Analysis of data about weather stations in Cordova

José Luis Puente Bodoque

June 21, 2023

Abstract

In this report I am going to show my configuration in Amazon Web Services to carry out the analysis of this assignment.

Contents

1	Amazon S3: directory hierarchy of my bucket														3						
2	\mathbf{AW}	S Glue: 1	Data	\mathbf{C}	ata	alo	og														3
3	Ana	lysis of d	lata:	qυ	ıeı	ie	s														5
	3.1	Query 1																			5
	3.2	Query 2																			6
	3.3	Query 3																			6
	3.4	Query 4																			7
	3.5	Query 5																			8
	3.6	Query 6																			8
	3.7	Query 7																			9
	3.8	Query 8																			10
	3.9	Query 9																			
	3.10	Query 10																			
\mathbf{L}	ist	of Fig	ures	8																	
	1	My bucke	et																		3
	2	File of co																			3
	3	Data file																			3

4	Overview of my table	4
5	Schema of my table	4
6		5
7	Query 1. SQL code	5
8	Query 1. Result	5
9	Query 2	6
10	Query 3	6
11	Query 4 in Athena	7
12	Query 4 in QuickSight	7
13	Query 5	8
14	Query 6	8
15	Query 7	0
16	Query 8 in Athena	1
17	Query 8 in QuickSight	1
18	Query 9	2
19	Query 10. SQL code	3
20	Query 10. Result	3

1 Amazon S3: directory hierarchy of my bucket

Figure 1: My bucket

Figure 2: File of coordinates

Figure 3: Data file

2 AWS Glue: Data Catalog

At this point I created a table and specified manually its schema. Then I created a crawler to automatically adjust the data type of the table fields in order to not receive an error when launching my first query in Athena.

Figure 4: Overview of my table

The schema of the table was modified after running the crawler.

Figure 5: Schema of my table

Figure 6: Crawler for data

3 Analysis of data: queries

3.1 Query 1

List of names of weather stations in Cordova.

Figure 7: Query 1. SQL code

Figure 8: Query 1. Result

3.2 Query 2

List of days when it rained.

Figure 9: Query 2

3.3 Query 3

Name of the station, minimum temperature and date of the days when minimum temperature was below 10° C.

Figure 10: Query 3

3.4 Query 4

Maximum of recorded rain in each station. Bar chart with that information.

Figure 11: Query 4 in Athena

Figure 12: Query 4 in QuickSight

3.5 Query 5

Bar chart with total rain for each station.

Figure 13: Query 5

3.6 Query 6

Mean maximum temperature by day.

Figure 14: Query 6

3.7 Query 7

Map showing the total rain for each station. In order to convert bad degree, minutes and seconds format into decimal format, I have typed the Python code below.

```
import csv
1
2
3
    def convert_coordinates(coordinate):
4
        direction = coordinate[-1]
         coordinate = coordinate[:-1]
6
         degrees = float(coordinate[:2])
        minutes = float(coordinate[2:4])
8
         seconds = float(coordinate[4:6])
9
        decimal = degrees + minutes/60 + seconds/3600
10
11
         if direction in ['S', 'W']:
12
             decimal *= -1
14
        return decimal
15
16
17
    def convert_csv_coordinates(input_file, output_file):
18
        with open(input_file, 'r') as file:
19
             reader = csv.DictReader(file, delimiter=';')
20
             headers = reader.fieldnames
21
22
             # Add new headers for decimal coordinates
23
             headers.extend(['DEC_LATITUDE', 'DEC_LONGITUDE'])
24
25
             rows = []
26
             for row in reader:
27
                 latitude = row['SLATITUD']
28
                 longitude = row['SLONGITUD']
29
                 new_latitude = convert_coordinates(latitude)
30
                 new_longitude = convert_coordinates(longitude)
                 row['DEC_LATITUDE'] = new_latitude
                 row['DEC_LONGITUDE'] = new_longitude
33
34
                 rows.append(row)
35
```

```
36
        with open(output_file, 'w', newline='') as file:
37
            writer = csv.DictWriter(file, fieldnames=headers)
            writer.writeheader()
39
            writer.writerows(rows)
40
41
42
    if __name__ == '__main__':
43
44
        input_file = 'data/ria_exportacion_localizacion_estaciones_20140205.csv'
45
        output_file = 'data/coordenadas_ria.csv'
46
        convert_csv_coordinates(input_file, output_file)
```


Figure 15: Query 7

3.8 Query 8

Mean maximum temperature by month in the stations of Bélmez, Hornachuelos and Palma del Río. Line chart with that information.

Figure 16: Query 8 in Athena

Figure 17: Query 8 in QuickSight

3.9 Query 9

Mean maximum temperature by hour for each station. Group by station and hour of the day. Keep in mind that in the data sources files, hour and minute are represented by a 4 digit number and the division (/) has to be used to extract the hour.

Figure 18: Query 9

3.10 Query 10

Mean temperature depending on the wind direction. Four values are required: north wind (between 315° and 45°), east wind (between 45° and 135°), south wind (between 135° and 225°), and west wind (between 225° and 315°).

Figure 19: Query 10. SQL code

Figure 20: Query 10. Result