2⁵081 S/181/61/003/009/013/039 B102/B104

Production of cadmium selenide ...

conditions had an area of 2-12 cm². There are 7 figures, 1 table, and 16 references: 8 Soviet and 8 non-Soviet. The three most recent references to English-language publications read as follows: R. P. Ruth, J. C. Marinace, W. C. Dunlap. J. Appl. Phys., 31, 6, 995, 1960. J. H. V. Setty, H. Wilman. Trans. Farad. Soc., 51, 7, 984, 1955. M. Davis, R. F. Lever, J. Appl. Phys., 27, 835, 1956.

ASSOCIATION: Leningradskiy tekhnologicheskiy institut im. Lensoveta

(Leningrad Technological Institute imeni Lensovet)

SUBMITTED: April 3, 1961

Card 3/3

Colorimetric determination of microquantities of copper in nickel and cobalt solutions. Zev.lab. 27 no.1:17-20 '61. (MIRA 14:3)

1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta.
(Copper—Analysis) (Nickel---Analysis)

STRAKHOV, L.P.; CHERNYAVSKIY, B.G.; KALINKIN, I.P.; OVSYUK, Z.Sh.

Spectral distribution of optical changes in the contact potential of CdSe films. Fiz.tver.tela 4 no.12:3422-3426 D '62. (MURA 15:12)

1. Leningradskiy gosudarstvennyy universitet.
(Catalum malanida—spectra)

* in:503

S/181/63/005/001/020/064 B102/B186

217160

AUTHORS:

Kalinkin, I. P., Sergeyeva, L. A., Aleskovskiy, V. B., and

Strakhov, L. P.

TITLE:

Investigation of the structure of thin cadmium selenide films condensed onto the (100) and (110) faces of rock-salt

single crystals

PERIODICAL: Fizika tverdogo tela, v. 5, no. 1, 1963, 124-128

TO THE STREET OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPERTY

TEXT: CdSe was sublimated under conditions described in FTT, 3, 9, 2640, 1962 and deposited on the (100) and (110) faces of NaCl kept either at room temperature or at 250° or 300-350°C. The hexagonal polycrystalline films (c=7.02Å a=4.3)Å formed on these faces were investigated using a microscope, an electron microscope and electron diffraction. In the case of sublimation at 250°C onto the (100) face the following phases were observed: A cubic one with (100) cub (100) NaCl and [170] cub (100) pub (100) NaCl and [170] cub; a polycrystalline hexagonal phase; mixed phases e. g. cubic with hexagonal Card 1/2

orner reservatives successum de la montro de la mantina de la completa de la mantina de la mantina de la manti

Investigation of the structure of ... S/181/63/005/001/020/064

interlayers, or cubic interlayers turned through 1800. With base temperatures of 300-350°C no change in film structure was observed. the case of optimum sublimation of CdSe onto (110) NaCl, a most perfect film with (110) CdSe (110) NaCl was produced. The film obtained at 250° base temperature was less perfect. In order to eliminate the uncontrollable effects of oil vapors contained in the vacuum chamber, the etching figures obtained with several agents were studied by means of an NUM-7 (MIM-7) metal microscope. The etching figures were in all cases square pyramids oriented diagonally to the lattice cubes. These pyramids grew with the etching time; after 10-20 minutes etching they covered the whole face. Numerous details on the film structure obtained from electron diffraction pictures are discussed. There are 5 figures.

ASSOCIATION: Leningradskiy tekhnologicheskiy institut im. Lensoveta

(Leningrad Technological Institute imeni Lensovet)

SUBMITTED:

June 2, 1962 (initially)

July 23, 1962 (after revision)

Card 2/2

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

KALINKIN, I.P.; ALEKSOVSKIY, J.B.

Spectrophotometric determination of the microquantities of copper and chlorine in cadmium selenide. Izv.vys.ucheb.sav.; khim.i khim. tekh. 6 no.4:553-556 '63. (MIRA 17:2)

1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. Kafedra analiticheskoy khimii.

CHARLES THE PROPERTY OF THE PR

ENP(q)/ENT(m)/BDS L 11110-63 AFFTC/ASD ACCESSION NR: AP3000783 5/0070/63/008/003/0459/0461 AUTHOR: Kalinkin, I. P.; Sergeyeva, L. A.; Aleskovskiy, V. B.; Strakhov, TITLE: Electron diffraction study of the structure of simple-current cadmium selenide films Rristallografiya, v. 8, no. 3, 1963, 459-461 SOURCE: TOPIC TACS: film, vacuum sublimation, electron diffraction, single crystal film, orienting substrate, microstructure, molybdenum glass, decomposition, cadmium selenide film, sodium chloride ABSTRACT: The paper describes the latest results of studies by the authors on the deposition by vacuum sublimation of CdSe films on various substrates. By using as orienting substrates etched NaCl crystals which were applected to preliminary mechanical and heat treatment (at 350-5500 for 1-1 hr), "thin" (0.05-14) CdSe single-crystal films (vers deposited on the (100) and (111) faces of the crystals. Electronographic study showed that, depending on preliminary treatment and etching time, films with a cubic, hexagonal, or mixed structure Card

L 11110-63

ACCESSION NR: AP3000783

can be prepared. "Thin" CdSe films removed from NaCl crystals and transferred onto molybdenum glass were used as orienting substrates for preparing "thick" (~ 0.6μ) single-crystal films by additional vacuum sublimation (5.10-5 mm Hg) of CdSe. The temperature of the substrates varied between 150 and 350C. Addittional deposition under selected unidentified conditions made it possible to prepare "thick" single-crystal CdSe films with either hexagonal, mixed, or cubic structures. "Thick" single-crystal films with a cubic structure could be prepared by additional vacuum sublimation only on the (100) face of Macl crystals. The authors are grateful to M. A. Rumsh for discussion of certain require of the work." Orig. art. has: 6 figures.

ASSOCIATION: Leningradskiy tekhnologicheskiy institut im. Lansoveta (Leningrad Technological Institute)

SUBMITTED: 220ct62

DATE ACQ: 21Jun63

ENCL:

SUB CODE: CH

NO REF SOV: 005

OTHER:

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

ALESKOVSKIY, V.B., prof.; BARDIN, V.V.; BOYCHINOVA, Ye.S.;

BULATOV, M.I.; VASIL'YEV, V.P.; DOHYCHIN, S.L.; DUSHINA,

A.P.; KALINKIN, I.P.; KEDRINSKIY, I.A.; LIBINA, R.I.;

PRIK, K.Ye.; SETKINA, O.N.; KHEYFETS, Z.I.; YATSIMIRSKIY

K.B., prof.; VASKEVICH, D.N., red.

[Physicochemical methods of analysis; a laboratory manual] Fiziko-khimicheskie metody analiza; prakticheskoe rukovodstvo. Moskva, Khimiia, 1964. 451 p. (MIRA 17:12)

BER DEFENDE DE LE FERMEN DE LE FORME DE LE FORME DE LE FORME DE BERNE DE BERNE

SEMIKOZOV, G.S.; KRUGLOVA, Ye.G.; KALINKIN, I.P.

Determination of microquantities of copper with lead diethyldithio-carbamate in zinc solutions and electrolytes for galvanization. Izv. vys.ucheb.zav.; khim. i khim.tekh. 7 no.2:194-197 *64.

1. Kafedra analiticheskoy khimii Leningradskogo tekhnologicheskogo instituta im. Lensoveta.

ACC NR: AP7002397

SOURCE CODE: UR/0363/66/002/012/2116/2115

AUTHOR: Kalinkin, I. P.; Sergeyeva, L. A.; Aleskovskiy, V. B.

ORG: Leningrad Technological Institute im. Lensovet (Leningratskiy tekhnologicheskiy institut)

TITLE: Preparation, structure, and photoelectric property of single crystal films of CdS, CdS-CdSe, and CdSe

SOURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy. v. 2, no. 12, 1966, 2110-2115

TOPIC TAGS: thin film, cadmium sulfide, cadmium selenide, single crystal film, photosensitive film

ABSTRACT: A study was made of vacuum deposition of hexagonal, single-crystal films of CdS, CdS-CdSe, and CdSe on heated substrates of mica or of single crystalline silver films on mica and of the effect of subsequent heat-treatment on the structure and photoelectric property of these films. The literature data are available only on polycrystalline films of cadmium chalcoganides which are presently used in thin film diodes, phototransistors, photoresistors, photovoltaic cells, etc. Electron diffraction patterns have shown that single phase hexagonal films of CdS and CdSe and triple CdS-CdSe films were deposited on the (0001) face of mica substrate at 270—450C under given conditions. Single crystal CdS and CdSe films of hexagonal or mixed structure were formed on a single-crystal silver film substrate which was

Card 1/2

UDC: 546.482'221.546.482'231

ACC NR: AP7002397

heated at \cdot C = 300C. Highly photosensitive layers, with the dark resistance to resistance on illumination ratio 3-5 orders of magnitude higher than in the earlier described CdS and CdSe films, were obtained by thermal photostimulation of single-crystal CdS and CdSe and triple CdS-CdSe films. Photosensitive (CdS_xCdSe_{1-x}): Cu, Cl films, with a low time constant, were obtained by a new method of heat treatment of CdS films under the preliminarily activated (Cd_xSe_yO_z):Cu, Cl layer. Highly sensitive photoresistors, with maximum of photoelectric current intensity at various wave lengths in the 500-700 nm range, may be obtained on the basis of the above-indicated films. Orig. art. has: 2 tables and 6 figures.

