

ALLE UNITARED STATUS OF AVIOREDA

TO AND TO WHOM THESE: PRESENTS SHAME COMES

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office

July 24, 2003

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 10/174,014

FILING DATE: June 17, 2002

P1 1042811

RELATED PCT APPLICATION NUMBER: PCT/US03/18923

By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

E. BORNETT Certifying Officer

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

DOCKET NO.: PTS-0012

Date of Deposit:

Label No.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: C. Frank Bennett, Susan M. Freier and Kenneth W. Dobie

For:

Antisense Modulation of SMRT Expression

BOX SEQUENCE Assistant Commissioner for Patents Washington DC 20231

PATENT APPLICATION TRANSMITTAL LETTER

Transmitted herewith for filing, please find the following:

- · The specification of the above-referenced patent application;
- An executed Declaration or Oath and Power of Attorney;
- J. An Assignment of the invention to Isis Pharmaceuticals Inc. with recordation cover sheet (PTO Form PTO-1595) and \$40.00 cover fee;
- · Statement to Support Filing and Submission of DNA/Amino Acid Sequences in Accordance with 37 CFR § § 1.821 through 1.825;
- Sequence listing in computer readable form in accordance with 37 C.F.R. § 1.821(e);
- · An Information Disclosure Statement with references.

The filing fee has been calculated as shown below:

has been carculated as shown below.				
	。 在 18 · 18 · 18 · 18 · 18 · 18 · 18 · 18			
For:	No. Filed	No. Extra	Rate	Fee
BASE FEE				\$740.00
Total Claims	20 - 20 =	0	x \$9=	\$0
Indep.	2 - 3 =	0	x\$40=	\$ 0
TOTAL				\$ 740.00

The Commissioner is hereby authorized to charge the following fees to Deposit Account No. 500252:

- the amount of \$780.00 for the above listed fees;
- · payment of the following fees associated with this communication or credit any
- · any additional filing fees required under 37 CFR 1.16 including fees for presentation of extra claims; and
- any additional patent application processing fees under 37 CFR 1.17 and under 37 CFR 1.20 (d).

Triplicate copies of this transmittal are enclosed.

Donna T. Ward

Registration No. 48,271 Isis Pharmaceuticals, Inc.

Please address all correspondence to: Jane Massey Licata or Kathleen A. Tyrrell Licata & Tyrrell, P.C. 66 East Main Street Marlton NJ 08053 (856) 810-1515

DOCKET NO.:PTS-0012

"Express Mail" Label No.: EL918916361US Date of Deposit: (U) 12002

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor(s): C. Frank Bennett, Susan M. Freier and Kenneth W. Dobie

Serial No.: not yet assigned Filing Date: herewith

Title: Antisense Modulation of SMRT Expression

BOX SEQUENCE Assistant Commissioner for Patents Washington, D.C., 20231

STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE WITH 37 C.F.R. §§ 1.821 THROUGH 1.825

I hereby state, in accordance with the requirements of 37 C.F.R. §1.821(f), that the contents of the paper and computer readable copies of the Sequence Listing, submitted in accordance with 37 C.F.R. §1.821(c) and (e), respectively, are the same.

Date: fine 17, 2007

Respectfully submitted,

Registration No. 48,271
Isis Pharmaceuticals, Inc.

Please address all correspondence to:

Licata & Tyrrell, P.C. 66 East Main Street Marlton NJ 08053 (856) 810-1515 PTS-0012

5

20

25

30

35

-1-

PATENT

ANTISENSE MODULATION OF SMRT EXPRESSION

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of SMRT. In particular, this invention relates to compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding SMRT. Such compounds have been shown to modulate the expression of SMRT.

BACKGROUND OF THE INVENTION

Steroids, retinoids, thyroid hormones, and vitamin D play critical roles in the regulation of reproduction, development, metabolism, and homeostasis. The intracellular receptors for these hormones and lipophilic compounds comprise a large family of transcription factors that regulate ligand-dependent expression of target genes. This family can be divided into two classes: the steroid receptors are normally inactive and associated with heat shock proteins in the absence of hormone, and the nuclear hormone receptors, which bind DNA and repress transcription in the absence of ligand and activate transcription upon ligand treatment. By activating or repressing target genes, the steroid/nuclear hormone receptors elicit a broad range of cellular responses, such as differentiation, proliferation, and cell death (Chen and Li, Crit. Rev. Eukaryot. Gene Expr., 1998, 8, 169-190).

The highly ordered chromatin structure of chromosomal DNA within the nuclei of eukaryotic cells presents a physical obstacle for gene transcription, by limiting access of

PTS-0012 -2- PATENT

transcription factors and RNA polymerase II core machinery to DNA templates. Posttranslational modifications such as phosphorylation, acetylation, ADP-ribosylation, and ubiquitination can reversibly modify histone proteins within chromatin, and these histone modifications affect structural 5 alterations in local chromatin architecture during transcription. The dynamic state of histone acetylation is tightly regulated and maintained by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzyme activities. Histone modification plays a pivotal role in controlling 10 access of transcriptional activators, repressors, and the basal transcription machinery to regulatory sequences in the underlying DNA template to positively or negatively affect the rate of gene transcription. Hyperacetylation of core histones in gene promoters results in decondensation of 15 chromatin, increases accessibility of transcription factors, and is correlated with gene activation. Conversely, hypoacetylation is thought to reestablish the condensed chromatin structure, favoring transcriptional repression and gene silencing (Chen and Li, Crit. Rev. Eukaryot. Gene Expr., 20 1998, 8, 169-190; Xu et al., Curr. Opin. Genet. Dev., 1999, 9. 140-147).

Repression of basal transcription by nuclear hormone receptors such as thyroid receptor (TR) and retinoic acid receptor (RAR) plays a critical role in oncogenesis and cellular differentiation. Several cofactors of nuclear receptors have been identified as important components of transcriptional regulation, and these coactivators and corepressors have been found to harbor intrinsic HAT and HDAC activities, respectively. The nuclear receptor corepressors, N-CoR and SMRT, interact with several unliganded nuclear receptors and recruit multisubunit protein complexes containing HDACs and several other proteins. Furthermore, recent studies of RAR and TR nuclear hormone receptors have revealed that, upon ligand binding, a HDAC-containing complex is displaced from the nuclear receptor in exchange for binding of a HAT-containing complex to promoters of target

25

30

PTS-0012 -3- PATENT

genes. Thus, ligand-dependent recruitment of chromatin-remodeling activities, in the form of histone acetylation and deacetylation enzyme complexes, is believed to serve as a general mechanism underlying the switch of nuclear receptors from a transcriptionally repressed to a transcriptionally active state (Xu et al., Curr. Opin. Genet. Dev., 1999, 9, 140-147).

Nuclear hormone corepressor proteins have been demonstrated to associate with mSin3 and HDAC-containing complexes, presumably to induce chromatin condensation and in doing so, these corepressors modulate transcriptional activation or silencing of a wide variety of gene targets involved in development, differentiation, and cellular proliferation (Lee et al., J. Biol. Chem., 2000, 275, 12470-12474; Li et al., Embo J., 2000, 19, 4342-4350; Wu et al., J. Biol. Chem., 2001, 276, 24177-24185).

SMRT (also known as silencing mediator for retinoid and thyroid hormone action, Nuclear receptor co-repressor 2, NCoR2, TRAC-1, CTG26, TNRC14, and SMRTe) was originally identified and cloned from a human B-cell cDNA library as a 20 RAR-interacting protein in a two-hybrid screen (Chen and Evans, Nature, 1995, 377, 454-457). RAR and TR directly interact with SMRT, and these protein-protein interactions bring the receptors to target promoters in the nucleus, resulting in gene repression. Ligand binding to the receptors 25 causes dissociation of SMRT from them, resulting in liganddependent activation of target genes (Chen and Evans, Nature, 1995, 377, 454-457). In an accompanying paper, nuclear receptor corepressor (N-CoR) was identified and found to be related to SMRT; thus, the name TRAC was proposed for a newly 30 identified family of thyroid-hormone- and retinoic-acidreceptor-associated corepressor proteins (Horlein et al., Nature, 1995, 377, 397-404).

The original isolate of SMRT showed significant homology to N-CoR, but was substantially shorter in length. A longer isoform was later isolated and named SMRT, as it was predicted to be the major form in vivo, and the shorter,

PTS-0012 -4- PATENT

original isolate was renamed s-SMRT (Ordentlich et al., Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 2639-2644). Concurrently, a second group independently identified the human and mouse SMRT-extended (SMRTe) isoforms, which included 1000 amino acids at the N-terminus bearing striking 5 similarity to N-CoR, and found that SMRTe expression was cell-cycle regulated and transcripts were present in many mouse embryonic tissues (Park et al., Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 3519-3524). Furthermore, a polyclonal antibody has been generated against SMRT and used to study 10 its cell cycle dependent localization. SMRT is ubiquitously expressed in the nuclei of all interphase cells, and is found to be dispersed in the cytoplasm and excluded from the metaphase chromosomes in mitotic cells (Chen et al., Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 7567-7571). The relative .15 levels of SMRT expression also vary with tissue type and upon hormone treatment (Misiti et al., Endocrinology, 1998, 139, 2493-2500) -

Posttranslational modification of SMRT may alter its subcellular localization and its ability to interact with nuclear hormone receptors. SMRT is a substrate for phosphorylation by multiple components of the mitogenactivated protein kinase (MAPK) cascade that operates downstream of the epidermal growth factor (EGF) receptor, and this phosphorylation appears to inhibit the ability of SMRT to bind to nuclear receptors, and correlates with a relocalization from the nucleus to the cytoplasm (Hong and Privalsky, Mol. Cell. Biol., 2000, 20, 6612-6625).

Nuclear receptors inhibit synthesis of matrix metalloproteinase-1 (MMP-1), an enzyme that degrades interstitial collagens and contributes to the pathology in numerous disorders, including the joint erosion observed in rheumatoid arthritis. Primary synovial fibroblasts express SMRT, and overexpression of SMRT was found to inhibit MMP-1 promoter activity, suggesting that SMRT maintains a repressive state of the MMP-1 gene and strictly controls

30

PATENT -5-PTS-0012

regulation of interstitial collagenase (Schroen et al., Biochem. Biophys. Res. Commun., 1997, 237, 52-58).

10

25

30

35

In addition to its role in inflammation, SMRT plays a role in several cancers. The MCF-7 breast cancer cell line 5 expresses the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt), and SMRT physically as well as functionally interacts with these proteins, suggesting that nuclear receptor corepressors can modulate aryl hydrocarbon responsiveness in breast cancer cells (Nguyen et al., Arch. Biochem. Biophys., 1999, 367, 250-257).

Mutations in members of the nuclear receptor superfamily frequently result in neoplastic and endocrine disorders. The genetic disease characterized by resistance to thyroid hormone (RTH) exemplifies such a disorder. RTH is attributed to mutations in the $\mbox{TR}\beta$ allele of the thyroid hormone 15 receptor. These mutations act in a dominant negative manner, interfering with receptor function and displaying an aberrant association with SMRT, in which ligand treatment no longer results in dissociation of SMRT from the receptor (Matsushita et al., J. Endocrinol., 2000, 167, 493-503).

SMRT is also involved in human acute promyelocytic leukemia (APL), in which the majority of patients harbor a specific gene translocation involving the RAR α allele. At least five different fusion partners of RAR α have been identified, but the two best-studied fusion proteins, PML- $RAR\alpha$ and PLZF- $RAR\alpha$ retain a wild-type affinity for retinoic acid (RA), and are able to bind to promoters of retinoic acid responsive genes. The PML-RARA and PLZF-RARA fusions have increased affinity for the corepressor SMRT, and the dissociation of SMRT from RAR normally induced by RA no longer occurs, leading to aberrant expression of target genes. Thus, PML-RAR α and PLZF-RAR α are leukemogenic at physiological concentrations of RA (Lin and Evans, Mol. Cell., 2000, 5, 821-830).

The pharmacological modulation of the activity and/or expression components of SMRT corepressor-containing

The second second second second

PTS-0012 -6- PATENT

complexes is believed to be an appropriate point of therapeutic intervention in pathological conditions such as inflammatory or autoimmune diseases, rheumatoid arthritis, resistance to thyroid hormone and other metabolic diseases, and cancers such as acute promyelocytic leukemia.

5

10

15

20

25

30

35

Disclosed and claimed in WO 00/53734 are nucleic acids encoding SMRT, allelic variants of SMRT, nucleic acids with 90% homology to SMRT or which can hybridize to SMRT, as well as BAC, PAC, and cosmid clones comprising genomic or cDNA sequences encoding SMRT, DNA constructs and expression cassettes bearing suitable regulatory sequences for expression of SMRT as a biologically active protein, antisense targeted to the SMRT gene, and antibodies against the SMRT protein. Further claimed are host cells containing said nucleic acid molecules and methods for producing polypeptides encoded by SMRT, or fragments thereof, as well as the use of the DNA or polypeptide sequences of SMRT as tools to identify potential drugs for the treatment of angiogenic diseases, rheumatoid arthritis, psoriasis, eye diseases such as diabetic retinopathy and neovascular glaucoma, kidney diseases such as glomerulonephritis and diabetic nephropathy (Thierauch et al., 2000).

Currently, there are no known therapeutic agents which effectively inhibit the synthesis of SMRT and investigative strategies aimed at studying SMRT function have involved the use of antibodies for cellular localization studies (Chen et al., Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 7567-7571).

Consequently, there exists a long felt need to identify methods of modulating transcriptional repression complexes and specifically for agents capable of effectively modulating SMRT function.

Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of SMRT expression.

and the second of the second of the second

PTS-0012 -7- PATENT

The present invention provides compositions and methods for modulating SMRT expression, including modulation of the extended isoform of SMRT, known as SMRTe.

SUMMARY OF THE INVENTION

5 ,

10

15

20

25

30

· 35

The present invention is directed to compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding SMRT, and which modulate the expression of SMRT. Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of modulating the expression of SMRT in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of SMRT by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric compounds, particularly antisense oligonucleotides, for use in modulating the function of nucleic acid molecules encoding SMRT, ultimately modulating the amount of SMRT produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding SMRT. As used herein, the terms "target nucleic acid" and "nucleic acid encoding SMRT" encompass DNA encoding SMRT, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of

PTS-0012 -8- PATENT

DNA to be interfered with include replication and The functions of RNA to be interfered with transcription. include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translocation of the RNA to sites within the cell which are distant from the site of RNA synthesis, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is 10 modulation of the expression of SMRT. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and 15 mRNA is a preferred target.

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the 20 identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. 25 present invention, the target is a nucleic acid molecule encoding SMRT. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, 30 will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in 35 transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred

PTS-0012 -9- PATENT

to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start 10 codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to 15 initiate translation of an mRNA molecule transcribed from a gene encoding SMRT, regardless of the sequence(s) of such codons.

It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

20

25

30

35

The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region

PTS-0012 -10- PATENT

(5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the 'translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an 10 . N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent The 5' cap region may also be a preferred target to the cap. 15 region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intronexon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as "fusion transcripts". It has also been found that introns can be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

20

25

30

35

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as "variants". More specifically, "pre-mRNA variants" are

PTS-0012 -11- PATENT

transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and extronic regions.

5

10

15

20

25

30

35

Upon excision of one or more exon or intron regions or portions thereof during splicing, pre-mRNA variants produce smaller "mRNA variants". Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as "alternative splice variants". If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant.

It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as "alternative start variants" of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as "alternative stop variants" of that pre-mRNA or mRNA. One specific type of alternative stop variant is the "polyA variant" in which the multiple transcripts produced result from the alternative selection of one of the "polyA stop signals" by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites.

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used

PTS-0012 -12- PATENT

herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. 10 "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the 15 sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable.

An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule . .20 interferes with the normal function of the target DNA or RNA to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under 25 physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed. It is preferred that the antisense compounds of the present invention comprise at least 80% sequence complementarity to a 30 target region within the target nucleic acid, moreover that they comprise 90% sequence complementarity and even more comprise 95% sequence complementarity to the target region within the target nucleic acid sequence to which they are targeted. For example, an antisense compound in which 18 of 35 20 nucleobases of the antisense compound are complementary, and would therefore specifically hybridize, to a target

PTS-0012 -13- PATENT

region would represent 90 percent complementarity. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using basic local alignment search tools (BLAST programs) (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656).

5

25

30

35

Antisense and other compounds of the invention, which hybridize to the target and inhibit expression of the target, are identified through experimentation, and representative sequences of these compounds are hereinbelow identified as 10 preferred embodiments of the invention. The sites to which these preferred antisense compounds are specifically hybridizable are hereinbelow referred to as "preferred target regions" and are therefore preferred sites for targeting. used herein the term "preferred target region" is defined as 15 at least an 8-nucleobase portion of a target region to which an active antisense compound is targeted. While not wishing to be bound by theory, it is presently believed that these target regions represent regions of the target nucleic acid which are accessible for hybridization. 20

While the specific sequences of particular preferred target regions are set forth below, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional preferred target regions may be identified by one having ordinary skill.

Target regions 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative preferred target regions are considered to be suitable preferred target regions as well.

Exemplary good preferred target regions include DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 5'-terminus of one of the illustrative preferred target regions (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5'-terminus of the target region

PTS-0012 -14- PATENT

and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). Similarly good preferred target regions are represented by DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 3'-terminus of one of the illustrative preferred target regions (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3'-terminus of the target region and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). One having skill in the art, once armed with the empirically-derived preferred 10 target regions illustrated herein will be able, without undue experimentation, to identify further preferred target In addition, one having ordinary skill in the art will also be able to identify additional compounds, including oligonucleotide probes and primers, that specifically 15 hybridize to these preferred target regions using techniques available to the ordinary practitioner in the art.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

20

25

30

35

For use in kits and diagnostics, the antisense compounds of the present invention, either alone or in combination with other antisense compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

Expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease

PTS-0012 -15- PATENT

association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

5

Examples of methods of gene expression analysis known in the art include DNA arrays or microarrays (Brazma and Vilo, FEBS Lett., 2000, 480, 17-24; Celis, et al., FEBS Lett., 2000, 480, 2-16), SAGE (serial analysis of gene

- expression) (Madden, et al., Drug Discov. Today, 2000, 5, 415-425), READS (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, Methods Enzymol., 1999, 303, 258-72), TOGA (total gene expression analysis) (Sutcliffe, et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 1976-81),
- protein arrays and proteomics (Celis, et al., FEBS Lett., 2000, 480, 2-16; Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Celis, et al., FEBS Lett., 2000, 480, 2-16; Larsson, et al., J. Biotechnol., 2000, 80, 143-57), subtractive RNA
- fingerprinting (SuRF) (Fuchs, et al., Anal. Biochem., 2000, 286, 91-98; Larson, et al., Cytometry, 2000, 41, 203-208), subtractive cloning, differential display (DD) (Jurecic and Belmont, Curr. Opin. Microbiol., 2000, 3, 316-21), comparative genomic hybridization (Carulli, et al., J. Cell
- 25 Biochem. Suppl., 1998, 31, 286-96), FISH (fluorescent in situ hybridization) techniques (Going and Gusterson, Eur. J. Cancer, 1999, 35, 1895-904) and mass spectrometry methods (reviewed in To, Comb. Chem. High Throughput Screen, 2000, 3, 235-41).
- The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and
 - nave been sarely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic

PTS-0012 -16- PATENT

modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

In the context of this invention, the term

"oligonucleotide" refers to an oligomer or polymer of
ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or
mimetics thereof. This term includes oligonucleotides
composed of naturally-occurring nucleobases, sugars and
covalent internucleoside (backbone) linkages as well as
oligonucleotides having non-naturally-occurring portions
which function similarly. Such modified or substituted
oligonucleotides are often preferred over native forms
because of desirable properties such as, for example,
enhanced cellular uptake, enhanced affinity for nucleic acid
target and increased stability in the presence of nucleases.

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 80 nucleobases (i.e. from about 8 to about 80 nucleosides). Particularly preferred antisense compounds are antisense oligonucleotides from about 8 to about 50 nucleobases, even more preferably those comprising from about 12 to about 30 nucleobases. Antisense compounds include ribozymes, external guide sequence (EGS) oligonucleotides (oligozymes), and other short catalytic RNAs or catalytic oligonucleotides which hybridize to the target nucleic acid and modulate its expression.

20

25

30

35

Antisense compounds 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative antisense compounds are considered to be suitable antisense compounds as well.

Exemplary preferred antisense compounds include DNA or RNA sequences that comprise at least the 8 consecutive

PTS-0012 -17- PATENT

nucleobases from the 5'-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5'-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). Similarly preferred antisense compounds are represented by DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 10 3'-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3'-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the DNA or RNA contains about 8 to about 80 15 nucleobases). One having skill in the art, once armed with the empirically-derived preferred antisense compounds illustrated herein will be able, without undue experimentation, to identify further preferred antisense 20 compounds.

Antisense and other compounds of the invention, which hybridize to the target and inhibit expression of the target, are identified through experimentation, and representative sequences of these compounds are herein identified as preferred embodiments of the invention. While specific sequences of the antisense compounds are set forth herein, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional preferred antisense compounds may be identified by one having ordinary skill.

25

30

35

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the

PTS-0012 -18- PATENT

For those nucleosides that include a nucleoside. pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear In turn, the respective ends of this polymeric compound. linear polymeric structure can be further joined to form a circular structure, however, open linear structures are In addition, linear structures may also generally preferred. have internal nucleobase complementarity and may therefore fold in a manner as to produce a double stranded structure. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

5

10

15

20

25

30

35

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphoramidates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or

PTS-0012 -19- PATENT

more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages

include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are 20 formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. include those having morpholino linkages (formed in part from 25 the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and 30 methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH, component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564;

PTS-0012 -20- PATENT

5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

5

30

35

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. 10 base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the 15 sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine The nucleobases are retained and are bound backbone. directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States 20 patents that teach the preparation of PNA compounds include, but are not limited to, U.S.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500. 25

Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. patent 5,034,506.

PTS-0012 -21- PATENT

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may 5 be substituted or unsubstituted C_1 to C_{10} alkyl or C_2 to C_{10} alkenyl and alkynyl. Particularly preferred are $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nOCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and O(CH₂) ON[(CH₂) CH₃], where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the 10 following at the 2' position: C, to C, lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH, OCN, Cl, Br, CN, CF, OCF, SOCH, SO2CH, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, 15 substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred 20 modification includes 2'-methoxyethoxy (2'-0-CH2CH2OCH3, also known as 2'-0-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'dimethylaminooxyethoxy, i.e., a O(CH,),ON(CH,), group, also 25 known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-0dimethyl-amino-ethoxy-ethyl or 2'-DMAEOE), i.e., 2'-O-CH,-O-CH2-N(CH3)2, also described in examples hereinbelow.

Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂NH₂), 2'-allyl (2'-CH₂-CH=CH₂), 2'-O-allyl (2'-O-CH₂-CH=CH₂) and 2'-fluoro (2'-F). The 2'-modification may be in the arabino (up) position or ribo (down) position. A preferred 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-

PTS-0012 -22- PATENT

5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl mojeties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

10

15 ·

20

25

30

35

A further preferred modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methelyne (-CH₂-)_n group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5hydroxymethyl cytosine, xanthine, hypoxanthine, 2aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C≡C-CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8hydroxyl and other 8-substituted adenines and guanines, 5halo particularly 5-bromo, 5-trifluoromethyl and other 5substituted uracils and cytosines, 7-methylguanine and 7PTS-0012 -23- PATENT

methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido[5,4b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2Hpyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-10 pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed 15 in United States Patent No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by 20 Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B., ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-25 substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and 30 Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-0-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include,

PTS-0012 -24- PATENT

but are not limited to, the above noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and United States patent 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

10 Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include 15 conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of 20 oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance 25 the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of 30 this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed October 23, 1992 the entire disclosure of which is incorporated herein by reference. 35 Conjugate moieties include but are not limited to lipid moiețies such as a cholesterol moiety (Letsinger et al.,

PTS-0012 -25- PATENT

Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a 10 phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a 15 polyamine or a polyethylene glycol chain (Manoharan et al., Nucleo'sides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, · 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or 20 hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937). Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S) - (+) pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic 25 acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in United 30 States Patent Application 09/334,130 (filed June 15, 1999) which is incorporated herein by reference in its entirety. Representative United States patents that teach the

preparation of such oligonucleotide conjugates include, but are not limited to, U.S.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802;

PTS-0012 -26- PATENT

5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 10 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one 15 of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this 20 invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide These oligonucleotides typically contain at least 25 one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, increased stability and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide 30 may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNAse H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the 35 efficiency of oligonucleotide inhibition of gene expression. The cleavage of RNA: RNA hybrids can, in like fashion, be accomplished through the actions of endoribonucleases, such

PTS-0012 -27- PATENT

as interferon-induced RNAseL which cleaves both cellular and viral RNA. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothicate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

5

10

15

20

25

30

35

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S.: 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations

-28-PATENT PTS-0012

include, but are not limited to, U.S.: 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable 15 salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

10

20

25

30

35

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 and U.S. 5,770,713 to Imbach et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are

PTS-0012 -29- PATENT

N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms 10. differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically 15 acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts 20 are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or 25 phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, 30 benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in 35 nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic

PTS-0012 -30- PATENT

acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate,

5

10

15

20

25

30

35

N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of SMRT is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable

PTS-0012 -31- PATENT

pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

5

10

15

20

25

30

35

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding SMRT, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding SMRT can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of SMRT in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aeròsols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-Omethoxyethyl modification are believed to be particularly useful for oral administration.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be

PATENT -32-PTS-0012

necessary or desirable. Coated condoms, gloves and the like may also be useful. Preferred topical formulations include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids,

liposomes, fatty acids, fatty acid esters, steroids, 5 chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g.

dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g. 10 dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). Oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively,

oligonucleotides may be complexed to lipids, in particular to 15 cationic lipids. Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid,

20

25

dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C_{1-10} alkyl ester (e.g. isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in United States patent

application 09/315,298 filed on May 20, 1999 which is incorporated herein by reference in its entirety.

Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-30 aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers

surfactants and chelators. Preferred surfactants include

PTS-0012 -33- PATENT

fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, 5 taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25dihydro-fusidate and sodium glycodihydrofusidate. Preferred fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, 10 dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the 20 invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; 25 cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N-trimethylchitosan, 30 poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g. p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), 35 poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAEhexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-

)

PTS-0012 -34- PATENT

dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for oligonucleotides and their preparation are described in detail in United States applications 08/886,829 (filed July 1, 1997), 09/108,673 (filed July 1, 1998), 09/256,515 (filed February 23, 1999), 09/082,624 (filed May 21, 1998) and 09/315,298 (filed May 20, 1999), each of which is incorporated herein by reference in their entirety.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

10

15

20

25

30

35

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated

PTS-0012 -35- PATENT

as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

Emulsions

10

15

The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogenous systems of one liquid dispersed in 20 another in the form of droplets usually exceeding 0.1 μm in diameter (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, 25 Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 301). 30 Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as 35 minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion.

PTS-0012 -36- PATENT

Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed.

Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase

provides an o/w/o emulsion.

35

20 Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a 25 semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. 30 may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger,

-37-PATENT PTS-0012

in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of 10 formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, : 15 p. 285).

Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

20

25

30

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, 35 in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman,

PTS-0012 -38- PATENT

Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

5

10

30

35

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

Since emulsions often contain a number of ingredients

such as carbohydrates, proteins, sterols and phosphatides
that may readily support the growth of microbes, these
formulations often incorporate preservatives. Commonly used
preservatives included in emulsion formulations include
methyl paraben, propyl paraben, quaternary ammonium salts,

benzalkonium chloride, esters of p-hydroxybenzoic acid, and
boric acid. Antioxidants are also commonly added to emulsion
formulations to prevent deterioration of the formulation.
Antioxidants used may be free radical scavengers such as
tocopherols, alkyl gallates, butylated hydroxyanisole,

butylated hydroxytoluene, or reducing agents such as ascorbic
acid and sodium metabisulfite, and antioxidant synergists
such as citric acid, tartaric acid, and lecithin.

The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker,

PTS-0012 -39- PATENT

Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

10

15

20

25

30

In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 271).

The phenomenological approach utilizing phase diagrams

has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in Pharmaceutical Dosage Forms,

PTS-0012 -40- PATENT

Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

Surfactants used in the preparation of microemulsions 10 include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), 15 decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the 20 surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying 25 microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty 30 acid esters, medium chain (C8-C12) mono, di, and triglycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone 35 oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption

PTS-0012 -41- PATENT

of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical 10 potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous 15 when formulating thermolabile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected 20. that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides and nucleic acids within the gastrointestinal tract, vagina, buccal cavity and other areas 25 of administration.

Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories - surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic

30

35

PTS-0012 -42-PATENT

Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.

Liposomes

10

15

20

25

30

35

5 · There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Noncationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

PTS-0012 -43- PATENT

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes and as the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

5

10

15

20

. 25

30

35

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been 'administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).

Liposomes which are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive

PTS-0012 -44- PATENT

liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).

5

10

15

20

25

30

35

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NovasomeTM I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and NovasomeTM II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to

deliver cyclosporin-A into the dermis of mouse skin.

PTS-0012 -45- PATENT

indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P.Pharma. Sci., 1994, 4, 6, 466).

Liposomes also include "sterically stabilized"
liposomes, a term which, as used herein, refers to liposomes
comprising one or more specialized lipids that, when
incorporated into liposomes, result in enhanced circulation
lifetimes relative to liposomes lacking such specialized

- lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside G_m, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol
- 15 (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized
- liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765).

Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad.

- Sci., 1987, 507, 64) reported the ability of monosialoganglioside G_m, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S.
- Patent No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside $G_{\rm m}$ or a galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-
- dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al.).

PTS-0012 -46- PATENT

Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, $2C_{12}15G$, that contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are 10 described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG 15 stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, . 1990, 1029, 91) extended such observations to other PEGderivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and Liposomes having covalently bound PEG moieties on their 20 external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions · containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. 25 Patent No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide 30 lipids are described in WO 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight

35

PTS-0012 -47- PATENT

nucleic acids in liposomes. U.S. Patent No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Patent No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising antisense oligonucleotides targeted to the raf gene.

10

15

. 20

25

30

Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are selfoptimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

35 If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products

PTS-0012 -48- PATENT

and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include 30 'acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, **1988**, p. 285).

Penetration Enhancers

10

15

20

25

35

PTS-0012 -49- PATENT

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

5

10

15

35

Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

20 Surfactants: In connection with the present invention, surfactants (or "surface-active agents") are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of oligonucleotides through the 25 mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (Lee et al., Critical Reviews 30 in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-

PTS-0012 -50- PATENT

monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C₁₋₁₀ alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

10

Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fatsoluble vitamins (Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman 15 et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term "bile salts" includes any of the naturally occurring components of bile as 20 well as any of their synthetic derivatives. The bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), 25 glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium 30 tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, PA, 1990, pages 782-783; Muranishi, 35 Critical Reviews in Therapeutic Drug Carrier Systems, 1990,

· · · · · · · · · ·

PTS-0012 -51- PATENT

7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).

Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as 5 compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also 10 serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Chelating agents of the invention include but are not limited to disodium .15 ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 20 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).

Non-chelating non-surfactants: As used herein, nonchelating non-surfactant penetration enhancing compounds can
be defined as compounds that demonstrate insignificant
activity as chelating agents or as surfactants but that
nonetheless enhance absorption of oligonucleotides through
the alimentary mucosa (Muranishi, Critical Reviews in
Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class
of penetration enhancers include, for example, unsaturated
cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone
derivatives (Lee et al., Critical Reviews in Therapeutic Drug

Carrier Systems, 1991, page 92); and non-steroidal antiinflammatory agents such as diclofenac sodium, indomethacin

PTS-0012 -52- PATENT

and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.

Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.

Carriers

5

10

15

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, "carrier compound" or "carrier" can refer to a 20 nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. 25 coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory 30 reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'isothiocyano-stilbene-2,2'-35 disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5,

PTS-0012 -53- PATENT

115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183).

Excipients

30

35

5 In contrast to a carrier compound, a "pharmaceutical carrier" or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an The excipient may be liquid or solid and is 10 selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., . when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or 15 hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., 20 magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium 25 lauryl sulphate, etc.).

Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or

PTS-0012 -54- PATENT

solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Other Components

10

The compositions of the present invention may additionally contain other adjunct components conventionally 15 found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, 20 antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, 25 when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, 30 preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for

PTS-0012 -55- PATENT

example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin,

- esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine, arabinoside, bis-chloroethylnitrosurea, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine,
- mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoformycin, 4hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), 5
 - fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed. 1987, pp.
 - 25 1206-1228, Berkow et al., eds., Rahway, N.J. When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and oligonucleotide), or in combination
 - with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not
 - limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th

PTS-0012 -56- PATENT

Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

10

15

20

25

30

35

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on ECsos found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

PTS-0012

-57-

PATENT

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

PTS-0012 -58- PATENT

EXAMPLES

Example 1

5

10

15

20

25

30

35

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA).

Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, optimized synthesis cycles were developed that incorporate multiple steps coupling longer wait times relative to standard synthesis cycles.

The following abbreviations are used in the text: thin layer chromatography (TLC), melting point (MP), high pressure liquid chromatography (HPLC), Nuclear Magnetic Resonance (NMR), argon (Ar), methanol (MeOH), dichloromethane (CH₂Cl₂), triethylamine (TEA), dimethyl formamide (DMF), ethyl acetate (EtOAc), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF).

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-dC) nucleotides were synthesized according to published methods (Sanghvi, et. al., *Nucleic Acids Research*, **1993**, *21*, 3197-3203) using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA) or prepared as follows:

Preparation of 5'-O-Dimethoxytrityl-thymidine intermediate for 5-methyl dC amidite

To a 50 L glass reactor equipped with air stirrer and Ar gas line was added thymidine (1.00 kg, 4.13 mol) in anhydrous pyridine (6 L) at ambient temperature. Dimethoxytrityl (DMT) chloride (1.47 kg, 4.34 mol, 1.05 eq) was added as a solid in four portions over 1 h. After 30 min, TLC indicated approx. 95% product, 2% thymidine, 5% DMT reagent and by-products and 2 % 3',5'-bis DMT product (R, in EtOAc 0.45, 0.05, 0.98, 0.95

PTS-0012 -59- PATENT

respectively). Saturated sodium bicarbonate (4 L) and CH,Cl, were added with stirring (pH of the aqueous layer 7.5). An additional 18 L of water was added, the mixture was stirred, the phases were separated, and the organic layer was transferred to a second 50 L vessel. The aqueous layer was extracted with additional CH,Cl, (2 x 2 L). The combined organic layer was washed with water (10 L) and then concentrated in a rotary evaporator to approx. 3.6 kg total weight. This was redissolved in CH,Cl, (3.5 L), added to the reactor followed by water (6 L) and hexanes (13 L). 10 mixture was vigorously stirred and seeded to give a fine white suspended solid starting at the interface. After stirring for 1 h, the suspension was removed by suction through a 1/2" diameter teflon tube into a 20 L suction flask, poured onto a 25 cm Coors Buchner funnel, washed with 15 water (2 x 3 L) and a mixture of hexanes- CH,Cl, (4:1, 2x3 L) and allowed to air dry overnight in pans (1" deep). This was further dried in a vacuum oven (75°C, 0.1 mm Hg, 48 h) to a constant weight of 2072 g (93%) of a white solid, (mp 122-124°C). TLC indicated a trace contamination of the bis DMT 20 product. NMR spectroscopy also indicated that 1-2 mole percent pyridine and about 5 mole percent of hexanes was still present.

25 Preparation of 5'-O-Dimethoxytrityl-2'-deoxy-5-methylcytidine intermediate for 5-methyl-dC amidite

To a 50 L Schott glass-lined steel reactor equipped with an electric stirrer, reagent addition pump (connected to an addition funnel), heating/cooling system, internal

30 thermometer and an Ar gas line was added 5'-0-dimethoxytrityl-thymidine (3.00 kg, 5.51 mol), anhydrous acetonitrile (25 L) and TEA (12.3 L, 88.4 mol, 16 eq). The mixture was chilled with stirring to -10°C internal temperature (external -20°C). Trimethylsilylchloride (2.1 L, 16.5 mol, 3.0 eq) was added over 30 minutes while maintaining the internal temperature below -5°C, followed by a wash of anhydrous acetonitrile (1 L). Note: the reaction is mildly

PTS-0012 -60- PATENT

exothermic and copious hydrochloric acid fumes form over the The reaction was allowed to warm to course of the addition. 0°C and the reaction progress was confirmed by TLC (EtOAchexanes 4:1; R, 0.43 to 0.84 of starting material and silyl product, respectively). Upon completion, triazole (3.05 kg, 44 mol, 8.0 eq) was added the reaction was cooled to -20°C internal temperature (external -30°C). Phosphorous oxychloride (1035 mL, 11.1 mol, 2.01 eq) was added over 60 min so as to maintain the temperature between -20°C and -10°C during the strongly exothermic process, followed by a wash of anhydrous acetonitrile (1 L). The reaction was warmed to 0 °C and stirred for 1 h. TLC indicated a complete conversion to the triazole product (R, 0.83 to 0.34 with the product spot glowing in long wavelength UV light). The reaction mixture 15 was a peach-colored thick suspension, which turned darker red upon warming without apparent decomposition. The reaction was cooled to -15°C internal temperature and water (5 L) was slowly added at a rate to maintain the temperature below +10°C in order to quench the reaction and to form a 20 homogenous solution. (Caution: this reaction is initially very strongly exothermic). Approximately one-half of the reaction volume (22 L) was transferred by air pump to another vessel, diluted with EtOAc (12 L) and extracted with water (2 The combined water layers were back-extracted with 25 EtOAc (6 L). The water layer was discarded and the organic layers were concentrated in a 20 L rotary evaporator to an The foam was coevaporated with anhydrous acetonitrile (4 L) to remove EtOAc. (note: dioxane may be used instead of anhydrous acetonitrile if dried to a hard 30 foam). The second half of the reaction was treated in the same way. Each residue was dissolved in dioxane (3 L) and concentrated ammonium hydroxide (750 mL) was added. homogenous solution formed in a few minutes and the reaction was allowed to stand overnight (although the reaction is complete within 1 h). 35

TLC indicated a complete reaction (product $R_{\rm r}$ 0.35 in EtOAc-MeOH 4:1). The reaction solution was concentrated on a

PTS-0012 -61- PATENT

rotary evaporator to a dense foam. Each foam was slowly redissolved in warm EtOAc (4 L; 50°C), combined in a 50 L glass reactor vessel, and extracted with water $(2 \times 4L)$ to remove the triazole by-product. The water was back-extracted with EtOAc (2 L). The organic layers were combined and concentrated to about 8 kg total weight, cooled to 0°C and seeded with crystalline product. After 24 hours, the first crop was collected on a 25 cm Coors Buchner funnel and washed repeatedly with EtOAc (3 x 3L) until a white powder was left and then washed with ethyl ether $(2 \times 3L)$. 10 The solid was put in pans (1" deep) and allowed to air dry overnight. filtrate was concentrated to an oil, then redissolved in EtOAc (2 L), cooled and seeded as before. The second crop was collected and washed as before (with proportional solvents) and the filtrate was first extracted with water (2 15 x 1L) and then concentrated to an oil. The residue was dissolved in EtOAc (1 L) and yielded a third crop which was . treated as above except that more washing was required to remove a yellow oily layer.

20 After air-drying, the three crops were dried in a vacuum oven (50°C, 0.1 mm Hg, 24 h) to a constant weight (1750, 600 and 200 g, respectively) and combined to afford 2550 g (85%) of a white crystalline product (MP 215-217°C) when TLC and NMR spectroscopy indicated purity. The mother liquor still 25 contained mostly product (as determined by TLC) and a small amount of triazole (as determined by NMR spectroscopy), bis DMT product and unidentified minor impurities. If desired, the mother liquor can be purified by silica gel chromatography using a gradient of MeOH (0-25%) in EtOAc to 30 further increase the yield.

Preparation of 5'-O-Dimethoxytrity1-2'-deoxy-N4-benzoy1-5-methylcytidine penultimate intermediate for 5-methyl dC amidite

35 Crystalline 5'-O-dimethoxytrityl-5-methyl-2'deoxycytidine (2000 g, 3.68 mol) was dissolved in anhydrous
DMF (6.0 kg) at ambient temperature in a 50 L glass reactor

PTS-0012 -62- PATENT

vessel equipped with an air stirrer and argon line. anhydride (Chem Impex not Aldrich, 874 g, 3.86 mol, 1.05 eq) was added and the reaction was stirred at ambient temperature for 8 h., TLC (CH₂Cl₂-EtOAc; CH₂Cl₂-EtOAc 4:1; R_e 0.25) indicated approx. 92% complete reaction. An additional amount of benzoic anhydride (44 g, 0.19 mol) was added. After a total of 18 h, TLC indicated approx. 96% reaction completion. The solution was diluted with EtOAc (20 L), TEA (1020 mL, 7.36 mol, ca 2.0 eq) was added with stirring, and the mixture was extracted with water (15 L, then 2 x 10 L). 10 The aqueous layer was removed (no back-extraction was needed) and the organic layer was concentrated in 2 x 20 L rotary evaporator flasks until a foam began to form. The residues were coevaporated with acetonitrile (1.5 L each) and dried 15 (0.1 mm Hg, 25°C, 24 h) to 2520 g of a dense foam. pressure liquid chromatography (HPLC) revealed a contamination of 6.3% of N4, 3'-O-dibenzoyl product, but very little other impurities.

THe product was purified by Biotage column 20 chromatography (5 kg Biotage) prepared with 65:35:1 hexanes-EtOAc-TEA (4L). The crude product (800 g), dissolved in CH2Cl2 (2 L), was applied to the column. The column was washed with the 65:35:1 solvent mixture (20 kg), then 20:80:1 solvent mixture (10 kg), then 99:1 EtOAc:TEA (17kg). The fractions containing the product were collected, and any fractions 25 containing the product and impurities were retained to be resubjected to column chromatography. The column was reequilibrated with the original 65:35:1 solvent mixture (17 A second batch of crude product (840 g) was applied to the column as before. The column was washed with the 30 following solvent gradients: 65:35:1 (9 kg), 55:45:1 (20 kg), 20:80:1 (10 kg), and 99:1 EtOAc:TEA(15 kg). The column was reequilibrated as above, and a third batch of the crude product (850 g) plus impure fractions recycled from the two 35 previous columns (28 g) was purified following the procedure for the second batch. The fractions containing pure product combined and concentrated on a 20L rotary evaporator, co-

-63-PTS-0012 PATENT

evaporated with acetontirile (3 L) and dried (0.1 mm Hg, 48 h, 25°C) to a constant weight of 2023 g (85%) of white foam and 20 g of slightly contaminated product from the third run. HPLC indicated a purity of 99.8% with the balance as the diBenzoyl product.

[5'-0-(4,4'-Dimethoxytriphenylmethy1)-2'-deoxy-N'benzoy1-5-methylcytidin-3'-0-y1]-2-cyanoethy1-N,Ndiisopropylphosphoramidite (5-methyl dC amidite)

5'-0-(4,4'-Dimethoxytriphenylmethyl)-2'-deoxy-N'-benzoyl-5-methylcytidine (998 g, 1.5 mol) was dissolved in anhydrous DMF (2 L). The solution was co-evaporated with toluene (300 ml) at 50°C under reduced pressure, then cooled to room temperature and 2-cyanoethyl tetraisopropylphosphorodiamidite (680 g, 2.26 mol) and tetrazole (52.5 g, 0.75 mol) were The mixture was shaken until all tetrazole was dissolved, N-methylimidazole (15 ml) was added and the mixture was left at room temperature for 5 hours. TEA (300 ml) was added, the mixture was diluted with DMF (2.5 L) and water (600 ml), and extracted with hexane (3 x 3 L). 20 mixture was diluted with water (1.2 L) and extracted with a mixture of toluene (7.5 L) and hexane (6 L). The two layers were separated, the upper layer was washed with DMF-water (7:3 v/v, 3 x 2 L) and water (3 x 2 L), and the phases were separated. The organic layer was dried (Na,SO,), filtered and 25 rotary evaporated. The residue was co-evaporated with acetonitrile (2 x 2 L) under reduced pressure and dried to a constant weight (25 °C, 0.1mm Hg, 40 h) to afford 1250 g an off-white foam solid (96%).

2'-Fluoro amidites

5

10

15

30

35

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as described previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841] and United States patent 5,670,633, herein incorporated by reference. The preparation of 2'-fluoropyrimidines containing a 5-methyl substitution are described in US Patent

PTS-0012 -64- PATENT

5,861,493. Briefly, the protected nucleoside N6-benzoy1-2'-deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and whereby the 2'-alpha-fluoro atom is introduced by a S_n2-displacement of a 2'-beta-triflate group. Thus N6-benzoy1-9-beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'-ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.

2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine was 15 accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate isobutyrylarabinofuranosylguanosine. Alternatively, isobutyrylarabinofuranosylguanosine was prepared as described by Ross et al., (Nucleosides & Nucleosides, 16, 1645, 1997). 20 Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give isobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. 25 methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'phosphoramidites.

2'-Fluorouridine

Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination

10

PTS-0012 -65- PATENT

of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

5

10

30

35

2'-0-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites (otherwise known as MOE amidites) are prepared as follows, or alternatively, as per the methods of Martin, P., (Helvetica Chimica Acta, 1995, 78, 486-504).

Preparation of 2'-O-(2-methoxyethy1)-5-methyluridine intermediate

2,2'-Anhydro-5-methyl-uridine (2000 g, 8.32 mol), 15 tris(2-methoxyethyl)borate (2504 g, 10.60 mol), sodium bicarbonate (60 g, 0.70 mol) and anhydrous 2-methoxyethanol (5 L) were combined in a 12 L three necked flask and heated to 130 °C (internal temp) at atmospheric pressure, under an argon atmosphere with stirring for 21 h. TLC indicated a complete reaction. The solvent was removed under reduced 20 pressure until a sticky gum formed (50-85°C bath temp and 100-11 mm Hg) and the residue was redissolved in water (3 L) and heated to boiling for 30 min in order the hydrolyze the borate esters. The water was removed under reduced pressure until a foam began to form and then the process was repeated. 25 HPLC indicated about 77% product, 15% dimer (5' of product attached to 2' of starting material) and unknown derivatives, and the balance was a single unresolved early eluting peak.

The gum was redissolved in brine (3 L), and the flask was rinsed with additional brine (3 L). The combined aqueous solutions were extracted with chloroform (20 L) in a heavier-than continuous extractor for 70 h. The chloroform layer was concentrated by rotary evaporation in a 20 L flask to a sticky foam (2400 g). This was coevaporated with MeOH (400 mL) and EtOAc (8 L) at 75°C and 0.65 atm until the foam dissolved at which point the vacuum was lowered to about 0.5 atm. After 2.5 L of distillate was collected a precipitate

PTS-0012 -66- PATENT

began to form and the flask was removed from the rotary evaporator and stirred until the suspension reached ambient temperature. EtOAc (2 L) was added and the slurry was filtered on a 25 cm table top Buchner funnel and the product was washed with EtOAc (3 x 2 L). The bright white solid was air dried in pans for 24 h then further dried in a vacuum oven (50°C, 0.1 mm Hg, 24 h) to afford 1649 g of a white crystalline solid (mp 115.5-116.5°C).

further extracted for 72 h with recycled chloroform. The chloroform was concentrated to 120 g of oil and this was combined with the mother liquor from the above filtration (225 g), dissolved in brine (250 mL) and extracted once with chloroform (250 mL). The brine solution was continuously extracted and the product was crystallized as described above to afford an additional 178 g of crystalline product containing about 2% of thymine. The combined yield was 1827 g (69.4%). HPLC indicated about 99.5% purity with the balance being the dimer.

20

Preparation of 5'-O-DMT-2'-O-(2-methoxyethyl)-5-methyluridine penultimate intermediate

In a 50 L glass-lined steel reactor, 2'-0-(2methoxyethyl)-5-methyl-uridine (MOE-T, 1500 g, 4.738 mol), lutidine (1015 g, 9.476 mol) were dissolved in anhydrous 25 acetonitrile (15 L). The solution was stirred rapidly and chilled to -10°C (internal temperature). Dimethoxytriphenylmethyl chloride (1765.7 g, 5.21 mol) was added as a solid in one portion. The reaction was allowed to warm to -2°C over 1 h. (Note: The reaction was monitored 30 closely by TLC (EtOAc) to determine when to stop the reaction so as to not generate the undesired bis-DMT substituted side product). The reaction was allowed to warm from -2 to 3°C over 25 min. then quenched by adding MeOH (300 mL) followed after 10 min by toluene (16 L) and water (16 L). The 35 solution was transferred to a clear 50 L vessel with a bottom outlet, vigorously stirred for 1 minute, and the layers

PTS-0012 -67- PATENT

separated. The aqueous layer was removed and the organic layer was washed successively with 10% aqueous citric acid (8 L) and water (12 L). The product was then extracted into the aqueous phase by washing the toluene solution with aqueous sodium hydroxide (0.5N, 16 L and 8 L). The combined aqueous layer was overlayed with toluene (12 L) and solid citric acid (8 moles, 1270 g) was added with vigorous stirring to lower the pH of the aqueous layer to 5.5 and extract the product into the toluene. The organic layer was washed with water (10 L) and TLC of the organic layer indicated a trace of DMT-O-Me, bis DMT and dimer DMT.

10

35

The toluene solution was applied to a silica gel column (6 L sintered glass funnel containing approx. 2 kg of silica gel slurried with toluene (2 L) and TEA(25 mL)) and the 15 fractions were eluted with toluene (12 L) and EtOAc (3 \times 4 L) using vacuum applied to a filter flask placed below the column. The first EtOAc fraction containing both the desired product and impurities were resubjected to column chromatography as above. The clean fractions were combined, 20 rotary evaporated to a foam, coevaporated with acetonitrile (6 L) and dried in a vacuum oven (0.1 mm Hg, 40 h, 40°C) to afford 2850 g of a white crisp foam. NMR spectroscopy indicated a 0.25 mole % remainder of acetonitrile (calculates to be approx. 47 g) to give a true dry weight of 2803 g 25 (96%). HPLC indicated that the product was 99.41% pure, with the remainder being 0.06 DMT-O-Me, 0.10 unknown, 0.44 bis DMT, and no detectable dimer DMT or 3'-O-DMT.

Preparation of [5'-O-(4,4'-Dimethoxytriphenylmethy1)-2'-30 O-(2-methoxyethy1)-5-methyluridin-3'-O-y1]-2-cyanoethy1-N,N-diisopropylphosphoramidite (MOE T amidite)

5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-5-methyluridine (1237 g, 2.0 mol) was dissolved in anhydrous DMF (2.5 L). The solution was co-evaporated with toluene (200 ml) at 50°C under reduced pressure, then cooled to room temperature and 2-cyanoethyl tetraisopropylphosphorodiamidite (900 g, 3.0 mol) and

PTS-0012 -68- PATENT

tetrazole (70 g, 1.0 mol) were added. The mixture was shaken until all tetrazole was dissolved, N-methylimidazole (20 ml) was added and the solution was left at room temperature for 5 hours. TEA (300 ml) was added, the mixture was diluted with DMF (3.5 L) and water (600 ml) and extracted with hexane (3 x 3L). The mixture was diluted with water (1.6 L) and extracted with the mixture of toluene (12 L) and hexanes (9 L). The upper layer was washed with DMF-water (7:3 v/v, 3x3 L) and water (3x3 L). The organic layer was dried (Na₂SO₄), filtered and evaporated. The residue was co-evaporated with acetonitrile (2 x 2 L) under reduced pressure and dried in a vacuum oven (25°C, 0.1mm Hg, 40 h) to afford 1526 g of an off-white foamy solid (95%).

15 Preparation of 5'-O-Dimethoxytrity1-2'-O-(2-methoxyethy1)-5-methylcytidine intermediate

To a 50 L Schott glass-lined steel reactor equipped with an electric stirrer, reagent addition pump (connected to an addition funnel), heating/cooling system, internal thermometer and argon gas line was added 5'-0-20 dimethoxytrity1-2'-0-(2-methoxyethy1)-5-methyl-uridine (2.616 kg, 4.23 mol, purified by base extraction only and no scrub column), anhydrous acetonitrile (20 L), and TEA (9.5 L, 67.7 mol, 16 eq). The mixture was chilled with stirring to -10°C internal temperature (external -20°C). 25 Trimethylsilylchloride (1.60 L, 12.7 mol, 3.0 eq) was added over 30 min. while maintaining the internal temperature below -5°C, followed by a wash of anhydrous acetonitrile (1 L). (Note: the reaction is mildly exothermic and copious hydrochloric acid fumes form over the course of the 30 addition). The reaction was allowed to warm to 0°C and the reaction progress was confirmed by TLC (EtOAc, R, 0.68 and 0.87 for starting material and silyl product, respectively). Upon completion, triazole (2.34 kg, 33.8 mol, 8.0 eg) was added the reaction was cooled to -20°C internal temperature

(external -30°C). Phosphorous oxychloride (793 mL, 8.51 mol, 2.01 eq) was added slowly over 60 min so as to maintain the

PTS-0012 -69- PATENT

temperature between -20°C and -10°C (note: strongly exothermic), followed by a wash of anhydrous acetonitrile (1 L). The reaction was warmed to 0°C and stirred for 1 h, at which point it was an off-white thick suspension. indicated a complete conversion to the triazole product (EtOAc, R, 0.87 to 0.75 with the product spot glowing in long wavelength UV light). The reaction was cooled to -15°C water (5 L) was slowly added at a rate to maintain the temperature below +10°C in order to quench the reaction and 10 to form a homogenous solution. (Caution: this reaction is initially very strongly exothermic). Approximately one-half of the reaction volume (22 L) was transferred by air pump to another vessel, diluted with EtOAc (12 L) and extracted with water $(2 \times 8 L)$. The second half of the reaction was treated 15 'in the same way. The combined aqueous layers were backextracted with EtOAc (8 L) The organic layers were combined and concentrated in a 20 L rotary evaporator to an oily foam. The foam was coevaporated with anhydrous acetonitrile (4 L) to remove EtOAc. (note: dioxane may be used instead of anhydrous acetonitrile if dried to a hard foam). . 20 was dissolved in dioxane (2 L) and concentrated ammonium hydroxide (750 mL) was added. A homogenous solution formed in a few minutes and the reaction was allowed to stand overnight

25 TLC indicated a complete reaction (CH₂Cl₂-acetone-MeOH, 20:5:3, R, 0.51). The reaction solution was concentrated on a rotary evaporator to a dense foam and slowly redissolved in warm CH,Cl, (4 L, 40°C) and transferred to a 20 L glass extraction vessel equipped with a air-powered stirrer. 30 organic layer was extracted with water $(2 \times 6 L)$ to remove the triazole by-product. (Note: In the first extraction an emulsion formed which took about 2 h to resolve). layer was back-extracted with CH2Cl2 (2 x 2 L), which in turn was washed with water (3 L). The combined organic layer was 35 concentrated in 2 x 20 L flasks to a gum and then recrystallized from EtOAc seeded with crystalline product. After sitting overnight, the first crop was collected on a 25

PTS-0012 -70- PATENT

cm Coors Buchner funnel and washed repeatedly with EtoAc until a white free-flowing powder was left (about 3 x 3 L). The filtrate was concentrated to an oil recrystallized from EtoAc, and collected as above. The solid was air-dried in pans for 48 h, then further dried in a vacuum oven (50°C, 0.1mm Hg, 17 h) to afford 2248 g of a bright white, dense solid (86%). An HPLC analysis indicated both crops to be 99.4% pure and NMR spectroscopy indicated only a faint trace of EtoAc remained.

10

Preparation of 5'-O-dimethoxytrity1-2'-O-(2-methoxyethy1)-N4-benzoy1-5-methy1-cytidine penultimate intermediate:

Crystalline 5'-0-dimethoxytrity1-2'-0-(2-methoxyethy1)-5-methyl-cytidine (1000 g, 1.62 mol) was suspended in 15 anhydrous DMF (3.kg) at ambient temperature and stirred under an Ar atmosphere. Benzoic anhydride (439.3 g, 1.94 mol) was added in one portion. The solution clarified after 5 hours and was stirred for 16 h. HPLC indicated 0.45% starting material remained (as well as 0.32% N4, 3'-O-bis Benzoyl). 20 An additional amount of benzoic anhydride (6.0 g, 0.0265 mol) was added and after 17 h, HPLC indicated no starting material TEA (450 mL, 3.24 mol) and toluene (6 L) were added with stirring for 1 minute. The solution was washed with water (4 x 4 L), and brine (2 x 4 L). The organic layer was partially evaporated on a 20 L rotary evaporator to 25 remove 4 L of toluene and traces of water. HPLC indicated that the bis benzoyl side product was present as a 6% impurity. The residue was diluted with toluene (7 L) and anhydrous DMSO (200 mL, 2.82 mol) and sodium hydride (60% in oil, 70 g, 1.75 mol) was added in one portion with stirring 30 at ambient temperature over 1 h. The reaction was quenched by slowly adding then washing with aqueous citric acid (10%, 100 mL over 10 min, then 2 x 4 L), followed by aqueous sodium bicarbonate (2%, 2 L), water $(2 \times 4 L)$ and brine (4 L). 35 organic layer was concentrated on a 20 L rotary evaporator to about 2 L total volume. The residue was purified by silica gel column chromatography (6 L Buchner funnel containing 1.5

PTS-0012 -71- PATENT

kg of silica gel wetted with a solution of EtOAc-hexanes-TEA(70:29:1)). The product was eluted with the same solvent (30 L) followed by straight EtOAc (6 L). The fractions containing the product were combined, concentrated on a rotary evaporator to a foam and then dried in a vacuum oven (50°C, 0.2 mm Hg, 8 h) to afford 1155 g of a crisp, white foam (98%). HPLC indicated a purity of >99.7%.

Preparation of [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'
O-(2-methoxyethyl)-N'-benzoyl-5-methylcytidin-3'-O-yl]-2
cyanoethyl-N,N-diisopropylphosphoramidite (MOE 5-Me-C

amidite)

5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2methoxyethyl)-N⁴-benzoyl-5-methylcytidine (1082 g, 1.5 mol) 15 was dissolved in anhydrous DMF (2 L) and co-evaporated with toluene (300 ml) at 50 °C under reduced pressure. The mixture was cooled to room temperature and 2-cyanoethyl tetraisopropylphosphorodiamidite (680 g, 2.26 mol) and tetrazole (52.5 g, 0.75 mol) were added. The mixture was 20 shaken until all tetrazole was dissolved, N-methylimidazole (30 ml) was added, and the mixture was left at room temperature for 5 hours. TEA (300 ml) was added, the mixture was diluted with DMF (1 L) and water (400 ml) and extracted with hexane $(3 \times 3 L)$. The mixture was diluted with water 25 (1.2 L) and extracted with a mixture of toluene (9 L) and hexanes (6 L). The two layers were separated and the upper layer was washed with DMF-water (60:40 v/v, 3 x 3 L) and water (3 x 2 L). The organic layer was dried (Na_2SO_4) , filtered and evaporated. The residue was co-evaporated with acetonitrile (2 x 2 L) under reduced pressure and dried in a 30 vacuum oven (25 °C, 0.1mm Hg, 40 h) to afford 1336 g of an off-white foam (97%).

Preparation of $[5'-O-(4,4'-Dimethoxytriphenylmethy1)-2'-O-(2-methoxyethy1)-N^6-benzoyladenosin-3'-O-y1]-2-cyanoethy1-N,N-diisopropylphosphoramidite (MOE A amdite)$

 $5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N^6-benzoyladenosine (purchased from Reliable$

35

PTS-0012 -72- PATENT

Biopharmaceutical, St. Lois, MO), 1098 g, 1.5 mol) was dissolved in anhydrous DMF (3 L) and co-evaporated with toluene (300 ml) at 50 °C. The mixture was cooled to room temperature and 2-cyanoethyl tetraisopropylphosphorodiamidite (680 g, 2.26 mol) and tetrazole (78.8 g, 1.24 mol) were added. The mixture was shaken until all tetrazole was dissolved, N-methylimidazole (30 ml) was added, and mixture was left at room temperature for 5 hours. TEA (300 ml) was added, the mixture was diluted with DMF (1 L) and water (400 10 ml) and extracted with hexanes $(3 \times 3 L)$. The mixture was diluted with water (1.4 L) and extracted with the mixture of toluene (9 L) and hexanes (6 L). The two layers were separated and the upper layer was washed with DMF-water (60:40, v/v, 3 x 3 L) and water (3 x 2 L). The organic layer 15 was dried (Na2SO4), filtered and evaporated to a sticky foam. The residue was co-evaporated with acetonitrile (2.5 L) under reduced pressure and dried in a vacuum oven (25 °C, 0.1mm Hg, 40 h) to afford 1350 g of an off-white foam solid (96%).

Prepartion of [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N'-isobutyrylguanosin-3'-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE G amidite)

5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2methoxyethyl)-N'-isobutyrlguanosine (purchased from Reliable Biopharmaceutical, St. Louis, MO, 1426 g, 2.0 mol) was 25 dissolved in anhydrous DMF (2 L). The solution was coevaporated with toluene (200 ml) at 50 °C, cooled to room temperature and 2-cyanoethyl tetraisopropylphosphorodiamidite (900 g, 3.0 mol) and tetrazole (68 g, 0.97 mol) were added. The mixture was shaken until all tetrazole was dissolved, N-30 methylimidazole (30 ml) was added, and the mixture was left at room temperature for 5 hours. TEA (300 ml) was added, the mixture was diluted with DMF (2 L) and water (600 ml) and extracted with hexanes $(3 \times 3 L)$. The mixture was diluted with water (2 L) and extracted with a mixture of toluene (10 . L) and hexanes (5 L). The two layers were separated and the upper layer was washed with DMF-water (60:40, v/v, 3x3 L).

PTS-0012 -73- PATENT

EtOAc (4 L) was added and the solution was washed with water (3 x 4 L). The organic layer was dried (Na₂SO₄), filtered and evaporated to approx. 4 kg. Hexane (4 L) was added, the mixture was shaken for 10 min, and the supernatant liquid was decanted. The residue was co-evaporated with acetonitrile (2 x 2 L) under reduced pressure and dried in a vacuum oven (25 °C, 0.1mm Hg, 40 h) to afford 1660 g of an off-white foamy solid (91%).

2'-0-(Aminooxyethyl) nucleoside amidites and 2'-0-(dimethylaminooxyethyl) nucleoside amidites

.10

15

20

2'-(Dimethylaminooxyethoxy) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites (also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites) are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

5'-O-tert-Butyldiphenylsilyl-O²-2'-anhydro-5-methyluridine

O²-2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, 25 Italy, 100.0g, 0.416 mmol), dimethylaminopyridine (0.66g, 0.013eq, 0.0054mmol) were dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. tert-Butyldiphenylchlorosilane (125.8g, 119.0mL, 1.1eq, 0.458mmol) was added in one portion. The 30 reaction was stirred for 16 h at ambient temperature. 0.22, EtOAc) indicated a complete reaction. The solution was concentrated under reduced pressure to a thick oil. partitioned between CH,Cl, (1 L) and saturated sodium bicarbonate (2 x 1 L) and brine (1 L). The organic layer was 35 dried over sodium sulfate, filtered, and concentrated under reduced pressure to a thick oil. The oil was dissolved in a 1:1 mixture of EtOAc and ethyl ether (600mL) and cooling the

PTS-0012 -74- PATENT

solution to -10° C afforded a white crystalline solid which was collected by filtration, washed with ethyl ether (3 x2 00 mL) and dried (40°C, 1mm Hg, 24 h) to afford 149g of white solid (74.8%). TLC and NMR spectroscopy were consistent with pure product.

5

35

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine

In the fume hood, ethylene glycol (350 mL, excess) was added cautiously with manual stirring to a 2 L stainless steel pressure reactor containing borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 mL). (Caution: evolves hydrogen gas). 5'-0-tert-Butyldiphenylsilyl-02-2'-anhydro-5-methyluridine (149 g, 0.311 mol) and sodium bicarbonate (0.074 g, 0.003 eq) were added with manual stirring. The reactor was sealed and 15 heated in an oil bath until an internal temperature of 160 °C was reached and then maintained for 16 h (pressure < 100 The reaction vessel was cooled to ambient temperature TLC (EtOAc, $R_{\scriptscriptstyle \rm f}$ 0.67 for desired product and $R_{\scriptscriptstyle \rm f}$ 0.82 for ara-T side product) indicated about 70% conversion 20 to the product. The solution was concentrated under reduced pressure (10 to 1mm Hg) in a warm water bath (40-100°C) with the more extreme conditions used to remove the ethylene (Alternatively, once the THF has evaporated the 25 solution can be diluted with water and the product extracted into EtOAc). The residue was purified by column chromatography (2kg silica gel, EtOAc-hexanes gradient 1:1 to The appropriate fractions were combined, evaporated and dried to afford 84 g of a white crisp foam (50%), 30 contaminated starting material (17.4g, 12% recovery) and pure reusable starting material (20g, 13% recovery). TLC and NMR spectroscopy were consistent with 99% pure product.

2'-O-([2-phthalimidoxy)ethy1]-5'-t-butyldiphenylsily1-5-methyluridine

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine (20g, 36.98mmol) was mixed with

PTS-0012 -75- PATENT

triphenylphosphine (11.63g, 44.36mmol) and Nhydroxyphthalimide (7.24g, 44.36mmol) and dried over P_2O_5 . under high vacuum for two days at 40°C. The reaction mixture was flushed with argon and dissolved in dry THF (369.8mL, Aldrich, sure seal bottle). Diethyl-azodicarboxylate (6.98mL, 44.36mmol) was added dropwise to the reaction mixture with the rate of addition maintained such that the resulting deep red coloration is just discharged before adding the next drop. The reaction mixture was stirred for 4 hrs., after which time TLC (EtOAc:hexane, 60:40) indicated 10 that the reaction was complete. The solvent was evaporated in vacuuo and the residue purified by flash column chromatography (eluted with 60:40 EtOAc:hexane), to yield 2'-O-([2-phthalimidoxy)ethy1]-5'-t-butyldiphenylsilyl-5methyluridine as white foam (21.819 g, 86%) upon rotary 15 evaporation.

5'-0-tert-butyldiphenylsily1-2'-0-[(2-formadoximinooxy)ethyl]-5-methyluridine

2'-O-([2-phthalimidoxy)ethy1]-5'-t-butyldiphenylsily1-5-20 methyluridine (3.1g, 4.5mmol) was dissolved in dry CH₂Cl₂ (4.5mL) and methylhydrazine (300mL, 4.64mmol) was added dropwise at -10°C to 0°C . After 1 h the mixture was filtered, the filtrate washed with ice cold CH2Cl2, and the combined organic phase was washed with water and brine and dried 25 (anhydrous Na_2SO_4). The solution was filtered and evaporated to afford 2'-O-(aminooxyethyl) thymidine, which was then dissolved in MeOH (67.5mL). Formaldehyde (20% aqueous solution, w/w, 1.1 eq.) was added and the resulting mixture was stirred for 1 h. The solvent was removed under vacuum 30 and the residue was purified by column chromatography to yield 5'-0-tert-butyldiphenylsily1-2'-0-[(2-formadoximinooxy) ethyl]-5-methyluridine as white foam (1.95 g, 78%) upon rotary evaporation. 35 .

5'-0-tert-Butyldiphenylsilyl-2'-0-[N,N dimethylaminooxyethyl]-5-methyluridine

PTS-0012

25

30

35

-76-

PATENT

5'-0-tert-butyldiphenylsilyl-2'-0-[(2formadoximinooxy)ethyl]-5-methyluridine (1.77g, 3.12mmol) was dissolved in a solution of 1M pyridinium p-toluenesulfonate (PPTS) in dry MeOH (30.6mL) and cooled to 10°C under inert Sodium cyanoborohydride (0.39g, 6.13mmol) was atmosphere. added and the reaction mixture was stirred. After 10 minutes the reaction was warmed to room temperature and stirred for 2 h. while the progress of the reaction was monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO, solution (5%, 10mL) was 10 added and the product was extracted with EtOAc (2 \times 20 mL). The organic phase was dried over anhydrous Na2SO4, filtered, and evaporated to dryness. This entire procedure was repeated with the resulting residue, with the exception that formaldehyde (20% w/w, 30 mL, 3.37 mol) was added upon 15 dissolution of the residue in the PPTS/MeOH solution. After the extraction and evaporation, the residue was purified by flash column chromatography and (eluted with 5% MeOH in CH₂Cl₂) to afford 5'-0-tert-butyldiphenylsilyl-2'-0-[N,Ndimethylaminooxyethyl]-5-methyluridine as a white foam 20 (14.6g, 80%) upon rotary evaporation.

2'-0-(dimethylaminooxyethyl)-5-methyluridine

Triethylamine trihydrofluoride (3.91mL, 24.0mmol) was dissolved in dry THF and TEA (1.67mL, 12mmol, dry, stored over KOH) and added to 5'-O-tert-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine (1.40g, 2.4mmol). The reaction was stirred at room temperature for 24 hrs and monitored by TLC (5% MeOH in CH₂Cl₂). The solvent was removed under vacuum and the residue purified by flash column chromatography (eluted with 10% MeOH in CH₂Cl₂) to afford 2'-O-(dimethylaminooxyethyl)-5-methyluridine (766mg, 92.5%) upon rotary evaporation of the solvent.

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine 2'-O-(dimethylaminooxyethyl)-5-methyluridine (750 mg, 2.17 mmol) was dried over P₂O₅ under high vacuum overnight at 40°C, co-evaporated with anhydrous pyridine (20 mL), and PTS-0012 -77- PATENT

dissolved in pyridine (11 mL) under argon atmosphere. 4-dimethylaminopyridine (26.5 mg, 2.60 mmol) and 4,4'-dimethoxytrityl chloride (880 mg, 2.60 mmol) were added to the pyridine solution and the reaction mixture was stirred at room temperature until all of the starting material had reacted. Pyridine was removed under vacuum and the residue was purified by column chromatography (eluted with 10% MeOH in CH₂Cl₂ containing a few drops of pyridine) to yield 5'-O-DMT-2'-O-(dimethylamino-oxyethyl)-5-methyluridine (1.13g, 80%) upon rotary evaporation.

5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

10

- 15 5'-0-DMT-2'-0-(dimethylaminooxyethyl)-5-methyluridine (1.08 g, 1.67 mmol) was co-evaporated with toluene (20 mL), N, N-diisopropylamine tetrazonide (0.29 g, 1.67 mmol) was added and the mixture was dried over P2O5 under high vacuum overnight at 40°C. This was dissolved in anhydrous 20 acetonitrile (8.4 mL) and 2-cyanoethyl-N,N,N¹,N¹tetraisopropylphosphoramidite (2.12 mL, 6.08 mmol) was added. The reaction mixture was stirred at ambient temperature for 4 h under inert atmosphere. The progress of the reaction was monitored by TLC (hexane:EtOAc 1:1). The solvent was 25 evaporated, then the residue was dissolved in EtOAc (70mL) and washed with 5% aqueous NaHCO, (40mL). The EtOAc layer was dried over anhydrous Na,SO, filtered, and concentrated. residue obtained was purified by column chromatography (EtOAc as eluent) to afford 5'-O-DMT-2'-O-(2-N,N-30 dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam (1.04g, 74.9%) upon
 - 2'-(Aminooxyethoxy) nucleoside amidites

rotary evaporation.

2'-(Aminooxyethoxy) nucleoside amidites (also known in the art as 2'-O-(aminooxyethyl) nucleoside amidites) are prepared as described in the following paragraphs. Adenosine, PTS-0012 -78- PATENT

cytidine and thymidine nucleoside amidites are prepared similarly.

5

30

35

N2-isobutyry1-6-0-diphenylcarbamoy1-2'-0-(2-ethylacety1)-5'-0-(4,4'-dimethoxytrity1)guanosine-3'-[(2-cyanoethy1)-N,N-diisopropylphosphoramidite]

The 2'-O-aminooxyethyl guanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine riboside. Multigram quantities of diaminopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-0-(2-10 ethylacetyl) diaminopurine riboside along with a minor amount of the 3'-0-isomer. 2'-0-(2-ethylacetyl) diaminopurine riboside may be resolved and converted to 2'-0-(2ethylacetyl) guanosine by treatment with adenosine deaminase. (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 15 940203.) Standard protection procedures should afford 2'-0-(2-ethylacetyl)-5'-0-(4,4'-dimethoxytrityl)guanosine and 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-0-(2-ethylacetyl)-5'-0-(4,4'-dimethoxytrityl) guanosine which may be reduced to provide 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-0-(2-20 hydroxyethyl)-5'-0-(4,4'-dimethoxytrityl)guanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may be phosphitylated as usual to yield 2-N-isobutyry1-6-0diphenylcarbamoy1-2'-O-([2-phthalmidoxy]ethy1)-5'-O-(4,4'-25 dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,Ndiisopropylphosphoramidite].

2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites

2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'-O-CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.

2'-0-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine

PTS-0012 -79- PATENT

2[2-(Dimethylamino)ethoxy]ethanol (Aldrich, 6.66 g, 50 mmol) was slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL (Caution: Hydrogen gas evolves as the solid dissolves). 0^2 -, 2'-anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium bicarbonate (2.5 mg) were added and the bomb was sealed, placed in an oil bath and heated to 155°C for 26 h. then cooled to room temperature. The crude solution was concentrated, the residue was diluted with water (200 mL) and extracted with hexanes (200 mL). The product was extracted from the aqueous layer with EtOAc (3 \times 200 mL) and the combined organic layers were washed once with water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluted with 5:100:2 MeOH/CH,Cl,/TEA) as the eluent. appropriate fractions were combined and evaporated to afford the product as a white solid.

.5

10

15

20

25

30

35

and the second

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy) ethyl)]-5-methyl uridine

To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylamino-ethoxy)ethyl)]-5-methyl uridine in anhydrous pyridine (8 mL), was added TEA (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) and the reaction was stirred for 1 h. The reaction mixture was poured into water (200 mL) and extracted with CH₂Cl₂ (2 x 200 mL). The combined CH₂Cl₂ layers were washed with saturated NaHCO₃ solution, followed by saturated NaCl solution, dried over anhydrous sodium sulfate, filtered and evaporated. The residue was purified by silica gel column chromatography (eluted with 5:100:1 MeOH/CH₂Cl₂/TEA) to afford the product.

5'-O-Dimethoxytrity1-2'-O-[2(2-N,N-dimethylaminoethoxy)-ethyl)]-5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxy-N,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) were added to PTS-0012 -80- PATENT

a solution of 5'-O-dimethoxytrity1-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture was stirred overnight and the solvent evaporated. The resulting residue was purified by silica gel column chromatography with EtOAc as the eluent to afford the title compound.

Example 2

· 15

30

10 Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 394) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothicates (P=S) are synthesized similar to phosphodiester oligonucleotides with the following exceptions: thiation was effected by utilizing a 10% w/v solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the oxidation of the phosphite linkages.

The thiation reaction step time was increased to 180 sec and preceded by the normal capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (12-16 hr), the oligonucleotides were recovered by precipitating with >3 volumes of ethanol from a 1 M NH₄oAc solution. Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as

described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878,
herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as

PTS-0012 -81- PATENT

described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

5

2.0

25

30

15 Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=0 or P=S linkages are prepared as described in U.S. Patents 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

35 Example 4

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in accordance

PTS-0012 -82- PATENT

with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me]--[2'-deoxy]--[2'-O-Me] Chimeric Phosphorothioate Oligonucleotides

Chimeric oligonucleotides having 2'-0-alkyl phosphorothicate and 2'-deoxy phosphorothicate oligo-25 nucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 394, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrity1-3'-0-phosphoramidite for the DNA portion and 5'-dimethoxytrity1-2'-0-30 methyl-3'-0-phosphoramidite for 5' and 3' wings. standard synthesis cycle is modified by incorporating coupling steps with increased reaction times for the 5'dimethoxytrity1-2'-0-methy1-3'-0-phosphoramidite. The fully protected oligonucleotide is cleaved from the support and 35 deprotected in concentrated ammonia (NH,OH) for 12-16 hr at 55°C. The deprotected oligo is then recovered by an appropriate method (precipitation, column chromatography,

PATENT

PTS-0012 -83-

volume reduced *in vacuo* and analyzed spetrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-0-(2-Methoxyethy1)]--[2'-deoxy]--[2'-0-(Methoxyethy1)] Chimeric Phosphorothioate Oligonucleotides

[2'-0-(2-methoxyethyl)]--[2'-deoxy]--[-2'-0-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-0-methyl chimeric oligonucleotide, with the substitution of 2'-0-(methoxyethyl) amidites for the 2'-0-methyl amidites.

[2'-0-(2-Methoxyethyl)Phosphodiester]--[2'-deoxy Phosphorothioate]--[2'-0-(2-Methoxyethyl) Phosphodiester] Chimeric Oligonucleotides

[2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothicate]--[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidation with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothicate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

Example 6

10

15

20

25

30

35 Oligonucleotide Isolation

After cleavage from the controlled pore glass solid support and deblocking in concentrated ammonium hydroxide at

PTS-0012 -84- PATENT

55°C for 12-16 hours, the oligonucleotides or oligonucleosides are recovered by precipitation out of 1 M NH₄OAc with >3 volumes of ethanol. Synthesized oligonucleotides were analyzed by electrospray mass spectroscopy (molecular weight determination) and by capillary gel electrophoresis and judged to be at least 70% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in the synthesis was determined by the ratio of correct molecular weight relative to the -16 amu product (+/-32 +/-48). For some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

15

20

25

30

35

20 . . . 27

10

5

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a 96-well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyl-diiso-propyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per standard or patented methods. They are utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and

PTS-0012 -85- PATENT

test plate samples are then diluted utilizing robotic pipettors.

Example 8

5 Oligonucleotide Analysis - 96-Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96-well format (Beckman P/ACETM MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACETM 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

20 Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at

25 measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily

30 determined by methods routine in the art, for example Northern blot analysis, ribonuclease protection assays, or RT-PCR.

T-24 cells:

The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in

PTS-0012 -86- PATENT

complete McCoy's 5A basal media (Invitrogen Corporation, Carlsbad, CA) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, CA), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Corporation, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 cells:

10

- The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Invitrogen Corporation, Carlsbad, CA) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, CA),
- penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Corporation, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

25 NHDF cells:

30

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville, MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

HEK cells:

Human embryonic keratinocytes (HEK) were obtained from
the Clonetics Corporation (Walkersville, MD). HEKs were
routinely maintained in Keratinocyte Growth Medium (Clonetics
Corporation, Walkersville, MD) formulated as recommended by

PTS-0012 -87- PATENT

the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

Treatment with antisense compounds:

5

10

When cells reached 70% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 100 μL OPTI-MEMTM-1 reduced-serum medium (Invitrogen Corporation, Carlsbad, CA) and then treated with 130 μL of OPTI-MEMTM-1 containing 3.75 μg/mL LIPOFECTINTM (Invitrogen Corporation, Carlsbad, CA) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal 15 oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is selected from either ISIS 13920 20 (TCCGTCATCGCTCCAGGG, SEQ ID NO: 1) which is targeted to human H-ras, or ISIS 18078, (GTGCGCGCGAGCCCGAAATC, SEQ ID NO: which is targeted to human Jun-N-terminal kinase-2 (JNK2). Both controls are 2'-0-methoxyethy1 gapmers (2'-0methoxyethyls shown in bold) with a phosphorothicate 25 backbone. For mouse or raticells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 3, a 2'-0-methoxyethyl gapmer (2'-0-methoxyethyls shown in bold) with a phosphorothicate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell If 80% inhibition is not achieved, the lowest 35 concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-raf mRNA is then utilized as the oligonucleotide screening concentration in

PTS-0012 -88- PATENT

subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

5 Example 10

10

15

20

Analysis of oligonucleotide inhibition of SMRT expression

Antisense modulation of SMRT expression can be assayed in a variety of ways known in the art. For example, SMRT mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. The preferred method of RNA analysis of the present invention is the use of total cellular RNA as described in other examples herein. Methods of RNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM TM 7700 Sequence Detection System, available from PE-

25 Applied Biosystems, Foster City, CA and used according to manufacturer's instructions.

Protein levels of SMRT can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to SMRT can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., (Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley

PTS-0012 -89- PATENT

& Sons, Inc., 1997). Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., (Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997).

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., (Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998). Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., (Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997). Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., (Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991).

Example 11

Poly(A) + mRNA isolation

20 Poly(A) + mRNA was isolated according to Miura et al., (Clin. Chem., 1996, 42, 1758-1764). Other methods for poly(A)+ mRNA isolation are taught in, for example, Ausubel, F.M. et al., (Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993). Briefly, for cells grown on 96-well plates, growth medium was removed 25 from the cells and each well was washed with 200 µL cold PBS. 60 μ L lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of 30 lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to 35 remove excess wash buffer and then air-dried for 5 minutes.

PTS-0012 -90- PATENT

60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C, was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Example 12

5

15

20

25

30

10 Total RNA Isolation

Total RNA was isolated using an RNEASY 96™ kit and buffers purchased from Qiagen Inc. (Valencia, CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 150 μ L Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 150 µL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96^{TM} well plate attached to a QIAVACTM manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 1 minute. 500 μL of Buffer RW1 was added to each well of the RNEASY 96™ plate and incubated for 15 minutes and the vacuum was again applied for 1 minute. additional 500 µL of Buffer RW1 was added to each well of the RNEASY 96^{TM} plate and the vacuum was applied for 2 minutes. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 90 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 3 minutes. The plate was then removed from the QIAVAC TM manifold and blotted dry on paper The plate was then re-attached to the $QIAVAC^{TM}$ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 170 μL

PTS-0012 -91- PATENT

water into each well, incubating 1 minute, and then applying the vacuum for 3 minutes.

The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

10

. 5

Example 13

Real-time Quantitative PCR Analysis of SMRT mRNA Levels

Ouantitation of SMRT mRNA levels was determined by realtime quantitative PCR using the ABI PRISM™ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closedtube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR in which amplification products are quantitated after the 20 PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye 25 (e.g., FAM or JOE, obtained from either PE-Applied Biosystems, Foster City, CA, Operon Technologies Inc., Alameda, CA or Integrated DNA Technologies Inc., Coralville, IA) is attached to the 5' end of the probe and a quencher dye 30 (e.g., TAMRA, obtained from either PE-Applied Biosystems, Foster City, CA, Operon Technologies Inc., Alameda, CA or Integrated DNA Technologies Inc., Coralville, IA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the 35 probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase.

PTS-0012 -92- PATENT

During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISMTM 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

5

10

15

20

25

30

35

Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

PCR reagents were obtained from Invitrogen Corporation, (Carlsbad, CA). RT-PCR reactions were carried out by adding 20 µL PCR cocktail (2.5x PCR buffer (-MgCl2), 6.6 mM MgCl2, 375 µM each of dATP, dCTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units

RNAse inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV

PTS-0012 -93- PATENT

reverse transcriptase, and 2.5x ROX dye) to 96-well plates containing 30 µL total RNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the PLATINUM® Taq, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

Gene target quantities obtained by real time RT-PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreenTM (Molecular Probes, Inc. Eugene, OR). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreenTM RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreenTM are taught in Jones, L.J., et al, (Analytical Biochemistry, 1998, 265, 368-374).

10

15

20

In this assay, 170 µL of RiboGreenTM working reagent (RiboGreenTM reagent diluted 1:350 in 10mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 30 µL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 480nm and emission at 520nm.

Probes and primers to human SMRT were designed to

25 hybridize to a human SMRT sequence, using published sequence information (GenBank accession number AF125672.1, incorporated herein as SEQ ID NO:4). For human SMRT the PCR primers were:

forward primer: CACACATCGTTGCCGCAG (SEQ ID NO: 5)

30 reverse primer: AAGGTATCAAAAATATACCCTGTAAACCA (SEQ ID NO: 6) and the PCR probe was: FAM-TGGGAAGGAAAGGCAGATGTAAATGATGTG-TAMRA

(SEQ ID NO: 7) where FAM is the fluorescent dye and TAMRA is the quencher dye. For human GAPDH the PCR primers were:

forward primer: GAAGGTGAAGGTCGGAGTC(SEQ ID NO:8)
reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO:9) and the

PTS-0012 -94- PATENT

PCR probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC-TAMRA 3' (SEQ ID NO: 10) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.

5

35

Example 14

Northern blot analysis of SMRT mRNA levels

Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOLTM (TEL-TEST "B" Inc., Friendswood, TX). 10 Total RNA was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, 15 RNA was transferred from the gel to HYBONDTM-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKERTM UV 20 Crosslinker 2400 (Stratagene, Inc, La Jolla, CA) and then probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions.

To detect human SMRT, a human SMRT specific probe was prepared by PCR using the forward primer CACACATCGTTGCCGCAG (SEQ ID NO: 5) and the reverse primer

AAGGTATCAAAAATATACCCTGTAAACCA (SEQ ID NO: 6). To normalize for variations in loading and transfer efficiency membranes

were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGERTM and IMAGEQUANTTM Software V3.3 (Molecular Dynamics, Sunnyvale, CA). Data was normalized to GAPDH levels in untreated controls.

PTS-0012 -95- PATENT

Example 15

Antisense inhibition of human SMRT expression by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a decay gap

In accordance with the present invention, a series of 5 oligonucleotides were designed to target different regions of the human SMRT RNA, using published sequences (GenBank accession number AF125672.1, incorporated herein as SEQ ID NO: 4; GenBank accession number NM_006312.1, incorporated herein as SEQ ID NO: 11; the complement of residues 39001-10 260000 of GenBank accession number NT_009459.3, representing a partial genomic sequence of SMRT, incorporated herein as SEQ ID NO: 12; and GenBank accession number S83390.1, incorporated herein as SEQ ID NO: 13). The oligonucleotides 15 are shown in Table 1. "Target site" indicates the first (5'most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 20 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their 25 effect on human SMRT mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments in which A549 cells were treated with the anitsense oligonucleotides of the present invention. The positive control for each datapoint is identified in the 30 table by sequence ID number. If present, "N.D." indicates "no data".

Table 1

Inhibition of human SMRT mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap

PATENT

SEQ ID SITE NO SEC ID NO SEQ ID NO SEQ ID NO NO NO NO NO NO NO N	ISIS #	REGION	TARGET	TARGET	CHOMPAGE			
NO	-0-0 "	10101011			SEQUENCE	% TNUTD	SEQ ID	CONTROL
121624 5'UTR			1 -			TMUTD	NO	
152703 Coding 11 2705 ctcttggcagtgtggcct 63 15 2 2 2 2 2 2 2 2 2	121624	5'UTR	+	61	agtcctcgtcatcagctcac	13	14	
152708 Coding 11 6987 atptrectgeaccqcetggc 82 16 2 195343 5 UTR 4 10 ctccagogagctgtgtct 77 17 2 195344 5 UTR 4 30 tcactggcaccagaaactgc 32 18 2 195345 Start 4 150 tggagcccacagatgtggtg 27 19 2 2 195346 Coding 4 635 ccgtggcgcacacgctcca 63 20 2 195346 Coding 4 1203 gctggcaccacctctgatg 70 21 2 195348 Coding 4 1203 gctggcaccacctctgatg 70 21 2 195349 Coding 4 2311 ttgacagtggtttagggc 21 22 2 195349 Coding 4 3134 aggettctetgcttagctt 24 2 2 195350 Coding 4 3134 aggettctetgctctgtt 49 24 2 195351 Coding 4 3752 ttgtgctggaatgtttgggg 75 25 2 195352 Coding 4 5930 ctccttggcagcaagaggg 73 26 2 2 195353 Coding 4 7307 gcggcacctggagagagggagagagagagagagagagaga	152703	Coding	11					· · · · · · · · · · · · · · · · · · ·
195344 5 'UTR	152708	Coding	11	6987	atgttcctgcaccgcctggc			
195344 S'UTR 4 150 teactggcaccagaaactgc 32 18 2	195343	5'UTR	4	10				
195345 Start 4 150 tggagccgacatggtggtg 27 19 2 2 195346 Coding 4 635 ccgtggcgacacagctcca 63 20 2 195347 Coding 4 1203 gctggccaccctctgcatg 70 21 2 2 195348 Coding 4 1203 gctggccaccctctgcatg 70 21 2 2 195349 Coding 4 2311 ttgacagtggcttcagcctc 24 23 2 195354 Coding 4 3194 aggettctetgcagcttc 24 23 2 195351 Coding 4 3752 tgtgctgggatttggg 75 25 2 2 195352 Coding 4 7570 tgttctgggaattgggt 75 25 2 2 195354 Stop 4 7670 tgttctgggcaccaggaggg 73 26 2 2 2 2 2 2 2 2	195344	5'UTR	4	30				
Codon	195345	Start	4	150				
195347 Coding		Codon						-
195347 Coding			4	635	ccgtggcggcaccagctcca	63	20	2
195348 Coding				1203	gctggcccaccctctgcatg	70	21	
195349 Coding				1856	gctgttggcagttttgcggc	21	22	
195350 Coding		1		2311		24	23	
195352 Coding			4	3194	aggettetetgeeteettgt	49	24	
195353 Coding						75	25	2
195354 Stop 4 7670 tgttctgagtcactgctgt 57 28 2 2 195355 3'UTR 4 8323 catcatttacatctgcttt 39 29 2 195356 Coding 11 1048 ggccacctgctctgcatg 69 30 2 2 195357 Coding 11 2159 gcatgtaaggcttcagcctc 0 31 2 2 195359 Coding 11 2272 ctcattcccagaggcatgta 76 32 2 2 195359 Coding 11 2210 ttgacagtggctggccact 38 33 2 2 195360 Coding 11 3092 gctgcaaggctccttgtc 48 34 2 2 195361 Exon: Intron Junction 12 926 atgaacctaccagaaactgc 33 35 2 2 195362 Intron 12 5600 accagacaaggctctgggca 38 36 2 2 195363 Intron: 12 41188 tcactggcactggggaaa 30 37 2 2 2 2 2 2 2 2 2					ctccttgggcagcaagacgg	73	26	2
Codon 4						52	27	2
195355 3 UTR	195354	_	4	7670	tgttctgagtcactcgctgt	57	28	2
195356 Coding 11 1048 ggccaacctgctctgcatg 69 30 2 195357 Coding 11 2159 gcatgtaaggcttcagcctc 0 31 2 195358 Coding 11 2172 ctcattccagaggcatgta 76 32 2 195359 Coding 11 2210 ttgacagtgctgcact 38 33 2 195360 Coding 11 3092 gctgcgaaggcctcttgtc 48 34 2 195361 Exon:	105355							
195357 Coding							29	
195358 Coding								
195359 Coding 11 2210 ttgacagtggctgggccact 38 33 2 195360 Coding 11 3092 gctgcgaaggcctccttgtc 48 34 2 195361 Exon: Intron Junction 12 926 atgaacctaccagaaactgc 33 35 2 195362 Intron 12 5600 accagacaaggctctgggct 38 36 2 195363 Intron: Exon Junction 12 41188 tcactggcacctgcgggaaa 30 37 2 2 2 2 2 2 2 2 2								
195360 Coding 11 3092 getgegaaggetetetetete 48 34 2 2 195361 Exon:								
195361 Exon: 12 926 atgaacctaccagaaactgc 33 35 2 2 2 2 2 2 2 2 2								
Intron Junction 12 5600 accagacaaggetetggget 38 36 2 2 2 2 2 2 2 2 2								
Junction 12 5600 accagacaaggctctgggct 38 36 2 2 195363 Intron: Exon Junction 12 41188 tcactggcacctgcgggaaa 30 37 2 2 2 2 2 2 2 2 2	123397		12	926	atgaacctaccagaaactgc	33	35	2
195362							}	
195363 Intron: Exon	195362		12	5600	200202020200000	-30	-36	
Exon Junction 12 41410 acccettaccgtgtgcgtc 31 38 2 2 2 2 2 2 2 2 2								
Junction 12 41410 accccttaccgtgtgcgtc 31 38 2				41100	ccaccygcacctgcgggaaa	30	3/	2
195364 Exon: Intron 12 41410 accccttaccgtgtgcgtc 31 38 2		•]				ł	
Intron Junction 12 72430 cccagtgtcctgaattccta 51 39 2 2 2 2 2 2 2 2 2	195364		12	41410	accccttaccgtgtgcgtc	31	38	2
195365 Intron 12 72430		Intron			:		30	٤
195366 Intron: Exon Junction 195367 Intron: Exon Junction 195368 Intron 12 121997 gaccgagttcagccccaggc 195369 Intron: Exon Junction 195370 Exon: Junction 195371 Intron: Exon Junction 195372 Intron: Exon Junction 12 184133 gctgcgaaggctggaaggaa Exon Junction: Exon Junction: Exon Junction 12 184133 gctgcgaaggctgggaaggaa Exon Junction: Exon Junction 195372 Intron: Exon Junction: Exon Junction 12 184133 gctgcgaaggctgggaaggaa Exon Exon Junction: Exon Junction 12 184133 gctgcgaaggctgggaaggaa Exon Exon Junction: Exon Junction 195372 Intron: Exon Exon Exon Junction 195372 Intron: Exon Exon Exon Junction 10 10		Junction				i	1	
195366 Intron: Exon Junction 195367 Intron: Exon Junction 195368 Intron 12 121997 gaccgagttcagcccaggc 195369 Intron: 12 121997 gaccgagttcagccccaggc 195369 Intron: 12 166452 gcatgtaaggctggaaggaa 195370 Exon: Junction 195371 Intron: Exon Junction 195371 Intron: Exon Junction 195372 Intron: 12 184133 gctgcgaaggctgggaaggaa Exon Junction 195372 Intron: 12 184133 gctgcgaaggctgggaaggaa Exon Secon Sec			12	72430	cccagtgtcctgaattccta	51	39	2
Exon Junction 12 110566 cgctggcccaccctgctggg 48 41 2 2 2 2 2 2 2 2 2	195366	Intron:	12	82830	cagccttcttctgcagggtg	34		
195367 Intron:	,					1		
Exon Junction								
Junction	195367		12	110566	cgctggcccaccctgctggg	48	41	2
195368 Intron 12 121997 gaccgagttcagccccaggc 30 42 2 195369 Intron: Exon Junction 12 166452 gcatgtaaggctggaaggaa 68 43 2 195370 Exon: Intron Junction 12 166503 acattcgtacctgggccact 66 44 2 195371 Intron: Exon Junction 12 184109 ggcttctctggtgagggcag 69 45 2 195372 Intron: Exon 12 184133 gctgcgaaggctgggaagaa 68 46 2	1						.	
195369 Intron: 12 166452 gcatgtaaggctggaaggaa 68 43 2 Exon Junction 195370 Exon: 12 166503 acattcgtacctgggccact 66 44 2 Intron Junction 195371 Intron: 12 184109 ggcttctctgctgagggcag 69 45 2 Exon Junction 195372 Intron: 12 184133 gctgcgaaggctgggaagaa 68 46 2	105260							
Exon Junction				121997	gaccgagttcagccccaggc			
Junction	193309		12	166452	gcatgtaaggctggaaggaa	68	43	2
195370 Exon: 12 166503 acattcgtacctgggccact 66 44 2 Intron Junction 195371 Intron: 12 184109 ggcttctctgctgagggcag 69 45 2 Exon Junction 195372 Intron: 12 184133 gctgcgaaggctgggaagaa 68 46 2			•		1	Ì	ļ	İ
Intron Junction 195371 Intron: 12	195370		12	166502	20245			
Junction	255570		12	100203	acattegtacetgggecact	66	44	2
195371 Intron: 12 184109 ggcttctctgctgagggcag 69 45 2 Exon Junction 195372 Intron: 12 184133 gctgcgaaggctgggaagaa 68 46 2 Exon					i	1		ļ
Exon Junction 12 184133 gctgcgaaggctgggaagaa 68 46 2	195371		12	184100	ggcttctctgctgagggag	-60	15	
Junction			[-34107	agacteetegetgagggdag	60	45	4
195372 Intron: 12 184133 gctgcgaaggctgggaagaa 68 46 2			ļ			Ì		ŀ
Exon	195372		12	184133	gctgcgaaggctgggaagaa	68	46	
Junction					2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		30	-
		Junction		Ì	ļ	.		l

PTS-0012

. 10

15

20

-97-

PATENT

195373	Intron	12	195790	cacttgttacttactgccct	63	47	2
195374	Exon:	12	217191	tcatatttacccatgagtgc	63	48	2
	Intron		1				
	Junction						
195375	Exon:	12	217330	ggcctgcagacctggcgagg	62	49	2
	Intron						
1	Junction						
195376	Coding	13	2392	gccgccacccatgagtgcct	72	50	2

As shown in Table 1, SEQ ID NOS 15, 16, 17, 20, 21, 24, 25, 26, 27, 28, 30, 32, 34, 39, 41, 43, 44, 45, 46, 47, 48, 49 and 50 demonstrated at least 40% inhibition of human SMRT expression in this assay and are therefore preferred. The target sites to which these preferred sequences are complementary are herein referred to as "preferred target regions" and are therefore preferred sites for targeting by compounds of the present invention. These preferred target regions are shown in Table 2. The sequences represent the reverse complement of the preferred antisense compounds shown in Table 1. "Target site" indicates the first (5'-most) nucleotide number of the corresponding target nucleic acid. Also shown in Table 2 is the species in which each of the preferred target regions was found.

Table 2
Sequence and position of preferred target regions identified in SMRT.

SITEID	TARGET SEQ ID NO	TARGET	SEQUENCE	REV COMP OF SEQ ID	ACTIVE IN	SEQ ID NO
68267	11	2705	agggccaccactgccaagag	15	H. sapiens	51
68272	11	6987	gccaggcggtgcaggaacat	16	H. sapiens	52
113455	4	10	aggacacagcctcgctggag	17	H. sapiens	53
113458	4	635	tggagctggtgccgccacgg	20	H. sapiens	54
113459	4	1203	catgcagagggtgggccagc	21	H. sapiens	55
113462	4	3194	acaaggaggcagagaagcct	24	H. sapiens	56
113463	4	3752	ccaaaggcattcccagcaca	25	H. sapiens	57
113464	4	5930	ccgtcttgctgcccaaggag	26	H. sapiens	58
113465	4	7307	tcacctcgccaggtggcggc	27	H. sapiens	59
113466	4	7670	acagcgagtgactcagaaca	28	H. sapiens	60
113468	1.1	1048	catgcagagcagggtgggcc	30	H. sapiens	61

PTS-0012	-98-	PATENT
P12-0012	-98-	PATEN:

113470	11	2172	tacatgcctctgggaatgag	32	H. sapiens	62
113472	11_	3092	gacaaggaggccttcgcagc	34	H. sapiens	63
113477	12	72430	taggaattcaggacactggg	39	H. sapiens	64
113479	12	110566	cccagcagggtgggccagcg	41	H. sapiens	65
113481	12	166452	ttccttccagccttacatgc	43	H. sapiens	66
113482	12		agtggcccaggtacgaatgt	44	H. sapiens	67
113483	12	184109	ctgccctcagcagagaagcc	45	H. sapiens	68
113484	12	184133	ttcttcccagccttcgcagc	46	H. sapiens	69
113485	12		agggcagtaagtaacaagtg	47	H. sapiens	70
113486	12	217191	gcactcatgggtaaatatga	48	H. sapiens	71
113487	12		cctcgccaggtctgcaggcc	49	H. sapiens	72
113488	.13	2392	aggcactcatgggtggcggc	50	H. sapiens	73

As these "preferred target regions" have been found by experimentation to be open to, and accessible for,

5 hybridization with the antisense compounds of the present invention, one of skill in the art will recognize or be able to ascertain, using no more than routine experimentation, further embodiments of the invention that encompass other compounds that specifically hybridize to these sites and consequently inhibit the expression of SMRT.

Example 16 Western blot analysis of SMRT protein levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to SMRT is used, with a radiolabeled or fluorescently labeled secondary antibody directed against the primary antibody species.

Bands are visualized using a PHOSPHORIMAGER™ (Molecular Dynamics, Sunnyvale CA).

PTS-0012 -99- PATENT

What is claimed is:

- 1. A compound 8 to 80 nucleobases in length targeted to a nucleic acid molecule encoding SMRT, wherein said compound specifically hybridizes with said nucleic acid molecule encoding SMRT and inhibits the expression of SMRT.
- 2. The compound of claim 1 which is an antisense oligonucleotide.
- 3. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
- 4. The compound of claim 3 wherein the modified internucleoside linkage is a phosphorothicate linkage.
- 5. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
- 6. The compound of claim 5 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
- 7. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 8. The compound of claim 7 wherein the modified nucleobase is a 5-methylcytosine.
- 9. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.
- 10. A compound 8 to 80 nucleobases in length which specifically hybridizes with at least an 8-nucleobase portion of a preferred target region on a nucleic acid molecule encoding SMRT.
- 11. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 12. The composition of claim 11 further comprising a colloidal dispersion system.
- 13. The composition of claim 11 wherein the compound is an antisense oligonucleotide.
- 14. A method of inhibiting the expression of SMRT in cells or tissues comprising contacting said cells or tissues

PTS-0012 -100- PATENT

with the compound of claim 1 so that expression of SMRT is inhibited.

- 15. A method of treating an animal having a disease or condition associated with SMRT comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of SMRT is inhibited.
- 16. The method of claim 15 wherein the disease or condition is an inflammatory disorder.
- 17. The method of claim 16 wherein the inflammatory disorder is rheumatoid arthritis.
- 18. The method of claim 15 wherein the disease or condition is a hyperproliferative disorder.
- 19. The method of claim 18 wherein the hyperproliferative disorder is cancer.
- 20. The method of claim 19 wherein the cancer is selected from the group consisting of leukemia and breast cancer.

PTS-0012

-101-

PATENT

ABSTRACT

5

Antisense compounds, compositions and methods are provided for modulating the expression of SMRT. The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding SMRT. Methods of using these compounds for modulation of SMRT expression and for treatment of diseases associated with expression of SMRT are provided.

DOCKET NO.: PTS-0012

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; and

I verily believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: Antisense Modulation of SMRT Expression the specification of which:

(XX) is attached hereto.

()	was	filed on	as	Application	Serial	No.	and
		was	amended	on	_ (if application)	able).		

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the U.S. Patent and Trademark Office all information known to be material to the patentability of this application in accordance with 37 CFR § 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. § 119(a-d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of any application on which priority is claimed:

Country	Number	Date Filed	Priority	Claimed
			Yes	No
			Yes	No
<u> </u>			Yes	No

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose to the U.S. Patent and Trademark Office all information known to be material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

Application Serial No.	Filing Date	Status (pending, patented)
<u></u>	<u></u>	· · · · · · · · · · · · · · · · · · ·

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States provisional application(s) listed below:

Provisional Application No.	Filing Date

DOCKET NO.: PTS-0012

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: Herb Boswell, Registration No. 27,311; Laurel Spear Bernstein, Registration No. 37,280; Neil S. Bartfeld, Registration No. 39,901; and April C. Logan, Registration No. 33,950, of Isis Pharmaceuticals, Inc.; and Jane Massey Licata, Registration No. 32,257, and Kathleen A. Tyrrell, Registration No. 38,350 of the firm of Licata and Tyrrell P.C., 66 East Main Street, Marlton NJ 08053.

Address all telephone calls and correspondence to:

Jane Massey Licata or Kathleen A. Tyrrell Licata and Tyrrell P.C. 66 East Main Street Marlton NJ 08053 (856) 810-1515

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1	Full Name: C. Frank Bennett	Inventor's Signature:	Date:
	Residence: 1347 Cassins Street Carlsbad California 92009	Citizenship: USA	
	Post Office Address:same as above		
2	Full Name: Susan M. Freier	Inventor's Signature:	Date: 5/23/02
	Residence: 2946 Renault Street San Diego California 92122	Citizenship: USA	
	Post Office Address:same as above		
3	Full Name: Kenneth W. Dobie	Inventor's Signature:	Date: 5/23/02
	Residence: 703 Stratford Ct., #4 Del Mar California 92014	Citizenship: UK	
	Post Office Address: same as above		

PATENT

SEQUENCE LISTING

<110> C. Frank Bennett Susan M. Freier Kenneth W. Dobie

<120> ANTISENSE MODULATION OF SMRT EXPRESSION

<130> PTS-0012

<160> 73

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 1

tccgtcatcg ctcctcaggg

20

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 2

<u> Barangaraka</u>n dalah dalam

PTS-0012

-2-

PATENT

gtgcgcgcga gcccgaaatc	20
<210> 3	
<211> 20	,
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 3	
atgcattctg cccccaagga	20
<210> 4	
<211> 8686	
<212> DNA	-
<213> H. sapiens	
<220>	
<220>	
<221> CDS	
<222> (157)(7680)	
<400> 4	
gagtetttga ggacacagee tegetggagg cagtttetgg tgecagtgae ggggtggeee	60
gtgagctgat gacgaggact ggcttttaat ccttggtggt gattaagaga aagcttattg	120
gggcctggga gcagctcccc gccgaccccc accacc atg tcg ggc tcc aca cag	174
Met Ser Gly Ser Thr Gln	
1 5	
cct gtg gca cag acg tgg agg gcc act gag ccc cgc tac ccg ccc cac	222
Pro Val Ala Gln Thr Trp Arg Ala Thr Glu Pro Arg Tyr Pro Pro His	
10 15 20	
age ett tee tae eea gtg eag ate gee egg aeg eae aeg gae gte ggg	270
Ser Leu Ser Tyr Pro Val Gln Ile Ala Arg Thr His Thr Asp Val Gly	•
25 30 35	

PTS-0012 -3-PATENT

ctc	ctg	gag	tac	cag	cac	cac	tcc	cgc	gac	tat	gcc	tcc	cac	ctg	tcg	318
Leu	Leu	Glu	Tyr	Gln	His	His	Ser	Arg	Asp	Tyr	Ala	Ser	His	Leu	Ser .	
	40					45					50					
ccc	ggc	tcc	atc	atc	cag	ccc	cag	cgg	cgg	agg	CCC	tcc	ctg	ctg	tct	366
Pro	Gly	Ser	Ile	Ile	Gln	Pro	Gln	Arg	Arg	Arg	Pro	Ser	Leu	Leu	Ser	
55					60					65					70	
gag	ttc	cag	ccc	ggg	aat	gaa	cgg	tcc	cag	gag	ctc	cac	ctg	cgg	cca	414
Glu	Phe	Gln	Pro	Gly	Asn	Glu	Arg	Ser	Gln	Glu	Leu	His	Leu	Arg	Pro	
			٠	75					80					85		
gag	tcc	cac	tca	tac	ctg	ccc	gag	ctg	ggg	aag	tca	gag	atg	gag	ttc	462
Glu	Ser	His	Ser	Tyr	Leu	Pro	Glu	Leu	Gly	Lys	Ser	Glu	Met	Glu	Phe	
			90					95					100			
att	gaa	agc	aag	cgc	cct	cgg	cta	gag	ctg	ctg	cct	gac	CCC	ctg	ctg	510
Ile	Glu	Ser	Lys	Arg	Pro	Arg	Leu	Glu	Leu	Leu	Pro	Asp	Pro	Leu	Leu	
		105					110					115				
cga	ccg	tca	ccc	ctg	ctg	gcc	acg	ggc	cag	cct	gcg	gga	tct	gaa	gac	558
Arg	Pro	Ser	Pro	Leu	Leu	Ala	Thr	Gly	Gln	Pro	Ala	Gly	Ser	Glu	Asp	
	120					125					130					
ctc	acc	aag	gac	cgt	agc	ctg	acg	ggc	aag	ctg	gaa	ccg	gtg	tct	ccc	606
Leu	Thr	Lys	Asp	Arg	Ser	Leu	Thr	Gly	Lys	Leu	Glu	Pro	Val	Ser	Pro	
135					140					145					150	
ccc	agc	ccc	ccg	cac	act	gac	cct	gag	ctg	gag	ctģ	gtg	ccg	cca	cgg	654
Pro	Ser	Pro	Pro	His	Thr	Asp	Pro	Glu	Leu	Glu	Leu	Val	Pro	Pro	Arg	
				155					160					165		
ctg	tcc	aag	gag	gag	ctg	atc	cag	aac	atg	gac	cgc	gtg	gac	cga	gag	702
Leu	Ser	Lys	Glu	Glu	Leu	Ile	Gln	Asn	Met	Asp	Arg	Val	Asp	Arg	Glu	
			170					175					180			
atc	acc	atg	gta	gag	cag	cag	atc	tct	aag	ctg	aag	aag	aag	cag	caa	750
Ile	Thr	Met	Val	Glu	Gln	Gln	Ile	Ser	Lys	Leu	Lys	Lys	Lys	Gln	Gln	
		185					190					195				
cag	ctg	gag	gag	gag	gct	gcc	aag	ccg	ccc	gag	cct	gag	aag	ccc	gtg	798
Gln	Leu	Glu	Glu	Glu	Ala	Ala	Lys	Pro	Pro	Glu	Pro	Glu	Lys	Pro	Val	
	200					205					210					
tca	ccg	ccg	ccc	atc	gag	tcg	aag	cac	cgc	agc	ctg	gtg	cag	atc	atc	846
Ser	Pro	Pro	Pro	Ile	Glu	Ser	Lys	His	Arg	Ser	Leu	Val	Gln	Ile	Ile	
215					220					225					230	
tac	gac	gag	aac	cgg	aag	aag	gct	gaa	gct	gca	cat	cgg	att	ctg	gaa	894
Tyr	Asp	Glu	Asn	Arg	Lys	Lys	Ala	Glu	Ala	Ala	His	Arg	Ile	Leu	Glu	
				235					240					245		

	ggc	ctg	ggg	ccc	cag	gtg	gag	ctg	ccg	ctg	tac	aac	cag	ccc	tcc	gac	942
	Gly	Leu	Gly	Pro	Gln	Va1	Glu	Leu	Pro	Leu	Tyr	Asn	Gln	Pro	Ser	Asp	
				250					255				•	260			
	acc	cgg	cag	tat	cat	gag	aac	atc	aaa	ata	aac	cag	gcg	atg	cgg	aag	990
	Thr	Arg	Gln	Tyr	His	Glu	Asn	Ile	Lys	Ile	Asn	Gln	Ala	Met	Arg	Lys	
			265			٠		270					275				
	aag	cta	atc	ttg	tac	ttc	aag	agg	agg	aat	cac	gct	cgg	aaa	caa	tgg	1038
	Lys	Leu	Ile	Leu	Tyr	Phe	Lys	Arg	Arg	Asn	His	Ala	Arg	Lys	Gln	Trp	
		280					285					290					
	gag	cag	aag	ttc	tgc	cag	cgc	tat	gac	cag	ctc	atg	gag	gcc	tgg	gag	1086
	Glu	Gln	Lys	Phe	Cys	Gln	Arg	Tyr	Asp	Gln	Leu	Met	Glu	Ala	Trp	Glu	
	295					300					305					310	
																gag	1134
	Lys	Lys	Val	Glu	Arg	Ile	Glu	Asn	Asn	Pro	Arg	Arg	Arg	Ala	Lys	Glu	
					315					320					325		
				cgc												_	1182
	Ser	Lys	Val	Arg	Glu	Tyr	Тух	Glu	Lys	Gln	Phe	Pro	Glu	Ile	Arg	Lys	
				330					335			',		340			
				ctg													1230
	Gln	Arg		Leu	Gln	Glu	Arg	Met	Gln	Arg	Val	Gly	Gln	Arg	Gly	Ser	
			345					350					355				
٠				atg													1278
	Gly		Ser	Met	Ser	Pro	Ala	Arg	Ser	Glu	His	Glu	Val	Ser	Glu	Ile	
		360					365					370					
				ctc													1326
		Asp	Gly	Leu	Ser	Glu	Gln	Glu	Asn	Leu	Glu	Lys	Gln	Met	Arg	Gln	
	375					380					385					390	
				atc													1374
	Leu	Ala	Val	Ile		Pro	Met	Leu	Tyr	Asp	Ala	Asp	Gln	Gln	Arg	Ile	
					395					400					405		
				aac													1422
	Lys	Phe	Ile	Asn	Met	Asn	Gly	Leu	Met	Ala	Asp	Pro	Met	Lys	Val	Tyr	
				410					415					420			
				cag													1470
	Lys	Asp		Gln	Val	Met	Asn		Trp	Ser	Glu	Gln	Glu	Lys	Glu	Thr	
			425					430					435				
				aag -													1518
	Phe		Glu	Lys	Phe	Met	Gln	His	Pro	Lys	Asn	Phe	Gly	Leu	Ile	Ala	
		440					445					450					

PTS-0012 -5- PATENT

		-	gag		_			-	-	_	-					1566
Ser	Phe	Leu	Glu	Arg	Lys	Thr	Val	Ala	Glu	Cys	Val	Leu	Tyr	Tyr	Tyr	
455					460					465					470	
ctg	act	aag	aag	aat	gag	aac	tat	aag	agc	ctg	gtg	aga	cgg	agc	taț	1614
Leu	Thr	Lys	Lys	Asn	Glu	Asn	Tyr	Lys	Ser	Leu	Val	Arg	Arg	Ser	Tyr	
				475					480				•	485		
cgg	cgc	cgc	ggc	aag	agc	cag	cag	caa	caa	cag	cag	cag	cag	cag	cag	1662
Arg	Arg	Arg	Gly	Lys	Ser	Gln										
			490					495					500			
cag	cag	cag	cag	cag	cag	cag	ccc	atg	ccc	cgc	agc	agc	cag	gag	gag	1710
Gln	Gln	Gln	Gln	Gln	Gln	Gln	Pro	Met	Pro	Arg	Ser	Ser	Gln	Glu	Glu	
		505				•	510					515				
aaa	gat	gag	aag	gag	aag	gaa	aag	gag	gcg	gag	aag	gag	gag	gag	aag	1758
Гуs	Asp	Glu	Lys	Glu	Lys	Glu	Lys	Glu	Ala	Glu	Lys	Glu	Glu	Glu	Lys	
	520					525					530					
ccg	gag	gtg	gag	aac	gac	aag	gaa	gac	ctc	ctc	aag	gag	aag	aca	gac	1806
Pro	Glu	Val	Glu	Asn	Asp	Lys	Glu	Asp	Leu	Leu	Lys	Glu	Lys	Thr	Asp	
535					540					545					550	
gac	acc	tca	ggg	gag	gac	aac	gac	gag	aag	gag	gct	gtg	gcc	tcc	aaa	1854
Asp	Thr	Ser	Gly	Glu	Asp	Asn	Asp	Glu	Lys	Glu	Ala	Val	Ala	Ser	Lys	
				555					560			•		565		
ggc	cgc	aaa	act	gcc	aac	agc	cag	gga	aga	cgc	aaa	ggc	cgc	atc	acc	1902
Gly	Arg	Lys	Thr	Ala	Asn	Ser	Gln	Gly	Arg	Arg	Lys	Gly	Arg	Ile	Thr	
			570					575					580			
cgc	tca	atg	gct	aat	gag	gcc	aac	agc	gag	gag	gcc	atc	acc	ccc	cag	1950
Arg	Ser	Met	Ala	Asn	Glu	Ala	Asn	Ser	Glu	Glu	Ala	Ile	Thr	Pro	Gln	
		585					590					595				
			gag													1998
Gln	Ser	Ala	Glu	Leu	Ala	Ser	Met	Glu	Leu	Asn	Glu	Ser	Ser	Arg	Trp	
	600					605					610					
			gaa	-	_		-	_				_	_			2046
Thr	Glu	Glu	Glu	Met	Glu	Thr	Ala	Lys	Lys	Gly	Leu	Leu	Glu	His	Gly	
615					620					625					630	
cgc	aac	tgg	tcg	gcc	atc	gcc	cgg	atg	gtg	ggc	tcc	aag	act	gtg	tcg	2094
Arg	Asn	Trp	Ser	Ala	Ile	Ala	Arg	Met	Val	Gly	Ser	Lys	Thr	Val	Ser	
				635					640					645		
			aac													2142
Gln	Суз	Lys	Asn	Phe	Tyr	Phe	Asn	Tyr	Lys	Lys	Arg	Gln	Asn	Leu	Asp	
			650					655					660			

PTS-0012 -6-

	gag	atc	ttg	cag	cag	cac	aag	ctg	aag	atg	gag	aag	gag	agg	aac	gcg	2190
	Glu	Ile	Leu	Gln	Gln	His	Lys	Leu	Lys	Met	Glu	Lys	Glu	Arg	Asn	Ala	
			665					670					675				
	cgg	agg	aag	aag	aag	aaa	gcg	ccg	gcg	gcg	gcc	agc	gag	gag	gct	gca	2238
	Arg	Arg	Lys	Lys	Lys	Lys	Ala	Pro	Ala	Ala	Ala	Ser	Glu	Glu	Ala	Ala	
		680					685					690					
	ttc	ccg	CCC	gtg	gtg	gag	gat	gag	gag	atg	gag	gcg	tcg	ggc	gtg	acg	2286
	Phe	Pro	Pro	Val	Val	Glu	Asp	Glu	Glu	Met	Glu	Ala	Ser	Gly	Val	Thr	
	695					700					705					710	
	gga	aat	gag	gag	gag	atg	gtg	gag	gag	gct	gaa	gcc	act	gtc	aac	aac	2334
	Gly	Asn	Glu	Glu	Glu	Met	Val	Glu	Glu	Ala	Glu	Ala	Thr	Val	Asn	Asn	
					715					720					725		
												act				_	2382
	Ser	Ser	Asp	Thr	Glu	Ser	Ile	Pro	Ser	Pro	His	Thr	Glu	Ala	Ala	Lys	
				730					735					740			
												acc					2430
	Yzb	Thr		Gln	Asn	Gly	Pro	Lys	Pro	Pro	Ala	Thr	Leu	Gly	Ala	Asp	
			745					750					755				
												gag				-	2478
	Gly		Pro	Pro	Gly	Pro	Pro	Thr	Pro	Pro	Pro	Glu	Asp	Ile	Pro	Ala	
		760					765			-		770					
												tta					2526
		Thr	Glu	Ser	Thr	Pro	Ala	Ser	Glu	Ala	Thr	Leu	Ala	Pro	Thr	Pro	
	775					780					785					790	
												cct					2574
	Pro	Pro	Ala	Pro		Phe	Pro	Ser	Ser	Pro	Pro	Pro	Val	Val	Pro	ГЛЗ	
					795					800					805		
												cca					2622
•	GIu	GLu	Lys		Glu	Glu	Thr	Ala		Ala	Pro	Pro	Val		Glu	Gly	
				810					815					820			
												gca					2670
	GLu	GLu		Lys	Pro	Pro	Ala		Glu	Glu	Leu	Ala	Val	Asp	Thr	Gly	
			825					830					835				
										•		gag					2718
	Lys		Glu	Glu	Pro	Val		Ser	Glu	Суѕ	Thr	Glu	Glu	Ala	Glu	Glu	
		840					845					850					
												gag					2766
		Pro	Ala	ŗàs	GГĀ		Asp	Ala	Glu	Ala		Glu	Ala	Thr	Ala	Glu	
	855					860					865					870	

			aag													2814
Arg	Ala	Leu	Lys	Ala	Glu	Lys	Lys	Glu	Gly	Gly	Ser	Gly	Arg	Ala	Thr	
			_	875					880					885		
			agc													2862
Thr	Ala	Lys	Ser	Ser	Gly	Ala	Pro	Gln	Asp	Ser	Asp	Ser	Ser	Ala	Thr	
			890			•		895					900			
			gac													2910
Суѕ	Ser	Ala	Asp	Glu	Val	Asp	Glu	Ala	Glu	Gly	Gly	Asp	Lys	Asn	Arg	
		905					910					915				
			cca													2958
Leu	Leu	Ser	Pro	Arg	Pro	Ser	Leu	Leu	Thr	Pro	Thr	Gly	Asp	Pro	Arg	
	920					925					930					
			tca													3006
	Asn	Ala	Ser	Pro	Gln	Lys	Pro	Leu	Asp	Leu	Lys	Gln	Leu	Lys	Gln	
935					940					945					950	
			gcc													3054
Arg	Ala	Ala	Ala		Pro	Pro	Ile	Gln	Val	Thr	Lys	Val	His	Glu	Pro	
				955					960					965		
			gac												_	3102
Pro	Arg	Glu	Asp	Ala	Ala	Pro	Thr		Pro	Ala	Pro	Pro	Ala	Pro	Pro	
			970					975					980			
			aac													3150
Pro	Pro		Asn	Leu	Gln	Pro		Ser	Asp	Ala	Pro	Gln	Gln	Pro	Gly	
		985					990					995				
			cgg													3198
ser			Arg	GIA	гÀЗ		•	Ser	Pro	Ala			Ala	Asp	Lys	
~~~	1000					1005					1010					
			aag												<del>-</del>	3246
1015		GIU	Lys	PLO			Pne	Pro	Ala			Ада	Glu	Ala		
•		aat	~~~	~~~	1020					1025					1030	
			ggg													3294.
пуъ	рец	PLO	Gly	1035		Pro	Cys	Trp			СТĀ	Leu	Pro			
ata	666	000	aat						1040					1045		
			cgt													3342
VOL	- 1.0	-10	Arg 1050		val	тте	υλε			Pro	HIS	ATA			Pro	
tca	acc	++-			~a-			1055					1060			
			tcc													3390
Ser	aza		Ser	TAT.	wTg				HIS	Pro				Gly	Leu	
		1065	•				10,70	ŀ				1075				

						-										
cat	gac	act	gcc	cgg	ccc	gtc	ctg	ccg	cgc	сса	ccc	acc	ato	tcc	aac	3438
His	Asp	Thr	Ala	Arg	Pro	Val	Leu	Pro	Arg	Pro	Pro	Thr	Ile	Ser	Asn	
	108	0				108	5				109	0				
ccg	. cct	ccc	ctc	atc	tcc	tct	gcc	aag	cac	ccc	agc	gtc	ctc	gag	agg	3486
Pro	Pro	Pro	Leu	Ile	Ser	Ser	Ala	Lys	His	Pro	Ser	Val	Leu	Glu	Arg	
109	5				110	0	•			110	5				1110	
caa	ata	ggt	gcc	atc	tcc	caa	gga	atg	tcg	gtc	cag	ctc	cac	gtc	ccg	3534
Gln	Ile	Gly	Ala	Ile	Ser	G1n	Gly	Met	Ser	Val	Gln	Leu	His	Val	Pro	
				111	5				112	0				112	5	
tac	tca	gag	cat	gcc	aag	gcc	ccg	gtg	ggc	cct	gtc	acc	atg	ggg	ctg	3582
Tyr	Ser	Glu	His	Ala	Lys	Ala	Pro	Va1	Gly	Pro	Val	Thr	Met	Gly	Leu	
			113	0				113	5				114	0		
ccc	ctg	ccc	atg	gac	ccc	aaa	aag	ctg	gca	ccc	ttc	agc	gga	gtg	aag	3630
Pro	Leu	Pro	Met	Asp	Pro	Lys	Lys	Leu	Ala	Pro	Phe	Ser	Gly	Val	Lys	
		114					115					115				
			ctg													3678
Gln	Glu	Gln	Leu	Ser	Pro	Arg	Gly	Gln	Ala	Gly	Pro	Pro	Glu	Ser	Leu	
	116					1165					117					
			aca													3726
Gly	Val	Pro	Thr	Ala	Gln	Glu	Ala	Ser	Val	Leu	Arg	Gly	Thr	Ala	Leu	
117					118					118					1190	
			ccg													3774
Gly	Ser	Val	Pro	Gly	Gly	Ser	Ile	Thr	Lys	Gly	Ile	Pro	Ser	Thr	Arg	
				1199					1200					120		
			gac													3822
Val	Pro	Ser	Asp		Ala	Ile	Thr	Tyr	Arg	Gly	Ser	Ile	Thr	His	Gly	
			1210					1215					1220			
			gac													3870
Thr	Pro		Asp	Val	Leu	Tyr	Lys	Gly	Thr	Ile	Thr	Arg	Ile	Ile	Gly	
		122					1230					1235				
			ccg -													3918
GLu			Pro	Ser	Arg	Leu	Asp	Arg	Gly	Arg	Glu	Asp	Ser	Leu	Pro	
	1240					1245					1250	•				
			gtc													3966
		HIS	Val	Ile			Gly	Lys	Lys	Gly	His	Val	Leu	Ser	Tyr	
1255					1260					1265			1		1270	
			atg													4014
GIU	СΊĀ	GТĀ	Met			Thr	Gln	Cys	Seŗ.	Lys	Glu	Asp	Gly	Arg	Ser	
				1275					1280					1285		

															gac	4062
Ser	Ser	Gly	Pro	Pro	His	Glu	Thr	Ala	Ala	Pro	Lys	Arg	Thr	Туг	Asp	
•			129	0				129	5				130	0		
atg	atg	gag	ggc	cgc	gtg	ggc	aga	gcc	ato	tco	: tca	gcc	agc	ato	gaa	4110
Met	Met	Glu	Gly	Arg	Val	Gly	Arg	Ala	Ile	Ser	Ser	Ala	Ser	Ile	Glu	
		130	5				131	.0				131	5			
ggt	ctc	atg	ggc	cgt	gcc	atc	ccg	ccg	gag	cga	cac	agc	CCC	cac	cac	4158
Gly	Leu	Met	Gly	Arg	Ala	Ile	Pro	Pro	Glu	Arg	His	Ser	Pro	His	His	
	1320	)				132	5				133	0				
ctc	aaa	gag	cag	cac	cac	atc	cgc	ggg	tcc	ato	aca	caa	ggg	atc	cct	4206
Leu	Lys	Glu	Gln	His	His	Ile	Arg	Gly	Ser	Ile	Thr	Gln	Gly	Ile	Pro	
1335	5				134	0				134	5				1350	
cgg	tcc	tac	gtg	gag	gca	cag	gag	gac	tac	ctg	cgt	cgg	gag	gcc	aag	4254
Arg	Ser	Tyr	Val	Glu	Ala	Gln	Glu	Asp	Tyr	Leu	Arg	Arg	Glu	Ala	Lys	
				135	5				136	0				136	5	
	cta															4302
Leu	Leu	Lys	Arg	Glu	Gly	Thr	Pro	Pro	Pro	Pro	Pro	Pro	Ser	Arg	Asp	
			1370					137					1380			
	acc															4350
Leu	Thr	Glu	Ala	Tyr	Lys	Thr	Gln	Ala	Leu	Gly	Pro	Leu	Lys	Leu	Lys	
		1385					139					1399				
	gcc															4398
Pro	Ala		Glu	Gly	Leu	Val	Ala	Thr	Val	Lyś	Glu	Ala	Gly	Arg	Ser	
•	1400					1405					1410					
atc																4446
	His	Glu	Ile	Pro	Arg	Glu	Glu	Leu	Arg	His	Thr	Pro	Glu	Leu	Pro	
1415					1420					142					1430	
ctg																4494
' Leu	Ala :	Pro	Arg	Pro	Leu	Lys	Glu	Gly	Ser	Ile	Thr	Gln	Gly	Thr	Pro	
				1435					1440					1445		
ctc																4542
Leu :	Lys '				Gly	Ala	Ser	Thr	Thr	Gly	Ser	rys	Lys	His	Asp	
			1450					1455					1460			
gta (																4590
Val 1			Leu	Ile	Gly	Ser	Pro	Gly	Arg	Thr	Phe	Pro	Pro	Val	His	
		L465					1470					1475				
ccg																4638
Pro I		lsp '	Val 1	Met .	Ala	Asp Z	Ala	Arg	Ala	Leu	Glu	Arg .	Ala	Cys	Tyr	
3	L480					1485					1490					

٨

gag	gag	agc	ctg	aag	agc	cgg	cca	ggg	acc	gcc	age	ago	tcg	aaa	ggc	4686
Glu	Glu	Ser	Leu	Lys	Ser	Arg	Pro	Gly	Thr	Ala	Ser	Ser	Ser	Gly	Gly	
149	5				150	0				150	5				1510	
tcc	att	gcg	cgc	ggc	gcc	ccg	gtc	att	gtg	cct	gag	ctg	ggt	aag	ccg	4734
Ser	Ile	Ala	Arg	Gly	Ala	Pro	Val	Ile	Val	Pro	Glu	Leu	Gly	Lys	Pro	
				151	5				152	0				152	5	
cgg	cag	agc	ccc	ctg	acc	tat	gag	gac	cac	ggg	gca	ccc	ttt	gcc	ggc	4782
Arg	Gln	Ser	Pro	Leu	Thr	Tyr	Glu	Asp	His	Gly	Ala	Pro	Phe	Ala	Gly	
			153	0				153	5				154	0		
cac	ctc	cca	cga	ggt	tcg	CCC	gtg	acc	atg	cgg	gag	ccc	acg	ccg	cgc	4830
His	Leu	Pro	Arg	Gly	Ser	Pro	Val	Thr	Met	Arg	Glu	Pro	Thr	Pro	Arg	
		154	5				155	0				155	5			
ctg	cag	gag	ggc	agc	ctt	tcg	tcc	agc	aag	gca	tcc	cag	gac	cga	aag	4878
Leu	Gln	Glu	Gly	Ser	Leu	Ser	Ser	Ser	Lys	Ala	Ser	Gln	Asp	Arg	Lys	
	156	0				1569	5				157	0				
ctg	acg	tcg	acg	cct	cgt	gag	atc	gcc	aag	tcc	ccg	cac	agc	acc	gtg	4926
Leu	Thr	Ser	Thr	Pro	Arg	Glu	Ile	Ala	Lys	Ser	Pro	His	Ser	Thr	Val	
1575	5				158	)				1585	5				1590	
ċсс	gag	cac	cac	cca	cac	ċсс	atc	tcg	CCC	tat	gag	cac	ctg	ctt	cgg	4974
Pro	Glu	His	His	Pro	His	Pro	Ile	Ser	Pro	Tyr	Glu	His	Leu	Leu	Arg	
				159	5				1600	)				160	5	
ggc	gtg	agt	ggc	gtg	gac	ctg	tat	cgc	agc	cac	atc	ccc	ctg	gcc	ttc	5022
Gly	Val	Ser	Gly	Val	Asp	Leu	Tyr	Arg	Ser	His	Ile	Pro	Leu	Ala	Phe	
			1610	)				1615	5				1620	)		
gac	ccc	acc	tcc	ata	CCC	cgc	ggc	atc	cct	ctg	gac	gca	gcc	gct	gcc	5070
Asp	Pro	Thr	Ser	Ile	Pro	Arg	Gly	Ile	Pro	Leu	Asp	Ala	Ala	Ala	Ala	
		1625	i				1630	)				1635	5			
tac	tac	ctg	ccc	cga	cac	ctg	gcc	ccc	aac	ccc	acc	tac	ccg	cac	ctg	5118
Tyr	Tyr	Leu	Pro	Arg	His	Leu	Ala	Pro	Aşn	Pro	Thr	Tyr	Pro	His	Leu	
	1640	)				1645	i				1650	)				
tac	cca	ccc	tac	ctc	atc	cgc	ggc	tac	ccc	gac	acg	gcg	gcg	ctg	gag	5166
Tyr	Pro	Pro	Tyr	Leu	Ile	Arg	Gly	Tyr	Pro	Asp	Thr	Ala	Ala	Leu	Glu	
1655					1660	)				1665					1670	
aac	cgg	cag	acc	atc	atc	aat	gac	tac	atc	acc	tcg	cag	cag	atg	cac	5214
Asn .	Arg	Gln	Thr	Ile	Ile	Asn	Asp	Tyr	Ile	Thr	Ser	Gln	Gln	Met	His	
				1675	;				1680					1685		
cac	aac	acg	gcc	acc	gcc	atg	gcc	cag	cga	gct	gat	atg	ctg	agg	ggc	5262
His !																
			1690					1695					1700			

PTS-0012

-11-

												•					
	ctc	tcg	CCC	cgc	gag	tcc	tcg	ctg	gca	ctc	aac	tac	gct	gcg	ggt	ccc	5310
	Leu	Ser	Pro	Arg	Glu	Ser	Ser	Leu	Ala	Leu	Asn	Tyr	Ala	Ala	Gly	Pro	
			170	5				1710	)				171	5			
	cga	ggc	atc	atc	gac	ctg	tcc	caa	gtg	cca	cac	ctg	cct	gtg	ctc	gtg	5358
	Arg	Gly	Ile	Ile	Asp	Leu	Ser	Gln	Val	Pro	His	Leu	Pro	Val	Leu	Val	
		1720	D				1729	5				173	0				
	ccc	ccg	aca	cca	ggc	acc	cca	gcc	acc	gcc	atg	gac	cgc	ctt	gcc	tac	5406
	Pro	Pro	Thr	Pro	Gly	Thr	Pro	Ala	Thr	Ala	Met	Asp	Arg	Leu	Ala	Tyr	
	1735	5				1740	)				174	5				1750	
	ctċ	ccc	acc	gcg	ccc	cag	ccc	ttc	agc	agc	cgc	cac	agc	agc	tcc	cca	5454
	Leu	Pro	Thr	Ala	Pro	Gln	Pro	Phe	Ser	Ser	Arg	His	Ser	Ser	Ser	Pro	
					175	5				176	0				176	5	
	ctc	tcc	cca	gga	ggt	cca	aca	cac	ttg	aca	aaa	cca	acc	acc	acg	tcc	5502
	Leu	Ser	Pro	Gly	Gly	Pro	Thr	His	Leu	Thr	Lys	Pro	Thr	Thr	Thr	Ser	
				1770	)				177	5				1780	0		,
	tcg	tcc	gag	cgg	gag	cga	gac	cgg	gat	cga	gag	cgg	gac	cgg	gat	cgg	5550
	Ser	Ser	Glu	Arg	Glu	Arg	Asp	Arg	Asp	Arg	Glu	Arg	Asp	Arg	Asp	Arg	
			178	5				1790	)	•			1799	5			
	gag	cgg	gaa	aag	tcc	atc	ctc	acg	tcc	acc	acg	acg	gtg	gag	cac	gca	5598
	Glu	Arg	Glu	Lys	Ser	Ile	Leu	Thr	Ser	Thr	Thr	Thr	Val	Glu	His	Ala	
		1800	)				1805	5				1810	)				
	ccc	atc	tgg	aga	cct	ggt	aca	gag	cag	agc	agc	ggc	agc	agc	ggc	agc	5646
	Pro	Ile	Trp	Arg	Pro	Gly	Thr	Glu	Gln	Ser	Ser	Gly	Ser	Ser	Gly	Ser	
	1815	5				1820	)				1825	5				1830	
	agc	ggc	aaa	ggt	ggg	ggc	agc	agc	agc	cgc	ccc	gcc	tcc	cac	tcc	cat	5694
	Ser	Gly	Gly	Gly	Gly	Gly	Ser	Ser	Ser	Arg	Pro	Ala	Ser	His	Ser	His	
•					1835	5				1840	)				1845	5	
	gcc	cac	cag	cac	tcg	ccc	atc	tcc	cct	cgg	acc	cag	gat	gcc	ctc	cag	5742
	Ala	His	Gln	His	Ser	Pro	Ile	Ser	Pro	Arg	Thr	Gln	Asp	Ala	Leu	Gln	
				1850	)				1855	5		٠		1860	)		
	cag	aga	CCC	agt	gtg	ctt	cac	aac	aca	ggc	atg	aag	ggt	atc	atc	acc	5790
	Gln	Arg	Pro	Ser	Val	Leu	His	Asn	Thr	Gly	Met	Lys	Gly	Ile	Ile	Thr	
			1865	5				1870	)				1875	5			
	gct	gtg	gag	ccc	agc	aag	CCC	acg	gtc	ctg	agg	tcc	acc	tcc	acc	tcc	5838
	Ala	Val	Glu	Pro	Ser	Lys	Pro	Thr	Val	Leu	Arg	Ser	Thr	Ser	Thr	Ser	
		1880	)				1885	<b>,</b>				1890	)				
	tca	ccc	gtt	cgc	cca	gct	gcc	aca	ttc	cca	cct	gcc	acc	cac	tgc	cca	5886
	Ser	Pro	Val	Arg	Pro	Ala	Ala	Thr	Phe	Pro	Pŗo	Ala	Thr	His	Cys	Pro	
	1895	;				1900	)				1905	5				1910	

ctg	ggc	ggc	aco	ct	c ga	t gg	g gt	c ta	c cci	t ac	c ct	c at	g ga	g co	c gtc	5934
Leu	Gly	G1y	Thi	Le	u As	p Gl	y Va	1 <b>Ty</b>	r Pro	o Thi	r Le	u Me	t Gl	u Pr	o Val	
				19:	15				192	20				19	25	
ttg	ctg	ccc	aag	g gag	gc	c cc	c cg	ggto	gc	cgg	g cc	a ga	g cg	g cc	c cga	5982
Leu	Leu	Pro	Lys	Glu	ı Al	a Pro	o Arg	y Val	l Ala	a Arg	) Pro	o G1	u Ar	g Pr	o Arg	
			193					193	-				19			
gca	gac	acc	ggc	cat	gc	c tto	cto	gco	aag	ccc	cca	a gc	c cg	c tc	c ggg	6030
Ala	Asp	Thr	Gly	His	3 Ala	a Phe	e Let	ı Ala	Lys	Pro	Pro	o Ala	a Ar	g Se	r Gly	
		194					195					19				
ctg -	gag	CCC	.gcc	tec	: tc	ccc	: ago	aag	ggc	tcg:	gag	g cc	c cg	gcc	c cta	6078
Leu			Ala	Ser	Sei	Pro	Ser	Lys	Gly	Ser	Glu	ı Pro	Arq	g Pr	o Leu	
	1960					196	-				197					
gtg .	cct	cct	gtc	tct	ggo	cac	gcc	acc	atc	gcc	cgc	aco	cat	gc	g aag	6126
vaı	Pro	Pro	Val	Ser	G13	/ His	Ala	Thr	Ile	Ala	Arg	Thi	Pro	Ala	a Lys	
1975					198					198	-				1990	)
aac	CEC	gca	cct	cac	cac	gcc	agc	ccg	gac	ccg	ccg	gcg	CCE	cci	gcc	6174
ASII	теп	АТА	Pro			Ala	Ser	Pro	Asp	Pro	Pro	Ala	Pro	Pro	Ala	
taa	~~~	<b>.</b>		199	_	•			200	_				200		
cce	900 310	ccg	gac	ccg	cac	cgg	gaa	aag	act	caa	agt	aaa	ccc	ttt	tee	6222
per	мта	ser			His	Arg	Glu			Gln	Ser	ГЛЗ	Pro	Phe	e Ser	
ato	C2~	~~~	2010	-				201	-				202			
Tle	cay cln	yaa Clu	tou	gaa	CTC	cgt -	tet	ctg	ggt	tac	cac	ggc	agc	ago	tac	6270
220		91u 2025		GIU	ьеи	Arg			Gly	Tyr	His	Gly	Ser	Ser	Tyr	
·agc				~+~	~~~		2036	_				203				
· agc (	Pro (	gaa Glu	999	yry wal	gag	CCC	gtc	agc	cct	gtg	agc	tca	ccc	agt	ctg	6318
Ser 1	2040	<b>514</b>	СТА	vaı	GIU			Ser	Pro	Val			Pro	Ser	Leu	
		rac a	aad	aaa	ctc	2049					2050	-				
acc of	lis 2	Asp 1	ivs	Glv	Len	Pro	Tura	cac	ctg	gaa	gag	ctc	gac	aag	agc	6366
2055				<u></u>	2060		БУБ	птѕ	ьеи			Leu	Asp	Lys		
cac c	tg o	ag (	aaa .	σaσ			CCC	220	<b>~~</b>	2065					2070	
His I	eu (	Slu (	Sly (	Glu	Leu	Ara	Pro	Lve	Cla	Des	ggc	ccc	gtg	aag -	ctt	6414
				2075		5			2080		GTÀ	PIO	vaı			
ggc g	igg g	rag c				ctc	cca							208		
Gly G	ly c	lu A	la 2	Ala	His	Leu	Pro	His	Len	~gg (	Dro	ten	De-	gag	agc	6462
		2	090					 2095	cu .	.шу	T.T.O.	neu	2100		ser	
cag c	cc t			agc (	ccg	cta			acc 4	acc 4	cca	~~~				6510
Gln P	ro S	er S	er s	Ser :	Pro	Leu :	Leu (	Gln '	Thr :	י בומ	Dra :	61 888	yec val	ada	ggt	6510
	2	105					2110					сту 2115		пÃ2	стХ	

PTS-0012 -13-

cac cag cgg gtg gtc acc ctg gcc cag cac atc agt gag gtc atc aca 6558 His Gln Arg Val Val Thr Leu Ala Gln His Ile Ser Glu Val Ile Thr 2125 cag gac tac acc cgg cac cac cca cag cag ctc agc gca ccc ctg ccc 6606 Gln Asp Tyr Thr Arg His His Pro Gln Gln Leu Ser Ala Pro Leu Pro 2135 2140 2145 gee ece etc tae tee tte eet ggg gee age tge eee gte etg gae etc 6654 Ala Pro Leu Tyr Ser Phe Pro Gly Ala Ser Cys Pro Val Leu Asp Leu 2155 2160 ege ege eca ece agt gae ete tac ete eeg ece eeg gae eat ggt gee 6702 Arg Arg Pro Pro Ser Asp Leu Tyr Leu Pro Pro Pro Asp His Gly Ala 2170 2175 2180 ccg gcc cgt ggc tcc ccc cac agc gaa ggg ggc aag agg tct cca gaq 6750 Pro Ala Arg Gly Ser Pro His Ser Glu Gly Gly Lys Arg Ser Pro Glu 2185 2190 2195 cca aac aag acg tcg gtc ttg ggt ggt ggt gag gac ggt att gaa cct 6798 Pro Asn Lys Thr Ser Val Leu Gly Gly Glu Asp Gly Ile Glu Pro 2200 gtg tcc cca ccg gag ggc atg acg gag cca ggg cac tcc cgg agt gct 6846 Val Ser Pro Pro Glu Gly Met Thr Glu Pro Gly His Ser Arg Ser Ala 2220 2225 gtg tac ecg etg tac egg gat ggg gaa eag acg gag ece age agg 6894 Val Tyr Pro Leu Leu Tyr Arg Asp Gly Glu Gln Thr Glu Pro Ser Arg 2235 2240 atg ggc tcc aag tct cca ggc aac acc agc cag ccg cca gcc ttc ttc 6942 Met Gly Ser Lys Ser Pro Gly Asn Thr Ser Gln Pro Pro Ala Phe Phe 2250 2255 2260 age aag etg ace gag age aac tee gee atg gte aag tee aag aag caa 6990 Ser Lys Leu Thr Glu Ser Asn Ser Ala Met Val Lys Ser Lys Lys Gln 2265 2270 gag atc aac aag aag ctg aac acc cac aac cgg aat gag cct gaa tac 7038 Glu Ile Asn Lys Lys Leu Asn Thr His Asn Arg Asn Glu Pro Glu Tyr 2280 2285 aat atc agc cag cct ggg acg gag atc ttc aat atg ccc gcc atc acc 7086 Asn Ile Ser Gln Pro Gly Thr Glu Ile Phe Asn Met Pro Ala Ile Thr 2295 2300 gga aca ggc ctt atg acc tat aga agc cag gcg gtg cag gaa cat gcc 7134 Gly Thr Gly Leu Met Thr Tyr Arg Ser Gln Ala Val Gln Glu His Ala 2315 2320 2325

-14- PATENT

PTS-0012

agc	acc	aac	atg	ggg	ctg	gag	gcc	ata	att	aga	aag	gca	ctc	atg	ggt	7182
Ser	Thr	Asn	Met	Gly	Leu	Glu	Ala	Ile	Ile	Arg	Lys	Ala	Leu	Met	Gly	
	•		2330	)		•	•	2335	5				2340	)		
aaa	tat	gac	cag	tgg	gaa	gag	tcc	ccg	ccg	ctc	agc	gcc	aat	gct	ttt	7230
Lys	Tyr	Asp	Gln	Trp	Glu	Glu	Ser	Pro	Pro	Leu	Ser	Ala	Asn	Ala	Phe	
		2349	5				2350	)				2355	5			
aac	cct	ctg	aat	gcc	agt	gcc	agc	ctg	ccc	gct	gct	atg	ccc	ata	acc .	7278
Asņ	Pro	Leu	Asn	Ala	Ser	Ala	Ser	Leu	Pro	Ala	Ala	Met	Pro	Ile	Thr	
	2360	)				2365	5				2376	0				
gct	gct	gac	gga	cgg	agt	gac	cac	aca	ctc	acc	tcg	cca	ggt	ggc	ggc	7326
Ala	Ala	Asp	Gly	Arg	Ser	Asp	His	Thr	Leu	Thr	Ser	Pro	Gly	Gly	Gly	
237	5				2380	)				2385	5				2390	
ggg	aag	gcc	aag	gtc	tct	ggc	aga	ccc	agc	agc	cga	aaa	gcc	aag	tcc	7374
Gly	Lys	Ala	Lys	Val	Ser	Gly	Arg	Pro	Ser	Ser	Arg	Lys	Ala	Lys	Ser	
				2399	5				2400	)				2409	5	
ccg	gcc	ccg	ggc	ctg	gca	tct	ggg	gac	cgg	cca	CCC	ţct	gtc	tcc	tca	7422
Pro	Ala	Pro	Gly	Leu	Ala	Ser	Gly	Asp	Arg	Pro	Pro	Ser	Val	Ser	Ser	
			241	0				241	5				242	0		
gtg	cac	tcg	gag	gga	gac	tgc	aac	cgc	cgg	acg	ccg	ctc	acc	aac	cgc	7470
Val	His	Ser	Glu	Gly	Asp	Cys	Asn	Arg	Arg	Thr	Pro	Leu	Thr	Asn	Arg	
		242	5				243	0				243	5			
gtg	tgg	gag	gac	agg	ccc	tcg	tcc	gca	ggt	tcc	acg	cca	ttc	ccc	tac	7518
۷al	Trp	Glu	Asp	Arg	Pro	Ser	Ser	Ala	Gly	Ser	Thr	Pro	Phe	Pro	Tyr	
	244	0				244	5				245	0				
aac	ccc	ctg	atc	atg	cgg	ctg	cag	gcg	ggt	gtc	atg	gct	tcc	cca	ccc	7566
Asn	Pro	Leu	Ile	Met	Arg	Leu	Gln	Ala	Gly	Val	Met	Ala	Ser	Pro	Pro	
245	5				246	0				246	5				2470	
cca	ccg	ggc	ctc	ccc	gcg	ggc	agc	ggg	ccc	ctc	gct	ggc	CCC	cac	cac	7614
Pro	Pro	Gly	Leu	Pro	Ala	Gly	Ser	Gly	Pro	Leu	Ala	Gly	Pro	His	His	
				247					248	•				2489		
gcc	tgg	gac	gag	gag	CCC	aag	cca	ctg	ctc	tgc	tcg	cag	tac	gag	aca	7662
Ala	Trp	Asp			Pro	Lys	Pro	Leu	Leu	Суѕ	Ser	Gln	Tyr	Glu	Thr	
			249	0				249	5				250	0		
ctc	tcc	gac	agc	gag	tga	ctca	agaa	cag q	ggcg	gggg	gg g	gcgg	gcgg	t gto	caggtcc	c 7720
Leu	Ser	Asp	Ser	Glu												
		250	5													
agc	gagc	cac	agga	acggo	CC C1	tgca	ggag	c ggg	ggcg	gctg	ccg	actc	ccc (	caac	caagga	7780
											-	-			ccttg	7840
cct	gtcta	aaa 🤉	gccti	taact	ta a	gact	cccg	c cc	cggg	ctgg	CCC	tgtg	cag a	acct	tactca	7900

PTS-0012 -15- PATENT

ggggatgttt acctggtgct cgggaaggga ggggaagggg ccggggaggg ggcacggcag 7960 gcgtgtggca gccacacaca ggcggccagg gcggccaggg acccaaagca ggatgaccac 8020 gcacctccac gccactgcct cccccgaatg catttggaac caaagtctaa actgagetcg 8080 cagcccccgc gccctccctc cgcctcccat cccgcttagc gctctggaca gatggacgca 8140 ggccctgtcc agcccccagt gcgctcgttc cggtccccac agactgccc agccaacgag 8200 attgctggaa accaagtcag gccaggtggg cggacaaaag ggccaggtgc ggcctggggg 8260 gaacggatgc tccgaggact ggactgtttt tttcacacat cgttgccgca gcggtgggaa 8320 ggaaaggcag atgtaaatga tgtgttggtt tacagggtat atttttgata ccttcaatga 8380 attaattcag atgttttacg caaggaagga cttacccagt attactgctg ctgtgctttt 8440 gatetetget tacegtteaa gaggegtgtg caggeegaca gteggtgace ceateacteg 8500 caggaccaag ggggcgggga ctgctcgtca cgccccgctg tgtcctccct ccctccttc 8560 cttgggcaga atgaattcga tgcgtattct gtggccgcca tttgcgcagg gtggtggtat 8620 8680 aaaaaa 8686

<210> 5

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 5

cacacatcgt tgccgcag

18

<210> 6

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 6

aaggtatcaa aaatataccc tgtaaacca

-16-

PATENT

<210> 7

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 7

tgggaaggaa aggcagatgt aaatgatgtg

30

<210> 8

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 8

gaaggtgaag gtcggagtc

19

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 9

gaagatggtg atgggatttc

```
<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR Probe
<400> 10
caagetteec gtteteagee
                                                                       20
<210> 11
<211> 8561
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (2)...(7555)
<400> 11
c atg tcg ggc tcc aca cag ctt gtg gca cag acg tgg agg gcc act gag 49
  Met Ser Gly Ser Thr Gln Leu Val Ala Gln Thr Trp Arg Ala Thr Glu
ccc cgc tac ccg ccc cac agc ctt tcc tac cca gtg cag atc gcc cgg
                                                                    97
Pro Arg Tyr Pro Pro His Ser Leu Ser Tyr Pro Val Gln Ile Ala Arg
             20
acg cac acg gac gtc ggg ctc ctg gag tac cag cac cac tcc cgc gac
                                                                   145
Thr His Thr Asp Val Gly Leu Leu Glu Tyr Gln His His Ser Arg Asp
         35
                             40
tat gcc tcc cac ctg tcg ccg ggc tcc atc atc cag ccc cag cgg cgg
                                                                   193
Tyr Ala Ser His Leu Ser Pro Gly Ser Ile Ile Gln Pro Gln Arg Arg
     50
                         55
                                              60
agg ccc tcc ctg ctg tct gag ttc cag ccc ggg aat gaa cgg tcc cag
                                                                   241
```

-18-

Arg	Pro	Ser	Leu	Leu	Ser	Glu	Phe	Gln	Pro	Gly	Asn	Glu	Arg	Ser	Gln	
65					70					75					80	
gag	ctc	cac	ctg	cgg	cca	gag	tcc	cac	tca	tac	ctg	ccc	gag	ctg	ggg	289
Glu	Leu	His	Leu	Arg	Pro	Glu	Ser	His	Ser	Tyr	Leu	Pro	Glu	Leu	Gly	
				85					90					95		
aag	tca	gag	atg	gag	ttc	att	gaa	agc	aag	cgc	cct	cgg	cta	gag	ctg	337
Lys	Ser	Glu	Met	Glu	Phe	Ile	Glu	Ser	Lys	Arg	Pro	Arg	Leu	Glu	Leu	
			100					105					110			
					ctg										_	385
Leu	Pro	Asp	Pro	Leu	Leu	Arg	Pro	Ser	Pro	Leu	Leu	Ala	Thr	Gly	Gln	
		115					120					125				
					gac								_		_	433
Pro		Gly	Ser	Glu	Asp	Leu	Thr	Lys	Asp	Arg	Ser	Leu	Thr	Gly	Lys	
	130			•		135					140					
					ccc								•			481
	Glu	Pro	Val	Ser	Pro	Pro	Ser	Pro	Pro	His	Thr	Asp	Pro	Glu	Leu	
145					150					155					160	
					cāā										-	529
Glu	Leu	Val	Pro		Arg	Leu	Ser	Lys		Glu	Leu	Ile	Gln	Asn	Met	
				165					170					175		
				-	gag											577
Asp	Arg	Val		Arg	Glu	Ile	Thr		Val	Glu	Gln	Gln	Ile	Ser	Lys	
			180					185					190			
					caa											625
Leu	ьуs		Lys	GIn	Gln	GIn		Glu	Glu	Glu	Ala		Lys	Pro	Pro	
		195					200					205				
					gtg											673
GIU		GIU	гÀг	Pro	Val		Pro	Pro	Pro	Ile		Ser	Lys	His	Arg	
	210					215					220					
					atc											721
	ьец	vaı	GIN	TTE	Ile	Tyr	Asp	GLu	Asn		Lys	Lys	Ala	Glu		
225					230					235					240	
					gaa											769
AIA	HIS	Arg	TIE		Glu	GIY	Leu	СІУ	•	Gln	Val	Glu	Leu		Leu	
				245					250					255		
					gac											817
TAL	ASN	GIU		ser	Asp	rnr	Arg		тут	His	Glu	Asn		Гуs	Ile	
250	<b>0</b> 2~	ac~	260					265					270			
aac	cag	gcg	atg	cgg	aag	aag	сţа	atc	ttg	tac	ttc	aag	agg	agg	aat	865

Asn	Gln	Ala 275	Met	Arg	Lys	Lys	Leu 280	Ile	Leu	Tyr	Phe	Lys 285	Arg	Arg	Asn	
cac	gct	cgg	aaa	caa	tgg	aag	cag	aag	ttc	tgc	cag	_	tat	gac	cag	913
			Lys											_	_	
	290					295					300		_	-		
ctc	atg	gag	gcc	ttg	gaa	aaa	aag	gtg	gag	cgc	atc	gaa	aac	aac	ccg	961
Leu	Met	Glu	Ala	Leu	Glu	Lys	Lys	Val	Glu	Arg	Ile	Glu	Asn	Asn	Pro	
305					310					315					320	
cgc	cgg	cgg	gcc	aag	gag	agc	aag	gtg	cgc	gag	tac	tac	gaa	aag	cag	1009
Arg	Arg	Arg	Ala	Lys	Glu	Ser	Lys	Val	Arg	Glu	Tyr	Tyr	Glu	rys	Gln	
				325					330					335		
ttc	cct	gag	atc	cgc	aag	cag	cgc	gag	ctg	cag	gag	cgc	atg	cag	agc	1057
Phe	Pro	Glu	Ile	Arg	Lys	Gln	Arg	Glu	Leu	Gln	Glu	Arg	Met	Gln	Ser	
			340					345					350			
agg	gtg	ggc	cag	cgg	ggc	agt	ggg	ctg	tcc	atg	tcg	gcc	gcc	cgc	agc	1105
Arg	Val	Gly	Gln	Arg	Gly	Ser	Gly	Leu	Ser	Met	Ser	Ala	Ala	Arg	Ser	
		355					360					365				
			gtg										_			1153
Glu	His	Glu	Val	Ser	Glu	Ile	Ile	Asp	Gly	Leu	Ser	Glu	Gln	Glu	Asn	
	370					375					380					
			cag										_	_		1201
	Glu	Lys	Gln	Met	Arg	Gln	Leu	Ala	Val	Ile	Pro	Pro	Met	Leu	Tyr	•
385					390					395					400	
			cag												_	1249
Asp	Ala	Asp	Gln		Arg	Ile	Lys	Phe		Asn	Met	Asn	Gly	Leu	Met	
				405					410					415		
			atg											-		1297
Ala	Asp	Pro	Met	Lys	Val	Tyr	Lys		Arg	Gln	Val	Met		Met	Trp	
			420			_		425					430			
			gag													1345
ser	GIU		Glu	гуs	GIu	Thr		Arg	Glu	Lys	Phe		Gln	His	Pro	
		435					440					445				
			ggc													1393
БХЗ	450	rne	Gly	.neu	тте		ser	Pne	ьeu	GLU		ьуs	Thr	Vai	Ala	
nan		atc	ctc	tat	tag	455	ata	205	226		460					1 4 4 1
			ctc Leu													1441
465	<b>-7.3</b>	V-4.1	u	- 7 7	470	TÄT	neu	TIIT	пÄജ	ьуs 475	ASII	GIU	ASII.	TÄL		
	cta	ata	aga	COO		tət	~~~	~~~	~~~			n	<b></b>	00-	480	1400
~90	9	ສຸຊ	aga	~99	age	cat	ugg.	cgc	uge	မွှင	aag	agc	cag	cag	Cad	1489

								,								
Ser	Leu	Va]	Arg	Arg	Ser	туг	Arg	Arg	Arg	Gly	, Lys	Ser	Gln	Gln	Gln	
				485					490					495		•
															atg	1537
GIn	Gln	Gln			Gln	Gln	Gln	Gln	Gln	Gln	Gln	Gln	. Gln	Pro	Met	
			500					505					510			
															gag	1585
Pro	Arg			GIn	GLu	Glu			Glu	Lys	Glu	Lys	Glu	Lys:	Glu	
~~~	~~~	515					520					525				•
															gac	1633
AIG	530	пуъ	GIU	GIU	GIU	ьуs 535	Pro	GIU	Val	GLu			Lys	Glu	Asp	
ctc		aag	nan	aan	- 202		~ ~~	200	+		540					
															gag Glu	1681
545			0	~, ~	550	ц	nap	1111	Ser	555		Asp	ASII	Asp		
aag	gag	gct	gtg	gcc		aaa	aac	cac	aaa			220	acc	cac	560	1729
						Lys										1729
				565		_	_		570				501	575	GLY	
aga	cgc	aaa	ggc	cgc	atc	acc	cgc	tca	atg	gct	aat	gag	acc		age	1777
						Thr										
			580					585					590			
gag	gag	gcc	atc	acc	ccc	cag	cag	agc	gcc	gag	ctg	gcc	tcc	atg	gag	1825
Glu	Glu	Ala	Ile	Thr	Pro	Gln	Gln	Ser	Ala	Glu	Leu	Ala	Ser	Met	G1u	
		595					600					605				
ctg	aat	gag	agt	tct	cgc	tgg	aca	gaa	gaa	gaa	atg	gaa	aca	gcc	aag	1873
Leu	Asn	Glu	Ser	Ser	Arg	Trp	Thr	Glu	Glu	Glu	Met	Glu	Thr	Ala	Lys	
	610					615					620					
						ggc										1921
	GIÀ	Leu	Leu	Glu		Gly	Arg	Asn	Trp	Ser	Ala	Ile	Ala	Arg	Met	
625					630					635					640	
						tcg -										1969
Val	GTĀ	ser	ьуs		Vai	Ser	GIn	Cys		Asn	Phe	Tyr	Phe		Tyr	
220	220	200	a aa	645				_ •	650					655		
						gat									_	2017
	~, ~	****	660	nsii	Deu	qzA	GIU	665	Leu	GIN	Gin	HIS		Leu	Lys	
atq	gaq	aaσ		agg	aac	gcg	CUM		22~		224	222	670			2065
						Ala										2065
		- 675		-			680	9	~ _J 13	~J 3	-Ly S	685	ura	£10	YT	
gcg	gcc	agc	gag	gag	gct	gca		cca	ccc	ata	ata		αa+	aaa	aaa	2113
				_	-		-	5		2-2	2-2	3~3	g	248	ana	4113

Ala	Ala 690	Ser	Glu	Glu	Ala	Ala 695	Phe	Pro	Pro	Val	Val	Glu	Asp	Glu	Glu	
ata		aca	+00	~~~	ata		~~~	225	~~~	~~~		- t	~-	~~~		2161
		gcg Ala		_			_					_				2161
705	GLU	ALG	Ser	GLY	710	Ser	GLY	Vell	GIU	715	Giu	Mec	vai	GIU		
	~~~	~~~	++a	ast		+a+	~~~	224	~~~				~~~	~	720	2200
		gcc													_	2209
AIG	GIU	Ala	Leu		Ala	ser	стА	ASI		var	Pro	Arg	GTĀ		Суѕ	
				725				*	730					735		
	_	cca	_	_												2257
ser	GIA	Pro		Thr	vaı	Asn	Asn		ser	Asp	rnr	GIU		TTE	Pro	
A A-			740					745					750			
		cac														2305
ser	Pro	His	Thr	GIU	Ala	Ата		Asp	Thr	GΙΆ	GIn		СΙΆ	Pro	Lys	
		755					760					765				
		gcc														2353
Pro		Ala	unr	Leu	GīĀ		Asp	GLY	Pro	Pro		GГĀ	Pro	Pro	Thr	
	770				_	775					780					
		cgg														2401
	Pro	Arg	Arg	Thr		Arg	Ala	Pro	Ile		Pro	Thr	Pro	Ala	Ser	
785					790					795					800	
		acc	_							_			_			2449
Glu	Ala	Thr	Gly	Ala	Pro	Thr	Pro	Pro	Pro	Ala	Pro	Pro	Ser	Pro	Ser	
				805					810					815		
		cct														2497
Ala	Pro	Pro	Pro	Val	Val	Pro	ГÀЗ	Glu	Glu	Lys	Glu	Glu	Glu	Thr	Ala	
			820					825					830			
		ccc														2545
Ala	Ala	Pro	Pro	Val	Glu	Glu	Gly	Glu	Glu	Gln	Lys	Pro	Pro	Ala	Ala	
		835					840					845				
gag	gag	ctg	gca	gtg	gac	aca	ggg	aag	gcc	gag	gag	ccc	gtc	aag	agc	2593
Glu	Glu	Leu	Ala	Val	Asp	Thr	Gly	Lys	Ala	Glu	Glu	Pro	Val	Lys	Ser	
	850					855					860					
gag	tgc	acg	gag	gaa	gcc	gag	gag	ggg	ccg	gcc	aag	ggc	aag	gac	gcg	2641
Glu	Cys	Thr	Glu	Glu	Ala	Glu	Glu	Gly	Pro	Ala	Lys	Gly	Lys	Asp	Ala	
865					870	•				875					880	
gag	gcc	gct	gag	gcc	acg	gcc	gag	ggg	gcg	ctc	aag	gca	gag	aag	aag	2689
Glu	Ala	Ala	Glu	Ala	Thr	Ala	Glu	Gly	Ala	Leu	Lys	Ala	Glu	Lys	Lys	
				885					890					895		
gag	ggc	ġġġ	agc	ggc	agg	gcc	acc	act	gcc	aag	agc	tcg	ggc	gcc	ccc	2737

PTS-0012 -22- PATENT

Glu	Gly	Gly	Ser	Gly	Arg	Ala	Thr	Thr	Ala	Lys	Ser	Ser	Gly	Ala	Pro	
			900					905					910			
cag	gac	agc	gac	tcc	agt	gċt	acc	tgc	agt	gca	gac	gag	gtg	gat	gag	2785
Gln	Asp	Ser	Asp	Ser	Ser	Ala	Thr	Cys	Ser	Ala	Asp	Glu	Val	Asp	Glu	
		915					920					925				
gcc	gag	ggc	ggc	gac	aag	aac	cgġ	ctg	ctg	tcc	cca	agg	ccc	agc	ctc	2833
Ala	Glu	Gly	Gly	Asp	Lys	Asn	Arg	Leu	Leu	Ser	Pro	Arg	Pro	Ser	Leu	
	930					935					940					
ctc	acc	ccg	act	ggc	gac	ccc	cgg	gcc	aat	gcc	tca	ccc	cag	aag	cca	2881
Leu	Thr	Pro	Thr	Gly	Asp	Pro	Arg	Ala	Asn	Ala	Ser	Pro	Gln	ГЛЗ	Pro	
945					950					955					960	
ctg	gac	ctg	aag	cag	ctg	aag	cag	cga	gcg	gct	gcc	atc	ccc	ccc	atc	2929
Leu	Asp	Leu	Lys	Gln	Leu	Lys	Gln	Arg	Ala	Ala	Ala	Ile	Pro	Pro	Ile	
				965					970					975		
cag	gtc	acc	aaa	gtc	cat	gag	ccc	ccc	cgg	gag	gac	gca	gct	ccc	acc	2977
Gln	Val	Thr	Lys	Val	His	Glu	Pro	Pro	Arg	Glu	Asp	Ala	Ala	Pro	Thr	
			980					985					990			
aag	cca	gct	CCC	cca	gcc	cca	ccg	cca	ccg	caa	aac	ctg	cag	ccg	gag	3025
Lys	Pro	Ala	Pro	Pro	Ala	Pro	Pro	Pro	Pro	Gln	Asn	Leu	Gln	Pro	Glu	
		999	=				1000	`				100	-			
		"	,				TOOL	,				1005	,			
agc	gac			cag	cag	cct			agc	ccc	cgg			agc.	agg_	3073
		gcc	cct					agc				ggc	aag			3073
		gcc Ala	cct				ggc Gly	agc				ggc Gly	aag			3073
Seŗ	Asp 1010	gcc Ala )	cct Pro	Gln	Gln	Pro 1015	ggc Gly	agc Ser	Ser	Pro	Arg 1020	ggc Gly )	aag Lys	Ser	Arg	3073
Ser	Asp 1010 ccg	gcc Ala ) gca	cct Pro	Gln	Gln gcc	Pro 1015 gac	ggc Gly	agc Ser gag	Ser	Pro ttc	Arg 1020 gca	ggc Gly ) gcc	aag Lys gag	Ser gcc	Arg cag	
Ser	Asp 1010 ccg Pro	gcc Ala ) gca	cct Pro	Gln	Gln gcc	Pro 1015 gac Asp	ggc Gly 5 aag	agc Ser gag	Ser	Pro ttc	Arg 1020 gca Ala	ggc Gly ) gcc	aag Lys gag	Ser gcc	Arg cag	
ser agc ser	Asp 1010 ccg Pro	gcc Ala ) gca Ala	cct Pro ccc Pro	Gln ccc Pro	gcc Ala 1030	Pro 1019 gac Asp	ggc Gly 5 aag	agc Ser gag Glu	Ser gcc Ala	Pro ttc Phe 1035	Arg 1020 gca Ala	ggc Gly ) gcc Ala	aag Lys gag Glu	Ser gcc Ala	Arg cag Gln 1040	
ser agc ser 1025	Asp 1010 ccg Pro ctg	gcc Ala ) gca Ala cct	cct Pro ccc Pro	Gln ccc Pro	Gln gcc Ala 1030 ccc	Pro 1015 gac Asp	ggc Gly aag Lys	agc Ser gag Glu	Ser gcc Ala act	Pro ttc Phe 1035	Arg 1020 gca Ala 5	ggc Gly ) gcc Ala ctg	aag Lys gag Glu ccc	Ser gcc Alas	cag Gln 1040	. 3121
ser agc ser 1025	Asp 1010 ccg Pro ctg	gcc Ala ) gca Ala cct	cct Pro ccc Pro	Gln ccc Pro	Gln gcc Ala 1030 ccc Pro	Pro 1015 gac Asp	ggc Gly aag Lys	agc Ser gag Glu	Ser gcc Ala act	Pro ttc Phe 1035 tcc Ser	Arg 1020 gca Ala 5	ggc Gly ) gcc Ala ctg	aag Lys gag Glu ccc	Ser gcc Alas	cag Gln 1040 ccc Pro	. 3121
ser agc Ser 1025 aag	Asp 1010 ccg Pro ctg Leu	gcc Ala ) gca Ala cct Pro	Gly ecc Pro	Gln ccc Pro gac Asp	gcc Ala 1030 ccc Pro	Pro 1015 gac Asp cct Pro	ggc Gly aag Lys	agc Ser gag Glu tgg	gcc Ala act Thr	ttc Phe 1035 tcc Ser	Arg 1020 gca Ala Ggc	ggc Gly gcc Ala ctg Leu	aag Lys gag Glu ccc Pro	gcc Alas ttc Phe	cag GGln 1040 ccc Pro	. 3121
agc Ser 1025 aag Lys	Asp 1010 ccg Pro ctg Leu	gcc Ala ) gca Ala cct Pro	cct Pro ccc Pro ggg Gly	Gln ccc Pro . gac Asp 1045	gcc Ala 1030 ccc Pro	Pro 1015 gac Asp cct Pro	ggc Gly aag Lys tgc Cys	agc Ser gag Glu tgg Trp	gcc Ala act Thr 1050	ttc Phe 1035 tcc Ser )	Arg 1020 gca Ala Ggc Gly cat	ggc Gly gcc Ala ctg Leu	aag Lys gag Glu ccc Pro	gcc Alas ttc Phe 1055	cag Gln 1040 ccc Pro 6	3121
ser agc ser 1025 aag Lys gtg Val	Asp 1010 ccg Pro ctg Leu ccc	gcc Ala ) gca Ala cct Pro ccc	cct Pro ccc Pro ggg Gly cgt Arg	Gln ccc Pro . gac Asp 1045 gag Glu	gcc Ala 1030 ccc Pro gtg Val	Pro 1015 gac Asp cct Pro atc	ggc Gly aag Lys tgc Cys aag	agc Ser gag Glu tgg Trp gcc Ala 1065	gcc Ala act Thr 1050 tcc. Ser	ttc Phe 1035 tcc Ser Ccg Pro	Arg 1020 gca Ala 6 ggc Gly cat His	ggc Gly gcc Ala ctg Leu gcc	aag Lys gag Glu ccc Pro ccg Pro	gcc Alas ttc Phe 1055 gac Asp	cag Gln 1040 ccc Pro ccc	3121
ser agc ser 1025 aag Lys gtg Val	Asp 1010 ccg Pro ctg Leu ccc Pro,	gcc Ala ) gca Ala cct Pro ccc Pro	cct Pro ccc Pro ggg Gly cgt Arg 1060	Gln  ccc Pro  gac Asp 1045 gag Glu tac	gcc Ala 1030 ccc Pro gtg Val	Pro 1015 gac Asp cct Pro atc Ile	ggc Gly aag Lys tgc Cys aag Lys	agc Ser gag Glu tgg Trp gcc Ala 1065 ggt	gcc Ala act Thr 1050 tcc. Ser	ttc Phe 1035 tcc Ser Ccg Pro	Arg 1020 gca Ala ggc Gly cat His	ggc Gly gcc Ala ctg Leu gcc Ala	aag Lys gag Glu ccc Pro ccg Pro 1070 ctg	gcc Alat ttc Phe 1055 gac Asp	Cag GGln 1040 CCC Pro CCC Pro CCC	3121
ser agc ser 1025 aag Lys gtg Val	Asp 1010 ccg Pro ctg Leu ccc Pro,	gcc Ala  gca Ala  cct Pro  ccc Pro  ttc Phe	cct Pro ccc Pro ggg Gly cgt Arg 1060 tcc	Gln  ccc Pro  gac Asp 1045 gag Glu tac	gcc Ala 1030 ccc Pro gtg Val	Pro 1015 gac Asp cct Pro atc Ile	ggc Gly aag Lys tgc Cys aag	agc Ser gag Glu tgg Trp gcc Ala 1065 ggt	gcc Ala act Thr 1050 tcc. Ser	ttc Phe 1035 tcc Ser Ccg Pro	Arg 1020 gca Ala ggc Gly cat His	ggc Gly gcc Ala ctg Leu gcc Ala	aag Lys gag Glu ccc Pro ccg Pro 1070 ctg	gcc Alat ttc Phe 1055 gac Asp	Cag GGln 1040 CCC Pro CCC Pro CCC	3121 3169 3217
ser agc ser 1025 aag Lys gtg Val	Asp 1010 ccg Pro ctg Leu ccc Pro,	gcc Ala ) gca Ala cct Pro ccc Pro	cct Pro ccc Pro ggg Gly cgt Arg 1060 tcc	Gln  ccc Pro  gac Asp 1045 gag Glu tac	gcc Ala 1030 ccc Pro gtg Val	Pro 1015 gac Asp cct Pro atc Ile	ggc Gly aag Lys tgc Cys aag Lys	agc Ser  gag Glu  tgg Trp  gcc Ala 1065 ggt Gly	gcc Ala act Thr 1050 tcc. Ser	ttc Phe 1035 tcc Ser Ccg Pro	Arg 1020 gca Ala ggc Gly cat His	ggc Gly gcc Ala ctg Leu gcc Ala	aag Lys gag Glu ccc Pro ccg Pro 1070	gcc Alat ttc Phe 1055 gac Asp	Cag GGln 1040 CCC Pro CCC Pro CCC	3121 3169 3217
ser agc Ser 1025 aag Lys gtg Val tca Ser cat	Asp 1010 ccg Pro ctg Leu ccc Pro, gcc Ala	gcc Ala gca Ala cct Pro ccc Pro ttc Phe 1075	cct Pro ccc Pro ggg Gly cgt Arg 1060 tcc Ser	Gln  ccc Pro  gac Asp 1045 gag Glu tac Tyr	gcc Ala 1030 ccc Pro 5 gtg Val gct Ala	Pro 1015 gac Asp cct Pro atc Ile cca Pro gtc	ggc Gly aag Lys tgc Cys aag Lys cct Pro 1080	agc Ser  gag Glu  tgg Trp  gcc Ala 1065 ggt Gly  ccg	gcc Ala act Thr 1050 tcc Ser cac His	ttc Phe 1035 tcc Ser Ccg Pro cca Pro	Arg 1020 gca Ala ggc Gly cat His ctg Leu ccc	ggc Gly gcc Ala ctg Leu gcc Ala ccc 1085	aag Lys gag Glu ccc Pro ccg Pro lo70 ctg Leu atc	gcc Alax ttc Phe 1055 gac Asp ggc Gly	cag Gln 1040 ccc Pro ccc Pro ctc Leu aac	3121 3169 3217
ser agc Ser 1025 aag Lys gtg Val tca Ser cat	Asp 1010 ccg Pro ctg Leu ccc Pro gcc Ala gac Asp	gcc Ala gca Ala cct Pro ccc Pro ttc Phe 1075 act	cct Pro ccc Pro ggg Gly cgt Arg 1060 tcc Ser	Gln  ccc Pro  gac Asp 1045 gag Glu tac Tyr	gcc Ala 1030 ccc Pro 5 gtg Val gct Ala	Pro 1015 gac Asp cct Pro atc Ile cca Pro gtc	ggc Gly aag Lys tgc Cys aag Lys cct Pro	agc Ser  gag Glu  tgg Trp  gcc Ala 1065 ggt Gly  ccg	gcc Ala act Thr 1050 tcc Ser cac His	ttc Phe 1035 tcc Ser Ccg Pro cca Pro	Arg 1020 gca Ala ggc Gly cat His ctg Leu ccc	ggc Gly gcc Ala ctg Leu gcc Ala ccc 1085	aag Lys gag Glu ccc Pro ccg Pro lo70 ctg Leu atc	gcc Alax ttc Phe 1055 gac Asp ggc Gly	cag Gln 1040 ccc Pro ccc Pro ctc Leu aac	3169 3217 3265
ser agc Ser 1025 aag Lys gtg Val tca Ser cat His	Asp 1010 ccg Pro ctg Leu ccc Pro, gcc Ala gac Asp	gcc Ala gca Ala cct Pro ccc Pro ttc Phe 1075 act	cct Pro ccc Pro ggg Gly cgt Arg 1060 tcc Ser gcc Ala	Gln ccc Pro gac Asp 1045 gag Glu tac Tyr cgg Arg	gcc Ala 1030 ccc Pro  gtg Val gct Ala ccc	Pro 1015 gac Asp cct Pro atc Ile cca Pro gtc Val 1095	ggc Gly aag Lys tgc Cys aag Lys cct Pro 1080 ctg	agc Ser  gag Glu  tgg Trp  gcc Ala 1065 ggt Gly  ccg Pro	gcc Ala act Thr 1050 tcc Ser cac His	ttc Phe 1035 tcc Ser Ccg Pro cca Pro	Arg 1020 gca Ala 6 ggc Gly cat His ctg Leu ccc Pro	ggc Gly gcc Ala ctg Leu gcc Ala ccc Thr	aag Lys gag Glu ccc Pro ccg Pro lo7( ctg Leu atc	gcc Alax ttc Phe 1055 gac Asp ggc Gly tcc Ser	cag Gln 1040 ccc Pro ccc Pro ctc Leu aac Asn	3169 3217 3265

PTS-0012 -23- PATENT

Pro Pro Pro Leu	Ile Ser Ser	Ala Lys His	Pro Ser Val	Leu Glu Arg
1105	1110		1115	1120
caa ata ggt gcc	atc tcc caa	gga atg tcg	gtc cag ctc	cac gtc ccg 3409
Gln Ile Gly Ala	Ile Ser Gln	Gly Met Ser	Val Gln Leu	His Val Pro
	1125	113	0	1135
tac tca gag cat	gcc aag gcc	ccg gtg ggc	cct gtc acc	atg ggg ctg 3457
Tyr Ser Glu His	Ala Lys Ala	Pro Val Gly	Pro Val Thr	Met Gly Leu
114	0	1145		1150
ccc ctg ccc atg	gac ccc aaa	aag ctg gca	ccc ttc agc	gga gtg aag 3505
Pro Leu Pro Met	Asp Pro Lys	Lys Leu Ala	Pro Phe Ser	Gly Val Lys
1155		1160	116	5
cag gag cag ctg	tcc cca cgg	ggc cag gct	ggg cca ccg	gag agc ctg 3553
Gln Glu Gln Leu	Ser Pro Arg	Gly Gln Ala	Gly Pro Pro	Glu Ser Leu
1170	117	5	1180	
ggg gtg ccc aca	gcc cag gag	gcg tcc gtg	ctg aga ggg	aca gct ctg 3601
Gly Val Pro Thr	Ala Gln Glu	Ala Ser Val	Leu Arg Gly	Thr Ala Leu
1185	1190		1195	1200
ggc tca gtt ccg	ggc gga agc	atc acc aaa	ggc att ccc	agc aca cgg 3649
Gly Ser Val Pro	Gly Gly Ser	Ile Thr Lys	Gly Ile Pro	Ser Thr Arg
	1205	121	0	1215
gtą ccc tcg gac	agc gcc atc	aca tac cgc	ggc tcc atc	acc cac ggc 3697
Val Pro Ser Asp	Ser Ala Ile	Thr Tyr Arg	Gly Ser Ile	Thr His Gly
122	0	1225		1230
acg cca gct gac	gtc ctg tac	aag ggc acc	atc acc agg	atc atc ggc 3745
Thr Pro Ala Asp	Val Leu Tyr	Lys Gly Thr	Ile Thr Arg	Ile Ile Gly
1235		1240	124	5
gag gac agc ccg	agt cgc ttg	gac cgc ggc	cgg gag gac	agc ctg ccc 3793
Glu Asp Ser Pro	Ser Arg Leu	Asp Arg Gly	Arg Glu Asp	Ser Leu Pro
1250	125	5	1260	
aag ggc cac gtc	atc tac gaa	ggc aag aag	ggc cac gtc	ttg tcc tat 3841
Lys Gly His Val	Ile Tyr Glu	Gly Lys Lys	Gly His Val	Leu Ser Tyr
1265	1270		1275	1280
gag ggt ggc atg	tct gtg acc	cag tgc tcc	aag gag gac	ggc aga agc 3889
Glu Gly Gly Met	Ser Val Thr	Gln Cys Ser	Lys Glu Asp	Gly Arg Ser
	1285	129	)	1295
agc tca gga ccc	ccc cat gag	acg gcc gcc	ccc aag cgc	acc tat gac 3937
Ser Ser Gly Pro	Pro His Glu	Thr Ala Ala	Pro Lys Arg	Thr Tyr Asp
1300	D	1305		1310
atg atg gag ggc	cgc gtg ggc	aga gcc atc	tcc tca gcc	agc atc gaa 3985

PTS-0012 -24-PATENT

Met	Met	Glu	Gly	Arg	Val	Gly	Arg	Ala	Ile	Ser	Ser	Ala	Ser	Ile	Glu	
		131	5				1320	)				132	5			
gġt	ctc	atg	ggc	cgt	gcc	atc	ccg	ccg	gag	cga	cac	agc	ccc	cac	cac	4033
Gly	Leu	Met	Gly	Arg	Ala	Ile	Pro	Pro	Glu	Arg	His	Ser	Pro	His	His	
	1330	)				133	5				1340	)				
ctc	aaa	gag	cag	cac	cac	atc	cgc	ggg	tcc	atc	aca	caa	ggg	atc	cct	4081
Leu	Lys	Glu	Gln	His	His	Ile	Arg	Gly	Ser	Ile	Thr	Gln	Gly	Ile	Pro	
134	5				1350	)				1355	5				1360	
cgg	tcc	tac	gtg	gag	gca	cag	gag	gac	tac	ctg	cgt	cgg	gag	gcc	aag	4129
Arg	Ser	Tyr	Val	Glu	Ala	Gln	Glu	Asp	Tyr	Leu	Arg	Arg	Glu	Ala	Lys	
				1369	5				1370	כ				137	5	
ctc	cta	aag	cgg	gag	ggc	acg	cct	ccg	ccc	cca	ccg	ccc	tca	cgg	gac	4177
Leu	Leu	Lys	Arg	Glu	Gly	Thr	Pro	Pro	Pro	Pro	Pro	Pro	Ser	Arg	Asp	
			1386	)				138	5				1390	0		
ctg	acc	gag	gcc	tac	aag	acg	cag	gcc	ctg	ggc	ccc	ctg	aag	ctg	aag	4225
Leu	Thr	Glu	Ala	Tyr	Lys	Thr	Gln	Ala	Leu	Gly	Pro	Leu	Lys	Leu	Lys	
		139	5				1400	)				1409	5			
					ctg											4273
Pro	Ala	His	Glu	Gly	Leu	Val	Ala	Thr	Val	Lys	Glu	Ala	Gly	Arg	Ser	
	1410					1419					1420					
					cgc											4321
		Glu	Ile	Pro	Arg	Glu	G1u	Leu	Arg	His	Thr	Pro	Glu	Leu	Pro	
1429					1430					1435					1440	
					ctc								-		_	4369
Leu	Ala	Pro	Arg		Leu	Lys	Glu	Gly	Ser	Ile	Thr	Gln	Gly	Thr	Pro	
				1445					1450					145		
					ggc											4417
Leu	Lys	Tyr			Gly	Ala	Ser			Gly	Ser	Lys			Asp	
			1460					1465					1470			
					ggc											4465
Val	Arg			Ile	Gly	Ser			Arg	Thr	Phe			Val	His	
		1475	='				1480					1485				
					gcc											4513
Pro			vaı	Mec	Ala			Arg	Ala	Leu			Ala	Суѕ	Tyr	
	1490					1495					1500					
					agc											4561
		ser	ьeu	туѕ	Ser		PTO	GŢĀ	Thr			Ser	Ser	СŢХ		
1505					1510					1515					1520	
CCC	act	gcg	cgc	ggc	gcc	ccg	gtc	att	gtg	·cct	gag	ctg	ggt	aag	ccg	4609

Ser	Ile	Ala	Arg	Gly	Ala	Pro	Val	Ile	Val	Pro	Glu	Leu	Gly	Lys	Pro	
				152	5				153	0				153	5	
cgg	cag	agc	ccc	ctg	acc	tat	gag	gac	cac	ggg	gca	ccc	ttt	gcc	ggc	4657
Arg	Gln	Ser	Pro	Leu	Thr	Tyr	Glu	Asp	His	Gly	Ala	Pro	Phe	Ala	Gly	
			154	0				154	5				155	0		
cac	ctc	cca	cga	ggt	tcg	ccc	gtg	acc	atg	cgg	gag	ccc	acg	ccg	cgc	4705
His	Leu	Pro	Arg	Gly	Ser	Pro	Va1	Thr	Met	Arg	Glu	Pro	Thr	Pro	Arg	
		155	5				156	0				156	5			
ctg	cag	gag	ggc	agc	ctt	tcg	tcc	agc	aag	gca	tcc	cag	gac	cga	aag	4753
Leu	Gln	Glu	Gly	Ser	Leu	Ser	Ser	Ser	Lys	Ala	Ser	Gln	Asp	Arg	Lys	
•	157	0				157	5				158	)				
ctg	acg	tcg	acg	cct	cgt	gag	atc	gcc	aag	tcc	ccg	cac	agc	acc	gtg	4801
Leu	Thr	Ser	Thr	Pro	Arg	Glu	Ile	Ala	Lys	Ser	Pro	His	Ser	Thr	Val	
158	5				1590	0				159	5				1600	
. ccc	gag	cac	cac	cca	cac	ccc	atc	tcg	CCC	tat	gag	cac	ctg	ctt	cgg	4849
Pro	Glu	His	His	Pro	His	Pro	'Ile	Ser	Pro	Tyr	Glu	His	Leu	Leu	Arg	
				1605	5				161	0				161	5	
ggc	gtg	agt	ggc	gtg	gac	ctg	tat	cgc	agc	cac	atc	ccc	ctg	gcc	ttc	4897
Gly	Val	Ser	Gly	Val	Asp	Leu	Tyr	Arg	Ser	His	Ile	Pro	Leu	Ala	Phe	
			1620					1625					1630			
				•				atc						-	_	4945
Asp	Pro	Thr	Ser	Ile	Pro	Arg	Gly	Ile	Pro	Leu	Asp	Ala	Ala	Ala	Ala	
		1635					1640					1645				
								CCC							_	4993
Tyr			Pro	Arg	His	Leu	Ala	Pro	Asn	Pro	Thr	Tyr	Pro	His	Leu	•
	1650					1655					1660					
								tac								5041
		Pro	Tyr	Leu	Ile	Arg	Gly	Tyr	Pro	Asp	Thr	Ala	Ala	Leu	Glu	
1669					1670					1675					1680	
								tac								5089
Asn	Arg	Gln	Thr	Ile	Ile	Asn	Asp	Tyr	Ile	Thr	Ser	Gln	Gln	Met	His	
				1685					1690					1695		
								cag								5137
His	Asn				Ala	Met	Ala	Gln		Ala	Asp	Met	Leu	Arg	Gly	
			1700					1705					1710			
								gca								5185
Leu				Glu	Ser	Ser		Ala	Leu	Asn	Tyr	Ala	Ala	Gly	Pro	
		1715					1720					1725				
cga	ggc	atc	atc	gac	ctg	tcc	caa	gtg	cca ·	cac	ctg	cçt	gtg	ctc	gtg	5233

PTS-0012 -26- PATENT

	Arg	Gly	Ile	Ile	Asp	Leu	Ser	Gln	Val	Pro	His	Leu	Pro	Val	Leu	Va1	
		1730	)				1735	· ·				1740	)				
	CCC	ccg	aca	cca	ggc	acc	cca	gcc	acc	gcc	atg	gac	cgc	ctt	gcc	tac	5281
	Pro	Pro	Thr	Pro	Gly	Thr	Pro	Ala	Thr	Ala	Met	Asp	Arg	Leu	Ala	Tyr	
	1745	5				1750	)				1755	5				1760	
	ctc	ccc	acc	gcg	CCC	cag	CCC	ttc	agc	agc	cgc	cac	agc	agc	tcc	cca	5329
	Leu	Pro	Thr	Ala	Pro	Gln	Pro	Phe	Ser	Ser	Arg	His	Ser	Ser	Ser	Pro	
					1765	5				1770	)				1775	5	
	ctc	tcc	cca	gga	ggt	cca	aca	cac	ttg	aca	aaa	cca	acc	acc	acg	tcc	5377
	Leu	Ser	Pro	Gly	Gly	Pro	Thr	His	Leu	Thr	Lys	Pro	Thr	Thr	Thr	Ser	
				1780	)				1785	5				1790	)		
	tcg	tcc	gag	cgg	gag	cga	gac	cgg	gat	cga	gag	cgg	gac	cgg	gat	cgg	5425
	Ser	Ser	Glu	Arg	Glu	Arg	Asp	Arg	Asp	Arg	Glu	Arg	Asp	Arg	Asp	Arg	
			1799	5				1800	)				1805	5			
	gag	cgg	gaa	aag	tcc	atc	ctc	acg	tcc	acc	acg	acg	gtg	gag	cac	ģca	5473
	Glu	Arg	Glu	Lys	Ser	Ile	Leu	Thr	Ser	Thr	Thr	Thr	Val	Glu	His	Ala	
•		1810	)				1815	ō				1820	)				
	ccc	atc	tgg	aga	cct	ggt	aca	gag	cag	agc	agc	ggc	agc	agc	ggc	agc	5521
	Pro	Ile	$\mathtt{Trp}$	Arg	Pro	Gly	Thr	Glu	Gln	Ser	Ser	Gly	Ser	Ser	Gly	Ser	
	1825	5				1830	)				1839	5				1840	
	agc	ggc	ggg	ggt	ggg	ggc	agc	agc	agc	cgc	ccc	gcc	tcc	cac	tcc	cat	5569
	Ser	Gly	Gly	Gly	Gly	Gly	Ser	Ser	Ser	Arg	Pro	Ala	Ser	His	Ser	His	
					1845	5				185	0				1855	5	
	gcc	cac	cag	cac	tcg	ccc	atc	tcc	cct	cgg	acc	cag	gat	gcc	ctc	cag	5617
	Ala	His	Gln	His	Ser	Pro	Ile	Ser	Pro	Arg	Thr	Gln	Asp	Ala	Leu	Gln	
				1860	0				1865	5				1870	0		
	cag	aga	ccc	agt	gtg	ctt	cac	aac	aca	ggc	atg	aag	ggt	atc	atc	acc	5665
	Gln	Arg	Pro	Ser	Val	Leu	His	Asn	Thr	Gly	Met	Lys	Gly	Ile	Ile	Thr	
			1875	5				1880	)				188	5			
	gct	gtg	gag	ccc	agc	aag	ccc	acg	gtc	ctg	agg	tcc	acc	tcc	acc	tcc	5713
	Ala	Va1	Glu	Pro	Ser	Lys	Pro	Thr	Val	Leu	Arg	Ser	Thr	Ser	Thr	Ser	
		1890	)				189	5				190	0			•	
	tca	ccc	gtt	cgc	cca	gct	gcc	aca	ttc	cca	cct	gcc	acc	cac	tgc	cca	5761
	Ser	Pro	Val	Arg	Pro	Ala	Ala	Thr	Phe	Pro	Pro	Ala	Thr	His	Cys	Pro	
	1909	5				1910	D				1919	5				1920	
	ctg	ggc	ggc	acc	ctc	gat	ggg	gtc	tac	cct	acc	ctc	atg	gag	ccc	gtc	5809
	Leu	Gly	Gly	Thr	Leu	Asp	Gly	Val	Tyr	Pro	Thr	Leu	Met	Glu	Pro	Val	
					1925	5				193	0				193	5	
	ttg	ctg	ccc	aag	gag	gcc	ccc	cgg	gtc	gcc	cgg	cca	gag	cgg	ccc	cga	5857

PTS-0012 -27- PATENT

	Leu	Leu	Pro	Lys	Glu	Ala	Pro	Arg	Val	Ala	Arg	Pro	Glu	Arg	Pro	Arg	
				1940	0				194	5				195	0		
	gca	gac	acc	ggc	cat	gcc	ttc	ctc	gcc	aag	ccc	cca	gcc	cgc	tcc	ggg	5905
	Ala	Asp	Thr	Gly	His	Ala	Phe	Leu	Ala	Lys	Pro	Pro	Ala	Arg	Ser	Gly	
			1959	5				196	0				196	5			
															ccc		5953
	Leu	Glu	Pro	Ala	Ser	Ser	Pro	Ser	Lys	Gly	Ser	Glu	Pro	Arg	Pro	Leu	
		1970					197					1980					
															gcg	_	6001
	Val	Pro	Pro	Val	Ser	Gly	His	Ala	Thr	Ile	Ala	Arg	Thr	Pro	Ala	Lys	
	198					1990					199					2000	
	aac	ctc	gca	cct	cac	cac	gcc	agc	ccg	gac	ccg	ccg	gcg	cca	cct	gcc	6049
	Asn	Leu	Ala	Pro	His	His	Ala	Ser	Pro	Asp	Pro	Pro	Ala	Pro	Pro	Ala	
	•				2009	5				2010	0				2015	5	•
	tcg	gcc	tcg	gac	ccg	cac	cgg	gaa	aag	act	caa	agt	aaa	ccc	ttt	tee	6097
• •	Ser	Ala	Ser	Asp	Pro	His	Arg	Glu	Lys	Thr	Gln	Ser	Lys	Pro	Phe	Ser	
				2020					2025					2030			
•	atc	cag	gaa	ctg	gaa	ctc	cgt	tct	ctg	ggt	tac	cac	ggc	agc	agc	tac	6145
	Ile	Gln	Glu	Leu	Glu	Leu	Arg	Ser	Leu	Gly	Tyr	His	Gly	Ser	Ser	Tyr	
			2035	5				2040	)				2045	5			
	agc	CCC	gaa	ggg	gtg	gag	ccc	gtc	agc	cct	gtg	agc	tca	ccc	agt	ctg	6193
	Ser	Pro	Glu	Gly	Vạl	Glu	Pro	Val	Ser	Pro	Val	Ser	Ser	Pro	Ser	Leu	
		2050	)				2055	5				2060	)				
	acc	cac	gac	aag	ggg	ctc	ccc	aag	cac	ctg	gaa	gag	ctc	gac	aag	agc	6241
	Thr	His	Asp	Lys	Gly	Leu	Pro	Lys	His	Leu	Glu	Glu	Leu	Asp	Lys	Ser	
	2065	5				2070	)				2075	5				2080	
	cac	ctg	gag	ggg	gag	ctg	cgg	CCC	aag	cag	cca	ggc	ccc	gtg	aag	ctt	6289
	His	Leu	Glu	Gly	Glu	Leu	Arg	Pro	Lys	Gln	Pro	Gly	Pro	Val	ГЛЗ	Leu	
					2085					2090					2095		
															gag	-	6337
	Gly	Gly	Glu	Ala	Ala	His	Leu	Pro	His	Leu	Arg	Pro	Leu	Pro	Glu	Ser	
				2100	)				2105	5				2110	)		
															aaa		6385
	Gln	Pro	Ser	Ser	Ser	Pro	Leu	Leu	Gln	Thr	Ala	Pro	Gly	Val	Lys	Gly	
			2115	;				2120	)				2125	<b>i</b>			
	cac	cag	cgg	gtg	gtc	acc	ctg	gcc	cag	cac	atc	agt	gag	gtc	atc	aca	6433
	His	Gln	Arg	Val	Val	Thr	Leu	Ala	Gln	His	Ile	Ser	Glu	Val	Ile	Thr	
		2130					2135	i				2140	)				
•	caģ	gac	tac	acc	cgg	cac	cac	cca	cag	cag	ctc	agc	gca	ccc	ctg	ccc	6481

PTS-0012

ഭി	n Asg	Тух	Thr	Arq	His	His	Pro	Gln	Gln	T.011	Sar	בוג	Dro	T 011	D===	
		_		~					011	neu	OCI	ита	FIO	Leu	P.I.O	
21	45				215	0				215	5				2160	
gc	c ccc	cto	tac	tcc	ttc	cct	ggg	gcc	agc	tgc	ccc	gtc	ctg	gac	ctc	6529
Al	a Pro	Lev	Tyr	Ser	Phe	Pro	Gly	Ala	Ser	Cys	Pro	Val	Leu	Asp	Leu	
				216	5				217	0				217	5	
. cg	c cgc	cca	ccc	agt	gac	ctc	tac	ctc	ccg	ccc	ccg	gac	cat	ggt	gcc	6577
Ar	g Arg	Pro	Pro	Ser	Asp	Leu	Tyr	Leu	Pro	Pro	Pro	Asp	His	Gly	Ala	
			218	0				218	5				219	0		
ÇC	g gcc	cgt	ggc	tcc	ccc	cac	agc	gaa	ggg	ggc	aag	agg	tct	cca	gag	6625
Pr	o Ala	Arg	Gly	Ser	Pro	His	Ser	Glu	Gly	Gly	Lys	Arg	Ser	Pro	Glu	
		219	5				220	0				220	5			
CC	a aac	aag	acg	tcg	gtc	ttg	ggt	ggt	ggt	gag	gac	ggt	att	gaa	cct	6673
Pr	o Asn	Lys	Thr	Ser	<b>Val</b>	Leu	Gly	Gly	Gly	Glu	Asp	Gly	Ile	Glu	Pro	
	221	.0				221	5				222	0				
gt	g tcc	cca	ccg	gag	ggc	atg	acg	gag	cca	ggg	cac	tcc	cgg	agt	gct	6721
۷a	l Ser	Pro	Pro	Glu	Gly	Met	Thr	Glu	Pro	Gly	His	Ser	Arg	Ser	Ala	
22	25				223	0				223	5				2240	
gt	g tac	ccg	ctg	ctg	tac	cgg	gat	ggg	gaa	cag	acg	gag	ccc	agc	agg	6769
Va.	l Tyr	Pro	Leu	Leu	Tyr	Arg	Asp	Gly	Glu	Gln	Thr	Glu	Pro	Ser	Arg	
				224	5				225	D				225	5	
ate	g ggc	tcc	aag	tct	cca	ggc	aac	acc	agc	cag	ccg	cca	gcc	ttc	ttc	6817
Me	Gly	Ser	Lys	Ser	Pro	Gly	Asn	Thr	Ser	Gln	Pro	Pro	Ala	Phe	Phe	
			2260	)				2265	5				2270	)		
ago	aag	ctg	acc	gag	agc	aac	tcc	gcc	atg	gtc	aag	tcc	aag	aag	caa	6865
Sea	Lys	Leu	Thr	Glu	Ser	Asn	Ser	Ala	Met	Val	Lys	Ser	Lys	Lys	Gln	
		227	5				2280	)				2285	5			
gag	, atc	aac	aag	aag	ctg	aac	acc	cac	aac	cgg	aat	gag	cct	gaa	tac	6913
Glı	ı Ile	Asn	Lys	Lys	Leu	Asn	Thr	His	Asn	Arg	Asn	Glu	Pro	Glu	Tyr	
	229	0				2295	5				2300	)				
aat	atc	agc	cag	cct	ggg	acg	gag	atc	ttc	aat	atg	ccc	gcc	atc	acc	6961
Asr	lle	Ser	Gln	Pro	Gly	Thr	Glu	Ile	Phe	Asn	Met	Pro	Ala	Ile	Thr	
230	)5				2310	)				2315	5				2320	
gga	aca	ggc	ctt	atg	acc	tat	aga	agc	cag	gcg	gtg	cag	gaa	cat	gcc	7009
Gly	Thr	Gly	Leu	Met	Thr	Tyr	Arg	Ser	Gln	Ala	Va1	Gln	Glu	His	Ala	
				2325	5				2330	)				2335		
ago	acc	aac	atg	ggg	ctg	gag	gcc	ata	att	aga	aag	gca	ctc	atg	ggt	7057
Ser	Thr	Asn	Met	Gly	Leu	Glu	Ala	Ile	Ile	Arg	Lys	Ala	Leu	Met	Gly	
			2340					2345					2350	)		
aaa	tat	gaç	cag	tgg	gaa	gag	tcc	ccg	ccg	ctc	agc	gcc	aat	qct	ttt	7105

<u>P</u>TS-0012 -29- PATENT

	_			_			_	_	_	_	_	- •	_	_ •		
Lys	Tyr	_		Trp	GIu	GIU			Pro	Leu	Ser			Ala	Phe	
	·	2355	•				2360	)				2365	•			
aac	cct	ctg	aat	gcc	agt	gcc	agc	ctg	ccc	gct	gct	atg	ccc	ata	acc	7153
Asn	Pro	Leu	Asn	Ala	Ser	Ala	Ser	Leu	Pro	Ala	Ala	Met	Pro	Ile	Thr	
	2370	)				2375	5				2380	)				
gct	gct	gac	gga	cgg	agt	gac	cac	aca	ctc	acc	tcg	cca	ggt	ggc	ggc	720Ì
Ala	Ala	Asp	Gly	Arg	Ser	Asp	His	Thr	Leu	Thr	Ser	Pro	Gly	Gly	Gly	
238	5				2390	)				2399	5				2400	
ggg	aag	gcc	aag	gtc	tct	ggc	aga	ccc	agc	agc	cga	aaa	gcc	aag	tcc	7249
Gly	Lys	Ala	Lys	Val	Ser	Gly	Arg	Pro	Ser	Ser	Arg	Lys	Ala	Lys	Ser	
				2405	5				2410	)				2415	5	
ccg	gcc	ccg	ggc	ctg	gca	tct	ggg	gac	cgg	cca	ccc	tct	gtc	tcc	tca	7297
Pro	Ala	Pro	Gly	Leu	Ala	Ser	Gly	Asp	Arg	Pro	Pro	Ser	Val	Ser	Ser	
			2420	)				2425	5				2430	D		
gtg	cac	tcg	gag	gga	gac	tgc	aac	cgc	cgg	acg	ccg	ctc	acc	aac	cgc	7345
	His															
		243					2440	_				2445				
ata	tgg			agg	ccc	tca			aat	tcc	aco			ccc	tac	7393
	Trp		_			_		_			_					
•	245			5		2459			2		246				-4 -	
aac	CCC		atc	atα	caa			aca	aat.	atc			tcc	cca	ccc	7441
	Pro	_		_		_	_			_	_	-				,
	_	пси	110	MCC	2470		GIII	ALG	GLY	247		711.0	DCL	110	2480	
246		~~~				_		~~~				~~~				7490
	ccg						_				_					7489
Pro	Pro	GTĀ	ьeu			GTA	ser	GIŸ			Ala	GTA	Pro			
				248					249					249		
gcc	tgg	gac	gag	gag	ccc	aag	cca	ctg	ctc	tgc	tcg	cag	tac	gag	aca	7537
Ala	Trp	Asp			Pro	ГÀЗ	Pro			Cys	Ser	Gln	Tyr	Glu	Thr	
			250	0				250	5				251	0		
ctc	tcc	gac	agc	gag	tga	ctca	agaa	cag (	ggcg	agada	gg gg	acada	gegg	t		7585
Leu	Ser	Asp	Ser	Glu												
•		251	5				•									
gto	aggt	ccc a	agcg	agcca	ac a	ggaa	cggc	c ct	gcag	gagc	ggg	gcgg	ctg (	ccga	ctcccc	7645
caa	ccaa	gga i	agga	gccc	ct ga	agtc	cgcc	t gc	gcct	ccat	cca	tctg	tcc (	gtcca	agagcc	7705
ggc	atcc	ttg (	cctg	tcta	aa go	cctta	aacta	a aga	actc	ccgc	CCC	gggc	tgg (	ccct	gtgcag	7765
acc	ttac	tca i	gggg	atgt	tt a	cctg	gtgc	t cg	ggaa	ggga	ggg	gaag	ggg (	ccggg	ggaggg	7825
ggc	acgg	cag	gcgt	gtgg	ca go	ccaca	acaca	a gg	egge	cagg	gcg	gccag	ggg a	accca	aaagca	7885
gga	tgac	cac e	gcac	ctcca	ac go	ccact	tgcc	t cc	cccg	aatg	cati	ttgga	aac e	caaa	gtctaa	7945
												~~++			tggaca	0005

-30-

gatggacgca ggccctgtcc agccccagt gcgctcgttc cggtcccac agactgccc 8065 agccaacgag attgctggaa accaagtcag gccaggtgg cggacaaaag ggccaggtgc 8125 ggcctggggg gaacggatgc tccgaggact ggactgttt tttcacacat cgttgccgca 8185 gcggtgggaa ggaaaggcag atgtaaatga tgtgttggtt tacagggtat attttgata 8245 ccttcaatga attaattcag atgtttacg caaggaagga cttacccagt attactgctg 8305 ccgtgctttt gatctctgct taccgttcaa gaggcgtgtg caggccgaca gtcggtgacc 8365 ccatcactcg caggaccaag ggggcgggga ctgctcgtca cgccccgctg tgtcctcct 8425 ccctcccttc cttgggcaga atgaattcga tgcgtattct gtggccgcca tttgcgcagg 8485 gtggtggtat tctgtcattt acacacgtcg ttctaattaa aaagcgaatt atactccaaa 8545 aaaaaadaaaa aaaaaa

<210> 12

TS-0012

<211> 221000

<212> DNA

<213> H. sapiens

<220>

<221> unsure

<222> 77967

<223> unknown

<221> unsure

<222> 77968

<223> unknown

<221> unsure

<222> 77969

<223> unknown

<221> unsure

<222> 77970

<223> unknown

<221> unsure

<222> 77971

<223> unknown

<221> unsure

<222> 77972 ,

<223> unknown

<221> unsure

<222> 77973

<223> unknown

<221> unsure

<222> 77974

<223> unknown

<221> unsure

><222> 77975

<223> unknown

<221> unsure

<222> 77976

<223> unknown

<221> unsure

<222> 77977

<223> unknown

<221> unsure

<222> 77978

<223> unknown

<221> unsure

<222> 77979

<223> unknown

<221> unsure

<222> 77980

<223> unknown

<221> unsure

<222> 77981

<223> unknown

<221> unsure

<222> 77982

<223> unknown

<221> unsure

<222> 77983

<223> unknown

<221> unsure

<222> 77984

<223> unknown

<221> unsure

<222> 77985

<223> unknown

<221> unsure

<222> 77986

<223> unknown

<221> unsure

<222> 77987

<223> unknown

<221> unsure

<222> 77988

<223> unknown

<221> unsure

<222> 77989

<223> unknown

<221> unsure

<222> 77990

<223> unknown

<221> unsure

<222> 77991

_	2	2	3	>	1	171	'n	k٦	n	n	۲A	π	1

- <221> unsure
- <222> 77992
- <223> unknown
- <221> unsure
- <222> 77993
- <223> unknown
- <221> unsure
- <222> 77994
- <223> unknown
- <221> unsure
- <222> 77995
- <223> unknown
- <221> unsure
- <222> 77996
- <223> unknown
- <221> unsure
- <222> 77997
- <223> unknown
- <221> unsure
- <222> 77998
- <223> unknown
- <221> unsure
- <222> 77999
- <223> unknown
- <221> unsure
- <222> 78000
- <223> unknown
- <221> unsure

<222> 78001

<223> unknown

<221> unsure

<222> 78002

<223> unknown

<221> unsure

<222> 78003

<223> unknown

<221> unsure

<222> 78004

<223> unknown

<221> unsure

<222> 78005

<223> unknown

<221> unsure

<222> 78006

<223> unknown

<221> unsure

<222> 78007

<223> unknown

<221> unsure

<222> 78008

<223> unknown

<221> unsure

<222> 78009

<223> unknown

<221> unsure

<222> 78010

<223> unknown

<u>P</u>TS-0012 -35- PATENT

<221> unsure

<222> 78011

<223> unknown

<221> unsure

<222> 78012

<223> unknown

<221> unsure

<222> 78013

<223> unknown

<221> unsure

<222> 78014

<223> unknown

<221> unsure

<222> 78015

<223> unknown

<221> unsure

<222> 78016

<223> unknown

<221> unsure

<222> 78017

<223> unknown

<221> unsure

<222> 78018

<223> unknown

<221> unsure

<222> 78019

<223> unknown

<221> unsure

<222> 78020

<223> unknown

_	2	2	1	>	٠.	n	c	11	r	_

<222> 78021

<223> unknown

<221> unsure

<222> 78022

<223> unknown

<221> unsure

<222> 78023

<223> unknown

<221> unsure

<222> 78024

<223> unknown

<221> unsure

<222> 78025

<223> unknown

<221> unsure

<222> 78026

<223> unknown

<221> unsure

<222> 78027

<223> unknown

<221> unsure

<222> 78028

<223> unknown

<221> unsure

<222> 78029

<223> unknown

<221> unsure

<222> 78030

<223>	un!	kno	าพา

- <221> unsure
- <222> 78031
- <223> unknown
- <221> unsure
- <222> 78032
- <223> unknown
- <221> unsure
- <222> 78033
- <223> unknown
- <221> unsure
- <222> 78034
- <223> unknown
- <221> unsure
- <222> 78035
- <223> unknown
- <221> unsure
- <222> 78036
- <223> unknown
- <221> unsure
- <222> 78037
- <223> unknown
- <221> unsure
- <222> 78038
- <223> unknown
- <221> unsure
- <222> 78039
- <223> unknown
- <221> unsure

-38-

- <222> 78040
- <223> unknown
- <221> unsure
- <222> 78041
- <223> unknown
- <221> unsure
- <222> 78042
- <223> unknown
- <221> unsure
- <222> 78043
- <223> unknown
- <221> unsure
- <222> 78044
- <223> unknown
- <221> unsure
- <222> 78045
- <223> unknown
- <221> unsure
- <222> 78046
- <223> unknown
- <221> unsure
- <222> 78047
- <223> unknown
- <221> unsure
- <222> 78048
- <223> unknown
- <221> unsure
- <222> 78049
- <223> unknown

<221>	un	<b>G11</b>	ro
~~~~	· ш	ъu	$T \subset$

<223> unknown

<221> unsure

<222> 78051

<223> unknown

<221> unsure

<222> 78052

<223> unknown

<221> unsure

<222> 78053

<223> unknown

<221> unsure

<222> 78054

<223> unknown

<221> unsure

<222> 78055

<223> unknown

<221> unsure

<222> 78056

<223> unknown

<221> unsure

<222> 78057

<223> unknown

<221> unsure

<222> 78058

<223> unknown

<221> unsure

<222> 78059

<221> unsure

<222> 78060

<223> unknown

<221> unsure

<222> 78061

<223> unknown

<221> unsure

<222> 78062

<223> unknown

<221> unsure

<222> 78063

<223> unknown

<221> unsure

<222> 78064

<223> unknown

<221> unsure

<222> 78065

<223> unknown

<221> unsure

<222> 78066

<223> unknown

<221> unsure

<222> 106867

<223> unknown

<221> unsure

<222> 106901

<223> unknown

<221> unsure

PTS-0012 -41-

<223> unknown

<221> unsure

<222> 106903

<223> unknown

<221> unsure

<222> 106904

<223> unknown

<221> unsure

<222> 106905

<223> unknown

<221> unsure

<222> 106906

<223> unknown

<221> unsure

<222> 106907

<223> unknown

<221> unsure

<222> 106908

<223> unknown

<221> unsure

<222> 106909

<223> unknown

<221> unsure

<222> 106910

<223> unknown

<221> unsure

<222> 106911

<223> unknown

<221> unsure

<222> 106912

<223> unknown

<221> unsure ,

<222> 106913

<223> unknown

<221> unsure

<222> 106914

<223> unknown

<221> unsure

<222> 106915

<223> unknown

<221> unsure

<222> 106916

<223> unknown

<221> unsure

<222> 106917

<223> unknown

<221> unsure

<222> 106918

<223> unknown

<221> unsure

<222> 106919

<223> unknown

<221> unsure

<222> 106920

<223> unknown

<221> unsure

<222> 106921

	<22	21>	unsure
--	-----	-----	--------

<223> unknown

<221> unsure

<222> 106923

<223> unknown

<221> unsure

<222> 106924

<223> unknown

<221> unsure

<222> 106925

<223> unknown

<221> unsure

<222> 106926

<223> unknown

<221> unsure

<222> 106927

<223> unknown

<221> unsure

<222> 106928

<223> unknown

<221> unsure

<222> 106929

<223> unknown

<221> unsure

<222> 106930

<223> unknown

<221> unsure

. <222> 106931

<221> unsure

<222> 106932

<223> unknown

<221> unsure

<222> 106933

<223> unknown

<221> unsure

<222> 106934

<223> unknown

<221> unsure

<222> 106935

<223> unknown

<221> unsure

<222> 106936

<223> unknown

<221> unsure -

<222> 106937

<223> unknown

<221> unsure

<222> 106938

<223> unknown

<221> unsure

· <222> 106939

<223> unknown

<221> unsure

<222> 106940

<223> unknown

<221> unsure

<223> unknown

<221> unsure

<222> 106942

<223> unknown

<221> unsure

<222> 106943

<223> unknown

<221> unsure

<222> 106944

<223> unknown

<221> unsure

<222> 106945

<223> unknown

<221> unsure

<222> 106946

<223> unknown

<221> unsure

<222> 106947

<223> unknown

<221> unsure

<222> 106948

<223> unknown

<221> unsure

<222> 106949

<223> unknown

<221> unsure

<222> 106950

<223> unknown

<221> unsure

<222>	106951

<223> unknown

<221> unsure

<222> 106952

<223> unknown

<221> unsure

<222> 106953

<223> unknown

<221> unsure

<222> 106954

<223> unknown

<221> unsure

<222> 106955

<223> unknown

<221> unsure

<222> 106956

<223> unknown

<221> unsure

<222> 106957

<223> unknown

<221> unsure

<222> 106958

<223> unknown

<221> unsure

<222> 106959

<223> unknown

<221> unsure

<222> 106960

<221> unsure

<222> 106961

<223> unknown

<221> unsure

<222> 106962

<223> unknown

<221> unsure

<222> 106963

<223> unknown

<221> unsure

<222> 106964

<223> unknown

<221> unsure

<222> 106965

<223> unknown

<221> unsure

<222> 106966

<223> unknown

<221> unsure

<222> 106967

<223> unknown

<221> unsure

<222> 106968

<223> unknown

<221> unsure

<222> 106969

<223> unknown

<221> unsure

<222> 106970

<221> unsure

<222> 106971

<223> unknown

<221> unsure

<222> 106972

<223> unknown

<221> unsure

<222> 106973

<223> unknown

<221> unsure

<222> 106974

<223> unknown

<221> unsure

<222> 106975

<223> unknown

<221> unsure

<222> 106976

<223> unknown

<221> unsure

<222> 106977

<223> unknown

<221> unsure

<222> 106978

<223> unknown

<221> unsure

<222> 106979

<223> unknown

<221> unsure

<2223>	unknown
~ ~ ~ ~ ~ ~	ULIKTIOWA

- <221> unsure
- <222> 106981
- <223> unknown
- <221> unsure
- <222> 106982
- <223> unknown
- <221> unsure
- <222> 106983
- <223> unknown
- <221> unsure
- <222> 106984
- <223> unknown
- <221> unsure
- <222> 106985
- <223> unknown
- <221> unsure
- <222> 106986
- <223> unknown
- <221> unsure
- <222> 106987
- <223> unknown
- <221> unsure
- <222> 106988
- <223> unknown
- <221> unsure
- <222> 106989
- <223> unknown
- <221> unsure

<222>	1	O	۲	۵	٥	n

<223> unknown

<221> unsure

<222> 106991

<223> unknown

<221> unsure

<222> 106992

<223> unknown

<221> unsure

<222> 106993

<223> unknown

<221> unsure

<222> 106994

<223> unknown

<221> unsure

<222> 106995

<223> unknown

<221> unsure

<222> 106996

<223> unknown

<221> unsure

<222> 106997

<223> unknown

<221> unsure

<222> 106998

<223> unknown

<221> unsure

<222> 106999

-51- PATENT

<221> unsure

PTS-0012

<222> 107000

<223> unknown

<221> unsure

<222> 151389

<223> unknown

<221> unsure

<222> 151394

<223> unknown

<221> unsure

<222> 151412

<223> unknown

<221> unsure

<222> 151655

<223> unknown

<221> unsure

<222> 151656

<223> unknown

<221> unsure

<222> 151657

<223> unknown

<221> unsure

<222> 151658

<223> unknown

<221> unsure

<222> 151659

<223> unknown

<221> unsure

<222> 151660

<221> unsure

<222> 151661

<223> unknown

<221> unsure

<222> 151662

<223> unknown

<221> unsure

<222> 151663

<223> unknown

<221> unsure

<222> 151664

<223> unknown

<221> unsure

<222> 151665

<223> unknown '

<221> unsure

<222> 151666

<223> unknown

<221> unsure

<222> 151667

<223> unknown

<221> unsure

<222> 151668

<223> unknown

<221> unsure

<222> 151669

<223> unknown

<221> unsure

<223> unknown

<221> unsure

<222> 151671

<223> unknown

<221> unsure

<222> 151672

<223> unknown

<221> unsure

<222> 151673

<223> unknown

<221> unsure

<222> 151674

<223> unknown

<221> unsure

<222> 151675

<223> unknown

<221> unsure

<222> 151676

<223> unknown

<221> unsure

<222> 151677

<223> unknown

<221> unsure

<222> 151678

<223> unknown

<221> unsure

<222> 151679

<223> unknown

<221> unsure

<2	22	_	1	5	1	_	0	n
~~	44	_			_	u	0	u

<223> unknown

<221> unsure

<222> 151681

<223> unknown

<221> unsure

<222> 151682

<223> unknown

<221> unsure

<222> 151683

<223> unknown

<221> unsure

<222> 151684

<223> unknown

<221> unsure

<222> 151685

<223> unknown

<221> unsure

<222> 151686

<223> unknown

<221> unsure

<222> 151687

<223> unknown

<221> unsure

<222> 151688

<223> unknown

<221> unsure

<222> 151689

<221> unsure

<222> 151690

<223> unknown

<221> unsure

<222> 151691

<223> unknown

<221> unsure

<222> 151692

<223> unknown

<221> unsure

<222> 151693

<223> unknown

<221> unsure

<222> 151694

<223> unknown

<221> unsure

<222> 151695

<223> unknown

<221> unsure

<222> 151696

<223> unknown

<221> unsure

<222> 151697

<223> unknown

<221> unsure

<222> 151698

<223> unknown

<221> unsure

<222> 151699

_	2	2	1	>			n	~	,		~	_
<	Z	Z.	1	~	ı	1	n	9	I.	1.	•	е

<223> unknown

<221> unsure

<222> 151701

<223> unknown

<221> unsure

<222> 151702 ·

<223> unknown

<221> unsure

<222> 151703

<223> unknown

<221> unsure

<222> 151704

<223> unknown

<221> unsure ·

<222> 151705

<223> unknown

<221> unsure

<222> 151706

. <223> unknown

<221> unsure

<222> 151707

<223> unknown

<221> unsure

<222> 151708

<223> unknown

<221> unsure

<223> unknown

<221> unsure

<222> 151710

<223> unknown

<221> unsure

<222> 151711

<223> unknown

<221> unsure

<222> 151712

<223> unknown

<221> unsure

<222> 151713

<223> unknown

<221> unsure

<222> 151714

<223> unknown

<221> unsure

<222> 151715

<223> unknown

<221> unsure

<222> 151716

<223> unknown

<221> unsure

<222> 151717

<223> unknown

<221> unsure

<222> 151718

<223> unknown

<221> unsure

<222>	1	51	71	۵

<223> unknown

<221> unsure

<222> 151720

<223> unknown

<221> unsure

<222> 151721

<223> unknown

<221> unsure

<222> 151722

<223> unknown

<221> unsure

<222> 151723

<223> unknown

<221> unsure

<222> 151724

<223> unknown

<221> unsure

<222> 151725

<223> unknown

<221> unsure

<222> 151726

<223> unknown

<221> unsure

<222> 151727

<223> unknown

<221> unsure

<222> 151728

<221> unsure

<222> 151729

<223> unknown

<221> unsure

<222> 151730

<223> unknown

<221> unsure

<222> 151731

<223> unknown

<221> unsure

<222> 151732

<223> unknown

<221> unsure

<222> 151733

<223> unknown

<221> unsure

<222> 151734

<223> unknown

<221> unsure

<222> 151735

<223> unknown

<221> unsure

<222> 151736

<223> unknown

<221> unsure

<222> 151737

<223> unknown

<221> unsure

<222> 151738

<	2	2	1	>	1	u	15	31	1	٣	0

<223> unknown

<221> unsure

<222> 151740

<223> unknown

<221> unsure

<222> 151741

<223> unknown

<221> unsure

<222> 151742

<223> unknown

<221> unsure

<222> 151743

<223> unknown

<221> unsure

<222> 151744

<223> unknown

<221> unsure

<222> 151745

<223> unknown

<221> unsure

<222> 151746

<223> unknown

<221> unsure

<222> 151747

<223> unknown

<221> unsure

<223> unknown

<221> unsure

<222> 151749

<223> unknown

<221> unsure

. <222> 151750

<223> unknown

<221> unsure

<222> 151751

<223> unknown

<221> unsure

<222> 151752

<223> unknown

<221> unsure

<222> 151753

<223> unknown

<221> unsure

<222> 151754

<223> unknown

<221> unsure

<222> 151945

<223> unknown

<221> unsure

<222> 151946

<223> unknown

<221> unsure

<222> 151947

<223> unknown

<221> unsure

<223> unknown

<221> unsure

<222> 152020

<223> unknown

<221> unsure

<222> 152021

<223> unknown

<221> unsure

<222> 201562

<223> unknown

<221> unsure

<222> 201563

<223> unknown

<221> unsure

<222> 201564

<223> unknown

<221> unsure

<222> 201565

<223> unknown

<221> unsure

`<222> 201566

<223> unknown

<221>, unsure

<222> 201567

<223> unknown

<221> unsure

<222> 201568

<2	2	1	_	٠.	n	01	,	~	_

<223> unknown

<221> unsure

<222> 201570

<223> unknown

<221> unsure

<222> 201571

<223> unknown

<221> unsure

<222> 201572

<223> unknown

<221> unsure

<222> 201573

<223> unknown

<221> unsure.

<222> 201574

<223> unknown

<221> unsure

<222> 201575

<223> unknown

<221> unsure

<222> 201576

<223> unknown

<221> unsure

<222> 201577

<223> unknown

<221> unsure

<222> 201578

-2	2	4	_		٠.	_	_			_
<2	J.	- 1	>	1	m	п	5	11	r	e

<223> unknown

<221> unsure

<222> 201580

<223> unknown

<221> unsure

<222> 201581

<223> unknown

<221> unsure

· <222> 201582

<223> unknown

<221> unsure

<222> 201583

<223> unknown

<221> unsure

<222> 201584

<223> unknown

<221> unsure

<222> 201585

<223> unknown

<221> unsure

<222> 201586

<223> unknown

<221> unsure

<222> 201587

<223> unknown

<221> unsure

-7	2	2		177	br	OWD
S /			_			OWII

- <221> unsure
- <222> 201589
- <223> unknown
- <221> unsure
- <222> 201590
- <223> unknown
- <221> unsure
- <222> 201591
- <223> unknown
- <221> unsure
- <222> 201592
- <223> unknown
- <221> unsure
- <222> 201593
- <223> unknown
- <221> unsure
 - <222> 201594
 - <223> unknown
 - <221> unsure
 - <222> 201595
 - <223> unknown
 - <221> unsure
 - <222> 201596
 - <223> unknown
 - <221> unsure
 - <222> 201597
 - <223> unknown
 - <221> unsure

<222> 201598

<223> unknown

<221> unsure

. <222> 201599

<223> unknown

<221> unsure

<222> 201600

<223> unknown

<221> unsure

<222> 201601

<223> unknown

<221> unsure

<222> 201602

<223> unknown

<221> unsure

<222> 201603

<223> unknown

<221> unsure

<222> 201604

<223> unknown

<221> unsure

<222> 201605

<223> unknown

<221> unsure

<222> 201606

<223> unknown

<221> unsure

<222> 201607

<221>	unsure
-------	--------

<222> 201608

<223> unknown

· <221> unsure

<222> 201609

<223> unknown

<221> unsure

<222> 201610

<223> unknown -

<221> unsure

<222> 201611

<223> unknown

<221> unsure

<222> 201612

<223> unknown

<221> unsure

<222> 201613

· <223> unknown

<221> unsure

<222> 201614

<223> unknown

<221> unsure

<222> 201615

<223> unknown

<221> unsure

<222> 201616

<223> unknown

<221> unsure

<222> 201617

-2	2	1	_			_	_

<222> 201618

<223> unknown

<221> unsure

<222> 201619

<223> unknown

<221> unsure

<222> 201620

<223> unknown

. <221> unsure

<222> 201621

<223> unknown

<221> unsure

<222> 201622

<223> unknown

<221> unsure

<222> 201623

<223> unknown

<221> unsure

<222> 201624

<223> unknown

<221> unsure

<222> 201625

<223> unknown

<221> unsure

<222> 201626

<223> unknown

<221> unsure

-2	2			1	Own
~ /		-	1173	KI	CIWIL

- <221> unsure
- <222> 201628
- <223> unknown
- <221> unsure
- <222> 201629
- <223> unknown
- <221> unsure
- . <222> 201630
 - <223> unknown
- <221> unsure
- <222> 201631
- <223> unknown
- <221> unsure
- <222> 201632
- <223> unknown
- <221> unsure
- <222> 201633
- <223> unknown
- <221> unsure
- <222> 201634
- <223> unknown
- <221> unsure
- <222> 201635
- <223> unknown
- <221> unsure
- <222> 201636
- <223> unknown
- <221> unsure

<222>	2	n	1	6	3	7
~~~~	~	v	_	v	_	•

<223> unknown

<221> unsure

<222> 201638

<223> unknown

<221> unsure

<222> 201639

<223> unknown

<221> unsure

<222> 201640

<223> unknown

<221> unsure

<222> 201641

<223> unknown

<221> unsure

<222> 201642

<223> unknown

<221> unsure

<222> 201643

<223> unknown

<221> unsure

<222> 201644

<223> unknown

<221> unsure

<222> 201645

<223> unknown

<221> unsure

<222> 201646

<221>	unsure
-------	--------

<223> unknown

<221> unsure

<222> 201648

<223> unknown

<221> unsure

<222> 201649

<223> unknown

<221> unsure

<222> 201650

<223> unknown

<221> unsure ,

<222> 201651

<223> unknown

<221> unsure

<222> 201652

<223> unknown

<221> unsure

<222> 201653

<223> unknown

<221> unsure

<222> 201654

<223> unknown

<221> unsure

<222> 201655

<223> unknown

<221> unsure

<222> 201656

	_							
<22	1	>	1	117	15	13	r	0

<222> 201657

<223> unknown

<221> unsure

<222> 201658

<223> unknown

<221> unsure

<222> 201659

<223> unknown

<221> unsure

<222> 201660

<223> unknown

<221> unsure

<222> 201661

<223> unknown

<221> unsure

<222> 202839

<223> unknown

<221> unsure

<222> 202840

<223> unknown

<221> unsure

<222> 202841

<223> unknown

<221> unsure

<222> 202842

<223> unknown

<221> unsure

<223> unknown

<221> unsure

<222> 202844

<223> unknown

<221> unsure

<222> 202845

<223> unknown

<221> unsure

<222> 202846

<223> unknown

<221> unsure

<222> 202847

<223> unknown

<221> unsure

<222> 202848

<223> unknown.

<221> unsure

<222> 202849

<223> unknown

<221> unsure

<222> 202850

<223> unknown

<221> unsure

<222> 202851

<223> unknown

<221> unsure

<222> 202852

<223> unknown

<221> unsure

<222> 202853

<223> unknown

<221> unsure

<222> 202854

<223> unknown

<221> unsure

<222> 202855

<223> unknown

<221> unsure

<222> 202856

<223> unknown

<221> unsure

<222> 202857

<223> unknown

<221> unsure

· <222> 202858

<223> unknown

<221> unsure

<222> 202859

<223> unknown

<221> unsure

<222> 202860

<223> unknown

<221> unsure

<222> 202861

<223> unknown

<221> unsure

<222> 202862

PATENT `

<2	2	1	>	1	ודו	S	ı	~	6

<222> 202863

<223> unknown

<221> unsure

<222> 202864

<223> unknown

<221> unsure

<222> 202865

<223> unknown

<221> unsure

<222> 202866

<223> unknown

<221> unsure

<222> 202867

<223> unknown

<221> unsure

<222> 202868

<223> unknown

<221> unsure

<222> 202869

<223> unknown

<221> unsure

<222> 202870

<223> unknown

<221> unsure

<222> 202871

<223> unknown

<221> unsure

<222> 202872

<22	1 >	ເນກ	911	re

<222> 202873

<223> unknown

<221> unsure

<222> 202874

<223> unknown

<221> unsure

<222> 202875

<223> unknown

<221> unsure

<222> 202876

<223> unknown

<221> unsure

'<222> 202877

<223> unknown

<221> unsure

· <222> 202878

<223> unknown

<221> unsure

<222> 202879

<223> unknown

<221> unsure

<222> 202880

<223> unknown.

<221> unsure

<222> 202881

<223> unknown

<221> unsure

<222> 202882

<223> unknown

<221> unsure

<222> 202883

<223> unknown

<221> unsure

<222> 202884

<223> unknown

<221> unsure

<222> 202885

<223> unknown

<221> unsure

<222> 202886

<223> unknown

<221> unsure

<222> 202887

<223> unknown

<221> unsure

<222> 202888

<223> unknown

<221> unsure

<222> 202889

<223> unknown

<221> unsure

<222> 202890

<223> unknown

<221> unsure

<222> 202891

<223> unknown

<221> unsure

<222> 202892

<223> unknown

<221> unsure

<222> 202893

<223> unknown

<221> unsure

<222> 202894

<223> unknown

<221> unsure

<222> 202895

<223> unknown

<221> unsure

<222> 202896

<223> unknown

<221> unsure

<222> 202897

<223> unknown

<221> unsure

<222> 202898

<223> unknown

<221> unsure

<222> 202899

<223> unknown

<221> unsure

<222> 202900

<223> unknown

<221> unsure

<222> 202901

<221> unsure

<222> 202902

<223> unknown

<221> unsure

<222> 202903

<223> unknown

<221> unsure

<222> 202904

<223> unknown

<221> unsure

<222> 202905

<223> unknown

<221> unsure

<222> 202906

<223> unknown

<221> unsure

<222> 202907

<223> unknown

<221> unsure

<222> 202908

<223> unknown

<221> unsure

<222> 202909

<223> unknown

<221> unsure

<222> 202910

<223> unknown

<221> unsure

<222> 202911

PTS-0012

<221> unsure

<222> 202912

<223> unknown

<221> unsure

<222> 202913

<223> unknown

<221> unsure

<222> 202914

<223> unknown

<221> unsure

<222> 202915

<223> unknown

<221> unsure

<222> 202916

<223> unknown

<221> unsure

<222> 202917

<223> unknown

<221> unsure

<222> 202918

<223> unknown

<221> unsure

<222> 202919

<223> unknown

<221> unsure

<222> 202920

<223> unknown

<221> unsure

<222> 202921

unknown

- <221> unsure
- <222> 202922
- <223> unknown
- <221> unsure
- <222> 202923
- <223> unknown
- <221> unsure
- <222> 202924
- <223> unknown
- <221> unsure
- <222> 202925
- <223> unknown
- <221> unsure
- <222> 202926
- <223> unknown
- <221> unsure
- <222> 202927
- <223> unknown
- <221> unsure
- <222> 202928
- <223> unknown
- <221> unsure
- <222> 202929
- <223> unknown
- <221> unsure
- <222> 202930
- <223> unknown
- <221> unsure

<u>P</u>TS-0012 -82- PATENT

<222> 202931

<223> unknown

<221> unsure

<222> 202932

<223> unknown

<221> unsure

<222> 202933

<223> unknown

<221> unsure

<222> 202934

<223> unknown

<221> unsure

<222> 202935

<223> unknown

<221> unsure

<222> 202936

<223> unknown

<221> unsure

<222> 202937

<223> unknown

<221> unsure

<222> 202938

<223> unknown

<221> unsure

<222> 204299

<223> unknown

<221> unsure

<222> 204300

PTS-0012 -83- , PATENT

'<221> unsure

<222> 204301

<223> unknown

<221> unsure

<222> 204302

<223> unknown

<221> unsure

<222> 204303

<223> unknown

<221> unsure

<222> 204304

<223> unknown

<221> unsure

<222> 204305

<223> unknown

<221> unsure

<222> 204306

<223> unknown

<221> unsure

<222> 204307

<223> unknown

<221> unsure

<222> 204308

<223> unknown

<221> unsure

<222> 204309

<223> unknown

<221> unsure

<222> 204310

<221> unsure

<222> 204311

<223> unknown

<221> unsure

<222> 204312

<223> unknown

<2,21> unsure

<222> 204313

<223> unknown

<221> unsure

<222> 204314

<223> unknown

<221> unsure

<222> 204315

<223> unknown

<221> unsure

<222> 204316

<223> unknown

<221> unsure

<222> 204317

<223> unknown

<221> unsure

<222> 204318

<223> unknown

<221> unsure

<222> 204319

<223> unknown

<221> unsure

<222> 204320

-85-

PATENT

<2	2	3>	unknown

<221> unsure

<222> 204321

<223> unknown

<221> unsure

<222> 204322

<223> unknown

<221> unsure

<222> 204323

<223> unknown

<221> unsure

<222> 204324

<223> unknown

<221> unsure

<222> 204325

<223> unknown

<221> unsure

<222> 204326

<223> unknown

<221> unsure

<222> 204327

<223> unknown

<221> unsure

<222> 204328

<223> unknown

<221> unsure

<222> 204329

<223> unknown

<221> unsure

<222> 204330

<223> unknown

<221> unsure

<222> 204331

<223> unknown

<221> unsure

<222> 204332'

<223> unknown

<221> unsure

<222> 204333

<223> unknown

<221> unsure

<222> 204334

<223> unknown

<221> unsure

<222> 204335

<223> unknown

<221> unsure

<222> 204336

<223> unknown

<221> unsure

<222> 204337

<223> unknown

<221> unsure

<222> 204338

<223> unknown

<221> unsure

<222> 204339

<221> unsure

<222> 204340

<223> unknown

<221> unsure

<222> 204341

<223> unknown

<221> unsure

<222> 204342

<223> unknown

<221> unsure

<222> 204343

<223> unknown

<221> unsure

<222> 204344

<223> unknown

<221> unsure

<222> 204345

<223> unknown

<221> unsure

<222> 204346

<223> unknown

<221> unsure

<222> 204347

<223> unknown

<221> unsure

<222> 204348

<223> unknown

<221> unsure

<222> 204349

_	2	2	1	>	,	٠.,	_	_		_	_
~	1	1	- 5	-	1		п		11	•	-

<222> 204350

<223> unknown

<221> unsure

<222> 204351

<223> unknown

<221> unsure

<222> 204352

<223> unknown

<221> unsure

ı

<222> 204353

<223> unknown

<221> unsure

<222> 204354

<223> unknown

<221> unsure

<222> 204355

<223> unknown

<221> unsure

<222> 204356

<223> unknown

<221> unsure

<222> 204357

<223> unknown

<221> unsure

<222> 204358

<223> unknown

<221> unsure

<222> 204359

PTS-0012

PATENT

<223> unknown

<221> unsure

<222> 204360

<223> unknown

<221> unsure

· <222> 204361

<223> unknown

<221> unsure

<222> 204362

<223> unknown

<221> unsure

<222> 204363

<223> unknown

<221> unsure

<222> 204364

<223> unknown

<221> unsure

<222> 204365

<223> unknown

<221> unsure

<222> 204366

<223> unknown

<221> unsure

<222> 204367

<223> unknown

<221> unsure

<222> 204368

<223> unknown

<221> unsure

<222> 204369

<223> unknown

<221> unsure

<222> 204370

<223> unknown

<221> unsure

<222> 204371

<223> unknown

<221> unsure

<222> 204372

<223> unknown

<221> unsure

<222> 204373

<223> unknown

<221> unsure

<222> 204374

<223> unknown

<221> unsure

<222> 204375

<223> unknown

<221> unsure

<222> 204376

<223> unknown

<221> unsure

<222> 204377

<223> unknown

<221> unsure

<222> 204378

<221> unsure

<222> 204379

<223> unknown

<221> unsure

<222> 204380

<223> unknown

<221> unsure

<222> 204381

<223> unknown

<221> unsure

<222> 204382

<223> unknown

<221> unsure

<222> 204383

<223> unknown

<221> unsure

<222> 204384

<223> unknown

<221> unsure

<222> 204385

<223> unknown

<221> unsure

<222> 204386

<223> unknown

<221> unsure

<222> 204387

<223> unknown

<221> unsure

<222> 204388

<221> unsure

<222> 204389

<223> unknown

<221> unsure

<222> 204390

<223> unknown

<221> unsure

<222> 204391

<223> unknown

<221> unsure

<222> 204392

<223> unknown

<221> unsure

<222> 204393

<223> unknown

<221> unsure

<222> 204394

<223> unknown

<221> unsure

<222> 204395

<223> unknown

<221> unsure

<222> 204396

<223> unknown

<221> unsure

<222> 204397

<223> unknown

<221> unsure

<222> 204398

<2	2	3	>	unknown	

<221> unsure

<222> 205499

<223> unknown

<221> unsure

<222> 205500

<223> unknown

<221> unsure

<222> 205501

<223> unknown

<221> unsure

<222> 205502

<223> unknown

<221> unsure

<222> 205503

<223> unknown

<221> unsure

<222> 205504

<223> unknown

<221> unsure

<222> 205505

<223> unknown

<221> unsure

<222> 205506

<223> unknown

<221> unsure

<222> 205507

<223> unknown

<221> unsure

<222> 205508

<223> unknown

<221> unsure

<222> 205509

<223> unknown

<221> unsure

<222> 205510

<223> unknown

<221> unsure

<222> 205511

<223> unknown

<221> unsure

<222> 205512

<223> unknown

<221> unsure

<222> 205513

<223> unknown

<221> unsure

<222> 205514

<223> unknown

<221> unsure

<222> 205515

<223> unknown

<221> unsure

<222> 205516

<223> unknown

<221> unsure

<222> 205517

<221> unsure

<222> 205518

<223> unknown

<221> unsure

<222> 205519

<223> unknown

<221> unsure

<222> 205520

<223> unknown

<221> unsure

<222> 205521

<223> unknown

<221> unsure

<222> 205522

<223> unknown

. <221> unsure

<222> 205523

<223> unknown

<221> unsure

<222> 205524

<223> unknown

<221> unsure

<222> 205525

<223> unknown

<221> unsure

<222> 205526

<223> unknown

<221> unsure

<222> 205527

<221> unsure

<222> 205528

<223> unknown

<221> unsure

<222> 205529

<223> unknown

<221> unsure

<222> 205530

<223> unknown

<221> unsure

<222> 205531

<223> unknown

<221> unsure

<222> 205532

<223> unknown

<221> unsure

<222> 205533

<223> unknown

<221> unsure

<222> 205534

<223> unknown

<221> unsure

<222> 205535

<223> unknown

<221> unsure

<222> 205536

<223> unknown

<221> unsure

<222> 205537

<223> unknown

<221> unsure

<222> 205538

<223> unknown

<221> unsure

<222> 205539

<223> unknown

<221> unsure

<222> 205540

<223> unknown

<221> unsure

<222> 205541

<223> unknown

<221> unsure

<222> 205542

<223> unknown

<221> unsure

<222> 205543

<223> unknown

<221> unsure

<222> 205544 .

<223> unknown

<221> unsure

<222> 205545

<223> unknown

<221> unsure

<222> 205546

<223> unknown

<221> unsure

<222> 205547

<223> unknown

<221> unsure

<222> 205548

<223> unknown

<221> unsure

<222> 205549

<223> unknown

<221> unsure

<222> 205550

<223> unknown

<221> unsure

<222> 205551

<223> unknown

<221> unsure

<222> 205552

<223> unknown

<221> unsure

<222> 205553

<223> unknown

<221> unsure

<222> 205554

<223> unknown

<221> unsure

<222> 205555

<223> unknown

<221> unsure

<222> 205556

<221> unsure

<222> 205557

<223> unknown

<221> unsure

<222> 205558

<223> unknown

<221> unsure

<222> 205559

<223> unknown

<221> unsure

<222> 205560

<223> unknown

<221> unsure

<222> 205561

<223> unknown

<221> unsure

<222> 205562

<223> unknown

<221> unsure

<222> 205563

<223> unknown

<221> unsure

<222> 205564

<223> unknown

<221> unsure

<222> 205565

<223> unknown

<221> unsure

<222> 205566

_	づ	2	1	>	,	n	0	 ~	_

<222> 205567

<223> unknown

<221> unsure

<222> 205568

<223> unknown

<221> unsure

<222> 205569

<223> unknown

<221> unsure

<222> 205570

<223> unknown

<221> unsure

<222> 205571

<223> unknown

<221> unsure

<222> 205572

<223> unknown

<221> unsure

<222> 205573

<223> unknown ·

<221> unsure

<222> 205574

<223> unknown

<221> unsure

<222> 205575

<223> unknown

<221> unsure

<222> 205576

122	3.	unknown
~~~	. 7 - 2	unknown

