Επιμόρφωση Β2 επιπέδου Τ.Π.Ε.

Εργαλεία ανάπτυξης μοντέλων

Βήματα κατασκευής εκκρεμούς με το **GeoGebra**

Επιμορφωτικό υλικό

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΨΗΦΙΑΚΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ (ΕΠΙΜΟΡΦΩΣΗ Β' ΕΠΙΠΕΔΟΥ ΤΠΕ)/ Β' κύκλος

Συστάδα: Β2.3 - Μαθηματικά

Παράδειγμα- Το εκκρεμές (1/5)

- Στο μοντέλο τίθεται σε λειτουργία το εκκρεμές, μεταβάλλεται το μήκος του νήματος, την αρχική γωνία της ταλάντωσης και την επιτάχυνση της βαρύτητας.
- Το μοντέλο κατασκευάζεται με το σχεδιασμό γεωμετρικών αντικειμένων στο παράθυρο της γεωμετρίας του GeoGebra και με χρήση δρομέων για συγκεκριμένα χαρακτηριστικά του σχήματος.
- Στη συνέχεια ο σχεδιαστής «κρύβει» κάποια σχήματα, αφήνοντας ορατά μόνο αυτά που σχηματίζουν το εκκρεμές.
- Επίσης, οι δρομείς αντιπροσωπεύουν μεγέθη που συνδέονται με τους νόμους του μαθηματικού εκκρεμούς, δηλαδή την γωνία, την αρχική γωνία της ταλάντωσης, το μήκος του νήματος, το χρόνο κτλ.
- Η κίνηση του εκκρεμούς επιτυγχάνεται με συνδυάζοντας τη λειτουργικότητα του δυναμικού χειρισμού και της δυνατότητας «Κίνηση ενεργή» για κάποιον από τους δρομείς.

Παράδειγμα- Το εκκρεμές (2/5)

- Στη συνέχεια παρουσιάζονται ορισμένα στοιχεία/βήματα της κατασκευής
- Έχουμε δυναμικά μεταβαλλόμενα γεωμετρικά αντικείμενα, που αντιστοιχούν στην αναπαράσταση του μοντέλου ενός εκκρεμούς.
- Άρα, από τη μία έχουμε μαθηματικά αντικείμενα είτε γεωμετρικά είναι αλγεβρικά (δρομείς-μεταβλητές) που από την άλλη χρησιμεύουν ως αναπαραστάσεις τμημάτων ή λειτουργιών του εκκρεμούς.

Παράδειγμα – Το εκκρεμές (3/5)

Παράδειγμα Το εκκρεμές (4/5)

Παράδειγμα- Το εκκρεμές (5/5)

Βήματα κατασκευής:

- Εισαγωγής δρομέων,
- **Κύκλος e** με κέντρο O(0,0) κι ακτίνα /+1,
- **Κύκλος k** με κέντρο σ.τ. προηγούμενου κύκλου και κατακόρυφου άξονα και ακτίνα *l*,
- Ορισμός $\theta = \theta_0 \cos(2\pi \operatorname{sqrt}(I/g) t)$
- **Ορισμός γωνίας β** με μέτρο ίσο με το $\theta + \theta_0$,
- **Ορισμός κύκλου p** (το σώμα στην άκρη του νήματος)

Υλοποιούμε την κίνηση με χρήση δρομέων

Δημιουργώντας αναπαραστάσεις αντικειμένων (γωνίες, ευθύγραμμα τμήματα κτλ) με «μέτρα» (άνοιγμα γωνίας, μήκος ευθ τμήματος) συνδεδεμένα με δρομείς πετυχαίνουμε την προσομοίωση κίνησης

Οι δρομείς-Οι «νόμοι» υπάρχουν στο παρασκήνιο^(1/2)

Χρησιμοποιούνται αλγεβρικές εξισώσεις που εξασφαλίζουν τη λειτουργία του μοντέλου με τη βοήθεια μεταβλητών/των δρομέων που προαναφέρθηκαν.

Μαθηματικό αντικείμενο	Τι αναπαριστά στο εκκρεμές	
Δρομέας t	Χρόνος	
Δρομέας Ι	Μήκος νήματος	
ρομέας g Επιτάγχυνση της βαρύτητας		
Δρομέας θ₀	Αρχική γωνία ταλάντωσης (εικόνα 11) -	
	στην τελική προσομοίωση του εκκρεμούς	
	θα θέσουμε την τιμή της θ₀ στο διάστημα	
	(-10, 10)	
Κύκλος e με κέντρο Ο(0,0) και ακτίνα l+1	Το σημείο τομής του κύκλου e με τον	
	άξονα yy' ορίζει το σημείο στήριξης του	
	εκκρεμούς	
Κύκλος k με κέντρο το σημείο στήριξης του	Στην περιφέρεια του κύκλου θα κινείται το	
εκκρεμούς και ακτίνας Ι	σώμα στο άκρο του νήματος	
Ορίζουμε τον αριθμό θ=θ₀ συν(2π sqrt(l/g)	Η μεταβλητή γωνία θ προσομοιώνεται η	
t)	κίνηση του εκκρεμούς, με τη χρήση της	
'Η αλλιώς $\theta = \theta_{_0} \cdot \sigma$ UV $\left(2 \Pi \sqrt{\frac{I}{g}} \cdot t \right)$	επιλογής «κίνηση ενεργή» για το δρομέα t (εικόνα 11).	

Επιμόρφωση Β2 επιπέδου Τ.Π.Ε.

Συστάδα: Β2.3 - Μαθηματικά

Οι δρομείς-Οι «νόμοι» υπάρχουν στο παρασκήνιο^(2/2)

Χρησιμοποιούνται αλγεβρικές εξισώσεις που εξασφαλίζουν τη λειτουργία του μοντέλου με τη βοήθεια μεταβλητών/των δρομέων που προαναφέρθηκαν.

Η «λογική» του σχεδιασμού φαίνονται στο παράθυρο Άλγεβρας και στο πρωτόκολλο κατασκευής.

•	▼ Construction Protocol			
□ → ■ → № ②				
	Name	Descript	Value	
1	Point A	Intersection of xAxis	A = (0, 0)	
2	Line f	Line throug A	f: x = 0	
3	Number t		t = 0	
4	Point Γ		Γ = (21	
5	Circle c	Circle with center Γ	c: (x - 2	
6	Line g₁	Line throug Γ	g₁: x = 21.65	
7	Circle d	Circle with center Γ	d: (x - 2	
8	Point Δ	Intersection of d and g ₁	Δ = (21	
9	Point Δ'	∆ rotated by angle	Δ' = (21	
10	Angle α	Angle between	α = 0°	
11	Vector u	Vector(Γ, Δ')	u = (0,	
12	Point E	Intersection of c and g ₁	E = (21	
13	Point Z	Intersection of c and g ₁	Z = (21	
14	Line h	Line throug Γ	h: y = 1	

Εισαγωγή και δεύτερου εκκρεμούς

Στο μοντέλο μπορεί να εισαχθεί και δεύτερο εκκρεμές με στόχο την κατασκευή συγκεκριμένης εκπαιδευτικής δραστηριότητας.

Οι δρομείς που υπάρχουν στο παρασκήνιο

Ερμηνεία συμβόλων Επιτάγχυνση βαρύτητας G Χρόνος Μήκος κόκκινου εκκρεμούς Μήκος μπλε εκκρεμούς Αρχική γωνία κόκκινου εκκρεμούς θ Γωνία του κόκκινου εκκρεμούς με την νοητή κατακόρυφη ευθεία Αρχική γωνία μπλε εκκρεμούς Φ_{0} φ Γωνία του μπλε εκκρεμούς με την νοητή κατακόρυφη ευθεία

Η δραστηριότητα με τα δύο εκκρεμή

Αφορά το δόμημα 2ekkremh_1

Για συγκεκριμένες τιμές των g, l, λ, θ_0 και ϕ_0 (μπορεί να τις ορίσει ο εκπαιδευτικός) να διερευνήσετε:

- Ποιες χρονικές στιγμές το κάθε εκκρεμές βρίσκεται σχηματίζει μεγαλύτερη γωνία από την νοητή κατακόρυφη ευθεία.
- Ποιες χρονικές στιγμές τα δύο εκκρεμή σχηματίζουν ταυτόχρονα τη μεγαλύτερη γωνία από την νοητή κατακόρυφη ευθεία.

- 12 -

Εισαγωγή και δεύτερου εκκρεμούς

Χρήση των γραφικών παραστάσεων της σχέσης «χρόνος/γωνία εκκρεμούς».

Επιμόρφωση Β2 επιπέδου Τ.Π.Ε.

Συστάδα: Β2.3 - Μαθηματικά

Η δραστηριότητα με τα δύο εκκρεμή Ένα άλλο ερώτημα

- Για συγκεκριμένες τιμές των g, I, λ , θ_0 και ϕ_0 (μπορεί να τις ορίσει ο εκπαιδευτικός) να διερευνήσετε ποιες χρονικές στιγμές η απόσταση μεταξύ των εκκρεμών γίνεται:
 - -> Μέγιστη
 - -> Ελάχιστη
- Η προσθήκη φαίνεται στην εικόνα της επόμενης διαφάνειας. Με χρήση του κουμπιού «ΑΠΟΣΤΑΣΗ ΣΩΜΑΤΩΝ/ΧΡΟΝΟΣ» μπαίνει σε κίνηση το σημείο "APOSTASH". Η θέση του εκφράζει την τιμή της απόστασης μεταξύ των δύο σωμάτων που είναι δεμένα στις άκρες των εκκρεμών, σε σχέση με το χρόνο (χρόνος, απόσταση).

Η δραστηριότητα με τα δύο εκκρεμή

