射频电路开发培训

第十四讲 射频开关讲解

主讲: 汪 朋

QQ: 3180564167

01		射频开关应用	
02	>	射频开关设计讲解	
03		射频开关设计实例演示	

Part -

射频开关应用

应用

VC1	VC2	RFC-RF1	RFC-RF2
1	0	Isolation	Insertion Loss
0	1	Insertion Loss	Isolation

收发一体射频通道切换:

对于收发一体的天线, 需要使用射频开 关进行收发通路的切换

UART AND

收发分离对比: 收发通道分离, 无需开关切换

以天线开关为例:根据射频芯片的频段分配选择合理的天线开关,通过设计对应频段的匹配电路,可极大的拓展天线的带宽和多频特性

Truth Table for Switch States

V1	V2	RF Path
V _{LOW}	V_{LOW}	ANT-RF1
V _{LOW}	V _{HIGH}	ANT-RF2
V _{HIGH}	V_{LOW}	ANT-RF3
V _{HIGH}	V _{HIGH}	ANT-RF4
	V _{LOW}	V _{LOW} V _{LOW} V _{LOW} V _{HIGH} V _{HIGH} V _{LOW}

射频开关 应用

手机射频中的应用

射: Part

射频开关设计讲解

射频开关 设计

射频开关主要包括LC射频开关电路和微带线射频开关电路 射频开关主要参数:

[1]插入损耗; [2]隔离度; [3]功率容量; [3]开关速度; [4]工作频率;

[5]谐波

PIN二极管:不会对微波信号产生整流作用

扇形等效为一个电容,接入点看成短路,经四分 之一波长变换成为开路

右边的PIN导通接到GND, 经四分之一波长变换成为开路

基于ADS的射频开关设计实例

设计实例:设计一个工作于1.8GHz的射频收发开关,要求工作状态 下各个射频端口的的S11<-10dB, S12/S13>-0.5dB, S23<-25dB

射频开关 设计

DC=5V

射频开关 设计

DC=0V

射频开关 设计

设计拓扑

THANK YOU!!