

DETERMINATION OF COEFFICIENT OF FRICTION THROUGH STICK-SLIP METHOD

· sim: Determination of friction (Dry and dubricated) through slip stick method

Theory: Friction is the contact resistance of an ediject egainst the force of motion. A distinction is made between static friction (friction at impending motion) and kinetic piction (friction during motion) of an object does not move under application of a force, this means. that static fuction is present. The object remains stationary until the force searches a limiting value, whereupon the object will then begin to slide as shown static friction is calculated on the basis of the following formula:

FH = MON

of the object begins to slide, FH will fall to Fa Sliding friction is calculated as follows:

FG = UKN

PROCEDURE: (1) Placed weights on the restating disc

- (2) Adjusted the speed using speed controller in the control panel
- (3) Observed the disc motion. Recorded value at which the

· Observation Table:

- Without Subvicant

SL. No.	SPEED	15 rpm		20 rpm		25 rpm	
	LOAD	Static (N)	Kinetic (N)	static (N)	Kinetic (N)	statio (N)	Kinetic (N)
1	5 N	2.45	2.35	2.45	2.40	2.50	2.40
2	10 14	3.05	3.05	3.30	3.20	3.70	3.60
3	15 N	5.15	2.55	5.05	4.00	5.50	2.80

with dubricant

SL. No.	SPEED	15 rpm		20 rpm		25 rpm	
		static (N)	Kinetic (N)	static (N)	Kinetic (N)	static (N)	Kinetic (N)
1	5 N	2.65	2.30	2.65	2.45	2-90	2.80
2	10 N	3.35	3-05	3.35	3.05	3.30	3.15
3	15 N	5.90	2.40	6.70	3-65	6-70	2.45

calculations:

· -	- without a	ubricant	(u value	()			
SL.	SPEED	15 rpm		20 rpm		25 rpm	
No.	LOAD	us	uk	યદુ	UK	યુ	uk
1	5 N	0.49	0.47	0-49	0-48	0.5	0.48
2	10 11	0.305	0.305	0.33	0-32	0.37	0.36
3	15 N	0.343	0.17	0-336	0-267	0.367	0.187

We have,
$$F_H = U_S N$$
 $F_G = U_K N$ $F_G = 0.47$

$$\frac{F_{G} = \mathcal{L}_{k} N}{\Rightarrow \mathcal{L}_{k} = \frac{F_{G}}{N} = \frac{2.35}{5} = 0.47$$

similarly, other readings are calculated

15/0/16 XPT. NO.

disc is pulled back by the spring force, also executed the value during notating motion of disc

- 1) Repeated several times in order to exclude the possibility of measurement serious
- 5) Increased load or speed and repeated.

discussions:

- 1) From the table it is closely seen that static fecition is higher than the kinematic friction.
- 2) Dynamic feriction decenases with capplication of bubicant
- by elimination of contact resistance 3) By increasing load, the coefficient of dynamic friction
- 4) The sofficient of states and kinematic fuiction changes with speed

Result: The coefficients of dynamic friction declarates with sphlication of dubricante

Relevant lycaphs on West Page

PIONEER®

