

人工智能引论

10. 逻辑回归、多分类与正则化

授课教师

周嘉欢

2024年03月25日

目录

・二分类问题

• 逻辑回归 --- 对条件概率p(y|x)建模并用最大似然估计参数

・多分类问题

• 扩展到多分类,可用Softmax回归

・正则化

- L2正则化降低过拟合风险
- 调整超参数, cross-validation

线性回归回顾

• 模型

$$f(x) = w^T x + b$$

- 输入 $x \in \mathbb{R}^d$
- 参数 $w \in \mathbb{R}^d$, $b \in \mathbb{R}$, 权重 (weight) 和 偏置 (bias)
- 输出 $f(x) \in \mathbb{R}$
- 损失函数
 - 平方损失函数 (squared loss, L2 loss)
 - $J(w,b) = \frac{1}{n} \sum_{i \in [n]} L(f(x_i), y_i) = \frac{1}{n} \sum_{i \in [n]} (w^T x_i + b y_i)^2$
 - 梯度下降训练

经验风险最小化框架

- Empirical Risk Minimization (ERM)
 - 首先确定采用的模型 f(x)
 - 比如,线性模型 $f(x) = w^T x + b$
 - 其次,确定损失函数 (loss function) L(f(x), y)
 - 比如,平方损失函数 $L(f(x),y) = (f(x) y)^2$
 - 在训练集上最小化损失函数的平均值

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} L(f(x_i), y_i)$$

- 一般都可以采用梯度下降优化参数
- 大部分监督学习算法都遵循以上经验风险最小化框架 (ERM),区别仅在于具体选择的 f(x) 和 L(f(x),y)

逻辑回归

- 线性回归 (Linear Regression)
 - 处理回归问题
 - 线性模型 $f(x) = w^T x + b$
 - 平方损失函数

- 逻辑回归 (Logistic Regression)
 - 处理二分类问题 (虽然名字叫回归)
 - 线性模型 $f(x) = w^T x + b$
 - · 交叉熵损失函数 (cross entropy loss)

二分类 (Binary Classification)

- 标签只有两种
 - *y* ∈ {−1,1}, -1代表负类 (negative class), 1代表正类 (positive class)
 - 如垃圾邮件识别,1代表垃圾邮件,-1代表正常邮件
- 一般不直接让 $f(x) \in \mathbb{R}$ 拟合 $y \in \{-1,1\}$
- 为了将实数输出转换为类别{-1,1}, 采用sign()函数

•
$$sign(f(x)) = \begin{cases} 1, & \text{if } f(x) > 0 \\ -1, & \text{if } f(x) < 0 \end{cases}$$

- 使用什么损失函数?
 - 最直接的目标,最小化分类错误数,使用零一损失函数 (zero-one loss)

•
$$L(f(x),y) = \begin{cases} 0, & \text{if } sign(f(x)) = y \\ 1, & \text{if } sign(f(x)) = -y \end{cases}$$
 \iff $L(f(x),y) = \begin{cases} 0, & \text{if } y \cdot f(x) \ge 0 \\ 1, & \text{if } y \cdot f(x) < 0 \end{cases}$ $(f(x) = 0)$ 时默认0损失)

• 但是,零一损失函数是阶跃函数,不可微 (non-differentiable) 且不连续 (non-continuous),无法用梯度下降优化 (在0处不可微,其余处梯度都为0,无法提供下降方向)

最大似然框架 (Maximum Likelihood)

- 让我们使用最大似然估计 (Maximum Likelihood Estimation) 来推导适合二分类问题 的损失函数
- 最大似然估计 (MLE) 的原则:
 - 对观测数据进行(条件)概率建模
 - 对机器学习,每个观测数据即一个训练样本
 - 对判别式模型, 我们只建模 $p(y|x;\theta)$, θ 为模型参数
 - 通过最大化观测数据在给定概率模型下的似然(例如:把训练样本预测为正确标签的概率)来估 计模型参数
 - 如果训练样本互相独立(独立同分布假设),则最大似然估计可写为 $\max_{\theta} \prod_{i \in [n]} p(y = y_i | x = x_i; \theta), \ \text{或简写为} \max_{\theta} \prod_{i \in [n]} p(y_i | x_i; \theta)$
 - 但是,大量概率连乘容易造成数值超出计算精度,例如 $0.5^{1000}\approx 9\times 10^{-302}$
 - 解决方法为,最大化对数似然 (log-likelihood)

$$\max_{\theta} \log(\prod_{i \in [n]} p(y_i | x_i; \theta)) \Leftrightarrow \max_{\theta} \sum_{i \in [n]} \log(p(y_i | x_i; \theta))$$

