

Fundada en 1936

CÁLCULO DIFERENCIAL

Centro de Ciencia Básica Universidad Pontificia Bolivariana

Vigilada Mineducación

Fundada en 1936

ENCUENTRO 15.1

Sección 4.2: Teorema del valor medio, teorema de Rolle, corolarios.

Teorema de Rolle Si f es una función que satisface las siguientes tres hipótesis:

- **1.** f es continua sobre el intervalo cerrado [a, b]
- **2.** f es derivable sobre el intervalo abierto (a, b)
- **3.** f(a) = f(b)

entonces hay un número c en (a, b) tal que f'(c) = 0.

Fundada en 1936

DEMOSTRACIÓN Hay tres casos:

CASO I f(x) = k, una constante

Entonces f'(x) = 0, por lo que el número c puede tomar *cualquier* número en (a, b).

CASO II f(x) > f(a) para alguna x en (a, b) [como en la figura 1b) o c)]

Por el teorema del valor extremo (que podemos aplicar por la hipótesis 1), f tiene un valor máximo en algún lugar de [a, b]. Ya que f(a) = f(b), debe alcanzar este valor máximo en un número c en el intervalo abierto (a, b), entonces f tiene un máximo local en c y, por la hipótesis 2, f es derivable en c. Por tanto, f'(c) = 0 por el teorema de Fermat.

CASO III f(x) < f(a) para algún x en (a, b) [como en la figura 1c) o d)]

Por el teorema del valor extremo, f tiene un valor mínimo en [a, b] y, como f(a) = f(b), alcanza este valor mínimo en un número x = c en (a, b). Otra vez, f'(c) = 0 por el teorema de Fermat.

EJEMPLO 1 Tangentes horizontales de un polinomio cúbico

La función polinomial

$$f(x) = \frac{x^3}{3} - 3x$$

graficada en la figura 4.12, es continua en todo punto de [-3, 3] y es diferenciable en todo punto de (-3, 3). Como f(-3) = f(3) = 0, el teorema de Rolle dice que f' debe ser cero por lo menos en un punto del intervalo abierto entre a = -3 y b = 3. De hecho, $f'(x) = x^2 - 3$ es cero dos veces en este intervalo, una en $x = -\sqrt{3}$, y la otra en $x = \sqrt{3}$.

FIGURA 4.12 Como predice el teorema de Rolle, esta curva tiene tangentes horizontales entre los puntos donde cruza el eje *x* (ejemplo 1).

EJEMPLO 1 Vamos a aplicar el teorema de Rolle a la función posición s = f(t) de un objeto en movimiento. Si el objeto está en el mismo lugar en dos instantes diferentes t = a y t = b, entonces f(a) = f(b). El teorema de Rolle señala que hay algún instante de tiempo t = c entre a y b cuando f'(c) = 0; es decir, la velocidad es 0. (En particular, puede verse que esto es cierto cuando se lanza una bola directamente hacia arriba.)

Fundada en 1936

EJEMPLO 2 Demuestre que la ecuación $x^3 + x - 1 = 0$ tiene exactamente una raíz real.

SOLUCIÓN Primero utilizamos el teorema del valor intermedio (2.5.10) para demostrar que existe una raíz. Sea $f(x) = x^3 + x - 1$. Entonces f(0) = -1 < 0 y f(1) = 1 > 0. Dado que f es una función polinomial, es continua, por lo que el teorema del valor intermedio establece que existe un número x = c entre 0 y 1 tal que f(c) = 0, de lo que se deduce que la ecuación dada tiene una raíz.

Para demostrar que la ecuación no tiene otras raíces reales, utilizamos el teorema de Rolle y argumentamos por contradicción. Supongamos que tenemos dos raíces a y b. Entonces f(a) = 0 = f(b) y, dado que f es una función polinomial, es derivable en (a, b) y continua sobre [a, b]. Por tanto, por el teorema de Rolle, existe un número x = c entre a y b tal que f'(c) = 0. Pero

$$f'(x) = 3x^2 + 1 \ge 1$$
 para toda x

(ya que $x^2 \ge 0$), por lo que f'(x) nunca puede ser 0. Esto conduce a una contradicción, por tanto, la ecuación no puede tener dos raíces reales.

