Gabarito Prova I

Linguagens Formais e Compiladores Prof^a. Jerusa Marchi

1. Assinale V ou F:

- (a) A união de duas Linguagens Livres de Contexto pode resultar em uma Linguagem Regular.
 - Verdadeiro. A união de a^nb^n com a^nb^m para $n \neq m$ resulta em a^*b^* que é regular.
- (b) Considerando a Hierarquia de Chomsky, onde Linguagens Regulares são tipo 3, Linguagens Livres de Contexto são Tipo 2, Linguagens Sensíveis ao Contexto são tipo 1 e Linguagens Recursivamente Enumeráveis são tipo 0, é correto afirmar que se $L_1 \subseteq L_2$ então o tipo de L_1 é necessariamente maior ou igual que o tipo de L_2 . Falso. A linguagem $L_1 = \{a^nb^nc^n \mid n \ge 0\}$ é LSC (tipo 1) e a linguagem $L_2 = \{a^nb^nc^k \mid n,k \ge 0\}$ é LSC (tipo 2) e $L_1 \subset L_2$.
- (c) Se G_1 e G_2 são Gramáticas Regulares e $L(G_1) \cup L(G_2) = \Sigma^*$ então $L(G_1) \cap L(G_2) = \emptyset$. Falso. Se $L(G_1)$ for formada por palavras pares sobre $\{a,b\}$ e $L(G_2)$ for formada por palavras ímpares, mas com a palavra vazia, então a união é Σ^* mas a interseção é $\{\varepsilon\}$.
- (d) A linguagem $L=\{a^na^mb^kb^l\mid n,m,k,l\geq \text{ e }n=k\text{ e }m=l\}$ não é uma Linguagem Livre de Contexto. Falso. Pois n+m=l+k que é livre de contexto.
- (e) O número de sentenças de tamanho n gerado por uma Gramática exclusivamente tipo 0 é sempre finito. Verdadeiro. Pois Σ é finito e as cadeias de tamanho n podem ter em cada uma das n posições um símbolo do alfabeto (o que equivale a uma linguagem regular).
- 2. Construa uma Gramática Regular G para a seguinte linguagem:

$$L(G) = \{ w \mid w \in (a,b)^*c^i \text{ e } i \geq 0 \text{ e } \mid w \mid \text{ seja par e } \#b\text{'s seja impar} \}$$

$$\begin{array}{lll} \langle CpP \rangle & \rightarrow & a \langle CiP \rangle \mid b \langle CiI \rangle \\ \langle CiP \rangle & \rightarrow & a \langle CpP \rangle \mid b \langle CpI \rangle \mid b \\ \langle CiI \rangle & \rightarrow & a \langle CpI \rangle \mid a \mid b \langle CpP \rangle \mid c \langle Cp \rangle \mid c \\ \langle CpI \rangle & \rightarrow & a \langle CiI \rangle \mid b \langle CiP \rangle \mid c \langle Ci \rangle \\ \langle Ci \rangle & \rightarrow & c \langle Cp \rangle \mid c \\ \langle Cp \rangle & \rightarrow & c \langle Ci \rangle \\ \end{array}$$

3. Construa uma Gramática Livre de Contexto G para a seguinte linguagem:

$$S \rightarrow X \mid Y \mid Z \mid W \mid CD \mid C \mid D$$

$$X \rightarrow aXd \mid Y \mid Z \mid W \mid CD \mid C \mid D$$

$$Y \rightarrow aYc \mid Z \mid C$$

$$W \rightarrow bWd \mid Z \mid CD \mid C \mid D$$

$$Z \rightarrow bZc \mid C$$

$$D \rightarrow dD \mid d$$

$$C \rightarrow cC \mid c$$

 $L(G) = \{a^n b^m c^i d^j \mid n, m, i, j \ge 0 \text{ e } n + m < i + j\}$

4. Construa uma Gramática Livre de Contexto G para a seguinte linguagem:

$$L(G) = \{a^n(b,c)^*d^m \mid n,m \ge 0 \text{ e } \#c\text{'s } + n > \#b\text{'s } > m\}$$

$$S \rightarrow X \mid Y \mid A \mid Z$$

$$X \rightarrow aXBD \mid Y \mid A \mid Z$$

$$Y \rightarrow cYBD \mid bYCD \mid Z$$

$$A \rightarrow aA \mid a$$

$$Z \rightarrow cZ \mid c$$

$$DB \rightarrow BD$$

$$DC \rightarrow CD$$

$$aB \rightarrow ab$$

$$aC \rightarrow ac$$

$$bB \rightarrow bb$$

$$bC \rightarrow bc$$

$$cB \rightarrow cb$$

$$cC \rightarrow cc$$

$$bD \rightarrow bd$$

$$cD \rightarrow cd$$

$$dD \rightarrow dd$$

5. Seja G a seguinte Gramática Regular:

$$\begin{array}{lll} S & \rightarrow & aB \mid bD \mid cE \mid a \mid b \mid \varepsilon \\ B & \rightarrow & aE \mid bC \mid b \mid cE \\ C & \rightarrow & aB \mid bF \mid cE \\ D & \rightarrow & aS \mid bE \\ E & \rightarrow & aE \mid bE \mid cE \\ F & \rightarrow & aC \mid bE \mid a \\ G & \rightarrow & aF \mid bH \mid cG \\ H & \rightarrow & aG \mid bC \mid cC \mid b \mid c \end{array}$$

Apresente todos os passos para a obtenção de um Autômato Finito Determinístico Mínimo M tal que L(G)=L(M). Qual é a linguagem descrita por G?

• Passo 1: Converte G em um AFND:

δ	a	b	c	ε
$\rightarrow S$	$\{B,X\}$	$\{D,X\}$	E	$\{X\}$
B	E	$\{C,X\}$	E	
C	B	F	E	
D	S	E	_	
E	E	E	E	
F	$F = \{C, X\}$	E	_	
G	F	H	G	
H	G	$\{C,X\}$	$\{C,X\}$	
*X	_	_	_	

• Passo 2: Deteminização

δ	a	b	c
$\rightarrow *\{S,X\}$	$\{B,X\}$	$\{D,X\}$	E
B	E	$\{C,X\}$	E
C	B	F	E
D	S	E	_
E	E	E	E
F	$\{C,X\}$	E	-
G	F	H	G
H	G	$\{C,X\}$	$\{C,X\}$
*X	_	_	_
$*\{B,X\}$	E	$\{C,X\}$	E
$*\{C,X\}$	B	F	E
$*\{D,X\}$	$\{S,X\}$	E	E

• Passo 3: Eliminação de estados inalcançáveis

δ	a	b	c
$ o \{\mathbf{S}, \mathbf{X}\}$	$\{\mathbf{B}, \mathbf{X}\}$	$\{D, X\}$	${f E}$
В	\mathbf{E}	$\{\mathbf{C}, \mathbf{X}\}$	${f E}$
C	B	F	E
D	S	E	_
${f E}$	${f E}$	${f E}$	${f E}$
${f F}$	$\{C, X\}$	${f E}$	_
G	F	H	G
H	G	$\{C,X\}$	$\{C,X\}$
*X	_	_	_
$*\{\mathbf{B}, \mathbf{X}\}$	E	$\{C, X\}$	\mathbf{E}
$*\{\mathbf{C}, \mathbf{X}\}$	В	${f F}$	${f E}$
$*\{\mathbf{D},\mathbf{X}\}$	$\{\mathbf{S},\mathbf{X}\}$	${f E}$	${f E}$

Os estados C, D, G, H e X são inalcançáveis.

Passo 4: Eliminação de estados mortos

δ	a	b	c
$ o \{\mathbf{S}, \mathbf{X}\}$	$\{\mathbf{B}, \mathbf{X}\}$	$\{D, X\}$	E
В	E	$\{\mathbf{C}, \mathbf{X}\}$	E
E	E	E	E
${f F}$	$\{C, X\}$	E	_
$*\{\mathbf{B},\mathbf{X}\}$	E	$\{\mathbf{C}, \mathbf{X}\}$	E
$*\{\mathbf{C},\mathbf{X}\}$	В	${f F}$	E
$*\{\mathbf{D},\mathbf{X}\}$	$\{\mathbf{S},\mathbf{X}\}$	E	E

O estado E é morto.

• Passo 5: Cálculo das classes de equivalência: Por simplicidade, o estado $\{S,X\}$ será denominado apenas de S, $\{B,X\}$ de X, $\{C,X\}$ de C, $\{D,X\}$ de D. Como as transições por c levam para o estado morto, este símbolo não foi considerado no processo.

$$\begin{array}{c|cccc} F & K-F \\ \hline \{S,X,C,D\} & \{B,F\} & //a \\ \{S,C,D\}\{X\} & \{B\}\{F\} & //b \\ \{S\}\{C\}\{D\}\{X\} & \{B\}\{F\} \end{array}$$

O Autômato não possui estados equivalentes.

• Passo 6: Autômato Finito mínimo resultante:

6. Sejam M_1 e M_2 os seguintes AF:

$$M_1: egin{array}{c|c|c|c|c} \hline \delta & 1 & 2 \\ \hline
ightarrow *A & B & C \\ \hline B & C & A \\ \hline C & A & B \\ \hline \end{array} \hspace{0.5cm} M_2: egin{array}{c|c|c|c} \hline \delta & 1 & 2 \\ \hline
ightarrow *D & E & D \\ \hline E & D & E \\ \hline \end{array}$$

Apresente todos os passos para a construção de:

(a) Um Autômato Finito Determinístico Mínimo M tal que $L(M) = L(M_1) - L(M_2)$. Para gerar a linguagem L(M) temos que $L(M) = \{w \mid w \in L(M_1) \text{ e } w \not\in L(M_2)\}$ ou seja $L(M_1) \cap \overline{L(M_2)}$ Começamos por calcular o complemento de M_2

$$\frac{\delta \mid 1 \mid 2}{M_2} : \begin{array}{c|c}
 & \delta \mid 1 \mid 2 \\
 & \rightarrow D \mid E \mid D \\
 & *E \mid D \mid E
\end{array}$$

4

Agora, via produto cartesiano, podemos obter a interseção de forma que os estados de aceitação sejam simultaneamente estados de aceitação de M_1 e de $\overline{M_2}$

(b) Uma Gramática Regular G tal que L(M) = L(G)

$$\begin{array}{lll} (A,D) & \to & 1(B,E) \mid 2(C,D) \\ (B,E) & \to & 1(C,D) \mid 2(A,E) \\ (C,D) & \to & 1(A,E) \mid 2(B,D) \\ (A,E) & \to & 1(B,D) \mid 2(C,E) \\ (B,D) & \to & 1(C,E) \mid 2(A,D) \mid 2 \\ (C,E) & \to & 1(A,D) \mid 2(B,E) \mid 1 \end{array}$$

- (c) Determine L(G) $L(G) = \{w \mid w \in \{1,2\}^* \text{ e a soma dos símbolos módulo } 6 = 0\}$
- 7. A linguagem reversa (L^R) de uma Linguagem Regular é sempre uma Linguagem Regular? Se sim, proponha um algoritmo para, a partir de uma Gramática Regular G, construir uma Gramática Regular G_1 tal que $L(G_1) = L(G)^R$; se não, justifique.

Sim. O reverso de uma linguagem regular é sempre uma linguagem regular pois as linguagens regulares são fechadas sob esta operação

Seja G a gramática de entrada tal que G=(N,T,S,P) onde as produções de P seguem a regra de formação $N\to aN\mid a$. Seja G_1 uma nova gramática tal que $G_1=(N_1,T,S_1,P_1)$. Contrua G_1 como segue: $N_1=N\cup S_1$ onde S_1 é um novo estado de início. O alfabeto, conjunto de Terminais se mantém. Construa P_1 como segue. Repita para todas as produções em P:

- (a) Para cada produção na forma $A \to a \in P$ onde $A \neq S$ crie produções na forma $S_1 \to aA \in P_1$.
- (b) Para cada produção na forma $S \to a \in P$, inclua $S_1 \to a \in P_1$.
- (c) Para cada produção na forma $A \to aB \in P$ onde $A \neq S$ crie produções na forma $B \to aA \in P_1$. Se B = S inclua $B \to a \in P_1$.