TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 2, Năm học 2022–2023 Hê đào tao: *Chính quy* Bậc học: *Đại học*

Tên học phần: Giải tích Số tín chỉ: 3

Ngày thi: 10/6/2023 Thời gian làm bài: 90 phút

Đề số 1

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1)

(a) Xác định miền $D = \{(x,y) \mid 1 \le x^2 + y^2 \le 4\}$ trong toạ độ cực.

(b) Tính tích phân $I = \iint_D (x^2 + 2y^2) dx dy$.

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân sau:

$$I = \iiint_B \frac{e^{\sqrt{x^2 + y^2 + z^2}}}{x^2 + y^2 + z^2} \, dV,$$

trong đó B là miền xác định bởi $1 \le x^2 + y^2 + z^2 \le 4$, $z \ge 0$.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Cho cung (C) là một phần tư đường tròn $x^2 + y^2 = 1$, định hướng từ A(1,0) đến B(0,1).

- (a) Tìm một biểu diễn tham số $\mathbf{r} = \mathbf{r}(t)$ của (C).
- (b) Tính $I = \int_C \mathbf{F} \cdot d\mathbf{r}$, biết $\mathbf{F} = (2x^2 + y^2, 2x 3y)$.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho mặt S xác định bởi $x+y+z=1, x\geq 0, y\geq 0$, và $z\geq 0$.

- (a) Tìm một biểu diễn tham số $\mathbf{r}(u, v)$ của S và một véctơ pháp \mathbf{N} tương ứng.
- (b) Giả sử S được định hướng bởi véctơ pháp đơn vị \mathbf{n} hướng lên trên, có nghĩa là $\mathbf{n} \cdot \mathbf{k} > 0$. Tính tích phân $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, trong đó $\mathbf{F} = (1, e^y, e^x)$.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Giải phương trình vi phân tuyến tính

$$y' - \frac{2}{x}y = 2x^3 + 3x.$$

———— Hết ————

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 2, Năm học 2022–2023 Hê đào tao: *Chính quy* Bậc học: *Đại học*

Tên học phần: Giải tích Số tín chỉ: 3

Ngày thi: 10/6/2023 Thời gian làm bài: 90 phút

Đề số 10

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân

$$I = \iint_D (x^2 + y^2) dx dy,$$

biết miền D được giới hạn bởi đường tròn $x^2 + y^2 = 4x$.

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Tính thể tích của hình được xác định bởi các điều kiện $x^2 + y^2 \le z^4$ và $z^2 \le 4$.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Cho các điểm A(2,0), B(0,2) và gọi (C) là cung tròn định hướng từ điểm chính giữa M của cung AB đến điểm B của đường tròn $x^2 + y^2 = 4$.

- (a) Tìm một biểu diễn tham số $\mathbf{r} = \mathbf{r}(t)$ của (C).
- (b) Tính tích phân đường $J = \int_C \mathbf{F} \cdot d\mathbf{r}$ của hàm vécto $\mathbf{F} = (2x + 6y, x^2 + y^2 4y)$.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho mặt S xác định bởi $y=x^2$, $0 \le x \le 1$, $0 \le z \le 4$

- (a) Tìm một biểu diễn tham số $\mathbf{r}(u,v)$ của S và một véctơ pháp tuyến \mathbf{N} tương ứng.
- (b) Tính tích phân $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, trong đó $\mathbf{F} = (y, 3z^2, 3xz)$ và véctơ pháp đơn vị \mathbf{n} tạo với chiều dương của Oy một góc tù.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Giải phương trình vi phân sau:

 $y'(x^2 - y^2) - xy = 0.$

- Thí sinh không được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 2, Năm học 2022–2023 Hệ đào tạo: Chính quy Bậc học: Đại học

Tên học phần: Giải tích Số tín chỉ: 3

Ngày thi: 10/6/2023 Thời gian làm bài: 90 phút

 \mathbf{D} ề số 2

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1)

(a) Tính Jacobian $J = \frac{D(x,y)}{D(u,v)}$, biết u = x - y và v = x + 2y.

(b) Tính tích phân $I=\iint_D (2x+y)\mathrm{d}x\,\mathrm{d}y$, biết $D=\{(x,y)\mid 0\leq x-y\leq 3\ \mathrm{và}\ -1\leq x+2y\leq 1\}.$

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân sau:

$$I = \iiint_B \frac{\cos(\sqrt{x^2 + y^2 + z^2})}{x^2 + y^2 + z^2} \, dV,$$

trong đó B là miền xác định bởi $1 \le x^2 + y^2 + z^2 \le 4$ và $z \le 0$

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Cho cung (C) là một phần tư đường tròn $x^2 + y^2 = 9$, định hướng từ A(3,0) đến B(0,3).

- (a) Tìm một biểu diễn tham số $\mathbf{r} = \mathbf{r}(t)$ của (C).
- (b) Tính $I = \int_C \mathbf{F} \cdot d\mathbf{r}$, biết $\mathbf{F} = (-x^2 + y^2, x + y 2)$.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho mặt S xác định bởi 2x + 3y + z = 1, $x \ge 0$, $y \ge 0$, và z > 0.

- (a) Tìm một biểu diễn tham số $\mathbf{r}(u,v)$ của S và một véctơ pháp \mathbf{N} tương ứng.
- (b) Giả sử S được định hướng bởi véctơ pháp đơn vị \mathbf{n} hướng lên trên, tức là $\mathbf{n} \cdot \mathbf{k} > 0$. Tính tích phân $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, trong đó $\mathbf{F} = (e^y, e^x, 0)$.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Giải phương trình vi phân tuyến tính

$$y' + \frac{2y}{x} = \frac{4\sin 2x}{x^2} + \sqrt{x}.$$

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 2, Năm học 2022–2023 Hê đào tao: *Chính quy* Bâc học: *Đại học*

Tên học phần: Giải tích Số tín chỉ: 3

Ngày thi: 10/6/2023 Thời gian làm bài: 90 phút

Đề số 9

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân

$$I = \iint_D xy^2 dx dy,$$

biết miền D được xác định bởi $D = \{(x,y) \mid x^2 + y^2 \le 25, x \ge 0\}$.

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân

$$I = \iiint_V e^{(x^2 + y^2 + z^2)^{3/2}} dx dy dz,$$

trong đó V là miền trong không gian Oxyz xác định bởi các điều kiện: $x,y,z\geq 0$, $x^2+y^2+z^2\geq 1$, $x^2+y^2+z^2\leq 4$, và $x^2+y^2\leq z^2$.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Cho cung (C) là nửa đường tròn $x^2 + y^2 = 4$, định hướng ngược chiều kim đồng hồ từ điểm A(0,2) đến điểm B(0,-2).

- (a) Tìm một biểu diễn tham số $\mathbf{r} = \mathbf{r}(t)$ của (C).
- (b) Tính tích phân đường $J = \int_C \mathbf{F} \cdot d\mathbf{r}$ của hàm vécto $\mathbf{F} = (x^2 + y^2 + 3x, 3 2y)$.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho mặt S xác định bởi $y=x^2$, $0 \le x \le 2$, $0 \le z \le 1$

- (a) Tìm một biểu diễn tham số $\mathbf{r}(u, v)$ của S và một véctơ pháp tuyến \mathbf{N} tương ứng.
- (b) Tính tích phân $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, trong đó $\mathbf{F} = (3z^2, 1, xz)$ và véctơ pháp đơn vị \mathbf{n} tạo với chiều dương của Ox một góc nhọn.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Giải phương trình vi phân sau:

$$y'(2x + y) - 9x - 2y = 0.$$

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 2, Năm học 2022–2023 Hê đào tao: *Chính quy* Bậc học: *Đại học*

Tên học phần: Giải tích Số tín chỉ: 3

Ngày thi: 10/6/2023 Thời gian làm bài: 90 phút

Đề số 4

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân $I = \iint_D (2+x-y) dx dy$, biết miền D giới hạn bởi hai đường $y = x^2$ và y = x + 2.

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân sau:

$$I = \iiint_B \frac{z}{x^2 + y^2 + z^2} \, \mathrm{d}V,$$

trong đó B là miền xác định bởi $1 \le x^2 + y^2 + z^2 \le 4$ và $x \le 0$.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Cho C là đoạn thẳng định hướng từ A(0,0,0) đến B(3,2,1).

- (a) Tìm một biểu diễn tham số $\mathbf{r} = \mathbf{r}(t)$ của C.
- (b) Tính $I = \int_C \mathbf{F} \cdot d\mathbf{r}$, biết $\mathbf{F} = (xy y^2, yz z^2, (x + y)e^z)$.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho mặt S xác định bởi $x=y^2$, $0 \le y \le \frac{\pi}{2}$ và $0 \le z \le y$.

- (a) Tìm một biểu diễn tham số $\mathbf{r}(u,v)$ của S và một véctơ pháp \mathbf{N} tương ứng.
- (b) Tính tích phân $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, trong đó $\mathbf{F} = (\sin(y), 0, \cos(z^2))$ và \mathbf{n} là véctơ pháp đơn vị của S sao cho \mathbf{n} tạo với chiều dương của Ox một góc nhọn.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Giải phương trình vi phân tuyến tính

$$y'-2xy=8x.$$

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 2, Năm học 2022–2023 Hê đào tao: *Chính quy* Bâc học: *Đại học*

Tên học phần: Giải tích Số tín chỉ: 3

Ngày thi: 10/6/2023 Thời gian làm bài: 90 phút

Đề số 5

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân $I=\iint_D (x+y-1)^2 \,\mathrm{d}x\,\mathrm{d}y$, biết miền $D=[-1,1]\times[0,2]$.

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Tính tích phân sau:

$$I = \iiint_{B} \frac{\sin(\sqrt{x^{2} + y^{2} + z^{2}})}{x^{2} + y^{2} + z^{2}} dV,$$

trong đó B là miền xác định bởi $1 \leq x^2 + y^2 + z^2 \leq 4$ và $y \geq 0.$

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Cho cung C là một phần parabol $\begin{cases} y=x^2\\ z=-x, \end{cases}$ định hướng từ A(0,0,0) đến B(1,1,-1).

- (a) Tìm một biểu diễn tham số $\mathbf{r} = \mathbf{r}(t)$ của C.
- (b) Tính $I = \int_C \mathbf{F} \cdot d\mathbf{r}$, biết $\mathbf{F} = (x^2 + yz, y^2 + zx, z^2 + xe^z)$.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho mặt S xác định bởi $x=2y^2$, $0 \le y \le 2$, và $0 \le z \le y$.

