TECHNICAL REPORT DATA STREAM CLUSTERING

Affiliation: Deakin University
Date: 21-06-2024

Rohit Bohra, 22EE30039, rohitbohra03@kgpian.iitkgp.ac.in, Research Intern Meet Modi, 22EE10092,mhm20@kgpian.iitkgp.ac.in, Research Intern Priyavrat Jay Mishra, 22EE10093, priyavrat.misshra001@kgpian.iitkgp.ac.in, Research Intern Md Mutahhir Azam, 22IE10029, mutahhir azam@kgpian.iitkgp.ac.in, Research Intern

ACM Reference Format:

Xin Wang, Zhengru Wang, Zhenyu Wu, Shuhao Zhang, Xuanhua Shi, and Li Lu. 2023. Data Stream Clustering: An In-depth Empirical Study. Proc. ACM Manag. Data. 1, 2, Article 162 (June 2023), 26 pages. https://doi.org/10.1145/3589307

ABSTRACT

This research delves into the source code of recent research papers on data stream clustering, aiming to reproduce the results presented in the original works. The research paper we validated can be found here. https://doi.org/10.1145/3589307. We conducted an in-depth study of key design aspects of Dynamic Stream Clustering (DSC) algorithms, including (1) data summarization structures, (2) window models, (3) outlier detection mechanisms, and (4) offline refinement strategies. Each aspect includes multiple design choices, leading to different DSC algorithms with varying performance under diverse workloads. As part of this investigation, we implemented all these approaches within a unified framework, Sesame, https://github.com/intellistream/Sesame, using C++ to eliminate discrepancies caused by different programming languages and compilers. The **research paper also develops a novel DSC algorithm**named Benne, which integrates flexible design choices from the four key aspects. Benne demonstrates superior accuracy or efficiency compared to state-of-the-art algorithms across all tested workloads. The outcome of this research reaffirms the analysis that existing design options inherently trade-offs between accuracy and efficiency.

TABLE OF CONTENTS

- 1) Introduction
- 2) Methodology
- 3) Experimental Results
- 4) Discussion and Conclusion
- 5) Acknowledgments
- 6) References

INTRODUCTION

Data Stream Clustering (DSC) is a critical operation in data stream mining, essential for various real-world applications such as network intrusion detection, social network analysis, and weather forecasting. DSC aims to group incoming data tuples based on their real-time attribute similarities. Besides achieving high clustering accuracy, ensuring processing efficiency is crucial for DSC algorithms.

Despite the extensive application and research in DSC, selecting an appropriate DSC algorithm for real-world workloads with diverse characteristics remains challenging for researchers and practitioners. This difficulty arises from the fundamental design choices of DSC algorithms, which involve different trade-offs and performance behaviors. These design choices are interdependent, making determining the most effective combinations complex.

The paper we summarize conducts an in-depth study of the critical design aspects of DSC algorithms, focusing on (1) data summarization structures, (2) window models, (3) outlier detection mechanisms, and (4) offline refinement strategies. Each aspect encompasses multiple design choices, leading to various DSC algorithms with different behaviors under varying workloads.

The paper implemented its methodology on four real-world and two synthetic workloads with diverse characteristics. The paper also devises a novel DSC algorithm named Benne, which integrates flexible design choices from the four key aspects. Benne achieves superior accuracy or efficiency compared to the state-of-the-art algorithms across all tested workloads.

Below is a brief description of the various four design aspects of DSC Algorithms:-

Table 1. Summary of design aspects

Design Aspect	Design Choices	Efficiency	Accuracy	Notes
	CFT	high	high	efficient data insertion and some additional operations for handling cluster evolution
Summarizing	CoreT	low	High	need to rebuild the whole tree for updating lazily
Data	DPT	high	high	contain additional density information for clustering
Structure	MCs	low	high	keep basic structure of CFT and additional time information; needs to search for every clusters during data insertion
	Grids	high	low	no need for frequent distance calculation but not so much accurate during data insertion
	AMS	low	High	need to frequently rebuild the structure
Window	LandmarkWM	depends	depends	difficult to determine a suitable landmark configuration
Model	SlidingWM	high	low	fixed window size results in fewer clusters for computation
Model	DampedWM	low	depends	process all the data points with a decay function
Outlier	NoOutlierD	high	low	do not use any outlier detection mechanism
Detection	Detection OutlierD high high		high	detect outlier clusters through density and reduce the number of temporal clusters
	OutlierD-B	low	high	well handle cluster evolution among outliers and avoid cluster pollution but consumes much time to maintain the buffer
	OutlierD-T	high	high	prevent removing active clusters and be more focused on recent cluster information
	OutlierD-BT	low	high	improve the algorithms' ability for clustering evolving stream but still be low efficient in maintaining buffer
Offline	Refine	minor	minor	any existing batch-based clustering algorithms may apply to
Refinement	Reillie	overhead	impact	refine results
Reimement	NoRefine	no impact	no impact	do not apply any further refinement

^{*(}The table is sourced from the research paper)

The devised novel DSC Algorithm - "Benne," is compared with eight other standard DSC Algorithms. The paper implemented its methodology on four real-world (FCT, KDD99, Insects, Sensor) and two synthetic (EDS, ODS) workloads with diverse characteristics. Below is a brief description of the Algorithms and the datasets used for validation:-

Table 3. A summary of representative *DSC* algorithms and their design decisions. The year attribute for each algorithm is when it was first published.

Algorithm	Year	Summarizing Data Structure		Window Model	Outlier Detection	Offline Refinement
Aigorithii	icai	Name	Catalog	William Wioaci	Outher Detection	On the Reinfellen
BIRCH [38]	1996	CFT	Hierarchical	LandmarkWM	OutlierD	NoRefine
CluStream [5]	2003	MCs	Partitional	LandmarkWM	OutlierD-T	Refine
DenStream [12]	2006	MCs	Partitional	DampedWM	OutlierD-BT	Refine
DStream [14]	2007	Grids	Partitional	DampedWM	OutlierD-T	NoRefine
StreamKM++ [4]	2012	CoreT	Hierarchical	LandmarkWM	NoOutlierD	Refine
DBStream [20]	2016	MCs	Partitional	DampedWM	OutlierD-T	Refine
EDMStream [19]	2017	DPT	Hierarchical	DampedWM	OutlierD-BT	NoRefine
SL-KMeans [10]	2020	AMS	Partitional	SlidingWM	NoOutlierD	NoRefine

Table 4. Characteristics differences of selected workloads. Note that the outliers column refers to whether there are outliers in the final clustering results.

Workload	Length	Dimension	Cluster Number	Outliers	Evolving Frequency
FCT [1]	581012	54	7	False	Low
KDD99 [36]	4898431	41	23	True	Low
Insects [35]	905145	33	24	False	Low
Sensor [2]	2219803	5	55	False	High
EDS	245270	2	363	False	Varying
ODS	100000	2	90	Varying	High

*(The table is sourced from the research paper)

Specifications of our evaluation platform:-

- 1) Processor 12th Gen Intel(R) Core(TM) i5-1230U 1.00 GHz
- 2) Memory 8GB RAM
- 3) OS Windows Subsystem for Linux
- 4) Kernel 5.15.153.1-microsoft-standard-WSL2
- 5) Compiler gcc (Ubuntu 13.2.0-23 ubuntu4) 13.2.0

Software and Dependencies:-

We used Cmake Software to build automation testing. Also, dependencies like Boost Gflags were used to execute this project successfully.

EXPERIMENTAL RESULTS

We ran all the standard algorithms and "Benne" and obtained the following metrics:-

also id: 0	algo ide 2
algo_id: 0	algo_id: 2
algo: "Birch"	algo: "CluStream"
workload: "CoverType"	workload: "CoverType"
num_points: 10000	num_points: 3000
dim: 54 num_clusters: 7	dim: 54
arr_rate: 0	num_clusters: 7
max_in_nodes: 400	arr_rate: 0
max_leaf_nodes: 100	max_in_nodes: 3
distance_threshold: 600	max_leaf_nodes: 3
seed: 1	distance_threshold: 3550
coreset_size: 100	seed: 10
radius: 0.1	coreset_size: 100
delta: 10	radius: 10
beta: 0.0021	delta: 10
buf_size: 500	beta: 0.0021 buf_size: 100
alpha: 0.998	alpha: 0.998
lambda: 1	lambda: 1
clean_interval: 2500	
min_weight: 6.91692e-323	<pre>clean_interval: 2500 min_weight: 4.67642e-310</pre>
base: 2	base: 2
cm: 5	cm: 5
cl: 0.8	cl: 0.8
grid_width: 12	
min_points: 10	grid_width: 12
epsilon: 50	min_points: 10 epsilon: 50
mu: 7	mu: 7
num_last_arr: 60	num_last_arr: 2
time_window: 6	time_window: 200
num_online_clusters: 10 delta_grid: 0.2	num_online_clusters: 7
num_samples: 100	delta_grid: 0.2
landmark: 1000	num_samples: 100
sliding: 10	landmark: 1000
outlier_distance_threshold: 1000	sliding: 10
outlier_cap: 5	outlier_distance_threshold: 1000
outlier_density_threshold: 100	outlier_cap: 5
neighbor_distance: 200	outlier_density_threshold: 100
k: 2	neighbor_distance: 200
run_offline: 1	k: 7
obj: 0	run_offline: 1
queue_size_threshold: 10000	obj: 0
dim_threshold: 30	queue_size_threshold: 10000
variance_threshold: 100	dim_threshold: 30
outliers_num_threshold: 200	variance_threshold: 100
outliers_dist_threshold: 50	outliers_num_threshold: 200
cluster_size: 20 outlier_size: 0	outliers_dist_threshold: 50
win_us: 54	win_us: 0
ds_us: 90402	ds_us: 16788
out_us: 787	out_us: 0
ref_us: 49	ref_us: 2076
sum_us: 1000084	sum_us: 300005
on_20: 0.199996	on_20: 0.059745
on_40: 0.399873	on_40: 0.119584
on_60: 0.599744	on_60: 0.179566
on_80: 0.799636	on_80: 0.239481
on_100: 0.999605	on_100: 0.299293
lat_us: 24.7412	lat_us: 25.035
et_s: 1.00003	et_s: 0.299811
qps: 9999.15	qps: 9999.82
num_res: 20	num_res: 44
cmm: 0	cmm: 0
purity: 0.3798	purity: 0.298667
nmi: 0	nmi: 0

algo_id: 6
algo: "DStream"
workload: "CoverType"
num_points: 3000 dim: 54
num_clusters: 7
arr_rate: 0
max_in_nodes: 3
<pre>max_leaf_nodes: 3</pre>
distance_threshold: 3550
seed: 1
coreset_size: 100
radius: 0.1 delta: 10
beta: 0.001
buf_size: 500
alpha: 0.998
lambda: 0.998
<pre>clean_interval: 2500 min_weight: -3.10894e-257</pre>
base: 2
cm: 15
cl: 0.001
grid_width: 13
min_points: 10
epsilon: 50
mu: 7 num_last_arr: 60
time_window: 6
num_online_clusters: 10
delta_grid: 0.2
num_samples: 100
landmark: 1000
sliding: 10
outlier_distance_threshold: 1000 outlier_cap: 5
outlier_cap. 3 outlier_density_threshold: 100
neighbor_distance: 200
k: 2
run_offline: 1
obj: 0
queue_size_threshold: 10000
<pre>dim_threshold: 30 variance_threshold: 100</pre>
outliers_num_threshold: 200
outliers_dist_threshold: 50
num_grids: 677171456
gap: 74
win_us: 0
ds_us: 462064370 out us: 0
ref_us: 0
sum_us: 302667
on_20: 0.059965
on_40: 0.12527
on_60: 0.182558
on_80: 0.247444
on_100: 0.302528 lat us: 3902 57
lat_us: 3902.57 et_s: 0.302667
qps: 9911.87
num_res: 0
cmm: 0
purity: 0
nmi: 0

```
algo_id: 3
algo: "DenStream"
workload: "CoverType"
num_points: 3000
dim: 54
num_clusters: 7
arr_rate: 0
max_in_nodes: 3
max_leaf_nodes: 3
distance_threshold: 3550
seed: 1
coreset_size: 100
radius: 0.1
delta: 10
beta: 0.25
buf_size: 500
alpha: 0.998
lambda: 0.25
clean_interval: 2500
min_weight: -3.10894e-257
base: 2
cm: 5 cl: 0.8
grid_width: 12
min_points: 10
epsilon: 20
mu: 5
num_last_arr: 60
time_window: 6
num_online_clusters: 10
delta_grid: 0.2
num_samples: 100
landmark: 1000
sliding: 10
outlier_distance_threshold: 1000
outlier_cap: 5
outlier_density_threshold: 100
neighbor_distance: 200
k: 2
run_offline: 1
obj: 0
queue_size_threshold: 10000
dim_threshold: 30
variance_threshold: 100
outliers_num_threshold: 200
outliers_dist_threshold: 50
win_us: 2168
ds_us: 264381
out_us: 10754
ref_us: 68868
sum_us: 423763
on_20: 0.081822
on_40: 0.145162
on_60: 0.206022
on_80: 0.273776
on_100: 0.354234
lat_us: 25077.6
et_s: 0.354895
qps: 7079.42
num_res: 519
cmm: 0
purity: 0.592
nmi: 0
```

algo_id: 5	algo_id: 7
algo: "EDMStream"	algo: "SLKMe
workload: "CoverType"	workload: "C
num_points: 8000	num_points:
dim: 54	dim: 54
num_clusters: 7	num_clusters
arr_rate: 0	arr_rate: 0
max_in_nodes: 3	max_in_nodes
<pre>max_leaf_nodes: 3</pre>	<pre>max_leaf_nod</pre>
distance_threshold: 3550	distance_thr
seed: 1	seed: 10
coreset_size: 100	coreset_size
radius: 250	radius: 0.1
delta: 1500	delta: 10
beta: 0.0021	beta: 0.0021
buf_size: 500	buf_size: 50
alpha: 0.998	alpha: 0.998
lambda: 1	lambda: 1
clean_interval: 2500	clean_interv
min_weight: -3.10894e-257	min_weight:
base: 2	base: 2
cm: 5	cm: 5
cl: 0.8	cl: 0.8
grid_width: 12	<pre>grid_width:</pre>
min_points: 10	min_points:
epsilon: 50	epsilon: 50
mu: 7	mu: 7
num_last_arr: 60	num_last_arr
time_window: 6	time_window:
num_online_clusters: 10	num_online_c
delta_grid: 0.2	delta_grid:
num_samples: 100	num_samples:
landmark: 1000	landmark: 10
sliding: 10	sliding: 100
outlier_distance_threshold: 1000	outlier_dist
outlier_cap: 5	outlier_cap:
outlier_density_threshold: 100	outlier_dens
neighbor_distance: 200	neighbor_dis
k: 2	k: 2
run_offline: 1	run_offline:
obj: 0	obj: 0
queue_size_threshold: 10000	queue_size_t
dim_threshold: 30	dim_threshol
variance_threshold: 100	variance_thr
outliers_num_threshold: 200	outliers_num
outliers_dist_threshold: 50	outliers dis
win_us: 953	win_us: 2077
ds_us: 660703	ds_us: 19994
out_us: 10456	out_us: 0
ref_us: 199	ref_us: 290
sum_us: 819330	sum_us: 3246
on_20: 0.186956	on_20: 0.060
on_40: 0.333504	on_40: 0.119
on_60: 0.479903	on_60: 0.179
on_80: 0.639651	on_80: 0.249
on_100: 0.818549	on_100: 0.32
lat_us: 8945.6	lat_us: 4441
et_s: 0.819131	et_s: 0.3243
qps: 9764.07	qps: 9241.18
num_res: 113	num_res: 5
cmm: 0	cmm: 0.82570
purity: 0.519135	purity: 0.47
nmi: 0	nmi: 0

```
ans"
overType"
3000
   7
   3
es: 3
eshold: 3550
   100
al: 2500
-3.10894e-257
12
10
   60
lusters: 10
0.2
1
ance_threshold: 5000
10
ity_threshold: 100
tance: 200
1
hreshold: 10000
d: 30
eshold: 100
_threshold: 200
t_threshold: 50
34
022
819
728
23
3842
. 86
43
0333
```

```
OK ] System.CluStream (337 ms)
                                                   algo_id: 1
 RUN
             System.DBStream
                                                    algo: "StreamKMeans"
algo_id: 4
                                                    workload: "CoverType"
algo: "DBStream"
                                                    num_points: 3000
workload: "CoverType"
                                                    dim: 54
num_points: 581012
                                                    num_clusters: 7
dim: 2
                                                   arr_rate: 0
max_in_nodes: 3
num_clusters: 3<u>63</u>
arr_rate: 0
                                                   max_leaf_nodes: 3
distance_threshold: 3550
nax_in_nodes: 3
nax_leaf_nodes: 3
                                                    seed: 10
listance_threshold: 3550
                                                   coreset_size: 600
radius: 0.1
seed: 1
coreset_size: 100
                                                    delta: 10
radius: 20
                                                    beta: 0.0021
delta: 10
                                                    buf_size: 500
peta: 0.0021
                                                    alpha: 0.998
ouf_size: 500
                                                    lambda: 1
alpha: 0.2
                                                    clean_interval: 2500
lambda: 0.998
                                                    min_weight: -3.10894e-257
clean_interval: 400
                                                    base: 2
nin_weight: 0.5
                                                    cm: 5
pase: 2
                                                    cl: 0.8
cm: 5
                                                    grid_width: 12
:l: 0.8
grid_width: 12
                                                    min_points: 10
                                                    epsilon: 50
nin_points: 10
epsilon: 50
                                                    mu: 7
                                                    num_last_arr: 60
nu: 7
num_last_arr: 60
                                                    time_window: 6
time_window: 6
                                                   num_online_clusters: 10
delta_grid: 0.2
num_online_clusters: 10
delta_grid: 0.2
                                                    num_samples: 100
num samples: 100
                                                    landmark: 1000
landmark: 1000
                                                    sliding: 10
sliding: 10
                                                    outlier_distance_threshold: 1000
outlier_distance_threshold: 1000
                                                   outlier_cap: 5
outlier_density_threshold: 100
outlier_cap: 5
outlier_density_threshold: 100
                                                    neighbor_distance: 200
neighbor_distance: 200
k: 2
                                                    run_offline: 1
run_offline: 1
                                                    obj: 0
obj: 0
                                                    queue_size_threshold: 10000
ueue_size_threshold: 10000
                                                    dim_threshold: 30
dim_threshold: 30
                                                    variance_threshold: 100
variance_threshold: 100
                                                    outliers_num_threshold: 200
outliers_num_threshold: 200
                                                    outliers_dist_threshold: 50
outliers_dist_threshold: 50
                                                    win_us: 0
vin_us: 39823<u>7</u>7
                                                    ds_us: 224893
ds us: 214313
                                                    out_us: 0
out_us: 63285
                                                   ref_us: 7796216
sum_us: 8190544
ref_us: 55295
sum_us: 6479608
                                                    on_20: 0.059382
on_20: 2.8692
                                                    on_40: 0.119289
on_40: 3.68778
                                                    on_60: 0.190791
on_60: 4.73377
on_80: 5.63246
                                                    on_80: 0.238989
on_100: 6.42427
                                                    on_100: 0.39421
                                                   lat_us: 33213.4
et_s: 0.394328
lat_us: 2.02747e+06
et_s: 6.42431
ps: 89667.8
                                                    qps: 366.276
num_res: 41
                                                    num_res: 600
cmm: 0
                                                    cmm: 0
ourity: 0.608433
                                                    purity: 0.822333
nmi: 0
                                                   nmi: 0
```

