殿

竺

要

 \leftarrow

 \mathbb{K}

线

户

装

浙江农林大学 2015 - 2016 学年第二学期考试卷 (A卷)

课程名称概率论与数理统计(B)课程类别:<u>必修</u>考试方式:<u>闭卷</u>注意事项:1、本试卷满分100分.2、考试时间_120分钟.

题号	_	<u> </u>	11	四	五	六	得分
得分							
评阅人							

答题纸(交卷时,答题纸背面朝上放在桌面上)

一、选择题(每小题3分,共24分)								
题号	1	2	3	4	5	6	7	8
答案								

二、填	空题(每小题3分,共18分	得分		
题号	答案	题号	答案	
1		2		
3		4		
5		6		

三、实	验解读应用题(每空2分,共	得分			
题号	答案	题号		答案	
1		2			
3		4			
5		6			
7		8			
9		10			
11		12			

四、应用题(每小题 5 分,共 10 分)		得分	
1 解:	2解:		
五、综合计算题(每问3分,共24分)		得分	
1 解:	2 解:		

一、选择题(每小题3分,共24分)

- 1. 设 A, B 相互独立且 $P(A \cup B) = 0.7, P(A) = 0.4, 则 <math>P(B) = ($).
- B. 0.3. C. 0.75. D. 0.42.

- A. $\frac{1}{2}$. B. $\frac{1}{3}$. C. $\frac{1}{4}$. D. $\frac{1}{5}$.

3.
$$D(X) = 4$$
, $D(Y) = 9$, $\rho_{XY} = 0.5$, $\bigcup D(X - 2Y + 1) = ($).

- A. 41 B. 40 C. 28 D. -14
- 4. 随机变量 X 服从指数分布,参数 $\lambda = ($) 时, $\mathrm{E}(X^2) = 18$

- A. 3 B. 6 C. $\frac{1}{6}$ D. $\frac{1}{3}$
- 5. 设 X_1, X_2, X_3 X_4 来自总体 $N(\mu, \sigma^2)$ 的样本,则 μ 的最有效估计量是()

 - A. $\frac{1}{3}(X_1 + X_2 + X_3)$ B. $\frac{1}{4}(X_1 + X_2 + X_3 + X_4)$

 - C. $\frac{1}{2}(X_3 + X_4)$ D. $\frac{1}{5}(X_1 + X_2 + X_3 + X_4)$
- 6. 设总体 $X\sim N(\mu,\sigma^2)$, σ^2 未知, X_1 , X_2 ,…, X_n 为其样本,检验假设 $H_0:\mu=\mu_0$,要 用统计量().

A.
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

B.
$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n)$$

C.
$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$$

D.
$$\sum_{i=1}^{n} \frac{(X_i - \mu_0)^2}{\sigma^2} \sim \chi^2(n)$$

- 7. 对因子A取r个不同水平,因子B取s个不同水平,A与B的每种水平组合重复t次试验 后, 对结果进行双因子有重复试验的方差分析, 则以下关于各偏差平方和自由度的结论错误 的是().
 - A. A 因子的偏差平方和 SS_A 的自由度为 r-1
 - B. B 因子的偏差平方和 SS_B 的自由度为 s-1

概率论与数理统计(B)试题(A卷)(试题纸上的答案无效,试题纸与草稿纸交到讲台上)

- C. 交互作用的偏差平方和 $SS_{A\times B}$ 的自由度为(r-1)(s-1)
- D. 误差平方和 SS_E 的自由度为(r-1)(s-1)(t-1)
- 8. 在线性模型 $Y=\beta_0+\beta_1x+\varepsilon$ 的相关性检验中,如果原假设 $H_0:\beta_1=0$ 被否定,则表明两个变量之间().
 - A. 不存在任何相关关系
 - B. 不存在显著的线性相关关系
 - C. 不存在一条曲线 $\hat{Y} = f(x)$ 能近似描述其关系
 - D. 存在显著的线性相关关系

二、填空题(每小题3分,共18分)

1. 设离散型随机变量 X 的分布函数是 $F(x) = P(X \le x)$, 用 F(x) 表示概率,

则
$$P\{X = x_0\} =$$
______.

- 2. 设随机变量 $X \sim P(\lambda)$,且已知 E[(X-1)(X-2)]=1,则 $\lambda =$ _______.
- 3. 设随机变量 X 的分布密度为 $\frac{1}{2\sqrt{\pi}}e^{-\frac{x^2-6x+9}{4}}$,则 P(X < 3) =______.
- 4. 设 X_1, X_2, \dots, X_{16} 是来自总体N(2,1) 的样本,而 $Y = \sum_{i=1}^{16} (X_i 2)^2$, $Z \sim N(0,1)$,则

$$\frac{4Z}{\sqrt{Y}}$$
~_______. (分布)

- 5. 设总体 $X \sim N(1,4)$, X_1, X_2, X_3 是来自 X 的容量为 3 的样本, S^2 为样本方差,则 $D(S^2) = \underline{\hspace{1cm}}.$
- 6. 若取显著性水平为 α ,设样本 (X_1,X_2,\cdots,X_n) 来自总体 $X\sim N(\mu,\sigma^2)$,对于假设

$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 < \sigma_0^2$$
, 采用统计量 $\chi^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2$, 则其拒绝域为

_____·

三、实验解读应用题(每空2分,共24分)

(一) 已知某种材料的抗压强度 $X \sim N(\mu, \sigma^2)$,现随机抽取 10 个试件进行抗压试验。由所得数据得到右表的实验结果. 本实验用到的样本函数为<u>1</u>,由实验结果知标准差 σ 的 置信 水平为 0.95 的 置信 区间 为

单个正态总体方差卡方估计活动表					
置信水平	0.95				
样本容量	10				
样本均值	457.5				
样本方差	1240.27778				
单侧置信下限	659.7620881				
单侧置信上限	3357.028906				
区间估计					
估计下限	586.7968382				
估计上限	4133.662906				

(二)为了检验甲乙两厂蓄电池的电容量是否有显著差异,随机地从甲乙两厂生产的蓄电池中抽取一些样本,用其数据得到实验结果如下表所示.

z-检验: 双样本均值分析	z-检验:双样本均值分析							
	甲厂	乙厂						
平均	140. 50	139. 90						
己知协方差	2. 45	2. 25						
观测值	8	10						
假设平均差	0							
Z	0. 823193							
P(Z<=z) 单尾	0. 205199							
z 单尾临界	1. 644854							
P(Z<=z) 双尾	0. 410398							
z 双尾临界	1. 959964							

实验结果如右表所示. 问题的原假设为 __3__; 由于检验的P-值___4___, 所以,在

 $\alpha = 0.05$ 的显著性水平下,问题的结论为 5 .

(三)进行农业实验,选择四个不同品种的小麦其三块试验田,每块试验田分成四块面积相等的小块,各种植一个品种的小麦,由试验的收获量数据得到方差分析结果如下.

方差分析						
差异源	SS	df	MS	F	P-value	F crit
品种	78		26	8. 666667	0. 013364	4. 757063
试验田	14		7	2. 3333333	0. 177979	5. 143253
误差	18	6	3			
总计	110	11				

(1)在方差分析表中,缺	失的品种	自由度为	6	,缺失的试验田自由度为	7 .
(2) 由于(实验结果)	8		所以,	在显著性水平 $\alpha = 0.05$ 下	,小麦试验
田对收获量的影响	9	(是否显著)).		

概率论与数理统计(B)试题(A卷)(试题纸上的答案无效,试题纸与草稿纸交到讲台上)

(四)随机调查 10 个城市居民的家庭平均收入 x 与电器用电支出Y情况的数据,得到如下表的回归分析表,由此可知求电器用电支出Y与家庭平均收入 x 之间的线性回归方程为 10 ; 在显著性水平 α = 0.05 下,线性回归关系 11 (是否显著); 当 x = 30 时,电器用电支出的点估计值 12 .

	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-1.425424	0.2142448	-6.653247	0.0001603	-1.919473	-0.931374
收入	0.1231638	0.0077491	15.894001	2.458E-07	0.1052944	0.1410332

四、应用题(每小题5分,共10分)

1. 一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于3°的概率为p=1/3,

若船舶遭受了 90000 次波浪冲击,问其中有 29500~30500 次纵摇角大于 3°的概率是多少?

$$\left(\Phi\left(\frac{5\sqrt{2}}{2}\right) = 0.9998\right)$$

2. 某种灯泡在原工艺生产条件下的平均寿命为 1100h,现从采用新工艺生产的一批灯泡中随机抽取 16 只,测试其使用寿命,测得平均寿命为 1150h,样本标准差为 20h. 已知灯泡寿命服从正态分布,试在 $\alpha=0.05$ 下,检验采用新工艺后生产的灯泡寿命是否有提高? $(t_{0.05}(15)=1.753)$

五、综合计算题(每问3分,共24分)

- 1. 设随机变量 X 的密度函数为 $p(x) = \begin{cases} Ax^2, 0 < x < 1.$ 试计算: 0, *else*
- (1) 验证常数 A=3; (2) $P\left\{-\frac{1}{2} < X < \frac{1}{2}\right\}$; (3) $E(X^2)$ (4) X 的分布函数 F(x).
- 2. 设X的分布律为

X	1	2	3
P	θ	2θ	$1-3\theta$

其中 θ 为未知参数, $0 < \theta < 1$,已知取得一组样本观测值 $(x_1, x_2, x_3, x_4, x_5) = (1,1,2,2,3)$.

- (1) 求X的数学期望E(X); (2) 求参数 θ 的矩估计值; (3) 求关于参数 θ 的似然函数;
- (4) 求参数 θ 最大似然估计值.