Bayesian learner model of reversal learning

in rodents self-administering cocaine

Modelling Choices:

Bayesian Learner with a Binomial likelihood link:

 q_t : likelihood of the right side being rewarded on trial t, $Q_t(R)$

1-q_t: likelihood of the left side being rewarded on trial t, $Q_t(L)$

S_t: Reward sequence on trials t (e.g. R, R, noR, R, R, noR, R, R ...)

Softmax decision rule: explore vs exploit based on q value above:

$$\begin{split} P(c_t = L | Q_t(L), Q_t(R), L_{t-1}, R_{t-1}) = \\ = \frac{exp(Q_t(L) \beta + \kappa * L_{t-1})}{exp(Q_t(L) \beta + \kappa * L_{t-1}) + exp(Q_t(R) \beta + \kappa * R_{t-1})} \end{split}$$

Model 1: Bayesian Learner | 3 parameters

Trial-wise updating of the expected reward value:

$$P(q_t|S_t) \sim (1-H) * P(S_t|q_t) * P(q_t) + H * P(q)$$

[1] Binomial Likelihood for a reward sequence S_t that has the length n and the number of rewards k:

$$P(S_t|q_t) = \frac{n!}{k! * (n-k)!} * q^k * (1-q)^{n-k}$$

On any trial t, a model with a memory size m will have access to the last m trials. In the simplest case, a model will have access only to the last trial (m=1), at which point the likelihood function is a simple Bernoulli distribution, $P(q_t)=q$

[2] Markovian dependency of $P(q_t)$ on $P(q_{t-1})$ is captured by the prior being equal to the posterior of the previous trial:

$$P(q_t) = P(q_{t-1}|S_{t-1})$$

 $P(q_1) = P(q)$

Model 1: Bayesian Learner | 3 parameters

Trial-wise updating of the expected reward value:

$$P(q_t|S_t) \sim (1-H) * P(S_t|q_t) * P(q_t) + H * P(q)$$

[3] Hazard parameter H: determines how much the posterior will change based on the data-driven likelihood vs be resampled from a prior distribution P(q).

Here P(q) was treated as uniform, but it could e.g. be a beta function with [alpha, beta] hyperparameters that could be fitted to data.

Two versions of the model were tested, one where H changes on every trial for each subject (Bayesian Learner trialwiseH.m) and one where H is fitted individually for every subject but stays constant throughout the session (Bayesian Learner fit2data.m).

Low H will result in quicker adjustment to contingency changes but will also make the model less stable to random perturbations.

[4] Expected value of q based on the distribution $P(q_t|S_t)$:

for continuous PDF(q):

$$E(q_t) = \int q_t * P(q_t) dq$$

and for discrete PDF(q):

$$E(q_t) = \sum_{q} q_t * P(q_t)$$

and for discrete PDF(q): $E(q_t) = \sum_{q} q_t * P(q_t)$ $E(q_t) = Q_t(L)$ $1 - E(q_t) = Q_t(R)$

Model 1: Bayesian Learner | 3 parameters

Q-Learning (model-free) aka Rescorla Wagner model:

[I] Probability of choice c_t being rewarded P(q) at trial t:

$$P(q_t|S_t) \sim (1-H) * P(S_t|q_t) * P(q_t) + H * P(q)$$

[II] Probability of choosing c_t at trial t (softmax):

$$P(c_{t} = L | Q_{t}(L), Q_{t}(R), L_{t-1}, R_{t-1}) = \frac{exp(Q_{t}(L) / \beta + \kappa * L_{t-1})}{exp(Q_{t}(L) / \beta + \kappa * L_{t-1}) + exp(Q_{t}(R) / \beta + \kappa * R_{t-1})}$$

[III] Probability of observing data D (a sequence of choices and rewards) = product of the individual probabilities from [II]

```
P(Data\ D|Model\ M, parameters\ \theta) = P(D|M, \theta) = \prod\ P(c_t|Q_t(L), Q_t(R))
```

[IV] Fitting parameters $[H,\beta,\kappa]=\theta$ to achieve maximum likelihood of *data D*:

 $arg\max_{\theta} P(D|M,\theta)$

Results: evolution of $P(q_t)$ using different memory sizes:

Results: evolution of $P(q_t)$ using different hazard rates (H):

Results: trial-wise evolution of $P(q_t)$ and H_t :

Normalised posterior probability of q and H

- On the 4th trial the posterior of q contains a lot of uncertainty
- On trial 15, there is a fairly stable expectation of q and expected H is relatively small; a reversal occurs
- Around trial 20, the model is adjusting: the uncertainty or hazard rate is going up; q estimate is shifting from >0.5 to <0.5, i.e. from left to right
- Around 30th trial, a stable expectation of q>>0.5 has formed.

Bernoulli likelihood, i.e. memory size = 1 trial; flat prior

Application: Rodent reversal data

following cocaine self-administration

Bayesian Learner vs Reinforced Q Learner

Both models have one free parameter (Hazard H, learning rate alpha) in the learning part and two free parameters (beta, kappa) in the observation part of the model

Model parameter comparison:

Both models show that cocaine escalation produces differences in the observation part of the model (*beta*), suggesting an inability to exploit the learned reward value