<221> unsure

<222> 205577

<223> unknown

<221> unsure

<222> 205578

<223> unknown

<221> unsure

<222> 205579

<223> unknown

<221> unsure

<222> 205580

<223> unknown

<221> unsure

<222> 205581

<223> unknown

<221> unsure

<222> 205582

<223> unknown

<221> unsure

<222> 205583

<223> unknown

<221> unsure

<222> 205584

<223> unknown

<221> unsure

<222> 205585

<223> unknown

<221> unsure

<222> 205586

<223> unknown

<221> unsure

<222> 205587

<223> unknown

<221> unsure

<222> 205588

<223> unknown

<221> unsure

<222> 205589

<223> unknown

<221> unsure

<222> 205590

<223> unknown

<221> unsure

<222> 205591

<223> unknown

<221> unsure

<222> 205592

<223> unknown

<221> unsure

<222> 205593

<223> unknown

<221> unsure

<222> 205594

<223> unknown

<221> unsure

<222> 205595

PTS-0012 -103-

<221> unsure

<222> 205596

<223> unknown

<221> unsure

<222> 205597

<223> unknown

<221> unsure

<222> 205598

<223> unknown

<221> unsure

<222> 205699

<223> unknown

<221> unsure

<222> 205748

<223> unknown

<221> unsure

<222> 205789

<223> unknown

<400> 12

ctgtctgctg ttggactgac tggctcatat tgatttgtgg gtgtccccc tgtattctgg 60 gtactagcta tcattgcact acttttgact ttgtatggta actcagaaat tcttaaatga 120 ggctgggcac agtggctcgc acctgtaatc ctagcacttt gggaggccaa ggcaggagga 180 ttgcttgagc tcaggagttt gaaaccagcc tgggcaacat ggtgagaccc tgtctctaca 240 aaaaaataca aaaattagcc gggcatggtg gcacgtgccc atagtcccag ctacttagca 300 ggcttaggtg ggaggatcgc cttagggttg gggctgcagg gagccatgat tgcaccccag 360 cctgagtgac agagcgagac tatatccaaa acaaaaacaa aaacaaaaac actccaaaat 420 accaaacaaa caaaaataaa ttcttgcatg agaatagtag acacccccac ccccggaccc 480 catccttcag gtgtccgtcg acccatctcc ctgtttgtgg ggtcctctgg gtagttaatg 540 gggcagtttc ccagtagcc agacgttgg cccggggcc ctcggtggtc ttgccaggg 600 gtgtgggatg cctttaaacc cacacatctg ggattgaatc acagctccgt cacttcccgg 660 ctctgagaac ctgggcatga gatttgattg tctgagcgtc agtctcctc tctgtcaaat 720 aggtagcagt acctgccca cagggttct atggagaaat acttggcca gtgcttacga 780 cacatgggcc ctgacggca acatggtct ttttcctgca tgtcggtgtc gtcatgcca 840

PTS-0012 -104- PATENT

actgcataca tgcgatgtca actaacaaaa cccgtgtttt gtctgcaggt ctccctgagt 900 ctttgaggac acagcctcgc tggaggcagt ttctggtagg ttcatgtctg tctccacttg 960 gtgtccccag gaggttcatc ctgcctggac tttctcacgg gaagtgggtc tggaattact 1020 cggagccagg ttcggcctgg agtgtgtggt gggggcctcg gggggcgtgt ggggtctggc 1080 acatcagage tgtecaggge agggageaac ttagggeagt ttgcggggte ceccagtgat 1140 gggccgtttc ctggctgagt tggtgcagtg attttttgat gacacctgag aggtgggagg 1200 gtccctgaca gtgtcagtgt caggagggtg ggcttccccg ggctccgggg ttcttggtca 1260 cattgctttt gtgctttggc ggtgggcccg caggtttggc cagggtgggg cctgtcgatg 1320 ggcccaggtg ttcgggtgtt gggtgctgga ggaagccctg aggctgaacc accactgtgg 1380 teccegtgee tageaggeaa agaggtggee tgggteetgg tettateact getacttetg 1440 tgctgggcac tggggccagg ttgctttatc tctctgtatc tctgtttctc catctgtaga 1500 ctgggcgggg aggcaataac agtttcccct tatagggttt tgctgcggtg attaatgctc 1560 atagagagca gtgcctggcc tgagaaggtg cctggtgagt cataatcaca ggtcgtgctt 1620 ttcacaggtc accccatttt gtgaccctca cagcaacact ccagaatggg tggtgcctca 1680 ttttacaagt ggggaaactg aggcacaggt tggtcacctg tcccagatct ttcagctgga 1740 agcaaagagc cagaagcaaa gaaccccttc tcacccttcc cagggaatgc agcaagtttc 1800 tcctggagtg ctcatttccc agccaggcag atggtcgctg agggcattgc agggctcgtg 1860 cgcatggagg ctggggcaca tggcgggcac acagcgtgtt ctggctcatg acaggctgtt 1920 gtcgggagat ttcattcttg ttccaaatac agtcatgtgc tgcataacga cattctggtc 1980 aacgatggac cgcatatatg acagtggtcc cataagatta taataccaca ttttttttt 2040 tttcgagaca gagtcttgct tggttgccca ggctggagtg cagtggtgtg atctcggctc 2100 actacaacct ctgcctccag gttcaagcta ttctcctgcc tcagcctcct tagtagctgg 2160 gattacaggc gtgcgccacc acgcctggct aatttttgta tttgtagtag agatggggtt 2220 tegecatgtt ggecaggetg gtetegaact cetgacetea agtgateete etgeetegge 2280 ctcccaaagt gctgggatga caggtgtgag ccaccaagcc cagagaatac cacatttgta 2340 ctgttccttt tctgtgtttg gatacctagt gtaccactgg gttctagctg cctgtgggag 2400 tcagtccagc cacacgccgt acaggtggta gcctgggaac cgtcggctac accagggttg 2460 tccaatcttt tggcttccct gggccacatt ggaagaagaa ttgtcttggg ccacccagaa 2520 aatacactag cactaatgat agcggatgaa ctaaaaaaaa aaaaaaaatc acaaaaaggt 2580 ctcataatgt tttcagaaag tttacaaatg tgtgccaggc cacattcaaa ggcatcctgg 2640 gccggggttg gacgagcttg gatgacacca cacaacctgg gtgtaccgct ggcactgagg 2700 tetaggtttg tgcaagteca eccecategt geteceacag ceaeggeace agetecegtg 2760 cgtttctcag aacgtgtccc cgtggttaag cagtacatga ctatatattc gtttatggaa 2820 tggctctttc taaagcacct actgtgtgcc aggctctgtt gtgggtgctg ggaatagacc 2880 tgtggacaag acggccaagc acctagtect ccctgcgggg agacagacca tgaccaaaag 2940 tcagtaagtg cgacgcttag cgggtctctt ggtggtgagc accaggctga ggaacaagtg 3000 gtgaaggggt ctggggagcc tgtgggtggg ctgggggttg cagtttcaaa gtgggggtca 3060 gggtaggcct ccctgagaag gtggcctttg agcaaagacc tgaagtaggg gaggaaggaa 3120 gcatgtaggt atctggggga agggtgaccc aggctgaggg aacagccctg ccaaagcact 3180

PTS-0012 -105- PATENT

gaggcagctt	ggaatgggcc	tcccgggttg	cgcgattctg	agttacctcg	ggggagtttt	3240
cctggaggag	gcctctttac	ttcttcctga	gcctttgggg	gcccccact	aggcaggagg	3300
gaagatcagc	cctgcaggtc	atctgcttcc	tggggctggg	ccttgggccc	taagccctgg	3360
gcctcacaac	caggttttgt	cttggaggga	gcaggggaag	gaggattggg	atttggaggt	3420
aggagaagga	ggagtgggac	tggggtgggg	gaggaggagt	gggatttgga	gggaggaggg	3480
gaaggaggag	tgcgatttgg	aggtgggga	aagaggagtg	ggatttggag	ggaggggga	3540
agaggagtgg	gatttggagg	gaggaggga	aggaggagtg	ggatttggag	ggagggagga	3600
aggaggagtg	ggatttgggt	tagggagggg	gaaggaggag	tgggacttgg	agggagggg	3660
gaaagaggag	tgggatttgg	aggtggggga	aggaggagtg	ggacggtggc	ggtccccac	3720
aaagtgatga	actcagcagg	gctttctgcc	taggctcatg	gggctttgaa	gttggaagga	3780
aagcggcctg	gtctgggctg	tttttcccag	cctcctcctc	ctctgcctcg	ctgtccccg	3840
tccatcggcg	tctccgtctc	cggcctaatg	gggagccttc	ctcctgtggc	tgagttatct	3900
gcttgtcatg	ccagtggccc	acccgaggac	gataaaaggg	ctttttgtct	gcaagcactt	3960
agcttcctct	gccggggcga	tccatcacat	ctgagggagg	ccgggaaggc	agacagacgg	4020
tggagtgggg	cctcctcc	ccctgctgag	ggaacctgat	gctcccagga	gcccccttgc	4080
aggacccaag	tggctcctca	gcccgaaggc	aaggcctgtc	tgggggccag	caggggtgag	4140
tgggagtggg	gccatggggg	cacattgagg	caggcagatg	ctctgcactc	ccctgacaga	4200
ggacagacgc	tgcccggatg	ccctgcccca	ccacacccac	ttggcagctc	tgtggggccc	4260
ctctgggacc	ctccatgctg	gagagggtgg	gtgggggtg	cagccttttc	tgagtaagaa	4320
ccgtgatggt	agaagggggc	atgggggaga	caagggggga	cagacctcag	ggccgacact	4380
cgctatgcgt	gcactaagca	ctttgtggaa	ttacctcctt	aaatctcagg	gcgaccetgg	4440
aggtgggcac	cgtccttatc	cccattctcc	agatgaggaa	actgaggtac	agggaggcga	4500
tgtggcatcc	ccagggtgca	gcagcagagg	gagggcttgg	ctccaggctc	ccagcggtac	4560
actcttccct	gcggacctag	gaccttagaa	gggggctgtg	ggagcccctg	gccccaaaag	4620
tgggttgccc	gtgactcgaa	actctgtgag	tggattcttc	agctgggagt	ggggtgggga	4680
ggtgggtgtc	tgggattgtc	tatacattgg	ggtgaggggt	ccggtgtggg	tgggggctgg	4740
ggtcacgggg	taccctgggc	gggtgatcgg	ggacaccgaa	ggtgtgtagg	gggaggtttt	4800
agggccctgg	cccagtggga	tctcacctct	cgggggctct	gggaggaccg	gctttaaccc	4860
cagttggacg	gggccctggg	ccctgcttgg	gtggggagga	gagcaattca	gggccccctg	4920
cccttccctg	tctgcgccac	cacccttccc	tetetgeeat	cctcctct	ctccttccca	4980
gcctggatgc	tcagccctgg	gcgggggctc	cctgcaatcc	cttcctccc	tccccttcc	5040
ttcctgctcc	ctacccctcc	ttctcctccc	tccttctccc	cacaggccac	cctcaaatga	5100
cagcaattaa	tggtgcctgt	gatggcgggc	tgagaggagg	aggctgacag	ttgagcgtgt	5160
ctgcctgcgg	ccgcccgcta	atcgggcccg	ggggatgccc	ctcctgccgt	tggctccagg	5220
cgcctgccct	gccatcactc	agaggggagc	aggagccctg	gacaggcctg	tgggagctgg	5280
tgcagagccc	ccatccctgc	agcccctcc	ctgtccttct	attattatta	tcattttctt	5340
tcataaacgg	gtgggctctg	gctggactct	tgttcagcat	gagttggtgg	atgcctccca	5400
gacgtccttc	tcctgaaatg	acctctcatg	tgcctgtgtt	gtcctcaggg	ccagccatcc	5460
ccacagggcc	ccatcctttt	gtccctgctt	ccctgggaga	ggcgggttgg	gtggagccca	5520

PTS-0012

-106-

PATENT

ggaaccgtgt	cctgtccgga	cagcaggcat	cagttaaatg	cccggcctg	agtcctcggg	5580
gcctgggggc	agctatttga	gcccagagcc	ttgtctggtg	gggtgaggaa	gtgtgttgtg	5640
tttgtcaggg	ttacaagaat	cctggccagc	tctgtccaca	gtgggcctgg	gcttgaccat	5700
ttatcacctg	gcagcagcaa	taatgaagcc	cctgctgtat	gctggggcct	gcagctggta	5760
tgttcacttt	ggttcatttt	acttggcagt	tttctgagga	gtgtggtatt	tctcaccttg	5820
cttttgtaga	gggggagact	gaggggcaga	gaggcaaagc	gatttgccct	aaggggcaca	5880
gtgccctacg	tgacctagct	agcataggac	aaagctgggg	ttcaacccag	acccaaactg	5940
tccaatgctc	atacatcagg	ggactttggg	aaacttgagg	gccagtttag	gaaccagcag	6000
actgatttag	aagtgaggaa	atagtccctg	ggtactggga	atggagtgag	tagtgttaat	6060
atatgcatct	ctctccctgt	tccacttaag	atcatcttca	ttgagatgta	attaacctat	6120
aatgatgcac	ccattttaag	ggttcaattg	catgtgtttt	gacaaatgta	aacatttgca	6180
tcacctccac	aatcagaata	aagtgtttct	gttccccca	aatccccacc	agtcccttgg	6240
cactaaatct	ctagcaccca	cctccacccc	ccacccccga	ctagaggtac	ccactgatct	6300
gctgttatag	aagcttttaa	ctcttctaga	attttataat	aaaattatca	ttttattata	6360
tactatactt	tgttgtgtct	ggcttctttc	actctgcata	acccatgttg	ctcatgtatc	6420
aattcattct	ttctcatggc	taagtagtat	ttcattctgt	ggatatatta	cagtttatcc	6480
attcatcagt	tgatggacat	caaagtttcc	agtttttggc	tattgggaat	aaagctgctc	6540
tgaacattct	tgtgtaagtc	tttgtgtgaa	catgttttct	tttttcttat	gtgaatatct	6600
aggcattggg	ttgctaggtc	acatggtaaa	tgtgttattt	tagtttataa	gaaaccacca	6660
gctgtttct	aaagtggctg	tcccattttg	catgcccacc	tgcagtggat	gagagttcca	6720
gttgctcccc	atccttgtca	gcacttgcta	ctgtcaatct	tttaatgtta	gccgttccag	6780
gagaccctaa	tgcacatgcg	attacatttt	tcagcttttg	ctgccttttg	ggcaaagctg	6840
tggttctgtg	ttttgatttt	atgtgtctgg	ccagctggtg	ggagtctaaa	ggatggtggg	6900
agataatctc	gtgtctgcca	acgctagctc	tgtgttttcc	tttctagtct	ttatgctgct	6960
gactgactgc	ttctcgtccg	gctgcagtgg	ttgagaccac	agtgcagtgc	cggattgcac	7020
cagttgggtt	gtttggggtt	agttagctgt	gagtgttgtt	atttatttt	ttatttttta	7080
tttttttga	gacagagtct	tgctctgtcg	cccaggctgg	agtgccatgg	catgatcttg	7140
gctcactgca	acctccgcct	cccgggttca	agcgattctc	ctgcctcaac	ctcccaagta	7200
gctgggatta	caggcatgcg	ccaccacatc	tggctagttt	ttgtattttt	tttttttagt	7260
agagacgggg	ttttgccatg	ttggccaggc	tgttcttgaa	ctcctgacct	caggtcatcc	7320
acttactttg	cctcccaaag	tgctaggatt	agtgagtgtt	tttttttt	ttttttt	7380
tgagtcggag	tttcgctctt	atcgtgcagg	ctggagtgca	atggcacgat	ctcggctcac	7440
tgcaacctcc	gcctcccggg	ttcaagcaat	tctcctgcct	cagectecet	agaagctggg	7500
attataggca	tgcgccacca	cgcctggcta	attttgtatt	tttagtagag	acggggtttc	7560
tctgtgttgg	ccaggctggt	ctcgaattcc	cgacctcagg	tgatctgccc	gcctcggcct	7620
cccaaactgt	tgggattaca	ggcgtgagcc	accgcgccca	gaggtgttgt	tcttaacact	7680
catcttacag	atgaggaaac	tgaggctctg	acaggtcagg	tgacttccat	tccgataaga	7740
aatgaaactc	atgactctga	gttgtgtgcc	ctttctcctc	cttcaggcta	ggaggtgcca	7800
gctccgtttg	ttgcagtgat	gtgtttgcca	gtccagaggg	tcatgccaag	aattggtggc	7860

PTS-0012

-107-

PATENT

tggttggggc	caggaccacc	tttttcctag	ggtttcctct	gctggagaga	tgagggtgtg	7920
gaggagacgc	tgtgccttcc	ggatcaagca	ctgtcctttg	gcactgagca	ctgttgagtg	7980
aatgtcaggc	gttggttctg	ccaagggtct	tccttgttca	atcctgttgt	cttgggcaaa	8040
accacacctg	ccttccgggg	agctattttg	gggcaaggga	ggagcatggc	atatggaagc	8100
ccaggaatgg	gctgggatgg	aagaggggc	ctccttctcc	tttttccttg	cctgaggggt	8160
gtcagctaag	atgacttttc	ggggaaggag	gcctgtaaat	taaataagca	atcccgtaaa	8220
taaataagta	atgaagtcag	cggggtgcct	aattacatca	gattcatcat	tgtggatgga	8280
tgcctgcccg	gtcattgtac	ttgtttttaa	tcttcggctc	tgacatgtgt	ctccttccgt	8340
ctcatagtca	tccccacccc	agctggaggg	aggaggcggg	gaggcgctgc	tgtaggggct	8400
tccagagagc	cttggtggtg	gaggtggtgg	tggggtccct	ggagggttat	ttacccagtc	8460
tgcctgttta	tggcagtcgt	ggaagggatg	acgtctgttc	cacagtgaaa	cctcaggagg	8520
cctcgggcca	tcctgattca	gcaaatccct	catcaggctg	cgctgaaggg	tagatgacaa	8580
acatggtgcc	ccgcacagat	ggggccacag	cacacgcagc	acgccctgga	gggcgagatg	8640
ggaaggacac	ggacgggggc	agatgacctc	agtgcaaagt	cccagggatc	caggtggacc	8700
cgtctttatg	ctgcagttgg	gtttgtaaac	ctactggagc	ttcgaagtgg	gagcacccca	8760
·tggcagtgac	agcagcagtc	ctaacagggt	ttgtgatcgt	ccttgtgtca	cacttcacat	8820
gttataattt	atttaattga	ctgggcacag	tggctcacgt	ctgtaatgta	atcccagcac	8880
tttggaaggc	cgaggcaggc	ggatcatctg	aggtcaggag	ttcgagacca	gcctggccaa	8940
catggtgaaa	ccccgtctct	aataaaaaca	gaagaattag	ccgggcgtgg	tggcgggcgc	9000
ctgtaatccc	aactactgga	gaggctgagg	caggagaatt	gtttgaaccc	aggaggcaga	9060
gactgcagtg	agctgagatc	gtgccactgc	actccagcct	gggcaacaga	gcaagactcc	9120
acctcaaaaa	aaaaaataaa	taaaaaatta	tttcatcacc	taaaagctct	tgtaaagtag	9180
ggattatcat	catcccctct	ttacatatga	ggaaactgag	gcacagagag	gttccgcatc	9240
ttgcccgagg	tcacacagec	agtgaacttt	gcactcaagt	catctgcccc	cgtctgcgtc	9300
cttcccatct	caccctacag	ggcgtgctgt	gtgtgctgtg	gccgcgtctg	tgcggggcgc	9360
cgtgtttgtc	atctaccctt	cagcacggcc	tgttcaggga	tttgctgaat	caggatggcc	9420
tgaggcctcc	tgaggtttca	ctgctgaaaa	gatctcatca	tcccttccac	gactgccata	9480
aacagatgcc	attctgaact	gtaaaataaa	atcatgtttc	actaaggaca	aagcaagccc	9540
atttgctgaa	attaaaatag	cttctttcca	gatcttctct	ttctctttca	gcggccctga	9600
ttggctggct	cttgggggac	tctctgtcct	gcctgagata	atggtcctta	gacccattgt	9660
acagttggag	aaactgaggc	tcagggaggt	ggaggagcat	gagtgagacc	acacagctgg	9720
gaggtggtga	agctgggatt	ctagctgctt	cttactgttt	ggtttgggga	gcgggggcca	9780
cctcatgtgc	ctgacgtgga	aggggctgcc	tgtcctctcc	gagaagcgca	gggagctgtg	9840
tgcaccccag	gctggctttg	ctggggttct	tgctgtggct	gattggttag	cgtcctgtct	9900
gtccgcgggg	gagaggagac	cagctgcccc	acctcgtggt	ttctcctcag	gacctgagca	9960
tgtgctgggc	atggacagag	gatgggggtg	gctgggggca	gtcttgtcct	cgttcgctgt	10020
ccatgcagct	ccagggtgcc	cagccacagc	ccacacctgt	tccctccatg	gtgcctctcc	10080
atatctccag	actccaggtc	ctgtacgagg	cagtggggcc	tgaacccttg	ggatgtctgg	10140
gcctctactg	ggggcccagg	gagggaacac	cctttacttt	acagggtgta	cttgtgcagc	10200

PTS-0012 -108- PATENT

cggacagggc ctgcgttgct gggccgtggc ttggatggga gtggggggttc acacattccc 10260 ctggtgctga cttcaggctt-gcggggtttg gggctctccc tgcccctcac tgtcacctgg 10320 ggtggagaga ggagttgagg aaagacccac atgaagaatt gtgtgtgtcc atggtgttcc 10380 tgggggttgg agcaatccaa ggaggctgcc tggaggagct ggaacactca cattgaataa 10440 tcataagccc atcttggagg gactaatgtg tgtacatgct tcaaacagga cctggcacag 10500 agcaaatacc atatttacca taaaagctaa catttcctga tccttttctt gcctcagtgc 10560 tgtgtgtgag ttgccagtat tattattatt aacattaact acaatttcta acgtgcaccc 10620 catacataca cgcatgtact ctttgcagca gccttagaag gtaggtgcta ttatgatcag 10680 ccctgttttc tagttaaggg gattgagggc agagagaggt taggggactt gtccaaggtc 10740 gcccagttgg cagagetagg atgtgaaccc agaacgcctg actccacggc agctgctttt 10800 catcgtgtgg atggtgcagg tgccacctgc agccctccct ctgccccgtg ggtacgccga 10860 tcactgccgc agccagcctg gatctcttgg cagggccatg ccagctgtgg gacagcctcc 10920 atgtgccacg tagggccctc aggcacgcag cagctgctct gggcagtgtg ggatggtcag 10980 gacgtgggac atctgcttcc tgcctccctg cagccagatt ggtgtcccca cggcctcctc 11040 ctggttgagg ggatggcaaa cagcaaacaa gatgcggcgc tttgccttat ggatcacaca 11100 ggctgatggg gagatgggca gtgccaaaaa acaaacacga ttttgcaagg caagaaaatg 11160 ctgcctgtga aataatacag ggtggggagg tagggatgac ttcagtttcg ggggactcat 11220 tttaggtaag aattccaggg tagcttctga ggaggtggca tctgagctgg gccctggaca 11280 ataaggaggc acccactatg tgaaaggaag ggggatgagg gaacagcagg cgcgaaggcc 11340 ctccggccac catgtttcag gcatgctgat tggggttctg tgcctcagtt tcccactctg 11400 taatggctgg agcagagcag gggggcccca ggagggcttt cctggatctg agactgtcct 11460 gcagacctcc agggctgggc tgtttttcac atttaaggca gaagtcaaat ttaatgactt 11520 ttgcctttcc cttttgttct tttgctccat agttaatttc catgtattta catggtttta 11580 atttacatgt attgggcacg tggcatgttc cggactcatg tacgtcactg ggatgagaat 11640 ggtggagaag ttggacattg cctgtgcctt cgagtttagt atccagaggg ggagtgtcag 11700 ttaaacaagc aagtgctatc gcgggtggtg agggttgtga ggacgaggtt caggcattca 11760 cctgggtgag gcaagagctg aattagtctt ccatcaggcc aggcgtccag ggacgagtca 11820 ttcaagggga gacctggggg tgattagtta ggggcagtta gttagggctc ctgagttgtg 11880 gcagagacac actcgagccg agttaggcta tgacggggag ttgatgggtc ctcagagtgg 11940 ccagggtagg acacgttcag gcacggctgg atctaggtgc tcaaacaatg cctctgggag 12000 ctggctttgc ctcagctgtg cctccttcca tgcgggcctt gttctcagac aggctcatgc 12060 caccagecea geceagecag ceaaggagaa ggagagteae etggeateee aggagggaea 12120 ctcctttctc ttgtttgagt gaggtcctcg acatttgttt cactgtttgc aacagcaaga 12180 ggaggtggcc aaagaaggga taaggggatg tcccaaactc agacacaggg aggaaaggag 12240 tgagtgagtc agtgcaggtc aaaggggagg agtggggatt gtggctaact ggcatgctgg 12300 gtattctgat ggttttccaa gagaagctgg aaatctggat tttataagga atggcctagt 12360 ttttaaaaaa cattgaatgg gccagaacaa gttttcttca tggccacaac tggctgtcac 12420 cattttatag cetettetta geagtgaett ttaaagtatt ttgteeccae tgtgatetgg 12480 gtagaatgtc ccatgggctg ttccagaagg tctcaagtct tgggaagtca cgtctgacac 12540

PTS-0012 -109- PATENT

cattggagat gccatttctg aaagtcaagg cccacggcca cagcagtttc tcagagaaca 12600 ataccatgtc tccagtgggg cctgacattc ttggagacag tatagtctag tggttagtgt 12660 cgtagatgcg ggtttcacac ttgctgagtt caaaaccgac attgccactt cccagccccg 12720 tccccttggg caagtcactt cactgctctc tgcctcagtt tcccagtatg tattaatgga 12780 atgggtatga cagcacccca taggattgtt gtaaggcaag cttgtccaac ctgcggctca 12840 qqacqqtttt aaatqcaqcc caacacaaat ttqtaaactt tcttaaaaca gattgttttt 12900 cggttttttg tttttttt ttttttagtt catcagctat ggttagtgtt agtgttatgt 12960 gtgatccgag acagttettt tagtgtggcc cagtgaagcc aaaagactgg acacgccggt 13020 tgtaaggcac agtggaggcc gcgtgaagcc cactgaccct ggcacactga gagcttgagt 13080 gatgctggcc ggcgtgatgt gtccttcccg ggttaggtcc ctgggatcca gctggctggc 13140 gtggagcatt cetgggcact cetettteet etgeegetge ecetgeeace ggggtgtggg 13200 ·· ttcccaggag ccccagaaca ggcagccacc tgccccctgc ccccagccgt ccttgccagt 13260 tgctgggtgc ccatggtatt ctggcgtgcc ggatggtgct gcagttggaa gtgagtcttg 13320 agtgagcaat taactctgcc agctgccagc tcacagctgc tgtgggtggg ggcggcccct 13380 · tttaaaaata aaaacaacat gcagaaaaac agccctggag taccgttggc ttcccttagc 13440 caacgtggtc agggcttcat tttgatgctt ttgtggagaa gaatcccggg cctggatggg 13500 gaaataggat gcattttggt ctggggagtg tctttattta ggggcagagg tgatggcctg 13560 tgtctggcct ccccatccag gaggcaggcc cctttcctca agctgcccac gagtggctgg 13620 ctcatggatg cctgccacag ggaaggggat ttgggttcct tggggccagt ttttagcagg 13680 ctcaggccgg agagggtggc tgtgggacct ctcaggtctg tttccagctc tgtcggctat 13740 aggggggccc tggggccatc ccggagatcc ctggagctct cctctgcagc ttccagccag 13800 ttttctggaa ctagcgggaa aggaaagggg caccaaaggt gtttccgggc atgcgactgc 13860 tgccactttg aggtcttggc tttggtagtg ggttgagtca tggcccatga aacataggta 13920 cacttggaaa ctgtgaatat gaccttggcc ttatttggac cacaggtctt cgcagatgtc 13980 actaaggtaa gggtctcaag atgggatcat cctggaatag gatgggccct aaatccaatg 14040 acaagtgttc taagagaaga cacacagcag agaagtccac gtgaagatgg aaggaacgcc 14100 aggagecact gggaactgga agacacagag aaggeteece etgeagagte tttggagggt 14160 gtgtggccct ggtgacacct tgagcttgga tttctggcct ccagaactgt gagaggatag 14220 gtcgctggtt tcagccaccc aatttgtaat aatttgttat agcagccaca ggaaacgaat 14280 acagttgtga actttatttt aatcactcat gtattttaaa attaaaatgt aaaatgtaat 14340 tttgtcttgt tcactgccat atttccagtg ctcagcacat acagtagggg ctcagcagat 14400 gettetegaa tgtetgatag etecaggeet gggtgaggaa etectacetg etgggagttg 14460 gacccagctt tcaggaagtc ggtaaactgg gctggagtgg tgtgcattca gcaacaccat 14520 ctttttgttt attfatttgt ttatttgaga tgcggccttg ctctgttgcc caggctggag 14580 tgcagtggca tgatcttggc tcactgcagc ctctgcctcc tggttcaagc aattctctta 14640 cctcagcctc ctgagtagct ggaattacgg gtatgcgcca ccacacctga ctgaattttg 14700 tatttttagt agagatgggg ttttgccatg atagccaggc tggtcttgag ctcctggcct 14760 caagcgatcc actgcgcccg gcctatttat tttcagttga ggtgaaattc acatcacata 14820 taatttacca ttttaacatg aacagttcat gagttcttag tacaatcaca atgttgagca 14880 PTS-0012

-110-

PATENT

cccacccctt	ctatccaaaa	aatgtcctca	tcaccccaaa	aggaaccctg	taccggtggg	14940
gtcactccac	gttgccgcct	cccgcagccc	ctggcagcta	ccaatctgcc	ttctgcctct	15000
gtggacttac	ctattttggg	tatttctcct	ggacggaatc	gtgcactgtg	ggttttggct	15060
tctttcactc	cgcacaatgt	gtttgaggtt	gatccgtgtt	gaatggtgtg	agtccttcat	15120
tcctttatat	ggcggaattc	cattgtgtgg	catacatcaa	tagaaccatt	tgatatctaa	15180
gtggcttttc	agatgaggaa	actgaggctg	cccaggtcac	ggagccctgg	ggcccgggat	15240
tgaggaggtg	cagatagcca	gacgtgtctg	gctcacggtg	ctgtctcttt	ctcctgcccc	15300
caccctgctc	cactcgtatc	tgtgcctggc	caggaagcag	cagtgtgtgg	ggaggaagtg	15360
agtgggggtc	tcttccagct	ggagccggat	gctgaagcgt	agctgcggct	gtgggtctgg	15420
atctggtcct	cagagttctg	gccccacct	ccccctggg	ccccacacat	gtagtttctg	15480
ttgacctggg	ttgcgagaga	ggcagcaggc	aggagctccc	ccattcgcca	gctgagcctt	15540
ctgatgcctc	gagaggctgg	gggccttgcc	tggggccact	cagcttaagg	tcccctgcc	15600
cctttccaga	cccctttgg	cccaccgtcc	tggcccctgt	ggcctgcggt	gaatcatatt	15660
cŕaaaaaatc	ttcaccgatc	tttcccaccg	tcaaagctct	gctcagcaga	cgggctccag	15720
gaagcggcct	gtcggcagat	tttggccagg	ggatgctttt	tcgaagtatg	gaggggtggt	15780
cgccgtcgaa	ggcttgcgtg	atggggagtt	cttttgctga	gcagataacc	agacactggc	15840
ttattctgaa	tatgagtttg	gttttggcca	caggctctgt	ctgggggctg	ctgcctgtgg	15900
ctgtttctgg	tgtttgatga	tttgtggtct	tcattaagtc	actcaacaaa	caatttgctg	15960
cggagtatct	ggcggggaag	gcacaggaag	cagaacgagt	ggccgtgaag	agacatgccc	16020
agtgtcaaac	ctgcccatag	cacacagtcg	ctctgagggg	gtgggaggag	ttaccgtgga	16080
ttccagggcc	agcctttggc	gaaggtctgg	atgcaggtct	gtgtccaaaa	caaacaaaaa	16140
tgaacagaag	gaggtggtga	ggcctgactc	ggccgctctc	aggcaccgct	tcctggtggt	16200
gtttgcatgg	ggccagtttg	gcctgggtgt	catggtcccg	cctggtcttg	gcgacggtct	16260
gggcgggaag	atggtgctgg	atctttgggc	taaaaatatg	cccgtgcctt	cctgtgcctc	16320
agtttcccta	cctataaaag	aaggcgtaag	agtagcagaa	tcccaccttt	ggctttgggg	16380
caggtctacg	gaaacccccc	aggggtgttt	cctggggaag	gctagagggc	cagctgttca	16440
caggagacat	ctggcttcca	ggggcctccg	cagccactat	gctcatcccc	tcgtggccag	16500
tctgggcccc	ctgccagtcc	agtggccacg	ggcccctgtc	acaggcaaat	ctggtcttag	16560
tcctgaaacc	ctcctgtgac	tccttgtggc	tgaattacca	cgtggatagc	ggagacaagc	16620
caggettgee	cagttcaagt	cccagctcag	ccactagctg	ttgaccttgg	gcaagtcacc	16680
taccctctct	gggccagcct	cctgctctgt	ctgtgtgtgg	cggctcaggg	gcatacctgc	16740
ctatgctgcg	gtggtgtgag	gccagctggt	gaaccagggg	acccgcttag	cacagtgctg	16800
ggcacacagt	ccgagctgct	gggctcggtg	tgtgtggcca	ctgttattgt	tattaatatt	16860
attactctca	agatgctcct	gagagtaaaa	aggatgacaa	tgttattgct	ggagttgaag	16920
gccaggccca	gagtccatct	gaccacttcc	cctccactcc	tattagctcc	ctgacctcat	16980
cgtcaaactc	tccccgcctc	gcccctgcgc	cccggccaca	ccagccttct	ctctgctttg	17040
acaacacacc	cgcgtggtcc	agcctccaga	ccttcacatc	tgccatgctt	ctgccagggg	17100
tgccttcctc	acatctgcac	ccccagaccc	ttgtcatcat	gtgggctgct	gtccagggac	17160
acattcttag	gcccaactct	tggctgctag	gggcagggaa	gtgaatctgg	agaccctggt	17220

PTS-0012

-111-

ggagcctcct	ctgcctcctg	ggagctccag	cagcttcctc	tggcgcctca	tctctgcttt	17280
ccagagcact	tggagaagca	gagctcagcc	tgccccttct	acggatggaa	agttgacacc	17340
cagagaagct	cagacttgtc	tctgagtcac	acagctaatt	gcagccaagg	ttcagactcc	17400
tggctgacta	ccaagccatc	attgttggcc	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	17460
tgtgtgtgtg	tgtgtgtgtg	tatgtgtgtg	tgtattattt	ggccacgtct	tcttttctag	17520
gcctgtcacc	gagatgaccc	cagatcagaa	tgccagtgtg	agggggtcac	gctttcttt	17580
cctaggatta	aaaggaggac	agaaatattt	gcaagggaga	gcctgctcct	ctggccatct	17640
ggccctcggg	acagaggacg	ggggagggat	gggccgaggc	ctgggttcgg	aaccaggccg	17700
gagccaaggc	gccagagcta	cgctcaggtt	ggaggtgcag	gtgcggctcg	aagctggaca	17760
gtccgggctg	ggaggaagcg	ggttaaagtg	ggagaagcgg	ggctggagct	ctctttcgcc	17820
tgccagcgag	cgaagagccg	agctataaaa	aggcctcaca	gtgtttcagc	tcccgagtgt	17880
cggctggaag	cccgccaggg	ttaccatggc	gatgaggaat	tattacttac	tgccaaggct	17940
gggagaaaaa	gctcgtactt	ttggcttcca	aacaagagga	gtggacttat	gtaattccct	18000
gtgtttatag	gcccagagtg	gcagaggcga	gaacggatcg	ctggaggccc	gacgtctcgt	18060
tcącggccca	gccgtggggt	caggcggccc	cgcacttgtc	gccggtgggc	cttggcctgc	18120
ccgggtttgg	ggggcatcgg	gctgggagcc	tggggggcct	ggcctggccc	tgcagggcct	18180
ccagggccgg	gatgggagtc	gtagtctcgc	gggaaggtga	ggccgccctc	tggggccgcc	18240
cctctgcggg	tgtcatcctg	gaggaaggat	gggtctgatg	ttggctgtgg	tgtgcctcct	18300
ggaagccggc	agcacagcct	gtgtgtgtgg	actctgctgg	cccgctggct	ggcacttttt	18360
ttcttttct	tttttttct	tgtgagagag	ttacttcaag	ttgtgtttgg	agctgacgtg	18420
agcgaggttg	gtcatgtgct	cgggtaagag	aagtcgccgg	gcttggagtg	ggcagggagg	18480
tgcagtgtgg	ctgggtcacc	ccggccgggg	gaggtgggcg	cagactgggg	tggggggctg	18540
tggcctgcag	gctctatgca	ggggcgctga	ttgggggccg	aggaattcat	ctggaaagag	18600
ccctagttct	gtcgctggag	gtggtggcca	gggctggggg	ctgagtggcc	ggccgcaggt	18660
cagccaatgg	gggcagctgg	accctcccct	ggcagcgcag	tgttgtcggc	cctgagctca	18720
gcgggatggt	gggcagggct	gtctcatcgg	acgaagttgc	tgcagtcacg	gaaaagagcg	18780
ctcggaggcg	ctggccgggc	aggccggggt	gaggcttctt	ggccggcccg	cgtgggaggg	18840
gacccgggtg	ggcactgtgc	tcctctcctt	ggtgcacatc	cggcgtccct	ggggggagc	18900
atggcgagcc	ttgggggctc	agggggcttc	tgttcccgga	gttgacttca	ggagggcatg	18960
tgatcgtggg	cgctcccgag	gctctgccct	ggggctccgc	ggtgggctca	ggcaggggag	19020
agccaggtgc	aggcagcgct	gcagcccggc	cccggcgccc	ggctcccac	cgaggtggcg	19080
cttggctcgg	tgcccatgtc	tggtttgaaa	tcagcgccac	cggcccaggc	ttgcccaggg	19140
acttggcagc	gaggagccgg	gataaacact	ggaaagttgg	aagggcttcc	cgagctcaca	19200
aggagccttt	agttgcaaac	cggggggatg	agggagtgat	ttgtcctgag	gtctgggtgc	19260
gccgcggcca	tagggaggtg	gcgggaatgg	ctcctgggga	cctctgagcc	caggctgggg	19320
aagggagggg	gctgggcttc	caggcaatgt	tgctcctttg	ccacagacct	gggtttgagt	19380
cctggctccg	tcctctctat	gctgtgtgac	cttgggcgtg	ttgcctcccc	tttgcagacc	19440
	cgtctgtaaa					
	tgcagtţtta					

PTS-0012 -112- PATENT

tggacacttc ctggctgtgt gaccttgggc aagtcactta ctgtctctga gcctcagttt 19620 tcccatctgg caaatggaag ttgcatcttt ccccacctca taggctgtat ggcttaaggg 19680 agtgaatgaa acctgccttc tagctcataa taggctcaca gttgataatt cactggcact 19740 ttgttttctc gatgctgaca ataccggcac ctggtctgag ggtggggggc ccctgggatt 19800 tcagcatctc agggcgatgg tatttatgaa gttgtagtgg ccggactgag gttccagtcc 19860 tggctcgacc cctcaaggat ggtgtgacct tgggcaagtc ccggaatccc acagagcctc 19920 agtttccttg tcctttacca cagtggtagc actgcagcct gccggtgtgt ctcgggagag 19980 cctgagagaa gcctgaaggg gcccgcacag tgctggcctg ggtgggcctc cgtaattgta 20040 accacaaggt tggatttaag ttcgagttcc gtccattttt cttttcttct ttgcagagag 20100 ctctcatgtt ttgtagaaac ctgggtccag ataatgggag gtaggtcgag tgggtgcttc 20160 ccaggetetg cetttgtttg ggatececag gtetececec atgeetgeet gttetgeece 20220 gteteceact cageetgage eceteegtge cageeetggg ecaggeacee cecacagtge 20280 ctggtgtggc ctggggactg gcgcgggagg gccagttctc ctgcagaagg tggcagccgt 20340 cctgtgtttg taagtgacac cggatgctgg gccagtgact ggctcagggc ctccgctctt 20400 gggccagcag gagccagtgg ggagttcccc gggcgtccag gccccccgca ccagctgccc 20460 gctgtctcat tgtcatgggg cctctcctgg gacctcgaga atggcctccg aaggcggggg 20520 ggttctcatc catgtcccct tgtcaccccc agggccttgg tgtccacttg ggttggccac 20580 agagetgtgt cgtggetgee cetgacettt gecaaagtee teagggaete gatttteeta 20640 cccggtggag aagagtcctg ggtgaggttc agaacagaag tcagcaccag ggcctttgtg 20700 acgaggcagc tcagcatgga ctggttgtga tcactggagt ctgcacatgt gataagaaca 20760 catagaacta aatacgcgca cactcacaca tgcacacaca tacatgcaca ctcacgcaca 20820 cacccacatg tatactcaca cgcacacttg tgaacataca caccatacac acagtcacac 20880 gaacatgcac acgcatactc gcacactcac actcacatgc acacactc atatgcacac 20940 tcacagtcgt gcacacaca ccatactcac atgcagacac ccacacagat acatgcgcac 21000 atgcacaca acactcacac aagtgagtgc attggaaact gctgcaatct gcatacggct 21060 ggctatatcc atgctgcctt cctagttatg atatggatga tgaattgtcg ttgtctcagg 21120 tttgtctcag gatgttattc ttgggggagg ctgggtgaag ggcacacagg atcctgggat 21180 cttgattttt ttttttttc cttttttgaa accgagtctc actccgtcac ccaggctgga 21240 gtgcagtgca gtggcacgat ctcagctcac tgcaaccact gcctcctgag ttcaagcgat 21300 tetectgtea cageeteeca agttgetggg actacaggeg catgecatea ageecageta 21360 atgtttgtat ttttagtaga ggactccccc atgaagctgg cctgtaactg agcttggtcc 21420 cttggacatc ccagggggtc caggcagagt ttgctttgtg cctcaggatc acagagggct 21480 ccagagcgtc ccaggctggg ggacacgtgg tgcctgcagg gcctgtgggg gcctcatgac 21540 tgagctgctg taagggtgtt cctgtcatca gagtggcgtg gtggaggctt gtgtcccgtg 21600 ggcatgggtc gtagcttagg gtctggagag atgggggtgg gatagggttt gggggcatcc 21660 agceteatga geetettett tgetgttett tggggeeeet gateatggge etgeeteagg 21720 acctttgcac tggctataac ctttttttt ttttttttt gagacaaagt ctcactcccg 21780 caggetggag tgcagagetg tggccacett tettteaggt teaagegatt etcetgeete 21840 ctgagtagct gggactacag gcgcatacca ccatgcctaa tttttgtatt ttgagtggag 21900

<u>P</u>TS-0012 -113- PATENT

acagggtttt	gccatgttag	ccaggctggt	cttgaactcc	tgacctcaag	tgatccacct	21960
gcctcggcct	cccaaagtgc	taggattaca	ggcatgagcc	accacacccg	gcctggctgt	22020
aacctcttct	gggaacaccc	tttcctgaga	ccttcagcct	ccctgatata	ggcctctgct	22080
aatggcgcct	cctgagagag	gcctgatgtc	agttgtgact	ccctgtgaca	ccttcactac	22140
tccttgtaac	actgtcacca	ccagggtctg	cggtatgccc	atcacccctg	tccccacctt	22200
gttttagtct	atttggactg	ggtggctcac	aaacaataga	actttattgc	tcacagttct	22260
ggaggctgga	tgtccaagac	caagatgctg	gcagatttgg	tgtcacatgg	gacgagggcc	22320
cgtttcctgg	ttcatagatg	gtggcttctc	ccaggaagag	gggcagggcg	gctttctggg	22380
ggcaccaatc	ccactcatga	cagctcatca	cctcccagaa	gececaeget	ctgacatcat	22440
cccgtggtga	ttaggtctca	acatgcagat	tttgggggga	cataaacatt	cacactccag	22500
caccctcca	tccaggattt	tgttcatctt	tgtcaccgct	gtgtccccag	cactgggtat	22560
gtagcaggca	cttaggagac	agttgtgcct	gactcagtgt	cttccacggg	gcctcagcct	22620
gtcccctccc	cataaatggg	gcctctctgg	tgaaggaggc	cctgcatttt	ggggatgatt	22680
tggaaaacca	ggaaaagttc	tcatgctttt	tctctgactg	ccactggggt	acccaccaag	22740
catcccaaga	gagctacccc	tcctagatac	agtcatgaga	aggaacccag	ggatgctgta	22800
ggtacgggga	gtgggggagg	ggtggtgaca	gcctcagcct	tgtgtgttga	ggaccaaggc	22860
gaggtgagca	ttccacatac	cttagttcat	tgtgtccttc	ccatagcctt	gtaaagtcgg	22920
cacagagtca	ccctctcctg	ataaggcaca	gagagggtag	gcagcttgct	caaagacaca	22980
cagctgcagg	cctgcagtat	taccaactga	atggcatttc	caaggcagtt	gcttctttgc	23040
tcaaggtcat	gcttagcatg	ttaaggggat	catcctgttt	catccccaaa	agtccctcta	23100
ctatccctat	cttccgaggc	gggtcctgtt	ttctggggat	ctggctcaga	actggcaggg	23160
acccgtttcc	caggctgaga	gagtgcgcct	catttagccc	agagcagagg	cccagagatg	23220
cccacacttc	tgaaggttgg	gggtcagttt	ccagtgtggc	ttagaagtta	gagggcagga	23280
ggggcacccc	agagtggagg	aactgccctc	ttcctccgga	gtcgttcatt	tgcatgacaa	23340
tgagcccttt	gttcctgagg	ccagcctcct	tcccaggcta	ataacataat	tectggeetg	23400
tgatgtcata	atgggccctt	tctgtggctg	gggtcagagg	ctgggtgggc	agctgtgtgg	23460
gctgggccag	gcctgctaat	aaccagggag	gtggtgattg	ccaggggcct	gtgtgccaag	23520
ctgcctcctt	ccagggtctc	gctgagtcct	cccgagagag	cagcgggagg	tgggatttgc	23580
teceetgttg	acactggagc	aagctgagcc	tccaggaagc	cctccctggc	cccaccgttt	23640
gtctggtccc	cctcgatgag	ctgcttcaag	cttcttggcc	tgtggagtgg	gggtgactca	23700
ċţgtcagttt	ggccctcggc	cgagaggcgt	gggcgtgaga	gtcccttgtt	tcctgtaaac	23760
tggagggagg	ccaataccca	gcggctactg	tgttggggcc	actcggaaag	ccaggttcaa	23820
accttggccc	cacttggtcc	cctgggcatc	ggctgaactc	cctgtgcctc	cgtttccccc	23880
tctgcttcat	ggggttccgc	tggggcttgg	gctcagagct	aggcagggag	tgagctttca	23940
ggaaatgggc	aatgtcagaa	aaggcggggg	ctggtggagt	ggggtgagtg	gtgatacccc	24000
caagagttag	gtccatgtcc	tagtaaccca	gcccctgtca	gagagagacc	gtatttgata	24060
aaagggtctt	tgcagatgtg	ttttgagatg	agctcatcct	gggttaccca	ggtgggccct	24120
gaatçcaaag	accagtgtcc	ttagaagaga	cagaagagga	gagagcaaga	ctacatgaac	24180
tacaggaaga	caaaggcaga	gatitggaggg	ctgaagccgc	aagccaagga	atgcctggag	24240

PTS-0012 -114-

PATENT

ccaccagcat ctggaagagg cagaaaggag cctccctttg agcttctgga gggagtaggg 24300 tectgetgae geettgattt tggaetteea ggeteeagaa etgttagaga ataaattget 24360 gtcgttggcc gggcgaggtg gctcatgcct atagtcccag cactttggga ggccgaggtg 24420 ggcgcatcac ttgagcccag gatttcaaga tcagcctggg caacatggcg agaccctgtc 24480 tctacaaaaa gcacaaaaat tagccggatg tggtggcggc ttgcctgtag tcccacgctg 24540 aggcaggagg atcaattgag cccaggaggt caaggctgca gtaagccatg attgtgccac 24600 tgcactccag cctggaccac agagtgagac cctgtcaaaa aataataaaa aaataaaaat 24660 aaatcactgt tgttttaagt ttcctggttt gtggtcattt ttatggcagc cctaggaaat 24720 gaacacaget ggcgacgcca gtctctggag gtgggggaac tggccctggc gggggttggt 24780 actgttcccc actccaagcc tgagggtgca ggacaagttt gggtggccga gaaccccttt 24840 gtgcctggga gtgcatgaag ccccattcgg ggagtctgga ctttccagga aggacgcctt 24900 gctcgaacct gcctttcttg ccgagaacca aatccacaag gccctagacc ccacctgccg 24960 cctgctgttc gctgtcccct cagacagccc tgctaagggg acaggaccca gaggcaggag 25020 gctctcggat tctaccccgg ctttgcccca ggccccggac gccctttccc cacgcgtctg 25080 gtgactcctg cagaacccgg gttgcactca tcccccagca agccccaggt ttgccgggtg 25140 cccttgacaa atggagaaac taggcccaga gagggcaggc tacttggcag aggccacaca 25200 geteettagt ggeactgacg geettacagt etegecacgg gggetggeac tggggettee 25260 aggagtgggg atcagagttc tcggccactt ggagacctgg agtggagctg gccggctgtg 25320 tggacctggg gtcagttacc tgatatttgg gacactcggc tgcctttgat ggacctggcc 25380 tggtgtaggt ggtaccccga aatctgggct ttaagcacac cctgtctgtg ctctcagcct 25440 cagtetetet gtttgeaaac tggtetttga getteagete caegtetgeg attttgetet 25500 tagcatgttc atgcattcag caaacattta ttgagcacct gccatgtgca gtgtgctggg 25560 actotggggg acacaaaggt gtgactottg ottcatggat ottgtgtttg gggctgtggg 25620 gggagaggaa atgcagcagc acaggttgga gtccagattc cgggttctga tgagggaggt 25680 cacggagetg ggccgtgagg gaggtgagga tgtggccttt cgtctcctcc tgggcccggg 25740 gtggacagtg tgcagcaggc tctcaagtgg acatggagat gcccacagcc tgtccgcggc 25800 ggcccatggg cacctctggc tggcaggacc tggcctggtc ttgtgagcag ggacatggga 25860 tgggaggget geaaggeetg geteeageet ggtgggagag acaacagtet cetetaacet 25920 aagcagcagg catgggtatg ctggtgacag ggtcccagga cacagtgggt gagctggaca 25980 caggaggtgg ctcgcctggg tttgcatcca ggctgtgccc ttgttggctg tgtgaccttg 26040 ggcaagttgc teggeetete tgtgeeagte tetecagetg tagaatgggg atgataacag 26100 aatccctcac gggggcgctg tgaggaagga gttggtgcca ccaagtgttg tgttggggac 26160 tggctgtgcc agtggctgcg aggtgttccc tcccgtggct gctcagggca gcggcgtgga 26220 agatggaagt ggcatttgct catcttcccg ctgccctgct cctccctgtg caaatagcct 26280 cagtetteca cetaggaaac gggagetgta acaagcacat ggccccatgg aggtegggag 26340 gagaagegga getggggtge atcagtgeet gtggggtggg ggettggggt egeeacetge 26400 tecagattga ggeettgget geeceegagg eetggaacag ceaettgttt tacaacceag 26460 gaaactgaag gcctggcagg gatggcccca agacatgccc atgggtacag cccatgtggt 26520 ggctcctggc tgcagacaat gcctcttttt tctggcctgg cgggagcagc ccaggcttgc 26580

PATENT

PTS-0012 -115-

tcaacctggc ctaggtttat cagcacattt ggttctgcgg tgcggctagc agacattccc 26640 tccaagagag atcgtgatgt tcctccggaa accgaggtcc ggaggctcag gttactgtgg 26700 ggggcggccg tcggggggtg tgtctgcctc tgagaagtga cccagatcag agctgggctg 26760 tgctgggcag tgttcatctg caaagctgcc gcctgctctt tcacccatga gagccactga 26820 cagctcagga agggactggg agccacccac tttcccttca gggtgacaca ggacaggcct 26880 ctccctggct cctgcctggc cccttccccc tacactgagt ctggcctggg tctcccattc 26940 cattlctctg gcctcttctt ggctggcttt ggacctgtcc tcacctacat ggataaggga 27000 cctagcgggt ggaagagatc tgattccagg gagatcctat ctgagagttt gtgttttagg 27060 agggttgcta tcttaggtct cttggttgca atggacagac tccctctgcc tcctgcattt 27120 agcacaaata gttcaagtaa ctaaaaaacc tcagagaagc ttcaggcaca gttgggtcca 27180 ggtgctcccc actttcagtc cctgttagcc tgagactaat aattgcagtt cagtagcccc 27240 agtggaagga cagcttcttg ttcccaatat tccagcaaat atcatgggaa tgagttttgt 27300 tgcctcagct tgagagttca gagttaagcc ccccccgcc ccccaccaaa gccagtgcca 27360 ctttggctgg agggctgggt cagcctcct gagaccccag gactgagggt gcaggggggg 27420 tggttgccca gggaaattgg ggtgtggcat gcacggagtg gggccgggtg ggcagagaca 27480 ctgtgtcttg ctccctgtgt tggagatggg gccaggttgg ggtccctgcc tggcctgcct 27540 ttcatggcca gtgtgtgtgt gtcccattgg ggtggagcag gtggcgccga tgagtcactg 27600 ggtaagtttc attcctgtta tatttaatag ttgagggcct cttgggtccc ccctccaagc 27660 : . cgttgctggc gctccacctc ctgtcccccc atcagcccgc ttcagctccc cagccttccc 27720 tcacctctct tgtggcgtcc agtgaccacg tcataagcca caggtcatgt cctggcagcc 27780° cctgggctgt atttggctgt cagactgatt tattgggttg gttttatagt cagtgttttt 27840 ttagaaatat cgggagatgt ctcaaaattg ggcttcttgg ctttgctgga aagatttgga 27900 tgccgtggac cccctgcccc acgtggaccc tgttccagca gggtctggaa catcaggaat 27960 gtttgggggc cacattectg ggtetetget cagtgttggc tgggggetgag etgeggteac 28020 gggtcttggg tatctacagc tctcctcttg ctttttgtcc ctgcccttct tcgggtggat 28140 catccgatcc caggtagacg cttagcttca gccgtcgcca ctcctgggcg ctgaagcatt 28200 tgtttactgt ctgagctcct ggctgcaggg gccataggac cttttgggtt cttgatcact 28260 gtcccgtcat cagacattta ttgatcaatg cccctggggt aattgaatgg cccagatgcg 28320 tccacttctg agcattggac agagctgacg taaagtggat tcttcccgtt tagcctggga 28380 gcccaggcgg cagtggggtc ctcccatcca ggccctttgt ggtccagcct ggccacttgc 28440 tgggggctgg gatgggttgg ggaggcagga ggggaccctt gttgagtggg tgggctctgt 28500 cgccctggac gctgctgctg gcacagctat tcttagcagc agaaacattt gtcctcattc 28560 acatgtggtg gatgcctcca gggatctacc ctgaaatact agaggcgacc ccataaattc 28620 ctcagaaagc catccttgag ggcctgcgtg catggaggag aagcgggagg aggcgtttcc 28680 ggcagctgca cagctgtgga tgtgtttgcc agatgttgga ggcagggaag tcggtgggaa 28740 cettgeggag geegeettea cacteggggt etgggeatgg acatgagegg gtgggacaga 28800 gactgcagac tggtgggcag agagaagggc tctggccctg gcctcaagtt ttggggtcca 28860 ggggcccctc tgaagcagtc agcccttccc tgggccctgg ccttgaggcc acctgggttg 28920

PTS-0012

-116-

gaggcagct	g gcgaggggag	g agctcagctt	atcgggcgct	tccgagggat	: cagaggtgca	a 28980	
agtcgctgc	c cagccatgco	ctgtggccgt	catggggtco	tgaggtgagg	j tgggccaga	g 29040	
acaaggcct	g gacgcatgct	gcactcggct	ctgagggcct	gctgagtgcc	ggggccact	g 29100	
gcaacactt	t gccttttatg	ggggcagcct	gagcctttgg	ggccaccgcg	gaacaacac	a 29160	
agcacaaca	c tagcaatcag	ggaggtctcc	ctggaggagg	, tgttgtttaa	tttaaatt	g 29220	
tggtagata	c atataatgtg	aaatttacct	tcagccattg	gtaagtagat	aattcagtag	29280	
tgttaagaa	t agccatattg	tttagcaaco	gatetecage	acttttcatg	tggcaaaact	29340	
gaatcgctat	t atctgttaaa	cagtaactco	cccttcctcg	ctctccccag	cccctggtcc	29400	
cagccattt	t cctttttgtc	tctatgaatt	cagtgactct	ggccacctcc	tacgagtgga	29460	
atcgcacagt	gtttgtcctt	ttgtggctgg	cttctgtcac	tcagcataat	gtcaggagct	29520	
gtgttccate	g tagtctgggg	ttgttggttc	attcttagcc	atgaagcaaa	acggatgaag	£ 29580	
acccaggaco	c ccaaccccġt	ccgcatcctt	tagaaacccc	aggtcccacc	gcctctccag	29640	
gtgctgtcca	ggagctcagc	cccagctcag	ccacccagct	ccctgagccc	cactctggca	29700	
tggcctccct	cteteetgee	gtcacagccc	aggggcacgg	ggttaagtgg	tttgcccagg	29760	
ttacacagct	ggtgccagcg	tctccctccc	cactgcccag	acagcagcct	cctctctgac	29820	
tcctcacttc	cctctgcaga	gaagattgct	gttgggaagg	ccagatggag	gagatgggtc	29880	
taatggaaaa	a cacgtccctc	ctggggcgcc	cggaacttaa	tgaggaagag	gcggcagaac	29940	
caggcgtaat	gtttgtgaag	tacgcaagtg	gggagggccg	ctcccgtgc	agggcttctc	30000	
gggtggagcc	acaggaacct	ggagtgcagg	gagggttcgt	cctgctgtgg	tttatctccc	30060	
tctcttcctt	: ttaaaattaa	atggaaacaa	aaaaaaaagg	aggggaggag	gaagtgattt	30120	
tgagcatact	tcgccgtggc	gggggagcag	ggccgagctg	gctgccgtcc	ageggaeagg	30180	
aacgctccaa	ttatattgga	aacagtaacg	ggcctcctcg	gaggctccga	ccaacgccac	30240	
ttccctttct	gttcactgag	ggcgggcgcc	tgggctggca	gggccgtggg	gagggccggg	30300	
ggtttgggca	cccgtatcct	gactgtgtgg	ccttgggcaa	gtcagttcac	ctttccgagc	30360	
ctcagttttc	tgatctgttc	agtggggcga	attgtgtttg	gtgaatggaa	ctggagcgtc	30420	
tgctgcctct	ggtgttagca	tgagataaat	gtggcctgga	gtggaggtgg	ggcctgcttt	30480	
gcctggggtg	aaggggtgca	ggaatgggga	agctgggggg	cttgaagcag	aatgtgggga	30540	
atgatagagg	ctttcccagt	ggccgaggag	cctctctaga	ggaggggaga	gatggggctg	30600	
	tgggttttgc						
	acaggaataa						
ctcccagact	cagtttgcct	atctgcaagg	cgaagatagc	catagtgact	ggcttggtta	30780	
	catcacctcc						
agccacgctc	tccttctggg	ggctcttctg	tgggccgaga	actgcaccga	gattcttgta	30900	
gctcttttt	ccagtgaatc	tttccaagtg	aagctcagag	aggtcaggac	ctcacccaag	30960	
	tgtggaagtg						
	cagtgtgtcc						
	ggctcagccc						
gcctccatag	ctcctgctcc	tacaggtgcg	gcțaaaactg	ccgaggagga	gccctgcctg	31200	
gtgggggaga	cagcggtaaa	caggtagctg	tggcacaggg	ggccgagtcc	atgggagtgg	31260	

<u>P</u>TS-0012 '-1

1 -117- PATENT

cagggggagc gggccatggc accggggggc ccccttgggg ttgggggaag gttccaagga 31320 ggtgccagta gaggcaggag ctgaaggctc aggagaagac agactgaacc tgccccattg 31380 agtccaacca gccaggcagg gcatgtaaac aaaggtagct gagtaggagg ggacgtggca 31440 aatagggaaa gccgagccta tctggtgtag atagcctctg cccacttcca gccggccatg 31500 gctggaacct cagtttcccc tgtcaaacga ttttgtggta aaatacgtac aaaatatacc 31560 attttggcta tactaaagtg aacaattagt ttgcatttag gacattcacg ggttgtgcaa 31620 ccaccactc tgtctaattc caaaacagtt tcatcctccc agaaggaaac cccaaaccca 31680 ttaaaccgtc actccctct cetccctcc cacaacccct ggcagcctcg ggcctttgtt 31740 ctgtcctggg aatctgcccc tcctgtgaag ttaatggaat catgcagtgc gtggcctttc 31800 tgagcggctt ctttgccttt tgtgccatgt cttcagggct cacctgcgtt gtggctgagt 31860 cagcgcttac ctttgcgtgg ctgaatcgta gtccattgat ggacagactg cgtttgtttc 31920 atctgtttgt cagtagatgg acatttgggt tgtttctgct tgttggctga tgtaaatagt 31980 gctgctgtgg gcattctaat cctttctgtt tgttttgtca ccagttttcc gttccttggg 32040 gatgtgtagc taggagtggc atcgctgggt catggggtaa ttctgggttt aacctagtga 32100 ctgttttcca cagtggctgc actgcacatc tgacattccc acccgcaatg tgtgagcagc 32160 cctcattagg agaagccaga cattccaaat ttcctgtgaa atccctcttt ataagagctg 32220 gtctctgggg cttagctgag ctgaccctgg ggtgaggaag caagtcccag gaaactgccc 32280 · agagggagca agtctgggac ctgacgagac gctccgggca ccccagcttt ctggctttaa 32340 cetggcccae gtatetetae cetgtacate taccegggt caaggaggag gatteccagg 32400 ctggagtcct ctcggccttt ctcctcgaac ccagctcaag gggaagatgt gctggtttat 32460 · gctgaaaagg gagaagtggt gccaggtggg ggactcggga gagttgagac cctcccacgc 32520 tgagtctggg tttgggactg gaggcagttt tccctagggt ccttcttact cagcaggctg 32580 ggacttgggg agcagttata tgggtttggg ggttcctgaa ggcgacagtg cctttctgtg 32640 tccctcatgg agctgggcat gtgggagggc ctgggaatat tagcaggatg aagacatgct 32700 tggccctggg gattggttag aaatgtaaga ccagaaaaac ccggaaaatg aagcagctaa 32760 gttgatatcc atctggtgat gagtgtgtgc atccatccgc ccatccatcc atccatccat 32820 ccatgcatcc atgcatccat ccgtccatcc atccatccat tcgtctgtcc atccatccat 32880 ccatccatcc atccatccat ccatccattc acccgtccat ccatccatcc atccatccat 32940 tegeccatec atecatecat ceatecgtec gteegtecat ceatecatec gteeatecgt 33000 cegtetteca tetatecate catecatteg tecatecate catecattea tetgtecate 33060 tgcatccttc ctcctttctc tatccatgca tgcattcatc catccatcct cctttcctcc 33180 atccagccac cccctgctga gcacctgggt ggggagtctg ccagttgggc cagacctgtc 33300 actgggtgtg ggccgtggtc agcagggcct tttgcctttt gtctgacttg gtcactgctg 33360 tagctgtgct tgtacagtgt ttgcacataa cagatgctga aataattctc taattgatga 33420 gaatgggtca gcaaccggag tttgggatgg gtttggcttg cctggtctca gctggagggc 33480 agaccgcacc cttgtgggtg gcacctggga ttgagctctt agtatttgac cctcagcccc 33540 tccggcagag ccaacgacag gctggggttg ggtacctggc tcttccttag ggagtggaat 33600

<u>P</u>TS-0012 -118- PATENT

gacctttctg	ccaagtgagg	gccaaggagt	ctggcċtcat	tcctgcaggc	ctgccgctgt	33660
gcatgggtgg	aggcccgttt	ctctagggcc	ctgacaatcg	tggctgtcat	cattcagggt	33720
tacaggggcc	cttttacctg	tgccccacac	tcagacacct	gtgcccagtg	ctcctcgaca	33780
caggggcagc	tacagtgtcc	tttgaacaca	gagacgccag	aggcagactt	gccacaggag	33840
accgcacgtc	agccttgttt	aaagtgcacc	agctgtgtcc	ttcctagctc	ccttgcagtg	33900
aacaccccag	ctttctggct	atagccagaa	agagtgacct	cacatgcctt	cgctcacccc	33960
actctcccca	ttcaggcctc	cctgctgtcc	tcacacacca	ggctcggtcc	tgcctctggg	34020
cctttgcacc	tgctgtgcct	gctgtgtgga	ctccctcctc	tccccggcgc	ctttgcataa	34080
aaggcacctc	tggtgacgca	ccctgactg	cccactttca	aaatgtaccc	ccattccctg	34140
cctgccgcct	cctggttctg	tttttctcca	tcgtgctaac	accttctgcc	atcctcttac	34200
tcccgtctca	cctgctggaa	tggcagcttc	acgaggtggg	ggatttggga	tcagtaattc	34260
actgctgtat	ccccagcacc	tttcacacag	taggtgctta	acaaatcgtg	gtagacagag	34320
tgagccacca	ggccgggcag	caggagetet	ctcttcaccc	ccttcctcat	tggctgtggg	34380
ggcccctctg	gactgggctg	ggcgaggtgc	accettgeea	cgtcccaccg	gctttccgca	34440
tctcaggact	cactccagag	ctggattcct	gagcatccgt	tctgcgccag	gagtcctgct	34500
gaaggtggcc	atcagatact	tggccagttc	cccagttttt	actgcacgcc	agaaagtaaa	34560
cacccaaggt	gtcaacagct	cgacccctgg	agctggcgct	ccgcagcatc	ttgtgcgcac	34620
atcccagaac	tgctgtccca	gagttccccc	cgggccggct	tctcctcggg	ccagactggc	34680
tgcagtggtt	ttgtttagta	aatatttatt	agatgcctac	tgtgtgctgg	gctctgggga	34740
tacagcagtg	aacaaaacaa	gtatttctgg	agcacctcct	gaagtaggta	gtgttctccc	34800
ttaaggtacg	tctgcgtgga	acctgggagt	gcggccttgt	ttggaaaggg	tttttgcaga	34860
tcacattagt	taagatgagg	tcacaaccgg	ataggggagg	gccccaaatc	caatatgacg	34920
ggtgccctta	gaagaagggg	agacacagag	acaggagatg	cagtggaaag	gctgcgtgga	34980
gatagaggca	gaggatggca	cgatgcatct	acaagccagg	gaacaccggg	ggttgccggg	35040
gccaccagag	ctggaggagt	gaggaagtag	gaagggcctc	ccccagagcc	cccagaggcc	35100
gtggggccct	gatgacagct	ggatatggac	tcgaggcctc	cagaacagtg	agacaatcca	35160
tttctgttgc	·ttgaagccat	gcagtctgtg	gtggggcagc	cgagggcgct	aatacgcctc	35220
gtgtgtgcca	ggtgccgtgc	ctctcggtgg	ctgtcacaca	ataggtgctt	attccacagt	35280
gagtggagca	aatacctact	gagcggtgag	ggaggccgta	tgtggctgag	ctgcagggct	35340
cctggggcct	gcctģtcttc	gcagggccag	gctgggacag	tggaggcacg	gcctgtgttc	35400
ccgccgtggt	tccgcccacc	ccaggggggc	tttgtgcctt	gggcttctca	gagtatcaga	35460
gggttctgtc	gagtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gcgcgtgcac	gcgtgcgcgc	35520
tegtgeegtg	ggcgctctct	gcctggcagg	ttggttttta	atcccgaggc	tccccacct	35580
gccacaggtt	cttccaatgt	cagcacccat	tagttcccag	aacatttcag	gcacgtgcgg	35640
cgcagagccc	cgcgtgcctt	tcatcctccc	cacagcccgc	ggctgagcgc	tccgggcaca	35700
tcctgtagct	cccacacctc	caccagcccc	cgcctgcccc	tcaccctgag	gctgtaattc	35760
caccctcccc	aggtctgaac	caggccgctc	aagacacaga	aaatctatgg	aatgtgtctc	35820
ggtgtggcct	catcctgccg	gagctggaga	ggaatgcagg	ggtgggaggc	cccatggaag	35880
cttccagggc	ctcccggaaa	ggcgcctctg	cccggccagg	tgggaagagg	acacaggtgt	35940

PATENT

PTS-0012 -119-

ggtggtttct ggcatcactg cgttgctggc atgcacctcc gctgggcaga gtcattcagt 36000 gtgcacctac tgtgtgccag gcaccagaag gggctctggg tccagcagga ggcaaggcgg 36060 acagccagtc agagctcacg gcccgagctt tccgctgtgg atttggaaac cttaccaaag 36120 cccgcagtgg ccgggaacag ggaatgtggc ccacttggct tctgctgctg cccggcagag 36180 tgcagtgggg gcggggggca cttgtgtgtt tgctacctcc ttgcaggcat ggcccaggga 36240 cagacccctg cagccgtgca tggggagccc ctccacctgc ctgtgtggga tctgcagccc 36300 tectecaget ggttcagggg ccagcagggg ccctgggget gtggttggtg gettggatgt 36360 gcagaggcct gcttgggccc ttggtgtccc cgttgggtat cccggccacc tgagatctac 36420 aagtcccttg acctcaccca ggcaccgtct tgttctcctc ggaggcctga ccctcctgac 36480 tctgcatggc tgagcacctg ctgttcccca ggcacctctc ggtatgccac aggcacaggg 36540 tcctcgcagc gggcctgtgc agcgggactc ctgcagcgag ctgtttccgc ggcctgcaga 36600 gtcagcctcc ctcctgactt tcacccacct gcccatttcc ccttctctgt cgctgttgcc 36660 ctgatccccc agtgtcccct ctcttggaca tttgcaggag cctccccagg tctccctgat 36720 ccactcttgc tgtccccagt gcctgctcgt aaaacactga ccctttactc gcccccgcaa 36780 ccaccttctg tggctcccca ctgccctgag aacaaaatcc atccttaccc gggcccatgg 36840 ggccctgaat gactctgtcc ccacttcccc ccatattcac tcaatgaatt tctcaaacat 36900 aaacggcacc tgtgctcacc cccaggccct cgctcacccc tgggcctgtg ctcaccgcct 36960 ggcgggggct caccccaag cctgcgctca cccccaccg gctggcgctc acctccctgc 37020 tettgeteag eggegeetee agetggagea etetecatee cetegeette accetetgga 37080 agttcttctt cctcgtatct cctggctctc cccagggctg ggcagagccc ctggcctgag 37140 accetecagg geetggacee egetgggtte acaagaagte eecagegeta geeegggget 37200 · cagcagggac cacagtgtgt atgtaaataa atgaatgccg cccacccttt ctgaccccac 37260 . cgcagccaga cgcagcggcg acatggggcg tttgtgtctg aattccccct ccagcccgga 37320 tccatcctca gaacctcctt tggccaggac cagatcctgg agaccctgga ggggctccct 37380 cgtcctctcc tgcccccatc tttgaggaaa tgatgtcatc attttttttg gcattcactt 37440 ccaaacctgc tgatgaaaag tcaaagctta tttttttccc tattcgcagt gctgcacacc 37500 cgcctcctct atcaagtttc aaaacctttg catcactgcc ctgtaaaacc ctgtaaccat 37560 tagcaggeet catteetgee teaccetgee eteetggtag ceaccagtet cetttetgee 37620 tcgtggatgt gcctgttctg gacatttcat atccgtggag tcaggcagtt cgtggccttt 37680 tgtgtctggc ctctttggtt cagcatgaca ttttctggtt atgtgtggtg taggacacag 37740 ccgtccttcg ttcctctta tggctgagta atactccatc gtagggatgg actggaattt 37800 ttgctgggtc tgccttttgg ctgctgtaaa ttctgttgcc atgaacatgc ataccgtgtt 37860 ttgtttgagt ccctgtttcc agttcttttg ggtggatgcc tgggaatgga attggtgggt 37920 catatggtta ttctatgttt aaatttttga ggaaccgcca aaccgtttcc ctaacatttg 37980 ttttttttcg agttggcagg aaacgtggct caggtcggga ggggttggaa actgggtttc 38040 ctaagctcgt ggtgagtgag ggtggcacga ggttactgga gttgttccct gttcaggccc 38100 caccggcatg tgaggcgctg ggtggggggc tggtggggga accccttggt aggtgagggg 38160 ccgaggttcc agccccatgc tccggggtgg gcactgtgta aatcccaggc agtggaaagc 38220 cagccagcca gctgcggggc actttaggac ggtgtcaccc tccctggtct ctggtgcccg 38280

-120-

PTS-0012

tgtgcaccat	ggtaagcgtg	tgccaggggc	ctgtcacccc	caggcagcat	ctcactgggc	38340
aaaggaggaa	agaaaagctg	tgggtaaatg	agacctctcg	gccaccttgt	gcaactcaaa	38400
atccaatagc	aatttggaag	ttgcccgtgg	tgcccttgaa	agaggggcag	acctcgggaa	38460
cagcaccctg	cagaagtgac	ggccttatct	cctccgagag	accgggaact	gtttagcacc	38520
tagagagaag	ggaatagaat	ttgctttgct	gcatgagatg	accagggtct	gcagactttg	38580
agccgagctc	tagcaggaag	aattttagaa	cagggctggg	tcctggtggc	cacagctgtt	38640
ctctctccca	gggccagact	cttgtttctg	gctgcagaac	ggatgtctca	ttgctcttgg	38700
ggccgggcag	ggctagctgt	gccttgcctc	cccatcatag	cgtcactggt	gactgggctg	38760
cagctgcatc	attgacagtc	ctggtgacag	cagtattagg	cattctggtt	tgctgagcat	38820
ttactgtgtg	ctgggagctg	ctgagtgcct	gctgtccgcc	acccggcctt	tcctggggtc	38880
cttgcaggag	gacttaggca	gtcggaatat	gcacagacgt	cttcatgtgt	gtgggagtgc	38940
gtttgtgatt	ccgatgcctt	cctatttatt	ccacatagta	ctgggtttct	gtatacctat	39000
gctgataata	agcttctctt	gtatgtaaag	ttatgcctaa	ctgaatgaaa	gtgacaggcc	39060
cggggctaga	cggctgtcgc	ctgggtaatc	tctataaaaa	agtccctacg	cgggggtggc	39120
acatgaatgt	ctgatgttta	gggaacactg	tgtgtttgga	ggttcagaga	gggcaagtga	39180
cttgcccaag	gccacgcagc	ttagcgatgg	tggagcggga	cgtgttccca	tgttcacggg	39240
aattgcgcca	tacatcctgt	ctcggggctg	ggaaagccca	cgcaggcagg	accgaggtgg	39300
tggtagatgt	gtcagtcttg	gctccggaat	tccttggctt	ttctgtgttt	gaaggatgga	39360
cagcagccag	ttgaaggggt	ggcctcctct	gtgactcctt	ctttccctgt	gtgagcccga	39420
attcttggtg	gcatgtgaca	gaaacccagc	ttgggctgcc	aaagacaaaa	cgtgcagaag	39480
gagtgccctg	gctcccctaa	tgaagtgagc	aggcttcgac	ctgcctccag	ccaccatcgg	39540
acacaacctg	ctcttaccgc	cctttcgccc	tgccttcctg	ccggtgggcg	tgggtctcag	39600
gcaggctcct	gctgcatggt	ggccccaga	gctccaggct	ttcattccca	gcttagatcc	39660
ccagcagaga	gcacctttct	cctggttcca	gcagcaaaag	tctcaaggca	gattctcatt	39720
gactcctatt	gggtcacagg	ctcatccttg	agacagtcac	tggcccagaa	gcatgcagga	39780
ctctgattgg	ccaggaccgg	gtcacatgac	catccctggc	acctggggag	gġagggaggg	39840
tcaagtctac	actaatgaga	gatgaggtgg	ggcctgggag	gcagtcaggg	ccccaacct	39900
taaccttcct	cccaatgccc	ctccacatta	ggcctccaag	ggctttcctg	cttggagaag	39960
gacggttacc	ctcttcaggt	tgggggaggg	ggtgttctga	tgaaattgca	gggctgggta	40020
tgctctgttt	cccctcctga	cccctgacct	cgtgtggtgc	agcctcagtc	ctccgccact	40080
ggaggcccac	atccaggcgc	tgggtcccgg	tgccagggtg	catttccctc	agctctgggg	40140
ggtgtgtgca	attgtggggg	tgctggagag	ggctttgcat	gaggcaggac	ctgatggaca	40200
caccttttct	gagggactgg	ttcagggaga	gtgtggaggg	ggccttggtc	tgggatggga	40260
ccctgttgta	agcccagcag	gtggcgtgga	gctgtggctg	gcggaggaag	gggagaagcc	40320
ttgttggggg	tggggggtgc	ttaggggttt	cctggcaaag	gcagcttcgg	agtaggggtc	40380
cccgtggctc	ccttgctggg	ccgtgtcttc	tctgtggggc	tgtttttcca	tctgtaaagc	40440
tgctagcccg	cttcgtgtta	ttcctctggc	gtggccacga	gtagatcctc	tcccgtggaa	40500
	tctgccccag					
	ttctgccctț				_	

-121-

PTS-0012

		_				
	atctggctaa					
tgcacagggt	catagccttg	cccaggtcat	gctgtggcct	gtggcccgtg	gcccgcctga	40740
gctggccctg	gtccctgctg	cccgggacag	cggtgtgtga	tgtccctgct	gccggccgcc	40800
cctcctggga	caggtgcttt	ctgggaattc	tgccctgtga	cttagaaacc	cgggggccat	40860
ggagtgaagt	tggatgggct	taggggggct	gggagccatc	tgggtggtgg	tgagggcagc	40920
gcagagtccc	tgtgcctgcc	gggtgaaggc	ctgggtgggg	aggaggcctc	tggtcccttg	40980
cgtggcttgc	atggctcgga	gggaccttga	atgccatgcc	tgtctccttg	tgctcccgga	41040
gaacaggtga	gtgtggcagt	ggatggagga	gggtccaggc	aggcccctgg	gtgctcgcgt	41100
gtcctcacgg	gaccacagga	acgactcggg	gacctgtgca	cggaggagcc	agctgccccg	41160
tggctgatct	tgtttttctt	ttcttgtttt	cccgcaggtg	ccagtgacgg	ggtggcccgt	41220
gagctgatga	cgaggactgg	cttttaatcc	ttggtggtga	ttaagagaaa	gcttattggg	41280
gcctgggagc	agctccccgc	cgacccccac	caccatgtcg	ggatccacac	agcctgtggc	41340
	agggccactg					
	acgcacacgg					
	cattccactg					
	cctcccaggg					
	atatctgata					
	gctgagctgg					
	tectgetgta			•		
	ttgggtagga					
	tccttcctgt					
	aggaggcccc					
	gtgtctttgg					
	cctcgctgcc					
	cccacttccc					
	acaacgggcc					
	ctgggtgttt					
	ctgagtgagg					
	accgtggggg					
	cctcttgtga					
	g gttttgcata					
	aggttgggcc					
	cctcttagga					
	a agagcagcto					
	a atcacaggco					
	a agcttctgtg					
	g gggctaagga					
	t ctgtcaccac					
tatgggtcaa	a atgttgttca	a aagccctgaq	g tgtatatgg	t tgtgtgcati	ccctgatca	42960

PTS-0012

-122-

cccagagtg	ggactatcat	gctctgtatt	ttgtcaatgg	gaaaatattt	cacagggtag	43020
		acctctctga				
		tagattctca				
ttaagatggc	gcctggctca	gggccagccc	gctctgtccg	tttgctgctg	ccgttccttg	43200
		gctgcccaga				
ggcttctggt	ttcttgtcct	gtcctgtgga	ggttcccact	cttctcaacc	gccctcaccc	43320
		cctcaggctg				
cetttgcccc	aactgggccc	tcggggtcac	tggctgaccc	tagacacctc	ccattcttct	43440
cctgctgggc	cgtcagtgac	gcaggatgtg	ggtggacagg	gccaagcgct	caccgccccc	43500
tccaggcagg	aggctgaggc	cagggagtga	gtggggccca	gcctggcggc	cacaggtgag	43560
aacatgtctg	teettgtgtg	ggggcagcag	gggccacctg	tgtgtgctcc	tccctggggg	43620
		tectgeetea				
		ggaagagttc				
		ccgctttctt				
gatctggagg	ccctccctg	gaagcccctc	agccctcaaa	cccttcctgt	ccttttaaag	43860
ggcaagaccc	agttcgaaag	atactacccc	cttcctgagc	tcctcatcaa	gccacagaaa	43920
gacagatccc	cccgggtaag	gggacagtca	gtggcgggaa	cctggctgtc	ctggttcctc	43980
gtacagtago	: cgaggccatt	ctgctgggat	ccacgggatg	cctcagtgac	cttcccagat	44040
tcaggtcacc	tccacgcata	ctcccgacag	gcctacctcc	tgggacagct	cctcctgtct	44100
ggagagtcct	cttcctggtg	ctttgggcac	ggggctgctt	tgatggcagg	tcttccctgg	44160
agcctgtgag	g acctcagtgt	ggcttcgaac	cctctccgtg	ttcagcttgc	tgagtggcat	44220
tggcccgctc	acagccacgt	ggaacggcct	cagtttcccc	acctgcagta	ccggtgtcct	44280
ggtgggtctg	g tgcatcggtg	gcaatgtctg	cacgcagcaa	gcgcggggta	gtcatctctt	44340
teeteetgga	a agggtggcag	gagacccaag	cagggcctct	tececetggg	gaaccacagg	44400
accgtggatg	g ccgagctggc	ggtggaatgg	tgcaggccgt	ggaagccgct	geetetgeet	44460
		ctgcgggctg				
gcttcactta	a gttgggtgct	tgcagacaga	ggcctggaco	ctgagaccat	ggaaagcccc	44580
		cagccatgct				
		a tccctctgtg				
		a ggatcctato				
		c agtaacaaa				
		c ctcctttcag				
		a cccctgaaca				
cgaatgggc	t aaaggaatg	c agttaaaag	c agggacaca	g agtctgaate	c ccagcgtgad	45000
tcttttctg	c tgtgtggcc	t tgggcaagt	t acttaacct	c tctatgccg	c agtattgaag	45060
actggttca	t agcaccggt	t ctggagcca	g gttgcttgc	a tttacatcc	t gccccagtga	a 45120
		g gggcaagtg				
		t taagattgt				
		a gagtaagca				

PTS-0012 -123- PATENT

acgatgctat	tattacaaca	tcgcctttag	tagctttttc	tgtcttgccc	caagggtaca	45360
ctttgggctt	tgcccctagg	gcaggggtga	gcacaacctt	ctctgtaaat	atttcaggct	45420
ttgcaggcca	tgcaaccgcc	cttcgcggcc	cgtatggtgt	gaaagcagct	cagccagggt	45480
gtaagggagt	gggcgtggcc	tgtgcctgtg	acactggacg	ctgctgcctt	ggccttgggc	45540
cctagtgtgc	tgcctcttgg	cctagattag	ctcttatcag	actccctatg	ggaaggaccg	45600
gtctgtttca	tttccagttt	gtcacaaatc	gatatggggt	cccactgcac	agacgcaggg	45660
gctcagccag	gcccagtccg	gcagggtcag	acagagttgg	ttgtgccctt	ggatgccagg	45720
gtcacgccaa	ccccagaggt	ctgcatgctg	tcatgttctg	tgcccacttc	gttgcagttg	45780
gcaacgttgc	agacctttgg	tggagtagta	ctgccctggg	ctaaggctcc	cagaccctgg	45840
agactgcctg	ggccaggctg	gggcaggtgg	gcgcgtgggg	atcactggaa	gaggctagac	45900
ttgggaggct	ttgcagtgtc	ctgagtgccc	tgggggggt	ctctccatta	gcttcatggc	45960
ccccttgcag	ctcagttcct	ggtgcttggt	gatggctctt	aagaggctgt	tgagggatgg	46020
tttggccctc	aaaagagagg	ctggtgggag	ctcccatgct	ggggaagatt	cattcattca	46080
ttgggagctc	ccatgctggg	agatccatcc	atccatccat	ccatccatcc	atccatccat	46140
ccatccatcc	atccatctgg	caaatactta	tcaggcgtct	cgggcccgtc	ctcttccagg	46200
cccttgcagt	gcagctgtga	acagaacagg	taagcatcct	tgtctcaggg	agctgacctc	46260
·cttgtgggga	atggcgagtt	gggaaggaga	tgaggggaag	ggctgaggtt	gggggagccc	46320
agatttaagt	agagagtcgg	ggaggagcct	cactgagaag	ctgcctttgg	agctgaacct	46380
ggaggaaggg	agagggccag	gcatgtggga	atctggctga	ggaatgttçc	aggcagcagg	46440
aacagtatgt	gcaaaggtcc	tgaggtggga	gctctcttga	ctgtagccgc	catcattccg	46500
ggagagaccc	gtgaatgcag	ccagggtcta	ggaatgtgct.	gaattcttcc	tttgctttcc	46560
· catgaatcca	gggtccagga	acgggctgaa	ttetteettt	cctttcagtg	tgcagtccca	46620
ggcattccct	tgacaccttc	tggagtaagg	agccctatgc	aggggccaga	gaggggcact	46680
cctctcccgc	aaaggaactt	ctcccagtcc	atgctcaaac	atccccccgc	atctagcccc	46740
tttctcctct	ctgccccag	ccactcctcc	ccacccttgg	gacccagcca	agaaggcacc	46800
agctgggatt	ccctcctgga	tgaatggctt	tttctggtgg	cctctcacct	ttcccaggag	46860
ttttaagggt	gtaatttatt	ggtggccctg	atttccagct	tcagaggtgc	catggtcagg	46920
gagaaccctc	tgaggccagg	gggcatcacc	tgaatggctt	tttcctgcct	ccctttctga	46980
gcagctgggt	cagactccct	ctgcccaagt	caggtttgct	gctgtcctac	agggacaggt	47040
tcagagcctg	gggactgtcc	cctcttgtcc	ctcctcagaa	agccagctca	gcctttgcct	47100
tgcatctcag	aacgtacccc	ttattgctgt	gtgacgtgga	caagccactt	accetetetg	47160
tgcctctgtt	ttctcgtctt	tgtgtggggc	ttcttgtaat	acccacctca	cagggttgct	47220
gtagggatga	aattaactaa	tatatttaga	gcgtttagct	gcaggtacac	aaaggcaatt	47280
tattactgtg	gggtattatt	gttgttttt	atgattaatg	ttgtcgcgtt	ggggagctct	47340
cctgcttgga	gacgtggcga	ggtggtttcc	agcctgggcg	tattccagct	catgggaccc	47400
cttgggctcc	acctcaggtc	agtttctctg	gtggggcctc	cccaattctt	gccttcccct	47460
agagcctcca	ggtactcttg	ttgggggagt	ccctgggctc	aaccctggtg	acctgcttca	47520
agcctagtgg	tgggggccag	tgtggaccga	gtgtctccca	gggtttaggg	tccagtaaca	47580
aaatgcccac	agattttggg	cagaaacggc	acccaagatg	ctcctaggag	gatctcctaa	47640

PTS-0012 · -124- PATENT

attgggaaac	gaaggccaaa	gggttcatgc	agaggcctcc	ccagccccca	cttcgggcct	47700
cctccaccat	ggttggctgc	cgtgggcact	atcgggccga	ggccctcttc	ccagggactg	47760
ġaċcgtccgc	cctgcttctc	tgcccacttg	gccttggtat	gggagagctg	ggtggagagg	47820
atcctcctgg	cagactgtga	ggcctgctgc	tttcttctca	cacctctgtg	tgtgtggcaa	47880
ggtctttgcc	tggcagctgc	gtcattgtca	gcccagtggc	ctcctccact	ccctccctcc	47940
agccccgtct	tctcccttct	cctcccactg	agagcaccta	gagtcttgtg	ctagacactg	48000
tgggatgcag	gaggaggctc	gtgccttttc	tgccttctgg	aggctgctct	cagccttggg	48060
ggaatccctc	agagaggtga	gggagatgag	tgtaggaggt	gcaggcctcc	tttaatctgg	48120
gctgggcacc	catttcaaag	aggagaaact	gaggctcaga	gggttagaat	aacagggcca	48180
aagacacacc	ttctgttgga	ggccttgcag	cttttggtat	ctacatcgga	ctgtccaggg	48240
aggtcctttc	cccagctttt	ccagcttctg	aggctgccag	ggtccccatg	gattccactt	48300
gctcatcctt	cctggcctct	gggctcccgg	gctcttatgt	gctgattttg	ttgggtctgc	48360
aacagataca	ttatcaacgc	acccacctgg	cattgtctct	gattctcttt	gcaaaaataa	48420
ctgccttgtt	gaaaaagcca	gacaacaaaa	gagtgactag	atttttatgg	aaaattggga	48480
aaattaaaaa	aaggtgccaa	gaagagacga	agtcccttgt	aatcccactc	tctaaagcct	48540
tacctgtcag	acatcactaa	ctgattgccg	caaacagcct	cactgagtgt	tccaggcaga	48600
cagaactaat	ctattggaat	tggtgcgtaa	gtgaagcctg	tcttgtttt	gtttgagagg	48660
cttgttactg	tctttttt	ttttttt	ttaaacacag	tttaatgttt	ctcaaatctg	48720
ggtgtacttg	gcaattggta	tacatctaat	ttgttgatat	tgagttttac	cccctatgat	48780
aatggataat	gtgttaaaga	aacaagtatt	tggactcttg	ttaagcagga	agaccgtaca	48840
ggacaattgt	gctatcagcg	tcaagactgt	cacgataagg	gagagagacc	aggctcagcg	48900
ccaaatacgg	. ccaagacagc	tggggcctca	tagcctagcc	gcagggcgga	gggaggggtc	48960
ggtggatgga	aaattactaa	gaggagcgct	tgagggtggg	gggttcctct	agactgactt	49020
agcaggatgc	ctgcagctgg	gcagagcccc	gcaaggccaa	ggccaaggcc	gaggccccgt	49080
agagagagga	tgggtcagag	gagettgaet	caggtgtggg	caaggagagt	ctttgtcaaa	49140
tggacgacgg	tgtgttatta	aaggaggaag	gtctgcctaa	ggcttaccct	tctggctgtg	49200
atacgagcgg	ggagttcctc	ttttacaggg	cggccttggg	gtcaggggtc	gctttgttct	49260
gaaacctggt	ctttgggcct	cgctggctgt	cgggtgtttg	tcgccatcac	ttgccaccat	49320
ccatccttct	cctggcgagt	gaggcccgag	cctcgttccc	tcgcgtgggc	atcacttacc	49380
caccctgcca	agagctgggc	atctaggttg	ggccttttcc	cagttgttgc	tgcaaatgca	49440
tttctgtttt	tacaaataat	gctgcccgt	atgcaccttc	agtcctgtct	tcccaggcct	49500
gcatttccaa	gcttcagctc	ctcaggctgg	agggacccac	agcctggcag	gggtaggatg	49560
gggtgggagg	gtagaaaagc	gaagacagct	tcctctactc	tggcccccca	gtcaacgcca	49620
gcatggccgg	cagacagagg	ccatggttag	gatggttcca	ggcctgtatt	agcctgtggc	49680
ctcagacagc	cccatcagac	ctcccaggct	tggcggtctc	atttggaagg	tgggcgtgat	49740
cgtgggtccc	tgggatgctg	tgtgggaagg	atgcagccca	gggccgttca	gctgtgttct	49800
ttctcctcct	tggtgttcgg	ccccaagggt	agcctctggc	cagacggtcc	ctgaggttcc	49860
ctgcaggact	tgggcttatc	tgcctagggc	aggagcgagc	ctgagcaggg	agtccacggc	49920
cttgcccact	gtgccctgcc	gtgccccgcc	atgecegtge	ccgcccacgc	tcaccactcc	49980

PTS-0012 -125- PATENT

tetgteeect cetgeaggae gtegggetee tggagtacea geaceactee egegaetatg 50040 cctcccacct gtcgcccggc tccatcatcc agccccagcg gcggaggccc tccctgctgt 50100 ctgagttcca gcccgggaat gaacggtgag gagagagttg ctgcctccct gtccagggcg 50160 tgagagctcc ttctcagatg gagaagcaga ggcccgtggc agagcaggag cacacagggt 50220 cctgtgaaat gaggggatgt cgggccgtgt gttcaccctt gacctggcgt gggcgtgact 50280 cggggtgagg atgggacgag cagggaagag ccacgtggcc ctcagacttc cagcgtggaa 50340 cttcagtggc ctctgtgggt ttaggcagca gtggggacct ccaagctggg ctgcagcagg 50400 gctgggcttc tgtgggaaga tttgagtcca cacctggtgc ccctggggcc cctgccctct 50460 cctcccattc ttccttcttc tccagctggc agaggacacc ctctggtgtg tgcctgtgct 50520 gggccagcct tactttcctt gatccaggtg ggaagggaat gaacaggtta ggtggtaggg 50580 tgagagggag gtggggtggg gagctggagg gactacagca aggggagggc cagggctggg 50640 teagagecag etetecatge atteacttgg gateggtagg ceaegttett teteceatet 50700 tctctaggag cttctgctgg agacggctga ggtgtgggga attgtgccta tttctcagat 50760 ggggcagctg aggctgcgag gttgagggat gggctcttgt ttactcagcc aggactagaa 50820 gtcgaggcac caggccccag cccttcatgg taccacggag gtgtcccagg gccccagatc 50880 gtgccttctg tacctggatt ggtttcctgg gcctgccgtc gcaacgtgcc acaaactggg 51000 · cggcttcaag ccacagaagt gcattcctgt gatctgaagt cagggcgtcc gcagggccgc 51060 gccccctcag aaggctcaag gggaggatgc ttttctgtct cctccagctt ctgggggcta 51120 caggegttee teagetgtgg etgeateggt ceaatetetg ectetgeete tgeetetgte 51180 teacgtggcc atttecttgt etgtetetgt gttetettgt tgtgttacaa ggateceagt 51240 gatectaate caggatggee teatettage ttaatteeat etgeaatgae eetaggteea 51300 aagaaggtct tattttgagg ttccagtggc tgtgcatttt gggaggatgt tatatttgga 51360 ggttccagtg gccgtggatt ttgggaggac attatttgag ccactgcagt gccactatca 51420 tgtttaagag aaaacaccat gcgcttcctg ccaagcccca tgtaatggtg aagccctggg 51480 ttctgggcct tgaagagggg gatgtcttgg ggcccagctt tggagggaca aggacttgag 51540 ggccctccag ggaggtgagc acagagggt ggctgccccg ctccccgggg gggccagcaa 51600 cacggccca gcccgtgctg cagtgggcag cattcagtca gtctacaggc actgattgaa 51660 cacctactgt gcgccagtac ctggggacag ccatgaacaa gacaggtgaa ccaccctgcg 51720 ttcattcatg ggtgggggag gtggccagga aacacctgtt gtcaccaagc gcgtgggagg 51780 gcagtggaga gagagcagac aggcgggtgt agtgtggtct ggcctgggac aaggaggcgc 51840 catctgcacc atgacaggaa ggggaggagc tcacatggag ggcctgaggt ctcagtgctc 51900 caggcagagc ccagcaggtg caaaggccct ggggcaggag tgcagtggcg ggacagcgag 51960 ggccaggcca ggcagggctt gtgcaggagg ggaacagctg tggattccct gcttagcctc 52020 tgggaaaagc atttcagcaa ggcccatatt caggctcttt ctggtgggtg atggttggag 52080 cctcagaggt ggaggccagg agtcccagct ccgtggggtg tgcttagtta ggcaaggcca 52140 tgccctctct aggcacactg cggaggaggg ttcaggagag ccagtcgctg gggaaactgg 52200 gcagctccag tctctgcacc aggctgctag gctgagttga gaaggtggtt aggccaggtt 52260 cagcagcaag agttctgcga tcggccagcg atgtctgccc tgcgtgggtg agagggaaat 52320

PATENT

PTS-0012 -126-

ggcatcacgg gtgctgttat ctgtgttagg ctcacagcgt ttcccggatg gactgtgcct 52380 gtgaaccacc caatgatctt gttaaaatgc cgagtctgac tcagtaggcc tcagatggta 52440 ctggagattc tgcattgtag ccagcccag gtggggacgg tggggtggtc cgtagcaagg 52500 gaggggcagt cactetgggg tgttccagtg ccaccgtagc acactecete cetgtaaatg 52560 tcctcggtga atgtggacct gaaggaaggc agcgctgcat tggagtcctg ccctgctgtg 52620 qqaccqtqqq agqtqqqctc ctgtgagcac cttcctggca ggatcataca gagcacggcg 52680 cgcagtagat gctcggcgca gagggtggtc ggggcctcgg gagttctcag agccacaatc 52740 tcctatgtga cgttggatgc ctcacctcct gcaggtccca ggagctccac ctgcggccag 52800 agtcccactc atacctgccc gagctgggga agtcagagat ggagttcatt gaaagcaagc 52860 gccctcggct agagctgctg cctgaccccc tgctgcgacc gtcacccctg ctggccacgg 52920 gccagcctgc gggatctgaa gacctcacca aggtaagcct gggcccccag ctgggagctc 52980 ctctcccgct tgaggttctg ctgctggttg ggctgggtgg gaggtggtgg gtaggggtgc 53040 agggaggggg cageteggge aaaggettgg aggtgggeca agcacegggt geacagaget 53100 gggtggcagg aagagggcag gcgctgggtc tctggaggtg ccagagtgtg ggaagaagtg 53160 gggaaggtgt tccaggtggg cagagcagca agtgcaaagg ccctggggca ggaataggct 53220 tgtggtcacg gggtagctgg cgtgagggag gggagagctg ggatgggagg gcctggggtg 53280 ccgtggagca gagagctgcc attcgatggg ggtcaggacc gtcctgtggt cggtgggcag 53340 ctttcagcac attctgagag cttcctcgag ggtgggttgt ttggttccat gcttgcttgg 53400 aacagggggc tcagtgaccc ctgcctcgag ccctgcacag caggcagccc cctgggcctt 53460 gaaccccggc ccgcgaggtg gacagctcag ggctctgcca ggcacctgag gcttctggat 53520 tettaagggt cagggagggg agactecaga gtecegeaaa gtgagatgag acagagttgg 53580 ctcagcacta aaggggcggt gcttggttag gacatggcct ggacccctag aatgacaaag 53640 ccgccttcta ctgcccagtc tggctgctcc ttgggccacc gtgtggcact gggctagcgt 53700 gggttgagtc tgcagccacc caggcctgag ggaccacgga tgcactttgg gcaggggagc 53760 cagacaactt caggctcgtc tgcatctcca tggggggctg cctggcattg caggtgggcc 53820 caggeeteae etgggeaeae teaettatee cagggeeete egteeatetg eeeteaggtg 53880 acceaggtgc gatttccacc acceccact ccacagetgt getgeetttg tgcctetetg 53940 atccccattt cttcctcact gatctgggac cttgtgggca gggtgtcacc tggtcatgtg 54000 ggtagagggc tcggctgtgg gccccatgcg tgggaactat ttggcacccg tgagccggca 54060 tgggtggtgg tetggetgeg gggecaggee acetgggeea gaeteggeet tetetegggg 54120 agagaggata cctgcgtgga acctgggata tccctggggt gggcttgggc tggcaggagg 54180 tgggggtgcc gtcctggggc tgggatggct gggcttcccc tcctgctctg agtggctgtg 54240 gccccgacac ctgcacacct gccagatacc cacagggctg cctctggggc caggggaggg 54300 aggggctggg gtgtctgtgt ggtcgttggc tggcttggcc tccctgccac tggggcagtc 54360 cccgcctcac caagttgtca caggaaagtg gaggtcagtt aatgaactcc tagccaacag 54420 accacatgcg cctgagagcc cactcaggaa cctcccccgg cggatgcagc tgtgttcttg 54480 ttggcactca gggactccac cctggccacc tccctgctct cctgcgtact tccagtccat 54540 cagcaaatcc tgacacctct gccctaaaat atctcaattc cagccttctg cccacacctg 54600 aggcaacccc cggcctgagc tcgtcattgc tctccagtaa ctttgcagta gcctcctcct 54660 PTS-0012 -127- PATENT

gggtctccct gctcctgcct ccctctactc ccttcagttt atcttccaag cagcagccag 54720 agggetetta taaaggeaga egaetgeate eccetgtgtg tteececetg tgetecaaac 54780 catccatggc tcctgtctca agcaggaaaa agccaaaatc cttgccatgg gctgcaggtc 54840 eggegtgate eageceegte acetecetga ceteatetee etgeageage ceteteaace 54900 gctcacgtac agcctcccag gccaccctgg agttcctcaa acacgccagg cacattccca 54960 cetggggace tttgcaeegg etgtgeeete egeaggageg eesteeeca ggeacattee 55020 tettteeteg eteetteeag eeetggetge eeteeaggge etgeatggea ggggagaeet 55080 gtggctagcc ctgtggggac tctcgaggcc actcatggct gaggctgcag ccccaccacg 55140 tcctcctggg gtgtgagatt cagccacagg ggccctgccg gccttgaagg gggtctctgt 55200 ggcctggggc ttggccgcct gcacttgggt ctgggcttgg gactggtgtc gatgccagtt 55260 cctctcgggc actgcccctc gggtacccca gccagcatcc ctgccccgac gcccaaccct 55320 tecageacat cetteetgee ettecteece treettetet eettetaeae ettecteeet 55380 cettettect cectetett etttecacce aaacageece cetgteetge teacteceet 55440 teaccectg ettecteage teetgecaac tetecetget cateceetgg ggcaacetee 55500 ctaccacaga gccactccca gccaccaccc agcgccaccc agcccatctg cctgcggcca 55560 tetgteettg cetteattac etgeceetec ceeteacete ceageegeec etcaccatg 55620 ggttctgcct gccatcatct cccaccagtg gccttgcccc tcccccatcc actcacctcc 55680 cccattcct tgctcccca cccctacc ccatccgctc cccctccttc ccccactcgc 55740 ctggagtcca gggtcctgtg agcccagtca gcccttgcag gaactcacaa ctcacagccg 55800 gacaagggcg cctgggggtg cttggcccgt ggccatttct tggctggaga acgacacctc 55860 ccacgtgtgt gtccagcctg gggcctgcca cgcctccagt gccctccaca gccctttgat 55920 · ttcactcctc tttgaaacag aaagtggaac ctagacggtg gcggtggtga ggatgtgcac 55980 agattaagca cctgtggttt gctgctgtgg gagtttgctg tggtttcagt aaagctcagg 56040 acataccagg ctggaggctt gttctctctc cagcttccac agaggatgcc gatggcaggg 56100 ctggtggggg aatcgcaggc agtgtcccca gaggcttcag tcccccaggg tcactcagcc 56160 acceagetgt gtetgaetge ceaggeeagg gtggggetgt ggeeaggtgg catectaate 56220 cttgttgtag cctggtgccc ggccagctgt gacacgggcc cctccctgca cagccctggg 56280 gcaccctaag ctccttagca gcctcagggc aaaggccatc ctcctcctgc agcgggagta 56340 ggggtgggcg gtggggactg ggagacagcc ccggggaggg aagtggccac tcaggcctac 56400 agggtcccct tttctgccca gtgcggccgg attggattga atggttgacc cctagggtga 56460 ggcacctcct ttatcaggag gctggcacgc aggaggcatt cacgcagtgg taagaatgct 56520 gcagtgatgg cgggtgccat taagtgagcg ccgactgcct gccacgtgcc aagtcatgcc 56580 cagccagtgt cattecetga tetetteeca geccaaggag getgggtetg tgaccccett 56640 ttgtagacgg ccccaggctg agcgagctgg acgtgggggga acgggattca ggcccaggca 56700 getgggagtg caccccatge etgeeteeag gttgacetge tgetgtgggt etceeetetg 56760 gtctccctgg tggggtgccc tcctccctct gcctggcatc ccccattagc actggaatct 56820 gctttctcct cttttgtttt gttttgttgt tacagaaggc aggagagaat tttagctcag 56880 cctcctggga gagatgtttc catttgaaca actcccctga agtggggcct ggatggatag 56940

-128-

PTS-0012

ggtgcgggtg	tgtgcgtgcg	tgtgcgcgca	tgtgcgtgtg	tatgcgcgca	tgtgcctgtg	57060
tgtgtccctg	cgtgtgtgtg	tgtatgcgtg	tgtgcacaca	tctgcctgtg	tgcgtgcatg	57120
tacctgtgtg	tgcgtgcgtg	tgtccatgcg	tgtttgtgtg	tgtgcgtgag	tgtgcatgtg	57180
ttgcacgtgt	gtatgtgtgt	ttgtgtgcgc	acgtgtgtgc	atgtgtccgt	gcatgtgcgt	57240
gagtgtgcat	gtgtgtatat	gcatgtgtgc	gtgtgtttgt	gtgtgcgtgt	gtgtgcatgt	57300
gcacgtgtgt	gtgcatgtgt	ttgtgcgcag	gcagctcagg	gcccagcctt	ggagggtgac	57360
çaacccctga	gtgggcagtt	gtccccagg	tgcgcgtttt	gtetetgege	agagagcagg	57420
cccgaggggt	gagttgctgc	ctgcccgcct	ctccagcacg	tccgtgcgct	ctggcctgtg	57480
ggttctggag	ggtctccatc	ccttaccgtt	gctctgtggg	ttctggaggg	tctccgtccc	57540
ttaccgttgc	tctgtggttc	tttctgcctg	cctggctttc	cctcttcttg	tcaggaatgc	57600
ctctgcctgt	ggtgcgccct	ctgggatctc	tcttagtctc	tgtgtctgtc	tctgtctgtg	57660
tctctgcctc	tccatctctt	tctctttgtg	tccctctatc	tctatctctt	tctctttgtg	57720
tgtgtctgtc	accacgtctc	tgtctttctg	tctctgtttc	tgtcttcatc	tatgtccatt	57780
tctgtttctc	gatctgtctg	tctgtcttcg	tctctgtgtc	tgtctctctc	tectetetge	57840
·ttggaccaca	aggtggaggt	gtgatgagct	tggtgctggg	gcctgaccag	cctggccgca	57900
gtaattgctc	caggccgtga	agagatttgg	aaagtctgag	caagggaaga	tgcctgggag	57960
agcgagttga	gaggttttct	gcatctgctg	tgtggaattc	agctgggcgc	ctgaggcagg	58020
aatttgatgg	gatttttctg	tgtgtgcccc	ctctgcccca	ccgtgttcct	gttttctgat	58080
gettetetge	tcttcagcct	ccggagtttt	gtggcatcag	agacttcctt	gggaattcac	58140
cgaactttgt:	tttggggact	ttagaattgt	cacaaatagc	actatctctg	aaaatcccta	58200
agggggacag	acagccccta	tcaaatataa	acatgaattc	tggctcacat	aactgaagtc	58260
cagcattggt	tagcttcagg	taacagettg	atctaggtga	cacgatgtcc	tcaggaccct	58320
				cttggtgtgt		
gaagccggtg	actccaggcc	ttcctccagg	ttcaaggcca	gcaaaaagag	agaactcttc	58440
ctcctcctct	ccgcatttct	agccccaaac	tgcttttcct	cctcaccatg	agtgggccca	58500
tgcctgtcct	agaacctgtc	attgtggccg	gagtaggggg	tgtattggga	gtgcgtgaag	58560
				aggggctttt		
				gcttgaagtt	•	
				ttgtgcgggg		
				. ggacagtcat		
				gggaaaccca		
				ttgagggtcg		
				, acatttacaa		
				aaggagacco		
taatcagtca	ctccctgtgt	tagtctgttc	ttacaccgct	: aataaagaca	tacccgagac	59100
				, ttctgcatgg		
				cgtccttctt		
cagcaagaag	, tgctgagcaa	aagtggggaa	agccccttat	: aaaccatcag	atctcatgag	59280
aactcactca	a ccatcatgag	g aacaggacgg	gggaaaccg	c çaccatgatt	caatgacctc	59340

PTS-0012 -129- PATENT

cacttggccc ctcccatgac atgtgggaat tatgggaact acaattcaag atgagatttg 59400 ggtggggaca cggccaaacc atgtcaccc ccacttcccc ctcctcttt ttcctggcaa 59460 ccacgaatca ctgtccatct ctctggattt gcctattctg gacatttctt gtaagtggaa 59520 ttgtacactc tgcagccttt tatgtctgtc cacttccact cagcatcata ttctcggggt 59580 tcatccacag tgtagcctgg gtcagtgctt cattcctttt ttttttttt ttttaataaa 59640 gatggggtct tgctatgttg cccaggcggt cttgaactcc tgggctcaag caatcctcct 59700 gcctcggcct ccatgtccag cccttcacat tgcttgtatg gatatgccat gttttattta 59760 tetgtteate aggtgatgga ettaettgtg caattttget gegaataaaa getaaaceeg 59820 aacttaaaga agaacccatt aaagacaacg gcttttatcc atggagagtt taaaggaagt 59880 aagttttcag caacttttcc aagtgttgct agtggttgcc agccgctgct tttactcctg 59940 gtgctgcctg ttagccctgg ggatggaaat cttctttttg ttaatgttgc tttggagaat 60000 tattcccagg ttggacgagc agtttgctct cagagtttta gggtggcctg gcccccatag 60060 cccttccttc cacatccttg tccttgctct gttatctctc ttcttggtcc aggtggaaga 60120 gcagagatag gatagcggag atgtttcttg ccaccagtag tgcgaccggg ctctgggtgc 60180 catgtttgct gccacctttt gtcttaagaa cctcaagaaa tgacatgggc tgtagggaga 60240 gaccagccaa gcacccaagg tggaccgcag tgagggcctg ggcggtggcg tggggatgtc 60300 tcacgtcagt tggcacagaa ggggtgttgg gcactctggg tagcggagcc agcctgtgca 60360 · aaggeeeggg ggtgeeagae geatgagetg teeatggttt getgtgggtg gggteagatg 60420 cccatggccc cctgcctgcc ttcctgttgg ggagcagtga gggccccaca cccactggta 60480 cgtgcataca cactcctgag gctttttcta gggagttttt cttccacaca cacttttgcc 60540 ttgagtttct ggaggtcctg cactctgggt ccctggaagg ggtgctgctt tggcgcttat 60600 gctcagccct atggttctgt ggggtgaacg gatgtgtggc tgggacccca cgtggagtcc 60660 ccacatggct cagccccacg gttctgtggg gtgaacagat gtgtggccat ttctgacgtg 60720 ggagcccctg cagcctcccc cttcaagcac cttccaaggt aggatgctga gtggccttgg 60780 gcatgtcgtc aaacagaaat cccacttccc acggtggtta tgacggttac gtggattaag 60840 atttgtgaat tgcttagagc aggaggccag caaactccag caagctccaa atctggccct 60900 cagtgtgttt ttgtaaataa agttttattg gcacacagcc atgcccattt gttccccgtt 60960 gcctgtggct gcttttgcaa tacaatggca ggggtgagta gatgagacag agaccttgtg 61020 gccctcaaag cttgagctat ttttaccatc tggcccttta taggaaagtg ccggcctctg 61080 gcatccagcc ccagtggcct ccaggctctg tttctgcctc tgcgtaatgg agatggagca 61140 gcagtcccct cggagggctg ttgtgggatc cacttcatgg ggtgtgcaga ggacttcatg 61200 gggtgtgcag aggactggga taggctgagc tgtgagcagc cccaggtgtg atttctaggt 61260 gtccctgggg gaggtggcct gaggagcatg gaggactgca ttgggggcgat tgagggatat 61320 gagecetttt etetgtttee etegaggagt eegtgtgtgt ggagggagea eegggttgte 61380 caggeeeetg etgteettge ecceacatet cacatggtaa cagaggeeag aggeaaacet 61440 aatgtgactc caagactett ggeeeetgtg ggtettgetg gggetetgtg gggtgagggg 61500 aggacagagg ccctgaggat ggcaggagtg gacagaagat gatgcagcct ctgtgaatcc 61560 tgaggttggt ggggcactcg gtggcccccg ggctgcagtt gtccggagaa taatgcaccc 61620 tgtgtcctct gggtgcagct gctgcggggg cggggaggtg gtggcctggc gctgctctgg 61680

PTS-0012 -130- PATENT

gccttgtctg ccagcagctg ccggcttggc cccaaggatg gcacagggcg ggggctgggt 61740 tctggagccc agctagggga ggaccatccc agccaacatt tattgaggct tacggtatgc 61800 caggeteaga gecattaact catteaagae teacaaggae eggggaggtg ceagetgtte 61860 tccccattgg gcagatgagg aactgaggca ggaagcagtt gaatgacctg ctggaggtca 61920 cggaactgga gagtggcaga gggggctggg atttgaaccc agggctgcac aggtgaggcc 61980 tgggttgttt tttctaacct ccttatcctg agagtgtttc cagcacagcc tgggtgcacc 62040 agactttagc tggtgggatg aaggcgtcca tggataactg aatgcaggct tcctttgttg 62100 ttaagcacat tttcaaaaac agctgtatta cacaaagagt gactctcagt gaaagaagat 62160 cagaaaaaat aacgggcaaa taaaaagaag aaagtaaaaa taccctcttc tgccctgctg 62220 ccgagataac tccttttagc ttaactgtag cccgttctga tggcttttcc gtgtgtttgg 62280 gaacatatgt tttctgcaaa gccacgtgtg tgttggctgc atggttctgg aacttgcgtg 62340 tttggactga gcttcatgga tgaatgttta cagagggtat gcagaggcca ggccttggga 62400 gaatggaggc tgtgggtctt ggttccttgg gctggtgggg aacacacaga tggggtaagt 62460 ggaagaagag aggtgtgtta cgcgaacagg gagttggaag acttcacaac ttgaggagag 62520 gctgggaaac cattcatgta gcaagagcat ttgaaccgca tcttgaaggc tgtaagggac 62580 tctgaatttt ggagaatggg tgatggctgg gatgggaatg ggatccttga acaggtgagg 62640 · actgtcctga cagatgtcca ggactctggg cctggagtca gggatggaaa cccggggtgt 62700 attggggagg gggtgtgtat tagtccgttt tcatgctgct gataaagaca tacccaagac 62760 tggtcaattt aaaaaagaaa gaggtttaat tgtactcaca gttccatgtg gctgtggagg 62820 gctcacaatc atggcggagg gcaaagagga gcaagtcaca tcttacatgg atggcagcag 62880 gcaaaaagtt ggcaactaca ttagtcaggg ttctctagag ggacagaact aatagaaaaa 62940 atatatat atattacata aaggggagtt tattaaggag tattaactca cacgatcaca 63000 aggtcccaca acaggccatc tgcaggctga gaagcaagga agccagtctg agtcccaaag 63060 cttgaagaac ttggagtgtg atgttcgagg gcaggaagca tccagcacgg gagaaagatg 63120 taggctggga ggctaggcca gtctcgcctt tgcacatttt tctgtctgct ttatattcgc 63180 tggcagctga ttagatggtg cctacacaga ttaagggtgg gtctgccttc tccagcccac 63240 tgactcaaat gttaatctcc tttggcaaca ccctcacaga cataccgagg atcaatactt 63300 tgcctccttc aatccaatca ggttgacagt attaaccatc acagggttgt acagactggg 63360 gggtgtcccc tgtgctgacc ccatgcccgt tttttttctg ccacaggacc gtagcctgac 63420 gggcaagetg gaaceggtgt etececeag ecceeggac actgaecetg agetggaget 63480 ggtgccgcca cggctgtcca aggaggagct gatccagaac atggaccgcg tggaccgaga 63540 gatcaccatg gtagagcagc agatctctaa gctgaagaag aagcaggtgt gaatgggcag 63600 ggggaggggg agtgtttgtt ctgagtctcc attctagcag cagtgacagc ggtgtcacag 63660 acatgtgcca agcccttccc aagttcctgg gtgctcactg gtttttatgc cctttacgtt 63720 tattggacag gagcacatcc acagaacttt ctgccatgat ggaaacactg tgtatctgca 63780 ggatagccat gttccactgt tgagcatttg aaatgtgcct actgcgactg aggaactgat 63840 ttttaatttt tatttaatat acgtattaaa tgtgcctttg aatagccaca caggctgccg 63900 cattagacag cacaagaatg gagggtgaaa attcaggatt tctagccagt ctgtccaggt 63960 tcagatcctg tttcttccag taccaggcaa cgtggggtgg gcagtccctt ctctgtgctt 64020

PTS-0012

cactttcctt	atctgtaatg	tggggaaaca	gcccctggct	ctggaatctg	aatggactgg	64080
cctcctaact	gctctttact	agctgtgtgg	ccctggaacc	ttcatctctt	ggagccttgg	64140
tttccttgcc	tgtaaaatgg	acaacttgta	gaggaggag	caagatcccg	agattaaaaa	64200
taaatcctca	ttgtcactgt	tgaaaccaca	caaagacaag	cggagaaaaa	gctgatataa	64260
atatttataa	cattcatttt	ataactttgt	tttaaatatg	agttaatata	caattctttg	64320
ataatctgcc	ttttcccagc	tcttcatggt	ttgctccctg	gtatcattca	ggtctctgct	64380
cagatgtccc	tgacaccaag	aggccactgt	cagccttgta	caggaacaca	cacccccaac	64440
cctcctctat	cccgggttca	gccaatccag	ccaattctag	ctgctgctgg	tttttgtaaa	64500
taaagtttta	ttggcacagc	cacgaccact	tatttgtgta	tctgtataca	catgtgtgtt	64560
tatatgactg	cttttctgcc	acagtggcag	agttaagtca	tcacaacaga	gacctgtgtg	64620
gcctgcaaag	tcaaaaatat	ttgctgttta	ggcctttaaa	gaaaagcttt	gggctgggca	64680
tggtggctga	tgcctgtaat	cccagcactt	tgggaggctg	aggctggagg	atcacttgag	64740
cccgggagtt	tgagaccagc	gtgggcaaca	tagcgagacc	ctgtctctac	aaataattta	64800
aaacattagc	caggtgtgga	ggcacatgcc	tgtggtcaca	gctactcagg	aggctgaggc	64860
aggagtgcct	gagcccagga	ggtttaggct	gcatgagcca	tgattgccac	tgcactcttg	64920
cctgggcaac	agagtgagac	tctatctcaa	caaaaagaaa	ttttgctgat	cactgatctg	64980
tctcatcacc	ctgctggtga	catcattatt	tgaattaata	tagacccagc	tttgttatac	65040
agtggtcctc	tccttgtctc	cctgttaact	gctgtgttct	gagcagcatg	gggtacatag	65100
taggtgctca	ttaaaaatgg	ttgattgagt	cattgtgaca	ctgtctgggc	cccagggagc	65160
gtctagacta	atgggagaaa	caggctcata	tctagtgccc	tccagacaag	gaagtagggg	65220
ctccaaggag	gatcaagggc	tcattttagc	cactgtaggc	aggtgggtga	aggctggtga	65280
gagtaggctt	ccaggaagag	gtgccctggt	agctgggttt	tgaaggacgc	tccaggggga	65340
gagcattgat	ttcaagtgtc	catcgtggct	gtcacgtggt	tgggggaacc	aggatttgag	65400
gatagtccag	cagtgagacc	cggtcctgga	gactctgcca	actgtcctag	gcttcagtgg	65460
gcagtgggta	ggtctcatgt	tggtggcaca	ggcatcccga	gaggggccgg	gccccagcgg	65520
cgtgggcagg	cattgccagg	gccagcctgg	taccgcaccg	ttaggcttcc	aggcctggcc	65580
ttggggtggg	gctgaagctg	cgggtcactg	gcacacattg	gtgactgcag	ctggaagcca	65640
					ccctctaaa	
					aagtgcacaa	
					tggttcccag	
					cccgttcccc	
					g catcacacag	
					tcatgttgtc	
tcttgtctcc	atccttcatt	cctttttatg	gctgaaacat	attccgttgt	atggagatgc	66060
ctccttttgt	ttatttcatc	: atctgtggcc	: atttgggctg	g tggctgttģt	gaatagtgct	66120
gctgttgaad	atttgtgttg	aagtttttgt	tgggacacct	gttttcagtt	ctcatgggta	66180
tatacctagg	g agcagaattg	ctgggtcgtg	, tcgtacagta	a actctaggt	taatttgctg	66240
•					a ccagcaatgo	
atgaagatto	c ctggtttcct	ggttttccac	atcctcacco	g accgccccc	agctttttt	66360

PTS-0012 -133- PATENT

gaaggtaagg cttagagagg tccaggagct tctcaaggct acgcagtaag taggagtggg 68760 agttgggctc cagtctcacc agtgcagctg tggagtctgc acagcctctc ctagcactga 68820 tgctgcctgt aggaaccgta atgggtaata atgccggctc ggagcaggcc tgactgtgcc 68880 tgcctgtgta actcattcag ttctcaccac agtcagaatg gcggcacggc aatcagcccc 68940 gtttactgat ggggcaactg agggctagca gggtgaggct gcttggctgt gcttccctgg 69000 ctggcaagtc acgaaggcag gatttgaacc tggctttgga gcttggaggc tgcagctggc 69060 cctggagctg gggcctctcc cgggtgcgga gtccctgggg tgactcacag gaaatgtgta 69120 gcagcctgac ttcctgtgcg cggccgtggc ccgggctgca agggggcctc cccgcgccct 69180 gggggctgca gccctccttc cgcccgctgg ggtgctcatc cctcacgttc tgcctctccc 69240 cacagcaaca gctggaggag gaggctgcca agccgcccga gcctgagaag cccgtgtcac 69300 cgccgcccat cgagtcgaag caccgcagcc tggtgcagat catctacgac gagaaccggg 69360 tatgtgtccc cgccctggcc tgctgccccc cggtgctggc catgaggcgc ttcacagggg 69420 gcaccatgaa tcaggcctca gtgtttccat ctatgtgggg aggggacctc gccaccctct 69480 ccccagaga cgcagggttt atgagtgggt gggggaaggt gaccggtgga aagccatcct 69540 ggtgtggcct ctgggctgtt ctgctcagac actcagatgg gtgtggactg tggctggtca 69600 gcaggatgca acacaaaaca gaggttttgg gctccaggag agcaccaggg tccagctcat 69660 ggccaagggt aaggggctgc cactttaggt gctggtgcag aagaaatccc tttaaggcaa 69720 aagataatga cattatgacc gcagcagtga ggtttcatgg agcagcccct cctgtcagtc 69780 ctggaagggc aggtacaggt gtcatttcca ttttcctaag gcccagagag gttaagtgac 69840 ttgtccagag tcacacagct aggaagcatt ggacctggat ttgaacctgt gggctgtcag 69900 accacaggge etgagttete ageactgget tecactgaca etgggeeetg gaaggggeet 69960 ttgagatgat tgaaacacag agtctggagc aggctgtgga ggcccatgga gatcccactg 70020 ggggcagcta tagtgggtct ggtcttgctg gaggggcttg ggatgctcag agcagtgtct 70080 ccaggggctg gaccctaagg gtctgtgcac ccccaaggtg gaaccttgtg tctggtgagg 70140 tggtaagctc cccatcttcc cagtcaagcc actaccagct gggctttaat gatttacagt 70200 gtactttttc taaatgtact caggatctgt ggatgttgat cccctccctt attttctgga 70260 tgaggaaact gaggcccaga gagggactgg tccttgtgaa gcatgacaga tgaggaacct 70320 cetetecetg cettggette tetggttece etcetgeetg tagteceage caccetțece 70380 agetgeettt tetgtaatat etteettgge caateagtge teagagttga ggtgggggtg 70440 gggaggcctc gagtcacgtg gtgggtgcct gcagtggcag cctgaggcag ggaactactg 70500 gatcaacctg tttggctatg cctccacctc tagaaacagc gatgtcatgc agaatgagac 70560 aageetgttt ggggeetggg aactgtgtge eeggeteact eteceacace etgaeceete 70620 accccaagca ccactagtaa cagtcatagg agagccaagg ggccacacat ccttcagcca 70680 gccatcctgg gttcaaatcc catttctccc acttcctggc tctgtgaccc tggagcgttg 70740 tacttaaacc ttcctgtgcc tcatgctcca cagctttaaa acaatgacaa cgacggcatc 70800 acctagtaca gttggtgtgg ggactaaagg ggtaatttcc tagtgccctt aggacagaca 70860 gtgtctggca ccaaagaagt gccagctggt gctattaatt gtcattatca tagctctcat 70920 ttcttcttgt gtttgtttac cttgtgcatt taatagaata ctatttgcat ttagtagaac 70980 tactgttatt ctctcaattt tgctcatcaa gaaaccaaag ctcagagagg gaaggagacc 71040 PTS-0012 -134- PATENT

tccctgagat tgcagagcaa gtgagctttg agcctgggac ttggagccaa gattgagatg 71100 gctccaggag cccaaagtgg aggggacatg ggcagggctc ctgagagtgt cacctctacc 71160 tgccctctct gatcctcggt ggagagcaga cacggttctc tccagcagct gtggaggcca 71220 ggtcagtggc ccagcacatt gctgcagtgc cttggccctc tgcctggagc tcctctcctt 71280 gcaaggctca tactgtcact tccctctttg ctgaagtggc cccttctcag caagacccgt 71340 ttcaaccete tacttaatac tgaaaaccet tttttcagga aaaggagttt tcaggatgac 71400 acceptttte etecttigtg gettetgatt etecttagee ettgteecea tgggacatga 71460 tttctgtttt acttatttat tctgtttatt atgaatggaa actccgtaag ggcagggatt 71520 ttattcctgc ccacttttat ttccagtggc atctccagca cctaaaacag tgctcaccac 71580 acggcagatg cacattaaat aattattgtg caaatattca ggcggcagga agggagggga 71640 gatggaggcg ggtggccagc tctggcctgt ggaagaggcc tctggtttgg gggcgtgggg 71700 gctggtgggg atcctcccgc ccgggctgag tctctgagcc tccaaagcct gcagcctaat 71760 gtgcgggagg cccccagccg cctttggcag gagcagccag gacttaccgc cccttggggg 71820 atcagtagga ttaaatttta atctgccttc cttccctgct ggttcctgga gagatggagg 71880 acaagggtct gtttttcgag ccagccggaa aacgcagctt ccctgccggg cagggcccgc 71940 ctggcagttc tgagtgctgg agtctggctc attatccatt cggagcacat tggtgaggca 72000 cccgctgagc gaggcttttc ccgcctcccc gcctcctggg agctgcctgc gtgggtgggg 72060 gccgggcagg tgtgcacaga tggcagggca gccatcaggg tggctgcagc ctgagagcag 72120 gagcagacgg ggtggcctgg gcccaggagg gcagaagcgt gacctggaag tgggtgctgg 72180 gaaaggette ttggaggeag egggtgggee ggaaggaggg egttagggtg agggggeatg 72240 gcacaggcca agtcccagag aggggactgg cgtctccttt gatcttcaaa ggtggtgggc 72300 acgaggtagg agcctgttgg ttccgggaca aggcacgcac ttggaatctg gataaaacat 72360 acacagaggc agegetageg atgtgtggat acataagggg catttgtgca gcacaggttg 72420 ctggtaccgt aggaattcag gacactgggg aacagtcagg atgggcttca tagaggagac 72480 gggccttgag ctaggtcgac tggggaaagg tagaaggctg cttccaatag agatgtagat 72540 ggctcattca caaggtggag aggaggcagg attgatggaa gcggcaaccc cagttgctga 72600 gtaatgcgga aatcagcaga agactcaggt ccttgtcttc cagtttaagc gtcttaaaag 72660 gaaagtgttt atatgatgtg attaggactc agtgtgtgca cagtgtgatc gggactgagc 72720 agggcaaaga agaataatac cattaacagt caccgtgaac gtgaagcatt cagtagagcc 72780 ttttgggggt tttggcactc ctcatgcttg tttgtagggc ccagcatcag atcccctgat 72840 tgaagatttt cagagcagtg cttcagaccc cgtcctgtgg cctcagcatc ctgggccagg 72900 ccccacctc tggcctccat gcccggccac ctggtcatca aaactgcccc cagggtccag 72960 gggttctttc agattgtccg tttcagcccc gcgaggctgc tgcacgcgtc ctctgacctg 73020 cegettttee tgetegteac ecaceetggg agagetetge acggggetea tgggcatggg 73080 gctctgtttg cagatgagga agctgaagct ccgggtaggc cgttgccctg aggcactgct 73140 gcagccagcg gaggggcttg ggtgcaggac tgggggctcg gggcttcttg ggtgagtagg 73200 tgctgcccc aatctgcaga tgaggaagcc agtgtggcag agaaggggct aggatggggc 73260 ttccaggcag gggagaggct agggagtgat gagtgtcagg tctgtttctg tgctctagag 73320 gagageegea tgtggatgta tgtgtggttt gtgtgeetgt gggtaeaegt gtgtataegg 73380

PTS-0012 -135- PATENT

gtggatgtat gtgtggtatg tgtgttagat acacgtgtgc ctttggatgg ctgtgcatac 73440 ttgtatgtga atacttagag taagagtcag cttgtgtggg acgagcatgt ggtgattcgt 73500 gcattgatac agcacacttg ggtgtgtgta tgcgggcatg tgtgtatgtg tggacctctg 73560 gatggctgtg tgcacatgtg tataagcgta tatgagtcag catgtggggc ctgtggttat 73620 ctgtgcactt acacatccat gcatacacac gtgggtgcgt gtatgtgtgc aggtatacct 73680 gtgggtgctg tgtgcacatg cgtgaacatt catccacgaa ttggcacatg tgaggcatgt 73740 atataggtat tegtgeatet gtgeacetgt gtgeataege atgtgtteae atgggtaeae 73800 gttaggetgt gtgcatgtgt gtacaggtgg atgtgcgtga gatggcgggt gtggggcggg 73860 tgtggttaca tcatgtgttc acttgggtgc acatgtgtat gtgcgtgcgc cttgatgtgt 73920 gtggacatgt gtgtatgtct ttgcgtgttc ctagatcttg gcatgtgcac ttggtaacgt 73980 gggtctggtg ctcccgtgga cccgtctgca taggtgacta aggacttgtg tgccccagca 74040 cageteetag getttttggg catgggagge etggeeacge agaeceagag tetetgeagg 74100 ggtgccactg ctcgaatgag aacgtgcccg gatctcagtt ggctggcgag agcccctaca 74160 gggggtggac gccacggtga gcggggccgc tcattggctt gagtccctag gttttccttt 74220 cctctcagag ccaggtgagc ttgggcagtg gcttctctca ggcttggcca cctcccctgc 74280 ggcgtcagcc ccaccacca cgatcagagc agagacetcg gccccaaaag gccaggaacg 74340 tgggaggacg tgcgtggggg cagtcgggtt tcagcgggat tgagaaaggc ctgtttccct 74400 tctcccccag gttggggctg agtcccctga attccagcct cccagccgga aggtggcagc 74460 ccagcctgaa gccctccttt gggccggagc agtccctgag ttttgccacc cttgggtgga 74520 gttagttcag ctctaacaag tgtgtcctgg cgtccctgc aagctgggcc ttgggcccgc 74580 atggggaaga tgcagacagg agctcctgtt ggagcacttg ctgtttgcca ggaccagggg 74640 cagccaggga gacagtgtcg ggaggtggcc cccaaagggc cgaggagatg tggagatatc 74700 agccacggga atattggggt tggggaatgt tctagatggg agaggttcag gtgggaaggg 74760 tttgggattt tgcctagaac tgtgtggatt ggtgacctcc tatccaagtg tcctctccga 74820 gcctcagttt ccccatctgt aaaatggggc agccctgca ccccagaaac aggttactgg 74880 gaggettgge aateetgatt gtggettgga gageagggag acagggeetg ceeteteate 74940 cacctctatg gaggggcag agaggactcc gtgtccttgg aaaggccagg cacatccggg 75000 atgtggactg cttcccccat ggccctggag aaagtgccca ctgccctcaa ccctgtgctg 75060 ggccctgctg gacgatagca gcttggtggc cagcgctggc ctcttctggt cctggtggag 75120 aggcagggag gccctgggcc agctgcagcg acgtggagag aggacagggt tctgggctgg 75180 gaccggacag cctgcaggta caagaatgct ttgccccaga gaccgcctga gcgagggagc 75240 cagccgcact ccatttccag gtatttagac cattcctgag catccactgt gagccagaca 75300 ctgtccaggc actgtgggtg cagcagagaa cagagcaggc accttgctcc tcatggagtc 75360 ctcatcaggg gaggtggcca gtaagataaa cagtgggacg cagaccctta tccctgaccg 75420 catgtgctgt gaagacagcc aggtgggaaa acgagtggtc gagggaggtg gaccgccctg 75480 ctgcgggggg tcagggaagg cctctgtggg gaggggaggc tgagtcaaga catgagcaag 75540 aggcaggcga gagcatgtga agatgtgggg aacagcattc caggcaggga acggtaggtg 75600 caaaggetea gaggeagtag tggettreag tgtgeagggg acagtgaggg geeageagag 75660 gtcaaggtcc tgtgagggct gggaccetgt tgaccetgge gaggagtttg gatttggtgc 75720 PTS-0012 -136- PATENT

tcagggtggc	aggaagacag	cagccgagga	ggtgaggggg	aatttttggc	atgaggctga	75780
atctgtggcc	tgcgtccacg	ttccccagcc	atgccacgtt	ctagagggta	tctcctctgc	75840
attcaaagag	ggaagggatg	acatgcactt	cactttgctc	cctgcagaac	gtccttgcag	75900
aggtcatggg	agtttggtac	cctgggtgag	tgtggccgtt	tcgtgaatgg	ggagactgag	75960
gccagactca	gtcaggagac	tcagattgct	gagggttaga	gcacagccga	ctcccagatg	76020
ttgggcaggt	gtgttgagaa	aggccagccc	atcttgggac	agggctccac	aggcccacct	76080
ccccaggagg	ctgacaagca	ggaccagaga	agaccgtgga	gcaggaacaa	acccaacact	76140
gggagcaggg	gatgtggggg	caggaggtga	aggaaacacc	ccagagagac	aggaggaggt	76200
ggggctccct	gtggctttgg	caggtgaaga	aggggtcttc	cttgctctct	aggtgctagc	76260
tgtgtggccg	tgtagtttct	agtggcttgg	ccctttccgt	tggtatcact	cttttatcta	76320
gatggacagt	tgctgctgat	cccacagat	catacacaaa	ctcctattca	tccctcaaaa	76380
cccagcctat	atagccctcc	tgttaccttt	ttgggagagt	gacttgtgcc	ccactttcac	76440
acataccttt	atctgcctga	gcatactaat	ctgctgttac	tgctcttaac	caacagccat	76500
tgtttgggtt	tattccaggc	aggggccagg	tctcattcat	tccatgtctc	tccccaggtc	76560
ccagtgtttg	ggagctgccc	tgccccatg	ctaccccata	cccagtcctt	cactgggcct	76620
ggcttagggg	ttctcccatc	ttcagtaccc	cagggcagac	tctttcctgc	ttcgagggtg	76680
tggctgggac	attgactctc	cgggtgatgt	ctgcccccat	ccaccggaaa	tactagtccc	76740
aagcctaggg	gtggtcctgc	atgggacctg	gcccttggct	tectetgtee	gtggatcctg	76800
gaggtcataa	gaagggcttc	ttccctgtgt	tttgtttctg	tgcctcagtt	tcaccatctg	76860
tgagatgggg	ctactcctgc	ctgtacctcc	catggcgctt	atgcgcaatt	gacatgttaa	76920
gaacacaccg	tatgcccgac	gcttggctca	tggcaggtgc	ttggagaagt	gaccatcgct	76980
'gtaatagttc	teceetgete	ttctggcccc	cagccgcacc	ttgaggctgc	aggtctcggg	77040
gttttggctc	agcctgaagg	tggccaagag	catggctctg	ctcttggtgg	gccgggctct	77100
gggctgtagg	cggaggcagc	tctaggttcc	agcttgagcc	cacctacata	cctgctgtct	77160
ttctccgggg	gctggggagg	gggagtgatg	ctgggctgcc	acgccctcct	ctctctgctg	77220
cagcccggga	gcctgggcac	ctccgccctg	cgaggagatc	ttggcaaagg	ctgcgtcaaa	77280
tttttgttgg	cagccacatt	tcccagggct	tggggtcacc	tccttttggc	caatctggtt	77340
tggggtcact	ggggacagtt	tcagtatggt	gatggtgact	tctgcggcct	gtccgcctag	77400
tccttgccaa	atactgagtg	gctgcccaa	tgcagctgag	tcacagcagg	ggctcgcccg	77460
cgtgccagcc	tgtgaacacc	catttgccag	cacacacgca	gtttagcctg	gtgcaggggg	77520
cacccaaacc	cacgcaaatt	ctgcccctgc	cctccgccac	agcccccatg	aagccacctt	77580
caggagcccc	tccgccccc	acctccctgt	acccggctgg	cctgggctgc	cctccaggcc	77640
tcctgtgagt	ggaccctggt	ggtcccaggc	tgcgggctgg	tgggcctggc	cgaggcacaa	77700
tgtctgcctt	cacaccgagg	gccggggtgg	gggcccggag	gtccagccta	ttgatggagc	77760
ggccaccgag	ccctgcgcca	catgttcctg	ttttcctaat	aagtccccag	ttgtgagtgg	77820
ggaggaggcg	gggaggcccc	ggggcagccc	agaaataatc	acatgattgt	gaaacacaag	77880
aatcctagaa	agggtatctc	cgagcgcctc	tatctcaccc	tgcctcctcc	tectectect	77940
ccttccctcg	ctggctgcac	tagctcnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnnn	78000
nnnnnnnnn	nnnnnnnnn	nnnnnnnn	חחחחחחחחחח	nnnnnnnnn	nnnnnnnnn	78060

-13

PTS-0012

-137- PATENT

nnnnnngtat atgagtcagc atgtggggcc tgtggttatc tgtgcactta cacatccatg 78120 catacacacg tgggtgcgtg tatgtgtgca ggtatacctg tgggtgctgt gtgcacatgc 78180 gtgaacattc atccacgaat tggcacatgt gaggcatgta tataggtatt cgtgcatctg 78240 tgcacctgtg tgcatacgca tgtgttcaca tgggtacacg ttaggctgtg tgcatgtgtg 78300 tacaggtgga tgtgcgtgag atggcgggtg tggggcgggt gtggttacat catgtgttca 78360 cttgggtgca catgtgtatg tgcgtgcgcc ttgatgtgtg tggacatgtg tgtatgtctt 78420 tgcgtgttcc tagatcttgg catgtgcact tggtaacgtg ggtctggtgc tcccgtggac 78480 ccgtctgcat aggtgactaa ggacttgtgt gccccagcac agctcctagg ctttttgggc 78540 atgggaggcc tggccacgca gacccagagt ctctgcaggg gtgccactgc tcgaatgaga 78600 acgtgcccgg atctcagttg gctggcgaga gcccctacag ggggtggacg ccacggtgag 78660 cggggccgct cattggcttg agtccctagg ttttcctttc ctctcagagc caggtgagct 78720 tgggcagtgg cttctctcag gcttggccac ctcccctgcg gcgtcagccc cacccaccac 78780 gatcagagca gagacctcgg cccccaaagg ccaggaacgt gggaggacgt gcgtgggggc 78840 agtcgggttt cagcgggatt gagaaaggcc tgtttccctt ctcccccagg ttggggctga 78900 gtcccctgaa ttccagcctc ccagccggaa ggtggcagcc cagcctgaag ccctcctttg 78960 ggccggagca gtccctgagt tttgccaccc ttgggtggag ttagttcagc tctaacaagt 79020 gtgtcctggc gtcccctgca agctgggcct tgggcccgca tggggaagat gcagacagga 79080 gctcctgttg gagcacttgc tgtttgccag gaccaggggc agccagggag acagtgtcgg 79140 gaggtggccc ccaaaggggc cgaggagatg tggagatatc agccacggga atattggggt 79200 tggggaatgt tctagatggg agaggttcag gtgggaaggg tttgggattt tgcctagaac 79260 tgtgtggatt ggtgacctcc tatccaagtg tcctctccga gcctcagttt ccccatctgt 79320 aaaatggggc agcccctgca ccccagaaac aggttactgg gaggcttggc aatcctgatt 79380 gtggcttgga gagcagggag acagggcctg ccctctcatc cacctctatg gagggggcag 79440 agaggactcc gtgtccttgg aaaggccagg cacatccggg atgtggactg cttcccccat 79500 ggccctggag aaagtgccca ctgccctcaa ccctgtgctg ggccctgctg gacgataggg 79560 cgacggctgg ggtcgcggcc ggcgcgcgc tcgcggctgg ggggtagggg ctggccccgg 79620 ggagggggtg tgggacctcg cggtgccttg gggttttagg gcggtttggg ctggttgagg 79680 ctgggtgtgt gaccacgtcg tttttcttgg tcgactccgt cgctgagcgc gcgttgaggg 79740 ttgtggggtt gcccggcggt gctgccggtt cgcggggggt gtgtgcgctg gggcgttggg 79800 tatgctacgt gccgcggcac gaccactatc tcccgtttta tcgcgggtgt ggcctgtggt 79860 ttatttggcg gtatgcgggt gtgggggggt tcgtccccc ctcgcgtgtt gggtgtgcgc 79920 gtgtggcttc ctgacggtgc agtaggggtc tgcgggtctg cgcctgggca ggtggtctct 79980 ctcccagccc gccctcgccc ctcctcaccc cagcccgctc tccgcacgcc ccacgtcccc 80040 cccagcattt cagtcagtct ccggttcgct ctaagtttca cagtcagtag tggctttcag 80100 tgtgcagtgt tcagtcaggg gccagcacag gtcaaggtcc tgtgagggct gggaccctgt 80160 tgaccctggc gaggagtttg gatttggtgc tcagggtggc aggaagacag cagccgagga 80220 ggtgaggggg aatttttggc atgaggctga atctgtggcc tgcgtccacg ttccccagcc 80280 atgccacgtt ctagagggta tetectetge attcaaagag ggaagggatg acatgcactt 80340 cactttgctc cctgcagaac gtccttgcag aggtcatggg agtttggtac cctgggtgag 80400

-138-

PTS-0012

8- PATENT

tgtggccgtt tcgtgaatgg ggagactgag gccagactca gtcaggagac tcagattgct 80460 gagggttaga gcacagccga ctcccagatg ttgggcaggt gtgttgagaa aggccagccc 80520 atcttgggac agggctccac aggcccacct ccccaggagg ctgacaagca ggaccagaga 80580 agaccgtgga gcaggaacaa acccaacact gggagcaggg gatgtggggg caggaggtga 80640 aggaaacacc ccagagagac aggaggaggt ggggctccct gtggctttgg caggtgaaga 80700 aggggtette ettgetetet aggtgetage tgtgtggeeg tgtagtttet agtggettgg 80760 ccctttccgt tggtatcact cttttatcta gatggacagt tgctgctgat ccccacagat 80820 catacacaaa ctcctattca tccctcaaaa cccagcctat atagccctcc tgttaccttt 80880 ttgggagagt gacttgtgcc ccactttcac acataccttt atctgcctga gcatactaat 80940 ctgctgttac tgctcttaac caacagccat tgtttgggtt tattccaggc aggggccagg 81000 teteatteat tecatgtete tecceaggte ceagtgtttg ggagetgeee tgeeccatg 81060 ctaccccata cccagtcctt cactgggcct ggcttagggg ttctcccatc ttcagtaccc 81120 cagggcagac tettteetge ttegagggtg tggetgggac attgaetete egggtgatgt 81180 ctgccccat ccaccggaaa tactagtccc aagcctaggg gtggtcctgc atgggacctg 81240 gecettgget teetetgtee gtggateetg gaggteataa gaagggette tteeetgtgt 81300 tttgtttctg tgcctcagtt tcaccatctg tgagatgggg ctactcctgc ctgtacctcc 81360 catggcgctt atgcgcaatt gacatgttaa gaacacaccg tatgcccgac gcttggctca 81420 tggcaggtgc ttggagaagt gaccatcgct gtaatagttc tcccctgctc ttctggcccc 81480 cagccgcacc ttgaggctgc aggtctcggg gttttggctc agcctgaagg tggccaagag 81540 catggctctg ctcttggtgg gccgggctct gggctgtagg cggaggcagc tctaggttcc 81600 agcttgagcc cacctacata cctgctgtct ttctccgggg gctggggagg gggagtgatg 81660 etggcetgce acgecetect etetetgetg cageceggga geetgggeae eteegeeetg 81720 egaggagate ttggcaaagg etgegteaaa tttttgttgg cagecacatt teecaggget 81780 tggggtcacc tccttttggc caatctggtt tggggtcact ggggacagtt tcagtatggt 81840 gatggtgact tctgcggcct gtccgcctag tccttgccaa atactgagtg gctgccccaa 81900 tgcagctgag tcacagcagg ggctcgcccg cgtgccagcc tgtgaacacc catttgccag 81960 cacacacgca gtttagcctg gtgcaggggg cacccaaacc cacgcaaatt ctgccctgc 82020 cetecgecae agececcatg aagecacett caggagecee teegececee acetecetgt 82080 acceggetgg cetgggetge cetecaggee teetgtgagt ggaceetggt ggteceagge 82140 tgcgggctgg tgggcctggc cgaggcacaa tgtctgcctt cacaccgagg gccggggtgg 82200 gggcccggag gtccagccta ttgatggagc ggccaccgag ccctgcgcca catgttcctg 82260 ttttcctaat aagtccccag ttgtgagtgg ggaggaggcg gggaggcccc ggggcagccc 82320 agaaataatc acatgattgt gaaacacaag aatcctagaa agggtatctc cgagcgcctc 82380 tatctcaccc teectecte teeteeteet eetteeeteg etggetgeae tagetetgag 82440 gtaattgtag acaacccaac cagcttccag ggtgagggaa ggcatctcag ggctggcagt 82500 gtcggctggg ctggtgggga gcggtgccca cgtcgctggg ccctggggga gcgaggcctg 82560 cgcgcctgcc ggggagcagg cttcagtgga cccggcgcat ttgctaaaat cgaaacttgg 82620 ctggcttgct ggggccgctg tgggggtatt gaggctcctc tgtgtttttt tccagcgtgg 82680 ggagggcctg cagggggccc cgggcctccc tcccccgtgc tgaggatcag catgctggac 82740

4

PTS-0012 -139- PATENT

tgggctgggc aggtgcccgc tgctccggga agcctctatt tataatctgt gtttttttgt 82800 tttttaaaaa aattcctcct cttcgccatc accctgcaga agaaggctga agctgcacat 82860 cggattctgg aaggcctggg gccccaggtg.gagctggtga gctggggtac agggtcaggg 82920 gctcagggga gggcgggggt ggctggagag gtgggcaggg aggcgggagg gtgcggcgga 82980 ggaggaagtc atctattacc aagcgctgcc caggcggcgt ccgcggagga agcaggaaac 83040 ccaccttcct gatgagagga cggcagatag cgggtgggcg ggcctggctg ggctgggtgg 83100 gggtggggag tettggcage gagegeetee ggggecacet gegeaeteet gtgcataceg 83160 tgaagcccgg ccgctcgggc tgtgaggaga gtcacacatc cgtaggccgg tgcgcttgct 83220 ccagctgagc gcggagagcc ggttctctgg gtcacacaat ctcggtccac tcccaggtgc 83280 accgcttcat ggcggtgtga ccctgagcgg gtctgttacc ctccctgtgc. ttcagtttcc 83340 tcatctgtaa aatgggaatc ctaacagcac ctattccact ggattacagt gaggaggagc 83400 tgtgttaata tttttccaac atcgggtgcc gcgcctgcct tgtaaacagt aagtgctggg 83460 cattagctat gatgatgatg atgatgatga tggcgatgat ggcgatgatg gctgtcacta 83520 gtgtcctttt gctgcggaaa gatgccatgt cagcagcaga gctggaaagc aggccccagg 83580 cctcctggag tccctgggct gaggatgggt ggatgcagaa gccctagccc ccagagaatg 83640 ggccgcagcc cctgcctgcc ccacagccat ctgtgcccac tgagctggtc agcatggatg 83700 gccgtggtgg gcactgaagg tatatgctac ccacatgtgt gccggatgag ggagagtctc 83760 tgtgtgcatg gtgggctagg gtgtgcgtgt gagtgcgccc agggtgcaga taaaggctta 83820 tgccttcgcc atgtgtagtg gctcatacct gtaatcccag tgctatggga ggccaaggca 83880 ggaggattgc atgaagccag gaatttgaga tcagcctggg caagatagca agaccttgtc 83940 tetgcaaaaa attaaaaaat teaceaggtg tggtgatgca egeetttegt eeeagetaet 84000 tgggaggctg aggcaggagg atcgcttgag ccctggagtt caaggctgcg gtgagctatg 84060 atcacaccac tgcactccag cctgggcagt agagtgagac cctgcctcat aaaaaaacga 84120 aacagaagtc tgacaccttc agagcctcaa tctaaactca gctccactgc atgtttgcca 84180 agtggcctta ggaaaggggc tgacctccca gtaccacagt gctctctcat ctgggacagg 84240 cggaggetet agggeeteet tecagggtet teccagggtt aaaggeagtg etgeetgtta 84300 aaggeteace tagtgeaget eetggteeet aegaageget eagtagttgt gaacaatttg 84360 gtgatgaget getececetg aagtttetge aggetgetea gttttgeagt gagageteee 84420 caaagcccgg ggtccgtctt ttgaggccac tcaggaacta caagccccgg gctcccaggc 84480 ccactcagaa ggcagaagca gggaggagat ggcaagggct cctccagctc agaagcaggg 84540 cccagctgcc cacctggctg gactcaggaa cctcgctggg ctcccccacc ccttcagggc 84600 tctgcccct ccaggcacat cctcgggcct gggcgatctg ggtggtgagc tctggcctag 84660 ggtcgtgctt ctctcagtgg aagtgatatc tgggggaagtt ttcagcagca gcagctgctg 84720 cttgcttgtt tttttgtttt gtaaacagct ttattgaggt acaattcaca cgcatgccat 84780 tcactcaaag tgtccagttc agtgggtttt agtgtattca cagatgtgtg caactgtcac 84840 cacggtcaat tttagaacat tccatcatct caaaaagaaa cccttctgtc tctatggatt 84900 tgcctattct ggacatttcc tataaatgga atcttgcaat atgtggtcct ttgtgtctgg 84960 tttctctcac tcagcatcat gttttcgagg ttcatccgtg tcgagcgtgg gtcggtcctt 85020 cgttcctttt tgtggctgaa tcatatttca ctgtaggggt aggtcacgtg ttgtttaccc 85080

PATENT

-140-

PTS-0012

actcatcagt cggtggacgt gagattgttt gcatatttgg ggtattgtga ataaagttgc 85140 tgtgaacatt agtgtgccgt ttccatgtga acgtacgtct tcatttctcc tgggtgtgta 85200 cctaggcgtg gaattgctag atcctctgtt aaccctgttt agccccttga ggaactgccc 85260 aactgttttc caaagtggcc gaaaagtggc cgtaccattt tacatctcca ccagtaagct 85320 gcctcttgcc tcggtttctc cttttctgcc aaatagggat ggcagggttg gatgaagttc 85380 ccaagcattt ccagatttcc gggtcctccc gctcccgttt cctgattggt ccccgggggc 85440 ctcctggggg aaagggcctg tgtcttaggg cccgaggaac acaggcgagg aagcccctgt 85500 ccgtgggagt ctgtgggcag atgggggtgg gcagctgctg gtgtcagaag ctttggaacc 85560 agggacccca cagtgagtct tctctggttc tttggagaca aggggacggg gttgtcttcc 85620 acttggggat ctcagagcag aggcttccac aaggctgatg gcacaggagg ctaagatcta 85680 gtgtttggac tcttgaaggc ccctggcttg gtgccagtca gtggggacag ggaggacgcc 85740 tcacagagct gttgccgtcc cattttctgg atgaggctca gtgagaggag tgccttgtgc 85800 cgggccacac agcaagagat gaggcgtgga ggtgtgctga gcccctggga gagcggccgg 85860 ccagttctgc acagatctgc caggcccgag tggccacagg catcctccaa gcagaggcag 85920 ctgcatggtg caccetetge agggteetgt ctaccaactg ggtgeeagaa geeegggeea 85980 gggacggcct gaggtgctgt gggtcacaga gtccagttcc cagggtgtct tccatcagaa 86040 gctgcagttc caacgcccct cccctcggca gggacggatc cctgtggcct tcctggagga 86100 atttgcattg gaaaggatga aaatagcacc agaggtgcta accaggggtc gggggcactg 86160 agatggtggg gcacggcccc tccagcccag ctgtggggac tggaccaggc tgggagcggg 86220 cgcagtggtg gagggcgtgc ccagcagccc cgacctctct gccgctttga gtcattgctt 86280 ccttcctgtt ccaaggcgtt attttaagaa gctggtgtca ccagcgggtt gagggctggg 86340 getgteactt catttattgc cageteagge egectgggae tetggetett eetggtggee 86400 ctgctggctg gctcaaagcc cgagggggc cgcctcctcc ctggcccctg ctggctttct 86460 tagtcaccac catgcctcat ctctgcctgc gccctgcgtc tggcacctgc tcccctttgc 86520 cctctttctg ccctctgagt ggctgtgcct ctgattttag aggagacgga ggctgagcaa 86580 gagagagetg gacettgggg ceteetgggt geegeeeeta ceaceceagg etecacaege 86640 atctaggeet egatteeete actggegtga gteeceecag gggteattte teeegggagg 86700 ataaggcctg ggggtgaggg acaggggcca gccatgcccc ccagcctgtg tggctgtgga 86760 ggtgcctcat ggccccatgt ggggaccccg gctagcctgg gctgggagcc gccaggcctt 86820 tgtgcagccc tctctgcaga ggatgagggg gatgttgggg agtcccctcg ggccctgcgt 86880 cccctcagca atgcacctgc caggacatgt cactgtccct ccctccccc actcccttct 86940 gggctttcca agatggctgt cctcagcctg ttgccatggc ggtgcacggc attccaggca 87000 gctctgggcc cagagcctcc cctgggctcc tggggttcag gggcctcggg gagtggctgg 87060 tgagtgcctc ccaggggggc agttcctgtt tagaggccgc agcaccccac agtatcctca 87120 gtccttcggg gccttcgcct tgtgggcccc tcaccgatgg ccgccttgag aagcaggggc 87180 tgtgtcccta tctacagggc aggggaggag gccaccaagt ggaagtggcc ttcctccct 87240 gtggctttgg tgggttggag gctgaccggg ctcttgctgc ccccgggagc cggtcctgca 87300 tttctgcacc cgccctgtgc cgcagaagca ctgtcccctc tgcccacctc gccctcccag 87360 ggctgcgtgc tgtgggcttc cagccccttt ctggccccct tcggctgttt gctatcttta 87420 -141-

PTS-0012

PATENT

aaaccaaaac aagacaaaca ccaaatttca ccaagtctga aattttctgg gctatccaaa 87480 atttccgtga agtaggtcct ctttgaccta cacccatatt ccagatgagg aaaccgaggc 87540 tggagtgttg agggcacttg tccaagctca cagctagtga gggaggaggc accatttaaa 87600 ttggggccta tctgtttcca aaacccgaac ctttaagtga tgtccgcttg cacctggect 87660 gcatttgatt ggcatgtggg gaacataaag gagccagtgt ggttgcccgg gttacagcat 87720 gggcatcttc acagggcccc ttgccattcc tgagacgagg attcgcaccc tctgcaggga 87780 tgctgcactg caccccttcc ctccactggg aagttctgca gtgagtctga ccgtgggctc 87840 tcttgttcct ctgcccactt ctccctcttg ttcaaacttc cagggtcagg gtggggaaac 87900 tgccctctgt tcagggctga gaaccttggg aggggagcct gacccggcac ggggagaaat 87960 ggcccatggc agctgcagga tgacatctct gtccccagga gagtagctga gcaggagcct 88020 ggaattgccc gagcccagtg gtgaattctc taggagggga tctggggcta cagggggaaa 88080 ggcgacattg tcaccagccg agactgtctg tgaggctctg tagagctgca gaggcccttc 88140 cctggggatg ggtgggcggg ggtctgggtg gcccactctg ccggcgtcat caggaggtgt 88200 gttcagctct atccccaggg aagagacttg tgtgtccctt ctgtcgctgc agccctgccc 88260 tgaggetgea ggactecacg tetecatect teeetgttee atetgateae teacactetg 88320 tacctgatct teccaceata gteacecatg gecaecetgg gaggeteetg etgtgtgeat 88380 cacacacaca cagagactca ggcagagagg ggagcagact ccttcctcca gcgctggggc 88500 tgagaggcgg gctgtcattc aggctcatct cttaccagct gtgggcaaat gttgtaacct 88560 cttaaggact caatttttct ttctgtacag tgggggatga ttgtatcagt tacccggtat 88620 ggttacatgg ctactgctgg ggaacaaagc agccccacat ttagaggctt gaagcagcaa 88680 ctgttcactg tttctcacct gtctggaagg cagctgagca tttctgctgg tgtgggctca 88740 gctcttgcac ctccgtggcc agcgagggag tcggggggcc ggcgttgtag atcagcccag 88800 getgggttge accaegetge teettgeete tetgeeeget teetgeagge caggetagge 88860 tcattctctt gacagaaaca gcagaaatgc gaactcgcat cttcaagcct ctgcttttgc 88920 taagtgtgca gcaattccac tggccacagc aaggtcatgg gtggttacag ggaggcgtga 88980 aaggtgggtg ccattagcac agccactgct ccctgatggc ggcaatgtga ctggcacctc 89040 tgggcacttc agcctgcagg taccagcctg agagcttagc atgcactgtc tcgtttgatc 89100 ttcacaaaat cctatgagtt taaccccatt ttatagatga ggagaaatgg aggcacagat 89160 ggaataagta acttcccagg gagacccagc tagaaagtat cagaaccggg acttgaacct 89220 aggctgtgcc cttggttgct aagcaaggtt cttccatctg ggaggggaca cgtggcagct 89280 ggcttggtcc ctgcaccatc acagatgctg ccgtgctttc tgcgtctcct ggtacgctct 89340 ttgaagccct gtgcttgcta catgtgggcc ctgcctccct ttctcactgc tgtgtgggat 89400 ttgtggtgta accgagtcct ggtctcctta gctgctcttc tggtggtgga cggctagctt 89460 gcttctcact ggccgctgtg agcagtgcgt taggaacatc ctagcgcccg tctcctggtg 89520 gagcacagta ggcaactgca ggagcatggg ggtcggaagc gggggcgtcg gtgttcgtta 89580 ccaggtagtg gctgttgtct ctctggggga tgtgtgccca tacaccatgc tcccaccagc 89640 tatgtgccag ccttcctgtc accccagacc tcaccaacac ttggcattca acgtttttgt 89700 cttttgctgg tcagtggggg tggagtggta tcttgcagcg ttgggacgcg cgtttccatg 89760 PTS-0012 -1

-142- PATENT

gtgagctagg aagccaagtg gctttccacg tttggtggcc agggccaatc tctggggtgt 89820 gtgtgggttt gtccgggtgt gctctgggct gtggcccctt ccaggccagc actgctgaat 89880 gccccgcaga gcagccatga cgaccttggt gggggtggtc acagtaccca cagctgttcc 89940 cgaggaacca gtttcagcct gttcctggct ggggctgcgt gctgggtccc tgtgttctgt 90000 ttcatgcctg cctgcggctg agccctcacc cagaggacag ctcctccgtg ccagggctgt 90060 ggctcctacc ggtgggctct gtagtggcga gtggccagcc aggctctgat gtgcttctct 90120 ctctcccttt gcagccgctg tacaaccagc cctccgacac ccggcagtat catgagaaca 90180 tcaaaatgtg agtgctcgcg ggcagccgtg cagacacaca gaggcagggt gggcgagcag 90240 geteteagea geetgeatgg gatgtgggae gtgggetete tgtteecate aggggeteee 90300 ggccagggcc aggtgctccc ggaggggaca ggagacagtc ctaggtggca cctggggtgg 90360 gggtggggag cagagagagt gtccccctga ggttttggga gacaggctgg gtttgggagg 90420 gtgggcgagg gagctgctgg tgcacaggtg ggtctggaga gacggaggtc agaggtccca 90480 ggctgtacat ctgcatcctg ttcgagcagg agggagctgt tgcgggcaga aggcagccgg 90540 ctcagggaga tggggagtgg ccccagagca ggcgggggcc tggtgttttg ggctctggca 90600 taagcatgtt tgggaatcac ctggtgtctg cacagagagg tccctctggc acagcccact 90660 atggggcaga tcagagcact catccaggcc ctgaggcttt ggaggtggcc aatgtgatgt 90720 attctaatga tgggggcctt ttcccagacc ggtgctagga gggaagaaaa tgtcaattaa 90780 gtgccactgc cattgggtga ggcggtgctg gaggctggta gcattgtatc ttcaagcggg 90840 gtacaaggca ttggaggtgt ggcagctgga agggggctgg ctttttcttg ggatgcatta 90900 acgggagcat agactgttgg gccgaggagg gcatgttatc tcatgttagt gcccaggaac 90960 ccaaaaggta aaaggggctg cagatettge ccettgagga acatatggce acgtggtggg 91020 ctggtaggtt ggaggtgaga ctcttcagga tcatagctgt tgaatgttca aggttcgtca 91080 tggtgagagg gtacaggcgt ttgagtgtgg ctgcaaaggg aggcgtttag ctgattcggt 91140 gggtagttca gcccggtccg attgttcaag cgttcctggg atggaactac agagtgtata 91200 tgcggtggtg agctccccgt tcctgaaagc gtgcaaacct tccagtgttt tcacacatct 91260 gctggtgctg gactagtcga cggggagatc gctgctgttg tagtttccag agttgcgcga 91320 ctggtccaag ctcaggtgat caacttggcc acctggtcat tgttgcagca gcctagaaaa 91380 teteteettg etagttgagg ecettggeet tetegggtte aggageacet gacaaagata 91440 cttcaccagc gtggctggcg ggggggtcat cctcagccag tggccagcag gggctgcaga 91500 gtgtgtcagg aaggggcatg tgttctgcgc caggggtccc gggctggtac agaaggccca 91560 tgtcagatgc agcctgggct cctcatcggc ctggcgggct cattcattgc ccaggtccca 91620 gatccctttt gactcgacat agtttgtctt ccaattgggc tacccctgtc ccttctgcag 91680 cttcctggga cctgccttgc tctggggccc ctgtctgggg tgggaagcca cagatggagg 91740 ggtgctgaaa gcaaggggga cattcttagg acctcatcac aggtggttta ggggatgagg 91800 gtggggtgtt ctcaactgag tccaggctgt ttggggcatt ccctcattca ttcatcccat 91860 ctttattgag agcctgctgt gtgtcaggtc ccgttctagg ccttggctat tcagccttgg 91920 ataaaacaaa ggcctcatcc ctcatcaaga tttgtctagc agtggagaca gaaccagaat 91980 gagttaagta aacaaaacaa gagaatgtca gctaatacag ccgggtgcag tggctcatgc 92040 ctataatccg agcactttgg gaggctgagg tgggaggatt gcctggggcc aggagttcaa 92100

PTS-0012

-143-

gaccagcctg	gccaaacata	gcaaaaattg	acaagaaatt	agctgggtgt	ggtggcacgt	92160
gcctgtggtc	ccaggtactc	aggaggcgaa	ggagggagaa	tcgcttgagc	ccaggagttc	92220
agggctgcag	tgagccgtga	ttgcaccact	gtactccagc	ctgggtgaca	gagcaaaacc	92280
ctgtttctgt	taaaaaaaaa	aaagaaagaa	agaaaaaaga	aagaaaatac	cagcgaatct	92340
aaagtactat	gctgacataa	ctatcttaag	ctctttacgc	cttcatatac	ctagttatga	92400
ttttcttt	tgacataata	atttttgata	gccatattat	tatactgaca	attttacata	92460
ggttttttc	acttaaagtg	agtgatattt	taagctgaat	actgtggttg	atttcaggta	92520
ataaagacag	ccatagaatc	taaacaaaag	aggagcaaga	tgctcatata	gatgacacca	92580
gcaaatagat	attgcttcat	ctttgtgtaa	gtagaataaa	actgtaagca	tattaaagcc	92640
agtgctgtat	ttgacatctc	ataatcttcc	tcagagaatg	actgtggtcc	gttgaagtgc	92700
					cacaaacaaa	
catgtttcta	tttaaaacaa	ctagatgtgc	tgggcgcggt	ggctcacgcc	tgtaatcccc	92820
gcgctttgga	aggccgaggc	gggcagataa	cttgaggtca	ggagttcgag	accagcctgg	92880
ccgacatggt	gaaaccccat	ctctactaaa	aatacaaaaa	ttagccggct	gtggtggcgt	92940
					acctggaaga	
					cagagcaaga	
					gaataattaa	
gatttcctac	actgtaagta	gtcaacttct	gttagaaaaa	cctttgtgtg	taaattgttg	93180
					ttatcatccc	
					cattcatttt	
					gggtgacatt	
					tgagcagcag	
					gcaaaggcct	
					ggcaagggag	
					ttatctgttg	
					aatgtgatca	
					ggggtagggg	
					gcaccctgtc	
					gcccaggaag	
					tgtgaccgct	
					ggaggccccg	
					cgcagctcgt	
					agggctcagt	
					; tgggttttg	
					atttactgag	
					a atgaggcctg	
					tgccgccatg	
					ggagcagcct	
ccctggcgc	t cacggeeted	tegeçeeege	tgctgtcat	t gcttctagg(t gggaggtcgt	94440

<u>PT</u>S-0012 -144- PATENT

tccctcccca	gagaccttgc	cccgtcactt	taatttctct	gcgtctgcat	gctggggccg	94500
cggagtgaaa	gttaatttca	cgcttgactt	cctgccgcac	agacgatttc	ggacgcgttg	94560
gaigtcgcccg	tagccgcctc	cgccgccctc	ccaccgccac	ctgcttcggg	cgctgctggt	94620
	gcaggaggga					
	tgggggctcc					
	gtctatggag					
	tggcgctcag					
	tcaggcctgg					
	tecetectge					
	aggcggaaag					
	tcagagacat					
	tgcacatcca					
	gggtgacctt					
	tcagtgatca					
	gccctgcata					
	cacccttct					
	tgctcatttt					
	ccttcctcca					
	accccaggac					
	: ctgcctcctt					
	g caagactagg					
	g agtgcctcta					
	a cagactgtgg					
	a agctatttgc					
	gtttgccaga					
	g cctccaggag					
	a gtaggggctg					
	t cccagcctgt					
	t aggtttggct					
tttaggatt	t tagaaagcac	cagccgggtg	g cggtggctca	a cacctgtaat	cccagcactt	96240
tgggaggct	g aggcaggcag	, atcatgaggt	caggagttt	g agatcagcct	ggccaatata	96300
	c gtctctacta					
agccccagt	t acttgggagg	g ctgaggcagg	g acaatcact	t gaacccggg	a ggcagaggtt	96420
gcagtgagc	c gagattgcgc	cactgcacto	c cagcctagg	t gacagagca	a gagactccat	96480
ctcaaaaaa	a taaaaaataa	a aaaataaata	a aataaagca	c cacagecea	a cacaacacco	96540
	g tctctggcct					
	t gacgtgtcct					
	g ggaggaaac					
	a aacagacggo					
	•					

PATENT

-145-

PTS-0012 -14

gagtcgtttt ccagctgcag tgacagcacc gcggtttgtg gaagatcaca cgccggacta 96840 gcttctcagc gctgccttaa cactcggccg tgaaccgggc agctgaaaat ggcaggaact 96900 ttcttctctc acagtactgg aggccagcag ttggaaatca aggtgctgca ggaccacatt 96960 ctctagaagg ctctggggga ggctgcttcc ttgccggttc cagctcctgg cggctgccgg 97020 cetecttggc gttccttggc tgggagatgc gtcactcccg tcttttgtat tcgtgtggtg 97080 ttcttcccgt gtctgttcgc gtcatctccc ctccgtgtgt gtctgtcttt ttgtccaaat 97140 ttcccctttt cataagtcat tggattaggg cccaccccag taacctcatt ctaacttgct 97200 tctcgctcta aagactctgt ttccaaatga ggtcatgttt tgaggtgctg gggcttagga 97260 ctttacacat atcagttttt ttgtagttgg ggttgggggt gacattccca cctgtactag 97320 gcagtgtacc acctgcaaac cccaaagtca attttgtatg gtcttcacca cggtgtttca 97380 aagtggattc tatctctctt cttttgtgag aaggtggaac tatttatttt gaagtaacta 97440 gattgtacgt tgtgcaacag aagagttgca aatacgctcc acagagttcc cccacacacg 97500 tcacctggca cccctcatgt ggacagctta tataacagca gagaaacact taccacaact 97560 agggcctgcc atggtggccc acgcctgtca tcccagcact ttgggaggcc aaggtgggag 97620 gatcacttga ggctaggagt tggagacgag ctgggcaaca aagcaagacc tcatctctac 97680 caaaaaataa attagccaag tatggtggca tgtacctgta gttccagcta ctcaggaggc 97740 , tgaggcagga ggattgcttg agcccaggag ttcaaggatg cagtgagcca tgatcgagcc 97800 actgcactcc cgcctgggag acagagtaag accctgtctc taaaaacaaa aatcaaaaca 97860 aaacaaaaca aaatactaag aaagaaatag tggcacatga ccctctgcta aactaccagc 97920 tgtctttgca ttttcacccg tctctccgcc aacgtctgtt ttctggtcca ggatctgatt 97980 caggitetea egigacatti gigetegigi etetitagie tecagecegi gaeggetiei 98040 cagcettgee tigittitea ceaceceage actitigaag atcactggte atggetttet 98100 ttgacaggtg tttcctcctg gtaagactgg gatggtgggt tttgggggaag accagagaga 98160 ggtaaggggg ctgcgtgatg cccacatgat agggggctct gccctaggtc tccgctgtcg 98220 ccttagagtt atccctcctt tgctctgttc tttactaggg agtcaccaag tcccacccat 98280 cttccagggc aggggagtta agctccgcct cctggaggga ggaatataga tttgtggagc 98340 caccgccatg attcatacat acttgcgggg agattctttg agactgtgca aatttcctgt 98400 tgctccttaa aattttgcca accaatttag cattcatccc cggatcttgc cagcggtggt 98460 tgggttatta ctgcgttcta atgacgattt tctgtttccc tcctctcttg gacatttatt 98520 cattggaact ctagaagaaa gatctgtccc ttctcctcca tgtattgatg tattgaatca 98580 tttgtttgta atcacatgga ctcgtgggga tttgttttat tcctgggacg ctaatctagt 98640 cccagggtta tttctgttgt cactcacatt gttccagctc tggcagccgg aaaccttcag 98700 gctgggttct gtgtcctttt gacttttgtt ttcttttgtt tttggcaatt cttgacttaa 98,760 agteactetg ggetettett geatacttee tggeegageg etggaateag ceatggeeeg 98820 ggcagcgcgg tttctgggat tggaggatgg tctttgctga gatatgggtg ctgctgtgct 98880 catggcgcct gggccttcac tgcttctagg ccttcacagc tgtcttttgc ataaaagacc 98940 aaaccctttg ccatgtcgaa actcacagga ccctgcagga ctggccctgc cagtcttgct 99000 cacagocoot cotoogtoot ototgocoot coccagoact gtocagocac agggoottoo 99060 tctgtctgtg cttccgatac acagagtttg ttcctgtctc ctgcggtgcc ctccagctgg 99120 PTS-0012

PATENT

agttcccttc cttctggatc ttcccagagc cgggtccttc tgatgacgta gatcccagct 99180 caaggccatc ctctctggga gatctttctg caccacggaa tctaaaatag cccctcacac 99240 eccgtecece ageacceact ageceaccat tecatttaag tteceaaate caggattate 99300 ttggtcatct tgcttattgt cagtgtcacc tctgtgagag ccctcaactg tgtcttgctc 99360 cetgetgtgt ceccageace tggaacagtg cetggeacat agtagatget cagtaaacag 99420 ttattgaata acagaagatg aggctgcgat gccatagatt tcagatgagg aaactgaggg 99480 cttctgaggt gtgctcagag acaccctgtt atgagatgaa gggtgctggt cctagcctgt 99540 gggactgagg acccccatgg cccaccctgg ccggggggcg gcggccagac tgatggaagg 99600 tggggaggcc ctggccaagt caccaccaga atgacccggg gactgaggtg gattccaggc 99660 cettgagece catgaggett cactegteeg teagageetg gggtteeete etttteetgt 99720 ttccaatggg gctggggtcc cgggggctgg acatagcgtg gctcccagtc agtagctttg 99780 agaaaagcgg gtgccactga atgccgcgga ttggggacag acagcaagtt aaggtgcaca 99900 gcaggctcct gaggtcgctg tggcccccca ggccctggga ggccagctgc agcaccctgc 99960 tttgtgtgtt ggagaccgtg gggagggcc tgggaagaga agaggacggt cctggggtct 100020 .cggtgcagca gtgggtgggg gtgtcttcca gccctcatgg cgtgggctcc agaacctccc 100080 gcctctactc tccagggctc cctccctttg cctgtctcag ggtccctgtc ccctttcttc 100140 gggtcttgtc tctttccctc tccccacttc tctcttttc cctctctag tttcatcttc 100200 ctctgagtct ctgtcccctt cctttggatc ttgtctctct gtgactgcct ctctctct 100260 ctctgatcct ctctttctca tctctctcac tccagtctca cctctcagtc tcatctcctg 100320 tecateteca ggtetetgte etttettgga teteatetgt etatetatet eegtetetgt 100380 gteteceett eteceagtet etgtetettt eteacetetg tetecetgte tgteteceta 100440 etgttteeet etttetetgg gtetetgtet ecetetetet gggteeetgt tteeetetet 100560 gggtctctgt ctctctctc ctctctctgg gtctctgtct ccctctgtct ctgggtctct 100620 gtgtctccct ctgtctctgg gtctctgtct ccctctgtct ctgggtctct gtctccctct 100680 gtetetgggt etetgtetee etetgtetet ggatetetgt etecetetgt etetgggtet 100740 ctgtctctcc tgtctctggg tcactgtctc cctctcttg ggtctctgtg tctccctctg 100800 tetetgggte tetgtetece tetgtetetg ggtetetgte tecetetete teagggtete 100860 egtetecete tgeetetgag tetetgaete egggtetetg tetecetetg tetetgggte 100920 tetgtetete etgtetetgg gtetetgtet ecetetetet gggaetetgt gaetecetet 100980 ctttctccct ctctctgggt ctccatctcc ctctctctgg atctctctct ctctctct 101100 gggtctctgt ctccttctct ctgggtctct gtctccctct gtctctgggt ctctgtctcc 101160 ctctgtctcc gggtctctgt ctccctctct ctctgggtct ctgtctctcc ctctgtctct 101220 gggtctctgt ctctctctt ctgggtctct ctctccctct gtctcagggt ctccatctct 101280 ctetetetgg gtetetgtet ecetetgtet etgggtetet gtetecetet gtetetgggt 101340 ctecgtetet etetetetg gtetetgttt ecetetetet gggtttetgt eteeetetgt 101400 ctctgggtct ctgtctctgg gtctctgtct ctccctctgt ctctgggtct ctgtttctct 101460 PTS-0012 -147- PATENT

ctctgggtct	ctgtctccct	ctgtctcagg	gtctccatct	ctctctct	gggtctctgt	101520
ctccctctgt	ctcagggtct	ccatctctct	ctctctgggt	ctctgtctcc	ctctgtctct	101580
gggtctctct	ctccctctgt	ctctgggtct	ccgtctctct	ctctctgggt	ctctgtctcc	101640
ctctctctgg	gtctctgtct	tcctctgtct	ctgggtctct	gtctccctct	gtctctgggt	101700
ctctgtctcc	ctctctgg	gtctccgtct	ctctctct	ctctctct	ctctctctgt	101760
ctctctgggt	ctctgtctct	ctctctct	ctggttctct	gtttccctgt	ctctctgggt	101820
ctctgtctcc	ctctcttct	gggtctctgt	ctccctctct	ctctctgaaa	ctcccgtctc	101880
ccaggacgtg	cctccttctc	ttggagcctg	cagtggtgtg	tgtaacctgc	ttggttgaga	101940
ccccatgggc	cctgccctga	agtctgagac	cgccccgcc	cgggggtttc	ctgaagtcca	102000
tgcctggtgg	ccccaccagc	tgccccacac	tgcttgtgtc	cctcccccg	cagcaggact	102060
gggtgtgctg	gaggtccatg	cacagcacct	ggttggagcc	aatcctgggg	ccacacaggc	102120
cacactctga	cacccggcct	gtgggcggca	gcaggtctcg	gggtctcggg	ctctgtggcc	102180
tgtattccta	gttggaggct	gtggctgttt	ctccgtggcc	atctttccgt	gggcagatgt	102240
ggctgccggg	gtgcatgtgg	gcgggggcgg	gaagccacag	gcccctcggc	tctgggaacc	102300
ctcttgcctg	cacactgggc	tcaacctaaa	cgttggcggg	ggctgcctcg	cgcgcggggg	102360
agtaaggatg	cacgttggca	gctcacaggt	ctctctgggg	atacagcacg	ggtgggtctc	102420
atctccctga	gaaccaataa	cggggcaaat	ttggggctca	ctctcagcaa	acaggatggc	102480
acggggtgca	gcgcctgagc	ccggccgggc	tgacctgtct	gccgcttccc	tcctgcacag	102540
aaaccaggcg	atgcggaaga	agctaatctt	gtacttcaag	aggaggaatc	acgctcggaa	102600
acaatgggta	agtccacacc	gtggcccca	tcagctttcc	ttgagatctg	gggagaatcg	102660
agcgcacagg	gggccacacc	tgccggggcc	ctgtcagttc	cgcagctgtg	tcctccctga	102720
gtgtccaggc	tgcggaggaa	aagccaaggc	cggccaggaa	aggaggaaag	acaacagctg	102780
cttccagaag	gccccagggt	gggtgggggt	gggggggctc	tatggcccct	cttccagcct	102840
ggaagggaag	aaagcaaaat	gttggcctgg	aaaattagtt	gctaagccct	ggtcacggga	102900
cctgtcctgg	gcttttcagg	cagaaagaga	ggttttggag	agaggtggag	gatcagggtg	102960
ggctgtgtgc	cgggcagcag	gggccgcagg	cgcaccctta	caaatgagcc	tttcctggtg	103020
cactgggccc	aggtccaggc	tcagggaaac	tgagacagtg	gacaagcatt	gagccccctt	103080
tccctgagcc	tgcatttgtg	gccagtggcc	tcatccaaac	agaaaaggat	gctgattcct	103140
gcttctcact	gtaggctgtg	gatctcagco	cacggcgggg	aggctgggtc	tgccagaggc	103200
atgtggtggt	ggtttcaggc	ggccgtggcc	atcacccatt	ccccggagga	gatcagggtt	103260
gagtattctc	ccagctgtca	ggggaagaag	cgcggactca	gatgggcttc	aacaggaaag	103320
gaatggctgt	agctggaaat	gtctgttggg	tgtagatggc	aggaatagto	tttcaactca	103380
agtcttgcct	tcatttcatt	tcattacatt	tcatttcatt	ttatttgttt	atttatttat	103440
tatttattt	tgagatggag	tttcgctctg	f tcacccaggt	tggagtgcag	tggcagggtc	103500
tctactcact	gcagcctccg	cctctcgggt	: tcaagcaatt	ctcctgcctc	agcctcccaa	103560
gtagctggga	ttacaggcgc	ccgccaccaa	gcccggctaa	tttttgtatt	tttagtagag	103620
aaggtttcac	: tccattgacc	aggctggtct	tgaactcccg	acctcaggtg	atgcacccgc	103680
ctcggcctcc	: caaagcgctg	ggatcacagg	g tgtgagcact	gcacccagco	ccttcattcc	103740
tgtgcagttt	tttcaactco	ttatgttaga	a acat tgacaa	actgaacctg	aattcccata	103800

PTS-0012 -148- PATENT

gcaggtggga gccggagaga gctgtgcttt ctcggatggt atcacagatg ctctgattag 103860 gccaggagag ggcctgcgtc ctgtgaacca gtggctgatg ccggggagat ggagtgaggc 103920 tgcctggttt tggctcatgg gactttctct acagttgggg atgatgtcat tgactccacc 103980 caagccacgg ggctgctggg acatggtagg gaatgggata aggctgggga ggccctgaaa 104040 aggtccccac ctggggaaga ggcgggctgg atggggactg ctgccttggg attcttggat 104100 aagagacgcg gcaagggctg ggaactaggt ttgctggagg ctggaggggc tcccctcata 104160 cetgeagece cetgececae etectete ceteagetgt gttgaggeag ggeetgegag 104220 gcagctccct gtatcctttc tgggcctcca gagaggccct cccaggcgca ggcctggctc 104280 agtcatgccc agcgcctgta ggtctgtggt acacagtagg tgatgaccaa gtcctgcttg 104340 aactgaaatg ggccgggaca gggtgttagc tgatccagtg cetttggggc ctggatgcca 104400 gtagtcacgg agcacctact gtgtgtgagg ctcgcagttg ctgtgacacg ggccctgtcc 104460 tcagacctgc aggctgcagg gacaggtcgt gcgtaaggac gaggaggatg cccgcacacc 104520 ctgcccttcc ggtgcctgtt gtgttgcagg cgctcttctg agtgctctcc atacattagg 104580 gcatttagtc ctgcgaggtg ggcgcttggt cagccacatg tttcagagga ggaaatcgag 104640 gcacagagag gttaagtaac ttgccctagg tcacacagct gggaagtggt ggagctgaga 104700 tttgaaccca gaccacctgg ttcctgagcc catgctctga acccccaagg ggcagttccg 104760 gagcagtgcc tggggagggg gaccctgggc aggcatgggg tcctgggcag gtgtgtgggc 104880 acgtggggcc aggtgagggg cttagctggg gcaggaggtc ctggctttgg aaggaggggc 104940 . tgtgctatat gggaggaggg tcttcccttg gccctgcctg cctgctctgg ccccgaactt 105000 ggttgggtac tagagggagg agacacttcc agccagatgc tggtgcctgg gaagctgcgg 105060 gcagccctcg ggacccaagc cctgctcata ggtgaggaga ggtgggctgc ccagcagtgc 105120 cttgcccagc ttcctcagat ccccacctt gactggatgg tgcccacagg cacttgggct 105180 ggtgcgagag gctcttgaaa cgagcgtcca atctgtttat caagttaaga gatacccaca 105240, cagggctgct gggtgcccgg gagtcacagg ccaggaaaca gaccggtaat ctggggagaa 105300 gagctgcaca gagggctaga ctctcgagat gggctgggga cctcagtgct gaggtgggaa 105360 tgaccagaaa ggactggctt tgtgcggatc tgggagtcag ggtgtcaggc agagggcata 105420 gcaagtgcag aggccctgag gcaggaacca gcttgggaca gaacctggca ggccagcagc 105480 aggagccagg tegegtggaa acatetgeee teaggetagg atggaacatt caggttttat 105540 tccgaatgca gtgggacacc gaatttattc ttaatacatg tatttgtagt aaagaatcca 105600 aagteettat tetaagaaat ttgacagaag agtacaagge acatetatat acccaccace 105660 tagaatcagc cacggttacc attgccttgt atttgctctg tgtgtataac atgtttgttg 105720 ttgcactatt ggaaaatagg tgcagaggtg ccgaccttca cccctaataa atactccccc 105780 tctgtctcct gcgaggaagg aaatcctctc attttcacct aaaatgactg ccaattcagc 105840 gcgatcttgc cgcctccttg acagcccccc atggttcccc ccttggggtg aaggctcctc 105900 tcgggagggc aggagaggat ctgatttcca tttaaaagga tcgctgcagc tgctggaagg 105960 agctcaggct ggaggtggag ttggggtggg cttgagttct ttaaagatcg ccagtggctc 106020 cttggggggt ctgtggaggg ggtggaggga gaaattggct tatttaaagc tagagaagag 106080 gcaggcagaa accaaggact tccaagaagg gtccggtgtg gctttgtggc ccatcttagg 106140

PTS-0012

PATENT

agggatggaa	acaaattcaa	caccccctga	agctgcggtg	gcgattggga	tggtctcttt	106200
gttgtggtat	aagaagccga	agtccctgac	ttcattgatt	tcagtaaggc	ctggggaggg	106260
gggcttggcc	gagaactctg	atgtgcctgc	ctcaccccca	cṫggggagtc	agacccccct	106320
cagaccctgg	gaccccaca	ccttagcagg	ttcctgggga	ccccatacc	tcttcccaga	106380
		catgggatcc				
		ctggaccctc				
		tggctggcct				
		gcgggggtgg				
		tgtgtgtgtg				
		agagggaggg				
		ttgtagaaaa				
		cctgcgctgt				
		caggtgttac				
		nnnnnnnnn				
nnnnnnnnn	nnnnnnnnn	ctgaaaaccc	tcaccagcca	ctgccccgag	cactttttgg	107040
ccgttgtctg	tcaccagaac	tgcctcttga	tctccagcgc	gttcctggca	cagcctgcat	107100
gcatggggtt	aggttctggg	ccacccagca	ccagcctggc	cacctcgtgg	ggaccgtcat	107160
ggtcacgggg	ctgtcgagga	tggagggcac	agcttgccct	tggtcagcag	ctgaaatatg	107220
gggtggggtg	gggctgaggt	gtctgggctc	caggaccaga	gaggggcttt	ctgactgtac	107280
cgaagcacca	agtgggtgtt	tgtggaggct	cccagatcac	accgtctgtc	caccccagc	107340
		gggttgtgtg				
		gccacttgct				
		ggggatctct				
		ttccttgtct				
		tggtccttgg				
		ctgecected				
		cagtgggctc				
		g acactggaag				
		g atttcagttg				
		a ggccaggtct				
		tgtgggttt				
		tetgtegtet				
		gtatgtgtgt				
		g cgactgtgtg				
		c ctgtgtgac				
		t catatgtct				
		g tetgtetge				
		t gtgtatata				
ctatatgac	t gtctgtctg	c ctgtgtgac	t gtgtgtctg	t ctgtctgtc	gcctgtgtal	108480

PTS-0012

PATENT

•	ctgtctgtgt	gtctgccatg	tgactgtgtg	actgtgtgtc	tactgtgtgt	gtaccgtgtg	108540
•	ggtgactgca	tgtgtgtatg	tgactgtgtg	tgtctgtgac	tgtatgtgtg	tgtatctgtg	108600
	tgtctgcctg	tgtgacttgt	gtgtgcctgt	atgtatgtgt	gcctgtgtat	atctgtctga	108660
	ctgtatgtat	gtgtgcctgt	gcatatatct	gtgtgtgtgt	gtctctctgt	gtatcttgtg	108720
	tgtgcctgta	tgtatgtgtg	cctgtgtata	tctgtctgac	tgtatgtatg	tgtgcctgtg	108780
	tatatatctg	tgtgtgtgtg	tctctctgtg	tatctgccta	tatgactgtc	tgtctgcctg	108840
	tgtgactgtg	tgtctgtctg	tctgtctgcc	tgtgtatctg	tctgtgtgtc	tgccatgtga	108900
						atgtgtgtat	
						gtgacttgtg	
	tgtgcctgta	tgtacgtgtg	cctgtgtata	tctgtctgac	tgtatgtgtg	tgtgcctgtg	109080
						tgtgtctgcc	
						ctgtatgtgc	
						gtgtgcctgt	
	gtgacttgta	tgtgcctgtg	tgcttgtgtg	cctgtgtgta	tctgactgta	tgtgtgtgcc	109320
	tgtatgtatg	tgtctgtgtg	gctgtatctg	actgtatatg	tgtgtgcctg	tgtgactttg	109380
						ggaggcggcg	
						agcagaagtt	
						gcatcgagaa	
						agcagttccc	
	tgagatccgc	aagcagcgcg	agctgcagga	gcgcatgcag	aggtgagcgg	ggcctgagcc	109680
						gatggcctgg	
						cctaccagac	
						taaatacatt	
						cactcatttc	
						ggacaaaggg	
						ggactgggtg	
						tttttctttg	
						ttaactgaag	
						tgccactttt	
						ggcccagggc	
						: cagggtgttt	
						: tgggttgggg	
						ctggccgctg	
						g gtctgctagt	
						g cagggtggg	
						gtcagagato	
						: cagctccttt	
						ccgggtggtt	
	tacgtcgag	g ggctttgcc	a cçgaagcgc	g ggtggaatca	a aggtgggta	tgaggtacco	110820

PTS-0012 -151- PATENT

gtcccaggcc tgcaggggcg agcagagaga ggggtgttaa tgtgtctgag agggagggta 110880 .gcaggacccc ctgcagggag ggccctggcg ctcccccatc cagatgccac aacagggagg 110940 gggttggggg acgaggaccc tgcctctcac tcttcccatc tcctgcctcc ttttggaact 111000 tcccattggc tgagtccagc cagaagccca aggggcggga gtgcctgtgg gttccagggt 111060 cagcetteca gggeecagag ectggeaggg tggggggage atggegeagg ecgaagagtt 111120 cccagcacgc cagctgtcca cgcagccacg accttctcgc aggcacctca gccctcctgg 111180 ctggagcagg gccggtttcc cctcaggcct ctttggggtg ccaggacacc ctggggtcag 111240 cctaggtgac cctggctgcc gtcactgggg cccacagatg gccaggaagc agagaggcag 111300 ccttttctcc tggggaggaa gttggtgtca gcctgttccc tcccgggtcc tgtgggtcag 111360 gtacccatga tgagactacc ccctgctcct aacaccacag cagacacgag gcagccacgg 111420 cacgtttctt ccttctgggg acttttgtcc agggagagct tttgtccaga tgggagatta 111480 tagcccttta gctcagcaca gcagagccac gcatggctat tgaaatcaaa attaattaaa 111540 atgggataaa attagcaatt cagttcctcg gttgcatctg acacatctca agagctcgac 111600 agecgettgt ggttggeage teceeteetg ggeggageag acagegaaca ceteeetgge 111660 tgcagagtgc tctgttggac aacagaacgc gctgccctgc gatgctgatg ctcagattag 111720 acagatggaa ggggccccag ggagggggcg gctggtttaa gtagcagttt ctcaccagag 111780 actctgattc agctggtctg gggcagagcc caggaatccg catttttacc cagccaccca 111840 · cttgattctg acgcaggcaa tccaaagatg aatctggcca ttaaaacata atttttcatt 111900 ttaaaacttc tcgtggtacg tttttgttta caacaacatc cagttgacag aaaacagagc 111960 ctgggccgtg tcagccctg tctcaccgat gctgtgcact tatggacatc ccgcagagag 112080 gctggctgtg ggtttagtct gcactggaag gaggaggccg gtggccctct cctctgcatt 112140 cctcacctga tggccaaggg tgtggcacct gggctgattg ttgcatgtac acacacaca 112200 acacacaca acacacaca acacacaca actggccaca tgggaatgca gtcatcagag 112260 tcctcaggga catcaaggat gctgtgtccg gggtgaaggg tggaagtgga atttgggaca 112320 gaaacttccc cagccagcct ggggtgacct gaggttcccc cgggagtgtg caagggaggg 112380 ggctgggccg gaggacaggc acttcccatc cttctgggag cttcctgtgg tcagagcaca 112440 tggccgtgcc gggggtcctg ccattattac atccctggga tacccgagga aggtcgccgt 112560 tccgtatcag gggtgtaggg gacagctcca agggtctggg agacagatgc cagcctcttg 112620 gggggattct ctcccaccc ggggtcagag ctgtgccccg cacccgacct gacccctggc 112680 tgggagteet geacattgag tgaagaggtt ggatgtggge ggeegggeag etggategtt 112740 tgaactggct gaccttggct acgcggagtc ctcgcctacc tccggagatg ggtaattaat 112800 cgccagtaat tggctggctg cgagatttgg ggaagtgagc ccagctgagt ggcggctcag 112860 agectettaa tagteatece agtgeattag gageggeege etgaeteetg eegeatgeag 112920 ggctgggcag gccagatccc aggtgggccc tctgaaggag cggggtgccg ggagggggcg 112980 tgtagtgtgg gggcaggaaa gacctctcca ccagcgaggc gctgaccctc tctgcgcccc 113040 tgggctgcct gcatgctgtg gggccagctg gaccccaggg cccactcttg cctgcggaac 113100 ctggaaggcc agcctgtctc ccgggctccc tgggcccagc tgggctgagc atccttcctg 113160

-152-

PTS-0012

PATENT

cagtgcttta tggcgcttgc atttccaaag ggaagattca tggctcccct cccactgcag 113220 agaaggegge tgctgctctc tgcattgaat ctacagtcct gcccaccata aacctgtcgg 113280 ggaggccttt acattctccc ttcccccagc atgagctatt attattttta aactcatcat 113340 tetecttete ettggttteg egtttteeet getetggege agaceateeg teeeetetgt 113400 gtottccetg ggtcccctgc gccggccgga gcacctcgtc cctgggcctc tgaccctgcc 113460 ctccgtttcc ctgcagaacc tggagaagca gatgcgccag ctggccgtga tcccgcccat 113520 gctgtacgac gctgaccagc agcgcatcaa gttcatcaac atgaacgggc ttatggccga 113580 ccccatgaag gtgtacaaag accgccaggt catgaacatg tggagtgagc aggagaagga 113640 atcctgttga ggcctgcgct gtctcccggc agccaccaca aatgagcatg ccggggggtg 113760 cttaaaaccg cagggattta ctctctcctg gttgtggagg ccggaagtcc aaatcctggt 113820 gtttcgtggg gttggttctt tctgggggcc gtaagggaga gcctgtccct gacctcttcc 113880 cagctggtgc tgccagcatc cttggccttc cggggcttct agatgcatcc ttccatgctc 113940 tgccttcgac cccacatgac ctttgtctct gtgcttctcc tcttcttata aggacacccg 114000 tcacactgaa tttagggtct agcctaaccc aatacaacct cacttcaact aattacatct 114060 ggaaagaccc tgtttccaaa taaggccgca ttctgaggtt ctgggtggcc atgaatttta 114120 agaggacaca cttcaatatg gtacaaagtg taagggcagc tggatgtaag acggggcact 114180 gcgagtcgga agaacaaggc aggagggact tagaggctgg gccgcagcct tgggcagggc 114240 ggcagctggc cagtggcttt tggtggtttc tattttgttt tgtctttgac aatagctgct 114300 ggctgagtgg gttcgtgatc ccatcactgt gcctgtgtct tctcagcttc atgcattttc 114360 cccctcctgt cccttatgac agctcagcca ggcccacccc agtacacagc tgatgacacg 114420 gaggeteaga gaggtteaga eagtgeacaa aggeeacaca geatgeacae aatggaggea 114480 gggttcagac tcctccagct ggaatggaga ggctgtatag ggaatggttt gtgaatgggg 114540 ccagggaggg gggctgtgca gagcagagac gggagtcgag ttctctcaaa agctgtgtct 114600 gagggggcca aaccccacag tgagaatctg cgatgtgaca tccaggcaga aggagacctc 114660 catecetgge eeggggteee cagaggagat egtgggeeet getgageeae eecaegeett 114720 agggacagtg tgctataatt ccggggaatc taatcttttg gcttccccag gccacactgg 114780 aaaaagaaat gtcttgggcc acacagaaaa tacactaaca ttaatgatac atgatgagct 114840 aaaaaaaaa tcacaaaaaa aatctcataa ggtttttttt tcctttttt ctttcttctt 114900 ttcaagacag agtttcgttc tgttgcccag gctggagtac aatggcacaa tctctgctca 114960 ctgcaagete tgccteeegg gttcaegeea tteteetgee teageeteee gagtagetgg 115020 ' gactacaggc ggccaccacc atgcctggct aattttttgt atttttagta gagatggggt 115080 ttcaccatgt tagccaggat ggtctcgatc tcctgacctc gtgatccgcc cgtctcggcc 115140 tcccaaagtg ctgagattat aggcgtgagc caccacgcct ggccaaaaat ctcataaggg 115200 ttaaagaaag tttacgaatt tgtattgggc cgcatttaaa gccgtcctgg gctgcatgtg 115260 gcctgtgggt tggacaagct tgctctaatc acttgcacgt agagggctgg gttccctgcc 115320 caggacatag agcacctcct caggacctca gagctctggg aggcaggaga gtgggaaact 115380 gaggtgtgga cggaggcctc tgtgcttggc caggagggga cgcagggaag agactttgtc 115440 actgecegae gttcaceegg caggetactg agetgeettg gggaagaeee tgeeteegga 115500

-153-

PTS-0012

caagagette etecaaagea atgacaetee tteeceagtg ecetgggett tggtecaggg 115560 ttgtggcccc aaagaggtgc caggcaggac ctaagggatg gggtgactct gggtccccgg 115620 caggggtgag tggacccgca agtgcagata ccgaactcag aaaggacaca gtggctatcc 115680 aggagggtct ttggtggaaa acatttttta agagtagctt ttgattatgg aaatgttgaa 115740 acgtccataa gaatagaggg gtggggtaat gagccctgga gtgcccacag caccgagtga 115800 gtggtccttc acaggaaaca gcgcttggtt cctgagcagg aatactcggt tacttaatgg 115860 ctcgtgcctg cagcctcacc atagcaggca cgatctttct acgtcaaatc aaagtctccg 115920 tcgaatgett cttacagttt tgaacgaggg aggtgatggt gggacggtca cgggtgttaa 115980 gaattactga attactgttg cgtttgagat tcacgttccc cctggtaggc atgatgtttt 116040 agtgtatgta ttttttctga aatacaaaaa aaaaggtgtt ctgggagact ttctgcggct 116100 teageettte ggaagatete atgtggetet geaggtetga taatgteace etetgttaat 116160 tcagtaaccg aagggtgggg gacccaggct gggctgctat ctgccggccc gtggggctgg 116220 cgtaacttcc atcctgtgtg agccgcaact tggccacttg catgcctcaa ggactgtggg 116280 cttggtttga ggtctcatgt gcagaggaat tgatagcact cggggctttg aaaatcacct 116340 actgacggca tggggctcca ccacgtgctg gccatgtgac cattecccct ctgaacctca 116400 atttcctcgt ctgtaaaatg ggtatagcga cagggcctcc cttgtgaggt atgcagggca 116460 taggaaactt ctaataaacg tcttccaggg gtgcaagtga ggtattgagg gaggggaaca 116520 ggggacctag gagattccca agtttgattc ctggtctctt gggagccccc actgtgcctg 116580 gggaaacccc gtgggagggg tttgcaggga aggaaatgtc actgggacaa ggagagggag 116640 cggagaggaa aggactetee etacetggaa gagaagggee ttaggatgge teeggeettg 116700 ccagccgccc gaggtgggat cccaggccag ggaagcctgc cattcctcac tgcgccgctt 116760 ccaccgggaa gagagcagag actgttcagg atcctcggat gtctggctgg gaagcaggcg 116820 cggggcctgc tggcctcctg cccagccatc tggagggcca ggcaggtcgg gcactggtgc 116880 tcactcagcc tccctccgtg ggagcccaca gtccagcctc actagcagcc agccgctgct 116940 ctccctgcga aggctgtggg gctgtggcac gtcgccggga cgcctgggcc tggggccagg 117000 gactccaccc agcacccttg gggtggagca ggccttgacc cacatccccg ccccaccat 117060 getecegete etttggeeet cacattteag eetgggeeea gtggttteee agtaattete 117120 ctggctacgc aggaagccag ttgggacagt gccagcgacc cgccaccgcc ctccgactta 117180 agtecatget tgccgcctcc ttggctggcc agecccctcc tgctgcccca cgggcactca 117240 gagectetge teccagetet tetggggagg eccageagee tggtgageta tgaceceaet 117300 ggtggggccc tgccatgttc ccaagcagac cctgtgtggg ctgggtgagg ccctgcttcc 117360 cagatccagc tggagagaga aacaaaagtg gattttaaag gggggggaac cccaccaaag 117420 agctgcatgt cgtgtcctca tttttcctgg aagccgcctc cagcaggaca aacaaatata 117480 ttttcaaagg cgctaaagcc agtgactcac tccaaggaac gccctctctt acccctgggt 117540 ccccaccct cccgtctgcc gcagcagccc ttcccacacc cccctgggct taattgctcc 117600 aagtggggcg gtgcccgcca ggcccggcca gtggggatgg caggcgcctg ggagccgatc 117660 ggctgccccg caggaaagcc cccctcggcc aggtctcacg cccacccttc tcgtcccgca 117720 ggttcatgca gcatcccaag aactttggcc tgatcgcatc attcctggag aggaaggtga 117780 gtcgctgccc gccccatacc ccttcggtct ccacctccgt gggcaactgc gtggactcag 117840

PTS-0012 -154-

ggtggaggcc ctccctcctt gcccacaagg ccctggcctg cctggcccct tgctccagct 117900 gccatgetee ceteeteet eceteette ettecatetg ggagatagat cagtgcagge 117960 cccgccctgg cctcctgggc ccatggagga ggagcctcag gttgctgagc acctgggaat 118020 cccgagaacc ccagggagag ctgcacggcc aggcttcctg gagccccgtg tgcccgacgg 118080 gtctcctgcc agctcctcaa aggccacgtg gagcgtcctt gcaaactggg ggtggattct 118140 · ggaagcacta cgtgcctggc atcccagtga agttttcgta ggcaggagtg gcgtgcctca 118200 aagggactgg agggaccagc ttttctaggt ccctctgagg gtcactgact gctttctgac 118260 acctctaatg ccaaaccaga cgtgtggcct gcaagtcccc atcttctttg gacaaacctt 118320 tgtgtggacc tgaggcctaa agcccacttt gtgtcaagcc caggcccgga gcagctccag 118380 gtggccggta gacacaaagt gtccccagag aatggtaaag ccgttgtttt gcacccacaa 118440 ggctggttgg actgtgcctg gagaggctgc aggtgggaga aggtggctgg atgaggctgc 118500 atgttggacg tggcccctgg gccttccccc agcatcttgg ggtcagagga gaaaggctgc 118560 cgtccgtgtg tcttaagcag cattccctg aatcacgttt ctcagagatg gggacctgcc 118620 cacccagct tggtggacac cctgctcggg cttcctggtt gtaggaggga ggccaggagg 118680 atgaggcact tattttaaag gacagctgtt cecagegeet geceetcatg agetgataae 118740 cgtagaagga gagagaccga gcagagtggg gaaaaatctc tccatgcctg aaaaaccagt 118800 gtggagaaac aagccctata aatagcccat cttctgagtg acgacgtctc cctcagggag 118860 tggacggcac ggcggactct aggttagggc tccccaggat ggaagcattt cagaaactgg 118920 ccatcgagca gtcctccttc aggatgaggg gattagaagt ctttgtgctg gggagtaaac 118980 ttcatgatgt tctttggctg agaggcagcc caggacaagg cttcagtaga gcttccagag 119040 gggtctggag caggagctgc caacggagag gccggcgggg acagtcaggt cttgacagtg 119100 agtgaggctg acgtctggct gggagccagg tggaccagcc agtctgtgcc cgtctgcggg 119160 ggcagctgct gtccggagcc gggctgccat tgctgagcgc aggaaggagc tctcttgaat 119220 tgttaaagga gaagtcgggc acccacatcc cctgaattgc aaatattggc atctgattat 119280 aaaacgtett tetegattge catgtttgtg ggetgggttt ageetgggge egeetgggag 119340 ccccctggc ggtcgtactt ggcaggaggc tgccagctgg gggctttctg ttgagggcag 119400 tgagatttga ggcccagctc agaggcctca cagaatgccc attggaggtg gggtcctggc 119460 ttggcactgg ccagagcatt gcagaaacat tttacattgt aaggggaacg gctgtgggca 119520 ttggcaagct gggctccatg cccgcaagtg ggggcatcgt ggcatcactt tctgaggctg 119580 ccccttttac tcgtcccatt tggccggggt tcatggaggg ctggttgctc cggctttcag 119640 acccaatcta catggaaaag accaaggcag agaaaagaag gaaacccagg aagaggcgcg 119700 tggggcgtgg ggcgtggggc ggtcccgatg cacaaggctt ggaagaggct attcaggacc 119760 tcaaatatca gggaagagaa ggctgaagcc agggaaaaga gaacccggac ctatgtttgg 119820 ggaaggettt gagtttgece ggetgtggge tggagteett gttteecata agggetgggg 119880 gigacatggc gacgicagcg cigicattaa ccatagcaac agcggigact gigataacag 119940 gaaagactte catcatgttt getetgggee aggeetegte eeaagtaett tacetatgta 120000 ttaactgatc tgatctttgt gataatcctg tgaagtatgt acaattagca ttcccatttt 120060 acagatgaga aaactgagac acagaggtta ggtcatctgt ccgaggtcac ccagccggta 120120 cgtggaagag gcaggatatg agcccaggat gtgagctcct ggctcctgcc ctgaatgcct 120180

PTS-0012 -155- PATENT

gtgctgtacc	ctgctcagcg	tcctcttct	ctgtcccaca	gacagtggct	gagtgcgtcc	120240
tctattacta	cctgactaag	aagaatgaga	actataagag	cctggtgaga	cggagctatc	120300
ggcgccgcgg	caagagccag	gtaagaggca	aggtgggggt	gactgtcctt	gcaggctccc	120360
tgcatgctca	gcggccactt	gcttggtggc	cagcaccccg	catggctggc	ggtaactgtc	120420
tccatgagtt	gttgttgctt	ggccaccggc	agtgtgagtg	caggeteece	tccgtggtag	120480
cagcagatgt	ggggagaccc	cctctggggt	gctcaccctg	ccaggctatc	tcgagcctcc	120540
cgtagtggcc	aggaagatag	ctggggagaa.	acagccacgg	gcctcctcag	cctgtgaaat	120600
cccagactcc	tgactgggtg	acctgtgatc	tctgtgcgta	aaaaggctac	attccaaaag	120660
taagagcttc	ccaggatgac	ttggggtagt	tcacaaactt	catgtttaaa	atgttaatgg	120720
		acatacttga				
		ttgggatgag				
ctggcagact	gggactctgg	ggctaatccg	gcccaccatc	tgttcttgtg	aataaagttt	120900
tattggaaca	cagccatgcc	tgtttgttta	catattacca	tggcagcgtc	cttgctgctc	120960
		gaccaaaagt				
		agtttgcttt				
		taatggtaga				
		tgtttgggag				
		ggagcaccac				
		agtcggtcga				
		gtgacaaagg				
		tctggaagca				
		tcaaagggac				
		gacaccccta				
		ctttgtgtgg				
		: caggtggccg				
		caaggctggt				
		: tatagtggca				
		: agaggtcgag				
		tgtctgccgt				
		g gctgttgtca				
		ggggctgaac				
		g ggttttcttg				
		a tgtgtaaaac				
		a tttttgttt				
		c caggtcagag				
		g tgattctcat				
		t gctaatttt				
tgttgccca	g gctggtctc	g aactcctgad	ctagatgato	cacctgcctt	ggcctcccaa	122460
agtgctggg	a ttacaggca	t gagccactg(geteageege	: tacggtgttt	: ttgaaattga	122520

-156-

PTS-0012

PATENT

agtgcattca ggaattttct agactgagag gcaaaaaggt aagtgccagt cagggagtat 122580 atagatgctg aggtatgaga ggcagcaggg agcggtgggg attatgacaa aggaagggtg 122640 gctaacggcc tcaagaggta tttggaaaac atcatcaggc gtctgttggg cccctactgt 122700 atgctcattc tcttgctggc cttcccagtt cccctcccat gacctgtttg ggggcattga 122760 ggctgggctt gtggtgggag cccttcctgg tagctgggct gggggctctg aagagcagag 122820 gcccatcccc tccccctgtg tgagagccac atttgcacag agggaggtgg ggagaccatg 122880 gtaatttaag aagggtgggg ggtgtcggtg cccggcatat cctgttgtag aggcctggcc 122940 tgtactgtgg tagagtgagt gtccagtaga gtgagtgtcc ggcttgctct tcgtggagtg 123000 agtgtccggc ctgctctccg tggagtgagt gtccggcctg ctgtccgtgg agtgagtgtc 123060 cggcctgctg tccgtggagt gagtgtccgg cctgctctgc gtggagtgag tgtccggcct 123120 gctctccgtg gagtgagtgt ctggtctgct ctccgtggag tgactgtccg gcctgctctc 123180 cgtggagtga ctgtccggcc tgctctccgt ggagtgagtg tccggcttgc tctcaggagt 123240 gagtgtccgg cttgctctgg gcggagcgaa tgtccagctt gctgactcat ccattgattg 123300 agcatttatt gtgtgcagga catggggagc ttcatgctgg ttgttcagag ccattgtaaa 123360 caggtggctt caagacagtg ccgcgggtct ccctgtgcgg cgggtctatc tgtgccacgg 123420 ggtctccctg ggccacgggg tctccctgtg ccgcggggtc tatctgtgct gcggggtctc 123480 ectgtgccac gggtctatct gtgctgcggg gactccctgt gccgcggggt ctatctgtgc 123540 cgcggggact ccctgtgccg cgggttctat ctgtgccgcg gggactccct gtgtcgcggg 123600 tetecetgtg etgtggggte teeetgtgee acgggtetat etgtgeegeg gggaeteeet 123660 gtgccgcggg gtctatctgt gccgtgggga ctccctgtgc cgcggggctc tatctgtgcc 123720 gegggtetee etgtgeegeg gggteteeet gtgeegeegg teteeetggg aggtggeatt 123780 ggtggcacat ccttgaagac tccgtagaat aaaaggcccc aaagatgagg ttgaggagca 123840 gccccacagg cggacaggga tggggccctc aagtgcaaag gcagggagca tgagagacag 123900 cgcgtgtctt caggaacagc agggggcctg agtctttgga ttcgtggggg tcccggtacc 123960 teccagggee ttaaaggaae aaagaaaggg agattatgtg accetette ttttgeteat 124020 ttttgatggg taaatagaga tgttttttt taccctgtga aaaatagaag tgcaaactcg 124080 ataaataaca gctcacactt gccttcgtgt ctggggaggg agtagggagt ggtgaggcct 124140 gtggetcact gcagagettg ggeceegtet cagetceagt ggaegettgg ccattggece 124200 tgaattgcca ggtgttctga tctttgatga cgagctggaa atccagtttt atgtgaaact 124260 gcctgatttt aaatcttagg tcacattttt taaaaaggga aaaaacagct caacactgta 124320 tatgccacac aactettaet tgetgttgaa atcaceeeca geeecaagta gaagaeetet 124380 gggttagact acagtgagac caggggagga gggcattaga tgtctggggc caggctgggg 124440 caccggggaa gccctagaat gttccatagc agggaggaaa catgccctc tttacaccgg 124500 agatgtcctg gtttagccgt ggtatctgcg gtgcctggga gttggtgggg ctttgctggt 124560 gagtttttat cccctgctga agctgccgtt ccaggcaggg gctcccagga tggggaaatg 124620 atgcttgtct gctctgcgtc tctcagaaag atggcagaaa gcaagccggg caggaggtcc 124680 ctgtctgtct ccagggctcg ccccttcctc ggatcagctg cgtttgctaa ggaggtggtg 124740 gegtggeetg ggeeetgeea eeceecaeag geetggttea caaceaeggg gtaaaeaggg 124800 gttetcaagt getaaetetg gggetgagag teetetetge eecatggeag caaggaaaat 124860

PTS-0012 -157-

cageggeage tteaggetea geetgtettg ttaagtggag atgeagtgae tgeegeeage 124920 tgagcgtctc tgtctgtggc tgtatttgtg gagccactga cactgctgat cagtctgccc 124980 caggtgaggg cacagcaggc ctggggtggg cccagcaccg ctgcttggaa ggctgcggtg 125040 acggacggga ggtgcaggca gtggtggtct ctgagtgcgc caaggctgtg agcacacaga 125100 acctgcaget cettaaggag ggtggggagg tgaactgaga ceaeteeca eecaetacee 125160 cgctgcctca gcatggctgg cacctgcagg ctgggacagg catctgggac tcttggtgac 125220 tgtgggctgg ggagccactg ccctgtgctc caggcaatgc aggcacccag ggtacctctg 125280 tgggccggtt cttctttctg acctatcctg gcagctcagg ccttgtgatc agatgggaat 125340 ccctggccat ggagcacacg agcccctgcc cagccccact cccctcacag ctgccccagg 125400 acacttgtcc atgettetet eteceteata ggtttetgag tgageagaca cageccette 125460 cccctaccgt gacatgggcc ccctccccag gcaccacggg aagatggaga acccgggtct 125520 tcccagccag tgagcccacc caccctcagg ggtagggtgc ccactgccag gagatgctgt 125580 ctgcctcttc cccgatgtcg tctagtggga gggagctcaa gctcccttct ccgtgatgtt 125640 tacctggagg gcagcaggtc gggttctccc tcccttcctg ggccctctag ttttggaaga 125700 agacttaggt tatctcagcc aatatgcatt ggaccccttg atggctggtg ggggatggga 125760 cetgggagte cagtgagaca tgggageett gteaaaatte caggggeace tggeeetget 125820 gtgtgatggg gatgggtgct gctggccgct atggtggcga tggcgatgat ggtgatgatg 125880 acggcgacag tgatggtgcc ggccaacagt catgcagcac tatcgccaca cactgtgatg 125940 atttcaacct cactagtgtt ggggacaggt gtgtaattat ccccactggc cagatgagac 126000 agaggcacag ggaggtgagg aagcttccaa ggagcctgct gagtggcaga ctgagggttc 126060 tagcctggca catgcagccc ggggagttgg agggaggccc agccgtcccc tcggcagcac 126120 actggccata aagccagcct tctggaagcc agccctgatc cgccaggtag gacaggcctc 126180 tectgtggte tgtgcaggag ecetgegagg geaggeggea gaggggetea tgatgagget 126240 ccatgtcagt ggggagtcgg atgctggatg cggggacccc aggtgagcca ggctggatct 126300 gtgctgtgga gacaccctct gatatggggt gggtgggagt cctggggttgg ggggggctca 126360 gtaccccccg ccaccacctg tgtctcttcc cctgccatgt gtccctcagc tcctggggac 126420 agcagctggc cactgtctct ttctctctca gtgcctccgc cgttaccata tatgtctttg 126480 gggagttgct gagggctctt cctcatctcc ctctctcccg ccttgtctct cctccccatc 126540 tetgtetece getetgegte tettgegete teteageace eccaetecea gtgeacagee 126600 cctctctcct gggttgctgt ggaggctgct gtgggtggcc gcagagaggc tgtggtgctt 126660 gtggtcctgg cgcggtgccc gtggctccag gccacatctc tgctgaagac aggcacgagt 126720 ggcctctctc atgtcaccag gacagaggcc gctcgcaggg gccttcctgc ctcgtgtccc 126780 caagettget egececacag acceeccagg aggtgeecat eggatgeaca gtatatgeat 126840 gttcatccgg gggcatttat tcagtgccta ctgtatgcca gggttgtcag actctacctt 126900 cagatgcgaa tccgacctta atccttccga aaatagggta aagggatcag ccgcgcctgg 126960 cccatctcaa caccccagac tgccctgatt ccacgctgca gaggtggaca cagggtagga 127020 cttccgaggt gtcggggagt gggcacgacc gccctccca gggtcaacag cgcccacgtg 127080 cctcctgtgg gtttcctgag ttggggggtg catggcccag gaccaaggac atgggtgccc 127140 ctcctttcgc catttgtcaa ggtgggattg aaatggaggc tgtggtggga tcccgaggga 127200

-158-

PTS-0012

ggggaageet gtgggetggg ggtgagaagt gaeteeaggg acaetggaee gtgeaettte 127260 cccggcagcg aggcttccga cttcctcaga caccactgac cacgctggga tggctgtagc 127320 cagcatcctg gggctgtgcc ctcctggagt tcccctgtc tgaggccaag gtctgctttg 127380 tgaggggacg tgtcccagtc tgagtcctca gatgtgagtg catgtcggaa tcaccggaag 127440 ggctggggaa acccagtcac tgggccgcac ccctcacccc acaataaggc cgagatccaa 127500 gactetgeat ttecaaggag eteceaggeg ttggtetagg aegetgetga gaaceteggt 127560 gctgggggtc agcccctgag cagggagcag ggtggctgaa ggggttgtta agcccgaggt 127620 gggctacccc acagcccaga ccacccatgg gagtacactc aagctggaac ggcccttccc 127680 aggtgtttgg ggtgggcaac ggcctccctg gccagggccc aacttggatg aggcagctct 127740 gagctgagtt attgtcagcg cgcctgacag ccgatggcag ccagccctt ctagaaggga 127800 ggtctggcca gtccagccca ggaggcagcc tgtgcatctg catgtttgca aagccacgct 127860 tcatagatgc tgtggccacc cgaatgctta accacagccc agcagcaaga cgccagtgcc 127920 accepted ctcaaggaca ccteccetet cteaagtet tecaccagec ccttctccec 127980 cctgtcaccc cgacaccatg tgccctgtac caaagcagtt tgtgtgtcat ttcgatggtt 128040 acgtttctga aacttggatg gttataaagt ggaatatgaa agtccttgat taaaagtgct 128100 ggccatggga cgtctctgga ctcagacccg cgctgtgtgc ggccgccttc actctggccc 128160 accttggcat ccatggcact ggtgcttagc cttgtggccg gctggaggcg agggatgtgc 128220 atggctgttt agagtggtgg gattgccttc ttgtttaatg gagggtgcca tcctctttct 128280 ggaagettet etgtgttetg acaeggggat geaggeeegg geataggett ttggaatget 128340 agcccctcca cacccaccc catgagaccc cacaggcctg agctttggca agggagggcc 128400 gagececcae eteceggaae etggeceetg agateggeeg tgageggett ttgageetgg 128460 aggetgggtt gaggeeegag cateetetet tgggeteega geeecateae caccaccetg 128520 aggtgaatca cggactgtgg ggcggtgcgg ggaacagctc aagcgctggc acagtggttt 128580 atagtccatg attcattgat ggaagggccg cgttatccta gtgaattgca aaaccagagc 128640 ccaggaatgc tggggcctga ctgcagaccg ttggggagcg aggatgtgag gctggctagg 128700 ccaggtggca gggcccggcc cctggtagcc aatatggcct tcccgcagcg atgggggttc 128760 atgtggccaa gggggcctct ctttctgcag agatgggaca ctgagacggg aacagcccgt 128820 cctgggctcc agtcatccgg cctgggtcca agaaggaagc ccagggaggc cgaggctccg 128880 ccccgactg ctgccgtcca ctctccactg ttccccatct ctgtccctct gggtctgctc 128940 tgcccaagcc cctggctctg aatctcctgc atttttctag gtttctctct ctctctct 129000 ctctgtgtgt gtatgcgcgc acacgggtgg ctacgtctgt ttctcttccc atgtcttcct 129060 ccctctttct atttctctgt gtctttatct ctgtgtccac gtctcgtctg tttctctgca 129120 tgtgctttcc cgtctctctc tctttccccc atctaagtct tttaactctg tctctagctc 129180 totototot totoccotto totototoco coatototoc tottoctoct coccogocco 129240 ctecectect caccetgtee etgggtetet ceteteacee ttectectee aggtetetge 129300 tecteccea ectttetece tttetetete etecetecca etacagecce etgteccetg 129360 cctcctccgt ctgtcctctc ccagctcttt gcggagggac tggtgacctt gttccccttg 129420 ctgtggcact cggacagttt gcacagggaa cagtatgacc gggaaggctg ttccagggca 129480

ggagcagcca ggcttggtcc ctggggaggg gcagccgctg tgcggtgggt gttggtattc 129540

-159-

PTS-0012

PATENT

agggctagct gcctgcccta ggtgctgaag tcacttgatg gtggggaccg gtggcagggc 129600 gggccagatc accccaggct gtgtttcagc tcccaggccg agggcttgta tcttgtttca 129660 aacetgetge etgettgggg etgggeeagg atgggeeeae ageetteegg tggtgeegae 129720 gcaggattgg gtgcagtttt agggttgaag tgagcagatg tctctggttt cctgcccagc 129840 tttgtgctag gtggggagac agttgggggc tccccacgtc ctgcagtcag ggatgttgct 129900 cccagggaag gcagctggtg agtgggccgg agcccaggga tggagcagac cgggctgcag 129960 atcagagagg cagaaggagg tggaaaatgt gagcgctccc caggcagcag atcggtcagg 130080 atcgaggggg cctgggggac atctcaagct gggctgctgg agtcaggaag tagttcccag 130140 aacagcagcc ttggtgtctg tggcagctgg aggcactgag ggaggggccc tggcaggctc 130200 acaggcggca ggttgtccct gggggatggg tggtgtttga gtctgttctg cagggatgtc 130260 attctaggtg attccctcgt ggacaagaca aacaaggtca ccccggtgcg gtggctcatg 130320 cctgtaatcc cagcactttg /ggaggctgag gtaggtggat cgcttgagcc caggagttca 130380 agaccagcca gggcaacatg gtgagacccc atctctacaa aaaaattaaa aaattagccg 130440 ggtgaggtgg cttgctgctg tggtccgagc ttcttgggag gctgaggtgg aagcactgct 130500 tgagcccaga aagtggaggc tgcagtgagc cgtgatcatg ccactgtgca cctcagcctg 130560 ggcaacagag caagaccctg cgtccaaaaa aaagggcaaa caaggtccct ggagctgaca 130620 .cccatgggga acttggacca tgtgcaagcc tccaaaaaaa agggcaaaca aggtccctgg 130680 agctgacacc catgggggac ttggaccatg cgtaagtcaa tcagcatggc aatttgagag 130740 agtgttgaag ggcaaacatg taagccaggg tcaggaggcc actgctgggc aggagggcag 130800 . cttttatagg gagctggccg caaggcttct ctgaggaggt gtcccttggg ctcagacctg 130860 agtgataaga agggactggc caggcagaag tcgggggagc accccaggcc gtgggcacag 130920 cacgtgcaaa ggccctgaag caggaacatg cgggccatct tccaggagac aggtggtggg 130980 catggggaga gctgccctga gggaggtggg ccagggccag gaatcctggc ctcagagcag 131040 gagcagggac tgtggatttg atgccgagtt gcgggtcggg atctgaatta ggatttacaa 131100 cagageeteg getggeacag cacacatetg tacaggegga acaggettee atgtgegtgt 131160 taaatgttgc tcacgttctg tcgacacgca tctttctgcc gtagagtgct ggtaaatgtt 131220 taacaaccag ctttctgtag ggggaagctg cgtttgtagc'atgtgccggt tgccatggtg 131280 taaataaatc ctctcaccgt gcccagtgcc acgtgacaac gtgctgccgc tgacttggaa 131340 ctggggaaag atgcccctag caccaggctg tcttatcctg ttctcaccct gtgcatggag 131400 ttggcggaag tcacctccac ggcacggatg acttcgtagc tccatgtagc cagatgatca 131460 ggaagcaatg cccttggagt gcttgtaacc ttcgctttct ttctttaaaa aaaatttatt 131520 attttttag agatggagtc tcgctctgtc acccaggcta gagtgcagtg gtgcagttga 131580 agctcgctgc agccttgatc tcccaggttt aagctttcct cccaccttag cctcctgagt 131640 agctgggact acagggatgc accacctaat taaaattagc accaccagct aatttgtagt 131700 gacagggtct cactgtgttg cccaggctgg tctgaactcc gagccctaga caatcctcct 131760 gcctggccct cccaaagcac tgagattaca agtgtgagtt accttgccag gccataattt 131820 ctttaattgt aaggttaagt gtttccattt ttaațaatgg ccatgagctg gtagccactg 131880 PTS-0012 -160- PATENT

gctccagcac gccttggtat atctttttt atttatttt gtttgagaca gagtctcact 131940 ctgtcaccca ggctgcagtg cagtggcgcg atcttggctc actgcaagct ccgcctcccg 132000 ggttcacacc attctcctgc ctcagcctcc tgagtagctg ggactacagg cgcccgccac 132060 caagcccagc taattgtttg tatttttagt agagatgggg tttcaccgtg ttagccagga 132120 tggtctcgat ttcctgacct catgatccgc cggcctcggc ctcccaaagt gctgggatta 132180 caggcgtgag ccaccgcgcc ccgccacgcc ttggtatatc ttataaaaag acaaccctta 132240 aacgcactga gatggcctcc cctgactgca ttttccccag caaggacagg agactgaatc 132300 cgagggacag agagcaggtg ttagggaaga gctgccagca acagggaacc ctgttctgcc 132360 teggetetga eccetggece caetttecae accaacecea ggeteetgga atecceatee 132420 ctacactgcc aggaggtgga aggtgtcatg aggatgcgcc ctctcagggg cacctggcac 132480 atggtagatg ctcagtgaag tgtttgttga atgagtgcat gagattgagc cacagacggt 132540 gttgctgggt tttgggaagt tctcctgaca catttgtaag gacttagcat ctgagaatta 132600 aatctcatca acccctacgt gggtggtcgc agcaccttct cactggactg tctcctctca 132660 ttcccggaat ccaccgtctt ccttcctgcg acctgctatt ggattgctct ttaacatggg 132720 gtgggtcatg tgactccctg cgacccctgc accttttgag aaaggtcccc gggggctccc 132780 accgccctca gaatgcctcc tgtatttctg agcatgggtg ttagccctgg ccaggccctc 132840 cagecatgee ceaaagtgee acttggtagg cacaggggee atttteecat tgecatgeeg 132900 · cagaggeete etgetetgee aaageeeett eeetegeeet geatgteage aegeettget 132960 · · gcctcatctg catcatgaat gtgccttttg aatgtgtcct cgtcaccggc gcctccatct 133020 ggcctgtctt tgtcaaccta aatacaagct ccatacagtt gggggccaca tctttctgtg 133080 gctggtgtgc'cccttggggg ttcaggttat gctggcggaa ggaaagaatc aggcaatggc 133140 atcatttggt ttaaatgggc atagggagga ggctgtgaac ccccagccca gggcggaggt 133200 agggcacctg gctgtaggac cttctaggaa atgctgtgtg accttggatg agttacttaa 133260 actccctctg tctttgcatt ctcatccata aaactgggat gataccagtt gttgggagga 133320 ttcaaataac aggtaggaag tgattaggag aagaaggcct catcaaatgt gctcagcgag 133380 cttttgctgt ttttaattaa gatatttttc tgcatagccc ccagtctggg gcttctgcac 133440 aggeceagte atgtgetget tgtetggeag getgagggtt atgggtteag tgteeagate 133500 tgggggcagg tgtctcttgg ggctttgggc cagtggctct ggctaaccat agatccagta 133560 gggtttgtca cagagttgta ctgtggtttg gggggatgtt tctgaccacg cacagggcac 133620 aaacccactg tcagcctgac cagtggcaca tctgaaaggc agaggtagcc ctccaccacg 133680 agggcggggt cctttgagat agtggagctg gcttctagtt ctttctgatt ctcctttcag 133740 tececteacg ttgagggaat ggtgcccaca ggcgttttet getgcacaga gteetttatg 133800 tgccttgtga gacaaggatt cttgaaggcc tcactcctca gtgggatctg aggccagccg 133860 tggcagette teetggegea ggttagaaat geagagteee aggeeeeace eeagaeegae 133920 tgagtgggaa ttggcagggg atgtgtgtgc acctgcaggt gtgggtaaca ctggcctgga 133980 gcagagtgct ctaacgaaag cccacaggcc aaatccggcc caccacctgc ttttgtaaat 134040 aaagttttat tggcacacag ccgtgccctt ttgttgatat aagggccgct ttcacaagac 134100 agtggcagaa ttgagaaggg ggttgacaga gacggcatac ttatcctctg gcccttacag 134160 aaaacgtttg ccagtccctg gtaaagcact ggttctcaaa tctggctgcc catcgggata 134220

-161-PATENT PTS-0012

	taacatacga					
	cctgggcatc					
	ggaccttgag					
	tctatggaca					
	tgccctaaaa					
	agggggagtt					
	gcggccctca					
	atcattaagg					
	tgctattcct					
	ctctcccaca					
	ccttggctgc					
	accagagggt					
	aggaggcggc					
	gatggacagg					
	gagcgatcga					
	geeetggegg					
	tgctggcaag					
	agcgggggct					
	tccgagacct					
	g tgatcactgc					
	g caggggtgtt					
	g cccatagaaa					
	g attttctcct					
	g ctgcggtggg					
	g cccctgcctg					
	t tagcctgatt					
	t aggtgcaggg					
	t cggga ggga d					
	c tcaggagaca					
	g ggctgttgc					
	c caaggctct					
	c acatcgggca					
	c tgccccagc					
	g agggttcga					
	g gaatcagca					
	c ctggctcct					
	g cccgaggct					
	g tcagacact					
agagagcgt	t gtgtgcggg	t caggcacct	g ttcctggcag	g gaaggaaag	g caagagaag	g 136560

-162- PATENT

PTS-0012

			ttccatctgc			
			tacacattaa			
			tggtctggtt			
			tgctttaaaa			
			acactccctc			
gggcggtagg	cccagagtgg	ctgggacagg	tcggggaggc	agatgacagg	aagaggccca	136920
agtaaggagg	ctggcttggc	tcccagcctc	tctgatctgc	tctgtaaaat	gggcttgttc	136980
tgtcccctg	gggtgctggc	atgcgaggga	gaccaggccc	aggcagcaga	gcagccacct	137040
ccacgcaggc	ctggggcctt	cctgggctct	ggggaatcag	gggcatcccc	ccacctcccc	137100
gttttacaga	ctcggagacc	gaggcttaga	gaggtggcct	gagctctgtc	gggggcaggg	137160
cagggctggg	gcatcagggg	tgtgtcccca	gcttcccaga	tgctcaggca	ccctgccga	137220
ggctcaccag	ggcacctctc	tcaacccaga	tcacatctgc	ccctcttaaa	tatccgggcc	137280
agatgcggat	gtaagcatgg	tgaggattct	ctcatttcaa	cctcccagcc	ctcagctgag	137340
gcacaggcat	gctgaatacc	cccattgtca	aggcgaagga	gtcggcacag	agaggttaag	137400
accctcatcc	aagctcacac	agccactgtg	tggaaagggc	aggaattgaa	gccagcactt	137460
			gactccgcct			
aagaccccag	gccgtgcctc	tccccatctc	atgccagtgg	ggcctggctt	cccggttgtt	137580
			tttcctcctc			
cccaggtgca	gagattcacc	tgttcacggt	tttcttccct	ccccactccc	ctctgccctc	137700
cccggggtc	tgacagcagc	agcaacaaca	gcagcagcag	cagcagcagc	agcagcagca	137760
gcagcccatg	ccccgcagca	gccaggagga	gaaagatgag	aaggagaagg	aaaaggaggc	137820
			gaacgacaag			
			ctgacccaac			
			ccaccaattg			
ctttctgctc	gtttgccct	gacagccccc	cttccggaag	cccacccatc	gccctactcc	138060
tcctccctgg	ctececcete	: tcctccgccc	tcgctttctt	tctccaaccc	tctggagact	138120
ttagagacto	g atagctcatt	tgagctccac	tcctgagcta	ataaatccag	gcaatgactt	138180
tggaactctc	tgcctccctq	g cttcctcccg	ctettteete	ctgaggcgcc	aggaaggggg	138240
aaagggggat	cagaggccct	cctggaagga	ctaggtgtgc	aggcggctgc	tgtcaccttt	138300
agaatcatco	g atggcagtgt	gagttcttgc	agatcaaggc	acageeteae	cgcgggggc	138360
gtgacagcct	cctgtgcctg	g ccaggggctg	g caggagtgca	gccagctgga	gaaagggggg	138420
cggcacgact	tagcgccag	g tacctgtaat	gggctcagga	atttggcttc	agagaacato	: 138480
tggcttcct	accccgtct	c ccagacgctt	ccagcaaggg	r cctttcagga	agatgaatgg	138540
gaaggcagag	g gtgatcaat	tgagcctccc	gcagtaaaac	tetecccagt	cacttctgcg	138600
agagccccag	g ctcgggtate	gaggttgtg	a gcaccccac	: acaccacago	: taggcctgca	138660
			g tttcctcctg			
			a ttgcctctta			
			a aattgctgc			
tcaccaaata	a gtcttgcag	a cagtatctc	t ctatttggtg	g cataaaatgg	g tcttgcaga	138900

