浅谈ASM

Lunar

QQ: 5163721

www.lunar2013.com

Agend

- · ASM的历史和简介
- · ASM体系架构
- · ASM在不同版本的新特性
- · ASM存储和分配机制
- · ASM日常使用注意事项

Oracle 9i Software Stack

Application	Application	Application		
Database		Database		
File System				
Logical Volume Manager				
Operating System				

Oracle 10g with ASM

Application Application **Application Database Database** ASM **Operating System**

Agend

- ·ASM的历史和简介
- · ASM体系架构
- · ASM在不同版本的新特性
- · ASM存储存储和分配机制
- · ASM日常使用注意事项

12.1 ASM以前的ASM架构概览

12.1 ASM以后的Flex ASM架构概览

ASM 常规体系结构

Database file creation

Database file open

ASM的进程介绍--图解ASMB

- 1. PMON, SMON, LGWR, ARCH, CKPT, DBWR
- 2. ASM processes in database instance:

ASMB - ASM background process used for client extent management

RBAL - Background process that is used for diskgroup management

o???? - ASM slave processes

3. Processes that Run in ASM instance:

ASMB - Starts up only during DB startup using spfile

RBAL - Background process that is used for diskgroup management

ARBn - ASM Rebalance Process. These processes

DBW0 - DB writes, same as database DB writer, but deals with ASM cache

SMON - Recovery process, Same as database SMON, but deals with diskgroup recovery

CKPT - Checkpoint process, Similar to database CKPT

PSP0 - Process that Starts other Processes, used to startup other backgrounds

GMON - Group monitor, used for partner and status table, and node membership

n00x - GMON Slave processes

ora_crocname>_<dbsid> - Foregrounds servicing clients commands from client crocname> of database

ora ASMB <dbsid>: Special ASM foreground that controls database <dbsid> ASMB

KATE - Konductor of ASM Temporary Errands, used to process disk online

VKTM - Process to maintain a fast timer, same as database

PING - Process to measure network latency, same as database

DIA? - Diag process, same as database

DIAG - Diag process, same as database

LGWR - Log writer, similar to database, but deals with diskgroups

LMON - Lock monitor, Same as database

LMS? - Lock monitor slaves, same as database

MMAN - Autotune SGA process, Same as Database.

b??? - Slave used to process offline disks.

x??? - Slave used to expell disks after diskgroup reconfiguration

pz?? - PQ slaves used for global Views

Agend

- ·ASM的历史和简介
- · ASM体系架构
- · ASM在不同版本的新特性
- · ASM存储和分配机制
- ·ASM日常使用注意事项

ASM实例在10.2中可以单独配置和管理

ASM实例在11.2中使用ASMCA配置和管理

无 ASM 快速镜像再同步时

Oracle 11.1中的增强 ASM 快速镜像再同步:概览

ASM 首选镜像读取: 概览

镜像IO由谁完成?

ASM 首选镜像读取:设置

监视 SELECT preferred_read FROM v\$asm_disk; SELECT * FROM v\$asm_disk_iostat;

ASM 首选镜像读取:最佳方法

Oracle Database 11.1 中的 ASM 可伸缩性

ASM 强制实施下列限制:

- 63 个磁盘组
- 10,000 个 ASM 磁盘
- 每个 ASM 磁盘 4 PB
- 40 EB 的存储空间
- 每个磁盘组 1 百万个文件
- 最大文件大小:
 - 外部冗余: 140 PB
 - 正常冗余: 42 PB
 - 高冗余: 15 PB

·可变extent:

- 前 20,000 个区 (0-19999) 等于 AU
- 接下来的 20,000 个区 (20000-39999) 等于 4 个 AU
- 40,000 个以上的区等于 16 个 AU

 使用 SYSASM 角色管理 ASM 实例可以避免 DBA 与存储 管理员之间出现重叠。

```
SQL> CONNECT / AS SYSASM

SQL> CREATE USER username IDENTIFIED by passwd;

SQL> GRANT SYSASM TO username;

SQL> CONNECT username/passwd AS SYSASM;

SQL> DROP USER username;
```

