MODEL SELECTION, MODEL EVALUATION

MACHINE LEARNING 1 UE (INP.33761UF)

Thomas Wedenig

May 15, 2024

Institute of Theoretical Computer Science Graz University of Technology, Austria

TABLE OF CONTENTS

- 1. The Problem Overfitting, Underfitting
- 2. Model Selection
- 3. (Some) Techniques against Overfitting
- 4. Performance Metrics

THE PROBLEM - OVERFITTING,

UNDERFITTING

SUPERVISED LEARNING

- We have data $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$
- We split it into training data \mathcal{D}_{train} and test data \mathcal{D}_{test} • e.g., 80% train and 20% test
- Given a model f_{θ} , we compute the average loss over all training examples:

$$\mathcal{L}_{train}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), y^{(i)}\right)$$

SUPERVISED LEARNING

- We have data $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$
- We split it into training data $\mathcal{D}_{\text{train}}$ and test data $\mathcal{D}_{\text{test}}$ • e.g., 80% train and 20% test
- · Given a model f_{θ} , we compute the average loss over all training examples:

$$\mathcal{L}_{\text{train}}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), y^{(i)}\right)$$

Question 🥲

Is the final goal of supervised learning to minimize the average training loss? That is, finding

$$oldsymbol{ heta}^* = \operatornamewithlimits{\mathsf{argmin}}_{oldsymbol{ heta}} \mathcal{L}_{\mathsf{train}}(oldsymbol{ heta})$$

THE GOAL OF SUPERVISED LEARNING

- · No 【
- There's an unknown data generation distribution
 p_{data}(x, y)
- If we had access to $p_{data}(\mathbf{x}, y)$, we want to minimize the **generalization error**:

$$\mathcal{L}_{p_{\text{data}}}(\boldsymbol{\theta}) = \mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}} \left[\ell(f_{\boldsymbol{\theta}}(\mathbf{x}), y) \right]$$

- · But since we don't know p_{data} , we minimize $\mathcal{L}_{\mathsf{train}}$
- However, we truly care about the average test loss \mathcal{L}_{test} , since this is an unbiased estimate of the generalization error !

OVERFITTING - EXAMPLE

- · Say we do **polynomial regression**, i.e., our targets $y^{(i)} \in \mathbb{R}$
- The polynomial degree of our model is a hyperparameter
- · What's the "right" hyperparameter setting for our task ?

UNDERFITTING AND OVERFITTING

UNDERFITTING AND OVERFITTING

UNDERFITTING AND OVERFITTING

- · Underfitting 😩
 - Model is too simple
 - · e.g., Neural Net too small, polynomial degree too low
 - · Large training loss, large test loss
- · Overfitting 😩
 - Model is too complex
 - · e.g., Neural Net too large, polynomial degree too high
 - · Small training loss, large test loss
- · "Just right" 🌚
 - Model is neither too complex nor too simple
 - · Smallest test loss

GENERALIZATION ERROR

• However, selecting a model based on the test set is a methodological issue 😱

- · We can't touch the test set during model selection
- · We spare it until the very end to get an unbiased estimate of the generalization error
- But how should we decide which model to use then?

MODEL SELECTION

TEST SET

- · Let's set aside a chunk of our data, the test set
- For example, use 80% of the data as training data and 20% as test set
- · We do not touch the test set during model selection !
 - · For what's to come, forget that the test data exists at all

MODEL SELECTION

Holdout Method

- Split remaining data into train and validation set
 - e.g., 80% for train and 20% for validation
- Use validation set to calculate validation loss for all model candidates
- Pick model candidate with lowest validation loss

MODEL SELECTION

Holdout Method

- Split remaining data into train and validation set
 - e.g., 80% for train and 20% for validation
- Use validation set to calculate validation loss for all model candidates
- Pick model candidate with lowest validation loss

K-Fold Cross Validation (CV)

 Split remaining data into K equally sized disjoint sets (folds)

- Train *K* separate models
 - Each model trains on K-1 folds and is evaluated using the remaining fold
- Calculate emprical mean and variance of validation loss over K runs
 - · Pick model with lowest mean CV loss

HOLDOUT METHOD VS. CROSS-VALIDATION

Holdout Method

- · Commonly used when
 - · We have enough data
 - · Model Training is relatively expensive
- Little training data \rightarrow parameters are fitted poorly
- Little validation data \rightarrow generalization error is poorly estimated

HOLDOUT METHOD VS. CROSS-VALIDATION

Holdout Method

- · Commonly used when
 - · We have enough data
 - · Model Training is relatively expensive
- Little training data \rightarrow parameters are fitted poorly
- Little validation data → generalization error is poorly estimated

K-Fold Cross Validation (CV)

- · Commonly used when
 - · We have little data
 - · Model Training is relatively cheap
- · Allows you to recycle the data
- Needs K times as much computation as the Holdout Method...

(SOME) TECHNIQUES AGAINST OVERFITTING

USING FLEXIBLE MODELS

- · Idea: use flexible, complex model architectures
 - · e.g., large Neural Network, high degree polynomial
- · This way, we definitely won't underfit
- But how to avoid overfitting ?

