정규세션 1주차 ToBig's 11기 유기윤

머신러닝을 시작하기 앞서서

데이터 전처리, EDA 를 중심으로

Onte nts

Unit 01 | Introduction

Unit 02 | Data Preprocessing

Unit 03 | Exploratory Data Analysis

Unit 04 | 과제 설명

빅데이터

딥러닝

기계학습

머신러닝

Where Are We?

투빅스

1주차: 전처리/ EDA/ Git 데이터마이닝

2주차: 회귀분석 / 로지스틱 회귀

3주차: 나이브베이즈 / SVM / KNN

4주차: 의사결정나무 / 앙상블 / 클러스터링

5주차: 클래스/ 차원축소 LDA PCA

6주차: Neural Network 기초/ 프레임워크

7주차: Neural Network 심화 / 크롤링

8주차: 이미지(CNN) 기초 / 텍스트(NLP) 기초/ 강화학습 기초

9주차: 이미지(CNN) 심화 / 알고리즘 원리

10주차: 텍스트(NLP) 심화(RNN, LSTM, E/D, Attention)

머신러닝

딥러닝

서도 물지: http://varianceexplained.org/r/ds-ml-ai/

데이터 마이닝 (분석): 데이터에 대한 인사이트

머신러닝 (기계학습) : 데이터를 통한 <u>예측</u>

인공지능 : 데이터를 통해 Agent 가 <u>행동</u>을 실행 또는 추천

시도 눌시: http://varianceexplained.org/r/ds-ml-ai/

데이터 마이닝: 데이터에 대한 인사이트

- Statistical inference
- Data visualization
- •Experiment design
- Domain knowledge
- Communication

해결하고자 하는 문제 예시:

"A 성질과 B 나이대의 고객들이 상품 구매율이 높다"

구글 **딥마인드의 알파고나 스타크래프트 등의 게임 플레잉** Agent

시도 들시. http://varianceexplained.org/r/ds-ml-ai/

머신러닝 (기계학습) : 데이터를 통한 <u>예측</u>

미래에 대한 예측: 특정 환자가 병이 있는지?

컴퓨터에게는 자명하지 않은 사실 예측: 사진 속에 차가 있는가?

딥러닝: 머신러닝 기법 중 Neural Net 을 통해 모델링

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

구글 아날리틱스 (2004년-2019년):

구글 아날리틱스 (2004년-2019년):

한국

전세계

NAVER

빅데이터분석

파워링크 '빅데이터분석' 관련 광고입니다. 🕕

빅데이터분석, 퓨처젠 www.futuregen.co.kr

빅데이터분석, 제품판매, IBM파트너, 견적상담, 유지보수, IT솔루션제공

국가인증 코리아 IT아카데미 www.koreaitacademy.com

수강료조회 · 수강평 보기 · TV광고보기 · 학원시설 백데이터분석, 브랜드대상, 여름방학특강 사전등록이벤트, 국비무료, 수강료&

<u>그린컴퓨터아트학원공식홈페이지</u> www.greenart.co.kr № 로펜

국비지원안내 - 추천교육과정 - 수강료조회 - 지점조회 취준생&직장인 국비100%무료지원, 실무양성교육, 1:1맞춤취업지원, **빅데이터**

NO.1 더조은컴퓨터아카데미 www.tjoeun.co.kr

국비교육과정 · 취업스토리 · 포트폴리오 · 온라인상담 취업이잘되는 **빅데이터분석**, 실무형교육, 압도적인 수강생, 포트폴리오 역시 C

SAP 코리아 공식 홈페이지 www.sap.com/korea/

머신 러닝 : 데이터 관리 : 비즈니스분석 SAP Leonardo 기술을 통한 혁신, 통합된 비즈니스, 성장하는 기업!

국비교육과정 취업스토리 포트폴리오 온라인상담 취업이잘되는 **빅데이터분석**, 실무형교육, 압도적인 수강생, 포트폴리오 역시 더조은!

SAP 코리아 공식 홈페이지 www.sap.com/korea/

대신 러닝 • 데이터 관리 • 비즈니스분석 SAP Leonardo 기술을 통한 혁신, 통합된 비즈니스, 성장하는 기업!

