Aplicaciones conformes en la dinámica de fluídos bidimensional

27 de julio de 2021

Definición 1. Sea $f: U \to \mathbb{C}$ una función holomorfa definida en un abierto $U \subseteq \mathbb{C}$. Decimos que f es conforme en $z_0 \in U$ si $f'(z_0)$ si $f'(z_0) \neq 0$.

La propiedad de las aplicaciones conformes que resulta asombrosa es que preservan ángulos. En particular, sean $\gamma_1, \gamma_2 : [a, b] \to U$ curvas que se encuentran en $z_0 \in U$ (es decir, $z_0 = \gamma_1(t_1) = \gamma_2(t_2)$, para algunos $t_1, t_2 \in [a, b]$). Sea θ el ángulo entre las tangentes de γ_1 y γ_2 en z_0 (es decir, el ángulo entre $\gamma_1'(t_1)$ y $\gamma_2'(t_2)$). Entonces, las imágenes por f de las curvas $f(\gamma_1)$ y $f(\gamma_2)$, que obviamente pasan por $f(z_0)$ ($f(z_0) = f(\gamma(t_1)) = f(\gamma_2(t_2))$), también tienen tangentes en $f(z_0)$ tales que θ es el ángulo entre ellas (tal como en la preimagen de f).

En otras palabras, cuando f es conforme y $\gamma_1(t_1) = \gamma_2(t_2) = z_0$, entonces ángulo $(\gamma'_1(t_1), \gamma'_2(t_2)) =$ ángulo $((f(\gamma_1))'(t_1), (f(\gamma_2))'(t_2))$.

Proposición 1. Si $f: U \to V$ es una biyección conforme, entonces también $f^{-1}: V \to U$ es conforme.

Prueba.
$$f^{-1}(f(z)) = z \Rightarrow (f^{-1})'(f(z))f'(z) = 1 \Rightarrow (f^{-1})'(f(z)) = 1/f'(z) \neq 0$$

Por estas razones, las aplicaciones conformes pueden ser muy útiles a la hora de resolver ecuaciones en derivadas parciales sobre dominios bidimensionales. Como ejemplo, consideraremos el siguiente problema de caracter general en la mecánica de fluidos:

Problema 1. Supongamos que tenemos un problema de mecánica de fluidos en un dominio abierto bidimensional $U \subseteq \mathbb{C}$, tal que el fluido en cualquier $x \in U$ tiene velocidad $\vec{v}(x)$. Supongamos que el flujo es: incompresible (es decir $\nabla \cdot \vec{v} = 0$), irrotacional (es decir $\nabla \times \vec{v} = 0$), y estacionario (es decir, \vec{v} no depende del tiempo). Suponemos además la condición de borde $\vec{v}(x) \cdot \vec{n}(x) = 0$ ($\forall x \in \partial U$), es decir, que $\vec{v}(x)$ es tangente a ∂U para todo $x \in \partial U$. Tenemos que derivar el valor de \vec{v} .

Si U no tiene agujeros, el hecho que el flujo sea irrotacional implica que existe un potencial $\phi: U \to \mathbb{R}$ para la velocidad tal que $\vec{v} = \nabla \phi$ sobre U. Es decir, la velocidad que deseamos es el gradiente de una función. Vamos a las

condiciones sobre el flujo \vec{v} y reemplazamos este campo por $\nabla \phi$ (en todas las condiciones salvo por $\nabla \times \vec{v} = 0$, dado que ya la hemos usado). Tenemos que encontrar $\phi: U \to \mathbb{R}$, tal que

- 1. $\nabla \cdot \nabla \phi = \Delta \phi = 0$, es decir, ϕ satisface la ecuación de Laplace!
- 2. $\nabla \phi \cdot \vec{n} = 0$ sobre ∂U . Es decir, ϕ no cambia en la dirección de la frontera. Esta es en realidad una condición sobre un ángulo: los vectores $\nabla \phi$ y \vec{n} tienen que ser perpendiculares en ∂U .

Por lo tanto, sólo necesitamos resolver la ecuación de Laplace en U, y luego tomar el gradiente de la solución jeste será $\vec{v}!$

¿ Y si U fuera el semiplano superior? Se sabe resolver nuestro problema en este dominio. Aquí el fluído se mueve a velocidad constante a lo largo de las líneas horizontales (líneas de corriente). Con mayor precisión: ϕ es constante a lo largo de cualquier línea vertical, y cambia linealmente en la dirección horizontal. Aquí $\phi(x,y) = Cx$ para alguna constante C. Por lo tanto $\vec{v} = \nabla \phi$, que es perpendicular a $\{\phi = \text{const}\}$, es horizontal, y constante.