Groups Revision Notes IA 2020

Lectured by A. Khukhro

ASHUTOSH TRIPATHI

Michaelmas Term, 2020

Life is meaningless

— Ashutosh Tripathi

Contents

1	All t	ne Stuff with no Proofs	2
	1.1	Groups	2
	1.2	Subgroups	2
	1.3	Homomorphism	2
	1.4	Direct Products	3
	1.5	Cosets	4
	1.6	Normal Groups	5
	1.7	Quotient Groups	5
	1.8	Isomorphism Theorems	5
	1.9	Cyclic Groups	6
	1.10	Dihedral Groups	6
	1.11	Symmetric Groups	6
	1.12	Groups of Small Order	8
	1.13	Group Actions-an Intro	8
	1.14	Conjugation Action	9
	1.15	Sylow's Theorems	10
	1.16	Mobius Groups	10
	1.17	Matrix Groups	12
	1.18	Symmetries of Platonic Solids	13

§1 All the Stuff with no Proofs

§1.1 Groups

Definition 1 (Groups) G, is defined as a Group structure if it obeys the following axioms:

- (G0) Closure: $\forall x, y \in G, xy \in G$
- (G1) Associative : $\forall x, y, z \in G, x(yz) = (xy)z \in G$
- (G2) Identity: $\exists e \in G \text{ s.t } \forall x \in G, ex = x = xe$
- (G3) Inverse: $\forall x \in G, \exists x^{-1} \in G \text{ s.t } xx^{-1} = e = x^{-1}x$

Proposition 1.1 For a given group, G, the following are true

- 1. $a, b \in G$, $ab = e \implies ba = e$
- $2. \ a \in G, \ ae = a \implies ea = a$
- 3. $a, b \in G$, $ab = e \implies ba = e$
- 4. $a, e, e' \in G$, $ae = a \land ae' = a \implies e = e'$

§1.2 Subgroups

Definition 2 $H \leq G$ if it satisfies the following axioms

- (G0) Closure
- (G1) Identity
- (G2) Inverse

Lemma 1.2 (Subgroup Lemma)

$$H \leqslant G \iff H \neq \emptyset \land \forall a, b \in H, ab^{-1} \in H$$

Definition 3 $\langle X \rangle$ is the notation for the

- Smallest Subgroup of G containing X
- $\bigcup_{X\subseteq Y\leqslant G}Y$
- $\left\{ \prod_{i=1}^k x_i^{\alpha_i} \mid x_i \in X, \alpha_i \in \{\pm 1\}, k \in \mathbb{N}^{>0} \right\}$

§1.3 Homomorphism

Definition 4 (Group homomorphism) Let (G, *) and (H, \times) be groups. A function

 $f: G \to H$ is a group homomorphism iff

$$(\forall g_1, g_2 \in G) \phi(g_1) \times \phi(g_2) = \phi(g_1 * g_2),$$

Definition 5 (Group isomorphism) Isomorphisms are bijective homomorphisms. Two groups are isomorphic if there exists an isomorphism between them. We write $G \cong H$.

Definition 6 (Image of homomorphism) If $\phi: G \to H$ is a homomorphism, then the *image* of ϕ is

$$\operatorname{im} \phi = \phi(G) = \{\phi(g) : g \in G\}.$$

Definition 7 (Kernel of homomorphism) The kernel of ϕ , written as

$$\ker \phi = \phi^{-1}(\{e_H\}) = \{g \in G : \phi(g) = e_H\}.$$

Proposition 1.3 Suppose that $\phi: G \to H$ is a homomorphism. Then

1. Homomorphisms send the identity to the identity, i.e.

$$\phi(e_G) = e_H$$

2. Homomorphisms send inverses to inverses, i.e.

$$\phi(a^{-1}) = \phi(a)^{-1}$$

- 3. The composite of 2 group homomorphisms is a group homomorphism.
- 4. The inverse of an isomorphism is an isomorphism.

Proposition 1.4 Both the image and the kernel are subgroups of the respective groups, i.e. im $\phi \leq H$ and ker $\phi \leq G$.

