第6回模試テロ

- 【1】(1) $\frac{\pi}{2} < \alpha < \pi$ とする. $\sin \alpha = \frac{\sqrt{7}}{4}$ のとき, $\tan \frac{\alpha}{2}$ の値を求めよ.
 - (2) a, b を実数の定数, i を虚数単位とする. x の方程式 $x^3 + ax^2 + bx + 10 = 0$ が x = 1 2i を解にもつとき, a, b の値を求めよ.
- 【2】 k を実数の定数とする. x の関数 $f(x) = x^4 4x^3 + 2kx^2$ について考える.
 - (1) k = 2 のとき, y = f(x) のグラフを描け. また, y = f(x) のグラフと x 軸とで 囲まれた部分の面積を求めよ.
 - (2) 関数 f(x) が極大値をもたないような k の値の範囲を求めよ.
- 【3】 1 辺の長さが 2 の正四面体 OABC の辺 OA 上に点 P をとる. 点 P から平面 ABC に垂線を下ろし、その足を H とする.
 - (1) t = AP とする. $\triangle HBC$ の面積を t を用いて表せ.
 - (2) 四面体 PHBC の体積を V とする. V の最大値を求めよ.
- 【4】t を実数の定数とする. x の方程式

$$(\log_2 x)^2 - \log_2 x^2 + t^2 - t + 1 = 0$$

が異なる 2 つの実数解 α , β をもつ.

- (1) t のとりうる値の範囲を求めよ.
- $(2) \log_{\alpha} \beta + \log_{\beta} \alpha$ のとりうる値の範囲を求めよ.
- 【5】数列 $\{a_n\}$ の初項から第 n 項までの和を S_n とするとき,

$$S_1 = 1$$
, $S_{n+1} = 3S_n + 2^{n+1} - 1$ $(n = 1, 2, 3, ...)$

が成り立っている. 一般項 a_n を求めよ.