Introduction: Fibonacci Numbers I

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Toolbox Data Structures and Algorithms

Learning Objectives

- Understand the definition of the Fibonacci numbers.
- Show that Fibonacci numbers become very large.

Definition

$$F_n = \begin{cases} 0, & n = 0, \\ 1, & n = 1, \\ F_{n-1} + F_{n-2}, & n > 1. \end{cases}$$

Definition

$$F_n = \begin{cases} 0, & n = 0, \\ 1, & n = 1, \\ F_{n-1} + F_{n-2}, & n > 1. \end{cases}$$

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

Developed to Study Rabbit Populations

Lemma

$$F_n \ge 2^{n/2}$$
 for $n \ge 6$.

Lemma

$$F_n \ge 2^{n/2}$$
 for $n \ge 6$.

Proof

By induction

Lemma

$$F_n \ge 2^{n/2}$$
 for $n \ge 6$.

Proof

By induction

Base case: n = 6, 7 (by direct computation).

Lemma

$$F_n \ge 2^{n/2} \text{ for } n \ge 6.$$

Proof

By induction

Base case: n = 6, 7 (by direct computation). Inductive step:

$$F_n = F_{n-1} + F_{n-2} \ge 2^{(n-1)/2} + 2^{(n-2)/2} \ge 2 \cdot 2^{(n-2)/2} = 2^{n/2}.$$

Formula

Theorem

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

$$F_{20} = 6765$$

$$F_{20} = 6765$$

 $F_{50} = 12586269025$

$$F_{20} = 6765$$
 $F_{50} = 12586269025$
 $F_{100} = 354224848179261915075$

```
F_{20} = 6765
F_{50} = 12586269025
F_{100} = 354224848179261915075
F_{500} = 1394232245616978801397243828
        7040728395007025658769730726
        4108962948325571622863290691
        557658876222521294125
```

Computing Fibonacci numbers

Compute F_n

Input: An integer $n \geq 0$.

Output: F_n .