

Ventral posterior nucleus in thalamus

Vestibular branch of vestibulocochlear (VIII) nerve

Vestibular ganglion

ESTI019 - Codificação de Sinais Multimídia Profs. Celso Kurashima, Kenji Nose

Mário Minami

Vestibular

Oculomotor nerve (III) nucleus

Vestibular area in rebral cortex

Trochlear nerve (IV) motor nucleus

- Abducens nerve (V) motor nucleus

Cerebellum

Accessory nerve (XI) nucleus

Organização Tonotópica Paralela

- O sistema auditivo responde setorialmente a tons (frequências) diferentes desde a Cóclea (membrana basilar).
- As fibras neuronais carregam a informação em paralelo, em ambos os hemisférios.
- Altamente redundante para garantir várias vias de transporte da informação até o Córtex Central.

Caminho
Auditivo
Ascendente
da Cóclea
ao Córtex
Primário

- 1 Sulco Lateral
- 2 Lóbulo Temporal
- 3 Córtex Auditivo

Núcleos Integradores do Caminho Auditivo

- O primeiro centro integrador é comum à via primária e é formado pelos núcleos cocleares (bolbo raquidiano). Daqui, pequenas fibras convergem para a via reticular ascendente.
- O segundo centro integrador é o complexo olivar superior, também localizado no bolbo raquidiano: a maioria das fibras auditivas fazem sinapse a este nível após cruzarem a linha média
- O terceiro centro integrador é o colículo inferior, localizado no mesoencéfalo. O colículo inferior e o complexo olivar desempenham papel fundamental na localização do som.
- O quarto e último centro integrador, antes do córtex, é o corpo geniculado medial que se localiza-se no tálamo. Neste centro realiza-se importante trabalho de integração: preparação da resposta motora (por exemplo vocal).

Cortes Transversais Ilustrando o Caminho Auditivo

Existe um "cruzamento" de informações de um hemisfério ao outro ¿

Esquema das principais Vias ao Córtex

- vias "estéreo" em cada hemisfério garantem redundância
- Cruzamento Binaural difere na função:
 - Localização Fonte Sonora
 - Integração de Sentidos
 - Segmentação de Fonemas

The Central Auditory System: A Functional Analysis
Jeffery A. Winer and Christoph E. Schreiner

Funcionalidades das diferentes regiões:

- Cochlear nucleus: origem dos padrões de resposta básicos e paralelismo da informação.
- *Olivary complex*: construção das vias binaurais e do tempo de resposta.
- Lateral lemniscal nuclei: núcleos de diferenciação bioquímica.
- Inferior colliculus: convergência e integração multisensorial.
- Medial geniculate body: modulação da informação auditiva
- Auditory cortex: interface da audição com as redes cerebrais de comunicação "superiores"

(A) Distribuição dos Diferentes Tipos de Neurônios (vide próx. Slide) e

(B) Tempo de Resposta no Caminho Auditivo: só para propagar até o Córtex, cerca de 9,2 ms

The Central Auditory System: A Functional Analysis
Jeffery A. Winer and Christoph E. Schreiner

Neurônios de Diferentes Tipos

Exemplos de Respostas Neuronais

Exemplo de Processamento da Oliva Superior Medial (OSM)

Neurônios da Oliva Superior Lateral (OSL) e o Núcleo Medial do Corpo Trapezóide (NMCT)

Córtex Primário (A1): * Todos os Sons

Córtex Secundário (A2):
* Identificação Fonemas

Área de Wernicke: *Compreensão da Voz (hemisfério esquerdo)

Modelagem do Processamento Auditivo

- Baseada no funcionamento Bio-Neuronal: Engenharia Neuromórfica
 - Cócleas Artificiais em Silício
 - Tentativa de Reproduzir "exatamente" em algum tipo de circuito o funcionamento do sistema Auditivo
 - Aplicação:
 - Aparelhos de auxílio para degradação das funções auditivas
 - Próteses Artificiais: reabilitação de acidentes

 Processamento que só aproveita características Sistêmicas: apenas tenta reproduzir "processamento efetivo" no Sistema Auditivo

Modelos de Cóclea em Silício

Aplicações em Implantes Auditivos e em Engenharia de Reabilitação

(a) The uncoiled cochlea.
 (b) The 1-D cochlea cascade structure.
 (c) The 1-D parallel structure.