La figura 2 muestra la gráfica de la función $f(x) = x^3 + x - 1$ discutida en el ejemplo 2. El teorema de Rolle muestra que no importa cuánto ampliemos el rectángulo de vista, nunca podremos encontrar una segunda intersección con el eje x.

Teorema del valor medio Si f es una función que satisface las siguientes hipótesis

- **1.** f es continua sobre el intervalo cerrado [a, b]
- **2**. f es derivable sobre el intervalo abierto (a, b)

entonces existe un número x = c en (a, b) tal que

1

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

o, equivalentemente,

2

$$f(b) - f(a) = f'(c)(b - a)$$

Fundada en 1936

Tarea

Consultar en qué consiste el Teorema Generalizado del Valor Medio (TGVM)

Para ilustrar el teorema del valor medio con una función específica, consideremos $f(x) = x^3 - x$, a = 0, b = 2. Puesto que f es una función polinomial, es continua y derivable para toda x, así que es ciertamente continua sobre [0, 2] y derivable sobre (0, 2). Por tanto, por el teorema del valor medio, existe un número x = c en (0, 2) tal que

Fundada en 1936

$$f(2) - f(0) = f'(c)(2 - 0)$$

Ahora, f(2) = 6, f(0) = 0 y $f'(x) = 3x^2 - 1$, así que la ecuación resulta

$$6 = (3c^2 - 1)2 = 6c^2 - 2$$

que da $c^2 = \frac{4}{3}$, esto es, $c = \pm 2/\sqrt{3}$. Pero x = c debe estar en (0, 2), así que $c = 2/\sqrt{3}$. La figura 6 ilustra este cálculo: la recta tangente en este valor de x = c es paralela a la recta secante OB.

FIGURA 6

V EJEMPLO 4 Si un objeto se mueve en línea recta de acuerdo con la función posición s = f(t), entonces la velocidad promedio entre t = a y t = b es

$$\frac{f(b) - f(a)}{b - a}$$

y la velocidad en t = c es f'(c). Así, el teorema del valor medio (en la forma de la ecuación 1) nos indica que en algún momento t = c entre a y b la velocidad instantánea f'(c) es igual a la velocidad promedio. Por ejemplo, si un automóvil viajaba 180km en 2 horas, entonces el velocímetro debe tener una lectura de 90km/h por lo menos una vez.

En general, el teorema del valor medio puede interpretarse diciendo que existe un número en el cual la razón de cambio instantáneo es igual a la razón de cambio promedio a lo largo de un intervalo.

El principal significado del teorema del valor medio es que nos permite obtener información acerca de una función a partir de aquella acerca de su derivada. En el caso siguiente se proporciona un ejemplo de este principio.

V EJEMPLO 5 Suponga que f(0) = -3 y $f'(x) \le 5$ para todos los valores de x. ¿Qué tan grande puede ser f(2)?

SOLUCIÓN Partimos del hecho de que f es derivable (y, por tanto, continua) en todo su dominio. En particular, podemos aplicar el teorema del valor medio en el intervalo [0, 2]. Existe un número x = c tal que

$$f(2) - f(0) = f'(c)(2 - 0)$$

así que

$$f(2) = f(0) + 2f'(c) = -3 + 2f'(c)$$

Tenemos que $f'(x) \le 5$ para toda x, así que, en particular, sabemos que $f'(c) \le 5$. Multiplicando ambos lados de esta desigualdad por 2, tenemos $2f'(c) \le 10$, así que

$$f(2) = -3 + 2f'(c) \le -3 + 10 = 7$$

El mayor valor posible para f(2) es 7.

Teorema Si f'(x) = 0 para toda x en un intervalo (a, b), entonces f es constante en (a, b).