데이터바우처 데이터메이커 www.datavoucher.or.kr/

데이터 바무처 지원사업, AI가공 부터 코딩, 크롤링, 시각화 등 일반가공까지!

메가IT아카데미 강남역 megaitacademy.com/

친구 동행 시 7월 전과목 10만원! 메가스터디에서 설립한 IT전문 교육기관!

RSN 알에스엔 www,realsn,com

실시간 수집, 분석 소셜 빅데이터 툴 연구개발 12개 특허 200개 고객사 보유

에이콘 아카데미 acornacademy,co,kr

국비지원 무료교육, 취업지원, **빅데이터 분석**, 머신러닝, 딥러닝, 실무프로젝트

이든티앤에스 E2D2 www.e2d2.co.kr

E2D2, 지능형 독립 데이터 센터 솔루션, 설치 구성 최적화, 통합구축 비용절감

자료 출처: Kmong.com

Unit 01 | Introduction

자료 출처: Dm.snu.ac.kr

Unit 01 | Introduction

<u>빅데이터 :</u> 비즈니스 밸류 창출의 근거가 되는 인사이트의 재료

데이터마이닝과 빅데이터와의 관계?

최근 분산 데이터베이스 (distributed database) 기술 및 병렬처리 (parallel processing) 기술 발전에 힘입어, 대량의 (volume), 빨리 생성되는 (velocity), 숫자 뿐만 아니라 텍스트와 이미지 동영상 같은 다양한 (variety) 데이터로 대표되는 빅데이터 (big data) 도 분석 가능해졌습니다. 바로 이 <u>빅데이터 분석(analytics)이 데이터마이닝입니다</u>.

컴퓨터공학, 전기전자

Deep Blue, AlphaGo (Reinforcement Learning)
Siri, Bixby (Natural language processing & Natural language understanding)
자율주행 (Object Detection, RL)

데이터 전처리 : 모델에 Input **값으로 데이터를 넣기위해** 정제하는 과정

Exploratory Data Analysis:

탐색적 데이터 분석: 여러 방면에서 데이터 를 관찰하고 이해하는 과정

1주차: 전처리/ EDA / Git

2주차: 회귀분석 / 로지스틱 회귀

3주차: 나이브베이즈 / SVM / KNN

4주차: 의사결정나무 / 앙상블 / 클러스터링

5주차: 클래스/ 차원축소 LDA PCA

6주차: Neural Network 기초/ 프레임워크

7주차: Neural Network 심화 / 크롤링

8주차: 이미지(CNN) 기초 / 텍스트(NLP) 기초/ 강화학습 기초

9주차: 이미지(CNN) 심화 / 알고리즘 원리

10주차: 텍스트(NLP) 심화(RNN, LSTM, E/D, Attention)

Maximize (in
$$\alpha_i$$
)
$$\tilde{L}(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$
 subject to (for any $i=1,\ldots,n$)
$$\alpha_i \geq 0,$$
 and to the constraint from the minimization in b
$$\sum_{i=1}^n \alpha_i y_i = 0.$$

The loss is

$$\ell_{log-loss}(\mathbf{w}) = -\sum_{i=1}^{N} t^{(i)} \log p(C = 1 | \mathbf{x}^{(i)}, \mathbf{w}) - \sum_{i=1}^{N} (1 - t^{(i)}) \log p(C = 0 | \mathbf{x}^{(i)}, \mathbf{w})$$

where the probabilities are

$$p(C = 0|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-z)} \qquad p(C = 1|\mathbf{x}, \mathbf{w}) = \frac{\exp(-z)}{1 + \exp(-z)}$$

and
$$z = \mathbf{w}^T \mathbf{x} + w_0$$

We can simplify

$$\begin{array}{ll} \ell(\mathbf{w})_{log-loss} & = & \sum_{i} t^{(i)} \log(1 + \exp(-z^{(i)})) + \sum_{i} t^{(i)} z^{(i)} + \sum_{i} (1 - t^{(i)}) \log(1 + \exp(-z^{(i)})) \\ & = & \sum_{i} \log(1 + \exp(-z^{(i)})) + \sum_{i} t^{(i)} z^{(i)} \end{array}$$

그런데 만약 주어진 데이터

1933 non-null object 23 non-null object 1933 non-null object 1929 non-null float64 889 non-null float64 1933 non-null object 1933 non-null object 1933 non-null object 1933 non-null int64 1933 non-null int64 64 non-null object 1933 non-null object 1933 non-null object

가 너무 많아 들다면?

