Lecture 5

Alyosha Molnar

Common Gate Amplifier

-
$$V_{in} = V_{BIAS} - V_{GS} = V_{BIAS} - V_{TH} - (2I_DL)^{1/2}/(W\mu c_{ox})^{1/2}$$

- For saturation, V_{BIAS} <VDD- R_LI_{BIAS} + V_{TH}

Small signal

- Gain:
$$\frac{V_{out}}{V_{in}} = \frac{\left(g_m + g_{mb}\right)r_oR_L + R_L}{r_o + R_L} \approx g_m(r_o \parallel R_L)$$

- Zout:
$$\frac{V_{out}}{I_{out}} = (r_o \parallel R_L)$$

- Zin:
$$\frac{V_{in}}{I_{in}} = \frac{1}{g_m + g_{mb} + \frac{1}{r_o} - g_m \frac{r_o \parallel R_L}{r_o}} \approx \frac{1}{g_m}$$

 V_{out}

Cascode amplifier

 V_{out}

Cascode amplifier

- Want to find equivalent gm', r_{out} for combined circuit
- $Gm' = i_{out}/v_{in}$ for $R_L = 0$
 - KCL for v_{mid}:

$$0 = v_{in}g_{m1} + \frac{v_{mid}}{r_{o1}} + \frac{v_{mid}}{r_{o2}} + v_{mid}g_{m2}$$

$$i_{out} = \frac{v_{mid}}{r_{o2}} + v_{mid}g_{m2} = v_{in}\frac{g_{m1}r_{o1}(1 + g_{m2}r_{o2})}{g_{m2}r_{o1}r_{o2} + r_{o1} + r_{o2}}$$

$$g_{m} = \frac{g_{m1}r_{o1}r_{o2}(1 + g_{m2}r_{o2})}{g_{m2}r_{o1}r_{o2} + r_{o1}r_{o2} + r_{o2}} \approx g_{m1}$$

$$i_{out} = \frac{v_{mid}}{r_{o2}} + v_{mid} g_{m2} = v_{in} \frac{g_{m1} r_{o1} (1 + g_{m2} r_{o2})}{g_{m2} r_{o1} r_{o2} + r_{o1} + r_{o2}}$$

$$g_{m} = \frac{g_{m1} r_{o1} r_{o2} (1 + g_{m2} r_{o2})}{g_{m2} r_{o1} r_{o2}^{2} + r_{o1} r_{o2} + r_{o2}^{2}} \approx g_{m1}$$

$$r_{out} = i_{out}/v_{out}$$
 for $v_{in} = 0$

– KCL for v_{mid}:

$$0 = \frac{v_{mid}}{r_{o1}} + \frac{v_{mid} - v_{out}}{r_{o2}} + v_{mid} g_{m2}$$

$$I_{out} = \frac{v_{mid} - v_{out}}{r_{o2}} + v_{mid} g_{m2} = v_{out} \left(\frac{r_{o1} (1 + g_{m2} r_{o2})}{g_{m2} r_{o1} r_{o2}^{2} + r_{o1} r_{o2} + r_{o2}^{2}} - \frac{1}{r_{o2}} \right)$$

$$= v_{out} \left(\frac{r_{o1} (1 + g_{m2} r_{o2}) - (g_{m2} r_{o1} r_{o2} + r_{o1} + r_{o2})}{g_{m2} r_{o1} r_{o2}^{2} + r_{o1} r_{o2} + r_{o2}^{2}} \right) = v_{out} \left(\frac{1}{g_{m2} r_{o1} r_{o2} + r_{o1} + r_{o2}} \right)$$

$$v_{out}$$

$$r_{out} = \frac{v_{out}}{i_{out}} = g_{m2}r_{o1}r_{o2} + r_{o1} + r_{o2} \approx g_{m2}r_{o1}r_{o2}$$

So, gain = $-g_m(r_{out}||R_L) \sim -g_{m1}((g_{m2}r_{o1}r_{o2})||R_L)$ $Max gain = -g_m r_{out} \sim -g_{m1} g_{m2} r_{o1} r_{o2}$