Fundada en 1936

DEMOSTRACIÓN Sean x_1 y x_2 dos números cualesquier en (a, b), con $x_1 < x_2$. Dado que f es derivable sobre (a, b), debe ser derivable sobre (x_1, x_2) y continua sobre $[x_1, x_2]$. Aplicando el teorema del valor medio a f sobre el intervalo $[x_1, x_2]$, obtenemos un número x = c tal que $x_1 < c < x_2$ y

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

Puesto que f'(x) = 0 para toda x, tenemos f'(c) = 0, así que la ecuación 6 resulta

$$f(x_2) - f(x_1) = 0$$
 o $f(x_2) = f(x_1)$

Por tanto, f tiene el mismo valor que *cualesquiera* dos números x_1 y x_2 en (a, b). Esto significa que f es constante sobre (a, b).

7 Corolario Si f'(x) = g'(x) para toda x en un intervalo (a, b), entonces f - g es constante sobre (a, b); esto es, f(x) = g(x) + c donde c es una constante.

Fundada en 1936

DEMOSTRACIÓN Sea
$$F(x) = f(x) - g(x)$$
. Entonces

$$F'(x) = f'(x) - g'(x) = 0$$

para toda x en (a, b). Así, por el teorema 5, f es constante; esto es, f - g es constante.

NOTA Cuidado al utilizar el teorema 5. Sea

$$f(x) = \frac{x}{|x|} = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$

El dominio de f es $D = \{x \mid x \neq 0\}$ y f'(x) = 0 para toda x en D. Pero f, evidentemente, no es una función constante. Esto no contradice el teorema 5 porque D no es un intervalo. Observe que f es constante sobre el intervalo $(0, \infty)$ y también sobre el intervalo $(-\infty, 0)$.

EJEMPLO 6 Demuestre la identidad $\tan^{-1} x + \cot^{-1} x = \pi/2$.

SOLUCIÓN Aunque no es necesario utilizar el cálculo para demostrar esta identidad, la demostración mediante él es muy sencilla. Si $f(x) = \tan^{-1} x + \cot^{-1} x$, entonces

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

Fundada en 1936

para todos los valores de x. Por tanto, f(x) = C, una constante. Para determinar el valor de C, ponemos x = 1 [porque podemos evaluar f(1) exactamente]. Entonces

$$C = f(1) = \tan^{-1} 1 + \cot^{-1} 1 = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

Así, $\tan^{-1} x + \cot^{-1} x = \pi/2$.

10. Sea $f(x) = \tan x$. Demuestre que $f(0) = f(\pi)$ pero no hay un número c en $(0, \pi)$ tales que f'(c) = 0. ¿Por qué esto no contradice el teorema de Rolle?

Fundada en 1936

i)
$$f(x)$$
 no es continua en $x = \frac{\pi}{2} \in [0, \pi]$

$$(ii)$$
 $f'(x) = sec^2x$. $f(x)$ no es diferenciable en $x = \frac{\pi}{2} \in (0, \pi)$

$$iii) f(0) = \tan(0) = 0; f(\pi) = \tan(\pi) = 0$$

f(x) no cumple con las hipótesis del Teorema de Rolle

$$f'(c) = 0$$
; $sec^2c = 0$.

No existe algún c que haga que f'(c) = 0

Verifique que la función $f(x) = x^3 - x^2 - 6x + 2$ satisface las tres hipótesis del teorema de Rolle en el intervalo [0, 3]. Después encuentre todos los números c que satisfacen la conclusión del teorema de Rolle.

Fundada en 1936

Solución

Veamos si f(x) cumple con las hipótesis del teorema de Rolle:

- 1. f es continua en [0, 3] por ser una función polinómica.
- 2. f es derivable en (0, 3) por ser una función polinómica.
- 3. f(a) = f(0) = 2 f(b) = f(3) = 27 - 9 - 18 + 2 = 2Luego f(0) = f(3) = 2

Como se cumplen las tres hipótesis, procedemos a hallar los valores de $c \in (0, 3)$, tales que f'(c) = 0

$$f'(x) = 3x^2 - 2x - 6$$

$$f'(c) = 3c^2 - 2c - 6 = 0$$

Resolviendo esta ecuación, se obtiene $c=\frac{1+\sqrt{19}}{3}\in(0,3)$ y $c=\frac{1-\sqrt{19}}{3}\notin(0,3)$

En este caso, $c = \frac{1+\sqrt{19}}{3} \in (0,3)$, satisface la conclusión del teorema de Rolle.

