Smooth Infinitesimal Analysis A Modern Reformulation of Calculus

Holden Swindell

University of Wisconsin-Madison

Spring 2023

Table of Contents

Motivation

2 Basics of Smooth Infinitesimal Analysis

What Next?

Table of Contents

Motivation

2 Basics of Smooth Infinitesimal Analysis

What Next?

The Derivative

The Derivative

Pop Quiz!

Pop Quiz!

What is the formal definition of the derivative?

You have 5 minutes. Yes, Honorlock is required - which means no hats, no hoodies, no blinking, and no breathing (you could be cheating).

Pop Quiz - Solution

Pop Quiz - Solution

Definition: Classical Derivative I

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. The derivative of f at a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

provided this limit exists.

Taking a Closer Look

Taking a Closer Look

Definition: Classical Derivative II

Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. The derivative of f at a is the value f'(a) = L such that for all $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $h \neq 0$, if $|h| < \delta$, then

$$\left|\frac{f(a+h)-f(a)}{h}-L\right|<\varepsilon,$$

provided such an L exists.

Taking a Closer Look

Definition: Classical Derivative II

Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. The derivative of f at a is the value f'(a) = L such that for all $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $h \neq 0$, if $|h| < \delta$, then

$$\left|\frac{f(a+h)-f(a)}{h}-L\right|<\varepsilon,$$

provided such an L exists.

Issues beyond elegance...

Continuous everywhere, differentiable nowhere

Continuous everywhere, zero derivative almost everywhere, but still manages to get from $0\ \mathrm{to}\ 1$

Continuous almost everywhere, but differentiable nowhere

The Derivative (now in n dimensions!)

The Derivative (now in *n* dimensions!)

Slope of the surface in the x-direction

Slope of the surface in the y-direction

• All partial derivatives exist \neq differentiable!

- All partial derivatives exist ≠ differentiable!
- Higher order partial derivatives don't always commute

$$\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$$

- All partial derivatives exist ≠ differentiable!
- Higher order partial derivatives don't always commute

$$\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$$

Takeaways

Takeaways

Main Idea

This notion of "differentiable" (in any number of dimensions) is suboptimal due to the existence of pathological functions.

TL;DR: \mathbb{R} is not built for differentiation.

What Can We Do?

What Can We Do?

Question:

Is there an alternative notion of "differentiable" that better aligns with our intuitive sense of smoothness?

What Can We Do?

Question:

Is there an alternative notion of "differentiable" that better aligns with our intuitive sense of smoothness?

Answer:

Yes!

Table of Contents

Motivation

2 Basics of Smooth Infinitesimal Analysis

What Next?

Intuition

Intuition

A differentiable function should well-approximated by a line near any point.

As we get closer to that point, the approximation improves

- As we get closer to that point, the approximation improves
- Becomes exact at an infinitesimal (?) distance

- As we get closer to that point, the approximation improves
- Becomes exact at an infinitesimal (?) distance

The Synthetic Real Line

The Synthetic Real Line

ullet We posit a "line object" ${\mathfrak L}$

- ullet We posit a "line object" ${\mathfrak L}$
- ullet Notions of +, -, imes, 1, 0, and < that behave like the operations in ${\mathbb R}$

- ullet We posit a "line object" ${\mathfrak L}$
- Notions of +, -, \times , 1, 0, and < that behave like the operations in $\mathbb R$
- Considered "synthetically"

- ullet We posit a "line object" ${\mathfrak L}$
- ullet Notions of +, -, imes, 1, 0, and < that behave like the operations in $\mathbb R$
- Considered "synthetically"

- ullet We posit a "line object" ${\mathfrak L}$
- Notions of +, -, \times , 1, 0, and < that behave like the operations in $\mathbb R$
- Considered "synthetically"

(If you know some abstract algebra, $\mathfrak L$ is a commutative, ordered, nonzero ring.)

Definition: Infinitesimals

We say $\varepsilon \in \mathfrak{L}$ is an infinitesimal if $\varepsilon^2 = 0$. The set of all infinitesimals of \mathfrak{L} is denoted D.

Definition: Infinitesimals

We say $\varepsilon \in \mathfrak{L}$ is an infinitesimal if $\varepsilon^2 = 0$. The set of all infinitesimals of \mathfrak{L} is denoted D.

• The only infinitesimal in \mathbb{R} is 0; if $x \neq 0$,

$$x^2 = 0 \implies \frac{1}{x} \cdot x^2 = \frac{1}{x} \cdot 0 \implies x = 0.$$

Definition: Infinitesimals

We say $\varepsilon \in \mathfrak{L}$ is an infinitesimal if $\varepsilon^2 = 0$. The set of all infinitesimals of \mathfrak{L} is denoted D.

• The only infinitesimal in \mathbb{R} is 0; if $x \neq 0$,

$$x^2 = 0 \implies \frac{1}{x} \cdot x^2 = \frac{1}{x} \cdot 0 \implies x = 0.$$

ullet Proof doesn't work in $\mathfrak L$ (might not have division) - we could have nonzero infinitesimals

Definition: Smooth Line Object

A line object $\mathfrak L$ is smooth if it satisfies the "microstraightness axiom": for every function $f:D\to \mathfrak L$, there exists a unique $h\in \mathfrak L$ such that $f(\varepsilon)=f(0)+\varepsilon h$ for all $\varepsilon\in D$.