을 범주형?

라면?

면?

1주차: 전처리/ EDA/ Git

2주차: 회귀분석 / 로지스틱 회귀

3주차: 나이브베이즈 / SVM / KNN

4주차: 의사결정나무 / 앙상블 / 클러스터링

5주차: 클래스/ 차원축소 LDA PCA

6주차: Neural Network 기초/ 프레임워크

7주차: Neural Network 심화 / 크롤링

8주차: 이미지(CNN) 기초 / 텍스트(NLP) 기초/ 강화학습 기초

9주차: 이미지(CNN) 심화 / 알고리즘 원리

10주차: 텍스트(NLP) 심화(RNN, LSTM, E/D, Attention)

머신러닝

딥러닝

Onte nts

Unit 01 | Introduction

Unit 02 | Data Preprocessing

Unit 03 | Exploratory Data Analysis

Unit 04 | 과제 설명

- 필요한 라이브러리:
 - Pandas : 데이터 분석을 위한 툴
 - A fast and efficient DataFrame object for data manipulation with integrated indexing;
 - Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
 - Intelligent data alignment and integrated handling of missing data: gain automatic labelbased alignment in computations and easily manipulate messy data into an orderly form
 - Numpy : 매트릭스, 벡터 연산 적합한 툴
 - Matplotlib, Seaborn : 시각화 패키지
 - Jupyter Notebook : 대화형 인터페이스

• 필요한 라이브러리:

2010년 설립된 예측모델 및 분석 대회 플랫폼이다. 기업 및 단체에서 데이터와 해결과제를 등록하면, 데이터 과학자들이 이를 해결하는 모델을 개발하고 경쟁한다. (위키백과)

Competitions Datasets Kernels Discussion Courses

대회, 데이터셋, 커널, 강의까지 제공

Feature: 이름/ 나이/ 성별 / 좌석 / 동행 가족 수/ 탑승지역 등등

Target : 생존 유무

- 전처리 :
 - 결측치 처리
 - 범주형 변수 처리
 - One-hot encoding
 - Ordinal encoding
 - Target encoding

- Real-world 데이터는 결측치가 존재하는 데이터셋이 다수
- 값이 아예 비어있거나, Nan, None 등 다양한 형식으로 숨어있음
 - Nan : Not a number ; float
 - None : Pythonic object
- 따라서 각 변수가 의미하는 것을 확인하는 것이 중요

isnull(): Generate a boolean mask indicating missing values

notnull(): Opposite of isnull()

dropna(): Return a filtered version of the data

fillna(): Return a copy of the data with missing values filled or imputed

결측치 확인을 위한 가장 간단한 방법:

	1 200
Passengerld	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

발생할 수 있는 문제점?

'Null', '없음' 처럼 숨어져 있는 결 측치는 파악하기 어려움

결측치 확인을 위한 가장 간단한 방법:

옵션 2: Imputing

옵션 1: 데이터 제외 (행/열)

0	
0	
0	
0	
0	
177	
0	
0	
0	
0	
687	
	0 0 0 0 177 0 0

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
				Braund,								
U	1	0	3	Mr. Owen Harris	male	22.0	1	0	A/5 211/1	7.2500	NA	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	(
2	2	- 1	3	Heikkinen, Miss Laina	fomale	26.0	0	0	STON/02. 3101282	7.0250	NΑ	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NA	

옵션 1: 데이터 제외 (행/열)

Passengerld	0	
Survived	0	
^o class	0	
Vame	0	
Sex	0	
Age	177	
SibSp	0	
Parch	0	
Ticket	0	
Fare	0	
Cabin	687	
Embarked	2	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500		s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833		С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250		s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500		s

