5odru7v6p

December 13, 2024

```
#Simple Lineare Regression
 [3]: #Exp no. : 9
 [5]: #Aim : Simple linear Regression
 [7]: #Name : Devesh J Arbat
      #Roll no. : 06
      #Section : A
[40]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      import numpy as np
[41]: import os
[42]: os.getcwd()
[42]: 'C:\\Users\\salik\\DSS Practical'
[43]: os.chdir('C:\\Users\\salik\\DSS Practical')
[44]: df=pd.read_csv("Salary.csv")
[52]: df.head()
[52]:
         YearsExperience
                          Salary
                     1.1
                           39343
                     1.3
      1
                           46205
      2
                     1.5
                           37731
      3
                     2.0
                           43525
      4
                     2.2
                           39891
[54]: df.tail()
[54]:
          YearsExperience Salary
      30
                     11.2 127345
```

```
      31
      11.5
      126756

      32
      12.3
      128765

      33
      12.9
      135675

      34
      13.5
      139465
```

[56]: df.head(30)

[56]:		YearsExperience	Salary
	0	1.1	39343
	1	1.3	46205
	2	1.5	37731
	3	2.0	43525
	4	2.2	39891
	5	2.9	56642
	6	3.0	60150
	7	3.2	54445
	8	3.2	64445
	9	3.7	57189
	10	3.9	63218
	11	4.0	55794
	12	4.0	56957
	13	4.1	57081
	14	4.5	61111
	15	4.9	67938
	16	5.1	66029
	17	5.3	83088
	18	5.9	81363
	19	6.0	93940
	20	6.8	91738
	21	7.1	98273
	22	7.9	101302
	23	8.2	113812
	24	8.7	109431
	25	9.0	105582
	26	9.5	116969
	27	9.6	112635
	28	10.3	122391
	29	10.5	121872

[58]: df.describe()

[58]:		YearsExperience	Salary
	count	35.000000	35.000000
	mean	6.308571	83945.600000
	std	3.618610	32162.673003
	min	1.100000	37731.000000
	25%	3.450000	57019.000000

```
50%
                    5.300000
                               81363.000000
      75%
                    9.250000 113223.500000
                   13.500000 139465.000000
     max
[60]: df.shape
[60]: (35, 2)
[62]: df.size
[62]: 70
[64]: df.ndim
[64]: 2
[66]: df.isnull().sum()
[66]: YearsExperience
                         0
                         0
     Salary
      dtype: int64
[68]: #Assiging values in X & Y
     X = df.iloc[:, :-1].values
     y = df.iloc[:, -1].values
[70]: print(X)
     [[ 1.1]
      [ 1.3]
      [ 1.5]
      [ 2. ]
      [2.2]
      [ 2.9]
      [ 3. ]
      [3.2]
      [ 3.2]
      [3.7]
      [ 3.9]
      [4.]
      [4.]
      [4.1]
      [4.5]
      [4.9]
      [5.1]
      [5.3]
      [5.9]
```

```
[6.8]
      [7.1]
      [7.9]
      [8.2]
      [ 8.7]
      [ 9. ]
      [ 9.5]
      [ 9.6]
      [10.3]
      [10.5]
      [11.2]
      [11.5]
      [12.3]
      [12.9]
      [13.5]]
[72]: print(y)
     [ 39343 46205
                    37731 43525
                                   39891 56642 60150 54445 64445 57189
       63218 55794 56957 57081 61111 67938 66029 83088 81363 93940
       91738 98273 101302 113812 109431 105582 116969 112635 122391 121872
      127345 126756 128765 135675 139465]
[74]: #Splitting testdata into X_train, X_test, y_train, y_test
      from sklearn.model_selection import train_test_split
      X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.
       →3,random_state=42)
[76]: print(X_train)
     [[12.9]
      [1.1]
      [2.2]
      [5.3]
      [ 9.6]
      [2.9]
      [4.]
      [ 1.3]
      [ 1.5]
      [12.3]
      [ 2. ]
      [11.2]
      [8.2]
      [11.5]
      [ 3.9]
      [7.9]
      [5.9]
```

[6.]

```
[ 9. ]
      [ 3. ]
      [ 6.8]
      [13.5]
      [3.2]
      [4.5]
      [10.3]]
[78]: print(y_train)
     [135675 39343 39891 83088 112635 56642 55794 46205 37731 128765
       43525 127345 113812 126756 63218 101302 81363 105582 60150 91738
      139465 54445 61111 122391]
[80]: print (y_test)
     [116969 57081 109431 98273 67938 121872 93940 56957 64445 66029
       571897
[88]: from sklearn.linear_model import LinearRegression
     lr = LinearRegression()
     lr.fit(X_train, y_train)
[88]: LinearRegression()
[90]: #Assigning Coefficient (slope) to m
     m = lr.coef_
[92]: print("Coefficient :" , m)
     Coefficient: [8555.33918938]
[94]: #Assigning Y-intercept to a
     c = lr.intercept_
[96]: print("Intercept : ", c)
     Intercept: 29602.07353482095
[98]: lr.score(X_test,y_test) * 100
[98]: 91.71426108885098
 []:
```