Predicting Car MPG using Bayesian Regression and Comparing with OLS

By Oliver Titus

UNL

April 27, 2021

Introduction

- ► The fuel economy of a car can depend on many factors according to the U.S. department of energy:
 - how you drive
 - vehicle maintenance
 - fuel
 - vehicle variations
 - engine break-in
- Used a data set from the UCI Machine Learning Repository to fit a Bayesian linear model to predict the response variable "mpg", based on several explanatory variables.
- Used R2OpenBugs to estimate the posterior distributions for the regression parameters.
- Verified the result using Stan with a package call "brms".
- Also compared the results to the standard OLS estimates.

Table: Summary Statistics

	Minimum	1st Quantile	Median	Mean	3rd Quantile	Maximum
MPG	9	17	22.75	23.45	29	46.6
Cylinders	3	4	4	5.472	8	8
Displacement	68	105	151	194.4	275.8	455
Horsepower	46	75	93.5	104.5	126	230
Weight	1613	2225	2804	2978	3615	5140
Acceleration	8	13.78	15.5	15.54	17.02	24.80
Origin	1	1	1	1.577	2	3
Model year	70	73	76	75.98	79	82

Figure: Historgram of MPG

Figure: Histogram of Log MPG

Correlation Matrix

Table: Correlation Matrix

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleraion	Model Year	Origin
MPG	1	-0.78	-0.81	-0.78	-0.83	0.42	0.58	0.57
Cylinders	-0.78	1	0.95	0.84	0.90	-0.50	-0.35	-0.57
Displacement	-0.81	0.95	1	0.90	0.93	-0.54	-0.37	-0.61
Horsepower	-0.78	0.84	0.90	1	0.86	-0.69	-0.42	-0.46
Weight	-0.83	0.90	0.93	0.86	1	-0.42	-0.31	-0.59
Acceleration	0.42	-0.50	-0.54	-0.69	-0.42	1	0.29	0.21
Model Year	0.58	-0.35	-0.37	-0.42	-0.31	0.29	1	0.18
Origin	0.57	-0.57	-0.61	-0.46	-0.59	0.21	0.18	1

The Bayesian Framework

In general, the model for all observations can be written:

$$y \mid \beta, \sigma^2, X \sim N(X\beta, \sigma^2 I)$$

We put the following non-informative priors for the parameters:

$$eta_0 \sim \textit{N}(0, 1000)$$
 $eta_i \sim \textit{Uniform}(-1000, 1000)$
 $\sigma^2 \sim \textit{Inv} - \textit{Gamma}(0.5, 0.5)$

The conditional posterior distribution:

$$\beta \mid \sigma, y \sim N(\hat{\beta}, V_{\beta}\sigma^2)$$

where,

$$\hat{\beta} = (X^T X)^{-1} X^T y$$
$$V_{\beta} = (X^T X)^{-1}$$

Our goal is to estimate the marginal posterior distribution for β .

Three Possible Regression Models

We consider 3 model specifications for predicting MPG:

$$\log(mpg) = \beta_0 + \beta_1 * model. year + \beta_2 * acceleration + \beta_3 * horsepower$$

$$(1)$$

$$\log(mpg) = \beta_0 + \beta_1 * model. year + \beta_2 * acceleration + \beta_3 * displacement$$

$$(2)$$

$$\log(mpg) = \beta_0 + \beta_1 * model. year + \beta_2 * acceleration + \beta_3 * weight (3)$$

- Not all explanatory variables are included in the model to avoid over-fitting and multicollinearity.
- We pick which of these is the best fit based on the DIC. We find that model 3 had the lowest DIC and therefore has the best fit.

Results: OpenBugs Trace Plots

Results: OpenBugs Marginal Densities

Results: R Stan 'brms' Results

Results: OLS

	Model 3
(Intercept)	1.602***
	(0.14)
weight	-0.0003^{***}
	(0.000008)
acceleration	0.004
	(0.003)
model.year	0.03***
	(0.002)
R^2	0.87
Adj. R ²	0.87
Num. obs.	392

^{***}p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table: OLS Results

Conclusions

- ► The model with the weight, model year, and acceleration seems to be the most appropriate.
- ► There is strong evidence of a negative effect on mpg with the weight.
- ► There is weak evidence of a positive effect on mpg with acceleration.
- ► There is strong evidence of a positive effect on mpg with model year.
- Bayesian and OLS results were consistent with these findings.

Future Work

► Trying different prior distributions to see if there's a change with the DIC.

Trying to incorporate the Origin variable into the model (i.e. dummy variables, ANOVA).

Comparing other approximation methods such as the EM algorithm, importance sampling, etc.