最大似然估计例子

- 给定一枚正反不均匀的硬币
- 已知抛了n次硬币,其中正面朝上的次数为m次
- 用最大似然估计(MLE)估算硬币正面概率

• 解法:

- 首先对抛硬币事件进行概率建模,假设每次抛硬币正面朝上的概率为p,则反面为1-p
- 在这个概率模型中, p 是我们唯一要估算的参数
- 将观测数据在给定概率模型下的似然写出(假想观测数据为"正反反正正正正反正反正正 反正反正…",其中正面m次,反面n-m次):

$$Likelihood = p^m (1-p)^{n-m}$$

• 最大化对数似然来估计 p

$$\max_{p} m \log p + (n-m) \log (1-p)$$

• 让梯度为0,得到 $\frac{m}{p} - \frac{n-m}{1-p} = 0$,求得p = m/n

逻辑回归的最大似然估计

- 首先对 $p(y|x;\theta)$ 建模
 - 已有线性模型 $f(x) = w^T x + b$, 只需要把它转化成正类的概率
 - 采用sigmoid函数 σ : $(-\infty, +\infty) \rightarrow [0,1]$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$1 - \sigma(x) = \frac{e^{-x}}{1 + e^{-x}} = \frac{1}{1 + e^{x}} = \sigma(-x)$$

- $\mathbb{D} p(y = 1|x; \theta) = p(y = 1|x; w, b) = \sigma(f(x)) = \sigma(y \cdot f(x))$
- 自然的, $p(y=-1|x;w,b)=1-\sigma(f(x))=\sigma(-f(x))=\sigma(y\cdot f(x))$
- 说明,不论 y 取1/-1,都有 $p(y|x; w, b) = \sigma(y \cdot f(x))!$

逻辑回归的最大似然估计

- 在训练集上最大化对数似然
 - $\max_{w,b} \sum_{i \in [n]} \log[p(y_i|x_i; w, b)] = \sum_{i \in [n]} \log[\sigma(y_i \cdot f(x_i))]$
 - 代入 $f(x_i) = w^T x_i + b$, 得到最优化问题

$$\max_{w,b} \sum_{i \in [n]} \log[\sigma(y_i(w^T x_i + b))] = \sum_{i \in [n]} \log[\frac{1}{1 + e^{-y_i(w^T x_i + b)}}]$$
$$= -\sum_{i \in [n]} \log[1 + e^{-y_i(w^T x_i + b)}]$$

• 写成最小化平均损失函数的形式(逻辑回归的ERM形式):

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} \log[1 + e^{-y_i(w^T x_i + b)}]$$

• 由最大对数似然推出的损失函数 $L(f(x_i), y_i) = \log[1 + e^{-y_i(w^T x_i + b)}]$ 称为交叉熵损失 (Cross Entropy Loss),有时也直接称为 Logistic/Log Loss

替代损失函数视角

·除了从最大似然估计视角推导逻辑回归,我们也可以从替代损失 函数(substitute loss) 的视角看待逻辑回归

Logistic loss: $L(f(x_i), y_i) = \log[1 + e^{-y_i f(x_i)}]$

- 逻辑回归的交叉熵损失函数(红线)是零一损失的 上界 (upper bound)
- 交叉熵损失函数可微、连续、且是凸函数 (convex), 因此容易优化
- 最小化上界同样可以最小化零一损失函数,即分类错误数
- 因此称为替代损失函数
- · 绿线为合页损失函数 (Hinge Loss), $L(f(x_i), y_i) = \max(0, 1 y_i f(x_i))$, 另一种常见的替代损失函数

逻辑回归的训练

• 使用梯度下降求解如下最优化问题

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} \log[1 + e^{-y_i(w^T x_i + b)}]$$