- (a) Tìm một biểu diễn tham số $\mathbf{r}(u,v)$ của S và một véctơ pháp \mathbf{N} tương ứng.
- (b) Tính tích phân $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, trong đó $\mathbf{F} = (0, y, x \sin(z))$ và \mathbf{n} là véctơ pháp đơn vị tạo với chiều dương của Ox một góc nhọn.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Giải phương trình vi phân sau:

$$2x^2y' - x^2 - x - 1 = 0,$$

với điều kiện y(1) = 0.

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: *Giải tích* Mã học phần: *FFS703008*

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
(a)		1,00	
	$x = r\cos\varphi, y = r\sin\varphi$	0,5	
	$1 \le r \le 2$	0,25	
	$0 \leq arphi \leq 2\pi$	0,25	
(b)		1,00	
	$ J = r$, $dxdy = rdrd\varphi$	0,25	
	$I = \int_{1}^{2} dr \int_{0}^{2\pi} d\varphi (1 + \sin^{2}\varphi) r^{3}$	0,25	
	$I = (r^4/4)_1^2 [3\varphi/2 - \sin(2\varphi)/4]_0^{2\pi}$	0,25	
	$I=45\pi/4$	0,25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
	Đổi biến $x = \rho \sin(\phi) \cos(\theta), \ y = \rho \sin(\phi) \sin(\theta), \ z = \rho \cos(\phi)$	0,25	
	Xác định cận $1 \leq \rho \leq 2, \ 0 \leq \phi \leq \pi/2, \ 0 \leq \theta \leq 2\pi$	0.25	

Jacobian $J = \rho^2 \sin(\phi)$	0,25	
Hàm số dưới dấu tích phân $\frac{e^{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} = \frac{e^\rho}{\rho^2}$	0,25	
$I = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{1}^{2} \frac{e^{\rho}}{\rho^{2}} \rho^{2} \sin(\phi) d\rho d\phi d\theta$	0,25	
$=\int\limits_0^{2\pi}d\theta\int\limits_0^{\pi/2}\sin(\phi)d\phi\int\limits_1^2e^\rho d\rho$	0,25	
$=2\pi\Big(-\cos(\phi)\Big _0^{\pi/2}\Big)\Big(e^{\rho}\Big _1^2\Big)$	0,25	
$=2\pi(e^2-e)$	0,25	

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
(a)		0,5	
	Biểu diễn tham số: $\begin{cases} x = \cos t, \\ y = \sin t, \end{cases} 0 \le t \le \frac{\pi}{2}$	0,5	
(b)		1,5	
	Tính được vi phân: $d\mathbf{r} = [-\sin t dt, \cos t dt]$	0,5	
	$I = \int_0^{\pi/2} (2\cos^2 t + \sin^2 t)(-\sin t)dt + (2\cos t - 3\sin t)\cos tdt$ $= \int_0^{\pi/2} [(1 + \cos^2 t)(-\sin t) + 2\cos^2 t - 3\sin t\cos t]dt$ $= \left(\cos t + \frac{\cos^3 t}{3} + \frac{2}{2}(t + \frac{1}{2}\sin 2t) + \frac{3}{4}\cos 2t\right)\Big _0^{\pi/2}$ $= \frac{\pi}{2} - \frac{17}{6}$	0,25 0,25 0,25 0,25	

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
(a)		1,0	
	Biểu diễn tham số $(u, v) \mapsto \mathbf{r}(u, v) = (u, v, 1 - u - v)$.	0,25	
	Xác định miền của $u, v: (u, v) \in R := \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1 - u\}.$	0,25	
	Tính $\mathbf{r}_u = (1,0,-1), \mathbf{r}_v = (0,1,-1).$	0,25	
	Tính $\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (1, 1, 1) = \mathbf{i} + \mathbf{j} + \mathbf{k}$.	0,25	

(b)		1,0	
	Tính được $\mathbf{F}(\mathbf{r}(u,v)) \cdot \mathbf{N}(u,v) = 1 + e^v + e^u$.	0,25	
	Viết được $\iint_S \mathbf{F} \cdot \mathbf{n} dA = \iint_R (1 + e^v + e^u) du dv$.	0,25	
	Đưa về tích phân lặp $\int_0^1 du \int_0^{1-u} (1+e^v+e^u) dv$.	0,25	
	$= \int_0^1 (e^{1-u} - u + (1-u)e^u) du = 2e - 7/2.$	0,25	
Ghi chú	Nếu thí sinh chọn một biểu diễn tham số mà véctơ pháp N có hướng ngược lại thì chấm tương tự, kết quả đổi dấu và sinh viên vẫn được đủ điểm.	0,25	

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	$\text{D}\check{\mathbf{a}}ty(x) = u(x)v(x)$	0,25	
	Đưa PTVP về $u'v + u\left(v' - \frac{2}{x}v\right) = 2x^3 + 3x.$	0,25	
	Một nghiệm $v \neq 0$ thỏa mãn PT		
	$v' - \frac{2}{x}v = 0,$ $v = x^2$	0,5	
	Tîm u thỏa mãn PT $u'x^2 = 2x^3 + 3x$.	0,25	
	$u = \int (2x + \frac{3}{x})dx$	0,25	
	$u = x^2 + 3\ln x + C$	0,25	
	Nghiệm TQ $y = uv = x^4 + 3x^2 \ln x + Cx^2.$	0,25	

