

自然语言处理序列化标注

吴震

南京大学人工智能学院 南京大学自然语言处理研究组

2023年4月

目录

- 背景知识
- 基于统计学习的序列化标注
 - 隐马尔可夫模型(HMM)
 - 条件随机场(CRF)
- 基于深度学习的序列化标注

010

背景知识

BACKGROUND

• 问题描述

• 你有一个住得很远的朋友,他每天跟你打电话告诉你他那天做了什么。你的朋友仅仅 对三种活动感兴趣:公园散步,购物以及清理房间。他选择做什么事情只凭天气(晴 天、下雨)。你对于他所住的地方的天气情况并不了解,因此决定根据他每天的活动 情况来推测其所在地的天气情况。

状态:晴天、下雨

观测值:散步、购物、清理房间

问题二

• 问题描述

- 最近一个赌场的老板生意不顺,他发现有位大叔在自己的赌场玩得一手好骰子,总能 赢钱,几乎战无不胜。根据多年的经验,老板怀疑大叔使用了"偷换骰子大法"。老板是个冷静的人,看这位大叔也不是善者,不想轻易得罪他,又不想让他坏了规矩。正愁上心头,这时候进来一位名叫HMM的炼金术士,告诉老板他有一个很好的解决方案:不用近其身,只要在远处装个摄像头,把每局的骰子的点数都记录下来,然后运用其强大的数学功力,用这些数据推导出:
 - 该大叔是不是在出千?
 - 如果是在出千,那么他用了几个作弊的骰子? 还有当前是不是在用作弊的骰子。
 - 这几个作弊骰子出现各点的概率是多少?

状态:正常骰子,作弊骰子1,作弊骰子2,...

观测值:骰子的点数

问题三

• 智能拼音输入法

观测序列:nan jing da xue ren gong zhi neng xue yuan

状态序列:南京大学人工智能学院

问题总结:对于一个观测序列,如何知道观测序列背后对应的状态序列?

自然语言处理中典型的任务形式

序列化标注 (SEQUENCE LABELING)

• 定义:给定一个观测序列作为输入,输出是一个标记序列或状态序列。

• 目标:建立一个模型,使它能够对观测序列给出对应的标记序列。

输入:观测序列 $X = (x_1, x_2, ..., x_n)$

输出:标记序列 $Y = (y_1, y_2, ..., y_n)$

以词性标注为例

词性

- 词性又称词类,是词汇的一个基本的语法属性。
- 反映了词在句子中的语法功能和意义。
- 语言学界对词性的数量、性质和普遍性进行了大量的争论
 - 封闭类
 - 开放类

词性

- 封闭类 (closed class, function words, 每类词数有限)
 - Determiners (a/an, the, ...)
 - Pronouns (this, that, ...)
 - Prepositions (at, in, ...)
 - Conjunctions (and, but, ...)
 - Auxiliary verbs (do, does)
 - Particles (if, not, ...)
 - Numerals (one, two, ...)

词性

- 开放类(open class,每类词数不限)
 - Nouns
 - ▶ 句法上:可作物主、可有限定词、有复数形式
 - ▶ 语义上:人名、地名和物名等
 - Verbs
 - ▶ 句法上:作谓语、有几种词形变化
 - ▶ 语义上:动作、过程(一系列动作)
 - Adjectives
 - ▶ 句法上:修饰Nouns等
 - ▶ 语义上:性质
 - Adverbs
 - ➤ 句法上:修饰Verbs等
 - ▶ 语义上:方向、程度、方式、时间

PENN树库的词性集合

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	$[, (, \{, <$
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],),\},>$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

词性标注 (PART-OF-SPEECH TAGGING)

• 定义:给一句话中的每个词 (word)标注上词性 (Part-of-Speech)

为什么需要词性标注?

- 为很多现实任务提供必要的信息
- 句法分析
 - 在对句子进行句法分析前需要知道每个词的词性
- 信息抽取
 - 帮助识别命名实体、关系
- 机器翻译
 - 帮助多义词进行更好的上下文翻译

词性标注的挑战

- 兼类词
 - 一个词具有两个或者两个以上的词性
 - 英文的Brown语料库中,10.4%的词是兼类词。例如:
 - > The back door
 - On my back
 - Promise to back the bill
 - 汉语兼类词,例如:
 - ▶ 把门锁上 买了一把锁
 - ➤ 他研究xx 他的研究工作...
 - 由于缺少词形变化,汉语的兼类词更多!

词性标注语料库

- Brown Corpus: 语料来自于美国英语出版物上的文本,共500篇,每篇大约 2000个单词,合计100万词(1961)
- WSJ: 语料来自于华尔街日报,合计100万词(1989)
- Switchboard: 语料来自于电话对话文本,合计200万词(1990-1991)

Battle-tested/NNP industrial/JJ managers/NNS here/RB always/RB buck/VB up/IN nervous/JJ newcomers/NNS with/IN the/DT tale/NN of/IN the/DT first/JJ of/IN their/PP\$ countrymen/NNS to/TO visit/VB Mexico/NNP ,/, a/DT boatload/NN of/IN samurai/NNS warriors/NNS blown/VBN ashore/RB 375/CD years/NNS ago/RB ./.

"/" From/IN the/DT beginning/NN ,/, it/PRP took/VBD a/DT man/NN with/IN extraordinary/JJ qualities/NNS to/TO succeed/VB in/IN Mexico/NNP ,/, "/" says/VBZ Kimihide/NNP Takimura/NNP ,/, president/NN of/IN Mitsui/NNS group/NN 's/POS Kensetsu/NNP Engineering/NNP Inc./NNP unit/NN ./.

基于统计学习的序列化标注

STATISTICAL LEARNING-BASED SEQUENCE LABELING

决定一个词词性的因素

- 从语言学角度:由词的用法以及在句中的语法功能决定
- 统计学角度:
 - 和上下文的词性(前后词的标注)相关

和上下文单词(前后词)相关
 名词 动词 名词 共有16种可能
 动名词 动名词 动词 隐藏状态序列Y

教授

喜欢

画

观测序列X

画

词性标注

• 词性标注:给定句子X,求句子对应的词性序列Y

$$\operatorname{argmax}_{Y} P(Y|X) = \operatorname{argmax}_{Y} \frac{P(Y,X)}{P(X)}$$

$$= \operatorname{argmax}_{Y} P(Y, X)$$

$$= \operatorname{argmax}_{Y} P(Y)P(X|Y)$$

隐含马尔可夫模型

Hidden Markov Model, HMM

词性标注

• 词性标注:给定句子X,求句子对应的词性序列Y

P(名词 动词 动词 名词 | 教授 喜欢 画 画)

=P(名词 动词 动词 名词 教授 喜欢 画 画) / P(教授 喜欢 画 画)

∝ P(名词 动词 动词 名词 教授 喜欢 画 画)

=P(名词 动词 动词 名词) P(教授 喜欢 画 画 | 名词 动词 动词 名词)

马尔可夫过程

- 马尔可夫链
 - 描述在状态空间中,从一个状态到另一个状态转换的随机过程。

天气状态的马尔可夫链

- 马尔科夫假设
 - 马尔可夫链在任意时刻 t 的状态只依赖于它在前一时刻的状态,与其他时刻的状态 无关

$$P(y_t|y_1,...,y_{t-1}) = P(y_t|y_{t-1})$$

- HMM是一阶马尔可夫链的扩展
 - 状态序列不可见(隐藏)
 - 隐藏的状态序列满足一阶马尔可夫链性质
 - 可见的观察值与隐藏的状态之间存在概率关系

- 序列化标注的统计学模型
 - 描述了由隐马尔可夫链随机生成观测序列的过程,属于生成模型。
- 时序概率模型
 - 描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测值,从而产生观测序列的过程。

$$P(Y,X) = P(Y)P(X|Y)$$

• 计算*P*(*Y*):

$$P(Y) = P(y_1, y_2, ..., y_n)$$

$$= \prod_{t=1}^{n} P(y_t | y_1, ..., y_{t-1})$$

- 马尔可夫假设:
 - 描述从一个状态到转换另一个状态的随机过程。该过程具备"无记忆"的性质,即当前时刻状态的概率分布只能由上一时刻的状态决定,和更久之前的状态无关。

$$P(y_t|y_1,...,y_{t-1}) = P(y_t|y_{t-1})$$

• 计算*P*(*X*|*Y*):

$$P(X|Y) = P(x_1, x_2, \dots, x_n | y_1, y_2, \dots, y_n)$$

$$= \prod_{t=1}^{n} P(x_t | x_1, y_1, \dots, x_{t-1}, y_{t-1}, y_t)$$

- 观测独立性假设
 - 任意时刻的观测值只依赖于该时刻的马尔可夫链的状态,与其他观测及状态无关

$$P(x_t|x_1, y_1, ..., x_{t-1}, y_{t-1}, y_t) = P(x_t|y_t)$$

P(教授 喜欢 画 画 | 名词 动词 动词 名词)=P(教授|名词) * P(喜欢|动词) * P(画|动词) * P(画|名词)

• 计算*P*(*Y*, *X*):

$$P(Y,X) = P(Y)P(X|Y)$$

 $= P(y_1, y_2, ..., y_n) P(x_1, x_2, ..., x_n | y_1, y_2, ..., y_n)$

发射概率

$$= \prod_{t=1}^{n} P(y_{t}|y_{t-1}) P(x_{t}|y_{t})$$

• 计算*P*(*Y*, *X*):

P(名词 动词 动词 名词, 教授 喜欢 画 画)

=P(名词) * P(动词|名词) * P(动词|动词) * P(名词|动词) *P(教授|名词) * P(喜欢|动词) * P(画|动词) * P(画|名词)

- 状态集合 $\mathbb{Q} = \{q_1, q_2, ..., q_Q\}$, 观测值集合 $\mathbb{V} = \{v_1, v_2, ..., v_V\}$
 - Q和V分别表示状态数量和观测值数量

- $Y = (y_1, y_2, ..., y_n)$ 是长度为 n 的状态序列 , $X = (x_1, x_2, ..., x_n)$ 是对应的观测序列
 - $y_t \in \mathbb{Q}$ 是一个随机变量,代表一个可能的状态值
 - $x_t \in V$ 是一个随机变量,代表一个可能的观测值

- 状态转移概率矩阵A:表示状态之间的转移概率
 - 其中 $a_{i,j} = P(y_{t+1} = q_j | y_t = q_i)$,表示在 t 时刻处于状态 q_i 的条件下,在 t+1 时刻转移到 q_j 的概率 P(动词|3G)

状态转移概率

- 发射概率矩阵B:表示某个状态下生成某个观测值的概率
 - 其中 $b_j(k) = P(x_t = v_k | y_t = q_j)$, 表示 t 时刻处于状态 q_j 的条件下生成观测值 v_k 的概率

$$\mathbf{B} = \begin{bmatrix} b_1(1) & b_1(2) & \dots & b_1(V) \\ b_2(1) & b_2(2) & \dots & b_2(V) \\ \vdots & \vdots & \vdots & \vdots \\ b_Q(1) & b_Q(2) & \dots & b_Q(V) \end{bmatrix}$$
初始状态

- 初始状态概率 π : $\pi = (\pi_1, \pi_2, ..., \pi_0)$
 - $\pi_i = P(y_1 = q_i)$ 表示开始时刻 t = 1 时处于状态 q_i 的概率

发射概率

P(喜欢|动词)

- 隐马尔可夫模型由初始状态概率 π 、状态转移矩阵 A 、以及发射概率矩阵 B 决定。一个隐马尔可夫模型可用三元符号表示: $\lambda = (A, B, \pi)$
 - 初始状态概率 π 和状态转移矩阵 A 确定了隐藏的马尔可夫链,生成了不可观测的状态序列;
 - 观测概率矩阵 B 确定了如何从状态生成观测值,与状态序列一起确定了如何产生观测序列。

状态转移概率

$$P(Y,X) = P(Y)P(X|Y)$$

$$= \prod_{t=1}^{n} P(y_t|y_{t-1})P(x_t|y_t)$$

发射概率

词性标注的HMM模型定义

- HMM : $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$
- 状态集合Q:预先定义的词性标签集
- 观测值集合♥: 词表集合
- 状态转移概率矩阵A: 词性之间的转移概率
- 发射概率矩阵B:某个词性生成某个词的概率
- 初始状态概率π:以某个词性作为开始状态的概率

HMM中的三类问题

- 概率计算
 - 给定HMM模型 $\lambda = (A, B, \pi)$ 和观测序列 $X = (x_1, x_2, ..., x_n)$,计算观测序列 X 出现的概率 $P(X|\lambda)$ P(教授 喜欢 画 画 $|\lambda)$
- 模型学习(参数估计)
 - 已知观测序列 $X = (x_1, x_2, ..., x_n)$,估计HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 的参数,使得该模型下观测序列的概率 $P(X|\lambda)$ 最大。 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$
- 预测(解码)
 - 已知HMM模型 $\lambda = (A, B, \pi)$ 和观测序列 $X = (x_1, x_2, ..., x_n)$,求该观测序列对应的最可能的状态序列 $Y = (y_1, y_2, ..., y_n)$ argmax $_Y$ P(Y| 教授 喜欢 画 画, λ)

HMM的概率计算-直接计算

- 概率计算
 - 给定HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 和观测序列 $X = (x_1, x_2, ..., x_n)$,计算观测序列 X 出现的概率 $P(X|\lambda)$

- 直接计算法
 - 枚举所有长度为n的状态序列,计算它们生成观测序列的概率并求和

$$P(X|\lambda) = \sum_{y_1, y_2, \dots, y_n} \pi_{y_1} \prod_{t=1}^n a_{y_t, y_{t+1}} b_{y_t}(x_t)$$

计算复杂度 $O(n \times Q^n)$,不可行

HMM的概率计算-前向算法

- 定义前向概率
 - 给定HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$,定义到 t 时刻部分观测序列为 x_1, x_2, \dots, x_t 且状态为 q_i 的概率为前向概率,记作:

$$\alpha_t(i) = P(x_1, x_2, ..., x_t, y_t = q_i | \lambda)$$

HMM的概率计算-前向算法

• 输入:隐马尔可夫模型 $\lambda = (A, B, \pi)$, 观测序列 $X = (x_1, x_2, ..., x_n)$

輸出:观测序列概率 P(X|λ)

算法流程:

• 初始化:

$$\alpha_1(i) = \pi_i b_i(x_1), \qquad i = 1, 2, ..., Q$$

递推:

• 终止:

$$P(X|\lambda) = \sum_{i=1}^{Q} \alpha_n(i), \qquad i = 1, 2, ..., Q$$

HMM的概率计算-后向算法

- 定义后向概率
 - 给定HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$,在 t 时刻状态为 q_i 的条件下,t+1 时刻到 n 时刻部分的观测序列为 $x_{t+1}, x_{t+2}, ..., x_n$ 的概率为后向概率,记作:

$$\beta_t(i) = P(x_{t+1}, x_{t+2}, ..., x_n | y_t = q_i, \lambda)$$

HMM的概率计算-后向算法

• 输入:隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$, 观测序列 $X = (x_1, x_2, ..., x_n)$

• 输出:观测序列概率 $P(X|\lambda)$

- 算法流程:
 - 初始化:

$$\beta_n(i) = 1, \qquad i = 1, 2, ..., Q$$

递推:

$$\beta_t(i) = \sum_{j=1}^{Q} a_{i,j} b_j(x_{t+1}) \beta_{t+1}(j) \qquad i = 1, 2, ..., Q \quad t = n, n-1, ..., 1$$

• 终止:

计算复杂度 $O(n \times Q^2)$

$$P(X|\lambda) = \sum_{i=1}^{Q} \pi_i b_i(x_1) \beta_1(i), \qquad i = 1, 2, ..., Q$$

HMM的参数估计

- 模型学习(参数估计)
 - 已知观测序列 $X = (x_1, x_2, ..., x_n)$,估计模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 的参数,使得该模型下观测序列的概率 $P(X|\lambda)$ 最大。

- 根据训练数据的不同,隐马尔可夫模型的学习方法也不同
 - 监督学习:训练数据包括观测序列和对应的状态序列,通过监督学习来学习隐马尔可 夫模型。
 - 无监督学习:训练数据仅包括观测序列,通过无监督学习来学习隐马尔可夫模型。

HMM的参数估计—监督学习

- 假设数据集为 $\mathbb{D} = \{(X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N)\}$, 其中:
 - $X_1, ..., X_N$ 为N个观测序列; $Y_1, ..., Y_N$ 为对应的N个状态序列。
 - 序列 X_k , Y_k 的长度为 n_k 。
- 估计转移概率 a_{i,j}
 - 设样本中前一时刻处于状态 q_i 、且后一时刻处于 q_j 的频数为 $A_{i,j}$,则转移概率 $a_{i,j}$ 的估计是:

$$a_{i,j} = \frac{A_{i,j}}{\sum_{u=1}^{Q} A_{i,u}}, \qquad i = 1, 2, ..., Q; \ j = 1, 2, ..., Q$$

HMM的参数估计—监督学习

- 估计转移概率 a_{i,j}
 - 设样本中前一时刻处于状态 q_i 、且后一时刻处于 q_j 的频数为 $A_{i,j}$,则转移概率 $a_{i,j}$ 的估计是:

$$a_{i,j} = \frac{A_{i,j}}{\sum_{u=1}^{Q} A_{i,u}}, \qquad i = 1, 2, ..., Q; \ j = 1, 2, ..., Q$$

$$a_{\text{⇒ij,Aij}} = \frac{A_{\text{⇒ij,Aij}}}{A_{\text{⇒ij}}} = \frac{10471}{13124} = 0.797$$

HMM的学习问题—监督学习

- 估计观测概率 $b_j(k)$
 - 设样本中状态为 q_j 且其对应观测值为 v_k 的频数为 $B_{j,k}$, 则状态为 q_j 并且观测值为 v_k 的概率 $b_j(k)$ 的估计为:

$$b_j(k) = \frac{B_{j,k}}{\sum_{v=1}^{V} B_{j,v}}, \qquad j = 1, 2, ..., Q; \ k = 1, 2, ..., V$$

$$b$$
动词(画) = $\frac{B$ 动词,画}{B动词 = $\frac{4046}{13124}$ = 0.308

HMM的学习问题—监督学习

- 估计初始状态概率 π_i
 - 设样本中初始时刻(t=1)处于状态 q_i 的频数为 C_i ,则初始状态概率 π_i 的估计为:

$$\pi_i = \frac{C_i}{\sum_{j=1}^{Q} C_j}, \qquad i = 1, 2, ..., Q;$$

$$\pi_{\text{⇒ii}} = \frac{C_{\text{⇒ii}}}{\sum_{j=1}^{Q} C_j} = \frac{3728}{8429} = 0.442$$

HMM的一些概率和期望值

• 给定HMM模型 λ 和观测序列X,在t时刻处于状态 q_i 的概率为:

$$\gamma_t(i) = P(y_t = q_i | X, \lambda)$$

• 由前向概率 $\alpha_t(i)$ 和后向概率 $\beta_t(i)$ 可知:

$$\alpha_t(i)\beta_t(i) = P(y_t = q_i, X|\lambda)$$

可得到:

$$\gamma_t(i) = \frac{P(y_t = q_i, X | \lambda)}{P(X | \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^{Q} \alpha_t(i)\beta_t(i)}$$

HMM的一些概率和期望值

• 给定HMM模型 λ 和观测序列X,在t时刻处于状态 q_i 且t+1时刻处于状态 q_j 的概率为:

$$\zeta_t(i,j) = P(y_t = q_i, y_{t+1} = q_j | X, \lambda)$$

• 由前向概率 $\alpha_t(i)$ 和后向概率 $\beta_t(i)$ 可知:

$$P(y_t = q_i, y_{t+1} = q_j | X, \lambda) = \alpha_t(i) a_{ij} b_j(x_{t+1}) \beta_{t+1}(j)$$

可得到:

$$\zeta_t(i,j) = \frac{P(y_t = q_i, y_{t+1} = q_j | X, \lambda)}{P(X | \lambda)} = \frac{\alpha_t(i) a_{ij} b_j(x_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^Q \sum_{j=1}^Q \alpha_t(i) a_{ij} b_j(x_{t+1}) \beta_{t+1}(j)}$$

HMM的一些概率和期望值

• 给定观测序列X,状态 q_i 出现的期望值为:

$$\sum_{t=1}^{n} \gamma_t(i)$$

• 给定观测序列X,由状态 q_i 转移的期望值为:

$$\sum_{t=1}^{n-1} \gamma_t(i)$$

• 给定观测序列X,由状态 q_i 转移到状态 q_i 的期望值为:

$$\sum_{t=1}^{n-1} \zeta_t(i,j)$$

HMM的学习问题——无监督学习

- 输入:观测序列 $X = (x_1, x_2, ..., x_n)$
- 输出:HMM模型参数
- 算法流程:
 - 初始化:对m=0,选取 $a_{ij}^{(0)}$, $b_j(k)^{(0)}$, $\pi_i^{(0)}$,得到模型 $\lambda^{(0)}=(A^{(0)},B^{(0)},\pi^{(0)})$
 - 递推:对于m = 1,2,...

$$a_{ij}^{(m+1)} = \frac{\sum_{t=1}^{n-1} \zeta_t(i,j)}{\sum_{t=1}^{n-1} \gamma_t(i)} b_j(k)^{(m+1)} = \frac{\sum_{t=1}^n \chi_t(j)}{\sum_{t=1}^n \gamma_t(j)} \pi_i^{(m+1)} = \gamma_t(i)$$

- 上述各式右边模型 $\lambda^{(m)} = (A^{(m)}, B^{(m)}, \pi^{(m)})$ 计算
- 终止,得到HMM模型参数 $\lambda^{(m+1)}=(A^{(m+1)},B^{(m+1)},\pi^{(m+1)})$ 计算

HMM的模型预测(解码)

- 预测(解码)
 - 已知模型 $\lambda = (A, B, \pi)$ 和观测序列 $X(x_1, x_2, ..., x_n)$,求该观测序列对应的最可能的状态序列 $Y = (y_1, y_2, ..., y_n)$

• 计算目标

$$\operatorname{argmax}_{y_1,y_2,\dots,y_n} P(y_1,y_2,\dots,y_n\,,x_1,x_2,\dots,x_n\,) = \operatorname{argmax}_{y_1,y_2,\dots,y_n} \pi_{y_1} \prod_{t=1}^n a_{y_t,y_{t+1}} b_{y_t}(x_t)$$

HMM的模型预测(解码)

• 计算目标

$$\operatorname{argmax}_{y_1, y_2, \dots, y_n} P(y_1, y_2, \dots, y_n, x_1, x_2, \dots, x_n) = \operatorname{argmax}_{y_1, y_2, \dots, y_n} \pi_{y_1} \prod_{t=1}^n a_{y_t, y_{t+1}} b_{y_t}(x_t)$$

HMM的模型预测—维特比算法

- 算法思想:最优子结构
 - 根据动态规划原理,最优路径具有这样的特性:如果最优路径在时刻 t 通过结点 y_t^* ,则这一路径从结点 y_t^* 到终点 y_n^* 的部分路径,对于从 y_t^* 到 y_n^* 的所有可能路径来说,也必须是最优的。

HMM的预测问题—维特比算法

- 对于观测序列 $X = (x_1, x_2, ..., x_n)$
 - t 时刻状态为 q_i 且已观测序列为 $x_1, x_2, ..., x_t$ 的所有可能路径 $(y_1, y_2, ..., y_t)$ 中概率最大值为:

$$\delta_t(i) = \max_{y_1, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = q_i, x_1, \dots, x_t), \qquad i = 1, 2, \dots, Q$$