Modelo de Processamento "Efetivo" na Audição

KOLLMEIER, B., **Anatomy, Physiology and Function of the Auditory System,** *University of Oldenburg, Oldenburg, Germany.*

Funções Básicas dos Blocos no Modelo

- O Banco de Filtros logo após a Orelha Externa processa a resposta em frequência da Membrana Basilar, com a relação Q/Δf constante e resposta "triangular".
- O bloco Envelope/Compressão modela a sensibilidade variável em relação ao nível sonoro do sinal de entrada.
- O bloco Ruído Interno modela as diferenças entre os sinais processados e os limiares perceptivos detectados.
- O bloco Modulação/Banco de Filtros modela o processamento de baixas frequências na percepção dos fonemas da voz humana.
- O bloco Redução de Ruído Binaural modela o ganho obtido no processamento estéreo.
- O processador Reconhecedor de Padrões efetua a decisão sobre o sinal de Fala percebido.

Exemplo de Modelo "Efetivo"

DAU, T.; PÜSCHEL, D.; A quantitative model of the "effective" signal processing in the auditory system. I. Model structure, J. Acoust. Soc. Am. 99 (6), June 1996, 3615-22.

Estágios do Modelo

- Pré-Processamento: Na saída da Membrana Basilar o sinal é retificado em meia onda e filtrado por PB em 1 kHz. O filtro passa baixas preserva a informação na envoltória do sinal (um tipo de demodulação AM).
- Os Efeitos da adaptação são modelados pelos elos de realimentação nas redes de atraso RC (compressão logaritmica do sinal BF e linearização "AF") que modelam os efeitos de mascaramento temporal.
- O ruído interno gaussiano modela a perda de informação na compresão logarítmica.
- O sinal de Máscara ajuda a estimar os efeitos dos limiares psicoperceptivos para os sinais a serem identificados.

Limiar e Modelo

$$A(f)/dB = 3.64(f/kHz)^{-0.8} - 6.5e^{-0.6(f/kHz-3.3)^2} + 10^{-3}(f/kHz)^4$$

Terhardt 1979

Processamento no Córtex Auditivo da Voz Humana

Importância do Processamento:

O papel do Córtex Auditivo não é apenas de representar de forma eficiente a entrada ouvida, mas também e talvez primordialmente, converter a estrutura acústica de entrada num código que possa ser buscado (comparado) com outros tipos de representação importantes na comunicação

- * Envelope
- * Estrutura Fina

- * Consoante
- * Surdo
- * Sonoro

GIRAULD, A-L.; POEPPEL, D.; **Speech Perception from a Neurophysiological Perspective,** In: The Human Auditory Cortex, Ch.9, Springer, 2012.

(a) Análise Temporal e (b) Tempo-Frequência (Mista)

- (a1) Envelope da Forma de Onda, abaixo de 20 Hz, indica a segmentação (sonora/surda) e pausas (baixa energia entre palavras);
- (a2) Acima de 50 Hz a Forma de Onda revela estrutura fina na periodicidade (*pitch*), especialmente na voz sonora (com pregas vocais).
- (b1) Espectrograma, ou análise Tempo-Frequência revela a frequência Fundamental (F0) e também a "Linha de Pitch" e as frequências formantes (F1, F2,...);
- (b2) Faixa das Consoantes, transição entre as formantes e na prosódia contorno do *pitch*.

Algumas Modulações Encontradas

- Amplitude (AM)
- Amplitude rápida (fast AM)
- Frequência (FM)
- Frequência lenta (slow FM)
- Mistas (fast AM FM), (AM slow FM)
- Fase (PM)

Ondas Gama: Modulação 40 Hz, fonemas/sílabas

a Modulation of neuronal excitability at 40 Hz

Ondas Theta: Modulação 4 Hz, palavras

Diferenças Hemisférios Direito e Esquerdo Voz

Neurônios
Piramidais
concentram-se
hemisfério Direito

GIRAULD, A-L.; POEPPEL, D.; Speech Perception from a Neurophysiological Perspective, In: The Human Auditory Cortex, Ch.9, Springer, 2012.

Assimetria Gama Theta

- Pela fMRI pode-se acompanhar a diferença de incidência de ondas Gama e Theta:
 - Maior concentração Gama no hemisfério Esquerdo
 - Maior concentração Theta no hemisfério Direito

Hemodynamic fluctuations in fMRI scans-Topography Positive correlation with 3-6 Hz EEG band Positive correlation with 28-40 Hz EEG band Frequency distribution EEG/fMRI (rest) EEG/fMRI (movie) Oscillation Frequency (Hz)

Gamma/Theta asymmetry in auditory cortex

GIRAULD, A-L.; POEPPEL, D.; **Speech Perception from a Neurophysiological Perspective,** In: The Human Auditory Cortex, Ch.9, Springer, 2012.

