

planetmath.org

Math for the people, by the people.

proof of Dedekind domains with finitely many primes are PIDs

 ${\bf Canonical\ name} \quad {\bf ProofOfDedekindDomainsWithFinitelyManyPrimesArePIDs}$

Date of creation 2013-03-22 18:35:24 Last modified on 2013-03-22 18:35:24

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 4

Author rm50 (10146)

Entry type Proof

Classification msc 13F05 Classification msc 11R04 *Proof.* Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$ be all the primes of a Dedekind domain R. If I is any ideal of R, then by the Weak Approximation Theorem we can choose $x \in R$ such that $\nu_{\mathfrak{p}_i}((x)) = \nu_{\mathfrak{p}_i}(I)$ for all i (where $\nu_{\mathfrak{p}}$ is the \mathfrak{p} -adic valuation). But since R is Dedekind, ideals have unique factorization; since (x) and I have identical factorizations, we must have (x) = I and I is principal.