See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263946866

Hg o removal from simulated flue gas over CeO 2/HZSM-5

ARTICLE in ENERGY & FUELS · MARCH 2012

Impact Factor: 2.79 · DOI: 10.1021/ef201739p

CITATIONS

20

READS

47

8 AUTHORS, INCLUDING:

Caiting Li

Hunan University

88 PUBLICATIONS 561 CITATIONS

SEE PROFILE

Pei Lu

Chinese Academy of Sciences

38 PUBLICATIONS 247 CITATIONS

SEE PROFILE

Hg⁰ Removal from Simulated Flue Gas over CeO₂/HZSM-5

Xiaopeng Fan, Caiting Li,* Guangming Zeng, Xing Zhang, Shasha Tao, Pei Lu, Ya Tan, and Diqiang Luo

College of Environmental Science and Engineering, and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, People's Republic of China

ABSTRACT: The effects of zeolite (HZSM-5 was chosen for use) modified by CeO₂ (CeO₂/HZSM-5) on the gas-phase elemental mercury (Hg⁰) removal were investigated under simulated flue gas. The Brunauer-Emmett-Teller surface area analyses, powder X-ray diffraction measurements, and thermogravimetric analyses were employed to characterize the samples. The experimental results showed that there was a synergetic effect between CeO₂ and HZSM-5 on Hg⁰ removal. The acidic sites of HZSM-5 could effectively adsorb Hg⁰ from the flue gas, and CeO₂ could significantly enhance the oxidation of adsorbed Hg⁰. However, the surface area of CeO2/HZSM-5 decreased because of excess CeO2, which was detrimental to its Hg⁰ removal efficiency. Moreover, the temperature tests manifested that 6% CeO₂/HZSM-5 achieved high Hg⁰ removal efficiency at low reaction temperatures (<300 °C). Additionally, the Hg⁰ removal efficiencies of CeO₂/HZSM-5 were found to be significantly affected by the flue gas components. In the presence of O₂, promotional effects of NO and SO₂ on the Hg⁰ removal were found, while the presence of H₂O inhibited the Hg⁰ removal in this experiment. Furthermore, after regeneration, CeO₂/HZSM-5 still possessed good reactivity and its Hg⁰ removal efficiency stayed above 92% in 30 h.

1. INTRODUCTION

Mercury can be released into the atmosphere easily because of its extremely high volatility. It will then deposit into rivers, lakes, and oceans, producing the most toxic species of mercury, methylmercury, which can bioaccumulate within living organisms from the food chain and cause adverse effects on human health. 1-4 According to reports, the mercury emissions from coal-fired plants account for approximately one-third of the anthropogenic mercury emissions. 5,6 Thus, development of technologies governing/controlling the mercury emissions from coal-fired power plants has become an urgent issue.

Mercury in coal-fired flue gas is often presented as element mercury (Hg⁰), oxidized mercury (Hg²⁺), and particle-bound mercury (Hg^p). As reported, different species of mercury have different physical and chemical properties.⁸ Hg²⁺ is soluble in water and has the tendency to associate with particulate matter. Hence, Hg^p and Hg^{2+} can be removed by air pollution control devices, such as electrostatic precipitators (ESPs) or scrubbers. However, most Hg^0 are hardly captured by these devices because of its low melting point (-38.9 °C), high equilibrium vapor pressure (0.25 Pa at 25 °C), and low solubility in water (60 mg/m³ at 25 °C). Therefore, with consideration of the properties of Hg²⁺, Hg^p, and Hg⁰, studies for the Hg⁰ removal method should be first taken into account.

Among technologies under development, activated carbon (AC) injection is widely employed as the leading technology for the control of mercury in coal-fired utility plants, because almost all coal-fired power plants are equipped with an ESP or a baghouse. 9-11 However, the AC has limited mercury capture capacity, with carbon/mercury weight ratios of 2843-4361 being common.¹² To reduce the injection rate of AC and improve the efficiency of mercury capture, ACs have been chemically modified, often using oxidizers, such as Br, Cl, and sulfur-containing substances. ^{10,13-15} These studies showed that chemically modified ACs had a stronger capacity for Hg⁰ removal. However, obvious disadvantages, such as higher

operation expenses, poor capacity, narrow temperature range of application, and slow regeneration and adsorption rates, were identified via this technology, thus restricting their wide application. 9,10,16,17

As reported, promoting the Hg⁰ oxidation is another current technology for the control of Hg⁰, on the basis that Hg²⁺ can be removed through currently available pollution control devices. Recently, some transition-metal oxides, such as Fe₂O₃, V₂O₅, CuO, Mn₂O₃, and RuO₂, have been extensively investigated as potential Hg⁰ oxidation catalysts, and it has been observed that these metal oxides were helpful to the oxidation of Hg^0 to Hg^{2+} $^{18-21}$ In addition, with the spread of selective catalytic reduction (SCR) installation in coal-fired power plants for NO emission control, the co-benefit effect of the SCR system for oxidizing Hg^0 has been widely studied. The results showed that commercial SCR catalysts were effective for Hg⁰ conversion in the flue gas. However, the predictability of the removal extent was unreliable. Moreover, the required operating temperatures for those commercial catalysts applied in industries are typically 300-500 °C, which makes it necessary to locate the SCR unit at the upstream of the denitration setup and/or particulate control device to avoid reheating the flue gas. Unfortunately, the life span of catalysts is shortened because of the chronic exposure to high concentrations of SO₂ and ashes. The decomposition of Hg²⁺ (especially HgCl₂) is easy to take place at this temperature range.²⁸ Therefore, it is desirable to develop the lowtemperature (80-300 °C) SCR catalysts, which cannot only avoid those problems but also perform higher removal efficiencies for NO and Hg⁰. Ji et al.²⁹ found that MnO_x supported on titania was effective for both Hg⁰ capture and

Received: November 8, 2011 Revised: February 27, 2012 Published: February 29, 2012

SCR at 200 °C. Li et al. 30 observed that the CeTi catalyst exhibited high Hg⁰ oxidation activity from 150 to 250 °C.

In previous works, it was reported that HZSM-5, with higher mechanical strength and chemical and thermal stability, performed high activity on low-temperature SCR of NO.^{31–33} In addition, CeO₂ was found to have superior activity and stability on Hg⁰ capture.^{34,35} Those results led to a speculation that Hg⁰ could be efficiently controlled over CeO₂/HZSM-5 in SCR systems. Therefore, in this work, CeO₂/HZSM-5 was developed and some related experimental parameters, including the SiO₂/Al₂O₃ ratio, reaction temperature, CeO₂ loading value, and flue gas component, on Hg⁰ removal efficiencies were evaluated to produce an effective Hg⁰ emission control strategy for coal-fired power plants.

2. MATERIALS AND METHODS

2.1. Sample Preparation. Commercially available HZSM-5 (with SiO₂/Al₂O₃ ratios of 25, 50, and 100) purchased from NanKai University was used in this study as parental zeolites. Samples of CeO₂/HZSM-5 were prepared as follows: First, Ce(NO₃)₃·6H₂O was dissolved in deionized water to form the solution. Then, HZSM-5 was added to the solution with stirring in a proportion corresponding to different loading values (ρ , where ρ is the mass ratio of CeO₂/HZSM-5) varying from 2 to 12 wt %. Third, the samples were dried in an electric blast drying oven at 120 °C for 24 h and then calcined at 450, 550, or 650 °C in air for 5 h. The obtained samples, designated as ρ CeO₂/HZSM-5 (A)-T (where "A" denotes the SiO₂/Al₂O₃ ratio and "T" denotes the calcination temperature), were crushed and sieved to 40-60 mesh particles for future use. Besides, to investigate the reactivation ability of the samples, the recycling sample was heated in a flow of N₂ at 650 °C for 6 h and then cooled to ambient temperature for future use.

Figure 1. Schematic diagram of the experimental setup.

2.2. Catalytic Test. A schematic diagram of the experimental setup is shown in Figure 1. The apparatus consisted of a simulated flue gas system, a fixed-bed reactor, and a gas analyzer system. The composition of the basic flue gas included 8% O_2 , 1000 ppm NO, 1200 ppm SO_2 , 12% CO_2 , 10% H_2O , and balance gas N_2 . The N_2 flow was divided into two branches: one branch converged with the individual streams of NO, CO_2 , SO_2 , H_2O , and O_2 and formed the main gas flow, and the other branch (150 mL/min) passed through a Hg^0 permeation tube (VICI Metronics) and introduced the saturated Hg^0 vapor into the reactor. The Hg^0 permeation tube was placed in a U-shaped glass tube, which was immersed in a constant temperature water bath to ensure a constant Hg^0 permeation rate. The Hg^0 concentration in this system was controlled at $20.02 \pm 1 \ \mu g/m^3$.

The total flow was controlled at 0.5 L/min in each experiment, corresponding to a space velocity of about $10\ 000\ h^{-1}$.

Because quartz had been demonstrated to have good chemical resistance and inertness toward mercury, a quartz tube with an inner diameter of 10 mm held in a vertical position was used as the reactor, which was surrounded by a large tubular furnace, and about 0.1 g of the samples was packed in it. A temperature control device was employed to keep the fixed-bed reactor at the desired temperature. The Hg^0 concentration at both the inlet and outlet of the fixed-bed reactor were measured by the Hg^0 analyzer. After each analysis, the exhaust gas from the mercury analyzer was introduced into the AC trap before being introduced into the air. During the experiment, the experimental gas first bypassed the quartz tube and was introduced into the catalytic system until the desired inlet mercury concentration had been established for about 20 min. For the whole tests, the Hg^0 removal efficiency (η) was quantified by a comparison between the inlet and outlet Hg^0 concentration of the quartz tube. η is defined as reaction 1

$$\eta_{Hg0} = \frac{Hg^0_{inlet} - Hg^0_{outlet}}{Hg^0_{inlet}} \times 100\%$$
(1)

where Hg^0_{in} is the inlet Hg^0 concentration of the quartz tube and Hg^0_{out} is the outlet Hg^0 concentration of the quartz tube.