The newly devised algorithm - "Benne," had the following metrics when run with different design aspects to maximize the accuracy and efficiency respectively:-

1) To achieve the **highest accuracy**, Benne (Accuracy) consists of **MCs** summarizing data structure, **LandmarkWM**, **OutlierD-B**, and **NoRefine**. The Algorithm achieved a **purity of 1** when run on an **EDS** workload(synthetic). The results are shown below:-

```
algo_id: 32
algo: "G12"
workload: "EDS"
num_points: 10000
dim: 2
num_clusters: 363
arr_rate: 0
max_in_nodes: 100
max_leaf_nodes: 50
distance_threshold: 10
seed: 1
coreset_size: 100
radius: 0.1
delta: 10
beta: 0.0021
buf_size: 500
alpha: 0.998
lambda: 1
clean_interval: 2500
min_weight: 4.67642e-310
base: 2
cm: 5
cl: 0.8
grid_width: 12
min_points: 10 epsilon: 50
mu: 7
num_last_arr: 60
time_window: 6
num_online_clusters: 10
delta_grid: 0.2
num_samples: 100
landmark: 1000
sliding: 10
outlier_distance_threshold: 1000
outlier_cap: 5
outlier_density_threshold: 100
neighbor_distance: 200
k: 2
run_offline: 1
obj: 0
queue_size_threshold: 10000
dim_threshold: 30
variance_threshold: 100
outliers_num_threshold: 200 outliers_dist_threshold: 50
cluster_size: 80
outlier_size: 6372
win_us: 1714
ds_us: 9004
out_us: 8863
ref_us: 541
sum_us: 1000610
on_20: 0.200005
on_40: 0.399861
on_60: 0.599823
on_80: 0.79973
on_100: 0.999547
lat_us: 6.56441
et_s: 1.00007
qps: 9993.9
num_res: 6452
cmm: 0
purity: 1
nmi: 0
```

