Задача 1.11.1. Переправа (12 баллов). Лодка переплывает реку по прямой, перпендикулярной берегам. Её скорость относительно воды равна υ_0 . До середины реки скорость течения изменяется по закону $u=\alpha x$ от нуля до $\upsilon_0/2$ – скорости воды на середине реки, где α – известный коэффициент, x – расстояние от берега. После середины реки скорость уменьшается до нуля у другого берега по тому же закону.

Определите зависимость от времени угла между вектором скорости лодки относительно воды и направлением движения относительно берега. Через какое время лодка окажется на другом берегу?

Возможное решение (А. Уймин). (способ 1)

В треугольнике скоростей скорость течения υ $u=\alpha x$, скорость лодки относительно берега $\upsilon=dx/dt$, а её скорость υ_0 относительно воды направлена под углом φ с нормалью к берегу. Тогда $\upsilon=\upsilon_0\cos\varphi$.

За малое время dt лодка перемещается в направлении противоположного берега на расстояние dx, а направление вектора скорости лодки изменяется на угол $d\phi$. При этом

$$\alpha dx = \alpha v dt = \alpha v_0 \cos \varphi dt. \tag{1}$$

Выразим отрезок αdx через длину дуги с углом $d\phi$ окружности радиуса υ_0

$$\alpha dx = v_0 d\varphi \cos \varphi. \tag{2}$$

Из (1) и (2) получаем, что $d\varphi = \alpha dt$ или $\varphi = \alpha t$. Вектор относительной скорости поворачивается с постоянной угловой скоростью!

На середине реки $u = v_0 / 2$, и тогда $\varphi = \pi / 6$, а время $t = \pi / (6\alpha)$.

От этой середины до другого берега вектор относительной скорости поворачивается с той же угловой скоростью, но в противоположную сторону. Из симметрии полное время $T = 2t = \pi / (3\alpha)$.

No	Задача 1.11.1. Критерий (12 баллов)					
1	Треугольник скоростей с углом поворота					
2	2 Приращение скорости течения за dt (уравнение 1)					
3	3 Приращение скорости течения через $d\phi$ (уравнение 2)					
4	Нахождение угловой скорости ($d\varphi/dt = \alpha$ или $\varphi = \alpha t$)	2,5				
5	Нахождение $\varphi = \pi / 6$ на середине реки	1				
6	Нахождение времени плавания до середины реки					
7	«Симметрия» второй половины и ответ $T = \pi / (3\alpha)$.	1				

²⁴ января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

²⁶ января состоится онлайн-разбор решений заданий второго тура. Начало разбора:

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

Решение (способ 2).

Построим треугольник скоростей для лодки (см. рисунок выше). Из теоремы Пифагора

$$v_x^2 + (\alpha x)^2 = v_0^2$$
.

После дифференцирования по времени получим:

$$2a_{x}\upsilon_{x}+2\alpha^{2}x\upsilon_{x}=0.$$

 $a_x = -\alpha^2 x$ – уравнение гармонических колебаний.

Из начальных условий $(x=0; \upsilon_x=\upsilon_0)$ находим решение

$$v_{x} = v_{0} \cos(\alpha t)$$
.

Также из треугольника скоростей видим, что $\upsilon_x = \upsilon_0 \cos \varphi$, откуда $\varphi = \alpha t$.

В момент достижения середины реки $\upsilon_x = \upsilon_0 \sqrt{3}/2$, $t = \pi/(6\alpha)$. Общее время движения $T = 2t = \pi/(3\alpha)$.

№	Задача 1.11.1. Критерии оценивания (12 баллов)			
1	Треугольник скоростей с углом поворота	1		
2	Доказано, что движение гармоническое	2,5		
3	Из начальных условий определена зависимость $\upsilon_{x}(t)$	2,5		
4	Найдена зависимость $\varphi = \alpha t$	2,5		
5	Нахождение времени плавания до середины реки	2,5		
6	«Симметрия» второй половины и ответ $T = \pi / (3\alpha)$.	1		

²⁴ января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

Решение (способ 3).

Из теоремы Пифагора следует

$$\upsilon_x^2 + (\alpha x)^2 = \upsilon_0^2.$$

Отсюда скорость лодки

$$v_x = \frac{dx}{dt} = \sqrt{v_0^2 - (\alpha x)^2}$$
, a время $dt = \frac{dx}{v_x} = \frac{dx}{\sqrt{v_0^2 - (\alpha x)^2}}$.

Время, которое необходимо для преодоления некоторого расстояния x_1 ,

$$t_1 = \int_0^{x_1} \frac{dx}{\sqrt{\nu_0^2 - (\alpha x)^2}} = \frac{1}{\alpha} \arcsin\left(\frac{\alpha x_1}{\nu_0}\right).$$

В частности, при $x = v_0/(2\alpha)$ (середина реки), время $t = \pi/(6\alpha)$. Общее время движения $T = \pi/(3\alpha)$.

Для определения искомого угла заметим, что из треугольника скоростей $\sin \varphi = \alpha x/\upsilon_0$, откуда $\varphi = \alpha t$.

No	Задача 1.11.1. Критерии оценивания (12 баллов)			
1	Треугольник скоростей с углом поворота	1		
2	Найдена связь между временем и координатой $t_1 = (1/\alpha) \arcsin(\alpha x_1/\nu_0)$	5		
3	Найдена зависимость $\varphi = \alpha t$	2,5		
4	Нахождение времени плавания до середины реки	2,5		
5	«Симметрия» второй половины и ответ $T = \pi / (3\alpha)$.	1		

²⁴ января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

Задача 1.11.2. Доставка воды пневмопочтой (12 баллов). Где-то в Космосе, вдали от звезд, движется по инерции фабрика-звездолет. В технологических процессах используется вода, которая доставляется к нужному месту порциями с массой m = 288г по гладким трубам, площадь поперечного сечения которых постоянна и равна S = 50 см 2 . Каждая порция содержится между двумя одинаковыми поршнями, масса каждого из которых тоже равна m. Температура порции T при движении в установившемся режиме (колебания поршней

относительно друг друга отсутствуют) остается неизменной. Движение поршней и порции воды по трубе обеспечивается давлением сжатого газа: «позади» них давление газа p_1 всегда в 1,5 раза больше, а «перед» ними (p_2) — в два раза меньше, чем давление насыщенного водяного пара при температуре T.

Какая часть массы воды в порции при движении в установившемся режиме находится в жидком состоянии? Каково в этом режиме расстояние между поршнями?

Плотность насыщенного водяного пара при температуре T составляет $\varepsilon = 6\%$ от плотности жидкой воды, которая при этой температуре равна $\rho \approx 0.72 \, \text{г/cm}^3$.

В вычислениях для простоты можно считать воду совершенно несжимаемой, а водяной пар — почти идеальным газом. Ответ для расстояния между поршнями выразите в см с точностью до целого значения.

Возможное решение (К. Парфёнов). В установившемся режиме поршни и вода движутся равноускоренно, причем величина ускорения $a=\frac{(p_1-p_2)S}{3m}=\frac{(1,5p_H-0,5p_H)S}{3m}=\frac{p_HS}{3m}$, где p_H — давление насыщенного водяного пара при температуре T . Из уравнения движения поршня 1 («позади» порции воды) следует, что давление воды на него $p'=p_1-\frac{ma}{S}=\frac{7}{6}p_H$. Из этого ясно, что у поверхности этого поршня вода находится в жидком состоянии. Аналогично из уравнения движения поршня 2 находим, что на у его поверхности давление воды $p''=p_2+\frac{ma}{S}=\frac{5}{6}p_H$, то есть здесь вода является паром. На границе раздела фаз давление равно p_H , и, поскольку вода несжимаема, то из уравнения движения для слоя жидкой воды находим толщину этого слоя: $\rho Sh \cdot a = (p'-p_H)S \Rightarrow h = \frac{m}{2\rho S}$. Поэтому масса жидкой воды $m_l=\rho Sh=\frac{m}{2}$, то есть в жидком состоянии находится половина (50%) массы воды.

