Министерство образования и науки, молодежи и спорта Украины Харьковский национальный университет радиоэлектроники

И.П. Захаров, М.П. Сергиенко

МЕТРОЛОГИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

Рекомендовано Министерством образования и науки, молодежи и спорта Украины в качестве учебного пособия для студентов специальностей отрасли «Метрология и информационно-измерительные технологии» и направления «Качество, стандартизация и сертификация»

СОДЕРЖАНИЕ

Перечень условных обозначений и сокращений	3
Предисловие	5
Предисловие 1. ОБЩИЕ СВЕДЕНИЯ О ДИНАМИЧЕСКИХ	
ХАРАКТЕРИСТИКАХ СРЕДСТВ ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ	
И ИХ ИДЕНТИФИКАЦИИ	7
1.1. Основные понятия и определения	
1.2. Классификация динамических характеристик средств	
измерительной техники	9
1.3. Полные динамические характеристики средств	
измерительной техники и их взаимосвязь	11
1.4. Нормирование и формы представления динамических	
характеристик средств измерительной техники	32
1.4.1. Основные принципы нормирования метрологических	
характеристик средств измерительной техники	32
1.4.2. Выбор нормируемых динамических характеристик	
средств измерительной техники	33
1.4.3. Способы нормирования динамических характеристик	
средств измерительной техники	35
1.4.4. Формы представления нормированных динамических	
характеристик средств измерительной техники	36
1.5. Идентификация динамических характеристик	
средств измерительной техники	40
1.5.1. Аналитические методы идентификации динамических	
характеристик средств измерительной техники	40
1.5.2. Классификация методов экспериментальной	
идентификации динамических характеристик	
средств измерительной техники	43
1.6. Точность идентификации динамических характеристик	
средств измерительной техники	48
Контрольные вопросы и задачи 2. ИЗМЕРЕНИЕ ПОЛНЫХ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК	49
2. ИЗМЕРЕНИЕ ПОЛНЫХ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК	
СРЕДСТВ ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ	
2.1. Основные этапы измерительного эксперимента	50
2.2. Структурные схемы измерительного эксперимента	51
2.3. Погрешности измерения полных динамических характеристик	
2.4. Измерение переходной характеристики	55
2.4.1.Погрешность измерения переходной характеристики,	
обусловленная отличием входного сигнала	
	56
2.4.2. Погрешность измерения дискретных значений	
отклика сигнала	59

2.4.3. Погрешность регистрации	61
2.4.4. Погрешность из-за неточности определения	
коэффициента приведения	62
2.4.5. Погрешность интерполяции ПХ, измеренной	
в дискретных временных точках	65
2.5. Измерение импульсной характеристики	66
2.5.1. Погрешность измерения импульсной характеристики,	
обусловленная отличием входного сигнала	
от характеристического воздействия	67
2.5.2. Погрешность интерполяции ИХ,	
измеренной в дискретных временных точках	69
2.5.3. Погрешность регистрации	70
2.5.4. Погрешность из-за неточности определения	
коэффициента приведения	71
2.6. Измерение амплитудно-частотной характеристики	75
2.6.1. Погрешность, обусловленная отличием входного сигнала	
от характеристического воздействия	76
2.6.2. Погрешность интерполяции АЧХ,	
измеренной в дискретных частотных точках	77
2.6.3. Погрешность регистрации	78
2.7. Измерение амплитудно-фазовой характеристики	80
2.7.1. Погрешность интерполяции ФЧХ, измеренной	
в дискретных частотных точках	80
2.7.2. Погрешность регистрации	81
2.8. Взаимосвязь полных динамических характеристик	
средств измерительной техники при дискретном измерении	82
2.8.1. Трансформация погрешностей измерения	
динамических характеристик при их взаимном пересчете	84
2.8.2. Неопределенности измерений динамических	
характеристик при их взаимном пересчете	88
Контрольные вопросы и задачи	93
3. СТРУКТУРНАЯ ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКИХ	
ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ	95
3.1. Разложение модели средства измерительной техники	
на элементарные звенья	95
3.2. Синтез динамической модели средства измерительной техники	
из элементарных звеньев	100
3.2.1. Последовательное соединение звеньев	100
3.2.2. Параллельно-согласное соединение	101
3.2.3. Параллельно-встречное соединение	102
3.3. Динамические аналогии	104
3.3.1. Электрические, механические и акустические	
сопротивления	106

