Unit 1

Introduction and overview

Introduction

Statistical and machine learning

- Machine learning is an umbrella term for solving problems by machines "discovering" their "own" algorithms.
- Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis.
- Statistical learning theory deals with the problem of finding a predictive function based on data.
- The goals of learning are understanding and prediction.

Terminology

- One distinguishes between:
 - Supervised learning:
 - Outcome measure available.
 - Regression, classification.
 - Unsupervised learning:
 - No outcome measure.
 - Clustering.
- The variables have different roles assigned:
 - Input: features, regressors, covariate, independent variable.
 - Output: outcome, dependent variable.
- Training set of data.
- The predictive model is a *learner*.

Overview

Overview of supervised learning

One assumes that

$$Y = f(X) + \epsilon$$
.

• One aims at determining \hat{f} which is the estimate of f to predict Y based on a training data set:

$$\hat{Y} = \hat{f}(X).$$

Overview of supervised learning / 2

- The accuracy of \hat{Y} as a prediction of Y depends on two quantities:
 - Reducible error.
 - 2 Irreducible error.

$$\mathsf{E}[(\mathsf{Y}-\hat{\mathsf{Y}})^2] = \mathsf{E}[(\mathsf{f}(\mathsf{X})+\epsilon-\hat{\mathsf{f}}(\mathsf{X}))^2] = (\mathsf{f}(\mathsf{X})-\hat{\mathsf{f}}(\mathsf{X}))^2 + \mathsf{Var}(\epsilon),$$

where $(f(X) - \hat{f}(X))^2$ is the reducible error and $Var(\epsilon)$ is the irreducible error.

- The reducible error can be further split into
 - Bias
 - 2 Variance

depending on the mean and variance of \hat{f} if it is repeatedly estimated using a large number of training data sets.

Overview of supervised learning / 3

- One differentiates between:
 - Regression: quantitative output.
 - Classification: qualitative output.
- Two simple approaches to prediction:
 - Least squares:
 - Huge assumptions.
 - Stable, but possibly inaccurate predictions.
 - Nearest neighbors:
 - Mild structural assumptions.
 - Accurate, but unstable predictions.

Linear models and least squares

• Given a vector of inputs $X^T = (X_1, X_2, \dots, X_p)$ we predict the output Y via the model

$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^{\rho} X_j \hat{\beta}_j.$$

 If the intercept / the constant variable 1 is included in X, then one can write

$$\hat{\mathbf{Y}} = \mathbf{X}^T \hat{\boldsymbol{\beta}}.$$

• In the (p+1)-dimensional input-output space (X, \hat{Y}) represents a hyperplane. If the constant is included in X, the hyperplane goes through the origin and is a subspace. Otherwise it is an affine set.

Linear models and least squares / 2

Viewed as a function over the p-dimensional input space

$$f(X) = X^T \beta$$

is linear and the gradient

$$f'(X) = \beta$$

is a vector in input space that points in the steepest uphill direction.

• The least squares fit is obtained by minimizing

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2 = (\boldsymbol{y} - \boldsymbol{X}\beta)^T (\boldsymbol{y} - \boldsymbol{X}\beta)$$

with respect to β given N observations.

Linear models and least squares / 3

- RSS(β) is a quadratic function of the parameters:
 - There always exists a minimum.
 - The minimum might not be unique.
- If $\mathbf{X}^T \mathbf{X}$ is nonsingular, the unique solution is given by:

$$\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

The fitted and predicted values are given by:

$$\hat{y}_i = x_i^T \hat{\beta}$$
$$\hat{y}(x_0) = x_0^T \hat{\beta}.$$

Example

Example / 2

Data points with true class labels

Example / 3

Linear regression of 0/1 response

Nearest neighbor method

- The observations in the training set \mathcal{T} closest in input space to x are used to form the prediction \hat{Y} at position x.
- The k nearest neighbor fit for \hat{Y} is defined as:

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i,$$

where $N_k(x)$ is the neighborhood of x defined by the k closest points x_i in the training sample.

