DC Motors

DC Motor Case Study

Interrupts & Pulse Width Modulation

Mechatronics Control Board

Columbia University Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

MicroChip PIC16F73 Microcomputer

PIC16F73

PIC16F74

Aspects of Embedded Programming

There are several aspects to programming an embedded MicroChip microcontroller which makes it different from other programming.

- Program and Data are in separate memory locations
- Input / Output pins have multiple uses which can be changed within a program (by manipulating special function registers)
- Limited memory addressing
 - Program memory is split into pages
 - Data memory is split into banks
- Data memory is memory mapped so the same instructions used for internal memory are used for input / output
- Program execution cannot halt the processor must always be doing something
- Use of interrupts

Program Memory

000h		Reset Ved	ctor
001h			
002h			
003h			
004h		Interrupt V	Vector
005h			
006h		goto Lo	op
007h			
008h		call Tim	ner
009h			
00Ah			
00Bh	Loop	addlw	06h
00Ch			
00Dh	Timer	andwf	PORTA,F
00Eh			
00Fh		return	

Program Counter & Stack

Loop	equ	00Bh
Timer	equ	00Fh

00B

Program Counter 13 bits

Stack 8 deep 13 bits wide

010h

Program Memory Interrupt Processing Reset Vector 000h 001h interrupt \Rightarrow disable global interrupt 002h ⇒ return & enable global interrupt retfie 003h **Interrupt Vector** 004hinterrupt xorwf PORTA.F 005h**Program Counter** 13 bits 006h 007h 00B004 retfie 008hinterrupt 009h retfie addwf Temp,F 00Ahaddlw 06h 00Bhretfie 00Ch00BPORTA.F Timer andwf 00Dh00Eh 00Fh return 010h

Issues with Interupts

- There may be some code that you are executing that you do not want to be interrupted from - you have to disable interrupts (easiest using global interrupt enable bit (GIE)).
- In Assembler, you have to do context saving (at least W register and STATUS register).
- Interrupt code starts in program memory location 004h.

ORG 004h

• In C, the compiler takes care of context saving and putting the routine in the correct program memory location (recall that interrupt service routines must begin with "isr" for the Software Standard).

void interrupt isrProcess (void)

• Interrupts are the heart of real time processing.

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

DC Motors F. R. Stolfi 10

PIC16F74 Interrupt Logic

Flags indicate the interrupts that triggered Enables determine which interrupts can execute

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
bit 7							bit 0

- bit 7 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts PEIE: Peripheral Interrupt Enable bit bit 6 **INTCON** 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts Register TMR0IE: TMR0 Overflow Interrupt Enable bit bit 5 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt INTE: RB0/INT External Interrupt Enable bit bit 4 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt RBIE: RB Port Change Interrupt Enable bit bit 3 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1 INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur RBIF: RB Port Change Interrupt Flag bit bit 0 A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch
 - 0 = None of the RB7:RB4 pins have changed state

condition and allow flag bit RBIF to be cleared.

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

	bit 7			bit 0
bit 7	PSPIE ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Enable b 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt	it		
bit 6	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt		PIE1	
bit 5	RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt]	Register	
bit 4	TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt			
bit 3	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt			
bit 2	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt			
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt			
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt			

R/W-0

PSPIE(1)

R/W-0

ADIE

R/W-0

RCIE

R/W-0

TXIE

R/W-0

SSPIE

R/W-0

CCP1IE

R/W-0

TMR2IE

R/W-0

TMR1IE

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF		
bit 7							bit 0		
PSPIF ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred									
ADIE: A/D Converter Interrupt Flag hit									

bit 6 ADIF: A/D Converter Interrupt Flag bit

bit 7

bit 3

1 = An A/D conversion is completed (must be cleared in software)

0 = The A/D conversion is not complete

bit 5 RCIF: USART Receive Interrupt Flag bit

1 = The USART receive buffer is full 0 = The USART receive buffer is empty

bit 4 TXIF: USART Transmit Interrupt Flag bit

1 = The USART transmit buffer is empty

0 = The USART transmit buffer is full

SSPIF: Synchronous Serial Port (SSP) Interrupt Flag

1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI

A transmission/reception has taken place.

I²C Slave

A transmission/reception has taken place.

I²C Master

A transmission/reception has taken place.

