

Algorithmique et Complexité

Emmanuel Hebrard et Mohamed Siala

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

Plan

- Introduction à la Complexité des Algorithmes
- 2 Analyse Asymptotique
- Algorithmes Récursifs
- Programmation Dynamique
- **5** Algorithmes gloutons
- 6 Représentation des Données
- Classes de Complexité
- 8 Les Classes NP et coNP

Supports de cours

- Transparents sur la page du cours (ils seront distribués!)
- Support de cours d'Olivier Bournez pour l'Ecole Polytechnique (lien sur la page du cours)
- "Introduction to Algorithms"
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein
 MIT Press.
- "Computational Complexity"
 Christos H. Papadimitriou
 Addison-Wesley.
- "Computational Complexity: A Modern Approach"
 Sanjeev Arora and Boaz Barak
 Princeton University.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

3 / 169

Question d'un entretien d'embauche chez Google

- Soit un histogramme avec *n* barres *sur lequel on a versé un volume d'eau infini*.
 - ▶ Donnez un algorithme pour calculer le volume d'eau résiduel (16).
 - Donnez un algorithme pour calculer le volume d'eau résiduel en temps linéaire.

Vaincre la Combinatoire : Algo. ou Matériel?

Problème du Voyageur de Commerce

- donnée : ensemble de villes
- question : quel est le plus court chemin passant une fois par chaque ville?
- Méthode "Brute-force": trois instructions par nano seconde
- ullet Un ordinateur plus rapide : une instruction par $temps~de~Planck~(5.39 imes 10^{-44}s)$
- Un ordinateur plus parallèle : remplissons l'univers de processeurs d'un mm³

donnée	processeur 3 GHz	processeur de Planck	massivement parallèle
10 villes	1/100s		
15 villes	1 heure		
19 villes	1 an		
27 villes	8 imes âge de l'univers		
35 villes	$5\mathrm{e}{+23} imes$ âge de l'univ.	5/1000s	
40 villes	4e $+$ 31 $ imes$ âge de l'univ.	12 heures	
50 villes	$1,5\mathrm{e}{+48} imes$ âge de l'univ.	4000 $ imes$ âge de l'univers	temps de planck
95 villes	$5\mathrm{e}{+131} imes$ âge de l'univ.	$1,3\mathrm{e}{+87} \times \mathrm{\hat{a}ge} \ \mathrm{de} \ \mathrm{l'univ}.$	$3 imes ext{age de l'univers}$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

5 / 169

Complexité des algorithmes

- Savoir développer des algorithmes efficaces
- Savoir analyser l'efficacité d'un algorithme
- Comprendre la notion de complexité d'un problème

Introduction à la Complexité des Algorithmes

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

7 / 169

Problème & Donnée

Définition : Problème \simeq fonction sur les entiers

- Une question Q qui associe une donnée x à une solution Q(x)
- ► "Quel est le plus court chemin de x₁ vers x₂ par le réseau R?"
- ► "Quel est la valeur du carré de x?"
- ullet Q est une relation, pas toujours une fonction : plus court(s) chemin(s)
- On peut se restreindre aux fonctions
- Problème : "Étant donné un ensemble de villes, quel est le plus court chemin passant une fois par chaque ville?"
- Instance: "Les préfectures d'Occitanie"
- Solution: "Auch \rightarrow Montauban \rightarrow Cahors \rightarrow Rodez \rightarrow Mende \rightarrow Nimes \rightarrow Montpellier \rightarrow Albi \rightarrow Toulouse \rightarrow Carcassonne \rightarrow Perpignan \rightarrow Foix \rightarrow Tarbes"

Algorithme

• Un algorithme est une méthode pour calculer la solution Q(x) d'un problème, pour toute valeur de la donnée x

Algorithme pour le problème Q

- Composée d'instructions primitives : exécutable par une machine
- Déterministe : une seule exécution possible pour chaque donnée
- Correct : termine et retourne la bonne solution Q(x) pour toute valeur de la donnée x

Qu'est-ce qu'une "instruction primitive"?

Pas de définition formelle dans ce cours : langages de programmations classiques (boucles, conditions, assignements, opérations arithmétiques, etc.)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

9 / 169

Preuve de correction

• Pour prouver qu'un algorithme est correct (terminaison + résultat attendu) on va souvent utiliser la notion d'invariant de boucle

Invariant de boucle

- Initialisation : L'invariant est vrai avant la première itération de la boucle.
- Conservation : Si l'invariant est vrai avant une itération de la boucle, il le reste avant l'itération suivante a.
- Terminaison : Une fois la boucle terminée, l'invariant implique que la solution est correcte.
- a. Avant une itération veut dire avant de faire le test de la boucle
- ≃ preuve par récurrence

Exemple: TriSélection

L'algorithme suivant trie un tableua L de n éléments.

```
Algorithme: TriSélection
  Données : tableau L de n éléments comparables
  Résultat : le tableau trié
1 pour i allant de 1 à n faire
       m \leftarrow i;
       pour j allant de i + 1 à n faire
3
           si L[j] < L[m] alors
4
             m \leftarrow j;
5
       échanger L[i] et L[m];
7 retourner L;
```

```
i = 1
      29 30 17
i = 2
       0 30 17
i = 3
          9 17 30 29 24
i = 4
          9 17 30 29 24
i = 5
       0
          9 17 24 29 30
```

aboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

11 / 169

Exemple: Prouver que TriSélection est correct

- TriSélection termine? Oui car :
 - ► En dehors de la boucle principale, il y a un nombre fini d'instructions (0)
 - ▶ 2ème boucle : n est constant, j est strictement croissant et la boucle se termine pour j > n
 - ▶ 1ère boucle : n est constant, i est strictement croissant, la boucle se termine pour i > n, et la 2ème boucle termine
- TriSélection retourne un résultat correct? **Invariant de boucle Inv**(i): Au début de la *i*ème itération de la 1ère boucle "pour",
 - (a) trie(i): Les i-1 premiers éléments sont triés
- **(b)** mins(i): Les i-1 premiers éléments sont les plus petits

Invariants pour TriSélection

L'algorithme suivant trie un tableau T de n éléments.

Algorithme: TriSélection

Données : tableau L de n éléments

comparables

Résultat : le tableau trié pour i allant de 1 à n faire

```
m \leftarrow i;
2
        pour j allant de i + 1 à n faire
3
              si L[j] < L[m] alors
4
                m \leftarrow j;
5
```

échanger L[i] et L[m];

7 retourner *L*;

Invariants:

Au début de l'itération i :

- (a) i-1 1ers éléments triés
- **(b)** i-1 1ers éléments minimums

$$i = 1$$
 29 30 17 9 0 24
 $i = 2$ 0 30 17 9 29 24
 $i = 3$ 0 9 17 30 29 24
 $i = 4$ 0 9 17 30 29 24
 $i = 4$ 0 9 17 30 29 24
 $i = 5$ 0 9 17 24 29 30

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

13 / 169

Démonstration de TriSélection par invariant

Au début de la *i*ème itération de la 1ère boucle "pour", 2 invariants :

- (a) trie(i): Les i-1 premiers éléments sont triés
- (b) mins(i): Les i-1 premiers éléments sont les plus petits

Preuve

- Initialisation : trie(i) et mins(i) sont vrais lors de la première itération de la boucle car pour i = 1 la liste des i - 1 premiers éléments est vide
- Conservation : Supposons que les invariants soient vrais à l'itération i. On montre qu'ils sont vrais à l'itération i + 1:
 - \blacktriangleright Les i-1 premiers éléments du tableau L ne changent pas (le seul changement est à la ligne 6 et $m \ge i$). Donc trie(i) et mins(i) impliquent trie(i+1).
 - A la ligne 6, L[m] est le plus petit élément parmi $L[i], \ldots, L[n]^a$, et il et échangé avec L[i]. Donc mins(i) implique mins(i + 1).
- Terminaison : La fin de la boucle correspond au début d'une itération i = n + 1, Mais trie(n+1) implique que L est totalement trié et donc l'algorithme est correct.

a. Il faudrait faire une autre preuve par invariant pour montrer ça!!

Complexité Algorithmique : pourquoi?

Pour développer des algorithmes efficaces, il faut pouvoir :

- Évaluer la complexité d'un algorithme;
- Comparer deux algorithmes entre eux;

XKCD https://xkcd.com/

Qu'est ce qu'un algorithme efficace?

Critère : utilisation d'une ressource, e.g., le temps (d'exécution) ou l'espace (mémoire)

aboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

15 / 169

Le temps d'exécution

Le temps d'exécution

Le temps d'exécution est la durée (en secondes, minutes, etc.) nécessaire au programme pour s'éxecuter.

Mais le temps d'éxecution dépend :

- de la machine:
- du système d'exploitation;
- du langage;
- de la donnée :

On veut une méthode indépendante de l'environnement.

Nombre d'opérations élémentaires (I)

Opération élémentaire

Une opération élementaire est une opération qui prend un temps constant

• Même temps d'exécution quelque soit la donnée

Exemples d'opérations en temps constant

- Instructions assembleur
- Opérations arithmétiques $(+, \times, -)$, affectation, comparaisons sur les **types primitifs** (entiers, flottants, etc.)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

17 / 169

Exemple

L'algorithme suivant calcule $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$ (avec 0! = 1).

Algorithme: Factorielle

nombre coût

Données: un entier n

Résultat : un entier valant *n*!

1 $fact \leftarrow 1$;

 $1 \text{ fact } \leftarrow 1$; initialisation : 1×1 op. $2 \text{ pour } i \text{ allant } de \ 2 \text{ à } n \text{ faire}$ itérations : $n \times 1$ op.

itérations : $n \times 1$ op. $fact \leftarrow fact * i$; $mult. + affect. : (n-1) \times 2$ op.

3 $\lfloor tact \leftarrow tact * i$; mult. + affect. : $(n-1) \times 2$ op. 4 **retourner** fact; retour fonction : 1×1 op.

Nombre total d'opérations :

$$1 + n + (n - 1) * 2 + 1 = 3n$$

Exemple: TriSélection

Algorithme: TriSélection nombre coût **Données** : tableau L de n éléments comparables Résultat : le tableau trié itérations : $n \times$ 1 op. pour i allant de 1 à n faire affectation: 1 op. $m \leftarrow i$; itérations : $\sum_{i=1}^{n} (n-i-1) \times$ comparaison : $\sum_{i=1}^{n} (n-i-1) \times$ 1 op. pour i allant de i + 1 à n faire 3 1 op. si L[j] < L[m] alors 4 affectation: 1 op. $m \leftarrow j$; 5 échange : 3 op. $n \times$ échanger L[i] et L[m]; 7 retourner L;

Nombre total d'opérations :

$$n(n+4) \le n+n+2\sum_{i=1}^{n}(n-i-1)+?+3n \le n(2n+5)$$

AAS-CNRS <u>aboratoire d'analyse et d'architecture des systèmes du CNRS</u>

Introduction à la Complexité des Algorithmes

19 / 169

Nombre d'opérations élémentaires (II)

- Le nombre d'opérations dépend en général de la donnée du problème;
 - (a) trier 10 entiers est plus facile que trier 1000000 entiers?
 - (b) trier une liste très désordonnée est plus difficile?
- Le nombre d'opérations est calculé en fonction de la donnée, mais comment tenir compte de toutes les valeurs possibles?
 - ▶ Plusieurs types de complexités → pire/meilleur cas ou en moyenne.
- Quel paramètre choisir? Est-il possible de comparer des algorithmes pour des problèmes distincts?
 - On calcule la complexité en fonction de la taille de la donnée : |x| est le nombre de bits de la représentation en mémoire de la donnée x
- Comment connait-on la taille |x| de la donnée x? (cf. "Représentation des Données")

Complexité en fonction de la taille de la donnée

Soit $Co\hat{u}t_A(x)$ la complexité de l'algorithme A sur la donnée x de taille |x|.

Complexité dans le meilleur des cas

$$\operatorname{Inf}_{A}(|x|) = \min\{\operatorname{Coût}_{A}(x) \mid x \text{ de taille } |x|\}$$

Complexité dans le pire des cas

$$Sup_{\mathcal{A}}(|x|) = \max\{Co\hat{u}t_{\mathcal{A}}(x) \mid x \text{ de taille } |x|\}$$

Complexité en moyenne

Besoin d'une probabilité P() pour toutes les données de tailles n

$$\operatorname{Moy}_{A}(|x|) = \sum_{x \text{ de taille } |x|} P(x) \cdot \operatorname{Coût}_{A}(x)$$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

21 / 169

Exemple (Recherche dans un tableau)

L'algo. suivant recherche l'élément e dans un tableau.