Proposition 1.5 For all homomorphisms $f: G \to H$, f is

- 1. surjective iff im $\phi = H$
- 2. injective iff $\ker \phi = \{e\}$

§1.4 Direct Products

Definition 8 (Direct product of groups) Given two groups (G, \circ) and (H, \bullet) , we can define a set $G \times H = \{(g, h) : g \in G, h \in H\}$ and an operation $(a_1, a_2) * (b_1, b_2) = (a_1 \circ b_1, a_2 \bullet b_2)$. This forms a group.

Theorem 1.6 (Direct product theorem)

Let $H_1, H_2 \leq G$. Suppose the following are true:

- 1. $H_1 \cap H_2 = \{e\}.$
- 2. $(\forall a_i \in H_i) a_1 a_2 = a_2 a_1$.
- 3. $(\forall a \in G)(\exists a_i \in H_i) a = a_1 a_2$. We also write this as $G = H_1 H_2$.

Then $G \cong H_1 \times H_2$.

§1.5 Cosets

Definition 9 (Cosets) Cosets are fun! They are equivalence classes of an equivalence relation on a group G. Basically if $H \leq G$ then the **left coset** is the set gH where $g \in G$ and

$$gH = \{ g * h \mid h \in H \}$$

Similarly, we can define Hg.

Also G/H is the **quotient**, the set of all left cosets. Similarly can define $H\backslash G$ for right cosets.

|G/H| = [G:H], and this is called the **Index of H in G**

Proposition 1.7 If aH = bH then $b^{-1}a \in H$

Proposition 1.8 There is a natural bijection between gH and H and thus |gh| = |H|

Theorem 1.9 (Lagrange's Theorem)

$$|G| = [G:H]|H|$$

Proposition 1.10 Some easy propositions as a consequence of Lagrange's Theorem

- if |G| = p where p is a prime, then G is a cyclic group
- $\operatorname{ord}(g) \mid |G|$

Definition 10 $U_n = \{ a \in \mathbb{N}^{>0} \mid (a, n) = 1 \}$

Theorem 1.11 (Euler-Fermat)

$$a^{\phi(n)-1} \equiv 1 \bmod n$$

§1.6 Normal Groups

Definition 11 $H \leq G$ then if either of the following holds:

- $gH = Hg \forall g \in G$
- $gHg^{-1} = H \forall g \in G$
- $ghg^{-1} \in H \forall g \in G, \forall h \in H$

Then we say $H \subseteq G$, and we say that **H** is normal in **G**

Proposition 1.12 New Usual Stuff

- \bullet if index of H is 2 then is normal in G
- ALl subgroups in abelian groups are abelian

§1.7 Quotient Groups

Proposition 1.13 Multiplication of cosets naturally is well defined that is (aH)(bH) = (abH)

Definition 12 (Quotient Groups) If $H \subseteq G$ then the quotient of H in G, G/H forms a group under coset multiplication, and is known as the **Quotient Group**

Definition 13 We define the **Quotient Map** as

$$\pi: G \to G/H$$

$$g\mapsto gH$$

This is a surjective group homomorphism.

§1.8 Isomorphism Theorems

Very Important!

Theorem 1.14 (The First Isomorphism Theorem)

If $\phi: G \to H$ is a group homomorphism then

$$G/\ker\phi\cong\operatorname{im}(\phi)$$

Theorem 1.15 (The Second Isomorphism Theorem)

If $K \subseteq G$ and $H \leqslant G$ then

$$H/H \cap K \cong HK/K$$

Theorem 1.16 (The Third Isomorphism Theorem)

If $K \subseteq G$ and $H \subseteq G$ and $K \leqslant H$ then

$$G/H \cong (G/K)/(H/K)$$

Theorem 1.17 (The Subgroup Correspondence Theorem)

Let $K \subseteq G$.

There is a bijjection between the subgroups of G containing K and the subgroups of G/K.

This bijjection preserves almost anything you can think of, normality, index, containment.

