EE 5098 – Digital Image Processing

6. Color Image Processing: Color appearance

Color

- What is color?
 - An *interpretation* of spectral density distribution of electrical magnetic waves by our brain.
 - ONLY in our mind.
- The study of color perception is more psychological and less physical.

Why Study Color Appearance Modeling

- Color appearance actually depends on
 - The illumination
 - Our eye's adaptation level
 - The colors and scene interpretation surrounding the observed color
- Spectrum \Rightarrow XYZ \Rightarrow color appearance modeling

Why Specify Color Numerically?

- Accurate color reproduction is commercially valuable
 - Many products are identified by color
- Few color names are widely recognized by English speakers
 - About 10; other languages have fewer/more, but not many more
 - It's common to disagree on appropriate color names
- Increasing color reproduction problems in the digital imaging era - eg. digital libraries of art
 - How do we ensure that everyone sees the same color?

UNITED STATES DEPARTMENT OF AGRICULTURE COLOR STANDARDS FROZEN FRENCH FRIED POTATOES POURTH EDITION, 1958 C THIS KOLLMORDEN CORPORATION MUNISEL COLOR BALTIMORE, MARYLAND

Colorimetry

比色法、色度學

- The science of quantification of a color
- Psychophysics:
 - Human have 3 types of light spectral sensors called cone cells (long, medium, and short).

 Therefore, in principle, 3 values are sufficient to describe a color.

 We need a mapping from spectral density to "tristimulus values."

Color Matching Experiment

- Color matching experiments were done in the 1920s by Wright and Guild independently. Their results were summarized later.
- The experiment:

The Color Matching Functions

The CIE RGB Color Space

Grassman's Law

- The color matching result of the mixture of two colors is equal to the summation of the result of the two colors.
- The law is discovered by Hermann Grassman in the 19th century as an empirical law.

$$R = \int I(\lambda) \cdot \overline{r}(\lambda) d\lambda$$
$$G = \int I(\lambda) \cdot \overline{g}(\lambda) d\lambda$$
$$B = \int I(\lambda) \cdot \overline{b}(\lambda) d\lambda$$

 $I(\lambda)$: Spectral power distribution

Grassman's Laws

For color matches

```
U=V \longleftrightarrow V=U
– symmetry:
                                       U=V and V=W \rightarrow U=W
– transitivity:
– proportionality:
                                       U=V \longleftrightarrow tU=tV
– additivity:
   If any two (or more) of the statements
        U=V,
        W=X,
        (U+W)=(V+X)
   are true, then so is the third
```

 These statements are as true as any biological law, meaning that additive color matching is linear.

Color-Matching Paradigm

- To measure the color of a spectral signal t, first pick a set of 3 primary color lights
- Find the amounts (c₁, c₂, c₃) of each primary needed to match t
- Those amounts, c₁, c₂, and c₃, describe the color of t.
 If you have another spectral signal s, and s matches t
 perceptually, then c₁, c₂, c₃ will also match s, by
 Grassman's laws.
- Why this is useful—it lets us:
 - Predict the color of a new spectral signal
 - Translate to representations using other primary lights.

1

Color Matching for Any Color Signal

- Pick a set of primaries, $p_1(\lambda), p_2(\lambda), p_3(\lambda)$
- Measure the amount of each primary, $c_1(\lambda), c_2(\lambda), c_3(\lambda)$ needed to match a monochromatic light $t(\lambda)$ at each spectral wavelength λ (pick some spectral step size). These are the color matching functions.

Color Matching for Any Color Signal

Any spectral signal can be thought of as a linear combination of many monochromatic lights,

$$\vec{t} = \begin{pmatrix} t(\lambda_1) \\ \vdots \\ t(\lambda_N) \end{pmatrix}$$

19

Color Matching for Any Color Signal

Store the color matching functions in the rows of the matrix C,

$$C = \begin{pmatrix} c_1(\lambda_1) & \cdots & c_1(\lambda_N) \\ c_2(\lambda_1) & \cdots & c_2(\lambda_N) \\ c_3(\lambda_1) & \cdots & c_3(\lambda_N) \end{pmatrix}$$

Then the amounts of each primary needed to match *t* can be described by

 $C\vec{t}$

The result is a 3x1 vector.

