1

Gate 2022- Instrumentation Engineering

EE23BTECH11058 - Sindam Ananya*

Question 38: Consider the transfer where T_s is the sampling period. Then, function

$$H_c(s) = \frac{1}{(s+1)(s+3)}$$

Bilinear transformation with a sampling period of 0.1s is employed to obtain the discrete-time transfer function $H_d(z)$. Then $H_d(z)$ is

(A)
$$\frac{(1+z^{-1})^2}{(19-21z^{-1})(23-17z^{-1})}$$

(B)
$$\frac{(1-z^{-1})^2}{(21-19z^{-1})(17-23z^{-1})}$$

(C)
$$\frac{(1+z^{-1})^2}{(21-19z^{-1})(23-17z^{-1})}$$

(D)
$$\frac{(1+z^{-1})^2}{(21-19z^{-1})(17-23z^{-1})}$$

(GATE IN 2022)

Solution:

Parameters	Value	Description
$H_c(s)$	$\frac{1}{(s+1)(s+3)}$	Transfer function in s domain
T_s	0.1 <i>s</i>	Sampling period
$H_d(z)$		Transfer function of sampled signal

TABLE 0 INPUT PARAMETERS

$$H_c(s) \stackrel{Bilinear Transform}{\longleftrightarrow} H_d(z)$$
 (1)

To get $H_d(z)$, substitute s with

$$s = \frac{2}{T_s} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \tag{2}$$

$$H_d(z) = \frac{1}{\left(\frac{2}{0.1}\left(\frac{1-z^{-1}}{1+z^{-1}}+1\right)\right)\left(\frac{2}{0.1}\left(\frac{1-z^{-1}}{1+z^{-1}}+3\right)\right)}$$
(3)

$$=\frac{(1+z^{-1})^2}{(21-19z^{-1})(23-17z^{-1})}\tag{4}$$

ROC: $|z| > \frac{19}{21}$