Serie 3 Mathemattik für Informatiker 3

Tobias Reincke

a	b	q	u	s	v	t
2005	271	7	0	1	1	0
271	108	2	1	0 - 7	0	1 - 7 * 0
108	55	1	-7	1 - 2 * -7	1	0 - 2 * 1 = -2
55	53	1	15	-7 - 15	-2	1 - 1 * -2 = -1
53	2	1	-22	1522	-1	-2 - 1 * 1(-1) = -1
2	1	26	37	-22 - 37	-1	-1 - 1 * -1 = 0
1	0	2	-59	37 - 26 * 22 = -535	0	-1 - 26 * 0 = -1
			-535	-59535 * 2 = -1129	-1	-0 - (-1) * 2 = 2

$$2*12^{2010} - 3mod13 \neq 0$$

$$2*12^{2010} - 2mod13 = 0$$

$$Proof:$$

$$12^{2}mod13 = (144 - (130 + 13)) = 1$$

$$KeinTaschenrechner$$

$$12^{2010}mod13 = (12^{2})^{1005}mod13$$

$$= 1^{1005}mod13 = 1*1...1mod13 = 1$$

$$2*12^{2010}mod13 = 2*1mod13 = 2$$

$$2*12^{2010}mod13 - 2$$

$$= 2*1mod13 - 2$$

$$= 2 - 2 = 0$$

$$2*12^{2010}mod13 - 3$$

$$= 2*1mod13 - 3$$

$$= 2*1mod13 - 3$$

$$= 2 - 3 = -1 \neq 0$$

Aufgabe 3-2

1

$$[a,b,a_1,b_1,aRa_1\wedge bRb_1]gilt \rightarrow$$

 $\begin{array}{l} a\times b_1a_1\times b\to (a\times b_1+b\times a_1,a_1\times b_1);\\ (a,b)R(c,d):\longleftrightarrow ad=bc\\ \times \text{ stellt hier die normale Multiplikation da, ist nur zur Übersichtlichkeit Beweis mit mit 8 Variablen a,b,c,d,}a_1,b_1,c_1,d_1\\ (a,b)R(c,d) \end{array}$

Serie 3 Tables

Tobias Reincke

November 19, 2019

*	0	1	1 2		2	X		x+1		x+2	2x	2x+1	2x+2	
0	0													
1	0	1												
2	0	2	2		L.									
X	0	2	X		X	x+1								
x+1	0	x+	x+1		:+2 2			1						
x+2	0	x+	x+2		+1	2x		x		x+1				
2x	0	2:	2x		ζ	x+:		2		2	x			
2x+1	0	2x-	x+1 >		-2	x+2		1		1	x	x+1		
2x+2	0	2x-	+2	-2 x-		2		2x+2		x+2	x	2	1	
+	0 1		1	2		X		Х	:+1	x+2	2x	2x+1	2x+2	
0	(0												
1	1		2	2										
2	2		()	1									
X	x		X-	+1	х		2x							
x+1	x+1		X-	+2	x+1		2x+1		2:	x+2				
x+2	x+2		2	ζ	x+2		2x+2			2x	2x+1			·
2x	2x		2x	x+1 2		x		0		1 2		X		
2x+1	2x+1		2x	x+2 2x		:+1		1		2	0	x+1	x+2	
2x+2	2x+2		_	2x $2x$			+2 2			0	1	x+2	x	x+1

$$S_{n,k} = \frac{1}{k!} \sum_{i=0}^{k} *(-1)^{i} * \frac{(k! * (k-1)^{n})}{i! * (k-i)!}$$

$$= \sum_{i=0}^{k} = (-1)^{i} * \frac{(k-i)^{n}}{i! * (k-i)!}$$

$$/j = k - i \longleftrightarrow i = k - j, \text{ umstellen von } i \text{ bis } k \text{ zu } j \text{ zu } 0$$

$$= \sum_{j=k}^{0} (-1)^{k-j} * \frac{j^{n}}{(k-j)! * j!}$$

$$/(-1)^{k-j} = (-1)^{k} * (-1)^{-j}$$

$$= \sum_{j=0}^{k} (-1)^{k} * (-1)^{-j} \frac{j^{n}}{j! * (k-j)!} / (-1)^{-j} = (-1)^{j}$$

$$= (-1)^{k} * \sum_{j=0}^{k} (-1)^{j} * \frac{j^{n}}{j! * (k-j)!}$$

 $\forall l,k \in 1\dots n$ gilt: Die Mengen K und L aller Zerlegungen einer n-elementigen Menge in k-Klassen bzw. L-Klassen sind disjunkt, falls l \neq k Grund dafür ist, dass die Elemente in K k.elementige Mengen sind und in L l-elementig. \rightarrow

$$B_n = \sum_{k=0}^{n} S_{n,k} = \sum_{k=0}^{n} (-1)^k * \sum_{j=0}^{k} (-1)^j * \frac{j^n}{j! * (k-j)!}$$