Modèle du gaz parfait

Table des matières

1	\mathbf{Mo}	Modèle microscopique du gaz parfait 1.1 Hypothèses de la théorie cinétique des gaz		
	1.1			
		1.1.1	Chaos moléculaire	4
		1.1.2	Equilibre statistique	4
	1.2	Vitess	ses caractéristiques	4
	1.3	Modèl	le du gaz parfait monoatomique (gpm)	
	1.4	Pression cinétique		
		1.4.1	Définition	
		1.4.2	Calcul simplifié de la pression cinétique	4
		1.4.3	Première équation du gaz parfait monoatomique	,
	1.5	Température cinétique		ļ
		1.5.1	Définition	ļ
		1.5.2	Théorème de l'équipartition de l'énergie	(
		1.5.3	Equation d'état d'un gaz parfait	(
2	Eca	urt au modèle du gaz parfait-Notion du gaz réel		
	2.1	Domaine des basses pressions		
	2.2	Domaine des pressions élevées		
	2.3			

1 Modèle microscopique du gaz parfait

1.1 Hypothèses de la théorie cinétique des gaz

1.1.1 Chaos moléculaire

Les molécules du gaz se déplacent librement en subissant des collisions : molécule/molécule ou molécule/paroi , qui modifient sans cesse leurs trajectoires et leurs vitesses . Donc le mouvement des molécules est désordonné,on dit qu'il s'agit d'un mouvement brownien La trajectoire d'une molécule traduit une marche au hasard en grandeur, direction et sens .

1.1.2 Equilibre statistique

Définition : Le gaz est en équilibre statistique si ses grandeurs physiques ont une valeurs moyenne temporelle indépendante du temps.

On s'interesse à un gaz macroscopiquement au repos (absence du mouvement d'ensemble), si ce gaz se trouve dans un équilibre statistique :

- La distribution des vite<u>sses est stationnaire</u>
- ullet La densité moléculaire $\left| n^* = \frac{dN}{d au} \right|$ est homogène donc $\left| n^* = \frac{N}{V} \right|$
- La distribution des vitesses est homogène
- La distribution des vitesses est isotrope (du fait du chaos moléculaire, toutes les directions de l'espace sont équiprobables)

Conclusion : À l'équilibre statistique la valeur moyenne du vecteur vitesse est nulle

$$<\overrightarrow{v}>=rac{\displaystyle\sum_{i=1}^{N}\overrightarrow{v_{i}}}{N}=\overrightarrow{0}$$

1.2 Vitesses caractéristiques

ightharpoonup Vitesse modulaire moyenne v_m Cette vitesse est définie comme étant la moyenne de la norme du vecteur vitesse

$$v_m = <||\overrightarrow{v}||> = < v>$$

ightharpoonup Vitesse quadratique moyenne v^*

$$v^* = \sqrt{\langle v^2 \rangle}$$

À partir des hypothèses statistiques on peut déduire les moyennes suivantes :

- La quantité du mouvement : $\langle \overrightarrow{p} \rangle = \langle m\overrightarrow{v} \rangle = m \langle \overrightarrow{v} \rangle = \overline{0}$
- L'énergie cinétique $E_c: \langle E_c \rangle = \langle \frac{1}{2}mv^2 \rangle = \frac{1}{2}m \langle v^2 \rangle$ donc

 \bullet Carré de la projection de \overrightarrow{v} sur ox $\overrightarrow{v}(v_x,v_y,v_z) \text{ donc } v^2=v_x^2+v_y^2+v_z^2 \Rightarrow < v^2>=< v_x^2>+< v_y^2>+< v_z^2>$ isotropie de l'espace : $< v_x^2>=< v_y^2>=< v_z^2>$ donc $< v^2>=3 < v_x^2>=3 < v_y^2>=3 < v_z^2>$

$$< v_x^2 > = < v_y^2 > = < v_z^2 > = \frac{1}{3} v^{*2}$$

1.3 Modèle du gaz parfait monoatomique (gpm)

Définition: Un gaz est dit parfait si:

- ses molécules sont ponctuelles
- il n'y a pas d'interaction entre ses molécules

• Remarque

- ▶ Il suffit de considérer les seules chocs molécule-paroi
- ▶ Aucune force ne s'exerce sur ces molécules en dehors des chocs
- ► Les forces de pesanteur sont négligeables
- ▶ Les chocs sont supposés élastiques : sans perte d'énergie cinétique

1.4 Pression cinétique

1.4.1 Définition

La pression cinétique d'un fluide est définie comme étant la force,par unité de surface,que ce fluide exerce sur une surface élementaire suivant sa normale .

$$\overrightarrow{dF}_{fluide \rightarrow paroi} = -\overrightarrow{dF}_{paroi \rightarrow fluide} = P.ds. \overrightarrow{n}$$

 $\overrightarrow{dF}_{fluide \to paroi}$: la force préssante ou la force exercée par le fluide sur la paroi

 \overrightarrow{n} : la normale sortante

l'unité de la pression est le pascal

$$1bar = 10^5 Pa; 1atm = 760mmHg = 1,01325.10^5 Pa$$

• Interpretation

La pression d'un gaz sur une paroi est due au bombardement de cette paroi par les molécules du gaz .

1.4.2 Calcul simplifié de la pression cinétique

► Choix d'un modèle

On adopte le modèle simplifié suivant :

- Les vitesses de toutes les molécules ne sont orientés que selon $\pm \overrightarrow{e_x}, \pm \overrightarrow{e_y}, \pm \overrightarrow{e_z}$ avec une norme égale à la vitesse quadratique moyenne v^*
- La répartition de ces directions est isotrope et, statistiquement, une molécule sur 6 se dirrige suivant $\overrightarrow{e_x}$ avec une vitesse $\overrightarrow{v} = v^* \overrightarrow{e_x}$
- Les chocs molécules /paroi sont élastiques

► Quantité du mouvement

La variation de la quantité de mouvement d'un élément dS du paroi est :

$$\overrightarrow{dp_{paroi}} = \overrightarrow{dF}_{molecules \to paroi} dt = P.dt. \overrightarrow{dS}$$

P : pression cinétique

Théorème des actions réciproques : $\overrightarrow{dp}_{molecules} = -\overrightarrow{dp}_{paroi} = \overrightarrow{dF}_{paroi \to molecules} dt$

• On choisit les molécules comme système d'étude

On pose $\overrightarrow{dS} = dS\overrightarrow{u_x}$ avec $\overrightarrow{u_x}$: vecteur unitaire suivant (ox)

On suppose que la paroi est plane

le choc d'une seule molécule de masse m est supposé elastique :

- avant le choc : $\overrightarrow{v} = v^* \overrightarrow{u_x}$
- après le choc : $\overrightarrow{v'} = v^*(-\overrightarrow{u_x})$

la variation de la quantité de mouvement de la particule

$$\overrightarrow{\Delta p_{molecule}} = m(\overrightarrow{V'} - \overrightarrow{V}) = -2mv^*\overrightarrow{u_x}$$
m est la masse du molécule

$$\overrightarrow{\Delta p_{paroi \to molecule}} = 2mv^*\overrightarrow{u_x}$$

 v^*dt

► Cas de l'ensemble des molécules utiles

Sur l'intervalle du temps dt, les molécules parcourent une distance $d=v^*dt$.

Les molécules susceptibles de heurter la paroi ds pendant dt sont donc nécessairement inclues dans le cylindre de section ds et de largeur v^*dt , d'axe ox. Le volume utile est donc $v^*.dt.ds$

Soit n^* le nombre de molécules par unité de volume

Il y a donc $n^*v^*dt.ds$ molécules dans ce cylindre et seules $\frac{1}{6}$ d'entre elles se dirrigent selon ox

