SUMIT

JBoss WORLD

PRESENTED BY RED HAT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

Achieving Top Network Performance

Mark Wagner Principal Engineer, Red Hat Inc. 06.27.12

Not Covered

- Bonding
- RHEL5
- Wireless
- Coding examples
 - Some mentions of tips

PRESENTED BY RED HAT

Take Aways

- Awareness of the issues
- Awareness of tools
- Guidelines

Take Aways

- You will leave this discussion with:
 - An understanding of some issues affecting server network performance
 - Tools to help you evaluate your network performance
 - Some guidelines to try in your environment

Some Quick Disclaimers

- We do not recommend one vendor over another
- Test data used is based on "performance mode"
 - Maximize a particular thing at the expense of other things
 - Not recommended for production
- Don't assume settings shown will work for you without some tweaks
 - Always experiment to find what works best in your environment

Agenda

- Why Bother ?
- Basic Concepts
- RHEL5 -> RHEL6
- Tuning Knobs and Auto Tuning
- Real World Debug
- Wrap Up

PRESENTED BY RED HAT

Agenda

- Why Bother ?
 - 40 gbit, gluster, latency
- Basic Concepts
 - Pci, cpu, numa
 - Offloads, rdma, solarflare, etc
 - The Virtual World
- RHEL5 -> RHEL6
 - Multiqueue, cgroups, steering, sctp, congestion control

Agenda

- Tunings
 - Drivers
 - Modinfo, modprobe, ethtool
 - Sysctl
 - Application, System
- Debug examples
 - Netperf throughput, Latency, Gluster
- Wrap up

Teaser 1 – Gluster

effect of net.core.rmem_max on gluster read throughput

server net.core.wmem_max tuned (4.2 MB) vs untuned (128-KB)

Teaser 2 – 40 Gbit / sec netperf

Two 40Gbit cards back to back (no switch).

```
# ./netperf -l 30 -H 172.17.200.82
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF INET to
172.17.200.82 (172.17.200.82) port 0 AF_INET : spin interval : demo
      Send
              Send
Recv
Socket Socket
                       Elapsed
              Message
Size Size
              Size
                       Time
                                Throughput
                                10^6bits/sec
bytes bytes bytes
                       secs.
 87380 16384 16384
                       30.00
                                  8868.76
```


Teaser 3 – latency

- Font size 28
 - Font size 26
 - Font size 22
- Font size 28
 - Font size 26
 - Font size 22
- Font size 28
 - Font size 26
 - Font size 22

Basics Concepts

- NUMA
- PCI bus
- CPU Characteristics
- Power Management
- The Virtual World

Memory Characteristics

- Memory Speed is crucial
 - Faster is better
- Understand layout and its impact
 - On middle age systems, fully populating the memory will slow it down
- Triple check your BIOS settings
 - Make sure that you pick settings for optimal performance

What is NUMA?

- NUMA Non Uniform Memory Architecture
 - Make bigger systems scalable by distributing system memory near individual CPUs
- NUMA has been around for a long time
 - In the past was in specialized high end systems
 - now the norm across the board for servers
- Most current multi-socket systems...
 - Recent AMD systems have 2 nodes / socket

"Issues" that NUMA makes visible

- System scheduler
- Non-local memory accesses

"Issues" that NUMA makes visible

- RHEL6 system scheduler appears biased towards responsiveness and optimizing for CPU utilization
 - It will often align network app on same core as interrupt
- Tries to use idle CPUs, regardless of where process memory is located!
- Non-local memory accesses have higher access latency, which degrades performance

NUMA - Latency

```
[root@perf ~]# numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
node 0 size: 32649 MB
node 0 free: 30868 MB
node 1 cpus: 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
node 1 size: 32768 MB
node 1 free: 29483 MB
node 2 cpus: 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62
node 2 size: 32768 MB
node 2 free: 31082 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63
node 3 size: 32768 MB
node 3 free: 31255 MB
node distances:
node 0 1 2 3
 0: 10 21 21 21
 1: 21 10 21 21
 2: 21 21 10 21
 3: 21 21 21 10
```


Numa – Latency

- Sample inter-NUMA-node relative latency:
 - Intel 4 socket / 4 node: 1.5x
 - AMD 4 socket / 8 node: 2.7x
 - 8 socket / 8 node: 2.8x
 - 32 node blade system: 5.5x