2.3. Analytical Methods. Textural characteristics of the samples were determined by nitrogen adsorption at -196 °C on a Micromeritics ASAP 2010 analyzer. The specific surface area was calculated on the basis of the Brunauer-Emmett-Teller (BET) method. The pore size distribution was characterized using the desorption branches of the N2 adsorption isotherm and the Barret-Joyner-Halenda (BJH) formula. All of the samples were degassed at 120 °C prior to BET measurements. The scanning electron microscopy (SEM) photographs of the samples were obtained by means of JSM-6700F after vacuum plating Au film. X-ray diffraction (XRD) measurements of the samples were carried out with a Rigaku Rotaflex D/Max-C system with Cu K α (λ = 0.1543 nm) radiation to determine the crystal species distribution of the sample. The samples were loaded on a sample holder with a depth of 1 mm. Thermogravimetric analysis (TGA; STA-409PC/PG) was used to determine the speciation of mercury deposits on used samples. To promote the experiment so that the capacity of the composite material can be more easily tested, the samples were first exposed to the simulated flue gas with 200 $\mu g/m^3$ Hg⁰ for about 400 h. For each test, about 10 mg of samples was heated from room temperature to 800 °C at the heating rates of 10 °C/min under a nitrogen atmosphere (>99.99%). The flow rate of N_2 was kept at 100 mL/min to ensure an inert atmosphere during the run. During the experiments, the inlet and outlet Hg⁰ concentrations were measured online by the portable mercury analyzer (model QM201G), which was based on cold-vapor atomic fluorescence spectroscopy. The detection limit was 0.001 μ g/ m³, and the nominal range was $0.01-100 \mu g/m^3$.

3. RESULTS AND DISCUSSION

3.1. Sample Characteristics. The BET surface areas and volumes of the parental and modified HZSM-5 are listed in Table 1. It could be observed that the fresh HZSM-5 had the highest BET surface area and the largest pore volume, 340 m²/g and 0.170 cm³/g, respectively, but they decreased with the increase of the CeO₂ loading value. Especially, when the CeO₂ loading value reached 12%, the BET surface area sharply reduced to 240.20 m²/g and the total pore volume reduced to 0.141 m³/g.

The SEM photographs of HZSM-5 and 6% CeO₂/HZSM-5 (50)-550 are displayed in Figure 2. As shown in Figure 2a, HZSM-5 was composed of numerous ellipse crystal particles and the average particle size was about 50–200 nm. The surface of HZSM-5 was smooth, and the microcrystal was clear, without any adsorbed particle. When Figure 2b is compared to

Table 1. Specific Surface Area and Volume of the Samples

samples	BET surface area (m^2/g)	total pore volume (cm^3/g)
HZSM-5	340.32	0.170
3% CeO ₂ /HZSM-5 (50)-550	319.23	0.163
6% CeO ₂ /HZSM-5 (50)-550	297.63	0.158
9% CeO ₂ /HZSM-5 (50)-550	257.87	0.147
12% CeO ₂ /HZSM-5 (50)-550	240.20	0.141
first regenerated 6% CeO ₂ /HZSM-5 (50)-550	278.58	0.151
second regenerated 6% CeO ₂ / HZSM-5 (50)-550	275.39	0.150

(a)

Figure 2. SEM photographs of (a) HZSM-5 zeolite and (b) 6% ${\rm CeO_2/HZSM-5}$ (50)-550.

Figure 2a, there were more white-circled spots on the surface of CeO₂/HZSM-5, which could be ascribed to CeO₂ particles. Meanwhile, these particles were widely dispersed on the HZSM-5 surface, and only a few agglomerations existed; however, its particle size was too small to be recognized.

The XRD patterns of HZSM-5 and $CeO_2/HZSM-5$ (50)-550 are shown in Figure 3. The peaks at the ranges of $2\theta = 7-9^{\circ}$ and $23-25^{\circ}$ in the XRD pattern were corresponding to the specific peaks of HZSM-5, which could be detected over all of the samples. However, there were no apparent characteristic

Figure 3. XRD patterns of HZSM-5 and CeO₂/HZSM-5 (50)-550.

peaks ascribable to CeO_2 over 6% $CeO_2/HZSM$ -5 (50)-550, which indicated that CeO_2 was highly dispersed on the surface of HZSM-5.³⁶ The result was in accordance with the result of Figure 2b and Table 1. Nevertheless, a weak crystal phase of CeO_2 was detected for 9% $CeO_2/HZSM$ -5 and 12% $CeO_2/HZSM$ -5, powerfully indicating that the surface of HZSM-5 is occupied by CeO_2 as the CeO_2 loading increases to somewhere between 6 and 9%.

