table_materials

anjie

2023-01-14

```
library(tidyverse)
## -- Attaching packages -----
                                               ----- tidyverse 1.3.2 --
## v ggplot2 3.3.6
                   v purrr
                                0.3.5
## v tibble 3.1.8
                      v dplyr
                               1.0.10
## v tidyr
          1.2.1
                      v stringr 1.4.1
           2.1.3
## v readr
                      v forcats 0.5.2
## -- Conflicts -----
                                           ## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(here)
## here() starts at /Users/caoanjie/Desktop/projects/metalabr_exp
library(metafor)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
      expand, pack, unpack
##
## Loading required package: metadat
## Loading the 'metafor' package (version 3.8-1). For an
## introduction to the package please type: help(metafor)
library(kableExtra)
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in%: 'length(x) = 2 > 1' in coercion to 'logical(1)'
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
```

```
library(xtable)
library(ggthemes)

source(here("helper/summary_table_help.r"))

d <- read.csv(here("data/clean_data.csv"))
summary_d <- readRDS(here("cached_data/summary_d.Rds"))</pre>
```

summary table

- name of phenomenon
- n studies
- n effects
- n kids
- age range
- mean age
- average effect size

Reseach Area	N Studies	N effect sizes	N participants	Mean age (months)	Age range	Average Effect Size
Abstract rule learning	20	95	1123	7.76	[3.91,13.47]	0.22 [0.07,0.37]
Categorization	1 9	80	382	51.18	[15.56,336.01]	0.25 [-0.54,1.05]
Cross- situational word	16	48	2241	56.57	[12.23,131.01]	0.67 [0.5,0.84]
learning Familiar word recognition	16	34	586	10.93	[4.86,15.01]	0.54 [0.38,0.69]
Gaze following (combined)	27	81	1407	11.05	[3.2,23.99]	0.81 [0.61,1.01]
Infant directed speech	21	83	985	6.30	[0.07,18.59]	0.47 [0.28,0.65]
Label advantage in concept learning	16	100	1644	10.96	[3,17.94]	0.36 [0.23,0.48]
Language discrimina- tion and preference	36	153	2060	4.43	[0.05,11.56]	-0.13 [-0.26,0]
Mispronunciat sensitivity		249	2122	20.50	[6.83, 44.22]	0.45 [0.24,0.66]
Mutual exclusivity	45	131	2222	35.17	[14.63,126]	1.27 [0.99,1.56]
Natural speech preference	19	55	786	4.60	[0.05, 12.5]	$\begin{bmatrix} 0.44 \\ [0.23, 0.65] \end{bmatrix}$
Online word recognition	6	14	330	20.46	[14.98,30]	1.37 [0.78,1.96]
Prosocial agents	26	61	1244	12.82	[4.57, 31.54]	0.4 [0.29,0.52]
Simple arithmetic competences	6	14	369	5.85	[4.8, 9.17]	0.25 [0.04,0.46]
Sound symbolism	11	44	425	12.70	[4.14, 37.98]	0.16 [-0.01,0.33]
Statistical sound category learning (habituation)	6	11	350	6.73	[2.5,11.49]	0.56 [0.19,0.93]
Statistical word seg-	31	103	804	9.08	[5.88,18.66]	-0.08 [-0.18,0.02]
mentation Switch task	47	143	2764	15.99	[12.34,24.9]	-0.16 [-0.25,-0.06]
Symbolic play	31	196	7148	28.46	[11,67.51]	0.63 [0.53,0.72]
Syntactic bootstrap- ping	18	60	832	24.93	[14.9,42]	0.24 [0.03,0.44]
Vowel dis- crimination	33	143	2418	7.65	[0.1, 29.97]	0.59 [0.43,0.75]

```
colnames(summary_d_print) <-c("Reseach Area",</pre>
                    "N Studies",
                   "N effect sizes",
                    "N participants",
                    "Mean age (months)",
                    "Age range",
                    "Average Effect Size")
table <- xtable::xtable(as.matrix(summary_d_print),</pre>
                        caption = "LMAO")
print.xtable(table, include.rownames = FALSE, comment = FALSE,
             size="\\fontsize{8pt}{9pt}\\selectfont")
## \begin{table}[ht]
## \centering
## \begingroup\fontsize{8pt}{9pt}\selectfont
## \begin{tabular}{1111111}
##
     \hline
