Distances, Trees, and Types: Methods for Analyzing High-Dimensional Microbiome Data

Brendan J. Kelly, MD, MSCE Division of Infectious Diseases University of Pennsylvania 2 June 2022

- The problem: too much data.
- Reducing dimensions:
 - richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

- The problem: too much data.
- Reducing dimensions:
 - richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Generating Microbiome Data

- High-density (next-generation, high-throughput) sequencing:
 - "tag" gene with conserved and variable regions (16S, 18S, ITS)
 - "shotgun" metagenomics (pool of randomly amplified nucleic acid)
- Sequence <u>binning and assignment</u>:
 - o perational taxonomic units (OTUs) based on 97% sequence similarity
 - → taxonomic assignment of OTUs
 - assemble contiguous metagenomic sequences → taxonomy
 - unassembled reads → taxonomic assignment

	Stool_1	Stool_2	Stool_3	Stool_4	Stool_5	Stool_6	Stool_7	Stool_8	Stool_9	Stool_10	Stool_11	Stool_12	Stool_13	Stool_14	Stool_15	Stool_16
OTU_97.10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10002	0	0	0	0	0	0	0	0	0	4	0	0	0	0	9	0
OTU_97.10005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10008	0	1	0	0	0	0	1	0	1	5	3	1	0	0	1	0
OTU_97.10010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10018	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10029	4	12	0	0	0	0	1	0	0	0	0	1	0	6	3	0
OTU_97.10034	0	3	0	0	0	0	0	0	0	1	0	2	0	0	3	0
OTU_97.10035	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0
OTU_97.10037	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
OTU_97.10039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10048	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10057	0	0	2	0	0	0	0	0	0	0	0	1	0	5	0	1
OTU_97.10058	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.10059	0	0	0	0	0	0	4	0	0	0	0	0	0	12	0	0

8048 ROWS - 187 COLUMNS

OTU_97.9518	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
OTU_97.9523	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0
OTU_97.9535	0	0	0	0	0	0	1	0	0	0	107	0	2	3	12	0
OTU_97.9540	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.9546	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
OTU_97.956	0	0	2	12	0	7	0	0	0	0	0	7	1	0	0	0
OTU_97.957	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.9572	0	1	0	1	0	0	4	0	0	3	0	0	0	0	0	0
OTU_97.9583	0	0	0	0	2	0	0	1	0	0	0	11	0	6	0	0
OTU_97.9588	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.9591	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0
OTU_97.9593	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.9594	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTU_97.96	0	11	0	0	0	0	0	0	0	0	0	0	0	1	0	0
OTU_97.9600	0	0	0	2	0	0	1	0	0	0	2	0	0	0	0	0
OTU_97.9605	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	OTU_ 97.10	OTU_9 7.1000 2	OTU_9 7.1000 5	OTU_9 7.1000 8	OTU_9 7.1001 0	OTU_9 7.1001 6	OTU_9 7.1001 8	_	OTU_9 7.1003 4	_	OTU_9 7.1003 7	OTU_9 7.1003 9	_	OTU_9 7.1005 7	OTU_9 7.1005 8	OTU_9 7.1005 9		OTU_ 97.951 8	OTU_ 97.952 3	OTU_ 97.953 5	OTU_ 97.954 0	OTU_ 97.954 6	OTU_ 97.956	OTU_ 97.957	OTU_ 97.957 2	OTU_ 97.958 3	OTU_ 97.958 8
Stool_	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
Stool_	0	0	0	1	0	0	0	12	3	0	0	0	1	0	0	0		0	0	0	0	0	0	0	1	0	0
Stool_	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0		0	0	0	0	1	2	0	0	0	0
Stool_ 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	12	0	1	0	0
Stool_ 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	2	0
Stool_ 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	7	0	0	0	0
Stool_ 7	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	4	407	0	0	1	0	0	0	0	4	0	0
Stool_ 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	187 ROWS	0	0	0	0	0	0	0	0	1	0
Stool_ 9	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	- 8048	0	0	0	0	0	0	0	0	0	0
Stool_ 10	0	4	0	5	0	0	0	0	1	0	0	0	0	0	0	0	COLS	0	0	0	0	0	0	0	3	0	0
Stool_ 11	0	0	0	3	0	0	0	0	0	2	0	0	0	0	0	0		1	0	107	0	0	0	0	0	0	0
Stool_ 12	0	0	0	1	0	0	0	1	2	0	2	0	0	1	0	0		0	8	0	0	0	7	0	0	11	0
Stool_ 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	2	0	0	1	0	0	0	0
Stool_ 14	0	0	0	0	0	0	0	6	0	0	0	0	0	5	0	12		0	0	3	0	0	0	0	0	6	0
Stool_ 15	0	9	0	1	0	0	0	3	3	2	0	0	0	0	0	0		0	0	12	0	0	0	0	0	0	0
Stool_ 16	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		0	0	0	0	0	0	0	0	0	0

High-Dimensional Microbiome Data

- Descriptive:
 - heatmaps
 - stacked barplots
- Reduce dimensions:
 - single summary statistic (alpha diversity)
 - o pairwise distances (beta diversity) with PCoA or PERMANOVA
 - community types (mixture modeling)

Anterior Nares vs Stool

Descriptive: Heatmaps & Barplots

- Visualization of OTU table:
 - typically present counts as a proportion of sample total
 - choice of sample order can highlight group differences
- Limitations:
 - cannot depict full list of OTUs
 - space dictates taxonomic level presented

Single-Taxon Hypotheses

- You suspect Bacteroides has a relationship with outcome of interest...
 - Bacteroides (genus)?
 - Bacteroidaceae (family)?
 - Bacteroidales (order)?
 - Bacteroidetes (class)?
- Hypotheses focusing on specific taxa often fail to account for possibility of selection bias from culture.

оти	assignment	phylum	class	order	family	genus
OTU_97.1	Root;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus
OTU_97.10	Root;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Veillonella	Firmicutes	Clostridia	Clostridiales	Veillonellaceae	Veillonella
OTU_97.100	Root;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae	Firmicutes	Clostridia	Clostridiales	Veillonellaceae	NA
OTU_97.1000	Root;pProteobacteria;cBetaproteobacteria	Proteobacteria	Betaproteobacteria	NA	NA	NA
OTU_97.10000	Root;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Propionibacteriaceae;g_Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium
OTU_97.10001	Root;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus
OTU_97.10002	Root;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	NA
OTU_97.10003	Root;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Propionibacteriaceae;g_Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium
OTU_97.10004	Root;pActinobacteria;cActinobacteria;oActinomycetales;fCorynebacteriaceae;gCorynebacterium	Actinobacteria	Actinobacteria	Actinomycetales	Corynebacteriaceae	Corynebacterium
OTU_97.10005	Root;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides

- ▶ The problem: too much data.
- Reducing dimensions:
 - richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Dimension Reduction: Alpha Diversity

- Summarize each sample's community in a single measure:
 - richness: number of community members
 - evenness: the distribution of member counts
- Many alpha diversity metrics (weight richness/evenness):
 - species number, Chao1 (singletons & doubletons)
 - \circ Shannon diversity: $H' = -\sum_i p_i \log_b p_i$
 - (note: may measure similarity or dissimilarity)

- ▶ The problem: too much data.
- Reducing dimensions:
 - o richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Dimension Reduction: Beta Diversity

- Summarize each sample's relationship to other samples:
 - pairwise distances
 - OTU table → square matrix
- Many beta diversity metrics:
 - just counts versus counts + phylogeny
 - weighted versus unweighted
 - (Euclidean versus non-Euclidean)

Dimension Reduction: Beta Diversity

- Just counts versus counts + phylogeny:
 - O Jaccard: $J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| |A \cap B|}$

$$d_J(A,B)=1-J(A,B)=rac{|A\cup B|-|A\cap B|}{|A\cup B|}$$

- UniFrac: fraction of unique branch length in tree
- Weighted versus unweighted:
 - weighted: counts matter
 - unweighted: binary (presence-absence)

Beta Diversity: How to Choose?

- Why use Jaccard? UniFrac?
- Why use weighted? Unweighted?

Thinking Like a Tree

- ▶ The problem: too much data.
- Reducing dimensions:
 - o richness, evenness, and diversity
 - ecological distances (UniFrac)
 - o PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Original Descriptors: PCA

- PCA: principal component analysis
 - rigid rotation for successive directions of maximum variance
 - lots of restrictions (Euclidean)
 - but allows projection of original descriptors in PCA space

Pairwise Distances: PCoA

- PCoA: principal coordinate analysis
 - any metric distance, even if non-Euclidean
 - like PCA, eigenvalue decomposition (maximum variance) but mediated by distance function (no original descriptors)
 - unlike PCA, does not allow projection of original descriptors in reduced-dimension space

(a) Classical approach

(b) Transformation-based approach (tb-PCA)

Ordination biplot

Representation of elements: Species = arrows Sites = symbols

(c) Distance-based approach (PCoA)

Ordination of sites

Representation of elements: Sites = symbols

Third English Edition

Numerical Ecology

Pierre Legendre Louis Legendre

- Reducing dimensions:
 - o richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Pairwise Distances: PERMANOVA

- Pairwise distance matrix can be partitioned by group assignment and
 ANOVA-like analysis can be applied to detect difference between groups.
- PERMANOVA: permutational ANOVA (aka, adonis)
 - pseudo F-ratio: conceptually similar but not F-distributed
 - testing by label permutation
 - quantification of effect size by R-squared or omega-squared
 (the latter a less biased estimator of true effect)

$$F = \frac{SS_A/(a-1)}{SS_W/(N-a)}$$

$$R^2 = 1 - rac{ ext{SS}_{ ext{W}}}{ ext{SS}_{ ext{W}} + ext{SS}_{ ext{A}}} = rac{ ext{SS}_{ ext{A}}}{ ext{SS}_{ ext{T}}} \qquad \qquad \omega^2 = rac{ ext{SS}_{ ext{A}} - (a-1)rac{ ext{SS}_{ ext{W}}}{ ext{N} - a}}{ ext{SS}_{ ext{T}} + rac{ ext{SS}_{ ext{W}}}{ ext{N} - a}}$$

Table 1. Effect sizes observed from various exposures/interventions in studies of various microbiome sampling sites are shown as measured by omega-squared (ω^2) statistics, together with the *P*-values from PERMANOVA test

Site	Comparison groups		ω^2/P -value					
	Control	Exposure	Weighted UniFrac	Unweighted UniFrac	Weighted Jaccard	Unweighted Jaccard	Reference	
Nares	Non-smoker (33)	Smoker (29)	0.042/0.001	0.009/0.001	0.023/0.001	0.007/0.001	Charlson et al. (2010)	
Oral	Non-smoker (33)	Smoker (29)	0.032/0.001	0.008/0.001	0.024/0.001	0.007/0.001	Charlson et al. (2010)	
Gut	Before feeding (10)	After feeding (10)	0.056/0.138	0.013/0.986	0/0.989	0.014/0.985	Wu et al. (2011)	
Oral	No azithromycin (42)	Azithromycin (6)	0.063/0.01	0.039/0.001	0.099/0.004	0.032/0.001	Charlson et al. (2012)	
Lung	No azithromycin (34)	Azithromycin (6)	0.065/0.005	0.038/0.001	0.019/0.089	0.033/0.001	Charlson et al. (2012)	
Skin	Left retroauricular (186)	Right retroauricular (187)	0.000/0.828	0.0001/0.327	0.000/0.986	0.000/1.000	HMP Consortium (2012b)	
Human	Anterior nares (161)	Stool (187)	0.567/0.001	0.201/0.001	0.230/0.001	0.117/0.001	HMP Consortium (2012b)	

$$R^2 = 1 - rac{ ext{SS}_{ ext{W}}}{ ext{SS}_{ ext{W}} + ext{SS}_{ ext{A}}} = rac{ ext{SS}_{ ext{A}}}{ ext{SS}_{ ext{T}}} \qquad \qquad \omega^2 = rac{ ext{SS}_{ ext{A}} - (a-1)rac{ ext{SS}_{ ext{W}}}{ ext{N} - a}}{ ext{SS}_{ ext{T}} + rac{ ext{SS}_{ ext{W}}}{ ext{N} - a}}$$