The initiated START condition was completed by the SSP module.

The initiated STOP condition was completed by the SSP module.

The initiated Restart condition was completed by the SSP module.

The initiated Acknowledge condition was completed by the SSP module.

A START condition occurred while the SSP module was IDLE (multi-master system).

A STOP condition occurred while the SSP module was IDLE (multi-master system).

0 = No SSP interrupt condition has occurred

bit 2 CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit

1 = TMR2 to PR2 match occurred (must be cleared in software)

o = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit

1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

DC Motors F. R. Stolfi 14

PIR1

Register

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	CCP2IE
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt0 = Disables the CCP2 interrupt

PIE2 & PIR2 Registers

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	CCP2IF
bit 7	•						bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

Compare mode:

- 1 = A TMR1 register compare match occurred (must be cleared in software)
- 0 = No TMR1 register compare match occurred

PWM mode:

Unused

Period (Frequency) fixed Duty Cycle proportional to power needed Frequency typically > 20 kHz so not audible

Pulse Width Modulation

Usually requires a filter

PWM After Filtering

high duty cycle

Recall that a first order filter has a single time constant

Advantages of Pulse Width Modulation for Microcomputer DC Motor Control

- PWM signals are generated in an independent module within the microcomputer & does not require use of the CPU.
- PWM (on off) power signals can be very efficiently produced by power electronics (called a class D amp)
- All DC motors have inductance which naturally filters the PWM signals producing smooth currents in the motor
- Switching electronic components are lower cost & more reliable (especially for high power)

PIC16F73 PWM Timing

Note: Depending on the value in PR2, you can achieve a duty cycle longer than the period. This is an error in set-up.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7	•						bit 0

CCP1CON

Register

Unimplemented: Read as '0'

bit 5-4 CCPxX:CCPxY: PWM Least Significant bits

Capture mode:

Unused

bit 7-6

Compare mode:

Unused

PWM mode:

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (CCPxIF bit is set)

1001 = Compare mode, clear output on match (CCPxIF bit is set)

1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)

1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 clears Timer1; CCP2 clears Timer1 and starts an A/D conversion (if A/D module is enabled)

11xx = PWM mode

Timer 2 Operation

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
_	bit 7							bit 0

T2CON

Register

bit 7 Unimplemented: Read as '0'

bit 6-3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits

> 0000 = 1:1 Postscale 0001 = 1:2 Postscale 0010 = 1:3 Postscale

1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 On bit

> 1 = Timer2 is on 0 = Timer2 is off

T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits bit 1-0

> 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16

DC Motor Case Study Schematic

Index the Motor

Use sensor on output disk to position motor prior to starting.

DC Motor Case Study

- Index motor using a sensor on the load
- Microcomputer will perform 2 functions
 - Compute velocity reference to follow a trapezoidal trajectory
 - Measure the actual motor velocity & control motor to track reference
- Different Modes
 - Mode 0 : Proportional Compensator
 - Mode 1 : Proportional Compensator + Bias
 - Mode 2 : Proportional Derivative (P D) Compensator
 - Mode 3: Proportional Integral Derivative (P I D) Compensator

Example: Consider a CNC Machine

- System controller will tell the table to go to a certain position relative to an index
- Motion controller will:
 - 1. Move the table & find the index mark
 - 2. Compute the velocity profile required for the move
 - 3. Control the movement of the table by measuring its actual velocity, comparing it to the computed velocity profile & adjusting the power in a DC motor to have the actual velocity track the reference velocity

Motor Components

Trapezoidal Velocity Profile

- 1. Inertia Limited (acceleration)
- 2. Viscous Friction Limited (constant speed)
- 3. Inertia Limited (deceleration)

Microcomputer will generate profile

Microcomputer will also control velocity

Actual Motor Velocity from Analog Tachometer is Measured with A/D Converter & averaged to remove noise

Microcomputer's 3 Functions

Mode 0: Proportional Control

Multiply the error by a proportionality constant K_p Make the duty cycle equal to the result

Mode 1: Proportional Control + Bias

Multiply the error by a proportionality constant K_p
Add a fixed bias (constant) to the result
Make the duty cycle equal to the final result

Mode 2: Proportional + Derivative (P D) Control

Multiply the error by a constant K_p Multiply the derivative of the error by a constant K_d Make the duty cycle equal to the sum