옵션 2: Imputation

통계치, 외부 정보 활용

실습으로 ~

Onte nts

Unit 01 | Introduction

Unit 02 | Data Preprocessing

Unit 03 | Exploratory Data Analysis

Unit 04 | 과제 설명

실습으로 ~

Unit 03 |EDA의 필요성

Data Sources

⊞ dipole moments.csv 85.0k x 4

magnetic_shielding... 1.53m x 11

mulliken charges.csv 1.53m x 3

potential_energy.csv 85.0k x 2

sample_submission... 2.51m x 2

scalar_coupling_co... 4.66m x 8

■ structures.csv 2.36m x 6

	# ZX	A molecule_name T	# atom_index	T :	# mulliken_charge T
)8k	- 7 32 662	85003 unique values			
9	-0.0001	unique values			
317	4.0544		0 2	28 -	0.73 0.73
173 386	-4.1474	5470-47 2045 14 FEV 2000 000 00005		9250	26.1102.7352.6547.0
942	1.2723	dsgdb9nsd_000001		0	-0.535689
903		dsgdb9nsd_000001		1	0.133921
126	-2.1025	dsgdb9nsd_000001		2	0.122000
327	-2.0299	dsgdb9ffsd_eeeee1		- 2	0.133922
.13	4.1318	dsgdb9nsd_000001		3	0.133923
0	0	dsgdb9nsd_000001		4	0.133923
0	0			(VI	0.100320
0	9	dsgdb9nsd_000002		0	-0.707143
9		dsgdb9nsd_000002		1	0.235712
0	0				
304	0.0008	dsgdb9nsd_000002		2	0.235712
905	0.0009	dsgdb9nsd_000002		3	0.23572
394	3.3643	dsgdb9nsd_000003		0	-0.589706

Feature: ...

Target: scalar coupling constant (?)

Unit 03 | 결론

- 1. Feature 종류 파악 : 쓸모없는 변수 제거 (e.g. ID), 연속형, 범주형 변수
- 2. 결측치 처리
- 3. 범주형 변수 처리
- 4. EDA: 모든 feature 를 target variable 와 시각화 / feature 간 상관관계 파악
- 5. Feature Engineering : 파생변수 생성
- 6. 새로 만들어진 변수에 대해서 EDA
- 7. 모델 선정 및 학습

Onte nts

Unit 01 | Introduction

Unit 02 | Data Preprocessing

Unit 03 | Exploratory Data Analysis

Unit 04 | 과제 설명

Unit 04 | 과제 1(~30분)

https://maxhalford.github.io/blog/target-encoding-done-the-right-way/

- 실습파일에서 Target Encoding 부분을 구현하세요.
- Target Encoding

x_0	x_1	y
a	c	1
a	c	1
a	c	1
a	c	1
a	c	0
b	c	1
b	c	o
b	c	o
<u>b</u>	c	o
b	d	0

Unit 04 | 과제 1(~30분)

자료 출처: https://maxhalford.github.io/blog/targetencoding-done-the-right-way/

- 실습파일에서 Target Encoding 부분을 구현하세요. (추가적인 라이브러리 사용금지)
- Target Encoding

x_0	x_1	y
0.8	0.444	1
0.8	0.444	1
0.8	0.444	1
0.8	0.444	1
0.8	0.444	O
0.2	0.444	1
0.2	0.444	О
0.2	0.444	O
0.2	0.444	O
0.2	0	O

Unit 04 | 과제 2 (2시간~)

- <u>아파트가 데이터셋을 이용해서 다음을 해보세요:</u>
 - <u> 결측치 처리 (변수 지정)</u>
 - <u>▲ 범주형 변수 인코딩 (변수 지정)</u>
 - 2차원 feature 시각화 (5개)
 - 3차원 feature 시각화 (3개)
 - <u>■ 파생변수 2개 생성 후, 설명</u>
- 모든 시각화 결과를 짤막하게 설명해주세요.

Q & A

들어주셔서 감사합니다.