# 디지털 영상처리 연구실 연구보고서

정지우

## <머신러닝>

지도 학습 vs 비지도 학습



훈련 데이터에 대한 정답에 해당하는 내용을 레이블하여 학습을 진행하는 방식



지도 학습은 주로 회귀, 분류에 사용된다.

회귀: 예를들어 온도와 판매량의 상관관계를 학습하고 새로운 값을 예측하고 싶을 때 사용하는 것

온도 X 2 = 판매량

|           |   | 판매량 | 온도 | 요일 | 날짜       |
|-----------|---|-----|----|----|----------|
|           | 7 | 40  | 20 | 금  | 2020.1.3 |
|           | 7 | 42  | 21 | 토  | 2020.1.4 |
| 과거의 데이터   |   | 44  | 22 | 일  | 2020.1.5 |
|           |   | 46  | 23 | 월  | 2020.1.6 |
|           |   | 48  | 24 | 화  | 2020.1.7 |
| - 미지의 데이E | - |     | 25 | 수  | 2020.1.8 |

분류: 코로나 홀을 0번 클래스, 흑점을 1번 클래스, 홍염을 2번 클래스로 하여 입력 영상이 3개중에 무엇인지 인식하는것



지도학습의 장점: 명확한 목표와 성능, 예측 결과에 대한 해석의 명확성



위 그림과 같이 데이터 자체만을 활용하여 특정 패턴을 분석하여 집단으로 나누는 것

비지도학습의 장점: 데이터의 숨겨진 패턴 발견, 레이블이 필요없음

단점: 정확도와 결과해석의 어려움

K 최근접 이웃 데이터로부터 거리가 가까운 **K개**의 다른 데이터의 레이블을 참조하여 분류하는 알고리즘







### 필기체 인식하기



위 그림과 같이 5000개의 필기체 이미지를 학습시켜서,

#### 3. SVM(support vector machine)

Support vector machine은 이질적인 서로 다른 집단간의 상대적인 거리를 최대화 할 수 있는 기준 면을 통해 분류하는 방식입니다.



이러한 SVM 방식을 사용하여 클래스를 분류한다.







# Al 개발 환경

- 웹 환경의 대회 운영 플랫폼에서 진행(별도 프로그램 설치 불필요)
- 전체 참여자(팀장, 팀원)에게 A100(80GB) 인스턴스 제공



## 리더보드 (실시간 순위)

- 운영 플랫폼에 제출한 결과를 바탕으로 실시간 순위 제공
  - 팀 구성원 중 가장 높은 점수 표시
  - 제출 횟수 제한(팀당 30회/일, 총 150회)