Algorithme: RechercheElmt

Données: un entier e et un tableau L

contenant e

Résultat : l'indice i t.q. L[i] = e

 $i \leftarrow 0$;

tant que $L[i] \neq e$ faire

 $i \leftarrow i + 1;$

retourner i:

Le nombre de comparaisons dépend de la donnée 1 :

• e est dans la case $1 \rightarrow 1$ comp.

• e est dans la case $j \rightarrow j$ comp.

• e est dans la case $n \rightarrow n$ comp. (n = |L| : taille de L)

meilleur: 1 comp.

pire: n comp.

moyenne: $\frac{n+1}{2}$ (voir slide suivant)

Complexité en moyenne (Recherche)

Hyp.:

L'algo. suivant recherche l'élément e dans un tableau.

Algorithme: RechercheElmt

Données : un entier *e* et un tableau *L*

contenant e

Résultat : l'indice i t.q. L[i] = e

i : entier;

début

$$i \leftarrow 0$$
;
tant que $L[i] \neq e$ faire
 $i \leftarrow i + 1$;

retourner i;

$$\Rightarrow P(L[i] = e) = 1/n.$$

distribution uniforme

• nbOcc(e) = 1

On applique la formule :

$$\operatorname{Moy}_{A}(n) = \sum_{x \text{ de taille } n} P(x) \cdot \operatorname{Coût}_{A}(x)$$

$$\operatorname{Moy}_{A}(n) = \frac{1}{n} \times \frac{n(n+1)}{2}$$

moyenne : $\frac{n+1}{2}$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

23 / 169

Complexité en moyenne (TriSélection)

- $Inf_{TriSélection}(n) = n(n+4), Sup_{TriSélection}(n) = n(2n+5)$
- Le temps de calcul T(n) de TriSélection pour n élément est tel que :

$$c_1 \cdot (n^2 + 4n) < T(n) < c_2 \cdot (2n^2 + 5n)$$

- Les valeurs des constantes c_1 et c_2 dépendent de :
 - Le coût exact des opérations (comparaisons, affectations, etc.)
 - Le matériel (processeur, RAM, etc.)
 - Le logiciel (langage, compilateur, système d'exploitation, etc.)
- Impossible à quantifier!
- Les variations de c_1 et c_2 sont plus importantes que le facteur (inférieur à 2) entre $n^2 + 4n$ et $2n^2 + 5n$
- $\operatorname{Inf}_{\operatorname{TriS\'election}}(n) \simeq \operatorname{Moy}_{\operatorname{TriS\'election}}(n) \simeq \operatorname{Sup}_{\operatorname{TriS\'election}}(n) \simeq cn^2$

Exemple: TriRapide

```
Algorithme: TriRapide
   Données : tableau L d'elts comparables, entiers s, e
   Résultat : le tableau trié entre les indices s et e
1 Procedure TriRapide(L, s, e)
        si s < e alors
2
3
             p \leftarrow \text{Partition}(L, s, e);
             TriRapide(L, s, p - 1);
4
             TriRapide(L, p + 1, e);
  Procedure Partition(L, s, e)
6
7
        pivot \leftarrow L[e];
        i \leftarrow s;
        pour i allant de s à e-1 faire
9
10
             si L[j] < pivot alors
                  échanger L[i] avec L[i];
11
                   i \leftarrow i + 1;
12
        échanger L[i] avec L[e];
13
        retourner i;
14
```

Invariants

- ▶ L[0], ..., L[i-1] < pivot
- $ightharpoonup L[i], \ldots, L[j-1] \ge pivot$

Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

25 / 169

Complexité de TriRapide

Algorithme: TriRapide

Procedure TriRapide (L, s, e)

si s < e alors $p \leftarrow \text{Partition}(L, s, e)$; TriRapide (L, s, p - 1); TriRapide(L, p + 1, e);

Procedure Partition (L, s, e)

$$pivot \leftarrow L[e];$$
 $i \leftarrow s;$
 $pour \ j \ allant \ de \ s \ ae-1 \ faire$
 $si \ L[j] < pivot \ alors$
 $echanger \ L[i] \ avec \ L[j];$
 $i \leftarrow i+1;$
 $echanger \ L[i] \ avec \ L[e];$
 $echanger \ I[i] \ avec \ L[e];$
 $echanger \ I[i] \ avec \ L[e];$

Opération caractéristique

lci on compte le nombre de comparaisons, égal au nombre total d'opérations, à une constante près.

- TriRapide fait un nombre constant (disons c₁) d'opérations pour chaque comparaison
 - Au plus un échange et entre 1 et 2 incrémentation(s)

Complexité dans le pire des cas (TriRapide)

```
Algorithme: TriRapide

Procedure TriRapide(L, s, e)

si s < e alors

p \leftarrow \text{Partition}(L, s, e);

TriRapide(L, s, p - 1);

TriRapide(L, p + 1, e);
```

Procedure Partition(
$$L, s, e$$
)

 $pivot \leftarrow L[e];$
 $i \leftarrow s;$

pour j allant $de \ s \ a \ e - 1$ faire

 $si \ L[j] < pivot \ alors$
 $echanger \ L[i] \ avec \ L[j];$
 $echanger \ L[i] \ avec \ L[e];$

- Pire des cas : les éléments sont déja triés!
- Le pivot est comparé aux n-1 éléments et reste en dernière position
- Partition retourne toujours e
 - ▶ Partition (L, 1, n), Partition (L, 1, n 1),...
- Nombre total de comparaisons :

$$\sum_{i=1}^{n} (n-i) = n^2 - \sum_{i=1}^{n} i = n(n-1)/2$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

retourner i;

Introduction à la Complexité des Algorithmes

27 / 169

Complexité en moyenne (TriRapide)

```
Algorithme: TriRapide
```

Procedure TriRapide(
$$L, s, e$$
)

si $s < e$ alors

 $p \leftarrow Partition(L, s, e);$

TriRapide($L, s, p - 1$);

Procedure Partition(
$$L, s, e$$
)

$$pivot \leftarrow L[e];$$
 $i \leftarrow s;$
 $pour \ j \ allant \ de \ s \ ae-1 \ faire$
 $si \ L[j] < pivot \ alors$
 $echanger \ L[i] \ avec \ L[j];$
 $i \leftarrow i+1;$

TriRapide(L, p + 1, e);

échanger L[i] avec L[e]; retourner i;

- Deux éléments sont comparés une fois au plus
 - Si deux éléments sont comparés, un des deux est un pivot, et ils seront séparés
- On calcule l'espérance E du nombre total de comparaisons

Complexité en moyenne (TriRapide)

z_1	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> ₄	<i>Z</i> ₅	<i>z</i> ₆	<i>Z</i> 7	<i>z</i> ₈	<i>Z</i> 9

- Soit la liste triée des éléments de $T: z_1 < z_2 < \ldots < z_n$
- Si on note $p(z_i, z_j)$ la probabilité que z_i et z_j soient comparés, alors l'espérance E du nombre de comparaisons est donc :

$$\sum_{i=1}^{n-1}\sum_{j=i+1}^n p(z_i,z_j)$$

- z_i et z_j sont comparés ssi un des deux est le premier pivot parmi $z_i, z_{i+1}, \ldots, z_j$
 - ▶ sinon, le pivot z_k sépare $z_i < z_k$ et $z_j > z_k$!
- Donc $p(z_i, z_j) = 2/(j i + 1)$ (les choix de pivot sont équiprobables)

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} \frac{2}{j+1} \le 2 \sum_{i=1}^{n-1} \sum_{j=1}^{n} \frac{1}{j} \simeq 2n \ln n$$

Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

29 / 169

Résumons

	TriSélection	TriRapide
Sup(n)	$c_1 n^2$	$c_2 n^2$
Moy(n)	$c_3 n^2$	<i>c</i> 4 <i>n</i> ln <i>n</i>

- Soient :
 - $lacktriangledown T^s(n)$ le temps effectif de calcul pour TriSélection de n éléments, $\simeq {
 m Moy}_s(n) = c_3 n^2$
 - $ightharpoonup T^r(n)$ le temps effectif de calcul pour TriRapide de n éléments, $\simeq \operatorname{Moy}_r(n) = c_4 n \ln n$
- Expérience : essayons pour n = 100000 et estimons n = 300000

$$c_3 = \frac{T^s(100000)}{100000^2} \qquad \qquad c_4 = \frac{T^r(100000)}{100000 \ln 100000}$$

et donc (pour $T^s(100000) = 1.65$ et $T^r(100000) = .006$):

$$T^s(n) = \frac{T^s(100000)}{100000^2} n^2$$
 pour $n = 300000$: $\simeq 14.67$

$$T'(n) = \frac{T'(100000)}{100000 \ln 100000} n \ln n$$
 pour $n = 300000$: $\simeq 0.019$

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Analyse Asymptotique

AAS-CNRS (Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

31 / 169

Complexité Algorithmique

- Vision pessimiste : la complexité d'un algortihme est souvent définie comme sa performance asymptotique dans le pire cas
- Que signifie dans le pire des cas?
 - Parmi toutes les données x de taille n, on ne considère que celle qui maximise $Co\hat{u}t_A(x)$
- Que signifie asymptotique?
 - comportement de l'algorithme pour des données de taille *n arbitrairement grande*
 - pourquoi?

- Soit deux algorithmes de complexités $f_1(n)$ et $f_2(n)$
- Quel algorithme préférez-vous?
- La courbe verte semble correspondre à un algorithme plus efficace...
- ... mais seulement pour de très petites valeurs!

Ordre de grandeur : motivation

- Les calculs à effectuer pour évaluer le temps d'exécution d'un algorithme peuvent parfois être longs et pénibles;
- De plus, le degré de précision qu'ils requièrent est souvent inutile;
 - ▶ $n \log n + 5n \rightarrow 5n$ va devenir "négligeable" (n >> 1000)
 - différence entre un algorithme en $10n^3$ et $9n^3$: effacé par une accélération de $\frac{10}{9}$ de la machine
- On aura donc recours à une approximation de ce temps de calcul, représentée par les notations \mathcal{O}, Ω et Θ

Hypothèse simplificatrice

On ne s'intéresse qu'aux fonctions asymptotiquement positives (positives pour tout $n > n_0$)

aboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

33 / 169

Notation \mathcal{O} : définition

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

 $\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}, \ \forall n \geq n_0 : f(n) \leq c \times g(n)$

Borne supérieure : $f(n) \in \mathcal{O}(g(n))$ s'il existe une constante c, et un seuil à partir duquel f(n) est inférieure à g(n), à un facteur c près;

Exemple: $f(n) \in \mathcal{O}(g(n))$

Notation \mathcal{O} : preuve

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}, \ \forall n \geq n_0 : f(n) \leq c \times g(n)$$

Prouver que $f(n) \in \mathcal{O}(g(n))$: jeux contre un perfide adversaire \forall

Tour du joueur \exists objectif : $f(n) \le cg(n)$ choisit c et n_0

Tour du joueur \forall objectif : f(n) > cg(n) choisit $n \ge n_0$

Arbitre détermine le gagnant : $f(n) \le cg(n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

35 / 169

Notation \mathcal{O} : exemple

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

 $\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}, \ \forall n \geq n_0 : f(n) \leq c \times g(n)$

Jeux : **prouver** que la fonction $f_2(n) = 6n^2 + 2n - 8$ est en $\mathcal{O}(n^2)$:

Tour du joueur \exists choisit c = 6 et $n_0 = 0$

Tour du joueur \forall choisit n = 5

Arbitre $6 \times 5^2 + 2 \times 5 - 8 > 6 \times 5^2$

Notation \mathcal{O} : exemple

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}, \ \forall n \geq n_0 : f(n) \leq c \times g(n)$$

Jeux : **prouver** que la fonction $f_2(n) = 6n^2 + 2n - 8$ est en $\mathcal{O}(n^2)$:

Tour du joueur ∃

objectif: $f(n) \leq cg(n)$

choisit c = 7 et n_0

Tour du joueur ∀

objectif: f(n) > cg(n)

Arbitre

$$n^2 - 2n + 8 = 0$$
 n'a pas de solution

LAAS-CNRS
/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

38 / 169

Focus sur \mathcal{O}

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 : \qquad f(n) \leq c \times g(n)$$

Exercice : $2n^2$ est-il en $\mathcal{O}(n^2)$? Pareil pour 2n.