SUB CODE: 20/ SUBM DATE: 13Dec65/ ORIG REF: 009/ OTH REF: 014

Card . 2/2

KALINKIN, L.A.

Effect of purified antigen on the receptors of the glomus caroticum, Sbor. nauch. trud. Rost. gos. med. inst. no.22:151-154 163. (MIRA 18:7)

1. Is kafedry patologicheskoy fiziologii Rostovskogo gosudarstvennogo meditsinskogo instituta (zav. - prof. A.I.Gordiyenko).

KALINKIN, L.F.

SUBJECT AUTHOR

PERIODICAL

USSR / PHYSICS

CARD 1 / 2

PA - 1786

TITLE

ESTULIN, I. V., KALINKIN, L.F., MELIORANSKIJ, A.S.

The Gamma Quanta emitted by the Nuclei of J, Rh amd Co on the

occasion of the Capture of Thermal Neutrons. Zurn.eksp.i teor.fis, 31, fasc.5, 886-887 (1956)

Issued: 1 / 1957

The present work determines the energies and absolute intensities of the f -quanta mentioned in the title with from 50 to 600 keV. For this purpose a luminescence spectrometer with a cylinder-shaped NAJ(T1)-crystal (height 9 mm, diameter 28 mm) was used. As a source of thermal neutrons a physical test reactor with heavy water was used. From the horizontal channel in the shield of the reactor a well-collimated neutron bundle emerged, and in the center of the bundle the target made of the substance to be investigated was located. Under the target there was a NaJ(T1)-crystal with a photoelectric amplifier. On the occasion of the measuring of the 7-rays produced on the occasion of neutron capture, the measuring results obtained in the case of an opened bundle of thermal neutrons (No) were compared with those obtained when the output of the neutron collimator was covered by means of a lid of $B_4C(N_1)$. The effect (N) produced by the thermal neutrons on the target is equal to the difference of these two results: $N = N_0 - N_1$. In the spectra of the investigated targets the photopeaks of soft f-quanta (emitted by the nuclei on the occasion of the capture of thermal neutrons) rise above the background of the momenta originating from harder 7 -gamma quanta.

CIA-RDP86-00513R000620110017-3" APPROVED FOR RELEASE: 08/10/2001

KAKINKIN, L.F.

ILGIALIZA BEN BRIBER ORRIGINET ISA (REST) ALIZARRI ERRIBA INTERNAS (REG B. ALITER AUGUSTERIA) BRIBER BRIBER AUGUST BRIBER BRIBER

AUTHOR TITLE

56-5-7/55 ESTULIN, I.V., KALINKIN, L.F., MELIORANSKIY, A.S. The Soft &-Radiation Emitted By Muclei at the Capturing of

(Myagkoye 7 -izlucheniye, ispuskayemoye yadrami pri sakhvate Thermal Neutrons.

teplovykh neytronov.-Russian) Zhurnal Ekesperim. i Teoret. Fiziki 1957, Vol 32, Nr 5, pp 979-

PERIODICAL 992 (USSR)

The paper under review describes the measurement of the energy and of the absolute yields of the y -quanta (in the energy in-ABSTRACT terval from 50 K keV to 500 keV) which are smitted by nuclei at the capturing of thermal neutrons. These measurements were conducted by means of a monocrystal luminescence spectrometer.

The first chapter of the paper under review deals with the geometrical conditions of the experiment and of the luminescence spectrometer. In this experiment, a physical experimental reactor with heavy water was used as source for the neutrons. The collimated bundle of the thermal neutrons, brought out of the protections of the reactor, had an intensity of ~ 107 neutrons/ om2 sec. In the luminescence spectrometer a photoelectric amplifier C with a cylindrical RaJ(T1) crystal was used.

CARD 1/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

56-5-7/55

The Soft y -Radiation Emitted By Muclei at the Capturing of Thernal Neutrons.

discussed in detail the results of the measurements with regard to the following nuclei: rhodium, iodine, memarium, gold, mercury. The results of the measurements are compiled in a chart at the end of the paper under review. (12 reproductions and 2 charts)

ASSOCIATION: Moseow State University.

PRESENTED BY: -

26.12. 1956 Submitted:

AVAILABLE:

Library of Congress.

CARD 3/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3" γ -Radiation of the Radiation Capture of Thermal Neutrons 507/56-35-3-6/61 by Mo⁹⁵, Ag¹⁰⁷, Te¹²³ and Cs¹³³

channel analyzer operated at a counting rate of ~ 105 pulses /sec. Investigations were carried out of (n, γ) reactions on Ag, Sn, Te, Cs, W, Tl (X-ray-Kemission at the corresponding energies of 22,25,27, 51, 59,72 keV), and further Te¹²³ (159 keV), 162^{293} (279 keV), $\operatorname{Cr}^{51}(323 \text{ keV})$, the γ -radiation of the reaction $\operatorname{B}^{10}(n,z)$ in 7(480 keV), $Cs^{137}(662 \text{ keV})$, $Nb^{95}(762 \text{ keV})$ and $Zn^{65}(\gamma\text{-energy: 1120 keV})$. The resolving power η of the spectroscope in the range E =279-1120 keV obays the formula $\eta=(240/\overline{E}_{\gamma})+0.2\%$ Figure 1, in a disgress for 2 NaJ-crystals of different size, shows the dependence of spectrometer efficiency at the photopeaks of E in the energy interval investigated. In conclusion, the results obtained by measurements are discussed separately for the nuclei investigated of molybdenum, silver, tellurium, and cesium. In a table the values obtained are shown clearly and partly compared with the results obtained by other authors (Refs 10, 11, 15).

Card 2/4

LI CONTRACTOR CONTRACT

 γ -Radiation of the Radiation Capture of Thermal Neutrons SOV/56-35-3-6/by Mo⁹⁵, Ag¹⁰⁷, Te¹²³ and Cs¹³³

The energy E, keV of the respective element is in each case compared with the number [6] of the γ-quanta emitted per captured neutron. The following are some of the results obtained: $M0^{96}$: E₂=770+ 10:(91+ 14)%; 840+ 10:(43+ 8)%; Ag¹⁰⁸: 22+ 2: (X-ray emission)(10+6)%; 117+3:(9+2)%; Te 124: $605 \pm 10: (58 \pm 9)\%; 725 \pm 10: (17 \pm 4)\%; Cs^{184}: 120 \pm 3: (20 + 3)\%;$ 184+ 3: (9+2)%. Finally, the authors thank 1.8. Shapiro for the interest he displayed in the work and for discussing results; they further express their gratitude to S.A.Gavrilov, A.P.Shilov, and his collaborators, attendants of the physical reactor, as well as to Ya.A.Kleyman, A.M.Safronov, and V.F.Tsarakayev for assisting in carrying out the experiments. There are 6 figures, 1 table, and 15 references, 8 of which are Sowiet:

Card 3/4

 γ -Radiation of the Radiation Capture of Thermal Neutrons S07/56-35-3-8/61 by Mo 95 , Ag 107 , Te 123 and Cs 133

ASSOCIATION: Nauchno-issledovatel'skiy institut yadernoy fiziki MGU

(Scientific Research Institute for Nuclear Physica,

Moscow State University)

SUBMITTED: April 5, 1958

Card 4/4

radiation emitted by muclei in radiation and recommendation emitted by muclei in radiation and recommendation and recommendatio

- 6 -

OND BODGE FOR A FOR PORT OF DEPTH OF THE COURSE OF THE COU

21(1), 21(7) AUTHORS: SOV/56-36-5-75/76 Kalinkin, L. F., Melioranskiy, A. S., Estulin, I. V. Some Y-Transitions in J 128 and in Neodymium Isotopes TITLE: (Nekotoryye Y-perekhody v J¹²⁸ i izotopakh neodima) PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1959, Vol 36, Nr 5, pp 1613-1614 (USSR) ABSTRACT: By means of a single crystal spectrometer (NaJ(T1)) the authors of the present "Letter to the Editor" investigated the Y-radiation occurring during the radiation capture of thermal neutrons in iodine and neodymium isotopes. A report concerning the measuring method has already been published (Refs 1, 2). Results: J¹²⁸ (investigations within the range of 20 - 400 keV): 28±2 keV line, intensity (23+6)%, a characteristic K-emission caused by internal T-conversion on electrons of the K-shell. 135+3 kev line, intensity (20+4)%, very probably an E2-transition. 158+4 kev line, (7.5+ 1.5)%, very probably a M2-transition. The high intensities (the data given in % refer to the captured Card 1/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

INTERPENDENT SET SET THE SET OF T Some Y-Transitions in J 28 and in Neodymium Isotopes SOV/56-36-5-75/76 neutron) indicate that, in the case of the transitions, such occurring among lower excited levels must be concerned. Neodymium isotopes: Investigations on Nd203-target; identification of Y-lines by means of neodymium target (natural mixture of isotopes with impurities of other rare earths with large neutron capture cross section), comparison between results obtained and those of other publications, e. g. by Sklyarevskiy et al. (Ref 6). The following was found: identification Yintensity Y-intensity Line kev (isotope) y -line) (natural mixture) (of 2.1+0.4 182 + 3Sm 150 67 2<u>3+</u>4 330<u>+</u>10 150 Sm146 40 (Nd 150 25<u>+</u>5 445+10 >40 16 Sm 146 20+4 610+10 ~100

Card 2/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

Some X-Transitions in J 28 and in Neodymium Isotopes SOV/56-36-5-75/76

ENTIFE RESIDENCE OF COMPANIES AND SERVICE AND SERVICE AND SERVICE AND SERVICE AND ADDRESS OF THE ADDRESS OF THE

695±10 63±10 Na¹⁴⁴ 85±13 840+10 15±3 Na¹⁴⁴ 20±4

There follows a number of further data concerning the lines found, as e. g. that the 695- and the 445 kev line originate from a transition from the first excited to the ground state of Nd ¹⁴⁴ and Nd ¹⁴⁶ respectively, and that for the 840- and the 610 kev line the energy ratio between these states and the first levels amounts to $E_2/E_1 = 2.2 \div 2.4$, which is characteristic of the oscillation levels of spherical even-even nuclei. The data were obtained from a number of publications referred to. There are 1 table and 8 references, 6 of which are Soviet.

