



MODEL: MTB001D01-1

Ver. 1.1

Date: 15.Nov.2012

| <b>Customer's Approval</b> | CSOT                         |      |
|----------------------------|------------------------------|------|
| Signature Date             | Approved By Product Director | Date |
|                            | Name:                        |      |
|                            | Signature:                   |      |
|                            |                              |      |
|                            | Reviewed By PM Manager       | Date |
|                            | Name: Thorold                |      |
|                            | Signature:                   |      |
| · ·                        | Reviewed By Project Leader   | Date |
| · · ·                      | Name: Makka Lin              |      |
|                            | Signature:                   |      |
|                            | Reviewed By PM               | Date |
|                            | Name: Yuming Mo              |      |
|                            | Signature:                   |      |



# **Contents**

| Revision History                                                    | 4  |
|---------------------------------------------------------------------|----|
| 1. General Description                                              | 5  |
| 1.1 Product Features                                                | 5  |
| 1.2 Overview                                                        | 5  |
| 1.3 General Information                                             | 5  |
| 2. Absolute Maximum Ratings                                         | 6  |
| 2.1 Absolute Maximum Ratings (TA = $25 \pm 2$ °C)                   | 6  |
| 2.2 Environment Requirement                                         |    |
| 2.3 Package Storage                                                 | 7  |
| 3. Electrical Specification                                         | 8  |
| 3.1 Electrical Characteristics                                      |    |
| 3.1.1 Power Consumption (TA = $25 \pm 2$ °C)                        | 8  |
| 3.1.2 TMDS Characteristics                                          | 8  |
| 3.2 Backlight Converter Unit                                        | 10 |
| 3.2.1 LED Converter Electrical Characteristics (TA = $25 \pm 2$ °C) |    |
| 3.2.2 LED Converter Power Sequence                                  | 11 |
| 4. Electrical Block Diagram.                                        | 12 |
| 5. Input Terminal Pin Assignment                                    |    |
| 5.1 TFT LCD Module                                                  |    |
| 5.1.1 Signal Input Connector                                        |    |
| 5.1.2 Power Input Connector                                         | 13 |
| 5.2 Converter Unit                                                  | 15 |
| 5.2.1 Converter Input Connector Pin Definition.                     | 15 |
| 5.3 Color Data Input Assignment                                     | 16 |
| 6. Interface Timing                                                 | 17 |
| 6.1 Timing Table (DE Only Mode)                                     | 17 |
| 6.1.1 2D Timing Table                                               | 17 |
| 6.1.2 3D Tming Table                                                | 17 |
| 6.2 Power On/Off Sequence                                           | 18 |
| 6.2.1 Power On/Off Sequence                                         | 18 |
| 6.2.2 2D/3D Change Signal Sequence without Vcc Turn off and Turn on | 19 |
| 7. Optical Characteristics                                          | 20 |
| 7.1 Measurement Conditions                                          | 20 |
| 7.2 Optical Specifications                                          | 21 |
| 8. Mechanical Characteristics                                       | 26 |
| 8.1 Mechanical Specification                                        | 26 |



| 8.2 Packing                            | 28 |
|----------------------------------------|----|
| 8.2.1 Packing Specifications           |    |
| 8.2.2 Packing Method                   | 28 |
| 9. Definition of Labels                | 29 |
| 9.1 Module Label                       | 29 |
| 9.2 Carton Label                       | 29 |
| 9.3 Pallet Label                       | 30 |
| 10. Precautions                        | 31 |
| 10.1 Assembly and Handling Precautions | 31 |
| 10.2 Safety Precautions                | 31 |





# **Revision History**

| Version  | Date                         | Page | Section | Description                                   | Revision by |
|----------|------------------------------|------|---------|-----------------------------------------------|-------------|
| Ver. 0.1 | 18.June.2012                 | All  | All     | All Tentative Specification was First Issued. |             |
| Van 0.1  | 12 July 2012                 | 10   | 3       | Modify Input Voltage Range                    | Yuming Mo   |
| ver. 0.1 | Ver. 0.1   12.July.2012   29 |      | 8       | Update Packing Method                         | Yuming Mo   |
| Van 0 1  | 26 5 2012                    |      |         | Update Timing Table                           | Yuming Mo   |
| Ver. 0.1 | 26.Sep.2012                  | 19   | 6       | Update 2D/3D Change Signal Sequence           | Yuming Mo   |
| Ver. 0.1 | 06.Nov.2012                  | 28   | 8       | Update Packing                                | Yuming Mo   |





# 1. General Description

### 1.1 Product Features

QFHD Resolution (3840 x 2160)

- Brightness: 1000 cd/m<sup>2</sup>

High Contrast Ratio: 4000:1
Fast Response Time: 6.5 ms
Color Saturation: 92% NTSC

- Ultra Wide Viewing Angle: 178° (H)/178° (V) (CR  $\geq$  10)

- Low Power Consumption: Typ. 1300W

RoHS Compliance

#### 1.2 Overview

MTB001D01-1 is a diagonal 110.06" color active matrix LCD module with direcet LED backlight and 2ch-DVI interface. This module is a transmissive type display operating in the normally black mode. It supports 3840 x 2160 QFHD resolution and can display up to 16.7M colors (8-bit). Each pixel is divided into Red, Green and Blue sub-pixels which are arranged in vertical stripe. The converters of backlight are built-in. Central Control Board with FPGA is built-in.

