Eigen Value and Eigen Vector

Find the eigen value and eigen vector of the following matrix:

a.
$$A = \begin{pmatrix} 3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & 2 \end{pmatrix}$$

b.
$$B = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$$

c.
$$C = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$

c.
$$C = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

d. $D = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$
e. $E = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$
f. $F = \begin{pmatrix} 8 & 2 & -2 \\ 3 & 3 & -1 \\ 24 & 8 & -6 \end{pmatrix}$

e.
$$E = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$

f.
$$F = \begin{pmatrix} 8 & 2 & -2 \\ 3 & 3 & -1 \\ 24 & 8 & -6 \end{pmatrix}$$

Verify the Cayley-Hamilton theorem for the following matrix:

a.
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$

b.
$$B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$

c. $C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$

c.
$$C = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

• Find the inverse of the matrix $A=\begin{pmatrix}2&0&-1\\5&1&0\\0&1&3\end{pmatrix}$ using Cayley-Hamilton theorem