Introduction to Competitive Programming

Instructor: William W.Y. Hsu

CONTENTS

- > Dynamic programming
- > Non classical DP problems

11/30/2019 PROGRAMMING IN C 2

Dynamic Programming

The most challenging problem-solving technique...

A tastes of DP

> UVa 11450 – Wedding shopping

- Given $1 \le C \le 20$ classes of garments
 - > e.g. shirt, belt, shoe
- Given $1 \le K \le 20$ different models for each class of garment
 - > three shirts, two belts, four shoes, ..., each with its own price
- Task: Buy **just one** model of **each class** of garment
- Our budget $1 \le \mathbf{M} \le 200$ is limited
 - > We cannot spend more money than it.
 - > But we want to spend the maximum possible.
- What is our maximum possible spending?
- Output "no solution" if this is impossible.

Demonstration

- > Budget M=100
- > C=3, K=3
 - Best solution is 75.

Model Garment	0	1	2	3
0	8	6	4	
1	5	10		
2	1	3	3	7
C=3	50	14	23	8

Demonstration

- > Budget M=20
- > C=2, K=3
 - Best solution is 19.
 - Alternative answers are possible!

Model Garment	0	1	2	3
0	4	6	8	
1	5	10		
2	1	3	5	5

- > Budget M=5
 - No Solution!

Model Garment	0	1	2	3
0	6	4	8	
1	10	6		
2	7	3	1	7

Greedy solution?

- > What if we buy the most expensive model for each garment which still fits our budget?
- > Counter example:
 - M=12
 - Greedy algorithm produces: No solution! (uh oh~)
 - The correct answer is 12!
 - > More than one answer is present.

Model Garment	0	1	2	3
0	6	4	8	
1 ?	5	10		
2	1	5	3	5

Complete search

- > What is the potential **state** of the problem?
 - g (which garment?)
 - *id* (which model?)
 - money (money left?)
- > Answer:
 - (money, g) or (g, money)
- > Recurrence (recursive backtracking function):

```
shop(money, g)
```

```
if (money < 0) return -INF
```

if
$$(g == C)$$
 return $M - money$

return max(shop(money - price[g][model], g + 1),

```
\forall model \in [1..K]
```

Complete search

- > Extreme analysis when M = 200, 20 models, and 20 garments.
 - Time complexity is 20²⁰ (3 second TLE!)

Overlapping sub problems

- > Observe the 20²⁰ search space, you can find **many overlapping sub problems**.
 - Many routes lead to the same state.

3

Dynamic programming

- > DP = Dynamic Programming
 - Programming here is not writing computer code, but a "tabular method"!
 - > **Table** method
- > A programming paradigm that you must know!
 - and hopefully, master...

Dynamic programming

- > Use DP when the problem exhibits:
 - Optimal sub structure.
 - > Optimal solution to the original problem contains optimal solution to sub problems.
 - This is **similar** as the requirement of **Greedy algorithm**
 - If you can formulate complete search recurrences, you can solve it.
 - Overlapping sub problems:
 - > Number of **distinct sub problems** are actually "small".
 - > But they are **repeatedly computed.**
 - > This is **different** from **Divide and Conquer.**

Dynamic programming

- > There are two ways to implement DP:
 - Top-Down.
 - Bottom-Up.
- > Top-Down (Demo):
 - Recursion as per normal + memoization table
 - > It is just a simple change from backtracking (complete search) solution!

