Deep Learning - Gesture Recognition

Submitted by: Sandesh Kandagal and Neelima Boddapati

Problem statement (in brief):

As Data scientists, we want to develop a feature in smart-TVs (home electronics) to recognize 5 different gestures performed by the user. This feature will help them to control the TV without using a remote.

Gesture	Control
Thumbs up	Increase the volume
Thumbs down	Decrease the volume
Left swipe	'Jump' backwards 10 seconds
Right swipe	'Jump' forward 10 seconds
Stop	Pause

Understanding the data:

The training data consists of a few hundred videos categorized into one of the five classes. Each video (typically 2-3 seconds long) is divided into a sequence of 30 frames (images). These videos have been recorded by various people performing one of the five gestures in front of a webcam - similar to what the smart TV will use.

Data preprocessing:

The data generator will help in preprocessing the images of different dimensions in batches. Using the data generator data preprocessing steps such as image cropping, resizing and normalization were performed.

Exploring different batch sizes:

Batch sizes: 32, 64, 128 and 256 were explored for model building. Observations:

- o The kernel repeatedly crashed when using Batch sizes 128 and 256 and hence were not used.
- o All models exhibited better performance with Batch size 32 than 64. Hence, batch size 32 is used in final model evaluation below.

Modeling:

The following models were built on the data

Conv3D

Conv2D + RNN LSTM Conv2D + GRU LSTM

Transfer Learning imagenet +LSTM

Parameters held constant:

Batch size: 32 Epochs: 30

Input shape: 15, 80, 80, 3

o 15 (frames), 80 (width), 80 (height), 3 (channels)

All models have consecutive layers and with Relu activation function in all layers

Output layer: Dense (5) with Softmax activation function

MaxPooling (2,2) padding='same' BatchNormalization

Model summary:

Model	N41 - 1	Model	Parameter	Result (Best accuracy metrics)			Observation s & Decision
Name Model	parameter s	S	Epoc h	Trainin g	Validatio n		
Model 1	Conv3D	Hidden layers: 3 layers (16, 32, 64), Kernel size: (3,3,3) FC layer: Dense (512) Dropout: 0.5 Optimizer: Adam	3,350,853	30	93.59	93.75	Observation s: The model performs well with good training and validation accuracy. Decision: Explore if changing the optimizer (Model 2) improves accuracy and proceed with model building (Model 3) using the better optimizer.
Model 2	Conv3D	Hidden layers: 3 layers (16, 32, 64), Kernel size: (3,3,3) FC layer: Dense (512) Dropout: 0.25 Optimizer: SGD	3,350,853	24	99.32	81.25	Changing the optimizer to SGD resulted in overfitting on train data and drop in validation accuracy. Decision: Explore if increasing no of neurons while using Adam as optimizer (Model 3) will improve the accuracy.
Model 3	Conv3D	Hidden layers: 3 layers (32, 64, 64), Kernel size: (3,3,3) FC layer: Dense	3,449,157	24	93.53	81.25	Observation s: There is no improvement with increase in no of neurons. Decision: Exploring if

Model		Model	Parameter	Result (Best accuracy metrics)			Observation s & Decision
Name	Model	parameter s	S	Epoc h	Trainin g	Validatio n	
		(512) Dropout: 0.5 Optimizer: Adam			9		changing the kernel size (Model 4) will improve model performance.
Model 4	Conv3D	Hidden layers: 3 layers (16, 32, 64), Kernel size: (5,5,5) FC layer: Dense (512) Dropout: 0.5 Optimizer: Adam	3,606,437	23	74.4	68.750	Observation s: There is no improvement with changing the kernel size. Decision: Hence, the best Conv3D model is Model 1. Explore if Conv2d + LSTM will improve model performance.
conv2d 1	CONV2d +RNN LSTM	3 Conv2D groups: (32, 64, 128) Kernel size: (3,3) LSTM: LSTM (128) Dense (64) Dropout: 0.5 Optimizer = Adam	6,917,029	29	81.60	56.25	Observation s: This model performance is poor compared to Conv3D models. Validation losses are fluctuating without a concurrent gain in validation accuracy. Decision: Explore if CONV2d +GRU LSTM (Conv2d2) performs better.
conv2d 2	CONV2d +GRU	3 Conv2D groups: (32, 64, 128) Kernel size: (3,3) GRU (128) Dense (64) Dropout:	5,262,501	29	87.88	75	Observation s: The training and validation accuracy is better than the Conv2d1. Decision: Explore if Transfer

		Model I parameter	Parameter	Result			Observation
Model Name	Model			(Best accuracy metrics) Epoc Trainin Validatio			s & Decision
Ivaille		S	S	Epoc h	Trainin g	validatio	
		0.5 Optimizer = Adam					learning will produce better results. Observation
conv2d 3	Transfer Learning imagene t +LSTM	Transfer learning using imagenet LSTM (128) Dense (64) Dropout: 0.5 Optimizer = Adam	3,831,877	11	84.48	81.250	s: Achieved good accuracy on train and validation data owing to the transfer learning. It has very few trainable parameters (600,965) compared to Model 1 which has similar performance (3,350,629). Decision: Will use this model as the final model for this dataset

Final decision:

Considering a scenario wherein the company is limited by resources, we suggest to use the Transfer Learning imagenet +LSTM model with model parameters as identified in conv2d3 as the Final model because of it's low trainable parameters and satisfiable performance.

Whereas in a scenario where the company is not limited by resources, we suggest the Convolution 3D model with model parameters as identified in model 1 as the Final model.