## **VITMO**

# вречение в сэшерем: основы игрового им

Лекция 1. Введение в курс. Теория игр. Поиск по дереву.

## ГЛАВА 1 \_ Agenda

# **LITMO**



- 1. Организационная часть
- 2. Введение в игровой ИИ
- 3. Элементы теории игр
- 4. Поиск по дереву

## ГЛАВА 1 \_ КТО ВАЩ-СЕНСЕЙ





### Атяпшева Татьяна Владимировна





- Магистрант ИТМО по программе "Мультимедиатехнологии, дизайн и юзабилити"
- □ Окончила больше 15 коммерческих курсов в области GameDev
- Инженер в международной GameDev компании в СПб
- □ Призер международных GameDev хакатонов
- ☐ Исследователь в области GameDev (влияние аудиовизуальных составляющих в хоррор играх, методы игрового ИИ для вариативного поведения, обучающие игровые приложения)

### Абросимов Кирилл Игоревич

- Окончил магистратуру ИТМО по программе "Речевые технологии и машинное обучение"
- Практикующий Data Scientist: ML, DL, MIR, OR, NLP
- Аспирант Университета Виктории (CS, major: MIR)
- Исследователь в области интеллектуальных музыкальных и речевых технологиях

## ГЛАВА 1 \_ Присоединяйтесь







https://t.me/+4mQ12iZbtmxhMGly

## ГЛАВА 1\_Знакомство







Сейчас я разделю вас на группы, где вы познакомитесь:

- 1. Расскажите о себе: где учитесь, почему решили присоединиться к факультативу
- 2. Расскажите о своих навыках в гейм деве, возможно, проектах

## ГЛАВА 1\_Знакомство







Что вы ожидаете от курса?

Что бы вы хотели видеть на курсе

PS. Пишем в чат!

## ГЛАВА 1\_Знакомство







Что вы ожидаете от курса?

Что бы вы не хотели видеть на курсе

PS. Пишем в чат!

### ГЛАВА 1 **FAQ**



"Расставим точки над і" или "Ожидание-Реальность"



- 1. Что такое ОУ факультатив?

  <u>Факультатив</u> это образовательно-развлекательное мероприятие в ИТМО для получения новых навыков и знаний для любого студента ИТМО (с) Татьяна Атяпшева
- 2. У меня изменилось расписание, факультатив не оправдал ожиданий, нашел новую работу: как я могу отписаться? Напишите на почту ОУФ <a href="mailto:plus@itmo.ru">plus@itmo.ru</a> и предупредите преподавателя. Больше информации: <a href="mailto:https://student.itmo.ru/ru/university\_electives/">https://student.itmo.ru/ru/university\_electives/</a>
- 3. **Какой Unreal Engine мы будем использовать на практиках?** Используется исключительно Unreal Engine 4 (4.26). Обуславливается тем, что на факультатив могут присоединиться студенты не с мощными ЭВМ (**кейсы были**). А основы ИИИ полученные на UE4 вы сможете применить в будущем и в UE5.

### ГЛАВА 1 **FAQ**



**"Расставим точки над і" или "Ожидание-Реальность"** 



- 4. **А что если я буду делать все на UE5?**Преподаватель не будет проверять. В карточке курса версия UE была указана, а значит, вы приняли заданные правила игры, когда записались на
- факультатив.

  5. Относительно игровиков: насколько глубоко будем лезть в ИИИ в UE? Не глубоко. Вряд ли вы получите больше навыков разработки ИИИ в UE, чем на курсе "Основы разработки компьютерных игр". А далее у вас там годовой курс ИИИ, годовой курс интеллектуальной генерации контента. Но и сравнивать major с факультативом не имеет смысла.
- 6. Относительно игровиков: так а нам стоит оставаться вообще? Да, если хотите изучить теоретические основы ИИИ, еще раз попрактиковаться в разработке ИИИ, создать итоговый проект. А также показать себя в треке "Тру прогеры" в рамках практических работ.

## ГЛАВА 1 \_ Про пререквизиты



### Blueprints и GIT





Вы можете разрабатывать простые сценарии с помощью blueprints: Спавн и уничтожение чего-либо, работа с переменными и материалами в игре, логика начала и конца игры, работа с основными нодами и функциями (флоу контроль и проч.). Вы работали с системами контроля версий для командной разработки чего-либо.

### **П.** Основы высшей и прикладной математики

Вы знаете основы дискретной математики, основные структуры данных, в общих чертах понимаете какие оптимизационные задачи бывают и как их решать (исследование операций / методы оптимизации / математическое программирование).

# ГЛАВА 1 \_ Структура курса



| Лекции   |                                                | Практики (UE4) |                                 |
|----------|------------------------------------------------|----------------|---------------------------------|
| 29.10.24 | )) Теория игр и поиск по дереву                | 02.11.24       | Введение в ИИИ                  |
| 05.11.24 | Ad-Hoc Behavior Authoring                      | 09.11.24       | ) АІ контроллер и навигация     |
| 12.11.24 | технологии программирования ИИИ                | 16.11.24       | ) Деревья поведений I           |
| 19.11.24 | Принятие решений и элементы машинного обучения | 23.11.24       | ) Деревья поведений II          |
| 26.11.24 | )))) Нечеткие модели и системы                 | 30.11.24       | технологии программирования ИИИ |
| 03.12.24 | Эволюционные и роевые алгоритмы                | 07.12.24       | )) Защита проектов              |
| 14.12.24 |                                                | Зачет          |                                 |

## ГЛАВА 1 \_ Структура курса



| Оценочное средство                           | Балл | Точка |
|----------------------------------------------|------|-------|
| ЛР1. Навигация в UE4                         | 10   |       |
| ЛР2. Деревья поведений в UE4                 | 10   |       |
| Проект. Применение методов игрового ИИ в UE4 | 30   | 10+   |
| ПР1. Поиск по дереву                         | 8    |       |
| ПР2. Принятие решений                        | 7    |       |
| ПР3. Нечеткие модели и системы               | 8    |       |
| ПР4. Эволюционные и роевые алгоритмы         | 7    |       |
| Зачет. Рабочая тетрадь.                      | 20   | 10+   |





### Зачет:

- 60+ баллов
- Проект 10+
- Тетрадь 10+

## ГЛАВА 1 \_ Рабочая тетрадь



## **VİTMO** Рабочая тетрадь по курсу Введение в GameDev: Основы игрового ИИ Студент: Группа: Семестр: Осень

#### **ЛЕКЦИЯ 1. ВВЕДЕНИЕ В ТЕОРИЮ ИГР И ПОИСК ПО ДЕРЕВУ.**

### \ Элементы теории игр /

В теории игр рассматриваются игры в двух формах. Игры в форме описываются матрицей форме описываются матрицей форме описываются матрицей форме описываются матрицей форме описываются матрицей. Например, для игры «Числа»: «Два человека независимо друг от друга записывают одно число 1, 2 или 3. Выигрыш равен сумме чисел, причем, если сумма четное число, то выигрывает первый игрок, если нечетное, то второй», матрица выигрыша будет выглядеть следующем образом:

| И1 И2 | 1     | 2     | 3     |
|-------|-------|-------|-------|
| 1     | ( , ) | (□,□) |       |
| 2     | ( , ) | (□,□) | (_,_) |
| 3     | ( , ) | (□,□) | (_,_) |

Игры в форме характеризуются (шахматы, шашки, GO и т.д.).

[англ. Васкward induction) - это итеративный процесс рассуждения в обратном направлении от конечных ситуаций в кактуальному (или стартовому) состоянию игры для решения игр в форме и вывода последовательности оптимальных действий. Он используется в теории игр для определения наиболее оптимальной последовательнойт последовательнойть последовательной на рашиональном



| Альфа отсечение. Правило: |                   |
|---------------------------|-------------------|
| Бета отсечение. Правило:  |                   |
| Eera viii.                | MAKE Anders n>= m |
| л >= m<br>мин макс        | отсечение.        |



### Литература:

- 1. Georgios N. Yannakakis and Julian Togelius. «<u>Artificial Intelligence</u> and Games». Springer, 2018
- 2. Мазалов В. В. «<u>Математическая теория игр и приложения:</u> <u>Учебное пособие</u>». — 2е изд., стер. — СПб.: Издательство «Лань», 2016. — 448 с.: ил.
- 3. Stuart Russell and Peter Norvig. «<u>Artificial Intelligence: A Modern Approach</u>». Prentice-Hall, Englewood Cliffs, 1995 (3d edition 2010)
- 4. Эндрю А. «<u>Искусственный интеллект</u>» \\Пер. с англ./Под ред. и с предисл. Д. А. Поспелова Москва: Мир, 1985 с.264
- 5. Е.И. Большакова, М.Г. Мальковский, В.Н. Пильщиков. «<u>Искусственный интеллект. Алгоритмы эвристического поиска</u>», М.: Издательский отдел факультета ВМК МГУ 2002. с.83

6 | NTMO





## ГЛАВА 1 \_ Литература



### Основной источник

Georgios N. Yannakakis and Julian Togelius

Artificial Intelligence and Games

January 26, 2018

### Хранится тут

← Введение в GameDev: основы игрового ИИ



### В лекциях сноски

### Литература в РТ

### Литература:

- 1. Georgios N. Yannakakis and Julian Togelius. «  $\underline{\text{Artificial Intelligence}}$  and  $\underline{\text{Games}}$  ». Springer, 2018
- 2. Мазалов В. В. «<u>Математическая теория игр и приложения:</u> <u>Учебное пособие</u>». — 2е изд., стер. — СПб.: Издательство «Лань», 2016. — 448 с.: ил.
- 3. Stuart Russell and Peter Norvig. «<u>Artificial Intelligence: A Modern Approach</u>». Prentice-Hall, Englewood Cliffs, 1995 (3d edition 2010)
- 4. Эндрю А. «<u>Искусственный интеллект</u>» \\Пер. с англ./Под ред. и с предисл. Д. А. Поспелова Москва: Мир, 1985 с.264
- 5. Е.И. Большакова, М.Г. Мальковский, В.Н. Пильщиков. «<u>Искусственный интеллект. Алгоритмы эвристического поиска</u>», М.: Издательский отдел факультета ВМК МГУ 2002, с.83

6 | NTMO

# ГЛАВА 1 \_ Игровой ИИ: intro





## ГЛАВА 1 \_ Игровой ИИ: немного истории //ТМО











Minimax algo

OXO, Tic Tac Toe

Rote learning

Alpha-Beta pruning

TD-Gammon (RL + NN)

**Alan Turing** 1946

Alexander Douglas 1952

**Arthur Samuel** 1950s

**Gerald Tesauro** 1992









# ГЛАВА 1 \_ Игровой ИИ: задачи





Принятие решений



Движение и навигация



Стратегии и планирование



Генерация контента

## ГЛАВА 1 \_ Игровой ИИ: задачи





# ГЛАВА 1 \_ Игровой ИИ: подходы





Алгоритмы, правила



Эволюционные вычисления



Прикладная Математика



Обучение с подкреплением



Нечеткость, логика и знания



Машинное обучение



### «Камень - ножницы - бумага»

Два человека независимо друг от друга загадывают «камень», «ножницы», или «бумага». Камень тупит ножницы, ножницы режут бумагу, бумага побеждает камень. (K>H>Б>K)

|         | камень | ножницы | бумага |
|---------|--------|---------|--------|
| камень  | 0      | 1       | - 1    |
| ножницы | - 1    | 0       | 1      |
| бумага  | 1      | - 1     | 0      |

### «Семейный спор»

Семейная пара - муж и жена - решают вопрос, как проводить субботний вечер. У них существуют два вида развлечений: балет и футбол, жена предпочитает балет, муж - футбол.

Поскольку они привязаны друг к другу, максимальный выигрыш (4 единицы) каждый из них получает, если идет на любимое развлечение вместе с супругом.

Если они идут по одиночке, то получают по 2 единицы.

Если идут вместе на нелюбимое развлечение, то - по 1 единице.

Если они попали на нелюбимое развлечение и по одному (жена на футболе, а муж – на балете), то выигрыша нет (0 единиц).

| Игры  | в матри | чной    |
|-------|---------|---------|
| (норм | иальной | ) форме |

| Муж<br>Жена | Балет  | Футбол |
|-------------|--------|--------|
| Балет       | (4, 1) | (2, 2) |
| Футбол      | (0, 0) | (1, 4) |





Игры в развернутой форме

### «Прятки»

Первый может спрятаться в двух местах. Второй решает, где его искать (в первом или во втором месте). Если второй не находит, то выигрывает первый (1 у.е.), если находит – второй, а первый проигрывает (1 у.е.).













Полный анализ дерева

Задача Баше-Менделеева (7 палочек), берем 1-2







Форт Боярд (телеигра)



Полный анализ дерева Задача Баше-Менделеева (7 палочек), берем 1-2











































































Анализ: Поиск оптимума Задача Баше-Менделеева (7 палочек), берем 1-2



#### Ответ:

1-2-3 - Победа

4 - Поражение

5-6-7 – Победа

8 – Поражение

9-10-11 - Победа

12 – Поражение

13-14-15 - Победа

16 - Поражение

17, 18, 19 – Победа

20 - Поражение

Победит Игрок №2.

По





# **I/ITMO**

Что же делать с такими играми, как шахматы? Или шашки?







#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.



#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.

S0



#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.

S0







#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)





1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура)



1. Просматриваем (строим) часть дерева игры от нашей ситуации.





