Diskrete Modellierung

Wintersemester 2017/18

Mario Holldack, M. Sc. Prof. Dr. Georg Schnitger Hannes Seiwert, M. Sc.

Institut für Informatik AG Theoretische Informatik

> Ausgabe: 23.11.17 Abgabe: 30.11.17

Übungsblatt 6

Aufgabe 6.1 Pythagoras-Bäume

(12+13=25 Punkte)

Gegeben sei ein Winkel α zwischen 1° und 89°.

Für ein $n \in \mathbb{N}$ wird der n-te Pythagoras-Baum P_n folgendermaßen konstruiert:

- P_0 ist ein Quadrat mit Kantenlänge 1.
- Um P_{n+1} zu erhalten, gehe wie folgt vor (vgl. die Skizze rechts).
 - Zeichne ein Dreieck mit den Winkeln 90°, α und $\beta := 90^{\circ} \alpha$ sowie den Kantenlängen c = 1, $b = \cos(\alpha)$ und $a = \sin(\alpha)$.
 - Setze an die Kante c ein Quadrat mit Seitenlänge 1.
 - Setze an die Kante b einen Pythagoras-Baum P_n , dessen Kantenlängen um den Faktor $\cos(\alpha)$ verkleinert sind.
 - Setze an die Kante a einen Pythagoras-Baum P_n , dessen Kantenlängen um den Faktor $\sin(\alpha)$ verkleinert sind.

Abbildung 1: von links nach rechts: P_0, P_1, P_2, P_3 und P_{11} , jeweils mit $\alpha = 40^{\circ}$.

- a) Sei E_n die Anzahl der Ecken des n-ten Pythagoras-Baums. (Z.B. gilt $E_0=4, E_1=9, E_2=19$.)
 - i) Geben Sie eine Rekursionsgleichung für E_n an.
 - ii) Lösen Sie die Rekursionsgleichung aus Teil i), d. h. geben Sie einen geschlossenen (nichtrekursiven) Ausdruck für E_n an.

Hinweis: Überprüfen Sie die Korrektheit Ihrer Lösung für kleine n. Die geometrische Reihe könnte sich als hilfreich erweisen.

- b) Sei A_n der Flächeninhalt des n-ten Pythagoras-Baumes, wobei wir nur die Flächen in den Quadraten, nicht aber in den Dreiecken zählen.
 - i) Geben Sie eine Rekursionsgleichung für A_n an.
 - ii) Lösen Sie die Rekursionsgleichung aus Teil i). Hinweis: Für beliebige Winkel α gilt der Satz des Pythagoras: $(\cos(\alpha))^2 + (\sin(\alpha))^2 = 1$.

Hinweis: In allen Aufgaben sollen (kurze) Begründungen angegeben werden. Ein formaler Beweis mit Induktion wird nicht verlangt.

Für große n kann es dazu kommen, dass sich Ecken oder Flächen der Bäume überschneiden. Dieser Umstand soll in allen Teilaufgaben ignoriert werden.

$$(10+10+10=30 \text{ Punkte})$$

a) Lösen Sie die folgenden Rekursionsgleichungen, d.h. finden Sie jeweils einen (möglichst einfachen) geschlossenen Ausdruck für a_n und geben Sie jeweils eine kurze Begründung an. Sie müssen Ihre Lösungen nicht durch vollständige Induktion beweisen.

Beispiel. Es gelte $a_1 := 1$ und $a_{n+1} := a_n + 1$ f.a. $n \in \mathbb{N}_{>0}$. Dann lautet die Lösung der Rekursionsgleichung:

$$a_n = r$$

Begründung: $a_n = a_{n-1} + 1 = a_{n-2} + 1 + 1 = \dots = a_{n-(n-1)} \underbrace{+1 + 1 + \dots + 1}_{(n-1)-\text{mal}} = \underbrace{a_1}_{=1} + n - 1 = n$

- i) $a_1 := 1$ und $a_{n+1} := 2 + a_n$ f.a. $n \in \mathbb{N}_{>0}$
- ii) $a_0 := 0, \ a_1 := 2 \text{ und } a_{n+1} := 2 \cdot a_{n-1}$ f.a. $n \in \mathbb{N}_{>0}$ iii) $a_2 := 1 \text{ und } a_{n+1} := a_n \cdot \frac{n+1}{n-1}$ f.a. $n \in \mathbb{N}_{>0}$ mit $n \ge 2$ iii) $a_2 := 1$ und $a_{n+1} := a_n \cdot \frac{n+1}{n-1}$
- b) Zeigen Sie mit vollständiger Induktion nach n:

Für alle $n \in \mathbb{N}$ und $x \in \mathbb{R}$ mit $x \ge -1$ gilt $(1+x)^n \ge 1 + nx$.

c) Für alle $n \in \mathbb{N}_{>0}$ definieren wir die aussagenlogische Formel φ_n rekursiv.

