Internship Weekly Report – Week 5

Title Page

Name: Sandeep Ravaji Patel

Domain: Data Science **Week Number:** Week 5

Task Description

Objective:

To develop skills in building and evaluating supervised machine learning models, specifically focusing on classification and regression using Decision Tree and Logistic Regression algorithms with Scikit-Learn.

Tasks Completed:

Supervised Learning Models:

- Learned the key differences between regression and classification problems.
- Understood how Logistic Regression is used for binary classification.
- Implemented Decision Tree Classifier for rule-based decision making.

Model Building:

- Used datasets such as tennis.csv to train classification models.
- Applied Logistic Regression and Decision Tree Classifier using Scikit-Learn.
- Split data into training and test sets using train_test_split.
- Trained models and made predictions on unseen data.

Evaluation Metrics:

- Measured model performance using:
 - Accuracy Score
 - Confusion Matrix
 - Classification Report
- Interpreted confusion matrices and accuracy scores to assess model quality.

Tools Used:

- Scikit-Learn
- Pandas
- NumPy
- Jupyter Notebook

Ode Snippets / Design Screenshots

Example 1: Importing all necessary libraries

Example 2: Logistic Regression with Accuracy Score and confusion matrix

Example 3: Decision Tree Classifier with Accuracy Score and Confusion Matrix

Challenges Faced

1. Dataset Structure Understanding:

Took time to understand the structure and meaning of features in tennis.csv.

2. Classification Evaluation:

- Initially unclear on how to interpret confusion matrix outputs.
- Resolution: Reviewed metric documentation and practical examples for better clarity.

Learning Outcome

- Developed a solid understanding of classification algorithms and their real-world application.
- Built and evaluated Logistic Regression and Decision Tree models using Scikit-Learn.
- Gained experience with performance metrics like accuracy and confusion matrix.

• Improved ability to analyze results and interpret machine learning outputs.

Next Steps

For **Week 6**, the focus will be on:

- Learning Unsupervised Learning techniques.
- Implementing K-Means Clustering and performing PCA for dimensionality reduction.

Resources

- Regression Guide
- Classification Guide
- Scikit-Learn Documentation
- Dataset Used: tennis.csv