ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А. Н. Тихонова

Проект документации
на выполнение междисциплинарной курсовой работы
по теме «Web-приложение для аппроксимации функций»

Выполнили:

Коршун Владислав Игоревич БИВ237

Соснин Артём Олегович БИВ237

Руководитель:

Иванова Елена Михайловна

Оглавление

Техническое задание	3
Введение	
Описание алгоритма	
Алгоритм аппроксимации	
Алгоритм Web-приложения	
Обоснование выбора программных средств	
Описание программы	
Тестирование	
Руководство пользователя	
Заключение	
Список литературы	

Техническое задание

1. Тема работы

Web - приложение для аппроксимации таблично и графически заданных функций.

2. Цель работы

Предоставление пользователям удобного и интуитивно понятного средства для анализа и интерполяции данных, а также предоставление возможности точного прогнозирования значений функций на основе имеющихся данных.

3. Формулировка задания

Реализовать быстрый алгоритм для нахождения приближенных значений функции при помощи аппроксимации некоторых значений, удовлетворяющую следующим требованиям.

3.1. Требования к функциональным характеристикам системы

- Программа должна иметь графический интерфейс пользователя с окном для ввода точек при помощи ввода этих значений табличным методом или графического ввода данных на графике, окном вывода приближенных уравнений и графиком приближённых уравнений, кнопками начала вычислений и изменений типа аппроксимации.
- Программа должна иметь возможность считывать координаты точек из таблицы значений и после аппроксимации этих значений выводить аппроксимированную функцию и ее график.
- Программа должна иметь возможность различного манипулирования с графиком, приближение, отдаление, смена шага, переход по координате.

3.2. Требования к надежности системы

- Программа должна сообщать о неправильном вводе данных (см. п.3.6).
- Программа должна сообщать о неправильной передаче алгоритму (см. п.3.6).
- Программа должна сообщать о недостаточном количестве данных для построения аппроксимированной функции.

3.3. Требования к условиям эксплуатации системы

• Для работы с программой нужно знать основные пункты работы с компьютером и браузером.

3.4. Требования к составу и параметрам технических средств

• Компьютер с монитором или ноутбук, клавиатурой и мышью, процессор с тактовой частотой 1 ГГц или выше, 1 Гб ОЗУ, любая операционная система и любой браузер.

3.5. Требования к программной части

• Любой браузер с доступом в интернет. ОС Windows 7+, MacOS, linux.

3.6. Спецификация входных и выходных данных

- Программа должна принимать на вход данные int и float.
- Целые значения от 2147483648 до 2147483647.
- Дробные значение в том же диапазоне что и целые дробная часть не больше 20 знаков после запятой.
- Количество точек не больше 10^6 .
- Выходные данные имеют те же ограничения на максимальное число переменной, график функции имеет ограничения размеров значение самой дальней точки от оси + шаг текущего масштаба, применимо для обоих осей.

Введение

При разработке веб-приложения, основанного на аппроксимации точек на графике, важным этапом является создание удобного и функционального инструмента для пользователей. В современном информационном пространстве возрастает спрос на приложения, способные помочь пользователям анализировать данные и делать выводы на основе их визуализации.

Существует ряд аналогичных приложений, однако многие из них ограничены по функционалу или не обладают достаточной гибкостью в обработке разнообразных типов функций. Также важным аспектом является доступность таких инструментов, и веб-приложение представляет собой удобное решение, поскольку оно не требует установки и может быть использовано на различных устройствах с доступом в интернет.

Цель данного проекта заключается в разработке веб-приложения, которое предоставит пользователям возможность проводить аппроксимацию графически заданных функций, обеспечивая при этом удобный интерфейс и гибкие настройки. В дальнейшем такое приложение может быть использовано в учебных целях, научных исследованиях, а также в практических приложениях, требующих анализа и визуализации функциональных зависимостей.

Описание алгоритма

Алгоритм аппроксимации

- 1. Получение данных происходит на сайте, пользователь рисует линию (по виду похожую на нужную ему аппроксимированную функцию)
- 2. Выбор аппроксимации
 - 2.1. Выбор аппроксимации происходит на сайте с помощью специального поля выбора.
 - 2.2. Затем производится аппроксимация по выбранному шаблону.
- 3. Обработка данных. В данной версии продукта есть только 3 вида аппроксимации которые работают по формулам многочлена Лагранжа.
 - 3.1. Линейная аппроксимация работает следующим образом находятся значения k по 2 точкам, затем так же находятся значения b, после чего находятся их усредненные значения.
 - 3.2. Квадратичная аппроксимация работает следующим образом находится по формуле.

$$L_n(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

- 3.3. Кубическая аппроксимация работает следующим образом находится по той же формуле что и квадратичная, но для трех точек (каждое слагаемое умножается на (x-xi)/(xk-xi) где: k текущий x, i еще одна точка).
- 4. Далее найденные значений коэффициентов отправляются на сайт, где по ним строится аппроксимированная линия.

