# Language Technology

Chapter 13, Subword Tokenization https://link.springer.com/chapter/10.1007/978-3-031-57549-5\_13

#### Pierre Nugues

Pierre.Nugues@cs.lth.se

September 15, 2025



# Motivation: Language Differences (Source: Xerox)

Breaking a text into morphemes is more economical then breaking it into words.

| Language | # stems | # inflected | forms         | Lex. size (kb) |
|----------|---------|-------------|---------------|----------------|
| English  | 55,000  | 240,000     |               | 200-300        |
| French   | 50,000  | 5,700,000   |               | 200-300        |
| German   | 50,000  | 350,000     | or            | 450            |
|          |         | infinite    | (compounding) |                |
| Japanese | 130,000 | 200         | suffixes      | 500            |
|          |         | 20,000,000  | word forms    | 500            |
| Spanish  | 40,000  | 3,000,000   |               | 200–300        |



# Deriving Morphemes

Identifying all the morphemes of all the languages and writing parse rules would be difficult

Instead, we can derive them automatically from a corpus. Déjean proposed to cluster prefixes and suffixes according to distributional properties of the letters.

```
English -e -s -ed -ing -al -ation -ly -ic -ent
French -s -e -es -ent -er -ds -re -ation -ique
German -en -e -te -ten -er -es -lich -el
Turkish -m -in -lar -ler -dan -den -inl -ml
Swahili -wa -ia -u -eni -o -isha -ana -we
wa- m- ku- ali- ni- aka- ki- vi-
```



Pierre Nugues Language Technology September 15, 2025 3/20

# Subword Tokenization Techniques

What if the documents are in two languages: Korean and Japanese? In the context of a multilingual web, it is preferable to have minimal assumptions

We will examine how to

- Create a dictionary of substrings from any raw corpus using statistics only;
- Use them to tokenize a text into subwords.

Subword tokenization variants include:

- Byte-Pair Encoding (BPE)
- WordPiece
- Language model segmentation



Pierre Nuques

#### Overview

These techniques have two steps:

- A training step, where they build a vocabulary. This is done once;
- A segmentation step, where they apply the model (vocabulary) to break a string into tokens.

They are entirely data-driven although they often rediscover morphemes.



Pierre Nugues

### Benefits

- We set the subtoken number (vocabulary) as a training parameter, for instance 30,000;
- Although not compulsory, in translation, we can share the vocabulary between the source and target languages;
- This may help some translations of unknown words, for instance proper nouns, where we copy the tokens from the source to the target.



Pierre Nugues

# Training

The model and the vocabulary are trained or extracted from a corpus In the training step:

- We use the set of characters and merge them to form words until they have reached a predefined vocabulary size.
- Merging is done by frequency (BPE) or with a language model criterion (WordPiece)

The vocabulary consists then in the most frequent character sequences.



Pierre Nugues Language Technology September 15, 2025 7/20

### Segmentation

Using the model, the tokenizer splits the text into subwords using either:

- The merge sequence (BPE)
- The longest match (WordPiece)
- A language model criterion (unigrams)

SentencePiece implements BPE and unigram segmentation



Pierre Nugues

# Byte-Pair Encoding (BPE)

Originally, BPE is a compression algorithm
Sennrich adapted the original BPE algorithm to build automatically a lexicon of subwords from a corpus.

These subwords consist of

- a single character,
- A sequence of characters,
- Possibly a whole word

The size of the lexicon is fixed in advance, for instance 20,000 tokens



### **BPE Algorithm**

The main steps of the algorithm are:

- Split the corpus into individual characters. These characters will be the initial subwords and will make up the start vocabulary:
- 2 Then:
  - Extract the most frequent adjacent pair from the corpus;
  - Merge the pair and add the corresponding subword to the vocabulary;
  - Replace all the occurrences of the pair in the corpus with the new subword:
  - Repeat this process until we have reached the desired vocabulary size.

To tokenize a text, the merge rules are applied in the same order BPE can be character or byte-based

With bytes, by construction, there is no unknown word. The algorithm always falls back to a byte

### Demonstration

SentencePiece with BPE:

https://github.com/google/sentencepiece/blob/master/python/

 ${\tt sentencepiece\_python\_module\_example.ipynb}$ 

The vocabulary: vocab.m



### Pretokenization

BPE normally does not cross the whitespaces.

It can apply or not a whitespace pretokenization:

 BPE in GPT-2 uses pretokenization. It can speed up the learning process with a word count.

