

تاثیر آستانه فعالیت در تعیین بهمن در مشخص کردن نقطهی بحرانی دستگاههای نورونی

مهدی نقی لو، سامان مقیمی عراقی دانشکده فیزیک، دانشگاه صنعتی شریف

نتايج

رر شلل مشاهره می شور که همگامی در ففای پارامترهای انتفاب شره از الکوهایی تکرار شونره پیروی می کنر.

رر شکل ۲ آمار بهمنها برای دو مقرار آستانه $A_0=10$ و $A_0=3$ آمره است. تاخیر $A_0=10$ و $A_0=3$ آمره است. دیره می شود که با آستانه ۱۰ نقطه w=1.4 آمار توانی دارد اما با انتفاب آستانه w=1.2 آمار توانی پیرا آستانه w=1.2 تقطه w=1.2 نقطه w=1.3 آمار توانی پیرا می کنر فاز همگامی به مقدار w=1.2 ایردیک است.

تحلیل نتایج

در این شبیه سازی اثر تعیین آستانه برای ثبت بهمنها مورد مطالعه قرار گرفته است و مشاهره شره که تغییر دادن این آستانه، باعث بابیایی نوامی بمرانی پیدا شره با استفاده از آمار بهمنها می شود. به نظر می رسر که انتفاب آستانه ی صفر مقدار مناسب تری برای تعیین مالت بمرانی است.

مراجع

[1] Beggs, John M., and Dietmar Plenz. "Neuronal avalanches in neocortical circuits." Journal of neuroscience 23.35 (2003): 11167-11177.

تصویر۱) نواحی همگام و ناهمگام. رنگ متناسب با مقدار پارامتر نظم محاسبه شده به ازای پارامترهای تنظیم شده است. ناحیههای سیاه ناحیههای همگام هستند. a به ازای v=0 و برای تاخیر و شدت تحریک خارجی متفاوت کشیده شده و b به ازای تحریک خارجی v=0 v=0 برای تاخیر وشدت مهاریهای مختلف.

تصویر ۲) آمار مدت زمان وقوع بهمنها به ازای تاخیر ۲.۵ و g=7 . آمار طول زمانی بهمنها (مدتزمان طول بهمنها) برای سه مقدار W و دو مقدار آستانه $A_0=A_0$ (سمت راست) و $A_0=A_0$ (سمت چپ) رسم شده است. محورهای افقی مدت زمان طول کشیدن یک بهمن و محور عمودی تخمینی از احتمال وقوع آن مدت زمان است. (توزیع آمار وقوع در نمودار بهنجار است)

مقدمه

- در آمار بهمنهای فعالیتهای نورونی رفتار مقیاسی ریره شره.
- قبرای تعیین بهمن ها نیاز به تعیین آستانه است.
 - آیا آستانه در آمار نورونها موثر است.

روشر

- **شبکه**: اردوش-رینی، صر ورودی به ازای هر کره.
- $\dot{\theta} = -\cos\theta + I$ دینامیک تک نورون: •
- تیزه: به ازای وقتی که $\pi=\pi$ تیزه زره می شور. این تیزه با افیر زمانی d به نورون پساسیناپسی می رسر.
 - ایرای تعریکیها، -gJ برای مهاریها -gJ برای مهاریها -gJ
 - ترکیب جمعیتی: به نسبت یک به چهار مهاری و تمریکی
 - تعریک فارجی: پواسنی با شرت W به همهی نورونها
- $M(t) = \left\{ \frac{1}{N_a} \sum_{i \in N_A} \sin(\theta_i) \right\}^2$ بارامتر نظم:
- معیار آغاز و پایای بهمی: هر گاه فعالیت شبکه از میزای A_0 مشغص A_0 بالاتر برور (یا پایین تر بیایر).

The role of activity threshold in identifying avalanches in finding the scaling point in neural systems

Naghiloo, Mahdi; Moghimi-Araghi, Saman

Department of Physics, Sharif University of Technology

- The statistics of neural avalanches have been found to obey power law.
- To distinguish the successive avalanches one introduces a threshold activity.
- •Does the threshold value affect the statistics of Avalanches?

Method

- •Erdős–Rényi network with fixed indegree=100
- •Single neuron dynamics: $\dot{\theta} = -\cos\theta + I$.
- •Firing at $\theta = \pi$ with strength of J or -gJ depending on whether the neuron is excitatory or inhibitory. There is a time delay d for the spikes.
- ·Poisson External drive to each neuron with rate w.
- Order Parameter: M(t)

$$= \left\{ \frac{1}{N_a} \sum_{i \in N_A} \sin(\theta_i) \right\}^2.$$

•Criterion for beginning or end of an Avalanche: crossing a certain activity threshold A_0 .

Fig1) synchronized and asynchronized regions. Dark regions are synchronized phase.

- a) were drawn for g=7, in 'w vs delay' space.
- b) in 'delay vs g' space for w=3.

Fig2) Avalanche duration distribution.

For a fixed 'g' and 'delay' (7,2.5) And three values of w for each A_0 . Horizontal axis is for avalanche duration and vertical axis is an estimation on probability of occurring that avalanche duration.

(Normalized histogram)

 $A_0 = 10$ for left and $A_0 = 3$ for right side.

Results

Figure 1 shows the phase portrait of the system in w-d and d-g diagrams. The black regions refer to synchronic activity.

Figure 2 shows the statistics of the avalanches using two different thresholds to define the avalanches, $A_0 = 3$ and 10 (g = 7 and d = 2.5). It is clearly observed that the transition point is around w = 1.4 on the left row and is around w = 1.2 on right row. Interestingly, the synchrony transition point is around w = 1.2.

Discussion

The threshold to define successive avalanches may play an important role. It seems that to be compatible with synchrony transition, the best choices are very small values of A_0 .

Reference

[1] Beggs, John M., and Dietmar Plenz. "Neuronal avalanches in neocortical circuits." Journal of neuroscience 23.35 (2003): 11167-11177.