Assignment-01

EE24BTECH11036 - KRISHNA PATIL

SECTION B: JEE MAINS / AIEEE

1)	Two common	tangents to the circle	$x^2 + y^2 =$
	$2a^2$ and parabola $y^2 = 8ax$ are		(2002)

a)
$$x = \pm (y + 2a)$$

c)
$$x = \pm (y + a)$$

b)
$$y = \pm (x + 2a)$$

d)
$$y = \pm (x + a)$$

2) The normal at a point
$$(bt_1^2, 2bt_1)$$
 on a parabola meets the parabola again in the point $(bt_2^2, 2bt_2)$, then (2003)

a)
$$t_2 = t_1 + \frac{2}{t_1}$$

b) $t_2 = -t_1 - \frac{2}{t_1}$
c) $t_2 = -t_1 + \frac{2}{t_1}$
d) $t_2 = t_1 - \frac{2}{t_1}$

c)
$$t_2 = -t_1 + \frac{2}{t_1}$$

b)
$$t_2 = -t_1 - \frac{2}{t_1}$$

d)
$$t_2 = t_1 - \frac{2}{t_1}$$

3) The foci of the ellipse
$$\frac{x^2}{16} + \frac{y^2}{b}$$
 and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is (2003)

4) If
$$a \ne 0$$
 and the line $2bx + 3cy + 4d = 0$ passes through the points of intersection of the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, then (2004)

a)
$$d^2 + (3b - 2c)^2 = 0$$
 c) $d^2 + (2b - 3c)^2 = 0$

a)
$$d^2 + (3b - 2c)^2 = 0$$
 c) $d^2 + (2b - 3c)^2 = 0$
b) $d^2 + (3b + 2c)^2 = 0$ d) $d^2 + (2b + 3c)^2 = 0$

5) The eccentricity of an ellipse, with its centre at the origin, is
$$\frac{1}{2}$$
. If one of the directrices is $x = 4$, then the equation of the ellipse is: (2004)

a)
$$4x^2 + 3y^2 = 1$$

a)
$$4x^2 + 3y^2 = 1$$

b) $3x^2 + 4y^2 = 12$
c) $4x^2 + 3y^2 = 12$
d) $3x^2 + 4y^2 = 1$

b)
$$3x^2 + 4y^2 = 12$$

d)
$$3x^2 + 4y^2 = 1$$

6) Let **P** be the point
$$(1,0)$$
 and **Q** a point on the locus $y^2 = 8x$. The locus of mid point of PQ is (2005)

a)
$$y^2 - 4x = 2$$

b) $y^2 + 4x = 2$
c) $x^2 + 4y = 2$
d) $x^2 - 4y = 2$

c)
$$x^2 + 4y = 2$$

b)
$$y^2 + 4x = 2$$

d)
$$x^2 - 4y = 2$$

7) The locus of a point
$$\mathbf{P}(\alpha, \beta)$$
 moving under the condition that the line $y = \alpha x + \beta$ is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ is (2005)

c) a parabola

d) a hyperbola

8) An ellipse has
$$OB$$
 as semi minor axis, \mathbf{F} and \mathbf{F}' focily and the angle FBF' is a right angle. Then the eccentricity of the ellipse is (2005)

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\frac{1}{2}$

c)
$$\frac{1}{4}$$

$$\frac{1}{2}$$

c)
$$\frac{1}{4}$$
 d) $\frac{1}{\sqrt{3}}$

9) The locus of the vertices of the family of parabolas
$$y = \frac{a^3 x^2}{3} + \frac{a^2 x}{2} - 2a$$
 is (2006)

a)
$$xy = \frac{105}{64}$$
 c) $xy = \frac{35}{164}$
b) $xy = \frac{3}{4}$ d) $xy = \frac{64}{104}$

c)
$$xy = \frac{35}{16}$$

b)
$$xy = \frac{3}{4}$$

d)
$$xy = \frac{64}{104}$$

c)
$$\frac{4}{5}$$
 d) $\frac{1}{\sqrt{5}}$

11) Angle between the tangents to the curve
$$y = x^2-5x+6$$
 at the points (2,0) and (3,0) is (2006)

c)
$$\frac{2}{6}$$

b)
$$\frac{\pi}{2}$$

$$d) \frac{7}{2}$$

12) For the Hyperbola
$$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$$
, which of the following remains constant when α varies = ? (2007)

- a) abscissae of vertices
- b) abscissae of foci
- c) eccentricity
- d) directrix

13) The equation of a tangent to the parabola
$$y^2 = 8x$$
 is $y = x + 2$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is (2007)

c)
$$(-1,1)$$

b)
$$(-2,0)$$

- 14) The normal to a curve at P(x, y) meets the xaxis at $G \cdot If$ the distance of G from the origin is twice the abscissa of \mathbf{P} , then the curve is (2007)
 - a) circle
- c) ellipse
- b) hyperbola
- d) parabola
- 15) A focus of an ellipse is at the origin · The is $\frac{1}{2}$. Then the length of the semi-major axis is
 - a) $\frac{8}{3}$ b) $\frac{2}{3}$

c) $\frac{4}{3}$ d) $\frac{5}{3}$