Donc le nombre de molécules utiles

$$dN = \frac{1}{6}n^*.v^*dtds$$

Le transfert de la quantité de mouvement résultant pour la paroi ds est donc

$$\overrightarrow{dp}_{paroi} = dN.\overrightarrow{\Delta p}_{(paroi/molecule)}$$

ds

$$\overrightarrow{dp}_{(paroi)} = (\frac{1}{6}n^*v^*dtds)(2mv^*\overrightarrow{u_x})$$

$$\overrightarrow{dp}_{(paroi)} = \frac{1}{3}n^*mv^{*2}dt\overrightarrow{ds}$$

$$\overrightarrow{dp}_{(paroi)} = P.dt.\overrightarrow{ds} = \frac{1}{3}n^*mv^{*2}dt.\overrightarrow{ds}$$

$$P = \frac{1}{3}n^*mv^{*2}$$

P: pression cinétique

 n^* : densité particulaire

 v^* : vitesse quadratique

- Remarque : Un modèle plus proche de la réalité doit tenir compte :
 - ▶ Les molécules ont des vitesses quelconques en module, direction et sens
 - ▶ La paroi n'est pas rigoureusement plane à l'échelle microscopique
 - ► Les chocs ne sont pas nécessairement élastique Dans ces conditions on trouve aussi

$$P = \frac{1}{3}n^*mv^{*2}$$

1.4.3 Première équation du gaz parfait monoatomique

La densité particulaire $n^* = \frac{N}{V}$ donc $PV = \frac{1}{3}N.mv^*$ et $N = n.N_A$ avec :

n : quantité de matière

 $N_A = 6,02.10^{23} mol^{-1}$: constante d'Avogadro

 $M = m.N_A$: masse molaire

$$PV = \frac{1}{3}nMv^{*2}$$

1.5 Température cinétique

1.5.1 Définition

La température cinétique T est une grandeur physique macroscopique qui mesure l'agitation thermique microscopique des particules

• Autrement : La température cinétique d'un système en équilibre thermodynamique est une mesure de son énergie cinétique moyenne par molécule

$$|\langle E_c \rangle = \langle \frac{1}{2}mv^2 \rangle = \frac{1}{2}m\langle v^2 \rangle = \frac{1}{2}mv^{*2}$$

1.5.2 Théorème de l'équipartition de l'énergie

Théorème: Considèrons un système thermodynamique en équilibre thermique à la température T . Chaque terme quadratique dans l'expression de l'énergie de ce système contribue avec $\frac{1}{2}k_BT$ dans l'énergie moyenne du système . $k_B=1,38.10^{-23}J.K^{-1}$: la constante de Boltzman

•Cas d'un gaz parfait monoatomique contenant N particules

• L'énergie cinétique d'une particule du gpm

$$e_c = \frac{1}{2}mv^2 = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2)$$
 (3 dégrés de liberté)
 $< e_c > = \frac{1}{2}m(< v_x^2 > + < v_y^2 > + < v_z^2 >) = \frac{1}{2}mv^{*2}$

On constate que e_c contient 3 termes quadratiques v_x^2, v_y^2, v_z^2 donc en utilisant le théorème de l'équipartition de l'énergie

$$e_c = \frac{1}{2} m v^{*2} = \frac{3}{2} k_B T$$

• Pour un gpm de N particules

$$< E_c >= N < e_c >= \frac{N}{2} m v^{*2} = \frac{3}{2} N k_B T$$

donc la température cinétique T

$$T = \frac{mv^{*2}}{3k_B}$$

$$v^* = \sqrt{\frac{3k_BT}{m}}$$

• Remarque

La température cinétique s'identifie avec la température thermodynamique (absolue) (physique statistique). Unité Kelvin (K).

Equation d'état d'un gaz parfait

$$P = \frac{1}{3}n^*mv^{*2} \text{ et } mv^{*2} = 3k_BT$$

donc

$$P = n^* k_B T$$

$$\begin{aligned} \text{avec } n^* &= \frac{N}{V} = \frac{nN_A}{V} \\ \text{donc } PV &= n^*k_BT \end{aligned}$$

on pose $R = N_A k_B = 6,02.10^{23}.1,38.10^{-23} = 8,314 J.K^{-1} mol^{-1}$ l'équation d'état du gaz parfait s'écrit

$$PV = nRT$$

à partir de cette équation ,on retrouve les lois historiques sur les gaz parfaits .

• Loi de R.Boyele et E.Mariotte

À température (T=cte) constante le produit PV de la pression et le volume reste constant .

• Loi de A.Avogadro

Des volumes égaux de gaz parfait, à la même température et à la même pression contiennet le même nombre de moles

$$\begin{cases} PV = nRT \\ P'V' = n'RT' \end{cases} \text{ avec } \begin{cases} P = P' \\ V = V' \\ T = T' \end{cases} \text{ donc } \boxed{n = n'}$$

• Loi de Gay-Lussac

À pression constante, le volume occupé par une quantité déterminée de gaz parfait est proportionnel à la température absolue .

$$V = \frac{n}{P}RT = cte.T$$

• Loi de Chales

À volume constant, la pression d'une quantité déterminée de gaz parfait est proportionnel à la température absolue.

• Loi de Dalton

Soit un mélange de deux gaz parfaits dans un volume V à la même température T, on peut écrire :

$$\begin{cases} P_1 V = n_1 RT \\ P_2 V = n_2 RT \\ PV = (n_1 + n_2) RT \end{cases} \text{ donc } \frac{RT}{V} = \frac{P}{n_1 + n_2} = \frac{P_1}{n_1} = \frac{P_2}{n_2}$$

$$\boxed{P = P_1 + P_2}$$

2 Ecart au modèle du gaz parfait-Notion du gaz réel

2.1 Domaine des basses pressions

L'expérience montre que dans les basses pressions le produit PV d'une quantité de gaz fixée reste constant à température fixée .

• Le diagramme PV = f(P): diagramme d'Amagat

Pour les pressions $P \leq 1bar$ la loi de Mariotte reste valable

• Lorsque la pression s'approche de 2bar: certains gaz tels : He, H_2 conduisent en diagramme d'Amagat à des droites de pente positive, donc à P donné $V_{mH_2} > V_{mgp} \Rightarrow H_2$ et He sont moins compressibles que le gp. N_2 et O_2 conduisent à des droites de pente négative : ils sont donc plus compressibles que le gaz parfait

• Conclusion : Le gaz parfait est la limite du gaz réel lorsque la pression P tend vers zéro

$$gp = \lim_{P \to 0} gr$$

2.2 Domaine des pressions élevées

Le diagramme d'Amagat devient : le modèle du gaz parfait n'est plus valable .

2.3 Modèle de Van der Waals

Ce modèle tient en compte des interactions intermoléculaires attractives dites de Van der Waals . L'énergie potentielle s'écrit

$$\varepsilon_p = 4\varepsilon_0 \left(\left(\frac{r_1}{r} \right)^{12} - \left(\frac{r_1}{r} \right)^6 \right)$$

 r_1 : distance entre les molécules pour la quelle $\varepsilon_p=0$

 ε_0 : la valeur minimale de l'énergie potentielle

si $r < r_l$: interaction répulsive si $r > r_l$: interaction attractive

• Equation de Van der Waals

L'équation de Van der Waals s'écrit sous la forme

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

• Interprétation de b : terme correctif du volume : covolume

si
$$a = 0$$
 et $b \neq 0$: $P(V_m - b) = RT$

si
$$P \to \infty, V_m = \frac{RT}{P} + b \to b \text{ donc } [b] = m^3 . mol^{-1}$$

b représente le volume molaire minimal ou propre ,on l'appelle le covolume

Si on assimile une molécule à une sphère de rayon $r_0: b = \frac{4}{3}\pi r_0^3 N_A$

Conclusion : Le covolume a pour origine la répulsion des nuages électroniques des molécules qui empêchent une molécule de se trouver dans le volume occupé par une autre

• Interprétation de a : terme correctif de la pression

On pose
$$b = 0 : P + \frac{n^2 a}{V^2} = \frac{nRT}{V}$$

$$P = \frac{nRT}{V} - \frac{n^2a}{V^2} = P_c + P_m$$

$$P_c = \frac{nRT}{V}$$
: pression cinétique

$$P_m = \frac{-n^2a}{V^2}$$
: pression moléculaire

$$P = P_c + P_m < P_c$$

La pression moléculaire décrit l'attraction des molécules sous l'action des forces de Van der Waals qui a pour effet de diminuer la pression ressentie par une surface au contact du gaz .

$$[a] = [P].L^6.N^{-2}$$
; unité : $Pa.m^6.mol^{-2}$