

Curso 2020-2021

(Fecha última actualización: 06/05/2020) (Fecha de aprobación en Comisión Académica del Máster: dd/mm/2020)

SEMESTRE	CRÉDITOS	CARÁCTER	TIPO DE ENSEÑANZA	IDIOMA DE IMPARTICIÓN
2º	6 ECTS	Optativa	Presencial	Castellano
MÓDULO		Astrofísica		
MATERIA		Astrofísica		
CENTRO RESPONSABLE DEL TÍTULO		Escuela Internacional de Posgrado		
MÁSTER EN EL QUE SE IMPARTE		Máster Universitario en Física y Matemáticas - FisyMat		
CENTRO EN EL QUE SE IMPARTE LA DOCENCIA		Facultad de Ciencias		
PROFESORES ⁽¹⁾				
Lluís Galbany				
DIRECCIÓN		Dpto. Física Teórica y del Cosmos, Edificio Mecenas. Despacho nº 16. Correo electrónico: lgalbany@ugr.es		
TUTORÍAS		M 14 a 17h y J 14 a 17h		
Inmaculada D	omínguez			
DIRECCIÓN		Dpto. Física Teórica y del Cosmos, Edificio Mecenas. Despacho nº 17. Correo electrónico: inma@ugr.es		
TUTORÍAS		M 10 a 13h y X 10 a 13h		
Antonio Garcí	a Hernández			
DIRECCIÓN		Dpto. Física Teórica y del Cosmos, Edificio Mecenas. Despacho nª 16. Correo electrónico: agh@ugr.es		
TUTORÍAS		M 10 a 13h y X 10 a 13h		
COMPETENCIAS	S GENERALES Y	ESPECÍFICAS		
COMPETENCIA	AS BÁSICAS Y (GENERALES		

• CG2: Capacidad de generar y desarrollar de forma independiente propuestas innovadoras y competitivas en la

Página :

¹ Consulte posible actualización en Acceso Identificado > Aplicaciones > Ordenación Docente (∞) Esta guía docente debe ser cumplimentada siguiendo la "Normativa de Evaluación y de Calificación de los estudiantes de la Universidad de Granada" (http://secretariageneral.ugr.es/pages/normativa/fichasugr/ncg7121/!)

investigación y en la actividad profesional en el ámbito científico de la Física y Matemáticas

- CG3: Presentar públicamente los resultados de una investigación o un informe técnico, comunicar las conclusiones a un tribunal especializado, personas u organizaciones interesadas, y debatir con sus miembros cualquier aspecto relativo a los mismos.
- CG4: Saber comunicarse con la comunidad académica y científica en su conjunto, con la empresa y con la sociedad en general acerca de la Física y/o Matemáticas y sus implicaciones académicas, productivas o sociales.

COMPETENCIAS ESPECÍFICAS

- CE1: Resolver problemas físicos y matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos
- CE2: Desarrollar la capacidad de decidir las técnicas adecuadas para resolver un problema concreto con especial énfasis en aquellos problemas asociados a la Modelización en Ciencias e Ingeniería, Astrofísica, Física, y Matemáticas
- CE3: Tener capacidad para elaborar y desarrollar razonamientos matemáticos avanzados, y profundizar en los distintos campos de las matemáticas.
- CE4: Tener capacidad para elaborar y desarrollar razonamientos físicos avanzados, y profundizar en los distintos campos de la física y astrofísica.
- CE5: Saber obtener e interpretar datos de carácter físico y/o matemático que puedan ser aplicados en otras ramas del conocimiento.
- CE6: Demostrar la capacidad necesaria para realizar un análisis crítico, evaluación y síntesis de resultados e ideas nuevas y complejas en el campo de la astrofísica, física, matemáticas y biomatemáticas.
- CE7: Capacidad para comprender y poder aplicar conocimientos avanzados de matemáticas y métodos numéricos o computacionales a problemas de biología, física y astrofísica, así como elaborar y desarrollar modelos matemáticos en ciencias, biología e ingeniería.
- CE8: Capacidad de modelar, interpretar y predecir a partir de observaciones experimentales y datos numéricos.

