Minimização de Automatos Finitos Deterministicos

July F. M. Werneckl¹, Thiago Amado Costa²

¹Instituto de Ciências Exatas e Informática – Pontifícia Universidade Católica de Minas Gerais

Belo Horizonte, Minas Gerais

²Instituto de Ciências Exatas e Informática – Pontifícia Universidade Católica de Minas Gerais

Belo Horizonte, Minas Gerais

{jfmwerneck@sga.pucminas.br, thiago.amado@sga.pucminas.br

Resumo. Este artigo descreve a implementação de dois métodos de minimização de Automatos Finitos Determinísticos, o método $O(n^2)$, encontrado em livros didáticos, e o método $O(n \log n)$, inicialmente proposto por [Hopcroft 1971].

Ambos métodos foram implementados seguindo a apresentação de [Blum 1996].

1. Introdução

De acordo com a definição dada por [Vieira 2006], um AFDM é mínimo para a linguagem L(m) se nenhum AFD para L(m) contém menor número de estados que M. Dessa forma, para construir um AFD minimo, o primeiro passo é remover os estados inalcançáveis a partir do inicial, e em seguida, determinar quais estados são equivalentes, para então reconstruir a função de transição. Os algoritmos em análise se diferem principalmente etapa de verificação de estados equivalentes.

2. Implementação

Os algoritmos propostos foram reescritos na linguagem Python. Os arquivos de entrada e saída seguem o formato adotado pelo simulador JFLAP versão 7.0 para a descrição do Autômato. Todos os testes e autômatos de entrada estão na pasta ./tests/, e resultados na pasta ./results/.

Para a leitura do arquivo de entrada, foi implementada uma função que obtém da entrada o conjunto de estados (E), transições (δ) e alfabeto (\sum) , além do estado inicial(i) e conjunto de estados finais (F), resultando em um automato finito $P = (E, \sum, \delta, i, F)$.

Após a obtenção do autômato, são retirados do mesmo os estados inalcançáveis a partir do inicial, para então ser minimizado.

A seguir, a descrição dos métodos implementados:

2.1. Método $O(n^2)$

O algoritmo para minimização do autômato está contido em uma função denominada min_nn no arquivo Minimize.py A função recebe como parâmetro um autômato P do tipo AFD, classe auxiliar para a implementação de todo o código.

Dentro de min_nn , temos uma função encapsulada $_get_set_c_transition$ que recebe como parâmetro um $_S$, variável que armazena as partições, e também um estado $_e$. A função tem como objetivo auxiliar na determinação de qual partição um estado está contido, e por isso retorna i, que contém essa informação.

As duas primeiras verificações do processo de minimização são para definir se o autômato P recebido como parâmetro possui algum estado final, e também, se todos os estados são finais, já que em ambos os casos, por definição, o autômato minimizado seria um único estado com todas as transições do alfabeto para ele mesmo.

Caso nenhuma condicional seja satisfeita, criamos duas variáveis, sendo S o vetor que armazena as diferentes partições, e n uma variável inteira que vai acessar os índices de S, inicializada com 0. Além disso, inicializamos S dividindo os estados de P em finais e não finais, desta forma S[0] possui uma partição contendo todos os estados não finais e outra partição com todos os finais.

No próximo passo, temos um while que executa enquanto o tamanho de S for igual a um ou enquanto o S atual for diferente do S anterior. Uma vez dentro do loop incrementamos a variável n em uma unidade e chegamos em um loop for que itera sobre as partições X de S, enquanto existirem partições não vazias, faz-se:

- 1. Pegamos o estado e presente na primeira posição da partição X, e para cada símbolo do alfabeto verificamos qual estado é alcançado por e com o símbolo a, com auxílio do método contido na classe P get_reachable_state_by_symbol que pode ser expressado por δ(e, a) = reachable_state. Em seguida, utilizamos a função encapsulada descrita anteriormente para acessar em qual das partições de S o resultado da transição está contido, armazenando-o em uma variável denominada transitions_set[a].
- 2. Uma vez terminado os símbolos do alfabeto, criamos uma variável Y e a inicializamos com o estado e, entramos em um for que vai verificar se os estados e que fazem parte da mesma partição e de e, possuem transição para mesma partição armazenada em $transitions_set$, com todos os símbolos do alfabeto. Para determinar se e deve continuar na mesma partição de e, utilizamos um contador e count que e incrementado em um cada vez que a expressão e satisfeita e0(e0, e0) e1 e2 e3 e4 e5 e6 e7.
- 3. Em seguida, atualizamos X para X Y e adicionamos Y em S[n].

