

# Design of a continuous wave heavy ion RFQ for BISOL

S. Liu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

#### Introduction



#### **Beijing ISOL**

Beijing Isotope-Seperation-On-Line Neutron-Rich Beam Facility





#### Layout of BISOL project

- The facility aims at both basic science and application goals
- Base on both reactor and accelerator-driven systems
- Radioactive ion beams can be accelerated to 150 MeV/u

# Some heavy-ion RFQs in the world



| Project       | Туре   | Frequency<br>(MHz) | $\frac{Q}{A}$ | Current<br>(emA) | Input/output<br>energy<br>(MeV/u) | Power consumption (kW) | Inter-vane<br>voltage<br>(kV) | Vane<br>length<br>(m) | Kp   | $Q_0$ | Power consumption (kW/m) | Mode | <b>ε</b> <sub>z,rms</sub><br>(pi·mm·mrad) | ε <sub>z,99,9%</sub><br>(pi·mm·mrad) | Buncher |
|---------------|--------|--------------------|---------------|------------------|-----------------------------------|------------------------|-------------------------------|-----------------------|------|-------|--------------------------|------|-------------------------------------------|--------------------------------------|---------|
| GSI-HLI       | 4-rod  | 108.48             | 1/6           | 5                | 0.004/0.3                         | 60                     | 55                            | 1.99                  | -    | -     | 30                       | cw   | 0.49                                      | 2                                    | No      |
| SSC-<br>LINAC | 4-rod  | 53.667             | 1/7           | 0.5              | 0.0035/0.143                      | 31                     | 70                            | 2.51                  | 1.52 | 6560  | 12.4                     | cw   | 0.35                                      | 3.2                                  | Yes     |
| LEAF          | 4-vane | 81.25              | 1/7           | 2                | 0.014/0.5                         | 54                     | 70                            | 5.98                  | 1.55 | 16230 | 9.2                      | cw   | 0.10                                      | 1.41                                 | Yes     |
| FRIB          | 4-vane | 80.5               | 1/7           | 0.45             | 0.012/0.5                         | 100                    | 60-112                        | 5.04                  | 1.6  | 16500 | 20                       | cw   | 0.10                                      | 1.30                                 | Yes     |
| RISP-<br>RAON | 4-vane | 81.25              | 1/7           | 0.4              | 0.01/0.5                          | 93.11                  | 50-140                        | 5                     | 1.7  | 14500 | 18.8                     | cw   | 0.31                                      | -                                    | Yes     |
| SPIRAL2       | 4-vane | 88.05              | 1/3           | 5                | 0.02/0.75                         | 238                    | 100-113                       | 5                     | 1.65 | -     | 47                       | cw   | 0.41                                      | -                                    | No      |
| ATLAS         | 4-vane | 60.625             | 1/7           | 0.4              | 0.03/0.296                        | 52                     | 70                            | 3.8                   | 1.67 | 9873  | 13.7                     | cw   | 0.30                                      | -                                    | Yes     |

#### With an external buncher:

pros: Shorten the length and lower the longitudinal transmittance

cons: Overall transmission efficiency is reduced by 20%

#### Without an external buncher:

pros: High transmission efficiency

cons: Greater length and the longitudinal transmittance

# Requirements for the RFQ design



- High transmission efficiency
- Low beam power loss
- Low peak field strength
- Low cavity power consumption per unit length
- Lower the difficulty of RF design
- High beam quality
- Shorten the length of the RFQ

#### Requirements for the RFQ design

| Parameter                                        | Value                   |
|--------------------------------------------------|-------------------------|
| Reference particle                               | $^{132}\text{Sn}^{22+}$ |
| Q/A                                              | 1/6                     |
| Frequency [MHz]                                  | 81.25                   |
| Input beam energy [MeV/u]                        | 0.003                   |
| Output beam energy [MeV/u]                       | 0.5                     |
| Peak beam current [pmA]                          | 0.1                     |
| Duty factor [%]                                  | 100                     |
| Inter-vane voltage [kV]                          | 70                      |
| Kilpatrick coefficient                           | <1.7                    |
| Input transverse nor. RMS emittance [pi mm·mrad] | 0.25                    |
| Output longitudinal nor.RMS emittance [keV/u·ns] | < 0.50                  |
| Transmission efficiency [%]                      | >95                     |

## RFQ parameters and beam transmission





Plots from top to bottom are the beam profiles in x plane, the beam profiles in y plane, the phase width and energy spread versus cell number, respectively.

Beam transmission along the RFQ

- *a* is the minimum radial aperture
- *m* is the vane modulation factor
- $\omega_s$  is the kinetic energy of the synchronous particle
- $\varphi_s$  is the synchronous phase
- *B* is the radial focusing strength