PATENT '

PTS-0012 -163-

aaccaccagc ccagaagaaa gtagccttgc aggaaagctc ccagtacctc ccatttgggg 138960 aataaaatag ccagccaatt aactacctgt ccacatggcc ttattggtga attaagttga 139020 tagcccaggt tacaccccca tcctttcttt ttctttttt tttttttgag acagggtctt 139080 gttctgtcac ccaggctgga gtgcàgtggt ataatcatgg ctcactgcag cctcgacctc 139140 ccaggctcaa gagatccccc taccttagct tcccaagtag ctgggaccat cagcatatgc 139200 caccacgcct ggctaatttt ctgatctttt tcttttgtag agatggagtc ttgctgtgtt 139260 gcccaggctg gtcttaaact cctgggctca agcagtcctc caacttcggc ctcccaaagt 139320 gctgagatta caggtgtgac ccagcacacc tggccgcaac tcccttttga gaaatagcat 139380 ggtgttgtcc tgccagctgt actcccactt ctggtgaaca tggagcccct gcagacttgc 139440 ccctggccac cctcacctca ggcctctccc cctctttcct agcgtccgat tagtgccatg 139500 gctggcagcc agtgcaaatc cagctaaaga aacagtctcc tccagtggct gtttgatttc 139560 ccggctcggg tgaagccatc ctatctcccc tctctggcct gtagggagaa gacagacgac 139620 acctcagggg aggacaacga cgagaaggag gctgtggcct ccaaaggccg caaaactgcc 139680 aacagccagg gaagacgcaa aggccgcatc acccgctcaa tggctaatga ggccaacagc 139740 gaggaggcca tcaccccca gcagagcgcc gagctgggtg agctgggggc cagggatgcg 139800 ggtggggaag gggctggaga cacggcgggt tgcgctcata tgaaagtttc gtgcaatttg 139860 agttaattgg caacagccaa ggggttggtg taagtcatgg ttggagtcaa atcccagcgc 139920 tacctactgg atgtgctgtg tggcccagca tgaattcctg aacctctctg tgcctcaggg 139980 tcctcatgtt ctcagtggga ggaatcggtg gttacctcta acgtgggggg acagttgtag 140040 tcacttgcta tgtgagaagc acctagaaca gtgcctgggg tgtaggaaga gttcagtggc 140100 ttcaaccaca gtgatttcag agcagggaga tgtcacaaaa aattcccagt gaccagttcc 140160 ggattttttg gttgtcgttt ttaaaacaga agatctggcc acgcttggcc caggttccca 140220 tgaggtggct gttgttggga gccgagtaac caccactcct tcttagaatg tcatgggctc 140280 tacttgtccc cacccagect ctaccctggt aggeatetgg ttttgtacet teactteegt 140340 gggcctcagt ttccccttct gttgagaagg gtgttcatcc ctcactaccc tcccagaaag 140400 tagaaaaaaa tgagatgatg tgagtggcag ttcccaagat tcgccgcagg gggcagcggt 140460 gtgcgtctgt tgtctctact ttgtttagct gttagggtcc agccctccag ccactgcggg 140520 aacccaccca ggggcccaag cgctcaggcc gaagccccgc ctgccagggc tcattctcag 140580 ggtggagatg ctgcttcatc tcccacagac ccccaccgtc ccctggggtc cgggtcatgc 140640 acctgtctct tcttctcgtg ggatgtagtt tggacctatt tcataaatgg cccactcgaa 140700 gctcagagag gaaacgttcc ctctctaaaa atttcattgt agctggggtt agaactcagc 140760 cccattggcc acagagccta tgcagctcct gcagatattt tccagctgcc tcttggtggc 140820 ggtgtacttg gaggcccagg gtgaaagggc tttcttcctg cctgatctct gggggatagtc 140880 ctctcggacc caaggctgat gctgggggct cagccgcagg gtggaaaaca cactcctagg 140940 ccttccatgt ctcttctggc actgggcacc ctcagcaccc ctggcacccc tggcttctgt 141000 aggetteete tgggagteet gtggggagga atgggageat egatgaggte ecagagagge 141060

ccaggctgtg gctgcagaga tgggggaggc tggggtggct ctggcctgtc ggggctgatg 141120 gggctgcca tgggggtggg ggccgtctcc cctcttctgc tggaaccttc cgccactcct 141180 cagccagcct ctgttggaca catactccc ctggcgcagt tccaggtgct gagtccatgg 141240

PTS-0012 -164-

agetgaegte cetegeacce accecaetea tgggtettaa geaactggaa aggaagggee 141300 agggeteaca tecagaggag eteggeagae agacecaaaa atagtgeeae tgeagagatg 141360 cagccacete cagecaacee caaggecagg ttgtgteeet teecagtaac accagaagee 141420 cctccttgtc ctggatgagt gggggtatga acattccctc tggagcaggg cttctccgcc 141480 atgggcgatt ttactccccc actaggggac gccaggcagt gtctgtgaac agttttgatg 141540 gtcacaattg gagtagggtt gctggagtcc agcgtgcaga gtccagggtt gctaagcatc 141600 ctgccgtgat gggacagccc cacagtaata gaagagctgg gctccgagag ggtcctcggt 141660 cagatgaggt cccggcccac ctgaagcttg tgtcccactg tcgccacgtc accaggtgac 141720 ccctttccca acagagtgca ggcagaggca gtcatggtca aggcccttga ctgcttcagt 141780 gtccccttct ataaaatggg gtgatcgcag gtgccccgac ttcagcggct tgtgtggagg 141840 ttggccccga ccaacggcac gtgggactgc ccagcacagc tccagcccag cataaaggct 141900 cagggagtca ggtgccacgg tgggtactgg ctggggaggg gcgtctgaaa tgtggccttc 141960 ccacggggtt cagagccgtg cggtgacacc gtcaaggcct ggtctactcc ctccctggct 142020 caaaggagag aaaagggcag aaggcaaagt gcctcctctc ccggctcctg ccaataacct 142080 ggcatcttct tttcagcctc catggagctg aatgagagtt ctcgctggac agaagaagaa 142140 atggaaacag ccaagaaagg tgaggggtgt gtggcggctt taagccttgt tggtttgcat 142200 ccagggcgcc tgaagctcac gtgctgggga gggtgttgac acatttggcc ttgagccagg 142260 ggctgtggtg aggcctctgg tgaggttctg gttctgggct gttctcaggt ttgtcaccct 142320 ggagcctcag ttttaccttc cagaaaatgg gtctgtgcag ctgcgctgtc aggcttgtct 142380 ttgtgacttg agggcgcagc tcagagagac acagcttgtg ctgtgcatgt agtcagcgag 142440 tggcttctgg gtgacctctg tggccagcac ctctgggcct tggggacaga gcagtggcag 142500 cacacctggg tatctcggga cagtcagagc ttgccggcgg ccatctcggt agagtcctgg 142560 ggtcagggag acctgcaggg cgttcatcca gcccttagag ccccaaaggt cctatcctgg 142620 gctcaagtgt gctggggctt tggaaacctg tctcaggttt gagcaccca atctgggtga 142680 cgggttctgg agtggatggg gacacccagg ccgttgggga cagtcgtggg agtggctcac 142740 acggcaggga gccagcaggc attggtgctg gcagcagaag ccatcccgag cagatggcct 142800 tgtgatgtgc agcaccgtgg gggctggggt ccagtgcctc ctaagccgga tcccctctca 142860 getgtgetgt eteetggeea agatetttae tteecageae agtgaeetge etetgggeet 142920 cggtttgccc gtctgttgag tgggagggtc gtctaggttg gctgtgcgga atcagataac 142980 cetgtgtgag ggcccatggt gggctgagtg ggagcgaatc tectecetee eteggecgtg 143040

cctggcctgg ggcagggct gtcggagctg gcgcatcact ggcagcactg ctgaggccgg 143100 ggcagcacct ggctccacg gcacgctcac tctcggttat ctaagaggtg gggcctgctc 143160 ctgtccccgc ccatgtccct gtttgtggc aaggagccag gaagcagagg ccaaggagtg 143220 ccacgggttc cggagctggt gtgtggggct gggagcaggc ccaggccccc actccccgtc 143280 cctgtcccgt gcttggtccc gtggccctgc tggagtcgag gctgtctgtg acgtgcggtt 143340 tctttgtgca gaaagctcca ggtcgtact tatggaggga acaaaggccc tttatagcaa 143400 acgctcttgg cacataaggg caggtgtatc tgagaacagc ctggatcacg gggctcctgg 143460 gcccggccc gtcctcact gtagttgtg ggggtgctga gggtccccac agccctgaga 143520 agaccccac agccccgcc ctcacccgg gaccctgcc ctcgccctca gagctcctca 143580

PTS-0012 -165- PATENT

ç	ggggcagtc	tgccctccgc	ccccaggct	gaggtgaacc	tggacccaga	gagaccctcg	143640
c	caccattcag	gaaggagggc	ctgcctgccg	ctgcaggtca	ggctctgtgt	gtggtgagtg	143700
ć	agaggcatgc	cageggggcc	tgggcactgt	atccagctgg	tagggcctgg	gcactgtatc	143760
		ggcctggggc					
		ccacttggtg					
		tgtgtgattc					
		cattctaacc					
		aaccctcacc					
		attagcagtc					
		actctctgtc					
	atcctacagt	ttgtggcctt	ttgtgtctgg	ctcctttctg	ggagcatgat	ggttctgagg	144240
		tagctttgta					
		catctcttgg					
		gcatttgtgt					
	atctcagcct	gttggctggg	agatttccca	gagcacccac	ccatcggagg	actccgcgtg	144480
		aacggtcagc					
		ccacctcctc					
		cagtgcctgc					
		gggatgactc					
		gatgacagtg					
		gccgtgcacg					
		ttegtetgee					
		tgtgtgttcc					
		ggccccagca					
		cegeceagaa					
		tggtctctgc					
		caggggcact					
		agccaggttt					
		, tagcatggcc					
		: caaccccctg					
	ctctgtgcct	cagtttcttc	atctgtacag	tgggattcaa	a ggagcgccca	a ctgtatgtt	145440
		g ccataataaa					
	actgttctgg	g aggccagaag	tccaagttga	aggcatccaa	a gaggctgcai	t tccctccaga	a 145560
	ggetetgggg	g aggageetge	: cttgcctcc	ccageceet	g gegeetgeet	t gcagccttg	145620
	cagtccctgg	g ctcatgacca	catccctcca	ggctctgccl	t ttgtctttg	t gtgcctttc	145680
	ccctgcgtgt	ctctgtccac	attttcctct	tcttacaag	g acccacccc	a atccagtat	g 145740
		t gacttgatca					
		t ggacacaaa					
		g gtgaaagtad					

PTS-0012 -166- PATENT

ctccccatca ctttgtagct acaagcagct ccttagcccc ctgaccttgg cctggcccat 145980 ctgtttcacc ctcagttacc atcgttctct cagatgaggc agggatgcta cctcccaggg 146040 gcactttaaa gacggagcga gccacatagg aacagtcctt ggtatacagt aggcactcag 146100 aaatggcagg ccgctagctt agggcgcagt ctccagaccc tgctccctag gtttgggtcc 146160 cagetgtgcc tectgcagag tetgaceetg ageaggtace tacaetttgg ggceteggce 146220 cccgccacct ctgtcttcgc cccggcgatg ggggtcggag gtaagtcacc tgccaagcaa 146280 atgtacagtg acaactggag gaacttccat ggtgctgggg gccaccagtc agagggctac 146340 cccgaggaag gggccgacac ccagagcacg aaataatagt gaatatcacc cagtaacacc 146400 gtggagccca tcctgcgtgc tgggcactgc tggaagcttt gtgtgtatga agtcacttta 146460 tctctaccaa cctgactagg aggcaggtgc tgttaatact tctgttattc aaatgaggaa 146520 accgaggeet agagaggett agtgageage ctagggteae acagetgtga agtggtagag 146580 ctgggatttg aacccaggca ctctacttgc agagtaggaa tggggttggc atgagagctg 146640 aacaggttag tccatgggcc aacctgttga ccaggtaaca aaggcaggac aggcatgtgc 146700 aaaggcccca tggcaggggc agtgtggccc catgagaagt ggttgaatcc cagaaggtag 146760 aggggccacc gggagcctgg ccttgccagc atgggatgga gtgtagctat tactctagag 146820 cgtgggaggc cactggggag gggctgggga catgatggcc atagggtttc tggtgggcaa 146880 gtgagcaacc tecettettg tgtgcatgeg getgtggetg cetgeeetgg ggettgtget 146940 gcctgaggac cgagaatgtt caggaggcag cttccccagg aaccgggcag ctccggggag 147000 ctggccgcct gccctcgggc ccagcgccaa gtggggaagg aggggcaggg caggagcagg 147060 gctgggatga gggactcggt tcccctggga aaggtcagcc tggcctggct tggaagcctg 147120 acceagetgt gegagaggee egaggetetg etggeagete etceaggece eagecetett 147180 ctctggcggg cagagaacct gctgtggagg gggttgggag gctcccggtc acaccattgt 147240 cacaccattc tagaccggga gttggctctg gcccgcctcc gggctgccag tccttcccaa 147300 tctccaggga gcggccaaca gtgggaggat gtgcaagacc aggccctggt ggctcccagt 147360 aagcccgggc agaccccaga ggcctccccc aggactccag ctgccttgtc tagtggcctt 147420 gccacttctc acaggagcga ggcaggaacc acccattgct gtgcacatgg gctggcctga 147480 cgggctttta tagatgaagc gtctaaggca tgggaagggg aggggtgagc ccccagcctg 147540 gagcctggag agcaggacct cctccactac atgtccactg ggaaagcctt gggctgtgcc 147600 caccatgggc cccccaaaag aggagcgcct gtgtgctctg ccgcacaaag ctgccagagc 147660 ttacagtggg gtgggcgggc cggtaggcag tgctgctgct cctgggtttg ggtctgcccg 147720 gctacttcct ggtgcagctg tccgtcaggg cccagcagga ggcgacactc gagctgtgtg 147780 gagactgtca ccacgtgtgg tctggagaga gaccactagg gagggtgcat gtctggggct 147900 ggttggcctc ccggccggat atgtgagaaa cagtctgttg tgatggtttg gagggaggaa 147960 aaaattgggg tttctgcagg aacttggggt acagccagac acaggggcag ggtctggacc 148020 acactettge teetgteage accettgaag atgaaateag geateaacaa geecceette 148080 cctcctaggg gagacccatg aatccgcatc cacatggctc ctgactcagg gaaggagcac 148140 ctggcggtcg atgcggtagt aatgatgcct gtcgtcacgt ggcgtggctg gtgctcacga 148200 acaaggcagg ccctccacac gcgtgtgtac acacgcacgc atacacacga cttctgcttt 148260

PTS-0012 -167-

gcacaggaga	agaccaaggc	cagagggaga	gccagtgctc	acccagccca	ctgcggtgga	148320
cacagggcat	ggggtggtct	gtctgacccc	ccaggctggc	ttccaacttt	gctctgctct	148380
gtaggaaaac	gtgacattga	aaggtgtaac	gtggcacttc	cggaaatggt	aggcgagaca	148440
gcgccaggtc	gtatgcaggt	gactttattt	catcttaatg	agtctgggtt	tttttgagag	148500
ctgggagaag	acgtagcttt	ttcacatcgt	acctatgatt	tacgggtata	attgctgatg	148560
cggaggctaa	ggcagatagc	gaggctgatt	tttgaaagag	tagatggaga	gaaaagagtg	148620
gggaggtgca	agtccaggtg	tgatgttatc	cagccaacat	cctgatagga	tttcaggatg	148680
gcaggagttc	gggaagtcct	gacaagacac	gcaggagtgc	ccggcctgtc	aagggtgtca	148740
atgcggaggc	accgtccctg	tggaaccccc	ccccgccag	ggcttggggt	ttctgaaatg	148800
aggaagtggc	atgactcagg	cccaagacgg	ctgggttctt	ttcctcccaa	ctttgatagg	148860
gttttaggca	gagcatgctg	agtttctcgg	ggaaaatggc	aggtgggggg	cggtggtcga	148920
tgcacccctc	tggcaggcag	cctgtgagtc	ttcatggaag	gggtgggaaa	cgtcaaggct	148980
ggaggtgact	ggctggggtg	gggagagcga	gtgtgtttcc	agggttgggg	gctgacttcc	149040
agagaaaaca	gctgcaacat	ccccagatgc	aggtgggcgg	tggtgtggtc	ccctcggagt	149100
cctagctgtg	gatgcaggtt	tgcagaccct	tggagaaaag	cagcttggag	gcatctgagc	149160
ggcagcacag	gcctccctga	gggccagagc	acctgagccg	aggaggctga	gtcctggccc	149220
ccacaagaac	agctcgtcat	gggcccgcgg	atggcatgtg	ggacgctgcc	ccatgggtgc	149280
ccagaggagg	attagcccag	cggggcccca	agcacccact	cccgtggccg	ccgggcccct	149340
gcgcctggct	ctccactcgg	cgtctgtgac	tcagacctcc	tggctggact	tcctgtcttg	149400
	_				cttccttaga	
					ctgccatctc	
					ccccagcctc	
					tcctttgcaa	
					caggccccgg	
					aagctatgaa	
					gggcgggcaa	
					aaggcacatc	
					ggcacacacg	
					cacctgggcc	
					gattttaagc	
					ccctgcagag	
					ggtttgttgc	
					ccagagacgc	
					agggaaaagc	
					tccaaagttc	
					tgttccttca	
					gacccccca	
					cctaaatggt	
tggcggtctc	atgtgcacco	tgcaaaggct	cctcaaatcc	cgggatccct	ccggaatgcg	150600

-168-

PTS-0012 -16

PATENT

aggctagccc	tgcccaccca	cagtccccga	cagagggctc	ggtcagcctc	ggcagcatca	150660
					acgggcggcg	
ggggatgatg	gcggaagaag	ctgtttgctc	cctgtctgcc	gggggtggag	aagctctgtt	150780
tttctggaac	cctcatctgt	tcttaccact	gctgacgccg	ccaccgccgc	ggatggggag	150840
agagggaggg	ggagccagtg	ccaagttggc	ccgcccttg	tgaacctggg	cctctgccac	150900
gctcccccgc	ccgcctgccc	gcccgccgcg	agcctccgtc	tggaggtcac	attcagtcct	150960
gccgcgtctc	gctgggtcag	gcagcaagaa	gatcagagct	gagcccggct	gcgggggaca	151020
cggctgccct	gctgggcctg	ggtccttgga	ttttgcccgg	cccgggggtc	tgtgggctct	151080
ggccggcatt	gctcgctgag	cgtccgcact	gggcacattg	gtgctggagg	agctcggcac	151140
gctgcgcccc	ggtgatacct	ggcccagggg	catcccacac	gcaccactga	caacttcccg	151200
ccacccacca	ccctcgggga	agggcacctc	gcgcgccac	agcggctggg	ggacggcgtc	151260
agaggtggca	ccgcccgctg	aaggagcccc	ggccaccacc	ggcaggcgga	cttgggagag	151320
ctgcctcccg	gccggccttt	tgaaccaagc	tcggcccgcg	ggggcctttc	ctcccttgtt	151380
cccttcctnc	cttngttcct	tccttcctta	angggggacg	gaaaaagaat	ggaggctaaa	151440
ctgaaccccc	aaaaaaaccc	aaccagaagc	ccttaaaaag	cccccgggg	gcgcgcccaa	151500
ċtggcgggcc	caaattggcc	ccggccctgg	ggggattttc	ccccccct	tgtgttccgg	151560
gaaaaattgg	cgccgggggg	gagaccccaa	agaagaaggg	ttggggttgt	ggggcctccg	151620
ggagggggg	agggaaatcc	cgttctccgc	cacgnnnnnn	nnnnnnnnn	nnnnnnnnn	151680
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	กกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกกก	nnnnnnnnn	nnnnnnnnn	151740
nnnnnnnnn	nnnntcgctg	agcgtccgca	ctgggcacat	tggtgctgga	ggagctcggc	151800
acgctgcgcc	ccggtgatac	ctggcccagg	ggcatcccac	acgcaccact	gacaacttco	151860
cgccacccac	caccctcggg	gaagggcaco	: tegegegeee	: acagcatggg	g aaaaaggaga	151920
aġaaaaaaa	a gaggggggg	agggnnnggg	ggggggagg	ggggggaaga	a gggagtaana	151980
aaaagcccta	aagaaaaaa	g gaaagacca	: agagaaaatr	n ntaaaaagaa	a aactccctco	: 152040
ctccctccct	ccetecetea	a ccgtgggacg	g gagaaggatg	g tgaggctgag	g ctgagccgcc	: 152100
agcagacgc	c aaccagcago	ctcgcagago	c cgaccgcgg	c cgcccagcc	gccggcccac	: 152160
ttcggcccg	c tecetgggg	atcttccca	g ccctatgtt	ccggaaaac	t tggccgaggg	152220
ggagacgcg	a atgagagga	t gtgagtgag	t ggtcctggg	g aggggatgg	g ggactgcggg	152280
tgcagggac	a gggaccgca	a cgtggccat	tgggatttg	a ggctgggca	g ctggggagto	152340
ggagttctg	g gcccctgga	g tggatgggg	g teceageee	a tcctttccc	c catgccctc	152400
cctctctct	c cctgctggg	c tgaagctct	c ctggaagca	g gggtgggac	c tggatctgt	g 152460
cctgggaag	g tctgtgatg	c tgtgtgcac	a gggggtctc	t ccaagtgga	c gggggcttc	a 152520
agctgggtc	t ggcggggtg	g tctccaagg	c acggtaggg	t agaaagtct	t teteteegt	g 152580
cctggcagc	c tctgcctgg	g cttcccaga	a caggaacca	g aggaagcca	g tgccagcct	g 152640
cccctaccc	c gcagccctg	g ccggcacta	a tgggacacc	c actctggct	c ctcacacgg	c 152700
agttaagga	a actgaggcc	g gagagcaga	a gggctggcc	a agactgcta	g cgagctctg	g 152760
ccaggcgcc	t ggatgactc	t gcccagctc	c tttgggagc	c gtatgtttt	c aggaagggc	t 152820
gggtgaccc	c cacccccac	c tccatccc	t ctcctctgc	c ctcaaccca	c tcccactgc	c 152880
cccatgatc	g gagttaatt	a gggtcccca	g ccccagcc	a ggctcctag	c tacctcctt	a 152940
_						

PTS-0012 -169- PATENT

		atgtcaacct				
		cacccaccc				
tegecetete	ccacccgggt	gccgggtctg	tgatccctct	ggcccggtgt	gtttgcctgg	153120
gctctcttgg	cccggctgg	ggaaatataa	ataaacgcgc	ggccctgtcc	gccaggttct	153180
ggaagtggca	gctgctgctg	gcgcgggcgg	agggaaaggt	caggggccgg	gtgccacttg	153240
		ccttctgcgc				
gtgaggccac	gtggctccca	gggccacggc	aggcgaacag	gtggcctgtc	agtcagtgcc	153360
accccacgc	cacgggggcc	agaggacccg	gagggcagga	agtctggggc	cccacgcccg	153420
		cctctaagct				
		gggaaaatgg				
		tgcaaactct				
		gttgttttat				
		tgggtgggtg				
		gacggctgcc				
		ttgattttat				
		cttacaagtg				
		tggggcctgc				
		tecetgtete				
		gccacacaag				
		ctgtgtgtgc				
		actgcctccg				
		ctagaacctg				
		tttctgccg				
		cctcctggtt				
		gggccccgag				
		cccagttaac				
		ctcccatccc				
		ceegteteed				
		caggccctcc				
		cacageeete				
		ttggctcctc				
		a accagaccco				
		g gcccatcact				
		t ttctgctcca				
		g cctggcctct				
tcctggaac	a cggccgcaa	c tggtcggcca	a tcgcccggat	ggtgggctco	aagactgtg	t 155100
		c ttcaactaca				
		g gtgagcccc				
		c ctcaggagal				

PTS-0012 -170-

gaggggctat tatgccgcct tgttagaact cagcttctgg gggttcaagc ccgggagtac 155340 cccgagatgg ctgcaggcgg caatgctgct atgagtgtcc ctgccttgga gacgggccgg 155400 gccaggctgc cctccacccc caccctgcac cccactcctc tcagacagac acctctgggg 155460 gccctcagcc ctgtctcacg gtgtggggga aggagcgcgg tggaccagac tgactcagcc 155520 aggaattcgg gctgtcagcg cgttggaatg aggacccgga ggcaaatggg tcctgagcga 155580 gtggctcccc tgccccattt gacctcacag ctttagggct gccgtggttg gggagggaca 155640 ggtctggggg ggcgggggcg gacgtctcag ccccagcatc ctggagggct tgaggcaggc 155700 agcgtgtaaa tggcctctga ggagcagccg cttcttccac agctgtttct gggaattgag 155820 gagcattttg gggagacctc tgctgccttc cctctctcct tcccttcctc ctccttccct 155880 tcctccctcc tttctccctc tttgacacac ttgccaagca ttgtcccctt tttggagctg 155940 gggaaactga ggcttagcca ggctcatgtg cgactgaatt gcgatatgca cccacagtta 156000 tgagatcagc acccacgctc ttcatcgcta ggctgcgtgt ttcctcatcg atacagaagc 156060 actgagggag gggttgcata gctccctcc cccaggacta ctcctcccc cgccactccc 156120 aaaccatgac atcgggctgc cttgtgcctg ggtgtaaagt gtgtgcagtg ggttccgggc 156180 aggccatgct gaattgctcc ctcagtgcaa cctgctgagg cccagagagg gtgagcaggc 156240 tgtgaggtca cacagcctgc agtgggagga ccaggtatag cctcccctg tttgaactcc 156300 geccaageae tgtgcagaat ttaaggacat cettecacee teeegagtgg gttettagtg 156360 agtcatgtgt gegegegee getggtgget eegggacega ggggeeaegg teecaeggee 156420 ctgtggtcag ggctgagatc caccctctgg cctcagggag gcccctcccc atcacttcca 156480 gttaagcagt gccccgcgtg ccctccacat tggcccctgg gatttgtccc cagagctcag 156540 ggcttcaggc agcgcctttt ccttctggat gcttcgggcc ttctggttgg gtgtggagga 156600 aggcaccgca tetggetgaa tgtgeagaac ecegteeeta acaettgetg aagteeettg 156660 tggcaaagag ggcctgagcc agagcagcct gggggcgcag aagggggcct gggccggggg 156720 atgttgtggg ccattgattc tgtcagccag gtcaggagtc tgaggtggtt catccaggat 156780 , gacttggggg cagggctttg gccctgagca tctccccagg aacaaaaagg gcctcctgct 156840 ttctccccag ctgtcctttc actttctctc tcctcccccc gcctcccctc tctggggctc 156900 cctccgcctg tcccctcac cccacgacca tggacgtctc ccccgctgc agcctgctgc 156960 cacacageet ggetttecag getteegeag ggtgtggeee cactgtacee ctagagaete 157020 caaaacctga gagtggcttg gaggaccaga gaccccagca cggtgaacca tcccattagg 157080 cccagggcga gactggggtc aaggcccagc ttgtggattt gggcacccct gtgaccttgg 157140 gcagtgaatt cagccttcta agcctcagtt tccccatctg taaggtagga gaataacagt 157200 tgttatccaa gaggtcctat gaggagtgaa cgagtgatta cctgtgaggt ccttagtgcc 157260 tgccagaggg gcagcgctcc gggagggcga cgtgccctag ttactcttac tgctgtggtt 157320 attgttattt tatctggatg ccatctaccc ccttctcagg gccacctgag gccccctctt 157380 tttttttttt tgagttggaa ggttttatta gactaggaga tttgtgggag gtatgagcac 157440 tgggccaagg tggcacgggc catgcttaag gcaccctgtt gagtgtggtg accaccagtg 157500 aagccgctgg cgtggacgaa catgcagcca gagatcccac tgacgagggc gcctcttgaa 157560 cggtgcgtgc aggcacagcc acagtgtgct atgggttggg agcagggact gggcccagga 157620

PTS-0012 -171- PATENT

gagctgagtt	tgaacgtagg	ctctgccacc	tactagctgt	gtggccttgg	ggaagtgacc	157680
tgtgctctct	gtgcctcagt	ttccccatct	gtgaaatggg	gacaataatg	gaacccactt	157740
caaagggctg	ttatgggaat	acactgggtg	gctgcctgca	gagtgctggg	aatgcggcct	157800
agtatgcccc	agacactctg	ctagtgagag	ctgtgatggt	gctggtggtg	gcacactcac	157860
gattgattga	ttcattcatt	cattcatcca	ttcattcaaa	gaggcatccc	agaaggatgg	157920
tgcagagcag	ggctttggag	ctggtggctt	tgtaccccag	ctctgccgct	tagtgactgg	157980
gtccaaggat	actgggcttc	acctctccgt	gcttcagttt	ccacctctgt	aaaatgggga	158040
taagaatggg	acccagtcgt	agggctgttg	aagaacaagt	gtgtttcttt	ttgtaaaggg	158100
tggtgcctgg	tccttggtca	gccctcaata	agcattcagt	attatcctca	ctgtccattc	158160
agcagcccca	tattcagcgc	ctgctgtatc	ccagggaagc	aatggcagct	gccctgaggg	158220
cagagacatg	gatggggttt	tcctgctggg	ctgtggagct	aacacttcgt	tagtggaccg	158280
tggagggagt	gggggctgca	ttgaaggatt	ctgagctgag	acacagecee	catccagggc	158340
tggactcaaa	gtgggtcgtc	ctagtgtcga	tgaaagtgat	tctgatccga	atgacacagt	158400
caaagctgat	aaagaaggtg	gcccttctgt	ccctgacgc	tgaagactct	ggaggcgtgg	158460
acaggagggg	accccgagat	ccaggttggg	acctggatga	gaatgagtga	tttgggagtg	158520
tggggttggt	tctcgctcct	ggccgacctt	gaaggagcac	cctcatatcg	cgggctgcag	158580
·agaaagcgga	gcagatgcag	ggacccacta	caggaagtgg	ggctcaggcc	aggccatccg	158640
tcttgacagt	agccgttctt	ggtgtagtgg	tgagctcccc	atcgctgcag	taagcaagca	158700
ggtctcacca	ggagaggtgc	cgctgaacct	ggtgacctcc	acctcctgcc	cctccctgt	158760
gcctttcagt	cccagggagg	agggcatatc	ccagtgaatc	ctaacgcagt	atcagccacc	158820
tctggctgct	ggcccagccc	tgtctggagt	acaggaagac	atgtcaccct	tggccagaga	158880
aggaaggagt	ggggaagcag	agggtcagtg	ggtgtcccct	cccgccttgc	actaggtctg	158940
gcccgagtgt	ggccgcaggc	gacgtcagca	ggaagcagga	teeggeggee	gggcgggcgg	159000
ggcatgtccc	ggagttatgt	aacacttggc	atcagtgtct	tctacgaggt	ttccctcccc	159060
ctccttatgg	ccgaaggtta	cccttttctc	ccatctgtga	attcaggccc	ctggggctcg	159120
gcttccacgt	tcctcagtct	ctgtccgcct	cagccttggc	ccagccccgc	cttgttttct	159180
gctgttaatc	tcttctacct	gaggctgcac	aggcctgcag	agagatggtc	cagccacgaa	159240
atgtttgaag	ctggcctgca	ttcaaatctg	agctcctcaa	ctcatgagct	gtgtggtctt	159300
gggcaagtgt	ctttgcctct	ctgagccatt	gtcactgtct	atcaggttca	ttcatctaaa	159360
gacatagtta	cagagcgtct	gttctgtgct	agacactgtt	ccaggtatgg	tgggaataca	159420
gcagagaaca	aagatcccag	cccttgagga	gctggtgcga	gagacaggtt	cacacactca	159480
atttcagaat	ggagtctgaa	gatgctatga	gaagaatgta	gtagaaagtg	attgatggtg	159540
ggggtgggag	ggatgagcta	atgatggagt	gatcagggaa	gacctctctg	atgtctgagc	159600
taaggcccga	aggaggtgag	gaagtgagtt	atgcagatat	ctaggggaag	ggtgtccagg	159660
caggggaaca	gccagtgtag	aggccctgtg	gctggggcag	cgagcaggga	gggcagtgtg	159720
tttgtagcac	agtctctgag	gaggggagag	gggagagcag	cttggagagg	caggcagggt	159780
ccagggctgg	atcacacagg	gccatatgga	tagggggagg	acttggggat	tgtatccagg	159840
tgttggagag	tttgaagcag	ggggtggcat	gcgctgattt	gcagagcagc	tgtgcaggtc	159900
cagtaaatta	ataccagaaa	ccgcttggcg	catagtaggt	gcttaataaa	cgtcaggcat	159960

PTS-0012 -1

-172- PATENT

aatgattaat	gccatcacta	gcatctccta	ttctacacac	acctcctgat	cccacagtgc	160020
cggaccatgt	gtgtaaggat	taactgtaac	tcctgggact	ctctctgaga	cccagctttg	160080
tggggattca	gggtgttggc	accatccccg	tccactgcct	cagagacccc	acgccgcccc	160140
ccgcagagac	accttgcact	ccaggatgct	gggcgccacc	accaggccga	caggagaccc	160200
ctgttccctg	cgagactctg	agcatctccc	atgtcccagc	caccgcccgg	gcagctcagg	160260
gcacccagcc	ctgagtcttt	cctgagcctc	tgtctgccaa	aaatagattc	gggaagcagg	160320
gggagccctc	ggccgcagcc	gcagaaccca	catgccacca	ctttctcagg	ccgccacagg	160380
ctcgaactct	cctgggagag	gctcaggatt	cggggcaggg	ctgggactgg	gcccaggacg	160440
tgtgcggggt	tgcagagctg	ggcatccctg	tgggccctgt	gggcactggc	aggggcaggg	160500
ctgtggccct	ctggccgact	gttggtgtcg	gaaactgtga	ctaacggacg	agcagtcgtt	160560
tcccttttcc	tccctgcgtt	ccaaggggct	gtgctcagag	gaaccctgtt	tgctcaggaa	160620
gaaggcagga	caggaagtga	tcccactccc	tgcctgtggc	tggggcttgg	agcccgagac	160680
ccctctcct	ccctccatg	aggcccagct	ccagcctggc	cacggtgaag	ggctggggtg	160740
ggcggggccc	acctggcatt	tgcccgagag	caggctgtgt	ggtctggacg	tcagcagctt	160800
tttcttggaa	tccgggtgca	ccagcgcaga	gggatgtgtg	attcccctg	gctgccgcaa	160860
ggaagtacca	cagaccggtg	gcttcaaaca	acagagatgt	attctcttcc	aattctggag	160920
gctagacgtc	tggaaccaaa	gcgtccacag	ggctgtgctc	acattcaagg	ctgcagggga	160980
gcctcttccg	tcttccagcg	actgctggca	gttcgtgaca	ttctttggct	tgtagctgca	161040
tctctccaca	tgtgcctcca	ctgccacagg	gccttcgtgt	ccctgaatcc	gtgtttccct	161100
tttcttccaa	ggctgtcagt	cctgttggat	ttagggccca	cccactcca	gtgtggcatc	161160
atcttaacta	atgacatatg	caggateceg	tttctaaata	aggtctgagg	ttccgggttg	161220
atgtgaactt	tgagggacac	cattcaaccc	agtacagggc	tcttggctga	gagctgcggg	161280
cacctccagg	tgtggcggag	ggcccacctc	tttctcagca	accccagagg	gatcaggctg	161340
ccgcccccc	gtcacaccag	gctgtggtgg	gcaccccca	gtgtctttcc	agtccccctg	161400
ggagtcccca	gtcacttcga	gatgctgcct	ccacgatgcc	cctgctctct	gctgtctatg	161460
cgttcaagcc	cacgaaggct	ggcctttcac	agttgctcag	caagtcagtc	aacaaacgct	161520
ttctgagcct	ctgcctggct	cagcgtgggg	acaaagagac	acccacccca	gtgagctacc	161580
aagacgagtg	gtttgatgat	ggtgcctaag	ctgggggaag	aagagtgggc	tctgtgtgtg	161640
aggagctggg	gttcccagga	gcagggtgcg	gtgcggggaa	agtggaggcc	cgacgatgag	161700
ggcttcttc	cattcctgga	cacacccggc	atgttcccca	cactggggcc	tttgcacctg	161760
tgactccccg	cacctgccac	tctcgtccag	agcctggcct	ggcccattcc	ctccgccgtc	161820
aaatcttggc	tcaaatgtca	cttccttgca	gaagctcttc	cagactgttc	tgtccagagg	161880
agcccctgcc	ttgtgctcct	tgtcccatcc	tgtttcaccc	acgcgaccct	ctgatcctct	161940
gagtgctgct	tctgtgtgag	gagcacgttg	ccagtctccc	cagcggcagg	gcagcctcca	162000
agggcaggac	cttgtctacc	ccgtgccttg	tgtccccaca	gccctggtat	gcagagctgg	162060
gcacacagta	ggtgttctgt	aaaggttcag	ggaatgaaac	gcgagcttcc	caggctggcc	162120
tgttccccca	gggacaggtg	agacttgcat	agcaaggaaa	agcttcctgt	gttcattcac	162180
tccacgtgtg	ccgatgaagc	tgacagggtg	tccccaggag	gcgtggtcac	tcgctctgac	162240
taggagactc	ctgggcaatg	tcaggçaggt	tctctcgtgc	tcaggaagga	tgtcagggtg	162300

PTS-0012 -173- PATENT

gctgaggggc	cagcctgtac	ccagagtgta	tctggggctc	aatggaagaa	taaagccccc	162360
ggtaaaaata	aaccctggca	cgcttggctg	ccgaggtggg	gtgtgagggg	gacggtcacc	162420
ctcattgcta	catggccggg	atcactgccc	tttgcacctg	cggcgaggcc	ccaggcatgg	162480
ggagtccccg	agctgacagc	ccaggcccca	gtcctgatct	getgetteec	tgtgccccag	162540
gagaaggaga	ggaacgcgcg	gaggaagaag	aagaaagcgc	cggcggcggc	cagcgaggag	162600
gctgcattcc	cgcccgtggt	ggaggatgag	gagatggagg	cgtcgggcgt	gagcggaaat	162660
gaggaggaga	tggtggagga	ggctgaaggt	gagggctggc	gcggcttgga	ggtggctggc	162720
agctgtgggt	ccgagctctg	agggagggca	tagcgggaac	tgatcccggc	agcctcctct	162780
ccctgagtc	atctgggtcc	tccttagaag	gggcctcgac	tccctggaag	gtgcgggcct	162840
gacttgccag	aaactcacca	gtaatgggca	caaggatgaa	ggccataaca	atactgagaa	162900
taatcagctt	ctctgggagc	cccaagcctc	gctcagctct	tctgatgccc	atgagtccag	162960
tcttatgctt	gggtgaccag	acgtccaggc	cagccctgtg	ggtgcctgct	gtctttcacc	163020
ccatccgatg	tcacagttta	gaaaaaaatt	tactttggaa	aagtttttt	ttgtttttt	163080
tttttcaga	cggagtcttg	ctctgtcgcc	caggctggag	tgcagtgacg	tgatcacggc	163140
ccagtgtaac	ctctgcctct	cgggttcaag	caattctcct	gcctcagcct	cctgagtagc	163200
tgggattaga	ggtgcccgcc	gccacacccg	gctaatttt	gtatttttag	cagagatggg	163260
gtttcgccat	gttggtcagg	ctggtctcaa	actcctgacc	tcaggtgatc	tgcccacctt	163320
ggcctcccaa	agtgctggaa	ttacaggtgt	gagtcaccac	gtcaggcccg	aaaattgttt	163380
tttgaccaga	actcttttac	aaggtaacca	gcataaatag	aacctatctg	tcagtcggta	163440
aatattgtac	aagttatata	gttattttca	gtgtctcctt	ttattcccaa	gtgtccctat	163500
ttgagtgata	aataattcag	teceettett	tggtgtcccc	gttttctcta	tggggaaacc	163560
gaggctcagg	cacttaaagg	cctgggccca	ggcgcccag	gtaccacgga	gtgtgttgtt	163620
tgcaccagct	gtagactaga	caaatgcccc	accaggtgag	tgctgctgaa	gagagggcgt	163680
aaagccatcg	tgtgcatggt	gctggtgggt	cccccgagt	cccctcaaat	gcaggactgt	163740
gaccacatga	gctgtgtgtt	gtccagggct	ccggataaca	cacggctcaa	ctttgttatc	163800
agtgtgtata	gacccgggaa	ctgaacacgg	gctgccgaca	cctggccccg	cactctcggt	163860
cacgagtgca	tccaccttcg	accccaccc	tgtgcctctt	tttccctgtc	aaaggggaag	163920
ctgggggtct	agactgctcc	ccctgtggcg	tgaccgaagg	cccctggagg	acctcagccc	163980
ttctctgctg	agtgtccctg	actctccttt	ctgactctct	gaaggagaaa	caagcagccc	164040
ggcggagccc	aagtccttgg	tgaattcaac	cctccttcct	cctgccccgt	ctggggtcct	164100
tcttgttgtt	cctgttgtcc	ctccctctct	gcctttgaac	gccctggctt	ctccctggca	164160
gaaggtgcaa	gtcacctcct	ggttccataa	gcccagcctg	cagataaatc	caggeteete	164220
cagcccgcag	ggtttcacca	gcccgaatcc	ccgcttcccg	ctggaaatgg	gcaactgggc	164280
ccttgggtga	ctcatctcaa	gttgggggcg	ggtcagggac	actgagtctg	gcctccccac	164340
cagctttggg	tctctctgac	ccaagttgac	cagaagcctg	gctagtgtct	gatggaagga	164400
aggcctgggc	cacgagtccc	ttgggtcgtc	ccattttggg	tcctgggtct	gtagccagga	164460
gaagaccccg	ggagcagaaa	cccagtcccc	tctgtaaata	tccctccagt	gtctgaatgg	164520
gcgggatgca	ggcttggtgg	gagcatttca	ggaagccaag	ccatggccac	acattaaaac	164580
cggagcagac	gccacccagg	actgtgtggc	aacgaccccc	gcatcgcttg	cagagettae	164640

PTS-0012 -174- PATENT

	gtagccccgt	agggacgggg	aggggcatgc	tctgctgggt	gggggaggag	ggagggctga	164700
	ggtggctgga	gctgaggctt	ctgtgacagt	ggtggtcttc	cgtggctgct	ctgagagatc	164760
	agggacggca	ggtgagaggc	cctgattaag	cctcctggtg	cccagggtgt	tagcccatct	164820
	taaggacgag	gagcccaggg	gagaggagaa	ccctcccat	ggggtgtccc	agcacatagc	164880
	cggtaggctc	ggggtctgcc	ggcccagcca	gcgcacgctg	cgtgacctgt	ctcttgtgct	164940
	caggatgggg	aggtgaggca	ggtgctgggt	tggagcctga	ggttgccctg	cctgaatctc	165000
	cccggagacc	cagccagccc	cagcggcact	gcaggcccct	cccgggggc	agtggaaagc	165060
	gtcttgttgc	atctgggctg	gaaatacacc	agcgcggggc	tgggagtgat	accctggccc	165120
	agtggtttct	ccagtaataa	taatagtatc	ctcatagtga	atgaagccat	gctgttctcc	165180
	gcatttgaca	gatggggaga	ctgaggcata	gcggggttat	ccaaggcgca	tttggtgacc	165240
	ggggttcaaa	cccaggcagc	ccggtactgg	ggacctccag	gcagaaagga	aaggaggcca	165300
	tctggtggtg	tgtttctatt	ttttatttt	ggtggttttt	tggtcactct	tgttaagcac	165360
	ctactgtgtg	tcagatgctg	cacaaagcac	ttcacctgga	ttctagggca	gcggtggcag	165420
	agtgttccct	gggatttgtt	agaagtgctg	attcttgggc	cccagtccac	acgtactgaa	165480
•	tcagaaacct	cggggcatag	tgcagccacc	tgcactgtca	caagcccttg	gagtgcttct	165540
	catgcaggct	cctgccccag	acccccttga	taactgtgag	accgagaagt	taactgccca	165600
	ttttgtagat	gaacaaactg	agacccagaa	gtttcatccc	tggtcctggg	gccctcagcg	165660
	ttggcctccc	aacgtcctgt	actctgactg	tggaaggaag	ggaatgacat	tgctgaagtc	165720
	accaggcaga	ggaaggccag	gggttaagga	cacaggaagc	tgggctcagt	geteteceet	165780
	ccacagcgtg	gccttgggca	agctgattaa	cctgtctgcc	tccatttcct	catctgcaca	165840
	tgagagttgg	tggtcccagt	cttagaggtc	ttaaaggagt	cgtgtgtgaa	gaactcggca	165900
	.cggagcctgg	cctgtatgca	gccagcgttg	ctgctgttgc	tattgtttct	aaaaagggtg	165960
	gcctctgctc	tggggcctga	agggaggtga	gaagcaggag	agactggagg	gttggtgggg	166020
	gggcaatgaa	ggctgaagag	gccccagcag	ccccaaaagc	ctctccctgc	aaccttgccc	166080
	atccctgagg	tcaacacctc	ccactccagg	catcctggga	gcctggttcc	accaggaggc	166140
	tgatgactta	gggcaaggac	acccagagtg	gctgaagctc	acttttcacc	ctgaacaacc	166200
	ccattattgg	ctggccttga	acaggccatt	ggaccagcct	gctcagggct	attgcaggtc	166260
	acctgtggcc	gctggccaga	gcccagaggg	agagggctca	tcggtccatg	gagaagggca	166320
	gtcggggcag	gagagcgagc	agcagcgagg	cctcactgct	gtgcactggg	cttcaggccc	166380
	ctcttggcca	cgttgcctcc	tccctcccct	cccactactt	ggtgctgcct	cacttctaac	166440
	tcttctctga	cttccttcca	gccttacatg	cctctgggaa	tgaggtgccc	agaggggaat	166500
	gcagtggccc	aggtacgaat	gtggccggct	ggcctggggg	gtagggccgg	gccggggcgg	166560
	gcatcccaag	gtccccggtc	ctccacaagg	aaccccgctt	ctgagcacat	gcctctttct	166620
	gtgagcgcca	ccgtttgtgc	tccgcggcct	ctgggcttcc	ttcccagcac	agtggctgtt	166680
	ccccatgctg	gtcccgggct	cactccagca	gaccagtttc	ccgtctccac	tgctttgctg	166740
	attttcactg	gtacgcttgg	gtctccgacc	gggtttgatt	tccctgatag	caaatgcagg	166800
	ggttttcaag	tatccccatt	ttacagaaaa	tgggagacat	tgagactcaa	agaagagccg	166860
	ggtgtgggtt	tgggggctag	agagccagga	atgcggctgg	gctctccttg	ccatccttgg	166920
	gtgcgtgctt	tcatcctgcc	actccgccag	cacagatcgc	gctcctgctg	tgtaaaaccc	166980
		•					

PTS-0012 -175-

atgctgaggc cgttggtgtg ggctgtgccc ggggcccctg cacacgcact ggcctcgttg 167040 tecacegtge eeggggeeee tgegeacgea etggeeteat gattgteeae egtgeeeagg 167100 gcccctgcac acgcactggc ctcatgattg tccaccgtgc ccagggcccc tgcacacgca 167160 ctggcctcat gattgtccac tgtgcccggg gcccctgcgc acgcactggc ctcatgattg 167220 tecaetgtge eeggggeece tgegeaegea etggeeteat gattgteeae tgtgeeeggg 167280 gcccctgcgc acgcactggc ctcactgccc actgtgcccg gggcccctgc gcacgcactg 167340 gcctcactgc ccactgtgcc cggggcccct gcgcacgcac tggcctcact gtccactgtg 167400 cccggggccc ctgcgcacgc actggcctca ctgtccactg tgcccggggc ccctgcgcac 167460 gcactggcct cactgcccac tgtgcccggg gcccctgcgc acgcactggc ctcgtgattg 167520 tccactgtgc ccggggcccc tgcacacgca ctggcctcat gattgtccac tgtgcccggg 167580 gcccctgcac acgcactggc ctcatgattg tccactgtgc ccgggcccct gcacacgcac 167640 tggcctcatg attgtccact gtgcccgggt cccctgcaca cgcactggcc tcattgtcca 167700 ctgtgcccgg gtcccctgta ctcacactga gcgcattcta cactgtcatg tgacgatgat 167760 ggtggcgatg gtggtgcagc agcaggcagt caccaggcag ttgcccttgc cctcacaatt 167820 gccagcttct ccgccctgtg agatgggaac tattgttctc ccgttctgca gatgggaaaa 167880 · ctgaggccca agaggtaacc tgagtttccc gtggcacgca gccagtgcgg ggcagagccg 167940 gggttagagc tcagatgaga acatggagac ccccaggacg aaggcctttg cccacggcca 168000 cectcagget ggetecatet gtegggggtg etgaceacea ggaggteetg gggttgggaa 168060 ttaaccaggt tatgccagca gggtcagtct gggagaaagg cggccaggcg agggcagcag 168120 ctgtgggtag gggcctggtc aggggctttg tctcaggggt ggggctctag gcagcagccc 168180 aggtgtgtag gagcctcggg gctgttttgg catcaggcga cagagcggcc tcatccggag 168240 ggtcagggcc atgcatctct tctggaggcc ccgccagacc ctgctcatcc cctcttcctt 168300 ctcgccctgc acagccactg tcaacaacag ctcagacacc gagagcatcc cctctcctca 168360 cactgaggcc gccaaggaca cagggcagaa tgggcccaag cccccagcca ccctgggcgc 168420 cgacgggcca ccccagggc cacccaccc accaccggag gacatcccgg ccccactga 168480 gcccacccg gcctctgaag ccaccggagc ccctacgccc ccaccagcac ccccatcgcc 168540 ctctgcacct cctcctgtgg tccccaagga ggagaaggag gaggagaccg cagcagcgcc 168600 cccagtggag gagggggagg agcagaagcc ccccgcggct gaggagctgg cagtggacac 168660 agggaaggcc gaggagcccg tcaagagcga gtgcacggag gaagccgagg aggggccggc 168720 caagggcaag gacgcggagg ccgctgaggc cacggccgag ggggcgctca aggcagagaa 168780 gaaggagggc gggagcggca gggccaccac agccaagagc tcgggcgccc cccaggacag 168840 cgactccagt gctacctgca gtgcagacga ggtggatgag gccgagggcg gcgacaagaa 168900 ccggtgagtg ggcgccaggc agccctaacc ttggcttttg tctgcagaca ctgagcagcg 168960 actacctact tagacageeg cacecagtet ggetetgeet getttggggg ageeegaggt 169020 gtggttaggg aggcagactt ggagtagagt ccaggaatga gagatgcagg ccaggaaggg 169080 gcggaggtgt ggccgggagg acctccccag gaggtgacat ccaagctgag acccggacag 169140 aggaggeage eetgggeage getagggaga gagtgtgeca ggeageetge tegetteeta 169200 gggccgccct cacaaggtag ttcgagccag gtggctttta acaaatacag tcctggaggc 169260 caggageetg ggggeaecat geaggeegag aegeageete egageetetg ggeagateea 169320 PTS-0012

PATENT -176-

tecegeetet tecageteet ggeegetget ggeggtegtg attgetggea tgeeacteeg 169380 tctttggctc tgctgtcaca tgaccttcgc cctgtgcatc tctgtgtcca cactttcttc 169440 ttctgaggac accaggcatt ggatgggcag ctgtcctaat ctagtgcagc ttcatcttaa 169500 cttgattata tcagcaaaca gtctatttcc aaataaggtc acattcacag agaccctggg 169560 ttaggacttg aatgtacctt ctctgggggg acacagttct accctcagcg tggtgggaac 169620 agcaagtgcg aaggcccgag gtgggaatga gcttggtgga ttcaggtgcc aaagggtggc 169680 tcagggaggg ggcagcctgg caggacgggg ggcagctctc acgggggtgg gggcactgag 169740 tcacgccctg gcaggtgggg gctgcatttt gttctcaggg cagtgagaag gcctttacga 169800 gcctctccca agagagccag atgtgattta cccatgaaac catgtggggg atttgctggg 169860 agtgagaggc acagtcagga ggcagctgca agtgccctgg ggctggtgat ggagatgcga 169920 gcgtggtggc cgtggggttg gggaaaagcc acaggttcaa catgtttttg gtggctcatc 169980 tcccatcagc caagggtcca gggctcagga tcacaggtga tcaccttgga tcacaggtgc 170040 agaggttccc cttgcaaatt cctctccagc tggggtggcc tggaggaccc cagtgtcgtc 170100 ctgtttgggt gttgatgtct ctgaggtgtg ttctttcctt tctggcctct gtctttgctc 170160 ctggcctggg tgaccccaca tccctgagaa tgccaccttt tacccatttt cagcacagat 170220 gctttgggcc tcaaggcctc cagcccagaa ccaaagatgg ctacccaagt tagggccaat 170280 ctcggttggc agagggcaga cccgcggaga ctgcgtcctg ctcacatctg gatggctgga 170340 ggaattgttt tctggtgggg caggcaggcc attttatttc aactacagtg tggtctgttt 170400 tctccctcc caagtccctt ggaatggtcc tgggcagagc aagcgaggga ggaaaatcag 170460 accegcaggg teatgegggg ceettgtete tgeeetgggg tteaccetgg geeatgttaa 170520 agggggaagt cctaggacat tecetaggaa etgaggttea eeeggatete tataggttee 170580 acaaaacaaa atctcagggt ccccaggaac cactgccaac aggaaccgcg cccatgcgtg 170640 tgagaagtgg acggcctgac cctgaccctg tgatgagcaa aggcctggcc tgcgggtttc 170700 tgagggcacc aaatccctga gcttcttgcc cgacagtccc agcttggaaa acagtgttca 170760 tggtgtggct gggtctgccc tggaggcagg cagccagggc cattgtgcct ggatagcggg 170820 gtcagggcag acggctcccc gccccgctcc tgctggctgt ggggacagag tcatagaaac 170880 acatgtttct gccttcgccg ggggaccgct gaggtcatgg ggcagcccca ttgataagct 170940 gcctcccaga gtctgtattt tgggtccatg tggctggccc cggactgggg agccggggga 171000 tcagcttgca tcctgtccgt ccccagaaca ctcaggctag gcctgaggcc ccgcagggca 171060 cttgcagcct cccgtcctct ccctgcagc cccgcccagg gccgtgtcct ccctccccga 171120 gctgggcctg gcgtacgtcc accccttgcc cagtgtccag cacacagccc ccgggtgcag 171180 gagtcctcgg ctgggagtca ggacacctgg tttgtcccgc cctgtgcgac taggcccagg 171240 ccccgccct tggggcctgc tttgccctct cagtgaacga ggctggactc tggccagcct 171300 getgaceteg teetggeegg cageeegeea eccetecete tgeeggeeac gaetgegeag 171360 ggccgggcgg acgctggagg acgcggacga gatgcgtcag agtaggccct ggcagccagg 171420 gcctcccggg aagggctggt gggacgggcg ggcccccag gcgacccctg ctcctggctg 171480 cccgcccagt atcatccctc ctgcctggca gccccagtgg gggagctctg tgttcctgga 171540 tggacgcaag argactetea terggeceee egeceeggtg acttrgggag agagaaate 171600 acattctcct tcggcccgct ggcactttct tcgaggtggc tctgcctggg tgttttcttg 171660

-177-

PTS-0012

gcagacgacc	agagatagtg	gcttcaattg	caaaaccccg	agcctgcctg	ccttcccctc	171720	
tcttactctt	cagagaaggt	gcctgggtgc	ttttttggca	gggcctggcc	ttgggagtcc	171780	
cctccccaa	gcctcagttt	tctcatctgt	aaggtgggcg	tggatggctt	attgcaagaa	171840	
taactcagtt	aatgacgggc	cacagtgggc	gctcagagat	tagctgccct	cctttggatc	171900	
tgctttggga	cacccctag	aggtcacccc	aagagggggc	tggagtgcag	ctccttcagc	171960	
tgtccctctg	gcattttgga	agatcataac	agcaatttca	cctttgttac	tttattctgc	172020	
aagtgactga	tggcaccagc	atgcgccagg	cgccgggggc	gctggaaact	gcacagacaa	172080	
ggccctgact	ccaggcactt	acattctagt	gagggcatgg	agaaggaaac	cattgtttac	172140	
gggatgagtg	ggtgatgggc	agatggggca	tggggagcag	gggagagtgg	gctggtcagg	172200	
cagggagggc	ctctggggag	gtgacattgg	agggcaatga	gagccttagt	gtgagggaaa	172260	
gccagacccc	ctgggaacca	ccagtgcaaa	ggccctgtgg	ccgcatgagc	gtatgtccag	172320	
tggacagcag	agaggcctat	agcagggtgt	agagtggagt	gagcagccca	gggcagagag	172380	
ggcggagagg	tcagagaggt	gggcaggccc	cacgggtgga	agtgacgggt	cagggtttta	172440	
tcttggggcc	ttggagaggc	aagggatgcc	tgttcacaaa	ccagccctcc	ctctccctcc	172500	
tagccctagg	atggtggcaa	ggattgtccc	agcttgatga	ccatggggaa	actgaggcaa	172560	
gggctgggtg	gagaggggat	gtactgttgc	aggcccagca	tgttccgatg	aatgtcccca	172620	
ggcccttatt	cccctctcg	tgccctgccc	cccaaccggc	cttcatgagt	gggaaggaaa	172680	
atgacagtga	ggagaaggtg	gcccgaccca	ctcggcccca	cgtgctggtc	accagcatcc	172740	
ccacgcccac	·ccacggacag	cccttgaagc	tttcgtctcc	actctccaga	ttgagaaacc	172800	
gaggcacagt	tggctaagtc	acatggtcag	agaggggatc	cgagcctttg	ctcgcaactg	172860	
cagggctggg	·taggcagggt	ggggcccctc	ccagacacat	actctgtgcc	aggccctgag	172920	
agtccccgcc	ccacccaggc	cgccagaaag	gaaaatagaa	gtggctgcct	tccaagaaaa	172980	
caaaggagag	aggccggtcg	cggtggctca	tgcctgtaat	cccagcactt	tgggaagcca	173040	
aggtgggtgg	atcatttgag	gtcaagagtt	tgagaccagc	ctgaccaaca	tagtgaaagc	173100	
ctgtctccgc	taaaatacca	aaaaattagc	caggtatggt	ggcgtgtgcc	tgcaatccca	173160	
gctactaggg	agactgaggc	aggaggatca	cttgagccca	ggaagcagag	cttgcagtga	173220	
gccaagattg	tgccactgca	ctccagcctg	ggcaacagag	caagactctg	tctccaaaaa	173280	
aataaataaa	taaataaaat	aaaacaaaga	agggagagtg	gagggtgggg	agagccagcc	173340	
aggagggctt	ctggaggtgg	cgctcctcca	gcatggctac	gggacaaggg	gcggtcagat	173400	
gggccctgag	ctctgagcgt	tttccacctt	cctcctccac	tattggtggc	cgctccctct	173460	
gggggcttag	gactctcgtt	cccctcgaga	acttgaaccc	agcccttgtg	ctggctgctg	173520	
ccttctttac	ccatgagaga	gctctggctg	ggatcagaag	acctcttgta	aactataaag	173580	
tggtacctcc	atgaccacag	tccccacttg	ctctgggggc	tcaagaaggg	tttgggcctc	173640	
tgtgtgtgcc	cccagaggg	tacctgctga	gagettetgg	gcagcagccc	ctgcccccgc	173700	
tcaccccctg	ccaatctgac	tgcccacacc	ctactaggtg	aggggccaca	gggaaaccaa	173760	
ggcacaggga	gcactcaggo	cccacataga	aaacgcgagc	tctcgggcag	actgcatggg	173820	
acagtggcad	ctcatgttt	gtgtgtgtta	taaagtcata	tttttatctc	tatagaatta	173880	
tctttacaca	tatacaaacg	tttgcatttc	aaccttaaaa	tttatattt	atttttctat	173940	
ttgtacacac	atataaaaat	attatttta	ctgttcatag	agaaaataca	gctgatacgt	174000	
			•			•	

PTS-0012 -178- PATENT

cgaacccttt	atggctagca	tatagtatgg	tcctcatttc	attttgtaac	cgttattaag	174060
atatcattca	tataccatac	atttcaccat	tgaaagcgta	tcatttaggc	taggcacagt	174120
ggcacaċacc	tgcaatccta	gctctttgag	tggctaaagc	aggaggatag	cttgagccca	174180
ggagttcaag	accagcttgg	gcaacataga	gaaaccttgg	ctctaccaca	aaaaagaaaa	174240
aaatgcaaaa	atcagtcagg	tacggtgatg	tgtgccttta	gcttcagcaa	ttccggaggc	174300
tgaggtggga	ggattgcgtg	agcccagggg	gtcaaggctg	cagtgagatt	acagcactgc	174360
actccagcct	gagtgacata	gcaagaccct	gtctcaaaaa	aaacgtgtat	cattcagttc	174420
ttcttagtat	attcagtgtt	atactaagaa	agaaacccta	tgcccatcac	tagtcacccc	174480
tatcctccct	cctcccagcc	ctggcaccca	ctcatctcct	ttctgtcccc	gatggattgg	174540
cccgttctgg	acttttcaca	gaaacggaat	ctacactaga	ggccttctgc	gactagcttg	174600
tttcacgcgc	atcgtgtctt	cagggtccac	ccacgtcata	gcccgtgtca	gagcctcatg	174660
ccttttgatg	gccatgtgtt	ccatcgtgcg	gacagggcac	gctttgtctc	ctcattcgtc	174720
tcttggtgga	tgtcgggttg	tctctgcctt	ctggctgttg	tgcgctgggc	ggtgctgcag	174780
tggtgggcac	gtgcaggttt	ctgcatagac	atttgctctc	atttgcctgg	tgtgtgccta	174840
ggagtggcag	tgctgggttt	agggćaatga	gggctcaccg	actgctttcc	aaagtggctg	174900
cagcattctc	ttttaaattt	cagcttgcaa	gtgcgagctg	gttgaaacgg	atggtggtag	174960
gtaaacctgt	ggggagggac	ataggggtgg	cggcagttga	agccgcaggt	ggagaatgtt	175020
gggacaggtg	ataccatctg	tgtttggacc	tgggtcaggg	taccttgtct	gtaccttgag	175080
gatggcgggg	agagcacagc	tgggcccagg	tccagggagt	gaggcatggc	agtggccaaa	175140
ggagaggctt	taggtggtcc	tgggagatca	agcagggtct	ggacaggtgg	agggaggga	175200
gggaggagag	tgggctggcg	gtgggggggg	tggaggtgca	tgcagaagtc	agggtgacct	175260
tcctcgtctg	gccccgtct	gtgcgccatg	ggcagcctaa	gcaggcatca	ccgagtctgt	175320
gtctgctctc	cccgctcagc	tgagcgtgtg	gcagatgcag	acagcaggct	ggtacctgca	175380
gaacaggccg	gtcacatgcc	ggtggcccca	tggtcctgct	atggcagaga	ttgaaggagg	175440
ggactgccgg	caggggcctc	agcaccctgg	gcatcggccc	tgctcatctg	caggaaggag	175500
atgggtgcct	ctgggcgcca	ggcatccagc	actggcagct	ggggactggg	gtggtgtgag	175560
ttgtgtccct	gttgtcacag	ctctcacctc	gaggccagta	ggctgtgact	tatagtctgc	175620
ataggacgtc	gtcactgtgg	tcacagcaca	gagtaggggc	tgtgccgaca	ggacctgcca	175680
gcttctggca	cccagaagtt	ttgccctctg	gctgaattcc	aggcccgtgg	ctgctgccct	175740
cacgcctgcc	atgtggtcat	ttcactagct	tggaagacct	aggacagaga	ctgggttctg	175800
cgtcgcctcc	aaatacaccc	aaatgcaggc	cgggctgctt	ccataccccc	aaacgtaggc	175860
cgggccatct	ccatacctgc	aaacgcaggc	caggccacct	ccataccccc	aaacataggc	175920
tgggccacct	ccatacccgc	agacgcaggc	cgggccacct	ccatacccgc	aaacacggtc	175980
caggctgcct	ccaaataccc	ccaaactcag	gccgggctgc	ctccataccc	ccaaatgcag	176040
gccgggctgc	ctccatacat	ccaaatgcag	gctaggctgc	tttgtgccta	gcaaatgcag	176100
gttgcaggag	ggagtcaaga	actgggcagc	cccgggcagc	cacactgggc	aggtgaaggg	176160
ttctcaggct	ggagcagatc	cagttcctgc	ccttggagac	ctcatgccaa	gtggggagcc	176220
agatggggat	tatggcaggt	gctatacccg	gtgctgggga	cttagaaatc	ctggaaggct	176280
tcctgaagga	aacggcaccc	accgaacagc	ttgggagcca	caccccaatg	cacgetetge	176340

PTS-0012 -179-

caggeacegt gtaccetgtg teggeetetg gtegegeate teagtageag acagaggaag 176400 ggactgcgac tgtggctaat gagtagacag tgggcaggcc ctacctgccc ctccacacaa 176460 agtetgtggc etgggeeett gttateatgt eetegteett egtggatagt gtgtgggaga 176520 gagtctagga agtgggtgca gctcccccac tcctgcctct ggtaaccgga gctcattcgg 176580 ctccatgccc actgtcttgc cctggcaccc gagcctctca gattcgagtg atgaggaatc 176640 tettggtgaa tetetteatt tetetgteee tgaateggge tgattetttg getttetgge 176700 agetteggaa gggecaegtg tggtgtggge eecaggtetg ggettetetg ggatttteet 176760 tgcctggaga tgtctttggg gatgtttgat cccagcctgg gcctctagca ctgcccggct 176820 ggcctctagg ctggggtggg aggctggctt ggcccctgat ggggcctgca agaaccaggg 176880 gagtgagtga ggaggcactt gcccgcccac tcgtgcctcc cctccctgg ccccaaatct 176940 tggtctgttt tcccaagaga aaccgttgac attatctggg tgagctgcac agtcgcctcg 177000 tgtctcaggg ccttagcctc gtccccaggg cttgagacag gagaggccat caaaaccggg 177060 cagcccccc accctgggag agtccggctg tgggccccca gctgatggtg ctcgtgtgcc 177120 cgcaggctgc tgtccccaag gcccagcctc ctcaccccga ctggcgaccc ccgggccaat 177180 gcctcacccc agaagccact ggacctgaag cagctgaagc agcgagcggc tgccatcccc 177240 cccatcgtga gtgcccaccc ccagagccc acagagtcca ccctgacctt gactttccca 177300 ttcattgaga cagagaatcc cacgggcggg agcatgcacc tgcagcctag ctcatccgct 177360 tctgtttcct ggagaaatcc ccgtggagct gaggtgggaa cagctgggga agctggcagg 177420 cgtaccgggt ggggctccca gtgaaggcgg gaactggcgg cctaaggcct cccccttcc 177480 accccgcagc acccttgaac ccccagatta gatactgggt catggggagg caggagcttc 177540 ccccacccac tcagctatag caacagcttg gccagggaag ggtggcctac cagttctgat 177600 cctggggccc tctgggaaca ccctcctgga aggttctctc agctgggtgc gtgggccctt 177660 ggaggtgcct tctccaggga ggtgagtctg gccttcccag ttgcaactgg gggctccggg 177720 ctaaaagacc ctgagctgac caggctggtg gtcccttggg actttgagtg atgggctcag 177780 ggcgtgtcag gctacacggc ccagtccccg aggcccacag aatcctgttg ctcagtcctg 177840 gcttccctga gacccagagg atttgggtcc acagaaggag ctggaggaga gagtcacagc 177900 aggetetage etectgteca ecaccagget getaggecag getttttggg aggtgggete 177960 cccctgtcca tcaccaggca gctgggctag gctttctggg gaggtgggtt ccccctgttc 178020 actaccagge agetggacca ggetttttag gaggtgaact ecceetgtee ateaccagge 178080 agctgggcca ggttctggga ggtgggtccc cctgttcacc accaggcagc tgggccagac 178140 tttttaggag gtgageteec cetgtgeace accaggeage tgggeeagge tttttgggag 178200 gtgggctccc cctgtccatc accaggcagc tgggccaggt tctgggaggt gggtccccct 178260 gttcaccacc aggcagctgg gccaggcttt ttgggaggtg ggctcccct gtccatcacc 178320 aggcagctgg gctaggctgt ctggggaggt gggttccccc tgttcaccac cgggcagctg 178380 gggcaggctt tctggggagg tgagctcccc ctgttcacca ccgggcagct gggccaggct 178440 ttctgggagg tgggcttccc catgtgctct gtgctaagac ctccctttct tgccgcacct 178500 gggaccttga gcatgteget ggettteeeg ggeettggtt teeaggetgg tegegtgeat 178560 gtctctccct gaccctgtca ctttcagaca ccctctgtga atgctcactt ctgcctgctt 178620 ccctcagcag gtcaccaaag tccatgagcc cccccgggag gacgcagctc ccaccaagcc 178680

)

agetececca geeceacege cacegeaaaa cetgeageeg gagagegaeg eeeeteagea 178740 gcctggcagc agcccccggg gcaagagcag gagcccggca cccccgccg acaaggaggg 178800 tgagtgcaca ccagtggctg agtggggctg gggcagcagg ggactgacgg gcaagggatg 178860 tttgtgtgtc tagagcagct gctgcaaacc ccatggccac agtggcaggg aaagcaaagt 178920 aaacgaatgg aacagttgag cagggggagg cagttgggaa tggtagggac tgcggcaaat 178980 tggagaacte ttgttttete taaagtggge acgtattgge ettggeeaag agteaceeeg 179040 tggcaaatca ggcctggggt ggttcttcca gcaaagccag aaatccatct tatgtgaaat 179100 ccccctggtc cctggtttct caacactggc aacttctcaa aattttcaaa agcattgtga 179160 acacgcaaaa acatgtetae ageecageet etgatteggt gtgaateagt eeaegeagga 179220 gcttctggaa tcacagatgg ggcccagcac ccggctggca gcagctctgg ggcctgggca 179280 ggaagggetg ccctccccag ctggcatcct gaccttgctc caggcccagg tctctgggtt 179340 caccaggagc cagggttggg ggtgactccc gagccgctgt gtcacaggga ctgccccggg 179400 cacaceteae tgteateaeg tgaageteaa ggteaggaga caggegggeg tgattgettg 179460 ttctctggat cttcaatctc tgccccactt cccactaggc ccaagaaatt ctgaacctgt 179520 gtccccaaag aggcatette tecaggteag cetggcaege ageaggtget gttgtgeett 179580 gcaggtgttg ggggctgctt ccccagaggt tccccaccct gggctagccc cggcgcttgc 179640 tggcaggetg etccaaaggt etgagggeag caggacacca ggeegacete etgaceagea 179700 cagcccaggg acaaatccgg gtgactggag ctaccatcag ctgtccctc cccgctgcct 179760 tgggtgtgac atcccccttc tcttttttt tttttttt ttgtttgaga cggagtgtca 179820 ctctcgccag gttggagtgc agtggcacaa tctccgctca ctgcaacctc tgcctccggg 179880 gtccaccgag gctgctgggt caggacattt gttgaaaacc caaggcccca ggcaccatgc 179940 tggcagagcg gggattaggt agggagaaga ggaagtetet getetgggga getgetgttg 180000 ttttgagtga ggaggatgtt aaaccaggga acacgtaacg aagcaagatg gttttagagt 180060 cgttcatcca ccatgagaaa caaaacgggt tgagtgaaga gcggctccgg gaaggaccct 180120 gtggagtggg aagcagcccc gcagtgggag ctctctgggt gggcattgcg ggcagaggga 180180 acagcacagg gaaaggccct ggtgtggaaa cacgctcggg gtgtgtggagg agtcgccggg 180240 ggtggttgtg gccagggaag ggtgggcggg tggacagtga gggaagtggg gaccggattg 180300 tgtggggcct ctcaggccac agcgggcagt ggattttgtc tcaggtgtgg caggggctgc 180360 tggagggatt tgaagtgagc gtgtgttgcg gaaggggaag;gaggtgcttg ttatctgatt 180420 tgtatcttgg aaagctctgt ctggccgttg ttgagtcaag ggcagcagcg ggaggtcaca 180480 gegeagetet tggcaggega cagaggetge etgaacegea caggtggeeg tggaggtgga 180540 aggaagggcg catcgggagt ttgttttgga ggcaaagcca gtggggcgtt gaacccggtg 180600 acctggggcc agggtacagt gtgcggccca gggtgtggct ctgggagacg ttgcaggttt 180720 ggggcgccag cccgggaagg agctgtgtat ccatgtcagg ggccccagca gctttggcca 180780 gcgtcagatc tgatcagggc tggaactgca cggtgccagc caggtcctgc tgagccaggt 180840 cgcaggcccc tgtcctggga gaaagggagc caccggccag cagttcccgc ggctggcact 180900 cagecegttg gtgtggccag ggcctgtgcc gtttcctggc ctcattcccc gtggggacgg 180960 tgcacctggc gttaggccct gcatgccttt cttgcacagc ctggcttgca gctcagctcc 181020

<u>P</u>TS-0012 -181-

cgcagggaca	cacatgaact	tgacacccag	cgctacctct	ctggtctctc	aggaagccag	181080
cctattctgc	ccctggctcc	cacacagagc	ggctcagcca	agcaggtccc	teggggeee	181140
ctgggcccaa	ctggaggaac	aggttgtctc	tccaggctct	cggccgcccg	cccagcctgg	181200
cctagcccca	gtttgccttc	cagcatcgaa	cagctcccct	cctctctctc	ccaactctct	181260
ggaactgggc	tggaggaagc	accagaggct	tacagggctg	ggtagccaga	ggggccaggt	181320
ccagggcgtt	tgcaggatct	ccagatgtga	ggcaggccct	gtacaggtgc	ctccactggg	181380
gactggttaa	gaatgagaat	tcccctgcat	ctgtgcccc	tgcctcctgt	gggctgccca	181440
cctcgccagg	gcacaagtcc	aggggaaaca	gtcttcaagg	agagaattgg	gggcaatttg	181500
gtacataggc	cttcttgccc	acctgctctg	ctcacagcag	gcatcattaa	ttgatcttag	181560
cactctcctc	cgctgtcaca	ccctgatggg	ccctcagaac	ctcctttgtt	catctggagg	181620
cggcgtgata	gatgacacct	gcctgccatt	cctgtcccag	aacccagagg	gctccgtcat	181680
tcccaagttg	tgtctctgct	caacttcttg	gccggttatc	tctccatagg	attggtcctc	181740
agggagaggt	tcagagctga	ggacagattt	cagcaaaggg	cgagaggcca	gcaggaagat	181800
gccatgaagc	caggcctgag	cccggggcc	ccgctgagtt	tacaggatct	ccccaggcct	181860
gaaatctagg	acccatcatt	gcttctctgc	cgcaggccat	gtggcatagc	agtctggatt	181920
aaggccatgg	tctgcagccc	cagtgcctgg	gttcgaagcc	gctatctgcc	acttgctagc	181980
tggggccttt	gaccaggtgg	cttaacctct	cggcttccat	tttcccgtct	gtgaaatggg	182040
gacagtcagt	cagttccttg	tagggtgctg	tgagaataaa	tgagtgaaca	cgcttacatt	182100
gctgtcagcc	gtggagccct	gagagagcat	gacctctcgg	taatgccctt	tgcacactcc	182160
gcctggtaag	tagccctgcc	tgagcttggc	ttctcagcca	gccagcgcac	aaccgctgct	182220
tgcactggct	cagtgggctt	ctgatcctga	ctcggctaag	tatttgctgg	tgaactcaga	182280
tgagcccatt	ggtgtgtctg	tacctcagtt	teceetetgt	aaaatgtgtc	tggcagcagt	182340
ctctgtgtga	gcttaaccgg	aggctcatgg	aggccgtggg	atgctgagca	cagtgcctgt	182400
gctgagtacc	actcagcaaa	ctgaggctga	cgctgtggtt	gttacttgga	gggtctgggc	182460
ttataacccc	ccactgcccg	ccacaacaca	cacacacagg	cgcacacaca	tccatgcact	182520
cgcacacaca	tgcacgtgca	cgtgcacaca	catcacaggt	tacctccttc	aacattgtgt	182580
acaggcacac	acacatccat	gcactcacac	acacgcacat	acacgtgcac	gtgcacatac	182640
acacatcaca	ggttacgtcc	ttcaacattg	tgtacaggca	catacacaca	tccatgcact	182700
·cacacacaca	tgcacatgca	cgcgcacaca	catcacaggt	tatctccttc	aacattgtgt	182760
acaggcacac	acacacatcc	atgcacacac	acacatccat	gcactcacac	gcacgcacgt	182820
gcgcgcgcgc	acacacacat	cacaggttac	ctccttcaac	attgtgtaca	ggcacacaca	182880
catccatgca	ctcacacaca	catgcacgca	cgtgtgcaca	cacacacacc	acaggttacc	182940
tccttcaaca	ttgtgtacag	gtgcacacac	acatccatgc	actcacacac	acatgcacgc	183000
acgtgcgcac	gcacacacac	atatcacagg	ttacctcctt	caacattgtg	tacaggcgca	183060
cacacacatc	catgcactca	cacacacatg	cacatacacg	tgcacgcgcg	tgcgcgcaca	183120
cacacacaca	catcacaggt	tacctccttc	aacattgtgt	agagcacagg	ccagcaagct	183180
tttcctgcaa	agagccggag	agtgaacatt	ttaggctttg	tgggccagac	aatctctgtt	183240
gcaaggattç	agctctgcca	tagacaatac	ataaatgcac	agatgtggcc	acgctccagt	183300
aaaagcgtat	tcacaaagtc	agacggcggg	gccaggcgtg	ggggctcacg	cctgtaattc	183360

