

planetmath.org

Math for the people, by the people.

KKM lemma

Canonical name KKMLemma

Date of creation 2013-03-22 16:26:31 Last modified on 2013-03-22 16:26:31

Owner uriw (288) Last modified by uriw (288)

Numerical id 14

Author uriw (288)
Entry type Theorem
Classification msc 54H25
Classification msc 47H10
Synonym K-K-M lemma

Related topic BrouwerFixedPointTheorem

1 Preliminaries

We start by introducing some standard notation. \mathbb{R}^{n+1} is the (n+1)-dimensional real space with Euclidean norm and metric. For a subset $A \subset \mathbb{R}^{n+1}$ we denote by diam(A) the diameter of A.

The *n*-dimensional simplex S_n is the following subset of \mathbb{R}^{n+1}

$$\left\{ (\alpha_1, \alpha_2, \dots, \alpha_{n+1}) \, \middle| \, \sum_{i=1}^{n+1} \alpha_i = 1, \quad \alpha_i \ge 0 \quad \forall i = 1, \dots, n+1 \right\}$$

More generally, if $V = \{v_1, v_2, \dots, v_k\}$ is a set of vectors, then S(V) is the simplex spanned by V:

$$S(V) = \left\{ \sum_{i=1}^{k} \alpha_i v_i , \left| \sum_{i=1}^{k} \alpha_i = 1, \quad \alpha_i \ge 0 \quad \forall i = 1, \dots, k \right. \right\}$$

Let $\mathcal{E} = \{e_1, e_1, \dots, e_{n+1}\}$ be the standard orthonormal basis of \mathbb{R}^{n+1} . So, \mathcal{S}_n is the simplex spanned by \mathcal{E} . Any element v of S(V) is represented by a vector of coordinates $(\alpha_1, \alpha_2, \dots, \alpha_k)$ such that $v = \sum_i \alpha_i v_i$; these are called a barycentric coordinates of v. If the set V is in general position then the above representation is unique and we say that V is a basis for S(V). If we write S(V) then V is always a basis.

Let v be in S(V), $V = \{v_1, v_2, \ldots, v_k\}$ a basis and v represented (uniquely) by barycentric coordinates $(\alpha_1, \alpha_2, \ldots, \alpha_k)$. We denote by $F_V(v)$ the subset $\{j \mid \alpha_j \neq 0\}$ of $\{1, 2, \ldots, k\}$ (i.e., the set of non-null coordinates). Let $I \subset \{1, 2, \ldots, k\}$, the I-th face of S(V) is the set $\{v \in S(V) | F_V(v) \subseteq I\}$. A face of S(V) is an I-face for some I (note that this is independent of the choice of basis).

2 KKM Lemma

The main result we prove is the following:

Theorem 1 (Knaster-Kuratowski-Mazurkiewicz Lemma [?]). Let S_n be the standard simplex spanned by \mathcal{E} the standard orthonormal basis for \mathbb{R}^{n+1} . Assume we have n+1 closed subsets C_1, \ldots, C_{n+1} of S_n with the property that for every subset I of $\{1, 2, \ldots, n+1\}$ the following holds: the I-th face of S_n is a subset of $\bigcup_{i \in I} C_i$. Then, the intersection of the sets $C_1, C_2, \ldots, C_{n+1}$ is non-empty.

We prove the KKM Lemma by using Sperner's Lemma; Sperner's Lemma is based on the notion of simplicial subdivision and coloring.

Definition 2 (Simplicial subdivision of S_n). A simplicial subdivision of S_n is a couple $D = (V, \mathcal{B})$; V are the vertices, a finite subset of S_n ; \mathcal{B} is a set of simplexes $S(V_1), S(V_2), \ldots, S(V_k)$ where each V_i is a subset of V of size n+1. D has the following properties:

- 1. The union of the simplexes in \mathcal{B} is \mathcal{S}_n .
- 2. If $S(V_i)$ and $S(V_j)$ intersect then the intersection is a face of both $S(V_i)$ and $S(V_j)$.

The norm of D, denoted by |D|, is the diameter of the largest simplex in \mathcal{B} .

An (n+1)-coloring of a subdivision $D=(V,\mathcal{B})$ of \mathcal{S}_n is a function

$$C: V \to \{1, 2, \dots, n+1\}$$

A Sperner Coloring of D is an (n + 1)-coloring C such that $C(v) \in F_{\mathcal{E}}(v)$ for every $v \in V$, that is, if v is on the I-th face then its color is from I. For example, if $D = (V, \mathcal{B})$ is a subdivision of the standard simplex \mathcal{S}_n then the standard basis \mathcal{E} is a subset of V and $F_{\mathcal{E}}(e_i) = i$. Hence, If C is a Sperner Coloring of D then $C(e_i) = i$ for all $i = 1, 2, \ldots, n + 1$.

Theorem 3 (Sperner's Lemma). Let $D = (V, \mathcal{B})$ be a simplicial subdivision of S_n and $C: V \to \{1, 2, ..., n+1\}$ a Sperner Coloring of D. Then, there is a simplex $S(V_i) \in \mathcal{B}$ such that $C(V_i) = \{1, 2, ..., n+1\}$.

It is a standard result, for example by barycentric subdivisions, that S_n has a sequence of simplicial subdivisions D_1, D_2, \ldots such that $|D_i| \to 0$. We use this fact to prove the KKM Lemma:

Proof of KKM Lemma. Let $C_1, C_2, \ldots, C_{n+1}$ be closed subsets of \mathcal{S}_n as given in the lemma. We define the following function $\gamma : \mathcal{S}_n \to \{1, 2, \ldots, n+1\}$ as follows:

$$\gamma(v) = \min\{i | i \in F_{\mathcal{E}}(v) \text{ and } v \in C_i\}$$

 γ is well defined by the hypothesis of the lemma and $\gamma(v) \in F_{\mathcal{E}}(v)$. Also, if $\gamma(v) = i$ then $v \in C_i$. Let D_1, D_2, \ldots be a sequence of simplicial subdivisions such that $|D_i| \to 0$. We set the color of every vertex v in D_i to be $\gamma(v)$. This is a Sperner Coloring since if v is in I-fact then $\gamma(v) \in F_{\mathcal{E}}(v) \subseteq I$.

Therefore, by Sperner's Lemma we have in each subdivision D_i a simplex $S(V_i)$ such that $\gamma(V_i) = \{1, 2, ..., n+1\}$. Moreover, $\operatorname{diam}(S(V_i)) \to 0$. By the properties of γ for every i = 1, 2, ... and every $j \in \{1, 2, ..., n+1\}$ we have that $S(V_i) \cap C_j \neq \phi$. Let u_i be the arithmetic mean of the elements of V_i (this is an element of $S(V_i)$ and thus an element of $S(V_i)$. Since $S(V_i)$ is bounded and closed we get that $S(V_i)$ and thus a converging subsequence with a limit $S(V_i)$ is closed, and for every $S(V_i)$ we have an element of $S(V_i)$ of $S(V_i)$ and thus a converging subsequence with a limit $S(V_i)$ is closed, and for every $S(V_i)$ we have an element of $S(V_i)$ of $S(V_i)$ of $S(V_i)$ is closed, and for every $S(V_i)$ we have an element of $S(V_i)$ of $S(V_i)$ of $S(V_i)$ is closed, and for every $S(V_i)$ we have an element of $S(V_i)$ of $S(V_i)$ of $S(V_i)$ and $S(V_i)$ is closed, and for every $S(V_i)$ we have an element of $S(V_i)$ of $S(V_i)$ of $S(V_i)$ is closed, and for every $S(V_i)$ and $S(V_i)$ is closed.

Therefore, L is in the intersection of all the sets $C_1, C_2, \ldots, C_{n+1}$, and that proves the assertion.

References

[1] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929) 132-137.