

Reconfigurable Stochastic Computing Architecture for Computationally Intensive Applications

Jeongeun Kim, Yue Ri Jeong, Kwonneung Cho, Won Sik Jeong, and Seung Eun Lee

Seoul National University of Science and Technology

Department of Electronic Engineering

Seoul, Republic of Korea

Outline

- Introduction
- Proposed Architecture
- Experimental Results
- Conclusion

Introduction - Motivation

 Emerging Computationally intensive applications Image recognition, Autonomous driving, Al Assistant ..

- ✓ Efficient utilization of circuit area
- ✓ Lightweight logics with suitable accuracy

Introduction - Preliminaries

- Stochastic Computing (SC)
- The SC adapts probability value [0,1]
- The value is approximated to ratio of '1's in random bitstreams

Introduction – Related works

Reconfigurable SC Unit

[Related works]

Bernstein polynomial

$$y = z_0 + z_1 x + z_2 x^2 + z_3 x^3$$

Arithmetic operation + Mathematical functions

$$\mathbf{y} = |\mathbf{z_0} - \mathbf{z_1} \mathbf{x}| + e^{x} + \frac{\mathbf{z_2}}{\mathbf{z_3}}$$

Proposed Architecture

[The proposed architecture of reconfigurable SC unit]

Proposed Architecture

Reconfigurable Stochastic Computing

- Computing Analyzer
- Decode the input formula
- Schedule each operation
- Parallelized SNGs
- Include 8-bit linear feedback shift registers (LFSR)
- Generate stochastic sequence

[The proposed architecture of reconfigurable SC unit]

Proposed Architecture

Reconfigurable Stochastic Computing

- Stochastic Computing Operator
- Conduct stochastic computations
- Probability Estimator
- Convert the resulting stochastic sequence to binary output

[The proposed architecture of reconfigurable SC unit]

Experimental Results (1)

[Arithmetic expression of Tri-linear interpolation [1]]

[Tri-linear interpolation operator based on SC [2,3]]

	Deterministic	Stochastic
Area	4,061 μm^2	1,614 μm^2
Gate counts	8,677	3,448

* 8bit Operation *Samsung 28nm, Design Compiler

^[1] Y. Shicai et.al "An high efficient and speed algorithm of Ray Casting in volume rendering," ICCE, 2011, pp. 1027-1030.

^[2] P. Li et.al, "Logical Computation on Stochastic Bit Streams with Linear Finite-State Machines," in IEEE Transactions on Computers, vol. 63, no. 6, pp.1474-1486, June 2014.

^[3] Stochastic computing, Technology Trend column from IDEC

Experimental Results (2)

Image Processing

-1	0	+1
-2	0	+2
-1	0	+1

+1	+2	+1
0	0	0
-1	-2	-1

[Original Image]

Gx Gy [Sobel Convolution Kernels]

$$|G| = |(P_1 + 2P_2 + P_3) - (P_7 + 2P_8 + 2P_9)| + |(P_3 + 2P_6 + P_9) - (P_1 + 2P_4 + P_7)|$$

[Approximate Gradient Magnitude]

[Deterministic Implementation]

[Stochastic Implementation, Accuracy(avg): 92.4%]

[Verification Prototype]

_		
	Test Board Specifications	
FPGA	Altera MAX10 10M50SCE144C8G	
Input Voltage	5V / 12V	
Operation Freq.	50MHz	
Memory	off-chip 512KB SRAM	
Camera Module	OV2640 CMOS	
Peripheral	Camera I/F, Serial I/F, GPIO	

10

Conclusion

- Reconfigurable SC architecture
 - : targeting computationally intensive applications
- 39.7% of area reduction with lightweight circuits
- 92.4% of accuracy on Image processing

Thank You

Jeongeun Kim

Yue Ri Jeong

Kwonneung Cho

Won Sik Jeong

Seung Eun Lee

https://soc.seoultech.ac.kr