NAME:

MATH E-156 MATHEMATICAL STATISTICS

Assignment 8

1. Carefully state and then prove the Law of Large Numbers (LLN).

- 2. Let X_k be random variables with $E[X_k] = \mu$ and $Var(X_k) = \sigma^2$ for k = 1, 2, 3, ... If $Y_k = \frac{X_k \mu}{\sigma}$ for all k, find

 (a) $E[Y_k]$
 - (b) $Var(Y_k)$
 - (c) $E[Y_k^2]$

3. In <u>each</u> case below, specify a random variable (i.e. distribution) to which the sequence of random variables W_1, W_2, W_3, \ldots converges in distribution. Justify your answer.

(a)
$$W_n \sim \text{Unif}[0, 1 + \frac{1}{n}]$$

(b)
$$W_n \sim \text{Normal}(0, (1/\sqrt{n})^2)$$

4. The Central Limit Theorem (CLT) can be used to analyze round-off error. Suppose that the round-off error is represented as a uniform random variable on [-1/2, 1/2]. If 100 numbers are averaged, approximate the probability that the round-off error exceeds 0.05 in absolute value. Please use the cumulative Normal distribution table or software to evaluate $\Phi(x)$.

5. Let $X_1 \sim \operatorname{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \operatorname{Gamma}(\alpha_2, \lambda)$ be independent. Use moment generating functions to show that $X_1 + X_2 \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \lambda)$.

6. Prove that $X \sim F_{m,n}$ implies $X^{-1} \sim F_{n,m}$.

7. Show that the Cauchy distribution and t_1 (i.e. t distribution with 1 degree of freedom) are the same.

8. Prove that $T \sim t_n$ implies $T^2 \sim F_{1,n}$.