

Pianodo Project Update Report

Presentation by Leonardo Fusser Project Planning & Design Mohamed Tavakoli

Outline

- Recap of Pianodo (re-visit)
- Arduino pro micro board overview
- ESP32 development board overview
- 16x2 with I2C module overview
- Solenoid control and control board overview
- Logic control and control board overview
- Next steps...

Basic overview of Pianodo

A quick look at what it is again...

Arduino pro micro board

A quick overview of the board...

ESP32 development board

A quick overview of the board...

16x2 LCD with I2C module

A quick overview of the LCD display...

Solenoid control & control board overview

A quick look at how the solenoids are controlled and the PCB that holds the circuitry...

TIP120, TIP121, TIP122 (NPN); TIP125, TIP126, TIP127 (PNP)

Plastic Medium-Power Complementary Silicon Transistors

Designed for general-purpose amplifier and low-speed switching applications.

Features

- High DC Current Gain –
 h_{FE} = 2500 (Typ) @ I_C
 = 4.0 Adc
- Collector-Emitter Sustaining Voltage @ 100 mAdc

Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 2.0 \text{ Vde (Max)} @ I_C = 3.0 \text{ Ade}$$

= 4.0 Vde (Max) @ I_C = 5.0 Ade

- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- Pb-Free Packages are Available*

ON Semiconductor®

www.onsemi.com

DARLINGTON 5 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60-80-100 VOLTS, 65 WATTS

TIP12x = Device Code x = 0, 1, 2, 5, 6, or 7 A = Assembly Location Y = Year WW = Work Week

WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

TIP120, TIP121, TIP122 (NPN); TIP125, TIP126, TIP127 (PNP)

MAXIMUM RATINGS

Rating	Symbol	TIP120, TIP125	TIP121, TIP126	TIP122, TIP127	Unit
Collector-Emitter Voltage	VCEO	60	80	100	Vdc
Collector-Base Voltage	Vcs	60	80	100	Vdc
Emitter-Base Voltage	VEB		5.0		
Collector Current - Continuous - Peak	l _C		5.0 8.0		
Base Current	I _B		120		
Total Power Dissipation @ T _C = 25°C Derate above 25°C	Po	65 0.52			W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	Po	2.0 0.016		W/°C	
Unclamped Inductive Load Energy (Note 1)	E		50		mJ
Operating and Storage Junction, Temperature Range	TJ. Tstg	-65 to +150		°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	Raye	1.92	°C/W
Thermal Resistance, Junction-to-Ambient	Reja	62.5	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $l_{\rm C} = 1$ A, L = 100 mH, P.R.F. = 10 Hz, $V_{\rm CC} = 20$ V, $R_{\rm BE} = 100$ Ω

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 2) (I _C = 100 mAdc, I _B = 0)	TIP120, TIP125 TIP121, TIP126 TIP122, TIP127	VCEO(sus)	60 80 100	=	Vdc
Collector Cutoff Current (Voe = 30 Vdc, I _B = 0) (Voe = 40 Vdc, I _B = 0) (Voe = 50 Vdc, I _B = 0)	TIP120, TIP125 TIP121, TIP126 TIP122, TIP127	ICEO	=	0.5 0.5 0.5	mAde
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 80 Vdc, I _E = 0) (V _{CB} = 100 Vdc, I _E = 0)	TIP120, TIP125 TIP121, TIP126 TIP122, TIP127	I _{CBO}	Ξ	0.2 0.2 0.2	mAde
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		IEBO	_	2.0	mAdc
ON CHARACTERISTICS (Note 2)	· · · · · · · · · · · · · · · · · · ·				
DC Current Gain (I_C = 0.5 Adc, V_{CE} = 3.0 Vdc) (I_C = 3.0 Adc, V_{CE} = 3.0 Vdc)		h _{FE}	1000 1000	=	_
Collector-Emitter Saturation Voltage (I _C = 3.0 Adc, I _B = 12 mAdc) (I _C = 5.0 Adc, I _B = 20 mAdc)		VCE(sat)	=	2.0	Vdc
Base-Emitter On Voltage (I _C = 3.0 Adc, V _{CE} = 3.0 Vdc)		V _{BE(on)}	_	2.5	Vdc
OYNAMIC CHARACTERISTICS					
Small-Signal Current Gain (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc,	f = 1.0 MHz)	hre	4.0	-	_
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz	TIP125, TIP126, TIP127 TIP120, TIP121, TIP122	Соь	_	300 200	pF

Logic control & control board overview

A quick look at how the digital logic works and the PCB that holds the circuitry...

D, N, NS, J, DB, or PW Package 16-Pin SOIC, PDIP, SO, CDIP, SSOP, or TSSOP Top View

Pin Functions

	PIN						
NAME	SOIC, PDIP, SO, CDIP, SSOP, or TSSOP	LCCC	I/O	DESCRIPTION			
GND	8	10	_	Ground Pin			
OE	13	17	1	Output Enable			
QA	15	19	0	Q _A Output			
QB	1	2	0	Q _B Output			
Qc	2	3	0	Q _C Output			
QD	3	4	0	Q _D Output			
QE	4	5	0	Q _E Output			
QF	5	7	0	Q _F Output			
QG	6	8	0	Q _G Output			
Q _H	7	9	0	Q _H Output			
QH	9	12	0	Q _H Output			
RCLK	12	14	1	RCLK Input			
SER	14	18	1	SER Input			
SRCLK	11	14	1	SRCLK Input			
SRCLR	10	13	1	SRCLR Input			
NC	_	1 16 11 16	_	No Connection			
Vcc	_	20	_	Power Pin			

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

over of	perating free-air temperature range (unless other	wise noted)			
			MIN	MAX	UNIT
Vcc	Supply voltage	age		7	V
Inc	Input clamp current ⁽²⁾	$V_1 < 0$ or $V_1 > V_{CC}$		±20	mA
IOK	Output clamp current (2)	Vo < 0 or Vo > Voc		±20	mA
lo	Continuous output current	Vo = 0 to Voc		±35	mA
	Continuous current through V _{CC} or GND		±70	mA	
TJ	Junction temperature			150	°C
Tstp	Storage temperature		-65	150	°C
		·			

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Ele		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	2000	
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	1000	٧

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
 JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			SN	SN54HC595			SN74HC595		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		2	5	6	2	5	6	~
		V _{CC} = 2 V	1.5			1.5			
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			v
	A 1.5 MIN. 1. A.M. 1.	Vcc = 6 V	4.2			4.2			
	Low-level input voltage	V _{cc} = 2 V			0.5			0.5	
VIL		V _{CC} = 4.5 V			1.35			1.35	V
		V _{CC} = 6 V			1.8			1.8	
V _I	Input voltage		0		Vcc	0		Vcc	V
Vo	Output voltage		0		Vcc	0		Vcc	V
		V _{CC} = 2 V			1000			1000	
Δt/Δν	Input transition rise or fall time (2)	Vcc = 4.5 V			500			500	ns
		V _{CC} = 6 V			400			400	
TA	Operating free-air temperature	•	-55		125	-40		85	°C

Next steps

What's next for Pianodo...

Next steps

- Waiting for final electrical components to arrive.
- Assembly of all electrical components to PCBs.
- Assembly of project with electricals.
- Programming the boards.
- Esthetics and final touch-ups.