# Examen du module « électronique de puissance » Questions de cours (7 pts):

- Quel est l'intérêt de l'électronique de puissance et citer ses quatre fonctions
- Quel est le rôle de la diode de roue libre en redressement ?
- Citer les composants de puissance utilisés dans le redressement.
- Quel est la différence entre la diode de puissance et le thyristor en conduction directe?
  - Quel est le rôle des redresseurs totalement commandés ?

# Exercice 01: (8 pts)

Le redresseur représenté à la figure suivante est raccordé à une alimentation de 240V, 50Hz. Négliger la chute de tension de la diode. Pour une charge constituée d'une bobine de  $0.1 \mathrm{H}$  en série avec une résistance de  $10\,\Omega$ .

- Déterminer la forme d'onde de la tension et du courant de sortie, la tension moyenne et le courant moyen.



Soit le montage suivant, le thyristor, T, a un courant d'accrochage de 50 mA et il est amorcé par une impulsion de largeur de 50 µs (voir figure ci-dessous.

- Prouver que sans R, le thyristor ne restera pas à l'état passant une fois l'impulsion d'amorçage est terminée.

|                                                |                         |               | ,                                     |                                        |                             |                   |
|------------------------------------------------|-------------------------|---------------|---------------------------------------|----------------------------------------|-----------------------------|-------------------|
|                                                |                         |               |                                       |                                        |                             | • • •             |
|                                                |                         |               |                                       |                                        |                             | • • •             |
|                                                |                         |               |                                       |                                        |                             | * * *             |
|                                                |                         |               |                                       |                                        |                             | • • •             |
| - Calculer alors de thyristor.                 | la valeur maxi          | male de R qui | assure l'amorç                        | eage. Négliger l                       | a chute de tens             | sion              |
| A                                              | ous                     | $V_e = I$     | +   +   +   +   +   +   +   +   +   + | $i_G$ $V_T$ $20\Omega$ $0.5 \text{ H}$ | Circuit d command extérieur | le                |
|                                                |                         |               |                                       |                                        |                             |                   |
|                                                | • • • • • • • • • • • • |               |                                       |                                        |                             | ,                 |
|                                                |                         |               |                                       | ************                           |                             |                   |
|                                                |                         |               |                                       |                                        |                             |                   |
| ***********                                    |                         |               |                                       |                                        |                             |                   |
|                                                |                         |               |                                       |                                        |                             |                   |
| * * * * * * * * * * * * * * * * * * * *        |                         |               |                                       |                                        |                             |                   |
|                                                |                         |               |                                       |                                        |                             | • 0 • 0 • 0 • 0 • |
|                                                |                         |               |                                       | $V_1$                                  | $D_1$                       |                   |
| Exercice 02: ( Pour un redress Compléter le ta | seur triphasé si        |               |                                       | $V_2$                                  |                             | D <sub>2</sub>    |
| des diodes.                                    |                         |               |                                       |                                        |                             | Charge U          |
| T                                              | Diode en                | Diodes        | Tension                               | Tension aux                            | Courant                     | Charge            |
| Intervalle                                     | conduction              | bloquées      | de sortie UC                          | bornes de D <sub>1</sub>               | Î1                          | T                 |
| $\left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$   |                         |               |                                       |                                        | N                           |                   |
| $5\pi \cdot 3\pi$                              |                         |               |                                       |                                        |                             |                   |

Bonne chance ---

## Corrigé d'examen « électronique de puissance »

#### Questions de cours (7 pts):

- L'intérêt de l'électronique de puissance est la conversion d'énergie et les quater fonction sont les redresseurs, les hacheurs, les gradateurs et les onduleurs. (3 points)
- Le rôle de la diode de roue libre en redressement est d'éliminer la partie négative de la tension de sortie et assurer un seul sens de rotation (1 point)
- Les composants de puissance utilisés dans le redressement sont : les diodes de puissance et les thyristors. (1 point)
- La différence entre la diode de puissance et le thyristor en conduction direct est que le thyristor doit avoir en plus une impulsion sur son gâchette (1 point)
- Les redresseurs totalement commandés se sont des convertisseurs bidirectionnels assurant la circulation d'énergie électrique de la source vers le récepteur et du récepteur vers la source (1 point)

## Exercice 01: (8 pts)

- Déterminer la forme d'onde de la tension et du courant, la tension moyenne et le courant moyen.

(1 point)

La tension moyenne :  $V_{Lmoy} = \frac{1}{2\pi} \int_{0}^{\varphi} V_{m} \cdot \sin(\theta) d\theta$ 

Où  $\varphi$  est obtenu on met l'équation  $i_l(t)=0$ 

$$V_{Lmoy} = \frac{V_m}{2\pi} (1 - \cos \varphi) \qquad (1 \text{ point})$$

Le courant moyen :  $I_{Lmoy} = \frac{V_{Lmoy}}{R}$  puisque le courant moyen



- Prouver que sans R, le thyristor ne restera pas à l'état passant une fois l'impulsion d'amorçage est terminée.

Sans R ona:  $Ri_L(t) + L \frac{di_L(t)}{dt} = V_e \rightarrow i_L(t) = \frac{100}{20} (1 - e^{-t/\tau})$  avec  $\tau = l/R = 0.5/20$  (1 point)

Donc  $i(t) = 5(1 - e^{-40t})$ , à la fin de l'impulsion on  $i(50\mu s) = 10mA$  (1 point)

Le thyristor restera à l'état de blocage car 10mA < 50mA (0.5 point)

- Calculer alors la valeur maximale de R qui assure l'amorçage. Négliger la chute de tension de thyristor.

Avec R on a :  $i_T = i_L + i_R$ , Pour assurer l'amorçage du thyristor, le courant du thyristor doit être  $\geq 50mA \Longrightarrow i_L + i_R \geq 50mA$  (1 point)  $\Longrightarrow i_R \geq (50mA \to i_L)$ , à la fin de l'impulsion on  $i_L = 10mA \Longrightarrow i_R \geq (50mA - 10mA)$   $i_R \geq 40mA$ , On a  $i_R = \frac{100}{R}$ 

 $\frac{100}{R} \ge 40 mA \Longrightarrow R \le \frac{100}{40} k\Omega \Longrightarrow R \le 2,5 k\Omega.$  (1 point)

Donc la valeur maximale de R qui assure l'amorçage est  $2.5k\Omega$  (0.5 point)

## Exercice 02: (5 pts)

| 8 | Intervalle                                                 | Diode en conduction | Diodes<br>bloquées               | Tension de sortie u <sub>C</sub> | Tension aux<br>bornes de D <sub>1</sub> | Courant i <sub>1</sub> |
|---|------------------------------------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------------|------------------------|
|   | $\left\lfloor \frac{\pi}{6}; \frac{5\pi}{6} \right\rfloor$ | $D_1$               | D <sub>2</sub> et D <sub>3</sub> | $\mathbf{v}_1$                   | 0                                       | $I_{C}$                |
|   | $\left[\frac{5\pi}{6},\frac{3\pi}{2}\right]$               | $D_2$               | D <sub>1</sub> et D <sub>3</sub> | V <sub>2</sub>                   | $V_1 - V_2$                             | 0                      |
|   | $\left[\frac{3\pi}{2},\frac{13\pi}{6}\right]$              | D <sub>3</sub>      | D <sub>1</sub> et D <sub>2</sub> | V <sub>3</sub>                   | $V_1 - V_3$                             | 0                      |
|   | $\left[\frac{13\pi}{6},\frac{17\pi}{6}\right]$             | $D_1$               | D <sub>2</sub> et D <sub>3</sub> | $V_1$                            | 0                                       | I <sub>C</sub>         |

Bonne chance ---