Ecole Centrale de Nantes Université de Nantes APN, MACS, MFA Année 2019-2020

Schémas combinés volumes Finis/éléments finis pour des écoulements en milieu poreux

Mazen SAAD

Centrale Nantes/Université de Nantes Energies – X3MA040	M. Saad
Table des matières	
1 Volumes finis elliptiques	4
2 Problèmes d'évolution	12

1 Volumes finis elliptiques

Exercice 1.1 (Matrices monotones)

- 1. On dit qu'une matrice A est **monotone** ssi $(A \text{ inversible et } A^{-1} \ge 0)$. Montrer que A monotone ssi $(Ax \ge 0 \text{ alors } x \ge 0)$.
- 2. (Exemples de matrices monotones). Soit A une matrice vérifiant $a_{i,j} \leq 0 \ \forall i \neq j$ et $\sum_{j=1}^{n} a_{i,j} > 0$ pour tout i = 1, N. Montrer que
 - (a) $a_{i,i} > 0$.
 - (b) Ecrire A = D(I M) avec D la diagonale de A et M à préciser.
 - (c) Montrer que $\rho(M) < 1$ (ρ rayon spectrale) et A monotone.
- 3. En déduire que si A une matrice inversible vérifiant $a_{i,j} \leq 0 \ \forall i \neq j \ \text{et} \ \sum_{j=1}^n a_{i,j} \geq 0$, alors A monotone.

Exercice 1.2 (Condition suffisante pour la stabilité l^{∞})

Soit A une matrice vérifiant

- La matrice A est **monotone**
- \exists un vecteur $V \in \mathbb{R}^n$ tel que $AV \geq \mathcal{E}$ avec $\mathcal{E} = (1, \dots, 1)$

Alors $||A^{-1}||_{\infty} \le ||V||_{\infty}$.

Exercice 1.3 (Equation de Laplace en 1D sur un maillage non uniforme)

On considère le problème suivant

$$-\partial_x(\lambda(x)\partial_x u)(x) = f(x) \text{ pour } x \in]0, L[$$
(1.1)

$$u(0) = u(L) = 0 (1.2)$$

avec f régulière, dans $C^0(]0,1[),\,\lambda(x)\geq\lambda_0>0.$

On souhaite approcher la solution du problème sur un maillage irrégulier. Pour cela, on divise l'intervalle]0,L[en N intervalles de longueur $h_1,\,h_2,\,...h_N.$ On note x_i le centre de la maille $M_i=]x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}[$, alors $x_{\frac{1}{2}}=0$ et $x_{N+\frac{1}{2}}=L$

$$0 = x_{\frac{1}{2}} \qquad \qquad x_{i-\frac{1}{2}} \stackrel{\bigstar}{x_i} x_{i+\frac{1}{2}} \qquad x_{i+1} \qquad x_{i+1} \qquad \qquad L = x_{N+\frac{1}{2}}$$

FIGURE 1 – Maillage.

Le principe des volumes finis consiste à intégrer l'équation sur chaque maille M_i :

$$\lambda(x_{i-\frac{1}{2}})\partial_x u(x_{i-\frac{1}{2}}) - \lambda(x_{i+\frac{1}{2}})\partial_x u(x_{i+\frac{1}{2}}) = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x)dx, \text{ pour } i = 1, 2, ..., N.$$
 (1.3)

Pour approcher la dérivée $\partial_x u$ aux interfaces, on considère l'approximation la plus naturelle

$$\partial_x u(x_{i+\frac{1}{2}}) = \frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}}, \text{ pour } i = 2, N-1$$
 (1.4)

avec $h_{i+\frac{1}{2}} = \frac{h_{i+1} + h_i}{2} = x_{i+1} - x_i$. C'est une approximation centrée par rapport au point $\frac{x_{i+1} + x_i}{2}$ qui est différent du point $x_{i+\frac{1}{2}}$ en général.

En posant $f_i = \frac{1}{h_i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x) dx$, on considère alors le schéma numérique :

$$\lambda_{i-\frac{1}{2}} \frac{u_i - u_{i-1}}{h_{i-\frac{1}{2}}} - \lambda_{i+\frac{1}{2}} \frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}} = h_i f_i \text{ pour } i = 2, N - 1$$
(1.5)

Pour traiter les conditions aux limites, par exemple pour la maille M_1 , on approche alors la dérivée par une dérivée décentrée

$$\partial_x u(x_{\frac{1}{2}}) = \frac{u_1 - u_{\frac{1}{2}}}{x_1 - x_{\frac{1}{2}}},\tag{1.6}$$

On a $u_{\frac{1}{2}} = u(0) = 0$, et on note pour garder les mêmes notations $h_{\frac{1}{2}} = x_1 - x_{\frac{1}{2}}$.

- 1. Préciser alors la condition aux limites à droite.
- 2. Ecrire précisément le sytème linéaire à résoudre, en prolongeant la formule pour (1.5) pour i=1,N
- 3. Montrer que le système se traduit sous forme matricielle

$$A_h U_h = F_h$$

avec

$$U_h = (u_1, u_2, \cdots, u_N)^T, \quad F_h = (h_1 f_1, h_2 f_2, \cdots, h_N f_N)^T$$

Préciser A_h . Montrer que A_h est inversible en localisant les valeurs propres de A_h . Montrer que A_h est monotone.

4. On va montrer le principe du maximum discret, à savoir si $F_h \ge 0$ alors $u_h \ge 0$. Pour cela, soit i_0 un plus petit indice tel que

$$u_{i_0} = \min_i u_i < 0$$

Ecrire la ligne i_0 du système linéaire et conclure.

- 5. Montrer que le principe du maximum assure que la matrice A_h est inversible.
- 6. Formulation variationnelle discrète.
 - (a) Définir les flux $\mathcal{F}_{i+\frac{1}{2}}$, pour i=0,N de telle sorte que

$$\mathcal{F}_{i+\frac{1}{2}}(u_h) - \mathcal{F}_{i-\frac{1}{2}}(u_h) = h_i f_i \text{ pour } i = 1, N$$
 (1.7)

(b) Intégration par parties. Soit $v_h = (v_1, v_2 \cdots v_N)$. Montrer que

$$\sum_{i=1}^{N-1} (\mathcal{F}_{i+\frac{1}{2}} - \mathcal{F}_{i-\frac{1}{2}}) v_i = \sum_{i=1}^{N-1} \mathcal{F}_{i+\frac{1}{2}} (v_i - v_{i+1}) + \mathcal{F}_{N+\frac{1}{2}} v_N - F_{\frac{1}{2}} v_1$$

En prenant $v_0 = v_{N+1} = 0$, On déduit la formule d'intégration par parties discrètes

$$\sum_{i=1}^{N-1} (\mathcal{F}_{i+\frac{1}{2}} - \mathcal{F}_{i-\frac{1}{2}}) v_i = \sum_{i=0}^{N} \mathcal{F}_{i+\frac{1}{2}} (v_i - v_{i+1})$$

(c) En prenant $u_0 = u_{N+1} = 0$, montrer que

$$(A_h u_h, v_h) = \sum_{i=0}^{N} h_{i+\frac{1}{2}} \lambda_{i+\frac{1}{2}} \left(\frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}} \right) \left(\frac{v_{i+1} - v_i}{h_{i+\frac{1}{2}}} \right).$$
 (1.8)

Montrer que A_h est définie positive.

(d) On définit un gradient discret ∂_x^h constant par interface comme suit :

$$\partial_x^h u_h(x) = \begin{cases} \frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}} & \text{si } x \in]x_i, x_{i+1}, i = 1, N-1 \\ \frac{u_1 - 0}{h_{\frac{1}{2}}} & \text{si } x \in]0, x_1[\\ \frac{0 - u_N}{h_{N+\frac{1}{2}}} & \text{si } x \in]x_N, L[\end{cases}$$

Définir la fonction $\lambda_h(x)$ constante par interface et en déduire que (1.8) est équivalente à

$$(A_h u_h, v_h) = \int_0^L \lambda_h \partial_x^h u_h(x) \partial_x^h v_h(x) \ dx = \int_0^L f_h(x) v_h(x) \ dx \tag{1.9}$$

