

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Física

Ciclo 2016-2

FÍSICA GENERAL I Laboratorio N°5: Choques en dos dimensiones

Integrantes

Apollidos y Nombres

1. Aznaván Laos Cartos Monso 04-11-1016

20162720C

2. QUIROZ GOMEZ OMBRIEL 20151506 E

3. Avendaño Velasquez Lenka

20160778D

1 Cantidad de movimiento de un sistema de dos partículas

La cantidad de movimiento de un sistema de dos partículas antes del choque es:

$$\mathbf{P}_i = m_1 \, \mathbf{V}_{1\,i} + m_2 \, \mathbf{V}_{2\,i}$$

y después del choque, es:

$$\mathbf{P}_f = m_1 \, \mathbf{V}_{1\,f} + m_2 \, \mathbf{V}_{2\,f}$$

La energía cinética del sistema antes del choque es:

$$Ec_i = \frac{m_1}{2} V_{1i}^2 + \frac{m_2}{2} V_{2i}^2 \tag{1}$$

y después del choque, es:

$$Ec_f = \frac{m_1}{2} V_{1f}^2 + \frac{m_2}{2} V_{2f}^2 \tag{2}$$

Por otro lado, podemos calcular la velocidad antes del choque de cada disco con respecto del centro de masa:

$$(V_{1i})_{CM} = V_{1i} - V_{CMi}$$

 $(V_{2i})_{CM} = V_{2i} - V_{CMi}$

y sus velocidades finales:

$$(V_{1f})_{CM} = V_{1f} - V_{CMf}$$

 $(V_{2f})_{CM} = V_{2f} - V_{CMf}$

Asimismo, podemos calcular la cantidad de movimiento del sistema con respecto del centro de masa antes del choque:

$$(P_i)_{CM} = 0$$

y después del choque:

$$(\mathbf{P}_I)_{CM} = \mathbf{0}$$

La energía cinética del sistema con respecto del centro de masa antes del choque es:

$$(Ec_i)_{CM} = \frac{m_1 m_2}{2(m_1 + m_2)} (V_{1i} - V_{2i})^2$$
(3)

y después del choque:

2

$$(Ec_f)_{CM} = \frac{m_1 m_2}{2(m_1 + m_2)} (V_{1f} - V_{2f})^2$$
(4)

De la ec(1) y la ec(3), obtenemos:

$$Ec_i = (Ec_i)_{CM} + \frac{\mathbf{P}_i^2}{2(m_1 + m_2)} \tag{5}$$

Asimismo, de (2) y (4), obtenemos:

$$Ec_f = (Ec_f)_{CM} + \frac{\mathbf{P}_f^2}{2(m_1 + m_2)} \tag{6}$$

Datos experimentales

Mida la masa de cada uno de los discos y anote los valores:

Tabla 3.1

$m_{disco 1} (kg)$	$m_{disco2}\left(kg ight)$
0,9087	0,7844

2.1 Choque A: los discos 1 y 2 están en movimiento con respecto al laboratorio

1. A partir de la trayectoria de los discos, calcule el módulo de la velocidad inical y final de cada disco con respecto al Laboratorio, anote sus resultados en las siguientes tablas:

Tabla 3.2

$V_{1i}\left(rac{cm}{s} ight)$	$Ec_{1i}(J)$ $V_{2i}(\frac{cm}{s})$		$oxed{Ec_{2i}(J)}$	$Ec_{i}^{T}\left(J ight)$			
40	0,0727	36	0,0508	0,1097			
Tabla 3.3 $5,08 \times 10^{-2}$ $1,097 \times 10^{-2}$							
$V_{1f}\left(rac{cm}{s} ight)$	$Ec_{1f}(J)$	$V_{2f}\left(rac{cm}{s} ight)$	$Ec_{2f}(J)$	$Ec_{f}^{T}\left(J ight)$			
32	0,0465	33	0,0427	0,0892			
	4,65×10-2	4,27,100	8,92,10-2				

2. Sobre el papel donde quedaron las trayectorias grabadas:

i.- Grafique a escala los vectores de cantidad de movimiento inicial, \mathbf{P}_{1i} , \mathbf{P}_{2i} , y los vectores vectores de cantidad de movimiento final, \mathbf{P}_{1f} , \mathbf{P}_{2f} .

ii.- Grafique la cantidad de movimiento total inicial, $\mathbf{P}_{1\,i}$ + $\mathbf{P}_{2\,i}$, y la cantidad de movimiento final, $\mathbf{P}_{1\,f}$ + $\mathbf{P}_{2\,f}$.

3. Determine la energía cinética con respecto del centro de masa inicial y final. Utilice las ec(3) y (4).

Tabla 3.4

$(Ec_i)_{CM}(J)$	$(Ec_f)_{CM}(J)$	
3,37,10-4	0,21 × 10-4	

4. Sobre el papel donde quedaron las trayectorias grabadas, grafique aproximadamente la trayectoria del centro de masa.

2.2 Choque B: el disco 1 se encuentra en reposo con respecto al laboratorio

- 1. Determine el ángulo entre las trayectorias después del choque.
- 2. Calcule teoricamente el ángulo entre las trayectorias después del choque.

3	Observaciones					
	,					
				,		
		•				