Magični kvadrati

Prirejeno iz virov:

- http://mathworld.wolfram.com/MagicSquare.html
- http://en.wikipedia.org/wiki/Magic_square

Kazalo

1	$\mathbf{U}\mathbf{vod}$	2
2	Matematika 2.1 Primer enačbe	2 2
3	Uvod	3
4	Magični kvadrat reda 3	3
	Zgodovina 5.1 Kvadrat »Lo Shu«	3

6	Kvadrat Lo Shu 6.1 Kulturna pomembnost	4
7	Kvadrat Kubera-Kolam 7.1 Zgodnji kvadrati reda 4	4
8	Dürerjev magični kvadrat 4×4	5
9	Pasijonska fasada na Sagrada Família	5
10	Osnovne lastnosti	6
11	Primeri	7

1 Uvod

Tukaj je uvodni del dokumenta...

2 Matematika

Tukaj bomo obravnavali matematične izraze in enačbe...

2.1 Primer enačbe

Tukaj bomo dali primer matematične enačbe.

3 Uvod

 $Magični\ kvadrat\ reda\ n$ je nabor n^2 različnih števil, ki so razvrščena v kvadratno tabelo tako, da vedno dobimo enako vsoto, če seštejemo vsa števila poljubne vrstice, vsa števila poljubnega stolpca ali vsa števila v katerikoli od glavnih diagonal.

Primer magičnega kvadrata reda 3 je prikazan v tabeli ?!?.

4 Magični kvadrat reda 3

Primer magičnega kvadrata reda 3 je prikazan v tabeli 1.

Tabela 1: Magični kvadrat reda 3

8	1	6
3	5	7
4	9	2

Magični kvadrat reda n je normalen, če v njem nastopajo števila

$$1, 2, 3, \dots, n^2 - 1, n^2. \tag{1}$$

Magični kvadrat v tabeli ?!? je normalen. To je tudi najmanjši netrivialen normalen magični kvadrat. Poleg normalnih magičnih kvadratov so zanimivi tudi magični kvadrati praštevil.

5 Zgodovina

5.1 Kvadrat »Lo Shu«

Kitajska literatura iz časa vsaj 2800 let pred našim štetjem govori o legendi Lo Shu — »zvitek reke Lo«. V antični Kitajski je prišlo do silne poplave. Ljudje so skušali rečnemu bogu narasle reke Lo ponuditi daritev, da bi pomirili njegovo jezo. Iz vode se je prikazala želva z zanimivim vzorcem na oklepu: v tabeli velikosti tri krat tri so bila predstavljena števila, tako da je bila vsota števil v katerikoli vrstici, kateremkoli stolpcu in na obeh glavnih diagonalah enaka: 15. To število je tudi enako številu dni v 24 ciklih kitajskega sončnega leta. Ta vzorec so na določen način uporabljali upravljalci reke.

6 Kvadrat Lo Shu

Primer magičnega kvadrata Lo Shu je prikazan v tabeli 2.

Tabela 2: Kvadrat Lo Shu

4	9	2
3	5	7
8	1	6

6.1 Kulturna pomembnost

Magični kvadrati so fascinirali človeštvo skozi vso zgodovino. Najdemo jih v številnih kulturah, npr. v Egiptu in Indiji, vklesane v kamen ali kovino, uporabljane kot talismane za dolgo življensko dobo in v izogib boleznim. *Kubera-Kolam* je talna poslikava, ki se uporablja v Indiji, in je v obliki magičnega kvadrata reda 3. Ta je v bistvu enak kot kvadrat Lo Shu, vendar je vsako število povečano za 19.

7 Kvadrat Kubera-Kolam

Primer magičnega kvadrata Kubera-Kolam je prikazan v tabeli 3.

Tabela 3: Kvadrat Kubera-Kolam

23	28	21
22	24	26
27	20	25

Z magičnimi kvadrati so se ukvarjali tudi najbolj znani matematiki kot na primer Euler, glej [?].

7.1 Zgodnji kvadrati reda 4

Najzgodnejši znani magični kvadrat reda 4 je bil odkrit na napisu v Khajurahu v Indiji in v Enciklopediji Bratovščine Čistosti iz enajstega ali dvanajstega stoletja. Vrh vsega gre celo za »panmagični kvadrat«. V Evropi sta morda najbolj znana naslednja magična kvadrata reda 4:

Magični kvadrat v litografiji Melancholia I (glej sliko 1 za izsek s kvadratom) Albrechta Dürerja naj bi bil najzgodnejši magični kvadrat v evropski

umetnosti. Zelo podoben je kvadratu Yang Huija, ki je nastal na Kitajskem približno 250 let pred Dürerjevim časom.

Slika 1: Dürerjev magični kvadrat

Vsoto 34 je mogoče najti pri seštevanju števil v vsaki vrstici, vsakem stolpcu, na vsaki diagonali, v vsakem od štirih kvadrantov, v sredinskih štirih poljih, v štirih kotih, v štirih sosedih kotov v smeri urinega kazalca (3+8+14+9), v štirih sosedih kotov v nasprotni smeri urinega kazalca (2+5+15+12), v dveh naborih simetričnih parov (2+8+9+15 in 3+5+12+14), in še na nekaj drugih načinov. Števili na sredini spodnje vrstici tvorita letnico litografije: 1514.