This module dedicates for LCD TV products and provides excellent performance which includes ultra high resolution, ultra high brightness, ultra high color saturation, high contrast ratio, ultra wide viewing angle, low power consumption and high color depth.

#### 1.3 General Information

| Item                    | Specification                      | Unit  | Note                  |
|-------------------------|------------------------------------|-------|-----------------------|
| Active Area             | 2436.48 (H) x 1370.52 (V)          | mm    |                       |
| Bezel Opening Area      | 2446.5 (H) x 1380.5 (V)            | mm    |                       |
| Outline Dimension       | 2495.5 (H) x 1429.5 (V) x 49.4 (D) | mm    | D: From Bezel to Rear |
| Weight                  | 110                                | kg    | Max.                  |
| Driving Scheme          | a-Si TFT Active Matrix             | -     |                       |
| Number of Pixels        | 3840 x 2160                        | pixel |                       |
| Pixel Pitch (Sub Pixel) | 0.2115 (H) x 0.6345 (V)            | mm    |                       |
| Pixel Arrangement       | RGB Vertical Stripe                | -     |                       |
| Display Colors          | 16.7 M                             | color | 8-bit                 |
| Display Mode            | Transmissive Mode, Normally Black  | -     |                       |
| Surface Treatment       | Anti-glare, Haze 2%                | -     |                       |
| Luminance of White      | 1000                               | cd/m² | Center Point, Typ.    |

# 2. Absolute Maximum Ratings

Global LCD Panel Exchange Center

### 2.1 Absolute Maximum Ratings ( $T_A = 25 \pm 2$ °C)

The followings are maximum values which, if exceeded, may cause damage to the unit.

| Itams                   | Cross of                    | Va    | Unit |      |
|-------------------------|-----------------------------|-------|------|------|
| Item                    | Symbol                      | Min.  | Max. | Onit |
| Power Supply Voltage    | $V_{\rm CC1}$ $V_{\rm CC2}$ | - 0.3 | 13.5 | V    |
| Input Signal Voltage    | $V_{\rm IN}$                | - 0.3 | 3.6  | V    |
| Converter Input Voltage | $V_{BL}$                    | 48.0  | 58.0 | V    |
| Control Signal Level    | -                           | - 0.3 | 7.0  | V    |

## 2.2 Environment Requirement

(1) Temperature and relative humidity range are shown as below.



- (a) 90%RH maximum ( $T_A < 39$  °C).
- (b) Wet-bulb temperature should be 39 °C maximum ( $T_A > 39$  °C).
- (c) No condensation.
- (2) The storage temperature is between 20 °C to 60 °C, and the operating ambient temperature is between 0 °C to 50 °C. The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module in a temperature controlled chamber alone. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in the end product design.
- (3) The TFT module including glass should be avoided any shock or vibration. While testing shock and vibration, the fixture holding the module should be assured to be hard and rigid enough to prevent the module twisted or bent by the fixture. The test conditions should be less than:



Shock (Non-operating): (TBD)

Vibration (Non-operating): (TBD)

#### 2.3 Package Storage

When storing modules as spares for a long time, please follow the precaution instructions:

- (1) Do not store the module in high temperature and high humidity for a long time. It is highly recommended to store the module with temperature from 0 °C to 35 °C in normal humidity.
- (2) The module shall be stored in a dark area and avoided to be exposed in direct sunlight or fluorescent light.



# 3. Electrical Specification

Global LCD Panel Exchange Center

### 3.1 Electrical Characteristics

# 3.1.1 Power Consumption ( $T_A = 25 \pm 2$ °C)

|                      |                   | Symbol           |      | Value | TT   | NI.  |      |
|----------------------|-------------------|------------------|------|-------|------|------|------|
|                      | Parameter         |                  | Min. | Тур.  | Max. | Unit | Note |
| Power Supply Voltage |                   | V <sub>CC1</sub> | 10.8 | 12.0  | 13.2 | V    | (1)  |
| Rush Current         | Rush Current      |                  | -    | -     | 5    | A    | (2)  |
| D G 1                | White Pattern     | $I_{CC1}$        | -    | 1.36  | 1.52 | A    |      |
| Power Supply         | Horizontal Stripe | $I_{CC1}$        | -    | 1.60  | 1.82 | A    |      |
| Current              | Black Pattern     | I <sub>CC1</sub> | -    | 1.33  | 1.50 | A    |      |

|                 |                   | Symbol             | Value   | Value |      | NT.  |      |
|-----------------|-------------------|--------------------|---------|-------|------|------|------|
|                 | Parameter         |                    | Min.    | Тур.  | Max. | Unit | Note |
| Power Supply Vo | ltage             | V <sub>CC2</sub>   | 10.8    | 12.0  | 13.2 | V    | (1)  |
| Rush Current    |                   | I <sub>RUSH2</sub> | -       |       | 6    | A    |      |
| D C 1           | White Pattern     | $I_{CC2}$          |         | 1.00  | 1.20 | A    |      |
| Power Supply    | Horizontal Stripe | $I_{CC2}$          | -       | 2.40  | 2.80 | A    | (2)  |
| Current         | Black Pattern     | $I_{CC2}$          | <i></i> | 1.12  | 1.20 | A    |      |

#### Note:

- (1) The ripple voltage should be controlled less than 10% of  $V_{CC}$ .
- (2) Measurement condition:  $V_{CC} = 12 \text{ V}$ ,  $T_A = 25 \pm 2 \text{ °C}$ , F = 60 Hz. The test patterns are shown as below.



