Eigenvalues and eigenvectors

Schur decomposition. QR iteration.

Schur decomposition

Let a compex-valued matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$.

 ${\bf A}$ can be reduced to an upper triangular form via a unitary matrix ${\bf Q}\in\mathbb{C}^{m\times m}$, $\qquad (Q^HQ=\widehat{1})$

$$Q^H A Q = \mathbf{T}$$
 is upper triangular

$$\mathbf{T} = egin{bmatrix} t_{11} & imes & imes & \cdots \ & t_{22} & imes & \cdots \ & & \ddots & \ 0 & & t_{mm} \end{bmatrix}$$

Proof: GvL $\S7.1$

Schur decomposition

- Note that t_{kk} are eigenvalues of **T**.
- ▶ t_{kk} are eigenvalues of A since $\lambda(\mathbf{A}) = \lambda(\mathbf{Q}^H \mathbf{A} \mathbf{Q})$.

NB: Δ form, not diag.

Avoids geometric / algebraic multiplicity of eigenvalues.

Always exists.

Involves complex matrices even if ${\bf A}$ is real-valued.

Real Schur decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ is real-valued.

Cannot have a triangular real ${\bf T}$ matrix because eigenvalues can be complex conjugate.

 \Rightarrow *Real Schur factorization*: block-triangular T.

Real Schur decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. $\exists \mathbf{Q} \in \mathbb{R}^{m \times m} \leftarrow \text{orthogonal, s.t.}$

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1m} \\ 0 & R_{22} & \cdots & R_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{mm} \end{bmatrix}$$

where
$$R_{kk}$$
 is $\begin{cases} \text{either} \left[\times \right] \\ \text{or } 2 \times 2 \text{ w/ complex conjugate eigenvalues.} \end{cases}$

Proof: GvL §7.4

Schur factorization

Question:

How to transform **A** into a Schur form? Need to use a similarity transform.

Idea 1

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$
 however $\lambda(A) \neq \lambda(R)$

Idea 2

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

form
$$\mathbf{A}_1 = \mathbf{R}\mathbf{Q} \equiv \mathbf{Q}^T \mathbf{A} \mathbf{Q}$$
.

Then $\lambda(\mathbf{A}) = \lambda(\mathbf{A}_1)$.

Schur decomposition

Algorithm:

Start with $A_0 = A$. Then for $k = 1, 2, \cdots$

$$egin{cases} \mathbf{A}_{k-1} = \mathbf{Q}_k \mathbf{R}_k & ext{QR factorization} \ \mathbf{A}_k = \mathbf{R}_k \mathbf{Q}_k \end{cases}$$

Note that $\mathbf{Q}_k \in \mathbb{R}^{m imes m}$ is \perp and $\mathbf{R}_k \in \mathbb{R}^{m imes m}$ is Δ

 \mathbf{A}_k "converges" to a Δ form i.e. subdiagonal elements of $\mathbf{A}_k o 0$.

Proof: GvL chap 7.

Convergence of the QR iteration

There is not a real element-wise convergence (upper Δ may vary with k).

$$\begin{array}{ll} \text{if} & |\lambda_1|>|\lambda_2|>\cdots>|\lambda_m|, \\ \\ \text{then} & |a_{ls}^{(k)}|\\ & |_{l>s}\,_{k\text{-th iteration}}\leqslant \operatorname{const}\times\left(\frac{\lambda_l}{\lambda_s}\right)^k \end{array}$$

8/14

Computational complexity of the QR iteration

Naïve implementation: Each step is ${\cal O}(m^3)$ for the QR factorization.

Computational complexity of the QR iteration

Naïve implementation: Each step is ${\cal O}(m^3)$ for the QR factorization.

Practical implementations:

- 1. Reduce **A** to the *upper Hessenberg form*.
- 2. Iterate.

Computational complexity: Hessenberg matrices

First, reduce **A** to the *upper Hessenberg form*: the lower triangular part only has a single subleading diagonal.

$$\mathbf{U}^{T}\mathbf{A}\mathbf{U} = \mathbf{H} = \begin{bmatrix} \times & \times & \times & \cdots & \times \\ \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ & \ddots & \ddots & \ddots & \\ & & 0 & \times & \times \end{bmatrix}$$

10/14

Reduction to the Hessenberg form

Here U is a sequences of Householder reflections:

$$\begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ \vdots & \vdots & & & \\ \times & \times & & & \end{bmatrix} \xrightarrow{G_1} \begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & \vdots & & & \\ 0 & \times & & & \end{bmatrix} \xrightarrow{G_2} \begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & 0 & & & \\ \vdots & \vdots & & & \\ 0 & 0 & & & \end{bmatrix} \xrightarrow{\rightarrow} \cdots$$

Reduction requires $O(m^3)$ flops.

QR step with Hessenberg matrices

Then, annihilating the subleading diagonal is m-1 Givens rotations:

$$\begin{bmatrix} \times & \times & \times & \\ \times & \times & \times & \\ & \times & \times & \\ & & \times & \ddots \end{bmatrix} \rightarrow \begin{bmatrix} \times & \times & \times & \\ 0 & \times & \times & \\ & & \times & \times & \\ & & & \times & \ddots \end{bmatrix} \rightarrow \cdots$$

Then, the k-th step is $O(m^2)$ flops.

Convergence rate: shifts

$$|a_{s,s-1}^{(k)}| \leqslant \operatorname{const}\left(\frac{\lambda_s}{\lambda_{s-1}}\right)^k, \qquad \operatorname{slow if } \lambda_s \approx \lambda_{s-1}$$

Take

$$\widetilde{\mathbf{H}}_k = \mathbf{H}_k - \lambda_* \widehat{\mathbf{1}}$$

$$\lambda(\widetilde{\mathbf{H}})_k = \lambda(\mathbf{H}_k) - \lambda_*$$

$$\Rightarrow$$
 conv. rate of $\widetilde{h}_{s,s-1}^{(k)}$ is $\left(rac{\lambda_s-\lambda_*}{\lambda_{s-1}-\lambda_*}
ight)^k$

Convergence rate: shifts

- 1. take λ_* close to λ_s (e.g. $\lambda_* = h_{ss}^k$)
- 2. do several iterations
- 3. shift back

$$\widetilde{\mathbf{H}}_k + \lambda_* \widehat{\mathbf{1}}$$