7. Inégalité de Poincaré en 1D. Montrer que

$$||u_h||_{L^2} := \left(\sum_{i=1}^N h_i |u_i|^2\right)^{\frac{1}{2}} \le \sqrt{L} ||u_h||_{\infty} \le L ||\partial_x^h u_h||_{L^2} := L \left(\sum_{i=0}^N h_{i+\frac{1}{2}} |\frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}}|^2\right)^{\frac{1}{2}}$$

8. Estimation H^1 discrete. Montrer qu'il existe C indépendante de h, telle que

$$\lambda_0 \|\partial_x^h u_h\|_{L^2(0,L)} \le C \|f_h\|_2 \le C \|f\|_{L^2(0,L)}$$

- 9. Convergence vers une solution faible.
 - (a) Montrer que qu'il existe une sous suite, encore notée, $(u_h)_h$ telle que

$$u_h \rightharpoonup u$$
 faiblement dans $L^2(0, L)$ (1.10)

$$\partial_x^h u_h \to \xi$$
 faiblement dans $L^2(0, L)$ (1.11)

(b) Soit $\varphi \in \mathcal{D}(0, L)$. Montrer que si

$$E_h = \int_0^L \partial_x^h u_h(x) \varphi(x) \, dx + \int_0^L u_h \partial_x \varphi dx \to 0, \text{ quand } h \to 0$$
 (1.12)

alors $\xi = \partial_x u \in \mathcal{D}'(0, L)$ (au sens des distributions).

(c) Montrer que

$$\int_{0}^{L} u_{h} \partial_{x} \varphi dx = -\sum_{i=0}^{N} (u_{i+1} - u_{i}) \varphi(x_{i+\frac{1}{2}}).$$

En utilisant la définition du gradient discret, développer $\int_0^L \partial_x^h u_h(x) \varphi(x) dx$. En déduire qu'il existe une fonction $c_i(\varphi)$ dépendante de φ telle

$$E_h = \sum_{i=0}^{N} \left(\frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}} \right) c_i(\varphi) h_{i+\frac{1}{2}}^2.$$

Montrer (1.12) et conclure.

(d) Soit $v \in \mathcal{D}(0, L)$, on considère $v_h(x)$ la fonction constante par morceaux associée à $(v(x_i))_{i=1,N}$. Passer à la limite dans la formulation variationnelle discrète (1.9) et préciser la formulation décrite par la solution u.

10. Consistance. Dans cette partie, pour alléger les notations on considère $\lambda = 1$. On définit l'erreur de troncature $T_h = {}^t (T_0, T_1, ..., T_N)$ avec

$$(T_h)_i = \frac{1}{h_i} \left(\frac{u(x_i) - u(x_{i-1})}{h_{i-\frac{1}{2}}} - \frac{u(x_{i+1}) - u(x_i)}{h_{i+\frac{1}{2}}} \right) - f_i := (\tilde{A}_h \overline{U}_h)_i - f_i$$

avec $u(x_i)$ est la valeur de la solution exacte au point x_i , le vecteur $\overline{U}_h = (u(x_i))_i$, la matrice \tilde{A}_h est la matrice A_h où chaque ligne i est divisée par h_i .

- (a) Soit f = 1, donner la solution exacte u(x). Considérer le maillage tel que $h_{2i} = h$ et $h_{2i+1} = 2h$. Calculer T_{2i} et T_{2i+1} . Montrer que le schéma n'est pas consistant.
- (b) Ecrire le développement de Taylor de $\frac{u(x_{i+1})-u(x_i)}{h_{i+\frac{1}{2}}}$ au point $x_{i+\frac{1}{2}}$ à l'ordre 4 et montrer que l'erreur de consistance s'écrit comme suit :

$$T_h = T_h^0 + T_h^1, (1.13)$$

avec

$$T_h^0 = \frac{1}{h_i} \left(u'(x_{i+\frac{1}{2}}) - u'(x_{i-\frac{1}{2}}) \right) - \frac{1}{h_i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x) dx + O(h^2)$$
 (1.14)

$$T_h^1 = \frac{1}{h_i} (\alpha_{i + \frac{1}{2}} - \alpha_{i - \frac{1}{2}}) + O(h)$$
 (1.15)

En déduire que le schéma est consistant ssi le maillage est uniforme.

(c) (Consistance faible). Montrer que T_h^1 est l'image par l'opérateur aux différences d'une fonction ψ_h définie constante par maille, telle que

$$T_h^1 = \tilde{A}_h \psi_h + O(h) \text{ et } (\psi_h)_i = \frac{h_i^2}{4} u''(x_i) \text{ sur }]x_{i-1/2}, x_{i+1/2}[.$$
 (1.16)

(d) Stabilité L^{∞} . On définit $v(x) = x - x^2$, montrer que

$$(\tilde{A}_h V_h)_i = 1 + \frac{h_{i-1} h_{i+1}}{2h_i}.$$

En déduire

$$\|\tilde{A}_h^{-1}\|_{\infty} \le 1/4.$$

(e) (Ordre de convergence) Nous allons démontré que la consistance faible et la stabilité assure la convergence su schéma.

Montrer que

$$\|\overline{U_h} - U_h\|_{\infty} \le \|\tilde{A}_h^{-1}\|_{\infty} \|T_h^0\|_{\infty} + \|\psi_h\|_{\infty} + O(h)\|\tilde{A}_h^{-1}\|_{\infty}.$$

Conclure.

Exercice 1.4 (Equation de Laplace avec terme convectif sur un maillage triangulaire) On considère l'équation elliptique suivante

$$-\Delta u(x) + \operatorname{div}(\mathbf{V}(x)u(x)) + bu(x) = f(x), \quad x \in \Omega$$
(1.17)

avec la condition aux limites suivante :

$$u(x) = 0, \quad x \in \partial\Omega.$$
 (1.18)

On suppose:

- (i) Ω est un ouvert borné polygonal de \mathbb{R}^2 ,
- (ii) $b \ge 0$
- (iii) $f \in L^2(\Omega)$
- (iv) $\mathbf{V} \in \mathcal{C}^1(\bar{\Omega}, \mathbb{R}^2)$ et div $\mathbf{V}(x) \geq 0$.

Soit \mathcal{T} une triangulation admissible et satisfaisant la condition d'orthogonalité de Ω . On note

- (a) $\sigma_{KL} = \partial K \cap \partial L$, pour $K, L \in \mathcal{T}$.
- (b) x_K le centre de K, et $x_K x_L$ est orthogonal à σ_{KL} .
- (c) $d_{KL} = ||x_L x_K|| \text{ si } \sigma_{KL} \nsubseteq \partial \Omega \text{ et } d_{K_{\sigma}} = ||x_K x_{\sigma}|| \text{ si } \sigma = \partial K \cap \partial \Omega.$
- (d) Les voisins : $\mathcal{N}_K^o = \{L; \sigma_{KL} \nsubseteq \partial \Omega\}, \, \mathcal{N}_K^\sigma = \{\sigma; \sigma \subset \partial K \cap \partial \Omega\} \text{ et } \mathcal{N}_K = \mathcal{N}_K^o \cup \mathcal{N}_K^\sigma.$
- (e) Coefficient de transmissibilité : $\tau_{KL} = |\sigma_{KL}|/d_{KL}$ et $\tau_{K_{\sigma}} = |\sigma_{K_{\sigma}}|/d_{K_{\sigma}}$
- (f) $\mathcal{E}^o = \{\sigma_{KL}; \sigma_{KL} \nsubseteq \partial \Omega\}$: ensemble des segments à l'intérieur du domaine.
- (g) $\mathcal{E}^{\sigma} = \{ \sigma_{K_{\sigma}}; \sigma_{K_{\sigma}} \subset \partial \Omega \cap \partial K \}$

On considère le schéma numérique suivant : Pour tout K

$$\sum_{L \in N_K^o} \tau_{KL}(u_K - u_L) + \sum_{\sigma \in N_K^\sigma} \tau_{K_\sigma} u_K + \sum_{L \in N_K^o} V_{KL} u_{KL} + \sum_{\sigma \in N_K^\sigma} V_{K_\sigma} u_{K_\sigma} + b|K|u_K = |K|f_K, \ (1.19)$$

οù

$$V_{KL} = \int_{\sigma_{KL}} \mathbf{V}(x) \cdot n_{KL} dx, \text{ et } V_{K_{\sigma}} = \int_{\sigma_{K_{\sigma}}} \mathbf{V}(x) \cdot n_{K_{\sigma}} dx,$$

$$u_{KL} = \begin{cases} u_K & \text{si } V_{KL} \ge 0 \\ u_L & \text{si } V_{KL} < 0, \end{cases} \text{ et } u_{K_{\sigma}} = \begin{cases} u_K & \text{si } V_{K_{\sigma}} \ge 0 \\ 0 & \text{si } V_{K_{\sigma}} \ge 0, \end{cases}$$

 $f_K = \frac{1}{|K|} \int_K f(x) dx$, |K| = aire(K), $|\sigma_{KL}| = mesure(\sigma_{KL})$.

