NSE Options Data Analysis – Formula Reference

This document explains the mathematical formulas and statistical concepts used throughout the data processing pipeline for NSE Options analysis, including:

- Black-Scholes pricing & Greeks
- Implied Volatility estimation
- Yang-Zhang Realized Volatility
- IV Percentile & Rank
- Interest rate fallback logic
- Expiry and TTE calculation

Black-Scholes Option Pricing

Formula (European Option):

For call options: $C = Se^{-qT}N(d_1) - Ke^{-rT}N(d_2)$

For put options: $P = Ke^{-rT}N(-d_2) - Se^{-qT}N(-d_1)$

Where:

- (S): Underlying asset price
- (K): Strike price
- (T): Time to expiry (in years)
- (r): Risk-free rate
- (q): Continuous dividend yield
- ($N(\cdot)$): Cumulative standard normal distribution

•
$$(d_1 = \frac{\ln(S/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}})$$

• $(d_2 = d_1 - \sigma\sqrt{T})$

• (
$$d_2=d_1-\sigma\sqrt{T}$$
)

Black-Scholes Greeks

Delta

$$\Delta = \begin{cases} e^{-qT} N(d_1), & \text{for Call} \\ -e^{-qT} N(-d_1), & \text{for Put} \end{cases}$$

Gamma (common to both):

$$\Gamma = \frac{e^{-qT}\phi(d_1)}{S\sigma\sqrt{T}}$$
 where $\phi(d_1) = \frac{1}{\sqrt{2\pi}}e^{-d_1^2/2}$

Theta

For call:
$$\Theta = \frac{-S\phi(d_1)\sigma e^{-qT}}{2\sqrt{T}} - rKe^{-rT}N(d_2) + qSe^{-qT}N(d_1)$$

For put:
$$\Theta=rac{-S\phi(d_1)\sigma e^{-qT}}{2\sqrt{T}}+rKe^{-rT}N(-d_2)-qSe^{-qT}N(-d_1)$$

(Divided by 365 in code to annualize per day)

Vega

$$Vega = \frac{Se^{-qT}\phi(d_1)\sqrt{T}}{100}$$

Rho

Call: Rho =
$$\frac{KTe^{-rT}N(d_2)}{100}$$

Put: Rho =
$$\frac{-KTe^{-rT}N(-d_2)}{100}$$

Implied Volatility (IV)

Using **Bisection Method** to find the implied volatility (σ) that makes the theoretical price match the market price.

Objective: Find σ such that $BS(S, K, T, r, \sigma) \approx \text{Market Price}$

Iteratively:

- Evaluate price using current sigma.
- Adjust upper/lower bounds based on error.
- Stop when tolerance is reached.

Yang-Zhang Realized Volatility (YZ RV)

It combines the benefits of:

- Close-to-Close volatilityOvernight (Open-to-Previous Close) volatility

Open-to-Open volatility

$$\sigma_{\rm YZ}^2 = \sigma_{cc}^2 + k \cdot \sigma_{on}^2 - (1 - k) \cdot \sigma_{oo}^2$$

Where:

• (σ_{cc}^2): Variance of log returns of Close prices • (σ_{on}^2): Variance of overnight returns • (σ_{oo}^2): Variance of Open-to-Open returns

•
$$(k = \frac{0.34}{1.34 + \frac{n+1}{n-1}})$$

Annualized:
$$\sigma_{
m YZ} = \sqrt{\sigma_{
m YZ}^2 \cdot 252}$$

IV Percentile & Rank (30-Day Rolling)

Given a rolling window of last 30 IV values:

- **Percentile**: Relative percentage of days with IV ≤ current day Percentile = $\frac{\text{count}(IV_i \le IV_{today})}{30}$
- Rank (Min-Max Scaled): Rank $= \frac{IV_{today} IV_{min}}{IV_{max} IV_{min}}$

Interest Rate Fallback Logic

For any given date D, if D is not in the map:

- Use the closest previous date's interest rate.
- If no earlier date exists, use the **next** available date.

Uses bisect right on a sorted date list for efficiency.

Time to Expiry (T in Years)

Using:

- Current date = bhavcopy date
- Expiry date = F&O expiry

$$T = \frac{\text{days to expiry}}{252}$$

Assumes 252 trading days in a year.

Strike Selection Logic

Select a strike price (K) that:

- Is closest to spot price
- Exists in all 3 nearest expiry series
- Has both CE and PE options

Ensures comparability across expiries for volatility and Greek analysis.

Prepared By: Sajal Agrawal

Created in Upmath.me

