3º Simulado da Quarentena OMERJ 2020

Disponível na sexta, 03 de abril de 2020. Entrega até terça, 07 de abril de 2020.

Instruções:

- Entregue também o rascunho, pois ele pode ser utilizado a seu favor na correção.
- Escreva somente em um dos lados de cada folha.
- É proibido o uso de calculadora ou computador. É permitido o uso de régua, esquadro e compasso.
- Tudo o que você escrever deve ser justificado.
- Todas as questões têm o mesmo valor.
- Duração da prova: 4 horas e 30 minutos.

PROBLEMA 1

Seja \mathbb{N} o conjunto dos inteiros não negativos. Considere a sequência u_n definida por $u_0 = 0$ e $u_{2n} = u_n$, $u_{2n+1} = 1 - u_n$ para todo $n \in \mathbb{N}$.

- (a) Calcule u_{2020} .
- (b) Ache a quantidade de índices $n \le 2020$ para os quais $u_n = 0$.
- (c) Seja m um número natural e $N = (2^m 1)^2$. Ache u_N .

PROBLEMA 2

Um jogo consiste em peças no formato de um tetraetro regular de lado 1. Cada face é pintada com uma de n cores, e as faces de uma mesma peça não possuem cores necessariamente distintas. Determine o número máximo de peças que esse jogo pode ter, tal que quaisquer duas peças sejam sempre distinguíveis, mesmo que o jogador possa rotacioná-las.

PROBLEMA 3

(a) Ache todas as triplas de inteiros positivos (a, b, c) para os quais

$$\frac{1}{4} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}.$$

(b) Ache todos os inteiros positivos n para os quais exitem inteiros positivos x_1, x_2, \ldots, x_n tal que

$$1 = \frac{1}{x_1^2} + \frac{1}{x_2^2} + \dots + \frac{1}{x_n^2}.$$

PROBLEMA 4

Seja p um inteiro não negativo e seja $n=2^p$. Considere um subconjunto A do conjunto $\{1,2,...,n\}$ com a propriedade que de que, sempre que $x \in A$, então $2x \notin A$. Ache o número máximo de elementos que A pode ter.

PROBLEMA 5

Seja ABC um triângulo. Seja P um ponto no plano, e sejam L, M, N os pés das perpendiculares passando por P aos lados BC, CA, AB, respectivamente. Determine o ponto P para o qual $BL^2 + CM^2 + AN^2$ é mínimo.

PROBLEMA 6

Seja \mathbb{N} o conjunto dos inteiros não negativos. Seja $f: \mathbb{N} \to \mathbb{N}$ uma função bijetora. Prove que sempre existem inteiros não negativos a, b, c tais que a < b < c e f(a) + f(c) = 2f(b).