INFO 2950: Intro to Data Science

Lecture 18 2023-10-30

Agenda

- 1. Geometric distributions
- 2. Negative Binomial distributions
- 3. Poisson distributions

How do you know if you can use a binomial distribution?

- 1. Each trial has only 2 possible outcomes: "success" (1) or "failure" (0)
- 2. You conduct each "trial" exactly the same way for a fixed number of times *n*
- 3. The probability of success *p* is the same for each trial
- 4. Trials are independent

Can you use a binomial distribution?

Sample students until you've found one who likes cats.

X = number of students sampled.

Probability of a student liking cats is 28%.

Can you use a binomial distribution?

Nope, no *n* defined!

Sample students until you've found one who likes cats.

X = number of students sampled.

Probability of a student liking cats is 28%.

How do you know if you can use a geometric binomial distribution?

- 1. Each trial has only 2 possible outcomes: "success" (1) or "failure" (0)
- 2. You conduct each "trial" exactly the same way for a fixed number of times n
- 3. The probability of success *p* is the same for each trial
- 4. Trials are independent

How do you know if you can use a geometric binomial distribution?

- 1. Each trial has only 2 possible outcomes: "success" (1) or "failure" (0)
- 2. You conduct each "trial" exactly the same way for a fixed number of times n and count the number of trials until the first success
- 3. The probability of success *p* is the same for each trial
- 4. Trials are independent

Geometric distribution

Event space: integers **0** to infinity

Parameters: chance of "success" p

Story: how many trials before the first success?

8

Geometric distribution (shifted)

Event space: integers **1** to infinity

Parameters: chance of "success" p

Story: how many trials to reach the first success?

- x represents the number of failures before you get your first success
- P(X=10) = the probability that you survey 11 people, the first 10 people prefer dogs, and only the 11th person prefers cats

- x represents this number being the first time success happens
- P(X=10) = the probability that you survey ___ people, the first ___ people prefer dogs, and only the ___th person prefers cats

- x represents this number being the first time something happens
- P(X=10) = the probability that you survey <u>10</u> people, the first <u>9</u> people prefer dogs, and only the <u>10</u>th person prefers cats

Properties:

 Probability always decreases as x increases!

Properties:

- Probability always decreases as x increases!
- Memorylessness: the distribution of "waiting time" X doesn't depend on how much time x has already elapsed.

Properties:

- Probability always decreases as x increases!
- Memorylessness: the coin doesn't remember its past flips!

The Greed Game: each round

- If I roll a 1-5, you get +1 point
- If I roll a 6, you reset to 0 points and you're out of the game
- You can sit down at any time (if a 6 has not yet been rolled) and keep the points you've accumulated

The Greed Game: rules

- Everyone starts by standing
- I roll a dice simulator once each round
- On your whiteboard: track your points (update each round): +1 for any 1-5 roll
- Sit down when you choose to stop playing, or when I roll a 6 (reset to 0 points)
 - Game ends when a 6 is rolled; winner has most points

I will be using Google's unbiased 6-sided dice

Was there cheating?!

- How many points did the winner(s) have?
- How expected/unexpected is this?
- How can we tell?

Probability mass function	$P(X=k) = p(1-p)^{k-1}$
Cumulative Distribution Function	$P(X \le k) = 1 - (1 - p)^{k}$ $P(X \ge k) = (1 - p)^{k-1}$ $P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$
Mean:	$\mu = E(X) = \frac{1}{p}$
Variance:	$\sigma^2 = V(X) = \frac{(1-p)}{p^2}$

p = probability of successk = # of trials

Probability mass function	$P(X=k) = p(1-p)^{k-1}$
Cumulative	$P(X \le k) \ni 1 - (1 - p)^k$
Distribution	$P(X \ge k) = (1-p)^{k-1}$
Function	$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$
Mean:	$\mu = E(X) = \frac{1}{p}$
Variance:	$\sigma^2 = V(X) = \frac{(1-p)}{p^2}$

p = probability of successk = # of trials

- How do we express the probability that we're looking to calculate?
- Let's assume our story X = the time to reach "success"
 - "Success" = # rolls until game end (which could be way after the winner of the game sits down)

- X = the time to reach the end of the game
- Let *k* = some integer
- What is the difference between P(X=k) and P(X≥k)?

