Uppsala Universitet Matematiska institutionen Martin Blomgren

Algebra I, 5hp 2014-01-07 kl. 08.00-13.00 Tentamen i kurs 1MA004

Skrivtid: 08.00 – 13.00. Tillåtna hjälpmedel: Skrivdon. Föreliggande tentamen utgörs av åtta problem; varje problem ger högst fem poäng. Tabellen nedan ger relationen mellan totalpoäng och betyg. Ange eventuellt godkänt resultat på inlämningsuppgifterna i kommentarsfältet hörande till uppgift 1, vilken då tillgodoräknas med full poäng. Notera att uppgift 1 skall i så fall ej lösas.

Nedan är grova lösningsförslag.

1. Låt p,q,r vara utsagor. Är " $p \to q \to r$ " otvetydigt? D.v.s. gäller det att

$$((p \rightarrow q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$$
?

Lösning: Tvetydigt, vilket man kan se för t.ex. p = q = r = falskt. (Tolkningen av satsen till vänster om ekvivalenspilen är då falsk, och tolkningen av satsen till höger är då sann.)

 $\mathbf{2}$. Bestäm det minsta icke-negativa heltal r sådant att

$$3^{43} + 17 \equiv r \pmod{16}$$
.

Lösning: Eftersom $3^4 = 81 \equiv 1 \pmod{16}$, så $3^{43} + 17 \equiv 3^{40} \cdot 3^3 + 17 \equiv 1 \cdot 27 + 17 \equiv 27 + 1 \equiv 28 \equiv 12 \pmod{16}$.

Svar: r = 12.

3. Visa med induktion att

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$$

för $n \geq 2$.

Lösning: Om n=2, så gäller påståendet, ty $1-\frac{1}{2^2}=\frac{3}{4}=\frac{2+1}{2\cdot 2}$. Antag nu att att påståendet är sant för något $n\geq 2$. Då följer $\prod_{k=2}^{n+1}(1-\frac{1}{k^2})=\prod_{k=2}^n(1-\frac{1}{k^2})(1-\frac{1}{(n+1)^2})=\frac{n+1}{2n}(1-\frac{1}{(n+1)^2})=\frac{(n+1)(n^2+2n)}{2n(n+1)^2}=\frac{n(n+1)(n+2)}{2n(n+1)^2}=\frac{n+2}{2(n+1)}$ och därmed är påståendet med induktion bevisat.

4. Lös fullständigt den diofantiska ekvationen

$$31x + 17y = 144.$$

Bestäm även de lösningar (x, y) sådana att $x \ge 0$ och $y \ge 0$.

Lösning: Detta problem löses lämpligen med Euklides' algoritm. En variant på lösning är: Vi ser att 31+17=48 och 48 är en delare i 144. Nu är $144=3\cdot 48$ så

1

x=3 och y=3 är en partikulärlösning till ekvationen. Alltså ges samtliga lösningar av x=3+17k och y=3-31k där $k\in\mathbb{Z}$, ty SGD(17,31) = 1 eftersom 17 och 31 är primtal. Nu ser man att den enda lösningen för vilka båda $x\geq 0$ och $y\geq 0$ är precis (x,y)=(3,3). (Med direkt tillämpning av Euklides' algoritm får man att x=-864+17k och y=1584-31k där $k\in\mathbb{Z}$ och (x,y)=(3,3) för k=51. Genom variabelbytet $k\mapsto k+51$ får man dock tillbaka x=3+17k,y=3-31k)

5. Låt $f(X) = X^5 + 5X^3 + X^2 + 6X + 3$ och $g(X) = X^5 + X^4 + 3X^3 + 4X^2 + 3$ vara polynom i X. Bestäm SGD(f(X), g(X)).

Lösning: Problemet löses lämpligen med Euklides' algoritm för polynom; för omväxlings skull ges emellertid följande lösning. Låt d(X) vara den största gemensamma moniska delaren. Vi har att $g(X)-f(X)=X^5+X^4+3X^3+4X^2+3-(X^5+5X^3+X^2+6X+3)=X^4-2X^3+3X^2-6X$. Faktorisering ger $X^4-2X^3+3X^2-6X=X(X^3-2X^2+3X-6)$ och här kan man observera att $(X-2)(X^2+3)=(X^3-2X^2+3X-6)$ d.v.s. $g(X)-f(X)=X(X-2)(X^2+3)$ och därmed måste $d(X)|X(X-2)(X^2+3)$. Det gäller att $X\not|d(X)$ ty $f(0)\neq 0$ och $X-2\not|d(X)$ ty $f(2)\neq 0$. Alltså måste $d(X)=X^2+3$ eller d(X)=1. Polynomdivision visar nu att $X^2+3|f(X)$ och $X^2+3|g(X)$ så $d(X)=X^2+3$. (Svar som är associerade till X^2+3 är naturligtvis inte felaktiga!)

6. Låt A vara mängden som utgörs av de tal i intervallet $[0,1] \subseteq \mathbb{R}$, vilkas decimalbråksutveckling slutar med en oändlig svit av 3:or. Ett tal $x \in A$ är

Visa att A är uppräknelig.

Lösning: Talen i A är rationella, eftersom de har en periodisk decimalbråksutveckling. Eftersom de rationella talen är uppräkneliga, så måste även A vara uppräknelig, ty delmängder av uppräkneliga mängder är uppräkneliga.

- 7. Låt R vara relationen på \mathbb{R} sådan att för $x,y\in\mathbb{R}$ så xRy om, och endast om $x^2-y^2=\sqrt{2}n$ för något $n\in\mathbb{Z}$.
 - (a) Visa att R är en ekvivalens
relation.
 - (b) Finns det ett $x \in \mathbb{R}$ sådant att xR(1+x)?

Lösning: a) Relationen är reflexiv, ty $x^2-x^2=\sqrt{2}\cdot 0$ och $0\in\mathbb{Z}$. Vidare är relationen symmetrisk, ty om xRy, så finns ett $n\in\mathbb{Z}$ sådant att $x^2-y^2=\sqrt{2}n$ och därmed $y^2-x^2=\sqrt{2}(-n)$ varför yRx eftersom $-n\in\mathbb{Z}$. Om xRy och yRz, så finns $n,m\in\mathbb{Z}$ sådana att $x^2-y^2=\sqrt{2}n$ och $y^2-z^2=\sqrt{2}m$ varur följer att $x^2-z^2=\sqrt{2}(n+m)$, och eftersom $n+m\in\mathbb{Z}$ så följer xRz och relationen är alltså transitiv.

- b) Ja, t.ex. $x = -\frac{1}{2}$. Vi har att $(-\frac{1}{2})^2 (1 \frac{1}{2})^2 = 0 (= \sqrt{2} \cdot 0)$.
- **8.** Låt a och b vara heltal sådana att $a \equiv 2 \pmod{5}$ och $b \equiv 1 \pmod{5}$ samt låt $f(X) = X^3 + aX + b$. Visa att polynomet f(X) är irreducibelt över \mathbb{Z} .

Lösning: För att visa att polynomet är irreducibelt över \mathbb{Z} , så räcker det att att utesluta att ekvationen f(X)=0 har en heltalsrot, ty heltalspolynomet i fråga har grad 3 och är moniskt. Antag att c är en heltalsrot. Då är f(c)=0, och speciellt måste $f(c)\equiv 0\pmod 5$. Eftersom c är ett heltal, så måste $c\equiv 0,\pm 1,\pm 2\pmod 5$. Insättning ger emellertid att $f(0)\equiv 1, f(\pm 1)\equiv \pm 1+\pm 2+1\not\equiv 0\pmod 5$ och $f(\pm 2)\equiv \pm 8+\pm 4+1\equiv \pm 3+\pm 4+1\not\equiv 0\pmod 5$. Motsägelse.