Assignment – 2

Assignment Date	27 September 2022
Student Name	Kaviya A
Student Roll no.	510919106701
Maximum Marks	2 Marks

Question no: 1

Download the data set

Solution:

Data set downloaded.

1. Download the dataset: Dataset

Dataset successfully downloaded

Load the Data set.

Solution:

2. Load the dataset.

```
[ ] import pandas as pd
import numpy as np
[ ] file=pd.read_csv("Churn_Modelling.csv")
df=pd.DataFrame(file)
    df.head()
       RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
    0 1 15634602 Hargrave 619 France Female 42 2 0.00
     1 2 15647311 Hill 608
                                                Spain Female 41
                                                                       1 83807.86
                                                                                                                             112542.58
                                                                                                                                          0
    2 3 15619304 Onio 502 France Female 42 8 159660.80
3 4 15701354 Boni 699 France Female 39 1 0.00
                                                                                                                 0
                                                                                                                            113931.57
                                                                                                                                          1
                                                                                             2
                                                                                                       0
                                                                                                                    0
                                                                                                                              93826.63
                                                                                                                                          0
     4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82
                                                                                                                              79084.10
                                                                                                                                          0
[ ] df['HasCrCard'] = df['HasCrCard'].astype('category')
[ ] df['IsActiveMember'] = df['IsActiveMember'].astype('category') df['Exited'] = df['Exited'].astype('category')
[ ] df = df.drop(columns=['RowNumber', 'CustomerId', 'Surname'])
[ ] df.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

Perform Below Visualizations.

- Uni Variate Analysis
- Bi Variate Analysis
- Multi Variate Analysis

Solution:

• Multi - Variate Analysis

$\mbox{-}$ the data is significantly imbalanced

```
[] import matplotlib.pyplot as plt

[] categorical = df.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary'])
rows = int(np.ceil(categorical.shape[1] / 2)) - 1

# create sub-plots anf title them
fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))
axes = axes.flatten()

for row in range(rows):
    cols = min(2, categorical.shape[1] - row*2)
    for col in range(cols):
        col name = categorical.columns[2 * row + col]
        ax = axes[row*2 + col]
        sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);

plt.tight_layout()

Exited

4000

9000

1000

Female

Gender

Male

Cender
```


Perform descriptive statistics on the data set.

Solution:

Handle the Missing values.

Solution:

- 5. Handle the Missing values.

→ there is no missing values in dataset

```
for i in df:
    if df[i].dtype=='object' or df[i].dtype=='category':
        print("unique of "+i+" is "+str(len(set(df[i])))+" they are "+str(set(df[i])))

[b. unique of Geography is 3 they are {'Spain', 'France', 'Germany'} unique of Geoder is 2 they are {'Male', 'France', 'Germany'} unique of Hascrcand is 2 they are {0, 1} unique of IsactiveMember is 2 they are {0, 1} unique of Exited is 2 they are {0, 1}
```

Question no: 6

Find the outliers and replace the outliers

Solution:

- 6. Find the outliers and replace the outliers
- Checking for outliers

```
[] def box_scatter(data, x, y):
    fig, (axi, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(16,6))
    sns.boxplot(data-data, x=x, ax=ax1)
    sns.scatterplot(data-data, x=x,y=y,ax=ax2)

[] box_scatter(df,'creditscore','Exited');
    plt.tight_layout()
    print(f"# of Bivariate Outliers: {len(df.loc[df['Creditscore'] < 400])}")

# of Bivariate Outliers: 19</pre>
```


box_scatter(df,'Age','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['Age'] > 87])}")

Removing outliers

```
[ ] for i in df:
    if df[i].dtype=='int64' or df[i].dtypes=='float64':
        q!=df[i].quantile(0.25)
        q!=df[i].quantile(0.75)
        igr=q!-q!
        upper=q3+1.5*igr
        lower=q1-1.5*igr
        df[i]=np.where(df[i] >upper, df[i])
        df[i]=np.where(df[i] <lower, lower, df[i])
```

- After removing outliers, boxplot will be like

```
[] box_scatter(df,'creditscore','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: 19

# of
```


Question no: 7

Check for Categorical columns and perform encoding.

Solution:

7. Check for Categorical columns and perform encoding.

```
[ ] from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
for i in df:
    if df[i].dtype=='object' or df[i].dtype=='category':
        df[i]=encoder.fit_transform(df[i])
```

Split the data into dependent and independent variables.

Solution:

- 8. Split the data into dependent and independent variables.

Question no: 9

Scale the independent variables

Solution:

▼ 9. Scale the independent variables

Split the data into training and testing

Solution:

▼ 10. Split the data into training and testing

[]	<pre>from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y),test_size=0.33)</pre>
[]	x_train.shape
	(6700, 10)
[]	x_test.shape
	(3300, 10)
[]	y_train.shape
	(6700,)
[]	y_test.shape
	(3300,)