HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

APPLIED ALGORITHMS

APPLIED ALGORITHMS

DEPTH FIRST SEARCH (DFS) AND APPLICATIONS

ONE LOVE. ONE FUTURE.

- Depth First Search (DFS)
- DFS tree and và structure Num, Low
- Find bridges (cạnh cầu)
- Find articulation vertex (đỉnh khớp)
- Find strongly connected component (thành phần liên thông mạnh)

Depth First Search (Tìm kiếm theo chiều sâu)

- Depth First Search is a basic graph traversal technique (visiting every vertex and every edge of the graph).
 - The algorithm can answer the question, does there exist a path from vertex u to vertex v on graph G or not, if yes, indicate it.
 - The algorithm not only answers whether there is a path from u to v, but it can answer which other vertices on the graph G can be reached from u.
- The traversal order in DFS follows the **Last In First Out** (LIFO) mechanism, and starts from a certain starting vertex u.
 - Can use backtracking or stack to implement
- The complexity: O(|V| + |E|), where V is the vertex set and E is the edge set of the graph G, as each vertex and edge of G is visited exactly once.

Implement idea

- Graph G = (V, E) is represented by an adjacent list
 - A[u]: list of adjacent nodes of u
- Marking array:
 - visited[u] = true means u was visited, and visited[u] = false means that u is not visited

```
1. DFS(u, V, A) {
   visit(u); // assign visited[u] = true
   for v in A[u] do {
   if not visited[v] then {
          DFS(v, V, A);
7.
8.
9. DFS(V, A){
10. for u in V do { visited[u] = false; }
11. for u in V do {
12. if not visited[u] then
13. DFS(u, V, A);
14.
15. }
```

- Depth First Search (DFS)
- DFS tree and và structure Num, Low
- Find bridges (cạnh cầu)
- Find articulation vertex (đỉnh khớp)
- Find strongly connected component (thành phần liên thông mạnh)

DFS tree

• The trace of the depth-first search will form a tree

DFS tree

- The trace of the depth-first search will form a tree
- Some kind of edge in the search process:
 - Tree Edge (Canh cây): The edge along which a new vertex is visited from one vertex, for example the black edge in the figure
 - Back Edge (Cạnh ngược): The edge going from descendant to ancestor, for example the red edge (g,a) in the figure
 - Forward Edge (Cạnh xuôi): The edge going from ancestors to descendants, for example the blue edge (*a*,*c*) in the figure
 - Crossing Edge (Cạnh vòng): The edge connecting two unrelated vertices, for example the dashed purple edge (c,g) in the figure

DFS tree

- Arrays *Num* and *Low* store information of vertices in DFS tree:
 - Num[u]: visit order of vertex u in DFS
 - Low[u]: has the smallest value among the following values:
 - Num[v] if (v, u) is a back edge
 - Low[v] if v is a child of u in DFS tree
 - *Num*[*u*]

i	1	2	3	4	5	6	7	8	9	10	11
Num[i]	1	2	3	4	6	5	9	7	10	11	8
Low[i]	1	1	1	4	6	4	4	6	4	11	6

Example

i	1	2	3	4	5	6	7	8	9	10	11
Num[i]	1	2	3	4	6	5	9	7	10	11	8
Low[i]	1	1	1	4	6	4	4	6	4	11	6

Implementation ideas

- p[v]: parent of v discovered during the DFS
- Num[u] = 0: node u has not been visited yet
- Num[u] > 0: is visited, and Num[u] is the order that u is visited

```
1. DFS(u, V, A, p) {
      T += 1; Num[u] = T; Low[u] = T;
2.
3.
      for v in A[u] do {
          if v = p[u] continue;
4.
5.
          if Num[v] > 0 then { // v was visited
6.
             Low[u] = min(Low[u], Num[v]);
7.
          } else {
8.
             p[v] = u;
9.
             DFS(v, V, A, p);
10.
             Low[u] = min(Low[u], Low[v]);
11.
12.
13. }
```

- Depth First Search (DFS)
- DFS tree and và structure Num, Low
- Find bridges (canh cau)
- Find articulation vertex (đỉnh khớp)
- Find strongly connected component (thành phần liên thông mạnh)

Find bridge (cau) in the graph

- **Definition:** A bridge is an edge of an undirected graph, so that removing this edge from the graph will increase the number of connected components.
- Comment: A forward edge (u, v) is bridge if and only if Low[v] > Num[u]

