

(12) NACH DEM VERTRAG UBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. September 2002 (12.09.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/070526 A1

(51) Internationale Patentklassifikation⁷:
3/06, 19/00, B01J 31/22

C07F 1/08,

(74) Anwalt: ISENBRUCK, Günter; Bardehle, Papenberg,
Dost, Altenburg, Geissler, Isenbruck, Theodor-Heuss-An-
lage 12, 68165 Mannheim (DE).

(21) Internationales Aktenzeichen:

PCT/EP02/02523

(22) Internationales Anmeldedatum:

7. März 2002 (07.03.2002)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 11 230.0

8. März 2001 (08.03.2001) DE

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),
OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
von US): BASF AKTIENGESELLSCHAFT [DE/DE];
67056 Ludwigshafen (DE).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden
Frist; Veröffentlichung wird wiederholt, falls Änderungen
eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

A1

(54) Title: ORGANOMETALLIC BUILDING MATERIALS AND METHOD FOR PRODUCING THE SAME

WO 02/070526

(54) Bezeichnung: METALLORGANISCHE GERÜSMATERIALIEN UND VERFAHREN ZU DEREN HERSTELLUNG

(57) Abstract: The invention relates to a method for producing an organometallic building material, comprising reacting, in the presence of a base and a solvent, a fluid mixture that contains a metal salt having at least one bidentate organic compound capable of coordination with metal ions, said solvent containing at least one cyclic amide (lactam) and/or at least one cyclic ester (lactone).

(57) Zusammenfassung: Verfahren zur Herstellung eines metallorganischen Gerüstmaterials umfassend die Umsetzung eines flu-
iden Gemischs umfassend ein Metallsalz mit mindestens einer wenigstens bidentaten zur Koordination mit Metallionen geeigneten
organischen Verbindung in Gegenwart mindestens einer Base und einem Lösungsmittel, wobei das Lösungsmittel mindestens ein
cyclisches Amid (Lactam) und/oder mindestens einen cyclischen Ester (Lacton) enthält.

BEST AVAILABLE COPY

Metallorganische Gerüstmaterialien und Verfahren zu deren Herstellung

Die vorliegende Erfindung betrifft neue metallorganische Gerüstmaterialien, ein Verfahren zu deren Herstellung und deren Verwendung als Adsorbens, Trockenmittel, Flammschutzmittel, Speichermaterial oder Depot von Wirksubstanzen oder Katalysatoren.

Metallorganische Gerüstmaterialien sind an sich bekannt. Hierzu verweisen wir auf die wissenschaftliche Veröffentlichung von Yaghi et. al. in J. Solid State Chem., Vol. 152 (1), 3-20, die die bisherigen Entwicklungen auf diesem technischen Gebiet zusammengefaßt. Ein Verfahren zur Herstellung derartigen Materialien wird in der EP-A 0 790 253 beschrieben. Das dort beanspruchte Verfahren zur Herstellung eines mikroporösen Materials umfaßt das Vermischen einer Lösung umfassend mindestens ein Metallion, wie darin definiert mit einem Liganden, der Substrukturen mit multidentaten funktionelle Gruppen aufweist in Gegenwart einer wie darin definierten Templat-Verbindung. Als Verwendung für derartige Materialien wird in dieser Druckschrift ein Verfahren zum Entfernen von Verunreinigungen aus Gasen und Flüssigkeiten erwähnt. Weitere Verwendungen der dort beschriebenen Materialien werden in dieser Druckschrift weder erwähnt noch angedeutet. Das dort beschriebene Verfahren, das lediglich mit sehr geringen Mengen durchgeführt wurde, weist jedoch, z.B. für Zink-Terephthalat-Gerüste, schlechte, für die großtechnischen Herstellung derartiger Materialien unbefriedigende Ausbeuten von weniger als 70% auf. Eine technisch relevante Herstellweise mit hohen Ausbeuten, wie man sie etwa zur Anwendung metallorganischer Gerüstmaterialien als Katalysatoren benötigt, wird dort wie auch im übrigen Stand der Technik, nicht beschrieben.

Somit lag eine Aufgabe der vorliegenden Erfindung in der Bereitstellung eines Verfahrens zur Herstellung von derartigen Gerüstmaterialien, das zum einen die großtechnische Herstellung in hoher Ausbeute derartiger Materialien ermöglicht
5 und zum anderen auch zu prinzipiell neuen Materialien führt.

Es wurde nun überraschend gefunden, daß man metallorganische Gerüstsubstanzen in hoher Ausbeute herstellen kann, wenn man N-Methylpyrrolidon als Lösungsmittel bzw. als Lösungsmittelkomponente verwendet.

10

Somit betrifft die vorliegende Erfindung
ein Verfahren zur Herstellung eines metallorganischen Gerüstmaterials umfassend
die Umsetzung eines fluiden Gemischs, wie z.B. eine Lösung oder Suspension
umfassend ein Metallsalz mit mindestens einer wenigstens bidentaten zur Koordi-
15 nation mit Metallionen geeigneten organischen Verbindung in Gegenwart minde-
stens einer Base und einem Lösungsmittel, wobei das Lösungsmittel mindestens
ein cyclisches Amid (Lactam) und/oder mindestens einen cyclischen Ester (Lac-
ton), wie z.B. N-Methylpyrrolidon enthält,
ein metallorganisches, Mikroporen aufweisendes Gerüstmaterial enthaltend ein
20 Metallion und damit koordinativ verbunden mindestens eine wenigstens bidentate
organische Verbindung, herstellbar durch ein Verfahren, das die Umsetzung eines
fluiden Gemischs, wie z.B. einer Lösung oder Suspension eines Metallsalzes mit
mindestens einer wenigstens bidentaten zur Koordination mit Metallionen geeig-
neten organischen Verbindung in Gegenwart mindestens einer Base und einem
25 Lösungsmittel, wobei das Lösungsmittel mindestens ein cyclisches Amid (Lac-
ton) und/oder mindestens einen cyclischen Ester (Lacton), wie z. B. N-
Methylpyrrolidon enthält, umfaßt, sowie

die Verwendung des metallorganischen Gerüstmaterials als Katalysator, Adsorbens, Trockenmittel, Flammenschutzmittel, Speichermaterial, Depot von Wirksubstanzen, Sensormaterial, Pigment oder elektronisches Bauteil.

- 5 Als Metallkomponente innerhalb des erfindungsgemäß eingesetzten Metallsalzes kommen dabei die Elemente der Gruppen Ia, IIa, IIIa, IVa-VIIa und Ib-VIb des Periodensystems in Frage, wobei besonders Zink, Kupfer, Nickel, Palladium, Platin, Ruthenium, Rhenium und Cobalt bevorzugt zu nennen sind.
- 10 Als wenigstens bidentat zur Koordination mit Metallionen geeignete organische Verbindung kommen prinzipiell alle für diese Zweck geeignete und obige Bedingungen erfüllende Verbindungen in Frage. Dabei muß die organische Verbindung insbesondere mindestens zwei Zentren aufweisen, die mit den Metallionen eines Metallsalzes, insbesondere mit den Metallen der vorgenannten Gruppen Ia, IIa, IIIa, IVa-VIIa und Ib-VIb eine Bindung aufbauen können. Diese können insbesondere ausgewählt werden unter:
substituierten oder unsubstituierten, ein- oder mehrkernigen aromatischen Dicarbonsäuren und substituierten oder unsubstituierten, ein- oder mehrkernigen aromatischen, mindestens ein Heteroatom aufweisenden aromatischen Dicarbonsäuren.
- 20 Im einzelnen sind beispielhaft zu nennen:

Dicarbonsäuren des Benzols, Naphthalins, Pyridins oder Chinolins.

- 25 Als Lösungsmittel wird im erfindungsgemäßen Verfahren ein Lösungsmittel eingesetzt, das ein cyclisches Amid und/oder einen cyclischen Ester entweder alleine oder zusammen mit einem geeigneten Cosolvent umfaßt. Als Cosolvent eigenen sind prinzipiell alle protischen und/oder aprotischen organischen Lösungsmittel,

die in der Lage sind, die mindestens bidentaten organischen Verbindungen zu lösen. Beispielhaft zu nennen sind:

Aromatische Lösungsmittel, wie z.B. Benzol, Chlorbenzol, Toluol, Xylol oder halogenierte Kohlenwasserstoffe, wie z.B. Chloroform.

5

Als Basen lassen sich alle organischen Basen, die in der Lage sind, die genannten bidentaten Verbindungen zu deprotonieren, einsetzen. Im einzelnen sind zu nennen:

10 Triethylamin, Tetraalkylammoniumhydroxide, wie z.B. Tetrapropylammoniumhydroxid.

Demgemäß betrifft die vorliegende Erfindung auch ein Verfahren wie oben beschrieben, wobei die Base ausgewählt wird unter organischen Aminen.

