Complex Numbers Formula Test

1	For a complex number, if the real part $Re(z)$ is x and the imaginary part $Im(z)$ is y, then $z =$					
2	For complex numbers $a+ib$ and $c+id$, the following occur:					
	(a) equality: $a+ib=c+id \Rightarrow \Box = \Box$ and $\Box = \Box$					
	(b) addition: $(a+ib)+(c+id) = $ $+i$					
	(c) subtraction: $(a+ib)-(c+id) = $ $+i$					
	(d) multiplication: $(a+ib)(c+id) = $ $+i$					
	(e) division: $\frac{a+ib}{c+id} = \frac{a+ib}{c+id} \times \frac{\Box}{\Box} = \Box$					
3	The powers of i may be used to simplify complex number arithmetic using:					
	$i^2 = \boxed{}; \qquad i^3 = \boxed{}; \qquad i^4 = \boxed{}$					
4	The complex conjugate \bar{z} of $z = x + iy$ is $\bar{z} = $					
5						
	$r = $ and the argument θ is given by $\tan \theta = $ 0 0 0 0 0 0 0 0 0					
	for $\subseteq \leq \theta \leq \subseteq$.					
6	For the complex numbers $z_1 = r_1(\cos\theta + i\sin\theta)$ and $z_2 = r_2(\cos\phi + i\sin\phi)$ then:					
	(a) $z_1 z_2 = $; $ z_1 z_2 = $ (b) $\frac{z_1}{z_2} = $; $ \frac{z_1}{z_2} = $					
	(c) $\operatorname{arg}(z_1 z_2) = $ (d) $\operatorname{arg}\left(\frac{z_1}{z_2}\right) = $					
7	If $z = r(\cos\theta + i\sin\theta)$, then $z^n =$					
8	If $z = \cos \theta + i \sin \theta$, then $z^n = \Box$. This is known as \Box .					
9	By expanding $(\cos \theta + i \sin \theta)^n$ as a binomial expansion and equating real and imaginary parts,					
	(a) $\cos n\theta = $ (b) $\sin n\theta = $					
10	If $z^n = r(\cos\theta + i\sin\theta)$, then $z = \square$. This gives the <i>n</i> roots of z^n which lie on a circle of					
	radius, and a sector angle of between successive roots.					
11	If the square roots of a complex number are given by $\pm \sqrt{a+ib} = z = x+iy$, then $a+ib = $,					
	and $\alpha = \boxed{}$, $b = \boxed{}$.					
12	If $z^n = 1$ is solved to give the <i>n</i> roots of unity, $z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ in mod-arg format.					
13	The n roots of unity can be drawn in the Argand plane and are the vertices of a regular polygon					
of sides inscribed in a circle $ z = $, whose Cartesian equation is with one v						
	at $z = $					

14	Complex numb	ers have	the	following	properties:

			_	1	
(a)	z	=		=	

(b)
$$\arg \bar{z} =$$

(c)
$$z + \overline{z} =$$

(d)
$$z - \overline{z} =$$

(e)
$$z\overline{z} = \left| \square \right|^2 = \left| \square \right|^2 = \left| \square \right|^2$$

$$(\mathbf{f}) \quad \overline{z_1 \pm z_2} = \boxed{}$$

(h)
$$\frac{z_1}{z_2} =$$

(i)
$$\frac{1}{z} = \square = \square$$

15 $z^n - 1$ can be factorised over the complex field as

(a)
$$z^n + 1 =$$
 if n is odd

(b)
$$z^n - 1 =$$
 if n is odd

(c)
$$z^n - 1 =$$
 if n is even

(a)
$$\frac{z^n + 1}{z + 1} =$$
 if n is odd, $z \neq -1$ (b) $\frac{z^n - 1}{z - 1} =$ if $z \neq 1$

(b)
$$\frac{z^n - 1}{z - 1} =$$
 if $z \neq 1$

17 If the kth root of
$$z^n - 1$$
 is given by $z_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$, then $z_k + \overline{z}_k = \boxed{}$ and $z_k \overline{z}_k = \boxed{}$.

18 Using the results of question 17, $z^n \pm 1$, $n \ge 2$ has a quadratic factor

$$z^2$$
 - z + z + z + z

19 For the Argand diagram drawn below showing the complex numbers z_1 and z_2 , draw the position of:

(b)
$$z_1 - z_2$$

(c)
$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

- The complex number iz is equivalent to a rotation of the complex number z through an angle of
- Show on an Argand diagram the position of:
- (a) iz
- (b) z+iz
- Show on an Argand diagram the representation of $z-z_1=r(\cos\theta+i\sin\theta)$, given the positions of z, z_1 as shown below:

By means of a sketch, show the locus of the following:

where $0 < \alpha < \pi$ and z_1 , z_2 represent two fixed points A, B.