- Closeness implies a metric. For now, Euclidean distance.
- For k nearest neighbor fits the error on the training data should be approximately an increasing function of k, and will always be 0 for k = 1.
- In *k* nearest neighbors there is one parameter, *k*, to choose:
 - Effective number of parameters: $\frac{N}{k}$.
 - Minimizing the error in the training set would always choose
 k = 1.

Example

20 nearest neighbor classifier

Example / 2

1 nearest neighbor classifier

From least squares to nearest neighbors

- Least squares leads to a linear decision boundary:
 - Smooth and apparently stable to fit.
 - Appears to heavily rely on the assumption that a linear decision boundary is appropriate.
 - \Rightarrow Low variance, potentially high bias.
- k nearest neighbors method
 - Relies on no stringent assumptions about the underlying data.
 - Any particular subregion of the decision boundary depends only on a handful of input points.
 - \Rightarrow High variance, low bias.

Statistical decision theory

- Given:
 - Assume we have a quantitative output.
 - Let $X \in \mathbb{R}^p$ denote a real valued random input vector.
 - Let $Y \in \mathbb{R}$ denote a real valued random output variable.
 - Denote the joint distribution by Pr(X, Y).
- Target:
 - Determine a function f(X) for predicting Y which minimizes a loss function

which penalizes prediction errors.

Statistical decision theory / 2

Possible loss functions are for example the squared error loss

$$L(Y, f(X)) = (Y - f(X))^{2}.$$

 This leads to the expected squared prediction error as criterion for choosing f:

$$\mathsf{EPE}(f) = \mathsf{E}(Y - f(X))^2 = \int [y - f(x)]^2 \mathsf{Pr}(dx, dy).$$

• By conditioning on X we obtain

$$\mathsf{EPE}(f) = \mathsf{E}_X \mathsf{E}_{Y|X}([Y - f(X)]^2 | X),$$

using
$$Pr(X, Y) = Pr(Y|X)Pr(X)$$
.

Statistical decision theory / 3

This implies that it suffices to minimize EPE pointwise:

$$f(x) = \arg\min_{c} \mathsf{E}_{Y|X}([Y-c]^{2}|X=x),$$

with the solution

$$f(x) = \mathsf{E}_{Y|X}(Y|X=x).$$

This is the conditional expectation, also known as *regression* function.

Statistical decision theory: k nearest neighbors

 Nearest neighbor methods attempt to estimate this conditional mean using

$$\hat{f}(x) = Ave(y_i|x_i \in N_k(x)),$$

where $Ave(\cdot)$ denotes average and two approximations are exploited:

- Expectation is approximated by averaging over the sample data.
- Conditioning at a point is relaxed to conditioning on some region "close" to the target point.

Statistical decision theory: k nearest neighbors 12

• Thus, under mild regularity conditions on the joint probability distribution $\Pr(X, Y)$, one can show that as $N, k \to \infty$ such that $k/N \to 0$,

$$\hat{f}(x) \to \mathsf{E}(Y|X=x).$$

- Problems:
 - If only a small sample size is available, exploiting structure in the data could lead to more stable estimators.
 - The *rate* of convergence depends on the dimension of the feature space. The rate decreases if the dimension increases.

Statistical decision theory: linear regression

• Assumes that the regression function f(x) is approximately linear in its arguments:

$$f(x) \approx x^T \beta.$$

 Thus, we specify a model for the regression function and minimize the EPE. This gives

$$\beta = [\mathsf{E}(XX^T)]^{-1}\mathsf{E}[XY].$$

- Linear regression does not condition on X, but pools over all values of X using the knowledge of the functional relationship.
- ullet Estimating eta consists of replacing the expectation by taking the average over the training data.

Statistical decision theory: comparison

- Model assumptions:
 - Least squares assumes f(x) is well approximated by a globally linear function.
 - k nearest neighbors assumes f(x) is well approximated by a locally constant function.