15 Zur Herstellung der erfindungsgemäßen metallorganischen Gerüstmaterialien geht man z. B. wie folgt vor: Zunächst löst man die organische Verbindung in dem Lösungsmittel oder Lösungsmittelgemisch und führt anschließend, vorzugsweise unter stetigem Rühren, das Metallsalz zu. Das Zuführen des Metallsalzes kann nach jedem beliebigen Verfahren geschehen.

20

Sobald die Lösung homogenisiert ist, beginnt man mit der Zugabe der Base.

Den nach der Umsetzung erhaltenen Niederschlag, der das metallorganische Gerüstmaterial umfaßt, wird von der Mutterlauge des erhaltenen Reaktionsgemisches mittels Filtration, Zentrifugation oder Sprühtrocknung abgetrennt. Zur Entfernung anhaftenden Lösungsmittels und restlicher Base kann das so abgetrennte Gerüstmaterial einem Trocknungsschritt unterzogen werden. Vorzugsweise wird

während des Trocknungsschritts der Druck reduziert, um die Poren des metallorganischen Gerüstmaterials zumindest teilweise zu entleeren.

Die vorstehende genannte Abfolge von Arbeitsschritten kann auch in dem Fachmann bekannter Weise abgeändert werden bzw. die Schritte in anderer Reihenfolge durchgeführt werden.

Demgemäß betrifft die vorliegende Erfindung auch ein metallorganisches, Mikroporen aufweisendes Gerüstmaterial enthaltend ein Matallion und damit koordinativ verbunden mindestens eine wenigstens bidentate organische Verbindung, welches durch ein Verfahren, das die Umsetzung eines fluiden Gemischs, wie z. B. einer Lösung oder Suspension eines Metallsalzes mit mindestens einer wenigstens bidentaten zur Koordination mit Metallionen geeigneten organischen Verbindung in Gegenwart mindestens einer Base und einem Lösungsmittel herstellbar ist, wo-
bei das Lösungsmittel mindestens ein cyclisches Amid (Lactam) und/oder mindestens einen cyclischen Ester (Lacton) enthält.

Die erfindungsgemäß erhaltenen metallorganischen Gerüstmaterialien enthalten Mikroporen, wobei vorliegend Mikroporen solche mit einem Durchmesser von 2 nm oder darunter sind, gemäß der Definition in Pure Applied Chem. 45, S. 71 ff., insbesondere S. 79 (1976). Das Vorhandensein von Mikroporen erkennt man an den mittels Sorptionsmessungen zur Bestimmung der Aufnahmekapazität der metallorganischen Gerüstmaterialien an Stickstoff bei 77K gemäß DIN 66131, 66134. Dabei deutet der typische Isothermenverlauf im Typ-I-Form auf das Vorliegen von Mikroporen hin.

Die berechneten spezifischen Oberflächen nach dem Langmuir-Modell (DIN 66131, 66134) liegen vorzugsweise oberhalb 5 m²/g, weiter bevorzugt oberhalb 50

m²/g, insbesondere oberhalb 500 m²/g und können in den Bereich bis oberhalb 2000 m²/g ansteigen.

Verwendung finden die erfindungsgemäßen metallorganischen Gerüstmaterialien
5 insbesondere als Adsorbens, Trockenmittel, Flammenschutzmittel, Speichermaterial oder Depot von Wirksubstanzen Sensormaterial, Pigment, elektronisches Bauteil oder als Katalysatoren, insbesondere als Katalysatoren, wo sie breit eingesetzt werden können.

10 Als Einsatzgebiete bei der Katalyse sind insbesondere zu nennen:

Oxidationen, Reduktionen, Ringöffnungsreaktionen, C-C-Verknüpfungen und Epoxidationen, C-C-Bindungs-Bildungen wie beispielsweise Alkylierungen, Acylierungen; Additionen wie beispielsweise Carbonylierungen, Aminierungen, Hydratisierungen, Veretherungen, Alkoxylierungen; Eliminierungen wie be-
15 spielsweise Decarbonylierungen, Decarboxylierungen, Dehydratisierungen; Dehydrierungen und Hydrierungen, Isomerisierungen, C-C-Bindungs-Spaltungen wie beispielsweise Cracken und Hydrocracken; Reformierung; Oliogomerisierun-
gen, Polymerisationen; Reinigungskatalyse für Abgas und Abwasser, Photokata-
lyse.

20

Demgemäß betrifft die vorliegende Erfindung auch ein Verfahren zur Umsetzung mindestens einer organischen Verbindung, wobei die organische Verbindung mit mindestens einem erfindungsgemäßen Katalysator in Kontakt gebracht wird.