Mode 3: Proportional + Integral + Derivative (P I D) Control

Multiply the error by a constant K_p Multiply the derivative of the error by a constant K_D Multiply the integral of the error by a constant K_I Make the duty cycle equal to the sum

Finite Difference

$$\frac{d f(t)}{d t} = \frac{f(t_{i+1}) - f(t_i)}{\Delta t}$$

$$K_D \frac{d f(t)}{d t} = \frac{K_D}{\Delta t} \left[f(t_{i+1}) - f(t_i) \right]$$

you would precompute this

Riemann Integral

Sum as an approximation to integration

$$\int f(t) dt = \sum f(t_i) \Delta t$$

$$K_I \int f(t) dt = (K_I \Delta t) \sum f(t_i)$$
you would precompute this

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Difference Equation

PID Compensator:

$$\begin{split} & \epsilon_n = Vref_n - Vm_n \\ & PWM_n = K_p \, \epsilon_n \, + \, K_d \, \left(\epsilon_n - \epsilon_{n-1} \right) \, + \, K_i \, \left(\sum_{j=0}^{n} \, \epsilon_j \right) \\ & PWM_{n-1} = K_p \, \epsilon_{n-1} \, + \, K_d \, \left(\epsilon_{n-1} - \epsilon_{n-2} \right) \, + \, K_i \, \left(\sum_{j=0}^{n-1} \, \epsilon_j \right) \\ & K_i \left(\sum_{j=0}^{n-1} \, \epsilon_j \right) = PWM_{n-1} - \, K_p \, \epsilon_{n-1} - \, K_d \, \left(\epsilon_{n-1} - \epsilon_{n-2} \right) \\ & PWM_n = PWM_{n-1} \, + \, \left(K_p \, + K_d \, + K_i \right) \epsilon_n \, + \\ & \left(- 2 \, K_d - K_n \right) \epsilon_{n-1} + \, K_d \, \epsilon_{n-2} \end{split}$$

MAC Instruction

- Array of errors $\{\varepsilon_n, \varepsilon_{n+1}, \varepsilon_{n+2}, \varepsilon_{n+3}\}$
- Array of constants $\{K_1, K_2, K_3, K_4\}$
- In ONE instruction, computes

$$u = K_1 \varepsilon_n + K_2 \varepsilon_{n+1} + K_3 \varepsilon_{n+2} + K_4 \varepsilon_{n+3}$$

Advantages of Embedded Digital Control

- Less susceptible to noise and parameter variation.
- Very high accuracy and high speed.
- Handles repetitive tasks extremely well.
- Complex control laws and signal processing methods can be implemented.
- High reliability.
- Long term, low drift, easy retrieval storage for large amounts of data.
- Fast data transmission possible.
- Low operational voltages; low power.
- Low overall cost.

Block Diagram for DC Motor Control System

Operating Principle of a D.C. Motor

Current carrying wire of length L in a magnetic field B

If B & i are perpendicular

$$F = B L i$$

Brush Type Permanent Magnet Motors

The magnetic field is generated by a permanent magnet in the stationary part (the stator). The magnetic circuit is a "soft" magnetic material (iron).

Producing Torque

To produce torque, the current carrying wire is wound in a coil. This is called the armature or rotor.

Torque
$$T = 2 F r$$

= $2 B L r i$
= $K_T i$

A commutator is used to keep the wire segments on the armature perpendicular to the magnetic field.

If the armature makes a 180° rotation, the current in the same coil is reversed.

Each copper segment is connected to the ends of the coil. The commutator is composed of multiple segments.

Commutation

Elements of a D.C. Motor

Elements of DC Motor Showing Construction

D.C. Motor Pictures

Small permanent magnet DC motor.

Columbia University Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Stator with Magnets

D.C. Motor Armature (Rotor) & Commutator

Armature has 3 coils so commutator would have 6 segments.

