CASA INTELIGENTE IOT Ismael Silva e Thiago Trabuco

IREMOS APRESENTAR:

- Objetivos com o projeto
- Componentes e Arquitetura
- Funcionalidades Atuais
- Futuras Expansões

O QUE É O PROJETO DA CASA INTELIGENTE?

Este projeto propõe o desenvolvimento de uma solução acessível e escalável de automação residencial baseada em ESP32 e Firebase, com o objetivo de transformar qualquer ambiente em uma casa inteligente com controle total de energia e dispositivos.

POR QUE ESTE PROJETO É IMPORTANTE?

A automação residencial vem crescendo nos últimos anos, tornando-se cada vez mais acessível. No nosso projeto, utilizamos microcontroladores ESP32 conectados ao Firebase para controlar luzes, displays e sensores de forma remota e autônoma. Nosso objetivo inicial é automatizar periféricos básicos, mas com uma visão de expansão para o controle total da energia elétrica da casa, incluindo integração com sensores infravermelhos e aplicativos móveis.

COMSTECH • OCT. 15, 2020

OBJETIVOS

Objetivo Geral:

Desenvolver um sistema modular, controlável via internet, para automação de dispositivos domésticos. Objetivos Específicos:

- Controlar luzes e displays LCD com ESP32.
- Utilizar sensores para automatizar a resposta do sistema.
- Integrar o controle com Firebase Realtime Database.
- Habilitar modos automático e manual.
- Criar um gerenciador central para coordenar múltiplos ESP32 espalhados pela casa.
- Permitir expansão para controle total de energia e dispositivos infravermelhos.
- Implementar validação de segurança via QR code e instalação profissional.

COMPONENTES É ARQUITETURA

Hardware Utilizado:

- ESP32 Dev Kit
- Sensor de movimento (PIR)
- Relé para acionamento elétrico
- Display LCD 16x2
- LEDs de status

Software:

- Código em C++ usando Arduino IDE
- Integração com Firebase (leitura e escrita)
- Modo local com comandos via porta Serial

Arquitetura do Sistema:

Cada ESP32 se conecta ao Firebase e atua sobre os periféricos locais. O sistema funciona tanto em modo automático (por sensores) quanto manual (por comandos remotos ou locais). Toda alteração é sincronizada com o banco de dados.

FUNCIONALIDADES ATUAIS

- Detecção de movimento com acionamento automático de luzes.
- LCD mostra o status (movimento, comandos, sensor desligado).
- Comandos recebidos via Firebase:
 - ∘ Ligar/desligar luz
 - ∘ Ligar/desligar LCD
 - o Modo automático ou manual
- Atualização em tempo real do estado dos dispositivos.
- Controle local por comandos digitados via monitor serial.

"Essas funcionalidades já estão testadas em protótipo físico e plenamente operacionais."

COMPONENTES E ARQUITETURA

1982

Presentations are communication tools.

1991

Presentations are communication tools.

1999

Presentations are communication tools.

COLLECT AND SEND INFORMATION

Presentations are communication tools.

RECEIVE AND ACT ON INFORMATION

Presentations are communication tools.

DEVICES THAT DO BOTH

Presentations are communication tools.

IOT DEVICE CATEGORIES

FUTURAS **EXPANSÕES**

GERENCIADOR CENTRAL DE ESP32S

- Coordena todos os módulos da casa.
- Permite comunicação entre dispositivos.
- Possibilita:
- Disseminar comandos simultaneamente.

CONTROLE POR
INFRAVERMELHO DE
TV, AR-CONDICIONADO
E SOM.

MEDIÇÃO E CORTE SELETIVO DE ENERGIA POR CÔMODO.

APP COM QR CODE PARA VALIDAÇÃO E GERENCIAMENTO.