Turn recursion into memoization

```
Initialize memo table in main function (use 'memset')
return_value recursion(params/state) {
  if this state is already calculated,
    simply return the result from the memo table
  calculate the result using recursion(other_params/states)
  save the result of this state in the memo table
  return the result
}
```

Dynamic programming (Top-Down)

> For our example:
shop(money, g)
 if (money < 0) return -INF
 if (g == C) return M - money
 if (memo[money][g] != -1) return memo[money][g];
 return memo[money][g] = max(shop(money price[g][model], g + 1), ∀ model ∈ [1..K]</pre>

What if optimal solution(s) are needed

```
print_shop(money, g)
  if (money < 0 \mid | g == C) return
  for each model \in [1..K]
    if shop(money - price[g][model], g + 1) ==
      memo[money][g]
    print "take model = " + model +
      " for garment g = " + g
    print_shop(money - price[g][model], g + 1)
    break
```

- > Another way: Bottom-Up:
 - Prepare a table that has size equals to the number of distinct states of the problem.
 - Start to fill in the table with base case values.
 - Get **the topological order** in which the table is filled
 - Some topological orders are natural and can be written with just (nested) loops!
 - Different way of thinking compared to Top-Down DP
- > Notice that both DP variants use "table"!

- > Start with with table can_reach of size 20 (g) *
 201 (money)
 - The state (money, g) is reversed to (g, money) so that we can process bottom-up DP loops in row major fashion.
 - Initialize all entries to 0 (false).
 - Fill in the first row with money left (column) reachable after buying models from the first garment (g = 0)
 - Use the information of current row g to update the values at the next row g + 1.

Money

	0	1		3	4	5		7	8		10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Model Garment	0	1	2	3
0	4	6	8	
1	5	10		
2	1	3	5	5

Money

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> 1</u>	0	=1	0	-1	0	0	0	0
5	1	0	0	1	0	1	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Model Garment	0	1	2	3
0	4	6	8	
1	5	10		
2	1	3	5	5

Money

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
_	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0
g	1	0	0	/1	0	1	0	71	71	0	71	0	71	0	0	0	0	0	0	0	0	0
	2	0	14	1	1	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0

Model Garment	0	1	2	3
0	4	6	8	
1	5	10		
2	1	3	5	5

Top-down or Bottom-up?

> Top-down

- Pro:

- Natural transformation from normal recursion.
- Only compute sub problems when necessary.

- Cons:

- Slower if there are many sub problems due to recursive call overhead.
- Use exactly O(states) tables size. (Could cause MLE)

> Bottom-up

- Pro:

- > Faster if many sub problems are visited: no recursive calls!
- Can save memory space (?)

- Cons:

- Maybe not intuitive for those inclined to recursion.
- > If there are *X* states, bottom up visits/fills the value of all these *X* states.

Solving UVa 10337 – Flight planner

- > UVa 10337 Flight planner
 - Unit: 1 mile altitude and 1 (x100) miles distance.
 - Given wind speed map.
 - Fuel cost: {Climb: +60, Hold: +30, Sink: +20} wind speed wsp[alt][dis].
 - Compute min fuel cost from (0,0) to (0,x=4)!.

Solving UVa 10337 – Flight planner

> Wind table:

- Tailwind: -1 unit of fuel.
- Headwind: +1 unit of fuel.

1	1	1	1	1	9
1	1	1	1	1	8
1	1	1	1	1	7
1	1	1	1	1	6
1	1	1	1	1	5
1	1	1	1	1	4
1	1	1	1	1	3
1	1	1	1	1	2
1	9	9	1	1	1
1	-9	-9	1	1	0
0	1	2	3	4	(x100)

Of course, level 1

- > First guess:
 - Do complete search/brute force/backtracking
 - Find *all possible* flight paths and pick the one that yield the minimum fuel cost!

Complete search

- > Recurrence of the Complete Search
 - fuel(alt, dis) =
 min3(60 wsp[alt][dis] + fuel(alt + 1, dis + 1),
 30 wsp[alt][dis] + fuel(alt, dis + 1),
 20 wsp[alt][dis] + fuel(alt 1, dis + 1))
 - Stop when we reach final state (base case):
 - \rightarrow alt=0 and dis=X, i.e. fuel (0, X) =0
 - Prune infeasible states (also base cases):
 - \rightarrow al t<0 or al t>9 or di s>X!, i.e. return INF*
- > Answer of the problem is **fuel (0, 0)**.