Find bridge (cau) in the graph

- **Definition:** A bridge is an edge of an undirected graph, so that removing this edge from the graph will increase the number of connected components.
- Comment: A forward edge (u, v) is bridge if and only if Low[v] > Num[u]

Implementation idea

- p[v]: parent of v discovered during the DFS
- Num[u] = 0: node u has not been visited yet
- Num[u] > 0: is visited, and Num[u] is the order that u is visited

```
DFS(u) {
  T += 1; Num[u] = T; Low[u] = T;
  for v in A[u] do {
      if v = p[u] continue;
      if Num[v] > 0 then { // v was visited
         Low[u] = min(Low[u], Num[v]);
      } else {
         p[v] = u;
         DFS(v);
         Low[u] = min(Low[u], Low[v]);
         if Low[v] > Num[u] then (u,v) is a bridge;
```

- Depth First Search (DFS)
- DFS tree and và structure Num, Low
- Find bridges (cạnh cầu)
- Find articulation vertex (đỉnh khớp)
- Find strongly connected component (thành phần liên thông mạnh)

Find articulation vertex (đỉnh khớp)

- **Definition**: In an undirected graph, a vertex is called an articulation vertex if removing this vertex and edges having it as end point from the graph will increase the number of connected components of the graph.
- **Comment**: Vertex u vertex is called an articulation vertex if:
 - Either vertex u is not the root of DFS tree and $Low[v] \ge Num[u]$ (where v is any direct child of u in the DFS tree);
 - Or vertex \boldsymbol{u} is the root of the DFS tree and has at least 2 direct children.

Implementation idea

- p[v]: parent of v discovered during the DFS
- Num[u] = 0: node u has not been visited yet
- Num[u] > 0: is visited, and Num[u] is the order that u is visited
- numChild[u]: number of children of u

```
DFS(u) {
   T += 1; Num[u] = T; Low[u] = T;
   for v in A[u] do {
     if v = p[u] continue;
      if Num[v] > 0 then { // v was visited
         Low[u] = min(Low[u], Num[v]);
     } else { // visit v
         p[v] = u; numChild[u] += 1;
        DFS(v);
         Low[u] = min(Low[u], Low[v]);
         if u = p[u] then { // u là đỉnh xuất phát DFS (root)
            if numChild[u] >= 2 then { u is an articulation point; }
         } else { if Low[v] >= Num[u] then u is an articulation point; }
```

- Depth First Search (DFS)
- DFS tree and và structure Num, Low
- Find bridges (canh cầu)
- Find articulation vertex (đỉnh khớp)
- Find strongly connected component (thành phần liên thông mạnh)

Find Strongly Connected Components

- Breadth-First-Search (BFS) and Depth-First-Search (DFS) can easily find all connected components in an undirected graph. However, finding all strongly connected components is not simple for directed graph.
 - Note: A strongly connected component is a maximum subset of vertices such that between any two vertices there is always a path from one vertex to the other and vice versa.
- DFS search trees can be used to find
- all strongly connected components?

Thuật toán Tarjan

- Observation: After analyzing the DFS tree, if at a vertex u, Num[u] = Low[u], then we have a strongly connected component following the process of traversing the tree from u.
- Use Stack ST to list vertices in a strongly connected component.
- Marking: inStack[u] = true means that u is in the Stack ST
 - After visiting u and the edge (u,v) is discovered in which v was visited → We can recognize the edge (u,v) is a back eddge or crossing edge:
 - inStack[v] = true: (u,v) is a back edge
 - inStack[v] = false: (u,v) is a crossing edge
- Complexity: O(|V| + |E|)

i	1	2	3	4	5	6	7	8	9	10	11
Num[i]	1	2	3	4	6	5	9	7	10	11	8
Low[i]	1	1	1	4	6	4	4	6	4	11	6

Implementation idea

```
DFS(u) {
  T += 1; Num[u] = T; Low[u] = T; ST.push(u); inStack[u] = true;
  for v in A[u] do {
     if v = p[u] continue;
     if Num[v] > 0 then { // v was visited
        if inStack[v] then Low[u] = min(Low[u], Num[v]);  // (u,v) is a back edge
     } else { // visit v
        p[v] = u; DFS(v); Low[u] = min(Low[u], Low[v]);
  if Low[u] = Num[u] then {// retrieve a strongly connected component stored in stack ST
     while ST not empty do { x = ST.pop(); print(x); inStack[x] = false; if x = u then break; }
```


HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!