

# 32 位微控制器

# **KF32F350** 数据手册



## 芯片特征

#### • CPU

32 位高性能 KungFu32 内核; 工作频率最高为 120MHz,可软件调节; 基于 16 位/32 位混合指令的高效指令集;

3级流水线;

32×32 单周期乘法,32÷32 硬件除法; 支持中断优先级处理,实现自动中断堆栈; 13 个 32 位通用寄存器 R0~R12;

链接寄存器(R13);

堆栈指针寄存器(R14);

程序计数器(R15);

24 位系统节拍定时器;

#### ● 存储器

最高 512KByte FLASH, 带 ECC 校验; 最高 128KByteRAM, 其中 32KByte 带 ECC 校验;

3 个 256Byte 双端口 RAM, 带 ECC 校验; 1 个 512Byte 双端口 RAM, 带 ECC 校验; 16KByte 引导 ROM;

FLASH 可经受 100 000 次写操作;

#### ● 特殊功能

内嵌上电复位电路; 低电压检测及低电压复位; 可编程电压检测; 硬件双看门狗; 系统时钟 6 种时钟源可选; 支持两线串行编程/在线调试;

#### ● I/O 口配置

LQFP100 封装有 84 个通用 I/O; LQFP64 封装有 53 个通用 I/O; LQFP48 封装有 39 个通用 I/O; 支持输入输出口设置; 支持内置上拉/下拉功能; 支持推挽输出和开漏输出模式; 支持数字/模拟引脚设置; 支持引脚功能重映射; 施密特电平输入;

#### ● 定时器/计数器

定时器 5/6/9/10 为高级定时器, 其中定时器 5/6 支持 ECCP5; 定时器 9/10 支持 ECCP9 定时器 0/1/2/3/4/18/19/22/23 为通用定时器, 其 中 定 时 器 0/1/2/3/4/18/19/22/23 支 持 CCP0/1/2/3/4/18/19/22/23;

定时器 20/21: 32 为通用定时器, 其中定时器 20/21 分别支持 CCP20/21;

定时器 14/15: 基本定时器;

定时器 7/8 支持 QEI0/QEI1;

#### ● 其它外设

2个7通道 DMA;

1 个硬件 CRC32 模块:

4 个 SPI 总线模块 (兼容 I2S);

4个I2C 总线模块(兼容 SMBUS/PMBUS);

8 个 USART 模块(兼容 7816/LIN/IRDA 功能):

3个CAN2.0B 模块;

1个USB2.0模块;

1 个兼容 8080 模式的 EXIC 模块;

1个独立的RTC(万年历);

3个12位ADC模块,支持最多42个通道;

2个12位DAC模块:

2个CMP比较器模块;

#### ● 功耗管理

3 种功耗模式:正常运行模式、普通休眠模式、停止模式;

#### ● 工作条件

工作电压: 1.8V~3.6V;

工作温度范围: -40~85℃;



# 目 录

| 芯   | 片特征         |                                        | 2  |
|-----|-------------|----------------------------------------|----|
| 目   |             |                                        |    |
|     |             |                                        |    |
| 1   | 芯片资源        |                                        | 6  |
|     | 1.1         | 产品订购信息 KF32F350                        | 6  |
|     | 1.2         | KF32F350 资源表                           | 7  |
| •   | 乙炔椰汁        |                                        | c  |
| 2   | 系统慨处        |                                        | 8  |
|     | 2.1         | 系统概述                                   | 8  |
|     | 2.2         | 指令集                                    | 8  |
|     | 2.3         | 在线编程和调试                                | 9  |
|     |             | 2.3.1 ISP 模式                           | 9  |
|     |             | 2.3.2 DPI 模式                           | 9  |
|     | 2.4         | 系统框图                                   | 10 |
|     |             | KF32F350 外设资源对照表                       |    |
|     | 2.6         | 芯片引脚图                                  | 12 |
|     |             | 2.6.1 LQFP48                           | 12 |
|     |             | 2.6.2 LQFP64                           | 13 |
|     |             | 2.6.3 LQFP100                          | 14 |
|     | 2.7         | 电源引脚说明                                 | 15 |
| 3   | 振 <b></b> 据 | OSC)                                   | 16 |
| J   | *******     |                                        |    |
|     |             | 概述                                     |    |
|     | 3.2         | 振荡器结构框图                                | 17 |
| 4   | 存储器(ı       | nemory)                                | 18 |
|     | <i>1</i> 1  | 概述                                     | 15 |
|     |             | 存储器空间映射                                |    |
|     |             |                                        |    |
| 5   | I/O 端口介     | 绍                                      | 20 |
|     | 5.1         | 概述                                     | 20 |
|     | 5.2         | 引脚重映射说明(数字功能)                          | 21 |
|     | 5.3         | 引脚重映射说明(系统以及模拟功能)                      | 25 |
|     | 5.4         | 引脚重映射表-外部唤醒引脚、侵入检测和时间戳引脚映射             | 29 |
|     |             | CCP 引脚资源                               |    |
| 6   | <b>次</b> 派  |                                        | 21 |
| U   | 贝娜开绀        |                                        | 31 |
|     | 6.1         | DMA                                    | 31 |
|     | 6.2         | 节拍定时器(SYSTICK)                         | 31 |
|     | 6.3         | 基本定时/计数器(T14/T15)                      | 31 |
|     | 6.4         | 通用定时/计数器(T0/1/2/3/4/18/19/20/21/22/23) | 32 |
| ىد. | 医异子动体 山 二   | 2/66                                   |    |



|      | 6.5 高级定时/计数器(T5/T6/T9/T10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | 6.6 通用捕捉/比较/PWM 模块(CCP0/1/2/3/4/18/19/20/21/22/23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32       |
|      | 6.7 增强型捕捉/比较/PWM 模块(ECCP5/9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33       |
|      | 6.8 正交编码脉冲电路(QEI0/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33       |
|      | 6.9 模数转换模块(A/D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34       |
|      | 6.10 数模转换器模块(D/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34       |
|      | 6.11 拟比较器模块(CMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|      | 6.12 通用全/半双工收发器(USART)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35       |
|      | 6.13 串行外设接口(SPI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35       |
|      | 6.14 内部集成电路接口(I2C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35       |
|      | 6.15 实时时钟(RTC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36       |
|      | 6.16 控制器局域网总线(CAN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36       |
|      | 6.17 独立看门狗(IWDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37       |
|      | 6.18 窗口看门狗(WWDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37       |
|      | 6.19 USB 模块(USB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37       |
|      | 6.20 CFGL 模块(CFGL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37       |
|      | 6.21 复位(RESET)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38       |
|      | 6.22 外设模块时钟使能模块(CLK_EN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38       |
|      | 6.23 循环冗余校验单元(CRC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39       |
|      | 6.24 EXIC 接口                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39       |
| 7 由4 | 气特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40       |
| ,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 7.1 概述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      | 7.1.1 最大值和最小值说明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 7.1.2 典型值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.2 最大承受范围                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|      | 7.3 运行条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|      | 7.3.1 常规运行条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      | 7.3.2 上电/掉电的运行条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|      | 7.3.3 复位和电源控制模块特性 BOR,PVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.3.4 BAT PVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|      | 7.3.5 电源电流特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      | 7.3.6 内核电源 VREG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 7.4 时钟源特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.4.1 HSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.4.2 LSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.4.3 HSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.4.4 LP4M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|      | 7.4.5 LSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      | 7.4.6 PLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50       |
|      | and the second s |          |
|      | 7.5 IO 端口特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51       |
|      | 7.5.1 静态特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51<br>51 |



| 7.5.4 NRST 管脚特性            | 52 |
|----------------------------|----|
| 7.5.5 外部中断特性               | 52 |
| 7.6 外设                     | 53 |
| 7.6.1 ADC 12BIT 特性         |    |
| 7.6.2 DAC 12 BIT 转换特性      | 54 |
| 7.6.3 电压参考 VREFREG 特性      | 56 |
| 7.6.4 比较器特性                | 56 |
| 7.6.5 USB 全低速收发器模块电气特性     |    |
| 7.7 功耗特性                   | 58 |
| 7.7.1 程序运行在 FLASH 时的静态功耗特性 | 58 |
| 7.7.2 程序运行在 SRAM 时的静态功耗特性  | 58 |
| 7.7.3 休眠功耗特性               | 59 |
| 7.7.4 低功耗模式特性              | 59 |
| 8 封装信息                     | 60 |
| 8.1 LQFP48 封装              | 60 |
| 8.2 LQFP64 封装(7*7)         |    |
| 8.3 LQFP64 封装(10*10)       |    |
| 8.4 LQFP100 封装             | 61 |
| 9 KF32 产品标识体系              | 62 |
| 10 RoHS 认证                 | 63 |
| 11 声明及销售网络                 | 64 |
| 12 版本更新记录                  | 65 |



# 1 芯片资源

# 1.1 产品订购信息 KF32F350

|          |                             |         |      | ASH(KB) | (KB)    | (KB)   | (KB) | (KB) | CB) | (z)    | 16  | 位定时   | <b>才器</b> | 吋器   |     |     |       | 7)  |     |        | $\mathbf{T}$ |    |     | ADC  | AC  | 器        | , | L | • . |  |
|----------|-----------------------------|---------|------|---------|---------|--------|------|------|-----|--------|-----|-------|-----------|------|-----|-----|-------|-----|-----|--------|--------------|----|-----|------|-----|----------|---|---|-----|--|
| 型号       | 订货号                         | 封装      | GPIO | FLASH(  | RAM(KB) | 频率(Hz) | 基本   | 通用   | 高级  | 32 位定时 | CCP | ECCP  | QEI       | EXIC | SPI | 12C | USART | CAN | USB | 12 位 A | 12 ( DA      | 比较 | RTC | CFGL | CRC | 工作电压(V)  |   |   |     |  |
|          | KF32F350KQS                 | LQFP48  | 39   | 256     | 48      | 120M   | 2    | 4    | 4   | 2      | 4   | 1X8ch | 1         | N    | 3   | 2   | 3     | 2   | N   | 1(22)  | N            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |
|          | KF32F350MQS                 | LQFP48  | 39   | 512     | 128     | 120M   | 2    | 4    | 4   | 2      | 4   | 1X8ch | 1         | N    | 3   | 2   | 3     | 2   | N   | 1(22)  | N            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |
|          | KF32F350KQT                 | LQFP64  | 53   | 256     | 128     | 120M   | 2    | 9    | 4   | 2      | 11  | 2X8ch | 2         | N    | 3   | 3   | 8     | 2   | 1   | 3(30)  | 2            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |
| KF32F350 | KF32F350MQT                 | LQFP64  | 53   | 512     | 128     | 120M   | 2    | 9    | 4   | 2      | 11  | 2X8ch | 2         | N    | 3   | 3   | 8     | 2   | 1   | 3(30)  | 2            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |
|          | KF32F350MQTA <sup>[1]</sup> | LQFP64  | 53   | 512     | 128     | 120M   | 2    | 9    | 4   | 2      | 11  | 2X8ch | 2         | N    | 3   | 3   | 8     | 2   | 1   | 3(30)  | 2            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |
|          | KF32F350KQV                 | LQFP100 | 85   | 256     | 128     | 120M   | 2    | 9    | 4   | 2      | 11  | 2X8ch | 2         | Y    | 4   | 4   | 8     | 3   | 1   | 3(42)  | 2            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |
|          | KF32F350MQV                 | LQFP100 | 85   | 512     | 128     | 120M   | 2    | 9    | 4   | 2      | 11  | 2X8ch | 2         | Y    | 4   | 4   | 8     | 3   | 1   | 3(42)  | 2            | 2  | Y   | Y    | Y   | 1.8~3.6V |   |   |     |  |

<sup>[1]</sup> KF32F350MQTA 为 64PIN 10\*10 封装



# 1.2 **KF32F350** 资源表

表 1-1 KF32F350 资源表

| 型号          |                          |                  | KF3             | 2F350                 |                  |                               |  |  |  |  |  |
|-------------|--------------------------|------------------|-----------------|-----------------------|------------------|-------------------------------|--|--|--|--|--|
| 订货号         | KF32F350KQS              | KF32F350MQS      | KF32F350KQT     | KF32F350MQT           | KF32F350KQV      | KF32F350MQV                   |  |  |  |  |  |
| 封装          | LQF                      |                  | 11 321 3301Q1   | LQFP64                | KI 321 330KQ V   | LQFP100                       |  |  |  |  |  |
| GPIO        | 39                       |                  |                 | 84                    |                  |                               |  |  |  |  |  |
| 0110        |                          |                  | 256 Kbyte,带 ECC | 256 Kbyte,带 ECC       | 512Kbyte,带 ECC 校 |                               |  |  |  |  |  |
| FLASH       | 验                        | 校验               | 校验              | 验                     | 校验               | 验                             |  |  |  |  |  |
| RAM         | 48Kbyte,带 ECC 校<br>验 32K |                  | 128             | BKbyte,带 ECC 校验       | 32K              |                               |  |  |  |  |  |
| 双端口 RAM     | 2 个 25                   | 6 byte           | 2               | 个 256 byte /1 个 512 b | pyte             | 3 个 256 byte /1 个 512<br>byte |  |  |  |  |  |
| ROM         |                          |                  | 16 H            | Kbyte                 |                  |                               |  |  |  |  |  |
|             | 2 个高级定时器支持               | 寺 1 个增强型 CCP     |                 | -                     | 持2个增强型 CCP       |                               |  |  |  |  |  |
| 16 位 Timer  | 4 个通用定时器支                | :<br>持 4 个通用 CCP |                 | 9个通用定时器               | 支持 9 个通用 CCP     |                               |  |  |  |  |  |
|             |                          |                  | 2 个基本           | 本定时器                  |                  |                               |  |  |  |  |  |
| 32 位 Timer  |                          |                  |                 | 2                     |                  |                               |  |  |  |  |  |
| QEI         | 1                        |                  |                 |                       | 2                |                               |  |  |  |  |  |
| 12 位 ADC    | 1*2                      | 22               |                 | 3*30                  |                  | 3*42                          |  |  |  |  |  |
| 12 位 DAC    | N                        | Ī                |                 |                       | 2                | •                             |  |  |  |  |  |
| CMP         |                          |                  |                 | 2                     |                  |                               |  |  |  |  |  |
| USART       | 3                        |                  |                 |                       |                  |                               |  |  |  |  |  |
| I2C         | 2                        |                  | 3               |                       |                  |                               |  |  |  |  |  |
| SPI         |                          |                  | 3               | 4                     |                  |                               |  |  |  |  |  |
| USB2.0      | N                        | 1                |                 |                       | 1                | •                             |  |  |  |  |  |
| CAN2.0B     |                          |                  | 2               |                       |                  | 3                             |  |  |  |  |  |
| RTC         |                          |                  | ,               | Y                     |                  |                               |  |  |  |  |  |
| DMA         |                          |                  | 2               | x7                    |                  |                               |  |  |  |  |  |
| CRC         |                          |                  |                 | 1                     |                  |                               |  |  |  |  |  |
| CFGL        |                          |                  | ,               |                       |                  |                               |  |  |  |  |  |
| EXIC        |                          |                  | N               |                       |                  | Y                             |  |  |  |  |  |
| 内部高频振<br>荡器 |                          |                  | 161             | МНz                   |                  |                               |  |  |  |  |  |
| 内部低频振 荡器    |                          |                  | 321             | KHz                   |                  |                               |  |  |  |  |  |
| 外部高频时       |                          |                  | 4~32            | 2MHz                  |                  |                               |  |  |  |  |  |
| 钟           |                          |                  |                 |                       |                  |                               |  |  |  |  |  |
| 外部低频时 钟     |                          |                  | 32.76           | 58KHz                 |                  |                               |  |  |  |  |  |
| 内部参考        |                          |                  | 1.5/2/          | 2.5/3V                |                  |                               |  |  |  |  |  |
| 器件 ID 号     |                          |                  | 含出厂             | 版本号等                  |                  |                               |  |  |  |  |  |
| 指令系统        |                          |                  | V               | 70                    |                  |                               |  |  |  |  |  |
| 工作电压        |                          |                  | 1.8V            | ~3.6V                 |                  |                               |  |  |  |  |  |
| 工作温度        |                          |                  | 工作温度范围          | : -40∼85°C            |                  |                               |  |  |  |  |  |



#### 2 系统概述

#### 2.1 系统概述

KF32F350 系列单片机是基于 KF32 内核架构开发的单片机。KF32 为 32 位三级流水线 结构的高性能处理器内核, KF32 内核具有以下特点:

- 三级流水线结构
- 基于 16 位/32 位混合指令的高效指令集
- 支持 13 个 32 位通用寄存器(R0~R12), 1 个链接寄存器(R13), 1 个堆栈指 针寄存器(R14), 1 个程序计数器(R15)
- 支持 32×32 单周期硬件乘法
- 支持 32/32 硬件除法
- 支持 8/16/32 位数据访存操作,支持 8/16/32/64 位数据处理
- 支持加减移位和逻辑运算
- 支持相对/绝对跳转,支持条件跳转
- 具有统一的存储空间,32位地址位宽,支持4GB存储空间
- 支持最多 58+16 个中断请求和 16 个中断优先级
- 支持多种休眠模式
- 支持 24 位系统节拍定时器
- 提供了可编程存储器访问权限控制
- 支持多种操作系统(OS)特性

## 2.2 指令集

KF32F350 系列单片机拥有基于 16 位/32 位混合指令的高效指令集,拥有多种操作模式。



#### 2.3 在线编程和调试

开发人员和用户可以使用未编程的单片机来制造电路板,然后对其在线编程,调试等。只要有电脑、USB下载线和编程器,即可在任何时候,任何地点,对电路板上的单片机程序进行更新。

可以通过下列方式实现对单片机的编程或调试:

- ISP 模式进行编程
- DPI 模式进行调试或编程

#### 2.3.1 **ISP** 模式

在 ROM 启动模式中可以直接通过串口实现对芯片的编程。该模式接口连接如下图所示。



图 2-1 ISP 模式编程接口

#### 2.3.2 **DPI** 模式

DPI(Debug/Program Interface)模式通过 KF32DP 编程器对芯片进行调试或编程。该模式接口连接如下图所示。



芯旺微电子 - 9/66 - ChipON



#### 图 2-2 DPI 模式编程接口

#### 2.4 系统框图



图 2-3 系统结构框图



# 2.5 KF32F350 外设资源对照表

表 2-1 KF32F350 外设资源对照表

| 350KQV KF32F350MQV<br>FP100 LQFP100<br>85 85<br>6KB 512KB |
|-----------------------------------------------------------|
| FP100 LQFP100<br>85 85                                    |
| 85 85                                                     |
|                                                           |
| 6KB 512KB                                                 |
|                                                           |
| 8KB 128KB                                                 |
| SKB 16KB                                                  |
| 20M 120M                                                  |
| 4/15 T14/15                                               |
| /18/19/22/23 T0/1/2/3/4/18/19/22/23                       |
| 0/21 T20/21                                               |
| 5/9/10 T5/6/9/10                                          |
| EI0/1 QEI0/1                                              |
| C0/1/2 ADC0/1/2                                           |
| C0/1 DAC0/1                                               |
| IP0/1 CMP0/1                                              |
| 1/2/3/4/5/6/7 USART0/1/2/3/4/5/6/7                        |
| )/1/2/3 I2C0/1/2/3                                        |
| )/1/2/3 SPI0/1/2/3                                        |
| N0/1/2 CAN0/1/2                                           |
| Y Y                                                       |
| Y Y                                                       |
| Y Y                                                       |
| IA0/1 DMA0/1                                              |
| Y Y                                                       |
| Y Y                                                       |
|                                                           |



## 2.6 芯片引脚图

#### 2. 6. 1 **LQFP48**



图 2-4 LQFP48



#### 2. 6. 2 **LQFP64**



图 2-5 LQFP64



#### 2. 6. 3 **LQFP100**



图 2-6 LQFP100



# 2.7 电源引脚说明

表 2-2 电源引脚连接说明

|             | 表 2-2 电源引脚连接说明                                                                                                                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 引脚名称        | 功能说明                                                                                                                                             |
| VDD/VSS     | 供电电源/地引脚,所有 VDD、VSS 须在外围分别连接,需要接 4.7uF 电容和稳压二极管,靠近 VDD/VSS;每组电源地之间,还需要接一个 100nF 的电容,方式参考下图。  N×VDD N×100nF + 1×4.7uF n×VSS                       |
| VDDA/VSSA   | 模拟电源/地引脚。VDDA 须和 VDD 外围连接, VSSA 须和 VSS 外围连接, 需要接 1uF+100nF 电容,靠近 VDDA/VSSA。<br>方式参考下图。                                                           |
| VREF+/VREF- | AD 参考电源/地脚,使用 VREF-引脚功能时需要接地,需要接 1uF+100nF电容,靠近 VREF+/-;方式参考下图。注意: 1.使用内部参考电压模块时,VREF+/VREF-将被占用;因此,当使用外部参考电压时,请勿使能内部参考电压模块。 2.部分封装该引脚位于通用 IO 口。 |
| VREG        | 1.2V 外接电容脚,必须外接 2.2uF 电容。  VREG                                                                                                                  |
| VBAT        | 电池脚,使用时建议接电容 1uF。                                                                                                                                |



#### 3 振荡器(OSC)

#### 3.1 概述

单片机提供 6 种基础时钟振荡器选择,分别为内部高频(INTHF)、内部低频(INTLF)、外部高频(EXTHF)、外部低频(EXTLF)、内部的 PLL 和低功耗 4M 时钟 LP4M。内部的 PLL 可以将内部高频(INTHF)和外部高频(EXTHF)的输出时钟倍频,提供更高频率的工作时钟选择,作为系统和外设工作需要的基础时钟。通过寄存器配置,可以从 6 种振荡器中得到 4 种系统和外设运行时需要的时钟源:系统主时钟(SCLK)、低频外设时钟(LFCLK)、高频外设时钟(HFCLK)和 48MHz时钟(CK48M)满足不同的需要。此外,内部低频振荡器还可以直接用于看门狗定时器、时钟故障检测或是其他低功耗外设的时钟。

系统复位后,INTHF 振荡器被选为系统时钟,当系统时钟需要切换时,只有当目标时钟源准备就绪(时钟源稳定,延迟标志位置1),才会发生时钟源的切换。

振荡器模块具有以下特征:

- 提供6种振荡源选择
  - ▶ 内部高频振荡器 INTHF (16MHz)
  - ▶ 内部低频振荡器 INTLF (32KHz)
  - ▶ 外接高频振荡器 EXTHF (4~32MHz)
  - ▶ 外部低频振荡器 EXTLF (32.768KHz 的晶振)
  - ▶ 内部 PLL(最高 400MHz)
  - ▶ 内部低功耗振荡器 LP4M(4MHz)
- 可产生4种时钟源
  - 系统主时钟 SCLK 由内部高频(INTHF)、内部低频(INTLF)、外部高频(EXTHF)、外部低频(EXTLF)、PLL 倍频或内部 4M 振荡器(LP4M)产生。
  - ➤ 高频外设时钟 HFCLK 由内部高频(INTHF)、外部高频(EXTHF)、PLL 倍频或内部 4M 振荡器 (LP4M)产生。
  - ➤ 低频外设时钟 LFCLK 由内部低频(INTLF)或外部低频(EXTLF)产生。
  - ➤ USB 时钟 CK48M 由内部高频(INTHF)、外部高频(EXTHF)或 PLL 倍频产生,实际 USB 需 要使用 48MHz 时钟,只能由 PLL 产生。
- 外部时钟启动/切换保障
- 带时钟同步功能
- 带时钟故障检测功能



## 3.2 振荡器结构框图



图 3-1 振荡器结构框图

- 注 1: 内部低频可直接用于时钟故障检测、看门狗、上电复位延迟定时器(PWRT)以及低功耗外设。
- 注 2: 当任意时钟源选择 EXTHF 作为时钟源或软件使能时 EXTHF\_EN 使能。
- 注 3: 当任意时钟源选择 EXTLF 作为时钟源或软件使能时 EXTLF\_EN 使能。

芯旺微电子 - 17/66 Chip**○N** 





## 4 存储器 (memory)

#### 4.1 概述

芯片为统一线性编址。芯片采用小端存储格式,低字节为最低有效位,高字节为最高有效位。

#### 4.2 存储器空间映射



图 4-1 存储空间映射

注意,上图中的外设为 KF32F 系列单片机的所有外设汇总,具体订货号所带资源,请参见芯片资源章节和外设资源对照表。最左边的系统的 FLASH/RAM/ROM 地址为各型号的预留空间。

芯旺微电子 - 18/66 Chip**○N** 



#### 表 4-1 存储器预留空间分配示意

| 地址                        | 模块                   |
|---------------------------|----------------------|
| 0x0000 0000 - 0x0007 FFFF | FLASH 空间,带 ECC 校验    |
| 0x1000 0000 - 0x1000 7FFF | 单端口 SRAM 空间,带 ECC 校验 |
| 0x1000 8000 - 0x1001 FFFF | 单端口 SRAM 空间          |
| 0x1FFE F800 - 0x1FFE FAFF | 双端口 SRAM 空间,带 ECC 校验 |
| 0x1FFF 0000 - 0x1FFF 3FFF | ROM 空间               |
| 0x4000 0000 - 0x4007 FFFF | 外设                   |
| 0x4020 0000 - 0x4020 0FFF | 内核外设                 |
| 0x5000 0000 - 0x501F FFFF | GPIO                 |

#### 表 4-2 不同型号对应 Flash 存储器空间

| FLASH 大小 | 有效地址                      | 对应产品订货号             |
|----------|---------------------------|---------------------|
| 512KB    | 0x0000 0000 - 0x0007 FFFF | KF32F350MQT/MQV/MQS |
| 256KB    | 0x0000 0000 - 0x0003 FFFF | KF32F350KQT/KQV/KQS |

芯旺微电子 - 19/66 **ChipON** 



## 5 I/O 端口介绍

## 5.1 概述

单片机有不同的管脚封装,分别是 LQFP48、LQFP64、LQFP100。 单片机最多支持 100 个引脚,包括 PA 口、PB 口、PC 口、PD 口、PE 口、PF 口、PG 口、PH 口和电源等特殊引脚。每个 Px(x=A,B,C,D,E,F,G,H)最多有 16 个引脚。 端口特性如下:

- 数字输入
- 数字输出
  - 推挽式输出
  - 开漏输出
  - 浮空输出
- 模拟输入设置
- 独立端口上/下拉控制

注: 浮空输出为部分重映射功能。



# 5.2 引脚重映射说明(数字功能)

引脚的数字重映射功能说明:

- 对于不同封装所开放的模块资源不同,具体参考"表 2-1 KF32F350 外设资源对照表";
- 各模块的功能引脚开放情况,参考本章节的"引脚重映射表",以该表实际封装出的映射为准。

表 5-1 引脚重映射表\_数字功能

| K      | KF32F350 |       | GPIO | AF0           | AF1        | AF2       | AF3            | AF4                   | AF5        | AF6            | AF7              | AF8         | AF9          | AF10             | AF11       | AF12      | AF13       | AF14      |
|--------|----------|-------|------|---------------|------------|-----------|----------------|-----------------------|------------|----------------|------------------|-------------|--------------|------------------|------------|-----------|------------|-----------|
| 100pin | 64pin    | 48pin | GPIO | SYSTEM        | T0/1/2/3/4 | T5/6/9/10 | T20/21/23/QEI1 | T14/T15/18/19/22/QEI0 | USART0/1/2 | USART3/4/5/6/7 | SPI0/1/2/3       | I2C0/1/2/3  | CAN0/1/2/FLT | 额外提供             | 额外提供       | CFGL      | 额外提供       | 额外提供      |
| 25     | 16       |       | PH13 |               | ССР2СН3    | ЕССР5СН3Н | CCP20CH4       |                       | USART2_TX0 |                |                  | I2C1_SDA    |              | CCP21CH3         |            | CFGL1_IN0 |            |           |
| 26     | 17       |       | PH15 |               | CCP2CH4    | ECCP5CH1L | CCP20CH2       | T14CK                 | USART2_RX  |                |                  | I2C0_SCL    |              | CCP21CH4         |            | CFGL2_IN0 |            |           |
| 27     | 18       | 13    | VSS  |               |            |           |                |                       |            |                |                  |             |              |                  |            |           |            |           |
| 28     | 19       | 14    | VDD  |               |            |           |                |                       |            |                |                  |             |              |                  |            |           |            |           |
| 29     | 20       | 15    | PE15 |               | T1CK       |           |                | QEA0                  | USART2_CLK |                | SPI0_SS/I2S0_WS  |             |              | SPI3_SS/I2S3_WS  |            | CFGL1_IN2 |            |           |
| 30     | 21       | 16    | PA0  | CLKOUT/ROM_RX | CCP0CH1    | ECCP5CH1L | T20CK          | T14CK                 | USART0_RX  |                | I2S0_MCK         | I2C0_SDA    |              | SPI0_SCK/I2S0_CK |            | CFGL1_IN1 | EXIC_DATA0 | ECCP9CH1L |
| 31     | 22       | 17    | PA1  | ROM_TX        | CCP0CH2    | ECCP5CH1H | CCP20CH1       | T15CK                 | USART0_TX0 |                | SPI0_SDI         | I2C0_SCL    |              | ECCP5BKIN        | ССР3СН1    | CFGL1_IN0 | EXIC_DATA1 | ECCP9BKIN |
| 32     | 23       | 18    | PA2  |               | ССР0СН3    | ECCP5CH2L | CCP20CH2       | CCP19CH1              | USART0_TX1 | USART3_RX      | SPI0_SDO/I2S0_SD | I2C0_SMBALT | CAN0RX       | ECCP5CH1L        | CCP3CH2    | CFGL2_IN0 | EXIC_DATA2 | ECCP9CH1L |
| 33     | 24       | 19    | PA3  |               | ССР0СН4    | ECCP5CH2H | CCP20CH3       | QEA0                  | USART0_CLK | USART3_TX0     | SPI0_SS/I2S0_WS  |             | CAN0TX       |                  |            | CFGL1_OUT | EXIC_DATA3 |           |
| 34     | 25       | 20    | PA5  |               | CCP3CH1    | ЕССР5СН3Н | CCP23CH1       | INDEX0                | USART0_RTS | USART5_RX      | SPI1_SDI         | I2C2_SCL    | CAN1TX       |                  |            |           | EXIC_DATA5 |           |
| 35     | 26       | 21    | PA6  |               | CCP3CH2    | ECCP5CH4L | CCP23CH2       | QEI0DIR               | USART0_CTS | USART5_TX0     | SPI1_SDO/I2S1_SD | I2C2_SMBALT |              | ECCP5CH2L        | ССР3СН3    |           | EXIC_DATA6 | ECCP9CH2L |
| 36     | 27       | 22    | PA7  |               | ССР4СН4    | ECCP5CH3L | CCP23CH1       | CCP19CH1              |            | USART5_RX      |                  |             |              |                  | CCP3CH4    |           |            | ECCP9CH3L |
| 37     | 28       | 23    | PA8  |               | ССР3СН3    | ECCP5CH4H | QEA1           | CCP19CH2              | USART2_RX  |                | SPI1_SS/I2S1_WS  | I2C0_SDA    |              |                  | C0OUT      |           | EXIC_DATA0 |           |
| 38     |          |       | PA9  |               | ССР3СН4    | T5CK      | QEB1           | ССР19СН3              | USART2_TX0 |                | SPI1_SCK/I2S1_CK | I2C0_SCL    | FLTI1        |                  | C1OUT      |           | EXIC_DATA1 |           |
| 39     |          |       | PA10 |               | T3CK       | ECCP5BKIN | INDEX1         | CCP19CH4              | USART2_CLK |                | I2S1_MCK         | I2C0_SMBALT | FLTI0        | ECCP5CH1L        |            |           | EXIC_DATA2 |           |
| 40     |          |       | PA11 |               | CCP4CH1    |           | QEI1DIR        | ССР19СН1              | USART2_TX1 | USART3_RX      | SPI3_SDO/I2S3_SD | I2C3_SMBALT | CAN2RX       | ECCP5CH1H        |            | CFGL1_IN2 | EXIC_DATA3 |           |
| 41     |          |       | PA12 |               | CCP4CH2    | ECCP5CH2L |                |                       |            | USART3_TX0     | SPI3_SDI         | I2C3_SDA    | CAN2TX       |                  |            | CFGL2_IN2 | EXIC_DATA4 |           |
| 42     |          |       | PA13 |               | ССР4СН3    | ECCP5CH2H |                | CCP22CH4              | USART2_RTS | USART3_TX1     | SPI3_SCK/I2S3_CK | I2C3_SCL    |              |                  |            | CFGL1_IN1 | EXIC_DATA5 |           |
| 43     |          |       | PA14 | RTC_OUT       | ССР4СН4    | T6CK      |                |                       | USART2_CTS | USART3_CLK     | SPI1_SCK/I2S1_CK | I2C1_SCL    |              | ECCP5CH3L        |            | CFGL2_IN1 | EXIC_DATA6 |           |
| 44     |          |       | PE6  |               | CCP4CH1    | ЕССР5СН3Н |                | CCP22CH4              |            |                | SPI1_SDI         | I2C1_SDA    |              |                  |            |           | EXIC_DATA7 |           |
| 45     |          |       | PA15 |               | T0CK       | ЕССР5СН4Н | T20CK          |                       | USART1_RX  |                | SPI2_SCK/I2S2_CK | I2C2_SCL    |              |                  |            |           | EXIC_DATA8 |           |
| 46     |          |       | PE0  |               | T4CK       | ECCP5BKIN | CCP20CH1       |                       | USART1_TX0 | USART6_RTS     | SPI2_SDI         | I2C2_SDA    |              |                  | USART1_RX  |           | EXIC_DATA9 |           |
| 47     | 29       |       | PE1  |               | CCP0CH1    | ECCP9CH3L | CCP20CH2       |                       | USART1_CLK | USART6_CTS     | SPI2_SDO/I2S2_SD | I2C1_SCL    |              | SPI1_SCK/I2S1_CK | USART1_TX0 |           |            |           |





| 1      | KF32F350 |       | GPIO | AF0            | AF1        | AF2       | AF3            | AF4                   | AF5        | AF6            | AF7              | AF8         | AF9          | AF10             | AF11        | AF12      | AF13        | AF14 |
|--------|----------|-------|------|----------------|------------|-----------|----------------|-----------------------|------------|----------------|------------------|-------------|--------------|------------------|-------------|-----------|-------------|------|
| 100pin | 64pin    | 48pin | GPIO | SYSTEM         | T0/1/2/3/4 | T5/6/9/10 | T20/21/23/QEI1 | T14/T15/18/19/22/QEI0 | USART0/1/2 | USART3/4/5/6/7 | SPI0/1/2/3       | I2C0/1/2/3  | CAN0/1/2/FLT | 额外提供             | 额外提供        | CFGL      | 额外提供        | 额外提供 |
| 48     | 30       | 24    | PE2  |                | ССР0СН2    | ЕССР9СН3Н | CCP20CH3       |                       | USART1_TX1 | USART6_RX      | I2S3_MCK         | I2C1_SDA    |              |                  | USART1_RX   |           |             |      |
| 49     | 31       |       | VREG |                |            |           |                |                       |            |                |                  |             |              |                  |             |           |             |      |
| 50     | 32       |       | VDD  |                |            |           |                |                       |            |                |                  |             |              |                  |             |           |             |      |
| 51     | 33       | 25    | PB0  |                | CCP1CH1    | ECCP5BKIN |                | CCP22CH4              | USART1_RX  |                | SPI1_SS/I2S1_WS  | I2C1_SMBALT | CAN2RX       |                  | USART1_CLK  |           | EXIC_DATA7  |      |
| 52     | 34       | 26    | PB1  | RTC_OUT        | CCP1CH2    | ECCP5CH1L |                | CCP22CH3              | USART1_TX0 |                | SPI1_SCK/I2S1_CK | I2C1_SCL    | CAN2TX       |                  | USART1_CTS  |           | EXIC_DATA8  |      |
| 53     | 35       | 27    | PB2  |                | CCP1CH3    | ECCP5CH2L | ECCP9CH2L      | CCP22CH2              | USART1_TX1 | USART3_RX      | SPI1_SDI         | I2C1_SDA    | CAN0RX       |                  | USART1_RTS  |           | EXIC_DATA9  |      |
| 54     | 36       | 28    | PB3  | RTC_OUT/ROM_EN | CCP1CH4    | ECCP5CH3L | ECCP9CH3L      | CCP22CH1              | USART1_CLK | USART3_TX0     | SPI1_SDO/I2S1_SD | I2C0_SMBALT | CAN0TX       |                  |             |           | EXIC_DATA10 |      |
| 55     |          |       | PB4  |                | T1CK       | ECCP9BKIN | ССР23СН3       | T14CK                 |            | USART6_RX      | I2S1_MCK         | I2C0_SCL    | CAN1RX       | SPI0_SDO/I2S0_SD | USART3_TX0  |           | EXIC_DATA15 |      |
| 56     |          |       | PB5  |                | T0CK       | T10CK     | CCP23CH4       | T15CK                 | USART1_RTS | USART6_TX0     | SPI0_SDI         | I2C0_SDA    | CANITX       |                  | USART3_RX   |           | EXIC_DATA12 |      |
| 57     |          |       | PF7  |                | ССР0СН4    |           |                |                       |            | USART6_CLK     | SPI0_SCK/I2S0_CK | I2C0_SCL    |              |                  | USART3_CLK  |           | EXIC_DATA0  |      |
| 58     |          |       | PB6  |                | CCP0CH1    |           | QEA1           |                       | USART0_RX  |                | SPI3_SCK/I2S3_CK |             |              |                  | USART3_CTS  |           | EXIC_DATA7  |      |
| 59     |          |       | PB7  |                | ССР0СН4    |           | QEB1           | CCP18CH1              | USART0_TX0 |                | I2S0_MCK         |             |              |                  | USART3_RTS  |           | EXIC_DATA8  |      |
| 60     |          |       | PB8  |                | ССР0СН3    |           | INDEX1         | CCP18CH2              | USART0_TX1 |                | SPI0_SS/I2S0_WS  |             |              |                  |             |           | EXIC_DATA9  |      |
| 61     |          |       | PB9  | CLKOUT         | CCP0CH2    | ECCP5BKIN | QEI1DIR        | CCP18CH3              | USART0_CLK |                | SPI0_SCK/I2S0_CK |             |              | SPI3_SDO/I2S3_SD | USART0_TX0  |           | EXIC_DATA10 |      |
| 62     |          |       | PB10 |                | CCP0CH1    |           |                | CCP18CH4              | USART0_RX  |                | SPI3_SDI         |             |              |                  |             |           | EXIC_DATA11 |      |
| 63     | 37       | 29    | PB11 |                | CCP3CH1    | ECCP5CH1H | ECCP9CH1H      | T14CK                 | USART0_RTS |                | SPI2_SCK/I2S2_CK | I2C3_SCL    |              | I2S1_MCK         | USART7_TX0  |           | EXIC_DATA12 |      |
| 64     | 38       | 30    | PB12 |                | CCP3CH2    | ECCP5CH2H | ЕССР9СН2Н      | T15CK                 | USART0_CTS | USART3_RTS     | SPI2_SDI         | I2C3_SDA    |              | I2C1_SCL         | USART7_RX   |           | I2S3_MCK    |      |
| 65     | 39       | 31    | PB13 |                | ССР3СН3    | ЕССР5СН3Н | ЕССР9СН3Н      |                       |            | USART3_CTS     | SPI2_SDO/I2S2_SD |             |              | I2C1_SDA         | USART7_TX0  |           | USART7_CLK  |      |
| 66     | 40       | 32    | PB14 |                | CCP3CH4    | ECCP5CH1L | CCP21CH1       | QEA0                  | USART2_TX0 | USART5_CTS     | SPI3_SDO/I2S3_SD |             | FLTI1        | ЕССР5СН4Н        | I2C2_SDA    |           | ЕССР9СН4Н   |      |
| 67     | 41       | 33    | PB15 |                | T4CK       | ECCP5CH1H | CCP21CH2       | QEB0                  | USART2_RX  | USART4_CLK     | SPI3_SDI         | I2C2_SDA    | FLTI0        | ECCP5CH1H        | I2C2_SCL    | CFGL1_IN3 |             |      |
| 68     | 42       | 34    | PF0  |                | CCP1CH1    | ECCP5CH2L | CCP21CH3       |                       | USART2_CLK | USART4_TX0     | SPI3_SCK/I2S3_CK | I2C2_SCL    |              | ECCP5CH2H        | I2C2_SMBALT | CFGL2_IN3 |             |      |
| 69     | 43       |       | PF1  |                | CCP1CH2    | ECCP5CH2H | CCP21CH4       |                       | USART2_TX1 | USART4_RTS     | SPI3_SS/I2S3_WS  |             |              | ЕССР5СН3Н        | USART4_RX   |           |             |      |
| 70     | 44       |       | PF2  |                | CCP1CH3    | ECCP5CH3L | T21CK          |                       |            | USART4_CTS     | I2S3_MCK         |             |              | ЕССР5СН4Н        |             |           |             |      |
| 71     | 45       |       | PF3  |                | CCP1CH4    | ЕССР5СН3Н | CCP20CH1       |                       | USART2_RTS | USART4_TX1     |                  |             |              | ECCP5BKIN        | USART4_RTS  |           |             |      |
| 72     | 46       |       | PF4  |                | ССР0СН4    | ECCP5CH4L | CCP20CH2       |                       | USART2_CTS | USART4_CLK     |                  |             |              |                  |             |           |             |      |
| 73     | 47       | 35    | VREG |                |            |           |                |                       |            |                |                  |             |              |                  |             |           |             |      |
| 74     |          |       | VSS  |                |            |           |                |                       |            |                |                  |             |              |                  |             |           |             |      |
| 75     | 48       | 36    | VDD  |                |            |           |                |                       |            |                |                  |             |              |                  |             |           |             |      |
| 76     | 49       |       | PG0  |                |            |           | T21CK          |                       | USART0_RX  |                |                  |             |              |                  |             |           |             |      |