Теперь в области, занятой водяным паром, выделим слой пара толщиной Δx и запишем уравнение движения для него (под действием сил давления): $\rho_n S \Delta x \cdot a = -\Delta p S$, где плотность пара, в соответствии с уравнением Менделеева-Клапейрона, равна $\rho_n = \frac{\mu p}{RT}$. Таким образом, толщина слоя, на котором давление убывает на величину $\Delta p < 0$, равна $\Delta x = -\frac{3mRT}{\mu p_H S} \frac{\Delta p}{p} = -\frac{3m}{\varepsilon \rho S} \frac{\Delta p}{p}$. Здесь учтено, что $\frac{\mu p_H}{RT} = \rho_H = \varepsilon \rho$. На всем участке пара давление падает не очень значительно – от p_H до $p'' = \frac{5}{6} p_H$. Поэтому толщина слоя пара может быть приближенно вычислена по этой формуле с $-\Delta p = \frac{1}{6} p_H$ и средней величиной давления $p \approx \frac{1}{2} \left(p_H + \frac{5}{6} p_H \right) = \frac{11}{12} p_H$. Таким образом, $H \approx \frac{6m}{11\varepsilon \rho S} \approx 73\,\mathrm{cm}$. Значит, расстояние между поршнями $L = H + h \approx \frac{m}{2\rho S} \left[1 + \frac{12}{11\varepsilon} \right] \approx 77\,\mathrm{cm}$. Допустимо также использовать среднее значение обратного давления $\frac{1}{p} \approx \frac{1}{2} \left(\frac{1}{p_H} + \frac{6}{5p_H} \right) = \frac{11}{10p_H}$. В этом случае $H \approx \frac{11m}{20\varepsilon \rho S} \approx 73\,\mathrm{cm}$ и $L \approx \frac{m}{2\rho S} \left[1 + \frac{11}{10\varepsilon} \right] \approx 77\,\mathrm{cm}$. Ясно, что эти выражения дают для искомой величины оценки «сверху» и «снизу», поэтому разумно взять их среднее: $H \approx \frac{241m}{440\varepsilon \rho S} \approx 73\,\mathrm{cm}$ и $L \approx \frac{m}{2\rho S} \left[1 + \frac{241}{220\varepsilon} \right] \approx 77\,\mathrm{cm}$. Поскольку в рамках требуемой точности все эти подходы дают одинаковый ответ, все они являются допустимыми.

ОТВЕТ: 50% (половина),
$$L \approx \frac{m}{2\rho S} \left[1 + \frac{241}{220\varepsilon} \right] = \frac{1271m}{132\rho S} \approx 77$$
 см.

Примечание 1. Участники, знакомые с интегрированием, могут вычислить H и L более аккуратно: толщина слоя пара $H = \frac{3m}{\varepsilon \rho S} \cdot \int\limits_{p''}^{p_H} \frac{dp}{p} = \frac{3m}{\varepsilon \rho S} \ln \left(\frac{6}{5} \right)$, и расстояние между поршнями

$$L=H+h=rac{m}{2
ho S}iggl[1+rac{6}{arepsilon}\lniggl(rac{6}{5}iggr)iggr] pprox 77$$
 см. Такие ответы также засчитываются как полностью

правильные. Нетрудно заметить, что по точной (76,93 см) и приближенной (77,03 см) формулам разность ответов менее 0,14% (примерно 0,1 см).

Примечание 2. Отметим также, что пренебрежением объемом жидкой воды дает ошибку более 5% (толщина слоя жидкой воды равна 4 см). Использование при вычислении толщины слоя пара «крайних» значений давления (p_H или $5p_H/6$) вместо среднего вносит ошибку более 8%. Поэтому эти ошибки существенны на заданном уровне точности, и в этом случае баллы за решение несколько снижаются.

Примечание 3. указанные плотности воды и водяного пара имеют место при температуре около +295°C.

№	Задача 1.11.2. Критерии оценивания (12 баллов)	Баллы		
1	Указано, что поршни и вода движутся равноускорено	0,5		
2	Определена величина ускорения	0,5		
3	Указано (используется в решении), что у поршня 1 вода находится в жидком			
	состоянии ($0,5$ балла), а у поршня $2-$ в газообразном ($0,5$ балла)			
4	Указано (используется в решении), что на границе раздела фаз давление	1		
	равно p_H			
5	Найдено, что в жидком состоянии находится половина массы воды	2		
6	Найдена толщина слоя жидкой воды (формула или число)	1		
7	Записано уравнение, связывающее разность давлений для слоя пара с	3		
	толщиной этого слоя ($\Delta x = -(3m/(\varepsilon \rho S))(\Delta p/p)$ или эквивалентное)			
	(Если в коэффициенте остались неизвестные величины – только 1 балл!)			
8	Найдена толщина слоя водяного пара (формула или число)	2		
	(При использовании «крайних» значений давления вместо среднего – только			
	1 балл!)			
9	Получен правильный численный ответ для расстояния между поршнями	1		
	(За ответ без учета слоя жидкой воды (73 см) – только 0,5 балла! Также за			
	ответы с использованием «крайних» значений давления (71 см или 84 см) –			
	0,5 балла! Если допущены обе погрешности – баллы за этот пункт не			
	ставятся.)			

Задача 1.11.3. Полетели (12 баллов). В вакууме в невесомости между круглыми полюсами электромагнита на расстоянии x от оси магнита покоится частица массы m и заряда q. Сначала магнитное поле равно нулю. Затем, за малый промежуток времени, индукция магнитного поля увеличивается до значения B_0 и поддерживается постоянной в течение времени $\tau < \pi m/(qB_0)$, после чего очень быстро уменьшается до нуля.

- 1) Почему частица приходит в движение? Опишите качественно траекторию частицы.
- 2) С какой скоростью движется частица после включения магнитного поля?
- 3) С какой скоростью движется частица после выключения магнитного поля?
- 4) На каком минимальном расстоянии от оси магнита проходит траектория частицы?
- 5) Через какое время от момента включения поля частица окажется на минимальном расстоянии от оси магнита?

Магнитное поле в пределах полюсов можно считать однородным. Перемещением частицы за время включения и выключения поля можно пренебречь.

Возможное решение (А. Аполонский). При включении изменяющееся во времени магнитное поле порождает вихревое электрическое, которое действует на частицу и сообщает ей некоторую скорость. Из соображений симметрии ясно, что силовые линии этого вихревого поля — концентрические окружности с центром на оси магнита. Согласно закону электромагнитной индукции, вектор $\vec{E}_{\text{вихр}}$ направлен (при указанном на рисунке направлении магнитного поля) по часовой стрелке при включении поля и против нее — при выключении. Определим величину напряженности вихревого электрического поля $E_{\text{вихр}}$ в месте расположения частицы. Величина ЭДС индукции Е в контуре радиуса x определяется скоростью изменения магнитного потока

$$E = \frac{d\Phi}{dt} = \pi x^2 \frac{dB}{dt}$$
.

С другой стороны $E = 2\pi x E_{\text{вихр}}$. Отсюда

$$E_{\text{вихр}} = \frac{x}{2} \frac{dB}{dt}.$$

Поскольку $m\frac{d\upsilon}{dt}=qE_{\text{вихр}}$, за малый промежуток времени dt изменение скорости частицы

$$d\upsilon = \frac{qE_{\text{вихр}}dt}{m} = \frac{qxdB}{2m}.$$

За все время установления постоянного значения B_0 изменение скорости составит

$$\upsilon = \frac{qxB_0}{2m}.$$

Эта скорость сонаправлена с $\vec{E}_{\text{вихр}}$, т. е. направлена «по часовой стрелке» перпендикулярно радиусу, проведенному от оси полюсов электромагнита. Поэтому далее, в течение времени τ частица движется (под действием силы Лоренца) по окружности радиуса

$$R = \frac{\upsilon m}{qB_0} = \frac{x}{2}$$

с периодом обращения

$$T = \frac{2\pi R}{\upsilon} = \frac{2\pi m}{qB_0}.$$

Отметим, что окружность проходит через ось O полюсов электромагнита, а по условию $au < \frac{\pi m}{qB_0} = \frac{T}{2}$, то есть до момента

выключения магнитного поля частица успевает пролететь менее половины этой окружности. На рис. 1 B – точка, в которой находилась частица в начальный момент времени, C – точка, в которой будет частица через время τ в момент выключения поля, D – центр окружности, по которой движется частица.

