Test di Calcolo Numerico

Ingegneria Informatica 07/02/2012

COGNOME NOME		
Μ	IATRICOLA	
Risposte		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 07/02/2012

1) Determinare la cardinalità dell'insieme dei numeri di macchina $\mathcal{F} = (10, 3, -3.3)$. Nell'insieme \mathcal{F} , determinare la rappresentazione (per arrotondamento) dei numeri

$$\pi = 3.141592653589793\dots$$
 $\frac{1}{\sqrt{2}} = 0.707106781186547\dots$

2) Calcolare il numero di condizione $\mu_2(A)$ della matrice

$$A = \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & -2 & i \\ 0 & 0 & -i & 1 \end{array}\right) .$$

3) La funzione $\phi(x) = x^2 + 2x$ ha due punti fissi dati da $\alpha_1 = 0$ e $\alpha_2 = -1$. Lo schema iterativo

$$x_{n+1} = x_n^2 + 2x_n$$
, $n = 0, 1, \dots$

risulta idoneo ad approssimare tali valori? In caso affermativo, determinarne l'ordine di convergenza.

4) Data la tabella di valori

determinare i valori reali di α per cui il polinomio di interpolazione risulta di grado minimo.

5) Calcolare i pesi della formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{2}\right) + a_1 f\left(\frac{1}{2}\right)$$

che approssima l'integrale $\int_{-1}^{1} x^4 f(x) dx$ in modo da ottenere il massimo grado di precisione. Indicare il grado di precisione ottenuto.

SOLUZIONE

1) La cardinalità dell'insieme dei numeri di macchina è $card(\mathcal{F}) = 900*7*2+1 = 12601$.

Le rappresentazioni richieste sono

$$\pi^* = 0.314 \cdot 10^1 \dots \left(\frac{1}{\sqrt{2}}\right)^* = 0.707 \cdot 10^0.$$

2) La matrice A è hermitiana per cui $\mu_2(A) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}$. Gli autovaloori di A sono $\lambda_{1,2} = 2 \pm \sqrt{5}$, $\lambda_{3,4} = \frac{-1 \pm \sqrt{13}}{2}$ per cui risulta

$$\mu_2(A) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|} = \frac{2 + \sqrt{5}}{\sqrt{5} - 2} = 9 + 4\sqrt{5}.$$

3) Si ha $\phi'(x) = 2x + 2 e \phi''(x) = 2$. Risultando

$$\phi'(0) = 2,$$
 $\phi'(-1) = 0,$ $\phi''(-1) = 2,$

il metodo non assicura la convergenza al punto fisso α_1 mentre si può avere la convergenza al punto fisso α_2 con ordine di convergenza pari a 2.

- 4) Escludendo la coppia di valori che contiene il parametro α si ha il polinomio di interpolazione $P_3(x) = x^3 x^2 + 1$. Per non alzare il grado del polinomio di interpolazione basta porre $\alpha = P_3(-2) = -11$.
- 5) Imponendo che la formula si esatta con f(x) = 1 e f(x) = x, si ottiene $a_0 = a_1 = \frac{1}{5}$. Il grado di precisione è pari a 1 risultando $E_1(x^2) \neq 0$.