$a_2(1700)$

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

OMITTED FROM SUMMARY TABLE

a₂(1700) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT		
1732±16 OUR AVERAGE Error includes scale factor of 1.9.								
$1737 \pm 5 \pm 7$		ABE	04	BELL		$10.6 \ e^{+}e^{-} \rightarrow e^{+}e^{-}K^{+}K^{-}$		
1698 ± 44		¹ AMSLER	02	CBAR		$0.9 \overline{p} p \rightarrow \pi^0 \eta \eta$		
1660 ± 40		ABELE	99 B	CBAR		1.94 $\overline{p}p \rightarrow \pi^0 \eta \eta$		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
$1675 \!\pm\! 25$		ANISOVICH				$0.0 \overline{p}p, \pi N$		
$1722 \pm 9 \pm 15$	18k	² SCHEGELSKY	06	RVUE	0	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$		
1702 ± 7	80k	³ UMAN	06	E835		$5.2 \overline{p}p \rightarrow \eta \eta \pi^0$		
$1721 \pm 13 \pm 44$	145k	LU	05	B852		$18 \pi^- p \rightarrow \omega \pi^- \pi^0 p$		
1767 ± 14	221	⁴ ACCIARRI	01H	L3		$\gamma \gamma \rightarrow K_S^0 K_S^0$, $E_{cm}^{ee} =$		
		5				91, 183–209 GeV		
~ 1775		⁵ GRYGOREV	99	SPEC		$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$		
$1752 \pm 21 \pm 4$		ACCIARRI	97T	L3		$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$		
T-matrix pole.								
2 From analysis of L3 data at 183–209 GeV. 3 Statistical error only.								
4 Spin 2 dominant, isospin not determined, could also be $I=1$.								
⁵ Possibly two $J^P = 2^+$ resonances with isospins 0 and 1.								
1 ossibly two 3 — 2 resonances with isospins 0 and 1.								

a₂(1700) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
194± 40 OUR	AVERAGE	Error includes scal	e fact	tor of 1.6	5. See	the ideogram below.	
$151\pm\ 22\pm24$		ABE	04	BELL		$10.6 e^{+}e^{-} \rightarrow e^{+}e^{-}K^{+}K^{-}$	
265± 55		⁶ AMSLER	02	CBAR		$0.9 \overline{p} p \rightarrow \pi^0 \eta \eta$	
280 ± 70		ABELE	99 B	CBAR		$1.94 \overline{p}p \rightarrow \pi^0 \eta \eta$	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
270^{+}_{-} $\begin{array}{c} 50 \\ 20 \end{array}$		ANISOVICH	09	RVUE		$0.0 \; \overline{p} p, \; \pi N$	
$336\pm\ 20\pm20$	18k	⁷ SCHEGELSKY	06	RVUE	0	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$	
417 ± 19	80k	⁸ UMAN	06	E835		$5.2 \overline{p}p \rightarrow \eta \eta \pi^0$	
$279 \pm 49 \pm 66$	145k	LU	05	B852		$18 \pi^- p \rightarrow \omega \pi^- \pi^0 p$	
$187\pm~60$	221	⁹ ACCIARRI	01н	L3		$\gamma \gamma \rightarrow K_S^0 K_S^0, E_{cm}^{ee} =$	
$150 \pm 110 \pm 34$		ACCIARRI	97T	L3		91, 183–209 GeV $\gamma \gamma \rightarrow \pi^+\pi^-\pi^0$	

⁶T-matrix pole.

Created: 5/30/2017 17:21

⁷ From analysis of L3 data at 183–209 GeV.

⁸ Statistical error only.

⁹ Spin 2 dominant, isospin not determined, could also be I=1.

a₂(1700) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\eta\pi$	seen
Γ_2	$\gamma\gamma$	
Γ3	$ ho\pi$	
Γ_4	$f_2(1270)\pi$	
Γ_5	$K\overline{K}$	seen
Γ_6	$f_2(1270)\pi$ $K\overline{K}$ $\omega\pi^-\pi^0$	seen
Γ_7	ωho	seen

a₂(1700) PARTIAL WIDTHS

$\Gamma(\eta\pi)$					Γ_1
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
\bullet \bullet We do not use th	e following	data for averages, fits,	limits, e	etc. • • •	
9.5 ± 2.0	870	¹⁰ SCHEGELSKY 06A	RVUE	$\gamma\gamma \rightarrow \kappa_S^0 \kappa_S^0$	
$\Gamma(\gamma\gamma)$					Γ2
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th	e following	data for averages, fits,	limits, e	etc. • • •	
0.30 ± 0.05	870	¹⁰ SCHEGELSKY 06A	RVUE	$\gamma\gamma \to \kappa_S^0 \kappa_S^0$	

HTTP://PDG.LBL.GOV

Page 2

Created: 5/30/2017 17:21

 $\Gamma(K\overline{K})$ Γ_5 VALUE (MeV **EVTS** DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 10 SCHEGELSKY 06A RVUE $\gamma\gamma
ightarrow \kappa_{
m S}^0 \kappa_{
m S}^0$ 870 5.0 ± 3.0 10 From analysis of L3 data at 91 and 183–209 GeV, using $a_2(1700)$ mass of 1730 MeV and width of 340 MeV, and SU(3) relations. $a_2(1700) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ $\left[\Gamma(\rho\pi) + \Gamma(f_2(1270)\pi)\right] \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $(\Gamma_3+\Gamma_4)\Gamma_2/\Gamma$ VALUE (keV) **EVTS** DOCUMENT ID $0.29\pm0.04\pm0.02$ **ACCIARRI** 97T L3 • • • We do not use the following data for averages, fits, limits, etc. • • • $0.37^{\,+\,0.12}_{\,-\,0.08}\,{\pm}\,0.10$ ¹¹ SCHEGELSKY 06 RVUE $\gamma \gamma \rightarrow \pi^{+}\pi^{-}\pi^{0}$ $\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_5\Gamma_2/\Gamma$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 12 ABE BELL 10.6 $e^+e^- \rightarrow e^+e^-K^+K^-$ 04 $20.6 \pm \ 4.2 \pm \ 4.6$ $\gamma \gamma \rightarrow K_S^0 K_S^0, E_{\rm cm}^{ee} = 91,$ 183–209 GeV ¹³ ACCIARRI 01H L3 49 ± 11 ± 13 ¹¹ From analysis of L3 data at 183–209 GeV. ¹² Assuming spin 2. ¹³Spin 2 dominant, isospin not determined, could also be l=1. a₂(1700) BRANCHING RATIOS $\Gamma(\rho\pi)/\Gamma(f_2(1270)\pi)$ Γ_3/Γ_4 DOCUMENT ID TECN COMMENT **EVTS** • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁴ SCHEGELSKY 06 RVUE $\gamma \gamma \rightarrow \pi^{+}\pi^{-}\pi^{0}$ 18k $3.4 \pm 0.4 \pm 0.1$ ¹⁴ From analysis of L3 data at 183–209 GeV. a₂(1700) REFERENCES **ANISOVICH** 09 IJMP A24 2481 V.V. Anisovich, A.V. Sarantsev SCHEGELSKY 06 EPJ A27 199 V.A. Schegelsky et al. EPJ A27 207 SCHEGELSKY 06A V.A. Schegelsky et al. **UMAN** 06 PR D73 052009 I. Uman et al. (FNAL E835) (BNL È852 Collab.) LU PRL 94 032002 M. Lu et al. 05 ABE EPJ C32 323 (BELLE Collab.) 04 K. Abe et al. **AMSLER** 02 EPJ C23 29 C. Amsler et al. (L3 Collab.) **ACCIARRI** PL B501 173 01H M. Acciarri et al. ABELE 99B EPJ C8 67 A. Abele et al. (Crystal Barrel Collab.) PAN 62 470 **GRYGOREV** 99 V.K. Grygorev et al. Translated from YAF 62 513. **ACCIARRI** 97T M. Acciarri et al. PL B413 147 (L3 Collab.)

Created: 5/30/2017 17:21