SRI LANKA INSTITUTE OF ADVANCED TECHNOLOGICAL EDUCATION

Higher National Diploma in Information Technology First Year, Second Semester Examination – 2017 HNDIT1214 / IT12142 - Statistics for IT

Instructions for Candidates:	No. of question	ıs : 05
Answer four (04) questions only.	No. of pages	: 04

Answer four Non progran	. , .		ily. s are allowed		No. of pa Time	_	04 Two (02) hours
			Mark	ing Sch	eme		
01.							
(i).			eant by statist				
S			-		ing, presenting, an	-	
	inter	preting	g numerical do	ata to assist	t in making more e		lecisions.
	• 9	Statisti The kno	cal techniques owledge of sta	are used to	ics? State two (02 o make decisions the thods will help to u	hat affect Inderstan	d how
		ou.	etc.	na give you			$x^2 = 2 \text{ Marks}$
	events in random entered a) Is th nswer. Primary	n his le sampl the sta e data data	ocal area. He e of people dium. that the stude (1 mark	stood outs their opini ent collects	out people's oping side the local sportions on attending primary or secon	rts stadiu g sports adary? Ju	am and asked a events as they astify your
St	udent carri	ed out	the survey an	d collect the	e data himself	(1 Mar	'k)
В	b) Give	two re	easons why tl	nis sample	may be biased.		
	• '	Local s	stadium", sho	uld considei	r stadiums outside	the local	ity
	● l Populatio	-	attending a st	tadium prok	pably not represen	tative of	the general
	•		dium mav be	holdina non	sporting event lik	e music c	or dancina
			y was carried	_	tc.		3
					$(1x2 = 2 Mark$	cs)	
	c) Mak	e two	(02) suggesti	ons to imp	rove the accuracy	of his su	ırvey.
	• 1	ncreas	e the number	of people s	urveyed.		
		•	ıt a house to h			_	
	• (Conduc	•	-	rmarket (to increas		pulation)
			etc.		(1x2 = 2)	Marks)	

(iii). Highest recorded temperatures (°F) for 50 selected cities for various periods are as follows:

118	115	114	113	112	111	110	110	109	108	108
	107	107	107	106	106	106	106	105	105	105
	105	104	104	104	104	103	103	103	102	102
	102	102	102	102	102	102	101	101	100	100
	99	99	99	98	98	98	97	93	90	

Using the above data,

a) Construct a frequency distribution starting from multiple of 10 and by selecting class width as 5.

nterval	arks	ncy	
3		2	
)		7	
.04	//////////	19	
.09	///////\	14	
14		6	
19		2	

----- (5 Marks)

b) Represent the above data in a histogram.

(iv). Express each of the following in sigma notation.

$$2+5+8+11+14 = \sum_{n=0}^{4} (2+3n)$$

a)
$$(x_1 - \mu)^2 + (x_2 - \mu)^2 + (x_3 - \mu)^2 + (x_4 - \mu)^2 = \sum_{i=1}^4 (x_i - \mu)^2$$

----- (2 Marks)

(Total 25 Marks)

02.

(i). The following table represents the monthly household income (x \$1000) for 20 interview respondents.

Income (x)	Relative frequency (f/N)			
0< <i>x</i> ≤5	0.15			
$5 < x \le 10$	0.05			
$10 < x \le 15$	0.40			
$15 < x \le 20$	0.30			
$20 < x \le 25$	0.10			

a) Redraft the above data in the form of a grouped frequency distribution.

Class Interval	f
0-5	3
5 - 10	1
10 - 15	8
15 - 20	6
20 - 25	2

---- (4 Marks)

b) Calculate the following for the above data.

Class Interval	f	x_m	fx	F
----------------	---	-------	----	---

0 - 5	3	2.5	7.5	3
5 - 10	1	7.5	7.5	4
10 - 15	8	12.5	100	12
15 - 20	6	17.5	105	18
20 - 25	2	22.5	45	20
			$\sum fx$	
			= 265	

a. Mean

$$\underline{x} = \frac{\sum fx}{\sum f}$$
 ----- (1 Mark)
$$\underline{x} = \frac{265}{20} = 13.25$$

$$\underline{x} = 13.25 \times 1000 = 1300 ----- (2 Marks)$$

b. Mode

$$Mode = L_{mo} + \left[\frac{D_a}{D_b + D_a}\right](C)$$
 (1 Mark)
 $Model \ class = (10 - 15)$
 $Mode = 10 + \left[\frac{7}{2 + 7}\right](5)$ = 13.89
 $Mode = 13890$ ------ (2 Marks)

c. Quartile deviation

$$Q_{1} = L + \frac{\binom{n/4 - CF}{f}}{f}(c)$$

$$Q_{1} = 10 + \frac{\binom{20/4 - 4}{8}}{8}(5)$$

$$Q_{1} = 10.625 \quad ----- (2 \text{ Marks})$$

$$Q_{3} = L + \frac{\binom{3n/4 - CF}{f}}{f}(c)$$

$$Q_3 = 15 + \frac{\left(3*20/4 - 12\right)}{6}$$
 (5)
 Quartile deviation = $(Q_3 - Q_1)/2 = 14.0625$
Quartile deviation = 14062.5 ----- (2 Marks)

(ii). a) Find x and y so that the ordered data set has a mean of 42 and a median of 35.

Median =
$$35 = \frac{34+x}{2}$$

 $\mathbf{x} = 36$ ----- (2 Marks)

$$Mean = 42 = \frac{17 + 22 + 26 + 29 + 34 + x + 42 + 67 + 70 + y}{10}$$
$$x + y = 420 - 307 = 113$$

$$y = 113 - 36$$

 $y = 77$ ----- (2 Marks)

b) The mean and standard deviation of 20 items were calculated by a student as 40 and 10 respectively. But while calculating them an item 15 was misread as 50. Find the correct mean and standard deviation. (5 Marks)

$$\underline{x} = 40$$

$$\sigma = 10$$

$$40 = \frac{\sum x}{20} \quad \text{ } \text{ } \Sigma \qquad x = 800$$

After correcting, Σ $x_{new} = 800 - 50 + 15 = 765$

Correct
$$\underline{x} = \frac{765}{20} = 38.25$$
 ----- (2 Marks)

$$\sigma^2 = \frac{\sum x_i^2}{N} - \underline{x}^2$$

$$\Sigma \qquad x_i^2 = 20\left(10^2 + 40^2\right) = 34000$$

After correcting, $\sum x_{new}^2 = 34000 - 50^2 + 15^2 = 31725$

$$\sigma_{new}^2 = \frac{_{31725}}{_{20}} - (38.25)^2 = 123.1875$$

$$\sigma_{new} = 11.09$$

Correct
$$\sigma$$
 = **11.09** ----- (3 Marks)

(Total 25 Marks)

03.

- (i). Define the following terms:
 - a) Permutations

A Permutation is an arrangement of n objects in a specific order using r objects at a

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
(2 Marks)

b) Combinations

A combination is the selection of r objects from n objects without regard to order.

$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$
 ----- (2 Marks)

(ii). Show that
$$nC_r - nC_{n-r} = 0$$

$$L.H.S. \Rightarrow \frac{n!}{(n-r)! r!} - \frac{n!}{(n-(n-r))! (n-r)!}$$

$$= \frac{n!}{(n-r)! r!} - \frac{n!}{(n-r)! r!} = 0 \implies R.H.S. ----- (4 \text{ Marks})$$

- (iii). Using the digits 1, 2, 3 and 5, how many 4 digit numbers can be formed if
 - a) The first digit must be 1 and repetition of the digits is allowed?

$$N = 1 * 4 * 4 * 4 = 64$$
 -----(2 Marks)

b) The first digit must be 1 and repetition of the digits is not allowed?

$$N = 1 * 3 * 2 * 1 = 6$$
 -----(2 Marks)

c) The number must be divisible by 2 and repetition is not allowed?

$$N = 3 * 2 * 1 * 1 = 6$$
 ----- (3 Marks)

(iv). In a certain country, the car number plate is formed by 4 digits from the digits 1, 2, 3, 4, 5, 6, 7, 8 and 9 followed by 3 letters from the alphabet. How many number plates can be formed if neither the digits nor the letters are repeated?

$$_{9}P_{4}*_{26}P_{3}=47,174,400$$
 ----- (5 Marks)

(v). To buy a computer system, a customer can choose one of 4 monitors, one of 2 keyboards, one of 4 computers and one of 3 printers. Determine the number of possible systems that a customer can choose from.

$$4C_1 * 2C_1 * 4C_1 * 3C_1 = 4 * 2 * 4 * 3 = 96 ---- (5 Marks)$$

(Total 25 Marks)

04.

- (i). Define the following terms:
 - a) Experiment

Any process that yields a result or an observation ----- (2 Marks)

b) Independent event

Two events are independent if the occurrence of the first event has no effect on the probability that the second event will occur. ----- $(2\ Marks)$

c) Mutually exclusive event

If two events are mutually exclusive if they cannot occur at the same time.

- (ii). A committee of 5 people is to be formed randomly from a group of 10 women and 6 men. Find the probability that the committee has
 - a) 3 women and 2 men.

There are $_{16}C_5$ ways to select 5 people (committee members) out of a total of 16 people (men and women)

There are $_{10}C_3$ ways to select 3 women out of 10.

There are ${}_{6}C_{2}$ ways to select 2 men out of 6.

There are ${}_{10}C_3*_6C_2$ ways to select 3 women out of 10 AND 2 men out of 6.

 $P(3 \text{ women AND 2 men}) = {}_{10}C_3 *_{6}C_2 / {}_{16}C_5 = 0.412087 ----- (3 \text{ Marks})$

b) 5 women.

 $P(5 \text{ women }) = {}_{10}C_5 * {}_6C_0 / {}_{16}C_5 = 0.0576923 \text{ (in } {}_6C_0 \text{ the 0 is for no men)} --- (3 \text{ Marks})$

c) at least 3 women.

P(at least 3 women) = P(3 women or 4 women or 5 women)

= P(3 women) + P(4 women) + P(5 women)

= 0.412087 + 0.288461 + 0.0576923 = 0.758240

----- (4 Marks)

(iii). In a factory, three machines, J, K and L, are used to make biscuits.

Machine J makes 25% of the biscuits.

Machine *K* makes 45% of the biscuits.

The rest of the biscuits are made by machine L.

- It is known that 2% of the biscuits made by machine J are broken. 3% of the biscuits made by machine K are broken and 5% of the biscuits made by machine L are broken.
 - a) Draw a tree diagram to illustrate all the possible outcomes and associated probabilities.

A biscuit is selected at random.

b) Calculate the probability that the biscuit is made by machine J and is not broken.

$$P(J \cap B') = P(J)P(B'/J) = 0.25(0.98) = 0.245$$
----- (2 Marks)

c) Calculate the probability that the biscuit is broken.

d) Given that the biscuit is broken, find the probability that it was not made by machine *K*.

$$P(K'/B) = \frac{P(K'\cap B)}{P(B)} = \frac{P(J\cap B) + P(L\cap B)}{P(B)}$$

$$= \frac{0.25(0.02) + 0.3(0.05)}{0.0335}$$

$$= 0.597 \qquad (3 \text{ Marks})$$
(Total 25 Marks)

05.

(i). State two (02) properties of a discrete probability distribution.

$$0 \le p(x) \le 1$$
 and
$$\sum p(x) = 1$$
 ----- $(1x2 = 2 \text{ Marks})$

(ii). A discrete random variable has the following probability distribution.

x	D	1	2	3	4	5
<i>x</i> ²	0	1	4	9	6	25
P(X=x)	.1).1).2).2	.3).1
x.P(x)	0).1).4).6	.2).5
$x^2.P(x)$.1).1).8	1.8	.8	2.5

a) Verify that P(x) is a probability distribution.

$$\sum P(x) = 0.1 + 0.1 + 0.2 + 0.2 + 0.3 + 0.1 = 1$$

since $\sum P(x) = 1$, it is a probability distribution. ----- (2 Marks)

b) Find the following:

a.
$$P(2 \le x \le 4) = P(x = 2) + P(x = 3) + P(x = 4)$$

= $0.2 + 0.2 + 0.3 = 0.7$ ----- (2 Marks)

b. Expected value

$$E(x) = \sum xp(x)$$

 $= 0 + 0.1 + 0.4 + 0.6 + 1.2 + 0.5 = 2.8$ ------ (3 Marks)
c. Variance
 $\sigma^2 = E(x^2) - (E(x))^2$
 $E(x^2) = \sum x^2 P(X = x^2) = 0.1 + 0.1 + 0.8 + 1.8 + 4.8 + 2.5 = 10.1$ ---- (2 Marks)
 $\sigma^2 = 10.1 - 2.8 = 7.3$ ------ (2 Marks)

(iii). The average number of accidents at a level-crossing every year is 5. Calculate the probability that there are exactly 3 accidents there this year.

$$\mu = 5$$

$$P(x = k) = \frac{\mu^k e^{-\mu}}{k!}$$

$$P(x = 3) = \frac{e^{-5}5^3}{3!} = 0.14 ----- (3 Marks)$$

- (iv). The download time of a resource web page is normally distributed with a mean of 6.5 seconds and a standard deviation of 2.3 seconds.
 - a) What proportion of page downloads take less than 5 seconds?

b) What is the probability that the download time will be between 4 and 10

c) How many seconds will it take for 35% of the download to be completed?

For
$$p = 0.35$$
, $Z = -0.38$
Hence, $-0.38 = \frac{X - 6.5}{2.3}$
 $\Rightarrow X = -0.38 \times 2.3 + 6.5 = 5.63$

(3 Marks) i.e., 35% of downloads are completed in 5.6 seconds or less.

(S)

seconds?