Homework 2 Due date: March 9

1. Suppose $X_1, X_2, ..., X_n$ are *n*-dimension random vectors with mean μ and covariance matrix Σ . If we define $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - X_i)^n$

$$\overline{X}$$
) $(X_i - \overline{X})'$. Prove that $E(\overline{X}) = \mu$, $E(S) = \Sigma$, and $cov(\overline{X}) = \frac{1}{n}\Sigma$.

- 2. Prove the following results
 - (a) Cauchy Schwarz Inequality
 - (b) Extended Cauchy-Schwarz Inquality
 - (c) Maximization Lemma
 - (d) Maximization of quadratic forms for points on the unit sphere
- 3. Prove that when n=p in the data matrix, then the determinant of the sample covariance matrix would be zero, that is, |S|=0.
- 4. Exercise 2.32 in the book of Johnson and Wichern.
- 5. Exercise 3.1
- 6. Exercise 3.7. Please provide your codes for sketching the ellipses.