SYSDBA 将被废弃:

- Oracle Database 11g 版本 1 的行为与 Oracle Database 10g 中的相同。
- 在11.2的版本中, ASM 实例中的 SYSDBA 权限将受到限制。

ASM 磁盘组兼容性

- 可以分别控制每个磁盘组的兼容性:
 - ASM 兼容性控制 ASM 元数据的磁盘存储结构。
 - RDBMS 兼容性控制使用者客户机的最低级别。
 - ADVM 兼容性确定是否可以使用 Oracle ASM 动态卷管理器。
- 对磁盘组兼容性的设置是不可逆的。

ASM 磁盘组属性

名称	属性	值	说明	
au_size	С	1 2 4 8 16 32 64MB	磁盘组中分配单元的大小	
compatible.rdbms	AC	有效的数据库版本	数据库与 ASM 之间交换的消息的格式	
compatible.asm	AC	有效的 ASM 实例版本	磁盘上 ASM 元数据结构的格式	
disk_repair_time	AC	0 M to 2 ³² D	磁盘脱机之后删除此磁盘之前的时间量	
template.tname.	A	UNPROTECT MIRROR HIGH	指定模板的冗余	
template.tname.	A	COARSE FINE	指定模板的条带化属性	

C: CREATE (创建) A: ALTER (变更)

```
CREATE DISKGROUP DATA NORMAL REDUNDANCY
DISK '/dev/raw/raw1','/dev/raw/raw2'
ATTRIBUTE 'compatible.asm'='11.1';
```

适用于快速重新平衡的受限装载磁盘组

- 磁盘组只能装载在单个实例上。
- 任何数据库客户机或其它 ASM 实例都不能获得访问权限。
- 重新平衡可以继续进行,而无锁定开销。
 - 1 ALTER DISKGROUP data DISMOUNT;
 - 2 ALTER DISKGROUP data MOUNT RESTRICT;
 - 3 维护任务:添加/删除磁盘...
 - 4 ALTER DISKGROUP data DISMOUNT;
 - ALTER DISKGROUP data MOUNT;

强制装载磁盘组

- 默认情况下, MOUNT 使用 NOFORCE 选项:
 - 所有磁盘必须可用
- 带有 FORCE 选项的 MOUNT:
 - 如果存在仲裁磁盘,则会使不可用的磁盘脱机
 - 如果所有磁盘都可用,则操作会失败

ALTER DISKGROUP data MOUNT [FORCE | NOFORCE];

强制删除磁盘组

- 允许用户删除无法装载的磁盘组
- 如果在任何位置装载了磁盘组,则操作会失败

DROP DISKGROUP data FORCE INCLUDING CONTENTS;

ASMCMD 扩展

OCR 和Voting Disk放在ASM上

- OCR 是常规ASM文件
 - 一个新的ASM文件类型
- Voting Disk
 - 存储在选定的ASM磁盘上
 - 使用'crsctl' 为Voting disk指定一个磁盘组
 - 基于 Ext/Normal/High 冗余级别,ASM 自动创建1/3/5 个Voting Disk
 - Quorum failure group
- ASM 基于磁盘组的冗余级别决定OCR和Voting Disk 的冗余度
- ASM SPFILE参数文件也可以被ASM支持

ASM 智能数据放置

ASM 智能数据放置的最佳实践

读取频率	写入频率	主要区域	辅助区域
高	高	HOT	MIRRORHOT
高	低	HOT	MIRRORCOLD
低	高	COLD	MIRRORHOT
低	低	COLD	MIRRORCOLD

12.1 ASM - 物理元数据冗余

```
NOTE: client cdblunar:cdblunar:ASM mounted group 3 (DATADG1) +
Sun Nov 08 20:57:42 2015↓
WARNING: cache read a corrupt block: group=3(DATADG1) dsk=0 blk=1 disk=0 (DATADG1_0000) incarn=3916348983 au=0 blk=1 count=1↓
Sun Nov 08 20:57:42 2015↓
Errors in file /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM ora 19789.trc:↓
ORA-15196: invalid ASM block header [kfc.c:29297] [endian kfbh] [2147483648] [1] [0 != 1]↓
NOTE: a corrupted block from group DATADG1 was dumped to /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM_ora_19789.trc↓
WARNING: cache read (retry) a corrupt block: group=3(DATADG1) dsk=0 blk=1 disk=0 (DATADG1_0000) incarn=3916348983 au=0 blk=1 count=1↓
Sun Nov 08 20:57:42 2015↓
Errors in file /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM ora 19789.trc:↓
ORA-15196: invalid ASM block header [kfc.c:29297] [endian kfbh] [2147483648] [1] [0 != 1]↓
ORA-15196: invalid ASM block header [kfc.c:29297] [endian kfbh] [2147483648] [1] [0 != 1]↓
WARNING: Failed to verify disk 0 (DATADG1_0000) of group 3 (DATADG1) path /dev/sdb1 reason: endian_kfbh 0 != 1↓
NOTE: corrupt disk header dumped to /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM_ora_19789.trc↓
NOTE: cache repaired a corrupt block: group=3(DATADG1) dsk=0 blk=1 on disk 0 from disk=0 (DATADG1 0000) incarn=3916348983 au=11 blk=1 count=1↓
WARNING: cache read a corrupt block: group=3(DATADG1) dsk=0 blk=3 disk=0 (DATADG1_0000) incarn=3916348983 au=0 blk=3 count=1↓
Sun Nov 08 20:57:42 2015↓
Errors in file /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM_ora_19789.trc:↓
ORA-15196: invalid ASM block header [kfc.c:29297] [endian kfbh] [2147483648] [3] [0 != 1]↓
NOTE: a corrupted block from group DATADG1 was dumped to /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM ora 19789.trc↓
WARNING: cache read (retry) a corrupt block: group=3(DATADG1) dsk=0 blk=3 disk=0 (DATADG1 0000) incarn=3916348983 au=0 blk=3 count=1↓
Sun Nov 08 20:57:42 2015↓
Errors in file /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM_ora_19789.trc:↓
ORA-15196: invalid ASM block header [kfc.c:29297] [endian kfbh] [2147483648] [3] [0 != 1]↓
ORA-15196: invalid ASM block header [kfc.c:29297] [endian kfbh] [2147483648] [3] [0 != 1]↓
WARNING: Failed to verify disk 0 (DATADG1_0000) of group 3 (DATADG1) path /dev/sdb1 reason: endian_kfbh 0 != 1↓
NOTE: corrupt disk header dumped to /u01/app/grid/diag/asm/+asm/+ASM/trace/+ASM_ora_19789.trc↓
NOTE: cache repaired a corrupt block: group=3(DATADG1) dsk=0 blk=3 on disk 0 from disk=0 (DATADG1_0000) incarn=3916348983 au=11 blk=3 count=1↓
 SYS@cdblunar>
```

Automatic Storage Management (ASM) Overview

Current State

Flex ASM: Eliminate 1:1 Server Mapping

New: ASM Storage Consolidation in Oracle Database 12c

Flex ASM: Supporting Oracle Database 11g

Previous Database Versions Will Host Local ASM Instance

Agend

- ·ASM的历史和简介
- · ASM体系架构
- · ASM在不同版本的新特性
- · ASM存储和分配机制
- ·ASM相关产品介绍

ASM 存储:概念

ASM 磁盘组

- 作为逻辑单元管理的磁盘组
- 将磁盘总空间划分为统一大小的单元
- 将各个文件平均分配到所有磁盘中
- 根据文件类型使用粗粒度或细粒度的条带化
- 管理的是磁盘组而非文件