PCI Bus – and related issues

- Slot speed
- Multiple buses / Affinity
- Tools

PCI Bus – and related issues

- Make sure that you know the slot speed!
 - 10 Gbit needs 8X
 - At least with Gen2
 - 40 Gbit speeds need PCI-e 3
- Find if the slot is tied to a specific NUMA node
 - Know the bindings
 - Spread the load
- Can you change any of the parameters?
 - setpci can change some of the parameters
 - It is tricky and dangerous

40 Gbit Gen3 vs 10 Gbit PCI Gen2 latency

10Gb vs 40 Gb qpid RDMA latency test results

10 Gb = lines 40Gb = Columns

CPU Characteristics – Basics

- Cache layout
- Hyperthreads
- cstates

CPU Characteristics – Basics

- Understand cache layout
 - It changes with different chip generations
 - Try to keep cache lines hot
- To use hyperthreads or not
 - No one stop answer
 - For latency sensitive probably not
 - For applications that block a lot probably yes
- cstates

CPU – Power related characteristics

- Variable frequencies
- Multiple cores
- Power saving modes (cpuspeed governors)
 - performance
 - ondemand
 - Powersave

CPU – Performance Governors

- echo "performance" > \
 /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
- Best of both worlds cron jobs to configure the governor mode using tuned-adm
 - tuned-adm profile latency-performance

Power Management- not always your friend

- Each HW generation power control evolves
 - Trend is towards power saving
 - Is good for the world
- BIOS / OS Control
 - Pstates in BIOS
 - Cstates in OS

CSTATE default – C7 on this config

pk	cor	CPU	_	:0	GHz		SC	%c1	%c3	%c6	%c7	%pc2	%pc3	%pc6	%pc7	SMIs
_	_		0.0				19	0.08	0.00	0.00	99.89	4.46	0.00	93.94	0.00	0
0	0	0	٠.		_		19	0.93	0.01	0.00	98.66	3.13	0.01	93.91	0.00	0
0	1	1	0.	4	1.66	2	19	0.06	0.00	0.00	99.91	3.13	0.01	93.91	0.00	0
0	2	2	0.	1	1.73	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.92	0.00	0
0	3	3	0.	1	1.72	2	19	0.02	0.01	0.00	99.96	3.13	0.01	93.92	0.00	0
0	4	4	0.	1	1.85	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.92	0.00	0
0	5	5	0.	1	1.94	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.91	0.00	0
0	6	6	0.	1	1.92	2	19	0.02	0.00	0.00	99.98	3.13	0.01	93.91	0.00	0
0	7	7	0.	1	1.76	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.91	0.00	0
1	0	8	0.	1	1.71	2	19	0.02	0.01	0.00	99.96	5.80	0.00	93.96	0.00	0
1	1	9	0.	1	1.69	2	19	0.02	0.01	0.00	99.97	5.80	0.00	93.96	0.00	0
1	2	10	0.	1	1.75	2	19	0.02	0.00	0.00	99.97	5.80	0.00	93.96	0.00	0
1	3	11	0.	1	1.83	2	19	0.02	0.00	0.00	99.97	5.80	0.00	93.96	0.00	0
1	4	12	0.	1	1.84	2	19	0.02	0.00	0.00	99.97	5.80	0.00	93.96	0.00	0
1	5	13	0.	1	1.91	2	19	0.02	0.00	0.00	99.98	5.80	0.00	93.96	0.00	0
1	6	14	0.	1	1.96	2	19	0.02	0.00	0.00	99.98	5.80	0.00	93.96	0.00	0
1	7	15	0.				19	0.03	0.00	0.00	99.96	5.80	0.00	93.96	0.00	0

CSTATE disabled – Note speed

pk	cor	CPU	%c0	GHz	TSC	%c1	%c3	%c6	%c7	%pc2	%pc3	%pc6	%pc7	SMIs
•			100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	0	0	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	1	1	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	2	2	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	3	3	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	4	4	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	5	5	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	6	6	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	7	7	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	0	8	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	1	9	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	2	10	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	3	11	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	4	12	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	5	13	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	6	14	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	7	15	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0

NPtcp latency vs cstates – c7 vs c0

Impact of Power settings NPtcp Latency results

Mellanox 40 Gbit

Cstates impact on Latency

Impact of C states on latency - States C0 vs C1

256 byte cstate0 — 256 byte cstate1

RHEL6 "tuned-adm" profiles

tuned-adm list

Available profiles:

- default
- latency-performance
- throughput-performance
- enterprise-storage
- virtual-host, virtual-guest *

Example

tuned-adm profile enterprise-storage

* NEW for RHEL6.3

tuned profiles – virtual-host/guest new RHEL6.3

Tunable	default	latency- performance	throughput- performanc e	enterprise- storage	virtual-host	virtual-guest
kernel.sched_min_ granularity_ns	4ms		10ms	10ms	10ms	10ms
kernel.sched_wakeup _granularity_ns	4ms		15ms	15ms	15ms	15ms
vm.dirty_ratio	20% RAM		40%	40%	10%	40%
vm.dirty_background _ratio	10% RAM				5%	
vm.swappiness	60				10	30
I/O Scheduler (Elevator)	CFQ	deadline	deadline	deadline	deadline	deadline
Filesystem Barriers	On			Off	Off	Off
CPU Governor	ondemand	performance	performanc e	performance	performance	performance
Disk Read-ahead				4x	4x	4x

Kernel Bypass Technologies – Pros and Cons

- Multiple Technologies
- Some Proprietary
 - SolarFlare OpenOnload
- Coding Changes needed
 - RDMA

OpenOnload – Throughput

Average Throughput, netperf

Red Hat Enterprise Lunux 6.2 and Solarflare OpenOnload 201109-u2

JBoss WORLD

Offload - Solarflare OpenOnload

Average TCP Latency, MRG-M qpid-latency-test

Red Hat Enterprise Linux 6.2 and Solarflare OpenOnload 201109-u2

JBoss WORLD

KVM Network Architecture - VirtIO

- Virtual Machine sees
 paravirtualized network device –
 VirtIO
 - VirtIO drivers included in Linux Kernel
 - VirtIO drivers available for Windows
- Network stack implemented in userspace

KVM Network Architecture

Latency comparison – RHEL 6

Message Size (Bytes)

KVM Network Architecture – vhost_net

- New in RHEL6.1
- Moves QEMU network stack from userspace to kernel
- Improved performance
- Lower Latency
- Reduced context switching
- One less copy

KVM Network Architecture – vhost_net

vhost_net

Latency comparison – RHEL 6

Network Latency - vhost_net
Guest Receive (Lower is better)

Message Size (Bytes)

KVM Network Architecture – VirtlO vs vhost_net

Host CPU Consumption virtio vs vhost_net

Message Size (Bytes)

vhost_net Efficiency

8 Guest Scale Out RX Vhost vs Virtio - % Host CPU

Mbit per % CPU netperf TCP_STREAM

KVM Network Architecture – PCI Device Assignment

- Physical NIC is passed directly to guest
- Guest sees real physical device
 - Needs physical device driver
- Requires hardware support
 Intel VT-D or AMD IOMMU
- Lose hardware independence
- 1:1 mapping of NIC to Guest
- BTW This also works on some I/O controllers

KVM Network Architecture – Device Assignment

Device Assignment

KVM Network Architecture – SR-IOV

- Single Root I/O Virtualization
 New class of PCI devices that present multiple virtual devices that appear as regular PCI devices
- Guest sees real physical device
 - Needs physical device driver
- Requires hardware support
- Low overhead, high throughput
- No live migration
- Lose hardware independence

KVM Architecture – SR-IOV

SR-IOV

KVM Architecture – Device Assignment vs SR/IOV

Device Assignment

SR-IOV

Latency comparison – RHEL 6 based methods

Network Latency by guest interface method

Message Size (Bytes)
SR-IOV latency close to bare metal

RHEL6 – new features

- Multi-queue Transmit
- Tools to monitor dropped packets
- Traffic Steering
- Flow control
- Driver improvements
- Data center bridging DCB
 - FCoE performance improvements

RHEL6 – new features

- Receive Packet Steering (RPS)
 - breaks the bottleneck of having to receive network traffic for a NIC on one CPU
- Receive Flow Steering (RFS)
 - allows the optimal CPU to receive network data intended for a specific application

RHEL6 – new features

- Add getsockopt support for TCP thin-streams
 - reduce latency from retransmission of lost packets in time-sensitive applications
- Add Transparent Proxy (TProxy) support for nonlocally bound IPv4 TCP and UDP sockets
 - similar to Linux 2.2
 - Allows packet interception and serving of response without client reconfiguration (transparent to client)