ASSOCIATION:

Institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta (Institute of Nuclear Physics of Moscow State University)

SUBMITTED:

March 15, 1959

Card 3/3 -

KHLINKIN 4.1.

24,6200

\$1985 \$/120/60/000/03/012/055 E032/E514

AUTHORS: Melioranskiy, A.S., Estulin, I.V. and Kalinkin, L.F.

TITLE: Stability of Spectrometric Photomultipliars at High

Counting Rates

PERIODICAL: Pribory i tekhnika eksperimenta, 1960, No 3, pp 45-47

ABSTRACT: Fast and non-overloading single channel analyser and amplifier (Melioranskiy and Ostanevich, Ref 2) were used to study the overloading properties of Soviet spectrometric photomultipliers FEU-29, FEU-5 and FEU-11. A sodium iodide crystal was used as the scintillator and the dead time of the electronics was 3 µsec. The determination of the change in the characteristics of the spectrometer (stability, resolving power, calibration, etc.) was carried out under two conditions. In the first (linear) case the amplitude of pulses due to gamma rays from Co^{OO}, Zn^{OS} and Cs^{IS} was kept within the linear calibration. The spectrometer was then overloaded by increasing the counting rate. In the second (nonlinear)

Card 1/3 case a determination was made of the spectrometer

X

81985

S/120/60/000/03/012/055 E032/E514

Stability of Spectrometric Photomultipliers at High Counting Rates

characteristics for the Ba K-radiation photopeak emitted by Cs^{137} . The intensity of this photopeak was ten times smaller than the intensity of the 0.66 MeV line and the pulses due to this line were well beyond the linear characteristics of the instrument. In this way the lower energy pulses were looked at while the spectrometer was being amplitude overloaded by the 0.661 MeV line. The results obtained are shown in Fig 1. The continuous curves represent the energy calibration, and the dotted Curves are marked as follows: curves the resolution. FEU-29: 1,2 - linear conditions; 3,4 - nonlinear conditions; FEU-S: 5,6 - nonlinear conditions; FEU-11: 7.8 - nonlinear conditions. The vertical axis is in relative units and the horizontal axis is in pulses/sec x 103. The best results were obtained for the FEU-11 photomultiplier which is of the venetian blind type. This photomultiplier will tolerate a maximum Card 2/3 counting rate of 10⁵ pulses/sec.

W

81985 \$/120/60/000/03/012/055 B032/E514

Stability of Spectrometric Photomultipliers at High Counting Rates
There are 1 figure and 3 Soviet references.

ASSOCIATION: Nauchno-issledovatel'skiy institut yadernoy fiziki

MGU (Scientific-Research Institute for Nuclear Physics

of the Moscow State University)

SUBMITTED: April 16, 1959

W

Card 3/3

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000620110017-3

82414

S/056/60/038/03/12/033 B006/B014

24.6600

AUTHORS:

Melioranskiy, A. S., Estulin, I. V., Kalinkin, L. F.,

Kudinov, B. S.

TITLE:

Excited States of Cs 134

PERIODICAL:

Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1960,

Vol. 38, No. 3, pp. 758-764

TEXT: In the article under review, the authors used a coincidence-lumingscence spectrometer to study the cascade petransitions induced in cesium nuclei by thermal neutron capture. Fig. 1 shows a block diagram of the spectrometer, which uses photomultipliers of the typesFEU-13 and FEU-11 with NaI(T1) crystals. The neutrons with which the 20 mm thick CsF target (0.25 g) was bombarded stemmed from the TVR2 reactor of the AS USSR. Fig. 4 represents the pulse spectra (number of pulses per minute as a function of energy) and the energy distributions of the number of coincidences per minute. Besides the peaks, the coincidence spectra exhibited also a peak with (31 ± 2) kev, which corresponds to an X-ray emission of the Cs atom. This emission is ascribed primarily to an internal conversion of the peaks.

Card 1/3

62414

Excited States of Cs 134

S/056/60/038/03/12/033 B006/B014

and partly to the photoeffect of the x-quanta in eigenabsorption in the target. To verify the measured internal conversion coefficient $\alpha_{\rm K}$ a control experiment with Cs ^{134m} ($T_{1/2}$ = 3.1 hours) was made. A comparison of the peak areas at 127 and 31 kev showed that $\alpha_{\rm K}$ = 2.8 ± 0.3, which is fairly consistent with the theoretical value 2.82 obtained for an E3 transition. For the purpose of studying the cascade x-transitions four series of experiments were carried out, the results of which are listed in Table 1. The following lines were found in addition to that with 31 ± 2 kev mentioned above: 63 ± 2, 75 ± 5, 120 ± 3, 138 ± 4, 184 ± 4, 195 ± 260, 215 ± 4, 258 ± 4, and 310 ± 5. These results are discussed in great detail, and some data concerning the probable polarities are given. The 75-kev transition, for instance, may be a transition of the type E2 or M1+E2. Also, the intensities of the individual transitione are indicated. The 63-kev and 120-kev transitions are compared with theory in Table 2. Fig. 4 illustrates the nuclear level scheme, which is fully explained. The following spins and parities of the levels are given: 0 (4+), 63 kev (2+), 137 kev (8-), 184 kev (3+), 256 kev (4+), and 320 fev (3+, 4+). There are 4 figures, 2 tables, and 11 references, 6 of which are Soviet.

Card 2/3

Excited States of Cs 134

82514 \$/056/60/038/03/12/033 B006/B014

ASSOCIATION:

Institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta (Institute of Nuclear Physics of Moscow State University)

SUBMITTED:

September 19, 1959

Card 3/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

KALINKIN, L. F.; ESTULIN, I. V.; MELNORANSKIY, A. S.

"Excited States of Rh¹⁰⁴."

"Gamma Radiations in the Reaction Ag¹⁰⁹(n,γ)Ag¹¹⁰."

reports submitted for All-Union Conf on Nuclear Spectroscopy, Tbilisi, 14-22
Feb 64.

MGU (Moscow State Univ)

*	Remarks on excited energy states of Hol66 and Cs 134 odd-	/
	odd nuclei. Izv. AN SSSR. Ser. fiz. 25 no.9:1124-1126 '61. (MIRA 14:8)	
	1. Nauchno-issledovatel'skiy institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta im. M.V. Lomonosova. (Holmium-Isotopes)	
	(Cesium—Isotopes) (Nuclear reactions)	
	· · · · · · · · · · · · · · · · · · ·	
·4		

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

MELICRANSKIY, A.S.; ESTULIN, I.V.; KALINKIN, L.F.

Studying the lower excited states of 1875 and Hol66 by measuring the coincindences of cascade \(\gamma \) -quanta. Zhur. eksp. i teor. fiz. (MIRA 14:6)

1. Institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta. (Manganese-Spectra) (Holmium-Spectra) (Nuclei, Atomic)

S/056/62/042/005/002/050 B125/B108

AUTHORS: Kalinkin, L. F., Melioranskiy, A. S., Estulin, I. V.

TITLE: Cascade y-quanta in the reaction Rh 103 (n, y) Rh 104

PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 42, no. 5, 1962, 1149 - 1157

TEXT: A two-crystal luminescence Y-coincidence spectrometer was used to study Y-quantum cascades in the reaction Rh 103 (n, Y) Rh 104 with thermal neutrons. Coarse rhodium wrapped in aluminum foil served as a target. Results are shown in Table 1. Fig. 1 shows typical spectra of Y-quanta from Rh 103 (n, Y) Rh 104. The multipole types were determined for the following transitions: 35 kev(M1+E2), 51 kev(M1), 88 kev(M1+E2 or E2), 98 kev(M1), 99 kev(E2), 133 kev(M1 or E2), 135 kev (M1 or E2). The coincidences detected are indicative of the existence of two new Rh 104 levels with the excitation energies 184 and 272 kev with transitions to and from these levels. Direct transitions from the initial state (i.e. when a neutron is captured) go to levels with energies of 440, 580, 760 and 900 kev arise. The chain of transitions detected in the coincidences Card 1/5

Cascade Y-quanta in the ...

