高等量子力学期末试题简略版(2017 秋)

命题人: 朱世琳老师

注: 仅作参考,不保证正确性. 除第二大题 (2)-(5) 小问外,均可直接写出答案.

- 1. (25分)对称性与守恒律.
 - (a) T 为时间反演算符, $D(\alpha, \beta, \gamma)$ 为欧拉角下的空间转动算符,写出以下对 易式结果: $[T, D(\alpha, \beta, \gamma)]$, $[J_{\pm}, TD(0, \pi, 0)]$.
 - (b) 这 ... 忘记了,应该很简单嗯.
 - (c) 两个非全同粒子, \mathbf{r}_i , \mathbf{p}_i , \mathbf{s}_i , \mathbf{l}_i 分别是第 i 个粒子的坐标、动量、自旋、轨道角动量. $H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + a\delta(\mathbf{r}_1 \mathbf{r}_2)\mathbf{s}_1 \cdot \mathbf{s}_2$,问体系是否具有空间反射对称性?
 - (d) 若 E 和 B 在空间反射中发生相应变化,则以下各项中哪些项破坏空间反射对称性?

$$H = a_1 \mathbf{r}_1 \cdot \mathbf{p}_2 + a_2 \mathbf{s}_1 \cdot \mathbf{l}_1 + a_3 \mathbf{r}_1 \cdot \mathbf{l}_1 + a_4 \mathbf{r}_1 \cdot \mathbf{E} + a_5 \mathbf{s}_1 \cdot \mathbf{B} + a_6 \mathbf{s}_1 \cdot \mathbf{s}_2$$

- (e) 承上问, 哪些项破坏时间反演对称性?
- 2. (25 分) 二次量子化理论.以下考虑无自旋玻色子体系,设动量为 \mathbf{p} 的自由 粒子消灭算符 $a_{\mathbf{p}}$,某一点粒子的消灭算符 $\phi(\mathbf{r})$.
 - (a) 写出体系的广义动量算符.
 - (b) 用广义动量算符推导出空间平移 δ 时消灭算符 $a_{\mathbf{p}}$ 如何变化.
 - (c) 推导空间平移 δ 时, ϕ (**r**) 如何变化.
 - (d) 另一玻色体系,哈密顿量 $H = 5a^{\dagger}a + 2(a^2 + a^{\dagger 2})$,其中 $[a, a^{\dagger}] = 1$, $[a, a] = [a^{\dagger}, a^{\dagger}] = 0$,推导该体系的粒子数是否守恒?
 - (e) 试求解该体系的能谱.
- 3. (25分)角动量理论.

- (a) 自旋为 ½ 的两个粒子,不考虑相对轨道角动量,则耦合角动量的全部可能值是多少?
- (b) 无自旋粒子, \mathbf{L} , L_z 共同本征态为 $|nlm\rangle$,请使用 Wigner-Eckart 定理及空间反射对称性,写出 $\langle n'l'm'|\mathbf{L}|nlm\rangle$ 、 $\langle n'l'm'|\mathbf{r}|nlm\rangle$ 不为 0 的选择定则.
- (c) 已知强子具有同位旋 **I**,其满足与角动量相同的对易关系 $[I_i,I_j]=i\epsilon_{ijk}I_k$,强相互作用下同位旋是守恒量. 已知 ρ^0 介子自旋为 1,同位旋 $(I,I_3)=(1,0)$,宇称为 -1,电荷为 0. π 为赝标量介子, π^+,π^0,π^- 的同位旋 I=1, $I_3=1,0,-1$,宇称为 -1,电荷为 1,0,-1. 问以下过程能否通过强相互作用发生: $\rho^0 \to \pi^+ + \pi^-$, $\rho^0 \to \pi^0 + \pi^0$. 如可以,两个 π 介子轨道角动量是多少?
- 4. (25分) 狄拉克方程.
 - (a) 用狄拉克方程描述的自由正电子,动量 \mathbf{p} ,能量 -|E|,螺旋度 $\Sigma_e = +1$,问其电荷共轭态描述怎样的物理态?
 - (b) 两个单色平面波解 $\psi(\mathbf{x})$, $\phi(\mathbf{x})$, 问下式中两个双线性项的乘积

$$\bar{\psi}\gamma_{\mu}\psi\cdot\bar{\phi}\gamma^{\mu}\gamma_{5}\phi$$

在正常 Lorentz 变换和空间反射变换下是否变化?

- (c) 设电子的单色平面波的正能解 $\phi(\mathbf{x})$,考虑矩阵 $\Gamma = \gamma^{\mu}$, σ^{02} , σ^{13} , $\gamma^{\mu}\gamma_5$,则 当电子质量 $m_e \to +\infty$ 时,哪些情形对应的双线性项 $\bar{\phi}\Gamma\phi$ 不趋于 0 ?
- (d) 设单色平面波解 $\phi_{\mathbf{p}}(\mathbf{x}) = u(\mathbf{p})e^{i(\mathbf{p}\cdot\mathbf{x}-Et)/\hbar}$, 求以下恒等式的系数 C_1 , C_2 .

$$\bar{u}(\mathbf{p}_1)\gamma^{\mu}u(\mathbf{p_2}) = \frac{1}{m_c}\bar{u}(\mathbf{p}_1)\left(C_1(p_1 + p_2)^{\mu} + C_2\sigma^{\mu\nu}(p_{1\nu} - p_{2\nu})\right)u(\mathbf{p_2})$$

欢迎关注公众号:一只粲夸克