大模型竞赛考试程序

2025年1月31日

注意事项

- 考试日期: 2025年2月15日全天
- 考试通过在服务器API调用进行(无法连接外网)
- 参加考试的每组将被分配一个唯一的时间段和GPU
- 每组考试时间30分钟,含调试时间。过时不候
- 每组只有一次作答机会
- 作答方式:每组在指定时间内开启openAl相容的API端口。考官通过调用程序向端口提问并记录答案。答题中间步骤不计入分数。

• 在服务器上启动openAl API服务。以vllm为例:

创建vllm环境并安装之

conda create -n vllm python=3.11 pip install vllm

(vllm) → vllm vllm serve /data/konformal/nn/model/Qwen2.5-14B --port 3030

你参与考试的模型存放位置

为防止端口冲突,请指定 一个不常见端口

命令行查看API端点运行情况

模型名字

```
(base) → LLM_competition curl -X GET http://127.0.0.1:3030/v1/models
{"object":"list","data":[{"id":"/data/konformal/nn/model/Qwen2.5-14B","object":"model","created":173
8335826,"owned_by":"vllm","root":"/data/konformal/nn/model/Qwen2.5-14B","parent":null,"max_model_len
":131072,"permission":[{"id":"modelperm-3aa2205c8d714aec99d400571b7087a9","object":"model_permission
","created":1738335826,"allow_create_engine":false,"allow_sampling":true,"allow_logprobs":true,"allo
w_search_indices":false,"allow_view":true,"allow_fine_tuning":false,"organization":"*","group":null,
```

• 建立一个目录并将考试程序和测试题样例复制到此

```
(base) → LLM_competition ls
llm_solve_promblem.py test_problem.json
```

- 修改IIm_solve_problem.py中的对应内容
- 考试前将修改后的 Ilm_solve_problem.py发给监考老师。
 具体由哪位老师与你对接将在考前通知

```
✓ from openai import OpenAI

     import json
                                             改成你的端口!
     api_base = "http://127.0.0.1:3030/v1"
     api_key = "dummy_kep
                                                      )改成你的模型名称!
     problem_set = "test problem.ison"
                       改成你的组号!
     group_num =
10 \sim client = OpenAI(
        base_url=api_base,
        api_key=api_key,
15 ∨ def predict(message):
         response = client.chat.completions.create(
            model= model_name,
18 🗸
            messages=[
                {'role': 'user', 'content': message}],
19
            max_tokens=8196,
                                   调用参数可酌情修改
            temperature=0.5,
            stream=raise
         return response.choices[0].message.content
27 v if __name__=="__main__":
        with open(problem_set, 'r', encoding='utf-8') as file:
            data = json.load(file)
        for i in range(len(data)):
            problem = data[i]["problem"]
            print(f"Working on problem {i}.")
            answer = predict(problem)
            print(f"problem {i} done!")
            data[i]["answer"] = answer
38 🗸
        with open(f'Answer_{group_num}.json', 'w', encoding='utf-8') as file:
            json.dump(data, file, ensure_ascii=False, indent=4)
```

• 运行程序测试作答情况

```
(vllm) → LLM_competition python llm_solve_promblem.py
Working on problem 0
problem 0 done!
Working on problem 1
problem 1 done!
Working on problem 2
problem 2 done!
Working on problem 3
problem 3 done!
Working on problem 4
problem 4 done!
Working on problem 5
problem 5 done!
Working on problem 6
problem 6 done!
Working on problem 7
problem 7 done!
Working on problem 8
problem 8 done!
```

• 打开作答结果检查是否有答案输出

vim Answer_001.json

"problem": "Find the potential outside a charged metal sphere (charge \$Q\$, dius \$R\$) placed in an otherwise uniform electric field \$E_O\$.", "answer": "To find the potential outside a charged metal sphere with charge \(Q \\) and radius \\(R \\), placed in an otherwise uniform electric field \\(E \\), we can use the method of images. This involves placing an image charge inside the sphere such that the boundary conditions are satisfied.\n\n### Step-by-Step So tion:\n\n1. **Identify Boundary Conditions:**\n - The potential on the surface o the sphere must be constant and equal to the potential due to the charge \\(Q \\nd the uniform electric field \\(E_0 \\).\n $\,\,$ - The potential at infinity must be ero.\n\n2. **Set Up the Problem:**\n - Place the sphere at the origin of a coord ate system.ackslashn - The uniform electric field ackslash(E_0 ackslash) points along the z-axis.ackslash. **Use Method of Images:**\n - Place an image charge \\(Q' \\) inside the sp $^{\circ}$ e at a distance \\(d \\) from the center along the z-axis.\n $\,$ - The image charge \\(Q' \\) should be chosen such that the potential on the surface of the sphere i constant.**\n\n**4. **Determine the Image Charge:**\n - The potential on the surface $^{ ext{F}}$ the sphere due to the charge \\(Q \\) and the image charge \\(Q' \\) must equa he potential due to the uniform electric field \\(E_0 \\).\n - The potential d to the charge $\(Q \)$ at the surface of the sphere is $\(kQ / R \).\$ - The otential due to the image charge \\(Q' \\) at the surface of the sphere is \\(kQ _0 \\) at the surface of the sphere is \\(E_0 R \\).\n\n Therefore, we have:\n\\[\n \\frac{kQ}{R} + \\frac{kQ'}{\\sqrt{R^2 + d^2}} = E_0 R\n \\]\n\n5. **So] for \\(Q' \\) and \\(d \\):**\n - Rearrange the equation to solve for \\(Q' $\label{eq:linear_condition} $$ \prod_{r=0}^{n} \frac{kQ'}{(x-r)^2} = E_0 R - \frac{kQ}{R}$ }{k}\n \\]\n\n - To satisfy the boundary condition, we need to choose \\(d) and \\(Q' \\) such that the potential on the surface of the sphere is constant nis typically involves solving a transcendental equation, which can be done numeri ally or through iterative methods.\n\n6. **Write the General Potential Expression:* ${f n}$ - The potential outside the sphere can be written as the sum of the potentials $r^2 + d^2 - 2rd\\cos\theta + E_0 z\n \) where \(r \) is the radia$ distance from the center of the sphere, \\(\\theta \\) is the polar angle, and \\($z = r \cos \theta \). \n\m### Final Answer: \nThe potential outside the charged metals are the charged metals ar$ sphere is given by: $\n\(r, \theta) = \frac\{kQ\}\{r\} + \frac\{kQ'\}\{\sqrt\{r^2\}\}$ $d^2 - 2rd\cos\theta}$ + E_0 z\n\\]\nwhere \\(Q' \\) and \\(d \\) are determine d by the boundary conditions and the specific geometry of the problem."

考试愉快!