作业6

姓名: 许芸阁

学号: 2019012302

组别:第4组

Part I 3.1 R Basics

代码如下:

安装vcd包(一个用于可视化类别数据的包)

列出此包中可用的函数和数据集。

载入这个包并阅读数据集Arthritis的描述。

显示数据集Arthritis的内容(直接输入一个对象的名称将列出它的内容)

运行数据集Arthritis自带的示例(尝试用example命令)

```
install.packages("vcd")
help(package="vcd") # 打开的是vcd包的说明 (网页)
# 或
library(help="vcd") # 打开的是vcd包的说明 (文档)
library(vcd) # 会自动加载vcd依赖的grid包
Arthritis
example(Arthritis)
```

每一步输出的结果如下:

The downloaded binary packages are in

/var/folders/py/_lkxgrwx2jn664p6fkpj23580000gn/T//RtmpaVDyeu/downloaded_packages

> library(vcd) 载入需要的程辑包: grid

Files	Plots	Packages	Help	Viewer			
oj in:	stall 🧣	Update				Q,	
N	lame	0	escription	Version			
	scatterplo	ot3d	3D Scatter	Plot		0.3-41	⊕ ⊗
ň:	showtext		Using Fon	0.9-5	⊕ ⊗		
Ŏ.	showtext	db	Font Files	3.0	⊕ ⊗		
	spatial		Functions Analysis	7.3-14	⊕ ⊗		
	splines			n Spline F	unctions and Classe	s 4.1.2	
✓	stats		The R Stat	s Package	!	4.1.2	
	stats4		Statistical	Functions	using S4 Classes	4.1.2	
	stringi		Character	String Pro	cessing Facilities	1.7.6	⊕ ⊗
	stringr		Simple, Co String Ope		Wrappers for Comm	on 1.4.0	⊕ ⊗
	survival		Survival A	nalysis		3.2-13	⊕ ∅
	sysfonts		Loading Fo	onts into	R	0.8.5	⊕ ⊗
	tcltk		Tcl/Tk Inte	erface		4.1.2	
	Teaching	Demos	Demonstra	ations for	Teaching and Learn	ing 2.12	⊕ ⊗
_ t	tinytex				Install and Maintain ile LaTeX Document		⊕ ⊗
	tools		Tools for F	Package D	evelopment	4.1.2	
✓ I	utils		The R Utils	Package		4.1.2	
✓ \	vcd		Visualizing	Categor	ical Data	1.4-9	⊕ ⊗
_ ;	xfun		Supporting Maintained		ns for Packages i Xie'	0.29	⊕ ⊗
	XLConnec	t	Excel Coni	nector for	R	1.0.5	⊕ ⊗
	yaml		Methods to Back	o Convert	R Data to YAML and	2.3.5	⊕ ⊗
	Z00		S3 Infrastr Time Serie	ucture fo	r Regular and Irregu lered Observations)	lar 1.8-9	⊕ ⊗

