What is claimed is:

1. A composition comprising a first oligomer and a second oligomer, wherein:

at least a portion of said first oligomer is capable of hybridizing with at least a portion of said second oligomer,

at least a portion of said first oligomer is complementary to and capable of hybridizing with a selected target nucleic acid, and

at least one of said first or said second oligomers includes at least one sugar surrogate.

- 2. The composition of claim 1 wherein said first and said second oligomers are a complementary pair of siRNA oligomers.
- 3. The composition of claim 1 wherein said first and said second oligomers are an antisense/sense pair of oligomers.
- 4. The composition of claim 1 wherein each of said first and second oligomers has 10 to 40 nucleobases.
- 5. The composition of claim 1 wherein each of said first and second oligomers has 18 to 30 nucleobases.
- 6. The composition of claim 1 wherein each of said first and second oligomers has 21 to 24 nucleobases.
- 7. The composition of claim 1 wherein said first oligomer is an antisense oligomer.
- 8. The composition of claim 7 wherein said second oligomer is a sense oligomer.

- 9. The composition of claim 7 wherein said second oligomer has a plurality of ribose nucleoside units.
- 10. The composition of claim 1 wherein said first oligomer includes said sugar surrogate.
- 11. The composition of claim 1 wherein the sugar surrogate is a cyclobutyl nucleoside, cyclopentyl nucleoside, proline nucleoside, cyclohexene nucleoside, hexose nucleoside or a cyclohexane nucleoside.
- 12. The composition of claim 1 wherein the sugar surrogate is an arabinonucleoside, xylonucleoside, lyxonucleoside, erythronucleoside, threonucleoside, 4'-thioribonucleoside, or 2'-deoxy-4'-thioribonucleoside.
- 13. The composition of claim 12 wherein the sugar surrogate is an arabinonucleoside.
- 14. The composition of claim 12 wherein the sugar surrogate is an xylonucleoside of the formula:

where Bx is a heterocyclic base moiety.

15. The composition of claim 12 wherein the sugar surrogate is a threonucleoside of the formula:

wherein Bx is a hetrocyclic base moiety.

- 16. The composition of claim 11 wherein the sugar surrogate is a cyclobutyl nucleoside.
- 17. The composition of claim 16 wherein the cyclobutyl nucleoside is of the formula:

- 18 The composition of claim 11 wherein the sugar surrogate is a cyclopentyl nucleoside.
- 19 The composition of claim 18 wherein the cyclopentyl nucleoside is of the formula:

where:

Bx is a heterocyclic base moiety;

Q' is CH2, CHF, or CF2; and

R₂ is sugar substituent.

- 20. The composition of claim 11 wherein the sugar surrogate is a proline nucleoside.
- 21. The composition of claim 20 wherein the proline nucleoside is of the formula:

wherein:

Z is L_8 , L_8 - G_1 , L_9 , L_9 - G_2 , $NR_{23}R_{24}$, a nitrogen-containing heterocycle, a purine, a pyrimidine, a phosphate group, a polyether group, or a polyethylene glycol group;

 L_8 is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

 L_9 is C_6 - C_{14} aryl or C_7 - C_{15} aralkyl;

G₁ is halogen, OR₂₁, SR₂₂, NR₂₃R₂₄, C(=NH)NR₂₃R₂₄, NHC(=NH)NR₂₃R₂₄,

CH=O, C(=O)OR₂₅, CH(NR₂₃ R₂₄)(C(=O)OR₂₅), C(=O)NR₂₃R₂₄, a metal coordination group, or a phosphate group;

G₂ is halogen, OH, SH, SCH₃, or NR₂₃R₂₄;

R₂₁ is H, C₁-C₆ alkyl, or a hydroxyl protecting group;

R₂₂ is H, C₁-C₆ alkyl, or a thiol protecting group;

R₂₃ and, R₂₄ are, independently, H, C₁-C₆ alkyl, or an amine protecting group;

R₂₅ is H, C₁-C₆ alkyl, or an acid protecting group;

Q is L_1 , G_3 , L_1 - G_3 or G_3 - L_1 - G_3 ;

 L_1 is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

 G_3 is C(=O), C(=S), C(O)--O, C(O)--NH, C(S)--O, C(S)--NH or $S(O)_2$; and n is 0 or 1.

22. The composition of claim 1 wherein the sugar surrogate is of the formula:

where:

Bx is a heterocyclic base moiety;

Q is S, O, NH, N(C₁-C₆ alkyl), CH₂, CHF, or CF₂;

R₈₂ is a sugar substituent;

 R_{83} and R_{85} are each independently OH, a protected hydroxyl group, an internucleoside linkage to an adjacent monomer, or a terminal group; and

 R_{81} , R_{83} , R_{84} and R_{85} are each independently H, alkyl, aralkyl, or aryl.

23. The composition of claim 11 wherein the sugar surrogate is of formula:

wherein Bx is a heterocyclic nucleobase, R_{95} is H, a hydroxyl protecting group, an internucleoside linkage to an adjacent monomer, or a terminal group, and X_7 is a H or a sugar substitutent.

24. The composition of claim 11 wherein the sugar surrogate is of the formula:

wherein Bx is a heterocyclic base moiety.

- 25. The composition of claim 12 wherein the sugar surrogate is a 4'-thioribonucleoside or a 2'-deoxy-4'-thioribonucleoside.
- 26. The composition of claim 1 wherein the sugar surrogate comprises at least one monomer of the formula:

wherein X is a conjugate.

27. The composition of claim 1 wherein the oligomer comprises at least one monomer of the formula:

$$-\xi - CH_{2}C(CH_{2})_{n}O - \xi - CH_{2}-X-Q$$

wherein:

 $R_{2"}$ is hydrogen, nitro, lower alkyl amino, diloweralkyl amino or methyl; X is oxygen, sulfur, or --NR_{6"}; R_{6"} is hydrogen or lower alkyl; n is an integer from 1 to 40; Q is a heterocyclic base moiety.

28. A composition comprising an oligomer complementary to and capable of hybridizing to a selected target nucleic acid and at least one protein, said protein comprising at least a portion of a RNA-induced silencing complex (RISC), wherein:

said oligomer includes at least one nucleoside having a modification comprising a sugar surrogate.

- 29. The composition of claim 28 wherein said oligomer is an antisense oligomer.
- 30. The composition of claim 28 wherein said oligomer has 10 to 40 nucleobases.
- 31. The composition of claim 28 wherein said oligomer has 18 to 30 nucleobases.
- 32. The composition of claim 28 wherein said oligomer has 21 to 24 nucleobases.
- 33. The composition of claim 28 further including a further oligomer, said further oligomer complementary to and hydrizable to said oligomer.
- 34. The composition of claim 33 wherein said further oligomer is a sense oligomer.
- 35. The composition of claim 33 wherein said further oligomer is an oligomer having a plurality of ribose nucleoside units.

- 36. The composition of claim 28 wherein the sugar surrogate is a cyclobutyl nucleoside, cyclopentyl nucleoside, proline nucleoside, cyclohexene nucleoside, hexose nucleoside or a cyclohexane nucleoside.
- 37. The composition of claim 28 wherein the sugar surrogate is an arabinonucleoside, xylonucleoside, lyxonucleoside, erythronucleoside, threonucleoside, 4'-thioribonucleoside, or 2'-deoxy-4'-thioribonucleoside.
- 38. The composition of claim 37 wherein the sugar surrogate is an arabinonucleoside.
- 39. The composition of claim 37 wherein the sugar surrogate is an xylonucleoside of the formula:

where Bx is a heterocyclic base moiety.

40. The composition of claim 37 wherein the sugar surrogate is a threonucleoside of the formula:

wherein Bx is a hetrocyclic base moiety.

- 41. The composition of claim 36 wherein the sugar surrogate is a cyclobutyl nucleoside.
- 42. The composition of claim 41 wherein the cyclobutyl nucleoside is of the formula:

- 43. The composition of claim 36 wherein the sugar surrogate is a cyclopentyl nucleoside.
- 44. The composition of claim 43 wherein the cyclopentyl nucleoside is of the formula:

where:

Bx is a heterocyclic base moiety;

Q' is CH₂, CHF, or CF₂; and

 R_2 is OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C_1 to C_{10} alkyl or C_2 to C_{10} alkenyl or alkynyl.

- 45. The composition of claim 36 wherein the sugar surrogate is a proline nucleoside.
- 46. The composition of claim 45 wherein the proline nucleoside is of the formula:

wherein:

Z is L_8 , L_8 - G_1 , L_9 , L_9 - G_2 , $NR_{23}R_{24}$, a nitrogen-containing heterocycle, a purine, a pyrimidine, a phosphate group, a polyether group, or a polyethylene glycol group;

 L_8 is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

L₉ is C_6 - C_{14} aryl or C_7 - C_{15} aralkyl;

 G_1 is halogen, OR_{21} , SR_{22} , $NR_{23}R_{24}$, $C(=NH)NR_{23}R_{24}$, $NHC(=NH)NR_{23}R_{24}$,

CH=O, C(=O)OR₂₅, CH(NR₂₃ R₂₄)(C(=O)OR₂₅), C(=O)NR₂₃R₂₄, a metal coordination group, or a phosphate group;

G₂ is halogen, OH, SH, SCH₃, or NR₂₃R₂₄;

R₂₁ is H, C₁-C₆ alkyl, or a hydroxyl protecting group;

R₂₂ is H, C₁-C₆ alkyl, or a thiol protecting group;

R₂₃ and, R₂₄ are, independently, H, C₁-C₆ alkyl, or an amine protecting group;

R₂₅ is H, C₁-C₆ alkyl, or an acid protecting group;

Q is L_1 , G_3 , L_1 - G_3 or G_3 - L_1 - G_3 ;

 L_1 is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

 G_3 is C(=O), C(=S), C(O)--O, C(O)--NH, C(S)--O, C(S)--NH or $S(O)_2$; and n is 0 or 1.

47. The composition of claim 28 wherein the sugar surrogate is of the formula:

where:

Bx is a heterocyclic base moiety;

Q is S, O, NH, N(C₁-C₆ alkyl), CH₂, CHF, or CF₂;

R₈₂ is a sugar substituent;

 R_{83} and R_{85} are each independently OH, a protected hydroxyl group, an internucleoside linkage to an adjacent monomer, or a terminal group; and

 R_{81} , R_{83} , R_{84} and R_{85} are each independently H, alkyl, aralkyl, or aryl.

48. The composition of claim 36 wherein the sugar surrogate is of formula:

wherein Bx is a heterocyclic nucleobase, R_{95} is H, a hydroxyl protecting group, an internucleoside linkage to an adjacent monomer, or a terminal group, and X_7 is a H or a sugar substitutent.

49. The composition of claim 36 wherein the sugar surrogate is of the formula:

ISIS-5207 - 122 - PATENT

wherein Bx is a heterocyclic base moiety.

- 50. The composition of claim 36 wherein the sugar surrogate is a 4'-thioribonucleoside or a 2'-deoxy-4'-thioribonucleoside.
- 51. The composition of claim 28 wherein the sugar surrogate comprises at least one monomer of the formula:

wherein X is a conjugate.

52. The composition of claim 28 wherein the sugar surrogate comprises at least one monomer of the formula:

$$-\xi$$
— $CH_2C(CH_2)_nO$ — ξ — CH_2-X-Q

wherein:

R_{2"} is hydrogen, nitro, lower alkyl amino, diloweralkyl amino or methyl;

X is oxygen, sulfur, or $--NR_{6"}$;

R_{6"} is hydrogen or lower alkyl;

Q is a heterocyclic base; and

n is an integer from 1 to 40.

- 53. An oligomer having at least a first region and a second region, wherein: said first region of said oligomer complementary to and capable of hybridizing with said second region of said oligomer, at least a portion of said oligomer complementary to and capable of hybridizing to a selected target nucleic acid, said oligomer further including at least one nucleoside having a modification comprising a sugar surrogate.
- 54. The oligomer of claim 53 wherein each of said first and said second regions has at least 10 nucleosides.
- 55. The oligomer of claim 53 wherein said first regions in a 5' to 3' direction is complementary to said second region in a 3' to 5' direction.
- 56. The oligomer of claim 53 wherein said oligomer includes a hairpin structure.
- 57. The oligomer of claim 53 wherein said first region of said oligomer is spaced from said second region of said oligomer by a third region and where said third region comprises at least two nucleosides.
- 58. The oligomer of claim 53 wherein said first region of said oligomer is spaced from said second region of said oligomer by a third region and where said third region comprises a non-nucleoside.
- 59. A pharmaceutical composition comprising the composition of claim 1 and a pharmaceutically acceptable carrier.
- 60. A pharmaceutical composition comprising the composition of claim 28 and a pharmaceutically acceptable carrier.

- 61. A pharmaceutical composition comprising the oligomeric compound of claim 53 and a pharmaceutically acceptable carrier.
- 62. A method of modulating the expression of a target nucleic acid in a cell comprising contacting said cell with a composition of claim 1.
- 63. A method of modulating the expression of a target nucleic acid in a cell comprising contacting said cell with a composition of claim 28.
- 64. A method of modulating the expression of a target nucleic acid in a cell comprising contacting said cell with an oligomeric compound of claim 53.
- 65. A method of treating or preventing a disease or disorder associated with a target nucleic acid comprising administering to an animal having or predisposed to said disease or disorder a therapeutically effective amount of a composition of claim 1.
- 66. A method of treating or preventing a disease or disorder associated with a target nucleic acid comprising administering to an animal having or predisposed to said disease or disorder a therapeutically effective amount of a composition of claim 28.
- 67. A method of treating or preventing a disease or disorder associated with a target nucleic acid comprising administering to an animal having or predisposed to said disease or disorder a therapeutically effective amount of an oligomeric compound of claim 53.