第6讲

定时器

主要内容

- STM32G4的定时器
- ■定时器的编程实现方式
- ✓中断、PWM输出和输入捕捉
- 动手练习6

STM32G4的定时器

类型	定时器	计数器精 度	计数器类型	预分频因子	DMA请求产 生	捕捉/比 较通道	互补输 出
高精度定 时器	HRTIM	16位	Up	/1/2/4(x2 x4 x8 x16 x32,带DLL)	是	12	有
高级控制	TIM1, TIM8,TIM20	16位	Up, down, Up/down	1~65536之间的整数	是	4	4
通用	TIM2,TIM5	32位	Up, down, Up/down	1~65536之间的整数	是	4	无
通用	TIM3,TIM4	16位	Up, down, Up/down	1~65536之间的整数	是	4	无
通用	TIM15	16位	Up	1~65536之间的整数	是	2	1
通用	TIM16,TIM17	16位	Up	1~65536之间的整数	是	1	1
基本	TIM6,TIM7	16位	Up	1~65536之间的整数	是	0	无

PWM Time-Base Sub-Module

PWM Time-Base Count Modes

PWM Count Up-Down Symmetric Waveform

with Independent Modulation on EPWMA / B

练习6: 定时器

■利用STM32G431RB上的通用定时器,以定时器中断的方式控制NUCLEO-G431RB板上的发光二极管LD2以不同频率闪烁。

建立新工程

选择时钟源和Debug模

- ■选择时钟源和Debug模式
- ✓ System Core->RC->将高速时钟(HSE)选择为Crystal/Ceramic Resonator
- ✓ SYS->Debug选择为Serial Wire

配置GPIO

■配置PA5为输出(GPIO_Output)。在NUCLEO-G431RB板上,PA5控制发光二极管LD2

PA5 Configuration :						
GPIO output level	Low					
GPIO mode	Output Push Pull ~					
GPIO Pull-up/Pull-down	Pull-up ~					
Maximum output speed	High ~					
User Label	LED					

- 在模式 (Mode) 栏,将时钟源 (Clock Source)选择为Internal Clock
- ■把Parameter Settings中的预分频因子(Prescaler)和计数器周期(Counter Period)分别设置为999和16999
- ■把Counter Mode设置为升模式(Up),并使能自动重载(auto-reload preload)

配置定时器

如果系统时钟频率为170MHz, TIM3定时器周期是多少?

- (A) 1ms
- 10ms
- 100ms
- D 1s

配置中断

■ 在TIM3的配置界面中,选中NVIC设置(NVIC Settings),使能TIM3的全局中断

Configuration										
Reset Configuration										
Reset Colliguration										
Parameter Settings	User Constants		ttings	DMA Settings						
NVIC Interrupt Table		Enabled	D	reemption Priority		Sub Priority				
NVIC IIILEITU	Lilableu		reemption Frionty		Sub Filolity					
TIM3 global interrupt	▽	0		0						
3	_									

■ 返回到System Core中的NVIC配置界面,将优先级组(Priority Group)选择4bits for pre-emption priority 0 bits for subpriority。同时,还会看到,TIM3 global interrupt已出现在中断表中,并且已使能;将它的抢占式优先级设为1,响应优先级为0。

时钟配置

- ■配置系统时钟
- ✓ 在 "Clock Configuration"中,将系统时钟(SYSCLK)配置为170Mhz

■保存硬件配置界面(*.ioc),启动代码生成

生成代码分析

- ■Core->Src, 打开main.c
- ■MX_TIM3_Init(): 实现对定时器TIM3的初始化

```
static void MX_TIM3_Init(void)
                                                            main.c文件的最前面:
                                                            TIM_HandleTypeDef htim3;
 htim3.Instance = TIM3;
 htim 3.Init.Prescaler = 999;
 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
 htim 3.Init.Period = 16999;
 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
 if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
```

生成代码分析

```
static void MX_TIM3_Init(void)
 htim3.Instance = TIM3;
 htim3.Init.Prescaler = 999;
 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
 htim 3.Init.Period = 16999;
 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
 if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
```

```
MX_TIM3_Init() HAL_TIM_Base_Init() TIM_Base_SetConfig()
```

使能定时器中断

HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim);

- ■放到main函数中,位于while(1)循环前面的注释对中
- ■TIM3初始化函数MX_TIM3_Init()的后面

/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim3);
/* USER CODE END 2 */

定时器的中断服务函数

■开启TIM3的中断后,当条件满足时,就会执行定时器中断服务函数

```
TIM3_IRQHandler() stm32g4xx_it.c
```

```
TIM3_IRQHandler() 
HAL_TIM_IRQHandler() 
HAL_TIM_PeriodElapsedCallback()
```

定时器的中断服务函数

■开启TIM3的中断后,当条件满足时,就会执行定时器中断服务函数

弱函数

重定义定时器回调函数

■ 在main.c中重新定义回调函数HAL_TIM_PeriodElapsedCallback(),使PA5的输出 状态翻转

```
/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
     HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);
}
/* USER CODE END 4 */
```

■定时器的预分频因子和计数器周期分别设置为999和16999,定时器的时钟频率为170MHz,最终TIM3中断的周期为:

1000*17000/170MHz=0.1s,即10Hz

编译、下载,运行

■编译工程,并下载到硬件中运行,LD2闪烁频率是多少?

练习6: 定时器中断

任务6.1、修改定时器TIM3的预分频因子(Prescaler)和计数器周期(Counter Period),改变LD2的闪烁频率为1Hz、0.5Hz等,并下载到硬件上进行验证。

任务6.2、用定时器TIM3中断,控制LD2和蜂鸣器以9Hz频率闪烁/响。

任务6.3、设置TIM3中断频率为较高频率,譬如1kHz。配置串口模块USART2,实现通过串口助手发送数据,控制LD2的闪烁频率。要求LD2闪烁频率与TIM3中断有关。

任务6.4、编程实现: 获取按键按下的时间,并通过串口输出结果。

任务6.5、用数码管实现秒表计数显示。

提交网络学堂:每个子任务的工程文件(压缩),代码有简单注释

- 熟悉开发系统
- C语言基础, GPIO, 输出
- GPIO, 输入
- 中断
- 串口
- 定时器:中断
- ADC
- DAC+ADC
- DMA+ADC+DAC
- PWM波形输出

发光二极管 蜂鸣器

发光二极管 蜂鸣器 串口助手

? ? ?

Academic License - for use in teaching, academic research, and meeting course requirements at degree granting institutions only. Not for government, commercial, or other organizational use.

© 1984-2020 The MathWorks, Inc. Protected by U.S and international patents. See mathworks.com/patents. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

别的版本也没问题

构建simulink模型

谢 谢!