

RTL8196E-VE1-CG RTL8196E-VE2-CG RTL8196E-VE3-CG

5-PORT 10/100M ETHERNET ROUTER NETWORK PROCESSOR

Draft DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 1.1 17 July 2013

Track ID: JATR-3375-16

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

© 2012 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary
D1.0	2013/04/19	First release.
D1.1	2013/07/17	Update AC/DC data

Table of Contents

1.	GEN	NERAL DESCRIPTION	1
2.		TURES	
3.	SVS ^r	TEM APPLICATIONS	3
٥.			
4.	BLO	OCK DIAGRAM	4
		ASSIGNMENTS	
5.	PIN .	ASSIGNMENTS	5
	5.1.	PACKAGE IDENTIFICATION	5
6.	DINI .	DESCRIPTIONS	
υ.	PIN		
	6.1.	CONFIGURATION UPON POWER ON STRAPPING	
	6.2.	SHARED I/O PIN MAPPING	
7.	MEN	MORY CONTROLLER	11
	7.1.	SDR DRAM CONTROL INTERFACE	11
	7.1.1.		
	7.2.	DDR DRAM CONTROLLER	12
	7.2.1.		12
	7.3.	SPI FLASH CONTROLLER	
	7.3.1.		
	7.3.2.		
	7.4.	SOFTWARE REGISTER DEFINITIONS	
	7.4.1.		
	7.4.2.		
	7.4.3. 7.4.4.		
	7.4.4. 7.4.5.		10
	7.4.5. 7.4.6.		
	7.4.7.		18
	7.4.8.		19
	7.4.9.		
8.	PER	CIPHERAL AND MISC CONTROLS	20
U .	/	INTERRUPT CONTROL REGISTERS	
,	8.1.		
	8.1.1.		
	8.1.2. 8.1.3.		∠1 21
	8.1.4.	Interrupt Routing Register 2 (IRR2) (0xB800_3010)	22
	8.1.5		
	8.2.	TIMER	
	8.2.1.		
	8.2.2.	2. Timer/Counter 0 Data Register (0xB800_3100)	23
	8.2.3.	3. Timer/Counter 1 Data Register (0xB800_3104)	23
	8.2.4.		
	8.2.5.		
	8.2.6.	O (– /	
	8.2.7.	1 0 1	
	8.2.8.		
	8.2.9.	9. Watchdog Timer Control Register (0xB800_311C)	25

	8.3. GPIO CONTROL	26
	8.3.1. GPIO Register Set (0xB800_3500)	26
	8.3.2. GPIO Port A, B, C, D Control Register (PABCD_CNR) (0xB800_3500)	
	8.3.3. GPIO Port A, B, C, D Direction Register (PABCD_DIR) (0xB800_3508)	
	8.3.4. Port A, B, C, D Data Register (PABCD_DAT) (0xB800_350C)	
	8.3.5. Port A, B, C, D Interrupt Status Register (PABCD_ISR) (0xB800_3510)	
	8.3.6. Port A, B Interrupt Mask Register (PAB_IMR) (0xB800_3514)	
	8.3.7. Port C, D Interrupt Mask Register (PCD_IMR) (0xB800_3514)	20
	8.4. GPIO SHARED PIN CONFIGURED MAPPING LIST	
	8.4.1. Shared Pin Register (PIN_MUX_SEL) (0xB800_0040)	
9.	9. UART	32
	9.1. Features	22
	9.3. UART CONTROL REGISTER	
	9.3.1. UART Control Register Address Mapping (Base: 0xB800_2000)	
	9.3.2. UART Receiver Buffer Register (DLAB=0) (0xB800_2100, 0xB800_2000)	
	9.3.3. UART Transmitter Holding Register (DLAB=0) (0xB800_2100, 0xB800_2000)	
	9.3.4. UART Divisor Latch LSB (DLAB=1) (0xB800_2100, 0xB800_2000)	
	9.3.5. UART Divisor Latch MSB (DLAB=1) (0xB800_2104, 0xB800_2004)	
	9.3.6. UART Interrupt Enable Register (DLAB=0) (0xB800_2104, 0xB800_2004)	34
	9.3.7. UART Interrupt Identification Register (0xB800_2108, 0xB800_2008)	34
	9.3.8. UART FIFO Control Register (0xB800_2108, 0xB800_2008)	34
	9.3.9. UART Line Control Register (0xB800_210C, 0xB800_200C)	35
	9.3.10. UART Modem Control Register (0xB800_2110, 0xB800_2010)	35
	9.3.11. UART Line Status Register (0xB800_2114, 0xB800_2014)	
	9.3.12. UART Modem Status Register (0xB800_2110, 0xB800_2018)	
	9.4. BAUD RATE	
1(
	10.1. PCI Express Transmitter	37
	10.2. PCI Express Receiver	
	10.3. PCI EXPRESS HOST MODE	
	10.3.1 PCIe Port 0 Host Mode Extended Register Address Mapping (Base: 0xB8B0_1000)	
	10.3.2. PCIe MDIO Register (0x88B0_1000)	
	10 3.3. PCIe Interrupt Status Register (0xB8B0_1004)	38
	10.3.4. PCIe Power Control Register (0xB8B0_1004)	
>	10.3.5. PCIe IP Configuration Register (0xB8B0_100C)	
	10.3.6. PCIe SRAM BIST Check Register (0xB8B0_1010)	
11	11. SWITCH CORE CONTROL	40
	11. SWITCH CORE CONTROL	
		40
	11.1. GLOF AL PORT CONTROL REGISTER	
	11.1. GLOBAL PORT CONTROL REGISTER	40
	11.1. GLOBAL PORT CONTROL REGISTER	40 40
	11.1. GLOE AL PORT CONTROL REGISTER	40 40 41
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOB AL PORT CONTROL REGISTER	
	11.1. GLOF AL PORT CONTROL REGISTER	

11.3.3.	LED Control Register Address Mapping (B			
11.3.4.	LED Control Register 0 (0xBB80_4300)			
11.3.5.	LED Control Register 1 (0xBB80_4304)			49
11.3.6.	LED Blinking Control Register (0xBB80_4.			
11.3.7.	EEE LED Configuration Register (0xBB80)			
11.3.8.	Direct Mode LED Configuration Register (0xBB80_4314)		51
12. GRE	EN ETHERNET		7.7	52
	ABLE LENGTH POWER SAVING			
	NK-DOWN POWER SAVING			
	NERGY EFFICIENT ETHERNET (EEE)			
13. DC S	SPECIFICATIONS			53
	PERATING CONDITIONS			
13.2. To	OTAL POWER CONSUMPTION OR DRAM BUS DC PARAMETERS			33
13.3. SE	DR DRAM BUS DC PARAMETERS			54
13.4. DI	DR DRAM BUS DC PARAMETERS			54
13.5. FL	ASH BUS DC PARAMETERS			54
	SB v1.1 DC PARAMETERS			
	SB v2.0 DC PARAMETERS			
	ART DC PARAMETERS			
	PIO DC PARAMETERS			
13.10.	JTAG DC PARAMETERS.			
13.11.	RESET DC PARAMETERS			56
	LED DC PARAMETERS			
14. AC S	SPECIFICATIONS			57
	OCK SIGNAL TIMING			
	LOCK SIGNAL TIMING			57
14.1.1.	25MHz System Clock Timing			,57
14.1.2.	40MHz System Clock Timing			58
14.1.3.	SDR DRAM Clock Timing			
	US SIGNAL TIMING			
14.2.1.				
14.2.2.				
14.2.3.				
14.2.4.	JTAG Boundary Scan			
14.2.5.	Power Configuration T ming			
	CI EXPRESS BUS PARAMETERS			
14.3.1.	Differential Transmitter Parameters			66
14.3.2.	Differential Receiver Parameters			
14.3.3.	REFCLK Parameters			67
15. THE	RMAL CHARACTERISTICS			72
	HERMAL OPERATING RANGE			
	IERMAL PARAMETERS			
16. MEC	CHANICAL DIMENSIONS		•••••	74
	▼			
17. ORD	ERING INFORMATION		•••••	75

List of Tables

TABLE 1.	PIN DESCRIPTIONS	6
TABLE 2.	CONFIGURATION UPON POWER ON STRAPPING.	9
TABLE 3.	SHARED I/O PIN MAPPING	9
TABLE 4.	MEMORY CONTROL REGISTER (MCR) (0xB800_1000)	13
TABLE 5.	DRAM CONFIGURATION REGISTER (DCR) (0xB800_1004)	14
TABLE 6.	DRAM TIMING REGISTER (DTR) (0xB800_1008)	15
Table 7.	DDR DRAM CALIBRATION REGISTER (DDCR) (0xB800_1050)	16
TABLE 8.	SPI FLASH CONFIGURATION REGISTER (SFCR) (0xB800_1200)	
TABLE 9.	SPI FLASH CONFIGURATION REGISTER 2 (SPCR2) (0xB800_1204)	17
TABLE 10.	SPI FLASH CONTROL & STATUS REGISTER (SFCSR) (0×B800 1208)	18
TABLE 11.	SPI FLASH DATA REGISTER (SFDR) (0xB800_120C)	19
TABLE 12.	SPI FLASH DATA REGISTER 2 (SFDR2) (0xB800 1210)	19
TABLE 13.	INTERRUPT CONTROL REGISTER ADDRESS MAPPING (BASE: 0xB800, 3000)	20
TABLE 14	GLOBAL INTERRIPT MASK REGISTER (GIMR) (0x B800, 3000)	20
TABLE 15	GLOBAL INTERRIPT STATUS REGISTER (GISR) (OX B800, 3004)	21
TABLE 16	GLOBAL INTERRUPT MASK REGISTER (GIMR) (0x B800_3000). GLOBAL INTERRUPT STATUS REGISTER (GISR) (0x B800_3004). INTERRUPT ROUTING REGISTER 1 (IRR1) (0x B800_300C)	21
TABLE 17	INTERRUPT ROUTING REGISTER 2 (IRR2) (0xB800_3010)	22
	INTERRUPT ROUTING REGISTER 3 (IRR3) (0xB800_3014)	
TABLE 10.	TIMER CONTROL ADDRESS MAPPING (BASE: 0xB800_3100)	22
TABLE 19.	TIMER/COUNTER 0 DATA REGISTER (0xB800_3100)	23
TABLE 20.	TIMER/COUNTER 1 DATA REGISTER (0xB800_3104)	23
TABLE 21.	TIMED/COUNTED O COUNTED RECIETED (OVRSOO 2108)	23
TABLE 22.	TIMER/COUNTER 0 COUNTER REGISTER (0xB800_3108) TIMER/COUNTER 1 COUNTER REGISTER (0xB800_310C) TIMER/COUNTER CON FROL REGISTER (0xB800_3110) TIMER/COUNTER INTERRUPT REGISTER (0xB800_3114)	23
TABLE 23.	TIMED/COUNTER CONTROL PEGISTER (0AB000_510C)	24
TABLE 24.	TIMED/COUNTER CONTROL REGISTER (0xB000_3110)	24
TABLE 23.	CLOCK DIVISION BASE DECISTED (UNDSUD_3114)	24
TABLE 20.	CLOCK DIVISION BASE REGISTER (0xB800_3118) WATCHDOG TIMER CONTROL REGISTER (0xB800_311C)	25
TABLE 27.	GPIO REGISTER SET (0xB800_3500)	26
	GPIO PORT A, B, C, D CONTROL REGISTER (PABCD_CNR) (0xB800_3500)	
	GPIO PORT A, B, C, D DIRECTION REGISTER (PABCD_DIR) (0xB800_3508)	
TABLE 30.	DODT A. D. C. D. DATA DECISION REGISTER (FADCU_DIR) (UXD000_3300)	27
TABLE 31	PORT A, B, C, D DATA REGISTER (PABCD_DAT) (0xB800_350C)	27
TABLE 32.	PORT A, B INTERRUPT MASK REGISTER (PAB_IMR) (0xB800_3514)	20
TABLE 33.	PORT A, B INTERRUPT MASK REGISTER (PAB_IWR) (0x3500_3514)	20
TABLE 34.	CHARDED DIN DECRETED (DIN MILLY CELL) (OVD 2000 0040)	29
TABLE 33.	SHARED PIN REGISTER (PIN_MUX_SEL) (0xB300_0040)	30
TABLE 30.	UART CONTROL INTERFACE PINS	31
	UART CONTROL REGISTER ADDRESS MAPPING (BASE: 0xB800_2000)	
	UART RECEIVER BUFFER REGISTER (DLAB=0) (0xB800_2100, 0xB800_2000)	
	UART TRANSMITTER HOLDING REGISTER (DLAB=0) (0xB800_2100_0xB800_2000)	
	UART DIVISOR LATCH LSB (DLAB=1) (0xB800_2100, 0xB800_2000)	
	UART DIVISOR LATCH MSB (DLAB=1) (0xB800_2104, 0xB300_2004)	
	UART INTERRUPT ENABLE REGISTER (DLAB=0) (0xB800_2104, 0xB800_2004)	
	UART INTERRUPT IDENTIFICATION REGISTER (0xB800_2108, 0xB800_2008)	
	UART FIFO CONTROL REGISTER (0xB800_2108, 0xB800_2008)	
TABLE 46.	UART LINE CONTROL REGISTER (0xB800_210C, 0xB800_200C)	
	UART MODEM CONTROL REGISTER (0xB800_2110, 0xB800_2010)	
	UART LINE STATUS REGISTER (0xB800_2114, 0xF 800_2014)	
	UART MODEM STATUS REGISTER (0xB800_2110, 0xB800_2018)	
	DIVISOR LATCH VALUE EXAMPLES	
	PCIE PORT 0 HOST MODE EXTENDED REGISTER ADDRESS MAPPING (BASE: 0xB8B0_1000)	
TABLE 52.	PCIE MDIO REGISTER (0xB8B0_1000)	38

TABLE 53.	PCIE INTERRUPT STATUS REGISTER (0xB8B0_1004)	38
TABLE 54.	PCIE POWER CONTROL REGISTER (0xB8B0_1008)	39
TABLE 55.	PCIE IP CONFIGURATION REGISTER (0xB8B0_100C)	39
TABLE 56.	PCIE SRAM BIST CHECK REGISTER (0xB8B0_1010)	39
TABLE 57.	GLOBAL PORT CONTROL REGISTER ADDRESS MAPPING (BASE: 0xBB80_4000)	40
TABLE 58.	GLOBAL MDC/MDIO COMMAND REGISTER (0xBB80-4004)	40
TABLE 59.	GLOBAL MDC/MDIO STATUS REGISTER (0xBB80_4008)	41
TABLE 60.	GLOBAL FRAME FILTERING CONTROL REGISTER ADDRESS MAPPING (BASE: 0XBB80_4000)	41
TABLE 61.	GLOBAL BROADCAST STORM CONTROL REGISTER (0xBB80_4044)	41
TABLE 62.	PER-PORT CONFIGURATION REGISTER ADDRESS MAPPING (BASE: 0xBB80_4100)	42
TABLE 63.	PORT INTERFACE TYPE CONTROL REGISTER (0xBB80_4100)	42
	PORT CONFIGURATION REGISTER OF PORT N (N=0~4)	
	PORT STATUS REGISTER OF PORT N (N=0~4)	
TABLE 66.	DISPLAY ARRANGEMENT OF EACH SCAN LED MODE	47
TABLE 149.	LED CONTROL REGISTER ADDRESS MAPPING (BASE: 0xBP80_4300)	48
	LED CONTROL REGISTER 0 (0xBB80_4300)	
TABLE 151.	LED CONTROL REGISTER 1 (0xBB80_4304)	49
	LED BLINKING CONTROL REGISTER (0xBB 80_430C)	
	EEE LED CONFIGURATION REGISTER (0xBB80_4310)	
	DIRECT MODE LED CONFIGURATION REGISTER (0xBB80_4314)	
	OPERATING CONDITIONS	
	TOTAL POWER CONSUMPTION	
	SDR DRAM BUS DC PARAMETERS	
TABLE 70.	DDR DRAM BUS DC PARAMETERS	54
TABLE 71.	USB v1.1 DC PARAMETERS	55
	USB v2.0 DC Parameters.	
	UART DC PARAMETERS	
	GPIO DC PARAMETERS	
	JTAG DC PARAMETERS	
	RESET DC PARAMETERS	
	LED DC PARAMETERS	
	25MHz System Clock Timing	
	40MFz System Clock Timing.	
	SDR DRAM CLOCK TIMING	
TABLE 81	SDR DRAM Input Timing	59 59
TABLE 82	SDR DRAM OUTPUT TIMNG	59 59
	SDR DRAM Access Control Timing	
	DDR DRAM Input Timing.	
	DDR DRAM OUTPUT TIMING	
	DDR DRAM ACCESS CONTROL TIMING	
	SERIAL FLASH INTERFACE OUTPUT TIMING	
	SERIAL FLASH INTERFACE INPUT TIMING	
	JTAG BOUNDARY SCAN INTERFACE TIMING VALUES	
	DIFFERENTIAL TRANSMITTER PARAMETERS	
	DIFFERENTIAL RECEIVER PARAMETERS.	
	REFCLK PARAMETERS.	
	THERMAL OPERATING RANGE.	
	THERMAL PARAMETERS	
	ORDERING INFORMATION	
13DLE 102.	ORDERED IN ORMATION	13

List of Figures

- 1		
FIGURE 1.	BLOCK DIAGRAM	
FIGURE 2.	PIN ASSIGNMENTS	5
FIGURE 3. B	I-COLOR LED SCAN MODE INTERCONNECTIONS	47
FIGURE 4.	TYPICAL CONNECTION TO A CRYSTAL	57
FIGURE 5.	TYPICAL CONNECTION TO AN OSCILLATOR	57
FIGURE 5.	SDR DRAM CLOCK SPECIFICATIONS-1	
FIGURE 6.	SDR DRAM CLOCK SPECIFICATIONS-2	
FIGURE 7.	SDR DRAM INPUT TIMING	59
FIGURE 8.	SDR DRAM OUTPUT TIMING	59
FIGURE 9.	SDR DRAM ACCESS CONTROL TIMING	60
FIGURE 10.	DDR DRAM ACCESS CONTROL TIMING	
FIGURE 11.		63
FIGURE 12.	SERIAL FLASH INTERFACE INPUT TIMING	
FIGURE 13.	BOUNDARY-SCAN GENERAL TIMING	64
FIGURE 14.	BOUNDARY-SCAN RESET TIMING	64
FIGURE 15.	POWER UP CONFIGURATION TIMING	65
FIGURE 16.	SINGLE-ENDED MEASUREMENT POINTS FOR ABSOLUTE CROSS POINT AND SWING	
FIGURE 17.	SINGLE-ENDED MEASUREMENT POINTS FOR DELTA CROSS POINT	69
FIGURE 18.	SINGLE-ENDED MEASUREMENT POINTS FOR RISE AND FALL TIME MATCHING	69
FIGURE 19.	DIFFERENTIAL MEASUREMENT POINTS FOR DUTY CYCLE AND PERIOD	70
	DIFFERENTIAL MEASUREMENT POINTS FOR RISE AND FALL TIME	
FIGURE 21.	DIFFERENTIAL MEASUREMENT POINTS FOR RINGBACK	71
FIGURE 23.	REFERENCE CLOCK SYSTEM MEASUREMENT POINT AND LOADING	71

1. General Description

The RTL8196E-VE1/2/3-CG is an integrated System-on-a-Chip (SoC) Application Specific Integrated Circuit (ASIC) L2 5-Port Ethernet switch. An RLX4181 CPU is embedded and the clock rate can be up to 400MHz. To improve computational performance, a 16Kbyte I-Cache, 8Kbyte D-Cache, 16Kbyte I-MEM, and 8Kbyte D-MEM are provided. A standard 5-signal P1149.1 compliant EJTAG test interface is supported for CPU testing and software development.

