PHYS 3201 — Assignment #5

Due: 9/25/20

- 1. A mass m moves along the x-axis subject to an attractive force given by $17\beta^2mx/2$ and a retarding force given by $3\beta m\dot{x}$, where x is its distance from the origin and β is a constant. A driving force given by $mA\cos\omega t$, where A is a constant, is applied to the particle along the x-axis.
 - (a) What value of ω results in steady-state oscillations about the origin with maximum amplitude?
 - (b) What is the maximum amplitude?
- 2. The exponential damping factor γ of a spring suspension system is one-half the critical value. If the undamped frequency is ω_0 , find (a) the resonant frequency, (b) the Q factor, (c) the phase angle θ_1 when the system is driven at a frequency $\omega_1 = 2\omega_0$, and (d) the steady-state amplitude at this frequency.
- 3. For a lightly damped harmonic oscillator $\gamma \ll \omega_0$, show that the driving frequency for which the steady-state amplitude is one-half the steady-state amplitude at the resonant frequency is given by $\omega_1 \approx \omega_0 \pm \gamma \sqrt{3}$.
- 4. Solve the differential equation of motion of the damped harmonic oscillator driven by a damped harmonic force:

$$F_{\rm ext}(t) = F_0 e^{-\alpha t} \cos \omega_1 t$$

(Hint: $e^{-\alpha t}\cos\omega_1 t = \operatorname{Re}(e^{-\alpha t + i\omega_1 t}) = \operatorname{Re}(e^{\beta t})$, where $\beta = -\alpha + i\omega_1$. Assume a solution of the form $a_1 e^{\beta t - i\theta_1}$.)

5. An undamped driven harmonic oscillator satisfies the equation of motion $m(\ddot{x} + \omega_0^2 x) = F(t)$. The driving force $F(t) = F_0 \sin(\omega_1 t)$ is switched on at t = 0. Find x(t) for t > 0 for the initial conditions x = 0 and v = 0 at t = 0.

(Hint: Look for a particular solution of the differential equation of the form $x = a_1 \sin(\omega_1 t)$ and determine a_1 . Add the solution of the homogeneous equation to this to obtain the general solution of the inhomogeneous equation.)