Min-heap and Max-heap

by wwy

What is heap

- Complete binary tree
 - A complete binary tree is a special type of binary tree where all the levels of the tree are filled completely except the lowest level nodes which are filled from as left as possible.
 - A binary tree has a limitation as any node of the tree has at most two children:
 a left and a right child.

Heap & Complete binary tree

• Which is complete binary tree

Heap & Complete binary tree

• Which is complete binary tree

Max/Min heap

Two types of heap

Max/Min heap

• Storage

index_root: i

 $index_left: 2i + 1$ $index_right: 2i + 2$

Basic operation

- Percolate Down
- the element need to be moved down to maintain the heap's property

- Percolate UP
- the element need to be moved up to maintain the heap's property

- Following a top-down approach
- Insert element to end of the heap
- Do the percolate up

Example

build array [3,4,5,6,1,7,8] to max - heap

array [3,4,5,6,1,7,8]

3

array [3,4,5,6,1,7,8]

array [3,4,5,6,1,7,8]

array [3,4,5,6,1,7,8]

array [3,4,5,6,1,7,8]

array [3,4,5,6,1,7,8]

- Following a bottom-up approach
- Build the complete binary tree
- Do the percolate down of every father element

Example

build array [3,4,5,6,1,7,8] to max - heap

array [3,4,5,6,1,7,8]

array [3,4,5,6,1,7,8]

array [3,4,5,6,1,7,8]

Application: priority queue

- Use Max/Min heap
- Two operation: push and pop
 - push: put element to queue's tail, then percolat up
 - pop: pop the queue's head(root), put the rightest leaf of lowest level, then percolate down

• Example:

Max-heap to descending array

Heap sort

- Lower space complexity than above algrithm
- Same time complexity
- Use heap to store the data

• Example: use max-heap

Thx :-)