UCS405 (Discrete Mathematical Structures)

Tutorial Sheet-6 (Relations)

- 1. List the triples in the relation $\{(a, b, c) \mid a, b, \text{ and } c \text{ are integers with } 0 < a < b < c < 5\}.$
- 2. Represent each of these relations on {1, 2, 3} with a matrix and graph (with the elements of this set listed in increasing order).
 - a) $\{(1, 1), (1, 2), (1, 3)\}$
 - b) $\{(1, 2), (2, 1), (2, 2), (3, 3)\}$
 - c) $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - d) $\{(1,3),(3,1)\}$
- 3. Let R be the relation represented by the matrix

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Find the matrix representing

- a) R^{-1} .
- b) comp(R)
- c) \mathbb{R}^2 .
- 4. Let R be the relation on the set {0, 1, 2, 3} containing the ordered pairs (0,
 - 1), (1, 1), (1, 2), (2, 0), (2, 2), and (3, 0). Find the
 - a) reflexive closure of R.
- b) symmetric closure of R.
- 5. Find the transitive closures of these relations on $\{1, 2, 3, 4\}$.
 - a) $\{(1, 2), (2,1), (2,3), (3,4), (4,1)\}$
 - b) $\{(2, 1), (2,3), (3,1), (3,4), (4,1), (4,3)\}$
 - c) $\{(1, 2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$
 - d) $\{(1, 1), (1,4), (2,1), (2,3), (3,1), (3, 2), (3,4), (4, 2)\}$
- 6. Use Warshall's algorithm to find the transitive closures of above relations.
- 7. Find the smallest relation containing the relation $\{(1, 2), (1, 4), (3, 3), (4, 1)\}$ that is
 - a) reflexive and transitive.
 - b) symmetric and transitive.
 - c) reflexive, symmetric, and transitive.