Table 1. Effect sizes observed from various exposures/interventions in studies of various microbiome sampling sites are shown as measured by omega-squared (ω^2) statistics, together with the *P*-values from PERMANOVA test

Site	Comparison groups		ω^2/P -value					
	Control	Exposure	Weighted UniFrac	Unweighted UniFrac	Weighted Jaccard	Unweighted Jaccard	Reference	
Nares	Non-smoker (33)	Smoker (29)	0.042/0.001	0.009/0.001	0.023/0.001	0.007/0.001	Charlson et al. (2010)	
Oral	Non-smoker (33)	Smoker (29)	0.032/0.001	0.008/0.001	0.024/0.001	0.007/0.001	Charlson et al. (2010)	
Gut	Before feeding (10)	After feeding (10)	0.056/0.138	0.013/0.986	0/0.989	0.014/0.985	Wu et al. (2011)	
Oral	No azithromycin (42)	Azithromycin (6)	0.063/0.01	0.039/0.001	0.099/0.004	0.032/0.001	Charlson et al. (2012)	
Lung	No azithromycin (34)	Azithromycin (6)	0.065/0.005	0.038/0.001	0.019/0.089	0.033/0.001	Charlson et al. (2012)	
Skin	Left retroauricular (186)	Right retroauricular (187)	0.000/0.828	0.0001/0.327	0.000/0.986	0.000/1.000	HMP Consortium (2012b)	
Human	Anterior nares (161)	Stool (187)	0.567/0.001	0.201/0.001	0.230/0.001	0.117/0.001	HMP Consortium (2012b)	

Kelly BJ et al. <u>Bioinformatics</u> 2015;31(15):2461-8.

Other Approaches to Modeling Distance

Outline

- Reducing dimensions:
 - richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Statistical / Machine Learning

- Supervised learning:
 - exposure and outcome
 - regression, linear discriminant analysis, KNN clustering
 - test & training data; cross-validation
- Unsupervised learning:
 - understand relationships between observations or variables
 - o can we reduce the dimensions of microbiome data?

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Springer

Outline

- ▶ The problem: too much data.
- Reducing dimensions:
 - o richness, evenness, and diversity
 - ecological distances (UniFrac)
 - PCA & PCoA
 - PERMANOVA (adonis)
- Cluster analysis:
 - supervised vs unsupervised learning
 - Dirichlet multinomial mixture modeling

Dimension Reduction: Mixture Models

- Dirichlet-multinomial distribution:
 - compound probability distribution: probability vector drawn from
 Dirichlet distribution (generalized beta) → observation drawn from
 multinomial distribution (generalized binomial)
- D-M mixture modelling:
 - each sample ~ multinomial from one Dirichlet vector
 - # Dirichlet vectors: minimize -log(model evidence, Laplace approx)
 - Dirichlet probability vectors = "community types"

Holmes I et al. PLoS One 2012.

Mean

Proportional Abundance 1.00

0.75

0.50

0.25

0.00

LETTER

Dynamics and associations of microbial community types across the human body

Tao Ding1 & Patrick D. Schloss1

Methods for Microbiome Data

- Visualization: heatmaps and barplots.
- Single-taxon hypothesis.
- Alpha diversity: richness and evenness.
- Pairwise distances: count/phylogeny, weighted/unweighted.
- Ordination: PCA & PCoA.
- PERMANOVA: categorical exposure & microbiome outcome
 (allows quantification of effect size)
- DMM models: unsupervised clustering > "community types"
 (identify relationships among variables/OTUs)

Conclusions

- Distance-based analysis and adonis/PERMANOVA testing:
 - microbiome outcome measures
 - o omega2 to define effect size of exposure/intervention
 - power estimation
- Dirichlet-multinomial mixtures:
 - categorical analysis may correspond with biologic community types
 - identify key species
 - discovery / validation design