

Class=y ON17+ y= sec- (1); 0< x=1 find dy Ams dy - -2 dx VI-x2 HINT PW X=(05/20) and Scitx=(05/(1/x) OM 8 + Y= (05/ 2× 1-42) ; -1 < x < 1 prady Ans dy = -2

dir Ji-riz

HIMI PUT H=SINQ ON-9+ Y= ten-1 (SHx2 + SI-x2), -1 < x < 1 fred dy

(SHx2 - SI-x2), -1 < x < 1 fred dy Ams dy = -x ON10 = Y= far 1 (2x) + (051 (1-x2); x ∈ (0.1) 1-x2) + (051 (1-x2); find ay AND dy - 4

HINT PUR N-tonce On 11 + y = for 1 (x) Find dy ANI) dy - 3 - 2 then 01ft. Him Y= ten-1 (3x-2x) => Y= ten-1 (3x) - ten-1 (2x) $O^{N}|_{2} + y = S_{1}n^{-1} \left(\frac{9^{N+1}}{1+y^{N}}\right) \int_{1}^{1} dd \frac{dy}{dy} = \frac{2^{N+1}}{1+y^{N}} \frac{dy}{dy} = \frac{2^{N+1}}{1+y^{N}}$ [CLASSITION 12]

CLASSTIME"

DEC	[CLASS NO=4]
Topic:	Date. :
	2
(dx) x=21	y2 Sec2(3/4)
(dx) x=n/y	
	ton (7) (1-4 log (ten 7))
= 4	2/5/2
_	(52)
(1) (1-y leg1)
= 27) - · lon 1 - al
1-	
= 24	Ana y= (tenx)
$=2(1)^2$	1 when x = 3/4
	$y = (1)^{y} = 1$
$\frac{\partial y}{\partial x} = 2$	dry
/x=1/y	
~	
QMY+ Y=ax	Fro dy
Stylin y= q xa y	
J= Q y	
y= ax	Lemen su
	hau y + (a x)
taking log	
100 y	
109 7 = x	
taking again	log
	V
log(109y)=	109 (N - 199)
=> 109/1084) - Y/09	1 x + 109 (199)
)((1)/= 2.1/	[CLASSTIME]

	DEC [CLASS NO:4]	
	Topic :	
	DIff. wet x	
	1. 1. dy = J. 1 + 109 x dy +0	
	$\frac{\partial y}{\partial x} \left(\frac{1}{y \log y} - \frac{\log x}{x} \right) = \frac{y}{x}$	
	=> dy (1-y logx · logy) = y	
	yldy y	
	ay y'loy ANG	
	an x (1-y logulogy)	
Our 5	→ y= sinx And dy	
	1+ COX Dro	
	1+ SINX	
	1+ cox x	
Solyh		
	1+ (ax_	
	l+ y	
	7 = (1+y) sinx	
	$\frac{1+y+cax}{1+y+cax}$	
	=> yty2 +ylax = sinx + Jsinx	
	Mit will -	
	proceed yoursey dy (Ity) (ax + ysinx The standard of the stand of the standard of the standar	
	[CLICONIA]	

	D&C [CLASS NIO: Y] (5) Topic: Date.: Page No.:
	Topic: \$4 Differentiation of Invusa Trigo function
Oni	1 Differentiale y = Sin-1 (2x) when
	(i) $\chi \in (-1, 1)$ (ii) $\chi \in (1, \infty)$ (iii) $\chi \in (-\infty, -1)$
Solyha	We have y- 5n-1 (2x)
	put n=tona
	7 - Sin1 (2 ton0)
	$\Rightarrow y = \sin(\sin(20))$
(i)	
	$\Rightarrow -1 < tmo < 1$ $\Rightarrow -7 < 0 < 7$
	→ -3 <20 <3 (within Range
	$7 = y = \sin^{-1}(\sin(20))$ $7 = 20$
	liplace 10
	Drift with
	J= 2 MM 1+x12
(Ti)	$M \leftarrow (1, \infty)$ (a) $1 < x < \infty$
	y=sin-1 (sin(20)) → 1 < tono < 20
	=> 7 < 20 < 7 (out of Rarge

DEC [CLASS MOZY]
Topic :
Inp pank (Sin (0) = -Sin(-20)
$\int_{0}^{\infty} \operatorname{Sin}(20) = \operatorname{Sin}(7-20)$
Sin(20)= - Sin(7+20)
D
hu 3/2027
$-\frac{7}{3} > -20 > -7$
$\frac{7-1}{2} = \frac{7(7-20)}{2} > 7-2$
7 > (71-20) > 0
La Rarge
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Rightarrow y = Sn^{-1}(Sn(20))$
7= Sin-1 (Sin (7-20))
=> y= 7-2Q
Del 9 = 2 - ten x leplace of
$\frac{dy}{dx} = -\frac{1}{1+x^2} \frac{dy}{dx}$
du 1+x2 =
(iii) x \(\int (-\omega, -1) \) (\(\omega \) \(-\omega \) \(\pi \)
d Z
$y = \sin^{-1}(\sin(20))$ = $-\infty \times \tan 0 \times -1$ = $-\frac{3}{2} \times 0 \times -\frac{3}{2} = \cos^{-1}(\sin(20))$
-> -> 1 20 2-3 (range)
CLASSTIME"

D&C [Class Alo=y]
Topic: Date: 7-7 < (7+20) < 7-3 0 < (7+20) < 3 -> (within Range) => y=5,n-1/5,n(20)) => Y= 5in-1 (-5in (7+20)) => y= - Sin-1 (Sin (7+20)) a y= - (7+20) J= - (x + 2 ten-1x) --- fuplace of $\frac{dy}{dx} = 0 - 2 = -2 \qquad Ans$ OM12+ 7= for-1/ / 1+sinx ; -3/x 23 y= fen-1 / ItSinx I-sinx Y- tan-1 / 1+ (0/3-x) Y= fen-1 | 2(cs2/3-x) = y=fen-1 (cot74-x)

#51n2(4-x) CLASSTIME

[Class No: 4/ DEC Page No. : ...(8) Date.:.... y= fen-1 (ot (2-2) - 7 - 7 - 3 y= turi (cot(3-1)) -3 くえくう ユフーグァーラ Y= ten- (ten (3-1) (2+3)>2-12>0)= fer- (fen (2, +2)) 至 > (3-至) 70 @) 04(\$-7) < 3 I I't rued. 9914 - 7 < 7 < 3 7 47 47 7-2 -2 -2 +3 0 4 (3+2) 63 Lin Range of ferily y -- for - (for (3+ 2)) 7- 7+2 DIST WIFY dy = 0+ 1 = 1/2 dy

CLASSTIME