Semana 9 Desarrollo de Enfermedades en el Tiempo

SP6350 Manejo de Enfermedades

Ciclo I-2025

Dr. Mauricio Serrano

Desarrollo de enfermedades en el tiempo

- Es importante describir la curva de desarrollo de una enfermedad:
 - Para comparar epidemias, efecto del ambiente y diseñar medidas de combate.
 - Para predecir el desarrollo de una epidemia
 - Observe las diferentes escalas de tiempo en eje "x"

(Madden et al, 2007)

Curva de desarrollo de la enfermedad (Enfermedad Policíclica)

- "El cambio en la cantidad de enfermedad con respecto al tiempo es proporcional a la cantidad de tejido enfermo y a la cantidad de tejido sano restante" (Arauz, 1998).
- $\frac{\mathrm{d}y}{\mathrm{d}t} \alpha y (1-y)$
- $\frac{\mathrm{d}y}{\mathrm{d}t} = r y(1-y)$
- y = proporción de tejido enfermo
- y₀ = nivel inicial de la enfermedad
- (1-y) = proporción de tejido sano
- t = tiempo
- r = tasa de infección aparente
 - Es una medida de que tan rápido es el desarrollo de una enfermedad.

Curva de desarrollo de una enfermedad policíclica.

Enfermedad Policíclica

Un proceso policíclico representa una serie de procesos monocíclicos

Curva de desarrollo de la enfermedad (Enfermedad Monocíclica)

- En éste caso tenemos que el cambio en la cantidad de enfermedad con respecto al tiempo es proporcional a la cantidad de tejido sano restante.
- $\frac{\mathrm{d}y}{\mathrm{d}t} \alpha (1-y)$
- $\bullet \frac{\mathrm{d}y}{\mathrm{d}t} = r \left(1 y \right)$
- y = proporción de tejido enfermo
- (1-y) = proporción de tejido sano
- t = tiempo
- r = QR

Q = cantidad de inóculo primario R = eficiencia del inóculo primario

Curva de desarrollo de una enfermedad monocíclica.

Inóculo inicial

El nivel de inóculo inicial puede estar en función de muchos factores:

- Mecanismos de supervivencia del patógeno
- Factores abióticos y bióticos, por ejemplo, clima, microorganismos del suelo, etc.
 - Todos aquellos factores que afecten la supervivencia y producción de inóculo.
- Historial del terreno:
 - Intensidad de la enfermedad en el pasado.
 - Tiempo entre cultivos (rotación, duración de los ciclos).

El periodo de incubación y la tasa de infección aparente

Recordemos:

- Periodo de incubación: tiempo transcurrido entre infección hasta la aparición de síntomas.
- La curva de progreso de la enfermedad está basada en lo que podemos ver (síntomas).
- Sin embargo, puede haber tejidos infectados que todavía no podemos ver todavía (incubación).
- Por eso usamos el término tasa de infección de aparente:
 - Estimamos el progreso de la enfermedad basándonos en los síntomas que podemos ver en un momento dado.

Tasa de infección aparente (r)

Cuadro 13.2. Ejemplos de tasas de infección aparente en diferentes patosistemas

Patógeno	Hospedante	Tasa de infección aparente ^a	Referencia
Botrytis cinerea	Begonia	0.00-0.18	Plaut y Berger, 1981 ^b
Cercospora apii	Apio	0.07-0.15	Berger, 1981 ^b
Colletotrichum	Frijol	0.11	Ntahimpera et al., 1996°
lindemuthianum			-
Hemileia vastatrix	Cafeto	0.12	Kushalappa y Ludwig, 1982 ^b
Mycena citricolor	Cafeto	0.02	Vargas et al. (sin publicar) ^c
Phytophthora infestans	Papa	0.11-0.51	Large, 1945 ^d
Uromyces appendiculatus	Frijol	0.04-0.20	Plaut y Berger, 1981;
			Kushalappa y Ludwig, 1982;
			Imhoff et al., 1982 ^b
Venturia inaequalis	Manzano	0.19	Berger, 1981 ^b
Virus de la mancha anular de	Papaya	0.03	Mora-Aguilera et al., 1996°
la papaya			
Virus de la tristeza de los	Citrus spp.	0.42-0.82	Gottwald et al., 1996
cítricos		(por unidad por año)	

^aPor unidad por día, a menos que se especifique otra cosa

- Existen enfermedades de muy rápido desarrollo y otras de desarrollo lento.
- Vanderplank (1963) decidió usar el nombre de tasa de infección aparente (r) ya que lo observado (y por tanto modelado) es tan solo el tejido sintomático.
- Los tejidos infectados que aún están dentro del periodo de incubación no pueden ser detectados por el ojo humano.

^bCitados por Waggoner, 1986

[°]Calculado por el autor a partir de la información citada

^dCitados por Burdon, 1987

Algunos modelos comúnmente usados para describir el Desarrollo de una Enfermedad

 $\mathbf{y_t}$ es la cantidad de enfermedad o proporción de tejido enfermo en el tiempo \mathbf{t} ; $\mathbf{y_0}$ es la cantidad o proporción de enfermedad inicial al inicio de la epidemia ($\mathbf{t} = 0$); y \mathbf{r} es la **tasa de infección aparente**, la cuál refleja la rapidez con la que se desarrolla la enfermedad o se generan nuevas generaciónes del patógeno.

- Exponencial: $y_t = y_0 * e^{rt}$
- Monomolecular: $y_t = 1 [(1 y_0)^* e^{(-rt)}]$

• Logístico: $y_t = 1/(1 + e^{(-(\ln(y_0/(1 - y_0)) + rt))})$

• Gompertz: $y_t = \exp[\ln(y_0)^*\exp(-rt)]$

Comparación entre el desarrollo de enfermedades Policíclicas vs Monocíclicas

- En general, las enfermedades monocíclicas son más dependientes de la cantidad de inóculo primario.
 - La importancia del inóculo primario es mayor entre menor sea la tasa de infección aparente.
- En las enfermedades policíclicas, un alto valor de r compensa una baja cantidad de inóculo primario.

Comparación entre el desarrollo de enfermedades Policíclicas vs Monocíclicas

C 1 10 1	C : /	t C 1- 1		
Cuadro 13.1.	Comparacion	entre enfermedades	monociclicas	v policicheas
COUGE TO IT	Comparation		1110110414114115) politications

Característica	Enfermedades monocíclicas	Enfermedades policíclicas	
Producción de inóculo secundario	no	sí	
Influencia de la cantidad de inóculo primario	alta	baja si r es alta o si el tiempo disponible para el desarrollo de la enfermedad es mucho	
		alta si r es baja o si el tiempo disponible para el desarrollo de la enfermedad es poco	
Tipo de patógeno	principalmente patógenos habitantes del suelo, algunos aéreos	principalmente patógenos aéreos, algunos habitantes del suelo	
Velocidad de desarrollo	En su mayoría (pero no todas) son de desarrollo lento	En su mayoría (pero no todas) son de desarrollo rápido	
	+	+	

Arauz, 2011

Ejemplo - Phytophthora infestans

Inóculo inicial = 0.0001 (0.01%) Cambiamos la tasa de infección aparente

Tiempo para alcanzar intensidad de 50% (0.5):

Tasa de infección aparente = 0.11

Tiempo para alcanzar intensidad de 50% (0.5):

Manejo de la enfermedad

- Patógeno
 - Evitación
 - Exclusion
 - Eradicacion
- Planta
 - Protección
 - Resistencia
- Planta infectada
 - Terapia

Manejo integrado de la enfermedad Como podemos aplicar estos métodos para reducir el inóculo incial y la tasa de infección aparente?

Estrategias basadas en conceptos epidemiológicos

Figura 14.1. Desarrollo de una enfermedad hipotética, y efecto de variar la tasa de infección aparente o el nivel de enfermedad inicial. A: Epidemia original. B: tasa de infección aparente reducida a la mitad. C: nivel de enfermedad inicial reducido 100 veces.

- En enfermedades monocíclicas:
 - Reducción del inóculo inicial.
 - Reducción de eficiencia del inóculo
- En enfermedades policíclicas:
 - Disminuir la tasa de infección aparente
- Reducir tiempo disponible para que la enfermedad progrese