Dominique Hulin Build date : 15 janvier 2017 S6 — 2017

Cours spécifique de Magistère

Chapitre 1

Le lemme de Baire

Théorème 1 (lemme de Baire, 1905). Soit (X,d) un espace métrique complet, $(U_n)_{n\in\mathbb{N}}$ une suite dénombrable d'ouverts denses de X.

Alors $\bigcap_{n\in\mathbb{N}} U_n$ est encore dense.

Il en existe un énoncé équivalent portant sur les fermés :

Théorème 2. Soit (X,d) un espace métrique complet, $(F_n)_{n\in\mathbb{N}}$ des fermés d'interieurs vides. Alors $\bigcup_{n\in\mathbb{N}} F_n$ est aussi d'intérieur vide.

Montrons qu'ils sont équivalents :

1.

$$2. \ ^{C}(\bigcap A_n) = \bigcup^{C} A_n$$

Remarque. -X complet

$$-X = \mathbb{Q} = \bigcup_{n \in \mathbb{N}} \{x_n\}$$

 $-X = \mathbb{Q} = \bigcup_{n \in \mathbb{N}} \{x_n\}$ $-\bigcup_{\mathbb{N}} ou \bigcap_{\mathbb{N}} d\acute{e}nombrable$ $-\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$

$$egin{aligned} &-\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) \ &arnothing = \mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) \end{aligned}$$

Démonstration. (X, d) complet, $(U_n)_{n \in \mathbb{N}}$

Soit $V \subset X$ un ouvert non vide de X.

On va construire, par approximation successives un point $\alpha \in V \cap (\bigcap_{\mathbb{N}} U_n)$

L'ouvert U_0 est dense donc $V \cap U_0$ est un ouvert non vide donc contient une $B(a_0, R_0), R_0 > 0$.

On choisit $r_0 < R_0, r_9 \le 1$.

$$B_f(a_0, r_0) \subset B(a_0, R_0) \subset V \cap U_0$$

À l'étape $p \in \mathbb{N}$ on avait construit $0 < r_p < 2^{-p}$ un point $a_p \in X$ tel que :

$$B_f(a_p, r_p) \subset V \cap (U_0 \cap U_1 \cap \cdots \cap U_p)$$