Алгоритм Web-приложения

1. Взаимодействие с графиком

- 1.1. Пользователь открывает веб-приложение и видит интерфейс с графиком.
- 1.2. С помощью мыши, трекпада или сенсорного экрана пользователь рисует функцию на графике.
- 1.3. Пользователь может масштабировать и перемещать график для удобства работы.

2. Отправка точек на аппроксимацию

- 2.1. Пользователь нажимает кнопку «Получить функцию» после завершения редактирования графика.
- 2.2. Введенные точки и выбранный тип аппроксимации отправляются на сервер в формате json для аппроксимации.
- 2.3. Данные сохраняются в txt файл.
- 2.4. Java запускает C++ программу:
 - 2.4.1. С++ программа считывает точки и выбранную функцию из текстового файла.
 - 2.4.2. Выполняется аппроксимация.
 - 2.4.3. Результаты сохраняются в другой текстовый файл.

3. Получение ответа пользователем

- 3.1. Java считывает результаты аппроксимации из выходного текстового файла.
- 3.2. Отображение полученной функции на графике вместе с исходными точками.
- 3.3. Возможность сохранения или продолжения работы с приложением.

4. Обработка ошибок и уведомлений

- 4.1. Отображение уведомлений в случае ошибок при аппроксимации или отправке данных.
 - 4.1.1. При ошибке аппроксимации приложение будет выводить график функции y=0.
- 4.2. Возможность повторной попытки ввода функции.

Обоснование выбора программных средств

- 1. Обоснование выбора С++ для аппроксимации значений функции
 - 1.1. Производительность: C++ обеспечивает высокую производительность благодаря низкоуровневой работе с памятью и возможности оптимизации кода. Это особенно важно при работе с большими объемами данных или сложными математическими операциями, которые часто встречаются в задачах аппроксимации.
 - 1.2. Нативный доступ к ресурсам: C++ позволяет напрямую работать с системными ресурсами, такими как файлы, потоки ввода-вывода, а также взаимодействовать с операционной системой. Это полезно, если требуется загружать данные из файлов или обрабатывать данные в реальном времени.
 - 1.3. Богатые математические библиотеки: В экосистеме C++ существует множество мощных математических библиотек, которые предоставляют широкий набор инструментов для реализации различных методов аппроксимации и численных алгоритмов.
 - 1.4. Интеграция с существующим кодом: Если у вас уже есть существующий код на C++ или на других языках, который необходимо интегрировать с аппроксимационным алгоритмом, то использование C++ может упростить этот процесс.
 - 1.5. Кроссплатформенность: С++ является кроссплатформенным языком программирования, что означает, что код, написанный на нем, может быть скомпилирован и запущен на различных операционных системах без изменений, что улучшает переносимость приложения.
- 2. Обоснование выбора программных средств бекэнда для Web-приложения 2.1. Язык программирования:
 - 2.1.1. Для разработки бэкэнда Web-приложения был выбран язык программирования Java. Основные причины выбора включают:
 - <u>Схожесть с языком С</u>: Java наследует многие синтаксические и структурные особенности языка С, что облегчает его освоение для разработчиков, имеющих опыт работы с С или С++.
 - <u>Высокая производительность</u>: Благодаря компиляции в байткод, выполняемый виртуальной машиной Java (JVM), Java обеспечивает высокую производительность и оптимизацию работы приложений.
 - <u>Широкое применение</u>: Java является одним из самых популярных языков программирования в мире, особенно в корпоративной среде. Это обеспечивает обширную базу знаний, документацию и сообщество, что облегчает решение возникающих проблем.

- Моя личная подготовка: Пройденное мной обучение на "Летней школе по программной инженерии ФКН НИУ ВШЭ, совместно с IT Школой Samsung" подтвердило мои предпочтения в пользу Java. Небольшой опыт работы с C++ дал понять, что Java более интуитивно понятна для начинающего разработчика.
- <u>Поддержка ООП</u>: Java полностью поддерживает объектноориентированное программирование (ООП), что способствует созданию гибкой и модульной архитектуры приложений.

