上海大学 2012~2013 学年冬季学期试卷	(A)
工/9/17 2012 2013 丁丁 5 丁丁////////	/ 1 1 /

课程名: <u>概率论与数理统计 B</u>课程号: _____学分: _5_

应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系

题号	_	<u> </u>	三	四	五
得分	10	15	10	60	5

- 一、是非题(本题共 2 分×5=10 分)
- 1、对任意两个事件 $A \subseteq B$,都有 $A \cup B = B = A$ 。
- 2、任意多个互不相容事件并的概率一定等于这些事件概率之和。
- 3、如果 X_1, \dots, X_n 是来自于服从正态分布 $N(\mu, \sigma^2)$ 的总体X的简单样本,那么

样本均值
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 和样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 是独立的。

- **4**、如果总体 $X \sim N(\mu, \sigma^2)$, 在样本容量一定条件下, 要提高参数 μ 估计的置信度, 那么就一定会降低估计的精度,即置信区间长度会增大。
- 5、如果总体 $X \sim N(0, \sigma^2)$,那么统计量 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ 是参数 σ^2 的无偏估计。

- 二、填空题(每格3分,共计15分)
- **6**、设事件 A, B 和 C 的概率为 $P((A) = P(B) = P(C) = \frac{1}{4}$, 而 P(AC) = P(BC) = 0, $P(AB) = \frac{1}{8}$, 那么三个事件都不发生的概率为。
- 7、如果一个罐中有红球 4 个,黑球 6 个,从中任意选取两球。如果发现取到的两个球中 有一个是红球,那么另一个也是红球的概率为。
- 8、如果随机变量 X 服从区间 [-1,1] 上的均匀分布,那么在 c ≠ 0 时,随机变量 Y = cX + d的均值为,方差为。
- 9、设随机变量 X 与 Y 相互独立, 凡都服从相同指数分布, 密度函数为 $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x < 0 \end{cases}$, 那么Z = X + Y的密度函数为。

草

- 三、选择题(本题共2分×5=10分)
- 10、对任意两个独立且发生概率均大于零的事件 A 和 B ,不正确的是 。
- (A) \overline{A} 与 \overline{B} 一定独立:
- (B) \overline{A} 与 B 一定独立;
- (C) $A 与 \overline{B}$ 一定独立;
- (D) A 与 B 一定互不相容。
- 11、随机变量 X 的概率密度和分布函数分别为 f(x) 和 F(x) ,则一定有_____。

- (A) $0 \le f(x) \le 1$; (B) $0 \le F(x) \le 1$; (C) P(X = x) = f(x); (D) P(X = x) = F(x).
- 12、随机变量 $X \sim F(n,m)$,即服从 F 分布。对 $0 < \alpha < 1$,分位数一定成立关系。
- (A) $F_{\alpha}(m,n) = F_{1-\alpha}(n,m)$;
- **(B)** $F_{\alpha}(m,n) = 1 F_{1-\alpha}(n,m)$;
- (C) $F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$; (D) $F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(m,n)}$.
- 13、对任意事件 $A \cap B$,若 P(B) > 0 ,则一定有 。
- **(A)** $P(A|B) + P(\overline{A}|B) = 1$; **(B)** $P(A|B) + P(A|\overline{B}) = 1$;
- (C) $P(A|B) + P(\bar{A}|\bar{B}) = 1$; (D) 以上结论都不一定成立。
- 14、设随机变量 X = Y 独立,且都服从参数为 p 的 0-1 分布。则一定成立的是 。
- **(A)** $P(X = Y) = p^2$;
- **(B)** $P(X = Y) = p^2 + (1 p)^2$;
- (C) $P(X = Y) = \frac{1}{2}$;
- **(D)** P(X = Y) = 1 •

四、计算题: (共60分)

15、(本题共10分)设有两罐,其中第一个罐中黑球6个,白球4个:第二个罐中白球 和黑球各5个。现在随机选取一罐,并从该罐中随机抽取一球。计算,

- 1) 抽到的球是黑球的概率:
- 2) 如果发现抽到的是白球,该球是从第一个罐中抽取的概率是多大?

草 稿 纸

16、(本题共15分)设随机变量(X,Y)的联合分布律为

X	-1	1	2
-1	1	2	3
	10	10	10
2	2	1	1
	10	10	10

- 1) 计算 $Z_1 = X + Y$ 的分布律; 2) 计算 $Z_2 = \max\{X, Y\}$ 的分布律;
- 3) 计算协方差 cov(X,Y); 4) 计算相关系数 ρ_{XY} 。

17、(本题 10 分)为检验某种药物是否会改变人的血压,挑选了 10 名试验者,测量了他们服药前后的血压,得到下面的数据。

编号	1	2	3	4	5	6	7	8	9	10
服药前	134	122	132	130	128	140	118	127	125	142
服药后	140	130	135	126	134	138	124	126	132	144

假设服药前后的血压差服从正态分布。如果显著性水平取为0.05,从这些数据中是否能得出该药物会改变血压的结论?

(附注: $u_{0.05} = 1.65$, $u_{0.025} = 1.96$,

$$t_{0.05}(10) = 1.81$$
 , $t_{0.05}(9) = 1.83$, $t_{0.025}(10) = 2.23$, $t_{0.025}(9) = 2.26$)

草稿纸

18、(本题 15 分)设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} c, & 0 \le x \le 2, \max(0,x-1) \le y \le \min(1,x) \\ 0, & \not\exists : \exists \end{cases}$$

(1) 确定常数c的值; (2)计算两个随机变量的边际密度函数;并判断这两个随机变量是否独立; (3)计算它们的协方差。

19、(本题 10 分)设总体 X 服从的概率密度函数为

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$$

分别给出参数 θ 的矩估计和最大似然估计。

草 稿 纸

Ŧī、	证明题	(共)	5分)
<u>т</u> ь,	MT (2) 1/67	\/\ '	U /J /

20、(本题 5 分) 由总体 X 的样本 $X_1, ..., X_n$ 可定义验分布:

$$F_n(x) = \begin{cases} 0, & x < X_{(1)} \\ \frac{k}{n}, & X_{(k)} \le x < X_{(k+1)} & \bullet \\ 1, & x \ge X_{(n)} \end{cases}$$

证明:对任意给定的x和 $\varepsilon > 0$,

$$\lim_{n\to\infty} P\{|F_n(x)-F(x)|>\varepsilon\}=0,$$

这里 F(x) 是总体的分布函数。

草 稿 纸