 H0 RH X2 | 0x80), buffer, 2);
  H0 rh = buffer[0] >> 1;
  H1 rh = buffer[1] >> 1;
  Sensor_Read_Multiple(DeviceAddr, (HTS221_H0_T0_OUT_L | 0x80), buffer, 2);
  H0_T0_out = (((uint16_t)buffer[1]) << 8) | (uint16_t)buffer[0];
  Sensor_Read_Multiple(DeviceAddr, (HTS221_H1_T0_OUT_L | 0x80), buffer, 2);
  H1_T0_out = (((uint16_t)buffer[1]) << 8) | (uint16_t)buffer[0];
  Sensor Read Multiple(DeviceAddr, (HTS221 HR OUT L REG | 0x80), buffer, 2);
  H T out = (((uint16 t)buffer[1]) << 8) | (uint16 t)buffer[0];
  tmp f = (float)(H T out - H0 T0 out) * (float)(H1 rh - H0 rh) / (float)(H1 T0 out - H0 T0 out) + H0 rh;
  tmp f *= 10.0f;
  tmp f = (tmp f > 1000.0f) ? 1000.0f
        : (tmp_f < 0.0f)? 0.0f
        : tmp f;
  return (tmp_f / 10.0f);
```

Step 15. In main function, implement the driver code to read temp and humidity value then print it out on UART1

```
/* USER CODE BEGIN 2 */
float temp value = 0;
float hum_value = 0;
char str tmp[100] = "";
// HTS221 sensor init
Humidity Sensor Init(HTS221 I2C ADDRESS);
Temperature_Sensor_Init(TSENSOR_I2C_ADDRESS);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
  /* USER CODE END WHILE */
  /* USER CODE BEGIN 3 */
  temp value = Read Temp Sensor(TSENSOR I2C ADDRESS);
  int tmpInt1 = temp value;
  float tmpFrac = temp_value - tmpInt1;
 int tmpInt2 = trunc(tmpFrac * 100);
  snprintf(str tmp, 100, "TEMPERATURE = %d.%02d\n\r", tmpInt1, tmpInt2);
 HAL UART_Transmit(&huart1, (uint8 t *)str tmp, sizeof(str_tmp), 1000);
  hum value = Read Humidity Sensor(HTS221 I2C ADDRESS);
  int humInt1 = hum value;
  float humFrac = hum value - humInt1;
  int humInt2 = trunc(humFrac * 100);
  snprintf(str tmp, 100, "HUMIDITY = %d.%02d\n\r", humInt1, humInt2);
 HAL UART Transmit(&huart1, (uint8 t *)str tmp, sizeof(str tmp), 1000);
  HAL_Delay(2000);
/* USER CODE END 3 */
```

Step 16. Compile and run in debug mode, open tera term and setup the terminal, then we can see the value

