Cosmological Evolution in Brans-Dicke Theory: A Numerical and Statistical Analysis Compared to ΛCDM

Miguel Angel Percudani September 22, 2025

Abstract

We present a numerical and statistical analysis of the cosmological evolution within the Brans-Dicke (BD) theory of gravity, an alternative to General Relativity (GR) that introduces a scalar field ϕ making the gravitational constant $G \propto 1/\phi$ variable. Using Python-based simulations from the repository [Percudani, 2025], initially shared in April 2025, we investigate: (1) the evolution of the normalized Hubble parameter $E(z) = H(z)/H_0$ and the scalar field $\phi(z)$ for BD coupling parameters $\omega = 10, 100, 1000, 5000$; and (2) constraints on ω using simulated distance modulus $\mu(z)$ data generated from the ΛCDM model with Gaussian noise ($\sigma = 0.106$ mag). The cosmological parameters are set as $H_0 = 70 \text{ km/s/Mpc}$, $\Omega_{m0} = 0.3$, $\Omega_{DE0} = 0.7$, and $w_0 = -1.0$. Results show that for all tested $\omega \ge 10$, BD models yield $\chi^2 \approx 24.53$ (reduced $\chi^2 = 0.876$), compared to $\Lambda \text{CDM's}$ $\chi^2 = 24.47$ (reduced $\chi^2 = 0.874$), with the best fit at $\omega = 10$ and $\Delta \chi^2 = 0.064$, indicating statistical indistinguishability from ΛCDM . This study provides a reproducible framework based on open-source code, complementing extensions like co-varying G and c models.

⁰Independent Researcher, Puan, Buenos Aires, Argentina. Email: miguel_percudani@yahoo.com.ar

1 Introduction

The Brans-Dicke (BD) theory [Brans and Dicke, 1961] extends General Relativity (GR) by introducing a scalar field ϕ that makes the gravitational constant $G \propto 1/\phi$ variable, coupled through a dimensionless parameter ω . In the limit $\omega \to \infty$, BD reduces to GR [Weinberg, 1972]. This theory addresses potential deviations from GR in cosmology, such as the Hubble constant (H_0) tension between local measurements [Riess et al., 1998] and cosmic microwave background (CMB) inferences [Planck Collaboration et al., 2020].

Recent extensions of BD, such as frameworks allowing co-variation of G and the speed of light c [Medeiros, 2023, Bezerra-Sobrinho et al., 2025], provide theoretical motivation for revisiting classical BD. This work presents a numerical analysis of BD cosmology using simulated data from Python codes initially shared in [Percudani, 2025] in April 2025, comparing it to the standard Λ CDM model. The codes are publicly available to ensure reproducibility.

2 Theoretical Framework

In BD theory, the field equations for a flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe are [Weinberg, 1972]:

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi\rho}{3\phi} - \frac{\dot{\phi}}{\phi}H + \frac{\omega}{6}\left(\frac{\dot{\phi}}{\phi}\right)^2 + \frac{\Lambda c^4}{3\phi},\tag{1}$$

$$\ddot{\phi} + 3H\dot{\phi} = \frac{8\pi}{3 + 2\omega} (\rho - 2p) + \frac{4\Lambda c^4}{3 + 2\omega},\tag{2}$$

where a is the scale factor, ρ and p are density and pressure, Λ is the cosmological constant, and dots denote time derivatives. We normalize to redshift z and use $E(z) = H(z)/H_0$, assuming matter-dominated ($\Omega_{m0} = 0.3$) and dark energy ($\Omega_{DE0} = 0.7$, $w_0 = -1$) components.

For Λ CDM (BD limit $\omega \to \infty$, $\phi = 1$):

$$E(z) = \sqrt{\Omega_{m0}(1+z)^3 + \Omega_{DE0}}.$$
 (3)

The distance modulus is:

$$\mu(z) = 5 \log_{10} \left(\frac{d_L(z)}{10 \,\mathrm{pc}} \right), \quad d_L(z) = (1+z) \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}.$$
 (4)

3 Methodology

We solve the BD equations numerically using Python's scipy.integrate.solve_ivp from the scipy library [SciPy Developers, 2020], which integrates systems of ordinary differential equations (ODEs) with initial conditions $\phi(0) = 1$ and $\phi'(0) = 0$. The analysis builds on initial codes shared in [Percudani, 2025] on April 16, 2025, which used odeint and simpler approximations (e.g., $\phi \approx 1$ for large ω). The current implementation, available in [Percudani, 2025], simulates the evolution of E(z) and $\phi(z)$ over $z \in [0, 2]$ for $\omega = [10, 50, 100, 500, 1000, 2000, 5000, 10000]$, incorporating small stabilization terms ϵ to avoid singularities.

