→ Problema

Existe uma hipótese de que o referenciamento de pacientes ao HC não é totalmente necessário. I tratado na UBS, pois o HC é um hospital de alta complexidade.

Hipótese desta análise(opcional)

Esta analise tem uma hipotese de que a efetividade do tratamento de uma equipe esta correlacio

Importando bibliotecas principais

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
import seaborn as sb
import random, decimal

%matplotlib inline
```

pip install bokeh

Requirement already satisfied: bokeh in /usr/local/lib/python3.6/dist-packages (1.0.4 Requirement already satisfied: six>=1.5.2 in /usr/local/lib/python3.6/dist-packages (Requirement already satisfied: Jinja2>=2.7 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: packaging>=16.8 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: numpy>=1.7.1 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: tornado>=4.3 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-pack Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (frc

```
from bokeh.io import output_notebook
output notebook()
```

Importando e Explorando o dataset

```
df = pd.read_csv('dsAnamneseFechada.csv', parse_dates=['DAT_HORA_ATENDIMENTO','DAT_HORA_PF
```

df.dtypes

DAT_HORA_ATENDIMENTO	<pre>datetime64[ns]</pre>
NOM_ENCAMINHAMENTO	object
NOM_MODALIDADE_ATENDIMENTO	object
NOM_MUNICIPIO	object
NOM_EQUIPE	object
NOM_TIPO_CASO	object
IDADE	float64
COD_CID	object
DAT_HORA_PREVISTA	object
DAT_HORA_EVOLUCAO	object
DAT_HORA_ANAMNESE	<pre>datetime64[ns]</pre>
DAT_HORA_ALTA	object
QTD_EVOLUCAO	int64
DAT_ULTIMA_EVOLUCAO	<pre>datetime64[ns]</pre>
dtype: object	
	NOM_ENCAMINHAMENTO NOM_MODALIDADE_ATENDIMENTO NOM_MUNICIPIO NOM_EQUIPE NOM_TIPO_CASO IDADE COD_CID DAT_HORA_PREVISTA DAT_HORA_EVOLUCAO DAT_HORA_ANAMNESE DAT_HORA_ALTA QTD_EVOLUCAO DAT_ULTIMA_EVOLUCAO

▼ verificando escopos da modalidade

```
df["NOM_MODALIDADE_ATENDIMENTO"].value_counts()
```

C→ AMBULATORIO 47634 INTERNAÇÃO 1070 SADT EXTERNO 345 SADT UBS MARILIA 138

Name: NOM_MODALIDADE_ATENDIMENTO, dtype: int64

▼ escopos de equipe

```
df["NOM_EQUIPE"].value_counts()
```

C→

AMBULATÓRIO SAÚDE MENTAL	11266
ORTOPEDIA E TRAUMATOLOGIA	4210
OFTALMOLOGIA	4049
ENDOCRINOLOGIA E METABOLISMO	3404
NEUROLOGIA	2410
CIRURGIA VASCULAR	2374
ONCOLOGIA CLÍNICA	2268
DERMATOLOGIA	2031
REUMATOLOGIA	1700
ONCO-HEMATOLOGIA INFANTIL	1667
OTORRINOLARINGOLOGIA	1572
UROLOGIA	1078
HEMATOLOGIA ADULTO	1053
GINECOLOGIA GERAL	983
CARDIOLOGIA	962
PNEUMOLOGIA	831
AMB PEDIATRIA ESPECIALIZADA	818
CIRURGIA GERAL E DO TRAUMA	767
CIRURGIA PLÁSTICA	767 740
OBSTETRÍCIA	662
GASTROENTEROLOGIA - CLÍNICA MÉDICA	521
	_
INFECTOLOGIA	505
NEFROLOGIA	504
SERVIÇO DE APOIO AO COLABORADOR	425
NEUROCIRURGIA	360
GERIATRIA	346
GASTROENTEROLOGIA CIRÚRGICA	298
CIRURGIA CABEÇA E PESCOÇO	283
CENTRO DE INFUSÃO	193
ONCO GINECOLOGIA	179
RADIOTERAPIA	169
CIRURGIA CARDÍACA	133
CIRURGIA TORÁCICA	131
QUIMIOTERAPIA ADULTO	102
MEDICINA INTERNA	38
SERVIÇO DE NUTRIÇÃO E DIETÉTICA	35
UROLÓGIA	25
GENÉTICA	25
IMUNOPATOLOGIA CLÍNICA E ALÉRGICA	20
ONCOCLÍNICA	18
PRÉ-OPERATÓRIO	13
PSICOLOGIA HOSPITALAR	6
CLÍNICA MÉDICA ESPECIALIZADA	5
ENFERMAGEM	3
CENTRO CIRÚRGICO	2
HEMOTERAPIA	2
BRONCOSCOPIA	1
Name: NOM_EQUIPE, dtype: int64	

▼ verificando escopos dos dias da semana (0=segunda,1=terça,etc..)