8 Dürerjev magični kvadrat 4×4

Dürerjev magični kvadrat 4×4 je prikazan v tabeli 4.

Tabela 4: Dürerjev magični kvadrat 4×4

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

9 Pasijonska fasada na Sagrada Família

Pasijonska fasada na katedrali Sagrada família v Barceloni (glej sliko 2 za fotografijo) vsebuje magični kvadrat reda 4.

Vsota števil v vrsticah, stolpcih oziroma na diagonalah je 33 – Jezusova starost v času pasijona. Strukturno je kvadrat podoben Dürerjevemu, vendar so števila v štirih poljih zmanjšana za 1. Posledica je, da sta števili 10 in 14 podvojeni in zato kvadrat ni normalen.

Slika 2: Pasijonska fasada, Sagrada Família

Tabela 5: Pasijonska fasada, Sagrada Família

1	14	14	4
11	7	6	9
8	10	10	5
13	2	3	15

10 Osnovne lastnosti

Definicija 1. Vsoto ene vrstice, enega stolpca ali ene od glavnih diagonal v magičnem kvadratu imenujemo magična konstanta.

Izrek 1. Magična konstanta normalnega magičnega kvadrata reda!! je enaka

$$M_2(n) = \frac{1}{2}n(n^2 + 1) \tag{2}$$

Dokaz. V normalnem magičnem kvadratu reda n je vsota vseh nastopajočih števil (glej ?? na strani ??) enaka $1+2+3+\cdots+n^2=\sum_{k=1}^{n^2}k=\frac{1}{2}n^2(n^2+1)$. Ker imamo v kvadratu n vrstic z enako vsoto, je vsota števil v eni vrstici enaka številu $M_2(n)$. ?? in 2

Preprost račun pokaže, da je konstanti ?? analogna konstanta $M_2(n; A, D)$ za magični kvadrat, v katerem so nameščena števila $A, A+D, A+2D, \ldots, A+(n^2-1)D$, enaka 2 !! Kvadratu v tabeli ustrezata konstanti A=20 in D=1.

Če vsako od števil v normalnem magičnem kvadratu reda n odštejemo od števila n^2+1 , dobimo nov magični kvadrat, ki je prvotnemu komplementaren. Na primer, magičnemu kvadratu Lo Shu (glej tabelo 6) priredimo komplementarni kvadrat, prikazan v tabeli 6 .

Tabela 6: Kvadratu Lo Shu komplementarni kvadrat

6	1	8
7	5	3
2	9	4

Vidimo, da je dobljeni kvadrat moč dobiti iz kvadrata Lo Shu tudi z zasukom za 180 stopinj okrog središča, kvadrat iz tabele 6 pa je mogoče dobiti iz kvadrata Lo Shu z zrcaljenjem preko sredinske vodoravne črte. Število različnih normalnih magičnih kvadratov

Definicija 2. Pravimo, da sta dva magična kvadrata različna, če enega ni mogoče dobiti iz drugega s pomočjo zasukov oziroma zrcaljenj.

Stevila različnih normalnih magičnih kvadratov se nahajajo v tabeli 7. točna vrednost približek red 1 2 3 4 5 6 število kvadratov 1 0 1 880 275305224 !!

Tabela 7: Število različnih normalnih magičnih kvadratov

red		2	3	4	5	6
število kvadratov		0	1	880	275305224	!!

Vse normalne magične kvadrate reda 4 je oštevilčil Frénicle de Bessy leta 1693, glej [1], in jih je moč najti v knjigi Berlekamp in drugi (1982) [?] iz leta 1982. Število normalnih kvadratov reda 5 je izračunal R. Schroeppel leta 1973 (glej Gardner [2]). Natančno število vseh različnih normalnih magičnih kvadratov reda 6 ni znano. Avtorja navedenega približka sta Pinn in Wieczerkowski (glej [4]), ki sta za oceno uporabila simulacijo Monte Carlo in metode statistične mehanike.

11 Primeri

V tabelah ?!?, ?!? in ?!? so prikazani magični kvadrati redov 5, 6 in 9.

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

Tabela 8: Magični kvadrat reda 5

6	32	3	34	35	1
7	11	27	28	8	30
19	14	16	15	23	24
18	20	22	21	17	13
25	29	10	9	26	12
36	5	33	4	2	31

Tabela 9: Magični kvadrat reda 6

Literatura

- [1] Frénicle de Bessy, A. (1693). Magični kvadrati.
- [2] Gardner, M. (1982). Mathematical Games: The Magic Squares of Lo Shu. Scientific American.
- [3] Schroeppel, R. (1973). The Calculation of Normal Magic Squares of Order 5.
- [4] Pinn, J., Wieczerkowski, M. (Year). Monte Carlo Simulations of Magic Squares.

47	58	69	80	1	12	23	34	45
57	68	79	9	11	22	33	44	46
67	78	8	10	21	32	43	54	56
77	7	18	20	31	42	53	55	66
6	17	19	30	41	52	63	65	76
16	27	29	40	51	62	64	75	5
26	28	39	50	61	72	74	4	15
36	38	49	60	71	73	3	14	25
37	48	59	70	81	2	13	24	35

Tabela 10: Magični kvadrat reda 9