SENTED BY RED HAT

Impact of using RPS/RFS

Impact of RPS/RFS on CPU Time in Softirq time

note more even distribution, no bottleneck on core 15

Receive Steering – improved message rates

Impact of RPS/RFS on total transactions / sec

e1000e driver - (Single queue)

each driver running 100 concurrent netperf TCP_RR tests

Tuning Knobs – Overview

- Linux networking tuned for reliability
- Linux "autotunes" buffers for connections
- Watch BufferBloat!
- Don't forget UDP!
- Look at documentation in kernel tree

Tuning Knobs – Overview

- By default, Linux networking not tuned for max performance, more for reliability
 - Remember that Linux "autotunes" buffers for connections
 - Don't forget UDP!
- Try via command line
 - When you are happy with the results, add to /etc/sysctl.conf
- Look at documentation in /usr/src

Sysctl – View and set /proc/sys settings

- sysctl -a lists all variables
- sysctl -q queries a variable
- sysctl -w writes a variable

sysctl – View and set /proc/sys settings

- sysctl -w writes a variable
 - When setting values, spaces are not allowed
 - sysctl -w net.ipv4.conf.lo.arp_filter=0
- Setting a variable via sysctl on the command line is not persistent The change is only valid until the next reboot
 - Write entries into the /etc/sysctl.conf file to have them applied at boot time

sysctl - popular settings

- These settings are often mentioned in tuning guides
- Experiment but don't take blindly!
 - net.ipv4.tcp_window_scaling
 - toggles window scaling
 - net.ipv4.tcp_timestamps
 - toggles TCP timestamp support
 - net.ipv4.tcp_sack
 - toggles SACK (Selective ACK) support

sysctl – TCP related settings

- TCP Memory Allocations min/pressure/max
 - net.ipv4.tcp_rmem TCP read buffer in bytes
 - overriden by core.rmem_max
 - net.ipv4.tcp_wmem TCP write buffer in bytes
 - overridden by core/wmem_max
 - net.ipv4.tcp_mem TCP buffer space
 - measured in pages, not bytes!

sysctl – "core" memory settings

- CORE memory settings
 - net.core.(r/w)mem_max
 - max size of (r/w)x socket buffer
 - net.core.(r/w)mem_default
 - default (r/w)x size of socket buffer
 - net.core.optmem_max
 - maximum amount of option memory buffers
 - net.core.netdev_max_backlog
 - how many unprocessed rx packets before kernel starts to drop them
- These settings also impact UDP!

Why Bother ? – Teaser 1

effect of net.core.rmem_max on gluster read throughput

server net.core.wmem_max tuned (4.2 MB) vs untuned (128-KB)

Linux auto tuning - It ROCKS!

effect of client, server setsockopt(...SO_{SND,RCV}BUF...)

iozone -w -c -e -i 1 -+n -r 16384k -s 4g -t 4 -F /mnt/glusterfs/foo{1,2,3,4}.ioz

Why Bother – A quick teaser

Two 40Gbit cards back to back (no switch).

```
# ./netperf -1 30 -H 172.17.200.82
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF INET to
172.17.200.82 (172.17.200.82) port 0 AF_INET : spin interval : demo
      Send
              Send
Recv
Socket Socket
                       Elapsed
              Message
              Size
Size
      Size
                       Time
                                Throughput
                                10^6bits/sec
bytes bytes bytes
                       secs.
 87380 16384 16384
                       30.00
                                  8868.76
```


