from google.colab import drive
drive.mount('/content/drive')

Error Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/adult.csv')

df

→		age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capit
	0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
	32556	27	Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	
	32557	40	Private	154374	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	
	32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	
	32559	22	Private	201490	HS-grad	9	Never-married	Adm- clerical	Own-child	White	Male	0	
	32560	52	Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Female	15024	
32561 rows × 15 columns													

Next steps: Generate code with df) © View recommended plots (New interactive sheet)

quasi_identifiers = ['age','education','relationship','sex','race']

 $df['income'] = df['income']. \\ apply(lambda x: np.random.randint(20000,90000) if x == "<50k" else np.random.randint(50000, 150000)) \\ sensitive_attribute = 'income' \\ \\$

df

vorkclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capit
State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	
Private	154374	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	
Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	
Private	201490	HS-grad	9	Never-married	Adm- clerical	Own-child	White	Male	0	
Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Female	15024	
5 columns										

```
Next steps: ( Generate code with df )
                                 ( View recommended plots )
                                                              New interactive sheet
sensitivity = df[sensitive_attribute].max() - df[sensitive_attribute].min()
epsilon used = 1.0
df['noisy_income'] = df[sensitive_attribute] + np.random.laplace(loc = 0,
                                                                scale=sensitivity/epsilon_used,
                                                               size=len(df))
noise = df["noisy_income"] - df[sensitive_attribute]
avg_noise = np.abs(noise).mean()
estimated_epsilon = sensitivity / avg_noise
num_trials = 1000
def simulate dp income(data,epsilon,sensitivity,num trials):
 dp_outputs = []
  for _ in range(num_trials):
   noisy_income = data[sensitive_attribute] + np.random.laplace(loc=0,
                                                                scale=sensitivity/epsilon,
                                                                size=len(data))
    dp_outputs.append(np.mean(noisy_income))
 return np.array(dp_outputs)
dp_full = simulate_dp_income(df,epsilon_used,sensitivity,num_trials)
dp_neighbor = df.drop(df.sample(1,random_state=42).index)
dp_neighbor = simulate_dp_income(dp_neighbor,epsilon_used,sensitivity,num_trials)
print(f"Estimated \epsilon (epsilon) for Differential Privacy: {estimated_epsilon:.6f}")
print("\nFull dataset DP mean:")
print("Neighboring dataset DP mean:")
print(f" Mean: {dp_neighbor.mean():.4f}, Std: {dp_neighbor.std():.4f}")
\Rightarrow Estimated \epsilon (epsilon) for Differential Privacy: 0.997994
    Full dataset DP mean:
      Mean: 99997.8775, Std: 775.7896
     Neighboring dataset DP mean:
      Mean: 100013.4089, Std: 780.0277
plt.figure(figsize=(10,6))
plt.hist(dp full,bins=30,alpha=0.6,label="Full Dataset DP Mean")
```

```
plt.hist(dp_neighbor,bins=30,alpha=0.6,label="Neighboring Dataset DP Mean")
plt.xlabel("DP Mean of Income")
plt.ylabel("Frequency")
plt.title("Empirical Distributions of DP Mean for Income\n vs Neighboring Dataset")
plt.legend()
plt.show()
```


Empirical Distributions of DP Mean for Income vs Neighboring Dataset

