Rethinking Self-Supervised Learning From the Perspective of Distance Preserving

Tianyang Hu Noah's Ark Lab

Pretrained Models Are Powerful

Image classification

Self Supervised Contrastive (from Google's blog)

Method	PACS	VLCS	OfficeHome
ERM [†]	85.5	77.5	66.5
IRM^\dagger	83.5	78.6	64.3
GroupDRO [†]	84.4	76.7	66.0
I-Mixup [†]	84.6	77.4	68.1
MMD^\dagger	84.7	77.5	66.4
SagNet [†]	86.3	77.8	68.1
ARM^\dagger	85.1	77.6	64.8
$VREx^{\dagger}$	84.9	78.3	66.4
RSC^{\dagger}	85.2	77.1	65.5
SWAD	88.1	79.1	70.6
			ZooD
Single*	96.0	79.5	84.6
Ensemble*	95.5	80.1	85.0
F. Selection*	96.3	80.6	85.1

(from our model zoo paper)

Latent space generative modeling

- VQGAN (2021)
- Parti by Google (2022)
- CM3leon by Meta (2023)
- DALL·E 2 by OpenAI (2022)
- Stable Diffusion (2021)
- DiT (2022)

Characterizing Features From Self-Supervised Learning

Theoretical understanding of SSL is still lacking.

- What are the learned features?
- How does it depend on the (augmented) data?
- Why is the feature useful for downstream tasks?

Core: preserving distributions in different dimensions

How to measure the **closeness** between p_z and p_x ?

Consider sample size 100 and $x \in R^{10}$ and $z \in R^2$.

• Gromov-Wasserstein distance [1]: to pairwise

$$GW_p(c_{\mathcal{X}}, c_{\mathcal{Y}}, \mu, \nu) = \left(\inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X}^2 \times \mathcal{V}^2} |c_{\mathcal{X}}(x, x') - c_{\mathcal{Y}}(y, y')|^p d\pi(x, y) d\pi(x', y')\right)^{\frac{1}{p}},$$

Projection/embedding to same dimension [2]

$$D^+(P_x, P_z) := \inf_{P_{\widehat{x}} \in \Phi^+(P_z, d)} D(P_x, P_{\widehat{x}}),$$

[1] Memoli. *Gromov–Wasserstein distances and the metric approach to object matching*. Foundations of Computational Mathematics, 2011 [2] Cai and Lim. *Distances between probability distributions of different dimensions*. IEEE Transactions on Information Theory, 2020

in different dimensions By 2-pair joint density By projection/embedding p(x,x') vs. p(z,z')p(x) vs. p(g(z))**Contrastive learning (CL) Encoder-Decoder Stochastic Neighbor GAN Embedding (SNE)**

"Distance" btw distributions

[3] Hu, T., Liu, Z., Zhou, F., Wang, W., & Huang, W., Your Contrastive Learning Is Secretly Doing Stochastic Neighbor Embedding. ICLR 2023

[4] Hu, T., Chen, F., Wang, H., Li, J., Wang, W., Sun, J., & Li, Z., *Complexity Matters: Rethinking the Latent Space for Generative Modeling*. arXiv preprint 2307.08283

Characterizing Features From Self-Supervised Learning

Core: preserving **distributions** in **different dimensions**

For Contrastive Learning [3]:

- The learning process is matching the pairwise joint distribution
- Data augmentation in SSCL specifies the pairwise similarity
- Insights from SNE can be used to improve SSCL, both dimensional efficiency and out-of-distribution generalization

For generative modeling in latent space [4]:

- We characterize the optimal latent distribution from the perspective of distribution matching
- Complexity matters: optimality in terms of minimizing the required complexity.
- Decoupled AutoEncoder (DAE) training improves the latent distribution, resulting in better performance with lower complexity

By 2-pair joint density By projection/embedding p(x,x') vs. p(z,z')p(x) vs. p(g(z))**Contrastive learning (CL) Encoder-Decoder Stochastic Neighbor GAN Embedding (SNE)**

