Cloud Computing [1]

- Access to shared pool of configurable computing resources
- Released with minimal management effort or service provider interaction
- Promotes availability

Properties

- Broad network access
 - Capabilities over network
 - o Accessed through standard mechanisms
 - Use of platforms (e.g. phones, laptops, and tablets)
- Rapid elasticity
 - o Expand/reduce resources specific to service requirement
 - E.g. large number of resources for duration of specific task, released after completion
- Measured service
 - o Automated control and optimisation of resources
 - Take advantage of something (appropriate to type of service)
 - o E.g. storage, processing, bandwidth, and active user accounts
 - o Monitored, controlled, and reported
 - Provides transparency for both provider and consumer
- On-demand self-service
 - Cloud Service Consumer (CSC)
 - Provision computing capabilities
 - E.g. server time and network storage
 - Automatic
 - No human interaction with each service provider
 - On demand resources not permanent parts
- Resource-pooling
 - o Serve multiple CSCs using multi-tenant model
 - Different physical and virtual resources assigned
 - According to consumer demand
 - CSC doesn't know the exact location of provided resources
 - May be able to find country, state, data centre etc.
 - Resources
 - Storage
 - Processing
 - Memory
 - Network bandwidth
 - VMs
 - o Sometimes pool resources between different parts of same organization

Network Penetration Testing [2]

Passive Information Gathering Reconnaissance – OSINT

- Collection of Open-Source Intelligence (OSINT)
 - Passively collecting data about company
 - Info collected from the internet
 - Alias: reconnaissance
- If target is an external web application
 - o Execute info-gathering phase
- If target is an intranet or new website not in production enviro yet
 - OSINT is useless (unless client has asked you for this task separately)

Intranet [3]

- Computer network for sharing info, collab tools, OS, and other services within an organization
- Exclusion of access by outsiders

Information Gathering

- Starts with online research as to target's online presence
- Gather info:
 - o Company
 - Location & address
 - Email addresses
 - Other companies acquired
 - DNS
 - Business type
 - Structure
 - Blog articles
 - Social network data
 - Cached contents on web
 - Info leaks (e.g. passwords, sensitive info)
 - Employee
 - Names
 - Email addresses
 - Numbers
 - Job position in company
 - Social network data
 - Web application
 - Web-based vulnerabilities on dumpsite
 - Web-page crawling
 - Prog languages used
 - Passive scanning using Burp
- Start on target's website find most info there

Web Search Engines

- Use different search engines other than Google
 - o E.g. Chinese, Russian search engines (p. 189)
 - Dark web engines

Google dorks

- Query search engine to reveal sensitive info about the target
- Exploit-DB website
- Accomplish
 - Foothold (secure position) on web server
 - Revealing sensitive directories
 - Search for vulnerable files
 - Search for vulnerable servers
 - Reveal detailed error messages
 - Search for target network's vulnerability data
 - Search for miscellaneous devices that belong to target (e.g. IP cameras cameras with web technologies)
 - Web server information
 - Files with credentials and confidential info
 - Login pages
- Most popular Google dorks queries:
 - Domains/subdomains: site [target domain name]
 - Files: filetype [file extension]
 - Strings in URL: inurl [search criteria in the URL]
 - Strings in the title: intitle [search criteria in the title]

Online tools

- Online vulnerabilities for servers and IOT devices: shodan.io
- Dumped leaked info: pastebin.com
- Test and source code leak: github.com
- Online Swiss Army knife tools: dnsstuff.com
- Info about target website:
 - toolbar.netcraft.com/site_report?url=[target domain name]
 - o searchdns.netcraft.com

Internet of Things (IOT) Devices [4]

- Connect wirelessly to a network
- Ability to transmit data
- E.g. wearables, smart speakers, smart TVs etc.

WHOIS lookup

- Domain name registered in public WHOIS database
- Response to WHOIS request reveals 'juicy' information
 - Names
 - Phone numbers
 - o Email addresses
 - Physical addresses
 - Domain expiry dates
 - DNS servers

Domain name system – DNS enumeration

• Reveal info regarding

- o Domain names and IP addresses assigned to target
- Route between us and destination
- Finds (resolves) domain names to its IP addresses
- Reasons to use:
 - o Find out if DNS server allows zone transfer, if so
 - Reveal hostnames and IPs of internet-accessible systems
 - Brute-force identify domain/subdomains
 - Vulnerable services (e.g. FTP)
 - o Find interesting remote admin panels
 - Find misconfigured and/or testing servers (test.domain-name.com)

Zone Transfer [5]

- Copying contents of zone file on primary to secondary DNS server
- Provides fault tolerance
 - Through synchronization of zone file in primary DNS server with zone file in secondary DNS server
- Zone file [6]
 - "Text based file with a format defined in RFC 1035 and 1034 and stored on DNS server."
 - o Contains:
 - IP
 - Name data
 - MX and other service records
 - o Contain glue data which connects them to other DNS servers

Gathering Email Addresses

- theharverster script
 - Python tool/script
 - Searches for email addresses and domains
 - Uses popular search engines

Active Information Gathering – services enumeration

- Identify
 - Live hosts
 - Services running on those hosts
- Some skip this test go straight to vulnerability assessment
 - Execute fancy scanners (e.g. Nessus or Nexpose)
- Four steps:
 - 1. Get IPs/ranges from client or employer
 - a. If internal project, project manager will help
 - 2. Identify live hosts
 - 3. List open ports/services on each host
 - 4. Probe (monitor) each service for more info

Identifying live hosts

- Identify whether host is either:
 - o Up and running, or
 - Protected by firewall
- Nmap used

Quick ping scan

Identifying open ports/services

- After ping scan
 - o Reveal open ports and services
- Use Nmap script to probe each service (p. 194)
 - TCP scan intranet
 - UDP scan intranet
 - TCP scan from the internet (outside boundary)
 - UDP scan from internet (outside boundary)

Service probing and enumeration

- Take information from above and probe aggressively (pp. 195-198)
- Can be time-consuming

Vulnerability assessment

- Some Nmap scripts will check for vulnerabilities
 - E.g. entering option –script=http*
 - Execute all HTTP scripts, including ones that check for vulnerabilities, e.g. http=vuln-cve2010-2861 (https://nmap.org/nsedoc/scripts/http-vuln-cve2010-2861.html)
- Automatic scanners are used (Nessus or Nexpose)
 - Offer scanners in the cloud as well
 - E.g. InsightVM
 - o Identify vulnerabilities in the network infrastructure
- Role is taking the results and make sure the flaws exist (that they're **not false positives**)

OpenVas

- Used to practice vulnerability assessment
- Is a vulnerability scanner

Exploitation

- Exploit vulnerability found target machine
- Gets a remote shell

Finding exploits

- Vulnerability will tell you where to find exploit in order to replicate it
- Where to find:
 - o Google
 - Exploit-db at exploit-db.com
 - Searchsploit tool
 - Metasploit (search command)
 - Security Focus at sercurityfocus.com
 - GitHub

Listener setup

- Before uploading and executing the payload
 - Set up and execute a listener (p.200)
 - "A listener is a component that waits for an incoming connection from an exploited system" [7]

Generating a shell payload using msfvenom

• (p. 201)

Custom Shells

• Can create your own shells (p. 202)

Privilege escalation

- After exploiting vulnerability, most of the time, you will get a limited shell
- Get admin account on victim machine
- Methodologies:
 - o Transfer file to victim machine that will make you have root shell
 - Copy-pasting a PowerShell payload (e.g. Empire PowerShell)
 - Use Metasploit/Meterpreter to escalate privileges
 - Manually searching for misconfigured parameters to get an admin/root shell

File Transfers

- Example:
 - o Have limited shell into victim's machine
 - OS is Linux
 - Upload Dirty COW to remote server to execute
 - o Steps (p. 203)
- Transfer file using PowerShell on Windows

Using PowerShell

• Script on (p. 204)

Using VBScript

- For older versions of Windows with no PowerShell
- Script on (p. 204)

Administrator or root

- Time consuming to type all these commands
- Upload scripted file to victim's machine (from File Transfers)
- Windows privilege escalation exploits often written in Python
 - o Convert to executable
- (pp. 205-206)

Cloud Penetration Testing [8]

- Cloud-based services preferred choice for businesses because:
 - Low initial cost
 - Scalability
 - Speed
- Some services have their own policies with penetration tests
- Technical and legal challenges to perform these tests:
 - Don't own the cloud infrastructure/platform/software as an entity but as a service

Why clouds are vulnerable

- Insecure APIs
 - Lead to a large-scale data leak (E.g. Venmo, Airtel etc.)

- o HTTP methods like PUT, POST, DELETE in APIs
 - Allow uploading malware on server or delete data
- Improper access control
- Lack of input sanitisation
- Server misconfigurations
 - o Capital One data leak
 - Compromise data of roughly 100 million Americans and 6 million Canadians
 - Common
 - Improper permissions
 - Not encrypting data
 - Differentiation between private & public data
- Weak credentials
 - o Brute force attacks
 - Automated tools to make guesses
 - Complete account takeover
 - Reused passwords
 - Easily rememberable passwords
 - Verified during cloud penetration testing
- Outdated software
 - o Don't use a streamlined update procedure
 - Disable auto updates themselves
 - Cloud services outdated (identify using automated scanners)
- Insecure coding practices
 - o Build cloud infrastructure build for as cheap as possible
 - o Bugs like SQLi, XSS, CSRF
 - Most common labelled as OWASP top 10
 - Root cause for compromission of cloud-based services

Challenges in cloud penetration testing

- Lack of transparency
 - o For uncommon cloud servicers, datacentres managed by third parties
 - o User unaware of where data is stored, and hardware/software config being used
 - Exposes to security risks
 - E.g. provider may be hoarding sensitive data without user knowing
 - o Popular CSPs like AWS, Azure GCP, etc. known to conduct in-house security audits
 - Lack of transparency means
 - Resources cannot be audited by security auditor of your choice
 - May be unable to respond if underlying resources are hacked
- Resource sharing
 - Share resources across multiple accounts
 - Challenging during cloud penetration testing
 - Sometimes don't take steps for segmentation of all users
 - If need to be compliant with PCI DSS (ensure all companies access, process store or transmit credit card information [11])
 - All other accounts sharing resource and CSP should be PCI DSS compliant too

- o Multiple ways to implement cloud infrastructure
- Complexity hinders process of cloud penetration testing
- Policy restrictions
 - Each CSP has its own policy with cloud penetration testing
 - Defines endpoints and types of tests
 - o Some require submitting an advanced notice
 - Limit scope of conducting them
 - Popular CSPs
 - AWS
 - Can be performed without prior notice
 - Attacks not permitted:
 - o DOS and DDoS
 - DNS zone walking
 - Port, Protocol, or Request flooding attacks
 - If performing a network stress test separate policy
 - Azure
 - Allowed on eight Microsoft products
 - Attacks not permitted:
 - Penetration tests on other azure customers or data other than yours
 - DOS and DDoS or tests that create huge traffic
 - o Intensive network fuzzing attacks on Azure VMs
 - Phishing or social engineering attacks against Microsoft's employees
 - Violating Acceptable Use Policy
 - GCP
 - Follow Acceptable Use Policy and ToS
 - No need to inform Google before conducting tests
 - Attacks not permitted
 - Piracy or any illegal activity
 - o Phishing
 - Spamming
 - Distributing trojans, ransomware, etc during the tests
 - Violating rights of other GCP users or conducting penetration tests on them
 - Violating or trying to circumvent ToS
 - Interfere with equipment supporting GCP
 - Other factors
 - One machine can host multiple VMs
 - Adds to the scale of cloud pen testing
 - Scope of tests vary from user software to service provider software
 - Add complexity
 - When encryption added
 - Company may not be willing to share encryption keys
 - Not good for auditors (investigates financial records)

Step-by-Step Cloud Penetration Testing

- 1. Understand cloud service provider's policies
- 2. Create testing plan
 - Map out endpoints for testing
 - E.g. user interface, APIs, subnetworks etc
 - o Which endpoints to exclude based on policy, user permissions etc.
 - How well app server and VMs can take the load of the tests
 - o Laws that need to be followed while testing
 - Which tools to use and types of tests on which endpoints
 - Automated or Manual
 - o Get approval from client & inform when to begin
- 3. Execute plan
 - o Tools
 - AWS Inspector
 - Customized security solution for AWS
 - Basic min.
 - Preliminary
 - S3Scanner
 - Open-source
 - Scan S3 buckets for misconfigs and dump their data
 - MicroBurst
 - Collection of PowerShell scripts
 - Scan Azure services for security issues
 - Azucar
 - Uses PowerShell
 - For Azure
 - Cloudsploit
 - Open-source
 - Scan multiple types of CSPs (e.g. Azure, AWS, GCP, OCI, etc.)
- 4. Detect and fix vulnerabilities
 - Some automated tools may generate false positives
 - Verify each is exploitable before reporting it
 - Repeat for each network layer
 - Report generation
 - Present vulnerabilities in an understandable matter
 - So that they take the vulnerabilities seriously or not
 - Make it well organized and categorized
 - Based on type and level of threat
 - o Get in touch with developers to patch them
 - Changes from minor to major
 - o If no vulnerability detected, change plan, and perform more elaborate tests

Penetration Testing Methodologies

- Services fall into
 - Infrastructure (laaS)
 - Platform (PaaS)
 - Software as a service (SaaS)

- End user doesn't own environment
- Policies
 - Security testing for User-Operated Services
 - Excluded tactics related to disruption of business continuity
 - E.g. DoS
 - Vendor Operated Services
 - Cloud offerings owned and managed by third-party vendor
 - Restricted to implementation and config of cloud environment
 - Not underlying infrastructure
 - E.g. services like Cloudfront and API Gateway config may be pen tested
 - Hosting infrastructure isn't allowed
 - EC2 often pen tested, specifics allowed:
 - APIs (e.g. HTTP/HTTPS)
 - Web and mobile applications hosted by organization
 - Application server and associated stack (e.g. prog langs like Python, React)
 - VMs and OS
 - O What can't be tested:
 - Legal and technological constraints
 - Services and applications that belong to AWS
 - Physical hardware, underlying infrastructure, or facility that belong to AWS
 - EC2 environments that belong to other orgs
 - Security appliances managed by other vendors without permission
 - Amazon's small or micro Relational Database Service (RDS)
- Differences from traditional pen testing
 - o Refer to ownership of systems
 - o Violation of AWS acceptable use policies with traditional 'ethical hacking'
 - o Only focus of user-owned assets
 - o E.g.
- Compromising AWS IAM keys
- Testing S3 bucket logs
- Specific to AWS cloud
- Planning pen test within cloud
 - 1. Define scope, including AWS environment and target systems
 - 2. Run your own preliminary
 - 3. Determine type of pen test you'd like conduced (e.g. black box, white box, grey box)
 - 4. Outline expectations for both internal stakeholders and company
 - 5. Timeline for assessment, receive formal report, potential <u>remediation</u>, and follow-up testing
 - 6. Develop protocol and rules of pen test
 - a. Reveals if client may already have been breached or is under an ongoing (live) attack
 - 7. Obtain written approval to conduct test by client
 - a. Fill out pen test request form
 - b. Tell AWS the date testing will take place
 - c. Tell AWS IP range the scan or testing will come from
 - d. Tell AWS IP range being tested (scope)

