全国青少年信息学奥林匹克竞赛

CCF-NOIP-2019

提高组(复赛)模拟试题

中文题目名称	取球问题	维修机器人	下标
英文题目名称	ball	robot	subscript
输入文件名	ball.in	robot.in	subscript.in
输出文件名	ball.out	robot.out	subscript.out
每个测试点时限	1秒	1秒	1秒
内存限制	512MB	512MB	512MB
测试点数目	20	20	20
每个测试点分值	5	5	5
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统

提交源程序须加后缀

对于 Pascal 语言	ball.pas	robot.pas	subscript.pas
对于 C 语言	ball.c	robot.c	subscript.c
对于 C++ 语言	ball.cpp	robot.cpp	subscript.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关。

取球问题

【问题描述】

现有N个小球,依次编号为 1 到N,这些小球除了编号以外没有任何区别。从这N个小球中取出M个,请问有多少种取球方案使得在取出的M个小球中,编号最小的小球的编号为K。

考虑到方案数可能很大,请输出方案数对 109+7 取模的值。

【输入格式】

输入数据只有一行,包含三个正整数 N、M、K。

【输出格式】

一个整数,表示取法总数对 10⁹+7 取模的值。

【样例输入1】

4 2 2

【样例输出1】

2

【样例说明1】

共有两种不同的取球方案,第一种是取出第2个和第3个;第二种是取出第2个和第4个。

【样例输入2】

888 222 555

【样例输出2】

424089030

【样例输入3】

999888 555333 222333

【样例输出3】

539901263

【数据规模与约定】

所有测试点的数据规模如下:

测试点编号	N的规模	M 的规模	K 的规模
1		M=1	
2		M-1	
3		M=2	
4	$1 \le N \le 10$	M-2	
5	$1 \leq N \leq 10$	$1 \le M \le 10$	$1 \le K \le N$
6			
7			
8			
9		$1 \le M \le 1,000$	
10			
11	$1 \le N \le 1,000$		
12	$1 \leq N \leq 1,000$		
13			
14			
15			
16	$1 \le M \le 10$		
17			
18	$1 \le N \le 1,000,000$		
19	$1 \le M \le 1,000,000$		
20			

维修机器人

【问题描述】

土豪贾老师拥有n个机器人。这n个机器人排成一行,第i个机器人的身高为 h_i 。贾老师发现这些机器人的身高参差不齐,看起来十分不美观,于是决定对它们的身高进行修改。

贾老师希望修改后的机器人队伍身高值单调,形式化地说,满足下面两个条件之一的机器人队伍是**合格的队伍**。

$$\bullet \quad h_1 \le h_2 \le \cdots \le h_{n-1} \le h_n$$

$$\bullet \quad h_1 \ge h_2 \ge \cdots \ge h_{n-1} \ge h_n$$

增加第i个机器人的身高,需要的费用为 m_1 ,减小第i个机器人的身高,需要的费用为 m_2 。注意,费用与是否增加和是否减小有关,与具体增加或减小的数值无关。对于一个身高为5的机器人,把它的身高增加到6和增加到100所需要的费用都为 m_1 。

贾老师希望你能帮他计算出,为了得到合格的机器人队伍,所需要花费的最小费用是多少。<u>由于某些特殊的原因,我们保证这 n 个机器人不同的身高不会超</u>过 1,000 个。

【输入格式】

输入文件共包含两行。

第一行共包括三个正整数,分别为n, m_1 , m_2 , 含义如上文所述。

第二行包括 n 个整数, 依次表示每个机器人的身高 h_i 。

【输出格式】

共一行,包含一个整数,表示贾老师所需修理费用的最小值。

【样例输入1】

5 2 3

1 2 3 5 4

【样例输出1】

2

【样例说明1】

将第4个机器人的身高减小到3或者减小到4,所有机器人的身高单调不减, 所需要的费用为2。

【样例输入2】

15 5 7

10 10 10 10 10 9 2 8 7 6 1000 5 3 4 1

【样例输出2】

17

【样例说明2】

将第 7 个机器人的身高从 2 增加到 8,将第 11 个机器人的身高从 1000 减小到 6,将第 13 个机器人的身高从 3 增加到 4,所有机器人的身高单调不增,所需要的费用为 5+7+5=17。

【数据规模与约定】

所有测试点的数据规模与约定如下:

测试点编号	n 的规模	约定	
1	n = 1		
2	n=2		
3	<i>n</i> = 4		
4	<i>n</i> = 6		
5	n = 8	1	
6	n = 10	$m_1 = m_2 = 1$	
7	n = 1,000		
8	n = 2,000		
9	n = 3,000		
10	n = 4,000		
11	n = 10,000		
12	n = 20,000	1	
13	n = 30,000	$m_1 = m_2 = 1$	
14	n = 40,000	$1 \leq h_i \leq 2$	
15	n = 50,000		
16	n = 10,000		
17	n = 20,000		
18	n = 30,000	/	
19	n = 40,000		
20	n = 50,000		

对于全部测试数据满足: $1 \le h_i \le 1,000,000$; $1 \le m_1$, $m_2 \le 1,000$, 机器人不同的身高不会超过 1,000 个。

下标

【问题描述】

Bella 同学在学习 C++的时候,有一天意外地把 <u>a[i]</u>写成了 <u>i[a]</u>,发现程序居然还能正常地编译和运行!(如果你现在做题做累了,不妨拿出半分钟时间试试看这是不是真的!)

通过进一步的实验,Bella 认为,对于任意的两个合法的表达式 \underline{A} 和 \underline{B} ,表达式 $\underline{A}[B]$ 与 $\underline{B}[A]$ 是等价的。

并且,等价是具有传递性的。例如,a[b[c]]和 c[b][a]是等价的,因为这两个表达式都和 a[c[b]]等价。

现在给你一些合法的表达式,其中只会出现小写字母与方括号。你需要对每个表达式进行若干次这样的等价变换,得到一个字典序尽可能小的表达式。

更正式地,所有可能出现的表达式恰好能由如下上下文无关文法从符号 Expr 生成:

```
Expr -> Term | Expr [ Expr ]
Term -> Char | Char Term
Char -> a | b | ... | z
```

而每次的等价变换,是将一个形如 <u>Expr1[Expr2]</u>的式子变为 <u>Expr2[Expr1]</u>,并且要求 <u>Expr1</u>与 <u>Expr2</u>都能由 <u>Expr</u>生成。

【输入格式】

输入文件的第一行只包含一个正整数 T,表示该输入文件的数据个数。接下来 T 行,每行一个字符串,表示一个合法的表达式。

【输出格式】

对于每个输入数据,输出一行,表示所能得到的字典序最小的表达式。

【样例输入】

4
aaa[bbb]
a[b[abbb]]
b[a[azzz]]
x[a][b[a]]

【样例输出】

aaa[bbb]

a[abbb[b]]

a[azzz][b]

a[b][a[x]]

【数据规模与约定】

记输入文件中单行输入字符串的长度的最大值为n,所有测试点的数据规模如下:

测试点编号	n 的规模
1, 2	$n \le 2$
3, 4	<i>n</i> ≤ 5
5, 6	<i>n</i> ≤ 10
7, 8	<i>n</i> ≤ 20
9, 10	<i>n</i> ≤ 100
11, 12	<i>n</i> ≤ 200
13, 14	<i>n</i> ≤ 1,000
15, 16	$n \le 5,000$
17, 18	$n \le 20,000$
19, 20	$n \le 100,000$

所有编号为奇数的测试点保证: <u>Term</u>只会生成 <u>Char</u>而不会生成 <u>Char Term</u>,即输入的每个标识符的长度均仅为单个字母。