#2

Docket No.:

K-0316

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE.

In re Application of

Dong Hi SIM

Serial No.: New U.S. Patent Application

Filed:

August 31, 2001

For:

METHOD FOR PROCESSING SIGNAL IN COMMUNICATION SYSTEM

HAVING PLURALITY ANTENNAS

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

Assistant Commissioner of Patents Washington, D. C. 20231

Sir:

At the time the above application was filed, priority was claimed based on the following application:

Korean Patent Application No. P2000-51856 filed September 2, 2000

A copy of each priority application listed above is enclosed.

Respectfully submitted, FLESHNER & KIM, LLP

Daniel X.J. Kim

Registration No. 36,186

P. O. Box 221200 Chantilly, Virginia 20153-1200 703 502-9440

Date: August 31, 2001

DYK/cah

대 한 민국 특 허 KOREAN INTELLECTUAL PROPERTY OFFICE

별첨 시본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual CERTIFIED COPY OF Property Office. PRIORITY DOCUMENT

원

특허출원 2000년 제 51856 호

PATENT-2000-0051856

Application Number

2000년 09월 02일

SEP 02, 2000

년 Date of Application

원

인

엘지정보통신주식회사

LG INFORMATION & COMMUNICATIONS LTD.

Applicant(s)

2001

07

COMMISSIONE

【서지사항】

【서류명】 특허출원서

[권리구분] 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2000.09.02

【국제특허분류】 H04B

【발명의 명칭】 적응 안테나 어레이 시스템에서의 신호처리 방법

【발명의 영문명칭】 The Method for Processing Signal in Adaptive

antenna array System

【출원인】

【명칭】 엘지정보통신 주식회사

【출원인코드】 1-1998-000286-1

【대리인】

【성명】 강용복

【대리인코드】 9-1998-000048-4

【포괄위임등록번호】 1999-057037-3

【대리인】

【성명】 김용인

[대리인코드] 9-1998-000022-1

【포괄위임등록번호】 1999-057038-1

【발명자】

【성명의 국문표기】 심동희

【성명의 영문표기】 SIM,Dong Hi

【주민등록번호】 740105-1691416

【우편번호】 151-018

【주소】 서울특별시 관악구 신림8동 1664-13번지 103호

【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합

니다. 대리인

강용복 (인) 대리인

김용인 (인)

【수수료】

【기본출원료】	20	면	29,000	원
【가산출원료】	0	면	0	원
【우선권주장료】	0	건	0	원
【심사청구료】	0	항	0	원

【합계】 29,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

출력 일자: 2001/8/8

【요약서】

[요약]

본 발명은 스마트 안태나 시스템에 관한 것으로, 특히 코드 분할 다중 접속(CDMA) 시스템에서의 실시간 적응 알고리즘을 이용한 적응 안테나 어레이 시스템에서의 신호처리 방법에 관한 것이다. 본 발명은 안테나 어레이 시스템에서 간섭과 잡음의 영향을 줄여주기 위한 웨이트 벡터를 매 스냅샷마다 제공하는 신호처리 방법에 있어서, 안테나 어레이에 수신된 신호중 역확산 되기 전과, 역확산 된 후의 수신신호 벡터로부터 각각의 자기상관 행렬을 추정하는 단계와, 상기추정된 자기상관 행렬들 중 어느 한 행렬을 대각 행렬과 비대각 행렬 부분으로 나누어, 이 두 행렬과 각각의 자기상관 행렬을 이용하여 웨이트 벡터를 산출하는 단계와,상기 산출된 웨이트 벡터와 상기 역확산 된 후 수신신호 벡터를 복소 내적 하여 안테나 어레이로부터 출력시키는 단계를 포함하여 이루어진다. 따라서,본 발명은 범형성을 위한 알고리즘을 획기적으로 간단화하여 적응 안테나 어레이의 범패턴을 실시간으로 생성할 수 있는 효과가 있다.

【대표도】

도 2

【색인어】

웨이트 벡터, 자기상관 행렬, 대각 행렬, 비대각 행렬

【명세서】

【발명의 명칭】

적응 안테나 어레이 시스템에서의 신호처리 방법{The Method for Processing Signal in Adaptive antenna array System}

【도면의 간단한 설명】

도 1은 종래 기술에 따른 안테나 어레이 시스템의 빔 형성 방법을 나타낸 도면.

