Lecture 04 Singular Value Decomposition (SVD)

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

Singular Value Decomposition (SVD)

Outline

Singular Value Decomposition (SVD)

Geometric Observation

- ullet The image of unit sphere under any m imes n matrix is a hyperellipse
- Given a unit sphere $S \in \mathbb{R}^n$, let $\mathbf{A}S$ denote the shape after transformation
- SVD is

$A = U\Sigma V^*$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbf{R}^{m \times n}$ is diagonal.

- Singular values are diagonal entries of Σ , correspond to the principal semiaxes, with entries $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_n \geqslant 0$.
- Left singular vectors of ${\bf A}$ are column vectors of ${\bf U}$ and are oriented in the directions of the principal semiaxes of ${\bf A}S$
- Right singular vectors of ${\bf A}$ are column vectors of ${\bf V}$ and are the preimages of the principal semiaxes of ${\bf A}S$
- $\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j$ for $1 \leqslant j \leqslant n$

Two Different Types of SVD

• Full SVD: $\mathbf{U} \in \mathbb{C}^{m \times m}$, $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ is

$$\textbf{A} = \textbf{U} \boldsymbol{\Sigma} \textbf{V}^*$$

Two Different Types of SVD

• Full SVD: $\mathbf{U} \in \mathbb{C}^{m \times m}$, $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ is

$$\textbf{A} = \textbf{U} \boldsymbol{\Sigma} \textbf{V}^*$$

• Reduced SVD: $\hat{\mathbf{U}} \in \mathbb{C}^{m \times n}$, $\hat{\mathbf{\Sigma}} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ (assume $m \geqslant n$) is

$$\textbf{A} = \hat{\textbf{U}}\hat{\boldsymbol{\Sigma}}\textbf{V}^*$$

Two Different Types of SVD

• Full SVD: $\mathbf{U} \in \mathbb{C}^{m \times m}$, $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ is

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

• Reduced SVD: $\hat{\mathbf{U}} \in \mathbb{C}^{m \times n}$, $\hat{\mathbf{\Sigma}} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ (assume $m \geqslant n$) is

$$\textbf{A} = \hat{\textbf{U}}\hat{\boldsymbol{\Sigma}}\textbf{V}^*$$

- What if $m \leq n$?
- Furthermore, notice that

$$\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

so we can keep only entries of ${\bf U}$ and ${\bf V}$ corresponding to nonzero $\sigma_i.$

Existence of SVD

Theorem (Existence)

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has an SVD.

Proof

Let $\sigma_1 = \|\mathbf{A}\|_2$. There exists $\mathbf{v}_1 \in \mathbb{C}^n$ with $\|\mathbf{v}\|_1 = 1$ and $\|\mathbf{A}\mathbf{v}_1\|_2 = \sigma_1$. Let \mathbf{U}_1 and \mathbf{V}_1 be unitary matrices whose first columns are $\mathbf{u}_1 = \mathbf{A}\mathbf{v}_1/\sigma_1$ (or any unit-length vector if $\sigma_1 = 0$) and \mathbf{v}_1 , respectively. Note that,

$$\mathbf{U}_1^* \mathbf{A} \mathbf{V}_1 = \mathbf{S} = \left[egin{array}{cc} \sigma_1 & oldsymbol{\omega}^* \ \mathbf{0} & \mathbf{B} \end{array}
ight]$$

Futhermore, $\boldsymbol{\omega} = \mathbf{0}$ because $\|\mathbf{S}\|_2 = \sigma_1$, and

$$\| \left[\begin{array}{cc} \sigma_1 & \pmb{\omega}^* \\ \mathbf{0} & \mathbf{B} \end{array} \right] \left[\begin{array}{cc} \sigma_1 \\ \pmb{\omega} \end{array} \right] \|_2 \geqslant \sigma_1^2 + \pmb{\omega}^* \pmb{\omega} = \sqrt{\sigma_1^2 + \pmb{\omega}^* \pmb{\omega}} \| \left[\begin{array}{cc} \sigma_1 \\ \pmb{\omega} \end{array} \right] \|_2$$

implying that $\sigma_1 \geqslant \sqrt{\sigma_1^2 + \omega^* \omega}$ and $\omega = 0$.

Existence of SVD Cont'd

We then prove by induction. If m=1 or n=1, then **B** is empty and we have $\mathbf{A}=\mathbf{U}_1\mathbf{S}\mathbf{V}_1^*$. Otherwise, suppose $\mathbf{B}=\mathbf{U}_2\boldsymbol{\Sigma}_2\mathbf{V}_2^*$, and then

$$\mathbf{A} = \underbrace{\mathbf{U}_1 \begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \sigma_1 & \mathbf{0}^* \\ \mathbf{0} & \boldsymbol{\Sigma}_2 \end{bmatrix}}_{\boldsymbol{\Sigma}} \underbrace{\begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{V}_2^* \end{bmatrix} \mathbf{V}_1^*}_{\boldsymbol{V}^*}$$

where **U** and **V** are unitary.

Uniqueness of SVD

Theorem (Uniqueness)

The singular values $\{\sigma_j\}$ are uniquely determined. If **A** is square and the σ_j are distinct, the left and right singular vectors are uniquely determined up to complex signs (i.e., complex scalar factors of absolute value 1).

Uniqueness of SVD

Theorem (Uniqueness)

The singular values $\{\sigma_j\}$ are uniquely determined. If **A** is square and the σ_j are distinct, the left and right singular vectors are uniquely determined up to complex signs (i.e., complex scalar factors of absolute value 1).

Geometric argument: If the lengths of semiaxes of a hyperellipse are distinct, then the semiaxes themselves are determined by the geometry up to signs.

Uniqueness of SVD Cont?d

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , \mathbf{u}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the space orthogonal to \mathbf{v}_1 . Because \mathbf{v}_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

Uniqueness of SVD Cont?d

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , \mathbf{u}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the space orthogonal to \mathbf{v}_1 . Because \mathbf{v}_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

Question: What if we change the sign of a singular vector?

Uniqueness of SVD Cont?d

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , \mathbf{u}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the space orthogonal to \mathbf{v}_1 . Because \mathbf{v}_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

- Question: What if we change the sign of a singular vector?
- Question: What if σ_i is not distinct?

SVD vs. Eigenvalue Decomposition

ullet Eigenvalue decomposition of nondefective matrix $oldsymbol{\mathsf{A}}$ is $oldsymbol{\mathsf{A}} = oldsymbol{\mathsf{X}} oldsymbol{\mathsf{\Lambda}} oldsymbol{\mathsf{X}}^{-1}$

SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix ${\bf A}$ is ${\bf A} = {\bf X} {\bf \Lambda} {\bf X}^{-1}$
- Differences between SVD and Eigenvalue Decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix **A** is $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$
- Differences between SVD and Eigenvalue Decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

Similarities

- Singular values of A are square roots of eigenvalues of AA* and A*A, and their eigenvectors are left and right singular vectors, respectively
- Singular values of hermitian matrices are absolute values of eigenvalues, and eigenvectors are singular vectors (up to complex signs)
- This relationship can be used to compute singular values by hand

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - $rank(\mathbf{A}) = r$
 - $range(\mathbf{A}) = \langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r \rangle$
 - $null(\mathbf{A}) = \langle \mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n \rangle$

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - $rank(\mathbf{A}) = r$
 - $range(\mathbf{A}) = \langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r \rangle$
 - $null(\mathbf{A}) = \langle \mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n \rangle$
- 2-norm and Frobenius norm
 - ullet $\|\mathbf{A}\|_2 = \sigma_1$ and $\|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - $rank(\mathbf{A}) = r$
 - $range(\mathbf{A}) = \langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r \rangle$
 - $null(\mathbf{A}) = \langle \mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n \rangle$
- 2-norm and Frobenius norm
 - ullet $\|\mathbf{A}\|_2 = \sigma_1$ and $\|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$
- Determinant of matrix
 - For $\mathbf{A} \in \mathbb{C}^{m \times m}$, $|det(\mathbf{A})| = \prod_{i=1}^m \sigma_i$.

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - $rank(\mathbf{A}) = r$
 - $range(\mathbf{A}) = \langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r \rangle$
 - $null(\mathbf{A}) = \langle \mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n \rangle$
- 2-norm and Frobenius norm
 - ullet $\|\mathbf{A}\|_2=\sigma_1$ and $\|\mathbf{A}\|_F=\sqrt{\sum_i\sigma_i^2}$
- Determinant of matrix
 - For $\mathbf{A} \in \mathbb{C}^{m \times m}$, $|det(\mathbf{A})| = \prod_{i=1}^m \sigma_i$.
- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later in the semester