2.2. Инструменты разработки:

- 2.2.1. Для разработки приложения я предпочитаю использовать интегрированную среду разработки (IDE) IntelliJ IDEA Ultimate Edition. Основные преимущества IntelliJ IDEA включают:
 - <u>Поддержка Java</u>: IntelliJ IDEA предоставляет мощные инструменты и функции для разработки на Java, включая поддержку синтаксиса, автозаполнение кода, рефакторинг и отладку.
 - <u>Комфорт и продуктивность</u>: Интерфейс и функциональность IntelliJ IDEA разработаны таким образом, чтобы разработчик мог сосредоточиться на коде и задачах, минимизируя время на рутинные операции.
 - <u>Широкий набор плагинов</u>: IntelliJ IDEA поддерживает множество плагинов, которые могут расширить функциональность IDE для работы с различными технологиями и фреймворками.
 - <u>Интеграция с системами контроля версий</u>: Инструменты для работы с Git и другими системами контроля версий встроены в IDE, что облегчает управление версиями кода и сотрудничество в команде.

2.3. Альтернативные подходы:

- 2.3.1. При рассмотрении альтернативных технологий были оценены такие варианты, как использование Python c Flask и JavaScript c Node.js. Основные причины отказа от них:
 - <u>Flask (Python)</u>: Flask является микрофреймворком, что делает его легким и простым в освоении. Однако для реализации более сложных и масштабируемых проектов он может потребовать значительного времени на настройку и расширение. Кроме того, мой опыт работы с Python ограничен, что могло бы замедлить процесс разработки.

- <u>Node.js (JavaScript)</u>: Node.js позволяет разрабатывать серверные приложения на JavaScript, что упрощает создание приложений с единым языком для фронтенда и бэкенда. Однако изучение и освоение JavaScript требует времени, которого у меня нет в рамках текущего проекта. Также JavaScript может быть менее строгим в типизации, что иногда усложняет поддержку и отладку кода.
- <u>Соответствие моему опыту:</u> Java соответствует моему текущему опыту и позволяет мне более эффективно разрабатывать приложение, минимизируя время на изучение новых технологий и обеспечивая высокую производительность и надежность кода.

Описание программы

Ссылка на код аппроксимации на C++, с комментариями и README https://github.com/Astermerter/KursWork2024/tree/master/Kursah24

Ссылка на Backend приложения на Java: https://github.com/korshunvladislav/KursachV5

Тестирование

Тестирование всего функционала сайта:

1. Аппроксимация линейной функции

Нарисуйте свой график

Developed by C.K.A.M.

2. Аппроксимация квадратичной функции

3. Аппроксимация кубической функции

Нарисуйте свой график

$$y = -0.01x^3 - 0.05x^2 - 0.46x + 0.34$$

Руководство пользователя

- 1. Для работы нужно перейти на сайт http://0agressiiman.ru
- 2. Выбрать нужный тип аппроксимации

3. Нарисовать линию, функцию которой вы хотите узнать, в поле для рисования

Нарисуйте свой график

4. Затем нужно нажать на кнопку «Получить функцию»

Получить функцию

5. Теперь вы видите формулу вашей функции и график (для того, чтобы сравнить точность новой и той, что вы нарисовали).

6. Для повторного использования, нажмите кнопку «Очистить график».

Очистить график

И повторите весь алгоритм сначала.

Заключение

Разработка веб-приложения для аппроксимации графиков функций оказалась увлекательным и продуктивным процессом. Проект подходит к своему логическому завершению, и его потенциал уже очевиден.

Использование современных технологий, таких как Java и C++, позволяет создать инструмент, обеспечивающий удобное и эффективное взаимодействие пользователей с графиками функций. Веб-приложение аппроксимирует и визуализирует графики функций, предоставляя аналитическое представление о входных данных. Удобный интерфейс и простые механизмы ввода и управления делают процесс взаимодействия с приложением интуитивно понятным.

Обмен данными между программами через текстовые файлы (.txt) обеспечивает гибкость и простоту интеграции различных компонентов системы. Это решение позволило добиться высокой производительности и надежности работы приложения, а также эффективности обрабатки и анализа больших объемов данных.

Проект представляет собой важный этап, и его результаты уже показали значительную ценность. Мы уверены, что разработанное веб-приложение станет полезным инструментом для широкого круга пользователей, включая студентов, исследователей и профессионалов в различных областях науки и техники.

Список литературы

- 1. Блох, Д. Java Эффективное программирование / Д. Блох. М.: Лори, 2016. 440 с.
- 2. Курняван, Б. Программирование WEB-приложений на языке Java / Б. Курняван. М.: Лори, 2014. 880 с.
- 3. Давыдов, С. IntelliJ IDEA. Профессиональное программирование на Java / С. Давыдов. СПб.: BHV, 2005. 800 с.
- 4. Васильев, А. Java. Объектно-ориентированное программирование: Учебное пособие Стандарт третьего поколения / А. Васильев. СПб.: Питер, 2013. 400 с.