• 对目标 $J(w,b) = \frac{1}{n} \sum_{i \in [n]} \log[1 + e^{-y_i(w^T x_i + b)}]$ 求梯度

•
$$\frac{\partial J(w,b)}{\partial w} = -\frac{1}{n} \sum_{i \in [n]} \frac{e^{-y_i(w^T x_i + b)}}{1 + e^{-y_i(w^T x_i + b)}} y_i x_i = -\frac{1}{n} \sum_{i \in [n]} [1 - p(y_i | x_i; w, b)] y_i x_i$$

•
$$\frac{\partial J(w,b)}{\partial b} = -\frac{1}{n} \sum_{i \in [n]} \frac{e^{-y_i(w^T x_i + b)}}{1 + e^{-y_i(w^T x_i + b)}} y_i = -\frac{1}{n} \sum_{i \in [n]} [1 - p(y_i | x_i; w, b)] y_i$$

- 把样本 *i* 预测为其真实标签的概率越接近1 (说明已经充分拟合该样本) ,它对梯度的贡献越小
- 迭代更新 w,b 直到 I(w,b) 无法再下降或达到预设的最大次数

$$w \leftarrow w - \alpha \cdot \frac{\partial J(w,b)}{\partial w}, \ b \leftarrow b - \alpha \cdot \frac{\partial J(w,b)}{\partial b}$$

线性回归 vs 逻辑回归

	线性回归	逻辑回归
任务	回归	二分类
模型	线性模型 $f(x) = w^T x + b$	线性模型 $f(x) = w^T x + b$
输出	f(x)	$sign(f(x))$ 直接输出{-1, 1}; 或 $\sigma(f(x))$ 输出取1的概率
损失函数	平方损失 $(f(x_i) - y_i)^2$	交叉熵损失 $\log[1 + e^{-y_i(w^T x_i + b)}]$

一维可视化

线性回归 vs 逻辑回归

逻辑回归的高维可视化

逻辑回归总结

• 模型

$$f(x) = w^T x + b$$

• 输入 $x \in \mathbb{R}^d$, 参数 $w \in \mathbb{R}^d$, $b \in \mathbb{R}$

- $\sigma(f(x)) = \frac{1}{1+e^{-f(x)}}$ 将实值 f(x) 转换为取正类 (y=1) 的概率,
- $1 \sigma(f(x))$ 转换为取负类 (y = -1) 的概率
- 最大似然估计
 - $\max_{w,b} \sum_{i \in [n]} \log[p(y_i|x_i; w, b)] = \sum_{i \in [n]} \log[\sigma(y_i \cdot f(x_i))]$
- 等价于最小化交叉熵损失
 - $\min_{w,b} \frac{1}{n} \sum_{i \in [n]} \log[1 + e^{-y_i(w^T x_i + b)}]$

多分类问题 (Multiclass Classification)

- 如何处理类别数 K>2 的情况?
 - one vs rest
 - 对K分类问题训练K个二分类器 (如 逻辑回归)
 - 第k个二分类器将第k类当成正类, 其余所有类别都当成负类
 - $y = argmax_{k \in [K]} f_k(x)$
 - 问题:
 - 当类别数 K 非常大时,分别训练K 个二分类器代价太高
 - K个二分类器互相独立,无法统一成一个模型

Softmax 回归

- •专门解决多分类问题(虽然仍然叫回归)
- K 分类问题: $y \in \{1,2,...,K\} = [K], x \in \mathbb{R}^d$
- 共同训练 K 个模型 $f_k(x) \in \mathbb{R}, k \in [K]$
- 将模型输出 $f_k(x)$ 转化为取第 k 类的概率
 - 不能使用 sigmoid 函数,因为需满足 $\sum_{k \in [K]} p(y = k | x) = 1$
 - 解决方法:使用 softmax 函数,使概率归一化

