



# **UPDATE 2017-04**

L. Di Stasio<sup>1,2</sup>, Z. Ayadi<sup>1</sup>, J. Varna<sup>2</sup>

<sup>1</sup>EEIGM, Université de Lorraine, Nancy, France <sup>2</sup>Division of Materials Science, Luleâ University of Technology, Luleâ, Sweden

April 10, 2017









## **Outline**

- Symbols, Models & Reference Data
- Neview of work's progress
- Discussion of results









# SYMBOLS, MODELS & REFERENCE DATA









Description

# **Symbols**

**Symbol** 

Unit

| $\theta$        | [°]           | Debond position, with respect to the center of the arc defined by the debond |
|-----------------|---------------|------------------------------------------------------------------------------|
| $\Delta \theta$ | [°]           | Semi-angular aperture of the debond                                          |
| δ               | [°]           | Angle subtended by a single element at fiber/matrix interface                |
| $VF_f$          | [-]           | Fiber volume fraction                                                        |
| I               | [ <i>µm</i> ] | Half-thickness of the ply, equal to half side-length (square element)        |
| и               | $[\mu m]$     | Displacement along x-direction                                               |
| W               | $[\mu m]$     | Displacement along z-direction                                               |









# **Reference Models**



Isolated RVE with zero vertical displacement BC.









## **Reference Models**



Isolated RVE with homogeneous displacement BC.









# **Angular discretization**



Angular discretization at fiber/matrix interface:  $\delta = \frac{360^{\circ}}{4N_{\odot}}$ .









# **Materials' properties**

| Material    | E [GPa] G [GPa] |      | $\nu\left[- ight]$ |
|-------------|-----------------|------|--------------------|
|             |                 |      |                    |
| Glass Fiber | 70,0            | 29,2 | 0,2                |
| Ероху       | 3,5             | 1,25 | 0,4                |









Where we were What was to be done Where we are

# **№** REVIEW OF WORK'S PROGRESS









Symbols, Models & Reference Data Review of work's progress Discussion of results'
Where we were What was to be done Where we are

#### Where we were

→ Run simulations with following characteristics:

|                   | RUN 1                                      | RUN 2                                             |  |
|-------------------|--------------------------------------------|---------------------------------------------------|--|
| ВС                | $v(x,\pm l)=0$                             | $v(x,\pm l)=0,  u(x,\pm l)=\frac{u(l,\pm l)}{l}x$ |  |
| $VF_f[-]$         | 0.001                                      | 0.001                                             |  |
| $\delta$          | 1°                                         | 1°                                                |  |
| heta              | 0°                                         | 0°                                                |  |
| $\Delta \theta$   | $[10^\circ, 80^\circ]$ by $10^\circ$ steps | [10°, 80°] by 10° steps                           |  |
| Loading           | Applied displacement                       | Applied displacement                              |  |
| Load              | $u(\pm I,z)=\pm \varepsilon_{xx}I$         | $u(\pm l,z)=\pm \varepsilon_{xx}l$                |  |
|                   | $\varepsilon_{\it XX}=0.01$                | $arepsilon_{xx}=0.01$                             |  |
| Material system   | Glass fiber/epoxy                          | Glass fiber/epoxy                                 |  |
| ENRRT calculation | VCCT                                       | VCCT                                              |  |









Symbols, Models & Reference Data Review of work's progress Discussion of result.

Where we were What was to be done. Where we are

#### Where we were

- → Conclusions from simulations:
  - ✓ Correct global elastic response
  - √ Symmetric model gives symmetric results
  - For  $VF_f \rightarrow 0$  boundary conditions are not relevant, same result is obtained
  - √ Correct order of magnitude of normalized energy release rates
  - ✓ Physically sound mode ratio:  $G_l \uparrow \Delta \theta \downarrow$ ,  $G_{ll} \uparrow \Delta \theta \uparrow$
  - No agreement with BEM results
  - X ENRRTs overestimated









Symbols, Models & Reference Data Review of work's progress Discussion of results' Where we were What was to be done Where we are

Add J-integral calculations to LEFM models

# What was to be done

|   | Add correct treatment of 0° case                                                       |
|---|----------------------------------------------------------------------------------------|
|   | Add extraction of stresses and displacements at interface (post-processing)            |
|   | Add extraction of stresses and strains at sections inside the domain (post-processing) |
|   | Run simulations with refined mesh and J-integral evaluation                            |
| П | Analyse simulations' results                                                           |









Symbols, Models & Reference Data Review of work's progress Discussion of results. Where we were What was to be done. Where we are

## Where we are

- ✓ Added correct treatment of 0° case
- Added extraction of stresses and displacements at interface (post-processing)
- Added extraction of stresses and strains along user-defined radial and circumferential sections inside the domain (post-processing)
- Run simulations with refined mesh and J-integral evaluation
- ✓ Analysed simulations' results









Symbols, Models & Reference Data Review of work's progress Discussion of results Where we were What was to be done Where we are

# Where we are

|                   | RUN 1                                               | RUN 2                                                             | RUN 3                                                     |
|-------------------|-----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| ВС                | $v\left(x,\pm l\right)=0$                           | $v(x,\pm l)=0$                                                    | $v(x,\pm l)=0$                                            |
| BC                |                                                     | $u(x,\pm l) = \frac{u(l,\pm l)}{l}x$                              | $u(x,\pm l) = \frac{u(l,\pm l)}{l}x$                      |
| $VF_f[-]$         | 0.001                                               | 0.001                                                             | 0.001                                                     |
| δ                 | 1°                                                  | 1°                                                                | 0.4°                                                      |
| $\theta$          | 0°                                                  | 0°                                                                | 0°                                                        |
| $\Delta 	heta$    | $[10^\circ, 80^\circ]$ by $10^\circ \textit{steps}$ | $\left[10^{\circ},80^{\circ}\right]$ by $10^{\circ} \text{steps}$ | $\left[0^{\circ},140^{\circ}\right]$ by $5^{\circ}$ steps |
| Loading           | Applied displacement                                | Applied displacement                                              | Applied displacement                                      |
| Load              | $u\left(\pm I,z\right)=\pm\varepsilon_{XX}I$        | $u(\pm l,z)=\pm \varepsilon_{XX}l$                                | $u(\pm l, z) = \pm \varepsilon_{xx} l$                    |
|                   | $\varepsilon_{\it XX}=0.01$                         | $\varepsilon_{\it XX}=0.01$                                       | $\varepsilon_{\it XX}=0.01$                               |
| Material system   | Glass fiber/epoxy                                   | Glass fiber/epoxy                                                 | Glass fiber/epoxy                                         |
| ENRRT calculation | VCCT                                                | VCCT                                                              | VCCT & J-Integral                                         |









Energy Release Rates by VCCT Total Energy Release Rate by J-integral Interface Numerical performances Conclusion











Energy Release Rates by VCCT Total Energy Release Rate by J-integral Interface Numerical performances Conclusion

#### **Energy Release Rates by VCCT**











Energy Release Rates by VCCT Total Energy Release Rate by J-integral Interface Numerical performances Conclusion

# G<sub>c</sub> Numerical Evaluation by VCCT



$$G_{IJ} = \frac{Z_{C}\Delta w_{C}}{2B\Delta a} = \frac{Z_{C}\left(\Delta w_{C}\right)\Delta w_{C}}{2B\Delta a} \sim G_{IJ}\left(\Delta w_{C}^{2}\right) \qquad G_{IIJ} = \frac{X_{C}\Delta u_{C}}{2B\Delta a} = \frac{X_{C}\left(\Delta u_{C}\right)\Delta u_{C}}{2B\Delta a} \sim G_{IIJ}\left(\Delta u_{C}^{2}\right)$$









## **Comments**

- → Finer mesh gives results closer to correct ones:
  - o approximation from above in terms of energy
  - in FEM, the coarser the mesh, the more rigid the system; thus higher energy release
  - for the same number of elements opened at the interface (crack is an ensemble of elements), a larger crack surface is created
- → Values still too big
- → Too much mode I
- ightarrow Shift of peaks by  $\sim$  10°









Energy Release Rates by VCCT Total Energy Release Rate by J-integral Interface Numerical performances Conclusion

#### Total Energy Release Rate by J-integral











## **Comments**

- → Convergence across contour
- → Very far from BEM result
- $\rightarrow$  Minimum at  $\sim 70^{\circ}$ , which corresponds to the mode II maximum

























































































#### **Comments**

- → Periodic distribution with peaks at crack tips
- → Existence of contact zones where crack is open and surfaces slide on each other
- → Shear due to friction









#### **Numerical performances**











## **Comments**

- → J-integral is highly time-consuming
- → Use of parallelization is only partly effective (~ 20% boost) due to contact pair interaction and LEFM evaluations









## Conclusion

- → VCCT is optimal wrt J-integral for crack tip determination: Gs are zero everywhere except at crack tips
- → J-integral is not reliable and time-consuming: it should be put aside in favour of VCCT
- → It might be interesting to study J-integral behavior after validation is attained
- → Material properties are the same as Lingi's: they shouldn't be a problem
- $\rightarrow$  Applied displacement as in Linqi's model: however, value is different  $\varepsilon_{xx} = 0.01$  (this model) vs  $\varepsilon_{xx} = 0.05$  (Linqi)
- → Shear due to friction at the interface: just an output? Does it enter the mechanics of the interface?
- → Mesh: do we need a finer mesh? Probably, but it might not be the only variable at play.

