Lista 1

Weronika Jakimowicz

29.02.2024

Zadanie 1.

Relacja P(A, B) zawiera p krotek, a relacja S(B, C) zawiera s krotek. Nic nie wiadomo na temat kluczy relacji. Dla każdego z poniższych wyrażeń wylicz (w zależności od p i s) jaka może być minimalna i maksymalna liczba zwracanych krotek.

- a) $P \cup \rho_{S(A,B)}S$
- b) $\pi_{A,C}(P \bowtie S)$
- c) $\pi_B(P) \setminus (\pi_B(P) \setminus \pi_B(S))$
- d) $(S \bowtie S) \bowtie S$
- e) $\sigma_{A < B}(P) \cup \sigma_{A > B}(P)$

Rozwiązanie.

a) $P \cup \rho_{S(A,B)}S$

Operacja $\rho_{S(A,B)}$ S bierze całą relację S(B, C) i podmienia nazwy jej kolumn na A, B, resztę pozostawiając bez zmian.

W takim razie, najmniej krotek w sumie mnogościowej P i S(A, B) będzie jeśli cała jedna baza ma te same informacje co druga, np. gdy mamy takie, troszkę bezsensowne, bazy:

Р	
A=nr	B=imię
1	Weles
2	Kycia

S	
B=imię	C=właściciel
2	Kycia

W takim razie najmniejsza ilość krotek to max(s, k).

Najwięcej krotek będzie, gdy bazy po przemianowaniu będą całkowicie rozłączne, np.:

P	
A=owoc	B=ilość
banan	1
winogran	7
jabłka	3

S	
B=ilość	C=zakup
5	kartofli

b) $\pi_{A,C}(P \bowtie S)$

Jeśli w B nie ma wspólnych wpisów, to P ⋈ S będzie pusty, czyli najmniejsza ilość krotek w

1

wyniku to 0:

Р	
A=nr	B=imię
1	Weles
2	Kycia

S	
B=imię	C=właściciel
Stefan	Ania

P⋈S		
A=nr	B=imię	C=właściciel
-	-	-

Jeśli jedna kolumna B zawiera tylko wpisy z drugiej kolumny B, być może powielone, to mamy:

Р	
A=nr	B=imię
1	Weles
2	Kycia

S	
B=imię	C=właściciel
Weles	Kycia
Kycia	Mirek
Weles	Ronia

P⋈S		
A=nr	B=imię	C=właściciel
1	Weles	Kycia
1	Weles	Ronia
2	Kycia	Mirek

i wtedy krotek jest tyle, ile elementów w większej relacji, czyli max(s, p).

c) $\pi_B(P) \setminus (\pi_B(P) \setminus \pi_B(S))$

Tutaj minimum to 0, jeśli zapisy w kolumnie B relacji S są całkiem rozłączne z zapisami w kolumnie B relacji P:

Р	
A=nr	B=imię
1	Weles
2	Kycia

S	
B=imię	C=właściciel
Doruś	Halina
Dziunia	Grażyna
Stefan	Agata

wtedy $\pi_B(P) \setminus \pi_B(S) = \pi_B(P)$.

Natomiast najwięcej krotek jakie możemy dostać to p, jeśli wyrazy w kolumnie B tablicy S są takie same jak wyrazy z kolumny B tablicy P i w dodatku każda krotka z P jest unikalna:

Р		
A=nr	B=imię	
1	Weles	
2	Kycia	

S		
B=imię	C=właściciel	
Weles	Halina	
Kycia	Grażyna	

Tutaj zawsze będzie s krotek, bo $S \bowtie S = S$.

e)
$$\sigma_{A < B}(P) \cup \sigma_{A} > B(P)$$

Tutaj najmniejsza ilość krotek w wyniku jest wtedy, gdy A = B zawsze w tabeli P, np.

Р		
A=nr w dzienniku	B=ocena	
1	1	
2	2	
3	3	

ponieważ $\sigma_{A>B}(P)$ oraz $\sigma_{A<B}(P)$ są zbiorami pustymi, to ich suma też jest pusta.

Natomiast, jeśli nie ma krotek, gdzie elementy są takie same, to dostaniemy p sztuk krotek:

Р		
A=nr w dzienniku	B=ocena	
1	2	
2	3	
3	6	

Zadanie 2.

Czy operator różnicy \ da się wyrazić za pomocę algebry relacji z operatorami π , σ , ρ , \times , \cup ? Przyjmijmy, że warunki F są formułami zbudowanymi przy użyciu koniunkcji, alternatywy oraz zawierają wyłącznie atomy postaci $\operatorname{Atr}_1=\operatorname{const}$ lub $\operatorname{Atr}_1=\operatorname{Atr}_2$, gdzie Atr_1 , Atr_2 są atrybutami, a const stałą odpowiedniego typu. Czy odpowiedź na pytanie zmieni się, jeśli w warunkach dopuścimy negację? $\operatorname{Wskazówka:}$ poszukaj pewnej charakterystycznej cechy, którą mają wszystkie zapytania wyrażane za pomocą π , σ , ρ , \times , \cup , a której nie musi mieć zapytanie wyrażone z użyciem \.

Rozwiązanie.

Ponieważ różnica ma sens tylko gdy atrybuty obu tablic są takie same, to niech P(A, B) i S(A, B) będą dowolnymi tablicami (piszę A, B zamiast Atr_i).

Jeśli negacja jest dozwolona, to możemy zacząć od zmiany nazwy S(A, B) na S(A', B') i przemnożenia wyniku przez P(A, B). Potem wystarczy wybrać te wyrażenia, w których obie kolumny są różne i rzutować to na kolumny odpowiadające P(A, B):

$$\mathsf{P}(\mathsf{A},\mathsf{B})\setminus\mathsf{S}(\mathsf{A},\mathsf{B})=\pi_{\mathsf{A},\mathsf{B}}(\sigma_{\mathsf{A}\not\to\mathsf{A}'\wedge\mathsf{B}\not\to\mathsf{B}'}[\mathsf{P}(\mathsf{A},\mathsf{B})\times\pi_{\mathsf{S}(\mathsf{A}',\mathsf{B}')}(\mathsf{S}(\mathsf{A},\mathsf{B}))])$$

Dla przykładu

Р		
Α	В	
1	2	
3	4	

S		
Α	В	
3	4	
8	9	

Р		
Α	В	
1	2	
3	4	

$\pi_{S(A',B')}S$		
A'	B'	
3	4	
8	9	

$P \times S(A', B')$			
Α	В	A'	B'
1	2	3	4
1	2	8	9
3	4	3	4
3	4	8	9

$\sigma_{A=A'\wedgeB=B'}P\timesS(A',B')$			
А	В	A'	B'
3	4	3	4

Zadanie 3.

X, Y i Z są relacjami zawierającymi pojedynczą kolumnę o nazwie A. STudent ma napisać wyrażenie algebry relacji wyliczające wartość $X \cap (Y \cup Z)$ nie używając operatorów sumy i przekroju relacji. W bazie danych rozwiązań zadań z poprzednich edycji kursu znalazł następujące wyrażenie:

$$\pi_{\mathsf{A}}(\sigma_{\mathsf{A}=\mathsf{A}_{\mathsf{Y}}\vee\mathsf{A}=\mathsf{A}_{\mathsf{Z}}}(\mathsf{X}\times\rho_{\mathsf{Y}(\mathsf{A}_{\mathsf{Y}})}\mathsf{Y}\times\rho_{\mathsf{Z}(\mathsf{A}_{\mathsf{Z}})}\mathsf{Z}))$$

Czy powinien użyć tego rozwiązania? Jeśli zapytanie jest poprawne, to uzasadnij to, jeśli nie, to zastanów się czy i jak można je poprawić.

Rozwiązanie.

Zacznijmy od napisania, kiedy $x \in X \cap (Y \cup Z)$:

$$x \in X \cap (Y \cup Z) \iff x \in X \wedge (x \in Y \vee x \in Z).$$

W rozwiązaniu w bazie zaczynamy od krotek (x, y, z), gdzie $x \in X$, $y \in Y$ i $z \in Z$. Potem wybieramy z nich te elementy, dla których $y \in X$ lub $z \in X$. Po rzutowaniu na pierwszą współrzędną dostajemy więc elementy $x \in X$, dla których $x \in Y$ lub $x \in Z$, czyli jest to rozwiązanie poprawne.

Zadanie 4.

Rozwiązanie.

```
pi movies.name, directors.last_name, movies_genres.genre (
    sigma (movies.id = movies_genres.movie_id and movies.year <
        1960) (
        movies x
        sigma (movies_genres.movie_id = movies_directors.
            movie_id) (</pre>
```

```
pi actors.first_name, actors.last_name (sigma actors.id =
   actors.ii (
                 actors x (
                          (pi ii (rho ii <- id actors)) -
                          pi roles.actor_id (
                                   sigma roles.role != roles.r
                                   sigma roles.actor_id = roles.
                                      act_id (
                                           roles x
                                           (rho act_id <-
                                              actor_id, mv_id <-</pre>
                                              movie_id, r <- role</pre>
                                               roles)
                                   )
                          )
                 )
```

)

```
pi actors.last_name ( sigma roles.ac_id = actors.id (actors x
    (
    sigma roles.ac_id = roles.actor_id and roles.role = roles.r
    and roles.mv_id != roles.movie_id (
        roles x
        (rho r <- role, ac_id <- actor_id, mv_id <- movie_id
        roles)
)
)
)
)</pre>
```

Tutaj krzyczy błąd, ale nie ma reżyserów, którzy nakręcili film bez kobiet i to chyba krzyczy na iloczyn kartezjański z pustą listą?

```
pi directors.last_name (sigma directors.id = movies_directors.
    director_id ((pi movies_directors.director_id
    movies_directors) -
    (pi movies_directors.director_id
    (sigma actors.gender = 'F' and actors.id = roles.actor_id (
    actors x
    (sigma movies_directors.movie_id = roles.movie_id (
        movies_directors x roles))
))
) x directors)
)
```