DS n°3: Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :	Note:	
Nom et prenom .	Note.	

Porter directement les réponses sur la feuille, sans justification.

Nombres complexes.

Soit $n \in \mathbb{N}^*$. Donner les ensembles de solutions complexes de chacune des équations suivantes.

$$z^{2} = -5 - 12i:$$

$$z^{5} = 1 - i:$$
(2)

$$(2+i)z^2 - (5-i)z + 2 - 2i = 0:$$
(3)

On considère la transformation du plan complexe $f: z \mapsto (\sqrt{3} + i)z + 2 - \sqrt{3} - i\sqrt{3}$. Déterminer les éléments caractéristiques de f.

Rapport:	(4)	Angle:	(5)	Centre:	(6)

Intégration.

Après avoir pensé à simplifier la fonction $x \mapsto \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right)$ sur \mathbb{R}^* , donner l'ensemble des primitives sur \mathbb{R}^* de $x \mapsto \operatorname{Arctan}\left(\frac{1}{x}\right)$.

(7)
(1)

Calculer l'intégrale suivante.

$$\int_0^{\ln(3)/2} \frac{e^t}{1 + e^{2t}} dt = \tag{8}$$

Équations différentielles.

On considère l'équation différentielle $(\mathscr{E}): y' + y \cos x = 2xe^{-\sin x}$. Alors l'ensemble des solutions homogènes de (\mathscr{E}) est

(9)

et une solution particulière de (\mathcal{E}) est

(10)

On considère l'équation différentielle $(\mathscr{F}): y''-2y'+y=\mathrm{e}^{\,x}\sin x+4\mathrm{e}^{\,x}$ d'inconnue $y\in\mathscr{C}^2(\mathbb{R},\mathbb{R})$. Alors l'ensemble des solutions homogènes de (\mathscr{F}) est

(11)

et l'unique solution y de (\mathcal{F}) vérifiant les conditions initiales y(0)=1 et y'(0)=1 est

(12)

Ensembles.

Compléter :

$$\mathscr{P}(\mathscr{P}(\{\varnothing\})) = \tag{13}$$

$$\bigcap_{n\in\mathbb{N}^*} \left] 1 - \frac{1}{n}, n + \ln n \right] = \tag{14}$$

- FIN -