This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

ELECTROPHOTOGRAPHIC CARRIER

Patent Number: JP6051563

Publication date: 1994-02-25

Inventor(s): BABA YOSHINOBU: others: 02

Applicant(s): CANON INC

Requested Patent: ☐ JP<u>6051563</u>

Application Number: JP19920201403 19920728

Priority Number(s):

IPC Classification: G03G9/107

EC Classification:

Equivalents: JP3005120B2

Abstract

PURPOSE: To enable the development faithful to an original document, i.e., latent image while preventing the adhesion of the carrier to an electrostatic latent image carrying member by specifying the magnetic characteristics of the carrier.

CONSTITUTION: The average grain size of the carrier particles is 5 to 100mum and the bulk density is <=3.0g/cm<3>. The intensity sigma1000 of magnetization at 1000 oersted E magnetic field of the carrier is 30 to 150 emu/cm<3>. Further, the magnetic characteristics of the carrier satisfy equations I, II. In the equations, sigma300 denotes the intensity of the magnetization at 300 oersted magnetic field, sigma 100 demotes the intensity of the magnetization at 100 oersted magnetic field and sigmar denotes the intensity of the magnetization at 0 oersted magnetic field. The carrier is formed of a soft magnetic material, is more preferably formed of ferrite and is further preferably formed of a ferrite having a spinel type crystal single phase. The specific resistance of the carrier is adequately in a 10<8> to 10<13>OMEGA.cm range.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-51563

(43)公開日 平成6年(1994)2月25日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 3 G 9/107

G 0 3 G 9/10

3 2 1

審査請求 未請求 請求項の数 4(全 13 頁)

(21)出願番号

特願平4-201403

(22)出願日

平成 4年(1992) 7月28日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 馬場 善信

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(72)発明者 天野 靖子

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(72)発明者 板橋 仁

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(74)代理人 弁理士 丸島 儀一

(54)【発明の名称】 電子写真用キャリア

(57)【要約】

(修正有)

【目的】 高精細なトナー画像を形成し得る電子写真用 キャリアを提供する。

【構成】 キャリア粒子の平均粒径が $5\sim100\mu$ mであり、嵩密度が $3.0g/cm^3$ 以下であり、該キャリアの磁場1000エルステッドにおける磁化の強さ(σ 1000)は30万至150emu $/cm^3$ であり、該キャリアは軟磁性材料で形成され、該キャリアの磁気特性は、下記の式を満たす。

 $\frac{\mid \sigma_{1000} - \sigma_{000} \mid}{\sigma_{1000}} \leq 0. 40$

 $0. \ 15 \ (emu/cm \cdot x \nu x f + F) \leq \frac{\mid \sigma \dots - \sigma r \mid}{100 \ (x \nu x f + F)}$

【特許請求の範囲】

【請求項1】 キャリア粒子の平均粒径が5~100μ mであり、嵩密度が3.0g/cm³以下であり、該キ ャリアの磁場1000エルステッドにおける磁化の強さ (σ₁₀₀₀) は30乃至150emu/cm³であり、該

$$\frac{\mid \sigma_{1000} - \sigma_{300} \mid}{\sigma_{1000}} \leq 0. \quad 4 \quad 0$$

キャリアは軟磁性材料で形成され、該キャリアの磁気特 性は、下記の式(1)及び(2)を満たすことを特徴と する電子写真用キャリア。

【外1】

(1)

0. 15 (emu/cm・エルステッド) (2) 100 (エルステッド)

[式中、 σ1000は、磁場1000エルステッドにおける 磁化の強さ(e m u / c m³)を示し、σ, 。。は、磁場 300エルステッドにおける磁化の強さ (emu/cm ³)を示し、σ...。は、磁場100エルステッドにおけ る磁化の強さを示し、σrは磁場 0 エルステッドにおけ る磁化の強さ (emu/cm³) を示す。]

【請求項2】 キャリア粒子が、Fe及びOを主要な必 須元素として有するフェライトで形成され、該フェライ 20 トが、さらにLi, Be, B, C, N, Na, Mg, A l, Si, P, S, K, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, R b, Sr, Zr, Nb, Mo, Tc, Ru, Rh, P d, Ag, Cd, In, Sn, Sb, Te, Cs, B a, Hf, Ta, W, Re, Os, Ir, Pt, Au, T1, Pb及びBiからなるグループから選択される元 素の少なくとも1種を含有し、Fe,O及び該グループ 以外の元素の含有量が1重量%未満である請求項1の電 子写真用キャリア。

【請求項3】 キャリアが、フェライトで形成され、フ ェライトがスピネル型結晶単相を有する請求項1または 2の電子写真用キャリア。

【請求項4】 キャリアは、比抵抗が10°~10'°Ω · c mを有する請求項1の電子写真用キャリア。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、トナーと混合されて静 電荷像現像用現像剤を構成する電子写真用キャリアに関 する。

[0002]

【従来の技術】電子写真法として米国特許第2,29 7,691号明細書、特公昭42-23910号公報お よび特公昭43-24748号公報等に種々の方法が記 載されている。これらの方法は、光導電層に原稿に応じ た光像を照射することにより静電潜像を形成し、次い で、ノーマル現像の場合は、該静電潜像上にこれとは反 対の極性を有するトナーと呼ばれる着色微粉末を付着さ せて該静電潜像を現像し、必要に応じて紙等の転写材に トナー画像を転写した後、熱、圧力、加熱加圧あるいは 50 -104663号公報にキャリアの飽和磁化の値を50

溶剤蒸気等により定着し複写物を得るものである。

【0003】該静電潜像を現像する工程は、潜像とは反 対の極性に帯電せしめたトナー粒子を静電引力により吸 引せしめて静電潜像上に付着させるものであるが(反転 現像の場合は、潜像の電荷と同極性の摩擦電荷を有する トナーを使用)、一般にかかる静電潜像をトナーを用い て現像する方法としては大別して少量のトナーとキャリ アとを混合した二成分系現像剤を用いる方法と、キャリ アを用いることなくトナー単独のいわゆる一成分系現像 剤を用いる方法とがある。

【0004】電子写真法は、文書複写としては一応満足 できるレベルに達しているもののコンピュータの発達、 ハイビジョンの発達等により、フルカラー画像の出力画 像に対しては、デジタル画像処理、現像時に交番電界印 加等の種々の手法により、高画質化及び高品位化が計ら れてきている。さらに、今後も更なる高画質化、高品位 化が望まれる。

【0005】従来、フルカラー画像を出力するには、二 成分系現像剤が一般に用いられてきた。一般に二成分系 現像剤を構成するキャリアは、鉄粉に代表される導電性 キャリアと鉄粉、ニッケル、フェライト等の粒子の表面 を絶縁性樹脂により被覆したいわゆる絶縁性キャリアに 大別される。高画質化を計るために交番電界を印加する 場合、キャリアの抵抗が低いと潜像電位をキャリアがリ 一クし、良好な現像画像が得られなくなるため、キャリ アとしてはある程度以上の抵抗が必要である。キャリア コアが導電性の場合、キャリアコアをコートをして用い るのが好ましい。また、抵抗がある程度高いフェライト がコア材として好ましく用いられている。

【0006】一般に、鉄粉は、高磁気力のため、現像剤 中のトナーが潜像を現像する現像領域において、現像剤 の磁気ブラシが硬くなるために、ハキ目を生じたり、ガ サツキ等を生じるために高画質な現像画像を得ることが 困難である。そこで、キャリアの磁気力を低くして高画 質化を計るためにもフェライトが好ましく用いられてい

【0007】高品位画像を形成するために、特開昭59

emu/g以下にすることで、ハキ目のない良好な現像 画像を得ることができると提案されているが、飽和磁化 の値をだんだん小さくしたキャリアを用いると細線の再 現性は良好になる反面、磁極から離れるにしたがってキ ャリアが静電潜像担持体(例えば感光ドラム)上に付着 する現象(キャリア付着)が顕著になってくる。

【0008】また、特公平4-3868号公報には、保 磁力が300ガウス以上という、いわゆるハードフェラ イトをキャリアとして用いることが提案されている。し かし、これは高保磁力であるハードフェライトをキャリ 10 アとして使いこなすための系であり、現像装置の大型化 が避けられない。小型高画質カラー複写機を実現するた めには、固定磁芯を用いた現像剤担持体を使用すること が好ましく、この場合高保磁力を有するハードキャリア は、その自己凝集性のため、かえって搬送性が悪くなる という問題がある。

【0009】以上のように、キャリア付着を防止しつ つ、高画質、特にハイライトの再現性を満足するような キャリアが待望されている。

[0010]

【発明が解決しようとする課題】本発明の目的は、上記 問題点を解決した電子写真用キャリアを提供することに ある。

【0011】本発明の目的は、キャリア付着を防止しつ つ、オリジナル原稿に忠実(すなわち、潜像に忠実)な 現像を実施し得る電子写真用キャリアを提供することに ある。

$$\frac{\mid \sigma_{1000} - \sigma_{300} \mid}{\sigma_{1000}} \leq 0.40$$

【0012】さらに、本発明の目的は、高解像性、高ハ イライト再現性、高細線再現性に優れた電子写真用キャ リアを提供することにある。

【0013】さらに、本発明の目的は、高速の現像にお いても、キャリア付着のない高画質な画像を得る電子写 真用キャリアを提供することにある。

【0014】さらに、本発明の目的は、交番電界の現像 においても、キャリア付着のない高画質な画像を得る電 子写真用キャリアを提供することにある。

【0015】さらに、本発明の目的は、高画質画像を得 るための固定磁芯系現像剤担持体を用いた小型現像器に 適用し得る電子写真用キャリアを提供することにある。 【0016】さらに、本発明の目的は、多数枚の複写に よっても画像劣化のない高画質画像を維持できる電子写 真用キャリアを提供することにある。

[0017]

【問題を解決するための手段および作用】本発明は、電 子写真用キャリアにおいて、該キャリアの平均粒径が5 ~100 μmであり、嵩密度が3.0g/cm³以下で 20 あり、該キャリアの磁場1000エルステッドにおける 磁化の強さ (σ₁₀₀₀) は30乃至150emu/cm³ であり、該キャリアは軟磁性材料で形成され、キャリア の磁気特性が下記の式(1)及び(2)を満たす電子写 真用キャリアに関する。

