Genetic Algorithm Workshop

In this workshop we will code up a genetic algorithm for a simple mathematical optimization problem.

Genetic Algorithm is a

- Meta-heuristic
- Inspired by Natural Selection
- Traditionally works on binary data. Can be adopted for other data types as well.

You can find an example illustrating GA below


```
In [1]: %matplotlib inline
        # All the imports
        from __future__ import print_function, division
        from math import *
        import random
        import sys
        import matplotlib.pyplot as plt
        # TODO 1: Enter your unity ID here
        __author__ = "achaluv"
        class 0:
            Basic Class which
                - Helps dynamic updates
                - Pretty Prints
            def init (self, **kwargs):
                self.has().update(**kwargs)
            def has(self):
                return self. dict
            def update(self, **kwargs):
                self.has().update(kwargs)
                return self
            def __repr__(self):
                show = [':%s %s' % (k, self.has()[k])
                        for k in sorted(self.has().keys())
                        if k[0] is not " "]
                txt = ' '.join(show)
                if len(txt) > 60:
                    show = map(lambda x: '\t' + x + '\n', show)
                return '{' + ' '.join(show) + '}'
        print("Unity ID: ", author )
```

Unity ID: achaluv

The optimization problem

The problem we are considering is a mathematical one

Right circular cone:

r = base radius

h = height

s = slant height

V = volume

B = base area

S = lateral surface area

T = total area

ga

$$s = \sqrt{r^2 + h^2}$$

$$V = \frac{\pi}{3} \, r^2 \, h$$

$$B = \pi r^2$$

$$S = \pi r s$$

$$T = B + S = \pi r (r + s)$$

Decisions: r in [0, 10] cm; h in [0, 20] cm

Objectives: minimize S, T

Constraints: $V > 200 \text{cm}^3$

ga

In [13]:	

```
# Few Utility functions
def say(*lst):
    Print whithout going to new line
    print(*lst, end="")
    sys.stdout.flush()
def random value(low, high, decimals=2):
    Generate a random number between low and high.
    decimals incidicate number of decimal places
    return round(random.uniform(low, high),decimals)
def qt(a, b): return a > b
def lt(a, b): return a < b</pre>
def shuffle(lst):
    Shuffle a list
    random.shuffle(lst)
    return lst
class Decision(0):
    Class indicating Decision of a problem
         __init__(self, name, low, high):
    def
        @param name: Name of the decision
        @param low: minimum value
        @param high: maximum value
        0. init (self, name=name, low=low, high=high)
class Objective(0):
    Class indicating Objective of a problem
   def __init__(self, name, do_minimize=True):
        @param name: Name of the objective
        @param do_minimize: Flag indicating if objective has to
be minimized or maximized
        0. init (self, name=name, do minimize=do minimize)
class Point(0):
    Represents a member of the population
```

11 11 11

```
def __init__(self, decisions):
        0. init (self)
        self.decisions = decisions
        self.objectives = None
    def hash (self):
        return hash(tuple(self.decisions))
    def __eq__(self, other):
        return self.decisions == other.decisions
    def clone(self):
        new = Point(self.decisions)
        new.objectives = self.objectives
        return new
class Problem(0):
    Class representing the cone problem.
    def __init__(self):
        0. init (self)
        # TODO 2: Code up decisions and objectives below for the
problem
        # using the auxilary classes provided above.
        self.decisions = [Decision('r',0,10), Decision('h',0,2
0)1
        self.objectives = [Objective('S'),Objective('T')]
    @staticmethod
    def evaluate(point):
        [r, h] = point.decisions
        l = sqrt(r**2 + h**2)
        S=pi*r*l
        T=pi *r*(r+l)
        point.objectives = [S,T]
        # TODO 3: Evaluate the objectives S and T for the point.
        return point.objectives
    @staticmethod
    def is valid(point):
        [r, h] = point.decisions
        # TODO 4: Check if the point has valid decisions
        V = pi*(r**2)*h/3
        return V > 200
    def generate_one(self):
        # TODO 5: Generate a valid instance of Point.
        while True:
            point = Point([random value(d.low,d.high) for d in s
elf.decisions])
            if Problem.is valid(point):
```

Great. Now that the class and its basic methods is defined, we move on to code up the GA.

