Data Converters

ELEC 330

Digital Systems Engineering

Dr. Ron Hayne

Images Courtesy of Ramesh Gaonkar and Delmar Learning

Basic Concepts

- Analog Signals
 - Continuous
 - Infinite values in a given range
 - Example
 - Clock face with hands
- Digital Signals
 - Discrete values
 - On/Off
 - 1/0
 - Example
 - Digital clock

Basic Concepts

- Limitations of analog signals
 - Pick up noise as they are amplified
 - Difficult to store
- Advantages of digital signals
 - Noise margin
 - Easily stored in memory
- Limitations of digital signals
 - How accurately analog signals are represented
 - Quantization

Embedded System

- Typical analog/digital system
 - Transducer
 - Converts non-electrical signals into electrical signals
 - A/D converter
 - Converts analog signals into digital signals
 - Digital processor
 - Processes digital data
 - D/A converter
 - Converts digital signals into equivalent analog signals
 - Transducer
 - Converts electrical signals into non-electrical signals

Analog-to-Digital Conversion

- ◆ A/D, ADC, or A-to-D
 - Converting a continuous varying signal, such as voltage or current, into discrete digital quantities that represent the magnitude of the signal compared to standard or reference

A/D Conversion

- Flash
 - Uses multiple comparators in parallel
 - High-speed, high cost
- Integrator
 - Charges a capacitor for a given amount of time
 - Slow, but high accuracy and low noise
- Successive Approximation
 - Effective compromise among resolution, speed, and cost
- Counter
 - Similar to successive approximation circuit
 - Slower, with variable conversion times

Successive Approximation

PIC18F A/D Converter Module

- The PIC18F4520
 - 10-bit A/D converter
 - 13 channels AN0 AN12
 - Three control registers
 - ADCON0, ADCON1, and ADCON2
- The PIC18F452
 - 10-bit A/D converter
 - 8 channels AN0 AN7
 - Two control registers
 - ADCON0 and ADCON1

PIC18F4520 A/D Converter

Note 1: Channels AN5 through AN7 are not available on 28-pin devices.

2: I/O pins have diode protection to VDD and Vss.

A/D Control Register0

- ADCON0 Register
 - Select channel for input analog signal
 - Start conversion
 - Indicate end of conversion

A/D Control Register1

- ADCON1 Register
 - Set up I/O pins
 - Analog signal or digital signals
 - Select V_{REF} voltages

A/D Control Register2

- ADCON2 Register
 - Select acquisition time and clock frequency
 - Right or left justify output reading

330_12 12

PICDEM 2 Plus

Digital to Analog Conversion

- D/A, DAC, or D-to-A
 - Converting discrete signals into analog values that represent the magnitude of the input signal compared to a standard or reference
 - Output is discrete analog steps
 - Increasing the resolution (number of bits)
 - Step size is reduced
 - Approximates a continuous analog signal

330_12

14

D/A Converter Circuits

$$I_{o} = I_{T} = I_{1} + I_{2} + I_{3} = \frac{V_{REF}}{R_{1}} + \frac{V_{REF}}{R_{2}} + \frac{V_{REF}}{R_{3}} = \frac{V_{REF}}{1 \, k} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8}\right) = 0.875 \, \text{mA}$$

$$V_O = -R_f I_T = -(1k) \times (0.875 \text{ mA}) = -0.875 \text{ V} = \left| \frac{7}{8} \text{ V} \right|$$

IC D/A Converters

$$I_{O} = \frac{V_{REF}}{R_{RFF}} \left(\frac{DB7}{2} + \frac{DB6}{4} + \frac{DB5}{8} + \dots + \frac{DB0}{2^{8}} \right)$$

$$I_0 = 5 \text{ mA} \left(\frac{1}{2} + \frac{0}{4} + \frac{0}{8} + \frac{1}{16} + \frac{0}{32} + \frac{0}{64} + \frac{0}{128} + \frac{1}{256} \right) = 2.832 \text{ mA}$$