Ispci – details

```
# Ispci -vvvs 81:00.0
81:00.0 Ethernet controller: Mellanox Technologies MT27500 Family [ConnectX-3]
      Subsystem: Mellanox Technologies Device 0035
      Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr+ Stepping- SERR+ FastB2B- DisINTx+
      Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-
      Latency: 0, Cache Line Size: 64 bytes
      Interrupt: pin A routed to IRO 56
      Capabilities: [48] Vital Product Data
            Product Name: CX313A - ConnectX-3 OSFP
            Read-only fields:
                  IPN Part number: MCX313A-BCB1
                 [V0] Vendor specific: PCIe Gen3 x8
                  [RV] Reserved: checksum good, 9 byte(s) reserved
      Capabilities: [60] Express (v2) Endpoint, MSI 00
            DevCap:
                         MaxPayload 256 bytes, PhantFunc 0, Latency L0s <64ns, L1 unlimited
                  ExtTag- AttnBtn- AttnInd- PwrInd- RBE+ FLReset+
            DevCtl:
                         Report errors: Correctable+ Non-Fatal+ Fatal+ Unsupported-
                  RlxdOrd- ExtTag- PhantFunc- AuxPwr- NoSnoop- FLReset-
                  MaxPayload 256 bytes, MaxReadReg 4096 bytes
                         CorrErr- Uncon En- FatalErr UnsuppReq- AuxPwr- TransPend-
            DevSta:
                       Port #8, Speed unknown, Width x8, ASPM LOs, Latency LO unlimited, L1 unlimited
            LnkCap:
                  ClockPM- Surprise- LLActRep- BwNot-
                         ASPM Disabled; RCB 64 bytes Disabled- Retrain- CommClk+
            LnkCtl:
                  ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-
                        Speed unknown, Width x8, Therr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
      Capabilities: [148] Device Serial Number 00-02-c9-03-00-05-6a-a8
      Capabilities: [18c] #19
      Kernel driver in use: mlx4 core
      Kernel modules: mlx4 core
NOTE Lots of data truncated for brevity
```


SUMMIT

JBoss

WORLD

Why Bother – A quick teaser

Check MTU

Why Bother – A quick teaser

ifconfig eth0 mtu 9000

```
# ./netperf -1 30 -H 172.17.200.82
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF INET to
172.17.200.82 (172.17.200.82) port 0 AF_INET : spin interval : demo
      Send
              Send
Recv
Socket Socket Message
                       Elapsed
                                Throughput
Size Size
              Size
                       Time
                                10^6bits/sec
bytes bytes bytes
                       secs.
                                23923.65
 87380 16384 16384
                       30.00
```

Changing MTU 9 Gb/sec -> 24 Gbit /sec

Tuning – debug simple netperf TCP_STREAM test

- Found the bottleneck!
 - CPU bound on RX side

04:39:33 PM	CPU	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%idle
04:39:36 PM	all	0.02	0.00	2.88	0.00	0.00	3.38	0.00	0.00	93.73
04:39:36 PM	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
04:39:36 PM	15	0.33	0.00	45.67	0.00	0.00	54.00	0.00	0.00	0.00

Tuning- first pass bottleneck resolution

- Disable irqbalance
 - We will pin the interrupts where we want them
 - But where do they go?
- Look in /sys to see if there are hints
 - A value of -1 could mean error or undefined
 - In this case we see that the pci slot is tied to NUMA node 1
 - Move the interrupts there
- Alternative is trial and error

Tuning- first pass bottleneck resolution

```
#dmesg | grep -i numa
NUMA: Allocated memnodemap from 9000 - 90c0
NUMA: Using 30 for the hash shift.
pci_bus 0000:00: on NUMA node 0 (pxm 0)
pci bus 0000:80: on NUMA node 1 (pxm 1)
# lspci | grep Mellanox
81:00.0 Ethernet controller: Mellanox Technologies MT27500 Family
[ConnectX-3]
# find /sys -name numa_node | grep 81:00.0
/sys/devices/pci0000:80/0000:80:02.0/0000:81:00.0/numa_node
# cat /sys/devices/pci0000:80/0000:80:02.0/0000:81:00.0/local cpulist
8-15
```


SUMMIT

JBoss

Tuning – second pass setup

- Disable irqbalance
 - irqbalance stop
 - chkconfig irqbalance off
- Identify the interrupts
 - grep eth4 /proc/interrupts
- But wait, mlx also has an second driver!
 - grep mlx /proc/interrupts
- or

```
# ls /sys/devices/pci0000:80/0000:80:02.0/0000:81:00.0/msi_irqs
     178
                180
                     181
                           182
                                183
                                      184
                                           185
                                                186
                                                      187
                                                           188
                                                                189
190
     191
          192
                193
                     194
                          195
                                196
                                     197
```


JBoss WORLD

Tuning – move the interrupts

- Map the interrupts to the proper cores for the NUMA node
 - CPU cores designated by bitmap
 - Use `numactl --hardware` to check core mappings to numa nodes
 - Understand the layout of the cache in relationship to the cores
- Remember these values do not persistent across reboots!
- Set IRQ affinity
 - echo 80 > /proc/irq/192/smp_affinity
 - Use "tuna"