25 Die erfindungsgemäßen organometallischen Gerüstmaterialien sind bei ihrer Verwendung als Katalysatoren insbesondere dahingehend vorteilhaft, als daß man ihre Katalysatorperformance durch Variation des Metalls und/oder der wenigstens bidenten zur Koordination mit Metallionen geeigneten organischen Verbindung variieren bzw. maßschneidern kann. So können beispielsweise Umsetzungen von

C-C-Dreifachbindungen mit den erfindungsgemäßen zinkhaltigen metallorganischen Gerüstmaterialien katalysiert werden. Der erfindungsgemäße Katalysator eignet sich für eine Verwendung in einem Verfahren zur Herstellung von Verbindungen der Formeln I bzw. II

5

10

in denen R^1 Wasserstoff oder einen aliphatischen, cycloaliphatischen, araliphatischen, aromatischen oder heterocyclischen Rest oder einen Acylrest bedeutet, wobei diese Reste weitere Substituenten, die nicht mit Acetylenen oder Allenen reagieren, tragen können, die Reste R unabhängig voneinander für Wasserstoff, oder aliphatische, cycloaliphatische, araliphatische, aromatische oder heterocyclische Reste stehen, die unter Bildung eines Ringes miteinander verbunden sein können, und m für 0 oder 1 steht, durch Addition von Verbindungen der Formel III

20

III

an Acetylene oder Allene der Formeln IV bzw. V

25

IV

V

wobei R^1 und R die oben angegebene Bedeutung haben, in der Gas-, Flüssig- oder überkritischen Phase bei erhöhter Temperatur.

30

Als Edukte für die Umsetzung kommen beliebige Alkine oder Allene oder Gemische davon in Betracht. In der Regel wird man jedoch technisch leicht zugängliche Acetylene und Allene mit 2 bis 8 C-Atomen, bzw. 3 bis 8 C-Atomen ver-

wenden. Besonders bevorzugt sind Propin und Allen und insbesondere Kohlenwasserstoffströme, die diese enthalten.

Die Hydroxylgruppen enthaltende Verbindung R^1OH kann Wasser, ein beliebiger
5 Alkohol, ein Phenol oder eine Carbonsäure sein. Im allgemeinen kommen vor allem Alkohole, besonders Alkanole mit 1 bis 16 C-Atomen, einkernige Phenole und niedermolekulare Carbonsäuren, z.B. mit 1 bis 16 C-Atomen, in Betracht. Besonders bevorzugt werden niedere Alkohole und insbesondere Methanol verwendet.

10

Die Addition der Hydroxylgruppen enthaltenden Verbindungen erfolgt in Gegenwart des heterogen vorliegenden Katalysators in der Gas-, Flüssig- oder überkritischen Phase entweder über einem Festbett oder in einem Wirbelbett bei Temperaturen von 25 bis 400°C, vorzugsweise 100 bis 250°C und besonders bevorzugt
15 120 bis 200°C und Drücken in Abhängigkeit vom verwendeten Edukt, typischerweise von 0,1 bis 100 bar, insbesondere 0,8 bis 20 bar (alle Drücke bezogen auf Summe der Partialdrücke der Edukte).

20

So kann beispielsweise aus Propin oder Allen mit Methanol je nach Reaktionsbedingungen selektiv 2-Methoxypropen oder 2,2-Dimethoxypropan gebildet werden. Die erfindungsgemäß erhältlichen Enolether der Formel I und die Dialkoxyverbindungen der Formel II sind wertvolle Zwischenprodukte zur Herstellung von Wirkstoffen und Riechstoffen. Insbesondere die Enolether sind begehrte Ausgangsstoffe z.B. zur Herstellung von γ,δ -ungesättigten Ketonen als Vorprodukte für die Herstellung von Isophytol.
25

30

Will man vor allem die Enolether gewinnen, kann man in an sich bekannter Weise die Verbindungen der Formel II durch Abspaltung von einem Mol R^1OH in die entsprechenden Enolether der Formel I überführen. Dafür existieren zahlreiche aus DE-A- 35 35 128, DE-A- 37 22 891, DE-A-38 04 162, Chemical Abstracts, Vol. 94 (19); 156 241 f und DE-A-19544450 bekannte Verfahren.

35

Weitere Details bezüglich des Herstellungsverfahrens für oben genannte Verbindungen sind der EP-A 1 050 510 zu entnehmen, deren diesbezüglicher Inhalt voll umfänglich in den Kontext der vorliegenden Anmeldung einbezogen wird.

