Feature Enhancements

For making better use of the limited image and developing Robustness, data augmentation is widely used

Random Transformation

(https://amitness.com/2020/03/illustrated-simclr/)

simCLR: the feature extracted from two augmented image should be as similar as possible

2	3	4	4
2	4	3	1
3	5	3	2
1	3	4	3

2	3	4	4
2	4	3	1
3	5	3	2
1	3	4	3

Could intermedium feature vector augmentation be equal to or even **be better than** image augmentation?

Feature Augmentation

Image Augmentation

Method:

Adding Gaussian noise to 10% of the values in the intermedium feature vector randomly.

Result:

Training on ResNet18 with 10% Gaussian Noise on one block

Training on ResNet34

- One Noise Block
- Two Noise Blocks at the same time
- One Noise Block, meanwhile image augmentation
- Image augmentation only

Transfer Learning on pretrained ResNet34:

