

Virtual, October 10-21, 2020

Optimization of Analog Accelerators for Deep Neural Networks Inference

Andrea Fasoli, Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Charles Mackin, Katherine Spoon, Alexander Friz, An Chen, Geoffrey W Burr

IBM Research - Almaden

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Objectives

- Iso-accuracy of analog hardware implementations compared to software
- Improved energy efficiency and throughput per area over conventional architectures

IEDM 2019 Reducing the Impact of Phase-Change Memory Conductance Drift on the Inference of large-scale Hardware Neural Networks

S. Ambrogio, M. Gallot, K. Spoon, H. Tsai, C. Mackin, M. Wesson, S. Kariyappa, P. Narayanan, C.-C. Liu*, A. Kumar**, A. Chen, and G. W. Burr

VLSI 2019
Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices
H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. M. Shelby, K. Rocki, A. Chen and G. W. Burr

Accelerators Architecture

Digital Accelerators

- × Consumes high energy in data movement
- X Bus has limited bandwidth & can be a bottleneck

Analog Accelerators

Mapping Multiply-Accumulate to Analog Hardware

Mapping Multiply-Accumulate to Analog Hardware

Phase Change Memory (PCM)

Programming analog G states in PCM

- PCM devices programmed using train of pulses
- Current kept constant across SET pulses
- Range of accessible conductances is limited

- Three different current programming schemes
 - Constant Current
 - Increase Current
 - Decrease Current
- Varying pulse duration extends dynamic range
- Decreasing current provides most desirable convergence trend toward analog G states

Ambrogio et al., IEDM 2019

Full 4-Analog Memory structure

2-PCM cell

$$W = G^+ - G^-$$

4-PCM cell

$$W = G^+ - G^- + (g^+ - g^-) / F$$

Inference chip

Writing Analog Weights in PCM

4-PCM cell design provides better resilience to write noise and conductance saturation

Optimized design and operation on an NLP task

Recurrent Neural Networks

Input processed over many time steps

Long Short-Term Memory (LSTM) cell

Can propagate information over many time steps

Software-Equivalent Accuracy on LSTM/PTB

Conclusions

- PCM programming scheme based on progressively decreasing current in subsequent pulses improves control on PCM conductance
- 4-PCM design improves resilience to write noise and conductance saturation
- Software-equivalent accuracy achieved on 2-layer LSTM and word-level language model on Penn Treebank

Thank you!

andrea.fasoli@ibm.com