Modelo Funcional

- a) Ilustrações de fMRI sobre a dinâmica da informação no Córtex: sequência de regiões solicitadas
- a) Ondas em cada região

a Dual stream functional neuroanatomical model

Oscillation-based functional model

GIRAULD, A-L.; POEPPEL, D.; **Speech Perception from a Neurophysiological Perspective,** In: The Human Auditory Cortex, Ch.9, Springer, 2012.

Modelo Análise-por-Síntese da Audição/Fala

Modelo Análise-Por-Síntese

- *Matching* bidirecional:
 - (i) ascendente (dos fonemas às palavras) e
 - (ii) descendente, padrões prévios de palavras, conhecimento da linguagem, etc.
- Essas hipóteses correspondem a uma "pré-ativação" de representações, tais como padrões acústicos, fonológicos, léxicos, etc.
- Os Blocos (1),(2) e (3) representam possíveis propostas de análises para um reconhecimento satisfatório, de baixo p/ cima (bottom-up)
- Os Blocos (A),(B) e (C) representam possíveis propostas cognitivas de um matching adequado, de cima p/ baixo (top-down)

Modelos de Processamento em Aplicações

- Mel Cepstrais
- Bancos de Filtros BARK MPEG
- RASTA Processing

MEL CEPSTRAIS

Fig. 5.3 Mel-Scale Filter Bank

- Bancos de Filtro Triangulares
- f_c em escala log (em mels)

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

- Relação Q/Δf constante
- Utilizado em sistemas "robustos" a ruído
- Bom desempenho para Voz

Escala BARK

- "Shape dos Filtros Variável", f_c em escala não linear (Bark)
- Bastante utilizada em Áudio (Graves e Agudos equalizados)

RASTA Processing

The Key

→ suppress constant factors in the auditory-like spectrum, prior to estimation of language model.

Research issues:

- What domain is filtering in?
- What filter to use?

- Processamento Altamente Paralelizado
- Redundância para tornar informação mais robusta

Exercícios 6. Questões para entregar.

- Descreva sumariamente os estágios de processamento no Córtex Auditivo Humano.
- 2) Como o cérebro humano consegue perceber som "espacial"?
- 3) Cite e descreva algumas regiões funcionais no Córtex Auditivo Humano.
- 4) O que é a análise da envoltória do som?
- 5) Dê exemplo de análise tempo-frequência sonora.
- 6) Qual a diferença entre as ondas Gama e Theta na análise da fala?
- 7) Justifique o termo análise-por-síntese na audição/fala humana.
- 8) Faça um plot comparativo entre as escalas mel e bark.

Referências:

- BOSI, M. and GOLDBERG, R. E., Introduction to Digital Coding and Standards, Kluwe Academic Publishers, Hong Kong, 2003.
- DUTOIT, T. and MARQUES, F., Applied Signal Processing A Matlab Based Proof of Concept, Springer, New York, 2009.
- PRESSNITZER, D. et all (Eds), **Auditory Signal Processing Physiology, Psychoacoustics and Models,** Springer, Paris, 2004.
- YOU, Y., Audio Coding Theory and Applications, Springer, Minnesota, 2010.
- KOLLMEIER, B., Anatomy, Physiology and Function of Auditory System, in: Handbook of Signal Processing in Acoustics, Havelock, D. et al (Eds), Chapter 10, Springer, New York, 2008.
- DAU, T., **Auditory Processing Models**, in: in: Handbook of Signal Processing in Acoustics, Havelock, D. et al (Eds), Chapter 10, Springer, New York, 2008.
- GIRAULD, A-L.; POEPPEL, D.; Speech Perception from a Neurophysiological Perspective, In: The Human Auditory Cortex, Ch.9, Springer, 2012.
- Douglas O'Shaughnessy (1987). <u>Speech communication: human and machine</u>. Addison-Wesley.
 p. 150. <u>ISBN 978-0-201-16520-3</u>.
- BEAR, M. F., CONNERS, B. W. e PARADISO, M. A., Neurociências: Desvendando o Sistema Nervoso, Artmed, São Paulo, 2017.