3.2. Effect of the SiO_2/Al_2O_3 Ratio. The effect of the SiO_2/Al_2O_3 ratio on the Hg^0 removal efficiency was investigated using 6% $CeO_2/HZSM$ -5-550 with the different SiO_2/Al_2O_3 ratios (25, 50 and 100) over a range of reaction temperatures (80–320 °C). The experimental results are shown in Figure 4. With the increase of the SiO_2/Al_2O_3 ratio,

Figure 4. Effect of the SiO_2/Al_2O_3 ratio on the performance of 6% $CeO_2/HZSM$ -5-550.

the activity of 6% $CeO_2/HZSM$ -5-550 for the aimed reaction obviously decreased at 80 °C. However, when the reaction temperature increased to 120 °C, the Hg^0 removal efficiencies of all samples were enhanced and the efficiency of the sample with the SiO_2/Al_2O_3 ratio of 50 was superior to 25. With the continued increase of the temperature to 320 °C, the Hg^0 removal efficiencies of 6% $CeO_2/HZSM$ -5 (25)-550 and 6% $CeO_2/HZSM$ -5 (100)-550 reduced, while the efficiency of 6% $CeO_2/HZSM$ -5 (50)-550 changed slightly in this temperature

scope. This indicated that $6\% \text{ CeO}_2/\text{HZSM-5}$ (50)-550 not only had the wide temperature window but could also offer excellent Hg^0 removal efficiency.

3.3. Effect of the Calcination Temperature. To further evaluate the activity of this sample, the Hg⁰ removal efficiencies of 6% CeO₂/HZSM-5 (50) calcined at 450, 550, and 650 °C were tested under different reaction temperatures (80–320 °C), and the results are shown in Figure 5. From these results,

Figure 5. Effect of the calcination temperature on the performance of 6% CeO₂/HZSM-5 (50).

it could be seen that the conditions of calcinations had an important effect on the performance of the sample. When the calcination temperature changed from 450 to 550 $^{\circ}\text{C}$, the Hg^0 removal efficiency increased an average of 5% in the whole reaction temperature range but no obvious increase was detected when the reaction temperature was increased from 550 to 650 $^{\circ}\text{C}$. This result illustrated that the decomposition of cerium nitrate on HZSM-5 seemed to be complete when the calcination temperature reached 550 $^{\circ}\text{C}$. On the basis of the above results, the reasonable calcination temperature was chosen as 550 $^{\circ}\text{C}$ for the fabrication of CeO₂/HZSM-5.

3.4. Effect of the CeO₂ Loading Value. The effects of the CeO₂ loading value on Hg⁰ removal efficiency were studied over 0, 3, 6, 9, and 12% CeO₂/HZSM-5 (50)-550 under 200 °C. As shown in Figure 6, the Hg⁰ removal efficiency of HZSM-5 was noticeably enhanced by CeO₂. For example, the Hg⁰ removal efficiency of HZSM-5 was only 50%, while the minimal Hg⁰ removal efficiency still had 75% over CeO₂-modified HZSM-5. Moreover, the more the loading value of CeO₂ was loaded, the higher the Hg⁰ removal efficiency. However, when the loading value of CeO₂ was greater than 6%, correspondingly, the Hg⁰ removal efficiency would be weakened. From Table 1, it could be found that the surface area of CeO₂/ HZSM-5 was reduced (about $47 \text{ m}^2/\text{g}$) with the increase of the loading value from 6 to 9%. This was due to the fact that the existence of agglomerated CeO₂ (shown in Figure 3) over the external surface of the samples caused destruction of the thin pore walls and blocking of internal porosity, which affected effective contact between Hg⁰ and CeO₂/HZSM-5 and led to the decrease of the Hg⁰ removal efficiency.^{36,37}

3.5. Effect of the Flue Gas Components. To better evaluate the Hg⁰ removal ability of CeO₂/HZSM-5, the effects of individual flue gas components were examined over 6%

Figure 6. Effect of the CeO_2 loading value on the performance of $CeO_2/HZSM-5$ (50)-550.

 ${\rm CeO_2/HZSM\text{-}5}$ (50)-550 at 200 °C, and the results are illustrated in Figure 7.

