

Surface Adsorption on Interstellar Water Ice I_h

Thomas Bissinger
Supervision: Johannes Kästner, Jan Meisner, Jens Smiatek

23rd February 2016

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - ▶ Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - Binding Sites
 - ▶ Transition State
- Conclusions

Introduction: Interstellar Dust

- The existence of interstellar dust was first inferred by Trumpler in 1930.^[1]
- Observed molecular abundances in the interstellar medium (ISM) can not be explained by gas-phase chemistry alone.
- Surface processes on interstellar dust may play an important role.
- In the cold ISM, dust particles are often covered in ices, mostly H₂O, CO₂ and CO.
- Surfaces can have a strong effect on reaction barriers.

Introduction: Surface Reaction Mechanisms

Langmuir-Hinshelwood (LH) mechanism

Elev-Rideal (ER) mechanism

SimTech

Figure: Schematic representation of the LH and the ER mechanism.

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - ▶ Binding Sites
 - ▶ Transition State
- Conclusions

The Surface Model: The Fletcher Surface

- Water ice I_h consists of layers of hexagonally ordered oxygen atoms and disordered hydrogen atoms.
 - When optimizing on the PES, some sensible initial geometry has to be given.
 - Fletcher surface uses a specific ordering of hydrogen atoms to minimize free energy.^[2]
 - Rows of identical H₂O orientation.

Figure: Fletcher surface (0001) basal layer

SimTech

The Surface Model: QM/MM

Figure: QM/MM decomposition: QM domain with def2-TZVPD and def2-TZVP basis set. MM region with active and frozen TIP3P QM atoms.

The Surface Model: ZPE correction

- The Hessian for the ZPE has to be approximated by finite differences.
 - For the 108 atoms of the QM region, that means 649 energy and gradient calculations.
- Assumption: atoms far from the center will not contribute much to the ZPE correction.
 - Only the 18 atoms of the central ring are diplaced.
 - 109 energy and gradient calculations.

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - ▶ Binding Sites
 - ▶ Transition State
- Conclusions

Benchmarking: Definitions

- Studied interactions: H₂O···H, H₂O···H₂O and H₂O···³O.
- Calculate optimum geometries for various functional + basis set combinations and evaluate them by reference data in terms of energy and geometry.
- Reference calculations with CCSD(T)-F12a/VTZ-F12.
- Comparing interaction energies by

$$\Delta E^{\rm int} = E^{\rm int}_{\rm DFT} - E^{\rm int}_{\rm CC}.$$

Geometries can be compared by

$$\mathsf{RMSD}(\mathbf{R}_{\mathsf{DFT}}^M; \mathbf{R}_{\mathsf{CC}}^M) = \sqrt{\frac{1}{M} \sum_{k=1}^M \left| \mathbf{r}_{\mathsf{DFT}}^k - \mathbf{r}_{\mathsf{CC}}^k \right|^2}.$$

Benchmarking: H₂O···H

• Reference energy of $E_{\rm CC}^{\rm int} = -0.40$ kJ/mol.

SimTech

Benchmarking: H₂O···H₂O

• Reference energy of $E_{\rm CC}^{\rm int} = -20.80$ kJ/mol.

Benchmarking: H₂O····³O

• Reference energy of $E_{\rm CC}^{\rm int} = -6.72$ kJ/mol.

Benchmarking: Summary

- Dispersion correction for H₂O····H problematic.
- Energies calculated with def2-TZVP and def2-TZVPD are usually among the most accurate. For H₂O···H₂O, def2-TZVPD performs better than def2-TZVP.
 - Hybrid basis set with def2-TZVPD on central ring and def2-TZVP for the rest.
- The best functionals for interaction energy calculations are B3LYP, BHLYP, PBE0, TPSSh and PW6B95 and PW6B95-D3.
- Optimum geometries with the above functionals and basis sets are also good, RMSDs of always less than 0.1 Å, typically around 0.02 Å.

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - ▶ Binding Sites
 - ▶ Transition State
- Conclusions

Gas Phase: Energies of Formation

• Energy of formation: $E^0(\mathsf{X}) = E(\mathsf{X}) - M_\mathsf{H} \frac{E(\mathsf{H}_2)}{2} - M_\mathsf{O} \frac{E(^3\mathsf{O}_2)}{2}$.

Table: Energies of formation (in kJ/mol) for DFT functionals and CCSD(T)-F12a.

	B3LYP	BHLYP	PBE0	TPSSh	PW6B95	CCSD(T)-F12a
Н	217.04	213.17	204.96	222.13	212.72	216.45
H_2O	-215.65	-224.54	-222.74	-197.51	-220.11	-238.28
H_2O_2	-98.26	-97.16	-104.82	-85.65	-101.84	-129.08
OH	42.89	16.85	43.01	51.30	46.06	36.49
HO_2	21.75	19.85	19.16	25.28	21.96	14.75
¹ O	519.48	482.52	543.69	538.46	521.61	451.63
³ O	252.00	204.88	254.89	246.85	253.28	245.13
¹ O ₂	162.16	177.97	171.07	163.27	160.38	120.91
MAD	22.92	25.24	26.77	30.77	22.94	
MAX	67.86	57.05	92.06	86.84	69.98	
MIN	0.60	-40.26	-11.49	1.72	-3.73	
MEAN	22.92	9.44	23.90	30.77	22.01	

Gas Phase: Reaction Energies

Table: Reaction energies (in kJ/mol) for DFT functionals and CCSD(T)-F12a.

	B3LYP	BHLYP	PBE0	TPSSh	PW6B95	CCSD(T)-F12a
E^{ZPE}	-475.58	-454.56	-470.70	-470.94	-478.89	-491.23
$\Delta E^{\sf ZPE}$	33.58	34.87	34.05	33.59	34.09	34.06
E^{ZPE}	-402.09	-355.15	-425.77	-426.60	-403.33	-342.42
ΔE^{ZPE}	13.66	15.44	14.41	13.31	14.23	13.38
E^{ZPE}	-184.03	-130.86	-190.84	-188.24	-193.96	-202.06
ΔE^{ZPE}	25.19	27.21	25.99	24.94	25.90	25.07
E^{ZPE}	-337.05	-330.18	-328.94	-333.06	-336.51	-360.28
ΔE^{ZPE}	32.40	34.02	33.11	32.22	33.01	32.44
E^{ZPE}	-273.14	-201.88	-278.73	-272.87	-277.38	-266.88
	14.84	16.29	15.36	14.69	15.31	15.00
E^{ZPE}	-195.30	-193.32	-185.80	-196.85	-190.76	-201.70
ΔE^{ZPE}	27.07	28.57	27.54	26.95	27.51	27.78
MAD	19.36	41.30	26.58	23.19	19.58	
MIN	-59.67	-12.72	-83.35	-84.18	-60.91	
MAX	23.22	71.20	31.34	27.22	23.76	
MEAN	-1.27	37.66	-4.01	-4.28	-3.83	
	$\begin{array}{c} \Delta E^{\rm ZPE} \\ E^{\rm ZPE} \\ E^{\rm ZPE} \\ \Delta E^{\rm ZPE} \\ \Delta E^{\rm ZPE} \\ \Delta E^{\rm ZPE} \\ \end{array}$	$\begin{array}{c cccc} E^{\rm ZPE} & -475.8 \\ \Delta E^{\rm ZPE} & 33.58 \\ E^{\rm ZPE} & -402.09 \\ \Delta E^{\rm ZPE} & 13.66 \\ E^{\rm ZPE} & -184.03 \\ \Delta E^{\rm ZPE} & 25.19 \\ E^{\rm ZPE} & 32.40 \\ E^{\rm ZPE} & -273.14 \\ \Delta E^{\rm ZPE} & 14.84 \\ E^{\rm ZPE} & -195.30 \\ \Delta E^{\rm ZPE} & 27.07 \\ \hline \text{MAD} & 19.36 \\ \text{MIN} & -59.67 \\ \text{MAX} & 23.22 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - ▶ Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - ▶ Binding Sites
 - ▶ Transition State
- Conclusions

SimTech

Adsorption Energies: Comparing ZPE Corrections

Table: Adsorption energies (in kJ/mol) for the B3LYP functional with different ZPE corrections.

	E_{B3LYP}	ΔE_{B3LYP}^{all}	$\Delta E_{\sf B3LYP}^{\sf ring}$	ΔE_{PBE0}^{ring}
s-H	-1.71	5.03	3.28	2.84
$s-H_2$	-2.65	8.42	6.80	6.81
s-H ₂ O	-48.01	15.98	14.84	14.45
$s-H_2O_2$	-41.76	9.28	10.09	9.51
s-OH	-44.99	13.60	12.11	12.05
s-HO ₂	-65.48	13.17	11.66	11.59
s- ³ O	-16.17	2.69	3.35	3.04
s- ¹ O ₂	-8.41	2.46	3.86	4.96
s- ³ O ₂	-2.62	3.06	3.90	3.86

Adsorption Energies

Table: Adsorption energies (in kJ/mol) for different DFT functionals. Including an average energy $E_{\text{avg}}^{\text{ads}}$.