2) In contrast, **Benne (Efficiency)** comprises **CFT** summarizing data structure, **LandmarkWM**, **OutlierD**, and **NoRefine to achieve the highest efficiency**. The results are shown below:-

```
algo_id: 23
algo: "G3"
workload: "EDS"
num_points: 45690
dim: 2
num_clusters: 75
arr_rate: 0
max_in_nodes: 100
max_leaf_nodes: 100
distance_threshold: 50
seed: 1
coreset_size: 100
radius: 0.1
delta: 10
beta: 0.0021
buf_size: 500
alpha: 0.998
lambda: 1
clean_interval: 2500
min_weight: 4.67642e-310
base: 2
cm: 5
cl: 0.8
grid_width: 12
min_points: 10
epsilon: 50
mu: 7
num_last_arr: 60
time_window: 6
num_online_clusters: 10
delta_grid: 0.2
num_samples: 100
landmark: 1000
sliding: 10
outlier_distance_threshold: 500
outlier_cap: 2000
outlier_density_threshold: 100
neighbor_distance: 200
k: 2
run_offline: 1
obj: 0
queue_size_threshold: 10000
dim_threshold: 30
variance_threshold: 100
outliers_num_threshold: 200 outliers_dist_threshold: 50
cluster_size: 89
outlier_size: 0
win_us: 70
ds_us: 17813
out_us: 18377
ref_us: 43
sum_us: 2172410
on_20: 0.91408
on_40: 1.82765
on_60: 2.15548
on_80: 2.16386
on_100: 2.17234
lat_us: 5314.83
et_s: 2.17237
qps: 21031.9
num_res: 89
cmm: 0
purity: 0.786006
nmi: 0
```

DISCUSSION AND CONCLUSION

Below are some key results from the paper:-

1. Accuracy and Efficiency Tradeoff:

Maximum accuracy and maximum efficiency cannot be achieved simultaneously. There
is always a tradeoff between the two.

2. Design Aspects:

- The algorithm's accuracy and efficiency are influenced by its design aspects, which include:
 - **Summarizing Data Structure**: Hierarchical summarizing data structures enhance efficiency, whereas partitional structures improve accuracy.
 - Window Model: The effectiveness of a window model is highly dependent on the evolution of clusters over time.
 - Outlier Detection: Implementing outlier detection mechanisms, particularly those utilizing buffers, significantly enhances clustering accuracy.
 - Offline Refinement: In most cases, offline refinement is unnecessary as it does not improve clustering results.

These insights highlight the importance of considering the tradeoffs between accuracy and efficiency when designing and selecting data clustering algorithms.

Github Link of repository containing our project:https://github.com/RohitBohra-001/Deakin-FTP-Project-Submission

ACKNOWLEDGMENTS

We express our deepest gratitude to **Dr. Ye Zhu** for providing us with this incredible opportunity and their invaluable guidance throughout this research project. Their expertise and insights have been instrumental in the completion of this work.

Additionally, We are grateful to the **Indian Institute of Technology**, **Kharagpur**, **India**, and **Deakin University**, **Australia**, for providing the necessary resources and support. This project would not have been possible without their assistance.

REFERENCES

1) Xin Wang, Zhengru Wang, Zhenyu Wu, Shuhao Zhang, Xuanhua Shi, and Li Lu. 2023. Data Stream Clustering: An In-depth Empirical Study. Proc. ACM Manag. Data. 1, 2, Article 162 (June 2023), 26 pages. https://doi.org/in C++in C++ 10.1145/3589307

2)https://github.com/intellistream/Sesame