The RTL8196E-VE1/2/3 provide embedded DRAM by MCM technology. The DRAM size could be 8M, 16M or 32M byte for different mode type. Please refer to the ordering Information.

The RTL8196E-VE1/2/3 provides five ports (ports 0~4), integrated with five physical layer transceivers for 10Base-T and 100Base-TX. Each port of the RTL8196E-VE1/2/3 may be configured as a LAN or WAN port.

The RTL8196E-VE1/2/3 supports flexible IEEE 802.3x full-duplex flow control and optional half-duplex backpressure control. For full-duplex, standard IEEE 803.3x flow control will enable pause ability only when both sides of UTP have auto-negotiation ability and have enabled pause ability. The RTL8196E-VE1/2/3 also provides optional forced mode IEEE 802.3x full-duplex flow control. Based on optimized packet memory management, the RTL8196E-VE1/2/3 is capable of Head-Of-Line blocking prevention.

L2 Switch Features: The RTL8196E-VE1/2/3 contains a 1024-entry address look-up table with a 10-bit 4-way XOR hashing algorithm for address searching and learning. Auto-aging of each entry is provided and the aging time is around 300~450 seconds.

The RTL8196E-VE1/2/3 supports IEEE 802.3az, also known as Energy Efficient Ethernet (EEE). IEEE 802.3az operates with the IEEE 802.3 Media Access Control (MAC) Sublayer to support operation in Low Power Idle mode. When the Ethernet network is in low link utilization, EEE allows systems on both sides of the link to save power. Green Ethernet power saving provides: link-on and dynamic detection of cable length, and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption. The RTL8196E-VE1/2/3 also implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected.

For peripheral interfaces, two 16550-compatible UARTs are supported, and a 16-byte FIFO buffer is provided. USB OTG (On-The-Go) controllers are embedded in the RTL8196E-VE1/2/3 to provide OTG functionality. In addition, one USB PHY is embedded in the RTL8196E-VE1/2/3.

An MDI/MDIX auto crossover function is supported. For accessing high-speed devices, the RTL8196E-VE1/2/3 provides one PCI Express host to access a PCI Express interface.

The RTL8196E-VE1/2/3 requires only a single 25MHz crystal or 40MHz clock input for the system PLL. The RTL8196E-VE1/2/3 also has two hardware timers and one watchdog timer to provide accurate timing and watchdog functionality. For extension and flexibility, the RTL8196E-VE1/2/3 supports up to 16 GPIO pins.

The RTL8196E-VE1/2/3 is provided in a Low Profile Plastic Quad Flat Package, 128-Lead (LQFP128) package and requires only a 3.3V external power supply. The built-in SWR or LDO 3.3V to 1.0V can be used for the RTL8196E-VE1/2/3 system core power.

2. Features

■ SOC

- ◆ Embedded RISC CPU, RLX4181 with 16Kbyte I-Cache, 8Kbyte D-Cache, 16Kbyte I-MEM, 8Kbyte D-MEM
- ◆ Supports MIPS-1 ISA, MIPS16 ISA
- ◆ Clock Rate: 400MHz
- Provides a standard P1149.1 EJTAG test port
- ◆ Supports RLX4181 CPU suspend mode

■ L2 Capabilities

- ◆ Five Ethernet MAC switch with five IEEE 802.3 10/100M physical layer transceivers
- Non-blocking wire-speed reception and transmission and non-head-of-lineblocking/forwarding
- ◆ Internal 256Kbit SRAM for packet buffering
- Internal 1024 entry 4-way hash L2 lookup table
- Supports source and destination MAC address filtering

■ CPU Interface (NIC)

- ◆ Supports BSD mbuf-like packet structure with adjustable cluster size (128-byte to 2Kbyte) to provide optimum memory utilization
- ◆ The NIC DMA supports multipledescriptor-ring architecture for QoS applications

■ Peripheral Interfaces

- Supports PCI Express Host with integrated PHY
- ♦ One PCI Express PHY embedded
- ♦ Supports one-port USB
 - USB 2.0 Host or Device
- ◆ One USB PHY embedded
- ♦ Supports two 16550 UARTs
- Supports up to 16 GPIO pins

Memory Interfaces

- ◆ Serial Flash (SPI Type)
 - Supports one bank and dual I/O channels for SPI Flash application
 - Each Flash bank could be configured as 256K/512K/1M/2M/4M/8M/16M Bytes
 - Boot up from SPI flash is supported
- ◆ Provide embedded MCM DRAM
 - Data bus : 16 bits.
 - Provide different DRAM size model: RTL8196E-VE1: 8Mbyte SDR DRAM RTL8196E-VE2: 16Mbyte SDR DRAM RTL8196E-VE3: 32Mbyte DDR1 DRAM

Supports Green Ethernet

- Cable length power saving
- ◆ Link down power saving
- Supports IEEE 802.3az Energy Efficient Ethernet ability for 100Base-TX in full duplex operation and 10Base-T in full/half duplex mode

- Other Added-Value Features
 - ◆ Supports Link Down Power Saving in Ethernet PHYceivers
 - Supports two hardware timers and one watchdog timer
 - Per-port configurable auto-crossover function
 - ◆ Built-in internal ROM booting
 - ◆ Single 25MHz crystal or 40MHz clock input

3. System Applications

- IEEE 802.11b/g/n AP/Router
- Wired Router

- Built-in SWR/LDO
 - ◆ LDO for DDR1/DDR2
 - DDR1 DRAM: 3.3V to 2.5VDDR2 DRAM: 3.3V to 1.8V
 - ◆ SWR or LDO for Core Power
 - SWR or LDO 3.3V to 1.0V
- LOFP128 package

4. Block Diagram

Figure 1. Block Diagram

5. Pin Assignments

Figure 2. Pin Assignments

5.1. Package Identification

Green package is indicated by the 'G' in GxxxEY (Figure 2). Embedded memory size indicate by Y in GxxxEY (Figure 2).

Y=1: 8M byte SDR DRAM embedded Y=2: 16M byte SDR DRAM embedded Y=3: 32M byte DDR1 DRAM embedded

6. Pin Descriptions

In this section the following abbreviations are used:

Upon Reset: Defined as a short time after the end of a hardware reset.

After Reset: Defined as the time after the specified 'Upon Reset' time.

I: Input AI: Analog Input

O: Output AO: Analog Output

I/O: Bi-Directional Input/Output

AI/O: Analog Bi-Directional Input/Output

P: Digital Power AP: Analog Power

G: Digital Ground AG: Analog Ground

 I_{PD} : Input Pin With Pull-Down Resistor I_{PU} : Input Pin With Pull-Up Resistor; (Typical Value = 75K Ohm)

Table 1. Pin Descriptions

Pin Name	Pin No.	Type	Description		
Clock & Reset					
XI	123	I	25MHz Crystal Clock, 25MHz External Clock Input, or 40MHz External Clock Input		
XO	122	0	25MHz Crystal Clock Output.		
RESET#	49	I	System External Reset.		
	10/100	M Etheri	net Physical Layer		
TXOF_P[4:0]	27, 25, 16, 14, 5	AO	10/100M Ethernet Physical Layer Transmit Pair.		
TXON_P[4:0]	28, 24, 17, 13, 6		For differential data transmission.		
RXIP_P[4:0]	30, 23, 19, 12, 8	AI	10/100M Ethernet Physical Layer Receive Pair.		
RXIN_P[4:0]	31, 22, 20, 11, 9		For differential data reception.		
		Memory	y Interface		
MA12	43,	0	Address of embedded DRAM.,		
MA[10:8]	44, 52, 53,		Only provided for power on strapping setting purpose.		
MA6	54,				
MA[4:0]	55, 56, 5, 60				
		DDR DR	AM Control		
RAS#	51	О	Raw Address Strobe (RAS#) for SDR/DDR DRAM		
			Only provided for power on strapping setting purpose.		
CAS#	51	O	Column Address Strobe for SDR/DDR DRAM.		
			Only provided for power on strapping setting purpose.		
VREF	42	AI	Voltage Reference 1.25V for DDR1.		
			Voltage Reference 0.9V for DDR2.		
	S	erial SPI	Flash Control		
SF_CS0#	45	О	SPI Serial Flash Chip Select 0.		

Pin Name	Pin No.	Type	Description	
SF_SDIO[1:0]	46, 47	I/O	SPI Serial Flash Serial Data Input/Output.	
SF_SCK	48	О	SPI Serial Flash Serial Clock Output.	
			SF_SDI will be driven on the falling edge.	
			SF_SDO will be latched on the rising edge.	
		U	ART	
U0_TX	41	O	Data Transmit Serial Output of UARTO.	
U0_RX	39	I_{PU}	Data Receive Serial Input of UARTO.	
U1_TX	35	О	Data Transn it Seria! Output of UART1.	
U1_RX	37	I_{PU}	Data Receive Serial Input of UART1.	
U1_RTS#	36	О	Request to Send of UART1.	
U1_CTS#	34	I	Clear to Send of UART1.	
		J'	TAG	
JTAG_TCK	37	I_{PU}	JTAG Test Clock.	
JTAG_TMS	34	$ m I_{PU}$	JTAG Test Mode Select	
JTAG_TDO	35	0	JTAG Test Data Output.	
JTAG_TDI	36	$ m I_{PU}$	JTAG Test Data In.	
JATG_RST	33	I_{PU}	JTAG Test Reset	
		I	LED	
LED_PORT[4:0]	1, 49, 126, 128, 127	О	Ethernet I ED.	
			Link/Activity Status of 5 Ports (Low Active).	
		G	SPIO	
GPIOA[7:4]	39, 35, 36, 34,	I/O	GPIO Port A.	
GPIOA2	37			
GPIOB[6:0]	1, 49, 126, 128, 127, 3, 41	I/O	GPIO Port B.	
GPIOC6	46,	I/O	GPIO Port C.	
GPIOC[3:1]	46, 47, 48			
X		USB	Host 2.0	
USB_DP	110	AI/O	USB Host/OTG Device Data Plus Pin.	
USB_DN	111	AI/O	USB Host/OTG Device Data Minus Pin.	
0		PCI Expr	ess Interface	
HSON0	113	AO	Transmitter Differential Pair.	
HSOP0	114			
HSIN0	118	AI	Receiver Differential Pair.	
HSIP0	119		0'	
REFCLKN0	116	AO	Reference Clock Differential Pair.	
REFCLKP0	117			
PCIE_RST#	3	О	PCI Express Reset.	
			nce Voltage	
R12K	125	AI	Reference Voltage for System.	
			12K 1% resistance pull down.	
Power & GND				
VDD33	2	P	Digital I/O Power Supply 3.3V.	

Pin Name	Pin No.	Type	Description		
VDD33_25_18	57, 77, 88, 105	P	Memory I/O Power Supply 3.3V, 2.5V, or 1.8V.		
			SDR DRAM: 3.3V		
			DDR1 DRAM: 2.5V		
			DDR2 DRAM: 1.8V		
AVDD33	10, 21	AP	Ethernet Analog Power Supply 3.3V.		
AVDD33_PHYPLL	29	AP	Ethernet PHY PLL Power 3.3V.		
VDD10	4, 40, 58	P	Digital Core Power Supply 1.0V.		
AVDD10	7, 15, 26	AP	Ethernet Analog Power Supply 1.0V.		
AVDD33X	121	AP	25M Crystal Power 3.3V.		
AVDD33_BG	124	AP	System Bandgap Power Supply 3.3V.		
AVDD10_PCIE	115	AP	PCI Express Analog Power Supply 1.0V.		
AVDD10_PHYPLL	32	AP	Ethernet PHY PLL Power 1.0V.		
AVDD33_USB	108	AP	USD 2.0 Analog Power 3.3V		
AVDD10_USB	109	AP	USB 2.0 Analog Power 1.0 V.		
GND	18, 38, 62, 66, 74, 80, 85, 93, 97	G	System GND.		
GND_SWR	99	AG	Switching Regulator GND.		
AGND_PCIE	120	AG	PCI Express GND.		
AGND_USB	112	AG	USB GND.		
		SWR	& LDO		
VDD33_LDO	104	AP	LDO Power Supply 3.3V Input for DDR.		
LDO_OUT	103	AP	LDO Output Power for DDR		
	- 🔾		DDR1 DRAM: 2.5V		
			DDR2 DRAM: 1.8V		
AVDD33_SWR	101	AP	SWR Power Supply 3.3V Input.		
SWR_LX	100	AP	SWR Power Supply Output.		
SWR_VDD10	107	AP	SWR Power supply 1.0V input		
X		Not Con	nected Pin		
NC	63, 64, 65, 67, 68,	-	Not Connected.		
	69, 70, 71, 72, 73,				
U.	75, 76, 78, 79, 81,				
	82, 83, 84, 86, 87,				
	89, 90, 91, 92, 94,				
	95, 96, 98, 102, 106				

6.1. Configuration Upon Power On Strapping

All mode configuration pins are internal pull low. The 1.0V digital core power input pin voltage is up to 0.7V on system power-on. The strap data will be latched after a delay of 300ms.

Table 2. Configuration Upon Power On Strapping

Table 2. Configuration Opon Fower On Strapping					
H/W Pin Name	Configuration Name	Pin No	Description		
U0_TX	ck_cpu_freq_sel[0]	41	CPU Clock Configuration.		
			0: 400MHz 1: 380MHz		
MA10, MA9	ck_freq_sel[1:0]	44, 52	DRAM Clock Rate Configuration.		
			00: 156.25MHz 01: Reserved		
			10. Reserved 11: Reserved		
MA2, MA1, MA0	Bootpinsel[2:0]	59, 60, 61	Boot Pin Selection for the RTL8196E-VE1/2/3Boot Method.		
			000: SPI 001: Reserved		
			010: Reserved 011: Reserved		
			100: ROM booting Mode for SDR/DDR 16MB		
	. (101: ROM booting Mode for SDR/DDR 32MB		
		\mathcal{O}	110: ROM booting Mode for SDR 8MB or DDR 64MB		
			111: ROM booting Mode for SDR 2MB or DDR 128MB		
MA3	DDR_TYPE	56	DDR DRAM Type.		
			0: DDR2		
			1: DDR1		
MA4	External_Reset	55	Enable External Reset Pin.		
			0: Disable		
,	\bigcirc	X	1: Enable		
MA8	DRAM_TYPE	53	DRAM Type.		
			0: SDR		
			1: DDR		
MA12	Sel_40M	43	System Clock Source Select.		
			0: 25MHz		
			1. 40MHz		

6.2. Shared I/O Pin Mapping

Table 3. Shared I/O Pin Mapping

Pin	GPIO	Memory	EJTAG	LED	UART	Reset
37	GPIOA[2]	-	JTAG_TCK		U1_RX	-
34	GPIOA[4]	-	JTAG_TMS	-	U1_CTS#	-
36	GPIOA[5]	-	JTAG_TDI	-	U1_RTS#	-
35	GPIOA[6]	=	JTAG_TDO	-	U1_TX	-
39	GPIOA[7]	=	<u> </u>	=	U0_RX	-
41	GPIOB[0]	-	-/	-	U0_TX	-
3	GPIOB[1]	-	_	-	=	PCIE_RST#
127	GPIOB[2]	-	-	LED_PORT0	-	-

Pin	GPIO	Memory	EJTAG	LED	UART	Reset
128	GPIOB[3]	ı	ı	LED_PORT1	ı	-
126	GPIOB[4]	-	-	LED_PORT2	-	-
49	GPIOB[5]	=	-	LED_PORT3	-	RESET#
1	GPIOB[6]	-	-	LED_PORT4	5	-
48	GPIOC[1]	SF_SCK	-	-	0,-	-
47	GPIOC[2]	SF_SDIO0	-	-	-	-
46	GPIOC[3]	SF_SDIO1	-	-	-	-
45	GPIOC[6]	SF_CS0#	-	-	-	-

7. Memory Controller

The RTL8196E-VE1/2/3integrates a memory control module to access external DDR DRAM, SDR DRAM, and Flash memory.

The interface is designed for DDR-compliant DDR DRAM, and designed for PC133 or PC166-compliant SDR DRAM, and supports auto-refresh mode, which requires a 4096 refresh cycle within 64ms. The DRAM interface supports one chip (MCS0#), and the DRAM size and timing is configurable in registers.

The RTL8196E-VE1/2/3supports one flash memory chip (SF_CS0#). The interface supports SPI flash memory. When Flash is used, the system will boot from KSEG1 at virtual address 0xBFC0_0000 (physical address: 0x1FC0_0000).

7.1. SDR DRAM Control Interface

PC100~PC166-compliant SDR DRAM is supported. The SDR DRAM controller supports Auto Refresh mode, which requires a 4096-cycle refresh each 64ms. The RTL8196E-VE1/2/3provides a maximum of 512Mbit address space (8Mx16x4Banks) and the SDR DRAM size is configurable.

7.1.1. Features

- Interface (Bus Width): 16-bit
- Targeted SDR Frequency: Up to 168MHz
- Supports one Chip Select (MCS0#)
- Supported SDR DRAM Chip Specification
 - Bank Counts: 2, 4
 - Row Counts: 2K (A0~A10), 4K (A0~A11), 8K (A0~A12)
 - Column Counts: 256 (A0~A7), 512 (A0~A8), 1K (A0~A9), 2K (A0~A9, A11)
- Programmable Timing Parameters: tRAS, tRP, tRCD, tCL, tREFI...

