Ondelettes complexes pour l'analyse des lois d'échelles

Patrick LOISEAU sous la direction de Patrice ABRY, Pierre BORGNAT et Paulo GONCALVÈS

Laboratoire de physique de l'École Normale Supérieure de Lyon

Mardi 5 septembre 2006

Introduction de la transformation en ondelettes complexes Estimation des paramètres de loi d'échelle Conclusion et perspectives

- Objectif: mettre à profit la transformation en ondelettes complexes pour estimer la régularité ponctuelle d'un signal
- Applications potentielles en traffic routier, fracture, mesure de surfaces . . .

Estimation de régularité locale avec les ondelettes réelles Introduction de la transformation en ondelettes complexes Estimation des paramètres de loi d'échelle Conclusion et perspectives

- Objectif: mettre à profit la transformation en ondelettes complexes pour estimer la régularité ponctuelle d'un signal
- Applications potentielles en traffic routier, fracture, mesure de surfaces . . .
- Une méthode consiste à utiliser une représentation locale temps-échelle

- Objectif: mettre à profit la transformation en ondelettes complexes pour estimer la régularité ponctuelle d'un signal
- Applications potentielles en traffic routier, fracture, mesure de surfaces . . .
- Une méthode consiste à utiliser une représentation locale temps-échelle
 - Transformation en ondelettes continue ⇒ Trop coûteux
 - Transformation en ondelettes discrète ⇒ Problème lié à la localité

- Objectif: mettre à profit la transformation en ondelettes complexes pour estimer la régularité ponctuelle d'un signal
- Applications potentielles en traffic routier, fracture, mesure de surfaces...
- Une méthode consiste à utiliser une représentation locale temps-échelle
 - Transformation en ondelettes continue ⇒ Trop coûteux
 - Transformation en ondelettes discrète ⇒ Problème lié à la localité
- Une solution à ce problème : transformation en ondelettes complexes

- Estimation de régularité locale avec les ondelettes réelles
 - Régularité ponctuelle et singularité
 - La transformation en ondelettes continue
 - La transformation en ondelettes discrète

Estimation de régularité locale avec les ondelettes réelles Introduction de la transformation en ondelettes complexes Estimation des paramètres de loi d'échelle Conclusion et perspectives

- Estimation de régularité locale avec les ondelettes réelles
 - Régularité ponctuelle et singularité
 - La transformation en ondelettes continue
 - La transformation en ondelettes discrète
- Introduction de la transformation en ondelettes complexes
 - La transformation en ondelettes complexes
 - Estimation de régularité ponctuelle avec la transformation complexe
 - Démarche adoptée dans la suite

- Estimation de régularité locale avec les ondelettes réelles
 - Régularité ponctuelle et singularité
 - La transformation en ondelettes continue
 - La transformation en ondelettes discrète
- Introduction de la transformation en ondelettes complexes
 - La transformation en ondelettes complexes
 - Estimation de régularité ponctuelle avec la transformation complexe
 - Démarche adoptée dans la suite
- 3 Estimation des paramètres de loi d'échelle
 - Le mouvement Brownien Fractionnaire (fBM)
 - Estimation de la régularité locale d'un fBM
 - Estimation de régularité locale variable

Régularité ponctuelle et singularité : définitions

- Régularité locale : généralise la différentiabilité
- Exposant de Hölder :

$$h(t_0) = \sup\{\alpha/f \in C^{\alpha}(t_0)\}\$$

avec
$$f \in C^{\alpha}(t_0)$$
 si $|t-t_0| \le \delta$, alors $|f(t)-P(t-t_0)| \le C|t-t_0|^{\alpha}$

• Singularité cusp : $X(t) = |t - t_0|^{\alpha} \Rightarrow h(t_0) = \alpha$

La transformation en ondelettes continue I : définitions

Conclusion et perspectives

- Transformation de Fourier : inadaptée à l'étude de signaux non stationnaires à cause de son caractère global
- Transformation en ondelette : représentation dans un espace temps-échelle à deux dimensions : $c_X(a,t) = \langle X, \psi_{a,t} \rangle$
- $\psi_{a,t}(u) = \frac{1}{\sqrt{a}}\psi_0(\frac{u-t}{a})$: translaté-dilaté d'une fonction mère ψ_0 localisée et oscillante \Rightarrow ondelette
- Énergie du signal dans une échelle a autour du temps t