| I      | KF32F350 |       | GPIO | AF0     | AF1        | AF2       | AF3            | AF4                   | AF5        | AF6            | AF7              | AF8         | AF9          | AF10             | AF11             | AF12      | AF13        | AF14 |
|--------|----------|-------|------|---------|------------|-----------|----------------|-----------------------|------------|----------------|------------------|-------------|--------------|------------------|------------------|-----------|-------------|------|
| 100pin | 64pin    | 48pin | GPIO | SYSTEM  | T0/1/2/3/4 | T5/6/9/10 | T20/21/23/QEI1 | T14/T15/18/19/22/QEI0 | USART0/1/2 | USART3/4/5/6/7 | SPI0/1/2/3       | I2C0/1/2/3  | CAN0/1/2/FLT | 额外提供             | 额外提供             | CFGL      | 额外提供        | 额外提供 |
| 77     | 50       |       | PG1  |         | CCP2CH1    | ECCP9CH1L | CCP21CH1       |                       | USART0_TX0 | USART5_RTS     | SPI2_SS/I2S2_WS  |             |              | T20CK            | SPI3_SS/I2S3_WS  |           |             |      |
| 78     | 51       |       | PG2  |         | CCP2CH2    | ECCP9CH1H | CCP21CH2       |                       | USART0_CLK | USART5_TX1     | SPI3_SCK/I2S3_CK |             |              |                  | USART0_TX0       |           |             |      |
| 79     | 52       | 37    | PG3  |         | ССР2СН3    | ECCP9CH2L | CCP21CH3       |                       | USART0_TX1 | USART5_RX      | SPI3_SDI         |             |              |                  | USART0_RX        |           |             |      |
| 80     | 53       | 38    | PG4  |         | CCP2CH4    | ЕССР9СН2Н | CCP21CH4       |                       |            | USART5_CLK     | SPI3_SDO/I2S3_SD |             |              |                  | USART6_TX0       |           |             |      |
| 81     |          |       | PG5  |         | T2CK       | T9CK      |                |                       | USART0_RTS | USART5_TX0     |                  |             |              |                  |                  |           | EXIC_DATA14 |      |
| 82     |          |       | PC0  |         | CCP2CH1    | ECCP5CH3L | T21CK          | T14CK                 | USART2_RX  |                | I2S0_MCK         |             |              |                  |                  |           | EXIC_DATA13 |      |
| 83     |          |       | PC1  |         | CCP2CH2    | ЕССР5СН3Н | T23CK          | T15CK                 | USART2_TX0 | USART5_RX      | SPI0_SDI         | I2C2_SDA    |              | T3CK             | USART6_RX        |           | EXIC_DATA14 |      |
| 84     |          |       | PC2  |         | ССР2СН3    | ECCP5CH4L |                |                       | USART2_TX1 | USART4_TX0     | SPI0_SDO/I2S0_SD | I2C2_SCL    |              |                  | USART2_CTS       |           | EXIC_DATA11 |      |
| 85     |          |       | PC3  |         | CCP2CH4    | ЕССР5СН4Н | CCP21CH1       | QEA0                  | USART2_CLK | USART4_RX      | SPI0_SS/I2S0_WS  | I2C2_SMBALT | CAN1RX       | SPI2_SDO/I2S2_SD | USART2_RTS       |           | EXIC_RDX    |      |
| 86     |          |       | PC4  |         | T2CK       | T5CK      | CCP21CH2       | QEB0                  |            |                | SPI0_SCK/I2S0_CK | I2C1_SDA    | CAN1TX       | SPI2_SDI         | USART2_TX0       |           | EXIC_WRX    |      |
| 87     | 54       | 39    | PC5  | DPI_DAT | CCP4CH1    | ECCP5CH1L | CCP21CH3       | INDEX0                | USART2_RTS | USART5_RX      | SPI2_SS/I2S2_WS  | I2C1_SCL    | CAN0RX       | T3CK             | USART2_RX        |           | EXIC_RDX    |      |
| 88     | 55       | 40    | PC6  | DPI_CLK | CCP4CH2    | ECCP5CH1H | CCP21CH4       | QEI0DIR               | USART2_CTS | USART5_TX0     | SPI2_SCK/I2S2_CK | I2C1_SMBALT | CAN0TX       | SPI3_SCK/I2S3_CK | USART2_CLK       |           | EXIC_CS     |      |
| 89     |          | 41    | PC7  |         | ССР4СН3    | ECCP5CH2L | CCP20CH2       |                       | USART1_RX  |                | SPI2_SCK/I2S2_CK |             |              | I2S2_MCK         | SPI3_SCK/I2S3_CK |           | EXIC_DATA16 |      |
| 90     | 56       | 42    | PC8  |         | ССР4СН4    | ECCP5CH2H |                |                       | USART1_TX0 |                | SPI2_SDI         |             |              | ССР3СН1          | SPI3_SDI         |           | EXIC_DATA17 |      |
| 91     | 57       | 43    | PG6  |         | ССР4СН3    |           |                |                       |            |                | SPI2_SDO/I2S2_SD | I2C0_SMBALT |              | CCP3CH2          | SPI3_SDO/I2S3_SD |           |             |      |
| 92     | 58       | 44    | PG7  |         | CCP1CH2    |           |                | CCP18CH1              |            | USART4_TX0     |                  | I2C0_SCL    |              |                  |                  |           |             | 1    |
| 93     | 59       | 45    | PC9  |         | CCP1CH1    | ECCP9CH3L | QEB1           | CCP18CH2              | USART1_TX1 | USART4_RX      | SPI2_SCK/I2S2_CK | I2C2_SCL    |              | I2C0_SDA         |                  |           | EXIC_DATA13 |      |
| 94     | 60       | 46    | PC10 |         | CCP1CH2    | ЕССР9СН3Н | QEI1DIR        |                       | USART1_CLK |                | SPI2_SDI         | I2C2_SDA    | FLTI1        |                  | USART1_RX        |           | EXIC_DATA14 |      |
| 95     | 61       |       | PC11 |         | CCP1CH3    | ECCP9CH4L | INDEX1         | ССР18СН3              | USART1_TX0 |                | SPI2_SDO/I2S2_SD | I2C0_SCL    |              | CCP4CH1          |                  |           | EXIC_DATA15 |      |
| 96     | 62       |       | PC12 |         | CCP1CH4    | ЕССР9СН4Н | T21CK          | CCP18CH4              | USART1_RTS |                | SPI1_SS/I2S1_WS  | I2C0_SDA    |              | CCP2CH1          |                  | CFGL1_OUT | EXIC_DATA16 |      |
| 97     |          |       | PC13 |         | T1CK       | T10CK     | CCP21CH1       | T18CK                 | USART1_CTS |                | I2S1_MCK         |             | FLTI0        |                  |                  | CFGL2_OUT |             |      |
| 98     |          |       | PC14 |         | CCP3CH1    | ECCP9BKIN |                |                       |            | USART5_CTS     |                  |             |              |                  |                  |           |             |      |
| 99     | 63       | 47    | VSS  |         |            |           |                |                       |            |                |                  |             |              |                  |                  |           |             |      |
| 100    | 64       | 48    | VDD  |         |            |           |                |                       |            |                |                  |             |              |                  |                  |           |             |      |
| 1      |          |       | PD1  |         |            |           |                |                       |            |                | SPI1_SCK/I2S1_CK | I2C0_SCL    |              |                  |                  |           | EXIC_D/C    |      |
| 2      |          |       | PD2  | RTC_OUT | T4CK       | ECCP5BKIN | CCP21CH2       | T22CK                 | USART1_CTS |                |                  | I2C3_SDA    |              |                  |                  |           | EXIC_DATA17 |      |
| 3      |          |       | PD3  |         | T1CK       | T6CK      | CCP21CH3       | T19CK                 |            | USART4_TX0     |                  | I2C3_SCL    |              |                  |                  |           | EXIC_DATA16 |      |
| 4      |          |       | PD4  |         | T2CK       | T9CK      |                | T18CK                 |            | USART4_RX      | SPI3_SS/I2S3_WS  | I2C3_SMBALT |              | CCP2CH1          |                  |           | EXIC_D/C    |      |
| 5      |          |       | PD5  |         |            |           |                |                       |            | USART7_RTS     |                  |             |              | CCP2CH2          |                  |           | EXIC_D/C    |      |





| 1      | KF32F350 |       | GPIO     | AF0    | AF1        | AF2       | AF3            | AF4                   | AF5        | AF6            | AF7              | AF8        | AF9          | AF10             | AF11       | AF12      | AF13     | AF14 |
|--------|----------|-------|----------|--------|------------|-----------|----------------|-----------------------|------------|----------------|------------------|------------|--------------|------------------|------------|-----------|----------|------|
| 100pin | 64pin    | 48pin | GPIO     | SYSTEM | T0/1/2/3/4 | T5/6/9/10 | T20/21/23/QEI1 | T14/T15/18/19/22/QEI0 | USART0/1/2 | USART3/4/5/6/7 | SPI0/1/2/3       | I2C0/1/2/3 | CAN0/1/2/FLT | 额外提供             | 额外提供       | CFGL      | 额外提供     | 额外提供 |
| 6      | 1        | 1     | VBAT     |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 7      | 2        |       | PD6      |        | CCP3CH2    |           |                |                       |            | USART7_CTS     |                  |            |              |                  |            |           |          |      |
| 8      | 3        | 2     | PH8      |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 9      | 4        | 3     | PH9      |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 10     |          |       | VSS      |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 11     |          |       | VDD      |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 12     | 5        | 4     | PD9      |        | ССР2СН3    | ECCP9CH1L |                |                       | USART0_TX1 | USART7_CLK     | SPI0_SCK/I2S0_CK | I2C3_SCL   |              |                  |            |           | EXIC_WRX |      |
| 13     | 6        | 5     | PD10     |        | ССР2СН4    | ECCP9CH1H |                |                       | USART0_CLK | USART7_TX1     |                  |            |              |                  |            |           | EXIC_CS  |      |
| 14     | 7        | 6     | PH7/nRST |        |            |           |                |                       |            |                |                  |            |              |                  |            | CFGL1_IN3 |          |      |
| 15     | 8        | 7     | PH5      |        | T0CK       |           |                | T22CK                 |            |                |                  |            |              |                  |            |           |          |      |
| 16     | 9        | 8     | PH6      |        |            |           | T23CK          | T19CK                 |            |                |                  |            |              |                  |            |           |          |      |
| 17     | 10       | 9     | PD13     |        | ССР1СН3    | ECCP9BKIN | CCP20CH3       |                       | USART0_CTS |                | SPI3_SS/I2S3_WS  |            | CAN1RX       | SPI1_SDI         |            |           |          |      |
| 18     | 11       | 10    | PD14     |        | CCP1CH4    | ECCP5CH4L | CCP20CH4       | CCP18CH3              |            |                | SPI3_SCK/I2S3_CK |            | CAN1TX       | SPI1_SDO/I2S1_SD |            |           |          |      |
| 19     | 12       | 11    | VSS/VSSA |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 20     |          |       | VREF-    |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 21     |          |       | VREF+    |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 22     | 13       | 12    | VDD/VDDA |        |            |           |                |                       |            |                |                  |            |              |                  |            |           |          |      |
| 23     | 14       |       | PH14     |        | T2CK       | T5CK      | T20CK          | T9CK                  | USART2_CTS |                |                  |            |              | CCP21CH1         | USART0_TX0 |           |          |      |
| 24     | 15       |       | PH12     |        | CCP2CH2    | ECCP5CH3L | CCP20CH3       | CCP18CH4              | USART2_RTS |                |                  | I2C1_SCL   |              | CCP21CH2         | USART0_RX  |           |          |      |



# 5.3 引脚重映射说明(系统以及模拟功能)

表 5-2 系统以及模拟引脚说明

|         | 表 3-2 系统以及铁板引脚 |        |      |      |     |               |     |                    |           |             |
|---------|----------------|--------|------|------|-----|---------------|-----|--------------------|-----------|-------------|
| LQFP100 | LQFP64         | LQFP48 | GPIO | 电源   | 振荡器 | SYSTEM        | USB | ADC <sup>[1]</sup> | DAC       | СМР         |
| 25      | 16             |        | PH13 |      |     |               |     | ADC_CH34           |           |             |
| 26      | 17             |        | PH15 |      |     |               |     | ADC_CH35           |           |             |
| 27      | 18             | 13     | VSS  | VSS  |     |               |     |                    |           |             |
| 28      | 19             | 14     | VDD  | VDD  |     |               |     |                    |           |             |
| 29      | 20             | 15     | PE15 |      |     |               |     | ADC_CH36           | DAC0_OUT0 |             |
| 30      | 21             | 16     | PA0  |      |     |               |     | ADC_CH37           | DAC1_OUT  | C0IN+/C1IN+ |
| 31      | 22             | 17     | PA1  |      |     | RTC_TS/ROM_TX |     | ADC_CH38           |           | C0IN-/C1IN- |
| 32      | 23             | 18     | PA2  |      |     |               |     | ADC_CH39           |           |             |
| 33      | 24             | 19     | PA3  |      |     |               |     | ADC_CH40           |           |             |
| 34      | 25             | 20     | PA5  |      |     |               | D-  | ADC_CH41           | DAC1_REF  |             |
| 35      | 26             | 21     | PA6  |      |     |               | D+  | ADC_CH42           | DAC0_REF  |             |
| 36      | 27             | 22     | PA7  |      |     |               |     | ADC_CH43           |           |             |
| 37      | 28             | 23     | PA8  |      |     |               |     |                    |           |             |
| 38      |                |        | PA9  |      |     |               |     |                    |           | C0IN+/C1IN+ |
| 39      |                |        | PA10 |      |     |               |     |                    |           | C0IN-/C1IN- |
| 40      |                |        | PA11 |      |     |               |     |                    |           |             |
| 41      |                |        | PA12 |      |     |               |     |                    |           |             |
| 42      |                |        | PA13 |      |     |               |     |                    |           |             |
| 43      |                |        | PA14 |      |     |               |     |                    |           |             |
| 44      |                |        | PE6  |      |     |               |     |                    |           |             |
| 45      |                |        | PA15 |      |     |               |     |                    |           |             |
| 46      |                |        | PE0  |      |     |               |     |                    |           |             |
| 47      | 29             |        | PE1  |      |     |               |     |                    |           |             |
| 48      | 30             | 24     | PE2  |      |     |               |     |                    |           |             |
| 49      | 31             |        | VREG | VREG |     |               |     |                    |           |             |
| 50      | 32             |        | VDD  | VDD  |     |               |     |                    |           |             |
| 51      | 33             | 25     | PB0  |      |     |               |     |                    |           |             |
| 52      | 34             | 26     | PB1  |      |     |               |     |                    |           |             |



|         | KF32F350 |        |      |      |     |        |     |                    |     |             |
|---------|----------|--------|------|------|-----|--------|-----|--------------------|-----|-------------|
| LQFP100 | LQFP64   | LQFP48 | GPIO | 电源   | 振荡器 | SYSTEM | USB | ADC <sup>[1]</sup> | DAC | CMP         |
| 53      | 35       | 27     | PB2  |      |     |        |     |                    |     | C0IN+/C1IN+ |
| 54      | 36       | 28     | PB3  |      |     |        |     |                    |     | C0IN-/C1IN- |
| 55      |          |        | PB4  |      |     |        |     |                    |     |             |
| 56      |          |        | PB5  |      |     |        |     |                    |     |             |
| 57      |          |        | PF7  |      |     |        |     |                    |     |             |
| 58      |          |        | PB6  |      |     |        |     |                    |     |             |
| 59      |          |        | PB7  |      |     |        |     |                    |     |             |
| 60      |          |        | PB8  |      |     |        |     |                    |     |             |
| 61      |          |        | PB9  |      |     |        |     |                    |     | C0IN+       |
| 62      |          |        | PB10 |      |     |        |     |                    |     | C0IN-       |
| 63      | 37       | 29     | PB11 |      |     |        |     |                    |     | C1IN+       |
| 64      | 38       | 30     | PB12 |      |     |        |     |                    |     | C1IN-       |
| 65      | 39       | 31     | PB13 |      |     |        |     |                    |     |             |
| 66      | 40       | 32     | PB14 |      |     |        |     |                    |     |             |
| 67      | 41       | 33     | PB15 |      |     |        |     |                    |     |             |
| 68      | 42       | 34     | PF0  |      |     |        |     |                    |     |             |
| 69      | 43       |        | PF1  |      |     |        |     |                    |     |             |
| 70      | 44       |        | PF2  |      |     |        |     |                    |     |             |
| 71      | 45       |        | PF3  |      |     |        |     |                    |     |             |
| 72      | 46       |        | PF4  |      |     |        |     |                    |     |             |
| 73      | 47       | 35     | VREG | VREG |     |        |     |                    |     |             |
| 74      |          |        | VSS  | VSS  |     |        |     |                    |     |             |
| 75      | 48       | 36     | VDD  | VDD  |     |        |     |                    |     |             |
| 76      | 49       |        | PG0  |      |     |        |     | ADC_CH18           |     |             |
| 77      | 50       |        | PG1  |      |     |        |     | ADC_CH19           |     |             |
| 78      | 51       |        | PG2  |      |     |        |     | ADC_CH20           |     |             |
| 79      | 52       | 37     | PG3  |      |     |        |     | ADC_CH21           |     |             |
| 80      | 53       | 38     | PG4  |      |     |        |     | ADC_CH22           |     |             |
| 81      |          |        | PG5  |      |     |        |     | ADC_CH23           |     |             |
| 82      |          |        | PC0  |      |     |        |     | ADC_CH0            |     |             |
| 83      |          | _      | PC1  |      |     | TAMP2  |     | ADC_CH1            |     |             |



|         |        |        |          |      | KF32      | 2F350         |     |                    |     |       |
|---------|--------|--------|----------|------|-----------|---------------|-----|--------------------|-----|-------|
| LQFP100 | LQFP64 | LQFP48 | GPIO     | 电源   | 振荡器       | SYSTEM        | USB | ADC <sup>[1]</sup> | DAC | CMP   |
| 84      |        |        | PC2      |      |           |               |     | ADC_CH2            |     |       |
| 85      |        |        | PC3      |      |           |               |     | ADC_CH3            |     |       |
| 86      |        |        | PC4      |      |           |               |     | ADC_CH4            |     |       |
| 87      | 54     | 39     | PC5      |      |           | DPI_DAT/TAMP1 |     | ADC_CH5            |     |       |
| 88      | 55     | 40     | PC6      |      |           | DPI_CLK/WKUP1 |     | ADC_CH6            |     |       |
| 89      |        | 41     | PC7      |      |           | WKUP4         |     | ADC_CH7            |     |       |
| 90      | 56     | 42     | PC8      |      |           | WKUP5         |     | ADC_CH8            |     |       |
| 91      | 57     | 43     | PG6      |      |           |               |     |                    |     |       |
| 92      | 58     | 44     | PG7      |      |           |               |     |                    |     | C1IN+ |
| 93      | 59     | 45     | PC9      |      |           |               |     | ADC_CH9            |     | C1IN- |
| 94      | 60     | 46     | PC10     |      |           |               |     | ADC_CH10           |     |       |
| 95      | 61     |        | PC11     |      |           |               |     | ADC_CH11           |     | C0IN+ |
| 96      | 62     |        | PC12     |      |           |               |     | ADC_CH12           |     | C0IN- |
| 97      |        |        | PC13     |      |           |               |     | ADC_CH13           |     |       |
| 98      |        |        | PC14     |      |           |               |     | ADC_CH14           |     |       |
| 99      | 63     | 47     | VSS      | VSS  |           |               |     |                    |     |       |
| 100     | 64     | 48     | VDD      | VDD  |           |               |     |                    |     |       |
| 1       |        |        | PD1      |      |           |               |     |                    |     |       |
| 2       |        |        | PD2      |      |           |               |     | ADC_CH15           |     |       |
| 3       |        |        | PD3      |      |           |               |     | ADC_CH28           |     |       |
| 4       |        |        | PD4      |      |           | WKUP3         |     | ADC_CH29           |     |       |
| 5       |        |        | PD5      |      |           |               |     |                    |     |       |
| 6       | 1      | 1      | VBAT     | VBAT |           |               |     |                    |     |       |
| 7       | 2      |        | PD6      |      |           | TAMP3         |     |                    |     |       |
| 8       | 3      | 2      | PH8      |      | OSC32_IN  |               |     |                    |     |       |
| 9       | 4      | 3      | PH9      |      | OSC32_OUT |               |     |                    |     |       |
| 10      |        |        | VSS      | VSS  |           |               |     |                    |     |       |
| 11      |        |        | VDD      | VDD  |           |               |     |                    |     |       |
| 12      | 5      | 4      | PD9      |      | OSC_IN    |               |     | ADC_CH26           |     |       |
| 13      | 6      | 5      | PD10     |      | OSC_OUT   |               |     | ADC_CH27           |     |       |
| 14      | 7      | 6      | PH7/nRST |      |           | NRST          |     |                    |     |       |



|         | KF32F350 |        |          |          |        |        |     |                    |     |     |
|---------|----------|--------|----------|----------|--------|--------|-----|--------------------|-----|-----|
| LQFP100 | LQFP64   | LQFP48 | GPIO     | 电源       | 振荡器    | SYSTEM | USB | ADC <sup>[1]</sup> | DAC | CMP |
| 15      | 8        | 7      | PH5      |          |        |        |     | ADC_CH44           |     |     |
| 16      | 9        | 8      | РН6      |          |        |        |     | ADC_CH45           |     |     |
| 17      | 10       | 9      | PD13     |          |        |        |     | ADC_CH30           |     |     |
| 18      | 11       | 10     | PD14     |          | OSC_IN |        |     | ADC_CH31           |     |     |
| 19      | 12       | 11     | VSS/VSSA | VSS/VSSA |        |        |     |                    |     |     |
| 20      |          |        | VREF-    | VREF-    |        |        |     |                    |     |     |
| 21      |          |        | VREF+    | VREF+    |        |        |     |                    |     |     |
| 22      | 13       | 12     | VDD/VDDA |          |        |        |     |                    |     |     |
| 23      | 14       |        | PH14     |          |        | WKUP2  |     | ADC_CH32           |     |     |
| 24      | 15       |        | PH12     |          |        |        |     | ADC_CH33           |     |     |

<sup>[1]</sup> ADC 参考引脚复用信息

100 脚芯片的 VREF+单独封装, VREF-单独封装;

64 脚芯片的 VREF+与 PC8 引脚复用, VREF-无复用, 在内部直接与地(VSSA)引脚相连;

48 脚芯片的 VREF+与 PC8 引脚复用, VREF-无复用, 在内部直接与地(VSSA)引脚相连。

芯旺微电子 - 28/66 Chip**○N** 



## 5.4 引脚重映射表-外部唤醒引脚、侵入检测和时间戳引脚映射

表 5-3 模拟功能引脚映射

| GPIO | 唤醒引脚  | 侵入检测引脚 | 时间戳    |
|------|-------|--------|--------|
| PA1  |       |        | RTC_TS |
| PC1  |       | TAMP2  |        |
| PC5  |       | TAMP1  |        |
| PC6  | WKUP1 |        |        |
| PC7  | WKUP4 |        |        |
| PC8  | WKUP5 |        |        |
| PD4  | WKUP3 |        |        |
| PD6  |       | TAMP3  |        |
| PH14 | WKUP2 |        |        |

## 5.5 CCP 引脚资源

因有些型号的小管脚封装可能会缺一些功能脚,现将所有 CCP 资源列在下表中:

表 5-4 CCPx 诵道

|         | LQFP100 | LQFP64 | LQFP48 |
|---------|---------|--------|--------|
| CCP0CH1 | Y       | Y      | Y      |
| CCP0CH2 | Y       | Y      | Y      |
| ССР0СН3 | Y       | Y      | Y      |
| CCP0CH4 | Y       | Y      | Y      |
| CCP1CH1 | Y       | Y      | Y      |
| CCP1CH2 | Y       | Y      | Y      |
| ССР1СН3 | Y       | Y      | Y      |
| CCP1CH4 | Y       | Y      | Y      |
| CCP2CH1 | Y       | Y      | N      |
| CCP2CH2 | Y       | Y      | N      |
| ССР2СН3 | Y       | Y      | N      |
| CCP2CH4 | Y       | Y      | N      |
| CCP3CH1 | Y       | Y      | Y      |
| CCP3CH2 | Y       | Y      | Y      |
| ССР3СН3 | Y       | Y      | Y      |
| ССР3СН4 | Y       | Y      | Y      |
| CCP4CH1 | Y       | Y      | Y      |
| CCP4CH2 | Y       | Y      | Y      |
| ССР4СН3 | Y       | Y      | Y      |
| CCP4CH4 | Y       | Y      | Y      |

芯旺微电子 - 29/66 ChipON



|          | LQFP100 | LQFP64 | LQFP48 |
|----------|---------|--------|--------|
| CCP18CH1 | Y       | Y      | N      |
| CCP18CH2 | Y       | Y      | N      |
| CCP18CH3 | Y       | Y      | N      |
| CCP18CH4 | Y       | Y      | N      |
| CCP19CH1 | Y       | Y      | N      |
| CCP19CH2 | Y       | Y      | N      |
| ССР19СН3 | Y       | N      | N      |
| CCP19CH4 | Y       | N      | N      |
| CCP20CH1 | Y       | Y      | Y      |
| CCP20CH2 | Y       | Y      | Y      |
| ССР20СН3 | Y       | Y      | Y      |
| CCP20CH4 | Y       | Y      | Y      |
| CCP21CH1 | Y       | Y      | Y      |
| CCP21CH2 | Y       | Y      | Y      |
| CCP21CH3 | Y       | Y      | Y      |
| CCP21CH4 | Y       | Y      | Y      |
| CCP22CH1 | Y       | Y      | N      |
| CCP22CH2 | Y       | Y      | N      |
| CCP22CH3 | Y       | Y      | N      |
| CCP22CH4 | Y       | Y      | N      |
| CCP23CH1 | Y       | Y      | N      |
| CCP23CH2 | Y       | Y      | N      |
| ССР23СН3 | Y       | N      | N      |
| CCP23CH4 | Y       | N      | N      |

芯旺微电子 - 30/66 **ChipON** 





## 6 资源介绍

#### 6. 1 **DMA**

直接存储器访问模块(DMA)用于外设和存储器间直接数据传输,可用于 RAM 和 RAM 之间、RAM 和外设、外设和外设之间的数据传输。DMA 模块将从源地址上读取的数据写入到目标地址空间中,从而完成数据传输,而无需 CPU 的干预。

每个 DMA 模块有如下特性:

- 7个独立可配置的通道
- 支持存储器和存储器、存储器和外设、外设和外设之间的数据传输
- 支持 8bit/16bit/32bit 数据位宽传输
- 支持自动递增的源和目标地址,支持固定的源和目标地址
- 支持循环模式
- 支持传输数据数量设置,最大为65535
- 支持 4 级通道优先级设置
- 支持外设触发,支持软件触发
- 追踪当前的源指针和目标指针
- 追踪当前未传输的数据量

#### 6.2 节拍定时器 (SYSTICK)

KungFu32 内核提供了一个 24 位的系统节拍定时器(System Tick Timer)。系统节拍定时器可为系统提供可编程时长的周期性中断,即使是在休眠下也能工作(注:深度休眠下不能工作)。系统节拍定时器有专用的中断向量。

系统节拍定时器结构如下图所示。系统节拍定时器为递减计数模式,当系统节拍定时器的值为 0 时会产生一个中断,同时系统节拍定时器重载值寄存器(ST\_RELOAD)的值会装入系统节拍定时器中。对系统节拍定时器重载值寄存器(ST\_RELOAD)进行设置可以修改产生中断的间隔时长。在使用节拍定时器时,使能前要先向 ST\_CV 系统节拍定时器当前值寄存器写任意值,使 COUNTZERO 位及 ST\_CV 清零,保证 ST\_RELOAD 的值加载到 ST\_CV中。

向 ST RELOAD 写 0 会使计数器在下个计数周期禁止。

通过使能 INT\_EIE0 寄存器的 SYSTICKIE 位可以使能系统节拍定时器中断,当定时器由 1 变 0 时可以将 INT\_EIF0 中的 SYSTICKIF 标志位置 1。

## 6.3 基本定时/计数器(T14/T15)

Tx(x=14,15)是一个 16 位的定时/计数器,它有定时和计数两种工作模式,支持 3 种计数方式:向上计数、向下计数和向上向下计数方式。根据不同的模式,计数会产生溢出,将Tx 溢出中断标志 TXIF 位置 1。

基本定时器主要功能包括:

- 16 位自动重载计数器
- 16 位可编程预分频器,用于对输入的时钟按系数为1~65536 之间任意数值分频
- 在更新事件以及触发事件时产生 DMA 请求

芯旺微电子 - 31/66 Chip**○N** 



● 基本定时器可以用于触发 AD 和 DA 模块

#### 6.4 通用定时/计数器(T0/1/2/3/4/18/19/20/21/22/23)

Tx(x=0,1,2,3,4,18,19,22,23)是 16 位的定时/计数器,Tx(x=20,21)是 32 位的定时/计数器。它们除位宽不一样外,其他功能以及实现方式都是一样的。其中 T0 可作为低功耗定时器使用。

通用定时/计数器有定时和计数 2 种工作模式,支持 3 种计数方式:向上计数、向下计数和向上向下计数方式。根据不同的模式,计数会产生溢出,将 Tx 中断标志位 TXIF 置 1。 Tx 属于外部单元,因此在使用 Tx 中断时,需使能对应的外设中断。

通用定时/计数器主要功能包括:

- 16位/32位自动重载计数器
- 16 位/32 位可编程预分频器,用于对输入的时钟按系数为 1~65536/1~4294967296 之间任意数值分频
- 通用定时器可以用于触发 AD 和 DA 模块
- 更新事件、触发事件(触发模式、门控模式、复位模式)、捕捉事件、比较事件 可以产生 DMA 请求

#### 6.5 高级定时/计数器(T5/T6/T9/T10)

ECCPx 模块各包含两个计数器 Tx/Tz(x=5,9;z=6,10; Tx 和 Tz 原理相同),他们是 16 位的定时器,有 3 种计数方式:向上计数、向下计数和向上向下计数方式,可精确配置 1-65535 自由分频进行计数。支持触发其它定时器、AD 及 DMA 等外设。

高级定时/计数器主要功能包括:

- 16 位位自动重载计数器
- 16 位的可编程预分频器(分频器1)和4位的可编程后分频器(分频器2)
- 高级定时器可用于触发 AD、DA 等模块
- 支持周期更新和立即更新
- 支持比较器清零定时器功能
- 支持主从模式(触发、门控、复位)
- 可以用来产生 DMA 请求(更新、TRGI 触发、捕捉/比较、关断事件)

#### 6.6 通用捕捉/比较/PWM 模块(CCP0/1/2/3/4/18/19/20/21/22/23)

CCP 模块是通用型捕捉/比较/脉宽调制模块,在通用 CCP 模块中,采用通用定时/计数器做为该 CCP 的计数时基,可以用来实现捕捉功能、比较功能和 PWM 功能。

在 CCP0/1/2/3/4/18/19/22/23 模块中比较寄存器为 16 位的寄存器 CCPx\_Ry(x=0,1,2,3,4,18,19,22,23; y=1,2,3,4),该寄存器也用于 PWM 模式下的占空比设置;在 CCP20/21 中比较寄存器为 32 位的寄存器 CCPx\_Ry(x=20,21; y=1,2,3,4),该寄存器也用于 PWM 模式下的占空比设置。

在 CCP0/1/2/3/4/18/19/22/23 模块中捕捉寄存器为 16 位的寄存器 CCPx\_Cy  $(x=0,1,2,3,4,18,19,22,23;\ y=1,2,3,4)$ ,该寄存器为只读。在 CCP20/21 模块中捕捉寄存器为32 位的寄存器 CCPx\_Cy  $(x=20,21;\ y=1,2,3,4)$ ,该寄存器为只读。

通用 CCP 主要功能包括:

芯旺微电子 - 32/66 Chip**ON** 

# **KungFu**®

## KF32F350 数据手册 V3.3

- 16 位/32 位的捕捉功能
- 16 位/32 位的比较功能
- 16 位/32 位的 PWM 功能
- 支持 PWM 测量功能
- 4个独立的通道
- PWM 支持边沿对其和中心对齐
- 支持单脉冲输出
- 更新事件、触发事件(触发模式、门控模式、复位模式)、捕捉事件、比较事件可以产生 DMA 请求

#### 6.7 增强型捕捉/比较/PWM 模块(ECCP5/9)

ECCPx(x=5,9)模块是增强型捕捉/比较/脉宽调制模块,可以提供外部信号捕捉、内部比较输出以及 PWM 输出三种功能。在 ECCP 模块中,采用 16 位的定时器/计数器(ECCP5 为 T5 和 T6, ECCP9 为 T9 和 T10)做为该 ECCP 的计数时基,在 ECCP5 模块中捕捉寄存器为 16 位的寄存器 ECCPx\_Cy(x=5,9;y=1,2,3,4),比较寄存器为 16 位的寄存器 ECCPx\_Ry(x=5,9;y=1,2,3,4),该寄存器也用于 PWM 模式下的占空比设置。支持部分寄存器的数据更新功能。支持各个通道独立的关断操作。

如下事件发生时产生 DMA:

- 输入捕获
- 输出比较
- 关断事件
- 更新事件

## 6.8 正交编码脉冲电路(QEI0/1)

单片机内部集成有正交编码脉冲电路。正交编码脉冲电路可用于获得旋转机械的位置和速率等信息。

正交编码脉冲是两个频率变化且正交的脉冲。当它由电机轴上的光电编码器产生时(光电编码器具有3 路输出: A 相、B 相和索引脉冲),电机的旋转方向可以通过检测两个脉冲序列(QEA和QEB)中先到达的列来确定,角位置和转速可由脉冲数和脉冲频率(即齿脉冲和圈脉冲)来决定。电机的绝对位置以索引脉冲为基准确定。

QEI 由用于解析 A 相(QEA)和 B 相(QEB)信号的解码器逻辑以及用于累计计数值的递增/递减计数器组成。输入端上的数字噪声滤波器对输入信号进行滤波。

QEIO 的计数时基为定时器 T7, QEII 的计数时基为定时器 T8。

OEI 的工作特性包括:

- 3路输入通道,分别为两相信号和索引脉冲输入
- 输入端上的可编程数字噪声滤波器
- 16 位递增/递减位置计数器
- 计数方向状态
- x2 和 x4 计数分辨率
- 两种位置计数器复位模式:
  - ▶ 使用周期复位位置计数器
  - ▶ 使用索引脉冲复位位置计数器



- 通用 16 位定时器/计数器模式
- 正交编码器接口中断

#### 6.9 模数转换模块(A/D)

#### ADC 特性:

- 12 位分辨率
- 16 常规扫描通道+4 个高优先级通道
- 支持常规模式和高优先级模式
- 支持单次转换模式和连续转换模式
- 最高 20 个通道连续转换模式
- 数据左对齐或右对齐
- ADC 支持 DMA 触发
- 支持模拟看门狗事件
- 支持定时器触发 ADC
- 双 AD 模式
- ADC 转换时间: 14 个周期
- AD 电压: 2.4V 到 3.6V 或者 VREF+
- ADC 输入范围 VREF- 到 VREF+

**注:** 100 脚芯片的 VREF+、VREF-单独封装; 64/48 脚的 VREF+与 PC8 引脚复用, VREF-无复用, 在内部直接与 VSSA 引脚相连。

#### 6.10 数模转换器模块 (D/A)

#### DA 特性:

- 2 个 12 位 DAC
- 12 位 DAC 支持 DMA 功能
- 12 位 DAC 支持外部触发转换
- 12 位 DAC 支持噪声波发生器
- 12 位 DAC 支持三角波发生器
- 独立的外部参考电压源

## 6.11 拟比较器模块(CMP)

单片机内置 2 个模拟比较器模块, 其主要特点如下:

- 正负端多输入端口可选
- 电阻分压模块提供可选内部参考电压
- 输出极性可选
- 中断边沿可选
- 数字滤波功能
- 比较器输出可作为定时器捕捉输入、PWM 关断源或用于清零定时器
- 可配置为 BEMF(反向电动势)模式和 HALL(霍尔检测)模式



#### 6.12 通用全/半双工收发器(USART)

USART 是 Universal Synchronous /Asynchronous Receive & Transmit 的缩写,它的中文名称是通用同步/异步收发器,又称通用全双工/半双工收发器。这是一个串口通信的 I/O 外设,也可作为串行通信接口。它可被配置为与个人计算机等外设通信的全双工异步系统。也可以被配置为与外设或其它单片机通信的半双工同步系统,与之通信的单片机通常不具有产生波特率的内部时钟,它需要主控同步器件提供外部时钟信号。

#### 6.13 串行外设接口(SPI)

SPI 模块可配置为支持 SPI 协议或者 I2S 协议。SPI 模块默认工作在 SPI 方式,可通过软件将其切换到 I2S 模式。在 I2S 模式下,原则上数据传输为全双工模式,主机和从机同时收发数据,但实际情况下通常只有一个方向上的数据是有意义的。

#### SPI 模式主要特征:

- 3线或者4线数据传输
- 8/16/32 位传输帧格式
- MSB/LSB 先发送可选
- 主从模式
- 时钟频率可设
- 可编程的时钟极性和相位
- 可触发中断的发送和接收标志
- DMA 读写

#### I2S 主要特征:

- 单工通信
- 主从模式
- 数据长度可为 16/32 位
- 8 位线性可编程预分频器 (音频采样频率 8KHz 到 96KHz)
- 可编程时钟极性
- 支持多种 I2S 协议:
  - ➤ I2S 飞利浦标准
  - ▶ LSB 对齐标准(右对齐)
  - ➤ MSB 对齐标准(左对齐)
  - ➤ PCM 标准
- DMA 读写
- 可输出的主时钟,频率为 256×Fs(Fs 为音频采样频率)

## 6.14 内部集成电路接口(I2C)

#### I2C 特征:

- 多主机模式:可用作主设备或者从设备
- I2C 主设备产生时钟,起始和停止信号
- 检测 7 位和 10 位地址

芯旺微电子 - 35/66 Chip**○N** 



- 支持 Fast Mode Plus 模式,最高速度可达 1Mbit/s
- 支持多地址识别
- 在监控模式下可观察所有的 I2C 总线通信量
- DMA 读写

I2C模块能实现全部从动功能,且硬件支持启动位和停止位中断,以便于固件实现主控功能。I2C模块实现标准模式规范以及7位和10位寻址。有两个引脚用于数据传输:时钟线(SCL)和数据线(SDA)。通过使能位I2CEN置1以使能I2C模块的功能。

#### 6.15 **实时时钟(RTC**)

实时时钟 (Real Time Counting, RTC) 单元提供给用户实时时间以及日历信息。RTC 单元通过时间寄存器提供时间信息 (秒、分、时、星期、日、月、年)。数据信息由 BCD 码格式进行表示。修改计数器的值可以重新设置系统当前的时间和日期。

RTC模块可以根据年、月份(闰年、大小月),自动补偿天数;还可以进行夏令时、冬令时补偿。

RTC的时钟源可以通过软件选择外部低频晶振EXTLF、内部低频时钟INTLF和外部高频晶振的128分频。RTC模块自带高精度的数字时钟校准功能。

RTC提供两个可编程的闹钟功能及中断,用户可预先在时间闹钟寄存器中设置闹钟日期进行闹铃设置。

RTC模块位于备份域内,因此所有对RTC模块的操作都将受到备份域保护,操作RTC寄存器之前需要允许备份域可写;使能RTC模块之后,只要电源电压保持在工作范围内,RTC将可正常工作在任何运行模式和休眠模式。

#### 6.16 控制器局域网总线(CAN)

控制器局域网(Controller Area Network,简写为 CAN)是一种用于连接电子控制设备(EletronicControl Unit,简写为 ECU)的多主共享型串行总线标准。CAN 总线针对抗电磁干扰进行了专门设计,适用于具有较强电磁干扰的环境,不但可以使用与 RS-485 类似的差分平衡传输线,也可以使用更加可靠的双绞线。CAN 总线最初是针对汽车应用而研发的,不过时至今日已经广泛应用于各种嵌入式控制领域(例如工业方面和医疗方面)。CAN 总线在总线长度小于 40 米时最高可达 1Mbps 位速率。位速率越低则有效通讯距离越远(例如 125kbps 时通讯距离可达 500 米)。

#### CAN 有如下特性:

- 支持CAN2.0B协议
- 同时支持11位和29位识别码
- 位速率可达1Mbits/s
- 可读/写访问的错误计数器
- 可编程的错误报警限制
- 最近一次错误代码寄存器
- 对每一个CAN总线错误的中断
- 具体控制位控制的仲裁丢失中断
- 在标准和扩展格式中都有验收滤波器含屏蔽和代码寄存器
- 当错误或仲裁丢失时可配置是否重发



#### 6.17 独立看门狗(IWDT)

看门狗可用来检测和解决由软件错误引起的故障,当计数器达到给定的超时值时产生一个系统复位。

IWDT最适合那些要求看门狗在主程序外,能够完全独立工作的场合。

#### 特点:

- 自由递增的计数器
- 时钟为内部低频时钟INTLF
- 可编程预分频
- 避免复位:溢出前清零看门狗计数器(喂狗)

#### 6.18 **窗口看门狗(WWDT)**

窗口看门狗通常被用来监测由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行序列而产生的软件故障。

WWDT最适合那些要求看门狗在精确计时窗口起作用的应用程序。通过可配置的时间窗口来检测应用程序非正常的过迟或过早的操作。

#### 特点:

- 可编程自由运行计数
- 时钟为内部低频时钟INTLF
- 可编程预分频
- 提供中断
- 避免复位(喂狗):窗口内写计数器或利用中断写计数器

#### 6.19 USB 模块(USB)

该通用串行总线 (USB) 为一个带有单个连接器的串行接口,可以连接所有 USB 外设到主机系统。下面是 USB 的一些特性。

- 兼容 USB 2.0 全速规范
- 支持控制/批量/中断/等时传输类型
- 支持 USB 挂起/恢复操作
- 提供8个可配置为控制/批量/中断/等时传输类型的端点
- 512 字节 SRAM 内置缓存
- 提供远程唤醒功能
- 所有端点均支持双缓冲模式
- 可通过软件来配置端点最大包的长度(取决于 USB 最大规格)

#### 6.20 CFGL 模块(CFGL)

可配置逻辑单元(CFGLx)提供可超越软件执行速度限制而工作的可编程逻辑。该逻辑单元最多可接收16个输入信号,并通过使用可配置门将16个输入缩减为4条驱动8种可选单输出逻辑功能之一的逻辑线。

输入源是以下信号源的组合:

芯旺微电子 - 37/66 Chip**○N** 



- I/O引脚
- 内部时钟
- 外设
- 寄存器位

#### 可能的配置包括:

- 组合逻辑
  - > AND
  - > NAND
  - > AND-OR
  - ➤ AND-OR-INVERT
  - > OR-XOR
  - > OR-XNOR
- 锁存器
  - ➤ S-R
  - ▶ 带置1 和复位功能的时钟控制D型锁存器
  - ▶ 带置1 和复位功能的透明D型锁存器
  - ▶ 带复位功能的时钟控制J-K型锁存器

#### 6.21 **复位(RESET)**

#### 系统复位源:

- POR 上电复位
- BOR 复位
- NRST 外部复位引脚复位
- 窗口看门狗复位
- 独立看门狗复位
- 软件复位

单片机具有: POR 上电复位、BOR 复位、NRST 复位、IWDT 复位、WWDT 复位、软件复位六种复位方式。

除复位方式以外,单片机还提供一个可编程的电压检测模块(PVD),对供电电源 VDD的电压进行检测。

有些寄存器的状态在任何复位条件下都不会受到影响,其它大多数寄存器在复位事件发生时将被复位成"复位状态"。

## 6.22 外设模块时钟使能模块(CLK\_EN)

为了降低功耗,默认外设时钟就禁止。在使用外设模块时,需要使能该外设模块时钟控制信号,否则模块不工作。通过 PCLK\_CTLx(x=0,1,2,3)外设时钟控制寄存器控制相应的外设时钟。当外设时钟禁止时,CPU 无法对相应的模块寄存器进行写操作。



### 6.23 循环冗余校验单元(CRC)

循环冗余校验单元(Cyclic Redundancy Check, CRC)可以通过生成多项式计算不同长度数据的 CRC 校验值。CRC 技术可应用于核实数据传输或者数据存储的正确性和完整性。CRC 特性:

- 可编程的多项式,最高支持33项数的生成多项式
- 单周期计算时间
- 支持可编程的初始值
- 支持 8/16/32 位长度的输入数据格式
- 输入数据支持字节反序操作
- 计算结果支持可编程的异或操作
- 计算结果支持反序操作

### 6.24 EXIC接口

EXIC 接口是用于并口通讯,最高支持 18bit 的并行数据输出,支持 DMA 读写支持 LCD8080 接口,可用于与专用的 LCD 驱动芯片进行通讯。



### 7 电气特性

#### 7.1 概述

除非另外说明,所有电压都是相对 Vss 做参考的。

#### 7.1.1 最大值和最小值说明

除非另外声明,在测试过程中,所有产品参数都会经过 T<sub>A</sub> = 25℃的环境温度测试。产品能够保证满足所规定的的运行电压范围和运行频率范围。

基于描述性的特性,设计值和工艺特性等数据会隐含在表格中的脚注中。它们不会在量产中测试。

#### 7.1.2 典型值

除非另外声明,典型数据(典型值)来源于环境温度  $T_A$  为 25 °C, $V_{DD}$  = 3.3 V 的条件。它只作为设计参考,并不一定经过测试。

#### 7.2 最大承受范围

超过下表中的最大承受范围会对器件造成不可恢复的损坏。这些只是可加的最大条件,并不保证产品在这个范围内都能稳定工作。长期工作在这个范围的最大值条件下,产品的可靠性会受到影响。器件的应用条件符合 JEDEC JESD47 的规格标准。

| 符号                                   | 描述                                                                  | 最小值     | 最大值  | 单位 |
|--------------------------------------|---------------------------------------------------------------------|---------|------|----|
| V <sub>DDX</sub> - V <sub>SS</sub>   | 外部主要电源电压(包括 V <sub>DD</sub> , V <sub>DDA</sub> , V <sub>BAT</sub> ) | -0.3    | 4.0  | V  |
| V <sub>DD12</sub> -V <sub>SS</sub>   | 内部稳压器输出                                                             | -0.3    | 1.32 | V  |
| V <sub>IN</sub> <sup>(2)</sup> 输入范围  |                                                                     | Vss-0.3 | 4.0  | V  |
| \( \Delta V_{DDX} \)                 | V <sub>DDX</sub> 电源域之间的压差                                           | -       | 50   | mV |
| ∆V <sub>SSX</sub>                    | 不同地电源域之间的压差(3)                                                      | -       | 50   | mV |
| V <sub>REF+</sub> - V <sub>DDA</sub> | 可允许的 V <sub>REF+</sub> 大于 V <sub>DDA</sub> 的电压量                     | -       | 0.4  | V  |

表 7-1 电压特性(1)

- 注 1: 所有主电源(V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>BAT</sub>)和地(V<sub>SS</sub>, V<sub>SSA</sub>)必须连接到外部电源上,并且不能超过以上的规定范围。
- 注 2: 如果要满足最大的注入电流特性的话, V<sub>IN</sub>必须被关注。
- 注 3: 包括 V<sub>REF</sub>-脚。



表 7-2 电流特性

| 符号                        | 描述                                                                                                                                                                                                                                                                        | 最大值 | 单位 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| $\Sigma$ I <sub>VDD</sub> | 整个 VDD 电源域可以提供的电流总和 <sup>(1)</sup>                                                                                                                                                                                                                                        | 150 |    |
| Σ Ivss                    | 整个 V <sub>DD</sub> 电源域可以提供的电流总和 <sup>(1)</sup> 整个 V <sub>SS</sub> 电源域可以泄放的电流总和 <sup>(1)</sup> 每个 V <sub>DD</sub> 脚可以提供的最大的电流 <sup>(1)</sup> 每个地管脚可以泄放的最大电流 <sup>(1)</sup> 每个 IO 可以泄放的最大电流量 每个 IO 可以提供的最大电流量 所有 IO 可以泄放的电流总量 <sup>(2)</sup> 所有 IO 可以提供的电流总量 <sup>(2)</sup> |     |    |
| I <sub>VDD(PIN)</sub>     |                                                                                                                                                                                                                                                                           |     |    |
| Ivss(pin)                 | 每个地管脚可以泄放的最大电流(1)                                                                                                                                                                                                                                                         | 100 |    |
| T                         | 每个 IO 可以泄放的最大电流量                                                                                                                                                                                                                                                          | 20  | 4  |
| I <sub>IO(PIN)</sub>      | 每个 IO 可以提供的最大电流量                                                                                                                                                                                                                                                          | 20  | mA |
| 2.1                       | 所有 IO 可以泄放的电流总量 <sup>©</sup>                                                                                                                                                                                                                                              | 100 |    |
| Σ I <sub>IO(PIN)</sub>    | 所有 IO 可以提供的电流总量 <sup>©</sup>                                                                                                                                                                                                                                              | 100 |    |
| I <sub>INJ(PIN)</sub>     | 所有 IO 可以提供的电流总量。<br>每个 IO 口通过外部注入的电流                                                                                                                                                                                                                                      |     |    |
| $\Sigma \;  I_{IO(PIN)} $ | 所有 IO 口可以通过外部注入的电流总和 <sup>(4)</sup>                                                                                                                                                                                                                                       | ±25 |    |

- 注 1: 所有主电源( $V_{DD}$ ,  $V_{DDA}$ ,  $V_{BAT}$ )和地( $V_{SS}$ ,  $V_{SSA}$ )都必须连接到外部电源上,并且符合允许的电源输入范围。
- 注 2: 所有 IO 脚上的电流必须合理分配。
- 注 3: 当  $V_{IN} < V_{SS}$  时,会有负电流注入。但是不能超过  $I_{INJ(PIN)}$ 这个值。
- 注 4: 当同时有几个 IO 都有电流注入贡献时, $\Sigma |I_{IO(PIN)}|$ 是允许它们泄露电流总和的最大值。

表 7-3 温度特性

| 符号   | 描述     | 最大值       | 单位 |
|------|--------|-----------|----|
| Tstg | 存储温度范围 | -65 ~+150 | °C |
| TJ   | 最大结温   | 150       | °C |

芯旺微电子 - 41/66 ChipON



### 7.3 运行条件

#### 7.3.1 常规运行条件

表 7-4 常规运行条件

| f <sub>SCLK</sub> core<br>f <sub>SYSTICK</sub> 节拍定时器 | -            | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      |                                                                                                                                           |       |
|------------------------------------------------------|--------------|--------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
| fsystick 节拍定时器                                       | n — 11 Jan — | · ·                                                    | U      | 120                                                                                                                                       |       |
|                                                      | <b></b>      | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| f <sub>DMA</sub> DMA I                               | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| f <sub>USB</sub> USB ⊥                               | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 48                                                                                                                                        |       |
| 基本/通用/i<br>T作                                        |              | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| f <sub>QEI</sub> QEI I                               | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       | MHz   |
| f <sub>CFGL</sub> CFGL I                             | <b>工作频率</b>  | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| f <sub>I2C</sub> I2C I                               | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| f <sub>SPI</sub> SPI I                               | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| fusart USART                                         | 工作频率         | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| fcrc CRC I                                           | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 120                                                                                                                                       |       |
| fcan CAN I                                           | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 100                                                                                                                                       |       |
| f <sub>RTC</sub> RTC ⊥                               | 作频率          | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 32                                                                                                                                        | 1-77- |
| f <sub>WDT</sub> IWDT/WWI                            | T 工作频率       | $V_{DD} = 1.8V \sim 3.6V; T_A = -40 \sim +85^{\circ}C$ | 0      | 32                                                                                                                                        | kHz   |
| V <sub>DD</sub> 标准运                                  | 行电压          | $T_{A} = -40 \sim +85^{\circ}C$                        | 1.8(1) | 3.6                                                                                                                                       | V     |
| V <sub>DD12</sub> 内核运                                | 行电压          | 全频率范围                                                  | 1.30   | 1.34                                                                                                                                      | V     |
|                                                      |              | 使用 ADC 时                                               | 2.4    |                                                                                                                                           |       |
|                                                      |              | 使用 DAC 时                                               | 2.4    |                                                                                                                                           |       |
| V <sub>DDA</sub> 模拟电                                 | 源电压          | 使用 VREFBUF 时                                           | 2.4    | 3.6                                                                                                                                       | V     |
|                                                      |              | ADC, DAC, COMP, VREFBUF 不使<br>用时                       | 1.8    |                                                                                                                                           |       |
| V <sub>BAT</sub> 备份均                                 | 成电源          | -                                                      | 1.6    | 3.6                                                                                                                                       | V     |
| V <sub>IN</sub> IO 输力                                | <b>入范围</b>   | 所有 IO 口                                                | -0.3   | V <sub>DD</sub> +0.3                                                                                                                      | V     |
| T 17 1 7 M                                           | <b>产</b> 本田  | 最大功耗下                                                  | -40    | 85                                                                                                                                        | °C    |
| T <sub>A</sub> 环境温                                   |              | 最低功耗下                                                  | -40    | 0 120 0 120 0 120 0 120 0 100 0 32 0 32 1.8 <sup>(1)</sup> 3.6 1.30 1.34 2.4 2.4 2.4 2.4 3.6 1.8 1.6 3.6 -0.3 V <sub>DD</sub> +0.3 -40 85 | °C    |

注 1: 当 RESET 功能不起作用时,可以保证产品在  $V_{DD}$  电压达到最小值以上时运行正确。

#### 7.3.2 上电/掉电的运行条件

这个表格中的参数是在 表 7-4 的条件下测试得出的。

表 7-5 上电/掉电的运行条件

| 符号               | 参数       | 条件 | 最小值 | 最大值 | 单位   |  |
|------------------|----------|----|-----|-----|------|--|
|                  | VDD 上升速率 |    | 0   | 8   | /\/  |  |
| t <sub>VDD</sub> | VDD 下降速率 | -  | 10  | 80  | us/V |  |

芯旺微电子 - 42/66 **ChipON** 



| <b>.</b> | VDDA 上升速率 |   | 0  | ∞        | na/M |
|----------|-----------|---|----|----------|------|
| tvdda    | VDDA 下降速率 | - | 10 | $\infty$ | us/V |

### 7.3.3 复位和电源控制模块特性 BOR,PVD

这个表格中的参数是在表 7-4 的条件下测试得出的。

表 7-6 复位和电源控制模块特性

| 符号                                      | 参数                   | 条件    | 最小值  | 典型值  | 最大值  | 单位         |
|-----------------------------------------|----------------------|-------|------|------|------|------------|
| trst_por                                | 在检测到 POR 后,复位退出的延迟时间 | VDD上升 | -    | 3.8  | -    | ms         |
| <b>7.7</b> (1)                          | 1. 中气公司性             | 上升沿   | 1.61 | 1.66 | 1.7  | ***        |
| $V_{POR}^{(1)}$                         | 上电复位阈值               | 下降沿   | 1.6  | 1.64 | 1.69 | V          |
| V                                       | BOR1 复位阈值            | 上升沿   | 1.76 | 1.79 | 1.83 | V          |
| $V_{BOR1}$                              | DOKI 友位國祖            | 下降沿   | 1.67 | 1.73 | 1.78 | V          |
| 17                                      | DOD2 有片闷店            | 上升沿   | 1.89 | 1.97 | 2.03 | V          |
| $V_{\mathrm{BOR2}}$                     | BOR2 复位阈值            | 下降沿   | 1.85 | 1.90 | 1.96 | V          |
| ***                                     | DODA 存存的体            | 上升沿   | 2.19 | 2.25 | 2.33 | X 7        |
| $V_{BOR3}$                              | BOR3 复位阈值            | 下降沿   | 2.02 | 2.13 | 2.21 | V          |
| ***                                     | DODA & LYNTH         | 上升沿   | 2.43 | 2.49 | 2.53 | **         |
| V <sub>BOR4</sub>                       | BOR4 复位阈值            | 下降沿   | 2.35 | 2.38 | 2.45 | V          |
| 37                                      | 可放积中区协测图体。           | 上升沿   | 1.88 | 1.93 | 1.98 | <b>X</b> 7 |
| $ m V_{PVD0}$                           | 可编程电压检测阈值 0          | 下降沿   | 1.66 | 1.72 | 1.80 | V          |
| ***                                     | 可编程电压检测阈值 1          | 上升沿   | 2.02 | 2.06 | 2.11 | * 7        |
| $ m V_{PVD1}$                           |                      | 下降沿   | 1.76 | 1.84 | 1.93 | V          |
| ***                                     | 可编程电压检测阈值 2          | 上升沿   | 2.15 | 2.20 | 2.25 | * 7        |
| $ m V_{PVD2}$                           |                      | 下降沿   | 1.87 | 1.96 | 2.06 | V          |
| 17                                      | 可始和市区协测运体 2          | 上升沿   | 2.29 | 2.34 | 2.40 | 1.7        |
| $ m V_{PVD3}$                           | 可编程电压检测阈值 3          | 下降沿   | 1.19 | 2.09 | 2.19 | V          |
| 17                                      | 可说和古广长测图体 4          | 上升沿   | 2.43 | 2.48 | 2.54 | * 7        |
| $ m V_{PVD4}$                           | 可编程电压检测阈值 4          | 下降沿   | 2.11 | 2.21 | 2.32 | V          |
| V                                       | 可绝租由压松测净度 5          | 上升沿   | 2.56 | 2.61 | 2.68 | <b>T</b> 7 |
| $ m V_{PVD5}$                           | 可编程电压检测阈值 5          | 下降沿   | 2.23 | 2.33 | 2.45 | V          |
| 17                                      | 可绝和市区协测海供 /          | 上升沿   | 2.65 | 2.71 | 2.77 | ***        |
| V <sub>PVD6</sub>                       | 可编程电压检测阈值 6          | 下降沿   | 2.30 | 2.41 | 2.53 | V          |
| V <sub>hyst_POR</sub>                   | POR 的迟滞电压            | -     | -    | 20   | -    | mV         |
| $V_{hyst\_BOR}$                         | BOR 的迟滞电压            | -     | -    | 120  | -    | mV         |
| $V_{hyst\_PVD}$                         | PVD 的迟滞电压            | -     | -    | 300  | -    | mV         |
| I <sub>DD(BOR_PVD)</sub> <sup>(2)</sup> | BOR 和 PVD 的总功耗       | -     | -    | 1.1  | 2    | μА         |

注 1: POR 在除了 Shutdown 模式外,都是默认使能的。它的功耗是包含在电源电流特性表格中的。

注 2: 设计保证。

芯旺微电子 - 43/66 **ChipON** 



#### 7. 3. 4 **BAT PVD**

表 7-7 BAT 电气特性

| 符号            | 参数                       | 条件  | 最小值  | 典型值 | 最大值  | 单位 |
|---------------|--------------------------|-----|------|-----|------|----|
|               | BAT PVD SEL=000          | 上升沿 | 1.6  | -   | 1.7  |    |
|               | DAI PVD SEL=000          | 下降沿 | -    | -   | -    |    |
|               | DAT DVD CEL 001          | 上升沿 | 1.8  | -   | 1.9  |    |
|               | BAT PVD SEL=001          | 下降沿 | 1.64 | -   | 1.69 |    |
|               | BAT PVD SEL=010          | 上升沿 | 2.07 | -   | 2.16 |    |
| UE 2대 2 전 / E |                          | 下降沿 | 1.85 | -   | 1.93 | V  |
| 监测阈值          | BAT PVD SEL=011          | 上升沿 | 2.42 | -   | 2.52 |    |
|               |                          | 下降沿 | 2.16 | -   | 2.26 |    |
|               | D. I D. I D. I D. I D. I | 上升沿 | 2.89 | -   | 3.03 |    |
|               | BAT PVD SEL=100          | 下降沿 | 2.58 | -   | 2.72 |    |
|               | DATEDUD CEL 101          | 上升沿 | 3.62 | -   | 3.76 |    |
|               | BAT PVD SEL=101          | 下降沿 | 3.42 | -   | 3.36 |    |
| Idd-bat-pvd   | BAT PVD 功耗               | -   | -    | 20  | -    | uA |
| tstu          | 开启稳定时间                   | -   | -    | 108 | -    | us |

