Теортест-1 (Вариант 56)

Тема – определенный интеграл

Задача 1

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-2; 20];
- 2. [0; 100];
- 3. [9; 100];
- 4. [-9; 90];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{2x+1}{x^2(x+1)^2}$;
- 2. $\frac{2x+1}{x^2+x+1}$;
- 3. $\frac{x^2-x+1}{x^2+x}$;
- 4. $\frac{x^4}{x^2-1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть функция u = u(t) – первообразная для функции v = v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. du = vdt;
- 2. dv = udt + C;
- 3. u = dv + C;
- 4. v = du + C;

Задача 4

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 2. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 3. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2};$
- 4. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f((a+b)/2) = 1;
- 2. f(a) > 0, f(b) > 0;
- 3. f(a) = f(b) = 1;
- 4. f > 0 на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем A всегда положителен;
- 2. объем любого сечения тела A равен нулю;
- 3. объем одной точки равен нулю;
- 4. объем $A \cup B$ равен сумме объемов A и B;

Задача 7

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если f и g интегрируемы на [a,b], то f+g тоже интегрируема на [a,b];
- 2. Если $c \in [a, b]$ и f интегрируема на [a, c] и на [c, b], то f интегрируема и на [a, b];
- 3. Если f и g интегрируемы на [a,b], то $f \cdot g$ тоже интегрируема на [a,b];
- 4. Если функция $f \cdot g$ интегрируема на [a, b], то f и g тоже интегрируемы на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения:

- 1. Длина кривой зависит от параметризации;
- 2. Длина замкнутой кривой равна нулю;
- 3. Любая кривая имеет бесконечно много различных параметризаций;
- 4. Длина спрямляемой кривой конечна;
- 5. Любая кривая имеет неотрицательную длину;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\exists E \in \mathbb{R}$: $\forall \varepsilon > 0 \ \exists \delta > 0$: $\exists \tau : |\tau| < \delta \ \exists \xi : -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon$;
- 2. $\forall \tau, \ \forall \xi \colon s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\forall \varepsilon > 0 \; \exists \tau \colon S_{\tau} s_{\tau} < \varepsilon;$
- 4. $\forall \tau, \exists \xi : s_{\tau} < \sigma_{\tau}(\xi) < S_{\tau};$

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F первообразная для f на [a,b];
- 2. F ограничена на [a,b];
- 3. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 4. F непрерывна на [a,b];