7. BÖLÜM

PARAMETRİK DENKLEMLER VE KUTUPSAL KOORDİNATLAR

7.1. Parametrik Denklemler

y=f(x) şeklindeki fonksiyonlarla çalıştık. Bazen g(x,y)=0 şeklindeki bağıntılarla da karşılaştık. Örneğin, $x^2+y^2=1$ bu şekilde bir bağıntıdır. Ancak bu gösterimler her zaman aradığımız soruları cevaplayacak bir gösterim değildir. xy düzleminde hareket eden bir parçacığı gözönüne alalım. Parçacığın bir anlık pozisyonu x ve y koordinatları ile verilir. Parçacık düzlemde hareket ederken koordinatlar zamana göre değişir. O halde parçacığın hareketini tanımlamada koordinatları zamanın fonksiyonu olarak belirlemek doğaldır. Böylece I, f ve g fonksiyonlarının tanımlandığı bir aralık olmak üzere $t \in I$ için

$$x = f(t), \ y = g(t)$$

yazılır. Buradaki t ye parametre denir. Yani, x ve y den bağımsız ancak x ve y nin bağlı olduğu yeni t değişkenine parametre denir. Bu denklemlere de eğrinin parametrik denklemi adı verilir. Parametrik denklemler arasında t yi yok edersek eğrinin kartezyen denklemi elde edilir. Eğri üzerindeki pozitif yön parametrenin artan kuvvetlerine karşılık gelen yöndür.

7.1.1. Örnek: $i, t \in \mathbb{R}$ olmak üzere

$$x = 2t - 1, \ y = -t + 2$$

parametrik denklemleri ile verilen eğriyi gözönüne alalım. t=2-y olduğu gözönüne alınarak verilen parametrik denklemin kartezyen koordinatlardaki karşılığı

$$x = 2(2-y) - 1$$
 veya $y = \frac{1}{2}(3-x)$

olarak yazılır.

 $\emph{ii.} \ 0 \leq t \leq 2\pi$ olmak üzere

$$x = 3\sin t, \ y = 5\cos t$$

parametrik denklemini gözönüne alalım. Burada

$$\frac{x}{3} = \sin t, \ \frac{y}{5} = \cos t$$

olduğundan

$$\frac{x^2}{9} + \frac{y^2}{25} = \sin^2 t + \cos^2 t = 1$$

yazılır. Yani, verilen bir elipsin parametrik denklemidir.

 $\emph{iii.}$ Kartezyen koordinatlarda $y=1-x^2$ eğrisi eriliyor. Bu eğrinin paramerik denklemini

$$a. x = t$$

$$b. x = \frac{t}{2}$$

seçilmesi halinde bulunuz.

Çözüm: a. Verilen denklemde x=t yazılırsa $y=1-t^2$ olur. O halde parametrik denklem

$$x = t, y = 1 - t^2$$

olarak bulunur.

b. Verilen denklemde $x=\frac{t}{2}$ yazılırsa $y=1-\frac{t^2}{4}$ olur. O halde parametrik denklem

$$x = \frac{t}{2}, \ y = 1 - \frac{t^2}{4}$$

olarak bulunur. Bu örnekten de anlaşılacağı gibi bir eğri için parametrik denklem tek değildir.

iv. x eksenine orijinde teğet olan r yarıçaplı bir çemberin kaymadan bu eksen üzerinde yuvarlanması halinde başlangıç anındaki değme noktasının hareket boyunca çizdiği eğriye sikloid eğrisi denir. Bu eğrinin denklemini bulunuz.

Çözüm: t parametresi çemberin dönmesinin ölçüsü, P=(x,y) noktası da orijindeki değme noktası olsun. t=0 iken P orijindedir. APC ve PCD iç ters açılar olduğundan $APC=\pi-t$ dir. Buna göre şekildeki dik üçgenden

$$\sin t = \sin (\pi - t) = \frac{|AC|}{r} = \frac{|BD|}{r}$$
$$\cos t = -\cos (\pi - t) = -\frac{|AP|}{r}$$

olur. Buradan da

$$|AP| = -r\cos t$$
 ve $|BD| = r\sin t$

yazılır. OD doğru parçasının uzunluğu ile DP yayının uzunluğu eşit olacağından |OD|=rt dir. Diğer yandan |AB|=|CD|=r dir. Buna göre

$$x = |OD| - |BD| = r(t - \sin t), \ \ y = |AP| + |AB| = r(1 - \cos t)$$

olarak bulunur. Bu ise sikloid eğrisinin parametrik denklemidir.

