The complexity of homomorphisms of signed graphs

Florent Foucaud (Postdoc at Universitat Politècnica de Catalunya, Barcelona)

joint work with Reza Naserasr (CR CNRS at LRI, Orsay)

GT Graphes + Séminaire CPU-WP6

LaBRI, March 2013

Definition - Graph homomorphism from G to H

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Target graph: $H = C_5$

Definition - Graph homomorphism from G to H

Target graph: $H = C_5$

Definition - Graph homomorphism from G to H

Target graph: $H = C_5$

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Target graph: $H = C_5$

Observation

Equivalently: Sequence of **identifying non-adjacent vertices** of G to create subgraph of H.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Observation

Equivalently: Sequence of **identifying non-adjacent vertices** of G to create subgraph of H.

Remark: Homomorphisms generalize proper colourings

$$G \to K_k \iff \chi(G) \le k$$

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signatures Σ , Σ' are **equivalent** if one can be obtained from the other with **re-signings**

Signed graph: Graph G with an equivalence class C of signatures.

Notation: (G, Σ) with any $\Sigma \in C$.

Signed graphs: (un)balanced cycles

Definition - Unbalanced cycle

Cycle with an odd number of negative edges.

Signed graphs: (un)balanced cycles

Definition - Unbalanced cycle

Cycle with an odd number of negative edges.

balanced C_4

unbalanced C_4 : UC_4

Remark

Re-signing always preserves the balance of a cycle.

Signed graphs: (un)balanced cycles

Definition - Unbalanced cycle

Cycle with an odd number of negative edges.

unbalanced C_4 : UC_4

Remark

Re-signing always preserves the balance of a cycle.

Theorem (Zaslavsky)

Two signatures are equivalent if and only if they induce the same set of unbalanced cycles.

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

Social psychology: "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

Social psychology: "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

Physics - statistical mechanics: nonferromagnetic Ising model applied to spin glasses

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

Social psychology: "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

Physics - **statistical mechanics:** nonferromagnetic Ising model applied to spin glasses

Graph theory - **flows:** extension of the theory of Nowhere Zero Flows to signed graphs. (Bouchet, 1983 - Raspaud and Zhu, 2011 - Macajova and Skoviera, 2011 ...)

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

Social psychology: "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

Physics - **statistical mechanics:** nonferromagnetic Ising model applied to spin glasses

Graph theory - **flows:** extension of the theory of Nowhere Zero Flows to signed graphs. (Bouchet, 1983 - Raspaud and Zhu, 2011 - Macajova and Skoviera, 2011 ...)

Graph theory - minors and colourings: extension of Hadwiger's conjecture

Conjecture (Hadwiger, 1943)

If G has no K_k as a minor, $\chi(G) \leq k - 1$.

 $\textbf{minor} \colon \mathsf{deletions} + \mathsf{edge} \ \mathsf{contractions}$

Conjecture (Hadwiger, 1943)

If G has no K_k as a minor, $\chi(G) \leq k - 1$.

minor: deletions + edge contractions

- proof for k = 5: Wagner, 1937 with Appel and Haken, 4CT, 1976
- • $\chi(G) = O(k\sqrt{\log k})$ (Kostochka, 1984; Thomason, 1984)
- proof for k = 6: Robertson, Seymour and Thomas, 1993

Conjecture (Hadwiger, 1943)

If G has no K_k as a minor, $\chi(G) \leq k - 1$.

minor: deletions + edge contractions

Conjecture ("Odd Hadwiger" - Seymour; Gerards, 1993)

If (G, E(G)) has no $(K_k, E(K_k))$ as a signed minor, $\chi(G) \leq k - 1$.

signed minor: deletions + re-signing + contraction of positive edges (Note: balance of a cycle does not change)

Conjecture (Hadwiger, 1943)

If G has no K_k as a minor, $\chi(G) \leq k - 1$.

minor: deletions + edge contractions

Conjecture ("Odd Hadwiger" - Seymour; Gerards, 1993)

If (G, E(G)) has no $(K_k, E(K_k))$ as a signed minor, $\chi(G) \leq k-1$.

signed minor: deletions + re-signing + contraction of positive edges (Note: balance of a cycle does not change)

- •k = 3: $(K_3, E(K_3))$ -minor-free graphs (G, E(G)) are exactly those where G is bipartite (to compare with K_3 -minor free graphs)
- proof for k = 4: Catlin, 1979

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ s.t. it exists $\Sigma_G'\equiv \Sigma_G$: signs are preserved with respect to Σ_G',Σ_H .

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ s.t. it exists $\Sigma_G'\equiv \Sigma_G$: signs are preserved with respect to Σ_G',Σ_H .

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ s.t. it exists $\Sigma_G'\equiv \Sigma_G$: signs are preserved with respect to Σ_G',Σ_H .

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f: G \to H$ s.t. it exists $\Sigma'_G \equiv \Sigma_G$: signs are preserved with respect to Σ'_G, Σ_H .

Target: *UC*₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f: G \to H$ s.t. it exists $\Sigma'_G \equiv \Sigma_G$: signs are preserved with respect to Σ'_G, Σ_H .

Target: *UC*₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f: G \to H$ s.t. it exists $\Sigma'_G \equiv \Sigma_G$: signs are preserved with respect to Σ'_G, Σ_H .

Target: *UC*₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f: G \to H$ s.t. it exists $\Sigma'_G \equiv \Sigma_G$: signs are preserved with respect to Σ'_G, Σ_H .

Target: *UC*₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Target: $(K_2, E(K_2))$

UC₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Target: $(K_2, E(K_2))$

Target: UC_4

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Target: $(K_2, E(K_2))$

Target: *UC*₄

Definition - Signed chromatic number

 $\chi(G,\Sigma)$: smallest integer k s.t. $(G,\Sigma) \to (H,\Sigma_H)$ with |V(H)| = k

Definition - Signed chromatic number

$$\chi(G,\Sigma)$$
: smallest integer k s.t. $(G,\Sigma) \to (H,\Sigma_H)$ with $|V(H)|=k$

Remark]

$$G \to H \Leftrightarrow (G, \emptyset) \to (H, \emptyset) \Leftrightarrow (G, E(G)) \to (H, E(H)).$$

$$\chi(G, \emptyset) = \chi(G, E(G)) = \chi(G)$$

Definition - Signed chromatic number

 $\chi(G,\Sigma)$: smallest integer k s.t. $(G,\Sigma) \to (H,\Sigma_H)$ with |V(H)| = k

Remark

$$G \to H \Leftrightarrow (G, \emptyset) \to (H, \emptyset) \Leftrightarrow (G, E(G)) \to (H, E(H)).$$

$$\chi(G, \emptyset) = \chi(G, E(G)) = \chi(G)$$

Definition - S-clique

$$(G, \Sigma)$$
 is an **S-clique** if $\chi(G, \Sigma) = |V(G)|$

Definition - Signed chromatic number

 $\chi(G,\Sigma)$: smallest integer k s.t. $(G,\Sigma) \to (H,\Sigma_H)$ with |V(H)| = k

Remark

$$G \to H \Leftrightarrow (G, \emptyset) \to (H, \emptyset) \Leftrightarrow (G, E(G)) \to (H, E(H)).$$

$$\chi(G, \emptyset) = \chi(G, E(G)) = \chi(G)$$

Definition - S-clique

$$(G, \Sigma)$$
 is an **S-clique** if $\chi(G, \Sigma) = |V(G)|$

Theorem (Naserasr, Rollova and Sopena, 2012+)

 (G,Σ) is an S-clique \Leftrightarrow between each pair of vertices, there is an edge or an UC_4 .

Construction: S(G)

 \rightarrow gives a very special bipartite signed graph

Construction: S(G)

→ gives a very special bipartite signed graph

Theorem (Naserasr, Rollova and Sopena, 2012+)

$$G \rightarrow H \Leftrightarrow S(G) \rightarrow S(H)$$

Construction: S(G)

 \rightarrow gives a very special bipartite signed graph

Theorem (Naserasr, Rollova and Sopena, 2012+)

$$G \to H \Leftrightarrow S(G) \to S(H)$$

Theorem (Naserasr, Rollova and Sopena, 2012+)

 $G \to K_k \Leftrightarrow S(G) \to (K_{k,k}, M)$ with M a perfect matching.

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Theorem (Karp, 1972)

 $\mathcal{K}_3\text{-}\mathrm{COLOURING}$ is NP-complete.

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Theorem (Karp, 1972)

 $\mathcal{K}_3\text{-}\mathrm{COLOURING}$ is NP-complete.

Theorem (Hell, Nešetřil, 1990)

H-Colouring is NP-complete for every non-bipartite H.

