Funções

Maria Joana Torres

2022/23

Definição:

Chamamos **função** a dois conjuntos não vazios, X e Y, munidos de uma lei de formação ou regra de correspondência, f, que a cada elemento x de X associa um único elemento f(x) de Y. Em geral denotamos a função por $f: X \longrightarrow Y$.

Usa-se a notação $x\longmapsto f(x)$ para indicar que o elemento x é enviado por f em f(x) ou que f faz corresponder a x o elemento f(x).

Definição:

Dados os conjuntos X e Y e a função $f: X \longrightarrow Y$, designa-se:

- o conjunto X por **domínio** da função e denota-se por Dom(f);
- o conjunto Y por conjunto de chegada da função;
- o conjunto

$$f(X) = \text{Im}(f) = CD(f) = \{f(x) : x \in X\}$$

por contradomínio ou imagem da função;

- os elementos x de X por **objetos**;
- os elementos f(x) tais que $x \in X$ por **imagens**;
- o conjunto $Gr(f) = \{(x, y) \in X \times Y : y = f(x)\}$ por gráfico de f.

Definição:

Dada uma função $f: X \longrightarrow Y$, $A \subseteq X$, $B \subseteq Y$, denomina-se por:

• imagem de A por f o conjunto

$$f(A) = \{f(x) : x \in A\};$$

ullet imagem recíproca de B por f o conjunto

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

Definição:

Uma função $f: X \longrightarrow Y$ diz-se:

 injetiva quando a objetos distintos em X correspondem imagens distintas em Y, ou seja, quando

$$\forall x, y \in X, \quad x \neq y \Longrightarrow f(x) \neq f(y),$$

ou ainda, quando

$$\forall x, y \in X, \quad f(x) = f(y) \Longrightarrow x = y;$$

• sobrejetiva quando o seu contradomínio coincide com o conjunto de chegada, isto é, quando f(X)=Y, ou seja, quando

$$\forall y \in Y \ \exists x \in X : \ f(x) = y;$$

• bijetiva quando é, simultaneamente injetiva e sobrejetiva.

Definição:

Dado um conjunto X não vazio, define-se $id_X:X\longrightarrow X$ e designa-se **função** identidade (em X), a função tal que

$$id_X(x) = x, \quad \forall x \in X.$$

Definição:

Chamamos função real de variável real a uma função $f:X\longrightarrow Y$, em que X e Y são subconjuntos não vazios de $\mathbb R.$

Definição:

Uma função $f: X \longrightarrow \mathbb{R}$ diz-se:

• majorada quando

$$\exists M \in \mathbb{R} : \ \forall x \in X, \ f(x) \le M;$$

• minorada quando

$$\exists m \in \mathbb{R} : \ \forall x \in X, \ f(x) \ge m;$$

• limitada quando

$$\exists m, M \in \mathbb{R} : \forall x \in X, \ m \le f(x) \le M,$$

ou equivalentemente, quando

$$\exists L \in \mathbb{R}^+ : \ \forall x \in X, \ |f(x)| \le L.$$

Definição:

Uma função $f:X\mathbb{R}\longrightarrow\mathbb{R}$ diz-se:

crescente quando

$$\forall x_1, x_2 \in X, \quad x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2);$$

em particular estritamente crescente quando

$$\forall x_1, x_2 \in X, \quad x_1 < x_2 \Longrightarrow f(x_1) < f(x_2);$$

decrescente quando

$$\forall x_1, x_2 \in X, \quad x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2);$$

em particular estritamente decrescente quando

$$\forall x_1, x_2 \in X, \quad x_1 < x_2 \Longrightarrow f(x_1) > f(x_2);$$

 monótona se é crescente ou decrescente; em particular, estritamente monótona quando é estritamente crescente ou estritamente decrescente.

Funções pares e ímpares

Um conjunto $X\subseteq\mathbb{R}$ diz-se simétrico em relação à origem quando

$$\forall x \in X, \ x \in X \ \Leftrightarrow \ -x \in X.$$

Definição:

Uma função $f: X \longrightarrow \mathbb{R}$ diz-se:

• par quando X é simétrico em relação à origem e $\forall x \in X, \ f(-x) = f(x).$ O gráfico de f é invariante por reflexão em torno do eixo vertical.

Funções pares e ímpares

Definição:

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se:

• **ímpar** quando X é simétrico em relação à origem e $\forall x \in X$, f(-x) = -f(x). O gráfico de f é invariante por uma rotação de 180° .

Restrição e prolongamento de uma função

Definição:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função e A,B dois conjuntos tais que $A\subseteq X\subseteq B.$

Chama-se **restrição** de f ao conjunto A à função (única)

$$f_{|_A}:A\longrightarrow \mathbb{R} \quad \text{tal que} \quad (f_{|_A})(x)=f(x), \quad \forall x\in A,$$

e **prolongamento** de f a B a qualquer função de domínio B que coincida com f em X, ou seja, a qualquer função

$$f^*: B \longrightarrow \mathbb{R}$$
 tal que $f^*(x) = f(x), \ \forall x \in X$.

Soma, produto e quociente de funções

Definição:

Dadas duas funções $f,g:X\to\mathbb{R}$, define-se

• soma de f e g:

$$f+g: X \rightarrow \mathbb{R}$$

 $x \longmapsto f(x) + g(x)$

produto de f e g:

$$\begin{array}{cccc} fg: & X & \to & \mathbb{R} \\ & x & \longmapsto & f(x)g(x) \end{array}$$

• quociente de f e g (supondo que $g(x) \neq 0$, $\forall x \in X$):

$$\frac{f}{g}: X \to \mathbb{R}$$

$$x \longmapsto \frac{f(x)}{g(x)}$$

Composição de funções

Definição:

Dadas duas funções $f:X\longrightarrow Y$ e $g:Y\longrightarrow W$, define-se a **função** g **composta com** f (escreve-se $g\circ f$) do seguinte modo:

$$g \circ f: X \longrightarrow W$$

 $x \longmapsto g(f(x))$

Inversa de uma função

Definição:

Dada uma função $f:X\longrightarrow Y$, uma função $g:Y\longrightarrow X$ diz-se **inversa de** f se $f\circ g=id_Y$ e $g\circ f=id_X$. Uma função que admite inversa diz-se **invertível**.

Nota:

Facilmente se verifica que se $f:X\longrightarrow Y$ é invertível, a sua inversa é única.

Podemos então denotar a função inversa de f por $f^{-1}: Y \longrightarrow X$.

Observe-se que f^{-1} é invertível e que $\left(f^{-1}\right)^{-1}=f$.

Proposição:

Uma função $f:X\longrightarrow Y$ é invertível se e só se é bijetiva.

Inversa de uma função

A partir de uma representação gráfica da função f podemos obter uma representação gráfica de f^{-1} , procedendo como se indica na figura seguinte:

Extremos

Definição:

Uma função $f:X\longrightarrow \mathbb{R}$ possui um:

• máximo local em $a \in X$ se

$$\exists \epsilon > 0: \ \forall x \in]a - \epsilon, a + \epsilon[\cap X, \ f(x) \le f(a);$$

• máximo absoluto em $a \in X$ se

$$\forall x \in X, \ f(x) \le f(a);$$

• mínimo local em $a \in X$ se

$$\exists \epsilon > 0: \ \forall x \in]a - \epsilon, a + \epsilon[\cap X, \ f(x) \ge f(a);$$

• mínimo absoluto em $a \in X$ se

$$\forall x \in X, \ f(x) \ge f(a).$$

De um modo geral, os máximos e os mínimos são chamados de **extremos**. Um ponto onde a função f atinge um extremo diz-se um **ponto extremante** de f, podendo tratar-se de um **maximizante** ou de um **minimizante**.

A função f possui máximos locais em a, c e e, que são f(a), f(c) e f(e), respetivamente. Não possui máximo absoluto. Possui mínimos locais em b, d e f, que são f(b), f(d) e f(f), respetivamente, e um mínimo absoluto em b.