Process automation laboratory - Root locus, PI control

Kjartan Halvorsen

March 26, 2020

Repetition: The RC-circuit - a first-order system

$$u_C(t) = 10(1 - e^{\frac{t}{\tau}})$$
, for $u(t)$ step of size 10

A concept to keep in mind

In a system with an integrator steady-state can only exist if the signal to the integrator is zero

Feedback control

For the closed-loop system we get

$$Y(s) = rac{G_o(s)}{1 + G_o(s)} Y_{ref}(s) + rac{G(s)}{1 + G_o(s)} V(s),$$

where $G_o(s) = G(s)F(s)$ is called the *loop gain*.

Feedback control

$$Y(s) = rac{G_o(s)}{1 + G_o(s)} Y_{ref}(s) + rac{G(s)}{1 + G_o(s)} V(s), \quad G_o(s) = G(s) F(s).$$

Let
$$G(s) = \frac{1}{s}$$
 and $F(s) = K$.

- 1. Will there be a steady-state control error ($\lim_{t\to\infty} e(t) \neq 0$) if $y_{ref}(t) = 0$ and v(t) is a unit step? Why? Answer on Socrative
- 2. What is the characteristic equation for the closed-loop system?
- 3. Sketch the location of the poles in the imaginary plane as the gain *K* varies from 0 to ∞. Group exercise in breakout room

How to get rid of the steady-state error

Use a proportional-integral controller (PI controller)

$$F(s)=K_p+\frac{K_i}{s}.$$

This gives closed-loop system

How to get rid of the steady-state error

Use a proportional-integral controller (PI controller)

$$F(s)=K_p+\frac{K_i}{s}.$$

This gives closed-loop system

The only way that steady-state can exist is if the input to the integrator of the controller is zero.

Root locus

Given loop gain

$$G_o(s) = K \frac{Q(s)}{P(s)}$$

how does the solutions to the characteristic equation

$$1 + G_o(s) = 0 \quad \Leftrightarrow \quad P(s) + KQ(s) = 0$$

(i.e. the poles of the closed-loop system) depend on K?

The root locus for PI-control of the integrator

Root locus question

Root locus definition

Let

$$\begin{cases} P(s) &= s^n + a_1 s^{n-1} + \dots + a_n = (s - p_1)(s - p_2) \dots (s - p_n) \\ Q(s) &= s^m + b_1 s^{m-1} + \dots + b_m = (s - q_1)(s - q_2) \dots (s - q_m) \end{cases}, \quad n \ge m$$

The root locus shows how the roots to the equation

$$P(s) + K \cdot Q(s) = 0, \quad 0 \le K < \infty$$
 (1)

depend on the parameter K. The root locus consists of the set of all points in the complex plane that are roots to (1) for some non-negative value of K.

Characteristics of the root locus

The polynomial P(s) + KQ(s) = 0 above will always have n roots. Each gives a branch in the root locus. Since the polynomials P(s) and Q(s) have real-valued coefficients, all roots are either real or complex-conjugated pairs. This means that the root locus is symmetric about the real axis. Other characteristics

- Start points marked by crosses
- End points marked by circles
- Asymptotes
- Pieces of the real axis

Start- and end points

Start points These are the *n* roots of P(s) + KQ(s) for K = 0, i.e. the roots of P(s). These are the open-loop poles, and are marked with crosses ' \times '

End points These are the m (finite) roots of P(s) + KQ(s) when $K \to \infty$, and are hence the roots of Q(s). The end points are marked with circles 'o'

The real axis

Those parts of the real axis that have an odd number of real-valued start- or end points to the right (including multiplicity) belong to the root locus.

Asymptotes

With n starting points and m end points, then m of the branches will go to end points. The rest will go out towards infinity along n-m asymptotes. The asymptotes go out symmetrically from a point on the real axis.

Asymptotes, directions

The directions of the asymptotes are given by the expression

$$heta_k = \arg s = \frac{(2k+1)\pi}{n-m}, \ k \in \mathbb{Z}$$

Example: 6 start points and 3 end points gives n - m = 6 - 3 = 3 and the directions

$$heta = egin{cases} rac{\pi}{3}, & k = 0 \ \pi, & k = 1 \ -rac{\pi}{3}, & k = -1 \end{cases}.$$

Asymptotes, intersection with the real axis

$$i.p. = \frac{\sum_{i=0}^{n} p_i - \sum_{i=0}^{m} q_i}{n - m},$$

where $\{p_i\}$ are the starting points (open-loop poles) and $\{q_i\}$ are the end points (open-loop zeros).

PI-Control of the integrator

Write the controller

$$F(s) = K_p + \frac{K_i}{s} = K((1 + \frac{1}{sT_i})) = K/T_i \frac{sT_i + 1}{s},$$

and let $T_i = 2$. The characteristic equation can be written

$$s^2 + \frac{K}{2}(2s+1) = 0$$

- ▶ Start points: n = 2, in s = 0
- ▶ End points: m = 1, $s = -\frac{1}{2}$
- Asymptotes: m n = 1, with directions $\theta = \pi$
- ▶ The real line: The real-line left of the end-point is part of the root locus.

PI-Control of the integrator

Do on your own: First-order system

Instead of the plant being an integrator

$$F(s)=\frac{1}{s}$$

consider a stable first order system

$$F(s) = \frac{1}{s+a}$$

How does the root locus change?