PROIECT SCIA

STUDENT: FETTI OANA-MARIA

GRUPA 2131

PROFESOR: VLADU GHEORGHE EDUARD

Contents

1	TEN	MATICA PROIECTULUI	2
	1.1	Sursă de semnal	2
	1.2	Etajul 1	2
	1.3	Etajul 2 Filtru	3
	1.4	Etajul 3 PGA	3
	1.5	Etajul 4	4
2	Dim	ensionare	5
	2.1	Etajul 1	5
	2.2	Etajul 2	6
	2.3	Etajul 3	8
	2.4	Etajul 4	10
3	CAF	RACTERIZARE	11
	3.1	ETAJUL 1	11
	3.2	ETAJUL 2	14
	3.3	ETAJUL 3	16
	3.4	ETAJUL 4	22

1 TEMATICA PROIECTULUI

1.1 Sursă de semnal

Figură 1: Sursa de semnal

1.2 Etajul 1

Figură 2:Etajul 1

Amplitudine maximă: 1.25E-01 Amplitudine minimă: 4.45E-02

Câștig: 10

1.3 Etajul 2 Filtru

Figură 3: Etaj 2-Filtru

Câștig liniar in banda de trecere: 1,00E+00

Rintrare minim: 1.00E+03 Factorul de calitate(Q): 1.73

Banda: 7000

1.4 Etajul 3 PGA

Câștig minim[dB]: 6

Câștig maxim[dB]: 1.50E+01 Rezoluție(pas minim): 3

Număr pași:4

1.5 Etajul 4

Câștig:1 Tip AO: OP07

2 Dimensionare

2.1 Etajul 1

Figură 6 Etajul 1 dimensionat

Pentru dimensionare optimă, aleg R1=R4 și R2=R3

$$v1^+ = v1^- = VB$$

$$v2^+ = v2^- = VA$$

Aplicând Millman în nodurile $v1^-$ si $v2^-$, obțin:

$$v1^{-} = \frac{\frac{Vo1}{R2} + \frac{0}{R1} + \frac{VA}{RG}}{\frac{1}{R2} + \frac{1}{R1} + \frac{1}{RG}} = VB$$

$$v2^{-} = \frac{\frac{Vo1}{R3} + \frac{VB}{RG} + \frac{Vo}{R4}}{\frac{1}{R3} + \frac{1}{RG} + \frac{1}{R4}} - VA$$

Astfel, rezultă o tensiune de ieșire egală cu:

Vout=
$$\left(1 + \frac{2R4}{RG} + \frac{R4}{R3}\right)$$
 × $(VA - VB)$, de unde → Ad=1+ $\frac{R4}{R3}\left(1 + \frac{R2 + R3}{RG}\right)$

Știind din specificațiile de proiectare că Ad=10, înseamnă că

$$\frac{R4}{R3} \left(1 + \frac{R2 + R3}{RG} \right) = 9$$

Aleg RG=1k
$$\Omega = > \frac{R4}{R3} + \frac{2R4}{1k} = 9$$

Aleg R2=1k
$$\Omega = \frac{R4+2R4}{1k} = 9 = \frac{3R4}{1k} = 9 = R4=3k$$

 $RG=1k\Omega$

 $R1=R4=3k\Omega$

 $R2=R3=1k\Omega$

2.2 Etajul 2

Figură 7 Etajul 2 dimensionat

Pentru a dimensiona filtrul Deliyannis trece bandă, am utilizat tabelul de dimensionare:

f0 [Hz]	w0 [rad/sec]	Q	H0 [V/V]	H0 [dB]
1.21E+04	7.61E+04	1.73E+00	1.00E+00	0.00E+00
	set C1=C2=C	1		
	[F]	R1	R2	R3
	1.00E-09	2.27E+04	4.55E+04	4.56E+03

Astfel, am obținut următoarele valori:

C1=C2=1nF

 $R1=22.7k\Omega$

 $R2=45.5k\Omega$

 $R3=4.56k\Omega$

2.3 Etajul 3

Figură 9 Etajul 3 dimensionat

Având în vedere câștigul maxim de 15dB, câștigul minim de 6dB, cu un pas de 3 și număr minim de pași egal cu 4, domeniul căștigului va fi:

AdB = [6dB, 9dB, 12dB, 15dB]

Am transformat aceste valori în liniar cu ajutorul formulei Aliniar= $10^{\frac{AdB}{20}}$. Așadar am obținut Aliniar= $\left[2\frac{V}{V},\ 2.8\frac{V}{V},\ 4\frac{V}{V},\ 5.6\frac{V}{V}\right]$

Expresia generală a câștigului, pentru acest circuit, este: $A=1 + \frac{RF}{RG}$

Astfel, pentru toate câștigurile:

$$\Rightarrow$$
 A1=1 + $\frac{RF}{RG1}$ = 2

$$\Rightarrow A2=1+\frac{RF}{Rg2}=2.8$$

$$\Rightarrow A3=1+\frac{RF}{RG3}=4$$

$$\Rightarrow A4=1 + \frac{RF}{RG4} = 5.6$$

Aleg RF= $30k\Omega$

$$\Rightarrow RG1 = \frac{RF}{(A1-1)} = 30k\Omega$$

$$\Rightarrow RG2 = \frac{RF}{(A2-1)} = 16.6k\Omega$$

$$\Rightarrow RG3 = \frac{RF}{(A3-1)} = 10k\Omega$$

$$\Rightarrow RG4 = \frac{RF}{(A4-1)} = 6.52k\Omega$$

2.4 Etajul 4

Figură 10 Etajul 4 Dimensionat

Presupunând că ambele diode sunt blocate și că avem o tensiune de intrare pozitivă, obținem, în acest caz, Vout=Vin, pentru D1 blocată și D2 în conducție.

Pentru o tensiune de intrare negativă, prima diodă va conduce, iar D2 va fi blocată. Astfel, primul amplificator va fi inversor cu reacție negativă și vom avea $Vout=-\frac{R2}{R1}Vin$ în acest caz, expresia tensiunii de ieșire este:

$$Vout = \begin{cases} Vin, Vin > 0 \\ -\frac{R^2}{R^1}Vin, Vin > 0 \end{cases}$$

Având un caștig liniar egal cu 1, aleg R2=R1=10kΩ

3 CARACTERIZARE

3.1 ETAJUL 1

DCOP

Figură 11 .op etajul 1

Pentru DC OP, se poate observa punctul static de functionare corect.

Pentru a vedea daca e nevoie de compensare de offset, am pus 0 la ambele surse de intrare si am obtinut o tensiune de iesire nula. Asadar, nu este nevoie sa compensez.

Figură 12 Compensare DC

<u>AC</u>

Castig la joasa frecventa:

Figură 13: Castig etaj 1

Se poate observa castigul la joasa frecveta, A=16 in liniar, care respecta specificatiile de proiectare.

Banda>Banda filtrului:

Figură 14: Banda etaj 1

Am masurat banda la diferenta de -3dB dintre cursoare. Astfel, a rezultat o banda mult mai mare decat cea a filtrului.

CMRR, PSRR

Pentru CMRR si PSRR am folosit aceste doua circuite separate:

Figură 15: Circuite pentru cmrr si psrr

Am obtinut:

Figură 16: CMRR si psrr

```
cmrr: (v(vout 1)/v(cm))=(3.19807e-07dB,-180°) at 1
psrr: (v(vout 1)/v(ps))=(20.0076dB,-0.000762956°) at 1
```

TRANSIENT Liniaritate:

```
Fourier components of V(vout 1)
DC component:0.000115321
Harmonic
                  Frequency
                                     Fourier
                                                       Normalized
                                                                           Phase
                                                                                            Normalized
Number
                                    Component
                                                        Component
                                                                          [degree]
                                                                                            Phase [deg]
                    [Hz]
                  1.211e+4
                                     4.347e-1
                                                       1.000e+0
                                                                                               0.00°
                   2.422e+4
                                     2.287e-4
                                                        5.261e-4
                                                                           -132.27°
                                                                                             -231.92°
                                                                           -88.36°
                  3.633e+4
                                     1.635e-3
                                                       3.760e-3
                                                                                             -188.01°
                                                       5.127e-4
                                                                                              -4.10°
                                                                           95.54°
                   4.844e+4
                                     2.229e-4
                                                                           91.18°
                   6.055e+4
                                     1.045e-3
                                                       2.403e-3
                                                                                               -8.47°
                   7.266e+4
                                                       4.911e-4
                                                                                             -136.12°
                   8.477e+4
                                                       1.301e-3
                                                                           -103.41°
                                                                                             -203.06°
   8
                   9.688e+4
                                     2.009e-4
                                                       4.621e-4
                                                                         -168.21°
                                                                                             -267.85°
                                                                            42.20°
                                                                                              -57.44°
                   1.090e+5
                                     3.556e-4
                                                        8.181e-4
                                                                           60.46°
                                                                                              -39.19°
  10
                   1.211e+5
                                     1.856e-4
                                                        4.270e-4
Partial Harmonic Distortion: 0.484302%
Total Harmonic Distortion: 0.537676%
```

Figură 17: Liniaritate etaj 1

Am realizat o analiza de tip Fourier si am obtinut rezultate pentru THD<1%.

3.2 ETAJUL 2 DCOP

Punct static de functionare: *C:\Users\Oana\Desktop\et2.asc

```
--- Operating Point ---
V(vout 2):
                -1.51601e-18 voltage
              0.0752751
V(n001):
                               voltage
               0.45
V(n002):
                                voltage
V(n003):
               1.90784e-18 voltage
V(vss):
               -5
                               voltage
V(vdd):
              5
                                voltage
I(C1):
               -7.52751e-23 device_current
               7.52751e-23 device_current
I(C2):
I(R1_filtru): -1.65077e-05 device_current
I(R2_filtru): 7.52494e-23 device_current
I(R2_filtru): 7.52494e-23 device_current
I(R3_filtru): -1.65077e-05 device_current
                -1.65077e-05 device current
I(V1):
               0.00225 device_current
-0.00225 device_current
I (Vss) :
I(Vdd):
Ix(u1:1):
               -2.61416e-26 subckt current
               2.58494e-26 subckt_current
Ix(u1:2):
              0.00225 subckt_current
Ix(u1:3):
Ix (u1:4):
               -0.00225
                             subckt_current
Ix(u1:5):
                -1e-24
                              subckt_current
```

Figură 18: dcop etajul 2

<u>AC</u>

Castig in banda de trecere:

Figură 19: Castig in banda de trecere

Castigul in banda de trecere este egal cu 1 in liniar, conform cerintei.

Banda:

Figură 20: Banda etaj 2

Banda am masurat-o coborand din varf cu cate -3dB pe fiecare parte. Am obtinut aproximativ 7kHz, precum in cerinte.

TRANSIENT

Liniaritate:

OC component:	-9.44002e-U5				
Harmonic	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	1.210e+4	4.829e-1	1.000e+0	-83.69°	0.00°
2	2.420e+4	1.879e-4	3.892e-4	28.60°	112.28°
3	3.630e+4	1.870e-3	3.872e-3	89.32°	173.01°
4	4.840e+4	1.848e-4	3.827e-4	-122.75°	-39.06°
5	6.050e+4	1.352e-3	2.800e-3	-90.95°	-7.27°
6	7.260e+4	1.798e-4	3.723e-4	86.03°	169.72°
7	8.470e+4	8.088e-4	1.675e-3	87.80°	171.48°
8	9.680e+4	1.729e-4	3.581e-4	-65.00°	18.69°
9	1.089e+5	3.336e-4	6.907e-4	-97.44°	-13.75°
10	1.210e+5	1.646e-4	3.408e-4	144.24°	227.93°
artial Harmon	nic Distortion: 0.51	7635%			

Figură 21: Liniaritate etaj 2

3.3 ETAJUL 3

DCOP

Punct static de functionare

Am alimentat etajul cu amplitudinea maxima de 44.5mV. Pentru primul switch activ, Vout=A*Vin=2*44.5m=0.089V:

* C:\Users\Oa	na\Desktop\eyj3.asc	
(perating Point -	
/ 0001		••
V(n002):	0.0444999 0.0445	voltage
V(n005):		voltage
V (vdd) :	5_	voltage
V(vss):	-5	voltage
V(vout_e3):	0.0890066	voltage
V(n004):	0.0444984	voltage
V(s2):	•	voltage
V(n006):	1.15467e-06	voltage
V(s1):	5	voltage
V(n003):	0.044499	voltage
V(s3):	0	voltage
V(n001):	0.0444993	voltage
V(s4):	0	voltage
I (Rg2):	8.91749e-11	device_current
I (Rg1):	1.48329e-06	device_current
I(Rg3):	8.91761e-11	device_current
I(Rg4):	8.91768e-11	device_current
I(Rf):	1.48356e-06	device_current
I(V1):	-8.10752e-14	
I(V2):	-2e-23	device_current
I(V3):	0	device_current
I(V4):	0	device_current
I(V5):	0	device_current
I (Vss) :	0.00224938	device_current
I (Vdd) :	-0.00225086	device_current
Ix(u1:1):	8.10752e-14	subckt_current
Ix(u1:2):	7.78532e-14	subckt_current
Ix(u1:3):	0.00225074	subckt_current
Ix (u1:4):	-0.00224926	subckt_current
Ix(u1:5):	-1.48356e-06	subckt_current
Ix(u2:1):	0	subckt_current
Ix(u2:2):	8.90859e-11	subckt_current
Ix(u2:3):	-8.89968e-14	subckt_current
Ix (u2:4):	-3.00643e-08	subckt_current
Ix(u2:5):	-3.91586e-24	subckt_current
T / 2 - C \ .	2 00752- 00	and also arranged took tour

Figură 22: dcop sw1

Pentru switch 2: Vout=2.8*44.5m=0.1246V

--- Operating Point ---V(n002): 0.0444998 voltage V(n005): 0.0445 voltage V(vdd): 5 voltage voltage -5 V(vss): 0.124925 voltage V(vout_e3): V(n004): 2.08671e-06 voltage V(s2): 5 voltage V(n006): 0.0444972 voltage V(s1): 0 voltage V(n003): 0.0444989 voltage V(s3): 0 voltage V(n001): 0.0444993 voltage V(s4): 0 voltage 2.68059e-06 device_current I(Rg2): I(Rg1): 8.91725e-11 device current device current I(Rq3): 8.9176e-11 I(Rg4): 8.91767e-11 device current I(Rf): 2.68085e-06 device current I(V1): -8.17256e-14 device current I(V2): 0 device_current device_current -2e-23 I(V3): I(V4): device_current 0 T (775) -Ω device current

Pentru switch 3 activ: Vout=4*44.5m=0.178V

Figură 24: dcop sw3

Pentru switch-ul 4: Vout=5.6*0.0445=0.2492V.

* C:\Users\Oan	a\Desktop\eyj3.asc	
Op	erating Point	
V(n002):	0.0444997	voltage
V(n005):	0.0445	voltage
V(vdd):	5	voltage
V(vss):	-5	voltage
V(vout_e3):	0.249236	voltage
V(n004):	0.0444982	voltage
V(s2):	0	voltage
V(n006):	0.044497	voltage
V(s1):	0	voltage
V(n003):	0.0444988	voltage
V(s3):	0	voltage
V(n001):	5.31239e-06	voltage
V(s4):	5	voltage
I(Rg2):	8.91745e-11	device_current
I (Rg1):	8.91722e-11	device_current
I(Rg3):	8.91757e-11	device_current
I(Rg4):	6.82429e-06	device_current
I(Rf):	6.82455e-06	device_current
I(V1):	-8.39766e-14	device_current
I(V2):	0	device_current
I(V3):	0	device_current
I(V4):	0	device_current
I(V5):	-2e-23	device_current
I (Vss) :	0.00224671	device_current
I (Vdd) :	-0.00225353	device_current

Figură 25: dcop sw4

AC Trepte de castig

Pentru primul switch, A=6dB:

Figură 26: Castig sw1

Pentru al doilea switch: A=9dB:

Pentru al treilea switch: A=12dB:

Figură 28: Castig sw3

Pentru al patrulea: A=15dB:

Banda PGA>Banda filtru

Pentru primul switch:

Pentru al doilea switch:

Pentru al treiea switch:

Figură 32: Banda sw3

Pentru al patrulea switch:

Figură 33: Banda sw4

TRANSIENT

Liniaritate

Amplitudine minima, castig maxim:

larmonic	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	1.210e+4	2.528e-1	1.000e+0	88.52°	0.00°
2	2.420e+4	9.458e-5	3.742e-4	-151.42°	-239.94°
3	3.630e+4	9.435e-4	3.733e-3	-92.15°	-180.67°
4	4.840e+4	9.301e-5	3.680e-4	57.22°	-31.30°
5	6.050e+4	7.008e-4	2.773e-3	87.20°	-1.31°
6	7.260e+4	9.047e-5	3.579e-4	-94.02°	-182.53°
7	8.470e+4	4.230e-4	1.673e-3	-95.09°	-183.60°
8	9.680e+4	8.702e-5	3.443e-4	114.94°	26.42°
9	1.089e+5	1.777e-4	7.030e-4	77.30°	-11.21°
10	1.210e+5	8.279e-5	3.275e-4	-35.84°	-124.35°
artial Harmor	nic Distortion: 0.50	5402%			
otal Harmonio	Distortion: 0.54	5658%			

Figură 34: Liniaritate ampl max

Amplitudine maxima, castig minim:

Figură 35: Liniaritate ampl minima

3.4 ETAJUL 4

DCOP

Punct static de functionare:

Operating Point				
7(n001):	0.249941	voltage		
7(v+):	5	voltage		
7(v-):	-5	voltage		
7(n003):	-0.771378	voltage		
7(vout_4):	0.249915	voltage		
7(n002):	0.249916	voltage		
7(vin):	0.25	voltage		
(D1):	-2.52102e-09	device_current		
(D2):	0.0384467	device_current		
(R1):	-5.89612e-09	device_current		
(R2):	-2.52147e-09	device_current		
(R3):	0.000249915	device_current		
(V1):	-5.89612e-09	device_current		
(V2):	-0.00237669	device_current		
(V3):	0.0405665	device_current		
x (u1:1):	-3.3742e-09	subckt_current		
x(u1:2):	3.37465e-09	subckt_current		
x(u1:3):	6.85624e-10	subckt_current		
x(u1:4):	-0.0384397	subckt_current		
x (u1:5):	0.0384467	subckt_current		
x(u2:1):	4.5095e-13	subckt_current		
x(u2:2):	4.41606e-13	subckt_current		
x(u2:3):	0.00237669	subckt_current		
x(u2:4):	-0.00212678	subckt_current		
x (u2:5):	-0.000249915	subckt current		

Figură 36: dcop etaj 4

DC SWEEP

Castig

Pentru Vin<0, A=-1

Figură 37: castig etaj 4

Pentru Vin>0, A=1

TRANSIENT

Implementare functie de circuit

Figură 39: Implementare functie de circuit etaj 4

In alternanta pozitiva a tensiunii de intrare, primul AO devine comparator. Cand se schimba alternanta la cea negativa, el trebuie sa creasca inapoi la valoarea tensiunii de intrare.

Pentru a obtine o functie de circuit mai apropiata de cea teoretica, am ales sa folosesc o dioda mai rapida, ca in Figura 39, cu un Vd mai mic, astfel amplificatorul va putea creste mai repede la Vin.

Figură 40: Dioda schottky

Am redimensionat circuitul la R1=R2=1k si am alimentat cu o sursa de amplitudine 1V.

In acest caz, functia de circuit va arata in felul urmator:

Figură 41: Functie de circuit

De asemenea, pentru primul amplificator, cu o tensiune de intrare pozitiva si modificarile realizate, caracteristica va arata asa:

Figură 42: Functie de circuit pentru VAO1

DOMENIU DE LINIARITATE

Figură 43 Domeniu de liniaritate alternanta pozitiva

Alternanta negativa