## Reseach Area & N Studies & N effect sizes & N participants & Mean age (months) & Age range & Average
##
## Abstract rule learning & 20 & 95 & 1123 & 7.76 & [3.91,13.47] & 0.22 [0.07,0.37] \\
     Categorization bias & 9 & 80 & 382 & 51.18 & [15.56,336.01] & 0.25 [-0.54,1.05] \\
     Cross-situational word learning & 16 & 48 & 2241 & 56.57 & [12.23,131.01] & 0.67 [0.5,0.84] \\
##
     Familiar word recognition & 16 & 34 & 586 & 10.93 & [4.86,15.01] & 0.54 [0.38,0.69] \
##
##
    Gaze following (combined) & 27 & 81 & 1407 & 11.05 & [3.2,23.99] & 0.81 [0.61,1.01] \\
##
     Infant directed speech preference & 21 & 83 & 985 & 6.30 & [0.07,18.59] & 0.47 [0.28,0.65] \\
##
     Label advantage in concept learning & 16 & 100 & 1644 & 10.96 & [3,17.94] & 0.36 [0.23,0.48] \\
##
     Language discrimination and preference & 36 & 153 & 2060 & 4.43 & [0.05,11.56] & -0.13 [-0.26,0]
##
     Mispronunciation sensitivity & 32 & 249 & 2122 & 20.50 & [6.83,44.22] & 0.45 [0.24,0.66] \\
##
    Mutual exclusivity & 45 & 131 & 2222 & 35.17 & [14.63,126] & 1.27 [0.99,1.56] \\
     Natural speech preference & 19 & 55 & 786 & 4.60 & [0.05,12.5] & 0.44 [0.23,0.65] \\
##
##
     Online word recognition & 6 & 14 & 330 & 20.46 & [14.98,30] & 1.37 [0.78,1.96] \\
     Prosocial agents & 26 & 61 & 1244 & 12.82 & [4.57,31.54] & 0.4 [0.29,0.52] \\
##
##
     Simple arithmetic competences & 6 & 14 & 369 & 5.85 & [4.8,9.17] & 0.25 [0.04,0.46] \\
     Sound symbolism & 11 & 44 & 425 & 12.70 & [4.14,37.98] & 0.16 [-0.01,0.33] \\
##
##
     Statistical sound category learning (habituation) & 6 & 11 & 350 & 6.73 & [2.5,11.49] & 0.56 [
##
     Statistical word segmentation & 31 & 103 & 804 & 9.08 & [5.88,18.66] & -0.08 [-0.18,0.02] \\
##
     Switch task & 47 & 143 & 2764 & 15.99 & [12.34,24.9] & -0.16 [-0.25,-0.06] \\
##
     Symbolic play & 31 & 196 & 7148 & 28.46 & [11,67.51] & 0.63 [0.53,0.72] \\
##
     Syntactic bootstrapping & 18 & 60 & 832 & 24.93 & [14.9,42] & 0.24 [0.03,0.44] \\
     Vowel discrimination (native) & 33 & 143 & 2418 & 7.65 & [0.1,29.97] & 0.59 [0.43,0.75] \\
     Vowel discrimination (non-native) & 15 & 49 & 600 & 8.24 & [2.41,17.78] & 0.65 [0.2,1.1] \\
##
##
     Word Segmentation (combined) & 74 & 315 & 2910 & 9.24 & [4.46,24.74] & 0.2 [0.14,0.26] \\
      \hline
##
## \end{tabular}
## \endgroup
## \caption{LMAO}
## \end{table}
```

curve table

Dataset		Log	Quadratic	Constant
Label advantage in concept learning	169.48	168.53	170.16	170.89
Vowel discrimination (native)	256.49	256.13	256.78	255.15
Vowel discrimination (non-native)	73.25	73.36	73.15	71.69
Statistical word segmentation	128.84	129.01	128.62	127.5
Online word recognition	46.5	46.73	46.65	48.72
Mutual exclusivity	421.6	415.85	432.76	453.07
Sound symbolism	58.2	58.16	58.83	61.04
Categorization bias	300.29	299.99	300.37	300.9
Familiar word recognition	27.46	28.32	27.18	28.86
Abstract rule learning	140.8	141.34	140.47	140.91
Switch task	204.79	204.81	204.73	203.67
Mispronunciation sensitivity	620.05	628.16	613.67	644.4
Prosocial agents	82.16	81.95	82.23	80.08
Simple arithmetic competences	22.91	23.01	22.81	16.26
Symbolic play	234.15	234.11	234.13	233.57
Natural speech preference	111.4	112.01	110.97	111.83
Cross-situational word learning	79.81	81.62	79.7	83.71
Language discrimination and preference	264.7	265.59	262.65	264.95
Syntactic bootstrapping	107.28	106.99	107.57	107.47
Statistical sound category learning (habituation)	33.47	34.54	32.94	30.46
Gaze following (combined)	151.53	159.88	149.47	193.2
Word Segmentation (combined)	328.83	328.6	329.16	327.55
Infant directed speech preference	70.17	70.87	70.06	69.13

