Search for Contact Interactions using the Inclusive Jet Production Cross Section @ 13 TeV

Suman Beri $^{1},$ Suneel Dutt, Bipen Kotwal $^{2},$ Suho Kim $^{3},$ and Harrison B. Prosper 3

¹Panjab University, ²Shoolini University

³Florida State University

May 25, 2018

Introduction

Strategy

Many thanks to members of the Inclusive Jet p_T Group, and especially to Engin Eren.

Search for Contact Interactions

Look for deviations in the high- p_T tail of the inclusive jet p_T spectrum at 13 TeV from the predictions of QCD and interpret deviations as potential evidence of new QCD-like interactions that cannot be resolved at LHC energies.

Assumptions

 $oldsymbol{0}$ At LHC energies, the Lagrangian L can be written as

$$L = L_{SM}^{(0)} + \frac{1}{\Lambda}L^{(1)} + \frac{1}{\Lambda^2}L^{(2)} + \cdots,$$

e with $L^{(2)}$ a sum $2\pi \sum_{i=1}^{6} \kappa_{i} O_{i}$ over dim-6 operators $O_{1,2} \sim \bar{\psi}_{L} \gamma_{\mu} \psi_{L} \bar{\psi}_{L} \gamma^{\mu} \psi_{L}$, $O_{3,4} \sim \bar{\psi}_{L} \gamma_{\mu} \psi_{L} \bar{\psi}_{R} \gamma^{\mu} \psi_{R}$. $O_{5,6} \sim \bar{\psi}_{R} \gamma_{\mu} \psi_{R} \bar{\psi}_{R} \gamma^{\mu} \psi_{R}$ that describe contact interactions (CI). κ_{i} are additional free parameters¹.

¹J. Gao, Comput.Phys.Commun. 184 (2013) 2362.

Introduction

2 Strategy

Strategy

• Given observed jet counts, N_i in M_{p_T} bins, construct a multinomial likelihood

$$p(D \mid \lambda, \kappa, \nu) = \prod_{i=1}^{M} \left(\frac{\sigma_i}{\sigma}\right)^{N_i},$$

where $\lambda \equiv 1/\Lambda^2$, σ_i is the predicted cross section in the i^{th} bin, $\sigma = \sum_{i=1}^{M} \sigma_i$, and ν denotes the nuisance parameters.

② Given a prior density $\pi(\lambda, \kappa, \nu) = \pi(\nu | \lambda, \kappa)\pi(\lambda | \kappa)\pi(\kappa)$, compute the marginal likelihood

$$p(D \mid \lambda, \kappa) = \int p(D \mid \lambda, \kappa, \nu) \pi(\nu \mid \lambda, \kappa) d\nu,$$

and then the posterior density $p(\lambda|D) \sim p(D|\lambda, \kappa)\pi(\lambda|\kappa)$ from which we estimate λ or set limits.

Cross Section The cross section per p_T bin can be written as

$$\sigma = \sigma_{QCD}$$

$$+ \lambda \sum_{i=1}^{6} \kappa_{i}(b_{i} + a_{i}g + a_{i}f)$$

$$+ \lambda^{2} \sum_{i=1}^{6} \kappa_{i}^{2}(b_{i} + a_{i}g + a_{i}f)$$

$$+ \lambda^{2} \sum_{i=1,3,5} \kappa_{i}\kappa_{i+1}(b_{ii+1} + a_{ii+1}g + a_{ii+1}f)$$

$$+ \lambda^{2} \sum_{i=1,2,5,6} \kappa_{i}\kappa_{4}(b_{i4} + a_{i4}g + a_{i4}f),$$

where $f = \ln(\sqrt{k/\lambda})$ and the 57 coefficients are independent of λ^2 .

²J. Gao, Comput.Phys.Commun. 184 (2013) 2362.

Distributions of 57 CI Coefficients

The main task is modeling the prior $\pi(\nu \mid \lambda, \kappa)$:

- Use hessian2replicas in LHAPDF6.1.6 to generate an ensemble of PDF sets for CT14nlo and MMHT2014nlo68cl. We also use NNPDF30_nlo_as_0118_1000.
- For each PDF set, and 7 combinations of renormalization and factorization scales, use fastnlo_toolkit-2.3.1pre-2411 to compute the QCD cross section and CIJET1.1 to compute the 57 CI coefficients. Do this for each of M jet p_T bins.
- Randomly select a consistent set of CI coefficients and QCD cross sections and randomly select a jet response function JRF. Convolve the 58 differential distributions with the (JRF).
- Repeat 2 and 3 a few hundred times.

Introduction

Strategy

Inclusive jet spectrum at 13 TeV ($\mathcal{L}=35.1\,\mathrm{fb}^{-1}$) compared with a $\Lambda=30\,\mathrm{TeV}$ CI signal.

Constructive interference

Inclusive jet spectrum at 13 TeV ($\mathcal{L}=35.1\,\mathrm{fb}^{-1}$) compared with a $\Lambda=30\,\mathrm{TeV}$ CI signal.

Destructive interference

Expected limits for LL CI model

13 TeV (
$$\mathcal{L} = 35.1 \, \mathrm{fb}^{-1}$$
)

Checking the Likelihood

13 TeV (
$$\mathcal{L}=100\,\mathrm{fb^{-1}}$$
) $\Lambda=30\,\mathrm{TeV}$

Introduction

Strategy

Plans

- Complete analysis note and ask for an ARC
- Check, check, check!
- Compute expected limits for all CI models and all PDFs
- Compute observed limit
- Write paper
- Publish!