Lineární Algebra 2 - NMAI058

LS 2019/2020

Mgr. Pavel Hubáček, Ph.D.

25. 2. 2020

https://iuuk.mff.cuni.cz/~hubacek/LA2

1. přednáška

- skalární součin
- norma indukovaná skalárním součinem
- kolmost Pythagorova věta
- Cauchyho-Schwarzova nerovnost
- trojúhelníková nerovnost
- norma

Dnes

ortonormální báze + ortogonální doplněk

Definice 8.15 - Norma

Buď V vektorový prostor nad $\mathbb R$ resp. $\mathbb C$.

Pak norma je zobrazení $\|\cdot\|\colon V\to\mathbb{R}$, splňující $\forall x,y\in V$ a $\forall \alpha\in\mathbb{R}$ resp. $\forall \alpha\in\mathbb{C}$:

- 1. $||x|| \ge 0$ a rovnost nastane pouze pro x = 0,
- $2. \|\alpha x\| = |\alpha| \cdot \|x\|,$
- 3. $||x + y|| \le ||x|| + ||y||$.

Tvrzení 8.16 - Norma indukovaná skalárním součinem

Norma indukovaná skalárním součinem je normou.

Příklady norem v \mathbb{R}^n

Pro $p=1,2,\ldots$ definujeme p-normu vektoru $x\in\mathbb{R}^n$ jako

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$
.

• pro p = 2: eukleidovská norma

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
,

• pro p=1: součtová norma

$$||x||_1 = \sum_{i=1}^n |x_i|$$
,

ullet pro $p=\infty$: maximová (Čebyševova) norma

$$||x||_{\infty} = \max_{i=1,\ldots,n} |x_i|.$$

Pozorování 8.20 - Rovnoběžníkové pravidlo

Pro normu indukovanou skalárním součinem platí:

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$$
.

Důsledek pro součtovou a maximovou normu

- Součtová a maximová norma nejsou indukovány žádným skalárním součinem.
- Nesplňují rovnoběžníkové pravidlo například pro $(1,0)^T$ a $(0,1)^T$.

Definice 8.21 - Metrika

Metrika na množině M je zobrazení $d: M^2 \to \mathbb{R}$, splňující pro všechna $x, y, z \in M$:

- 1. $d(x,y) \ge 0$ a rovnost nastane pouze pro x = y,
- 2. d(x, y) = d(y, x),
- 3. $d(x,z) \le d(x,y) + d(y,z)$.

Metrika indukovaná normou

- Každá norma indukuje metriku d(x, y) := ||x y||.
- Naopak tato diskrétní metrika není indukována žádnou normou:

$$d(x,y) = \begin{cases} 1, & \text{pro } x \neq y, \\ 0, & \text{pro } x = y. \end{cases}$$

5

Ortonormální báze

Definice 8.24 - Ortogonální a ortonormální systém

Systém vektorů z_1, \ldots, z_n je ortogonální, pokud $\langle z_i, z_j \rangle = 0$ pro všechna $i \neq j$.

Systém vektorů z_1,\ldots,z_n je ortonormální, pokud je ortogonální a $\|z_i\|=1$ pro všechna $i=1,\ldots,n$.

Příklady

- Každý ortogonální systém lze znormalizovat.
- V \mathbb{R}^n je ortonormální systém například kanonická báze.
- V \mathbb{R}^2 tvoří ortonormální systém vektory $\frac{\sqrt{2}}{2}(1,1)^T$, $\frac{\sqrt{2}}{2}(1,-1)^T$.

Tvrzení 8.26 - Ortonormalita a lineární nezávislost

Je-li systém vektorů z_1, \ldots, z_n ortonormální, pak je lineárně nezávislý.

Tvrzení 8.27 - Fourierovy koeficienty

Buď z_1,\ldots,z_n ortonormální báze prostoru V. Pak pro každé $x\in V$ platí

$$x = \sum_{i=1}^{n} \langle x, z_i \rangle z_i .$$

Poznámky

- Vyjádření $x = \sum_{i=1}^{n} \langle x, z_i \rangle z_i$ nazýváme Fourierův rozvoj x.
- Skaláry $\langle x, z_i \rangle$, i = 1, ..., n se nazývají Fourierovy koeficienty x.
- Vektor $\langle x, z_i \rangle z_i$ je kolmá projekce x na span $\{z_i\}$.

Gramova-Schmidtova Ortogonalizace

Vstup: $x_1, \ldots, x_n \in V$ lineárně nezávislé.

- 1. for k := 1 to n do
- 2. $y_k \coloneqq x_k \sum_{j=1}^{k-1} \langle x_k, z_j \rangle z_j$, //nalezneme kolmici
- 3. $z_k \coloneqq \frac{1}{\|y_k\|} y_k$, //normalizujeme délku na 1
- 4. end for

Výstup: z_1, \ldots, z_n ortonormální báze prostoru span $\{x_1, \ldots, x_n\}$.

Důsledky Gramovy-Schmidtovy Ortogonalizace

Důsledek 8.32 - Existence ortonormální báze

Každý konečně generovaný prostor (se skalárním součinem) má ortonormální bázi.

Důsledek 8.33 - Rozšíření ON systému na ON bázi

Každý ortonormální systém vektorů v konečně generovaném prostoru lze rozšířit na ortonormální bázi.

Ortogonální doplněk

Definice 8.38 - Ortogonální doplněk

Buď V vektorový prostor a $M\subseteq V$. Pak ortogonální doplněk M je

$$M^{\perp} := \{x \in V; \langle x, y \rangle = 0 \ \forall y \in M\}$$
.

Tvrzení 8.40 - Vlastnosti ortogonálního doplňku množiny

Buď V vektorový prostor a $M,N\subseteq V$. Pak

- 1. M^{\perp} je podprostor V,
- 2. je-li $M\subseteq N$ pak $M^\perp\supseteq N^\perp$,
- 3. $M^{\perp} = \operatorname{span}(M)^{\perp}$.

Tvrzení 8.41 - Vlastnosti ortogonálního doplňku podprostoru

Buď U podprostor vektorového prostoru V. Potom platí:

- 1. Je-li z_1,\ldots,z_m ortonormální báze U, a je-li $z_1,\ldots,z_m,z_{m+1},\ldots,z_n$ její rozšíření na ortonormální bázi V, pak z_{m+1},\ldots,z_n je ortonormální báze U^\perp .
- 2. $\dim V = \dim U + \dim U^{\perp}$,
- 3. $V = U + U^{\perp}$,
- 4. $(U^{\perp})^{\perp} = U$,
- 5. $U \cap U^{\perp} = \{o\}.$

2. přednáška - shrnutí

- ortonormální báze
 - Fourierovy koeficienty
 - Gramova-Schmidtova ortogonalizace
- ortogonální doplněk

Příští přednáška

ortogonální projekce