> Arthritis

	ID	Treatment	Sex	Age	Improved	30	59	Treated	Female	59	Marked	59	51	Placebo	Female	37	None
1	57	Treated	Male	27	Some	31	62	Treated	Female	60	Marked	60	54	Placebo	Female	44	None
2	46	Treated	Male	29	None	32	84	Treated	Female	61	Marked		76	Placebo	Female	45	None
3	77	Treated	Male	30	None	33	64	Treated	Female	62	Some		16	Placebo		46	None
4	17	Treated	Male	32	Marked		34	Treated	Female	62	Marked		69	Placebo		48	
5	36	Treated	Male	46	Marked		58	Treated	Female	66	Marked						None
6	23	Treated	Male	58	Marked	36	13	Treated	Female	67	Marked		31	Placebo		49	None
7	75	Treated	Male	59	None	37	61	Treated	Female	68	Some	65	20	Placebo		51	None
8	39	Treated	Male	59	Marked	38	65	Treated	Female	68	Marked	66	68	Placebo	Female	53	None
9	33	Treated	Male	63	None	39	11	Treated	Female	69	None	67	81	Placebo	Female	54	None
10		Treated	Male	63	None	40	56	Treated	Female	69	Some	68	4	Placebo	Female	54	None
	30	Treated	Male	64	None	41	43	Treated	Female	70	Some	69	78	Placebo	Female	54	Marked
12		Treated	Male	64	Some	42	9	Placebo	Male	37	None		70	Placebo		55	Marked
	63 83	Treated Treated	Male Male	69 70	None Marked	43	14	Placebo	Male	44	None			Placebo			
	66	Treated		23	None	44	73	Placebo	Male	50	None		49			57	None
	40	Treated		32	None	45	74	Placebo	Male	51	None		10	Placebo		57	Some
17		Treated		37	Some	46	25	Placebo	Male	52	None	73	47	Placebo	Female	58	Some
18	_	Treated		41	None	47	18	Placebo	Male	53	None	74	44	Placebo	Female	59	Some
	72	Treated		41	Marked	48	21	Placebo	Male	59	None	75	24	Placebo	Female	59	Marked
	37	Treated		48	None	49	52	Placebo	Male	59	None	76	48	Placebo	Female	61	None
	82	Treated		48	Marked	50	45	Placebo	Male	62	None	77	19	Placebo	Female	63	Some
	53	Treated		55	Marked	51	41	Placebo	Male	62	None	78		Placebo		64	None
	79	Treated		55	Marked	52	8	Placebo	Male	63	Marked		67	Placebo		65	Marked
	26	Treated		56	Marked	53	80	Placebo	Female	23	None		-				
	28	Treated		57	Marked	54	12	Placebo	Female	30	None		32	Placebo		66	None
	60	Treated	Female	57	Marked	55	29	Placebo	Female	30	None		42	Placebo		66	None
	22	Treated	Female	57	Marked	56	50	Placebo	Female	31	Some	82	15	Placebo	Female	66	Some
28	27	Treated	Female	58	None	57	38	Placebo	Female	32	None	83	71	Placebo	Female	68	Some
29	2	Treated	Female	59	Marked	58	35	Placebo	Female	33	Marked	84	1	Placebo	Female	74	Marked

> example("Arthritis") Arthrt> data("Arthritis") Arthrt> art <- xtabs(~ Treatment + Improved, data = Arthritis, subset = Sex == "Female") Arthrt> art Improved Treatment None Some Marked 19 Placebo 5 Treated 6 Arthrt> mosaic(art, gp = shading_Friendly) 按<Return>键来看下一个图: Data Arthritis 84 obs. of 5 variables Values 'xtabs' int [1:2, 1:3] 19 6 7 5 6 16 art Files Plots Packages Help Viewer Plots Packages Help Viewer 🔑 Zoom → - Export 🕶 🚨 Publish • Improved None Some Marked None Some Marked Pearson residuals 1.9 1.9 Treatment Placebo Treatment Placebo 1.3 0.0 0.0 reated -1.3 -1.7 -1.7 p-value = 0.014

Part III 2.1 Expression Matrix

1. E, D, A

- Standard illumina 是 PE、non-strand specific 的建库方法,只要 map 到 geneG 所在区域的 reads 无论方向如何,都归于 geneG,共 13 条;
- Ligation method 是 PE、strand specific 的建库方法, reads 1 是 sense 的(reads 2 是 antisense 的),因此只有与 geneG 同向的 reads 1 和与 geneG 反向的 reads 2 归于 geneG,共 9 条;
- dUTPs method 是 PE、strand specific 的建库方法, reads 2 是 sense 的(reads 1 是 antisense 的),因此只有与 geneG 同向的 reads 2 和与 geneG 反向的 reads 1 归于 geneG, 共 4 条;

2.1) 来自 Paired end、non-strand specific 的测序方法。用 infer_experiment.py 推断采用的测序策略,从结果(见下方代码)中我们可以看到,"1++,1--,2+-,2-+"与"1+-,1-+,2++,2--"的比例几乎相同,因此有很大的把握认定这个数据是由非链特异性建库得到的。

解释:

- 1、2表示 reads1、reads2,如果出现,说明这是一个 Paired end 测序
- 1+-表示如果 reads1 map 到+链上,说明这个 reads 对应的是-链的基因,依此类推可知其余符号组合的含义 1++,1--,2+-,2-+类似于 Ligation method 中的情形
- 1+-,1-+,2++,2--类似于 dUTPs method 中的情形
- 如果 1++,1--,2+-,2-+与 1+-,1-+,2++,2--的比例大致相同,表明这很有可能是 non-strand specific 测序得来的结果 如果 1++,1--,2+-,2-+>> 1+-,1-+,2++,2--,表明这很有可能是 strand specific 测序得来的结果(Ligation method)如果 1++,1--,2+-,2-+<<1+-,1-+,2++,2--,表明这很有可能是 strand specific 测序得来的结果(dUTP、PICO)

