Numerical Methods in Engineering Applications

Workshop #03

Elliptic equations

ronan.vicquelin@centralesupelec.fr aymeric.vie@centralesupelec.fr nicolas.dumont@centralesupelec.fr leo.cunha@centralesupelec.fr

Objectives of Workshop #3

- Working with 2D problems
- Defining the discrete formulation of an elliptic equation
- Solving it using iterative solvers
- Treating boundary conditions

Poisson equation with Dirichlet boundary conditions

- Jacobi
- Gauss-Seidel

$$\Delta \phi = f(x, y)$$

with

$$f(x,y) = 2(x^2 + y^2 - 2)$$

Poisson equation with Dirichlet boundary conditions

Run time (ms)

$$\eta = 10^{-3}$$

000-

					9.9Go
	10x10	20x20	40x40	80x80	160x160
Direct	0.7	5	187	13000	1060000 0.263Go
Jacobi	25	392	5510	127000	1362000
Gauss-Seidel	11	200	2888	78000	1034000
SOR	20	86	392	2260	30000
Conjugate Gradient	2	14	103	945	6950

Poisson equation with Dirichlet boundary conditions

Iterations

$$\eta = 10^{-3}$$

	10x10	20x20	40x40	80x80	160x160
Jacobi	88	352	1281	4400	14306
Gauss-Seidel	45	177	642	2200	7154
SOR	63	65	75	118	382
Conjugate Gradient	6	13	26	53	107

Laplace equation with Neumann and Dirichlet B.C.

What is the maximum temperature?

Project #1: Design of a cooling rib

- Ribs are often used to maximise the surface in heat exchangers
- Water-cooling can be use to cool down the rib
- Each individual rib has its own water-cooling channel

Project #1: Design of a cooling rib

Two domains:

the rib subject to heat

exchange
$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

The channel subject to transport and heat exchange

$$u(x,y)\frac{\partial T}{\partial x} = a_w \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right)$$

Project objectives:

- Determine the bulk velocity in the channel to cool the rib and prevent water from boiling
- Estimate the corresponding heat power that can be extracted
- Determine what happens if the flow is inverted in the channel

Project #1: Design of a cooling rib

Project #01 to hand out (slides in PDF) for May, 11th

Send PDF slides to ronan.vicquelin@centralesupelec.fr and aymeric.vie@centralesupelec.fr

- First slide: names (2 people)+ problem title
- Slide #2 : sum up the problem to solve
- Self-sufficient slides => clear, detailed enough, synthetic
- Explain the approach, discuss your choices
- Describe numerical method, very briefly if seen in class, specify details related to the study
- Show and analyse results
- How sure are you that your results are correct?
- Plots:

 Readable, clear
 axis names
 units
 - legend
- Last slide: highlight results and conclusions