

DATTA MEGHE

Institute of higher education & research

(DEEMED TO BE UNIVERSITY)

LEARN. LEAD.

Faculty of Engineering and Technology Department of Artificial Intelligence and Data Science

Presentation for Major Project-II

PRESENTATION FOR MAJOR PROJECT - II ON

Blockchain based Academic Credential Verification System

NAME OF STUDENT: BHAIRAVI NARENDRA REWATKAR

NAME OF THE SUPERVISOR: DR. K.T.V REDDY

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE,

FACULTY OF ENGINEERING AND TECHNOLOGY,

SAWANGI (MEGHE), WARDHA

DATE: 03/03/2025

CONTENTS

Introduction
Prisma Chart
Prisma-S Extension
Knowledge /Research gap analysis
Research Question
Aim
Objectives
Methodology
Flowchart
Progress
References

INTRODUCTION

- Traditional academic credential systems are prone to issues like forgery, loss, and manual inefficiencies.
- Verification of credentials is often time-consuming, costly, and relies heavily on centralized databases.
- Employers and institutions face challenges in confirming the authenticity of certificates quickly.
- There's a growing need for a secure, transparent, and decentralized system to address these challenges.

SYSTEMATIC REVIEW OF LITERATURE (PRISMA FLOW DIAGRAM)

PRISMA-S EXTENSION

Topic	Item	Checklist item		
Data base name	1	PubMed, IEEE, Elsevier, Research Gate, Google Scholar		
Registries	2	N/A		
MESH TERMS	3	Blockchain, Cryptocurrency, Distributed Ledger Technology, Digital Certificates, Smart Contracts		
Search strategies	4	Mesh terms, Keywords, phrases, headlines, terms and citations are used as search strategies to collaborate the data		
Selection process	5	 40 records were screened for eligibility based on the inclusion criteria. 10 articles were excluded during screening for not meeting the selection criteria (e.g., irrelevance to objectives). 		
Limits and restrictions	6	 Studies conducted within the last 5 years were prioritized for relevance. Older studies were included to provide historical evidence or foundational insights. 		
Search filters	7	 25 studies were included in the qualitative and quantitative synthesis. Studies included consist of original research articles, review articles, meta-analyses, and systematic reviews. 		
Total records	8	 From PubMed, IEEE, Elsevier, ResearchGate, and Google Scholar, 50 records were identified initially. After removal of duplicates, 40 records remained for screening. 		

RESEARCH ARTICLES INCLUDED

Sr. No	Type of article	Total
1	Original Article	20
2	SR & MA	5
3	RCT	0
4	Review	7
5	Books	3
	Grand Total	25

KNOWLEDGE GAP

S. No.	Title of the Article Author Year of publication	Focus of Study, Design, Objectives, Method used and Sample size	Findings of the study and their conclusions	Remarks of the Scholar on limitations
1	Sharples, M. (2024). The Blockchain and Kudos: A Distributed System for Educational Record, Reputation, and Reward.	 Explores the potential of blockchain in educational settings for storing academic records, building reputations, and rewarding achievements. Conceptual study—no specific sample size. 	Demonstrates how blockchain could decentralize educational systems by securely recording achievements and enabling peer-to-peer reputation systems.	Emphasizes the lack of real-world implementations and challenges in integrating blockchain into existing educational systems.
2	Trong Thua Huynh et al. (2022). eunicert: Ethereum-Based Digital Certificate Verification System.	Focuses on developing a blockchain-based solution for verifying digital certificates using Ethereum. Demonstrates a prototype system and its architecture.	ensures transparency, immutability, and ease of	Mentions scalability and adoption challenges, as well as limitations due to high transaction costs on Ethereum.
3	Inamorato dos Santos, A. (2021). Blockchain in Education – European Commission's JRC Report Preview.	Explores the application of blockchain in education, focusing on storing academic credentials and offering transparency. Provides a conceptual framework with no empirical study.	Identifies blockchain as a tool to revolutionize the education sector through decentralized credential management. Proposes policies to enhance adoption.	Highlights the lack of large-scale case studies and challenges regarding data privacy laws in the EU.