Columbia University Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Brushes

Moving Coil D.C. Motors

Back e.m.f (ElectroMotive Force - Voltage)

According to Faraday's law, a coil of length L rotating in a uniform magnetic field of flux density B will generate an e.m.f. given by:

$$e = -\frac{d \lambda}{d t}$$

where λ is the flux linking the coil

$$\begin{array}{cccc} \text{Voltage} & e = & 2 \; B \; L \; r \; \omega_n \\ & = & K_E \; \omega_n \end{array}$$

Tachometer

Electrical Side of the DC Motor

Torque – Speed – Current

Pittman Motor Specifications

Motor Data

MOLUI	l Data								
Line No.	Parameter	Symbol	Units	8X22					
1	Continuous Torque (Max.) ¹	T _C	oz-in	1.6					
			(N·m)	(11.2 X 10 ⁻³)					
2	Peak Torque (Stall) ²	T _{PK}	oz∙in	7.4					
	reak lorque (Stall)		(N·m)	(52.0 X 10 ⁻³)					
3	Motor Constant	K _M	oz·in/√W	1.12					
	Wiotor Constant		(N·m/√W)	(7.9 X 10 ⁻³)					
4	No-Load Speed	S _{NL}	rpm	7847					
	No Load opood		(rad/s)	(822)					
5	Friction Torque	T _F	oz-in	0.35					
			(N·m)	(2.5 X 10 ⁻³)					
6	Rotor Inertia	J _M	oz·in·s ²	1.4 X 10 ⁻⁴					
			(kg·m²)	(9.89 X 10 ⁻⁷)					
7	Electrical Time Constant	τ_{E}	ms	0.52					
8	Mechanical Time Constant	τ_{M}	ms	15.6					
9	Viscous Damping— Infinite Source Impedance	D	oz·in/krpm	0.0153					
			(N·m/(rad/s))	(1.03 X 10 ⁻⁶)					
10	Viscous Damping—	Κ _D	oz in/krpm	0.92					
	Zero Source Impedance		(N·m/(rad/s))	(6.20 X 10 ⁻⁵)					
11	Maximum Winding Temperature	θ _{MAX}	°F	311					
			(°C)	(155)					
12	Thermal Impedance	R _{TH}	°F/watt	75.9					
			°C/watt	(24.4)					
13	Thermal Time Constant	$ au_{TH}$	min	7.75					
14	Motor Weight (Mass)	W _M	OZ	4.69					
			(g)	(133.0)					
15	Motor Length, 81XX/82XX	L ₁	in max	2.070					
	motor Longar, O1700, 02700		(mm max)	(52.6)					
16	Motor Length, 83XX/84XX	L ₁	in max	2.007					
			(mm max)	(51)					

Model 8XX2 Winding Data (Other windings available upon request)

Line No.	Parameter	Symbol	Units	8X22				
17	Reference Voltage	E	V	12.0	19.1	24.0	30.3	
18	Torque Constant	K _T	oz·in/A (N·m/A)	1.94 (13.7 X 10 ⁻³)	3.07 (21.7 X 10 ⁻³)	3.88 (27.4 X 10 ⁻³)	4.88 (34.5 X 10 ⁻³)	
19	Back-EMF Constant	K _E	V/krpm (V/rad/s)	1.43 (13.7 X 10 ⁻³)	2.27 (21.7 X 10 ⁻³)	2.87 (27.4 X 10 ⁻³)	3.61 (34.5 X 10 ⁻³)	
20	Resistance	R _T	Ω	3.10	7.61	12.1	19.1	
21	Inductance	L	mH	1.57	3.93	6.27	9.92	
22	No-Load Current	I _{NL}	A	0.25	0.16	0.12	0.10	
23	Peak Current (Stall)	l _p	Α	3.88	2.51	1.99	1.59	

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Model of a DC Motor

Optical Encoder

Optical Encoder Operation

Eddy Current Sensor

The **Eddy Current Sensor** uses the effect of eddy (circular) currents to sense the proximity of non-magnetic but conductive materials. Some eddy current transducers contains two coils: an **active coil** (main coil) and a **balance coil**. The active coil senses the presence of a nearby conductive object, and balance coil is used to balance the output bridge circuit and for temperature compensation.

Demodulation & Processing

Metal Detectors

Common Specifications

Common specifications for commercially available eddy current transducers are listed below:

- Size: about 2 to 75 mm in diameter, 20 to 40 mm long
- Range: 0.25 to 30 mm
- Resolution: Up to 0.1 μm
- Nonlinearity: 0.5%
- Bridge Circuit Frequency: 50 kHz to 10 MHz

DC Motor Driver