Ao sairmos do while mais exterior, temos a certeza que foi definido quais os estados são correspondentes e consequentemente temos o autômato minimizado.

Os passos seguintes são responsáveis por reconstruir o autômato, definindo que, caso uma partição contenha um símbolo inicial, portanto esta é inicial, seguimos a mesma lógica para definição de quais os novos estados de aceite. Já para transições, utilizamos a combinação da função $get_reachable_state_by_symbol$ e a $_get_set_c_transition$ para definir em qual partição está o resultado de uma transição antiga. Finalmente, temos o autômato devidamente minimizado e equivalente a P.

2.2. Método $O(n \log n)$

O algoritmo para minimização do autômato está contido em uma função denominada min_nlogn no arquivo Minimize.py. Para implementação do mesmo, como citado ante-

riormente, utilizamos alguma estruturas complementares que garantem o ganho de tempo computacional, sendo elas:

L[i,a,j]: estrutura que armazena quais estados da partição i alcançam a partição j com o símbolo a;

triangle(q,a): armazena o identificador da lista que contém o resultado da transição $\delta(q,a)$, em que q é um estado e a um símbolo;

 $inverted_triangle(b, q)$: lista de estados que alcançam o estado q com símbolo b;

 $_triangle(i,a)$: armazena o identificador da lista que contém as relações da partição i com o símbolo a;

K: dicionário que contem a relação entre a chave de $_triangle$ que armazena mais que um identificador de lista.

Os primeiros passos da implementação são dedicados à construção das estruturas auxiliares citadas acima, a execução do algoritmo ocorre majoritariamente em função do K já que este contém as partições que com um mesmo símbolo vão para partições diferentes. E por isso, enquanto K não estiver vazio, executamos os passos:

- 1. Para cada relação $_triangle$ contida em K, pegamos duas triplas $L(i,a,j_1)$ e $L(i,a,j_2)$, escolhemos a menor lista e a transformamos em uma nova lista $L(t,a,j_{min})$. Note que neste ponto, não utilizamos t+1 pois nosso t já é inicializado com dois. Então, atualizamos as estruturas adjacentes para a nova partição criada, deletando a ocorrência da lista $L(i,a,j_{min})$ de $_triangle$ e adicionando a nova lista, e ainda, caso a lista remanescente de $_triangle(i,a)$ for menor que dois, deletamos sua ocorrência de K.
- 2. Para cada estado q contido na nova lista $L(t, a, j_{min})$ vamos atualizar as demais estruturas para nova partição que fazem parte:
 - (a) Para cada símbolo b do alfabeto, sendo b != a, utilizamos triangle(q,b) para encontrar a lista L(i,b,k) que armazena o resultado da transição, que pode ser expressada por $\delta(q,b) = result$. Removemos result da lista anterior e adicionamos a nova lista, $L(new_ibk)$, adicionalmente, atualizamos também a estrutura triangle. Caso a lista antiga fique vazia, removemos sua ocorrência nas demais estruturas, conforme necessário. Ainda, adicionamos $L(new_ibk)$ em $_triangle(t,b)$ e eventualmente, em K, caso a lista torne-se maior que um.
 - (b) Para todos os símbolos do alfabeto, utilizamos a estrutura do $inverted_triangle \text{ para obter quais estados, } p, \text{ alcançavam a antiga partição, e a partir de } triangle \text{ obtemos o identificador da lista } L(k,b,i) \text{ que deve ser modificado para nova partição criada. Dessa forma, removemos } p \text{ da antiga lista e inserimos em } L(new_kbt). \text{ Atualizamos as estruturas adjacentes seguindo a mesma lógica do passo anterior.}$
 - (c) Ao final, sempre incrementamos a variável t em uma unidade.