Tuning – irqbalance disabled, netperf pinning

Rerun the tests, pin the netperf TX and RX to core 12

Hmmm, not really much better

Tuning – second pass

mpstat on the receiver

11:45:04 PM	CPU	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%idle
11:45:07 PM	all	0.02	0.00	5.02	0.00	0.00	0.02	0.00	0.00	94.94
11:45:07 PM	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	12	0.33	0.00	77.08	0.00	0.00	0.66	0.00	0.00	21.93
11:45:07 PM	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11:45:07 PM	15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Tuning – second pass

mpstat on the transmit

	11:45:03 PM	CPU	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%idle
•	11:45:06 PM	all	0.08	0.00	3.52	0.00	0.00	0.19	0.00	0.00	96.20
•	11:45:06 PM	0	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99.67
•	11:45:06 PM	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	10	0.00	0.00	0.00	0.00	0.00	0.43	0.00	0.00	99.57
•	11:45:06 PM	11	0.00	0.00	0.00	0.00	0.00	0.34	0.00	0.00	99.66
•	11:45:06 PM	12	0.70	0.00	57.49	0.00	0.00	2.44	0.00	0.00	39.37
•	11:45:06 PM	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
•	11:45:06 PM	14	0.00	0.00	0.33	0.00	0.00	0.00	0.00	0.00	99.67
•	11:45:06 PM	15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Tuning – step 2 not clear

- No apparent cpu bottleneck
- Lets try looking at process

netperf is spending a lot of time generating data

Tuning – step 3

Try TCP_SENDFILE

```
# ./netperf -l 30 -H 172.17.200.82 -T 12,12 -t
TCP_SENDFILE
TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET
to 172.17.200.82 (172.17.200.82) port 0 AF_INET : spin
interval : demo : cpu bind
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 30.00 34106.58
```

Looking Better!

Tuning – are we done?

- Look for bottlenecks
 - Transmit is CPU bound

•	11:54:54	PM	CPU	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%idle	
•	11:54:57	PM	all	0.08	0.00	6.16	0.00	0.00	0.11	0.00	0.00	93.65	
•	11:54:57	PM	0	0.33	0.00	0.33	0.00	0.00	0.00	0.00	0.00	99.34	
•	11:54:57	PM	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	2	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99.67	
•	11:54:57	PM	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	ΡM	10	0.00	0.00	0.00	0.00	0.00	0.39	0.00	0.00	99.61	_
•	11:54:57	PM	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•	11:54:57	PM	12	1.00	0.00	97.66	0.00	0.00	1.34	0.00	0.00	0.00	ı
_,L	11.54.57	PM	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	J
		PM	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	
•													
•	11:54:57	PΜ	15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Tuning – checking ethtool -S eth4

- Check for errors, pause frames, etc.
- Check nic on TX side

```
# ethtool -S eth4
NIC statistics:
    rx_packets: 135224755
    tx_packets: 1137704051
    rx_bytes: 8729946637
    tx_bytes: 9906371184752
    rx_errors: 0
    tx_errors: 0
    rx_dropped: 0
    tx_dropped: 0
    tso_packets: 20844101
    queue_stopped: 92899164
    wake_queue: 92899164
```


Tuning – sysctl settings

We need more buffers

- net.core.netdev_max_backlog = 250000
- net.core.wmem max = 16777216
- net.core.rmem default = 16777216
- net.core.wmem_default = 16777216
- net.core.optmem_max = 16777216
- net.ipv4.tcp_mem = 16777216 16777216 16777216
- net.ipv4.tcp_rmem = 4096 87380 16777216
- net.ipv4.tcp_wmem = 4096 65536 16777216
- net.core.rmem max = 16777216

Tuning – step 4

More buffers

```
# ./netperf -l 30 -H 172.17.200.82 -T 12,12 -t
TCP_SENDFILE
TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET
to 172.17.200.82 (172.17.200.82) port 0 AF_INET : spin
interval : demo : cpu bind
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 30.00 37354.41
```

We are done!