Fig. 3.1 Test patterns

#### 3.1.2 TMDS Characteristics

| Parameter.     |                                              | Symbol          | Value |      |      | Unit | Note |  |
|----------------|----------------------------------------------|-----------------|-------|------|------|------|------|--|
|                | Parameter                                    |                 | Min.  | Тур. | Max. | Omi  | Note |  |
|                | Differential Input High<br>Threshold Voltage | $V_{TH}$        | 290   | -    | -    | mV   |      |  |
| Dual link      | Differential Input Low<br>Threshold Voltage  | V <sub>TL</sub> | -     | -    | 10   | mV   |      |  |
| TMDS Interface | Common Input Voltage                         | $V_{CM}$        | 3.00  | -    | 3.26 | V    | (1)  |  |
|                | Differential Input Voltage                   | $ V_{ID} $      | 150   | -    | 1200 | mV   |      |  |
|                | 2Port DE Skew (2)                            | $T_R$           | -     | -    | 230  | uS   |      |  |

#### Note:

- (1) The TMDS input signal has been defined as follows:
- (2) The DE(Data Enable) signal's phase delay of the two ports TMDS must be less than 230us to make the image synchronous.





# 3.2 Backlight Converter Unit

Global LCD Panel Exchange Center

# 3.2.1 LED Converter Electrical Characteristics ( $T_A = 25 \pm 2$ °C)

| No. | Item                           | Symbol      | Condition          | Min. | Тур. | Max. | Unit | Remark           |
|-----|--------------------------------|-------------|--------------------|------|------|------|------|------------------|
| 1   | Power Consumption              | PBL(2D)     | 100% Brightness    | -    | 324  | 358  | W    | (Note 1)         |
| 1   | 1 ower Consumption             | PBL(3D)     | 10070 Brightness   | -    | 309  | 358  | W    | (Ivote I)        |
| 2   | Input Voltage Range            | VBL         | Continuously       | 51.0 | 53.0 | 55.0 | VDC  |                  |
| 3   | Input Current                  | IBL(2D)     | 53VDC              | -    | 6.11 | 6.75 | A    |                  |
| 3   | imput Current                  | IBL(3D)     | Full Load          | -    | 5.83 | 6.75 | A    |                  |
|     |                                | Irs_en(2D)  | 51VDC              | ı    | -    | 35   | A    |                  |
| 4   | Inrush current                 | Irs_en(3D)  | Full Load          | ı    | -    | 35   | A    | (Note 2)         |
|     | in asir current                | Irs_vin(2D) | 55VDC<br>Full Load | -    | -    | 20   | A    | (1000 2)         |
| 5   | BLU On/Off Control Voltage     | VBLON       | ON                 | 2.5  | 3.3  | 3.6  | V    |                  |
| 3   | BLO On/On Control voltage      | VDLON       | OFF                | 0    | -    | 0.8  | V    |                  |
| 6   | On/Off Control                 | IBLON       | VBL = 53V          |      |      | 1.5  | mA   |                  |
| 7   | Status Signal                  | DET         | Abnormal           | _    | -    | -    | V    | (Open Collector) |
| /   | Status Signai                  | DEI         | Normal             | 0    |      | 0.8  | V    |                  |
| 0   | PWM Dimming Control Voltage    | VD DDA      | ON Duration        | 2.5  | 3.3  | 3.6  | V    |                  |
| 8   | P w M Dimining Control voltage | VP_DIM      | OFF Duration       | 0    |      | 0.8  | V    |                  |
| 9   | External PWM Control Current   | IP-DIM      |                    |      |      | 2    | mA   |                  |
| 10  | PWM Dimming Frequency          | FPWM        | Continuously       | 140  | 180  | 240  | Hz   |                  |
| 11  | Dimming Duty Ratio             | DDIM        | <b>*</b> + ( )     | 10   | -    | 100  | %    |                  |
| 12  | Input Interface impedance      | RIN         | 7                  | 300  | -    | -    | kΩ   |                  |

#### Note:

- (1) Dimming ratio = 100% (Max.) ( $T_A = 25 \pm 5$  °C, Turn on for 45minutes), One converter's power consumption., total converter is 4 Pcs.
- (2) The measurement condition: VBL rising time is 20 ms. ( $V_{BL}$  from  $10\% \sim 90\%$ ), the sequence diagram is shown as Fig. 3.4.



Fig. 3.4 The timing sequence diagram of inrush current measurement

### **3.2.2 LED Converter Power Sequence**

| No. | Item                     | Symbol | Min. | Тур. | Max. | Unit | Remark      |
|-----|--------------------------|--------|------|------|------|------|-------------|
| 1   | VBL Rising Time          | Tr     | 20   | _    | _    | ms   |             |
| 2   | VBL Falling Time Time    | Tf     | 20   | _    | _    | ms   |             |
| 3   | VBLON Rising Time        | Tr1    | _    | _    | 100  | ms   |             |
| 4   | VBLON Falling Time       | Tf1    | _    | _    | 100  | ms   | G E . 2.5   |
| 5   | VBL to VP_DIM Delay Time | T1     | 500  | _    | _    | ms   | See Fig.3.5 |
| 6   | BLON Delay Time          | T2     | 250  | _    | _    | ms   |             |
| 7   | BLON Off Time            | Т3     | 0    | _    | _    | ms   |             |
| 8   | VP_DIM Off Time          | T4     | 250  | _    | _    | ms   |             |