도 2는 본 발명에 따른 적응 알고리즘 흐름도의 일 예를 도시한 도면. 도 3은 본 발명에 따른 적응 알고리즘 흐름도의 다른 예를 도시한 도면.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 스마트 안테나 시스템에 관한 것으로, 특히 코드 분할 다중 접속 (CDMA) 시스템에서의 실시간 적응 알고리즘을 이용한 적응 안테나 어레이 시스템 에서의 신호처리 방법에 관한 것이다.
- 5> 일반적으로, 무선통신을 행할 때, 수신되는 신호에는 원하는 신호(이하 '원 신호'라 칭함)와 간섭신호가 함께 존재하며, 통상 한 개의 원신호에 대해 다수의 간섭신호가 존재한다. 이러한 간섭신호에 의한 통신왜곡의 정도는 원신호 전력 대 모든 간섭신호 전력의 합에 의해 결정되므로, 원신호의 레벨이 간섭신호 각각

출력 일자: 2001/8/8

의 레벨보다 현저히 높은 경우에도 간섭신호의 개수가 많으면 간섭신호의 전체전력이 커져서 통신왜곡이 발생하게 된다.

- 또 1은 종래 기술에 따른 안테나 어레이 시스템의 빔 형성 방법을 나타낸 도면이다.
- 또 1을 참고하면, 일반적인 안테나 어레이 시스템에서는 안테나 어레이에 수신된 초고주파 신호를 기저대역 신호로 변환하는 주파수 하향 변환기(101)와, 상기 기저대역 신호를 디지털 신호로 변환하는 아날로그 디지털 변환기(102)와, 상기 디지털 신호를 역확산시키는 제1 곱셈기(103)와, 적분기(104)와, 원하는 신호의 이득을 높게하기 위해 웨이트 벡터를 곱해주는 제2 곱셈기(105)와, 상기 원하는 신호의 공간처리를 위함 빔 형성기(106)와, 상기 웨이트 벡터가 곱해진 신호를 합성하여 출력하는 어레이 출력기(107)로 구성된다.
- 이와 같은 구성에 의하여 종래 기술에 따른 안테나 어레이의 빔 형성 방법은 다음과 같다.
- 상기 주파수 하향 변환기(101)는 각 안테나 어레이 소자에 e^jwt를 곱하여 각각의 기저대역의 아날로그 신호들로 변환시킨다. 그리고, 이 아날로그 신호들 은 아날로그 디지털 변환기(102)에 의해 각각의 디지털 신호로 변환되고, 제 1 곱셈기(103)에서 각각의 역확산 코드가 곱해져 적분기(104)에 통과되고, 다시 제 2 곱셈기(105)에서 각각의 웨이트 벡터가 곱해져 어레이 출력기(107)를 통해 복 조기(미도시)에 입력된다.

<10> 이때, 상기 웨이트 벡터는 빔 형성기(106)에 의해 제공되는데, 빔 형성기 (106)는 상기 아날로그 디지털 변환기(102)의 출력 신호들과, 상기 적분기(104)의 출력 신호들로부터 웨이트 벡터를 갱신한다.

- 시스템에서 미리 알고 있는 코드로 역확산하기 전의 고속의 신호이고, 상기 적분기(104)의 출력 신호들은 미리 알고 있는 코드로 역확산한 후의 저속의 신호이다.
- <12> 이러한 신호들을 이용하여 종래 기술에서는 역확산 전의 신호를 샘플링한 신호의 자기상관 행렬과 역확산 후의 신호를 샘플링한 신호의 자기상관 행렬을 계산하고 그 각각의 행렬을 이용하여 공간처리를 위한 웨이트 벡터를 계산한다.
- <13> 이와 같은 종래 기술에서의 웨이트 벡터의 계산은 다음 참고문헌에 구체적으로 설명되어 있다.
- <14> 참고문헌
- <15> [1] Ayman F. Naguib. 'Adaptive Antennas for CDMA Wireless Networks', Ph.D Dissertation, Stanford University, August, 1996
- 그러나, 이와 같은 종래 기술에서의 적응 안테나 어레이를 위한 적응 알고 리즘은 일반화된 고유치 문제(generalized eigenvalue problem)를 풀기 위해 '
 Cholesky decomposition'을 해야 했고, 이 'Cholesky decomposition'으로 분리된
 두개의 행렬에 대해 하나의 행렬로 구성된 고유치 문제(eigenvalue problem)로
 만들기 위해 그 역행렬을 구하여 연산하여야 하는 번거로움이 있었으며 그 계산

량이 너무 많아 실시간 적응 어레이 알고리즘으로는 적당치 않은 문제점이 있다.

【발명이 이루고자 하는 기술적 과제】

- <17> 따라서, 본 발명의 목적은 이상에서 언급한 종래 기술의 문제점을 감안하여 안출한 것으로서, 적응 안테나 어레이에서 실시간으로 적응 알고리즘을 적용하 는데 적당하도록 하는 적응 안테나 어레이 시스템에서의 신호처리 방법을 제공하 기 위한 것이다.
- 이상과 같은 목적을 달성하기 위한 본 발명의 방법상 특징에 따르면, 안테나 어레이 시스템에서 간섭과 잡음의 영향을 줄여주기 위한 웨이트 벡터를 매스 냅샷마다 제공하는 신호처리 방법에 있어서, 안테나 어레이에 수신된 신호중 역확산 되기 전과, 역확산 된 후의 수신신호 벡터로부터 각각의 자기상관 행렬을 추정하는 단계와, 상기 추정된 자기상관 행렬들 중 어느 한 행렬을 대각 행렬과비대각 행렬 부분으로 나누어, 이 두 행렬과 각각의 자기상관 행렬을 이용하여웨이트 벡터를 산출하는 단계와, 상기 산출된 웨이트 벡터와 상기 역확산 된 후수신신호 벡터를 복소 내적 하여 안테나 어레이로부터 출력시키는 단계를 포함하여 그 특징이 이루어진다.
- <19> 바람직하게, 상기 역확산 되기 전 수신신호 벡터를

 $_{x}^{x}$, 상기 역확산 된 후 수신신호 벡터를 $_{x}^{y}$, 상기 $_{x}^{y}$ 의 자기상관 행렬을 $_{x}^{y}$, 상기 $_{x}^{y}$ 의 자기상관 행렬을 $_{x}^{y}$, 상기 $_{x}^{y}$ 의 대각 행렬 부분을 $_{x}^{y}$, 상기 $_{x}^{y}$ 의 비대각 행렬 부분을 $_{x}^{y}$, 일반화된 고유치 문제(generalized Eigenvalue problem) 인 $_{x}^{y}$ 의 최대 고유치를 $_{x}^{y}$ 의 최대 고유치를 $_{x}^{y}$ 의 제이트 벡터($_{x}^{y}$)는 $_{x}^{y}$ 의 제 의해서 산출된다.

- $^{<20>}$ 그리고, 상기 산출된 웨이트 벡터는 스냅샷 인덱스 $^{}$ k와, 이 이후의 스냅샷 인덱스 $^{}$ ($^{}$ K+1)= $\frac{(R_{yy}(R_{xx}^{})^{-1}-\lambda \ R_{xx}^{})^{-1}-\lambda \ R_{xx}^{}}{\lambda}$ ' 식에 의해서 갱신된다.
- $^{21>}$ 상기 일반화된 고유치 문제(generalized Eigenvalue problem)인 $R_{yy} \underline{\mathcal{W}} = \lambda R_{xx} \underline{\mathcal{W}}$ 의 최대 고유치인 λ 는 허미션(Hermitian) 연산자 H에 대해 $\lambda = \frac{\underline{\mathcal{W}}^H R_{yy} \underline{\mathcal{W}}}{\underline{\mathcal{W}}^H R_{xx} \underline{\mathcal{W}}}$, 식에 의해 산출된다.
- 또는 상기 역확산 되기 전 수신신호 벡터를 $\overset{\cdot}{}$, 상기 역확산 된 후 수신신호 벡터를 $\overset{\cdot}{}$, 상기 $\overset{\cdot}{}$ 의 자기상관 행렬을 $\overset{\cdot}{}$ $\overset{\cdot}{}$, 상기 $\overset{\cdot}{}$ 의 자기상관 행렬을 $\overset{\cdot}{}$ $\overset{\cdot}{}$ $\overset{\cdot}{}$ 기 $\overset{\cdot}{}$ $\overset{\cdot}{}$ 이 대각 행렬 부분을 $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}$ $\overset{\cdot}{}}$ $\overset{\cdot}{}}$
- 그리고, 상기 산출된 웨이트 벡터는 스냅샷 인덱스 k와, 이 이후의 스냅샷 인덱스 (K+1)에 대해 'Ψ(k+1)=λ RπΨ(k)(Ryy²)-1-Ryy²Ψ(k)(Ryy²)-1' 식에 의해서 갱신된다.

【발명의 구성 및 작용】

- 본 발명에서는 적응 안테나 어레이를 사용하는 장치에 적용할 웨이트 벡터 (weight vector)를 구하는 적응 알고리즘에 관한 것으로, 미리 알고 있는 채널 코드로 역확산하기 전의 각 안테나에서 수신된 신호들을 벡터로 구성한 신호 벡터와 각 안테나에서 미리 알고 있는 채널 코드로 역확산한 후의 신호들을 벡터로 구성한 신호 벡터의 자기 상관 행렬을 연산함에 있어서, 상기 역확산 전의 신호벡터의 자기 상관 행렬을 대각 행렬부분과 나머지 부분으로 분할하여 연산하도록하는 적응 알고리즘을 제안한다.
- <25> 이하 본 발명의 바람직한 일 실시 예에 따른 구성 및 작용을 첨부된 도면을 참조하여 설명한다.
- <26> 도 2는 본 발명에 따른 적응 알고리즘 흐름도의 일 예를 도시한 도면이다.
- 기 설명한 바와 같이 적응 어레이 안테나 시스템에서는 종래 기술에서는 코드 분할 다중 접속 시스템을 위해 범형성기(Beamformer)(106)에서 적용할 웨이트 벡터를 구하기 위해 미리 알고 있는 코드로 역확산하기 전의 고속의 신호와 미리 알고 있는 코드로 역확산한 후의 저속의 신호를 모두 이용하여 범형성 알고리즘을 수행한다.
- 또한, 상기 범형성 적응 알고리즘을 적용하기 위해 역확산 전의 신호를 샘플링한 신호의 자기상관 행렬과 역확산 후의 신호를 샘플링한 신호의 자기상관 행렬을 계산하고 그 각각의 행렬을 이용하여 공간처리를 위한 웨이트 벡터를 계산한다.

<29> 상기에서 미리 알고 있는 코드로 역확산하기 전의 각 안테나에서 수신된 신호들을 벡터로 구성한 신호 벡터를 쓰라 하고, 각 안테나에서 미리 알고 있는 코드로 역확산한 후의 신호들을 벡터로 구성한 신호 벡터를 쓰라고 정의한다.(S20)

- 이때, 벡터 ≛의 자기상관 행렬을 ^R☆라고 하고, 벡터 ᅶ의 자기상관 행렬을 ^R☆라고 하면 각 안테나 소자에 곱해 주어야 할 복소 이득으로 구성된 웨이트 벡터, 뽀를 구하는 식은 다음 수학식 1과 같이 일반화된 고유치 문제 (generalized Eigenvalue problem)가 된다.(S21)
- <31> 【수학식 1】 $R_{yy} \underline{w} = \lambda R_{xx} \underline{w}$
- -32> 그리고, 상기 자기상관 행렬 R **와, R ** 가는 각각 다음 수학식 2와 수학식 3 에 의하여 추정된다.
- $^{\langle 33 \rangle}$ 【수학식 2】 $R_{xx}(k) = fR_{xx}(k-1) + \underline{x}(k)\underline{x}^H(k)$
- $^{<34>}$ 【수학식 3】 $R_{yy}(k)=fR_{yy}(k-1)+\underline{y}(k)\underline{y}^H(k)$
- <35> 상기 수학식 2와 수학식 3에서 f는 0에서 1의 값을 갖는 망각인자이고, H는 허미션(Hermitian) 연산자이다.
- 상기 수학식 1에서 종래에는 웨이트 벡터를 구하기 위해서 'Cholesky decomposition'을 하였으나, 본 발명에서는 상기 자기상관 행렬 ^R

 의 대각 부분과 대각 부분을 제외한 비대각 행렬 부분으로 나누어 다음 수학식 4
 와 같이 나타낸다.(S22)
- $\langle 37 \rangle$ 【수학식 4】 $R_{yy}\underline{w} = \lambda (R_{xx}^D + R_{xx}^O)\underline{w}$

출력 일자: 2001/8/8

- 이때, R_{xx} 는 R_{xx} 의 대각 부분을 가진 행렬, 즉 R_{xx} 의 대각 부분만을 취하고 나머지 부분은 모두 0인 행렬이고 R_{xx} 는 R_{xx} 의 대각 부분을 제외한 부분을 취하고 대각 부분은 모두 0인 행렬을 각각 나타낸다.
- <39> 상기 수학식 4는 다음 수학식 5으로 다시 표현된다.
- <40> 【수학식 5】 $R_{yy} \underline{w}$ λ R_{xx} $^{O} \underline{w}$ = λ R_{xx} $^{D} \underline{w}$
- 상기 수학식 5의 양변에 상기 R_{xx}^{D} 의 역행렬을 곱하여 다음과 같이 정리한다. 본 발명에서도 R_{xx}^{D} 의 역행렬을 구해야 하지만 R_{xx}^{D} 는 대각 행렬이므로 다음과 같이 손쉽게 역행렬을 구할 수 있다.(S23)
- 예를 들어, ^{Rxx^D}를 수학식 6과 같이 쓸 수 있다고 가정하자. 대각행렬의 성질을 이용하면 수학식 6의 대각 행렬의 역행렬을 수학식 7처럼 간단하게 구할 수 있다.

<44>
$$\begin{bmatrix} D_1^{-1} & 0 & \dots 0 \\ 0 & D_2^{-1} & \dots 0 \\ & \ddots & \\ & & & \\ [수학식 7] & (R_{xx}^D)^{-1} = \begin{bmatrix} D_1^{-1} & 0 & \dots 0 \\ 0 & D_2^{-1} & \dots 0 \\ & \ddots & \\ 0 & 0 & \dots D_L^{-1} \end{bmatrix}$$

- <45> 상기 수학식 7에 의하여 상기 수학식 5는 다음과 같이 정리할 수 있다.
- <46> 【수학식 8】 $(R_{yy} \lambda R_{xx}^{O})(R_{xx}^{D})^{-1}\underline{w} = \lambda \underline{w}$
- <47> 상기 수학식 8에서 최대 고유치 λ는 다음과 같이 구해진다.(S24)

출력 일자: 2001/8/8

$$\lambda = \frac{\underline{w}^H R_{yy} \underline{w}}{\underline{w}^H R_{xx} \underline{w}}$$

<49> 그러므로, 웨이트 벡터 쓰는 다음 수학식 10과 같이 나타낼 수 있다.

이동통신 상황에서 적응 안테나 어레이에 사용할 웨이트 벡터 쓰는 계속 갱신되어야 하고 이동체를 추적할 수 있어야 하기 때문에 지금까지의 웨이트 벡 터 쓰를 구하는 방법을 상기 수학식 10으로부터 다음 수학식 11과 같이 요약할 수 있다.(S25)

$$\langle 52 \rangle$$
 【수학식 11】 $\underline{w}(k+1) = \frac{(R_{yy}(R_{xx}^{D})^{-1} - \lambda R_{xx}^{O}(R_{xx}^{D})^{-1})\underline{w}(k)}{\lambda}$

- 이때, k는 적응 안테나 어레이에 입사되는 신호를 관측하여 새로운 웨이트 벡터를 계산하는 시간을 나타내는 인덱스로, 본 발명의 신호 처리에 따르면, 매스냅샷마다 새로 입사되는 신호값에 적당한 웨이트 벡터를 산출해 냄으로써 매스냅샷마다 입사된 신호값에 적응하는 안테나 어레이를 제공할 수 있다.
- <54> 즉, 초기의 임의의 웨이트 벡터를 설정하여 상기 수학식 11과 같이 계속 갱신하게 함으로써 수렴된 웨이트 벡터를 구할 수 있고, 각 신호원의 이동을 추적하여 적응 안테나 어레이의 빔패턴을 제공할 수 있다.
- <55> 이 구해진 웨이트 벡터를 벡터 ᅶ와 복소 내적을 취하여 안테나 어레이 출력, z를 다음과 같이 구할 수 있다.(S26)
- <56> 【수학식 12】 z=뽀^HŁ

- <58> 도 3은 본 발명에 따른 적응 알고리즘 흐름도의 다른 예를 도시한 도면이다.
- 도 3을 참고하면, 먼저 미리 알고 있는 코드로 역확산하기 전의 각 안테나에서 이어 수신된 신호들을 벡터로 구성한 신호 벡터를 **라 하고, 각 안테나에서 미리알고 있는 코드로 역확산한 후의 신호들을 벡터로 구성한 신호 벡터를 **라고 정의한다.(\$30)
- 이때, 벡터 ≛의 자기상관 행렬을 R™라고 하고, 벡터 ᅶ의 자기상관 행렬을 R™라고 하면 각 안테나 소자에 곱해 주어야 할 복소 이득으로 구성된 웨이트 벡터, 뽀를 구하는 식은 상기 수학식 1과 같이 일반화된 고유치 문제 (generalized Eigenvalue problem)가 된다.(S31)
- 이때에도 상기 각각의 자기상관 행렬 Rxx와 Ryv는 상기 도 2에서의 수학식
 2와 수학식 3에 의하여 추정된다.

(63) 【수학식 13】 $(R_{yy}^D + R_{yy}^O) \underline{w} = \lambda R_{xx} \underline{w}$

- <65> 상기 수학식 13은 다음 수학식 14로 다시 표현된다.
- <66> 【수학식 14】 $R_{yy}^{D} \underline{w} = \lambda R_{xx} \underline{w} R_{yy}^{O} \underline{w}$
- 상기 수학식 14의 양변에 상기 R_{yp} 의 역행렬을 곱하여 다음과 같이 정리하면, 웨이트 벡터 끄는 수학식 15와 같이 나타낸다..(\$33)
- <68> 【수학식 15】 $\underline{w} = (\lambda R_{xx} \underline{w} R_{yy}^{O} \underline{w})(R_{yy}^{D})^{-1}$
- <69> 상기 수학식 15에서 최대 고유치 λ는 도 2에서와 마찬가지로 상기 수학식 9를 이용하여 구해진다.
- 이동통신 상황에서 적응 안테나 어레이에 사용할 웨이트 벡터 쓰는 계속 갱신되어야 하고 이동체를 추적할 수 있어야 하기 때문에 지금까지의 웨이트 벡 터 쓰를 구하는 방법은 상기 수학식 15와 상기 수학식 9에 의해 산출된 최대 고 유치 λ 로부터 다음 수학식 16과 같이 나타낼 수 있다..
- <71> 【수학식 16】 $\underline{w}(k+1) = \lambda R_{xx}\underline{w}(k) (R_{yy}^{D})^{-1} R_{yy}^{O}\underline{w}(k) (R_{yy}^{D})^{-1}$
- <72> 이때, k는 적응 안테나 어레이에 입사되는 신호를 관측하여 새로운 웨이트 벡터를 계산하는 시간을 나타내는 인덱스로, 본 발명의 신호 처리에 따르면, 매

스냅샷마다 새로 입사되는 신호값에 적당한 웨이트 벡터를 산출해 냄으로써 매 스냅샷마다 입사된 신호값에 적응하는 안테나 어레이를 제공할 수 있다.

- <73> 즉, 초기의 임의의 웨이트 벡터를 설정하여 상기 수학식 16과 같이 계속 갱신하게 함으로써 수렴된 웨이트 벡터를 구할 수 있고, 각 신호원의 이동을 추적하여 적응 안테나 어레이의 빔패턴을 제공할 수 있다.
- 이 구해진 웨이트 벡터를 벡터 스와 복소 내적을 취하여 안테나 어레이 출력, z를 도 2의 수학식 12와 같이 구할 수 있다.

【발명의 효과】

- 본 발명은 코드 분할 다중 접속 시스템을 위한 적응 어레이 안테나를 구현하는데 반드시 필요한 범형성을 위한 알고리즘을 획기적으로 간단화 하여 이동통신 상황에서 이동체를 추적하여야 하는 범형성기의 장점을 충분히 활용하기 위해 적응 안테나 어레이의 범패턴을 실시간으로 생성할 수 있다. 아울러 범형성기를 구현하는데 있어서도 간단한 알고리즘을 적용할 수 있기 때문에 DSP의 수를줄일 수 있어 비용면에서의 절감효과도 있다고 하겠다.
- 이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.
- <77> 따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정하는 것이 아니라 특허 청구 범위에 의해서 정해져야 한다.

【특허청구범위】

【청구항 1】

안테나 어레이 시스템에서 간섭과 잡음의 영향을 줄여주기 위한 웨이트 벡터를 매 스냅샷마다 제공하는 신호처리 방법에 있어서,

안테나 어레이에 수신된 신호중 역확산 되기 전과, 역확산 된 후의 수신신 호 벡터로부터 각각의 자기상관 행렬을 추정하는 단계와;

상기 추정된 자기상관 행렬들 중 어느 한 행렬을 대각 행렬과 비대각 행렬 부분으로 나누어, 이 두 행렬과 각각의 자기상관 행렬을 이용하여 웨이트 벡터를 산출하는 단계와;

상기 산출된 웨이트 벡터와 상기 역확산 된 후 수신신호 벡터를 복소 내적 하여 안테나 어레이로부터 출력시키는 단계를 포함하는 것을 특징으로 하는 적응 안테나 어레이 시스템에서의 신호처리 방법.

【청구항 2】

제 1항에 있어서, 상기 웨이트 벡터를 산출하는 단계에서

상기 역확산 되기 전 수신신호 벡터를 $\overset{\cdot}{=}$, 상기 역확산 된 후 수신신호 벡터를 $\overset{\cdot}{=}$, 상기 $\overset{\cdot}{=}$ 의 자기상관 행렬을 $\overset{\cdot}{=}$ 장기 $\overset{\cdot}{=}$ 의 자기상관 행렬을 $\overset{\cdot}{=}$ 장기 $\overset{\cdot}{=}$ 지기상관 행렬을 $\overset{\cdot}{=}$ 장기 $\overset{\cdot}{=}$ 지기상관 행렬을 $\overset{\cdot}{=}$ 장기 $\overset{\cdot}{=}$ 지리가 행렬 부분을 $\overset{\cdot}{=}$ 지리가 무지(generalized Eigenvalue problem)인 $\overset{\cdot}{=}$ 지리가 할 때 상기 웨이트 벡터($\overset{\cdot}{=}$)는

 $\frac{(R_{yy}(R_{xx}^{D})^{-1} - \lambda R_{xx}^{O}(R_{xx}^{D})^{-1})\underline{w}}{\lambda} + 4에 의해서 산출되는 것을 특징으로 하는 적응 안테나 어레이 시스템에서의 신호처리 방법.$

【청구항 3】

【청구항 4】

제 2항에 있어서, 일반화된 고유치 문제(generalized Eigenvalue problem) 인 $R_{yy}\underline{w}=\lambda$ $R_{xx}\underline{w}$ 의 최대 고유치인 λ 는 허미션(Hermitian) 연산자 H에 대해 $\lambda=\frac{\underline{w}^HR_{yy}\underline{w}}{\underline{w}^HR_{xx}\underline{w}}$ ' 식에 의해 산출되는 것을 특징으로 하는 적응 안테나 어레이 시스템에서의 신호처리 방법.

【청구항 5】

제 1항에 있어서, 상기 웨이트 벡터를 산출하는 단계에서 상기 역확산 되기 전 수신신호 벡터를

【청구항 6】

【도면】

【도 2】

[도 3]