KNOWLEDGE GAP

S. No.	Title of the Article Author Year of publication	Focus of Study, Design, Objectives, Method used and Sample size	Findings of the study and their conclusions	Remarks of the Scholar on limitations
4	Hammoudeh, Y. A. et al. (2023). Digital Certificate Validation Using Blockchain: A Survey.	Comprehensive survey on blockchain-based solutions for validating digital certificates. Reviews existing implementations and challenges.	Summarizes the strengths of blockchain in certificate validation, including transparency, fraud prevention, and decentralized verification.	Notes issues like high energy consumption in blockchain networks and the need for standardized protocols across institutions.
5	Seng, K. C., & Rana, M. E. (2022). Recommendations for Implementing a Blockchain-Based Educational Certificate Distribution System.	Proposes a framework for blockchain adoption in certificate issuance and verification. Includes a review of blockchain technology and an implementation plan.	Provides recommendations for educational institutions, including interoperability and cost-effective blockchain solutions like Hyperledger.	Highlights challenges in convincing institutions to adopt new technology due to lack of technical expertise and initial investment costs.
6	Chowdhary, A., et al. (2021). Blockchain-Based Framework for Student Identity and Educational Certificate Verification.	Discusses the integration of blockchain for managing student identities and verifying credentials. Includes a prototype system tested with small datasets.	The proposed framework ensures security, reduces identity theft, and prevents certificate fraud while offering efficiency in verification processes.	Implementation challenges include lack of integration with existing academic systems and potential resistance to adoption due to unfamiliarity with blockchain technology.

RESEARCH QUESTION

How can the Polygon blockchain used to create a decentralized, cost-effective, and scalable solution for academic credential verification?

AIM

To design and develop a decentralized academic credential verification system using the Polygon blockchain, aimed at providing a secure, tamper-proof, and cost-effective solution for the issuance, storage, and validation of academic records.

OBJECTIVES

- To Build a secure and decentralized platform for issuing and verifying academic credentials.
- To Use the Polygon blockchain to ensure scalability and cost-efficiency.
- To Provide a tamper-proof mechanism to prevent credential fraud.
- To Enable real-time, global access to credentials for verification.

Methodology

Approach:

- Requirement Analysis and Research
- Blockchain Platform Selection
- System Design and Architecture
- Smart Contract Development
- User Interface (UI) Development
- Decentralized Storage Integration
- Testing and Quality Assurance
- Deployment and Launch

Technologies: Polygon Blockchain, Solidity, IPFS (InterPlanetary File System), MetaMask, ReactJS (for UI Development), Node.js and Express.js, Web3.js, Truffle Suite

Flowchart

Final Demo

SUMMARY

S	Point	Compliance
no		
1	Is research gap identified?	Yes
2	Is the research question is in tune with research gap?	Yes
3	Is the hypothesis in tune with the research question?	Yes
4	Is the study design commensurate with the research question?	Yes
5	Is the study feasible?	Yes
6	Whether the research lead to generation of new knowledge or achieve higher level of evidence?	Yes

REFERENCES

- 1) M. Sharples, "The blockchain and kudos: A distributed system for educational record, reputation and reward," in Proceedings of the European Conference on Technology Enhanced Learning, 2024. [Online]. Available: https://doi.org/10.1007/978-3-319-45153-4_48.
- 2) B. Dorris, "Report to the Nations, Global study on occupational fraud and abuse," Association of Certified Fraud Examiners, 2018. [Online]. Available: DOI: 10.5121/ijnsa.2019.11502.
- 3) T. T. Huynh and D.-K. Pham, "eunicert: Ethereum based digital certificate verification system," IJCNC Journal, Oct. 14, 2022.
- 4) A. Inamorato dos Santos, "Blockchain in Education European Commission's JRC report preview," Blockchain in Education Conference, 2021. [Online]. Available: DOI: 10.2760/60649.
- 5) E. Mesropyan, "21 Companies Leveraging Blockchain for Identity Management and Authentication," Vol. 8, No. 4-2, 2018, ISSN: 2088-5334.
- 6) R. E. Perry, "Blockchain technology: From hype to reality," J. Inform. Integr. Intell. Technol., 2020, DOI: 10.1016/j.jii.2020.100125.

REFERENCES

- 7) H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu, and J. Kishigami, "Blockchain contract: Securing a blockchain applied to smart contracts," in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2016, pp. 467–468.
- 8) Z. Zheng, S. Xie, X. Chen, and H. Wang, "Blockchain challenges and opportunities: A survey," in Proc. IJWGS, vol. 14, 2018, pp. 352–375.
- 9) S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, "An overview of smart contract: Architecture, applications, and future trends," in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 108–113.
- 10) E. Androulaki et al., "Hyperledger fabric: A distributed operating system for permissioned blockchains," in Proc. ACM Workshop on Blockchain-enabled Networked Systems (BeNS), 2018. [Online]. Available: http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-67729-3_17.
- 11) G. Konstantinidis, G. Siaminos, and C. Timplalexis, "Blockchain for business applications: A systematic literature review," in Proc. Springer Int. Conf. Blockchain, 2018. [Online]. Available: http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-93931-5_28.
- 12) Blockcerts, "The Open Standard for Blockchain Credentials," 2018. [Online]. Available: https://www.blockcerts.org.

THANK YOU