

第二章 聚类分析

- 2.1 聚类分析的概念
- 2.2 模式相似性测度
- 2.3 类的定义与类间距离
- 2.4 准则函数
- 2.5 聚类的算法

2.5.4 近邻函数法

在C一均值法中,当类内样本非球状散布时,用样本的均值矢量作为类的代表,一般聚类结果不佳。如果我们有类的模式分布的某些先验知识,可以构造能反映类的模式分布情况的核函数,那么就以核函数来代表类。

如果实际中不能确定核函数或不能用简单的函数表示核函数时,可以采用近邻函数法。这种算法特别适用于类的模式分布是条状或线状的情况。

2.5.4 近邻函数法

类的各种线状分布

2.5.4 近邻函数法

近邻函数:

对于一个样本集中的任意两个样本 \vec{x}_i 和 \vec{x}_i , 如 果 \vec{x}_i 是 \vec{x}_i 的第1个近邻点,则定义 \vec{x}_i 对 \vec{x}_i 的近邻 系数为I,记为d(i,j)=I;

同理,如果 \vec{x}_i 是 \vec{x}_i 的第J个近邻点,则定义 \vec{x}_i 对 \vec{x}_i 的近邻系数为J,记为d(j,i)=J。

于是, \vec{x}_i 和 \vec{x}_i 之间的近邻函数值定义为:

$$\alpha_{ij} = d(i, j) + d(j, i) - 2 = I + J - 2$$

近邻函数值:

$$\alpha_{ii} = d(i, j) + d(j, i) - 2 = I + J - 2$$

当 \vec{x}_i 和 \vec{x}_j 互为最近邻时,有 $\alpha_{ij}=0$ 。

显然,样本间的近邻函数值越小,说明它们彼此越近,意味着它们越相似。

如果样本集包含N个样本,那么近邻系数总是小于或等于N-1,因此, \vec{x}_i 和 \vec{x}_j 之间的近邻函数值满足:

$$\alpha_{ii} \leq 2N - 4$$

连接损失:

在聚类过程中,如果 \vec{x}_i 和 \vec{x}_i 被聚为一类,就称 \vec{x}_i 与 \vec{x}_i 是相互连接的。

对于每个连接,都应定义一个指标,用以刻划这 两个样本是否适于连接,称其为连接损失。

由两样本的近邻函数值 α_{ij} 的定义可知, α_{ii} 越 小,表明它们越相似。若把它们连接起来,损失也 就越小。因此可以<u>将近邻函数值 α_{ii} 作为 x_i 和 x_i 之</u> 间的连接损失。

2.5.4 近邻函数法

连接损失:

在聚类过程中,当考虑样本 \vec{x}_i 时,计算它与其它各样本间的近邻函数值,如果

$$\alpha_{ik} = \min_{i} [\alpha_{ij}]$$

则把 \vec{x}_i 和 \vec{x}_k 连接起来,并有连接损失 α_{ik} 。

若 \vec{x}_i 与 \vec{x}_j 不实际连接,则不存在连接损失,即:

$$\alpha_{ij} \triangleq 0$$

近邻聚类准则函数:

在定义了两样本间的连接损失之后,还要区分出 类内连接损失和<u>类间连接损失</u>。

设共有c类: $\omega_p(p=1,2,\dots,c)$, 总的类内连接损

失定义为:

$$L_{W} = \sum_{p=1}^{c} \sum_{\substack{\vec{x}_{i} \in \omega_{p} \\ \vec{x}_{i} \in \omega_{p}}} \alpha_{ij}$$

记 🛈 🙇 类的类内最大近邻函数值:

$$\alpha_{p \max} = \max_{\substack{\vec{x}_i \in \omega_p \\ \vec{x}_j \in \omega_p}} [\alpha_{ij}]$$

设聚类 ω_p 和 ω_q $(p,q=1,2,\cdots,c;\ p\neq q)$ 的样本之间的最小近邻函数值为 γ_{pq} ,即

$$\gamma_{pq} = \min_{\substack{\vec{x}_i \in \omega_p \\ \vec{x}_j \in \omega_q}} \left[\alpha_{ij} \right]$$

设 γ_{pk} 为聚类 ω_p 与其它各聚类 ω_q ($q=1,2,\cdots,c;\ q\neq p$) 的最小近邻函数值的最小值,即

$$\gamma_{pk} = \min_{\substack{q \\ q \neq p}} \left[\gamma_{pq} \right] \quad (p = 1, 2, \dots, c)$$

上式表明,除 ω_p 类内样本外,只有 ω_k 中的某一个样本与 ω_p 中某一个样本最近邻,近邻函数值为 γ_{pk} 。

ω_p 类与 ω_k 类的类间最小连接损失有如下四种情况:

$$\beta_{p} = \begin{cases} (\alpha_{p \max} - \gamma_{pk}) + (\alpha_{k \max} - \gamma_{pk}) &, \\ \\ \alpha_{p \max} - \gamma_{pk} &, \\ \\ \alpha_{k \max} - \gamma_{pk} &, \\ \\ \alpha_{p \max} + \alpha_{k \max} - \gamma_{pk} &, \end{cases}$$

ω_p 类与 ω_k 类的类间最小连接损失有如下四种情况:

ω_p 类与 ω_k 类的类间最小连接损失有如下四种情况:

ω_p 类与 ω_k 类的类间最小连接损失有如下四种情况:

第三种情况: ω_k 类的类内最大近邻函数值大于类间最小近邻值,说明这两类合并也应付出代价, β_p 赋予一个正值而损失为:

 α_{kmax} - γ_{pk} .

$$\beta_p =$$

$$\alpha_{k \max} - \gamma_{pk}$$
,

$$\begin{cases}
\gamma_{pk} > \alpha_{p \max} \\
\gamma_{pk} \leq \alpha_{k \max}
\end{cases}$$

$$\alpha_{p \max} + \alpha_{k \max} - \gamma_{pk}$$
,

$$\begin{cases} \gamma_{pk} \leq \alpha_{p \text{ max}} \\ \gamma_{pk} \leq \alpha_{k \text{ max}} \end{cases}$$

ω_p 类与 ω_k 类的类间最小连接损失有如下四种情况:

第四种情况: ω_p 和 ω_k 类的类内最大近邻函 数值都大于类间最小近邻值,说明这两类 合并应付出的代价更大, β_o 赋予连接损失 为: $a_{pmax} + \alpha_{kmax} - \gamma_{pk}$ 。 $\beta_p =$ $\alpha_{k \max} - \gamma_{pk}$ $\begin{cases}
\gamma_{pk} \leq \alpha_{p \text{ max}} \\
\gamma_{pk} \leq \alpha_{k \text{ max}}
\end{cases}$ $\alpha_{p \max} + \alpha_{k \max} - \gamma_{pk}$

2.5.4 近邻函数法

近邻聚类准则函数:

在上述描述基础上,定义总的类间损失: $L_B = \sum_{p=1}^{\infty} \beta_p$

聚类的目标是使各 γ_{pk} 尽可能地大,使各 $\alpha_{p \max}$ 尽可能地小,因而构造聚类的准则函数为:

$$J_L = L_W + L_B \Longrightarrow \min$$

有了上述的准则函数后,可以用迭代方法得出近邻 聚类的具体实现。

近邻函数法算法步骤:

- (1) 对于给定的待分类样本集 $x=\{\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_N\}$,计算距离 矩阵*D*, *D*的阵元: $D_{ii} = d(\vec{x}_i, \vec{x}_j)$ $(i, j = 1, 2, \dots, N)$ $d(\vec{x}_i, \vec{x}_i)$ 表示样本 \vec{x}_i 和 \vec{x}_j 间的距离;
- (2) 利用矩阵D,计算近邻矩阵M,其元素 $M_{i,i}$ 为样本 \vec{x}_{i} 对 \bar{x}_i 的近邻系数;
- (3)生成近邻函数矩阵L,其阵元为L_{;;}=M_{;;}+M_{;;}−2 置矩阵L的主对角线上阵元 $L_{ii}=2N$ (i=1,2,...,N), 如果 \vec{x}_i 和 \vec{x} 有连接,则 L_i 给出它们非零近邻函数 值,即连接损失; 模式识别

- (4) 搜索矩阵L,将每个点与和它有最小近邻函数值的 点连接起来,形成初始聚类;
- (5) 对于(4)所形成的聚类,计算 γ_{pk} 、 α_{pm} 、 α_{km} 。若 γ_{pk} 小于或等于 α_{pm} 或 α_{km} ,则合并 α_{k} 和 α_{p} ,它们的样 本间建立连接关系,转至(5);否则结束。

