Gröbner geometry for classes of semisimple Hessenberg varieties

Mike Cummings

Department of Combinatorics and Optimization University of Waterloo

> CanaDAM May 20, 2025

Outline

1 Patch ideals for Hessenberg varieties

2 The semisimple case

Hessenberg varieties

Hessenberg varieties are subvarieties of the flag variety...

- introduced by works of De Mari, Procesi, and Shayman in the late 1980s, original motivation: numerical linear algebra
- connections to Schubert calculus, algebraic combinatorics (Stanley– Stembridge), geometric representation theory...

Their geometry is only well-understood in some cases

Hessenberg varieties

$$\mathsf{Flags}(\mathbf{C}^n) = \big\{ (V_1 \subseteq \dots \subseteq V_n) \, \big| \, \dim_{\mathbf{C}}(V_i) = i \, \text{ for all } i \big\}$$

Hessenberg varieties

$$\mathsf{Flags}(\mathbf{C}^n) = \big\{ (V_1 \subseteq \dots \subseteq V_n) \, \big| \, \dim_{\mathbf{C}}(V_i) = i \text{ for all } i \big\}$$
$$\mathsf{Hess}(A, h) = \big\{ (V_1 \subseteq \dots \subseteq V_n) \in \mathsf{Flags}(\mathbf{C}^n) \, \big| \, AV_i \subseteq V_{h(i)} \big\}$$

where h is a Hessenberg function, e.g., h = (2, 3, 4, 4)

There exists some $b \in B$ for which the first nonzero entry in each column of $\mathbf{V}b$ is 1

$$\mathsf{Flags}(\mathbf{C}^n) \cong \mathbf{GL}_n(\mathbf{C})_{B}$$
 $(V_1 \subseteq \cdots \subseteq V_n) \longleftrightarrow \mathbf{V} \coloneqq egin{bmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{bmatrix}$ where $V_i = \mathsf{span}(v_1, \ldots, v_i)$

There exists some $b \in B$ for which the first nonzero entry in each column of $\mathbf{V}b$ is 1 Let M be a generic lower-triangular matrix with 1's on the diagonal. Then,

$$\mathsf{Flags}(\mathbf{C}^n) \cong \bigcup_{w \in S_n} \{wMB\}$$

$$\mathsf{Flags}(\mathbf{C}^n) \cong \mathbf{GL}_n(\mathbf{C})_{B}$$
 $(V_1 \subseteq \cdots \subseteq V_n) \longleftrightarrow \mathbf{V} \coloneqq egin{bmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{bmatrix}$ where $V_i = \mathsf{span}(v_1, \ldots, v_i)$

There exists some $b \in B$ for which the first nonzero entry in each column of $\mathbf{V}b$ is 1 Let M be a generic lower-triangular matrix with 1's on the diagonal. Then,

$$\mathsf{Flags}(\mathbf{C}^n) \cong \bigcup_{w \in \mathcal{S}_n} \big\{ wMB \big\} \implies \mathsf{Hess}(A,h) \cong \bigcup_{w \in \mathcal{S}_n} \left\{ wMB \;\middle|\; \begin{array}{c} \mathsf{vanishing \; condition} \\ \mathsf{depending \; on \; } A \; \mathsf{and} \; h \end{array} \right\}$$

$$\mathsf{Flags}(\mathbf{C}^n) \cong \mathbf{GL}_n(\mathbf{C})_{B}$$
 $(V_1 \subseteq \cdots \subseteq V_n) \longleftrightarrow \mathbf{V} \coloneqq egin{bmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{bmatrix}$ where $V_i = \mathsf{span}(v_1, \ldots, v_i)$

There exists some $b \in B$ for which the first nonzero entry in each column of $\mathbf{V}b$ is 1 Let M be a generic lower-triangular matrix with 1's on the diagonal. Then,

$$\mathsf{Flags}(\mathbf{C}^n) \cong \bigcup_{w \in \mathcal{S}_n} \left\{ w M B \right\} \implies \mathsf{Hess}(A,h) \cong \bigcup_{w \in \mathcal{S}_n} \left\{ w M B \; \middle| \; \begin{array}{c} \left[(w M)^{-1} A (w M) \right]_{k,\ell} = 0 \\ \text{for all } k > h(\ell) \end{array} \right\}$$

Fix a Hessenberg variety $\operatorname{Hess}(A, h)$ and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for ${\it M}$ a generic lower-triangular matrix with 1's on the diagonal

Fix a Hessenberg variety $\operatorname{Hess}(A, h)$ and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of $\operatorname{Hess}(A, h)$ at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

