Exercise 1 Find

$$\lim_{x \to 0} \left(x \sin \left(\frac{1}{x} \right) \right) = \boxed{0}.$$

Hint: Notice that $-x \le x \sin(\frac{1}{x}) \le x$ for all x > 0 (emphatically, $x \ne 0$) and $x \le x \sin(\frac{1}{x}) \le -x$ for all x < 0 (again, emphatically, $x \ne 0$). This can be restated as $-|x| \le x \sin(\frac{1}{x}) \le |x|$ for $x \ne 0$. Our statement follows because $-1 \le \sin(\frac{1}{x}) \le 1$ for all $x \ne 0$, hence, we obtained our inequality by multiplying by x. Apply the Squeeze Theorem to the inequality.

Hint: We see that $\lim_{x\to 0} (-x) = \lim_{x\to 0} (x) = 0$. It follows, by the Squeeze Theorem, that $\lim_{x\to 0} \left(x\sin(\frac{1}{x})\right) = 0$.