"Distance" btw distributions

in different dimensions

[3] Hu, T., Liu, Z., Zhou, F., Wang, W., & Huang, W., *Your Contrastive Learning Is Secretly Doing Stochastic Neighbor Embedding*. ICLR 2023
[4] Hu, T., Chen, F., Wang, H., Li, J., Wang, W., Sun, J., & Li, Z., *Complexity Matters: Rethinking the Latent Space for Generative Modeling*. arXiv preprint 2307.08283

Background — Contrastive learning

Self-supervised contrastive learning (SSCL) has drawn massive attention recently with many SoTA models following this paradigm in both CV and NLP.

Key steps:

- 1. Data augmentation
- 2. Learning feature mapping z = f(x) by the training objective. The most Typical loss is the InfoNCE (in SimCLR, MoCo, CLIP, etc.):

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)},$$

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

Alignment: Similar samples have similar features. (Figure inspired by Tian et al. (2019).)

Uniformity: Preserve maximal information.

Wang, T., & Isola, P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. *ICML 2020*.

Background — Stochastic neighbor embedding

SNE is a popular method for visualizing high-dimensional data in 2D. Given $x_1, ..., x_n$, the goal of SNE is to find $z_1, ..., z_n$ that **preserves** as much as **neighboring information** as possible.

Q1: How is neighboring info modeled?

A1: By using (conditional) Gaussian likelihood. We have P and Q.

$$P_{j|i} = \frac{\exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_k\|_2^2 / 2\sigma_i^2)},$$

Q2: How is the neighboring info preserved?

A2: By minimizing the KL-divergence. Matching Q to P.

$$\inf_{\boldsymbol{z}_1, \dots, \boldsymbol{z}_n} \sum_{i=1}^n \sum_{j=1}^n P_{j|i} \log \frac{P_{j|i}}{Q_{j|i}}.$$

Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine learning research 9.11 (2008).

Contrastive learning vs Stochastic Neighbor Embedding

The goal of SSCL, learning feature representations from unlabeled data, coincides with that of the classic method --- **Stochastic Neighbor Embedding (SNE).**

	SSCL	SNE
Empirical	Superb performance for CV and NLP tasks. Widely adopted for pre-training, with many OOD downstream tasks.	Does not work well for over-complicated data, e.g., CIFAR-10.
Theoretical understanding	Under-explored as to how the learned features depend on data and different components of the SSCL methods.	Far better understanding with theoretical guarantees

We would like to ask:

- Both trying to learn feature representations, are there any deep connections between SSCL and SNE?
- Can SSCL take the advantage of the theoretical soundness of SNE?
- Can SNE be revived in the modern era by incorporating SSCL?

Contrastive learning vs Stochastic Neighbor Embedding

The key observation is that SSCL can be viewed as a special case of SNE

	SNE	SSCL SimCLR
P : Pairwise sim ilarity in the in put space	By Gaussian distribution $P_{j i} = \frac{\exp(-d(\boldsymbol{x}_i, \boldsymbol{x}_j))}{\sum_{k \neq i} \exp(-d(\boldsymbol{x}_i, \boldsymbol{x}_k))}$ $d(\cdot, \cdot) \text{ is usually } \boldsymbol{\ell}_2 \text{ distance}$	$P_{j i} = \begin{cases} \frac{1}{2n}, & \text{if } \boldsymbol{x}_i \text{ and } \boldsymbol{x}_i \text{ are positive pairs} \\ 0, & \text{otherwise,} \end{cases}$ Only similarity between constructed positive pairs are nonzero
Q : Pairwise si milarity in the feature space	By Gaussian distribution $Q_{j i} = \frac{\exp(-d(f(\boldsymbol{x}_i), f(\boldsymbol{x}_j)))}{\sum_{k \neq i} \exp(-d(f(\boldsymbol{x}_i), f(\boldsymbol{x}_k)))}$ $d(\cdot, \cdot) \text{ is usually } \ell_2 \text{ distance}$	By Gaussian distribution $Q_{j i} = \frac{\exp(\sin(f(\boldsymbol{x}_i), f(\boldsymbol{x}_j))}{\sum_{k \neq i} \exp(\sin(f(\boldsymbol{x}_i), f(\boldsymbol{x}_k))}$ sim (\cdot, \cdot) is usually cosine similarity
Divergence wh en matching P to Q	KL-divergence $\inf_{z_1,\cdots,z_n} \sum_{i=1}^n \sum_{j=1}^n P_{j i} \log \frac{P_{j i}}{Q_{j i}}$	the same KL-divergence $-\log \frac{\exp(\sin(f(\boldsymbol{x}_i), f(\boldsymbol{x}_i'))/\tau)}{\sum_{\boldsymbol{x} \in \mathcal{D}_n \cup \mathcal{D}_n' \setminus \{\boldsymbol{x}_i\}} \exp(\sin(f(\boldsymbol{x}_i), f(\boldsymbol{x}))/\tau)}$

