ECN 6578A, Économétrie des marchés financiers, Hiver 2020

Cours 6

William McCausland

2021-03-07

Plan

- 1. Un modèle de volatilité stochastique
- 2. Inférence bayésienne : un peu de théorie
- 3. Inférence bayésienne : un peu de computation

Un modèle de volatilité stochastique

▶ Un modèle de volatilité stochastique simple

$$r_t = \mu + \sqrt{h_t} \epsilon_t,$$
 $\log h_t = \alpha_0 + \alpha_1 \log h_{t-1} + v_t.$
 $\begin{bmatrix} \epsilon_t \\ v_t \end{bmatrix} \sim N \begin{pmatrix} 0, \begin{bmatrix} 1 & 0 \\ 0 & \sigma_v^2 \end{bmatrix} \end{pmatrix}.$

- La volatilité n'est pas une fonction déterministe de rendements passés, comme dans les modèles (G)ARCH.
- ► Évaluer la vraisemblance est difficile :

$$f(r|\mu,\alpha_0,\alpha_1,\sigma_v^2) = \int f(h|\mu,\alpha_0,\alpha_1,\sigma_v^2) f(r|h,\mu,\alpha_0,\alpha_1,\sigma_v^2) dh,$$

où
$$r \equiv (r_1, \ldots, r_T)$$
, $h \equiv (h_1, \ldots, h_T)$.

On peut introduire une corrélation négative entre ϵ_t et v_t pour capturer l'effet de levier.

Motivation des méthodes bayésiennes

- Analyse simple et élégante des modèles avec variables latentes : on peut le faire avec seulement des évaluations de $f(h, r|\mu, \alpha_0, \alpha_1, \sigma_v^2)$. On n'a pas besoin d'évaluer la vraisemblance $f(r|\mu, \alpha_0, \alpha_1, \sigma_v^2)$.
- ▶ En faisant des prévisions, on tient compte de l'incertitude sur
 - les paramètres.
 - les variables latentes,
 - les ordres (p et q par exemple) et
 - les modèles.
- ► Il n'y a pas de recours aux résultats asymptotiques en T.

Éléments de l'analyse bayésienne (modèle sans variables latentes)

- Quantités pertinentes :
 - \triangleright θ , un vecteur de paramètres inconnus,
 - $y = (y_1, \dots, y_T)$, un vecteur aléatoire des variables observables, et
 - y°, le vecteur observé.
- Densités pertinentes :
 - $f(y|\theta)$, la densité conditionnelle des données (modèle),
 - \blacktriangleright $\mathcal{L}(\theta; y^{\circ}) = f(y^{\circ}|\theta)$, la vraisemblance,
 - $ightharpoonup f(\theta)$, la densité a priori,
 - $ightharpoonup f(\theta, y)$, la densité conjointe,
 - $ightharpoonup f(\theta|y)$, la densité a posteriori,
 - ightharpoonup f(y), la densité marginale des données,
 - $ightharpoonup f(y^{\circ})$, la vraisemblance marginale (un nombre).

Éléments de l'analyse bayésenne (modèle avec variables latentes)

- Quantités pertinentes :
 - \triangleright θ , un vecteur de paramètres inconnus,
 - \blacktriangleright $h = (h_1, \dots, h_T)$, un vecteur aléatoire des variables d'état,
 - $y = (y_1, \dots, y_T)$, un vecteur aléatoire des variables observables, et
 - y°, le vecteur observé.
- Densités pertinentes :
 - $ightharpoonup f(h|\theta)$, la densité des variables d'état
 - $f(y|\theta,h)$, la densité conditionnelle des données (modèle),
 - \blacktriangleright $\mathcal{L}(\theta; y^{\circ}) = f(y^{\circ}|\theta)$, la vraisemblance,
 - $ightharpoonup f(\theta)$, la densité a priori,
 - $ightharpoonup f(\theta, h, y)$, la densité conjointe,
 - $ightharpoonup f(\theta, h|y)$, la densité a posteriori,
 - $f(\theta|h,y)$ et $f(h|\theta,y)$ des densités a posteriori conditionnelles,
 - f(y), la densité marginale des données,
 - $f(y^{\circ})$, la vraisemblance marginale (un nombre).

Inférence bayésienne

Par la règle de Bayes,

$$f(\theta|y^{\circ}) = \frac{f(\theta, y^{\circ})}{f(y^{\circ})} = \frac{f(\theta)f(y^{\circ}|\theta)}{f(y^{\circ})} \propto f(\theta)f(y^{\circ}|\theta).$$

- ightharpoonup f(heta) représente notre incertitude sur heta avant l'observation de y.
- $f(\theta|y^{\circ})$ resprésente notre incertitude sur θ après qu'observe $y = y^{\circ}$.
- ▶ Un point important à retenir : $f(\theta|y^\circ) \propto f(\theta,y^\circ)$.

Reprise et extension de l'exemple Bernoulli

- ▶ Si y_i est Bernoulli avec probabilité θ , $f(y|\theta) = \theta^{n_1}(1-\theta)^{n_0}$.
- ▶ Mettons qu'on choisit la loi *a priori* $\theta \sim \text{Beta}(\alpha, \beta)$ sur [0, 1] :

$$f(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}.$$

► La densité conjointe est

$$f(\theta, y) = f(\theta)f(y|\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha + n_1 - 1}(1 - \theta)^{\beta + n_0 - 1}.$$

- ▶ La loi *a posteriori* doit être $\theta \sim \text{Beta}(\alpha + n_1, \beta + n_0)$.
- ▶ La vraisemblance marginale est $f(\theta, y)/f(\theta|y)$:

$$f(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + n_1)\Gamma(\beta + n_0)}{\Gamma(\alpha + \beta + n)}.$$

Graphique pour l'exemple Bernoulli

```
n0 = 200; n1 = 230; alpha=2; beta=2
x = seq(0, 1, by=0.002)
plot(x, dbeta(x, alpha+n1, beta+n0), type='l')
lines(x, dbeta(x, alpha, beta), col='red')
```


Exemple gaussien I

- ► Considérez les modèle $y_t \sim \text{iid } N(\mu, h^{-1})$.
- Le vecteur de paramètres est $\theta = (\mu, h)$.
- Le vecteur d'observables est $y = (y_1, \dots, y_T)$.
- La densité des données est

$$f(y|\theta) = \prod_{t=1}^{T} \sqrt{\frac{h}{2\pi}} \exp\left[-\frac{h}{2}(y_t - \mu)^2\right]$$
$$= \left(\frac{h}{2\pi}\right)^{T/2} \exp\left[-\frac{h}{2}\sum_{t=1}^{T}(y_t - \mu)^2\right].$$

Exemple gaussien II

Mettons qu'on choisit une loi *a priori* où h et μ sont indépendents, avec

$$\mu \sim N(\bar{\mu}, \bar{\omega}^{-1}), \quad \bar{s}h \sim \chi^2(\bar{\nu}),$$

où $\bar{\mu}, \bar{\omega}, \bar{s}$ et $\bar{\nu}$ sont des hyperparamètres constants choisis par l'investigateur.

La densité *a priori* est

$$f(heta) \propto \exp\left[-rac{ar{\omega}}{2}(\mu - ar{\mu})^2
ight] \cdot h^{(ar{
u}-2)/2} \exp\left[-rac{1}{2}ar{s}^2 h
ight].$$

La densité conjointe est

$$f(\theta,y) \propto h^{(\bar{
u}+T-2)/2} \exp\left[-rac{ar{\omega}}{2}(\mu-ar{\mu})^2 - rac{h}{2}\left(ar{s}^2 + \sum_{t=1}^T (y_t-\mu)^2
ight)
ight].$$

L'intégration et les objectifs de l'analyse bayésienne

- Plusieurs problèmes d'inférence bayésienne ont, comme solution, une intégrale par rapport à la densité a posteriori.
- \blacktriangleright Exemple 1, estimation ponctuelle de θ_k sous perte quadratique:

$$\hat{\theta}_k = E[\theta_k|y^\circ] = \int \theta_k f(\theta|y^\circ) d\theta.$$

Exemple 2, quantification de l'incertitude sur θ_k :

$$\operatorname{Var}[\theta|y^{\circ}] = E[(\theta_k - E[\theta_k|y^{\circ}])^2|y^{\circ}].$$

Exemple 3, densité prédictive (valeurs de y_{T+1} sur une grille) :

$$f(y_{T+1}|y^{\circ}) = E[f(y_{T+1}|\theta, y^{\circ})|y^{\circ}].$$

Preuve de l'exemple 3

$$E[f(y_{T+1}|y_1,\ldots,y_T,\theta)|y_1,\ldots,y_T]$$

$$= \int f(y_{T+1}|y_1,\ldots,y_T,\theta)f(\theta|y_1,\ldots,y_T) d\theta$$

$$= \int f(y_{T+1},\theta|y_1,\ldots,y_T) d\theta$$

$$= f(y_{T+1}|y_1,\ldots,y_T)$$

Méthodes pour trouver $E[g(\theta)|y^\circ]$

- ► Calcul analytique : élégant, exacte, presque toujours insoluble.
- ► Simulation Monte Carlo indépendante :
 - ► Si on peut simuler $\theta^m \sim \operatorname{iid} \theta | y^\circ$,

$$\frac{1}{M}\sum_{m=1}^{M}g(\theta^{m})\rightarrow_{p}E[g(\theta)|y^{\circ}].$$

- Cependant, cette simulation est rarement faisable.
- Simulation Monte Carlo chaîne de markov (MCMC) :
 - On choisit un processus markovien avec densité de transition $f(\theta^m|\theta^{m-1})$ telle que la loi *a posteriori* $\theta|y^\circ$ est la loi stationnaire du processus. C'est à dire :

$$\theta^{m-1} \sim f(\theta|\mathbf{v}^{\circ}) \Rightarrow \theta^{m} \sim f(\theta|\mathbf{v}^{\circ}).$$

Sous quelques conditions techniques, la loi de θ^m converge à la loi *a posteriori* et

$$\frac{1}{M}\sum_{m=1}^{M}g(\theta^{m})\rightarrow_{p}E[g(\theta)|y^{\circ}].$$

Exemple, densité de prévision

- L'objectif est la densité $f(y_{T+1}|y_1,...,y_T)$ sur une grille.
- Fixez une valeur y_{T+1} arbitraire sur une grille.
- On a vu (dans un modèle sans variables latentes)

$$f(y_{T+1}|y_1,\ldots,y_T) = E[f(y_{T+1}|y_1,\ldots,y_T,\theta)|y_1,\ldots,y_T].$$

- lci, $g(\theta) = f(y_{T+1}|y_1, ..., y_T, \theta)$. Notez que les données observées $y_1, ..., y_T$ et le point de grille y_{T+1} sont fixes.
- Avec l'échantillon θ^m , $m=1,\ldots,M$, on calcule la quantité à gauche, qui converge à la quantité voulue à droite :

$$\frac{1}{M} \sum_{m=1}^{M} f(y_{T+1}|y_1,\ldots,y_T,\theta^m) \to_{p} f(y_{T+1}|y_1,\ldots,y_T).$$

- ► Répétez pour chaque point sur la grille.
- ▶ À notez : asymptotique en *M* et non en *T*.