$$p(y = k|x) = \frac{e^{f_k(x)}}{\sum_{j \in [K]} e^{f_j(x)}}$$

• e 指数的放大效应会使得如果 $f_k(x) \gg f_j(x), \forall j \neq k$, 则 $p(y = k|x) \approx 1$

Softmax 回归

k	1	2	3	4
$f_k(x)$	2.0	1.0	1.0	0.5
$\frac{e^{f_k(x)}}{\sum_{j\in[K]}e^{f_j(x)}}$	0.5105	0.1878	0.1878	0.1139
k	1	2	3	4
$f_k(x)$	3.0	1.0	0.5	0.5
$\frac{e^{f_k(x)}}{\sum_{j\in[K]}e^{f_j(x)}}$	0.7695	0.1041	0.0632	0.0632
k	1	2	3	4
$f_k(x)$	10.0	1.0	1.0	1.0
$\frac{e^{f_k(x)}}{\sum_{j\in[K]}e^{f_j(x)}}$	0.9996	0.0001	0.0001	0.0001

Softmax 回归

- 预测 y 取第 k 类概率: $p(y=k|x) = \frac{e^{f_k(x)}}{\sum_{j \in [K]} e^{f_j(x)}}$
- 满足归一化条件: $\sum_{k \in [K]} p(y = k | x) = 1$
- 使用最大对数似然估计参数
 - 假设 $f_k(x)$ 的参数为 θ_k , 最大化训练集 $\{(x_i, y_i) | i \in [n]\}$ 的对数似然:

$$\max_{\{\theta_k\}} \sum_{i \in [n]} \log[p(\mathbf{y_i}|x_i)] = \sum_{i \in [n]} \log\left[\frac{e^{f\mathbf{y_i}(x_i)}}{\sum_{j \in [K]} e^{f_j(x_i)}}\right]$$

• 等价于最小化交叉熵损失:

$$\min_{\{\theta_k\}} - \frac{1}{n} \sum_{i \in [n]} \log \left[\frac{e^{fy_i(x_i)}}{\sum_{i \in [K]} e^{f_j(x_i)}} \right] = \frac{1}{n} \sum_{i \in [n]} (\log \left[\sum_{j \in [K]} e^{f_j(x_i)} \right] - f_{y_i}(x_i))$$

过拟合现象回顾

- 过拟合 (overfitting): 测试误差远远大于训练误差
 - 错把训练样本中找到的特殊规律当做了普遍规律——应避免这种现象

正则化 (Regularization)

• 实际中我们一般在损失函数后加一项一起优化:

$$\min_{f} \frac{1}{n} \sum_{i \in [n]} L(f(x_i), y_i) + \lambda \cdot R(f)$$

- $\lambda \cdot R(f)$ 称为正则化项 (regularization term),用于惩罚过于复杂的模型
- $\lambda > 0$ 是个超参数 (hyperparameter),预先指定,不随参数优化
- 为什么需要正则化?
 - 防止过拟合 (overfitting), 即测试误差远远高于训练误差
 - 常见过拟合原因:
 - 某几个特征维度 j 支配 (dominate) 了预测,即这些维度的权重 w_j 过大
 - 输入数据中存在大量没用的特征维度, 但仍然赋予了它们非零的权重

正则化 (Regularization)

- 常见过拟合原因:
 - 某几个特征维度 j 支配 (dominate) 了预测,即这些维度的权重 w_i 过大
 - 解决方法: L2 正则化 $R(f) = ||w||_2^2 = w^T w = \sum_{j \in [d]} w_j^2$, 简写为 $||w||^2$
 - 作用: w_i^2 会放大较大的权重,用于惩罚少数过大的权重维度,使权重分配更平均
 - 输入数据中存在大量没用的特征维度,但仍然赋予了它们非零的权重
 - 解决方法: L1 正则化 $R(f) = ||w||_1 = \sum_{j \in [d]} |w_j|$
 - 作用: 鼓励稀疏的 w, 即 w 中大部分维度为零,仅有少数维度非零 (具体原因超出本课程范围)

带正则化的回归

- 岭回归 (Ridge Regression)
 - 线性回归 + L2 正则化

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} (w^T x_i + b - y_i)^2 + \lambda ||w||^2$$

• 梯度

$$\frac{\partial J(w,b)}{\partial w} = \frac{2}{n} \sum_{i \in [n]} (w^T x_i + b - y_i) x_i + 2\lambda w \in \mathbb{R}^d$$

