dependency.md 2025-01-27

Here's an explanation of **Functional Dependency**, **Partial Dependency**, and **Transitive Dependency** with examples in tabular form:

1. Functional Dependency (FD)

- **Definition**: A functional dependency occurs when one attribute (or set of attributes) determines another attribute.
- **Notation**: If attribute A → B, then A uniquely determines B.

Example: Consider the following table:

StudentID	StudentName	CourseID	CourseName
S001	John	C101	Physics
S002	Alice	C102	Math

In this table:

- StudentID → StudentName: The StudentID determines a unique StudentName. So, for every StudentID, there is exactly one StudentName.
- CourseID → CourseName: Similarly, CourseID determines a unique CourseName.

2. Partial Dependency

- **Definition**: A partial dependency occurs when a non-prime attribute depends on only a part of a composite primary key.
- **Notation**: If we have a composite primary key (A, B) and an attribute C depends on A but not on B, it is a partial dependency.

Example: Consider the following table with a composite primary key (StudentID, CourseID):

StudentID	CourseID	StudentName	CourseName
S001	C101	John	Physics
S002	C102	Alice	Math

Here, the composite primary key is (StudentID, CourseID).

- StudentID → StudentName: The StudentID determines the StudentName, but this dependency is based only on StudentID, not the whole composite key.
- CourseID → CourseName: Similarly, CourseID determines CourseName.

These are partial dependencies because they depend only on a part of the composite key (StudentID or CourseID), not the entire key (StudentID, CourseID).

3. Transitive Dependency

• **Definition**: A transitive dependency occurs when an attribute depends on another attribute through a third attribute. In other words, if A → B and B → C, then A → C is a transitive dependency.

dependency.md 2025-01-27

Example: Consider the following table:

EmployeeID	EmployeeName	Department	DepartmentHead
E001	Bob	Sales	Tom
E002	Alice	IT	Jerry

Here:

- EmployeeID → EmployeeName: EmployeeID determines EmployeeName.
- Department → DepartmentHead: Department determines DepartmentHead.

Since EmployeeID → Department (via some relation between employees and departments), and Department → DepartmentHead, we can say EmployeeID → DepartmentHead is a **transitive dependency**.

In this case, EmployeeID indirectly determines the DepartmentHead through the Department, which violates the rule of normalization (i.e., 3NF), where there should be no transitive dependencies.

Summary:

Type of Dependency	Example	Explanation
Functional Dependency (FD)	StudentID → StudentName	One attribute determines another uniquely.
Partial Dependency	StudentID → StudentName (when StudentID, CourseID is the composite key)	Non-prime attribute depends on part of the composite key.
Transitive Dependency	EmployeeID → DepartmentHead (via Department)	One attribute depends on another through a third attribute.

These dependencies help in ensuring that the database is normalized, reducing redundancy and maintaining data integrity.