Chapter 1

Vector Spaces

A subset of W of \mathbb{R}^n is a *subspace* if it has the following proerties:

- (a) If $w, w' \in W$, then $w + w' \in W$
- (b) If $w \in W$, $c \in \mathbb{R}$, then $cw \in W$
- (c) The zero vector is in W

Note that (c) seems to be a special case of (b), by putting c = 0. However, it is (c) which ensures that W is not the empty set.

1.1 Fields

The quintessential model for a field is the set of all complex numbers \mathbb{C} .

Definition 1. A field F is a set together with two composition laws

$$F \times F \xrightarrow{+} F$$
 and $F \times F \xrightarrow{\times} F$ (1.1)

called addition: $a+b\mapsto a+b$ and multiplication: $a\times b\mapsto ab,$ which satisfy these axioms

- (i) F with addition, written as F^+ , is an abelian group,
- (ii) $F/\{0\}$ with multiplication, written as F^{\times} , is an abelian group,
- (iii) distributive law: For all $a, b, c \in F$, we have a(b+c) = ab + ac.

Note that axiom (iii) relates multiplication and addition.

A very interesting example of a field is

$$\mathbb{F}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\} = \mathbb{Z}/\mathbb{Z}_p,$$

where p is a prime number.

Lemma 1. The characteritic of any field F is either zero or a prime number.

Proof. Assume that the characteristic m is neither zero nor prime. Then, it can be written as m = rs for some positive integers r, s. Since we have

$$0 = \underbrace{1 + \dots + 1}_{m \text{ times}} = \underbrace{1 + \dots + 1}_{r \text{ times}} + \dots + 1.$$

Writing $\overbrace{1+\cdots+1}^{r \text{ times}} = a$, we get

$$0 = \underbrace{a + \dots + a}_{s \text{ times}} = a(\underbrace{1 + \dots + 1}_{s \text{ times}})$$

Now, either

$$\underbrace{1 + \cdots + 1}_{s \text{ times}} = 0$$
 or $a = \underbrace{1 + \cdots + 1}_{r \text{ times}} = 0$.

In either case, we have a contradiction.

1.2 Problems

1.8

Let p be a prime integer.

- (a) Fermat's theorem: $a^p \equiv a \mod p$ for every integer a. This is a direct consequence of the fact that \mathbb{F}_p^{\times} is a cyclic group of order p-1.
- (b) Wilson's theorem: $(p-1)! \equiv -1 \mod p$. The case with p=2 is trivial. Let p>2, which is odd. Let a be a primitive root of \mathbb{F}_p^{\times} . We have

$$\{1, \dots, p-1\} = \{a^1, \dots, a^{p-1}\}$$

$$\implies (p-1)! = a^1 \cdots a^{p-2} a^{p-1}$$

$$= a^{\frac{p(p-1)}{2}}$$

Since, $a^p \equiv a \mod p$ (by Fermat's theorem), then $(a^p)^{(p-1)/2} \equiv a^{(p-1)/2} \mod p$.

For some integer x, if we have $x^2 \equiv 1 \mod p$, then

$$x^2 - 1 = (x - 1)(x + 1) \equiv 0 \mod p$$

 $\Rightarrow x \equiv 1 \mod p \text{ or } x \equiv -1 \mod p$

If $x = a^{(p-1)/2}$, then x = 1 would mean that a is not a primitive root, which is a contradiction. So, $a^{(p-1)/2} \equiv -1 \mod p$. Thus,

$$(p-1)! = a^{\frac{p(p-1)}{2}} \equiv a^{\frac{p-1}{2}} \mod p$$
$$\equiv -1 \mod p$$