Minnesota
Department of
Transportation Traffic
Project

Nathan Wodarz

September 2021

Outline

Problem Statement Background

Motivation

Problem Statement

Data Wrangling

Raw Data

Data Cleaning

Transformation

Exploratory Data Analysis

Data Distribution

Autocorrelation

Imputation

Methods

Result

Modeling

Method

Results

Future Directions

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 tota
 - 751 in Minneapolis-St. Paul metro area (7 counties) 801 outstate (80 counties)
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - ► Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 tota
 - 751 in Minneapolis St. Paul metro area (7 counties) 80+ mitistate (80 counties)
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - ► Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 tota
 - 75+ in Minneapolis-St. Paul metro area (7 counties)
 - 80+ Outstate (80 Court
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 tota
 - 754 in Minneapolis St. Paul metro area (7 counties) 804 milistate (80 counties)
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 total
 - 75+ in Minneapolis-St. Paul metro area (7 counties)
 - 80+ outstate (80 counties
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 total
 - 75+ in Minneapolis-St. Paul metro area (7 counties)
 - 80+ outstate (80 counties
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 total
 - ▶ 75+ in Minneapolis-St. Paul metro area (7 counties)
 - ▶ 80+ outstate (80 counties
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 total
 - ▶ 75+ in Minneapolis-St. Paul metro area (7 counties)
 - ▶ 80+ outstate (80 counties)
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 total
 - ▶ 75+ in Minneapolis-St. Paul metro area (7 counties)
 - ▶ 80+ outstate (80 counties)
 - Available 2002-present

- Minnesota Department of Transportation (MnDOT)
- Minnesota ranks 4th of 50
 - Centerline mileage
 - Lane mileage
- Road volume
 - Automatic Traffic Recorders (ATR) and Weigh-in-Motion (WIM)
 - Over 155 total
 - 75+ in Minneapolis-St. Paul metro area (7 counties)
 - ▶ 80+ outstate (80 counties)
 - Available 2002-present

Outline

Problem Statement

Background

Motivation

Problem Statement

Data Wrangling

Raw Data

Data Cleaning

Transformation

Exploratory Data Analysis

Data Distribution

Autocorrelation

mputation

Methods

Result

Modeling

Method

Results

Future Directions

- ► Interest in geography/road network
- Interest in time series
- Availability of data

- ► Interest in geography/road network
- Interest in time series
- Availability of data

- ► Interest in geography/road network
- Interest in time series
- Availability of data

Outline

Problem Statement

Backgroun Motivation

Problem Statement

Data Wrangling

Data Cleaning

Transformation

Exploratory Data Analysis
Data Distribution

Imputation

Methods

Result

Modeling

Method

Results

Future Directions

Problem Statement Problem Statement

- ► Fit model to existing data
- ► Predict future traffic levels

Problem Statement Problem Statement

- ► Fit model to existing data
- Predict future traffic levels

Outline

Data Wrangling Raw Data

- MnDOT Data Products
 - .csv format (2017-)
 - .txt format (2002-2017)
- ► Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - .txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - .txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- MnDOT Data Products
 - .csv format (2017-)
 - txt format (2002-2017)
- Hourly values
 - One row per station per direction per day
 - More recently, also per lane
 - 24 hourly totals per row
 - Some values are estimated

- Location
 - Rural vs Urban
- Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - Local

- Location
 - Rural vs Urban
- ► Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - Local

Data Wrangling Raw Data: ATR Stations

- Location
 - Rural vs Urban
- ► Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - ► Minor Arterial
 - Major Collector
 - ► Local

- Location
 - Rural vs Urban
- ► Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - ► Minor Arterial
 - Major Collector
 - ► Local

- Location
 - Rural vs Urban
- ► Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - ► Local

- Location
 - Rural vs Urban
- Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - Local

Data Wrangling

Raw Data: ATR Stations

- Location
 - Rural vs Urban
- Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - ► Local

Data Wrangling

Raw Data: ATR Stations

- Location
 - Rural vs Urban
- Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - Local

Data Wrangling

Raw Data: ATR Stations

- Location
 - Rural vs Urban
- Functional Class
 - Interstates
 - Principal Arterial Other Freeways and Expressways
 - Principal Arterial Other
 - Minor Arterial
 - Major Collector
 - Local

- Remove duplication
- Remove inactive stations
- Remove stations with no data in last year
- Remove stations missing more than 80% of all months
 - January 2002-July 2021
 - Missing: no entries for month

- Remove duplication
- Remove inactive stations
- Remove stations with no data in last year
- Remove stations missing more than 80% of all months
 - January 2002-July 2021
 - Missing: no entries for month

- Remove duplication
- Remove inactive stations
- Remove stations with no data in last year
- Remove stations missing more than 80% of all months
 - January 2002-July 2021
 - Missing: no entries for month

- Remove duplication
- Remove inactive stations
- Remove stations with no data in last year
- Remove stations missing more than 80% of all months
 - January 2002-July 2021
 - Missing: no entries for month

- Remove duplication
- Remove inactive stations
- Remove stations with no data in last year
- Remove stations missing more than 80% of all months
 - January 2002-July 2021
 - Missing: no entries for month

- Remove duplication
- Remove inactive stations
- Remove stations with no data in last year
- Remove stations missing more than 80% of all months
 - January 2002-July 2021
 - Missing: no entries for month

- ► Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

- m: month; j: day of week; h: hour of day
- $\sim w_{im}$: ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- ► *VOL*_{ihjm}: ith data point for hth hour of jth day of week in month m
- \triangleright *MADT_m*: monthly average daily traffic for month *m*

- ► Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

- m: month; j: day of week; h: hour of day
- w_{jm}: ocurrances of jth day of week in month m
- $ightharpoonup n_{hjm}$: non-missing values for hth hour of jth day of week in month m
- ► *VOL*_{ihjm}: ith data point for hth hour of jth day of week in month m
- \triangleright MADT_m: monthly average daily traffic for month m

- ► Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

- m: month; j: day of week; h: hour of day
- w_{jm}: ocurrances of jth day of week in month m
- $ightharpoonup n_{hjm}$: non-missing values for hth hour of jth day of week in month m
- ► *VOL*_{ihjm}: ith data point for hth hour of jth day of week in month m
- \triangleright *MADT_m*: monthly average daily traffic for month *m*

- Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

$$\textit{MADT}_{m} = \frac{\sum_{j=1}^{7} w_{jm} \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} \textit{VOL}_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm}}$$

- m: month; j: day of week; h: hour of day
- w_{jm}: ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- ► *VOL*_{ihjm}: ith data point for hth hour of jth day of week in month m
- $ightharpoonup MADT_m$: monthly average daily traffic for month m

- Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

$$MADT_{m} = \frac{\sum_{j=1}^{7} w_{jm} \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} VOL_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm}}$$

- m: month; j: day of week; h: hour of day
- w_{im}: ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- ► *VOL*_{ihim}: ith data point for hth hour of jth day of week in month m
- $ightharpoonup MADT_m$: monthly average daily traffic for month m

- Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

$$\textit{MADT}_{m} = \frac{\sum_{j=1}^{7} w_{jm} \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} \textit{VOL}_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm}}$$

- m: month; j: day of week; h: hour of day
- \triangleright w_{jm} : ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- ► *VOL*_{ihim}: ith data point for hth hour of jth day of week in month m
- $ightharpoonup MADT_m$: monthly average daily traffic for month m

- Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

$$MADT_{m} = \frac{\sum_{j=1}^{7} w_{jm} \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} VOL_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm}}$$

- m: month; j: day of week; h: hour of day
- w_{jm}: ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- \triangleright *VOL*_{*ihjm*}: *i*th data point for *h*th hour of *j*th day of week in month *m*
- $ightharpoonup MADT_m$: monthly average daily traffic for month m

- Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

$$MADT_{m} = \frac{\sum_{j=1}^{7} w_{jm} \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} VOL_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm}}$$

- m: month; j: day of week; h: hour of day
- w_{jm}: ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- ▶ *VOL*_{ihjm}: ith data point for hth hour of jth day of week in month m
- \triangleright *MADT_m*: monthly average daily traffic for month *m*

- Traffic counts given by Annual Average Daily Traffic (AADT)
 - Weighted mean of Monthly Average Daily Traffic (MADT)
 - Weights: number of days in month

$$MADT_{m} = \frac{\sum_{j=1}^{7} w_{jm} \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} VOL_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm}}$$

- m: month; j: day of week; h: hour of day
- w_{jm}: ocurrances of jth day of week in month m
- $ightharpoonup n_{him}$: non-missing values for hth hour of jth day of week in month m
- VOL_{ihjm}: ith data point for hth hour of jth day of week in month m
- ► *MADT_m*: monthly average daily traffic for month *m*

Outline

Problem Statement Background Motivation

Problem Statement

Data Wrangling

Data Cleaning

Transformation

Exploratory Data Analysis Data Distribution

Autocorrelation

Imputation

Methods

Result

Modeling

Method

Results

Future Directions

Data Distribution: Interstates

Data Distribution: Principal Arterial - Other Freeways

Data Distribution: Principal Arterial - Other

Data Distribution: Principal Arterial - Other

Data Distribution: Minor Arterial

Data Distribution: Major Collector

Data Distribution: Local

Outline

Problem Statement Background Motivation

Problem Statement

Data Wrangling

Data Cleaning

Transformation

Exploratory Data Analysis

Data Distribution

Autocorrelation

Imputation

Methods

Result

Modeling

Method:

Results

Future Directions

Autocorrelation: ACF

Autocorrelation: Differenced ACF

Imputation

Outline

Problem Statement
Background
Motivation
Problem Statement
Data Wrangling

Data Cleaning

Transformation

Exploratory Data Analysis
Data Distribution

Imputation

Methods

Results

Modeling Method

Results

Future Directions

Imputation Methods

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

Imputation Methods

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - ► CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - ► CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

- Metric: Mean Square Error
- Methods
 - Mean
 - Seasonal Mean
 - CDRec (Centroid Decomposition)
 - Seasonal CDRec
 - Prophet
 - Prophet (Logistic Floor)
- All but CDRec were column-wise

Imputation

Methods: Mean

Imputation

Methods: Seasonal Mean

Imputation Methods: CDRec

Imputation

Methods: Seasonal CDRec

Imputation Methods: Prophet

Imputation

Methods: Logistic Prophet

Outline

Problem Statement
Background
Motivation
Problem Statement
Data Wrangling

Data Cleaning

Transformation

Exploratory Data Analysis
Data Distribution

Imputation

Methods

Results

Modeling Methods Results

Imputation Results

Outline

Problem Statement Background Motivation Problem Statement

Data Wrangling Raw Data

Data Cleaning

Exploratory Data Analysis
Data Distribution

Imputation Methods Results

Modeling Methods

Results

- Metric: Mean Square Error
- Methods
 - Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - SARIMA
- ► All column-wise

- Metric: Mean Square Error
- Methods
 - ► Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - ► SARIMA
- ► All column-wise

- Metric: Mean Square Error
- Methods
 - ► Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - ► SARIMA
- ► All column-wise

- Metric: Mean Square Error
- Methods
 - ► Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - ► SARIMA
- ► All column-wise

- Metric: Mean Square Error
- Methods
 - ► Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - ► SARIMA
- ► All column-wise

- Metric: Mean Square Error
- Methods
 - ► Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - SARIMA
- ► All column-wise

- Metric: Mean Square Error
- Methods
 - ► Baseline: Lag 1M / 12M
 - Prophet
 - Exponential Smoothing
 - SARIMA
- All column-wise

Modeling Methods: 1 Month Lag

Methods: 12 Month Lag

Methods: Prophet

Methods: Exponential Smoothing

Modeling Methods: SARIMA

Outline

Problem Statement
Background
Motivation
Problem Statement

Data Wrangling

Data Cleaning

Transformation

Exploratory Data Analysis
Data Distribution

Imputation Methods Results

Modeling

Method

Results

Modeling Results

- Adjust for pandemic
- Deal with Interrelations
 - Deep Learning
 - STARIMA (Space-Time Autoregressive Integrated Moving Average)

- Adjust for pandemic
- Deal with Interrelations
 - Deep Learning
 - ► STARIMA (Space-Time Autoregressive Integrated Moving Average)

- Adjust for pandemic
- Deal with Interrelations
 - Deep Learning
 - ► STARIMA (Space-Time Autoregressive Integrated Moving Average)

- Adjust for pandemic
- Deal with Interrelations
 - Deep Learning
 - STARIMA (Space-Time Autoregressive Integrated Moving Average)