Neural Ordinary Differential Equations

Yifei Ding January 24, 2025

Introduction

$$\mathbf{h}_{t+1} = \mathbf{h}_t + f(\mathbf{h}_t, \theta_t) \Longrightarrow \frac{\mathrm{d}\mathbf{h}(t)}{\mathrm{d}t} = f(\mathbf{h}(t), t, \theta)$$

Benefits: memory efficiency, adaptive computation, scalable and invertible normalizing flows, continuous time-series models

Backpropagation

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta))$$

Target:

$$\frac{\partial L}{\partial \theta}$$

Backpropagation

Let

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)},$$

then

$$\frac{\mathrm{d}\mathbf{a}(t)}{\mathrm{d}t} = -\mathbf{a}(t)^{\top} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}},$$

thus

$$\frac{\partial L}{\partial \theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\top} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt.$$

Backpropagation

Algorithm 2 Complete reverse-mode derivative of an ODE initial value problem

```
 \begin{array}{lll} \textbf{Input:} \ \text{dynamics parameters } \theta, \ \text{start time } t_0, \ \text{stop time } t_1, \ \text{final state } \mathbf{z}(t_1), \ \text{loss gradient } \frac{\partial L}{\partial \mathbf{z}(t_1)} \\ \frac{\partial L}{\partial t_1} &= \frac{\partial L}{\partial \mathbf{z}(t_1)}^\mathsf{T} f(\mathbf{z}(t_1), t_1, \theta) & \rhd \ \text{Compute gradient w.r.t. } t_1 \\ s_0 &= [\mathbf{z}(t_1), \frac{\partial L}{\partial \mathbf{z}(t_1)}, \mathbf{0}_{|\theta|}, -\frac{\partial L}{\partial t_1}] & \rhd \ \text{Define initial augmented state} \\ \textbf{def } \text{aug\_dynamics}([\mathbf{z}(t), \mathbf{a}(t), \cdot, \cdot], t, \theta): & \rhd \ \text{Define dynamics on augmented state} \\ \textbf{return } [f(\mathbf{z}(t), t, \theta), -\mathbf{a}(t)^\mathsf{T} \frac{\partial f}{\partial \mathbf{z}}, -\mathbf{a}(t)^\mathsf{T} \frac{\partial f}{\partial \theta}, -\mathbf{a}(t)^\mathsf{T} \frac{\partial f}{\partial t}] & \rhd \ \text{Compute vector-Jacobian products} \\ [\mathbf{z}(t_0), \frac{\partial L}{\partial \mathbf{z}(t_0)}, \frac{\partial L}{\partial \theta}, \frac{\partial L}{\partial t_0}] &= \ \text{ODESolve}(s_0, \text{aug\_dynamics}, t_1, t_0, \theta) & \rhd \ \text{Solve reverse-time ODE} \\ \textbf{return } \frac{\partial L}{\partial \mathbf{z}(t_0)}, \frac{\partial L}{\partial \theta}, \frac{\partial L}{\partial t_0}, \frac{\partial L}{\partial t_0} \\ \end{array} \quad \Rightarrow \ \text{Return all gradients}
```

Replacing Resnet

Table 1: Performance on MNIST. † From LeCun et al. (1998).

	Test Error	# Params	Memory	Time
1-Layer MLP [†]	1.60%	0.24 M	-	-
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(ilde{L})$	$\mathcal{O}(ilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Continuous Normalizing Flows

$$\mathbf{z}_{1} = f(\mathbf{z}_{0}) \Longrightarrow \log p(\mathbf{z}_{1}) = \log p(\mathbf{z}_{0}) - \log \left| \det \frac{\partial f}{\partial \mathbf{z}_{0}} \right|$$

$$\downarrow \downarrow$$

$$\frac{\partial \log p(\mathbf{z}(t))}{\partial t} = -\operatorname{tr}\left(\frac{\mathrm{d}f}{\mathrm{d}\mathbf{z}(t)}\right)$$

A Generative Lantent Function Time-series Model

Acknowledgement

Thank you!