Support Vector Machines (II): Non-linear SVMs

LING 572 Advanced Statistical Methods for NLP February 26, 2019

Outline

- Linear SVM
 - Maximizing the margin
 - Soft margin

- Nonlinear SVM
 - Kernel trick

A case study

Handling multi-class problems

Non-linear SVM

Highlights

Problem: Some data are not linearly separable.

Intuition: Transform the data to a high

dimen

Input space

Feature space

Example: Two spirals

Separated by a hyperplane in feature space (Gaussian kernels)

Feature space

- Learning a non-linear classifier using SVM:
 - Define \$\phi\$
 - Calculate $\phi(x)$ for each training example
 - Find a linear SVM in the feature space.

Problems:

- Feature space can be high dimensional or even have infinite dimensions.
- Calculating $\phi(x)$ is very inefficient and even impossible.
- Curse of dimensionality

Kernels

 Kernels are similarity functions that return inner products between the images of data points.

$$K: X \times X \to R$$

 $K(\vec{x}, \vec{z}) = \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$

 Kernels can often be computed efficiently even for very high dimensional spaces.

- Choosing K is equivalent to choosing φ.
 - ☐ the feature space is implicitly defined by K

An example

Let
$$\phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

Let
$$\vec{x} = (1,2) \vec{z} = (-2,3)$$

$$\phi(\vec{x}) = (1, 4, 2\sqrt{2}) \qquad \phi(\vec{z}) = (4, 9, -6\sqrt{2})$$

$$K(\vec{x}, \vec{z}) = \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$$

$$=<(1,4,2\sqrt{2}),(4,9,-6\sqrt{2})>$$

$$= 1 * 4 + 4 * 9 - 2 * 6 * 2 = 16$$

$$<\vec{x}, \vec{z}> = -2 + 2 * 3 = 4$$

An example**

Let
$$\phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$K(\vec{x}, \vec{z})$$

$$=<\phi(\vec{x}),\phi(\vec{z})>$$

$$= <(x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) >$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 x_2 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (\vec{x}, \vec{z} > 2)$$

$$= \langle \vec{x}, \vec{z} \rangle^2$$

From Page 750 of (Russell and Norvig, 2002)

Another example**

Let
$$\phi(\vec{x}) = (x_1^3, x_2^3, \sqrt{3}x_1^2x_2, \sqrt{3}x_1x_2^2)$$

$$K(\vec{x}, \vec{z})$$

$$= <\phi(\vec{x}), \phi(\vec{z})>$$

$$= <(x_1^3, x_2^3, \sqrt{3}x_1^2x_2, \sqrt{3}x_1x_2^2), (z_1^3, z_2^3, \sqrt{3}z_1^2z_2, \sqrt{3}z_1z_2^2)>$$

$$= x_1^3 z_1^3 + x_2^3 z_2^3 + 3x_1^2 z_1^2 x_2 z_2 + 3x_1 z_1 x_2^2 z_2^2$$

$$=(x_1z_1+x_2z_2)^3$$

$$= <\vec{x}, \vec{z}>^3$$

The kernel trick

• No need to know what ϕ is and what the feature space is.

No need to explicitly map the data to the feature space.

Define a kernel function K, and replace the dot product <x,z> with a kernel function K(x,z) in both training and testing.

Training (**)

Maximize

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \vec{x_{i}}, \vec{x_{j}} \right\rangle$$

Subject to $\alpha_i \geq 0 \text{ and } \sum_i \alpha_i y_i = 0$

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \underbrace{K(\vec{x_{i}}, \vec{x_{j}})}$$

Decoding

Linear SVM: (without mapping)

$$f(\vec{x}) = <\vec{w}, \vec{x} > +b$$

$$= \sum_{i} \alpha_{i} y_{i} (<\vec{x_{i}}, \vec{x} >) +b$$

Non-linear SVM: could be infinite dimensional

$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \left[K(\vec{x_{i}}, \vec{x}) \right] + b$$

Kernel vs. features

Training: Maximize
$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\vec{x_{i}}, \vec{x_{j}})$$

subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i} = 0$

Decoding:
$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \left[K(\vec{x_{i}}, \vec{x}) \right] + b$$

Need to calculate K(x, z).

For some kernels, no need to represent x as a feature vector.

A tree kernel

Common kernel functions

• Linear: $K(\vec{x}, \vec{z}) = \langle \vec{x}, \vec{z} \rangle$

Polynomial: $K(\vec{x}, \vec{z}) = (\gamma < \vec{x}, \vec{z} > +c)^d$

Radial basis function (RBF) $K(\vec{x}, \vec{z}) = e^{-\gamma(||\vec{x} - \vec{z}||)^2}$

$$K(\vec{x}, \vec{z}) = tanh(\gamma < \vec{x}, \vec{z} > +c)$$

 $K(\vec{x},\vec{z}) = tanh(\gamma < \vec{x},\vec{z} > +c)$ Sigmoid: $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

For the tanh function, see https://www.youtube.com/watch? v=er tQOBgo-l

$$||\vec{x} - \vec{z}||$$

$$x = (x_1, x_2, ..., x_n)$$

$$z = (z_1, z_2, ..., z_n)$$

$$\vec{x} - \vec{z} = (x_1 - z_1, ..., x_n - z_n)$$

$$||\vec{x} - \vec{z}|| = \sqrt{(x_1 - z_1)^2 + \dots + (x_n - z_n)^2}$$

Polynomial kernel

 Allows us to model feature conjunctions (up to the order of the polynomial).

• Ex:

- Original feature: single words
- Quadratic kernel: word pairs, e.g., "ethnic" and "cleansing", "Jordan" and "Chicago"

Other kernels

- Kernels for
 - trees
 - sequences
 - sets
 - graphs
 - general structures

A tree kernel example in reading #3

The choice of kernel function

 Given a function, we can test whether it is a kernel function by using Mercer's theorem (see "Additional slides").

 Different kernel functions could lead to very different results.

 Need some prior knowledge in order to choose a good kernel.

Summary so far

Find the hyperplane that maximizes the margin.

Introduce soft margin to deal with noisy data

 Implicitly map the data to a higher dimensional space to deal with non-linear problems.

 The kernel trick allows infinite number of features and efficient computation of the dot product in the feature space.

The choice of the kernel function is important.

MaxEnt vs. SVM

	MaxEnt	SVM	
Modeling	Maximize P(Y X,λ)	Maximize the margin	
Training	Learn λ_i for each feature function	Learn α_i for each training instance and b	
Decoding	Calculate P(y x)	Calculate the sign of f(x). It is not prob	
Things to decide	Features Regularization Training algorithm	Kernel Regularization Training algorithm Binarization	

More info

Website: <u>www.kernel-machines.org</u>

Textbook (2000): <u>www.support-vector.net</u>

Tutorials: http://www.svms.org/tutorials/

Workshops at NIPS

Additional slides

Linear kernel

The map φ is linear.

$$\phi(x) = (a_1 x_1, a_2 x_2, ..., a_n x_n)$$

$$K(x,z) = \langle \phi(x), \phi(z) \rangle$$

= $a_1^2 x_1 z_1 + a_2^2 x_2 z_2 + \dots + a_n^2 x_n z_n$

 The kernel adjusts the weight of the features according to their importance.

The Kernel Matrix (a.k.a. the Gram matrix)

K(1,1)	K(1,2)	K(1,3)	 K(1,m)
K(2,1)	K(2,2)	K(2,3)	 K(2,m)
K(m,1)	K(m,2	K(m,3)	 K(m,m)
)		

K(i,j) means $K(x_i,x_j)$ Where x_i means the i-th training instance.

Mercer's Theorem

 The kernel matrix is symmetric positive definite.

• Any symmetric, positive definite matrix can be regarded as a kernel matrix; that is, there exists a ϕ such that $K(x, z) = \langle \phi(x), \phi(z) \rangle$

Making kernels

- The set of kernels is closed under some operations. For instance, if K₁ and K₂ are kernels, so are the following:
 - \bullet K_1 + K_2
 - cK_1 and cK_2 for c > 0
 - $cK_1 + dK_2$ for c > 0 and d > 0

One can make complicated kernels from simple ones