A2. [50] Suppose Bob has a set of n numbers $X = \{x_0, x_1, \dots, x_{n-1}\}$ that are private, and Alice has a private index $\sigma \in \{0, \dots, n-1\}$. Both Alice and Bob are concerned about their input privacy. Alice wants to obtain the number x_{σ} for the index σ . The following figure describes a RSA based 1-out-of-n OT protocol that Alice and Bob can use to accomplish the above task. Please implement the 1-out-of-n OT protocol protocol in a single code and submit the source code of your implementation. Please see the last page for the RSA modulus parameters (primes p,q). The RSA encryption scheme is defined as $c = E(pk, m) = m^e \mod N$ and the decryption scheme is defined as $m = D(sk, c) = c^d \mod N$ where pk = (N, e) is the public key and sk = (p, q, d) is the private key.

Sample I/O:

Please enter $n \ (\geq 2)$: _____ Print the values in X: ____ Print σ : ____ Print $C_0, C_1, \cdots, C_{n-1}$: ____ Print C: ____ Print $C_0, c_1, \cdots, c_{n-1}$: ____ Print $C_0, c_1, \cdots, c_{n-1}$: ____