Para definição dos estados iniciais e finais do AFD-M utilizamos a mesma lógica do método n^2 , já para definição das transições iteramos sobre as chaves de L e obtemos a relação de cada partição com os símbolos do alfabeto.

Ao final do algoritmo, obtemos as partições separando corretamente os estados e

os relacionando de acordo com as transições iniciais, por isso, obtemos um AFD equivalente e mínimo ao P de origem.

3. Experimentos e Resultados

(a) Figura 1: Binário mod 6

(b) Figura 1: $(1 \cup (01^*)^9)^*$

3.1. Teste 1

Utilizando o autômato da Figura 1a, ambos algoritmos obtiveram AFDs mínimos equivalentes. O método $O(n^2)$ resultou no AFD representado na Figura 2a, e o método $O(n\log n)$ resultou no AFD representado na Figura 2b. O autômato em questão representa um caso médio, portanto, ambos algoritmos obtiveram resultados semelhantes em tempo de execução.

(a) Figura 2: Resultado do algoritmo $(O(n^2))$

(b) Figura 2: Resultado do algoritmo $(O(n \log n))$

3.2. Teste 2

Utilizando o autômato da Figura 1b, ambos algoritmos obtiveram AFDs mínimos equivalentes. O método $O(n^2)$ resultou no AFD da Figura 3a, e o método $O(n\log n)$ resultou no AFD da Figura 3b.

No autômato em questão nenhum estado é equivalente a outro, fazendo-se necessário que o algoritmo gere K partições, em que K = numero de estados. Assim, era esperado que os algoritmos tivessem tempos de execução diferentes, porém, ambos algoritmos obtiveram tempos semelhantes de execução, fazendo-se necessário testes com mais estados para observar maiores diferenças.

(a) Figura 3: AFD mínimo $(O(n^2))$

(b) Figura 3: AFD mínimo $(O(n \log n))$

3.3. Testes Finais

Seguindo o padrão do autômato representado na Figura 1b,em que cada estado possui uma transição para si mesmo com 1 e uma transição para o próximo com 0, foram criados 4 autômatos, com o numero de estados em 100, 500, 1000 e 2000 estados. A seguir, segue uma tabela contendo uma média dos tempos de execução, em segundos, de cada algoritmo, para cada um dos 4 autômatos.

n	$0(n^2)$	O(nlogn)
100	0.028	0.002
500	2.56	0.033
1000	17.70	0.12
2000	135.20	0.48

4. Conclusão

Observando a tabela com as médias de tempo de execução para cada algoritmo, fica claro que o Teorema 1 proposto por [Blum 1996] vale. É possível observar a partir dos testes finais que a diferença entre o tempo de execução das duas implementações cresce a medida que o número de estados aumenta. Para estados menores ou iguais a 100 a diferença é relativamente similar, considerando a perspectiva humana, e por isso, para estes casos o implementação n^2 deve ser suficientemente boa. Já a implementação nlogn ganha destaque para autômatos grandes e cenários em que milésimos fazem diferença. A implementação cuja complexidade é nlogn constrói sua vantagem na criação de estruturas auxiliares para determinação de diferentes partições, sendo assim uma solução de compromisso entre a memória utilizada e o tempo de execução para determinar um autômato minimizado.

References

Blum, N. (1996). An o (n log n) implementation of the standard method for minimizing n-state finite automata. *Information Processing Letters*, 57(2):65–69.

Hopcroft, J. (1971). An n log n algorithm for minimizing states in a finite automaton. In *Theory of machines and computations*, pages 189–196. Elsevier.

Vieira, N. J. (2006). *Introdução aos fundamentos da computação: linguagens e máquinas*. Pioneira Thomson Learning.