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: *Giải tích* Mã học phần: *FFS703008*

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	Vẽ hình. Đặt $x = r\cos\varphi, y = r\sin\varphi, J = r$. Miền D' xác định bởi		
	$D' = \{0 \le \varphi \le 2\pi, 0 \le r \le 4\cos\varphi\}.$	0,5	
	$I = \iint_{\mathbb{N}^3} r^3 dr d\varphi$		
	$I = \iint_{D'} r^3 dr d\varphi$ $I = \int_{0}^{2\pi} d\varphi \int_{0}^{4\cos\varphi} r^3 dr$	0.5	
	2π		
	$I=\int\limits_0^{2\pi}rac{r^4}{4}igg _0^{4\cos arphi}darphi.$	0.5	
	$I = 8 \int_{0}^{2\pi} (3 + 4\cos 2\varphi + \cos 4\varphi) d\varphi.$	0.25	
	$I=48\pi$.	0.25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
	Thể tích của hình được xác định bởi tích phân: $I = \int_V dV$	0,25	
	Đổi biến: $x = r\cos\phi; y = r\sin\phi; z = z$	0,25	
	Xác định cận: $z \in [-2,2]; \phi \in [0,2\pi]$	0,25	

$r \in [0, z^2]$	0,25
Jacobian: $J(r,\phi,z)=r$	0,25
Tích phân: $I = \int_{-2}^{2} dz \int_{0}^{2\pi} d\phi \int_{0}^{z^{2}} drr$	0,25
$I = 2\pi \int_{-2}^{2} dz \frac{1}{2} z^4$	0,25
$I = \pi \frac{1}{5} z^5 \Big _{-2}^2 = \frac{64\pi}{5}$	0,25

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
	Biểu diễn tham số		
(a)	$r = r(t) : x = 2\cos t, \ y = 2\sin t,$	0,25	
	ĐK của tham số: $\frac{\pi}{4} \le t \le \frac{\pi}{2}$	0,25	
(b)	$r'(t) = (-2\sin t, 2\cos t)$ $F = (4\cos t + 12\sin t, 4 - 8\sin t)$	0,5	
	$F \bullet r'(t) = -24\sin^2 t + 8\cos t - 24\sin t\cos t$	0,25	
	$J = \int_{\pi/4}^{\pi/2} (-24\sin^2 t + 8\cos t - 24\sin t\cos t)dt$	0,25	
	$J = \int_{\pi/4}^{\pi/2} [-12(1-\cos 2t) + 8\cos t - 12\sin 2t]dt$	0,25	

$J = -3\pi - 4 - 4\sqrt{2} $ 0,25		$J = -3\pi - 4 - 4\sqrt{2}$	0,25	
-----------------------------------	--	-----------------------------	------	--

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
(a)		0,5	
	Đặt $x = u$, $z = v$. Suy ra $y = u^2$. Khi đó, mặt S có biểu diễn tham số		
	$\mathbf{r}(u,v) = (u,u^2,v), \qquad 0 \le u \le 1, 0 \le v \le 4.$	0,25	
	Các vector chỉ phương của S là $\mathbf{r}'_u=(1,2u,0)$ và $\mathbf{r}'_v=(0,0,1)$. Do đó, vector pháp tuyến của mặt S là		
	$\mathbf{N} = \mathbf{r}'_u \times \mathbf{r}'_v = (2u, -1, 0).$	0,25	
(b)		1,5	
	Trước hết, $\mathbf{F} = (y, 3z^2, 3xz) = (u^2, 3v^2, 3uv)$.	0,25	
	Theo định nghĩa, ta có		
	$\iint_{S} \mathbf{F} \cdot \mathbf{n} dA = \iint_{R} \mathbf{F}(\mathbf{r}) \cdot \mathbf{N} du dv$ $= \iint_{R} \left[3u^{2} \cdot 2u + 3v^{2} \cdot (-1) + 3uv \cdot 0 \right] du dv$ $= \iint_{R} \left[6u^{3} - 3v^{2} \right] du dv.$	0,25	
	Miền R được xác định bởi		
	$R = \{(u, v) \in \mathbb{R}^2 : 0 \le u \le 1, 0 \le v \le 4\}.$	0,25	
	Vậy		
	$\iint_{S} \mathbf{F} \bullet \mathbf{n} dA = \int_{0}^{4} dv \int_{0}^{1} (6u^{3} - 3v^{2}) du.$	0,25	
	Tính chi tiết		
	$\int_{0}^{4} dv \int_{0}^{1} (6u^3 - 3v^2) du = -58.$	0,25	
	Kết luận $\iint \mathbf{F} \bullet \mathbf{n} \mathrm{d}A = -58.$	0,25	

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Viết được: $y' = \frac{\frac{y}{x}}{1 - \frac{y^2}{x^2}}.$	0,25	
	Đặt: $u = \frac{y}{x}$ và tính được $y' = u + u'x$.	0,25	
	Viết lại được phương trình theo u : $u'x = -\frac{u^3}{u^2 - 1}$	0,25	
	Viết được: $\int \frac{dx}{x} = -\int \frac{u^2 - 1}{u^3} du.$	0,25	
	Tính được: $\ln\left \frac{x}{C}\right = -\int \frac{u^2-1}{u^3}du = -\ln u - \frac{1}{2u^2}.$	0,5	
	Suy ra được tích phân tổng quát (nghiệm tổng quát): $ye^{\frac{x^2}{2y^2}} = C,$	0,5	
	với C là hằng số tích phân tuỳ ý.		

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: *Giải tích* Mã học phần: *FFS703008*

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
(a)		1,00	
	x = (2u + v)/3, y = (-u + v)/3	0,5	
	$J = \frac{1}{3}$	0,5	
(b)		1,00	
	$0 \le u \le 3, -1 \le v \le 1$	0,25	
	$I = \int_0^3 du \int_{-1}^1 dv (u+v).(1/3)$	0,25	
	$I = \int_0^3 du 2u/3$	0,25	
	I = 3	0,25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
	Đổi biến $x=\rho\sin(\phi)\cos(\theta),\ y=\rho\sin(\phi)\sin(\theta),\ z=\rho\cos(\phi)$	0,25	
	Xác định cận $1 \leq \rho \leq 2, \ \pi/2 \leq \phi \leq \pi, \ 0 \leq \theta \leq 2\pi$	0.25	
	Jacobian $J = ho^2 \sin(\phi)$	0,25	

Hàm số dưới dấu tích phân		
$\frac{\cos\left(\sqrt{x^2 + y^2 + z^2}\right)}{x^2 + y^2 + z^2} = \frac{\cos(\rho)}{\rho^2}$	0,25	
$I = \int_{0}^{2\pi} \int_{\pi/2}^{\pi} \int_{1}^{2} \frac{\cos(\rho)}{\rho^2} \rho^2 \sin(\phi) d\rho d\phi d\theta$	0,25	
$=\int_{0}^{2\pi}d\theta\int_{\pi/2}^{\pi}\sin(\phi)d\phi\int_{1}^{2}\cos(\rho)d\rho$	0,25	
$=2\pi\Big(-\cos(\phi)\Big _{\pi/2}^{\pi}\Big)\Big(\sin(\rho)\Big _{1}^{2}\Big)$	0,25	
$=2\pi\big(\sin(2)-\sin(1)\big)$	0,25	

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
(a)		0,5	
	Biểu diễn tham số: $\begin{cases} x = 3\cos t, \\ y = 3\sin t, \end{cases} 0 \le t \le \frac{\pi}{2}$	0,5	
(b)		1,5	
	Tính được vi phân: $d\mathbf{r} = [-3\sin t dt, 3\cos t dt]$	0,5	
	$I = \int_0^{\pi/2} (-9\cos^2 t + 9\sin^2 t)(-3\sin t)dt + (3\cos t + 3\sin t - 2)(3\cos t)dt$ $= \int_0^{\pi/2} [(9 - 18\cos^2 t)(-3\sin t) + 9\cos^2 t + 9\sin t\cos t - 6\cos t]dt$ $= \left(27\cos t - 54\frac{\cos^3 t}{3} + \frac{9}{2}(t + \frac{1}{2}\sin 2t) - \frac{9}{4}\cos 2t - 6\sin t\right)\Big _0^{\pi/2}$ $= \frac{9\pi}{4} - \frac{21}{2}$	0,25 0,25 0,25 0,25	

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
(a)		1,0	
	Biểu diễn tham số $(u, v) \mapsto \mathbf{r}(u, v) = (u, v, 1 - 2u - 3v)$.	0,25	
	Xác định miền của $u, v: (u, v) \in R := \{(u, v) \mid 0 \le u \le \frac{1}{2}, 0 \le v \le \frac{1-2u}{3}\}.$	0,25	
	Tính $\mathbf{r}_u = (1, 0, -2), \mathbf{r}_v = (0, 1, -3).$	0,25	
	Tính $\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (2,3,1) = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.	0,25	
(b)		1,0	
	Tính được $\mathbf{F}(\mathbf{r}(u,v)) \cdot \mathbf{N}(u,v) = 2e^v + 3e^u$.	0,25	
	Viết được $\iint_S \mathbf{F} \cdot \mathbf{n} dA = \iint_R (2e^v + 3e^u) du dv$.	0,25	

Đưa về tích phân lặp $\int_{0}^{\frac{1}{2}} du \int_{0}^{\frac{1-2u}{3}} (2e^{v} + 3e^{u}) dv$.	0,25	
$= \int_0^{\frac{1}{2}} \left(e^{(1-2u)/3} + e^u(1-2u) - 2 \right) du = -7 + \sqrt[3]{e} + 2\sqrt{e}.$	0,25	

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	$\text{D}\check{\mathbf{a}}ty(x) = u(x)v(x)$	0,25	
	Đưa PTVP về $u'v + u\left(v' + \frac{2}{x}v\right) = \frac{4\sin 2x}{x^2} + \sqrt{x}$	0,25	
	Một nghiệm $v \neq 0$ thỏa mãn PT		
	$v' + \frac{2}{x}v = 0,$ $v = \frac{1}{x^2}$	0,5	
	Tîm u thỏa mãn PT $u'\frac{1}{x^2} = \frac{4\sin 2x}{x^2} + \sqrt{x}$	0,25	
	$u = \int (4\sin 2x + x^{5/2})dx$	0,25	
	$u = -2\cos 2x + \frac{2}{7}x^{7/2} + C$	0,25	
	Nghiệm TQ $y = uv = \frac{1}{x^2}(-2\cos 2x + \frac{2}{7}x^{7/2} + C).$	0,25	

