Feuille d'exercices 11 : Suites numériques

Généralités 1

Exercice 1.

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. On pose :

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n} \sum_{k=1}^n u_k.$$

Montrer que si $(u_n)_{n\in\mathbb{N}}$ est monotone, alors la suite $(v_n)_{n\in\mathbb{N}}$ est monotone de même sens que $(u_n)_{n\in\mathbb{N}}$.

Exercice 2. Donner le terme générale de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1$$
 et : $\forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 2.$

Exercice 3. Donner le terme général des suites définies par :

- 1. $u_0 = 0$ et : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{3}u_n + 2$. 2. $u_0 = 1$ et : $\forall n \in \mathbb{N}, u_{n+1} = -u_n + 4$.

Exercice 4. On considère la suite (u_n) définie par :

$$u_0 = 2$$
 et: $\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n - n + 2.$

On pose : $\forall n \in \mathbb{N}, \ v_n = u_n - n$.

Etudier (v_n) et en déduire, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n.

- **Exercice 5.** Donner le terme général et étudier la convergence des suites définies par : $1. \ u_0 = 0, u_1 = -\frac{3}{2}$ et : $\forall n \in \mathbb{N}, \ u_{n+2} = \frac{1}{2}(u_{n+1} + u_n).$
 - 2. $u_0 = 1$, $u_1 = 9$ et : $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} \frac{1}{4}u_n$.
 - 3. $u_0 = 0, u_1 = 1 \text{ et } : \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} \frac{1}{2}u_n.$

Exercice 6. On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 \in \mathbb{R}$$
 et: $\forall n \in \mathbb{N}, u_{n+1} - (n+1)u_n = 2^n(n+1)!$.

On pose: $\forall n \in \mathbb{N}, c_n = \frac{u_n}{n!}$

Etudier $(c_n)_{n\in\mathbb{N}}$ et en déduire, pour tout $n\in\mathbb{N}$, l'expression de u_n en fonction de n.

Exercice 7. Etudier la monotonie de la suite définie par :

$$u_0 \in \mathbb{R}_+$$
 et : $\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + 2u_n)$

$\mathbf{2}$ Limites

Exercice 8. Soit (u_n) une suite réelle telle que :

$$\forall n \in \mathbb{N}, \ u_n \in \mathbb{Z}.$$

Montrer que (u_n) converge si et seulement si (u_n) est stationnaire.

Exercice 9 (Caractérisation séquentielle de la borne supérieure d'une partie de \mathbb{R}).

Soit A un ensemble majoré non vide et $s \in \mathbb{R}$.

Montrer que $s = \sup(A)$ si et seulement si s majore A et il existe $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ qui converge vers s.

Exercice 10. Soit $(a, b, x) \in (\mathbb{R}_+^*)^2$. Etudier les limites des suites suivantes :

a.
$$u_n = \frac{n - (-1)^n}{n + (-1)^n}$$
 b. $u_n = \frac{n^3 + 5n}{5n^3 + \cos(n) + \frac{1}{n^2}}$ c. $u_n = \frac{a^n - b^n}{a^n + b^n}$ d. $u_n = \frac{\sin(n^4)}{n}$ e. $u_n = \sqrt{(n+a)(n+b)} - n$ f. $u_n = n^{1/\ln(n)}$ g. $u_n = (\ln n)^{1/n}$ h. $u_n = n^{\sin n/n}$

Exercice 11 (Théorème de Césaro).

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. On pose :

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n} \sum_{k=1}^n u_k.$$

Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $l\in\mathbb{R}$, $(v_n)_{n\in\mathbb{N}}$ converge vers l. Ce résultat s'appelle le théorème de Césaro.

Exercice 12. Soit $x \in \mathbb{R}$. Etudier les limites des suites suivantes :

a.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$$
 b. $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$ c. $u_n = \frac{\left\lfloor \left(n + \frac{1}{2}\right)^2 \right\rfloor}{\left\lfloor \left(n - \frac{1}{2}\right)^2 \right\rfloor}$

Exercice 13. Soit $(a,b) \in (\mathbb{R}_+^*)^2$. Etudier les limites des suites suivantes :

a.
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$
 b. $u_n = \frac{n - \sqrt{n^2 + 1}}{n - \sqrt{n^2 - 1}}$ c. $u_n = \sqrt{n + \sqrt{n^2 + 1}} - \sqrt{n + \sqrt{n^2 - 1}}$ d. $u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$ e. $u_n = \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + k}}$ f. $u_n = \frac{n!}{n^n}$ g. $u_n = \left(1 + \frac{x}{n}\right)^n$ h. $u_n = \left(\frac{n-1}{n}\right)^{n^2}$ i. $u_n = \left(\sin\frac{1}{n}\right)^{1/\ln n}$

Exercice 14 (Règle de D'Alembert).

Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$. On suppose que $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ converge vers une limite l.

- 1. Si l < 1, montrer que $(u_n)_{n \in \mathbb{N}}$ converge vers 0.
- 2. Si l > 1, monter que $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.
- 3. Que dire quand l = 1?