Ebenso gelingt die Herstellung von Vinyl estern aus der entsprechenden Säure und Acetylen, so daß generell die Aktivierung substituierter Acetylene oder Allene nach dem Fachmann bekannten Verfahren möglich ist.

5

Mit anderen Metallen, beispielsweise Cu, Pd, Au, Ru, Ni, Rh, Co und Pt können Hydrier- und Dehydrierreaktionen katalysiert werden, bis hin zur Umsetzung von Methanol zu Wasserstoff, etwa in Brennstoffzellenanwendungen.

- 10 Generell sind die metallorganischen Gerüstmaterialien aufgrund ihrer breiten Variabilität auch einsetzbar in Oxidations-, Epoxidations- und Reduktionsreaktionen, wenn man als Gerüstbaustein ein Metall wählt, welches in der Lage ist, seine Oxidationsstufe leicht zu ändern, wie es z.B. von vielen Metallen der Nebengruppelemente bekannt.

15

- Neben den Metallen als Gerüstbaustein kann jedoch auch über die Modifikation des organischen Bausteins katalytisches Verhalten gesteuert werden. Führt man in den organischen Baustein beispielsweise Carbonsäure-, Sulfonsäure, Trifluorsulfonsäure oder andere azide Reste ein, so kann das resultierende metallorganische Gerüstmaterial als heterogene Festkörpersäure in Isomerisierungen, Veresterungen, Veretherungen, Alkoxylierungen, Hydratisierungen, Dehydratisierungen, Ringschluß- und Ringöffnungsreaktionen oder C-C-Verknüpfungen verwendet werden.

25 Weiterhin sind zu nennen:

C-C-Bindungs-Bildungen wie beispielsweise Alkylierungen, Acylierungen; Additionen wie beispielsweise Carbonylierungen, Aminierungen, Hydratisierungen, Eliminierungen wie beispielsweise Decarbonylierungen, Decarboxylierungen; Dehydrierungen und Hydrierungen, C-C-Bindungs-Spaltungen wie beispielsweise

Cracken und Hydrocracken; Reformierung; Oxidationen und Epoxidationen; Oliogomerisierungen, Polymerisationen; Reinigungskatalyse für Abgas und Abwasser, Photokatalyse.

- 5 Versieht man den organischen Baustein mit Amingruppen oder verwendet beispielweise Dicarboxylate des Pyridins als Baustein, so eröffnet sich der Einsatz dieser Materialien zur Basenkatalyse.

- 10 Nutzt man alkylsubstituierte aromatische Dicarbonsäuren als organische Bausteine, so kann man metallorganische Gerüstmaterialien herstellen, die sich später dazu eignen, an den Alkylketten mittels Luft Hydroperoxide zu bilden, um diese für die heterogenkatalytische selektive Epoxidation von Olefinen einzusetzen.

-
- 15 Über die hohe Oberfläche der metallorganischen Gerüstmaterialien und ihre Porosität können sie auch Anwendung als Adsorbentien, Trockenmittel, Flammenschutzmittel, Speichermaterialien und Depots für retardierte Pharmakafreisetzung finden.

- 20 Ferner können diese Materialien als Sensoren bzw. in Sensoren für z.B. Gasdetektion oder in Anwendungsbereichen wie z.B. „Chemistry on a chip“ aufgrund der hohen Porosität und Oberfläche der Materialien eingesetzt werden.

Ferner finden die Verbindungen Anwendungen in oder als elektronischen Bauteilen oder Funktionsmaterialien.

25

Je nach Einsatzgebiet können die erfindungsgemäßen metallorganischen Gerüstmaterialien in Pulverform oder verformt als Stränge, Pellets, Granulate, Ringe u.ä. in einem Reaktor eingesetzt werden, oder auf Träger aufgebracht werden,

etwa als Beläge auf Destillationspackungen oder Netzwaben und Metall- oder Polymergestricken. Die Umsetzungen können je nach Anwendung in flüssiger, gasförmiger oder überkritischer Phase erfolgen.

- 5 Ferner finden auch alle Verformungen und Verarbeitungen aus dem Bereich Kunststoffe Verwendung, wie z.B. Extrusion, Coextrusion, Einarbeitung in Polymerblends.

Die nachfolgenden Beispiele sollen die Erfindung verdeutlichen.

