Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – II Answer Key

Academic Year	2022-2023 (Odd) Batch 2020-2024 Date			20-10-22	FN	
Subject Code & Name	UCS1524 – Logic Programming			Regulation:	2018	
Degree & Branch	B.E & CSE				Semester	V

$Part - A (6 \times 2 = 12 Marks)$

K Level	Questions			PIs
K1	1. What is swapping lemma? The evaluation order of procedure changing the computation result.	calls is not relevant, and can be swapped without	CO2	1.4.1
K2	Procedural To do a, first do b1, then do b2,, then do bm does depend on the order of goals and clauses	ntics and declarative semantics. Declarative a is true if b1 and b2 and and bm are all true does not depend on the order of the clauses and the order of the goals in clauses	CO2	1.4.1
K2	3. Explain type-1 non-determinism with an example. Suppose, a particular literal is selected already (i.e. a procedure call) in the goal clause which is to be unified with some procedure head of some program clause. If there are several such program clauses which can be used to produce resolvents, we call this <i>type 1 nondeterminism</i> . Goal clause ?- <i>A,B,C</i> Program clauses B:-D. B. B:-E,F 3 SLD resolvents ?- <i>A,D,C</i> . ?- <i>A,C</i> . ?- <i>A,E,F,C</i> .		CO2	1.4.1
K1	4. Consider the following op op(100, xfx, +). op(200, xfx, -).	erator directives $(b+c) \text{ in an expression } (a-b)+(b+c)?$	CO3	1.4.1

	5. What are the outputs of the following goals in Prolog?	CO3	1.4.1
	a. X is $*(-(4,3),+(2,3))$.		
K1	b. $X = *(-(4,3), +(2,3)).$		
	a. $X = 5$		
	b. $X = (4-3)*(2+3)$		
	6. Identify the functionality of 'fun' in the Prolog code given below. Find	CO3	2.1.2
	the answer for the query " $fun(6,R)$ ".		2.1.3
	fun(0,0).		2.2.3
K3	fun(N,R) :- N > 0, N1 is N-2, $fun(N1,R1)$, R is R1+N.		13.3.1
	to find the sum of even numbers		
	answer=12		

 $Part - B (3 \times 6 = 18 Marks)$

$Part - B (3 \times 6 = 18 \text{ Marks})$					
K2	7. Explain Model theoretic semantics with an example. Proud_parent(X):- parent(X, Y), newborn(Y) parent(X, Y):- father (X, Y) parent(X, Y):- mother (X, Y) father(adam, mary) newborn(mary) Herbrand Universe is the set of all ground terms that can be formed from the constants and function symbols {adam, mary} Berbrand Base is the set of all ground goals that can be formed from the predicates in P and the terms in the Herbrand universe {proud_parent(adam, mary), proud_parent(mary, adam),} Minimal model: What is implied as true by the program is true; everything else is false father(adam, mary) newborn(mary) parent(adam,mary) proud_parent(adam)	CO2	1.4.1		
K2	8. Explain the following list operations with Prolog rules. a. deletes an element from the list b. permutation Illustrate these operations for a character list. del(X, [X Tail], Tail). del(X, [Y Tail], [Y Tail1]) :- del(X, Tail, Tail1). ?del(b, [a,b,c], R). permutation1([],[]). permutation1([X L], P):- permutation1(L, L1), insert(X, L1, P). insert(X, List, BiggerList) :- del(X, BiggerList, List). ?permutation1([a,b,c,d], P)	CO3	1.4.1		
К3	9. Draw the structure of a family knowledge base. Write facts with two unary relations: 'male' and 'female' and a binary relation: 'parent' for the given knowledge base. Construct Prolog rules to define the following relations. a. uncle b. aunty	CO3	1.4.1 2.1.2 13.3.1		

Illustrate these relations for the family knowledge base with		
appropriate queries.		
brother(X, Y) :- parent(Z, X), parent(Z, Y), male(X), $X = Y$.		
sister(X, Y) :- parent(Z, X), parent(Z, Y), female(X), $X = Y$.		
uncle(X,Y) := parent(Z,Y), brother(X,Z).		
aunty(X,Y) := parent(Z,Y), sister(X,Z).		

$Part - C (2 \times 10 = 20 Marks)$

K 3	10. Consider the following knowledge base. Apply horn clause programming logic to find the male descendant of George. ancestor(X,X). ancestor(X,Z):-parent(X,Y), ancestor(Y,Z). parent(george,sam). parent(george,andy). parent(andy,mary). parent(andy,john). male(george). male(sam). male(andy). male(john). female(mary). ~ancestor(george, Q) v ~male(Q) /parent(george, y) v ~ancestor(y, Q) v ancestor(x,z) ~parent(george, y) v ~ancestor(y, Q) v ~male(Q) /parent(george, andy) ~ancestor(andy, Q) v ~male(Q)	CO 2	1.4.1 2.1.2 13.1. 2		
	x/andy, z/Q ~parent(x, y) v ~ancestor(y,z) v ancestor(x,z)				
	~parent(andy, y) v ~ancestor(y, Q) v ~male(Q)				
	y/john Parent(andy, john)				
	~ancestor(john, Q) v ~male(Q)				
	x/john, ancestor(x, x)				
	Q/john ~male(john)				
	male(john)				
	(OR)				
К 3	11. Consider the following logic program. Apply procedural semantics to find the mother's name of Charles and show the semantics using a tree structure. male(philip).	CO 2	1.4.1 2.1.2		

	female(elizabeth). parent(elizabeth, charles). parent(elizabeth, anne). parent(philip, anne). father(X, Y):- parent(X, Y), male(X). mother(X, Y):- parent(X, Y), female(X). -mother(X, charles)		13.1.
	6. parent(X1, Y1), male(X1) x=x1, charles=y1 ¬ parent(X1, charles), ¬female(X1)		
	3. parent(elizabeth, charles) / 4. parent(elizabeth, anne) 5. parent(philip, anne)		
	X1 = elizabeth, charles = charles = x1 = elizabeth, charles = anne x1 = philip, charles = anne		
	– parent(elizabeth, charles), – female(elizabeth)		
	3. parent(elizabeth, Charles)		
K 3	12. Given four facts with 'point' relation: point(X1,Y1), point(X2, Y2), point(X3,Y3) and point(X4,Y4). Construct Prolog rules to define following structures. Illustrate the same with example queries. a. Square b. Rectangle c. Isosceles trapezoid d. Parallelogram e. Rhombus square(point(X1,Y1), point(X2, Y2), point(X3,Y3), point(X4,Y4)):- Y1=:=Y2, X2=:=X3, X4=:=X1, Y3=:=Y4. square(point(X1,Y1), point(X2, Y2), point(X3,Y3), point(X4,Y4)):- Y1=:=Y2, X2=:=X3, X4=:=X1, Y3=:=Y4, Y4 < X2. rectangle(point(X1,Y1), point(X2, Y2), point(X3,Y3), point(X4,Y4)):- Y1=:=Y2, X2=:X3, X4:=X1, Y3=:=Y4, Y4 < X2. rectangle(point(X1,Y1), point(X2,Y2), point(X3,Y3), point(X4,Y4)):- Y1=:=Y2, X3 < X2, X4 > X1, Y3=:=Y4. trapezoid(point(X1,Y1), point(X2,Y2), point(X3,Y3), point(X4,Y4)):- Y1=:=Y2, X3 > X2, X4 > X1, Y3=:=Y4. parallelogram(point(X1,Y1), point(X2,Y2), point(X3,Y3), point(X4,Y4)):- Y1=:=Y2, X3 > X2, X4 > X1, Y3=:=Y4. parallelogram(point(X1,Y1), point(X2,Y2), point(X3,Y3), point(X4,Y4)):- Y2=:=Y4, X1=:=X3, X3 <x2, point(x3,y3),="" point(x4,y4)):-="" point(z2,="" rhombus(x1,y1),="" td="" x1=":=X3," x3<x2,="" y2=":=Y4," y2),="" y2<y3.="" y2<y3.<=""><td>CO 3</td><td>1.4.1 2.1.2 2.2.3 13.3. 1</td></x2,>	CO 3	1.4.1 2.1.2 2.2.3 13.3. 1
	(OR)		
K 3	 13. Develop Prolog programs for the following and illustrate the same with appropriate queries. a. Let L1 = [1,2,3] and L2 = [a,b]. Concatenate L1 and L2 to get L3 = [a,b,1,2,3] b. Let L = [m, a, d, a, m]. Use concatenation function to reverse the list and check to whether L is palindrome or not. c. Let L = [5,7,9,1,3]. Find sum of elements in the list. d. Let L = [5,7,9,1,3]. Find the maximum number in the list. 	CO 3	1.4.1 2.1.2 2.2.3 13.3.

```
a. conc( L, [], L).
    conc( L1, [X|L2], [X|L3]) :- conc( L1, L2, L3).

b. conc( [], L, L).
    conc( [X|L1], L2, [X|L3]) :- conc( L1, L2, L3).

reverse1([], []).

reverse1( [First | Rest], Reversed) :-

reverse1( Rest, ReversedRest), conc(ReversedRest, [First], Reversed).

palin(L) :- reverse1(L, L).

c. sumlist( [], 0).

sumlist( [First | Rest], Sum) :- sumlist( Rest, SumRest), Sum is First + SumRest.

d. max( X, Y, X) :- X >= Y.

max( X, Y, Y) :- X < Y.

maxlist( [X], X).

maxlist( [X], Y | Rest], Max):- maxlist( [Y | Rest], MaxRest), max( X, MaxRest, Max).
```

Prepared By	Reviewed By	Approved By
D. Thenmozhi		
Course Coordinator	PAC Team	HOD