Task1

November 11, 2018

Напишем функцию, которая будет строить график, где для каждого $n\leqslant 100$ будет изображен доверительный интервал уровня доверия α для параметра θ , а также истинное значение параметра θ .

```
In [3]: def build_conf_interval(sample, left_border, right_border,
                                theta, ylims=None, start=1):
            plt.figure(figsize=(12, 6))
            x = range(start, N + 1)
            plt.fill_between(x, [left_border(sample[:n]) for n in x],
                             [right_border(sample[:n]) for n in x],
                             label="Confidence interval")
            if ylims:
                plt.ylim(ylims[0], ylims[1])
            plt.plot(x, [theta] * len(x), 'r', label=r"real $\theta$")
            plt.legend(loc="best")
            plt.xlabel("n")
            plt.ylabel(r"$\theta$")
            plt.title(r""Доверительный интервал уровня
            доверия 0.95 для параметра $\theta$ в зависимости от размера выборки""")
            plt.show();
```

Также напишем функцию, которая для заданного распределения и доверительного интервала оценивает ворятность попадания истинного значения θ в данный интервал. Для этого мы сгенерируем 10000 выборок размера 100 (что является большим количеством и будет достаточным для оценки) и для каждой проверим попадает ли истинное значение параметра в построенный по данной выборке интервал. После этого найдем процент выборок, для которых параметр попал в интервал и таким образом оценим вероятность.

```
M = 10000
for _ in range(M):
    sample = rv.rvs(N)
    if left_border(sample) <= theta <= right_border(sample):
        count += 1
return count / M</pre>
```

1 Равномерное распределение

Создадим выборку размера N=100 из равномерного распределения на отрезке $[0,\theta]$ и возьмем $\theta=10$.

```
In [5]: theta = 10
     uniform_rv = sts.uniform(loc=0, scale=theta)
     uniform_sample = uniform_rv.rvs(N)
```

1.1 Доверительный интервал через \overline{X}

Доверительный интервал для параметра θ уровня доверия α , использовав статистику \overline{X} , равен:

$$\left(\frac{\overline{X}}{\frac{1}{2} + \frac{1}{\sqrt{12n(1-\alpha)}}}, \frac{\overline{X}}{\frac{1}{2} - \frac{1}{\sqrt{12n(1-\alpha)}}}\right).$$

Единственное замечание, что при $\frac{1}{2} \leqslant \frac{1}{\sqrt{12n(1-\alpha)}}$ правый конец нужно брать равным $+\infty$. Кроме того, данный интервал не является точным.

Напишем функции, которые будут по выборке считать левый и правый конец данного доверительного интервала.

Построим график для доверительного интервала уровня доверия $\alpha = 0.95$.

А также оценим вероятность попадания истинного значения параметра θ в данный интервал.

In [8]: count_probability(uniform_rv, uniform_mean_left, uniform_mean_right, theta)
Out[8]: 1.0

1.2 Доверительный интервал через $X_{(n)}$

Доверительный интервал для параметра θ уровня доверия α , использовав статистику $X_{(n)},$ равен:

$$\left(\frac{X_{(n)}}{\left(\frac{1+\alpha}{2}\right)^{\frac{1}{n}}}, \frac{X_{(n)}}{\left(\frac{1-\alpha}{2}\right)^{\frac{1}{n}}}\right).$$

Данный интервал является точным.

Аналогично строим график и оценивам вероятность попадания.

In [11]: count_probability(uniform_rv, uniform_last_left, uniform_last_right, theta)
Out[11]: 0.9526

1.3 Доверительный интервал через $X_{(1)}$

Доверительный интервал для параметра θ уровня доверия α , использовав статистику $X_{(1)},$ равен:

$$\left(\frac{X_{(1)}}{1 - \left(\frac{1-\alpha}{2}\right)^{\frac{1}{n}}}, \frac{X_{(1)}}{1 - \left(\frac{1+\alpha}{2}\right)^{\frac{1}{n}}}\right).$$

Данный интервал является точным.

Аналогично строим график и оценивам вероятность попадания.

Доверительный интервал уровня доверия 0.95 для параметра heta в зависимости от размера выборки

In [14]: count_probability(uniform_rv, uniform_first_left, uniform_first_right, theta)
Out[14]: 0.952

2 Распределение Коши

Сгенерируем выборку размера N=100 из распределения Коши с параметром θ и возьмем $\theta=10$.

Асимптотический доверительный интервал для параметра θ уровня доверия α равен:

$$\left(\hat{\mu}-\frac{\pi u_{\frac{1+\alpha}{2}}}{2\sqrt{n}},\hat{\mu}+\frac{\pi u_{\frac{1+\alpha}{2}}}{2\sqrt{n}}\right),$$

где $\hat{\mu}$ - выборочная медиана, а $u_{\frac{1+\alpha}{2}}$ - $\frac{1+\alpha}{2}$ -ая квантиль стандартного нормального распределения, то есть если $\xi \sim N(0,1)$, то $P\left(\xi \leqslant u_{\frac{1+\alpha}{2}}\right) = F_{\xi}\left(u_{\frac{1+\alpha}{2}}\right) = \frac{1+\alpha}{2}$. Данный интервал является точным.

Из табличных данных для нашего $\alpha=0.95$ получаем $u_{\frac{1+\alpha}{2}}=u_{0.975}=1.96.$

In [16]: quantile = 1.96

Аналогично строим график и оценивам вероятность попадания.