#### 7.3.5 电源电流特性

电源电流的消耗是很多因素的组合:运行电压,环境温度,I/O负载,设备软件配置,运行频率,I/O开关速率,程序存储位置和代码。

典型和最大电流消耗(MCU 在以下条件测得):

- 1) 所有的 I/O 脚都处于模拟输入模式;
- 2) 除了特殊说明外,所有外设都禁止;
- 3) Flash 访问时间调整为最小的等待状态数,取决于 Fsclik 频率;
- 4) 当外设使能时, F<sub>PCLK</sub>=F<sub>SCLK</sub>;

下面的数据来源于环境温度和表格所规定的电压范围。

表 7-8 运行模式 1

| 运行模式 | 程序方式                                   | 外设工作条件 | 时钟源        | SCLK 频率         | 3.3V<br>-40°C | 3.3V<br>25°C | 3.3V<br>85°C | 单位 |
|------|----------------------------------------|--------|------------|-----------------|---------------|--------------|--------------|----|
|      | 程序在 FLASH 运行,<br>开预取, FLASH_CFG = 0XC3 | 所有外设禁止 | PLL<br>PLL | 120MHz<br>96MHz | 5177<br>4370  | 5400<br>4560 | 5463<br>4637 |    |
|      | 程序在 FLASH 运行,<br>开预取, FLASH_CFG = 0XC2 |        | PLL<br>PLL | 72MHz<br>64MHz  | 3456<br>3137  | 3607<br>3280 | 3693<br>3364 |    |
| RUN  | 程序在 FLASH 运行,<br>开预取,FLASH_CFG = 0XC1  |        | PLL        | 48MHz           | 2608          | 2727         | 2815         | μΑ |
|      | 程序在 FLASH 运行,<br>关预取,FLASH_CFG = 0XC0  |        | PLL        | 32MHz           | 2313          | 2428         | 2518         |    |
|      |                                        |        | INTHF      | 16MHz           | 1169          | 1230         | 1330         |    |
|      |                                        |        | INTLF      | 32KHz           | 230           | 264          | 360          |    |

芯旺微电子 - 44/66 ChipON



|     |             |              | PLL   | 120MHz | 4818 | 5006 | 5046 |
|-----|-------------|--------------|-------|--------|------|------|------|
|     |             |              | PLL   | 96MHz  | 3890 | 4210 | 4268 |
|     |             |              | PLL   | 72MHz  | 3028 | 3283 | 3348 |
| RUN | 程序在 RAM 运行, | 所有外设禁止       | PLL   | 64MHz  | 2745 | 2973 | 3042 |
| KUN | 开 FLASH     | 別有外以示止       | PLL   | 48MHz  | 2349 | 2457 | 2532 |
|     |             |              | PLL   | 32MHz  | 1735 | 1795 | 1910 |
|     |             |              | INTHF | 16MHz  | 856  | 909  | 996  |
|     |             |              | INTLF | 32KHz  | 230  | 265  | 354  |
|     |             |              | PLL   | 120MHz | 4654 | 4832 | 4866 |
|     |             |              | PLL   | 96MHz  | 3887 | 4040 | 4084 |
|     |             |              | PLL   | 72MHz  | 2987 | 3110 | 3164 |
| RUN | 程序在 RAM 运行, | <br>  所有外设禁止 | PLL   | 64MHz  | 2690 | 2809 | 2859 |
| KUN | 关 FLASH     | 別有外及景山<br>   | PLL   | 48MHz  | 2188 | 2287 | 2348 |
|     |             |              | PLL   | 32MHz  | 1574 | 1644 | 1720 |
|     |             |              | INTHF | 16MHz  | 694  | 738  | 810  |
|     |             |              | INTLF | 32KHz  | 70   | 96   | 169  |

芯旺微电子 - 45/66 **ChipON** 



表 7-9 运行模式 2

| 运行模式   | 程序方式                                   | 外设工作条件         | 时钟源   | SCLK 频率 | 3.3V  | 3.3V | 3.3V | 単位 |
|--------|----------------------------------------|----------------|-------|---------|-------|------|------|----|
|        |                                        |                |       |         | -40°C | 25°C | 85°C |    |
|        | 程序在 FLASH 运行,                          |                | PLL   | 120MHz  | 2784  | 2917 | 2992 |    |
|        | 开预取,FLASH_CFG = 0XC3                   |                | PLL   | 96MHz   | 2418  | 2538 | 2620 |    |
|        | 程序在 FLASH 运行,                          |                | PLL   | 72MHz   | 1930  | 2024 | 2112 |    |
|        | 开预取,FLASH_CFG = 0XC2                   |                | PLL   | 64MHz   | 1782  | 1846 | 1988 |    |
| SLEEP  | 程序在 FLASH 运行,<br>开预取,FLASH_CFG = 0XC1  | 所有外设禁止         | PLL   | 48MHz   | 1553  | 1630 | 1730 |    |
|        | 程序在 FLASH 运行,<br>关预取, FLASH_CFG = 0XC0 |                | PLL   | 32MHz   | 1186  | 1252 | 1350 |    |
|        |                                        |                | INTHF | 16MHz   | 579   | 626  | 722  |    |
|        |                                        |                | INTLF | 32KHz   | 230   | 264  | 360  |    |
|        |                                        | 所有外设禁止         | PLL   | 120MHz  | 2782  | 2915 | 2993 |    |
|        |                                        |                | PLL   | 96MHz   | 2420  | 2538 | 2620 |    |
|        | 程序在 RAM 运行,<br>开 FLASH                 |                | PLL   | 72MHz   | 1932  | 2025 | 2110 |    |
| GI EED |                                        |                | PLL   | 64MHz   | 1783  | 1846 | 1988 | μΑ |
| SLEEP  |                                        |                | PLL   | 48MHz   | 1554  | 1630 | 1730 |    |
|        |                                        |                | PLL   | 32MHz   | 1185  | 1253 | 1352 |    |
|        |                                        |                | INTHF | 16MHz   | 580   | 626  | 722  |    |
|        |                                        |                | INTLF | 32KHz   | 230   | 265  | 360  |    |
|        |                                        |                | PLL   | 120MHz  | 2623  | 2746 | 2808 |    |
|        |                                        |                | PLL   | 96MHz   | 2260  | 2368 | 2435 |    |
|        |                                        |                | PLL   | 72MHz   | 1787  | 1847 | 1966 |    |
| GI EED | 程序在 RAM 运行,                            | でご ナーム いれ 木木 ご | PLL   | 64MHz   | 1624  | 1675 | 1780 |    |
| SLEEP  | 关 FLASH                                | 所有外设禁止         | PLL   | 48MHz   | 1392  | 1460 | 1542 |    |
|        |                                        |                | PLL   | 32MHz   | 1025  | 1082 | 1163 |    |
|        |                                        |                | INTHF | 16MHz   | 420   | 456  | 534  |    |
|        |                                        |                | INTLF | 32KHz   | 70    | 96   | 172  |    |

芯旺微电子 - 46/66 **ChipON** 



表 7-10 运行模式 3

| ) (           |                                        | 2 /-10 <b>运</b> 门接 |       |         | 3.3V  | 3.3V | 3.3V | 36 D |
|---------------|----------------------------------------|--------------------|-------|---------|-------|------|------|------|
| 运行模式          | 程序方式                                   | 外设工作条件             | 时钟源   | SCLK 頻率 | -40°C | 25°C | 85°C | 単位   |
|               | 程序在 FLASH 运行,                          |                    | PLL   | 120MHz  | 1640  | 1713 | 1820 |      |
|               | 开预取,FLASH_CFG = 0XC3                   |                    | PLL   | 96MHz   | 1507  | 1584 | 1682 |      |
|               | 程序在 FLASH 运行,                          |                    | PLL   | 72MHz   | 1242  | 1310 | 1410 |      |
| DEED          | 开预取,FLASH_CFG = 0XC2                   |                    | PLL   | 64MHz   | 1156  | 1220 | 1320 |      |
| DEEP<br>SLEEP | 程序在 FLASH 运行,<br>开预取, FLASH_CFG = 0XC1 | 所有外设禁止             | PLL   | 48MHz   | 1080  | 1145 | 1244 |      |
|               | 程序在 FLASH 运行,<br>关预取, FLASH_CFG = 0XC0 |                    | PLL   | 32MHz   | 870   | 927  | 1028 |      |
|               |                                        |                    | INTHF | 16MHz   | 422   | 464  | 560  |      |
|               | 大顶城,FLASII_CFG = 0AC0                  |                    | INTLF | 32KHz   | 229   | 264  | 360  |      |
|               |                                        | 所有外设禁止             | PLL   | 120MHz  | 160   | 1714 | 1820 |      |
|               |                                        |                    | PLL   | 96MHz   | 1508  | 1584 | 1683 |      |
|               | 程序在 RAM 运行,<br>开 FLASH                 |                    | PLL   | 72MHz   | 1242  | 1310 | 1410 |      |
| DEEP          |                                        |                    | PLL   | 64MHz   | 1156  | 1220 | 1320 | μΑ   |
| SLEEP         |                                        |                    | PLL   | 48MHz   | 1080  | 1144 | 1244 |      |
|               |                                        |                    | PLL   | 32MHz   | 870   | 927  | 1027 |      |
|               |                                        |                    | INTHF | 16MHz   | 420   | 463  | 560  |      |
|               |                                        |                    | INTLF | 32KHz   | 229   | 264  | 359  |      |
|               |                                        |                    | PLL   | 120MHz  | 1478  | 1550 | 1631 |      |
|               |                                        |                    | PLL   | 96MHz   | 1348  | 1414 | 1495 |      |
|               |                                        |                    | PLL   | 72MHz   | 1082  | 1140 | 1222 |      |
| DEEP          | 程序在 RAM 运行,                            | <u> </u>           | PLL   | 64MHz   | 994   | 1050 | 1133 |      |
| SLEEP         | 关 FLASH                                | 所有外设禁止             | PLL   | 48MHz   | 920   | 975  | 1056 |      |
|               |                                        |                    | PLL   | 32MHz   | 710   | 758  | 840  |      |
|               |                                        |                    | INTHF | 16MHz   | 260   | 293  | 370  |      |
|               |                                        |                    | INTLF | 32KHz   | 70    | 96   | 172  |      |

### 7.3.6 内核电源 VREG

表 7-11 VREG 电气特性

| 符号                   | 参数                      | 条件                                        | 最小值 | 典型值  | 最大值 | 单位 |
|----------------------|-------------------------|-------------------------------------------|-----|------|-----|----|
| V <sub>REG</sub>     | 调整器的输出电压                | $V_{DD} = 3.3V$ , $T_A = 25$ °C           | -   | 1.32 | -   | V  |
| V <sub>DDcoeff</sub> | V <sub>REG</sub> 的电源变化率 | $V_{DD} = 3.3V$ , $T_A = 25$ °C           | -   | 0.1  | -   | %  |
| t <sub>setting</sub> | 建立时间                    | $V_{REG} = 1.32V$ , $T_A = 25$ °C         | -   | 43   | 100 | us |
| I <sub>drive</sub>   | 驱动能力                    | $V_{REG} = 1.32V$ , $T_A = 25$ °C         | -   | 200  | 230 | mA |
| CEXT                 | 输出退耦电容                  | $V_{REG}=1.32V\text{, }T_{A}=25^{\circ}C$ | 1.8 | 2.2  | 5   | uF |

芯旺微电子 - 47/66 **ChipON** 



## 7.4 时钟源特性

#### 7. 4. 1 **HSE**

表 7-12 HSE 电气特性<sup>(1)</sup>

| 符号                                   | 参数                    | 条件                                                     | 最小值         | 典型值  | 最大值         | 单位  |
|--------------------------------------|-----------------------|--------------------------------------------------------|-------------|------|-------------|-----|
| DuCy <sub>(HSE)</sub>                | HSE 占空比               | -                                                      | 45          | -    | 55          | %   |
| $f_{HSE}$                            | HSE 外部高频频率            | $V_{DD} = 3.3V$ , $T_A = 25$ °C                        | 4           | 8    | 32          | MHz |
| t <sub>su</sub> <sup>(2)</sup> (HSE) | HSE 启动时间              | $V_{DD} = 3.3V$ , $T_A = 25$ °C                        | -           | 2.5  | -           | ms  |
| C <sub>L(HSE)</sub>                  | HSE 负载电容              | -                                                      | 10          | 14   | 39          | pF  |
|                                      | HSE 功耗                | $V_{DD} = 3.3V$ , $ESR = 30\Omega$ , $CL = 10pF@8MHz$  | -           | 0.54 | -           |     |
| I <sub>DD(HSE)</sub>                 |                       | $V_{DD} = 3.3V$ , $ESR = 45\Omega$ , $CL = 10pF@16MHz$ | -           | 0.95 | -           | mA  |
|                                      |                       | $V_{DD} = 3.3V$ , $ESR = 30\Omega$ , $CL = 5pF@32MHz$  | -           | 1.68 | -           |     |
| V <sub>HSEH</sub>                    | HSE 输入 PIN 的高<br>电平范围 | -                                                      | $0.6V_{DD}$ | -    | $V_{ m DD}$ | V   |
| V <sub>HSEL</sub>                    | HSE 输入 PIN 的低<br>电平范围 | -                                                      | $V_{SS}$    | -    | $0.3V_{DD}$ | V   |

注1:设计保证。

注 2:  $t_{su}$ 表示从软件使能到晶振稳定在 8MHz 的时间。

#### 7. 4. 2 **LSE**

表 7-13 LSE 电气特性<sup>(1)</sup>

| 符号                    | 参数              | 条件                              | 最小值         | 典型值    | 最大值               | 单位  |
|-----------------------|-----------------|---------------------------------|-------------|--------|-------------------|-----|
| DuCy <sub>(LSE)</sub> | LSE 占空比         | -                               | 30          | -      | 70                | %   |
| flse                  | LSE 频率          | $V_{DD} = 3.3V$ , $T_A = 25$ °C | -           | 32.768 | 40                | kHz |
| t <sub>su(LSE)</sub>  | LSE 开启时间        | -                               | -           | 2      | -                 | S   |
| C <sub>L(LSE)</sub>   | LSE 负载电容        | -                               | -           | 12     | -                 | pF  |
|                       |                 | LSEDRV[1:0] = 00<br>低驱动能力       | -           | 260    | -                 |     |
|                       | and to          | LSEDRV[1:0] = 01<br>中等驱动能力      | -           | 330    | -                 |     |
| ${ m I}_{ m DD(LSE)}$ | LSE 功耗          | LSEDRV[1:0] = 10<br>次高等驱动能力     | -           | 520    | -                 | nA  |
|                       |                 | LSEDRV[1:0] = 11<br>最高驱动能力      | -           | 650    | -                 |     |
| V <sub>LSEH</sub>     | OSC_IN 输入PIN高电平 | -                               | $0.6V_{DD}$ | -      | $V_{\mathrm{DD}}$ | V   |
| $V_{LSEL}$            | OSC_IN 输入PIN低电平 | -                               | $V_{SS}$    | -      | $0.3V_{DD}$       | V   |

注1:设计保证。



#### 7. 4. 3 **HSI**

表 7-14 HSI 电气特性<sup>(1)</sup>

| 符号                      | 参数               | 条件                                         | 最小值 | 典型值 | 最大值 | 单位  |
|-------------------------|------------------|--------------------------------------------|-----|-----|-----|-----|
| DuCy <sub>(HSI)</sub>   | HSI 占空比          | -                                          | 45  | -   | 55  | %   |
| f <sub>INTHF(HSI)</sub> | HSI 内部高频频率       | $V_{DD} = 3.3 V$ , $T_A = 25$ °C           | -   | 16  | -   | MHz |
| △Temp <sub>(HSI)</sub>  | HSI 频率随温度的<br>漂移 | $V_{DD} = 3.3V$ , $T_A = -40$ °C~<br>+85°C | -10 | ±5  | +10 | %   |
| t <sub>su(HSI)</sub>    | HSI 启动时间         | -                                          | -   | 5   | -   | us  |
| t <sub>stab(HSI)</sub>  | HSI 稳定时间         | -                                          | -   | 17  | -   | us  |
| I <sub>DD(HSI)</sub>    | HSI 功耗           | -                                          | -   | 47  | -   | μА  |

注1:设计保证。

#### 7. 4. 4 **LP4M**

#### 表 7-15 LP4M 电气特性<sup>(1)</sup>

| 符号                       | 参数        | 条件                                                                   | 最小值 | 典型值 | 最大值 | 单位  |
|--------------------------|-----------|----------------------------------------------------------------------|-----|-----|-----|-----|
| DuCy <sub>(LP4M)</sub>   | LP4M 占空比  | -                                                                    | 45  | -   | 55  | %   |
| f <sub>CLKOUT(LP4M</sub> | LP4M 时钟频率 | $V_{DD} = 3.3V$ , $T_A = 25$ °C                                      | -   | 4   | -   | MHz |
| △ Temp <sub>(LP4M)</sub> | LP4M 温度漂移 | $V_{DD} = 3.3V,$ $T_A = -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$ | -8  | 1   | +8  | %   |
| t <sub>su(LP4M)</sub>    | LP4M 启动时间 | -                                                                    | -   | 1.5 | -   | us  |
| t <sub>stab(LP4M)</sub>  | LP4M 稳定时间 | -                                                                    | -   | 10  | -   | us  |
| I <sub>DD(LP4M)</sub>    | LP4M 功耗   | -                                                                    | -   | 6   | -   | μА  |

注1:设计保证。

#### 7. 4. 5 **LSI**

#### 表 7-16 LSI 电气特性<sup>(1)</sup>

| 符号                      | 参数                | 条件                                                  | 最小值   | 典型值 | 最大值   | 单位   |
|-------------------------|-------------------|-----------------------------------------------------|-------|-----|-------|------|
| V <sub>DD(LSI)</sub>    | LSI 供电电压          | $T_A = 25$ °C                                       | 1.8   | 3.3 | 3.6   | V    |
|                         |                   | $V_{DD} = 3.3V$ , $T_A = 25$ °C                     | 30.08 | 32  | 33.92 | kHz  |
| f <sub>LSI</sub>        | LSI 频率            | $V_{DD} = 1.8V \sim 3.6V$ ,                         | 20    | 32  | 40    | kHz  |
|                         |                   | $T_A = -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$ | 20    | 32  |       | KIIZ |
| △Temp <sub>(LSI)</sub>  | LSI 温度漂移          | $V_{DD} = 3.3V$ ,                                   | -10   | -   | +10   | %    |
| Z Temp(LSI)             | LSI tilli/又ty,r/p | $T_A = -40$ °C $\sim 85$ °C                         | -10   |     |       |      |
| $t_{su(LSI)}$           | LSI 启动时间          | -                                                   | -     | 80  | 132   | us   |
| t <sub>stab</sub> (LSI) | LSI 稳定时间          | 最终稳定频率 5%内                                          | -     | 110 | 200   | us   |
| I <sub>DD(LSI)</sub>    | LSI 功耗            | -                                                   | -     | -   | 200   | nA   |

注1:设计保证。

芯旺微电子 - 49/66 **ChipON** 



### 7. 4. 6 **PLL**

### 表 7-17 PLL 电气特性<sup>(1)</sup>

| 符号                     | 参数                    | 条件                                        | 最小值 | 典型值 | 最大值  | 单位  |
|------------------------|-----------------------|-------------------------------------------|-----|-----|------|-----|
| V <sub>DD(PLL)</sub>   | 运行电压范围                | -                                         | 1.8 | 3.3 | 3.6  | V   |
| f <sub>IN/N(PLL)</sub> | 输入频率范围                | -                                         | 1   | -   | 32   | MHz |
| foutvco(PLL)           | VCO 频率范围              | -                                         | 200 | -   | 400  | MHz |
| Tpj <sub>(RMS)</sub>   | D 1 I.u               | fourvco≥200MHz; 干净电源                      | -   | 25  | -    |     |
| $Tpj_{(P-P)}$          | Period Jitter         |                                           | -   | 200 | -    | ps  |
| Тсј                    | Cycle-to-Cycle jitter |                                           | -   | 50  | -    |     |
| DuCy <sub>(PLL)</sub>  | 占空比                   | $f_{OUTVCO} = 200-400Mhz$                 | 40  | 50  | 60   | %   |
| LKT <sub>(PLL)</sub>   | 锁定时间                  | -                                         | -   | -   | 0.5  | ms  |
| I <sub>DD(PLL)</sub>   | 功耗                    | $f_{IN} = 25 MHz,$ $f_{OUTVCO} = 200 MHz$ | -   | -   | 0.56 | mA  |

