1. Initially the spring is at its unstretched length l_o and the particle has a velocity v_o in the direction shown. In the motion that follows, the spring stretches to a maximum length $4l_o/3$. Assuming no gravity, solve for the spring stiffness k in terms of m, l_o , and v_o .

2. Find the equation of motion for the system shown below. The equation of motion should be in terms of θ . Each slider has mass m and the link is massless. Friction only affects the slider that moves horizontally. Use Newton's 2^{nd} law.

- Particles $m_1 = 2m$ and $m_2 = m$ can slide without friction on parallel fixed horizontal wires separated by a distance h. A spring of stiffness k and unstressed length h connects the two particles. If m_1 has an initial velocity v_0 , m_2 is initially motionless, and the spring is initially unstressed, find:
 - a. The maximum velocity v_2 of m_2
 - b. The maximum stretch in the spring