Multivalued Dependencies

Fourth Normal Form

Definition of MVD

- ◆A multivalued dependency (MVD) on R, X->-> Y, says that if two tuples of R agree on all the attributes of X, then their components in Y may be swapped, and the result will be two tuples that are also in the relation.
- ♦i.e., for each value of X, the values of Y are independent of the values of R-X-Y.

Example

Drinkers(name, addr, phones, beersLiked)

- A drinker's phones are independent of the beers they like.
 - name->->phones and name ->->beersLiked.
- Thus, each of a drinker's phones appears with each of the beers they like in all combinations.
- This repetition is unlike FD redundancy.
 - name->addr is the only FD.

Tuples Implied by name->->phones

If we have tuples:

name	addr	phones	beersLiked	
sue	a	p1	b1	
sue	a	p2	b2	
sue	a	p2	b1	
sue	a	p1	b2	

Then these tuples must also be in the relation.

Picture of MVD $X \rightarrow Y$

MVD Rules

- Every FD is an MVD (promotion).
 - If X->Y, then swapping Y's between two tuples that agree on X doesn't change the tuples.
 - Therefore, the "new" tuples are surely in the relation, and we know X->-> Y.
- Complementation : If X ->-> Y, and Z is all the other attributes, then X ->-> Z.

Splitting Doesn't Hold

- Like FD's, we cannot generally split the left side of an MVD.
- ◆But unlike FD's, we cannot split the right side either --- sometimes you have to leave several attributes on the right side.

Example

Drinkers(name, areaCode, phone, beersLiked, manf)

- ◆A drinker can have several phones, with the number divided between areaCode and phone (last 7 digits).
- A drinker can like several beers, each with its own manufacturer.

Example, Continued

◆ Since the areaCode-phone combinations for a drinker are independent of the beersLiked-manf combinations, we expect that the following MVD's hold:

```
name ->-> areaCode phone
```

name ->-> beersLiked manf

Example Data

Here is possible data satisfying these MVD's:

name	areaCode	phone	beersLiked	manf
Sue	650	555-1111	Bud	A.B.
Sue	650	555-1111	WickedAle	Pete's
Sue	415	555-9999	Bud	A.B.
Sue	415	555-9999	WickedAle	Pete's

But we cannot swap area codes or phones by themselves. That is, neither name->->areaCode nor name->->phone holds for this relation.

Fourth Normal Form

- ◆The redundancy that comes from MVD's is not removable by putting the database schema in BCNF.
- ◆There is a stronger normal form, called 4NF, that (intuitively) treats MVD's as FD's when it comes to decomposition, but not when determining keys of the relation.

4NF Definition

- A relation R is in ANF if: whenever X->-> Y is a nontrivial MVD, then X is a superkey.
 - Nontrivial MVD means that:
 - 1. Y is not a subset of X, and
 - 2. X and Y are not, together, all the attributes.
 - Note that the definition of "superkey" still depends on FD's only.

BCNF Versus 4NF

- Remember that every FD $X \rightarrow Y$ is also an MVD, $X \rightarrow Y$.
- Thus, if R is in 4NF, it is certainly in BCNF.
 - Because any BCNF violation is a 4NF violation (after conversion to an MVD).
- But R could be in BCNF and not 4NF, because MVD's are "invisible" to BCNF.

Decomposition and 4NF

- If X->-> Y is a 4NF violation for relation R, we can decompose R using the same technique as for BCNF.
 - 1. XY is one of the decomposed relations.
 - 2. All but Y X is the other.

Example

Drinkers(name, addr, phones, beersLiked)

FD: name -> addr

MVD's: name ->-> phones

name ->-> beersLiked

- ◆Key is {name, phones, beersLiked}.
- All dependencies violate 4NF.

Example, Continued

- Decompose using name -> addr:
- 1. Drinkers1(<u>name</u>, addr)
 - In 4NF; only dependency is name -> addr.
- 2. Drinkers2(name, phones, beersLiked)
 - Not in 4NF. MVD's name ->-> phones and name ->-> beersLiked apply. No FD's, so all three attributes form the key.

Example: Decompose Drinkers2

- Either MVD name ->-> phones or name ->-> beersLiked tells us to decompose to:
 - Drinkers3(<u>name</u>, <u>phones</u>)
 - Drinkers4(<u>name</u>, <u>beersLiked</u>)