Verifique que la función $f(x) = \sqrt{x} - \frac{1}{3}x$ satisface las tres hipótesis del teorema de Rolle en el intervalo [0, 9]. Después encuentre todos los números c que satisfacen la conclusión del teorema de Rolle.

Fundada en 1936

Solución

Veamos si f(x) cumple con las hipótesis del teorema de Rolle:

- 1. El dominio de f es $[0, +\infty)$ y por lo tanto es continua en [0, 9]
- 2. $f'(x) = \frac{1}{2\sqrt{x}} \frac{1}{3}$ y se concluye que f es derivable en (0, 9).
- 3. f(a) = f(0) = 0 f(b) = f(9) = 3 - 3 = 0Luego f(0) = f(3) = 0

Como se cumplen las tres hipótesis, procedemos a hallar los valores de $c \in (0, 9)$, tales que f'(c) = 0

$$f'(c) = \frac{1}{2\sqrt{c}} - \frac{1}{3} = 0$$

Resolviendo esta ecuación, se obtiene $c = \frac{9}{4} \in (0,9)$ y satisface la conclusión del teorema de Rolle.

Sea $f(x) = 1 - x^{2/3}$. Verifique que f(-1) = f(1), pero no hay ningún número en (-1, 1) tal que f'(c) = 0. ¿Por qué no contradice esto el teorema de Rolle?

Fundada en 1936

1.
$$f(-1) = 1 - (-1)^{\frac{2}{3}} = 1 - 1 = 0$$

 $f(1) = 1 - (1)^{\frac{2}{3}} = 1 - 1 = 0$

2. Sea
$$f'(x) = -\frac{2}{3}x^{-1/3}$$

 $f'(c) = -\frac{2}{3}c^{-1/3} = 0$, de donde surge una contradicción (-2 = 0), y por lo tanto no existe $c \in (-1, 1)$

No es una contradicción con el teorema de Rolle por que la función no es diferenciable en x = 0 ϵ (-1, 1)

14 Verifique que la función satisface las hipótesis del teorema del valor medio en el intervalo dado. Después encuentre todos los números *c* que satisfacen la conclusión del teorema del valor medio.

$$f(x) = \frac{x}{x+2}$$
, [1, 4]

- i) f(x) es continua en [1, 4]
- ii) f(x) es diferenciable en (1,4)

$$f'(x) = \frac{x+2-x}{(x+2)^2} = \frac{2}{(x+2)^2}$$

$$f'(c) = \frac{2}{(c+2)^2} = \frac{f(4) - f(1)}{4 - 1} = \frac{\frac{2}{3} - \frac{1}{3}}{3}$$

$$18 = (c+2)^2$$
$$c+2 = \pm 3\sqrt{2}$$

$$c1 = 3\sqrt{2} - 2 \in (1, 4)$$
, cumple con TVM
 $c2 = -3\sqrt{2} - 2 \notin (1, 4)$, no cumple con TVM

Verifique que la función $f(x) = x^3 - 3x + 2$ satisface las hipótesis del teorema del valor medio en el intervalo [-2, 2]. Después encuentre todos los números c que satisfacen la conclusión del teorema del valor medio.

Fundada en 1936

Solución

Veamos si f(x) cumple con las hipótesis del teorema de Rolle:

- 1. f es continua en [-2, 2] por ser una función polinómica.
- 2. f es derivable en (-2, 2) por ser una función polinómica.

Como se cumplen las hipótesis, procedemos a hallar los valores de $c \in (-2, 2)$, tales que $f'(c) = \frac{f(b) - f(a)}{b - a}$

$$f(a) = f(-2) = -8 + 6 + 2 = 0, f(b) = f(2) = 8 - 6 + 2 = 4$$

$$f'(x) = 3x^2 - 3$$
$$f'(c) = 3c^2 - 3$$

Reemplazando: $3c^2 - 3 = \frac{4-0}{2-(-2)} = 1$, $3c^2 = 4$

 $c=\pm\sqrt{\frac{4}{3}}\in(-2,2)$ cumplen con la conclusión del teorema del valor medio

Sea $f(x) = (x-3)^{-2}$. Verifique que no hay ningún valor de $x = c \in (1,4)$ tal que f(4) - f(1) = f'(c)(4-1). ¿Por qué no contradice esto el teorema del valor medio?

