Homework 2 Report 資工所碩一 R07922120 陳禹達

Problem 1. (1%) 請簡單描述你實作之 logistic regression 以及 generative model 於此 task 的表現,試著討論可能原因。

A:

當 training data 數量夠多時,logistic regression 的表現會較佳,而數量少時,Generative model 的比現則較佳,因為 generative model 的表現會類似補足其他 Data,因此在數量少時可以較 logistic regression 較佳,而數量夠多時,logistic regression 則會反超過 generative model。

	Data:100	Data:20000
Logistic regression	75.61%	82.05%
Generative model	77.37%	81.77%

Problem 2. (1%) 請試著將 input feature 中的 gender, education, martial status 等 改 $\overline{\mathbf{F}}$ one-hot encoding 進行 training process,比較其模型準確率及其可能影響原因。

A:

	Training accuracy	Testing accuracy
One-hot-encoding	82.01%	82.05%
NO One-hot-encoding	81.93%	82.00%

將 Input feature 改成 one-hot-encoding 的 accuracy 較佳,分析其可能原因為,在資料中,gender, education, martial status 在不同的類別中,並沒有大小之分,也無連續關係,因此不能用數字去呈現,所以需要將每一個類別提出來判斷為 1 或是 0 (如: gender: $1,2 \rightarrow male:0,1$ and female:0,1),才是合理的作法。

Problem 3. (1%) 請試著討論哪些 input features 的影響較大(實驗方法不限)。

A:

我所實驗的方法為,先利用全部的 Feature 做出一個 model,得到 training accuracy,接著對每個 feature 分別做刪減做出另一個 Model,得到另一個 training accuracy,並與用全部 feature 的 accuracy 做比較,若與使用全部 feature 的 accuracy 差距大於 0.1%則判斷為影響較大的 feature。

表格中: 第一列:刪除的 feature 第二列:Training accuracy

第三列: (Training accuracy-Total feature accuracy)/Total feature accuracy

None	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE
82.01%	81.91%	81.95%	82.01%	0.8198	0.8195
0%	-0.122%	-0.073%	0%	-0.037%	-0.073%

PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6
80.47%	81.97%	81.99%	81.92%	81.93%	81.85%
-1.878%	-0.049%	-0.024%	-0.11%	-0.098%	-0.195%

BILL AMT1	BILL AMT2	BILL AMT3	BILL AMT4	BILL AMT5	BILL AMT6
81.94%	81.97%	81.93%	81.96%	82.00%	82.00%

-0.085%	-0.049%	-0.098%	-0.073%	-0.012%	-0.012%
PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6
81.96%	81.97%	81.88%	81.89%	81.88%	82.00%
-0.06%	-0.049%	-0.159%	-0.146%	-0.159%	-0.012%

最終所得到的影響較大的 Feature 為 LIMIT_BAL, PAY_0, PAY_6, PAY_AMT3, PAY_AMT4, PAY_AMT5。

Problem 4. (1%) 請實作特徵標準化 (feature normalization),討論其對於你的模型準確率的影響。

A:

在最終結果中,不管有沒有做 normalization 的 Testing accuracy 是相差不大的,因此我認為有無做 normalization 的影響並不大,但如果有做 normalization 的話,training 的速度會較快,也就是 logistic regression 會較快達到 minimum,可以參考下圖,我們取前兩百個 iteration 做比較,可以看出有做 normalization 在 training 的過程中較快達到 minimum(accuracy 較高)。

Problem 5. (1%)

```
J. f(x) = Five - 15-412, - 10 < x 10
lec u= 5-4
=> qu= $ 1x=4qu
let Q = 500 f(x)dx = 500 Ent e -(x-u) dx = 500 Ent e -200 th du = 500 En e-200 du
 let u=10050, v=1500, 0 = 0 = 10, 0 = 1 < 10
 - astersme=1
 1. Q= 50/00 00 e= + rdrdo
  let W= x"
  => dw= zrdr.
  => L91 = AM
 = x2 = $10/30/00 e- $10 dw
   = # ( # (+e== 10) do
  = 苹鸽48
   = 50(0)50)
   = $ (2000)
  なーコロンの成でではかりまり、得選半
```

6. (a) \$\frac{1}{25k} = \frac{1}{25k} = \frac{9'(2) \frac{1}{27k}}{27k}