TD 4 : Tables de hachage

Exercice 1. Un hachage sans collision

Une fonction de hachage $h: U \to \{0, ..., m-1\}$ est sans collision pour un ensemble $X \subset U$ si pour tout $x, y \in X$, $h(x) \neq h(y)$. Dans cet exercice, on suppose X fixé.

- **1.** Donner une condition nécessaire et suffisante sur *X* pour qu'il existe une fonction de hachage sans collision pour *X*.
- **2.** Supposons qu'on ait choisi une fonction h aléatoire. Exprimer l'espérance du nombre de collisions pour X en fonction de m et n = |X|.
- **3.** Quelle est la probabilité qu'une fonction aléatoire h soit sans collision pour X.
- **4.** Suposons qu'on cherche une fonction sans collision pour *X* en tirant des fonctions aléatoires tant qu'on en a pas trouvé une qui convienne. Quelle est l'espérance du nombre de tirages nécessaires ?

Exercice 2. Case la plus remplie

Soit $h: U \to \{0, \dots, n-1\}$ une fonction de hachage aléatoire. On insère n clefs dans une table T de taille n à l'aide de h, en utilisant une résolution par chaînage. On souhaite connaître l'espérance de la case de T la plus remplie.

- 1. i. Soit j un indice entre 0 et n-1. Quelle est l'espérance du nombre d'élément en case j?
 - ii. Pourquoi on ne peut pas conclure directement?
- **2.** Soit X_i la variable aléatoire qui compte le nombre d'éléments en case $T_{[i]}$.
 - i. Montrer que $\Pr[X_i \ge k] \le \binom{n}{k} \frac{1}{n^k}$.
 - **ii.** Montrer que $\binom{n}{k} \leq \frac{n^k}{k!}$.
 - iii. Montrer que $k! \ge \sqrt{k^k}$ pour tout $k \ge 0$. Indications. En utilisant $1 + x \le e^x$ (pour tout x), montrer que $(1 + \frac{1}{k})^k \le 1 + k$ pour tout k > 0, puis que $(k+1)^k \le (k+1)k^k$ pour $k \ge 0$. En déduire par récurrence que $(k!)^2 \ge k^k$.
 - iv. Déduire des questions précédentes que $\Pr[X_j \ge k] \le \frac{1}{k^{k/2}}$.
- **3.** On pose $k = \frac{c \log n}{\log \log n}$, pour une certaine constante *c*.
 - i. Justifier que $\frac{c \log n}{\log \log n} \ge \sqrt{\log n}$ pour n suffisamment grand.
 - ii. En déduire que pour n suffisamment grand, $\frac{1}{k^{k/2}} \le \frac{1}{n^{c/4}}$.
 - iii. En déduire que $\Pr[X_j \ge k] \le \frac{1}{n^{c/4}}$.
- **4.** i. Montrer que $\Pr[\max_j X_j \ge k] \le n \Pr[X_j \ge k]$.
 - ii. En déduire que la probabilité que la case la plus remplie possède plus de $c \log n / \log \log n$ éléments est $\leq 1/n^d$ pour une constante d à déterminer.
- **5.** On note M le nombre d'élément dans la case la plus remplie, et on veut borner $\mathbb{E}[M]$.
 - **i.** Montrer que pour tout k, $\mathbb{E}[M] \le k \Pr[M \le k] + n \Pr[M > k]$.
 - **ii.** En déduire que $\mathbb{E}[M] = O(\log n / \log \log n)$.

Exercice 3. Une famille quasi-universelle

On s'intéresse à la famille de fonctions de hachage $\mathcal{H}_{w,\ell} = \{h_a : a \in I_w\}$ où I_w est l'ensemble des entiers impairs entre 0 et $2^w - 1$, et h_a est définie par

$$h_a(x) = \left\lfloor \frac{ax \mod 2^w}{2^{w-\ell}} \right\rfloor$$

pour tout $x \ge 0$. La notation $ax \mod 2^w$ représente le reste dans la division euclidienne de ax par 2^w . Un entier positif est représenté par un tableau de bits, sa *taille* d'un entier est la taille de ce tableau.

- **1.** On veut montrer que $h_a(x) \in \{0, ..., 2^{\ell} 1\}$ pour tout $x \ge 0$.
 - i. Si a et x, positifs, sont de taille w, borner la valeur de l'entier ax et en déduire sa taille.

- ii. Identifier $ax \mod 2^w$ dans le tableau représentant ax.
- iii. Identifier $h_a(x)$ dans le tableau représentant ax.
- iv. Conclure.
- 2. Écrire une implantation Python efficace de h_a sous la forme d'une fonction h(a,x,1,w) qui utilise la multiplication, la soustraction et les opérations sur les bits (&, <<, >>) mais pas de division euclidienne (ni % ni //) ou de puissance.
- **i.** Montrer que pour tout x, $a \in I_w$, $ax \mod 2^w$ appartient également à I_w .
 - ii. Montrer que pour x, a, $b \in I_w$, $a \neq b$ implique $ax \mod 2^w \neq bx \mod 2^w$.
 - iii. En déduire que pour tout $x, y \in I_w$, il existe un unique $a \in I_w$ tel que $ax \mod 2^w = y$.
- **4.** On va montrer que la famille $\mathcal{H}_{w,\ell}$ est quasi-universelle. On fixe pour cela deux entiers positifs $x < y < 2^w$.
 - i. Soit $a \in I_w$. Montrer que $h_a(x) = h_a(y)$ si et seulement si $h_a(y-x) = 0$ ou $h_a(y-x) = 2^{\ell} 1$.

On écrit $(y - x) \mod 2^w$ sous la forme $q2^r$ où q est impair.

- ii. Montrer que les r+1 bits de poids faible de $(aq2^r)$ mod 2^w sont $10\cdots 0$.
- iii. Montrer que $h_a(y-x)$ est constitué des ℓ bits de poids fort de $aq2^r \mod 2^w$.
- iv. Montrer que si $r + \ell > w$, $\Pr[h_a(y x) = 0] = \Pr[h_a(y x) = 2^{\ell} 1] = 0$. v. Montrer que si $r + \ell < w$, $\Pr[h_a(y x) = 0] = \Pr[h_a(y x) = 2^{\ell} 1] = 1/2^{\ell}$.
- **vi.** Montrer que si $r + \ell = w$, $\Pr[h_a(y x) = 0] = 0$ et $\Pr[h_a(y x) = 2^{\ell} 1] = 2/2^{\ell}$.
- **vii.** En déduire que pour tout $x \neq y$, $\Pr[h_a(x) = h_a(y)] \leq 2/2^{\ell}$.

Exercice 4. Filtres de Bloom

On s'intéresse dans cet exercice à une structure de données qui permet de stocker de manière très compressée un ensemble (statique, c'est-à-dire duquel on ne supprime jamais d'élément). La contrepartie est la présence de faux-positifs : la structure de données répond parfois que x appartient à l'ensemble alors que ça n'est pas le cas. Son utilisation en pratique vient en appui d'une vraie structure de donnée, pour fournir un pré-test d'appartenance très rapide ¹.

Un filtre de Bloom pour un ensemble de taille n est donné par un entier m (la taille de la représentation) et kfonctions de hachage h_1, \ldots, h_k indépendantes. Un ensemble X est représenté par un mot booléen w de taille m. L'ensemble vide est représenté par le mot $0\cdots 0$. Pour insérer un nouvel élément x, on passe à 1 les k bits de w d'indices $h_1(x), \ldots, h_k(x)$. Un bit peut être mis plusieurs fois à 1. Pour tester si un élément y appartient à x, on vérifie si $w_{h,(v)}$ vaut 1 pour $1 \le j \le k$: si c'est le cas, on répond « oui » et sinon on répond « non ». Dans la suite, on suppose qu'on a construit la représentation w d'un ensemble X de taille n. On se place dans le modèle aléatoire pour les fonctions de hachage.

- 1. Laquelle des deux réponses de l'algorithme de recherche est toujours exacte ?
- **2.** Montrer que le *i*-ème bit w_i de w vaut 1 si et seulement s'il existe $x \in X$ et j tels que $h_i(x) = i$.
- **3.** Quelle est la probabilité *p* que le *i*-ème bit de *w* soit égal à 0 ? *On rappelle qu'on se place dans le modèle* aléatoire, et que la probabilité dépend du choix des fonctions de hachage.

