Curso de Problemas Inversos (CAP-340-3)

Lourenço José Cavalcante Neto Instituto Nacional de Pesquisas Espaciais Professor: Prof. Dr. Haroldo Fraga de Campos Velho

13 de dezembro de 2024

Solução detalhada do problema direto descrito na proposta de atividade recebida

Introdução

Neste relatório, apresento a solução do problema direto de condução de calor em uma barra metálica com extremidades isoladas. O objetivo principal é determinar a evolução da temperatura ao longo da barra a partir de condições iniciais f(x). Para avaliar a precisão dos cálculos, ruído uniforme é adicionado às temperaturas simuladas para simular medições ruidosas. É relevante destacar que foram realizados diversos cálculos manuais (papel/caneta), até que eu chegasse em um ponto de partida para a solução procurada, e depois busquei transcrever os resultados para este documento, sendo o mais fiel possível nos detalhes. Os parâmetros do problema são:

• Comprimento da barra: $L_x = 1.0 \,\mathrm{m}$,

• Passo espacial: $\Delta x = 0.1 \,\mathrm{m}$,

• Difusividade térmica: $\alpha = 0.01 \,\mathrm{m}^2/\mathrm{s}$,

• Passo temporal: $\Delta t = 1 \times 10^{-4} \,\mathrm{s}$,

• Tempo total: $\tau = 0.01 \,\mathrm{s}$,

• Número de Courant:

$$r = \frac{\alpha \Delta t}{\Delta x^2} = \frac{0.01 \cdot 10^{-4}}{(0.1)^2} = 0.01.$$

1 Discretização espacial

O comprimento da barra é $L_x = 1$ m e as extremidades da barra estão isoladas, ou seja, não há troca de calor entre a barra e o ambiente. Dividimos a barra em 11 pontos (com $\Delta x = 0.1$):

$$x = \{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}.$$

Os valores iniciais de temperatura (condição inicial) T(x,0) foi dada por:

$$f(x) = \sin(\pi x).$$

As condições de contorno são dadas por:

$$\left.\frac{\partial T(x,t)}{\partial x}\right|_{x=0}=0\quad \mathrm{e}\quad \left.\frac{\partial T(x,t)}{\partial x}\right|_{x=L_x}=0.$$

Assim, as condições de contorno nas extremidades apontam que as temperaturas as extremidades como sendo x=0 e $x=L_x$, com o fluxo de calor mantido igual a zero, já que $\frac{\partial T(x,t)}{\partial x}=0$ nas extremidades, conforme especificado.

$$T(0,t) = 0$$
 e $T(1,t) = 0$ para todos os tempos t.

Logo, nas posições x=0 e x=1.0, temos $T_{\rm mod}=0$. Após isso, foram realizados os cálculos para o interior da barra. Para os pontos internos da barra, a temperatura varia ao longo do tempo de acordo com o método de diferenças finitas.

Com isso, os valores iniciais obtidos com $T_i^0 = \sin(\pi x_i)$ estão listados na tabela abaixo.

i	x_i	T_i^0
0	0.0	0.0000
1	0.1	0.3090
2	0.2	0.5878
3	0.3	0.8090
4	0.4	0.9511
5	0.5	1.0000
6	0.6	0.9511
7	0.7	0.8090
8	0.8	0.5878
9	0.9	0.3090
10	1.0	0.0000

Table 1: Valores iniciais $T_i^0 = \sin(\pi x_i)$.

2 Fórmula explícita de atualização

Foi utilizada a fórmula de diferenças finitas explícitas para calcular a temperatura T_i no tempo $t = \Delta t$:

$$T_i^{n+1} = T_i^n + r \left(T_{i-1}^n - 2T_i^n + T_{i+1}^n \right),$$

onde:

- T_i^n : Temperatura no ponto i e tempo n,
- T_{i-1}^n e T_{i+1}^n : Temperaturas nos vizinhos à esquerda e à direita no tempo n,
- r = 0.01.