moderators plot

```
best_fit_bmeasure_model_df <- readRDS(here("cached_data/best_fit_behavioral_measure_df.Rds"))</pre>
best_fit_exposure_phase_df <- readRDS(here("cached_data/best_fit_exposure_phase.Rds"))</pre>
best_fit_real_visual_df <- readRDS(here("cached_data/best_fit_real_visual_df.Rds"))</pre>
best_fit_real_aud_df <- readRDS(here("cached_data/best_fit_real_aud_df.Rds"))</pre>
best_fit_major_author_df <- readRDS(here("cached_data/best_fit_major_author_df.Rds"))
# baseline is looking
bmeasure_df <- best_fit_bmeasure_model_df %>%
  filter(grepl("behavioral_measure", term)) %>%
  mutate(term_print = case_when(
    grepl("other", term) ~ "Behavioral Measure - Other",
    TRUE ~ "Behavioral Measure - Sucking"
  )) %>%
  select(dataset, term_print, estimate, std.error)
# baseline is conditionining
ep_df <- best_fit_exposure_phase_df %>%
  filter(grepl("exposure_phase", term)) %>%
  mutate(term print = case when(
    grepl("habituation", term) ~ "Exposure phase - Habituation",
    grepl("test_only", term) ~ "Exposure phase - Familiarization",
    grepl("familiarization", term) ~ "Exposure phase - Test only"
  )) %>%
  select(dataset, term_print, estimate, std.error)
rv_df <- best_fit_real_visual_df %>%
  filter(grepl("visual", term)) %>%
  mutate(term_print = "Visual stimulus type - Representation") %>%
  select(dataset, term_print, estimate, std.error)
av_df <- best_fit_real_aud_df %>%
  filter(grepl("aud", term)) %>%
  mutate(term_print = "Auditory stimulus type - Natural") %>%
  select(dataset, term_print, estimate, std.error)
ma df <- best fit major author df %>%
  filter(grepl("author", term)) %>%
  mutate(term_print = "By Major Author") %>%
  select(dataset, major_author, term_print, estimate, std.error)
all_mod_df <- bind_rows(bmeasure_df, ep_df, rv_df, av_df, ma_df) %>%
  mutate(lb = estimate - std.error * 1.96,
         ub = estimate + std.error * 1.96) %>%
  separate(term_print, into = c("type", "group"), sep = "-")
## Warning: Expected 2 pieces. Missing pieces filled with 'NA' in 28 rows [41, 42,
## 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, ...].
```

bmeasure

behavioral measure

```
bm_p <-
all_mod_df %>%
  filter(grepl("Behavioral", type)) %>%
  ggplot(aes(x = reorder(dataset, estimate), y = estimate, color = group)) +
  geom_pointrange(aes(y = estimate, ymin = lb, ymax = ub),
                   position = position_dodge(width = .4)) +
  geom_hline(yintercept = 0, linetype = "dashed")+
  coord flip() +
  xlab("") +
  ylab("") +
  labs(title = "Behavioral Measure (Baseline: looking)") +
  theme few() +
  theme(
   legend.position = c(0.8, 0.15),
   legend.title = element_blank(),
   legend.background = element_rect(fill = NA, color = NA),
   legend.text=element_text(size=6),
   plot.title = element_text(hjust = 0.5, size = 10)
```

