

Licence de Mathématiques et Informatique 2020-2021

Introduction aux probabilités

TD4 - Variables aléatoires discrètes (suite)

Exercice 1. Dans la mémoire d'un ordinateur, on appelle quartet un ensemble de 4 bits (prenant la valeur 0 ou 1). On suppose que la mémoire de l'ordinateur n'a pas été initialisée. Ainsi, tous les bits de la mémoire se trouvent, indépendamment, dans l'état 1 avec probabilité $p \in [0,1]$. On considère un quartet pris au hasard et on note X le nombre entier dont ce quartet est l'écriture en base 2.

- **1.** Quelles valeurs peut prendre X?
- **2.** Calculer la probabilité que X soit impair puis $\mathbb{P}(X > 3)$.

Exercice 2. Au bowling, Pierre a une probabilité 3/4 de faire tomber toutes les quilles (« strike »). Dans une soirée, il lance 18 boules et on considère les lancers indépendants. Soit X la variable aléatoire égale au nombre de « strike » réussis par Pierre.

- **1.** Quelle est la loi de X?
- 2. Calculer la probabilité pour que Pierre réussisse dix « strike ».
- 3. Quelle est l'espérance du nombre de « strike » réussis dans une soirée, sa variance?

Exercice 3. Une compagnie de transports possède n = 15 cars, tous en état de marche en début de journée. La probabilité pour qu'un car tombe en panne ce jour est p = 0.1.

- 1. Soit X le nombre de cars tombant en panne ce jour. Quelle est la loi de probabilité de X? En moyenne, combien de cars tombent en panne chaque jour?
- 2. Un car tombé en panne sera réparé dans la journée si un réparateur est libre, la réparation prenant le reste de la journée. Sachant que la compagnie emploie 2 réparateurs, quelle est la probabilité pour que tous les cars soient en état de marche le lendemain matin?

Exercice 4. Soient X, Y deux variables indépendantes suivant des lois de Poisson de paramètres respectifs λ et $\mu > 0$.

1. Déterminer la loi de X + Y.

- **2.** Quelle est la loi conditionnelle de X sachant $\{X + Y = n\}$ $(n \in \mathbb{N} \text{ fixé})$?
- **Exercice 5.** Dans un bureau de poste, il y a 10 guichets. En une journée, le nombre de clients qui se présentent à ce bureau de poste est une v.a. X, de loi de Poisson de paramètre λ . On suppose que les clients choisissent au hasard un guichet, de façon indépendante. Soit Y le nombre de clients qui choisissent le guichet 1.
 - **1.** Calculer $\mathbb{P}(Y = k | X = n)$ où k et n sont des entiers naturels.
 - **2.** En déduire la loi de Y et calculer $\mathbb{E}(Y)$.

Exercice 6.

Soit X et Y deux variables aléatoires indépendantes, définies sur (Ω, \mathcal{A}, P) , à valeurs dans l'ensemble des entiers naturels \mathbb{N} . On suppose que, pour tout $n \in \mathbb{N}$, $P(X = n) = (1 - a)a^n$, $P(Y = n) = (1 - b)b^n$, 0 < a, b < 1.

- **1.** On pose M = min(X, Y) et soit $k \in \mathbb{N}$.
 - **1.1.** Calculer $P(X \ge k)$.
 - **1.2.** Calculer $P(M \ge k)$ et en déduire P(M = k).
 - **1.3.** Calculer $P(Y \ge X)$.
- **2.** On suppose que a = b et on pose U = X + Y et V = Y X.
 - **2.1.** Calculer, pour $k \in \mathbb{N}$, P(U = k).
 - **2.2.** Calculer, pour $k \in \mathbb{N}$ et $l \in \mathbb{N}$, P(Y = l/U = k).
 - **2.3.** Calculer, pour $k \in \mathbb{N}$ et $r \in \mathbb{Z}$, P(M = k, V = r). Pour cela, on distinguera les cas $r \geq 0$ et r < 0.
 - **2.4.** Trouver la loi de V. Que peut-on dire des variables M et V?

Exercice 7. Soit (X,Y) un couple de variables aléatoires dont la loi de probabilité est donnée par :

$y \backslash x$	-1	1	2
-1	1/4	0	1/8
1	1/8	1/8	3/8

- **1.** Calculer la loi marginale de X, la loi marginale de Y. Calculer $\mathbb{E}[X]$ et $\mathbb{E}[Y]$.
- **2.** X et Y sont-elles indépendantes?