79. a. 1 **b.** 0 **c.** Undefined **d.** 1 **e.** 13/12 **f.** 40/9

g.
$$\left(\frac{e^2+1}{2e}\right)^2$$
 h. Undefined **i.** ln 4 **j.** 1 **81.** $x=0$

83.
$$x = \pm \tanh^{-1}(1/\sqrt{3}) = \pm \ln(2 + \sqrt{3})/2 \approx \pm 0.658$$

85. $tan^{-1} (sinh 1) - \pi/4 \approx 0.08$ 87. Applying l'Hôpital's Rule twice brings you back to the initial limit; $\lim \tanh x = 1$.

89.
$$2/\pi$$
 91. 1 **93.** $12(3 \ln (3 + \sqrt{8}) - \sqrt{8}) \approx 29.5$

89. $2/\pi$ **91.** 1 **93.** $12(3 \ln (3 + \sqrt{8}) - \sqrt{8}) \approx 29.5$ **95. a.** Approx. 360.8 m **b.** First 100 m: $t \approx 4.72$ s, $v_{av} \approx 21.2$ m/s; second 100 m: $t \approx 2.25 \text{ s}, v_{\text{av}} \approx 44.5 \text{ m/s}$ **97. a.** $\sqrt{mg/k}$

b.
$$35\sqrt{3} \approx 60.6 \text{ m/s}$$
 c. $t = \sqrt{\frac{m}{kg}} \tanh^{-1} 0.95 = \frac{\ln 39}{2} \sqrt{\frac{m}{kg}}$

d. Approx. 736.5 m **109.** $\ln (21/4) \approx 1.66$

Chapter 7 Review Exercises, pp. 518-519

1. a. False b. False c. False d. True 3. ln 4

5.
$$\frac{1}{2} \ln (x^2 + 8x + 25) + C$$

7.
$$\cosh^{-1}(x/3) + C = \ln(x + \sqrt{x^2 - 9}) + C$$

9.
$$\tanh^{-1}(1/3)/9 = (\ln 2)/18 \approx 0.0385$$

11.
$$x^{3x^2+1} \left(6x \ln x + 3x + \frac{1}{x} \right)$$
 13. $\sinh^2 t + \cosh^2 t$

15.
$$3 \sinh(6x-2)$$
 17. $-\csc x$ **19.** $\frac{2x}{\sqrt{x^4-1}}$

21. Approx. 7.3 hours **23. a.** $y(t) = 29,000e^{(t \ln 2)/2}$

b. Approx. 41,996,486 transistors (which closely approximates the actual number of transistors) 25. 48.37 yr

27. Local max at $x = -\frac{1}{2}(\sqrt{5} + 1)$; local min at $x = \frac{1}{2}(\sqrt{5} - 1)$; inflection points at x = -3 and x = 0; $\lim_{x \to 0} f(x) = 0$;

$$\lim_{x \to \infty} f(x) = \infty$$

 $\mathbf{d.} \ f(x^*) = \frac{1}{\sqrt{2\pi}} \frac{e^{\sigma^2/2}}{\sigma}$

29. a.

31. $L(x) = \frac{5}{3} + \frac{4}{3}(x - \ln 3)$; $\cosh 1 \approx 1.535$

33. a. $\cosh x$ **b.** $(1 - x \tanh x) \operatorname{sech} x$

CHAPTER 8

Section 8.1 Exercises, pp. 523-525

1. u = 4 - 7x **3.** $\sin^2 x = \frac{1 - \cos 2x}{2}$ **5.** Complete the square in

$$x^2 - 4x - 9$$
. 7. $\frac{1}{15(3 - 5x)^3} + C$ 9. $\frac{\sqrt{2}}{4}$ 11. $\frac{1}{2} \ln^2 2x + C$

13. $\ln(e^x + 1) + C$ **15.** $\frac{32}{3}$ **17.** $\frac{21}{110}$

19.
$$\frac{(\ln w - 1)^9}{9} + \frac{(\ln w - 1)^8}{8} + C$$

21.
$$\frac{1}{2} \ln (x^2 + 4) + \tan^{-1} \frac{x}{2} + C$$

23.
$$-\frac{1}{3}\ln\left|\csc\left(3e^x+4\right)+\cot\left(3e^x+4\right)\right|+C$$
 25. 1

27.
$$3\sqrt{1-x^2}+2\sin^{-1}x+C$$
 29. $\ln(\sqrt{2}+1)$

31.
$$\frac{1}{3} \tan^{-1} \left(\frac{x-1}{3} \right) + C$$
 33. $\frac{x^2}{2} + x + \ln(x^2 + x + 2) + C$

35.
$$\frac{3\pi + 10}{12}$$
 37. $\sin^{-1}\left(\frac{\theta + 3}{6}\right) + C$ **39.** $\tan \theta - \sec \theta + C$

41.
$$-x - \cot x - \csc x + C$$
 43. $\frac{1}{3} \ln (1 + \sinh 3x) + C$

45.
$$\frac{1}{2} \ln |e^{2x} - 2| + C$$
 47. $x - \ln |x + 1| + C$

49.
$$\frac{4}{5}(9+\sqrt{t+1})^{3/2}(\sqrt{t+1}-6)+C$$
 51. $\frac{\ln 4-\pi}{4}$

53.
$$\ln |\sec (e^x + 1) + \tan (e^x + 1)| + C$$

55.
$$\frac{2\sin^3 x}{3} + C$$
 57. $2\tan^{-1}\sqrt{x} + C$

59.
$$\frac{1}{2} \ln (x^2 + 6x + 13) - \frac{5}{2} \tan^{-1} \left(\frac{x+3}{2} \right) + C$$