SOLUTION 1

SOLUTION 2

1	1	1	1		9	1	1	1	1		9
1	1	1	1		8	1	1	1	1		8
1	1	1	1		7	1	1	1	1		7
1	1	1	1		6	1	1	1	1		6
1	1	1	1		5	1	1	1	1		5
1	1	1	1		4	1	1	1	1		4
1	1	1	1		3	1	1	1	1		3
1	1	1	1		2	1	1	1	1		2
1	9	9	1		1	1	9	9	1		1
1 -	-9 -	-9 –	1 -		0	1 -	- 9 -	-9	1	×	0
0	1	2	3	4	(x100)	0	1	2	3	4	(x100)

29+39+39+29=**136**

29+39+69+19=**156**

SOLUTION 3

SOLUTION 4

1	1	1	1		9	1	1	1	1		9
1	1	1	1		8	1	1	1	1		8
1	1	1	1		7	1	1	1	1		7
1	1	1	1		6	1	1	1	1		6
1	1	1	1		5	1	1	1	1		5
1	1	1	1		4	1	1	1	1		4
1	1	1	1		3	1	1	1	1		3
1	1	1	1		2	1	1	1	1		2
1	9	9	1		1	1	9	9	1		1
1 -	-9	-9	1 -		0	1	-9	-9 –	▶ 1 -		0
0	1	2	3	4	(x100)	0	1	2	3	4	(x100)

29+69+11+29=**138**

59+11+39+29=**138**

SOLUTION 5

SOLUTION 6

1	1	1	1		9	1	1	1	1		9
1	1	1	1		8	1	1	1	1		8
1	1	1	1		7	1	1	1	1		7
1	1	1	1		6	1	1	1	1		6
1	1	1	1		5	1	1	1	1		5
1	1	1	1		4	1	1	1	1		4
1	1	1	1		3	1	1	1	1		3
1	1	1	1		2	1	1	1	1		2
1	9	9 _	1		1	1	9 _	9	1		1
1 -	-9	-9	1		0	1	-9	-9	1 -		0
0	1	2	3	4	(x100)	0	1	2	3	4	(x100)

29+69+21+19=**138**

59+21+11+29=**120(OPT)**

SOLUTION 7

SOLUTION 8

1	1	1	1		9	1	1	1	1		9
1	1	1	1		8	1	1	1	1		8
1	1	1	1		7	1	1	1	1		7
1	1	1	1		6	1	1	1	1		6
1	1	1	1		5	1	1	1	1		5
1	1	1	1		4	1	1	1	1		4
1	1	1	1		3	1	1	1	1		3
1	1	1	1		2	1	1	1	1		2
1	9 _	9 _	1		1	1	9 /	9	1		1
1	-9	-9	1		0	1	-9	-9	1	*	0
0	1	2	3	4	(x100)	0	1	2	3	4	(x100)

59+21+21+19=**120(OPT**)

59+51+19+19=**148**

Complete search

- > How large is the search space?
 - Max distance is 100,000 miles.
 - Each distance step is 100 miles.
 - That means we have **1,000** distance columns!
 - > Note: this is an example of "coordinate compression"
 - Branching factor per step is 3... (climb, hold, sink).
 - That means complete search can end up performing 3¹⁰⁰⁰ operation.

Overlapping sub problem issue

- > In simple 3¹⁰⁰⁰ Complete Search solution, you should have observe many overlapping sub problems!
 - Many ways to reach coordinate (alt, dis).

DP solution

- > Recurrence of the Complete Search
 - fuel(alt, dis) =
 min3(60 wsp[alt][dis] + fuel(alt + 1, dis + 1),
 30 wsp[alt][dis] + fuel(alt , dis + 1),
 20 wsp[alt][dis] + fuel(alt 1, dis + 1))
- > Sub-problem fuel(alt, dis) can be overlapping!
 - There are only 10 alt and 1,000 dis = 10,000 states
 - A lot of time saved if these are not re-computed!
 - Exponential 3^{1000} to polynomial $10 \times 1000!$

DP solution (Top-down)

- > Create a 2-D table of size $10 \times (\frac{X}{100})$.
 - Save spaces.
 - Set "-1" for unexplored sub problems (memset)

Store the computation

2	-1	-1	-1	8	8
1	-1	-1	40	19	8
0	-1	-1	-1	29	0
	0	1	2	3	4

value of sub problem.

