Force exercée sur un barrage $\bullet \circ \circ$

On considère un barrage de lac rempli d'une hauteur d'eau H. La forme de sa paroi en contact avec l'eau est décrite par l'équation $z=kx^2$, comme indiqué sur le schéma ci-dessous. Le barrage a une longueur L selon y.

 \diamond A partir d'un bilan de force, démontrer la relation fondamentale de la statique des fluides dans l'eau :

$$\overrightarrow{\operatorname{grad}}(P) - \rho \vec{g} = \vec{0}$$

où ρ est la densité massique de l'eau, supposée constante et \vec{g} le champ de pesanteur terrestre.

- \diamond Donner l'expression du champ de pression p dans l'eau.
- ♦ Déterminer les forces horizontales et verticales exercées par le lac sur le barrage.

Correction - Force exercée sur un barrage

 \diamond Il s'agit de la démonstration classique de l'équation de statique des fluides. Le bilan des forces (pression et gravité) sur un volume élémentaire $\mathrm{d}V=\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$ d'air situé au point M=(x,y,z) s'écrit

$$-P(x, y, z + dz) dx dy \vec{e}_z + P(x, y, z) dx dy \vec{e}_z + \rho \vec{g} = \vec{0}$$

On omis les variations de pression selon x et selon y mais qui sont traitées de la même manière qu'en z. On trouve alors rapidement l'expression $grad(P) + \rho \vec{g} = \vec{0}$ avec le développement de Taylor de P(z + dz).

♦ En utilisant la relation précédente :

$$p(z) = p_0 + \rho q(H - z)$$

 \diamond Il faut faire un bilan des forces, en "zoomant" sur la paroi du barrage en un point (x,z) de la surface. La force élémentaire créée par la pression est $d\vec{F}=p(x)dS\vec{n}$, où \vec{n} est la normale à la surface : $\vec{n}=\sin\alpha\vec{e}_x-\cos\alpha\vec{e}_z$, en notant α l'angle la pente du barrage en ce point, cad $\tan\alpha=dz/dx$.

Pour la force horizontale, selon $\vec{e_x}$:

$$dF_x = p(z)\sqrt{dx^2 + dz^2}L\sin\alpha = p(z)Ldz$$

car $dS = Ldl = \sqrt{dx^2 + dz^2}L$ et $\sin \alpha = dz/dl$. On a donc :

$$F_x = \int_0^H p(z)Ldz = \left[p_0 + \frac{\rho gH}{2}\right]LH$$

Pour la force verticale, selon $\vec{e_z}$:

$$dF_z = p(z)\sqrt{dx^2 + dz^2}L\cos\alpha = -p(z)Ldx$$

car $\cos \alpha = dx/dl$. En posant x_0 tel que $H = kx_0^2$, on a donc :

$$F_z = \int_0^{x_0} p(z)Ldz = L \int_0^{x_0} (p_0 + \rho g(H - kx^2)dz = -Lx_0 p_0 - \frac{2}{3}L\rho gx_0 H$$

Pression dans une étoile • • •

Soit une étoile sphérique de rayon R et de masse M, constituée de gaz. On note respectivement p(r), $\rho(r)$ et $\vec{g}(r)$ la pression, la densité et le champ de gravitation dans l'étoile à une distance r du centre. On souhaite connaître ces quantités au sein de l'étoile.

♠ On admet que le champ de gravitation et la densité sont reliés par la relation :

$$\mathbf{div}\vec{g}(r) = -4\pi G\rho(r)$$

où ρ est la constante gravitationnelle. Déterminer g(r) en fonction d'une intégrale de ρ que l'on déterminera.

♠ A partir d'un bilan de force, démontrer la relation fondamentale de la statique des fluides dans le gaz de l'étoile :

$$\vec{\mathrm{grad}}(p) - \rho \vec{g} = \vec{0}$$

- \spadesuit Dans le cas où la masse volumique est une constante, cad $\rho(r) = \rho_0$, déterminer le champ de gravité $\vec{g}(r)$ et le champ de pression p(r).
- ♠ On suppose maintenant que le gaz se comprime au fur et à mesure que la pression augmente au sein de l'étoile, en suivant la loi suivante :

$$\frac{P}{\rho^2} = C$$

où C est une constante quelconque.

Trouver une équation différentielle en $\rho(r)$ et la résoudre en introduisant la fonction $f(r) = r\rho(r)$.

Corrige - Pression dans une étoile

Pression dans une étoile • • •

 \spadesuit En utilisant le théorèeme de Green-Ostravaski, sur une sphère de rayon r :

$$g(r) = -\frac{4\pi G}{r^2} \int_0^r dr' r'^2 \rho(r')$$

- ♠ Le classique, cf les corrections précédentes.
- ♠ On utilise l'expression intégrale précédente :

$$g(r) = -\frac{M_e G}{R^3} r$$

avec M_e la masse de l'étoile.