S/056/62/042/005/002/050 B125/B108

with 98 kev y-quanta is related to the ground state and not to the isomeric state. The transition belonging to the newly discovered peak with 230 kev does not conform with the other levels. For this reason a 500 kev level is introduced conditionally. A 35 kev y-line was detected in the spectral regions V and VI which is indicative of a 183 kev transition. Direct transitions of comparable intensities must be of the type E1. The inter-

pretation of the excited levels of Rh 104 is difficult because of the large number of neutrons and protons in vacant nuclear shells. There are 2 figures and 2 tables. The most important English-language reference is: Nuclear Data Sheets, National Academy of Sciences-National Research Council 1960 (US Government Printing Office, Washington D.C.).

ASSOCIATION: Institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta (Institute of Nuclear Physics of Moscow con State University)

SUBMITTED: November 5, 1961

Card 2/5

ESTRABORD ENGINEE REPORTS TO A SECRETARISE SERVICE AND A SECRETARIAN DESIGNATION OF THE PROPERTY OF THE PROPER 8/056/62/042/005/002/050 B125/B108 Cascade Y-quanta in the ... Table 1 у-квянты, произанющиеся в совпадениих с данной яниней (Ey, keY) Отчетливое проивление в совпадениях с областями спентра (см. рис. 1) Интенсивность на захва-ченный нейтрои лу. % Ey, keV I — VIII V, VI I, IV — VIII I, V, VI 51, 88, 98, 133, ~ 183 $36\pm6^{\circ}$ $20\pm 2\ 35\pm 3\ 51\pm 2$ ~0,5** ~0,5**
11±1,5*
~1,3**
13±2
3±1**
3±1**
5,5±1,3**
3±1**
~0,5**
%
5,5±5**
%
13±2*
3±1**
%
10±2*
10±2*
10±2*
10±2*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10±3*
10 133, 168, 220, 340, 450-600 88 ± 3 98, 133, 176, 210, (340) I, III - VIII 98±3 99±3 51, 98, (140, 160-190, 220) 133 ± 3 1 - III, VIII, VIII9±1,5° 135 ± 3 ~0,5** 4,5±5****
2±0,5**
~3** }16±2*
2,5±1*,**
6,5±1,5** }10±2*
~2*
3±1*.** 140土4 51, 88, (~135, 173) 11, V11 111, V 168±5 98 176±7 183±7 1, v, vi, viii . 35, 88, (~135) 184±5 205 ± 7 }51, 98, 140, (168, 184), ~225 II, III, V—VIII 220±5 230±5 250±5 (250±10) 275±5 320±7 . V, VIII VIII 3±1*,** 7±1,5* (350±10) 440±10 8±2° VIII Card 3/5

> APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

CIA-RDP86-00513R000620110017-3 "APPROVED FOR RELEASE: 08/10/2001 图3度转星数分析 化化铁板系统企业 (在CST) 1913 维度Cst. 253 (4) CT (ESC. 2 E 3 CS - 1 C - 1 CS - 1 CS - 1 C - 1 CS - 1 CS

s/056/62/043/004/035/061 B108/E152

AUTHORS:

Estulin, I. V., Kalinkin, L. F., Melioranskiy, A. S. Measurement of $\gamma\gamma$ -coincidences in the reaction $\log^{107}(n,\gamma) A_{\rm E}^{108}$

TITLE:

Zhurnal eksperimental noy i teoreticheskoy fiziki, v. 43,

no. 4(10), 1962, 1378-1384 PURIODICAL:

TEXT: YY-coincidences were measured with a-two-crystal (NaI(Tl)) spectrometer according to a method described earlier (A. S. Melioranskiy et al., 2hETF, 38, 758, 1960; 40, 64, 1961; L. F. Kalinkin et al., 2hETF, 42, 1140, 1962). The energies and intensities of the gamma lines observed by the authors are given in Table 2. The measurements of coincidences were used to determine the energy level diagram of Ag108 (Fig. 3). There are 3 figures and 2 tables.

ASSOCIATION: Institut yadernoy fiziki Hoskovskogo gosudarstvennogo universiteta (Institute of Muclear Physics of Moscow State

University)

dard 1/12

CIA-RDP86-00513R000620110017-3" APPROVED FOR RELEASE: 08/10/2001

| S/056/62/043/064/035/061 | S/056/62/043/064/035/061 | B108/B102 | B108/B102

.teraditement of provinciaciocorr

PRESENTED: April 21, 1962 (initially)
July 13, 1962 (after revision)

Table 2. Legend: second and fourth column show intensities n_{γ} , per captured neutron. Asterisk indicates gamma line intensities determined with single crystal spectrometer.

Card 2/42

KALINKIN, L.F.; MELIORANSKIY, A.S.; ESTULIN, I.V.

Gascade — -quanta in the reaction Rh¹⁰³(n,)Rh¹⁰⁴. Zhur. eksp.
i teor. flz. 42 no.5:1149-1157 My '62. (MIRA 1519)

1. Institut yadernoy fiziki Moskovskogo gosučarstvennogo universiteta.

(Quantum theory) (Nuclear reactions)

the reaction r. fiz. 43 no.4:1378-1384 (MIRA 15:11)
skogo gosudærstvennogo
etry) er—Isotopes)
·

विकास मार्थित स्थापन के का मार्थित के का स्थापन के कि का मार्थ के स्थापन के अपने के स्थापन के कि स्थापन के कि स

ESTULIN, I.V.; KALINKIN, L.F.; MELIORANSKIY, A.S.

Decay of Rh^{104*} ($T_1/2 = 4.4 \text{ min.}$). Izv. AN SSSR. Ser. fiz. 28 no.1:93-97 Ja '64. (MIRA 17:1)

l. Nauchno-issledovatel'skiy institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta.

ACCESSION NR: AP4024040

8/0048/64/028/002/0227/0228

AUTHOR: Kalinkin, L.F.; Estulin, I.V.; Melioranskiy, A.S.

TITLE: Gamma radiation emitted in the Ag¹⁰⁹(n; 7)Ag¹¹⁰ reaction Report, Fourteenth Annual Conference on Nuclear Spectroscopy held in Tbilisi 14 to 22 Feb 19647

TERRITARIA (NERTARIA NERTARIA) DE TRES EN EL TRES EN EL TRES EN TRES E

SOURCE: AN SSSR. Izvestiya. Seriya fizicheskaya, v.28, no.2, 1964, 227-228

TOPIC TAGS: neutron capture y-ray, neutron capture reaction Ag109, Ag110

ABSTRACT: Hitherto there has been only one study of the neutron capture γ -radiation from Ag¹⁰⁹ (V.V.Sklyarevskiy, E.P.Stepanov and B.A.Obinyakov, Atomnaya energiya 5, 454,1958). The purpose of the present work was to check and amplify the earlier data. In the present work the γ -radiation from the Ag¹⁰⁹(n, γ)Ag¹¹⁰ reaction was recorded by means of a scintillation spectrometer in which there were used 10, 20 and 40 mm thick NaI(T1) crystals coupled to a louver type photomultiplier. The target was metallic silver enriched to 98.8% Ag¹⁰⁹. The silver in the amount of 45.7 mg was deposited electrolytically onto a thin aluminum backing in the form of a 20 mm diameter disc. The spectra were recorded using different Pb + Sn + Zn absorbers; one typical singles spectrum is reproduced. The 16 γ -lines (including 22 keV K x-

Card 1/2

表的编辑数:《用途上》(上海)(1915年) 1915年 1917年 - 1917年 -

ACCESSION NR: AP4024040

rays) observed in the single crystal measurement are tabulated. Analysis of the results of γ - γ coincidence measurements did not reveal any γ -cascades including gammas with the intensities indicated in the table. Hence apparently most of the tabulated lines are actually groups of lines with close energies not resolved by the scintillation spectrometer. The present data are not sufficient for constructing a level diagram for Ag¹¹⁰. Orig.art.has; I figure and I table.

ASSOCIATION: Nauchno-issledovatel'skiy institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta im.M.V.Lomonosova (Scientific-Research Institute of Nuclear Physics, Moscow State University)

SUBMITTED: 238ep63

DATE ACQ: 08Apr64

BNCL: 00

SUB CODE: NS

NR REF 80/: 010

OTHER: 002

Card 2/2

MELIORANSKIY, A.S.; KALINKIN, L.F.; ESTULIN, I.V.

Excited states of Rh¹⁰⁴. Izv. AN SSSR. Ser. fiz. 28 no.7:
1110-1117 Jl '64.

(MIRA 17:8)

ACCESSION NR: AP4019251

8/0056/64/046/002/0807/0809

AUTHORS: Estulin, I. V.; Kalinkin, L. F.; Melioranskiy, A. S.

TITLE: Energy levels of the Rh-104 nucleus

SOURCE: Zhurnal eksper. i teor. fiz., v. 46, no. 2, 1964, 807-809

TOPIC TAGS: rhodium-104, level scheme, transition between levels, $\gamma\gamma$ coincidence, isomer decay, γ line intensity, Ritz combination rule

ABSTRACT: Additional data on the energy levels of $\rm Rh^{104}$ were obtained from recent published results on γ rays from $\rm Rh^{103}$ bombarded by neutrons and on the decay of the $\rm Rh^{104m}$ isomer. The level scheme and the transitions between levels were obtained by combined analysis of the results of the quantitative processing of measurements of coincidences between γ rays in defined energy regions (scintillation spectrometers) and the values of the γ -line energies in these regions (diffraction spectrometers). The γ -line intensities were

Card 1/33

ACCESSION NR: AP4019251

used to relate the γ transitions detected by using the different methods. The Ritz combination rule was used as a necessary condition. A more complete report is being prepared for publication. It is shown that in spite of the complexity of the level system, brought about by the pn interaction, many levels can be interpreted within the limits of the existing theories on the nature of the excited states and deformed nuclei.

