System Protection

Instructor: Dr Tarunpreet Bhatia
Assistant Professor
CSED, TIET

Topics

- Goals of Protection
- Principles of Protection
- Domain of Protection
- Access Matrix

Goals of Protection

- In one protection model, computer consists of a collection of objects, hardware or software
- Each object has a unique name and can be accessed through a well-defined set of operations
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so

Principles of Protection

- Guiding principle principle of least privilege
 - Programs, users and systems should be given just enough **privileges** to perform their tasks
 - Limits damage if entity has a bug, gets abused
 - Can be static (during life of system, during life of process)
 - Or dynamic (changed by process as needed) –
 domain switching, privilege escalation
 - "Need to know" a similar concept regarding access to data

Domain Structure

- Access-right = <object-name, rights-set>
 where rights-set is a subset of all valid operations
 that can be performed on the object
- Domain = set of access-rights

Access Matrix

- View protection as a matrix (access matrix)
- Rows represent domains
- Columns represent objects
- Access (i, j) is the set of operations that a process executing in Domain; can invoke on Object;

object domain	F ₁	F ₂	F ₃	printer
D ₁	read		read	
D_2				print
D_3		read	execute	
D_4	read write		read write	

Use of Access Matrix

- If a process in Domain D_i tries to do "op" on object O_j , then "op" must be in the access matrix
- User who creates object can define access column for that object
- Can be expanded to dynamic protection
 - Operations to add, delete access rights
 - Special access rights:
 - owner of O_i
 - copy op from O_i to O_j (denoted by "*")
 - $control D_i$ can modify D_j access rights
 - transfer switch from domain D_i to D_j
 - Copy and Owner applicable to an object
 - *Control* applicable to domain object

Access Matrix of Figure A with Domains as Objects

object domain	F ₁	F ₂	F ₃	laser printer	<i>D</i> ₁	<i>D</i> ₂	D ₃	D_4
D_1	read		read			switch		
D ₂				print			switch	switch
<i>D</i> ₃		read	execute					
D_4	read write		read write		switch			

Access Matrix with Copy Rights

object domain	F ₁	F_2	F_3	
D_1	execute		write*	
D_2	execute	read*	execute	
D_3	execute			

(a)

object domain	F ₁	F_2	F_3
D_1	execute		write*
D_2	execute	read*	execute
D_3	execute	read	

(b)

Access Matrix With Owner Rights

object domain	F ₁	F ₂	F ₃
D_1	owner execute		write
D ₂		read* owner	read* owner write
D ₃	execute	***	

(a)

object domain	F ₁	F ₂	F ₃
<i>D</i> ₁	owner execute		write
D_2		owner read* write*	read* owner write
D ₃		write	write

Modified Access Matrix of Figure B

object domain	F ₁	F_2	F ₃	laser printer	<i>D</i> ₁	D_2	<i>D</i> ₃	D_4
D_1	read		read			switch		
<i>D</i> ₂				print			switch	switch control
D_3		read	execute					
D_4	write		write		switch			