Chapter 3

PDE intro HW

3.1 HW1

Theorem 3.1.1.

Show $u \mapsto u_x + uu_y$ is non-linear

Proof. See that

$$2u \mapsto 2u_x + 4uu_y \neq 2(u_x + uu_y) \tag{3.1}$$

Theorem 3.1.2.

Solve
$$(1+x^2)u_x + u_y = 0$$

Proof. The characteristic curve has the derivative

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

The solution to this ODE is

$$y = \arctan x + C$$

We now see that the solution to the PDE in Equation 3.1 is

 $u = f((\arctan x) - y)$ where $f : \mathbb{R} \to \mathbb{R}$ is an arbitrary smooth function

A characteristic curve is as followed.

Theorem 3.1.3.

Solve
$$au_x + bu_y + cu = 0$$
 (3.2)

Proof. Fix

$$\begin{cases} x' \triangleq ax + by \\ y' \triangleq bx - ay \end{cases}$$

This map is clearly a diffeomorphism. Compute

$$\begin{cases} u_x = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x} = a u_{x'} + b u_{y'} \\ u_y = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y} = b u_{x'} - a u_{y'} \end{cases}$$

Plugging it back into the PDE in Equation 3.2, we have

$$cu + (a^2 + b^2)u_{x'} = 0 (3.3)$$

If $c = a^2 + b^2 = 0$, then all smooth functions are solution. If $a^2 + b^2 = 0$ but $c \neq 0$, then clearly the only solution is $u = \tilde{0}$. If $a^2 + b^2 \neq 0$ but c = 0, then $u_{x'} = \tilde{0}$, which implies u = f(y') where y' = bx - ay and f can be arbitrary smooth function.

Now, suppose $a^2 + b^2 \neq 0 \neq c$, note that the PDE in Equation 3.3 is just an ODE of the form

$$y + \frac{a^2 + b^2}{c}y' = 0$$
21

The general solution to this ODE is

$$y = Ce^{\frac{-ct}{a^2 + b^2}}$$

In other words, the general solution of the PDE in Equation 3.3 is

$$u = Ce^{\frac{-cx'}{a^2+b^2}} = Ce^{\frac{-c(ax+by)}{a^2+b^2}}$$