REKURSIONSANFANG: $\varphi_1 := V_1$

Rekursionsschritt: $\varphi_{n+1} := (\varphi_n \leftrightarrow V_{n+1})$ für alle $n \in \mathbb{N}_{>0}$

Zeigen Sie mit vollständiger Induktion nach n:

Für alle $n \in \mathbb{N}_{>0}$ gilt

$$\varphi_n \equiv \begin{cases} \bigoplus_{i=1}^n V_i, & \text{falls } n \text{ ungerade} \\ \neg \bigoplus_{i=1}^n V_i, & \text{falls } n \text{ gerade.} \end{cases}$$

Aufgabe 6.3 Korrektheit rekursiver Programme beweisen

(20 Punkte)

Wir betrachten die Russische Bauernmultiplikation¹ zum Berechnen eines Produktes $x \cdot k$, wobei $x \in \mathbb{R} \text{ und } k \in \mathbb{N}.$

```
def prod(x,k):
    if k == 0:
        return 0
    elif k % 2 == 0:
                                     # k ist gerade und groesser 0
        return prod(2*x, k/2)
    else:
                                     # k ist ungerade
        return prod(2*x, k//2) + x # k//2 entspricht der
                                     # ganzzahligen Division (k-1)/2
```

Hierbei wird ausgenutzt, dass eine Verdopplung von x (bzw. eine Halbierung von k) bei binärer Darstellung relativ einfach ist: ein Bitshift genügt. Wir wollen uns nun von der Korrektheit des Verfahrens überzeugen.

Zeigen Sie mit vollständiger Induktion nach k:

Für alle $x \in \mathbb{R}$ und alle $k \in \mathbb{N}$ gilt: $x \cdot k = \text{prod}(x,k)$

Bitte wenden!

¹Diese Methode war sogar bereits vor über 3500 Jahren im Alten Ägypten bekannt: https://en.wikipedia.org/ wiki/Rhind_Mathematical_Papyrus

Aufgabe 6.4 Dreiecke kacheln

(10 + 15 = 25 Punkte)

Gegeben sei ein gleichseitiges Dreieck D_n mit Kantenlänge n, das wiederum aus n^2 gleichseitigen Dreiecken D_1 mit Kantenlänge 1 zusammengesetzt ist. Wir nennen ein Dreieck D_1 kurz Feld.

Uns stehen Kacheln der Form \triangle zur Verfügung. Wir wollen alle Felder des Dreiecks D_n – bis auf eines – mit Kacheln überdecken. In einer legalen Kachelung dürfen Kacheln gedreht werden, aber sich nicht überlappen.

Beispiel: D_n für n=7.

Legale Kachelungen des Dreiecks D_4 , bei dem jeweils ein Feld entfernt worden ist.

a) Zeigen Sie: Das Dreieck D_6 (mit Kantenlänge n=6) besitzt keine legale Kachelung, egal welches Feld entfernt wird.

Hinweis: Das Dreieck D_n ist aus n^2 Feldern zusammengesetzt.

b) Zeigen Sie mit vollständiger Induktion:

Für jedes $k \in \mathbb{N}_{>0}$ besitzt das Dreieck D_n mit $n=2^k$ eine legale Kachelung, wenn ein beliebiges Feld an einer Ecke entfernt wird.

Hinweis: Beschreiben Sie im Induktionsschritt, wie Sie die Kacheln platzieren. Wohin legen Sie Ihre erste Kachel?

Diese Aufgabe ist eine Bonusaufgabe, in der Sie Extrapunkte erwerben können.

a) Im Rahmen einer Werbeaktion lässt die Verwaltung der Stadt Frankfurt (passend zu den Wappenfarben) rot-weiße Straßenbahnen durch Frankfurt fahren. Dabei gilt:

Rote Wagons (dürfen nur in gerader Anzahl direkt hintereinander in einer Straßenbahn vorkommen, weiße Wagons (nur in ungerader Anzahl.

Sei $n \in \mathbb{N}_{>0}$. Mit r_n bzw. w_n bezeichnen wir die Anzahl der möglichen unterschiedlichen Straßenbahnen, die mit einem roten bzw. weißen Wagon enden und aus genau n Wagons bestehen.

- i) Stellen Sie Rekursionsgleichungen für r_n und w_n auf.
- ii) Wie viele verschiedene rot-weiße Straßenbahnen können mit 1, 2, 3, 4 bzw. 5 Wagons zusammengestellt werden, wenn die obigen Regeln beachtet werden?

Hinweis: Auch einfarbige Straßenbahnen sind zu berücksichtigen.

b) Sei $n \geq 2$ eine Zweierpotenz. Gegeben seien n ganze Zahlen A[1], ..., A[n]. Wir betrachten die Funktion min_and_max, die sowohl die kleinste als auch die größte der Zahlen zurückgibt:

```
1
        def min_and_max(left, right):
 2
            if right-left <= 1:</pre>
 3
                                                            # ein Vergleich
                 if A[right] < A[left]:</pre>
 4
                     minimum = A[right]
 5
                     maximum = A[left]
 6
 7
                     minimum = A[left]
 8
                     maximum = A[right]
9
            else:
10
                middle = (left+right-1) // 2
11
12
                 (min_left, max_left) = min_and_max(left, middle)
13
                 (min_right, max_right) = min_and_max(middle+1, right)
14
                 minimum = min(min_left, min_right)
15
16
                 maximum = max(max_left, max_right)
                                                            # ein Vergleich
17
18
            return (minimum, maximum)
19
```

Sei V_n die Anzahl der von $\min_{\mathtt{and}_{\mathtt{max}}(\mathtt{1,n})}$ in den Zeilen 3, 15 und 16 durchgeführten Vergleiche zwischen den Zahlen $\mathtt{A[1]}, \ldots, \mathtt{A[n]}$. (Die Funktionen \min und \max führen jeweils einen Vergleich aus.)

- i) Bestimmen Sie eine Rekursionsgleichung für V_n .
- ii) Zeigen Sie: Für jedes $k \in \mathbb{N}_{>0}$ mit $n = 2^k$ gilt $V_n = \frac{3}{2} \cdot n 2$.