HMM的预测问题—维特比算法

- 对于观测序列 $X = (x_1, x_2, ..., x_n)$
 - 得到变量 δ 的递推公式

$$\delta_t(i) = \max_{y_1, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = q_i, x_1, \dots, x_t) = \max_{1 \le j \le Q} \delta_{t-1}(j) \times a_{j,i} \times b_i(x_t)$$

t 时刻状态为 q_i 的所有单个路径中概率最大的路径的第 t-1 个结点为:

$$\Psi_t(i) = \operatorname{argmax}_{1 \le j \le Q} \delta_{t-1}(j) a_{j,i} , \qquad i = 1, 2, ..., Q$$

$$i = 1, 2, ..., Q$$

HMM的预测问题—维特比算法

- 输入:隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$, 观测序列 $X = (x_1, x_2, ..., x_n)$
- 输出:最优的状态路径 $Y^* = (y_1^*, y_2^*, ..., y_n^*)$
- 算法流程:
 - 初始化: $\delta_1(i) = \pi_i b_i(x_1), \Psi_1(i) = 0, \qquad i = 1, 2, ..., Q$
 - 递推: $\delta_t(i) = \max_{1 \le j \le Q} \delta_{t-1}(j) \times a_{j,i} \times b_i(x_t)$ i = 1, 2, ..., Q; t = 2, ..., n $\Psi_t(i) = \operatorname{argmax}_{1 \le j \le Q} \delta_{t-1}(j) a_{j,i}$
 - 终止: $P^* = \max_{1 \le i \le Q} \delta_n(i), \qquad y_n^* = \operatorname{argmax}_{1 \le j \le Q} \delta_{t-1}(j) a_{j,i}$
 - 最优路径回溯: $y_t^* = \Psi_{t+1}(y_{t+1}^*), t = n-1,...,1$
 - 获得最优路径 $Y^* = (y_1^*, y_2^*, ..., y_T^*)$ 。

HMM生成观测序列的过程

- 输入:隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 和观测序列长度n
- 输出:观测序列 $X = (x_1, x_2, ..., x_n)$
- 算法步骤:
 - 按照初始状态分布 π 产生状态 y_1
 - $\Diamond t = 1$, 开始迭代。迭代条件: $t \leq n$ 。迭代步骤为:
 - 按照状态 y_t 的观测概率分布 $b_j(k)$ 生成观测值 x_t
 - 按照状态 y_t 的状态转移分布 $a_{i,j}$ 产生状态 y_{t+1}
 - $\diamondsuit t = t + 1$

HMM的遗留问题

由于观测独立性假设(任意时刻的观测只依赖于该时刻的马尔可夫链的状态), 很难融入更多的特征(如上下文)以表示复杂的关系

 Label bias问题:由于马尔可夫假设使得在计算转移概率时做了局部归一化,算 法倾向于选择分支较少的状态

重新思考词性标注

• 如何从所有可能中找到最合理的词性标注序列?

基于HMM的词性标注方法

- 建模方法
 - 描述由一个隐藏的马尔可夫链随机生成不可观测的状态(词性)随机序列,再由各个状态(词性)生成一个观测值(单词),从而产生观测序列(句子)的过程。

$$\operatorname{argmax}_{Y} P(Y|X) = \operatorname{argmax}_{Y} \frac{P(Y,X)}{P(X)}$$

 $= \operatorname{argmax}_{Y} P(Y)P(X|Y)$

=
$$\operatorname{argmax}_{y_1, \dots, y_n} \prod_{t=1}^{n} P(y_t | y_{t-1}) P(x_t | y_t)$$

状态转移概率 发射概率

共有16种可能

隐藏状态序列Y

观测序列X

HMM方法的问题

- 只考虑当前时刻的特征,无法融入更多的特征(如上下文)以表示复杂的关系
- 转移概率做了局部归一化,容易产生标签偏置问题

状态转移概率 发射概率

换个思路

- 能不能直接判断一个词性序列是否合理?
 - 给定句子,直接对词性序列进行打分,打分越高的越合理

条件随机场 (CRF)

• 隐含马尔可夫模型 (HMM)是生成式模型

$$\operatorname{argmax}_{Y} P(Y|X) = \operatorname{argmax}_{Y} \frac{P(Y,X)}{P(X)}$$

$$= \operatorname{argmax}_{Y} P(Y)P(X|Y)$$

$$= \operatorname{argmax}_{y_{1},...,y_{n}} \prod_{t=1}^{n} P(y_{t}|y_{t-1})P(x_{t}|y_{t})$$

- 条件随机场 (Conditional Random Fields, CRF) 是一种判别式模型
 - 直接建模条件概率

$$argmax_Y P(Y|X)$$

条件随机场

- 如何对词性标注序列打分?
 - 凡是动词后面还是动词的标注序列(不合理),给它打负分 一个特征函数
- 定义一个特征函数集合,用这个特征函数集合来为一个标注序列打分,并据此选出最合理的标注序列
 - 每一个特征函数都可以用来为标注序列打分,把集合中所有特征函数对同一个标注序 列的打分综合起来,就能得到最终打分

特征函数

- 优势
 - CRF使用特征函数来考虑更复杂、更抽象的特征
 - HMM只局限于转移概率特征和发射概率特征
- 特征函数举例:
 - $I(x_t = the, y_t = DET)$
 - $I(y_t = PROPN, x_{t+1} = Street, y_{t-1} = NUM)$
 - $I(y_t = VERB, y_{t-1} = AUX)$
- 特征模板举例:
 - $< y_t, y_{t-1} >$
 - $< y_t, x_{t-1}, x_{t+2} >$

条件随机场

- 特征函数 $F_k(X,Y)$
 - 第 k 个特征函数对于句子为 X 、词性标注为 Y 的打分
 - 可以考虑句子内部、标注序列内部、以及句子和标注之间的复杂关系
 - 例如:第一个词和最后一个词的词性能需要满足特定的关系
- 模型目标
 - w_k 为第 k 个特征函数的权重,权重越大表明该特征越重要

考虑所有可能的关系会 导致建模非常复杂

• 线性链特征函数 $f_k(X, t, y_{t-1}, y_t)$

• X:需要标注的句子

t: 句子中的第 t 个单词

• y_{t-1} : 表示要评分的标注序列中第 t-1 个单词标注的词性

• y_t :表示要评分的标注序列中第 t 个单词标注的词性

- 模型目标
 - Wk 为第 k 个特征函数的权重,权重越大表明该特征越重要

$$P(Y|X) = \frac{\exp(\sum_{k=1}^{K} w_k \sum_{t=1}^{n} f_k(X, t, y_{t-1}, y_t))}{\sum_{Y' \in \mathbb{Y}} \exp(\sum_{k=1}^{K} w_k \sum_{t=1}^{n} f_k(X, t, y'_{t-1}, y'_t))}$$

$$= \frac{1}{Z(X)} \exp \left(\sum_{k=1}^{K} w_k \sum_{i=1}^{n} f_k(X, t, y_{t-1}, y_t) \right)$$

$$Z(X) = \sum_{Y' \in \mathbb{Y}} \exp\left(\sum_{k=1}^{K} w_k \sum_{t=1}^{n} f_k(X, t, y'_{t-1}, y'_t)\right)$$

线性链CRF中的三类问题

- 概率计算
 - 已知模型线性链CRF , 计算观测序列 X 出现的概率 P(X) P(整要 事次 画 画)
- 模型学习(参数估计)
 - 已知观测序列、标记序列以及特征函数,求模型参数(特征函数的权重 w_k)
- 预测(解码)
 - 已知模型线性链CRF,求观测序列 X 对应的最可能的状态序列 $Y = (y_1, y_2, ..., y_n)$

argmax_Y P(Y| 教授 喜欢 画 画)

- 特征表示
 - 特征函数集合中的所有特征函数
- 模型参数
 - 特征函数的权重 w_k
- 模型学习(最小化负对数似然)
 - 梯度下降法

$$\mathcal{L} = -\log P(Y|X) = \sum_{X' \in \mathbb{D}} \left(\log Z(X') - \sum_{k=1}^{K} w_k \sum_{t=1}^{n} f_k(X', t, y_{t-1}, y_t) \right)$$

- 模型解码
 - 给定句子 X , 预测出最有可能的词性标注序列 Y

$$\operatorname{argmax}_{Y} P(Y|X) = \operatorname{argmax}_{Y} \frac{1}{Z(X)} \exp\left(\sum_{k=1}^{K} w_{k} \sum_{t=1}^{n} f_{k}(X, t, y_{t-1}, y_{t})\right)$$

$$= \operatorname{argmax}_{Y} \sum_{k=1}^{K} w_{k} \sum_{t=1}^{n} f_{k}(X, t, y_{t-1}, y_{t})$$

$$= \operatorname{argmax}_{Y} \sum_{k=1}^{n} \sum_{k=1}^{K} w_{k} f_{k}(X, t, y_{t-1}, y_{t})$$

- 模型解码(维特比算法)
 - $\delta_t(i)$: t 时刻词性为 q_i (i = 1,2,...,Q), 所有可能标注 ($y_1,y_2,...,y_t$) 中的最大打分值

$$\delta_t(i) = \max_{1 \le j \le Q} \delta_{t-1}(j) \sum_{k=1}^K w_k f_k(X, t, y_{t-1}, y_t)$$

$$i = 1, 2, ..., Q; t = 2, ..., n$$

线性链CRF VS HMM

- 线性链CRF是判别式模型,HMM是生成式模型
- 线性链CRF的建模能力比HMM更强

HMM
$$P(Y,X) = \prod_{t=1}^{n} P(y_t|y_{t-1})P(x_t|y_t)$$
HMM对数形式
$$\log P(Y,X) = \sum_{t=1}^{n} \log P(y_t|y_{t-1}) + \sum_{t=1}^{n} \log P(x_t|y_t)$$

线性链CRF
$$score(Y|X) = \sum_{t=1}^{n} \sum_{k=1}^{K} w_k f_k(X, t, y_{t-1}, y_t)$$

线性链CRF VS SOFTMAX回归

• 线性链CRF可以看成序列化的Softmax回归,都是判别式模型

线性链CRF
$$P(Y|X) = \frac{\exp(\sum_{t=1}^{n} \sum_{k=1}^{K} w_k f_k(X, t, y_{t-1}, y_t))}{\sum_{Y' \in \mathbb{Y}} \exp(\sum_{t=1}^{n} \sum_{k=1}^{K} w_k f_k(X, t, y'_{t-1}, y'_t))}$$