Fundada en 1936

Sea
$$f(4) - f(1) = f'(c)(4 - 1)$$

Con $f(1) = (1 - 3)^{-2} = (-2)^{-2} = \frac{1}{4}$, $f(4) = (4 - 3)^{-2} = (1)^{-2} = 1$

$$f'(x) = -2(x-3)^{-3}(1) = -\frac{2}{(x-3)^3}$$
$$f'(c) = -\frac{2}{(c-3)^3}$$

Reemplazando: $1 - \frac{1}{4} = -\frac{6}{(c-3)^3}$ de allí: $\frac{3}{4} = -\frac{6}{(c-3)^3}$ o también: $(c-3)^3 = -8$ y resolviendo la ecuación: c=1

Como $c=1 \notin (1,4)$, no existe un $c \in (1,4)$ que cumpla con la condición del teorema del valor medio.

Como la función $f(x) = (x-3)^{-2}$ no es continua en $x = 3 \in [1,4]$, se incumple la primera hipótesis del teorema del valor medio, por lo tanto no se contradice la conclusión del teorema.

26. Suponga que $3 \le f'(x) \le 5$ para todos los valores de x. Demuestre que $18 \le f(8) - f(2) \le 30$.

$$3 \le f'(x) \le 5$$

Reemplazando:

$$3 \le \frac{f(8) - f(2)}{6} \le 5$$

$$18 \le f(8) - f(2) \le 30$$

Ejercicios

1. Se muestra la gráfica de una función *f*. Verifique que la función satisface las tres hipótesis del teorema de Rolle en el intervalo [0, 8]. Después encuentre todos los números *c* en ese intervalo, que satisfacen la conclusión del teorema de Rolle.

5–8 Verifique que la función satisface las tres hipótesis del teorema de Rolle en el intervalo dado. Luego encuentre todos los números *c* que satisfacen la conclusión del teorema de Rolle.

5.
$$f(x) = 2x^2 - 4x + 5$$
, [-1, 3]

8.
$$f(x) = x + 1/x$$
, $\left[\frac{1}{2}, 2\right]$

Fundada en 1936

3. Se muestra la gráfica de una función g.

- (a) Verifique que *g* satisface las hipótesis del teorema de valor medio en el intervalo [0, 8].
- (b) Calcule el(los) valor(es) de *c* que satisfacen la conclusión del teorema de valor medio en el intervalo [0, 8].
- (c) Calcule el(los) valor(es) de *c* que satisfacen la conclusión del teorema de valor medio en el intervalo [2, 6].

Ejercicios

- **9.** Sea $f(x) = 1 x^{2/3}$. Demuestre que f(-1) = f(1), pero no hay ningún número c en (-1, 1) tal que f'(c) = 0. ¿Por qué no contradice esto el teorema de Rolle?
- **11–14** Verifique que la función satisface las hipótesis del teorema del valor medio en el intervalo dado. Después encuentre todos los números *c* que satisfacen la conclusión del teorema del valor medio.

11.
$$f(x) = 2x^2 - 3x + 1$$
, [0, 2]

- **13.** $f(x) = e^{-2x}$, [0, 3]
- **17.** Sea $f(x) = (x 3)^{-2}$. Demuestre que no hay ningún valor de c en (1, 4) tal que f(4) f(1) = f'(c)(4 1). ¿Por qué no contradice esto el teorema del valor medio?
- **25.** Si f(1) = 10 y $f'(x) \ge 2$ para $1 \le x \le 4$, ¿qué tan pequeño puede posiblemente ser f(4)?
- **27.** ¿Existe una función f tal que f(0) = -1, f(2) = 4 y $f'(x) \le 2$ para toda x?

REFERENCIA

Fundada en 1936

Stewart, J., Cálculo de una variable Trascendentes tempranas, Cengage Learning. Octava edición, 2018.

