

CS240 Algorithm Design and Analysis

Lecture 3

Greedy Algorithms (Cont.)

Divide and Conquer

Quan Li Fall 2024 2024.09.26

Last Time – What you need to know

- Basic idea
 - A greedy algorithm always makes the choice that looks best at the moment and adds it to the current partial solution
 - Greedy algorithms don't always yield optimal solutions, but when they do, they're usually the simplest and most efficient algorithms available
 - Make the locally optimal choice at each step
- Algorithms
 - Interval Scheduling
 - Choose the job with the earliest finish time
 - Scheduling to Minimize Lateness
 - Choose the job with the earliest deadline

Clustering

Photos, documents, micro-organisms

• Clustering. Given a set U of n objects labeled p_1 , ..., p_n , partition into clusters s.t. objects in different clusters are far apart.

e.g., a large number of corresponding pixels whose intensities differ over some threshold

- Fundamental problem. Divide into clusters so that points in different clusters are far apart.
 - Routing in mobile ad hoc networks
 - Identify patterns in gene expression
 - Document categorization for web search
 - Similarity searching in medical image databases
 - Skycat: cluster 109 sky objects into starts, quasars, galaxies

Clustering of Maximum Spacing

- k-clustering. Divide objects into k non-empty groups
- Distance function. Assume it satisfies several natural properties
 - $d(p_i, p_j) = 0$ iff $p_i = p_j$ (identity of indiscernible)
 - $d(p_i, p_i) >= 0$ (nonnegativity)
 - $d(p_i, p_j) = d(p_j, p_i)$ (symmetry)
- Spacing. Min distance between any pair of points in different clusters
- · Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing

k = 4

Greedy Clustering Algorithm

- Single-link k-clustering algorithm.
 - Create n clusters, one for each object
 - Find the closest pair of objects such that each object is in a different cluster; add an
 edge between them and merge the two clusters
 - Repeat n-k times until there are exactly k clusters
- Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components)
- Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges

Greedy Clustering Algorithm: Analysis

- **Theorem.** Let C^* denote the clustering C^*_1 , ..., C^*_k formed by deleting the k-1 most expensive edges of a MST. C^* is a k-clustering of max spacing.
- Pf. Let C denote some other clustering C_1 , ..., C_k
 - The spacing of C^* is the length d^* of the $(k-1)^{s+}$ most expensive edge in MST
 - Let p_i , p_j be in the same cluster in C^* , say C^*_r , but different clusters in C, say C_s and C_t
 - Some edge (p, q) on p_i --- p_j path in C^*_r spans two different clusters in C.
 - All edges on p_i --- p_j path have length <= d^* since Kruskal chose them
 - Spacing of C is <= d* since p and q are in different clusters

Optimal Caching

Optimal Offline Caching

Caching

- Cache with capacity to store k items
- Sequence of m item requests d₁, d₂, ..., d_m
- Cache hit: item already in cache when requested
- Cache miss: item not already in cache when requested; must bring requested item into cache, and evict some existing item, if full
- Applications. CPU, RAM, hard drive, web, browser, ...
- Goal. Eviction schedule that minimizes number of evictions
- Ex: k = 2, initial cache = ab, requests: a, b, c, b, c, a, a, b
- Optimal eviction schedule: 2 evictions

Optimal Offline Caching: Farthest-In-Future (clairvoyant algorithm)

• Farthest-in-future. Evict item in the cache that is not requested until farthest in the future

future queries: g a b c e d a b b a c d e a f a d e f g h ...

t cache miss eject this one

- Theorem. FF is optimal eviction schedule.
- Pf. Algorithm and theorem are intuitive; proof is subtle

• Which item will be evicted next using farthest-in-future schedule?

q

u

S

- A
- B
- C
- D
- E

;	×

Α

:	3.	×	**	>	
В	D	В	Y	Α	
С	D	В	С	Α	
Е	D	Е	С	Α	
F	?	?	?	?	•
С					
D					

cache

cache miss (which item to eject?)

