EEEN 322 PS 3 QUESTIONS

Q1

- **4.2-1** For each of the following baseband signals: (i) $m(t) = \cos 1000t$; (ii) $m(t) = 2\cos 1000t + \cos 2000t$; (iii) $m(t) = \cos 1000t \cos 3000t$:
 - (a) Sketch the spectrum of m(t).
 - (b) Sketch the spectrum of the DSB-SC signal $m(t) \cos 10,000t$.
 - (c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra.
 - (d) Identify the frequencies in the baseband, and the corresponding frequencies in the DSB-SC, USB, and LSB spectra. Explain the nature of frequency shifting in each case.

Q2

4.2-2 Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] if: (i) m(t) = sinc (100t); (ii) $m(t) = e^{-|t|}$; (iii) $m(t) = e^{-|t-1|}$. Observe that $e^{-|t-1|}$ is $e^{-|t|}$ delayed by 1 second. For the last case you need to consider both the amplitude and the phase spectra.

Q3

4.2-3 Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] for $m(t) = e^{-|t|}$ if the carrier is $\cos (10,000t - \pi/4)$. *Hint*: Use Eq. (3.36).

Q4

- **4.2-4** You are asked to design a DSB-SC modulator to generate a modulated signal km(t) cos $\omega_c t$, where m(t) is a signal band-limited to B Hz. Figure P4.2-4 shows a DSB-SC modulator available in the stock room. The carrier generator available generates not $\cos \omega_c t$, but $\cos^3 \omega_c t$. Explain whether you would be able to generate the desired signal using only this equipment. You may use any kind of filter you like.
 - (a) What kind of filter is required in Fig. P4.2-4?
 - (b) Determine the signal spectra at points b and c, and indicate the frequency bands occupied by these spectra.
 - (c) What is the minimum usable value of ω_c ?
 - (d) Would this scheme work if the carrier generator output were $\cos^2 \omega_c t$? Explain.
 - (e) Would this scheme work if the carrier generator output were $\cos^n \omega_c t$ for any integer $n \ge 2$?

Figure P4.2-4

Q5

- **4.2-5** You are asked to design a DSB-SC modulator to generate a modulated signal km(t) cos $\omega_c t$ with the carrier frequency $f_c = 300$ kHz ($\omega_c = 2\pi \times 300,000$). The following equipment is available in the stock room: (i) a signal generator of frequency 100 kHz; (ii) a ring modulator; (iii) a bandpass filter tuned to 300 kHz.
 - (a) Show how you can generate the desired signal.
 - (b) If the output of the modulator is $km(t) \cos \omega_c t$, find k.

EEEN 322 PS 3 SOLUTIONS

Q1

4.2-1 (i) For $m(t) = \cos 1000t$

$$\varphi_{\text{DSB-SC}}(t) = m(t) \cos 10,000t = \cos 1000t \cos 10,000t$$
$$= \frac{1}{2} \underbrace{[\cos 9000t + \cos 11.000t]}_{\text{LSB}}$$

(ii) For $m(t) = 2\cos 1000t + \cos 2000t$

$$\varphi_{DSB-SC}(t) = m(t)\cos 10.000t = [2\cos 1000t + \cos 2000t]\cos 10.000t$$

$$= \cos 9000t + \cos 11.000t + \frac{1}{2}[\cos 8000t + \cos 12.000t]$$

$$= [\cos 9000t + \frac{1}{2}\cos 8000t] + [\cos 11.000t + \frac{1}{2}\cos 12.000t]$$
LSB

(iii) For $m(t) = \cos 1000t \cos 3000t$

$$\varphi_{\text{DSB-SC}}(t) = m(t)\cos 10.000t = \frac{1}{2}[\cos 2000t + \cos 4000t]\cos 10.000t$$

$$= \frac{1}{2}[\cos 8000t + \cos 12.000t] + \frac{1}{2}[\cos 6000t + \cos 14.000t]$$

$$= \frac{1}{2}[\cos 8000t + \cos 6000t] + \frac{1}{2}[\cos 12.000t + \cos 14.000t]$$
USB

This information is summarized in a table below. Figure S4.2-1 shows various spectra.

case	Baseband frequency	DSB frequency	LSB frequency	USB frequency
i	1000	9000 and 11,000	9000	11.000
.	1000	9000 and 11,000		11,000
iii	2000	8000 and 12.000	8000	12,000
	2000	8000 and 12,000		12,000
	4000	6000 and 14,000	6000	14,000

Fig. S4.2-3

4.2-4 (a) The signal at point b is

$$g_{\alpha}(t) = m(t) \cos^3 \omega_c t$$

= $m(t) \left[\frac{3}{4} \cos \omega_c t + \frac{1}{4} \cos 3\omega_c t \right]$

The term $\frac{3}{4}m(t)\cos\omega_c t$ is the desired modulated signal, whose spectrum is centered at $\pm\omega_c$. The remaining term $\frac{1}{4}m(t)\cos 3\omega_c t$ is the unwanted term, which represents the modulated signal with carrier frequency $3\omega_c$ with spectrum centered at $\pm 3\omega_c$ as shown in Fig. S4.2-4. The bandpass filter centered at $\pm \omega_c$ allows to pass the desired term $\frac{3}{4}m(t)\cos\omega_c t$, but suppresses the unwanted term $\frac{1}{4}m(t)\cos3\omega_c t$. Hence, this system works as desired with the output $\frac{3}{4}m(t)\cos\omega_c t$.

(b) Figure S4.2-4 shows the spectra at points b and c.

(c) The minimum usable value of ω_c is $2\pi B$ in order to avoid spectral folding at dc.

(d)

$$\begin{split} m(t)\cos^2\omega_c t &= \frac{m(t)}{2} \left[1 + \cos 2\omega_c t \right] \\ &= \frac{1}{2} m(t) + \frac{1}{2} m(t) \cos 2\omega_c t \end{split}$$

The signal at point b consists of the baseband signal $\frac{1}{2}m(t)$ and a modulated signal $\frac{1}{2}m(t)\cos 2\omega_c t$, which has a carrier frequency $2\omega_c$ not the desired value ω_c . Both the components will be suppressed by the filter, whose center center frequency is ω_c . Hence, this system will not do the desired job.

(e) The reader may verify that the identity for $\cos n\omega_c t$ contains a term $\cos \omega_c t$ when n is odd. This is not true when n is even. Hence, the system works for a carrier $\cos^n \omega_c t$ only when n is odd.

Fig. S4.2-4

05

4.2-5 We use the ring modulator shown in Fig. 4.6 with the carrier frequency $\hat{f_c} = 100 \text{ kHz}$ ($\hat{\omega}_c = 200\pi \times 10^3$), and the output bandpass filter centered at $f_c = 300 \text{ kHz}$. The output $v_i(t)$ is found in Eq. (4.7b) as

$$v_i(t) = \frac{4}{\pi} \left[m(t) \cos \dot{\omega}_c t - \frac{1}{3} m(t) \cos 3\dot{\omega}_c t + \frac{1}{5} m(t) \cos 5\dot{\omega}_c t + \cdots \right]$$

The output bandpass filter suppresses all the terms except the one centered at 300 kHz (corresponding to the carrier $3\omega_c t$). Hence, the filter output is

$$y(t) = \frac{-4}{3\pi}m(t)\cos 3\dot{\omega}_c t$$

This is the desired output $km(t)\cos\omega_c t$ with $k=-4/3\pi$.

Figure 4.6 Ring modulator.