

Visión por Computadora II

## Trabajo práctico integrador

#### Integrantes:

- Marco Joel Isidro
- Diego Sarina

#### **Profesores:**

- Juan Ignacio Cavalieri
- Juan Ignacio Cornet
- Pakdaman Seyed

#### Introducción

- **Objetivo**: Poder detectar diferentes patologías que existen en los dientes a partir de una radiografía panorámica dental.
- Dataset:
  - DENTEX CHALLENGE 2023 (kaggle.com)
  - +750 radiografías panorámicas de personas mayores de 12 años.
- Tarea de detección de objetos





### Análisis exploratorio

- Se observa un desbalance de clases pronunciado.
- Múltiples anotaciones por imágenes.
- Aspect Ratio significativo en dientes impactados.







#### Armado del dataset

- Utilización de la Plataforma Roboflow
  - 70 train
  - o 20 valid
  - 10 test
- Preprocesamiento (orientación, corte de imagen)



#### Métricas de evaluación

- Vamos a evaluar la performance del mismo con:
  - AP (Average Precision)
  - mAP 50 (Mean Average Precision)
  - F1-Score

### Arquitecturas entrenadas

- YOLO V8
- RetinaNet





#### Entrenamiento inicial con YOLOV8

- Parámetros de entrenamiento:
  - ~100 épocas promedio
  - Dropout
  - Optimizador ADAM
  - o 640px imagen

- Score a través de varias clases muy bajo
- Buena predicción para dientes Impactados únicamente



| Class             | Images | Instances | Box(P | R     | mAP50  |
|-------------------|--------|-----------|-------|-------|--------|
| all               | 151    | 709       | 0.608 | 0.438 | 0.398  |
| Caries            | 128    | 447       | 0.347 | 0.499 | 0.345  |
| Deep Caries       | 69     | 126       | 0.365 | 0.317 | 0.308  |
| Impacted          | 48     | 106       | 0.719 | 0.934 | 0.903  |
| Periapical Lesion | 23     | 30        | 1     | 0     | 0.0368 |

### ¿Cómo mejorar el modelo?

- Soluciones planteadas en el momento:
  - Data augmentation
  - Probar varias combinaciones posibles de la arquitectura YOLO (otros modelos, hiperparámetros, etc ...)
  - Probar otra arquitectura



**Data Augmentation** 

- Trabajamos con un dataset aumentado de 1800 imágenes
- Esta fue la mejor métrica que obtuvimos y fue con un modelo YOLO-S (Mejoró sustancialmente el modelo) (9,829,599 parameter)
- Se mantiene la confianza alcanzada por el diente impactado



¿Entonces, éxito?



| Class             | Images | Instances | Box(P | R      | mAP50  |
|-------------------|--------|-----------|-------|--------|--------|
| all               | 151    | 709       | 0.467 | 0.564  | 0.497  |
| Caries            | 128    | 447       | 0.351 | 0.62   | 0.404  |
| Deep Caries       | 69     | 126       | 0.464 | 0.579  | 0.557  |
| Impacted          | 48     | 106       | 0.677 | 0.991  | 0.956  |
| Periapical Lesion | 23     | 30        | 0.377 | 0.0667 | 0.0706 |

#### **Dataset inspection**

- Tenemos buenos datos?
- Mis datos son representativos del problema que quiero resolver? ¿Está bien etiquetado?
- Inspeccionemos ...



Dataset original



Dataset original



Dataset modificado



Dataset modificado

### **Dataset inspection**

- Etiquetas superpuestas
- Asignación de zonas incorrectas
- Etc.









#### Entrenamiento YOLOv8 (dataset nuevo)

- Parámetros de entrenamiento:
  - Mismos que el anterior
- Todas las clases aumentaron el nivel de confidencia
- Posibilidad de seguir mejorando la clase de "caries"



| Class            | Images | Instances | Box(P | R     | mAP50 |
|------------------|--------|-----------|-------|-------|-------|
| all              | 161    | 869       | 0.811 | 0.805 | 0.838 |
| caries           | 100    | 271       | 0.638 | 0.395 | 0.508 |
| corona           | 50     | 290       | 0.893 | 0.969 | 0.973 |
| diente impactado | 44     | 88        | 0.734 | 0.807 | 0.835 |
| endodoncia       | 85     | 211       | 0.835 | 0.853 | 0.877 |
| implante         | 3      | 9         | 0.956 | 1     | 0.995 |

### Arquitectura RetinaNet

- Del mismo tipo que YOLO (redes de una etapa)
- Ideal para datasets con desequilibrio de clases, como radiografías donde algunas patologías son menos comunes (focal loss)
- Permite una mejor detección de objetos a diferentes escalas, como dientes de diversos tamaños (FPN)
- La utilización de aumento de datos y pesos pre entrenados, lograron un entrenamiento más rápido y estable.

| cfg.SOLVER.IMS_PER_BATCH = 16                |    |
|----------------------------------------------|----|
| cfg.SOLVER.BASE_LR = 0.005                   |    |
| cfg.SOLVER.MAX_ITER = 2000                   |    |
| cfg.MODEL.RETINANET.BATCH_SIZE_PER_IMAGE = 2 | 56 |

| Métrica             | Primer Entrenamiento | Segundo Entrenamiento |
|---------------------|----------------------|-----------------------|
| AP-caries           | 28.81                | 33.71                 |
| AP-corona           | 57.05                | 57.85                 |
| AP-diente impactado | 56.40                | 54.83                 |
| AP-endodoncia       | 36.65                | 44.49                 |
| AP-implante         | 42.19                | 58.55                 |
| mAP50               | 78.49                | 85.69                 |
| mAP75               | 48.19                | 48.49                 |



## Inferencia de los modelos (YOLOV8)

Anotaciones Verdaderas



Predicciones del Modelo



Anotaciones Verdaderas



Predicciones del Modelo



## Inferencia de los modelos (RetinaNet)









#### Conclusiones

- Importancia de la Calidad de los Datos
- Data Augmentation es clave
- YOLOv8 y RetinaNet:
- Desafíos en clases específicas









Visión por Computadora II

# ¡Gracias!

#### Integrantes:

- Marco Joel Isidro
- Diego Sarina