10 Beispiele

Beispiel 1:

In einem Reaktionskolben wurden 24,9 g Terephthalsäure in 43,6 g 1-Methyl-2-pyrrolidon mit 8,6 g Chlorbenzol und 24,9 g Dimethylformamid gelöst und unter Rühren auf 70 °C gebracht. Zu dieser Lösung wurden 52,2 g Zinknitrat zugegeben. Nach einer Stunden wurden in diese Suspension, ebenfalls bei 70 °C, 30 g Triethylamin zugegeben. Die entstande Lösung wurde 2 Stunden lang bei 70 °C nachgerührt. Das ausgefallene weiße Zink-Terephthalat-Gerüstmaterial wurde abfiltriert und bei Umgebungstemperatur getrocknet, und anschließend bei 200°C ausgeheizt. Der Gewichtsverlust durch beide Trocknungsschritte betrug 23 Gew.-%. Die Ausbeute, bezogen auf die eingesetzte Menge an Zink, betrug 87 %.

Die Messung der spezifischen Oberfläche erfolgte volumetrisch an einem Gerät der Fa. Micromeritics (ASAP 2000) und ergab nach dem Langmuir-Model berechnet einen Wert von 1063 m²/g.

Beispiel 2:

In einem Reaktionskolben wurden 1320 g 1-Methyl-2-pyrrolidon vorgelegt und innerhalb von 30 Minuten mit 64,2 g Terephthalsäure versetzt. In diese Lösung 5 wurden innerhalb von einer Stunde unter stetigem Rühren 87,6 g Kupfernitrat gegebene und homogenisiert. Abschließend wurden innerhalb von zwei Stunden 81 g Triethylamin zugegeben und eine Stunde nachgerührt.

Das Produkt wurde abfiltriert und mit ca. 2 Liter Wasser nachgewaschen und bei 10 150°C im Vakuumtrockenschrank getrocknet.

Die Ausbeute, bezogen auf die eingesetzte Menge an Kupfer, betrug 88 %.

Eine Aufnahme der Stickstoffisotherme (s. Abbildung) bei 77 K belegt die für 15 mikroporöse Materialien typische Typ-I-Isotherme bis $p/p^{\circ} < 0,9$.

Die spezifische Langmuir-Oberfläche berechnet sich daraus zu 334 m²/g..

Beispiel 3 (Herstellung von 4-tert.-Butylbenzoësäurevinylester)

5

In einem Autoklaven wurden 2,5g des in Beispiel 1 hergestellten Katalysators in 100 g 1-Methyl-2-pyrrolidon vorgelegt und mit 40 g 4-tert.-Butylbenzoësäure versetzt. Nach Aufpressen von 5 bar Stickstoff wurde auf 180°C aufgeheizt, anschließend 20 bar Acetylen aufgegeben und während 24 Stunden nachdosiert. Der 10 Reaktionsaustrag wurde mittels GC analysiert und zeigte mit einem Umsatz von 94% auf die eingesetzte Säure eine Selektivität von 83% zum 4-tert.-Butylbenzoësäurevinylester.

Beispiel 4 (Herstellung von 2-Methoxypropen):

15

In einen Differentialkreislaufreaktor wurden 55 g eines gemäß Beispiel 1 hergestellten Katalysators in Tablettenform eingebaut. Über eine HPLC-Pumpe wurden 1,5 g/h eines Flüssigkeitsstromes (Mischung Methanol/Cyclohexan 10 : 1) zudosiert. Propin wurde in einem Gasfluß von 6 g/h bei 250°C zugefahren. Der Umsatz 20 betrug 30% an Propin mit einer Selektivität zu 2-Methoxypropen von 80%.

Bei einer Wiederholung des Versuches ohne Katalysator wurde kein Propin-Umsatz festgestellt.

25

Patentansprüche

1. Verfahren zur Herstellung eines metallorganischen Gerüstmaterials umfassend die Umsetzung eines fluiden Gemischs umfassend ein Metallsalz mit mindestens einer wenigstens bidentaten zur Koordination mit Metallionen geeigneten organischen Verbindung in Gegenwart mindestens einer Base und einem Lösungsmittel, wobei das Lösungsmittel mindestens ein cyclisches Amid (Lactam) und/oder mindestens einen cyclischen Ester (Lacton) enthält.
5
2. Verfahren nach Anspruch 1, wobei das Metallsalz ausgewählt wird unter Metallsalzen des Zinks, Kupfers, Cobalts, Nickels, Palladiums, Platins, Ruteniums, Rheniums oder Gemischen aus zwei oder mehr davon.
10

