	INSULATION TYPE	R-Value	Price	Amount
1	Polystyrene Foam Board	R - 5.00	\$15.48	1 in. x 4 ft. x 8 ft. Sheet
2	Fiberglass Batts	R - 4.30	\$56.93	25-1/2 in. x 1-1/2 in. x 10 ft. Roll
3	Glass	R - 1.40	\$16.78	30 in. x 36 in. x .094 in. Sheet

OBSERVATIONS: The higher the R-Value of a given material, the more it costs per square inch, or to cover a certain amount of surface. The relationship does not seem to be linear though. There's definitely an expenential increase in price in order to move up through R-Values. 5 seems to be a decent benchmark for non-translucent materials, while 2 is average for translucent.

	WINDOW TYPE	R-Value	U-Value	Price	Amount
1	Typical IGU	R - 2.08	U - 0.48	\$66.51	36 in. x 36 in. x .094 in Sheet
2	Low-E IGU	R - 3.85	U - 0.26	\$165.99	40 in. x 36 in. x .094 in Sheet
3	Sunstop, Argon-coated	R - 5.28	U34	\$257.57	32 in. x 36 in. x .094 in Sheet

OBSERVATIONS: I noticed a similar trend with glass, where increasing R-value costs exponentially more. The most economic jump is from a non-insulated pane of glass to an IGU, where you'll be saving on energy costs without increasing price too much. However, Low-E coating and other technological solutions greatly increase price.