MCMC 1 : marche aléatoire metropolis-hastings

- ▶ Pour tirer $\theta^m | \theta^{m-1}$:
 - 1. Tirer $\theta^* \sim N(\theta^{m-1}, \Sigma)$
 - 2. Calculer le ratio de Hastings :

$$H = \frac{f(\theta^*|y^\circ)}{f(\theta^{m-1}|y^\circ)}.$$

- 3. Accepter θ^* avec probabilité min(1, H).
- Accepter θ^* veut dire $\theta^m = \theta^*$; si on n'accepte pas, $\theta^m = \theta^{m-1}$.
- ▶ On peut utiliser $f(\theta, y^\circ)$ au lieu de $f(\theta|y^\circ)$ parce que les constantes $f(y^\circ)$ s'annulent.
- La convergence tient pour n'importe quelle Σ , mais il y a des choix qui sont meilleurs que d'autres.

Initialisation

```
# Vraies valeurs des paramètres
vrai.mu = 6
vrai.h = 0.04
vrai.sigma = 1/sqrt(vrai.h)
# Données simulées, statistiques suffisantes
n = 10; set.seed(12345)
y = rnorm(n, vrai.mu, vrai.sigma)
y.bar = mean(y)
y2.bar = mean(y^2)
# Hyper-paramètres
mu.bar = 10
omega.bar = 0.01
nu.bar = 4
s2.bar = 0.01
```

Fonctions pour calculer des densités

```
# Densité a priori de mu
lnp.mu = function(mu) {
    lnp = dnorm(mu,mu.bar,1/sqrt(omega.bar),log=TRUE)
}
# Densité a priori de h
lnp.h = function(h) {
    lnp = log(s2.bar) + dchisq(h*s2.bar,nu.bar,log=TRUE)
}
# Densité des données
lnp.y..mu.h = function(mu, h) {
    lnp = (n/2)*log(h) - (n/2)*log(2*pi)
    lnp = lnp - 0.5*h*n * (y2.bar - 2*y.bar*mu + mu^2)
```

La densité conjointe

```
# Densité a posteriori de mu and h, pas normalisée
lnp.mu.h..y = function(mu,h) {
    lnp = lnp.mu(mu) + lnp.h(h) + lnp.y..mu.h(mu,h)
}
# Fonction pour faire un graphique de la densité a posteri
do.plot = function() {
    mu = seq(0, 12, by=0.01)
    h = seq(0, 0.12, by=0.0001)
    p = outer(mu, h, FUN=lnp.mu.h..y)
    levels = seq(ceiling(max(p)), ceiling(max(p))-10, by=-1
    contour(mu, h, p, xlab='mu', ylab='h', levels=levels)
    points(vrai.mu, vrai.h, col='red')
```

Graphique de la densité conjointe

Code pour l'algorithme Metropolis Hastings

```
Metro.sim = function(M) {
  mu = vector('numeric', M); h = vector('numeric', M)
  mu[1] = 0; h[1] = 1
  lnp = lnp.mu.h..y(mu[1], h[1])
  for( m in seq(2, M) ) {
    h.et=rnorm(1,h[m-1],0.05); mu.et=rnorm(1,mu[m-1],2.0)
    if(h.et > 0.0)
      lnp.et = lnp.mu.h..y(mu.et, h.et)
    } else lnp.et = -Inf
    H = \exp(\ln p.et - \ln p)
    if( runif(1) < H ) {</pre>
      h[m] = h.et; mu[m] = mu.et; lnp = lnp.et
    } else {
     h[m] = h[m-1]; mu[m] = mu[m-1]
  list(mu=mu, h=h)
```

Trace de *h*

```
sim.MH = Metro.sim(1000)
plot(sim.MH$h)
```


Trace de μ

plot(sim.MH\$mu)

Histogramme de *h*

hist(sim.MH\$h[201:1000], 20)

Histogram of sim.MH\$h[201:1000]

Histogramme de μ

hist(sim.MH\$mu[201:1000], 20)

Histogram of sim.MH\$mu[201:1000]