REGULARIZATION

- Techniques against overfitting are often called **Regularization**
- Techniques include
 - L1/L2 Regularization ("penalty" term in the loss)
 - Early Stopping (used when training Neural Networks)

L1/L2 REGULARIZATION

- In the overfitting regime, the magnitude of parameter values often grows large
- Thus, we prefer models with smaller magnitude of parameter values
- \cdot L2 Regularization: Instead of minimizing some loss $\mathcal{L}(heta)$, we seek

$$\underset{oldsymbol{ heta}}{\operatorname{argmin}} \mathcal{L}(oldsymbol{ heta}) + \lambda \|oldsymbol{ heta}\|_2^2$$

 \cdot L1 Regularization: Instead of minimizing some loss $\mathcal{L}(heta)$, we seek

$$\operatorname*{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{1}$$

 \cdot λ controls the **strength of regularization**

L2 REGULARIZATION - EXAMPLE

EARLY STOPPING

- Type of **regularization** used primarily in Neural Network training
 - · Model needs to be trained in an iterative manner
 - · e.g., Stochastic Gradient Descent (SGD), or similar
- During training, monitor validation loss
- · Stop training when validation loss increases

EARLY STOPPING

- Type of regularization used primarily in Neural Network training
 - · Model needs to be trained in an iterative manner
 - · e.g., Stochastic Gradient Descent (SGD), or similar
- During training, monitor validation loss
- · Stop training when validation loss increases

Probabilistic Machine Learning, An Introduction (Murphy, 2022)

EARLY STOPPING AS REGULARIZATION

- Parameters θ are initialized with small values
- · SGD will take many steps to go away from our initialization
- Stop training if it goes "too far away"

PERFORMANCE METRICS

PERFORMANCE METRICS

- In our selection process, we pick the model with the lowest validation loss
 - · Or lowest mean CV loss
- We can then for the first time use the test set to compute the **test loss**
- The loss is usually not interpretable easily
 - e.g., Cross-Entropy Loss
 - Loss might involve a regularization term
- How can we evaluate the model's performance in a more interpretable way ?

Performance Metrics - Regression

- Regression: $y^{(i)} \in \mathbb{R}$
 - Note: In the following, $\mathbf{x}^{(i)}$, $y^{(i)}$ come from the test set
- Mean Squared Error (MSE):

$$MSE(\boldsymbol{\theta}) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} \left(f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}$$

· Root Mean Squared Error (RMSE):

$$RMSE(\boldsymbol{\theta}) = \sqrt{MSE(\boldsymbol{\theta})}$$

Mean Absolute Error (MAE):

$$MAE(\boldsymbol{\theta}) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} |f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)}|$$

· Prefer RMSE and MAE, since they have the same unit as the target

Performance Metrics - Binary Classification

- Binary classification: $y^{(i)} \in \{0,1\}$. A model's prediction can be:
 - True Positive (TP): y = 1 and model correctly said $\hat{y} = 1$
 - True Negative (TN): y = 0 and model correctly said $\hat{y} = 0$
 - False Positive (FP): y = 0 but model incorrectly said $\hat{y} = 1$
 - False Negative (FN): y=1 but model incorrectly said $\hat{y}=0$

Performance Metrics - Binary Classification

- Binary classification: $y^{(i)} \in \{0,1\}$. A model's prediction can be:
 - True Positive (TP): y = 1 and model correctly said $\hat{y} = 1$
 - True Negative (TN): y=0 and model correctly said $\hat{y}=0$
 - False Positive (FP): y = 0 but model incorrectly said $\hat{y} = 1$
 - False Negative (FN): y = 1 but model incorrectly said $\hat{y} = 0$
- Say the test data has P positive and N negative examples: $N_{\text{test}} = P + N$
- · Accuracy:

$$ACC = \frac{TP + TN}{N_{\text{test}}}$$

· Precision:

$$PREC = \frac{TP}{TP + FP}$$

· Recall:

$$REC = \frac{TP}{P}$$

• F_1 Score:

$$F_1 = 2 \cdot \frac{PREC \cdot REC}{PREC + REC}$$

- \cdot F_1 is the harmonic mean of precision and recall
 - · Balances precision and recall
- · Accuracy, Precision, Recall, F_1 are all $\in [0,1]$

ACCURACY AS A PERFORMANCE METRIC

Question 🤔

You want to build a binary classification model that predicts if a patient has a rare disease. In your test set, 99% of patients are healthy.

What's the **test accuracy** of a naïve model that **always predicts** $\hat{y} = 0$ (no disease) ?

ACCURACY AS A PERFORMANCE METRIC

Question 🤔

You want to build a binary classification model that predicts if a patient has a rare disease. In your test set, 99% of patients are healthy.

What's the **test accuracy** of a naïve model that **always predicts** $\hat{y} = 0$ (no disease) ?

Answer

- Test accuracy is 99% !
- · Accuracy is very misleading if we have class inbalances
- Better: Report **Precision, Recall** and F_1

What about **multiclass** classification?

- Report metric per class
 - e.g., Accuracy, Precision, Recall, F₁

https: //www.evidentlyai.com/classification-metrics/multi-class-metrics

//www.evidentlyai.com/classification-metrics/multi-class-metrics

MULTICLASS CLASSIFICATION (CONT.)

- We can also **average** the individual per-class metric (**macro** average)
 - Gives equal weight to each class

https://www.evidentlyai.com/classification-metrics/multi-class-metrics

- We can also globally count true predictions and false predictions (micro average)
 - Gives a global type of accuracy

Model Selection & Evaluation Demo (MLPClassifier)