Department of Computer Science and Engineering (CSE) BRAC University

Summer 2022

CSE250 – Circuits and Electronics

Basics of Electricity

Purbayan Das, C. Lecturer Department of Computer Science and Engineering (CSE) BRAC University

Electricity

- *Electricity* is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge.
- Static electricity
- Current electricity

Charge

- *Charge* is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- The *law of conservation of charge* states that charge can neither be created nor destroyed, only transferred. Thus, the algebraic sum of the electric charges in a system does not change.
- *Charge quantization* is the principle that the charge of any object is an integer multiple of the elementary charge

Example 1

How many electrons are there in 1C of charge?

Electric potential and potential energy

• Electric potential or potential difference is the energy required per unit charge to move a charge from a reference point to another point of interest.

-7V

Example 2 & 3

- 2. At point **A**, there's a voltage of V_A =**22 V**. If a charge with q= **-2 C** moves from point A to another point B and while moving it does a work of W=**10 J**, what's the voltage of point **B**?
- 3. How much work must be done to transport the **-5C** charge from point **A** to point **B** around the circle depicted in the diagram?

<u>Ans</u>: (2) $V_B = 27 V$

(3) W = + 20 J

Current

• Current is the rate of flow of charge.

Power

• *Power* is the rate of flow of energy.

Circuit element

Active element

- ➤ An active element is capable of generating energy while a passive element is not.
- Active elements have the ability to electrically control electron flow
- ➤ Voltage/current sources, generators, transistors, operational amplifiers.

Passive element

Resistors, capacitors, inductors, transformers

Circuit symbols

Basic Electrical and Electronic Schematic Symbols (electronics-tutorials.ws)

Power Supply Schematic Symbols

Schematic Symbol	Symbol Identification	Description of Symbol
†	Single Cell	A single DC battery cell of 0.5V
* <u>=</u>	DC Battery Supply	A collection of single cells forming a DC battery supply
v _s	DC Voltage Source	A constant DC voltage supply of a fixed value
(Ist)	DC Current Source	A constant DC current supply of a fixed value
V ₅ .	Controlled Voltage Source	A dependent voltage source controlled by an external voltage or current
I _s	Controlled Current Source	A dependent current source controlled by an external voltage or current
\Diamond	AC Voltage Source	A sinusoidal voltage source or generator

Electrical Grounding Schematic Symbols

Schematic Symbol	Symbol Identification	Description of Symbol
	Earth Ground	Earth ground referencing a common zero potential point
<u></u>	Digital Ground	A common digital logic circuit ground line

Resistor Schematic Symbols

Schematic Symbol	Symbol Identification	Description of Symbol
**************************************	Fixed Resistor (IEEE Design)	A fixed value resistor whose resistive value is indicated next to its schematic symbol
Ģ	Fixed Resistor (IEC Design)	
*	Potentiometer (IEEE Design)	Three terminal variable resistance whose resistive value is adjustable from zero to its maximum value
<u> </u>	Potentiometer (IEC Design)	
Ž	Rheostat (IEEE Design)	Two terminal fully adjustable rheostat whose resistive value varies from zero to a maximum value
İ	Rheostat (IEC Design)	

Example 4

Find power absorbed by each element in the network.

Ans: $P_{F1} = -150 \text{ W}$; $P_{F2} = 60 \text{ W}$; $P_{F3} = 54 \text{ W}$; $P_{F4} = 36 \text{ W}$.

12

Ohm's Law

Ohm's law states that the voltage across a resistor is directly proportional to the current flowing through the resistor.

Example 5

• In the circuit shown in the following figure, calculate the current *i*, the conductance *G*, and the power *p*.

Ans: i = 6 mA; G = 200 \mho ; P = 180 mW.

Thank you for your attention