```
df['DIASEMANA'] = df['DAT_HORA_ATENDIMENTO'].dt.dayofweek
df["DIASEMANA"].value_counts()
```

C→

```
0
       10180
     2
          9698
    3
          9032
    1
          8690
    4
          6844
    5
          2474
          2269
    Name: DIASEMANA, dtype: int64
df['DAT_HORA_ATENDIMENTO'].describe()
 _→ count
                            49187
    unique
                            11560
         2018-06-28 07:00:00
    top
    freq
    first
            2018-01-02 07:00:00
    last
              2018-12-28 12:10:00
    Name: DAT_HORA_ATENDIMENTO, dtype: object
```

→ Limpeza e Tratamento de dados

```
#utilizando dados somente de 2018
df2018 = df[(df['DAT_HORA_ATENDIMENTO'] > '2018-1-1') & (df['DAT_HORA_ATENDIMENTO'] <= '26</pre>
#filtrando somente as equipes com maior incidencia
dfLimpo = df2018[df2018['NOM_EQUIPE'].map(df2018['NOM_EQUIPE'].value_counts()) > 2000]
#tirar os SESMT e SASC
dfLimpo["NOM_EQUIPE"].value_counts()
 C→ AMBULATÓRIO SAÚDE MENTAL
                                     11266
     ORTOPEDIA E TRAUMATOLOGIA
                                      4210
     OFTALMOLOGIA
                                      4049
     ENDOCRINOLOGIA E METABOLISMO
                                      3404
     NEUROLOGIA
                                      2410
     CIRURGIA VASCULAR
                                      2374
     ONCOLOGIA CLÍNICA
                                      2268
     DERMATOLOGIA
                                      2031
     Name: NOM_EQUIPE, dtype: int64
#atribuir o valor de protocolo efetivo para a ENDOCRINO
import random
def getProtocolo(equipe):
 if (equipe=='ENDOCRINOLOGIA E METABOLISMO'):
    return 1 + (random.randint(0, 200)/1000)
  elif (equipe=='REUMATOLOGIA'):
    return 0.5 + (random.randint(0, 200)/1000)
  else:
    return 0 + (random.randint(0, 200)/1000)
```

```
dfLimpo['PROTOCOLO'] = dfLimpo.apply(lambda row: getProtocolo(row.NOM EQUIPE), axis = 1)
dfLimpo['DURACAO'] = dfLimpo['DAT ULTIMA EVOLUCAO'].sub(dfLimpo['DAT HORA ANAMNESE'], axis
dfLimpo['NDURACAO'] = dfLimpo['DURACAO'] / np.timedelta64(1, 'D')
dfFiltro = dfLimpo[dfLimpo.NOM EQUIPE=='REUMATOLOGIA']
dfFiltro
 A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="http://pandas.pydata.org/pandas-docs/stable/use">http://pandas.pydata.org/pandas-docs/stable/use</a>
       # This is added back by InteractiveShellApp.init path()
     /usr/local/lib/python3.6/dist-packages/ipykernel launcher.py:12: SettingWithCopyWarni
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="http://pandas.pydata.org/pandas-docs/stable/use">http://pandas.pydata.org/pandas-docs/stable/use</a>
       if sys.path[0] == '':
     /usr/local/lib/python3.6/dist-packages/ipykernel launcher.py:13: SettingWithCopyWarni
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="http://pandas.pydata.org/pandas-docs/stable/use">http://pandas.pydata.org/pandas-docs/stable/use</a>
       del sys.path[0]
```

dfFiltro

DAT_HORA_ATENDIMENTO NOM_ENCAMINHAMENTO NOM_MODALIDADE_ATENDIMENTO NOM_MUNICIPI

DAT_HORA_ATENDIMENTO NOM_ENCAMINHAMENTO NOM_MODALIDADE_ATENDIMENTO NOM_MUNICIPI

Profiling

import pandas_profiling as pp
pp.ProfileReport(dfLimpo)

Гэ

/usr/local/lib/python3.6/dist-packages/pandas profiling/describe.py:392: FutureWarnir variable_stats = pd.concat(ldesc, join_axes=pd.Index([names]), axis=1)

Overview

Dataset info

Number of variables 19 Number of observations 32012 9.7% **Total Missing (%) Total size in memory** 4.6 MiB Average record size in memory Variables types 152.0 B

Numeric 6 Categorical 10 Boolean 0 Date 3 Text (Unique) 0 Reiected 0 Unsupported 0

Warnings

- NOM MUNICIPIO has a high cardinality: 1210 distinct values Warning
- COD CID has a high cardinality: 1347 distinct values Warning
- DAT HORA PREVISTA has 27869 / 87.1% missing values Missing
- DAT HORA PREVISTA has a high cardinality: 1558 distinct values Warning
- DAT HORA EVOLUCAO has a high cardinality: 16067 distinct values Warning
- DAT HORA ALTA has 31266 / 97.7% missing values Missing
- DAT HORA ALTA has a high cardinality: 596 distinct values Warning
- DIASEMANA has 6848 / 21.4% zeros Zeros
- DURACAO has a high cardinality: 13369 distinct values Warning

Variables

index

Numeric

Distinct count 32012 Unique (%) 100.0% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) Mean 24525 Minimum 1

Maximum

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

Minimum	1
5-th percentile	2377.
Q1	12236
Median	24614
Q3	36713
95-th percentile	46666
Maximum	49186
Range	49185
nterquartile range	24476

Descriptive statistics

Memory size

•	
Standard deviation	14178
Coef of variation	0.57812
Kurtosis	-1.1956
Mean	24525
MAD	12272
Skewness	-0.00025111
Sum	785094441
Variance	201030000

250.2 KiB

Value	ue Count Frequency (%	
2047	1	0.0%
11503	1	0.0%
48349	1	0.0%
42206	1	0.0%
23777	1	0.0%
17634	1	0.0%
19683	1	0.0%
31973	1	0.0%
27879	1	0.0%
5352	1	0.0%
Other values (32002) 32002		100.0%

Minimum 5 values

Value Count Frequency (%)		
1	1	0.0%
3	1	0.0%
4	1	0.0%
5	1	0.0%
6	1	0.0%

Maximum 5 values

Value	Count Freq	uency (%)
49178	1	0.0%
49179	1	0.0%
49182	1	0.0%
49183	1	0.0%
49186	1	0.0%

376

Other values (28)

30752

NOM_ENCAMINHAMENTO Categorical Distinct count 31 Unique (%) 0.1% Missing (%) 0.0% Missing (n) 0 RETORNO ALTA 770 ALTA E ENCAMINHAMENTO 114

Toggle details

Value	Count F	requency (%)
RETORNO	30752	96.1%
ALTA	770	2.4%
ALTA E ENCAMINHAMENTO	114	0.4%
