See More and Know More:

Zero-shot Point Cloud Segmentation via Multi-modal Visual Data

Yuhang Lu, Qi Jiang, Runnan Chen, Yuenan Hou, Xinge Zhu, Yuexin Ma

GOAL

Point cloud semantic segmentation over: seen & unseen objects

INPUT

INTRODUCTION

- Point cloud semantic segmentation over: seen
 & unseen objects
- Train a model to recognize unseen objects
- Useful for autonomous driving

CHALLENGES

- Hard to generalize over unlabelled training set of 3D data
- Manual labelling is infeasible
- Few 3D semantic segmentation models
- Generative methods
 - fake features generator (3DGenZ)
- Projection-based methods alignment (TGF)

MODEL

Visual-Semantic Feature Extraction

- **Cylinder3D**, to extract 3D features from point cloud
- **ResUnet**, to extract 2D features from image
- **W2V**, **Glove**, followed by **MLP** to map the word embedding to its semantic feature

Semantic-Guided Visual Feature Fusion

Combine effectively visual features under the guide of the semantic features

- 1. **Weight matrices**, multihead-attention of enhanced visual features and enhanced semantic features
- 2. **Element-wise multiplication** between weight matrix and enhanced visual feature
- 3. MLP with Softmax

Semantic-Visual Feature Enhancement

Transformer Decoder with cross-attention layer to decrease the gap between visual and semantic features

- 1. **Semantic Feature Enhancement**, semantic features as query and visual features as key and value
- 2. **Visual Feature Enhancement**, visual features as query and semantic features as key and value

Semantic-Visual Alignment

Align semantic and visual feature spaces under seen classes supervision

- Loss function for seen classes, to have compact distribution within classes and distinguishable one between classes
- Loss function for unseen classes, to push unseen classes' features apart to seen ones (seen bias)

Inference

The class of each point is determined by the similarity between its fused visual feature and semantic features of all classes (seen and unseen)

EXPERIMENTS

Datasets:

- 1. SemanticKITTI
- 2.nuScenes

Evaluation metrics:

harmonic mean IoU

$$hIoU = \frac{2 \times mIoU_{seen} \times mIoU_{unseen}}{mIoU_{seen} + mIoU_{unseen}}$$

RESULTS

Our model outperforms SOTA with **more than 50% improvement** of unseen category mIOU. Furthermore, it yields real-time performance (0.097 s/f)

Setting	Model	SemanticKITTI					nuScenes				
		Seen	Uneen mIoU Imp	Immuovamant	Overall		Seen	Uneen	Tunanavanana	Overall	
		mIoU		Improvement	mIoU	hIoU	mIoU	mIoU mIoU	Improvement	mIoU	hIoU
0	TGP[15]	-	-	-	59.1	-	-	-	-	67.9	-
	Ours	-	-	-	62.6	-	-	-	-	69.1	-
2	3DGenZ[45]	40.9	12.4	-	37.9	19.0	67.8	4.2	-	59.9	7.9
	TGP[15]	58.3	28.8	+3.5%	55.2	38.6	58.9	26.9	+25.3%	54.9	36.9
	Ours	59.5	29.8	-	56.4	39.7	59.4	33.7	-	56.2	43.0
	Supervised	61.5	71.8	-	62.6	66.3	70.1	61.9	-	69.1	65.7
4	3DGenZ[45]	41.4	10.8	-	35.0	17.1	67.2	3.1	-	51.2	5.9
	TGP[15]	54.6	17.3	+54.9%	46.7	26.3	65.7	14.8	+56.1%	53.0	24.2
	Ours	58.8	26.8	-	52.1	36.8	66.4	23.1	-	55.6	34.3
	Supervised	60.3	71.2	-	62.6	65.3	71.9	60.6	-	69.1	65.8
6	3DGenZ[45]	40.3	6.5	-	29.6	11.2	53.8	3.2	-	34.8	6.0
	TGP[15]	53.6	13.3	+79.7%	40.9	21.3	68.8	14.1	+56.7%	48.3	23.4
	Ours	56.6	23.9	-	46.3	33.6	66.8	22.1	-	50.0	33.2
	Supervised	56.8	75.3	-	62.6	64.8	74.5	60.1	-	69.1	66.5
8	3DGenZ[45]	38.3	1.3	-	22.7	2.5	36.5	2.1	-	19.3	4.0
	TGP[15]	53.2	8.6	+70.9%	34.4	14.8	68.4	13.7	+56.9%	41.1	22.8
	Ours	46.0	14.7	-	32.8	22.3	68.2	21.5	-	44.9	32.7
	Supervised	52.1	77.1	_	62.6	62.2	73.5	64.7	_	69.1	68.8

ABLATION

Model	Seen	Unseen	Overall		
IVIOUCI	mIoU	mIoU	mIoU	hIoU	
Ours	58.8	26.8	52.1	36.8	
Ours w/o SGVF	58.8	23.4	51.3	33.5	
Ours w/o SVFE	59.0	19.9	50.8	29.8	
Ours w/o Image	58.3	20.0	50.2	29.8	