Contents

1	Cub 1.1	be-Balance (CuBa) - Der selbstbalancierende Würfel Software	2 3
2	1D-	-Prototyp	4
	2.1	Aktorik und Sensorik	5
	2.2	Modellierung der Systemdynamik	6
	2.3	Sensorik	8
		2.3.1 Winkelschätzung	8
		2.3.2 Kalibrierung und Justierung	8
		2.3.2.1 Umrechnung der Beschleunigungswerte	9
		2.3.2.2 Umrechnung der Winkelgeschwindigkeiten	9
		2.3.3 Auswertung der Radgeschwindigkeit $\dot{\psi}$	10
		2.3.4 Filterung der Sensordaten	11
		2.3.4.1 Komplementärfilter	11
		2.3.4.2 Kalman-Filter	11
		2.3.4.3 Anwendung des Kalman-Filters	12
	2.4	Modellbildung und Bestimmung der Systemgrößen	14
		2.4.1 Identifikation der Parameter	14
		2.4.1.1 Ermittlung des Reibwertes C_{φ}	14
		2.4.1.2 Ermittlung des Reibwertes C_{ψ}	15
		2.4.1.3 Resultate der Systemidentifikation	16
		2.4.2 Entwurf des Simulink-Modelles	17
		2.4.2.1 Simulation des Motors	17
			17
			18
	2.5		19
			19
			20
	2.6		22
3	3D-	-Modell	23
	3.1	Modellierung der Systemdynamik	24
			25
			25
			26
			27

1 Cube-Balance (CuBa) - Der selbstbalancierende Würfel

In der folgenden Dokumentation wird das CuBa-Projekt vorgestellt. Die Idee für dieses Projekt stammt von dem s.g. Cubli der ETH Zürich. Hierbei handelt es sich um einen Würfel, welcher in der Lage ist selbständig auf seine Ecken und Kanten zu springen und dort zu balancieren. Hierfür werden Motoren in dem Würfel fixiert, an welchen Schwungräder befestigt sind. Die Motormomente dienen einerseits als Stellgröße um den Würfel zu balancieren. Andererseits können die Schwungmassen über Bremsen abrupt zum Stillstand gebracht werden. Dadurch wird der Drehimpuls der Räder auf den Würfel übertragen. Somit ist es möglich den Würfel aus einer beliebigen Ruhelage aufzurichten.

Das Projekt ist in zwei Abschnitte unterteilt. Zuerst wird eine einzelne Würfelseite konzipiert, an welcher ein Motor mit einer Schwungmasse angebracht ist. Über eine Achse wird die Würfelseite gelagert und ist somit auf einen einzelnen rotatorischen Freiheitsgrad beschränkt. Dieser Prototyp dient als erstes Versuchsobjekt (1D-Modell) um die Systemeigenschaften zu untersuchen und Rückschlüsse auf den Entwurf des kompletten Würfel (3D-Modell) zu ziehen. Im zweiten Teil wird der letztendliche Würfel entwickelt, welcher über drei Motoren und Schwungmassen verfügt.

Der Aufbau der Dokumentation ist an den Projektverlauf angelehnt, so wird zu Beginn der Aufbau des 1D-Modell näher erläutert. Hierbei werden zuerst der mechanische Aufbau und die elektrischen Komponenten diskutiert. Im Anschluss werden mit Hilfe des Lagrange-Formalismus die Bewegungsgleichungen hergeleitet. Damit kann eine Zustandsraumdarstellung des Systems gewonnen werden, welche wiederum zu dem Entwurf eines zeitdiskreten Zustandsreglers verwendet wird. Außerdem wird auf die Auswertung der Sensoren eingegangen um mit Hilfe von Filtern und Datenfusionen möglichst genaue Schätzwerte des aktuellen Zustandsvektors zu erhalten. Zuletzt wird das Aufspringen der Würfelseite näher untersucht. Hierbei wird ein Lernalgorithmus vorgestellt, welcher die optimale Radgeschwindigkeit zum Aufspringen unter realen Bedingungen findet.

und von dem ganzen Würfel gibts noch nich so viel

1.1 Software

Im folgenden wird die Ansteuerung und Auswertung der elektrischen Komponenten näher beschrieben. Außerdem wird die Kommunikation zwischen der Host- und Target-Plattform erläutert. Als Zielplattform wird ein BeableBoneBlack verwendet, auf welchem eine Linux-Distribution ausgeführt wird. In der folgenden Abbildung sind die einzelnen Bausteine und deren Verbindung zu der Zielplattform dargestellt.

Figure 1: Blockschaltbild der Komponenten, Quelle: eigene Darstellung

Die Interaktion mit den Treibern des Betriebssystems wird mit Hilfe von Klassen gekapselt. Dadurch entsteht eine einheitliche und benutzerfreundliche Schnittstelle zwischen Hard- und Software.

2 1D-Prototyp

In diesem Teil wird der erste Prototyp vorgestellt. Hierbei handelt es sich um eine einzelne Würfelseite, welche mit Hilfe einer Achse gelagert ist. Dadurch wird die Bewegung des Systems auf zwei rotatorische Freiheitsgrade beschränkt, nämlich die Rotation um die Achse und die Bewegung der Schwungmasse relativ zu der Würfelseite. Mit Hilfe dieses Entwurfes kann die Dynamik und Anforderungen an die Komponenten an einem vereinfachten Modell untersucht werden. Aus diesen Ergebnisse können dann Rückschlüsse auf den Entwurf des endgültigen Würfels gezogen werden.

Hier ein vernünftiges Bild von dem endgültigen Aufbau?

2.1 Aktorik und Sensorik

Der folgenden Abschnitt beschreibt die verwendeten elektrischen Bauteile, um einerseits die benötigten physikalischen Größen zu messen, und andererseits die verwendete Aktorik, um das Aufspringen und Balancieren der Würfelseite zu ermöglichen.

Die Aufgabe der Sensorik besteht darin die Zustandsgrößen des Systemes zu bestimmen. Hierfür werden zwei GYR-521-Platinen verwendet, die mit einem MPU6050-IC der Firma InvenSense bestückt sind. Diese bieten jeweils einen dreiachsigen Beschleunigungssensor und Gyroskop. Mit Hilfe dieser Messwerte können die Zustandsgrößen φ und $\dot{\varphi}$ berechnet werden. Die Sensoren bieten die zusätzliche Möglichkeit einen variablen Tiefpassfilter zu verwenden um eine erste Glättung der Messwerte durchzuführen. Dieser Tiefpassfilter wird auf eine Grenzfrequenz von 44Hz eingestellt. Dieser Wert hat sich empirisch als optimaler Kompromiss zwischen Filterung der Rauschsignale und Verzögerung des eigentlichen Signals. Die Konfiguration und Auswertung der Sensoren erfolgt über eine I^2C -Schnittstelle. Die Justierung und Auswertung der Sensoren wird näher in ?? beschrieben.

Abschnitt 2.2 zeigt den Einfluss eines Motormomentes auf die Position und Gewschwindigkeit der Würfelseite. Um diese Moment zu erzeugen wird ein bürstenloser DC-Motor der Firma MaxonMotor verwendet (EC 45 flat, 50 Watt). Die Kriterien zur Auswahl des Motors sind einerseits die maximale Drehzahl und Drehmoment, andererseits die mechanische Zeitkonstante. Für das Aufspringen des Würfels ist die maximale Drehzahl des Motors von Bedeutung, die 10000 Umdrehung pro Minute des gewählten Motor reichen hierbei aus um eine ausreichend hohe kinetische Energie der Schwungmasse zu ermöglichen. Die Robustheit der Regelung wird durch das maximale Drehmoment limitiert, welches in diesem Fall bei 83.4 mNm liegt. Von besondere Bedeutung für die Regelung ist die mechanische Zeitkonstante des Motors, da diese eine Verzögerung der Stellgröße bewirkt und somit den geschlossenen Regelkreis negativ beeinflussen kann. Die mechanische Zeitkonstante des gewählten Motors ist mit 13.3ms im Vergleich zu anderen Kandidaten sehr niedrig. Die Ansteuerung des Motors erfolgt über den Treiberbaustein ESCON 36/3 EC, welcher ebenfalls von der Firma Maxon Motor vertrieben wird. Dieser ermöglicht die Steuerung des Drehmoments über ein PWM-Signal und die Auswertung der Winkelgeschwindigkeit $\dot{\psi}$ über ein analoges Signal.

Mit Hilfe einer mechanischen Bremse kann die Schwungmasse stoßartig zum Stillstand gebracht werden. Dadurch wird die kinetische Energie der Schwungmasse teilweise auf das Gesamtsystem übertragen und ermöglicht somit das Aufspringen. Die Bremsbacken werden über einen Servomotor betätigt, welcher mit Hilfe eines PWM-Signales kontrolliert wird.

Zur Ansteuerung der Aktorik und Sensorik wird ein STM32F4Discovery-Board der Firma STMicroelectronics verwendet. Die Programmierung erfolgt über eine, auf Eclipse basierende, Toolkette. Um die Auswertung der Sensordaten und den Entwurf der Regelung zu erleichtern, wird der Quellcode anschließend in Simulink-Blöcke implementiert.