7.2. Parametrik İfadelerle Türev ve Yay Uzunluğu

Yukarıda bahsedildiği gibi $x=f(t),\ y=g(t)$ parametrik denkleminde t yok edilerek kartezyen koordinatlara geçilebilir. Ancak, kartezyen koordinatlara geçineden bu fonksiyonun $\frac{dy}{dx}$ türevinin parametrik ifadesini bulabiliriz. Bunun için daha önce gördüğümüz türevin tanımından yararlanacağız. f ve g fonksiyonları türevlenebilir olmak üzere

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{f(t + \Delta t) - f(t)}$$

$$= \lim_{\Delta t \to 0} \frac{\frac{g(t + \Delta t) - g(t)}{\Delta t}}{\frac{f(t + \Delta t) - f(t)}{\Delta t}}$$

$$= \frac{g'(t)}{f'(t)}$$

$$= \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

elde edilir. Türevin geometrik yorumundan, yukarıdaki türevin x=f(t), y=g(t) parametrik denklemi ile verilen eğrinin (x,y) noktasındaki teğetinin eğimi olduğu söylenir.

Yüksek mertebeden türevler de yukarıdaki muhakemeye benzer olarak

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$
$$\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2}\right) = \frac{\frac{d}{dt} \left(\frac{d^2y}{dx^2}\right)}{\frac{dx}{dt}}$$

şeklinde yazılır.

7.1.2. Örnek: i. $x = \sqrt{t}$, $y = \frac{1}{4}(t^2 - 4)$ parametrik denklemleri ile verilen eğrinin (2,3) noktasındaki teğetinin eğimini bulunuz.

Çözüm: İlk olarak

$$\frac{dy}{dx} = \frac{\frac{1}{2}t}{\frac{1}{2}t^{-1/2}} = t^{3/2}$$

dir. (x, y) = (2, 3) olarak verildiğinden t = 4 olarak bulunur. O halde eğim

$$m = 4^{3/2} = 8$$

dir.

ii. $x = 3\sin t$, $y = 4\cos t$ parametrik denklemi veriliyor. $\frac{dy}{dx}$ ve $\frac{d^2y}{dx^2}$ türevlerini bulunuz.

Çözüm:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-4\sin t}{3\cos t} = -\frac{4}{3}\tan t$$

olur. İkinci türev de

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{-\frac{4}{3}(1+\tan^2 t)}{3\cos t}$$

olarak bulunur.

Yay Uzunluğu: Hatırlanacağı gibi kartezyen koordinatlarda verilen y = h(x) eğrisinin $[x_0, x_1]$ aralığındaki yay uzunluğu

$$s = \int_{x_0}^{x_1} \sqrt{1 + (y')^2} \, dx = \int_{x_0}^{x_1} \sqrt{1 + (\frac{dy}{dx})^2} \, dx$$

olarak yazılır. Eğrinin bu aralıktaki parametrik denklemi x=f(t), y=g(t), $a\leq t\leq b$ ve f'(t) ve g'(t) sürekli ise yay uzunluğu formülü

$$s = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2} \, dt = \int_a^b \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt$$

olarak elde edilir.

7.1.3. Örnek: $x=r(t-\sin t), \qquad y=r(1-\cos t)$ sikloidinin $0\leq t\leq 2\pi$ için yay uzunluğunu bulunuz.

Çözüm: Yay uzunluğu formülünü kullanacağız.

$$\frac{dx}{dt} = r(1 - \cos t), \ \frac{dy}{dt} = r\sin t$$

ve böylece

$$(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 = 2r^2(1-\cos t)$$

olur. O halde yay uzunluğu

$$s = \int_0^{2\pi} \sqrt{2} \, r \sqrt{1 - \cos t} \, dt$$

formülü ile bulunur. Bu integrali hesaplamak için $\sin^2\frac{t}{2}=\frac{1}{2}(1-\cos t)$ trigonometrik özdeşliğini kullanırız. Buna göre

$$s = \sqrt{2} r \int_0^{2\pi} \sqrt{2\sin^2 \frac{t}{2}} dt$$
$$= 2r \int_0^{2\pi} \sin \frac{t}{2} dt$$
$$= 8r br$$

elde edilir.