[0018] 【外2】

(1)

0. 15 (emu/cm·
$$\pm n\lambda z + y + y + y = \frac{|\sigma_{100} - \sigma_r|}{100 (\pm n\lambda z + y + y)}$$
 (2)

[式中、 σ1000は、磁場1000エルステッドにおける 磁化の強さ(e m u / c m³)を示し、σ,。。は、磁場 300エルステッドにおける磁化の強さ (emu/cm ³)を示し、σ.。。は、磁場100エルステッドにおけ る磁化の強さを示し、 σ rは磁場0エルステッドにおけ る磁化の強さ (emu/cm³) を示す。]

【0019】本発明のキャリアが、従来のキャリアの持 つ諸問題点を改善し、キャリア付着を防ぎつつ、原稿に 忠実、すなわち、潜像に忠実な現像をするキャリアを提 供することができるのは、以下の理由によると考えられ

【0020】潜像に対して忠実な現像を行うためには、 現像極での磁場においてキャリアの磁化の強さを30乃 至150emu/cm³にすることが重要である。これ は、現像極における磁場の強さは、一般に1000エル

が弱いことで、現像剤の磁気ブラシが短く、密になり、 さらに、磁気ブラシが柔らかくなることで潜像に対して 忠実な現像が達成できる。このように、磁気ブラシが短 く、密で、柔らかくなることにより、特に現像剤を振動 させる交番電界を印加する現像においては、現像効率が 上がり、また、より高い忠実な現像ができる。また、本 発明のもう一つの効果である画質の劣化を防止し、初期 の高画質画像を維持できるのは、このような低磁気力の キャリアを用いることで、現像スリーブに現像剤をコー トする際、規制部材付近でのキャリアブラシの磁気的な 結合力が弱く、穂が柔らかいためにトナーに対してシェ アを余りかけず、高画質画像を長期にわたって維持でき るからである。

【0021】また、詳細な検討を行ったところ、キャリ ア付着は磁場の強さが0乃至300エルステッドにおい ステッド程度であり、そのときのキャリアの磁化の強さ 50 て生じやすく、そのときのキャリアの磁化の強さがある

程度高いときには起こらないことが判明した。また、キャリア付着は現像のバイアス条件にも左右され、特に交番電界による現像を行う場合、直流電界に比べ、キャリアが電荷を有すると現像され易くなり、それを現像スリーブにひきとめるには磁気力が必要となる。従って、キャリア付着を抑えるためには上記磁場における磁化の強さが必要であると考えられる。そこで本発明は、図1のヒステリシスカーブに示されるように1000エルステッドでの磁化の強さ $\sigma_1, \dots, \sigma_2$ は30万至150emu/cm³と、従来キャリアに比べ小さいながらも、0万至1 1000エルステッドでの磁化の強さをすばやく立ち上げることによって、0万至300エルステッドにおける磁化

【0022】また、軟磁性材料からなるキャリアを用いることで、固定磁石を配した現像スリーブを用いる現像システムにおいて、特に、高速での現像において現像剤の流動性が良好になり、搬送性に優れるためにより一層の高画質化がはかれる。

の強さを強くでき、高画質化を計りつつ、キャリア付着

を防ぐことができる。

【0023】次に本発明の構成について詳細に説明す

0. 15 (emu/cm・エルステッド)

$$\frac{|\sigma_{1000} - \sigma_{300}|}{\sigma_{1000}} \le 0.40$$

[式中、 σ_{1000} 及び σ_{300} は、それぞれ磁場1000および300エルステッドにおける磁化の強さ(emu/cm^3)を示す。] 好ましくは、この値が0.30以下である。図2のヒステリシスカーブに示されるように0.40を越えると、本発明の如く高画質化を計りつつ、キャリア付着を防ぐという効果を両立することが困難になる。すなわち、 σ_{1000} を満足するような値をとると高画質化は、はかれる反面、キャリア付着を生じやすくなる。また、 σ_{3000} を満足するような値をとると、キャリア付着は防ぐことができる反面、 σ_{10000} の値が大き 40くなることで、本発明のような高画質な画像を得ることが困難になる。

【0030】このように、(1)及び(2)式を同時に満足することにより、本発明の効果を十分に発揮できるものである。

【0031】なお、本発明における磁気特性の測定は、 理研電子(株)製の直流磁化B-H特性自動記録装置B HH-50を用いて行った。磁気特性値は±2キロエル ステッドの磁場を作り、そのときのヒステリシスカープ より求める。サンプルは円筒状のプラスチック容器にキ 50 る。

【0024】本発明のキャリアは、該キャリア粒子の磁気特性が以下のようになることが必要である。

【0025】すなわち、磁気的に飽和させた後の1000ェルステッドにおける磁化の強さ(σ_{1000})は30万至150emu/cm³であることが必要である。さらに好ましくは30万至120emu/cm³である。150emu/cm³より大きい場合には、現像極での磁気ブラシの密度が従来とあまり変わらず、本発明のような高画質な画像が得られにくくなる。30emu/cm³未満であると、0万至300ェルステッドにおける磁気的な拘束力も減少するためにキャリア付着を生じやすい。

【0026】さらに、本発明において重要なことは、磁場0乃至100エルステッドにおける磁化の強さの立ち上がりである。従って、下記の式を満たすことが重要である。

【0027】 【外3】

$$\leq \frac{\mid \sigma_{100} - \sigma r \mid}{100 \ (\pm \nu \lambda \tau \nu F)} \tag{2}$$

リア付着に対して効果が得られにくい。

【0028】さらに、高画質な画像を得るためには、以下の式を満たすことが重要である。

[0029].

