Math 3B: Lecture 20

Noah White

March 1, 2019

Midterm 2

• Average is 72%.

- Average is 72%.
- Grades are online.

- Average is 72%.
- Grades are online.
- I was happy with the scores.

- Average is 72%.
- Grades are online.
- I was happy with the scores.
- On the final, Q2 would be considered relatively easy

- Average is 72%.
- Grades are online.
- I was happy with the scores.
- On the final, Q2 would be considered relatively easy
- Q3 would be more challenging but you should be able to get the first two parts.

Midterm 2

- Average is 72%.
- Grades are online.
- I was happy with the scores.
- On the final, Q2 would be considered relatively easy
- Q3 would be more challenging but you should be able to get the first two parts.

Homework

Midterm 2

- Average is 72%.
- Grades are online.
- I was happy with the scores.
- On the final, Q2 would be considered relatively easy
- Q3 would be more challenging but you should be able to get the first two parts.

Homework

Homework is due Wednesday 11/28

Midterm 2

- Average is 72%.
- Grades are online.
- I was happy with the scores.
- On the final, Q2 would be considered relatively easy
- Q3 would be more challenging but you should be able to get the first two parts.

Homework

- Homework is due Wednesday 11/28
- PS8, question 3, 4

Often it is impossible to solve a differential equation. E.g.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

(the *Riccati equation*) has no solutions that can be written in terms of usual functions like $\sin x$, e^x , etc.

Often it is impossible to solve a differential equation. E.g.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

(the *Riccati equation*) has no solutions that can be written in terms of usual functions like $\sin x$, e^x , etc.

We want a method to estimate y(t) is we know that $y(t_0) = y_0$.

Let's use Eulers method!

Suppose y(t) is a solution to

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

and that $y(t_0) = y_0$.

Suppose y(t) is a solution to

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

and that $y(t_0) = y_0$.

If h is a small number (e.g. h = 0.1), then we approximate $y(t_0 + h)$ using

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

If we know that the solution satisfies $y(t_0) = y_0$ then

• let h be a small step forward in time

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y)$$

If we know that the solution satisfies $y(t_0) = y_0$ then

- let h be a small step forward in time
- we can get an approximate value for the solution at
 t = t₀ + h = t₁

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y)$$

If we know that the solution satisfies $y(t_0) = y_0$ then

- let h be a small step forward in time
- we can get an approximate value for the solution at $t = t_0 + h = t_1$
- i.e. $y(t_1) \approx y_1$ where

$$y_1 = y_0 + hf(t_0, y_0)$$

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y)$$

Given an initial value $y(t_0) = y_0$. To approximate y(t) at t = a follow the steps:

Choose an increment h

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

- Choose an increment h
- set $t_1 = t_0 + h$

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

- Choose an increment h
- set $t_1 = t_0 + h$
- set $y_1 = y_0 + hf(t_0, y_0)$

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

- Choose an increment h
- set $t_1 = t_0 + h$
- set $y_1 = y_0 + hf(t_0, y_0)$
- set $t_2 = t_1 + h$

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

- Choose an increment h
- set $t_1 = t_0 + h$
- set $y_1 = y_0 + hf(t_0, y_0)$
- set $t_2 = t_1 + h$
- set $y_2 = y_1 + hf(t_1, y_1)$

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

- Choose an increment h
- set $t_1 = t_0 + h$
- set $y_1 = y_0 + hf(t_0, y_0)$
- set $t_2 = t_1 + h$
- set $y_2 = y_1 + hf(t_1, y_1)$
- keep repeating until $t_n \approx a$

To carry out Eulers method, we simply repeat this a number of times!

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t,y)$$

- Choose an increment h
- set $t_1 = t_0 + h$
- set $y_1 = y_0 + hf(t_0, y_0)$
- set $t_2 = t_1 + h$
- set $y_2 = y_1 + hf(t_1, y_1)$
- keep repeating until $t_n \approx a$
- then $y(a) \approx y_n$.

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	у	
0	0	0	
1			
2			
3			
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	у	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1			
2			
3			
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	у	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	
2			
3			
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	у	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$
2			
3			
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	У	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$
2	1.0	0.25	
3			
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	у	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$
2	1.0	0.25	$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$
3			
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

lter.	X	у	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$
2	1.0	0.25	$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$
3	1.5	0.78	
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

Iter.	X	У	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$
2	1.0	0.25	$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$
3	1.5	0.78	$y_4 = 0.78 + 0.5 \cdot (0.78^2 + 1.5)$
4			

We will aprroximate y(2), where y obeys

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + t$$

lter.	X	у	
0	0	0	$y_1 = 0 + 0.5 \cdot (0^2 + 0)$
1	0.5	0	$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$
2	1.0	0.25	$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$
3	1.5	0.78	$y_4 = 0.78 + 0.5 \cdot (0.78^2 + 1.5)$
4	2.0	1.84	·