• Décroissance des coefficients à travers les échelles : $|c_X(a,t)| \sim a^{(h(t)+\frac{1}{2})}, \ a \to 0$

- Décroissance des coefficients à travers les échelles : $|c_X(a,t)| \sim a^{(h(t)+\frac{1}{2})}, \ a \to 0$
- Pente dans un diagramme log-échelle

- Décroissance des coefficients à travers les échelles : $|c_X(a,t)| \sim a^{(h(t)+\frac{1}{2})}, \ a \to 0$
- Pente dans un diagramme log-échelle

Conclusion et perspectives

• Illustration avec un cusp

- Décroissance des coefficients à travers les échelles : $|c_X(a,t)| \sim a^{(h(t)+\frac{1}{2})}, \ a \to 0$
- Pente dans un diagramme log-échelle

Conclusion et perspectives

• Illustration avec un cusp

Abandon de la transformation continue

• Calcul des coefficient sur un ensemble restreint de points $(a = 2^j, t = 2^j k)$

- Calcul des coefficient sur un ensemble restreint de points $(a = 2^j, t = 2^j k)$
- Algorithme pyramidale (Mallat) ⇒ rapide, peu coûteux

- Calcul des coefficient sur un ensemble restreint de points $(a = 2^j, t = 2^j k)$
- Algorithme pyramidale (Mallat) ⇒ rapide, peu coûteux
- Grille dyadique

- Calcul des coefficient sur un ensemble restreint de points $(a = 2^j, t = 2^j k)$
- Algorithme pyramidale (Mallat) ⇒ rapide, peu coûteux
- Grille dyadique

- Calcul des coefficient sur un ensemble restreint de points $(a = 2^j, t = 2^j k)$
- Algorithme pyramidale (Mallat) ⇒ rapide, peu coûteux
- Grille dyadique

La transformation en ondelettes discrète II : problème de non invariance par translation temporelle

- Problème : non-invariance par translation temporelle
- Coefficients en ondelettes à une échelle fixée

La transformation en ondelettes discrète II : problème de non invariance par translation temporelle

- Problème : non-invariance par translation temporelle
- Coefficients en ondelettes à une échelle fixée Signal : dirac de taille $N=4\,096$ centré en $\frac{N}{2}+1$

Conclusion et perspectives

La transformation en ondelettes discrète II : problème de non invariance par translation temporelle

- Problème : non-invariance par translation temporelle
- Coefficients en ondelettes à une échelle fixée Signal : dirac de taille $N=4\,096$ centré en $\frac{N}{2}-2$

Conclusion et perspectives

• Décroissance des coefficients à travers les échelles : $|d(j, k(j, t_0))| \sim 2^{j(h(t_0) + \frac{1}{2})}, \ j \to 0$

- Décroissance des coefficients à travers les échelles : $|d(j, k(j, t_0))| \sim 2^{j(h(t_0) + \frac{1}{2})}, j \to 0$
- Pente dans un diagramme log-échelle

- Décroissance des coefficients à travers les échelles : $|d(j, k(j, t_0))| \sim 2^{j(h(t_0) + \frac{1}{2})}, \ j \to 0$
- Pente dans un diagramme log-échelle

Conclusion et perspectives

• Illustration avec un cusp

- Décroissance des coefficients à travers les échelles : $|d(j, k(j, t_0))| \sim 2^{j(h(t_0) + \frac{1}{2})}, j \to 0$
- Pente dans un diagramme log-échelle
- Illustration avec un cusp

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

• Première idée : transformation de Hilbert de l'ondelette

Ondelette de Daubechies de régularité 2

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

- Première idée : transformation de Hilbert de l'ondelette
- ⇒ support non fini, pas de recontruction parfaite