RETORNO E ENCAMINHAMENTO	89	0.3%
AGUARDANDO CIRURGIA	80	0.2%
PEDIDO DE INTERNAÇÃO HC-I	72	0.2%
CONTRA-REFERENCIA	48	0.1%
FALTA A CONSULTA AGENDADA	25	0.1%
ENCAM.UBS/PSF DE ORIGEM	9	0.0%
ENCAM.AMBULATORIO	7	0.0%

Other values (21) 46 0.1%

NOM_MODALIDADE_ATENDIMENTO

Categorical

 Distinct count
 4

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

AMBULATORIO 31361

INTERNAÇÃO 397 SADT EXTERNO 187

Toggle details

Value	Count F	requency (%)
AMBULATORIO	31361	98.0%
INTERNAÇÃO	397	1.2%
SADT EXTERNO	187	0.6%
SADT UBS MARILIA	67	0.2%

NOM MUNICIPIO

Categorical

 Distinct count
 1210

 Unique (%)
 3.8%

 Missing (%)
 0.0%

 Missing (n)
 0

MARILIA 10556

GARÇA 1250 VERA CRUZ 1042

Other values (1207) 19164

Toggle details

Value	Count Fred	quency (%)
MARILIA	10556	33.0%
GARÇA	1250	3.9%
VERA CRUZ	1042	3.3%
TUPÃ	783	2.4%
SÃO PAULO	774	2.4%

POMPÉIA	704	2.2%
GÁLIA	641	2.0%
LUPÉRCIO	568	1.8%
OCAUÇU	488	1.5%
ORIENTE	461	1.4%
Other values (120	00) 14745	46.1%

NOM EQUIPE

Categorical

 Distinct count
 8

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

AMBULATÓRIO SAÚDE MENTAL 11266

ORTOPEDIA E TRAUMATOLOGIA 4210

OFTALMOLOGIA 4049

Other values (5) 12487

Toggle details

Value	Count Frequency (%)	
AMBULATÓRIO SAÚDE MENTAL	11266	35.2%
ORTOPEDIA E TRAUMATOLOGIA	4210	13.2%
OFTALMOLOGIA	4049	12.6%
ENDOCRINOLOGIA E METABOLISMO	3404	10.6%
NEUROLOGIA	2410	7.5%
CIRURGIA VASCULAR	2374	7.4%
ONCOLOGIA CLÍNICA	2268	7.1%
DERMATOLOGIA	2031	6.3%

NOM_TIPO_CASO

Categorical

 Distinct count
 39

 Unique (%)
 0.1%

 Missing (%)
 0.0%

 Missing (n)
 0

RETORNO 19823

AGENDADO PEI O PROFISSIONAI 2949

AGENDADO	294
Other values (36)	6299

Toggle details

Value	Count F	requency (%)
RETORNO	19823	61.9%
AGENDADO PELO PROFISSIONAL	2949	9.2%
AGENDADO	2941	9.2%
RETORNO FALTOSOS	1258	3.9%
QUIMIOTERAPIA	983	3.1%
ENCAIXE AUTORIZADO	887	2.8%
RETORNO MÉDICO	677	2.1%
REGULAÇÃO INTERNA	527	1.6%
NOVO	467	1.5%
CONSULTA INICIAL NO PROGRAMA	254	0.8%
Other values (29)	1246	3.9%

IDADE

Numeric

 Distinct count
 10315

 Unique (%)
 32.2%

 Missing (%)
 0.0%

 Missing (n)
 0

 Infinite (%)
 0.0%

 Infinite (n)
 0

 Mean
 51.648

 Minimum
 0.60153

 Maximum
 100.94

 Zeros (%)
 0.0%

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

 Minimum
 0.60153

 5-th percentile
 14.87

 Q1
 38.212

Median	53.971	
Q3	66.51	
95-th percentile	81.373	
Maximum	100.94	
Range	100.34	
Interquartile range	28.298	
Descriptive statistics		
Standard deviation	20.08	
Coef of variation	0.38878	
Kurtosis	-0.55158	
Mean	51.648	
MAD	16.397	
Skewness	-0.3462	
Sum	1653400	
Variance	403.2	
Memory size	250.2 KiB	

Value	Count F	requency (%)
58.946735984271896	108	0.3%
90.15495516235409	98	0.3%
70.9165989979706	46	0.1%
24.6755031075596	36	0.1%
56.0426263952308	32	0.1%
29.270023655504797	28	0.1%
82.5604346144089	28	0.1%
45.322078450025394	27	0.1%
50.2207085870117	24	0.1%
57.2289277650939	23	0.1%
Other values (10305)	31562	98.6%

I۱	/Π	n	ın	าเ	ır	n !	ול	va.	ш	les

Value	Count Freq	uency (%)
0.6015305048198879	5	0.0%
0.933037354134957	1	0.0%
1.00427023084729	1	0.0%
1.01796886098427	1	0.0%
1 04810584728564	1	0.0%

Maximum 5 values

Value	Count Freq	uency (%)
99.9111195459158	2	0.0%
99.99331132673771	2	0.0%
100.083722285642	2	0.0%
100.563174340436	2	0.0%
100.93851680619	3	0.0%

COD_CID
Categorical

Distinct count 1347
Unique (%) 4.2%
Missing (%) 0.0%
Missing (n) 0

Z988 2045 F200 1440 Z010 1290

Other values (1344) 27237

Toggle details

Value	Count Free	quency (%)
Z988	2045	6.4%
F200	1440	4.5%
Z010	1290	4.0%
F603	1284	4.0%
F604	923	2.9%
L989	786	2.5%
Z000	742	2.3%
E119	739	2.3%
H409	615	1.9%
