Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №0

по дисциплине «Моделирование»

Выполнил: Студент гр. ИВ-622 Корягина В.А

Проверила: Ассистент Кафедры ВС Петухова Я.В.

СОДЕРЖАНИЕ

Постановка задачи	3
Теоретические сведения	3
Ход работы	6
Заключение	11
Приложение	12

Постановка задачи

Необходимо взять готовую реализацию трех генераторов псевдослучайных чисел на и убедиться в их равномерном распределении, используя такие параметры как критерий Пирсона и автокорреляция.

Теоретические сведения

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H_0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений над случайной величиной X: $X^n = (x_1, \ldots, x_n)$, $x_i \in [a, b]$, $\forall_i = 1 \ldots n$, и по ней построить эмпирический закон распределения F'(x) случайной величины X.

Гипотеза $H_0^{'}$: X^n порождается ранее упомянутой функцией F'(x). Разделим [a,b] на k непересекающихся интервалов $\left[a_i,b_i\right]$, $i=1\dots k$. Пусть n_j — количество наблюдений в j-м интервале;

 $p_{j} = F\left(b_{j}\right) - F(a_{j})$ - вероятность попадания наблюдения в j-й интервал при

 $p_{j} = F(b_{j}) - F(a_{j})$ - вероятность попадания наблюдения в j-й интервал при выполнении гипотезы $H_{0}^{'}$;

 $E_j = np_j$ - ожидаемое число попаданий в j-й интервал; тогда распределение χ^2 с числом степеней свободы k-1 будет иметь следующую статистику:

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - p_i N)^2}{p_i N} \sim \chi^2_{k-1}$$

В зависимости от значения критерия χ^2 гипотеза H_0 может приниматься либо отвергаться:

- $\chi_1^2 < \chi^2 < \chi_2^2$ гипотеза H_0 выполняется.
- $\chi^2 \leq \chi_1^2$ попадает в левый «хвост» распределения. Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка [0,1] и выборка X^n распределена равномерно на [0,1], то генератор нельзя назвать случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза H_0 выполняется.

• $\chi^2 \geq \chi^2_2$ — попадает в правый «хвост» распределения, гипотеза H_0 отвергается.

Автокорреляция уровней ряда — корреляционная между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L- лаг). Автокорреляция может быть измерена коэффициентом автокорреляции.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L=1, то имеем коэффициент автокорреляции 1-го порядка $r_{t,t-1}$, если L=2, то коэффициент автокорреляции 2-го порядка $r_{t,t-2}$ и т.д.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (I), при котором автокорреляция ($r_{t,t-L}$) наиболее высокая, выявив тем самым структуру временного ряда. Если наиболее высоким оказывается значение $r_{t,t-1}$, то исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался $r_{t,t-L}$, то ряд содержит (помимо тенденции) колебания периодом L. Если ни один из (l=1;L) не является значимым, можно сделать одно из двух предположений:

- либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;
- либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Значение (по модулю)	Интерпретация	
до 0,2	очень слабая корреляция	
до 0,5	слабая корреляция	
до 0,7	средняя корреляция	
до 0,9	высокая корреляция	
свыше 0,9	очень высокая корреляция	

Автокорреляционная функция — предназначена для оценки корреляции между смещенными копиями последовательностей.

$$a(\tau) = \frac{\sum\limits_{i=1}^{N-\tau} (x_i - Ex) (x_{i+\tau} - Ex)}{(N-\tau) * S^2(x)},$$
где

Ex - математическое ожидание — среднее значение случайной величины при стремлении количества выборок или количества её измерений (иногда говорят — количества испытаний) к бесконечности:

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $S^{2}(x)$ - выборочная дисперсия случайной величины — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки:

$$S^{2}(x) = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - x')^{2} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - (x')^{2}$$

 $x_{i+\tau}$ - множество значений другой случайной величины (полученной из значений прошлой случайной величины, но с некоторым смещением);

n - мощность множества случайных величин;

au - смещение последовательности.

Ход работы

Необходимо определить исследуемые генераторы случайных чисел:

- Генератор из стандартной библиотеки языка программирования Java (java.util.Random)
- Генератор однородных псевдослучайных значений, применимых для использования в изолированных параллельных вычислениях языка Java (java.util.SplittableRandom)
- Криптографически сильный генератор случайных чисел языка Java (java.security.SecureRandom)

Для расчета значения критерия Пирса необходимо выбрать количество интервалов k, количество генерируемых значений N и генератор случайных чисел.

При запуске программы происходит генерация чисел, их подсчет количеств попаданий на интервалы, после чего рассчитывается "хи-квадрат" и автокорреляция.

Далее построим таблицу расчета критерия Пирса и автокорреляция при варьировании значений количества интервалов k и количества генерируемых значений N:

Генератор случайных чисел	$k = 10\ 000$ $N = 1\ 000$	k = 1 000 000 N = 1 000	k = 1 000 000 N = 100
Java Random	$\chi^2_{\rm 9KCII} = 1005$	$\chi^2_{_{9KC\Pi}} = 980,93$	$\chi^2_{\text{эксп}} = 128$
Splittable Random	$\chi^2_{_{9KCII}} = 1007,4$	$\chi^2_{9KCII} = 1012,23$	$\chi^2_{_{9KC\Pi}} = 117,174$
Secure Random	$\chi^2_{\rm 9KCII} = 959$	$\chi^2_{_{_{_{_{3KCII}}}}} = 1059,416$	$\chi^2_{_{3KC\Pi}} = 114,93$
$\chi^2_{_{ m TAG}}$	$\chi^2_{\text{таб}} = 1142.848$	$\chi^2_{\text{Ta6}} = 1142.848$	$\chi^2_{\text{ra6}} = 134,642$

Генератор: Java
Количество интервалов (k): 1000
Количество чисел (N): 10000000
X2: 1018,572000

Генератор: Splittable
Количество интервалов (k): 1000
Количество чисел (N): 10000000
X2: 1037,128000

Генератор: Secure_random
Количество интервалов (k): 1000
Количество интервалов (k): 1000
Количество чисел (N): 10000000
X2: 971,992000

Рисунок 1 - Результат выполнения программы расчета критерия Пирса и автокорреляции ($k=1000,\,N=1\,000\,000$)

Для расчета коэффициента корреляции определяется параметр τ (смещение в последовательности от 1 до половины наших интервалов).

```
Генератор: Java
tao = 1; a(tao) = 0,001600
tao = 2; a(tao) = -0,000190
tao = 3; a(tao) = -0,001561
tao = 4; a(tao) = 0,000477
tao = 5; a(tao) = -0,001772
tao = 6; a(tao) = 0,000813
tao = 7; a(tao) = 0,000870
tao = 8; a(tao) = -0,000174
tao = 9; a(tao) = -0,000922
tao = 10; a(tao) = -0,000620
tao = 11; a(tao) = -0,000719
tao = 12; a(tao) = -0,002539
tao = 13; a(tao) = 0,000139
tao = 14; a(tao) = 0,000080
tao = 15; a(tao) = 0,001048
tao = 16; a(tao) = -0,000025
tao = 17; a(tao) = -0,000356
tao = 18; a(tao) = 0,000362
tao = 19; a(tao) = -0,001823
tao = 20; a(tao) = 0,000637
tao = 21; a(tao) = -0,000415
tao = 22; a(tao) = -0,000516
tao = 23; a(tao) = 0,000408
tao = 24; a(tao) = 0,000001
tao = 25; a(tao) = -0,000347
```

Рисунок 2 - Результат расчета коэффициента корреляции генератором Java при изменении τ . (k = 1000, N = 1 000 000)

```
Генератор: Secure_random
tao = 1; a(tao) = -0,000518
tao = 2; a(tao) = 0,001579
tao = 3; a(tao) = -0,000922
tao = 4; a(tao) = 0,000504
tao = 5; a(tao) = 0,000079
tao = 6; a(tao) = -0,001919
tao = 7; a(tao) = 0,000877
tao = 8; a(tao) = -0,001329
tao = 9; a(tao) = -0,000747
tao = 10; a(tao) = -0,000233
tao = 11; a(tao) = -0,001184
tao = 12; a(tao) = 0,000518
tao = 13; a(tao) = 0,001201
tao = 14; a(tao) = -0,000294
tao = 15; a(tao) = -0,001997
tao = 16; a(tao) = 0,000958
tao = 17; a(tao) = 0,000437
tao = 18; a(tao) = -0,000309
tao = 19; a(tao) = -0,001384
tao = 20; a(tao) = 0,001200
tao = 21; a(tao) = 0,000224
tao = 22; a(tao) = -0,000985
tao = 23; a(tao) = -0,000315
tao = 24; a(tao) = -0,000956
tao = 25; a(tao) = 0,000025
```

