

Università degli Studi di Roma "La Sapienza" Ingegneria Informatica e Automatica FISICA 11.7.2023

A.A. 2022-2023 (12 CFU) – Proff. M.Petrarca – A.Sciubba

- 1) Una sfera omogenea di massa me raggio R scende con moto di puro rotolamento lungo un piano inclinato. La sua velocità iniziale è nulla. Calcolare:
 - a) il vettore velocità del centro di massa e la velocità angolare nell'istante in cui il centro di massa è sceso di una quantità pari ad H.
 - b) Nel tratto successivo (alla discesa pari ad H) il piano è liscio; calcolare nuovamente il vettore velocità del centro di massa e la velocità angolare per una ulteriore discesa pari ad H.

$$[I_{sferaCM} = 2/5 M R^2]$$

a) mgH =
$$\frac{1}{2}$$
mv₁² + $\frac{1}{2}$ I ω ₁²
b) mgH + $\frac{1}{2}$ mv₁² + $\frac{1}{2}$ I ω ₁² = $\frac{1}{2}$ mv₂² + $\frac{1}{2}$ I ω ₁²
 ω _i = v_i R

2) Un corpo di massa $m_c = 0.6$ kg e volume $V = 2.22 \cdot 10^{-4}$ m³ viene sospeso ad un dinamometro che misura $T_1 = 5,88$ N. Lo stesso corpo, sospeso allo stesso dinamometro, viene immerso completamente (ma solo il corpo) in acqua. Quanto mi aspetto che misuri il dinamometro in questo caso?

$$T_2 = T_1 - \rho V g$$

3) Un gas ideale biatomico nello stato A è caratterizzato da $V_A = 5,1\cdot10^{-2}$ m³, $p_A = 0,6$ bar e T_A = 476 K. Tramite una compressione isobara reversibile passa allo stato B con V_B = 3·10⁻² m³. Quindi il gas viene posto a contatto termico con una sorgente a temperatura T_C e si espande fino a $V_C = 3.4 \cdot 10^{-2}$ m³ compiendo un lavoro W_{B,C} = 2 kJ. Dallo stato C il gas torna allo stato A con una espansione adiabatica reversibile.

Calcolare il rendimento del ciclo. Si ricorda: $T V^{(\gamma-1)} = cost$

$$\begin{split} \eta &= \frac{L}{Q_{ass}} = \frac{Q_{ass} - |Q_{ced}|}{Q_{ass}} = 32,1\% \\ n &= \frac{p_A V_A}{R \ T_A} \qquad T_B = T_A \ \frac{V_B}{V_A} \qquad T_C = T_A \left(\frac{V_A}{V_C}\right)^{(\gamma-1)} \end{split}$$

$$\begin{aligned} Q_{ass} &= Q_{B,C} = n \ c_V \left(T_C - T_B \right) + W_{B,C} = \frac{5}{2} \ p_A V_A \left[\left(\frac{V_A}{V_C} \right)^{(\gamma - 1)} - \frac{V_B}{V_A} \right] + W_{B,C} = 6497 \ J \\ Q_{ced} &= Q_{A,B} = n \ c_p \left(T_B - T_A \right) = \frac{7}{2} \ p_A V_A \left[\frac{V_B}{V_A} - 1 \right] = -4410 \ J \end{aligned}$$

- 4) Un anello di raggio R è uniformemente carico con densità λ . Determinare:
- a) l'andamento del potenziale elettrostatico nei punti dell'asse dell'anello in funzione della distanza x dal piano che contiene l'anello.
- b) la velocità minima che dovrebbe avere inizialmente una particella di massa m e carica positiva θ , posta all'infinito, per arrivare al centro della spira.

$$V(x) = \int_0^{2\pi} \frac{\lambda R d\theta}{4\pi\epsilon_0 \sqrt{x^2 + R^2}} \qquad \frac{1}{2} m v^2 = \frac{\lambda}{2\epsilon_0}$$

5) Due lunghi fili conduttori paralleli distanti 3L sono percorsi, in versi opposti, dalla corrente $I(t) = I_0 t/\tau$. Nel piano dei due fili è posta una spira quadrata di lato L (vedi figura) e resistenza R. Ricavare l'espressione dell'intensità di corrente che scorre nella spira.

Dati: τ = 3 ms, I₀ = 5 A, L = 10 cm, R = 20 Ω .

$$\begin{split} \Phi(B) = \int_L^{2L} L \, \frac{\mu_0 I}{2\pi x} dx + \int_L^{2L} L \, \frac{\mu_0 I}{2\pi (3L-x)} dx = \frac{L\mu_0 I}{\pi} ln2 \\ I_{spira} = \frac{L\mu_0 I_0}{\pi \, \tau \, R} ln2 \quad \text{(in senso orario)} \end{split}$$

- 1) Una sfera omogenea di massa m e raggio R scende con moto di puro rotolamento lungo un piano inclinato. La sua velocità iniziale è nulla. Calcolare:
 - a) il vettore velocità del centro di massa e la velocità angolare nell'istante in cui il centro di massa è sceso di una quantità pari ad H.
 - b) Nel tratto successivo (alla discesa pari ad H) il piano è liscio; calcolare nuovamente il vettore velocità del centro di massa e la velocità angolare per una ulteriore discesa pari ad H.

a)
$$mgH = \frac{1}{2}mv_{cH}^{2} + \frac{1}{2}Iw^{2}$$
 $mgH = \frac{1}{2}mv_{cH}^{2} + \frac{1}{2}(\frac{3}{2}mR^{2})(\frac{V_{cH}}{R})^{2}$

2) Un corpo di massa m_c = 0,6 kg e volume V = 2,22·10⁻⁴ m³ viene sospeso ad un dinamometro che misura T_1 = 5,88 N. Lo stesso corpo, sospeso allo stesso dinamometro, viene immerso completamente (ma solo il corpo) in acqua. Quanto mi aspetto che misuri il dinamometro in questo caso? $T_2 = T_1 - \rho \ V \ g$

- IMMERSO:

PRINUPIO DI ARCHI MEDE
$$\mathbf{F}_A = -\rho\,V_0\,\mathbf{g},$$

$$F_A = \rho V_g = 2, 177N \rightarrow T_2 = T_1 - F_A = 5,88 \cdot 2,177 = 3,703N$$

$$P_{ACQUA} = 1.10^3 kg/m^3$$

3) Un gas ideale biatomico nello stato A è caratterizzato da $V_A = 5.1 \cdot 10^{-2}$ m³, $p_A = 0.6$ bar e T_A = 476 K. Tramite una compressione isobara reversibile passa allo stato B con $V_B = 3.10^{-2}$ m³. Quindi il gas viene posto a contatto termico con una sorgente a temperatura T_C e si espande fino a $V_C = 3.4 \cdot 10^{-2}$ m³ compiendo un lavoro $W_{B,C} = 2 \text{ kJ}$. Dallo stato C il gas torna allo stato A con una espansione adiabatica reversibile.

Calcolare il rendimento del ciclo. Si ricorda: $T V^{(\gamma-1)} = \cos t$

Calcolare il rendimento del ciclo. Si ricorda:
$$TV^{(V-1)} = \cos t$$

$$P_A = P_B = 0.6 \text{ bor} \qquad y = 1 - \frac{Q_{CBD}}{Q_{ASS}} \qquad y = \frac{7}{2}R \quad C_P = \frac{7}{2}R \quad Y = \frac{7}{2}S$$

$$P_A = P_B = 0.6 \text{ bor} \qquad y = 1 - \frac{Q_{CBD}}{Q_{ASS}} \qquad y = \frac{7}{2}R \quad C_P = \frac{7}{2}R \quad Y = \frac{7}{2}S$$

$$P_A = P_B = 0.6 \text{ bor} \qquad y = 1 - \frac{Q_{CBD}}{Q_{ASS}} \qquad y = \frac{7}{2}R \quad C_P = \frac{7}{2}R \quad Y = \frac{7}{2}S$$

$$P_A = P_B = 0.6 \text{ bor} \qquad y = 1 - \frac{Q_{CBD}}{Q_{ASS}} \qquad y = \frac{7}{2}R \quad Y = \frac{7}{2}R \quad Y = \frac{7}{2}R \quad Y = \frac{7}{2}R \quad Y = \frac{7}{2}S$$

$$P_A = P_B = 0.6 \text{ bor} \qquad y = 1 - \frac{Q_{CBD}}{Q_{ASS}} \qquad y = \frac{7}{2}R \quad Y = \frac{7$$

$$\eta = 1 - \frac{|Q_{CED}|}{|Q_{ASS}|} = 1 - \frac{4410}{6497} = 0,32$$

- 4) Un anello di raggio R è uniformemente carico con densità λ . Determinare:
- a) l'andamento del potenziale elettrostatico nei punti dell'asse dell'anello in funzione della distanza x dal piano che contiene l'anello.
- b) la velocità minima che dovrebbe avere inizialmente una particella di massa m e carica positiva θ , posta all'infinito, per arrivare al centro della spira.

$$\frac{dV}{dV} = \frac{1}{4\pi \epsilon_0} \frac{dq}{r} = \frac{1}{4\pi \epsilon_0} \frac{\lambda R d\theta}{\sqrt{x^2 + R^2}}$$

$$V(x) = \frac{\lambda R}{4\pi \epsilon_0 \sqrt{x^2 + R^2}} \int_0^{2\pi} d\theta = \frac{\lambda R}{2\epsilon_0 \sqrt{x^2 + R^2}}$$

LA PARTICELLA DEVE SUPERARE IL POTENZIALE NEL CENTRO:

L'ENERHA POTENZIALE DELLA PARTICELLA DOVRÀ ESSERE

$$\frac{1}{2}mV_0^2 = 9\frac{\lambda}{2E_0} \rightarrow V_0 = \sqrt{\frac{q\lambda}{mE_0}}$$

5) Due lunghi fili conduttori paralleli distanti 3L sono percorsi, in versi opposti, dalla corrente $I(t) = I_0 t/\tau$. Nel piano dei due fili è posta una spira quadrata di lato L (vedi figura) e resistenza R. Ricavare l'espressione dell'intensità di corrente che scorre nella spira. Dati: $\tau = 3$ ms, $I_0 = 5$ A, L = 10 cm, R = 20 Ω .

$$B_{1}(x) = \frac{M_{0}I}{2\pi \times}T \quad B_{2}(x) = \frac{M_{0}I}{2\pi(3L-x)}T$$

$$\Phi(B_{i}) = L \int_{L}^{2L} B_{i}(x) dx = L \frac{M_{0} I}{2\pi} ln \left(\frac{2L}{L}\right) = L \frac{M_{0} I}{2\pi} ln 2 Wb$$