# QGP parameter extraction via a global analysis of event-by-event flow coefficient distributions

Jonah E. Bernhard<sup>1</sup> Christopher E. Coleman-Smith<sup>1</sup> Peter W. Marcy<sup>2</sup> Steffen A. Bass<sup>1</sup>

> <sup>1</sup>Department of Physics Duke University

<sup>2</sup>Department of Statistics University of Wyoming

October 26, 2013

#### Model to data comparison



#### The data

- **»** ATLAS event-by-event flow distributions for  $v_2, v_3, v_4$ .
- » Shapes of distributions could provide a more sensitive probe of QGP properties than average flows.
- » Reduce to three parameters by fitting to generalized gamma distribution

$$f(x; s, a, c) = \frac{c}{s \Gamma(a)} \left(\frac{x}{s}\right)^{ac-1} \exp\left[-\left(\frac{x}{s}\right)^{c}\right]$$



ATLAS collaboration, hep-ex/1305.2942

#### The model

Modern version of the OSU+Duke hybrid model VISHNU (Viscous Hydro and UrQMD):

- » MC-Glauber initial conditions [H.-J. Drescher and Y. Nara, nucl-th/060512]
- >> 2+1 viscous hydro [H. Song and U. Heinz, nucl-th/0712.3715]
- » Cooper-Frye hypersurface sampler [Z. Qiu and C. Shen]
- VrQMD [S. Bass et. al., nucl-th/9803035; M. Bleicher et. al., hep-ph/9909407]

| Input parameters                                                                                                     | Observables                        |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Normalization WN/BC $\alpha$ Thermalization time $\tau_0$ Viscosity $\eta/s$ Shear stress relaxation time $\tau_\Pi$ | $v_n$ distributions Multiplicities |

#### Computer experiments with slow models

- » Run model at predetermined set of input-parameter points.
  - Each parameter influences multiple observables.
  - Must vary all parameters simultaneously.
- » Interpolate between points to complete parameter space.
- » Calibrate the model: determine parameters that optimally describe reality.



Gaussian Processes for Machine Learning, Rasmussen and Williams, 2006.

### Computer experiment design

- » Five centrality bins from 0-5% to 40-45%.
- » 256 Latin-hypercube points across five input parameters.
- » Running on Open Science Grid.
- » Completed 1000-2000 events per centrality bin and input-parameter point.
  - $\rightarrow \sim 1.9$  million total
  - $\sim$  0.25  $\mu$ b<sup>-1</sup> (ATLAS results based on 7  $\mu$ b<sup>-1</sup>)
- » (5 centrality bins)  $\times$  (3 flow coefficients) = 15 flow "categories"
- »  $v_2$  0–5% and  $v_2$  40–45% are representative.

#### Model flow distributions



## Comparing model and experimental distributions



#### Input-output summary



#### Input-output summary



### Input-output summary



## Focusing on viscosity



#### Best fits

- **»** Split  $\eta/s$  range into sub-ranges.
- » Pick parameter point with best overall fit in each  $\eta/s$  sub-range.



## Summary & outlook



- »  $\eta/s$  compromise
  - $\eta/s$  temperature dependence?
  - Expand parameter space?
- » Quantitative statistical metrics
- » Calibrate simultaneously on multiplicity
- » Improved initial conditions (KLN, IP-Glasma)



### Latin-hypercube sampling

- » Optimally fills parameter space.
- » Avoids clusters.



# Latin-hypercube sampling

- » Optimally fills parameter space.
- » Avoids clusters.



#### Gaussian process emulators

- » Prior: the model is a Gaussian process.
- » Posterior: Gaussian process conditioned on model outputs.



- » Emulator is a fast surrogate to the actual model.
  - > More certain near calculated points.
  - > Less certain in gaps.

# Testing *v*<sub>4</sub>



# Multiplicity



# Multiplicity

