

Diodes – 3

Rectifiers

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: shadman9085@gmail.com

Review: Diode Models

OFF State: Open circuit

ON State: Short circuit

Real diode

I-V characteristics of a real diode

Relation between diode current and diode voltage:

$$i_D = I_S \left(e^{\frac{v_D}{\eta V_T}} - 1 \right)$$

where v_D (= $v_A - v_C$) is the voltage across the diode, i_D is the current through the diode (from anode to cathode) and V_T , called the thermal voltage, is a temperature dependent constant. For temperature T = 300K, $V_T = 25 \text{ mV}$.

 η is called the ideality factor (try to recall, you measured this in the lab!)

Modeling the real diode

- 1. Ideal diode model
- 2. Constant voltage drop (CVD) model
- 3. CVD+R model

OFF State: Open circuit

$$\begin{array}{c|c}
i_D = 0 \\
+ v_D -
\end{array}$$

$$(v_D < V_{D0}, i_D = 0)$$

ON State: Voltage source

$$V_{D0} - V_{D0} - V_{D0} - V_{D0}$$

$$(i_D > 0, v_D = V_{D0})$$

Modeling the real diode

- 1. Ideal diode model
- 2. Constant voltage drop (CVD) model

3. CVD+R model

Half-wave rectifier (ideal diode model)

Half-wave rectifier (ideal diode model)

Half-wave rectifier (CVD model)

$$v_{I} = V_{M} \sin \omega t$$

$$v_{O} = V_{M} \sin \omega t - V_{D}$$

$$V_{D} = peak \ of \ output$$

$$= V_{M} - V_{D}$$

Half-wave rectifier (CVD model)

Transfer Characteristics

Full-wave rectifier (ideal diode & CVD

(+) half-cycle

$$v_o = v_I - 2V_D$$

Full-wave rectifier (ideal diode & CVD

$$v_o = -v_I - 2V_D$$

Full-wave rectifier (ideal diode & CVD

Half-wave and Full-wave rectifier

Filtering: Half-wave rectifier

Filtering: Full-wave rectifier

Without capacitor

Rectifier	i/p peak	o/p peak	average
H/W	V _M	V _P	$V_{avg} = V_{DC} = \frac{1}{\pi} V_{M} - \frac{1}{2} V_{Do}$
F/W	V _M	V_{p}	$V_{avg} = V_{DC} = \frac{2}{\pi}V_{M} - 2V_{Do}$

With capacitor

Rectifier	i/p peak	o/p peak	frequency	Ripple voltage	average
H/W	V _M	$V_p = V_M - V_{Do}$	f _r =f _i	$V_r = \frac{V_p}{f_r R_C}$	$V_{avg} = V_{DC} = V_{P} - \frac{1}{2}V_{r}$
F/W	V_{M}	$V_P = V_M - 2V_{Do}$	f _r =2f _i	$V_r = \frac{V_p}{f_r R_C}$	$V_{avg} = V_{DC} = V_{P} - \frac{1}{2}V_{r}$

$$I_{o,avg} = V_{o,avg}/R$$
, $V_{rms} = V_p/\sqrt{2}$

Example

A voltage waveform $v_i = 8sin(2000\pi t)V$ is input to a Half-wave rectifier. A resistance of $R = 50k \Omega$ is connected at the load. [Assume that the diodes used in the circuit have a forward drop of 0.8V].

(a) Draw the circuit of the full wave rectifier. Label the input and output voltages properly.

[1]

(b) Draw the waveforms of the input and output voltages. What are the peak values of input and output? Show them in the graph.

[1+1]

(c) Find the average voltage measured at the output.

[1]

Example 2

A voltage waveform $v_i = 5\sin(200\pi t)$ V is fed into a Full-wave rectifier with a load resistor, $R = 5 \text{ k}\Omega$. Silicon diodes are used in this circuit where, $V_{D_0} = 0.6 \text{ V}$.

- (a) **Draw** the rectifier circuit. **Label** the input and output voltages properly. Briefly **explain** the application of the circuit. [1+1+1]
- (b) Calculate the DC value of the output voltage, V_{dc} and the output frequency, f_o . [1+1]
- (c) **Draw** the Voltage Transfer Characteristics (VTC) of the Full-wave rectifier and **label** it properly. [2]
- (d) Now, you have to connect a capacitor in parallel with the load resistor. You have two capacitors of 5 μF and 1 μF at your disposal. Which capacitor will you use? **Explain** briefly with necessary calculations. [3]
- (e) [Bonus] A different input waveform is fed into the Full-wave rectifier. The new peak-to-peak ripple voltage is 50% of the previous one calculated from (d) with the 5 μF capacitor. The new output frequency is 300 Hz. **Determine** the equation of the input waveform.

Thank you