Rappels BVH: hiérarchie de volumes englobants Modèle de coût SAH Construction Bilan

M2-Images

construction hiérarchie d'englobants / BVH

J.C. lehl

December 12, 2018

Résumé des épisodes précédents

résumé:

- déterminer la visibilité de 2 points,
- permet de calculer les transferts d'énergie,
- ombre, pénombre, reflet, transparence, . . .

trop d'intersections calculées ...

Rappels: intersection rayon / arbre

algorithme:

- ▶ init : $t = \infty$
- ▶ si le rayon $o + [0...t] \cdot \vec{d}$ touche l'englobant du noeud : calculer les intersections avec les fils : t_{gauche} , t_{droite} visiter le fils proche, puis le fils loin
- si le noeud est une feuille : calculer l'intersection avec les primitives de la feuille, $t_{feuille} = min(t_1, t_2, ...)$ $t = min(t, t_{feuille})$

```
fils "proche" : min(t_{gauche}, t_{droite}), fils "loin" : max(t_{gauche}, t_{droite}).
```

Rappels

est ce que :

- cet algorithme permet de visiter les feuilles dans le bon ordre ?
- (en s'éloignant de l'origine du rayon)

Ordre des feuilles, cas 1

Ordre des feuilles, cas 2

Ordre des feuilles, cas 3

Ordre des fils

intersection rayon / boite :

2 intersections, entrée et sortie du rayon : t_{min}, t_{max}

fils "proche" / "loin" :

- comparer les entrées, si elles sont égales, comparer les sorties :
- ightharpoonup si $t_{min}^{gauche} < t_{min}^{droit}$: fils gauche
- lacktriangledown si $t_{min}^{gauche} == t_{min}^{droit}$ et $t_{max}^{gauche} < t_{max}^{droit}$: fils gauche
- sinon fils droit

Ordre des fils : exemple

dans quel ordre sont parcourus les (petits) fils 1-2-3-4, 1-3-2-4?

Ordre des fils

??

- la décision (locale) de parcours des fils,
- ne permet pas toujours de parcourir les feuilles dans le bon ordre...

quel algorithme de parcours permettrait de prendre la bonne décision ?

Ordre global des fils

quel est le prochain noeud visité ?

- un des fils du noeud courant,
- ou le prochain noeud dans l'ordre définit le long du rayon ?

c'est équivalent à l'algorithme de Dijkstra sur les graphes, le prochain noeud visité n'est pas nécessairement un voisin direct / fils...

"Ray Tracing Complex Scenes"

T.L. Kay, J.T. Kajiya, SIGGRAPH 86

Arbres / BVH : intuition

comment construire un arbre ?

- mêmes idées que pour les arbres binaires de recherche...
- mais : arbres d'intervalles
- ► mais : 3d

trier des objets 3d?

- \triangleright trier sur X, partitionner sur X == 2 sous ensembles,
- \triangleright puis, trier sur Y, partitionner sur Y == 4 sous ensembles,
- \triangleright puis, trier sur Z, partitionner sur Z == 8 sous ensembles.

trier des objets 3d? ordre des englobants sur X, Y et Z...

Arbres / BVH : intuition

et ça marche?

- ▶ oui...
- construire un noeud à chaque étape,
- simplification courante : ne trier que l'axe le plus étiré de l'englobant

Arbres / BVH : construction

```
int build node (const int begin, const int end ) {
    Point bmin, bmax;
    bounds(begin, end, bmin, bmax); // englobant des triangles
    if (end - begin < 2) { // 1 triangle, construire une feuille
        nodes.push back( {bmin. bmax. -begin. -end} ):
        return int(nodes.size()) -1:
    }
    // axe le plus etire de l'englobant
    int axis = bounds_max(bmin, bmax);
    // trier les triangles sur l'axe
    std::sort(triangles.data() +begin, triangles.data() +end.
         triangle_less(axis));
    // repartir les triangles et construire les fils du noeud
    int left= build_node(begin, (begin+end) / 2);
    int right= build_node((begin+end) / 2, end);
    // construire le noeud
    nodes.push_back( {bmin, bmax, left, right} );
    return int(nodes.size()) -1:
// int root= build_node( 0, int(triangles.size() );
```

Arbres / BVH : construction

trier des objets 3d?

- plusieurs solutions
- solution 1 : trier les objets sur un axe, (construit un arbre équilibré)
- solution 2 : couper l'englobant en 2 parties, déterminer quels triangles se trouvent dans la partie 1, idem pour la partie 2
- et pour les triangles à cheval ?
 (dépend de la relation d'ordre utilisée pour le tri)

plusieurs constructions : comment les comparer ?

Arbres / BVH : construction

```
int build node centroids (const int begin, const int end ) {
    Point bmin, bmax;
    bounds (begin, end, bmin, bmax): // englobant
    Point cmin, cmax;
    centroid bounds (begin, end, cmin, cmax): // englobant des centres
    if (end - begin < 2) { // 1 triangle, construire une feuille
        nodes.push_back( {bmin, bmax, -begin, -end} );
        return int(nodes.size()) -1:
    }
    int axis = bounds max(cmin, cmax):
    int m= std::distance(triangles.data(), // repartir les triangles
        std::partition(triangles.data() +begin, triangles.data() +end,
            centroid less(axis, (cmax(axis) + cmin(axis)) / 2));
    int left= build_node(begin, m); // construire les fils du noeud
    int right = build node(m. end):
    // construire le noeud
    nodes.push back( {bmin. bmax. left. right} ):
    return int(nodes.size()) -1:
// int root= build node centroids(0, int(triangles.size());
```

Exemples

Exemples

museumHall.obj

solution 1 : construction 4s, rendu 2s500

solution 2 : construction 0s700, rendu 1s000

plusieurs constructions : comment les comparer ?

solution xx: construction 8s, rendu 0s800

Exemples

solution 1 : construit un arbre équilibré

- solution 2 construit un arbre plus efficace à parcourir... (et déséquilibré...)
- pourquoi ?

visite d'un noeud :

- noeud interne : tester l'englobant,
- feuille : tester les triangles.

combien de rayons visitent chaque noeud / feuille ?

géométrie et probabilités :

- N rayons passent dans un englobant (convexe) A :
- ▶ combien de rayons passent dans $B \in A$?
- $\beta = \frac{Aire(B)}{Aire(A)}$
- ▶ pour N rayons, il y en a βN qui passent par $B \in A$...

"Some Integral Geometry Tools to Estimate the Complexity of 3D Scenes"

F. Cazals, M. Sbert, 1997

séparer les triangles en 2 sous-ensembles :

- B englobant de T triangles,
- après répartition des triangles :
- ▶ *B*₁ englobe *T*₁ triangles,
- ▶ B_2 englobe les autres triangles, T_2 ...
- ▶ si N rayons visitent B :
- $\beta_1 N$ rayons visitent B_1 et testent T_1 triangles,
- ▶ $\beta_2 N$ rayons visitent B_2 et testent T_2 triangles.

au final:

- \triangleright $\beta_1 T_1 + \beta_2 T_2$ tests de triangles,
- ▶ +1 test d'englobant,
- il suffit de comparer ces valeurs pour plusieurs répartitions,
- et de garder la meilleure...
- ▶ solution 1 : $T_1 = N/2$ et $T_2 = N/2$, B_1 , B_2 ?
- ▶ solution 2 : $B_1 \approx B/2$ et $B_2 \approx B/2$, T_1 , T_2 ?

et pour T triangles, combien de répartitions possibles ?

Construction exhaustive en $O(T^2)$

```
int build_node_sah( const int begin, const int end ) {
   { ... } // trier sur l'axe le plus etire de l'englobant
   // tester les repartitions
   // 1/n-1. 2/n-2. ... n-1/1
   for(int i= begin +1; i < end; i++) {
        Point left min. left max: // a gauche de la coupe
        bounds(begin, i, left_min, left_max);
        int left_n= i - begin;
        Point right_min, right_max; // a droite
        bounds(i, end, right_min, right_max);
        int right_n = end - i;
        float cost= 1 // cout de la repartition
           + bounds_area(left_min, left_max) / area * left_n
            + bounds area(right min, right max) / area * right n:
        if(cost < min_cost) { // garder la meilleure repartition
            min_cost= cost; min_index= i;
   // repartir les triangles entre les fils du noeud
   int left= build_node_sah(begin, min_index);
   int right = build node sah(min index. end):
   f ... } // construire le noeud
// O(n^2), pas vraiment utilisable...
```

exemples

museumHall.obj

- solution 1 : construction 4s, rendu 2s500
- solution 2 : construction 0s700, rendu 1s000
- solution 3 : construction 8s, rendu 0s800

quelle est la meilleure solution ? temps total ? temps de rendu ? pour combien de rayons ?

comment construire l'arbre optimal?

Modèle de coût

à lire sur le sujet :

- "Efficient Divide-And-Conquer Ray Tracing using Ray Sampling"
 - K. Nabata, K. Iwasaki, Y. Dobashi, T. Nishita, 2013
- "Naive Ray-Tracing: A Divide-And-Conquer Approach"B. Mora, 2011
- formalisation correcte du problème : "Cost prediction for ray shooting in octrees"
 - B. Aronov, H. Brönnimann, A.Y. Chang, Y.J. Chiang, 2005

Construction guidée par un modèle de cout

comment?

rappel: fraction des rayons passant par un noeud qui passent aussi par un fils:

$$P(fils|noeud) = \beta = \frac{A(fils)}{A(noeud)}$$

estimations:

- ▶ nombre de noeuds internes intersectés : $\sum P(noeud_i|racine)$,
- ▶ nombre de feuilles intersectées : $\sum P(feuille_i|racine)$,
- ▶ nombre d'objets intersectés : $\sum P(feuille_i|racine) \times N_i$

Construction guidée par un modèle de cout

pour tout l'arbre :

$$C = \sum P(\textit{noeud}_i|\textit{racine})C_{\textit{englobant}} + \sum P(\textit{feuille}_i|\textit{racine}) \times T_i \times C_{\textit{triangle}}$$

remarque : plus il y a de noeuds, plus le cout augmente...

trouver l'arbre qui minimise C! trop de solutions, utiliser un algo glouton, cf optimisation / minimisation...

"Heuristics for ray tracing using space subdivison"

J. D. MacDonald, K.S. Booth, 1990

et ça marche ?

cout estimé / rendu:

- solution 1 : construction 4s, rendu 2s900, cout 233,
- solution 2 : construction 0s600, rendu 1s400, cout 117
- solution 3 : constuction 6s800, rendu 0s900, cout 97,
- solution x : construction 0s500, rendu 1s500, cout 123,
- solution y : construction 2s900, rendu 0s700, cout 63,
- solution z : construction 0s600, rendu 2s200, cout 86

solution z ??

et ça marche ?

pourquoi?

- le modèle de cout est correct pour une partition spatiale, pas pour un BVH...
- et pour une distribution uniforme de rayons, pas pour des rayons générés par la camera,
- "On Quality Metrics of Bounding Volume Hierarchies"
 T. Aila, T. Karras, S. Laine, HPG 2013
- rappel: dérivation du modèle
 "Cost prediction for ray shooting in octrees"
 B. Aronov, H. Brönnimann, A.Y. Chang, Y.J. Chiang, 2005

BVH : les détails

cas simple : 2 fils, volumes englobants : cubes alignés sur les axes.

construction:

en fonction du volume occupé par les fils, et du temps de calcul de l'intersection du rayon avec les objets associés aux fils.

parcours ordonné:

pas obligatoire, mais beaucoup plus efficace (au moins pour les rayons primaires)

Construction

trouver la meilleure répartition des objets pour chaque noeud : choisir un plan candidat et répartir les objets.

Construction SAH d'un BVH

minimiser C: trouver le meilleur candidat

$$C = C_{fils_gauche} + C_{fils_droit}$$
 $C_{fils} = C_{englobant} + \frac{A(fils)}{A(noeud)}T(fils) \times C_{triangle}$

Construction: algorithme

- travaille sur les englobants de chaque objet,
- les candidats sont les 3 plans passants par le centre des englobants.

Construction: algorithme

- travaille sur un axe à la fois,
- teste tous les centres,
- évalue C à chaque fois et garde le meilleur (sur les 3 axes).

Construction: algorithme

- construction récursive :
- critère d'arret ? lorsqu'il n'est plus interessant de continuer :
- ► $C > T \times C_{triangle}$ (subdiviser est plus couteux que de tester tous les triangles)

Evaluer C : algorithme

$$C_{\mathit{fils}} = C_{\mathit{englobant}} + \frac{A(\mathit{fils})}{A(\mathit{noeud})} T(\mathit{fils}) \times C_{\mathit{triangle}}$$

déterminer les 2 sous ensembles d'objets + cubes englobants :

- ▶ naif : re-trier à chaque fois, cf solution 3 (trop long, O(n log n) par noeud)
- incrémental : trier une seule fois par axe, puis exploiter l'ordre pour contruire les cubes englobants (correct, O(n) par noeud),
- il est facile de calculer le min et le max d'un ensemble lorsqu'on insère un élement,
- mais pas le contraire (lorsqu'un supprime un élément) ?

Evaluer C: algorithme

- parcourir de min vers max et construire la partie gauche et son cube englobant :
- $ightharpoonup T(fils_{gauche}), A(fils_{gauche})$
- parcourir de max vers min pour la partie droite :
- ► T(fils_{droit}), A(fils_{droit})
- tous les termes de C sont connus pour tous les candidats,
- finir l'évaluation de C pour chaque candidat,
- garder le meilleur, répartir les objets en 2 sous-ensembles,
- recommencer

BVH : les détails

construction, parcours et mise à jour :

"Ray tracing deformable scenes using dynamic bounding volume hierarchies"

I. Wald, S. Boulos, P. Shirley, 2007

version approchée et efficace :

"On fast construction of SAH based bounding volume hierarchies"

I. Wald, 2007

construction guidée par la "vraie" distribution de rayons :

"Efficient Divide-And-Conquer Ray Tracing using Ray Sampling"

K. Nabata, K. Iwasaki, Y. Dobashi, T. Nishita, 2013

Encore plus vite?

quel autre type d'arbre permet de gagner facilement du temps lors du parcours ?

idée :

- quelle est la hauteur d'un arbre binaire ?
- quelle est la hauteur d'un arbre dont les noeuds internes ont k fils ?
- combien de noeuds internes ? est ce que le cout de l'arbre dépend du nombre de noeuds internes ?

"Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent Rays"

H. Dammertz, J. Hanika, A. Keller, 2008

Encore plus vite?

avec une carte graphique:

- "Understanding the efficiency of ray traversal on GPUs"
 T. Aila, S. Laine, 2009
- "Architecture considerations for tracing incoherent rays"
 T. Aila, T. Karras. 2010

Encore plus vite?

avec une hiérarchie de meilleure qualité :

 découper les triangles : cf solution y "Spatial Splits in Bounding Volume Hierarchies"
 M. Stich, H. Friedrich, A. Dietrich, 2009

et alors?

quelle est la meilleure solution ?

- dépend de l'utilisation : du nombre de rayons,
- et du temps total : construction + rendu...
- les constructions longues ne sont interressantes que pour des rendus longs...
- construction parallèle, sur cpu ou gpu ?

cpu : solution 2 et \times pour peu de rayons, solution y sinon gpu : solution \times ...

"Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees"

T. Karras, 2012