ASM 实例

磁盘组

故障组

磁盘组A

ASM磁盘和磁盘组(Disk Groups)

ASM 磁盘 = 磁盘分区 或 LUN

ASM 磁盘组 = 作为一个逻辑单元进行管 理的ASM 磁盘池

把每一个文件平均散布到跨ASM磁盘组 的所有ASM磁盘

使用的分配单元(AU)大小为 1MB

条带化

- 基于文件的类型 (V\$ASM_TEMPLATE)
- Coarse (1 MB)
- Fine (128 KB)

ASM 磁盘组和磁盘

ASM 磁盘组和磁盘

ASM 磁盘组、磁盘和数据库文件

Mirroring & Stripping

• Mirroring: Redundant copies of data over multiple disks

Stripping: Spreading data over multiple disks

Allocation Unit

ASM disks are divided into allocation units

Unit of allocating storage to a file

One megabyte in size

Small enough not to be hot

Large enough for efficient sequential access

Many allocation units in a single file

_ASM_AUSIZE

Multiple Allocation Unit Size support

- Higher performance for large seq I/O (DW)
- Better leverage of Hardware RAID read-ahead
- Set Oracle MAXIO = AU size

Allocation Unit (AU)
Selected at disk group creation time
and may be 1,2,4,8,16,32,64 MB

Variable size ASM file extents

Extent size = AU size up to 20,000 extents

Extent size = 8*AU up to 40,000 extents

Extent size = 64*AU beyond 40,001 extents

Striping
Coarse Stripe size always = one AU
Fine Stripe size always = 128 KB

ASM中Extent 的分布-1块磁盘成1个磁盘组

http://juliandyke.com/

ASM中Extent 的分布-2块磁盘成1个磁盘组

ASM中Extent 的分布-4块磁盘成1个磁盘组

ASM中Extent 的分布-1块大磁和1块小盘组成一个磁盘组

ASM中Extent 的分布-1块大磁和3块小盘组成一个磁盘组

ASM中Extent 的分布-2块大磁和2块小盘组成一个磁盘组

磁盘组的镜像

- · 在extent级别镜像
- Primary 和 mirror extent 不在相同的ASM磁盘
- 失败组的概念 (Failure group)
 - Default failure group = Disk
- External redundancy
 - 由底层硬件实现mirroring
- Normal redundancy
 - 2-way mirroring
- High redundancy
 - 3-way mirroring

Normal Redundancy

Failure group 1

Failure group 2

Five megabyte normal redundancy file

Virtual Extents (Extent Sets)

ASM故障组-Normal Redundancy 每个故障组包含1块磁盘

ASM故障组-Normal Redundancy

每个故障组包含2块磁盘

ASM故障组-High Redundancy

每个故障组包含1块磁盘

伙伴的概念 (Partnering)

How ASM allocates redundant copies?

ASM partnering concept

ASM重平衡(Rebalancing) Adding disks - 1 disks to 2 disks

ASM重平衡(Rebalancing) Adding disks - 1 disks to 4 disks

ASM重平衡(Rebalancing) Adding disks - 2 disks to 3 disks

ASM重平衡(Rebalancing) Adding disks - 2 disks to 4 disks

ASM重平衡(Rebalancing) Dropping disks - 3 disks to 1 disk

ASM重平衡(Rebalancing) Moving disks - 2 disks to 2 disks

ASM 文件

ASM 文件在磁盘组 dgroupA 中自动分布

ASM Disk directory tree

X\$KFFXP

Maps file extents to allocation units Only populated in ASM instance Columns include

Column Name	Description
GROUP_KFFXP	Disk Group Number
NUMBER_KFFXP	File Number
COMPOUND_KFFXP	Disk Group Number File Number
INCARN_KFFXP	Incarnation Number
PXN_KFFXP	Physical Extent Number (within file)
XNUM_KFFXP	Logical Extent Number (within file)
LXN_KFFXP	0=primary, 1=first mirror, 2=second mirror
DISK_KFFXP	Disk Number
AU_KFFXP	Allocation Unit Number (within disk)
SIZE_KFFXP	Size (# allocation units)