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: *Giải tích* Mã học phần: *FFS703008*

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	Vẽ hình. Đặt $x = r\cos\varphi, y = r\sin\varphi, J = r$. Miền D' xác định bởi		
	$D' = \left\{ -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}, 0 \le r \le 5 \right\}.$	0,5	
	$I = \iint\limits_{D'} r^4 \cos \varphi \sin^2 \varphi dr d\varphi$	0.5	
	$I = \int_{0}^{5} r^{4} dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \varphi \sin^{2} \varphi d\varphi$	0.5	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$I = \frac{r^5}{5} \Big _0^5 \frac{\sin^3 \varphi}{3} \Big _{-\frac{\pi}{2}}^{\frac{\pi}{2}}.$	0.25	
	$I = \frac{1250}{3}.$	0.25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
	Đổi biến: $x = r\cos\phi\sin\theta; y = r\sin\phi\sin\theta; z = r\cos\theta$	0,25	
	Xác định cận: $r \in [1,2]$	0,25	
	$\phi \in [0,\pi/2]$	0,25	
	$oldsymbol{ heta} \in [0,\pi/4]$	0,25	

Jacobian: $J(r,\phi,\theta)=r^2\sin\theta$	0,25	
Tích phân: $I = \int_1^2 r^2 e^{r^3} dr \int_0^{\pi/2} d\phi \int_0^{\pi/4} \sin\theta d\theta$	0,25	
$I = \frac{1}{3} \int_{1}^{2} e^{r^{3}} dr^{3} \frac{\pi}{2} \left[-\cos \theta \right]_{0}^{\pi/4}$	0,25	
$I = \frac{\pi}{6} (e^8 - e^1) \left(1 - \frac{1}{\sqrt{2}} \right)$	0,25	

Câu 3		2,00 điểm	CĐR 1.1
	Biểu diễn tham số	0.25	
(a)	$r = r(t) : x = 2\cos t, \ y = 2\sin t,$	0,25	
	ĐK của tham số: $\frac{\pi}{2} \leq t \leq \frac{3\pi}{2}$	0,25	
(b)	$r'(t) = (-2\sin t, 2\cos t)$ $F = (4 + 6\cos t, 3 - 4\sin t)$	0,5	
	$F \bullet r'(t) = -8\sin t + 6\cos t - 20\sin t \cos t$	0,25	
	$J == \int_{\pi/2}^{3\pi/2} (-8\sin t + 6\cos t - 20\sin t \cos t)dt$	0,25	
	$J = [8\cos t + 6\sin t + 5\cos(2t)]_{\pi/2}^{3\pi/2} = -12$	0,25	

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
--------------	--	--------------	---------

(a)		0,5
	Đặt $x = u$, $z = v$. Suy ra $y = u^2$. Khi đó, mặt S có biểu diễn tham số	
	$\mathbf{r}(u,v) = (u,u^2,v), \qquad 0 \le u \le 2, 0 \le v \le 1.$	0,25
	Các vector chỉ phương của S là $\mathbf{r}'_u = (1, 2u, 0)$ và $\mathbf{r}'_v = (0, 0, 1)$. Do đó, vector	
	pháp tuyến của mặt S là	
	$\mathbf{N} = \mathbf{r}'_{u} \times \mathbf{r}'_{v} = (2u, -1, 0).$	0,25
	$\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (2u, -1, 0).$	
(b)	Trước hất $\mathbf{F} = (2\pi^2 + 3\pi^2) = (3\pi^2 + 3\pi^2)$	1,5 0,25
	Trước hết, $\mathbf{F} = (3z^2, 1, xz) = (3v^2, 1, uv)$. Theo định nghĩa, ta có	0,23
	$\iint\limits_{S} \mathbf{F} \bullet \mathbf{n} dA = \iint\limits_{R} \mathbf{F}(\mathbf{r}) \bullet \mathbf{N} du dv$	
	S K	0,25
	$= \iint\limits_{R} \left[3v^2 \cdot 2u + 1 \cdot (-1) + uv \cdot 0 \right] dudv$	0,23
	$= \iint \left[6uv^2 - 1 \right] dudv.$	
	Miền R được xác định bởi	
	$R = \{(u, v) \in \mathbb{R}^2 : 0 \le u \le 2, 0 \le v \le 1\}.$	0,25
	Vậy	
	$\iint_{C} \mathbf{F} \bullet \mathbf{n} dA = \int_{0}^{1} dv \int_{0}^{2} (6uv^{2} - 1) du.$	0,25
	$\iint_{S} \mathbf{F} \cdot \mathbf{h} dA = \int_{0}^{\infty} dV \int_{0}^{\infty} (\partial uV - 1) du.$	0,23
	mv.111.13	
	Tính chi tiết	
	$\int \mathrm{d}v \int (6uv^2 - 1) \mathrm{d}u = 2.$	0,25
	ŏ ŏ	
	Kết luận	
	$\iint \mathbf{F} \bullet \mathbf{n} dA = 2.$	0,25
	Š	

