Robust Optimizations of Structural and

Aerodynamic Designs

Komahan Boopathy & Markus P. Rumpfkeil

Department of Mechanical and Aerospace Engineering University of Dayton, Ohio, USA

Why Uncertainty Quantification?

- Design variables and input parameters are always subject
- to random variations → Uncertain operating conditions (weather, ice accumulation on wing), boundary conditions
- → Uncertainties from lack of

- tions/uncertainties
- → Determine the real effects of uncertainties on the design (robust or vulnerable)
- → Obtain confidence intervals for results (range of possible outcomes)
 - * e.g. 95% probability (confidence) that the target C_L is achieved
 - * e.g. 1% probability of violation of constraint
- → Identify the limitations of the design (and improve)
- → Reliability analysis for certification and quality assurance purposes

Types of Uncertainties

Aleatory / Irreducible / Type A

- Inherent randomness or variations:
- → input parameters (Young's modulus, shear force)
- → design variables
- → operating environment (cruise settings, temperature)
- Input probability distributions are known (sometimes as-
- Goal is to determine the output distribution

- Monte Carlo sampling
- Tens of thousands of function evaluations
- Surrogate models to approximate the simulation output (kriging, polynomial chaos)

Epistemic / Reducible / Type B

- Lack of knowledge about the appropriate value
- ullet Bounds can be specified $I(\eta) = [\eta^-, \eta^+] = [\bar{\eta} oldsymbol{ au}, ar{\eta} + oldsymbol{ au}]$
- Goal: determine the worst and best scenarios within the interval $I(\eta)$
- * Extensive sampling
- $\rightarrow 10^3 10^6$ evaluations
- → Prohibitively expensive
- * Bound Constrained Optimization minimize/maximize $f = f(\eta)$,

 - $eta \in I(oldsymbol{\eta}) = [ar{oldsymbol{\eta}} oldsymbol{ au}$, $ar{oldsymbol{\eta}} + oldsymbol{ au}]$. subject to
- → Attractive even for bigger problems (scales linearly)

Optimization Problem

Determinisic Optimization

minimize $J = J(f, \mathbf{q}, \mathbf{d}),$ subject to $R(\mathbf{q}, \mathbf{d}) = \mathbf{0}$, $g(f, \mathbf{q}, \mathbf{d}) \leq \mathbf{0}$.

Robust Optimization

minimize $\mathcal{J}=\mathcal{J}(\mu_{f*},\sigma_{f*}^2,oldsymbol{q},oldsymbol{q}),$ subject to $R(q, \boldsymbol{\xi}, \boldsymbol{\eta}) = 0$, $g^r = g(\mu_{f*}, \boldsymbol{q}, \boldsymbol{\xi}, \boldsymbol{\eta}) + k\sigma_{f*} \leq 0.$

Mixed OUU Framework

Dynamic Training Framework

Airfoil Optimization

Random	Description	Uncertainty	$ au_{min}$	$ au_{ extit{max}}$	Standard
Variable		Type			Deviation
$\eta_{1,2,13,14}$	Shape design variables	Epistemic	-0.00125	0.00125	-
η_{3-12}	Shape design variables	Epistemic	-0.01	0.01	-
ξ_{lpha}	Angle of attack	Aleatory	-	-	0.1°
ξ_{M}	Mach number	Aleatory	-	-	0.01

& Iterations 49/49 - 24844/844-23 675/6751-16 434/434-13 434/434-15 831/831-19 710/710-22 650/650-21 1145/1145-21 Robust-KR 4 0.9999 $3.56 \cdot 10^{-3}$ $9.50 \cdot 10^{-7}$ 0.677 $1.93 \cdot 10^{-2}$ 2.421° 0.600 620/620-15 Robust-PC 4 0.9999 $3.65 \cdot 10^{-3}$ $1.25 \cdot 10^{-6}$ 0.677 $1.93 \cdot 10^{-2}$ 2.427° 0.600 2104/2104-36

Type	$\mu_{c_{d_{max}}}$	$\sigma^2_{c_{d_{max}}}$	$\mu_{c_{l_{min}}}$	$\sigma_{c_{l_{min}}}$	No. of Function/
					Gradient Evals.
IMCS-BCO (Kriging)	$8.85 \cdot 10^{-4}$	$4.32 \cdot 10^{-9}$	0.186	$1.72 \cdot 10^{-2}$	38/38
IMCS-BCO (PC)	$9.27 \cdot 10^{-4}$	$3.97 \cdot 10^{-8}$	0.186	$1.72\cdot 10^{-2}$	36/36
MCS-BCO	$8.98 \cdot 10^{-4}$	$2.98 \cdot 10^{-8}$	0.186	$1.72 \cdot 10^{-2}$	6153/6153

Cantilever Beam Design

Description	Uncertainty Type	$ au_{min}$	$ au_{ extit{max}}$	Mean	Standard Deviation	Unit
Breadth	3.	-10	10			mm
Width	Epistemic	-10	10	-	-	mm
Bending Moment	Aleatory	-	-	$40 \cdot 10^{6}$	40000	N · mm
Shear Force	Aleatory	-	-	$150 \cdot 10^3$	1500	Ν
	Breadth Width Bending Moment	Breadth Epistemic Width Epistemic Bending Moment Aleatory	Type Breadth Epistemic -10 Width Epistemic -10 Bending Moment Aleatory -	Type Breadth Epistemic -10 10 Width Epistemic -10 10 Bending Moment Aleatory	Type Breadth Epistemic -10 10 - Width Epistemic -10 10 - Bending Moment Aleatory - $40 \cdot 10^6$	

Туре	k	P_k	Width <i>b</i>	Depth <i>d</i>	Area <i>A</i>	No. of F/FG Evals
			mm	mm	$\cdot 10^3 \ mm^2$	& Iterations
Initial Design	_	-	300	300	90.0	-
Det $(F_s = 1.0)$	-	-	335.5	335.4	112.5	33/33-7
Det $(F_s = 1.5)$	-	-	595.5	283.4	168.7	45/45-8
Robust-KR	0	0.5000	347.4	343.4	126.3	7046/3523-7
Robust-PC	0	0.5000	347.4	343.4	126.3	7917/7917-8
Robust-KR	1	0.8413	349.7	344.5	127.5	7146/3573-7
Robust-PC	1	0.8413	349.7	344.5	127.5	8037/8037-8
Robust-KR	2	0.9772	398.5	305.4	128.8	7686/3843-7
Robust-PC	2	0.9772	398.5	305.4	128.8	9661/9661-9
Robust-KR	3	0.9986	386.5	317.8	130.0	8694/4347-8
Robust-PC	3	0.9986	386.5	317.8	130.0	11669/11669-10
Robust-KR	4	0.9999	356.6	347.5	131.1	7286/3643-7
Robust-PC	4	0.9999	356.6	347.5	131.1	8196/8196-8

Bibliography

- K. Boopathy and M.P. Rumpfkeil, "A Unified Framework for Training Point Selection and Error Estimation for Surrogate Models", AIAA Journal. Accepted.
- M.P. Rumpfkeil, "Optimizations Under Uncertainty Using Gradients, Hessians, and Surrogate Models", AIAA Journal, Volume 51, Number 2, pp. 444-451, 2013.
- B.A. Lockwood, M. P. Rumpfkeil, W. Yamazaki and D. J. Mavriplis "Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling", 49th AIAA Aerospace Meeting and Exhibit, Orlando, Jan 2011. AIAA paper 2011-885.
- Session: MAO-09, 10:30 AM 11:00 AM, June 18, Embassy G. Full paper: AIAA-2014-2595.