2.2 Modellierung der Systemdynamik

In dem folgenden Abschnitt werden die Bewegungsgleichungen mit Hilfe des Lagrange Formalismus hergeleitet. Aus diesen Gleichung kann im Anschluss eine Zustandsraumdarstellung aufgestellt werden, welche als Grundlage für den Reglerentwurf dient.

Figure 2: Mechanischer Aufbau, Quelle: eigene Darstellung

Der Prototyp besteht aus einem starren Körper der in A auf einer Achse gelagert ist. In B ist eine Schwungmasse über einen Motor mit dem Körper verbunden. Somit verfügt das Gesamtsystem über zwei Freiheitsgrade, welche durch die generalisierten Koordinaten

$$q_1 = \varphi \qquad q_2 = \psi \tag{1}$$

beschrieben werden. Der Winkel φ wird von den Achsen y und y_K eingeschlossen. Der Winkel beschreibt die rotatorische Verschiebung der Schwungmasse zu dem Körper. Die folgenden Größen beschreiben die weiteren physikalischen Gegebenheiten des Systems.

Variable	Erklärung
$q_1 = \varphi$	Ausfallwinkel des Körpers
$q_2 = \psi$	Winkel zwischen Schwungmasse und Körper
A	Drehpunkt des Körpers
В	Drehpunkt des Schwungrades
l_{AB}	Abstand zwischen A und B
l_{AC}	Abstand zwischen A und dem Schwerpunkt des Körpers
m_K	Masse des Körpers
m_R	Masse des Schwungrades
$ heta_K^A \ heta_R^B$	Massenträgheitsmoment des Körper um A
θ_R^B	Massenträgheitsmoment der Schwungmasse um B
C_{arphi}	Dynamischer Reibkoeffizient des Körpers in A
C_{ψ}	Dynamischer Reibkoeffizient des Schwungrades in B
T_M	Drehmoment des Motor

Um die Bewegungsgleichungen des Systems zu ermitteln wird der Lagrange Formalismus verwendet. Dieser basiert auf der Lagrange-Funktion L, welche die Differenz der kinetischen Energie T und der potenziellen Energie V des Systems beschreibt.

$$T = \frac{1}{2} [(\theta_K^A + m_R \cdot l_{AB}^2) \dot{\varphi}^2 + \theta_R^B (\dot{\varphi} + \dot{\psi})^2]$$
 (2)

$$V = g(m_R \cdot l_{AB} + m_K \cdot l_{AC})\cos(\varphi)$$
(3)

$$L = T - V = \frac{1}{2} [(\theta_K^A + m_R \cdot l_{AB}^2) \dot{\varphi}^2 + \theta_R^B (\dot{\varphi} + \dot{\psi})^2] - g(m_R \cdot l_{AB} + m_K \cdot l_{AC}) cos(\varphi)$$
 (4)

In dem System wirken unterschiedliche Kräfte. Einerseits erzeugt der Motor ein Drehmoment, welches die virtuelle Arbeite δW_M verursacht. Andererseits verrichtet die Gravitation die virtuelle Arbeite δW_G . Zusätzlich muss die, durch die Reibung entstandene, Verlustleistung berücksichtigt werden. In diesem Fall wird die Reibleistung mit den Rayleigh'schen Dissipationsfunktionen D_{φ} und D_{ψ} beschrieben und verrichten die virtuelle Arbeit δW_D .

$$-\delta W_M = T_M \cdot \delta \psi \tag{5}$$

$$-\delta W_G = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) \cdot \delta \varphi \tag{6}$$

$$D_{\varphi} = \frac{1}{2} C_{\varphi} \cdot \dot{\varphi}^2 \tag{7}$$

$$D_{\psi} = \frac{1}{2}C_{\psi} \cdot \dot{\psi}^2 \tag{8}$$

$$D = D_{\varphi} + D_{\psi} = \frac{1}{2} C_{\varphi} \cdot \dot{\varphi}^2 + \frac{1}{2} C_{\psi} \cdot \dot{\psi}^2 \tag{9}$$

$$-\delta W_D = -C_{\varphi} \cdot \dot{\varphi} \cdot \delta \varphi - C_{\psi} \cdot \dot{\psi} \cdot \delta \psi \tag{10}$$

Die Summe der virtuellen Arbeiten, welche von den verschiedenen Kräften verrichtet wird, ergibt die virtuelle Arbeit des Gesamtsystems δW . In dem die verrichtete Arbeit partiell nach den beiden generalisierten Koordinaten φ und ψ differenziert wird, können die beiden generalisierten Kraftkomponenten Q_{φ} und Q_{ψ} berechnet werden.

$$Q_{\omega} = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) - C_{\omega} \cdot \dot{\varphi} \tag{11}$$

$$Q_{\psi} = T_M - C_{\psi} \cdot \dot{\psi} \tag{12}$$

Bei dem Prototyp handelt es sich um ein nicht konservatives System, da durch die Reibung mechanische Energie verloren geht und der Motor dem System mechanische Energie zuführt. Da die beiden generalisierten Koordinaten φ und ψ voneinander unabhängig sind können aus dem d'Alembert'schen Prinzip zwei Bewegungsgleichungen abgeleitet werden.

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i \tag{13}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\varphi}} - \frac{\partial T}{\partial \varphi} = Q_{\varphi} \tag{14}$$

$$(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}^2)\ddot{\varphi} + \theta_R^B \cdot \ddot{\psi} - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})\sin(\varphi) + C_{\varphi} \cdot \dot{\varphi} = 0$$
 (15)

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\psi}} - \frac{\partial T}{\partial \psi} = Q_{\psi} \tag{16}$$

$$\theta_B^R \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} - \theta_R^B \cdot \ddot{\varphi} \tag{17}$$

Durch Einsetzen von (17) in (15) ergibt sich die folgende Bewegungsgleichung für die Würfelseite.

$$\ddot{\varphi} = \frac{g(m_R \cdot l_{AB} + m_K \cdot l_{AC})sin(\varphi) - C_{\varphi} \cdot \dot{\varphi} + C_{\psi} \cdot \dot{\psi} - T_M}{\theta_K^A + m_R \cdot l_{AB}^2}$$
(18)

Die Bewegungsgleichung für die Schwungmasse ergibt sich durch Einsetzen von (18) in (17).

$$\ddot{\psi} = \frac{(\theta_K^A + m_R \cdot l_{AB}^2 + \theta_R^B)(T_M - C_\psi \cdot \dot{\psi})}{(\theta_K^A + m_R \cdot l_{AB}^2)\theta_R^B} + \frac{C_\varphi \cdot \dot{\varphi} - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})sin(\varphi)}{\theta_K^A + m_R \cdot l_{AB}^2}$$
(19)

2.3 Sensorik

Die Aufgabe der verwendeten Sensorik liegt darin die Werte für φ , und $\dot{\varphi}$ zu bestimmen. Hierfür wurden zwei MPU6050 IC's verwendet. Diese verfügen jeweils über einen Beschleunigungssensor und Gyroskop, welche Werte für drei Achsen ausgeben. Der Tiefpass der Sensoren wird auf eine Grenzfrequenz von 44Hz eingestellt, da hier einerseits eine erste Glättung der Daten erfolgt, andererseits aber keine zu große Verzögerung ergibt, welche sich wiederum negativ auf die Regelung auswirken könnte. Die Position und Ausrichtung der Sensoren ist in 3 dargestellt.

Figure 3: Position der Sensoren, Quelle: eigene Darstellung

2.3.1 Winkelschätzung

Die Sensoren keine Wege bzw. Winkel. Somit muss der Winkel φ berechnet werden. Die gemessenen Sensorwerte hängen von r_{S1} bzw. r_{S2} ab, welche den Abstand zwischen den Sensoren und dem Drehpunkt A beschreiben. Zusätzlich beeinflussen neben dem Winkel φ auch dessen beiden Ableitungen $\dot{\varphi}$ und $\ddot{\varphi}$ die Sensorausgabe. Allerdings lassen sich aus den Beschleunigungswerten der beiden Sensoren nach [1] wie folgt der aktuelle Wert von φ berechnen.

$$\ddot{S}_{i} = \begin{pmatrix} \ddot{x}_{i} \\ \ddot{y}_{i} \\ \ddot{z}_{i} \end{pmatrix} = \begin{pmatrix} r_{Si} \cdot \ddot{\varphi} + \sin(\varphi) \cdot g \\ -r_{Si} \cdot \dot{\varphi}^{2} - \cos(\varphi) \cdot g \\ 0 \end{pmatrix} \qquad i \in [1; 2]$$
 (20)

$$\alpha = \frac{r_{S1}}{r_{S2}} \tag{21}$$

$$\ddot{x}_1 - \alpha \cdot \ddot{x}_2 = g(1 - \alpha)\sin(\varphi) \tag{22}$$

$$\ddot{y}_1 - \alpha \cdot \ddot{y}_2 = -g(1 - \alpha)\cos(\varphi) \tag{23}$$

$$\frac{\ddot{x}_1 - \alpha \cdot \ddot{x}_2}{\ddot{y}_1 - \alpha \cdot \ddot{y}_2} = -tan(\varphi) \tag{24}$$

2.3.2 Kalibrierung und Justierung

Die Sensoren geben die Beschleunigungs- und Geschwindigkeitswerte als 16 Bit Werte im Zweierkomplement aus. Diese Rohwerte müssen in die mit Hilfe eines Ausgleichspolynoms in die jeweilige SI-Einheit umgerechnet werden.

