Robot Dynamics Quiz 1

Prof. Marco Hutter Teaching Assistants: Jan Carius, Ruben Grandia, Jean Pierre Sleiman, Maria Vittoria Minniti

October 14, 2020

Duration: 1h 15min

Permitted Aids: The exam is open book, which means you can use the script, slides, exercises, etc; The use of internet (beside for licenses) is forbidden; no communication among students during the test.

1 Instructions

- 1. Download the ZIP file for quiz 1 from Piazza. Extract all contents of this file into a new folder and set MATLAB's¹ current path to this folder.
- 2. Run init_workspace in the Matlab command line
- 3. All problem files that you need to complete are located in the problems folder
- 4. Run evaluate_problems to check if your functions run. This script does not test for correctness. You will get 0 points if a function does not run (e.g., for syntax errors).
- 5. When the time is up, zip the entire folder and name it ETHStudentID_StudentName.zip
 Upload this zip-file through the following link
 https://www.dropbox.com/request/JGp7ImPmEZzRDdrssfyy.
 You will receive a confirmation of receipt.
- 6. If the previous step did not succeed, you can email your file to robotdynamics@leggedrobotics.com from your ETH email address with the subject line [RobotDynamics] ETHStudentID - StudentName

¹Online version of MATLAB at https://matlab.mathworks.com/

Figure 1: Schematic of a 3 degrees of freedom robotic arm attached to a fixed base. A camera is rigidly mounted on the last link of the arm.

2 Questions

In this quiz, you will model the forward, differential, and inverse kinematics of the robotic arm shown in Fig. 1. It is a 3 degrees of freedom arm connected to a **fixed** base.

Let $\{0\}$ be the base frame, which is displaced by l_0 from the inertial frame $\{I\}$ along the IZ axis.

The arm is composed of three links. The reference frames attached to each link are denoted as $\{1\}, \{2\}, \{3\}$. The links' segments have lengths $l_1, l_2, l_{31} + l_{32}$. Additionally, a camera is mounted on the last link of the arm. As shown in figure

Additionally, a camera is mounted on the last link of the arm. As shown in figure 1, the camera link is mounted at a constant angle θ around the axis z_3 .

A visualization of the robot in the plane x_1y_1 is also provided in figure 2.

Figure 2: Planar visualization of the 3-DOF robotic arm

The generalized coordinates are defined as

$$\boldsymbol{q} = \left[\begin{array}{ccc} q_1 & q_2 & q_3 \end{array} \right]^\top . \tag{1}$$

NOTE: the joint angles q_2 and q_3 are assumed to be zero when the axis x_2 and x_3 are parallel to the axis x_0 of the base frame.

In the following questions, all required parameters are passed to your functions in a structure called params. You can access it as follows:

```
1 10 = params.10;
2 11 = params.11;
3 12 = params.12;
4 131 = params.131;
5 132 = params.132;
6 14 = params.14;
7 15 = params.15;
8 theta = params.theta;
9 max.it = params.max.it;
10 lambda = params.lambda;
11 alpha = params.alpha;
```

Question 1. 6 P.

Let $\{E\}$ be the end-effector frame. Find the homogeneous transform between the inertial frame $\{I\}$ and the end-effector frame $\{E\}$, i.e., the matrix \mathbf{T}_{IE} as a function of the generalized coordinates \boldsymbol{q} .

Hint: Try to find the transforms of subsequent frames first.

You should implement your solution in the function jointToEndeffectorPose.m

Question 2. 6 P.

Consider the difference between the geometric Jacobian $\mathbf{J}_{IC} \in \mathbb{R}^{6\times 3}$ of point \mathbf{C} , and the geometric Jacobian $\mathbf{J}_{IO_3} \in \mathbb{R}^{6\times 3}$ of point $\mathbf{O_3}$:

$$_{3}\mathbf{J}_{O_{3}C} = _{3}\mathbf{J}_{IC} - _{3}\mathbf{J}_{IO_{3}},$$
 (2)

where all the terms are expressed in the same frame {3}. The Jacobian ${}_{3}\mathbf{J}_{O_{3}C} \in \mathbb{R}^{6\times 3}$ defines the following mapping:

$$\begin{bmatrix} {}_{3}\boldsymbol{v}_{IC} - {}_{3}\boldsymbol{v}_{IO_3} \\ {}_{3}\boldsymbol{\omega}_{IC} - {}_{3}\boldsymbol{\omega}_{I3} \end{bmatrix} = {}_{3}\mathbf{J}_{O_3C}(\boldsymbol{q})\dot{\boldsymbol{q}}$$

$$(3)$$

where ${}_{3}\boldsymbol{v}_{IC,3}\boldsymbol{v}_{IO_{3},3}\boldsymbol{\omega}_{IC,3}\boldsymbol{\omega}_{I3} \in \mathbb{R}^{3}$ are the linear and angular velocities of the frames $\{C\}$ and $\{3\}$, respectively. Compute the Jacobian ${}_{3}\mathbf{J}_{O_{3}C}$ in reference system $\{3\}$, using the following hints:

1. Note that

$$\mathbf{v}_{IC} - \mathbf{v}_{IO_3} = \begin{bmatrix} \mathbf{n}_1 \times \mathbf{r}_{O_3C} & \mathbf{n}_2 \times \mathbf{r}_{O_3C} & \mathbf{n}_3 \times \mathbf{r}_{O_3C} \end{bmatrix} \dot{\mathbf{q}}$$
 (4)

where $\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3} \in \mathbb{R}^3$ are the rotational axis of the three joints, and $\mathbf{r}_{O_3C} \in \mathbb{R}^3$ is the position vector from $\mathbf{O_3}$ to \mathbf{C} .

- 2. The points C and O_3 belong to the same rigid body.
- 3. The MATLAB function for cross product $a \times b$ is cross(a,b).

You should implement your solution in the function point3ToCameraGeometricJacobian.m

Question 3. 3 P.

Given a camera position $\mathbf{r}_{IC}^* \in \mathbb{R}^3$ and a starting joint configuration $\mathbf{q_0}$, implement a MATLAB function which computes the joint angles \mathbf{q} corresponding to the given camera position, using an iterative inverse kinematics algorithm. For this question, we provide:

- the position vector \(i\mathbf{p}_{IC}\).
 You can call it with jointToCameraPosition_solution(q, params).
- the position Jacobian ${}_{I}\mathbf{J}_{IC} \in \mathbb{R}^{3\times 3}$ of point \mathbf{C} . You can call it with jointToPositionJacobian_solution(q, params).
- a function for calculating damped pseudo-inverses, as you have seen in the exercise: pseudoInverseMat_solution(J, lambda).

You should implement your solution in the function inverseKinematics.m

Question 4. 3 P.

Assume now that the base frame $\{0\}$ can freely rotate and its rotation with respect to the inertial frame $\{I\}$ is described by a given quaternion \mathbf{Q}_{I0} . Write a MATLAB function to compute the rotation matrix \mathbf{C}_{IC} , that represents the orientation of the camera frame $\{C\}$ with respect to the inertial frame $\{I\}$.

For this question, we provide the transform T_{0C} , which you can access with $T_{-}OC_{-}solution(q, params)$.

 $You should implement your solution in the function {\tt cameraFrameOrientationWithBaseRotation.m}\\$