Fig. 3 .5The power sequence of VBL and VBLON



# 4. Electrical Block Diagram





# **5. Input Terminal Pin Assignment**

### **5.1 TFT LCD Module**

## **5.1.1 Signal Input Connector**

CC Board CN1 & CN2: CU0724SAHDG (Cvilux) or equivalent (see Note (1))

| Pin | Signal Assignment       | Pin | Signal Assignment       | Pin | Signal Assignment       |
|-----|-------------------------|-----|-------------------------|-----|-------------------------|
| 1   | T.M.D.S. Data2-         | 9   | T.M.D.S. Data1-         | 17  | T.M.D.S. Data0-         |
| 2   | T.M.D.S. Data2+         | 10  | T.M.D.S. Data1+         | 18  | T.M.D.S. Data0+         |
| 3   | T.M.D.S. Data2/4 Shield | 11  | T.M.D.S. Data1/3 Shield | 19  | T.M.D.S. Data0/5 Shield |
| 4   | T.M.D.S. Data4-         | 12  | T.M.D.S. Data3-         | 20  | T.M.D.S. Data5-         |
| 5   | T.M.D.S. Data4+         | 13  | T.M.D.S. Data3+         | 21  | T.M.D.S. Data5+         |
| 6   | DDC Clock               | 14  | +5V Power               | 22  | T.M.D.S. Clock Shield   |
| 7   | DDC Data                | 15  | Ground (for +5V)        | 23  | T.M.D.S. Clock+         |
| 8   | No Connect              | 16  | Hot Plug Detect         | 24  | T.M.D.S. Clock-         |

#### Note:

(1) The direction of pin assignment is shown as below:



Fig. 5.1 Dual-link DVI-D connector direction sketch map

#### **5.1.2 Power Input Connector**

CC Board CN3&CN4 Connector: CI0114M1HRL-NH(Cvilux)

Global LCD Panel Exchange Center

| Pin No. | Symbol | Feature                          |
|---------|--------|----------------------------------|
| 1       |        |                                  |
| 2       |        |                                  |
| 3       |        |                                  |
| 4       | VCC    | Power Supply, + 12V DC Regulated |
| 5       |        |                                  |
| 6       |        |                                  |
| 7       |        |                                  |
| 8       |        |                                  |
| 9       |        |                                  |
| 10      |        |                                  |
| 11      | GND    | GND                              |
| 12      |        |                                  |
| 13      |        |                                  |
| 14      |        |                                  |

#### Note:

(1) The direction of pin assignment is shown as below.



Fig. 5.2 VCC connector direction sketch map

### **5.2 Converter Unit**

Global LCD Panel Exchange Center

### **5.2.1 Converter Input Connector Pin Definition**

Converter Board CNF1:CI0114M1HRL-NH (Cvilux)or equivalent (see 5.2 Note (1))

| Pin No. | Symbol      | Feature                                                                                             |
|---------|-------------|-----------------------------------------------------------------------------------------------------|
| 1       |             |                                                                                                     |
| 2       |             |                                                                                                     |
| 3       | $ m V_{BL}$ | Power Supply, + 53V DC Regulated                                                                    |
| 4       |             |                                                                                                     |
| 5       | 1           |                                                                                                     |
| 6       |             |                                                                                                     |
| 7       |             |                                                                                                     |
| 8       | GND         | GND                                                                                                 |
| 9       |             |                                                                                                     |
| 10      |             |                                                                                                     |
| 11      | DET         | Normal (0 ~ 0.8V), Abnormal (Open Collector)<br>(Recommend Pull high R > 10K, VDD = 3.3V)(Note (2)) |
| 12      | BLON        | Back Light On: High (2.5 $\sim$ 3.6V); Back Light Off: Low (0 $\sim$ 0.8V/GND)                      |
| 13      | NC          | No Connection                                                                                       |
| 14      | P DIM       | PWM Dimming Control                                                                                 |

#### Attention:

(1) The direction of pin assignment is shown as below.



Fig. 5.3 Converter connector direction sketch map

(2) When open collector occur, the limit current resistor need to be connected to DET pin to prevent MOSFET from damage, the maximum drain current of MOSFET is 100mA.



# **5.3 Color Data Input Assignment**

The brightness of each primary color is based on the 8-bit gray scale data input for each color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus.