立志成才报图谷民

Reduced Eviction Schedules

- Def. A reduced schedule is a schedule that only inserts an item d into the cache in a step in which d is requested and d is not already in the cache
- Intuition. Can transform an unreduced schedule into a reduced one with no more evictions

- x enters cache without a request
- d enters cache without a request
- b enters cache without a request
- c enters cache without a request
- x enters cache without a request

a	а	b	С
a	а	×	С
С	а	d	С
d	а	d	b
a	а	С	Ь
Ь	а	×	Ь
С	а	С	Ь
α	а	Ь	С
а	а	Ь	С

an unreduced schedule

a	а	b	С
a	а	Ь	С
С	а	Ь	С
d	a	d	С
a	а	d	С
Ь	α	d	Ь
С	а	С	ь
a	α	С	Ь
a	а	С	Ь

a reduced schedule

Reduced Eviction Schedules

- Claim. Given any unreduced schedule S, can transform it into a reduced schedule S' with no more evictions
- Pf. (by induction on number of unreduced items) doesn't enter cache at requested time

Suppose S brings d into the cache at time t, without a request, let c be the item S evicts when it brings d into the cache

· Case 1: d evicted at time t', before next request for d

Case 1

Reduced Eviction Schedules

- Claim. Given any unreduced schedule S, can transform it into a reduced schedule S' with no more evictions
- Pf. (by induction on number of unreduced items) doesn't enter cache at requested time
- Suppose S brings d into the cache at time t, without a request
- Let c be the item S evicts when it brings d into the cache
- Case 1: d evicted at time t', before next request for d
- · Case 2: d requested at time t' before d is evicted

• Lemma. Let S be a reduced schedule that makes the same schedule as S_{FF} through the first j requests. Then there is a reduced schedule S' that makes the same schedule as S_{FF} through the first j+1 requests, and incurs no more eviction that S does

· Pf.

- Consider (j+1)^{s†} request d = d_{i+1}
- Since S and S_{FF} have agreed up until now, they have the same cache contents before request j+1
- Case 1: (d is already in the cache). S' = S satisfies invariant
- Case 2: (d is not in the cache and S and S_{FF} evict the same element).

S' = S satisfies invariant

- Pf. (continued)
 - Case 3: (d is not in the cache; S_{FF} evicts e; S evicts $f \neq e$)
 - Begin construction of S' from S by evicting e instead of f

- Now S' agrees with S_{FF} on first j+1 requests
- From request j+2 onward, we make S' the same as S, but this becomes impossible when e or f is involved

- Pf. (continued)
- Let j' be the **first** time after j+1 that S and S' take a different action, and let g be item requested at time j' must involve e or f (or both)

same same 2 S' 5

Case 3a: g = e. Cannot happen with Farthest-In-Future since there must be a request for f before e

- Pf. (continued)
- Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'

j'	same	e	same f		
	5		S'		

- Case 3b: g ≠ e, f. S must evict e.
- Make S' evict f; now S and S' have the same cache.

- Pf. (continued)
- Let j' be the **first** time after j+1 that S and S' take a different action, and let g be item requested at time j'

j'	same	e	same f		
	S		s'		

- Case 3c: q = f. Element f cannot be in cache of S, so let e' be the element that S evicts.
 - If e' = e, S' accesses f from cache; now S and S' have same cache
 - If e' ≠ e, S' evicts e' and brings e into the cache; now S and S' have the same cache. S' is no longer reduced, but can be transformed into a reduced schedule with
 - a) agrees with S_{FF} through step j + 1
 - b) has no more evictions than S

- Theorem. FF is optimal eviction algorithm
- Pf. (by induction on number of requests j)
- Base case (trivial):
- There exists an optimal reduced schedule S that makes the same schedule as S_{FF} through the first 0 requests
- Inductive step (implied by the lemma):
- If there exists an optimal reduced schedule S that agrees with S_{FF} through the first j requests, then there exists an optimal reduced schedule S' that agrees with S_{FF} through the first **j+1** requests

Caching Perspective

- · Online vs. offline algorithms
 - Offline: full sequence of requests is known as priori
 - Online (reality): requests are not known in advance
 - · Caching is among most fundamental online problems in CS
- LIFO. Evict page brought in most recently
- LRU. Evict page whose most recent access was earliest

- Theorem. FF is optimal offline eviction algorithm.
 - Provides basis for understanding and analyzing online algorithms
 - LRU is k-competitive.
 - LIFO is arbitrarily bad

Greedy Algorithms: Summary

- Basic idea
 - Make the locally optimal choice at each step

Algorithms

- Interval Scheduling
 - · Choose the job with the earliest finish time
- Scheduling to Minimize Lateness
 - · Choose the job with the earliest deadline
- Clustering
 - Single-link k-clustering
- Optimal Caching
 - Evict item that is requested farthest in future

· Proof skills

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least
 as good as any other algorithm's
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality

Divide and Conquer

Divide-and-Conquer

Divide-and-conquer

- Break up problem into several parts
- Solve each part recursively
- Combine solutions to sub-problems into overall solution

Most common usage

Break up problem of size n into two equal parts of size $\frac{1}{2}$ n in linear time Solve two parts recursively

Combine two solutions into overall solution in linear time

Consequence

Divide-and-conquer: ⊖(nlogn)

Mergesort (Revisit)

Mergesort

- Divide array into two halves
- Recursively sort each half
- Merge two halves to make sorted whole

Proof by Recursive Tree

Proof by Induction

• Claim. If T(n) satisfies this recurrence, then $T(n) = n\log_2 n$

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

if n=1 Assumes n is a power of 2

- Pf. (by induction on n)
 - Base case: n = 1
 - Inductive hypothesis: $T(n) = nlog_2 n$
 - Goal: show that $T(2n) = 2n \log_2(2n)$

$$T(2n) = 2T(n) + 2n$$

= $2n \log_2 n + 2n$
= $2n(\log_2(2n)-1) + 2n$
= $2n \log_2(2n)$

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them
- · Fundamental geometric primitive
 - Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
 - Special case of nearest neighbor, Euclidean MST, Voronoi

Fast closest pair inspired fast algorithms for these problems

- Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons
- Assumption. No two points have some x coordinate

To make presentation cleaner

- Algorithm
 - Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side

Algorithm

- Divide: draw vertical line L so that roughly 1/2 n points on each side
- Conquer: find closest pair in each side recursively

Algorithm

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side
- Conquer: find closest pair in each side recursively
- Combine: find closest pair with one point in each side $\leftarrow \Theta(n^2)$
- Return best of 3 solutions

• Find closest pair with one point in each side, assuming that distance $< \delta$

• Find closest pair with one point in each side, assuming that distance $< \delta$ Observation: only need to consider points within δ of line L

• Find closest pair with one point in each side, assuming that distance < δ Observation: only need to consider points within δ of line L Sort points in 2δ -strip by their y coordinate

• Find closest pair with one point in each side, assuming that distance < δ Observation: only need to consider points within δ of line L Sort points in 2δ -strip by their y coordinate Only check distances of those within 11 positions in sorted list!

- **Def.** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate
- Claim. If |i j| >= 12, then the distance between s_i and s_i is at least δ
- · Pf.
 - No two points lie in some $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box
 - Two points at least 2 rows apart have distance >= $2(\frac{1}{2}\delta)$

- Find closest pair with one point in each side, assuming that distance $<\delta$
 - Linear time algorithm!
- Without this assumption?
 - Run the same algorithm
 - If assumption true, we will find the right closest pair with one point in each side
 - If false, the algorithm will find a pair with distance >= δ and then the combine step will correctly return δ as distance of closest pair

÷

Closest Pair Algorithm


```
Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
   Compute separation line L such that half the points
                                                                         O(n log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                         2T(n/2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                         O(n)
                                                                          O(n log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                          O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```


Closest Pair of Points: Analysis

Running time

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Q. Can we achieve O(nlogn)?
- A. Yes. Don't sort points from scratch each time.
 - Sort all the points twice before recursive call, once by x coordinate and once by y coordinate
 - Reuse the sorted sequences when needed (linear time)

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

Integer Multiplication (Revisit)

Integer Arithmetic

- Add. Given two n-digit integers a and b, compute a + b.
 - O(n) bit operations
- Multiply. Given two n-digit integers a and b, compute a * b
 - Brute force solution: $\Theta(n^2)$ bit operations

	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

Add

Divide-and-Conquer Multiplication: Warmup

- To multiply two n-digit integers:
 - Multiply four ½n digit integers
 - Add two ½n-digit integers, and shift to obtain result

$$x = 1000 1101$$
 $x_1 x_0$

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right) = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1\right) + x_0 y_0$$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

assumes n is a power of 2

Karatsuba Multiplication

- To multiply two n-digit integers:
 - Add two ½n digit integers
 - Multiply three ½n-digit integers
 - Add, subtract, and shift ½n-digit integers to obtain results

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$

$$A \qquad B \qquad A \qquad C \qquad C$$

• Theorem. Can multiply two n-digit integers in O(n1.585) bit operations

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1 + \lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}$$

$$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

Karatsuba: Recursion Tree

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 3T(n/2) + n & \text{otherwise} \end{cases} \qquad T(n) = \sum_{k=0}^{\log_2 n} n \left(\frac{3}{2}\right)^k = \frac{\left(\frac{3}{2}\right)^{1 + \log_2 n} - 1}{\frac{3}{2} - 1} n = 3n^{\log_2 3} - 2n$$

Next Time: Divide and Conquer (Cont.)

