Grounding

CMSC 723 / LING 723 / INST 725

Hal Daumé III [he/him]

21 Nov 2019

Announcements, logistics

- Exam (grading released just now) statistics
 - Late: rob_min=35, rob_max=95, median=82, mean=77 (does not include make-up)
 - Early: rob_min=57, rob_max=98, median=86, mean=84
 - Remember: early worth 10% of grade, late worth 15% of grade
- Homework 4/5:
 - HW4-programming
 - HW5-written
 - Both out tomorrow
- P4 due Dec 3

Last time

- Semantic parsing from denotations
 - Assume predicates in domain are known
 - Given (sentence, validation) pairs, learn a good parser
 - That maps sentence → logical form
 - With deterministic logical form → validation
 - Key challenges:
 - Where does the lexicon come from
 - How do you learn when you only have denotations and not full parses
 - Idea:
 - Guess and check

Today

- Grounding
 - Relationship between linguistic symbols and stuff in the real world
- Spatial language
 - Relationships between objects in the world
- Implicit vs explicit communication

Semantic parsing of instructions

Yoav Artzi and Luke Zettlemoyer

Very strong assumption: predicates

- Very common in semantics:
 - "chair" means CHAIR
 - "walk" means WALK
 - "dog" means DOG
 - "blue" means BLUE
 - ...

Imp.: move from the sofa to the chair

LF: $\lambda a.move(a) \wedge to(a, \iota x.chair(x)) \wedge$

 $from(a, \iota y.sofa(y))$

- The smallcaps predicates are assumed known ahead of time
- (Some work even assumes that these are spelled similarly)

In some cases this makes sense

- Natural language interfaces to databases
 - You know the rows/columns of the db
 - You know SQL
 - Only challenge is to learn that "chair" means CHAIR (rather than, eg, BLUE)
- Execution of commands in a computational environment
 - TODO Regina paper
 - TODO web navigation

So... what is the meaning of "blue"?

• Option 1: "blue" means λx . r382328(x) for some fixed predicate r382328

- Option 2: "ground" language in more language
 - Monolingual via distributed representations:
 - "blue" means [1.815, 0.938, 0.312, -0.319, -0.019,, 0.414, 0.485, 1.023, -0.451, 0.443]
 - Multilingual via translations:
 - "blue" means { }
- Option 3: ground language in perception
 - "blue" means λx . $H_{blue}(x)$ for some classifier H_{blue} that we can learn

Classifier-based grounding

Data/interaction

Figure 3. Example scenes presented on Mechanical Turk. Left: A scene that elicited the descriptions "here are some red things" and "these are various types of red colored objects", both labeled as $\lambda x.color(x,red)$. Right: A scene associated with sentence/meaning pairs such as "this toy is orange cube" and $\lambda x.color(x, orange) \wedge shape(x, cube)$.

Possible worlds model

G = set of objects

O = scene

w = possible world (set of classifier outputs in {T,F})

z = logical forms

$$P(G \mid x, O) = \sum_{z} \sum_{w} P(G, z, w \mid x, O)$$

$$P(G, z, w \mid x, O) = P(z \mid x)P(w \mid O)P(G \mid z, w)$$

Challenge: learning new predicates

 Get people to label objects or scenes with language

 Hypothesize new classifiers for each new formal expression

Language + Vision combo helps

	Precision	Recall	F1-Score
Vision	0.92	0.41	0.55
Language	0.52	0.09	0.14
Joint	0.82	0.71	0.76

• The ablations mean "don't update that part of the model during learning"

Where do you get negative examples

- "This is a lemon" does not mean it's not yellow
- Baselines: All/random other objects not identified
- Core idea: only negative-train on "similar" items (e.g., "apple")

Challenges

- Some things are hard to ground out....
 - What do $H_{freedom}(x)$ and $H_{justice}(x)$ look like and how are they trained?
- Some things depend on broader pragmatic context
 - $H_{above}(x, y)$?