|               |                  |    |     |     |             |    |       |    |    |    |      |     | Data | Sign | al |     |    |    |    |    |    |    |    |    |    |
|---------------|------------------|----|-----|-----|-------------|----|-------|----|----|----|------|-----|------|------|----|-----|----|----|----|----|----|----|----|----|----|
| D-t- I        |                  |    | Red |     |             |    | Green |    |    |    | Blue |     |      |      |    |     |    |    |    |    |    |    |    |    |    |
| Data 1        | nput Color       | MS | SB  |     |             |    |       | L  | SB | MS | SB   |     |      |      |    | L   | SB | M  | SB |    |    |    |    | LS | SB |
|               |                  | R7 | R6  | R5  | R4          | R3 | R2    | R1 | R0 | G7 | G6   | G5  | G4   | G3   | G2 | G1  | G0 | В7 | В6 | В5 | В4 | В3 | В2 | В1 | В0 |
|               | Black            | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Red              | 1  | 1   | 1   | 1           | 1  | 1     | 1  | 1  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green            | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 1  | 1    | 1   | 1    | 1    | 1  | 1   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Basic Colors  | Blue             | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| Dasic Colors  | Cyan             | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 1  | 1    | 1   | 1    | 1    | 1  | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|               | Magenta          | 1  | 1   | 1   | 1           | 1  | 1     | 1  | 1  | 0  | 0    | 0   | 0    | 0    | 0  | 0 < | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|               | Yellow           | 1  | 1   | 1   | 1           | 1  | 1     | 1  | 1  | 1  | 1    | 1   | 1    | 1    | 1  | 1   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | White            | 1  | 1   | 1   | 1           | 1  | 1     | 1  | 1  | 1  | 1    | 1   | 1    | 1    | 1  | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|               | Red (0) / Dark   | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Red (1)          | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 1  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Gray Scale of | :                | :  | 7   | :   | <b>/:</b> - | :  | :     | :  | :  | :  | :    |     | ÷    | :    | :  | :   | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Red           | :                | :  | :   | :   | :           | :  | :     | :  | :  |    | "    | 199 |      | :    | :  | :   | :  | :  | :  | :  | :  | :  | :  | :  | :  |
|               | Red (254)        | 1  | 1   | 1   | 1           | 1  | 1     | 1  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Red (255)        | 1  | 1   | 1   | 1           | 1  | 1     | 1  | 1  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green (0) / Dark | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green (1)        | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Gray Scale of | :                | :  | :   | : < |             | :  | :     | :  | :  | :  | :    | :   | :    | :    | :  | :   | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Green         | :                | :  | :   |     | :           |    | :     | :  | :  | :  | :    | :   | :    | :    | :  | :   | :  | :  | :  | :  | :  | :  | :  | :  | :  |
|               | Green (254)      | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 1  | 1    | 1   | 1    | 1    | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Green (255)      | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 1  | 1    | 1   | 1    | 1    | 1  | 1   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Blue (0) / Dark  | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|               | Blue (1)         | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| Gray Scale of | :                | :  | :   | :   | :           | :  | :     | :  | :  | :  | :    | :   | :    | :    | :  | :   | :  | :  | :  | :  | :  | :  | :  | :  | :  |
| Blue          | :                | :  | :   | :   | :           | :  | :     | :  | :  | :  | :    | :   | :    | :    | :  | :   | :  | :  | :  | :  | :  | :  | :  | :  | :  |
|               | Blue (254)       | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
|               | Blue (255)       | 0  | 0   | 0   | 0           | 0  | 0     | 0  | 0  | 0  | 0    | 0   | 0    | 0    | 0  | 0   | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |

Attention:

0: Low level voltage; 1: High level voltage.



# 6. Interface Timing

# **6.1 Timing Table (DE Only Mode)**

## **6.1.1 2D Timing Table**

| Signal             | Item       | Symbol                                     | Min. | Тур. | Max.       | Unit             | Note                                  |
|--------------------|------------|--------------------------------------------|------|------|------------|------------------|---------------------------------------|
| TMDS Clock         | Frequency  | $F_{\text{CLK}}$ (= 1 / $T_{\text{CLK}}$ ) | 145  | 145  | 165        | MHz              |                                       |
|                    | Frame Rate | F                                          | 57   | 60   | 61         | Hz               |                                       |
| Vertical           | Total      | $T_{V}$                                    | 2250 | 2250 | 2250       | $T_{\mathrm{H}}$ | $T_{V} = T_{VD} + T_{VB}$             |
| Term               | Display    | $T_{\mathrm{VD}}$                          |      | 2160 |            | $T_{\mathrm{H}}$ |                                       |
|                    | Blank      | $T_{\mathrm{VB}}$                          | 90   | 90   | 90         | $T_{\mathrm{H}}$ |                                       |
| TT 1               | Total      | $T_{\mathrm{H}}$                           | 4400 | 4400 | 4400       | $T_{CLK}$        | $T_{\rm H} = T_{\rm HD} + T_{\rm HB}$ |
| Horizontal<br>Term | Display    | $T_{HD}$                                   |      | 3840 | <b>.</b> ( | T <sub>CLK</sub> |                                       |
| TCIIII             | Blank      | $T_{HB}$                                   | 600  | 600  | 600        | $T_{CLK}$        |                                       |

#### Attention:

 $(1) \ \ The module is operated in DE only mode, H sync and V sync input signal have no effect on normal operation.$ 

## **6.1.2 3D Timing Table**

| Signal             | Item       | Symbol                                     | Min. | Тур. | Max. | Unit             | Note                                  |
|--------------------|------------|--------------------------------------------|------|------|------|------------------|---------------------------------------|
| TMDS Clock         | Frequency  | $F_{\text{CLK}}$ (= 1 / $T_{\text{CLK}}$ ) | 145  | 145  | 165  | MHz              |                                       |
|                    | Frame Rate | F                                          | 100  | 120  | 120  | Hz               |                                       |
| Vertical           | Total      | $T_{V}$                                    | 1125 | 1125 | 1125 | $T_{\mathrm{H}}$ | $T_{\rm V} = T_{\rm VD} + T_{\rm VB}$ |
| Term               | Display    | $T_{VD}$                                   |      | 1080 |      | $T_{\mathrm{H}}$ |                                       |
|                    | Blank      | $T_{VB}$                                   | 45   | 45   | 45   | $T_{\mathrm{H}}$ |                                       |
| II 1               | Total      | $T_{\mathrm{H}}$                           | 2200 | 2200 | 2200 | $T_{CLK}$        | $T_{\rm H} = T_{\rm HD} + T_{\rm HB}$ |
| Horizontal<br>Term | Display    | $T_{\mathrm{HD}}$                          |      | 1920 |      | $T_{CLK}$        |                                       |
| TOTHI              | Blank      | $T_{ m HB}$                                | 300  | 300  | 300  | $T_{CLK}$        |                                       |

# 6.2 Power On/Off Sequence

Global LCD Panel Exchange Center

## 6.2.1 Power On/Off Sequence

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.