- X = the time to reach the end of the game
- Let *k* = some integer
- What is the difference between P(X=k) and P(X≥k)?
 - P(X=k) is the probability that it takes k time exactly for the game to end (i.e. a 6 is rolled on the kth round). P(X≥k) is the probability that it takes at least k time for the game to end (i.e., a 6 was definitely not rolled in the first k-1 rounds).

- X = the time to reach the end of the game
- To model the probability that someone wins the Greed Game with k-1 points, should we use P(X=k) or P(X≥k)?

- X = the time to reach the end of the game
- To model the probability that someone wins the Greed Game with k-1 points, should we use P(X=k) or P(X≥k)?

Someone wins by necessarily sitting down *before* a 6 is rolled. They must also be the last person to sit down, meaning no one else will be standing after the winner sits. So, <u>if the winner sits at time k, the 6 could be rolled anytime after k, hence ending the game. This means we care more about $P(X \ge k)$.</u>

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with 20 points?
 - X = time until game ends, k = ?

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with 20 points?
 - X = time until game ends, k = 21 (number of "independent trials"; wehave to roll the 6 after the winner sits down in round 20, so k = 21)

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with 20 points?
 - X = time until game ends, k = 21 (number of "independent trials"; wehave to roll the 6 after the winner sits down in round 20, so k = 21)
 - What is p?

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with 20 points?
 - X = time until game ends, k = 21
 - What is p? p = probability of "success" (game ending) each trial = $\frac{1}{6}$

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with 20 points?
 - X = time until game ends, k = 21
 - $p = \frac{1}{6}$

How likely is a winning result?

Shifted Geometric Distribution Cumulative Distribution **Function**

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with 20 points?
 - The probability that the first "success" (i.e., the game ending) takes at least 21 trials = $P(X \ge 21) = (1-p)^{k-1} = (1-\frac{k}{2})^{20}$ = 0.026. Seems unlikely (magic dice?)!

How likely is a winning result?

Shifted Geometric Distribution Cumulative Distribution **Function**

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

What is the probability that someone won with [winning #] points?

How likely is a winning result?

Shifted Geometric Distribution Cumulative Distribution **Function**

$$P(X \le k) = 1 - (1 - p)^{k}$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$$

- What is the probability that someone won with [winning # = n] points?
- The probability that the first "success" (i.e., the game ending) takes at least n+1 trials = $P(X \ge n+1) = (1-p)^n = (1-\frac{1}{2})^n = ?$

Using your intuition, on average, how many rolls do we think it *should* have taken to roll a 6?

Geometric distribution expectation

- We can model this with a geometric distribution, too!
- The **expected value** of the distribution = on average, how many trials do I have to experience before getting my first "success" (here "success" = rolling a 6)?

(Shifted) Geometric Distribution

Probability mass function	$P(X=k) = p(1-p)^{k-1}$	
Cumulative Distribution Function	$P(X \le k) = 1 - (1 - p)^{k}$ $P(X \ge k) = (1 - p)^{k-1}$ $P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$	p = probability of success k = # of trials
Mean:	$\mu = E(X) = \frac{1}{p}$	1/(%) = 6 rolls
Variance:	$\sigma^2 = V(X) = \frac{(1-p)}{p^2}$	

On average, how many rolls do we think it should take to roll a 20 when using a 20-sided die?

(Shifted) Geometric Distribution

Probability mass function	$P(X=k) = p(1-p)^{k-1}$	
Cumulative Distribution Function	$P(X \le k) = 1 - (1 - p)^{k}$ $P(X \ge k) = (1 - p)^{k-1}$ $P(X > k) = 1 - P(X \le k) = (1 - p)^{k}$	p = probability of success k = # of trials
Mean:	$\mu = E(X) = \frac{1}{p}$	1/(1/20) = 20
Variance:	$\sigma^2 = V(X) = \frac{(1-p)}{p^2}$	rolls

On average, how many rolls do we think it should take to roll a 6 when using a 20-sided die?