Softmax
$$\mathbb{D} \mathcal{P}(c_j|x) = \frac{e^{\omega_j^T v}}{\sum_{k=1}^m e^{\omega_k^T v}}$$

生成式模型 VS 判别式模型

CRF总结

- 判別式模型,直接建模后验概率,类似于LR
- 通常用线性链CRF建模序列化标注任务
- 模型可以融合各种手工设计的特征
 - 可以引入领域知识 ✓
 - ●可解释性强
 - 可以快速的训练和解码
 - 维度高
 - 缺少语义表达能力 ×

基于深度学习的序列化标注

DEEP LEARNING LEARNING-BASED SEQUENCE LABELING

基于深度学习的序列化标注

• 定义:给定一个观测序列作为输入,输出是一个标记序列或状态序列。

目标:建立一个神经网络模型,使它能够对观测序列给出对应的标记序列。

词性标注:RNN

利用RNN网络建模序列信息,将序列信息融入词性标注

词性标注:BILSTM

• BiLSTM:利用双向LSTM建模上下文信息,将上下文信息同时融入序列化标注

BILSTM的问题

- 输出的词性标签之间相互独立
- 实际上,词性标签之间存在序列相关性。例如,动词后经常会接名词。

预测结果间相互独立,只依赖当前时刻的特征表示

词性标注:BILSTM-CRF

在BiLSTM的基础上添加CRF,建模序列依赖性

词性标注:LSTM-CRF

CRF

$$P(Y|X) = \frac{\exp(w \cdot F(X,Y))}{\sum_{Y'} \exp(w \cdot F(X,Y'))}$$

- LSTM-CRF的思路:用LSTM来为CRF提供特征
 - $h_i^{y_i}$ 为LSTM在当前时刻的输出值("输出概率")
 - P_{y_{i-1},y_i} 是前一个词性到当前词性的跳转值("跳转概率")

$$w \cdot F(X,Y) = \sum_{i=1}^{n} (h_i^{y_i} + P_{y_{i-1},y_i})$$

词性标注:LSTM-CRF

- 直观理解
 - LSTM的输出值 $h_i^{y_i}$ 越大,当前时刻的词性越有可能是 y_i
 - 跳转值 P_{y_{i-1},y_i} 越大,当前时刻的词性越有可能是 y_i
- $h_i^{y_i}$ 通过LSTM的网络参数得到
- P_{v_{i-1},v_i} : 跳转矩阵P也是一个可学习的参数
- LSTM-CRF通过跳转矩阵P建模词性标签之间的依赖关系

词性标注:LSTM-CNN-CRF

- 利用CNN来建模单词内的字符串信息
- 一些特定的字符串(如英语中各种与词性相关的前缀、后缀)对词性标注是有帮助的

词性标注:预训练模型

- 预训练模型中有丰富的 语义信息,可以帮助更 准确地理解上下文信息
- 从而生成更准确的词性 标注序列

序列化标注能解其他词法分析任务吗?

- 中文分词
 - 分词是指根据某个分词规范,把一个"字"串划分成"词"串。
 - 样例: "独立/自主/和/平等/独立/的/原则"

- 命名实体识别 (NER)
 - 识别出一句话中的所有命名实体(人名、地名、机构名等)

序列化标注

- 输入句子 $X = (x_1, x_2, ..., x_n)$
- 标签序列 $Y = (y_1, y_2, ..., y_n)$
 - $y_i \in \{B,I,O\}$
 - B用来表示一个片段的开始
 - I用来表示一个片段的内部或结束
 - O用来表示其它字段 (可选,根据问题决定)

序列化标注:中文分词

- 标签集合为{B, I}
 - B表示一个词的开始
 - I表示一个的内部或结束

命名实体识别

- 标签集合为{B, I}×{PER, LOC, ORG}+{O}
 - B和I用来表示命名实体的开始位置、中间或结束位置。
 - PER, LOC, ORG表示当前命名实体为人民、地名、或机构名
 - O表示非命名实体片段

序列化标注任务之间的相关性

- 中文分词是词性标注和命名实体识别的基础
- 词性信息能够帮助命名实体识别
 - 例如,名词可能是命名实体
- 命名实体识别也能帮助词性标注
 - 例如,命名实体很可能是名词词性

•

多任务学习

- 将多个任务放在多任务学习框架中进行联合学习
- 为什么需要多任务学习?
 - 数据不足
 - 任务之间有关联,可以相关补充信息
- 如何设计多任务学习框架?
 - 和特定的任务有关系

多任务学习框架示例

- 基于共享-私有结构的多任务学习框架
 - 共享结构用于学习两个任务共享、能够相互迁移的信息
 - 私有结构用于学习任务特定的信息

Thank you! Q&A