3 Os cálculos manuais realizados para o primeiro passo $(t = \Delta t)$

1. Cálculo em $x = 0.1 \ (i = 1)$:

$$T_1^1 = T_1^0 + r \left(T_0^0 - 2T_1^0 + T_2^0 \right).$$

Substituindo os valores:

$$T_1^1 = 0.3090 + 0.01 (0.0000 - 2(0.3090) + 0.5878).$$

$$T_1^1 = 0.3090 + 0.01(-0.0302) = 0.3087.$$

2. Cálculo em $x = 0.2 \ (i = 2)$:

$$T_2^1 = T_2^0 + r \left(T_1^0 - 2T_2^0 + T_3^0 \right).$$

Substituindo os valores:

$$T_2^1 = 0.5878 + 0.01 (0.3090 - 2(0.5878) + 0.8090).$$

$$T_2^1 = 0.5878 + 0.01 (-0.0576) = 0.5872.$$

Através do método explícito de diferenças finitas, foi realizada a **primeira iteração** para encontrar a temperatura T em $t=\Delta t$. Esse processo foi repetido para os passos temporais subsequentes até $t=\tau=0.01\,s$. Ou seja, foi realizado o calculo dos valores de temperatura T_i^1 para todos os pontos usando T_i^0 . Os resultados foram:

i	T_i^0	T_i^1
0	0.0000	0.0000
1	0.3090	0.3087
2	0.5878	0.5872
3	0.8090	0.8082
4	0.9511	0.9501
5	1.0000	0.9990
6	0.9511	0.9501
7	0.8090	0.8082
8	0.5878	0.5872
9	0.3090	0.3087
10	0.0000	0.0000

Table 2: Valores após o primeiro passo de tempo.

Função objetivo

Para resolver o problema inverso, minimizei a função:

$$J(f) = \sum_{j=1}^{N_j} (T_j^{\text{Obs}} - T_j^{\text{Mod}}(f))^2 + \beta \sum_{j=1}^{N_j} f^2(x_j),$$

controlando a suavidade da solução com o parâmetro $\beta.$

A tabela a seguir apresenta os valores de T_{mod} e T_{obs} para diferentes posições x_i ao longo da barra.

Posição x (m)	$T_{\rm mod}$ (Temperatura simulada)	$T_{\rm obs}$ (Temperatura observada)
0.00	0.0000	0.0000
0.10	0.3090	0.3198
0.20	0.5878	0.6182
0.30	0.8090	0.8324
0.40	0.9511	0.9617
0.50	1.0000	0.9805
0.60	0.9511	0.9543
0.70	0.8090	0.7912
0.80	0.5878	0.6020
0.90	0.3090	0.3171
1.00	0.0000	0.0000

Table 3: Solução do modelo direto $T_{\rm mod}$ e as observações sintéticas $T_{\rm obs}$ para diferentes posições x ao longo da barra.

A tabela acima mostra a temperatura simulada ao longo da barra para o tempo $t=0.01\,\mathrm{s},\,\mathrm{e}$ a temperatura observada, que é obtida ao adicionar ruído uniforme $\mu\in[-1,1]$ à temperatura simulada.

O próximo foi utilizar as observações sintéticas para realizar a otimização da condição inicial utilizando algoritmos genéticos, com o objetivo de estimar a condição inicial que melhor explica as medições de temperatura.

O Algoritmo Genético (AG)

Esta etapa da atividade foi realizada em Notebook do tipo Python, em que um Algoritmo Genético foi empregado seguindo os seguintes passos:

- 1. Inicialização da População: 200 candidatos f(x) foram gerados aleatoriamente.
- 2. Avaliação: A função objetivo J(f) foi calculada para cada indivíduo da população.
- 3. Seleção: Os 30% melhores indivíduos foram selecionados com base nos menores valores de J(f).

- 4. **Cruzamento e Mutação:** Novos indivíduos foram gerados aplicando operadores genéticos de cruzamento e mutação sobre os indivíduos selecionados.
- 5. **Iteração:** O processo foi repetido até atingir a convergência da função objetivo ou o número máximo de gerações.

A implementação completa dos algoritmos foi realizada em um ambiente de Python Notebook. O código fonte com resulatdos e os gráficos gerados estão disponíveis no GitHub ou Colab através dos links GitHub: https://github.com/lourencocavalcante/CAP-340-Problemas-Inversos e Google Colab: https://colab.research.google.com/drive/1Sk0BWm19MKv524pjbXnvpSZSNYb0QR1g?authuser=1#scrollTo=GSAtbNVqpUn_.