(Shifted) Geometric Distribution

The probability of rolling a specific number (6) out of the total # sides of the die (20) is still 1 number / 20 options

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability that we find the first parrot-loving student as the 6th student we ask?

$$P(X=k)$$
 or $P(X \ge k)$?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability that we find the first parrot-loving student as the 6th student we ask?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability that we find the first parrot-loving student as the 6th student we ask?

$$p = \begin{bmatrix} P(X = k) = p(1-p)^{k-1} \\ P(X = k) = p(1-p)^{k-1} \\ P(X = k) = p(1-p)^{k-1} \end{bmatrix}$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability that we find the first parrot-loving student as the 6th student we ask?

$$p = \frac{3}{75} = 0.04$$

$$P(X = k) = p(1-p)^{k-1}$$

$$P(X = 6) = 0.04(1-0.04)^{6-1}$$

$$P(X = 6) = 0.04(0.96)^{5} = 0.0326$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking at least 6 students to find the first parrot-loving student?

$$P(X=k)$$
 or $P(X \ge k)$?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking at least 6 students to find the first parrot-loving student?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking at least 6 students to find the first parrot-loving student?

$$p = \begin{bmatrix} P(X \ge k) = (1-p)^{k-1} \\ P(X \ge k) = (1-p)^{k-1} \end{bmatrix}$$

$$k \ge k$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking at least 6 students to find the first parrot-loving student?

$$p = \frac{3}{75} = 0.04$$

$$P(X \ge k) = (1 - p)^{k-1}$$

$$P(X \ge 6) = (1 - 0.04)^{6-1}$$

$$P(X \ge 6) = (0.96)^{5} = 0.815$$

Geometric Distribution in Python

- 1. **No packages:** calculate the pmf or cdf using the formulas we just used
- 2. **Numpy:** generate the geometric distribution
- 3. **Scipy:** use scipy.stats.geom to then call functions like pmf() and cdf()

No need for k because this just gives you a random draw from a geometric distribution

Geometric Distribution in Python

numpy.random.geometric

random.geometric(p, size=None)

How many draws you want Draw samples from the geometric distribution. from the distribution

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, $k = 1, 2, \ldots$

The probability mass function of the geometric distribution is

$$f(k) = (1-p)^{k-1}p$$

where p is the probability of success of an individual trial.

ogsf(k, p, loc=0)		Log of the survival function.
opf(q, p, loc=0)		Percent point function (inverse of cdf — percentiles).
sf(q, p, loc=0)		Inverse survival function (inverse of sf).
stats(p, loc=0, moments='mv')		Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(p, loc=0)		(Differential) entropy of the RV.
expect(func, args=(p,), loc=0, lb=None, ub=None, conditional=False)		Expected value of a function (of one argument) with respect to the distribution.
median(p, loc=0)		Median of the distribution.
mean(p, loc=0)		Mean of the distribution.
/ar(p, loc=0)		Variance of the distribution.
std(p, loc=0)		Standard deviation of the distribution.
nterval(confidence, p, loc=0)		Confidence interval with equal areas around the median.

Random variates.

Probability mass function.

Log of the probability mass function.

Log of the cumulative distribution function.

Survival function (also defined as 1 - cdf, but

Cumulative distribution function.

sf is sometimes more accurate).

rvs(p, loc=0, size=1, random_state=None)

pmf(k, p, loc=0)

cdf(k, p, loc=0)

sf(k, p, loc=0)

logcdf(k, p, loc=0)

logpmf(k, p, loc=0)

Geometric Distribution in Python

```
scipy.stats.geom #
```

scipy.stats.geom = <scipy.stats._discrete_distns.geom_gen object>

A geometric discrete random variable.

Recap on geometric distribution:

Use when...

- 1. Each trial has only 2 possible outcomes: "success" (1) or "failure" (0)
- 2. You conduct each "trial" exactly the same way and count the # trials until the first success
- 3. The probability of success *p* is the same for each trial
- 4. Trials are independent

1 min break

Draw your favorite emoji, if you'd like!

Can we still use geometric distribution?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking **6 students** to find the first **three** parrot-loving students?

Can we still use geometric distribution?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking **6 students** to find the first **three** parrot-loving students?

No, we need to introduce a new distribution!

62

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Notation? Where'd k go?