§1.9 Cyclic Groups

Definition 14 C_n exiss lol

Proposition 1.18 All subgroups of a cyclic group are cyclic

Proposition 1.19 All possible cyclic groups are isomorphic to either C_n for some n or \mathbb{Z}

§1.10 Dihedral Groups

Definition 15

$$D_{2n} = \langle r, s | r^n = s^2 = e, srs = r^{-1} \rangle$$

§1.11 Symmetric Groups

Definition 16 S_n exists lol and so does A_n

Definition 17 $\epsilon(\sigma)$ is the parity of the permutation $\sigma \in S_n$. It is equal to

 $(-1)^{\mathrm{No.\ of\ transpositions}}.$ Fun fact, it is a surjective group homomorphism from G to $\{\pm 1\}$

Proposition 1.20 Disjoint Cycles Commute

Proposition 1.21 All permutations in S_n are expressible as unique product of disjoint cycles

Proposition 1.22 The order of a permutation is the lcm of the orders of all the disjoint cycles

Proposition 1.23 All elements in S_n are expressible as a product of transpositions(not necessarily unique)

Proposition 1.24 The above mentioned product of transpositions preserves parity

Proposition 1.25 A_n is the kernel of the sign homomorphism

Proposition 1.26 Some Generator Shit:

- $S_n = \langle (1i) \rangle$
- $S_n = \langle (i, i+1) \rangle$
- $S_n = \langle (12)(12\dots n) \rangle$

Proposition 1.27 A_n can be generated by 3-cycles for all $n \ge 3$

Proposition 1.28 A_n is simple for $n \ge 5$

Proposition 1.29 The size of conjugacy classes of S_n for σ of cycle-type $1^{a_1}2^{a_2}\dots n^{a_n}$ is

$$|\operatorname{ccl}(\sigma)| = \frac{n!}{\prod_{i=1}^{n} (a_i! i^{a_i})}$$

Proposition 1.30 Conjugacy Classes in S_n can either split or remain the same to form conjugacy classes for A_n , with splitting happening iff $C_{A_n}(\sigma)$ contains an odd permutatation.

Definition 18 Conjugacy Classes may split if σ 's disjoint cycle representation has distinct odd-length cycles.

Definition 19 A subgroup $H \leq S_n$ has either 0 or exactly half the number of odd permutations

§1.12 Groups of Small Order

Definition 20 (Quarternion)

$$Q_8 = \langle -1, i, j, k | (-1)^2 = 1, i^2 = j^2 = k^2 = ijk = -1 \rangle$$

Proposition 1.31 Well let's just list some stuff, besides the obvious for primes

- $4: C_2 \times C_2, C_4$
- $6: C_6, S_3$
- $8: C_2 \times C_2 \times C_2, C_4 \times C_2, D_8, Q_8, C_8$

§1.13 Group Actions-an Intro

Definition 21 (Group Action) Group actions are binary operations of a group G on a set X defined from $G \times X \to X$ such that

- Closure : $g(x) \in X \forall x \in X, \forall g \in G$
- Associativity: $g(g'(x)) = gg'(x) \forall g, g' \in G, x \in X$
- Identity : e(x) = x

Definition 22 (Orbits)

$$orb(x) = \{ g(x) \mid g \in G \}$$

If $orb(x) = X \forall x \in X$ then the group action is transitive

Definition 23 (Stabilizer)

$$stab(x) = \{ g \in G \mid g(x) = x \}$$

Definition 24 (Kernel)

$$\bigcap_{x\in X}\operatorname{stab}(X)$$

If kernel of a group action is trivial, then the group action is faithful

Proposition 1.32 Group action is a homomorphism, that is if $G \subset X \iff \exists \rho \text{ s.t } \rho : G \to X$

Theorem 1.33 (Cayley)

 $G \cong M \leqslant \operatorname{Sym}(G)$

Proposition 1.34 This is easy to see:

- $\operatorname{stab}(x) \leq G$
- orb(x) partitions X

Theorem 1.35 (Orbit-Stabilizer)

Assume $G \subset X$

 $|G| = |\operatorname{orb}(x)||\operatorname{stab}(x)| \forall x \in X$

Theorem 1.36 (Cauchy)

If $p \mid |G| \implies \exists g \in G \text{ s.t. } \operatorname{ord}(g) = p$

§1.14 Conjugation Action

Definition 25 (Conjugation Action) $G \subset G$ such that $g(\alpha) = g\alpha g^{-1}$

Definition 26 (Centralizer) The stabilizer of g for conjugation group action is the **Centralizer**, $C_G(g)$

Definition 27 (Conjugacy Classes) The orbit of the conjugation group action for g, ccl(g)

Definition 28 (Center) The kernel of the conjugation action, Z(G)

Proposition 1.37 Conjugation preserves order, thus conjugacy classes consist of elements that have the same order

Proposition 1.38 Normal Subgroups of G are unions of conjugacy classes

Proposition 1.39 $Z(G) \subseteq G$

Proposition 1.40 Z(G) consists of elements with singleton conjugacy classes

Definition 29 (Normalizer) For any subgroup H of G the **normalizer** of H is defined as

$$N_G(H) \stackrel{\text{def}}{=} \left\{ g \in G \mid gHg^{-1} = H \right\}.$$

In other words, it is the stabilizer of H under the conjugation action.

§1.15 Sylow's Theorems

Theorem 1.41 (The Sylow theorems)

Let G be a group of order $p^n m$, where gcd(p, m) = 1 and p is a prime. A **Sylow** p-subgroup is a subgroup of order p^n . Let n_p be the number of Sylow p-subgroups of G. Then

- (a) $n_p \equiv 1 \pmod{p}$. In particular, $n_p \neq 0$ and a Sylow p-subgroup exists.
- (b) n_p divides m.
- (c) Any two Sylow p-subgroups are conjugate subgroups (hence isomorphic).

Proposition 1.42 These are direct results of sylow's theorems

- A Sylow p-subgroup is normal if and only if $n_p = 1$.
- Any group G of order pq, where p < q are primes, must have $n_q = 1$, since $n_q \equiv 1 \pmod{q}$ yet $n_q \mid p$. Thus G has a normal subgroup of order q.
- Since any abelian group has all subgroups normal, it follows that any abelian group has exactly one Sylow p-subgroup for every p dividing its order.
- If $p \neq q$, the intersection of a Sylow p-subgroup and a Sylow q-subgroup is just $\{1_G\}$. That's because the intersection of any two subgroups is also a subgroup, and Lagrange's theorem tells us that its order must divide both a power of p and a power of q; this can only happen if the subgroup is trivial.

§1.16 Mobius Groups

Definition 30 (Mobius Maps) It is a map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ such that

$$f(z) = \begin{cases} \frac{a}{c} & \text{if } z = \infty \\ \infty & \text{if } z = \frac{-d}{c} \\ \frac{az+b}{cz+d} & \text{otherwise} \end{cases}$$

Definition 31 (Mobius Groups) The set of mobius maps \mathcal{M} under composition forms a non-abelian group

Proposition 1.43 Mobius Group Acts on the extended complex numbers set $\hat{\mathbb{C}}$

Proposition 1.44 Mobius Group is generated by

- Dilation/Rotation
- Translation
- Inversion

Proposition 1.45 A mobius map with ≥ 3 fixed points is identity map.

Proposition 1.46 If two mobius maps f and g agree at at least 3 points then f = g

Proposition 1.47 A Mobius map can be completely determined by knowing what happens to 3 points. If f is a mobius map such that $(z_1, z_2, z_3) \mapsto (0, 1\infty)$ then

$$f(z) = \frac{(z_2 - z_3)(z - z_1)}{(z_2 - z_1)(z - z_3)}$$

Proposition 1.48 Conjugation of mobius maps preserves order and also if f has fixed point g then the fixed point of hfh^-1 is h(g)

Proposition 1.49 A non-identity mobius map has either 1 or 2 fixed points and depending on the number of fixed points:

- 1 \Longrightarrow Conjugate to z + 1
- 2 \Longrightarrow Conjugate to αz

Definition 32 (Circles) $Az\bar{z} + B\bar{z} + \bar{B}z + C = 0$

Proposition 1.50 Mobius Maps takes a circle to another circle

Definition 33 (Cross Ratio) If f is a mobius map such that $(z_1, z_2, z_3) \mapsto (0, 1, \infty)$ for distinct $z_1, z_2, z_3, z_4 \in \hat{\mathbb{C}}$ then

$$[z_1, z_2, z_3, z_4] = f(z_4)$$

Proposition 1.51

$$[f(z_1), f(z_2), f(z_3), f(z_4)] = [z_1, z_2, z_3, z_4]$$

Proposition 1.52

 z_1, z_2, z_3, z_4 lie on the same circle $\iff [z_1, z_2, z_3, z_4] \in \mathbb{R}$

§1.17 Matrix Groups

Definition 34 The set of all nxn matrices over field \mathbb{F} form a group $M_{nxn}(\mathbb{F})$

Definition 35 (General Linear Group) The set of all nxn invertible matrices over field \mathbb{F} such that the determinant is 1 is the **General Linear Group**. $GL_n(\mathbb{F})$

Definition 36 (Special Linear Group) The set of all nxn invertible matrices over field \mathbb{F} such that the determinant is 1 is the **Special Linear Group**. $SL_n(\mathbb{F})$

Proposition 1.53 $det: GL_n(\mathbb{F}) \to \mathbb{F}^*$ has kernel $SL_n(\mathbb{F})$

Definition 37 (Orthogonal Group) The set of all nxn Real Orthogonal Matrices $A^TA = I$

Definition 38 (Special Orthogonal Group) The set of all nxn Real Orthogonal Matrices $A^TA = I$ and det(A) = 1

Definition 39 (Unitary Group) The set of all *nxn* Unitary Matrices.

Definition 40 (Special Unitary Group) The set of all nxn Unitary Matrices with determinant 1

Proposition 1.54 The Mobius group can also be seen as matrix shit:

$$\theta: SL_2 \to \mathcal{M}$$

 θ is a surjective homorphism with kernel $\{\pm I\}$ and the quotient group $SL_2/\{\pm I\} \cong PSL_2$, the projective special linear group.

Proposition 1.55 The Matrix Groups can act on their respective Fields, kinda sick.

Proposition 1.56 Change of Basis is basically if A is a matrix that represents a particular transformation wrt basis $\{e_i\}$, and A' represents the same transformation wrt basis $\{f_a\}$ then there exists a matrix P called the change of basis matrix such that $f_a = P_i a e_i$ (summation convention applies) such that $A' = P^{-1}AP$

Proposition 1.57 Change of Basis is basically a conjugation action. Jordan Normal Form is also a conjugation action

Proposition 1.58 This is recap stuff from V+M about orthogonal matrices

- Orthogonal Matrices' columns are orthonormal to each other thus form an orthonormal basis
- Orthogonal Matrices preserve length and angles
- Reflection matrix is a type of orthogonal matrix
- $\bullet P^{-1}R_aP = R_{Pa}$
- Determinant of R_a is -1 always
- if working in \mathbb{R}^3 then if an orthogonal matrix has determinant 1 then 1 is an eigenvalue

Proposition 1.59 SO_2 consists of rotation matrices, of the form $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

Proposition 1.60 O_2/SO_2 consists of only reflections

Proposition 1.61 Every element in O_2 can be generated by, at max, product of 2 reflection matrices

Proposition 1.62 SO_3 consists of matrices of the form $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$

Proposition 1.63 O_3/SO_3 consists of only reflections

Proposition 1.64 Every element in O_3 can be represented by a product of maximum 3 reflection matrices

§1.18 Symmetries of Platonic Solids

Proposition 1.65 Platonic Solids kinda cool, and all are subgroups of O_3

- Tetrahedron symmetries are the group A_4
- Cube symmetries are the group S_4 . Since Octhedral is a dual of cubes, implies the orientation preserving symmetries are S_4 and all symmetries are $S_4 \times C_2$ and this is known as the Octahedral Group
- Dodecaheron Symmetries are the group A_5 . Since icosahedron is a dual

of dodacehdron implies the orientation preserving symmetries are A_5 and all symmetries are $A_5 \times C_2$ and this is known as the **Icosahedral Group**