7.2. DDR DRAM Controller

7.2.1. Features

- Interface (Bus Width): 16-bit
- Targeted DDR Frequency: Up to 193.75MHz
- Supports one Chip Select (MCS0#)
- Supports both DDR1 and DDR2
- Supported DDR DRAM Chip Specification
 - Bank Counts: 8
 - Row Counts: 4K (A0~A11), 8K (A0~A12), 16K (A0~A13)
 - Column Counts: 512 (A0~A8), 1K (A0~A9), 2K (A0~A9, A11), 4K (A0~A9, A11, A12)
- Programmable Timing Parameters: tRAS, tRP, tRCD, tCL, tREFI...

7.3. SPI Flash Controller

The SPI flash controller is a new design and incorporates new features.

7.3.1. Features

- Targeted SPI flash frequency: Up to 96.875MHz (when DRAM clock is 193.75MHz)
- Supports one chip
- In addition to a programmed I/O interface, also supports a memory-mapped I/O interface for read operation
- Supports Read and Fast Read in memory-mapped I/O mode

7.3.2. Pin Mode and Definition of Serial and Dual I/O

Modes supported on the SPI flash interface:

Serial I/O Mode

- SDI: Flash chip data input pin
- SDO: Flash chip data output pin

Dual I/O Mode

- SDIO0 (SDI): Flash chip data bi-directional pin
- SDIO1 (SDO): Flash chip data bi-directional pin

7.4. Software Register Definitions

7.4.1. Memory Control Register (MCR) (0xB800_1000)

This register does not provide byte access.

Table 4. Memory Control Register (MCR) (0xB800_1000)

Bit	Name	Description	Mode	Default
31	DRAMTYPE	Report the Hardware Strapping Initial Value for DRAM Type.	R	0B
		0: SDR DRAM	$\mathcal{L}(\mathcal{L}(\mathcal{L}))$	
		1: DDR DRAM		
30	BOOTSEL	Report the Hardware Strapping Initial Value for Boot Flash Type.	R	0B
		0: Reserved		
		1: Serial SPI flash		
29	IPREF	Enable Instruction Prefetch Function.	RW	0B
		0: Disable prefetch (also reset buffer status)		
		1: Enable prefetch (4 words)		
28	DPREF	Enable Data Prefetch Function.	RW	0B
		0: Disable prefetch (also reset buffer status)	100	
		1: Enable prefetch (4 words)		
27	IPREF_MODE	Choose Instruction Prefetch Mode.	RW	0B
		0: Old prefetch mechanism		
		1: New prefetch mechanism		
26	DPREF_MODE	Choose Data Prefetch Mode.	RW	0B
		0: Old prefetch mechanism		
		1: New prefetch mechanism		
25:0	-	Reserved.	- /	-

7.4.2. DRAM Configuration Register (DCR) (0xB800_1004)

This register does not provide byte access.

Table 5. DRAM Configuration Register (DCR) (0xB800_1004)

Bit	Name	Description	Mode	Default
31:30	T_CAS	CAS Latency.	RW	01B
		00: Latency=2		
		01: Latency=3		
		10: Latency=2.5 (only used for DDR)		
		11: Latency=4 (only used for DDR)	$\chi \sim$	
29:28	DBUSWID	DRAM Bus Width.	RW	01B
		00: Reserved		
		01: 16 bit (used for DDR and SDR)		
		10: Reserved		
		11: Reserved		
27	DCHIPSEL	DRAM Chip Select.	RW	1B
		0: CS0# 1: CS0# and CS1#		
26:25	ROWCNT	Row Counts.	RW	00B
		00: 2K (A0~A10) 01: 4K (A0~A11)		
		10: 8K (A0~A12) 11: 16K (A0~A13)		
24:22	COLCNT	Column Counts.	RW	000B
		000: 256 (A0~A7) 001: 512 (A0~A8)		
		010: 1K (A0~A9) 011: 2K (A0~A9, A11)		
		100: 4K (A0~A9, A11, A12) 101: Reserved		
		110: Reserved 111: Reserved		
21	BSTREF	Bursted 8 Auto-Refresh Commands (Used for DDR).	RW	0B
		0: Disable 1: Enable		
20	ARBIT	Enforce Interface Arbitration Take Effect	RW	0B
		0: Reserved 1: Take effect		
19	BANKCNT	Bank Counts.	RW	1B
		0: 2 banks (used for SDR)		
O'		1: 4 banks (used for SDR and DDR)		
18	FAST_RX	If RX path turnaround delay is small enough, the memory controller	RW	0B
		can return read data with reduced latency within 1DRAM clock		
		cycle (used for DDR).		
45		0: Normal path 1: Fast path	DIVI	0.70
17	MR_MODE	Select the Memory Command that Memory Controller Issues (Used for DDR).	RW	0B
		0: Mode Register 1: Extended Mode Register		
16	DRV_STR	Drive Strength Setting of DRAM Chip (Used for DDR).	RW	0B
10	אופ"אער	For this option to be effective, MR_MODE must be first set to 1.	KW	UD
		0: Normal 1: Reduced		
15.0				
15:0	=	Reserved.	-	-

7.4.3. DRAM Timing Register (DTR) (0xB800_1008)

This register does not provide byte access.

Table 6. DRAM Timing Register (DTR) (0xB800_1008)

Bit	Name	Description	Mode	Default
31:29	T_RP	tRP Timing Parameter of DRAM.	RW	111B
		Basic Unit = 1*DRAM_CLK.		
		000: 1 unit		
28:26	T_RCD	tRCD Timing Parameter of DRAM.	RW	111B
		Basic Unit = 1*DRAM_CLK.		
		000: 1 unit		
25:21	T_RAS	Minimum T_RAS Timing Parameter of DRAM.	RW	11111B
		Basic Unit = 1*DRAM_CLK.		
		00000: 1 unit		
20:14	T_RFC	tRFC Timing Parameter of DRAM (Refresh Row Cycle Time).	RW	1111100B
		Basic Unit = 1*DRAM_CLK.		
		0000000: 1 unit		
13:10	T_REFI	tREF Timing Parameter of DRAM (Refresh Pow Interval Time).	RW	0000B
		Basic unit = T_REFI_UNIT.		
		0000: 1 unit		
		0001: 2 units		
		1111: 16 units		
9:7	T_REFI_UNIT	Basic Unit of T_REFI.	RW	111B
		000: 32 DRAM_CLK		^ .
		001: 64 DRAM_CLK		
		010: 128 DRAM_CLK		
	W'	011: 256 DRAM_CLK	•	
		100: 512 DRAM_CLK		
		101: 1024 DRAM_CLK		
		110. 2048 DRAM_CLK		
<u>U</u>		111: 4096 DRAM_CLK		
6:4	T_WR	tWR Timing Parameter of DRAM (Write Recovery Time).	RW	111B
		Basic Unit = 1*DRAM_CLK.		
		000: 1 unit		
3:0		Reserved.	-	-

7.4.4. DDR DRAM Calibration Register (DDCR) (0xB800_1050)

This register does not provide byte access.

Table 7. DDR DRAM Calibration Register (DDCR) (0xB800_1050)

Bit	Name	Description	Mode	Default
31	CAL_MODE	Run-Time Calibration Mode.	RW	0B
		0: Use analog DLL calibration		
		1: Use digital delay line calibration		
30	SW_CAL_RDY	Ready for Digital Delay Line Calibration.	R	0B
		0: Not ready		
		1: Ready		
29:25	DQS0_TAP[4:0]	Selects 32-Tap Delay Line for LDQS, which is Data Strobe for	RW	00000B
		DQ[7:0] Reception.		
		00000: 1 st tap		
		00001: 2 nd tap		
		11111: 32 nd tap		
		Note: 32-tap delay is around 2.5ns, which is chosen as it is around 1/2 the DDR cycle (1 tap is around 78.125ps).		
24:20	DQS1_TAP[4:0]	Selects 32-Tap Delay Line for UDQS, which is Data strobe for	RW	00000B
		DQ[15:8] Reception.		
		00000: 1 st tap		
		00001: 2 nd tap		
		11111: 32 nd tap		^ .
		Note: 32-tap delay is around 2.5ns, which is chosen as it is		
19:15	DQS0_EN_TAP[4:0]	around 1/2 the DDR cycle (1 tap is around 78.125ps). Selects 32-Tap Delay Line for the Internal LDQS_EN Window.	RW	00000B
19.13	DQSU_EN_TAF[4.0]	00000: 1st tap	KW	ОООООВ
		00001: 2 nd tap		
		100001. 2 - тар		
		11111: 32 nd tap		
		Note: 32-tap delay is around 2.5ns, which is chosen as it is		
		around 1/2 the DDR cycle (1 tap is around 78.125ps).		
14:10	DQS1_EN_TAP[4:0]	Selects 32-Tap Delay Line for the Internal UDQS_EN Window.	RW	00000B
		00000: 1 st tap		
	70	00001. 2 nd tap		
		0) ()'		
		111 1: 32 nd tap		
		Note: 32-tap delay is around 2.5ns, which is chosen as it is		
		around 1/2 the DDR cycle (1 tap is around 78.125ps).		
9:0	-	Reserved.	-	-

7.4.5. SPI Flash Configuration Register (SFCR) (0xB800_1200)

This register does not provide byte access.

Table 8. SPI Flash Configuration Register (SFCR) (0xB800_1200)

Bit	Name	Description	Mode	Default
31:29	SPI_CLK_DIV	SPI Operating Clock Rate Selection.	RW	111B
		The value defines the divisor to generate the SPI clock.		
		SPI Clock = (DRAM Clock)/(SPI_CLK_DIV).		
		000: DIV=2 001: DIV=4		
		010: DIV=6 011: DIV=8		
		100: DIV=10 101: DIV=12		
		110: DIV=14 111: DIV=16		
28	RBO	Serial Flash Read Byte Ordering.	RW	1B
		0: The byte order is from low to high		
		1: The byte order is from high to low		
27	WBO	Serial Flash Write Byte Ordering.	RW	1B
		0: The byte order is from low to high		
		1: The byte order is from high to low		
26:22	SPI_TCS	SPI Chip Deselect Time.	RW	11111B
		Basic Unit = 1*DRAM Clock Cycle.		
		00000: 1 unit 00001: 2 units, etc.		
21:0	-	Reserved.	-	-

7.4.6. SPI Flash Configuration Register 2 (SFCR2) (0xB800_1204)

This register does not provide byte access.

Table 9. SPI Flash Configuration Register 2 (SPCR2) (0xB800_1204)

Bit	Name	Description	Mode	Default
31:24	SFCMD	SPI Flash 8-Bit Command Code of a Read Transaction.	RW	03H
		Example:		
2		'Read Data' is 0x03.		
		'Fast Read' is 0x03.		
23:21	SFSIZE	SPI Flash Size	RW	111B
		000: 128Kbyte 001: 256Kbyte		
		010: 512Kbyte 011: 1Mbyte		
		100: 2Mbyte 101: 4Mbyte		
		110: 8Mbyte 111: 16Mbyte		
20	RD_OPT	SPI Flash Sequential Access Optimization.	RW	0B
		0: No optimization		
		1: Optimization for sequential access		
19:18	CMD_IO	SPI Flash I/O Mode Selection for the Command Phase of a	RW	00B
		Read Transaction.		
		00: Serial I/O (8 cycles) 01: Dual I/O (4 cycles)		
		10: Reserved 11: Reserved		

Bit	Name	Description		Mode	Default
17:16	ADDR_IO	SPI Flash I/O Mode Selection for	or the Address Phase of a Read	RW	00B
		Transaction.			
		00: Serial I/O (24 cycles)	01: Dual I/O (12 cycles)		
		10: Reserved	11: Reserved		
15:13	DUMMY_CYCLES	SPI Flash Inserted Dummy Cyc	les for the Dummy Cycle Phase	RW	000B
		of a Read Transaction.			
		000: 0 cycle	001: 2 cycles		
		010: 4 cycles	011: 6 cycles		
		100: 8 cycles	101: 10 cycles	. (
		110: 12 cycles	111: 14 cycles		
12:11	DATA_IO	SPI Flash I/O Mode Selection for		RW	00B
		Transaction (Assume 8*N Cycl	es).		
		00: Serial I/O (8*N cycles)	01: Dual I/O (4*N cycles)		
		10: Reserved	11: Reserved		
10	HOLD_TILL_SFDR2	If this bit is '1', it indicates the	1	RW	0B
			(SFCR2) will not take effect immediately but will be delayed		
		until another write operation to	SFDR2.		
9:0	-	Reserved.		-	-

7.4.7. SPI Flash Control & Status Register (SFCSR) (0xB800_1208)

This register does not provide byte access.

Table 10. SPI Flash Control & Status Register (SFCSR) (0xB300_1208)

Bit	Name	Description	Mode	Default
31	SPI_CSB0	SPI Flash Chip Select 0.	RW	1B
		0: Active 1: Not active		
30	SPI_CSB1	SPI Flash Chip Select 1.	RW	1B
		0: Active 1: Not active		
29:28	LEN	SPI Read/Write Data Length (Unit=Byte).	RW	11B
		00: 1 byte 01: 2 bytes		
		10: 3 bytes 11: 4 bytes		
27	SPI_RDY	SPI Flash Operation Busy Indication Flag.	R	1B
		0: Busy (operation in progress)		
		1: Ready (idle or SPI access command is ready)		
26:25	IO_WIDTH	SPI Flash I/O Mode Selection of a Transaction.	RW	00B
		00: Serial I/O 01: Dual I/O		
		10: Reserved		
24	CHIP_SEL	Chip Selection.	RW	0B
		0: CS0# 1: Reserved		
23:16	CMD_BYTE	SPI Flash 8-Bit Command Code of a Transaction (This Field is	RW	0B
		Only Used in MMIO Mode). Example:		
		'Read Data' is 0x03.		
		'Read ID' is 0x9F.		
15:0	-	Reserved.	-	-

7.4.8. SPI Flash Data Register (SFDR) (0xB800_120C)

This register does not provide byte access.

This configuration register is used for the PIO (Programmed I/O) access mode.

Table 11. SPI Flash Data Register (SFDR) (0xB800_120C)

Bit	Name	Description	Mode	Default
31:24	Data3	Read/Write Data Byte 3.	RW	0B
23:16	Data2	Read/Write Data Byte 2.	RW	0B
15:8	Data1	Read/Write Data Byte 1.	RW	0B
7:0	Data0	Read/Write Data Byte 0.	RW	0B

7.4.9. SPI Flash Data Register 2 (SFDR2) (0xB800_1210)

This register does not provide byte access.

This configuration register is intended to be used under MMIO access mode.

Table 12. SPI Flash Data Register 2 (SFDR2) (0xB800_1210)

Bit	Name	Description	Mode	Default
31:24	Data3	Read/Write Data Byte 3.	RW	0B
23:16	Data2	Read/Write Data Byte 2.	RW	0B
15:8	Data1	Read/Write Data Byte 1.	RW	0B
7:0	Data0	Read/Write Data Byte 0.	RW	0B

8. Peripheral and MISC Controls

8.1. Interrupt Control Registers

The RTL8196E-VE1/2/3provides fourteen hardware-interrupt inputs, IRQ2 to IRQ15. The Global Interrupt Mask Register (GIMR) enables/disables an interrupt feature from the Timer, USB, UART, PCIe, Switch Core, or GPIO modules. The Global Interrupt Status Register (GISR) shows the pending interrupt status. The Interrupt Routing Register (IRR) controls the mappings of the IRQ2 to IRQ15 interrupt sources.

T 11 40				0 5000 000	100
i able 13.	Interrupt Control Re	gister Address	Mapping (Base	: 0xB800 300	JUT

Offset	Size (byte)	Name	Description
00	4	GIMR	Global Interrupt Mask Fegister.
04	4	GISR	Global Interrupt Status Register.
0C	4	IRR1	Interrupt Routing Register 1.
10	4	IRR2	Interrupt Routing Register 2.
14	4	IRR3	Interrupt Routing Register 3.

8.1.1. Global Interrupt Mask Register (GIMR) (0x B800_3000)

Table 14. Global Interrupt Mask Register (GIMR) (0x B800_3000)

Bit	Bit Name	Description	RW	Default
31:28		Reserved.	RW	0
27	CPU_WAKE_IE CPU Wake-Up Interrupt Enable.		RW	0
26	-	Reserved.	RW	0
25	USB1_WAKE_IE	USB Port 1 CTG (On-The-Go) Wake-Up Interrupt Enable.	RW	0
24:22	-	Reserved.	RW	0
21	PCIE0_IE	PCIe Port 0 Host Interface Interrupt Enable.	RW	0
20:17		Reserved.	RW	0
16	GPIO_ABCD_IE	GPIO Port A, B, C, D Interrupt Enable.	RW	0
15	SW_IE	Switch Core Interrupt Enable.	RW	0
14		Reserved.	RW	0
13	UART1_IE	UART 1 Interrupt Enable.	RW	0
12	UART0_IE	UART 0 Interrupt Enable.	RW	0
11	USB_O_IE	USB 2.0 OTC Interrupt Enable.	RW	0
10	-	Reserved.	RW	0
9	TC1_IE	Timers/Counters #1 Interrupt Enable.	RW	0
8	TC0_IE	Timers/Counters #0 Interrupt Enable.	RW	0
7:0	-	Reserved.	RW	0

8.1.2. Global Interrupt Status Register (GISR) (0x B800_3004)

Table 15. Global Interrupt Status Register (GISR) (0x B800_3004)

Bit	Bit Name	Description	RW	Default
31:28	=	Reserved.	R	0
27	CPU_WAKE_IP	CPU Wake-Up Interrupt Pending Flag.	R	0
26	=	Reserved.	R	0
25	USB1_WAKE_IP	USB Port 1 OTG (On-The-Go) Wake-Up Interrupt Pending Flag.	R	0
24:22	=	Reserved.	R	0
21	PCIE0_IP	PCIe Port 0 Host Interface Interrupt Pending Flag.	R	0
20:17	-	Reserved.	R	0
16	GPIO_ABCD_IP	GPIO Port A, B, C, D Interrupt Pending Flag.	R	0
15	SW_IP	Switch Core Interrupt Pending Flag.	R	0
14	=	Reserved.	R	0
13	UART1_IP	UART 1 Interrupt Pending Flag.	R	0
12	UART0_IP	UART 0 Interrupt Pending Flag.	R	0
11	USB_O_IP	USE 2.0 OTG Interrupt Pending Flag.	R	0
10	=	Reserved.	R	0
9	TC1_IP	Timers/Counters #1 Interrupt Pending Flag.	R	0
8	TC0_IP	Timers/Counters #0 Interrupt Pending Flag.	R	0
7:0	-	Reserved.	R	0

8.1.3. Interrupt Routing Register 1 (IRR1) (0xB800_300C)

Table 16. Interrupt Routing Register 1 (IRR1) (0xB300_300C)

Bit	Bit Name	Description	RW	Default
31:28	SW_RS[3:0]	Switch Core Interrupt Route Select.	RW	0
27:24	_	Reserved.	RW	0
23:20	UART1_RS[3:0]	UART 1 Interrupt Route Select.	RW	0
19:16	UART0_RS[3:0]	UART 0 Interrupt Route Select.	RW	0
15:12	USB_O_RS[3:0]	USB 2.0 OTG Interrupt Route Select.	RW	0
11:8	(-)	Reserved.	RW	0
7:4	TC1_RS[3:0]	Timers/Counters #1 Interrupt Route Select.	RW	0
3:0	TC0_RS[3:0]	Timers/Counters #0 Interrupt Route Select.	RW	0

8.1.4. Interrupt Routing Register 2 (IRR2) (0xB800_3010)

Table 17. Interrupt Routing Register 2 (IRR2) (0xB800_3010)

Bit	Bit Name	Description	RW	Default
31:28	-	Reserved.	RW	0
27:24	-	Reserved.	RW	0
23:20	PCIE0_RS[3:0]	PCIe Port 0 Interface Interrupt Route Select.	RW	0
19:8	-	Reserved.	RW	0
7:4	-	Reserved.	RW	0
3:0	GPIO_ABCD_RS[3:0]	GPIO Port A, B, C, D Interrupt Route Select.	RW	0

8.1.5. Interrupt Routing Register 3 (IRR3) (0xB800_3014)

Table 18. Interrupt Routing Register 3 (IRR3) (0xB800_3014)

Bit	Bit Name	Description	RW	InitVal
31:20	-	Reserved.	RW	0
19:16	-	Reserved.	RW	0
15:12	CPU_WAKE_RS[3:0]	CPU Wake-Up Interrupt Route Select.	RW	0
11:8	- (Reserved.	RW	0
7:4	USB1_WAKE_RS[3:0]	USB Port 1 OTG (On-The-Go) Wake-Up Interrupt Route Select.	RW	0
3:0		Reserved.	RW	0

8.2. Timer

The RTL8196E-VE1/2/3 provides two sets of hardware timers and one watchdog timer. Each timer can be configured to timer mode or counter mode. Counter mode means the timer only times-out once. The initial time-out values are configured via TC0DATA and TC1DATA. The current count values are shown in TC0CNT and TC1CNT. The Clock Division Base Register (CDBR) defines the base clock for counting, and is based on a multiple of the system clock. The Timer/Counter Interrupt Register (TCIR) controls the interrupt resulting from a timer time-out. The Watchdog timer is controlled by the Watchdog Timer Control Register (WDTCNR).