On fait maintenant l'hypothèse qu'une fraction p des bits de w sont à 0.

- 4. Pourquoi cette hypothèse ne découle pas de la question précédente ?
- 5. Soit $y \notin X$. Quelle est la probabilité d'obtenir un faux-positif, c'est-à-dire que l'algorithme de recherche réponde « oui » sur l'entrée y ?
- **6.** Montrer qu'en prenant $k = m \ln 2/n$, cette probabilité est exponentiellement petite. *On pourra utiliser*, entre autres, que $1-x \ge e^{-2x}$ pour $x \le 1/2$.

Adressage ouvert

On suppose qu'on dispose d'une table de hachage T de taille m, contenant n éléments. Les conflits sont résolus par adressage ouvert : on dispose de m fonctions de hachages h_0, \ldots, h_{m-1} et un élément x est inséré en case $T[h_0(x)]$ si elle est libre, sinon en case $T[h_1(x)]$ si elle est libre, et ainsi de suite. On suppose l'hypothèse forte de hachage uniforme : pour tout x, $(h_0(x), h_1(x), \ldots, h_{m-1}(x))$ est une permutation aléatoire de $\{0, \ldots, m-1\}$, et si $x \neq y$, $h_i(x)$ est indépendant de $h_i(y)$ pour tout i et tout j.

On effectue une recherche infructueuse : on cherche un élément x dans la table mais il n'y est pas. On souhaite borner l'espérance $\mathbb{E}_{m,n}$ du nombre de cases visitées lors de cette recherche.

^{1.} Voir https://en.wikipedia.org/wiki/Bloom_filter#Examples pour de nombreux exemples d'utilisation de ces objets en pratique.

- 1. Montrer que pour tout nouvel élément x, la probabilité que $T[h_0(x)]$ soit libre est 1-n/m.
- 2. Montrer que $\mathbb{E}_{m,n} = 1 + \frac{n}{m} \mathbb{E}_{m-1,n-1}$. 3. En déduire que $\mathbb{E}_{m,n} \le m/(m-n)$.
- **4.** On note *X* la variable aléatoire qui compte le nombre de cases visitées lors d'une recherche infructueuse. On vient de montrer que $\mathbb{E}[X] = \mathbb{E}_{m,n} \le m/(m-n)$. On souhaite maintenant borner $\Pr[X \ge k]$ pour un kfixé. Pour cela, on définit pour tout j1'évènement E_j : « les j premières cases visitées sont occupées ».
 - i. Exprimer l'évènement « $X \ge k$ » en fonction de $E_1, \ldots, E_{k-1},$ pour $k \ge 2$.
 - ii. En déduire que $\Pr[X \ge k] = \Pr[E_{k-1}|E_1 \land E_2 \land \cdots \land E_{k-2}] \Pr[X \ge k-1]$, pour $k \ge 2$. iii. Montrer que pour tout j > 1, $\Pr[E_j \big| E_1 \land \cdots \land E_{j-1} \big] = \frac{n-j+1}{m-j+1}$. iv. En déduire que $\Pr[X \ge k] \le (n/m)^{k-1}$ pour $1 \le k \le m$.

On imagine maintenant qu'on part de la table vide (de taille m) et qu'on insère successivement n valeurs, avec $n \le m/2$. On rappelle qu'une insertion doit trouver la première case vide parmi les cases d'indices $h_0(x), \ldots, h_0(x)$ $h_{m-1}(x)$: cette recherche est l'équivalent d'une recherche infructueuse.

- **5.** On note X_i le nombre de cases visitées lors de la $i^{\text{ème}}$ insertion, et $X = \max_{1 \le i \le n} X_i$.
 - **i.** Montrer que pour tout i, $Pr[X_i > k] < 1/2^k$.
 - ii. En déduire que pour tout i, $Pr[X_i > 2 \log n] < 1/n^2$.
 - **iii.** Montrer que $Pr[X > 2 \log n] < 1/n$.
 - iv. En déduire que l'espérance de X est $O(\log n)$. *Écrire* $\mathbb{E}[X] = \sum_{k \le 2\log n} k \Pr[X = k] + \sum_{k > 2\log n} k \Pr[X = k]$ et borner chacune des deux sommes.