Exercises for Section 1.3

kankanray

Exercise 1.3.1

Consider basic modal language.

Let \mathfrak{F} be a frame and V and V' are two valuations, and for every proposition letter p in ϕ , V(p) = V'(p). We prove by induction that: for every $w \in W$, $(\mathfrak{F}, V), w \Vdash \phi$ iff $(\mathfrak{F}, V'), w \Vdash \phi$.

If ϕ is some proposition letter p, then for every $w \in W$, $(\mathfrak{F}, V), w \Vdash \phi$ iff $w \in V(p)$, iff $w \in V'(p)$, iff $(\mathfrak{F}, V'), w \Vdash \phi$.

If ϕ is \perp , then our claim holds naturally.

If ϕ is some $\neg \psi$, then $(\mathfrak{F}, V), w \Vdash \phi$ iff $(\mathfrak{F}, V), w \not\models \psi$, by induction, iff $(\mathfrak{F}, V'), w \not\models \psi$, iff $(\mathfrak{F}, V'), w \Vdash \phi$.

If ϕ is $\varphi \lor \psi$, then $(\mathfrak{F}, V), w \Vdash \phi$ iff $(\mathfrak{F}, V), w \Vdash \varphi$ or $(\mathfrak{F}, V), w \Vdash \psi$, by induction, iff $(\mathfrak{F}, V'), w \Vdash \varphi$ or $(\mathfrak{F}, V'), w \Vdash \psi$, iff $(\mathfrak{F}, V'), w \Vdash \phi$.

If ϕ is $\Diamond \psi$, then $(\mathfrak{F}, V), w \Vdash \phi$ iff there is some $v \in W$ with Rwv and $(\mathfrak{F}, V), v \Vdash \psi$, by induction, iff $(\mathfrak{F}, V'), v \Vdash \psi$, iff $(\mathfrak{F}, V'), w \Vdash \phi$.

So by induction, our claim is true, and our claim implies that $\mathfrak{F}, V \Vdash \phi$ iff $\mathfrak{F}, V' \Vdash \phi$.

Exercise 1.3.2 We only consider the case of $\mathfrak{N} = (\mathbb{N}, S_1, S_2)$, since I have no idea what \mathbb{B} is.

A formula is valid in a frame iff it is valid in all state in the frame.

- (a) Given a state $n \in \mathbb{N}$, and a valuation V. Assume (\mathfrak{N}, V) , $n \Vdash (\lozenge_1 p \wedge \lozenge_1 q)$, we need to show that (\mathfrak{N}, V) , $n \Vdash \lozenge_1 (p \wedge q)$.
- $(\mathfrak{N}, V), n \Vdash (\Diamond_1 p \wedge \Diamond_1 q)$ implies that $(\mathfrak{N}, V), n \Vdash \Diamond_1 p$ and $(\mathfrak{N}, V), n \Vdash \Diamond_1 q$. Since the only state m in \mathbb{B} with $S_1 nm$ is m = n+1. So we have $(\mathfrak{N}, V), n+1 \Vdash p$ and $(\mathfrak{N}, V), n+1 \Vdash q$, which means $(\mathfrak{N}, V), n+1 \Vdash (p \wedge q)$, so by definition, we have $(\mathfrak{N}, V), n \Vdash \Diamond_1 (p \wedge q)$.

This means that $\mathfrak{N}, n \Vdash (\lozenge_1 p \wedge \lozenge_1 q) \to \lozenge_1 (p \wedge q)$, i.e. the formula is valid at state n. So (a) is valid in the frame.

(b) Assume we have countably infinitely many proposition letters, we enumerate them as $p_0, p_1, ..., p_n$. Consider a valuation $V(q_n) = \{n\}$.

Assume $p = p_k$ and $q = p_l$, and $k \neq l$, then consider a state $n \in \mathbb{N}$ with n > max(k, l), then $(\mathfrak{N}, V), n \Vdash \Diamond_2 p_k$ and $(\mathfrak{N}, V), n \Vdash \Diamond_2 p_l$, since $(\mathfrak{N}, V), k \Vdash p_k$ and $(\mathfrak{N}, V), m \Vdash p_l$, so $(\mathfrak{N}, V), n \Vdash (\Diamond_2 p \land \Diamond_2 q)$.

However, in this case, no $m \in \mathbb{N}$ will satisfy that $(\mathfrak{N}, V), m \Vdash (p \land q)$, since this requires that $m \in V(p)$ and $m \in V(q)$, meaning that we need m to be k and l at the same time, which is impossible. So we have $(\mathfrak{N}, V), n \not\vdash \Diamond_2(p \land q)$.

So $(\lozenge_2 p \land \lozenge_2 q) \to \lozenge_2 (p \land q)$ fails to be valid at state n in general (when $p \neq q$). So (b) is not valid.

(c) Given a state $n \in \mathbb{N}$, and a valuation V. Assume (\mathfrak{N}, V) , $n \Vdash (\lozenge_1 p \land \lozenge_1 q \land \lozenge_1 r)$, then (\mathfrak{N}, V) , $n \Vdash \lozenge_1 p$, (\mathfrak{N}, V) , $n \Vdash \lozenge_1 q$ and (\mathfrak{N}, V) , $n \Vdash \lozenge_1 r$, so we have (\mathfrak{N}, V) , $n + 1 \Vdash p$, (\mathfrak{N}, V) , $n + 1 \Vdash q$ and (\mathfrak{N}, V) , $n + 1 \Vdash r$, so the part on the right follows trivially, as in (a).

Therefore, (c) is valid.

(d) Given a state $n \in \mathbb{N}$, and a valuation V. Assume (\mathfrak{N}, V) , $n \Vdash p$.

Then (\mathfrak{N}, V) , $n \Vdash \Diamond_1 \square_2 p$ iff (\mathfrak{N}, V) , $n+1 \Vdash \square_2 p$, iff for every $m \leq n$, we have (\mathfrak{N}, V) , $m \Vdash p$, which cannot hold in general, since we only know the case m=n.

Thus (d) is not valid.

(e) Given a state $n \in \mathbb{N}$, and a valuation V. Assume (\mathfrak{N}, V) , $n \Vdash p$.

Then (\mathfrak{N}, V) , $n \Vdash \Diamond_2 \square_1 p$ iff there is a m < n such that (\mathfrak{N}, V) , $m \Vdash \square_1 p$, which fails when n = 0 since no one is less than it.

Therefore (e) is not valid.

(f) Given a state $n \in \mathbb{N}$, and a valuation V. Assume (\mathfrak{N}, V) , $n \Vdash p$.

Then (\mathfrak{N}, V) , $n \Vdash \Box_1 \Diamond_2 p$ iff (\mathfrak{N}, V) , $n+1 \Vdash \Diamond_2 p$, iff there is some m < n such that (\mathfrak{N}, V) , $m \Vdash p$, where we can simply take m = n.

Therefore (f) is valid.

(g) Given a state $n \in \mathbb{N}$, and a valuation V. Assume $(\mathfrak{N}, V), n \Vdash p$.

Then (\mathfrak{N}, V) , $n \Vdash \Box_2 \Diamond_1 p$ iff for every m < n we have (\mathfrak{N}, V) , $m \Vdash \Diamond_1 p$, iff for every m < n we have (\mathfrak{N}, V) , $m + 1 \Vdash p$, iff $\forall m$ with $0 < m \le n$, we have (\mathfrak{N}, V) , $m \Vdash p$. This cannot hold in general, since we know the case m = n only.

Exercise 1.3.3 Note that G is dual of F, H is the dual of P.

In the following, I usually sloppily write $w \Vdash ...$, omit models in the background.

(a) First assume $w \Vdash GGp$, then we know, for every state v with w < v, we have $v \Vdash Gp$, then for every state v with w < v, for every state u with v < u, we have $u \Vdash p$.

Then if we simply take V(p) is $\{x \in W | x \leq w\}$, then we know $w \Vdash GGp$ while $w \not\Vdash p$.

So (a) is not valid.

(b) Assume $w \Vdash (p \land Hp)$, then $w \Vdash p$ and $w \Vdash Hp$.

 $w \Vdash Hp$ implies that for every v < w, we have $v \Vdash p$. As a conclusion, we have $u \Vdash p$ for every u < w.

On the right side, $w \Vdash FHp$ iff there is some v > w with $v \Vdash Hp$, iff there is some v > w, such that for every u < v we have $u \Vdash p$.

When $W = \mathbb{Z}$, we can simply take v = w + 1, so (b) is valid in $(\mathbb{Z}, <)$.

While when $W = \mathbb{Q}$ or $W = \mathbb{R}$, if we take $V(p) = \{x \in W | x \leq w\}$, then clearly $w \Vdash (p \land Hp)$, while $w \not\Vdash FHp$, so (b) is not valid in $(\mathbb{Q}, <)$ or $(\mathbb{R}, <)$.

