

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Unit 0: Overview

- EntranceSurvey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- ▶ Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▼ Unit 7: Bayesian inference

Unit 7: Bayesian inference > Problem Set 7b > Problem 2 Vertical: Estimating the parameter of a geometric r.v.

■ Bookmark

Problem 2: Estimating the parameter of a geometric r.v.

(3/3 points)

We have k coins. The probability of Heads is the same for each coin and is the realized value q of a random variable Q that is uniformly distributed on [0,1]. We assume that conditioned on Q=q, all coin tosses are independent. Let T_i be the number of tosses of the i^{th} coin until that coin results in Heads for the first time, for $i=1,2,\ldots,k$. (T_i includes the toss that results in the first Heads.)

You may find the following integral useful: For any non-negative integers ${m k}$ and ${m m}$,

$$\int_0^1 q^k (1-q)^m dq = rac{k!m!}{(k+m+1)!}.$$

1. Find the PMF of T_1 . (Express your answer in terms of $m{t}$ using standard notation .)

For
$$t=1,2,\ldots$$
 , we have $p_{T_1}(t)= extstyle 1/(\mathsf{t}^*(\mathsf{t}+1))$

2. Find the least mean squares (LMS) estimate of $m{Q}$ based on the observed value, $m{t}$, of $m{T_1}$. (Express your answer in terms of $m{t}$ using standard notation .)

$$\mathbf{E}[Q \mid T_1 = t] =$$
2/(t+2)

3. We flip each of the k coins until they result in Heads for the first time. Compute the maximum a posteriori (MAP) estimate \hat{q} of Q given the number of tosses needed, $T_1=t_1,\ldots,T_k=t_k$, for each coin. Choose the correct expression for \hat{q} .

Unit overview

Lec. 14: Introduction to **Bayesian inference** Exercises 14 due Apr 06, 2016 at 23:59 UT @

Lec. 15: Linear models with normal noise

Exercises 15 due Apr 06, 2016 at 23:59 UT @

Problem Set 7a

Problem Set 7a due Apr 06, 2016 at 23:59 UTC

Lec. 16: Least mean squares (LMS) estimation

Exercises 16 due Apr 13, 2016 at 23:59 UT 🗗

Lec. 17: Linear least mean squares (LLMS) estimation

Exercises 17 due Apr 13, 2016 at 23:59 UT (3)

Problem Set 7b

Problem Set 7b due Apr 13, 2016 at 23:59 UTC

Solved problems

Additional theoretical material

Unit summary

$$\hat{q} = \frac{k-1}{\sum_{i=1}^k t_i}$$

$$\hat{q} = rac{k}{\sum_{i=1}^k t_i}$$
 🗸

$$\hat{q} = \frac{k+1}{\sum_{i=1}^k t_i}$$

none of the above

You have used 1 of 2 submissions

DISCUSSION

Click "Show Discussion" below to see discussions on this problem.

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