Exercice 15. Soient (x_n) et (y_n) deux suites réelles convergentes. On définit les suites (u_n) et (v_n) par :

$$\forall n \in \mathbb{N}, \ u_n = \sup(x_n, y_n), \ v_n = \inf(x_n, y_n).$$

Montrer que les suites (u_n) et (v_n) convergent et exprimer leurs limites en fonctions de celles de (x_n) et (y_n) .

Exercice 16. (difficile)

Soit $\alpha \in \mathbb{R}$ tel que $\frac{\alpha}{\pi} \notin \mathbb{Z}$. Montrer que l'existence d'une des deux limites $\lim_{n \to +\infty} \cos(n\alpha)$ et $\lim_{n \to +\infty} \sin(n\alpha)$ entraîne celle de l'autre et que l'existence de ces deux limites conduirait à une contradiction. Conclure.

Exercice 17. (difficile)

Soit (u_n) une suite de réels et soit $f: \mathbb{N} \to \mathbb{N}$ une application.

- 1. On suppose f injective. Montrer que si (u_n) converge, alors $(u_{f(n)})$ converge.
- 2. On suppose f surjective. Montrer que si $(u_{f(n)})$ converge, alors (u_n) converge.
- 3. On suppose f bijctive. Montrer que (u_n) converge si et seulement si $(u_{f(n)})$ converge.

3 Suites récurrentes de la forme $u_{n+1} = f(u_n)$

Exercice 18. Étudier les suites réelles (u_n) définies par :

a.
$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2}{3} + \frac{2}{3} \text{ et } u_0 = \frac{3}{2}$$
 b. $\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + 2u_n) \text{ et } u_0 \in \mathbb{R}$

Exercice 19. Étudier les suites réelles (u_n) définies par :

a.
$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n e^{-u_n} \text{ et } u_0 = 1$$

b. $\forall n \in \mathbb{N}, \ u_{n+1} = 1 + u_n^2 \text{ et } u_0 \in \mathbb{R}$
c. $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{3}{16} + u_n^2 \text{ et } u_0 = \frac{1}{2}$

2

Exercice 20. Etudier la suite récurrente définie par $u_0 \ge -1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n}$.

4 Suites adjacentes

Exercice 21. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante convergeant vers 0. On pose pour tout $n\in\mathbb{N}$, $v_n=\sum_{k=0}^n (-1)^k u_k$.

Montrer que les suites $(v_{2n})_{n\in\mathbb{N}}$ et $(v_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes et en déduire que $(v_n)_{n\in\mathbb{N}}$ converge. On pourra admettre le résultat de l'exercice 26.

Exercice 22. Soient $a, b \in \mathbb{R}$ tels que 0 < a < b. On pose $u_0 = a$, $v_0 = b$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer que : $\forall n \in \mathbb{N}, \ 0 < u_n < v_n$
- 2. Montrer que : $\forall n \in \mathbb{N}, \ v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$
- 3. Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 23. On pose:

$$\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=0}^{n} \frac{1}{k!}, \quad v_n = u_n + \frac{1}{nn!}$$

- 1. Montrer que (u_n) et (v_n) sont adjacentes. On note l leur limite commune.
- 2. Montrer que l est irrationnel.

Exercice 24. Soient (u_n) et (v_n) les suites définies par :

$$u_0 = 0, \ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n + 1}{u_n + 2},$$

$$v_0 = 2, \ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{v_n + 1}{v_n + 2}$$

Montrer que (u_n) et (v_n) sont adjacentes.

5 Suites extraites

Exercice 25. Montrer que la suite définie par :

$$\forall n \in \mathbb{N}, \ u_n = \frac{5n^2 + \sin n}{3(n+2)^2 \cos\left(\frac{n\pi}{5}\right)}$$

est divergente.

Exercice 26. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et soit $l\in\mathbb{R}$. Montrer que si les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers l, alors $(u_n)_{n\in\mathbb{N}}$ converge vers l.

Exercice 27. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ telle que les suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.

On pourra utiliser le résultat de l'exercice 26.

Exercice 28. Pour tout $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que : $\forall n \in \mathbb{N}^*, H_{2n} H_n \geq \frac{1}{2}$
- 2. En déduire que $\lim_{n\to+\infty} H_n = +\infty$.

Exercice 29. On dit qu'une suite est périodique si et seulement si :

$$\exists p \in \mathbb{N}^*, \ \forall n \in \mathbb{N}, \ u_{n+p} = u_n.$$

Montrer que toute suite réelle périodique et convergente est constante.

6 Suites complexes

Exercice 30. Etudier la convergence des suites complexes (z_n) définies par :

- 1. pour tout $n \in \mathbb{N}$, $z_n = x_n + iy_n$ avec $x_0, y_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = \frac{1}{2}(x_n y_n)$ et $y_{n+1} = \frac{1}{2}(x_n + y_n)$.
- 2. $z_0 \in \mathbb{C}$ et pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{i}{2}z_n + 1$.