♠ On suppose maintenant que le gaz se comprime au fur et à mesure que la pression augmente au sein de l'étoile, en suivant la loi suivante :

$$\frac{P}{\rho^2} = C$$

où C est une constante quelconque.

Trouver une équation différentielle en $\rho(r)$ et la résoudre en introduisant la fonction $f(r) = r\rho(r)$.

Structure de l'atmosphère • • •

La troposphère constitue la partie basse de l'atmophère dans laquelle nous vivons, du niveau de la mer jusqu'à une altitude comprise entre 8 et 15km. On peut considérer la troposphère comme un gaz parfait de coefficient thermodynamique $\gamma=7/5$, de masse molaire $M=28.965 \mathrm{g.mol^{-1}}$, soumis à la gravitation terrestre, modélisée par l'accélération de la pesanteur $g=9.81 \mathrm{m.s^{-2}}$ supposée constante avec l'altitude (représentée par la variable z). La pression au niveau de la mer z=0 est $P_0=10^5 \mathrm{Pa}$ et la température est $T_0=293 \mathrm{K}$. On souhaite connaître l'évolution de la pression P et de la tempérture T avec l'altitude.

 Δ A partir d'un bilan de force, démontrer la relation fondamentale de la statique des fluides pour l'atmosphère :

$$\vec{\operatorname{grad}}(P) - \rho \vec{g} = \vec{0}$$

où ρ est la densité massique de l'atmosphère.

- \triangle Redémontrer dans le cas classique de l'atmopshère isotherme $(T(z) = T_0)$ l'expression de la pression P(z) et $\rho(z)$. On mettra en évidence une altitude caractéristique H à déterminer. En quoi ce modèle est-il limité ?
- \triangle Pour déterminer l'évolution de la pression et de la température avec l'altitude, on suppose qu'un volume V d'air subit une transformation adiabatique réversible (et non plus isotherme) lorsqu'il change d'altitude. Montrer alors que la pression P et la densité ρ de l'air sont alors reliées par :

$$\rho = \frac{MP_0}{RT_0} \left(\frac{P}{P_0}\right)^{1/\gamma}$$

- \triangle En déduire l'évolution de la pression avec l'altitude P(z), de la densité $\rho(z)$ puis celle de la température T(z). Commenter en mettant en évidence l'altitude caractéristique H vue précédemment. Dans ce modèle, quelle est alors l'épaisseur de l'atmosphère ?
- Δ De combien chute la température lorsqu'on monte à 1000m d'altitude d'après ce modèle ? Quelle est la pression et la densité de l'air au sommet de l'Everest (8848m) ?
- \triangle En réalité, le gradient de température diminue de $7.7 \cdot 10^{-3} \text{K.m}^{-1}$. Cela s'explique par le fait que une transformation thermodynamique dans l'atmosphère (comme évoqué ci-dessus) n'est pas parfaitement adiabatique et que le gaz n'est pas sec. Il peut néanmoins être modélisé par un coefficient thermodynamique $\gamma_{eff} \neq \gamma$. Estimer γ_{eff} . Commenter.

Correction - Structure de l'atmosphère

 Δ Il s'agit de la démonstration classique de l'équation de statique des fluides. Le bilan des forces (pression et gravité) sur un volume élémentaire $\mathrm{d}V=\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$ d'air situé au point M=(x,y,z) s'écrit

$$-P(x, y, z + dz) dx dy \vec{e}_z + P(x, y, z) dx dy \vec{e}_z + \rho \vec{q} = \vec{0}$$

On omis les variations de pression selon x et selon y mais qui sont traitées de la même manière qu'en z. On trouve alors rapidement l'expression $grad(P) + \rho \vec{g} = \vec{0}$ avec le développement de Taylor de P(z + dz).

 Δ Dans l'hypothèse d'une transformation adiabatique réversible, un volume V d'air changeant d'altitude suit la loi de Laplace $PV^{\gamma}=cste$. Comme la densité ρ du gaz contenu dans ce volume V est inversement proportionnelle à celui-ci, on a :

$$\rho = cste \times P^{1/\gamma}$$

Pour déterminer la constante, on utilise la loi des gaz parfait à l'altitude z_0 : $P_0V = nRT_0$, ce qui donne $\rho_0 = \frac{MP_0}{RT_0}$. On a donc :

$$\rho = \rho_0 \left(\frac{P}{P_0}\right)^{1/\gamma} = \frac{MP_0}{RT_0} \left(\frac{P}{P_0}\right)^{1/\gamma}$$

 \triangle Avec l'équation de statique des fluide, on a donc :

$$\frac{\mathrm{d}P}{\mathrm{d}z} = -\rho g = -\frac{Mg}{RT_0} P_0 \left(\frac{P}{P_0}\right)^{1/\gamma}$$