2) AT1G09530 基因(PIF3 基因)上的 reads/counts 数目为 891

代码如下:

```
docker exec -it bioinfo_tsinghua_featurecount bash
cd /home/test
/usr/local/bin/infer_experiment.py \
-r GTF/Arabidopsis_thaliana.TAIR10.34.bed \
-i bam/Shape02.bam
# 结果:
# This is PairEnd Data
# Fraction of reads failed to determine: 0.0277
# Fraction of reads explained by "1++,1--,2+-,2-+": 0.4783
# Fraction of reads explained by "1+-,1-+,2++,2--": 0.4939
/home/software/subread-1.6.0-Linux-x86_64/bin/featureCounts \
-s 0 \
-p -t exon \
-g gene_id \
-a GTF/Arabidopsis_thaliana.TAIR10.34.gtf \
-o result/Shape02.featurecounts.exon.txt bam/Shape02.bam
echo read_counts success
echo -e "gene_id\tShape02" > result/Shape02.txt
cat result/Shape02.featurecounts.exon.txt | grep -v -w '#' | \
grep -v -w 'Geneid' | cut -f 1,7 >> result/Shape02.txt
cat result/Shape02.txt | grep -w "AT1G09530"
# 结果: AT1G09530 891
```

Part III 2.3 Differential Expression with DESeq2 and edgeR

得到的文件: (文件中的基因见后面)

uvr8_gene_list_DESeq2.txt,共 101 个基因

uvr8_gene_list_edgeR.txt,共 28 个基因

局部截图:

uvr8_DESeq2 vs uvr8_edgeR

DESeq2 代码:

```
library(DESeq2)
raw_count <- read.table("count_exon.txt", sep='\t', header = T)</pre>
#uvr8突变型
row.names(uvr8_raw_count) <- uvr8_raw_count[, 1]</pre>
uvr8_raw_count <- uvr8_raw_count[, -1]</pre>
countData_uvr8 <- uvr8_raw_count[rowSums(uvr8_raw_count) > 100, ]
condition_merge <- factor(c(rep("Control", 3), rep("Treat", 3)))</pre>
colData <- data.frame(row.names = colnames(countData_uvr8), condition_merge)</pre>
#从表达矩阵出发初始化DESeqDataSet对象
dds <- DESeqDataSetFromMatrix(countData_uvr8, colData, design = ~condition_merge)</pre>
#进行差异分析
dds2 <- DESeq(dds)
#获取结果
res <- results(dds2)</pre>
res <- res[order(res$padj), ]</pre>
#过滤标准
diff_gene_deseq_uvr8 <- subset(res, padj < 0.05 & abs(log2FoldChange) > 1)
#提取差异基因名称
uvr8_gene_names <- row.names(diff_gene_deseq_uvr8)</pre>
write.table(uvr8\_gene\_names, "uvr8\_gene\_list\_DESeq2.txt", sep='\t', row.names = F, quote = F)
```

edgeR 代码:

```
library(edgeR)
raw_count <- read.table("count_exon.txt", sep='\t', header=T)</pre>
#提取uvr8突变型
uvr8_raw_count <- raw_count[c("gene_id", "UD1_1", "UD1_2", "UD1_3", "UD0_1", "UD0_2", "UD0_3")]</pre>
row.names(uvr8_raw_count) <- uvr8_raw_count[, 1]</pre>
uvr8_raw_count <- uvr8_raw_count[, -1]</pre>
#讨滤
countData uvr8 <- uvr8 raw count[rowSums(uvr8 raw count] > 100. ]
dgListGroups <- c(rep("Control", 3), rep("Treat", 3))</pre>
dgList <- DGEList(counts = countData_uvr8, genes = rownames(countData_uvr8), group = factor(dgListGroups))</pre>
dgList <- calcNormFactors(dgList, method="TMM")</pre>
#获取design矩阵
design.mat <- model.matrix(~dqList$sample$group)</pre>
colnames(design.mat) <- levels(dgList$sample$group)</pre>
#对负二项分布模型进行参数估计
d2 <- estimateGLMCommonDisp(dgList, design=design.mat)</pre>
d2 <- estimateGLMTrendedDisp(d2, design=design.mat)</pre>
d2 <- estimateGLMTagwiseDisp(d2, design=design.mat)</pre>
#似然比检验
fit <- glmFit(d2, design.mat)</pre>
lrt <- glmLRT(fit,coef=2)</pre>
edgeR_result <- topTags(lrt, n = nrow(dgList))$table</pre>
edgeR_result <- edgeR_result[which(abs(edgeR_result$logFC) > 1 & edgeR_result$FDR < 0.05), ]</pre>
#输出差异显著的基因
write.table(edgeR_result$genes, file = 'uvr8_gene_list_edgeR.txt', sep = "\t",
quote = F, row.names = F, col.names = T)
```

两个结果文件中的基因:

uvr8_gene_list_DESeq2.txt

x AT3G02480 AT3G51680 AT5G65165 AT3G63350 AT3G14540 AT1G07657 AT2G36950 AT5G48090 AT4G28420 AT3G13280 AT5G11140 AT2G41450 AT1G20470 AT4G21323 AT3G20840 AT1G16400 AT5G66660 AT3G46613 AT4G25410 AT1G27670 AT5G48110 AT5G51470 AT1G44318 AT3G24310 AT1G23160 AT2G47770 AT2G47780 AT1G77885 AT1G65390 AT1G04187 AT2G05520 AT2G21820 AT5G56400 AT2G27120 AT5G20240 AT1G05557 AT1G69530 AT1G73120 AT1G58050 AT4G32490 AT1G78390 AT2G23800 AT2G43610 AT1G47130 AT5G36140 AT4G17470 AT2G41445 AT4G37800 AT5G47280 AT2G41451 AT5G24210 AT3G19560 AT4G31870 AT2G43050 AT1G70420 AT3G07255 AT1G30190 AT1G07180 AT2G03360 AT4G23590 AT1G49450 AT1G67110 AT1G04370 AT1G09110 AT1G08947 AT3G58480 AT4G27670 AT3G28740 AT5G07480 AT3G07675 AT4G08040 AT4G05200 AT3G15670 AT5G04205 AT3G55240 AT1G03982 AT5G66650 AT2G41260 AT2G40100 AT1G64110 AT1G66100 AT5G16980 AT2G28340 AT3G10950 AT5G47175 AT2G16005 AT3G19610 AT5G45573 AT1G56250 AT2G42540 AT1G71390 AT4G32510 AT5G10510 AT1G32450 AT3G22600 AT1G27135 AT4G31950 AT1G07493 AT4G01780 AT1G71390 AT4G22214

uvr8_gene_list_edgeR.txt

x AT5G48110 AT2G41450 AT5G11140 AT5G29560 AT1G73120 AT3G63350 AT3G14540 AT5G24210 AT5G36140 AT3G28740 AT1G69530 AT3G24310 AT5G20240 AT1G23160 AT4G25410 AT3G51680 AT2G41260 AT3G46613 AT2G36950 AT2G16005 AT2G43050 AT4G25580 AT1G77885 AT4G37800 AT4G17470 AT1G47130 AT4G31870 AT5G07480

```
#把表格中的基因导入dataframe中存储
df1 <- read.table("uvr8_gene_list_DESeq2.txt", sep='\t', header = T)</pre>
df2 <- read.table("uvr8_gene_list_edgeR.txt", sep='\t', header = T)</pre>
#把dataframe转为list, 用于制作venn图
df1 \leftarrow t(df1)
df2 \leftarrow t(df2)
df1 <- as.data.frame(df1)</pre>
df2 <- as.data.frame(df2)</pre>
df1 <- as.list(df1)</pre>
df2 <- as.list(df2)</pre>
#制作venn图
library(VennDiagram)
venn.diagram(list(Uvr8_DESeq2=df1, Uvr8_edgeR=df2), #数据
scaled=FALSE, #不根据数字大小调整venn图形状
resolution = 300, #清晰度
imagetype = "tiff", #图片类型
alpha=c(0.5, 0.5), #区域透明度
cex=2, #数字字号
fill=c("red","blue"), #区域颜色
cat.fontface=4, #区域标题字体
cat.cex=2, #区域标题字号
cat.just=list(c(-1, -6), c(2, -6)), #区域标题位置
main="uvr8_DESeq2 vs uvr8_edgeR", #venn图标题
main.cex=2, #标题字号
main.fontface=2, #标题字体
filename="uvr8_DESeq2_vs_edgeR.tif" #文件名)
```