COMPETENCIAS TRANSVERSALES

- CT1 Fomentar el espíritu innovador, creativo y emprendedor
- CT2 Garantizar y fomentar el respecto a los Derechos Humanos y a los principios de igualdad, accesibilidad universal, no discriminación y los valores democráticos y de la cultura de la paz
- CT3 Desarrollar el razonamiento crítico y la capacidad de crítica y autocrítica
- CT4 Comprender y reforzar la responsabilidad y el compromiso éticos y deontológicos en el desempeño de la actividad profesional e investigadora y como ciudadano
- CT5 Capacidad de aprendizaje autónomo y responsabilidad (análisis, síntesis, iniciativa y trabajo en equipo

OBJETIVOS O RESULTADOS DE APRENDIZAJE (SEGÚN LA MEMORIA DE VERIFICACIÓN DEL TÍTULO)

El alumno comprenderá los conceptos básicos de la física estelar y la astrofísica en general. En particular, comprenderá las ecuaciones, los diferentes procesos y los modelos numéricos que rigen la evolución y la estructura física de las estrellas, incluyendo las ecuaciones de estado de la materia en condiciones muy diversas; conocerá los mecanismos de generación, transporte y pérdida de energía; las reacciones nucleares relevantes y la síntesis de los elementos químicos.

Sabrá evaluar los órdenes de magnitud y los tiempos característicos asociados a un determinado problema, desarrollando la capacidad de aplicarlos a situaciones físicamente diferentes que muestren analogías.

Conocerá las técnicas observacionales actuales y sabrá interpretar los datos experimentales. Identificará los límites que se derivan de las aproximaciones realizadas en los modelos teóricos y desarrollará capacidad suficiente para realizar propuestas de mejora. Comprenderá el papel de las estrellas como componentes básicos de las galaxias y del Universo.

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN LA MEMORIA DE VERIFICACIÓN DEL TÍTULO)

Las ecuaciones diferenciales de la evolución estelar.

Transporte de energía por radiación y conducción.

Estabilidad y transporte de energía por convección.

Fuentes de energía.

Composición química y reacciones nucleares.

Fases de la evolución estelar.

Evolución en sistemas binarios.

Objetos compactos

Pulsaciones y astrosismología.

TEMARIO DETALLADO DE LA ASIGNATURA

Tema 1: Estructura estelar

Introducción a la evolución estelar. Parámetros observacionales. Diagrama Hertzsprung-Russell. Principios de conservación de equilibrio Mecánico y Térmico. Ecuaciones de estructura estelar. Teorema del Virial. Ecuación de estado. Procesos adiabáticos. Modelos estelares polítropos.

Tema 2: Fuentes y transporte de energía estelar

Transporte de energía: Radiación, convección y conducción. Opacidad. Luminosidad de Eddington. Reacciones termonucleares y ritmos de reacción. Principales cadenas y ciclos de combustión nuclear. Otros procesos nucleares de interés astrofísico. Relaciones homologas y criterios de estabilidad.

Tema 3: Evolución Estelar

Formación estelar y pre-secuencia principal. Límites de masa estelar: enanas marrones y planetas.

Edad cero y secuencia principal. Estimación de edades de cúmulos estelares. Evolución en la rama de las gigantes: estrellas RGB y AGB. Formación de enanas blancas. Estrellas masivas y supernovas de colapso gravitatorio.

Tema 4: Evolución Estelar en Sistemas Binarios.

Supernovas termonucleares: Aplicaciones cosmológicas. Binarias cataclísmicas. Novas. Erupciones de rayos X. Estrellas gigantes binarias y anomalías químicas.

Tema 5: Objetos compactos

Estructura y evolución de enanas blancas. Masa límite de Chandrasekhar. Estrellas de neutrones: estructura y evolución. Ecuación de estado: ecuación de Tolman-Volkov-Openheimer. Púlsares: diagrama P-Pdot y sistemas binarios. Agujeros negros: dinámica. Métrica de Schwarzschild y de Kerr. Ondas gravitacionales.

Tema 6: Pulsaciones Estelares.

Astrosismología: relación periodo-luminosidad. Análisis de señal: prewhitening. Pulsaciones esféricas adiabáticas y no adiabáticas. Oscilaciones radiales y no radiales. Mecanismos de pulsación. Identificación modal: regímenes asintóticos. Pulsaciones en alta rotación.