In [18]: build_conf_interval(cauchy_sample, cauchy_left, cauchy_right, theta, [8, 12])

In [19]: count_probability(cauchy_rv, cauchy_left, cauchy_right, theta)

Out[19]: 0.9486

3 Распределение Пуассона

Сгенерируем выборку размера N=100 из распределения Пуассона с параметром θ и возьмем $\theta=10.$

Асимптотический доверительный интервал для параметра θ уровня доверия α равен:

$$\left(\overline{X}-\sqrt{\frac{\overline{X}}{n}}u_{\frac{1+\alpha}{2}},\overline{X}+\sqrt{\frac{\overline{X}}{n}}u_{\frac{1+\alpha}{2}}\right),$$

где $u_{\frac{1+\alpha}{2}}$ - $\frac{1+\alpha}{2}$ -ая квантиль стандартного нормального распределения. Данный интервал является точным.

Аналогично строим график и оценивам вероятность попадания.

In [22]: build_conf_interval(pois_sample, pois_left, pois_right, theta)

In [23]: count_probability(pois_rv, pois_left, pois_right, theta)

4 Гамма распределение

Out[23]: 0.9471

Сгенерируем выборку размера N=100 из распределения Пуассона с параметрами θ и λ и возьмем $\theta=10$, а $\lambda=3$.

```
In [24]: theta = 10
    lambd = 3
    gamma_rv = sts.gamma(a=theta, scale=1/lambd)
    gamma_sample = gamma_rv.rvs(N)
```

4.1 Случай, когда λ известно

Асимптотический доверительный интервал для параметра θ уровня доверия α , при известном λ , равен:

$$\left(\lambda \overline{X} - \sqrt{\frac{\lambda \overline{X}}{n}} u_{\frac{1+\alpha}{2}}, \lambda \overline{X} + \sqrt{\frac{\lambda \overline{X}}{n}} u_{\frac{1+\alpha}{2}}\right),$$

где $u_{\frac{1+\alpha}{2}}$ - $\frac{1+\alpha}{2}$ -ая квантиль стандартного нормального распределения. Данный интервал является точным.

Возьмем $\lambda = 3$ и аналогично предыдущим случаям нарисуем график и оценим вероятность.

In [26]: build_conf_interval(gamma_sample, gamma_left, gamma_right, theta)

In [27]: count_probability(gamma_rv, gamma_left, gamma_right, theta)
Out[27]: 0.9482

4.2 Случай, когда λ неизвестно

Асимптотический доверительный интервал для параметра θ уровня доверия α , при неизвестном λ равен:

$$\left(\hat{\lambda}\overline{X}-\sqrt{\frac{\hat{\lambda}\overline{X}}{n}}u_{\frac{1+\alpha}{2}},\hat{\lambda}\overline{X}+\sqrt{\frac{\hat{\lambda}\overline{X}}{n}}u_{\frac{1+\alpha}{2}}\right),$$

где $\hat{\lambda} = \frac{\overline{X}}{\overline{X^2} - (\overline{X})^2}$ - оценка параметра λ с помощью метода моментов.

Аналогично предыдущим случаям нарисуем график и оценим вероятность. Для размера выборки 1 оценка параметра λ отсутсвует, поэтому будем начинать график с n=2.

In [30]: count_probability(gamma_rv, gamma_left_unknown, gamma_right_unknown, theta)
Out[30]: 0.9531

Вывод: как видно из графиков при любом распределении истинное значение θ почти всегда попадает в доверительный интервал уровня доверия 0.95 при любом размере выборки. Это значит, что мы правильно нашли наши интервалы. Кроме того, даже для асимптотических доверительных интервалах истинное значение попадает в интервал. Единственный асимптотический доверительный интервал, для которого истинное значение редко попадает в данный интервал, это интервал для параметра θ при неизвестном λ . Это происходит из-за того, что данный интервал явяляется асимптотическим и тем, что мы берем оценку λ , а не ее точное значение, которое для малых размеров выборки также дает не точный результат.

Заметим также, что при малых размерах выборки длина интервала может оказаться очень большой, что и не удивительно, так как мы имеем мало данных для оценивания параметра. Также можно заметить, что доверительный интервал для параметра θ из равномерного распределения $[0,\theta]$, использовавший статистику $X_{(1)}$ имеет очень большую длину, что и неудивительно, так как мы пытаемся оценить параметр, который является максимальным значением случайной величины, через минимальное значение по выборке, поэтому в данном случае использовать такой интервал не эффективно. Все же остальные интервалы сужаются при увеличении размера выборки и в среднем имеют длину 3-4 при n=100, что является довольно неплохой оценкой истинного параметра $\theta=10$.

Также мы проверили, что для всех доверительных интервалов действительно вероятность попадания истинного значения равна 0.95, так как оцениваемая вероятность по 10000 выборкам давала всегда результат близкий к 0.95. Причем это было выполнено и для всех асимптотических доверительных интервалов, кроме интервала для гамма распределения с неизвестным λ , который как было объяснено выше медленно стремится к вероятности 0.95, поэтому можно видеть, что некоторые асимптотические доверительные интервалы дают плохие результаты на конечных относительно небольших выборках и поэтому их не следует использовать. Также в случае равномерного распределения и доверительного интервала черех \overline{X} , так как данный интервал являлся не точным, мы увидели, что оцениваемая вероятность равнялась 1, что не удивительно, так как данный инетрвал гарантирует вероятность попадания истинного значения больше, чем 0.95.