Examen Final Libre - Tema 1

Apellido y Nombre:	
Mail:	LU:

- 1. Sea \mathcal{E} la elipse con centro C(2,1), un foco en $F_1(5,1)$ y que pasa por $P_1(2,4)$.
 - a) Dar la ecuación de \mathcal{E} y determinar en qué puntos corta al eje x.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje x en los mismos puntos que \mathcal{E} y su vértice coincide con el centro de la elipse. Determinar el foco de \mathcal{P} .
 - c) Sea Q el punto derecho donde se cortan \mathcal{E} y \mathcal{P} . Dar la expresión segmentaria de la tangente de \mathcal{E} en dicho punto.
 - d) Graficar \mathcal{E} , \mathcal{P} , los focos, la directriz de \mathcal{P} y la tangente.
- 2. Sea π_1 el plano con traza trxz: 2x-z=1, que pasa por $P_1(1,-1,3)$. Y sea π_2 el plano perpendicular a π_1 , que pasa por P_1 y $P_2(0,-2,2)$.
 - a) Dar la ecuación segmentaria de π_1 y π_2 .
 - b) Determinar las trazas de π_2 . Graficar las trazas, y los vectores normales \mathbf{n}_1 y \mathbf{n}_2 .
- 3. Dar una ecuación del plano π_3 perpendicular a π_1 y π_2 del ejercicio anterior, y que también pasa por P_1 .
- 4. a) Dar la ecuación de la cuádrica S con centro C(2,1,3), que pasa por P(0,1,-1), y su traza con el plano $\pi: z=3$ es la elipse $\mathcal{C}: 2x^2+\frac{1}{2}y^2-8x-y+\frac{15}{2}=0$.
 - b) Determinar el tipo de cuádrica e indicar si tiene simetría respecto de algún plano coordenado. Justificar.
 - c) Graficar la superficie S y sus trazas con los planos coordenados, indicando qué tipo de cónicas son.
- 5. Determinar el área de la región pintada en gris. Justificar

- 6. Sea la superficie de revolución $S: x^2 + y^2 \sqrt{2z} + z = 0$.
 - a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
 - b) Determinar el volumen del sólido limitado por S.
 - c) Graficar la superficie y la curva \mathcal{C} .
 - d) Dar la ecuación de la superficie en coordenadas esféricas.
- 7. Sea $S: 3r^2\sin^2\theta\cos^2\varphi + r^2 2r\sin\theta\left(4\cos\varphi + \sin\varphi\right) + 4 = 0$ (coordenadas esféricas: θ es el ángulo polar, y φ el azimut).
 - a) Determinar el tipo de cuádrica y una expresión cartesiana.
 - b) Indicar si S tiene centro, y en tal caso, expresarlo en coordenadas cilíndricas.
 - c) Graficar la superficie y su traza con el plano xz.

Justificar todas las respuestas.

Hojas entregadas:

Firma: