7.6

Étude de la fonction exponentielle

NSI TLE - JB DUTHOIT

7.6.1 Signe de la fonction exponentielle

Propriété 7. 19

La fonction exponentielle est strictement positive sur \mathbb{R} . Ainsi, pour tout réel $x \in \mathbb{R}$, on a $e^x > 0$.

✓Démonstration 7.5

Montrer que pour tout réel $x \in \mathbb{R}$, on a $e^x > 0$.

7.6.2 Sens de variation de la fonction exponentielle

Propriété 7. 20

La fonction exponentielle est strictement croissante sur \mathbb{R} .

x	$-\infty$	$+\infty$
$f(x) = e^x$		<i></i>

∕Démonstration 7.6

Montrer que la fonction exponentielle est strictement croissante sur \mathbb{R} .

Remarque

La fonction exponentielle est de croissance très rapide, d'où l'expression courante de "croissance exponentielle".

Savoir-Faire 7.22

SAVOIR RÉSOUDRE DES ÉQUATIONS ET INÉQUATIONS AVEC LA FONCTION EXPONENTIELLE

Résoudre dans \mathbb{R}

1.
$$e^{3x} = e^{5x+2}$$

2.
$$e^{x+1} > e^{5x}$$

3.
$$e^{7x-1} < e^x$$

4.
$$e^{x+1} = 1$$

5.
$$e^x > 1$$

6.
$$e^{x+3} < 0$$

7.
$$-2e^{x+2} > -2e^{-5}$$

8.
$$e-x-e < 0$$

7.6.3 Représentation graphique

-2 -1 3 1 2 4 tableau de valeurs : 0.02 0.05 0.14 0.37 1 2.72 7.39 20.09 54.60

Courbe représentative de la fonction exponentielle :

Remarque

- La courbe C_f passe par les points de coordonnées (0,1) et (1,e).
- La courbe C_f est situé au dessus de l'axe des abscisses, et ne le coupe jamais.

7.6.4 Dérivée de la fonction g définie par g(x) = exp(ax + b)

Propriété 7. 21

Soient a et b deux réels.

La fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} , et pour tout réel $x \in \mathbb{R}$, on a $f'(x) = a \times e^{ax+b}$.

Exemple

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x+1}$. Calculer f'(x)

Savoir-Faire 7.23

SAVOIR ÉTUDIER UNE FONCTION COMPORTANT UNE EXPONENTIELLE

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x} 2x$.
 - a) Calculer f'(x)
 - b) Étudier les variations de la fonction f.
 - c) En déduire le signe de f sur \mathbb{R} .
 - d) Déterminer une équation de la tangente \mathcal{D} à C_f passant par le point de la courbe d'abscisse $\frac{1}{2}$.
 - e) La droite \mathcal{D} passe-t-elle par l'origine du repère?
 - f) Vérifier les résultats précédents à l'aide de la calculatrice.
- 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{1+e^x}$.
 - a) Calculer f'(x)
 - b) Étudier les variations de la fonction f.
 - c) Déterminer une équation de la tangente \mathcal{D} à C_f passant par le point de la courbe d'abscisse 0.
 - d) Vérifier les résultats précédents à l'aide de la calculatrice.
- 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)e^x$.
 - a) Étudier les variations de la fonction f.
 - b) Vérifier les résultats précédents à l'aide de la calculatrice.