Notation Ω : définition

$\Omega(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 : f(n) \geq c \times g(n)$$

Borne inférieure : $f(n) \in \Omega(g(n))$ s'il existe un seuil à partir duquel f(n) est supérieure à g(n), à une constante multiplicative près ;

Exemple : $g(n) \in \Omega(f(n))$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

40 / 169

Notation Θ : définition

$\Theta(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists c_1, c_2 \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N}, \forall n > n_0, c_1 \times g(n) \leq f(n) \leq c_2 \times g(n)$$

Borne supérieure et inférieure : $\Theta(g(n)) = \Omega(g(n)) \cap \mathcal{O}(g(n))$; f(n) est en $\Theta(g(n))$ si elle est prise en sandwich entre $c_1g(n)$ et $c_2g(n)$;

$$f(n)$$
 est en $\Theta(g(n))$ si :

$$\exists c_1, c_2 \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N}, \forall n > n_0, \qquad c_1 \times g(n) \leq f(n) \leq c_2 \times g(n)$$

Exercice : $2n^2$ est-il en $\Theta(n^2)$? Pareil pour 2n.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

42 / 169

Notation asymptotique d'une fonction

• Quelle est la borne asymptotique de f(n)?

Notation asymptotique (de l'expression fermée) d'une fonction

Les mêmes simplifications pour \mathcal{O}, Ω et Θ :

- on ne retient que les termes dominants
- on supprime les constantes multiplicatives

Exemple

Soit
$$g(n) = 4n^3 - 5n^2 + 2n + 3$$
;

- on ne retient que le terme de plus haut degré : $4n^3$ (pour n assez grand le terme en n^3 "domine" les autres, en choisissant bien c_1, c_2 , on peut avoir $c_1 n^3 \le g(n) \le c_2 n^3$)
- 2 on supprime les constantes multiplicatives : n^3 (on peut la choisir!)

et on a donc $g(n) \in \Theta(n^3)$

Relation des principaux ordres de grandeur

Indépendant de la taille de la donnée : $\mathcal{O}(1)/\Theta(1)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique 45 / 169

Vocabulaire

Un algorithme dont la donnée est de taille |x| = n est dit :

- ullet Constant si sa complexité est en $\mathcal{O}(1)$
- Logarithmique si sa complexité est en $\Theta(\log n)$
- Linéaire si sa complexité est en $\Theta(n)$
- Quadratique si sa complexité est en $\Theta(n^2)$
- Polynomial si sa complexité est en $\mathcal{O}(n^{\mathcal{O}(1)})$
- Exponentiel si sa complexité est en $\Theta(c^{\Theta(n)})$ pour une constante c>1

Quelques remarques (à prouver comme exercice)

- $f \in \mathcal{O}(g)$ ssi $g \in \Omega(f)$
- $f \in \Theta(g)$ ssi $g \in \Theta(f)$
- Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0$ (constante) alors $f \in \Theta(g)$ (et donc $g \in \Theta(f)$)
- Si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ alors $f \in \mathcal{O}(g)$ et $f \notin \Omega(g)$
- Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ alors $f \in \Omega(g)$ et $f \notin \mathcal{O}(g)$

Règle de l'Hôpital

f et g deux fonctions dérivables t.q. $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$, alors :

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$
 si cette limite existe.

f' (respectivement g') représente la dévirée de f (respectivement g)

_AAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

47 / 169

Règles de calculs : combinaisons des complexités

- Les instructions de base prennent un temps constant, noté $\mathcal{O}(1)$;
- On additionne les complexités d'opérations en séquence :

$$\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$$

- Branchements conditionnels : max (analyse dans le pire des cas)
- L'ordre de grandeur maximum est égal à la somme des ordres de grandeur :

$$\max(\Theta(f(n)), \Theta(g(n))) = \Theta(f(n)) + \Theta(g(n))$$

Exemple

Règles de calculs : combinaison des complexité

- Dans les boucles, on multiplie la complexité du corps de la boucle par le nombre d'itérations;
- Calcul de la complexité d'une boucle while :

Exemple

en supposant qu'on a $\Theta(h(n))$ itérations

$$\left. \begin{array}{l} \Theta(g(n)) \\ \Theta(f(n)) \end{array} \right\} = \Theta(h(n) \times (g(n) + f(n)))$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

49 / 169

Règles de calculs : combinaison des complexité

- Dans les boucles, on multiplie la complexité du corps de la boucle par le nombre d'itérations;
- Calcul de la complexité d'une boucle for :

Exemple

$$\Theta(f(n))$$
 $= \Theta((b-a+1) \times f(n))$

Calcul de la complexité asymptotique d'un algorithme

- Pour calculer la complexité d'un algorithme :
 - on calcule la complexité de chaque "partie" de l'algorithme;
 - 2 on combine ces complexités conformément aux règles qu'on vient de voir;
 - 3 on simplifie le résultat grâce aux règles de simplifications qu'on a vues ;
 - ★ élimination des constantes, et
 - conservation du (des) termes dominants

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

50 / 169

Exemple : calcul de la factorielle de $n \in \mathbb{N}$

ullet Reprenons le calcul de la factorielle, qui nécessitait 3n opérations :

```
Algorithme: Factorielle(n)
                                                                                         nombre
                                                                                                          coût
   Données : un entier n
   Résultat : un entier valant n!
1 fact, i : entier;
2 début
        fact \leftarrow 2;
3
                                                            initialisation:
                                                                                         \Theta(1)\times
                                                                                                          \Theta(1)
        pour i allant de 3 à n faire
4
                                                            itérations :
                                                                                         \Theta(n) \times
                                                                                                          \Theta(1)
              fact \leftarrow fact * i;
5
                                                            mult. + affect. :
                                                                                         \Theta(n) \times
                                                                                                          \Theta(1)
                                                            retour fonction:
                                                                                         \Theta(1)\times
                                                                                                          \Theta(1)
        retourner fact;
6
```

Nombre total d'opérations :

$$\Theta(1) + \Theta(n) * \Theta(1) + \Theta(n) * \Theta(1) + \Theta(1) = \Theta(n)$$

Exemple: TriSélection

```
Algorithme: TriSélection
                                                                                       nombre
                                                                                                                 coût
   Données : tableau L de n éléments comparables
   Résultat : le tableau trié
1 pour i allant de 1 à n faire
                                                                   itérations :
                                                                                       n \times
                                                                                                                 1 op.
                                                                   affectation:
2
        m \leftarrow i;
                                                                                       n \times
                                                                                                                 1 op.
                                                                                       \sum_{i=1}^{n} (n-i-1) \times 
\sum_{i=1}^{n} (n-i-1) \times 
n \times ? \times
        pour j allant de i + 1 à n faire
                                                                   itérations :
3
                                                                                                                 1 op.
              si L[j] < L[m] alors
                                                                   comparaison :
                                                                                                                 1 op.
               m \leftarrow j;
                                                                   affectation:
                                                                                                                 1 op.
        échanger L[i] et L[m];
                                                                   échange :
                                                                                                                 3 op.
                                                                                       n \times
7 retourner L;
```

Séries arithmétiques

$$\sum_{i=1}^{n} (n-i-1) = n^2 - n - \sum_{i=1}^{n} i = n^2 - n - (1+2+3+\cdots+n) = n^2 - n - \frac{1}{2}n(n+1)$$

Nombre total d'opérations : $\Theta(n^2) = \Theta(|T|^2)$

LAAS-CNRS Analyse et d'architecture des systèmes du CNRS Analyse Asymptotique 52 / 169

Algorithmes Récursifs

Force brute

- L'approche "force brute" est une méthode de conception d'algorithmes qui se base simplement sur une énumération exhaustive de toutes les configurations possibles de la solution recherchée
- Exemple : Un algorithme de tri de type "force brute " parcourt toutes les permutations possibles de la liste jusqu'à ce qu'il trouve la permutation ordonnée.
- Cette méthode est souvent inefficace car elle se repose sur l'énumération complète d'un espace de recherche
- Exemple (algorithme de tri de type "force brute") : le nombre de permutations possible est n! donc la complexité d'un tel algorithme est $\Theta(n!)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

54 / 169

Diviser pour régner (Divide and conquer)

- "Diviser pour régner" est une méthode de conception d'algorithmes qui se base sur une "conception par décomposition" :
 - Diviser le problème en sous problèmes
 - Résoudre les sous problèmes par des appels récursifs
 - ► Combiner les résultats des sous problèmes pour résoudre le problème initial
- Cas idéal : le problème est décomposable en sous-problèmes indépendents
 - Dans ce cas, combiner les résultats est trivial
 - ▶ Parfois, les sous-problèmes sont seulement plus "faiblement" liés, et combiner les résultats peut-être complexe

Exemple avec un algorithme de tri

```
Algorithme: TriFusion (L)
Données: une liste L
Résultat: la liste L triée mil: entier;
si |L| \leq 1 alors
retourner L;
sinon
mil \leftarrow \lfloor \frac{|L|+1}{2} \rfloor;
L_l \leftarrow \text{TriFusion}(L[:mil]);
L_r \leftarrow \text{TriFusion}(L[mil:]);
retourner Fusion(L_l, L_r);
```

```
Algorithme: Fusion (L_1, L_2)

Données: deux listes triées L_1 et L_2

Résultat: une liste L triée contenant les éléments de L_1 et de L_2

L: liste vide; i, j, k \leftarrow 1; tant que k < |L| faire

\begin{array}{c|c} \text{si } i > |L_1| \text{ ou } (j \leq |L_2| \text{ et } L_1[i] > L_2[j]) \text{ alors} \\ \text{insérer } L_2[j] \text{ à la fin de } L; \\ \text{j} \leftarrow j + 1; \\ \text{sinon} \\ \text{insérer } L_1[i] \text{ à la fin de } L; \\ \text{i} \leftarrow i + 1; \\ \text{k} \leftarrow k + 1; \\ \end{array}
retourner L
```

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes Récursifs

56 / 169

Tri Fusion

Algorithme: TriFusion (L)

Données: une liste LRésultat: la liste L triée mil: entier; $si \mid L \mid \leq 1$ alors $\mid retourner \ L$; sinon $\mid mil \leftarrow \lfloor \frac{|L|+1}{2} \rfloor$; $L_l \leftarrow TriFusion(L[:mil])$; $L_r \leftarrow TriFusion(L[mil:])$; $retourner \ Fusion(L_l, L_r)$;

• Déroulement de l'algorithme avec la liste $\langle 6, 2, 1, 8, 5, 4, 3, 7 \rangle$:

```
    Division : ⟨6, 2, 1, 8⟩ ⟨5, 4, 3, 7⟩
    Division : ⟨6, 2⟩ ⟨1, 8⟩
    Division : ⟨6⟩ ⟨2⟩
    Regroupement : ⟨2, 6⟩
    Division : ⟨1⟩⟨8⟩
    Regroupement : ⟨1, 8⟩
    Regroupement : ⟨1, 2, 6, 8⟩
    Division : ⟨5, 4⟩ ⟨3, 7⟩
    Division : ⟨5⟩ ⟨4⟩
    Regroupement : ⟨4, 5⟩
    Division : ⟨3⟩⟨7⟩
    Regroupement : ⟨3, 7⟩
    Regroupement : ⟨3, 4, 5, 7⟩
    Regroupement : ⟨1, 2, 3, 4, 5, 6, 7, 8⟩
```

LAAS CNRS

Preuve de correction

- Terminaison :
 - ► TriFusion ne s'appelle lui même que 2 fois
 - ightharpoonup A chaque appel récursif, la taille de la liste |L| est strictement plus petite
 - ▶ Il n'y a pas d'appel récursif pour $|L| \le 1 \implies$ nombre total d'appels récursifs est fini
- Correction (TriFusion(L) est triée, par récurrence sur |L|) :
 - ▶ Pour $|L| \le 1$, la liste est déjà triée
 - ▶ TriFusion(L) triée si $|L| \le n$; est-ce que TriFusion(L) est triée si $|L| \le n + 1$?
 - ▶ TriFusion(L) renvoie Fusion(TriFusion(L[: mil]), TriFusion(L[mil :]))
 - ▶ TriFusion(L[:mil]) et TriFusion(L[mil:]) sont triées par l'hypothèse de récurrence puisque $|L[:mil]| \le n$ et $|L[mil:]| \le n$
 - ▶ ⇒ les préconditions de Fusion sont respectées, montront qu'il est correct, par invariants :
 - ★ L est triée
 - \star $i = |L_1| + 1$ ou k = 1 ou $L[k-1] \le L_1[i]$
 - ★ $j = |L_2| + 1$ ou k = 1 ou $L[k-1] \le L_2[i]$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

