

Self-supervised Learning of Pretext-Invariant Representation

포항공과대학교 산업경영공학과

Stochastic Systems Lab

Jongwon Kim

April 4, 2022

Contents

- 1. Problem statement
- 2. Previous studies
- 3. Idea
- 4. Result

Problem statement

Why we use self-supervised learning?

Object detection or classification on deep learning model

Massive amount of unlabeled data

Self-supervised learning is the most promising way to approximate a form of **common sense** from **unlabeled data** in Al system

Problem statement

Why we use self-supervised learning?

How to use common sense in deep learning model? → Transfer learning

- √ Fix encoder
- ✓ Fine-tune encoder with 1~10% labelled data by linear classifier
- ✓ Fine-tune encoder with 1~10% labelled data by real task

Encoder

Previous studies

Auto-encoder

Auto-encoder is the one of the most simple classical self-supervised learning.

Auto-encoder does not perform well for empirically high resolution images.

✓ Lots of effort spent on "useless" details: exact color, good boundary.

Previous studies

Self-supervised learning

Create a pretext classification problem from unlabeled data.

- ✓ RotNet [1]: Create a model to classify the degree of rotation.
- ✓ Jigsaw [2]: Turn one image into a jigsaw puzzle.

Limitation: the encoder represents the pretext feature.

- [1] Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised representation learning by predicting image rotations", ICLR, 2018
- [2] Mehdi Noroozi, Paolo Favaro, "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles", CVPR 2016

Idea

Self-supervised Learning of Pretext-Invariant Representation

Result

Classification on ImageNet dataset

Figure 2: ImageNet classification with linear models. Single-crop top-1 accuracy on the ImageNet validation data as a function of the number of parameters in the model that produces the representation ("A" represents AlexNet). Pretext-Invariant Representation Learning (PIRL) sets a new state-of-the-art in this setting (red marker) and uses significantly smaller models (ResNet-50). See Section 4.2 for more details.

Problem: Classification

Dataset: ImageNet

Model: ResNet-50

Transfer learning: Fixed encoder

Result

Object detection on ImageNet dataset

Method	Network	$ig \mathbf{AP^{all}}$	AP^{50}	AP^{75}	$\Delta { m AP}^{75}$
Supervised	R-50	52.6	81.1	57.4	=0.0
Jigsaw [19]	R-50	48.9	75.1	52.9	-4.5
Rotation [19]	R-50	46.3	72.5	49.3	-8.1
NPID++ [72]	R-50	52.3	79.1	56.9	-0.5
PIRL (ours)	R-50	54.0	<u>80.7</u>	59.7	+2.3
CPC-Big [26]	R-101	_	70.6*	_	
CPC-Huge [26]	R-170	_	72.1*	_	
MoCo [24]	R-50	55.2*†	81.4*†	61.2*†	

Table 1: Object detection on VOC07+12 using Faster R-CNN. Detection AP on the VOC07 test set after finetuning Faster R-CNN models (keeping BatchNorm fixed) with a ResNet-50 backbone pre-trained using self-supervised learning on ImageNet. Results for supervised ImageNet pre-training are presented for reference. Numbers with * are adopted from the corresponding papers. Method with † finetunes BatchNorm. PIRL significantly outperforms supervised pre-training without extra pre-training data or changes in the network architecture. Additional results in Table 6.

Problem: Object detection

Dataset: VOC07

Model: ResNet-50 + Faster R-CNN

Transfer learning: Fine tuning

Thank you