On introduit le paramètre $H = \frac{RT_0}{Mg}$ homogène à une altitude et la variable de pression réduite $p = P/P_0$. L'équation différentielle devient alors :

$$\frac{\mathrm{d}p}{\mathrm{d}z} = -\frac{1}{H}p^{1/\gamma}$$

La solution est alors:

$$p(z) = \left(1 - \frac{\gamma - 1}{\gamma} \frac{z}{H}\right)^{\frac{\gamma}{\gamma - 1}}$$

La densité se trouve grâce à la relation explicitée à la question précédente :

$$\rho(z) = \frac{P_0}{Hg} \left(1 - \frac{\gamma - 1}{\gamma} \frac{z}{H} \right)^{\frac{1}{\gamma - 1}}$$

La température se trouve grâce à la relaiton de Laplace, $T^{\gamma}P^{1-\gamma}=cste$. On a alors $T=T_0\left(\frac{P}{P_0}\right)^{\frac{\gamma-1}{\gamma}}=T_0p^{\frac{\gamma-1}{\gamma}}$, donc :

$$T(z) = T_0 \left(1 - \frac{\gamma - 1}{\gamma} \frac{z}{H} \right)$$

Les fonctions P, ρ et T ne sont définies si et seulement si $1 - \frac{1-\gamma}{\gamma} \frac{z}{H} > 0$, cad si $z < \frac{\gamma}{\gamma - 1} H \simeq 29.75$ km. Il n'y a plus du tout de gaz au-delà!

 \triangle La température décroit linéairement avec l'altitude, c'est un résultat que l'on retrouve expérimentalement : plus on monte, plus il fait froid ! Plus précisément, elle diminue de $T_0 \frac{\gamma}{1-\gamma} \frac{1}{H} \simeq 9.77 \cdot 10^{-3}$ °C pour une élévation de 1m, soit une chute de 9.77°C pour 1000m.

Au sommet de l'Everest, la pression est de seulement 1/3 celle au niveau de la mer, et la densité seulement la moitié.

 \triangle L'atmosphère réelle permet des échanges thermiques même faibles. Le gradient de température est un peu plus faible, et coefficient thermodynamique γ_{eff} est plus faible, correspondant à une situation où l'on est pas parfaitement adaibatique. Pour le retrouver, on utilise le gradient de

température:

$$\frac{\mathrm{d}T}{\mathrm{d}z} = -T_0 \frac{\gamma - 1}{\gamma H} = -Mg \frac{\gamma - 1}{\gamma R}$$

Pour $\frac{\mathrm{d}T}{\mathrm{d}z} = -7.7 \cdot 10^{-3} \mathrm{K.m^{-1}}$, on trouve $\gamma_{eff} = 1, 26$.

 Δ Le modèle d'atmosphère isotherme correspond au cas où $\gamma_{eff}=1$. En effet, dans ce cas là on retrouve la loi des gaz parfait PV=cste=nRT, on voit aussi que l'atmosphère a un graident de température nulle et une extension infinie : $z<\frac{\gamma}{\gamma-1}H\longrightarrow\infty$. D'autre part, les fonctions pécédentes convergent vers la décroissance exponentielles de l'atmosphère isotherme :

$$P(z) = P_0 \left(1 - \frac{\gamma - 1}{\gamma} \frac{z}{H} \right)^{\frac{\gamma}{\gamma - 1}}$$

$$= P_0 \exp\left(\frac{\gamma}{\gamma - 1} \ln\left(1 - \frac{\gamma - 1}{\gamma} \frac{z}{H} \right) \right)$$

$$\xrightarrow{\gamma \to 1} P_0 \exp\left(-\frac{z}{H} \right)$$

Résultante des forces sur une digue • o o

En notant z l'altitude, avec $\vec{g} = -g\vec{e}_z$, le champ de pression est à gauche $P_0 + \mu_0 g(h_1 - z)$ pour $z \in [0, h_1]$ et P_0 pour $z \in [h_1, H]$. A droite, $P_0 + \mu_0 g(h_2 - z)$ pour $z \in [0, h_2]$ et P_0 pour $z \in [h_2, H]$. La résultante des forces est donc issue de deux forces dans l'air, et de deux forces dans l'eau.

$$f_{1e} = \int_{z=0}^{h_1} \int_{y=0}^{5H} (P_0 + \mu_0 g(h_1 - z)) dy dz$$
$$= 5H \left(P_0 h_1 + \mu_0 g \frac{h_1^2}{2} \right)$$

Pour la pression dans l'air:

$$f_{1a} = \int_{z=h_1}^{H} \int_{y=0}^{5H} P_0 dy dz$$
$$= 5HP_0(H - h_1)$$

Et donc :

$$f_1 = 5H \left(P_0 H + \mu_0 g \frac{h_1^2}{2} \right)$$

De même :

$$f_1 = -5H \left(P_0 H + \mu_0 g \frac{h_2^2}{2} \right)$$

Donc la résultante est :

$$f = 5H\frac{\mu_0 g}{2}(h_1^2 - h_2^2) = \frac{25\mu_0 gH^3}{32}$$