VaR

- VAR in finance means two things, variance and "value at risk" but when the A isn't capitalized, it means value at risk
- Invented after stock market crash of 1987
- Value at risk is usually quoted in units of \$ for a given probability and time horizon
- 1% one-year VaR of \$10 million means 1% chance that a portfolio will lose \$10 million in a year

Stress Tests

- Originally, term referred to a medical procedure to test for cardiovascular fitness
- OFHEO started testing firms' ability to withstand economic crisis before the 2008 crisis, failed.
- Dodd Frank Act 2010 requires the Federal Reserve to do annual stress tests for nonbank financial institutions it supervises for at least three different economic scenarios
- European Banking Authority, created 2011
- UK, China, etc.
- Critics of stress tests such as Anat Admati find them inadequate.

Stock Market Level, 2000-2016, 2000=100

Apple, Inc. and S&P 500 Monthly Adjusted Price 2000-2016, 2000=100

Apple, Inc. and S&P 500 Monthly Returns, 2000-2016

Variance of Apple vs Variance of S&P500

- Standard deviation of Apple capital gain in decade shown is 12.8% a month (not annualized) (arithmetic mean 3.47% a month, geometric mean 2.65% a month)
- 1.0347¹23=65, 1.0265¹23=25
- Standard deviation of S&P 500 return in decade shown is 4.7% (arithmetic mean capital gain mean 0.01%, geometric mean 0.16% a month, meaning we've lost money)

Scatter, Apple vs S&P 500 Returns Monthly Feb 2000-Jan 2016

Same Scatter with Regression Line

Beta

- The CAPM implies that the expected return on the ith asset is determined from its beta
- Beta (β_i) is the regression slope coefficient when the return on the ith asset is regressed on the return on the market
- Fundamental equation of the CAPM:

$$r_i = r_f + \beta_i (r_m - r_f)$$

Market Risk versus Idiosyncratic Risk

- By construction, the residuals of error terms in a regression are uncorrelated with the fitted or predicted value
- So, the variance of the return of a stock is equal to its beta squared times the variance of the market return (systematic risk) plus the variance of the residual in the regression (idiosyncratic risk)

Joe McNay

- The Class of 1954 gave \$370,000 for Yale at its 25th anniversary (in 1979) but asked Joe McNay of Essex Investment Management to invest it for 25 years. They refused to let Yale investments handle it (pre-Swensen)
- In 2004, they presented it to Yale, now worth \$90 million, 24.6% a year return geometric
- He invested in Walmart and Home Depot and Internet
- They got special dispensation from the federal government so that this trust did not need to give away 5% a year
- I.8% a month geometric

Normal Distribution with Zero Mean

Central Limit Theorem

- Averages of a large number of independent identically distributed shocks (whose variance is finite) are approximately normally distributed
- Can fail if the underlying shocks are fat tailed
- Can fail if the underlying shocks lose their independence

Normal Versus Fat Tailed Distributions

Outliers

• Normal distribution with same mean and standard deviation as the histogram shown has a probability of a drop greater than 20% equal to $3*10^{-71}$