8.2.1. Timer Control Address Mapping (Base: 0xB800 3100)

Table 19. Timer Control Address Mapping (Base: 0xB800_3100)

Offset	Size (byte)	Name	Description
0x00	4	TC0DATA	Timer/Counter 0 Data Register.
			It specifies the time-out duration.
0x04	4	TC1DATA	Timer/Counter 1 Data Register.
			It specifies the time-out duration.
0x08	4	TC0CNT	Timer/Counter 0 Count Register.
0x0C	4	TC1CNT	Timer/Counter 1 Count Register.
0x10	4	TCCNR	Timer/Counter Control Register.

Offset	Size (byte)	Name	Description
0x14	4	TCIR	Timer/Counter Interrupt Register.
0x18	4	CDBR	Clock Division Base Register.
0x1C	4	WDTCNR	Watchdog Timer Control Register.

8.2.2. Timer/Counter 0 Data Register (0xB800_3100)

Table 20. Timer/Counter 0 Data Register (0xB800_3100)

Bit	Name	Description	RW	Default	
31:4	TC0Data[27:0]	The Timer or Counter Initial Value.	RW	0H	
		Counter values of 0 and 1 are not allowed.			
3:0	-	Reserved.	-	-	

8.2.3. Timer/Counter 1 Data Register (0xB800_3104)

Table 21. Timer/Counter 1 Data Register (0xB800_3104)

Bit	Name	Description	RW	Default
31:4	TC1Data[27:0]	The Timer or Counter Initial Value.	RW	0H
		Counter values of 0 and 1 are not allowed.		
3:0	-	Reserved.	-	- /

8.2.4. Timer/Counter 0 Counter Register (0xB800_3108)

Table 22. Timer/Counter 0 Counter Register (0x3800_3108)

Bit	Name	Description	RW	Default
31:4	TC0Value[27:0]	The Timer or Counter Value.	R	-
		Count incremented by 1 from 0.		
3:0	-	Reserved.	-	-

8.2.5. Timer/Counter 1 Counter Register (0xB800_310C)

Table 23. Timer/Counter 1 Counter Register (0xB800_310C)

Bit	Name	Description	RW	Default
31:4	TC1Value[27:0]	The Timer or Counter Value.	R	-
		Count incremented by 1 from 0.		
3:0	-	Reserved.	-	-

8.2.6. Timer/Counter Control Register (0xB800_3110)

Table 24. Timer/Counter Control Register (0xB800_3110)

Bit	Bit Name	Description	RW	Default
31	TC0En	Timer/Counter 0 Enable.	RW	0
30	TC0Mode	Timer/Counter 0 Mode.	RW	0
		0: Counter mode		
		1: Timer mode		
29	TC1En	Timer/Counter 1 Enable.	RW	0
28	TC1Mode	Timer/Counter 1 Mode.	RW	0
		0: Counter mode	X	
		1: Timer mode		
		When Mitigation&Timer1 is asserted, this bit should be set to 1		
		to ensure normal processing.		
27: 0	-	Reserved.	RW	0

8.2.7. Timer/Counter Interrupt Register (0xB800_3114)

Table 25. Timer/Counter Interrupt Register (0xB800 3114)

Bit	Bit Name	Description	RW	Default
31	TC0IE	Timer/Counter 0 Interrupt Enable.	RW	0
30	TC1IE	Timer/Counter 1 Interrupt Enable.	RW	0
	~0)	When Mitigation&Timer1 is asserted, this bit should be set as 0 to assure normal processing.		
29	TC0IP	Timer/Counter 0 Interrupt Pending.	RW	0
		Write '1' to clear the interrupt.		
28	TC1IP	Timer/Coun er 1 Interrupt Pending.	RW	0
		Write '1' to clear the interrupt.	V	_
27:0	-	Reserved.	RW	0

8.2.8. Clock Division Base Register (0xB800_3118)

Table 26. Clock Division Base Register (0xB800_3118)

Bit	Name	Description	RW	Default		
31:16	DivFactor[16:0]	Clock Source Division Factor.	RW	0x0000		
		Assume DivFactor=N,				
		Base clock=System_clock (Peripheral Lexra Bus)/N.				
		Both values 0x0000 and 0x0001 disable the clock.				
15:0	-	Reserved.	-	-		

8.2.9. Watchdog Timer Control Register (0xB800_311C)

Table 27. Watchdog Timer Control Register (0xB800_311C)

Bit	Name	Description	RW	Default
31:24	WDTE[7:0]	Watchdog Enable.	W	0xA5
		When these bits are set to 0xA5, the watchdog timer stops. Other		
		values will enable the watchdog timer and cause a system reset when		
		an overflow signal occurs.		
23	WDTCLR	Watchdog Clear.	W	0
		Write a 1 to clear the up-count watchdog counter.		
22:21	OVSEL[1:0]	Lower Overflow Select Bits.	RW	00
		These bits specify the overflow condition when the watchdog timer		
		counts to the value. The watchdog timer is based on the base clock		
		defined by CDBR.		
		$00: 2^{15}$ $01: 2^{16}$		
		10: 2 ¹⁷ 11: 2 ¹⁸		
20	WatchDogIND	Watchdog Event Indicator.	RW	0
		0: A Watchdog RESET did not occur (POWER-ON or PIN RESET)		
		1: A Watchdog RESET occurred		
		Write '1' to clear.		
19	NRFRstType	NOR Flash Reset Command Type Selection.	RW	0
		When the watchdog event is active and WatchDogIND=1, It will		
		cause the memory controller to reboot and issue a Flash reset		
		command. The command type should be pre-defined by this control		
		bit.		
		0: AMD NOR Flash reset command Type		
		1: Intel NOR Flash reset command Type		A * .
	L	Note: This bit should not be reset by watchdog reset.	N	
		This bit has been taken over by System_Register hw_strap.	V	
X		Offset: 0xB800_0008h~B800_000bh, RW		
		Initial value: 0xff00_1410		
		Reg bit[19]		
,	1	Strap register without PAD: Indicates NOR flash reset type		
18:17	OVSEL[3:2]	Higher Overflow Select Eits.	RW	0
10.17	O VBLE[3.2]	These bits specify the overflow condition when the watchdog timer	IXVV	U
		counts to the value. The watchdog timer is based on the base clock		
	\sim	defined by CDBR.		
		There are a total of 24 watchdog bits.		
		Condition values are the OVSEL[3:0].		
		$0000: 2^{15}$ $0001: 2^{16}$		
		$0010: 2^{17}$ $0011: 2^{18}$		
		$0100: 2^{19}$ $0101: 2^{20}$		
		$0110: 2^{21}$ $0111: 2^{22}$		
		1000: 2 ²³ 1001: 2 ²⁴		
16:0	_	Reserved.	_	_
20.0	Ĭ		1	I

8.3. GPIO Control

The RTL8196E-VE1/2/3provides eight sets of General Purpose Input/Output (GPIO) pins (GPIO A, B, C, D). Each GPIO pin may be configured as an input or output pin. The GPIO DATA register may be used to control GPIO pin signals. The GPIO pins are shared with some peripheral pins, and the type of peripheral can affect the attributes of the shared pins. All GPIO sets can be used to generate interrupts, and an interrupt mask and status register are provided. The GPIO control registers are defined in the following table.

8.3.1. **GPIO Register Set** (0xB800_3500)

			0. 10 110g.010. 001 (0x2000_0000)
Offset	Size (Byte)	Name	Description
0x00	4	PABCD_CNR	Port A, B, C, D Control Register.
0x08	4	PABCD_DIR	Port A, B, C, D Direction Register.
0x0C	4	PABCD_DAT	Port A, B, C, D Data Register.
0x10	4	PABCD_ISR	Port A, B, C, D Interrupt Status Register.
0x14	4	PAB_IMR	Port A, B Interrupt Mask Register.
0x18	4	PCD_IMR	Port C, D Interrupt Mask Register.

8.3.2. GPIO Port A, B, C, D Control Register (PABCD_CNR) (0xB800_3500)

Table 29. GPIO Port A, B, C, D Control Register (PABCD_CNR) (0xB800_3500)

			,	
Bit	Name	Description	Mode	Default
31:24	PFC_D[7:0]	Pin Function Configuration of Port D.	RW	FFH
23:16	PFC_C[7:0]	Pin Function Configuration of Port C.	RW	FFH
15:8	PFC_B[7:0]	Pin Function Configuration of Port B.	RW	FFH
7:0	PFC_A[7:0]	Pin Function Configuration of Port A.	RW	FFH
		Bit Value:		
O.		0: Configured as GPIO pin		
)		1: Configured as dedicated peripheral pin		

8.3.3. GPIO Port A, B, C, D Direction Register (PABCD_DIR) (0xB800_3508)

Table 30. GPIO Port A, B, C, D Direction Register (PABCD_DIR) (0xB800_3508)

Bit	Name	Description	Mode	Default
31:24	DRC_D[7:0]	Pin Direction Configuration of Port D.	RW	H00
		0: Configured as input pin 1: Configured as output pin		
23:16	DRC_C[7:0]	Pin Direction Configuration of Port C.	RW	H00
		0: Configured as input pin 1: Configured as output pin		
15:8	DRC_B[7:0]	Pin Direction Configuration of Port B.	RW	H00
		0: Configured as input pin 1: Configured as output pin		
7:0	DRC_A[7:0]	Pin Direction Configuration of Port A.	RW	00H
		0: Configured as input pin 1: Configured as output pin		

8.3.4. Port A, B, C, D Data Register (PABCD_DAT) (0xB800_350C)

Table 31. Port A, B, C, D Data Register (PABCD_DAT) (0xB800_350C)

			Trogister (I ADOD_DAT) (0xD000_0000		
Bit	Name	Description		Mode	Default
31:24	PD_D[7:0]	Pin Data of Port D.	X \\	RW	00H
		0: Data=0	1: Data=1		
23:16	PD_C[7:0]	Pin Data of Port C.		RW	00H
		0: Data=0	1: Data=1		
15:8	PD_B[7:0]	Pin Data of Port B.		RW	00H
		0: Data=0	1: Data=1		
7:0	PD_A[7:0]	Pin Data of Port A.		RW	00H
		0: Data=0	1: Data=1		K T

8.3.5. Port A, B, C, D Interrupt Status Register (PABCD_ISR) (0xB800_3510)

Table 32. Port A, B, C, D Interrupt Status Register (PABCD_ISR) (0xB800_3510)

Bit	Name	Description	Mode	Default
31:24	IPS_D[7:0]	Interrupt Pending Status of Port D.	RW	00H
		Write '1' to clear the interrupt.		
23:16	IPS_C[7:0]	Interrupt Pending Status of Port C.	RW	00H
		Write '1' to clear the interrupt.		
15:8	IPS_B[7:0]	Interrupt Pending Status of Port B.	RW	00H
		Write '1' to clear the interrupt.		
7:0	IPS_A[7:0]	Interrupt Pending Status of Port A.	RW	00H
		Write '1' to clear the interrupt.		

8.3.6. Port A, B Interrupt Mask Register (PAB_IMR) (0xB800_3514)

Table 33. Port A, B Interrupt Mask Register (PAB_IMR) (0xB800_3514)

Bit	Name	Description	Mode	Default
31:30	PB7_IM[1:0]	PortB.7 Interrupt Mode.	RW	00B
29:28	PB6_IM[1:0]	PortB.6 Interrupt Mode.	RW	00B
27:26	PB5_IM[1:0]	PortB.5 Interrupt Mode.	RW	00B
25:24	PB4_IM[1:0]	PortB.4 Interrupt Mode.	RW	00B
23:22	PB3_IM[1:0]	PortB.3 Interrupt Mode.	RW	00B
21:20	PB2_IM[1:0]	PortB.2 Interrupt Mode.	RW	00B
19:18	PB1_IM[1:0]	PortB.1 Interrupt Mode.	RW	00B
17:16	PB0_IM[1:0]	PortB.0 Interrupt Mode.	RW	00B
15:14	PA7_IM[1:0]	PortA.7 Interrupt Mode.	RW	00B
13:12	PA6_IM[1:0]	PortA.6 Interrupt Mode.	RW	00B
11:10	PA5_IM[1:0]	PortA.5 Interrupt Mode.	RW	00B
9:8	PA4_IM[1:0]	PortA.4 Interrupt Mode.	RW	00B
7:6	PA3_IM[1:0]	PortA.3 Interrupt Mode.	RW	00B
5:4	PA2_IM[1:0]	PortA.2 Interrupt Mode.	RW	00B
3:2	PA1_IM[1:0]	PortA.1 Interrupt Mode.	RW	00B
1:0	PA0_IM[1:0]	PortA.0 Interrupt Mode.	RW	00B
		00: Disable interrupt		
		01: Enable falling edge interrupt		
		10: Enable rising edge interrupt		
		11: Enable both falling or rising edge interrupt		

8.3.7. Port C, D Interrupt Mask Register (PCD_IMR) (0xB800_3518)

Table 34. Port C, D Interrupt Mask Register (PCD_IMR) (0xB800_3518)

Bit	Name	Description	Mode	Default
31:30	PD7_IM[1:0]	PortD.7 Interrupt Mode.	RW	00B
29:28	PD6_IM[1:0]	PortD.6 Interrupt Mode.	RW	00B
27:26	PD5_IM[1:0]	PortD.5 Interrupt Mode.	RW	00B
25:24	PD4_IM[1:0]	PortD.4 Interrupt Mode.	RW	00B
23:22	PD3_IM[1:0]	PortD.3 Interrupt Mode.	RW	00B
21:20	PD2_IM[1:0]	PortD.2 Interrupt Mode.	RW	00B
19:18	PD1_IM[1:0]	PortD.1 Interrupt Mode.	RW	00B
17:16	PD0_IM[1:0]	PortC.0 Interrupt Mode.	RW	00B
15:14	PC7_IM[1:0]	PortC.7 Interrupt Mode.	RW	00B
13:12	PC6_IM[1:0]	PortC.6 Interrupt Mode.	RW	00B
11:10	PC5_IM[1:0]	PortC.5 Interrupt Mode.	RW	00B
9:8	PC4_IM[1:0]	PortC.4 Interrupt Mode	RW	00B
7:6	PC3_IM[1:0]	PortC.3 Interrupt Mode.	RW	00B
5:4	PC2_IM[1:0]	PortC.2 Interrupt Mode.	RW	00B
3:2	PC1_IM[1:0]	PortC.1 Interrupt Mode.	RW	00B
1:0	PC0_IM[1:0]	PortC.0 Interrupt Mode.	RW	00B
		00: Disable interrupt		
		01: Enable falling edge interrupt		
		10: Enable rising edge interrupt		
		11: Enable both falling or rising edge interrupt		Y

8.4. GPIO Shared Pin Configured Mapping List

The RTL8196E-VE1/2/3GPIO pins are shared with the other functions.

8.4.1. Shared Pin Register (PIN_MUX_SEL) (0xB800_0040)

Table 35. Shared Pin Register (PIN_MUX_SEL) (0xB&00_0040)

Bit	Bit Name	Description	Mode	Default
31:26	-	Reserved.	-	Ī
25:24	reg_iocfg_sdio1	Configure SF_SDIO1 Pin as SF_SDIO1 or GPIOC3.	RW	00B
		00: SF_SDIO1 01: Reserved		
		10: Reserved 11. GPIOC3		
23:22	reg_iocfg_sdio0	Configure SF_SDIO0 Pin as SF_SDIO0 or GPIOC2.	RW	00B
		00: SF_SDIO0 01: Reserved		
		10: Reserved 11: GPIOC2		
21:20	reg_iocfg_sck	Configure SF_SCK Pin as SF_SCK or GPIOC1.	RW	00B
		00: SF_SCK 01: Reserved		
		10: Reserved 11: GPIOC1		
19:18	reg_iocfg_fcs0n	Configure SF_CS0# Pin as SF_CS0# or GPIOC6.	RW	00B
		00: SF_CS0# 01: Reserved		
		10: Reserved 11: GPIOC6		
17:7	-	Reserved.	-	-
6	reg_iocfg_pcie	Configure PCIE_RST# Pin as PCIe or GPIO Mode.	RW	00B
		0: PCIE_RST# 11: GPIOB1		
5	reg_iocfg_uart	Configure UARTO_TX and UARTO_RX Pins as UART or GPIO	RW	0B
		Mode.		
		0: UART 1: GPIO	A	
4:3	-	Reserved.		
2:0	reg_iocfg_jtag	Configure JTAG Pins as JTAG, UART1, or GPIO Mode.	RW	000B
	-	000: Reserved 001: JTAG	7.	
		010: UART1 011: Reserved		
		100: Reserved 101: Reserved		
		110: GPIO 111: Reserved		

8.4.2. Shared Pin Register (PIN_MUX_SEL_2) (0xB800_0044)

Table 36. Shared Pin Register (PIN_MUX_SEL_2) (0xB800_0044)

Bit	Bit Name	Description	Mode	Default
31:14	-	Reserved.	-	=
13:12	reg_iocfg_led_port4	Configure LED_PORT4 Pin as LED_PORT4 or GP O Mode.	RW	10B
		00: LED_PORT4 01: Reserved		
		10: Reserved 11: GPIOB6		
11	-	Reserved.		-
10:9	reg_iocfg_led_port3	Configure LED_PORT3 Pin as LED_PORT3 or GPIO Mode.	RW	10B
		00: LED_PORT3 01: Reserved		
		10: Reserved 11: GPIOB5		
8	-	Reserved.	-	-
7:6	reg_iocfg_led_port2	Configure LED_PORT2 Pin as LED_PORT2 or GPIO Mode	RW	10B
		00: LED_PORT2 01: Reserved		
		10: Reserved 11: GPIOB4		
5	-	Reserved.	-	=
4:3	reg_iocfg_led_port1	Configure LED_PORT1 Pin as LED_PORT1 or GPIO Mode.	RW	10B
		00: LED_PORT1 01: Reserved		
		10: Reserved 11: GPIOE3		
2	-	Reserved.	-	=
1:0	reg_iocfg_led_port0	Configure LED_PORT0 Pin as LED_PORT0 or GPIO Mode.	RW	10B
		00: LED_PORT0 01: Reserved		
		10: Reserved 11: GPIOB2		

9. UART

9.1. Features

The RTL8196E-VE1/2/3 provides two 16550 compatible UARTs. These contain a 16-byte First In First Out (FIFO) buffer and Auto Flow Control to control transmissions on port 1. The baud rate can be up to 1Mbps and a programmable baud rate generator allows division of any input reference clock by 1 to (2^16-1) and generates an internal 16x clock.

9.2. Interface Pins

The UART interface pins are shown in Table 37.

Table 37. UART Control Interface Pins

Signal Name	Type	Function	
TXD#	O	Transmit Data for Port 0 and Port 1.	
RXD#	I	Receive Data for Port 0 and Port 1.	
RTS#	О	Request to Send for Port 1.	
CTS#	I	Clear to Send for Port 1.	

9.3. UART Control Register

9.3.1. UART Control Register Address Mapping (Base: 0xB800_2000)

Table 38. UART Control Register Address Mapping (Base: 0xB800_2000)

Offset	Size (byte)	Name	Description
000	1	UART0_RBR	Receiver Buffer Register (DLAB=0).
000	1	UART0_THR	Transmitter Holding Register (DLAB=0).
000	1	UART0_DLL	Divisor Latch LSB (DLAB=1).
004	1	UART0_IER	Interrupt Enable Register (DLAB=0).
004	1	UART0_DLM	Divisor Latch MSB (DLAB=1).
008	1	UART0_IIR	Interrupt Identification Register.
008	1	UART0_FCR	FIFO Control Register.
00c	1	UARTO_LCR	Line Control Register
010	1	UART0_MCR	Modem Control Register.
014	1	UART0_LSR	Line Status Register.
018	1	UART0_MSR	Moden. Status Register.
01c	1	UART0_SCR	Scratch Register.
100	1	UART1_RBR	Receiver Buffer Register (DLAB=0).
100	1	UART1_THR	Transmitter Holding Register (DLAB=0).
100	1	UART1_DLL	Divisor Latch LSB (DLAB=1).
104	1	UART1_IER	Interrupt Enable Register (DLAB=0).

Offset	Size (byte)	Name	Description
104	1	UART1_DLM	Divisor Latch MSB (DLAB=1).
108	1	UART1_IIR	Interrupt Identification Register.
108	1	UART1_FCR	FIFO Control Register.
10c	1	UART1_LCR	Line Control Register.
110	1	UART1_MCR	Modem Control Register.
114	1	UART1_LSR	Line Status Register.
118	1	UART1_MSR	Modem Status Register
11c	1	UART1_SCR	Scratch Register.

9.3.2. UART Receiver Buffer Register (DLAB=0) (0xB800_2100, 0xB800_2000)

Table 39. UART Receiver Buffer Register (DLAB=0) (0xB800_2100, 0xB800_2000)

Reg.bit	Name	Description	Mode	Default
31:24	RBR[7:0]	Receiver Buffer Data.	R	00H

9.3.3. UART Transmitter Holding Register (DLAB=0) (0xB800_2100, 0xB800_2000)

Table 40. UART Transmitter Holding Register (DLAB=0) (0xB800_2100, 0xB800_2000)

Reg.bit	Name	Description	Mode	Default
31:24	THR[7:0]	Transmitter Holding Data	W	00H

9.3.4. UART Divisor Latch LSB (DLAB=1) (0xB800_2100, 0xB800_2000)

Table 41 UART Divisor Latch LSB (DLAB=1) (0xB800_2100, 0xB800_2000)

	Reg.bit	Name	Description	Mode	Default
Ī	31:24	DLL[7:0]	Divisor Latch LSB	RW	H00

9.3.5. UART Divisor Latch MSB (DLAB=1) (0xB800_2104, 0xB800_2004)

Table 42. UART Divisor Latch MSB (DLAB=1) (0xB800_2104, 0xB800_2004)

Reg.bit	Name	Description	Mode	Default
31:24	DLM[7:0]	Divisor Latch MSB.	RW	00H

Rev. 1.1

9.3.6. UART Interrupt Enable Register (DLAB=0) (0xB800_2104, 0xB800_2004)

Table 43. UART Interrupt Enable Register (DLAB=0) (0xB800_2104, 0xB800_2004)

Reg.bit	Name	Description	Mode	Default
24	ERBI	Enable Received Data Available Interrupt.	RW	0B
25	ETBEI	Enable Transmitter Holding Register Empty Interrupt.	RW	0B
26	ELSI	Enable Receiver Line Status Interrupt.	RW	0B
27	EDSSI	Enable Modem Status Register Interrupt.	RW	0B
28	ESLP	Sleep Mode Enable.	RW	0B
29	ELP	Low Power Mode Enable.	RW	0B
31:30	-	Reserved.	-	-

9.3.7. UART Interrupt Identification Register (0xB800_2108, 0xB800_2008)

Table 44. UART Interrupt Identification Register (0x2809 2108, 0x8800 2008)

Tuble 44. OART interrupt dentification register (3x2303_2100, 0x2000_2000,					
Reg.bit	Name	Description		Mode	Default
24	IPND	Interrupt Pending.		R	1B
		0: Interrupt pending	Λ		
27:25	IID[2:0]	Interrupt ID.		R	000B
	(IID[1:0] indicates the interrupt priority.			<
29:28	-	Reserved.		-	-
31:30	FIFO16[1:0]	00: No FIFO		R	11B
		11: 16-byte FIFO			

9.3.8. UART FIFO Control Register (0xB800_2108, 0xB800_2008)

Table 45. UART FIFO Control Register (0xB800_2108, 0xB800_2008)

Reg.bit	Name	Description	Mode	Default
24	EFIFO	Enable FIFO.	W	0B
	O.	When this bit is set, enables the transmitter and receiver FIFOs.		
		Changing this bit clears the FIFOs.		
25	RFRST	Receiver FIFO Reset.	W	0B
		Writes 1 to clear the receiver FIFO.		
26	TFRST	Transmitter FIFO Reset.	W	0B
		Writes 1 to clear the transmitter FIFO.		
29:27	-	Reserved.	ı	-
31:30	RTRG[1:0]	Receiver Trigger Level (Trigger Level: 16-byte).	W	11B
		00: 01 01: 04		
		10: 08		

9.3.9. **UART Line Control Register (0xB800_210C, 0xB800_200C)**

Table 46. UART Line Control Register (0xB800_210C, 0xB800_200C)

Reg.bit	Name	Description	Mode	Default
25:24	WLS[1:0]	Word Length Select.	RW	11B
		00: Reserved (NA) 01: 6 bits (NA)		
		10: 7 bits 11: 8 bits		
26	STB	Number of Stop Bits.	RW	0B
		0: 1 bit 1: 2 bits		
27	PEN	Parity Enable.	RW	0B
29:28	EPS[1:0]	Even Parity Select.	RW	00B
		00: Odd parity 01: Even parity		
		10: Mark parity 11: Space parity		
30	BRK	Break Control.	RW	0B
		Set this bit force TXD to the spacing (low) state (break).		
		Clear this bit to disable break condition.		
31	DLAB	Divisor Latch Access Bit.	RW	0B

9.3.10. UART Modem Control Register (0xB800_2110, 0xB800_2010)

Table 47. UART Modem Control Register (0xB800_2110, 0xB800_2010)

Reg.bit	Bit Name	Description	Mode	Default
24	DTR	Data Terminal Ready.	RW	0B
		0: Set DTR# high 1: Set DTR# low		
25	RTS	Request to Send.	RW	0B
		0: Set RTS# high 1: Set RTS# low		
27:26	-	Reserved.	ı	\X -
28	LOOP	Loopback	RW	0B
29	AFE	Auto Flow Control Enable.	RW	0B

9.3.11. UART Line Status Register (0xB800_2114, 0xB800_2014)

Table 48. UART Line Status Register (0xB800 2114, 0x2800 2014)

Reg.bit	Name	Description	Mode	Default
24	DR	Data Ready.	R	0B
		Character Mode: Data ready in RBR		
	•	FIFO Mode: Receiver FIFO is not empty		
25	OE	Overrun Error.	R	0B
		An overrun occurs when the receiver FIFO is full and the next		
		character is completely received in the receiver shift register. An		
		OE is indicated. The character in the shift register will be		
		overwritten.		
26	PE	Parity Error.	R	0B
27	FE	Framing Error.	R	0B
28	BI	Break Interrupt Indicator.	R	0B

Reg.bit	Name	Description	Mode	Default
29	THRE	Transmitter Holding Register Empty.	R	1B
		Character Mode: THR is empty		
		FIFO Mode: Transmitter FIFO is empty		
30	TEMT	Transmitter Empty.	R	1B
		Character Mode: Both THR and TSR are empty		
		FIFO Mode: Both transmitter FIFO and TSR are empty		
31	RFE	Receiver FIFO Error.	R	0B
		Either a parity, framing, or break error in the FIFO.		

9.3.12. UART Modem Status Register (0xB800_2110, 0xB800_2018)

Table 49. UART Modem Status Register (0xB800_2110, 0xB800_2018)

Reg.bit	Name	Description	Mode	Default
31	ΔCTS	Delta Clear to Send (CTS# Signal Transmits).	R	1B
30	ΔDSR	Delta Data Set Ready (DSR# Signal Transmits; Returns 0).	R	0B
29	TERI	Trailing Edge Ring Indicator.	R	0B
		RI# signal changes from low to high (Returns 0).		
28	ΔDCD	Delta Data Carrier Detect (DCD# Signal Transmits; Returns 0).	R	0B
27	CTS	Clear to Send.	R	0B
		0: CTS# detected high 1: CTS# detected low		
26	DSR	Data Set Ready.	R	1B
		0. DSR# detected high 1: DSR# detected low		
		Loopback mode: Returns bit 0 of MCR		A . 1
		Normal mode: Returns 1		
25	RI	Ring Indicator.	R	0B
		0: RI# detected high 1: RI# detected low		
		Loopback mode: Returns bit 3 of MCR		
		Normal mode: Returns 0		
24	DCD	Data Carrier Detect.	R	1B
U		0. DCD# detected high 1: DCD# detected low		
)		Loopback mode: Returns bit 2 of MCR		
		Normal mode: Returns 1		

9.4. Baud Rate

Value of divisor latch=[base clock/(16×baud rate)]-1. The base clock is 200MHz.

Table 50. Divisor Latch Value Examples

System CLK	300bps	1200bps	2400bps	9600bps	19200bps	38400bps	57600bps	115200bps
Base Clock			•)					
200MHz	41665	10415	5207	1301	650	324	216	107

10. PCI Express Bus Interface

The RTL8196E-VE1/2/3complies with PCI Express Base Specification Revision 1.1, and runs at a 2.5GHz signaling rate with X1 link width, i.e., one transmit and one receive differential pair. The RTL8196E-VE1/2/3supports four types of PCI Express messages: interrupt messages, error messages, power management messages, and hot-plug messages. To ease PCB layout constraints, PCI Express lane polarity reversal and link reversal are also supported. The RTL8196E-VE1/2/3provides one port on the PCI Express Host interface.

10.1. PCI Express Transmitter

The RTL8196E-VE1/2/3PCI Express block receives digital data from the Ethernet interface and performs data scrambling with Linear Feedback Shift Register (LFSR) and 8B/10B coding technology into 10-bit code groups. Data scrambling is used to reduce the possibility of electrical resonance on the link, and 8B/10B coding technology is used to benefit embedded clocking error detection, and DC balance by adding an overhead to the system through the addition of two extra bits. The data code groups are passed through its serializer for packet framing. The generated 2.5Gbps serial data is transmitted onto the PCB trace to its upstream device via a differential driver.

10.2. PCI Express Receiver

The RTL8196E-VE1/2/3PCI Express block receives 2.5Gbps serial data from its upstream device to generate parallel data. The receiver's PLL circuits are re-synchronized to maintain bit and symbol lock. Through 8E/10B decoding technology and data de-scrambling, the original digital data is recovered and passed to the RTL8196E-VE1/2/3internal Ethernet MAC to be transmitted onto the Ethernet media.

10.3. PCI Express Host Mode

10.3.1. PCIe Port 0 Host Mode Extended Register Address Mapping (Base: 0xB8B0_1000)

Table 51. PCle Port 0 Host Mode Extended Register Address Mapping (Base: 0xB8B0_1000)

			e e e e e e e e e e e e e e e e e e e	<u> </u>
Offset	Size (byte)	Name	Description	
0x00	4	MDIO	PCIe Port 0 MDIO Control Register	
0x04	4	INTSTR	PCIe Port 0 Interrupt Status Register.	~ ()
0x08	4	PWRCR	PCIe Port 0 Power Control Register.	
0x0C	4	IPCFG	PCIe Port 0 IP Configuration Register.	
0x10	4	BISTFAIL	PCIe Port 0 BIST Fail Check Register.	

10.3.2. PCIe MDIO Register (0xB8B0_1000)

Table 52. PCIe MDIO Register (0xB8B0_1000)

Reg.bit	Name	Description	Mode	Default
31:16	Mdio_data	MDIO Read Data or Write Data.	RW	0H
15:13	Mdip_phyaddr	MDIO PHY Page Addr[2:0].	RW	-
12:8	Mdio_regaddr	MDIO Register Address[4:0].	RW	0H
7	-	Reserved.	-	- /
6:5	Mdio_st	MDIO Status[1:0] for Debug Checking.	R	00B
4	Mdio rdy	MDIO Ready for Debug Checking.	R	0
3:2	Mdio_rate	MDIO Clock Rate	RW	00B
		2'b00: lx clock/32 2'b01: lx clock/16		
		2'b10: lx clock/8 2'b11: lx clock/4	V	
1	Mdio_srst	MDIO Soft Reset.	RW	0B
		1: Active 0: Not active		
0	Mdio_rdwr	MDIO Read/Write Command.	RW	0B
		1. Write 0: Read		

10.3.3. PCIe Interrupt Status Register (0xB8B0_1004)

Table 53. PCle Interrupt Status Register (0xB8B0_1004)

		<u> </u>		
Reg.bit	Name	Description	Mode	Default
3	INTD	Interrupt D Status Register (Level Active).	R	0B
2	INTC	Interrupt C Status Register (Level Active).	R	0B
1	INTB	Interrupt B Status Register (Level Active).	R	0B
0	INTA	Interrupt A Status Register (Level Active).	R	0B

10.3.4. PCIe Power Control Register (0xB8B0_1008)

Table 54. PCle Power Control Register (0xB8B0_1008)

Reg.bit	Name	Description	Mode	Default
10	App_unlock_msg	Generate Unlock Message (One Pulse).	RW	0B
9	Apps_pm_xmt_turnoff	Generate PME Turn Off Message.	RW	0B
8	App_init_rst	Application User Trigger Hot Reset (Must Keep Asserted for 2ms Minimum).	RW	0B
7	Phy_srst_n	PCIe PHY Software Reset. 0: Active 1: Not active Note: This bit is for internal PCIe PHY reset and its default value	RW	1B
		is 'high'. Software must set this bit to 'low' for longer than 100ms to generate a REFCLK for the RTL8196E-VE1/2/3and any external device.		
6	P1_clk_req_en	Auxiliary State Enable. 1: Enable 0: Disable	RW	0B
5	Low_power enable	Enter Lower Power State Enable. 1: Enable 0: Disable	RW	0B
4	Sys_aux_pwr_det	System Detect Auxiliary Power Stable. 1: Stable 0: Unstable	RW) OB
3	App_ready_enter_123	Application User Ready Enter L 23 when Device in D3 Hot/Cold.	RW	0B
2	App_req_exit_l1	Application Request Exit L1 State.	RW	0B
1	App_req_enter_l1	Application Request Enter L1 State.	RW	0B
0	App_ltssm_en	Application User LTSSM Enable. 1: Enable LTSSM	RW	1B
		0: Hold LTSSM in initial state		

10.3.5. PCIe IP Configuration Register (0xB8B0_100C)

Table 55 PCIe IP Configuration Register (0xB8B0_100C)

Reg.bit	Name	Description	Mode	Default
15:8	Bus_num	Target Bus Number (265 Types).	RW	0H
7:3	Dev_num	Target Device Number (32 Types).	RW	0H
2:0	Fun_num	Target Function Number (8 Types).	RW	0H

10.3.6. PCIe SRAM BIST Check Register (0xB8B0_1010)

Table 56. PCle SRAM BIST Check Register (0xB8B0_1010)

Reg.bit	Name	Description	Mode	Default
31:0	Bist_fail_chk	SRAM BIST Fail Check	R	0H

11. Switch Core Control

11.1. Global Port Control Register

11.1.1. Global Port Control Register Address Mapping (Base: 0xBB80_4000)

The RTL8196E-VE1/2/3provides an MDC/MDIO (Management Data Clock/Management Data Input/Output) interface to access embedded PHYs. As the MDC/MDIO interface is relatively slow, the access is divided into command and status registers.

Table 57. Global Port Control Register Address Mapping (Base: 0xBB80 4000)

Offset	Size (byte)	Name	Description	00
04	4	MDCIOCR	MDC/MDIO Command Register.	
08	4	MDCIOSR	MDC/MDIO Status Register	

11.1.2. Global MDC/MDIO Command Register (0xBB80_4004)

Table 58. Global MDC/MDIO Command Register (0xBB80-4004)

Reg.bit	Name	Description	Mode	Default
31	COMMAND	MDC/MDIO Command Type.	RW	0B
		0: Read Access 1 Write Access		
		Note: The procedure to access the external PHY via the MDC/MDIO interface is as follows: 1. Define the PHY address (PHYADD), register address (REGADD).		
		2. Define the write data content for write command (WRDATA).		Κ, '
XX		3. Identify the command type (COMMAND).	•	
1.0		4. Cet the command execution status (STATUS) and read data content (RDATA).).	
30:29	-	Reserved.	-	-
28:24	PHYADD[4:0]	PHY Address of MDC/MDIO Command.	RW	00000B
23:21		Reserved.	ı	-
20:16	REGADD[4:0]	Register Address of MDC/MDIO Command.	RW	00000B
15:0	WRDATA[15:0]	Write Data of MDC/MDIO Command.	RW	H0000

11.1.3. Global MDC/MDIO Status Register (0xBB80_4008)

Table 59. Global MDC/MDIO Status Register (0xBB80_4008)

Reg.bit	Name	Description	Mode	Default				
31	STATUS	MDC/MDIO Command in Process Status.	R	0000B				
		0: Process done 1: In progress						
30:16	-	Reserved.	-	-				
15:0	RDATA	Read Data Result of MDC/MDIO Command.	R	0B				

11.1.4. Global Frame Filtering Control Register Address Mapping (Base: 0xBB80_4000)

Table 60. Global Frame Filtering Control Register Address Mapping (Base: 0xBB80_4000)

_								
	Offset	Size (byte)	Name	Description				
Ī	44	4	BSCR	Broadcast S	torm Control Register.		•	

11.1.5. Global Broadcast Storm Control Register (0xBB80_4044)

Per-port broadcast storm traffic utilization is a global parameter that is defined by BCSC_CNT[14:0] in the Broadcast Storm Control Register (0xBB80_4044). Broadcast storm control can be enabled/disabled on a per-port basis, and the broadcast traffic definition is user configurable.

Table 61. Global Broadcast Storm Control Register (0xBB80_4044)

Reg.bit	Name	Description	Mode	Default
31:15	-	Reserved.	-	× -
14:0	BCSC_CNT[14:0]	Broadcast Storm Control Rate Configuration.	RW	0
	900	Defines the per-port-based broadcast storm control valid accumulated byte count in each default time interval 25ms/2.5ms/0.25ms for 10M/100M/1000M (the time interval will auto update for different port link speeds). For BCSC_BCNT[14:0] value=N, The % max rate=N/30360*100%.		

Note: When Broadcast Storm Control is enabled, every 25ms, each port will limit the max incoming byte counts of broadcast, multicast, or unknown-unicast packets to 3 counts maximum. Other excessive packets within the duration time will be dropped.

11.2. Per-Port Configuration Register

The port ability properties, e.g., auto negotiation, port speed, duplex, flow control, can be configured via the Per-Port Configuration Register.

Table 62. Per-Port Configuration Register Address Mapping (Base: 0xBB80_4100)

Offset	Size (byte)	Name	Description
00	4	PITCR	Port Interface Type Control Register.
04	4	PCRP0	Port Configuration Register of Port 0.
08	4	PCRP1	Port Configuration Register of Port 1.
0C	4	PCRP2	Port Configuration Register of Port 2.
10	4	PCRP3	Port Configuration Register of Port 3.
14	4	PCRP4	Port Configuration Register of Port 4.
1C	4	PCRP6	Port Configuration Register of Port 6 (Ext. P0).
20	4	PCRP7	Port Configuration Register of Port 7 (Ext. P1).
24	4	PCRP8	Port Configuration Register of Port 8 (Ext. P2).
28	4	PSRP0	Port Status Register of Port 0.
2C	4	PSRP1	Port Status Register of Port 1.
30	4	PSRP2	Port Status Register of Port 2.
34	4	PSRP3	Port Status Register of Port 3.
38	4	PSRP4	Port Status Register of Port 4.
40	4	PSRP6	Port Status Register of Port 6.
44	4	PSRP7	Port Status Register of Port 7.
48	4	PSRP8	Port Status Register of Port 8.

11.2.1. Port Interface Type Control Register (0xBB80_4100)

Table 63. Fort Interface Type Control Register (0xBB80_4100)

Reg.bit	Name	Description	Mode	Default
31:10	-	Reserved.	-	-
9:8	Port4_TypeCfg[1:0]	Port 4 Interface Type Configuration.	RW	00B
7		00: UTP (10/100M embedded PHY)		
	5	01: Reserved 1x: Reserved		
7:6	Port3_TypeCfg[1:0]	Port 3 Interface Type Configuration.	RW	00B
		00: UTP (10/100 M embedded PHY)		
		01: Reserved 1x: Reserved		
5:4	Port2_TypeCfg[1:0]	Port 2 Interface Type Configuration.	RW	00B
		00: UTP (10/100M embedded PHY)		
		01: Reserved 1x: Reserved		
3:2	Port1_TypeCfg[1:0]	Port 1 Interface Type Configuration.	RW	00B
		00: UTP (10/100M embedded PHY)		
		01: Reserved 1x: Reserved		
1:0	Port0_TypeCfg[1:0]	Port 0 Interface Type Configuration.	RW	00B
		00: UTP (10/100M embedded PHY)		
		01: Reserved 1x: Reserved		

11.2.2. Port Configuration Register of Port N (N=0~4)

Table 64. Port Configuration Register of Port N (N=0~4)

Reg.bit	Name	Description	Mode	Default
31	ByPassTCRC	1: Do not recalculate CRC for CRC error frame	RW	0B
		0: Recalculate CRC for CRC error frame		
30:26	ExtPHYID[4:0]	PHY ID Assign for PHY MII Register Polling Addressing.	RW	Port0~4
		Identifies the external PHY ID for MDC/MDIO polling		$=0x0\sim4$
		addressing. Only valid for ports 0~4.		
25	EnForceMode	Enable Port Property (Link/Speed/Duplex/Flow Control) to be	RW	0
		Set by Force Mode.	X	
		0: Disable (enable Auto-Negotiation)		
		In this mode, the port link/speed/duplex /flow control setting is based on the MDC/MDIO polling result.		
		1: Enable (Force Mode) (Disable Auto-Negotiation)		
		In this mode, the port speed/duplex /flow control setting is set		
		by the force mode control bits in this register. Note that the		
		method of determining the link status depends on the		
24	PollinkStatus	PollinkStatus setting. Polling PHY Link Status {EnForceMode, PollinkStatus}.	RW	0
24	PolilikStatus		KW	U
		00, 01: Enable Auto-Negotiation 10: Force Mode (Disables Auto-Negotiation)		
		This mode should be set for MAC-to-MAC connection.		
		11: Force Mode with polling link status (Disables Auto-		
		Negotiation but polls the PHY's link status).		
23	ForceLink	Force Link-Up or Link-Down Setting.	RW	0
20	1 0.00	Available Only if {EnForceMode, PollinkStatus}=10.	22,,	A
	~ 1	0: Force link down		
		1: Force link up	\	
		Note: If {EnForceMode, PollinkStatus}=11, the link status	•	
		information is derived from PHY register 1 via the ASIC's	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		auto-polling mechanism.		
22:18	FrcAbi_AnAbi_sel	If EnForceMode=1	RW	5'b11111 for
0		FrcAbi_AnAbi_sel is used to indicate the force mode	Ť	port#0~4
)		operation for MAC or PHY mode operations.		
		FrcAbi_AnAbi_sel[0]: ForceDuplex 1: Force FULL duplex		
		FrcAbi_AnAbi_sel[2:1]: ForceSpeed		
		00: Force 10Mbps		
		10: Reserved 11: Reserved		
		FrcAbi_AnAbi_sel[4:3]: Reserved		
		If EnForceMode=0		
		FrcAbi_AnAbi_sel is used to indicate Auto-Negotiation		
		advertising ability.		
		FrcAbi_AnAbi_sel[0]: 10Mbps Half-duplex		
		FrcAbi_AnAbi_sel[1]: 10Mbps Full-duplex		
		FrcAbi_AnAbi_sel 2]: 100Mbps Half-duplex FrcAbi_AnAbi_sel[3]: 100Mbps Full-duplex		
		FrcAbi_AnAbi_sel[4]: Reserved		

Reg.bit	Name	Description	Mode	Default
17:16	PauseFlowControl[1:0]	If EnForceMode=1	RW	2'b11
	(ADVERTISE_	This register controls PAUSE flow control.		
	PAUSEABY)	0: Enable TX pause ability		
		1: Enable RX pause ability		
		If EnForceMode=0		
		The PHY advertises PAUSE flow control.		
		0: PAUSE operation for full duplex links		
		1: Asymmetric PAUSE operation for full duplex links	X	
15:12	-	Reserved.	-	-
11:9	BCSC_Types[2:0]	Broadcast Storm Control Packet Types Selection.	RW	0B
		When Broadcast storm control is enabled, the control packet types can be selected.		
		Bit[0]: Enable control for broadcast packets		
		Bit[1]: Enable control for multicast packet		
		Bit[2]: Reserved		
		0: Disable		
		1: Enable	. 6	
		When Bit[3:0] are set as '000', the port's broadcast storm		
		function is disabled.		*
8	EnBCSC	Enable Broadcast Storm Control.	RW	0B
		0: Disable		
		1: Enable		
		When enabled, the broadcast storm control rate and control		X
		packet type should be defined in the broadcast storm control register.		A .
7	EnLoopBack	Enable MAC – PHY Interface for MII Loopback.	RW	ОВ
,	Эмгооргаск	Enable internal and external loopback. Sets the MAC as an	10,1	
X		internal loopback, and sets the PHY side as an external	•	Ť
		loopback.	(),	
		0: Disable 1: Enable		
6	DisBKP	Per-Port Disable Backpressure Function for Half Duplex	RW	0B
,	7()	Mode.		
5.4	STP PortST[1:0]	1: Disable 0: Enable	DW	1.1
5:4	S1F_P0[[S1[1:0]	Spanning Tree Protocol Port State Control. 00: Disable State 01: Blocking/Listen State	RW	11
	\mathcal{O}_1	10: Learning State 11: Forwarding State		
		Page Page Learning		
		Pass Pass Station Stat		
l `		State Non RDIVI RDDI Location Into		
		Frames Frames Database		
		Disabled No No No		
		Blocking No Yes No		
		Listening No Yes No		
		Learning No Yes Yes		
		Forwarding Yes Yes Yes		
		100 100	<u> </u>	

Reg.bit	Name	Description	Mode	Default
3	MAC S/W Reset	MAC S/W Reset Supports a Method to Reset the MAC by Software.	RW	1
		It can reset the circuit in the RXC and TXC domain via an active-low signal. To reset the MAC, software should write a 1 following the writing of a 0.		
		0: Reset state		
		1: Normal state		
2:1	AcptMaxLen[1:0]	Configures the Maximum Acceptable Packet Length Supported.	RW	00B
		This control is valid only when jumbo packet accept is disabled on a port.	X)
		00: 1536 bytes 01: 1552 bytes		
		10: 9k bytes (jumbo packet: 9216 bytes) 11: 16k~14 bytes (jumbo packet: 16370 bytes)		
0	EnablePHYIf	Enable PHY Interface.	RW	0B
		The bit controls the MAC vs. PHY interface, irrelevant as to whether the port interface is UTP.		
		0: Disable		
		When disabled, the PHY interface will be isolated from the MAC Packets will not be transmitted or received to/from the		
		PHY to/from the MAC interface. 1: Enable		

11.2.3. Port Status Register of Port N (N=0~4)

Table 65. Port Status Register of Port N (N=0~4)

Reg.bit	Name	Description	Mode	Default
31:14	-	Reserved.	-	-
13:12	EEE Status[1:0]	Port Link Status.	R	0
		In NWay Mode, the status shown is that of PHY local and PHY		
		remote ability.		
		In Force mode, the status is the configuration result of the force		
		mode configuration registers.		
		Bit 1: Reserved		
44.0		Bit 0: 100M EEE ability		
11:9	-	Reserved.	-	-
8	LinkDownEventFlag	Port Link Down Event Detection Monitor Flag.	Latch,	0
		0: Idle	RW	
		1: Link Down event detected		
		When the Port link status changes from link-up to link-down, the		
		flag bit will be latched as '1' until read to clear and updated to the new status.		
7:0	PortStatus[7:0]	Port Link Status.	R	0
7.0	ronstatus[7.0]	In an NWay Mode port, the status shown is that of PHY local and	1	U
		PHY remote ability.		
		In Force mode, the status is the configuration result of the force		
		mode configuration registers.		
		This report is valid for UTP Interface mode.		
		Bit 7: NWay Enable (link by auto-negotiation)		
	4 1	Bit 6: RX PAUSE ability		\ •
		Bit 5: TX PAUSE ability		
		Bit 4: LinkUp		
X		Bit 3. Duplex		
		Bit 2: Reserved		
		Bit [1:0]: LinkSpeed[1:0]		
		00: 10M		
)		01: 100M		
		10: Reserved		
		11: Reserved		

11.3. LED Control Register

11.3.1. LED Topology Operation

The RTL8197DN supports single and Bi-Color LED displays. Table 66 illustrates all combinations of LED topologies.

Mixed mode LED display is supported. E.g., designers may design some ports in single-color and some ports in Bi-color mode. Note the topology (LedTopology) field should be the same in all ports.

	Table 00. Display Arrangement of Each SOAN ELD Mode						
Location	LED Mode=SCAN 0	LED Mode=SCAN 1	LED Mode=SCAN 2				
LED#0	OFF=Link Down	OFF=Link Down	OFF=Link Down				
	ON/Blink=Link/Act	Y=10/100M Link/Act	Y=10M Link/Act				
		Note: Y=Yellow color (when signal	G=100M Link Act				
		LINKN[0:4] active high).	Note: Y=Yellow color (when signal LINKN[0:4] active high).				
			G=Green color (when signal				
			LINKN[0:4] active low).				
Topology	SCAN Mode Signal	SCAN Mode Signal	SCAN Mode Signal				
Description	LED#0: Single-Color LED	LED#0: Single-Color LED	LED#0: 2-Pin Dual-Color LED				

Table 66. Display Arrangement of Each SCAN LED Mode

Note: 'Y' indicates yellow color LED, and 'G' indicates green color LED (depends on the external LED component). 'ON' means this LED is turned on. 'OFF' means this LED is turned off. 'N/A' means this LED is not applicable. The CPU can still control this LED using the CPUCtrlPort/CPUCtrlMask register.

11.3.2. SCAN Mode LED

The 2-pin dual-color LEDs are supported in SCAN mode. The dual-color LFDs are controlled by the polarity of LED_PORT[n] and LEDSCAN. The LEDSCAN signal should change polarity to turn on the target LED, and turn off other LEDs in the target port's scan phase. When the port is IDLE, the LED_PORT[n] is driven low in its scan phase.

Figure 3. Bi-Color LED SCAN Mode interconnections

11.3.3. LED Control Register Address Mapping (Base: 0xBB80_4300)

Table 67. LED Control Register Address Mapping (Base: 0xB580_4300)

	rable off					
Offset	Size (byte)	Name	Description			
00	4	LEDCR0	LED Control Register 0.			
04	4	LEDCR1	LED Control Register 1.			
0C	4	LEDBCR	LED Blinking Control Register.			
10	4	EEELCR	EEE LED Configuration Register.			
14	4	DIRECTLCR	DIRECT Mode LED Configuration Register.			

11.3.4. LED Control Register 0 (0xBB80_4300)

Table 68. LED Control Register 0 (0xBB80 4300)

Reg.bit	Name	Description	Mode	Default
	Name		Mode	Derault
31:22	-	Reserved	15	-
21:20	LedTopology	LED Topology Selection.	RW	0B
		Selects the Scan mode of LED topology.		
		00: Scan mode Topology		
		01: Reserved		
		10: Reserved		
		11: Reserved		
19:18	P0_LedDefSel[1:0]	Select P0 LED Display Mode Definition.	RW	00B
		Selects LED bit display definition.		
		00: Mode Scan 0		
		01: Mode Scan 1	. V	
		10. Mode Scan 2		
		11: Reserved		
17:16	P1_LedDefSel[1:0]	Select P1 LED Display Mode Definition.	RW	00B
15:14	P2_LedDefSel[1:0]	Select P2 LED Display Mode Definition.	RW	00B
13:12	P3_LedDetSel[1:0]	Select P3 LFD Display Mode Definition.	RW	00B
11:10	P4_LedDefSel[1:0]	Select P4 LED Display Mode Definition.	RW	00B
9:8	-	Reserved.	-	-
7	DisLEDBlinking	Disable LED Initial Blinking.	RW	0B
		0: Enable LED blinking		
		1: Disable LED blinking		
6	BlinkTime	0: 40ms	RW	0B
		1: 120ms		
5	-	Reserved.	-	-

Reg.bit	Name	Description	Mode	Default
4:2	CPUCtrlMask[2:0]	CPU Control LED Masking.	RW	000B
		When any bit of CPUCtrlMask[2:0] is 0b, it means the corresponding LED is controlled by internal circuit. Conversely, when any bit of CPUCtrlMask[2:0] is 1b, the corresponding LED is controlled by CPU and the indication is controlled by CPUCtrlPort. 0: LED is controlled by internal circuit 1: LED is controlled by CPU CPUCtrlMask[2:0] are mapped to LED[2:0] respectively. The developer could make a specific LED display a designated mode through CPUCtrlPort without influencing other LEDs. The other LEDs will still operate with the LedTopology, EnBiColor, and LedType settings. This setting effects all ports. NOTE: Only the CPUCtrlMask [0] is valid, CPUCtrlMask [2:1] is reserved in LED SCAN Mode.	Ç	
1:0	-	Reserved	-	-

11.3.5. LED Control Register 1 (0xBB80_4304)

Table 69. LED Control Register 1 (0xBB80_4304)

Reg.bit	Name	Description	Mode	Default
31:21	(-	Reserved.	ı	-
20:18	CPUCtrlPort0[2:0]	CPU Control Manner for Port 0.	RW	000B
		CPUCtrlPort0[2:0] are mapped to LED[2:0] respectively. Only valid when CPUCtorlMask bit is 1b.		K \
~ (0: LED off	•	
		1: LED on		
		NOTE:		
, O-		Only the LED[0] is valid LED[2:1] is reserved in LED		
)		SCAN Mode .		
17:15	CPUCtrlPort1[2:0]	CPU Control Mode for Port 1.	RW	000B
14:12	CPUCtrlPort2[2:0]	CPU Control Mode for Port 2.	RW	000B
11:9	CPUCtrlPort3[2:0]	CPU Control Mode for Port 3.	RW	000B
8:6	CPUCtrlPort4[2:0]	CPU Control Mode for Port 4.	RW	000B
5:0	-	Reserved.	-	-

11.3.6. LED Blinking Control Register (0xBB80_430C)

Table 70. LED Blinking Control Register (0xBB80_430C)

Reg.bit	Name	Description	/	Mode	Default
31:20	-	Reserved.	*	-	-

Reg.bit	Name	Description	Mode	Default
19:17	LEDBlinkP0[2:0]	CPU Controls the LED to Blink for Port 0.	RW	000B
		LEDBlinkP0[2:0] are mapped to LED[2:0] respectively. Only valid when CPUCtorlMask bit is 1b.		
		0: Disable LED blinking		
		1: Enable LED blinking		
		When LED blinking is enabled, no matter whether the designated LED is on or off, the designated LED will be forced to start blinking until the CPU disables it.		
		NOTE:		
		Only the LED[0] is valid, LED[2:1] is reserved in LED		
		SCAN Mode .		
16:14	LEDBlinkP1[2:0]	CPU Controls the LED to Blink for Port 1.	RW	000B
13:11	LEDBlinkP2[2:0]	CPU Controls the LED to Blink for Port 2.	RW	000B
10:8	LEDBlinkP3[2:0]	CPU Controls the LED to Blink for Port 3.	RW	000B
7:5	LEDBlinkP4[2:0]	CPU Controls the LED to Blink for Port 4.	RW	000B
4:0	-	Reserved.	-	-

11.3.7. EEE LED Configuration Register (0xBB80_4310)

Table 71. EEE LED Configuration Register (0xBB80_4310)

Reg.bit	Name	Description	Mode	Default
31:16	-	Reserved.	-	-
15:11	LPI_SBTOFF[4:0]	LPI Slow Blink Timer OFF-Period Time (Unit=100ms).	RW	0x14
		Default=2000ms.		
10:6	LPI_SBTON[4:0]	LPI Slow Blink Timer ON-Period Time (Unit=100ms).	RW	0x4
		Default=400ms.		
5:2	LPI_MT[3:0]	LPI Mask Off Time (Unit=100ms).	RW	0xA
		To define the LED mask off time in a LPI LED state.		
		Default=600ms.		
1	En10MLP	Enable 10Mbps port to show low power driving indication	RW	0
		on LPI LED (same as the 10/100M port).		
		0: Disable		
		1: Enable		
0	enLPILED	Enable EFF LED Display Ability.	RW	0
		1: Enable		
		0: Disable		
		Note: When set to 1, the LPI LED display feature will		
	X	remain disabled until after detecting a port has been linked-	λV	
		up for longer than 5 seconds.		

11.3.8. Direct Mode LED Configuration Register (0xBB80_4314)

Table 72. Direct Mode LED Configuration Register (0xBB80_4314)

Reg.bit	Name	Description	Mode	Default
31	LEDOnPolarity	0: Normal Mode (LED output is Low active)	RW	0B
	+	1. Reverse Mode (LED output is High active)		
30:28	LEDBlinkTime	B link Timer Period Time for All Port (Unit 40ms).	RW	001B
		000: No blink 001: 40ms		
	100	010: 80ms 011: 120ms		
		100: 160ms 101: 200ms		
	5	110: 240ms 111: 280ms		
27:18	-	Reserved.	-	-
17:15	LEDOnScaleP0[2:0]	Select the LED Turn On Scale for Port 0.	RW	111B
		000: 12% 001: 25%		
		010: 37% 011: 50%		
•		100: 62%		
		110: 87% 111: 100%		
14:12	LEDOnScaleP1[2:0]	Select the LED Turn On Scale for Port 1.	RW	111B
11:9	LEDOnScaleP2[2:0]	Select the LED Turn On Scale for Port 2.	RW	111B
8:6	LEDOnScaleP3[2:0]	Select the LED Turn On Scale for Port 3.	RW	111B
5:3	LEDOnScaleP4[2:0]	Select the LED Turn On Scale for Port 4.	RW	111B
2:0	-	Reserved.	-	-

12. Green Ethernet

12.1. Cable Length Power Saving

The RTL8196E-VE1/2/3 provides link-on and dynamic detection of cable length, and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption.

12.2. Link-Down Power Saving

The RTL8196E-VE1/2/3implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected. A port automatically enters link-down power saving mode ten seconds after the cable is disconnected from it. Once a port enters link-down power saving mode, it transmits normal link pulses on its TXOP/TXON pins and continues to monitor the RXIP/RXIN pins to detect incoming signals, which might be 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or Auto-Negotiation's FLP (Fast Link Pulse). After it detects an incoming signal, it wakes up from link-down power saving mode and operates in normal mode according to the result of the connection's auto-negotiation.

12.3. Energy Efficient Ethernet (EEE)

The RTL8196E-VE1/2/3supports IEEE 802.3az, also known as Energy Efficient Ethernet (EEE) in 100Base-TX in full duplex operation, and 10Base-T in full/half duplex mode. It provides a protocol to coordinate transitions to/from a lower power consumption level (Low Power Idle mode) based on link utilization. When no packets are being transmitted, the system goes to Low Power Idle mode to save power Once packets need to be transmitted, the system returns to normal mode, and does this without changing the link status and without dropping/corrupting frames.

To save power, when the system is in Low Power Idle mode, most of the circuits are disabled, however, the transition time to/from Low Power Idle mode is kept small enough to be transparent to upper layer protocols and applications.

EEE also specifies a negotiation method to enable link partners to determine whether EEE is supported and to select the best set of parameters common to both devices.

- For 100Base-TX PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle
- For 10Base-T, EEE defines a 10Mbps PHY (10Base-Te) with reduced transmit amplitude requirements. 10Base-Te is fully interoperable with 10Base-T PHYs over 100m of Class-D (Cat-5) cable

The RTL8196E-VE1/2/3MAC uses Low Power Idle signaling to indicate to the PHY and to the link partner that a break in the data stream is expected. Components may use this information to enter power

saving modes that require additional time to resume normal operation. Similarly, it informs the LPI Client that the link partner has sent such an indication.

13. DC Specifications

13.1. Operating Conditions

Table 73. Operating Conditions

Table 73. Operating Conditions						
Symbol	Parameter	Min.	Typ.	Max.	Units	
VDD33	Digital I/O Power Supply 3.3V	3.135	3.3	3.465	V	
AVDD33	Analog Power Supply 3.3V	3.135	3.3	3.465	V	
VDD10	Core Power Supply 1.0V	0.95	1.00	1.1	V	
SWR_VDD10	SWR Power Supply 1.0V input	0.95	1.00	1.1	V	
AVDD10	Analog Power Supply 1.0V	0.95	1.00	1.1	V	
AVDD33X	25/40MHz Crystal Power 3.3V	3.135	3.3	3.465	V	
AVDD33_BG	System Bandgap Power Supply 3.3V	3.135	3.3	3.465	V	
AVDD10_PCIE	PCI Express Analog Power 1.0V	0.95	1.00	1.1	V	
AVDD10_PHYPLL	Ethernet PHY PLL Power 1.0V	0.95	1.00	1.1	V	
AVDD33_PHYPLL	Ethernet PHY PLL Power 3.3V	3.135	3.3	3.465	V	
AVDD33_USB	USB2.0 Analog Power 3.3V	3.135	3.3	3.465	V	
AVDD10_USB	USB2.0 Analog Power 1.0V	0.95	1.00	1.1	V	
AVDD33_SWR	SWR Power Input 3.3V	3.135	3.3	3.465	V	
VDD33_LDO	LDO Power Input 3.3V	3.135	3.3	3.465	V	
VDD33_25_18	SDR DRAM I/O Power Supply 3.3V	3.135	3.3	3.465	V	
	DDR1 DRAM I/O Power Supply 2.5V	2.4	2.5	2.7	``_	
	DDR2 DRAM I/O Power Supply 1.8V	1.7	1.8	1.9	•	
VREF	DDR1/DDR2 Reference Voltage	0.49*	0.5*	0.51*	V	
Ω		VDD33_25_18	VDD33_25_18	VDD33_25_18		

13.2. Total Power Consumption

Table 74. Total Power Consumption

SYM	Conditions	Min	Typ.	Max	Units
PS	All LAN Ports Idle	-	0.46	-	Watt
	LAN Full Load Active for Link at 100Base-TX	-()\	0.97	-	

Note: Power consumption is measured at full load of the chip system.

13.3. SDR DRAM Bus DC Parameters

Table 75. SDR DRAM Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	LVTTL	2.0	-	<u></u>	V	1
$V_{\rm IL}$	Input-Low Voltage	LVTTL	-	-()	0.8	V	2
V _{OH}	Output-High Voltage	-	2.4	1-0	-	V	3
V_{OL}	Output-Low Voltage	-	-		0.4	V	3
I_{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ	-
I_{OZ}	Tri-State Output-Leakage Current	-	-10	±1	10	μΑ	-
R_{PU}	Input Pull-Up Resistance	-	-	75	-	ΚΩ	4
R_{PD}	Input Pull-Down Resistance	-	-	75		ΚΩ	4

Note 1: V_{IH} overshoot: V_{IH} (MAX)= V_{DDH} + 2V for a pulse width ≤ 3 is, and the pulse width not greater than one third of the cycle rate.

13.4. DDR DRAM Bus DC Parameters

Table 76. DDR DRAM Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{IH}	Input-High Voltage	SSTL_2	VREF+0.15		VREF+0.3	V
$V_{\rm IL}$	Input-Low Voltage	SSTL_2	-0.3	-	VREF-0.15	V
V _{TT}	I/O Termination Voltage	-	VREF-0.04	-	VREF+0.04	V
I_{IL}	Input-Leakage Current	V _{IN} =VREF or 0	-10	±1	10	μA
I_{OZ}	Tri-State Output-Leakage Current	-	-10	±1	10	μΑ

13.5. Flash Bus DC Parameters

Table 77. Flash Bus DC Parameters

Syml	bol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes		
V_{II}	ŀ	Input-High Voltage	LVTTL	2.0	-	-	V	1		
V_{II}		Input-Low Voltage	LVTTL)	/ -	0.8	V	2		
V _{OI}	Н	Output-High Voltage	-	2.4	-	-	V	3		
V_{Oi}	L	Output-Low Voltage	-		-	0.4	V	3		
$I_{\rm IL}$		Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ	-		
I_{OZ}	Z	Tri-State Output-Leakage Current	- 0	-10	±1	10	μΑ	-		
R _{PU}	J	Input Pull-Up Resistance	A	-	75	ı	ΚΩ	4		
R_{PI})	Input Pull-Down Resistance		=	75	-	ΚΩ	4		

Note 1: V_{IH} overshoot: VIH (MAX)=VDDH + 2V for a pulse width ≤ 3 ns.

Note 2: V_{IL} undershoot: $V_{IL(MIN)}=-2V$ for a pulse width ≤ 3 ns cannot be exceeded.

Note 3: The output current buffer is 16mA for SDR DRAM clock, address, and data bus.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

Note 2: V_{IL} *undershoot:* V_{IL} (MIN)=-2V *for a pulse width* $\leq 3ns$.

Note 3: The output current buffer is 8mA for the flash address and data bus; and is 8mA for Flash control signals.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

13.6. USB v1.1 DC Parameters

Table 78. USB v1.1 DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	-	2.0	-	<u></u>	V	2
$V_{\rm IL}$	Input-Low Voltage	=	-	-()	0.8	V	2
V_{OH}	Output-High Voltage	-	2.4	1-0	-	V	2
V _{OL}	Output-Low Voltage	-	- 1		0.4	V	2
$I_{\rm IL}$	Input-Leakage Current	$V_{IN}=3.3V$ or 0		-	-	μA	1

Note 1: These values are typical values checked in the manufacturing process and are not tested.

13.7. USB v2.0 DC Parameters

Table 79. USB v2.0 DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	-	200	-	-	mV	2
$V_{\rm IL}$	Input-Low Voltage	-		-	10	mV	2
V_{OH}	Output-High Voltage	- X	300	-	500	mV	2
V _{OL}	Output-Low Voltage	-	-10	-	10	mV	2
I_{IL}	Input-Leakage Current		-	- 4		μΑ	1

Note 1: These values are typical values checked in the manufacturing process and are not tested.

13.8. UART DC Parameters

Table 80. UART DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
$V_{\rm IH}$	Input-High Voltage	LVTTL	2.0	-	-	V	-
$V_{\rm IL}$	Input-Low Voltage	LVTTL	-	-	0.8	V	-
V_{OH}	Output-High Voltage	-	2.4	1	-	V	1
V_{OL}	Output-Low Voltage	-	١.	-	0.4	V	1
I_{IL}	Input-Leakage Current	$V_{IN}=3.3V \text{ or } 0$	-10	±1	10	μΑ	2
R _{PU}	Input Pull-Up Resistance	-	-	75	i	ΚΩ	2
R_{PD}	Input Pull-Down Resistance	-		75	-	ΚΩ	2

Note 1: The output current buffer is 8mA for UART related signals.

Note 2: These values are typical values checked in the manufacturing process and are not tested.

Note 2: For additional information, see the USB v1.1 Specification.

Note 2: For additional information, see the USB v2.0 Specification.

13.9. GPIO DC Parameters

Table 81. GPIO DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	LVTTL	2.0	-		V	-
$V_{ m IL}$	Input-Low Voltage	LVTTL	ı	-0	0.8	V	-
V_{OH}	Output-High Voltage	=	2.4	-	-	V	1
V _{OL}	Output-Low Voltage	=	- 1		0.4	V	1
I_{IL}	Input-Leakage Current	-	-10	±1	10	μΑ	2
R_{PD}	Input Pull-Down Resistance	-	-	75	-	ΚΩ	2

Note 1: The output current buffer is 8mA for GPIO related signals.

13.10. JTAG DC Parameters

Table 82. JTAG DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	LVTTL	2.0	-	-	V	-
V_{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V	-
V_{OH}	Output-High Voltage	$ I_{OH} = 2 \sim 16 \text{mA}$	2.4	-	-	V	1
V _{OL}	Output-Low Voltage	$I_{OL} = 2 \sim 16 \text{mA}$	-	- (0.4	V	1
I_{IL}	Input-Leakage Current	, 0	-10	±1	10	μΑ	2
R_{PD}	Input Pull-Down Resistance	-	-	75	-	ΚΩ	2

Note 1: The output current buffer is 4mA for JTAG related signals.

13.11. Reset DC Parameters

Table 83. Reset DC Parameters

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{IH}	Input-High Voltage	LVTTL	2.0	-	-	V
$V_{\rm IL}$	Input-Low Voltage	LVTTL	-	-	0.8	V

13.12. LED DC Parameters

Table 84. LED DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{OHED}	Output-High Voltage		2.4	-	-	V
V _{OLLED}	Output-Low Voltage	/ -	-	-	0.4	V

Note: The output current buffer for LED signals is 8mA.

Note 2: These values are typical values checked in the manufacturing process and are not tested.

Note 2: These values are typical values checked in the manufacturing process and are not tested.

14. AC Specifications

14.1. Clock Signal Timing

14.1.1. 25MHz System Clock Timing

Table 85. 25MHz System Clock Timing

Symbol	Parameter	Min.	Typ.	Max.	Units	Notes
V_{IH}	Input-High Voltage	2.0	-	-	V	-
V_{IL}	Input-Low Voltage	-	-	0.8	V	-
T _{FREQUENCY}	Clock Frequency for RTL8196E-VE1/2/3Crystal or Oscillator	-	25	7	MHz	1
$\Delta_{ ext{FREQUENCY}}$	Clock Tolerance Over 0°C to 50°C	-50	-	50	ppm	-
C_{SHUNT}	Crystal Parameter (Sometimes Referred to as the Holder Capacitance)	-	7	7	pF	2
C_1	Load Capacitance	-	- V	30	pF	3
C_2	Load Capacitance	-		30	pF	3
T_{DC}	Duty Cycle		50	-	%	-

Note 1: This value could be an oscillator input or a series resonant frequency from a crystal. If used as an oscillator input, tie to the crystal input pin and leave the crystal output pin disconnected.

Note 2: The 25MHz Crystal CL=16pF is used on the RTL8196E.

Note 3: The RTL8196E-VE1/2/3PLL circuit requires an external 25MHz crystal with shunt capacitors. These shunt capacitors cannot be over 30pF due to chip design requirements.

Figure 4. Typical Connection to a Crystal

Figure 5. Typical Connection to an Oscillator

Rev. 1.1

14.1.2. 40MHz System Clock Timing

Table 86. 40MHz System Clock Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
V_{IH}	Input-High Voltage	1.2	1.4	2.0	V
V_{IL}	Input-Low Voltage	-	0	0.2	V
$T_{FREQUENCY}$	Clock Frequency	- 1	40	-	MHz
$\Delta_{ ext{FREQUENCY}}$	Clock Tolerance (between 0℃~70℃)	-50	-	50	ppm
T_{DC}	Duty Cycle		50		%

14.1.3. SDR DRAM Clock Timing

Table 87. SDR DR AM Clock Timing

	Table 671 GBR BIGGI		9			
Symbol	Parameter	Min.	Typ. (156.25MHz)	Max.	Units	Notes
T _{PERIOD_SDRAMCLK}	Clock Period for SDR DRAM Clock	-	6.4	-	ns	-
$T_{CLKHIGH}$	SDR DRAM Clock High Time	-	3.2	-	ns	ı
T_{CLKLOW}	SDR DRAM Clock Low Time	-	3.2	-	ns	-
T _{RISE/FALL}	Rise and Fall Time Requirements for SDR DRAM Clock	-	-	2	ns	1
T _{RISE/FALL_OUTPUT}	Propagation Delay for Output Rising and Falling		NA	-	ns	1

Note 1: For detailed information, contact Realtek for the IBIS model.

Figure 6. SDR DRAM Clock Specifications-1

Figure 7. SDR DRAM Clock Specifications-2

14.2. Bus Signal Timing

14.2.1. SDR DRAM Bus

14.2.1.1 SDR DRAM Input Timing

Table 88. SDR DRAM Input Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
T_{SETUP}	Input Setup Prior to Rising Edge of Clock	-	1.13	-(ns
	Inputs included in this timing are MD[15:0] (during a read operation)				
T_{HOLD}	Input Hold Time after the Rising Edge of Clock	-	0	-	ns
	Inputs included in this timing are MD[15:0] (during a read operation)				

Note: The RTL8196E-VE1/2/3integrates some timing controls on the interface. Here the timing parameters listed in the table are extracted in the default situation (without specific controls).