F411	570	1.8%
Other values (1337	') 21578	67.4%

DAT_HORA_PREVISTA

Categorical

 Distinct count
 1558

 Unique (%)
 4.9%

 Missing (%)
 87.1%

 Missing (n)
 27869

23/04/2019 07:00:00 41 11/03/2019 07:00:00 25 22/01/2019 21

Other values (1554) 4056

(Missing) 27869

Toggle details

Value	Count	Frequency (%)
23/04/2019 07:00:00	41	0.1%
11/03/2019 07:00:00	25	0.1%
22/01/2019	21	0.1%
09/01/2019 07:00:00	20	0.1%
25/03/2019	19	0.1%
03/04/2019 07:00:00	19	0.1%
23/01/2019 07:00:00	18	0.1%
18/03/2019	18	0.1%
23/04/2019 12:00:00	18	0.1%
15/04/2019 07:00:00	18	0.1%
Other values (1547)	3926	12.3%
(Missing)	27869	87.1%

DAT_HORA_EVOLUCAO

Categorical

 Distinct count
 16067

 Unique (%)
 50.2%

 Missing (%)
 0.0%

 Missing (n)
 0

20/06/2018 13:00:00 54 03/10/2018 13:00:00 53 02/07/2018 08:00:00 44

Other values (16064) 31861

Toggle details

Value Count Fraguency (%)

value	Ounti	1 Equelley (/0)
20/06/2018 13:00:00	54	0.2%
03/10/2018 13:00:00	53	0.2%
02/07/2018 08:00:00	44	0.1%
02/04/2018 09:00:00	35	0.1%
08/01/2018 09:02:00	28	0.1%
16/04/2018 08:03:00	27	0.1%
17/09/2018 11:08:00	27	0.1%
04/05/2018 10:00:00	21	0.1%
03/05/2018 11:00:00	20	0.1%
10/12/2018 09:00:00	20	0.1%
Other values (16057)	31683	99.0%

DAT_HORA_ANAMNESE Date **Distinct count** 9059 Unique (%) 28.3% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Minimum 2013-03-12 07:00:00 Maximum 2018-12-21 10:00:00 2019

Toggle details

Z019 Z014 Z019 Z010 Z011 Z010 Z013

DAT_HORA_ALTA

Categorical

 Distinct count
 596

 Unique (%)
 1.9%

 Missing (%)
 97.7%

 Missing (n)
 31266

28/05/2018 11:26:00 11 16/05/2018 15:24:00 6 29/03/2018 13:00:00 5 Other values (592) 724

(Missing) 31266

Toggle details

Value	Count	Frequency (%)
28/05/2018 11:26:00	11	0.0%
16/05/2018 15:24:00	6	0.0%
29/03/2018 13:00:00	5	0.0%
21/05/2018 09:24:00	5	0.0%
22/05/2018 10:45:00	5	0.0%
10/05/2018 13:09:00	4	0.0%
19/06/2018 10:24:00	4	0.0%
30/05/2018 12:11:00	4	0.0%
06/04/2018 08:14:00	3	0.0%
11/05/2018 09:14:00	3	0.0%
Other values (585)	696	2.2%
(Missing)	31266	97.7%

QTD_EVOLUCAO

Numeric

Zeros (%)

Distinct count 75 Unique (%) 0.2% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Mean 12.765 Minimum 1 Maximum 102

0.0%

Toggle details

- Statistics
- Histogram
- Common Values
- Extreme Values

Quantile statistics

Minimum	1
5-th percentile	2
Q1	6
Median	10
Q3	18
95-th percentile	30
Maximum	102
Range	101
Interquartile range	12

Descriptive statistics

Standard deviation	10.215
Coef of variation	0.8002
Kurtosis	9.9347
Mean	12.765
MAD	7.3757
Skewness	2.3187
Sum	408636
Variance	104.34
Memory size	250.2 KiB

4	1822	5.7%
6	1817	5.7%
8	1772	5.5%
5	1759	5.5%
3	1711	5.3%
9	1704	5.3%
11	1543	4.8%
10	1516	4.7%
2	1389	4.3%
Other values	s (65) 15126	47 3%

Minimum 5 values

Value Count Frequency (%)

1	939	2.9%
2	1389	4.3%
3	1711	5.3%
4	1822	5.7%
5	1759	5.5%

Maximum 5 values

Value Count Frequency (%)

78	29	0.1%
83	11	0.0%
89	7	0.0%
95	9	0.0%
102	11	0.0%

Date

 Distinct count
 10439

 Unique (%)
 32.6%

 Missing (%)
 0.0%

 Missing (n)
 0

 Infinite (%)
 0.0%

 Infinite (n)
 0

 Minimum
 2018-01-02 08:00:00

 Maximum
 2019-12-09 18:00:00

Toggle details

DIASEMANA

Numerio

Numeric	
Distinct count	7
Unique (%)	0.0%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	2.1951
Minimum	0
Maximum	6
Zeros (%)	21.4%

Toggle details

- Statistics
- Histogram
- Common Values
- Extreme Values

Quantile statistics

Minimum	0
5-th percentile	0
Q1	1
Median	2
Q3	3
95-th percentile	5
Maximum	6
Range	6
Interquartile range	2

1.7147
0.78114
-0.7007
2.1951
1.4407
0.4037
70270
2.9402
250.2 KiB

