IF you were to invest in 5 companies who had IPOS in 2019 would you want to know the risk of those companies? Calculate the volatility between 5 companies who IPOs occurred in 2019. Also do a brief risk analysis of each company in the portfolio. We will assume the following companies were invested in and that the portfolio is equally weighted

```
In [6]: import numpy as np
   import pandas as pd
   from pandas_datareader import data as web
   import matplotlib.pyplot as plt
```

Uber, Beyond Meat, LYFT, Pinterst, ZOOM

```
In [12]: | tickers = ["UBER", "ZM", "PINS", "BYND", "LYFT"]
         data_frame = pd.DataFrame()
         for t in tickers:
             data frame[t] = web.DataReader(t, data source = "yahoo", start = "20
         19-1-1")["Adj Close"]
In [13]:
         data_frame.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 135 entries, 2019-05-10 to 2019-11-19
         Data columns (total 5 columns):
         UBER
                 135 non-null float64
         ZM
                 135 non-null float64
         PINS
                 135 non-null float64
         BYND
                 135 non-null float64
                 135 non-null float64
         dtypes: float64(5)
         memory usage: 6.3 KB
```

```
#lets see the behavior of the stocks so far by normalizing the data
(data_frame/data_frame.iloc[0] * 100).plot(figsize = (16,8))
plt.show()
```


calculate the returns for the securties in the portfolio

```
In [15]:
         simple_returns = (data_frame/data_frame.shift(1)) - 1
In [17]:
         simple_returns.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 135 entries, 2019-05-10 to 2019-11-19
         Data columns (total 5 columns):
         UBER
                  134 non-null float64
         ZM
                 134 non-null float64
                 134 non-null float64
         PINS
         BYND
                 134 non-null float64
         LYFT
                 134 non-null float64
         dtypes: float64(5)
         memory usage: 6.3 KB
         simple_returns.tail()
In [18]:
```

Out[18]:

		UBER	ZM	PINS	BYND	LYFT
	Date					
2	2019-11-13	0.000374	0.000147	-0.015595	0.009518	0.022915
2	2019-11-14	-0.026956	-0.003970	-0.029703	0.017908	-0.031871
2	2019-11-15	0.030781	0.033511	-0.003061	0.004725	0.026718
2	2019-11-18	-0.001493	0.001000	-0.002047	-0.013488	0.042286
2	2019-11-19	0.011215	-0.006279	0.009231	-0.029729	-0.015827

Calculate the Risk for each security in the portfolio

```
In [21]: uber_risk = simple_returns["UBER"].std() * 250 ** 0.5
         uber risk
Out[21]: 0.3511801373150022
         zoom risk = simple returns["ZM"].std() * 250 ** 0.5
In [24]:
         zoom risk
Out[24]: 0.6020521671429016
In [26]: pinterest Risk = simple returns["PINS"].std() * 250 ** 0.5
         pinterest Risk
Out[26]: 0.597865906454312
         beyond_risk = simple_returns["BYND"].std() * 250 ** 0.5
In [28]:
         beyond risk
Out[28]: 1.0874535349166212
In [30]:
         lyft risk = simple returns["LYFT"].std() * 250 ** 0.5
         lyft_risk
Out[30]: 0.4610829339036478
 In [ ]:
```

WE will calculate the overall risk of the portfolio assuming the portfolio is equally weighted

```
In [34]: weights = np.array([0.20,0.20,0.20,0.20])
    portfolio_variance = np.dot(weights.T, np.dot(simple_returns.cov() * 250
    , weights))
    portfolio_variance

Out[34]: 0.17987153442886394

In [35]: portfolio_volatility = np.dot(weights.T, np.dot(simple_returns.cov() * 2
    50, weights)) ** 0.5
    portfolio_volatility

Out[35]: 0.42411264356166506

In [45]: vol_percentage = (str(round(portfolio_volatility,2) * 100) + "%")

In [46]: print(f"the overll volitility of the portfolio is {vol_percentage}")
    the overll volitility of the portfolio is 42.0%
```

In []: