

Estruturas de Dados e Programação

UFSM00272

Professor Jonas Bulegon Gassen jonas.gassen@ufsm.br

Matrizes

- Faça uma função para descobrir quantas casas é necessário informar no printf, de acordo com os números da matriz;
- Exemplo:
- Entrada: {{1, 2, 3,},{4, 15, 6,},{7, 8, 439,}}
- Saída: 4 (o maior número é 439, são 3 casas, mais 1 espaço em branco).

- Faça um exercício para percorrer uma matriz de forma espiral
 espiral
 apresentá-la.
- Ex: {{1, 2, 3, 4},{5, 6, 7, 8},{9, 10, 11, 12},{13, 14, 15, 16}}
- 1, 2, 3, 4, 8, 12, 16, 15, 14, 13, 9, 5, 6, 7, 11, 10
- É como se a matriz fosse desenrolada no sentido anti-horário

- Existem três vetores de 5 posições.
- Gostaríamos de saber se existem quaisquer três valores (um de cada vetor, obrigatoriamente) que somados resultam em 0.

[-5, 2, 8, 14, 15], [-2, 5, 8, 18, 20] e [-10, 8, 17, 5, 23]

Como resolver?

- [-5, 2, 8, 14, 15], [-2, 5, 8, 18, 20] e [-10, 8, 17, 5, 23]
- Três laços, um dentro do outro?
- Como isso fica para 3 vetores de 1000 elementos cada?
- 1000 * 1000 * 1000?

- Uma solução conhecida para evitar que sejam feitos 3 laços, um dentro do outro, ocasionando em um grande número de cálculos, é a seguinte:
 - Ordenar dois dos vetores, um em ordem crescente e outro decrescente.
 - Somar seus valores, de forma que os resultados possam ser processados em forma de matriz.

 A matriz resultante terá valores em ordem crescente da esquerda para a direita e decrescente de cima para baixo.

Vetor 1		-5	2	8	14	15
Vetor 2		-2	5	8	18	20
Vetor 3		-10	8	17	5	23
		-5	2	8	14	15
	20	15	22	28	34	35
	18	13	20	26	32	33
	8	3	10	16	22	23
	5	0	7	13	19	20
	-2	-7	0	6	12	13

Note que o vetor 2 foi ordenado de forma decrescente

- Agora, basta pegar cada valor do vetor restante e procurá-lo na matriz.
- Iniciando pela posição [0][0] da matriz, caso o valor a ser procurado seja menor, deve se ir para a próxima linha abaixo, pois todos valores a direita na corrente linha serão maiores.
- Caso o valor procurado seja maior, deve-se ir a direita, pois todos valores abaixo na corrente coluna são menores, até encontrar o valor procurado ou o laço de repetição chegar ao fim sem encontrar o elemento, que indica a não existência para o valor testado.

- Iniciar em [0][0], caso o valor a ser procurado seja menor, deve se ir para a próxima linha abaixo.
- Caso o valor procurado seja maior, deve-se ir a direita.

-10	8	17	14	5	23
-----	---	----	----	---	----

	-5	2	8	14	15
20	15	22	28	34	35
18	13	20	26	32	33
8	3 -	→ <u>10</u>	16	22	23
5	0	7	13	19	20
-2	-7	0	6	12	13

 No exemplo, as flechas vermelhas indicam o caminho percorrido para encontrar o primeiro valor do vetor apresentado acima da matriz (-10 + 10 = 0).