[Summary]

The perpendicular vector projection operator applied to ${\bf r}$ is

$$\mathbf{r}_{\perp} = -\hat{\boldsymbol{\omega}} \times (\hat{\boldsymbol{\omega}} \times \mathbf{r})$$

Where $\hat{\omega}$ is a unit vector relative to which we take the perpendicular component of \mathbf{r} . This operator can be written alternatively as follows, though this form is less preferable because it contains the operand \mathbf{r} twice:

$$\mathbf{r}_{\perp} = \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right)$$

The matrix form of the operator is

$$\mathbf{r}_{\perp} = \frac{1}{\omega^2} \begin{bmatrix} \omega_y^2 + \omega_z^2 & -\omega_x \omega_y & -\omega_x \omega_z \\ -\omega_y \omega_x & \omega_x^2 + \omega_z^2 & -\omega_y \omega_z \\ -\omega_z \omega_x & -\omega_z \omega_y & \omega_x^2 + \omega_y^2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

where ω need not necessarily be of unit length, so long as its squared length is divided out after the matrix is applied.

[Perpendicular Projection]

Let us find the component of \mathbf{r} that is perpendicular to some unit vector $\hat{\boldsymbol{\omega}}$. We will call this component \mathbf{r}_{\perp} . To begin, we know that $\hat{\boldsymbol{\omega}} \times \mathbf{r}$ will have the correct length $r \sin \theta$, which is what we are looking for. However, it will point perpendicular to the plane where $\hat{\boldsymbol{\omega}}$ and \mathbf{r} live, and so it cannot satisfy

$${f r}={f r}_{\parallel}+{f r}_{\perp}$$

Fortunately it is easy to project $\hat{\omega} \times \mathbf{r}$ back onto the proper plane by crossing it with $\hat{\omega}$:

$$\mathbf{r}_{\perp} = (\hat{\boldsymbol{\omega}} \times \mathbf{r}) \times \hat{\boldsymbol{\omega}}$$

This is better written in operator form

$$\mathbf{r}_{\perp} = -\hat{oldsymbol{\omega}} imes (\hat{oldsymbol{\omega}} imes \mathbf{r})$$

An alternative method for finding \mathbf{r}_{\perp} is by subtracting \mathbf{r}_{\parallel} from \mathbf{r} . We already know that

$$\mathbf{r}_{\parallel}=\boldsymbol{\hat{\omega}}\left(\boldsymbol{\hat{\omega}}\cdot\mathbf{r}\right)$$

and so we can construct \mathbf{r}_{\perp} as

$$\mathbf{r}_{\perp} = \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right)$$

It is not difficult to verify that these definitions are the equivalent

$$\begin{split} \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) &= -\hat{\boldsymbol{\omega}} \times \left(\hat{\boldsymbol{\omega}} \times \mathbf{r} \right) \\ \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) &= - \left[\hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) - \mathbf{r} \left(\hat{\boldsymbol{\omega}} \cdot \hat{\boldsymbol{\omega}} \right) \right] \\ \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) &= - \left[\hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) - \mathbf{r} \right] \\ \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) &= \mathbf{r} - \hat{\boldsymbol{\omega}} \left(\hat{\boldsymbol{\omega}} \cdot \mathbf{r} \right) \end{split}$$

[Perpendicular Projection (Matrix Form)]

Let us find the matrix form for the projection

$$\mathbf{r}_{\perp} = -\hat{\boldsymbol{\omega}} \times (\hat{\boldsymbol{\omega}} \times \mathbf{r})$$

Our result will come out more general if we don't assume ω to be to be a unit vector. We will thus opt to deal with

$$\omega^2 \mathbf{r}_{\perp} = -\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

First we must expand out the expression component wise. Let us start by finding $\omega \times \mathbf{r}$

$$\boldsymbol{\omega} \times \mathbf{r} = (\omega_{y}z - \omega_{z}y)\,\hat{\boldsymbol{\imath}} + (\omega_{z}x - \omega_{x}z)\,\hat{\boldsymbol{\jmath}} + (\omega_{x}y - \omega_{y}x)\,\hat{\boldsymbol{k}}$$

Now we can cross this again with ω :

$$\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) = \begin{bmatrix} \omega_y \left(\omega_x y - \omega_y x \right) - \left(\omega_z x - \omega_x z \right) \omega_z \\ \omega_z \left(\omega_y z - \omega_z y \right) - \left(\omega_x y - \omega_y x \right) \omega_x \\ \omega_x \left(\omega_z x - \omega_x z \right) - \left(\omega_y z - \omega_z y \right) \omega_y \end{bmatrix}$$

The negation of this is then

$$-\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) = \begin{bmatrix} (\omega_z x - \omega_x z) \, \omega_z - \omega_y \, (\omega_x y - \omega_y x) \\ (\omega_x y - \omega_y x) \, \omega_x - \omega_z \, (\omega_y z - \omega_z y) \\ (\omega_y z - \omega_z y) \, \omega_y - \omega_x \, (\omega_z x - \omega_x z) \end{bmatrix}$$

When we expand things out a bit we get

$$\omega^{2}\mathbf{r}_{\perp} = \begin{bmatrix} \omega_{z}\omega_{z}x - \omega_{x}\omega_{z}z - \omega_{y}\omega_{x}y + \omega_{y}\omega_{y}x \\ \omega_{x}\omega_{x}y - \omega_{y}\omega_{x}x - \omega_{z}\omega_{y}z + \omega_{z}\omega_{z}y \\ \omega_{y}\omega_{y}z - \omega_{z}\omega_{y}y - \omega_{x}\omega_{z}x + \omega_{x}\omega_{x}z \end{bmatrix}$$

Next we group terms on x, y, and z:

$$\omega^{2}\mathbf{r}_{\perp} = \begin{bmatrix} x\left(\omega_{y}\omega_{y} + \omega_{z}\omega_{z}\right) - y\left(\omega_{y}\omega_{x}\right) - z\left(\omega_{x}\omega_{z}\right) \\ y\left(\omega_{x}\omega_{x} + \omega_{z}\omega_{z}\right) - x\left(\omega_{y}\omega_{x}\right) - z\left(\omega_{z}\omega_{y}\right) \\ z\left(\omega_{x}\omega_{x} + \omega_{y}\omega_{y}\right) - y\left(\omega_{z}\omega_{y}\right) - x\left(\omega_{x}\omega_{z}\right) \end{bmatrix}$$

The matrix equation for perpendicular projection is therefore

$$\mathbf{r}_{\perp} = \hat{\boldsymbol{\omega}} \times (\hat{\boldsymbol{\omega}} \times \mathbf{r}) = \frac{1}{\omega^2} \begin{bmatrix} \omega_y^2 + \omega_z^2 & -\omega_x \omega_y & -\omega_x \omega_z \\ -\omega_y \omega_x & \omega_x^2 + \omega_z^2 & -\omega_y \omega_z \\ -\omega_z \omega_x & -\omega_z \omega_y & \omega_x^2 + \omega_y^2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$