【外4】

(1)

ャリアを十分密になるようにパッキングした状態で、一定体積0.332cm³になるよう作製した。この状態で磁化モーメントを測定し、これをもって単位体積当たりの磁化の強さを求める。

【0032】本発明のキャリア粒子の平均粒径は、5~100μmの範囲が好ましく、さらに好ましくは20~80μmである。5μmより小さいと感光体へのキャリア付着が生じ易くなり、また、100μmを越えると現像極における磁気ブラシが粗になり、高画質な画像が得られにくい。なお、本発明のキャリアの粒径は、光学顕微鏡によりランダムに300個以上抽出し、ニレコ社製の画像処理解析装置しuzex3により水平方向フェレ径をもってキャリア粒径として、測定する。

【0033】本発明のキャリアの嵩密度は、3.0g/cm³以下が好ましい。3.0g/cm³を越えると現像スリーブの回転により、キャリアが現像スリーブ上に磁気的に保持される力に比べ、キャリア粒子1個にかかる遠心力が大きくなり、キャリア飛散を生じ易くなる。なお本発明のキャリアの嵩密度の測定は、JIS Z2504に記載の方法に準じて行う。

【0034】本発明のキャリアの球形度は、2以下が好ましい。本発明のキャリアは、上記球形度が2を越えると、現像剤としての流動性が劣るようになり、現像極において磁気ブラシの形状が悪くなるために高画質なトナー画像が得られにくくなる。なお、本発明のキャリアの球形度の測定は、日立製作所(株)製フィールドエミッ

球形度(丸さの度合いSF1)

[式中、MX LNGはキャリアの最大径を示し、AR EAは、キャリアの投影面積を示す。]ここで、SF1 10 は1に近いほど球形に近いことを意味している。

【0036】本発明のキャリアの比抵抗は10°~10

 1 8 Ω · c m の範囲が適当である。 10 8 Ω · c m 未満 7

では、バイアス電圧を印加する現像方法では現像領域に おいてスリーブから感光体表面へと電流がリークしやす く、良好なトナー画像が得られにくい。また、10¹³Ω ・cmを越えると、低湿の如き条件下でチャージアップ 現象を引き起こしやすく、濃度ウス、転写不良、カブリ 等の画像劣化の原因となりやすい。なお、本発明におい て、比抵抗の測定には、図3の如き測定方法を用いた。 すなわち、セルAに、キャリアを充填し、該充填キャリ アに接するように電極1及び2を配し、該電極間に電圧 を印加し、そのとき流れる電流を測定することにより比 抵抗を求める方法を用いた。上記測定方法においては、 キャリアが粉末であるために充填率に変化が生じ、それ に伴い比抵抗が変化する場合があり、注意を要する。本 発明における比抵抗の測定条件は、充填キャリアと電極 との接触面積S=約2.3cm²、厚みd=約1mm、 上部電極2の荷重275g、印加電圧100Vとする。 【0037】本発明のキャリアは、鉄系の合金、例え ば、鉄ーシリコン系、鉄ーアルミニウム系、鉄ーシリコ ンーアルミニウム系、パーマロイ合金等一般に知られた 合金を用いることができる。また、マンガンー亜鉛系フ ェライト、ニッケルー亜鉛系フェライト、マンガンーマ グネシウム系フェライト、リチウム系フェライト等ソフ トフェライトも用いることができる。本発明において好 ましくは、フェライトよりなり、かつ、該フェライト粒 子が周期律表IA、IIA、IIIA、IVA、VA、 VIA, IB, IIB, IVB, VB, VIB, VII B、VIII族の中から選ばれる元素を少なくとも1種 40 類以上含有しており、かつ、その他の元素の含有量が1 重量%未満であるキャリアを用いることが好ましい。

【0038】具体的には、キャリア粒子が、Fe及びOを主要な必須元素として有するフェライトで形成され、該フェライトが、さらにLi, Be, B, C, N, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, Hf, Ta, W, Re, Os, Ir,

ション走査電子顕微鏡S-800によりキャリアをランダムに300個以上抽出し、ニレコ社製の画像処理解析装置Luzex3を用いて、次式によって導かれる形状係数を求める。

[0035]

【外5】

$$\frac{(MX LNG)^2}{AREA} \times \frac{\pi}{4}$$

Pt, Au, T1, Pb及びBiからなるグループから 選択される元素の少なくとも1種を含有し、Fe, O及 び該グループ以外の元素の含有量が1重量%未満である ことが好ましい。

【0039】上記以外の他の元素が入ると本発明の所望の磁気特性を示すキャリアが得られにくくなり、さらに、抵抗が下がりやすくなるために好ましくない。

【0040】さらに好ましくは、スピネル構造単相を有するフェライトで形成されているキャリアが良い。このような結晶組成相を有することで、低磁場においても磁化の強さの立ち上がりを速くでき、キャリア付着を防止できると考えられる。

【0041】本発明のキャリアは、焼結法、アトマイズ 法等の製造方法によって製造が可能であり、必要に応じ て磁性体粒径分布をシャープにして造粒したり、焼結温 度、昇温速度、加熱保持時間等をコントロールすること ににより、本発明の磁気特性を持つキャリアを製造でき る。

【0042】得られたキャリアを風力分級機等の分級機を用いて分級し、平均粒径 $5\sim100\mu$ mのキャリア粒子を得る等の操作を行っても良い。

【0043】また、本発明のキャリアは、前出の比抵抗コントロールを行ったり、耐久性を向上させるために、必要に応じてキャリア粒子表面を任意の樹脂でコートして用いることができる。コート樹脂としては、公知の適当な樹脂を用いることができるが、例えば、スチレン系樹脂、アクリル系樹脂、フッ素系樹脂、シリコーン系樹脂、エポキシ系樹脂等でコートして用いることができる。

【0044】本発明のキャリアと組み合わせて使用するトナーとしては、より高画質画像を得るために重量平均粒径 $1\sim20\mu$ m、好ましくは $4\sim10\mu$ mを用いるのが良い。トナーの重量平均粒径は、種々の方法によって測定できるが、本発明においてはコールターカウンターを用いて行う。

【0045】測定装置としてはコールターカウンターTA-II型(コールター社製)を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びCX-1パーソナルコンピュータ(キヤノン製)を接続し、電解液は1級塩化ナトリウムを用いて1%NaC1水溶液を調製する。測定法としては前記電解水溶液100~150ml中に分散剤として界面活性剤、好ましくはア

10

ルキルベンゼンスルホン酸塩を $0.1\sim5$ m l 加え、さらに測定試料を $2\sim20$ m g 加える。試料を懸濁した電解液は超音波分散器で約 $1\sim3$ 分間分散処理を行い、前記コールターカウンターTAII型により、アパチャーとして 100μ アパチャーを用いて、個数を基準として $2\sim40\mu$ の粒子の粒度分布を測定して、それから各種値を求める。

【0046】また、より高画質画像を得るために、トナーの凝集度は低い方が好ましく、30%以下が特に好ましい。なお、本発明に用いられる凝集度の測定は次のよ 10

うに行う。

【0047】トナーをパウダーテスター(細川ミクロン (株))に上から60mesh、100mesh、200mesh、の順でフルイを3段重ねてセットし、秤取した試料5gを静かにフルイの上にのせ、電圧170Vで振動を30秒間与え各フルイ上に残ったトナーの重さを測定し、下式に従って凝集度を算出する。

[0048]

【外6】

+ (100mesh 残試料の重量×3/5) (フルイにのせた試料の重さ) × 100

+ (200mesh 残試料の重量×1/5) (フルイにのせた試料の重さ) × 10(

により求める。

【0049】凝集度を下げるために、該トナーにシリカ、酸化チタン、アルミナ等の流動性向上剤を内添、あるいは外添して用いることが好ましい。特に、トナーに疎水性を有する流動性向上剤を外添することが好ましい。

[0050]

【実施例】以下に実施例をもって本発明を説明する。これらは本発明を何ら限定するものではない。尚、以下の配合における%及び部は重量%及び重量部を示す。

【0051】実施例1

モル比で、Fe₂O₃ = 55モル%、MnCO₃ = 31 モル%、ZnO=11モル%, $CaCO_3=3$ モル%に なるようにそれぞれの金属アルコキシドを秤量し、混合 し、水分を蒸発させた後、粉砕を行い、これを仮焼し た。その後、ボールミルにより粉砕を行い、1 u m以下 の磁性粒子を得た。これを造粒し、焼結を行った。この とき、昇温速度100℃/hourで、1000℃で8 hour保持した。得られたキャリア粒子を分級するこ とで平均粒径が51mのキャリア粒子を得た。そのとき 得られたキャリアの形状はほぼ球形をしており、キャリ ア表面は粒界も認められず表面平滑性に優れていた。ま 40 た、嵩密度は2.72g/cm。であり、キャリア粒子 の抵抗を測定したところ1. 8×10'Ω・cmであっ た。このキャリアの磁気測定を行ったところ、磁気特性 d, $\sigma_{1000} = 102 \text{ emu/cm}^3$, $\sigma_r = 3 \text{ emu/}$ cm^{3} , $\sigma_{300} = 75 emu/cm^{3}$, $\sigma_{100} = 36 e$ mu/cm^3 、Hc=5エルステッドであった。 $|\sigma|$ $1000 - \sigma_{300} | / \sigma_{1000} = 0.26$ であり、 $| \sigma_{100}$ σr | /100 (エルステッド) = 0.33 (emu/ cm³・エルステッド)であり、式(1)及び(2)を 満たしていた。

【0052】さらに、この磁性キャリアの表面に、スチレンーメタクリル酸 2-x チルヘキシル(50/50) 共重合体を流動層式コート方法により約0.7 重量%コーティングした。その時のキャリアの比抵抗は $6.1 \times 10^{12} \Omega \cdot c m$ であり、樹脂コートキャリアの磁気特性は、上述のキャリアコアと実質的に同一であった。

- ・プロポキシ化ビスフェノールとフマル酸を縮合して得られたポリエステル樹脂100重量部
- ・銅フタロシアニン顔料 5重量部
- ・ジー t e r t ープチルサリチル酸のクロム錯塩 4重 量部

30 【0053】上記材料を十分予備混合を行った後、溶融 混練し、冷却後ハンマーミルを用いて粒径約1~2mm 程度に粗粉砕した。次いでエアージェット方式による微 粉砕機で微粉砕した。更に、得られた微粉砕物を分級し て重量平均径が8.4 mである負帯電性のシアン色の 粉体(トナー)を得た。

【0054】上記シアントナー100重量部と、ヘキサメチルジシラザンで疎水化処理したシリカ微粉体1.0 重量部とを混合して、トナー粒子表面にシリカ微粉体を有するシアントナーを調製した。

40 【0055】樹脂コート磁性フェライトキャリアとトナーとをトナー濃度5重量%となるように混合し二成分系現像剤を得た。これをキヤノン製フルカラーレーザー複写機CLC-500改造機を用いて画像出しを行った。このときの現像器および感光ドラムの現像領域部分の模式図を図4に示す。現像スリーブと現像剤規制部材との距離は400μmであり、現像スリーブと感光ドラムとの周速比が1.4:1であり、現像スリーブの周速は、300mm/secであり、また、現像条件は、現像極の磁場の強さ1000エルステッド、交番電界2000 V_{F・F}、周波数3000H2であり、現像スリーブと感

光ドラムの距離は500μmとした。このとき、現像スリーブ上の現像極付近の現像ブラシの穂立ちを顕微鏡観察した結果、緻密で、穂長が短くなっていることがわかった。

【0056】画像出し試験の結果、現像スリーブ上における現像剤の供給も十分であり、ベタ画像の濃度が高く、また、ガサツキもなく、ハーフトーン部の再現性、ライン画像の再現性も良好であった。さらに、高速でのスリーブ回転にもかかわらず、キャリア飛散及びキャリアが現像される等による画像部、非画像部へのキャリア 10付着は認められなかった。また、現像器を200rpmのスピードで空回転を30分間行った後の、画出しにおいても、画質に関して特に問題はなく、キャリア付着はなく、非常に良好であった。

【0057】比較例1

モル比で、Fe₂O₃ = 50モル%、ZnO=20モル %, CuO=17モル%、Mn=13モル%になるよう に秤量し、ボールミルを用いて混合を行った。これを実 施例1と同様にして、平均粒径が52mのキャリア粒子 を得た。そのとき得られたキャリアの形状はほぼ球形を 20 していたが、表面には、粒界が観察された。また、嵩密 度は2. 17g/сm³であった。また、キャリア粒子 の抵抗を測定したところ3. 1×10°Ω・cmであっ た。このキャリアの磁気測定を行った結果、そのときの 磁気特性は、σιοιο=53emu/cm³、σr=2e mu/cm^3 , $\sigma_{300} = 18 emu/cm^3$, $\sigma_{100} =$ $7 e m u / c m^3$ 、H c = 5 エルステッドであった。そのとき $| \sigma_{1000} - \sigma_{300} | / \sigma_{1000} = 0.66$ 、 $| \sigma$ $100 - \sigma I / 100 (\pi \nu \lambda \tau \nu F) = 0.05 (e$ mu/cm³・エルステッド) であり、式 (1) 及び (2)を満足していなかった。

【0058】得られたキャリアを実施例1と同様にして表面樹脂コートした。このときの樹脂コートキャリアの比抵抗は $1.5 \times 10^{12} \, \Omega \cdot cm$ であった。

【0059】さらに、得られた磁性樹脂コートキャリアと実施例1で用いたトナーとを実施例1と同様に混合し、二成分系現像剤とした。この現像剤を実施例1と同様にして、画出し試験を行ったところσιοοοの値が小さくなっているため、現像スリーブ上での磁気ブラシの密度が密で、ハーフトーン部でのガサツキもなく、また、細線の再現性に優れていたが、0乃至300エルステッドにおける磁化の強さが弱いために非画像部にキャリア付着が認められ、それに伴い非画像部でのトナーカブリが観察された。また、実施例1と同様に空回転試験を行ったところ、ハーフトーン部のガサツキは良好であったが、キャリア付着が生じていた。

【0060】比較例2

モル比で、Fe, O, =62モル%、ZnO=16モル%、CuO=22モル%になるように秤量し、ボールミルを用いて混合を行った。これを実施例1と同様にし

て、平均粒径が 50μ mのキャリア粒子を得た。そのとき得られたキャリアの形状はほぼ球形をしており、平滑性も優れていた。また、嵩密度は、 $2.77g/cm^3$ であった。また、キャリア粒子の抵抗を測定したところ、 4.0×10^9 Ω ・cmであった。このキャリアの磁気測定を行ったところ、そのときの磁気特性は、 σ 1000= $214emu/cm^3$ 、 σ 1000= $214emu/cm^3$ 、 σ 1000= $214emu/cm^3$ 、 σ 1000= $214emu/cm^3$ 、 σ 1000= $214emu/cm^3$ 、 σ 1000= σ 10000= σ 1000= σ 10000= σ 10000= σ 10000= σ 10000= σ

【0.061】得られたキャリアを実施例1と同様にして表面樹脂コートした。このときのキャリアの比抵抗は 3.2×10^{17} $\Omega \cdot c$ mであった。

【0062】得られたキャリアと実施例1で用いたトナーとを実施例1と同様に混合し、現像剤とした。この現像剤を実施例1と同様にして、画出し試験を行ったところ現像スリーブ上での現像剤の流動性は良好であり、搬送には優れていたが、現像極における現像剤の磁気ブラシが粗くなっているのが観察され、画像上ハーフトーン部でのガサツキが見られた。また、実施例1と同様に空回転試験を行ったところ、特に、ハーフトーン部でのガサツキが見られた。

【0063】実施例2

モル比で、Fe, O, =58モル%、NiO=15モル %、ZnO=27モル%になるように秤量し、ボールミ ルを用いて混合を行った。これを焼成、粉砕、造粒を行 30 った後、実施例1と同様にして、燒結して、平均粒径が 4 3 μmのキャリア粒子を得た。そのとき得られたキャ リアの形状はほぼ球形をしており、表面平滑性もあっ た。また、嵩密度は、2.64g/cm゚であり、ま た、キャリア粒子の抵抗を測定したところ、7.7×1 0° $\Omega \cdot c$ m であった。このキャリアの磁気測定を行っ た結果、そのときの磁気特性は、 $\sigma_{1000} = 54 e m u /$ cm^3 , $\sigma r = 1 emu / cm^3$, $\sigma_{100} = 48 emu$ $/cm^3$, $\sigma_{100} = 32 emu/cm^3$, $Hc = 2 \pm N$ ステッドであった。そのとき、 $| \sigma_{1000} - \sigma_{200} | / \sigma$ $|_{1000} = 0.11$ rbb $|_{0100} - 0$ r $|_{100} =$ 0. 31 (emu/cm³·エルステッド) で式 (1) 及び(2)を満たしていた。

【0064】得られたキャリアを実施例1と同様にして表面樹脂コートした。このときのキャリアの比抵抗は $1.1 \times 10^{13} \Omega \cdot c m$ であった。

【0065】この磁性樹脂コートフェライトキャリアと 実施例1で用いたトナーとを実施例1と同様にトナー濃 度6重量%になるように混合し、現像剤とした。この現 像剤を実施例1と同様にして、画出し試験を行ったとこ 50 ろ現像スリープ上での磁気ブラシの密度がより密にな

キャリア付着は良好で、高画質な画像を出力できた。また、空回転試験でもハーフトーン部のガサツキ、画質、

り、ハーフトーン部でのガサツキもなく、また、細線の 再現性に非常に優れていた。さらに、キャリア付着は良 好であった。また、空回転後の画像は、特にハーフトー ン均一性に優れ、細線の再現性も良好であり、また、キャリア付着も特に問題なかった。

【0066】 実施例3

モル比で、Fe=17モル%、Ni=75モル%、Cu =6モル%、Cr=2モル%になるように調合し、その 溶湯から水アトマイズ法を用いてキャリア粒子を得た。 得られたキャリアを熱処理を行い、さらに、風力分級機 10 により分級し、平均粒径が45μmのキャリア粒子を得 た。そのとき得られたキャリアの形状はほぼ球形をして いた。また、嵩密度は、2.90g/cm'であった。 また、キャリア粒子の抵抗を測定したところ、5.2× 10^{-3} Ω ・c m で あった。このキャリアの磁気測定を 行った結果、そのときの磁気特性は、 $\sigma_{ioo} = 132e$ mu/cm^3 , $\sigma r = 0 emu/cm^3$, $\sigma_{300} = 11$ 0 emu/cm^3 , $\sigma_{100} = 76 \text{ emu/cm}^3$, Hc = 0 エルステッドであった。そのとき、 | σ,... - σ $| / \sigma_{1000} = 0.17$ $| / \sigma_{100} - \sigma_{I} | /$ $100 = 0.76 \text{ (emu/cm}^3$ ・エルステッド) で式(1)及び(2)を満たしていた。

【0067】得られたキャリアに実施例1で用いた樹脂を実施例1と同様にしてコートした。このとき得られたキャリアの比抵抗は、 $9.2 \times 10^{\circ}$ $\Omega \cdot c$ mであった。

【0068】この磁性樹脂コートキャリアと実施例1で用いたトナーとを実施例1と同様に混合し、現像剤とした。この現像剤を実施例1と同様にして、画出し試験を行ったところ、濃度は十分で、ベタ部の均一性があり、ハーフトーン部でのガサツキがなく、また、細線の再現性に非常に優れていた。また、画像部、非画像部ともに

【0069】実施例4

キャリア付着は特に問題なかった。

実施例2で用いたキャリアと下記のトナーを混合して二 成分系現像剤とした。

【0070】・スチレンーアクリル樹脂 100重量部 ・カーボンブラック 5重量部

・ジーtertーブチルサリチル酸のクロム錯塩 4重 量部

【0071】上記材料を実施例1と同様にして黒トナーを作製した。黒トナーの重量平均径は $7.6\mu m$ であった。

【0072】上記トナー100重量部と、ヘキサメチルジシラザンで疎水化処理したシリカ微粉体0.7重量部とをヘンシェルミキサーにより混合して、トナー粒子表面にシリカ微粉体を有する黒トナーを調製した。