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Viết được: $y' = \frac{9 + 2\frac{y}{x}}{2 + \frac{y}{x}}.$	0,25	
	Đặt: $u = \frac{y}{x}$ và tính được $y' = u + u'x$.	0,25	

Viết lại được phương trình theo <i>u</i> :		
$u'x = -\frac{u^2 - 9}{u + 2}$	0,25	
Viết được: $\int \frac{dx}{x} = -\int \frac{u+2}{u^2-9} du.$	0,25	
Tính được:		
$\ln\left \frac{x}{C}\right = -\frac{1}{6} \int \left(\frac{5}{u-3} + \frac{1}{u+3}\right) du = \frac{1}{6} \ln\left \frac{1}{(u-3)^5(u+3)}\right .$	0,5	
Suy ra được tích phân tổng quát (nghiệm tổng quát):		
$(y-3x)^5(y+3x)=C,$	0,5	
với C là hằng số tích phân tuỳ ý.		

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: *Giải tích* Mã học phần: *FFS703008*

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	$D = \{(x,y) : -1 \le x \le 2 \text{ và } x^2 \le y \le x + 2\}$	0,5	
	$I = \int_{-1}^{2} dx \int_{x^{2}}^{x+2} dy (2+x-y)$	0,5	
	$I = -\frac{1}{2} \int_{-1}^{2} dx [(2+x-y)^{2}]_{x^{2}}^{x+2}$	0,25	
	$I = \frac{1}{2} \int_{-1}^{2} dx (2 + x - x^{2})^{2}$	0,25	
	$I = \frac{1}{2}(x^5/5 - x^4/2 - x^3 + 2x^2 + 4x)_{-1}^2$	0,25	
	I = 81/20	0,25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
	Đổi biến $x = \rho \sin(\phi) \cos(\theta), \ y = \rho \sin(\phi) \sin(\theta), \ z = \rho \cos(\phi)$	0,25	
	Xác định cận $1 \leq \rho \leq 2, \ 0 \leq \phi \leq \pi, \ \pi/2 \leq \theta \leq 3\pi/2$	0.25	
	Jacobian $J= ho^2\sin(\phi)$	0,25	

Hàm số dưới dấu tích phân		
$\frac{z}{x^2 + y^2 + z^2} = \frac{\rho \cos(\phi)}{\rho^2} = \frac{\cos(\phi)}{\rho}$	0,25	
$I = \int_{\pi/2}^{3\pi/2} \int_{0}^{\pi} \int_{1}^{2} \frac{\cos(\phi)}{\rho} \rho^{2} \sin(\phi) d\rho d\phi d\theta$	0,25	
$= \int_{\pi/2}^{3\pi/2} d\theta \int_{0}^{\pi} \cos(\phi) \sin(\phi) d\phi \int_{1}^{2} \rho d\rho$	0,25	
$=\pi\Big(-\frac{\cos(2\phi)}{4}\Big _0^\pi\Big)\Big(\frac{\rho^2}{2}\Big _1^2\Big)$	0,25	
=0	0,25	

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
(a)		0,5	
	Bjểu diễn tham số:		
	$\int x = 3t$	0,5	
	$\begin{cases} x = 3t, \\ y = 2t, \end{cases} 0 \le t \le 1$		
	$\int z = t$		
(b)		1,5	
	Tính được vi phân: $d\mathbf{r} = [3,2,1]dt$	0,5	
	$I = \int_0^1 (6t^2 - 4t^2)(3)dt + (2t^2 - t^2)(2)dt + (2t + 3t)e^t dt$	0,25	
	$=\int_0^1 [8t^2 + 5te^t]dt$	0,25	
	$ = \int_0^1 [8t^2 + 5te^t] dt = \left(\frac{8}{3}t^3 + 5(t-1)e^t\right) \Big _0^1 $	0,25	
	$=\frac{23}{3}$	0,25	

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
(a)		1,0	
	Biểu diễn tham số $(u,v) \mapsto \mathbf{r}(u,v) = (u^2,u,v)$.	0,25	
	Xác định miền của $u, v: (u, v) \in R := \{(u, v) \mid 0 \le u \le \pi/2, 0 \le v \le u\}.$	0,25	
	Tính $\mathbf{r}_u = (2u, 1, 0), \mathbf{r}_v = (0, 0, 1).$	0,25	
	Tính $\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (1, -2u, 0) = \mathbf{i} - 2u\mathbf{j}.$	0,25	
(b)		1,0	
	Tính được $\mathbf{F}(\mathbf{r}(u,v)) \cdot \mathbf{N}(u,v) = \sin(u)$.	0,25	

Viết được $\iint_S \mathbf{F} \cdot \mathbf{n} dA = \iint_R (\sin(u)) du dv$.	0,25	
Đưa về tích phân lặp $\int_0^{\pi/2} du \int_0^u \sin(u) dv$.	0,25	
$= \int_0^{\pi/2} u \sin(u) du = 1.$	0,25	

