Den 19:e Nordiska Matematiktävlingen

Tisdagen den 5 april, 2005

Skrivtid: 4 timmar. Varje problem är värt 5 poäng.

Problem 1

Bestäm alla positiva heltal k, sådana att produkten av siffrorna i k (i tiotalssystemet) är lika med

$$\frac{25}{8}k - 211.$$

Problem 2

Låt a, b och c vara positiva reella tal. Visa att

$$\frac{2a^2}{b+c} + \frac{2b^2}{c+a} + \frac{2c^2}{a+b} \ge a+b+c.$$

Problem 3

Kring ett mycket stort, runt bord sitter 2005 ungdomar. Högst 668 av dem är pojkar. Vi säger att en flicka, G, har en stark position om, vid räkning från G ett godtyckligt antal steg oavsett riktning, antalet flickor alltid är strikt större än antalet pojkar. (G är själv inkluderad vid räkningen.) Visa att det alltid finns en flicka som har en stark position, hur ungdomarna än är placerade kring bordet.

Problem 4

Cirkeln C_1 är belägen inuti cirkeln C_2 , och cirklarna tangerar varandra i punkten A. En linje som går genom A skär cirkeln C_1 även i punkten B och cirkeln C_2 även i punkten C_2 . Tangenten till C_1 i punkten C_2 i C_3 som går genom C_3 tangerar C_3 i C_4 och C_5 . Visa att C_5 och C_6 är punkter på samma cirkel.

Enda tillåtna hjälpmedel är skrivdon och linjal.