COMPARISON MobileNetV2

June 21, 2025

```
[1]: import tensorflow as tf
     from tensorflow.keras.utils import to_categorical
     import os
     from PIL import Image, UnidentifiedImageError
     import shutil
     # Configuration
     IMG\_SIZE = (96, 96)
     BATCH_SIZE = 32
     VALIDATION_SPLIT = 0.4
     SEED = 42
     ROOT_PATH = ''
     DATASET_PATH = os.path.join(ROOT_PATH,"raw_data")
     CORRUPT_PATH = os.path.join(ROOT_PATH,"corrupt_images")
     os.makedirs(CORRUPT_PATH, exist_ok=True)
     for root, dirs, files in os.walk(DATASET_PATH):
         for file in files:
             ext = os.path.splitext(file)[1].lower()
             if ext in [".jpg", ".jpeg", ".png", ".bmp", ".gif"]:
                 path = os.path.join(root, file)
                 try:
                     with Image.open(path) as img:
                         img.verify() # Check integrity
                 except (UnidentifiedImageError, OSError, IOError) as e:
                     # Move the corrupt image
                     print(f"Corrupt image found: {path} - moving to {CORRUPT_PATH}")
                     dest_path = os.path.join(CORRUPT_PATH, os.path.relpath(path,_
      →DATASET_PATH))
                     os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                     shutil.move(path, dest_path)
     LANDMARK_DIR = os.path.join(ROOT_PATH,"data")
     RAW IMAGE DIR = os.path.join(ROOT PATH, "raw data")
     FILTERED_IMAGE_DIR = os.path.join(ROOT_PATH,"filtered_raw_data")
     DATASET PATH = FILTERED IMAGE DIR
     # Supported image extensions
```

```
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp']
# Create filtered output structure
os.makedirs(FILTERED_IMAGE_DIR, exist_ok=True)
for class_name in os.listdir(LANDMARK_DIR):
   if class name == 'debug':
        continue
   landmark class dir = os.path.join(LANDMARK DIR, class name)
   raw_class_dir = os.path.join(RAW_IMAGE_DIR, class_name)
   filtered class dir = os.path.join(FILTERED IMAGE DIR, class name)
   os.makedirs(filtered_class_dir, exist_ok=True)
   for file in os.listdir(landmark_class_dir):
        if not file.endswith("_landmarks.json"):
            continue
        # Get base filename without "_landmarks.json"
       base_name = file.replace("_landmarks.json", "")
        # Look for corresponding image in raw directory
       for ext in IMAGE EXTENSIONS:
            image_file = os.path.join(raw_class_dir, base_name + ext)
            if os.path.exists(image file):
                # Copy to filtered folder
                shutil.copy(image_file, os.path.join(filtered_class_dir, os.
 →path.basename(image_file)))
                break
# Load training dataset with validation split
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET PATH,
   validation_split=VALIDATION_SPLIT,
   subset="training",
   seed=SEED,
   color_mode="rgb",
    image_size=IMG_SIZE,
   batch_size=BATCH_SIZE
num_classes = len(train_ds.class_names)
label_map = train_ds.class_names
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET_PATH,
   validation_split=VALIDATION_SPLIT,
    subset="validation",
   seed=SEED,
```

```
color_mode="rgb",
         image_size=IMG_SIZE,
         batch_size=BATCH_SIZE
     test_ds = val_ds.shard(2,0)
     val ds = val ds.shard(2,1)
     # Normalize pixel values to [0, 1]
     normalization layer = tf.keras.layers.Rescaling(1./255)
     train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
     val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
     test_ds = test_ds.map(lambda x, y: (normalization_layer(x), y))
     # Cache and prefetch for performance
     AUTOTUNE = tf.data.AUTOTUNE
     train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
     val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
     test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
    Found 5643 files belonging to 51 classes.
    Using 3386 files for training.
    Found 5643 files belonging to 51 classes.
    Using 2257 files for validation.
[2]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, U
      →BatchNormalization
     from tensorflow.keras.layers import Flatten, Dense, GlobalAveragePooling2D
     from tensorflow.keras.optimizers import Adam
     from tensorflow.keras.applications import MobileNetV2
     base_model = MobileNetV2(input_shape=(96, 96, 3), include_top=False,_
      ⇔weights='imagenet')
     base_model.trainable = False
     model = Sequential([
         base_model,
         GlobalAveragePooling2D(),
         Dropout(0.3),
         Dense(128, activation='relu'),
         Dropout(0.3),
         Dense(num_classes, activation='softmax')
     ])
     model.compile(optimizer=Adam(1e-3),
                   loss='sparse_categorical_crossentropy',
                   metrics=['accuracy'])
```

```
Epoch 1/50
106/106
                   31s 145ms/step -
accuracy: 0.0821 - loss: 3.8709 - val_accuracy: 0.3357 - val_loss: 2.4915
Epoch 2/50
106/106
                   7s 62ms/step -
accuracy: 0.2959 - loss: 2.4460 - val_accuracy: 0.5071 - val_loss: 1.8254
Epoch 3/50
106/106
                   7s 63ms/step -
accuracy: 0.4433 - loss: 1.9017 - val_accuracy: 0.5750 - val_loss: 1.5179
Epoch 4/50
106/106
                   8s 74ms/step -
accuracy: 0.5172 - loss: 1.5514 - val_accuracy: 0.6045 - val_loss: 1.3667
Epoch 5/50
106/106
                   8s 75ms/step -
accuracy: 0.5785 - loss: 1.3306 - val_accuracy: 0.6205 - val_loss: 1.2773
Epoch 6/50
106/106
                   7s 70ms/step -
accuracy: 0.6324 - loss: 1.1819 - val_accuracy: 0.6143 - val_loss: 1.2361
Epoch 7/50
106/106
                   7s 69ms/step -
accuracy: 0.6704 - loss: 1.0707 - val_accuracy: 0.6313 - val_loss: 1.1976
Epoch 8/50
106/106
                   7s 69ms/step -
accuracy: 0.7010 - loss: 0.9367 - val_accuracy: 0.6313 - val_loss: 1.2032
Epoch 9/50
106/106
                   7s 69ms/step -
accuracy: 0.7164 - loss: 0.8524 - val_accuracy: 0.6375 - val_loss: 1.1630
Epoch 10/50
106/106
                   7s 68ms/step -
accuracy: 0.7279 - loss: 0.8470 - val_accuracy: 0.6304 - val_loss: 1.1502
Epoch 11/50
106/106
                   7s 68ms/step -
accuracy: 0.7580 - loss: 0.7494 - val_accuracy: 0.6491 - val_loss: 1.1470
Epoch 12/50
106/106
                   7s 68ms/step -
accuracy: 0.7682 - loss: 0.6955 - val_accuracy: 0.6429 - val_loss: 1.1309
Epoch 13/50
106/106
                   7s 70ms/step -
accuracy: 0.7842 - loss: 0.6664 - val_accuracy: 0.6464 - val_loss: 1.1419
Epoch 14/50
106/106
                   7s 68ms/step -
accuracy: 0.8032 - loss: 0.6217 - val_accuracy: 0.6455 - val_loss: 1.1317
Epoch 15/50
                   7s 67ms/step -
106/106
accuracy: 0.8145 - loss: 0.5845 - val_accuracy: 0.6321 - val_loss: 1.1303
Epoch 16/50
106/106
                   7s 69ms/step -
accuracy: 0.8300 - loss: 0.5458 - val accuracy: 0.6420 - val loss: 1.1488
```

```
Epoch 17/50
                   7s 69ms/step -
106/106
accuracy: 0.8207 - loss: 0.5450 - val_accuracy: 0.6357 - val_loss: 1.1385
Epoch 18/50
106/106
                   7s 68ms/step -
accuracy: 0.8334 - loss: 0.5418 - val_accuracy: 0.6339 - val_loss: 1.1635
Epoch 19/50
106/106
                   7s 68ms/step -
accuracy: 0.8348 - loss: 0.4920 - val_accuracy: 0.6429 - val_loss: 1.1648
Epoch 20/50
106/106
                   7s 68ms/step -
accuracy: 0.8400 - loss: 0.4762 - val_accuracy: 0.6411 - val_loss: 1.1972
Epoch 21/50
106/106
                   7s 68ms/step -
accuracy: 0.8398 - loss: 0.4677 - val_accuracy: 0.6455 - val_loss: 1.1394
Epoch 22/50
106/106
                   7s 68ms/step -
accuracy: 0.8455 - loss: 0.4510 - val_accuracy: 0.6491 - val_loss: 1.1743
Epoch 23/50
106/106
                   7s 69ms/step -
accuracy: 0.8602 - loss: 0.4289 - val_accuracy: 0.6509 - val_loss: 1.2067
Epoch 24/50
106/106
                   7s 70ms/step -
accuracy: 0.8722 - loss: 0.3744 - val_accuracy: 0.6446 - val_loss: 1.1939
Epoch 25/50
106/106
                   7s 70ms/step -
accuracy: 0.8728 - loss: 0.3862 - val_accuracy: 0.6509 - val_loss: 1.2045
Epoch 26/50
106/106
                   7s 69ms/step -
accuracy: 0.8809 - loss: 0.3705 - val_accuracy: 0.6580 - val_loss: 1.2087
Epoch 27/50
106/106
                   7s 69ms/step -
accuracy: 0.8793 - loss: 0.3573 - val_accuracy: 0.6491 - val_loss: 1.2118
Epoch 28/50
106/106
                   7s 69ms/step -
accuracy: 0.8769 - loss: 0.3834 - val_accuracy: 0.6429 - val_loss: 1.2569
Epoch 29/50
106/106
                   7s 69ms/step -
accuracy: 0.8884 - loss: 0.3356 - val_accuracy: 0.6402 - val_loss: 1.2485
Epoch 30/50
106/106
                   7s 69ms/step -
accuracy: 0.8828 - loss: 0.3550 - val_accuracy: 0.6554 - val_loss: 1.2400
Epoch 31/50
                   7s 69ms/step -
106/106
accuracy: 0.9039 - loss: 0.2936 - val_accuracy: 0.6268 - val_loss: 1.2811
Epoch 32/50
106/106
                   7s 69ms/step -
accuracy: 0.8928 - loss: 0.3340 - val accuracy: 0.6384 - val loss: 1.2495
```

```
Epoch 33/50
                    7s 69ms/step -
106/106
accuracy: 0.9081 - loss: 0.2934 - val_accuracy: 0.6384 - val_loss: 1.2868
Epoch 34/50
106/106
                    7s 69ms/step -
accuracy: 0.8912 - loss: 0.3095 - val_accuracy: 0.6357 - val_loss: 1.2883
Epoch 35/50
106/106
                    7s 69ms/step -
accuracy: 0.8916 - loss: 0.3126 - val_accuracy: 0.6313 - val_loss: 1.3358
Epoch 36/50
106/106
                    7s 69ms/step -
accuracy: 0.8985 - loss: 0.3034 - val_accuracy: 0.6348 - val_loss: 1.3427
Epoch 37/50
106/106
                    7s 69ms/step -
accuracy: 0.9015 - loss: 0.2791 - val_accuracy: 0.6339 - val_loss: 1.3538
Epoch 38/50
106/106
                    7s 71ms/step -
accuracy: 0.8889 - loss: 0.3075 - val_accuracy: 0.6384 - val_loss: 1.3442
Epoch 39/50
106/106
                    7s 69ms/step -
accuracy: 0.9178 - loss: 0.2520 - val_accuracy: 0.6321 - val_loss: 1.4135
Epoch 40/50
106/106
                    7s 69ms/step -
accuracy: 0.9062 - loss: 0.2875 - val_accuracy: 0.6393 - val_loss: 1.3826
Epoch 41/50
106/106
                    7s 69ms/step -
accuracy: 0.9207 - loss: 0.2517 - val_accuracy: 0.6286 - val_loss: 1.4341
Epoch 42/50
106/106
                    7s 70ms/step -
accuracy: 0.9042 - loss: 0.2847 - val_accuracy: 0.6411 - val_loss: 1.3822
Epoch 43/50
106/106
                    8s 76ms/step -
accuracy: 0.9171 - loss: 0.2554 - val_accuracy: 0.6259 - val_loss: 1.4259
Epoch 44/50
106/106
                    8s 73ms/step -
accuracy: 0.9032 - loss: 0.2738 - val_accuracy: 0.6518 - val_loss: 1.3415
Epoch 45/50
106/106
                    8s 74ms/step -
accuracy: 0.9165 - loss: 0.2473 - val_accuracy: 0.6509 - val_loss: 1.3767
Epoch 46/50
106/106
                    8s 76ms/step -
accuracy: 0.9134 - loss: 0.2555 - val_accuracy: 0.6411 - val_loss: 1.4024
Epoch 47/50
                    8s 74ms/step -
106/106
accuracy: 0.9362 - loss: 0.2144 - val_accuracy: 0.6375 - val_loss: 1.4269
Epoch 48/50
106/106
                    8s 75ms/step -
accuracy: 0.9284 - loss: 0.2237 - val_accuracy: 0.6339 - val_loss: 1.4466