Figure 7a shows the effect of different O₂ concentrations (0, 5, 8, and 12%) in the flue gas on Hg⁰ removal efficiency. About 67% Hg⁰ removal efficiency was achieved in the absence of O₂ in the flue gas, but when the O2 concentration was increased to 5%, the Hg⁰ removal efficiency reached almost 90%. Meanwhile, the Hg⁰ removal efficiency continued to be enhanced with the rise of the O₂ concentration. It indicated that O₂ in the flue gas system played a significant role in Hg⁰ removal over CeO₂/HZSM-5. The influences of SO₂ on Hg⁰ removal efficiency of 6% CeO₂/HZSM-5 (50)-550 were investigated in the presence of 0-1600 ppm SO₂. As depicted in Figure 7b, when the concentration of SO₂ was changed from 0 to 800 ppm, the Hg⁰ removal efficiency of 6% CeO₂/HZSM-5 (50)-550 would be increased from 89 to 95.2%. However, as the concentration of SO₂ continued to increase, no obvious increase of the Hg⁰ removal efficiency was detected. The Hg⁰ removal ability of 6% CeO₂/HZSM-5 (50)-550 was studied when 0-1400 ppm NO was individually added into the flue gas, and the results are shown in Figure 7c. The Hg⁰ removal efficiency of 6% CeO₂/HZSM-5 (50)-550 was promoted by NO, and the promotion was proportional to the concentration of NO. Figure 7d shows the effect of H₂O on Hg⁰ removal efficiency without adding H2O and with adding 8% H2O into the experimental flue gas. When 8% H₂O was added into the flue gas, only 82.6% of Hg⁰ was removed. It indicated that the presence of H₂O restrained the Hg⁰ removal ability of 6% $CeO_2/HZSM-5$ (50)-550.

3.6. Reaction Mechanism of the Hg⁰ Removal. According to reports, the reaction mechanism of Hg⁰ removal was attributed to the combined action of physisorption and chemisorption. ^{34,35,38,39} First, Hg⁰ in the flue gas collided with the materials and was reversibly adsorbed on the surface of the materials because of the van de Waals force, which ascribed to the physisorption. This physisorption was mainly dependent upon the acid sites of the surface of the sample and would be weaken with the increase of the reaction temperature. ⁴⁰ Second, the adsorbed Hg⁰ could be oxidized by some active constituent on the surface of the sample, leading to the formation of new mercury species. This function put down to the chemisorption, which was irreversible and would boost with the increase of the reaction temperature because of the formation of more

Figure 7. Effect of flue gas components on the Hg^0 removal efficiency of 6% $CeO_2/HZSM-5$ (50)-550 at 160 °C: (a) O_2 (b) SO_2 (c) NO, and (d) H_2O .

chemical bonds between them. ⁴¹ This mechanism could be used to explain that the ${\rm Hg^0}$ removal efficiency of 6% ${\rm CeO_2/HZSM-5}$ increased and then decreased with the increase of the reaction temperature in Figure 4. When the reaction temperature increased from 80 to 120 °C, the potentiation of chemisorption was stronger than the inhibition of physisorption, but the contrary was indeed true when the temperature exceeded 120 °C.

Furthermore, CeO₂/HZSM-5 with a Si/Al ratio of 25 performs the highest Hg⁰ removal efficiency at lower temperatures in Figure 4. This was because the acid sites of the CeO₂/HZSM-5 surface were attributed to Al in the framework of HZSM-5.³² CeO₂/HZSM-5 with a Si/Al ratio of 25 had more acid sites, which could perform stronger physisorption at a lower temperature (80 °C). However, the Hg⁰ removal efficiency of CeO₂/HZSM-5 (50)-550 was superior to CeO₂/HZSM-5 (25)-550 at 120 °C in Figure 4. This was due to the fact that the electrostatic field of HZSM-5 in favor of the redox activity of HZSM-5 would be strengthened

with the increase of the Si/Al ratio, which enhanced the chemisorption of the remover.³³ Therefore, the potentiation of chemisorption owing to a higher Si/Al ratio was superior to the inhibition of physisorption. These results further verified the conclusion that the Hg⁰ remover was attributed to the combined action of physisorption and chemisorption.

To further confirm the mechanism of Hg⁰ removal over CeO₂/HZSM-5, TGAs of recycling 6% CeO₂/HZSM-5 were employed, and the results are shown in Figure 8. As shown in Figure 8, there was a quick mass loss as the temperature increases up to 100 °C, which corresponded to the loss of desorbed water. When the weight loss of the samples is compared in the presence and absence of Hg⁰, the excess weight loss between 50 and 300 °C was attributed to the physical adsorption of mercury, which was often presented as Hg⁰.¹² The amount of Hg⁰ present on the sample was about 7 mg/g based on the mass balance calculation. The other excess weight loss between 400 and 600 °C was attributed to chemical adsorption of mercury, which was presented as HgO and/or

Figure 8. TGAs of the samples.

 ${\rm HgSO_4}$, because the thermodecomposition of HgO and HgSO₄ often took place in the 430–560 and 500–600 °C temperature intervals, respectively. The amount of Hg²⁺ on the sample was about 17 mg/g. Figure 8 revealed that Hg⁰ was captured as both Hg⁰ and Hg²⁺, while the chemisorption was the crucial factor for the Hg⁰ removal over CeO₂/HZSM-5.

It could be seen from Figures 6 and 7a that the presence of CeO₂ was favorable for the Hg⁰ removal of 6% CeO₂/HZSM-5 in the presence of O₂. Moreover, it had also been proven that lattice oxygen of CeO₂ was the most abundant reactive intermediate that could serve as the oxidant of Hg^{0.39,30,42} Therefore, it was concluded that the oxidation of Hg⁰ was attributed to the activity of CeO₂. CeO₂ has the cubic fluorite structure and typically possesses a relatively high density of oxygen vacancies. On the other hand, the electron structure of Ce is 4f¹5d¹6s², and its 5d orbit has only one electron, which provides a good electron-transfer orbit. For this reason, CeO2 exhibits an oxygen storage capacity through a facile Ce⁴⁺/Ce³⁺ redox cycle and can effectively enhance the oxygen mobility.³⁵ The appearance of CeO₂ on the catalyst surface resulted in more chemisorbed sites, which was probably responsible for the excellent oxidation of the performance of CeO₂/HZSM-5 on Hg^0 . On the other hand, O_2 could reoxidize the reduced metal oxides, replenish the lattice oxygen, and hence, maintain the high chemisorbed sites.42

Specifically, the reaction mechanism of Hg⁰ removal by CeO₂/HZSM-5 could be explicated as follows:

$$Hg^{0}_{(g)} + HZSM-5 \leftrightarrow Hg^{0}_{(ad)}$$
 (2)

Then, adsorbed Hg⁰ could be oxidized by CeO₂ by a short-range transfer step from HZSM-5 to the CeO₂ surface through the following reaction:

$$Hg^{0}_{(ad)} + 2CeO_2 \rightarrow HgO_{(ad)} + Ce_2O_3$$
 (3)

Ce₂O₃ generated in reaction 3 could be restored by the following pathway:

$$2Ce_2O_3 + O_2 \rightarrow 4CeO_2 \tag{4}$$

The above results also demonstrated the synergy for Hg⁰ oxidation when CeO₂ and HZSM-5 were combined.

As shown in Figure 7, when adding NO and SO_2 into the flue gas, the Hg^0 removal efficiency of $CeO_2/HZSM-5$ would be promoted. This trend agreed with the results obtained by other researchers. ^{23,29,30,43} It could be attributed to the fact that CeO_2 was more active for NO and SO_2 oxidation as follows:

$$2NO_{(g)} + O_2 \xrightarrow{CeO_2} 2NO_{2(ad)}$$
 (5)

$$2SO_{2(g)} + O_2 \xrightarrow{CeO_2} 2SO_{3(ad)}$$
 (6)

Moreover, CeO₂ was favorable for the storage of NO₂ and SO₃, which had a promoted effect on the oxidation of Hg⁰ by the following pathway:⁴⁴

$$NO_{2(ad)} + Hg_{(ad)} \rightarrow NO + HgO_{(ad)}$$
 (7)

$$SO_{3(ad)} + Hg_{(ad)} \rightarrow SO_2 + HgO_{(ad)}$$
 (8)

$$SO_{3(ad)} + HgO_{(ad)} \rightarrow HgSO_{4(ad)}$$
 (9)

Additionally, the result was somewhat different from that reported by Wen et al., ³⁶ who reported that the presence of SO_2 could inhibit the Hg^0 removal. Likely, this difference resulted from their higher operation temperature (>300 °C). When the temperature exceeds 300 °C, excessive CeO_2 would react with SO_2 and O_2 , forming $Ce(SO_4)_2$. Generated $Ce(SO_4)_2$ covers the surface of HZSM-5 and blocks its pores, preventing Hg^0 from contacting CeO_2 .

The inhibitory effects of $\mathrm{H_2O}$ for $\mathrm{Hg^0}$ removal could be explained by the competitive adsorption of water vapor with $\mathrm{Hg^0}$, which was reported in other studies. 36,42,43 Meanwhile, $\mathrm{H_2O}$ was not necessarily monolayer adsorption. It could fill pores and, hence, block adsorption of other components. 45 Furthermore, adsorbed $\mathrm{H_2O}$ could react with $\mathrm{SO_3}$ to form $\mathrm{H_2SO_4}$, which could destroy the framework of HZSM-5. As a result, the $\mathrm{Hg^0}$ removal ability of $\mathrm{CeO_2/HZSM-5}$ was weakened in humid conditions in this work.