Some other related grounding stuff

Phenomenon	Overall		Example from TOUCHDOWN					
	c	μ	Security Production (1997) Association (1997) And Colored Colo					
Reference to unique entity	25 10.7		You'll pass three trashcans on your left					
Coreference	22	2.4	a brownish colored brick building with a black fence around it					
Comparison	6	0.3	The bear is in the middle of the closest tire.					
Sequencing	22	1.9	Turn left at the next intersection					
Count	11	0.5	there are two tiny green signs you can see in the distance					
Allocentric spatial relation	25	2.9	There is a fire hydrant, the bear is on top					
Egocentric spatial relation	25	4.0	up ahead there is some flag poles on your right hand side					
Imperative	25	5.3	Enter the next intersection and stop					
Direction	24	3.7	Turn left. Continue forward					
Temporal condition	21	1.9	Follow the road until you see a school on your right					
State verification	21	1.8	You should see a small bridge ahead					

TOUCHDOWN: Natural Language Navigation and Spatial Reasoning in Visual Street Environments

Howard Chen* ASAPP Inc. New York, NY

hchen@asapp.com

Alane Suhr Dipendra Misra Noah Snavely Yoav Artzi Department of Computer Science & Cornell Tech, Cornell University New York, NY

{suhr, dkm, snavely, yoav}@cs.cornell.edu

Grounding with dialog

- Assumed data:
 - Instructional web pages
 - Examples of user intents

Lightly Supervised Learning of Procedural Dialog Systems

Svitlana Volkova CLSP Johns Hopkins University Baltimore, MD svitlana@ihu.edu

NLP Group
Microsoft Research
Redmond, WA
pallavic, chrisq,

Pallavi Choudhury, Chris Quirk, Bill Dolan

pallavic, chrisq, billdol@microsoft.com

Luke Zettlemoyer

Computer Science and Engineering University of Washington Seattle, WA

lsz@cs.washington.edu

U: "I want to add page numbers and a title"

S: "Top or Bottom of the page?"

U: "Top"

S: "Please select page design from the templates" (*System shows drop down menu*)

U: *User selects from menu*

S: "Enter header or footer content"

U: "C.V."

S: "Task completed."

Figure 1: An example dialog interaction between a system (S) and user (U) that can be automatically achieved by learning from instructional web page and query click logs.

Grounding with dialog

Build dialog trees from instructions

Automatically Constructed Dialog Tree

Grounding with dialog

Understanding initial queries

Grounding spatial language

Grounding Spatial Language in Perception: An Empirical and Computational Investigation

Terry Regier University of Chicago Laura A. Carlson University of Notre Dame

(Other)

Models of above(x,y)

- Bounding box: above highest point, use betweenness of left-/right-most points
- Proximal/CoM: use angle between CoM of LM and TR
- Hybrid: take CoM model, then apply height as a feature
- Attention Vector-Sum model:
 - Human judgments involve *attention*: where the person focuses
 - Direction is represented as a vector sum of a set of constituent directions (neuro)

Bounding box model

(a)

CoM Model

8.1 7.2	7.2 7.8	9.0 ⊗ 8.8 ●	9.0 8.9	9.0 8.9	8.6 8.4	8.7 8.5	8.0 8.0 8	7.5 © 7.7
3.5	3.5			5.3	5.6	5.7	5.3	4.2
0	0			•	•	•	0	0
2.7	2.6			4.6	5.0	4.6	4.2	3.8
0	8				4.5		30	0
2.2	2.4	<u> 28</u>		5.2	4.5	5.0	3.0	3.1
				•	•	•		0.00
1.4	1.6						1.7	1.3
l _o l	1,1						14	14
.2	.6	.2	.2	.1	.1	.1	.3	.4
.2	0	0	0	0	0	0	0	0
.2	.2	.2	.1	.1	.2	.1	.2	.2

Models of above(x,y)

- Bounding box: above highest point, use betweenness of left-/right-most points
- Proximal/CoM: use angle between CoM of LM and TR
- Hybrid: take CoM model, then apply height as a feature
- Attention Vector-Sum model:
 - Human judgments involve *attention*: where the person focuses
 - Direction is represented as a vector sum of a set of constituent directions (neuro)

Fit of models to data

	Parameter value				
Model parameter	Logan & Sadler (1996)	Experiment 7			
ВВ					
Gain on left-right sigmoids	0.109	0.065			
Gain on top sigmoid	0.066	0.373			
Exponent for left-right sigmoids	0.062	0.220			
PC					
α , relative weight of P and C	0.500	0.174			
y-intercept of alignment function	0.969	0.929			
Slope of alignment function	-0.005	-0.006			
Gain on sigmoid PC-BB	0.112	3.265			

Parameter Settings for Each Model

Model Fits to Above Data From Logan and Sadler (1996)							
Model	R ²	Adj R ²	Slope	y-intercept			
вв	.904	.897	0.907	0.038			
PC	.959	.955	1.011	-0.024			
PC-BB	.963	.959	1.030	-0.036			
AVS	.963	.959	1.030	-0.036			

Fits to lots more data examples

Model Fits to Data from E	xperiments 1-7, Broken	ı Down by Landmark Si	ape
---------------------------	------------------------	-----------------------	-----

Model Fits to Data from Experim	ents 1	7, D 10	cen Dow	n by Lanam	t onape							
Model	R^2	Adj R ²	Slope	y-intercept	Model	R^2	Adj R ²	Slope	y-intercept			
Experiment 1 Tall rectangle (24 data points) BB PC PC-BB AVS Wide rectangle (24 data points) BB PC	.982 .963 .995 .996	.979 .955 .994 .995	0.945 0.975 1.075 1.088 0.981 0.989	-0.387 0.073 -0.616 -0.614 -0.076 0.202	Experiment 5 L shape (65 data points) BB PC PC-BB AVS Experiment 6 Tall triangle (31 data points) BB	.943 .862 .943 .976	.941 .853 .940 .975	0.960	_	Adj	G 1	• • • • • • • •
Composite	· (33	7	data	points)			L	R ²	R ²	Slope	y-intercept
BB					F ,				.953	.952	1.007	-0.242
PC									.910	.909	0.926	0.443
PC-BB									.959	.958	1.01	-0.450
AVS									.970	.970	1.031	-0.439

PC-BB	.992	.992	1.024	-0.431	critical points only				
AVS	.993	.992	1.017	-0.407	(14 data points)				
Experiment 4					BB	.784	.719	1.635	-5.103
Upright triangle (4 data points)					PC	.400	.133	0.428	4.552
BB	.963		1.048	0.212	PC-BB	.367	.086	0.243	6.015
PC	.967		0.697	2.373	AVS	.888	.838	1.138	-1.287
PC-BB	.993		1.485	-3.723	Composite (337 data points)				
AVS	.991		1.402	-2.859	BB	.953	.952	1.007	-0.242
Inverted triangle (4 data points)					PC	.910	.909	0.926	0.443
ВВ	.999		1.102	-0.329	PC-BB	.959	.958	1.01	-0.450
PC	.987		1.037	-0.161	AVS	.970	.970	1.031	-0.439
PC-BB	.986		1.150	-0.909					
AVS	.990		1.150	-0.907					

Some more recent stuff on spatial language

Item 1

Someone shows you this configuration and asks you to "add a block"

Which of these configurations do they probably have in mind?

Item 2

Someone shows you this configuration and asks you to "add a block"

Which of these configurations do they probably have in mind?

Some more recent stuff on spatial language

BUILDER

(Builder) fin okay, I see

CHAT INTERFACE

Architect: in about the middle build a column five tall

(Builder puts down five orange blocks)

Architect: then two more to the left of the top to make

a 7

(Builder puts down two orange blocks)

Architect: now a yellow 6

Architect: the long edge of the 6 aligns with the stem

of the 7 and faces right

Builder: Where does the 6 start?

Architect: behind the 7 from your perspective

Builder: Is it directly adjacent?

Architect: yes directly behind it. touches it

(Builder puts down twelve yellow blocks, in the shape of a 6)

Architect: too much overlap unfortunately

Architect: the column of the 6 is right behind the

column of hte 7

Collaborative Dialogue in Minecraft

Grounding based on pragmatics

Review

Pragmatic Language Interpretation as Probabilistic Inference

Noah D. Goodman^{1,*} and Michael C. Frank¹

Grounding based on pragmatics in teams

Human-Al teams

Today

- Grounding
 - Relationship between linguistic symbols and stuff in the real world
- Spatial language
 - Relationships between objects in the world
- Implicit vs explicit communication