注1:设计保证。



## 7.5 IO 端口特性

#### 7.5.1 静态特性

表 7-18 IO 静态电气特性<sup>(1)</sup>

| 符号               | 参数          | 条件                             | 最小值         | 典型值 | 最大值         | 单位  |
|------------------|-------------|--------------------------------|-------------|-----|-------------|-----|
| $V_{\text{INL}}$ | I/O 输入低电平   | $1.8V < V_{DD} < 3.6V$         | -           | -   | $0.3V_{DD}$ | V   |
| V <sub>INH</sub> | I/O 输入高电平   | 1.8V <v<sub>DD&lt;3.6V</v<sub> | $0.6V_{DD}$ | -   | -           | V   |
| 17.              | I/O 施密特触发器迟 | 2.7V <v<sub>DD&lt;3.6V</v<sub> | -           | 900 | -           | mV. |
| $V_{hys}$        | 滞电压         | $1.8V < V_{DD} < 2.7V$         | -           | 500 | -           | mV  |
| I <sub>ikg</sub> | 输入漏电流       | $V_{\rm IN} \leq V_{\rm DD}$   | -           | -   | ±50         | nA  |
| R <sub>PU</sub>  | 弱上拉等效电阻     | $V_{\rm IN} = V_{\rm SS}$      | 40          | 45  | 50          | kΩ  |
| R <sub>PD</sub>  | 若下拉等效电阻     | $V_{\rm IN} = V_{\rm DD}$      | 40          | 45  | 50          | kΩ  |
| C <sub>IO</sub>  | I/O 脚等效电容   | -                              | -           | 3   | -           | pF  |

注1:设计保证。

### 7.5.2 **IO** 输出特性

表 7-19 IO 输出电气特性<sup>(1)</sup>

| 符号              | 参数          | 条件                       | 最小值                    | 最大值  | 单位 |
|-----------------|-------------|--------------------------|------------------------|------|----|
| Vol             | 任意 IO 输出低电平 | $I_{IO} = 15 \text{mA}$  | -                      | 0.4  |    |
| V <sub>OH</sub> | 任意 IO 输出高电平 | $V_{DD} \ge 2.7 V$       | V <sub>DD</sub> - 0.4  | -    |    |
| $V_{OL}$        | 任意 IO 输出低电平 | I <sub>IO</sub>   = 20mA | -                      | 1.3  | 37 |
| VoH             | 任意 IO 输出高电平 | $V_{DD} \geq 2.7 V$      | V <sub>DD</sub> - 1.3  | -    | V  |
| Vol             | 任意 IO 输出低电平 | I <sub>IO</sub>   = 10mA | -                      | 0.45 |    |
| VoH             | 任意 IO 输出高电平 | $V_{DD} \geq 1.8 V$      | V <sub>DD</sub> - 0.45 | -    |    |

注1:设计保证。

#### 7.5.3 **IOAC** 特性

表 7-20 IO AC 电气特性(1)

| I/O 速度配置         | 符号                    | 参数                                 | 条件                                           | 最小值                                        | 最大值 | 单位  |    |
|------------------|-----------------------|------------------------------------|----------------------------------------------|--------------------------------------------|-----|-----|----|
| 低速模式 fmax        | c                     | 見上版表                               | $C_L = 10 pF$ , $2.7V \le V_{DD} \le 3.6V$   | -                                          | 12  | MII |    |
|                  | Imax                  | ax 最大频率                            | $C_L = 10 pF$ , $1.8 V \le V_{DD} \le 2.7 V$ | -                                          | 1   | MHz |    |
|                  | . /.                  | 输出上升和下                             | $C_L = 10 pF$ , $2.7V \le V_{DD} \le 3.6V$   | -                                          | 18  |     |    |
|                  | lr/lf                 | t <sub>r</sub> /t <sub>f</sub> 降时间 | 降时间                                          | $C_L = 10 pF$ , $1.8V \le V_{DD} \le 2.7V$ | -   | 60  | ns |
|                  | C                     | 見上版支                               | $C_L = 10 pF$ , $2.7V \le V_{DD} \le 3.6V$   | -                                          | 30  | МП  |    |
| ⇒ + # <b>-</b> A | f <sub>max</sub>      | f <sub>max</sub> 最大频率 (            | $C_L = 10 pF$ , $1.8V \le V_{DD} \le 2.7V$   | -                                          | 15  | MHz |    |
| 高速模式             |                       | 输出上升和下                             | $C_L = 10 pF$ , $2.7V \le V_{DD} \le 3.6V$   | -                                          | 4   |     |    |
|                  | $t_{\rm r}/t_{\rm f}$ | 降时间                                | $C_L = 10pF$ , $1.8V \le V_{DD} \le 2.7V$    | -                                          | 7   | ns  |    |

注1:设计保证。





#### 7.5.4 **NRST** 管脚特性

表 7-21 NRST 电气特性<sup>(1)</sup>

| 符号                     | 参数             | 条件                         | 最小值         | 典型值 | 最大值         | 单位 |
|------------------------|----------------|----------------------------|-------------|-----|-------------|----|
| V <sub>INL(NRST)</sub> | NRST 输入低电平     | -                          | -           | -   | $0.3V_{DD}$ | V  |
| V <sub>INH(NRST)</sub> | NRST 输入高电平     | -                          | $0.6V_{DD}$ | -   | -           | V  |
| V <sub>hys(NRST)</sub> | NRST 施密特迟滞电压   | -                          | -           | 200 | -           | mV |
| R <sub>pu(NRST)</sub>  | 弱上拉等效电阻        | $V_{IN} = V_{SS} \\$       | 40          | 50  | 55          | kΩ |
| V <sub>F(NRST)</sub>   | NRST 输入滤波脉冲    | -                          | -           | -   | 60          | ns |
| V <sub>NF(NRST)</sub>  | NRST 输入不会滤掉的脉冲 | $1.8V \le V_{DD} \le 3.6V$ | 500         | -   | -           | ns |

注1:设计保证。

### 7.5.5 外部中断特性

表 7-22 外部中断电气特性(1)

| 符号   | 参数        | 条件 | 最小值 | 典型值 | 最大值 | 单位 |
|------|-----------|----|-----|-----|-----|----|
| PLEC | 触发事件的脉冲宽度 | -  | 50  | -   | -   | ns |

注1:设计保证。

芯旺微电子 - 52/66 **ChipON** 



## 7.6 外设

#### 7.6.1 **ADC 12BIT** 特性

表 7-23 ADC 电气特性<sup>(1)</sup>

| 符号                 | 参数               | 条件                                                                                             | 最小值   | 典型值          | 最大值                | 单位                 |
|--------------------|------------------|------------------------------------------------------------------------------------------------|-------|--------------|--------------------|--------------------|
| $V_{\text{DDA}}$   | 模拟电压             | -                                                                                              | 2.4   | -            | 3.6                | V                  |
| 3.7                | 工由厂会老            | $V_{DDA} \ge 2V$                                                                               | 2     | -            | $V_{\mathrm{DDA}}$ |                    |
| $V_{REF+}$         | 正电压参考            | $V_{\rm DDA} < 2V$                                                                             |       | $V_{DDA}$    |                    | v                  |
| V <sub>REF</sub> - | 负电压参考            | -                                                                                              |       | $V_{SSA}$    |                    |                    |
| $f_{ADC}$          | ADC 时钟频率         | -                                                                                              | 32k   | -            | 16M                | Hz                 |
| $f_S$              | 采样速率             | 12 bits                                                                                        | -     | -            | 1                  | Msps               |
| Avin               | 转换电压范围           | -                                                                                              | 0     | -            | V <sub>REF+</sub>  | V                  |
| $R_{\rm IN}$       | 外部允许最大输入串<br>联阻抗 | -                                                                                              | -     | -            | 50                 | kΩ                 |
| R <sub>ADC</sub>   | 采样开关的电阻          | -                                                                                              | -     | 2            | 4                  | kΩ                 |
| C <sub>ADC</sub>   | 内部采样和保持电容        | -                                                                                              | -     | 9.6          | -                  | pF                 |
| $t_{su}$           | 上电时间             | -                                                                                              |       | 100          |                    | us                 |
| ta                 | 采样时间             | $f_{ADC} = 16M$                                                                                | 0.156 | -            | -                  | us                 |
| ts                 | <b>水</b> 件时间     | -                                                                                              | -     | 2.5          | -                  | 1/f <sub>ADC</sub> |
| <b>+</b>           | 整个转换时间(包含        | $f_{ADC} = 16M$                                                                                | -     | 1            | -                  | us                 |
| tconv              | 采样时间)            | 12 bits                                                                                        |       | Ts+12.5 cycl | es                 | 1/f <sub>ADC</sub> |
| $I_{DD(ADC)} \\$   | ADC 功耗           | fs = 1 Msps                                                                                    | -     | 400          | 600                | μА                 |
| Oe                 | 失调误差             | $f_{ADC} = 16M$ , $R_{IN} = 500\Omega$                                                         | -     | ±4           | -                  |                    |
| Ge                 | 增益误差             | 1ADC = 10WI, $RIN = 300S22.4V < V_{DDA} < 3.6V$                                                | -     | ±4           | -                  |                    |
| DNL                | 微分非线性            | $V_{REF+} = V_{DDA}$ , $T_A = 25$ °C                                                           | -     | -            | ±4                 |                    |
| INL                | 积分非线性            | V REF+ — V DDA , 1 A — 23 C                                                                    | -     | -            | ±4                 | LSB                |
| ET                 | 全范围误差            | $f_{ADC} = 16M,  R_{IN} = 500\Omega$ $V_{DDA} = 3.3V$ $V_{REF+} = V_{DDA},  T_A = 25^{\circ}C$ | -     | 4            | 6                  |                    |
| ENOB               | 有效位数             | -                                                                                              | 10    | 10.5         | -                  | Bits               |
| SINAD              | 信号对噪声和失真的<br>抑制比 |                                                                                                | 64.4  | 64.5         | -                  | 15                 |
| SNR                | 信噪比              | -                                                                                              | 65    | 66           | -                  | dB                 |
| THD                | 谐波失真             |                                                                                                | 73    | 74           | -                  | 1                  |

注 1: ADC 测试数据为软件平均后的结果。



### 7. 6. 2 **DAC 12 BIT 转换**特性

表 7-24 DAC 特性<sup>(1)</sup>

| 符号                     | 参数                       |                          | 条件                            | 最小值 | 典型值       | 最大值                     | 单位     |
|------------------------|--------------------------|--------------------------|-------------------------------|-----|-----------|-------------------------|--------|
| $V_{\mathrm{DD}}$      | 电源电压                     | DAC 2                    | 输出 buffer 关闭                  | 2.4 | -         | 3.6                     | V      |
| $V_{\text{REF+}}$      | 外部参考电压                   | DAC                      | 输出 buffer 关闭                  | 2   | -         | $V_{DDA}$               | V      |
| V <sub>REF</sub> -     | 负参考电压                    |                          | -                             |     | $V_{SSA}$ | 1                       |        |
| $R_{ m L}$             | 负载电阻                     | DAC 输<br>出 buffer        | Connected to V <sub>SSA</sub> | 5   | -         | -                       | kΩ     |
| IVL.                   | 火火七匹                     | 开启                       | Connected to $V_{\text{DDA}}$ | 25  | -         | -                       | KSZ    |
| Ro                     | 输出阻抗                     | DAC                      | 输出 buffer 关闭                  | -   | 16        | -                       | kΩ     |
| $R_{BON}$              | 输出 buffer 开启             | 7                        | $V_{\rm DD} = 2.7 \mathrm{V}$ | -   | 5         | -                       | kΩ     |
| KBON                   | 时的输出阻抗                   | •                        | $V_{\rm DD} = 2.0 \mathrm{V}$ | -   | 10        | -                       | KSZ    |
| $C_{\rm L}$            | 负载电容                     | DAC                      | 输出 buffer 开启                  | -   | -         | 100                     | pF     |
| V <sub>DAC_OUT</sub>   | DAC 的输出电                 | DAC                      | 输出 buffer 开启                  | 0.2 | -         | V <sub>REF+</sub> — 0.2 | V      |
|                        | 压                        | DAC                      | 输出 buffer 关闭                  | 0   | -         | $V_{REF+}$              |        |
|                        | 建立时间(从最                  | DAC 输                    | ±0.5LSB                       | -   | 2         | 4                       |        |
|                        | 低码转换到最                   | 出 buffer                 | ±1LSB                         | -   | 1.8       | 3.5                     |        |
|                        | 高码时,输出稳                  | 开启                       | ±2LSB                         | -   | 1.6       | 3                       |        |
| tsettling              | 定在最终值的                   | C <sub>L</sub> ≤50pF,    | ±4LSB                         | -   | 1.5       | 2.9                     | us     |
|                        | ±0.5LSB,                 | $R_L\!\!\ge\!\!5k\Omega$ | ±8LSB                         | -   | 1.5       | 2.8                     |        |
|                        | ±1LSB, ±2LSB,            | DAC 输出 b                 | ouffer 关闭,±1LSB,              | _   |           | 100                     |        |
|                        | ±4LSB, ±8LSB)            |                          | C <sub>L</sub> =10pF          |     |           | 100                     |        |
| PSRR                   | VDDA 电源抑<br>制比           | DAC 输出 b                 | uffer 开启;CL≤50pF,<br>RL=5kΩ   | -   |           | -25                     | dB     |
| Tw_to_w                | 两个相邻转换<br>码的时间<br>(1LSB) | CL≤5                     | 50pF,R∟≥5kΩ                   | 2   | -         | -                       | us     |
|                        |                          | DAC 输出<br>buffer 开启      | 七负载, 中间码                      | -   | 400       | -                       |        |
| Idda (dac)             | DAC 从 VDDA<br>消耗的功耗      | DAC 输出<br>buffer 开启      | 无负载,最差码                       | -   | 500       | -                       | μА     |
|                        |                          | DAC 输出<br>buffer 关闭      | 无负载, 中间码                      | -   | 206       | -                       |        |
|                        | DAC II                   | DAC 输出                   | 出 无负载,中间码                     | -   | 400       | -                       |        |
| T                      | DAC 从                    | buffer 开启                | 主 无负载,最差码                     | -   | 500       | -                       | ] ,, , |
| I <sub>DDV</sub> (DAC) | VREF+消耗的<br>电流           | DAC 输出<br>buffer 关闭      | 九负载, 中间码                      | -   | 206       | -                       | μА     |

注1:设计保证。



#### 表 7-25 DAC 精度<sup>(1)</sup>

| 符号      | 参数                | 条件                            |                           | 最小值 | 典型值  | 最大值  | 单位   |
|---------|-------------------|-------------------------------|---------------------------|-----|------|------|------|
| DM      | 실수 사 그는 사 수수      | DAC 输出 buffer 5               | 开启                        | -   | -    | ±2   |      |
| DNL     | 微分非线性             | DAC 输出 buffer :               | 关闭                        | -   | -    | ±2   |      |
| -       | 单调性               | 10bits                        |                           |     | 设计保证 |      |      |
|         |                   | DAC 输出 buffer 开启 C            | L≤50pF,                   |     |      | ±5   |      |
| INL     | 积分非线性             | R <sub>L</sub> ≥8kΩ           |                           | 1   | -    | ±3   |      |
|         |                   | DAC 输出 buffer 关闭 CL≤:         | 50pF,无 R <sub>L</sub>     | -   | -    | ±5   | LSB  |
|         | 在中间码的             | DAC 输出 buffer 开启              | $V_{REF+}=3.6V$           | 1   | -    | ±11  |      |
| Offset  | 失调误差              | CL≤50pF, RL≥8kΩ               | $V_{REF+}=1.8V$           | 1   | -    | ±21  |      |
|         | 入 炯 庆 左           | DAC 输出 buffer 关闭 CL≤:         | 50pF,无 R <sub>L</sub>     | ı   | -    | ±9   |      |
| Offset1 | 在 code0 的失<br>调误差 | DAC 输出 buffer 关闭 Cι≤.         | 50pF,无 R <sub>L</sub>     | -   | -    | ±4   |      |
|         |                   | DAC 输出 buffer 开启 C            | L≤50pF,                   |     |      | ±0.6 |      |
| Gain    | 增益误差              | R <sub>L</sub> ≥8kΩ           |                           | _   | -    | ±0.0 | %    |
|         |                   | DAC 输出 buffer 关闭 C∟≤:         | 50pF,无 R <sub>L</sub>     | -   | -    | ±0.7 |      |
|         |                   | DAC 输出 buffer 开启 C            | L≤50pF,                   | _   | _    | ±20  |      |
| TUE     | 全范围误差             | R <sub>L</sub> ≥8kΩ           |                           | _   | _    | -20  | LSB  |
|         |                   | DAC 输出 buffer 关闭 C∟≤          | 50pF,无 R <sub>L</sub>     | -   | -    | ±10  |      |
|         |                   | DAC 输出 buffer 开启 C            | L≤50pF,                   | _   | 69   | _    |      |
| SNR     | 信噪比               | R <sub>L</sub> ≥8kΩ, 1kHz, BW | 500kHz                    |     | 0,   |      | dB   |
| SIVIC   | 10.77.00          | DAC 输出 buffer 关闭 CL≤50        | 0pF,无 R <sub>L</sub> ,    | _   | 70   | _    | ub   |
|         |                   | 1kHz, BW 500k                 | Hz                        |     |      |      |      |
| THD     | 谐波失真              | 输出 buffer 开启 CL≤50pF,F        | R <sub>L</sub> ≥8kΩ, 1kHz | -   | -76  | -    | dB   |
|         | 1000              | 输出 buffer 关闭 CL≤50pF,         | 无 R <sub>L</sub> ,1kHz    | -   | -77  | -    | u.b  |
| SINA    | 信号与噪声             | 输出 buffer 开启 C∟≤:             | 50pF,                     | _   | 70   | _    |      |
| D       | 和失真比例             | R <sub>L</sub> ≥8kΩ, 1kHz     | Z                         |     | , 0  |      | dB   |
|         | 11174741011       | 输出 buffer 关闭 CL≤50pF,         | 无 R <sub>L</sub> ,1kHz    | -   | 70.4 | -    |      |
|         |                   | 输出 buffer 开启 C∟≤:             | 50pF,                     | _   | 11.2 | _    |      |
| ENOB    | 有效位数              | R <sub>L</sub> ≥8kΩ, 1kHz     | Z                         |     | 11.2 |      | Bits |
|         |                   | 输出 buffer 关闭 CL≤50pF,         | 无 R <sub>L</sub> ,1kHz    | -   | 11.3 | -    |      |

注 1: 设计保证。



### 7.6.3 电压参考 VREFREG 特性

表 7-26 VREFREG 特性(1)

| 符号                             | 参数                        | 分                           | 件                      | 最小值                     | 典型值  | 最大值                | 单位         |
|--------------------------------|---------------------------|-----------------------------|------------------------|-------------------------|------|--------------------|------------|
| X7                             | 供由由海                      | 常规模式                        | 电压输出 2V                | 2.4                     | -    | 3.6                |            |
| $V_{\mathrm{DDA}}$             | 供电电源                      | 退化应用                        | 电压输出 2V                | 1.65                    | -    | 2.4                | v          |
|                                | 松山乡老市厅                    | 常规模式                        | 电压输出 2V                | 1.95                    | 2.0  | 2.05               | V          |
| Vrefvreg_out                   | 输出参考电压                    | 退化应用                        | 电压输出 2V                | V <sub>DDA</sub> -150mV | -    | $V_{\mathrm{DDA}}$ |            |
| CL(VREFREG)                    | 电容负载                      |                             | -                      | -                       | -    | 2.2                | uF         |
| Iload(VREFREG)                 | 静态负载电流                    |                             | -                      | -                       | -    | 4                  | mA         |
|                                | 나 생각 기교 하는 것;             | 2.8V≤V <sub>DDA</sub>       | $I_{load} = 500 uA \\$ | -                       | 200  | 1000               | ppm/       |
| Iline_reg(VREFREG)             | 电源调整率                     | ≤3.6V                       | $I_{load} = 4mA \\$    | -                       | 100  | 500                | V          |
| I <sub>load_reg(VREFREG)</sub> | 负载调整率                     | 500uA≤V <sub>DD</sub> A≤4mA | 正常模式                   | -                       | 50   | 500                | ppm/<br>mA |
| т                              | 温漂                        | -40°C≤T                     | 'j≤ + 85°C             | -                       | -    | 200                | ppm/       |
| T <sub>Coeff</sub> (VREFREG)   | 価係                        | 0°C≤Tj                      | ≤ + 50°C               | -                       | -    | 120                | °C         |
| PSRR <sub>(VREFREG)</sub>      | 电源抑制比                     | Γ                           | OC .                   | 30                      | 55   | -                  | dB         |
| 1 SKK(VREFREG)                 | 电极消机机记                    | 100                         | )kHz                   | 15                      | 29   | -                  | ub         |
| $t_{su(VREFREG)}$              | 开启时间                      |                             | -                      | -                       | 50   | -                  | us         |
| Inrush                         | 开启<br>VREFREG 的<br>最大驱动电流 |                             | -                      | -                       | 9    | -                  | mA         |
|                                | VREFREG 的                 | I <sub>load</sub> :         | = 0uA                  | -                       | 13.3 | 16                 |            |
| I <sub>DD(VREFREG)</sub>       | ・ VREFREG 的<br>・ 电流消耗     | $I_{load} =$                | 500uA                  | -                       | 15   | 19                 | μА         |
|                                | <b>电机</b> 相和              | I <sub>load</sub> =         | = 4mA                  | -                       | 26   | 30                 |            |

