Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №8 "Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров" Вариант - 11

Выполнил		(фамилия, и.о.)					
		(passion, n.o.)					
Проверил		(фамилия, и.о.)	(подпись)				
""	20r.	Санкт-Петербург,	20г.				
Работа выполне	на с оценкой						
Лата зашиты "	"	20 г.					

Цель работы: Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные. Необходимо исследовать систему при $g=0,\ y(0)=1$ и $T_1=3.$ Сама система представлена на следующем рисунке.

Рисунок 1 – Схема моделирования

1 Устойчивость системы

Рисунок 2 — Графика неустойчивости САУ

Рисунок 3 – Граница устойчивости колебательного типа.

Рисунок 4 — Графика устойчивости САУ

Рисунок 5 – Граница устойчивости нейтрального типа

2 Анализ устойчивости системы

2.1 Построим экспериментальную границу устойчивости

Таблица 1 – Экспериментальные данные

T_2	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
k	10.3	2.3	1.3	1	0.83	0.73	0.67	0.62	0.58	0.55	0.53

2.2 Теоретический расчет границы устойчивости с использованием критерия Гурвица

Передаточная функция

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Для анализа устойчивости системы составим матрицу Гурвица.

$$A = \begin{bmatrix} 3 + T_2 & k & 0 \\ 3T_2 & 1 & 0 \\ 0 & 3 + T_2 & 1 \end{bmatrix}$$
 (2)

САУ устойчивость на границе когда

$$\begin{cases} 3 + T_2 - k3T_2 = 0\\ 3 + T_2 > 0\\ K > 0 \end{cases}$$
(3)

$$k = \frac{3 + T_2}{3T_2} \tag{4}$$

Рисунок 6 — Графика границы устойчивости САУ

Выводы

При проектировании систем большое значение имеет определение областей устойчивости в плоскости реальных параметров, присущих системе. Аналитическую оценку позволил получить критерий Гурциа. Соотвественно по составленной матрице (2) мы смогли получить и составить условия границы устойчивоси (3) и (4). Система является устойчивой ,соответственно, множество значений параметров находится ниже границы устойчивости (при $k \leq \frac{3+T_2}{3T_2}$)