MATEMATIČKI FAKULTET

Odgovori na teorijska ispitna pitanja iz analize $2\,$

 $\begin{array}{c} Radili \\ {\rm Lazar\ Jovanovi\acute{c}\ 34/2023} \\ {\rm Jana\ Vukovi\acute{c}\ 124/2022} \end{array}$

Profesor dr Marek Svetlik

Sadržaj

1	Neodređeni integrali		
	1.1	Primitivna funkcija	2
	1.2	Definicija i osnovna svojstva neodređenog integrala	3
	1.3	Metode integracije	
	1.4	Integracija racionalnih funkcija	6
	1.5	Integracija trigonometrijskih funkcija	11
2	Odı	ređeni integrali	13
	2.1	Integrabilnost nekih klasa tunkcija	13
		Integrabilnost nekih klasa funkcija	
	2.2		14
	2.2 2.3	Svojstva određenog integrala	14 16
	2.2 2.3 2.4	Svojstva određenog integrala	14 16 17

1 Neodređeni integrali

1.1 Primitivna funkcija

Posmatrajmo neku funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$, na primer $f(x) = x^2$. Možemo da pronađemo koeficijent pravca u tački $x_0 \in \mathbb{R}$ računanjem izraza $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$. U našem primeru dobijamo $\lim_{h\to 0} \frac{(x_0+h)^2-(x_0)^2}{h} = \lim_{h\to 0} 2x_0 + h = 2x_0$. Dakle, koeficijent pravca funkcije f u tački x_0 jeste broj $2x_0$. Na ovaj način imamo određenu novu funkciju $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ definisanu sa $\phi(x) = 2x$. Uobičajeno je da funkciju ϕ nazivamo izvodna funkcija (izvod, prvi izvod) funkcije f. Funkciju ϕ drugačije označavamo sa f'.

Sada razmotrimo obratan problem. Odredimo funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$, ako je poznato da je funkcija $f': \mathbb{R} \longrightarrow \mathbb{R}$ definisana sa f'(x) = 2x. Iz prošlog primera možemo da zaključimo da je $f(x) = x^2$ jedno rešenje. Zapitajmo se da li je i jedino. Nije, na primer funkcija $f(x) = x^2 + 1$ je takođe rešenje.

Pokušajmo da odredimo funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$ ako je poznato da je:

$$f'(x) = sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Takvo f ne postoji, jer funkcija sgn ima prekid prve vrste.

Podsetnik teoreme: Neka je $f: \mathbb{R} \longrightarrow \mathbb{R}$ diferencijabilna funkcija. Tada funkcija f' ne može imati prekide prve vrste.

Podsetnik definicije prekida prve vrste: Za funkciju f, tačka x_0 je prekid prve vrste ako postoje konačni $\lim_{x\to x_0^+} f(x)$ i $\lim_{x\to x_0^-} f(x)$ i različiti su.

Definicija 1.1 Neka je $f:(a,b) \to \mathbb{R}$. Funkciju $F:(a,b) \to \mathbb{R}$ nazivamo primitivna funkcija za funkciju f na intervalu (a,b) ako je funkcija F diferencijabilna na (a,b) i za svako $x \in (a,b)$ važi F'(x) = f(x).

Prirodno se postavljaju pitanja da li za datu funkciju postoji primitivna funkcija i ako postoji koliko primitivnih funkcija ima. O broju primitivnih funkcija nam govori sledeći stav.

Stav 1.1 Neka je $f:(a,b) \longrightarrow \mathbb{R}$ i neka je $F:(a,b) \longrightarrow \mathbb{R}$ primitivna funkcija za funkciju f na intervalu (a,b) i neka je $C \in \mathbb{R}$ proizvoljno. Tada je funkcija $G:(a,b) \longrightarrow \mathbb{R}$ definisana sa G(x) = F(x) + C primitivna funkcija za funkciju f na intervalu (a,b).

Dokaz: G je diferencijabilna na (a,b) jer je zbir dve diferencijabilne funkcije i za svako x iz intervala (a,b) važi G'(x) = F'(x) + 0 = f(x) što smo i hteli da dokažemo.

Ovim smo dokazali da ako je $F_1(x)$ primitivna funkcija, onda je i $F_1(x) + C$ primitivna funkcija. Sledeće pitanje je da li može da postoji neka funkcija $F_2(x)$ koja nije ovog oblika. O tome nam govori sledeća teorema.

Teorema 1.1 Neka je $f:(a,b) \longrightarrow \mathbb{R}$ i neka su $F_1, F_2:(a,b) \longrightarrow \mathbb{R}$ primitivne funkcije za funkciju f na intervalu (a, b). Tada postoji $C \in \mathbb{R}$ takvo da za svako $x \in (a,b)$ važi $F_1(x) = F_2(x) + C$.

Dokaz: Neka je funkcija $G:(a,b)\longrightarrow \mathbb{R}$ definisana sa $G(x)=F_1(x)-F_2(x)$. Tada važi:

$$G'(x) = F_1'(x) - F_2'(x) = f(x) - f(x) = 0$$

Izaberimo proizvoljne $x_1, x_2 \in (a, b)$ takve da važi $x_1 < x_2$. Dokažimo da je $G(x_1) = G(x_2)$.

- (1) G je neprekidna na $[x_1, x_2] \subset (a, b)$
- (2) G je diferencijabilna na $(x_1, x_2) \subset (a, b)$

Iz (1) i (2), a na osnovu Lagranžove teoreme o srednjoj vrednosti, sledi da postoji $x_0 \in (x_1, x_2)$ takvo da:

$$G(x_1) - G(x_2) = G'(x_0)(x_2 - x_1) = 0(x_2 - x_1) = 0$$

Dakle, $G(x_1) = G(x_2)$. Kako su x_1 i x_2 proizvoljni, sledi da je G konstantna funkcija. Važi da postoji $C \in \mathbb{R}$ takvo da za svako $x \in (a, b)$ važi jednakost $C = G(x) = F_1(x) - F_2(x)$, odakle je $F_1(x) = F_2(x) + C$.

Podsetnik Lagranžove teoreme o srednjoj vrednosti: Neka je funkcija $f:[a,b] \longrightarrow \mathbb{R}$ neprekidna na [a,b] i difernecijabilna na (a,b). Tada će postojati tačka $x_0 \in (a,b)$ takva da važi $\frac{f(b)-f(a)}{b-a}=f'(x_0)$.

Primer 1.1 Neka je $f: \mathbb{R} \longrightarrow \mathbb{R}$ definisana sa: f(x) = 2x. Odrediti:

- a) Sve primitivne funkcije za funkciju f. To su funkcije $x^2 + C$, $C \in \mathbb{R}$.
- b) Funkciju $g: \mathbb{R} \longrightarrow \mathbb{R}$ koja je primitivna za funkciju f i za koju važi $g(0) = \sqrt{2}$. $g(x) = x^2 + C, \ C \in \mathbb{R}$ $g(0) = 0^2 + C = \sqrt{2} \longrightarrow C = \sqrt{2}$ Rešenje je $g(x) = x^2 + \sqrt{2}$.

Primer 1.2 Odrediti sve dvaput diferencijabilne funkcije $\mathbb{R} \longrightarrow \mathbb{R}$ takve da $\forall x \in \mathbb{R}$ važi f''(x) = 0. (f'(x))' = 0 $f'(x) = C_1$, $C_1 \in \mathbb{R}$ $f(x) = C_1x + C_2$, $C_1, C_2 \in \mathbb{R}$ Rešenje je $f(x) = C_1x + C_2$, $C_1, C_2 \in \mathbb{R}$.

1.2 Definicija i osnovna svojstva neodređenog integrala

Definicija 1.2 Neka je $f:(a,b) \to \mathbb{R}$. Neodređeni integral funkcije f na intervalu (a,b) je skup svih primitivnih funkcija za funkciju f na intervalu (a,b). Neodređeni integral funkcije f obeležavamo sa $\int f(x)dx$.

$$\int f(x)dx = \{F \mid F : (a,b) \longrightarrow \mathbb{R}, \ (\forall x \in (a,b))(F'(x) = f(x))\}$$

Neka je $F:(a,b)\longrightarrow \mathbb{R}$ proizvoljna primitivna funkcija za funkciju f na (a,b). Tada je:

$$\int f(x) dx = \{G \mid G : (a, b) \longrightarrow \mathbb{R}, (\exists C \in \mathbb{R}) (\forall x \in (a, b)) (G(x) = F(x) + C)\}$$
 (1)

Jednakost (1) skraćeno zapisujemo na sledeći način:

$$\int f(x)dx = F(x) + C, \ C \in \mathbb{R}$$
 (2)

Napomena: U jednakosti (2) ne vidi se interval (a, b) što stvara potencijalnu opasnost.

Primer 1.3 Neka je $n \in \mathbb{N}$ i neka su $a_n, a_{n-1}, ..., a_1, a_0 \in \mathbb{R}$. Naći integral: $\int (a_n x^n + ... + a_0) dx$.

Nagađanjem možemo da dođemo do rešenja: $\int (a_n x^n + ... + a_0) dx = \frac{a_n}{n+1} x^{n+1} + ... + a_0 x + C, C \in \mathbb{R}.$

Primer 1.4 Naći $\int \frac{1}{x} dx$.

Neka je $f(x) = \frac{1}{x}$. Nije naglašeno na kom intervalu rešavamo integral, zbog čega uzimamo domen funkcije $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, +\infty)$.

Imamo dva intervala pa posmatramo dva slučaja:

- 1. slučaj: $x \in (0, +\infty) \int \frac{1}{x} dx = \ln x + C_1 = \ln |x| + C_1, C_1 \in \mathbb{R}$
- 2. slučaj: $x \in (-\infty, 0)$ $\int \frac{1}{x} dx = \ln(-x) + C_2 = \ln|x| + C_2$, $C_2 \in \mathbb{R}$

Bitno je naglasiti da se konstante C_1 i C_2 odnose na intervale. One u opštem slučaju ne moraju da budu jednake. U sledećem primeru vidimo gde može da nastane problem.

Primer 1.5 Odrediti funkciju $f:(-\infty,0)\cup(0,+\infty)\longrightarrow\mathbb{R}$, takvu da f(1)=0, f(-1)=1 i za svako $x\in(-\infty,0)\cup(0,+\infty)$ važi $f'(x)=\frac{1}{x}$.

Pogrešno rešenje:

$$f(x) = \int \frac{1}{x} dx = \ln|x| + C$$

$$f(1) = 0 = \ln(1) + C \implies C = 0$$

$$f(-1) = 1 = \ln(1) + C \implies C = 1$$

Dobijamo da je C = 0 = 1 što je kontradikcija.

Tačno rešenje:

Posmatrajmo $f:(-\infty,0)\cup(0,+\infty)$ definisanu sa:

$$f(x) = \begin{cases} \ln x, & x > 0 \\ \ln(-x) + 1, & x < 0 \end{cases}$$

Njen izvod je:

$$f'(x) = \begin{cases} \frac{1}{x}, & x > 0\\ \frac{1}{x}, & x < 0 \end{cases}$$

Dakle, funkcija f je tražena funkcija jer važi f(1) = 0, f(-1) = 1. U ovom primeru je $C_1 = 0$, a $C_2 = 1$.

Stav 1.2 Neka su $f_1, f_2 : (a, b) \longrightarrow \mathbb{R}$ funkcije koje imaju primitivne funkcije na (a, b) i neka su $\lambda_1, \lambda_2 \in \mathbb{R}$. Tada funkcija $\lambda_1 f_1 + \lambda_2 f_2 : (a, b) \longrightarrow \mathbb{R}$ ima primitivnu funkciju na (a, b) i važi:

$$\int (\lambda_1 f_1 + \lambda_2 f_2)(x) dx = \lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx$$

Dokaz: Neka je funkcija $F_1:(a,b)\longrightarrow \mathbb{R}$ primitivna funkcija za f_1 i neka je funkcija $F_2:(a,b)\longrightarrow \mathbb{R}$ primitivna funkcija za f_2 . Tada po definiciji primitivne funkcije važe jednakosti:

$$F_1'(x) = f_1(x), \ x \in (a, b)$$
 (1)

$$F_2'(x) = f_2(x), \ x \in (a, b) \tag{2}$$

Iz (1) i (2) zaključujemo:

$$(\lambda_1 F_1 + \lambda_2 F_2)'(x) = \lambda_1 F_1'(x) + \lambda_2 F_2'(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x) = (\lambda_1 f_1 + \lambda_2 f_2)(x)$$
(3)

Ako krenemo od desne strane jednakosti koju dokazujemo i primenimo prethodne jednakosti dobijamo:

$$\lambda_{1} \int f_{1}(x)dx + \lambda_{2} \int f_{2}(x)dx = \lambda_{1}(F_{1}(x) + C_{1}) + \lambda_{2}(F_{2}(x) + C_{2})$$

$$= \lambda_{1}F_{1}(x) + \lambda_{2}F_{2}(x) + \lambda_{1}C_{1} + \lambda_{2}C_{2}$$

$$= \lambda_{1}F_{1}(x) + \lambda_{2}F_{2}(x) + C$$

$$= (\lambda_{1}F_{1} + \lambda_{2}F_{2})(x) + C$$

$$= \int (\lambda_{1}f_{1} + \lambda_{2}f_{2})(x)dx$$

gde su $C_1, C_2 \in \mathbb{R}$, a $C = \lambda_1 C_1 + \lambda_2 C_2$. Ovim završavamo dokaz.

Primer 1.6 Naći $\int (\frac{3}{\sqrt{x}} + \cos \frac{x}{3} - 5 \cdot 2^x) dx$, x > 0.

$$I = \int \frac{3}{\sqrt{x}} dx + \int \cos \frac{x}{3} dx - 5 \int 2^x dx$$
$$= 6\sqrt{x} + C_1 + 3\sin \frac{x}{3} + C_2 - 5\frac{2^x}{\ln 2} - 5C_3$$
$$= 6\sqrt{x} + 3\sin \frac{x}{3} - 5\frac{2^x}{\ln 2} + C$$

gde su $C_1, C_2, C_3 \in \mathbb{R}$, a $C = C_1 + C_2 - 5C_3$.

Tablica integrala:		
$\alpha \in \mathbb{R} \setminus \{-1\}, \ x \in (0, +\infty) \int x^{\alpha} dx$	$\frac{1}{\alpha+1}x^{\alpha+1} + C$	
$n \in \mathbb{N}, \ x \in \mathbb{R} \int x^n dx$	$\frac{1}{n+1}x^{n+1} + C$	
$n \in \mathbb{N} \setminus \{1\}, \ x \in \mathbb{R} \setminus \{0\} \int x^{-n} dx$	$\frac{\frac{1}{1-n}x^{1-n} + C_1, \ x \in (-\infty, 0)}{\frac{1}{1-n}x^{1-n} + C_2, \ x \in (0, +\infty)}$	
$x \in \mathbb{R} \int x^{-1} dx$	$ \ln x + C_1, \ x \in (-\infty, 0) \ln x + C_2, \ x \in (0, +\infty) $	
$a > 0, \ a \neq 1, \ x \in \mathbb{R} \int a^x dx$	$\frac{1}{\ln a}a^x + C$	
$x \in \mathbb{R} \int \sin x dx$	$-\cos x + C$	
$x \in \mathbb{R} \int \cos x dx$	$\sin x + C$	
$x \in \bigcup_{k \in \mathbb{Z}} \left(\frac{\pi}{2} + k\pi, \frac{3\pi}{2} + k\pi\right) \int \frac{1}{\cos^2 x} dx$	$tgx + C_k, \ x \in (\frac{\pi}{2} + k\pi, \frac{3\pi}{2} + k\pi), \ k \in \mathbb{Z}$	
$x \in \bigcup_{k \in \mathbb{Z}} (k\pi, \pi + k\pi) \int \frac{1}{\sin^2 x} dx$	$-ctgx + C_k, \ x \in (k\pi, \pi + k\pi), \ k \in \mathbb{Z}$	
$x \in (-1,1) \int \frac{1}{\sqrt{(1-x^2)}} dx$	arcsinx + C	
$x \in \mathbb{R} \int \frac{1}{1+x^2} dx$	arctgx + C	
$x \in \mathbb{R} \backslash \{0\} \int x^0 dx$	$x + C_1, \ x \in (-\infty, 0)$ $x + C_2, \ x \in (0, +\infty)$	

1.3 Metode integracije

Teorema 1.2 (Teorema o smeni promenljive 1) Neka je $F:(a,b)\longrightarrow \mathbb{R}$ primitivna funkcija za funkciju $f:(a,b)\longrightarrow \mathbb{R}$ i neka je $g:(\alpha,\beta)\longrightarrow (a,b)$ diferencijablna funkcija na (α,β) . Tada postoji primitivna funkcija za funkciju $(f\circ g)g':(\alpha,\beta)\longrightarrow \mathbb{R}$ i važi:

$$\int ((f \circ g)g')(x)dx = F(g(x)) + C, \ C \in \mathbb{R}$$

Dokaz: Neka je $x \in (a, b)$ proizvoljno.

$$(F(g(x)) + C)' = ((F \circ g)(x) + C)'$$

$$= ((F \circ g)(x))' + 0$$

$$= F'(g(x))g'(x) \qquad \text{(teorema o izvodu kompozicije)}$$

$$= f(g(x))g'(x)$$

$$= ((f \circ g)g')(x)$$

Primer 1.7 Neka su $a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}, n \in \mathbb{Z} \setminus \{-1\}.$ Naći: $\int (ax+b)^n dx$.

Neka su $f(t)=t^n$ i g(x)=ax+b. Tada važi $F(t)=\frac{t^{n+1}}{n+1}$ i g'(x)=a.

$$\int (ax+b)^n dx = \int f(g(x))dx = \int \frac{1}{a} f(g(x))g'(x)dx$$
$$= \frac{1}{a} \int f(g(x))g'(x)dx$$
$$= \frac{1}{a} F(g(x)) + C$$
$$= \frac{1}{a} \frac{1}{1+n} (ax+b)^{1+n}$$

Primitivna funkcija koju smo dobili je definisana na $x \in \mathbb{R}$ za n > 0.

Za $n \in \mathbb{Z} \cap ((-\infty, -1) \cup \{0\})$ je definisana na $x \in (-\infty, -\frac{b}{a}) \cup (-\frac{b}{a}, +\infty)$.

Napomena: Izdvajamo slučaj kad je n=0 jer za $x=-\frac{b}{a}$ dobijamo 0^0 . Iako važi $\lim_{x\longrightarrow 0+}x^x=1$, izraz 0^0 nije definisan jer $\lim_{(x,y)\longrightarrow (0,0)}x^y$ ne postoji.

Primer 1.8 Naći $\int \frac{e^x}{\sqrt{e^x+1}} dx$.

Neka su $f(t) = \frac{1}{\sqrt{t}}$ i $g(x) = e^x + 1$. Tada važi $F(t) = 2\sqrt{t}$ i $g'(x) = e^x$.

$$\int \frac{e^x}{\sqrt{e^x + 1}} dx = \int f(g(x))e^x dx = \int f(g(x))g'(x)dx$$
$$= F(g(x)) + C$$
$$= 2\sqrt{e^x + 1}$$

Teorema 1.3 (Teorema o smeni promenljive 2) Neka je $f:(a,b) \to \mathbb{R}$, neka je $g:(\alpha,\beta) \to (a,b)$ diferencijabilna funkcija takva da postoji $g^{-1}:(a,b) \to (\alpha,\beta)$ koja je takođe diferencijabilna i neka je $F:(\alpha,\beta) \to \mathbb{R}$ primitivna funkcija za funkciju $(f \circ g)g':(\alpha,\beta) \to \mathbb{R}$. Tada postoji primitivna funkcija za funkciju f i važi: $\int f(x)dx = F(g^{-1}(x)) + C$, $C \in \mathbb{R}$.

Dokaz: Izaberimo proizvoljno $x \in (a, b)$. Tada:

$$(F(g^{-1}(x)) + C)' = (F(g^{-1}(x)))' + 0 = F'(g^{-1}(x))(g^{-1})'(x)$$

$$= ((f \circ g)g')(g^{-1}(x))(g^{-1})'(x)$$

$$= (f \circ g)(g^{-1}(x))g'(g^{-1})(g^{-1})'(x)$$

$$= (f(x))(g \circ g^{-1})'(x)$$

$$= f(x)x'$$

$$= f(x)$$

Pogledajmo sada par primera koji ilustruju kad smemo da koristimo teoremu 1.3.

Primer 1.9 Neka je $g: \mathbb{R} \longrightarrow (0, +\infty)$ definisano sa $g(t) = e^t$ i neka je $g^{-1}: (0, +\infty) \longrightarrow \mathbb{R}$ definisano sa $g^{-1}(x) = \ln x$.

Funkcije g i g^{-1} su diferencijabilne na svojim domenima pa možemo primeniti teoremu.

Primer 1.10 Neka je $g: \mathbb{R} \longrightarrow \mathbb{R}$ definisano sa $g(t) = t^3$ i neka je $g^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$ definisano sa $g^{-1}(x) = \sqrt[3]{x}$.

Funkcija g je diferencijabilna na svom domenu. Ostaje da proverimo da li je i funkcija g^{-1} . Proverimo da li je ona diferencijabilna u nuli: $(g^{-1})'(0) = \lim_{h \longrightarrow 0} \frac{g^{-1}(h) - g^{-1}(0)}{h} = \lim_{h \longrightarrow 0} \frac{\sqrt[3]{h} - 0}{h} = \lim_{h \longrightarrow 0} \frac{1}{\sqrt[3]{h^2}} = +\infty$. Dakle, nije diferencijabilno, zbog čega ne može primeniti teoremu.

Primer 1.11 Neka je $g:(0,+\infty) \longrightarrow (0,+\infty)$ definisano sa $g(t)=t^3$ i neka je $g^{-1}:(0,+\infty) \longrightarrow (0,+\infty)$ definisano sa $g^{-1}(x)=\sqrt[3]{x}$.

Funkcija g je diferencijabilna na svom domenu. Za izvod funkcije g^{-1} dobijamo: $(g^{-1})'(x) = \frac{1}{3} \frac{1}{\sqrt[3]{x^2}}$. Ovo je definisano na celom domenu pa možemo da primenimo teoremu.

Sledi primer korišćenja teoreme 1.3.

Primer 1.12 Neka je a > 0. Naći $\int \sqrt{a^2 - x^2} dx$.

Neka je $f:(-a,a)\longrightarrow (0,a]$ definisano sa $f(x)=\sqrt{a^2-x^2}$ i neka je $g:(-\frac{\pi}{2},\frac{\pi}{2})\longrightarrow (-a,a)$ definisano sa $g(x)=a\sin x$. Tada je $g^{-1}:(-a,a)\longrightarrow (-\frac{\pi}{2},\frac{\pi}{2})$ definisano sa $g^{-1}(x)=arcsin\frac{x}{a}$. Izvod $g'(x)=a\cos x$ je definisan na celom domenu pa možemo da koristimo teoremu 1.3. Zbog preglednijeg zapisa, neka je $g^{-1}(x)=t$.

$$\int \sqrt{a^2 - x^2} dx = \int f(x) dx = F(g^{-1}(x)) + C = \int ((f \circ g)g')(t) dt = \int a \cos(t) \sqrt{a^2 - a^2 \sin^2(t)} dt$$

$$= \int a \cos(t) \sqrt{a^2 (1 - \sin^2(t))} dt = \int a^2 \cos(t) \sqrt{1 - \sin^2(t)} dt = \int a^2 \cos^2(t) dt$$

$$= \int \frac{a^2}{2} (1 + \cos(2t)) dt = \int \frac{a^2}{2} + \frac{a^2}{2} \cos(2t) dt = \frac{a^2}{2} t + \frac{a^2}{4} \sin(2t) + C$$

Dobili smo rešenje integrala, ali ovo rešenje možemo još da sredimo.

$$\begin{split} &\frac{a^2}{2}arcsin\frac{x}{a} + \frac{a^2}{4}\sin(2arcsin\frac{x}{a}) + C \\ &= \frac{a^2}{2}arcsin\frac{x}{a} + \frac{a^2}{4}2sin(arcsin\frac{x}{a})cos(arcsin\frac{x}{a}) + C \\ &= \frac{a^2}{2}arcsin\frac{x}{a} + \frac{a^2}{2}\frac{x}{a}cos(arcsin\frac{x}{a}) + C \\ &= \frac{a^2}{2}arcsin\frac{x}{a} + \frac{ax}{2}\sqrt{\cos^2(arcsin\frac{x}{a})} + C \\ &= \frac{a^2}{2}arcsin\frac{x}{a} + \frac{ax}{2}\sqrt{1 - \sin^2(arcsin\frac{x}{a})} + C \\ &= \frac{a^2}{2}arcsin\frac{x}{a} + \frac{ax}{2}\sqrt{1 - \frac{x^2}{a^2}} + C \\ &= \frac{a^2}{2}arcsin\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + C \end{split}$$
 (kosinus na domenu je pozitivan)

Napomena: Iako važi da je $\sin(\arcsin(x)) = x$, ne mora da važi da je $\arcsin(\sin(x)) = x$. Na kraju možemo da proverimo da li smo dobili tačno rešenje tako što uradimo izvod primitivne funkcije. Opisali smo kako se ponaša integral linearnih kombinacije funkcija i kako se uvode smene. Ostaje da vidimo šta se dešava sa integralom proizvoda dve funkcije. O tome nam govori sledeća teorema.

Teorema 1.4 (Teorema o parcijalnoj integraciji) Neka su $u, v:(a,b) \longrightarrow \mathbb{R}$ diferencijabilne funkcije. Tada funkcija $uv':(a,b) \longrightarrow \mathbb{R}$ ima primitivnu funkciju ako i samo ako funkcija $u'v:(a,b) \longrightarrow \mathbb{R}$ ima primitvnu funkciju. Važi:

 $\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$

Dokaz: Neka je $x \in (a, b)$ proizvoljno.

$$(uv)'(x) = (u(x)v(x))' = u'(x)v(x) + u(x)v'(x)$$
(1)

Pretpostavimo da u'v ima primitivnu funkciju. Tada iz (1) dobijamo:

$$u(x)v'(x) = (u(x)v(x))' - u'(x)v(x)$$
(2)

Kako (u(x)v(x))' i u'(x)v(x) imaju primitivne funkcije, iz (2) sledi da je i u(x)v'(x). Osim toga važi:

$$\int u(x)v'(x)dx = \int (u(x)v(x))'dx - \int u'(x)v(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Drugi smer dokaza je potpuno analogan.

Primer 1.13 $Na\acute{c}i \int e^x \sin x dx$.

Primenjujemo teoremu 1.4.

$$u(x) = e^x \quad v'(x) = \sin x$$

$$u'(x) = e^x \quad v(x) = -\cos x$$

 $\int e^x \sin x dx = -e^x \cos x + \int e^x \cos x dx$

Ostaje da se izračuna $\int e^x \cos x dx$. Ponovo primenjujemo teoremu 1.4.

$$u(x) = e^x$$
 $v'(x) = \cos x$
 $u'(x) = e^x$ $v(x) = \sin x$

 $\int e^x \cos x dx = e^x \sin x - \int e^x \sin x dx$ Usungting delicini inner usungthe days index

Uvrstimo dobijeni izraz u prethodnu jednakost.

$$\int e^x \sin x dx = -e^x \cos x + e^x \sin x - \int e^x \sin x dx$$
$$2 \int e^x \sin x dx = -e^x \cos x + e^x \sin x + C_1, \ C_1 \in \mathbb{R}$$
$$\int e^x \sin x dx = \frac{1}{2} (-e^x \cos x + e^x \sin x) + C, \ C = \frac{C_1}{2}$$

Primer 1.14 Naći $\int \frac{1}{x} dx$ za x > 0.

Iskoristićemo teoremu 1.4.

$$u(x) = \frac{1}{x}$$
 $v'(x) = 1$
 $u'(x) = -\frac{1}{x^2}$ $v(x) = x$

Dobijamo jednakost $\int \frac{1}{x} dx = \frac{x}{x} + \int \frac{1}{x} = 1 + \int \frac{1}{x}$. Greška koja se često pravi je da se integrali skrate i da se dobije 1 = 0, što znači da ovaj integral ne postoji. Ovo nije tačno jer ovu jednakost možemo da zapišemo i kao $F + C_1 = 1 + F + C_2$, $C_1, C_2 \in \mathbb{R}$. Ako skratimo primitivne funkcije dobijamo vezu između konstanti što nam nije od pomoći. Ovaj integral je tablični, pa možemo da rešimo metodom pogađanja rešenja.

1.4 Integracija racionalnih funkcija

Integraciju racionalnih funkcija možemo da rešavamo po algoritmu. Potrebno je da znamo rešenja integrala polinoma i integrala oblika: $\int \frac{A}{x-a} dx$, $\int \frac{1}{(x-a)^k} dx$, $\int \frac{Mx+N}{x^2+bx+c} dx$ i $\int \frac{Mx+N}{(x^2+bx+c)^k} dx$, gde su $A, a, M, N, b, c \in \mathbb{R}$, $b^2-4c<0$, $k \in \mathbb{N}\setminus\{1\}$. Integral polinoma već znamo, a u sledećim lemama ćemo pokazati proces nalaženja ovih integrala. Nije potrebno znati ove integrale napamet, bitno je zapamtiti postupak.

Lema 1.1 $\int \frac{A}{x-a} dx$, $gde \ su \ A, a \in \mathbb{R}$.

Neka je funkcija $f: \mathbb{R}\setminus\{0\} \longrightarrow \mathbb{R}$ definisana sa $f(t) = \frac{A}{t}$ i funkcija $g: \mathbb{R}\setminus\{0\} \longrightarrow \mathbb{R}\setminus\{0\}$ definisana sa g(x) = x - a. Funkcija g je diferencijabilna na svom domenu, gde je g'(x) = 1, a primitivna funkcija funkcija f je funkcija $F(t) = A \ln |t|$. Tada možemo da primenimo teoremu 1.2.

$$\int \frac{A}{x-a} dx = \int ((f \circ g)g')(x)dx = F(g(x)) + C = A \ln|x-a| + C, \ C \in \mathbb{R}$$

Napomenimo da C za x > a i C za x < a mogu biti različiti.

Lema 1.2 $\int \frac{A}{(x-a)^k} dx$, $gde \ su \ A, a \in \mathbb{R}, \ k \in \mathbb{N} \setminus \{1\}$.

Neka je funkcija $f: \mathbb{R}\setminus\{0\} \longrightarrow \mathbb{R}$ definisana sa $f(t) = \frac{A}{t^k}$ i funkcija $g: \mathbb{R}\setminus\{0\} \longrightarrow \mathbb{R}\setminus\{0\}$ definisana sa g(x) = x - a. Funkcija g je diferencijabilna na svom domenu, gde je g'(x) = 1, a primitivna funkcija funkcije f je funkcija $F(t) = \frac{A}{(1-k)t^{k-1}}$. Tada možemo da primenimo teoremu 1.2.

$$\int \frac{A}{(x-a)^k} dx = \int ((f \circ g)g')(x)dx = F(g(x)) + C = \frac{A}{(1-k)(x-a)^{k-1}} + C, \ C \in \mathbb{R}$$

Lema 1.3 $\int \frac{Mx+N}{x^2+bx+c} dx$, gde su $M, N, b, c \in \mathbb{R}$, $b^2-4c < 0$.

Neka je funkcija $f: \mathbb{R} \longrightarrow \mathbb{R}$ definisana sa $f(t) = \frac{Mt}{t^2+1} + \frac{2N-bM}{(t^2+1)\sqrt{4c-b^2}}$ i funkcija $g: \mathbb{R} \longrightarrow \mathbb{R}$ definisana sa $g(x) = \frac{2x+b}{\sqrt{4c-b^2}}$. Funkcija g je diferencijabilna na svom domenu, gde je $g'(x) = \frac{2}{\sqrt{4c-b^2}}$. Potrebno je da izračunamo primitivnu funkciju:

$$\int f(t)dt = \int \frac{Mt}{t^2 + 1} + \frac{2N - bM}{(t^2 + 1)\sqrt{4c - b^2}}dt$$

$$= \frac{M}{2} \int \frac{2t}{t^2 + 1}dt + \frac{2N - bM}{\sqrt{4c - b^2}} \int \frac{1}{t^2 + 1}dt$$

$$= \frac{M}{2}\ln(t^2 + 1) + \frac{2N - bM}{\sqrt{4c - b^2}}\arctan t + C, \ C \in \mathbb{R}$$

$$= F(t) + C$$

Tada možemo da primenimo teoremu 1.2.

$$\int \frac{Mx+N}{x^2+bx+c} dx = \int ((f \circ g)g')(x) dx$$

$$= F(g(x)) + C$$

$$= \frac{M}{2} \ln((\frac{2x+b}{\sqrt{4c-b^2}})^2 + 1) + \frac{2N-bM}{\sqrt{4c-b^2}} \arctan(\frac{2x+b}{\sqrt{4c-b^2}}) + C, \ C \in \mathbb{R}$$

$$= \frac{M}{2} \ln(\frac{4x^2+4xb+b^2+4c}{4c-b^2}) + \frac{2N-bM}{\sqrt{4c-b^2}} \arctan(\frac{2x+b}{\sqrt{4c-b^2}}) + C$$

$$= \frac{M}{2} (\ln(x^2+xb+c) - \ln(c-\frac{b^2}{4})) + \frac{2N-bM}{\sqrt{4c-b^2}} \arctan(\frac{2x+b}{\sqrt{4c-b^2}}) + C$$

$$= \frac{M}{2} \ln(x^2+xb+c) + \frac{2N-bM}{\sqrt{4c-b^2}} \arctan(\frac{2x+b}{\sqrt{4c-b^2}}) + C_1, \ C_1 = C + \frac{M}{2} \ln(c-\frac{b^2}{4})$$

Lema 1.4 $\int \frac{Mx+N}{(x^2+bx+c)^k} dx$, $gde \ su \ M, N, b, c \in \mathbb{R}, \ b^2-4c < 0, \ k \in \mathbb{N} \setminus \{1\}.$

Prvo ćemo početni integral razložiti na dva lakša:

$$\int \frac{Mx+N}{(x^2+bx+c)^k} dx = \int \frac{\frac{M}{2}(2x+b) - \frac{Mb}{2} + N}{(x^2+bx+c)^k} dx$$

$$= \int \frac{\frac{M}{2}(2x+b)}{(x^2+bx+c)^k} dx + \int \frac{N - \frac{Mb}{2}}{(x^2+bx+c)^k} dx$$

$$= \frac{M}{2} \int \frac{2x+b}{(x^2+bx+c)^k} dx + (N - \frac{Mb}{2}) \int \frac{1}{(x^2+bx+c)^k} dx$$

Prvi integral možemo da rešimo teoremom 1.2. Neka je funkcija $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ definisana sa $f(t) = \frac{1}{t^k}$ i neka je funkcija $g: \mathbb{R} \longrightarrow \mathbb{R}^+$ definisana sa $g(x) = x^2 + bx + c$. Funkcija g je diferencijabilna na svom domenu i važi g'(x) = 2x + b. Jedna od primitivnih funkcija funkcije f je $F(t) = \frac{1}{(1-k)t^{k-1}}$. Primenom teoreme 1.2 dobijamo:

$$\int \frac{2x+b}{(x^2+bx+c)^k} dx = \int ((f \circ g)g')(x) dx$$

$$= F(g(x)) + C, \ C \in \mathbb{R}$$

$$= \frac{1}{(1-k)(x^2+bx+c)^{k-1}} + C$$

Za drugi integral koristimo nov metod rešavanja. Neka je $I_k = \int \frac{1}{(x^2+bx+c)^k} dx$. Želimo da nađemo vezu između I_k i I_{k-1} jer onda rekurzivno možemo da rešimo integral I_k (znamo rešenje I_1 iz leme 1.1.3). Koristićemo teoremu 1.4. Neka su $u, v : \mathbb{R} \longrightarrow \mathbb{R}$ definisane sa $u(x) = \frac{1}{(x^2+bx+c)^k}$ i v(x) = x. Funkcije u i v su diferencijabilne na svojim domenima i važe jednakosti $u'(x) = -\frac{(2x+b)k}{(x^2+bx+c)^{k+1}}$ i v'(x) = 1. Primenom teoereme 1.4 dobijamo:

$$I_{k} = \int \frac{1}{(x^{2} + bx + c)^{k}} dx = \int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

$$= \frac{x}{(x^{2} + bx + c)^{k}} + k \int \frac{2x^{2} + 2bx + 2c - bx - 2c}{(x^{2} + bx + c)^{k+1}} dx$$

$$= \frac{x}{(x^{2} + bx + c)^{k}} + 2k \int \frac{1}{(x^{2} + bx + c)^{k}} dx - k \int \frac{bx + 2c}{(x^{2} + bx + c)^{k+1}} dx$$

$$(1 - 2k)I_{k} = \frac{x}{(x^{2} + bx + c)^{k}} - k \int \frac{bx + 2c}{(x^{2} + bx + c)^{k+1}} dx$$

$$= \frac{x}{(x^{2} + bx + c)^{k}} - k \int \frac{\frac{b}{2}(2x + b) - \frac{b^{2}}{2} + 2c}{(x^{2} + bx + c)^{k+1}} dx$$

$$= \frac{x}{(x^{2} + bx + c)^{k}} + \frac{b}{2} \frac{1}{(x^{2} + bx + c)^{k}} - (2c - \frac{b^{2}}{2})k \int \frac{1}{(x^{2} + bx + c)^{k+1}} dx$$

$$= \frac{x + \frac{b}{2}}{(x^{2} + bx + c)^{k}} - (2c - \frac{b^{2}}{2})kI_{k+1}$$

Odredili smo vezu između I_k i I_{k+1} , pomeranjem indeksa za jedan naniže dobijamo odnos između I_{k-1} i I_k .

$$(1-2k)I_{k-1} = \frac{x+\frac{b}{2}}{(x^2+bx+c)^k} - (2c-\frac{b^2}{2})kI_k$$
$$I_k = \frac{2x+b}{(4c-b^2)(x^2+bx+c)^k} - \frac{2-4k}{4c-b^2}I_{k-1}$$

Na kraju, vraćanjem svega u početni integral dobijamo:

$$\int \frac{Mx+N}{(x^2+bx+c)^k} dx = \frac{M}{2} \frac{1}{(1-k)(x^2+bx+c)^{k-1}} + (N-\frac{Mb}{2})I_k$$

Stav 1.3 (Osnovni stav algebre) Svaki kompleksni polinom jedne promenljive stepena n, n > 0, ima tačno n kompleksnih nula.

Dodatno, uz osnovni stav algebre važi da i ako je neki ne-realni broj jedna nula polinoma, tada je i njegov kompleksno konjugovani par takođe nula. Zbog toga važi sledeće tvrđenje:

Tvrđenje 1.1 Svaki polinom $P: \mathbb{R} \longrightarrow \mathbb{R}$ stepena n može se zapisati u obliku:

$$P(x) = p(x - a_1)^{s_1} \dots (x - a_k)^{s_k} (x - d_{11})^{t_1} (x - d_{12})^{t_1} \dots (x - d_{l1})^{t_l} (x - d_{l2})^{t_l}$$

gde je p koeficijent uz najstariji član, a_i , $i \in \{1 \dots k\}$, realna nula polinoma P mnogostrukosti s_i , važi $(\forall i_1, i_2 \in \{1 \dots k\})(a_{i_1} = a_{i_2} \iff i_1 = i_2)$, a d_{j1} i d_{j2} , $j \in \{1 \dots l\}$, konjugovano kompleksne ne-realne nule polinoma P mnogostrukosti t_j , važi $(\forall j_1, j_2 \in \{1 \dots l\})((d_{j_11} = d_{j_21} \iff j_1 = j_2) \land (d_{j_11} \neq d_{j_22}))$. Takođe, zbog osnovnog stava algebre, važi jednakost $n = s_1 + \dots + s_k + 2(t_1 + \dots + t_l)$. Dodatno, množenjem konjugovano kompleksnih nula dobijamo izraze oblika $x^2 + bx + c$, $b, c \in R$, $b^2 - 4c < 0$, pa izraz možemo da zapišemo u obliku:

$$P(x) = p(x - a_1)^{s_1} \dots (x - a_k)^{s_k} (x^2 + b_1 x + c_1)^{t_1} \dots (x^2 + b_l x + c_l)^{t_l}$$

Pokazali smo kako se nalaze integrali nekih vrsta racionalnih funkcija. Ostaje da pokažemo kako da proizvoljnu racionalnu funkciju svedemo na integrale ovih vrsta.

Algoritam 1.1 Neka funkcija st(P) vraća stepen polinoma. Neka su dati polinomi $P,Q:\mathbb{R} \longrightarrow \mathbb{R}$, pri čemu važi $st(P) \geq 0$, $st(Q) \geq 1$. Ako polinom Q nema realnih nula, primitivnu funkciju za funkciju $\frac{P}{Q}$ nalazimo na intervalu $(-\inf, +\inf)$. Inače, ako su $a_1 < a_2 < ... < a_k$ realne nule polinoma Q, primitivnu funkciju tražimo na intervalima $(-\inf, a_1), (a_1, a_2), ..., (a_{k-1}, a_k), (a_k, +\inf)$. Integral $\int \frac{P(x)}{Q(x)} dx$ nalazimo sledećim koracima:

- K1 Ako je st(P) < st(Q) primenjujemo K2 na integral $\int \frac{P(x)}{Q(x)} dx$. Inače, vršimo deljenje polinoma P polinomom Q. Neka je S rezultat deljenja, a Q ostatak pri deljenju. Tada važi P(x) = S(x)Q(x) + R(x), st(R) < st(Q). Zbog linearnosti integrala važi jednakost $\int \frac{P(x)}{Q(x)} dx = \int S(x) dx + \int \frac{R(x)}{Q(x)} dx$. Znamo da izračunamo integral polinoma S(x), primenjujemo K2 na integral $\int \frac{R(x)}{Q(x)} dx$.
- K2: U tvrđenju 1.1 smo naveli da se svaki polinom, pa i polinom Q, može zapisati u obliku:

$$Q(x) = q(x - a_1)^{s_1} ... (x - a_k)^{s_k} (x^2 + b_1 x + c_1)^{t_1} ... (x^2 + b_l x + c_l)^{t_l}$$

gde je q koeficijent uz najstariji član, $a_i, i \in \{1 \dots k\}$, realna nula polinoma Q mnogostrukosti s_i , važi $(\forall i_1, i_2 \in \{1 \dots k\})(a_{i_1} = a_{i_2} \iff i_1 = i_2)$, a $x^2 + b_j x + c_j, j \in \{1 \dots l\}$, proizvod $(x - d_{j1})$ i $(x - d_{j2})$, gde su d_{j1} i d_{j2} konjugovano kompleksne ne-realne nule polinoma Q mnogostrukosti t_j , važi $(\forall j_1, j_2 \in \{1 \dots l\})((d_{j_11} = d_{j_21} \iff j_1 = j_2) \wedge (d_{j_11} \neq d_{j_22}))$. Takođe, zbog osnovnog stava algebre, važi jednakost $n = s_1 + \dots + s_k + 2(t_1 + \dots + t_l)$. Posle faktorizacije polinoma Q prelazimo na K3.

K3: U ovom koraku je cilj da odredimo konstante u brojiocu takve da važi jednakost:

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \left(\frac{A_{i1}}{(x-a_i)} + \ldots + \frac{A_{is_i}}{(x-a_i)^{s_i}}\right) + \sum_{i=1}^{l} \left(\frac{M_{j1}x + N_{j1}}{(x^2 + b_j x + c_j)} + \ldots + \frac{M_{jt_j}x + N_{jt_j}}{(x^2 + b_j x + c_j)^{t_j}}\right)$$

To postižemo rešavanjem linearnih jednačina koje nastaju svođenjem svih sabiraka na isti imenilac. Nakon nalaženja ovih konstanti prelazimo na K4.

K4: Određujemo integral zbira koji smo dobili u prethodnom koraku. Svi sabirci su istih oblika kao i integrali koji su navedeni u lemama 1, 2, 3 i 4.

1.5 Integracija trigonometrijskih funkcija

Oznaku R(u,v) koristimo za predstavljanje racionalnih funkcija argumenata u i v. Na primer, $R(u,v) = \frac{u+v}{u-v+2}$. Integrale oblika $\int R(\sin x, \cos x) dx$ rešavamo smenom $t = \operatorname{tg} \frac{x}{2}$, definisanom svuda sem u $x \in \{(2l+1)\pi \mid l \in \mathbb{Z}\}$.

Formalno, neka je funkcija $f: \mathbb{R} \longrightarrow \mathbb{R}$ definisana sa $f(x) = R(\sin x, \cos x)$ i neka je funkcija $g_0: \mathbb{R} \longrightarrow (-\pi, \pi)$ definisana sa $g_0(x) = 2 \operatorname{arctg} x$. Funkcija g_0 je bijektivna pa postoji inverz $g_0^{-1}: (-\pi, \pi) \longrightarrow \mathbb{R}$ definisan sa $g_0^{-1}(x) = \operatorname{tg} \frac{x}{2}$. Važi i da su g_0 i g_0^{-1} diferencijabilne. Potrebno je još da odredimo $(f \circ g_0)(x)$. Važe jednakosti $(f \circ g_0)(x) = R(\sin(g_0(x)), \cos(g_0(x))) = R(\sin(2 \operatorname{arctg}(x)), \cos(2 \operatorname{arctg}(x)))$. Ostaje da redukujemo izraze $\sin(2 \operatorname{arctg}(x))$ i $\cos(2 \operatorname{arctg}(x))$:

$$\begin{split} \sin(2\arctan(x)) &= 2\sin(\arctan(x))\cos(\arctan(x)) = 2\operatorname{tg}(\arctan(x))\cos^2(\arctan(x)) \\ &= \frac{2x}{\frac{\sin^2(x) + \cos^2(x)}{\cos^2(x)}} = \frac{2x}{\operatorname{tg}^2(\arctan(x)) + 1} = \frac{2x}{x^2 + 1} \\ \cos(2\arctan(x)) &= \cos^2(\arctan(x)) - \sin^2(\arctan(x)) = \cos^2(\arctan(x))(1 - \operatorname{tg}^2(\arctan(x))) \\ &= \frac{1 - x^2}{\frac{\sin^2(\arctan(x)) + \cos^2(\arctan(x))}{\cos^2(\arctan(x))}} = \frac{1 - x^2}{\operatorname{tg}^2(\arctan(x)) + 1} = \frac{1 - x^2}{x^2 + 1} \end{split}$$

Odavde dobijamo $(f \circ g_0)(x) = R(\frac{2x}{1+x^2}, \frac{1-x^2}{1+x^2}).$

Možemo da odredimo integral $\int ((f \circ g_0)g_0')(x)dx = \int R(\frac{2x}{1+x^2}, \frac{1-x^2}{1+x^2})\frac{2}{1+x^2}dx = F(x) + C_0, \ C_0 \in \mathbb{R}$, jer je to integral racionalne funkcije. Primenom teoreme 1.3 dobijamo $\int f(x)dx = F(g_0^{-1}(x)) + C_0$.

Rešili smo integral na intervalu $(-\pi,\pi)$. Posmatrajmo intervale oblika $((2m-1)\pi,(2m+1)\pi),\ m\in\mathbb{Z}$. Funkcija $g_m(x)=2arctg(x)+2m\pi$ je diferencijabilna i ima inverz $g_m^{-1}(x)=\operatorname{tg}(\frac{x+2m\pi}{2})=\operatorname{tg}(\frac{x}{2})$. Analogno kao za g_0 dobijamo $(f\circ g_m)(x)=R(\sin(2\arctan g(x)+2m\pi),\cos(2\arctan g(x)+2m\pi))=R(\frac{2x}{1+x^2},\frac{1-x^2}{1+x^2})$.

Dakle, analogno rešavanju integrala na intervalu $(-\pi,\pi)$ dobijamo $\int f(x)dx = F(g_m^{-1}(x)) + C_m$. Rešili smo integrale na $\mathbb{R}\setminus\{(2l+1)\pi\mid l\in\mathbb{Z}\}$. Zbog neprekidnosti mora da važi da je

$$(\forall l \in \mathbb{Z})(\lim_{x \to (2l+1)\pi^{-}} F(g_{l}^{-1}(x)) + C_{l} = \lim_{x \to (2l+1)\pi^{+}} F(g_{l+1}^{-1}(x)) + C_{l+1})$$

Nalaženjem veze između konstanti C_l i C_{l+1} rešavamo integral i u tačkama $(2l+1)\pi$, gde je l ceo broj, čime smo rešili integral na celom \mathbb{R} .

Napomenimo da izvođenje zavisi od konkretne funkcije f. Za f koje nije definisano na celom \mathbb{R} ćemo raditi presek \mathbb{R} sa D_f i posmatrati drugačije intervale, ali će postupak ostati analogan.

Primer 1.15 Odrediti integral $\int \frac{1}{2 \sin x - \cos x + 5} dx$.

Neka je $f(x) = \frac{1}{2\sin x - \cos x + 5}$. Domen funkcije je \mathbb{R} . Primenjujemo prethodnu diskusiju

$$(\forall l \in \mathbb{R}) \ (f \circ g_l)(x) = R(\frac{2x}{1+x^2}, \frac{1-x^2}{1+x^2}) = \frac{1}{\frac{4x}{1+x^2} - \frac{1-x^2}{1+x^2} + 5} = \frac{1+x^2}{6x^2 + 4x + 4}$$

Ima l integrala oblika:

$$\int ((f \circ g_l)g_l')(x)dx = \int \frac{1+x^2}{6x^2+4x+4} \frac{2}{1+x^2} dx = \int \frac{dx}{3(x^2+2\frac{1}{3}x+\frac{1}{9}+\frac{5}{9})} = \int \frac{dx}{3(x+\frac{1}{3})^2+\frac{5}{3}}$$
$$= \frac{3}{5} \int \frac{dx}{(\frac{3}{\sqrt{5}}x+\frac{1}{\sqrt{5}})^2+1} = \frac{1}{\sqrt{5}} \arctan(\frac{3}{\sqrt{5}}x+\frac{1}{\sqrt{5}}) + C_l$$

Dobijamo da je $I_l = \frac{1}{\sqrt{5}} \arctan(\frac{3}{\sqrt{5}} \operatorname{tg}(\frac{x}{2}) + \frac{1}{\sqrt{5}}) + C_l$. Ostaje da nađemo leve i desne limese u nedefinisanim tačkama.

$$\lim_{x \to (2l+1)\pi^{-}} \frac{1}{\sqrt{5}} \arctan\left(\frac{3}{\sqrt{5}} \operatorname{tg}(\frac{x}{2}) + \frac{1}{\sqrt{5}}\right) + C_{l} = \lim_{x \to (2l+1)\pi^{+}} \frac{1}{\sqrt{5}} \arctan\left(\frac{3}{\sqrt{5}} \operatorname{tg}(\frac{x}{2}) + \frac{1}{\sqrt{5}}\right) + C_{l+1}$$

$$\frac{\pi}{2\sqrt{5}} + C_{l} = -\frac{\pi}{2\sqrt{5}} + C_{l+1}$$

$$C_{l+1} = C_{l} + \frac{\pi}{\sqrt{5}}$$

Tada je $C_l = \frac{l\pi}{\sqrt{5}} + C_0$. Važi da je $(2l-1)\pi < x < (2l+1)\pi$ odakle je $\frac{x-\pi}{2\pi} < l < \frac{x+\pi}{2\pi}$, $l = \left[\frac{x+\pi}{2\pi}\right]$. Dobijamo da je rešenje integrala

$$\int f(x)dx = \frac{1}{\sqrt{5}}\arctan(\frac{3}{\sqrt{5}}\operatorname{tg}(\frac{x}{2}) + \frac{1}{\sqrt{5}}) + \left[\frac{x+\pi}{2\pi}\right]\frac{\pi}{\sqrt{5}} + C_0$$

2 Određeni integrali

Motivacija: Neka je $f:[a,b] \longrightarrow [0,+\infty)$ neprekidna funkcija, i neka je $\phi = \{(x,y) \in \mathbb{R}^2 | a \le x \le f(x)\}$ $P(\phi)$ je povrsina figure ϕ

$$f:[0,1]\longrightarrow [0,+\infty)$$

$$f(x) = x^2$$

$$n \in \mathbb{N}, x_k = \frac{k}{n}, k \in \{0, ..., n\}$$

$$x_0 = 0, x_1 = \frac{n_1}{n}, ..., x_n = 1$$

$$n \in \mathbb{N}, x_k = \frac{k}{n}, k \in \{0, ..., n\}$$

$$x_0 = 0, x_1 = \frac{1}{n}, ..., x_n = 1$$

$$P_k = [x_{k-1}, x_k] \times [0, f(x_k)], k = 1, ..., n$$

 S_n je suma površine svih pravouga
onika P_k pri čemuk=1,..,n

$$S_n = \sum_{k=1}^n f(x_k)(x_k - x_{k-1}) = \sum_{k=1}^n (\frac{k}{n})^2 \frac{1}{n} = \frac{1}{n^3} \sum_{k=1}^n k^2 = \frac{1}{n^3} \frac{(2n+1)n(n+1)}{6}$$

$$n \longrightarrow \infty \text{ sledi da je } S_n = \frac{1}{3}$$

$$n \longrightarrow \infty$$
 sledi da je $S_n = \frac{1}{3}$

$$P(\phi) = \frac{1}{3}$$
 Kasnije ćemo zapisivati $\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_{x=0}^1 = \frac{1}{3} - 0$

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

 $\overset{\circ}{t} \overset{\circ}{\in} [a,b], \ C(a_1,b_1), \ f:(a_1,b_1) \longrightarrow [0,+\infty) \ \text{i definišemo} \ A(t) = \{(x,y) \in \mathbb{R}^2 | a \leq x \leq t, 0 \leq y \leq f(x) \} \ \text{i neka je}$ P(t) površina figure A(t).

Primetimo da je P(t) funkcija koja slika [a,b] u $[0,+\infty]$ tj. P(a)=0 i P(b) je površina figure ϕ .

Dodatno pretpostavimo da $t \in [a, b)$ i da je h > 0 takvo da je $t + h \in [a, b)$.

Neka je $M=\max_{\substack{t\leq x\leq t+h\\0}}f(x)$ i $m=\min_{t\leq xleqt+h}f(x)$ zbog neprekidnosti funkcije f, postoje $\theta_1=\theta_1(t,h)$ i

$$\theta_2 = \theta_2(t,h)$$
takvi da je $0 \le \theta_1 \le 1$ i $0 \le \theta_2 \le 1$ i $M = f(t+\theta_1 h)$ i $m = f(t+\theta_2 h)$ $mh \le P(t+h) - P(t) \le Mh$ tj $f(t+\theta_2 h)h \le P(t+h) - P(t) \le f(t+\theta_1 h)h$

$$mh \le P(t+h) - P(t) \le Mh$$
 tj $f(t+\theta_2 h)h \le P(t+h) - P(t) \le f(t+\theta_1 h)h$

$$f(t+\theta_2 h) \le \frac{P(t+h)-P(t)}{h} \le f(t+\theta_1 h)$$

$$mh \leq P(t+h) - P(t) \leq Mh \text{ tj } f(t+\theta_2h)h \leq P(t+h) - P(t)$$

$$f(t+\theta_2h) \leq \frac{P(t+h) - P(t)}{h} \leq f(t+\theta_1h)$$

$$\lim_{h \to 0^+} f(t+\theta_2h) \leq \lim_{h \to 0^+} \frac{P(t+h) - P(t)}{h} \leq \lim_{h \to 0^+} f(t+\theta_1h)$$

$$f(t) \leq P'(t) \leq f(t)$$

Dakle, za $t \in [a, b)$ imamo P'(t) = f(t). Drugim rečima P je primitivna funkcija za f: na intervalu (a, b).

Neka je $F:(a,b)\longrightarrow \mathbb{R}$ proizvoljna primitvna funkcija funkcije f. Tada je P(t)=F(t)+C gde je $C\in \mathbb{R}$. Ali kako je P(a) = 0. Imamo C = -F(a).

Dakle,
$$P(b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$
.

Integrabilnost nekih klasa funkcija 2.1

Teorema 2.1 Neka je $f:[a,b] \longrightarrow \mathbb{R}$ neprekidna funckija na [a,b]. Tada je funkcija f Riman integrabilna na [a,b].

Bez dokaza! :)

Teorema 2.2 Neka je $f:[a,b] \longrightarrow \mathbb{R}$ monotona funkcija na [a,b]. Tada je funkcija Riman integrabilna na [a,b].

Šta znači da je funckija $f:[a,b]\longrightarrow \mathbb{R}$ monotona?

Ako za svako $x_1, x_2 \in [a, b]$ iz $x_1 < x_2$ sledi $f(x_1) \le f(x_2)$ odnosno $f(x_1) \ge f(x_2)$ onda je funkcija monotono rastuća odnosno monotono opadajuća na [a, b].

Bez umanjenja opštosti pretpostavimo da je funkcija monotono rastuća na [a, b]. Primetimo najpre da je funkcija ograničena na [a, b]. Zaista za svako $x \in [a, b]$ važi $f(a) \le f(x) \le f(b)$.

Pretpostavimo da funkcija nije const.

Neka je $\varepsilon>0$ proizvoljno i neka je $P\in \mathcal{P}[a,b]???$ $P=\{[x_0,x_1],...,[x_{n-1},x_n]\}$ takav da je parametar podele $\lambda(P) < \frac{\varepsilon}{f(b) - f(a)}$. Tada je:

$$S(f,P)-s(f,P) = \sum_{i=1}^{n} \sup_{x \in [x_{i-1},x_i]} f(x)(x_i-x_{i-1}) - \sum_{i=1}^{n} \inf_{x \in [x_{i-1},x_i]} f(x)(x_i-x_{i-1}) = \sum_{i=1}^{n} (f(x_i)-f(x_i)-f(x_{i-1})(x_i-x_{i-1})) = \sum_{i=1}^{n} (f(x_i)-f(x_i)-f(x_i)) = \sum_{i=1}^{n} (f(x_i)-f(x_i)-f(x_i)) = \sum_{i=1}^{n} (f(x_i)-f(x_i)-f(x_i)) = \sum_{i=1}^{n} (f(x_i)-f(x_i)-f(x_i)) = \sum_{i=1}^{n} (f(x_i)-f(x_i)) = \sum_{i=1}^$$

$$\sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \frac{\varepsilon}{f(b) - f(a)} = \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon$$

Teorema 2.3 Neka je $f:[a,b] \longrightarrow \mathbb{R}$ ograničena funkcija na [a,b] takva da je skup tačaka u kojima nije neprekidna konačan. Tada je funkcija f Riman integrabilna na [a, b]. Bez dokaza :). Kolege, to bi trebalo vec da znate, kako ste ovde zavrsili bez toga. Sramota!

Teorema 2.4 Neka su $f, g: [a, b] \longrightarrow \mathbb{R}$ integrabilne funkcije na [a, b] koje se razlikuju samo u konačno

mnogo tačaka. Tada je:
$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx. Bez dokaza.$$

 $R[a,b] = \{f : [a,b] \longrightarrow \mathbb{R} | \text{fje Riman integrabilina na } [a,b] \}$

Svojstva određenog integrala

Stav 2.1 Neka su $f, g \in R[a, b]$ i neka su $\alpha, \beta \in \mathbb{R}$ tada $\alpha f + \beta g \in R[a,b]$ i važi: $\int_{a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$

Dokaz: Neka je (P,ξ) proizvoljna podela sa istaknutim tačkama [a,b]i formirajmo sledeće:

$$\sigma(f+g,P,\xi) = \sum_{i=1}^{n} (x_i - x_{i-1})(f+g)(\xi_i) = \sum_{i=1}^{n} (x_i - x_{i-1})(f(\xi_i) + g(\xi_1)) = \sigma(f,P,\xi) + \sigma(g,P,\xi)$$

Kako je $\lim_{\lambda(P)\to 0} \sigma(f, P, \xi) = \int_a^b f(x) dx$ i $\lim_{\lambda(P)\to 0} \sigma(g, P, \xi) = \int_a^b g(x) dx$ Tada postoji i važi:

$$\lim_{\lambda(P)\longrightarrow 0}\sigma(f+g,P,\xi)=\lim_{\lambda(P)\longrightarrow 0}\sigma(f,P,\xi)+\lim_{\lambda(P)\longrightarrow 0}\sigma(g,P,\xi)=\int_a^bf(x)\mathrm{d}\mathbf{x}+\int_a^bg(x)\mathrm{d}\mathbf{x}=\int_a^b(f+g)(x)\mathrm{d}\mathbf{x}$$

Dokažimo da je $\alpha f \in R[a,b]$ i da je $\int_a^b (\alpha f)(x) dx = \alpha \int_a^b f(x) dx$.

Neka je (P,ξ) proizvoljna podela sa istanknutim tačkama na [a,b]. Tada je:

Neka je
$$(P,\xi)$$
 proizvoljna podela sa istanknutim tackama na $[a,b]$. Iada je:
$$\sigma(\alpha f,P,\xi) = \sum_{i=1}^{n} (x_i-x_{i-1})(\alpha f)(\xi_i) = \sum_{i=1}^{n} (x_i-x_{i-1})\alpha f(\xi_i) = \alpha \sum_{i=1}^{n} (x_i-x_{i-1})f(\xi_i) = \alpha \sigma(f,P,\xi) = \int_a^b f(x) dx$$

$$\lim_{\lambda(P)\longrightarrow 0} \sigma(\alpha f, P, \xi) = \alpha \lim_{\lambda(P)\longrightarrow 0} \sigma(f, P, \xi) = \alpha \int_{a}^{b} f(x) dx$$

Stav 2.2 Neka su $f, g \in R[a, b]$ Tada je:

- 1. $fg \in R[a,b]$ (Ne mora biti $\int_{a}^{b} (fg)(x) dx = \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx$
- 2. $|f| \in R[a,b]$ (Ne mora biti $\int_a^b |f(x)| dx = |\int_a^b f(x) dx|$)
- 3. $\frac{1}{f} \in R[a,b]$ pod pretpostavkom da postoji c>0 tako da za svako $x \in [a,b]$ važi |f(x)|>c

Stav 2.3 Neka je $f \in R[a,b]$ i $[c,d] \subset [a,b]$. Tada je $f \in R[c,d]$.

Stav 2.4 Neka je $f \in R[a,b]$ i $c \in (a,b)$. Tada je $f \in R[a,c]$ i $f \in R[c,b]$ i važi: $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx$ $\int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$

$$f: \{a\} \longrightarrow \mathbb{R} \quad \int_{a}^{a} =^{\text{def}} = 0$$
$$f \in R[a, b] \quad \int_{b}^{a} f(x) dx =^{\text{def}} = -\int_{a}^{b} f(x) dx$$

$$a, b, c \in \mathbb{R}$$

$$f : [\min\{a, b, c\}, \max\{a, b, c\}] \longrightarrow \mathbb{R}$$

$$f \in R[\min\{a, b, c\}, \max\{a, b, c\}]$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

Stav 2.5 Neka je
$$f \in R[a,b]$$
 i $f(x) \ge 0$ za svako $x \in [a,b]$. Tada je $\int_a^b f(x) dx \ge 0$

Neka (P,ξ) proizvoljna podela sa istaknutim tačkama na [a,b]. Tada je $\sigma(f,P,\xi) = \sum_{i=1}^{n} (x_i - x_{i-1}) f(\xi_i) \ge 0$ Otuda je $\lim_{\lambda(P) \longrightarrow 0} \sigma(f,P,\xi) \ge 0$ tj $\int_a^b f(x) dx \ge 0$

Stav 2.6 Neka je
$$f \in R[a,b]$$
. Tada je $\left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$

Kako je
$$|f(x)| - f(x) \ge 0 \quad \forall x \in [a,b]$$
 sledi
$$\int_a^b f(x) dx \le \int_a^b |f(x)| dx$$
 Kako je $|f(x)| + f(x) \ge 0 \quad \forall x \in [a,b]$ sledi
$$-\int_a^b f(x) dx \le \int_a^b |f(x)| dx$$

Stav 2.7 Neka su
$$f,g \in R[a,b]$$
 i neka za svako $x \in [a,b]$ važi $f(x) \leq g(x)$. Tada je $\int_a^b f(x)dx \leq \int_a^b g(x)dx$. Tada je $\int_a^b f(x)dx \leq \int_a^b g(x)dx$

Primetimo da je $g-f\in R[a,b]$ i da je $(g-f)(x)\geq 0 \quad \forall x\in [a,b].$ Tada je $\int_a^b (g-f)(x)\mathrm{d}x\geq 0.$ Otuda je $\int_a^b f(x)\mathrm{d}x-\int_a^b g(x)\mathrm{d}x\geq 0.$

Stav 2.8 Neka je
$$f \in R[a,b]$$
 i neka su $m = \inf_{x \in [a,b]} f(x)$ i $M = \sup_{x \in [a,b]} f(x)$. Tada postoji $\mu \in [m,M]$ takvo da je $\int_a^b f(x) dx = \mu(b-a)$.

Kako za svako $x \in [a,b]$ važi $m \le f(x) \le M$ $m(b-a) \le \int_a^b f(x) \mathrm{d} x \le M(b-a). \text{ Otuda je}$ $m \le \frac{\int_a^b f(x) \mathrm{d} x}{(b-a)} \le M \text{ tj. } \frac{1}{b-a} \int_a^b f(x) \mathrm{d} x \in [m,M]$ Dakle $\exists \mu \in [m,M]$ takvo da je $\mu = \frac{1}{b-a} \int_a^b f(x) \mathrm{d} x$

Stav 2.9 Neka je $f:[a,b] \longrightarrow \mathbb{R}$ neprekidna funkcija na [a,b]. Tada postoji $c \in [a,b]$ takvo da je: $\int_a^b f(x) dx = f(c)(b-a)$

Kako je funkcija f
 neprekidna na [a,b] sledi da je f ograničena na [a,b] i važ
i $\inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]f(x)} f(x)$ sup $f(x) = \max_{x \in [a,b]f(x)}$. Neka su $m = \min_{x \in [a,b]} f(x)$ i $M = \max_{x \in [a,b]} f(x)$.

Na osnovu prethodnog stava sledi da postoji $\mu \in [m, M]$ takvo da je $\int_a^b f(x) dx = \mu(b-a)$. Kako je funkcija f

neprekidna na [a,b] sledi da je f([a,b]) = [m,M]. Otuda za postojeće $\mu \in [m,M]$ postoji $c \in [a,b]$ takvo da je $f(c) = \mu$.

2.3Veza određenog integrala i izvoda. Njutn-Lajbnicova formula

Neka je $f \in R[a, b]$. Ima smisla razmatrati funkciju $\varphi : [a, b] \longrightarrow \mathbb{R}$ definisanu sa $\varphi(x) = \int f(t) dt$. Funkciju φ nazivamo integral sa promenljivom gornjom granicom.

Teorema 2.5 Funkcija φ je neprekidna na [a, b]

Neka je $x_0 \in [a,b]$ proizvoljno. Dokažimo da je funkcija φ neprekidna u x_0 . Neka je $M = \sup_{x \in A} |f(x)|$ i neka

je
$$\varepsilon > 0$$
 proizvoljno. Tada za $x \in [a,b]$ važi:
$$|\varphi(x) - \varphi(x_0)| = \left| \int_a^x f(t) \mathrm{d}t - \int_a^{x_0} f(t) \mathrm{d}t \right| = \left| \int_{x_0}^x f(t) \mathrm{d}t \right| \leq \left| \int_{x_0}^x |f(t)| \mathrm{d}t \right| \leq M|x - x_0|$$
 Otuda ako je $|x - x_0| < \frac{\varepsilon}{M} = \delta$ sledi da je $|\varphi(x) - \varphi(x_0)| < \frac{M\varepsilon}{M} = \varepsilon$, pa na osnovu $\varepsilon - \delta$ definicije neprekidnosti funkcije gladi da je neprekidnosti graficacje neprekidnosti proporekidnosti p

funkcije sledi da je neprekidna u x_0 .

 $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in [a, b])(|x - x_0| < \delta \longrightarrow |\varphi(x) - \varphi(x_0)| < \varepsilon)$

Teorema 2.6 Ako je funkcija f neprekidna na [a,b] onda je funkcija φ neprekidno diferencijabilna na [a,b] $i \ \forall x \in [a,b] \ va\check{z}i \ \varphi'(x) = f(x) \ preciznije \ \forall x \in [a,b] \ va\check{z}i \ \varphi'(x) = f(x), \quad \varphi'_{+}(a) = f(a) \quad i \quad \varphi'_{-}(b) = f(b).$

Neka je $x \in [a,b]$ proizvoljno i $h \in \mathbb{R}$ takvo da je $x+h \in [a,b]$. Tada je: $\frac{\varphi(x+h)-\varphi(x)}{h} = \frac{1}{h} (\int_a^{x+h} f(t) \mathrm{d}t - \int_a^x f(t) \mathrm{d}t) = \frac{1}{h} \int_x^{x+h} f(t) \mathrm{d}t = \frac{1}{h} f(x+\theta(x,h)h)(x+h-x)$ $x+\theta(x,h)h \in [\min\{x,x+h\}, \max\{x,x+h\}] \quad 0 \le \theta(x,h) \le 1$ $= f(x+\theta(x,h)h) \text{ Otuda je } \lim_{h \longrightarrow 0} \frac{\varphi(x+h)-\varphi(x)}{h} = \lim_{h \longrightarrow 0} f(x+\theta(x,h)h)$

 $\varphi'(x) = f(x)$

Tvrđenje 2.1 Neka je $f:(a,b)\longrightarrow \mathbb{R}$ neprekidna funkcija na [a,b]. Tada funkcija f ima primitivnu funkciju na (a,b) tj postoji $F:(a,b)\longrightarrow \mathbb{R}$ takvo da je F'(x)=f(x) $\forall x\in (a,b)$.

Neka je $x_0 \in (a,b)$ fiksirana tačka i neka je $F:(a,b) \longrightarrow \mathbb{R}$ definisana sa $F(x) = \int_a^x f(t) dt$. Funkcija F je korektno definisana, jer je f
 neprekidna funkcija na $[\min\{x,x_0\},\max\{x,x_0\}]\subset (a,b)$. Neka je
 $x\in (a,b)$ proizvoljno i neka je $h\in\mathbb{R}$ takvo da je
 $x+h\in (a,b)$ Tada je: $\frac{F(x+h)-F(x)}{h}=\frac{1}{h}\bigg(\int_{x_0}^{x+h}f(t)\mathrm{d}t-\int_{x_0}^xf(t)\mathrm{d}t\bigg)=\frac{1}{h}\int_x^{x+h}f(t)\mathrm{d}t$

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left(\int_{x_0}^{x+h} f(t) dt - \int_{x_0}^{x} f(t) dt \right) = \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Prema prethodnoj teoremi ovo je jednako: $f(x + \theta(x,h)h)$, $0 \le \theta(x,h) \le 1$ Otuda je $\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} f(x + \theta(x,h)h) = f(x)$ tj. F'(x) = f(x). Primer funkcije koja nije neprekidna ali ima primitivnu funkciju:

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \in (-1,0) \cup (0,1) \\ 0, & x = 0 \end{cases}$$

$$f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \in (-1,0) \cup (0,1) \\ 0, & x = 0 \end{cases}$$

Teorema 2.7 (Njutn-Lajbnicova formula) Neka je $f:[a,b] \longrightarrow \mathbb{R}$ neprekidna funkcija na [a,b] i neka je $F:[a,b]\longrightarrow \mathbb{R}$ primitivna funkcija funkcije f na [a,b]. Pri čemu važi $F'_+(a)=f(a)$ $F'_-(b)=f(b)$. Tada $je: \int_{a}^{b} f(x) dx = F(b) - F(a).$

Neka je $\Phi:[a,b]\longrightarrow\mathbb{R}$ definisana sa $\Phi(x)=\int_a^x f(t)dt$. Na osnovu prethodnih teorema znamo da za svako $x \in [a,b]$ važi $\Phi'(x) = f(x)$ t
j Φ je primitivna funkcija funkcije f. Stoga postoj
i $c \in \mathbb{R}$ takvo da za svako $x \in [a,b]$ važi:

$$\Phi(x) = F(x) + c. \text{ Kako je } \Phi(a) = 0 \quad \Phi(a) = F(a) + c$$

$$\Phi(b) = \int_a^b f(t) dt \text{ i } \Phi(b) = F(b) + c \text{ Sledi da je:}$$

$$\int_a^b f(t) dt = \Phi(b) = F(b) + c = F(b) + \Phi(a) - F(a) = F(b) - F(a)$$

Smena promenljive i parcijalna integracija u određenom integralu

Teorema 2.8 (O smeni promenljive) Neka je $f:[a,b] \longrightarrow \mathbb{R}$ neprekidna funkcija na [a,b] i neka je $\varphi: [\alpha, \beta] \longrightarrow [a, b] \text{ neprekidno diferencijabilna funkcija na } [\alpha, \beta] \text{ tada je:}$ $\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \int_{\alpha}^{\beta} (f \circ \varphi \varphi')(t) dt.$

Neka je $F:[a,b]\longrightarrow \mathbb{R}$ primitivna funkcija funkcije $f:[a,b]\longrightarrow \mathbb{R}$. Tada je:

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = F(\varphi(\beta)) - F(\varphi(\alpha))$$
 (1)

S druge strane za funkciju $\psi: [\alpha, \beta] \longrightarrow \mathbb{R}$ definisanu sa $\phi(t) = F(\varphi(t))$ važi: $\psi'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t) \quad \forall t \in [\alpha, \beta]. \text{ Dakle funkcija } \psi \text{ je primitivna funkcija funkcije } (f \circ \varphi)\varphi' \text{ na}$ $[\alpha, \beta]$. Pa važi:

$$\int_{\alpha}^{\beta} ((f \circ \varphi)\varphi')(t) dt = \psi(\beta) - \psi(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha))$$
 (2)

Iz (1) i (2) dobijamo
$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \int_{\alpha}^{\beta} ((f \circ \varphi) \varphi')(t) dt$$

Teorema 2.9 (O parcijalnoj integraciji) Neka su $u, v : [a, b] \longrightarrow \mathbb{R}$ neprekidno diferencijabilne funkcije

$$\int_{a}^{b} (uv')(x) dx = (uv)(b) - (uv)(a) - \int_{a}^{b} (u'v)(x) dx$$

Primetimo da je:

1)
$$\int_{a}^{b} (uv)'(x) dx = (uv)(b) - (uv)(a)$$

2)
$$\int_{a}^{b} (uv)'(x) dx = \int_{a}^{b} (u'v + uv')(x) dx = \int_{a}^{b} (u'v)(x) dx + \int_{a}^{b} (uv')(x) dx$$

2.5 Primene određenog integrala

2.5.1 Izdračunavanje površine u ravni

Neka je $f:[a,b] \longrightarrow [0,+\infty)$ neprekidna funkcija na [a,b]i neka je: $\Phi = \{(x,y) \in \mathbb{R}^2 \quad | \quad a \leq x \leq b, \quad 0 \leq y \leq f(x)\}$

$$\Phi = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, \quad 0 \le y \le f(x)\}$$

Tada je površina $P(\Phi)$ figure Φ jednaka $\int_a^b f(x) dx$. Neka su $f,g:[a,b] \longrightarrow \mathbb{R}$ neprekidne funkcije na [a,b] takve da za svako $x \in [a,b]$ važi $f(x) \geq g(x)$. Neka je $\Phi = \{(x,y) \in \mathbb{R}^2 \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$

$$\Phi_1 = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, G(x) \le y \le F(x)\}$$

Tada je površina
$$P(\Phi)$$
 figure Φ jednaka $\int_a^b (f-g)(x) dx$.
Neka je $m = \min_{x \in [a,b]} g(x), \ F(x) = f(x) - m, \ G(x) = g(x) - m$ i $\Phi_1 = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, \ G(x) \le y \le F(x)\}$
Jasno je da je $P(\Phi) = P(\Phi_1) = \int_a^b F(x) dx - \int_a^b G(x) dx = \int_a^b F(x) dx$

$$= \int_{a}^{b} (f(x) - m) dx - \int_{a}^{b} (g(x) - m) dx = \int_{a}^{b} (f(x) - g(x)) dx$$