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Theorem (Karp, 1972)

 K_3 -COLOURING is NP-complete.

Theorem (Hell, Nešetřil, 1990)

H-Colouring is NP-complete for every non-bipartite H.

Theorem (MacGillivray, Siggers, 2009 + Hell, Naserasr, Tardiff)

 C_{2k+1} -COLOURING is NP-complete for every $k \geq 1$, even when the input graph is planar.

Complexity: questions for signed graphs

```
Definition - (H, \Sigma_H)-Colouring
```

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Complexity: questions for signed graphs

Definition - (H, Σ_H) -Colouring

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Remark

If $(H, \Sigma_H) = (H, \emptyset)$ or $(H, \Sigma_H) = (H, E(H))$, same complexity as $H\text{-}\mathrm{COLOURING}.$

Complexity: questions for signed graphs

Definition - (H, Σ_H) -COLOURING

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Remark

If $(H, \Sigma_H) = (H, \emptyset)$ or $(H, \Sigma_H) = (H, E(H))$, same complexity as H-COLOURING.

Question

What can we say about the complexity of (H, Σ_H) -Colouring? First interesting cases: S-cliques, bipartite unbalanced cycles,...

Complexity: questions for signed graphs

Definition - (H, Σ_H) -COLOURING

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Remark

If $(H, \Sigma_H) = (H, \emptyset)$ or $(H, \Sigma_H) = (H, E(H))$, same complexity as H-COLOURING.

Question

What can we say about the complexity of (H, Σ_H) -COLOURING? First interesting cases: S-cliques, bipartite unbalancd cycles,...

Question

True that (H, Σ_H) -COLOURING is NP-complete unless $\chi(H, \Sigma_H) \leq 2$?

Reduction from NAE-3SAT

Definition - UC_{2k} -Colouring

INSTANCE: A (bipartite) signed graph (G, Σ) .

QUESTION: does $(G, \Sigma) \rightarrow UC_{2k}$?

Reduction from NAE-3SAT

Definition - UC_{2k} -Colouring

INSTANCE: A (bipartite) signed graph (G, Σ) .

QUESTION: does $(G, \Sigma) \rightarrow UC_{2k}$?

Theorem (F., Naserasr, 2012+)

 UC_{2k} -Colouring is NP-complete for every $k \geq 2$.

Reduction from NAE-3SAT

Definition - UC_{2k} -Colouring

INSTANCE: A (bipartite) signed graph (G, Σ) .

QUESTION: does $(G, \Sigma) \rightarrow UC_{2k}$?

Theorem (F., Naserasr, 2012+)

 UC_{2k} -Colouring is NP-complete for every $k \geq 2$.

Definition - MONOTONE NOT-ALL-EQUAL-3SAT

INSTANCE: A set of clauses of 3 Boolean variables from set X. QUESTION: Is there a truth assignment $X \to \{0,1\}$ s.t. each clause has variables with different values?

Theorem (Schaefer, 1978; Moret, 1998)

MONOTONE NOT-ALL-EQUAL-3SAT is NP-complete.

Polynomial-time reduction: principle

Polynomial-time reduction from SAT to *H*-Colouring

Procedure to build for each SAT-formula F a graph G(F) s.t. \bullet it takes time polynomial in |F| \bullet F is satisfiable $\Leftrightarrow G(F) \to H$

Polynomial-time reduction: principle

Polynomial-time reduction from SAT to *H*-Colouring

Procedure to build for each SAT-formula F a graph G(F) s.t.

- it takes time polynomial in |F|• F is satisfiable $\Leftrightarrow G(F) \to H$

Consequence

If *H*-Colouring is solvable in polynomial time:

- 1. given F, construct G(F)
- 2. solve *H*-Colouring in time poly(|G(F)|) = poly(|F|)
- 3. Hence SAT is solvable in polynomial time: Contradiction

NAE-3SAT $\leq_R UC_4$ -COLOURING: clause gadget

Construction of G(F): one clause gadget per clause of F. All vertices with same labels (c or x_i) identified with each other.

NAE-3SAT $\leq_R UC_4$ -COLOURING: clause gadget

Gadget for clause $\{x_1, x_2, x_3\}$

We want: Formula NAE-satisified $\Leftrightarrow G(F)$ maps.

