Assignment 6 (Due: Feb 22 23:59) Ivan Neto

Problem 1: Convert the following CFG to a semi-pruned SSA form, following the three major steps:

- 1) Compute the dominance frontier for each basic block;
- 2) Insert phi-functions based on Dominance Frontier and Global Names;
- 3) Rename variables with counters and stacks.

[Note: to find global names, you may skip the entry block, whose UEVar does not generate any actual global names.]

Solution 1):

Block	A	В	C	D	E	F
DF	-	В	Е	Е	В	-

Solution 2):

The first step in inserting the ϕ -functions is calculating the global names - names that live across blocks.

To do this, I use the following algorithm given in lecture:

```
Globals <- emptyset

for each block B in the CFG

VarKill <- emptyset

for each operator x <- y op z in B, in order

if y not in VarKill then

Globals <- Globals union {y}

if z not in varKill then

Globals <- Globals union {z}

VarKill <- VarKill union {x}

Blocks{x} <- Blocks{x} union {B} // defining blocks
```

Running this algorithm, the following definition blocks are computed:

name	a	b	С	f	90	e	m	n
DB(s)	$\{A\}$	$\{A,F\}$	$\{A\}$	{ <i>B</i> }	$\{CEFB\}$	$\{C,D\}$	$\{E\}$	-

Note: DB(s) means defining block(s)

Similarly, the following global names are computed

```
Globals = \{a, b, c, g, f, m, n\}
```

Note: I skip the entry block because UEVar does not generate any actual global names.

I use the following algorithm given in the lecture recording to insert the ϕ -functions:

```
/* Already done immediately before this */
compute global names Globals and Blocks(x)
for each block B in CFG
   compute DF(B)

for each name x in Globals
   WorkList <- Blocks(x)
   while WorkList != emptyset
      remove block B from WorkList
   for each block B_df in DF(B)
      if B_df has no phi-function for x then
            insert phi-function for x in B_df
            WorkList <- WorkList union {B_df}</pre>
```

I show each global name being inserted into the CFG:

For global name b:

No ϕ -functions are inserted because both blocks A and F do not have a dominance frontier. Therefore we cannot run the inner for loop in the algorithm.

For global name a:

No ϕ -functions are inserted because block A does not have a dominance frontier. Therefore we cannot run the inner for loop in the algorithm.

For global name c:

No ϕ -functions are inserted because block A does not have a dominance frontier. Therefore we cannot run the inner for loop in the algorithm.

For global name g:

For global name f:

For global name m:

For global name n:

Nothing is done here because n does not have any defining blocks.

Final CFG:

Note: Although it looks like e should contain a ϕ -function at block E, e is not a global variable as it is not utilized in any subsequent blocks. Therefore we do not need a ϕ -function for e at block E.

Solution 3):

I start the process of renaming the ϕ -function variables by building the dominance tree:

To rename the variables, I follow the order of a preorder traversal of the dominance tree:

```
Pre(DomTree) = \{A, B, C, D, E, F\}
```

I will be using the following function definitions as provided by the lecture recording:

StartRename():

```
StartRename():
    for each global name i
        counter[i] <- 0
        stack[i] <- emptyset
    Rename(B_0)</pre>
```

NewName(n):

```
i <- counter[n]
push n_i onto stack[n]
counter[n]++
return n_i</pre>
```

Rename(B):

```
for each phi-function in B, x <- phi(...)
    rename x as NewName(x)

for each operation "x <- y op z" in B
    rewrite y as top (stack[y])
    rewrite z as top (stack[z])
    rewrite x as NewName(x)</pre>
```

```
for each successor of B in the CFG
    rewrite appropriate phi parameters

// pre-order traversal on dom tree
for each successor S of B in the dom tree
    Rename(S)

// back to previous scope
for each operation "x <- y op z" in B
    pop(stack[x])</pre>
```

I use the above algorithm and show, for each iteration of the preorder traversal, the transformation at each block: For A:

Since block A is the first block, I renamed each variable to its 0th version. Since no variables are defined that are used in the parameters for any ϕ -functions in B, I do not have to rewrite those parameters in B appropriately.

name	a	b	С	f	g0	e	m	n
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	Ø	Ø	Ø	Ø	Ø
count	1	2	1	0	0	0	0	0

For B:

name	a	b	С	f	60	e	m	n
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0,g_1\}$	Ø	$\{m_0\}$	Ø
count	1	2	1	2	2	0	1	0

For C:

name	a	b	c	f	600	e	m	n
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0, g_1, g_2\}$	$\{e_0\}$	$\{m_0\}$	Ø
count	1	2	1	2	3	1	1	0

Since on the dominance tree C is a leaf, we will need to pop all the x in C in the form $x \leftarrow y$ op z:

	, 1 1						9 1			
name	a	b	c	f	600	e	m	n		
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0,g_1\}$	Ø	$\{m_0\}$	Ø		
count	1	2	1	2	2	0	1	0		

For D:

name	a	b	С	f	g	e	m	n
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0,g_1\}$	$\{e_0\}$	$\{m_0\}$	Ø
count	1	2	1	2	2	1	1	0

Since on the dominance tree D is a leaf, we will need to pop all the x in C in the form $x \leftarrow y$ op z:

name	a	b	С	f	g	e	m	n
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0,g_1\}$	Ø	$\{m_0\}$	Ø
count	1	2	1	2	2	0	1	0

For E:

name	a	b	c	f	6 0	e	m	n
stack	$\{a_0\}$	$\{b_0,b_1\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0g_1g_2g_3\}$	Ø	$\{m_0,m_1\}$	Ø
count	1	2	1	2	4	0	2	0

For F:

name	a	b	С	f	6 0	e	m	n
stack	$\{a_0\}$	$\{b_0, b_1, b_2\}$	$\{c_0\}$	$\{f_0,f_1\}$	$\{g_0g_4\}$	Ø	$\{m_0,m_1\}$	Ø
count	1	3	1	2	5	0	2	0

The final CFG:

