

Varianta 100

Subjectul I.

- **a)** $OA = \sqrt{5}$.
- **b**) 2x+4y-5=0.
- c) $a \in \{-2, 2\}.$
- **d)** $x^2 + y^2 5 = 0$.
- **e**) $i \cdot i^2 \cdot i^3 \cdot i^4 \cdot i^5 \cdot i^6 \cdot i^7 = 1$.
- $\mathbf{f)} \quad \left| \frac{1+i}{1-i} \right| = 1.$

Subjectul II.

- 1.
- a) Probabilitatea cerută este $p = \frac{1}{2}$.
- **b)** Se obțin: a = 1, b = 3, c = 5
- **c)** x = 2.
- **d**) x = 2.
- **e)** $y_v = -4$.
- 2
- $\mathbf{a)} \ f'(x) = \frac{1}{1+x^2}, \ \forall x \in \mathbf{R}$
- **b)** f'(x) > 0, $\forall x \in \mathbf{R}$, deci f este strict crescătoare pe \mathbf{R} .
- c) Dreapta $d_1: y = -\frac{\pi}{2}$ este asimptota spre $-\infty$ la graficul funcției, iar dreapta

 d_2 : y = $\frac{\pi}{2}$ este asimptota spre + ∞ la graficul funcției.

d)
$$\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 1$$

e)
$$\int_{1}^{1} f(x) dx = 0$$
.

Subjectul III.

- a) Se verifică prin calcul direct că $A^2 = B^2 = I_3$.
- **b**) $\det(A) = -1$, $\operatorname{rang}(A) = 3$.
- c) Deoarece $B^2 = B \cdot B = I_3$, matricea B este inversabilă, inversa sa fiind $B^{-1} = B$.

d) Avem
$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -7 \\ 0 & -1 & 2 \end{pmatrix}$$
 şi $BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 7 \\ 0 & 1 & 4 \end{pmatrix}$, aşadar $AB \neq BA$.

e) Notăm
$$C = BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 7 \\ 0 & 1 & 4 \end{pmatrix}$$
. Se demonstrează prin inducție, folosind ipoteza, că

$$\forall n \in \mathbf{N}^*, \text{ există } a_n, b_n, c_n, d_n \in \mathbf{R} \text{ astfel încât } C^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_n & b_n \\ 0 & c_n & d_n \end{pmatrix}.$$

Aşadar pentru orice
$$n \in \mathbb{N}^*$$
,
$$\begin{cases} a_{n+1} = 2a_n + b_n \\ b_{n+1} = 7a_n + 4b_n \end{cases}$$

Cum $a_1 = 2 > 0$ și $b_1 = 7 > 0$, se arată prin inducție că $\forall n \in \mathbb{N}^*$, $a_n > 0$ și $b_n > 0$. Deoarece $\forall n \in \mathbb{N}^*$, $b_n \neq 0$, deducem că $\forall n \in \mathbb{N}^*$, $C^n \neq I_3$.

f) Pentru
$$n \in \mathbb{N}^*$$
, considerăm matricele $X_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & -1 \end{pmatrix}$, pentru care $X_n^2 = I_3$.

Așadar ecuația $X^2 = I_3$ are o infinitate de soluții, deci cel puțin 2007.

g) În grupul $(Gl_3(\mathbf{R}), \cdot)$ al matricelor inversabile de ordinul 3 cu coeficienți reali, avem $A, B \in Gl_3(\mathbf{R}), A^2 = B^2 = I_3$ și matricea BA are ordinul infinit, deoarece la punctul **e**) am demonstrat că $\forall n \in \mathbf{N}^*, (BA)^n \neq I_3$.

Subjectul IV.

a)
$$g'(x) = a^x \cdot \ln a + 6^x \cdot \ln 6 - 3^x \cdot \ln 3 - 4^x \cdot \ln 4$$
, $\forall x \in \mathbb{R}$.

b)
$$g'(0) = \ln \frac{a}{2}$$
, iar $g(0) = 0$.

c) Deoarece
$$f(x) = (3^x - 2^x)(2^x - 1)$$
, $\forall x \in \mathbb{R}$, rezultă concluzia.

d) Avem că x=0 este punctul de extrem global al funcției g și din teorema lui Fermat, rezultă că g'(0)=0, adică $\ln \frac{a}{2}=0$, deci a=2.

Pentru a=2, funcția g coincide cu funcția f, pentru care am arătat la punctul c) că $f(x) \ge 0 = f(0)$, $\forall x \in \mathbf{R}$.

- e) Se demonstrează prin inducție, folosind ipoteza.
- **f**) Pentru $n \in \mathbb{N}^*$, $n \ge 2$, considerăm funcția $\alpha : (0, \infty) \to \mathbb{R}$, $\alpha(x) = x^n$.

Funcția α este derivabilă pe $(0, \infty)$ și $\alpha'(x) = nx^{n-1}$, $\forall x > 0$.

Pentru $p, q, r, s \in \mathbf{R}$, cu 0 şi <math>p + s = r + q, funcția α este o funcție Rolle pe fiecare dintre intervalele [p,q] şi [r,s], deci, conform teoremei lui Lagrange, există $c \in (p,q)$ şi $d \in (r,s)$, cu $\frac{q^n - p^n}{q - p} = n \cdot c^{n-1}$ şi $\frac{s^n - r^n}{s - r} = n \cdot d^{n-1}$. Deoarece $n-1 \ge 1$ şi 0 < c < d, obținem $n \cdot c^{n-1} < n \cdot d^{n-1}$, adică $\frac{q^n - p^n}{q - p} < \frac{s^n - r^n}{s - r}$ și cum avem q - p = s - r, rezultă $q^n - p^n < s^n - r^n$, deci $p^n + s^n > r^n + q^n$.

g) Pentru $x \in \mathbf{R}$ avem $f^{(n)}(x) \stackrel{\text{e}}{=} 2^x (\ln 2)^n + 6^x (\ln 6)^n - 3^x (\ln 3)^n - 4^x (\ln 4)^n$, deci $f^{(n)}(0) = (\ln 2)^n + (\ln 6)^n - (\ln 3)^n - (\ln 4)^n$, $\forall n \in \mathbf{N}^*$, $n \ge 2$. Pentru $p = \ln 2$, $q = \ln 3$, $r = \ln 4$ şi $s = \ln 6$, avem $0 şi <math>p + s = \ln 2 + \ln 6 = \ln 12 = \ln 4 + \ln 3 = r + q$ şi din \mathbf{f}) rezultă $(\ln 2)^n + (\ln 6)^n > (\ln 3)^n + (\ln 4)^n$, adică $f^{(n)}(0) > 0$, $\forall n \in \mathbf{N}^*$, $n \ge 2$.