PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA 1MAT33 ANÁLISIS FUNCIONAL

Tercera Práctica Dirigida Primer semestre 2024

Indicaciones generales:

- Duración: 120 minutos.
- Materiales o equipos a utilizar: apuntes de clase.
- Está permitido el uso de material de consulta o equipo electrónico.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total (tarea): 20 puntos.

Cuestionario:

Pregunta 1

Sea $a=(a_n)_{n=1}^{\infty}$ una secuencia de escalares y $p\geq 1$. Suponga que, para todo secuencia $(b_n)_{n\in\mathbb{N}}\in\ell_p$, la serie $\sum_{n=1}^{\infty}a_nb_n$ es convergente. Pruebe que $a\in\ell_\infty$ si p=1 y que $a\in\ell_q$ si p>1, con $\frac{1}{a}+\frac{1}{p}=1$.

Pregunta 2

Sea F un subespacio cerrado de un espacio normado $(E, ||\cdot||_E)$.

- a) Pruebe que $||[x]|| = \inf\{||x-y||_E : y \in F\}$ es una norma del espacio cociente E/F.
- b) Pruebe que si $(E, ||\cdot||_E)$ es de Banach entonces $(E/F, ||\cdot||)$ también es de Banach.
- c) ¿Si E es reflexivo en cociente E/F es reflexivo? Justifique.
- d) ¿Si $||\cdot||_E$ proviene de un producto interno la norma $||\cdot||$ proviene de un producto interno? Justifique.

Pregunta 3

Pruebe que el cerrado $E = \{ f \in C[0,1] : f(0) = 0 \} \subset C[0,1]$ no es reflexivo. Considere la norma $||\cdot||_{\infty}$.

Pregunta 4

Pruebe que el espacio ℓ_p para $p \neq 2$ no es de Hilbert.

Pregunta 5

Sea E un espacio vectorial real con producto interno, donde el cuerpo es \mathbb{R} . Pruebe que el operador

$$T: E \to E', \ T(x)(y) = \langle x, y \rangle, \ \forall \ x, y \in E$$

está bien definido. Esto es, $T(x) \in E'$ para todo $x \in E$, es lineal continuo e isometría.

Pregunta 6

Sean $(x_n)_{n\in\mathbb{N}}$ y $(y_n)_{n\in\mathbb{N}}$ dos sucesiones con norma uno en un espacio de Hilbert¹. Pruebe que si $\langle x_n, y_n \rangle \to 1$, entonces $||x_n - y_n|| \to 0$.

Pregunta 7

Sea E un espacio con producto interno. Sean $S_1 = \{x_n : n \in \mathbb{N}\}$ y $S_2 = \{y_n : n \in \mathbb{N}\}$ conjuntos ortonormales en E tales que $[x_1, \dots, x_n] = [y_1, \dots, y_n]$ para cada $n \in \mathbb{N}$. Muestre que existe una sucesión (a_n) de escalares con módulo 1 tales que $y_n = a_n x_n$.

Tarea

a) Sea $B \subset E'$. Pruebe que

$$^{\perp}B = \{x \in E : \varphi(x) = 0, \ \forall \ \varphi \in B\}$$

es cerrado de E.

- 1. Pruebe que $^{\perp}B$ es cerrado.
- 2. Si E y F son cerrados y $T \in \mathcal{L}(E, F)$. Pruebe que $ker(T) = {}^{\perp}(T'(F'))$ y $ker(T') = (T(E))^{\perp}$.
- b) Pruebe sin usar reflexividad, que si M es un subespacio cerrado de un espacio de Hilbert, $M=(M^{\perp})^{\perp}$.
- c) Sean E y F \mathbb{R} —espacios con producto interno y $T: E \to F$ un operador lineal. Pruebe que T es una isometría lineal si y solamente si $\langle T(x), T(y) \rangle = \langle x, y \rangle$ para todo $x, y \in E$.

¹Puede intentar con dos sucesiones en la bola unitaria cerrada.