TEORIA DE GRAFOS E COMPUTABILIDADE

--- - ~ ~ - ~

RELAÇÕES

- Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados S x S
- Quais seriam os elementos se tivéssemos interessados na relação de igualdade entre eles?
 Ou seja, os pares ordenados cujas componentes são iguais.
- Quais seriam os elementos se tivéssemos interessados na relação de um número ser menor do que o outro?

Definição 1 (Relação): Uma *relação* é um conjunto de pares ordenados.

```
Exemplo: R = \{ (1,3), (2,4), (1,0) \}
```

Definição 2 (Relação entre conjuntos): Seja R uma relação e sejam A e B conjuntos. Dizemos que R é uma *relação sobre* A desde que R⊆A×A e R é uma *relação de* A em (para) B se R⊆A×B.

Exemplo: Sejam A = { 1, 2, 3 } e B = { 3, 4, 5, 6} temos as relações:

- 1) $R = \{ (1,3), (2,3), (1,1) \}$ é sobre A;
- 2) $S = \{ (3,3), (3,4), (4,6) \} \text{ \'e sobre B};$
- 3) $T = \{ (1,3), (1,4), (2,6) \}$ é de A em B.

Uma relação de A em B é um subconjunto R de pares ordenados onde:

- o primeiro elemento do par vem de A;
- o segundo elemento do par vem de B.

Usamos xRy para indicar $(x, y) \in R$. Dessa forma, temos que x está **relacionado** com y por R.

Formalmente,

$$xRy \Leftrightarrow ((x,y) \in R)$$

OBS.: Alguns autores definem a relação aqui discutida como relação binária, porque ela relaciona elementos de dois conjuntos. Se forem mais de 2 conjuntos temos uma relação n-ária.

Ex.1: Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{a, b\}$

$$R = \{(0, a), (0, b), (1, a), (2, b)\}$$
 é uma relação de A para B

Ex.2: Seja A = {1, 2, 3, 4}

Representação Gráfica e Tabular

R	1	2	3	4
1	×	×	×	×
2		X		X
3			×	
4				×

Normalmente uma relação R entre dois conjuntos ou num mesmo conjunto, é expresso por uma propriedade.

Exemplo 2: Seja o conjunto A = { 1, 2, 3, 4}.

- a) Construa a relação R = { (a,b) | a dividido por b é um número inteiro} .
- b) Construa a representação gráfica e tabular.

Exemplo 3:

Para cada uma das relações binárias R definidas a seguir em \mathbb{N} , decida quais entre os pares ordenados dados pertencem à R:

- (a) $xRy = \{(x, y) \mid x = y + 1\}$. Pares (2, 2), (2, 3), (3, 3), (3, 2).
- (b) $xRy = \{(x, y) \mid x \text{ divide } y \}$. Pares (2, 4), (2, 5), (2, 6).
- (c) $xRy = \{(x, y) \mid x \text{ \'e impar }\}$. Pares (2, 3), (3, 4), (4, 5), (5, 6).
- (d) $xRy = \{(x,y) \mid x > y^2 \}$. Pares (1,2), (2,1), (5,2), (6,4), (4,3).

Definição (Relação inversa): Seja R uma relação. A *inversa* de R, denotada por R⁻¹, é a relação formada invertendo-se a ordem de todos os pares ordenados em R.

Exemplo: Seja R =
$$\{(1,3), (2,4), (3,6)\}$$

Então
$$R^{-1} = \{ (3,1), (4,2), (6,3) \}$$

OBS.: Se R é uma relação sobre A, então R^{-1} também o é. Se R é uma relação de A em B, então R^{-1} é uma relação de B em A.

Exercício: Dados $A = \{4, 5, 6\}$ e $B = \{0, 1, 2, 3, 4\}$. Construa uma relação e sua inversa: a) de A em B b) sobre B.

Uma relação xRy pode ser classificada em:

- um pra um: componentes x e y aparecem apenas uma vez em R
- um para muitos: componente x aparece em mais de um par
- muitos para um: componente y aparece em mais de um par
- muitos para muitos: componente x e y aparecem em mais de um par

Exercício: Sobre as seguintes relações, identifique quais são do tipo "um para um", "um para muitos", "muitos para um" ou "muitos para muitos".

```
(a) R = \{(5,2), (7,5), (9,2)\}

(b) R = \{(2,5), (5,7), (7,2)\}

(c) R = \{(7,9), (2,5), (9,9), (2,7)\}
```

Quantas relações existem em um conjunto A com n elementos?

- Quantos elementos tem o produto cartesiano A × A?
- $|A \times A| = |A| \cdot |A| = |A|^2 = n^2$
- Um conjunto qualquer com m elementos possui 2^m subconjuntos
- Uma relação R em A é um subconjunto de A x A
- Logo, existe uma relação em $A \times A$ para cada subconjunto de $A \times A$
- Como $A \times A$ possui n^2 elementos, existem $2^{(n^2)}$ relações em $A \times A$.

Exemplo: Seja A = {1,2}. Determine todas as relações de AxA.

Propriedade Reflexiva: Uma relação R em um conjunto A é chamada de **reflexiva** se $(x, x) \in R$ para todo elemento $x \in A$.

Todo x está relacionado a sí mesmo

```
 \begin{aligned} \textbf{Ex.: Sejam as relações sobre o conjunto } & A = \{1,2,3,4\} \\ & R_1 = \{(1,1),(1,2),(2,1),(2,2),(3,4)(4,1),(4,4)\} \\ & R_2 = \{(1,1),(1,2),(2,1)\} \\ & R_3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\} \\ & R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\} \\ & R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\} \\ & R_6 = \{(3,4)\} \end{aligned}
```

Quais relações são reflexivas?

Propriedade Simétrica: Uma relação R em um conjunto A é chamada de **simétrica** se $(y, x) \in R$ sempre que $(x, y) \in R$.

Se x está relacionado a y, então y está relacionado a x.

Ex.: Sejam as relações sobre o conjunto
$$A = \{1,2,3,4\}$$

$$R_1 = \{(1,1),(1,2),(2,1),(2,2),(3,4)(4,1),(4,4)\}$$

$$R_2 = \{(1,1),(1,2),(2,1)\}$$

$$R_3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$$

$$R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$$

$$R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$$

$$R_6 = \{(3,4)\}$$

Quais relações são simétricas?

Propriedade Antissimétrica: Uma relação R em um conjunto A é chamada **antissimétrica** se, para quaisquer x, y \in A, se (x, y) \in R e (y, x) \in R, então x = y.

Se x está relacionado a y e y está relacionado a x, então x = y.

```
Ex.: Sejam as relações sobre o conjunto A = \{1,2,3,4\} R_1 = \{(1,1),(1,2),(2,1),(2,2),(3,4)(4,1),(4,4)\} R_2 = \{(1,1),(1,2),(2,1)\} R_3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\} R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\} R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\} R_6 = \{(3,4)\}
```

Quais relações são anti-simétricas?

Propriedade Transitiva: Uma relação R em um conjunto A é chamada **transitiva** se, sempre que $(x, y) \in R$ e $(y, z) \in R$, então $(x, z) \in R$, $x, y, z \in A$.

Se x está relacionado a y, e y está relacionado a z, então x está relacionado a z.

Ex.: Sejam as relações sobre o conjunto
$$A = \{1,2,3,4\}$$

$$R_1 = \{(1,1),(1,2),(2,1),(2,2),(3,4)(4,1),(4,4)\}$$

$$R_2 = \{(1,1),(1,2),(2,1)\}$$

$$R_3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$$

$$R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$$

$$R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$$

$$R_6 = \{(3,4)\}$$

Quais relações são transitivas?

Resumo das Propriedades

Propriedade	Lógica	Linguagem Natural
Reflexiva	$\forall x \in A\big((x,x) \in R\big)$	Todo x está relacionado a sí mesmo
Simétrica	$\forall x \forall y \ \big((x,y) \in R \to (y,x) \in R\big)$	Se x está relacionado a y, então y está relacionado a x
Anti- Simétrica	$\forall x \forall y \ \big((x,y) \in R \land (y,x) \in R \rightarrow (x=y)\big)$	Se x está relacionado a y e y está relacionado a x , então $x = y$
Transitiva	$\forall x \forall y \forall z \Big(\big((x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R \big) \Big)$	Se x está relacionado a y, e y está relacionado a z, en- tão x está relacionado a z

Exemplos

- 3) Verifique se as relações são reflexivas, simétricas, antissimétricas ou transitivas:
- a) $R_1 = \{(a, b) | a \le b \}$
- b) $R_2 = \{(a, b) | a > b \}$
- c) $R_3 = \{(a, b) | a = b \}$
- d) $R_4 = \{(a, b) | a = b + 1 \}$
- e) $R_5 = \{(a, b) | a + b \le 3 \}$

Representação de Relações com grafos

Definição (grafo direcionado): um grafo direcionado ou dígrafo consiste em um conjunto V de vértices e um conjunto E de pares ordenados de elementos de V (arestas).

Uma relação R sobre A é ilustrada por um grafo quando:

- Cada elemento de A é representado por um vértice do grafo.
- Cada par ordenado de R é representado por uma aresta direcionada.

Relações com grafos

Exemplo:

$$A = \{a, b, c, d\} \in R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}.$$

Exercício: represente usando grafos a seguinte relação $R=\{(1,3),(1,5),(5,1),(5,2),(5,3),(5,4),(2,4),(4,3)\}$ sobre A, sabendo que o conjunto A é dado por $A=\{1,2,3,4,5\}$.

Fecho

- Assuma que R é uma relação binária sobre um conjunto A
- Assuma que R não possui uma dada propriedade P
- Podemos 'estender' R para obter uma nova relação R* que contenha P
 - R^* conterá os pares de R: $R \subseteq R^*$
 - R* conterá pares adicionais
 - Tais pares adicionais fazem com que a propriedade P seja válida
 - R* é o menor conjunto com tal propriedade
 - lacktriangle Se existir uma relação S que contém R e possui P, então $R^*\subseteq S$
 - Denominamos a relação R* de fecho de R

Fecho

Definição (Fecho de uma Relação)

Seja A um conjunto, R uma relação binária em A e P uma propriedade.

O **fecho** de R é uma relação binária R* em A que possui a propriedade P e satisfaz:

- 1. R* tem a propriedade P
- 2. R ⊂ R*
- 3. Se S é uma relação qualquer que contém R e satisfaz P, então $R^* \subseteq S$

Tipos de fechos:

- Reflexivo
- Simétrico
- Transitivo

Se uma relação R já possui uma propriedade, então ela é o seu próprio fecho em relação a mesma propriedade.

Fecho Reflexivo

Definição (Fecho Reflexivo)

O fecho reflexivo R* de uma relação binária R em A é

$$R^* = R \cup \{(x, x) \mid x \in A\}$$

- Seja $A = \{1, 2, 3\}$ e $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- R não possui a propriedade reflexiva
- Fecho Reflexivo: $R^* = R \cup \{(x, x) \mid x \in A\}$

$$R^* = \{(1,1), (1,2), (1,3), (3,1), \fbox{(2,2)}, (2,3), \fbox{(3,3)}\}$$

■ R^* é uma relação reflexiva e $R \subseteq R^*$.

