Training BERT-Base-Uncased to Classify Descriptive Metadata

Artem Saakov University of Michigan School of Information United States asaakov@umich.edu

Abstract—Libraries and archives frequently receive donor-supplied metadata in unstructured or inconsistent formats, creating backlogs in accession workflows. This paper presents a method for automating metadata field classification using a pretrained transformer model (BERT-base-uncased). We aggregate donor metadata into a JSON corpus keyed by Dublin Core fields, flatten it into text-label pairs, and fine-tune BERT for sequence classification. On a synthetic test set spanning ten common metadata fields, we achieve an overall accuracy of 0.92. We also provide a robust inference script capable of classifying documents of arbitrary length. Our results suggest that transformer-based classifiers can substantially reduce manual effort in digital curation pipelines.

Index Terms—Metadata Classification, Digital Curation, Transformer Models, BERT, Text Classification, Archival Metadata, Natural Language Processing

I. INTRODUCTION

Metadata underpins discovery, provenance, and preservation in digital archives. Yet many institutions face backlogs: donated items arrive faster than they can be cataloged, and donor-provided metadata—often stored in spreadsheets, text files, or embedded tags—lacks structure or consistency [1]. Manually mapping each snippet to standardized fields (e.g., Title, Date, Creator) is labor-intensive.

A. Project Goal

We investigate fine-tuning Google's BERT-base-uncased model to automatically classify free-form metadata snippets into a fixed set of archival fields. By leveraging BERT's bidirectional contextual embeddings, we aim to reduce manual mapping effort and improve consistency.

B. Related Work

The National Archives have explored AI for metadata tagging to improve public access [1]. Carnegie Mellon's CAMPI project used computer vision to cluster and tag photo collections in bulk [2]. MetaEnhance applied transformer models to correct ETD metadata errors with F1 > 0.85 on key fields [3]. Embedding-based entity resolution has harmonized heterogeneous schemas across datasets [4]. These studies demonstrate AI's potential but leave open the challenge of mapping arbitrary donor text to discrete fields.

II. METHOD

A. Problem Formulation

We cast metadata field mapping as single-label text classification:

- Input: free-form snippet x (string).
- Output: field label $y \in \{f_1, \dots, f_K\}$, each f_i a target schema field.

B. Dataset Preparation

We begin with an aggregated JSON document keyed by Dublin Core field names. A Python script (harvest_aggregate.ipynb) flattens this into one record per metadata entry:

```
{"text": "Acquired on 12/31/2024", "label": "Date"}
```

Synthetic expansion to 200 examples across ten fields ensures coverage of varied formats.

C. Model Fine-Tuning

- Model: bert-base-uncased with K=10 labels.
- **Tokenizer:** WordPiece, padding/truncation to 128 tokens.
- Training: 80/20 split, cross-entropy loss, LR=2e-5, batch size=8, 5 epochs via Hugging Face Trainer [5].
- Evaluation: Accuracy, weighted and macro F1, precision, and recall using the evaluate library.

D. Inference Pipeline

We package our inference logic in bertley.py. It loads the fine-tuned model, tokenizes input (text or file), and handles documents longer than 512 tokens by chunking with overlap (stride=50). Pseudocode excerpt:

tokenizer=tokenizer, return_all_scores=True)

For long texts, split into overlapping chunks
def chunk_and_classify(text):

tokens = tokenizer(text)['input_ids'][0]

```
for i in range(0, len(tokens), max_len - stride):
   chunk = tokenizer.decode(tokens[i:i+max_len])
   scores = classifier(chunk)
   accumulate(scores)
return average_scores()
```

This script achieves robust, batch-ready inference for entire documents.

III. RESULTS

A. Evaluation Metrics

After fine-tuning for 5 epochs, we evaluated on the test set. Table I summarizes the results:

TABLE I
TEST SET EVALUATION METRICS

Metric	Value
Loss	0.1338
Accuracy	0.9665
F1 (weighted)	0.9628
Precision (weighted)	0.9650
Recall (weighted)	0.9665
F1 (macro)	0.8283
Precision (macro)	0.8551
Recall (macro)	0.8225
Runtime (s)	35.83
Samples/sec	518.70
Steps/sec	16.22

B. Interpretation

Overall accuracy of 96.65% and weighted F1 of 96.28% demonstrate reliable field mapping. The macro F1 (82.83%) suggests room for improvement on rarer or more ambiguous classes. Inference speed (100 snippets/s on GPU) is sufficient for large-scale backlog processing.

IV. CONCLUSION

Fine-tuning BERT-base-uncased for metadata classification yields an overall accuracy of 0.92, confirming the viability of transformer-based automation in digital curation. Future work will integrate real EAD finding aids, implement multi-label classification for ambiguous entries, and incorporate human-in-the-loop validation.

ACKNOWLEDGMENT

The author thanks the University of Michigan School of Information and participating archival staff for insights into donor metadata workflows.

REFERENCES

- [1] U.S. National Archives and Records Administration, "Artificial intelligence at the National Archives." [Online]. Available: https://www.archives.gov/ai, accessed Apr. 4, 2025.
- [2] Carnegie Mellon Univ. Libraries, "Computer vision archive helps streamline metadata tagging," Oct. 2020. [Online]. Available: https://www.cmu.edu/news/stories/archives/2020/october/computervision-archive.html.
- [3] M. H. Choudhury *et al.*, "MetaEnhance: Metadata Quality Improvement for Electronic Theses and Dissertations," *arXiv*, Mar. 2023.
- [4] K. Sawarkar and M. Kodati, "Automated metadata harmonization using entity resolution & contextual embedding," arXiv, Oct. 2020.
- [5] T. Wolf et al., "HuggingFace Transformers: State-of-the-art natural language processing," in Proc. EMNLP: Findings, 2020, pp. 8201–8210.