Fig. 6.2 Power on/off sequence

Global LCD Panel Exchange Center

## 6.2.2 2D/3D Change Signal Sequence without Vcc Turn off and Turn on



| Damanatan |      | Values   |      |      |  |  |  |  |
|-----------|------|----------|------|------|--|--|--|--|
| Parameter | Min. | Тур.     | Max. | Unit |  |  |  |  |
| T1        | 0.5  | -        | 10   | ms   |  |  |  |  |
| T2        | 0.0  | -        | -    | ms   |  |  |  |  |
| Т3        | 0.0  | <u>-</u> | -    | ms   |  |  |  |  |
| T4        | 1000 | -        | -    | ms   |  |  |  |  |
| T5        | 500  | -        | -    | ms   |  |  |  |  |
| Т6        | 100  | -        | -    | ms   |  |  |  |  |
| Т7        | -    | -        | T2   | ms   |  |  |  |  |
| Т8        | -    | -        | Т3   | ms   |  |  |  |  |
| Т9        | TBD  |          | TBD  | ms   |  |  |  |  |

#### Attention:

- (1) The supply voltage of the external system for the module input should follow the definition of  $V_{CC}$ .
- (2) Apply the lightbar voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case that  $V_{CC}$  is in off level, please keep the level of input signals on the low or high impedance. If  $T_2 < 0$ , that may cause electrical overstress.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

# 7. Optical Characteristics

#### 7.1 Measurement Conditions

The table below is the test condition of optical measurement.

| Item                  | Symbol                       | Value    | Unit |
|-----------------------|------------------------------|----------|------|
| Ambient Temperature   | $T_{A}$                      | 25 ± 2   | °C   |
| Ambient Humidity      | $H_A$                        | 50 ± 10  | % RH |
| LVDS Supply Voltage   | $V_{CC}$                     | 12       | V    |
| Driving Signal        | Chapter 3: Electrical Specif | fication |      |
| LED Driving Current   | $I_{L}$                      | 42       | mA   |
| Vertical Refresh Rate | $F_R$                        | 60       | Hz   |

To avoid abrupt temperature change during optical measurement, it's suggested to warm up the LCD module more than 60 minutes after lighting the backlight and in the windless environment.

To measure the LCD module, it is suggested to set up the standard measurement system as Fig. 7.1. The measuring area S should contain at least 500 pixels of the LCD module as illustrated in Fig. 7.2 (A means the area allocated to one pixel). In this model, for example, the minimum measuring distance Z is 459 mm when  $\theta$  is 2 degree. Hence, 500 mm is the typical measuring distance. This measuring condition is referred to 301-2H of VESA FPDM 2.0 about viewing distance, angle, and angular field of view definition.



Fig. 7.1 The standard set-up system of measurement



Fig. 7.2 The area S contains at least 500 pixels to be measured

$$N = \frac{S}{A} \ge 500$$
pixels

N means the actual number of the pixels in the area S.



# 7.2 Optical Specifications

The table below of optical characteristics is measured by MINOLTA CS2000, MINOLTA CA310, ELDIM OPTI Scope-SA and ELDIM EZContrast in dark room.

| Ite                   | em          | Symbol            | Condition                                                 | Min.   | Тур.  | Max.   | Unit              | Note                 |
|-----------------------|-------------|-------------------|-----------------------------------------------------------|--------|-------|--------|-------------------|----------------------|
| Static Contrast Ratio |             | CR                |                                                           | -      | 4000  | -      | -                 | (1) (2)              |
| Response Time         |             | $T_{\mathrm{L}}$  |                                                           | -      | 6.5   | -      | ms                | (3) OPTI<br>Scope-SA |
|                       |             | L <sub>W-2D</sub> |                                                           | -      | 1000  | -      | cd/m <sup>2</sup> | (2) (4)              |
| Center Luminano       | ce          | L <sub>W-3D</sub> |                                                           | -      | TBD   | -      | -                 | (5)                  |
| 3D Crosstalk          |             | CT-3D             |                                                           | -      | TBD   | -      | -                 | (5)                  |
| Uniformity of W       | hite Screen | -                 | $\theta_{\rm H} = 0^{\circ},  \theta_{\rm V} = 0^{\circ}$ | -      | -     | -      | %                 | (2) (6)              |
|                       | D 1         | $R_X$             | Normal direction at                                       |        | 0.680 |        |                   |                      |
|                       | Red         | $R_{Y}$           | center point of the                                       |        | 0.316 |        | -                 |                      |
|                       | Green       | $G_X$             | LCD module.                                               |        | 0.286 |        | -                 |                      |
| Color                 |             | G <sub>Y</sub>    |                                                           | Тур.   | 0.654 | Тур.   | -                 | (2) (5)              |
| Chromaticity          |             | $B_X$             |                                                           | - 0.03 | 0.147 | + 0.03 | -                 | (2) (7)              |
| (CIE1931)             | Blue        | B <sub>Y</sub>    |                                                           |        | 0.047 |        | -                 |                      |
|                       |             | $W_{X}$           |                                                           |        | 0.280 |        | -                 |                      |
|                       | White       | W <sub>Y</sub>    |                                                           |        | 0.290 |        | -                 |                      |
|                       | Color Gamut | CG                |                                                           | -      | 92    | -      | % NTSC            |                      |
| Viewing Angle         | ***         | $\theta_{H^+}$    |                                                           | -      | 89    | -      |                   |                      |
|                       | Horizontal  | θ <sub>H-</sub>   |                                                           | -      | 89    | -      | _                 | (8)                  |
|                       |             | $\theta_{V^+}$    | CR ≥ 10                                                   | -      | 89    | -      | Deg.              | ELDIM                |
|                       | Vertical    | $\theta_{V-}$     |                                                           | -      | 89    | -      |                   | EZContrast           |