Main idea: In a mapping, re-signing at $x_i \iff x_i = \mathsf{TRUE}$

Gadget for clause $\{x_1, x_2, x_3\}$

Target: *UC*₄

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Gadget for clause $\{x_1, x_2, x_3\}$

1. (⇒) Consider a NAE-truth assignment.

Example: x_1, x_2 TRUE; x_3 FALSE.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Gadget for clause $\{x_1, x_2, x_3\}$

Target: *UC*₄

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

Target: *UC*₄

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

Target: UC_4 1

2

3

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

Gadget for clause $\{x_1, x_2, x_3\}$

1. (⇒) Consider a NAE-truth assignment.

Re-sign at $x_i \iff x_i = \mathsf{TRUE}$.

Example: x_1, x_2 TRUE; x_3 FALSE.

WLOG: assume $c \rightarrow 1$

Remark: all x_i 's must map to 4

Gadget for clause $\{x_1, x_2, x_3\}$

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Gadget for clause $\{x_1, x_2, x_3\}$

Target: UC_4

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Gadget for clause $\{x_1, x_2, x_3\}$

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Gadget for clause $\{x_1, x_2, x_3\}$

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Gadget for clause $\{x_1, x_2, x_3\}$

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Gadget for clause $\{x_1, x_2, x_3\}$

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Gadget for clause $\{x_1, x_2, x_3\}$

2. (\Leftarrow) Assume $G(F) \rightarrow UC_4$.

Set x_i to TRUE $\Leftrightarrow x_i$ has been re-signed in the mapping.

Key observation: re-signing x_1, x_2, x_3 or none is impossible.

Mapping is impossible!

(where P_k has length k-1)

Bounding the maximum degree

One replicating gadget for each x_i and for c.

Bounding the maximum degree

One replicating gadget for each x_i and for c.

Corollary

 $\mathit{UC}_{2k}\text{-}\mathrm{Colouring}$ is NP-complete even for graphs of max. degree 6.

What about planar graphs?

Remark

 ${
m NAE\text{-}3SAT}$ is polynomial-time solvable when the bipartite incidence graph of the formula is planar (Moret, 1988).

What about planar graphs?

Remark

 $\rm NAE\text{-}3SAT$ is polynomial-time solvable when the bipartite incidence graph of the formula is planar (Moret, 1988).

Question

Is UC_{2k} -Colouring NP-complete for planar graphs?

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Proposition

If H has a crossover gadget, then H-Colouring $\leq_R H$ -Colouring for planar instances

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Example: crossover for K_3 (Garey and Johnson, 1979)

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Example: crossover for K_3 (Garey and Johnson, 1979)

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Example: crossover for K_3 (Garey and Johnson, 1979)

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Theorem (Hell, Naserasr, Tardiff, 2006)

There is a crossover gadget for any odd cycle C_{2k+1} .

Definition - Crossover gadget for H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ (possibly x = y), there is a mapping f with f(L) = x and f(T) = y

Theorem (Hell, Naserasr, Tardiff, 2006)

There is a crossover gadget for any odd cycle C_{2k+1} .

Remark

For many H, it is open whether H-Colouring is NP-hard for planar instances.

Theorem (F., Naserasr, 2012+)

For every $k \geq 2$, UC_{2k} has a crossover gadget (of bounded max. degree). Hence, UC_{2k} -Colouring is NP-complete even for planar graphs (of bounded max. degree).

Crossover gadget for UC₄

Definition - Crossover gadget for **bipartite** *H*

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ in different parts, there is a mapping f with f(L) = x and f(T) = y.

Crossover gadget for UC₄

Definition - Crossover gadget for **bipartite** *H*

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ in different parts, there is a mapping f with f(L) = x and f(T) = y.

Crossover gadget for UC₄

Definition - Crossover gadget for **bipartite** H

Planar (signed) graph C_H with vertices L, T, R, B on outer face and:

- $C_H \rightarrow H$
- in each mapping f to H, f(L) = f(R) and f(T) = f(B)
- for any pair $x, y \in V(H)$ in different parts, there is a mapping f with f(L) = x and f(T) = y.

Crossover gadget for UC₄

Crossover gadget for UC_{2k} : step 1

Crossover gadget for UC_{2k} : step 1

Crossover gadget for UC_{2k} : step 1

Crossover gadget for UC_{2k} : step 2

Crossover gadget for UC_{2k} : step 2

Crossover gadget for UC_{2k} : step i

Crossover gadget for UC_{2k} : step i

Crossover gadget for UC_{2k} : step i

$$\text{At step } i = 2j \colon \\ f(T_i) \in S_{2i} = \{2\ell+1 \mid 0 \leq \ell \leq i\} \cup \{2k-(2\ell+1) \mid 0 \leq \ell \leq i\} \\ \text{At step } i+1 = 2j+1 \colon f(T_{i+1}) \in S_{2i} \pm 1$$

Conjecture (Jaeger, 1988 - Stockmeyer, Zhang, 2000)

If G is a planar graph with odd-girth at least 4k+1, then $G \to C_{2k+1}$.

Conjecture (Jaeger, 1988 - Stockmeyer, Zhang, 2000)

If G is a planar graph with odd-girth at least 4k+1, then $G \to C_{2k+1}$.

Conjecture (Charpentier, Naserasr, Rollova, Sopena, 2012)

If (G, Σ) is a planar bipartite signed graph with unbalanced-girth at least 4k-2, then $(G, \Sigma) \to UC_{2k}$.

Conjecture (Jaeger, 1988 - Stockmeyer, Zhang, 2000)

If G is a planar graph with odd-girth at least 4k+1, then $G \to C_{2k+1}$.

Conjecture (Charpentier, Naserasr, Rollova, Sopena, 2012)

If (G, Σ) is a planar bipartite signed graph with unbalanced-girth at least 4k-2, then $(G, \Sigma) \to UC_{2k}$.

Theorem (Charpentier, Naserasr, Sopena, 2012+)

If (G, Σ) is a planar bipartite signed graph with unbalanced-girth at least 8, then $(G, \Sigma) \to UC_4$. (conjecture: true for ub-girth 6)

Conjecture (Jaeger, 1988 - Stockmeyer, Zhang, 2000)

If G is a planar graph with odd-girth at least 4k+1, then $G \to C_{2k+1}$.

Conjecture (Charpentier, Naserasr, Rollova, Sopena, 2012)

If (G, Σ) is a planar bipartite signed graph with unbalanced-girth at least 4k-2, then $(G, \Sigma) \to UC_{2k}$.

Theorem (Charpentier, Naserasr, Sopena, 2012+)

If (G, Σ) is a planar bipartite signed graph with unbalanced-girth at least 8, then $(G, \Sigma) \to UC_4$. (conjecture: true for ub-girth 6)

Theorem (F., Naserasr, 2012+)

Either every planar bipartite signed graph with unbalanced-girth at least 6 maps to UC_4 , or UC_4 -COLOURING is NP-complete for planar graphs with unbalanced-girth at least 6.

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

1. Assume conjecture is false: (H, Σ) is a planar signed graph with unbalanced-girth at least 6 not mapping to UC_4 of **smallest order**.

2. H has a vertex z of degree 2.

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

1. Assume conjecture is false: (H, Σ) is a planar signed graph with unbalanced-girth at least 6 not mapping to UC_4 of **smallest order**.

2. H has a vertex z of degree 2. 3. Re-sign to get edge xz negative.

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

- 2. *H* has a vertex *z* of degree 2. 3. Re-sign to get edge *xz* negative.
- 4. **Claim 1**: In any mapping $f:(H,\Sigma)-z\to UC_4$, f(x)=f(y).

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

- 2. H has a vertex z of degree 2. 3. Re-sign to get edge xz negative.
- 4. **Claim 1**: In any mapping $f:(H,\Sigma)-z\to UC_4$, f(x)=f(y).
- 5. Claim 2: In any mapping $f:(H,\Sigma)-z\to UC_4$, x re-signed if and only if y re-signed.

Proof: inspired by Esperet, Montassier, Ochem, Pinlou, 2013.

- 2. H has a vertex z of degree 2. 3. Re-sign to get edge xz negative.
- 4. **Claim 1**: In any mapping $f:(H,\Sigma)-z\to UC_4$, f(x)=f(y).
- 5. **Claim 2**: In any mapping $f:(H,\Sigma)-z\to UC_4$, x re-signed if and only if y re-signed.
- 6. UC_4 -Colouring $\leq_R UC_4$ -Colouring:

Perspectives

- ullet Prove dichotomy for (H, Σ_H) -Colouring. o H bipartite
- Extension of Feder-Vardi's dichotomy conjecture to signed CSPs via signed digraphs?