Color Transform: Translating Colors between Different Systems of Primaries

$$\mathbf{p}_1 = (0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 1 \ 0)^{\mathrm{T}}$$

$$p_2 = (0 \ 0 \ \dots \ 0 \ 1 \ 0 \ \dots 0 \ 0)^T$$

$$p_3 = (0 \ 1 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0)^T$$

Primary spectra, P

Color matching functions, C

$$p'_1 = (0 \ 0.2 \ 0.3 \ 4.5 \ 7 \ \dots \ 2.1)^T$$

$$p'_2 = (0.1 \ 0.44 \ 2.1 \dots \ 0.3 \ 0)^T$$

$$p'_3 = (1.2 \ 1.7 \ 1.6 \ \dots \ 0 \ 0)^T$$

Primary spectra, P'

Color matching functions, C'

Any color with spectrum \vec{t}

The amount of each primary in P needed to match the color with spectrum \vec{t}

The amount of each P' primary needed to match \bar{t}

The color of that matched to \vec{t} , and the primaries P' described by the primaries P'

21

Color Transform: Translating Colors between Different Systems of Primaries

P' are the old primaries C are the new primaries' color matching functions

Translate Color Matching Functions

From an earlier slide

$$C\vec{t} = CP'C'\vec{t}$$

But this holds for any input spectrum \vec{t} , so

$$C = CP'C'$$

A 3x3 matrix that transforms the color representation from one set of primaries to another.

Recap

- What are colors?
 - Arise from power spectrum of light.
- How to represent colors:
 - Pick primaries
 - Measure color matching functions (CMF's)
 - Multiply power spectrum by CMF's to represent color by the 3 primary color values.
- How to share color descriptions between people?
 - Translate colors between systems of primaries
 - Standardize on a few sets of primaries.

Source: W. Freeman 24

The CIE XYZ Color Space

- Based on the RGB color space, scientists wish to design a new color space XYZ such that
 - The XYZ values are linear combinations of RGB
 - Non-negative tristimulus values for all colors
 - One of the matching function being the photopic luminous efficiency function $V(\lambda)$.
 - For constant energy white, the tristimulus values are the same, that is, X=Y=Z.
- These properties are desirable mainly due to computational considerations. (Computers were not invented yet at that time.)

The CIE 1931 XYZ Color Space

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$X = \int I(\lambda) \cdot \overline{x}(\lambda) d\lambda$$

$$Y = \int I(\lambda) \cdot \overline{y}(\lambda) d\lambda$$
1.5

$$Z = \int I(\lambda) \cdot \bar{z}(\lambda) d\lambda$$

Basis Transformation

CIE XYZ

MacAdam ellipses (x10): colors indistinguishable to human eyes

Distance is nonlinear

CIE XYZ 雖然改進了CIE RGB 的負成份問題,但仍然存在另一個問題: 色度圖上的距離與視覺差異不一致

Limitations of XYZ Specification

- Theoretically, XYZ is valid only for the specific viewing condition that is strictly controlled
 - Clean background
 - The stimulus extends 3 degrees in field-of-view
- XYZ does not account for personal difference
 - The CIE1931 color matching functions are obtained by averaging over a number of subjects

From Colorimetry to Color Appearance

- There are factors that affect our perception of colors
 - Luminance adaptation and chromatic adaptation
 - Other color appearance phenomena (e.g. simultaneous contrast, crispening...etc.)

Color Appearance Model

- A numerical model predicting human color perception in various contexts
- From physical description of color (colorimetry) to psychological description of color (perceptual attributes)
- Objectives of an appearance model:
 - Predict perceptual attributes
 - Account for the effects of different viewing conditions
 - Account for psychological phenomena (e.g. Hunt effect,
 Steven's effect...etc.)

Hunt effect: Colorfulness increases with luminance. **Stevens effect:** Contrast increases with luminance.

Color Appearance Model

- Q: How do you define these perceptual attributes?
- An equivalent question: How do you "describe" a color to visually impaired people?
- The "definitions" we are to introduce is *literal* rather than *mathematical*

Color Appearance Attributes

• Hue (色調)

- The degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow.
- Whether hue is absolute or relative attribute is of less concern

Brightness

- The subjective appearance of how bright an object appears given its surroundings and how it is illuminated.
- Absolute attribute

Lightness

- The subjective appearance of how light a color appears to be
- Relative attribute

Attributes of Color Appearance

Colorfulness

- The degree of difference between a color and gray
- Absolute attribute

Chroma

- The colorfulness relative to the brightness of another color that appears white under similar viewing conditions
- Allows to present the fact that a surface of a given chroma displays increasing colorfulness as the level of illumination increases
- Relative attribute

Saturation

- Colorfulness of a color relative to its own brightness
- Absolute attribute

Hue = Hue

Brightness > Brightness

Lightness = Lightness

Colorfulness > Colorfulness

Chroma = Chroma

Saturation ≈ Saturation

Simultaneous Contrast

Two colors, side by side, interact with one another and change our perception accordingly. The effect of this interaction is called simultaneous contrast.