Differential pairs

Vod ⁴

Vid

 $-R_L I_{bias}$

- Assume the transistors are identical.
 Redefine inputs, outputs as differential.
- Redefine inputs, outputs as differential, common mode:
 - Vid = V1-V2
 - Vic = (V1+V2)/2
 - Vod = V4-V3
- $O_{2} Voc = (V4+V3)/2$
- Can also do this for drain currents:
 - Idd=Id1-Id2
 - Idc=(Id1+Id2)/2=Ibias/2
- Implies output common mode~ constant:
 - $Voc = VDD-R_LIbias/2$
- To find Vod, solve for V_C too
 - $Ib=W/L\mu c_{ox}[(V_1-V_C-V_{TH})^2+(V_2-V_C-V_{TH})^2]$
 - Vod = $R_1 \cdot W/L\mu c_{ox}[(V_1 V_C V_{TH})^2 (V_2 V_C V_{TH})^2]$

 $R_L I_{bias}$

Small-Signal, Diff Pair

9/10/09

- Again define in terms of differential, common mode:
 - $v_{id} = V1-V2$
 - $v_{ic} = (V1+V2)/2$
 - $v_{od} = V4-V3$
 - $v_{oc} = (V4+V3)/2$
- Use half circuit analysis:
- Common mode, combine both sides in parallel
 - $v_{cs} \sim v_{ic}$ (if 2gm>>1/ r_{ob})
 - $-i_b \sim v_{ic}/r_{ob}$, $v_{oc} = i_b R_L/2$
 - Gain: $A_c = v_{oc}/v_{ic} = R_L/2r_{ob}$
- Differential mode, insert "virtual grounds" at symmetry points
 - $-A_d=v_{od}/v_{id}=(-gm(R_L||_{ro}))$
 - Differential mode just like a common-source amp!
- Common mode rejection:
 - Ad/Ac ~gm/2r_{ob}

ECE 4530, Cornell University Prof Alyosha Molnar

Accounting for device capacitance

- Expect capacitance across oxide
 - from gate to channel:
 - to source
 - and to drain
- Expect depletion capacitance:
 - from bulk to channel,
 - to source
 - and to drain
- Where, c_{ox} is the unit oxide cap
 - $c_{ox} = 4fF/\mu m^2 12fF/\mu m^2$
- c_{ol} is the overlap capacitance
 - c_{ol} $\sim 0.2 fF/\mu m$
- c_{depl} is the unit depletion cap
 - $c_{depl} \sim c_{ox}/5$ (when in inversion)
- c_i is the reversed-biased junction cap
 - $-c_i(V) \sim 0.3 fF/(1+V/0.7)^{1/2}$

Complete small signal model

- Want to eliminate channel node:
 - Generally neglect c_{depl} unless in cut-off
- In triode $(V_{DS} = 0)$
 - Split C_{qch} between source, drain

$$c_{gs} = c_{ol} \cdot W + c_{ox} \cdot W \cdot L/2$$

$$c_{gd} = c_{ol} \cdot W + c_{ox} \cdot W \cdot L/2$$

- In saturation
 - channel tied only to source,
 - but close to pinch off V_{Gch} → V_{TH} regardless of V_{GS}
 - So get partial coupling to source:

$$c_{gs} = c_{ol} \cdot W + c_{ox} \cdot W \cdot L \cdot 2/3$$

$$c_{gd} = c_{ol} \cdot W$$

 So get complete small signal model:

C.S. example

To find Zin, Zout, account for c_{gd} with Miller effect (or ignore it)

$$A \approx \frac{-g_m \left(\frac{R_L}{1 + g_{ds}R_L}\right)}{1 + j\omega \left(c_{db} + c_{gd}\right) \left(\frac{R_L}{1 + g_{ds}R_L}\right)}$$

$$\approx \frac{-g_m R_L}{1 + g_{ds}R_L + j\omega \left(c_{db} + c_{gd}\right)R_L}$$

$$Zin = \frac{1}{j\omega(c_{gs} + (1 - A)c_{gd})}$$

$$\approx \frac{1}{j\omega(c_{gs} + (1 + g_m R_L)c_{gd})}$$

$$Zout = \frac{\left(\frac{R_L}{1 + g_{ds}R_L}\right)}{1 + j\omega\left(c_{db} + \left(\frac{1 - A}{-A}\right)c_{gd}\right)\left(\frac{R_L}{1 + g_{ds}R_L}\right)}$$

$$\approx \frac{R_L}{1 + g_{ds}R_L + j\omega\left(c_{db} + c_{gd}\right)R_L}$$