Definition: Smooth Line Object

A line object $\mathfrak L$ is smooth if it satisfies the "microstraightness axiom": for every function $f:D\to \mathfrak L$, there exists a unique $h\in \mathfrak L$ such that $f(\varepsilon)=f(0)+\varepsilon h$ for all $\varepsilon\in D$.

Definition: Smooth Line Object

A line object $\mathfrak L$ is smooth if it satisfies the "microstraightness axiom": for every function $f:D\to \mathfrak L$, there exists a unique $h\in \mathfrak L$ such that $f(\varepsilon)=f(0)+\varepsilon h$ for all $\varepsilon\in D$.

• What about f(0) = 1, f(x) = 0 for $x \neq 0$? - intuitionistic logic!

We assume that ${\mathfrak L}$ is a smooth line object from now on.

We assume that $\mathfrak L$ is a smooth line object from now on.

Definition: Synthetic Derivative

The derivative of $f: \mathfrak{L} \to \mathfrak{L}$ at $a \in \mathfrak{L}$ is the unique $h \in \mathfrak{L}$ such that $f(a+\varepsilon) = f(a) + \varepsilon h$ for all $\varepsilon \in D$. We denote this f'(a) = h.

We assume that ${\mathfrak L}$ is a smooth line object from now on.

Definition: Synthetic Derivative

The derivative of $f: \mathfrak{L} \to \mathfrak{L}$ at $a \in \mathfrak{L}$ is the unique $h \in \mathfrak{L}$ such that $f(a+\varepsilon) = f(a) + \varepsilon h$ for all $\varepsilon \in D$. We denote this f'(a) = h.

Consequence: Smoothness

All functions $\mathfrak{L} \to \mathfrak{L}$ are smooth!

Basic First Consequences

Basic First Consequences

• Let's find the derivative of x^2 .

$$(x+\varepsilon)^2 = x^2 + 2x\varepsilon + \varepsilon^2 = x^2 + 2x\varepsilon \implies (x^2)' = 2x.$$

Basic First Consequences

• Let's find the derivative of x^2 .

$$(x+\varepsilon)^2 = x^2 + 2x\varepsilon + \varepsilon^2 = x^2 + 2x\varepsilon \implies (x^2)' = 2x.$$

• Let's prove the sum rule.

$$(f+g)(x+\varepsilon) = f(x+\varepsilon) + g(x+\varepsilon)$$

$$= f(x) + f'(x)\varepsilon + g(x) + g'(x)\varepsilon$$

$$= (f(x) + g(x)) + (f'(x) + g'(x))\varepsilon$$

$$\implies (f+g)'(x) = f'(x) + g'(x).$$

Basic First Consequences (cont.)

Basic First Consequences (cont.)

• Let's prove the product rule.

$$(fg)(x+\varepsilon) = f(x+\varepsilon)g(x+\varepsilon)$$

$$= (f(x)+f'(x)\varepsilon)(g(x)+g'(x)\varepsilon)$$

$$= f(x)g(x)+f'(x)g(x)\varepsilon+f(x)g'(x)\varepsilon+f'(x)g'(x)\varepsilon^{2}$$

$$= f(x)g(x)+(f'(x)g(x)+f(x)g'(x))\varepsilon$$

$$\implies (fg)'(x) = f'(x)g(x)+f(x)g'(x).$$

Definition: Stationary Point

We say $f: \mathfrak{L} \to \mathfrak{L}$ has a stationary point at $a \in \mathfrak{L}$ if for all $\varepsilon \in D$, $f(a+\varepsilon) = f(a)$.

Definition: Stationary Point

We say $f: \mathfrak{L} \to \mathfrak{L}$ has a stationary point at $a \in \mathfrak{L}$ if for all $\varepsilon \in D$, $f(a+\varepsilon) = f(a)$.

Definition: Stationary Point

We say $f: \mathfrak{L} \to \mathfrak{L}$ has a stationary point at $a \in \mathfrak{L}$ if for all $\varepsilon \in D$, $f(a+\varepsilon) = f(a)$.

• Let's prove that f'(a) = 0 at a stationary point.

$$f(a+\varepsilon) = f(a) \implies f(a) + f'(a)\varepsilon = f(a) \implies f'(a)\varepsilon = 0$$

 $\therefore f'(a) = 0.$

Table of Contents

Motivation

2 Basics of Smooth Infinitesimal Analysis

What Next?

Power series and transcendental functions

- Power series and transcendental functions
- Integration

- Power series and transcendental functions
- Integration
- Division?

- Power series and transcendental functions
- Integration
- Division?
- Multiple variables

- Power series and transcendental functions
- Integration
- Division?
- Multiple variables
- General "smooth spaces"

- Power series and transcendental functions
- Integration
- Division?
- Multiple variables
- General "smooth spaces"

• Models? (Not \mathbb{R})

- Models? (Not ℝ)
- Explicit (albeit technical) models exist

- Models? (Not ℝ)
- Explicit (albeit technical) models exist
- ullet Synthetic \Longrightarrow model independent

- Models? (Not ℝ)
- Explicit (albeit technical) models exist

(If you know category theory, we need models for a smooth topos.)

• Physics! (mechanics, GR, fundamental particles)

Physics! (mechanics, GR, fundamental particles)

More generally: applied calculus (engineering, economics, etc.)

Physics! (mechanics, GR, fundamental particles)

- More generally: applied calculus (engineering, economics, etc.)
- My favorite: pedagogical

Thanks!

Thanks for Coming!