#### Note:

(1) Definition of static contrast ratio (CR):

It's necessary to switch off all the dynamic and dimming function when measuring the static contrast ratio.

Static Contrast Ratio (CR) = 
$$\frac{\text{CR-W}}{\text{CR-D}}$$

CR-W is the luminance measured by LMD (light-measuring device) at the center point of the LCD module with full-screen displaying white. The standard setup of measurement is illustrated in Fig. 7.3; CR-D is the luminance measured by LMD at the center point of the LCD module with full-screen displaying black.

(2) The LMD in the item could be a spectroradiometer such as (KONICA MINOLTA) CS2000, CS1000, (TOPCON) SR-UL2

or the same level spectroradiometer. Other display color analyzer (KONICA MINOLTA) CA210, CA310 or (TOPCON) BM-7 could be involved after being calibrated with a spectroradiometer on each stage of a product.



Fig. 7.3 The standard setup of CR measurement

(3) Response time  $T_L$  is defined as the average transition time in the response time matrix. The table below is the response time matrix in which each element  $t_{X \text{ to } Y}$  is the transition time from luminance ratio X to Y. X and Y are two different luminance ratios among 0%, 25%, 50%, 75%, and 100% luminance. The transition time t<sub>X to Y</sub> is defined as the time taken from 10% to 90% of the luminance difference between X and Y (X < Y) as illustrated in Fig.3. When X > Y, the definition of t<sub>X to Y</sub> is the time taken from 90% to 10% of the luminance difference between X and Y. The response time is optimized on refresh rate  $F_R = 60$ Hz.

| Measu         | Measured |                         | Luminance Ratio of Previous Frame |                          |                          |                          |  |  |  |  |  |
|---------------|----------|-------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|--|--|--|--|--|
| Transition    | n Time   | 0%                      | 0% 25% 50%                        |                          |                          | 100%                     |  |  |  |  |  |
|               | 0%       |                         | t <sub>25% to 0%</sub>            | t <sub>50% to 0%</sub>   | t <sub>75% to 0%</sub>   | t <sub>100% to 0%</sub>  |  |  |  |  |  |
| Luminance     | 25%      | t <sub>0% to 25%</sub>  |                                   | t <sub>50% to 25%</sub>  | t <sub>75% to 25%</sub>  | t <sub>100% to 25%</sub> |  |  |  |  |  |
| Ratio of      | 50%      | t <sub>0% to 50%</sub>  | t <sub>25% to 50%</sub>           |                          | t <sub>75% to 50%</sub>  | t <sub>100% to 50%</sub> |  |  |  |  |  |
| Current Frame | 75%      | t <sub>0% to 75%</sub>  | t <sub>25% to 75%</sub>           | t <sub>50% to 75%</sub>  |                          | t <sub>100% to 75%</sub> |  |  |  |  |  |
|               | 100%     | t <sub>0% to 100%</sub> | t <sub>25% to 100%</sub>          | t <sub>50% to 100%</sub> | t <sub>75% to 100%</sub> |                          |  |  |  |  |  |

 $t_{X \text{ to } Y}$  means the transition time from luminance ratio X to Y.



Fig. 7.4 The definition of  $t_{X \text{ to } Y}$ 

All the transition time is measured at the center point of the LCD module by ELDIM OPTI Scope-SA.

## (4) Definition of center luminance (L<sub>W</sub>):

Global LCD Panel Exchange Center

The luminance is measured at the center point of the LCD module with full-screen displaying white. Fig. 7.5 shows the standard setup of luminance measurement.



Fig. 7.5 The standard setup of luminance measurement

#### (5) Definition of the 3D mode performance:

#### Test pattern

| Pattern | Left eye image | Right eye image | remark                                                                              |
|---------|----------------|-----------------|-------------------------------------------------------------------------------------|
| WW      |                |                 | Left eye image: L255 Right eye image:L255 L(WW) is denoted as the luminance of "WW" |
| WB      |                |                 | Left eye image: L255 Right eye image:L0 L(WB) is denoted as the luminance of "WB"   |
| BW      |                |                 | Left eye image: L0 Right eye image:L255 L(BW) is denoted as the luminance of "BW"   |
| BB      |                |                 | Left eye image: L0 Right eye image:L0 L(BB) is denoted as the luminance of "BB"     |



Fig. 7.6 3D optical measurement system

Measure the center point of the LCD module through the shutter glasses under 3D mode operation.

