Theory of Computation

Generative Grammars

Lecture 11 - Manuel Mazzara

Languages - recap

Regular Expressions - recap

- Regular expressions and finite-state automata represent regular languages
- The basic regular expression operations are: concatenation, union, and Kleene closure
- The regular expression language is a powerful pattern-matching tool
- Any regular expression can be converted into a (N)FSA

Equivalences - recap

- Thompson's construction is one of several algorithms for constructing NFAs from regular expressions
- Kleene's algorithm
 - transforms given deterministic finite automaton into a regular expression (<u>lab session today</u>)
- Thompson and Kleene algorithms plus several others establish the equivalence of description formats for regular languages

Models for languages

Models suitable to recognize/accept, translate, compute languages

- They "receive" an input string and process it
- →Operational models (Automata)

Models suitable to describe how to generate a language

Sets of rules to build phrases of a language

→Generative models (Grammars)

Grammars (1)

- Generative models produce strings
 - grammar (or syntax)
- A grammar is a set of rules to build the phrases of a language
 - It applies to any notion of language
- A formal grammar generates strings of a language through a <u>rewriting</u> process

Rewriting

- Rewriting relevant to many fields
 - Mathematics
 - Computer science
 - Logic
- It consists of a wide range of methods for replacing subterms of a "formula" with other terms
 - Potentially nondeterministic

- Semantically equivalent formulae in propositional logic
 - $-A \wedge B$ can be replaced with $\sim (\sim A \vee \sim B)$
 - ~A∨B can be replaced with A⇒B
 - **—** ...
- Examples of tautologies in FOL
 - We can rewrite the tautology ~AvA by replacing A with a w.f.f. of propositional or FOL logic

Linguistic rules (1)

- Natural languages are explained through rules such as:
 - A phrase is made of a subject followed by a predicate
 - A subject can be a noun or a pronoun or...
 - A predicate can be a verb followed by a complement
- Programming languages are expressed similarly:
 - A program consists of a declarative part and an executable part
 - The declarative part ...
 - The executable part consists of a statement sequence
 - A statement can be ...

Linguistic rules (2)

- In general, a linguistic rule describes a "main object"
 - Examples: a book, a program, a message, ...
 - as a sequence of "composing objects"
- Each "composing object" is "<u>refined</u>" by replacing it with more detailed objects and so on... until a sequence of <u>base elements</u> is obtained

Grammars (2)

- A grammar is a linguistic rule
- It is composed by
 - a main object: initial symbol
 - composing objects: nonterminal symbols
 - base elements: terminal symbols
 - refinement rules: productions
- Formally?

Noam Chomsky (1)

"A grammar can be regarded as a device that enumerates the sentences of a language"

"A grammar of L can be regarded as a function whose range is exactly L"

Noam Chomsky
On Certain Formal Properties of Grammars

Information and Control, Vol 2, 1959

Noam Chomsky (2)

Avram Noam Chomsky (born December 7, 1928) is an American *linguist, philosopher, cognitive scientist, historian, logician, social critic, and political activist.* – Wikipedia

The "father of modern linguistics"

Chomsky hierarchy

Definition

- A grammar is a tuple <V_N, V_T, P, S> where
 - V_N is the <u>nonterminal alphabet</u>
 - V_T is the <u>terminal alphabet</u>
 - $V=V_N \cup V_T$
 - S∈V_N is a particular element of V_N called <u>axiom</u> or <u>initial</u>
 <u>symbol</u>
 - P⊆ V*· V_N · V* ×V* is the (finite) set of <u>rewriting rules</u> or <u>productions</u>
- A grammar G=<V_N, V_T, P, S> generates a language on the alphabet V_T

Productions

- A production is an element of $V^* \cdot V_N \cdot V^* \times V^*$
 - This is usually denoted as $<\alpha$, $\beta>$ where $\alpha \in V^* \cdot V_N \cdot V^*$ and $\beta \in V^*$
- We generally indicate a production as $\alpha \rightarrow \beta$
 - α is a sequence of symbols including at least one nonterminal symbol (it is a rewriting system)
 - $-\beta$ is a (potentially empty) sequence of (terminal or non terminal) symbols
 - We want to rewrite the left side into the right side, we need at least one nonterminal

- $V_N = \{S, A, B, C, D\}$
- $V_T = \{a,b,c\}$
- S is the initial symbol
 - It is not mandatory to call it S
- $P = \{S \rightarrow AB,$ $BA \rightarrow cCD,$ $CBS \rightarrow ab,$ $A \rightarrow \epsilon\}$
- → The generated language is on the alphabet {a,b,c}

Immediate derivation relation

 $\alpha \Rightarrow \beta$ (β is obtained by immediate derivation from α)

$$-\alpha \in V^* \cdot V_N \cdot V^*$$
 and $\beta \in V^*$

if and only if

$$\alpha = \alpha_1 \alpha_2 \alpha_3$$
, $\beta = \alpha_1 \beta_2 \alpha_3$ and $\alpha_2 \rightarrow \beta_2 \in P$

 $\rightarrow \alpha_2$ is rewritten as β_2 in the context $<\alpha_1, \alpha_3>$

In the grammar G

$$-V_{N} = \{S, A, B, C, D\}$$

$$- V_T = \{a,b,c\}$$

- S is the initial symbol
- P = {S → AB, BA → cCD, CBS → ab, A → ε}
- $aaBAS \Rightarrow aacCDS$
- $bcCBSAdd \Rightarrow bcabAdd$

Language generated by a grammar

- Given a grammar $G=\langle V_N, V_T, P, S \rangle$, $L(G)=\{x \mid x \in V_T^* \land S \Rightarrow +x\}$
- Informally the language generated by a grammar G is the set of all strings
 - Consisting only of terminal symbols
 that can be derived from S
 - In any number of steps

- G₁=<{S,A,B}, {a,b,0}, P, S>
 − P={S→aA, A→aS, S→bB, B→bS, S→0}
- Some derivations
 - $-S \Rightarrow 0$
 - $-S \Rightarrow aA \Rightarrow aaS \Rightarrow aa0$
 - $-S \Rightarrow bB \Rightarrow bbS \Rightarrow bb0$
 - $-S \Rightarrow aA \Rightarrow aaS \Rightarrow aabB \Rightarrow aabbS \Rightarrow aabb0$
- An easy generalization L(G₁)={aa, bb}*.0

- $G_2 = < \{S\}, \{a,b\}, \{S \rightarrow aSb \mid ab\}, S >$
 - $\{S \rightarrow aSb \mid ab\} \text{ is an abbreviation for } \{S \rightarrow aSb, S \rightarrow ab\}$
- Some derivations
 - $-S \Rightarrow ab$
 - $-S \Rightarrow aSb \Rightarrow aabb$
 - $-S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$
- An easy generalization L(G₂)={aⁿbⁿ|n>0}
 - $L(G_2)={a^nb^n|n≥0}$ if we substitute S→ab with S→ε

- G₃=<{S,A,B, C, D}, {a,b,c}, P, S>
 - P={S→aACD, A→aAC|ε, B→b, CD→BDc, CB→BC, D→ε}
- Some derivations
 - $-S \Rightarrow aACD \Rightarrow aCD \Rightarrow aBDc \Rightarrow *abc$
 - S ⇒ aACD ⇒ aaACCD ⇒ aaCBDc ⇒ aaBCDc ⇒ aabCDc ⇒ aabBDcc ⇒ aabbDcc ⇒ aabbbcc
 - $-S \Rightarrow aACD \Rightarrow aaACCD \Rightarrow aaCCD \Rightarrow aaCC$

Chomsky hierarchy

- Grammars are classified according to the form of their productions
- Chomsky classified grammars in four types

Unrestricted grammars (type 0)

Type-0 grammars include all formal grammars

String of nonterminals and terminals

String of nonterminals and terminals

The only restriction on rules is: left-hand side cannot be the empty string (you cannot generate symbols out of nothing)

Definition

- General (also called unrestricted) grammars are grammars without any limitation on productions
 - They correspond to type 0 in the Chomsky hierarchy
- Both context-free grammars and regular grammars are non-restricted

Example (type 0)

```
VN = \{S, T, C, P\}
VT = \{a, b\}
P = \{S \rightarrow T E\}
T \rightarrow aTa \mid bTb \mid C
        C \rightarrow CP
        Paa \rightarrow aPa
        Pab \rightarrow bPa
        Pba \rightarrow aPb
        Pbb \rightarrow bPb
        PaE \rightarrow Ea
        PbE \rightarrow Eb
        CE \rightarrow \epsilon
```

Context-Sensitive grammars

- Type-1 grammars have rules of the form $\alpha A\beta \rightarrow \alpha \gamma \beta$, where A is a nonterminal and α , β and γ are strings of terminals and nonterminals.
 - $-\gamma$ must be non-empty
 - − The rule $S \rightarrow ε$ is allowed if *S* does not appear on the right side of any rule
 - It should be clear why they are called contextsensitive...

Example (type 1)

```
• V_N = \{S, A, B\}
• V_T = \{a,b,c\}
• P = \{S \rightarrow abc \mid aAbc,
          Ab \rightarrow bA
          Ac \rightarrow Bbcc
           bB \rightarrow Bb
          aB \rightarrow aa
          aB \rightarrow aaA
                                                   L=\{a^nb^nc^n|n\geq 1\}
```

Context-free grammars

 Type-2 grammars are defined by rules of the form A→γ where A is a nonterminal and γ is a string of terminals and nonterminals

Definition

- A grammar is called context-free (CFG) if
 - for each $\alpha \to \beta \in P$, we have $|\alpha| = 1$, i.e., α is an element of $V=V_N \cup V_T$
- They are called context-free because the rewriting of α does not depend on its context
 - context = part of the string surrounding it

Example (type 2)

- $V_N = \{S\}$
- $V_T = \{a,b\}$
- $P = \{S \rightarrow aSb \mid \epsilon \}$

$$L=\{a^nb^n \mid n \ge 0\}$$

Context-free grammars

- CFGs are the same as the BNFs used for defining the syntax of programming languages
 - they are well fit to define typical features of programming and natural languages
 - Regular grammars are also context-free grammars
 - But not vice versa

Regular grammars

- <u>Type 3 grammars</u> restrict productions to a <u>single</u> nonterminal on the left-hand side and a <u>right-hand</u> side consisting of a <u>single</u> terminal, possibly followed (or preceded, but <u>not both</u> in the same grammar: <u>right-linear XOR left-linear</u>) by a single nonterminal
 - The rule S→ ϵ is also allowed here if *S* does not appear on the right side of any rule

Definition

- If for each $\alpha \rightarrow \beta \in P$ we have $|\alpha| = 1$ and
 - $-\beta \in V_N . V_T \cup V_T$, the grammar is **left regular**
- If for each $\alpha \rightarrow \beta \in P$ we have $|\alpha| = 1$ and
 - $-\beta \in V_T.V_N \cup V_T$, the grammar is **right regular**
- A grammar is regular (RG) iff it is left regular or right regular
- A language is regular iff it is generated by some regular grammar
 - There must be at least ONE grammar that generates it

Example (type 3)

- $V_N = \{S\}$
- $V_T = \{a\}$
- $P = \{S \rightarrow aS \mid \epsilon \}$

$$L=\{a^n \mid n \geq 0\}$$

Some natural questions

- What is the practical use of grammars?
- What languages can be obtained through grammars?
- What is the relationship between automata and grammars?
 - And between languages generated by grammars and languages accepted by automata?
 - And the Chomsky hierarchy?

Some answers

- Chomsky hierarchy can be "renamed"
 - Type 3 grammars: regular
 - Type 2 grammars: context-free
 - Type 1 grammars: context-sensitive
 - Type 0 grammars: unrestricted
- Correlations
 - Regular grammars regular languages FSAs
 - Context-free grammars context-free languages -NDPDAs
 - Unrestricted grammars recursively enumerable languages MTs

Automata, languages, and grammars

Chomsky hierarchy	Grammars	Languages	Minimal automaton
Type-0	Unrestricted	Recursively enumerable	Turing machine
Type-1	Context-sensitive	Context-sensitive	(Linear bounded automaton)
Type-2	Context-free	Context-free	NDPDA
Type-3	Regular	Regular	FSA

RGs and FSAs

Let A be a FSA. An equivalent RG G can be found constructively. Equivalent means that G generates exactly the same language that is recognized by A (and vice versa)

Regular grammars, finite state automata and regular expressions are different models to describe the same class of languages

Building a RG from a FSA

- If A= $\langle Q, I, \delta, q_0, F \rangle$, then it is possible to build G= $\langle V_N, V_T, S, P \rangle$ such that
 - $-V_N=Q$
 - $-V_{T}=I$,
 - $-S = <q_0>$
 - For all $\delta(q, i) = q'$
 - $\langle q \rangle \rightarrow i \langle q' \rangle \in P$
 - If $q' \in F$ then $q' > \rightarrow \epsilon \in P$
- $\delta^*(q, x) = q'$ if and only if $\langle q \rangle \Rightarrow^* x \langle q' \rangle$

Building a FSA from a RG

If G=< V_N, V_T, S, P> then it is possible to build A=<Q, I, δ , q₀, F> such that

- $-Q = V_N \cup \{q_F\}$
- $-I=V_{T}$
- $< q_0 > = S,$
- $-F = \{q_F\}$
- − For all A→ bC, δ (A,b) = C
- − For all A→ b, δ (A,b) = q_F

Automata, languages, and grammars

Chomsky hierarchy	Grammars	Languages	Minimal automaton
Type-0	Unrestricted	Recursively enumerable	Turing machine
Type-1	Context-sensitive	Context-sensitive	(Linear bounded automaton)
Type-2	Context-free	Context-free	NDPDA
Type-3	Regular	Regular	FSA

CFGs and NDPDAs

 Context-free grammars are equivalent to nondeterministic PDAs

We show an intuitive justification

The proof is the "core" of compiler construction

$$S \Rightarrow aSb \Rightarrow aabb$$

General grammars and TMs

- General grammars (GGs) and TMs are equivalent formalisms (constructive proof)
 - Given a GG it is possible to build a TM that recognizes the language generated by the grammar
 - Given a TM it is possible to define a GG that generates the language accepted by the TM
- How?

From a GG to a TM (1)

Given a general grammar $G=\langle V_N, V_T, P, S \rangle$, let us construct a **NDTM** M such that L(M)=L(G):

- M has one memory tape
- The input string x is on the input tape
- The memory tape is initialized with S (better: Z₀S)
- The memory tape in general will contain a string $\alpha \in V^*$
 - It is scanned searching the left part of some production of P
 - When one is found, (not necessarily the first one) M operates a
 ND choice and the chosen part is replaced by the corresponding
 right part (if there are many right parts, again, M operates
 nondeterministically)

From a GG to a TM (2)

• In this way, whenever $\alpha \Longrightarrow \beta$ we have

$$c_s = \langle q_s, Z_0 \alpha \rangle | -^* - \langle q_s, Z_0 \beta \rangle$$

- If and when the tape contains a string y∈V_T*,
 it is compared with x
 - If they coincide, x is accepted
 - otherwise this particular sequence of moves does not lead to acceptance

Remarks

- Using a NDTM facilitates the construction but it is not necessary
- Note that, if $x \notin L(G)$, M might "try an infinite number of ways"
 - some of these might never terminate, thus (correctly) being unable to conclude that $x \in L(G)$
 - and being unable to conclude $x \notin L(G)$

Indeed the definition of acceptance requires that M reaches an accepting configuration if and only if $x \in L$

- It does not require that M terminates its computation in a non-final state if $x \notin L$
- Again, we have the complement problem and the asymmetry between solving a problem in the positive or negative sense

From a TM to a GG

- This is the opposite direction to show the full equivalence
- It is left as exercise
- It is a bit laborious, but conceptually simple