Alıştırmalar

1. Aşağıdaki parametrik denklemlerin kartezyen koordinatlardaki denklemini yazınız.

i.
$$x = 3t - 1$$
, $y = 2t + 1$
ii. $x = \sqrt[3]{t}$, $y = t + 1$
iii. $x = t - 1$, $y = \frac{1}{t - 1}$
iv. $x = e^{2t}$, $y = e^t$

2. Aşağıdaki parametrik denklemler için $\frac{dy}{dx}$ ve $\frac{d^2y}{dx^2}$ türevlerini hesaplayınız. i. $x=3(1-\cos t),\ y=3(t-\sin t)$ ii. $x=\sinh t,\ y=\cosh t-t$ iii. $x=e^{2t},\ y=e^t$ iv. $x=r\cos^3 t,\ y=r\sin^3 t$

3. $x=at^2, y=2at$ parametrik denklemi ile verilen eğri, x ekseni, t=1 ve t=2 arasında kalan alanı bulunuz. [Yol gösterme: $A=\int_1^2 y dx$ olduğunu hatırlayınız]

4. Aşağıda a şıkkında verilen eğrilerin b şıkkındaki aralıkta kalan kısımlarının yay uzunluğunu bulunuz.

i. a.
$$x = 2\cos^3 t, \ y = 2\sin^3 t$$
 b. $0 \le t \le \frac{\pi}{2}$ ii. a. $x = 5(2t - \sin 2t), \ y = 10\sin^2 t$ b. $0 \le t \le \pi$ iii. a. $x = r\cos t, \ y = r\sin t$ b. $0 \le t \le 2\pi$

7.3. Kutupsal Koordinat Sistemi

Bu sistem, düzlemde seçilen bir O başlangıç noktası ve bu noktadan başlayan yarı doğrudan oluşur. Kolaylık sağlaması açısından kartezyen koordinat sisteminin orijini başlangıç noktası, x ekseninin pozitif kısmı da yarı doğru olarak alınır. Başlangıç noktasına kutup, yarı doğruya da kutup ekseni adı verilir. Düzlemde keyfi bir P noktası seçelim. Bu P noktası ile başlangıç noktasını birleştiren OP doğru parçasını gözönüne alalım. Bu OP doğru parçasının uzunluğu r ve kutup ekseni ile yaptığı açı θ olsun. İşte (r,θ) noktası düzlemde bir tek P noktasını gösterir. Buna P noktasının kutupsal koordinatı denir.

7.3.1. Şekil: (r, θ) noktasının kutupsal olarak gösterilişi

P noktası verildiğinde OP doğru parçasını O tarafından r kadar uzatalım ve bu noktaya P' diyelim. Bu noktanın kutupsal koordinatı $(r, \theta + \pi)$ veya $(-r, \theta)$ ile gösterilir. Bundan anlaşılacağı gibi bir noktanın kutupsal koordinatlar ile gösterilmesi tek değildir. Örneğin, (r, θ) noktası ile k bir tamsayı olmak üzere $(r, \theta + 2k\pi)$ düzlemde aynı noktayı gösterir. θ ne olursa olsun $(0, \theta)$ başlangıç noktasının kutupsal koordinatıdır.

7.3.1.Örnek:*i.* $A(2, \frac{\pi}{4}), B(2, -\frac{\pi}{4}), C(3, \frac{\pi}{6}), D(-3, \frac{\pi}{6}), E(4, \frac{\pi}{2}), F(-4, \frac{\pi}{2}), G(1, 0), H(-1, 0), I(4, \frac{3\pi}{2})$ kutupsal koordinatlar ile verilen noktaları düzlemde gösterelim.

ii. $T = \{(r, \frac{\pi}{4}) : r > 2\}$ kümesini düzlemde aşağıdaki şekilde gösteririz:

iii. $K = \{(2,\theta): 0 < \theta < \frac{\pi}{2}\}$ ve $L = \{(r,\theta): 0 < r < 2, \ 0 < \theta < \frac{\pi}{2}\}$ kümeleri düzlemde sırasıyla (a), (b) şekillerinde gösterilmiştir.

Alıştırmalar

- 1. $A(3, \frac{\pi}{4}), B(3, \frac{9\pi}{4}), C(-3, \frac{5\pi}{4}), D(-3, -\frac{5\pi}{4}), E(0, \pi)$ noktalarını kutupsal koordinat sisteminde gösteriniz.
- **2.** Aşağıdaki kümeleri kutupsal koordinat sisteminde gösteriniz. **i.** $A=\{(r,\theta): \frac{\pi}{6} \leq \theta < \frac{\pi}{3}\}$ **ii.** $B=\{(r,\theta): \frac{\pi}{6} \leq \theta < \frac{\pi}{3}, \ r>3\}$

i.
$$A = \{(r, \theta) : \frac{\pi}{6} \le \theta < \frac{\pi}{3}\}$$

ii.
$$B = \{(r, \theta) : \frac{\pi}{6} \le \theta < \frac{\pi}{3}, r > 3\}$$

7.4. Dik ve Kutupsal Koordinatlar Arasındaki İlişki

Daha kullanışlı olması açısından kutup ekseni olarak dik (kartezyen) koordinat sistemindeki x ekseninin pozitif kısmını tercih ettik. Bu seçimle, kutupsal koordinatlar ile kartezyen koordinatlar arasındaki ilişkiyi görebiliriz.

Dik koordinatlarda verilen bir eğriyi kutupsal koordinatlarda yazmak için

$$x = r\cos\theta, \ y = r\sin\theta$$

yazılır. Kutupsal koordinatlarda verilen bir eğriyi de dik koordinatlarda yazmak için

$$r=\sqrt{x^2+y^2}\,,\;\; \theta=\arctanrac{y}{x}$$

eşitlikleri kullanılır. θ açısının bulunduğu bölgeyi belirlemek için

$$\cos \theta = \frac{x}{r}, \sin \theta = \frac{y}{r}$$

bağıntılarından faydalanılır.

- **7.4.1. Örnek:** *i.* Kutupsal koordinatlarda $(2, \frac{3\pi}{4})$ ve $(-2, \frac{\pi}{6})$ olarak verilen noktaların dik koordinatlardaki karşılığını bulunuz.
- ii. Dik koordinatlarda (3,3) olarak verilen noktayı kutupsal koordinatlarda yazınız.
- iii. (r_1, θ_1) ve (r_2, θ_2) kutupsal koordinatlı iki nokta olmak üzere bu noktalar arasındaki uzaklığın

$$d = \sqrt{r_1^2 - 2r_1r_2\cos(\theta_2 - \theta_1) + r_2^2}$$

ii. Bunun anlamı r ne olursa olsun θ daima $\frac{\pi}{4}$ dür. $\theta = \frac{\pi}{4}$ ün dık koordinatlardaki ifadesi $\theta = \arctan \frac{y}{x}$ olduğundan $y = (\tan \theta)x$ yazılır. Buna göre y = x olur. Bu da bildiğimiz y = x doğrusudur.

iii. Bunu iki halde inceleyeceğiz. Birinci halde $\theta \ge 0$; ikinci halde $\theta \le 0$ için inceleme yapacağız. $\theta \ge 0$ durumunu inceleyelim. Bunun için aşağıdaki tabloyu yapabiliriz:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	
r	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	•••

Bu durumda istenen grafik $0 \le \theta \le 5\pi$ için aşağıdaki şekildeki gibi olur.

 $\theta \leq 0$ için

θ	0	$\frac{-\pi}{6}$	$\frac{-\pi}{4}$	$\frac{-\pi}{3}$	$\frac{-\pi}{2}$	$-\pi$	$\frac{-3\pi}{2}$	-2π
r	0	$\frac{-\pi}{6}$	$\frac{-\pi}{4}$	$\frac{-\pi}{3}$	$\frac{-\pi}{2}$	π	$\frac{-3\pi}{2}$	-2π

tablosu yapılır. Bu tabloya göre $-5\pi \le \theta \le 0$ için istenen eğri aşağıdaki şekilde gibi çizilir.

 $k \neq 0$ olmak üzere $r = k\theta$ eğrisi benzer şekilde çizilir ve buna Arşimed spirali adı verilir.

iv. Önce tablomuzu yapalım:

	θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	$5\pi/6$	π
Ī	r	0	2	$2\sqrt{2}$	$2\sqrt{3}$	4	$2\sqrt{3}$	$2\sqrt{2}$	2	0
				≈ 2.8	≈ 3.4					

Bu tabloya göre istenen şekil aşağıdaki gibi çizilir:

Alıştırmalar

1. Aşağıda verilen kutupsal denklemli eğrilerin grafiğini çiziniz. i. r=3 ii. r=-2 iii. $\theta=\frac{\pi}{6}$ iv. $\theta=\frac{\pi}{6}$ v. $r=\frac{\theta}{2}$ vi. $r=\frac{|\theta|}{2}$ vii. $r=4\sin\theta$ viii. ta

i.
$$r = 3$$

ii.
$$r = -2$$

iii.
$$\theta = \frac{\pi}{6}$$

iv.
$$\theta = -\pi$$

$$\mathbf{v.}\ r = \tfrac{\theta}{2}$$

vi.
$$r = \frac{|\theta|}{2}$$

vii
$$r = 4\sin \theta$$

viii.
$$\tan \theta = 3$$

7.6. Kutupsal Koordinatlarda Bazı Özel Eğriler

Kutupsal koordinatlarda grafik çizerken simetrilerden yararlanılır. Bu, grafik çiziminde kolaylık sağlar. $r = f(\theta)$ ile verilen eğrinin simetrileri aşağıdaki yollarla belirlenir:

- 1. $f(-\theta) = f(\theta)$ veya $f(\pi \theta) = -f(\theta)$ oluyorsa kutup ekseni simetri eksenidir.
- 2. $f(-\theta)=-f(\theta)$ veya $f(\pi-\theta)=f(\theta)$ oluyorsa $\theta=\frac{\pi}{2}$ doğrusu simetri eksenidir.
 - 3. $f(\pi + \theta) = f(\theta)$ oluyorsa eğri kutup noktasına göre simetriktir.

Kardoidler: Grafikleri kalp şeklinde olan eğrilerdir. a>0 olmak üzere

$$r = a(1 + \cos \theta)$$

bir kardoid denklemidir. $f(-\theta) = a(1 + \cos{(-\theta)}) = f(\theta)$ olduğundan kutup eksenine göre simetriktir. Onun için grafiği $0 \le \theta \le \pi$ aralığında çizmek yeterlidir. İstenen grafik ise bu çizilen eğri ve onun kutup eksenine göre simetriği alınırak elde edilir.

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$3\pi/4$	π
r	2a	$(1+\sqrt{3}/2)a$	$(1+\sqrt{2}/2)a$	$\frac{3}{2}a$	a	$(1-\sqrt{2}/2)a$	0
		$\approx 1.86a$	$\approx 1.71a$	-		$\approx 0.29a$	

a>0 olmak üzere $r=a(1-\cos\theta)$ ve $r=a(-1-\cos\theta)$ her biri yine kardoiddir. Bunların grafiği ise yukarıdaki şeklin $\theta=\frac{\pi}{2}$ doğrusuna göre simetriğidir. Kardoid denklemlerinde $\cos\theta$ yerine $\sin\theta$ yazarak elde edilen her bir denklem yine bir kardoiddir. Örneğin $r=a(1+\cos\theta)$ ifadesinde $\cos\theta$ yerine $\sin\theta$ yazarsak $r=a(1+\sin\theta)$ kardoidi elde edilir. Bunun grafiği ise yukarıdaki grafiği $\frac{\pi}{2}$ kadar döndürmekle elde edilir.

Limaçonlar: Bu eğriler a > 0, b > 0 olmak üzere

$$r = a(1 + b\cos\theta)$$

denklemi ile verilir. Bu denklemde b=1 alınırsa kardoid elde edilir. Dolayısıyla limaçonlar kardoidlerin genelleştirilmiş halidir. 0 < b < 1, b=1 ve b>1 olmasına göre ayrı ayrı incelenir. b=1 olması hali kardoidlerde incelendi. Diğer iki durumu inceleyeceğiz. Önce

$$r = a(1 + 0.5\cos\theta)$$

eğrisini gözönüne alalım. Grafik kutup eksenine göre simetriktir. Bu grafiği $0 \le \theta \le \pi$ aralığında çizmek yeterlidir. İstenen grafik ise bu çizilen eğri ve onun kutup eksenine göre simetriği alınırak elde edilir.

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$3\pi/4$	π
r	$\frac{3a}{2}$	$(1+\sqrt{3}/4)a$ $\approx 1.43a$	$(1+\sqrt{2}/4)a$ $\approx 1.35a$	$\frac{5a}{4}$	a	$(1 - \sqrt{2}/4)a$ $\approx 0.65a$	$\frac{a}{2}$

0 < b < 1 olmak üzere limaçonların grafiği yukarıdaki şekle benzerdir.

Şimdi de

$$r = a(1 + 1.5\cos\theta)$$

eğrisini gözönüne alalım. Grafik kutup eksenine göre simetriktir. Bu grafiği $0 \le \theta \le \pi$ aralığında çizmek yeterlidir. İstenen grafik ise bu çizilen eğri ve onun kutup eksenine göre simetriği alınırak elde edilir.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
r	<u>5a</u> 2	$(1 + \frac{3\sqrt{3}}{4})a$ $\approx 2.30a$	$(1 + \frac{3\sqrt{2}}{4})a$ $\approx 2.06a$	<u>7a</u> 4	a	<u>a</u> 4	$(1-\frac{3\sqrt{2}}{4})a$ $\approx -0.06a$	$(1-\frac{3\sqrt{3}}{4})a$ $\approx -0.30a$	<u>~a</u> 2

Bu tabloya göre grafik aşağıdaki şekilde çizilir.

b>1 olmak üzere bütün limoçanların grafiği yukarıdaki şekile benzerdir. Limaçonların değişik şekilleri kardiyodların tartışmasında olduğu gibi elde edilir.

Yaprak Eğrileri: Önce iki tane grafik çizelim. İlk olarak

$$r = a\sin 3\theta, \ a > 0$$

ile verilen eğrinin grafiğini çizelim. Her şeyden önce grafiğini çizeceğimiz eğri $\theta=\frac{\pi}{2}$ doğrusuna göre simetriktir. $|\sin 3\theta|\leq 1$ olduğundan $|r|\leq a$ olur. θ , 0 dan $\frac{\pi}{3}$ e kadar değişirken 3θ da 0 dan π ye kadar değişir ve dolayısıyla $\sin 3\theta$ önce sıfırdan 1 e kadar artar daha sonra tekrar sıfıra doğru

azalır. Benzer şekilde $\frac{\pi}{3} \leq \theta \leq \frac{2\pi}{3}$ ve $\frac{2\pi}{3} \leq \theta \leq \pi$ aralıklarında çizim işlemleri yapılır. Dolayısıyla istenen şekil aşağıdaki gibi çizilir.

Şimdi de

$$r = a\sin 2\theta$$

eğrisini çizelim. Bu eğri $f(\pi-\theta)=-f(\theta)$ ve $f(-\theta)=-f(\theta)$ olduğundan hem kutup eksenine ve hemde $\theta=\frac{\pi}{2}$ doğrusuna göre simetriktir. Dolayısıyla $0\leq\theta\leq\frac{\pi}{2}$ için grafiği çizmek yeterlidir. O halde bu eğrinin grafiği de aşağıdaki şekildeki gibi çizilir.

Genel olarak yaprak eğrileri $a \neq 0$ ve n > 1 olmak üzere

$$r = a\sin n\theta$$
 veya $r = a\cos n\theta$

denklemleri ile verilir. Eğer n tek tam sayı ise eğri n yapraklı, eğer n çift ise eğri 2n yapraklı olur.

Lemniskatlar: a > 0 olmak üzere

$$r^2 = 2a^2\cos 2\theta$$

denklemini gözönüne alalım. Bu eğri kutup eksenine, $\theta=\frac{\pi}{2}$ doğrusuna ve kutup noktasına göre simetriktir. Böyle bir eğrinin grafiğini çizmek için $0\leq\theta\leq\frac{\pi}{4}$ seçmek uygun olur. Eğri ise aşağıdaki şekildeki gibi çizilir:

Bu eğriye lemniskat eğrisi adı verilir. Eğer yukarıdaki denklemde $\cos 2\theta$ yerine $\sin 2\theta$ yazılırsa yine lemniskat eğrisi olur ve grafiği de yukarıdaki grafiğin kutup etrafında $\theta = \frac{\pi}{4}$ kadar döndürülmesi ile elde edilir.