The 3D luminance (Lw-3D) is the luminance measured by LMD with well controlled shutter glasses at the center point of the LCD module with test pattern L(WW).

The 3D crosstalk is measuremd at the center point of the LCD modeule through right-eye glasses..

Definition of the 3D mode crosstalk: 
$$CT-3D = \frac{L(WB)-L(BB)}{L(BW)-L(BB)}$$

(6) Definition of uniformity of white screen:

The luminance Li (i from 1 to 9) is measured at the 9 points defined in Fig. 7.6. H and V indicate active area.

From the measured set of luminance values Li (i from 1 to 9), the minimum luminance is denoted as  $L_{min}$  and the maximum luminance is denoted as L  $_{max}$ . The uniformity of white screen is defined according to Uniformity =  $L_{min} / L_{max} \times 100\%$ .



Fig. 7.7 Symbol "+" defines the 9 measuring locations (1), (2), (3) ... (9)

#### (7) Definition of color chromaticity:

Each chromaticity coordinates (x, y) are measured in CIE1931 color space when full-screen displaying primary color R, G, B and white. The color gamut is defined as the fraction in percent of the area of the triangle bounded by R, G, B coordinates and the area is defined by NTSC 1953 color standard in the CIE color space. Chromaticity coordinates are measured by CS2000 and the standard setup of measurement is shown in Fig. 7.7.



Fig. 7.8 The standard setup of color chromaticity measurement

### (8) Definition of viewing angle coordinate system ( $\theta_H$ , $\theta_V$ ):

The contrast ratio is measured at the center point of the LCD module. The viewing angles are defined at the angle that the contrast ratio is larger than 10 at four directions relative to the perpendicular direction of the LCD module (two vertical



angles: up  $\theta_{V^+}$  and down  $\theta_{V^-}$ ; and two horizontal angles: right  $\theta_{H^+}$  and left  $\theta_{H^-}$ ) as illustrated in Fig. 7.8. The contrast ratio is measured by ELDIM EZ Contrast.



Fig. 7.9 Viewing angle coordination system

# Ø

# 8. Mechanical Characteristics

## 8.1 Mechanical Specification



The copyright belongs to Shenzhen China Star Optoelectronics Technology Co., Ltd. Any unauthorized use is prohibited.

26 / 31



The copyright belongs to Shenzhen China Star Optoelectronics Technology Co., Ltd. Any unauthorized use is prohibited.

27 / 31



# 8.2 Packing

## 8.2.1 Packing Specifications

| Itam                 | Specification  |                                       |                            |  |  |  |  |  |
|----------------------|----------------|---------------------------------------|----------------------------|--|--|--|--|--|
| Item                 | Quantity       | Dimension (mm)                        | Weight (kg)                |  |  |  |  |  |
| Do alving Day        | 2mag / hay     | 2770(I.) -: 970 (W) -: 1555(II.)      | Net Weight: 360 (Max.)     |  |  |  |  |  |
| Packing Box          | 3pcs / box     | 2770(L) x870 (W) x 1555(H)            | Gross Weight: 240(Max.)    |  |  |  |  |  |
| Pallet               | 1              | 2770.00 (L) x 870.00 (W) x 195.00 (H) | Net Weight: 145            |  |  |  |  |  |
| Stack Layer          | 1              |                                       |                            |  |  |  |  |  |
| Boxes per Pallet     | 1 box / pallet |                                       |                            |  |  |  |  |  |
| Pallet after Packing | 3 pcs / pallet | 2770.00 (L) x 870.00 (W) x1750 (H)    | Gross Weight:566KG/ pallet |  |  |  |  |  |

## 8.2.2 Packing Method



# *?*

# 9. Definition of Labels

#### 9.1 Module Label



For RoHS compliant products, CSOT will add RoHS for identification.

Model Name: MTB001D01-1

Ver. X.X: Version, for example: 0.1, 0.2, ..., 1.1, 1.2, ..., 2.1, 2.2, ...



Year: 2010 = 10, 2011 = 11 ... 2020 = 20, 2021 = 21...

Week: 01, 02, 03 ...



#### 9.2 Carton Label





The copyright belongs to Shenzhen China Star Optoelectronics Technology Co., Ltd. Any unauthorized use is prohibited.

29 / 31

Manufactured Date:

Global LCD Panel Exchange Center

Year: 2010 = 10, 2011 = 11...2020 = 20, 2021 = 21...

Month:  $1\sim9$ ,  $A\sim C$ , for Jan.  $\sim$  Dec.

Date: 01~31, for 1st to 31st

Model Version Code: Version of product, for example: 01, 02, 11, 12...

#### 9.3 Pallet Label





### 10. Precautions

Global LCD Panel Exchange Center

## 10.1 Assembly and Handling Precautions

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or install a module into the user's system in clean working areas. The dust and oil may cause electrical short or damage the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage to LCD panel and backlight.
- (4) Always follow the correct power-on sequence. This can prevent the damage and latch-up to the LSI chips.
- (5) Do not plug in or pull out the interface connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use soft dry cloth without chemicals for cleaning because the surface of polarizer is very soft and easily be scratched.
- (8) Moisture can easily penetrate into the LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of the LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10 °C, the display quality might be deteriorated. For example, the response time will become slow, and the starting voltage of LED light bar will be higher than that in room temperature.

### 10.2 Safety Precautions

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.