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	$\text{D}\check{\mathbf{a}}ty(x) = u(x)v(x)$	0,25	
	Đưa PTVP về $u'v + u(v' - 2xv) = 8x$	0,25	
	Một nghiệm $v \neq 0$ thỏa mãn PT		
	$v' - 2xv = 0,$ $v = e^{x^2}$	0,5	
	Tìm u thỏa mãn PT: $u'e^{x^2} = 8x$	0,25	
	$u = \int 8xe^{-x^2} dx$	0,25	
	Đổi biến $t = -x^2$ tìm được $u = -4e^{-x^2} + C$	0,25	
	Nghiệm TQ $y = uv = Ce^{x^2} - 4$	0,25	

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: *Giải tích* Mã học phần: *FFS703008*

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	$D = \{(x,y) \mid -1 \le x \le 1 \text{ và } 0 \le y \le 2\}$	0,5	
	$I = \int_{-1}^{1} dx \int_{0}^{2} dy (x + y - 1)^{2}$	0,5	
	$I = \frac{1}{3} \int_{-1}^{1} dx [(x+y-1)^{3}]_{0}^{2}$	0,25	
	$I = \int_{-1}^{1} dx (2x^2 + 2/3)$	0,25	
	$I = (2x^3/3 + 2x/3)_{-1}^1$	0,25	
	I = 8/3	0,25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
	Đổi biến $x = \rho \sin(\phi) \cos(\theta), \ y = \rho \sin(\phi) \sin(\theta), \ z = \rho \cos(\phi)$	0,25	
	Xác định cận $1 \leq \rho \leq 2, \ 0 \leq \phi \leq \pi, \ 0 \leq \theta \leq \pi$	0.25	
	Jacobian $J= ho^2\sin(\phi)$	0,25	

Hàm số dưới dấu tích phân $\sin\left(\sqrt{x^2+y^2+z^2}\right) = \sin(\alpha)$	0,25	
$\frac{\sin\left(\sqrt{x^2 + y^2 + z^2}\right)}{x^2 + y^2 + z^2} = \frac{\sin(\rho)}{\rho^2}$	0,23	
$I = \int_{0}^{\pi} \int_{0}^{\pi} \int_{1}^{2} \frac{\sin(\rho)}{\rho^{2}} \rho^{2} \sin(\phi) d\rho d\phi d\theta$	0,25	
$=\int\limits_0^\pi d\theta\int\limits_0^\pi \sin(\phi)d\phi\int\limits_1^2 \sin(\rho)d\rho$	0,25	
$=\pi\Big(-\cos(\phi)\Big _0^\pi\Big)\Big(-\cos(\rho)\Big _1^2\Big)$	0,25	
$=2\pi\big(\cos(1)-\cos(2)\big)$	0,25	

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
(a)		0,5	
	Biểu diễn tham số:		
	$\int x = t$	0,5	
	$\begin{cases} x = t, \\ y = t^2, \\ z = -t, \end{cases} 0 \le t \le 1$		
	z = -t		
(b)		1,5	
	Tính được vi phân: $d\mathbf{r} = [1, 2t, -1]dt$	0,5	
	$I = \int_0^1 (t^2 - t^3)(1)dt + (t^4 - t^2)(2t)dt + (t^2 + te^{-t})(-1)dt$	0,25	
	$= \int_0^1 [2t^3 - 3t^3 - te^{-t}] dt$	0,25	
	$= \int_0^1 [2t^5 - 3t^3 - te^{-t}] dt$ $= \left(\frac{2}{6}t^6 - \frac{3}{4}t^4 + (t+1)e^{-t}\right) \Big _0^1$ $= -\frac{17}{12} + 2e^{-1}$	0,25	
	$= -\frac{17}{12} + 2e^{-1}$	0,25	

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
(a)		1,0	
	Biểu diễn tham số $(u, v) \mapsto \mathbf{r}(u, v) = (2u^2, u, v)$.	0,25	
	Xác định miền của $u, v: (u, v) \in R := \{(u, v) \mid 0 \le u \le 2, 0 \le v \le u\}.$	0,25	
	Tính $\mathbf{r}_u = (4u, 1, 0), \mathbf{r}_v = (0, 0, 1).$	0,25	
	Tính $\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (1, -4u, 0) = \mathbf{i} - 4u\mathbf{j}.$	0,25	
(b)		1,0	
	Tính được $\mathbf{F}(\mathbf{r}(u,v)) \cdot \mathbf{N}(u,v) = -4u^2$.	0,25	

Viết được $\iint_{S} \mathbf{F} \cdot \mathbf{n} dA = \iint_{R} (-4u^{2}) du dv$.	0,25
Đưa về tích phân lặp $\int_0^2 du \int_0^u (-4u^2) dv$.	0,25
$= \int_0^2 (-4u^3) du = -u^4 \Big _0^2 = -16.$	0,25

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Viết được: $y' = \frac{x^2 + x + 1}{2x^2}.$	0,25	
	Viết được $ \int dy = \int \left(\frac{1}{2} + \frac{1}{2x} + \frac{1}{2x^2}\right) dx. $	0,5	
	Tính được kết quả: $y(x) = \frac{x}{2} + \frac{1}{2} \ln x - \frac{1}{2x} + C,$ với C là hằng số tích phân có giá trị tuỳ ý.	0,5	
	Từ điều kiện $y(1) = 0$ tính được giá trị của $C = 0$.	0,5	
	Kết luận được nghiệm riêng cần tìm: $y(x) = \frac{x}{2} + \frac{1}{2} \ln x - \frac{1}{2x}.$	0,25	