Fecho Simétrico

Definição (Fecho Simétrico)

O fecho simétrico R* de uma relação binária R em A é

$$R^* = R \cup \{(y, x) \mid (x, y) \in R\}$$

- Seja $A = \{1,2,3\}$ e $R = \{(1,1),(1,2),(1,3),(3,1),(2,3)\}$
- R não possui a propriedade simétrica
- Fecho Simétrico: $R^* = R \cup \{(y,x) \mid (x,y) \in R \land (y,x) \notin R\}$

$$R^* = \{(1,1), (1,2), \boxed{(2,1)}, (1,3), (3,1), (2,3), \boxed{(3,2)}\}$$

■ R^* é uma relação simétrica e $R \subseteq R^*$.

Fecho Transitivo

Definição (Fecho Transitivo)

O **fecho transitivo** R* de uma relação binária R em A é uma relação binária que satisfaz:

- 1. R* é transitiva
- 2. R ⊂ R*
- 3. Se S é outra relação transitiva que contém R, $R^* \subseteq S$.
 - Seja $A = \{1, 2, 3\}$ e $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
 - R não possui a propriedade transitiva
 - Aplicando passos sucessivos para encontrar o Fecho Transitivo R*:
 - R^* é uma relação transitiva e $R \subseteq R^*$.
 - Se S é outra relação transitiva que contém R, então $R \subseteq R^*$ e $R^* \subseteq S$.

Fecho Transitivo

Exercício: encontre o fecho reflexivo, simétrico e transitivo, em cada caso:

Relações de Equivalência

<u>Definição</u>: (Relações de Equivalência)

Uma relação binária em um conjunto A que é reflexiva, simétrica e transitiva é chamada de relação de equivalência em A.

Exemplos: (Relações de Equivalência)

1)
$$R = \{(x, y) \mid x = y\}$$
, sobre qualquer conjunto S

$$2)R = \{(x, y) \mid x + y \text{ \'e par }\}, \text{ sobre o conjunto } N$$

 $3)R = \{(x, y) \mid x \text{ senta na mesma fileira de } y \}$, sobre $\{x \mid x \text{ \'e aluno da turma}\}$.

4)
$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$$
 sobre $A = \{1, 2, 3\}$.

Relações de Equivalência

Exemplo 1: Verifique se a relação R sobre o conjunto dos números reais tal que a relaciona b se e somente se $a-b \in \mathbb{Z}$ é uma relação de equivalência.

Reflexiva: seja o número inteiro a, então, a-a=0. E 0 está no conjunto dos inteiros;

Simétrica: sejam os números inteiros a e b, então, a-b=t, onde t é um número inteiro. E b-a=-t, e -t também é inteiro.

Transitiva: sejam os números reais a, b e c. Perceba que b-a e c-b pertencem aos inteiros. Agora, note que

$$a - c = (a - b) + (b - c)$$

Logo, a-c também pertence aos inteiros.

Conclusão: R é uma relação de equivalência.

Relações de Equivalência

Exemplo 2: Seja R a relação "x dividido por y é inteiro" no conjunto dos números inteiros com exceção do zero. R é uma relação de equivalência?

Reflexiva: seja o número inteiro a, então, a/a=1. E 1 está no conjunto dos inteiros;

Simétrica: sejam os números inteiros a e b, então, a/b=t, onde t é um número inteiro. E b/a=1/t, e 1/t só é inteiro se t=1.

Conclusão: R não é uma relação de equivalência.

Congruência módulo m

Definição (Congruência Módulo m)

Se x e y são inteiros e m > 1 é um inteiro positivo, $x \equiv y \pmod{m}$ se x - y é um múltiplo inteiro de m

- Exemplo: 27 e 2 são congruentes módulo 5, pois 27 ≡ 2 (mod 5)
- Exemplos:
 - $10 \equiv 2 \pmod{4}$, pois 4 divide 10-2
 - $35 \equiv 10 \pmod{5}$, pois 5 divide 35-10
 - $38 \equiv 2 \pmod{12}$, pois 12 divide 38-2