- Première idée : transformation de Hilbert de l'ondelette
- ⇒ support non fini, pas de recontruction parfaite
 - Dual-Tree (Kingsbury) : condition Hilbert approchée par deux filtres conjointement synthetisés

Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

La transformation en ondelettes complexes

- Première idée : transformation de Hilbert de l'ondelette
- ⇒ support non fini, pas de recontruction parfaite
- Dual-Tree (Kingsbury) : condition Hilbert approchée par deux filtres conjointement synthetisés

La transformation en ondelettes complexes Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

Estimation de régularité ponctuelle avec la transformation complexe

• Pente dans un diagramme log-échelle

La transformation en ondelettes complexes Estimation de régularité ponctuelle avec la transformation complex Démarche adoptée dans la suite

Estimation de régularité ponctuelle avec la transformation complexe

- Pente dans un diagramme log-échelle
- Illustration avec l'analyse d'un cusp

Estimation de régularité ponctuelle avec la transformation complexe

- Pente dans un diagramme log-échelle
- Illustration avec l'analyse d'un cusp

Estimation de régularité ponctuelle avec la transformation complexe

- Pente dans un diagramme log-échelle
- Illustration avec l'analyse d'un cusp

• Leaders (Jaffard) j j+1 j+2 l(j,k)

	Qshift		Daubechies		
	DWT	Leaders	DWT	Leaders	CDWT
partie réelle	×	×	×	×	×
partie imaginaire	×	×	×	×	×

	Qshift		Daubechies		
	DWT	Leaders	DWT	Leaders	CDWT
partie réelle	×	×	×	×	×

	Qshift		Daubechies		
	DWT	Leaders	DWT	Leaders	CDWT
partie réelle	×	×	×	×	×
module Hilbert	×	×	×	×	×
module DT	×	×	_	_	_

	Qshift		Daubechies		
	DWT	Leaders	DWT	Leaders	CDWT
partie réelle	×	×	×	×	×
module Hilbert/DT	×	×	×	×	×

• Leaders (Jaffard), Transformée continue dyadique

	Qshift		Daubechies		
	DWT	Leaders	DWT	Leaders	CDWT
partie réelle	×	×	×	×	×
module Hilbert/DT	×	×	×	×	×

Méthode

- Synthèse d'une réalisation de signal test de régularité connue
- Transformation en ondelettes ⇒ différents jeux de coefficients
- Regression linéaire $\Rightarrow \hat{h}(t)$ sur une réalisation
- Moyennes d'ensemble sur plusieurs réalisations (100) pour caractériser les estimateurs

Mouvement Brownien fractionnaire I : définition et utilitée

 Mouvement Brownien fractionnaire: auto-similaire (H) à acroissements stationnaires, gaussien ⇒ unique

- Régularité ponctuelle constante : h(t) = H
- Synthèse rapide de longs signaux
- \Rightarrow Utilisation pour caractériser les performances des estimateurs locaux de h(t)

Mouvement Brownien fractionnaire II : coefficients en ondelettes

- stationnaires (acroissements stationnaires)
- gaussiens centrés en zéros (ondelettes réelles)
- variance en $2^{j(2h+1)}$

Mouvement Brownien fractionnaire II : coefficients en ondelettes

- stationnaires (acroissements stationnaires)
- gaussiens centrés en zéros (ondelettes réelles)
- variance en $2^{j(2h+1)}$
- $log_2|d(j,k)|$: variance constante à travers les échelles

Estimation de la régularité locale I : observation

Ondelette Daubechies

- estimation en chaque point : $\widehat{h}(t) = \sum_{j_1}^{j_2} w_j \log_2 |d(j,k)|$
- $j_1 = 3$, $j_2 = 6$

Ondelette Qshift

Histogrammes des $\hat{h}(t)$. H = 0.7

Écarts types

	Qshift	Daubechies		
DWT	0.716	0.721		
	0.426	0.436		
Leaders	0.225	0.228		
	0.200	0.202		

