NOIP2018 海亮多校在线联考 day2 解题报告

命题人: 杨志灿

题目名称	分队问题	虫洞跃迁	信号强度
文件名	team	holes	wifi
输入文件	team.in	holes. in	wifi.in
输出文件	team. ans	holes.ans	wifi.ans
时间限制	1000ms	1000ms	1000ms
内存限制	256mb	256mb	256mb
测试点数目	20	10	20
测试点分值	5	10	5
是否有部分分	否	否	否
题目类型	传统	传统	传统

Problem 1 分队问题

【题目描述】

给定 n 个选手,将他们分成若干只队伍。其中第 i 个选手要求自己所属的队伍的人数大等于 a[i] 人。每个选手属于且仅属于一支队伍。

在满足所有选手的要求的前提下,最大化队伍的总数。在此基础之上,还要最小化人数最多的队伍的人数。

【输入格式】

第一行一个整数 n,表示人数。 以下 n 行,每行一个整数表示 a[i]。

【输出格式】

一行两个整数,分别表示队伍总数的最大值,以及人数最多的队伍人数。

【样例输入】

5

2

1

2 2

3

【样例输出】

2 3

【数据范围】

对于 20%的数据, n <= 10

对于 40%的数据, n <= 1000

对于 60%的数据, n <= 10000

对于 100%的数据, 1 <= n <= 10^6。

【解题报告】

• 考察要点: 贪心、动态规划、前缀和

• 题目来源: CEOI 2011 team 简化

对于 20%的数据, n <= 10. 搜索。

对于 60%的数据, n <= 10000.

目标是最大化队伍数,而题目的限制是每个队员所处的队伍的人数下界。目标和限制正好相反,可从贪心的角度来思考:最"经济"地满足每个队员的要求。

易得,对于要求最高的队员,让其与要求次高的一干人等凑成一队。将 所有队员按要求排序,存在一个最优解使得,一队的队员都在一个区间内。

由于本题还要求最小化人数最多的队伍的人数,因此一种直观的想法是直接贪心分配队伍。但这样可能会构造不出解,如若要求最高的队员需要 5 人的队伍,就让最高的 5 名选手组成一队的话,反例:

1 2 4 [5 5 5 5 5]

而正确的最优解是:

 $[1\ 2]\ [4\ 5\ 5\ 5\ 5\ 5]$

因此,我们引入动态规划解决:

将所有队员按要求从低到高排序,用 f[i]表示前 i 名队员最多分成的队伍数量,枚举最后一队的人数:

$$f[i] = \max_{j \in [0, i-a[i]]} f[j] + 1$$

用 g[i]表示前 i 名队员分成 f[i]队,人数最多的队伍的最小人数,由于枚举了最后一队的人数,因此有

$$g[i] = \max(g[j-1], i-j+1)$$

在考虑转移 j 时,不仅在 f[j]+1 > f[i]时需要转移给 i,在 f[j]+1 = f[i]且能令 g[i]变小时也需更新。

答案即为 f[n]和 g[n]。 时间复杂度: $0(n^2)$

对于 100%的数据, n <= 1000000.

首先,可以使用基数排序减少排序时间的消耗。

前述动态规划的状态和转移均为 0(n)。

$$f[i] = \max_{j \in [0, i-a[i]]} f[j] + 1$$

若不考虑 g[]的话,f 的转移可以通过前缀和来加速为 O(1),这给了我们启示,发掘本题的更多性质使得转移确实地降为 O(1) 的同时解决 g。

正难则反,我们从高到低排序每位队员。必然有 f[i+1] == f[i]或 f[i+1] == f[i]+1。在考虑队员 i+1 时,由于 a[i+1]比 $a[1]^a[i]$ 都小,因此队员 i+1 可以加入 1^a i 已安排好的任意一个队伍。这就意味着,只要 f[i] * g[i] >= i+1,队员 i+1 肯定可以加入 f[i]队中人数最少的一队,使得队员 人数仍不超过 g[i]。反之,若 f[i] * g[i] == i,则在 f[i+1] == f[i]的 情况下,必然有 g[i+1] = g[i]+1。

因此,我们就得到了一个基本转移:

$$g[i+1] = f[i]$$

$$g[i+1] = \begin{cases} g[i] & f[i] * g[i] > i \\ g[i] + 1 & f[i] * g[i] == i \end{cases}$$

现在再考虑 f[i+1] == f[i] + 1 的情况。事实上,在有上面这个基本转移的基础上,我们只需要考虑最小的队伍安排即可(基本转移在不改变队伍数的情况下,会自由增加每队的人数到上限)。

由于我们从高到低排序了每位队员,因此,最左边的队员即代表了最高的人数限制。因此,对于队员 i,只需考虑从 i 转移到 i+a[i]-1 即可。也就是说,n个队员总共最多只有 n 个这样的转移可能。而基本转移也是 0(n)的,因此整个动态规划的总复杂度为 0(n)。复杂度下降的整体思路在于把枚举一队的可能人数,分为一队的最优人数和自由增加一队人数至上限这两部分。

Problem 2 虫洞跃迁

【题目描述】

宇宙中有 N 个虫洞,M 条单向跃迁路径。从一个虫洞沿单向路径跃迁到另一个虫洞需要消耗一定量的燃料和 1 单位时间。每个虫洞有各自的质量以及白洞和 黑洞之分,设一条跃迁路径两端的虫洞质量差为 delta:

- 1. 从白洞跃迁到黑洞,所需的跃迁燃料值减少 delta, 若该条路径消耗的燃料值变为负数的话,取为 0。
 - 2. 从黑洞跃迁到白洞,所需的跃迁燃料值增加 delta。
 - 3. 路径两端均为黑洞或白洞, 所需的跃迁燃料值不变化。

每过1单位时间,黑洞变为白洞,白洞变为黑洞。在飞行过程中,可以选择在一个虫洞停留1个单位时间,如果当前为白洞,则不消耗燃料,否则消耗 s[i] 的燃料。现在请你求出从虫洞1到N最少的燃料消耗,保证一定存在1到N的路线。

【输入格式】

第1行:2个正整数N,M

第2行: N个整数,第i个为0表示虫洞i开始时为白洞,1表示黑洞。

第3行: N个整数, 第i个数表示虫洞i的质量w[i]。

第 4 行: N 个整数, 第 i 个数表示在虫洞 i 停留消耗的燃料 s[i]。

以下 M 行:每行 3 个整数,u,v,k,表示在没有影响的情况下,从虫洞u到虫洞v需要消耗燃料k。

【输出格式】

一个整数,表示最少的燃料消耗。

【样例输入】

4 5

1 0 1 0

10 10 100 10

5 20 15 10

1 2 30

2 3 40

1 3 20

1 4 200

3 4 200

【样例输出】

【数据范围】

对于 30%的数据: N <= 100, M <= 500 对于 60%的数据: N <= 1000, M <= 5000

另有 20%的数据: N <= 3000 的链。

对于 100%的数据: 1 <= N <= 5000, 1 <= M <= 30000,

 $1 \le u, v \le N, 1 \le k, w[i], s[i] \le 200$

【样例说明】

按照 1->3->4 的路线。

【解题报告】

• 考察要点: 最短路

• 题目来源: 经典改编

由于每个虫洞有白洞与黑洞之分,故我们用 2n 个点分别表示 n 个虫洞的黑洞状态与白洞状态。

首先在每个虫洞的黑洞与白洞之间连 2 条单向边,表示飞船在该虫洞停留等待状态改变。其中白洞连向黑洞的边的长度(燃料,下同)为 0,从黑洞连向白洞的边长度为 s[i]。

由于 n 个虫洞的黑洞白洞改变是同步的,因此就好像奇偶分类一般,任意两个虫洞之间的状态永远是相同/不同的。设有一条虫洞 A 连向虫洞 B 的单向边,以 A 与 B 的初始状态不同为例,则只需连接黑洞 A 与白洞 B,白洞 A 与黑洞 B 两条边;若 A 与 B 的初始状态相同,则连接黑洞 A 与黑洞 B,白洞 A 与白洞 B。边权按题目条件计算即可。

