Évaluation expérimental de Choco-solver librairie de programmation par contraintes

Paul Lafontaine - Tony Nguyen
M1 informatique Algorithme - M1 informatique Génie Logiciel
Faculté des Sciences
Université de Montpellier

9 novembre 2023

Table des matières

1	\mathbf{Ider}	ntification de la transition de phase	3
	1.1	Génération des benchmark	3
	1.2	Méthode	3
	1.3	Calcul	3
	1.4	Résultat	5

1 Identification de la transition de phase

1.1 Génération des benchmark

Tout d'abord, avec un script fournis (voir Listing 1) et personalisé, nous avons générer un jeux d'essais (=benchmark) pour des Constraint Satisfaction Problem (CSP) de paramètre <2,35,17,249,t>.

l'arité des contraintes k=2

le nombre de variables n=35

la taille du plus grand des domaines=17

 $le\ nombre\ de\ contraintes\ e=249$

la dureté t=[29.4;35.6] avec un nombre de tuples par contraintes (la variable i dans le script) compris entre 186 et 204

La densité est TODO

Listing 1 – Script de génération des jeux d'essais test

for
$$((i=204; i=186; i=2))$$

 $./\,urbcsp\ 35\ 17\ 249\ \$i\ 30> benchmark/set 35_17_249_i_30/csp\$i.txtdone$

Remarque Nous avons des contraintes binaires. Toutes les variables ont des domaine de taille égaux.

Dans notre benchmark, nous avons donc 10 niveau de dureté avec 30 CSP par niveau.

1.2 Méthode

Pour chaque CSP, nous allons cherché une solution pendant 30 secondes, si choco solver trouve une solution avant, on associe cette événement à une réussite. Si choco a exploré tout l'arbre de recherche avec le temps impartie, c'est un échec. Si choco solver ne parviens ni a trouver une solution ni a exploré tout l'arbre avec le temps maximal, alors nous alors dire que c'est un **Time Out**.

1.3 Calcul

Soit la fonction g_a^b : (a correspond à un CSP dans notre benchmark et b un niveau de dureté)

$$g_a^b() = \begin{cases} 1 & \text{si solution trouv\'e} \\ 0 & \text{si Time Out} \\ 0 & \text{si pas de solution} \end{cases}$$

Soit f(x) la fonction qui calcule le pourcentage de réussite en fonction du niveau de dureté x de la façon suivante :

$$f(x) = \frac{\sum_{k=1}^{30} g_k^x()}{30}$$

Graphe de transition de phase

 $Figure \ 1-Graphe \ de \ f(x)$

1.4 Résultat

Nous pouvons observé sur la figure 1 une transition de phase entre 30 et 34 pourcent.

Nous pouvons en conclure que les CSP difficile à résoudre ont une densité autour de 32 pourcent. Cette information nous sera utile pour la suite...