I/O-efficient Symbolic Model Checking

Steffan Christ Sølvsten, Jaco van de Pol

31st of August, 2022

Adiar

github.com/ssoelvsten/adiar

Aggarwal and Vitter '87: I/O-model

The I/O-model by Aggarwal and Vitter '87

Aggarwal and Vitter '87: I/O-model

For any realistic values of N, M, and B we have that

$$N/B < \operatorname{sort}(N) \triangleq N/B \cdot \log_{M/B} N/B \ll N$$
,

Theorem (Aggarwal and Vitter '87) N elements can be sorted in $\Theta(sort(N))$ I/Os.

Theorem (Arge '95)

N elements can be inserted in and extracted from a Priority Queue in $\Theta(sort(N))$ I/Os.

Bryant '86: Binary Decision Diagram

Examples of (Reduced Ordered) Binary Decision Diagrams.

Bryant '86: Binary Decision Diagram

Theorem

For a fixed variable order, if one exhaustively applies the two rules below, then one obtains the Reduced OBDD, which is a unique canonical form of the function.

(2) Merge duplicate nodes

Arge '95 : BDD + I/O-model

Running time for solving a problem that does not need more than 3 $\,\mathrm{GiB}.$

$$(i_1, id_1) < (i_2, id_2) \equiv i_1 < i_2 \lor (i_1 = i_2 \land id_i < id_j)$$

Node-based representation of prior shown BDDs

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

(b)
$$\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$$

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

Priority Queue: Q_{app:1}:

- [$(0,0) \xrightarrow{\top} ((1,0),(2,1))$,
 - $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$,

J

(c) (a) ∧ (b)

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

9

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

Seek: min((1, 0), (2, 1))

Priority Queue: Qapp:1:

 $[(0,0) \xrightarrow{\top} ((1,0),(2,1)) ,$ $(0,0) \xrightarrow{\bot} ((2,0),(2,0)) ,$

(0,0)

J

(c) (a) ∧ (b)

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

Seek: min((1,0),(2,1))

Priority Queue: Q_{app:1}:

[
$$(0,0) \xrightarrow{\top} ((1,0),(2,1))$$
 ,

$$(0,0) \xrightarrow{\perp} ((2,0),(2,0))$$

(0,0)

J

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

$\begin{array}{c} \text{Seek:} \\ \min((1,0),(2,1)) \end{array}$

Priority Queue: Qapp:1:

 $(0,0)\stackrel{\top}{\longrightarrow} ((1,0),(2,1))$,

 $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$

 $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$,

 $(1,0) \xrightarrow{\top} ((3,1),(2,1))$

(0,0)

(1,0)

J

(c) (a) ∧ (b)

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(b)
$$\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$$

Seek: min((1,0),(2,1))

Priority Queue: $Q_{app:1}$:

- $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$
- $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$
- $(1,0) \xrightarrow{\top} ((3,1),(2,1))$,

Output:

 $(0,0) \xrightarrow{\top} (1,0)$

]

(c) (a) ∧ (b)

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(b)
$$\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$$

Seek: min((2,0),(2,0))

Priority Queue: Qapp:1:

- $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$
- $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$
- $(1,0) \xrightarrow{\top} ((3,1),(2,1))$,

Output:

]

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

Seek:

 $\min((2,0),(2,0))$

Priority Queue: $Q_{app:1}$:

- $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$
- $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$
- $(1,0) \xrightarrow{\top} ((3,1),(2,1))$
- $(2,0) \xrightarrow{\top} ((3,1),(3,0))$
- $(2,0) \xrightarrow{\perp} ((3,0),\top)$

Output:

(2,0)

Seek: min((2,0),(2,1))Priority Queue: Qapp:1: $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$ $(1,0) \xrightarrow{\top} ((3,1),(2,1))$ $(2,0) \xrightarrow{\top} ((3,1),(3,0))$ $(2,0) \xrightarrow{\perp} ((3,0),\top)$

(d) $(a) \wedge (b)$ reduced

→ BuDDy → CUDD → Sylvan → Adiar

Minimal running time for the *Queens* problems.

Minimal running time for the *Queens* problems.

Minimal running time for the Queens problems.

Definition (i-level cut)

Definition (i-level cut)

Lemma

The maximum i-level cut problem is in P for $i \in \{1, 2\}$.

Definition (i-level cut)

Lemma

The maximum i-level cut problem is in P for $i \in \{1, 2\}$.

Theorem (Lampis, Kaouri, Mitsou 2011) The maximum i-level cut problem is NP-complete for $i \geq 4$.

Theorem

The maximum (i-level) cut of a BDD with N internal nodes is N+1.

Theorem

The maximum (i-level) cut of a BDD with N internal nodes is N+1.

Theorem

For $i \in \{1,2\}$, the maximum i-level cut of the (unreduced) output of Apply is upper bounded by the product of the inputs' corresponding i-level cuts.