3.7. Removal Stability and Recyclability. The Hg^0 removal stabilities of 6% $CeO_2/HZSM-5$ (50)-550 and regenerated 6% $CeO_2/HZSM-5$ (50)-550 were tested under 200 °C, and the experimental results are shown in Figure 9. It was remarkable that the activity of 6% $CeO_2/HZSM-5$ (50)-550 performed good stability and showed higher Hg^0 removal

Figure 9. Hg^0 removal efficiencies of fresh 6% $CeO_2/HZSM$ -5 and regenerated 6% $CeO_2/HZSM$ -5.

efficiency of 95% in 30 h. It indicated that CeO₂/HZSM-5 could be desirable for Hg⁰ removal in industrial applications. Furthermore, it could be seen that the Hg⁰ removal efficiency of regenerated CeO₂/HZSM-5 was lower than that of fresh 6% CeO₂/HZSM-5. This might be due to the decrease of the surface and volume, which could be seen from Table 1. Nevertheless, the Hg⁰ removal efficiency of first and second regenerated CeO₂/HZSM-5 was about 92% and remained stable for 30 h. Therefore, it was concluded that CeO₂/HZSM-5 was recyclable and suitable for reuse.

4. CONCLUSION

In this paper, the Hg⁰ removal ability of CeO₂/HZSM-5 was investigated in a lab-scale fixed-bed system. Results showed that CeO₂ significantly enhanced the Hg⁰ removal ability of HZSM-5. Especially when CeO₂/HZSM-5 (50) was calcined above 550 °C, the Hg⁰ removal efficiency went to a maximum at 200 °C, up to about 96%. Additionally, the Hg⁰ removal efficiency was found to be significantly affected by the flue gas components. Both NO and SO₂ promoted the Hg⁰ removal in the presence of O₂. However, when H₂O was added into the reactant stream, the Hg⁰ removal ability of the sample had a slight decline. In comparison to other SCR catalysts, CeO₂/ HZSM-5 performed stronger Hg⁰ removal ability at low reaction temperatures (<300 °C). In addition, it was also found in previous works that HZSM-5 and CeO₂ were highly active for low-temperature SCR of NO. Thus, it is concluded that this material may be used in some SCR systems that are downstream of the particulate control device (hot-side ESP), where it can avoid a high concentration of ashes in the flue gas. Moreover, the regeneration of CeO₂/HZSM-5 was easy. After regeneration, the Hg⁰ removal efficiency of CeO₂/HZSM-5 was still kept basically stable, with high efficiency for 30 h. Therefore, it indicated that CeO₂/HZSM-5 was recyclable and suitable for reuse on Hg⁰ removal from flue gas.

AUTHOR INFORMATION

Corresponding Author

*Telephone/Fax: +86-731-88649216. E-mail: ctli3@yahoo. com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the National High Technology Research and Development Program of China (863 Program) (2011AA060803), the National Natural Science Foundation Project of China (NSFC-51108169), and the Scientific and Technological Major Special Project of Hunan Province in China (2010XK6003).

■ REFERENCES

- (1) Lindberg, S. E.; Stratton, W. J. Environ. Sci. Technol. 1998, 32, 49–57.
- (2) Vandal, G. M.; Fitzgerald, W. F. Nature 1993, 362, 621-623.
- (3) Dastoora, A. P.; Larocpue, Y. Atmos. Environ. 2004, 38, 147-161.
- (4) Brown, T. D.; Smith, D. N.; Hargis, R. A. Air Waste Manage. Assoc. 1999, 49, 628-640.
- (5) Pacyna, E. G.; Pacyna, J. M.; Steenhuisen, F.; Wilson, S. Atmos. Environ. 2006, 40, 4048-4063.
- (6) Wu, Y.; Wang, S. X.; Streets, D. G. Environ. Sci. Technol. 2006, 40, 5312–5318.

