National Chiao Tung University Department Electrical Engineering

Robotics Project: Part 1

Due: 11/18/20 Fall 2020

For a PUMA 560 robot manipulator with the following kinematic table,

Joint	d(m)	a(m)	α	θ
1	0	0	-90°	0°
2	0	0.432	0°	0°
3	0.149	-0.02	90°	0°
4	0.433	0	-90°	0°
5	0	0	90°	0°
6	0	0	0°	0°

$$-160^{\circ} \le \theta_1 \le 160^{\circ}, -125^{\circ} \le \theta_2 \le 125^{\circ}$$

$$-135^{\circ} \le \theta_3 \le 135^{\circ}, -140^{\circ} \le \theta_4 \le 140^{\circ}$$

$$-100^{\circ} \le \theta_5 \le 100^{\circ}, -260^{\circ} \le \theta_6 \le 260^{\circ}$$

please write a program for the following two transformations:

- input: Cartesian point (n, o, a, p), output: the corresponding joint variables.
- input: joint variables, output: Cartesian point (n, o, a, p) and (x, y, z, ϕ , θ , ψ).