

Mitigasi Risiko Paparan Panas Ekstrem melalui Pemanfaatan Hutan dan Transisi Energi Terbarukan di Asia

Eureka Team

Nadia Chusnul I

Universitas Banten Jaya

Imelda Wahyuni

Sekolah Tinggi Teknologi

Terpadu Nurul Fikri

Dinda Rahmalia

Negeri Surabaya

Ahmad Fathullah

Universitas Nahdlatul Wathan Mataram

M. Akbar Purnama P

Universitas Muhammadiyah Metro

Baromim Triwijaya

Universitas **PGRI Semarang**

Yoan Angeline H

Fasilitator

Table of Content

- 1 Business Understanding
- 2 Data Understanding
- 3 Data Preparation
- 4 Modelling

- 5 Metrics Evaluation
- 6 Insight Data & Prediksi
- 7 Saran
- 8 Business Solutions

Business Understanding

Perubahan iklim meningkatkan risiko paparan panas ekstrem, terutama di negara-negara Asia yang populasinya sangat padat. Situasi ini diperburuk oleh emisi CO2 yang terus meningkat, lambatnya transisi menuju energi terbarukan, dan deforestasi.

Proyek ini memiliki tujuan:

- 1. Menganalisis tren panas ekstrem di kawasan Asia
- 2. Memahami hubungan antara populasi, emisi CO2, energi terbarukan, dan luas hutan di suatu negara
- 3.Memberikan reko mendasi berbasis data untuk mengurangi dampak panas ekstrem dan mendukung mitigasi perubahan iklim

Data Understanding

Nama Dataset	Deskripsi
Population Heat Exposure	Jumlah rata-rata paparan penduduk terhadap hari dengan suhu ekstrem
Production-based CO2 Emissions	Total emisi CO2 berbasis produksi dalam satuan ton
Renewable Energy Supply	Pasokan energi terbarukan
Forest	Luas hutan
Population	Jumlah total populasi di suatu negara

Missing Value

Ditemukan ada 3 kolom yang memiliki missing value, yang dimana di atasi dengan mengisi nilai kosong dengan forward fill dan backward fill pada kolom CO2, Renewble energy supply dan Forest.

BEFORE

Production-based CO2 emissions	12	
Renewable energy supply	5	
Forest	10	

AFTER

Production-based CO2 emissions	0	
Renewable energy supply	0	
Forest	0	

Data Preparation

Duplikat

Tidak ada data duplikat ditemukan, menandakan dataset telah diverifikasi dan setiap entri bersifat unik.

Tidak ditemukan data duplikat

Outliers

Ditemukan dan divisualisasikan dengan boxplot untuk analisis lebih lanjut, guna mempermudah identifikasi distribusi data, outlier, dan pola.

Outlier tidak perlu ditangani karena sesuai dengan kejadian nyata, tidak mengganggu model dan dapat memberikan wawasan penting.

Feature Engineering

Pop Exposure

Menghitung jumlah populasi yang terekspos pada hari panas

Periode	Negara	Paparan Panas (%)	pop_exposure
1990	China	55.451665	639680824
1991	China	59.489104	696491602
1992	China	52.056536	616648311
1993	China	56.922244	681534901
1994	China	51.537795	623093544

Exposure Rate

Membuat fungsi 'kategori_paparan' berdasarkan persentase paparan panas

- Jika persentase paparan < 25% = 'Low'
- Jika 25% <= % paparan <= 75% = 'Moderate'
- Jika persentase paparan > 75% = 'High'

Perio	ode N	legara	Paparan	Panas	(%)	exposure_rate
19	990	China		55.451	1665	Moderate
19	991	China		59.489	9104	Moderate
19	992	China		52.056	3536	Moderate
19	993	China		56.922	2244	Moderate
19	994	China		51.537	7795	Moderate

Modelling

Double Exponential Smoothing

- Mampu menangkap tren linier sederhana tanpa pola musiman.
- Cocok untuk data dengan perubahan bertahap dari tahun ke tahun.
- Memberikan gambaran cepat tentang arah perubahan jangka pendek dan menengah.

Triple Exponential Smoothing

- Cocok untuk pola musiman konsisten, seperti fluktuasi hari panas ekstrem tahunan di negara subtropis.
- Fleksibel memodelkan musiman, tren, dan level, sehingga sesuai untuk data berpola periodik.

ARIMA

- Mampu menangkap pola autokorelasi kompleks, meski tanpa pola musiman yang jelas.
- Cocok untuk data hari panas ekstrem dengan fluktuasi nonlinier akibat faktor lingkungan dan sosial.
- Mempermudah analisis dampak jangka panjang dan prediksi risiko panas ekstrem berdasarkan pola historis.

Metric Evaluation

	Indonesia		China		Kazakhstan		Rusia		Arab Saudi		India	
Model	RMSE	MAPE	RMSE	MAPE	RMSE	МАРЕ	RMSE	MAPE	RMSE	MAPE	RMSE	MAPE
Double Exponential Smoothing	14.2787	0.5198	27.5130	0.4496	14.4780	0.2858	12.8322	0.4405	0.5348	0.1882	2.1952	0.2231
Triple Exponential Smoothing	27.0310	0.4384	27.0310	0.4384	14.2829	0.2848	13.5705	0.4512	0.5315	0.3004	1.9318	0.1840
ARIMA	10.7196	0.3485	15.6178	0.2493	14.4557	0.3033	15.0146	0.3385	1.2042	0.7084	1.4973	0.1559

Alasan memilih RMSE dan MAPE:

- RMSE menunjukkan kesalahan dalam angka, sedangkan MAPE menunjukkan kesalahan dalam persentase sehingga keduanya saling melengkapi dan dapat dengan mudah dipahami.
- Dari Outlier: RMSE lebih peka terhadap kesalahan besar sehingga membantu menemukan masalah besar. MAPE lebih tahan terhadap angka ekstrem.

Hasil Modelling

Double Exponential Smoothing

RMSE

27.5130

0.4496

MAPE

ARIMA

RMSE

15.6178

0.2493

Triple Exponential Smoothing

RMSE

MAPE

27.0310

0.4384

ARIMA adalah model terbaik untuk data negara China karena memiliki nilai RMSE dan MAPE yang paling kecil dibandingkan model lain.

Forecasting

Menurut prediksi menggunakan model ARIMA, paparan panas di China akan meningkat di tahun 2025 kemudian menurun selama 8 tahun ke depan (2026 - 2034).

Insight Prediksi China

Pola Menurun secara Keseluruhan

3 Stabilitas Jangka Panjang

2 Puncak dan Penurunan Ekstrem

4 Fluktuasi Tahunan yang Tinggi

Insight Data

Population Heat Exposure

Sebanyak 52,98% dari total populasi China terpapar suhu panas ekstrem dengan jumlah mencapai 754 juta orang.

Production-based CO2 Emissions

China menghasilkan 10.648,54 juta ton CO2 pada tahun 2023. Angka ini sangat tinggi dan menunjukkan dominasi China sebagai salah satu penghasil emisi CO2 terbesar di dunia.

Renewable Energy Supply

Pasokan energi dari sumber terbarukan hanya sebesar 52,82% dari total suplai energi. Meskipun cukup signifikan, angka ini menunjukkan peluang besar untuk meningkatkan penggunaan energi bersih.

Forest

China memiliki luas hutan yang besar mencapai 2,23 juta km² sehingga memberikan potensi besar untuk menyerap karbon dan membantu pengurangan emisi.

Saran Modelling

- Lakukan penyesuaian parameter model (p,d,q)
- Pertimbangkan Double Exponential Smoothing untuk Negara Tertentu
- Gunakan Cross-Validation untuk Validasi Model
- Gunakan Model LSTM untuk Prediksi

Business Solution

Pengurangan Emisi CO2

Dorong penggunaan teknologi ramah lingkungan dan kurangi ketergantungan pada bahan bakar fosil. Pemerintah dan perusahaan dapat berinvestasi dalam teknologi rendah emisi seperti kendaraan listrik dan serta menerapkan pajak karbon untuk mengurangi emisi gas rumah kaca.

Transisi ke Energi Terbarukan

Tingkatkan penggunaan sumber energi terbarukan seperti tenaga surya, angin, dan air. Pemerintah dapat memberikan insentif bagi masyarakat dan bisnis yang menggunakan energi hijau serta mendanai pembangunan infrastruktur energi terbarukan.

Rehabilitasi Hutan

Hentikan deforestasi dengan memperketat regulasi penggunaan lahan. Lakukan reboisasi dan rehabilitasi hutan untuk menjaga keseimbangan ekosistem karena hutan dapat menyerap CO2 dan mengurangi panas di wilayah sekitarnya.