Population

First up is to create an initial population.

```
In [14]: def populate(problem, size):
    population = []
    # TODO 6: Create a list of points of length 'size'
    #for _ in xrange(size):
    # population.append(problem.generate_one())
    #return population
    return [problem.generate_one() for _ in xrange(size)]
#print(populate(cone,5))
```

Crossover

We perform a single point crossover between two points

```
In [22]: def crossover(mom, dad):
    # TODO 7: Create a new point which contains decisions from
    # the first half of mom and second half of dad
    n=len(mom.decisions)
    return Point(mom.decisions[:n//2] + dad.decisions[n//2:])

#pop = populate(cone,5)
#crossover(pop[0],pop[1])
```

Mutation

Randomly change a decision such that

Fitness Evaluation

To evaluate fitness between points we use binary domination. Binary Domination is defined as follows:

- · Consider two points one and two.
- For every decision o and t in one and two, o <= t
- Atleast one decision o and t in one and two, o == t

Note: Binary Domination is not the best method to evaluate fitness but due to its simplicity we choose to use it for this workshop.

Fitness and Elitism

In this workshop we will count the number of points of the population P dominated by a point A as the fitness of point A. This is a very naive measure of fitness since we are using binary domination.

Few prominent alternate methods are

- 1. <u>Continuous Domination (http://www.tik.ee.ethz.ch/sop/publicationListFiles/zk2004a.pdf)</u> Section 3.1
- 2. Non-dominated Sort (http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=996017)
- 3. Non-dominated Sort + Niching (http://www.egr.msu.edu/~kdeb/papers/k2012009.pdf)

Elitism: Sort points with respect to the fitness and select the top points.

```
In [42]: | def fitness(problem, population, point):
             dominates = 0
             # TODO 10: Evaluate fitness of a point.
             # For this workshop define fitness of a point
             # as the number of points dominated by it.
             # For example point dominates 5 members of population,
             # then fitness of point is 5.
             return sum([bdom(problem, point, chromosome) for chromosome
         in population])
         def elitism(problem, population, retain size):
             # TODO 11: Sort the population with respect to the fitness
             # of the points and return the top 'retain size' points of t
         he population
             # of the points and return the top 'retain size' points of t
         he population
             population = sorted(population, key= lambda x: fitness(probl
         em, population, x), reverse = True)
             return population[:retain size]
```

Putting it all together and making the GA

```
In [43]: def qa(pop size = 100, gens = 250):
             problem = Problem()
             population = populate(problem, pop size)
              [problem.evaluate(point) for point in population]
              initial population = [point.clone() for point in population]
             gen = 0
             while gen < gens:</pre>
                  say(".")
                  children = []
                  for _ in range(pop_size):
                      mom = random.choice(population)
                      dad = random.choice(population)
                      while (mom == dad):
                          dad = random.choice(population)
                      child = mutate(problem, crossover(mom, dad))
                      if problem.is valid(child) and child not in populati
         on+children:
                          children.append(child)
                  population += children
                  population = elitism(problem, population, pop size)
                  gen += 1
             print("")
             return initial population, population
```

Visualize

Lets plot the initial population with respect to the final frontier.

```
In [46]: def plot pareto(initial, final):
              initial objs = [point.objectives for point in initial]
              final objs = [point.objectives for point in final]
              initial x = [i[0] \text{ for } i \text{ in } initial \text{ objs}]
              initial_y = [i[1] for i in initial_objs]
              final_x = [i[0] for i in final_objs]
              final y = [i[1] \text{ for } i \text{ in } final \text{ objs}]
              plt.scatter(initial x, initial y, color='b', marker='+', lab
          el='initial')
              plt.scatter(final x, final y, color='r', marker='o', label
          ='final')
              plt.title("Scatter Plot between initial and final population
          of GA")
              plt.ylabel("Total Surface Area(T)")
              plt.xlabel("Curved Surface Area(S)")
              plt.legend(loc=9, bbox to anchor=(0.5, -0.175), ncol=2)
              plt.show()
```


.....

Here is a sample output

In []: