Christine Niebler

Mathematik

Mathematik ist eine der Stärken von T_FX!

$$|I_{2}| = \left| \int_{0}^{T} \psi(t) \left\{ u(a,t) - \int_{\gamma(t)}^{a} \frac{d\theta}{k}(\theta,t) \int_{a}^{\theta} c(\xi) u_{t}(\xi,t) d\xi \right\} dt \right|$$

$$\leq C_{6} \left| \left| f \int_{\Omega} \left| \widetilde{S}_{a,-}^{-1,0} W_{2}(\Omega,\Gamma_{l}) \right| \right| \left| \left| |u| \stackrel{\circ}{\to} W_{2}^{\widetilde{A}}(\Omega;\Gamma_{r},T) \right| \right|$$

Um mathematische Symbole und Zeichen hübscher darzustellen: \usepackage{amsmath}

Mathematik •000000000000000

Umgebungen

```
In Fliesstext:
\begin{math} ...\end{math}
oder $ ...$
```

In seperater Zeile:

Mathematik 000000000000000

```
\[...\]
                        Eine Zeile, eine Gleichung
equation
           equation*
multline
           multline*
                        Nichtausgerichtete Gleichung über mehere
                        Zeilen; eine Gleichungsnummer
gather
           gather*
                        Gleichungen ohne Ausrichtung
                        Gleichungen mit mehreren Ausrichtungs-
           align*
align
                        punkten
                        Gleichungen mit mehreren Ausrichtungs-
flalign
           flalign*
                        punkten; Bündig gesetzt
```

equation

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$\begin{array}{l} \begin{array}{l} & \begin{equation*}\\ & (a+b)^2 = a^2 + 2ab + b^2 \\ & \end{equation*} \end{array}$$

\end{equation*}

Keine zweite Formel innerhalb equation-Umgebung!

Mathematik 00000000000000

multline, gather, align

```
\begin{multline}
a+b+c+d+e+f\\
+i+j+k+l+m+n
\end{multline}
```

$$a + b + c + d + e + f$$

 $+ i + j + k + l + m + n$ (1)

$$a_1 = b_1 + c_1 (2)$$

$$a_2 = b_2 + c_2 - d_2 + e_2 \qquad (3)$$

$$a_1 = b_1 + c_1 (4)$$

$$a_2 = b_2 + c_2 - d_2 + e_2 \qquad (5)$$

align, flalign

```
\begin{align}
a_{11} &=b_{11}&
a_{12} &=b_{12} \\
a_{21} &=b_{21}&
a_{22} &=b_{22}+c_{22}
\end{align}
```

$$a_{11} = b_{11}$$
 $a_{12} = b_{12}$ (6)
 $a_{21} = b_{21}$ $a_{22} = b_{22} + c_{22}$ (7)

$$a_{11} = b_{11}$$
 $a_{12} = b_{12}$ $a_{21} = b_{21}$ $a_{22} = b_{22} + c_{22}$

Buchstaben, Zeichen

```
\alpha
                               \Omega
                                     \Omega
\alpha
\boldsymbol{\beta}
     \beta
                               Λ
                                     \Lambda
                                     \Gamma
     \gamma
     \leq
                                     \Rightarrow
X
     \aleph
                               \Re
                                     \Re
                               ∉
     \in
                                     \notin
\in
```

Mathematik 000000000000000

Zeichen, Funktionen

```
\dot{\mathbf{x}}
         \det\{x\}
                                                   \ddot{\mathbf{x}}
                                                          \ddot{x}
                                                   \widetilde{\mathbf{x}}
         \overrightarrow{x}
                                                         \widetilde{x}
         \cdot
                                                          \times
                                                    X
\mathbf{x}'
         x^\prime
                                                   \partial
                                                         x^\partial
          ^{a}_{b}x^{c}_{d}
                                                          \nabla
```

Für die vielen Symbole siehe:

«The Comprehensive LaTeX Symbol List»

$$\cos(45^\circ) = \cos(\pi/4) \approx 0.707$$
 \[\cos(45^{\circ}) = \cos(\pi/4) \approx 0.707 \]

Gruppen, Hoch-, Tiefstellen

■ Gruppierung über { }

$$a^{x+y} \neq a^x+y$$

 $a^{x+y} \neq a^x+y$

- Hochgestellt: $x^2 \rightarrow x^2$
- Tiefgestellt: $x_{\min} \rightarrow x_{min} \Leftrightarrow x_{\min} \rightarrow x_{min}$
- $r_{\max}^{2} \rightarrow r_{max}^{2}$ r_{max}^{\phi}(max}2) $\rightarrow r_{max}^2$

Der Befehl erzeugt eine Abstand in der Größe des Arguments.

Mathematik 000000000000000

\sum	\sum	Π	\prod
ſ	$\$ int	∮	\emptyset
Ĵſ	\iint	\lim	\label{lim}
	ě		
•	•	•	•
•	•	•	•

Die Formel $\sum_{n=1}^{12} (f(x_n))$ wird innerhalb eines Texts geschrieben; die nachfolgende in einer separaten Zeile.

$$\sum_{n=1}^{12} (f(x_n))$$

```
\sum_{n=1}^{12} (f(x_n))
\begin{array}{ll} \begin{array}{ll} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

Texte

Text innerhalb Mathemodus:

\mathrm{ }

Mathematik 0000000000000000

- \textrm{ }
- \text{ }
- \intertext{ }

Mathematische Fonts:

- \mathbf{ } \Rightarrow $\int \mathbf{a}$
- \mathit{ } \Rightarrow $\int a$
- \mathbb{ } $\Rightarrow \mathbb{N}$ mit usepackage amsfonts

Wurzeln

$$0,707 = \sqrt{2}$$

```
\sqrt{k}
         \sqrt{k}
\sqrt[\beta]{k}
         \sqrt[\beta]{k}
\sqrt[\beta]{k}
         \sqrt[ \leftroot{6} \beta]{k}
\sqrt[\beta]{k}
         \sqrt[\leftroot{2} \uproot{6} \beta]{k}
```

Mathematik 00000000000000000

Klammern und Brüche

$$\cos\left(\frac{\pi}{4}\right)$$

$$\frac{m}{n} \qquad \text{ $\lceil \frac{m}{n+\frac{k}{l}} \rceil$} \qquad (\frac{m}{n+\frac{k}{l}}) \qquad (\frac{m}{n+\frac{k}{l}})$$

$$\left(\frac{m}{n+\frac{k}{l}}\right) \qquad \text{ $\lceil \frac{m}{n+\frac{k}{l}} \rceil$} \qquad \text{ $\lceil \frac{m}{n+\frac{k}{l}} \rceil$}$$

Befehl **\left**, **\right** + Klammer ⇒ passende Klammergröße wird automatisch erzeugt!

Klammern und Brüche

text	\left	\bigl	\Bigl	\biggl	\Biggl
	\right	\bigr	\Bigr	\biggr	\Biggr
$(b)(\frac{c}{d})$	$(b)\left(\frac{c}{d}\right)$	$(b)(\frac{c}{d})$	$(b)(\frac{c}{d})$	$\left(b\right)\left(\frac{c}{d}\right)$	$\left(b\right)\left(\frac{c}{d}\right)$

Die Klammergrößen-Befehle + Klammer können mit allen Arten von Klammern verwendet werden:

Align und Fälle

$$f_p(x) = \begin{cases} \frac{1}{p} & \text{für } p \neq 0\\ \infty & \text{für } p = 0 \end{cases}$$

```
\begin{align*}    ← oder jede andere Mathe-Umgebung
f_p(x) & =
    \begin{cases}
    \frac{1}{p} & \textrm{für } p \neq 0 \\
    \infty & \textrm{für } p = 0 \\
    \end{cases}
\end{align*}
Ausrichtung der Zeilen erfolgt an &-Zeichen
cases-Umgebung für verschiedene Funktionsterme
```

Abstände

Posititve Abstände			Negative Abstände		
Kurz	Abstand	Langform	Kurz	Abstand	Langform
١,	$\Rightarrow \Leftarrow$	\thinspace	\ !	$\Rightarrow\!\!\leftarrow$	\negthinspace
\:	$\Rightarrow \Leftarrow$	\medspace		$\Rightarrow\!\!\leftarrow$	\negmedspace
\;	$\Rightarrow \Leftarrow$	\thickspace		$\Rightarrow\!\!\leftarrow$	\negthickspace
	$\Rightarrow \Leftarrow$	\enskip			
	\Rightarrow \Leftarrow				
	\Rightarrow \Leftarrow	\qquad			

Mathematik 000000000000000

Übung

Setzen der Gleichungen von Übungsblatt Termin 3, erster Teil

Umgebungserweiterungen

"Miniseite" mit nicht ausgerichteten Formeln

"Miniseite" mit mehrfacher Ausrichtung aligned

einfache Ausrichtung innerhalb einer mehrzeiligen Formel split

Umgebungserweiterungen

$$(a+b)^3 = (a+b)(a+b)^2$$

= $(a+b)(a^2 + 2ab + b^2)$
= $a^3 + 3a^2b + 3ab^2 + b^3$ (8)