58 / 169

Analyse de la complexité d'un algorithme récursif

La structure d'un algorithme récursif AlgoRec(x) est :

si condition d'arrêt alors

retourner solution trivialle;

sinon

retourner Fusion(AlgoRec(p(x,1)),AlgoRec(p(x,2)),...,AlgoRec(p(x,a)));

- p "coupe" la donnée x (de taille |x| = n) en a morceaux de taille g(n)
- Fusion "recolle" les morceaux en h(n)

Forme récursive de la complexité $T(n) = \begin{cases} \Theta(1) & \text{si } \dots \\ {}_{a}T(g(n)) + h(n) & \text{sinon} \end{cases}$

On veut trouver une formule de forme close

$$T(n) \in \mathcal{O}(f(n))$$

Exemple: TriFusion

- TriFusion "coupe" la donnée L (de taille |L| = n) en 2 morceaux de taille $\frac{n}{2}$
- Fusion "recolle" les morceaux en $\Theta(n)$

Forme récursive de la complexité :

$$T(n) = \begin{cases} \Theta(1) & \text{si } n \leq 1\\ \frac{2T(\frac{n}{2})}{T(\lfloor \frac{n}{2} \rfloor)} + T(\lceil \frac{n}{2} \rceil) + n & \text{sinon} \end{cases}$$

Forme fermée de la complexité :

$$\exists c, n_0 \forall n > n_0$$
 $T(n) \leq cn \log n$
 cad $T(n) \in \mathcal{O}(n \log n)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

60 / 169

Méthode par substitution

- Il faut avoir une intuition sur la forme de la solution (TriFusion : $\mathcal{O}(n \log n)$)
- On veut montrer que $T(n) = 2T(\frac{n}{2}) + \Theta(n) \in \mathcal{O}(n \log n)$
- On montre par récurrence qu'il existe f(n) t.q. $\forall n \ T(n) \leq f(n)$
 - ▶ On va en déduire **a posteriori** que $T(n) \in \mathcal{O}(f(n))$

Attention!

- L'hypothèse de récurrence est $T(n) \leq f(n)$, et **non** $T(n) \in \mathcal{O}(f(n))$
- L'hypothèse de récurrence "pour tout $n \le k$, $T(n) \in \mathcal{O}(f(n))$ " ne veut pas dire grand chose puisque la notation \mathcal{O} est définie pour n arbitrairement grand : on remplace tous les termes en $\mathcal{O}, \Omega, \Theta$ par une fonction élément de l'ensemble

Méthode par substitution (condition aux limites)

$$T(n) = 2T\left(\frac{n}{2}\right) + n \le cn\log n$$

- Il faut montrer que la formule est vraie pour les conditions limites de la récurrence pour des données de petite taille, i.e. n=1
- **Problème**: c'est faux pour n = 1 car $c \times 1 \times \log 1 = 0 < T(1) = 1$;
- ullet Mais on cherche à montrer la complexité pour des données de grande taille : $n \geq n_0$ et on a le choix pour $n_0 \implies$ vérifier pour T(2) (et T(3))
- On peut aussi borner par $f(n) = cn \log n + b$ puisque $cn \log n + b \in \mathcal{O}(n \log n)$
 - ▶ Ou même $f(n) = cn \log n + an + b$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

62 / 169

Méthode par substitution (condition aux limites)

$$T(n) = 2T\left(\frac{n}{2}\right) + n \le cn\log n$$

• On vérifie que la formule tient pour T(2) et T(3)

$$T(2) = 2T(2/2) + 2$$

$$T(2) = 2T(1) + 2$$

$$T(2) = 2 * 1 + 2 = 4 \le 2c \log 2 = 2c$$

$$T(2) = 4 \le 2c$$

$$c \ge 2$$

- On fait la même chose pour T(3)...
- ... et on obtient que c doit être > 2.

Méthode par substitution (Récurrence)

$$T(n) = 2T\left(\frac{n}{2}\right) + n \le cn\log n$$

• On suppose que $T(x) \le cx \log x$ est vrai pour tout $2 \le x \le n-1$; En particulier :

$$T\left(\frac{n}{2}\right) \le c\frac{n}{2}\log\frac{n}{2}$$

• On vérifie que c'est aussi le cas pour x = n en substituant la formule pour T(x) dans son expression récursive :

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$\leq 2c\frac{n}{2}\log\left(\frac{n}{2}\right) + n$$

$$\leq cn\log\frac{n}{2} + n$$

$$= cn\log n - cn\log 2 + n$$

$$= cn\log n - cn + n$$

$$\leq cn\log n \qquad (pour c \geq 1)$$

• On a pris $c \ge 2$, pour satisfaire les conditions initiales T(2) et T(3)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

64 / 169

Diviser pour régner : TriFusion

Exemple

Algorithme: TriFusion (L)

Données : une liste L **Résultat :** la liste L triée

si $|L| \le 1$ alors retourner L;

retourner L

sinon

$$mil \leftarrow \lfloor \frac{|L|+1}{2} \rfloor;$$

 $L_l \leftarrow \text{TriFusion}(L[:mil]);$

 $L_r \leftarrow \text{TriFusion}(L[mil:]);$ retourner Fusion $(L_l, L_r);$

$$T(n) = egin{cases} \Theta(1) & ext{si } n=1 \ 2 & T\left(rac{n}{2b}
ight) + \Theta(n^{1d}) & ext{si } n>1 \end{cases}$$

• Trifusion : a = 2, b = 2, d = 1

• L'algorithme découpe la donnée en a sous-problèmes de taille $\frac{n}{b}$, les résout récursivement et rassemble les réponses en $\Theta(n^d)$

Diviser pour régner : RechBin

Exemple

Algorithme: RechBin (L)

Données : tableau trié *L* contenant *e* **Résultat** : la position de *e* dans *L*

$$m \leftarrow \left| \frac{|L|}{2} \right|;$$

 $\operatorname{si} L[m] = e \operatorname{alors}$ ∟ retourner *m*

sinon si L[m] < e alors

retourner RechBin(L[m+1:])

sinon

retourner RechBin(L[:m])

$$T(n) = egin{cases} \Theta(1) & ext{si } n=1 \ 1_{a}T\left(rac{n}{2b}
ight) + \Theta(n^{0d}) & ext{si } n>1 \end{cases}$$

• Recherche Binaire : a = 1, b = 2, d = 0

• L'algorithme découpe la donnée en $\frac{a}{b}$ sous-problèmes de taille $\frac{n}{b}$, les résout récursivement et rassemble les réponses en $\Theta(n^d)$

Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

66 / 169

Théorème maître (général) - version simplifiée

- On ne considère que les récurrences $T(n) = aT(\frac{n}{b}) + \Theta(n^d)$ (ou $\mathcal{O}(n^d)$) avec $a \ge 1, b > 1, d \ge 0$

 - 1 Si $d > \log_b a$, $T(n) = \Theta(n^d)$ 2 Si $d < \log_b a$, $T(n) = \Theta(n^{\log_b a})$ 3 Si $d = \log_b a$, $T(n) = \Theta(n^d \log n)$

complexité dominée par le coût de fusion complexité dominée par le coût du sous-problème pas de domination

Tri fusion :

$$T(n) = egin{cases} \Theta(1) & ext{si } n=1 \ 2T(n/2) + \Theta(n) & ext{si } n>1 \end{cases}$$

• a = 2, b = 2, d = 1, $\log_2 2 = 1 = d$

On est donc dans le 3ème cas et la complexité en $\Theta(n \log n)$

Théorème maître (général) - version simplifiée

- On ne considère que les récurrences $T(n) = aT(\frac{n}{b}) + \Theta(n^d)$ (ou $\mathcal{O}(n^d)$) avec $a \ge 1, b > 1, d \ge 0$
 - 1 Si $d > \log_b a$, $T(n) = \Theta(n^d)$ 2 Si $d < \log_b a$, $T(n) = \Theta(n^{\log_b a})$ 3 Si $d = \log_b a$, $T(n) = \Theta(n^d \log n)$

complexité dominée par le coût de fusion complexité dominée par le coût du sous-problème pas de domination

Recherche binaire :

$$T(n) = egin{cases} \Theta(1) & ext{si } n=1 \ T(rac{n}{2}) + \Theta(1) & ext{si } n>1 \end{cases}$$

• a = 1, b = 2, d = 0, $\log_2 1 = 0 = d$

On est donc dans le cas 3 et la complexité en $\Theta(\log n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes Récursifs

68 / 169

Programmation Dynamique

Contexte & plan du chapitre

- Nous allons découvrir une nouvelle méthode de conception d'algorithme : la programmation dynamique
- Nous allons introduire cette méthode à travers le problème de multiplication de matrices
- Nous allons résoudre ce problème avec 3 approches différentes :
 - Approche force brute
 - Algorithme récursif
 - Opening in the second of th

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

70 / 169

Le problème de multiplication de matrices

	•	
	$I_{2,1}c_{31} + I_{2,2}c_{32} + I_{2,3}c_{33}$	

ullet Cas général : A_1 de taille $t_0 imes t_1$ et A_2 de taille $t_1 imes t_2$, il y a $t_0 imes t_1 imes t_2$ multiplications à faire.

Associativité de la multiplication

- 3 matrices A_1 , A_2 , A_3 de dimensions (10×4) , (4×100) , (100×25) , respectivement.
- On veut calculer A₁ * A₂ * A₃
- Il y a deux façons (la multiplication est associative) :
- Nombre de multiplications nécessaires :
 - $((A_1 * A_2) * A_3)$:
 - 10 * 4 * 100 = 4000 multiplications pour calculer $M = A_1 * A_2$ de dimension 10×100
 - 2 10 * 100 * 25 = 25000 multiplications pour calculer $M * A_3$
 - 3 total : 29000 multiplications
 - $(A_1 * (A_2 * A_3))$
 - **1** 4*100*25 = 10000 multiplications pour calculer $N = A_2 * A_3$ de dimension 4×25
 - 2 10 * 4 * 25 = 1000 multiplications pour calculer $A_1 * N$
 - 3 total: 11000 multiplications
- Choisir $(A_1 * (A_2 * A_3)) ! !$

Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

72 / 169

Problème de multiplication de matrices

- Soit A_1 , A_2 , ... A_n n matrices
- A_i de taille $t_{i-1} * t_i$
- On veut trouver un parenthésage de $A_1 \times A_2 \times \dots A_n$ qui minimise le nombre de multiplications pour calculer le produit $A_1 \times A_2 \times \dots A_n$

- Énumérer tous les partenthésages possibles
- Calculer le coût de chaque parenthésage
- Choisir la solution avec la valeur mimimale

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

74 / 169

Combien de parenthésages possibles?