exposure phase

```
ep_mod_p <-
all_mod_df %>%
  filter(grepl("Exposure", type)) %>%
  ggplot(aes(x = reorder(dataset, estimate), y = estimate, color = group)) +
  geom_pointrange(aes(y = estimate, ymin = lb, ymax = ub),
                   position = position_dodge(width = .4)) +
  geom_hline(yintercept = 0, linetype = "dashed")+
  coord_flip() +
    scale_x_discrete(position = "top")+
  xlab("") +
  ylab("") +
  labs(title = "Exposure phase (Baseline: Conditioning)") +
  theme_few() +
  theme(
   legend.position = c(0.8, 0.15),
   legend.title = element_blank(),
   legend.background = element_rect(fill = NA, color = NA),
   legend.text=element_text(size=6),
   plot.title = element_text(hjust = 0.5, size = 10)
```

visual

```
vr_mod_p <-</pre>
all_mod_df %>%
  filter(grepl("Visual stimulus", type)) %>%
  ggplot(aes(x = reorder(dataset,estimate), y = estimate, color = group)) +
  geom_pointrange(aes(y = estimate, ymin = lb, ymax = ub),
                   position = position_dodge(width = .4)) +
  geom_hline(yintercept = 0, linetype = "dashed")+
  coord flip() +
  scale_x_discrete(position = "top")+
  xlab("") +
  ylab("") +
  labs(title = "Visual stimulus type (Baseline: real stimulus)") +
  theme_few() +
  theme(
   legend.position = c(0.8, 0.1),
   legend.title = element_blank(),
   legend.background = element_rect(fill = NA, color = NA),
   legend.text=element_text(size=6),
   plot.title = element_text(hjust = 0.5, size = 10)
```

auditory

```
ar_mod_p <- all_mod_df %>%
 filter(grepl("Auditory stimulus", type)) %>%
  ggplot(aes(x = reorder(dataset,estimate), y = estimate, color = group)) +
  geom_pointrange(aes(y = estimate, ymin = lb, ymax = ub),
                  position = position_dodge(width = .4)) +
  geom_hline(yintercept = 0, linetype = "dashed")+
  coord_flip() +
  xlab("") +
  ylab("") +
  labs(title = "Auditory stimulus type (Baseline: artificial stimulus)") +
  theme_few() +
  theme(
   legend.position = c(0.8, 0.1),
   legend.title = element_blank(),
   legend.background = element_rect(fill = NA, color = NA),
   legend.text=element_text(size=6),
   plot.title = element_text(hjust = 0.5, size = 10)
 )
```

Major author?

```
ma_p <-
all_mod_df %>%
filter(grepl("Author", type)) %>%
```

```
ggplot(aes(x = dataset, y = estimate, group = major_author)) +
  geom_pointrange(aes(y = estimate, ymin = lb, ymax = ub),
                   position = position_dodge(width = .4)) +
  geom_hline(yintercept = 0, linetype = "dashed")+
  xlab("") +
  ylab("") +
  labs(title = "Major author (Baseline: Non-Major author)") +
  theme few() +
  theme(
   legend.position = c(0.8, 0.1),
   legend.title = element_blank(),
   legend.background = element_rect(fill = NA, color = NA),
   legend.text=element_text(size=6),
   plot.title = element_text(hjust = 0.5, size = 10),
    axis.text.x = element_text(angle = 45, hjust=1)
ma_p
```

Major author (Baseline: Non-Major author)

putting things together

```
library(patchwork)
(bm_p | ep_mod_p) / (ar_mod_p | vr_mod_p)
```