2.3.2.1Umrechnung der Beschleunigungswerte

Um das Polynom zur Umrechnung der Beschleunigungswerte zu ermitteln werden sieben Messungen in den fixen Ausfallpositionen $\phi \in [-45, -30, -15, 0, 15, 30, 45]$ durchgeführt. Pro Position werden m=10000 Messwerte aufgenommen. Da in der Ruhelage die Beschleunigung lediglich von dem aktuellen Ausfallwinkel abhängt ist der Sollwert für jede Position bekannt. Somit kann ein Polynom erster Ordnung approximiert werden um Mittelwerte der sieben Positionen in die entsprechenden Beschleunigungswerte umzurechnen.

$$\ddot{x}_n \equiv X$$
-Beschleunigung Sensor n $\ddot{x}_n^R \equiv X$ -Rohwert Sensor n $\ddot{y}_n \equiv Y$ -Beschleunigung Sensor n $\ddot{y}_n^R \equiv Y$ -Rohwert Sensor n

$$\ddot{x}_n = p_{x_n}^1 \cdot \ddot{x}_n^R + p_{x_n}^2 \qquad | n \in \{1, 2\}$$
 (25)

$$\ddot{x}_n = p_{x_n}^1 \cdot \ddot{x}_n^R + p_{x_n}^2 \qquad | n \in \{1, 2\}$$

$$\ddot{y}_n = p_{y_n}^1 \cdot \ddot{y}_n^R + p_{y_n}^2 \qquad | n \in \{1, 2\}$$
(25)

Umrechnung der Winkelgeschwindigkeiten 2.3.2.2

Um die Rohwerte der Gyroskope in Winkelgeschwindigkeiten umzurechnen wird die Würfelseite fixiert und die Winkelgeschwindigkeitswerte der beiden Sensoren aufgenommen. Hierbei werden jeweils

m=1000 Werte aufgenommen. Da der Sollwert $\dot{\varphi}=0\frac{m}{s}$ bekannt ist kann die systematische Messabweichung der Sensoren über den Mittelwert bestimmt werden. Der proportionale Umrechnungsfaktor von Rohdaten zu Winkelgeschwindigkeiten wird dem Datenblatt des Herstellers entnommen.

$$\dot{\varphi}_n = p_{\dot{\varphi}_n^R}^1 \cdot (\dot{\varphi}_n + p_{\dot{\varphi}_n}^2)$$

$$p_{\varphi_1}^1 = -0.0076 \quad p_{\varphi_1}^2 = 89$$

$$p_{\varphi_2}^1 = -0.0076 \quad p_{\varphi_2}^2 = 889$$

$$(27)$$

2.3.3 Auswertung der Radgeschwindigkeit $\dot{\psi}$

Der Motortreiber liefert ein analoges Spannungssignal, welches die aktuelle Motorgeschwindigkeit wiedergibt. Um die ADC-Werte in SI-Einheiten umzurechnen wird ein Polynom erster Ordnung benötigt. Hierfür werden mit Hilfe der ESCON-Studio konstante Motorgeschwindigkeiten ($\dot{\psi} \in \{-3000, -2000, -1000, 0, 1000, 2000, 3000\}[rpm]$) gefahren und pro Durchlauf m=500 ADC-Werte aufgenommen. Über die Mittelwerte der Messungen und die vorgegebenen Radgeschwindigkeiten wird anschließend ein Polynom erster Ordnung approximiert.

 $\dot{\psi} \equiv \text{Geschwindigkeit der Schwungmasse} \quad \dot{\psi}_{ADC} \equiv \text{ADC-Wert}$

$$\dot{\psi} = -0.5176 \cdot \dot{\psi}_{ADC} + 1017 \tag{28}$$

2.3.4 Filterung der Sensordaten

In der Regel werden Sensoren von Störungen unterschiedlichster Art beeinflusst. In diesem Abschnitt werden das Komplementär- und Kalman-Filter vorgestellt. Hierbei handelt es sich um Methoden der Datenfusion um möglicht präzise Schätzungen der Zustandsgrößen zu erreichen.

Der Ausfallwinkel φ kann über die Auswertung der Beschleunigungswerte berechnet werden. Allerdings weißen diese Sensoren hochfrequente Störanteile auf, welche sich negativ auf die Winkelschätzung auswirken. Alternativ kann die Zustandsgröße φ über die Integration der Winkelgeschwindigkeit $\dot{\varphi}$ gewonnen werden. Die Geschwindigkeit $\dot{\varphi}$ wird mit Hilfe der beiden Gyroskope gemessen. Allerdings sind diese Messungen von einer systematischen Messabweichung betroffen, welche in die Integration einfließt und somit zu einem langfristigen Drift des Winkels φ führt.

2.3.4.1 Komplementärfilter

Eine der simpelsten Methoden der Signalverarbeitung stellt das s.g. Komplementärfilter dar. Die Grundidee dieses Prinzips besteht darin die einzelnen Sensorsignale mit einem Hoch- oder Tiefpass zu filtern und anschließend zu fusionieren.

In diesem Anwendungsfall wird der Winkel φ_{Acc} , welcher über die Beschleunigungswerte berechnet wird, mit einem Tiefpass gefiltert. Dadurch werden die hochfrequenten Störsignale entfernt. Der zweite Winkelwert φ_{Gyr} , welcher durch die Integration der Winkelgeschwindigkeit $\dot{\varphi}$ gewonnen wird, kann mit Hilfe eines Hochpasses von dem niederfrequenten Störsignal befreit werden.

Dieses Fusionsprinzip führt zu den folgenden Berechnungsschritten.

1. Integration der Winkelgeschwindigkeit $\dot{\varphi}_n$ nach der Trapezregel über das jeweilige Abtastintervall t_a .

$$\Delta \varphi_n = \frac{t_a}{2} \cdot (\dot{\varphi}_n + \dot{\varphi}_{n-1}) \tag{29}$$

2. Summation des vorherigen Winkels φ_{n-1} mit der Winkeländerung $\Delta \varphi_n$.

$$\varphi_{Gyr,n} = \varphi_{n-1} + \Delta \varphi_{Int,n} \tag{30}$$

3. Berechnung des aktuellen Winkels φ_n mit einem gewählten Gewichtungsfaktor α und den Winkelschätzungen $\varphi_{Gyr,n}$ und $\varphi_{Acc,n}$.

$$\varphi_n = \alpha \cdot \varphi_{Gyr,n} + (1 - \alpha) \cdot \varphi_{Acc,n} \tag{31}$$

2.3.4.2 Kalman-Filter

Das Kalman-Filter beruht auf dem Prinzip der Zustandsschätzung. Diese Schätzung erfolgt mittels der Messwerte aus Gyroskopen, Beschleunigungssensoren und der darauf folgenden Winkelschätzung. Hierbei greift der Algorithmus auf Methoden der Wahrscheinlichkeitsrechnung zurück. Ist die Varianz eines Messfehlers gegeben, so kann eine Schätzung des tatsächlichen Zustandes vorgenommen werden. In diesem Fall wird mit den linearisierten Bewegungsgleichungen gearbeitet. Dadurch kann das gewöhnliche Kalman-Filter verwendet werden. Für nichtlineare Systeme müssen unterschiedliche Filteralgorithmen, wie beispielsweise das Extended-Kalman-Filter, verwendet werden.

Bezeichnung	Erkärung
$oldsymbol{x}_n^*$	Systemzustände
$\hat{m{x}}_n$	Geschätzte Systemzustände
u_n	Messbare Eingangsgrößen
$oldsymbol{v}_n$	Störgrößen
$oldsymbol{A}_d$	Systemmatrix, welche den Systemzustand \hat{x}_n
	auf den folgenden Zeitschritt abbildet.
$oldsymbol{B}_d$	Eingangsmatrix
$oldsymbol{C}_d$	Ausgangsmatrix
$oldsymbol{P}_n^*$	Kovarianzmatrix von \boldsymbol{x}_n^* . Legt die Sicherheit der Schätzung fest.
$\hat{m{P}}_n$	Filterkovarianzmatrix von \hat{x}_n . Gibt die Gewichtung der Messwerte an.
Q_n	Kovarianzmatrix des Systemrauschens
R_n	Kovarianzmatrix des Messrauschens

Die Berechnung des Kalman-Filters verläuft in zwei Schritten, welche in insgesamt fünf Teile gegliedert ist. Zuerst wird der Prädikationsschritt durchgeführt, hierbei wird der Prädikationsschätzwert \boldsymbol{x}_{n+1}^* berechnet, welcher den Systemzustand im folgenden Zeitschritt darstellt. Zusätzlich wird die Prädikationskovarianzmatrix \boldsymbol{P}_{n+1}^* berechnet, welche angibt wie sicher die Vorhersage im Verhältnis zu dem wahren Systemzustand ist. Im zweiten Abschnitt, der s.g. Korrektur- bzw. Filterschritt, wird die Vorhersage mit Hilfe der neuen Messwerte korrigiert. Hierfür wird zuerst die Verstärkungsmatrix \boldsymbol{K}_{n+1} berechnet, welche den Rückkopplungsfaktor der Messwerte wiedergibt. Im Anschluss wird der Endschätzwertes des Systemzustandes mit Hilfe des ersten Prädikationswertes \boldsymbol{x}_{n+1}^* und der Verstärkungsmatrix \boldsymbol{K}_{n+1} bestimmt. Zuletzt wird die Varianz des geschätzten Systemzustandes $\hat{\boldsymbol{P}}_{n+1}$ berechnet.

1. Prädikationsschätzwert

Der Systemzustand zum Zeitpunkt n ist beschreibbar durch die zeitdiskrete, lineare, stochastische Differenzengleichung

$$\boldsymbol{x}_{n+1}^* = \boldsymbol{A}_d \cdot \hat{\boldsymbol{x}}_n + \boldsymbol{B} \cdot \boldsymbol{u}_n + \boldsymbol{v}_n \tag{32}$$

Die Systemmatrix A bildet den Systemzustand \hat{x} von Zeitschritt n auf den folgenden Zeitschritt n+1 ab. Die Eingangsgrößen u_n werden durch die Matrix B auf den Systemzustand x_{n+1}^* abgebildet. Das Rasuchen bzw. die äußeren Störeinflüsse werden durch den additiven Term v_n repräsentiert.

2. Prädikationskovarianzmatrix

Die Kovarianzmatrix P_{n+1}^* gibt an, wie sicher die Prädikation im Verhältnis zu dem wahren Systemzustand ist.

$$\boldsymbol{P}_{n+1}^* = \boldsymbol{A} \cdot \hat{\boldsymbol{P}}_n \cdot \boldsymbol{A}^T + \boldsymbol{Q}_n \tag{33}$$

3. Verstärkungsmatrix

Die Verstärkungsmatrix K_{n+1} wird für die Korrektur der Vorhersage verwendet. Sie bestimmt, mit welcher Verstärkung der Messvektor rückgekoppelt wird.

$$K_{n+1} = (P_{n+1}^* \cdot C^T)(C \cdot P_{n+1}^* \cdot C^T + R_{n+1})^{-1}$$
(34)

4. **Filterschätzwert** Mit Hilfe der Verstärkungsmatrix K_{n+1} und des Prädikationswertes x_{n+1}^* wird der finale Schätzwert des Systemzustandes zu dem Zeitpunkt n+1 bestimmt.

$$\hat{\boldsymbol{x}}_{n+1} = \boldsymbol{x}_{n+1}^* + \boldsymbol{K}_{n+1}(\boldsymbol{y}_{n+1} - \boldsymbol{C} \cdot \boldsymbol{x}_{n+1}^*)$$
(35)

5. **Filterkovarianzmatrix** Im letzten Schritt wird die Varianz des geschätzten Systemzustandes berechnet.

$$\hat{P}_{n+1} = P_{n+1}^* - K_{n+1} \cdot C \cdot P_{n+1}^*$$
(36)

2.3.4.3 Anwendung des Kalman-Filters

Um die zuvor angesprochenen Nachteile der einzelnen Sensoren auszugleichen, wird nun die Umsetzung eines Kalman-Filters zur Sensorfusion vorgestellt.

Das Kalman-Filter fusioniert den Ausfallwinkel φ_{Acc} aus der Winkelschätzung mit der Winkeländerung $\Delta \varphi_{Gyr}$, welche durch Integration der Gyroskopwerte gewonnen wurde. Daraus ergibt sich der gefilterte Winkel $\hat{\varphi}_n$. Dieser gefilterte Zustandswert wird für die Berechnung des Regelkreises verwendet.

Als absolute Eingangsgrößen stehen hier zum einen die Winkelschätzung φ_{Acc} und die Winkeländerung $\Delta \varphi_{Gyr}$ zur Verfügung. Somit kann das fehlerbehaftete Teilsystem durch folgende Gleichungen beschrieben werden, wobei $v_{Gyr,n}$ $w_{Acc,n}$ die störbehafteten Additionstherme darstellen.

$$\varphi_{n+1} = \varphi_n + \Delta \varphi_{Gyr,n} + v_{Gyr,n} \tag{37}$$

$$\varphi_{Acc,n} = \varphi_n + w_{Acc,n} \tag{38}$$

Figure 4: Übersicht Kalman-Filter, Quelle: eigene Darstellung

Die bereits vorgestellten Berechnungsschritte können nun auf den spezifischen Anwendungsfall angepasst werden. Da lediglich eine einzelne Zustandsgröße berechnet wird, werden anstelle von Vektoren und Matrizen skalare Größen verwendet.

1. Prädikationsschätzwert

$$\varphi_{n+1}^* = \hat{\varphi}_n + \Delta \varphi_{Gyr,n} \tag{39}$$

2. Prädikationsvarianz

$$P_{n+1}^* = \hat{P}_{n+1} + \sigma^2(\Delta \varphi_{Gyr,n})$$
 (40)

3. Verstärkungsfaktor

$$K_{n+1} = \frac{P_{n+1}^*}{P *_{n+1} + \sigma^2(\varphi_{Acc,n})}$$
(41)

4. Filterschätzwert

$$\hat{\varphi}_{n+1} = \varphi_{n+1}^* + K_{n+1} \cdot (\varphi_{Acc,n} - \varphi_{n+1}^*)$$
(42)

5. Filtervarianz

$$\hat{P}_{n+1} = (1 - K_{n+1}) \cdot P_{n+1}^* \tag{43}$$

Figure 5: Berechnungsablauf Kalman-Filter, Quelle: eigene Darstellung

2.4 Modellbildung und Bestimmung der Systemgrößen

Mit Hilfe der Bewegungsgleichungen aus Abschnitt 2.2 kann nun eine Zustandsraumdarstellung aufgestellt werden. Hierfür werden die nichtlinearen Terme entsprechend linearisiert. Mit Hilfe der Bewegungsgleichungen bzw. Zustandsraumdarstellung kann ein Simulink-Modell implementiert werden um das Systemverhalten zu simulieren. Mit Hilfe der Zustandsraumdarstellung wird ein Zustandsregler entworfen, welcher an dem Modell erprobt werden kann. Zusätzlich über die Simulation der Einfluss der einzelnen Parameter, Sensorrauschen und Störungen untersucht werden.

$$\mathbf{x} = \begin{pmatrix} \varphi \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} \varphi \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \qquad u = T_M \tag{44}$$

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot u \tag{45}$$

$$\mathbf{y} = \mathbf{C} \cdot \mathbf{x} + \mathbf{D} \cdot u \tag{46}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{g(m_{K} \cdot l_{AC} + m_{R} \cdot l_{AB})}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{-C_{\varphi}}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{C_{\psi}}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} \\ \frac{-g(m_{K} \cdot l_{AC} + m_{R} \cdot l_{AB})}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{C_{\varphi}}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} & \frac{-C_{\psi}(\theta_{K}^{A} + \theta_{R}^{B} + m_{R} \cdot l_{AB}^{2})}{\theta_{R}^{B}(\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2})} \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 0 & \\ \frac{-1}{\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2}} \\ \frac{\theta_{K}^{A} + \theta_{R}^{B} + m_{R} \cdot l_{AB}^{2}}{\theta_{K}^{B}(\theta_{K}^{A} + m_{R} \cdot l_{AB}^{2})} \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 0 \end{pmatrix}$$

2.4.1 Identifikation der Parameter

Der Reglerentwurf und die Simulation erfordern eine möglichst präzise Bestimmung der Systemparameter, wie z.B. Längen, Massen, Massenträgheitsmomente und Reibwerte. Die Bestimmung der Längen l_{AB} und l_{AC} , der Massen m_K , m_R und m_G , der Massenträgheitsmomente θ_K^A und θ_R^B erfolgt über das CAD-Modell. Hierfür werden Bauteile mit einer nicht homogenen Massenverteilung, wie z.B. die Motoren, in separate Baugruppen mit homogener Massenverteilung unterteilt.

2.4.1.1 Ermittlung des Reibwertes C_{φ}

In dem die Schwungmasse fest mit der Würfelseite verbunden wird ergibt sich die folgende Bewegungsgleichung für das Gesamtsystem.

$$(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}^2)\ddot{\varphi} = g(m_K \cdot l_{AC} + m_R \cdot l_{AB})\sin(\varphi) - C_{\varphi} \cdot \dot{\varphi}$$
(48)

In dem Versuchsaufbau wird das Gesamtsystem nun von einem Startwinkel φ_0 losgelassen, woraufhin eine gedämpfte Schwingung entsteht. Mit Hilfe der Sensoren können die Größen φ , $\dot{\varphi}$ und $\ddot{\varphi}$ gemessen werden.

Über die n Messpunkte ergeben sich die folgenden Vektoren.

$$\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_n \end{pmatrix} \qquad \dot{\varphi} = \begin{pmatrix} \dot{\varphi}_1 \\ \dot{\varphi}_2 \\ \vdots \\ \dot{\varphi}_n \end{pmatrix} \qquad \ddot{\varphi} = \begin{pmatrix} \ddot{\varphi}_1 \\ \ddot{\varphi}_2 \\ \vdots \\ \ddot{\varphi}_n \end{pmatrix} \tag{49}$$

Damit ergibt sich durch Umstellen von 48 die folgende Gleichung.

$$C_{\varphi} \cdot \dot{\varphi} = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) - (\theta_K^A + \theta_R^B + m_R \cdot l_{AB}^2) \ddot{\varphi}$$

$$\tag{50}$$

Mit Hilfe der Methode der kleinsten Fehlerquadrate kann nun der Reibwert C_{φ} bestimmt werden.

$$C_{\varphi} = 6.2 \cdot 10^{-3} \cdot kg \cdot m^2 \cdot s^{-1} \tag{51}$$

Figure 6: Ausfallwinkel der Würfelseite bei Versuch 4, Quelle: eigene Darstellung

2.4.1.2 Ermittlung des Reibwertes C_{ψ}

Im nächsten Versuchsaufbau wird die Würfelseite fixiert ($\dot{\varphi}=0$). Hierbei beschleunigt der Motor die Schwungmasse mit einem konstanten Drehmoment $T_M=10mNm$. T_M ist so zu wählen, dass sich die Radgeschwindigkeit $\dot{\psi}$ in einem Bereich bewegt, welcher dem Arbeitsbereich des geschlossenen Regelkreises entspricht.

Figure 7: Versuch 5: Verlauf der Radgeschwindigkeit, Quelle: eigene Darstellung

Da die Bewegung auf einen Freiheitsgrad beschränkt wurde vereinfacht sich das Modell des Systems auf die folgende Bewegungsgleichung.

$$\theta_R^B \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} \tag{52}$$

Im Versuchsverlauf werden bei n Stützstellen die Werte von $\psi, \dot{\psi}$ und $\ddot{\psi}$ gemessen. Daraus ergeben sich die folgenden Vektoren.

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{pmatrix} \qquad \dot{\psi} = \begin{pmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \\ \vdots \\ \dot{\psi}_n \end{pmatrix} \qquad \ddot{\psi} = \begin{pmatrix} \ddot{\psi}_1 \\ \ddot{\psi}_2 \\ \vdots \\ \ddot{\psi}_n \end{pmatrix}$$
 (53)

Durch Einsetzen von 53 in 52 kann über die Methode der kleinsten Fehlerquadrate wiederum der Reibwert C_{ψ} bestimmt werden.

$$C_{\psi} = 3.1176 \cdot 10^{-5} \cdot kg \cdot m^2 \cdot s^{-1} \tag{54}$$

2.4.1.3 Resultate der Systemidentifikation

An Hand der beschriebenen Versuche und Methoden wurden die folgenden Werte für die Parameter des Gesamtsystems ermittelt.

Parameter	Wert
l_{AB}	0.084m
l_{AC}	0.087m
m_K	0.221kg
m_R	0.09kg
$ heta_K^A$	$2.8 \cdot 10^{-3} kg \cdot m^2$
$ heta_R^B$	$1.1683 \cdot 10^{e-4} \cdot kg \cdot m^2$
C_{φ}	$6.2 \cdot 10^{-3} \cdot kg \cdot m^2 \cdot s^{-1}$
C_{ψ}	$3.1176 \cdot 10^{-5} \cdot kg \cdot m^2 \cdot s^{-1}$
r_{S1}	0.14m
r_{S2}	0.061m

2.4.2 Entwurf des Simulink-Modelles

Dieser Abschnitt erklärt den Aufbau des Simulink-Modelles zur Simulation des Systems. Die oberste Modellschicht besteht aus drei Subsystemen zur Simulation des Motor, der Würfelseite und der Schwungmasse.

Figure 8: Simulink-Modell Übersicht, Quelle: eigene Darstellung

2.4.2.1 Simulation des Motors

Der Motor wird als zwei in Reihe geschaltete PT1-Glieder simuliert. Da der Regler als Stellgröße ein Motormoment berechnet, beträgt die Verstärkung des Motor K_M in der Simulation den Wert eins. Die Zeitkonstanten der PT1-Glieder sind einerseits die elektrische Zeitkonstante T_e und die mechanische Zeitkonstante T_m , wessen Werte dem Datenblatt des Herstellers entnommen werden.

$$K_M = 1$$
 $T_e = 0.55ms$ $T_m = 12.4ms$ (55)

2.4.2.2 Simulation der Würfelseite

Die Dynamik der Würfelseite wird von 18 beschrieben.

$$\ddot{\varphi} = \frac{g(m_R \cdot l_{AB}^2 + m_K \cdot l_{AC})sin(\varphi) - C_{\varphi} \cdot \dot{\varphi} + C_{\psi} \cdot \dot{\psi} - T_M}{\theta_K^4 + m_R \cdot l_{AB}^2}$$
(18)

Somit ist die Winkelbeschleunigung gleich der Summe der Drehmomente geteilt durch die betroffenen Massenträgheitsmomente. Durch Integration und Rückführung können die einzelnen Drehmomente berechnet werden. Das folgende Modell zeigt die Umsetzung dieser Berechnungsvorschrift in Simulink.

Figure 9: Subsystem Würfelseite, Quelle: eigene Darstellung

2.4.2.3 Simulation der Schwungmasse

Die Dynamik der Schwungmasse wird von 19 beschrieben, allerdings wird das Modell vereinfacht indem $p\ddot{h}i$ nicht substituiert wird.

$$\theta_B^R \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} - \theta_R^B \cdot \ddot{\varphi} \tag{19}$$

Das Simulink-Modell folgt dem selben Schema wie das Subsystem zur Simulation der Bewegung des Würfelkörpers.

Figure 10: Subsystem Schwungmasse, Quelle: eigene Darstellung

2.5 Reglerentwurf

In dem folgenden Abschnitt wird der Entwurf eines Reglers vorgestellt, welcher auf der Rückführung des Zustandsvektors basiert. Im ersten Teil wird die analytische Bestimmung der Parameter erläutert, daraufhin wird der Regler im zweiten Teil an dem Prototyp erprobt und validiert.

2.5.1 Analytische Bestimmung der Reglerparameter

Mit Hilfe der Zustandsraumdarstellung kann über die Rückführung des Zustandvektors eine Regelung entworfen werden. Das folgende Blockschaltbild zeigt den Zusammenhang der Systemmatrizen und der Reglermatrix \mathbf{F} , welche zur Berechnung der Stellgröße $u=T_M$ dient.

Figure 11: Blockschaltbild Regelkreis, Quelle: eigene Darstellung, Inhalt aus [13]

Die Stellgröße u wird von einem Mikrokontroller mit einer Abtatsperiod $T_a = 20ms$ berechnet. Folglich handelt es sich um eine digitale Regelung. Um das Verhalten des diskreten Systems zu beschreiben müssen die diskreten Systemmatrizen \mathbf{A}_d , \mathbf{B}_d , \mathbf{C}_d und \mathbf{D}_d berechnet werden. Hierfür gilt nach [13]:

$$\mathbf{S} = T_a \sum_{v=0}^{\infty} \mathbf{A}^v \frac{T^v}{(v+1)!} \tag{56}$$

$$\mathbf{A}_d = \mathbf{I} + \mathbf{S} \cdot \mathbf{A} \tag{57}$$

$$\mathbf{B}_d = \mathbf{S} \cdot \mathbf{B} \tag{58}$$

$$\mathbf{C}_d = \mathbf{C} \tag{59}$$

$$\mathbf{D}_d = \mathbf{D} \tag{60}$$

Die Reglermatrix \mathbf{F} wird als optimaler Zustandsregler nach dem quadratischen Gütekriterium entworfen. Die diskrete Gütefunktion für dieses System lautet:

$$I = \sum_{k=1}^{\infty} \mathbf{x}^{T}(k) \cdot \mathbf{Q} \cdot \mathbf{x}(k) + R \cdot u(k)^{2}$$
(61)

Die Matrizen \mathbf{Q} und \mathbf{R} stellen Gewichtungen der Zustands- und Stellgrößen dar. Die Ausgangswerte dieser Matrizen werden mit der Faustformel nach ([14]) berechnet. Ggf. können die Werte anschließend angepasst werden um die Reglergüte weiter zu verbessern.

$$\mathbf{Q} = \begin{pmatrix} \frac{1}{(\varphi_{max})^2} & 0 & 0\\ 0 & \frac{1}{(\dot{\varphi}_{max})^2} & 0\\ 0 & 0 & \frac{1}{(\dot{\psi}_{max})^2} \end{pmatrix}$$
(62)

$$R = \left(\frac{1}{(T_{M,max})^2}\right) \tag{63}$$

Die Reglermatrix \mathbf{F} muss die Eigenschaft besitzen die Gütefunktion (61) zu minimieren. Dieses Problem wird mit Hilfe von der Matlab-Funktion lqrd numerisch gelöst.

2.5.2 Verifizierung des Reglers an dem 1D-Prototyp

Mit Hilfe von Matlab wurden die Werte der Reglermatrix F berechnet.

$$\mathbf{F} = (0.8821 \quad 0.1386 \quad 0.0002) \tag{64}$$

Somit lässt sich das Motormoment $T_{M,n}$ durch die Rückführung des Zustandvektors \boldsymbol{x}_n über die Reglermatrix \boldsymbol{F} berechnen.

$$T_{M,n} = \mathbf{F} \cdot \mathbf{x}_n \tag{65}$$

Der Regler wird zuerst mit Hilfe eines Simulink-Modelles in der Simulation überprüft. Anschließend wird der geschlossene Regelkreis auf den Prototyp übertragen. Hierbei ist zu beachten, dass bei der Modellierung des Systemverhaltens die Annahme getroffen wurde, dass der Schwerpunkt des Systems auf dessen Y-Achse liegt. Durch den unsymmetrischen Aufbau ist dies allerdings nicht der Fall, somit ergibt sich das folgende Gravitationsmoment M_G , wobei der Winkel φ_{cog} den Winkel zwischen Y-Achse und Schwerpunkt der Würfelseite bezeichnet.

$$M_G = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \cdot \sin(\varphi + \varphi_{cog}) \tag{66}$$

Somit muss ein konstantes Motormoment erzeugt werden, um die Würfelseite bei dem Sollwinkel $\varphi=0$ zu halten. Dadurch wird die Schwungmasse konstant beschleunigt, weshalb die Schwungmasse nicht vollständig zum Stillstand kommen kann. Deshalb muss für die Berechnung des Drehmomentes der Winkel φ_{cog} zu der Zustandsgröße φ addiert werden.

$$T_{M,n} = \mathbf{F} \cdot \begin{pmatrix} \varphi + \varphi_{cog} \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \tag{67}$$

Da die Winkelgeschwindigkeit der Schwungmasse $\dot{\psi}$ nur dann verschwindet wenn das Motormoment gleich null ist, kann der Wert von φ_{cog} empirisch ermittelt werden.

Die folgenden Abbildungen zeigen den Verlauf der Winkelgeschwindigkeiten $\dot{\varphi}$ und $\dot{\psi}$. Hier zeigt sich, dass die Radgeschwindigkeit $\dot{\psi}$ nicht gegen null konvergiert. Mögliche Ursachen für dieses Verhalten sind neben der unsymmetrischen Konstruktion, die ungefilterten Werte von $\dot{\varphi}$ und $\dot{\psi}$, da deren Rauschsignale die Regelung negativ beeinflussen. Weiter können systematische Messabweichungen der Zustandsgrößen zu einer nicht verschwindenden Winkelgeschwindigkeit $\dot{\psi}$ führen.

Figure 12: Verluaf von $\dot{\varphi}$ und $\dot{\psi}$, Quelle: eigene Darstellung

Die nächste Abbildung zeigt den Verlauf des Winkels φ , wobei die Werte der Winkelschätzung, des Komplementärfilters und des Kalman-Filters aufgezeigt sind. Hier lässt sich deutlich erkennen wie stark das rauschbehaftetes Signal der Winkelschätzung durch die jeweiligen Filter geglättet wird. Ein direkter Vergleich der beiden Filter ist ohne ein absolutes Referenzsignal nur schwer möglich.

Figure 13: Verlauf von φ , Quelle: eigene Darstellung

2.6 Aufspringen

Das Aufspringen der Würfelseite wird durch das abrupte bremsen der Schwungmasse ermöglicht. Hierbei wird der Drehimpuls der Schwungmasse auf das Gesamtsystem übertragen. Dieser Vorgang kann als nicht elastischer Stoß modelliert werden. Somit ergibt sich aus dem Drehimpulserhaltungssatz folgende Gleichung, wobei $\dot{\varphi}_B$ die Winkelgeschwindigkeit der Würfelseite nach dem Bremsen und $\dot{\psi}_B$ die Winkelgeschwindigkeit der Schwungmasse vor dem Bremsen darstellt.

$$(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}) \cdot \dot{\varphi}_B = \theta_R^B \cdot \dot{\psi}_B \tag{68}$$

Um die Würfelseite von der Ruhelage ($\varphi_R = \pm \frac{\pi}{4}$) zu dem Gleichgewichtspunkt ($\varphi_G = 0$) zu bewegen muss Arbeite verrichtet werden. Diese Arbeit W ist gleich der Änderung der potentiellen Energie von der Ruhelage hin zu dem Gleichgewichtspunkt.

$$W = V(\varphi_G) - V(\varphi_R) = g(m_K + m_R)l_{AC} \cdot (\cos(\varphi_G) - \cos(\varphi_R))$$
(69)

Auf Grund des Energieerhaltungssatzes muss die kinetische Energie des Gesamtsystemes nach dem Bremsvorgang gleich der zu leistenden Arbeit sein um die Würfelseite aufzurichten. Somit kann der Zusammenhang von $\dot{\varphi}_B$ und der Arbeit W wie folgt beschrieben werden.

$$\frac{1}{2}(\theta_K^A + \theta_R^B + m_R \cdot l_{AB})\dot{\varphi}_B^2 = g(m_K + m_R)l_{AC} \cdot (1 - \frac{1}{\sqrt{2}})$$
(70)

Mit Hilfe der Gleichungen (70) und (68) kann nun die notwendige Bremsgeschwindigkeit $\dot{\psi}_B$ berechnet werden.

$$\dot{\psi}_B = \sqrt{(2 - \sqrt{2}(m_R + m_K) \cdot l_{AC} \cdot g \cdot \frac{\theta_K^A + \theta_R^B + m_R \cdot l_{AB}}{\theta_R^{B^2}}}$$

$$(71)$$

Das obige Modell geht von der Annahme aus, dass es sich um einen perfekt nicht elastischen Stoß handelt und bei der Bewegung der Würfelseite keine Energie verloren geht. Somit besteht eine Abweichung des Modells von den realen Bedingungen. Um diese Abweichungen zu minimieren wird ein, an den Gradientenabstieg angelehnter, Lernalgorithmus implementiert. Nach dem Abbremsen der Schwungmasse werden die Größen φ und $\dot{\varphi}$ beobachtet. Tritt ein Nulldurchgang von φ auf bedeutet dies, dass die Anfangsgeschwindigkeit $\dot{\varphi}_B$ und somit die Radgeschwindigkeit $\dot{\psi}_B$ zu hoch waren. Tritt jedoch ein Nulldurchgang von $\dot{\varphi}$ auf, folgt, dass $\dot{\varphi}_B$ und $\dot{\psi}_B$ zu niedrig waren. In beiden Fällen kann die Änderung der Energie ΔE , welche nötig ist um den Zielpunkt zu erreichen, berechnet werden.

$$\Delta E = \begin{cases} (1 - \cos(\varphi_0))(m_K + m_r)l_{AC} \cdot g & | \dot{\varphi} = 0 \\ -\frac{1}{2}(\theta_K^A + \theta_R^B + m_R \cdot l_{AB}) \cdot \dot{\varphi}_0^2 & | \varphi = 0 \end{cases}$$
(72)

Mit Hilfe der Drehimpuls- (68) und Energie
erhaltung (70 wird nun aus der Energie
änderung ΔE die nötige Änderung der Radgeschwindigkeit $\Delta \dot{\psi}_B$ berechnet.

$$\pm \Delta \dot{\psi}_B = \sqrt{2 \cdot \frac{\theta_K^A + \theta_R^B + m_R \cdot l_{AB}}{\theta_R^{B^2}} \cdot \Delta E}$$
 (73)

Die Konvergenz des Lernalgorithmus gegen den Zielwert wird empirisch bewiesen, hierfür ist allerdings das hinzufügen einer Lernrate μ erforderlich. Daraus ergibt sich letztendlich folgende Vorschrift um den aktuellen Wert der Bremsgeschwindigkeit $\dot{\psi}_B$ zu bestimmen.

$$\dot{\psi}_B := \dot{\psi}_B + \mu \cdot \Delta \dot{\psi}_B \qquad | 0 < \mu \le 1$$
 (74)

3 3D-Modell

 ${\rm filler}$

3.1 Modellierung der Systemdynamik

In diesem Abschnitt werden die Bewegungsgleichungen des 3D-Modells mit Hilfe des Lagrange-Formalismus hergeleitet. Der Würfelkörper besitzt drei rotatorische Freiheitsgrade, die drei Schwungmassen verfügen über jeweils einen Freiheitsgrad. Somit ergeben sich insgesamt sechs Freiheitsgrade für das Gesamtsystem. Dadurch steigt die Komplexität der Systemdynamik stark an, allerdings bestehen nach wie vor Parallelen zu der Dynamik des 1D-Modells.

