Finite field extensions

Jiang-Hua Lu

The University of Hong Kong

MATH4302 Algebra II

Monday, March 31, 2025

Outline

In this file:

Finite field extensions

Review:

• Degree of a field extension: Given $K \subset L$, regard L as a vector space over K, and define

$$[L:K] = \text{dimension of } L \text{ as a vector space over } K.$$

- Finite extensions: $[L:K] < \infty$.
- Tower Theorem: For $K \subset M \subset L$, a tower of fields,

$$[L:K] = [L:M][M:K].$$

• If $p(x) \in K[x]$ is irreducible, then

$$K[x]/\langle p(x)\rangle$$

is an extension of K of degree equal to $n = \deg(p(x))$.

• Given a field extension $K \subset L$ and subset S of L, define

$$K(S)$$
 = the smallest subfield of L containing S and K .

When $S = \{a\}$, K(a) is called a simple extension of K.

Review continued: Let $K \subset L$ be an extension (e.g. $\mathbb{Q} \subset \mathbb{C}$).

• Algebraic elements: An element $a \in L$ is algebraic over K if

$$E_a: K[x] \longrightarrow L, f(x) \longmapsto f(a)$$

monic

has a non-zero kernel $I(a) = \{f(x) \in K[x] : f(a) = 0\}$. In this case, the nomic generator p(x) of I(a) is called the minimal polynomial of a over K, and

$$E_a: K[x]/\langle p(x)\rangle \longrightarrow K[a] = K(a)$$

is an isomorphism of fields.

- An element $a \in L$ is algebraic over K iff $[K(a) : K] < \infty$.
- If $a \in L$ is not algebraic over K, say that a is transcendental over K.

Adjoining finitely many algebraic elements:

For a field extension $K \to L$, define the subring of L generated by $a_1, \ldots, a_n \in L$ over K as

$$K[a_1, \dots, a_n] = \{f(a_1, \dots, a_n) : f(x_1, \dots, x_n) \in K[x_1, \dots, x_n]\}.$$
Example: Recall that the sub-field of L
generated by a_1, \dots, a_n is over K is
$$K(a_1, -a_n) = \{f(a_1, \dots, a_n) : f(a_1, -x_n) = f(a_1, \dots, a_n) : f(a_1, -a_n) = f(a_1, \dots, a_n) : f(a_1, -a_n) = f(a_1, \dots, a_n) : f(a_1, -a_n) = f(a_1, \dots, a_n) : f(a_1, \dots, a_n$$

Main Proposition. If $a_1, a_2, \dots a_n$ are all algebraic over K, then

- **1** $K(a_1, a_2, \dots, a_n)$ is a finite extension of K;
- **2** $K(a_1, a_2, \dots, a_n) = K[a_1, a_2, \dots, a_n] \subset L.$

Proof. Let $K_0 = K$ and for $1 \le i \le n$, let

$$K_i = K(a_1, \ldots, a_i) = K_{i-1}(a_i)$$

• Then we have a tower of field extensions

$$K \subset K_1 \subset \cdots \subset K_n \subset L$$
.

- Each a_i , being algebraic over K, is also algebraic over K_{i-1} .
- Thus each K_i is a finite extension of K_{i-1} .
- By the Tower Theorem, K_n is a finite extension over K. Moreover,

$$K_n = K_{n-1}[a_n] = K_{n-2}[a_{n-1}][a_n] = K_{n-2}[a_{n-1}, a_n] = \cdots$$

= $K[a_1, \dots, a_{n-1}, a_n].$

Q.E.D.

Consequences of the Main Proposition:

Recall that very element in a finite extension L of K is algebraic over K.

Theorem. An extension L of K is finite iff there exist $a_1, a_2, \dots, a_n \in L$ which are algebraic over K such that $L = K(a_1, a_2, \dots, a_n)$.

Proof.

- Assume first that *L* is a finite extension of *K*.
- Let $\{a_1, \ldots, a_n\}$ be a basis of L over K.
- Then every a_j is algebraic over K and $L = K(a_1, a_2, \dots, a_n)$.
- The converse holds by the Main Proposition.

Q.E.D.

Very important examples.

For any $f \in \mathbb{Q}[x]$, let a_1, \ldots, a_n be all the roots of f in \mathbb{C} . Then

- $L = \mathbb{Q}[a_1, a_2, \dots, a_n]$ is a finite extension of \mathbb{Q} ;
- Every element in $L = \mathbb{Q}[a_1, a_2, \dots, a_n]$ is algebraic over \mathbb{Q} ;
- The field L is called the splitting field of f in C.

• The field L is called the splitting field of f in C.

Then
$$f(x) = \chi(\chi - \chi_1)(\chi - \chi_2) \cdots (\chi - \chi_1)$$
 [E.D.

 $f(x) = \chi^{-1}$], let $\omega_n = C^{-1}$ [E.D.

Then $\chi_1 = \chi^{-1}$], let $\omega_n = C^{-1}$ [E.D.

So $L = \mathcal{O}(\omega_n) = \mathcal{O}(\chi_1, \chi_1, \chi_2)$
 $L = \mathcal{O}(x) = \mathcal{O}(\chi_1, \chi_2, \chi_3)$
 $L = \mathcal{O}(x) = \mathcal{O}(\chi_1, \chi_2, \chi_3)$
 $L = \mathcal{O}(x) = \mathcal{O}(\chi_1, \chi_2, \chi_3)$
 $L = \mathcal{O}(x) = \mathcal{O}(\chi_1, \chi_2, \chi_3)$

8/10

Claim. (Proof in Tutorial)
The minimal poly of an own over over or is $\Phi_n = \prod_{k \in l(n+1)} (x - \omega_n^k)$ Later: $Aut_{K}(L) = \{ \sigma \in Aut(L) : \sigma_{K} = id_{K} \}$

Compute the degree of $K[a_1, ..., a_n]$ over K by the Tower Theorem.

Example. The field $L=\mathbb{Q}(\sqrt{2},\sqrt{3})$ is a finite extension of \mathbb{Q} since both $\sqrt{2}$ and $\sqrt{3}$ are algebraic over \mathbb{Q} .

- $[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4;$
- Let $\alpha = \sqrt{2} + \sqrt{3}$ and $K = \mathbb{Q}[\alpha]$. Minimal polynomial of α is

$$p(x) = x^4 - 10x^2 + 1,$$

so
$$[K:\mathbb{Q}]=4$$
, so $K=\mathbb{Q}[\sqrt{2},\sqrt{3}]$. = $\mathbb{Q}(\sqrt{2}+\sqrt{3})$

• Seen another way: It follows from

$$\left\{ \begin{array}{l} \alpha = \sqrt{2} + \sqrt{3}, \\ \alpha^3 = 15\sqrt{2} + 5\sqrt{3} \end{array} \right.$$

that

$$\sqrt{2} = \frac{-5\alpha + \alpha^3}{10}, \quad \sqrt{3} = \frac{15\alpha - \alpha^3}{10}.$$

Thus $L \subset K$, so K = L.

Primitive Element Theorem. Every finite extension of \mathbb{Q} is of the form $\mathbb{Q}(\alpha)$ for a single algebraic number over \mathbb{Q} .

Enough to prove that
$$Q(a_1, a_2) = Q(x)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_2)$$

$$Q(a_1)$$

$$Q(a_2)$$

$$Q(a_$$