第一次作业

8.2.5

```
s = 0
i = 0
L1: if i > n goto L2
s = s + i
i = i + 1
goto L1
L2:
```

上面的三地址代码片段的功能就是求和 1+2+...+n

Long version:

2
2
2
2
2
1
2
2
1
2
2
2
2

L2:

指令的存储代价为最后一列数字加和,计算可得指令代价=24

Short version:

LD R2, #0	2
LD R1, R2	1
LD R3, n	2
L1: SUB R4, R1, R3	1
BGTZ R4, L2	2
ADD R2, R2, R1	1
ADD R1, R1, #1	2
BR L1	2

L2:

指令的存储代价为最后一列数字加和,计算可得指令代价=13

注: 此题答案不固定, 只要执行语义和指令代价正确就行

8.3.3

```
(1)
x = a [i]
y = b [ j ]
a [ i ] = y
b [ j ] = x
使用栈式分配,生成的代码如下:
LD R1, i
MUL R1, R1, 4
ADD R1, R1, SP
LD R2, a(R1)
ST x(SP), R2
                        // x = a [ i ]
LD R3, j
MUL R3, R3, 4
ADD R3, R3, SP
LD R4, b(R3)
                        //y = b[j]
ST y(SP), R4
ST a(R1), y(SP)
                        // a [ i ] = y
ST b(R3), x(SP)
                        // b [ j ] = x
```

第二次作业

8.4.1

```
for (i=0; i<n; i++)

for (j=0; j<n; j++)

c[i][j] = 0.0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

1)
```

B2 2) if
$$i >= n goto(13)$$

B3 3)
$$j = 0$$

B4 4) if
$$j >= n \text{ goto}(11)$$

6)
$$t2 = t1 + j$$

8)
$$c[t3] = 0.0$$

9)
$$j = j + 1$$

B6 11)
$$i = i + 1$$

B8 14) if
$$i >= n goto(40)$$

B10 16) if
$$j \ge n \gcd(38)$$

B11 17)
$$k = 0$$

B12 18) if
$$k \ge n goto(36)$$

20)
$$t5 = t4 + j$$

22)
$$t7 = c[t6]$$

24)
$$t9 = t8 + k$$

28)
$$t13 = t12 + j$$

30)
$$t15 = b[t14]$$

32)
$$t17 = t7 + t16$$

33)
$$c[t6] = t17$$

34)
$$k = k + 1$$

B14 36)
$$j = j + 1$$

2)基本块见上图的标号,构造的流图如下:

3)循环有:

{B2,B3,B4,B6}

{B4,B5}

```
{B8, B9, B10, B15}
{B10, B11, B12,,B14}
{B12, B13}
```

8.5.1

d = b + c

e = a + b

b = b * c

a = e - d

构造的 DAG 如下:

只有 a 在基本块的出口活跃:

d=b+c

e=a+b

a=e-d

第四次作业

8.6.1

(1) x = a + b * c;

三地址代码:

t1=b*c

x=a+t1

生成的目标代码:

LD R1, b

LD R2, c

MUL R1,R1,R2

LD R3,a

```
ADD R1,R1,R3
ST x, R1
(4) a [i] = b [c[i]];
三地址代码:
t1=i*4
t2=c[t1]
t3=t2*4
a[t1]=b[t3]
生成的目标代码:
LD R1, i
MUL R1,R1,4
LD R2, c(R1)
MUL R2,R2,4
LD R3, b(R2)
ST a(R1), R3
(6) *p++ = *q++
三地址代码:
*p=*q
q=q+4
p=p+4
生成的目标代码:
LD R1,q
LD R2,0(R1)
```

8.8.1

LD R3,p ST 0(R3), R2 ADD R1,R1,4 ADD R3,R3,4

为图 8-17 的程序构造寄存器冲突图(干涉图)程序在各个点的活跃变量情况如下图所示:

因此构造的寄存器冲突图如下:

是一个包含6个结点的完全图。

第三次作业

	def-use chain	def-use chain use-def chain		变量计算	可用表达式	
		use-der chain	def(B) & use(B)	In(B) & Out(B)	gen(B) & kill(B)	In(B) & Out(B)
B1 (1)a:=1 (2)b:=2	a, (1), {(3), (4), (6), (8), (9)} b, (2), {(3), (5), (6), (8)}		def(B1)={a, b} use(B1)={}	In(B1)={e} Out(B1)={a, b, e}	gen(B1)={} kill(B1)={a+b, c-a, b*d, a-d}	In(B1)= φ Out(B1)= φ
B2 (3)c:=a+b (4)d:=c-a	c, (3), {(4), (9)} d, (4), {(5), (10), (11)}	a, (3), {(1)} b, (3), {(2), (8)} c, (4), {(3)} a, (4), {(1)}	def(B2)={c, d} use(B2)={a, b}	In(B2)={a, b, e} Out(B2)={a, b, c,d. e}	gen(B2)={a+b, c-a} kill(B2)={b*d, a-d}	In(B2)= φ Out(B2)={a+b, c-a}
B3 (5)d:=b*d	d, (5), {(10), (11)}	b, (5), {(2), (8)} d, (5), {(4), (6)}	def(B3)={} use(B3)={b, d}	In(B3)={a, b, c, d, e} Out(B3)={a, b, c, d, e}	gen(B3)={φ} kill(B3)={b*d, a-d}	In(B3)={a+b, c-a} Out(B3)={a+b, c-a}
B4 (6)d:=a+b (7)e:=e+1	d, (6), {(5)} e, (7), {(7)}	a, (6), {(1)} b, (6), {(2), (8)} e, (7), {(7),(9)}	def(B4)={d} use(B4)={a, b, e}	In(B4)={a, b, c, e} Out(B4)={a, b, c, d, e}	gen(B4)={a+b} kill(B4)={a-d, b*d, e+1}	In(B4)={a+b, c-a} Out(B4)={a+b, c-a}
B5 (8)b:=a+b (9)e:=c-a	b, (8), {(3), (5), (6), (8), (10)} e, (9), {(7)}	a, (8), {(1)} b, (8), {(2), (8)} c, (9), {(3)} a, (9), {(1)}	def(B5)={e} use(B5)={a, b. e}	In(B5)={a, b, c, d} Out(B5)={a, b, d, e}	gen(B5)={c-a} kill(B5)={a+b, b*d, e+1}	In(B5)={a+b, c-a} Out(B5)={c-a}
B6 (10)a:=b*d (11)b:=a-d	e, (10), {(11)} b, (11), {}	b, (10), {(8)} d, (10), {(4), (5)} a, (11), {(10)} d, (11), {(4), (5)}	def(B6)={a} use(B6)={b, d}	In(B6)={b, d} Out(B6)={φ}	gen(B6)={a-d} kill(B6)={a+b, c-a, b*d}	In(B6)={c-a} Out(B6)={a-d}

说明: a, (1), {(3),(4),(6),(8),(9)}表示 a 在 (1) 的 def-use 链是{(3),(4),(6),(8),(9)}, a, (3), {(1)}表示 a 在 (3) 的 use-def 链是{(1)}可用表达式计算中,U={a+b, c-a, b*d, e+1, a-d}