Dr Takfarinas SABER takfarinas.saber@dcu.ie

CA169 Networks & Internet

Layer 2: Part 4 (and last)
Medium Access Control

Medium Access Control

- Link layer is responsible for flow and error control from a machine to a machine over a single link
 - Answers the question: How is data sent between a Sender and a Receiver?

- However, how to organise communications when multiple devices are on a single link?
 - Medium Access Control

IEEE Project 802

Notation

- When two or more nodes want to transmit at the same time, they are said to contend for the channel
- If two or more nodes transmit at the same time, usually the frames will collide and are destroyed
 - No transmission is successful

- Our goal is to avoid contention (best)
- Or detect and resolve collision (at least)

Contention Resolution

- There are 3 basic contention resolution strategies:
 - Divide the channel into independent sub-channels where one is used for each transmission
 - Collision Resolution allows the nodes to transmit whenever they like but they
 must check for collision
 - If a collision is detected each node waits a **random** amount of time before transmitting again
 - Reservations: a node must have a **token** before transmitting, when finished it sends the token to its neighbor
 - A token is a piece of data that signals permission to transmit
 - There is often a modification where the token can be passed to anyone in the network, as long as all nodes get a chance to transmit

Ethernet

- In the mid 1970s Xerox PARC developed first Ethernet to connect 100 computers on a 1 km cable
- It used a channel access method: CSMA/CD
 - Two components:
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection (CD)
 - to try to reduce the *likelihood* and *effects* of a collision

Carrier Sense Multiple Access

- CSMA: a node wishing to transmit must first listen to the channel
- If the channel is busy:
 - some other node has to be transmitting
 - > our node must wait until it detects that the channel is idle
- When the channel is determined to be idle:
 - > our node can transmit

Collision Detection

- During transmission, our node listens to the channel and if another transmission is detected
 - e.g., higher voltage level than expected for one transmission
- Every node involved in the collision:
 - 1. stops transmitting immediately
 - 2. computes a randomly-sized time interval
 - 3. waits for that amount of time
 - 4. then begins the transmission attempt again (using CSMA)

CSMA/CD

- A basic problem with CSMA/CD is that, theoretically, a node wishing to transmit may *never* be able to
 - Especially if the Maximum Medium Access Time (MMAT) is high
 - Also, even with random waiting times, the node's transmission attempts may collide every time!

Collisions in CSMA/CD

- Collisions can still occur even with Carrier Sensing
 - because it takes non-zero time for a signal to propagate along the channel

CSMA/CD Variants

- Non-Persistent CSMA
 - Wait a back-off period before sensing again
 - High efficiency, but high delay

- Start transmission as soon as the channel becomes idle
- Low delay, low efficiency

b. Nonpersistent

a. 1-persistent

P-Persistent

- Assume channels are slotted:
 - After each transmission period there will be a competition for the channel

1. Sense the channel:

- If the channel is idle transmit with probability P
- ➤ If the slot has been transmitted, go to step 2.
- ➤ If the slot has not been transmitted, go back to step 1.

2. Collision?

• If collision occurs while sending, wait a "backoff" period, go back to step 1.

c. p-persistent

Summary of CSMA/CD variants

a. 1-persistent

b. Nonpersistent

CSMA in Radio Comms

- CSMA is often used for radio communications
 - notably WiFi
- We see a problem in this case known as the hidden node problem.

A wants to transmit a packet to B

A senses Medium is Idle

C wants to transmit a packet to B

C senses Medium is Idle

CSMA/CA

 We have to modify the CSMA strategy to account for this hidden node problem

- This CSMA variant is called CSMA/CA (Collision Avoidance)
 - Avoids collisions altogether
 - It uses Request To Send (RTS) and Clear to Send (CTS) packets

CSMA/CD Alternatives

- The potential problems with Ethernet led to the development of some alternative technologies in the early 80s
 - IBM chose a *ring topology* for office automation applications
 - Led to the Token Ring (802.5) standard
 - General Motors, and others interested in factory automation, chose a bus topology as a good match to layout of assembly lines
 - Led to the Token Bus (802.4) standard
- Key point in both of these cases: the Maximum Medium Access Time (MMAT) is **bounded**, assuming the network is working correctly

- A ring is actually a set of point-to-point links that form a circle
 - A ring is (logically) unidirectional

- A **token** is a special frame passed from node to node
 - A node can only transmit when it has the token

- When a node receives the token, it can choose to transmit a frame
- This fame is then forwarded around the ring in the same direction as the token
- At some point the frame must be removed from the ring
 - This is usually done at the receiver or when it returns to the sender
- After the frame is removed, the token is put back on the ring

Token is traveling along the ring.

Station A captures the token and sends its **data** to D.

Station D copies the frame and sends the data back to

Station A receives the data frame and releases the token.