建图完成之后,由于没有负权边,使用任意单源最短路算法解决即可。答案 是虫洞 n 的黑洞状态与白洞状态两者的最短路的较小值。

Problem 3 信号强度

【题目描述】

有 N 个通信节点,在每个节点都设置一个信号强度为 W 的收发器。有 M 对通信节点之间可能直接通信,描述为:给定节点 u[i],节点 v[i]和通信所需的最低强度 w[i],只要收发器的信号强度 W 大等于 w[i],则节点 u 和节点 v 之间就可以直接通信。两个节点可以通过若干次直接通信转发信息来进行间接通信。

现在你需要让 N 个通信节点中的若干组节点在组内可以互相通信(直接通信和间接通信皆可),同时使得收发器所需的信号强度尽量低。除了设置收发器之外,你还能铺设一条光纤。这条光纤可以铺设在原先需要信号强度 W 大等于 w[i]才能直接通信的两个节点之间。无论收发器的信号强度 W 是多少,这条光纤都可以使得这两个节点进行直接通信。

【输入格式】

第一行两个整数 N 和 M,表示通信节点个数和可以直接通信的节点对数。 以下 N 行,每行一个小写字母(a-z)表示该节点所属的组。若为#,则表示该 节点不属于任何一个组。节点从 0 开始编号。

接下来 M 行,每行三个整数,表示 u[i], v[i], w[i]。节点编号为 0 到 N-1。

【输出格式】

一个数,表示让组内节点可以互相通信所需的最小信号强度 W。

【样例输入1】

4 4

a

a

a a

0 1 1

1 2 2

2 3 3

0 3 4

【样例输出1】

2

【样例输入2】

5 4

a

0 3 40

【样例输出2】

20

【数据范围】

数据点	N	M	备注
1, 2	<= 10	<= 40	
3-6	<= 1000	<= 4000	
7-8			所有节点都属于组 a
9-10	<= 100000	<= 400000	只有一个组 a
11-14	\- 100000	\- 400000	所有节点都属于某个组(a-z)
15-20			

所有数据保证有解,出现的数字不超过 10°。

【解题报告】

• 考察要点: 并查集、宽度/深度优先搜索、贪心

• 题目来源: 原创

首先,我们暂时不考虑光纤,且只有一个组 a 存在。将所有边按权重从小到大的顺序排序,依次插入图中,直到所有点 a 都属于同一个连通块为止。输出这条边的边权即为答案。

使用并查集来维护连通情况,插入一条边使边的两个端点所属的并查集并集。 维护每个并查集中点 a 的个数,一旦有一个并查集的点 a 的个数等于图中点 a 的 总数,就意味着所有点 a 已属于同一个连通块,此时输出答案即可。

然后,我们考虑存在不止一个组的情况。同样的,让同一组的点都属于各自的某一连通块即可。每个并查集维护各组点的个数,一旦有一个并查集的某一组的点的个数等于该组点的总数,则意味着该组所有点已属于同一个连通块。等每一组都完成后,输出答案即可。

现在,我们考虑加入光纤这一条件。之前的问题是让同一组的点属于同一个并查集,现在问题放宽为:允许有(某一组或某几组同在的)2个并查集,这2个并查集之间可以通过一条还未插入的边直接连接。其他组仍属于各自的并查集。#所属的并查集不做考察。

算法流程如下: 当只剩 2 个并查集 A, B 需要合并的时候(意味着除了这 2 个

并查集所拥有一组/多组点之外,其他同一组的点已经属于各自的并查集了),立马检查是否有直接相连 2 个并查集的一条边,若存在则直接输出答案,否则继续插入边。每次插入边之后,做同样的检查。使用 DFS 或 BFS 来做检查:每次某个并查集 A (或 B)与另一个并查集 C 合并后,DFS 或 BFS 遍历 C 内的点,检查是否存在直接相连 B (或 A)的边。之后再将并查集 C 并入 A (或 B)。对于已经检查过的点进行标记,以避免重复检查。

以下做法是错误的,但容易被误认为是正确的:

- 1) 只剩 2 个并查集需要合并时,直接输出答案。(2 个并查集之间可能通过间接通信连接,而非直接连接,此时还需继续插入边)
- 2) 先忽视光纤条件,反复插入边,直到所有组都属于各自并查集,将最后插入的这条边视为光纤,输出倒数第二条边为答案。(可能插入了不必要的边)