#### Алгоритм МинМакс (МинМакс процедура) 2. Применяем статическую оценочную функцию (СОФ) **S15 S8 S4** СОФ-**S1 S16** эвристика, **S9** оценивающая **S17** состояние **S5** S10 **S18** игры. **S0** S2 Например, S11 S19 дамки, удар **S6** S20 или не удар S12 короля или S21 **S3** ладьи, S13 S22 расположение **S7** S14 ноликов S23





**MAKC** 

МИН





МИН

**MAKC** 

**MAKC** 





МИН





МИН

MAKC

МИН

**MAKC** 





МИН

**MAKC** 

MAKC

МИН

**MAKC** 





МИН

**MAKC** 











#### Алгоритм МинМакс (МинМакс процедура)



3. Применяем минимаксную процедуру

Считается, что оценки, полученные с помощью минимаксной процедуры, есть более надежные меры относительного достоинства промежуточных вершин, чем оценки, полученные прямым применением статической оценочной функции.



**MAKC** 

MAKC

МИН

**MAKC** 





МИН

**MAKC** 



#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Минимаксная** процедура **неэффективная** стратегия поиска хорошего хода. Чтобы сделать процедуру более экономной, необходимо вычислять статические оценки концевых вершин и минимаксные оценки промежуточных вершин одновременно с построением игрового дерева



#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя*, *насколько в точности он хуже*.

S0



#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)







#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)















#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя, насколько в точности он хуже*.

#### Общие правила:

- 1) концевая вершина игрового дерева оценивается статической оценочной функцией сразу, как только она построена;
- 2) промежуточная вершина предварительно оценивается по минимаксному принципу, как только стала известна оценка хотя бы одной из ее дочерних вершин; каждая предварительная оценка пересчитывается (уточняется) всякий раз, когда получена оценка еще одной дочерней вершины;
- 3) **следствие**: альфа-величины не могут уменьшаться, а бета-величины не могут увеличиваться.



#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя*, *насколько в точности он хуже*.

#### Правила Альфа и Бетта отсечений:

1. <u>Альфа отсечение</u>. Перебор можно прервать ниже, чем вершина с бета величиной, если **эта бета** величина **<= альфа** величине **выше**.





#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)





**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя*, *насколько в точности он хуже*.

#### Правила Альфа и Бетта отсечений:

- 1. <u>Альфа отсечение</u>. Перебор можно прервать ниже, чем вершина с бетта величиной, если **эта бета** величина **<= альфа** величине **выше**.
- 2. <u>Бетта Отсечение</u>. Перебор можно прервать ниже, чем вершина с альфа величиной, если **эта альфа** величина **>= бета** величине **выше**.





#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя*, *насколько в точности он хуже*.

#### Правила Альфа и Бетта отсечений:

- 1. <u>Альфа отсечение</u>. Перебор можно прервать ниже, чем вершина с бетта величиной, если **эта бета** величина **<= альфа** величине **выше**.
- 2. <u>Бетта Отсечение</u>. Перебор можно прервать ниже, чем вершина с альфа величиной, если **эта альфа** величина **>= бета** величине **выше**.

**"Выше"** означает, что альфа/бета величине **одной из предшествующих** альфа/бета величин соответственно (включая корневую вершину дерева)





**"Выше"** означает, что альфа/бета величине **одной из предшествующих** альфа/бета величин соответственно (включая корневую вершину дерева)



#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя*, *насколько в точности он хуже*.

#### Правила Альфа и Бетта отсечений:

- 1. <u>Альфа отсечение</u>. Перебор можно прервать ниже, чем вершина с бетта величиной, если **эта бета** величина **<= альфа** величине **выше**.
- 2. <u>Бетта Отсечение</u>. Перебор можно прервать ниже, чем вершина с альфа величиной, если **эта альфа** величина **>= бета** величине **выше**.

**Утверждение:** Альфа-бета процедура всегда приводит к тому же результату (наилучшему ходу), что и простая минимаксная процедура той же глубины.



#### Алгоритм МинМакс с Альфа-Бетта отсечениями (Альфа бетта процедура)



**Суть:** вычислять СОФ как только будет возможность, избегать лишних вычислений. В основе отсечений лежит достаточно очевидное соображение: если есть два варианта хода одного игрока, то **худший** в ряде случаев можно сразу **отбросить**, *не выясняя*, *насколько в точности он хуже*.

#### Правила Альфа и Бетта отсечений:

- 1. <u>Альфа отсечение</u>. Перебор можно прервать ниже, чем вершина с бетта величиной, если **эта бета** величина **<= альфа** величине **выше**.
- 2. <u>Бетта Отсечение</u>. Перебор можно прервать ниже, чем вершина с альфа величиной, если **эта альфа** величина **>= бета** величине **выше**.

**Утверждение:** Альфа-бета процедура всегда приводит к тому же результату (наилучшему ходу), что и простая минимаксная процедура той же глубины.

**Результаты:** статическая оценочная функция и альфа-бета процедура две непременные составляющие почти всех компьютерных игровых программ



#### Примеры Статических оценочных функций (СОФ)





Игра "Крестики и нолики":

- 1. 3X это +10
- 2. 30 это -10
- 3. (Cnt(Возможных победных строк X) + Cnt(Возможных победных столбцов X) + Cnt(Возможных победных диагоналей X)) (Cnt(Возможных победных строк 0) + Cnt(Возможных победных столбцов 0) + Cnt(Возможных победных диагоналей 0))

| Х3             |           |                |
|----------------|-----------|----------------|
| × <sub>1</sub> | $\circ_1$ | х <sub>2</sub> |
| 03             |           | 02             |



$$(2+2+2) - (1+1+0) = 4$$



#### Примеры Статических оценочных функций (СОФ)



Игра "Крестики и нолики":

- 1. 3X это +10
- 2. 30 это -10
- 3. (Cnt(Возможных победных строк X) + Cnt(Возможных победных столбцов X) + Cnt(Возможных победных диагоналей X)) (Cnt(Возможных победных строк 0) + Cnt(Возможных победных столбцов 0) + Cnt(Возможных победных диагоналей 0))

#### Игра "Шашки":

Cnt(свои) - Cnt(чужие) + 10\*cnt(свои дамки) - 10\*cnt(чужие дамки)



#### Примеры Статических оценочных функций (СОФ)





#### Игра "Шахматы":

Шеннон, Клод, 1950, "Программирование компьютера для игры в шахматы", Philosophical Magazine, Ser.7, Vol. 41, № 314.

"Он дает грубый пример функции оценки, в которой значения черных позиций вычитаются из значений белых. Материал оценивается по обычной <u>относительной стоимости фигур</u> (1 очко за <u>пешку</u>, 3 очка за <u>коня</u> или <u>слона</u>, 5 за <u>ладью</u> и 9 очков за <u>ферзя</u> или <u>короля</u>). Он учитывает такие факторы, как позиционные <u>сдвоенные пешки</u>, <u>обратная пешка</u> или <u>изолированные пешки</u>. Подвижность также является фактором, который добавляет 0,1 балла к каждому разрешенному движению. Он также считает <u>мат</u> взятием короля и дает ему искусственную ценность в 200 очков."



#### ПР1. Поиск по дереву (8 баллов)





#### Вариант 1. Закрепление материала.

Задание 1. Палочки. Произведите анализ игры "Палочки" со следующими правилами. Перед 2 игроками лежит 31 палочка на столе, за один ход игрок может взять 1,3 или 4 палочки. проигрывает тот, кто забирает последнюю палочку со стола. Какой игрок победит при правильной игре? (1 балл)

Задание 2. Альфа-бета отсечения. Придумайте некоторое дерево игры, убедитесь на примере в утверждении "Альфа-бета процедура всегда приводит к тому же результату (наилучшему ходу), что и простая минимаксная процедура той же глубины". Для этого: итеративно проиграйте это дерево с помощью альфа-бетта отсечения. Затем: проверьте результат минимаксной процедурой на полном дереве. (З балла)

Задание 3. СОФ. 1) Выберете и проанализируйте игру; 2) Предложите СОФ для этой игры;

3) Возьмите несколько (3-4) ситуаций игры и покажите насколько адекватна и применима предложенная СОФ.

Игры: "Шашки", "Пять в ряд", "Лиса и гуси", "Бридж Ит", "Рассада", "Так-тикль", "ЦЗЯНЬШИДЗЫ", "Шестнадцать солдат", "Пентамино", "Щелк" *(4 балла)* 



#### ПР1. Поиск по дереву (8 баллов)





Вариант 2. Для тру прогеров. (+3 доп. балла)

Выбрать игру и реализовать ее на языке высокого уровня с интерфейсом с ИИ на основе альфа-бетта отсечений.

PS. Отличная практика Алгоритмов и структур данных!

Например, игры: "Шашки", "Пять в ряд", "Лиса и гуси", "Бридж Ит", "Рассада", "Так-тикль", "ЦЗЯНЬШИДЗЫ", "Шестнадцать солдат", "Пентамино", "Щелк"

# Спасибо за внимание!

ITSMOre than a UNIVERSITY

tatyana.atyapsheva@mail.ru abrosimov.kirill.1999@mail.ru