Public-key Cryptography Exercise Session

Mariana Gama mariana.botelhodagama@kuleuven.be

November 2023

Euler's totient function

 $\varphi(n)$ denotes the number of positive integers less than n which are relatively prime to n

- For p prime, $\varphi(n) = p 1$.
- For p^k with p prime, $\varphi(p^k) = p^k \left(1 \frac{1}{p}\right)$

To understand the expression for $\varphi(p^k)$, note that there is a total of p^k integers from 1 to p^k and then count how many of them are **not** relatively prime to p^k .

The integers not relatively prime to p^k will be the multiples of p, and there are p^{k-1} such multiples which are less than p^k . Therefore,

$$arphi(
ho^k)=
ho^k-
ho^{k-1}=
ho^{k-1}(
ho-1)=
ho^k\left(1-rac{1}{
ho}
ight)$$

Euler's totient function

Because the Euler function is multiplicative, we get that for $n = \prod_i p_i^{k_i}$

$$\varphi(n) = \prod_{i} p_{i}^{k_{i}} \left(1 - \frac{1}{p_{i}}\right)$$

Note that the multiplicativity of the Euler function follows from the Chinese Remainder Theorem only holds for integers that are coprime. That is, if $\gcd(a,b) \neq 1$ then $\varphi(ab) \neq \varphi(a) \cdot \varphi(b)$.

Charmichael function

- For p prime, $\lambda(p) = p 1$.
- For p and q prime, $\lambda(p \cdot q) = \text{lcm}[p-1, q-1]$.
- lacksquare For $n=p_1^{k_1}...p_m^{k_m}$, $\lambda(n)=\mathrm{lcm}\left[\lambda(p_1^{k_1}),...,\lambda(p_m^{k_m})
 ight]$, where

$$\lambda(p_i^{k_i}) = \begin{cases} 2^{k_i-2} & \text{if } p_i = 2 \text{ and } k_i > 2, \\ p_i^{k_i-1}(p_i-1) & \text{otherwise.} \end{cases}$$

Just like for Euler's totient function, we have that for a and n coprime,

$$a^{\lambda(n)} \equiv 1 \mod n$$

However, $\lambda(n)$ is the **smallest** positive integer for which the previous congruence holds for every integer a between 1 and n that is coprime with n. This means that $\lambda(n)$ divides $\varphi(n)$.

Chinese Remainder Theorem (proof with r congruences)

We want to find x such that

$$x \equiv x_1 \mod m_1$$

 $x \equiv x_2 \mod m_2$
...
 $x \equiv x_r \mod m_r$

where $gcd(m_i, m_j) = 1$.

Let $m = m_i...m_r$. We want to find α_i such that $x \equiv \sum_i \alpha_i \cdot x_i$ mod m. In order for x to be a solution, we need that:

$$\alpha_i \equiv 1 \mod m_i \tag{1}$$

$$\alpha_i \equiv 0 \mod m_j, \text{ for } j \neq i$$
 (2)

It follows from (2) that $\alpha_i = \alpha'_i \cdot \prod_{j \neq i} m_j = \alpha'_i \cdot (m/m_i)$.

Chinese Remainder Theorem (proof with r congruences)

We now find α'_i using (1):

$$\alpha_i' \cdot (m/m_i) \equiv 1 \mod m_i$$

Note that $gcd(m/m_i, m_i) = 1$, so

$$\alpha_i' \equiv (m/m_i)^{-1} \mod m_i$$

The expression for each α_i is thus:

$$\alpha_i \equiv (m/m_i) \cdot [(m/m_i)^{-1} \mod m_i] \mod m$$

and

$$x \equiv \sum_{i} x_i \cdot (m/m_i) \cdot [(m/m_i)^{-1} \mod m_i] \mod m$$

Compute $5^{-1} \mod 11$.

Euler's Theorem

For a and n coprime,

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

This means that $a^{\varphi(n)-1}$ is an inverse of $a \mod n$.

