Geometric Satake equivalence

Roman Fedorov

University of Pittsburgh

October 7, 2021

Geometric Satake equivalence

Roman Fedorov

University of Pittsburgh

October 7, 2021

Langlands dual groups

Connected complex reductive groups come in pairs of Langlands dual groups G, \check{G} .

G	Ğ
GL(n)	GL(n)
SO(2n)	SO(2n)
SL(n)	PGL(n)
SO(2n+1)	Sp(2n)

- The Dynkin diagram of $Lie(\check{G})$ is obtained from Lie(G) by reversing the arrows.
- We have $\pi_1(G) \approx Z(\check{G})$.
- If $(X^*, \Phi, X_*, \Phi^{\vee})$ is a root datum for G, then $(X_*, \Phi^{\vee}, X_*, \Phi)$ is a root datum for \check{G} .

Geometric Satake

- Fix a connected reductive group G over \mathbb{C} . Can we define \check{G} without root data?
- Denote by Gr_G the affine Grassmannian of G.
- Recall that $G_O = J(G) = G(\mathbb{C}[[t]])$ acts on Gr_G .

Theorem (Drinfeld, Lusztig, Ginzburg, Mirkovic, Vilonen)

We have an equivalence of categories:

$$\mathit{Perv}^{\mathsf{G}_{\mathcal{O}}}(\mathit{Gr}_{\mathit{G}}) \simeq \mathit{Rep}(\check{\mathit{G}}).$$

Here $Perv^{G_O}$ is the category of G_O -equivariant perverse sheaves, Rep is the category of finite dimensional complex representations.

Crash-course on perverse sheaves

- Work with sheaves of complex vector spaces
- Local systems on a topological space = locally constant sheaves = representations of π_1 .
- Constructible sheaves: sheaves such that there is a stratification of the topological space such that the restrictions to the strata are local systems.
- $D^b(X)$ is the derived category of constructible sheaves on X.
- There is an abelian subcategory Perv(X) inside $D^b(X)$ different from the abelian category of constructible sheaves. Perv(X) is in many aspects better.
- In particular, Perv(X) is preserved by the Verdier duality: $RHom(\mathcal{F}, \omega_X)$ is again a perverse sheaf (up to a shift).

Crash-course on perverse sheaves

- Note that if $\iota \colon Z \to X$ is a smooth closed subset, then any local system L on Z gives rise to a perverse sheaf $\iota_* L[d]$.
- More generally, if $\iota\colon Z\to X$ is a smooth locally closed subset then any local system L on Z gives rise to a perverse sheaf IC(L) supported on \overline{Z} .
- The simple objects of Perv(X) are of the form IC(L), where L is an irreducible local system on a locally closed subset of X.

Crash-course on perverse sheaves

- Another POV: if X is a complex manifold, we have the category Conn(X) of vector bundles with connections.
- Conn(X) equivalent by Riemann–Hilbert to Loc(X).
- This equivalence can be extended to the equivalence between $D^b(D-mod_{rs}(X))$ and $D^b(X)$, where $D-mod_{rs}(X)$ is the category of holonomic D-modules with regular singularities. Under this equivalence we have

$$D-mod_{rs}(X)\simeq Perv(X).$$

Perverse sheaves on Gr_G

• Recall that $Gr_G = \varinjlim Gr_n$, where Gr_n are projective schemes. We define

$$Perv_{G_O}(Gr_G) := \varinjlim Perv_{G_O}(Gr_n),$$

where we note that G_O acts on Gr_n via a finite-dimensional quotient.

• We can identify $Perv_{G_O}(Gr_G)$ with the full subcategory of $Perv(G_n)$ consisting of perverse sheaves F such that for every orbit Gr^{λ} of G_O the perverse sheaf $F|_{Gr^{\lambda}}$ is a local system (necessarily trivial).

Abelian categories

- $Perv^{G_O}(Gr_G)$ is a semisimple abelian category. Its simple objects correspond to the orbits of G_O on Gr_G . Thus, they are parameterized by X_* .
- $Rep(\check{G})$ is a semisimple abelian category. Its simple objects are parameterized by $X^*(\check{G}) = X_*$.

Tannakian formalism

- A monoidal (a.k.a. tensor) category is a category C with a functor ⊗: C × C → C that is associative up to a natural isomorphism and an object 1 that is both left and right identity for ⊗ up to a natural isomorphism. Some compatibilities are required, e.g., the pentagon diagram.
- A monoidal category is symmetric if there is a commutativity constraint: for any object we are given an isomorphism $c_{X,Y} \colon X \otimes Y \xrightarrow{\simeq} Y \otimes X$ with some compatibilities. (e.g., the hexagon diagram).
- Rigid monoidal category, is a category where each object X has a dual. This is an object Y together with morphisms $1 \to X \otimes Y$ and $Y \otimes X \to 1$, $1 \to Y \times X$, and $X \times Y \to 1$ subject to some compatibilities.

Tannakian formalism

- A neutral Tannakian category over C is a rigid symmetric abelian tensor C-linear category, such that there exists a C-linear tensor functor (called a fiber functor) to the category of finite dimensional C-vector spaces that is exact and faithful.
- Main example: Rep(G), where G is an affine group scheme.

Theorem

Let C be a neutral Tannakian category $H: C \to Vect_{\mathbb{C}}$ be a fiber functor. Then there is a unique up to isomorphism affine group scheme G and an equivalence of categories $C \simeq Rep(G)$ intertwining H with the forgetful functor.

- Thus, need to equip $Perv^{G_O}(Gr_G)$ with the structure of a neutral Tannakian category (and with a fiber functor).
- The fiber functor is the functor of global cohomology.
- The most intricate structures are the tensor product (called the convolution product) and the commutativity constraint.

Convolution Product

• The idea is to think of objects of $Perv_{G_O}(Gr_G)$ as G_O -biequivariant sheaves on the loop group $G_K = G(\mathbb{C}((t)))$ (recall that $Gr_G = G_K/G_O$). If F_1 and F_2 are two such sheaves, then $F_1 \boxtimes F_2$ is a sheaf on $G_K \times G_K$ and we define

$$F_1 \star F_2 := m_*(F_1 \boxtimes F_2),$$

where $m: G_K \times G_K \to G_K$ is the multiplication.

- Technically, it is more convenient to work with convolution object of ind-finite type $G_K \times_{G_O} Gr_G$.
- One needs to check that the convolution of two perverse sheaves is again a perverse sheaf.

Fusion product and the commutativity constraint

- Recall that $Gr_G = \{(E, s)\}$, where $E \to \mathbb{A}^1$ is a G-torsor, s is a trivialization of E on $\mathbb{A}^1 0$.
- A version of Beilinson-Drinfeld Grassmannian:

$$\widetilde{Gr} = \{(x, E, s)\},$$
 $x \in \mathbb{A}^1, \ E \xrightarrow{G} \mathbb{A}^1, \ s \ \text{is a trivialization on} \ \mathbb{A}^1 - 0 - x.$
 $\widetilde{Gr} \to \mathbb{A}^1 \colon (x, E, s) \mapsto x.$
 $\widetilde{Gr}|_{\mathbb{A}^1 - 0} \approx Gr_G \times (\mathbb{A}^1 - 0) \times Gr_G.$
 $\widetilde{Gr}|_0 \approx Gr_G.$

Proposition

- Start with $F_1, F_2 \in Perv_{G_O}(Gr_G)$.
- Consider $F_1 \boxtimes \mathbb{C}_{\mathbb{A}^1 0} \boxtimes F_2$ as a perverse sheaf on $\widetilde{Gr}|_{\mathbb{A}^1 0}$.
- Extend to a perverse sheaf \tilde{F} on $\widetilde{Gr_G}$.
- We have $F_1 \star F_2 \simeq \tilde{F}|_0$.

Maximal torus of \check{G}

- For $\nu \in X_*$, let $S^{\nu} := N_{\mathcal{K}} \cdot t^{\nu}$, where $N \subset G$ is a maximal unipotent subgroup.
- We have for $F \in Perv_{G_O}(Gr_G)$

$$H^*(Gr_G,F)=igoplus_{
u\in X_*}H^{2
ho(
u)}(S^
u,F).$$

- We upgraded H^* to a functor from $Perv_{G_O}(Gr_G)$ to the category of X_* -graded vector spaces.
- The latter category is equivalent to $Rep(\check{T})$.
- This gives a homomorphism

$$\check{T} \to \check{G}$$
.

Langlands duality

• Let $D_x = \operatorname{Spec} \mathbb{C}[[t]]$ be the formal disc. Consider the stack Mod classifying triples (E_1, E_2, s) , where $E_i \to D_x$ are G-torsors, s is an isomorphism between $E_1|_{\dot{D}_x}$ and $E_2|_{\dot{D}_x}$. Then

$$Perv_{G_O}(Gr_G) = Perv(G_O \setminus G_K/G_O) = Perv(Mod).$$

• Consider the stack Mod' classifying triples (L_1, L_2, s) , where $L_i \to D_x$ are \check{G} -local systems, s is an isomorphism between $L_1|_{\dot{D}_x}$ and $L_2|_{\dot{D}_x}$. Then

$$Rep(\check{G}) = Coh(B\check{G}) = Coh(Mod').$$

• Local Langlands correspondence:

$$Perv(Mod) \simeq Coh(Mod')$$

