### Singular Value Decomposition Computational Intelligence, Lecture 4

by Sergei Savin

Spring 2022

#### CONTENT

- Singular Value Decomposition
- Rank and pseudoinverse
- SVD of a transpose
- Projectors

### SINGULAR VALUE DECOMPOSITION

Given  $\mathbf{A} \in \mathbb{R}^{n,m}$  we can find its Singular Value Decomposition (SVD):

$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R}^{\mathsf{T}} \\ \mathbf{N}^{\mathsf{T}} \end{bmatrix}$$
 (1)

$$\mathbf{A} = \mathbf{C} \mathbf{\Sigma} \mathbf{R}^{\top} \tag{2}$$

where C, L, R and N are column, left null, row and null space bases (orthonormal),  $\Sigma$  is the diagonal matrix of singular values. The singular values are positive and softer in the decreasing order.

#### RANK AND PSEUDOINVERSE

Rank of the matrix is computed as the size of  $\Sigma$ . Note that numeric tolerance applies when deciding if the singular value is non-zero.

Pseudoinverse  $A^+$  is defined as:

$$\mathbf{A}^{+} = \begin{bmatrix} \mathbf{R} & \mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{C}^{\top} \\ \mathbf{L}^{\top} \end{bmatrix}$$
(3)

$$\mathbf{A}^{+} = \mathbf{R} \mathbf{\Sigma}^{-1} \mathbf{C}^{\top} \tag{4}$$

#### SVD of a transpose

Let's find SVD decomposition of a  $\mathbf{A}^{\top}$ :

$$\mathbf{A}^{\top} = \begin{bmatrix} \mathbf{C}_t & \mathbf{L}_t \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R}_t^{\top} \\ \mathbf{N}_t^{\top} \end{bmatrix}$$
 (5)

Let us transpose it (remembering that transpose of a diagonal matrix the original matrix  $\Sigma_t^{\top} = \Sigma_t$ ):

$$\mathbf{A} = \begin{bmatrix} \mathbf{R}_t & \mathbf{N}_t \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{C}_t^{\top} \\ \mathbf{L}_t^{\top} \end{bmatrix}$$
 (6)

Thus we can see that the row space of the original matrix  $\mathbf{A}$  is the column space of the transpose  $\mathbf{A}^{\top}$ . And the left null space of the original matrix  $\mathbf{A}$  is the null space of the transpose  $\mathbf{A}^{\top}$ .

# PROJECTORS (1)

Let's prove that  $\mathbf{A}\mathbf{A}^+$  is equivalent to  $\mathbf{C}\mathbf{C}^\top$ :

$$\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top} \tag{7}$$

$$\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{\Sigma}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top} \tag{8}$$

$$\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{C}^{\top} \tag{9}$$

# PROJECTORS (2)

Let's prove that  $\mathbf{A}^{+}\mathbf{A}$  is equivalent to  $\mathbf{R}\mathbf{R}^{\top}$ :

$$\mathbf{A}^{+}\mathbf{A} = \mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}\mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top} \tag{10}$$

$$\mathbf{A}^{+}\mathbf{A} = \mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{\Sigma}\mathbf{R}^{\top} \tag{11}$$

$$\mathbf{A}^{+}\mathbf{A} = \mathbf{R}\mathbf{R}^{\top} \tag{12}$$

# Projectors (3)

Let us denote  $P = AA^+$ . Let's prove that PP = P:

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}\mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}$$
(13)

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top}$$
(14)

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{C}^{\top} = \mathbf{A}\mathbf{A}^{+} \tag{15}$$

The same is true for  $P = A^+A$ : we can prove that PP = P.

Lecture slides are available via Moodle.

 $You\ can\ help\ improve\ these\ slides\ at:$  github.com/SergeiSa/Computational-Intelligence-Slides-Spring-2022



Check Moodle for additional links, videos, textbook suggestions.