1 SERIES DE POTENCIAS, DE TAYLOR Y DE LAURENT

1.1 Series de Potencias

Una serie de potencias en el plano complejo es de la forma siguiente:

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n = c_0 + c_1 (z - z_0) + c_2 (z - z_0)^2 + \dots + c_n (z - z_0)^n + \dots$$
 (1)

donde c_n son constantes reales y complejos llamados coeficientes " z_0 " es constante y se llama centro de la serie, "z" es la variable compleja.

Si $z_0=0$, la serie (1) se reduce a la forma $\sum_{n=0}^\infty c_n z^n=c_0+c_1z+c_2z^2+...+$, serie de potencias z.

OBSERVACIÓN.-

- Diremos que la serie $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ es absolutamente convergente, $\forall z \in C$ tal que $\parallel z-z_0 \parallel < R$ y es divergente, $\forall \varepsilon C$, tal que $\parallel z-z_0 \parallel > R$
- Si $\exists R>0$, tal que $\sum_{n=0}^{\infty}c_n(z-z_0)^n$ converge absolutamente en $\parallel z-z_0\parallel < R$ y si $0<\rho < R$, la serie $\sum_{n=0}^{\infty}c_n(z-z_0)^n$ converge uniformente en $\parallel z-z_0\parallel < \rho$
- La serie $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ converge absolutamente $\forall z \in C$ (en particular en $z=z_0$) tal que $\parallel z-z_0 \parallel < R$ y si $0<\rho < R$, entonces la serie converge uniformentente, $\forall z \in C$ tal que $0<\parallel z-z_0 \parallel < \rho$
- Al número R > 0 se llama radio de convergencia de las serie $\sum_{n=0}^{\infty} c_n (z-z_0)^n$
- Para $z \in C$, se tiene $||z-z_0|| < R$, que se denomina región de convergencia.
- Para hallar el radio y región de convergencia de una serie de la forma $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, se utiliza el criterio de la razón, que esta caracterizada por el siguiente teorema

1.2 TEOREMA (CRITERIO DE LA RAZÓN).-

Sea $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ una serie de potencia en C y sea $u_n=c_n (z-z_0)^n$, tal que $\lim_{n\to\infty}\|\frac{u_{n+1}}{u_n}\|=L$, entonces:

- i) Si L < 1, la serie $\sum_{n=0}^{\infty} c_n (z z_0)^n$ converge absolutamente.
- ii) Si L > 1, la serie $\sum_{n=0}^{\infty} c_n (z z_0)^n$ diverge.
- iii) Si L = 1, el criterio no decide.

OBSERVACIONES

- Sea $\sum_{n=0}^{\infty}$ una serie de potencia tal que: $\lim_{n\to\infty} \sqrt[n]{\parallel c_n \parallel} = L$, entonces:
 - i) Si L=0, entonces $(R=\infty)$; la serie es convergente en todo el plano complejo C
 - ii) Si L > 0, entonces $R = \frac{1}{L}$
 - iii) Si $L=\infty$, entonces (R=0) converge solamente en el origen.
- Sea $\sum_{n=0}^{\infty} c_n z^n$ uan serie de potencia tal que: $\lim_{n\to\infty} \|\frac{c_{n+1}}{c_n}\| = L$, entonces:
 - i) Si L = 0, entonces $(R = \infty)$
 - ii) Si L > 0, entonces $R = \frac{1}{L}$
 - iii) Si $L = \infty$, entonces R = 0