ASM Metadata

ASM Metadata

Metadata is stored in first 256 files in ASM disk group

- Space is initially allocated when disk group is created
- Can be subsequently extended

Metadata allocation units are divided into blocks

- Each block is 4096 bytes
- Block size specifed using _asm_blksize

Metadata files include

File#	Description
0	Metadata Header
1	File Directory
2	Disk Directory
3	Active Change Directory
4	Continuing Operations Directory
5	Template Directory
6	Alias Directory
9	Attribute directory (optional)
12	Staleness registry (optional)

kfed - Kernel File metadata Editor

11.1以前:

```
cd $ORACLE_HOME/rdbms/lib
modify ins_rdbms.mk
make -f ins rdbms.mk ikfed
```

\$ORACLE HOME/bin/kfed-h

as/mlib ASM Library [asmlib='lib']

aun/um AU number to examine or update [AUNUM=number]

aus/z Allocation Unit size in bytes [AUSZ=number]

blkn/um Block number to examine or update [BLKNUM=number]

blks/z Metadata block size in bytes [BLKSZ=number]

ch/ksum Update checksum before each write [CHKSUM=YES/NO]

cn/t Count of AUs to process [CNT=number]

d/ev ASM device to examine or update [DEV=string]

o/p KFED operation type

[OP=READ/WRITE/MERGE/NEW/FORM/FIND/STRUCT]

p/rovnm Name for provisioning purposes [PROVNM=string]

s/eek AU number to seek to [SEEK=number]

te/xt File name for translated block text [TEXT=string]
ty/pe ASM metadata block type number [TYPE=number]

ASM File Allocation

- ASM files分为多个小片,每一片叫做一个DE(Data extents)
- 每个ASM files都跨越在同一个磁盘组的多个磁盘上
- 将extents存储到磁盘上的位置叫做AU(Allocation Unit)

X\$KFFXP Extent Maps ASMFILE# 1

one row per extent over all files

GROUP_KFFXP diskgroup number (1 - 63)

NUMBER_KFFXP file number for the extent

COMPOUND_KFFXP (group_kffxp << 24) + file #

INCARN KFFXP file incarnation number

PXN_KFFXP physical extent number

XNUM KFFXP extent number

bit 31 set if indirect

LXN_KFFXP logical extent number

DISK KFFXP disk on which AU is located

AU KFFXP AU number on disk of AU

Datafile size 3MB => 4 AU's (4MB)

X\$KFDAT – Allocation Tables

One row per AU over all disks

GROUP_KFDAT diskgroup # (1 - 63)

