CS208 Lab4 Practice-Nesting Boxes

12312110 李轩然

DDL: Apr.13

Description

A d-dimensional box with dimensions (x_1, x_2, \ldots, x_d) nests within another box with dimensions (y_1, y_2, \ldots, y_d) . If there exists a permutation π on $\{1, 2, \ldots, d\}$ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2, \ldots, x_{\pi(d)} < y_d$:

- 1. Is the nesting relation transitive? Prove it.
- 2. Design an efficient method to determine whether one d-dimensional box nests inside another. Describe the algorithm's steps, state its time complexity, and prove its correctness.
- 3. Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, \ldots, B_n\}$. Give an efficient algorithm to find the longest sequence $\{B_{i1}, B_{i2}, \ldots, B_{ik}\}$ of boxes such that B_{ij} nests within B_{ij+1} for $j=1,2,\ldots,k-1$. Express the running time of your algorithm in terms of n and d.

Requirement

This week's practice does not require writing code. Instead, you need to describe the algorithmic steps (or provide pseudocode) and clearly explain the proof process.

Expected Output:

- A structured algorithm description (or pseudocode).
- A formal correctness proof (e.g., by induction, contradiction, or logical reasoning).

Analysis

1. The nesting relation is transitive

Proof: Suppose we have three boxes named A, B and C with dimensions:

$$A = (a_1, a_2, \dots, a_d)$$
 $B = (b_1, b_2, \dots, b_d)$ $C = (c_1, c_2, \dots, c_d)$

Assume A nests within B, B nests within C, thus we need to prove that A nests within C.

By definition, there exists a bijection $lpha:\{1,2,\ldots,d\} o\{1,2,\ldots,d\}$ such that $b_{lpha(1)}< c_1$, $c_{lpha(2)}< y_2$, \ldots , $b_{lpha(d)}< c_d$; there also exists a bijection $eta:\{1,2,\ldots,d\} o\{1,2,\ldots,d\}$ such that $a_{eta(1)}< b_1$, $a_{eta(2)}< b_2$, \ldots , $a_{eta(d)}< b_d$.

According to discrete mathematics, $\beta\circ\alpha$ is also bijective from $\{1,2,\dots,d\}$ to $\{1,2,\dots,d\}$, and:

$$a_{eta \circ lpha(1)} < b_{lpha(1)} < c_1, a_{eta \circ lpha(2)} < b_{lpha(2)} < c_2, \dots, a_{eta \circ lpha(d)} < b_{lpha(d)} < c_d$$

which means A nests within C by definiton. Then we are done.

2. Sorting

Suppose we need to determin that X nests within Y with dimensions:

$$X=(x_1,x_2,\ldots,x_d)$$

$$Y = (y_1, y_2, \dots, y_d)$$

We just sort the dimensions of X and Y in ascending order:

$$X = (x'_1, x'_2, \dots, x'_d), x'_1 \le x'_2 \le \dots \le x'_d$$

$$Y = (y'_1, y'_2, \dots, y'_d), y'_1 \le y'_2 \le \dots \le y'_d$$

Then X nests within Y iff:

$$x_1' < y_1', x_2' < y_2', \dots, x_d' < y_d'$$

The total time complexity will be O(dlogd) because of sorting.

Correctness proof: Assume X nests within Y, but there exists $i \in \{1,2,\ldots,d\}$, such that $x_i' \geq y_i'$ after sorting. Because $y_1' \leq y_2' \leq \ldots \leq y_d'$, then there are n-i+1 elements in X that not smaller than y_i' . However, there are only n-i elements in Y that greater than y_i' , thus there must exist at least one element in X,

let's say $x_j'(i \leq j \leq d)$, matches y_i' or smaller element in Y, let's say $y_k'(1 \leq k \leq i)$, then $x_j' \geq y_{k'}'$, which means X does not nest within Y and makes a contridiction. So the algorithm is correct.

3. Greedy

Still sort the dimensions of each $B_i (1 \le i \le n)$ in ascending order:

$$B_i = (b'_{i1}, b'_{i2}, \dots, b'_{id}), b'_{i1} \leq b'_{i2} \leq \dots \leq b'_{id}$$

then sort B_1, B_2, \ldots, B_n by sorting $b'_{11}, b'_{21}, \ldots, b'_{n1}$ (if equals, then compare b'_{i2} ) in ascending order:

$$B_1, B_2, \ldots, B_n(b'_{11} \leq b'_{21} \leq \ldots \leq b'_{n1})$$

In this case, we don't know whether the largest box, which is B_n , can be chosen, so we need to list every B_i that probably be the largest. Define $f_i (1 \le i \le n)$ that means when the largest box is B_i , the number of boxes we can choose at most. Then the answer will be $\max\{f_1, f_2, \ldots, f_n\}$ but not f_n .

Clearly, $f_1=1$, and for $2\leq i\leq n$, we need to find a box that can be nested within B_i , let's say B_j , and its f_j is the largest. Then add B_i to this sequence, thus $f_i=f_j+1$. The pseudocode is:

```
f[1] = 1
for i : 2 to n
    temp = 0
    for j : i-1 downto 1
    if (B[j] nests within B[i])
        temp = max(temp, f[j])
    f[i] = temp + 1

return max{f[i]}
```

Running time: The double for-loop will cost $O(n^2)$ time, and every judgement (B_j) nests within B_i) will do comparation for d times, and sorting will cost O(ndlogn + ndlogd) time, thus the total time complexity will be $O(n^2d)$.

Correctness proof: For every B_i , we guarantee that f_i is the maximum of the number of boxes we can choose when B_i is the largeset, and f_1, f_2, \ldots, f_n lists all the possibilities of $\{B_n\}$ sequence that might be the longest, thus the answer must be the longest length.