3.3.2. Индуктивность, масса, момент инерции, инертность	108
3.3.3. Электрическая емкость, поступательный упругий	
элемент, вращательный упругий элемент,	
акустическая емкость	110
3.4. Формализация динамических характеристик	
средств измерительной техники, моделируемых	
типовыми динамическими звеньями	112
3.4.1. Безынерционное (пропорциональное) звено	112
3.4.2. Дифференцирующее звено	116
3.4.3. Интегрирующее звено	
3.4.4. Апериодическое звено	124
3.4.5. Элементарное звено второго порядка	128
3.4.6. Несколько последовательно соединенных	
апериодических звеньев	141
3.4.7. Форсирующее звено	142
3.4.8. Звено чистого запаздывания	144
3.5. Выбор порядка модели средства измерительной техники	145
3.5.1. Определение порядка модели средства измерительной	
техники	145
3.5.1.1. Определение порядка модели средства	
измерительной техники по частотным характеристикам	146
3.5.1.2. Определение порядка модели средства	
измерительной техники по временным характеристикам	149
3.5.1.2.1. Модели средств измерительной техники,	
включающие интегрирующие и инерционные звенья	152
3.5.1.2.2. Модели средств измерительной техники,	
включающие дифференцирующие и инерционные	153
звенья	
3.5.1.2.3. Модели средств измерительной техники,	
включающие форсирующие и инерционные звенья	154
3.5.2. Критерии оптимального выбора модели	
средства измерительной техники	156
Контрольные вопросы и задачи	158
4. ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКИХ	
ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ1	159
4.1. Идентификация динамических характеристик средств	
измерительной техники, моделируемых апериодическим звеном	
первого порядка	159
4.1.1. Метод касательной	159
4.1.1.1. Идентификация переходной характеристики	
4.1.1.2. Идентификация импульсной характеристики	
4.1.2. Метод одной ординаты	162
4.1.2.1. Идентификация переходной характеристики	162

4.1.2.2. Идентификация амплитудно-частотной	
характеристики	163
4.1.2.3. Идентификация фазочастотной характеристики	164
4.1.3. Метод двух ординат	
4.1.3.1. Идентификация переходной и импульсной	
характеристик	165
4.1.4. Метод усреднения	167
4.1.5. Метод интегрирования	168
4.1.6. Метод прямоугольной волны	170
4.2. Идентификация динамических характеристик средств	
измерительной техники, моделируемых апериодическим звеном	
второго порядка	173
4.3. Аппроксимация динамических характеристик	
средств измерительной техники,	
моделируемых звеном произвольного порядка	175
4.3.1. Аппроксимация степенным полиномом	175
4.3.1.1. Применение метода наименьших квадратов	
4.3.1.2. Аппроксимация Паде	
4.3.2. Методы дискретного преобразования	181
4.3.2.1. Метод дискретного преобразования Лапласа	
временных характеристик средств измерительной техники	181
4.3.2.2. Идентификация передаточной функции	
по экспериментальным значениям входного	
и выходного сигналов	187
4.3.2.3. Аппроксимация частотных характеристик	
средств измерительной техники рядом Фурье	188
4.3.3. Аппроксимация переходной характеристики	
суммой экспоненциальных функций	190
4.3.3.1. Метод последовательного логарифмирования	191
4.3.3.2. Метод Прони	193
4.3.4. Метод моментов	_197
4.3.4.1. Метод моментов импульсных характеристик	_197
4.3.4.2. Метод моментов переходных характеристик	_200
4.3.4.3. Метод моментов частотных характеристик	_208
4.3.5. Метод последовательного интегрирования	
дифференциального уравнения	211
Контрольные вопросы и задачи	213
ПРИЛОЖЕНИЕ А. Ряды Фурье, интегралы Фурье	
и преобразование Лапласа	215
СПИСОК ЛИТЕРАТУРЫ	225
СПИСОК НОРМАТИВНЫХ ДОКУМЕНТОВ	226