

Minitarea 1

Autor: Lukas Pavez

RUT: 19.401.577-1

Profesor: Pablo Guerrero P.
Auxiliar: Matías Torrealba A.
Ayudantes: Gabriel Chandía G.

Gaspar Ricci

Fecha de entrega: 30/09/2018

Índice de Contenidos

Índice de Contenidos

1. P1		1
2. P2		1
${f List}$	a de Figuras	
1	circuito realizado en Logisim	1
2	circuito simplificado realizado en Logisim	2
3	circuito inicial y simplificado realizado en Logisim	2

P2

1. P1

Figura 1: circuito realizado en Logisim

x2	x1	x0	у
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

2. P2

 $Minitarea\ 1$

x2x1 / x0	0	1
0 0	1	0
0.1	0	0
1 1	1	1
1 0	1	1

Analizando el mapa de Karnaugh, se tiene un cuadrado compuesto por las filas 11 y 10, y las columnas 0 y 1. También se tiene un rectángulo compuesto por las filas 00 y 10, y la columna 0, por lo que se tienen 2 expresiones separadas por un \vee :

$$y = x2 \lor \neg x1 \neg x0$$

P2 2

El circuito obtenido en Logisim es el siguiente:

Figura 2: circuito simplificado realizado en Logisim

Viendo los outputs de ambos circuitos, se puede ver que son iguales.

Figura 3: circuito inicial y simplificado realizado en Logisim