μ-Raman surface mapping of antique silver coins

Nicolas Gros^{1,2}, Christophe Flament², Julien Colaux^{1,2}, Francesca Cecchet¹
¹Namur Institute of Structured Matter (NISM) ²Patrimoine, Transmissions, Héritages (PaTHs), University of Namur, Namur, Belgium
RAA 2025 — 09/2025

Proposed assignments

AgCl (Chlorargyrite)

Raman shift (cm ⁻¹)		Vibrational mode	References	
Literature data	Our data		Exp. Calc.	
154	151	Ag lattice	1, 2	
236 — 239	241	v(Ag-Cl)	1, 2	

Ag₂S (Acanthite)

Raman shift (cm ⁻¹)		Vibrational mode	References	
Literature data	Our data		Exp.	Calc.
170 — 280	180 — 200	v(Ag-S-Ag)	2, 3, 4, 5	6
		radial breathing mode in (AgS) _n clusters	5	7
430 —490	460	2 nd order mode	5, 8	6
		δ (O-S-O), cluster species / photo-decomposition product	3, 4	

Ag_xCu_yS (Stromeyerite, Mckinstryite, Jalpaite)

Raman shift (cm ⁻¹)		Vibrational mode	References	
Literature data	Our data		Exp. Calc.	
147	151	Ag lattice	9	
228 — 232	180 — 200	v(Ag-S)	9	
258 — 285	245 — 260	v(Ag–S-Cu)	9	

CuO (Tenorite)

Raman shift (cm ⁻¹)		Vibrational mode	References	
Literature data	Our data		Exp.	Calc.
296 — 303	300	Ag	1	10
632 — 639	610	Bg	1	10

TiO₂ (Rutile)

Raman shift (cm ⁻¹)		Vibrational mode	References	
Literature data	Our data		Exp.	Calc.
426 — 466	445	Eg	11	12
579 — 615	608	A _{1g}	11	12

TiO₂ (Anatase)

Raman shift (cm ⁻¹)		Vibrational mode	References	
Literature data	Our data		Exp.	Calc.
140 — 157	145	Eg	11	12
359 — 197	400	B _{1g}	11	12
493 — 527	515	A_{1g}, B_{1g}	11	12
636 — 692	637	Eg	11	12

References

- Q. Wu, K. Gubanov, H. Zhou, I. Marozau, A. Passaretti, J. Gonzalez Frutos, C. Degrigny, L. Bertrand, M. Stols-Witlox, L. Brambilla, E. Joseph, Characterisation and assessment of two green aging methods for silver mock-up systems using multi-analytical techniques, Eur. Phys. J. Plus 140 (2025) 548. https://doi.org/10.1140/epjp/s13360-025-06286-0.
- 2. G.M. Ingo, E. Angelini, C. Riccucci, T. De Caro, A. Mezzi, F. Faraldi, D. Caschera, C. Giuliani, G. Di Carlo, Indoor environmental corrosion of Ag-based alloys in the Egyptian Museum (Cairo, Egypt), Applied Surface Science 326 (2015) 222–235. https://doi.org/10.1016/j.apsusc.2014.11.135.
- 3. Martina, R. Wiesinger, D. Jembrih-Simbürger, M. Schreiner, Micro-Raman Characterisation of Silver Corrosion Products: Instrumental Set Up and Reference Database, E-PS 9 (2012) 1–8.
- 4. T. Palomar, M. Oujja, I. Llorente, B. Ramírez Barat, M.V. Cañamares, E. Cano, M. Castillejo, Evaluation of laser cleaning for the restoration of tarnished silver artifacts, Applied Surface Science 387 (2016) 118–127. https://doi.org/10.1016/j.apsusc.2016.06.017.
- 5. S.I. Sadovnikov, E.G. Vovkotrub, A.A. Rempel, Micro-Raman Spectroscopy of Nanostructured Silver Sulfide, Dokl Phys Chem 480 (2018) 81–84. https://doi.org/10.1134/S0012501618060027.
- O. Alekperov, Z. Jahangirli, R. Paucar, First-principles lattice dynamics and Raman scattering in ionic conductor β-Ag₂ S, Physica Status Solidi (b) 253 (2016) 2049–2055. https://doi.org/10.1002/pssb.201552784.
- 7. Y. Delgado-Beleño, M. Cortez-Valadez, C.E. Martinez-Nuñez, R. Britto Hurtado, R.A.B. Alvarez, O. Rocha-Rocha, H. Arizpe-Chávez, A. Perez-Rodríguez, M. Flores-Acosta, Breathing Raman modes in Ag2S nanoparticles obtained from F9 zeolite matrix, Chemical Physics 463 (2015) 106–110. https://doi.org/10.1016/j.chemphys.2015.10.009.
- 8. M. Dong, Y. Lv, X. Peng, S. Zhao, Investigation of photoelectric behaviors of silver sulfide particles in different surroundings, RSC Adv. 12 (2022) 1028–1034. https://doi.org/10.1039/D1RA07864J.
- T. De Caro, D. Caschera, G.M. Ingo, P. Calandra, Micro-Raman innovative methodology to identify Ag-Cu mixed sulphides as tarnishing corrosion products, J Raman Spectroscopy 47 (2016) 852–859. https://doi.org/10.1002/jrs.4900.
- 10. L. Debbichi, M.C. Marco De Lucas, J.F. Pierson, P. Krüger, Vibrational Properties of CuO and Cu₄ O₃ from First-Principles Calculations, and Raman and Infrared Spectroscopy, J. Phys. Chem. C 116 (2012) 10232–10237. https://doi.org/10.1021/jp303096m.
- 11. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Laser-Excited Excitonic Luminescence of Nanocrystalline TiO2 Powder, Ukr. J. Phys. 59 (2014) 246–253. https://doi.org/10.15407/uipe59.03.0246.
- 12. O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan, Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18), Phys. Chem. Chem. Phys. 14 (2012) 14567. https://doi.org/10.1039/c2cp42763j.