```

```
Epoch 49/50
    106/106
                        8s 74ms/step -
    accuracy: 0.9265 - loss: 0.2347 - val accuracy: 0.6357 - val loss: 1.4796
    Epoch 50/50
    106/106
                        8s 73ms/step -
    accuracy: 0.9199 - loss: 0.2294 - val_accuracy: 0.6420 - val_loss: 1.4395
[4]: test_loss, test_accuracy = model.evaluate(test_ds)
     print(f"Test Accuracy: {test_accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
    36/36
                      8s 226ms/step -
    accuracy: 0.6434 - loss: 1.4337
    Test Accuracy: 0.6376
    Test Loss: 1.4552
[5]: import matplotlib.pyplot as plt
     from sklearn.metrics import classification report, confusion matrix
     import seaborn as sns
     import numpy as np
[6]: plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.title('Model accuracy')
     plt.ylabel('Accuracy')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     # Plot training & validation loss values
     plt.subplot(1, 2, 2)
     plt.plot(history.history['loss'])
     plt.plot(history.history['val_loss'])
     plt.title('Model loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     plt.show()
```



```
[7]: y_true, y_pred = [], []
     target_names = [label_map[i] for i in range(len(label_map))]
     for X_batch, y_batch in test_ds:
         y_true.append(y_batch.numpy())
         batch_pred = model.predict(X_batch, verbose=0)
         y_pred.append(np.argmax(batch_pred, axis=1))
     y_true = np.concatenate(y_true)
     y_pred = np.concatenate(y_pred)
     print(classification_report(
         y_true, y_pred,
         digits=3,
         target_names=target_names
     ))
     cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
     labels = [label_map[i] for i in range(len(label_map))]
     plt.figure(figsize=(10, 8))
     sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                 xticklabels=labels, yticklabels=labels)
     plt.xlabel("Predicted Label")
     plt.ylabel("True Label")
     plt.title("Confusion Matrix - Test Set")
     plt.show()
```

precision		recall	f1-score	support
A	0.667	0.632	0.649	19
В	0.389	0.259	0.311	27

~			0 000	
С	0.275	0.609	0.378	23
D	0.257	0.429	0.321	21
E	0.643	0.600	0.621	30
F	0.381	0.320	0.348	25
G	0.585	0.774	0.667	31
Н	0.654	0.586	0.618	29
I	0.286	0.273	0.279	22
J	0.400	0.500	0.444	24
K	0.611	0.344	0.440	32
L	0.571	0.615	0.593	26
M	0.355	0.256	0.297	43
N	0.179	0.250	0.209	28
0	0.476	0.385	0.426	26
P	0.333	0.208	0.256	24
Q	0.348	0.444	0.390	18
R	0.471	0.381	0.421	21
S	0.667	0.500	0.571	32
Т	0.379	0.500	0.431	22
U	0.286	0.182	0.222	33
V	0.452	0.633	0.528	30
W	0.476	0.385	0.426	26
Х	0.500	0.478	0.489	23
Y	0.478	0.379	0.423	29
Z	0.828	0.857	0.842	28
baca	1.000	0.818	0.900	11
bantu	0.933	0.933	0.933	15
bapak	0.950	1.000	0.974	19
buangairkecil	1.000	0.727	0.842	11
buat	0.800	1.000	0.889	12
halo	1.000	1.000	1.000	15
ibu	0.857	1.000	0.923	6
kamu	1.000	0.781	0.877	32
maaf	1.000	1.000	1.000	22
makan	1.000	0.900	0.947	20
mau	1.000	1.000	1.000	23
nama	0.952	0.870	0.909	23
pagi	0.778	0.955	0.857	22
paham	1.000	1.000	1.000	32
sakit	1.000	1.000	1.000	7
sama-sama	0.950	0.950	0.950	20
saya	0.909	0.909	0.909	11
selamat	0.957	0.917	0.936	24
	0.769	0.917	0.833	22
siapa	0.769	0.909	0.033	24
tanya				
tempat	1.000	0.900	0.947	10
terima-kasih terlambat	0.810	1.000	0.895	17
	0.944	1.000	0.971	17
tidak	0.900	0.900	0.900	10

tolong	0.944	0.850	0.895	20
accuracy			0.638	1137
macro avg	0.693	0.687	0.683	1137
weighted avg	0.650	0.638	0.636	1137

