Chapitre 3: Analyse multidimensionnelle et OLAP

OLAP

Catégorie de logiciel (moteur) dont le rôle est l'exploration et l'analyse rapide des données dans le DW suivant une approche multidimensionnelle utilisant plusieurs niveaux d'agrégation

Avantage:

- l'utilisateur n'a pas à maîtriser des langages d'interrogation et des interfaces complexes
 - L'utilisateur interagit avec les données

Approche multidimensionnelle

- Les informations dans un système décisionnel sont représentées par une structure à plusieurs dimensions, où les DIMENSIONS sont un ensemble d'attribut de la base de données:
 - Client
 - Produit
 - Vendeurs
 - Géographie
 - Temps
- Les cellules continent des données agrégées, qu'on appel FAITS
 - Quantité vendue
 - Chiffre d'Affaire
 - Coût
- Le résultat est représenté sous forme:
 - Relations
 - Cube de données
 - Hyper cube de données

Représentation multidimensionnelle

Le résultat de l'analyse serait de la forme suivante:

Représentation multidimensionnelle

Agrégation des données

- Les données seront groupées à différents niveaux de granularité (niveau de détail des données)
- Les groupement sont pré-calculés / granularité
 - total des ventes / mois
 - total des ventes / années
 - total des ventes / mois 12
- Sur les granularités:
 - ▶ Temps: Jours, Mois, Trimestre, Semestre, Années, ...
 - Produit: Numéros, Types, Gammes, Marques, ...
 - Zone géographique: Quartiers, Villes, Régions, Pays, ...
 - **...**

- Les Opérateurs appliqués sur le cube sont algébriques (le résultat est un autre cube) et peuvent être combinés
- Les Opérateurs sont:
 - Slicing: Extraction d'une tranche d'information
 - Scoping ou Dicing: Extraction d'un bloc de données
 - Roll-up (agrégation d'une dimension => résumé): passage au grain inférieur
 - Drill-down (plus détaillées): passage au grain supérieur

Slicing:

- Sélection de tranches du cube par des prédicats selon une dimension
 - Filtrer une dimension selon une valeur
- Exemple: Slice (2004) on ne retient que la partie du cube qui correspond à 2004

100	123	402	R1 R2 R3
PI	P2	P3	— K3

Ventes Janvier	RI	R2	R3
PI	77	79	100
P2	289	157	123
P3	54	97	402

Scoping ou Dicing

 Extraction d'un sous-cube (bloc de données). C'est une opération plus générale que le slicing)

- Drill-up (Roll-up) / Drill-down
 - Sont des opérations liées à la granularité.
 - Ils permettent à l'utilisateur de naviguer entre les différents niveaux de données (granularité) allant de la plus résumé (granularité supérieure) au plus détaillé (granularité inférieure)

- Drill-up (Roll-up)
 - Consiste à représenter les données du cube à un niveau de granularité supérieur sur une dimension
 - Utilisation des fonctions d'agrégation (somme, moyenne, etc) spécifiées pour la mesure et la dimension

Drill-down

- Consiste à représenter les données du cube à un niveau de granularité de niveau inférieur, donc sous une forme plus détaillée.
 - On fait un « zoom » sur une dimension

Drill-down sur les Régions

Types de serveurs OLAP

- On peut citer trois types de serveurs OLAP
 - Relational OLAP(ROLAP)
 - Multidimensional OLAP (MOLAP)
 - Hybrid OLAP (HOLAP)

ROLAP

- Dans un serveur de type ROLAP, les données sont stockées dans un SGBD relationnel et le OLAP permet de simuler le comportement d'un SGBD multi-dimensionnel
 - Le schéma de conception utilisée est soit schéma en étoile ou schéma en flocon
 - Pour la représentation multidimensionnelle, on utilise des vues (matérialisées)
 - Les requêtes OLAP (slice, rollup...) sont traduites en SQL
 - Utilisation d'index spéciaux de type bitmap
 - Administration (tuning) particulier de la base
- Avantage
- Avantages
 - Souple,
 - permet une évolution facile,
 - permet de stocker de gros volumes.
- Inconvénient
 - ▶ Peu efficace pour les calculs complexes

MOLAP

- Dans un serveur MOLAP, utilise des moteurs de stockage multidimensionnels pour des vues multidimensionnelles des données.
 - la structure de stockage est en cube et avec un accès direct aux données dans le cube
 - Ces cubes sont implémentés sous forme des matrices à plusieurs dimensions
 - Chaque cube est indexé sur ses dimensions

Avantage:

- Rapidité
- Inconvénients:
 - Formats propriétaires
 - Ne supporte pas de très gros volumes de données

 utiliser plusieurs serveurs MOLAP

HOLAP

C'est une combinaison de ROLAP et MOLAP

- Données stockées dans SGBD relationnel (données de base)
- Les données agrégées sont stockées dans serveurs MOLAP (des cubes)

Avantages:

- Il possède à la fois la grande évolutivité de ROLAP
- La possibilité de stocker de gros volumes de ROLAP
- L'efficacité des calculs complexes de MOLAP
- La rapidité de MOLAP

