Opinion Mining and Sentiment Analysis:

Latent Aspect Rating Analysis (Part 1)

Motivation

How to infer aspect ratings?

Reviewer 1: ★★★★★ "Great location + spacious room = happy traveler" Stayed for a weekend in July. Walked everywhere,

Hotel XYX

Value

enjoyed the comfy bed and guiet hallways....

Location Service Value

Reviewer 2: ★★★★★ "Terrific service and gorgeous facility" I stayed at the hotel wiht my young daughter for three nights June 17-20, 2010 and absolutely

Location

Rooms Service

loved the hotel. The room was one of the nicest I've ever staved in ...

Service

How to infer aspect weights?

Value Location Service

Solving LARA in Two Stages

Aspect Segmentation Latent Rating Regression $c_i(w,d)$ $r_i(d)$ $\alpha_i(d)$ n Weights | Aspect Rating | Aspect Weight Aspect segments "A friend and I stayed at the Hotel ... 0.0 location:1 The hotel was very nice. The location amazing:1 3.9 was amazing. We could walk almost 0.1 walk:1 anywhere, but ... far. The room was -0.2 far:1 very nicely appointed and the bed 0.1room:1 1.7 was sooo comfortable. Even though 0.2 nicely:1 0.1 the bathroom door did not close all appointed:1 3.9 the way, it was still pretty private. ... comfortable:1 But what I liked best about the hotel 2.1 nice:1 0.6 1.2 was the staff. They were soooo nice accommod.:1 smile:1 1.7 and accommodating ..." 1.2 friendliness:1 attentiveness:1 0.6 Observed Latent!

Latent Aspect Rating Analysis [Wang et al. 10]

- Given a set of review articles about a topic with overall ratings
- Output
 - Major aspects commented on in the reviews
 - Ratings on each aspect
 - **Relative weights** placed on different aspects by reviewers

Many applications

- Opinion-based entity ranking
- Aspect-level opinion summarization
- Reviewer **preference analysis**
- **Personalized recommendation** of products

Solving LARA in Two Stages

"A friend and I stayed at the Hotel ... The hotel was very nice. The location was amazing. We could walk almost anywhere, but ... far. The room was very **nicely appointed** and the **bed** was sooo comfortable. Even though the bathroom door did not close all the way, it was still pretty private. ... But what I liked best about the hotel was the staff. They were soooo nice and accommodating ..."

Observed

Latent Rating Regression [Wang et al. 10]

- Data: a set of review docs w/overall ratings:
 C={(d, r_d)}
 - d is pre-segmented into k aspect segments
 - c_i(w,d) = count of word w in aspect segment i (zero if w didn't occur)
- Model: predict rating based on d: p(r_d | d)
 Overall Rating = Weighted Average of Aspect Ratings $r_d \sim N(\sum_{i=1}^k \alpha_i(d)r_i(d)\underline{,\delta^2}), \qquad \overline{\alpha}(d) \sim N(\underline{\overline{\mu}},\underline{\Sigma})$ $r_i(d) = \sum_{w \in V} c_i(w,d)\underline{\beta_{i,w}} \qquad \beta_{i,w} \in \mathfrak{R}$
 Aspect-Specific Sentiment of w

Aspect Rating = Sum of sentiment weights of words in the aspect

Latent Rating Regression (cont.)

- Maximum Likelihood Estimate
 - Parameters: $\Lambda = (\{\beta_{i,w}\}, \bar{\mu}, \Sigma, \delta^2)$
 - ML estimate: $\Lambda^* = arg \max_{\Lambda} \prod_{d \in C} p(r_d \mid d, \Lambda)$
- Aspect Rating for aspect i $r_i(d) = \sum\nolimits_{w \in V} c_i(w,d) \beta_{i,w} \quad \text{occurring in aspect segment i}$
- Aspect Weights: $\alpha_i(d)$ =weight on aspect i

Opinion Mining and Sentiment Analysis:

Latent Aspect Rating Analysis (Part 2)

A Unified Generative Model for LARA [Wang et al. 11]

Sample Result 2: Comparison of Reviewers [Wang et al. 10]

- Per-Reviewer Analysis
 - Different reviewers' ratings on the same hotel

Reviewer	Value	Room	Location	Cleanliness
Reviewer 1	3.7(4.0)	3.5(4.0)	3.7(4.0)	5.8(5.0)
Reviewer 2	5.0(5.0)	3.0(3.0)	5.0(4.0)	3.5(4.0)

Reveal differences in opinions of different reviewers

Sample Result 1: Rating Decomposition [Wang et al. 10]

Hotels with the same overall rating but different aspect ratings
 (All 5 Stars hotels, ground-truth in parenthesis)

Hotel	Value	Room	Location	Cleanliness
HOTEL 1	4.2(4.7)	3.8(3.1)	4.0(4.2)	4.1(4.2)
HOTEL 2	4.3(4.0)	3.9(3.3)	3.7(3.1)	4.2(4.7)
HOTEL 3	3.7(3.8)	4.4(3.8)	4.1(4.9)	4.5(4.8)

· Reveal detailed opinions at the aspect level

Sample Result 3: Aspect-Specific Sentiment Lexicon [Wang et al. 10]

Value	Rooms	Location	Cleanliness
resort 22.80	view 28.05	restaurant 24.47	clean 55.35
value 19.64	comfortable 23.15	walk 18.89	smell 14.38
excellent 19.54	modern 15.82	bus 14.32	linen 14.25
worth 19.20	quiet 15.37	beach 14.11	maintain 13.51
bad -24.09	carpet -9.88	wall -11.70	smelly -0.53
money -11.02	smell -8.83	bad -5.40	urine -0.43
terrible -10.01	dirty -7.85	road -2.90	filthy -0.42
overprice -9.06	stain -5.85	website -1.67	dingy -0.38

Learn sentimental information directly from the data.

5

Sample Result 4: Validating Preference Weights [Wang et al. 10]

Top-10: Reviewers with the highest Val/X ratio (emphasize "value")

Bot-10: Reviewers with the lowest Val/X ratio (emphasize a non-value aspect)

City	Avg. Price	Group	Val/Loc	Val/Rm	Val/Ser	
Amsterdam	241.6	top-10	190.7	214.9	221.1	
Amsterdam	241.6	bot-10	270.8	333.9	236.2	K
San	201.2	top-10	214.5	249.0	225.3	Higher!
Francisco	261.3	bot-10	321.1	311.1	311.4	¥ /
5 1	272.4	top-10	269.4	248.9	220.3	/
Florence	272.1	bot-10	298.9	293.4	292.6	V

Application 2: Discover Consumer Preferences [Wang et al. 2011]

Amazon reviews: No guidance

Table 2: Topical Aspects Learned on MP3 Reviews

Low Overall Ratings			High Overall Ratings			
unit usb battery charger reset time hours work thing wall	jack headphone warranty replacement problem player back months buy amazon	service charge problem support hours months weeks back customer time	files format included easy convert mp3 videos file wall hours	player music download headphones button set hours buds volume ear	vision video player quality great product sound radio accessory fm	

battery life accessory service file format volume video

Application 1: Rated Aspect Summarization

Aspect	Summary	Rating
	Truly unique character and a great location at a reasonable price Hotel Max was an excellent choice for our recent three night stay in Seattle.	3.1
Value	Overall not a negative experience; however, considering that the hotel industry is very much in the impressing business, there was a lot of room for improvement.	1.7
Location	The location, a short walk to downtown and Pike Place market, made the hotel a good choice.	3.7
Location	When you visit a big metropolitan city, be prepared to hear a little traffic outside!	1.2
Business	You can pay for wireless by the day or use the complimentary Internet in the business center behind the lobby, though.	2.7
Service	My only complaint is the daily charge for Internet access when you can pretty much connect to wireless on the streets anymore.	0.9

Application 3: User Rating Behavior Analysis [Wang et al. 10]

	Expensi	ve Hotel	Cheap Hotel		
	5 Stars 3 Stars		5 Stars	1 Star	
Value	0.134	0.148	0.171	0.093	
Room	0.098	0.162	0.126	0.121	
Location	0.171	0.074	0.161	0.082	
Cleanliness	0.081	0.163	0.116	0.294	
Service	0.251	0.101	0.101	0.049	
				1	

People like expensive hotels because of good service.

People like cheap hotels because of good value.