Figure 8. SDR DRAM Input Timing

14.2.1.2 SDR DRAM Output Timing

Table 89. SDR DRAM Output Timing

Symbol	Parameter	Min.	Typ.	Max.	Units
T _{CLK2OUT}	Rising Edge of Clock-to-Signal Output	-	-	2.3	ns
	Outputs include this timing are MD[15:0], MCS0#, MCS1#, RAS#, CAS#, LDQM, UDQM, WE# (during a write operation)				
T _{HOLDOUT}	Signal Output Hold Time after the Rising Edge of the Clock	0.8	-	-	ns
	Outputs included in this timing are MD[15:0] (during a write operation)				

Note: Timing was tested with 75-pF capacitor to ground.

Figure 9. SDR DRAM Output Timing

14.2.1.3 SDR DRAM Access Control Timing

Table 90. SDR DRAM Access Control Timing

Symbol	Parameter	Units	Notes
$T_{REFRESH}$	Auto-Refresh Timing	μs	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RCD}	The Time Interval between RAS# Active and CAS# Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RP}	The Time Interval between Pre-Charge and the Next Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RAS}	The Time Interval between Active and Pre-Charge	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RC}	The Time Interval between Active and the Next Active	ns	1
	Controlled by Reg. 0xB8001008 (DTR)	,	
T_{RFC}	The Time Interval between Auto-Refresh and Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T _{CAS_LATENCY}	The Data Output Delay after CAS# Active	ns	-
	Controlled by Reg. 0xB8001004 (DCR)		

Note 1: TRC=TRAS+TRP.

Figure 10. SDR DRAM Access Control Timing

14.2.2. DDR DRAM Bus

14.2.2.1 DDR DRAM Input Timing

Table 91. DDR DRAM Input Timing

Symbol	Parameter	Units	Notes
T_{SETUP}	Input Setup Prior to Rising Edge of Clock	ns	1
	Inputs included in this timing are D[31:0] (during a read operation)		<u> </u>
T_{HOLD}	Input Hold Time after the Rising Edge of Clock	ns	1
	Inputs included in this timing are D[31:0] (during a read operation)		

Note 1: The RTL8196E-VE1/2/3integrates some timing control registers on the interface.

14.2.2.2 DDR DRAM Output Timing

Table 92. DDR DRAM Output Timing

Symbol	Parameter	Units	Notes
$T_{CLK2OUT}$	Rising Edge of Clock-to-Signal Output	ns	1
	Outputs include this timing are D[31:0], CS0#, CS1#, RAS#, CAS#, LDQM, UDQM, WE#, LDQS, UDQS (during a write operation)		
$T_{HOLDOUT}$	Signal Output Hold Time after the Rising Edge of the Clock	ns	1
	Outputs included in this timing are D[31:0] (during a write operation)		

Note 1: The RTL8196E-VE1/2/3integrates some timing control registers on the interface.

14.2.2.3 DDR DRAM Access Control Timing

Table 93. DDR DRAM Access Control Timing

Symbol	Parameter	Units	Notes
$T_{REFRESH}$	Auto-Refresh Timing	μs	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RCD}	The Time Interval between RAS# Active and CAS# Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RP}	The Time Interval between Pre-Charge and the Next Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)	$\times \cup$	
T_{RAS}	The Time Interval between Active and Pre-Charge	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T_{RC}	The Time Interval between Active and the Next Active	ns	1
	Controlled by Reg. 0xB8001008 (DTR)		
$T_{ m RFC}$	The Time Interval between Auto-Refresh and Active	ns	-
	Controlled by Reg. 0xB8001008 (DTR)		
T _{CAS_LATENCY}	The Data Output Delay after CAS# Active	ns	-
	Controlled by Reg. 0xB8001004 (DCR)		

Note 1: TRC=TRAS+TRP.

Figure 11. DDR DRAM Access Control Timing

14.2.3. Serial Flash Interface

14.2.3.1 Serial Flash Interface Output Timing

Table 94. Serial Flash Interface Output Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
T_{SLCH}	The Timing Interval from Chip-Select Activated to the First Clock Rising Edge	2	<u>).</u>	-	ns
T_{CHSH}	The Timing Interval from the Last Clock Rising Edge to Chip-Select De-Activated	5	-		ns
T_{CLQV}	The Timing Interval from the Last Clock Falling Edge to Data-Out Validated	-	-	10	ns
T_{CLQX}	The Timing Interval from the Next Clock Falling Edge to Data-Out Invalidated	0		-	ns

Figure 12. Serial Flash Interface Output Timing

14.2.3.2 Serial Flash Interface Input Timing

Table 95. Serial Flash Interface Input Timing

Symbol	Parameter	Min.	Тур.	Max.	Units
Трусн	The Timing Interval from Data-Input Ready to the Clock Rising Edge	2	-	-	ns
T_{CHDX}	The Timing Interval from the Clock Rising Edge to Data- Input Invalidated	5	-	-	ns

Figure 13. Serial Flash Interface Input Timing

14.2.4. JTAG Boundary Scan

Table 96. JTAG Boundary Scan Interface Timing Values

Symbol	Parameter	Min.	Тур.	Max.	Units	Notes
T_{bscl}	JTAG Clock Low Time	50	-	ď	ns	1
T _{bsch}	JTAG Clock High Time	50	- 0	7	ns	1
T_{bsis}	TDI, TMS Setup Time to Rising Edge of TCK	10	- () -	ns	-
T_{bsih}	TDI, TMS Hold Time from Rising Edge of TCK	10		Ī	ns	-
T_{bsoh}	TDO Hold Time after Falling Edge of TCK	1.5	-	-	ns	ı
T_{bsod}	TDO Output from Falling Edge of TCK	-	-	40	ns	-
T_{bsr}	JTAG Reset Period	30	-	Ī	ns	-
T_{bsrs}	TMS Setup Time to Rising Edge of JTAG Reset	10	-	-	ns	-
T _{bsrh}	TMS Hold Time from Rising Edge of JTAG Reset	10	-	-	ns	-

Note 1: JTAG clock TCK may be stopped indefinitely in either the low or high phase.

Figure 14. Boundary-Scan General Timing

Figure 15. Boundary-Scan Reset Timing

14.2.5. Power Configuration Timing

Power up configuration only relates to internal timing. The external hardware pin reset is unconcerned with power up configuration. The Hardware reset pin is valid when an internal reset ends the active state.

Power On Sequence and Configutation Timing

Figure 16. Power Up Configuration Timing

14.3. PCI Express Bus Parameters

14.3.1. Differential Transmitter Parameters

Table 97. Differential Transmitter Parameters

Symbol	Parameter	Min	Typical	Max	Units
UI	Unit Interval	399.88	400	400.12	ps
V _{TX-DIFFp-p}	Differential Peak-to-Peak Output Voltage	0.800	-	1.2	V
V _{TX-DE-RATIO}	De-Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB
T _{TX-EYE}	Minimum TX Eye Width	0.75	-	2	UI
T _{TX-EYE-MEDIAN-to-MAX-JITTER}	Maximum Time between the Jitter Median and Maximum Deviation from the Median	-	6	0.125	UI
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX Output Rise/Fall Time	0.125	0	-	UI
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	- /		20	mV
V _{TX-CM-DCACTIVE-IDLEDELTA}	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	-	100	mV
V _{TX-CM-DCLINE-DELTA}	Absolute Delta of DC Common Mode Voltage between D+ and D-	0	-	25	mV
V _{TX-IDLE-DIFFp}	Electrical Idle Differential Peak Output Voltage	0	٦X	20	mV
V _{TX-RCV-DETECT}	The Amount of Voltage Change Allowed During Receiver Detection	-		600	mV
V _{TX-DC-CM}	TX DC Common Mode Voltage	0	-	3.6	V
I _{TX-SHORT}	TX Short Circuit Current Limit	-	-	90	mA
T _{TX-IDLE-MIN}	Minimum Time Spent in Electrical Idle	50	-	-	UI
T _{TX-IDLE-SET IO-IDLE}	Maximum Time to Transition to A Valid Electrical Idle After Sending An Electrical Idle Ordered Set)	-	20	UI
T _{TX} IDLE-TOTO-DIFF-DATA	Maximum Time to Transition to Valid TX Specifications After Leaving An Electrical Idle Condition	-	-/	20	UI
RL _{TX-DIFF}	Differential Return Loss	10	-	-	dB
RL _{TX-CM}	Common Mode Return Loss	6	-	-	dB
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω
L _{TX-SKEW}	Lane-to-Lane Output Skew	-	-	500+2*UI	ps
C_{TX}	AC Coupling Capacitor	75	-	200	nF
T _{crosslink}	Crosslink Random Timeout	0	-	1	ms

Note 1: Refer to PCI Express Base Specification, rev.1.1, for correct measurement environment setting of each parameter. Note 2: The data rate can be modulated with an SSC (Spread Spectrum Clock) from +0 to -0.5% of the nominal data rate frequency, at a modulation rate in the range not exceeding 30kHz - 33kHz. The $\pm 300ppm$ requirement still holds, which requires the two communicating ports be modulated such that they never exceed a total of 600ppm difference.

14.3.2. Differential Receiver Parameters

Table 98. Differential Receiver Parameters

Symbol	Parameter	Min.	Typical	Max.	Units
UI	Unit Interval	399.88	400	400.12	ps
V _{RX-DIFFp-p}	Differential Input Peak-to-Peak Voltage	0.175	> 2	1.200	V
T _{RX-EYE}	Minimum Receiver Eye Width	0.4	9 -	-	UI
T _{RX-EYE-MEDIAN-to-MAX-JITTER}	Maximum Time Between the Jitter Median and Maximum Deviation from the Median	-	-	0.3	UI
V _{RX-CM-ACp}	AC Peak Common Mode Input Voltage	-	-	150	mV
RL _{RX-DIFF}	Differential Return Loss	10	-	X - ~	dB
RL _{RX-CM}	Common Mode Return Loss	6	-	-	dB
Z _{RX-DIFF-DC}	DC Differential Input Impedance	80	100	120	Ω
Z_{RX-DC}	DC Input Impedance	40	50	60	Ω
Z _{RX-HIGH-IMP-DC}	Powered Down DC Input Impedance	200k		-	Ω
V _{RX-IDLE-DET-DIFFp-p}	Electrical Idle Detect Threshold	65	/ -	175	mV
T _{RX-IDLE-DET-DIFFENTERTIME}	Unexpected Electrical Idle Enter Detect Threshold Integration Time	-	-	10	ms
L _{RX-SKEW}	Total Skew	-	-	20	ns

Note: Refer to PCI Express Base Specification, rev.1.1, for correct measurement environment setting of each parameter.

14.3.3. REFCLK Parameters

Table 99. REFCLK Parameters

Symbol	Parameter	100ME	z Input	Units	Note
		Min	Max		
Rise Edge Rate	Rising Edge Rate	0.6	4.0	V/ns	2, 3
Fall Edge Rate	Falling Edge Rate	0.6	4.0	V/ns	2, 3
V _{IH}	Differential Input High Voltage	+150	-	mV	2
V_{IL}	Differential Input Low Voltage	-	-150	mV	2
V _{CROSS}	Absolute Crossing Point Voltage	+250	+550	mV	1, 4, 5
V _{CROSS DELTA}	Variation of V _{CROSS} Over All Rising Clock Edges	- ^	+140	mV	1, 4, 9
V_{RB}	Ring-Back Voltage Margin	-100	+100	mV	2, 12
T _{STABLE}	Time before V _{RB} is Allowed	500	-	ps	2, 12
T _{PERIOD AVG}	Average Clock Period Accuracy	-300	+2800	ppm	2, 10, 13
T _{PERIOD ABS}	Absolute Period	9.847	10.203	ns	2, 6
	(Including Jitter and Spread Spectrum)				
T _{CCJITTER}	Cycle to Cycle Jitter	-	150	ps	2
V _{MAX}	Absolute Maximum Input Voltage	-	+1.15	V	1, 7
V _{MIN}	Absolute Minimum Input Voltage	-	-0.3	V	1, 8
Duty Cycle	Duty Cycle	40	60	%	2

Symbol	Parameter	100MHz Input		Units	Note
		Min	Max		
Rise-Fall Matching	Rising Edge Rate (REFCLK+) to Falling Edge Rate (REFCLK-) Matching	-	20	%	1, 14
Z_{C-DC}	Clock Source DC Impedance	40	60	Ω	1, 11

- Note 1: Measurement taken from single-ended waveform.
- Note 2: Measurement taken from differential waveform.
- Note 3: Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fa'l time. The 300mV measurement window is centered on the differential zero crossing. See Figure 20, page 70.
- Note 4: Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-. See Figure 17, page 69.
- Note 5: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 17, page 69.
- Note 6: Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum modulation. See Figure 19, page 69.
- Note 7: Defined as the maximum instantaneous voltage including overshoot. See Figure 17, page 69.
- Note 8: Defined as the minimum instantaneous voltage including undershoot. See Figure 17, page 69.
- Note 9: Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system. See Figure 17, page 69.
- Note 10: Refer to Section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding ppm considerations.
- Note 11: System board compliance measurements must use the test load card described in Figure 23, page 71. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL=2pF.
- Note 12: T_{STABLE} is the time the differential clock must maintain a minimum ± 150 mV differential voltage after rising/falling edges before it is allowed to droop back into the V_{RB} ± 100 mV differential range. See Figure 22, page 71. Note 13: PPM refers to parts per million and is a DC absolute period accuracy specification. 1ppm is $1/1,000,000^h$ of 100.000000MHz exactly, or 100Hz. For 300ppm then we have an error budget of 100Hz/ppm*300ppm=30kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. The ± 300 ppm applies to systems that do not employ Spread Spectrum or that use common clock source. For systems employing Spread Spectrum there is an additional 2500ppm nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of ± 2800 ppm.
- Note 14: Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±/5mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 18, page 69.
- Note 15: Refer to PCI Express Card Electromechanical Specification, rev.1.1, for correct measurement environment setting of each parameter.

Figure 17. Single-Ended Measurement Points for Absolute Cross Point and Swing

Figure 18. Single-Ended Measurement Points for Delta Cross Point

Figure 19. Single-Ended Measurement Points for Rise and Fall Time Matching

Figure 20. Differential Measurement Points for Duty Cycle and Period

Figure 21. Differential Measurement Points for Rise and Fall Time

Figure 22. Differential Measurement Points for Ringback

Figure 23. Reference Clock System Measurement Point and Loading

15. Thermal Characteristics

Heat generated by the chip causes a temperature rise of the package. If the temperature of the chip (Tj, junction temperature) is beyond the design limits, there will be negative effects on operation and the life of the IC package. Heat dissipation, either through a heat sink or electrical fan, is necessary to provide a reasonable environment (Ta, ambient temperature) in a closed case. As power density increases, thermal management becomes more critical. A method to estimate the possible Ta is outlined below.

Thermal parameters are defined as below according to JEDEC standard JESD 51-2, 51-6:

(1) θ ja (Thermal resistance from junction to ambient), represents resistance to heat flow from the chip to ambient air. This is an index of heat dissipation capability. A lower θ ja means better thermal performance.

$$\theta ja = (Tj-Ta)/P$$

Where Tj is the die junction temperature, Ta is the ambient air temperature,

P is the power dissipation by device (Watts)

(2) θ jc (Thermal Resistance Junction-to-Case, °C/W), measures the heat flow resistance between the die surface and the surface of the package (case). This data is relevant for packages used with external heatsinks.

$$\theta jc = (Tj-Tc)/P$$

Where Tj is the die junction temperature, Tc is the package case temperature.

P is the power dissipation by device (Watts)

(3) Yit (Thermal Characterization Parameter: Junction to package top), represents the correlation between the temperature of the chip and the package top.

Where Tj is the die junction temperature, Tt is the top of package temperature.

P is the power dissipation by the device (Watts)

Thermal Terminology

The major thermal dissipation paths can be illustrated as following:

Tj: The maximum junction temperature

Ta: The ambient or environment temperature

Tc: The maximum compound surface temperature

Tb: The maximum surface temperature of PCB bottom

P: Total input power

PQFP Junction to ambient thermal resistance, θ ja, defined as:

$$\theta ja = \frac{TJ - TA}{P}$$

Thermal Dissipation of POFP Package

15.1. Thermal Operating Range

Table 100. Thermal Operating Range

Parameter	SYM	Condition	Min	Тур.	Max	Units
Storage Temperature	-		-55	-	125	°C
Junction Operating Temperature	Tj		0)	125	°C
Ambient Operating Temperature	Та	4-layer FR4 PCB (without heat sink)	0	25	65	°C

Note: PCB conditions (JEDEC JESD51-7). Dimensions: 120mm x 90mm. Thickness: 1.6mm.

15.2. Thermal Parameters

Table 101. Thermal Parameters

Parameter	SYM	Condition	Air Flow	Units
			0 m/s	
Thermal Resistance: Junction to Ambient	θја	4-layer FR4 PCB	43.45	°C/W
Thermal Resistance: Junction to Ambient	θја	2-layer FR4 PCB	48.53	°C/W
Thermal Characterization: Junction to Package Top	Ψjt	4-layer FR4 PCB	2.84	°C/W
Thermal Characterization: Junction to Package Top	Ψjt	2-layer FR4 PCB	2.94	°C/W
Thermal Resistance: Junction to Case	θјс	4-layer FR4 PCB	13.98	°C/W
Thermal Resistance: Junction to Case	θјс	2-layer FR4 PCB	14.29	°C/W

16. Mechanical Dimensions

Low Profile Plastic Quad Flat Package 128 Lead 14x14mm Outline

Symbol	Dimension in mm			Dimension in inch		
)	Min	Nom	Max	Min	Nom	Max
A	- 0	-	1.60	_	-	0.063
A_1	0.05	- (0.15	0.002	-	0.006
A_2	1.35	1.40	1.45	0.053	0.055	0.057
b	0.13	0.13	0.23	0.005	0.007	0.090
D/E		16.00BSC			0.630BSC	
D ₁ /E ₁		14.00BSC			0.551BSC	
e		0.40BSC			0.016BSC	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00REF			0.039REF	

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm).

Note 2: REFERENCE DOCUMENT: JEDEC MS-026.

17. Ordering Information

Table 102. Ordering Information

Part Number	Package	Status
RTL8196E-VEn-CG	Low Profile Plastic Quad Flat Package 128 'Green'	Mass Production
n=1:8M byte DRAM embedded	Package	
n=2:16M byte DRAM embedded		
<i>n</i> =3 : 32M byte DRAM embedded		

Note: See page 5 for package identification information.

Realtek Semiconductor Corp. Headquarters

No. 2, Innovation Road II

Hsinchu Science Park, Hsinchu, 300, Taiwan, R.O.C.

Tel: +886-3-5780211 Fax: +886-3-5776047

www.realtek.com