Fix a Hessenberg variety Hess(A, h) and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of $\operatorname{Hess}(A, h)$ at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

$$(wM)^{-1}A(wM) = \boxed{ }$$

Fix a Hessenberg variety Hess(A, h) and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of $\operatorname{Hess}(A,h)$ at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

$$(wM)^{-1}A(wM) = \boxed{ }$$

$$h = (2, 3, 4, 4)$$

Fix a Hessenberg variety Hess(A, h) and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of $\operatorname{Hess}(A, h)$ at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

$$(wM)^{-1}A(wM) = h = (2,3,4,4)$$

Fix a Hessenberg variety $\operatorname{Hess}(A, h)$ and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of Hess(A, h) at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

$$(wM)^{-1}A(wM) = h = (2,3,4,4)$$

Fix a Hessenberg variety Hess(A, h) and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of Hess(A, h) at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

$$(wM)^{-1}A(wM) = h = (2,3,4,4)$$

Fix a Hessenberg variety Hess(A, h) and $w \in S_n$. Define

$$f_{k,\ell} = \left[(wM)^{-1} A(wM) \right]_{k,\ell},$$

for M a generic lower-triangular matrix with 1's on the diagonal

The patch ideal of Hess(A, h) at w is $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$, provided J_w is radical.

$$(wM)^{-1}A(wM) = \begin{bmatrix} 0 & & & \\ 0 & & & \\ & 0 & 0 & \\ & & \\ & & & \\ & &$$

Why patch ideals?

The use of patch ideals dates to at least the study of Schubert varieties (c1970s) For Hessenberg varieties:

Year	Authors	Class	Outcome
2012	Insko, Yong	Peterson	Combinatorial description of
			singular loci
2018	Abe, DeDieu,	Regular nilpotent	Local complete intersections;
	Galetto, Harada		Degree formulae; Newton–
			Okounkov bodies
2020	Abe, Fujita,	Regular	Higher cohomology vanishes
	Zeng		
2022	Abe, Insko	Regular nilpotent	Singular permutation flags;
			normality

Outline

1 Patch ideals for Hessenberg varieties

2 The semisimple case

An operator is semisimple if it is diagonalizable and regular if it has distinct eigenvalues

Theorem (De Mari-Procesi-Shayman '92)

Let S be regular semisimple. Then $\operatorname{Hess}(S,h)$ is smooth and equidimensional. Moreover, $\operatorname{Hess}(S,(2,3,\ldots,n,n))$ is a toric variety associated to Weyl chambers.

Regular semisimple Hessenberg varieties are also irreducible

An operator is semisimple if it is diagonalizable and regular if it has distinct eigenvalues

Theorem (De Mari-Procesi-Shayman '92)

Let S be regular semisimple. Then $\operatorname{Hess}(S,h)$ is smooth and equidimensional. Moreover, $\operatorname{Hess}(S,(2,3,\ldots,n,n))$ is a toric variety associated to Weyl chambers.

Regular semisimple Hessenberg varieties are also irreducible

- reducible
- singular
- not equidimensional

An operator is semisimple if it is diagonalizable and regular if it has distinct eigenvalues

Theorem (De Mari-Procesi-Shayman '92)

Let S be regular semisimple. Then $\operatorname{Hess}(S,h)$ is smooth and equidimensional. Moreover, $\operatorname{Hess}(S,(2,3,\ldots,n,n))$ is a toric variety associated to Weyl chambers.

Regular semisimple Hessenberg varieties are also irreducible

- reducible...but we do not have a classification of irreducibility
- singular
- not equidimensional

An operator is semisimple if it is diagonalizable and regular if it has distinct eigenvalues

Theorem (De Mari-Procesi-Shayman '92)

Let S be regular semisimple. Then $\operatorname{Hess}(S,h)$ is smooth and equidimensional. Moreover, $\operatorname{Hess}(S,(2,3,\ldots,n,n))$ is a toric variety associated to Weyl chambers.

Regular semisimple Hessenberg varieties are also irreducible

- reducible...but we do not have a classification of irreducibility
- singular...but we do not understand the singularities (e.g., what codimension?)
- not equidimensional

An operator is semisimple if it is diagonalizable and regular if it has distinct eigenvalues

Theorem (De Mari-Procesi-Shayman '92)

Let S be regular semisimple. Then $\operatorname{Hess}(S,h)$ is smooth and equidimensional. Moreover, $\operatorname{Hess}(S,(2,3,\ldots,n,n))$ is a toric variety associated to Weyl chambers.

Regular semisimple Hessenberg varieties are also irreducible

- reducible...but we do not have a classification of irreducibility
- singular... but we do not understand the singularities (e.g., what codimension?)
- not equidimensional...but we do not have dimension formulae

Let $S: \mathbf{C}^n \to \mathbf{C}^n$ be semisimple.

■ Iveson '06; Precup '15. Semisimple Hessenberg varieties are connected.

Let $S: \mathbf{C}^n \to \mathbf{C}^n$ be semisimple.

- Iveson '06; Precup '15. Semisimple Hessenberg varieties are connected.
- Insko-Precup '19. The irreducible components of $\operatorname{Hess}(S, (2, 3, ..., n, n))$ are smooth and they give a formula for the intersections of these components.

Let $S: \mathbf{C}^n \to \mathbf{C}^n$ be semisimple.

- Iveson '06; Precup '15. Semisimple Hessenberg varieties are connected.
- Insko-Precup '19. The irreducible components of $\operatorname{Hess}(S, (2, 3, ..., n, n))$ are smooth and they give a formula for the intersections of these components.
- **Can-Precup-Shareshian-Uğurlu** '23+. Gives a characterization of irreducibility of Hess(S, h) when S has exactly two eigenvalues and, in the irreducible case, gives a dimension formula.

Semisimple patch ideals

Conjecture (Insko-Precup '19)

For all w, the ideal J_w is radical and hence is the patch ideal for the semisimple Hessenberg variety $\operatorname{Hess}(S,h)$.

Semisimple patch ideals

Conjecture (Insko-Precup '19)

For all w, the ideal J_w is radical and hence is the patch ideal for the semisimple Hessenberg variety $\operatorname{Hess}(S,h)$.

Theorem (Insko-Precup '19)

The conjecture is true when h = (2, 3, ..., n, n).

Recall that $J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$ where $f_{k,\ell} = [(wM)^{-1}S(wM)]_{k,\ell}$. Let

$$S = diag(\lambda_1, \lambda_2, \dots, \lambda_n).$$

Recall that
$$J_w=\langle f_{k,\ell}\mid k>h(\ell)\rangle$$
 where $f_{k,\ell}=[(wM)^{-1}S(wM)]_{k,\ell}$. Let $S=\operatorname{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)$.

Lemma (C. '24)

$$f_{\ell+1,\ell} = (\lambda_{w(\ell+1)} - \lambda_{w(\ell)}) x_{\ell+1,\ell}$$

Recall that
$$J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$$
 where $f_{k,\ell} = [(wM)^{-1}S(wM)]_{k,\ell}$. Let $S = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Lemma (C. '24)

$$f_{\ell+1,\ell} = (\lambda_{w(\ell+1)} - \lambda_{w(\ell)}) x_{\ell+1,\ell}$$

$$f_{k,\ell} = \left(\lambda_{w(k)} - \lambda_{w(\ell)}
ight) x_{k,\ell} - \sum_{i=\ell+1}^{\kappa-1} x_{k,j} f_{j,\ell}$$

Recall that
$$J_w=\langle f_{k,\ell}\mid k>h(\ell)\rangle$$
 where $f_{k,\ell}=[(wM)^{-1}S(wM)]_{k,\ell}$. Let $S=\operatorname{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)$.

Lemma (C. '24)

$$f_{\ell+1,\ell} = (\lambda_{w(\ell+1)} - \lambda_{w(\ell)}) x_{\ell+1,\ell}$$

$$f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum_{j=\ell+1}^{\kappa-1} x_{k,j} f_{j,\ell}$$

Recall that
$$J_w=\langle f_{k,\ell}\mid k>h(\ell)\rangle$$
 where $f_{k,\ell}=[(wM)^{-1}S(wM)]_{k,\ell}$. Let $S=\operatorname{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)$.

Lemma (C. '24)

$$f_{\ell+1,\ell} = (\lambda_{w(\ell+1)} - \lambda_{w(\ell)}) \times_{\ell+1,\ell}$$

$$f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum_{j=\ell+1}^{\kappa-1} x_{k,j} f_{j,\ell}$$

Recall that
$$J_w = \langle f_{k,\ell} \mid k > h(\ell) \rangle$$
 where $f_{k,\ell} = [(wM)^{-1}S(wM)]_{k,\ell}$. Let $S = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Lemma (C. '24)

$$f_{\ell+1,\ell} = (\lambda_{w(\ell+1)} - \lambda_{w(\ell)}) \times_{\ell+1,\ell}$$

$$f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum_{j=\ell+1}^{k-1} x_{k,j} f_{j,\ell}$$

Example: $f_{4,1}$							
	$f_{2,1}$						
	$f_{3,1}$						
	<i>x</i> _{4,1}	<i>x</i> _{4,2}	<i>X</i> _{4,3}				

The recursive structure of the generators

Recall that
$$J_w=\langle f_{k,\ell}\mid k>h(\ell)\rangle$$
 where $f_{k,\ell}=[(wM)^{-1}S(wM)]_{k,\ell}$. Let $S=\operatorname{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)$.

Lemma (C. '24) $f_{\ell+1,\ell} = (\lambda_{w(\ell+1)} - \lambda_{w(\ell)}) x_{\ell+1,\ell}$ For any $k > \ell$, $f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum_{j=\ell+1}^{k-1} x_{k,j} f_{j,\ell}$

Example:
$$f_{4,1}$$
 $f_{2,1}$
 $f_{3,1}$
 $x_{4,1}$
 $x_{4,2}$
 $x_{4,3}$

By induction, $f_{k,\ell}$ is squarefree. So the conjecture is true for $h=(n-1,n,\ldots,n)$.

The "nearly-regular" semisimple case

$$f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum x_{k,j} f_{j,\ell}$$

Theorem (C. '24)

Suppose $S: \mathbf{C}^n \to \mathbf{C}^n$ is semisimple with exactly n-1 eigenvalues. Then Insko-Precup's conjecture is true for $\operatorname{Hess}(S,h)$: the ideal J_w is radical for every w.

The "nearly-regular" semisimple case

$$f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum_{k,j} f_{j,\ell}$$

Theorem (C. '24)

Suppose $S: \mathbf{C}^n \to \mathbf{C}^n$ is semisimple with exactly n-1 eigenvalues. Then Insko-Precup's conjecture is true for $\operatorname{Hess}(S,h)$: the ideal J_w is radical for every w.

Sketch of proof. We show that J_w admits a squarefree Gröbner basis. Either:

■ The initial monomial the generators $f_{k,\ell}$ are distinct variables, or,

The "nearly-regular" semisimple case

$$f_{k,\ell} = (\lambda_{w(k)} - \lambda_{w(\ell)}) x_{k,\ell} - \sum x_{k,j} f_{j,\ell}$$

Theorem (C. '24)

Suppose $S: \mathbb{C}^n \to \mathbb{C}^n$ is semisimple with exactly n-1 eigenvalues. Then Insko-Precup's conjecture is true for $\operatorname{Hess}(S,h)$: the ideal J_w is radical for every w.

Sketch of proof. We show that J_w admits a squarefree Gröbner basis. Either:

- The initial monomial the generators $f_{k,\ell}$ are distinct variables, or,
- The initial term of at most one generator $f_{a,b}$ is a product involving the initial term of other generators. Can use the other generators to replace $f_{a,b}$ with a squarefree polynomial whose lead term is in distinct variables.

Further consequences & questions

In the "nearly-regular" semisimple case:

- there is an explicit formula for the multidegrees for the patch ideals
- conjectured characterization of irreducibility—and give a framework to prove this

Further consequences & questions

In the "nearly-regular" semisimple case:

- there is an explicit formula for the multidegrees for the patch ideals
- conjectured characterization of irreducibility—and give a framework to prove this

We also conjecture a strengthening of Insko-Precup's conjecture.

Conjecture (C. '24)

Consider the semisimple Hessenberg variety $\operatorname{Hess}(S,h)$. For each w, there is a Frobenius splitting that compatibly splits J_w .

Summary

- Hessenberg varieties lie at the intersection of geometry, algebraic combinatorics, representation theory, ... but we do not know much about the semisimple case
- Patch ideals can be used to study Hessenberg varieties locally

Summary

- Hessenberg varieties lie at the intersection of geometry, algebraic combinatorics, representation theory, ... but we do not know much about the semisimple case
- Patch ideals can be used to study Hessenberg varieties locally
- We found a Gröbner basis for certain semisimple Hessenberg varieties, which allows us to compute multidegrees
- Conjectured characterization of irreducibility for this class of Hessenberg varieties

Summary

- Hessenberg varieties lie at the intersection of geometry, algebraic combinatorics, representation theory, ... but we do not know much about the semisimple case
- Patch ideals can be used to study Hessenberg varieties locally
- We found a Gröbner basis for certain semisimple Hessenberg varieties, which allows us to compute multidegrees
- Conjectured characterization of irreducibility for this class of Hessenberg varieties

