C8.3 Combinatorics: Sheet #1

Due on October 28, 2025 at 12:00pm

 $Professor\ A.\ Scott$

Ray Tsai

Write down all antichains contained in $\mathcal{P}(1)$ and $\mathcal{P}(2)$. How many different antichains are there in $\mathcal{P}(3)$?

C8.3 Combinatorics: Sheet #1

Proof. The antichains in $\mathcal{P}(1)$ are $\{\emptyset\}$ and $\{1\}$. The antichains in $\mathcal{P}(2)$ are $\{\emptyset\}$, $\{1\}$, $\{2\}$, $\{1,2\}$, and $\{12\}$. There are 19 antichains in $\mathcal{P}(3)$.

Problem 2

(a) Look up Stirling's Formula. Use it to find an asymptotic estimate for $\binom{n}{n/2}$ of the form (1+o(1))f(n) when n is even.

Proof. By Stirling's Formula,

$$\binom{n}{n/2} = \frac{n!}{(n/2)!(n/2)!} = \frac{(1+o(1))\sqrt{2\pi n}(n/e)^n}{(1+o(1))\pi n(n/2e)^n} = (1+o(1))2^n\sqrt{\frac{2}{\pi n}}.$$

(b) Now do the same for $\binom{n}{pn}$ where $p \in (0,1)$ is a constant and pn is an integer. Write your answer in terms of the binary entropy function

$$H(p) = -p \log p - (1 - p) \log(1 - p)$$

Let $k \leq n/2$, and suppose that \mathcal{F} is an antichain in $\mathcal{P}[n]$ such that every $A \in \mathcal{F}$ has $|A| \leq k$. Prove that $|\mathcal{F}| \leq \binom{n}{k}$.

Proof. Let $\mathcal{P}_k[n]$ be the set of all subsets of [n] of size $k \leq n$. For $1 \leq k \leq n/2$, consider the bipartite subgraph G_k of the discrete cube Q_n induced by $[n]^{(k-1)} \sqcup [n]^{(k)}$. Note that there is edge between $A \in [n]^{(k-1)}$ and $B \in [n]^{(k)}$ if and only if $A \subseteq B$.

We now verify the conditions of Hall's Theorem to show that there is a matching saturating $[n]^{(k-1)}$. Let $S \subseteq [n]^{(k-1)}$ and let $T = \Gamma(S)$. Notice that each $A \in S$ has n-k+1 neighbors in T, whereas each $B \in T$ has k-1 neighbors in $[n]^{(k-1)}$. But then

$$|S| \cdot (n - k + 1) = e(S, T) \le |T| \cdot k.$$

Since $k \leq n/2$, we have $|S| \leq |T| \cdot k/(n-k+1) \leq |T|$. Hall's Theorem now furnishes a matching in G_k saturating $[n]^{(k-1)}$, for any $1 \leq k \leq n/2$. By connecting the matchings between G_k for $1 \leq k \leq n/2$, we get $\binom{n}{k}$ chains that partition $\mathcal{P}_k[n]$. It now follows that \mathcal{F} intersects with any of these chains in at most one element, and so $|\mathcal{F}| \leq \binom{n}{k}$.

Let (P, \leq) be a poset. Suppose that every chain in P has at most k elements. Prove that P can be written as the union of k antichains.

Proof. For $x \in P$, define h(x) as the length of the longest chain containing x as the maximal element. Notice that if x > y then h(x) > h(y), as we may append x to the end of any chain containing y. This implies x and y are incomparable if h(x) = h(y). But then for any $x \in P$ we have $h(x) \le k$. Thus for $1 \le n \le k$, $A_n = \{x \in P \mid h(x) = n\}$ is an antichain. The result now follows.

Problem 5

Suppose $\mathcal{F} \subset \mathcal{P}[n]$ is a set system containing no chain with k+1 sets.

(a) Prove that $\sum_{i=0}^{n} \frac{|\mathcal{F}_i|}{\binom{n}{i}} \leq k$, where $\mathcal{F}_i = \mathcal{F} \cap [n]^{(i)}$ for each i.

Proof. Since every chain in \mathcal{F} has at most k elements, the proof of Problem 4 furnishes a partition of \mathcal{F} into k antichains A_1, \ldots, A_k . By the LYM inequality, for $1 \leq j \leq k$ we have

$$\sum_{i=0}^{n} \frac{|A_j \cap [n]^{(i)}|}{\binom{n}{i}} \le 1. \tag{1}$$

But then

$$\sum_{i=0}^{n} \frac{|\mathcal{F}_i|}{\binom{n}{i}} = \sum_{i=0}^{n} \sum_{j=1}^{k} \frac{|A_j \cap [n]^{(i)}|}{\binom{n}{i}} = \sum_{j=1}^{k} \sum_{i=0}^{n} \frac{|A_j \cap [n]^{(i)}|}{\binom{n}{i}} \le k.$$
 (2)

(b) What is the maximum possible size of such a system?

Proof. By the LYM inequality, equality holds in (1) if and only if $A_j = [n]^{(i)}$ for some i. Thus, equality can be achieved when $\mathcal{F} = \bigsqcup_{i \in I} [n]^{(i)}$ for some $I \subseteq [n]$ of size k.

Let \mathcal{A} be an antichain in $\mathcal{P}[n]$ that is not of the form $[n]^{(r)}$. Must there exist a maximal chain disjoint from \mathcal{A} ?

Proof. For $A \in \mathcal{A}$, the fraction of chains in $\mathcal{P}[n]$ that contain A is

$$\frac{|A|!(n-|A|)!}{n!} = \frac{1}{\binom{n}{|A|}}.$$

Since each chain intersects with at most one element of A, the fraction of chains that intersect with A is

$$\sum_{A\in\mathcal{A}}\frac{1}{\binom{n}{|A|}}=\sum_{i=0}^n\sum_{A\in\mathcal{A}\cap[n]^{(i)}}\frac{1}{\binom{n}{i}}=\sum_{i=0}^n\frac{|\mathcal{A}\cap[n]^{(i)}|}{\binom{n}{i}}.$$

But then \mathcal{A} is not of the form $[n]^{(r)}$, so by the LYM inequality, the above sum is strictly less than 1. This completes the proof.

Let (P, \leq) be an infinite poset. Must P contain an infinite chain or antichain?

Proof. Suppose P contains no infinite antichain and no infinite chain. Define h(x) as the length of the longest chain containing x as the maximal element. Notice that if x > y then h(x) > h(y), as we may append x to the end of any chain containing y. This implies x and y are incomparable if h(x) = h(y). Thus $A_n = \{x \in P \mid h(x) = n\}$ is an antichain for $n \in \mathbb{N}$ and $P = \bigsqcup_{n \in \mathbb{N}} A_n$. Since each A_n is finite, there must be infinitely many n such that A_n is non-empty. But then h(x) is unbounded on P, so there must exists an infinite chain in P, contradiction.