Practice Questions for Jan 17, 2019

1. In part (i) below, we have shown two sets A and B, and the area for the set A - B is shaded. Shade the areas for the sets indicated in (ii)-(iv).

(i) The shaded area is for the set A - B

(ii) Shade the area for the set B - A

(iii) Shade the area for the set $A \cup B$

(iv) Shade the area for the set $A \cap B$

2. Shade the area below for elements (items) that belong to exactly one of the sets A and B. The set of such elements is denoted by $A \Delta B$ and is called the *symmetric difference* of A and B.

- 3. If |A| = 10, |B| = 8, and $|A \cap B| = 3$, then show the following:
 - (a) $|A B| = \dots$
 - (b) $|B A| = \dots$
 - (c) $|A\Delta B| =$
- 4. Complete the equations below for arbitrary sets A and B in terms of |A| and |B| (similar to the ones we did in the class for $|A \cup B|$).
 - (a) $\max |A \cap B| = \dots$
 - (b) $\min |A \cap B| = \dots$
 - (c) $|A\Delta B| = |A| + |B| \dots$
- 5. Which of the following are true?
 - (a) $A\Delta B = (A B) \cup (B A)$
 - (b) A = B if and only if $A\Delta B = \emptyset$.
 - (c) $A B = A (A \cap B)$.
 - (d) The sets A B and B A are disjoint.