61.
$$-\frac{1}{e^x + 1} + C$$
 63. $\frac{1}{2}$ **65. a.** False **b.** False **c.** False

d. False **69. a.** $\frac{\tan^2 x}{2} + C$ **b.** $\frac{\sec^2 x}{2} + C$ **c.** The antiderivatives differ by a constant. **71. a.** $\frac{1}{2}(x+1)^2 - 2(x+1) + \ln|x+1| + C$

b. $\frac{x^2}{2} - x + \ln|x + 1| + C$ **c.** The antiderivatives differ by a

constant. 73. $\frac{\ln 26}{3}$ 75. $\frac{2}{3}(5\sqrt{5}-1)\pi$

77.
$$\pi\left(\frac{9}{2} - \frac{5\sqrt{5}}{6}\right)$$
 79. $\frac{2048 + 1763\sqrt{41}}{9375}$

Section 8.2 Exercises, pp. 529-532

1. Product Rule **3.** $\frac{x^2(2 \ln x - 1)}{4} + C$ **5.** Products for which the

choice for dv is easily integrated and when the resulting new integral is no more difficult than the original integral

7. $(\tan x + 2) \ln (\tan x + 2) - \tan x + C$

9.
$$\frac{1}{5}x\sin 5x + \frac{1}{25}\cos 5x + C$$
 11. $\frac{e^{6t}}{36}(6t-1) + C$

13.
$$\frac{x^2}{4}(2 \ln 10x - 1) + C$$
 15. $(w + 2) \sin 2w + \frac{1}{2} \cos 2w + C$

17.
$$\frac{3^x}{\ln 3} \left(x - \frac{1}{\ln 3} \right) + C$$
 19. $-\frac{1}{9x^9} \left(\ln x + \frac{1}{9} \right) + C$

21.
$$\frac{1}{8}\sin 2x - \frac{x}{4}\cos 2x + C$$
 23. $\frac{1}{4}(1-2x^2)\cos 2x + \frac{x}{2}\sin 2x + C$

25.
$$-e^{-t}(t^2+2t+2)+C$$
 27. $\frac{e^x}{2}(\sin x+\cos x)+C$

29.
$$-\frac{e^{-x}}{17}(\sin 4x + 4\cos 4x) + C$$

31.
$$-e^{2x}\cos e^x + 2e^x\sin e^x + 2\cos e^x + C$$
 33. π **35.** $-\frac{1}{2}$

37.
$$\frac{1}{9}(5e^6+1)$$
 39. $\frac{\pi-2}{2}$ 41. a. $x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + C$

b.
$$\frac{1}{2}x^2 \tan^{-1}x^2 - \frac{1}{4}\ln(1+x^4) + C$$
 43. $\pi(1-\ln 2)$ **45.** π

47.
$$\frac{2\pi}{27}(13e^6-1)$$
 49. a. False b. True c. True

51. Let $u = x^n$ and $dv = \cos ax \, dx$. **53.** Let $u = \ln^n x$ and dv = dx.

55.
$$\frac{x^2 \sin 5x}{5} + \frac{2x \cos 5x}{25} - \frac{2 \sin 5x}{125} + C$$

57. 6 - 2e **59.** a.
$$\frac{2}{3}(x-2)\sqrt{x+1} + C$$

61.
$$\int \log_b x \, dx = \int \frac{\ln x}{\ln b} \, dx = \frac{1}{\ln b} (x \ln x - x) + C$$

- **63.** $2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + C$
- **65.** Let u = x and dv = f''(x) dx.
- **67.** $2e^3$ **69.** x-axis: $\pi^2/2$; y-axis: $2\pi^2$ **71.** $\pi(\pi-2)$

75. a.
$$t = k\pi$$
, for $k = 0, 1, 2, \dots$ **b.** $\frac{e^{-\pi} + 1}{2\pi}$

c.
$$(-1)^n \left(\frac{e^{\pi} + 1}{2\pi e^{(n+1)\pi}} \right)$$

d.
$$a_n = a_{n-1} \cdot \frac{1}{e^{\pi}}$$

77. c.
$$\int f(x)g(x)dx = f(x)G_1(x) - f'(x)G_2(x) + f''(x)G_3(x) - \int f'''(x)G_3(x)dx$$

f and its derivatives	g and its integrals
$f(x)$ \longrightarrow $+$	g(x)
f'(x)—	$G_1(x)$
f''(x) +	$G_2(x)$
f'''(x) ∢	$G_3(x)$

d.
$$\int x^2 e^{x/2} dx = 2x^2 e^{x/2} - 8xe^{x/2} + 16e^{x/2} + C$$

f and its derivatives	g and its integrals
x^2 +	$e^{x/2}$
2x	$2e^{x/2}$
2	$4e^{x/2}$
0 -	$8e^{x/2}$

 $\frac{d^n}{dx^n}(x^2) = 0$, for $n \ge 3$, so all entries in the left column of the table beyond row three are 0, which results in no additional contribution to the antiderivative. **e.** $x^3 \sin x + 3x^2 \cos x - 6x \sin x - 6 \cos x + C$;

five rows are needed because $\frac{d^n}{dx^n}(x^3) = 0$, for $n \ge 4$.

f.
$$\frac{d^k}{dx^k}(p_n(x)) = 0$$
, for $k \ge n + 1$

79. a.
$$\int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

b.
$$\frac{1}{2}(e^x \sin x + e^x \cos x) + C$$
 c. $-\frac{3}{12}e^{-2x} \cos 3x - \frac{2}{13}e^{-2x} \sin 3x + C$

81. a.
$$I_1 = -\frac{1}{2}e^{-x^2} + C$$
 b. $I_3 = -\frac{1}{2}e^{-x^2}(x^2 + 1) + C$

c.
$$I_5 = -\frac{1}{2}e^{-x^2}(x^4 + 2x^2 + 2) + C$$

Section 8.3 Exercises, pp. 536-538

1. $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$; $\cos^2 x = \frac{1}{2} (1 + \cos 2x)$ **3.** Rewrite $\sin^3 x$ as $(1 - \cos^2 x) \sin x$. **5.** A reduction formula expresses an integral with a power in the integrand in terms of another integral with a smaller power in the integrand. **7.** Let $u = \tan x$.

9.
$$\sin x - \frac{1}{3}\sin^3 x + C$$
 11. $\frac{x}{2} - \frac{1}{12}\sin 6x + C$

13.
$$-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C$$
 15. $\frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$

17.
$$\frac{2}{3}\sin^{3/2}x - \frac{2}{7}\sin^{7/2}x + C$$
 19. $\frac{7}{24}$ 21. $\frac{8}{45}$

23.
$$\frac{1}{8}x - \frac{1}{32}\sin 4x + C$$
 25. $\frac{1}{48}\sin^3 2x + \frac{1}{16}x - \frac{1}{64}\sin 4x + C$

27.
$$\tan x - x + C$$
 29. $-\frac{1}{3}\cot^3 x + \cot x + x + C$

31.
$$4 \tan^5 x - \frac{20}{3} \tan^3 x + 20 \tan x - 20x + C$$
 33. $\tan^{10} x + C$

35.
$$\frac{1}{3} \sec^3 x + C$$
 37. $\frac{1}{3} \tan^3 (\ln \theta) + \tan (\ln \theta) + C$ **39.** $\ln 4$

41.
$$\frac{7}{6}$$
 43. $\frac{1}{8} \tan^2 4x + \frac{1}{4} \ln \left| \cos 4x \right| + C$ **45.** $\frac{2}{3} \tan^{3/2} x + C$

47.
$$\tan x - \cot x + C$$
 49. $\frac{1}{25}$ **51.** $-2 \cot x - \frac{\cot^3 x}{3} + C$

53.
$$\frac{4}{3}$$
 55. $\frac{4}{3} - \ln \sqrt{3}$ **57.** $8\sqrt{2}/3$ **59.** $\sqrt{2}$ **61.** $2\sqrt{2}/3$

63. a. True b. False **65.**
$$\frac{2\pi}{35}$$
 67. $\frac{1}{8}\cos 4x - \frac{1}{20}\cos 10x + C$

69.
$$\frac{1}{2}\sin x - \frac{1}{10}\sin 5x + C$$
 73. $\frac{1}{2} - \ln \sqrt{2}$ **75. a.** $\frac{\pi}{2}; \frac{\pi}{2}$

b. $\frac{\pi}{2}$, for all n **d.** Yes **e.** $\frac{3\pi}{8}$, for all n

Section 8.4 Exercises, pp. 543-546

1.
$$x = 3 \sec \theta$$
 3. $x = 10 \sin \theta$ **5.** $\sqrt{4 - x^2}/x$ **7.** $\pi/6$

9.
$$\frac{25\pi}{3}$$
 11. $\frac{\pi}{12}$ 13. $\sin^{-1}\frac{x}{4} + C$ 15. $-\frac{\sqrt{x^2+9}}{9x} + C$

17.
$$2 - \frac{\pi}{2}$$
 19. $\ln(\sqrt{x^2 - 81} + x) + C$

21.
$$\frac{x}{2}\sqrt{64-x^2}+32\sin^{-1}\frac{x}{8}+C$$
 23. $\frac{x}{25\sqrt{25-x^2}}+C$

25.
$$-3 \ln \left| \frac{\sqrt{9-x^2}+3}{x} \right| + \sqrt{9-x^2} + C$$
 27. $\sqrt{2}/6$

29.
$$\frac{1}{16} \left(\tan^{-1} \frac{x}{2} + \frac{2x}{x^2 + 4} \right) + C$$

31.
$$8 \sin^{-1}(x/4) - x\sqrt{16 - x^2}/2 + C$$

33.
$$\sqrt{x^2-9}-3\sec^{-1}(x/3)+C$$

35.
$$-1/\sqrt{x^2-1} - \sec^{-1}x + C$$
 37. $2 - \sqrt{2}$

39.
$$x/\sqrt{100-x^2}-\sin^{-1}(x/10)+C$$
 41. $x/\sqrt{1+4x^2}+C$

43.
$$\frac{\ln 3}{2}$$
 45. $81/(2(81-x^2)) + \ln \sqrt{81-x^2} + C$

47.
$$\frac{1}{16} (1 - \sqrt{3} - \ln{(21 - 12\sqrt{3})})$$
 49. $\frac{1}{3} + \frac{\ln{3}}{4}$

51.
$$\frac{x}{2}\sqrt{4+x^2}-2\ln(x+\sqrt{4+x^2})+C$$

53.
$$\frac{9}{10}\cos^{-1}\frac{5}{3x} - \frac{\sqrt{9x^2 - 25}}{2x^2} + C$$

55.
$$\frac{\sec^{-1}\frac{x}{10}}{2000} + \frac{\sqrt{x^2 - 100}}{200 \, x^2} + C$$

61.
$$\sin^{-1}\left(\frac{x+1}{2}\right) + C$$
 63. $\frac{1}{3}\tan^{-1}\left(\frac{x+3}{3}\right) + C$

65.
$$\frac{\pi\sqrt{2}}{48}$$
 67. $\frac{x-4}{\sqrt{9+8x-x^2}} - \sin^{-1}\left(\frac{x-4}{5}\right) + C$

69.
$$\ln ((2 + \sqrt{3})(\sqrt{2} - 1))$$

71.
$$\frac{1}{81} + \frac{\ln 3}{108}$$

73.
$$3\sqrt{3} - \pi$$

75.
$$\frac{3}{80}$$
 77. $\frac{1}{4a} \left(20a\sqrt{1 + 400a^2} + \ln\left(20a + \sqrt{1 + 400a^2}\right) \right)$

81. b.
$$\lim_{L \to \infty} \frac{kQ}{a\sqrt{a^2 + L^2}} = \lim_{L \to \infty} 2\rho k \frac{1}{a\sqrt{\left(\frac{a}{L}\right)^2 + 1}} = \frac{2\rho k}{a}$$

85. a.
$$\frac{1}{\sqrt{g}} \left(\frac{\pi}{2} - \sin^{-1} \left(\frac{2 \cos b - \cos a + 1}{\cos a + 1} \right) \right)$$

b. For
$$b = \pi$$
, the descent time is $\frac{\pi}{\sqrt{g}}$, a constant.

Section 8.5 Exercises, pp. 554-556

1. Rational functions **3. a.**
$$\frac{A}{x-3}$$
 b. $\frac{A}{x-4}, \frac{B}{(x-4)^2}, \frac{C}{(x-4)^3}$

c.
$$\frac{Ax+B}{x^2+2x+6}$$
 5. $\frac{A}{x-4} + \frac{B}{x-5}$ 7. $\frac{A}{x-5} + \frac{B}{(x-5)^2}$

9.
$$\frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1} + \frac{D}{x+2} + \frac{E}{x-2}$$
 11. $\frac{A}{x} + \frac{Bx+C}{x^2+1}$

13.
$$\frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{Cx+D}{x^2+x+2} + \frac{Ex+F}{(x^2+x+2)^2}$$

15.
$$\frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x+2} + \frac{D}{(x+2)^2} + \frac{Ex+F}{x^2+4} + \frac{Gx+H}{(x^2+4)^2}$$

17.
$$\frac{2}{x-1} + \frac{3}{x-2}$$
 19. $\frac{1}{x-4} - \frac{1}{x+2}$ 21. $2 + \frac{3}{x+1} - \frac{4}{x+2}$

23.
$$\ln \left| \frac{x-1}{x+2} \right| + C$$
 25. $3 \ln \left| \frac{x-1}{x+1} \right| + C$

27.
$$3 \ln |x-1| - \frac{1}{3} \ln |3x-2| + C$$
 29. $-\ln 4$

31.
$$\ln \left| \frac{(x-2)^2(x+1)}{(x+2)^2(x-1)} \right| + C$$
 33. $3x + \ln \frac{(x-2)^{14}}{|x-1|} + C$

35.
$$\ln \left| \frac{x(x-2)^3}{(x+2)^3} \right| + C$$
 37. $\ln \left| \frac{(x-3)^{1/3}(x+1)}{(x+3)^{1/3}(x-1)} \right|^{1/16} + C$

39.
$$\frac{9}{x} + \ln \left| \frac{x-9}{x} \right| + C$$
 41. $\ln 2 - \frac{3}{4}$ **43.** $-\frac{2}{x} + \ln \left| \frac{x+1}{x} \right|^2 + C$

45.
$$\frac{5}{x} + \ln \left| \frac{x}{x+1} \right|^6 + C$$
 47. $\frac{x^2}{2} + 2 \ln |x-5| - \frac{10}{x-5} + C$

49.
$$\frac{3}{x-1} + \ln \left| \frac{(x-1)^5}{x^4} \right| + C$$
 51. $\ln |x+1| + \tan^{-1} x + C$

53.
$$\ln (x + 1)^2 + \tan^{-1}(x + 1) + C$$

55.
$$\ln \left| \frac{(x-1)^2}{x^2+4x+5} \right| + 14 \tan^{-1}(x+2) + C$$

57.
$$\frac{1}{2} \ln |x^2 + 3| - \frac{1}{x^2 + 3} + C$$

59.
$$\frac{1}{2} \ln (x^2 + 6x + 10) - 3 \tan^{-1}(x + 3) - \frac{1}{x^2 + 6x + 10} + C$$

61.
$$\ln\left(\frac{x^2}{x^2+1}\right) + \frac{1}{x^2+1} + C$$

63.
$$\sqrt{\frac{3}{7}} \tan^{-1} \left(\sqrt{\frac{3}{7}} x \right) - \frac{1}{6(3x^2 + 7)} + C$$

69.
$$\left(\frac{24}{5} - 2 \ln 5\right) \pi$$
 71. $\frac{2}{3} \pi \ln 2$ **73.** $\ln \sqrt{\left|\frac{x-1}{x+1}\right|} + C$

75.
$$\frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2} + \frac{Fx + G}{x^2 + x + 4} + \frac{Hx + I}{(x^2 + x + 4)^2}$$

$$\frac{1}{16x} - \frac{x+10}{100(x^2+1)} + \frac{4x+3}{50(x^2+1)^2} - \frac{21x-19}{400(x^2+x+4)}$$

$$\frac{4x+1}{20(x^2+x+4)^2}$$
 77. $\ln\left|\frac{e^x-1}{e^x+2}\right|^{1/3}+C$

79.
$$\frac{1}{4} \ln \left(\frac{1 + \sin t}{1 - \sin t} - \frac{2}{1 + \sin t} \right) + C$$

81.
$$\tan^{-1}e^x - \frac{1}{2(e^{2x} + 1)} + C$$
 83. $x - \ln(1 + e^x) + C$

89.
$$-\cot x - \csc x + C = -\cot (x/2) + C$$

91.
$$\frac{1}{\sqrt{2}} \ln \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$
 93. a. Car A b. Car C

c.
$$S_A(t) = 88t - 88 \ln|t + 1|;$$

$$S_B(t) = 88\left(t - \ln(t+1)^2 - \frac{1}{t+1} + 1\right);$$

$$S_C(t) = 88(t - \tan^{-1} t)$$

d. Car C **95.** Because
$$\frac{x^4(1-x)^4}{1+x^2} > 0$$
 on $(0,1)$,

$$\int_0^1 \frac{x^4(1-x^4)}{1+x^2} dx > 0; \text{ therefore, } \frac{22}{7} > \pi.$$

Section 8.6 Exercises, pp. 560-562

1. Integrate by parts. 3. Let $x = 8 \sin \theta$. 5. Use the method of

partial fractions. 7. $\frac{\pi}{4}$ 9. $\frac{\pi}{6}$ 11. $\frac{5}{4} - \frac{3\pi}{8}$ 13. $-\frac{\sqrt{1-e^{2x}}}{e^{x}} + C$

15.
$$\frac{4}{\ln 2}$$
 17. $\frac{3e^4}{2}$ **19.** $\frac{16}{35}$ **21.** $\frac{x^{10}}{10} \ln 3x - \frac{x^{10}}{100} + C$

23.
$$\ln |\cos x + 1| - \ln |\cos x| + C$$

25.
$$\ln \left| \frac{x}{1 + \sqrt{1 - x^2}} \right| + C$$
 27. $\frac{3x}{8} - \frac{1}{2} \sin x + \frac{1}{16} \sin 2x + C$

29.
$$\ln |\sin x + \sin^2 x| + C$$
 31. $6 \sin^{-1} \frac{x}{2} + \frac{3}{2} x \sqrt{4 - x^2} + C$

33.
$$\frac{1}{a} \tan^{-1} \frac{e^x}{a} + C$$
 35. $\frac{11}{6}$ 37. $\frac{\sqrt{3} + 1}{2}$

39.
$$-\cos x \ln(\sin x) - \ln|\csc x + \cot x| + \cos x + C$$

39.
$$-\cos x \ln(\sin x) - \ln|\csc x + \cot x| + \cos x + C$$

41. $-\frac{2}{5}\cot^{5/2}x - \frac{2}{9}\cot^{9/2}x + C$ 43. $\frac{\sin^{-1}x^{10}}{10} + C$ 45. $\ln\frac{4}{3} - \frac{1}{6}$

47.
$$x^2 + 3x + 4 \ln|x - 2| + \ln|x + 1| + C$$

49.
$$\frac{\sec^{11}x}{11} - \frac{\sec^9x}{9} + C$$
 51. $\frac{4}{7}(2^{7/4} - 1)$

53.
$$-\frac{\cot^2 e^x}{2} - \ln|\sin e^x| + C$$
 55. $\ln|x^3 + x| + 3\tan^{-1}x + C$

57.
$$-2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + C$$
 59. $-\frac{1}{x} - \tan^{-1}x + C$

61.
$$\frac{\sqrt{2}e^{\pi/4}-1}{2}$$
 63. $\frac{x^{a+1}}{a+1}\left(\ln x-\frac{1}{a+1}\right)+C$

65.
$$\frac{\pi}{18}$$
 67. $\frac{1}{54} (\sin^{-1} 3x - 3x \sqrt{1 - 9x^2}) + C$

69.
$$\frac{1-\sqrt{1-x^2}}{x}+C$$
 71. $-2\cot x+2\csc x-x+C$

73.
$$\frac{40\sqrt{5}}{3} - \frac{224}{15}$$
 75. $\frac{7\pi^2}{144}$ 77. $x \cos^{-1} x - \sqrt{1 - x^2} + C$

79.
$$-\frac{\sin^{-1} x}{x} + \ln \left| \frac{x}{1 + \sqrt{1 - x^2}} \right| + C$$

81.
$$\ln |x| + 2 \tan^{-1} x - \frac{3}{2(x^2 + 1)} + C$$

83.
$$\frac{\sin^{999}e^x}{999} - \frac{\sin^{1001}e^x}{1001} + C$$
 85. a. True b. True c. False

d. False **87.**
$$\pi(\sqrt{2} + \ln(1 + \sqrt{2})) \approx 7.212$$

89.
$$\frac{\pi(4\sqrt{2}+3)}{3} \approx 9.065$$
 91. $9800\pi \ln 2 \approx 21,340.3 \text{ J}$

93.
$$4x - 2 \ln(e^{2x} + 2e^x + 17) - \tan^{-1}\left(\frac{e^x + 1}{4}\right) + C$$

95.
$$\frac{1}{4} \ln |\tan x + 1| - \frac{1}{4} \ln |\tan x - 1| + \frac{x}{2} + C$$

97.
$$x \tan^{-1} \sqrt[3]{x} - \frac{x^{2/3}}{2} + \frac{1}{2} \ln (1 + x^{2/3}) + C$$

99.
$$\pi \left(\sqrt{5} - \sqrt{2} + \frac{1}{2} \ln \left(\frac{\sqrt{5} - 1}{\sqrt{5} + 1} \right) - \frac{1}{2} \ln \left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right) \right) \approx 3.839$$

Section 8.7 Exercises, pp. 565-567

1. Substitutions, integration by parts, partial fractions **3.** The CAS may not include the constant of integration, and it may use a trigonometric identity or other algebraic simplification.

5.
$$-\frac{1}{3}\sin^3 e^x + \sin e^x + C$$
 7. $x\cos^{-1}x - \sqrt{1-x^2} + C$

9.
$$\ln (x + \sqrt{16 + x^2}) + C$$
 11. $\frac{3}{4}(2u - 7 \ln |7 + 2u|) + C$

13.
$$-\frac{1}{4}\cot 2x + C$$
 15. $\frac{1}{12}(2x-1)\sqrt{4x+1} + C$

17.
$$\frac{1}{3} \ln \left| x + \sqrt{x^2 - \left(\frac{10}{3} \right)^2} \right| + C$$
 19. $\ln \left(e^x + \sqrt{4 + e^{2x}} \right) + C$

21.
$$-\frac{1}{2} \ln \left| \frac{2 + \sin x}{\sin x} \right| + C$$

23.
$$\frac{2 \ln^2 x - 1}{4} \sin^{-1} (\ln x) + \frac{\ln x \sqrt{1 - \ln^2 x}}{4} + C$$

25.
$$\frac{x}{16\sqrt{16+9x^2}} + C$$
 27. $-\frac{1}{12} \ln \left| \frac{12+\sqrt{144-x^2}}{x} \right| + C$

29.
$$2x + x \ln^2 x - 2x \ln x + C$$

31.
$$\frac{x+5}{2}\sqrt{x^2+10x} - \frac{25}{2}\ln|x+5+\sqrt{x^2+10x}| + C$$

33.
$$\frac{1}{3} \tan^{-1} \left(\frac{x+1}{3} \right) + C$$
 35. $\ln x - \frac{1}{10} \ln (x^{10} + 1) + C$

37.
$$2 \ln (\sqrt{x-6} + \sqrt{x}) + 6$$

39.
$$-\frac{\tan^{-1}x^3}{3x^3} + \ln\left|\frac{x}{(x^6+1)^{1/6}}\right| + C$$
 41. $4\sqrt{17} + \ln\left(4+\sqrt{17}\right)$

43.
$$\sqrt{5} - \sqrt{2} + \ln\left(\frac{2 + 2\sqrt{2}}{1 + \sqrt{5}}\right)$$
 45. $\frac{128\pi}{3}$ 47. $\frac{\pi^2}{4}$

49.
$$\frac{(x-3)\sqrt{3+2x}}{3} + C$$
 51. $\frac{1}{3} \tan 3x - x + C$

53.
$$\frac{1540 + 243 \ln 3}{8}$$

55.
$$\frac{(x^2-a^2)^{3/2}}{3} - a^2\sqrt{x^2-a^2} + a^3\cos^{-1}\frac{a}{x} + C$$
 57. $\frac{\pi}{4}$

59.
$$-\frac{x}{8}(2x^2-5a^2)\sqrt{a^2-x^2}+\frac{3a^4}{8}\sin^{-1}\frac{x}{a}+C$$

61.
$$2 - \frac{\pi^2}{12} - \ln 4$$
 63. $\frac{27,456\sqrt{15}}{7} \approx 15,190.9$

65.
$$\frac{1}{8}e^{2x}(4x^3-6x^2+6x-3)+C$$
 67. $\frac{\tan^3 3y}{9}-\frac{\tan 3y}{3}+y+C$

69.
$$\frac{1}{24}(128 - 78\sqrt{2} - 3\ln(3 + 2\sqrt{2}))$$

71.
$$\frac{1}{a^2}(ax - b \ln |b + ax|) + C$$

73.
$$\frac{1}{a^2} \left(\frac{(ax+b)^{n+2}}{n+2} - \frac{b(ax+b)^{n+1}}{n+1} \right) + C$$

75. a. True **b.** True

79.
$$\frac{1}{16} ((8x^2 - 1) \sin^{-1} 2x + 2x\sqrt{1 - 4x^2}) + C$$

81.
$$-\frac{\tan^{-1} x}{x} + \ln \left(\frac{|x|}{\sqrt{x^2 + 1}} \right) + C$$
 83. b. $\frac{\pi}{8} \ln 2$

5. a. θ₀ T b. All are within 10%.

0.10 6.27927

0.20 6.26762

 0.20
 6.26762

 0.30
 6.24854

 0.40
 6.22253

 0.50
 6.19021

 0.60
 6.15236

 0.70
 6.10979

0.60 6.15236 0.70 6.10979 0.80 6.06338 0.90 6.01399 1.00 5.96247

87. b. $\frac{63\pi}{512}$ **c.** Decrease

Section 8.8 Exercises, pp. 578-582

1. $\frac{1}{2}$ 3. The Trapezoid Rule approximates areas under curves using trapezoids. 5. 42 7. $\frac{112}{3}$ 9. -1, 1, 3, 5, 7, 9

11. 1.59×10^{-3} ; 5.04×10^{-4} **13.** 1.72×10^{-3} ; 6.32×10^{-4}

15. 576; 640; 656 **17.** 0.643950551 **19.** 704; 672; 664

21. 0.622 **23.** 2.28476811; 2.33512377 **25.** 1.76798499

27. $M(25) \approx 0.63703884$, $T(25) \approx 0.63578179$; 6.58×10^{-4} , 1.32×10^{-3}

9.	n	M(n)	T(n)	Error in $M(n)$	Error in $T(n)$
	4	99	102	1.00	2.00
	8	99.75	100.5	0.250	0.500
	16	99.9375	100.125	6.3×10^{-2}	0.125
	32	99.984375	100.03125	1.6×10^{-2}	3.1×10^{-2}

31.	n	M(n)	T(n)	Error in M(n)	Error in $T(n)$
	4	1.50968181	1.48067370	9.7×10^{-3}	1.9×10^{-2}
	8	1.50241228	1.49517776	2.4×10^{-3}	4.8×10^{-3}
	16	1.50060256	1.49879502	6.0×10^{-4}	1.2×10^{-3}
	32	1.50015061	1.49969879	1.5×10^{-4}	3.0×10^{-4}

33.

n	M(n)	T(n)	Error in $M(n)$	Error in $T(n)$
4	-1.96×10^{-16}	0	2.0×10^{-16}	0
8	7.63×10^{-17}	-1.41×10^{-16}	7.6×10^{-17}	1.4×10^{-16}
16	1.61×10^{-16}	1.09×10^{-17}	1.6×10^{-16}	1.1×10^{-17}
32	6.27×10^{-17}	-4.77×10^{-17}	6.3×10^{-17}	4.8×10^{-17}

- 35. $T(4) \approx 690.3$ million ft³; $S(4) \approx 692.2$ million ft³ (answers may vary) 37. 54.5°F, Trapezoid Rule 39. 35.0°F, Trapezoid Rule **41. a.** Left sum: 204.917; right sum: 261.375; Trapezoid Rule: 233.146; the approximations measure the average temperature of the curling iron on [0, 120]. **b.** Left sum: underestimate; right sum: overestimate; Trapezoid Rule: underestimate c. 305°F is the change in temperature over [0, 120]. **43. a.** 5907.5 **b.** 5965 **c.** 5917
- **45. a.** $T(25) \approx 3.19623162$
 - $T(50) \approx 3.19495398$ **b.** $S(50) \approx 3.19452809$

 - c. $e_{\tau}(50) \approx 4.3 \times 10^{-4}$ $e_{\rm s}(50) \approx 4.5 \times 10^{-8}$
- **47. a.** $T(50) \approx 1.00008509$ $T(100) \approx 1.00002127$
 - **b.** $S(100) \approx 1.00000000$
 - **c.** $e_T(100) \approx 2.1 \times 10^{-5}$
 - $e_{S}(100) \approx 4.6 \times 10^{-9}$

49.	n	T(n)	S(n)	Error in $T(n)$	Error in S(n)
	4	1820.0000	_	284	_
	8	1607.7500	1537.0000	71.8	1
	16	1553.9844	1536.0625	18.0	6.3×10^{-2}
	32	1540.4990	1536.0039	4.50	3.9×10^{-3}

		•			•
51.	n	T(n)	S(n)	Error in $T(n)$	Error in $S(n)$
	4	0.46911538	_	5.3×10^{-2}	_
	8	0.50826998	0.52132152	1.3×10^{-2}	2.9×10^{-4}
	16	0.51825968	0.52158957	3.4×10^{-3}	1.7×10^{-5}
	32	0.52076933	0.52160588	8.4×10^{-4}	1.1×10^{-6}

53. a. True **b.** False **c.** True

55.	n	M(n)	T(n)	Error in $M(n)$	Error in $T(n)$
	4	0.40635058	0.40634782	1.4×10^{-6}	1.4×10^{-6}
	8	0.40634920	0.40634920	7.6×10^{-10}	7.6×10^{-10}
	16	0.40634920	0.40634920	6.6×10^{-13}	6.6×10^{-13}
	32	0.40634920	0.40634920	8.9×10^{-16}	7.8×10^{-16}

57.
$$n$$
 $M(n)$ $T(n)$ Error in $M(n)$ Error in $T(n)$

4 4.72531819 4.72507878 1.2 × 10⁻⁴ 1.2 × 10⁻⁴

8 4.72519850 4.72519849 9.1 × 10⁻⁹ 9.1 × 10⁻⁹

16 4.72519850 4.72519850 0 8.9 × 10⁻¹⁶

32 4.72519850 4.72519850 0 8.9 × 10⁻¹⁶

- **63.** Approximations will vary; exact value is 68.26894921
- **65. a.** Approx. 1.6×10^{11} barrels **b.** Approx. 6.8×10^{10} barrels
- **67. a.** $M(50) \approx 34.4345566$

b.
$$f''(x) = \frac{3(x^4 + 4x)}{4(x^3 + 1)^{3/2}}$$
 d. $E_M \le 0.0028$

69. a.
$$T(40) = 0.874799972...$$
 b. $f''(x) = e^x \cos e^x - e^{2x} \sin e^x$

d.
$$E_T \le \frac{1}{3200}$$
 71. a. $S(20) \approx 0.97774576$

b. $E_S \le 3.5 \times 10^{-8}$ **73.** Approximations will vary; exact value is 38.753792... 77. Overestimate 79. $S(20) \approx 1.00000175$

Section 8.9 Exercises, pp. 590-593

- 1. The interval of integration is infinite or the integrand is unbounded on the interval of integration. 3. $\lim_{b\to\infty} \int_2^b \frac{dx}{x^{1/5}}$ 5. $\int_{-\infty}^{\infty} f(x) dx$
- 7. $\frac{1}{3}$ 9. Diverges 11. $\frac{1}{a}$ 13. Diverges 15. $\frac{\pi}{10}$
- 17. Diverges 19. Diverges 21. $\frac{1}{\pi}$ 23. $\frac{\pi}{4}$ 25. $\frac{\pi}{6}$ 27. 0
- **29.** $\frac{\pi^3}{12}$ **31.** ln 2 **33.** Diverges **35.** Diverges **37.** 6
- **39.** Diverges **41.** Diverges **43.** 2(e-1) **45.** Diverges
- **47.** $4 \cdot 10^{3/4}/3$ **49.** Diverges **51.** π **53.** -1
- **55.** $\ln(2 + \sqrt{3})$ **57.** 2 **59.** \$41,666.67 **61.** 0.76 **63.** 20,000 hr
- **65.** $\frac{\pi}{3}$ **67.** $3\pi/2$ **69.** $\pi/\ln 2$ **71.** 2π **73.** Does not exist
- **75.** $\frac{72 \cdot 2^{1/3} \pi}{5}$ **77.** Converges **79.** Diverges **81.** Converges
- 83. Diverges 85. Converges 87. a. True b. False c. False
- **d.** True **e.** True **89.** 1/b 1/a **91. a.** $A(a,b) = \frac{e^{-ab}}{a}$, for a > 0
- **b.** $b = g(a) = -\frac{1}{a} \ln 2a$ **c.** $b^* = -2/e$ **93.** π **107. a.** π
- **b.** $\pi/(4e^2)$ **109. a.** $6.28 \times 10^7 \, m \, J$ **b.** $11.2 \, \text{km/s}$ **c.** $\leq 9 \, \text{mm}$

Chapter 8 Review Exercises, pp. 593-596

- 1. a. True b. False c. False d. True e. False
- 3. $2(x-8)\sqrt{x+4}+C$ 5. $\frac{1}{3}\sqrt{x+2}(x-4)+C$ 7. $\frac{\pi}{4}$
- **9.** $\frac{4}{105}$ **11.** $\sqrt{t-1} \tan^{-1}\sqrt{t-1} + C$ **13.** $\frac{2}{15}(1-e^{3\pi})$
- **15.** $7 + \ln 40 \ln 17$ **17.** $2 \ln |x| + 3 \tan^{-1}(x+1) + C$
- **19.** $\frac{2}{x+3} \frac{2}{(x+3)^2} + \ln|x+3| + C$ **21.** $\sqrt{3} 1 \frac{\pi}{12}$
- 23. $\frac{1}{5} \tan^5 t + C$ 25. $\frac{\pi}{8}$ 27. $\frac{\sqrt{w^2 + 2w 8}}{9(w + 1)} + C$ 29. $-\frac{\cot^5 x}{5} + C$
- 31. $\frac{x \cosh 2x}{2} \frac{\sinh 2x}{4} + C$ 33. $\frac{1}{15} \sec^5 3\theta \frac{1}{9} \sec^3 3\theta + C$

A-45

39.
$$\frac{t - \ln(2 + e^t)}{2} + C$$
 41. $\frac{1}{4}(\csc 4\theta - \cot 4\theta) + C$

43.
$$\frac{e^x}{2}(\sin x - \cos x) + C$$

45.
$$\ln|x| - \frac{1}{x} + \frac{1}{2}\ln(x^2 + 4x + 9) - \frac{2}{\sqrt{5}}\tan^{-1}\left(\frac{x+2}{\sqrt{5}}\right) + C$$

47.
$$\frac{\theta}{2} + \frac{1}{16}\sin 8\theta + C$$
 49. $\frac{\sec^{49} 2z}{98} + C$ **51.** $\frac{4}{15}$

53.
$$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln(\sqrt[6]{x} + 1) + C$$

55.
$$-\frac{\sqrt{9-y^2}}{9\sqrt{2}y} + C$$
 57. $\frac{\pi}{9}$ **59.** $-\operatorname{sech} x + C$ **61.** $\frac{\pi}{3}$

63.
$$\frac{1}{8} \ln \left| \frac{x-5}{x+3} \right| + C$$
 65. $\frac{\ln 2}{4} + \frac{\pi}{8}$ **67.** 3 **69.** $\frac{1}{3} \ln \left| \frac{x-2}{x+1} \right| + C$

71.
$$2(x-2 \ln |x+2|) + C$$
 73. $e^{2t}/(2\sqrt{1+e^{4t}}) + C$

75. a.
$$\sec e^x + C$$
 b. $e^x \sec e^x - \ln|\sec e^x + \tan e^x| + C$

77.
$$\frac{\sqrt{6}}{3} \tan^{-1} \sqrt{\frac{2x-3}{3}} + C$$

79.
$$\frac{1}{4} \sec^3 x \tan x + \frac{3}{8} \sec x \tan x + \frac{3}{8} \ln |\sec x + \tan x| + C$$

81.
$$2(\ln^3 2 - 3\ln^2 2 + \ln 64 - 3)$$
 83. 1 **85.** $\frac{\pi}{2}$

87.
$$\frac{2\pi}{\sqrt{3}}$$
 89. Converges **91.** Diverges **93.** 1.196288

95.
$$M(4) = 44$$
; $T(4) = 42$; $S(4) = \frac{124}{3}$

97.
$$M(40) \approx 0.398236$$
; $T(40) \approx 0.398771$; $S(40) \approx 0.398416$

99. 0.886227 **101.** y-axis **103.**
$$\pi(e-2)$$
 105. $\frac{\pi}{2}(e^2-3)$

107. a. 1.603 **b.** 1.870 **c.**
$$b \ln b - b = a \ln a - a$$
 d. Decreasing **109.** $20/(3\pi)$ **111.** 1901 cars

d. Decreasing **109.**
$$20/(3\pi)$$
 111. 1901 cars

113. a.
$$I(p) = \frac{1}{(p-1)^2} (1 - pe^{1-p})$$
 if $p \neq 1$, $I(1) = \frac{1}{2}$ **b.** $0, \infty$

c.
$$I(0) = 1$$
 115. 0.4054651 **117.** $n = 2$

119. a.
$$V_1(a) = \pi(a \ln^2 a - 2a \ln a + 2(a-1))$$

b.
$$V_2(a) = \frac{\pi}{2} (2a^2 \ln a - a^2 + 1)$$

c.
$$V_2(a) > V_1(a)$$
 for all $a > 1$

121.
$$a = \ln 2/(2b)$$
 123. $\ln (1 + \sqrt{2}/2)$

CHAPTER 9

Section 9.1 Exercises, pp. 604-606

1. a. 1 **b.** Linear **3.** Yes **5.**
$$\frac{\pi}{2} < t < \frac{3\pi}{2}$$

21.
$$y = 3t - \frac{e^{-2t}}{2} + C$$
 23. $y = 2 \ln|\sec 2x| - 3 \sin x + C$

25.
$$y = 2t^6 + 6t^{-1} - 2t^2 + C_1t + C_2$$

27.
$$u = \frac{x^{11}}{2} + \frac{x^9}{2} - \frac{x^7}{2} + \frac{5}{x} + C_1 x + C_2$$

29.
$$u = \ln(x^2 + 4) - \tan^{-1}\frac{x}{2} + C$$
 31. $y = \sin^{-1}x + C_1x + C_2$

33.
$$y = e^t + t + 3$$
 35. $y = x^3 + x^{-3} - 2, x > 0$

37.
$$y = -t^5 + 2t^3 + 1$$
 39. $y = e^t(t-2) + 2(t+1)$

41.
$$u = \frac{1}{4} \tan^{-1} \frac{x}{4} - 4x + 2$$
 43. a. $v(t) = -9.8t + 29.4$;

 $s(t) = -4.9t^2 + 29.4t + 30$; the object is above the ground for approximately $0 \le t \le 6.89$. **b.** The highest point of 74.1 m is reached at t = 3 s. 45. The amount of resource is increasing for H < 75 and is constant if H = 75. If H = 100, the resource vanishes at approximately 28 time units.

47. $h = (\sqrt{1.96} - 0.1t\sqrt{2g})^2 \approx (1.4 - 0.44t)^2, 0 \le t \le 3.16;$ the tank is empty after approximately 3.16 s.

49. a. False **b.** False **c.** True **51. c.** $y = C_1 \sin kt + C_2 \cos kt$

53. b.
$$C = \frac{K - 50}{50}$$

55. c. The decay rate is greater for the n = 1 model.

d. 300

Section 9.2 Exercises, pp. 611-614

1. At selected points (t_0, y_0) in the region of interest draw a short line segment with slope $f(t_0, y_0)$. 3. $y(3.1) \approx 1.6$