Class 17: Analyzing Sequencing Data in the Cloud

Zoe Matsunaga (PID: A16853288)

Table of contents

CA	
PC1 vs PC2 in base R	
PCA Plots using ggplot2	
PC1 vs PC2	
PC1 vs PC3	
PC2 vs PC3	

Downstream Analysis

```
library(tximport)

folders <- dir(pattern="SRR21568*")
samples <- sub("_quant", "", folders)
files <- file.path(folders, "abundance.h5")
names(files) <- samples

txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
```

1 2 3 4

head(txi.kallisto\$counts)

	SRR2156848	SRR2156849	SRR2156850	SRR2156851
ENST00000539570	0	0	0.00000	0
ENST00000576455	0	0	2.62037	0
ENST00000510508	0	0	0.00000	0
ENST00000474471	0	1	1.00000	0
ENST00000381700	0	0	0.00000	0
ENST00000445946	0	0	0.00000	0

colSums(txi.kallisto\$counts)

SRR2156848 SRR2156849 SRR2156850 SRR2156851 2563611 2600800 2372309 2111474

sum(rowSums(txi.kallisto\$counts)>0)

[1] 94561

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]</pre>
```

```
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

PCA

```
pca <- prcomp(t(x), scale=TRUE)</pre>
```

summary(pca)

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 183.6379 177.3605 171.3020 1e+00
Proportion of Variance 0.3568 0.3328 0.3104 1e-05
Cumulative Proportion 0.3568 0.6895 1.0000 1e+00

PC1 vs PC2 in base R

PCA Plots using ggplot2

```
pca.df <- data.frame(
    sample = c("SRR2156848", "SRR2156849", "SRR2156850", "SRR2156851"),
    PC1 = pca$x[,1],
    PC2 = pca$x[,2],
    PC3 = pca$x[,3],
    condition = c("control", "control", "treatment", "treatment")
)</pre>
```

PC1 vs PC2

```
library(ggplot2)
ggplot(pca.df, aes(PC1, PC2, color = condition, label = sample)) +
  geom_point() +
  ggrepel::geom_text_repel() +
  labs(x = "PC1", y = "PC2") +
  theme_minimal()
```


PC1 vs PC3

```
ggplot(pca.df, aes(PC1, PC3, color = condition, label = sample)) +
  geom_point() +
  ggrepel::geom_text_repel() +
  labs(x = "PC1", y = "PC3") +
  theme_minimal()
```


PC2 vs PC3

```
ggplot(pca.df, aes(PC2, PC3, color = condition, label = sample)) +
  geom_point() +
  ggrepel::geom_text_repel() +
  labs(x = "PC2", y = "PC3") +
  theme_minimal()
```


Differential Expression Analysis

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

-- note: fitType='parametric', but the dispersion trend was not well captured by the function: y = a/x + b, and a local regression fit was automatically substituted. specify fitType='local' or 'mean' to avoid this message next time.

final dispersion estimates

fitting model and testing

res <- results(dds)
head(res)</pre>

ENST00000445946

log2 fold change (MLE): condition treatment vs control

Wald test p-value: condition treatment vs control

NA

DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENST00000539570	0.000000	NA	NA	NA	NA
ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261
ENST00000510508	0.000000	NA	NA	NA	NA
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
ENST00000381700	0.000000	NA	NA	NA	NA
ENST00000445946	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENST00000539570	NA				
ENST00000576455	NA				
ENST00000510508	NA				
ENST00000474471	NA				
ENST00000381700	NA				