Рис.1

Положение частицы на окружности в момент времени au задается углом

$$\alpha = 2\pi \frac{\tau}{T} = \frac{\tau q B_0}{m},$$

а расстояние |OC| до оси O магнита при этом равно $x_1 = 2R\cos(\alpha/2) = x\cos(\alpha/2)$.

При выключении магнитного поля из-за действия вихревого электрического поля скорость частицы изменится на величину $\upsilon_1 = \frac{qx_1B_0}{2m} = \upsilon\cos\left(\alpha/2\right)$, причем вектор $\vec{\upsilon}_1$ направлен перпендикулярно отрезку OC, в то время, как вектор $\vec{\upsilon}$ перпендикулярен DC (см. рис. 1). После выключения поля результирующая скорость частицы $\vec{u} = \vec{\upsilon} + \vec{\upsilon}_1$.

Нетрудно заметить, что составляющая вектора \vec{v} , перпендикулярная CO, равна по величине $v_{\perp} = v \cos(\alpha/2)$, то есть $\vec{v}_{\perp} + \vec{v}_{\parallel} = 0$. Значит, вектор \vec{u} направлен вдоль отрезка CO, проходящего через ось электромагнита. Вдоль этого отрезка и движется частица после выключения магнитного поля. Скорость u ее движения при этом

$$u = \upsilon \sin(\alpha/2) = \frac{qxB_0}{2m} \sin(\alpha/2).$$

Таким образом, траектория ВСО движения частицы представляет собой дугу окружности, переходящую в луч, проходящий через ось магнита. Минимальное расстояние от оси магнита при любых значениях τ и x равно нулю.

Время от момента включения поля до момента пролета через центр магнита

$$\Delta t = \tau + \frac{x_1}{u} = \tau + \frac{x \cos(\alpha/2)}{\frac{qxB_0}{2m} \sin(\alpha/2)} = \tau + \frac{2m}{qB_0} \operatorname{ctg}(\alpha/2),$$

где
$$\frac{\alpha}{2} = \tau \frac{qB_0}{2m}$$
.

№	Задача 1.11.3. Критерии оценивания (12 баллов)	Баллы			
1	Указано, что частица приходит в движение под действием силы со стороны	0,5			
	вихревого электрического поля				
2	Записано выражение для ЭДС индукции в контуре радиуса x : $E = \pi x^2 \frac{dB}{dt}$.	0,5			
3	Получено выражение для напряженности вихревого электрического поля в	2			
	вависимости от расстояния x от оси магнита: $E_{\text{вихр}} = \frac{x}{2} \frac{dB}{dt}$.				
4	Получено выражение для скорости частицы после включения магнитного	2			
	поля $\upsilon = qxB_0/(2m)$.				
5	Указано, что в интервале времени между включением и выключением	0,5			
	магнитного поля частица летит по дуге окружности, а после выключения				
	движется по прямой				
	Приведены верные выражения для				
6	радиуса окружности R	0,5			
7	периода обращения Т	0,5			
8	расстояния до оси (в момент выключения поля)	0,5			
9	Получено выражение для модуля изменения скорости	1			
	при выключении поля $\upsilon_{ m l}$				
10	С учетом направлений скорости \vec{v} и изменения скорости $\vec{v}_{\rm l}$ доказано, что	2			
	после выключения поля частица летит через центр системы				
11	Определена скорость и частицы после выключения поля	1			
12	Верно определено время Δt до пролета через центр магнита	1			

Задача 1.11.4. Эффект Холла (14 баллов). Электроны являются носителями тока в ме-

таллах и полупроводниках n-типа. Если образец с током (в данном случае прямоугольный кусочек плёнки полупроводника n-типа) помещён в магнитное поле и через него протекает электрический ток, то на движущиеся электроны действует сила Лоренца F = evB, d перпендикулярная скорости \vec{v} электрона и вектору \vec{B} магнитной индукции (рис. 1).

Рис. 1

Здесь υ — средняя скорость дрейфа электронов, связанная с проходящим током I и прямо пропорциональная напряженности электрического поля \vec{E} в направлении этого тока: $\upsilon = \mu E$, где коэффициент пропорциональности μ называется подвижностью электронов.