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

little x represents the same thing as k

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

$$P(X=4, r=3, p=0.5)$$

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

The probability of running 4 trials before reaching the 3rd success, if each success occurs with probability 0.5

$$P(X=4, r=3, p=0.5)$$

Geometric distributions are just a special case of negative binomial when r = 1!

$$\textbf{Geometric PMF} \rightarrow$$

$$P(X=k) = p(1-p)^{k-1}$$

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Geometric distributions are just a special case of negative binomial when r = 1!

Geometric PMF \rightarrow

$$P(X=k) = p(1-p)^{k-1}$$

Neg Bin PMF when $r = 1 \rightarrow$

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

(x-1 choose 0) is 1 (there's only 1 way to pick nothing)

Geometric distributions are just a special case of negative binomial when r = 1!

 $\textbf{Geometric PMF} \rightarrow$

$$P(X=k) = p(1-p)^{k-1}$$

Neg Bin PMF when $r = 1 \rightarrow$

$$f(x) = P(X = x) = (1 - p)^{x-1} p^{1-x}$$

Geometric distributions are just a special case of negative binomial when r = 1!

 $\textbf{Geometric PMF} \rightarrow$

Neg Bin PMF when
$$r = 1 \rightarrow$$

$$P(X = k) = p(1-p)^{k-1}$$

$$f(x) = P(X = x) = (1-p)^{x-1}p^{r}$$

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the rth success?

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the rth success?

If r = 1, then this is just the # trials before the first success (geometrie distribution)

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Negative Binomial Properties

$$\mu = E(X) = \frac{r}{p}$$

$$\sigma^2 = Var(x) = rac{r(1-p)}{p^2}$$

Negative Binomial Properties

At what value of r does the expected value of Negative Binomial dist equal the expected value of Geometric distribution?

$$\mu=E(X)=\frac{r}{p}$$

$$\sigma^2 = Var(x) = rac{r(1-p)}{p^2}$$

Negative Binomial Properties

When r=1, we get E(X) = 1/p, which is what we had with the geometric distribution expected value!

$$\mu=E(X)=\frac{r}{p}$$

$$\sigma^2 = Var(x) = rac{r(1-p)}{p^2}$$

Negative Binomial in Python

numpy.random.negative_binomial

random.negative_binomial(n, p, size=None)

Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability of success where n is > 0 and p is in the interval [0, 1].

Event space: integers **r** to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

Be careful: lots of different variants of the NB distribution!

Negative Binomial(ish)

Event space: integers 0 to infinity

Parameters: chance of "success" p

Story: how many trials before the first rth success?

failures

This is an 'alternative' formulation to the NB distribution, sometimes called the Pascal distribution

Neg Bin (Pascal) Distribution Properties

X = how many failures before the rth success?

$$\Pr(X=k) = inom{k+r-1}{r-1}(1-p)^k p^r$$

the mean is (1-p)r/p and the variance is $(1-p)r/p^2$

Neg Bin (Pascal) Distribution Properties

X = how many failures before the rth success?

$$\Pr(X=k)=inom{k+r-1}{r-1}(1-p)^kp^r$$

the mean is (1-p)r/p and the variance is $(1-p)r/p^2$

Lots of programming languages (e.g. R) default to the Pascal distribution when you ask for a negative binomial distribution!

Neg Bin vs. Neg Bin (Pascal)

Neg Bin PMF →

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Pascal PMF →

$$\Pr(X=k)=inom{k+r-1}{r-1}(1-p)^kp^r$$

Neg Bin vs. Neg Bin (Pascal)

Neg Bin PMF →

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Pascal PMF →

$$\Pr(X=k)=inom{k+r-1}{r-1}(1-p)^kp^r$$

If we let x = k+r, these are the exact same thing!

(Analogous to shifting by r, like between geometric dist and shifted geometric dist shifted by r=1)

Neg Bin vs. Neg Bin (Pascal)

Counting total trials x to reach r successes \rightarrow

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

Counting total failures k until r successes \rightarrow

$$\Pr(X=k) = {k+r-1 \choose r-1} (1-p)^k p^r$$

It is always true that x = k+r, since total trials x = total failures k + total successes r

Tons of different formulations!

Be careful: always check documentation for distribution properties!