Estimation de la régularité locale I : observation

- estimation en chaque point : $\widehat{h}(t) = \sum_{j_1}^{j_2} w_j \log_2 |d(j,k)|$
- $j_1 = 3$, $j_2 = 6$

Histogrammes des $\hat{h}(t)$. H = 0.7

Ecarts types					
	Qshift	Daubechies			
DWT	0.716	0.721			
	0.426	0.436			
Leaders	0.225	0.228			
	0.200	0.202			

Estimation de la régularité locale II : origine de la réduction de variance

$$\widehat{h}(t) = \sum_{j_1}^{j_2} w_j \log_2 |d(j,k)|$$

$$\Rightarrow var(\widehat{h}(t)) = \left(\sum_{(i,j)} \rho_{ij} w_i w_j\right) \underbrace{\sigma^2}_{var(\log_2 |d(j,k)|)}$$

Estimation de la régularité locale II : origine de la réduction de variance

$$\widehat{h}(t) = \sum_{j_1}^{j_2} w_j \log_2 |d(j, k)|$$

$$\Rightarrow var(\widehat{h}(t)) = \left(\sum_{(i,j)} \rho_{ij} w_i w_j\right) \underbrace{\sigma^2}_{var(\log_2 |d(j,k)|)}$$
DWT

DWT

1.1

0.9

0.8

0.7

0.6

0.5

0.5

3

2

0

3

2

Estimation de la régularité locale II : origine de la réduction de variance

Etude de l'écart type de $\hat{h}(t)$

Réduction de variance sur les coefficients

$$\left(\sum_{(i,j)} \rho_{i\,j}^{\textit{r\'eelle}} w_i w_j\right) \left(\sigma^{\textit{r\'eelle}}\right)^2 \ \rightarrow \ \left(\sum_{(i,j)} \rho_{i\,j}^{\textit{r\'eelle}} w_i w_j\right) \left(\sigma^{\textit{module}}\right)^2$$

Introduction de corrélations

$$\left(\sum_{(i,j)} \rho_{ij}^{\textit{r\'eelle}} w_i w_j\right) \left(\boldsymbol{\sigma}^{\textit{module}}\right)^2 \ \rightarrow \ \left(\sum_{(i,j)} \rho_{ij}^{\textit{module}} w_i w_j\right) \left(\boldsymbol{\sigma}^{\textit{module}}\right)^2$$

 Mouvement Brownien Multifractionnaire : variation douce de H(t)

 Mouvement Brownien Multifractionnaire : variation douce de H(t)

 Mouvement Brownien Multifractionnaire : variation douce de H(t)

 Mouvement Brownien Multifractionnaire : variation douce de H(t)

 Mouvement Brownien Multifractionnaire : variation douce de H(t)

Conclusion

- Dual-Tree et transformation de Hilbert simple : équivalents pour l'analyse
- ondelettes complexes ⇒ réduction de variance de l'estimation dont l'origine est comprise
- choix de l'ondelette et de la plage de regression en fonction des besoins
- utilisation des leaders adaptée pour l'étude de régularité locale

Perpectives

- mBM à appronfondir : lissage sur une réalisation
- utilisation des ondelettes complexes pour l'analyse multifractale : estimation des moments négatifs sans avoir recours aux leaders

Transformation en ondelettes complexes I : les arbres

Transformation en ondelettes complexes I : conditions pour la synthèse des filtres

- Analyse multirésolution : $H_0(z)H_0(z^{-1}) + H_0(-z)H_0(-z^{-1}) = 2$
- Théorème de Mallat-Meyer (ondelette) : $H_1(z) = z^{-1}H_0(z^{-1})$
- Paire d'ondelettes en quadrature : $G_0(\omega)=H_0(\omega)e^{\frac{-j\omega}{2}}$ ou $g_0(n)=h_0(n-0.5)$

MAIS Réponse impulsionnelle infinie pour un filtre

- \Rightarrow $G_0(\omega) \approx H_0(\omega)e^{\frac{-J\omega}{2}}$ ou $g_0(n) \approx h_0(n-0.5)$
 - Qshift : condition supplémentaire : $g_0(n) = h_0(N 1 n)$

