FICHE 02-04: Partitions d'un entier: ALG1-02 1.11

Yvann Le Fay

Juin 2019

Enoncé

Pour quelles partitions de n, qu'on écrit $n = a_1 + \dots a_k$, le produit $\prod_{i=1}^k a_i$ est maximal?

Solution

Les a_i sont inférieurs ou égaux à 4, En effet, si $a_i \ge 5$, alors $a_i = (a_i - 3) + 3$, or $3(a_i - 3) \ge a_i$ car $2a_i > 9$. On peut remplacer les $a_i = 4$ par 2 + 2 sans changer le produit.

Si $a_i = 1$, il suffit de le regrouper avec un autre terme pour obtenir un produit plus grand. Ainsi $a_i \in \{2,3\}$.

Il y a au plus deux termes de 2, par exemple, s'il y en a 3 alors 2+2+2, de produit 8, peut être remplacé par 3+3 de produit 9.

On peut conclure, si $n \equiv 0[3]$ alors la partition est composée que de 3, si $n \equiv 1[3]$, alors la partition est composée de deux 2 et le reste de 3, si $n \equiv 2[3]$, alors la partition est composée de un 2 et de 3.

On peut aussi remarquer que si l'on égalise tous les nombres de la partition et qu'on s'autorise à travailler dans \mathbb{R}^+ , alors n=ka puis on maximise $\left(\frac{n}{a}\right)^{\frac{n}{a}}$, on obtient a=e, d'où la discussion sur 2 et 3.

1