Из-за действия на электроны силы Лоренца (на рисунке она направлена в сторону левой грани), происходит разделение зарядов и появляется поперечное электрическое поле с напряженностью E_x . Возникновении этого поля при протекании тока в образце, помещенном в магнитное поле, называют эффектом Холла. Перемещение электронов в направлении левой грани прекращается, когда силу Лоренца уравновешивает электрическая сила eE_x : $evB = eE_x$.

В установившемся режиме напряжённость поперечного электрического поля $E_{r} = \upsilon B$.

Ниже описан эксперимент, в котором эффект Холла используется для исследования свойств полупроводника.

Ток создаёт источник с ЭДС $\mathcal{E} = 10$ В и малым внутренним сопротивлением. Величина магнитной индукции B = 1,0 Тл. Для изменения тока применяют переменный резистор, а вольтметром измеряют напряжение $U_{\rm x}$ между боковыми гранями в направлении, перпендикулярном магнитному полю и направлению протекающего тока.

Рис. 2

Размеры полупроводникового образца: толщина d=1,0 мкм, ширина b=5,0 мм, длина L=1,0 см. Заряд электрона $e=1,6\cdot 10^{-19}$ Кл.

В таблице представлена зависимость $U_{\rm x}$ от сопротивления r переменного резистора.

<i>r</i> , кОм	2,5	2,0	1,5	1,0	0,5	0,0
$U_{\rm x},{ m B}$	1,2	1,4	1,6	1,8	2,1	2,5

Задание

- **1.** Выразите U_x через силу тока I в образце, концентрацию n электронов проводимости и физические величины, приведенные в описании эксперимента (\mathcal{E} , B, d, b, L, e).
- **2.** Выразите сопротивление R и удельное сопротивление ρ образца через его размеры, подвижность μ и концентрацию n электронов проводимости.
- **3.** Используя уравнения, полученные в п.п. 1, 2, выразите U_x через концентрацию n и подвижность μ электронов проводимости, сопротивление r и физические величины, приведенные в описании эксперимента.

- **4.** Используя выражение, полученное в п. 3, при помощи графического анализа экспериментальных данных определите для исследуемого полупроводника:
 - а) концентрацию n электронов проводимости;
 - б) их подвижность μ ;
 - в) удельное сопротивление ρ .

Опишите выбранный для этого способ обработки данных.

Внимание! Из-за ограниченного времени выполнения задания погрешность определения n, μ и ρ оценивать не требуется, однако точность полученных вами промежуточных и конечных результатов будет учитываться при выставлении баллов.

Возможное решение (С. Кармазин).

1. Выразим U_x через силу тока I в образце. Заметим, что при скорости дрейфа v за единицу времени через сечение образца bd проходит заряд электронов проводимости из объёма vbd, что при концентрации n электронов проводимости создаёт силу тока I=envbd. Для разности потенциалов $U_x=bvB$, поэтому

$$U_{x} = \frac{IB}{end}.$$
 (1)

2. Выразим сопротивление R образца между гранями, отстоящими друг от друга на расстоянии L, через подвижность μ и концентрацию n электронов проводимости. Так как $\upsilon=\mu E$, где E=U/L где U — напряжение между сечениями бруска, то скорость дрейфа электронов $\upsilon=\mu U/L$. Поскольку сила тока $I=en\upsilon bd=\frac{en\mu Ubd}{L}$, то из равенства $R=\frac{U}{I}$ имеем

$$R = \frac{L}{en\mu bd}. (2)$$

Соответственно, для удельного сопротивления получим

$$\rho = \frac{1}{en\mu}.\tag{3}$$

3. Запишем закона Ома для замкнутой цепи E = I(r+R), где R сопротивление образца. Подставляя в это уравнение выражение $I = \frac{U_x end}{B}$, следующее из (1), и выражение (2) для

$$R$$
, получим $r+R=rac{\mathrm{E}B}{U_{,e}nd}$ или

$$\frac{EB}{U_{x}} = end \cdot r + \frac{L}{\mu b} \,. \tag{4}$$

Мы получили, что обратное напряжение Холла **линейно** зависит от сопротивления переменного резистора r. Это позволяет применить графическую обработку (4).

По угловому коэффициенту den можно найти концентрацию n, а по свободному члену $\frac{L}{\mu b}$ — подвижность μ .