BIBLIOGRAFÍA

- Pols, O. R.: Stellar Structure and evolution. https://www.astro.ru.nl/~onnop/education/stev_utrecht_notes/
- Lamers, H. J. G. L. M., Levesque, E. M.: Understanding stellar evolution. IOP Astronomy.
- Kippenhahn, R., Weigert, A., Weiss, A.: Stellar Structure and Evolution. Springer.
- Bisnovatyi-Kogan, G. S.: Stellar physics. Springer
- Clayton, D.D.: Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press.
- Gray, D.F.: The Observation and Analysis of Stellar Phothospheres. Cambridge University Press.
- José, J. Stellar Explosions and Nucleosynthesis, CRC Taylor and Francis.
- Glendening, N.K.: Compact Stars. Springer.
- Compact objects in Astrophysics, Max Camenzind. Springer.
- Lecture notes on Stellar Oscillations, Jorgen Christensen-Dalsgaard. http://astro.phys.au.dk/jcd/oscilnotes/
- Asteroseismology (Lecture Notes). Conny Aerts. http://www.spaceinn.eu/wpcontent/uploads/lecturenotes/astero2007.pdf

ENLACES RECOMENDADOS (OPCIONAL)

Nasa/ipac Extragalactic Database: http://nedwww.ipac.caltech.edu/

Artículos especializados en astrofísica: http://adsabs.harvard.edu/abstract_service.html

Sociedad Española de Astronomía: http://sea.am.ub.es/ Instituto de Astrofísica de Canarias: http://www.iac.es/ Instituto de Astrofísica de Andalucía: http://www.iaa.es/

GEAS Project: http://astronomy.nmsu.edu/geas/labs/html/lab06.shtml
The 3D Nuclide Chart: https://people.physics.anu.edu.au/~ecs103/chart3d/

METODOLOGÍA DOCENTE

MD0: Lección magistral

MD3: Seminarios

MD4: Tutorías Académicas

MD5: Realización de trabajos individuales o en grupos

MD6: Análisis de fuentes y documentos MD7: Sesiones de discusión y debate

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

CONVOCATORIA ORDINARIA

El artículo 17 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que la convocatoria ordinaria estará basada preferentemente en la evaluación continua del estudiante, excepto para quienes se les haya reconocido el derecho a la evaluación única final.

- E1: Valoración de las pruebas, ejercicios, prácticas o problemas realizados individualmente o en grupo a lo largo del curso. Min: 20%, Max: 20%
- E2: Realización, exposición y defensa final de informes, trabajos, proyectos o memorias realizadas de forma individual o en grupo. Min: 50%, Max: 50%
- E3: Realización de exámenes parciales o finales escritos. Min: 30%, Max: 30%

CONVOCATORIA EXTRAORDINARIA

El artículo 19 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria dispondrán de una convocatoria extraordinaria. A ella podrán concurrir todos los estudiantes, con independencia de haber seguido o no un proceso de evaluación continua. De esta forma, el estudiante que no haya realizado la evaluación continua tendrá la posibilidad de obtener el 100% de la calificación mediante la realización de una prueba y/o trabajo.

- E1: Valoración de las pruebas, ejercicios, prácticas o problemas realizados individualmente o en grupo a lo largo del curso. Min: 20%, Max: 20%
- E2: Realización, exposición y defensa final de informes, trabajos, proyectos o memorias realizadas de forma individual o en grupo. Min: 50%, Max: 50%
- E3: Realización de exámenes parciales o finales escritos. Min: 30%, Max: 30%

DESCRIPCIÓN DE LAS PRUEBAS QUE FORMARÁN PARTE DE LA <u>EVALUACIÓN ÚNICA FINAL</u> ESTABLECIDA EN LA NORMATIVA DE EVALUACIÓN Y DE CALIFICACIÓN DE LOS ESTUDIANTES DE LA UNIVERSIDAD DE GRANADA

El artículo 8 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece que podrán acogerse a la evaluación única final, el estudiante que no pueda cumplir con el método de evaluación continua por causas justificadas. Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura o en las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad al inicio de las clases, lo solicitará, a través del procedimiento electrónico, a la Coordinación del Máster, quien dará traslado al profesorado correspondiente, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua.

E2: Realización, exposición y defensa final de informes, trabajos, proyectos o memorias realizadas de forma individual o en grupo. Min: 50%, Max: 50%

E3: Realización de examen final escrito. Min: 50%, Max: 50%

INFORMACIÓN ADICIONAL