ASSOCIATION: Institut yadernoy fiziki Moskovskogo gosudarstvennogo universiteta (Nuclear Physics Institute, Moscow State University)

SUBMITTED: 17Jul63 DATE ACQ: 27Mar64 ENCL: 01

SUB CODE: PH NO REF SOV: 005 OTHER: 008

Card 2/3 -

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

CERTATION OF THE PARTICULAR OF THE PARTICULAR PROPERTY OF THE PARTICULAR OF THE PART UR/0048/66/030/011/1765/1767 AP7000520 SOURCE CODE: ACC NR AUTHOR: Grigorov, N. L.; Kalinkin, L. F.; Melioranskiy, A. S.; Nesterov, V. Ye.; Pryakhin, Ye. A.; Savenko, I. A.; Estulin, I. V. ORG: none TITLE: A study of high-energy γ -quanta at the upper limits of the atmosphere Lapur pushed at the Ali- Union Confirmed on Physics of Carrie Reys held in Moses from 15 to 10 Normales 1765]
SOURCE: AN SSSR. Izvestiya. Seriya fizicheskaya, v. 30, no. 11, 1966, 1765-1767 TOPIC TAGS: gamma radiation, gamma counter, gamma detection, multiple sotallite, coamic voy telesope, scinfillator, Cerention counter ABSTRACT: The satellites Proton-1 and Proton-2 carried equipment designed to detect gamma rays with energies above 50 Mev and to measure their spectrum. The equipment (see Fig. 1) comprised a telescope formed by a \gamma-quanta converter consisting of a sandwiched plastic scintillator, and a Cherenkov counter with a radiator made from lead-containing glass which detected the energy and direction of gamma rays. The telescope detectors were placed inside a cover made of a scintil-lator plastic which protected the telescope from the noise of charged particles in selecting of anticoincidences. In addition to gamma radiation, the equipment was capable of registering pulses from other Card

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

ACC NRI AP7000				
electrically n	eutral particles (id particles with en	neutrons for exampl	e), as well as to deal the luminesses	the ince
throughold of t	ha Chanankov counts	an madiator. The f	low of Y-quanta	with
energies excee	ding 5 Mev was appr in good agreement	roximately 2 x 10-3	cm-2*sterad-1*s	sec-1;
searchers. Or	ig. art. has: 3 f	igures.	[WA-7]	5]
	,	· ·	[IV]	
SUB CODE: 04,	18,20/ SUBM DATE	E: none/ ORIG	REF: 004/	
OTH REF: 006				
		• .	•	
•	•			
	•			
			•	
1		•		-
1				

Parents, I.N.; EARCHEN, M.I.; EURING V. D.H.

Pornation of molecular hydrogen from a pre-ton-mid of a hydride-dabile hydrogen from the Call bond. Toki. All SS E (Mick 19:1)

1. Institut chementeerganichaskikh soyodinenty (N.S. E. 2. Chlanderreng undent (H.S. TOR (for Kurmanov). Edmit tad dune 12, 1965.

TSAPKIN, N.; KALINKIN, N.; NIKIPOPOV, B.; BURMISTROV, D.V., redaktor;
NADEZHDIMA, A., redaktor; DRNISOVA, O., tekhnicheskiy redaktor

[Taxes and duties from collective farms and private persons]

Nalogi i sbory s kolkhozov i naseleniia, Pod red. D.V.Burmistrova,

Moskva, Gosfinizdat, 1954. 224 p. [Microfilm] (MIRA 7:10)

(Taxation)

KALINKIN, N.B.; ROMANOVSKIY, V.I.; SIDOROV, I.S.

Cutting-tool holder with a rebound mechanism. Mashinostroitel' no.6:32 Je '64. (MIRA 17:8)

KALINKIN, N. B.; ROMANOVSKIY, V. I.; SIDOROV, I. S.

Setting-up device for automatic multicut lathes. Mashinostroitel' no.10:14-15 0 '62. (MIRA 15:10)

(Lathes)

KALINKIN, N.B.; ROMANOVSKIY, V.I.; SIDOROV, I.S.

Special adjustment of the IA730 semiautomatic multicut lathe for machining sleeves. Avt. prom. 29 no.7:36 Jl 163. (MIRA 16:8)

addeptite de Sena de Celonic de Celonic de Colonic de C

1. Novosibirskiy stankostroitel'nyy zavod imeni XVI parts"yezda. (Lathes)

CHERNOV, I.S., in the ner-podpolkovnik; Kalinkin, P.V., mayor zapasa

Automatic control of electric power supply apparatus. Yest, protivovozd.obor. no.12:54-56 D '61. (MIRA 15:3) (Radar, Military) (Electric power supply to apparatus)

5(1)

AUTHORS: Moshkin, P. A., Lutkova, V. I., Pertsov, L. D., Kalinkin, S. F.

SON TRANSPORTED FOR THE PROPERTY OF THE PORT OF THE PO

TITLE: Method for the Separation of Tetrahydrofuran From Reaction

Gases

PERIODICAL: Khimicheskaya promyshlennost', 1959, Nr 6, pp 484 - 486 (USSR)

ABSTRACT: A new method has been developed by NIIPM, by which furan is not separated from the gas mixture after the decarbonylation of furfurole but in which the whole gas mixture is carried on to hydrogenation (Ref 19). The latter takes place on a nickel

catalyst, whereupon the gas is cooled to room temperature. In this process part of the tetrahydrofuran is separated. The rest of the tetrahydrofuran remains in the waste gases from which CO, is removed; the waste gases are introduced into the hydro-

genation cycle and thus act as a kind of carrier gas saturated with tetrahydrofuran (at room temperature). The decarbonylation of furfurole (Fig 1: scheme) is carried out by the method described in reference 20. The catalyst was obtained from a nickel-aluminum alloy (1:1) by leaching out 40% of the alu-

minum in an appropriate column. The hydrogenation of furan

Card 1/2 (in the gas mixture) took place in a tube reactor (Fig 2: scheme

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

Method for the Separation of Tetrahydrofuran From Reaction Gases

06213 80**V**/64-59-6**-**5/28

of the unit) at a temperature of $110-130^{\circ}$ and an excess pressure of 1.5-2 m water column. After the separation of tetrahydrofuran the CO_2 -containing gas was carried through a potash solution by means of an RMK-2 gas blower and thus CO_2 was removed. The boiling temperature of the rectified tetrahydrofuran was $64-66^{\circ}$, density $D_{20} = 0.888$, and the refractive index $n_D^{20} = 1.4044$. There are 2 figures and 20 references, 7 of which are Soviet.

Card 2/2

5.3610

75693 sov/80-32-10-42/51

AUTHORS:

Kost, A. N., Pertsov, L. D., Yudin, L. G.,

Kalinkin, S. F.

TITLE:

Brief Communications. Catalytic Hydrogenation of

Quinoline

PERIODICAL:

Zhurnal prikladnoy khimii, 1959, Vol 32, Nr 10,

pp 2349-2351 (USSR)

ABSTRACT:

Nickel on chromic oxide is used as an industrial catalyst for the hydrogenation of quinoline. The above catalyst is very effective. The hydrogenation already starts at 90° and 80 atm pressure. Two attempts were made to hydrogenate quinoline: 1) Hydrogen was introduced into the reactor at 50 atm pressure. The reaction was carried out at 110-115° and 100 atm pressure for 10 hr. 101% of catalyzate was obtained, calculated on the starting material. After vacuum distillation 7.8% of cis- and trans-decalin and 85.3%

of 1,2,3,4-tetralin were obtained.

Card 1/3

Brief Communications. Catalytic Hydrogenation of Quinoline

$$\begin{array}{c|c} & & & & \\ & &$$

ISO DE PRESENTADOS ESTADADOS DE LA SECUENCIA EN CONTRA COMO DE LA COMO DEL COMO DE LA COMO DEL COMO DE LA COMO DEL COMO DEL COMO DE LA COMO DE LA COMO DE LA COMO DEL COMO DE LA COMO DEL COMO DEL COMO DE LA COMO DEL COMO DEL

2) The reaction was carried out at 105-110° and at 100 atm pressure. 102.5% of catalyzate was obtained, calculated on the starting material. After distillation 96.4% of 1,2,3,4-tetralin and 2% of decalin were obtained. The residue (about 1%) was a tar-like product. There are 16 references, 7 Soviet, 4 German, 3 U.S., 1 Japanese, 1 Italian. The 3 U.S. references are: Travis, B., Morton, F., Jones, H., Robinson, J., J. Econ. Entomol., 42, 686 (1949); Gouck, H., Gilbert, J., ibid, 48, 499 (1955); Adkins, H.,

Card 2/3

Brief Communications. Catalytic Hydrogenation of Quinoline

75693 sov/30-32-10-42/51

Billica, H., J. Am. Chem. Soc., 70, 695 (1948).