Statistical decision theory: loss functions

- So far we considered the squared error loss, also referred to as L₂ loss.
- Alternatives are for example the L₁ loss:

$$L(Y, f(X)) = |Y - f(X)|,$$

which if this expected loss is minimized gives the conditional median as estimate:

$$\hat{f}(x) = \text{median}(Y|X=x).$$

 L₁ criteria have discontinuities in their derivatives, which have hindered their widespread use.

Loss functions: categorical outcome

- The categorical outcome G takes values in G, the set of possible classes.
- The estimate \hat{G} also takes values in \mathcal{G} .
- The loss can be represented by a $K \times K$ matrix **L**, where $K = \text{card}(\mathcal{G})$.
- The matrix L has
 - zero values on the diagonal,
 - nonnegative values elsewhere,

where L(I,k) denotes the price to pay for classifying an observation belonging to the kth class \mathcal{G}_k into the lth class \mathcal{G}_l .

The EPE can be written as

$$\mathsf{EPE}(\hat{G}) = \mathsf{E}(L(G, \hat{G}(X))) = \mathsf{E}_X \left[\sum_{k=1}^K L(\mathcal{G}_k, \hat{G}(X)) \mathsf{Pr}(\mathcal{G}_k | X) \right].$$

Loss functions: categorical outcome /2

The pointwise minimization is again sufficient:

$$\hat{G}(x) = \arg\min_{g \in \mathcal{G}} \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x).$$

- Examples for loss functions:
 - Zero-one loss function:

$$L(l,k) = \begin{cases} 0 & l = k, \\ 1 & l \neq k. \end{cases}$$

The EPE is minimized for the zero-one loss by

$$\hat{G}(x) = \underset{g \in \mathcal{G}}{\arg\min}[1 - \Pr(g|X = x)] = \underset{g \in \mathcal{G}}{\max} \Pr(g|X = x).$$

This solution is called *Bayes classifier*. The error rate of the Bayes classifier is called *Bayes rate*.

Local methods in high dimensions

- High dimensional problems suffer from the curse of dimensionality (Bellman, 1961).
 - Observations tend to have no "close" neighbors.
 - Observations are closer to the boundary than to any other data point.
- Example: Assume uniformly distributed data in the p-dimensional unit cube. If the fraction r of observations to be contained in a hypercubical neighborhood is fixed, the expected edge length of this cube is given by

$$e_p(r) = r^{1/p}$$
.

Local methods in high dimensions / 2

Model selection and the bias-variance tradeoff

- Many statistical learning models contain a smoothing or complexity parameter.
- More complex models will in general have a better performance on the training data, but this will not translate to a better performance on new test data.
- The expected squared prediction error at point x_0 for a fixed procedure to estimate f by \hat{f} based on the training set \mathcal{T} is given by

$$\begin{split} \mathsf{EPE}_{\hat{f}_{\mathcal{T}}}(x_0) &= \mathsf{E}[(Y - \hat{f}_{\mathcal{T}}(x_0))^2 | X = x_0] \\ &= \mathsf{Var}(Y | X = x_0) + \mathsf{E}_{\mathcal{T}}[(\mathsf{E}(Y | X = x_0) - \hat{f}_{\mathcal{T}}(x_0))^2 | X = x_0] \\ &= \mathsf{Var}(Y | X = x_0) + [\mathsf{Bias}_{\mathcal{T}}^2(\hat{f}_{\mathcal{T}}(x_0)) + \mathsf{Var}_{\mathcal{T}}(\hat{f}_{\mathcal{T}}(x_0))] \end{split}$$

Model selection and the bias-variance tradeoff / 2

- This decomposition indicates:
 - The first term is the irreducible error.
 - The second and third terms are the *mean squared error* of $\hat{f}_{\mathcal{T}}(x_0)$ in estimating $f(x_0)$ decomposed into *bias* and *variance*.
- In general one has:
 - If the model complexity is increased, the bias is reduced.
 - If the model complexity is increased, the variance is increased.

Model selection and the bias-variance tradeoff /3

