### Question 1

Modify equation 1 for dynamic programming to allow gaps only in sequence X.

$$M[i,j] = max \begin{pmatrix} M[i-1,j-1] + score(X[i],Y[j]) \\ M[i,j-1] - g \\ M[i-1,j] - g \end{pmatrix}$$
 (1)

### Question 2

The edit distance between two words is the **minimum** number of operations needed to transform one word into another. Allowed operations are:

- replacement of a single letter by another
- insertion of a single letter
- deletion of a single letter

Edit distances can be determined with dynamic programming. Write down the equation for M[i,j] such that the edit distance between two sequences is given by their alignment score. (Hint: You need to define the score function and gap penalty too.)

### **Question 3**

Perform global alignment of the protein sequences DARWIN and CRICK using equation 2:

$$M[i,j] = max \begin{pmatrix} M[i-1,j-1] + blosum62 (X[i],Y[j]) \\ M[i,j-1] - 2 \\ M[i-1,j] - 2 \end{pmatrix}$$
 (2)

where the value of blosum62(X[i], Y[j]) is the substitution score between residue X[i] and Y[j] according to the BLOSUM62 matrix (Figure 1). Fill in the score matrix template (including arrows) in figure 2.

|   | С  | S  | Т  | Р  | Α  | G  | N  | D  | E  | Q  | Н       | R  | K  | M  | 1   | L   | V  | F | Υ | W  |   |
|---|----|----|----|----|----|----|----|----|----|----|---------|----|----|----|-----|-----|----|---|---|----|---|
| С | 9  |    |    |    |    |    |    |    |    |    |         |    |    |    |     |     |    |   |   |    | С |
| S | -1 | 4  |    |    |    |    |    |    |    |    |         |    |    |    |     |     |    |   |   |    | S |
| T | -1 | 1  | 5  |    |    |    |    |    |    |    |         |    |    |    |     |     |    |   |   |    | Т |
| Р | -3 | -1 | -1 | 7  |    |    |    |    |    |    |         |    |    |    |     |     |    |   |   |    | Р |
| Α | 0  | 1  | 0  | -1 | 4  |    |    |    |    |    |         |    |    |    |     |     |    |   |   |    | Α |
| G | -3 | 0  | -2 | -2 | 0  | 6  |    |    |    |    |         |    |    |    |     |     |    |   |   |    | G |
| N | -3 | 1  | 0  | -2 | -2 | 0  | 6  |    |    |    |         |    |    |    |     |     |    |   |   |    | N |
| D | -3 | 0  | -1 | -1 | -2 | -1 | 1  | 6  |    |    |         |    |    |    |     |     |    |   |   |    | D |
| E | -4 | 0  | -1 | -1 | -1 | -2 | 0  | 2  | 5  |    | ri<br>G |    |    |    | į į | Į į |    |   |   |    | E |
| Q | -3 | 0  | -1 | -1 | -1 | -2 | 0  | 0  | 2  | 5  |         |    |    |    |     |     |    |   |   |    | Q |
| Н | -3 | -1 | -2 | -2 | -2 | -2 | 1  | -1 | 0  | 0  | 8       |    |    |    |     |     |    |   |   |    | Н |
| R | -3 | -1 | -1 | -2 | -1 | -2 | 0  | -2 | 0  | 1  | 0       | 5  |    |    |     |     |    |   |   |    | R |
| K | -3 | 0  | -1 | -1 | -1 | -2 | 0  | -1 | 1  | 1  | -1      | 2  | 5  |    |     |     |    |   |   |    | K |
| M | -1 | -1 | -1 | -2 | -1 | -3 | -2 | -3 | -2 | 0  | -2      | -1 | -1 | 5  |     |     |    |   |   |    | M |
| 1 | -1 | -2 | -1 | -3 | -1 | -4 | -3 | -3 | -3 | -3 | -3      | -3 | -3 | 1  | 4   |     |    |   |   |    | 1 |
| L | -1 | -2 | -1 | -3 | -1 | -4 | -3 | -4 | -3 | -2 | -3      | -2 | -2 | 2  | 2   | 4   |    |   |   |    | L |
| ٧ | -1 | -2 | 0  | -2 | 0  | -3 | -3 | -3 | -2 | -2 | -3      | -3 | -2 | 1  | 3   | 1   | 4  |   |   |    | ٧ |
| F | -2 | -2 | -2 | -4 | -2 | -3 | -3 | -3 | -3 | -3 | -1      | -3 | -3 | 0  | 0   | 0   | -1 | 6 |   |    | F |
| Υ | -2 | -2 | -2 | -3 | -2 | -3 | -2 | -3 | -2 | -1 | 2       | -2 | -2 | -1 | -1  | -1  | -1 | 3 | 7 |    | Υ |
| W | -2 | -3 | -2 | -4 | -3 | -2 | -4 | -4 | -3 | -2 | -2      | -3 | -3 | -1 | -3  | -2  | -3 | 1 | 2 | 11 | W |

Figure 1: BLOSUM62 matrix



Figure 2: Template for Question 3

# Question 4 What is the alignment score for Question 3?

# **Question 5**

Write down the alignment from Question 3.

## Question 6

Perform local alignment between the sequences TGAGA and GAGGC, using equation 3:

$$M[i,j] = max \begin{pmatrix} M[i-1,j-1] \pm 1 \\ M[i,j-1] - 2 \\ M[i-1,j] - 2 \\ 0 \end{pmatrix}$$
(3)

Fill in the score matrix template (including arrows) in figure 3.



Figure 3: Template for Question 6

# **Question 7**

Use the Waterman-Eggert method to trace back through your scoring matrix from Question 6. Write down the two highest scoring **local** alignments and their respective scores.