University of Leipzig

Advanced Labs

Lab report

Doppler-free Rb saturation spectroscopy with an external cavity diode laser

Jamal Ghaith 3792970 Anas Roumieh 3766647

Conducted on: 14.05.2024

Contents

1	Introduction	1
2	Analysis 2.1 Task 1 2.1.1 Scaling the data 2.1.2 Determining the finesse	1
3	Conclusion	2
$\mathbf{A}_{]}$	ppendices	3
Bi	bliography	4

1 Introduction

$$\mathscr{F} = \frac{\nu_{\text{FSR}}}{\delta \nu} \tag{1}$$

2 Analysis

2.1 Task 1

We were instructed to scale our measurement data using the FPI peaks in addition to determining the finesse.

2.1.1 Scaling the data

From [1], we know that our FSR is 1 GHz. Therefore, if the average spacing between peaks is calculated, we can determine the conversion factor and scale our data accordingly.

Figure 1: Peaks in the FPI spectrum, from task 4. Note: This is only a section of the plot.

This data was then flipped and normalized by the maximum value to obtain the following plot:

Figure 2: Normalized peaks in the FPI spectrum.

The average spacing between peaks was calculated to be $\approx 56.15,$ meaning there are $\approx \frac{1~\mathrm{GHz}}{56.15~\mathrm{counts}} \approx 0.0178 \frac{\mathrm{GHz}}{\mathrm{count}}$

Scaling the data using this conversion factor, we obtain the following plot:

Figure 3: Scaled data using the FPI peaks.

${\bf 2.1.2}\quad {\bf Determining\ the\ finesse}$

Using equation 1, the FWHM for a selected FPI peak can be used to find the finesse. The following shows a Lorentzian fit on a selected peak:

Figure 4: Lorentzian fit on a selected FPI peak.

From the fit, $\delta\nu\approx0.00476$ GHz Hence, the finesse is

$$\mathscr{F} = \frac{\nu_{\mathrm{FSR}}}{\delta \nu} = \frac{1~\mathrm{GHz}}{0.00476~\mathrm{GHz}} \approx 209.9$$

3 Conclusion

Appendices

Bibliography

 $[1]\,$ F. Jung, "Doppler-free rb saturation spectroscopy," $\,2018.$