Simultaneous Contrast

Simultaneous Contrast

Prediction of Appearance

 Most of the color appearance models follow the flow below, although the details may not be the same.

Chromatic Adaptation

 A fundamental mechanism of human visual system so important that must be addressed in all color appearance models 眼睛對色彩的分辨 能力會被剛剛所看 到的色彩影響。 色彩飽和度的增減 也會影響色彩判定 的能力。

- Physiologically speaking, this adaptation is caused by the depletion of visual pigment in eyes
 - Incoming light breaks down the molecules of visual pigment, and hence at higher intensity levels, there are fewer molecules capable of producing visual response
- The key: The gain control is independent in each of the three types of cones cells

Chromatic Transform in CIECAM02

Published in 2002 by CIE

Color space transformation

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \mathbf{M}_{CAT02} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}, \quad \mathbf{M}_{CAT02} = \begin{bmatrix} 0.7328 & 0.4296 & -0.1624 \\ -0.7036 & 1.6975 & 0.0061 \\ 0.0030 & 0.0136 & 0.9834 \end{bmatrix}$$

Von Kries Model

$$S_{a} = k_{S}S$$

$$M_{a} = k_{M}M$$

$$L_{a} = k_{L}L$$

Non-Linear Compression

- Human are able to see 9 orders of luminance, but only 3 orders can be seen simultaneously.
- In addition to adjusting pupil size, cones adapt to the luminance of scenes as well
- The process usually follows the Naka-Rushton eq.

$$\frac{V}{V_m} = \frac{I^n}{I^n + \sigma^n}$$

Michaelis-Menten eq. when n=1.

V: Photoreceptor response

 V_m : Maximum response

I: Light intensity

 σ : semisaturation constant

n: normally in the range [0.7, 1.0]

Opponent Color Theory

- Origin of the theory traces back to a century ago.
 Now widely accepted.
- Since the frequency responses of the 3 types of cone overlap, it is more efficient to record the differences of the cone signals (decoupling)
- 3 Difference signals:
 - A (from white to black, achromatic)
 - C₁ (from red to green)
 - C₂ (from yellow to blue)

Opponent Color Processing in CIECAM02

$$C_1 = L'_a - M'_a$$

$$C_2 = M'_a - S'_a$$

$$C_3 = S'_a - L'_a$$

$$A = (2L'_a + M'_a + \frac{1}{20}S'_a - 0.305)N_{bb}$$
 $N_{bb} = N_{cb} = 0.725n^{-0.2}$
 $a = C_1 - \frac{1}{11}C_2$
 $= L'_a - \frac{12}{11}M'_a + \frac{1}{11}S'_a$
 $b = \frac{1}{2}(C_2 - C_1 + C_1 - C_3)/4.5 = \frac{1}{9}(L'_a + M'_a - 2S'_a)$

Perceptual Attributes

- The last stage of a color appearance model.
- A, a, and b are obtained from the previous slide.
- Hue angle refers to the angle of C*.

Perceptual Attributes in CIECAM02

Hue
$$h = \angle(a, b), (0 < h < 360^{\circ})$$

Lightness
$$J = 100 \left(A/A_w \right)^{cz}$$

Brightness
$$Q=\left(4/c\right)\sqrt{\frac{1}{100}J}\left(A_w+4\right)F_L^{1/4}$$

Chroma
$$C = t^{0.9} \sqrt{\frac{1}{100}} J (1.64 - 0.29^n)^{0.73}$$

Colorfulness
$$M = C \cdot F_L^{1/4}$$

Saturation
$$s=100\sqrt{M/Q}$$

Summary

- Color is a psychological phenomenon
- Color matching and tristimulus colorimetry: the CIE 1931 2°
 Standard Observer
- Color appearance
 - Attributes definition
 - Chromatic adaptation
 - Opponent color theory
- Color appearance model example: CIECAM02