Таблицу из условия преобразуем к виду:

<i>r</i> , кОм	0,0	0,5	1,0	1,5	2,0	2,5
\mathcal{E} В/ U_{x} , Тл	4,0	4,8	5,6	6,3	7,1	8,3

Наносим на график с осями $\frac{{\it EB}}{U_x}$ и r точки, отвечающие измерениям, и проводим наиболее близкую к ним прямую.

Для нашей прямой получаем $\frac{L}{\mu b}$ = 4,1 Тл, откуда

$$\mu = \frac{1,0 \cdot 10^{-2}}{5,0 \cdot 10^{-3} \cdot 4,1} \left(\frac{\text{M}^2}{\text{c} \cdot \text{B}}\right) = 4,9 \cdot 10^3 \left(\frac{\text{cM}^2}{\text{c} \cdot \text{B}}\right).$$

Угловой коэффициент $end = \frac{8,2-4,0}{2,5\cdot 10^3} \left(\frac{\mathrm{T}_{\mathrm{J}}}{\mathrm{O}_{\mathrm{M}}}\right) \approx 1,7\cdot 10^{-3} \left(\frac{\mathrm{T}_{\mathrm{J}}}{\mathrm{O}_{\mathrm{M}}}\right)$, откуда

$$n = \frac{1.7 \cdot 10^{-3}}{1.6 \cdot 10^{-19} 1.0 \cdot 10^{-6}} \,\mathrm{m}^{-3} = 1.06 \cdot 10^{22} \,\mathrm{m}^{-3}, \qquad \rho = \frac{1}{en\mu} = 1.2 \cdot 10^{-3} \,\mathrm{Om} \cdot \mathrm{m}.$$

№	Задача 1.11.4. Критерии оценивания (14 баллов)				
1	Полный вывод выражения для напряжения Холла: $U_x = Bvb = BI/(end)$.	2			
	При неполном выводе				
a)	Выражена скорость дрейфа через силу тока: $v = I/(bden)$ (1 балл)				
б)	Выражение для напряжения Холла: $U_x = Bvb = BI/(den)$ (1 балл)				
2	Выражение для сопротивления $r+R=\mathcal{E}/I$ (0,5 балла)	1			
	и $r+R=\mathcal{E}B/(U_{x}den)$ (0,5 балла)				
3	Выражение сопротивления и удельного сопротивления через подвижность и	3			
	концентрацию				
a)	Записано соотношение $v = \mu E = \mu U/L$ (1 балл)				
б)	Записано соотношение $I = envbd = en\mu Ebd = en\mu Ubd/L$ (1 балл)				
в)	Получение выражения для $R = L/en\mu bd$ (0,5 балла)				
Г)	Получение выражение для удельного сопротивления $\rho = 1/en\mu$ (0,5 балла)				
4	Сделан вывод о линейной зависимости r и $1/U_{\rm x}$ из постоянства R как основы	0,5			
	метода нахождения характеристик полупроводника				
5	Получение соотношения (или любой аналог) $\mathcal{E}B/U_{\mathrm{x}}=denr+L/(\mu b)$	0,5			
6	Преобразование таблицы 1 в таблицу 2 с величиной, пропорциональной	1			
	$1/U_{\mathrm{x}}$, как функции r .				
7	Указано, что по коэффициенту при переменной и свободному члену в ли-	1			
	нейной зависимости можно найти n и μ (алгебраически или по графику)				
8	Установление параметров линейной зависимости (свободного члена $L/\mu b$)	1			
9	Установление параметров линейной зависимости (коэффициента den)	1			
10	Подвижность μ попала в интервале $(0.47 \div 0.51)$ м ² /с·В;	1			
	в интервале $(0,45 \div 0,53)$ м ² /с $(0,5$ балла)				
11	Концентрация n в интервале $(0.8 \div 1.2) \ 10^{22} \ 1/\text{м}^3$	1			
	в интервале $(0,6 \div 1,4) \ 10^{22} \ 1/\text{м}^3$ (0,5 балла)				
12	ρ в интервале (1,1÷1,4)·10 ⁻³ Ом·м	1			
	в интервале $(0.9 \div 1.6) \cdot 10^{-3}$ Ом·м (0.5балла)				
		<u> </u>			