NUMBER_KFDAT disk # for the AU

COMPOUND_KFDAT (group_kfdat << 24) + number_kfdat

AUNUM_KFDAT AU # within disk

V_KFDAT Valid: Y if allocated, N if unused

FNUM_KFDAT Meaningless unless V_KFDAT set

- File number using this AU
- 0 for physical/PST AUs
- -1 if past end of disk

I_KFDAT Indirect: Meaningless unless V_KFDAT set

- Y if indirect extent using the AU
- N if direct extent using this AU

XNUM_KFDAT Physical extent number using AU

RAW KFDAT Raw 8-byte contents of extent pointer

useful when V_KFDAT not set to check for corruptions

Metadata Block Layout

e.g. Diskheader

e.g. PST

kfbh.endian: kfbh.hard: kfbh.type: kfbh.datfmt: kfbh.block.blk: kfbh.block.obj: kfbh.check: kfbh.fcn.base: kfbh.fcn.wrap: kfbh.spare1: kfbh.spare2:	1;0x000:0x01 130;0x001:0x82 1;0x002: KFBTYP_DISKHEAD 1;0x003:0x01 0;0x004: T=0 NUMB=0x0 2147483648;0x008: TYPE=0x8 NUMB=0x0 3768521839;0x00c:0xe09f146f 1696;0x010:0x000006a0 0;0x014:0x00000000 0;0x018:0x00000000 0;0x01c:0x00000000	32 byte BlockHeader ^{0x0} kfbh	kfbh.endian: kfbh.hard: kfbh.type: kfbh.datfmt: kfbh.block.blk: kfbh.block.obj: kfbh.check: kfbh.fcn.base: kfbh.fcn.wrap: kfbh.spare1: kfbh.spare2:	1; 0x000: 0x01 130; 0x001: 0x82 17; 0x002: KFBTYP_PST_META 1; 0x003: 0x01 256; 0x004: T=0 NUMB=0x100 2147483648; 0x008: TYPE=0x8 NUM 2396453971; 0x00c: 0x8ed6fc53 0; 0x010: 0x00000000 0; 0x014: 0x00000000 0; 0x018: 0x00000000 0; 0x01c: 0x00000000
kfbh.spare2:	0 ; 0x01c: 0x00000000		kton.sparez:	0; 0x01c: 0x0000000

kfdhdb.dsknum: kfdhdb.grptyp: kfdhdb.hdrsts: kfdhdb.dskname: kfdhdb.grpname:	0; 0x00c: 0x00000000 0; 0x010: 0x0000000 0; 0x014: 0x0000000 0; 0x018: 0x0000000	kfdhdb	kfdpHdrB.time.hi: kfdpHdrB.time.lo: kfdpHdrB.last: kfdpHdrB.next: kfdpHdrB.copyCnt: kfdpHdrB.ub1spare: kfdpHdrB.ub2spare: kfdpHdrB.incarn: kfdpHdrB.copy[0]: kfdpHdrB.copy[1]: kfdpHdrB.copy[2]: kfdpHdrB.copy[4]: kfdpHdrB.copy[4]: kfdpHdrB.copy[4]: kfdpHdrB.copy[4]: kfdpHdrB.copy[4]:	32870224; 0x000: HOUR=0x10 DA 238088192; 0x004: USEC=0x0 MS 5; 0x008: 0x000000005 5; 0x00c: 0x000000005 2; 0x010: 0x02 0; 0x011: 0x00 0; 0x012: 0x0000 0; 0x014: 0x00000000 0; 0x018: 0x0000 1; 0x01a: 0x0001 2; 0x01c: 0x0002 0; 0x01e: 0x0000 0; 0x01e: 0x0000 3; 0x020: 0x0000 3; 0x022: 0x0003
manabreaphame.	, exceeding in e			

Agend

- ·ASM的历史和简介
- · ASM体系架构
- · ASM在不同版本的新特性
- · ASM存储和分配机制
- · ASM日常使用注意事项

ASM实例管理的注意事项

- · 在10.2的环境中,该ASM实例使用ASMM的方式管理,设置为100M足够了
- M11.2开始,Oracle强烈推荐使用AMM方式管理ASM实例,并且最小值是MEMORY_TARGET (256 MB),最佳实践是1.5GB。大部分平台的缺省值是MEMORY_TARGET (272 MB)。也可以采用传统模式:ALTER SYSTEMSET SGA_TARGET=0
- 12c(12.1)的文档中除了11.2的上述描述外,增加了一个内容:
 In an Oracle Exadata environment, the recommended settings for managing memory are SGA_TARGET = 1250MB, PGA_AGGREGATE_TARGET = 400MB, MEMORY_TARGET = 0, and MEMORY_MAX_TARGET = 0.

其他注意事项

- 1,存储上的条带大小
- 2, ASM磁盘大小
- 3,同一磁盘组中ASM磁盘大小和数目
- 4, 在ASM中添加ASMDISK(LUN或者其他)
- 5,数据库维护(RMAN备份,mv数据库文件等)时,如何避免ASM文件或者目录自动被删除的情况
- 6,双存储使用ASM镜像

Q & A