devo curves

```
all_age_pred <- readRDS(here("cached_data/min_age_pred_df.RDS"))</pre>
age_range_df <- d %>%
 group_by(ds_clean) %>%
  summarise(min_age = min(mean_age_months, na.rm = TRUE),
            max_age = max(mean_age_months, na.rm = TRUE)) %>%
  rename(ds_name = ds_clean)
categorized_age_pred_df <- all_age_pred %>%
  select(pred, ds_name) %>%
  group_by(ds_name) %>%
  mutate(mean age months = (row number() + 1) / 2) %>%
  left_join(age_range_df, by = c("ds_name")) %>%
  filter(mean_age_months > min_age,
         mean_age_months < min(36, max_age)) %>%
  mutate(
   ds_type = case_when(
      ds_name %in% c( "Language discrimination and preference",
                     "Mispronunciation sensitivity",
                     "Natural speech preference", "Sound symbolism", "Statistical sound category learning
                     "Vowel discrimination (native)",
```

```
"Vowel discrimination (non-native)" , "Word Segmentation (combined)",
                     "Statistical word segmentation") ~ "Sounds",
      ds_name %in% c("Familiar word recognition",
                     "Cross-situational word learning",
                     "Label advantage in concept learning",
                     "Mutual exclusivity",
                     "Online word recognition",
                     "Syntactic bootstrapping",
                     "Switch task") ~ "Words",
      ds_name %in% c("Gaze following (combined)",
                     "Prosocial agents",
                     "Symbolic play",
                     "Infant directed speech preference") ~ "Communication",
     ds_name %in% c("Abstract rule learning",
                     "Categorization bias",
                     "Simple arithmetic competences") ~ "Cognitive"
     )
  ) %>%
  mutate(pred = case_when(
   ds_name == "Abstract rule learning" ~ -pred,
   ds_name == "Switch task" ~ -pred,
   TRUE ~ pred
  )) %>%
  select(ds_name, ds_type, mean_age_months, pred)
label_df <- categorized_age_pred_df %>%
  filter(mean_age_months == max(mean_age_months))
label_dfx = c(
  15 - 3,
  29.5 + 11, #"Vowel discrimination (native)"
  17.5 - 5, #"Vowel discrimination (non-native)"
 18.5, #"Statistical word segmentation"
  30 + 2, #"Online word recognition"
  35.5 + 4, #Mutual exclusivity,
  35.5 + 8, #Sound symbolism,
  35.5 + 5 , # Categorization bias
  15 + 3, #Familiar word recognition
  13 + 4, #Abstract rule learning
  24.5+ 3, #Switch task,
  35.5 + 4, #"Mispronunciation sensitivity"
  31.5 + 8, #Prosocial Agents
  9 + 4, #"Simple arithmetic competences"
  35.5 + 5, #Symbolic play
  12.5 , #"Natural speech preference"
  35.5 + 3, # "Cross-situational word learning"
  11.5 + 8, # "Language discrimination and preference"
  35.5 + 5, # "Syntactic bootstrapping"
```

```
11 + 5, #"Statistical sound category learning (habituation)"
  23.5 + 4, #"Gaze following (combined)"
 24.5 + 14, #"Word Segmentation (combined)"
  18.5# "Infant directed speech preference"
label_dfy = c(
 0.05004268 - 0.5,
  0.5901183 + 0.2, #"Vowel discrimination (native)"
  0.6457766 + 1, #"Vowel discrimination (non-native)"
  -0.07808538 - 0.2, #"Statistical word segmentation"
  2.964331 + 0.5, #"Online word recognition"
  1.44 + 0.3, #Mutual exclusivity
  0.383, #Sound symbolism,
  0.275 + .4, # Categorization bias
  0.805 + 0.3, #Familiar word recognition
  0.05 - 0.5 ,#Abstract rule learning
 0.156 - 0.3, #Switch task
 1.62 + 0.5, #"Mispronunciation sensitivity"
 0.405, #Prosocial agents
 0.249 + 0.6, #"Simple arithmetic competences"
 0.627 + 0.5, #Symbolic play
 0.811 + 1.3, #"Natural speech preference"
 0.545 + .3, # "Cross-situational word learning"
 0.265 - 1, # "Language discrimination and preference"
 0.103 - 0.5, # "Syntactic bootstrapping"
 0.557 + 0.5, #"Statistical sound category learning (habituation)"
 2.99 + 0.3, #"Gaze following (combined)"
 0.2 + 1.2, #"Word Segmentation (combined)"
0.467 - 0.6# "Infant directed speech preference"
p <- categorized_age_pred_df %>%
  ggplot(aes(x = mean_age_months, y = pred, group = ds_name, color = ds_name)) +
  geom_hline(yintercept = 0, linetype = "dashed", alpha = .5) +
  geom_line(alpha = 1, width = 2)+
  geom_text(data = label_df, aes(x = x, y = y, label = ds_name),
                   size = 2.2,
                  segment.color = NA) +
  xlim(0, 48) +
  ylim(-2, 4) +
  facet_wrap(~ds_type, scales = "free") +
  theme few()+
 theme(legend.position = "none") +
 xlab("Age (months)") +
 ylab("Predicted Value")
```

Warning: Ignoring unknown parameters: width

Warning: Ignoring unknown parameters: segment.colour

 $label_df ds_n amelabel_d f mean_age_months\ label_df pred$