- 3 matrices $A_1 * A_2 * A_3$?
 - $(A_1 * A_2) * A_3$
 - $A_1 * (A_2 * A_3)$
 - 2 possibilités
- Pour 4 matrices → 5 possibilités
- Pour 5 matrices → 14 possibilités
- Pour 10 matrices? → 4862 possibilités
- Pour 50 matrices \rightarrow 5 \times 10²¹ possibilités
- ullet Cas général : pour n matrices, il y a C(n-1) parenthésages possibles, où C(n) est le nombre de Catalan $C(n) = \frac{1}{n+1} \times \binom{2n}{n}$ (à étudier en détail en TD)
- $C(n) \in \Omega(\frac{4^n}{n^{1.5}})$
- C'est exponentiel!!
- La complexité de l'approche force brute est $\Omega(\frac{4^n}{(n-1)^{1.5}})$
- Très inefficace

Une première solution récursive (diviser pour régner)

- Pour chaque solution, il faut découper la séquence $A_1, ..., A_n$ en deux sous séquences $A_1...A_k$ et $A_{k+1}...A_n$ (le calcul sera $(A_1 \times ... A_k) * (A_{k+1} \times ... A_n)$)
- Soit m[i][j] le coût minimal pour la séquence $A_i ... A_j$ (avec i < j)
- Solution du problème est m[1][n]
- Pour le parenthésage $(A_1..A_k) \times (A_{k+1}..A_n)$, le coût est

```
cout = m[1][k] + m[k+1][n] + t_0 \times t_k \times t_n
\implies m[1][n] = \min_{k \in [1, n-1]} \{ m[1][k] + m[k+1][n] + t_0 \times t_k \times t_n \} :
```

• Cas général de la récursivité :

```
① Si i < j, m[i][j] = \min_{k \in [i,j-1]} \{m[i][k] + m[k+1][j] + t_{i-1} \times t_k \times t_j\}:
② m[i][i] = 0
```

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

76 / 169

Algorithme récursif

```
Algorithme : cout_recursif (A_1 \dots A_n)

Données : Une liste de matrices A_1, A_2, \dots A_n de tailles t_0 \times t_1, t_1 \times t_2, \dots t_{n-1} \times t_n

Résultat : nombre minimal de multiplications pour calculer A_1 \times \dots \times A_n

début

c, tmp : entier;
```

```
c, tmp : entier; c \leftarrow \infty ; si \ n = 1 \ alors | retourner 0; sinon | pour k \ de \ 1 \ and n = 1 \ faire | tmp \leftarrow \text{cout\_recursif}(A_1 \dots A_k) + \text{cout\_recursif}(A_{k+1}, A_n) + t_0 \times t_k \times t_n; si \ tmp < c \ alors | c \leftarrow tmp; retourner c;
```


Complexité de cout_recursif

$$T(n) = egin{cases} c_1 & ext{si } n = 1 \ \sum_{k=1}^{n-1} (T(k) + T(n-k) + c_2) & ext{si } n > 1 \end{cases}$$

Avec c_1 et c_2 deux constantes

- Comment calculer la complexité sous une forme non-récursive ?
- Le théorème maître ne s'applique pas!
- On va essayer d'utiliser la méthode par substitution. D'abord on simplifie la récursion
- Pour n > 1: $T(n) = 2 \sum_{k=1}^{n-1} T(k) + c_2 n$
- Pour n > 1: $T(n) T(n-1) = 2T(n-1) + c_2$
- Donc

$$T(n) = \begin{cases} c_1 & \text{si } n = 1\\ 3T(n-1) + c_2 & \text{si } n > 1 \end{cases}$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

78 / 169

Complexité de cout_recursif

•

$$T(n) = egin{cases} c_1 & ext{si } n=1 \ 3T(n-1)+c_2 & ext{si } n>1 \end{cases}$$

- On applique la méthode par substitution
- $T(1) = c_1$
- $T(2) = 3T(1) + c_2 = 3c_1 + c_2$
- $T(3) = 3T(2) + c_2 = 9c_1 + 4c_2$
- $T(4) = 3T(4) + c_2 = 27c_1 + 13c_2$
- $T(n) = c_1 \times 3^{n-1} + c_2 \times \sum_{i=0}^{n-2} 3^i$ (On peut le prouver par récurrence)
- Par conséquent : $T(n) \in \Theta(3^n)$

Analyse de l'algorithme récursif par rapport à l'approche force brute

- La complexité de l'approche force brute est en $\Omega(\frac{4^n}{n^{1.5}})$ et la complexité de l'algorithme récursif est en $\Theta(3^n)$. Que choisir?
- Soit $f(n) = \frac{4^n}{n^{1.5}}$ et $g(n) = 3^n$. On veut comparer asymptotiquement f et g.
- Rappel :
 - ► Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0$ (constante) alors $f \in \Theta(g)$ (et donc $g \in \Theta(f)$)

 ► Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ alors $f \in \mathcal{O}(g)$ et $f \notin \Omega(g)$ ► Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ alors $f \in \Omega(g)$ et $f \notin \mathcal{O}(g)$

Règle de l'Hôpital

f et g deux fonctions dérivables t.q. $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$, alors :

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}\text{ si cette limite existe.}$$

f' (respectivement g') représente la dévirée de f (respectivement g)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

80 / 169

Analyse de l'algorithme récursif par rapport à l'approche force brute

- Rappel : la complexité de l'approche force brute est en $\Omega(\frac{4^n}{n^{1.5}})$ et la complexité de l'algorithme récursif est en $\Theta(3^n)$. Que choisir?
- On va comparer $\frac{4^n}{n^{1.5}}$ et $3^n \implies$ on calcule $\lim_{n\to\infty} \frac{\frac{4^n}{n^{1.5}}}{3^n}$?
 - $\frac{\frac{4^n}{n^{1.5}}}{2^n} = \frac{\frac{4}{3}^n}{n^{1.5}}$
 - ▶ On utilise la règle de l'Hôpital : $\lim_{n \to \infty} \frac{(\frac{4}{3}^n)'}{(n^{1.5})'} = \lim_{n \to \infty} \frac{\ln(\frac{4}{3})\frac{4}{3}^n}{1.5n^{0.5}} = \lim_{n \to \infty} \frac{(\ln(\frac{4}{3})\frac{4}{3}^n)'}{(1.5n^{0.5})'} = \lim_{n \to \infty} \frac{\ln(\frac{4}{3})*\ln(\frac{4}{3})\frac{4}{3}^n}{1.5*0.5*n^{-0.5}} = \infty$
 - ▶ Donc $\lim_{n\to\infty} \frac{\frac{4^n}{n^{1.5}}}{3^n} = \infty$ et par conséquent : $\frac{4^n}{n^{1.5}} \in \Omega(3^n)$ et $\frac{4^n}{n^{1.5}} \notin \mathcal{O}(3^n)$
 - L'algorithme récursif est meilleur que l'approche force brute

Algorithme: cout_recursif $(A_1 \dots A_n)$ **Données :** Une liste de matrices $A_1, A_2, \dots A_n$ de tailles $t_0 \times t_1, t_1 \times t_2, \dots t_{n-1} \times t_n$ **Résultat :** nombre minimal de multiplications pour calculer $A_1 \times \ldots \times A_n$ début c, tmp : entier; $c \leftarrow \infty$; si n=1 alors retourner 0; sinon pour k de 1 à n-1 faire $tmp \leftarrow \text{cout_recursif}(A_1 \dots A_k) + \text{cout_recursif}(A_{k+1}, A_n) + t_0 \times t_k \times t_n;$ retourner c;

- cout_recursif (A_i, A_i) est appelé plusieurs fois (e.g. pour n = 5, on appelle cout_recursif(3,5) quand k = 1, k = 2, et k = 3).
- L'algorithme récursif fait beaucoup de calculs redondants! on peut l'améliorer
- ⇒ Programmation dynamique

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

82 / 169

Programmation dynamique

- Méthode de conception de type "diviser pour régner"
- Souvent utilisée avec des problèmes d'optimisation (on cherche une solution qui minimise ou maximise un critère)
- Assure que chaque sous-problème est traité une seule fois afin d'éviter le problème de redondance.
- Idée clé :
 - mémoriser les solutions des sous-problèmes (dans un tableau/matrice par exemple)
 - ▶ approche ascendante : Soit P(n) le problème à résoudre de taille n. Pour tout k < i, si P(i) dépend de P(k), alors résoudre P(k) avant de résoudre P(i)

Programmation dynamique pour la multiplication des matrices

- Il faut s'assurer que l'algorithme calcule le coût de chaque séquence de longueur I avant de calculer le coût d'une séquence de taille I+1
- Donc l'algorithme doit calculer (dans l'ordre)
 - 1 Le coût des séquences de taille 2 : m[1][2], m[2][3], ... m[n-1][n]
 - ② Puis le coût des séquences de taille $3:m[1][3],m[2][4],\ldots m[n-2][n]$
 - **3** ...
 - 4 Finalement le coût de la séquence de taille n (coût de la solution optimale) : m[1][n]

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

84 / 169

Programmation dynamique pour la multiplication des matrices

```
Algorithme: CoutMultiplication_ProgDynamique
```

```
Données : Une liste de matrices A_1, A_2, \dots A_n de tailles t_0 \times t_1, t_1 \times t_2, \dots t_{n-1} \times t_n
Résultat: nombre minimal de multiplications pour calculer A_1 \times ... \times A_n
I, tmp : entier;
m[][]: matrice de taille n \times n;
m[i][j] est le coût minimal pour la séquence A_i, \ldots A_i (i < j) ;
% Initialisation;
pour i de 1 à n faire
 | m[i][i] = 0;
pour / de 2 à n faire
     pour i de 1 à n-l+1 faire
          %On va calculer le coût minimal de la séquence de longeur <math>I qui commence à A_i et le
            sauvegarder dans m[i][j] avec j = i + l - 1;
          j \leftarrow i + l - 1;
          m[i][j] \leftarrow \infty;
          pour k de i à j-1 faire
                tmp \leftarrow m[i][k] + m[k+1][j] + t_{i-1} \times t_k \times t_j;
                si tmp < m[i][j] alors
                 m[i][j] \leftarrow tmp;
```

retourner m[1][n]

Complexité de

CoutMultiplication_ProgDynamique

- Clairement CoutMultiplication_ProgDynamique $\in O(n^3)$
- Meilleur que l'algorithme récursif $(\Theta(3^n))$ et la force brute $(\Omega(\frac{4^n}{(n-1)^{1.5}}))$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

86 / 169

Programmation dynamique : résumé

- Les 5 étapes de la programmation dynamique :
 - Caractériser la structure d'une solution optimale
 - 2 Définit récursivement la valeur d'une solution optimale
 - Calculer la valeur d'une solution optimale en remontant progressivement jusqu'au problème initial
 - Construire une solution optimale en se basant sur les informations calculées
- La dernière étape n'est pas obligatoire si on ne s'intéresse qu'au coût de la solution optimale
- Compléter CoutMultiplication_ProgDynamique pour retourner le parethésage optimal.

Algorithmes gloutons

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons 88 / 169

Rappel

- Nous avons traité deux types de problèmes :
 - Les problèmes de décision : Trouver une solution qui satisfait des critères (i.e., problème de tri, problème de recherche d'élément, PGCD, etc)
 - Les problèmes d'optimisation : Trouver une solution qui satisfait des critères et qui minimise ou maximise un coût (e.g., parenthèsage pour la multiplication de matrices). Le coût dans ce cas s'associe à une "fonction objectif".
- Nous avons étudié différentes approches de résolutions :
 - L'approche force brute (recherche exhaustive, énumération)
 - Paradigme diviser pour régner (et les algorithmes récursifs)
 - Programmation dynamique
- On découvre aujourd'hui une nouvelle approche de résolution (l'approche gloutonne) et une jolie structure de représentation de problèmes qui s'appelle "les matroïdes"

Algorithmes gloutons (Greedy algorithms)

- Contexte : typiquement pour les problèmes d'optimisation
- Idée de base :
 - Résoudre le problème en une séquence d'étapes/choix
 - ▶ Pour chaque étape, faire un choix qui semble optimal à l'étape courante
- Avantage : Rapide en temps de calcul
- Inconvénient : Pas de garantie sur l'optimalité

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

90 / 169

Exemple : Problème du Voyageur de commerce

Voyageur de commerce (optimisation)

- donnée : ensemble de villes
- question : quel est le plus court cycle passant par toutes les villes une seule fois?

Figure – Instance du problème du voyageur de commerce sous forme de graphe

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

92 / 169

Figure – Une solution non optimale

• Cycle : a,b,c,d,a

• Coût de la solution :7+3+2+5=17

Figure – Une solution optimale

• Cycle: a,c,b,d,a

• Coût de la solution :1 + 3 + 4 + 5 = 13

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons 94 / 169

Énumération exhaustive?

- 2 Villes -> 1
- 3 Villes -> 1
- 4 Villes -> 3
- 5 Villes -> 12
- ullet n Villes $->rac{(n-1)!}{2}$ (la moitié du nombre de permutations possible de taille n-1)
- 40 villes -> à peu près 10^{46} solutions à tester!
- Avec une machine moderne : 3×10^{29} années (plus que *AgeUnivers*³)!
- La recherche exhaustive est inefficace!!

Algorithme Glouton

• Idée gloutonne :

- ► Construction de la solution ville par ville selon l'ordre de visite
- À partir de la dernière ville visitée, choisir la ville la plus proche qui est non visitée.
- Arrêter quand on visite toutes les villes
- ▶ Ajouter la première ville pour construire un cycle.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons 96 / 169

Figure — Construction de la solution gloutonne étape par étape : Initialisation à partir de "a"

• Chemin initial: a

Coût initial :0

Figure – Construction de la solution gloutonne étape par étape

- Cycle: a,c,d, b, a
- Coût courant :1+2+4+7=14
- C'est la solution retournée par l'algorithme glouton
- Ce n'est pas une solution optimale mais c'est assez rapide à trouver

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons

101 / 169

Algorithme Glouton pour le voyageur de commerce

```
Algorithme: Glouton (n, distance)
Données : n \in \mathbb{N}^* : nombre de villes, distance[i][j] \in \mathbb{R}^+ : la distance entre ville i et ville j
Résultat : Permutation de 1, \ldots, n
début
       Ensemble \leftarrow \{1, \ldots n\};
       element \leftarrow 1;
       Permutation \leftarrow element;
       \textit{Ensemble} \leftarrow \textit{Ensemble} \setminus \{\textit{element}\} \ ;
       tant que |Permutation| < n faire
               \min \leftarrow +\infty ;
               \mathbf{pour}\ e \in \mathit{Ensemble}\ \mathbf{faire}
                      si distance[element][e] < min alors
                             min \leftarrow distance[element][e];
                              ville \leftarrow e;
                                                                    // Ajouter ville à la fin de Permutation
               Permutation \leftarrow Permutation, ville~;
               Ensemble \leftarrow Ensemble \setminus \{ville\};
               element \leftarrow ville;
       retourner Permutation;
```

Complexité : $O(n^2)$

Matroïdes

- Résoudre des problèmes d'optimisation avec des algorithmes gloutons
- Un matroïde représente une structure particulière utilisée pour concevoir un algorithme glouton optimal

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons 103 / 169

Définition

- Un matroïde est un couple $\mathcal{M}=(\mathcal{E},\mathcal{I})$ qui satisfait les conditions suivantes :
 - $ightharpoonup \mathcal{E}$ est un ensemble fini non vide
 - lacktriangledown $\mathcal I$ est un ensemble de sous ensembles de $\mathcal E$ tel que :
 - ★ Si $H \in \mathcal{I}$, et $F \subset H$, alors $F \in \mathcal{I}$ (on dit que \mathcal{I} est héréditaire)
 - ★ Si $F \in \mathcal{I}$, $H \in \mathcal{I}$ et |F| < |H|, alors $\exists x \in H \setminus F$ tel que $F \cup \{x\} \in \mathcal{I}$ (propriété d'échange)
- Si $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ est un matroïde et $H \in \mathcal{I}$, alors H est appelé "sous ensemble indépendant"

Exemple (simple) de Matroïde

- $E = \{1, 2, 3, 4\}$
- $I = \{\{\}, \{1\}, \{2\}, \{4\}, \{1, 4\}, \{2, 4\}\}$
- Preuve
 - E est un ensemble fini non vide (évident)
 - ► / est héréditaire car :

```
Pour {2,4}: {} ∈ I, {2} ∈ I, {4} ∈ I
Pour {1,4}: {} ∈ I, {1} ∈ I, {4} ∈ I
Pour {1}: {} ∈ I, {1} ∈ I
Pour {2}: {} ∈ I, {2} ∈ I
Pour {3}: {} ∈ I, {4} ∈ I
Pour {} : {} ∈ I
```

► Propriété d'échange :

```
★ Pour H = \{1, 4\} et F = \{2\} : F \cup \{4\} \in I

★ Pour H = \{2, 4\} et F = \{1\} : F \cup \{2\} \in I

★ Pour H = \{4\} et F = \{\} : F \cup \{4\} \in I

★ ...
```

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons

105 / 169

Matroïde pondéré

- ullet Soit $\mathcal{M}=(\mathcal{E},\mathcal{I})$ un matroïde
- \mathcal{M} est pondéré s'il existe une fonction de poids pour les éléments de \mathcal{E} . Pour chaque $x \in \mathcal{E}$, $w(x) \in \mathbb{R}^{+*}$ est le poids de x.
- Si F est un sous ensemble de \mathcal{E} , alors le poids de F se définit avec $w(F) = \sum_{x \in F} w(x)$
- Problème de sous ensemble indépendant de poids maximal :
 - ▶ Donnée : $\mathcal{M} = (\mathcal{E}, \mathcal{I})$: matroïde et w : fonction de poids
 - ▶ Question : Trouver $F \in \mathcal{I}$ de poids maximal

Algorithme glouton

Complexité: Si le test d'appartenance (ligne 7) se fait en O(f(n)), alors la complexité de Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I}), w)$ est O(nlog(n) + nf(n)) avec $n = |\mathcal{E}|$ (car le tri peut se faire en O(nlog(n))).

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

<u>10</u>7 / 169

L'importance des matroïdes

Theorem

Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I})$, w) retourne un sous ensemble indépendant optimal

```
Algorithme: Glouton (\mathcal{M}(\mathcal{E}, \mathcal{I}), w)
```

Données : $\mathcal{M}(\mathcal{E}, \mathcal{I})$: matroïde, w : fonction de poids

Résultat : Sous ensemble indépendant de E de poids maximal

début

```
F \leftarrow \{\};
n \leftarrow |\mathcal{E}| ;
L \leftarrow Trier(\mathcal{E}) \text{ par poids décroissant };
\text{pour } i \in [1..n] \text{ faire}
\text{si } F \cup \{L[i]\} \in \mathcal{I} \text{ alors}
\text{but } F \leftarrow F \cup \{L[i]\};
\text{retourner } F;
```


Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I}), w)$, alors?

- Rappel pour un problème d'optimisation :
 - ▶ Une solution est une sortie qui respecte les exigences du problème
 - ▶ Une solution optimale est une solution qui (minimise ou maximise) une fonction (objectif).
 - Le coût d'une solution est la valeur correspondante à la fonction objectif
- ullet Pour exploiter Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I})$, w) pour un problème d'optimisation \mathcal{P} :
 - ▶ Il faut trouver un matroïde $\mathcal{M}(\mathcal{E},\mathcal{I})$ pondéré tel qu'une solution optimale de \mathcal{P} correspond à un sous ensemble indépendant (i.e., élément de \mathcal{I}) de poids maximal qu'on peut calculer à partir de Glouton ($\mathcal{M}(\mathcal{E},\mathcal{I})$, w).
 - ▶ Dans ce cas, l'algorithme glouton est garanti de retourner une solution optimale
- Cette approche ne marche pas pour tous les problèmes. En particulier, il y a souvent deux limites :
 - 1 Difficulté à définir l'ensemble / des sous ensembles indépendants
 - 2 Même si on trouve I, le test d'appartenance $(F \in I?)$ est coûteux en temps (par exemple quand $f(n) = O(2^n)$.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons 109 / 169

Représentation des Données

Complexité en fonction de la taille de la donnée

- Pourquoi calculer la complexité en fonction de la taille de la donnée?
- Sinon quel paramètre choisir?
 - ▶ Multiplication de x par y : en fonction de x? de y? de x + y? de xy?
- Sinon comment comparer des algorithmes avec des données différentes?
 - Est-ce que Factorielle est plus efficace que triSélection?
 - Factorielle : $\Theta(x)$ opérations, $|x| = \log_2 x$, donc $\Theta(2^{|x|})$ opérations
 - triSélection : $\Theta(n^2)$ opérations, |T| = n, donc $\geq \Theta(|L|^2)$ opérations
- Comment connaître la taille de la donnée?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

111 / 169

Calculer la taille de la donnée

On compte le nombre de bits mémoire, en ordre de grandeur (Θ)

- Exemples :
 - ▶ Types char, int, float, etc. : $\mathcal{O}(1)$
 - ▶ Type $\mathbb{N} : \Theta(\log n)$ (pour un entier $\leq n$)
 - ▶ Type liste d'int : $\Theta(n)$ (pour une liste de longueur $\leq n$)

Borne supérieure (\mathcal{O})

Trouver un encodage

Borne inférieure (Ω)

Principe des tiroirs

Encodage

Un encodage pour un type de donnée ${\mathcal T}$ est une fonction *injective* :

$$f: \mathcal{T} \mapsto \{0,1\}^k$$

- Tout $x \in \mathcal{T}$ a un seul code f(x) (fonction)
 - ► Sinon on ne peut pas toujours encoder
- Pour $x, y \in \mathcal{T}$ distincts, $f(x) \neq f(y)$ (injective)
 - ► Sinon on ne peut pas toujours decoder
- Exemples : ASCII, Morse,...

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

113 / 169

Encodage d'un char

- Représenter les entiers entre 0 et 255 (char)
- Chaque bit repésente un terme de la somme $x = \sum_{i=0}^{7} b_i 2^i$
- Pour $x = 75: 1 \times 2^6 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0$

Borne supérieure (et inféreieure)

Si c est de type "char" alors $|c| \in \mathcal{O}(1)$, et donc $|c| \in \Theta(1)$

LAAS CNRS

Encodage d'un entier $n \in \mathbb{N}$

- Code en base 2 : $\mathcal{O}(\log_2 n)$ pour coder tout entier naturel $\leq n$
- Problème : combien de bits allouer pour coder *n'importe quel* entier? ∞ ?
- Donner le nombre de bits "utiles" en préfixe, en code unaire (autant de 0 que de bits significatifs)
- Code en $\mathcal{O}(\log_2(n))$ pour le préfixe + $\mathcal{O}(\log_2(n))$ pour le suffixe

Borne supérieure

Si $n \in \mathbb{N}$ alors $|n| \in \mathcal{O}(\log n)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

115 / 169

Encodage d'un tableau de n int

- Chaque int requiert 4 octets : $n \times \mathcal{O}(1)$
- ullet Même astuce que pour les entiers, le nombre d'éléments en préfixe : $\mathcal{O}(\log n)$
- $n \times \mathcal{O}(1) + \mathcal{O}(\log n) = \mathcal{O}(n)$

Borne supérieure

Si L est un tableau contenant n int, alors $|L| \in \mathcal{O}(n)$

Borne inférieure sur la taille de la donnée

Quelques principes de base de dénombrement

Principe additif

Les choix mutuellement exclusifs se combinent par addition.

• Ex : combien de choix possibles de plats principal si on a 3 types de viande, 2 poisson et 3 plats végétariens? 3 + 2 + 3 = 8 plats

Principe multiplicatif

Les choix indépendents se combinent par multiplication.

- Combien de menus s'il y a 3 entrées, 4 plats, et 4 desserts ? $3 \times 4 \times 4 = 48$ menus
- Combien de valeurs possibles pour un int sur 32 bits? 2³² valeurs

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

<u>11</u>7 / 169

Principes des tiroirs

Principe des tiroirs

Si m objets sont rangés dans n tiroirs, alors un tiroir en contient au moins $\lceil \frac{m}{n} \rceil$.

- Si m > n objets sont rangés dans n tiroirs, alors un tiroir en contient au moins 2
- Il y a deux londoniens avec exactement le même nombre de cheveux
 - ► Il n'y a pas plus d'un million de cheveux sur un crâne, donc pas plus d'un million de nombres de cheveux distincts
 - ► Il y a plus d'un million de londoniens
 - lacktriangleright m londoniens à répartir parmi n chevelures possibles \Rightarrow au moins deux londoniens avec la même chevelure

Minorant pour l'espace mémoire

un encodage est une fonction injective d'un type de donnée vers les mots binaires :

$$f: \mathcal{T} \mapsto \{0,1\}^k \quad \text{avec } f(x) \in \{0,1\}^{|x|}$$

- Il y a 2^k mots binaires de longueur k (Principe multiplicatif)
- Il faut au moins autant de mots binaires que de valeurs possibles pour la donnée
 - Principe des tiroirs : sinon, des données distinctes ont le même code, et f est non-injective

Minorant pour la taille |x| d'une donnée x de type T

Soit $\#(\mathcal{T})$ le nombre de valeurs possibles du type de donnée \mathcal{T} , la mémoire |x| nécessaire pour stocker une donné $x \in \mathcal{T}$ est telle que $2^{|x|} \geq \#(\mathcal{T})$, \Rightarrow

$$|x| \in \Omega(\log \#(\mathcal{T}))$$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

119 / 169

Bornes inférieures

- Calculons $\#(\mathcal{T})$, le nombre de valeurs possibles pour la donnée x de type \mathcal{T} :
 - ▶ Entier naturel inférieur ou égal à n : n+1, soit $\Theta(n)$

Pour \times un entier naturel inférieur ou égal à n:

 $|x| \in \Omega(\log n)$ et puisqu'il existe un encodage tel que $|x| \in \mathcal{O}(\log n)$, alors $|x| \in \Theta(\log n)$

- Tableau d'int de longueur $n: (2^{32})^n$, soit $\Theta(2^{32n})$
- ► Tableau d'int de longueur $\leq n : \sum_{i=0}^{n} 2^{32i}$, soit $\Theta(2^{32n})$

Pour L un tableau d'int de longueur $\leq n$:

 $|L| \in \Omega(n)$ et puisqu'il existe un encodage tel que $|L| \in \mathcal{O}(n)$, alors $|L| \in \Theta(n)$

Complexité en fonction de la taille de la donnée

- L'algorithme **A** est en $\Theta(f(x))$ pour une donnée x
- La taille |x| de la donnée est en $\Theta(g(x))$
- Alors la complexité de **A** est en $\Theta(f(g^{-1}(x)))$

Exemple Algorithme : Carré(x)**Données**: un entier x • Complexité : $\Theta(x^2)$ **Résultat :** un entier valant x^2 *r* : entier; début • Taille de la donnée $|x| = \Theta(\log x)$ $r \leftarrow 0$; **pour** i allant de $1 \stackrel{.}{a} \times$ faire • Autrement dit, $x = \Theta(2^{|x|})$ **pour** j allant de 1 à x **faire** $r \leftarrow r + 1$; • Donc complexité en $\Theta(2^{2|x|})$ (exponentielle!) retourner r;

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

121 / 169

Structure de données

Le choix de la structure de données est très important dans la conception d'un algorithme

- Choisir la structure pour laquelle les opérations utiles sont les plus efficaces
- Un type abstrait est défini par les opérations qui sont efficaces sur ce type
 - ▶ Insertion (I) : ajouter un nouvel élément
 - test d'**Appartenance** (A) : vérifier si l'élément x est présent
 - Suppression (S) : supprimer un élément x
 - Suppression du Dernier (SD) : supprimer le dernier élément inséré
 - Suppression du Premier (SP) : supprimer le premier élément inséré
 - Suppression du Minimum (SM) : supprimer l'élément minimum

Structure de données

- Un type abstrait est défini par les opérations qui sont efficaces sur ce type
- Une *réalisation* correspond à du code (des algorithmes)

Type Abstrait	Réalisation	ı	А	S	SP	SD	SM
Pile	Liste chainée	$\mathcal{O}(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\mathcal{O}(1)$	$\Theta(n)$
File	Liste chainée avec pointeurs <i>début</i> et <i>fin</i>	$\mathcal{O}(1)$	$\Theta(n)$	$\Theta(n)$	$\mathcal{O}(1)$	$\Theta(n)$	$\Theta(n)$
Index statique	Vecteur trié	$\Theta(n)$	$\mathcal{O}(\log n)$	$\Theta(n)$	N/A	N/A	$\Theta(n)$
File de priorité	Tas binaire	$\mathcal{O}(\log n)$	$\Theta(n)$	$\Theta(n)$	N/A	N/A	$\mathcal{O}(\log n)$
Ensemble	Table de hâchage	$\mathcal{O}(1)$	$\mathcal{O}(1)^*$ $\Theta(n)$	$\mathcal{O}(1)^*$ $\Theta(n)$	N/A	N/A	$\Theta(n)$
Ensemble trié	ABR, AVL Arbre rouge-noir	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	N/A	N/A	$\mathcal{O}(\log n)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Représentation des Données 123 / 169

Exemple : Table de Hâchage

Fichier des étudiants de l'INSA, il faut une clé unique pour identification

- Tatouer chaque étudiant avec son numéro d'inscrit (1, ..., n)?
 - Une table T avec T[x] contenant les informations pour l'étudiant x
- Utiliser le numéro de sécurité sociale?
 - Beaucoup trop de clés possibles!

Table de Hâchage : n enregistrements / table de taille $m \in \Theta(n)$

- Soit U l'ensemble des clés possibles, avec $|U| = M, m \ll M$
- Soit $h: U \mapsto \{1, \dots, m\}$ un fonction de hâchage : renvoie un index pour chaque clé, par ex. $h(x) = ((ax + b) \mod p) \mod m)$ avec $m \ll p \ll M$ premier et 0 < a, b < p
- L'enregistrement de clé x est stocké dans T[h(x)]. Si h(x) = h(y) et $x \neq y$ on dit qu'il y a une *collision*

Exemple: Table de Hâchage

- Analyse de la complexité du test d'appartenance (A)
 - Pire des cas $T_{\text{max}}(n) = \Theta(n)$ (tous les enregistrements ont la même valeur de hâchage)
 - ▶ Pour $T_{moy}(n)$ on suppose une distribution uniforme des valeurs de h(x) dans $\{1, \ldots, m\}$
 - Soit L_i la longueur de la liste T[i], et $E(L_i)$ l'espérance de L_i : $\sum_{i=1}^m E(L_i) = n$
 - ▶ Mais $E(L_i)$ ne dépend pas de i, donc $T_{moy}(n) = E(L_i) = n/m \in \mathcal{O}(1)$

_AAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Représentation des Données

125 / 169

Exemple: Tas Binaire

ullet Invariants : arbre binaire complet; sommet parent \leq fils

- Insertion : la position libre la plus à gauche possible sur le dernier niveau
 - Percolation échange avec le parent jusqu'à ce que l'invariant soit rétabli $\mathcal{O}(\log n)$
- Suppression du minimum : la racine, qu'on remplace par le "dernier" sommet
 - Percolation échange avec le fils minimum jusqu'à se que l'invariant soit rétabli Olleg n

Donnée : une liste L d'éléments comparables

Pour chaque $x \in L$:

Insérer x dans le tas binaire H

Tant que H n'est pas vide :

- Extraire le minimum de H et l'afficher
- n insertions en $\mathcal{O}(\log n)$
- n suppressions en $\mathcal{O}(\log n)$
- Complexité du tri par tas : $\mathcal{O}(n \log n)$

Tri par tas est optimal!

• $\mathcal{O}(n \log n)$ dans le pire des cas

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

127 / 169

Classes de Complexité

Borne inférieure pour les algorithmes de tri

Tri par comparaison

• donnée : une liste d'éléments comparables

• question : quelle est la liste triée de ces éléments ?

- Considérons les algorithmes de tri qui ne peuvent pas "lire" ces éléments, seulement les comparer (e.g. un tableau de pointeurs vers une classe d'objets comparables).
- Lors de son execution, cet algorithme va comparer k paires d'éléments (x, y), le résultat peut être 0 (x < y) ou 1 $(x \ge y)$
- On peut considérer que la donnée de l'algorithme est une table de longueur k avec les résultats des comparaisons :

$$x = \underbrace{[0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0,1]}_{k}$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

129 / 169

Borne inférieure pour les algorithmes de tri

• Un algorithme est deterministe, donc deux tables de comparaisons identiques donnent la même exécution, et donc la même liste triée

$$2^{k} \left\{ \begin{array}{l} [0,0,1,0,1,1,1,1,\ldots] \\ [0,0,1,0,1,1,1,1,\ldots] \\ [0,1,0,0,1,0,0,1,\ldots] \\ [1,0,0,0,0,1,1,1,\ldots] \\ [0,1,1,0,1,1,0,0,\ldots] \\ [1,0,1,0,0,1,1,0,\ldots] \\ \vdots \\ \end{array} \right. \left. \begin{array}{l} (e_{1},e_{2},e_{3},e_{4},\ldots) \\ (e_{1},e_{2},e_{4},e_{3},\ldots) \\ (e_{1},e_{3},e_{2},e_{4},\ldots) \\ (e_{1},e_{3},e_{4},e_{2},\ldots) \\ (e_{1},e_{4},e_{2},e_{3},\ldots) \\ \vdots \\ \vdots \\ \end{array} \right. \right\} n!$$

- Au plus k comparaisons, donc au plus 2^k données/exécutions distinctes
- Chacune des n! permutations de la donnée doit correspondre à une exécution distincte

principe des tiroirs

$$2^k \ge n!$$

Borne inférieure pour les algorithmes de tri

$$2^{k} \ge n! \implies k \ge \log(n!)$$

$$= \log(n(n-1)(n-2)...2)$$

$$= \log n + \log(n-1) + \log(n-2) + ... + \log(2)$$

$$= \sum_{i=2}^{n} \log i$$

$$= \sum_{i=2}^{n/2-1} \log i + \sum_{i=n/2}^{n} \log i$$

$$\ge \sum_{i=n/2}^{n} \log \frac{n}{2}$$

$$= \frac{n}{2} \log \frac{n}{2}$$

$$= \Omega(n \log n)$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

131 / 169

Borne inférieure pour les algorithmes de tri

Théorème

Tout algorithme de tri par comparaison est en $\Omega(n \log n)$

- Attention, il existe des algorithmes de tri en $\mathcal{O}(n)$
 - ▶ Mais ces algorithmes font des hypothèses sur les éléments à trier
- Dans le cas général d'éléments comparables sans propriété particulière : impossible de les trier avec une complexité dans le pire des cas inférieure à $\Omega(n \log n)$

La complexité d'un problème, à quoi ça sert?

- Pour pouvoir objectivement analyser un algorithme
 - Optimalité
- Parce que la difficulté du problème détermine le type de méthode
 - solution approchée pour un problème difficile?
- Parce que la difficulté du problème est parfois une garantie
 - Cryptographie, Block Chain

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

133 / 169

Problème

Définition : Problème \simeq fonction sur les entiers

- Une question Q qui associe une donnée x à une réponse y
 - "Quel est le plus court chemin de x_1 vers x_2 par le réseau R?"
 - ► "Quel est la valeur du carré de x?"
- Q_{pcc} : Réseau: R, Villes: $x_1, x_2 \mapsto \text{Route}: x_1, u_1, u_2, \dots, u_k, x_2$
- Q_{carr} : Entier: $x \mapsto$ Entier: x^2

Types de Problèmes

- Problèmes généraux (fonctions)
- Problèmes d'optimisation : la solution est le *minimum* d'un ensemble
- Problèmes de décision : la réponse est dans {oui, non}

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

135 / 169

Problème de décision

Problème de décision Q

Fonction $Q: x \mapsto \{\mathbf{oui}, \mathbf{non}\}\$

• Pour un problème d'optimisation, on peut généralement définir un problème **polynomialement** équivalent dont la réponse est dans {oui, non}, :

Voyageur de commerce (optimisation)

- donnée : ensemble de villes
- question : quel est le plus court chemin passant par toutes les villes ?

Voyageur de commerce (décision)

- donnée : ensemble de villes, entier k
- **question** : est-ce qu'il existe un chemin de longueur inférieure à *k* passant par toutes les villes ?

- Instance : problème avec la donnée ("Combien vaut 567²?", "Quel est le plus court chemin entre Toulouse et Paris?")
- Ne pas confondre problème et instance
- En particulier, se poser la question de la difficulté d'une instance n'a pas (beaucoup?) de sens
 - L'algorithme qui renvoie systématiquement, et sans calcul, la solution de cette instance (correct et en $\mathcal{O}(1)$)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

137 / 169

Classes d'Algorithmes

Un algorithme est dit :

- en temps constant si sa complexité dans le pire des cas est bornée par une constante
- linéaire si sa complexité dans le pire des cas est en $\Theta(n)$
- quadratique si sa complexité dans le pire des cas est en $\Theta(n^2)$
- polynomial si sa complexité dans le pire des cas est en $\mathcal{O}(n^c)$ avec c>0
- exponential si elle est en $\Theta(2^{n^c})$ pour un certain c > 1

Classes de problèmes

• Comment évaluer la complexité d'un problème?

La complexité d'un problème :

La complexité du meilleur algorithme pour le résoudre

f(n)-TIME

Ensemble des problèmes pour lesquels il existe un algorithme en $\mathcal{O}(f(n))$

- $Tri \in (n \log n)$ -TIME
- Recherche dans un tableau trié $\in (\log n)$ -TIME
- Recherche du maximum dans un tableau \in (n)- \mathbf{TIME}

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

139 / 169

Relation d'Inclusion

Inclusion

Si $f(n) \in \mathcal{O}(g(n))$ alors f(n)-TIME $\subseteq g(n)$ -TIME

Tri

donnée: Une liste L d'objet comparables

question: La séquence triée des objets de *L*

- $Tri \in (n \log n)$ -**TIME**
- Tout algorithme de tri est en $\Omega(n \log n) \implies Tri \notin n$ -TIME
- La recherche du maximum est dans n-TIME, dans (log n)-TIME?

