Midterm

D. Zack Garza

October 31, 2019

Contents

1	Problem 1 1.1 Case 1: $p = q$. 1.2 Case 2: $p > q$.	
	1.3 Case 3: $q > p$	2
2	Problem 2	3
3	Problem 3	3
4	Problem 4	3
5	Problem 5	4
6	Problem 6	5
7	Problem 7 $7.1 \implies \dots \qquad \dots$	
8	Problem 8	7
9	Problem 9	8
10	Problem 10 10.1 Part 1	

1 Problem 1

Note that if either p=1 or q=1, G is a p-group, which is a nontrivial center that is always normal. So assume $p \neq 1$ and $q \neq 1$.

We want to show that G has a non-trivial normal subgroup. Noting that $\#G = p^2q$, we will proceed by showing that either n_p or n_q must be 1.

We immediately note that

$$n_p \equiv 1 \mod p$$

$$n_q \equiv 1 \mod q$$

$$n_p \mid q \qquad \qquad n_q \mid p^2,$$

which forces

$$n_p \in \{1, q\}, \quad n_1 \in \{1, p, p^2\}.$$

If either $n_p = 1$ or $n_q = 1$, we are done, so suppose $n_p \neq 1$ and $n_1 \neq 1$. This forces $n_p = q$, and we proceed by cases:

1.1 Case 1: p = q.

Then $\#G = p^3$ and G is a p-group. But every p-group has a non-trivial center $Z(G) \leq G$, and the center is always a normal subgroup.

1.2 Case 2: p > q.

Here, since $n_p \mid q$, we must have $n_p < q$. But if $n_p < q < p$ and $n_p = 1 \mod p$, then $n_p = 1$.

1.3 Case 3: q > p.

Since $n_p \neq 1$ by assumption, we must have $n_p = q$. Now consider sub-cases for n_q :

- $n_q = p$: If $n_q = p = 1 \mod q$ and p < q, this forces p = 1.
- $n_q = p^2$: We will reach a contradiction by showing that this forces

$$\left| P := \bigcup_{S_n \in \operatorname{Syl}(p,G)} S_p \setminus \{e\} \right| + \left| Q := \bigcup_{S_n \in \operatorname{Syl}(q,G)} S_q \setminus \{e\} \right| + \left| \{e\} \right| > |G|.$$

We have

$$\begin{split} |P| + |Q| + |\{e\}| &= n_p(q-1) + n_q(p^2-1) + 1 \\ &= p^2(q-1) + q(p^2-1) + 1 \\ &= p^2(q-1) + 1(p^2-1) + (q-1)(p^2-1) + 1 \qquad \text{(since } q > 1) \\ &= (p^2q - p^2) + (p^2-1) + (q-1)(p^2-1) + 1 \\ &= p^2q + (q-1)(p^2-1) \\ &\geq p^2q + (2-1)(2^2-1) \qquad \text{(since } p, q \geq 2) \\ &= p^2q + 3 \\ &> p^2q = |G|, \end{split}$$

which is a contradiction. \Box

2 Problem 2

We'll use the fact that $H \leq N(H)$ for any subgroup H (following directly from the closure axioms for a subgroup), and thus

$$P \leq N(P)$$
 and $N(P) \leq N^2(P)$.

Since it is then clear that $N(P) \subseteq N^2(P)$, it remains to show that $N^2(P) \subseteq N(P)$.

So if we let $x \in N^2(P)$, so x normalizes N(P), we need to show that x normalizes P as well, i.e. $xPx^{-1} = P$.

However, supposing that $|G| = p^k m$ where (p, m) = 1, we have

$$P \le N(P) \le G \implies p^k \mid |N(P)| \mid p^k m,$$

so in fact $P \in \text{Syl}(p, N(P))$ since it is a maximal p-subgroup.

Then $P' := xPx^{-1} \in \text{Syl}(p, N(P))$ as well, since all conjugates of Sylow p-subgroups are also Sylow p-subgroups.

But since $P \leq N(P)$, there is only *one* Sylow p- subgroup of N(P), namely P. This forces P = P', i.e. $P = xPx^{-1}$, which says that $x \in N(P)$ as desired. \square

3 Problem 3

By definition, G is simple iff it has no non-trivial subgroups, so we will show that if |G| = 148 then it must contain a normal subgroup.

Noting that $248 = p^2q$ where p = 2, q = 37, we find that (for example) $n_2 \mid 37$ but $n \equiv 1 \mod 2$; but the only odd divisor of 7 is 1, forcing $n_2 = 1$. So G has a normal Sylow 2-subgroup and we are done.

4 Problem 4

Let $\tau := (t_1, t_2)$ denote the transposition and $\sigma = (s_1, s_2 \cdots, s_p)$ denote the *p*-cycle, and let $S = \langle \sigma, \tau \rangle$. We would like to show that $S = S_p$, and since $S \subseteq S_p$ is clear, we just need to show that $S_p \subseteq S$.

We first note that because p is prime, σ^k is a p-cycle for every $1 \le k \le p$, and $\langle \sigma \rangle = \langle \sigma^k \rangle$ for any such k.

Then note that $t_1 = s_i$ for some i and $t_2 = s_j$ for some j, so we can take k = j - i to get a cycle σ^k that sends t_1 to t_2 . So without loss of generality, we can replace σ with

$$\sigma = (t_1, t_2, \cdots)$$

But now, we can relabel all of the elements of S_p simultaneously (i.e. replace $\langle \sigma, \tau \rangle$ with another subgroup in the same conjugacy class) in such a way that t_1 becomes 1 and t_2 becomes 2. We can

then assume wlog that

$$\tau = (1, 2), \quad \sigma = (1, 2, \cdots, p)$$

We can then get all adjacent transpositions: noting that

$$\sigma^{-1}\tau\sigma = (2,3)$$

$$\sigma^{-2}\tau\sigma^2 = (3,4)$$

$$\cdots$$

$$\sigma^{-k}\tau\sigma^k = (k+1 \mod p, \ k+2 \mod p) \quad \forall 1 \le k \le p,$$

where we use the fact that for any $\gamma \in S_p$, we have $\gamma \tau \gamma = (\gamma(1), \gamma(2))$.

But this also gives us all transpositions of the form (1, j) for each $2 \le j \le p$:

$$(2,3)^{-1}(1,2)(2,3) = (1,3)$$

$$(3,4)^{-1}(1,3)(3,4) = (1,4)$$

$$\dots$$

$$(j-1,j)^{-1}(1,j-1)(j-1,j) = (1,j) \quad \forall 1 \le j \le p.$$

Thus we have $J := \langle \{(1,j) \mid 2 \le j \le p\} \rangle \subseteq S$.

But now if $\gamma = (g_1, g_2, \dots, g_k) \in S_p$ is an arbitrary cycle, we can write

$$\gamma = (g_1, g_2, \cdots, g_k) = (1, g_1)(1, g_2), \cdots (1, g_k),$$

so $\gamma \in J$. Then writing any arbitrary permutation as a product of disjoint cycles, we find that $S_p \subseteq J \subseteq S$, and so $S_p \subseteq S$ as desired. \square

5 Problem 5

Since G is a p-group, it has a nontrivial center. Since p is prime and Z(G) is a subgroup, this forces $\#Z(G) \in \{p, p^2\}$, where p^3 is ruled out because this would make G abelian.

Supposing that $\#Z(G) = p^2$, we would have [G:Z(G)] = p, and since $Z(G) \subseteq G$, we can take the quotient and #(G/Z(G)) = p. But this means G/Z(G) is cyclic, which implies that G is abelian, a contradiction.

So we must have #Z(G) = p, and $\#(G/Z(G)) = p^2$.

But any group of p^2 is abelian, and we can characterize G' := [G, G] in the following way:

$$G' \leq G$$
 is the unique subgroup of G such that if $N \leq G$ and G/N is abelian, then $N \leq G'$.

We can thus conclude that $G' \leq Z(G)$. It can not be the case that $G' = \{e\}$, since this would make G abelian. This forces G' = Z(G) as desired. \square

6 Problem 6

Writing $f(x) = x^3 - 3x - 3 = \sum a_i x_i \in \mathbb{Q}[x]$, we can conclude that f is irreducible over \mathbb{Q} by Eisenstein with the prime p = 3, since $p \mid a_0 = -3, a_1 = 3, a_2 = 0$, but $p^2 \nmid a_3 = 1$.

We can check that f(0) < 0 and f(10) > 0, so f has at least one real root. By the 1st derivative test, we can find that f is increasing on $(-\infty, -1)$ and less than zero, decreasing on (-1, 1) and less than zero, and increasing on $(1, \infty)$, where it it attains its root. This root has multiplicity one, since $\gcd(f, f') = 1$, which means that f has exactly one real root r_0 , and thus a complex conjugate pair of roots $r_1, \overline{r_1}$ as well.

This means that complex conjugation is a nontrivial element τ of the Galois group $G \leq S_3$, and thus G contains a 2-cycle.

The Galois group must be a transitive subgroup of S_3 , which restricts the possibilities to S_3 , A_3 .

Since A_3 only contains 3-cycles, this possibility is ruled out. Thus the Galois group must be S_3 .

7 Problem 7

Definition: A field F is perfect if every irreducible polynomial $f(x) \in F[x]$ is separable in $\overline{F}[x]$. Note that since F is a finite field, p must be a prime.

7.1 ⇒ :

Suppose all irreducible polynomials in F[x] are separable. Then let $a \in K$ be arbitrary, we will show that there exists some $\beta \in K$ such that $\beta^p = a$.

Given such an a, define the polynomial

$$f(x) = x^p - a \in F[x].$$

Note that f is not separable, since $f'(x) = px^{p-1} = 0$ since char(F) = p, which means (by assumption) that f must be reducible.

Thus we can write f(x) = g(x)h(x) where $g \in F[x]$ is some irreducible factor that divides f.

Noting that if $\beta \in \overline{F}$ is a any root of f, then

$$f(\beta) = 0 \implies \beta^p = a \implies f(x) = x^p - a = x^p - \beta^p = (x - \beta)^p$$

and so β is necessarily a multiple root.

Moreover, since $g \mid f$, we must have $g(x) = (x - \beta)^{\ell}$ for some $1 \le \ell \le p$.

But then we can expand g using the binomial formula:

$$g(x) = (x - \beta)^{\ell} = \sum_{k=1}^{\ell} {\ell \choose k} x^{\ell-k} (-\beta)^k = x^{\ell} + \dots + (-\beta)^{\ell} \in F[x].$$

But since every coefficient must be in F, we must have $\beta^{\ell} \in F$. We know that $\beta^{p} = a \in F$ as well, but since p is prime, $gcd(p, \ell) = 1$.

We can thus find $s, t \in \mathbb{Z}$ such that $ps + t\ell = 1$. But then

$$\beta = \beta^1 = \beta^{ps+t\ell} = \beta^{st}\beta^{t\ell} = (\beta^{\ell})^s(\beta^p)^t,$$

where since $\beta^{\ell}, \beta^{p} \in F$, the entire RHS is in F, and thus the LHS $\beta \in F$ as well.

But then $\alpha = \beta^p$ where $\beta \in F$, which is exactly what we wanted to show.

7.2 ⇐= :

Suppose every element in F admits a pth root in F, and suppose $f \in F[x]$ is an irreducible polynomial which is not separable, so it has a repeated root in \overline{F} .

Supposing that gcd(f, f') = g(x) for any polynomial g(x), this would imply that $g \mid f$. But f was assumed irreducible, so the only possibility is that in fact g = f.

But if gcd(f, f') = f, since deg f' < f, we can not have $f \mid f'$ unless f' is identically zero.

If we thus write

$$f(x) = \sum_{k=0}^{n} c_k x^k,$$

$$f'(x) = \sum_{k=1}^{n} k c_k x^{k-1}$$

$$\equiv 0,$$

then for each k we must have $c_k = 0$ or k = 0 in F, i.e. $c_k = 0$ or $p \mid k$.

Thus the only possible nonzero terms in f must come from coefficients of x^{kp} for each k such that $1 \le kp \le n$, i.e.

$$f(x) = c_0 + c_p x^p + c_{2p} x^{2p} + \cdots$$

But this says we can write $f(x) := g(x^p)$, where

$$g(x) = c_0 + c_p x + c_{2p} x^2 + \cdots$$

and furthermore, we can now use the assumption that F is perfect to write $c_i = b_i^p$ for each i, yielding

$$g(x) = b_0^p + b_p^p x^2 + b_{2p}^p x^2 + \cdots$$

and thus

$$f(x) = g(x^p)$$

$$= b_0^p + b_p^p x^p + b_{2p}^p x^{2p} + \cdots$$

$$= (b_0 + b_p x + b_{2p} x^2)^p$$

$$\coloneqq (j(x))^p,$$

from which it follows that $j \mid f$ in F[x]. But since f was irreducible, this is a contradiction, and so f could not have had a repeated root. Thus every irreducible polynomial is separable, which is what we wanted to show. \Box

8 Problem 8

Let $f(x) \in F[x]$ be irreducible, then since $p(x) := \gcd(f, f')$ must divide f and f is irreducible, the only possibilities are p(x) = 1 or p(x) = f(x).

If p(x) = 1, then f is separable, so every root is distinct and f itself is of the form $f(x^{p^e})$ where each e = 0.

Otherwise, p(x) = f(x), which forces f'(x) = 0 in K[x]. If we write

$$f(x) = \sum_{k=0}^{n} a_k a^k$$
$$f'(x) = \sum_{k=1}^{n} k a_k a^{k-1}$$

,

then $f'(x) \equiv 0$ forces either $a_k = 0$, or k = 0 in F (so $p \mid k$).

We can thus rewrite f by leaving out all terms where $a_k = 0$ to obtain

$$f(x) = a_p x^p + a_{2p} x^{2p} + \cdots$$

and we thus define

$$g(x) \coloneqq a_p x + a_{2p} x^2 + \cdots$$

and we recover $f(x) = g(x^p)$. Moreover, g is irreducible; otherwise if $h(x) \mid g(x)$ then $h(x^p) \mid g(x^p) = f$, where f was assumed irreducible. If g is separable we are done; otherwise g fulfills the same hypotheses of that applied to f, so we can inductively continue this process to write $g(x) = g_1(x^p)$, and thus $f(x) = g(x^p) = g_1(x^{p^2})$, and so on.

To see that every root of f has multiplicity p^e , note that if $f(\alpha) = 0$ then $g(\alpha^{p^e}) = 0$. But g is separable, so $(x - \alpha^{p^e}) \mid g$.

9 Problem 9

Let $x = [\mathbb{Q}(\zeta + \zeta^{-1}) : \mathbb{Q}].$

Noting that

$$\zeta(\zeta + \zeta^{-1}) = \zeta^2 + 1,$$

if we let

$$f(x) = x^2 - (\zeta + \zeta^{-1})x + 1 \in \mathbb{Q}(\zeta + \zeta^{-1})[x],$$

then $f(\zeta) = 0$.

Since $\mathbb{Q}(\zeta + \zeta^{-1}) \subset \mathbb{R}$, $\mathbb{Q}(\zeta)$ is a proper extension over this field, so if $d := [\mathbb{Q}(\zeta) : \mathbb{Q}(\zeta + \zeta^{-1})]$ then d > 1. The fact that ζ is a root of f shows that $d \leq 2$, so d = 2. We also know that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(n)$.

We thus have

$$[\mathbb{Q}(\zeta):\mathbb{Q}] = [\mathbb{Q}(\zeta):\mathbb{Q}(\zeta+\zeta^{-1})][\mathbb{Q}(\zeta+\zeta^{-1}):\mathbb{Q}] \quad \Longrightarrow \quad \phi(n) = 2x,$$

and so $x = \frac{\phi(n)}{2}$ as desired.

10 Problem 10

Suppose K/F is a finite, normal, Galois extension.

10.1 Part 1

We have $F \leq E \leq K$. Suppose that

- K/F is cyclic, so Gal(K/F) is a cyclic group,
- E/F is normal

We then want to show that

- 1. E/F is cyclic, i.e. Gal(E/F) is cyclic, and
- 2. K/E is cyclic, i.e. Gal(K/E) is cyclic.

By the fundamental theorem of Galois theory, E/F is normal if and only if

- a. $Gal(K/E) \triangleleft Gal(K/F)$, and
- b. $Gal(E/F) \cong Gal(K/F)/Gal(K/E)$.

Since Gal(K/F) is a cyclic group and every subgroup of a cyclic group is itself cyclic, (a) lets us conclude that (1) holds.

Similarly, since Gal(K/F) is a cyclic group and every *quotient* of a cyclic group is cyclic, (b) lets us conclude (2).

10.2 Part 2

By the Galois correspondence, all intermediate fields will correspond to subgroups of Gal(K/F). Since this group is cyclic, we are reduced to analyzing the subgroup lattice of a generic cyclic group.

But if $G = \langle x \mid x^n = e \rangle$ where #G = n, then there is one and *only* one subgroup of index d and order $\frac{n}{d}$ for every d dividing n, given by $H_d := \langle x^d \rangle$.

So we have $[G:H_d]=d$, so H_d corresponds to a field E_d/F of degree d where $F \leq E_d \leq K$. This can be done for every d dividing n, and since K/F is a Galois extension, $n=|\mathrm{Gal}(K/F)|=[K:F]$, and this can be done for every divisor of [K:F] as desired. \square