3. Verfahren nach Anspruch 1 oder 2, wobei die Base ausgewählt wird unter organischen Aminen.
15
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die organische Verbindung ausgewählt wird unter substituierten oder unsubstituierten, ein- oder mehrkernigen aromatischen Dicarbonsäuren und substituierten oder unsubstituierten, ein- oder mehrkernigen aromatischen, mindestens ein Heteroatom aufweisenden aromatischen Dicarbonsäuren.
20
- 25 5. Metallorganisches, Mikroporen aufweisendes Gerüstmaterial enthaltend ein Metallion und damit koordinativ verbunden mindestens eine wenigstens bidentate organische Verbindung, herstellbar durch ein Verfahren, das die Umsetzung eines fluiden Gemischs, wie z.B. einer Lösung oder Suspension eines Metallsalzes mit mindestens einer wenigstens bidentaten

zur Koordination mit Metallionen geeigneten organischen Verbindung in Gegenwart mindestens einer Base und einem Lösungsmittel, wobei das Lösungsmittel mindestens ein cyclisches Amid (Lactam) und/oder mindestens einen cyclischen Ester (Lacton) enthält, umfaßt.

5

6. Metallorganisches Gerüstmaterial nach Anspruch 5, das eine spezifische Oberfläche nach Langmuir von $> 5 \text{ m}^2/\text{g}$ aufweist.

10
10

7. Verwendung des metallorganischen Gerüstmaterials nach Anspruch 5 oder 6 als Katalysator, Adsorbens, Trockenmittel, Flammenschutzmittel, Speichermaterial oder Depot von Wirksubstanzen, Sensormaterial, Pigment oder elektronisches Bauteil.

15

8. Verfahren zur Umsetzung mindestens einer organischen Verbindung, wobei die organische Verbindung mit mindestens einem Katalysator nach Anspruch 7 in Kontakt gebracht wird.

20
20
25

9. Verfahren nach Anspruch 8, wobei die Umsetzung ausgewählt wird unter: Oxidationen, Reduktionen, Ringöffnungsreaktionen, C-C-Verknüpfungen, Epoxidationen, Additionen, Aminierungen, Hydratisierungen, Veretherungen, Alkoxylierungen, Decarbonylierungen, Decarboxylierungen, Dehydratisierungen, Dehydrierungen und Hydrierungen, Isomerisierungen, C-C-Bindungs-Spaltungen, Reformierung, Isomerisierungen, Oligomerisierungen, Polymerisationen; Reinigungskatalyse für Abgas und Abwasser, Photokatalyse.

30

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07F1/08 C07F3/06 C07F19/00 B01J31/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07F B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 790 253 A (NALCO CHEMICAL CO) 20 August 1997 (1997-08-20) page 11 -page 19; examples 1-6 ---	5-9
X	ZHANG X X ET AL: "COOPERATIVE MAGNETIC BEHAVIOR IN THE COORDINATION POLYMERS CU ₃ (TMA)₂L ₃ (L≡H ₂ O, PYRIDINE)" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 87, no. 9, 1 May 2000 (2000-05-01), pages 6007-6009, XP000953917 ISSN: 0021-8979 page 6007 ---	5,6 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

27 June 2002

Date of mailing of the international search report

04/07/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Bader, K

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BOURNE S A ET AL: "1-D coordination polymers containing benzenedicarboxylate" CRYSTAL ENGINEERING, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 4, no. 1, March 2001 (2001-03), pages 25-36, XP004250120 ISSN: 1463-0184 page 26 -page 27 ---	5,6
X	WO 99 05151 A (KEPERT CAMERON JOHN ;ROSSEINSKY MATTHEW JONATHAN (GB); ISIS INNOVA) 4 February 1999 (1999-02-04) page 13 -page 14 page 15; claims 1,4 page 1, line 5 - line 14 ---	5-9
X	YAGHI ET AL: "Selective binding and removal of guests in a microporous metal-organic framework" NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 378, no. 6558, 14 December 1995 (1995-12-14), pages 703-706, XP002079567 ISSN: 0028-0836 the whole document ---	5-9
X	US 5 648 508 A (YAGHI OMAR M) 15 July 1997 (1997-07-15) column 16 column 19 -----	5-9

Information on patent family members

International Application No

PCT/EP 02/02523

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0790253	A	20-08-1997	US DE DE EP	5648508 A 69619093 D1 790253 T1 0790253 A2	15-07-1997 21-03-2002 19-02-1998 20-08-1997
WO 9905151	A	04-02-1999	EP WO JP US	1001960 A1 9905151 A1 2001510845 T 6372932 B1	24-05-2000 04-02-1999 07-08-2001 16-04-2002
US 5648508	A	15-07-1997	DE DE EP	69619093 D1 790253 T1 0790253 A2	21-03-2002 19-02-1998 20-08-1997