	B3LYP	BHLYP	PBE0	TPSSh	PW	PW-D3	E_{avg}^{ads}	experimental, $E_{\rm ads}$
s-H	3.32	3.77	3.37	-5.05	3.29	1.27	1.66	
s-H ₂	5.77	5.11	3.57	4.55	4.65	2.47	4.35	
s-H ₂ O	-32.03	-35.07	-36.90	-30.92	-33.51	-41.17	-34.9	$-48.00{\pm}0.50^a$
$s-H_2O_2$	-32.47	-35.99	-37.64	-31.04	-34.85	-44.33	-36.05	
s-OH	-31.39	-32.88	-35.69	-31.10	-32.78	-39.66	-33.92	−13.77 to −39.58 ^b
s-HO ₂	-52.30	-49.10	-56.97	-54.10	-51.08	-57.80	-53.56	
s-3O	-13.48	-5.16	-11.25	-13.22	-12.85	-18.13	-12.35	$-13.80\pm0.50 \text{ or } -15.38\pm0.75^{c}$
$s^{-1}O_2$	-5.95	-7.51	-11.44	-9.44	-7.44	-12.53	-9.05	
s-3O ₂	0.45	-0.65	-1.52	-0.52	26.68	7.04	-0.56^{\dagger}	-7.52^{d}
MAD	2.06	1.93	1.74	2.29	4.17	4.85		
MIN	-1.13	-0.14	-3.42	-6.72	-0.50	-8.28		
MAX	3.58	7.19	1.71	5.02	27.23	7.60		
MEAN	1.81	1.88	-1.12	0.40	4.06	-3.16		

^a Adsorption on Au grain covered in crystalline water. For other grain materials between 42.15 and 49.79 kJ/mol. Fraser et al. 2001 [3]

b Adsorption on an amorphous silicate. He, Vidali 2014. [4]

^c Adsorption on porous amorphous water ice and amorphous silicate, respectively. He et al. 2015. [5]

^d Adsorption on an amorphous silicate. He. Jing. Vidali 2014. ^[6]

[†] Average excluding both PW and PW-D3.

Reaction Energies

Table: Surface reaction energies (in kJ/mol) with Eley-Rideal type reactions. All energies are ZPE corrected with $\Delta E_{\rm RRIVP}^{\rm ZPE/\bar{a}ll}$. PW is short for PW6B95. The last column contains average values. The deviations of these are listed in the last four rows for each functional.

		B3LYP	BHLYP	PBE0	TPSSh	PW	PW-D3	E_{hybrid}^{react}
s-OH $+H_{(a)} \longrightarrow s-H_2O$		-476.22	-458.03	-472.39	-470.76	-480.13	-480.92	-492.71
$s-H_2O + {}^1O_{(g)} \longrightarrow s-H_2O_2$		-402.54	-357.85	-427.27	-426.38	-405.24	-407.50	-344.17
$s-OH +OH_{(g)} \longrightarrow s-H_2O_2$		-185.12	-137.04	-194.02	-187.84	-197.12	-200.16	-205.33
$s-HO_2+H_{(a)} \longrightarrow s-H_2O_2$		-317.22	-318.69	-310.31	-309.82	-320.89	-323.99	-343.39
s -OH $+^3O_{(q)}$ $\longrightarrow s$ -HO ₂		-294.05	-219.54	-300.54	-295.71	-296.15	-296.10	-287.00
$s^{-3}O +OH_{(g)} \longrightarrow s-HO_2$		-311.96	-248.31	-325.41	-313.50	-316.45	-318.00	-308.95
$s^{-3}O_2 +H_{(g)} \longrightarrow s^{-}HO_2$		-248.05	-243.27	-241.72	-250.31	-268.95	-256.14	-254.74
	MAD	19.71	40.13	27.26	24.70	19.32	17.04	
r react €	MIN	-58.37	-13.68	-83.10	-82.21	-61.07	-63.33	
$E_{ m DFT} - E_{ m hybrid}^{ m react}$	MAX	26.17	68.29	33.07	33.57	22.49	19.39	
	MEAN	0.16	36.22	-5.06	-2.58	-6.95	-6.65	

• Hybrid reaction energy $E_{\text{hybrid}}^{\text{react}} = \Delta E_{\text{avg}}^{\text{ads}} + E_{\text{CCSD(T)-F12a}}^{\text{react, gas}}$.

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - Binding Sites
 - ▶ Transition State
- Conclusions

Binding Sites

- Search for different PES minima on the central ring for ³O using the BHLYP functional.
- Optimizations started at a distribution of initial geometries according to (cylindrical coordinates)

$$y(r, \phi) = y_0 + \left(A - B\cos\left(3\phi\right)\right)\sin^2\left(\frac{r}{r_{\mathsf{max}}}\frac{\pi}{2}\right).$$

 $5 \times 15 = 75$ initial geometries in r and ϕ respectively.

Figure: The initial guesses for binding sites.

Binding Sites

- 71 of the 75 optimum searches converged.
- Main binding sites:
 - Above the center with $E^{\text{ads}} = -7.58 \text{ kJ/mol}.$
 - At left and right boundary above broken hydrogen bond with energy around $E^{\mathsf{ads}} = -8.40 \, \mathsf{kJ/mol}$
 - Above the connecting line between two oxygen atoms with broken hydrogen bond with $E^{ads} = -8.40 \text{ kJ/mol}$.

Figure: Population of optimum geometry energies (in kJ/mol). One geometry at E = -5.01 kJ/mol is not included.

Transition State

SimTech

- We calculated the transition state of the reaction OH + H₂ → H₂O + H.
 - Compare gas-phase reaction to surface reaction.
- We usedd the B3LYP functional with ZPE correction. Transition state geometries (saddle points) were obtained with the dimer method.^[7]
- Orientation of the OH + H₂ subsystem was guessed at the beginning.
- Pre-reactive complex OH + H₂ and the products H₂O + H were also optimized.

Figure: OH + H₂ transition state on Fletcher surface. Transparent atoms are in the MM region.

Transition State

Figure: Energy diagram for the reaction $OH + H_2 \longrightarrow H_2O + H$ on the surface. Values in parentheses are for the gas phase reaction.

Figure: Left: Optimum geometry for OH + H₂. Right: Transition state for OH + H₂. Values are given for the adsorbate, values in parentheses are for the gas phase.

- Introduction
- The Surface Model
- Benchmarking
- The Gas Phase
- Optimizations on the Surface
 - Adsorption Energies
 - ▶ Reaction Energies
- Outlook
 - ▶ Binding Sites
 - ▶ Transition State
- Conclusions

- DFT methods are able to describe interaction energies with H₂O accurately.
 - Recommended functionals: B3LYP, BHLYP, PBE0, TPSSh and PW6B95 and PW6B95-D3.
 - ► Recommended basis set: Hybrid def2-TZVP/def2-TZVPD.
- ZPE correction does not have to consider all QM atoms. The ZPE correction changes only slightly among functionals.
- By combining coupled-cluster gas-phase reaction energies and DFT adsorption energies, ER reaction energies can be obtained.
- The orientation-dependence of binding sites could have a strong impact on the results.
- Transition states can be computed with the dimer method.

References I

- [1] R. J. Trumpler, "ABSORPTION OF LIGHT IN THE GALACTIC SYSTEM," *PASP*, vol. 42, no. 248, pp. 214–227, 1930.
- [2] N. H. Fletcher, "Reconstruction of ice crystal surfaces at low temperatures," *Philos. Mag. Part B*, vol. 66, no. 1, pp. 109–115, 1992.
- [3] H. J. Fraser, M. P. Collings, M. R. McCoustra, and D. A. Williams, "Thermal desorption of water ice in the interstellar medium," *MNRAS*, vol. 327, no. 4, pp. 1165–1172, 2001.
- [4] J. He and G. Vidali, "Experiments of Water Formation on Warm Silicates," *ApJ*, vol. 788, no. 1, p. 50, 2014.
- [5] J. He, J. Shi, T. Hopkins, G. Vidali, and M. J. Kaufman, "A New Determination of the Binding Energy of Atomic Oxygen On Dust Grain Surfaces: Experimental Results and Simulations," *ApJ*, vol. 801, no. 2, p. 120, 2015.

- [6] J. He, D. Jing, and G. Vidali, "Atomic oxygen diffusion on and desorption from amorphous silicate surfaces," *Phys. Chem. Chem. Phys.*, vol. 16, no. 8, p. 3493, 2014.
- [7] G. Henkelman and H. Jónsson, "A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives," *J. Chem. Phys.*, vol. 111, no. 15, p. 7010, 1999.

Discussion