Regression Metrics

You learned about regression metrics a few chapters ago. As a quick recap, the Pearson R^2 and RMSE (root-mean-squared error) are good defaults.

We only briefly covered the mathematical definition of R^2 previously, but will delve into it more now. Let x_i represent predictions and y_i represent labels. Let \bar{x} and \bar{y} represent the mean of the predicted values and the labels, respectively. Then the Pearson R (note the lack of square) is

$$R = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}}$$

This equation can be rewritten as

$$R = \frac{\text{cov}(x, y)}{\sigma(x)\sigma(y)}$$

where cov represents the covariance and σ represents the standard deviation. Intuitively, the Pearson R measures the joint fluctuations of the predictions and labels from their means normalized by their respective ranges of fluctuations. If predictions and labels differ, these fluctuations will happen at different points and will tend to cancel, making R^2 smaller. If predictions and labels tend to agree, the fluctuations will happen together and make R^2 larger. We note that R^2 is limited to a range between 0 and 1.

The RMSE measures the absolute quantity of the error between the predictions and the true quantities. It stands for root-mean-squared error, which is roughly analogous to the absolute value of the error between the true quantity and the predicted quantity. Mathematically, the RMSE is defined as follows (using the same notation as before):

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (x_i - y_i)^2}{N}}$$

Hyperparameter Optimization Algorithms

As we mentioned earlier in the chapter, hyperparameter optimization methods are learning algorithms for finding values of the hyperparameters that optimize the chosen metric on the validation set. In general, this objective function cannot be differentiated, so any optimization method must by necessity be a black box. In this section, we will show you some simple black-box learning algorithms for choosing