注1:设计保证。

### 7.6.4 比较器特性

表 7-27 比较器电气特性(1)

| 符号                    | 参数      | 条件                                               | 最小值 | 典型值   | 最大值                 | 单位  |
|-----------------------|---------|--------------------------------------------------|-----|-------|---------------------|-----|
| V <sub>DDA(CMP)</sub> | 供电电源    | -                                                | 2.4 | -     | 3.6                 |     |
| V <sub>IN(CMP)</sub>  | 比较器输入范围 | -                                                | 0   | -     | V <sub>DDA</sub> -1 | V   |
| Voffset(CMP)          | 失调电压    | -                                                | -10 | -     | 10                  | mV  |
|                       |         | 无迟滞                                              | -   | 0     | -                   |     |
| 37                    |         | 低迟滞                                              | -   | 5.78  | -                   | 3.7 |
| V <sub>hys(CMP)</sub> | 比较器迟滞电压 | 中等迟滞                                             | -   | 10.86 | -                   | mV  |
|                       |         | 高迟滞                                              | -   | 15.5  | -                   |     |
| I <sub>DD(CMP)</sub>  | 比较器电流消耗 | -                                                | -   | 16.29 | -                   | μА  |
| tdelay(CMP)           | 输出延迟    | V <sub>DD</sub> = 3.3V, 200mV 的<br>台阶, 100mV 的过冲 | -   | 65    | -                   | ns  |

注1:设计保证。



### 7.6.5 USB 全低速收发器模块电气特性

#### 表 7-34 USB DC 电气特性

| 符号                   | 参数                | 条件                                        | 最小值 | 典型值  | 最大值 | 单位 |
|----------------------|-------------------|-------------------------------------------|-----|------|-----|----|
| V <sub>DD(USB)</sub> | USB 全速/低速 收发器运行电压 | -40°C~85°C                                | 3.0 | -    | 3.6 | V  |
| $V_{DI}$             | 差分输入电压灵敏度         | 整个 VCM 范围                                 | 0.2 | -    | -   | V  |
| V <sub>CM</sub>      | 差分输入共模范围          | 包含 VDI 的范围                                | 0.8 | 1    | 2.5 | V  |
| $V_{SE}$             | 单边接收器输入阈值         | -                                         | 0.8 | 1    | 2.0 | V  |
| V <sub>OL(USB)</sub> | 静态输出低电平           | 1.5kΩ 上拉到 3.3V                            | 1   | 1    | 0.3 | V  |
| V <sub>OH(USB)</sub> | 静态输出高电平           | 下拉 15kΩ 到 Vss                             | 2.8 | -    | 3.6 | V  |
| R <sub>PD(USB)</sub> | USB_D+/D-下拉电阻     | -                                         | 1   | 1    | 1   | kΩ |
|                      | 全速 USB_D+上拉电阻     | $V_{IN} = V_{SS}$ , IDLE $\delta$         | 1.9 | 2.34 | 2.8 | kΩ |
| D                    | 全速 USB_D+上拉电阻     | V <sub>IN</sub> = V <sub>SS</sub> ,接收期间   | 2.5 | 3.12 | 3.7 | kΩ |
| R <sub>PU(USB)</sub> | 低速 USB_D-上拉电阻     | V <sub>IN</sub> = V <sub>SS</sub> ,IDLE 态 | 1.9 | 2.34 | 2.8 | kΩ |
|                      | 低速 USB_D-上拉电阻     | V <sub>IN</sub> = V <sub>SS</sub> ,接收期间   | 2.5 | 3.12 | 3.7 | kΩ |

#### 表 7-35 USB 驱动电气特性(1)

|                      | -             |                            |     |     |     |    |
|----------------------|---------------|----------------------------|-----|-----|-----|----|
| 符号                   | 参数            | 条件                         | 最小值 | 典型值 | 最大值 | 单位 |
| $t_{r(LS)}$          | 低速下的上升时间      | $C_L = 200 pF \sim 600 pF$ | 75  | -   | 300 | ns |
| t <sub>f(LS)</sub>   | 低速下的下降时间      | $C_L = 200 pF \sim 600 pF$ | 75  | -   | 300 | ns |
| t <sub>rf(mLS)</sub> | 低速下上升/下降时间的匹配 | $t_{ m r}/t_{ m f}$        | 80  | -   | 125 | %  |
| t <sub>r(FS)</sub>   | 全速下的上升时间      | $C_L = 50 pF$              | 4   | -   | 20  | ns |
| t <sub>f(FS)</sub>   | 全速下的下降时间      | $C_L = 50 pF$              | 4   | -   | 20  | ns |
| t <sub>rf(mFS)</sub> | 全速下上升/下降时间的匹配 | $t_{ m r}/t_{ m f}$        | 90  | -   | 110 | %  |
| V <sub>CRS</sub>     | 输出信号的电压交叉点    | -                          | 1.3 | -   | 2.0 | V  |
| Z <sub>DRV</sub>     | 输入驱动阻抗        | 驱动高或低                      | 28  | -   | 44  | Ω  |

注1:设计保证。



### 7.7 功耗特性

#### 7.7.1 程序运行在 FLASH 时的静态功耗特性

表 7-28 程序运行在 FLASH 时的静态功耗特性

| 运行模式 | 程序方式                                    | 时钟源   | 外设工作条件                       | MR    | 温度   | SCLK 频率 | 典型值  | 单位 |
|------|-----------------------------------------|-------|------------------------------|-------|------|---------|------|----|
|      | 程序在 FLASH 运行,开预<br>取,FLASH_CFG = 0XC3   |       |                              |       |      | 120MHz  | 5775 |    |
|      | 程序在 FLASH 运行, 开预<br>取, FLASH_CFG = 0XC3 |       |                              |       |      | 96MHz   | 4875 |    |
|      | 程序在 FLASH 运行, 开预<br>取, FLASH_CFG = 0XC2 | DI I  |                              |       |      | 72MHz   | 3870 |    |
|      | 程序在 FLASH 运行,开预<br>取,FLASH_CFG = 0XC2   | PLL   | 所有外设禁                        |       |      | 64MHz   | 3520 |    |
| RUN  | 程序在 FLASH 运行, 开预<br>取, FLASH_CFG = 0XC1 |       | 止,<br>V <sub>DD</sub> = 3.3V | 1.32V | 25°C | 48MHz   | 2930 | μΑ |
|      | 程序在 FLASH 运行,开预<br>取,FLASH_CFG = 0XC0   |       |                              |       |      | 32MHz   | 2550 |    |
|      | 程序在 FLASH 运行,开预                         | INTHF |                              |       |      | 16MHz   | 1280 |    |
|      | 取, FLASH_CFG = 0XC0                     | ШППГ  |                              |       |      | 4MHz    | 580  |    |
|      | 程序在 FLASH 运行,开预取, FLASH_CFG = 0XC0      | INTLF |                              |       |      | 32KHz   | 275  |    |

#### 7.7.2 程序运行在 SRAM 时的静态功耗特性

表 7-29 程序运行在 SRAM 时的静态功耗特性

| 运行模式 | 运行方式          | 外设工作条件   | VDD   | MR     | 温度   | SCLK 频率 | 最小值 | 典型值  | 最大值 | 单位 |
|------|---------------|----------|-------|--------|------|---------|-----|------|-----|----|
|      |               |          |       |        |      | 120MHz  | -   | 5420 | 1   |    |
|      |               |          |       |        |      | 96MHz   | -   | 4560 | 1   |    |
|      |               |          |       |        |      | 72MHz   | -   | 3560 | -   |    |
| RUN  | 程序在<br>SRAM 中 | 所有外设禁止,不 | 3.3V  | 1.32V  | 25°C | 64MHz   | -   | 3230 | 1   |    |
| KUN  | SKAM 中<br>运行  | 关闭 FLASH | 3.3 V | 1.32 V | 25°C | 48MHz   | -   | 2670 | 1   | μΑ |
|      | )             |          |       |        |      | 32MHz   | -   | 1960 | -   |    |
|      |               |          |       |        |      | 16MHz   | -   | 980  | 1   |    |
|      |               |          |       |        |      | 32KHz   | -   | 280  | -   |    |



# 7.7.3 休眠功耗特性

表 7-30 休眠功耗特性

| 运行模式           | 运行方式  | 外设工作条件                    | MR     | 时钟源     | SCLK 频率         | 温度    | 最小值 | 典型值  | 最大值 | 单位 |
|----------------|-------|---------------------------|--------|---------|-----------------|-------|-----|------|-----|----|
|                |       | パーナム ハロ **                |        |         |                 | -40°C | 1   | 720  | 1   |    |
|                |       | 所有外设禁                     | 1 2017 | INTELLE | 1 <i>C</i> MII- | 25°C  | 1   | 757  | 1   |    |
|                |       | 止, V <sub>DD</sub> = 3.3V | 1.32V  | INTHF   | 16MHz           | 85°C  | 1   | 882  | 1   |    |
| <del>从</del> 呢 | CLEED | 3.3 V                     |        |         |                 | 125℃  | 1   | 1281 | 1   |    |
| 休眠             | SLEEP | だーナム ハロ **                |        |         |                 | -40°C | 1   | 658  | 1   | μΑ |
|                |       | 所有外设禁                     | 1.2V   | INTELLE | 1 <i>C</i> MII- | 25°C  | 1   | 688  | ı   |    |
|                |       | 止, V <sub>DD</sub> = 3.3V | 1.2V   | INTHF   | 16MHz           | 85°C  | ı   | 795  | ı   |    |
|                |       | 3.3 ¥                     |        |         |                 | 125℃  | -   | 1154 | -   |    |

## 7.7.4 低功耗模式特性

表 7-31 低功耗模式特性

|       |       |      | 7, 01     | 1KU 754 017/2 | 4131- |     |     |     |    |
|-------|-------|------|-----------|---------------|-------|-----|-----|-----|----|
| 功耗模式  | 工作模块  | VDD  | PMCTL0    | MR/LPR        | VDD18 | 最小值 | 典型值 | 最大值 | 单位 |
| Stop1 | 无     | 3.3V | 0100 0802 | LPR           | 关断    | -   | 2.4 | 4.9 |    |
| Stop1 | LPRAM | 3.3V | 0108 0802 | LPR           | 关断    | -   | 3.6 | 6.8 | μΑ |
| Stop0 | 无     | 3.3V | 0100 0801 | LPR           | 关断    | 1   | 26  | 40  |    |





## 8 封装信息

## 8.1 LQFP48 封装



## 8.2 LQFP64 封装(7\*7)





## 8.3 LQFP64 封装(10\*10)



| SYMBOL. | MILLIMETER |         |       |  |  |  |  |
|---------|------------|---------|-------|--|--|--|--|
| SIMDUL  | MIN        | NOM     | MAX   |  |  |  |  |
| A       | _          | _       | 1.6   |  |  |  |  |
| A1      | 0.05       | _       | 0.15  |  |  |  |  |
| A2      | 1.35       | 1.4     | 1.45  |  |  |  |  |
| A3      | 0.59       | 0.64    | 0.69  |  |  |  |  |
| b       | 0.18       | _       | 0.26  |  |  |  |  |
| b1      | 0.17       | 0.2     | 0.23  |  |  |  |  |
| С       | 0.13       | _       | 0.17  |  |  |  |  |
| c1      | 0.12       | 0.13    | 0.14  |  |  |  |  |
| D       | 11.8       | 12      | 12.2  |  |  |  |  |
| D1      | 9.9        | 10      | 10.1  |  |  |  |  |
| Е       | 11.8       | 12      | 12.2  |  |  |  |  |
| E1      | 9.9        | 10      | 10.1  |  |  |  |  |
| eВ      | 11.05      | _       | 11.25 |  |  |  |  |
| e       |            | 0.50BSC |       |  |  |  |  |
| L       | 0.45       | _       | 0.75  |  |  |  |  |
| L1      |            | 1.00REF |       |  |  |  |  |
| θ       | 0          | _       | 7     |  |  |  |  |

## 8.4 LQFP100 封装





## 9 KF32 产品标识体系



工作温度范围

默认 (无标识) =-40~85℃



# 10 RoHS 认证

本产品已通过 RoHS 检测。



## 11 声明及销售网络

销售及服务网点

上海 TEL: 021-50275927

**地址:** 上海浦东龙东大道 3000 号张江集电港 1 幢 906 号 B 座



# 12 版本更新记录

| 版本号   | 更新说明                                                | 页码  | 更新日期       |
|-------|-----------------------------------------------------|-----|------------|
| V1.2  | 更新页眉及部分文字格式                                         | -   | 2020-02-21 |
| V1.3  | 更新产品订购信息和外设资源对照表                                    | 6/8 | 2020-03-31 |
| V2.0  | 更新第三章映射部分                                           | -   | 2020-05-05 |
| V2.1  | 添加第三/四章节                                            | -   | 2020-06-15 |
|       | 添加 2.3 在线编程小节                                       | -   |            |
|       | 添加 5.6 CCP 引脚资源小节                                   | -   |            |
| V2.2  | 添加 7.7 小节                                           | -   | 2020-07-03 |
| V2.3  | 更新 100 脚芯片引脚图以及相关内容                                 | -   | 2020-07-28 |
| V2.4  | 添加订货号 KF32F350KQS                                   | -   | 2020-07-30 |
| V2.5  | 添加订货号 KF32F350MQS                                   | -   | 2020-08-03 |
| V2.6  | 添加 2.7 小节电源引脚说明                                     | -   | 2020-08-10 |
| V2.7  | 更新在线编程和调试章节,增加 DPI 模式说明                             | -   | 2020-08-27 |
| V2.8  | 更新芯片引脚图目录以及调整部分文字格式                                 | -   | 2020-10-23 |
| V2.9  | 添加第9章产品标识体系                                         | -   | 2021-01-18 |
| V2.10 | 更新数字映射 AF11 列 CxOUT 下标                              | -   | 2021-02-07 |
|       | 更新功耗运行模式                                            | -   |            |
|       | 更新 HSI 时钟温漂特性                                       | 49  |            |
|       | 更新引脚重映射相关章节相关信息                                     |     |            |
|       | 1、删除 PA2/PA7/PA8/PG7/PC9/PD14-AF4-CCP18/CCP19 相     |     |            |
|       | 关                                                   |     |            |
|       | 2、删除 PA5/PA6/PA7-AF3-CCP23 相关                       |     |            |
|       | 3、删除 PB0/PB1/PB2/PB3-CCP22 相关                       |     |            |
|       | 4、删除 PG3/PG4/PD9/PD10-AF1-CCP2 相关                   |     |            |
|       | 5、删除 PE2/PG3/PG4/PC9/PC10/PD9/PD10/PD13-AF2-CCP9    |     |            |
|       | 相关                                                  |     |            |
|       | 6、删除 PB2/PB3/PB11/PB12/PB13-AF3-CCP9 相关             |     |            |
| W2.0  | 7、删除 PB14-AF13-ECCP9CH4H                            |     | 2021 04 20 |
| V3.0  | 8、删除 PA0/PA1/PA2/PA6/PA7-AF14-CCP9 相关               |     | 2021-04-30 |
|       | 9、删除 PH6-AF3-T23CK                                  | -   |            |
|       | 10、删除 PH5-AF4-T22CK                                 |     |            |
|       | 11、删除 PH6-AF4-T19CK                                 |     |            |
|       | 12、删除 PA2/PA3/PA5/PA6/PA7/PE2/PB2/PB3/PB12/PB13/    |     |            |
|       | PB14/PB15/PF0/PG3/PG4/PC5/PC6/PG7/PC9/PD9/PD10-AF6- |     |            |
|       | USART3~7 相关                                         |     |            |
|       | 13、删除 PB11/PB12/PB13/PG4-AF11-USART6/7 相关           |     |            |
|       | 14、删除 PB13-AF13-USART7_CLK                          |     |            |
|       | 15、删除 PB11/PB12/PD9-AF8-I2C3 相关                     |     |            |
|       | 16、删除 PC7-AF10-I2S2_MCK                             |     |            |
|       | 17、删除 PB11/PB12/PB13/PC5/PC6/PC7/PC8/PG6/PC9/PC10   |     |            |
|       |                                                     | l . |            |

芯旺微电子 - 65/66 - ChipON



|      | -AF7-SPI2 相关                                        |    |            |
|------|-----------------------------------------------------|----|------------|
|      | 18、删除 PB0/PB1-AF9-CAN2 相关                           |    |            |
| V3.1 | 更新电源引脚说明章节,增加稳压二极管保护                                | 15 | 2021-08-23 |
| V3.2 | 新增 KF32F350MQTA,对应封装为 LQFP64(10*10)                 | -  | 2021-11-4  |
|      | 在数字重映射章节,数字重映射表前增加说明                                | 21 |            |
| V3.3 | 恢复 V3.0 版本中删除的引脚重映射相关信息:                            | 21 | 2021-12-29 |
|      | 1、恢复 PA2/PA7/PA8/PG7/PC9/PD14-AF4-CCP18/CCP19 相     |    |            |
|      | 关;                                                  |    |            |
|      | 2、恢复 PA5/PA6/PA7-AF3-CCP23 相关;                      |    |            |
|      | 3、恢复 PB0/PB1/PB2/PB3-CCP22 相关;                      |    |            |
|      | 4、恢复 PG3/PG4/PD9/PD10-AF1-CCP2 相关;                  |    |            |
|      | 5、恢复 PE2/PG3/PG4/PC9/PC10/PD9/PD10/PD13-AF2-CCP9    |    |            |
|      | 相关;                                                 |    |            |
|      | 6、恢复 PB2/PB3/PB11/PB12/PB13-AF3-CCP9 相关;            |    |            |
|      | 7、恢复 PB14-AF13-ECCP9CH4H;                           |    |            |
|      | 8、恢复 PA0/PA1/PA2/PA6/PA7-AF14-CCP9 相关;              |    |            |
|      | 9、恢复 PH6-AF3-T23CK;                                 |    |            |
|      | 10、恢复 PH5-AF4-T22CK;                                |    |            |
|      | 11、恢复 PH6-AF4-T19CK;                                |    |            |
|      | 12、恢复 PA2/PA3/PA5/PA6/PA7/PE2/PB2/PB3/PB12/PB13/    |    |            |
|      | PB14/PB15/PF0/PG3/PG4/PC5/PC6/PG7/PC9/PD9/PD10-AF6- |    |            |
|      | USART3~7 相关;                                        |    |            |
|      | 13、恢复 PB11/PB12/PB13/PG4-AF11-USART6/7 相关;          |    |            |
|      | 14、恢复 PB13-AF13-USART7_CLK;                         |    |            |
|      | 15、恢复 PB11/PB12/PD9-AF8-I2C3 相关;                    |    |            |
|      | 16、恢复 PC7-AF10-I2S2_MCK;                            |    |            |
|      | 17、恢复 PB11/PB12/PB13/PC5/PC6/PC7/PC8/PG6/PC9/PC10   |    |            |
|      | -AF7-SPI2 相关;                                       |    |            |
|      | 18、恢复 PB0/PB1-AF9-CAN2 相关。                          |    |            |
|      | 删除 PA1-AF9-FLTI2/PB13-AF9-FLTI2/PC9-AF9-FLTI2       | 21 |            |

芯旺微电子 - 66/66 - Chip**ON**