

Survival Analysis of Patients with Recurrent Bladder Cancer

Srijan Mallick Dipan Banik (under the supervision of Dr. Sudipta Das)

2nd year, M.Sc. Big Data Analytics Ramakrishna Mission Vivekananda Educational and Research Institute

Project objective

- Estimate and compare survival curves of patients undergoing different treatment methods
 - taking covariates into consideration
 - without taking covariates into consideration
- Frailty modelling for multiple recurrences (dependent time-to-event)

Group 1 - upto the first event time (118)

id	treatment	number	size	Tis	time_to_first_event	delta
1	placebo	1	1	[(0, 3)]	0	0
2	placebo	1	3	[(1, 3)]	1	0
3	placebo	2	1	[(4, 0)]	4	0
4	placebo	1	1	[(7, 0)]	7	0
5	placebo	5	1	[(10, 3)]	10	0
6	placebo	4	1	[(6, 1), (4, 3)]	6	1
7	placebo	1	1	[(14, 0)]	14	0
8	placebo	1	1	[(18, 0)]	18	0
9	placebo	1	3	[(5, 1), (13, 3)]	5	1
10	placebo	1	1	[(12, 1), (4, 1), (2, 3)]	12	1
11	placebo	3	3	[(23, 0)]	23	0
12	placebo	1	3	[(10, 1), (5, 1), (8, 0)]	10	1
13	placebo	1	1	[(3, 1), (13, 1), (7, 1)]	3	1
14	placebo	3	1	[(3, 1), (6, 1), (12, 1), (2, 2)]	3	1
15	placebo	2	3	[(7, 1), (3, 1), (6, 1), (8, 1)]	7	1
16	placebo	1	1	[(3, 1), (12, 1), (10, 1)]	3	1

Group 2 - all event times (294)

Group 1 - upto the first event time (118)

Group 2 - all event times (294)

Treatment-wise distribution of recurrences

Outlier Detection in the Covariates

Outlier Detection in the Covariates

Kaplan-Meier Estimation (no covariates into consideration)

Kaplan-Meier estimator

The Kaplan–Meier estimator is a non-parametric statistic used to estimate the survival function from time-to-event data.

$$\hat{S}(t) = \prod_{t_i \leqslant t, \, i=1}^n igg(1 - rac{d_i}{Y_i}igg)$$

Log-rank test

The log-rank test is a non-parametric hypothesis test to compare survival distributions from two samples.

The null hypothesis is that the two groups have identical hazard functions, ie :

$$H_0: h_1(t) = h_2(t)$$

Kaplan-Meier estimator of survival functions of the 3 treatment groups

		test_statistic	р	-log2(p)
placebo	pyridoxine	1.326279	0.249468	2.003072
	thiotepa	1.520945	0.217477	2.201068
pyridoxine	thiotepa	0.001407	0.970077	0.043828

Thresholding on on

```
p-value when threshold on number of tumours is 2 : 0.0017939330834322697 p-value when threshold on number of tumours is 3 : 0.007020162822710038 p-value when threshold on number of tumours is 4 : 0.0002594167683235225 p-value when threshold on number of tumours is 5 : 0.002688648730418267 p-value when threshold on number of tumours is 6 : 0.0010422478423726767 p-value when threshold on number of tumours is 7 : 0.02283357735020892 p-value when threshold on number of tumours is 8 : 0.02283357735020892
```

```
p-value when threshold on size of tumours is 2 : 0.5199524395300987 p-value when threshold on size of tumours is 3 : 0.3024758137141664 p-value when threshold on size of tumours is 4 : 0.23865366312441283 p-value when threshold on size of tumours is 5 : 0.1682752207760559 p-value when threshold on size of tumours is 6 : 0.1570410142894633 p-value when threshold on size of tumours is 7 : 0.9146316972988796 p-value when threshold on size of tumours is 8 : 0.3025414266710924
```

Kaplan-Meier estimator of survival functions of the thresholded groups

Cox Proportional Hazard Model (taking covariates into consideration)

Proportional Hazard Assumption : Schoenfeld Test

 H_0 : Hazards are proportional

H₁: Hazards are not proportional

```
chisq df p
number 0.0915 1 0.76
size 1.2041 1 0.27
GLOBAL 1.3589 2 0.51
```

Cox Proportional Hazard Model

```
> summary(cox)
Call:
coxph(formula = survobj1 ~ treatment + number + size, data = group22,
    cluster = id)
  n= 254, number of events= 162
                        coef exp(coef) se(coef) robust se
                                                              z Pr(>|z|)
treatmentpyridoxine 0.14967
                              1.16145 0.18418
                                                 0.24514 0.611 0.541516
treatmentthiotepa
                   -0.51959
                              0.59476 0.21593
                                                 0.26281 -1.977 0.048036 *
number
                     0.26014
                              1.29712 0.06319
                                                 0.07655 3.398 0.000678 ***
                    0.06854
                              1.07094 0.07729
                                                 0.09234 0.742 0.457983
size
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                   exp(coef) exp(-coef) lower .95 upper .95
treatmentpyridoxine
                                 0.8610
                                           0.7183
                                                     1.8779
                       1.1614
treatmentthiotepa
                      0.5948
                                 1.6813
                                           0.3553
                                                     0.9955
                      1.2971
                                 0.7709
                                                     1.5071
number
                                           1.1164
                      1.0709
                                 0.9338
                                           0.8936
                                                     1.2834
size
Concordance= 0.602 (se = 0.025)
Likelihood ratio test= 23.47 on 4 df,
                    = 22.79 on 4 df,
                                        p=1e-04
Score (logrank) test = 23.67 on 4 df,
                                        p=9e-05,
                                                   Robust = 12.36 p=0.01
  (Note: the likelihood ratio and score tests assume independence of
     observations within a cluster, the Wald and robust score tests do not).
```


Shared Frailty Modelling

Unobserved covariates, (U):

$$h(t) = h_0(t)e^{x'\beta + u'\beta^*}$$

$$h(t \mid z) = zh_0(t)e^{x'\beta}$$

where $z = e^{u'\beta^*}$

Conditional survival function:

$$S(t|z) = \exp(-zH_0(t))e^{x'\beta}$$

where $H_0(t)$ integrated hazard.

Unconditional survival function:

$$S(t) = E_z \left[e^{-zH_0(t)e^{x'\beta}} \right] = L_z \left[H_0(t)e^{x'\beta} \right]$$

Commenges-Anderson Test :

```
> ca_test(cox)
tstat var pval
9.377964e+01 5.482473e+02 6.197441e-05
>
```

Gamma Frailty Model:

```
> summary(gam)
Call:
emfrail(formula = Surv(start, stop, delta) ~ number + size +
    treatment + cluster(id), data = group22)
Regression coefficients:
                       coef exp(coef) se(coef) adj. se
number
                    0.3181
                              1.3745
                                       0.1203 0.1204 2.6426 0.01
size
                    0.0446
                              1.0456
                                       0.1342 0.1343 0.3324 0.74
                                       0.3573 0.3573 0.2579 0.80
treatmentpyridoxine 0.0922
                              1.0965
treatmentthiotepa -0.6704
                              0.5115 0.3599 0.3600 -1.8622 0.06
Estimated distribution: gamma / left truncation: FALSE
Fit summarv:
Commenges-Andersen test for heterogeneity: p-val 5.71e-11
no-frailty Log-likelihood: -663.099
Log-likelihood: -636.731
LRT: 1/2 * pchisq(52.7), p-val 1.91e-13
Frailty summary:
                   estimate lower 95% upper 95%
Var[Z]
                      1.296
                               0.710
                                          2.222
Kendall's tau
                     0.393
                               0.262
                                         0.526
Median concordance
                     0.396
                               0.259
                                         0.541
E[logZ]
                     -0.773
                              -1.435
                                        -0.395
Var[logZ]
                     2.431
                               1.016
                                         5.917
                     0.772
                               0.450
                                         1.409
theta
Confidence intervals based on the likelihood function
```


Thank You!