Remediation Testing [12]

- What is it
 - Retesting vulnerabilities during pen test
 - Ensure issues arose during pen test are properly identified, fixed and no longer a threat
- Goals
 - Ensure solution have been put in place to resolve identified issues have been implemented properly
 - Vulnerabilities secured
 - o Ensure issues are no longer there that appeared in pen test

Web Application Vulnerabilities

File Inclusion

- Include file in URL (using path)
 - o File local to server Local File Inclusion
 - o Or, the path can point to a remote file Remote File Inclusion

Local File Inclusion

- Allow directory traversal characters (e.g. ../) injected
- Example:
 - o http://domain_name/index.php?file=../../../etc/passwd

Remote File Inclusion

• Remote file outside boundaries of web server

Cross-Site Scripting

- XSS
- Exploited when attacker can successfully execute any type of script on victim's browser
- Why the flaws exist
 - o Didn't validate request
 - o Incorrectly encoded response of application
- JavaScript most common
- Types
 - Stored
 - o Reflected
 - o DOM Injection

Reflected XSS

- Page displays user something that can be manipulated dynamically through:
 - o URL
 - o Or, body of page

Bibliography

- 1. Stallings, W. and Brown, L., *Computer Security Principles and* Practice (2018), 4th Edition, Pearson, Hudson Street, New York, pp. 446-470 [Accessed 15 Oct. 2021]
- 2. Khawaja, G., *Practical Web Penetration Testing (2018)*, Packt Publishing, Birmingham, [online] pp. 187-206 [Accessed 16 Oct. 2021]

- 3. Intranet (2021), [Online] Available at: https://en.wikipedia.org/wiki/Intranet [Accessed 16 Oct. 2021]
- Posey, B., IoT devices (internet of things devices) (2021), [Online] Available at: https://internetofthingsagenda.techtarget.com/definition/IoT-device [Accessed 16 Oct. 2021]
- Gregg. M., Zone Transfer (2006), [Online] Available at: https://www.sciencedirect.com/topics/computer-science/zone-transfer#:~:text=Zone%20transfer%20is%20the%20process,in%20a%20secondary%20DNS%20server. [Accessed 16 Oct. 2021]
- Steve, DNS Zones and Zone Files Explained (2020), [Online] Available at: http://www.steves-internet-guide.com/dns-zones-explained/#:~:text=A%20zone%20file%20is%20a,to%20the%20other%20DNS%20servers.

 [Accessed 16 Oct. 2021]
- 7. *Listener*, [Online] Available at: https://docs.rapid7.com/metasploit/listeners/ [Accessed 16 Oct. 2021]
- 8. Varghese, J., A Complete Guide on Cloud Penetration Testing (2021), [Online] Available at: https://sussex.primo.exlibrisgroup.com/discovery/fulldisplay?docid=cdi_askewsholts_vlebo oks 9781788628723&context=PC&vid=44SUS_INST:44SUS_VU1&lang=en&search_scope=M ylnst_and_Cl_no_BLDS&adaptor=Primo%20Central&tab=Mylnst_and_Cl_no_BLDS&query=a_ny,contains,Gus%20Khawaja&offset=0 [Accessed 17 Oct. 2021]
- 9. Penetration Testing Methodologies, [Online] Available at: https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies [Accessed 17 Oct. 2021]
- Caudill, B., Penetration Testing in the AWS Cloud: What you Need to Know, [Online] Available at: https://rhinosecuritylabs.com/penetration-testing/penetration-testing-aws-cloud-need-know/ [Accessed 17 Oct. 2021]
- 11. What is PCI?, [Online] Available at: https://www.pcicomplianceguide.org/faq/#1 [Accessed 17 Oct. 2021]
- Borrego, A., Penetration Testing Remediation FAQ's (2020), Available at: https://www.emagined.com/blog/penetration-testing-remediation-faqs [Accessed 18 Oct. 2021]