МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 4.7.2 Эффект Поккельса

Салтыкова Дарья Б04-105

1 Введение

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

2 Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.$$

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

Рис. 1: Схема для наблюдения интерфереционной картины

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),$$

где $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$ – полуволновое напряжение, d – поперечный размер кристалла. При напряжении $U = E_{\text{эл}} d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

3 Экспериментальная установка

Рис. 2: Схема установки

Оптическая часть установки представлена на рис. 1. Свет гелий-неонового лазера, поляризованный в вертикальной плоскости, проходя сквозь матовую пластинку, рассеивается и падает на двоякопреломляющий кристалл под различными углами. Кристалл ниобата лития с размерами $3 \times 3 \times 26$ мм вырезан вдоль оптической оси Z. На экране, расположенном за скрещенным поляроидом, видна интерференционная картина.

Для $\lambda = 0.63$ мкм (длина волны гелий-неонового лазера) в ниобате лития $n_o = 2.29$.

Убрав рассеивающую пластинку и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла.

Заменив экран фотодиодом (рис. 2) и подав на кристалл переменное напряжение, можно исследовать поляризацию луча с помощью осциллографа.

4 Ход работы

- 1. Проведем юстировку установки. Получим на экране интерференционную картину.
- 2. Измерим радуисы темных колец r(m) для трех расстояний L от середины кристалла до экрана. Построим графики $r^2 = f(m)$.

$L = (38.2 \pm 1.0) \; \mathrm{cm}$							
\overline{m}	1	2	3	4	5	6	
r, cm	0,9	1,4	1,8	2,1	2,4	2,7	
r^2 , cm ²	0,8	2,0	3,2	4,4	5,8	7,3	
$\sigma_{r^2}, \text{ cm}^2$	0,4	0,4	0,3	0,3	0,7	0,8	
$L = (56.7 \pm 1.0) \text{ cm}$							
\overline{m}	1	2	3	4	5		
r, cm	1,9	2,5	3,2	3,7	4,1		
r^2 , cm ²	3,6	6,3	10,2	13,7	16,8		
$\sigma_{r^2}, \text{ cm}^2$	0,8	0,4	0,5	1,0	1,2		
$L = (98.5 \pm 1.0) \text{ cm}$							
m	1	2	3	4	5		
r, cm	3,7	4,5	5,4	6,2	6,9		
r^2 , cm ²	13,7	20,3	29,2	38,4	47,6		
$\sigma_{r^2}, \text{ cm}^2$	1,6	0,6	0,8	0,9	2,0		

По углу наклона прямой определиим двулучепреломление (n_o-n_e) ниобата лития.

L, см	38,2	56,7	98,5		
k	1,25	3,51	8,79		
σ_k	0,03	0,19	0,33		
$n_o - n_e$	0,148	0,116	0,140		
$\sigma_{n_o-n_e}$	0,005	0,007	0,005		
$n_o - n_e$	0.135 ± 0.005				

3. Убедимся ещё раз, что направление лазерного луча совпадает с направлением на центр ин-

терференционной картины и уберём матовую пластинку. Подключим разъём блока питания на постоянно напряжение, установим регулятор напряжения на минимум и включим блок питания в сеть.

При нулевом напряжении наблюдается минимум интенсиности излучения на экране. Постепенно увеличивая его, получим напряжение, соответстующее максимуму интенсивности $U_{\lambda/2} = (375 \pm 15)$ В. Погрешность принимаем равной одному делению - 15 В.

- 4. Подадим на кристалл четвертьволновое напряжение. Вращая анализатор наблюдаем, что яркость пятна не зависит от угла поворота анализатора поляризация круговая.
- 5. Установим вместо экрана фотодиод (Рис. 2) и подключим его к Y-входу осциллографа. Убрав напряжение до нуля, переключим разъём с постоянного на переменное напряжение.

Постепенно повышая напряжение на кристалле, наблюдаем на экране осциллографа фигуры Лиссажу, соответствующие зависимости $I_{\text{вых}}(U)$ для скрещенных поляризаций лазера и анализатора.

$$U_{\lambda/2} = (390 \pm 15) \text{ B}.$$

Продолжая увеличивать напряжение получаем:

$$U_{\lambda} = (780 \pm 15) \text{ B}$$
 $U_{3\lambda/2} = (1140 \pm 15) \text{ B}$

При переходе к параллельным поляризациям картина инвертируется.

5 Вывод

В ходе работы

1) была определиена разность показателей преломления $n_o-n_e=0.135\pm0.005$ путем измерения радиусов интерференционных колец. Табличное значение этой величины составляет

 $(n_o-n_e)_{\rm табл}=0{,}09.$ Основной вклад в ошибку внесла неточность при определении радиуса колен.

- 2) при подаче на кристалл постоянного четвертьволнового напряжения, был получен свет, поляризованный по кругу.
- 3) было определено полуволновое напряжение кристалла при постоянном напряжении:

$$U_{\lambda/2} = (375 \pm 15) \text{ B},$$

а также полуволновое и кратные ему напряжения по фигурам Лиссажу:

$$U_{\lambda/2} = (390 \pm 15) \text{ B}$$
 $U_{\lambda} = (780 \pm 15) \text{ B}$ $U_{3\lambda/2} = (1140 \pm 15) \text{ B}.$