Bayes Classifiers

Bayes Classifier

- A probabilistic framework for solving classification problems

• Conditional Probability:
$$P(C \mid X) = \frac{P(X,C)}{P(X)}$$

$$P(X \mid C) = \frac{P(X,C)}{P(C)}$$

Bayes theorem:

Posterior probability **Prior** probability

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

Towards Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n attribute vector X = (x₁, x₂, ..., x_n)
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Derivation of Naïve Bayes Classifier

- A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes): $P(\mathbf{X}|C_i) = \prod_{i=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$
- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical: $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued: $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

and
$$P(x_k|C_i)$$
 is

$$g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class: $P(C) = N_c/N$
 - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{ck}$$

- where |A_{ik}| is number of instances having attribute
 A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretization:
 - Replace the attribute with discrete intervals
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi} (54.54)} e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Naïve Bayesian Classifier: Training Dataset

Class:

C1:buys_computer = 'yes

C2:buys_computer = 'no'

Data sample
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

	1			
age	income	<mark>studen</mark> t	<mark>credit ratino</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

• Naïve Bayes Classifier
$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

- P(Buy=Yes|X) = [P(X|Buy=yes) P(P(buy=yes)]/P(X)
- P(Buy=No|X) = [P(X|Buy=No) P(P(buy=No)]/P(X)

age	income	std	c rating	buy
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)

• Naïve Bayes Classifier
$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

- P(Buy=Yes|X) = [P(X|Buy=yes) P(P(buy=yes)]/P(X)
- P(Buy=No|X) = [P(X|Buy=No) P(P(buy=No)]/P(X)

P(X) would be same for both cases

age	income	std	c rating	buy
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
	modiam		O/CONTONIC	. 10

• Naïve Bayes Classifier
$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

- P(Buy=Yes|X) = P(X|Buy=yes) P(buy=yes)
- P(Buy=No|X) = P(X|Buy=No) P(buy=No)
- $P(C_i)$: P(buy = "yes") = 9/14 = 0.643P(buy = "no") = 5/14 = 0.357

age	income	std	c rating	buy
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$ • C = {Yes, No}
- P(Buy=Yes|X) = P(X|Buy=yes) P(buy=yes)
- P(Buy=No|X) = P(X|Buy=No) P(buy=No)
- $P(C_i)$: P(buy = yes) = 9/14 = 0.643P(buy = no) = 5/14 = 0.357
- Compute P(X|Buy = yes) for each class
 - P(age = "<=30" | buys_computer = "yes")</p>
 - P(income = "medium" | buys computer = "yes")
 - P(student = "yes" | buys_computer = "yes)
 - P(credit_rating = "fair" | buys_computer = "yes")

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$ C = {Yes, No}
- 0 {165, 140}
- P(Buy=Yes|X) = P(X|Buy=yes) P(buy=yes)
- P(Buy=No|X) = P(X|Buy=No) P(buy=No)
- $P(C_i)$: P(buy = yes) = 9/14 = 0.643P(buy = no) = 5/14 = 0.357
- Compute P(X|Buy = yes) for each class
 - P(age = "<=30" | buys_computer = "yes")</p>
 - P(income = "medium" | buys computer = "yes")
 - P(student = "yes" | buys_computer = "yes)
 - P(credit_rating = "fair" | buys_computer = "yes")
- Compute P(X|Buy = No) same as above

- $P(C_i)$: P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class
 P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222
 P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

```
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444..40
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
```

```
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
```

```
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```


- P(C_i): $P(buys_computer = "yes") = 9/14 = 0.643$ P(buys computer = "no") = 5/14 = 0.357
- Compute P(X|C_i) for each class

```
P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222
```

$$P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6$$

P(income = "medium" | buys_computer = "yes") =
$$4/9 = 0.444$$

P(student = "yes" | buys computer = "yes) =
$$6/9 = 0.667$$

P(student = "yes" | buys computer = "no") =
$$1/5 = 0.2$$

X = (age <= 30, income = medium, student = yes, credit rating = fair)

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 $P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$$

$$P(X|C_i)*P(C_i) : P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

income

hiah

high

high

low

low

low

low

medium

medium

medium

medium

medium

medium

high

age

<=30

<=30

>40

>40

>40

31...40

31...40

<=30

<=30

31...40

31...40

>40

>40

std

no

no

no

no

ves

yes

ves

no

yes

ves

yes

no

ves

c rating

excellent

excellent

excellent

excellent

excellent

excellent

fair

fair

fair

fair

fair

fair

fair

fair

buy

no

no

ves

yes

yes

no

yes

no

yes

yes

yes

yes

yes

no

Avoiding the 0-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income=medium (990), and income = high (10),
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayesian Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - •E.g., hospitals: patients: Profile: age, family history, etc.

 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks