

Z534: Final Project

Aishwarya Iyer Maiyaporn Phanich Rohit Zawar

+ Task 1: Categories Prediction

Predict restaurant's categories from review texts

Solution

- Topic Modelling (Latent Dirichlet Allocation)
 - Group businesses together by their category
 - Concatenate all reviews within the same group
 - Train LDA to find distributions over K topics for each category
- Predict categories by measuring topics similarity between review text and category documents
 - Cosine Similarity
 - Hellinger Distance
- Evaluate precision, recall, and F-measure

Tools and Library

- Pandas Python Data Analysis Library
- NLTK Natural Language Toolkit
- Gensim Topic modelling library
- Numpy, Scipy Scientific computing library
- Matplotlib Plotting library
- Word cloud Word cloud generator

Data and Pre-processing

- Select only restaurant businesses from the dataset
- Pick the top 25 populated categories by number of reviews
 - 6,620 restaurants
 - 319,431 reviews
 - 119,623 users
- Pre-process review texts
 - Remove stop words and punctuation
 - Remove word with less than 3 characters
 - Lemmatization
 - Remove extreme words (less than 20% and more than 70%)

⁺ Top 25 categories

Experiment

- Split the data into 60:20:20
 - Training (191661 reviews)
 - Validation (63887 reviews)
 - Test (63884 reviews)
- Group training data by categories and combine texts within group
 - 25 categories/documents
 - 18498 unique tokens after pre-processing
- Train LDA model with training set
 - Batch training with 20 iterations
 - Different values of K from 50 to 700 (+50)

Experiment (Cont'd)

- Estimate the number of topics (K) from validation set
 - Calculate similarity score for each review and all training documents
 - Assign the category from the most similar document as a prediction
 - Calculate precision, recall, and F-measure of the predicted categories and the actual categories
 - Pick k that gives the best results
- Repeat the same process for the selected k on test set
- Compare the results with baseline system (TF-IDF)

+ Cosine Similarity

+ Hellinger Distance

+ Category - Mexican

[(249, 0.70121786618165927), (256, 0.085152231945685691), (158, 0.082377171771929214)]

+ Category - Japanese

[(199, 0.71582295325677625), (97, 0.092941510768914437), (256, 0.074904510006921415)]

+ Category - Barbeque

[(158, 0.99954876376874924)]

+ Category - Italian, Pizza, Sandwiches

[(17, 0.86010425652878764), (158, 0.068995143099881459), (256, 0.036552512147857014)]

+ Category - French

[(58, 0.67275509702210834), (256, 0.088202317335136893), (158, 0.060950497077218002)]

Results

Baseline: TF-IDF

	Precision	Recall	F-Measure
Cosine Similarity	0.4373097	0.379436	0.395036
Hellinger Distance	-	-	-

LDA with K=350

	Precision	Recall	F-Measure
Cosine Similarity	0.421972	0.356173	0.372198
Hellinger Distance	0.412693	0.257169	0.301927

Summary

- Stopwords list is very important!!
- LDA is a time consuming model to train
- Hard to determine training parameters
 - Number of topics (k)
 - Number of iterations (i)
- High number of k gives repetitive words in many topics

+ Task 2: Rating Prediction

Predict review rating from review texts

Solution

- Multi-class classification/regression problem
- Classes = [1, 2, 3, 4, 5] Stars
- Preprocess review data to club all reviews of same user
- Process review text and perform Sentiment Analysis to extract features
- Train 80% dataset and test 20% dataset for each user model
- Evaluation Metrics : Accuracy, RMSE, Precision, Recall, F-Measure

Data Preprocessing

- Total number of Reviews : 1, 125, 458
- Total number of Distinct Users : 252, 898
- Users with > 100 reviews: 392
- Clubbed reviews of 392 users together
- Tool: MongoDB

Data Preprocessing (Contd..)

Processed Data JSON format: "user id": "....", "reviews": { review_id:"...", text:".....", business_id:"...", stars: "..." }, { review_id: "...", text: "....", business_id: "...", stars: "..." },

Sentiment Analysis

- For each user model,
 - extract sentiment of each review
 - Sentiment classes: 5
 - very negative, neg, neutral, positive, very positive
- Before sentiment analysis, process text:
 - tokenize
 - sentence split
 - parse
- Then perform sentiment analysis on each sentence of review text
- Tool: Stanford NLP parser

Machine Learning

■ Tool:Weka

■ Train model for every user

Features				Classes	
Normalized Count of 'negative' sentences	No. of Stars (1,2,3,4,5)				

- Split dataset: Training set 80%, Testing set 20%
- Algorithms: J48, Random Forest, SVM

Evaluation

- 1. As a Classification problem
- 2. As a Regression problem

Metrics:

- Accuracy
- Precision
- Recall
- F-Measure
- Root mean squared error

Evaluation - Classification problem

J48 Algorithm:

Accuracy	Precision	Recall	F-measure	RMSE
52.9239	0.233	0.482	0.314	0.3661

Summary

- Sentiment Analysis of Stanford NLP parser is very slow
- Results are good for straightforward sentences, but not very reliable in other cases
 Eg. "OMG, does any more need to be said about this place???"
- Could have considered more features for machine learning?
 - dependency between sentences of a text
 - n grams etc

Things we learnt:

- Information Retrieval concepts and models
- NLP and Machine learning concepts and algorithms
- How IR, NLP and ML are inter-dependent
- Application of each and their pros and cons
- Various standard libraries available in each
- How to handle HUGE datasets!

THANK YOU:)