Application 4: Personalized Ranking of Entities [Wang et al. 10]

Summary of Opinion Mining

- Very <u>important</u> with a lot of applications!
- Sentiment analysis can be done using text
 categorization techniques
 - With <u>enriched feature representation</u>
 - With consideration of <u>ordering of the</u> <u>categories</u>
- Generative models are powerful for mining
 latent user preferences
- Most approaches were proposed for product reviews
- Opinion mining from news and social media remains challenging

Text-Based Prediction

The Big Picture of Prediction: Data Mining Loop

Text-Based Prediction = a Unified View of Text Mining and Analysis

Text-Based Prediction

Joint Mining and Analysis of Text and Non-Text Data

- Non-text data help text mining
 - Non-text data provide context for mining text data
 - Contextual Text Mining: Mining text in the context defined by non-text data (see [Mei 2009] for a large body of work)
 - Text data help non-text data mining
 - Text data help interpret patterns <u>discovered from non-text data</u>
 - Pattern Annotation: Using text data to interpret patterns found in non-text data (see [Mei et al. 2006] for detail)

Contextual Text Mining: Motivation

Contextual Text Mining: Motivation

- **Text** often has **rich context** information
 - Direct context (Meta-Data): time, location, authors, source, ...
 - Indirect context (additional data related to meta-data): social network of the author, author's age, other text from the same source, etc.
 - Any related data can be regarded as context
- Context can be used to
 - Partition text data for comparative analysis
 - Provide meaning to the discovered topics

Context = Partitioning of Text

Many Interesting Questions Require Contextual Text Mining

- What topics have been gaining increasing attention recently in data mining research? (time as context)
- Is there any difference in the responses of people in different regions to the event? (<u>location</u> as context)
- What are the common research interests of two researchers? (authors as context)
- Is there any difference in the research topics published by authors in the USA and those outside? (<u>author's</u> <u>affiliation and location</u> as context)
- Is there any difference in the opinions about a topic expressed on one social network and another?
 (social network of authors and topic as context)
- Are there topics in news data that are correlated with sudden changes in stock prices? (<u>time series</u> as context)
- What issues "mattered" in the 2012 presidential election? (<u>time series</u> as context)

Enables discovery of knowledge associated with different context as needed

Contextual Text Mining:

Contextual Probabilistic Latent Semantic Analysis

Contextual Probabilistic Latent Semantic Analysis (CPLSA) [Mei & Zhai 06]

General idea:

- Explicitly add interesting context variables into a generative model (→ enable discovery contextualized topics)
- Context influences both <u>coverage and content</u> <u>variation of topics</u>

As an extension of PLSA

- Model the conditional likelihood of text given context
- Assume context-dependent views of a topic
- Assume context-dependent topic coverage
- EM algorithm can still be used for parameter estimation
- Estimated parameters naturally contain context variables, enabling contextual text mining

Generation Process of CPLSA

Choose a topic

Comparing News Articles [Zhai et al. 04] Iraq War (30 articles) vs. Afghan War (26 articles)

The common theme indicates that "United Nations" is involved in both wars

	Cluster 1	Cluster 2	Cluster 3
Common	united 0.042 nations 0.04	killed 0.035 month 0.032	
Theme		deaths 0.023	
Iraq	n 0.03 Weapons 0.024	troops 0.016 hoon 0.015	
Theme /	Inspections 0.023	sanches 0.012	
	Northern 0.04 alliance 0.04	taleban 0.026 rumsfeld 0.02	
Afghan /	kabul 0.03 taleban 0.025	hotel 0.012 front 0.011	
Theme	aid 0.02		

Collection-specific themes indicate different roles of "United Nations" in the two wars Spatial Distribution of the Topic "Government

Response" in Blog Articles About Hurricane Katrina [Mei et al. 06]

Theme Life Cycles in Blog Articles About "Hurricane Katrina" [Mei et al. 06]

Event Impact Analysis: IR Research [Mei & Zhai 06]

Contextual Text Mining:

Mining Topics with Social Network Context

Topic Analysis with Network Context

- The context of a text article can form a network, e.g.,
 - Authors of research articles may form collaboration networks
 - Authors of social media content form social networks
 - Locations associated with text can be connected to form a geographic network
- Benefit of joint analysis of text and its network context
 - Network imposes constraints on topics in text (authors connected in a network tend to write about similar topics)
 - Text characterizes the content associated with each subnetwork (e.g., difference in opinions in two subnetworks?)

Network Supervised Topic Modeling: General Idea

[Mei et al. 08]

• Probabilistic topic modeling as optimization: maximize likelihood

$$\Lambda^* = \arg\max_{\Lambda} p(\text{TextData} \mid \Lambda)$$

- Main idea: network imposes constraints on model parameters Λ
 - The text at **two adjacent nodes** of the network tends to cover **similar topics**
 - Topic distributions are smoothed over <u>adjacent nodes</u>
 - Add network-induced regularizers to the likelihood objective function

Instantiation: NetPLSA [Mei et al. 08]

Mining 4 Topical Communities: Results of NetPLSA

Mining 4 Topical Communities: Results of PLSA

Can't uncover the 4 communities (IR, DM, ML, Web)

Topic 1		Topic 2		Topic 3		Topic 4	
term	0.02	peer	0.02	visual	0.02	interface	0.02
question	0.02	patterns	0.01	analog	0.02	towards	0.02
protein	0.01	mining	0.01	neurons	0.02	browsing	0.02
training	0.01	clusters	0.01	vlsi	0.01	xml	0.01
weighting	0.01	stream	0.01	motion	0.01	generation	0.01
multiple	0.01	frequent	0.01	chip	0.01	design	0.01
recognition	n 0.01	e	0.01	natural	0.01	engine	0.01
relations	0.01	page	0.01	cortex	0.01	service	0.01
library	0.01	gene	0.01	spike	0.01	social	0.01

Text Information Network

- In general, we can <u>view text data</u> that naturally "lives" in a rich information network <u>with all other</u> related data
- Text data can be associated with
 - Nodes of the network
 - Edges of the network
 - Paths of the network
 - Subnetworks
 - Text analysis using the entire network!

Contextual Text Mining:

Mining Causal Topics with Time Series Supervision

Text Mining for Understanding Time Series

Analysis of Presidential Prediction Markets

Joint Analysis of Text and Time Series to Discover "Causal Topics"

- Input:
 - Time series
 - <u>Text data produced in a similar time period (text stream)</u>
- Output
 - Topics whose coverage in the text stream has strong correlations with the time series ("causal" topics)

When a Topic Model Applied to Text Stream

Heuristic Optimization of Causality + Coherence

Iterative Causal Topic Modeling [Kim et al. 13]

Measuring Causality (Correlation)

Topics in NY Times Correlated with Stocks [Kim et al. 13]: June 2000 ~ Dec. 2011

Major Topics in 2000 Presidential Election [Kim et al. 13]

Summary of Text-Based Prediction

- **Text-based prediction** is very useful for "big data" applications:
 - Inferring new knowledge about the world
 - Optimizing decision making
- Text data is often combined with non-text data for prediction
 - Joint analysis of text and non-text is necessary and useful
 - Non-text data provide context for text mining (contextual text mining)
 - Text data help interpret patterns discovered from non-text data (pattern annotation)
- An **active research topic** with many open challenges

Course Summary

Key High-Level Take-Away Messages

- 13. Joint mining of text and non-text
- 14. Contextual PLSA
- 15. NetPLSA
- 16. Causal topic mining

- 6. Probabilistic Topic Model (PLSA, LDA)
- 7. Generative model; ML estimate; EM
- 8. Text clustering: model vs. similarity-based
- 9. Text categorization: generative vs. discriminative
- 10. Evaluation of clustering and categorization
- NLP → Text representation → Knowledge discovery
- 2. Robust TM = Word-based rep + Statistical analysis representation

- 11. Sentiment classification: ordinal regression
- 12. Latent Aspect Rating Analysis

- 3. Paradigmatic and syntagmatic relations
- 4. Text similarity: Vector space, BM25
- 5. Co-occurrence analysis: Entropy, MI

What to Learn Next

Natural Language Processing

- Foundation for all text-based applications
- More NLP → <u>Deeper knowledge discovery</u>

Statistical Machine Learning

- Backbone techniques for NLP and text analysis
- Key to predictive modeling and "big data" applications

Data Mining

General data mining algorithms can always be applied to text

Text/Information Retrieval

- Essential system component in any text-based application (human in the loop)
- Some techniques useful for text data mining

Main Techniques for Harnessing Big Text Data: Text Retrieval + Text Mining

