Computational PANGenomics 2022 #CPANG22

Instituto Gulbenkian de Ciência, Portugal Day 1 - 2022/05/23

Erik Garrison and Andrea Guarracino

We use the term **pangenome** to refer to any collection of genomic sequences to be analyzed **jointly** or to be used as a reference.

We use the term **pangenome** to refer to any collection of genomic sequences to be analyzed **jointly** or to be used as a reference.

- Not restricted to taxonomic units
- Not restricted to full genomes
- Not tied to graphs

Figure adapted from The Computational Pan-Genomics Consortium et al., 2018.

We use the term **pangenome** to refer to any collection of genomic sequences to be analyzed **jointly** or to be used as a reference.

- Not restricted to taxonomic units
- Not restricted to full genomes
- Not tied to graphs

Figure adapted from The Computational Pan-Genomics Consortium et al., 2018.

Data structures

Algorithm

Statistical methods

Computational pangenomics

Why do we need pangenomes?

Thanks to advances in sequencing technology, new **telomere-to-telomere** genome assemblies are produced at a high rate.

Different data types can be combined to generate *de novo* assemblies that approach the high quality of reference genomes, but at a fraction of the cost.

Figure adapted from Logsdon et al., 2021.

Why do we need pangenomes?

Alignments summarize the relationship between sequences, exposing putative evolutionary and functional information.

Pangenomes can model the full set of genomic elements in a given species or clade, reducing the reference-bias.

Δ: new genome; R: reference genome. Figure from <u>Eizenga et al., 2020</u>.

Pangenome graph

Pangenomes can take many forms, including **graph-based** data structures.

Pangenome graphs compress redundant sequences into a smaller data structure that is still representative of the full set.

Figure from Eizenga et al., 2020.

- Genome 1: ACTACAGTACTGGCAGT
- Genome 2: ACTACAGTAAAGTACAGT

Genome 1: ACTACAGTACTGGCAGT

Genome 2: ACTACAGTAAAGTACAGT

1 ACTACAGTA

- Genome 1: ACTACAGTACTGGCAGT
- Genome 2: ACTACAGTAAAGTACAGT

- Genome 1: ACTACAGTACTGGCAGT
- Genome 2: ACTACAGTAAAGTACAGT

Genome 1: ACTACAGTACTGGCAGT

Genome 2: ACTACAGTAAAGTACAGT

1 ACTACAGTA 2 CAGT 4

Linear sequences are paths through nodes.

Genome 1: 1 2 4

Genome 2: 1 3 4

Genome 1: ACTACAGTACTGGCAGT

Genome 2: ACTACAGTAAAGTACAGT

Genome 3: ACTACAGTATACTTCAGT

Linear sequences are paths through nodes.

Genome 1: 1+ 2+ 4+

Genome 2: 1+ 3+ 4+

Genome 3: 1+ 3- 4+

Node traversed in reverse

VG and ODGI toolkits

https://github.com/vgteam/vg

odgi

https://github.com/pangenome/odgi

Graphical Fragment Assembly version 1 (GFAv1)

- Genome 1: ACTACAGTACTGGCAGT
- Genome 2: ACTACAGTAAAGTACAGT
- Genome 3: ACTACAGTATACTTCAGT


```
VN:Z:1.0
   ACTACAGTA
   CTGG
3 AAGTA
   CAGT
Genome 1 1+,2+,4+
Genome 2 1+, 3+, 4+
Genome 3 + 3 - 4 +
```

```
##fileformat=VCFv4.3
##reference=ref.fa
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
#CHROM POS ID REF
                  ATIT
                              OUAL
                                         TNFO
                                                    FORMAT
                                                           sample
ref
      10 . A
ref 21 . A ATTAAGA
ref 34 .
                              99
              TCTTT
                                                    GТ
```

TGGGAGAGAACTGGAACAAGAACCCAGTGCTCTTTCTGCTCTA

ref.fa

```
##fileformat=VCFv4.3
##reference=ref.fa
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
#CHROM
      POS ID REF
                     AT_1T
                               OUAL
                                                      FORMAT
                                                             sample
ref
       10 . A
ref
       21 . A ATTAAGA
       34
                               99
ref
               ТСТТТ
```

TGGGAGAACTGGAACAAGAACCCAGTGCTCTTTCTGCTCTA

ref.fa

For each variant

- 1) cut the reference path around the variant
- add the novel (ALT) sequence to the graph

```
##fileformat=VCFv4.3
##reference=ref.fa
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
```

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	sample
ref	10		A	Т	99	•	•	GT	1
ref	21		A	ATTAAGA	99	•	•	GT	1
ref	34		TCTTT	T	99	•	•	GT	1


```
##fileformat=VCFv4.3
##reference=ref.fa
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
#CHROM
        POS
             ΤD
                                     OUAL
                                                                         sample
                 REF
                          AT_{1}T
                                            FILTER
                                                    TNFO
                                                                FORMAT
ref
        10
                                      99
ref
                                      99
                          ATTAAGA
ref
        34
                  TCTTT
                                     99
                                                                GТ
```



```
##fileformat=VCFv4.3
##reference=ref.fa
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
#CHROM
        POS
                                                                         sample
                 REF
                          AT_1T
                                      OUAL
                                                     TNFO
                                                                 FORMAT
ref
        10
                                      99
                                                                 GT
                  Α
                          ATTAAGA
ref
                                      99
ref
        34
                                      99
                  TCTTT
                                                                 GТ
```



```
##fileformat=VCFv4.3
##reference=ref.fa
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
#CHROM
      POS
              REF
                     AT_1T
                                OUAL
                                           TNFO
                                                      FORMAT
                                                              sample
ref
       10 . A
ref
       21 . A ATTAAGA
ref
       34
                                99
               TCTTT
                                                      GТ
```


Activities

https://hackmd.io/@AndreaGuarracino/SJQ1XPGD9

The filesystem is already 60918272 (4k) *********************

Processing the PV/LV if necessary... Running: ocs-expand-lvm -b /dev/sda1 Found the disk(s) and partition(s) list ****************************** No any VG on /dev/sda1 was found. Skip processing /dev/sda1. **************************** Running: ocs-expand-lvm -b /dev/sda2 Found the disk(s) and partition(s) list

No any VG on /dev/sda2 was found. Skip processing /dev/sda2.

**************** Running: ocs-tux-postprocess sda1 sda2 Trying to remove udev hardware record in The specified destination device: sda1 sd