Theorem

The maximum (i-level) cut of a BDD with N internal nodes is N+1.

Theorem

For $i \in \{1,2\}$, the maximum i-level cut of the (unreduced) output of Apply is upper bounded by the product of the inputs' corresponding i-level cuts.

Lemma

The maximum 2-level cut of a BDD is upper bounded by $\frac{3}{2}$ its 1-level cut.

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

```
1 exists (f, V)
     if f = 1 \lor f = \top
            then f
    else if V \cap \{i \in \mathbb{N} \mid i \geq \mathsf{top}(f)\} = \emptyset
5
            then f
     else if top(f) \notin V
            then Node { top(f), exists(f.low, V), exists(f.high, V) }
8
     else let low = exists(f.low. V)
                  high = exists(f.high, V)
10
            in or(low, high)
```

A recursive multi-variable exists operation.

```
1 exists (f, V)
    if f = \bot \lor f = \top
     then f
   else if V \cap \{i \in \mathbb{N} \mid i \geq \mathsf{top}(f)\} = \emptyset
5
            then f
     else if top(f) \notin V
            then Node { top(f), exists(f.low, V), exists(f.high, V) }
8
     else let low = exists(f.low. V)
                 high = exists(f.high, V)
10
            in or(low, high)
```

A recursive multi-variable exists operation.

```
1 exists (f, V)
   if f = \bot \lor f = \top
    then f
4 else if V \cap \{i \in \mathbb{N} \mid i \geq \text{top}(f)\} = \emptyset
           then f
    else if top(f) \notin V
            then Node { top(f), exists(f.low, V), exists(f.high, V) }
8
     else let low = exists(f.low. V)
                 high = exists(f.high, V)
10
            in or(low, high)
```

A recursive multi-variable exists operation.

Adiar v2.0: Multi-variable Quantification

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3    high = substitute(f.high)
4    i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3    high = substitute(f.high)
4    i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3    high = substitute(f.high)
4    i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3    high = substitute(f.high)
4    i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
[0\mapsto 3, 1\mapsto 0, 2\mapsto 2, 3\mapsto 1]
```

```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3  high = substitute(f.high)
4  i' = i_map[top(f)]
5  in bubble(i', low, high)
```

A recursive substitute operation.

. . .

```
[0\mapsto 3, 1\mapsto 0, 2\mapsto 2, 3\mapsto 1]
```

```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3  high = substitute(f.high)
4  i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
[0\mapsto 3, 1\mapsto 0, 2\mapsto 2, 3\mapsto 1]
```

```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3    high = substitute(f.high)
4    i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
[0\mapsto 3, 1\mapsto 0, 2\mapsto 2, 3\mapsto 1]
```

```
1 substitute(f, i_map)
2  let low = substitute(f.low)
3  high = substitute(f.high)
4  i' = i_map[top(f)]
5  in bubble(i', low, high)
```



```
\frac{\text{Time Space }I/O}{O(NT) O(NT)}
1 substitute (f, i\_map)
2 let low = substitute (f.low)
3 high = substitute (f.high)
4 i' = i\_map[top(f)]
5 in bubble (i', low, high)
```

```
Time
                                                                Space
1 substitute(f, i_map)
    let low = substitute(f.low)
                                                   Complexity of depth-first substitute
          high = substitute(f.high)
          i' = i_map[top(f)]
5
    in bubble(i', low, high)
                                                 Time
                                                               Space
                                             O(NT \log T) \quad O(N+T) \quad O(N \cdot \text{sort}(T))
      A recursive substitute operation.
                                                  Complexity of level-by-level substitute
```

Problem (Variable Replacement) Given BDD f_{π} with variable ordering π and remapping of variables $m: \mathbb{N} \to \mathbb{N}$, construct $f'_{\pi} \equiv f_{\pi}[x/m(x)]$.

Problem (Variable Replacement)

Given BDD f_{π} with variable ordering π and remapping of variables $m : \mathbb{N} \to \mathbb{N}$, construct $f'_{\pi} \equiv f_{\pi}[x/m(x)]$.

Problem (Static Variable Reordering)

Given BDD f_{π} with variable ordering π and another variable ordering π' , construct $f_{\pi'} \equiv f_{\pi}$.

Problem (Variable Replacement)

Given BDD f_{π} with variable ordering π and remapping of variables $m : \mathbb{N} \to \mathbb{N}$, construct $f'_{\pi} \equiv f_{\pi}[x/m(x)]$.

Problem (Static Variable Reordering)

Given BDD f_{π} with variable ordering π and another variable ordering π' , construct $f_{\pi'} \equiv f_{\pi}$.

Problem (Dynamic Variable Reordering)

Given BDD f_{π} with variable ordering π ,

find π' and construct $f_{\pi'} \equiv f_{\pi}$ such that $|f_{\pi'}|$ is minimal.

