第三次习题课

习题讲解、方法提要和内容扩充

助教: 邓先涛

2023年9月25日

重点知识提要

重点知识提要

- ▶ 环同态定理的陈述和应用: 三个环同态定理的形式及应用.
- ▶ 环的特征与环上的多项式环的结构:环上特征的概念,域上多项式环的基本性质.
- ▶ 代数数和代数整数的概念

第三章习题讲解

第三章第 33 题

证明: $x^3 - x$ 在环 $\mathbb{Z}/6\mathbb{Z}$ 中有 6 个根.

思维拓展 1

设 $R = \mathbb{Z}/6\mathbb{Z}$, R[x] 为 R 上的多项式环,定义 $I = \{f(x) \in R[x] | f(r) = 0, \forall r \in R\}$,证明 I 是多项式环 R[x] 上的一个理想,并且求出两个不同的多项式 f(x), g(x) 使得 I = (f(x), g(x)),进一步说明 I 不是主理想.

证明

直接代入, 一一验证.

思维拓展 2

设 $R=\mathbb{Z}/n\mathbb{Z}$, R[x] 为 R 上的多项式环,定义 $I=\{f(x)\in R[x]|f(r)=0, \forall r\in R\}$,能否刻画出 理想 I 的生成元.

第三章第 35 题

在复数域中, $u = \sqrt{2} + \sqrt{3}$ 是有理数域上的代数元,求极小多项式.

- ▶ 域扩张方法:以该代数数的所有共轭元为根的多项式即是所求.
- ▶ 简单计算法

思维拓展

试计算 $\sqrt{2} + \sqrt{3} + \sqrt{5}$ 的极小多项式.

- ▶ 注意到 $u^2 = 5 + 2\sqrt{6}$, 因此 $(u^2 5)^2 = 24$.
- ▶ 极小性验证: 令 $F(x) = x^4 10x^2 + 1$, 待 定系数验证不可约.

第三章第 36 题

设 $u \in \mathbb{C}$ 是 $x^3 - x + 1$ 的根,将

$$(5u^2 + 3u - 1)(2u^2 - 2u + 6)$$
 和 $(3u^2 - u + 2)^{-1}$

表示为次数不超过 2 的 u 的多项式.

降次消去和待定系数法

思维拓展

设 u 为题中所设, $I = \{f(x) \in \mathbb{Q}[x] | f(u^2) = 0\}$ 是

 $\mathbb{Q}[x]$ 中的理想,试刻画理想 I 的生成元.

- ▶ $(5u^2 + 3u 1)(2u^2 2u + 6)$ 的展开式中次数 ≥ 3 的项用 $u^3 = u 1$ 中进行代换降次,得到 $32u^2 + 6u 2$
- ▶ 设 $(3u^2 u + 2)(au^2 + bu + c) = 1$, 展开求解得到 $a = -\frac{2}{7}, b = -\frac{1}{7}, c = \frac{3}{7}$.

第三章第 37 题

证明 $f(x) = x^3 + x^2 + 1$ 在 $\mathbb{F}_2[x]$ 中不可约,且商 环 $R = \mathbb{F}_2[x]/(f(x))$ 是 8 元域.

- ▶ 商环的定义
- ▶ 不可约多项式的判定

思维拓展

令 $g(x) = x^3 + x + 1$ 同样不可约,因此也是 8 元 域,是否有同构 $\mathbb{F}_2[x]/(f(x)) \cong \mathbb{F}_2[x]/(g(x))$,试 着写出具体的同构关系.

- ▶ 由于 f(x) 在 \mathbb{F}_2 中没有根,因此不可约.
- ▶ $R = \{\overline{ax^2 + bx + c} | a, b, c \in \mathbb{F}_2\}$,因此有 8 个元素,不可约多项式推出理想的极大性,所以 R 是域.

第三章第 41 题

设 $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$, $I = (3, x^3 + 2x^2 + 2x - 1)$ 为 $\mathbb{Z}[x]$ 的理想,证明 $\mathbb{Z}[x]/I \cong \mathbb{F}_3[x]/(x^3 - x^2 - x - 1)$.

环的第一同构定理: 若 $f: R_1 \to R_2$ 为满同态,理想 I 满足 $\ker(f) \subset I$,则 $R_1/I \cong R_2/f(I)$.

思维拓展

是否存在 $f(x) \in \mathbb{Z}[x]$ 满足 $\deg(f(x)) > 1$,使得对一切素数 p 均有 $\mathbb{Z}[x]/(p,f(x))$ 是域?

- ▶ 环同态 $f: \mathbb{Z}[x] \to \mathbb{F}_3[x]$ 定义为 $f(a(x)) = a(x) \mod 3$, f 为满同态,且直接 验证 $\ker(f) \subset I$.
- ▶ $f(I) = (x^3 x^2 x 1)$, 因此命题成立.
- ▶ 误区: $\mathbb{Z}[x]/I \cong (\mathbb{Z}[x]/(3))/(I/(3))$, 由于 $\mathbb{Z}[x]/(3) \cong \mathbb{F}_3[x]$, $I/(3) \cong (x^3 x^2 x 1)$, 因此得到结论.

第三章第 43 题

设 R 是交换环,多项式 $f(x) \in R[x]$ 是幂零元,证明: f(x) 的每一个系数均是幂零元.

数学归纳法 + 二项式定理

证明

对 f(x) 的次数进行归纳,利用二项式展开得到低一次的多项式 $\frac{f(x)-a_0}{x}$ 是幂零元的事实,借助归纳假设即可证明.

思维拓展

该命题反过来也显然成立,即系数幂零与多项式幂零是等价的。考虑形式幂级数环 R[[x]],即 x 为未定元,形如 $f(x) = \sum_{n=1}^{\infty} a_n x^n$ 的幂级数作为元素,按照加法与乘法构成环。在环 R[[x]] 中,f(x) 幂零与其系数幂零是否等价?

第三章第 44 题

设 R 是交换环, $f(x) \in R[x]$ 是零因子等价于存在 $0 \neq a \in R$ 使得 af(x) = 0.

数学归纳法

思维拓展

设 R 是交换环,如何刻画 $R[x_1, \dots, x_n]$ 多元多项式环中的零因子?

- ▶ 设 $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$ 满足 f(x)g(x) = 0, 且 $b_m \neq 0$, 断言命题成立.
- ▶ m=0 时成立;假设 m < k 时均成立
- ▶ m = k 时,考虑最大的 i 使得 $a_i g(x) \neq 0$
- ▶ $deg(a_ig(x)) < deg(g(x))$ 且 $a_ig(x)f(x) = 0$, 按照归纳假设命题成立.

第三章第 51 题

设交换环 R 中的所有元素均满足 $a^2 = a$, 证明: 任给 $a \in R$, 均有 2a = 0; 每一个素理想 I 均是 极大理想,且 R/I 是 2 元域;R 的每一个有限 生成理想均是主理想.

素理想的定义以及理想的生成集

思维拓展

能否构造一个交换幺环 R 满足 $a^2=a, \forall a\in R$,使得该环不是主理想环.

- ► $2a = (2a)^2 = (a+a)^2 = 4a^2 = 4a$, 即可.
- ▶ $0 = a(a-1) \in I$, 推出 $a \in I$ 或 $1 a \in I$. 如果 I 不是极大理想,那么存在 $b \notin I$ 使得 I + (b) 是真理想,矛盾.
- ▶ 注意到 (a, b) = (a + b + ab), 因此有限生成 理想总可以通过该方式减少生成元.

问题补充和方法扩张

问题 1

设幺环 R(未必交换) 只有平凡理想 (单环), 试给出 R 的所有可能特征.

简要说明

- ▶ 所有域上的矩阵环均是单环,因此可能的特征为 0 或 p, 其中 p 为素数.
- ▶ 若有单环的特征 n 不是素数,则取 $n \neq n' \mid n$, n'R 为理想.

问题 2

设 R 是交换环, $f(x) = a_n x^n + \cdots + a_1 x + a_0$ 是 R[x] 中单位当且仅当 a_0 是 R 中单位, $a_i (i \ge 1)$ 是 R 中幂零元.

简要说明

- ▶ 对 f 的次数进行归纳即可
- ▶ 归纳法或者说最小数原理很多时候可以解决过程繁琐的问题.

问题 3

容易知道,任给交换环 R 和 R',若 $R \cong R'$,则 $R[x] \cong R'[y]$. 那么反过来可以成立吗?也就是说任给交换环 R 和 R' 的多项式环同构,即 $R[x] \cong R'[y]$,是否可以得到 $R \cong R'$.

简要说明

- ▶ 该问题并不显然,也不直观,答案是否定的,即 R 与 R' 未必可以建立同构关系. 反例可网上搜索 "环 R 和 S 的一元多项式同构,能否推出环 R 和 S 之间存在环同构".
- ► 一些看似直观的,显然的结论,有时候在代数学习中会出现偏差,所以代数学习过程中,最好 秉承大胆假设,小心求证的理念.