Рисунок 3 - Результат расчета коэффициента корреляции генератором Secure Random при изменении τ . ($k = 1000, N = 1\,000\,000$)

```
Генератор: Splittable
tao = 1; a(tao) = -0,002301
tao = 2; a(tao) = 0,000111
tao = 3; a(tao) = -0,001407
tao = 4; a(tao) = 0,000129
tao = 5; a(tao) = -0,000415
tao = 6; a(tao) = 0,000150
tao = 7; a(tao) = -0,001180
tao = 8; a(tao) = -0,000040
tao = 9; a(tao) = 0,000343
tao = 10; a(tao) = 0,000654
tao = 11; a(tao) = 0,000286
tao = 12; a(tao) = -0,001601
tao = 13; a(tao) = 0,000443
tao = 14; a(tao) = -0,000297
tao = 15; a(tao) = -0,000363
tao = 16; a(tao) = 0,000994
tao = 17; a(tao) = 0,000677
tao = 18; a(tao) = 0,000387
tao = 19; a(tao) = -0,000351
tao = 20; a(tao) = -0,000308
tao = 21; a(tao) = -0,000277
tao = 22; a(tao) = 0,000263
tao = 23; a(tao) = 0,000260
tao = 24; a(tao) = 0,000185
tao = 25; a(tao) = -0,001688
```

Рисунок 3 - Результат расчета коэффициента корреляции генератором Splittable Randpm при изменении τ . ($k = 1000, N = 1\ 000\ 000$)

Заключение

В рамках лабораторной работы были проведены эксперименты с генераторами случайных чисел языка Java. С помощью данных генераторов был произведен анализ равномерности распределения по критерию Пирса и автокорреляции.

По результатам эксперимента расчета критерия Пирса имеется следующая зависимость: чем больше отклонение, тем менее распределенным становится распределение. Также значение критерия Пирсона, не превышало критического значения, следовательно, гипотезу о равномерном распределении нельзя отвергнуть.

В каждом из наших проведенных экспериментов автокорреляционная функция при изменении параметра τ (смещение в последовательности от 1 до половины наших интервалов) приближена к нулю, что говорит нам об очень слабой силе корреляции. Она показывает зависимости между данными крайне мала и также можно отметить, что числа генерируются случайным образом.

Приложение

```
import java.util.*
import kotlin.math.pow
fun generateGraph(k: Int, N: Int, randomMethod: RandomMethod) {
    check(N / k > 5) \ { "Недостаточное количесто генерируемых чисел!" }
    var graph = mutableMapOf<Int, Int>()
    repeat(N) {
        val interval = (randomMethod.generate() / (1.0 / k)).toInt() + 1
        graph[interval] = graph[interval]?.plus(1) ?: 1
    }
    graph = graph.toSortedMap()
    val x2 = calculateX2(graph, k, N).double()
    println("""
        Генератор: ${randomMethod.name.toLowerCase().capitalize()}
        Количество интервалов (k): $k
        Количество чисел (N): ${N}0
        X2: $x2
    """.trimIndent())
}
private fun calculateX2(nList: Map<Int, Int>, k: Int, n: Int) = nList.map\{(\_, ni)->
    val pi = 1.0 / k
    (ni - pi * n).pow(2.0) / (pi * n)
}.sum()
fun calculateCov(N: Int, k: Int, randomMethod: RandomMethod) {
    println("Генератор: ${randomMethod.name.toLowerCase().capitalize()}")
    val taoMax = 25
    val aCov = ACov(N, randomMethod)
    (1..taoMax).map { tao ->
        val cov = aCov.calculateByTao(tao)
        println("tao = $tao; a(tao) = ${cov.double()}")
    }
}
```

```
class ACov(N: Int, randomMethod: RandomMethod) {
    private val list = mutableListOf<Double>()
    private val xAverage: Double
    private val s2: Double
    init {
        var xSum = 0.0
        var x2sum = 0.0
        repeat(N) {
            val random = randomMethod.generate()
            list.add(random)
            x2sum += random * random
            xSum += random
        }
        xAverage = xSum / N
        s2 = (x2sum / N - xAverage.pow(2.0))
    }
    fun calculateByTao(tao: Int) = (0 until list.size - tao).map { i ->
        (list[i] - xAverage) * (list[i + tao] - xAverage)
    }.sum() / ((list.size - tao) * s2)
}
enum class RandomMethod {
    JAVA, SPLITTABLE, SECURE;
    fun generate() = when (this) {
        SECURE -> SecureRandom().nextDouble()
        JAVA -> Random().nextDouble()
        SPLITTABLE -> SplittableRandom().nextDouble()
    }
}
fun main() {
    val k = 1000
    val N = 1_000_000
    RandomMethod.values().forEach { random ->
        generateGraph(k = k, N = N, randomMethod = random)
        calculateCov(k = k, N = N, randomMethod = random)
    }
}
```