PTS-0012 -182- PATENT

cagcactctg gaggccaagg tgggaggatc tcttgagccc agtagttcaa gaccagcctg 183420 ggcacacata acaagacctc atctctacaa aaacaaaata taaactagcc aagcatggtg 183480 tggtgacacg tgcttgtagt cccagctact tgggagcctg aagtgggaag atcccttgaa 183540 cccaagagtt caagacaagc ctggggcaac atagcaagac cccatctcta caaaagtaaa 183600 acaaattagc caggcatggt gcggtggtgg gcgcctgtat tcccagctac ttgagaggct 183660 gaggtgggag aatcacttga gcccagaggt gaaggctgct gtaagccgtg acagcaccac 183720 tgcaccccag cctgagtgac agaaggagac cctgtctcaa aaaaattagg gggcagacag 183780 accetétgag ataccatttg ccacctectg gettagagge etgtecaggg accttggett 183840 gctgggcttg gttgagtgct tgtggggttg caaagccaga gggtcccgtt ctcgtcctca 183900 gcggcagctg agagccccca gctcagacct tgagatcccc tcccctgctg agcagaatac 183960 catggggtta cagagcagcg cccaggcagg cagacttggg gggcttcccg gaggagccca 184020 ggccgtcaca ggccaccact actgtgggtg caggaaggcc atttgtgtag ggtcagccag 184080 ggctcccgag gtctgactgc cccacctcct gccctcagca gagaagcctg tgttcttccc 184140 agcettegea geegaggeee agaagetgee tggggaeeee eettgetgga etteeggeet 184200 gcccttcccc gtgcccccc gtgaggtgat caaggcctcc ccgcatgccc cggaccctc 184260 agecttetee taegeteeae etggtaagta geteegeeeg agettggget tetteageea 184320 gtgcacaatc gctgtttgca ctgtttgcac tggctcagag ctgcacacag aagcatctta 184380 aagcettatg ggacetgget ggaggaacag eetggteagt ggagggaaag ggggagatet 184440 tttaagaaag ctgccccagg gttgagatgg aagccactgg caagagggag ccacagcagg 184500 tgcttgagct ggtgaggggc aggcttagag tgggagctat gttttccgtt gacggcttag 184560 agctagagaa tgggcagatg gtagaagagc ctggggaggg agcagaggcg ctaccttggt 184620 tcacagactc tgtgaggctg catttcggcc ctgttctagg tcctgcagtc ctgctgggcc 184680 tcaccagctg taaagcagca cagccggggg ctggtacaga ctgctgttgg taaaggctgg 184740 tcccgaggga tgcgtgggcc aagggagcca gaagaacagg gaaagtcatg ccaggcagac 184800 ggaacagcaa gtgcaaaagc ccagaggcag gagagagcag gcaaagcttg agaaactgaa 184860 tetggecace actgecgaag eteggtgece agtgagetgg ggagacecag gggecaggte 184920 aggcgagcct gaaggccaag tcgggggcta agactttctc ctgaggacag tgggagccat 184980 cgagggcaca cagcacaggg agggtgtgca ccagtagact tttccaaaaa ggtccttttg 185040 gttcctataa ggggaagggg ctactggggg ctacagtgga aatggggaga caggggatcc 185100 agatgagagt tgagggcgct tggatcaggg cctgggcagt gggtgaggtg ggaggcttcc 185160 ccaggatagt ggtgtctgca cctaggactc gggtcactaa tgaggacaga gccaggcagg 185220 gcaatagagg agtgcgcatg gatgggcact tcctggccag gacagggaag aggtggagtg 185280 cagcctggag tgtgtgtccg gcagggacgt gaccgctcct gggccccaca atggacagac 185340 atgtgeteea caggteacee actgeeeetg ggeeteeatg acaetgeeeg geeegteetg 185400 ccgcgcccac ccaccatctc caacccgcct cccctcatct cctctgccaa gcaccccagc 185460 gtcctcgaga ggcaaatagg tgccatctcc caagtgagtg gtagcccttc ctttcttggg 185520 ggcttagtct tcttatctgt aaagtggggg caatgggacc aatgaagtct gagtgggggc 185580 caggeteteg ggggeetggg teatetecae teaggeatet ggggtetgag etggetgggt 185640 cctgccccag gcactcaggg cctcgtccct ggggggtcac tctgtattgc agtcaagggc 185700 PTS-0012 -183- PATENT

atggctcagg aaccaggctg tgtggcctca ggcaagttac ttaacctcct gtttccccca 185760 ctgcgaaatg gaagggcaaa tgcaaggggc tcagagggca tggccccttc acaggggagg 185820 gggccgaggc ttgggagtag cagtgacttg tctgccgtca cacagctgga cagcagcccc 185880 agcctctgac ccacacgtgg gctttttgaa caggagcgtc aggcactctg gactgtgggg 185940 gagggaccag ggtgcccctg tgaccccaca actccgcccc tacagggaat gtcggtccag 186000 ctccacgtcc cgtactcaga gcatgccaag gccccggtgg gccctgtcac catggggctg 186060 cccctgccca tggaccccaa aaagctgggt aaggctcctg gcccatccgt ctgggtggct 186120 caggctgggc tctggctgtc ctgtgggtgg ggcgggggag gaaggggtat cttggcccac 186180 ggtactccag gtagcagctg ggaggtcccc cctcagcagc cctggctgga acatggtggg 186240 gaggggcage getteccage ceetggetea ggttgggtgg ggacaageet eeegggacee 186300 tgctccggca gcacgtgact cgctcctctt actggtcctc agcacccttc agcggagtga 186360 agcaggagca gctgtcccca cggggccagg ctgggccacc ggagagcctg ggggtgccca 186420 cagcccagga ggcgtccgtg ctgagaggtg agggcccttc tgccctgggc ccccagcatc 186480 tgcccctgtt cctcgggtgc ccaaagggcc ctttattcaa aacctgctgg gaagtgtcat 186540 ctcccagagg gtctgggggc ccctcttcac agctgtctcc ctcaccattt aggggtaggg 186600 ggactccctc tgcgttgaaa caactagcac aacttgtggg tctctcagtc agggtggctc 186660 tcaggactgg ggcctgggga aggaagggcc acagacacgc cctcagcccc acatcttgtg 186720 tcttccaggg acagctctgg gctcagttcc gggcggaagc atcaccaaag gcattcccag 186780 cacacgggtg ccctcggaca gcgccatcac ataccgcggc tccatcaccc acgtaggtgt 186840 cctggggtgc ggcaggaagg acggttggga ccagcacggg gccagcccat cttataaccc 186900 ctcattgtca ccaaaccatt agcctcagcc gatggggtga tgactggggg acagcagttc 186960 actccatgaa ctttcatcta gtctgcatgg aatcaggcac tgggattgcc aagcacagct 187020 caaaactctg ccttcaggga gctgccatgt agtggaagga aacagaccag ggtaaataag 187080 taggctggtg aaaaccgagc aggcaggcag aatgtgagcg taccgcggct gagaatgcct 187140 ggccacggac attgcttaga caggtgagga aggtgacatg tcagctgtgg.ccagaagaaa 187200 ttgagggtgc aagccatgcg ggaatctcag ggaacagcat tctaggctca gggaacagca 187260 tgtgcaaaga cagagcatga gagggttcct gaatcgtgcc aggactggtg ccccagcctt 187320 gcagctggtg agctgtggac ccaaggtttt gtgccacgtg tgtctggctc tagaacacag 187380 tgacagagcg tgggtccaca cacttgcaca cgtgcatgca tgttctaaca gtggagcttc 187440 gggcaacaag atggtccaca gggaggtgtt tttcactcag gcagcgtcaa atcccaccac 187500 agaggagcca tttacacttt gcccttctct gaaatctgca ggttttaaaa atctgagctt 187560 tcaaaggcag ctgtgctgag tgggaagggc aagtgctttg gacaaaagtc aggctgaggg 187620 ccctcgggtg ccagctccac cacctactca gacaggcagc ggcctgccct gactccgttt 187680 cccctttgct aacagtattc ctgggagagt cattctcctg aagtcgtagg gacctttgaa 187740 gttcccaggc atccacctgc tctgggttcc tgagtggcca tgacccgcgc ccttcctcga 187800 acctcccagt tacacacatc tetttgattg ettttggcag acagecaget gecaaaacat 187860 gtgagatagg caagggtcaa acttccgtgc agtctcacta ccagatagtg aggaagtcag 187920 cgtgtggcct gcacgcacag agccgtttat taactgagta ggtgccatag gcagggacca 187980 cgtggttccc agctggcaag ggaggtcaag gaagtcccag ctccctgatc ctccagggac 188040

PTS-0012 -184-

ttcctgccca	tcttgggagt	agagttcatt	ggggccaaga	gcaagaggct	acaggctcat	188100
ctcctggaag	cagacgttat	gcaaacagaa	gcttccctgt	taatgggagt	ttgtccagtg	188160
tattctccca	agagcagggg	ccaccggctg	gatttctgtt	ctctgtccat	gtccctgaag	188220
atggcacctc	taaaatacta	tagctcaaaa	acatcaagct	ggacacggtg	gctcttgcct	188280
gtcaacccag	cattttggga	ggccaaggtg	ggaggatagc	ttgagcccag	gagtttgaga	188340
ccagcctgga	caaaaagagg	cctgtctcta	cagaaaattt	aaaaattggc	tgggcatggt	188400
ggcacatacc	tgtagtctca	gctacttggg	actgggaggc	aggaagatca	cttgagccca	188460
ggagtttgag	gctgcagtga	actatgacag	tgttctgcac	tccagcctgg	gcaatacagc	188520
aagacccctt	ctcaaaaaaa	aaaaatcaga	tgcctcagtt	tcaccatgga	gagccccct	188580
ttttaaatca	tttattgtgg	tgttcagtaa	gccactgatt	tctgcagtac	aaacccagtt	188640
ctgacatgga	ccatctgatg	ttagggctgg	atacagaaag	gggtgcactt	gtgttagctg	188700
cctcttgggg	ggcttttccc	gccaggatgc	tgcaggaatc	ctgtgctttc	ctgatgggag	188760
aggtggctgc	cccgagctgt	cacctgactc	agcacctatt	gtgccacact	gttagtgtac	188820
aggtgtctta	aagcacagca	gggagatgct	gctcagagta	tttgctttgg	gaagtttggg	188880
gggagctcat	cagaattcag	ggcgtcttgc	tgttgccctc	cgcaaagacc	aggatctgcg	188940
gtgaactccc	cggggtacca	ggtgctgccc	tctgccaggg	gatgtcccca	gccaagcaag	189000
tccagccaga	gactcagagc	tcactggtcc	aggtcttggg	atatagtagg	acctttaccg	189060
ttgaatctgc	tcctggaacc	ctagaaagag	aagagggata	ttgagatttg	gggacccgtc	189120
gtctgtgcca	gatgcctttg	agaatcatca	atgcagaagg	tctccatttg	tggatgtgca	189180
aactgaggct	cagaaaggag	gtcccacggc	agcttggtag	taaagttgct	gtttgaċacc	189240
caacattctg	cttccaaagt	catattctaa	ctctgatgct	tgtgttcttg	aaagtcaccc	189300
aaggcaggat	gctgcccac	gtggccatct	cctctctgct	tgaacacatc	ctccaacggg	189360
aagctcattc	cctatatggc	agtggttctc	aattggggga	aattgtgcct	ccaactctct	189420
agggacattt	tcgattgtcc	taacttggtg	ggggacacac	tggggaggcg	tgtactcctg	189480
gcttctagtg	ctttgaagcc	agggatgctg	ttaacagccc	acagtgcaca	ggacagcccc	189540
acagcaaaga	agggtccagc	tccagctgtc	aggagggccg	aggtggaaaa	cctgggttag	189600
aactaaaatt	tccggtgtgc	tgccctgacg	tgagtccttg	tcctggtttt	aggaaaccaa	189660
agtgcatgac	gtggtcacgg	gtacagcaca	ggagcagaaa	ccccagcgtc	cccgccagtt	189720
accgttttcg	gtaactgaat	gtcaaggctc	tgagtagacc	ccacgcagtg	gtggggacac	189780
agactccagg	accagaatgc	ctgggttcaa	gtccccgcct	gccccttatt	agccaggtga	189840
ccccgggtaa	agtcactgtg	cctccctgtg	cctcggtttc	cccatctgaa	acaggcataa	189900
tcaatagggt	tgtcttaggg	ttgtttcgag	gattaaatga	gcaaatccat	agagagcacc	189960
cagaacagcg	tccactcatg	ggaagcactt	gacaagggat	cttcattctt	caggttcctc	190020
atagggtttt	gttccatgca	aactcttacc	tatttgagac	agtgtgtgtg	tggacacgcg	190080
tgtgcatcgg	tgggcacatg	ggcttttaag	cacgtctttg	cctgcatttg	agttgagagg	190140
ggtcctgggc	tgcagcctcc	tgggcgctca	cccctctgca	cctgcagggc	acgccagctg	190200
acgtcctgta	caagggcacc	atcaccagga	tcatcggcga	ggacagcccg	agtcgcttgg	190260
accgcggccg	ggaggacagc	ctgcccaagg	gccacgtcat	ctacgaaggc	aagaagggcc	190320
acgtcttgtc	ctatgagggt	gagtcgcagg	aggagaggag	gcccaggacc	aggggaggag	190380

	tgtgcttggc	ccactgaggt	agcttcacag	ggaggcaggg	ctggattgac	atcagaaagc	190440
i	acaatctgat	aggtggtgac	ctccttatcc	ctgcaggtat	gcaagccagc	agcagggaag	190500
•	cgttggcctt	agctgcctcc	cacctctgcc	cagttcttta	cagtttagaa	aacaaactca	190560
	tggccaacct	ttttagaagc	ataggaggga	aactgaggcc	cggaacagaa	gcccgagctc	190620
,	acgccgccag	gcctccagca	ccgtactgac	aaaccacgca	ctctctcatt	ggccatgaaa	190680
	gaggccatgg	ccagagtgcc	cctcgcccca	ctgtgtccca	ggctcttgct	gcggagcccc	190740
	catcctctcc	ctctctaggc	tetgggttee	agaacgagga	gaccctgcca	ggaaggagtt	190800
	aagggaatcg	agtgccggga	aagagaattt	cctggcagcc	tagggcaccc	aggggtgtgg	190860
	agatgaaagc	tgctaatggg	cgcctctctc	agcactgcag	ctgcgaggcc	cggaattgcc	190920
	tctcctccat	ccacttccgc	ctgtgcccgc	agececetee	ccaggcctgg	gaggtggagg	190980
	tggcaccgtg	tggcttagga	acataatgca	ctccctgctg	ccacagagat	agccttggag	191040
	acaggcctgc	agctgtgtct	tgggtgccag	ctcatgccct	ggtgcccctg	gaccgagtgc	191100
	cctgggggtg	gcgggaagcc	tgggaagggc	tggtggtggg	gttagtcaag	agcttgtctt	191160
	gagaggtcac	tgggtagagt	cccaccttgg	gaccccagac	cagtgcctga	gcctttatag	191220
	gccttcagcg	tatcgtcttc	atcatggġtt	tcagtcgggg	cctttaaact	ctcgtctgct	191280
	ccctgggcca	ggtaggcagt	gcaggcagcg	gcaggtgtga	gactgtaggg	agtggggagg	191340
	actgtaggga	atggggagga	ctgtggtgcc	tgctcacgcc	gtccactccc	ctgcggccac	191400
	cggtcagcca	ggtttctcat	ctccgttttt	atctgaaatc	tcccgatgtt	taaacatcgg	191460
	cgattaattt	ggaacgtttt	ctgaacagca	acctagtacc	ctcctgttgg	caacccctgg	191520
	agtagctcac	gggccgtggg	ccacacgaag	caatggttga	aaagcccgag	agcctgtcag	191580
	ttgctcattc	cctctgaggg	gtggggcggg	ggctcccggg	gctcatttct	gatagctctg	191640
	gactcggctg	ccctggaagg	agagccctgg	ctagatgggc	aaagcccagc	ctttaccttc	191700
	gggggccacc	teegtetgtt	cacctctctg	cctgtccggg	gagcagtgag	cegggeeeat	191760
	gtaggctcct	ttggcctggc	gaggccaccc	ctgccacccc	tcaccactgc	ctgcaacaca	191820
	cacctctccg	tgcacacgca	gacttgtggt	cggacactca	catgcacatc	ggcacaggtt	191880
	tctgggtgtg	acacgtgtat	acatacaaag	ccgtgtactg	cctgcaccct	ggtacatgtg	191940
	tgtacatgga	cccacttagt	tctcagcagc	caggctcacg	tgcatgtgcc	cacatccact	192000
	cctgcacaca	caagacccgt	gccagtgcac	atgcgtgctc	ctgcctgcca	cacgtccaca	192060
	cactgctgat	gtatcggtgc	acacgcgtgc	tcctgcctgc	ccgcacctcc	actctgctgt	192120
	atcggtgcac	gcgtgctgct	gcctgccaca	catccacact	ctgctgctga	tgtatcggtg	192180
	cacgtgtgct	cctgcctgcc	acacatccac	acactgctga	tgcgtccttg	ctcacgtgca	192240
	tgtgtgtgca	cttgttcacg	ccccatgtcg	gcacccgtgg	gtgtggacac	agactcacgt	192300
	gctcatgtgg	tcacaggcac	accettgett	gcagacagag	caccctggag	ggctagggta	192360
	cagggtgcag	gcagcgtgcc	ctgcatctcc	caccgtgcaa	cccctggaa	aagctcctgg	192420
	gtcctgctgg	caggccccca	gggcctgcag	gctgccagct	ccctctggag	geeteggetg	192480
	tgaggctttg	tgacggggcc	agcatggaag	cactgctggc	tcctgcctac	cggctctgcc	192540
	tgtcctgcct	gcccaccgtg	gtcctgggcc	cgtgcccagc	tcctcaccga	gtgctttgtg	192600
	tggtttccag	gtggcatgtc	tgtgacccag	tgctccaagg	aggacggcag	aagcagctça	192660
	ggacccccc	atgagacggc	cgccccaag	cgcacctatg	acatgatgga	gggccgcgtg	192720

ggcagagcca	tctcctcagc	cagcatcgaa	ggtgatagca	gggaggagag	ttcatctctc	192780
		gggggatgg				
		catctggagg				
		atgaccactg				
		cacggaatga				
		agcgacacag				
		gtactgccct				
		gggagggaga				
		gcagcacaca				
		tcaaaacaaa				
		agcaactgtc				
		tcctggtgag				
		ctcgcggctg				
		tttttattt				
		ccaggctgga				
		acaatcctcc				
agatgcacac	caccacatct	agctaatttt	tgtatttttg	tagaggtggg	gtttcaccat	193740
gttgcccagg	ctggtctcga	actcctgagc	tcaagctgtc	tgcctgccgc	agcccccag	193800
agtgttggga	ttacaggcgt	gagctactgc	acccagcctg	tggttttagc	ttcatgattt	193860
catagtgttc	ccgacttgct	gaggtggttc	agttaatatt	cttgttttat	gtgtgaagaa	193920
gctgaggccc	agagaggtca	gatttcctgg	tcaaggtcac	acagcaagtg	gggatttgaa	193980
		aacccactgg				
cggggcgtga	gggtcagtgc	tgtcggcccg	gcagggatcc	ctcggtccta	cgtggaggca	194100
		ggaggccaag				
		gaccgaggcc				
ctgaagccgg	cccatgaggg	cctggtggcc	acggtgaagg	aggcgggccg	ctccatccat	194280
		gcggcacacg				
aaggagggct	ccatcacgca	ggtatggccc	agggccaggc	acacgggccc	agttctagga	194400
ggggtggcgg	tggctgtggg	gcactgccct (gggcctctcc	acatggggaa	accgaggctg	194460
agageceteg d	gtaccttac a	agtcacccag (ctgctcatca	ccgggcctca	gctgtgcgtg	194520
ttccagggct o	jcgcaggggg	caccaggete d	ctgacctgat	tctactgaac	tcacattgtt	194580
cccattcttc a	agggagggaa a	actgagtccc a	agagaggcca	ggcaggcttc	caaggccaca	194640
ggactaaaca t						
cctgaggatg t	tgcatgcgt	tcattgtttc a	accccctage	aatgctctga	ggtcgttttc	194760
ttaatgacct t	attttattg o	ctgagtaaat t	gaggttcag	agaggttcaa	cgactcaccc	194820
agagtcacgc a	igcaaatgca g	gttgtgaaac d	caaattcag	atgttcctac	agccgcagca	194880
tccactgcac c	caccagcag o	gttgcaccac a	agaggcccc a	agtccccca ,	ggcggcccca	194940
gctcagtagg g	gaagttcçg t	gccgatggt a	cgaggacga (ggagctgttc ;	ggtggaaagc	195000
ccctgaaggc c	actgtcctt o	cacatgggc a	gaggtggcc	tcttgtgaag g	gggaaggaga	195060

-187-

PTS-0012

PATENT

atgggagcca ccacggggct gtggggctgt gaggcggaag gactggggtg ggtgtcccgg 195120 gaggggttcc agcttgtagg aaggttttga agccagggag aaggcagaag cagtaagatc 195180 cctgattgcc aggggaaggg tttggctctc agcccctagg caattatgga gtccttggaa 195240 gcatccaccg catgaccaag acagggtcca gattctagaa tattcttttg aaaaacaagg 195300 gcagttcccc ttcttacgac agtaatgaag acatccctaa atagagtttt gttgcttgca 195360 aagccctaaa gtcccaccat atcaagtgtc tccgaagcct gctgaaaaga ggcaggggac 195420 ctggtggcct ggctacgaag gtcccagtct ggactgtgac cccccattt cctcaccatc 195480 ctttctgtct ggagggcaaa cacctcagcc ctgacctcag tgtccctggg gctgaaagcc 195540 tcagggcggg tagtattggg tctgggtgct gactttttct gcttggcatt gggtgggcca 195600 tggagggtcc caggctgaac agaggaatgt tttttaccca catgagggtg ttgggcttct 195660 ttctcgcaaa ctccagggac catcagagag cccaccactc gcggcaggga gagttgactg 195720 ttgaactttt tacccctttc tgcagtcccc ccagggagcg tggggaccag ggtcaggccc 195780 agggtgcgca gggcagtaag taacaagtgt gccatctcag ggttagcaaa gccctctgtc 195840 tccctgcctc tggaggcatc agatgtcact tccatcttat agatgacaaa ctttttgagg 195900 ctcagaaggg ggatgcagct ggtctgggct atggctgtgg ccagggctag agcttacatc 195960 ccctctgccc cagggcaccc cgctcaagta cgacaccggc gcgtccacca ctggctccaa 196020 aaagcacgac gtacgctccc tcatcggcag ccccggccgg acgttcccac ccgtgcaccc 196080 gctggatgtg atggccgacg cccgggcact ggaacgtgcc tgctacgagg agagcctgaa 196140 gagccggcca gggaccgcca gcagctcggg gggctccatt gcgcgcggcg ccccggtcat 196200 tgtgcctgag ctgggtaagc cgcggcagag ccccctgacc tatgaggacc acggggcacc 196260 ctttgccggc cacctcccac gaggttcgcc cgtgaccacg cgggagccca cgccgcgcct 196320 gcaggagggt gagtggggtg tgcatgggcg tgagtggggt gggcgcctgt ctggagaagc 196380 tgtgcctccc catccaccat tagcttagtt tgcacctggg atatcctcgc cacccgcttt 196440 ccaccacate caaaccacet geaggeeegt gggetetgee teegatteea aaccetgtee 196500 aactccttgc cacctcccag accaccgtgg tgtctcacct agcttccccc acgcccctcc 196560 ctcttcctgc tgtaatccac tctgcaaaca gctacccgga tactttctaa aaatgcaaat 196620 catattattc cacttccctg cttccatcct tctagcaact tcacacattt tgctatggcc 196680 ttggggcgcc tgcctgttgg ggccctgcct gcctctcatt cagccggatt ccttcgtcct 196740 ccccagcccc agcccctggg ccctctttct ctttgttccc tggccatgct tagctcggtc 196800 aatteagtat ttgctggggg cetttgegtg geteeteete tetgeetgee atgteeege 196860 cttccagatc tttacttagt gggtttcttt ccatccctca ggtctttgtt tacatattac 196920 atccttgggg aggcttctaa ccagacccc tatctccagt tcatatcaca tgctgtgaca 196980 ttttaaaatt gtcttccggc caggcatggt ggctcacacc tgtaatccca gcagtttggg 197040 aggtcaaggc aggcagatca cctgaggtca ggagttcaag accagcctgg tcaacatggt 197100 gaaaccctgt ctctactaaa aatacaaaaa aataaccggg tgtggtggta cgcacctgta 197160 ttcccagcta ctcgggaggc tgaggcagga gaatcacttg agcctgggag gcagaggtta 197220 cagtgaacgg agatcgtgcc attgcactcc agcctgggca acaagagtga aactcttatc 197280 tcaaaaaaaa aaaaaaatga aagaaaattt tettetgage gtgttteaet etgtaattet 197340 catttgtttg ctagtttatc acctgtctct cgcattgaat gtcagcttgt gagggctggg 197400

PTS-0012 -188- PATENT

atttctgttt	cgttcactgg	ggtgacccca	gttctcacaa	caatgcttgc	cacgtagtag	197460
aggctgcatc	aatattttt	aattgattga	gtgagtgaat	ggatgaaaga	atgaatttt	197520
taaaaactat	aacacaaaag	caaatgagtc	agtgagcaaa	aagtgaacta	aggcaatgaa	197580
gaaatgaagg	agtgaatgaa	gagacctggt	ccttgggatc	ccgaggtccc	tatcctcaaa	197640
caactccccg	taaatgccag	cccagaggc	ccgatgcatc	caccttgccc	gtccacaggc	197700
agcctttcgt	ccagcaaggc	atcccaggac	cgaaagctga	cgtcgacgcc	tcgtgagatc	197760
gccaagtccc	cgcacagcac	cgtgcccgag	caccacccac	accccatctc	gccctatgag	197820
cacctgcttc	ggggcgtgag	tggcgtggac	ctgtatcgca	gccacatccc	cctggccttc	197880
gaccccacct	ccataccccg	cggcatccct	ctggacgcag	gtgattgccc	tggggctccc	197940
agaaccctgc	agtggtgctg	aacagggcca	cggacctcat	cagtgttcgc	tcagggactc	198000
cttaggcatc	aactgtcagg	ttcccctgga	tggcgaaact	gaggcctcgg	gattggaaga	198060
cccaacagtg	taatcatgag	cttaggttgg	agcagaattt	ctcttagtag	tttgcaggac	198120
atgtggggtt	aaacatttca	gtggttttct	tttccggcag	gacttatcag	tgcctttagc	198180
aatgcaaagg	tatagaatga	ggacttgagt	atatgcattt	ttcaaataga	catgatctga	198240
aagtctttt	taaaagttgc	cgggcacggt	ggctcacacc	tgtaatccca	gcactttggg	198300
aggccgaggc	aggcggatca	caaggtcagg	agatagagac	catcctggct	aacacggtga	198360
aaccccgtcc	ctactaaaaa	tacaaaaact	agccgggtgt	ggtggcgggc	gcctgtagtc	198420
ccagctactc	gggaggctga	ggcaggagaa	tggcgtgaac	ccgggaggcg	gagcttgcag	198480
tgagccaaga	tcgcgccact	gcactccagc	ctgggcgaca	gagcgagact	ccttctctaa	198540
aaataaaaga	aattaaaaaa	aaagaaataa	aaaaagttgc	atccctttgg	agtgttaatc	198600
tgcattggga	tgtcctatgt	ttgggacaac	tttgatgcaa	aaagcatcct	tcgtagaagt	198660
caccctcttg	tgtcctggcg	tgatgttttc	ctgctgtccg	acgctcagtt	ctggtttgtg	198720
ctttgggcag	ccacacatgt	aggtgggaga	agctgtccgg	gtgcagaagt	agggggcatc	198780
cagacaggtg	gagcgacacc	atcaggccta	ggtatggctg	gcctcacatg	agctcccctc	198840
tgccccgcag	ccgctgccta	ctacctgccc	cgacacctgg	ccccaaccc	cacctacccg	198900
cacctgtacc	caccctacct	catccgcggc	taccccgaca	cggcggcgct	ggagaaccgg	198960
cagaccatca	tcaatgacta	catcacctcg	cagcagatgc	accacaacgc	ggccaccgcc	199020
atggcccagc	gagctgatat	gctgaggggc	ctctcgcccc	gcgagtcctc	gctggcactc	199080
aactacgctg	cgggtccccg	aggtgagtgg	gtgggcagac	cacctccgct	gggtttggcc	199140
ttattcccaa	aggacatggg	cgtgcccctg	tggcctcgcg	gaggcagcta	gacctggtca	199200
ccttgtgggt	caccttgtgt	gaacggacct	gagtgggtgg	cctggggttg	tgcgtgctgt	199260
gggtgctggt	tggcatctgg	taggtgagtg	cacagcgtgt	ggctcctggc	tgcatcctca	199320
gtgggtgtgc	gtgcatctgt	gtatactctt	aggatacagg	ggcctcagga	gtttaaagat	199380
caaaatgtgg	ccgggcacag	tggctcatgc	ctgtaatccc	agcacttggg	gagggcgagg	199440
caggtggata	acaaggtcag	aagttcgaga	ccagtctgac	caacatggtg	aaacccgtct	199500
ctcctaaaaa	tacaaaaatt	agccaggcat	ggtgatgcgc	acctgtagtc	ccagctactc	199560
actaggctga	ggcaagagaa	tcacttgaac	ccaggaggtg	gaggttacag	tgagtggaga	199620
ttttaccatt	gcactccagc	ctgggcaaca	gggcaagact	gtgtctcgaa	aaaaaaaaa	199680
agatgaaaat	gtgaggctgt	ttggagtttg	ttcctttgcc	ttgtaaacag	cccacagctg	199740

PTS-0012 -189-

ctttgcgtgc acacgttcca gggccatcct cagaaatgct tctggaataa ccaagttcta 199800 gctggggctc agctggaaaa gctgaagtca cacttaagta ttttgaacag tgaggattga 199860 atacagggaa tggattgtgt aggcgtcaga ggctgaaggg gcacagaggg cctgagatgg 199920 gaaccagtga gggcagctgc aggagatgcc ccggctcggg cttgggagca gaagaggagg 199980 tggtaccgag agaacctgag cattcagaaa agggttccat ggctggtgct gggagccgag 200040 gagggagtgc ctgccaccag ctctgctggc tccaggagtg tgtgccgtgc tctccaggag 200100 ggtgatctgg ccggtgggca gcctggcctc tctcctccct gtggctacag ccctggccca 200160 acaceteceg caggeateat egacetgtee caagtgeeac acetgeetgt getegtgeee 200220 ccgacaccag gcaccccagc caccgccatg gaccgccttg cctacctccc caccgcgccc 200280 cagcccttca gcagccgcca cagcagctcc ccactctccc caggtagcgc cactgcccag 200340 tctggggtgg ggaccccggc atccatggga ggcggctggg ggatgggcgg gcagaagccc 200400 tgctctcttt cccaccccag aagacaaagc caggctcttc ttcggccctg gggctgagtc 200460 tctggccttt gggtttccta ggaggtccaa cacacttgac aaaaccaacc accacgtcct 200520 cgtccgagcg ggagcgagac cgggatcgag agcgggaccg ggatcgggag cgggaaaagt 200580 ccatcctcac gtccaccacg acggtggagc acgcacccat ctggagacct ggtagggcat 200640 cagageeece acceeeget eegggactee ttgtgggeeg caagaggeet eeeetgetg 200700 atgccactga ctgtcaccag gtacagagca gagcagcggc agcagcggcg ggggtggggg 200760 cagcagcage egeceegeet eccaetecea tgeceaceag caetegeeca teteceeteg 200820 gacccaggat gccctccagc agagacccag tgtgcttcac aacacaggca tgaagggtat 200880 catcaccgct gtggagccca gcacgcccac ggtcctgagg tgggccaggt tggcatgggg 200940 gagggggcgg gcaggtggat gggtggtcag taggaggatg agcagataag aggatgcttg 201000 gtgggaggta tatgggaggt gggtgggtgg gcagatgtgt gggggtagaa gaatagacta 201060 tgtgtgagta gtggatgggt gggtggtcgg gttaggtggg tgtgtgggtc agtgggaagt 201120 taggttagct gcgtgggtgg atggatggat ggatgggggg gtggtcgggt taggtgggtg 201180 ggtgggtcag tggaaagata gatggctggg ttagctggtt ggatgggtgg atgatcaggt 201240 ttggtaggta ggtgggtggg tggaaggata gatggccggg ttagccagat aggtggttgg 201300 gttaggtggg taggtgggtc agtgggagga tagatggtta ggttagctgg gtgggtggat 201360 tgggttagct gggtggatgg atgggtgggt ggtcacgtta ggtaggtaag tagatgggca 201480 naaacacttt gctgaatcca gaaacactga tgcaagaggt gggtttccat ggccttagga 201720 agetecacet etgtggettt geagagtaca geeceeteet geetgettte atgggetgge 201780 attgagtgtc tgccactttt ccaggcacat ggtgcaagct gtcaatggag ctaccattct 201840 ggggtttgga gaacaatggc cctcttctca cagcttcact agtccctaac tggggactct 201900 gtttgggggc tctgactcta catttccctt ctgcactgcc ctaacaaagg ttctccatga 201960 gggctctgcc cctgcagcaa acttctgcct ggatatcctg gcatttccat acatccactg 202020 atatctaggc tgaggattca aatccacaac tcttatgctc tgtgcatctg caggcttaac 202080

PTS-0012 -190-

accacatgaa agccactaag tottatggot gacaccotat cgagcagtgg gttaacatat 202140 atctggagcc cttttagcta caactggcac ttgagtggct gggacacagg gagcaatgtc 202200 ccatggatgt gcagggcagc aggtccctgg gcatggacaa tgaaaccatt cttctctcca 202260 agacctctgg gcttgtgatg ggaggggctg ctacaaagtt ctctgaaata ctttcaaggc 202320 attttcccac attgtcttgg ctattaacat tcagcaatgt tacatatgca aatttctgta 202380 gatggcttga attactccca taaaatgggg tattcttttc tagtgcatgg acagactgca 202440 aatattctaa acttttatgc cctgcttccc ctttaaatat aactctcagt ttcagacatc 202500 tcattgctca cacatatgac catatgctgt tagaagcatc caggcgacat cttcaatgct 202560 ttgctgctca gtgtgtgggg gtgtactaca atacattcat gcttatatac aatgcatttg 202620 aggttgaggc atgtaaaaat actaaggcac tgtgtgtatg ttgtttgtgc atgatactgt 202680 aactccttgt ctctgaaaac agtacaagga acaggatgtg tgataaggag tgctgaagac 202740 agcatcctaa gaatgtggtt gatgcttcag atgaataaat aagtccatat gacctcatgc 202800 ctgccccaa atagccacct gttgatgaat tataatctnn nnnnnnnnn nnnnnnnnn 202860 nnnnnnnnn nnnnnnngt tagtgettee tteaggatet ettgtaegge aggeetgttg 202980 gtctcttatc atttgcttgt ctgtaaagga ttttatttct cctttgctta tgaagtttag 203040 tttagctgga tgtgaaattc tgagtagaaa attattttct ttaagaatct taaatattgc 203100 ccccactgt tttctgactc atagggtttc tgcagagaga tccgctgtta gtctgatgag 203160 cttcccttgt gggtaacctg acctttctct ctggctgctc ttaacctttt ttcctttatt 203220 tcaactttgg tgaatctgat gattatgtgt cttgggttac ccttctctag gagtgtcttt 203280 gtggtgttct ctgtatttcc cgaatttgaa ttttggcctg tcttgctagg ttggggaagt 203340 tctcctggat aatatcctga agagtgtttt ccaacttgct tccattctcc ccatcacttt 203400 tcaggtacac caagcaaatg tagatttggt cttttcacat agtcccatat ttcttggagg 203460 ctttgttctt tccttttcat tctttttct ctaatcttgt tttcacattt tatttcatta 203520 atttgatctt cagtcgctga tatcctttct tccacttgat tgatttggct attgacactt 203580 gtgtatactt cacgaagttc tcatgctgtg tttttcagct ctatcaagtc atttattctc 203640 tactccaaac tggttattct agttagcaat ttatttaatc ttttttcaag gttcttagct 203700 teettgeatt gggttagaac atgeteettt ageteagagg agtttgttat tacceacett 203760 ctgaagccta cttctgtcaa ttcatcaaac tcattctcca tccagttttg ttcccttgct 203820 ggcgaggagt tgtgatccta tgaaggagaa gagacattct ggttttggga attttcagtc 203880 tttttgcact ggtttctccc catcttcatg gatttatcta cctttggtct ttgatgttgg 203940 tgacctttgg atggggtctc tgagtggaca tccttctgtt gatgttgatg ttattccttt 204000 ctgtttgtta gttttccttc taacagtctg gcccctctgc tgcaggtttg ctgcagtttg 204060 ctggaggtcc actccagact ctgtttgcct gggtatcact agcggaggct gcagaacaac 204120 aaagattgct gcctgttcct tcctctgcaa gcttcttccc agagggacac ccaccagctg 204180 ccagccggag ctcttttgta tgaggtgtct gttggccccc actgggaggt gtctcccagt 204240 caggcaatgt ggggtcagga cccgcttgga ggaggcagtc tgtgatgaac tattctcann 204300

PTS-0012 -191-

agctggacta cagtgtgcac cacaatgacc agccaatttc cttgatattt ttttaagaga 204480 tgggatctta ctacgtggta caggcctcag cctcccaagt agctgggatt ataggtaaga 204540 gccaccacac ccagcccaaa ttagattgtt tctaaagaga tattctgacc acgcctttaa 204600 atatctaatc ataagtcacc tactgaaaaa ccgtccttga cttctgtatt agtttcctat 204660 tgctgctgta acacaaactt agtggcttaa aatggcacaa atgtattgtc tgacaattct 204720 ggaggtgaga atctagaatg tgtctcactg ggctaaaacc aagatgccag gctgcgttct 204780 cttctgaatg cctagcggga aattcattgt cttgcctttt accacttcct tggagaagga 204840 gtctacatgc tttttttggc gcatggccct cttctgtatt caaagctagc aatggctggt 204900 tggatctttc tcaaactcta tcactctgac ctgcctctgt cttctacttt taagtacctt 204960 gtgattccat tgggattgtc tggataactc aggatagtct ccttatttta acatcaactg 205020 tttaacaaca ttaactcgct ctttaactct ggtttctctt tgctatgtga cataagacac 205080 ttacagtttt tgagggttag gatgtggaca tcgtggaagg gagacattat tcctcctacc 205140 atggcttccc agtatctagc aaacccatcc tggctgcctg ggtcttctac actgtgggct 205200 cgaatttact ctccagcctt acccccaaga cctcatgtcg tatgtgccct cgagttccac 205260 acacaccagt ccatccagat cccccaacac accccacact cacacagete atagcattgt 205320 ttcttgcatt ttatcttctt tgatgttctc ttcattccac gctgcctccc tttactcacc 205380 accaagatga aactetgtte atecteggae ttatageaaa tgeatettte teeatgaage 205440 tttcccccta actttttccc tctggatgtt catatcataa tgtttgtacc tctctgtann 205500 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnntt tgatttgtgg gttggtggtg 205620 gcgttaagta ggtaggtaag tgggaggaag aaagaatggc ccagattagc caatgtgaag 205680 gaaaggatgg gggggtggnt aagttaggaa ggtagggggg tggggggagag tatagacgct 205740 ggcttagntg ggggggtgga tgggtgggtg gtagggttag ggaggtagnt gggtgggtga 205800 gagtatagat ggctgggtta gctgggtggg tgggtggatg ggtgggtggt agggttaggt 205860 ggatgatgga atggatggtt ggatgagtaa ttgtggggat gagtggatgg aggccccagt 205920 ggatggacga tgagttgggc ggtgggatga gtagatgggg aggttgtttg gtttgagaat 205980 agaatctgtg gagagggaga gactgaatgg ggactgtgag gaaagacttt cccggtcccc 206040 cacatttagc aaggccagca aggaaaagag gtgtccctct tgcctggaca aagtcccaag 206100 tttctctgag atgggagagg cccctgagtg ccctctggtg acacacactc cagagactgt 206160 gggcagaget getteaceag gggggtgggg teacacetea acaceettee etgeeeggaa 206220 cettttttt ttttttt tgatggagtt gtactetgte geceaggetg gagtgeagtg 206280 gtacgatete tgettactge aacetecace teetgggtte aagtgattet cetgeeteag 206340 cctcccaagt agctgcagtt acaggcacgt gcaaccacac ccggctaatt tttatatttt 206400 tagtagaaat geggttteae caegttggee aggetggtet caaaettetg aceteaagtg 206460 atctgcctgc ctcagcctcc caaagtgccg ggattacagg cgtgcgccac cgcactcagc 206520 ctccaggacc tatttagagg caacttactc ctccaaaatg aattttcatt caaaaaagta 206580 cttgtgcccc aacttgccgc ttggatgcct gaagtcatac ctcccctaat cattatttca 206640 attatgaaaa atggcatcgt ttcccaaaag cagtggcgac tttgtcaccc ctgactcaga 206700

cccagcaggt gcatgaagca ctaatccctg gctgtgggga gcagggttcc gcacacaggc 206760

-192-

PTS-0012

			aaaaatataa			
ccactgcccg	ctcatgaatg	aggctctggg	aggtagagtt	agcgagagat	gggggtgccc	206880
			cgtgggtgga			
			cagcttctca			
			ccgcccctg			
tcactcctca	cgtggctttt	ttagctcttc	gggtatcctg	agcaggccca	gctccctcat	207120
gtgcccctc	cctgaagacc	tcctagccct	gcctcagctt	ccttgccgtt	ctctcctggt	207180
acctcattga	ctacctccac	acagttacca	ggctctgtag	agcttgggat	atctgttaat	207240
			gtaagatgct			
			cacctagtag			
			gtgggatggg			
tctggcaggt	tacagtcagg	agggcagttt	cactctggga	gcagcagggg	atgtggattt	207480
			ggtggaggaa			
			acctccacct			
			ctgggcggca			
			gaggcccccc			
			gccaagcccc			
			ccccggcccc			
			aacctcgcac			
			ccgcaccggg			
			: ctgggtaaga			
ttcatagacg	g cgattatcat	. gcgtcaaatt	gctcacgata	aaggggcgcg	agaaggaggt	208080
			aagacttccg			
			ttttactttg			
			c cgtcctcgcc			
			g ggggcgctca			
			tttttctta			
			c gegeetgtgt			
			c tgccggctgc			
ggaagtgga	g gcaggcggt	g caaggagaa	g ctgaggcggg	gcagggacct	: gcgctgtcga	208560
ggaggagct	g ggtctggct	c ttgcatctt	g ccctgtccc	agcccctgta	cccagaaaa	208620
			c ttggccctag			
			c ggggccccgg			
			a cactccttc			
			c cacctgaaco			
			t gtctctgtc			
			c aacacccct			
			c ccttgaccc			
ggagggcag	c cctgcccct	c gggctccga	a accctgggc	c cggtgcctga	a ctctgcacco	209100

		acggcagcag				
		tgacccacga				
		gggagctgcg				
acccaggccc	ccgaagccct	gcacagtgag	gaccctcaag	gccccatcat	gcagatagga	209340
aaacagaggt	gcctaaaggc	caaggaattg	gctggatcat	gaggctcaaa	ggcatggggc	209400
		cctggggcca				
ctgcaggccc	cgtgaagctt	ggcggggagg	ccgcccacct	cccacacctg	cggccgctgc	209520
ctgagagcca	gccctcgtcc	agcccgctgc	tccagaccgc	cccaggggtc	aaaggtcacc	209580
		cagcacatca				
		accaggcctg				
tgtcctggcg	gggtggctgg	gggatccagg	gcatggcgct	ggggggatcc	agggcgtggg	209760
		cccgagcacc				
		atggcatctt				
		tggtctcatc				
		atgcacactg				
		ctggccccac				
		tctgtcagga				
		acaggactac				
		ctccttccct				
		cctcccgccc				
		gaggtgagcg				
		tgcctgcctc				
		acaggcaaga				
		aatagctgat				
		acacacagco				
		aggcctggag				
		g atttgttcca				
		tgcgcacaca				
		a cccacacaca				
		a tgcacaccco				
		a cccctgtaga				
		cácccccaco				
		g ccctgagcto				
		g aggacagaca				
		g ggtacaacca				
		c cgggccctc				
		t gtttaaaaa				
		t gcctaaaac				
tgtggggcc	c tggtttaga	g tggagggag	g gtgcgcccc	c tcagtaggga	a gacctctgac	211440

PATENT

cacatetggg gecettete catecaggte tecagageca aacaagaegt eggtettggg 211500 tggtggtgag gacggtattg aacctgtgtc cccaccggag ggcatgacgg agccagggca 211560 ctcccggagt gctgtgtacc cgctgctgta ccgggatggg gaacagacgg agcccaggta 211620 cttctgtggg cacatgcgct gccccggga tgctctggta tcccttgccc atccttggcc 211680 ccagtccacc gtggtgccat gtggagagtg acaagggcac agggctcagc tgggtgacct 211740 caageetgee aageaggttt caccaacttg ggggtgtgat acatgeecac ceteeetggg 211800 gagacctcag tggtagcttt ccatgctttg ggctgggatc tcagctggac caggcccccg 211860 ttgacagccc ctgttgaacc tctaagaaat aatgagctag gtgtgctggg ccagaccggg 211920 ggcgatgggt gaggtgggac ctgagaagga agctgggccc gctgcccctg gggaagggca 211980 tgatcggaac ccaatttcag tccttggggc tctcttgaga gggtcaggct ggagcaagtg 212040 gtcagaggca gcccaccacg cagccaggcg tctcccaaga cacccctagc cccaggacgg 212100 gtgaaccgca gaggagattt caggagccgt gatcttctac caggcagggg atgcaggcgt 212160 ggggggggt gaagettget tecaaatgte taaggeatet eaggtggtga gtteeceate 212220 atcaaaggca tgcaagctcg gcaccaagtg agctgatgtg aggtgtttga tcctcacagc 212280 aggatgggct ccaagtctcc aggcaacacc agccagccgc cagccttctt cagcaagctg 212340 accgagagca actccgccat ggtcaagtcc aagaagcaag agatcaacaa gaagctgaac 212400 acccacaacc ggaatgagcc tgaatacagt aaggggcctg caggctcccg gggaagcatg 212460 gggccacagg tgggcgggtg gcctgcctgg gcagctggag ccgcccagtg gcagaaaccc 212520 . acggtgcacc ttcgaaagct aagtggccct gctgaccacc tccccccagg ccctttgcct 212580 cacatttggg gagccccagg gcagtttctt gatttgctgg gctttccata ggagcttact 212640 ggcacagaag aatagcaccc agcacatagt aggtgcccag tgaatacctg catgaatact 212700 gggaccaggg gttggatccc tcccacaca gggccgggcg cctcccacac tcagcacctg 212760 tgtggctttg cacccattga cgtggttgct gggtatgaac gccccactct gcttcccagt 212820 ccctagcaca gcgcctggca gttagcagat ccaccaggga atacgtgagt gggtgggcaa 212880 ataaagaatc tgtcacagtc cccgacccca agaagcctca tctgccaggg aagtttggac 212940 aaatcacaga tgcttttccc ttcctggggc tggagtagaa accttgcaga tagtcactgg 213000 cttgccgggc acggtggctc atgcctatag gcccagcact ttgggaggat gaggcaggag 213060 gattgcttga agccaggagt tcgagaccag tctgtgcaac atagcaagac cccatctcta 213120 caaaaaactt taaaaacagg cacacaccta tagtccaagc tactggggag gctgagatag 213180 gaggatttct tgagcctcgg aggtcaaggc tgcagtgagc tatgatcaca ccactgcact 213240 ccagcctgga caacagagca agacactgtc ttaaaaaaaa aaaaaatctc tgacccaggc 213300 tggtaactcc agggccctgt aagtgcagtc cagggaaccg tagcatcagc atccccaggg 213360 tactggttag aaatgcaggc ccttggccag gcgcggtggc ttacgcctgt aatcccagca 213420 ctttgggagg tcaaggcggg tggatcatat gaggtcagga gtttgagacc agcctgacca 213480 acatggtgaa accccgtctc tactaaaaat acaaaaatta gccaggcgtg gtggcggatg 213540 tctgtaaccc cagctactcg ggaggctgag gcaggagaat cacttgaacc tgggaggcgg 213600 aggttgcagg gagccgagat tgcacaactg cactccagcc tgggcaacag agcgagactc 213660 tatctcaaaa aaaaaaaaa aaagaaatgc agacgcttgg ccctgtccca ggcctgctgc 213720 atgagaacct gcaatgcaca agtttcccca ggtgatgcca gcacacctgg cctggaccac 213780

acgggactgg	tagggcaggt	aattcccaga	gacctggggg	cctcacccac	tctgtcaccc	213840
gcttccagat	atcagccagc	ctgggacgga	gatcttcaat	atgcccgcca	tcaccggaac	213900
		gctatatggc				
		gggacgagga				
tctgggatga	actaaccgca	cagtaggatt	cagagtcaca	caacaggcag	gcgaggcttg	214080
		ctcgctgtgc				
		gcaccctcac				
gcctcagctg	gagatgcaca	tgtctggacg	aggggtgggc	ctgagctcag	agcacaagcc	214260
tccgagttca	ctcgggcgtt	tgttatagct	agagcttcat	tccttaaatc	cagccaggga	214320
actgggaagc	cttacttttt	ctttcaagat	caaatacagg	tgtgtggcag	agataggtgt	214380
aaaattgaca	cgcactttta	agctgaaact	taagacttct	atgatctttt	ggacttaggg	214440
gtcccttgag	gttggagccc	catcctctag	gagggcccca	ttgtgtattt	ccttggtgag	214500
		ggtcactctg				
gcagttttgg	ggtcggctgc	ctctgtgtgg	gtgcctggtt	atcctctggt	cctttggtgg	214620
		gtcggagagg				
		gtgagcgaag				
		tcccaactag				
		aggcaacggg				
		gggatgttct				
		catggcatgg				
		ttttaagac				
		ctgcagcctc				
		gggactacag				
		ctctcaatat				
		cctcgactga				
		g ctctgtcgcc				
		cgggtttcag				
		a ctacacctgg				
tttcatcata	ttggccaggo	tgatctcgaa	a ctcctgacgt	cagatgatco	acccacattg	215520
		a ttacaggcgt				
		aagaagaaat				
		a taaatggaga				
		g tagaaggcco				
		t ttcttcatgo				
		a aaaggtgtg				
		a ggcagccag				
		c atggaagcc				
		t tgtattcgta				
catgaaaca	c ttgccccgt	g gtgggcacg	g tggaatgggg	g cttcactggg	g ggcttttgaa	a 216120

PATENT -196-

agcaaaggct ggtttaacaa aagttctgaa aagacagcac ctctgggggg tgtgcaaagg 216180 ccccacctc cacgtggttc acaagaaaga aaaaagggaa aggaaatgtg gttaacagaa 216240 aaggaggttt ccccgattgt caggaggtgt tctggaagca tcctcttggg accggtttgt 216300 tgattcgacc actttgtcct tgggactggg ,cagctgggcc agctggggcc ggaccagggc 216360 tggtcccgtg attgtgtcta cttctgccct gtcccctgca cgcaccgtaa ctgcatggct 216420 atgaccccgc cctcagcgtc cgtctctgca cctctttctc ctcatggctc ctgggtgggg 216480 agaggcagag ggaggagagc aggcccagct tggtggggag gtacggggct gcacgtccca 216540 tcacacaggt ggaggtgggg cagcgggagg accatctggt caccttctct ctctcagtcc 216600 cttccccagc ccccagccag ccccagctc tggcttgagc caattttcta gcagcctgtt 216660 ccccaaacag ggtagccctc ccatctccca ccctctccat taaggccact tgagatttaa 216720 aaaaaaaaa aacaaaacag ccccagctag gattggaggt gcagacgggg cttgtgattt 216780 cccagaggac agaataggaa tgagaatagg ggctggtggg ggcatctgac ctcccctacc 216840 ccacctccct ggcagtgccc aagagcttcc ggggccccag gtagaaggaa ccagcctctc 216900 cccttttatc accacccagc aggaaaaaaa gggtggggag ggatagggaa ataaatatgt 216960 tgctttgccg aaatgtgctc actgtgtatt tctctctct cctcctcctc ctcctccttc 217020 cetetetete tecettetet etetetgteg eccetetgge tececetece eggeecceat 217080 gtgtctgtct gtctgtctgt ctctctccc caggccttat gacctataga agccaggcgg 217140 tgcaggaaca tgccagcacc aacatggggc tggaggccat aattagaaag gcactcatgg 217200 gtaaatatga ccagtgggaa gagtccccgc cgctcagcgc caatgctttt aaccctctga 217260 atgccagtgc cagcctgccc gctgctatgc ccataaccgc tgctgacgga cggagtgacc 217320 acacacteae etegecaggt etgeaggeca eccegecee gececegtet gteeceacee 217380 ccggtgtgat taatcctcgc tcctccgcgc tcctctgaca accccctcct cgagctttgg 217440 agcttgtgac tttatttttg tgcgtgtttg acctcgttct ggagtttgct aatctgaagc 217500 tgggctgaca cccccaagt gtctgtaccc tctgccccc agccccggcc ctcctgccca 217560 ctaggcccga agegctgccg cetecetegg acacteacae tgetgteege eececagtee 217620 tecegeette etecetgegg ggaeeegget tettggeeea tetgteteet tgggggagag 217680 caggctggag tgaagcccca cccacactgt gtggacaggg gaatggcagc caggcctgtg 217740 ctcagcatct gccaggccca ctatgtgtcc tcagctgccc cttagcctgg tggggaggag 217800 cecagggtet gtetcagece tgggagteag ggageettag gggteageet ggtteeccat 217860 caataccete tgtategggg cagggagetg aggagagat tgcagttgte caacetggac 217920 actgaggccc caagaagctt ctggagcctc tgtgggggtc aggcctggcc tcaggggtcc 217980 tgacttetet geaeggggee tggateetge ctageettag catggteetg gggeeaeget 218040 caaactggaa gcccagcttc atgcttaggg ttccagcccc tggggctggg gtcgctgcag 218100 gacagcccag ggggctattg caaacagcag acagtttagc cacctcccc tgcccagcag 218160 aaactatete caccetecag geteatgget ggecatetgg teaaccetgg etteecaget 218220 ggggcgggca gcagggagga ggggttcacg ttactgctct ccctcctct ttggagggcc 218280 catggcagga cctcaccctg cccctgtggc cccaccgtag cgtcggtgct gtcttcactg 218340 cccaacgcag ccccttccca tcttgtcccc ctgcaggtgg cggcgggaag gccaaggtct 218400 ctggcagacc cagcagccga aaagccaagt ccccggcccc gggcctggca tctggggacc 218460 PTS-0012 -197- PATENT

ggccaccctc tgtctcctca gtgcactcgg agggagactg caaccgccgg acgccgctca 218520 ccaaccgcgt gtgggaggac aggccctcgt ccgcaggtgg gcaccaggtg gggacagggc 218580 tgggctcgct gagcccccaa cactgggctg tgaatgctgc cggggcactg aatgctgagc 218640 geetgetgea tgeagagete agaeteggge etgttetgtg gaaaegetgt eeaggggeet 218700 gggcagctga gcctggctca cgaaccatca ggatgcttct gccaggggca caggcagagg 218760 aaaagggtgt ggttggggcc ggccagatca catgggcctg gtggaccatc caggggagcc 218820 tggacttcct ttgatgggta gtgaggaggc gtggagggct ttcggaaggg aaatgctcat 218880 ctaacatagg gtcagaaggc ccctgggaga atagaccaga gggacggtga ataggctact 218940 gctatagtcc aggcaaaaga cagcggcagg gtgtgaacag ggacggaagt agaacaggtg 219000 aagagaggca gacggttctg agacctgttc gcaattagaa aggtctggga ggactgttgg 219060 acagaaacgc tgaggcctct gttcccggtg tggtgggcag gcggccagca ggggctgccg 219120 ggctcacaga ggcctcctgg gcatctttcg cttcttcccg caggttccac gccattcccc 219180 tacaaccccc tgatcatgcg gctgcaggcg ggtgtcatgg cttccccacc cccaccgggc 219240 ctcccgcgg gcagcgggcc cctcgctggc ccccaccacg cctgggacga ggagcccaag 219300 ccactgetet getegeagta egagacaete tecgacageg agtgaeteag aacagggegg 219360 ggggggggc ggtgtcaggt cccagcgagc cacaggaacg gccctgcagg agcagggcgg 219420 ctgccgactc ccccaaccaa ggaaggagcc cctgagtccg cctgcgcctc catccatctg 219480 tecgtecaga geeggeatee ttgeetgtet aaageettaa etaagaetee egeeeeggge 219540 tggccctgtg cagaccttac tcaggggatg tttacctggt gctcgggaag ggaggggaag 219600 gggccgggga gggggcacgg caggcgtgtg gcagccacac gcaggcggcc agggcggcca 219660 gggacccaaa gcaggatgac cacgcacctc cacgccactg cctcccccga atgcatttgg 219720 aaccaaagtc taaactgagc tcgcagcccc cgcgccctcc ctccgcctcc catcccgctt 219780 agegetetgg acagatggae geaggeeetg tecageeece agtgegeteg tteeggteee 219840 cacagactgc cccagccaac gagattgctg gaaaccaagt caggccaggt gggcggacaa 219900 aagggccagg tgcggcctgg ggggaacgga tgctccgagg actggactgt tttttcaca 219960 catcgttgcc gcagcggtgg gaaggaaagg cagatgtaaa tgatgtgttg gtttacaggg 220020 tatatttttg ataccttcaa tgaattaatt cagatgtttt acgcaaggaa ggacttaccc 220080 agtattactg ctgctgtgct tttgatctct gcttaccgtt caagaggcgt gtgcaggccg 220140 acagtcggtg accccatcac tcgcaggacc aagggggcgg ggactgctgg ctcacgcccc 220200 gctgtgtcct ccctccctcc cttccttggg cagaatgaat tcgatgcgta ttctgtggcc 220260 gccatctgcg cagggtggtg gtattctgtc atttacacac gtcgttctaa ttaaaaagcg 220320 aattatactc cagttacaaa ggtttcttct ctacctcaga ctgggcagcc aatagggcag 220380 gcgtttaggg gacagtggga gtatacccct ggagggccaa ggccacatcc gcctgagtca 220440 ccagggagtg gatecttttg caagttgaat atttataccc ttggtaagga catcaccatg 220500 aggacatcaa atagtcacat ctgtggtgaa ggtctcaagt gttcacaccc atggtaagag 220560 tgtgtcagat gttcacatgg gttcacaccc atgtgtcagg tattcacatg atggtcaggg 220620 tgtcatgttc acactcatgg tgagagggtg tcaggtattc acacccatgt atcaggtatt 220680 cacaccatgc tgagggtgtc aagtagtcac acccatggta agagtgtcag atgttcatac 220740 tcatggtgtt aggtattcac accatggcga gggtgtcaga tgttcacaca tggtgtcagg 220800

70 .

tgttcacacc atggtgaggg tgtcatgttc acactcatgg tgtcaggtat tcacaccata 22	0860
gtgagggtgt cagatgttca cacatggtga gagggtgcca ggtattcatt cccatgtgtc 22	0920
aggtgttcac accgtggtga gggtgtcaag tggtcacacc atggtgagag ggtgtcagat 22	0980
gttcacaccc atgtgtcagg 22	1000
<210> 13	
<211> 2930	
<212> DNA	
<213> H. sapiens	
<220>	
<220>	
<221> CDS	
<222> (456)(2765)	
<400> 13	60
tttgttagtt tgtctgtttg cacttaaagt tctaagcact ttggaaagtt tctaagcaac	120
ttctcacttc caagcaacaa cttaaccaac actaacaact tactattatt aattagtatt	180
ttcttggctc accccgcac agcaccgtgc ccgagcacca cccacaccc atctcgccct	240
atgageacct gettegggge gtgagtggeg tggaectgta tegeageeac ateceetgg	300
cettegacce cacetecata cecegeggea tecetetgga egeageeget geetactace	360
tgccccgaca cctggccccc aaccccacct acccgcacct gtacccaccc tacctcatcc	420
geggetacce egacaeggeg gegetggaga aceggeagae cateateaat gactacatea	473
cctcgcagca gatgcaccac aacgcggcca ccgcc atg gcc cag cga gct gat Met Ala Gln Arg :Ala Asp	
1 5	
<u>*</u>	521
atg ctg agg ggc ctc tcg ccc cgc gag tcc tcg ctg gca ctc aac tac	
Met Leu Arg Gly Leu Ser Pro Arg Glu Ser Ser Leu Ala Leu Asn Tyr	
gct gcg ggt ccc cga ggc atc atc gac ctg tcc caa gtg cca cac ctg	569
Ala Ala Gly Pro Arg Gly Ile Ile Asp Leu Ser Gln Val Pro His Leu	
35	
cet gtg ete gtg eee eeg aca eea gge ace eea gee ace gee atg gae	617
Pro Val Leu Val Pro Pro Thr Pro Gly Thr Pro Ala Thr Ala Met Asp	
A.C. 5.0	
cgc ctt gcc tac ctc ccc acc gcg ccc cag ccc ttc agc agc cgc cac	665
Arg Leu Ala Tyr Leu Pro Thr Ala Pro Gln Pro Phe Ser Ser Arg His	
With men with the same and the	

65

60

55

-199-

PTS-0012

and car tra aca aaa cca	713
age age tee cea ete tee cea gga ggt cea aca cae ttg aca aaa cea	
Ser Ser Ser Pro Leu Ser Pro Gly Gly Pro Thr His Leu Thr Lys Pro	
75	761
acc acc acg tcc tcg tcc gag cgg gag cga gac cgg gat cga gag cgg	
Thr Thr Ser Ser Ser Glu Arg Glu Arg Asp Arg Asp Arg Glu Arg	
gac cgg gat cgg gag cgg gaa aag tcc atc ctc acg tcc acc acg acg	809
Asp Arg Asp Arg Glu Arg Glu Lys Ser Ile Leu Thr Ser Thr Thr	
110 115	
gtg gag cac gca ccc atc tgg aga cct ggt aca gag cag agc agc ggc	857
Val Glu His Ala Pro Ile Trp Arg Pro Gly Thr Glu Gln Ser Ser Gly	
130	
age age gge age gge ggg ggt ggg ggc age age age ege eee gee	905
Ser Ser Gly Ser Ser Gly Gly Gly Gly Ser Ser Ser Arg Pro Ala	
135 140 145 150	
tec cac tee cat gee cac cag cac teg cee ate tee cet egg ace cag	953
Ser His Ser His Ala His Gln His Ser Pro Ile Ser Pro Arg Thr Gln	
155 160 165	
gat gcc ctc cag cag aga ccc agt gtg ctt cac aac aca ggc atg aag	1001
Asp Ala Leu Gln Gln Arg Pro Ser Val Leu His Asn Thr Gly Met Lys	
170 175 180	
ggt atc atc acc gct gtg gag ccc agc acg ccc acg gtc ctg agg tcc	1049
Gly Ile Ile Thr Ala Val Glu Pro Ser Thr Pro Thr Val Leu Arg Ser	
185 190 195	
ace tee ace tee tea eee gtt ege eea get gee aca tte eea eet gee	1097
Thr Ser Thr Ser Ser Pro Val Arg Pro Ala Ala Thr Phe Pro Pro Ala	
200 205 210	1115
ace cae tgc cca ctg ggc ggc ace ctc gat ggg gtc tac cct ace ctc	1145
. Thr His Cys Pro Leu Gly Gly Thr Leu Asp Gly Val Tyr Pro Thr Leu	
215 220 225 230	1193
atg gag ccc gtc ttg ctg ccc aag gag gcc ccc cgg gtc gcc cgg cca	1193
Met Glu Pro Val Leu Leu Pro Lys Glu Ala Pro Arg Val Ala Arg Pro	
235 240 245	1241
gag cgg ccc cga gca gac acc ggc cat gcc ttc ctc gcc aag ccc cca	75.44
Glu Arg Pro Arg Ala Asp Thr Gly His Ala Phe Leu Ala Lys Pro Pro	
250 233	1289
gcc cgc tcc ggg ctg gag ccc gcc tcc tcc ccc agc aag ggc tcg gag	
Ala Arg Ser Gly Leu Glu Pro Ala Ser Ser Pro Ser Lys Gly Ser Glu	
265 270 275	

-200-

PTS-0012

ccc cgg ccc cta gtg cct cct gtc tct ggc cac gcc acc atc gcc cgc	1337
Pro Arg Pro Leu Val Pro Pro Val Ser Gly His Ala Thr Ile Ala Arg	
Pro Arg Pro Leu Vai Pro Pro Vai Sei Gi, inc.	
acc cet geg aag aac etc gea eet eac eac gee age eeg gae eeg eeg	1385
Thr Pro Ala Lys Asn Leu Ala Pro His His Ala Ser Pro Asp Pro Pro	
305 310	
30C	1433
gcg cca cct gcc tcg gcc tcg gac ccg cac cgg gaa aag act caa agt	
Ala Pro Pro Ala Ser Ala Ser Asp Pro His Arg Glu Lys Thr Gln Ser	
313	1481
aaa ccc ttt tcc atc cag gaa ctg gaa ctc cgt tct ctg,ggt tac cac	
Lys Pro Phe Ser Ile Glu Glu Leu Glu Leu Arg Ser Leu Gly Tyr His	
330	1529
ggc agc agc tac agc ccc gaa ggg gtg gag ccc gtc agc cct gtg agc	
Gly Ser Ser Tyr Ser Pro Glu Gly Val Glu Pro Val Ser Pro Val Ser	
345	1577
tca ccc agt ctg acc cac gac aag ggg ctc ccc aag cac ctg gaa gag	
Ser Pro Ser Leu Thr His Asp Lys Gly Leu Pro Lys His Leu Glu Glu	
360 365 370	1625
ctc gac aag agc cac ctg gag ggg gag ctg cgg ccc aag cag cca ggc	
Leu Asp Lys Ser His Leu Glu Gly Glu Leu Arg Pro Lys Gln Pro Gly	
375 380	1673
ccc gtg aag ctt ggc ggg gag gcc gcc cac ctc cca cac ctg cgg ccg	1075
Pro Val Lys Leu Gly Gly Glu Ala Ala His Leu Pro His Leu Arg Pro	
395 400 405	1721
ctg cct gag age cag ccc tcg tcc age ccg ctg ctc cag ace gcc cca	1/21
Leu Pro Glu Ser Gln Pro Ser Ser Ser Pro Leu Leu Gln Thr Ala Pro	
410 415 420	1769
ggg gtc aaa ggt cac cag cgg gtg gtc acc ctg gcc cag cac atc agt	1709
Gly Val Lys Gly His Gln Arg Val Val Thr Leu Ala Gln His 11e Ser	
425 430 435	1017
gag gtc atc aca cag gac tac acc cgg cac cac cca cag cag ctc agc	1817
Glu Val Ile Thr Gln Asp Tyr Thr Arg His His Pro Gln Gln Leu Ser	
440 445 450	1065
gca cec etg cec gee cec etc tac tec tte cet ggg gee age tge cec	1865
Ala Pro Leu Pro Ala Pro Leu Tyr Ser Phe Pro Gly Ala Ser Cys Pro	
455 460 465 470	
atc ctg gac ctc cgc cgc cca ccc agt gac ctc tac ctc ccg ccc ccg	1913
Val Leu Asp Leu Arg Arg Pro Pro Ser Asp Leu Tyr Leu Pro Pro	
475 480 485	

-201-

PTS-0012

gac cat ggt gcc ccg gcc cgt ggc tcc ccc cac agc gaa ggg ggc aag	1961
Asp His Gly Ala Pro Ala Arg Gly Ser Pro His Ser Glu Gly Gly Lys	
405 500	
agg tet cea gag cea aac aag acg teg gte ttg ggt ggt ggt gag gac	2009
Arg Ser Pro Glu Pro Asn Lys Thr Ser Val Leu Gly Gly Glu Asp	
510 515	
ggt att gaa cct gtg tcc cca ccg gag ggc atg acg gag cca ggg cac	2057
ggt att gaa cct gtg tcc cca ccg gag ggo deg mes to Gly Pro Gly His Gly Ile Glu Pro Val Ser Pro Pro Glu Gly Met Thr Glu Pro Gly His	
. 530	
520 525 530 tcc cgg agt gct gtg tac ccg ctg ctg tac cgg gat ggg gaa cag acg	2105
tcc cgg agt gct gtg tac ccg ctg ctg tac cgg sar oos t Ser Arg Ser Ala Val Tyr Pro Leu Leu Tyr Arg Asp Gly Glu Gln Thr	
5/5	
E2E 24V	2153 ,
gag ccc agc agg atg ggc tcc aag tct cca ggc aac acc agc cag ccg	
Glu Pro Ser Arg Met Gly Ser Lys Ser Pro Gly Asn Thr Ser Gln Pro	
555	2201
cca gcc ttc ttc agc aag ctg acc gag agc aac tcc gcc atg gtc aag	
Pro Ala Phe Phe Ser Lys Leu Thr Glu Ser Asn Ser Ala Met Val Lys	
570	2249
tcc aag aag caa gag atc aac aag aag ctg aac acc cac aac cgg aat	
Ser Lys Lys Gln Glu Ile Asn Lys Lys Leu Asn Thr His Asn Arg Asn	
585	2297
gag cct gaa tac aat atc agc cag cct ggg acg gag atc ttc aat atg	
Glu Pro Glu Tyr Asn Ile Ser Gln Pro Gly Thr Glu Ile Phe Asn Met	•
603	2345
ccc gcc atc acc gga aca ggc ctt atg acc tat aga agc cag gcg gtg	
Pro Ala Ile Thr Gly Thr Gly Leu Met Thr Tyr Arg Ser Gln Ala Val	
615 620 623	2393
cag gaa cat gcc agc acc aac atg ggg ctg gag gcc ata att aga aag	
Gln Glu His Ala Ser Thr Asn Met Gly Leu Glu Ala Ile Ile Arg Lys	
635	2441
gca ctc atg ggt ggc ggc ggg aag gcc aag gtc tct ggc aga ccc agc	
Ala Leu Met Gly Gly Gly Lys Ala Lys Val Ser Gly Arg Pro Ser	
650	2489
age ega aaa gee aag tee eeg gee eeg gge etg gea tet ggg gae egg	
Ser Arg Lys Ala Lys Ser Pro Ala Pro Gly Leu Ala Ser Gly Asp Arg	
665 670 675	2537
cca ccc tct gtc tcc tca gtg cac tcg gag gga gac tgc aac cgc cgg	2331
Pro Pro Ser Val Ser Ser Val His Ser Glu Gly Asp Cys Asn Arg Arg	
680 685 690	

-202-

PATENT

										200	ccc	tra	tcc	aca	ggt	2585
acg	ccg	ctc	acc	aac	cgc	gtg	tgg	gag	gac	agg	CCC	ccg	-	37-	Clu	
Thr	Pro	Leu	Thr	Asn	Arg	Val	\mathtt{Trp}	Glu	Asp	Arg	Pro	Ser	Ser	Ala	GIY	
695					700					705					710	
		cca	ttc	ccc	tac	aac	ccc	ctg	atc	atg	cgg	ctg	cag	gcg	ggt	2633
tcç	acg	- CCa	-1	2	m	y c.n	Pro	T.em	Tle	Met	Arg	Leu	Gln	Ala	Gly	
Ser	Thr	Pro	Pne		туг	ASII	FIO	200	720		_			725		
				715												2681
atc	atα	act	t.cc	cca	CCC	cca	ccg	ggc	ctc	CCC	gcg	ggc	agc	ggg	CCC	2001
y1	Wat	712	Sor	Pro	Pro	Pro	Pro	Gly	Leu	Pro	Ala	Gly	Ser	Gly	Pro	
var	Mer	ATG					-	735					740			
			730											_ 4		2729
ctc	act	ggc	gcc	cac	cac	gcc	tgg	gac	gag	gag	CCC	aag	cca	CEG	ctc	2123
T.011	Δla	Glv	Ala	His	His	Ala	Trp	Asp	Glu	Glu	Pro	Lys	Pro	Leu	Leu	
Беи	1110						750					755	;			
•		745										ato	ana:	cag		2775
tgo	tc:	g cag	, tac	gag	gaca	cto	: tcc	gac	ago	gaç	, Lyc		agac	Loug		
Суя	s Sei	Glr	ту1	c Glu	ı Thi	Lev	ı Seı	. Ası	Sea	c Glu	1					
_	760					765										
	700	•			~~~	~+~+	agg	ta a	cage	aaac	c ac	agga	acgg	CCC	tgcagga	2835
gg	gggg	gggg	gcg	gggg	ycy y	gugu	Jugg			-~-	a ct	nant.	ccac	cta	cacctcc	2895
gca	aggg	cggc	tgc	cgac	tcc	ccca	acca	ag g	aagg	agcc		gage	cogo	5	cgcctcc	2930
ate	ccat	ctgt	cca	tcca	gag	ccgg	catc	ct t	gcct							4930
ac	ccac	5-	3	-												

<210> 14

PTS-0012

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 14

agtcctcgtc atcagctcac

20

<210> 15

<211> 20

<212> DNA

<213> Artificial Sequence

PATENT

<223>	Antisense	Oligonucleotide
-------	-----------	-----------------

<400> 15

ctcttggcag tggtggccct

20

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 16

atgttcctgc accgcctggc

20

<210> 17

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 17

ctccagcgag gctgtgtcct

20

<210> 18

<211> 20

<212> DNA

<213> Artificial Sequence

-204-

PATENT

<223> Antisense Oligonucleotide

· <400> 18

tcactggcac cagaaactgc

20

<210> 19

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 19

tggagcccga catggtggtg

20

<210> 20

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 20

ccgtggcggc accageteca

20

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence

-205-

PATENT

<223> Antisense Olig	

<400> 21

gctggcccac cctctgcatg

20

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 22

gctgttggca gttttgcggc

20

<210> 23

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 23

ttgacagtgg cttcagcctc

20

<210> 24

<211> 20

<212> DNA

<213> Artificial Sequence

-206-

PATENT

<223>	Antisense	Oligonucleotide
-------	-----------	-----------------

<400> 24

aggettetet geeteettgt

20

<210> 25

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 25

tgtgctggga atgcctttgg

20

<210> 26

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 26

ctccttgggc agcaagacgg

20

<210> 27

<211> 20

<212> DNA

<213> Artificial Sequence

-207-

PATENT

<223>	Antisense	Oligonucleotide
-------	-----------	-----------------

<400> 27

gccgccacct ggcgaggtga

20

<210> 28

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 28

tgttctgagt cactcgctgt

20

<210> 29

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 29

catcatttac atctgccttt

20

<210> 30

<211> 20

<212> DNA

<213> Artificial Sequence

-208-

PATENT

<223> Antisense	Oligonucleotide
-----------------	-----------------

<400> 30

ggcccaccct gctctgcatg

20

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 31

gcatgtaagg cttcagcctc

20

<210> 32

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 32

ctcattccca gaggcatgta

20

<21,0> 33

<211> 20

<212> DNA

<213> Artificial Sequence

-209-

PATENT

<223> Antisense Oligonucleotide

<400> 33

ttgacagtgg ctgggccact

20

<210> 34

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 34

gctgcgaagg cctccttgtc

20

<210> 35

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 35

atgaacctac cagaaactgc

20

<210> 36

<211> 20

<212> DNA

<213> Artificial Sequence

-210-

PATENT

<223> Antisense Oligonucleotide	
<400> 36	20
accagacaag gctetgggct	20
<210> 37	•
<211> 20	
<212> DNA	
<213> Artificial Sequence	·
<220>	
<223> Antisense Oligonucleotide	
<400> 37	20
tcactggcac ctgcgggaaa	
<210> 38	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
oligonyalastide	
<223> Antisense Oligonucleotide	
<400> 38	, a
accccttac cgtgtgcgtc	20
<210> 39	
<211> 20	
<212> DNA	

<213> Artificial Sequence

-211-

PATENT

<223> Antisense Oligonucleotide

<400> 39

cccagtgtcc tgaattccta

20

<210> 40

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 40

cagcettett etgeagggtg

20

<210> 41

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 41

cgctggccca ccctgctggg

20

<210> 42

<211> 20

<212> DNA

<213> Artificial Sequence

-212-

PATENT

<223>	Antisense	Oligonucleotide

<400> 42

gaccgagttc agccccaggc

20

<210> 43

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 43

gcatgtaagg ctggaaggaa

20

<210> 44

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 44

acattcgtac ctgggccact

20

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

PATENT

<223> Antisense Oligonucleotide

<400> 45

ggcttctctg ctgagggcag

20

<210> 46

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 46

gctgcgaagg ctgggaagaa

20

<210> 47

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 47

cacttgttac ttactgccct

. 20

<210> 48

<211> 20

<212> DNA

<213> Artificial Sequence

<223> Antisense Oligonucleotide

<400> 48

tcatatttac ccatgagtgc

20

<210> 49'

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 49

ggcctgcaga cctggcgagg

20

<210> 50

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 50

gccgccaccc atgagtgcct

20

<210> 51

<211> 20

<212> DNA

<213> H. sapiens

-215-

PATENT

<400> 51	
annoccacca	ctgccaagag

20

<210> 52

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 52 gccaggcggt gcaggaacat

.

20

<210> 53

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 53

aggacacagc ctcgctggag

20

<210> 54

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 54.

tggagctggt gccgccacgg

20

<210> 55

<211> 20

-216-

PATENT

<	2	1	2	>	DN	Α

<213> H. sapiens

<220>

<400> 55

catgcagagg gtgggccagc

20

<210> 56

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 56

acaaggaggc agagaagcct

20

<210> 57

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 57

ccaaaggcat tcccagcaca

20

<210> 58

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 58

-217-

PTS-0012

PATENT

ccgtcttgct gcccaaggag

20

<210> 59

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 59

tcacctcgcc aggtggcggc

20

<210> 60

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 60

acagcgagtg actcagaaca

20

<210> 61

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 61

catgcagagc agggtgggcc

20

<210> 62

<211> 20

<212> DNA

-218-

PATENT

<213> H. sapiens

<220>

<400> 62

tacatgcctc tgggaatgag

20

<210> 63

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 63

gacaaggagg ccttcgcagc

20

<210> 64

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 64

taggaattca ggacactggg

20

<210> 65

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 65

cccagcaggg tgggccagcg

20

PTS-0012

<210> 66

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 66

ttccttccag ccttacatgc

20

<210> 67

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 67

agtggcccag gtacgaatgt

20

<210> 68

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 68

ctgccctcag cagagaagcc

20

<210> 69

<211> 20

<212> DNA

<213> H. sapiens

-220-

PTS-0012

PATENT

<220>

<400> 69

ttcttcccag ccttcgcagc

20

<210> 70

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 70

agggcagtaa gtaacaagtg

20

<210> 71

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 71

gcactcatgg gtaaatatga

20

<210> 72

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 72

cctcgccagg tctgcaggcc

20

-221-

PATENT

<210> 73

<211> 20

<212> DNA

<213> H. sapiens

<220>

<400> 73

aggcactcat gggtggcggc

20