Consideriame l'insieme 72 e definiame l'operazione (†): m (†) n = m + n + 2 Vm, a E72

 $\Rightarrow (\mathcal{U}, \oplus, \cdot) \in \text{ un ovello ?}$

Venifichiour gli ossiau degli avelli:

- 1) (7/2, (+)) deve rispettore i segueuti assisuii:
 - association ta:

$$(m \oplus n) \oplus l = (m+n+2)+l+2$$

$$= m + (n + 2 + l + 2) = m \oplus (n \oplus l)$$

- commutatività:

- I! elementor neutros:

$$m \oplus e = m \Leftrightarrow m + e + 2 = m$$

- I! element r inversor:

$$m \oplus m = -2 \iff m + m + 2 = -2$$

- \Rightarrow $(\%, \oplus)$ i un grupper (abelians)
- 2) (72, ·) deve sispettare la proprietà distributiva:

$$- m \cdot (n \oplus l) = m \cdot (n + l + 2)$$

$$= mm + ml + 2m \neq mn + ml + 2 = mn \oplus ml$$

 $\Rightarrow (7/, \oplus, \cdot)$ NON \tilde{e} un anello.

es. 2)

Consideration 7/47/ (grupper quosiente). Sappioner che (7/47/, +) è un grupper dove [m]+[n]=[m+n] e gli elementi soner {[0], [1], [2], [3]}. Definioner la requente aperazione:

1) · é ben definita?

=> deve essere indipendente dai roppresentanti:

$$\alpha_1 \sim \alpha_2 \implies [\alpha_1][6] = [\alpha_2][6]$$

$$\iff$$
 $(a_1 - a_2) b \in 472$. Si ha:

 $\Rightarrow [a_1 b - a_2 b] = [0] \Rightarrow \cdot \hat{e}$ indipendente dai rappresentanti

⇒ scriniaur le tabelle di Cayley di + e ·:

+	0	1	2	3	_	•	0	1	2	3
	0					0	0	0	0	0
1	1	2	3	O		1	0	1	2	3
2	2	3	O	1		2	O	2	0	2
3	3	\mathcal{O}	1	2		3	O	3	2	1

⇒ dalla tabella della · nationer che:

- 1) X·1 e X·3 mandanor 72/472 in se stesso
- 2) 2·2= 0 \iff 2 è un Divisore DELLO 0
 - ⇒ 72/472 NON É un dominior (possiede divisori di O)
- 3) Quali sour gli elementi invertibili di 72/472?
 - a invertible $\Leftrightarrow \exists b \ t.c. \ ab = ba = 1$
 - ⇒ £, 3 sour gli unici elementi invertibili con inversi 1, 3 sispettivamente (1.1 = £, 3.3 = 1)
- => verificando gli assiani si trava che (71/472, +, .)

 ë un anello.

es. 3) Come sopra, com 72/372:

⇒ scrinaur le tabelle di Cayley di + e ·:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

•	0	1	_2
0	0	0	0
1	0	1	2
2	0	2	1

- ⇒ dalla tabella della · notioner che:
 - 1) Tutti gli elementi $\neq 0$ sous imentibili: $2 \cdot 1 = 1 \cdot 2 = 1$
 - ⇒ un anellor con tale proprietà è deltor ANELLO CON DIVISIONE
 - 3) è un auella comunitativa

- 4) è un dominior (NON HA DIVISORI DELLO O ED É COMMUTATIVO)
- 5) è un campor (è un avellor con divisione commutativos)

es. 4) Divisione tra poliumii:

Dato R = 72/472, considerans l'anello dei polinoni a coefficienti in R, R[X]. (al colore le segmente divisioni:

$$\Rightarrow x^{2} - x + 2 = (x - 1)x + 2$$

$$= x^{2} - x + 2 \quad \forall$$

$$= x^{2} - x + 2 \quad \forall$$

$$\text{usians} \rightarrow = x^{2} + 3x - 2$$

$$\text{oltri 2 appresentanti}$$

2) É passible dividere $x^2 - x + 2$ per 2x - 1? 2x - 1 NON É MONICO, quiudi la tenia NON ci ASSICURA che tale divisione sia possible, dabbroura Controllare:

1) $(2x-1)q+v=x^2-x+2$ 2) deg v < 1

$$\Rightarrow$$
 deg $V \le 0 \Rightarrow q$ deve contenere un termine di grador 1 ax t.c. $(2\times)(a\times) = \times^2 \Rightarrow 2a = 1$ \nleq

Come abbiance visto sopra, 3 6 E 12/472 t.c.

$$26 = 6.2 = 1$$

 $\Rightarrow \not \exists g$ ⇒ NON POSSIANO EFFETTUARE LA DIVISIONE CON RESTO

es. 5) Come sopra ma in R = 72/372.

1) É possible dividere ×2+2×+2 per 2×+2? Si, anche se 2x+2 NON è HONICO, infalti possiamo Calcalore:

$$\Rightarrow x^{2} + 2x + 2 = (2x + 2)(2x + 2) + 1$$

$$= 4x^{2} + 4x + 4x + 4 + 1$$

$$= 4x^{2} + 8x + 5$$

$$= x^{2} + 2x + 2$$