Um die Position des Würfels zu beschreiben wird ein raumfestes Bezugssystem $\{I\}$ eingeführt, welches von den drei Einheitsvektoren Ie_x , Ie_y und Ie_z beschrieben wird. Das zweite Bezugssystem $\{W\}$ ist körperfest und rotiert somit mit dem Würfel. Es wird von den Einheitsvektoren we_x , we_y und we_z beschrieben.

Figure 14: Mechanischer Aufbau, Quelle: eigene Darstellung

Die aktuelle Position des Würfels kann somit eindeutig durch die Verschiebung des körperfesten Bezugssystems $\{W\}$ zu dem raumfesten Bezugssystem $\{I\}$ bestimmt werden. Um diese Rotation zu beschreiben werden die drei Euler-Winkel φ_1 , φ_2 und φ_3 eingeführt. Die Drehreihenfolge und Drehachsen werden im folgenden beschrieben.

Winkel	Beschreibung
φ_1	Drehung um $^{I}e_{z}$
φ_2	Drehung um we_x
φ_3	Drehung um we_z

Die erste Ableitung gewöhnliche Ableitung der Euler-Winkel entspricht den Winkelgeschwindigkeiten des Würfels um die oben genannten Achsen.

Mit Hilfe der Euler-Winkel können Drehmatrizen definiert werden um Koordinaten in dem raumfesten Bezugssystem $\{I\}$ in das körperfeste Bezugssystem $\{W\}$ zu projizieren. Hier zeigt sich wieder die Bedeutung der Reihenfolge der einzelnen Drehungen, da auch die Matrizenmultiplikation im Allgemeinen nicht kommutativ ist.

$${}^{w}\boldsymbol{r} = {}^{w}\boldsymbol{D}_{\varphi_{3}} \cdot ({}^{w}\boldsymbol{D}_{\varphi_{2}} \cdot ({}^{w}\boldsymbol{D}_{\varphi_{1}} \cdot {}^{I}\boldsymbol{r})) = {}^{w}\boldsymbol{D} \cdot {}^{I}\boldsymbol{r}$$

$$(75)$$

$${}^{w}\mathbf{D}_{\varphi_{1}} = \begin{pmatrix} c_{\varphi_{1}} & -s_{\varphi_{1}} & 0 \\ s_{\varphi_{1}} & c_{\varphi_{1}} & 0 \\ 0 & 0 & 1 \end{pmatrix} {}^{w}\mathbf{D}_{\varphi_{2}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\varphi_{2}} & -s_{\varphi_{2}} \\ 0 & s_{\varphi_{2}} & c_{\varphi_{2}} \end{pmatrix} {}^{w}\mathbf{D}_{\varphi_{3}} = \begin{pmatrix} c_{\varphi_{3}} & -s_{\varphi_{3}} & 0 \\ s_{\varphi_{3}} & c_{\varphi_{3}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (76)

$${}^{w}\mathbf{D} = \begin{pmatrix} c_{\varphi_{1}}c\varphi_{3} - s_{\varphi_{1}}c_{\varphi_{2}}s_{\varphi_{3}} & -c_{\varphi_{1}}s_{\varphi_{3}} - s_{\varphi_{1}}c_{\varphi_{2}}c_{\varphi_{3}} & s_{\varphi_{1}}s_{\varphi_{2}} \\ s_{\varphi_{1}}c_{\varphi_{3}} + c_{\varphi_{1}}c_{\varphi_{2}}s_{\varphi_{3}} & -s_{\varphi_{1}}s_{\varphi_{3}} + c_{\varphi_{1}}c_{\varphi_{2}}\varphi_{3} & -c_{\varphi_{1}}s_{\varphi_{2}} \\ s_{\varphi_{2}}s_{\varphi_{3}} & s_{\varphi_{2}}c_{\varphi_{3}} & c_{\varphi_{2}} \end{pmatrix}$$

$$(77)$$

Die Projizierung einer Koordinate aus dem körperfesten in das raumfeste Bezugssystem erfolgt durch die transponierte der Matrix ${}^{w}\mathbf{D}$.

$${}^{I}\boldsymbol{r} = {}^{I}\boldsymbol{D} \cdot {}^{I}\boldsymbol{r} = {}^{w}\boldsymbol{D}^{T} \cdot {}^{I}\boldsymbol{r} \tag{78}$$

Die Bewegung der Schwungmassen relativ zu dem Würfelkörper wird von den drei Winkeln ψ_1 , ψ_2 und ψ_3 beschrieben. Deren zeitliche Ableitungen stellen die Winkelgeschwindigkeiten der Schwungräder dar.

$$\boldsymbol{\psi} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \qquad \dot{\boldsymbol{\psi}} = \begin{pmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \\ \dot{\psi}_3 \end{pmatrix} \tag{79}$$

Die Euler-Winkel φ und die Ausfallwinkel der Schwungmassen ψ werden als generalisierte Koordinaten verwendet.

$$\boldsymbol{q} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \\ q_6 \end{pmatrix} = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \tag{80}$$

3.1.1 Potential des Systems

Um die Lagrange-Funktion L des Systems zu bestimmen muss einerseits die kinetische Energie T und die potentielle Energie V ermittelt werden. Das Potential des Würfels wird durch die aktuelle Lage seines Schwerpunktes r bestimmt, hierbei ist lediglich die z-Komponente des raumfesten Bezugssystem von Bedeutung.

$$V = m_G \cdot g \cdot {}^{I}z_{cog} \tag{81}$$

Die Position des Schwerpunktes im körperfesten Bezugssystem ist fix. Durch die Projektion dieses Vektors ${}^{w}\mathbf{r}_{cog}$ in das raumfeste Bezugssystem $\{I\}$ wird die Abhängigkeit von der aktuellen Verschiebung berücksichtigt.

$${}^{I}\boldsymbol{r}_{C} = {}^{I}\boldsymbol{D} \cdot {}^{w}\boldsymbol{r}_{C} = {}^{I}\boldsymbol{D} \cdot \begin{pmatrix} {}^{w}\boldsymbol{x}_{C} \\ {}^{w}\boldsymbol{y}_{C} \\ {}^{w}\boldsymbol{z}_{C} \end{pmatrix}$$
(82)

Folglich ergibt sich der folgende Zusammenhang für das Potential V und die aktuelle Ausrichtung des Würfels.

$$V = m_G \cdot g \cdot {}^{I}z_{cog} = m_G \cdot g \cdot (s_{\varphi_2}s_{\varphi_3} \cdot {}^{w}x_C + s_{\varphi_2}c_{\varphi_3} \cdot {}^{w}y_C + c_{\varphi_2} \cdot {}^{w}z_C)$$

$$(83)$$

3.1.2 Kinetische Energie des Systems

Die kinetische Energie setzt sich aus der Winkelgeschwindigkeit des Würfels ω_K und der Geschwindigkeiten der drei Schwungmassen ω_R zusammen. Hierbei ist zu beachten, dass die Winkelgeschwindigkeiten in verschiedenen Bezugssystemen darstellbar sind und die kinetische Energie von der Darstellungsform unabhängig ist. Um dies zu gewährleisten müssen allerdings auch die Trägheitstensoren in das jeweilige Bezugssystem projiziert werden.

$${}^{w}\boldsymbol{\omega}_{K} = \begin{pmatrix} {}^{w}\boldsymbol{\omega}_{x} \\ {}^{w}\boldsymbol{\omega}_{y} \\ {}^{w}\boldsymbol{\omega}_{z} \end{pmatrix} \qquad {}^{w}\boldsymbol{\omega}_{R} = \dot{\boldsymbol{\psi}}$$
 (84)

$$T = \frac{1}{2} {}^{w} \boldsymbol{\omega}_{K}^{T} \cdot ({}^{w} \boldsymbol{\Theta}_{G} - {}^{w} \boldsymbol{\Theta}_{R}) \cdot {}^{w} \boldsymbol{\omega}_{K} + \frac{1}{2} ({}^{w} \boldsymbol{\omega}_{K} + {}^{w} \boldsymbol{\omega}_{R})^{T} \cdot {}^{w} \boldsymbol{\Theta}_{R} \cdot ({}^{w} \boldsymbol{\omega}_{K} + {}^{w} \boldsymbol{\omega}_{R})$$
(85)

Um das die kinetische Energie T mit Hilfe der generalisierten Koordinaten darzustellen muss die Winkelgeschwindigkeit ${}^w\omega_W$ als die erste Ableitung der Euler-Winkel φ darstellen. Um die Projektion der Euler-Geschwindigkeiten $\dot{\varphi}$ zu veranschaulichen kann die Rotationsgeschwindigkeit des Würfels ${}^w\omega_W$ als Summe der Euler-Komponenten dargestellt werden.

$${}^{w}\boldsymbol{\omega}_{W} = {}^{w}\dot{\boldsymbol{\varphi}}_{1} + {}^{w}\dot{\boldsymbol{\varphi}}_{2} + {}^{w}\dot{\boldsymbol{\varphi}}_{3} \tag{86}$$

Um die Euler-Geschwindigkeit in dem körperfesten Bezugssystem darzustellen werden Rotationsachsen um die entsprechenden Euler-Winkel rotiert. Die Winkelgeschwindigkeit $\dot{\varphi}_3$ ist ist gleich der Rotation um die körperfeste we_z und muss somit nicht über eine Drehmatrix projiziert werden.

$$^{w}\dot{\boldsymbol{\varphi}}_{3} == \begin{pmatrix} 0\\0\\w_{\omega_{z}} \end{pmatrix} \tag{87}$$

Die Winkelgeschwindigkeit $\dot{\varphi}_2$ entsprecht der Rotation um die körperfeste Achse we_x vor der Rotation um den Winkel φ_3 . Somit muss mit Hilfe der Matrix ${}^w\mathbf{D}_{\varphi_3}$ der Geschwindigkeitsvektor in das endgültige körperfeste Bezugssystem projiziert werden.

$${}^{w}\dot{\boldsymbol{\varphi}}_{2} = {}^{w}\boldsymbol{D}_{\varphi_{3}} \cdot \begin{pmatrix} \dot{\varphi}_{2} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \dot{\varphi}_{2} \cdot c_{\varphi_{3}} \\ -\dot{\varphi}_{2} \cdot s_{\varphi_{3}} \\ 0 \end{pmatrix}$$
(88)

Die dritte Komponente ist die Winkelgeschwindigkeit $\dot{\varphi}_1$, welche der Rotation um die raumfeste Achse Ie_z entspricht. Folglich muss zu einer Projektion in das körperfeste Bezugsystem der Geschwindigkeitsvektor mit den Matrizen $^w \mathbf{D}_{\varphi_3}$ und $^w \mathbf{D}_{\varphi_2}$ multipliziert werden.

$${}^{w}\boldsymbol{\omega}_{W} = {}^{w}\dot{\boldsymbol{\varphi}}_{1} + {}^{w}\dot{\boldsymbol{\varphi}}_{2} + {}^{w}\dot{\boldsymbol{\varphi}}_{3} = ({}^{w}\boldsymbol{D}_{\varphi_{2}}({}^{w}\boldsymbol{D}_{\varphi_{3}} \cdot \begin{pmatrix} \dot{\varphi}_{1} \\ 0 \\ 0 \end{pmatrix})) = \begin{pmatrix} \dot{\varphi}_{1} \cdot s_{\varphi_{2}} \cdot s_{\varphi_{3}} \\ \dot{\varphi}_{1} \cdot s_{\varphi_{2}} \cdot c_{\varphi_{3}} \\ \dot{\varphi}_{1} \cdot c_{\varphi_{2}} \end{pmatrix}$$
(89)

Die gesamte Winkelgeschwindigkeit des Würfels ${}^w\omega_K$ ergibt sich wie bereits beschrieben aus der Summe der einzelnen Komponenten.

$${}^{w}\dot{\boldsymbol{\varphi}} = \begin{pmatrix} \dot{\varphi}_{1} \cdot s_{\varphi_{2}} \cdot s_{\varphi_{3}} + \dot{\varphi}_{2}\dot{c}_{\varphi_{3}} \\ \dot{\varphi}_{1} \cdot s_{\varphi_{2}} \cdot c_{\varphi_{3}} - \dot{\varphi}_{2} \cdot s_{\varphi_{3}} \\ \dot{\varphi}_{1} \cdot c_{\varphi_{2}} + \dot{\varphi}_{3} \end{pmatrix}$$
(90)

3.1.3 Generalisierte Kraftkomponenten

In der Untersuchung des 1D-Modelles wurde bereits gezeigt, dass der Würfel ein nicht konservatives System ist, da einerseits über die Motoren mechanische Energie zugeführt wird und andererseits durch Reibung mechanische Energie verloren geht. Deshalb müssen die generalisierten Kraftkomponenten bestimmt werden um mit Hilfe des d'Alembert'schen Prinzip die Bewegungsgleichungen zu ermitteln.

Wie bereits angesprochen erzeugen die Motoren Momente, welche die Schwungmassen antreiben. Gleichermaßen entsteht in den Lagern der Räder ein Reibmoment welches als linear abhängig von der Winkelgeschwindigkeit modelliert wird. Somit ergibt sich das folgende Moment.

$${}^{w}\boldsymbol{M}_{M} = {}^{w}\boldsymbol{T}_{M} - \boldsymbol{C}_{\psi} \cdot {}^{w}\dot{\boldsymbol{\psi}} \qquad \boldsymbol{C}_{\psi} = \begin{pmatrix} C_{\psi_{1}} & 0 & 0 \\ 0 & C_{\psi_{2}} & 0 \\ 0 & 0 & C_{\psi_{3}} \end{pmatrix}$$
(91)

Die Komponenten dieses Momentvektors sind gleichermaßen die generalisierten Kraftkomponenten der Koordinaten ψ_1 , ψ_2 und ψ_3 .

$$Q_{\psi_1} = Q_4 = T_{M1} - C_{\psi_1} \cdot \dot{\psi}_1 \tag{92}$$

$$Q_{\psi_2} = Q_5 = T_{M2} - C_{\psi_2} \cdot \dot{\psi}_2 \tag{93}$$

$$Q_{\psi_2} = Q_6 = T_{M3} - C_{\psi_2} \cdot \dot{\psi}_3 \tag{94}$$

Die Kraftkomponenten, welche den generalisierten Koordinaten φ_1 , φ_2 und φ_3 zugeordnet sind lassen sich aus dem Potential V herleiten.

$$Q_{\varphi_1} = \frac{\partial V}{\partial \varphi_1} = 0 \tag{95}$$

$$Q_{\varphi_2} = \frac{\partial V}{\partial \varphi_2} = m_G \cdot g \cdot (c_{\varphi_2} s_{\varphi_3} \cdot {}^w y_C + c_{\varphi_2} c_{\varphi_3} \cdot {}^w y_C - s_{\varphi_2} \cdot {}^w z_C)$$

$$\tag{96}$$

$$Q_{\varphi_3} = \frac{\partial V}{\partial \varphi_3} = m_G \cdot g \cdot (s_{\varphi_2} c_{\varphi_3} \cdot {}^w x_C - s_{\varphi_2} c_{\varphi_3} \cdot {}^w y_C)$$

$$\tag{97}$$

3.1.3.1 Test

$$T = \frac{(\dot{\varphi}_2 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) (O_{K3_1} (\dot{\varphi}_3 + \dot{\varphi}_1 \cos(\varphi_2)) + O_{K1_1} (\dot{\varphi}_2 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) - O_{K2_1} (\dot{\varphi}_2 \sin(\varphi_3) - \dot{\varphi}_1 \cos(\varphi_3)) + O_{K1_2} (\dot{\varphi}_2 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) - O_{K2_2} (\dot{\varphi}_2 \cos(\varphi_3) - \dot{\varphi}_1 \cos(\varphi_3)) + O_{K1_2} (\dot{\varphi}_2 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) - O_{K2_2} (\dot{\varphi}_2 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) + O_{K2_3} (\dot{\varphi}_2 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) + O_{K2_3} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) + O_{K1_3} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \cos(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) - O_{K2_3} (\dot{\varphi}_2 \sin(\varphi_3) - \dot{\varphi}_1 \cos(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \cos(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_2) \sin(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \cos(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \sin(\varphi_3)) + O_{K1_4} (\dot{\varphi}_3 \cos(\varphi_3) + \dot{\varphi}_1 \cos(\varphi_3)) +$$

References

- [1] Mohanarjah Gajamohan, Michael merz, Igor Thommen, Raffaello D'Andrea: The Cubli: A Cube that can Jump Up and Balance
- [2] Mohanarajah Gajamohan, Michael Muehlbach, Tobias Widmer, Raffaello D'Andrea: The Cubli: A Reaction Wheel Based 3D Inverted Pendulum
- [3] Michael Muehlbach, Gajamohan Mohanarajah, Raffaello D'Andrea: Nonlinear Analysis and Control of a Reaction Wheel-based 3D Inverted Pendulum
- [4] Wolfgang Nolting: Grundkurs Theoretische Physik 1 Klassische Mechanik
- [5] Wolfgang Nolting: Grundkurs Theoretische Physik 2 Analytische Mechanik
- [6] Thomas R. Kane: Dynamics Theory and Applications
- [7] Fernando Puente León, Sebastian Bauer: Praxis der digitalen Signalverarbeitung
- [8] Josef Hoffmann, Franz Quint : Simulation technischer linearer und nichtlinearer Systeme mit MATLAB/Simulink
- [9] Herbert Schlitt: Systemtheorie für stochastische Prozesse
- [10] Marin Meyer: Signalverarbeitung Analoge und digitale Signale, Systeme und Filter
- [11] Ottmar Beucher: Signale und Systeme Theorie, Simulation und Anwendung
- [12] Heinz Unbehauen: Regelungstechnik 1 Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme
- [13] Heinz Unbehauen: Regelungstechnik 2 Zustandsregelungen, digitale und nichtlineare Regelsysteme
- [14] Joao P. Hespanha: Lecture notes on LQR/LQG controller design
- [15] Tom M. Mitchell: Machine Learning
- [16] Christopher Bishop: Pattern Recognition and Machine Learning