Homework 4

Thomas Kim tsk389 51835

David Munoz dam2989 51840

 $\ensuremath{\mathsf{CS331}}$ Algorithms and Complexity

Problem Q1. Given n samples and unambiguous ImgComp, design a divide and conquer algorithm which can report whether more than 50% of samples belong to a single class. Prove correctness and runtime.

```
main
 1: S' = \text{signal-to-noise}(S)
 2: if \frac{|S'|}{|S|} > .5 then 3: return "YES"
 4: else
       return "NO"
 5:
 6: end if
signal-to-noise(S)
 1: Let S := \{s_1, s_2, \dots, s_n\} be the set of images used as input to ImgComp
 2: Let A := \{s_1, s_2, \dots, s_{\frac{n}{2}}\}, B = S - A
 3: if |A| = |B| = 1 \land ImgComp(s_1, s_2) = "YES" then
       return \{s_1, s_2\}
 5: else if |A| = |B| = 1 \land ImgComp(s_1, s_2) = "NO" then
 6:
       return \{s_1\}
 7: else
       A' := \text{signal-to-noise}(A)
 8:
       B' := \text{signal-to-noise}(B)
 9:
       A'' := A'
10:
       B'' := B'
11:
12:
       for \forall b_i \in B \ \mathbf{do}
          if ImgComp(a_1, b_i) = "YES" then
13:
             B'' := B'' \cup \{b_i\}
14:
          end if
15:
       end for
16:
       for \forall a_i \in A \text{ do}
17:
          if ImgComp(b_1, a_i) = "YES" then
18:
             A'' := A'' \cup \{a_i\}
19:
          end if
20:
       end for
21:
       return max(A'', B'')
22:
23: end if
```

Proof of correctness

Proof. Claim: If more than 50% of S belongs to one set C, $a \in A' \land a \in C \lor b \in B' \land b \in C$ and signal-to-noise(S) will return C

Base case: |S| = 4, |A| = |B| = 2

Suppose more than 50% of S belongs to some category C. This means $|C| > \frac{S}{2} \implies |C| > 2$.

By the pigeonhole principle (either A or B will get a matching pair because at least 3 out of 4 match and there are 2 subsets), $|A'| = 2 \lor |B'| = 2$.

Without loss of generality, suppose |A'| = 2. If A' does not contain some $a \in C$, then $|C| \le |S - A'| = 2 \implies$ contradiction.

Given the correctness of A' and/or B', lines 12, 17, 22 will return some set $R \mid ||R| \geq |A| \implies R = C$

Induction:

Suppose $a \in A' \land b \in B' \land A' \cap C = \{\} \land B' \cap C = \{\}$

Claim: If C exists, $|A'| \ge \frac{|A|}{2} \lor |B'| \ge \frac{|B|}{2}$ Suppose the opposite was true. The maximal subset $S' \in S$ such that S' contains matching elements would be bounded by $|S'| < \frac{|A|}{2} + \frac{|B|}{2} = \frac{|S|}{2}$ Without loss of generality, suppose signal-to-noise(A) returned $A' \mid ||A'| \ge \frac{|A|}{2} = \frac{|S|}{4}$ Note that A' must contain some element $a \in C$, because if it didn't, $|C| \le 2 \cdot \frac{|A|}{2} \Longrightarrow |C| \le \frac{|S|}{4}$ Note that $A - A' \cup C = \{\}$, because if some $a \in A \land a \not\in A' \in C \land a' \in A' \in C, a \in A'$ By line 12, A'' = C, because the algorithm loops through B and by the previous note, $A - A' \cup C = \{\}$ Finally, if the largest subset $S' \subset S \mid |\frac{|S'|}{|S|} \le \frac{1}{2}$, the algorithm will return false by line 5 of main and lines 13 and 18 of signal-to-noise(S).

Proof of Runtime

Proof. signal-to-noise(S) creates 2 subproblems of size $\frac{n}{2}$ by lines 2, 8, 9 signal-to-noise(S) calls $ImgComp\ n$ times by lines 12, 17, since $|A'| \le |A| = \frac{n}{2} \land |B'| \le |B| = \frac{n}{2}$ Therefore, the recurrence for signal-to-noise(S) is $T(n) = 2T(\frac{n}{2}) + \theta(n)$ By master theorem, $f(n) = \theta(n) = \theta(n^1 log^0(n)) \implies T(n) = \theta(n log(n))$

Problem Q2. FindLocalMinimum(G)

- 1: Define quad(v) to be (the set of vertices in the same quadrant of G as v) unioned with (any elements of B which border the previous set).
- 2: Let B, C, T, TC be defined on G as specified in the problem.
- 3: $minVert \leftarrow min_{v \in S \cup T} F(v)$
- 4: if $minVert \in S \lor minVert \in TC$ then
- 5: return minVert
- 6: else
- 7: return FindLocalMinimum(quad(minVert))
- 8: end if

Lemma 1: For all such grids G, there exists a local minimum.

Proof. There are a finite number of squares each with unique weight w_i .

Let the set $W = \{w_1, w_2, ..., w_i\}$

By the well-ordering principle, there exists a least element of W.

By definition, this least element is less than each of its neighbors, because it is less than every other weight in the set.

Thus, it is a local (global) minimum.

Base case: Note that there are no bases cases by lemma 1.

Proof of correctness:

Proof. Suppose there is no local minimum when $S' \cup T' = G'$, where G' is the subgrid in the final iteration.

Take v_c to be the center vertex of G'.

Note that in the previous iteration, v_c must have been in T, since it couldn't have been in $S \cup TC$ and $S' \cup T' = G'$ This means v_c is the smallest element in G'

This means v_c is a local minimum.

Proof of runtime:

Proof. The recurrence associated with this algorithm is $T(n) = T(\frac{n}{2}) + \theta(n)$

Expanding this recurrence, $T(n) = T(\frac{n}{4}) + c\frac{n}{2} + n$

$$= \sum_{i=1}^{n} c_{\frac{n}{2^{i}}}$$

Therefore the total runtime is $\theta(n)$

Problem Q3(a).

In this example, the middle node will be chosen and the two side nodes discarded for a total weight of 3.

If the middle node was discarded and the two side nodes chosen, the total weight would have been 4 > 3.

Problem Q3(b).

In this example, the maximum weight independent set includes nodes v_1 and v_4 , but 1 is odd and 4 is even.

Problem Q3(c). Let the set of independent vertices $S_i \subset \{v_1, v_2, v_3, \dots, v_i\}, i \leq n$ have some weight W_i

Let each vertex v_i have some weight w_i

Suppose S_i includes vertex v_i . S_i can therefore cannot include v_{i-1} , so $W_i = W_{i-2} + w_i$

Suppose S_i does not include v_i . $W_i = W_{i-1}$

Base case(s): $W_0 = 0, W_1 = w_1$

Algorithm: $W_i = max(W_{i-1}, W_{i-2} + w_i)$

return W_n

Memoization: W_j only has to be computed once for each unique j.

Proof of correctness:

Proof. Suppose W_n is not the maximum weight.

This means either W_{i-1} or W_{i-2} wasn't maximized.

This continues, with some W_{i-k} not being maximized.

However, W_0 and W_1 are always maximized by definition.

Thus, W_{i-k} , k = i must be maximized.

This contradicts the original assumption, since each step is guaranteed to maximize the weight if the previous step is maximized.

Proof of runtime:

Proof. W_0, W_1, \ldots, W_n will all be calculated exactly once due to memoization. The time required to calculate W_i is O(1), since it is a single comparison and a single addition. Therefore, the total complexity is O(n).