The simplest pretokenization uses the whitespaces as delimiters:

$$pattern = r'\p\{L\} + |\p\{N\} + | [^\s\p\{L\}\p\{N\}] + '$$

See also: https:

//github.com/karpathy/minGPT/blob/master/mingpt/bpe.py

 BPE in SentencePiece uses raw text, where it replaces spaces with \_\_\_\_(U+2581). It does not cross this symbol.



Pierre Nugues Language Technology September 15, 2025 12/20

### Results

SentencePiece tokenizes the sentence *This is a text* 

as:

The (U+2581) prefix makes the output more legible.

When using a pretokenization (GPT-2), we segment the pretokenized words

To speed up the merges, we can use a cache.

As the results can be difficult to read, BPE in GPT-2 adds a  $\dot{\mathsf{G}}$  prefix



Pierre Nuques

### WordPiece

WordPiece's principles are similar to BPE.

The main differences are

- The criterion to merge a pair is the quality of the resulting language model;
- 2 The tokenization uses a greedy longest match algorithm.

Google never released WordPiece's construction algorithm.

If they used a unigram model, the merge decision would be the pair that maximizes the difference:

$$\prod_{i=1}^{N} P(x_i)$$

before and after the merge

As there is no public implementation, the vocabulary construction often replaced by BPE.

# WordPiece Language Model

$$\sum_{i=1}^{N} \log P(x_i) = \sum_{\substack{i=1 \\ x_i, x_{i+1} \neq x, y}}^{N} \log P(x_i) + C(xy) (\log P(x) + \log P(y)).$$

When we merge the pair xy, the log-likelihood becomes:

$$\sum_{\substack{i=1\\i,x_{i+1}\neq x,y}}^{N} \log P(x_i) + C(xy) \log P(xy).$$

The difference between these two log-likelihoods is then:

$$C(xy) \cdot (\log P(xy) - \log P(x) - \log P(y)).$$



Pierre Nugues Language Technology September 15, 2025 15/3

### WordPiece Tokenization

Given a vocabulary, WordPiece uses a greedy longest match:

- Word: there
- Vocabulary: [th, the, he, re, t, h, r, e]

Competing segmentations: [th, e, r, e], [t, he, re], [th, e, re], [the, re], etc.

#### Solution:

- Sort the subwords in the vocabulary by length
- 2 Create a disjunction
- 4 Apply finditer()
- Check you have not lost characters (See demo)

WordPiece marks the subwords with ## prefix from the second one

there -> [the, ##re]

BERT implementation: https://github.com/google-researchert/blob/master/tokenization.py#L300C7-L300C25

# Unigram

The unigram tokenizer is only about tokenization Given a vocabulary, the longest match or sequential merges may not optimize a language model.

The unigram tokenization selects the maximal product or sum of logarithms:

$$P(th) \cdot P(e) \cdot P(r) \cdot P(e), \quad or \quad \log P(th) + \log P(e) + \log P(r) + \log P(e)$$

$$P(t) \cdot P(he) \cdot P(re), \quad or \quad \log P(t) + \log P(he) + \log P(re)$$

$$P(th) \cdot P(e) \cdot P(re), \quad or \quad \log P(th) + \log P(e) + \log P(re)$$

$$P(the) \cdot P(re), \quad or \quad \log P(the) + \log P(re)$$

A brute-force search has an exponential complexity
In the lab you will use Norvig's implementation of Viterbi's algorithm
https://nbviewer.org/url/norvig.com/ipython/How%20to%20Things%20with%20Words.ipynb, Sec. 5
Just adapt his code

### Unigram

The vocabulary construction uses BPE generally We estimate the probabilities with the expectation-maximization algorithm:

- We first estimate the distribution with a BPE tokenization,
- We segment with the unigram language model and the current distribution
- We re-estimate the distribution from the segmentation
- We repeat 2 and 3 until convergence

The unigram original paper also includes a step to discard less valuable subtokens. See the lab.

### SentencePiece

SentencePiece is a subword tokenizer with two segmentation algorithms: BPE or a unigram language model.

It treats the space as any other character which makes it well suited for CJK languages

As a preprocessing step, it replaces the spaces with a \_\_\_ (U+2581) character. It is used in many large language models



### Code

```
BPE: https:
```

//github.com/rsennrich/subword-nmt/tree/master/subword\_nmt

SentencePiece:

https://github.com/google/sentencepiece/tree/master

Implementation in Rust:

https://github.com/huggingface/tokenizers