MCMC 2 : échantillonage de gibbs pour le modèle gaussien

- ▶ Considérez la densité de transition $f(\theta^m|\theta^{m-1})$ définie par
 - 1. $\mu^m \sim \mu | y = y^{\circ}, h = h^{m-1}$.
 - 2. $h^m \sim h|y = y^{\circ}, \mu = \mu^m$.
- Une preuve que $\theta|y^{\circ}$ est la loi stationnaire de cette loi de transition :
 - Mettons que la loi de $\theta^{m-1} = (\mu^{m-1}, h^{m-1})$ est la loi a posteriori $\theta | y = y^{\circ}$.
 - Alors la loi marginale de h^{m-1} est la loi $h|y=y^{\circ}$.
 - Après l'étape 1, la loi de (μ^m, h^{m-1}) est la loi a posteriori.
 - Alors la loi marginale de μ^m est la loi $\mu|y=y^\circ$.
 - Après l'étape 2, la loi de $\theta^m = (\mu^m, h^m)$ est la loi *a posteriori*.
- L'idée se généralise (diviser un problème en parties soluables)

Dérivation, loi *a posteriori* conditionnelle de $\mu|y=y^{\circ},h$

 \triangleright On peut écrire (c_1 et c_2 constants)

$$-\frac{\bar{\omega}}{2}(\mu - \bar{\mu})^{2} - \frac{h}{2}\sum_{t=1}^{T}(y_{t} - \mu)^{2}$$

$$= -\frac{\bar{\omega}}{2}(\mu - \bar{\mu})^{2} - \frac{h}{2}\left[\sum_{t=1}^{T}(y_{t} - \bar{y})^{2} + T(\mu - \bar{y})^{2}\right]$$

$$= c_{1} - \frac{\bar{\omega}}{2}(\mu - \bar{\mu})^{2} - \frac{hT}{2}(\mu - \bar{y})^{2}$$

$$= c_{2} - \frac{\bar{\omega} + hT}{2}[\mu - (\bar{\omega}\bar{\mu} + hT\bar{y})/(\bar{\omega} + hT)]^{2}.$$

- Dernière étape : complétion du carré
- ightharpoonup Alors $f(\mu|y,h)\propto \exp\left[-rac{ar{ar{\omega}}}{2}(\mu-ar{ar{\mu}})^2
 ight]$, où
 - $\qquad \qquad \bar{\bar{\mu}} = \frac{\bar{\omega}\bar{\mu} + hT\bar{y}}{\bar{\omega} + hT},$
 - $\bar{\bar{\omega}} = \bar{\omega} + hT.$

MCMC 3 : échantillonage de gibbs pour le modèle SV

Faire M fois:

- 1. Tirer α_0 et α_1 de la loi *a posteriori* conditionnelle $(\alpha_0, \alpha_1)|y, \sigma_v, h_1, \dots, h_T$.
- 2. Tirer $\omega_v = \sigma_v^{-2}$ de la loi *a posterior* conditionnelle $\omega_v | y, \alpha_0, \alpha_1, h_1, \dots, h_T$
- 3. Tirer h_1, \ldots, h_T de la loi *a posteriori* conditionnelle $h_1, \ldots, h_T | y, \alpha_0, \alpha_1, \omega_v$.

Notes:

- La loi $\alpha_0, \alpha_1 | y, \omega_v, h_1, \dots, h_T$ est presque gaussienne. On peut tirer une proposition (α_0^*, α_1^*) de l'approximation gaussienne. Une étape "accepter ou rejeter" "corrige" l'approximation.
- Si la loi a priori ω_v est khi-carré avec un paramètre d'échelle, la loi conditionelle a posteriori $\omega_v|y,\alpha_0,\alpha_1,h_1,\ldots,h_T$ l'est aussi. On peut tirer de cette loi directement.
- ▶ Il y a plusieurs façons de tirer h de façon efficace. Les détails sont trop avancés pour le cours.