プログラムなしではじめる 機械学習超入門

機械学習とは?

学習する?

機械はデータから学習する

機械学習とは過去のデータから目的に応じて、コンピューターが知識や規則性を発見し、推論、識別、予測を行うこと

質問 1「AかBか?」

識別アルゴリズム

質問 1「AかBか?」

識別アルゴリズム

ナイーブベイズ

質問 1「AかBか?」

識別アルゴリズム

決定木

• 質問 1 「AかBか?」

09年→12年 170.5 身長 170.5 68.9 65.5 体重 ka 92.5 83.5 腹囲 cm 中性脂肪 mg/dl 296 226 LDL 159 165 mg/dl HDL mg/dl 43 43 28 y-GTP IU/I 41 血糖值 mg/dl 87 98

識別アルゴリズム

ロジスティック回帰分析

質問 1「AかBか?」

識別アルゴリズム

Deep learning

質問 2「どのくらいの量または数か?」

回帰アルゴリズム

次の火曜日の気温は何度か?

質問 1「どのくらいの量または数か?」

回帰アルゴリズム

この物件の価格は?

800万円

2億5千万円

• 質問 3

「どのような編成になっているのか?」

分類アルゴリズム

どの視聴者が同じ種類の 映画を好むか?

質問3「どのような編成になっているのか?」

• 質問3

「どのような編成になっているのか?」

代表的な機会学習の手法

・教師あり・機械学習・回帰

回帰分析

価格に影響を与える要因(築年数・広さ・・・)

回帰モデル

回帰モデル

・教師あり・機械学習・識別

識別能力の高い質問による分類

関西人なのか? 阪神ファン? Yes No たこ焼き機を持っている マクド Yes No Yes No 関西人 非関西人 納豆が嫌い? 関西人 Yes No 関西人 非関西人

問題 決定木による識別

ある商品の顧客の属性として、性別、年齢、見た広告の種類、およびその商品の過去 の購買履歴があたえられたとして、顧客が購買するかしないかに分類する決定木を考 えよ。

ID	性別	年齢	広告	購買歴	購買
А	男性	10代	TV	無	No
В	女性	10代	TV	無	No
С	女性	50代	ネット	無	No
D	男性	30代	TV	無	Yes
Е	男性	50代	電車	有	Yes
F	男性	50代	ネット	無	Yes
G	女性	30代	電車	有	Yes
Н	男性	10代	電車	有	Yes
I	男性	50代	ネット	有	Yes
J	女性	10代	ネット	有	Yes

性別による分類

購買 (Yes): 5人 購買 (No): 1人 購買 (Yes): 2人

購買 (No): 2人

性別	購買	
女性	No	
女性	No	

問題:どの変数で分類するべきか?

ID	性別	年齢	広告	購買歴	購買
А	男性	10代	TV	無	No
В	女性	10代	TV	無	No
С	女性	50代	ネット	無	No
D	男性	30代	TV	無	Yes
Е	男性	50代	電車	有	Yes
F	男性	50代	ネット	無	Yes
G	女性	30代	電車	有	Yes
Н	男性	10代	電車	有	Yes
I	男性	50代	ネット	有	Yes
J	女性	10代	ネット	有	Yes

問題:どの変数で分類するべきか?

決定木による識別

ランダムフォレスト

・決定木を用いた集団学習を行うモデル (過学習にならないように決定木を複数作って平均を取る)

ランダムフォレスト

Copyright © 2018 Wakara Corp. All Rights Reserved.

ランダムフォレスト

購買するかどうか?

多数決の原理

「出会い」

スパム(20/25)

通常メール(5/75)

問題 データによると、 「出会い」という単 語が含まれたメール がスパムメールであ る確率は?

スパム(20)

通常メール(5)

「出会い」

問題 データによると、 「出会い」という単 語が含まれたメール がスパムメールであ る確率は?

スパム(80%)

通常メール(20%)

「出会い」

結論 もしメールに「出会 い」という単語が含 まれるとき、その メールがスパムであ る確率は80%

スパム

陽性・陰性?

患者ID	血圧	血糖值	
1	120	200	陽性
2	80	130	陰性
3	110	190	?

陽性・陰性を識別する

陽性・陰性を識別する

ロジスティック回帰

ロジスティック曲線の求め方

間違えの数

2

ロジスティック曲線の求め方

間違えの数

1

ロジスティック曲線の求め方

最尤法によってロジスティク曲線を求める

ニューラルネットワーク

ニューラルネットワーク

サポートベクターマシーン

直線では分類できない?

Copyright © 2018 Wakara Corp. All Rights Reserved.

教師なし・機械学習・データの分類

クラスター分析

• K—mean法

どこにピザ屋を出店するか?

3つのグループに分けるとしたら、どのようなグループ分けを行うか?

シード(seed)と呼ばれる点●を適当に配置する。各点からシードまでの距離を測る

シードごとにグルーピングを行う。この時各グループをクラスターと呼ぶ。

各クラスター内のデータの平均点(重心)を新たなシードとする。

各データと最も近いシードを紐づける。

各クラスター内のデータの平均点(重心)を新たなシードとする。

各データと最も近いシードを紐づける。

以上の過程を繰り返し、クラスターに変動がなくなれば終了。

主成分分析?

主成分分析?

データ

学生ID	数学	国語	物理	社会	化学
1	23	89	34	74	36
2	45	52	32	87	54
3	89	65	87	78	75
4	92	34	95	43	89
5	21	84	21	98	43
6	56	76	34	31	56

2 Dデータ

数学

学生ID	数学	国語
1	23	89
2	45	52
3	89	65
4	92	34
5	21	84
6	56	76

国語

2 Dデータ

学生ID	数学	国語
1	23	89
2	45	52
3	89	65
4	92	34
5	21	84
6	56	76

国語

3Dで可視化する

学生I	D 数学	国語	物理	
1	23	89	34	
2	45	52	32	
3	89	65	87	
4	92	34	95	
5	21	84	21	
6	56	76	34	

国語

多次元データの可視化?

学生ID	数学	国語	物理	社会	化学
1	23	89	34	74	36
2	45	52	32	87	54
3	89	65	87	78	75
4	92	34	95	43	89
5	21	84	21	98	43
6	56	76	34	31	56

多次元データの可視化?

主成分による可視化

学生ID	数学	国語	物理	社会	化学
1	23	89	34	74	36
2	45	52	32	87	54
3	89	65	87	78	75
4	92	34	95	43	89
5	21	84	21	98	43
6	56	76	34	31	56

PC1

主成分分析はデータ間の相関を集約して多次元 データを2次元空間でグラフ化することを可能 にしてくれる

主成分による可視化

2 Dグラフでクラスターを識別し たら元データに戻る

PC1