INF

INF

O

O

1

2

3

4

DP solution (Bottom-up)

> Memory saving tip:

- Reduce the 2 dimensional array by keeping 2 recent columns.
- Time complexity unchanged!

2	8	∞			
1	8	,59			
0	0 4	-29			
	0	1	2	3	4

If optimal solution(s) are needed

- > Although not often, sometimes this is asked!
- > As we build the DP table, record which option is taken in each cell!
 - Usually, this information is stored in different table.
 - Do recursive scan(s) to output solution.
 - > Sometimes, there are more than one solutions!

Remodel the problem

- > Shortest path problem!
 - Model the problem as a **DAG**.
 - Vertex is each position in the unit map.
 - Edges connect vertices reachable from vertex (alt, dis), i.e. (alt+1, dis+1), (alt, dis+1), (alt-1, dis)
 - > Weighted according to flight action and wind speed!
 - > Do not connect infeasible vertices.
 - al t<0 or al t>9 or di s>X

Visualization of the DAG

Shortest path problem

- > The problem: find the **shortest path** from vertex (0,0) to vertex (0, X) on this DAG...
- $\rightarrow O(V + E)$ solution exists!
 - V is just $10 \times \left(\frac{X}{100}\right)$
 - E is just 3V.
- > Thus this solution is as good as the DP solution!

Non classical dynamic programming problems

Oh man...

Non classical DP problems

- > Not the pure form (or simple variant) of 1D/2D Max Sum, LIS, 0-1 Knapsack/Subset Sum, Coin Change, TSP where the DP **states** and **transitions** can be "memorized".
- > Requires **original* formulation** of DP states and transitions.
- > Throughout this lecture, we will talk mostly in *DP terms*
 - **State** (to be precise: "distinct state")
 - **Space Complexity** (i.e. the number of distinct states)
 - **Transition** (which entail overlapping sub problems)
 - Time Complexity (i.e. num of distinct states * time to fill one state)

The Cutting sticks problem

- > UVa 10003 Cutting sticks
- > State: index (l,r) where $l,r \in [0..n+1]$ and l < r
 - Q: Why these two parameters?
- > Space Complexity: $O(n^2)$ distinct states
- > Transition: Try all possible cutting points *i* between *l* and *r*.
 - i.e. cut (l, r) into (l, i) and (i, r) with cost (A[r] A[l])
- > Time Complexity: There are O(n) possible cutting points, thus overall $O(n^2 \times n) = O(n^3)$

DP on DAG

- > Dynamic Programming (DP) has a close relationship with (usually implicit) Directed Acyclic Graph (DAG).
 - The **states** are the **vertices** of the DAG.
 - Space complexity: Number of vertices of the DAG.
 - The **transitions** are the **edges** of the DAG.
 - > Logical, since a recurrence is always **acyclic.**
 - Time complexity: Number of edges of the DAG.
 - Top-down DP: Process each vertex just once via memorization.
 - Bottom-up DP: Process the vertices in **topological order.**
 - > Sometimes, the topological order can be written by just using simple (nested) loops.

The injured queen problem

- > Like *N*-queens problem, but the queens are "injured" (can only attack the current column but acts as king otherwise)
- > With some of K ($0 \le K \le N$) injured queens positions have been predetermined, count how many possible arrangements of the other (N-K) queens so that no two queens attack each other?

DP on math problems

- > Some well-known mathematic problems involves DP.
 - Some combinatorics problem have recursive formulas which entail overlapping subproblems.
 - > e.g. those involving Fibonacci number, f(n) = f(n-1) + f(n-2).
 - Some probability problems require us to search the entire search space to get the required answer.
 - > If some of the sub problems are overlapping, use DP, otherwise, use complete search.
 - Mathematics problems involving **static** range sum/min/max!
 - > Use dynamic tree DS for dynamic queries.

Dice throwing problem

- > Throw *N* common 6-sided dice. $(1 \le N \le 24)$
- > What is the probability that the sum of all thrown dices is at least x? ($0 \le x \le 150$)
- > Basic probability = $\frac{\text{\#Events}}{\text{Sample space}}$
 - Sample space = 6^{n}
 - How to compute #Events?

Dynamic programming issues

- > Potential issues with DP problems:
 - They may be disguised as (or looks like) non DP
 - > It looks like greedy can work but some cases fails...
 - problem looks like a shortest path with some constraints on graph, but the constraints fail greedy SSSP algorithm!
 - They may have subproblems but not overlapping
 - > DP does not work if overlapping subproblems not exist
 - Anyway, this is still a good news as perhaps Divide and Conquer technique can be applied.

Dynamic programming issues

- Optimal substructures may not be obvious.
 - > Find correct "states" that describe problem.
 - Perhaps extra parameters must be introduced?
 - > Reduce a problem to (smaller) sub problems (with the same states) until we reach base cases
- There can be more than one possible formulation.
 - > Pick the one that works!

DP problems in ICPC

- > The number of problems in ICPC that must be solved using DP are growing!
 - At least one, likely two, maybe three per contest...
- > These new problems are **not** the classical DP!
 - They require deep thinking...
 - Or those that look solvable using other (simpler) algorithms but actually must be solved using DP.
 - Do not think that you have "mastered" DP by only memorizing the classical DP solutions!

DP problems in ICPC

- > In 1990ies, mastering DP can make you "king" of programming contests...
 - Today, it is a must-have knowledge...
 - So, get familiar with DP techniques!
- > By mastering DP, your ICPC rank is probably:
 - from top \sim [25-30] (solving 1-2 problems out of 10)
 - > Only easy problems.
 - to top \sim [15-20] (solving 3-4 problems out of 10)
 - > Easy problems + brute force + DP problems.

Be a problem setter

One who sets a trap should know how to disarm one...

Be a problem setter

- > Problem solver:
 - Read the problem.
 - Think of a good algorithm.
 - Create a solution.
 - Create tricky I/O test case.
 - WA/TLE: debug!
 - AC!

- > Problem setter:
 - Write a good problem.
 - Write a good solution.
 - > The correct/best one.
 - > The incorrect/slower ones.
 - Set a good I/O test case.
 - Set problem setting (mem/time).
- A problem setter must think from a different angle!
 - By setting good problems, you will simultaneously be a better problem solver!

Problem setter tasks

- > Write a good problem:
 - Options:
 - Pick an algorithm, then find problem/story or
 - Find a problem/story, then identify a good algorithm for it (hard).
 - Problem description must not be ambiguous.
 - > Specify input constraints.
 - > English!
 - > Easy one: longer story.
 - > Hard one: shorter story.

- > Write good solutions:
 - Must be able to solve your own problem!
 - > To set hard problem, one must increase his own programming skill!
 - Use the best possible algorithm with lowest time complexity (or memory complexity).
 - Use the inferior ones that barely works to set the WA/TLE/MLE parameters.

Problem setter tasks

- > Set a good secret I/O:
 - Tricky test case to check
 WA verses AC.
 - > Boundary cases!
 - Large test case to check
 TLE/MLE verses AC.
 - > Use input generator to generate large test case.
 - > Pass this large test case to our solution.

- > Set problem settings:
 - Time limit:
 - Usually 2~3 times the timings of your own best solutions.
 - > Java is slower than C++!
 - Memory Limit.
 - Problem Name:
 - Avoid revealing the algorithm in the problem name.

Be a contest organizer

- > Contest organizer tasks:
 - Set problems of *various* topic.
 - > Better set by >1 problem setter.
 - Must balance the difficulty of the problem set
 - > Try to make it fun.
 - > Each team solves some problems.
 - > Each problem is solved by some teams.
 - > No team solve all problems.
 - > Every teams must work until the end of contest.