23 (a) |z| = r

(b) the locus is

24 (a) $|z-z_0| = r$

(b) the locus is

25 (a) $|z-z_1| = |z-z_2|$

(b) the locus is

26 (a) $arg(z-z_1) = \alpha$, a constant

- (b) the locus is
- 27 (a) $\arg(z-z_1) \arg(z-z_2) = \alpha$, alternatively $\arg\left(\frac{z-z_1}{z-z_2}\right) = \alpha$,

(b) the locus is

28 (a) $\arg z_1 = \pm \frac{\pi}{2}$

(b) the locus is

29 (a) $\arg z_1 = 0 \text{ or } \pi$

(b) the locus is

Answers to formula test

$$1 \quad z = x + iy$$

2 (a)
$$a = c$$
 and $b = d$

(b)
$$(a+c)+i(b+d)$$

(c)
$$(a-c)+i(b-d)$$

(d)
$$(ac-bd)+i(ad+bc)$$

(e)
$$\frac{a+ib}{c+id} \times \frac{c-id}{c-id} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$

$$3 i^2 = -1; i^3 = -i; i^4 = 1$$

$$4 \quad \bar{z} = x - iy$$

5
$$z = r(\cos\theta + i\sin\theta)$$
; $r = |z| = \sqrt{x^2 + y^2}$; $\tan\theta = \frac{y}{x}$ for $-\pi \le \theta \le \pi$

6 (a)
$$z_1 z_2 = r_1 r_2 [\cos(\theta + \phi) + i \sin(\theta + \phi)]; |z_1 z_2| = |z_1| |z_2|$$

(b)
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta - \phi) + i\sin(\theta - \phi)]; \quad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

(c)
$$\arg(z_1 z_2) = \arg z_1 + \arg z_2 \pm (2\pi)$$

(d)
$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2 \pm (2\pi)$$

$$7 \quad z^n = r^n (\cos n\theta + i \sin n\theta)$$

8
$$z^n = \cos n\theta + i \sin n\theta$$
; De Moivre's theorem

9 (a)
$$\cos n\theta = c^n - {}^nC_2 c^{n-2} s^2 + \cdots$$

(b)
$$\sin n\theta = {}^{n}C_{1}c^{n-1}s - {}^{n}C_{3}c^{n-3}s^{3} + \cdots$$
 where $c = \cos\theta$, $s = \sin\theta$

10
$$z = r^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$$
 for $k = 0, 1, ..., (n-1)$; radius $= r^{\frac{1}{n}}$; sector angle $= \frac{2\pi}{n}$

11
$$a+ib=z^2$$
; $a=x^2-y^2$; $b=2xy$

12
$$z = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$$
; $k = 0, 1, 2, ..., n-1$

13 n sides;
$$|z| = 1$$
 with $x^2 + y^2 = 1$; vertex at $z = 1$

14 (a)
$$|z| = |\bar{z}| = \sqrt{x^2 + y^2}$$

(b)
$$\arg \overline{z} = -\arg z$$

(c)
$$z + \overline{z} = 2x$$

(d)
$$z - \overline{z} = 2yi$$

(e)
$$z\overline{z} = |z|^2 = |\overline{z}|^2 = x^2 + y^2$$

$$(\mathbf{f}) \quad \overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$$

$$(\mathbf{g}) \ \overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$$

(i)
$$\frac{1}{z} = z^{-1} = \frac{\overline{z}}{|z|^2}$$

15 (a)
$$z^n + 1 = (z+1)(z^{n-1} - z^{n-2} + \cdots - z + 1)$$

(b)
$$z^n - 1 = (z - 1)(z^{n-1} + z^{n-2} + \cdots + z + 1)$$

(c)
$$z^n - 1 = (z - 1)(z + 1)(z^{n-2} + z^{n-4} + \dots + z^2 + 1)$$

16 (a)
$$\frac{z^n+1}{z+1} = z^{n-1} - z^{n-2} + z^{n-3} - \dots - z + 1$$

(b)
$$\frac{z^n-1}{z-1}=z^{n-1}+z^{n-2}+\cdots+z+1$$

17
$$z_k + \overline{z}_k = 2\cos\frac{2k\pi}{n}$$
; $z_k \overline{z}_k = 1$

18
$$z^2 - (z_k + \overline{z}_k)z + z_k \overline{z}_k = z^2 - (2\cos\frac{2k\pi}{n})z + 1$$

(b)

(c)

21

24 (a)

25 (a)

26 (a)

(b) The half ray commencing at z₁, making an angle α parallel to the x axis, the point z₁

22

(b) A circle $(x-a)^2 + (y-b)^2 = r^2$ with centre (a, b), given $z_0 = a + ib$

27 (a)

23 (a)

(b) a circle $x^2 + y^2 = r^2$

(b) The perpendicular bisector of the line joining z_1 , z_2

(b) The arc of a circle on the chord AB which subtends angle α at the circumference.

$$arg(z-z_1) = \theta$$
, $arg(z-z_2) = \phi$,
and $\alpha = \theta - \phi$, with A, B excluded.

28 (a)

29 (a)

(b) The purely imaginary number z_1

(b) The purely real number z_1