Appunti:

Misura di L con la risposta di un circuito RL ad un cambio di tensione (carica / scarica di un solenoide)

Appunti Esperienza 4

Laboratorio II, 16 novembre 2018

Misura di L con la risposta di un circuito RL ad un cambio di tensione (carica / scarica di un solenoide)

Circuito più realistico con connessioni oscilloscopio

Presenza di impedenza di sorgente (Rgen) e resistenza parassita RL

- R_L si può misurare
- $R_{gen} = 50 \Omega$

Modello bassa frequenza

Trascura C_{osc}, capacità parassita dell'induttanza

$$V_{OUT}(t) = V_0 \frac{R}{R_{gen} + R_L + R} \exp - \frac{t}{\tau} \qquad \tau = \frac{L}{R_{gen} + R_L + R}$$

$$\tau = \frac{L}{R_{con} + R_{I} + R}$$

NB: effetto partitore fra R, R_L, R_{gen}

NB: effetto «overshoot» in VIN dovuto alla misura DOPO Rgen (a t=0 corrente è nulla)

Si consiglia di utilizzare onda quadra $0-V_0$ e analizzare τ in fase di scarica verso 0

Con L = 85 mH (nominale), misurato $R_L = 77 \Omega$, $R = 500.5 \Omega$

Esempio di fit per estrarre L (pochi punti)

$$\frac{1}{\tau} = \frac{R_{gen} + R_L + R}{L} = A + BR$$

$$L = \frac{1}{B}$$

$$R_{gen} + R_L = \frac{A}{B}$$

$$L = 85.00 \pm 0.01 \text{ mH}$$

Risultati: $(R_{gen} + R_L) = 127.7 \pm 0.2 \Omega$

$$\chi_r^2 \approx 210 \ (2 \text{ DOF})$$

NB: questo per L = 85 mH «nominale» (scatola decade)

Prendere più punti → capire meglio se errori statistici sottostimati o se il nostro modello non è abbastanza accurato per errore statistico di 100 parti per millione!

NB modello trascura capacità oscilloscopio/cavi, capacità parasitta dell'induttanza (importante al livello 1/1000 con questi valori di τ

Consigli Esperienza 4

- Misura L (caricare / scaricare l'induttanza)
 - Modello semplice funziona bene per frequenze basse ($\tau >> \mu s$)
 - Per L ordine 10 mH, usare R 20-150 Ω
- Confrontare misura di $H(\omega)$ per filtro RLC con un modello del circuito
 - Modello del circuito teorico del RLC, con R_L e C_L, oscilloscopio
 - Modello dovrebbe usare valori misurati per i parametri ove possibile (C, L, R, R_{osc}, C_{osc}, C_L, R_L)
- Numero esatto di punti (frequenze) non critico, ma dovrebbero mettere in evidenza comportamento nei limiti di frequenza alta / bassa, comportamento vicino a risonanza (larghezza risonanza, ampiezza picco)
- Cercare / confermare risonanza circuito prima con R grande
- Con R grande, misurare risonanza circuito (picco in | H|) senza C per misurare C_L

con C:
$$\omega_0 = \frac{1}{\sqrt{L(C + C_L + C_{OSC})}}$$
 senza C: $\omega_0 = \frac{1}{\sqrt{L(C_L + C_{OSC})}}$

- registrare condizioni di misura (impostazione strumenti, FS, trigger, VIN, ecc)
- produrre un diagramma di Bode mentre siete ancora in lab!!!

Consigli Esperienza 4

Eventuale disaccordo con modello *H (f)* ... carenza modello oppure risoluzione strumenti?

- Necessario stimare incertezze nella misura di H
 - ... almeno per alcuni punti interessanti: regime bassa / alta frequenza, larghezza risonanza, ampiezza a risonanza
 - Errore statistico (stima fluttuazioni misura, se apprezzabili)
 - Errore scala verticale oscilloscopio
 - Manuale oscilloscopio (+/- 3% scala verticale a 2 sigma (interpretazione))
 - NB: eventualmente per H vicino a 1 (stesso fondo scala per VIN e VOUT) si può invertire i canali 1/2 e prendere media geometrica ... assimmetria guadagno oscilloscopio si cancella
- NB carenze possibili nel nostro modello
- → dissipazione «non-Ohmica» in L, C a risonanza possono influire sull'ampiezza/larghezza picco

Commenti relazione Esp. 4

- leggete le richieste della scheda
- nel confronto modello dati sperimentali, analisi χ^2 «globale» poco efficace
 - incertezze correlate
 - diversi parametri sono dominanti per diverse frequenze
- meglio un confronto nei diversi regimi di frequenza
 - domanda specifica sulla frequenza risonanza, ampiezza | H | al picco, larghezza picco
 - Per risonanza, la frequenza con fase 0 (ad esempio con interpolazione o fit lineare $\phi(f)$ vicino a f_0) è facilmente confrontata con modello numerico. Incertezza nel modello dominata da incertezza in L, C misurati:

$$\delta(f_0) \approx \delta\left(\frac{1}{2\pi\sqrt{LC}}\right)$$

- ragionare su quali parametri sono responsabili degli eventuali disaccordi
- si può anche sperimentare con altri valori dei parametri per tentare di spiegare H(f)
- Modello: presentato con linea continua / tanti punti
 Ad esempio: f_mod = 10.^[1:.0001:5]';