UNIVERSITÉ DE SHERBROOKE Faculté de génie Département de génie électrique et génie informatique

APP3

Traitement numérique des signaux

Présenté à François Grondin

Présenté par Maxime Pagé – pagm1302 Olivier St-Amand – stao0901

Sherbrooke – 1 octobre 2024

Introduction3
Schéma-bloc de la méthode d'extraction des paramètres (sinusoïdes et enveloppe temporelle) : MAX
Schéma bloc de la fonction de synthèse à partir des paramètres (sinusoïdes et enveloppe temporelle) : MAX
Analyse et synthèse des sons :
(i) Affichage des spectres de Fourier des signaux du LA# et du basson (originaux et synthèse) en dB (décibel) avec l'axe des fréquences en Hz,6
LA# original6
LA # synthétisé7
Basson originale7
Basson synthétisé8
(ii) donnez aussi, dans un tableau : les fréquences, amplitudes et phases des harmoniques retenues,
LA# 8
Basson9
(iii) montrez sur un graphique les enveloppes temporelles obtenues. Assurez-vous
que tous les axes sont identifiés clairement avec variables et unités9
Enveloppe LA#9
Enveloppe Basson
Filtre FIR pour extraire l'enveloppe du signal redressé
(i) donnez vos calculs et explications de la longueur N du filtre, 10
(ii) donnez le graphique de la réponse en fréquence (amplitude seule, en dB). Assurez-vous que tous les axes sont identifiés clairement avec variables et unités. 11
Filtre coupe-bande FIR avec équations de transformation :
(i) fournir l'équation aux différences et le calcul des valeurs des coefficients 11
(ii) tracer réponse à l'impulsion h(n),11
(iii) tracer la réponse à une sinusoïde de 1000 Hz,
(iv) tracer graphiques amplitude et phase de la réponse en fréquence 13
(v) tracer spectres d'amplitude des signaux basson avant et après filtrage. Assurezvous que tous les axes sont identifiés clairement avec variables et unités
Conclusion

Introduction

Ce rapport explore les méthodes d'extraction et de synthèse des paramètres d'un signal audio. À travers une analyse des signaux d'une note de guitare et d'un basson, plusieurs étapes nous permettent de faire la synthèse d'une note de musique ainsi que le filtrage d'un enregistrement bruité. Les résultats sont obtenus via des scripts Python et illustrés à travers divers graphiques et spectres.

Schéma-bloc de la méthode d'extraction des paramètres (sinusoïdes et enveloppe temporelle) : MAX

Voici le schéma-bloc de la méthode d'extraction des paramètres:

Celle-ci commence avec le signal original, obtenu en faisant une lecture du fichier de la note de guitare.

- Lors de la première étape, une fenêtre de Hann est appliquée sur ce signal afin de minimiser l'effet de fuite sur ce signal original.
- Par la suite, le signal fenêtré est transformé dans le domaine fréquentiel à l'aide d'une transformée de Fourier rapide. La raison de cette transformation est qu'elle permet de trouver l'ordre du filtre passe-bas dans une étape ultérieure puisque le gain du filtre est seulement connu à la fréquence normalisée de $\frac{\pi}{1000}$
- Ensuite, les sinusoïdes principales (les 32 principales) sont extraites à partir du signal transformé. Cette extraction est faite pour la prochaine méthode (synthèse du signal), dans laquelle le signal sera reconstruit.
- Par la suite, l'étape 4 permet de trouver l'ordre du filtre passe-bas à partir des 32 sinusoïdes principales. En effet, tel que brièvement mentionné plus haut, le gain de –3db est connu pour la fréquence normalisée de $\frac{\pi}{1000}$. Ainsi, en sachant que tous les coefficients de la fréquence normalisée sont égaux, une simple approche par boucle permet de trouver l'ordre N pour lequel le gain est le bon.
- Ensuite, l'étape 5 constitue à créer le filtre passe-bas, plus précisément en créant l'équation de sa réponse impulsionnelle. En effet, puisque les coefficients sont égaux, chaque coefficient sera égal à 1. La raison pour ceci, est que le gain de la DC doit être égal à 0 dB. En effet, pour le gain de la DC, seuls les coefficients de la réponse impulsionnelle ont un impact sur le gain (car la fréquence est de 0 Hz). Ainsi, si on retrouve N coefficients pour lesquels la valeur des de 1 et qu'on en fait la moyenne, on retrouve un gain de 1 (tel que demandé dans la problématique).
- Finalement, l'étape 6 permet de trouver l'enveloppe du signal original en faisant la convolution de celui-ci avec le filtre passe-bas trouvé à l'étape précédente.

Schéma bloc de la fonction de synthèse à partir des paramètres (sinusoïdes et enveloppe temporelle) : MAX

Voici le schéma-bloc de la méthode de la synthèse à partir des paramètres trouvés dans la section précédente. Les paramètres en entrée sont les 32 sinusoïdes principales et l'enveloppe temporelle du signal original

La méthode commence à partir des 32 sinusoïdes principales obtenues dans l'étape précédente.

- La première étape constitue à trouver les harmoniques et les phases pour chacune des 32 sinusoïdes.
- Par la suite, la deuxième étape fait la reconstruction d'un seul signal à partir de ces 32 sinusoïdes.
- La troisième étape constitue à faire la multiplication du signal temporel obtenu à la deuxième étape avec l'enveloppe de l'audio initial. Ceci est fait pour retrouver la précision qui a été perdue en revenant dans le domaine temporel.
- L'étape finale constitue à construire le fichier .wav à partir du signal synthétisé à l'étape précédente.

Analyse et synthèse des sons :

(i) Affichage des spectres de Fourier des signaux du LA# et du basson (originaux et synthèse) en dB (décibel) avec l'axe des fréquences en Hz,

NOTE: tous les calculs et affichages python pour la note du LA# et de Beethoven sont dans le fichier beethoven.py. En ce qui concerne les démarches pour le basson, cellesci peuvent être retrouvées dans le fichier basson.py.

LA# original

LA # synthétisé

Basson originale

Basson synthétisé

(ii) donnez aussi, dans un tableau : les fréquences, amplitudes et phases des harmoniques retenues,

LA#

Fréquence (Hz)	Amplitude	Phase
0.0	47.6973187915921	3.14159265358979
466.081875	84.4792905179832	-2.1109034737526
932.16375	67.78331604230164	1.26783270028905
1398.245625	31.45385260691553	2.03459667213015
1864.3275	13.448495962634704	-1.78542576538546
2330.409375	24.668071754389736	-0.79292037995496
2796.49125	30.03806163799057	1.7297275638075
3262.573125	2.7122417883264456	-0.65016699804182
3728.655	9.45414069105153	0.404415718061072
4194.7368750000005	-0.8190614953090241	-0.71715545802915
4660.81875	-17.889615226375536	-2.1036100262113
5126.900625	0.2555406365307731	-1.70644725988232
5592.9825	-2.6106067869040874	-2.6153467597136
6059.064375	-15.340665323564362	3.11598236302931
6525.14625	-2.242399767872408	-0.97735517248317
6991.228125000001	-17.44875933980732	-0.31123761292867
7457.31	-14.793898412817704	1.23877949584141
7923.391875	-2.9589389192231774	3.0120078814398
8389.473750000001	-14.437765408768035	1.3701350437069
8855.555625	-10.68829568708956	1.97748922930709
9321.6375	-9.488232414275647	3.09844486573033
9787.719375	-7.507135734810772	2.9208377387957
10253.80125	-9.964615322174772	2.5047811891310
10719.883125	-12.398162224229534	0.00107742695494398
11185.965	-6.632893592081213	-1.96204637132309
11652.046875	-4.802221183617672	2.08928920596392
12118.12875	-14.61454999811525	-1.10951070792399
12584.210625	-27.868166741087936	-2.23298497915325
13050.2925	-9.745681795797035	1.99555850904196
13516.374375000001	-10.164593371651476	-1.09624947682489
13982.456250000001	-12.613177206136864	2.7150827616331
14448.538125000001	-9.164883844802791	2.60729657086885
14914.62	-5.165651494361003	-0.4606789895589

Basson

Fréquence (Hz)	Amplitude	Phase
0.0	28.11707686583803	
480.2382133995037	80.49290891867341	2.236529639778
960.4764267990074	27.568160414931935	2.119766251650
1440.7146401985112	41.11916774386974	-3.016734170944
1920.9528535980148	31.011075077662817	-0.808207494359
2401.1910669975186	6.247368091100329	2,26069879943
2881.4292803970225	15.57351980174773	2,50649593678
3361.6674937965263	13.750812600030775	3.00631758295
3841.9057071960297	1.068018472716696	-0.0575314852873
4322.143920595534	0.2678008650944566	-1.969959250169
4802.382133995037	2.8276791872849136	3.113467921801
5282.620347394541	-10.290774480417921	-0.511301213113
5762.858560794045	1.718689991524756	-2.031927664059
6243.096774193548	5.099948517636239	-2.23614793955
6723.334987593053	-5.665045838154178	0.540356132571
7203.573200992556	5.079433411628706	0.938582643695
7683.811414392059	1.9963217100509185	-2.64407634349
8164.049627791564	3.5184570026174717	0.00698960476598
8644.287841191068	-1.94324336613177	2.58933051956
9124.526054590571	-3.637330054693684	-0.4109474959736
9604.764267990075	-11.477565661233108	1.737021783978
10085.002481389578	-5.300471249963526	3.03099493644
10565.240694789081	-4.347664817268176	-0.977845696944
11045.478908188587	-10.942745449479887	1.26367067175
11525.71712158809	-14.078009890028975	1.77360335612
12005.955334987593	-3.4854385082220194	-1.923228902296
12486.193548387097	-15.18563016446863	2.1739297071
12966.4317617866	-16.123302983616405	0.507449282144
13446.669975186105	-20.51536785494524	-1.90445672428
13926.908188585609	-16.71817436132876	-2.541355306248
14407.146401985112	-7.322421939928478	1.644829179844
14887.384615384615	-12.13254350574436	3.139874811670
15367.622828784119	-26.69261117327684	1.099493381691

(iii) montrez sur un graphique les enveloppes temporelles obtenues. Assurez-vous que tous les axes sont identifiés clairement avec variables et unités.

Enveloppe LA#

Enveloppe Basson

Filtre FIR pour extraire l'enveloppe du signal redressé

(i) donnez vos calculs et explications de la longueur N du filtre,

Puisque nous savons que tous les coefficients sont égaux nous avons

$$G(w) = \frac{1}{N} \sum_{n=0}^{N-1} e^{-jwn}$$

Le code test plusieurs valeurs de N jusqu'à temps que G(w) donne 0.707 qui correspond à -3db.

Étant donné que dans les spécifications , nous devons avoir 1 de gain à 0hz (garder le DC), nous multiplions par le terme 1/N.

(ii) donnez le graphique de la réponse en fréquence (amplitude seule, en dB). Assurezvous que tous les axes sont identifiés clairement avec variables et unités.

Filtre coupe-bande FIR avec équations de transformation :

(i) fournir l'équation aux différences et le calcul des valeurs des coefficients Trouver l'équation des différences démarre avec l'équation d'un filtre passe bas:

$$h[n] = \frac{\sin(\frac{\pi nK}{N})}{N\sin(\frac{\pi n}{N})}$$
 (sauf pour n=0, où $h[n] = \frac{K}{N}$)

Maintenant, cette réponse impulsionnelle peut être utilisée pour trouver l'équation de la réponse impulsionnelle du filtre coupe-bande.

$$h[n] = \delta[n] - 2h[n]\cos(\omega_0 n)$$

Pour calculer les coefficients, on utilise $\omega_0=2\pi\cdot\frac{f_0}{f_e}$ et n qui constitue les indexes individuels d'un array allant de –N/2 à N/2.

Pour finir, K est calculé à l'aide de $K=2\cdot m+1$, où m est trouvé à l'aide de $m=f_1\cdot \frac{N}{f_e}$

(ii) tracer réponse à l'impulsion h(n),

À l'aide de python, on trouve la réponse impulsionnelle du filtre coupe-bande à l'aide des étapes mentionnées au point précédent. NOTE: ces derniers calculs sont faits dans le fichier rapport.py. Voici le graphique de cette réponse impulsionnelle:

Pour adoucir celui-ci, on peut appliquer une fenêtre de Hann:

(iii) tracer la réponse à une sinusoïde de 1000 Hz,

Voici la réponse à une sinusoïde de de 1000 Hz. Pour l'obtenir, il suffit de faire la convolution entre le filtre et la sinusoïde de 1000 Hz:

(iv) tracer graphiques amplitude et phase de la réponse en fréquence

Voici le graphique de l'amplitude en fréquence. Pour l'obtenir, il suffit de faire la multiplication de la fonction de transfert (domaine fréquentiel) avec le signal (dans le domaine fréquentiel). Voici donc la réponse en amplitude:

De la même manière, voici la phase de la réponse du fréquence:

(v) tracer spectres d'amplitude des signaux basson avant et après filtrage. Assurezvous que tous les axes sont identifiés clairement avec variables et unités.

Ces démarches sont faites dans le fichier basson.py. Voici le spectre d'amplitudes des signaux basson avant filtrage:

A TO -- ID

Et finalement, voici les signaux après filtrage:

* * * T

Conclusion

En conclusion, les méthodes d'extraction et de synthèse appliquées ont permis de reconstruire les signaux d'une note de guitare et d'un basson (quoiqu'avec certaines imperfections mineures).