We know that for p prime, $\varphi(p)=p-1$, so $\varphi(11)=10$. Therefore,

$$5^{-1} \mod 11 \equiv 5^9 \mod 11.$$

We can now compute 59 mod 11 using repeated squaring.

We can now compute $5^9 \mod n$ using repeated squaring.

Write 9 in binary representation as 1001.

i	2 ⁱ	5 ^{2'} mod 11		
0	1	5		
1	2	3		
2	4	9		
3	8	4		

From the binary representation, we know we will need the terms corresponding to i=0 and i=3. Multiplying the necessary terms:

$$5^9 \equiv 5 \cdot 4 \equiv 9 \mod 11$$

(Verify that $5 \cdot 9 \equiv 1 \mod 11$.)

Compute $101^{-1} \mod 195$.

We now use the **Extended Euclidean Algorithm** Recall that if we run it with inputs a and b, we get

$$at + bs = \gcd(a, b).$$

Since gcd(101, 195) = 1, we will get x and y such that 101t + 195s = 1. Hence, $t = 101^{-1} \mod 195$.

For each step $i \ge 1$ of the algorithm we have three equations:

$$r_{i+1} = r_{i-1} - q_i r_i$$

 $s_{i+1} = s_{i-1} - q_i s_i$
 $t_{i+1} = t_{i-1} - q_i t_i$

with $r_0=195$, $r_1=101$, $s_0=1$, $s_1=0$, $t_0=0$, $t_1=1$. For each i, $r_i=195s_i+101t_i$.

i	r _i	q_i	Si	t _i
0	195	-	1	0
1	101	1	0	1
2	94	1	1	-1
3	7	13	-1	2
4	3	2	14	-27
5	1	3	-29	56

Therefore,

$$1 = 195 \cdot (-29) + 101 \cdot 56$$

and thus $101 \cdot 56 \equiv 1 \mod 195$ and so $101^{-1} \mod 195 \equiv 56$.

Instead of building the previous table, we can also do the (regular) Euclidean Algorithm and them do back substitution.

$$195 = 1 \cdot 101 + 94$$

$$101 = 1 \cdot 94 + 7$$

$$94 = 13 \cdot 7 + 3$$

$$7 = 2 \cdot 3 + 1$$

$$3 = 3 \cdot 1 + 0$$

The non-zero last remainder corresponds to the gcd(195, 101), which we knew was 1 since the numbers are coprime.

Now we can back substitute:

$$1 = 7 - 2 \cdot 3$$

$$= 7 - 2 \cdot (94 - 13 \cdot 7) = 27 \cdot 7 - 2 \cdot 94$$

$$= 27 \cdot (101 - 1 \cdot 94) - 2 \cdot 94 = 27 \cdot 101 - 29 \cdot 94$$

$$= 27 \cdot 101 - 29 \cdot (195 - 1 \cdot 101) = 56 \cdot 101 - 29 \cdot 94$$

Again, we obtained $1 = 56 \cdot 101 - 29 \cdot 94$.

Three users have RSA moduli $n_1 = 87$, $n_2 = 115$ and $n_3 = 187$ respectively. They use exponent e = 3. We see the following ciphertexts on the communication channel: $c_1 = 5$, $c_2 = 20$ and $c_3 = 181$. We suspect that these ciphertexts correspond to a unique message. Find this message.

We know three moduli and the ciphertexts. If these ciphertexts correspond to the same message, then we know that:

$$5 \equiv m^3 \mod 87$$

 $20 \equiv m^3 \mod 115$
 $181 \equiv m^3 \mod 187$

So we know that m^3 is the solution to the set of congruences:

$$m^3 \equiv 5 \mod 87$$

 $m^3 \equiv 20 \mod 115$
 $m^3 \equiv 181 \mod 187$

Notice that $87 = 3 \cdot 29$, $115 = 5 \cdot 23$ and $187 = 11 \cdot 17$, so these three numbers are coprime.