Tuning – throughput graph

40 Gbit Ethernet Performance

Tuned single stream TCP_STREAM

— Throughput (Mbits / sec)

Tuning – sanity check

Sometimes mistuning can show that it is working

```
# ./netperf -l 30 -H 172.17.200.82 -T 12,2 -t TCP_SENDFILE
TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
172.17.200.82 (172.17.200.82) port 0 AF_INET : spin interval : demo :
cpu bind
Recv
      Send
              Send
Socket Socket Message
                      Elapsed
Size Size
              Size
                      Time
                               Throughput
                               10^6bits/sec
bytes bytes
              bytes
                       secs.
87380 16384
             16384
                      30.00
                              13033.89
```

- 37 Gb -> 13 Gb due to crossing NUMA boundary
 - OUCH!

Throttling – cgroups

- Control Group (Cgroups) for
 - CPU/Memory/Network/Disk
- Benefit:
 - guarantee Quality of Service
 - dynamic resource allocation
- Ideal for managing any multi-application environment
- From back-ups to the Cloud

Throttling – cgroups in Action

cgroups Architecture

SUMIT

JBoss WORLD

Cgroup default mount points

```
# cat /etc/cgconfig.conf
mount {
      cpuset = /cgroup/cpuset;
      cpu = /cgroup/cpu;
      cpuacct = /cgroup/cpuacct;
      memory = /cgroup/memory;
      devices = /cgroup/devices;
      freezer = /cgroup/freezer;
      net_cls = /cgroup/net_cls;
      blkio = /cgroup/blkio;
}
```

```
# Is -I /cgroup
```

```
drwxr-xr-x 2 root root 0 Jun 21 13:33 blkio drwxr-xr-x 3 root root 0 Jun 21 13:33 cpu drwxr-xr-x 3 root root 0 Jun 21 13:33 cpuacct drwxr-xr-x 3 root root 0 Jun 21 13:33 cpuset drwxr-xr-x 3 root root 0 Jun 21 13:33 devices drwxr-xr-x 3 root root 0 Jun 21 13:33 freezer drwxr-xr-x 3 root root 0 Jun 21 13:33 memory drwxr-xr-x 2 root root 0 Jun 21 13:33 net_cls
```


Cgroup how-to

1GB/2CPU subset of a 16GB/8CPU system

```
#numactl --hardware
#mount -t cgroup xxx /cgroups
#mkdir -p /cgroups/test
#cd /cgroups/test
#echo 1 > cpuset.mems
#echo 2-3 > cpuset.cpus
#echo 1G > memory.limit in bytes
#echo $$ > tasks
```


ESENTED BY RED HAT

cgroups

```
[root@dhcp-100-19-50 ~] # forkoff 20MB 100procs &
[root@dhcp-100-19-50 ~] # top -d 5
top - 12:24:13 up 1:36, 4 users, load average: 22.70, 5.32, 1.79
Tasks: 315 total, 93 running, 222 sleeping, 0 stopped, 0 zombie
CpuO: 0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpul: 0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
     :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu2
Cpu3
     : 89.6%us, 10.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.2%hi, 0.2%si, 0.0%st
Cpu4: 0.4%us, 0.6%sy, 0.0%ni, 98.8%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Cpu5: 0.4%us, 0.0%sy, 0.0%ni, 99.2%id, 0.0%wa, 0.0%hi, 0.4%si, 0.0%st
Cpu6: 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7: 0.0%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Mem:
     16469476k total, 1993064k used, 14476412k free, 33740k buffers
Swap: 2031608k total, 185404k used, 1846204k free, 459644k cached
```


Verify correct bindings

[root@dhcp47-183 test]# echo 0 > cpuset.mems [root@dhcp47-183 test]# echo 0-3 > cpuset.cpus [root@dhcp47-183 test]# numastat

	node0	node1
numa_hit	1648772	438778
numa_miss	23459	2134520
local_node	1648648	423162
other_node	23583	2150136

[root@dhcp47-183 test]# /common/lwoodman/code/memory 4 faulting took 1.616062s touching took 0.364937s

[root@dhcp47-183 test]# numastat

	node0	node1
numa_hit	2700423	439550
numa_miss	23459	2134520
local_node	2700299	423934
other node	23583	2150136

incorrect bindings!

[root@dhcp47-183 test]# echo 1 > cpuset.mems [root@dhcp47-183 test]# echo 0-3 > cpuset.cpus [root@dhcp47-183 test]# numastat

	noaeu	uoaeī
numa_hit	1623318	434106
numa_miss	23459	1082458
local_node	1623194	418490
other_node	23583	1098074

[root@dhcp47-183 test]# /common/lwoodman/code/memory 4 faulting took 1.976627s touching took 0.454322s

[root@dhcp47-183 test]# numastat

	node0	node1
numa_hit	1623341	434147
numa_miss	23459	2133738
local_node	1623217	418531
other node	23583	2149354

Throttle with cgroups

- Example:
 - Set a 9 Gbit / sec limit on the cgroup
 - # tc qdisc add dev eth1 root handle 10: htb default 10
 - # tc class add dev eth1 parent 10:10 classid 10:10 htb rate 9gbit ceil 9gbit
 - # tc filter add dev eth1 parent 10:0 protocol all prio 1 handle 1 cgroup
 - # echo 0x100010 > /cgroup/net_cls/net_cls.classid

Throttle with cgroups

- memory
 - associate a cgroup with a classid that 'tc' utility creates/manages
 - Set upper-bounds
- Example:
 - Set a 9 Gbit / sec limit on the cgroup

```
# tc qdisc add dev eth1 root handle 10: htb default 10
# tc class add dev eth1 parent 10:10 classid 10:10 htb rate 9gbit ceil 9gbit
# tc filter add dev eth1 parent 10:0 protocol all prio 1 handle 1 cgroup
# echo 0x100010 > /cgroup/net_cls/net_cls.classid
```


Network Tuning Tips

- Packet size MTU
- Buffers
- IRQ affinity
- CPU affinity

Network Tuning Tips

- Separate networks for different functions
 - Use arp_filter to prevent ARP Flux
 - echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
 - Use /etc/sysctl.conf for permanent

Wrap UP

- Use this talk as suggestions of things to try
 - Our work is based on a private, local network wide area network will be different
 - Do not assume "my" setting will work for you without some tweaks
 - Your environment is probably different then mine.
 - Experiment! (but be careful)
- I should be around the Summit for the remainder of the week.
 - Feel free to stop me and ask questions, provide feedback, etc
- There will be members of the Performance team in the booth

For More Information – Other talks

- Performance Analysis & Tuning of Red Hat Enterprise Linux – Shak and Larry
 - Part 1 Thurs 2:30
 - Part 2 Thurs 3:40
- Tuning Red Hat Systems for Databases Sanjay Rao
 - Thurs 4:50
- Red Hat Storage Performance Ben England
 - Fri 9:45

For More Information

- Reference Architecture Website
 - https://access.redhat.com/knowledge/refarch/TBD
- Principled Technologies
 - http://www.principledtechnologies.com/clients/reports/Red%20Hat/Red%20Hat.htm
- New edition of the "Performance Tuning Guide"
 - http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
- IRQ Balance paper
 - https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linuxperformance-tuning-irq-affinity

Stay connected through the Red Hat Customer Portal

RHEL 6 Network Performance

Watch video

Performance Issues in Red Hat Enterprise Linux (Part 3)

Join Red Hat Enterprise Linux

access.redhat.com

LIKE US ON FACEBOOK

www.facebook.com/redhatinc

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

#redhat

READ THE BLOG

summitblog.redhat.com

GIVE US FEEDBACK

www.redhat.com/summit/survey

Tools – Hardware / Driver Focus

- Ispci
- ethtool
- modinfo
- hwloc

Configuration Tools – System Level

- numactl
- tuna
- ifconfig / ip
- tc
- cgroups
- sysctl
- man

Monitoring Tools – System Level

- numstat
- mpstat
- vmstat
- watch
- tcpdump / wireshark
- netstat
- oprofile / perf
- sar
- iptraf

sar – some common flags

- Some common flags for sar
 - Adding E gets failure stats
 - # sar -n EDEV
 View failure statistics for interfaces
 - # sar -n NFS
 View NFS client activity for interfaces
 - # sar -n NFSD View NFS server activity for interfaces
 - # sar -n (E)IP
 View IPv4 activity for interfaces
 - # sar -n (E)ICMP View ICMPv4 activity for interfaces
 - # sar -n (E)TCP View TCPv4 activity for interfaces

ethtool - View and change Ethernet card settings

- Works mostly at the HW level
 - ethtool -S provides HW level stats
 - Counters since boot time, create scripts to calculate diffs
 - ethtool -c Interrupt coalescing
 - ethtool -g provides ring buffer information
 - ethtool -k provides hw assist information
 - ethtool -i provides the driver information