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

141 / 169

(Non-)Appartenance à une Classe

f(n)-TIME

Ensemble des problèmes pour lesquels il existe un algorithme en $\mathcal{O}(f(n))$

- ullet Pour prouver qu'un problème appartient à la classe f(n)- \mathbf{TIME}
 - ▶ il suffit d'un algorithme en $\mathcal{O}(f(n))$
- Pour prouver qu'un problème n'appartient pas à une classe inférieure
 - il faut montrer que tout algorithme est en $\Omega(f(n))$

Classe "Temps Polynômial"

Rappel:

f(n)-TIME

Ensemble des problèmes pour lesquels il existe un algorithme en $\mathcal{O}(f(n))$

• Classe des problèmes pour lesquels il existe un algorithme polynômial :

P-TIME ou simplement : P

Ensemble des problèmes pour lesquels il existe un algorithme en $\mathcal{O}(n^c)$ pour une constante c.

$$\mathbf{P} = \bigcup_{c>0} n^c \text{-TIME}$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Classes de Complexité

143 / 169

Classe "Temps Exponentiel"

• Classe des problèmes pour lesquels il existe un algorithme exponentiel :

EXP-TIME:

Ensemble des problèmes pour lesquels il existe un algorithme en $\mathcal{O}(2^{n^c})$ pour une constante c

$$\mathbf{EXP\text{-}TIME} = \bigcup_{c \ge 1} 2^{n^c} \text{-}\mathbf{TIME}$$

- ullet Evidemment, $\mathbf{P} \subseteq \mathbf{EXP}\text{-}\mathbf{TIME}$
- $\bullet \ \, \mathsf{Est\text{-}ce} \,\, \mathsf{que} \,\, \mathbf{P} \subset \mathbf{EXP\text{-}TIME} \, ? \,\, \mathsf{Oui} \, ! \\$
- Il existe des problèmes en $\Omega(2^n)$

Classes Caractérisées par l'Espace

• On peut analyser l'espace mémoire utilisé par un algorithme de manière similaire

f(n)-SPACE

Ensemble des problèmes pour lesquels il existe un algorithme nécessitant $\mathcal{O}(f(n))$ octets de mémoire

On ne compte pas la taille de la donnée, mais on compte la taille de la réponse

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

145 / 169

Exemple: Sous-Séquence Maximale

Sous-Séquence Maximale

donnée: Un tableau L avec n éléments dans $\{-1,1\}$

question: Quelles sont les valeurs de s et e dans [1, n] qui maximisent

 $\sum_{i=s}^{e} L[i]$

Algorithme 1

Pour chaque $1 \le i \le j \le n$: calculer $\sum_{k=i}^{j} L[k]$; garder le max.

• Temps : $\Theta(n^3)$

• Espace : $\Theta(\log n)$

▶ $\log n$ pour le max, la somme et le resultat

Exemple : Sous-Séquence Maximale

Algorithme 2

- $\bullet \ \ s[i] = \sum_{k=1}^{i} L[k]$
- $\bullet \ \min[i] = \min(s[j] \mid j < i)$
- $mss[i] = max_i min_i$

- $\Theta(1)$ tables de taille $\Theta(n)$
- Temps : $\Theta(n)$
- Espace : $\Theta(n)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

147 / 169

Temps ou Espace

Temps Espace

Algorithme 1
$$\Theta(n^3)$$
 $\Theta(\log n)$

Algorithme 2 $\Theta(n)$ $\Theta(n)$

Temps ou Mémoire?

Théorème

f(n)-TIME $\subseteq f(n)$ -SPACE

- Supposons qu'il existe un problème A t.q. $A \in f(n)$ -TIME et $A \notin f(n)$ -SPACE.
- Alors tout algorithme pour **A** utilise $\Omega(g(n))$ mémoire avec $g(n) \notin \mathcal{O}(f(n))$.
- Si un algorithme nécessite $\Omega(g(n))$ mémoire il fait $\Omega(g(n))$ écritures.
- Autrement dit, il est en $\Omega(g(n))$ temps (contradiction).
- Donc $A \in f(n)$ -TIME $\implies A \in f(n)$ -SPACE.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

149 / 169

Classe "Espace Polynomial"

• Classe des problèmes pour lesquels il existe un algorithme polynômial en espace :

P-SPACE

Ensemble des problèmes pour lesquels il existe un algorithme qui utilise $\mathcal{O}(n^c)$ octets de mémoire pour une constante c.

= P-SPACE
$$\bigcup_{c>0} n^c$$
-SPACE

• Est-ce que P-SPACE est inclu dans EXP-TIME, EXP-TIME inclu dans P-SPACE, ou ni l'un ni l'autre?

P-SPACE et EXP-TIME

Théorème

P-SPACE \subseteq EXP-TIME

- Un problème A dans P-SPACE admet un algorithme qui utilise $\mathcal{O}(n^c)$ octets
- Cet algorithme est constitué de $k \in \Theta(1)$ instructions (\simeq lignes de code)
- La mémoire utilisée par cet algorithme peut être dans $\mathcal{O}(2^{(8n)^c})$ configurations
- If y a donc $\mathcal{O}(k2^{(8n)^c}) = \mathcal{O}(2^{(n)^c})$ configurations possibles
- Si l'algorithme passe deux fois par la même configuration il ne s'arrête jamais

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

151 / 169

Problèmes "intermédiaires"

• Il y a un nombre infini de classes de complexité entre P et P-SPACE!

- Il existe des problèmes pour lesquels on ne connait pas d'algorithme en temps polynômial, sans pouvoir prouver qu'ils n'en n'ont pas
- Ces problèmes sont très nombreux...
- ... et très intéressants : Voyageur de Commerce, Programmation Linéaire en Nombres Entiers, SAT, Isomorphisme de Graphes, etc.

Les Classes NP et coNP

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

153 / 169

Classes non-déterministes

- A priori difficiles (pas d'algorithme polynomial connu)
- Faciles à vérifier, ex. Voyageur de Commerce

TSP

donnée: Un ensemble de villes S, une matrice de distance $D: S \times S \mapsto \mathbb{N}$, un entier k

question: Est-ce qu'il existe une route de longueur au plus k passant par toutes les villes?

Classes non-déterministes

- Ces problèmes peuvent être résolus en espace polynomial
- Pas d'algorithme en temps polynomial connu, mais aucune preuve d'impossibilité
- Problèmes faciles pour des algorithmes non-déterministes

Algorithme non-déterministe pour le problème Q

- Composée d'instructions primitives : exécutable par une machine
- Déterministe : une seule exécution possible pour chaque donnée
- Non-déterministe : peut **deviner un certificat** (par ex. la solution!)
- Correct : termine et retourne la bonne solution Q(x) pour toute valeur de la donnée x

_AAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Les Classes NP et coNP

155 / 169

Oracle

Algorithme non-déterministe

- Un algorithme non-déterministe peut avoir recours à un **oracle** qui, si la réponse est "oui", devine un **certificat polynomial** en temps $\mathcal{O}(1)$
- Le certificat peut-être n'importe quoi, mais :
 - ▶ Il faut pouvoir le coder en espace polynomial dans la taille de la donnée
 - ▶ Il faut pouvoir prouver que "oui" est bien la réponse correcte en temps polynomial dltd
- Quel certificat pour le problème du voyageur de commerce ?

TSP

donnée: Un ensemble de villes S, une matrice de distance $D: S \times S \mapsto \mathbb{N}$, un entier k

question: Est-ce qu'il existe une route de longueur au plus k passant par toutes les villes?

• La séquence de villes : on peut vérifier la longueur de ce tour, et être convaincu que la réponse est correcte, même si on ne sait pas comment elle a été obtenue

Exemple : Le problème de 3-coloration

Donnée: Un graphe G = (S, A) (sommets S; arêtes A)

Question: Est-ce qu'il est possible de colorier les sommets de G avec au

plus 3 couleurs en évitant que deux sommets adjacents

partagent la même couleur.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

157 / 169

3-Coloration est dans NP

Certificat : La coloration (tableau – couleur du i-ème sommet dans la case i)

- De taille polynomiale (dans la TDLD)
 - quelle est la taille de la donnée du problème ? taille : $|G| = \Theta(|S| + |A|)$
 - P quelle est la taille du certificat ? taille : ⊖(|S|)
- Vérifiable en temps polynomial (dans la TDLD) : algorithme

Algorithme de vérification

```
Algorithme: verification(L, G)
Données: un graphe G = (S, A) et un tableau T
Résultat: vrai si T est une 3-coloration de G, faux sinon
début
    pour chaque arrête (i,j) de A faire
        si T[i] = T[j] alors
            retourner faux;
    retourner vrai;
Complexité : \mathcal{O}(|A|) (liste d'adjacence)
```

 \Rightarrow 3-Coloration est bien dans NP

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

159 / 169

P et NP

- P est la classe des problèmes "faciles à résoudre"
- NP est la classe des problèmes "faciles à vérifier"
- Est-ce qu'il y a une différence ? (500 000 € pour la bonne réponse!)
 - On ne connait pas d'algorithme polynomial pour Voyageur de commerce ou 3-Coloration
 - Mais personne ne sait s'il en existe!

P, NP et la Cryptographie

Système d'authentification A

- comparaison entre
 - ▶ une *clé privée y* (mot de passe / pin)
 - et une information publique x (login / carte bancaire)
- autorise la transaction si et seulement si A(x) = y
- Supposons que calculer A soit polynomial : trouver le mot de passe est facile!
- Supposons que vérifier A(x) = y ne soit pas polynomial : authentifier est difficile!

La majorité des systèmes d'authentification sont basés sur un problème A tel que $A \in \mathbf{NP}$ et $A \notin \mathbf{P}$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Les Classes NP et coNP

161 / 169

L'importance de la classe NP

- Ces problèmes sont partout : en intelligence artificielle, en cryptographie, dans l'industrie...
- Savoir adapter la méthode à la complexité du problème; le problème du voyageur de commerce n'a pas d'algorithme polynomial connu, mais...
 - ▶ Domaine de recherche très actif, des algorithmes "intelligents" peuvent résoudre (optimalement) de très grandes instances

115 475 villes

L'importance de la classe NP (suite)

Conjecture $P \neq NP$

- Un des 7 "problèmes du millénaire" du Clay Mathematics Institute Mise-à-prix \$1 000 000
- ullet Preuve de ${f P}
 eq {f NP}$: un problème dans ${f NP}$ mais pas dans ${f P}$
 - ▶ Montrer qu'un problème est dans NP est facile : certificat polynomial
 - Montrer qu'un problème n'est pas dans P est difficile : tout algorithme est en $\Omega(2^n)$
- Prouver que P = NP ne nécessite qu'un algorithme! (cours de 4ème année)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

163 / 169

Et si l'oracle ne devine rien?

- La réponse "oui" est accompagnée d'un certificat grace auquel on peut vérifier que la réponse est correcte
- Si la réponse est "non"...il faut faire confiance!
 - Ou alors vérifier avec un algorithme qui n'est pas polynomial
- Donc le problème suivant n'est pas forcément équivalent au problème du voyageur de commerce ?

co-TSP

donnée: Un ensemble de villes S, une matrice de distance $D: S \times S \mapsto \mathbb{N}$, un entier k

question: Est-ce qu'il **n'**existe **pas** de route de longueur au plus *k* passant par toutes les villes ?

Problème complémenaire

Problème complémenaire

Le Problème complémenaire co-**A** d'un problème de décision **A**, est le problème qui associe la réponse "non" à toute donnée associée à "oui" dans **A**, et vice versa.

- Si A est dans P alors co-A est dans P
 - ► Algorithme polynomial pour co-A : algorithme pour A + inversion de la réponse
- Est-ce que c'est vrai pour NP?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

165 / 169

La classe coNP

Co-problème du voyageur de commerce

- donnée : ensemble de villes, entier k
- question : est-ce qu'il n'existe aucun chemin passant par toutes les villes, et de longueur inférieure à k?
- Quel est le certificat?
- Un chemin qui ne passe pas par toutes les villes, ou de longueur > k? pas suffisant!
- Lister tous les chemins? pas polynomial!
- Le co-problème du voyageur de commerce ne semble pas avoir de certificat polynomial
- Les complémentaires de certain problèmes dans NP ne semblent pas être dans NP

ullet Le complémentaire de certain problèmes dans ${f NP}$ ne semblent pas être dans ${f NP}$

coNP

Ensemble des problèmes de décision dont le problème complément est dans ${f NP}$

Conjecture

 $NP \neq coNP$?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

167 / 169

Inclusion dans P-SPACE

Soit un algorithme non-déterministe en $\mathcal{O}(n^c)$ temps, et donc mémoire.

- il existe un algorithme déterministe qui n'utilise pas plus d'espace :
 - Le certificat nécessite un espace fini (vérifiable en $\mathcal{O}(n^c)$ pour une donnée de taille n)
 - ▶ If y a donc un nombre fini de certificat : $\mathcal{O}(2^{n^c})$
 - ▶ On génère et verifie *tous* les certificats (en temps $\mathcal{O}(n^c 2^{n^c})$)

Théorème

 $NP \subseteq P\text{-SPACE}$ et $coNP \subseteq P\text{-SPACE}$

Résumé : les classes de complexité

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Les Classes NP et coNP

169 / 169