If you blindly copy numbers out of Python, you might be interpreting things incorrectly!

	X is counting	Probability mass function	Formula	Alternate formula (using equivalent binomial)	Alternate formula (simplified using: $n=k+r$)	Support
1	k failures, given r successes	$f(k;r,p)\equiv \Pr(X=k)=$	${k+r-1\choose k}p^r(1-p)^k$ [7][5][8]	${k+r-1 \choose r-1} p^r (1-p)^k$ [2]	$\binom{n-1}{k}p^r(1-p)^k$	$\text{for } k=0,1,2,\dots$
2	n trials, given	$f(n;r,p) \equiv \Pr(X=n) =$	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$ [5][11][12][13][14]	$\binom{n-1}{n-r}p^r(1-p)^{n-r}$		$\text{ for } n=r,r+1,r+2,\dots$
3	n trials, given r failures	$f(n;r,p) \equiv \Pr(X=n) =$	$\binom{n-1}{r-1}p^{n-r}(1-p)^r$	$\binom{n-1}{n-r}p^{n-r}(1-p)^r$	${n-1\choose k}p^k(1-p)^r$	
4	k successes, given r failures	$f(k;r,p) \equiv \Pr(X=k) =$	${k+r-1\choose k}p^k(1-p)^r$	${k+r-1\choose r-1}p^k(1-p)^r$		$\text{for } k=0,1,2,\dots$
-	k successes, given n trials	$f(k;n,p) \equiv \Pr(X=k) =$	This is the binomial distribution not the negative binomial: $\binom{n}{k}p^k(1-p)^{n-k}$			$\text{for } k=0,1,2,\dots,n$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking **6 students** to find the first **3** parrot-loving students?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

```
X = number of students to survey

x = ?

r = ?

p = ?

Want to calculate P(?)
```


We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

X = number of students to survey x = 6 (?) r = 3 p = 3/75 = 0.04Want to calculate P(X=x)

90

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

X = number of students to survey x = 6, r = 3, p = 3/75, want to find P(X = x)

Formulation: do we want to count total # trials or total # failures?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

X = number of students to survey x = 6, r = 3, p = 3/75, want to find P(X = x) where x = total number of trials

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking **6 students** to find the first **3** parrot-loving students?

If x = total # failures, then we'd *instead* want to study P(X=3) using the Pascal dist. X = number of students to survey x = 6, r = 3, p = 3/75, want to find P(X = x) where x = total number of trials

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

X = number of students to survey x = 6, r = 3, p = 3/75, want to find P(X = x)where x = total number of trials

$$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

X = total number of trials = total number of students to survey (i.e. trials until 3 successes)

$$P(X = k) = (5 \text{ choose } 2) * (1-(3/75))^{6-3} * (3/75))^3 = 10*0.96^3*0.04^3 = 0.000566$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 students to find the first 3 parrot-loving students?

X = total number of trials = total number of students to survey (i.e. trials until 3 successes)

P(X = k) =
$$(5 \text{ choose } 2) * (1-(3/75))^{6-3} * (3/75))^3 = 10*0.96^3*0.04^3 = 0.000566$$

Unlikely it'd take only 6 trials to find 3 parrot lovers!

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

Formulation: do we want to count total # trials or total # failures?

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

$$\Pr(X=k) = inom{k+r-1}{r-1}(1-p)^k p^r$$

(Now, k is counting total # failures)

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

X = number of students to fail in survey k = 6, r = 3, p = 3/75, want to find P(X = k)

$$\Pr(X=k)=inom{k+r-1}{r-1}(1-p)^kp^r$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

Alternatively, we could have X = total # surveyed using our Neg Bin formulation from before, but use Pr(X=9)

$$X =$$
 number of students to fail in survey $k = 6$, $r = 3$, $p = 3/75$, want to find $P(X = k)$

$$\Pr(X=k) = \binom{k+r-1}{r-1} (1-p)^k p^r$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

X = number of students to fail in survey

$$P(X = k) = (8 \text{ choose } 2) * (1-(3/75))^6 * (3/75))^3 = 28*0.96^6*0.04^3 = 0.0014$$

We survey students, and we know that on average 3 out of every 75 students love parrots. What is the probability it takes asking 6 not-parrot-loving students to find the first 3 parrot-loving students?

X = number of students to fail in survey

$$P(X = k) = (8 \text{ choose } 2) * (1-(3/75))^6 * (3/75))^3 = 28*0.96^6*0.04^3 = 0.0014$$

More likely to find 3 parrot lovers when you have 6 failures as compared to having 6 total trials (0.000566)

Which NB formulation is this? (k = # trials or # failures?)

Pr(X=6) = 0.0014 for X = # failures

1 min break & attendance

tinyurl.com/22wmzshh

Admin

- Phase 3 due Thursday 11/3
- HW5 due Tuesday 11/7
 - Problem C2 typo: should say "tick_label" instead of "tick_labels"

A new distribution!

Story: number of events that happen during an interval

Poisson Distribution

Event space: integers 0 to infinity

Parameters: rate $\lambda > 0$

Story: number of events that happen during an interval

Poisson Examples

- "Intervals" can occur in time or space
- Our story X can represent...
 - The # students arriving to Instructor Thalken's OH
 - The # typos on a textbook page

Poisson Examples

- "Intervals" can occur in time or space
- Our story X can represent...
 - The # students arriving to Instructor Thalken's OH
 - The # typos on a textbook page
 - The # mobile users seeing an ad each minute
 - The # Steph Curry 3pt shots per 36 minutes

Poisson Examples

- "Intervals" can occur in time or space
- Our story X can represent...
 - The # students arriving to Instructor Thalken's OH
 - The # typos on a textbook page
 - The # mobile users seeing an ad each minute
 - The # Steph Curry 3pt shots per 36 minutes
 - The # customers at the Gates Gimme in 10 minute intervals

Probability that k events happened in an interval

$$\Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$\lambda = \mathrm{E}(X) = \mathrm{Var}(X)$$

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

"rate"
$$\lambda = E(X) = Var(X)$$

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Binomial model: What is N? ____ What is p? ____

(This isn't asking about *negative binomials*. Remember binomial models like coin flips?)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Binomial model: What is N? 100 What is p? 1/100

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Binomial model: What is N? 100 What is p? 1/100

In Python (scipy.stats): For each number of floods *k*, the probability is binom.pmf(k, 100, 0.01)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Binomial model: What is N? 100 What is p? 1/100

	0 floods	1	2	3	4
Binomial	36.6%	36.9%	18.4%	6.0%	1.5%

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Binomial model: What is N? 100 What is p? 1/100

	0 floods	1	2	3	4
Binomial	36.6%	36.9%	18.4%	6.0%	1.5%

binom.pmf(2, 100, 0.01)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Binomial model: What is N? 100 What is p? 1/100

	0 floods	1	2	3	4
Binomial	36.6%	36.9%	18.4%	6.0%	1.5%

If you wanted a cumulative probability, binom.cdf(2, 100, 0.01)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda =$

0 floods	1	2	3	4
----------	---	---	---	---

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

In Python (scipy.stats): For each number of floods k, the probability is poisson.pmf(k,1)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

poisson.pmf(___)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

poisson.pmf(2,1)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4	
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%	

If you want to go cumulative in the other direction, instead of using cdf, you can use poisson.sf(2,1)

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

These results are pretty similar, even though they use different distributions!

	0 floods	1	2	3	4
Binomial	36.6%	36.9%	18.4%	6.0%	1.5%
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

Why would you ever use Poisson instead of Binomial?

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4
Binomial	36.6%	36.9%	18.4%	6.0%	1.5%
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

Why would you ever use Poisson instead of Binomial?

If massive floods occur randomly with average 1 in 100 years, how many "100-year" floods do you expect within a 100 year period?

Poisson model: Rate $\lambda = 1$

	0 floods	1	2	3	4
Binomial	36.6%	36.9%	18.4%	6.0%	1.5%
Poisson	36.8%	36.8%	18.3%	6.3%	1.5%

Use Poisson
when you aren't
sure what N and
p are, but you
can guess the
mean # of
occurrences

100 simulations from a Poisson distribution

Simulation of the number of 100-year floods occurring in 100 (10 x 10), 100-year sequences

100 simulations from a Poisson distribution

Simulation of the number of 100-year floods occurring in 100 (10 x 10), 100-year sequences

100 simulations from a Poisson distribution

Simulation of the number of 100-year floods occurring in 100 (10 x 10), 100-year sequences

Poisson example

of Steph Curry 3P shots per game ~ Poisson(4.5)

of Andrew Wiggins 3P per game ~ Poisson(2.5)

Poisson example

of Steph Curry 3P shots per game ~ Poisson(4.5)

of Andrew Wiggins 3P per game ~ Poisson(2.5)

In Python, to get a random draw from these distributions: np.random.poisson(4.5, size=None) np.random.poisson(2.5, size=None)

of Steph Curry 3P shots per game ~ Poisson(4.5)

of Steph Curry 3P shots per 1/2 game ~ Poisson(?)

of Steph Curry 3P shots per game ~ Poisson (4.5)

Divide 4.5 by 2!

of Steph Curry 3P shots per 1/2 game ~ Poisson(2.25)

of Steph Curry 3P shots per game ~ Poisson(4.5)

of Andrew Wiggins 3P per game ~ Poisson(2.5)

Curry OR Wiggins 3P shots per game ~ Poisson(?)

of Steph Curry 3P shots per game ~ Poisson (4.5) # of Andrew Wiggins 3P per game ~ Poisson (2.5)

We can just sum these!

Curry OR Wiggins 3P shots per game ~ Poisson(7)

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$\lambda = \mathrm{E}(X) = \mathrm{Var}(X)$$

If rate $\lambda = 4$, what is the standard deviation of the Poisson distribution?

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$\lambda = \mathrm{E}(X) = \mathrm{Var}(X)$$

Stdev = $sqrt(Var(X)) = sqrt(\lambda) = sqrt(4) = 2$

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$\lambda = \mathrm{E}(X) = \mathrm{Var}(X)$$

If rate λ = 400, what is the standard deviation of the Poisson distribution?

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$\lambda = \mathrm{E}(X) = \mathrm{Var}(X)$$

Stdev = $sqrt(Var(X)) = sqrt(\lambda) = sqrt(400) = 20$

Poisson Example

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

https://www.producthunt.com/products/party-parrots

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

X = number of parrot lovers in a discussion section $\lambda = ?$

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

X = number of parrot lovers in a discussion section $\lambda =$ mean = 3

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

X = number of parrot lovers in a discussion section $\lambda =$ mean = 3

We are trying to find: P(?)

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has **one parrot-lover**?

X = number of parrot lovers in a discussion section $\lambda =$ mean = 3

We are trying to find: P(X=1)

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

$$\Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X = 1) = 3^{1 *} e^{-3} / 1! = 3e^{-3} = 0.15$$

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

$$\Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X=1) = 3^{1 *} e^{-3} / 1! = 3e^{-3} = 0.15$$

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

$$\Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X=1) = 3^{1} e^{-3} / 1! = 3e^{-3} = 0.15$$

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

$$\Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X=1) = 3^{1} * (e^{-3}) / 1! = 3e^{-3} = 0.15$$

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has one parrot-lover?

$$\Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X=1) = 3^{1} * e^{-3} / 1 = 3e^{-3} = 0.15$$

There is a mean of 3 parrot-lovers per discussion section. What is the **probability** that a randomly selected discussion section has one parrot-lover?

$$\Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X=1) = 3^1 * e^{-3} / 1! = 3e^{-3} = 0.15$$

Final answer: 15%

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

We are trying to find: P(?)

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

We are trying to find: P(X≥1)

But, we only showed you the PMF and not the CDF

Can we still solve this?

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

Fill in the blank:

P(X≥1) = 1 - ____

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0)$$

Discrete numbers mean that we can add up our PMF values to get cumulative probabilities!

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

$$P(X \ge 1) = 1 - P(X = 0) = ?$$

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

There is a mean of 3 parrot-lovers per discussion section. What is the probability that a randomly selected discussion section has at least one parrot-lover?

$$P(X \ge 1) = 1 - P(X = 0) = 1 - [3^{0} * e^{-3} / 0!] = 1 - e^{-3} = 0.95$$

$$\Pr(X=k) = rac{\lambda^k e^{-\lambda}}{k!}$$