We can then use the Chinese Remainder Theorem to compute

$$m^3 \mod 87 \cdot 115 \cdot 187$$

Let
$$n_1 = 87$$
, $n_2 = 115$, $n_3 = 187$. Then,
$$M = n_1 \cdot n_2 \cdot n_3 = 1870935$$

$$M_1 = n_2 \cdot n_3 = 115 \cdot 187 = 21505$$

$$M_2 = n_1 \cdot n_3 = 87 \cdot 187 = 16269$$

$$M_3 = n_1 \cdot n_2 = 87 \cdot 115 = 10005$$

$$N_1 = M_1^{-1} \mod n_1 = 21505^{-1} \mod 87 = 16^{-1} \mod 87 = 49$$

$$N_2 = M_2^{-1} \mod n_2 = 16269^{-1} \mod 115 = 54^{-1} \mod 115 = 49$$

$$N_3 = M_3^{-1} \mod n_3 = 10005^{-1} \mod 187 = 94^{-1} \mod 187 = 2$$

$$m^3 = c_1 \cdot M_1 \cdot N_1 + c_2 \cdot M_2 \cdot N_2 + c_3 \cdot M_3 \cdot N_3 \mod M$$

Substituting the values we get $m^3 = 512000 \mod M$.

Since $m < n_1, n_2, n_3$ we have that $m^3 < n_1 n_2 n_3$ and therefore $m^3 \mod n_1 n_2 n_3 = m^3$ over the integers.

We can now calculate $m = 512000^{1/3} = 80$.

Show that a different random number k must be selected for each message signed; otherwise, the private key x can be determined with high probability.

An ElGamal signature has the form (r, s) where

$$r \equiv a^k \mod p$$

 $s \equiv (M - x \cdot r) \cdot k^{-1} \mod (p - 1)$

- p is a large prime number
- ightharpoonup a is a generator in [2, p-1]
- ▶ M is a message in [0, p-1]
- ▶ Choose secret key x in [2, p-1]
- ▶ Set the public key $y \equiv a^x \mod p$.

For each message, choose k in [0, p-1] with $\gcd(k, p-1)$ at random. Set $r \equiv a^k \mod p$

If two messages M_1 and M_2 are encrypted with the same k, we get

$$r_1 = r_2 = r$$

 $s_1 \equiv (M_1 - x \cdot r) \cdot k^{-1} \mod (p-1)$
 $s_2 \equiv (M_2 - x \cdot r) \cdot k^{-1} \mod (p-1)$

Note now that $(s_1 - s_2)k \equiv (M_1 - M_2) \mod (p-1)$. If $\gcd(s_1 - s_2, p-1) = 1$, then $(s_1 - s_2)$ is invertible modulo p-1 and so

$$k \equiv (s_1 - s_2)^{-1}(M_1 - M_2) \mod (p - 1).$$

Note that if $gcd(s_1 - s_2, p - 1) = d$, then there are d solutions for k. We can compute $a^k \mod p$ for each one of them and compare to the public value r in order to find the correct k.

If r is invertible modulo p-1, there is a single solution for x:

$$x \equiv (M_1 - k \cdot s_1) \cdot r^{-1} \mod (p-1)$$

Otherwise, if gcd(r, p-1) = d', there will be d' solutions for x. We can check the correct one by computing $a^x \mod p$ and comparing to the public key y for each one of them.

To see why gcd(a, m) = d implies there are that there are d solutions to $ax \equiv b \mod m$, note that this congruence means that ax - b is a multiple of m. Since d divides both a and m, then it must also divide b.

We can now rewrite a = a'd, b = b'd and m = m'd. Then we get that $a'dx \equiv b'd \mod m'd$. Since m'd divides a'dx - b'd, we must also have that m' divides a'x - b, and so $a' \equiv b' \mod m'$.

Because d was the greatest common divisor of a and m, a' and m' must be relatively prime. Therefore, a' is invertible $\mod m'$ and thus $a' \equiv b' \mod m'$ has a unique solution $x \equiv (a')^{-1}b' \mod m'$.

To find the solutions to the original congruence, we need to find the integers $\mod m$ which are congruent to $x \mod m'$. These are the numbers of the form x+im', where i ranges from 0 to d-1.