ANÁLISE DE REGRESSÃO MÚLTIPLA

Importante: Todos os resultados devem ser analisados

- 1) Em um estudo foi utilizada, erroneamente, uma amostra de apenas 3 observações para se estimarem os coeficientes de uma equação de regressão. Obteve-se R² = 0,96. A título de brincadeira, foi dito ao analista responsável que, se ele quisesse melhorar os resultados, bastaria eliminar uma observação e ficar com apenas n = 2. Faça uma crítica sobre o uso de amostras muito pequenas em regressão linear.
- 2) A tabela a seguir apresenta os dados correspondentes à produção brasileira de automóveis, em milhares, no período de 17 anos. Ajuste os dados, usando os modelos de regressão linear. Analise os resultados e estime a produção para o décimo oitavo ano.

Produção Tempo

30,5	1
61	2
96,1	3
133	4
145,6	5
191,2	6
174,2	7
183,7	8
185,2	9
224,6	10
225,4	11
278,5	12
349,5	13
416	14
516	15
609	16
729,1	17

3) A companhia Multifator está analisando o comportamento dos Custos Indiretos de Fabricação (CIF) em função das variáveis: horas de mão-de-obra direta (HMOD) e horas - máquina (HM) nos últimos 15 meses. Analise a variável CIF em função de cada uma das variáveis (HMOD e HM) isoladamente e em função das duas simultaneamente. Para facilitar as análises, obtenha também a matriz de correlação de todas as variáveis envolvidas. Após a análise do modelo de regressão com as duas variáveis

simultaneamente, refaça o estudo, considerando o modelo de regressão *stepwise*. Compare os resultados das duas modelagens de regressão múltipla.

Período	CIF	HMOD	HM
1,00	350,00	4,00	10,00
2,00	400,00	8,00	14,00
3,00	470,00	12,00	16,00
4,00	550,00	10,00	26,00
5,00	620,00	15,00	31,00
6,00	380,00	7,00	12,00
7,00	290,00	6,00	13,00
8,00	490,00	10,00	21,00
9,00	580,00	11,00	26,00
10,00	610,00	13,00	24,00
11,00	560,00	12,00	23,00
12,00	420,00	8,00	12,00
13,00	450,00	11,00	19,00
14,00	510,00	12,00	19,00
15,00	380,00	5,00	11,00

4) Uma rede de lojas de material de construção (CONSTRUCAO) que atua em 52 regiões quer fazer um estudo sobre a quantidade vendida (qt_vend) de determinado tipo de material. Como possíveis informações que poderiam ter alguma influência estão: gasto com propaganda (gast_prop), número de contas ativas (n_cont), número de marcas (n_marc), número de lojas na região (n_loj).

Faça uma regressão entre quantidade vendida e as demais variáveis.

- 5) Um estudo revelou acentuada correlação entre o consumo de bebidas alcoólicas e a elevação dos salários dos professores. Existe relação de causa e efeito entre essas variáveis que justificaria um modelo de análise de regressão?
- 6) Considere o peso e o comprimento de alguns cães. Calcule o coeficiente de correlação entre estas duas variáveis:

Peso (Kg)	Comprimento (cm)
14	85
14	90
16	95
17	100
20	95
22	96
22	100
23	109
28	105
28	110

- 7) Calcule, pelo método dos mínimos quadrados, a equação de regressão linear para os dados do exercício anterior
- 8) Para o arquivo Biscobis.xlsx, referente a uma amostra de 100 empresas clientes de uma grande empresa que é fornecedora no setor industrial, processe a análise de regressão múltipla *stepwise* e analise os resultados obtidos, sendo:

Variável dependente: X_9 = nível de uso do serviço (quanto do total de produtos da empresa é comprado da Biscobis)

Variáveis independentes: avaliação de 0 a 10 de atributos da Biscobis:

 X_1 = rapidez na entrega do produto

 $X_2 = \text{nível de preço}$

 X_3 = flexibilidade de preço

 $X_4 = imagem do fornecedor$

 X_5 = serviço como um todo

 X_6 = imagem da força de vendas

 $X_7 = qualidade do produto$

 X_8 = Variável nominal – status da compra 1=primeira compra 2=segunda compra 3=comprador frequente

9) Considere o arquivo sorvete.xls com as seguintes variáveis

Temperatura – temperatura no dia

Preço – preço do sorvete

N_turistas – número de turistas que passaram na cidade(em milhares)

Vendas – Vendas de sorvete no dia (em milhares de R\$)

Chuva – Choveu no dia? – 0 não 1 sim

Efetue a análise de correlação, seguida de uma regressão linear stepwise para explicar as vendas em relação às demais variáveis. Analise os resultados

10) Cite:

- a) duas variáveis que podem apresentar alta correlação, mas não têm relação de causa e efeito:
- b) duas variáveis que podem apresentar alta correlação, sendo razoável supor relação de causa e efeito entre elas.