```
\begin{equation}
  \begin{split}
    (a + b)^3 &= (a + b) (a + b)^2 \\
          &= (a + b)(a^2 + 2ab + b^2) \\
          &= a^3 + 3a^2b + 3ab^2 + b^3
  \end{split}
\end{equation}
```

Gleichungsnummern

\usepackage[opt. Argument]{amsmath}

leqno (1)
$$(a+b)^2 = a^2 + 2ab + b^2$$

reqno $(a+b)^2 = a^2 + 2ab + b^2$ (1)
fleqn

Formel mit Einzug:

$$(a+b)^2 = a^2 + 2ab + b^2 \tag{1}$$

Einzug wird in Präambel festgelegt \setlength\mathindent{5mm}

Keine Gleichungsnummer

$$(a+b)^3 = (a+b)(a+b)^2$$
 (*)
= $(a+b)(a^2+2ab+b^2)$
= $a^3 + 3a^2b + 3ab^2 + b^3$ (1)

Unternummerierung

$$(a+b)^3 = (a+b)(a+b)^2$$

$$= (a+b)(a^2+2ab+b^2)$$

$$= a^3 + 3a^2b + 3ab^2 + b^3$$
 (1b)

Referenzen

$$f = g \tag{1a}$$

$$f = g$$
 (1a)
 $\mathcal{L}f = \mathcal{L}g$ (1b)

$$f = g (2a)$$

$$\mathcal{L}f = \mathcal{L}g + K \tag{2b}$$

Man beachte die Beziehung zwischen (1) und (2): nur 1b und 2b sind verschieden.

Referenzen

```
\begin{subequations} \label{eq:1}\label{eq:1}
   \begin{align}
     f \&= g \land eq:1A  \land \land
     \mathcal{L}f &= \mathcal{L}g
\label{eq:1B}\label{eq:1B}
   \end{align}
\end{subequations}
\begin{subequations} \label{eq:2}
   \begin{align}
     f \&= g \land eq:2A  \land \land
     \mathcal{L}f &= \mathcal{L}g + K \label{eq:2B}
   \end{align}
\end{subequations}
Man beachte die Beziehung
zwischen~\eqref{eq:1}~\eqref{eq:1} und~\eqref{eq:2}:
nur~\ref{eq:1B}~\ref{eq:1B} und~\ref{eq:2B} sind
```

Referenzen

$$f = g (1a)$$

$$\mathcal{L}f = \mathcal{L}g \tag{1b}$$

$$f = g (2a)$$

$$\mathcal{L}f = \mathcal{L}g + K \tag{2b}$$

Man beachte die Beziehung zwischen (1) und (2): nur 1b und 2b sind verschieden.

```
\label{eq} \Rightarrow Anker zur Gleichung
\eqref{eq} ⇒ Klammern um Gleichungsnummer
\ref{eq} ⇒ nur Gleichungsnummer
```

Einheiten

- Komma-Trennzeichen werden in {,} gesetzt, für richtige Positionierung
- kleiner Abstand zwischen Zahl und Einheit \,
- Einheiten werden aufrecht dargestellt \mathrm{Einheit}
 80{,}7\,\mathrm{kg}

$$E_{kin} = \frac{1}{2}mv^2$$
$$= \frac{1}{2} \cdot 80.7 \,\mathrm{kg} \cdot \left(30 \,\frac{\mathrm{km}}{\mathrm{h}}\right)^2$$

Matrizen

$$\begin{bmatrix} 0 & -1 & -2 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

```
\begin{gather*} ← oder jede andere Mathe-Umgebung
   \begin{bmatrix}
    0 & -1 & -2\\
    2 & 1 & 0\\
     1 & 0 & 1
   \end{bmatrix}
\end{gather*}
```

Matrizen

Matrizen

```
\begin{vmatrix} a & b & c & d & \cdots \\ 1 & a & b & c & \cdots \\ 1 & 1 & a & b & \cdots \\ \vdots & & & \ddots \end{vmatrix}
```

```
Punkte mit den Befehlen:
\cdot \cdot \cdot \cdot
\vdots:
\ldots ... auch in Text verfügbar
\ddots ·
\hdotsfor[Punktabstand]{Spaltenzahl}
```

Übung

Zweiter Teil vom Übungsblatt Termin 3

Dokumentation

Franzis Verlag, 2006

Math Mode (von Herbert Voss)

http://texcatalogue.sarovar.org/entries/voss-mathmode.html

The Comprehensive LATEX Symbol List

http://www.ctan.org/tex-archive/info/symbols/comprehensive

Doku zum amsmath Paket

http://texcatalogue.sarovar.org/entries/amsmath.html

Das LATEX-Sündenregister - oder auch "How Not To..." http://www.ctan.org/tex-archive/info/12tabu/german

Fortsetzung ...

...nächste Woche