SUBMITTED:

June 9, 1958

Card 3/3

MOSHKIN, P.A.; LUTKOVA, V.I.; RAZUMOVA, N.N.; PERTSOV, L.D.; KALINKIN, S.F.

Production of the disodium 3,6-endoxohexahydrophtalate.(endothal).

Khim.prom. no.4:237-238 ap '61.

(Oxabicycloheptanedicarboxylic acid)

EALINKIN, Vasiliy Alekseyevich; SELEZNEV, N.C., red.; PULIN, L.I., tekhn.red.

[Victory is attained by the people] Pobedu dobyvaiut liudi.
Tula, Tul'skoe knishnoe isd-vo. 1960. 15 p.

(HIRA 14:2)

1. Sekretar' Steroshilovskogo raykoma KPSS Ryazenskoy oblasti (for Kelinkin).

(Sugar beets)

KLYUYEV, G.M., kand.tekhn.nauk; YUNITSKAYA, Ye.I., starshiy inzh.;
RYAKOVA, E.Ya.; Prinimali uchastiye: PETROV, A.M.,; SHISHKIN, A.F.;
KNAUS, O.M.; RUSAKOVA, R.A.; STEPANOVA, L.G.; KALINKIN, V.F.;
GOPKALOVA, N.K.; SACHKOV, V.F.; FROLOV, M.F.; LUKASHOVA, T.T.;
SAVKIN, P.S.

Grain-size distribution in the material produced by crushing rock. Sbor. trud. NIIZHelezobetona no.3:69-90 '60. (MIRA 15:2)

1. Gosudarstvennyy nauchno-issledovatel skiy institut zhelezobetonnykh izdelii, stroitel nykh i nerudnykh materialov (for Petrov, Shishkin, Knaus, Rusakova, Stepanova, Kalinkin, Gopkalova, Sachkov, Frolov, Lukashova, Savkin).

(Stone, Crushed)

MESHCHERYAKOV, I.T., gornyy inzh.; KALINKIN, V.F., gornyy inzh.

Using igdenite for blasting hard rock. Varyv. delo no.54/lla 299-303 164. (MIRA 17:9)

1. Proyektno-tekhnologicheskoye byuro Nauchno-issledovatel'skogo instituta zhel zobetonnykh izdeliy, atroitel'nykh i nerudnykh materialov.

KALINKIN, Vladimir Sergayaxich; FEYLER, Georgiy Oskarovich; TATTS,
A.A., red.; VAGIN, A.A., red. izd-va; ISLENT'YEVA, P.G.,
tekhn. red.

[Electromagnets for electric cranes]Pod*emnye elektromagnity.
Moskva, Metallurgizdat, 1962. 87 p. (MIRA 16:2)
(Electric cranes) (Electromagnets)

BELEN'KIY, G.I.; PREYTER, M.Ye.; IVANOV, V.M.; KALINKIN, V.S.;

KOZHUSHKEVICH, V.G.; PETRAKOVSKIY, V.M.; RABINUVICH, A.A.;

RUBINSKIY, I.A.; SINAYSKIY, M.M.; FEYLER, G.O.;

KHOROSHILKIN, L.L.; KOMAR, M.A., red.; BUL'DYAYEV, N.A.,

tekhn. red.

[Electrical equipment of cranes] Elektricheskoe oborudovanie kranov. Moskva, Gosenergoizdat, 1963. 399 p.

(MIRA 16:12)

1. Kollektiv inzhenerov moskovskogo zavoda "Dinamo" imeni
S.M.Kirova (for all exept Komar, bul'dyayev).

(Cranes, derricks, etc.—Electric equipment)

KALINKINA, A.A.; IVSHINA, Ye.S., akusher Yarskogo rayona UASSR

Intrauterine asphyxia of the fetus. Trudy Izhev.gos.med.inst. 13:

Intrauterine asphyxia of the fetus. Trudy Ishev.gos.med.inst. 13: 244-247 51. (MIRA 13:2)

1. Iz kafedry akusherstva i ginekologii Izhevskogo meditsinekogo instituta. Zaveduyushchiy kafedroy - prof., doktor med.nauk N.N. Chukalov. 2. Zaveduyushchiy ginekologicheskim otdeleniyem Izhevskoy respublikanskoy klinicheskoy bol'nitsy (for Kalinkina).

(FETUS, DEATH OF) (ASPHYXIA)

KALINKINA, A.A., Cand Med Sci — (diss) "On the problem security of treating patients with purulent, saek-like formations of uterine appendages (pyosalpination, pyo-ovarium)."

Izhevsk, 1959, 11 pp (Min of Health RSFSR. Kazan' Med Inst)

250 copies (KL, 31-59, 117)

- 91 -

SELIVANOVA, N.M.; ZUBOVA, G.A.; KALINKINA, A.A.; SAZYKINA, T.A.

Physicochemical properties of selenates. Part 15: Behavior of rubidium selenate during heating. Izv.vys.uch.sav.; khim.i khim.tekh. 5 no.4:524-528 '62. (MIRA 15:12)

 Moskovskiy khimiko-tekhnologicheskiy institut imeni
 D.I. Mendeleyeva, kafedra obshchey i neorganicheskoy khimii. (Rubidium selenate)

Ē

USSR/Human and Animal Viruses. Grippe Virus

Abs Jour : Ref Zhur - Biol., No 4, 1959, No 14616

: Kalinkina A.G. Author

: The Moscow Institute of Vaccines and Sera. Tnst

: A Study of the Dynamics of Multiplication of the Influenza Virus on Chicken Embryos and the Util-Title ization of the Obtained Results in the Production

of Influenza Vaccine.

Orig Pub: Tr. Mosk. n.-i. in-ta vaktsin i syvorotck, 1957,

9, 54-61.

Abstract : Chicken embryos were infected with influenza viruses of the types A' and B in dilutions of 10-4 and the dynamics of the multiplication of the viruses were studied by titration on chicken embryos. The accumulation of the virus A began following a 7 hour latent period of virus B following an 18 hour period. The titres of the

: 1/2 Card

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

Abs Jour : Ref Zhur - Biol., No 4, 1959, No 14616

viruses A' and B in the allantoic fluid did not differ significantly from those in the choricallantoic membranes. No hemo-agglutinins were demonstrated in the chorio-allantoic membranes. The viruses from the allantoic fluid and the choricallantoic membranes did not differ in their adaptation to the nucous membrane of the human upper respiratory passages. Vaccines, in the preparation of which allantoic fluid as well as chorioallantoic membranes were used, did not differ in their characteristics from the usual allantoic vaccines, as a result of which, according to the author, it is possible to use, in the preparation of influenza vaccines the choricallantoic nenbranes of infected embryos. -- T.Ya. Luzyanina.

: 2/2 Card

VEDERNIKOV, A.I.; KALINKINA, E.I.; KUDINOV, V.A.; PROKOPOVICH, A.Ye., red.;
IVANOVA, W.A., red.izdatel*stva; MATVETRVA, Ye.N., tekhn.red.

[Reconditioning automatic one-spindle turret lathes; instructions]
Modernisatsia tokarno-revol*vernykh odnoshpindel*nykh avtomatov;
rukovodiashchie materialy. Pod red. A.E.Prokopovicha, Moskva,
Gos.nauchno-tekhn.izd-vo mashinostroit.lit-ry, 1957. 81 p.

(MIRA 10:12)

1. Mošcow. Bksperimental*nyy nauchno-iesledovatel*skii institut
metallorezhushchikh stankov.

(Lathes)

CONTRACTOR OF A CONTRACTOR OF

25(2) PHASE I BOOK EXPLOITATION SOV/1689

Gradusov, N.M., L.O. Likht, E.I. Kalinkina, and V.A. Kudinov

Modernizatsiya tokarnykh mnogoshpindel'nykh avtomatov i poluavtomatov; rukovodyashchiye materialy (Modernization of Automatic and Semiautomatic Multi-spindle Lathes; Instructions) Moscow, Mashgiz, 1958. 118 p. 6,500 copies printed.

Sponsoring Agency: Moscow. Eksperimental'nyy nauchmo-issledovatel'skiy institut metallorezhushchikh stankov.

Ed.: A. Ye. Prokopovich; Tech. Ed.: A. Ya. Tikhanov; Managing Ed. for Literature on Metalworking and Tool Making: R.D. Beyzel'man.

PURPOSE: This book is intended for production workers who work with machine tools, for plant designers and for processing engineers.

COVERAGE: The authors analyze the existing stock of multispindle automatic and semiautomatic lathes and determine the main outlines

Card 1/4

sov/1689 Modernization of Automatic (Cont.) for their modernization. They describe various devices which broaden the operating potential of automatic lathes and discuss the problem of increasing their rigidity and vibration resistance. No personalities are mentioned. There are 28 references, of which 26 are Soviet, 1 is German and 1 English. TABLE OF CONTENTS: 3 Introduction Review of the Active Stock and New Construction of Ch. I. Multispindle Automatic and Semiautomatic lathes 5 Analysis of Utilization of the Active Stock of Multi-Ch. II. spindle Automatics and Semiautomatics in Connection With High Speed Working Methods 19 Card 2/4

DEFISE OF THE PROPERTY OF THE

-			4.000
Mode	rnizat	tion of Automatic (Cont.)	10V/1689
Ch.	III.	Requirements placed on Multispindle Automatics and Semi- in Connection With Highspeed Working Methods	automatics 27
Ch.	IV.	Increasing Rigidity and Vibration Resistance of Multi- spindle Automatic and Semiautomatic Lathes	. 32
Ch.	v.	Increasing Mechanization and Automation of Multispindl Automatic and Semiautomatic Lathes	le 49
Ch.	VI.	Broadening Operating Potentials of Multispindle Automa and Semiautomatic Lathes	atic 67
Ch.	vII.	Safety Measures for Operation of Multispindle Automatiand Semiautomatic Lathes	lc 86
Ch.	VIII.	Assuring Long Life of Multispindle Automatic and Semiautomatic Lathes	100
Ch.	IX.	Sequence of Modernization Work	114
Card	d 3/4		

"APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3 [ENTITY OF THE PROPERTY OF T

Modernization of Automatic (Cont.)

sov/1689

Ch. X. Summarized Recommendations for Modernizing the Active Stock of Multispindle Automatic and Semiautomatic Lathes

116

References

118

AVAILABLE: Library of Congress (TJ1218.M6565)

GO/her 8 June 59

Card 4/4

KIVERIN, M.D.; KALINKINA, G.M.; PROMOP'YEVA, M.I.

Method of determination of sugar in skin. Lab.delo 7 no.9:12-15 S '61. (MIRA 14:10)

l. Kafedra biologicheskoy i organicheskoy khimii (zav. - dotsent M.D.Kiverin) Arkhangel'skogo meditsinskogo instituta.
(BLOCD SUGAR) (SKIN)

NYANKOVSKAYA, R.N.; GUSEVA, A.D.; YAROSLAVTSEVA, I.A.; KALINKINA, I.P.;

MAZILOVA, N.V.

Quaternary reciprocal system consisting of fluorides, bromides, and carbonates of sodium and potassium. Zhur.neorg.khim. 8 no.1:
192-201 Ja *63. (MIRA 16:5)

1. Yaroslavskiy gosudarstvennyy pedagogicheskiy institut imeni K.D.Ushinskogo.
(Alkali metals halides)

(Systems (Chemistry))

SOV-120-58-1-42/43

AUTHOR: Kalinkina, I. N.

TITLE: The Thermal Capacity of the BF-2 Adhesive at Temperatures between 0.3 - 4.2° K. (Teployemkost' kleya BF-2 pri tempera - turakh 0.3 7 4.2°K)

PERIODICAL: Pribory i Tekhnika Eksperimenta, 1958, Nr 2, p 146 (USSR)

ABSTRACT: In low temperature experiments adhesives are often used in the construction of the various instruments. They are used for electrical insulation, thermal contacts between conductors and the metallic parts of the instruments, and so on. The adhesive BF-2 is widely used and it is of interest to determine its thermal capacity below 4.2°K. In order to do this the adhesive was deposited on a thin copper foil and was then polymerised in the usual way in a thermostat for 1 hour at 120°C. This operation was repeated several times. As a result, a layer of 7.250 gm of the adhesive was deposited on foil 10.431 gm in weight. A manganin heater and two thermometers made of phosphor bronze were wound on the foil and covered with the adhesive. The measurements were carried out using the calorimeter described in Ref.2. The thermal capacity of copper may be described by the formula:

Card 1/3

SOV-120-58-1-42/43

The Thermal Capacity of the BF-2 Adhesive at Temperatures between 0.3 - 4.20 K.

 $C = \gamma T + A(T/\theta)^3$

A comparison was made between the thermal conductivity of copper and the specimen under consideration and a plot was made of C/T as a function of T2 and this is shown in Fig.1. It was found that the following formula represents the thermal capacity of the polymerised adhesive in the above temperature interval with an accuracy of 3.5%:

 $C = 2.9 \times 10^{-5} T^3$ Joules/gram.deg.

Card 2/3

SOV-120-58-1-42/43

The Thermal Capacity of the BF-2 Adhesive at Temperatures between $0.3 - 4.2^{\circ}$ K.

P. G. Strelkova is thanked for her advice. There is l figure and 3 references, 2 of which are Soviet and 1 English.

ASSOCIATION: Institut fizicheskikh problem AN SSSR (Institute of Physical Problems of the Academy of Sciences of the USSR)

SUBMITTED: June 21, 1957.

- 1. Adhesives--Performance 2. Adhesives--Temperature factors
- 3. Adhesives--Test methods

Card 3/3

soy/56-34-3-12/55

AUTHORS:

. Kalinkina, I. N., Strelkov, P. G.

TITLE:

The Specific Heat of Bismuth Between 0.3 and 4.4°K (Teployemkost' vismuta mezhdu 0.3 i 4.4°K)

PERIODICAL:

Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, 1958, Vol. 34, Nr 3, pp. 616 - 621 (USSR)

ABSTRACT:

This work shortly discusses the previous works dealing with the same subject. As sample the authors took a monocrystal of spectroscopically pure and additionally several times recrystallized bismuth which was degassed in a quartz ampule at about 600°C in vacuum. The construction of the calorimeter and the methods of the measurements resemble those ones of a previous work (Reference 9). The bismuth sample and a pressed block of ammonium ferric alum (which served as sink in the measurements below 1°K) were suspended by nylon wires in a vacuum container. The heat capacity was measured at temperatures from 0.3 to 4.4°K. In the coordinates C/T and T² the experimental points below T = 1.8°K fit on a line and

Card 1/3

sov/56-34-3-12/55

The Specific Heat of Bismuth Between 0.3 and 4.40K

this line determines the coefficient in the formula for the temperature dependence of the heat capacity between 0.3 and 1.8°K; $C = (1.6 \pm 0.1).10^{-5}T + (2.79 \pm 0.09).10^{-4}T^{2}$ cal.degree 1.3°atom 1. In the domain where the T^{2} - law holds, i.e. between 0.3 and 1.8°K, the Debye (Debaye)-temperature is $0 = 118.5 \pm 1$ K. The modification of $0 = 118.5 \pm 1$ K. temperatures is illustrated in a diagram. For bismuth the T)-law holds for T \leq 0.015 θ_D . The values obtained here for γ and θ_D can be assumed to be quite reliable. Also the purity of the examined sample seems to be sufficient. Two diagrams illustrate the experimental points for bismuth with an admixture of 0,02 % lead. On that occasion no differences compared with the results for pure lead are observed. The coefficient in the linear term of the heat capacity is determined by the value of the mean density of the states of the electrons on the Fermi limit. The density of the states on the Fermi limit is $(dN/dE)_{E=E}$ = 2.85.10-2/atom.eV. The electrons will be in states which are near the bottom of the zone and for the energy the square dispersion law holds. The authors here compute the heat capacity of the electrons for the case that the Ermi surface consists of 3 similar ellipsoids which are displaced through 120° each. In this case the same result as for the isotropic model by Sommer-

Card 2/3

sov/56-34 -3-12/55

The Specific Heat of Bismuth Between 0.3 and 4.4°K

feld (Zommerfel'd) is obtained as well. In bismuth all conduction electrons seem to take part in the de Haas - van Alfvén (De Gaaz-van Al'fen)-effect. All this speaks for the fact that the main share to the linear term of the heat capacity is given by the holes, which have a considerably higher effective mass and a lower limit energy than the electrons. From the heat capacity the limit energy of the holes can be computed and the value E/k = T = 9.65 X is found, which is about 20 times lower than the limit energy of the electrons. There are 2 figures, 2 tables, and 15 references, 3 of which are Soviet.

ASSOCIATION:

Institut fizicheskikh problem Akademii nauk SSSR (Institute for Physical Problems of the ASJUSSR)

SUBMITTED:

October 22, 1957

Card 3/3

26723 S/056/61/041/005/038/038 B109/B102

14.1200

Card 1/4

AUTHORS: Borovik-Romanov, A. S., Kalınkina, I. N.

TITLE: Specific heat of the spin waves in antiferromagnetic MnCO₂

PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 41, no. 5 (11), 1961, 1694 - 1696

TEXT: The authors studied the temperature dependence of the specific heat of antiferromagnetics in order to verify the hypotheses on spin-wave dispersion. The measurements were carried out between 1.6 and 80°K with MnCO₃ samples which had been prepared by a method according to N. Yu. Ikornikova at the Institut kristallografii AN SSSR (Institute of Crystallography AS USSR). Fig. 1 shows the temperature dependence of the molar specific heat of MnCO₃ (circles and boldface line; the lightface line holds for CaCO₃). The characteristic maximum corresponds to the conversion of MnCO₃ from the antiferromagnetic into the paramagnetic state. In order to obtain the purely magnetic heat capacity one has to

26723 \$/056/61/041/005/038/038 B109/B102

Specific heat of the spin ...

 $C_M = (4\pi^2 k^2/5\mu_B) ?_1^0 T_N (T/T_N)^3 = aT^3$ which was given by A. S. Borovik-Romanov (ZhETF, 36, 766, 1959). Accordingly, the spin-wave theory is verified. It is plain to see in Fig. 2 that C_M increases considerably between 3.7 and 6° K, and that it is again proportional to T^3 between 6 and 8.5°K as was predicted in the theory. Academician P. L. Kapitsa is thanked for his interest, Professor P. G. Strelkov for advice. There are 2 figures and 8 references: 6 Soviet and 2 non-Soviet. The two references to English-language publications read as follows: F. Simon, R. C. Swain. Zs. Phys. Chem. B 28, 189, 1935; A. H. Cooke, D. J. Edmonds. Proc. Phys. Soc., 71, 517, 1958.