- (7) Skodras, G.; Diamantopoulou, Ir.; Pantoleontoc, G.; Sakellaropoulos, G. P. *J. Hazard. Mater.* **2008**, *158*, 1–13.
- (8) Wang, Y. J.; Duan, Y. F.; Yang, L. G.; Zhao, C. S.; Shen, X. L. Fuel Process. Technol. 2009, 90, 643-651.
- (9) Liu, Y.; Kelly, D.; Yang, H. Q.; Lin, C.; Kuznicki, S. M.; Xu, Z. H. Environ. Sci. Technol. 2008, 42, 6205–6210.
- (10) Jones, A. P.; Hoffmann, J. W.; Smith, D. N.; Feeley, T. J.; Murphy, J. T. Environ. Sci. Technol. 2007, 41, 1365–1371.
- (11) Huggins, F. E.; Yapa, N.; Huffman, G. P.; Senior, C. L. Fuel Process. Technol. 2003, 82, 167–196.
- (12) Pitoniak, E.; Wu, C. Y.; Mazyck, D. W.; Powers, K. W.; Sigmund, W. Environ. Sci. Technol. 2005, 39, 1269–1274.
- (13) Feng, W. G.; Borguet, E.; Vidic, R. D. Carbon 2006, 44, 2990–2997.
- (14) Hu, C. X.; Zhou, J. S.; He, S.; Luo, Z. Y.; Cen, K. F. Fuel Process. Technol. **2009**, 90, 812–817.
- (15) Liu, S. H.; Yan, N. Q.; Liu, Z. R.; Qu, Z.; Wang, H. P.; Chang, S. G.; Miller, C. *Environ. Sci. Technol.* **2007**, *41*, 1405–1412.
- (16) Tong, S. T.; Fan, M. X.; Mao, L.; Jia, C. Q. Environ. Sci. Technol. **2011**, 45, 7416–7421.
- (17) Wu, S. J.; Uddin, M. A.; Sasaoka, E. Fuel 2006, 85, 213-218.
- (18) Dunham, G.; Dewall, R.; Senior, C. Fuel Process. Technol. 2003, 82, 197-213
- (19) Kamata, H.; Ueno, S. I.; Sato, N.; Naito, T. Fuel Process. Technol. **2009**, 90, 947–951.
- (20) Li, J. F.; Yan, N. Q.; Qu, Z.; Qiao, S. H.; Yang, S. J.; Guo, Y. F.; Liu, P.; Jia, J. P. *Environ. Sci. Technol.* **2010**, *44*, 426–431.
- (21) Yan, N. Q.; Chen, W. M.; Chen, J.; Qu, Z.; Guo, Y. F.; Yang, S. J.; Jia, J. P. Environ. Sci. Technol. 2011, 45, 5725-5730.
- (22) Eswaran, S.; Stenger, H. G. Energy Fuels 2005, 19, 2328-2334.
- (23) Li, Y.; Murphy, P. D.; Wu, C. Y.; Powers, K. W.; Bonzongo, J. C. *Environ. Sci. Technol.* **2008**, 42, 5304–5309.
- (24) Kamata, H.; Ueno, S. I.; Naito, T.; Yukimura, A. *Ind. Eng. Chem. Res.* **2008**, *47*, 8136–8141.
- (25) Chen, L.; Li, J. H.; Ge, M. F. J. Phys. Chem. C 2009, 113, 21177–21184.
- (26) Mei, Z. J.; Shen, Z. M.; Mei, Z. Y.; Zhang, Y. J.; Xiang, F.; Chen, J. P.; Wang, W. H. *Appl. Catal., B* **2008**, *78*, 112–119.
- (27) Straube, S.; Hahn, T.; Koeser, H. Appl. Catal., B 2008, 79, 286–295.
- (28) Lopez-Anton, M.; Yuan, Y.; Perry, R.; Maroto-Valer, M. Fuel **2010**, 89, 629-634.
- (29) Ji, L.; Sreekanth, P. M.; Smirniotis, P. G.; Thiel, S. W.; Pinto, N. G. Energy Fuels **2008**, 22, 2299–2306.
- (30) Li, H. L.; Wu, C. Y.; Li, Y.; Zhang, J. Y. Environ. Sci. Technol. 2011, 45, 7394-7400.
- (31) Ding, Y. M.; Li, C. T.; Zeng, G. M.; Lu, P. Acta Sci. Circumstantiae **2009**, 29, 2572–2577.
- (32) Wang, C.; Wang, X. P.; Xing, N.; Yu, Q.; Wang, Y. J. Appl. Catal., A 2008, 334, 137-146.
- (33) Wang, X. P.; Yu, S. S.; Yang, H. L.; Zhang, S. X. Appl. Catal., B 2007, 71, 246-253.
- (34) Tian, L. H.; Li, C. T.; Li, Q.; Zeng, G. M. Fuel 2009, 88, 1687–
- (35) Lu, P.; Li, C. T.; Zeng, G. M. Appl. Catal., B 2010, 96, 157–161.
- (36) Wen, X. Y.; Li, C. T.; Fan, X. P.; Gao, H. L.; Zhang, W. Energy Fuels 2011, 25, 2939–2944.
- (37) Xie, Y. C.; Tang, Y. Q. Adv. Catal. 1990, 37, 1-43.
- (38) Graydon, J. W.; Zhang, X. Z.; Kirk, D. W.; Jia, C. Q. J. Hazard. Mater. **2009**, 168, 978–982.
- (39) Fan, X. P.; Li, C. T.; Zeng, G. M.; Gao, Z.; Chen, L. Energy Fuels **2010**, 24, 4250–4254.
- (40) Li, Y. H.; Lee, C. W.; Gullett, B. K. Fuel 2003, 82, 451-457.
- (41) Zeng, H. C.; Jin, F.; Guo, J. Fuel 2004, 83, 143-146.
- (42) Gao, X.; Jiang, Y.; Zhong, Y.; Luo, Z.; Cen, K. J. Hazard. Mater. **2010**, 174, 734–739.
- (43) Li, Y.; Murphy, P.; Wu, C. Y. Fuel Process. Technol. 2008, 89, 567-573.
- (44) Liese, T.; Loffler, E.; Grunert, W. J. Catal. 2001, 197, 123-130.

(45) Casapu, M.; Krocher, O.; Elsener, M. Appl. Catal., B **2009**, 88, 413–419.