Course

Progress

<u>Dates</u>

Discussion

Resources

☆ Course / Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks) / Lecture 6. Nonlinear Classification

3. Introduction to Non-linear Classification

□ Bookmark this page

Introduction to Non-linear Classification

Start of transcript. Skip to the end.

We can play this game further.

For any example x, let's say it's a scalar again,
we can add feature coordinates.

Not just a single one, but we can take x, x to the power of 2, 3, 4, and so on.

► 0:00 / 0:00 → 1.25x → 5 © 66

We can always add additional feature

VideoDownload video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Counting Dimensions of Feature Vectors

0/1 point (graded)

Let $x\in\mathbf{R}^{150}$, i.e. $x=\left[x_1,x_2,\ldots,x_{150}\right]^T$ where x_i is the i-th component of x. Let $\phi\left(x\right)$ be an **order** 3 polynomial feature vector. This means, for example, $\phi\left(x\right)$ can be

$$\phi\left(x\right) = \underbrace{\left[\underbrace{x_1, \dots, x_i, \dots, x_{150}}_{\text{deg } 1}, \underbrace{x_1^2, x_1 x_2, \dots, x_i x_j, \dots x_{150}^2}_{\text{deg } 2}, \underbrace{x_1^3, x_1^2 x_2, \dots, x_i x_j x_k, \dots, x_{150}^3}_{\text{deg } 3}\right]}_{\text{where } 1 \leq i$$

Note that the components of $\phi\left(x\right)$ forms a basis of the space of all polynomials with zero constant term and of degree at most 3.

What is the dimension of the space that $\phi\left(x\right)$ lives in? That is, $\phi\left(x\right)\in\mathbb{R}^{d}$ for what d?

Hint: The number of ways to select a multiset of k non-unique items from n total is $\binom{n+k-1}{k}$. For example, if a ball can be any of 3 colors, then the number of color configurations of 2 balls is $\binom{3+2-1}{2}=\binom{4}{2}=6$.

$$d=$$
 3 **X** Answer: 585275

Solution:

For each of the feature transformations (power 1, power 2, power 3), there are n-multichoose-power combinations. Thus $\binom{150}{1}+\binom{151}{2}+\binom{152}{3}=585275$. **Remark:** We see that the dimension of the space that the feature vectors live grows quickly as a function of d, the dimension we started with if $x\in\mathbb{R}^d$.

1 Answers are displayed within the problem

Regression using Higher Order Polynomial feature

1/1 point (graded)

Assume we have n data points in the training set $\left\{\left(x^{(t)},y^{(t)}\right)\right\}_{t=1,\dots,n}$ where $\left(x^{(t)},y^{(t)}\right)$ is the t-th training example:

We want to find a non-linear regression function f that predicts y from x, given by

$$f\left(x; heta, heta_{0}
ight)= heta\cdot\phi\left(x
ight)+ heta_{0}$$

where $\phi\left(x\right)$ is a polynomial feature vector of some order. What (loosely) is the minimum order of $\phi\left(x\right)$?

3 **✓ Answer:** 3

Solution:

The relationship between y and x can be roughly described by a cubic function, so a feature vector $\phi(x)$ of minimum order 3 can minimize structural errors.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Effect of Regularization on Higher Order Regression

2/2 points (graded)

Let us go back to explore the effect of regularizaion on Higher Order regression.

The three figures below show the fitting result of a 9th order polynomial regression with different regularization parameter λ on the same training data.

Which figure above corresponds to the smallest regularization parameter λ ?

Solution:

The effect of regularization is to restrict the parameters of a model to freely take on large values. This will make the model function smoother, leveling the 'hills' and filling the 'vallyes'. It will also make the model more stable, as a small perturbation on x will not change y significantly with smaller $\|\theta\|$.

Submit Y

You have used 1 of 2 attempts

• Answers are displayed within the problem

Discussion

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Lecture 6. Nonlinear Classification / 3. Introduction to Non-linear Classification

Hide Discussion

Got # dimensions correct, but is it really?

Counting Dimensions of Feature Vectors
Hi, I have seen the solution for the question " Counting Dimensions of Feature Vectors ". But i dont get it... How the compute work? In t...

How to count The number of ways to select a multiset of k non-unique items from n total?
I'm doing The MIT probability course in parallel but it doesn't cover this counting technique. Any suggestions on that?

Previous

Next >

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

9 0000 JVI AU 1 F1

© 2020 edX Inc. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>