The objective of SimCLR mainly differs from the standard SNE in how **P** is specified.

SNE perspective of SSCL

The objective of SimCLR mainly differs from the standard SNE in how P is specified.

Thus, the feature learning process of SSCL can also be summarized as

- (S1) The positive pair construction specifies the similarity matrix P.
- (S2) The training process then matches Q to P by minimizing some divergence between the two specified by the training objective, e.g., KL divergence in SimCLR.
- The main difference between SNE and SSCL is the first part, where the P in SNE is usually densely filled by l_p -distance, ignoring the semantic information within rich data like images and texts.
- SSCL omits all traditional distances for vectors and only specifies semantic similarity through data augmentation, and the resulting P is sparsely filled only by positive pairs.

What are the specified distance by data augmentation?

We answer the question in part by considering domain-agnostic data augmentation, by random noise injection.

Proposition 3.2 (Gaussian noise injection). If the noise distribution is isotropic Gaussian, the induced distance is *equivalent* to the l_2 distance in \mathbb{R}^d , up to a monotone transformation.

SNE perspective of SSCL --- Practical guidance

t-SNE Style Matching:

t-SNE has significant improvement over SNE, with the main differences:

- Conditional to joint distribution
- Gaussian distribution to t-distribution, to avoid the "crowding problem"

The same advantage from SNE to t-SNE, can realized in SimCLR → t-SimCLR

$$\frac{1}{n} \sum_{i=1}^{n} -\log \frac{\left(1 + \|f(\boldsymbol{x}_i) - f(\boldsymbol{x}_i')\|_2^2 / (\tau t_{df})\right)^{-(t_{df}+1)/2}}{\sum_{1 \leq j \neq k \leq 2n} (1 + \|f(\widetilde{\boldsymbol{x}}_j) - f(\widetilde{\boldsymbol{x}}_k)\|_2^2 / (\tau t_{df}))^{-(t_{df}+1)/2}},$$

Advantages:

- Better dimensional efficiency
- Better OOD generalization

CIFAR-10 training, 200 epoch, nearest neighbor accuracy

SNE perspective of SSCL --- Practical guidance

t-SNE Style Matching:

Advantages:

- Better dimensional efficiency
- Better OOD generalization

$$\frac{1}{n} \sum_{i=1}^{n} -\log \frac{\left(1 + \|f(\boldsymbol{x}_i) - f(\boldsymbol{x}_i')\|_2^2 / (\tau t_{df})\right)^{-(t_{df}+1)/2}}{\sum_{1 \le i \ne k \le 2n} (1 + \|f(\widetilde{\boldsymbol{x}}_j) - f(\widetilde{\boldsymbol{x}}_k)\|_2^2 / (\tau t_{df}))^{-(t_{df}+1)/2}},$$

Larger scale experiments: ImageNet to OOD tasks

Table 1: Domain transfer results of vanilla MoCo-v2 and t-MoCo-v2.

Method	Aircraft	Birdsnap	Caltech101	Cars	CIFAR10	CIFAR100	DTD	Pets	SUN397	Avg.
MoCo-v2 t-MoCo-v2		44.53 53.46	83.31 86.81		95.81 96.04	72.75 78.32			56.05 59.30	

Table 2: OOD accuracies of vanilla MoCo-v2 and t-MoCo-v2 on domain generalization benchmarks.

Method	PACS	VLCS	Office-Home	Avg.
MoCo-v2	58.5	70.4		55.2
t-MoCo-v2	61.3	75.1		59.5

SNE perspective of SSCL --- Practical guidance

SSCL revive t-SNE:

- (S1) The positive pair construction specifies the similarity matrix P.
- (S2) The training process then matches Q to P by minimizing some divergence between the two specified by the training objective, e.g., KL divergence in SimCLR.

Utilizing data augmentation to specify better distance

Figure B.10: 50K CIFAR-10 training images visualization in 2D with *t*-SNE.

Characterizing Features From Self-Supervised Learning

Core: preserving **distributions** in **different dimensions**

For Contrastive Learning [3]:

- The learning process is matching the pairwise joint distribution
- Data augmentation in SSCL specifies the pairwise similarity
- Insights from SNE can be used to improve SSCL, both dimensional efficiency and out-of-distribution generalization

For generative modeling in latent space [4]:

- We characterize the optimal latent distribution from the perspective of distribution matching
- **Complexity matters**: optimality in terms of minimizing the required complexity.
- Decoupled AutoEncoder (DAE) training improves the latent distribution, resulting in better performance with lower complexity

in different dimensions By 2-pair joint density By projection/embedding p(x,x') vs. p(z,z')p(x) vs. p(g(z))**Contrastive learning (CL) Encoder-Decoder Stochastic Neighbor GAN Embedding (SNE)** Decoder

"Distance" btw distributions

[3] Hu et al. Your contrastive learning is secretly doing stochastic neighbor embedding. ICLR 2023

[4] Hu et al. Complexity Matters: Rethinking the Latent Space for Generative Modeling.

An Ideal Latent Distribution for GAN

GAN generator aims to learn $\inf_{g \in \mathcal{G}} D_h(P_x, P_{g(z)}), \ \boldsymbol{z} \sim P_z,$

- Latent distribution P_z is usually **predefined and data-** agnostic.
- Different choice of P_Z has great impact of the performance
- Many drawbacks of GAN can be traced back to the **mismatch** between P_z and P_x

How to define an ideal P_z ? Complexity is the key:

- If G has unlimited capacity, $P_{g(z)}$ and P_{x} can be arbitrarily close
- With limited capacity of *G*, the training loss of GAN can serve as a **relative measurement** of how good a latent is.

$$D^{\mathcal{G}}(P_z, P_x) := \inf_{g \in \mathcal{G}} D(P_{g(z)}, P_x).$$

- The above serves as a "distance" between P_z and P_x , which is a **generalized case** of [Cai & Lim 2020]
- The optimal latent P_z^* can be defined as the minimizer.

How to find the optimal P_z^* ?

Parametrization

- Using an encoder $P_z = P_{f(x)}$
- The above can be seen as a new type of **self-supervised** learning problem $f^* = \operatorname*{argmin}_{f \in \mathcal{F}} D^{\mathcal{G}}(P_x, P_{f(x)}).$
- Will existing contrastive learning work?

Method	IS (†)	FID (↓)
DCGAN (reproduced)	5.68	51.76
DCGAN-SimCLR	3.93	168.23
VAEGAN	5.82	48.11

Optimization

GAN training with f suffice!

$$\inf_{f \in \mathcal{F}, g \in \mathcal{G}} D(P_x, P_{g \circ f(\boldsymbol{x})}) = \inf_{f \in \mathcal{F}} \left(\inf_{g \in \mathcal{G}} D(P_x, P_{g \circ f(\boldsymbol{x})}) \right)$$
$$= \inf_{f \in \mathcal{F}} D^{\mathcal{G}}(P_x, P_{f(\boldsymbol{x})}).$$

- VQGAN is already doing it!
- The balance between F and G is critical

Informativeness of Latent

Quality of Reconstruction

DAE: Balancing Encoder vs Decoder

Let $C(\cdot)$ be some general complexity measurement.

For Reconstruction Quality:

- Intuitively, C(f) = C(g) seems the best
- Both encoder and decoder should be as powerful as possible

For Latent Informativeness:

The decoder should be relatively weaker.

To address the tradeoff:

DAE enjoys the best of both worlds!

Better Reconstruction & Latent Generative Modeling

- DCGAN on CIFAR-10
- VQGAN on FFHQ and CelabaHQ 256*256
- Diffusion Transformer (DiT) on ImageNet 256*256

Table 2: The performance of DCGAN with different latents.

Method	IS (†)	FID (↓)
DCGAN (reproduced)	5.68	51.76
DCGAN-SimCLR	3.93	168.23
VAEGAN	5.82	48.11
DAE-VAEGAN	6.16	46.12

Table 3: Reconstruction FID over FacesHQ training and validation sets, and transformer generation FID on CelebAHQ and FFHQ training sets. †: Evaluated on the publicly available pre-trained model on FacesHQ. *: Our reproduction is based on the official VQGAN implementation.

Method	Recons	truction	Generation		
Method	Train	Val	CelebaHQ	FFHQ	
VQGAN	4.81†	6.27†	10.2	9.6	
VQGAN*	4.23	5.83	9.97	10.44	
DAE-VQGAN	2.01	3.82	8.58	8.36	

DAE: Balancing Encoder vs Decoder

Let $C(\cdot)$ be some general complexity measurement.

For Reconstruction Quality:

- Intuitively, C(f) = C(g) seems the best
- Both encoder and decoder should be as powerful as possible

For Latent Informativeness:

The decoder should be relatively weaker.

To address the tradeoff:

DAE enjoys the best of both worlds!

Better Reconstruction & Latent Generative Modeling

- DCGAN on CIFAR-10
- VQGAN on FFHQ and CelabaHQ 256*256
- Diffusion Transformer (DiT) on ImageNet 256*256

Decreased Complexity

The Lipchitz constant is closer to 1.

DAE: Balancing Encoder vs Decoder

Let $C(\cdot)$ be some general complexity measurement.

For Reconstruction Quality:

- Intuitively, C(f) = C(g) seems the best
- Both encoder and decoder should be as powerful as possible

For Latent Informativeness:

The decoder should be relatively weaker.

To address the tradeoff:

DAE enjoys the best of both worlds!

Better Reconstruction & Latent Generative Modeling

- DCGAN on CIFAR-10
- VQGAN on FFHQ and CelabaHQ 256*256
- Diffusion Transformer (DiT) on ImageNet 256*256

Decreased Complexity

The Lipchitz constant is closer to 1.

Less collapsed latent:

Summary

Core: preserving **distributions** in **different dimensions**

For Contrastive Learning [3]:

- The learning process is matching the pairwise joint distribution
- Data augmentation in SSCL specifies the pairwise similarity
- Insights from SNE can be used to improve SSCL, both dimensional efficiency and out-of-distribution generalization

For generative modeling in latent space [4]:

- We characterize the optimal latent distribution from the perspective of distribution matching
- Complexity matters: optimality in terms of minimizing the required complexity.
- Decoupled AutoEncoder (DAE) training improves the latent distribution, resulting in better performance with lower complexity

in different dimensions By 2-pair joint density By projection/embedding p(x,x') vs. p(z,z')p(x) vs. p(g(z))**Contrastive learning (CL) Encoder-Decoder Stochastic Neighbor GAN Embedding (SNE)** Decoder

"Distance" btw distributions

[3] Hu, T., Liu, Z., Zhou, F., Wang, W., & Huang, W., *Your Contrastive Learning Is Secretly Doing Stochastic Neighbor Embedding.* ICLR 2023
[4] Hu, T., Chen, F., Wang, H., Li, J., Wang, W., Sun, J., & Li, Z., *Complexity Matters: Rethinking the Latent Space for Generative Modeling.* arXiv preprint 2307.08283