Automations

The last important feature I want to model before moving on is automation. As I said earlier, we need to build flows like this one:

"When a person subscribes to my e-mail list, add them to my awesome e-mail sequence."

At the database level, it's straightforward; I think we only need two tables to represent such automation:

id	name
1	Add to newsletter

The more exciting part is the steps of this automation:

id	automation_id	type	name	value
1	1	event	subscribedToForm	{"form_id": 1}
2	1	action	addToSequence	{"sequence_id": 3}

The first row represents the event, so the "When a person subscribes to my e-mail list" part. While the second row is the action itself, or the "add them to my awesome e-mail sequence" part. The type and name columns are self-explaining. The value contains the ID of the "thing" that needs to be dealt with. Once again, I'm using a JSON column. However, these two examples can be done using a simple integer; what happens when there are more advanced, complicated steps? Such as "When a subscriber purchases a particular product, then wait for two days and send an upsell e-mil." In this case, we can benefit from a JSON column. On the other hand, we sacrifice nothing in the case of simple examples.

As you can see, it's a pretty simple database structure. However, we'll face some challenges in the code.