- Lasso 回归
 - 线性回归 + L1 正则化

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} (w^T x_i + b - y_i)^2 + \lambda ||w||_1$$

Ridge regression

Lasso regression

带正则化的分类

- •逻辑回归(完整形式)
 - · 交叉熵损失 + L2 正则化

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} \log[1 + e^{-y_i(w^T x_i + b)}] + \lambda ||w||^2$$

• 梯度

$$\frac{\partial J(w,b)}{\partial w} = -\frac{1}{n} \sum_{i \in [n]} [1 - p(y_i|x_i; w, b)] y_i x_i + 2\lambda w \in \mathbb{R}^d$$

- 支持向量机 (Support Vector Machine, SVM) (最大间隔准则)
 - 合页损失 (Hinge Loss) + L2 正则化

$$\min_{w,b} \frac{1}{n} \sum_{i \in [n]} \max(0, 1 - y_i(w^T x_i + b)) + \lambda ||w||^2$$

不使用L2正则化

分隔超平面

Separating hyperplane

 $w_1 = 1.300, w_2 = -3.344$

训练/测试损失曲线

Training Loss = 0.348Test Loss = 0.380

L2正则化 $\lambda = 0.01$

分隔超平面

Separating hyperplane

 $w_1 = 1.132, w_2 = -2.407$

训练/测试损失曲线

Training Loss = 0.361Test Loss = 0.377

• L2正则化 $\lambda = 0.02$

分隔超平面

Separating hyperplane

 $w_1 = 1.044, w_2 = -1.960$

训练/测试损失曲线

 $Training \ Loss = 0.376$ $Test \ Loss = 0.385$

• L2正则化 $\lambda = 0.05$

分隔超平面

Separating hyperplane

训练/测试损失曲线

 $Training \ Loss = 0.414$ $Test \ Loss = 0.412$

超参数与模型选择

- 训练过程中一般涉及一些超参数 (hyperparameters)
 - 梯度下降的学习率 (learning rate) α , 正则化项的系数 λ 等
 - 此外,使用哪种模型、哪种损失函数、哪种正则化等也可看作超参数
 - 找到所有可能的超参数组合,例如 $\alpha \in \{0.1, 0.01, 0.001\}, \lambda \in \{10, 1, 0.1\}, \text{Loss} \in \{Hinge, Cross Entropy}\}$,则其中一组超参数组合为 $\{\alpha: 0.01, \lambda: 0.1, \text{Loss}: Hinge\}$
- 使用验证集 (validation set) 来选择最优超参数
 - 在训练集、测试集之外引入验证集,通常按照训练集/验证集/测试集分别 80%/10%/10%的比例划分
 - 对每一组超参数的组合, 在训练集上训练参数, 在验证集上验证模型误差
 - 遍历所有可能的超参数组合,选择在验证集上误差最小的模型和超参数
 - 使用选定的模型和超参数在测试集上最终测试模型误差,估计模型泛化能力

K-折交叉验证 (K-fold Cross-Validation)

- 有时总数据量比较少,10%的验证集不足以准确地验证模型性能
- K-折交叉验证:
 - 将测试集外的所有数据随机分为 K 份
 - 对一组给定的超参数组合:
 - 每次使用 K-1 份数据训练模型,用 1 份验证模型误差
 - 将 K 次验证的模型误差取平均来衡量该组超参数的好坏
 - 遍历所有可能的超参数组合
 - 返回平均误差最低的超参数组合, 在测试集上最终测试模型性能

总结

・二分类问题

- 一种新的参数估计框架: 最大似然估计 (MLE)
- 逻辑回归 --- 用 $\sigma(f(x))$ 对条件概率p(y=1|x)建模
- 用MLE推导交叉熵损失函数

・多分类问题

- 扩展到多分类,使用Softmax建模p(y = k|x)
- 使用MLE推导交叉熵损失函数

・正则化

- 降低过拟合风险
- L2正则化, L1正则化
- 使用验证集调整超参数, cross-validation
- **下周**: 决策树

期中考试安排

社 PEKING UNIVERSITY

4月22日,周一

地点: 待定

谢谢 DEKING UNIVERSITY