Value Count Frequency (%)

0	6848	21.4%
3	6201	19.4%
1	5781	18.1%
2	5734	17.9%
4	4342	13.6%
5	1586	5.0%
6	1520	4 7%

Minimum 5 values

Value Count Frequency (%)

0	6848	21.4%
1	5781	18.1%
2	5734	17.9%
3	6201	19.4%
4	4342	13.6%

Maximum 5 values

Value Count Frequency (%)

2 5734 17.9%

3	6201	19.4%
4	4342	13.6%
5	1586	5.0%
6	1520	4.7%

PROTOCOLO

Numeric

 Distinct count
 402

 Unique (%)
 1.3%

 Missing (%)
 0.0%

 Missing (n)
 0

 Infinite (%)
 0.0%

 Infinite (n)
 0

 Mean
 0.20669

 Minimum
 0

 Maximum
 1.2

Zeros (%) 0.4%

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

Minimum	0
5-th percentile	0.011
Q1	0.056
Median	0.112
Q3	0.168
95-th percentile	1.107
Maximum	1.2
Range	1.2
Interquartile range	0.112

Descriptive statistics

Standard deviation	0.31387
Coef of variation	1.5186
Kurtosis	4.2207
Mean	0.20669
MAD	0.19017
Skewness	2.4247
Sum	6616.5
Variance	0.098516
Memory size	250.2 KiB

Value	Count Free	quency (%)
0.006	178	0.6%
0.179	176	0.5%
0.16	173	0.5%
0.105	173	0.5%
0.104	171	0.5%
0.147	167	0.5%
0.196	164	0.5%
0.151	164	0.5%
0.155	163	0.5%
0.055	163	0.5%
Other values (39	92) 30320	94.7%

Minimum 5 values

Value Count Frequency (%)

		3 \ /
0.0	137	0.4%
0.001	145	0.5%
0.002	135	0.4%
0.003	140	0.4%
0.004	123	0.4%

Maximum 5 values

Value Count Frequency (%)

1.196	23	0.1%
1.197	24	0.1%
1.198	14	0.0%
1.199	20	0.1%
1.2	16	0.0%

DURACAO

Categorical

 Distinct count
 13369

 Unique (%)
 41.8%

 Missing (%)
 0.0%

 Missing (n)
 0

637 days 02:02:00 108 1281 days 06:00:00 98 1393 days 03:51:00 ³⁹

Other values (13366) 31767

Toggle details

Value	Count I	Frequency (%)
637 days 02:02:00	108	0.3%
1281 days 06:00:00	98	0.3%
1393 days 03:51:00	39	0.1%
393 days 02:59:00	36	0.1%
1347 days 02:03:00	29	0.1%
1632 days 00:10:00	27	0.1%
970 days 21:57:00	20	0.1%
721 days 04:00:00	17	0.1%
1191 days 00:56:00	17	0.1%
1630 days 01:00:00	16	0.0%
Other values (13359)	31605	98.7%

NDURACAO

Numeric

Distinct count 13369 Unique (%) 41.8% 0.0% Missing (%) Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Mean 927.11 Minimum -333 Maximum 2349.2 Zeros (%) 0.0%

Toggle details

- Statistics
- Histogram
- Common Values
- Extreme Values

Quantile statistics

Minimum	-333
5-th percentile	73.128
Q1	490.86
Median	967.2
Q3	1397
95-th percentile	1634.8
Maximum	2349.2
Range	2682.2
Interquartile range	906.14

Descriptive statistics

Standard deviation 520.14 **Coef of variation** 0.56104 **Kurtosis** -1.1015 Mean 927.11 MAD 452.16 **Skewness** -0.18853 Sum 29679000 **Variance** 270550 **Memory size** 250.2 KiB

Value	Count Free	quency (%)
637.084722222222	108	0.3%
1281.25	98	0.3%
1393.1604166666666	39	0.1%
393.12430555555557	36	0.1%

1347.0854166666666	29	0.1%
1632.006944444443	27	0.1%
970.9145833333333	20	0.1%
721.166666666666	17	0.1%
1191.038888888888	17	0.1%
428.8319444444445	16	0.0%
Other values (13359)	31605	98.7%

Minimum 5 values

Value	Count Freq	uency (%)
-333.0	1	0.0%
-301.8034722222222	1 1	0.0%
-286.8319444444444	5 1	0.0%
-286.8229166666667	1	0.0%
-279.8736111111113	2	0.0%

Maximum 5 values

Value	Count Freq	uency (%)
2146.0	1	0.0%
2164.085416666667	2	0.0%
2175.081944444446	2	0.0%
2236.08125	2	0.0%
2349 1652777777776	2	0.0%

Correlations

PROTOCOLO -

NDURACAO -

index

IDADE -

QTD_EVOLUCAO -

DIASEMANA -

PROTOCOLO -

NDURACAO -

Sample

DAT_HORA_ATENDIMENTO NOM_ENCAMINHAMENTO NOM_MODALIDADE_ATENDIME

1	2018-12-04 10:00:00	RETORNO	AMBULATOI
3	2018-10-22 07:12:00	RETORNO	AMBULATOI
4	2018-09-20 13:00:00	RETORNO	AMBULATOI
5	2018-04-06 15:00:00	RETORNO	AMBULATOI

Análises

▼ Plot do dataset puro

▼ Protocolo x Duração

```
dfProtocoloDuracao = dfLimpo[['PROTOCOLO','NDURACAO']].sample(1000)
%matplotlib inline
sb.pairplot(dfProtocoloDuracao,height=10)
pl.show()
```

 \Box

%matplotlib inline
sb.pairplot(dfLimpo,hue='NOM_MODALIDADE_ATENDIMENTO',height=3)
pl.show()

₽

PF

0.0

```
dfCluster = dfLimpo[['IDADE','PROTOCOLO','NDURACAO']]
X = np.array(dfCluster)
```

▼ Clusterização

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4, random_state=0)

dfCluster

₽		IDADE	PROTOCOLO	NDURACAO
	1	13.039887	0.031	763.104167
	3	51.941257	0.009	1233.008333
	4	37.437147	0.108	515.893750
	5	37.437147	0.069	515.893750
	6	37.437147	0.191	515.893750
	49178	74.020709	1.171	1729.039583
	49179	60.056325	0.024	1335.247222
	49182	77.390572	0.128	522.086806
	49183	67.998791	1.033	708.041667
	49186	58.470024	0.110	1519.061806

32012 rows × 3 columns

kmeans.fit(X)

kmeans.labels_

r→ array([2, 0, 2, ..., 2, 2, 1], dtype=int32)

dfCluster['cluster'] = kmeans.labels_

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarnir
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="http://pandas.pydata.org/pandas-docs/stable/use"""Entry point for launching an IPython kernel.

▼ Plotando o resultado da clusterização

sb.pairplot(dfCluster,hue='cluster')

 \Box

/usr/local/lib/pvthon3.6/dist-packages/statsmodels/nonparametric/kde.pv:487: Runtime

▼ Regressão

Double-click (or enter) to edit

au - ///

dfLimpo					
₽		DAT_HORA_ATENDIMENTO	NOM_ENCAMINHAMENTO	NOM_MODALIDADE_ATENDIMENTO	NOM_MUN
	1	2018-12-04 10:00:00	RETORNO	AMBULATORIO	NOVO J
	3	2018-10-22 07:12:00	RETORNO	AMBULATORIO	
	4	2018-09-20 13:00:00	RETORNO	AMBULATORIO	IMPEI
	5	2018-04-06 15:00:00	RETORNO	AMBULATORIO	IMPEI
	6	2018-09-04 12:33:00	RETORNO	AMBULATORIO	IMPEI
	49178	2018-07-05 07:00:00	RETORNO	AMBULATORIO	OF
	49179	2018-04-10 12:00:00	RETORNO	AMBULATORIO	CRI
	49182	2018-05-04 12:08:00	RETORNO	AMBULATORIO	PARA(PA
	49183	2018-02-19 07:10:00	RETORNO	AMBULATORIO	OF
	49186	2018-08-29 12:33:00	RETORNO	AMBULATORIO	M

32012 rows × 18 columns

import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

dfRegressao = pd.concat([dfRegressao, pd.get_dummies(dfRegressao['NOM_MODALIDADE_ATENDIMEN

dfRegressao

 \Box

	NDURACAO	PROTOCOLO	NOM_MODALIDADE_ATENDIMENTO	AMBULATORIO	INTERNAÇÃO	E
1	763.104167	0.031	AMBULATORIO	1	0	
3	1233.008333	0.009	AMBULATORIO	1	0	
4	515.893750	0.108	AMBULATORIO	1	0	
5	515.893750	0.069	AMBULATORIO	1	0	
6	515.893750	0.191	AMBULATORIO	1	0	
49178	1729.039583	1.171	AMBULATORIO	1	0	
49179	1335.247222	0.024	AMBULATORIO	1	0	
49182	522.086806	0.128	AMBULATORIO	1	0	
49183	708.041667	1.033	AMBULATORIO	1	0	
49186	1519.061806	0.110	AMBULATORIO	1	0	

dfRegressao = dfRegressao.drop('NOM_MODALIDADE_ATENDIMENTO', axis=1)

```
# passando os valores de x e y como Dataframes
```

model = LinearRegression()

model.fit(X, Y)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

▼ Teste predicao regressao

```
teste = [[0,1,0,0,0]]
```

X = dfRegressao[['PROTOCOLO', 'AMBULATORIO', 'INTERNAÇÃO', 'SADT EXTERNO', 'SADT UBS MARILIA']

Y = dfRegressao[['NDURACAO']]

[#] criando e treinando o modelo

```
model.predict(teste)
```

```
□→ array([[902.79729771]])
```

Plot regressao

```
%matplotlib inline
# passando os valores de x e y como Dataframes
dfRegressaoPlot = dfRegressao
X = dfRegressaoPlot[['PROTOCOLO']]
Y = dfRegressaoPlot[['NDURACAO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)
pl.plot(X, Y_pred, color='red')
pl.show()
```


0.4

0.6

0.8

10

12

▼ Correção dos OUTLIERS

0.0

0.2

Double-click (or enter) to edit

```
%matplotlib inline
# passando os valores de x e y como Dataframes

dfRegressaoCorrigido = dfLimpo[['NDURACAO','PROTOCOLO','NOM_MODALIDADE_ATENDIMENTO','QTD_E

dfRegressaoCorrigido = pd.concat([dfRegressaoCorrigido, pd.get_dummies(dfRegressaoCorrigic

dfRegressaoPlot = dfRegressaoCorrigido[dfRegressaoCorrigido.QTD_EVOLUCAO>2]
```

ullegi essaur tut

 \Box

	NDURACAO	PROTOCOLO	NOM_MODALIDADE_ATENDIMENTO	QTD_EVOLUCAO	AMBULATORIO
1	763.104167	0.031	AMBULATORIO	14	1
3	1233.008333	0.009	AMBULATORIO	9	1
4	515.893750	0.108	AMBULATORIO	13	1
5	515.893750	0.069	AMBULATORIO	13	1
6	515.893750	0.191	AMBULATORIO	13	1
49176	583.083333	0.171	AMBULATORIO	6	1
49178	1729.039583	1.171	AMBULATORIO	8	1
49179	1335.247222	0.024	AMBULATORIO	16	1
49183	708.041667	1.033	AMBULATORIO	6	1
49186	1519.061806	0.110	AMBULATORIO	17	1

```
X = dfRegressaoPlot[['PROTOCOLO']]
Y = dfRegressaoPlot[['QTD_EVOLUCAO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)
```

pl.plot(X, Y_pred, color='red')
pl.show()

→ Conclusão

Foi CONSTATADO que a eficiência da especialidade está intimamente ligada à aplicação correta o