上述迭代过程,最终将使准则函数以达极小。

例:已知有10个样本,每个样本有2个特征,使用 近邻函数法实现样本分类。

(1) 计算距离矩阵D

	X1	x2	х3	x4	x5	x6	x7	x8	x9	x10
x 1	0	1.0	2.2	3.2	4.1	4.5	5.0	5.7	5.8	6.7
x2	1.0	0	1.4	2.2	3.2	4.1	4.4	5.0	5.0	5.8
х3	2.2	1.4	0	1.0	2.0	5.0	5.1	5.4	5.0	5.7
x4	3.2	2.2	1.0	0	1.0	5.1	5.0	5.1	4.4	5.0
x5	4.1	3.2	2.0	1.0	0	5.4	5.1	5.0	4.1	4.5
x6	4.5	4.1	5.0	5.1	5.4	0	1.0	2.0	3.2	4.1
x7	5.0	4.4	5.1	5.0	5.1	1.0	0	1.0	2.2	3.2
x8	5.7	5.0	5.4	5.1	5.0	2.0	1.0	0	1.4	2.2
х9	5.8	5.0	5.0	4.4	4.1	3.2	2.2	1.4	0	1.0
x10	6.7	5.8	5.7	5.0	4.5	4.1	3.2	2.2	1.0	0

(1) 计算近邻系数矩阵M

	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10
x1	0	1	2	3	4	5	6	7	8	9
x2	1	0	2	3	4	5	6	7	7	8
х3	4	2	0	1	3	5	6	7	5	8
x4	3	2	1	0	1	6	5	6	4	5
x5	4	3	2	1	0	8	7	6	4	5
x6	5	4	6	7	8	0	1	2	3	4
x7	5	4	6	5	6	1	0	1	2	3
x8	8	5	7	6	5	3	1	0	2	4
x9	8	7	7	6	5	4	3	2	0	1
x10	9	8	7	6	5	4	3	2	1	0

2-5 聚类的算法

(1) 计算近邻函数矩阵L

	x1	x2	х3	x4	x5	х6	x7	x8	x9	x10
x1	20	0	4	4	6	8	9	13	14	16
x2	0	20	2	3	5	7	8	10	12	14
х3	4	2	20	0	3	9	10	12	10	13
x4	4	3	0	20	0	11	8	10	8	9
x5	6	5	3	0	20	14	11	9	7	8
x6	8	7	9	11	14	20	0	3	5	6
x 7	9	8	10	8	11	0	20	0	3	4
x8	13	10	12	10	9	3	0	20	2	4
x9	14	12	10	8	7	5	3	2	20	0
x10	16	14	13	9	8	6	4	4	0	20

形成初始聚类

- 1: x1,x2
- 2: x3,x4,x5
- 3: x6,x7,x8
- 4: x9,x10

计算 $\alpha_{p \max}$ 和 γ_{pk}

$$\alpha_{1\max} = 0$$

$$\alpha_{2 \text{ max}} = 3$$

$$\alpha_{3\text{max}}=3$$

$$\alpha_{4\max=0}$$

2-5 聚类的算法

(1) 计算近邻函数矩阵L

	x1	x2	х3	x4	x5	х6	x7	x8	x9	x10
x1	20	0	4	4	6	8	9	13	14	16
x2	0	20	2	3	5	7	8	10	12	14
х3	4	2	20	0	3	9	10	12	10	13
x4	4	3	0	20	0	11	8	10	8	9
x5	6	5	3	0	20	14	11	9	7	8
x6	8	7	9	11	14	20	0	3	5	6
x7	9	8	10	8	11	0	20	0	3	4
x8	13	10	12	10	9	3	0	20	2	4
x9	14	12	10	8	7	5	3	2	20	0
x10	16	14	13	9	8	6	4	4	0	20

形成初始聚类

- 1: x1,x2
- 2: x3,x4,x5
- 3: x6,x7,x8
- 4: x9,x10

计算 $\alpha_{p \max}$ 和 γ_{pk}

$$\alpha_{1 \max} = 0$$
 $\gamma_{12} = 2$

$$\alpha_{2 \max} = 3$$
 $\gamma_{13} = 7$ $\gamma_{23} = 8$

$$\alpha_{3 \text{ max}} = 3$$
 $\gamma_{14} = 12$ $\gamma_{24} = 7$ $\gamma_{34} = 2$

$$\alpha_{4\max=0}$$

形成初始聚类

- 1: x1,x2
- 2: x3,x4,x5
- 3: x6,x7,x8
- 4: x9,x10

合并1,2

- 1: x1,x2,x3,x4,x5
- 2: x6, x7, x8
- 3: x9,x10

计算 $\alpha_{p \max}$ 和 γ_{pk}

$$\alpha_{1 \text{ max}} = 0$$
 $\gamma_{12} = 2$

$$\alpha_{2 \text{ max}} = 3$$
 $\gamma_{13} = 7$ $\gamma_{23} = 8$

$$\alpha_{3 \text{ max}} = 3$$
 $\gamma_{14} = 12$ $\gamma_{24} = 7$ $\gamma_{34} = 2$

$$\alpha_{4\max=0}$$

2-5 聚类的算法

(1) 计算近邻函数矩阵L

	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10
x 1	20	0	4	4	6	8	9	13	14	16
x2	0	20	2	3	5	7	8	10	12	14
х3	4	2	20	0	3	9	10	12	10	13
x4	4	3	0	20	0	11	8	10	8	9
x5	6	5	3	0	20	14	11	9	7	8
x6	8	7	9	11	14	20	0	3	5	6
x 7	9	8	10	8	11	0	20	0	3	4
x8	13	10	12	10	9	3	0	20	2	4
x9	14	12	10	8	7	5	3	2	20	0
x10	16	14	13	9	8	6	4	4	0	20

形成初始聚类

- 1: x1,x2
- 2: x3,x4,x5
- 3: x6,x7,x8
- 4: x9,x10

合并1,2

- 1: x1, x2, x3, x4, x5
- 2: x6, x7, x8
- 3: x9,x10

计算 $\alpha_{p \max}$ 和 γ_{pk}

$$\alpha_{1 \text{ max}} = 0$$
 $\gamma_{12} = 2$

$$\alpha_{2 \max} = 3$$
 $\gamma_{13} = 7$ $\gamma_{23} = 8$

$$\alpha_{3 \text{ max}} = 3$$
 $\gamma_{14} = 12$ $\gamma_{24} = 7$ $\gamma_{34} = 2$

$$\alpha_{4\max=0}$$

$$\alpha_{1\text{max}} = 6$$
 $\gamma_{12} = 7$

$$\alpha_{2 \text{max}} = 3$$
 $\gamma_{13} = 7$ $\gamma_{23} = 2$

$$\alpha_{3\max} = 0$$

1:
$$x1, x2, x3, x4, x5$$

$$\alpha_{1 \text{max}} = 6$$
 $\gamma_{12} = 7$

$$\alpha_{2 \text{ max}} = 3$$
 $\gamma_{13} = 7$ $\gamma_{23} = 2$

$$\alpha_{3\max} = 0$$

计算
$$\alpha_{p \max}$$
 和 γ_{pk}

$$\alpha_{1 \text{ max}} = 6$$
 $\gamma_{12} = 7$

$$\alpha_{2 \text{ max}} = 6$$

2-5 聚类的算法

(1) 计算近邻函数矩阵L

	x1	x2	х3	x4	x5	x6	x 7	x8	x9	x10
x1	20	0	4	4	6	8	9	13	14	16
x2	0	20	2	3	5	7	8	10	12	14
х3	4	2	20	0	3	9	10	12	10	13
x4	4	3	0	20	0	11	8	10	8	9
x5	6	5	3	0	20	14	11	9	7	8
x6	8	7	9	11	14	20	0	3	5	6
x7	9	8	10	8	11	0	20	0	3	4
x8	13	10	12	10	9	3	0	20	2	4
x9	14	12	10	8	7	5	3	2	20	0
x10	16	14	13	9	8	6	4	4	0	20

形成初始聚类

- 1: x1,x2
- 2: x3,x4,x5
- 3: x6,x7,x8
- 4: x9,x10

合并1,2

- 1: x1, x2, x3, x4, x5
- 2: x6, x7, x8
- 3: x9,x10

计算
$$\alpha_{p \max}$$
 和 γ_{pk}

$$\alpha_{1 \text{ max}} = 0$$
 $\gamma_{12} = 2$

 $\gamma_{13} =$

 $\gamma_{12} =$

 $\gamma_{13} =$

$$\alpha_{2\max}=3$$

$$\alpha_{3\text{max}} = 3$$

$$\alpha_{4\max=0}$$

$$\alpha_{1\text{max}} = 3$$

$$\alpha_{2\max} = 3$$

$$\alpha_{3\max} = 0$$

对于链状的模式分布的模式分布的人,合并后的类内最大连新设计算,而是取 α_{1max} , α_{2max} , γ_{12}

的最大值。

聚类算法小结:

- ▶基于相似阈值和最小距离原则的简单聚类方法
- ▶最大最小距离方法
- ▶谱系聚类方法
- ▶C均值聚类方法
- ▶近邻函数聚类方法

谢 谢!