Alıştırmalar

1. Aşağıdaki eğrileri çiziniz.

$$\mathbf{i} \cdot r = 2\sin\theta$$

ii.
$$r = 5\cos^2\theta$$

iii.
$$r = \sin 2\theta$$

iv.
$$r = 1 + \cos \theta$$

$$\mathbf{v.} \ r = 1 + 3\cos\theta$$

vi.
$$r = 3 + \cos \theta$$

7.7. Kutupsal Koordinatlarda Alan

Önce kutupsal koordinatlarda alan kavramını inceleyelim. $r=f(\theta)$ eğrisi $\theta=\alpha,\,\theta=\beta$ doğruları ile sınırlanan bölgenin alanını hesaplayacağız. Bu, kartezyen koordinatlarda gördüğümüz y=f(x) eğrisi $x=a,\,\,x=b$

doğruları ve x ekseni arasında kalan alanı bulma problemi ile aynıdır. Kutupsal koordinatlarda alan bulurken r yarıçaplı bir çemberde θ merkez açılı bir dairesel parçanın alanından istifade edeceğiz. Bu alanın

$$A_t = (\pi r^2)(\frac{\theta}{2\pi}) = \frac{\theta r^2}{2}$$

olduğunu biliyoruz. $r=f(\theta)$ eğrisi $\theta=\alpha,\ \theta=\beta$ doğruları ile sınırlanan alanı $P=\{\alpha=\theta_0,\ \theta_1,...,\ \theta_{n-1},\ \theta_n=\beta\}$ bölüntüsü ile n tane eşit alt aralığa bölelim. Bu aralıkların her birini dairesel parça olarak alalım. Bu dairesel parçaların toplamı bize yaklaşık alanı verecektir. Yani,

$$A \approx \sum_{i=1}^{n} \frac{1}{2} r_i^2 \Delta \theta_i$$

olur. Dolayısıyla istenen alan

$$A = \frac{1}{2} \int_{0}^{\beta} r^2 d\theta$$

formülü ile bulunur.

7.7.1. Örnek: i. $r = a \sin 3\theta$ yaprak eğrisinin bir yaprağının alanını bulunuz.

Çözüm:

490 7. Bölüm

Bu eğrinin birinci bölgede kalan kısmının alanını hesaplayalım. Bu alan $r=f(\theta)$ eğrisi $\theta=0$ ve $\theta=\frac{\pi}{3}$ ışınları arasında kalır. Buna göre istenen alan

$$A = \frac{1}{2} \int_0^{\frac{\pi}{3}} (a\sin 3\theta)^2 d\theta$$

$$= \frac{1}{2} a^2 \int_0^{\frac{\pi}{3}} \sin^2 3\theta d\theta$$

$$= \frac{1}{2} a^2 \int_0^{\frac{\pi}{3}} (\frac{1}{2} - \frac{1}{2}\cos 6\theta) d\theta$$

$$= \frac{\pi a^2}{12} br^2$$

olarak bulunur.

 $\it ii.\ r=2(1+\cos\theta)$ kardoidinin içinde ve $\it r=3$ çemberinin dışında kalan alanı bulunuz.

Çözüm: Önce hesaplayacağımız alanı geometrik olarak gösterelim.

Bu iki eğrinin kesim noktalarını bulalım. Bunun için

$$2(1+\cos\theta)=3$$

denklemini çözmemiz gerekir. Buradan da $\theta = \frac{\pi}{3}$ ve $\theta = -\frac{\pi}{3}$ bulunur. Diğer yandan alan kutup eksenine göre simetriktir. O halde istenen alan

$$\frac{A}{2} = \int_0^{\frac{\pi}{3}} \frac{1}{2} [4(1+\cos\theta)^2 - 9]d\theta$$

ile hesaplanır. Buna göre

$$\frac{A}{2} = \int_0^{\frac{\pi}{3}} \frac{1}{2} [4(1+\cos\theta)^2 - 9] d\theta$$
$$= -\frac{\pi}{2} + \frac{9}{4}\sqrt{3}$$

veya

$$A = -\pi + \frac{9}{2}\sqrt{3}\,br^2$$

elde edilir.

Alıştırmalar

1. r=2 çemberinin dışında ve $r=2(1+\cos\theta)$ kardoidinin içinde kalan bölgenin alanını bulunuz.

2. $r=1+2\cos\theta$ limaçonu veriliyor. Buna göre dış halka ile iç halka arasındaki alanı bulunuz.