ASSOCIATION: Institut fizicheskikh problem Akademii nauk SSSR (Institute of Physical Problems of the Academy of Sciences USSR)

SUBMITTED: October 11, 1961

Card 3/4

14224

\$/056/62/043/006/011/067 B154/B102

AUTHOR:

Kalinkina, I. N.

TITLE:

Magnetic specific heat of antiferromagnetic Co, Ni, Mn, Fe carbonates

PERIODICAL:

Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 43, no. 6(12), 1962, 2028 - 2037

TEXT: In the temperature range 1.6° - 70°K the authors measured the magnetic specific heats C_m of MnCO₃, NiCO₃, CoCO₃, and FeCO₃ using a vacuum calorimeter described by Ye. S. Itskevich, P. G. Strelkov (ZhETF, 32, 467, 1957) for the range 1.6 K - 20 K and a vacuum adiabatic calorimeter described by P. G. Strelkov et al. (ZhFKh, 28, 459, 1954) for 12 K - 70 K. C_m(T) reached maxima at 17.0 K (CoCO₃), 22.2 K (NiCO₃), 29.4 K (MnCO₃), From C(T) of the non-magnetic CaCO, the specific heat of the lattice $C_{latt.} = 2D(\Theta_{\tilde{D}}/T)$ can be extrapolated. Below $20^{Q}K$, C_{local} $C = 1.85 \cdot 10^{-4}$ joule/mole·deg and $\theta_D = 275^{\circ}$ K. For CaCO_x indeed C = 2D(275/T)Card 1/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3" Magnetic specific heat of ...

S/056/62/043/006/011/067/ B154/B102

up to 60°K. Good agreement with experiment is obtained when the Einstein function E(570/T) is added to the latter relation. By analogy one obtains

MnCO₃: $C_{\text{pem}} = 2D(281/T) + E(567/T)$, (2) NiCO₃: $C_{\text{pem}} = 2D(386/T)$, (3) CoCO₃: $C_{\text{pem}} = 2D(354/T) + E(448/T)$, (4) FeCO₃: $C_{\text{pem}} = 2D(305/T) + E(525/T)$, (5)

where D is the Debye function. $C_{\text{pem}} = 2D(305/T) + E(525/T)$. (5) to antiferromagnetic spin ordering of M++, Fe++, Co++ and Ni++ was calculated from the magnetic specific heat $C_{\text{meas}} = C_{\text{latt.}}$ and compared with the values found from $S_{\text{m}} = R \ln(2s+1)$. C_{m}/T plotted as a function of T^2 at temperatures $<6^{\circ}$ K, shows that at low temperatures $C_{\text{m}} \sim T^3$. In case of Mn, Ni, Co carbonates the spin wave theory yields the equation

 $C_{N} = \frac{16\pi^{3}k^{3}\chi_{\perp}^{0} T_{N}}{5g^{3}\mu_{B}^{3}} \eta \left(\frac{T}{T_{N}}\right)^{3} = aT^{3}. \tag{6}$

where χ_{\perp}° , g, η , and T_{N} were taken from earlier papers (e.g. A. S.

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

Magnetic specific heat of ...

5/056/62/043/006/011/067 B154/B102

Borovik-Romanov. ZhETF, 36, 766, 1959). Excitation of the second branch of the spin wave spectrum is observed at temperatures close to TN/10 for MnCO3 and $T_{\rm N}/3$ for ${\rm CoCO}_3$ and ${\rm NiCO}_3$. For Co, Ni, and Mn carbonates the values of a are equal to 13.5 and 15.3 and 18.0.10.4 joule/mole.deg4 and agree with those from magnetic measurements. The corresponding factors for Clatt. are 0.9, 0.7 and 1.8·10⁻⁴ joule/mole·deg⁴. From the value of S_m it can be followed that for Co⁺⁺ and Fe⁺⁺ the lattice field splits the ground state so that a spin doublet appears and for Mn⁺⁺ and Ni⁺⁺ the levels s = 5/2 and s = 1 are the lower. There are 6 figures and 2 tables. ASSOCIATION: Institut fizicheskikh problem Akademii nauk SSSR (Institute of Physical Problems of the Academy of Sciences USSR)

SUBMITTED: July 11, 1962

Card 3/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

POOVIK-ROMANOV, A. S.; KALINKINA, I. N.

"Magnetic Specific Heat of Carbonates of Transition Elements"

Report presented at the Symposium on Ferrolectricity and Ferromagnetism, Leningrad, 30 May - 1 June 1963

KALINKINA, I.N.

Temperature dependence of carbon resistance thermometers. Prib. 1 tekh. eksp. 8 no.3:204 My-Je '63. (MIRA 16:9)

1. Institut fizicheskikh problem AN SSSR. (Thermometers)

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

THE REPORT OF THE PROPERTY OF ACC NR: AP6003783 SOURCE CODE: UR/0181/66/003/001/0176/0180 AUTHORS: Kalinkina, I. N.; Kostryukov, V. N. 6.9 ORG: Institute of Crystallography AN SSSR, Moscow (Institut kristallografii AN SSSR) Jumps of specific heat in antiferromagnetic carbonates TITLE: 14715X SOURCE: Fizika tverdogo tela, v. 8, no. 1, 1966, 176-180 TOPIC TAGS: specific heat, carbonate, antiferromagnetic material, second order phase transition, transition metal, thermodynamic potential, nickel, iron, manganese, cobalt ABSTRACT: The authors use earlier experimental results (ZhETF v. 41, 1694, 1961 and v. 43, 2028, 1962; ZhFKh v. 38, 780, 1964) on the carbonates of transition metals (MnCO₃, NiCO₃, FeCO₃, and CoCO₃) to calculate the discontinuities of the specific heat during the antiferromagnetic transition. The experimentally observed anomalies near the phase transition point do not agree quantitatively with the discontinuities that follow from the theory of second-order phase Card 1/2

L 21139-66 ACC NR: AP6003783

transitions. The authors calculated the discontinuity by using different extrapolations of the specific-heat curve from the low-temperature and the high-temperature sides, and using a formula derivable from the theory of the molecular field. The results can be reconciled with the experimental data for all metals except nickel, where the error reaches 20%. The results are used to estimate the coefficients of the expansion of the thermodynamic potential. The authors thank A. S. Borovik-Romanov for useful discussions. Orig. art. SUB CODE: 20/ SUEM DATE: 12Ju165/ ORIG REF: 008/ OTH REF: 004

Card . 2/2 ULK

L 45161-66 EWT(1)
ACC NR: AP6031332

15.FE 13

SOURCE CODE: UR/0386/66/004/003/0084/0086

AUTHOR: Kosourov, G. I.; Kalinkina, I. N.; Golovey, M. P.

ORG: Institute of Crystallography, Academy of Sciences, SSSR (Institut kristallografii Akademii nauk SSSR)

TITLE: Reconstruction of an image from a hologram in nonmonochromatic light

SOURCE: Zh. eksper. i teoret. fiz. Pis'ma v redaktsiyu. Prilozheniye v. 4, no. 3, 1966, 84-86

TOPIC TAGS: laser application, holography, optic image, information processing, coherent light

ABSTRACT: The requirements imposed on monochromatic light for satisfactory reconstruction of an image from a hologram may be much less stringent than the conditions necessary to obtain the hologram. When a light source with relatively broad spectrum is used for the reconstruction of the image, a separate image is obtained for each wavelength. The images differ in spatial position and in scale, and this reduces the sharpness of the image and consequently leads to a loss of some of the information contained in the hologram. The authors start with the premise that the reconstruction of a hologram in nonmonochromatic light constitutes an incoherent addition of images reconstructed from individual area elements of the hologram. The volume of information retained in the image then corresponds to the information contained in one area element and the action of the entire hologram reduces to an increase of the illumina-

Card 1/2

Ь 45161-66

ACC NR: AP6031332

0

tion and the averaging of the graininess of the image due to the limited aperture of the light beam in the case when the hologram area is small. An elementary analysis, together with a calculation of the corresponding correlation functions, yields the formula for the linear D of the elementary hologram area, which determines the angular resolution, for a source of spectral width Δλ. The same formula determines the maximum permissible spectral interval at which the information contained in a hologram of given width is completely retained in the reconstructed image. The question is discussed whether it is also possible, by foregoing the redundant information in the hologram, to use a light source of equally broad spectral composition to obtain a hologram on an area corresponding to the value of D. Photographs are shown, reconstructed from a hologram obtained from a diapositive slide: (a) in laser light, (b) in green light from a powerful lamp, and (c) in the light from an incandescent lamp through a glass light filter. The dimensions of the hologram correspond to a 24×36 mm frame of a miniature camera. Analysis of the photographs and of the calculations indicate that a light source which is perfectly adequate for the reconstruction of an image of satisfactory quality may turn out to be utterly unsuitable for the production of a hologram. At the same time, there may exist a large number of problems and technical solutions in which the loss of information contained in the hologram is offset by the simplicity of reconstruction of the hologram in ordinary light sources. Orig. art. has: 1 figure and 1 formula.

SUB CODE: 20/ S

SUBM DATE: 22May66 / ATD PRESS:

5081

cord 2/2 awsn

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110017-3"