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 C07F1/08 C07F3/06

C07F19/00

B01J31/22

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07F B01J

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 790 253 A (NALCO CHEMICAL CO) 20. August 1997 (1997-08-20) Seite 11 -Seite 19; Beispiele 1-6 ---	5-9
X	ZHANG X X ET AL: "COOPERATIVE MAGNETIC BEHAVIOR IN THE COORDINATION POLYMERS CU ₃ (TMA) ₂ L ₃ (L=H ₂ O, PYRIDINE)" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 87, Nr. 9, 1. Mai 2000 (2000-05-01), Seiten 6007-6009, XP000953917 ISSN: 0021-8979 Seite 6007 ---	5,6 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- *'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *'P' Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

27. Juni 2002

04/07/2002

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Bader, K

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	BOURNE S A ET AL: "1-D coordination polymers containing benzenedicarboxylate" CRYSTAL ENGINEERING, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, Bd. 4, Nr. 1, März 2001 (2001-03), Seiten 25-36, XP004250120 ISSN: 1463-0184 Seite 26 -Seite 27 ---	5,6
X	WO 99 05151 A (KEPERT CAMERON JOHN ;ROSSEINSKY MATTHEW JONATHAN (GB); ISIS INNOVA) 4. Februar 1999 (1999-02-04) Seite 13 -Seite 14 Seite 15; Ansprüche 1,4 Seite 1, Zeile 5 - Zeile 14 ---	5-9
X	YAGHI ET AL: "Selective binding and removal of guests in a microporous metal-organic framework" NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, Bd. 378, Nr. 6558, 14. Dezember 1995 (1995-12-14), Seiten 703-706, XP002079567 ISSN: 0028-0836 das ganze Dokument ---	5-9
X	US 5 648 508 A (YAGHI OMAR M) 15. Juli 1997 (1997-07-15) Spalte 16 Spalte 19 -----	5-9

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 02/02523

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0790253	A	20-08-1997	US DE DE EP	5648508 A 69619093 D1 790253 T1 0790253 A2		15-07-1997 21-03-2002 19-02-1998 20-08-1997
WO 9905151	A	04-02-1999	EP WO JP US	1001960 A1 9905151 A1 2001510845 T 6372932 B1		24-05-2000 04-02-1999 07-08-2001 16-04-2002
US 5648508	A	15-07-1997	DE DE EP	69619093 D1 790253 T1 0790253 A2		21-03-2002 19-02-1998 20-08-1997

<p>97-486417/45</p> <p>OSAKA GAS CO LTD 96.02.28 96JP-040817 (97.09.02) C07F 1/08, 3/06, 15/04, 15/06 // F17C 11/00</p> <p>Gas-storing metal complex for automobile use - comprises di:valent metal ion and bidentate organic ligand coordinateable to the metal ion C97-154694</p>	<p>E12J06</p> <p>OSAG 96.02.28 *JP 09227571-A</p>	<p>E(S-L2B, 5-S, 31-H4) J(6-B6)</p>	<p>An automobile driven by utilising, as the energy source, the gas supplied from the above-mentioned gas storing device installed in the automobile is also claimed.</p>
		<p><u>EXAMPLE</u></p>	<p>To 50 ml of a 0.05M aq. soln. of cobalt sulphate was added 100 ml of a 0.1M ethanol soln. of 4,4'-bipyridyl (bpy). The mixt. was stirred, which was then left standing at room temp. for one week to give red ppte. This ppte. was collected by filtration under sucking, which was dried in vacuo at room temp. to yield 0.85 g of a complex having the following formula: $[\text{Co}(4,4'\text{-bpy})_1.5(\text{NO}_3)_2]_{\text{n}}$. (10pp075DwgNo.0/11)</p> <p>A metal complex capable of storing gas, which has three- or one-dimensional channel, comprises a divalent metal ion and a bidentate organic ligand having atoms coordinatable to the above metal ion at both terminals of the rigid skeleton, is claimed.</p> <p>Prodn. of the above-mentioned metal complex is also claimed, which comprises mixing a soln. of a divalent metal ion with a soln. of a bidentate organic ligand having atoms coordinatable to the above-mentioned metal ion at both terminals of the rigid skeleton at a given ratio and allowing the reaction to proceed.</p> <p>A gas storing device is also claimed, which is prep'd. by placing the above-mentioned metal complex in the space provided inside an autoclave having the outlet and inlet of gas.</p>

JP 09227571-A

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.