(c) Assume $w \Vdash (Ep \land E \neg p \land A(p \rightarrow Hp) \land A(\neg p \rightarrow G \neg p))$.

 $-w \Vdash Ep$, which implies that there is some $v_1 \in W$ such that $v_1 \Vdash p$.

 $-w \Vdash E \neg p$, which implies that there is some $v_2 \in W$ such that $v_2 \Vdash \neg p$.

 $-w \Vdash A(p \to Hp)$, which implies that for all $v_3 \in W$ we have $v_3 \Vdash p \to Hp$. $-w \Vdash A(\neg p \to G \neg p)$, which implies that for all $v_4 \in W$ we have $v_4 \Vdash \neg p \to G \neg p$.

The above results says that, there is some v_1 such that $v_1 \Vdash p$, and for every v with $v \Vdash p$, we have $v \Vdash Hp$, which means that all $u \leq v$ satisfies $u \Vdash p$.

Also, there is some v_2 such that $v_2 \Vdash \neg p$, and for every v with $v \Vdash \neg p$, we have $v \Vdash G \neg p$, which means that all $u \geq v$ satisfies $u \Vdash \neg p$.

So at least we know $v_1 < v_2$.

What about those on the right hand side? We know $w \Vdash E(Hp \land G \neg p)$ iff there is some $v_5 \in W$ such that $v_5 \Vdash Hp \land G \neg p$, which means $v_5 \Vdash Hp$ and $v_5 \Vdash G \neg p$, which says that for every $u \in W$, if $u < v_5$, then $u \Vdash p$, and if $u > v_5$, then $u \Vdash \neg p$.

In \mathbb{Z} , we know there is a largest v_1 such that $v_1 \Vdash p$, and then $v_2 = v_1 + 1$ is the smallest element with $v_2 \Vdash \neg p$, in this case we take $v_5 = v_1$. So (c) is valid in $(\mathbb{Z}, <)$.

In \mathbb{Q} , assume r is an irrational number, and we define $V(p) = \{x \in \mathbb{Q} | x < r\}$, then we know under this valuation, $w \Vdash (Ep \land E \neg p \land A(p \rightarrow Hp) \land A(\neg p \rightarrow G \neg p))$ holds. However, now no $v_5 \in \mathbb{Q}$ helps. So (c) is not valid in $(\mathbb{Q}, <)$.

In \mathbb{R} , we know $\{x \in \mathbb{R} | x \Vdash p\}$ is non-empty and is upper-bounded, then it has a supreme s, and clearly we can take $v_5 = s$. So (c) is valid in $(\mathbb{R}, <)$.

Exercise 1.3.4 Clearly every propositional tautologies are valid.

To show that $\Box(p \to q) \to (\Box p \to \Box q)$ is valid, we first assume $w \Vdash \Box(p \to q)$, then for every v with Rwv, we must have $v \Vdash p \to q$.

Then we assume $w \square p$, then for every v with Rwv, we must have $v \Vdash p$.

As a conclusion, for every v with Rwv, we must have $v \Vdash p$, which implies $w \Vdash \Box q$.

Therefore $\Box(p \to q) \to (\Box p \to \Box q)$ is valid.

Exercise 1.3.5

- (a) Take $W = \{0, 1\}$, and $R = W \times W$.
- (b) Take $W = \{0, 1\}$, and $R = W \times W$.
- (c) Take $W = \mathbb{Z}$, and Rxy iff y = x + 1.
- (d) Take $W = \mathbb{N}$, and Rxy iff y < x. Then consider $V(p) = \mathbb{N}$, so clearly $1 \Vdash \Diamond \Box p$, while $1 \not\Vdash \Box \Diamond p$.

Exercise 1.3.6

Assume $a \Vdash \phi \circ (\psi \circ \xi)$, then for some b, c with Cabd, we have $b \Vdash \phi$ and $c \Vdash (\psi \circ \xi)$, then for some x, y with Ccxy, we have $x \Vdash \psi$ and $y \Vdash \xi$. Then we can composite b after x, get a z, with Czbx, so $z \Vdash (\phi \circ \psi)$. Then we know that also Cazy, and we have $y \Vdash \xi$, so $a \Vdash (\phi \circ \psi) \circ \xi$. The other side follows similarly.

Assume $a \Vdash 1' \circ \phi$, then foe some b, c with Cabc, we have $b \Vdash 1'$ and $c \vdash \phi$, thus Ib, it's actually a = c, so $a \Vdash \phi$. The other side follows similarly.