1. On note $V_{KL}^+ = \max(0, V_{KL})$ et $V_{KL}^- = \min(0, V_{KL})$. Soit $G_{KL} = V_{KL}u_{KL}$ le flux convectif à l'interface σ_{KL} , c'est un schéma **upwind ou upstream ou décentré**. Exprimer le flux en fonction de V_{KL}^+ et V_{KL}^- et montrer que le flux est consevatif :

$$G_{KL} = -G_{LK}$$
.

2. Ecrire le système linéaire associé à la figure 2.

FIGURE 2 – Maillage

On va montrer le principe du maximum suivant :
 Si f_K ≥ 0 pour tout K ∈ T, alors u_K ≥ 0 pour tout K ∈ T.
 Pour cela, soit K₀ = argmin_{K∈Th}u_K. On suppose u_{K0} < 0. Ecrire l'équation satisfaite par K₀. Montrer que le terme convectif vérifie :

$$\sum_{L \in N_{K_0}} V_{K_0 L} u_{K_0 L} \le u_{K_0} \sum_{L \in N_{K_0}} V_{K_0 L} \le 0.$$

Déduire une contradiction sur l'équation de K_0 et conclure.

4. Terme convectif cas continu. Montrer que, pour tout $u \in H_0^1(\Omega)$,

$$\int_{\Omega} \operatorname{div}(\mathbf{V}u)u \, dx = -\int_{\Omega} \mathbf{V} \cdot \nabla \frac{u^2}{2} \, dx = \int_{\Omega} \operatorname{div}(\mathbf{V}) \frac{u^2}{2} \, dx \ge 0$$

5. Terme convectif cas discret. On note

$$G_{conv} = \sum_{K \in \mathcal{T}_h} \left(\sum_{L \in N_K^o} V_{KL} u_{KL} + \sum_{\sigma \in N_K^\sigma} V_{K_\sigma} u_{K_\sigma} \right) u_K.$$

Montrer que

$$G_{conv} = \sum_{TKL} \left(\frac{V_{KL}}{2} (u_K^2 - u_L^2) + \frac{|V_{KL}|}{2} (u_K - u_L)^2 \right), \tag{1.20}$$

avec la notation $u_L = 0$ si $\sigma_{KL} \in \partial \Omega$.

Montrer que

$$\sum_{\sigma_{KL}} \frac{V_{KL}}{2} (u_K^2 - u_L^2) = \frac{1}{2} \sum_{K \in \mathcal{T}_b} u_K^2 \int_K \operatorname{div}(\mathbf{V}) \, dx. \tag{1.21}$$

En déduire que

$$G_{conv} \geq 0$$
.

6. On note $u_h(x)$ la fonction définit constante par triangle, c'est-à-dire : $u_h(x) = u_K$ pour $x \in K$. Définir, d'après le cours, le gradient discret noté $\nabla_h u_h$ constant par diamond. On définit alors la norme discrète suivante :

$$||u_h||_{1,h} = \left(\sum_{\sigma_{KL} \in \mathcal{E}^o} \tau_{KL} |u_K - u_L|^2 + \sum_{\sigma_{K\sigma} \in \mathcal{E}^\sigma} \tau_{K\sigma} |u_K|^2\right)^{\frac{1}{2}}.$$

Soit $\psi_h(x) = \sum_{K \in \mathcal{T}_h} \psi_K \mathbf{1}_K(x)$. Montrer que le schéma (1.19) est équivalent à la formulation variationnelle discrète

$$\left(\sum_{\sigma_{KL} \in \mathcal{E}^o} \tau_{KL} (u_K - u_L) (\psi_K - \psi_L) + \sum_{\sigma_{K_\sigma} \in \mathcal{E}^\sigma} \tau_{K_\sigma} u_K \psi_K\right) + \sum_{K \in \mathcal{T}_h} \left(\sum_{L \in N_K^o} V_{KL} u_{KL} + \sum_{\sigma \in N_K^\sigma} V_{K_\sigma} u_{K_\sigma}\right) \psi_K + b \int_{\Omega} u_h \psi_h \, dx = \int_{\Omega} f_h \psi_h \, dx, \quad (1.22)$$

7. En utilisant l'inégalité de Poincaré, montrer que la norme H^1 -discrète est bornée : $\exists C>0$ telle que

$$||u_h||_{1,h} \leq C.$$

Que peut-on déduire sur la convergence de la suite $(u_h)_h$.

- 8. Projection dans L^2 .
 - (a) Soit $\varphi \in \mathcal{C}_c^0(\Omega)$, vérifier que $\varphi_h(x) = \sum_{K \in \mathcal{T}_h} \varphi(x_K) \mathbf{1}_K(x)$ converge fortement dans $L^2(\Omega)$ (et dans $L^p(\Omega), p \ge 1$).
 - (b) Pour $f \in L^2(\Omega)$, la fonction $f_h(x) := \pi_h f := \sum_{K \in \mathcal{T}_h} f_K \mathbf{1}_K(x)$ et f_K est la moyenne sur K. Montrer que i) $\|\pi_h f\|_{L^2(\Omega)} \le \|f\|_{L^2(\Omega)}$, ii) Par densité de $\mathcal{C}_c^0(\Omega)$ dans $L^2(\Omega)$, montrer que $\pi_h f \longrightarrow f$ dans $L^2(\Omega)$, iii) $\pi_h f \longrightarrow f$ dans $L^p(\Omega)$ $p \ge 1$.
- 9. Convergence. Soit $\varphi \in \mathcal{D}(\Omega)$. Soit $\varphi_h(x) = \sum_{K \in \mathcal{T}_h} \varphi(x_K) \mathbf{1}_K(x)$, on considère alors $\varphi_h(x)$ comme fonction test dans (1.23) et on note chaque terme comme suit : $T_h^d + T_h^c + T_h^b = T_h^f$.
 - (a) Montrer que T_h^d s'écrit :

$$T_h^d = \int_{\Omega} \nabla_h u_h \cdot (\nabla \varphi)_h \, dx \tag{1.23}$$

où $(\nabla \varphi)_h$ est une fonction définie constante par diamond comme le gradient de ϕ en un point du diamond. Passer à la limite.

- (b) Montrer la convergence de T_h^b et T_h^f .
- (c) Terme Convectif.
 - i. Le cas continue. Montrer que, pour $u \in H_0^1(\Omega)$ et $\varphi \in H^1(\Omega)$

$$\int_{\Omega} \operatorname{div}(\mathbf{V}u)\varphi dx = \int_{\Omega} u\psi \operatorname{div}\mathbf{V} dx - \int_{\Omega} u \operatorname{div}(\mathbf{V}\varphi) dx.$$

ii. Vérifier que

$$T_h^c = \sum_{K \in \mathcal{T}_h} \sum_{L \in N_K} u_K V_{KL} \varphi(x_K) + \sum_{K \in \mathcal{T}_h} \sum_{L \in N_K} (u_{KL} - u_K) V_{KL} \varphi(x_K) := (T_h^c)_1 + (T_h^c)_2$$

iii. Montrer que

$$(T_h^c)_1 = \int_{\Omega} u_h \varphi_h \operatorname{div} \mathbf{V} dx.$$

Passer à la limite.

iv. Vérifier que

$$(T_h^c)_2 = \sum_{K \in \mathcal{T}_h} \sum_{L \in N_K} (u_{KL} - u_K) \int_{\sigma_{KL}} \mathbf{V} \cdot n_{KL} (\varphi(x_K) - \varphi(x)) dx$$

$$+ \sum_{K \in \mathcal{T}_h} \sum_{L \in N_K} u_{KL} \int_{\sigma_{KL}} (\mathbf{V} \cdot n_{KL} \varphi(x)) dx - \sum_{K \in \mathcal{T}_h} \sum_{L \in N_K} u_K \int_{\sigma_{KL}} (\mathbf{V} \cdot n_{KL} \varphi(x)) dx$$

$$:= (R_h^c)_1 + (R_h^c)_2 + (R_h^c)_3$$

v. Montrer que

$$|(R_h^c)_1| \le C(\varphi)h||u_h||_{1,h}.$$

- vi. En intégrant par parties, montrer que $(R_h^c)_2 = 0$.
- vii. Montrer que

$$(R_h^c)_3 = -\int_{\Omega} u_h \operatorname{div}(\varphi \mathbf{V}) \ dx.$$

Conclure.

10. Ecrire la formulation variationnelle satisfaite par u.

2 Problèmes d'évolution

Exercice 2.1 (Schéma décentré sur un maillage triangulaire.)

On considère le problème de Cauchy pour une équation hyperbolique linéaire en dimension deux d'espace :

$$\begin{cases} \partial_t u(x,y,t) + V(x,y) \cdot \nabla u(x,y,t) = 0 \text{ pour } t \in (0,T), (x,y) \in \mathbb{R}^2 \\ u(x,y,0) = u^0(x,y) \text{ pour } (x,y) \in \mathbb{R}^2 \end{cases}$$
 (2.1)

Ce problème modélise le transport d'un contaminant dans le sol. On suppose

$$0 \le u_{min} \le u^0(x, y) \le u_{max} \tag{2.2}$$

V est une fonction vectorielle continue telle que
$$divV(x,y) = 0$$
. (2.3)

Soit $(t_n)_{n=0,\dots,N}$ une partition de [0,T] de pas fixe $\delta t = t_{n+1} - t_n$, et soit \mathcal{T}_h une triangularisation de \mathbb{R}^2 , $\mathcal{T}_h = \bigcup_i K_i$ où K_i désigne un triangle quelconque. On note :

$$|K_i| \qquad \text{la surface du triangle } K_i \\ \mathcal{E}_i = \{j; \partial K_i \cap \partial K_j \neq \Phi\} \qquad \text{ensemble des voisins du triangle } K_i, card \ \mathcal{E}_i = 3 \\ \Gamma_{ij} = \partial K_i \cap \partial K_j \qquad \text{côt\'es de } K_i, \ j \in \mathcal{E}_i \\ n_{ij} \qquad \text{normale à } \Gamma_{i,j} \text{ ext\'erieure à } K_i (n_{ij} = -n_{ji}) \\ |\Gamma_{ij}| \qquad \text{la longueur du côt\'e } \Gamma_{ij} \\ \mathcal{A}_h \qquad \text{famille des ar\retes.}$$

(faire un dessin avec ces notations).

On suppose que les triangles ne dégénèrent pas : $\exists a, b > 0$ tels que

$$ah \le |\Gamma_{ij}| \le bh, \qquad ah^2 \le |K_i| \le bh^2; \qquad \forall \Gamma_{ij} \in \mathcal{A}_h \qquad \forall K_i \in \mathcal{T}_h.$$
 (2.4)

On définit K_i le volume de contrôle et on désigne par (x_i, y_i) le centre de gravité de K_i et par u_i^n la solution approchée sur la maille K_i et à l'instant t^n . Sur un côté $\Gamma_{i,j}$, la vitesse V est calculée par

$$(V \cdot n)_{ij} = \frac{1}{|\Gamma_{ij}|} \int_{\Gamma_{ij}} V \cdot n \ d\sigma.$$

1. En utilisant (2.3), Montrer que pour tout K_i

$$\sum_{j \in \mathcal{E}_i} (V \cdot n)_{ij} |\Gamma_{ij}| = 0.$$
(2.5)

2. En intégrant l'équation (2.1) sur $K_i \times (t_n, t_{n+1})$, montrer que le schéma aux volumes finis explicite décentré amont s'écrit pour n = 0, N - 1

$$u_i^{n+1} = u_i^n - \frac{\delta t}{|K_i|} \sum_{j \in \mathcal{E}_i} |\Gamma_{ij}| \left((V \cdot n)_{ij} \right)^+ u_i^n + ((V \cdot n)_{i,j})^- u_j^n \right)$$
 (2.6)

avec les notations $a^+=\frac{a+|a|}{2},~a^-=\frac{a-|a|}{2}$ et $u_i^0=\frac{1}{|K_i|}\int_{K_i}u^0(x,y)dxdy$. En déduire que ce schéma s'écrit :

$$u_i^{n+1} = u_i^n - \frac{\delta t}{|K_i|} \sum_{j \in \mathcal{E}_i} |\Gamma_{i,j}| (-(V \cdot n)_{i,j})^+ (u_i^n - u_j^n).$$
 (2.7)

3. Montrer que sous une condition de type CFL (une relation reliant δt , h, V, a et b) le schéma (2.7) est L^{∞} stable. En déduire aussi que

$$u_{min} \le u_i^n \le u_{max}, \forall i, \forall n.$$

4. Stabilité L^2 . On note $w_{ij} = -|\Gamma_{ij}|(V \cdot n)_{ij}$. On suppose par la suite la condition de type CFL suivante :

$$\frac{\delta t}{|K_i|} \sum_{j \in \mathcal{E}_i} w_{ij}^+ \le 1 - \xi \tag{2.8}$$

avec $\xi > 0$. Cette condition assure-t-elle la stabilité L^{∞} du schéma? pourquoi?

(a) Montrer qu'en utilisant l'inégalité de Cauchy-Schwarz

$$(u_i^{n+1} - u_i^n)^2 \le \frac{\delta t^2}{|K_i|^2} \left(\sum_{j \in \mathcal{E}_i} w_{ij}^+ \right) \left(\sum_{j \in \mathcal{E}_i} w_{ij}^+ (u_i^n - u_j^n)^2 \right)$$
(2.9)

En déduire que

$$\sum_{n=0}^{N-1} \sum_{i} |K_{i}| (u_{i}^{n+1} - u_{i}^{n})^{2} \le (1 - \xi) \sum_{n=0}^{N-1} \delta t \sum_{i} \sum_{j \in \mathcal{E}_{i}} w_{ij}^{+} (u_{i}^{n} - u_{j}^{n})^{2}.$$
 (2.10)

(b) Vérifier que

$$(u_i^{n+1} - u_i^n)u_i^n = \frac{1}{2}(u_i^{n+1})^2 - \frac{1}{2}(u_i^n)^2 - \frac{1}{2}(u_i^{n+1} - u_i^n)^2.$$
 (2.11)

On définit la norme 2 par $||u^n||_2 = (\sum_i |K_i||u_i^n|^2)^{\frac{1}{2}}$, Montrer que le schéma vérifie

$$\frac{1}{2} \|u^N\|_2^2 - \frac{1}{2} \|u^0\|_2^2 - \frac{1}{2} \sum_{n=0}^{N-1} \|u^{n+1} - u^n\|_2^2 + \sum_{n=0}^{N-1} \delta t \sum_i \sum_{j \in \mathcal{E}_i} w_{i,j}^+(u_i^n - u_j^n) u_i^n = 0. \quad (2.12)$$

(c) Montrer que

$$\sum_{n=0}^{N-1} \delta t \sum_{i} \sum_{j \in \mathcal{E}_i} w_{i,j}^+(|u_i^n|^2 - |u_j^n|^2) = 0.$$
 (2.13)

(Indication : regrouper cette expression arête par arête).

(d) Vérifier que

$$(u_i^n - u_j^n)u_i^n = \frac{1}{2}(u_i^n - u_j^n)^2 + \frac{1}{2}(u_i^n)^2 - \frac{1}{2}(u_j^n)^2, \tag{2.14}$$

et montrer que

$$||u^{N}||_{2}^{2} + \sum_{n=0}^{N-1} \delta t \sum_{i} \sum_{j \in \mathcal{E}_{i}} w_{i,j}^{+} (u_{i}^{n} - u_{j}^{n})^{2} \le ||u^{0}||_{2}^{2} + \sum_{n=0}^{N-1} ||u^{n+1} - u^{n}||_{2}^{2}$$
 (2.15)

(e) En déduire que

$$||u^N||_2 \le ||u^0||_2,$$

et

$$\xi \sum_{n=0}^{N-1} \delta t \sum_{i} \sum_{j \in \mathcal{E}_i} w_{i,j}^+ (u_i^n - u_j^n)^2 \le ||u^0||_2^2.$$