Минимизация энергии в моделях Изинга с помощью нейронных сетей Выпускная квалификационная работа

выполнил: *Андрей Охотин* научный руководитель: *Дмитрий Кропотов* научные консультанты: *Максим Кодрян*, *Дмитрий Ветров*

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

Модель Изинга

Графическая иллюстрация классической модели Изинга: квадратная решетка, в каждом узле которой находится число, называемое спином и равное +1 или -1 («поле вверх» или «поле вниз»).

Задача минимизации энергии в модели Изинга

Постановка:

$$E\left(x\right) = \sum_{i \in \mathcal{V}} \theta_{i}\left(x_{i}\right) + \sum_{\{i, j\} \in \mathcal{E}} \theta_{ij}\left(x_{i}, x_{j}\right) + \theta_{0} \rightarrow min_{x \in Binary}$$

- задача дискретной оптимизации

Пример

Пример оптимального решения \overline{x} .

Проблемы существующих солверов

- 1. каждую задачу решают заново, поэтому для одновременного решения множества задач неэффективны
- 2. время решения сильно зависит от размера задачи
- 3. долго работают

Мотивация

Преимущества использования нейронных сетей:

- 1. разнообразие методов построения и обучения
- 2. удобство масштабирования
- 3. простота использования

Ограничение на модели Изинга

Выполнение ограничений следующего вида на парные потенциалы:

(1)
$$\forall i \in \mathcal{V}: \ \theta_i(0) \ge 0, \ \theta_i(1) \ge 0;$$

(2) $\forall \{i, j\} \in \mathcal{E}: \ \theta_{ij}(0, 0) = \theta_{ij}(1, 1) = 0;$
(3) $\forall \{i, j\} \in \mathcal{E}: \ \theta_{ij}(0, 1) \ge 0, \ \theta_{ij}(1, 0) \ge 0$

является достаточным условием применимости алгоритмов разрезов графов для минимизации парно-сепарабельной энергии. С такими ограничениями задача минимизации энергии является разрешимой за полиномиальное время. Описанные условия необходимы для возможности оценить качество решения нейронной сети.

Применение задачи минимизации энергии в модели Изинга

В графических моделях, решающих задачи:

- 1. сегментации с семенами
- 2. семантической сегментации
- 3. анатомической разметки

Идея подхода

Подавать в нейронную сеть потенциалы модели Изинга (условие задачи минимизации) и получать на выходе конфигурацию с минимальной энергии (решения задачи минимизации).

Энергия конфигурации считается на решетке, чьи потенциалы были поданы в нейронную сеть.

Идея подхода

Формальное описание подхода с использованием нейронных сетей:

$$\mathbb{E}_{p(\theta^U,\theta^V,\theta^H|\psi)}E\left[\,f_\phi(\theta^U,\theta^V,\theta^H),\;\theta^U,\theta^V,\theta^H
ight] o min_\phi, \eqno(1)$$
 где $f_\phi:\,\{\theta^U,\theta^V,\theta^H\}\, o p^\phi$ — нейронная сеть $\mathbb{P}\left[x_{i,j}=1
ight]=p_{i,j},\quad i,j=\overline{1,n},$

Конкретная конфигурация получается из вероятностей округлением.

Релаксация функционала энергии

$$\begin{split} &\mathbb{E}_{p(\theta^{U},\theta^{V},\theta^{H}|\psi)} \mathbb{E}_{f_{\phi}(\theta^{U},\theta^{V},\theta^{H})} E \left[f_{\phi}(\theta^{U},\theta^{V},\theta^{H}), \ \theta^{U},\theta^{V},\theta^{H} \right] = \\ &= \mathbb{E}_{p(\theta^{U},\theta^{V},\theta^{H}|\psi)} \mathbb{E}_{p^{\phi}} E \left[p^{\phi},\theta^{U},\theta^{V},\theta^{H} \right] = \\ &= \mathbb{E}_{p(\theta^{U},\theta^{V},\theta^{H}|\psi)} \left[\mathbb{E}_{p^{\phi}} U nary(x,\theta^{U}) + \mathbb{E}_{p^{\phi}} Paired(x,\theta^{V},\theta^{H}) \right] = \end{split}$$

00000000000

Релаксация функционала энергии

$$\begin{split} &= \mathbb{E}_{p(\theta U,\theta V,\theta H \mid \psi)} \left[\ \mathbb{E}_{p\phi} \left(\sum_{i,j=1}^{n,n} \left[\theta_{i,j}^{U}(0)(1-x_{i,j}^{\phi}) + \theta_{i,j}^{U}(1)x_{i,j}^{\phi} \right] \right) + \\ &+ \ \mathbb{E}_{p\phi} \left(\sum_{i,j=1}^{n-1,n} \left[\theta_{i,j}^{V}(0,1)(1-x_{i,j}^{\phi})x_{i+1,j}^{\phi} + \theta_{i,j}^{V}(1,0)x_{i,j}^{\phi}(1-x_{i+1,j}^{\phi}) \right] \right) + \\ &+ \mathbb{E}_{p\phi} \left(\sum_{i,j=1}^{n,n-1} \left[\theta_{i,j}^{H}(0,1)(1-x_{i,j}^{\phi})x_{i,j+1}^{\phi} + \theta_{i,j}^{H}(1,0)x_{i,j}^{\phi}(1-x_{i,j+1}^{\phi}) \right] \right) \right] = \\ &= \mathbb{E}_{p(\theta U,\theta V,\theta H \mid \psi)} \left[\sum_{i,j=1}^{n,n} \left[\theta_{i,j}^{U}(0)(1-p_{i,j}^{\phi}) + \theta_{i,j}^{U}(1)p_{i,j}^{\phi} \right] + \\ &+ \sum_{i,j=1}^{n-1,n} \left[\theta_{i,j}^{V}(0,1)(1-p_{i,j}^{\phi})p_{i+1,j}^{\phi} + \theta_{i,j}^{V}(1,0)p_{i,j}^{\phi}(1-p_{i+1,j}^{\phi}) \right] + \\ &+ \sum_{i,j=1}^{n,n-1} \left[\theta_{i,j}^{H}(0,1)(1-p_{i,j}^{\phi})p_{i,j+1}^{\phi} + \theta_{i,j}^{H}(1,0)p_{i,j}^{\phi}(1-p_{i,j+1}^{\phi}) \right] \right] = \\ &= \mathbb{E}_{p(\theta U,\theta V,\theta H \mid \psi)} E\left(p^{\phi}, \theta^{U}, \theta^{V}, \theta^{H} \right) = \mathbb{E}_{p(\theta U,\theta V,\theta H \mid \psi)} \mathbb{E}_{f\phi} E\left[f_{\phi}(\theta^{U}, \theta^{V}, \theta^{H}), \ \theta^{U}, \theta^{V}, \theta^{H} \right] \end{split}$$

В каких моделях Изинга минимизировать энергию?

Распределение моделей Изинга, в котором будет минимизироваться энергия:

$$p(\theta^U, \theta^V, \theta^H | \psi)$$

Параметры ψ определяют свойства моделей Изинга, в которых будет минимизироваться энергия (подробнее далее).

Постановки

00000000000

Обучение без учителя

$$\mathbb{E}_{p(\theta^U, \theta^V, \theta^H | \psi)} E\left(p^{\phi}, \theta^U, \theta^V, \theta^H\right) \quad \to \quad min_{\phi}$$

Обучение с учителем

$$x_{optimal}\left(\theta^{U}, \theta^{V}, \theta^{H}\right) = argmin_{x \in Binary^{n \times n}} E\left(x, \theta^{U}, \theta^{V}, \theta^{H}\right)$$

$$CE(x, p^{\phi}) = -\frac{1}{n^2} \sum_{i,j=1}^{n} \left[x_{i,j} \log p_{i,j} + (1 - x_{i,j}) \log(1 - p_{i,j}) \right]$$

$$\mathbb{E}_{p(\theta^U, \theta^V, \theta^H | \psi)} CE \left(x_{optimal} \left(\theta^U, \theta^V, \theta^H \right), p^{\phi} \right) \rightarrow min_{\theta}$$

Данные

Тензор из потенциалов, подающийся в нейронную сеть.

MLP

Архитектура Multilayer Perceptron, MLP.

Transformer

Архитектура Transformer.

Transformer

Архитектура TransformerBlock.

Transformer

Эмбеддинги узлов.

Embeddings

Схема создания эмбеддингов для нейронной сети вида Transformer.

Характер задачи минимизации энергии

Функционал энергии в модели Изинга распадается на линейную и квадратичную компоненты:

$$\mathbb{E}_{x^{\mathbb{R}}}E(x^{\mathbb{R}}, \theta^{U}, \theta^{V}, \theta^{H}) = Unary(x^{\mathbb{R}}, \theta^{U}) + Paired(x^{\mathbb{R}}, \theta^{V}, \theta^{H})$$

 $x^{\mathbb{R}}$ – случайные конфигурации из некоторого распределения

Насколько задача минимизации энергии является линейной можно оценить следующей величиной:

$$balance\left(\theta^{U},\theta^{V},\theta^{H}\right) = \mathbb{E}_{x^{\mathbb{R}}}\left[\frac{Unary(x^{\mathbb{R}},\theta^{U})}{Unary(x^{\mathbb{R}},\theta^{U}) + Paired(x^{\mathbb{R}},\theta^{V},\theta^{H})}\right]$$

Принципы построения распределения моделей Изинга

Теперь мы можем перейти от рассмотрения параметров в распределении

$$p(\theta^U, \theta^V, \theta^H | \psi),$$

к распределению

$$p(balance(\theta^U, \theta^V, \theta^H) | \psi),$$

в котором сможем оценить вариативность задачи минимизации энергии в шкале $balance \in [0,1]$: от полностью квадратичной (balance = 0) задачи до полностью линейной (balance = 1).

Выборки с различными свойствами

Сравнение распределений $p(balance(\theta^U, \theta^V, \theta^H) \mid \psi)$ для наборов данных simplified, medium и variegated.

Fine-tuning

Постановки задач для нейронной сети в случае использования fine-tuning.

Relaxed fine-tuning

Постановки задач для нейронной сети в случае использования relaxed fine-tuning.

Лучшие результаты

Architecture	Dataset Types			Metrics
train loss	simplified	medium	variegated	ivietrics
MLP	9.777 ± 3.038	23.011 ± 9.887	21.338 ± 33.347	energy
BCEloss	91.034 ± 6.291	87.192 ± 12.357	89.860 ± 19.157	accuracy, %
Transformer	2.556 ± 2.585	13.012 ± 11.906	11.745 ± 21.117	energy
BCEloss	96.256 ± 4.776	91.817 ± 10.354	93.811 ± 13.216	accuracy, %
MLP	1.128 ± 1.449	2.338 ± 3.124	1.872 ± 3.513	energy
Energy	95.477 ± 5.481	91.347 ± 13.317	81.110 ± 34.274	accuracy, %
Transformer	1.378 ± 1.712	3.577 ± 4.459	2.408 ± 4.571	energy
Energy	94.375 ± 6.129	89.419 ± 13.143	80.437 ± 33.126	accuracy, %

В ячейках таблицы отображены mean \pm std. Достижимый минимум энергии равен 0, математическое ожидание энергии случайных конфигураций равно 100 (т.е. если случайно выбирать x как решения задачи, то их энергия будет в среднем около 100).

Сравнение качества на выборках из других распределений

Train	Test Dataset types			Metrics
Dataset	simplified	medium	variegated	ivietrics
simplified	2.556 ± 2.585	19.957 ± 15.054	57.208 ± 47.267	energy
	96.256 ± 4.776	82.525 ± 14.275	65.459 ± 25.405	accuracy, %
medium	6.994 ± 4.444	13.012 ± 11.906	37.239 ± 45.971	energy
	90.746 ± 10.354	91.817 ± 10.354	86.047 ± 23.428	accuracy, %
variegated	7.179 ± 3.575	22.100 ± 12.352	11.745 ± 21.117	energy
	91.939 ± 6.295	87.736 ± 11.475	93.811 ± 13.216	accuracy, %

Сравнение моделей Transformer обученных с BCEloss на описанных датасетах. Сравнение происходит на всех видах выборок. В ячейках таблицы отображены mean \pm std. Достижимый минимум энергии равен 0, математическое ожидание энергии случайных конфигураций равно 100 (т.е. если случайно выбирать x как решения задачи, то их энергия будет в среднем около 100).

Сравнение качества на выборках из других распределений

Train	Test Dataset types			Metrics
Dataset	simplified	medium	variegated	ivietrics
simplified	1.128 ± 1.449	4.508 ± 4.892	11.076 ± 14.131	energy
	95.477 \pm 5.481	89.233 ± 11.964	76.175 ± 28.522	accuracy, %
medium	5.160 ± 4.346	2.338 ± 3.124	2.005 ± 5.134	energy
	88.685 ± 8.628	91.347 ± 13.317	87.408 ± 26.697	accuracy, %
variegated	3.642 ± 2.985	4.837 ± 5.136	1.872 ± 3.513	energy
	91.567 ± 6.792	88.679 ± 13.928	81.110 ± 34.274	accuracy, %

Сравнение моделей MLP обученных с функционалом потерь Energy на описанных датасетах. Сравнение происходит на всех видах выборок. В ячейках таблицы отображены mean \pm std. Достижимый минимум энергии равен 0, математическое ожидание энергии случайных конфигураций равно 100 (т.е. если случайно выбирать x как решения задачи, то их энергия будет в среднем около 100).

Список литературы

- [1] Теоретическая основа. Модель Изинга.
- http://www.machinelearning.ru/wiki/images/9/9e/GM graphCuts.pdf
- [2] Алгоритмы минимизации энергии на основе разрезов графов
- http://www.machinelearning.ru/wiki/images/a/aa/GraphCutNotes.pdf
- [3] Xavier Bresson, Thomas Laurent "The Transformer Network for the Traveling Salesman Problem" 2021
- [4] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy "MLP-Mixer: An all-MLP Architecture for Vision"
- https://arxiv.org/pdf/2105.01601.pdf
- [5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser "Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf