MATH 355: HOMEWORK 3

ALEXANDER LEE

Exercise 1 (2.2.1). Example: consider the sequence (a_n) , where $a_n = (-1)^n$. The sequence verconges to 1 if we set $\epsilon = 3$. This sequence is also divergent. Since this sequence also verconges to -1 if we set $\epsilon = 3$, a sequence can verconge to two different values. This strange definition describes that a sequence is bounded.

Exercise 2 (2.2.2). (a) Let $\epsilon>0$ be arbitrary. Choose $N\in\mathbb{N}$ such that $N>\frac{3}{25\epsilon}-\frac{4}{5}.$ Let $n\geq N.$ Then,

$$\begin{vmatrix} a_n - \frac{2}{5} \end{vmatrix} = \begin{vmatrix} \frac{2n+1}{5n+4} - \frac{2}{5} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{5(2n+1) - 2(5n+4)}{25n+20} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{10n+5-10n-8}{25n+20} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{-3}{25n+20} \end{vmatrix}$$

$$= \frac{3}{25n+20}$$

$$\leq \frac{3}{25N+20}$$

$$\leq \frac{3}{25(\frac{3}{25\epsilon} - \frac{4}{5}) + 20}$$

$$= \frac{3}{\frac{3}{\epsilon} - 20 + 20}$$

$$= \epsilon.$$

Hence, $\left|a_n - \frac{2}{5}\right| < \epsilon$.

(b) Let $\epsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $N > \frac{2}{\epsilon}$. Let $n \geq N$. Then,

Choose
$$|A| = |A| + |A|$$

Hence, $|a_n - 0| < \epsilon$.

(c) Let $\epsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon^3}$. Let $n \geq N$. Then,

$$|a_n - 0| = \left| \frac{\sin(n^2)}{\sqrt[3]{n}} \right|$$

$$\leq \frac{1}{\sqrt[3]{n}}$$

$$\leq \frac{1}{\sqrt[3]{N}}$$

$$< \frac{1}{\sqrt[3]{\frac{1}{\epsilon^3}}}$$

$$= \epsilon.$$

Hence, $|a_n - 0| < \epsilon$.

- **Exercise 3** (2.2.4). (a) Consider the sequence (a_n) , where $a_n = (-1)^n$. (a_n) has an infinite number of ones, but does not converge to one since it diverges.
 - (b) TODO
 - (c) TODO

Exercise 4 (2.2.5). (a) Let $a_n = [[5/n]]$. We claim that $\lim a_n = 0$. Let $\epsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $N > 5/\epsilon$. Let $n \geq N$. Then,

$$|a_n - 0| = |[[5/n]]|$$

$$= [[5/n]]$$

$$\leq 5/n$$

$$\leq 5/N$$

$$< 5/(5/\epsilon)$$

$$= \epsilon.$$

Hence, $|a_n - 0| < \epsilon$.

(b) Let $a_n=[[(12+4n)/3n]]$. We claim that $\lim a_n=1$. Let $\epsilon>0$ be arbitrary. Choose $N\in\mathbb{N}$ such that $N>\frac{4}{\epsilon-\frac{1}{3}}$. Let $n\geq N$. Then,

$$\begin{aligned} |a_n-1| &= |[[(12+4n)/3n]]-1| \\ &= |[[(12+4n)/3n-1]]| \\ &= |[[(12+4n-3n)/3n]]| \\ &= |[[(12+n)/3n]]| \\ &= [[(12+n)/3n]] \\ &\leq (12+n)/3n \\ &= 4/n+1/3 \\ &\leq 4/N+1/3 \\ &\leq 4/(4/(\epsilon-1/3))+1/3 \\ &= \epsilon-1/3+1/3 \\ &= \epsilon. \end{aligned}$$

Hence, $|a_n - 1| < \epsilon$.

Exercise 5 (2.2.7). (a) The sequence $(-1)^n$ is frequently in the set $\{1\}$.

- (b) The definition of eventually is stronger than that of frequently, since eventually implies frequently.
- (c) A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, (a_n) is eventually in the set $V_{\epsilon}(a)$. Eventually is the term we want.
- (d) (x_n) is not necessarily eventually in the interval (1.9, 2.1). For instance, consider the sequence $(1, 2, 1, 2, \ldots)$. However, (x_n) is frequently in (1.9, 2.1).