E4E Drill Press Fundamentals Workshop

December 7, 2023

Engineers for Exploration, UC San Diego

Safety Considerations

- 1. Where is the stored energy?
- 2. Where is the exposed energy?
- 3. How can the energy be transferred?

What is on a Drill Press?

1

¹https://canadianwoodworking.com/tools/drill-press/

Layout

- Scribes
- Center Punches
- Layout Blacking

Drill Bit Anatomy

_

²https://www.xometry.com/resources/shop-tips/drill-bit-tips-tricks/

Other Drill Press Cutters

Figure 4-21. Other types of cutters.

³https://www.americanmachinetools.com/how_to_use_a_drill_press.htm

Drill Bit Sizes

- How much material to remove?
- How hard is the material?
- Wire/Letter/Fractional/Metric

Drill Press Speed

$$RPM = CS \times \frac{4}{D}$$

Material	Drilling Feet/Minute	Reaming Feet/Minute
Carbon steels	100 - 120	75 - 80
Carbon steels	35 - 70	20 - 45
Alloy steels (resulfurized)	30 - 90	15 - 60
Stainless steels (Austenitic)	50 - 55	30 - 35
Brass	160 - 175	160 - 175
Bronze	120 - 140	110 - 120
Wrought aluminum	350 - 400	350 - 400

Drill Chuck Anatomy

⁴https://www.mscdirect.com/basicsof/drill-chucks

Workholding

PARALLEL
Figure 4-26. Parallels being used to support a workpiece.

ahttps://www.americanmachinetools.com/ how_to_use_a_drill_press.htm

Cutting Fluids

- 1. Cooling
- 2. Lubrication
- 3. Chip Evacuation

Feed Speed

- 1. Chip Loading
- 2. Chip Sizes
- 3. Machine Power

Permissible Materials

- 1. Plastics
- 2. Wood
- 3. Metals

Maintenance

- 1. Powertrain
- 2. Cleaning
- 3. Configuration

Access Protocol

- 1. LO/TO
- 2. Cleanup

Practical Exercise

