1

In this question \mathbb{C}^* is the group of non-zero complex numbers under multiplication and \mathbb{C} is the group of all complex numbers under addition.

For each of the following functions, determine whether it is a homomorphism, justifying your answer.

(i)
$$\phi_1 : \mathbb{C} \to \mathbb{C}$$

 $z \mapsto |z|$

(ii)
$$\phi_2 : \mathbb{C}^* \to \mathbb{C}^*$$

 $z \mapsto \operatorname{Re}(z)$

(iii)
$$\phi_3 : \mathbb{C} \to \mathbb{C}$$

 $z \mapsto \operatorname{Re}(z)$

2 (a)

For each of the following functions we decide whether or not it is a group homomorphism, justifying the answer.

(i)
$$\phi_1: (\mathbb{R}, +) \to (\mathbb{Z}, +)$$

 $r \mapsto [r]$, ie the greatest integer less than or equal to r

(ii)
$$\phi_2: (\mathbb{R}^2, +) \longrightarrow (\mathbb{R}, +)$$

 $(x, y) \mapsto 2x + y$

(iii)
$$\phi_3: V \to (\mathbb{R}^*, \times)$$

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \mapsto a + b$$

where $V = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{R}, a^2 \neq b^2 \right\}$ and the operation is matrix multiplication.

- (b) For each homomorphism ϕ in (a) determine $\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$.
- (c) For each homomorphism ϕ in (a) identify the quotient group $G/\text{Ker}(\phi)$ up to isomorphism (where G is the domain group of the homomorphism).