Definition 1. polynomial ring $\mathbf{r}[x]$ in x over the ring \mathbf{r} is defined as set of expressions, called polynomials in x, of the form

$$f(x) = a_0 + a_1 x^1 + \dots + a_m x^m$$

where a_0, a_1, \ldots, a_n , the coefficients of p(x) are elements of \mathbf{r} , and x, x^2 are symbols

Definition 2. let f be a field. by the ring of polynomial in the indeterminate, x, written as $\mathbf{R}[x]$, we mean the set of all symbols $f(x) = a_0 + a_1 x^1 + \cdots + a_m x^m$, where n can be any nonnegative integer and where the coefficient $a_0, a_1 + \cdots + a_n$ are all in f. in order to make a ring out of $\mathbf{f}[x]$, we must be able to recognize when the two elements in it are equal, we must add and multiply element of $\mathbf{f}[x]$ so that the axiom defining the ring hold true for $\mathbf{f}[x]$.

Definition 3. if $f(x) = a_0 + a_1 x^1 + \dots + a_m x^m$ and $g(x) = b_0 + b_1 x^1 + \dots + b_m x^m$ are in $\mathbf{f}[x]$, then f(x) = g(x) if and only if for every integer $i \ge 0$, such as $a_i = b_i$

Definition 4. if $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, then f(x) + g(x) is equal

$$\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{k} (a_i + b_j) x^k \quad \text{where } k = \max(n, m)$$

if f(x) or g(x) do not contain the term cx^t , then assume $c=0, k \ge t \ge 0$

Definition 5. if $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, then f(x)g(x) is equal

$$\sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right)$$

the definition say nothing more than: multiply two polynomials by multiplying out two symbols formally, use the relation $x^i x^j = x^{i+j}$ and collect terms

Definition 6. the degree of nonzero polynomial is defined as the maximus power of a term with nonzero coefficients.

Definition 7. if f(x) and g(x) are nonzero polynomials in f(x), then

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$$

Proof. let $f(x) = \sum_{i=0}^n a_i x^i, a_n \neq 0$ and $g(x) = \sum_{j=0}^m b_j x^j, b_m \neq 0$ we have

$$\deg(f(x)) = n$$
$$\deg(g(x)) = m$$

let $\alpha \in \{0 \dots n\}, \alpha \neq n \text{ and } \beta \in \{0 \dots m\}, \beta \neq m$

$$\therefore \alpha < n \text{ and } \beta < m$$

$$\implies \alpha + \beta < n + m$$

from the definition of multiplication of two polynomials

$$f(x)g(x) = \sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right)$$

we need to show $a_n b_m \neq 0$, from the definition

$$a_n \neq 0$$

 $b_m \neq 0$
 $\implies a_n b_m \neq 0 \quad \because f \text{ is a integral domain}$
 $\implies \text{ the maximus power of term is } a_n b_m x^{n+m}$
 $\implies \deg(f(x)g(x)) = n + m = \deg(f(x)) + \deg(g(x))$

Proof. by induction