【0073】該キャリアと黒トナーとをトナー濃度6重量%となるように混合し二成分系現像剤を得た。これを 20 実施例1と同様に画像出し試験を行った。

【0074】この結果、ベタ画像の濃度も十分であり、また、ガサツキもなく、ハーフトーン再現性に優れ、特に、ライン画像の再現性が良好であった。さらに、キャリア付着は認められなかった。また、空回転試験でもハーフトーン部のガサツキ、画質は初期と比べて遜色なく、キャリア付着も問題なかった。

【0075】本発明のキャリア物性について、表1に示し、また、評価結果について表2に示した。表2中の◎は非常に良好、○は良好、△は可、×は不可を示す。

30 [0076]

【表 1 】

16

			-,			<u> </u>	
	球形度	1.10	1.08	1.06	1.06	1.25	
	比抵抗 (Ω·cm)	6.1 × 10 ¹²	1.5 × 1012	3.2 × 101º	1.1 × 10's	9.2 × 10°	
7.	0 100 - 0 I 0 100	0.33	0.05	0.38	0.31	0.76	
	Ø 1000 – Ø 300	0.26	99:0	0.47	0.11	0.17	
	σr (emu/cπ)	က	63	2	-	0	
· 茶	σ 100 (emu/c m²)	36	7	40	40		
	Hc σ 1000 σ 300 σ 100 σ Γ ($th\lambda 7_7 \Gamma$) (emu/c n^2) (emu/c n^2)	75	18	113	48	110	
	σ 1000 (emu∕c nt)	102	53	214	54	132	
		5	5	10	. 23	0	
	磁性体	Mn-Zn7.1 541	Cu−2n− Mn7xライト	Cu-2n7x 54k	Ni-ZnJ _x 54k	Fe-Ni- Cu-Cr	
	葛密度 (g/c㎡)	2.72	2.17	2.77	2.64	2.90	
	拉 径 (n m)	51	52	20	43	45	
	実施例/ 粒径 嵩密度 比較例No (μm) (g/c㎡)	実施例1	比較例1	比較例2	実施例2	実施例3	

[0077]

【表 2】

1	•
- 1	,

	·				<u> </u>				_
		キャリア 付 強	0	×	0	0	0	0	
	画像	ライン再現性	0	0		0	0	0	
	空回転30分後の画像	コトト田親トノ	0	0	×	0	0	0	
	協問	よむ マヨ	0	0	×	0	0	0	
		へ 夕 濃度	0	0	0	0	0	0	
2		キャリマ	0	×	0	0	0	0	
嵌	쬻	ライン再現性	0	0	0	0	0	0	
	脚	サマン田田・スク	0	©	0	0	0	©	×…· 六 良
	彻	んむ を発	0	0	0	0	0	0	× 恒…∇
		ベタ偽度	0	0	© .	0	0	0	斑
	現像剤 流動性		0	0	0	0	©	0	…優 〇…
	実施例Na.s 及び 比較例Na.s		実施例1	比較例1	比較例2	実施例2	実施例3	実施例4	評価:◎…優
Ĺ	-						ナン学的日日		

[0078]

【発明の効果】本発明の電子写真用キャリアは、現像極におけるキャリアの磁気特性を低くし初期及び多数枚の複写においても高画質化を計りつつ、かつ、0~300エルステッドの如き低磁場において、キャリアの磁化の強さをすばやく立ち上げることにより、画像上にキャリア付着させない電子写真用キャリアを提供するものである。

【図面の簡単な説明】

【図1】磁気特性カーブ(ヒステリシスカーブ)を模式的に示した概略図である。横軸は、外部磁場(エルステッド)であり、縦軸は、キャリアの単位体積当たりの磁化の強さを示す。枠内に示される数値は、($\sigma_{100}-\sigma_{100}$ r) $/\sigma_{100}$ の値である。

【図2】磁気特性カーブ (ヒステリシスカーブ) を模式 的に示した概略図である。横軸は、外部磁場 (エルステ

20 .

ッド)であり、縦軸は、キャリアの単位体積当たりの磁化の強さを示す。枠内に示される数値は、 $(\sigma_{1000} - \sigma_{1000})$

【図3】電気抵抗の測定装置を模式的に示した概略図である。

【図4】現像装置および感光体ドラムを模式的に示した 概略図である。

【符号の説明】

- 1 下部電極
- 2 上部電極
- 3 絶縁物
- 4 電流計
- 5 電圧計
- 6 定電圧装置
- 7 キャリア

- 8 ガイドリング
- 20 感光体ドラム
 - 21 現像容器
 - 22 現像剤担持体
 - 23 固定磁芯
- 23a~e 磁極
- 24 現像剤規制部材
 - 25 キャリア返し部材
 - 26 トナー
- 10 27 現像剤
 - 30 トナー補給ローラー
 - 31 現像剤搬送ローラー
 - 32 現像剤攪拌ローラー
 - 40 交番バイアス印加手段

【図1】

【図2】

 σ (emu/c m³)

【図3】

[図4]

