

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB302T DISCRETE MATHEMATICS

UNIT-1 SET THEORY

Tutorial Sheet - 2

Sl.No.		Questions PART-A (3 Marks)
1	Let $f: R \to R$ be defined by $f(x) = 2x - 3$ and find a formula for its	
	inverse function	
2	Let $A=\{a, b, c\}$ $B=\{x, y, z\}$ and $C=\{r, s, t\}$. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by	
	$f = \{(a,y), (b,x), (c,y)\}$ and $g = \{(x,s), (y,t), (z,r)\}$. Find a) composition function $g \circ f : A \rightarrow C$	
	b) Im(f), Im(g) and Im(g ° f)	
3	Determine whether the function $f: R \to R$ given by $f(x) = (x+1) / x$ is one-to one or	
	not.	
4	Show that the function $f: R \to R$ defined by $f(x) = x^2$ is not bijective.	
5	Let $f: R \to R$ and $g: R \to R$ be defined by $f(x) = 2x + 1$ $g(x) = x^2 - 1$ then find	
	The formula for the composition function $(g \circ f)(x)$.	
	PART – B (6 Marks)	
6	For the relation $R = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,3),(4,4)\}$ defined on	
	$X=\{1,$	2,3,4}, find the transitive closure of R using Warshall's algorithm.
7	For the relation $R=\{(1,3),(1,4),(2,1),(2,3),(2,4),(3,4)\}$ defined on $X=\{1,2,3,4\}$ find the	
	properties of	the relation R.
8	Find $(f \circ g)(x)$) for $f(x) = 3x + 4$ and $g(x) = (x^2 + 1)/x$
9	At the end of the semester a teacher assigns letter grades to each of her students. Is	
	this a function	on? If so, what sets make up the domain and codomain, and is the
	function injection	ctive, surjective, bijective, or neither.
10	Let $f: X \to Y$	Y and $g: Y \to Z$ be functions. We can define the composition of f and g
	to be the fund	etion $g \circ f : X \to Z$ which the image of each $x \in X$ is $g(f(x))$.
	(a) If f and g	are both injective, must g of be injective? Explain.
	(b) If f and g	are both surjective, must g of be surjective? Explain.