## Parameters of beam dynamics design



| Parameter                                         | Value                   |                                  |  |
|---------------------------------------------------|-------------------------|----------------------------------|--|
| Particle                                          | $^{132}\text{Sn}^{21+}$ | <sup>132</sup> Sn <sup>22+</sup> |  |
| Frequency [MHz]                                   | 81.25                   |                                  |  |
| Input energy [keV/u]                              | 3                       |                                  |  |
| Output energy [keV/u]                             | 302                     | 504                              |  |
| Input transverse nor. RMS emittance [pi mm·mrad]  | 0.20                    | 0.25                             |  |
| Vane length [mm]                                  | 3660                    | 5604                             |  |
| Maximum peak surface electric field [MV/m]        | 17.31                   | 16.70                            |  |
| Kilpatrick coefficient                            | 1.64                    | 1.58                             |  |
| Minimum aperture radius [mm]                      | 3.66                    | 3.60                             |  |
| Average aperture [mm]                             | 5.63                    | 5.73                             |  |
| Synchronous phase [deg]                           | -90~-25                 | -90~-25                          |  |
| Modulation factor                                 | 1.95                    | 2.07                             |  |
| Output transverse nor. RMS emittance [pi mm·mrad] | 0.19                    | 0.19                             |  |
| Output longitudinal nor. RMS emittance [keV/u·ns] | 0.31                    | 0.20                             |  |
| Transmission efficiency [%] @elimit=1.5MeV        | 98.1                    | 95.6                             |  |

Initial design

With an external buncher

## Comparison at the entrance of the RFQ





| Parameter                     | Without<br>buncher | Buncher       | Unit    |  |
|-------------------------------|--------------------|---------------|---------|--|
| Input transverse $\alpha_i$   | 0.758/0.758        | 0.791/0.783   | -       |  |
| Input transverse $\beta_i$    | 0.0258/0.0258      | 0.0253/0.0261 | mm/mrad |  |
| $\mathcal{E}_{x,norm,rms}$    | 0.25               | 0.20          | mm∙mrad |  |
| $\varepsilon_{y,norm,rms}$    | 0.25               | 0.20          | mm∙mrad |  |
| $\mathcal{E}_{z,rms}$         | 0                  | 0.20          | deg·MeV |  |
| $\varepsilon_{x,norm,99.9\%}$ | 1.45               | 1.19          | mm∙mrad |  |
| ε <sub>y,norm,99.9%</sub>     | 1.45               | 1.28          | mm∙mrad |  |
| ε <sub>z,99.9%</sub>          | -                  | 3.36          | deg·MeV |  |

## Comparison at the exit of the RFQ





### Beam transmission with different codes



| Parameters                             | Parmteqm               | TraceWin      | Impact-T   | Unit    |  |  |
|----------------------------------------|------------------------|---------------|------------|---------|--|--|
| Macro-particle number                  |                        | 46152         |            | -       |  |  |
| Beam current                           |                        | 2.2           |            | emA     |  |  |
| Input transverse $\alpha_i$            |                        | -             |            |         |  |  |
| Input transverse $\beta_i$             |                        | 0.0253/0.0261 |            |         |  |  |
| Input nor. rms emittance               |                        | mm∙mrad       |            |         |  |  |
| Input nor. rms longitudinal emittance  |                        | 0.20          |            | deg·MeV |  |  |
| Output energy                          | 66.67                  | 66.55         | 66.66      | MeV     |  |  |
| Output transverse $\alpha_o$           | 1.30/-1.26             | 1.38/-1.23    | 1.30/-1.16 | -       |  |  |
| Output transverse $\beta_o$            | 0.24/0.21              | 0.26/0.21     | 0.26/0.21  | mm/mrad |  |  |
| Output nor. rms transverse emittance   | 0.19/0.19              | 0.19/0.19     | 0.20/0.21  | mm∙mrad |  |  |
| Output longitudinal $\alpha_o$         | -0.07                  | -0.003        | -0.05      | -       |  |  |
| Output longitudinal $eta_o$            | 29.85                  | 27.86         | 26.69      | deg/MeV |  |  |
| Output nor. rms longitudinal emittance | 0.77                   | 0.94          | 0.95       | deg·MeV |  |  |
| Output longitudinal emittance @99.9%   | 20.50                  | 20.44         | 23.42      | deg·MeV |  |  |
| Transmission efficiency                | 95.6<br>@elimit=1.5MeV | 92.8(Acc.)    | 93.3(Acc.) | %       |  |  |

## Beam loss-TraceWin



• The beam loss mainly occurs between the 100th to 180th unit, which belongs to the gentle buncher section. At this time, the beam energy is low, and the maximum beam loss power consumption is about 2W.





Cell Number

# Errors study





The results of error analysis show that this design is not very sensitive deviations from the ideal input beam parameters.

#### Multi-charge-state beams acceleration-Impact-T





Phase space of multi-charge-state beams at the exit of the RFQ

| Parameters                             | <sup>132</sup> Sn <sup>21+</sup> | $^{132}\mathrm{Sn}^{22+}$ | <sup>132</sup> Sn <sup>23+</sup> | Unit    |
|----------------------------------------|----------------------------------|---------------------------|----------------------------------|---------|
| Output energy                          | 66.48                            | 66.59                     | 66.56                            | MeV     |
| Output nor. rms longitudinal emittance |                                  | 2.13                      |                                  | deg·MeV |
| Output longitudinal emittance @99.9%   |                                  | keV/u·ns                  |                                  |         |
| Output longitudinal emittance @99.0%   |                                  |                           |                                  |         |
| Ass Efficiency @slimit=1.5MsV          | 93.1                             | 93.4                      | 93.6                             | 0/      |
| Acc. Efficiency @elimit=1.5MeV         |                                  | 93.4                      |                                  | %       |