Simulated $\mu(z)$ data (29 points) are generated from Λ CDM with Gaussian noise ($\sigma \approx 0.106$ mag), an improvement over the initial 50-point dataset with $\sigma = 0.2$ mag. The χ^2 statistic is minimized as:

$$\chi^2 = \sum \left(\frac{\mu_{\text{obs}}(z_i) - \mu_{\text{theory}}(z_i)}{\sigma_i} \right)^2, \tag{5}$$

with reduced $\chi^2 = \chi^2/\text{dof (dof=28)}$. Results are exported to CSV files and visualized using the updated scripts in [Percudani, 2025].

4 Results

Table 1: Cosmological Parameters

Value
$70.0 \; \mathrm{km/s/Mpc}$
0.3
0.7
-1.0

Figure 1 shows the comprehensive analysis.

Table 2: Simulated Observational Data (Excerpt)

Redshift	$\mu(z)$	Error	$\mu_{\Lambda { m CDM}}$
0.01	33.215	0.0804	33.175
0.02	34.686	0.0808	34.697
0.05	36.788	0.0820	36.735
0.08	37.928	0.0832	37.801
0.1	38.296	0.0840	38.315
0.15	39.246	0.0860	39.266
0.2	40.095	0.0880	39.956
•••	•••	•••	
1.6	45.275	0.1440	45.362

<u> Table 3: Statistical Results</u>

Table 9. Statistical results						
Model	ω	χ^2	Reduced χ^2			
ΛCDM	-	24.47	0.874			
BD	10	24.53	0.876			
BD	50	24.53	0.876			
BD	100	24.53	0.876			
BD	500	24.53	0.876			
BD	1000	24.53	0.876			
BD	2000	24.53	0.876			
BD	5000	24.53	0.876			
BD	10000	24.53	0.876			

The best fit is $\omega=10$ with $\Delta\chi^2=0.064$, indicating BD is statistically indistinguishable from ΛCDM .

5 Discussion

Our results show BD converges to Λ CDM for $\omega \gtrsim 10$, with minimal deviations in E(z) and $\mu(z)$. This aligns with observational constraints from extensions allowing co-varying G and c [Medeiros, 2023, Bezerra-Sobrinho et al., 2025], where BD classical serves as a baseline.

Limitations include simulated data; future work should use real datasets

Table 4: Theoretical Curves (Excerpt)

Redshift	$E_{\Lambda { m CDM}}$	$\mu_{\Lambda { m CDM}}$	$E_{\mathrm{BD},\omega=10}$
0.01	1.005	33.175	1.005
0.02	1.009	34.697	1.009
0.03	1.014	35.594	1.014
0.04	1.019	36.234	1.019
0.05	1.023	36.735	1.023
0.06	1.028	37.146	1.028
0.07	1.033	37.496	1.033
2.0	2.966	45.957	2.966

like Pantheon+. The Python codes, initially shared in [Percudani, 2025] on April 16, 2025, provide a historical foundation, with the current analysis reflecting improved methodologies.

6 Conclusions

BD theory is viable and statistically equivalent to Λ CDM for the simulated data, with best $\omega = 10$. This supports exploring BD extensions for resolving cosmological tensions, building on the open-source framework established in April 2025.

Acknowledgments

Assistance from Grok (xAI) is acknowledged. The research is based on Python codes initially shared in [Percudani, 2025] on April 16, 2025.

References

J. Bezerra-Sobrinho, R. R. Cuzinatto, and L. Medeiros. Brans-dicke-like field for co-varying g and c: Observational constraints. arXiv preprint arXiv:2509.09211, 2025. Published after the initial code release on April 16, 2025.

- C. Brans and R. H. Dicke. Mach's principle and a relativistic theory of gravitation. *Physical Review*, 124:925–935, 1961.
- L. G. Medeiros. Dynamical co-variation of fundamental constants in alternative gravity theories. *Symmetry*, 15(4):709, 2023.
- Miguel Angel Percudani. Brans-dicke cosmology: Numerical analysis codes. https://github.com/miguelpercu/Brans-Dicke-Cosmology, 4 2025. GitHub repository containing initial Python scripts for simulating Brans-Dicke cosmological evolution, shared on April 16, 2025, with subsequent updates.
- Planck Collaboration et al. Planck 2018 results. vi. cosmological parameters. Astronomy & Astrophysics, 641:A6, 2020.
- Adam G. Riess et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. *Astronomical Journal*, 116 (3):1009–1038, 1998.
- SciPy Developers. Scipy: Open source scientific tools for python. https://www.scipy.org/, 2020. Version 1.5.0 or later, used for numerical integration with solve_ivp.
- Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York, 1972.

Figure 1: Comprehensive cosmological analysis: Normalized Hubble parameter, scalar field evolution, distance modulus comparison, χ^2 vs. ω , normalized residuals, percentage differences, density parameter evolution, and Hubble parameter evolution.