1. **[8 points]** Solve the following ordinary differential equation (ODE):

$$\dot{L}\left(t\right) = nL\left(t\right)$$

with the boundary condition $L(0) = L_0$.

2. [49 points in total] Suppose that the production function follows Cobb-Douglas function:

$$Y = F(K, AL) = K^{\alpha} (AL)^{1-\alpha}, \qquad 0 < \alpha < 1,$$
 (2)

and the capital accumulation follows

$$\dot{K}(t) = sY(t) - \delta K(t), \qquad (3)$$

where s is the saving rate (fraction of output invested in capital) and δ is the depreciation rate of capital. The population growth and the technology growth follow

$$\dot{L}(t) = nL(t), \tag{4}$$

$$\dot{A}\left(t\right) = gA\left(t\right),\tag{5}$$

where n is the population growth rate and g is the technology growth rate.

- (1) **[4 points]** Using the assumption of constant returns to scale to derive the intensive form of production function: $y = f(k) = k^{\alpha}$, where $y = \frac{Y}{AL}$ and $k = \frac{K}{AL}$.
- (2) [4 points] Show that the marginal product of K and the marginal product of k are the same.
- (3) [5 points] Use the chain rule to derive the dynamics of k.
- (4) [5 points] Show the phase diagram of \dot{k} as a function of k.
- (5) [8 points in total and 4 points for each] Describe how, if at all, each of the following developments affects the break even and actual investment lines in our basic diagram for the Solow model:
 - (a) The rate of depreciation falls.
 - (b) Capital's share, α , rises.
- (6) Consider a Solow economy that is on its balanced growth path.
 - (a) **[6 points in total and 2 points for each]** Find expressions for k^* , y^* and c^* as functions of the parameters of the model, s, n, δ , g and α .
 - (b) [12 points in total and 3 points for each] If the saving rate s decreases permanently at t_0 , please sketch the paths of the following variables as the economy moves to its new balanced growth path: \dot{k} , k, $(\frac{\dot{Y}}{L})$ and $(\frac{Y}{L})$.
 - (c) [5 points] Following the previous question. How does it affect the consumption c?

- 3. **[8 points]** What is the Solow Residual?
- 4. [35 points in total] [Maximum Principle of Optimal Control]: Given the lifetime utility at t_0 as follows

$$U(0) = \int_0^\infty e^{-\rho t} \cdot \ln\left[c(t)\right] dt, \tag{6}$$

subject to the following constraints:

$$\dot{k}(t) = [k(t)]^{\alpha} - c(t) - \delta k(t), \qquad (7)$$

$$k\left(0\right) = 1,\tag{8}$$

$$\lim_{t \to \infty} \left[k\left(t\right) \cdot e^{-\bar{r}(t)t} \right] \ge 0. \tag{9}$$

- (1) [5 points] What are the control variables and the state variables?
- (2) [8 points in total and 4 points for each] Show the Hamiltonian function. What is the economic intuition for the Hamiltonian function?
- (3) **[6 points]** Show the first-order conditions and the transversality condition.
- (4) [6 points in total and 3 points for each] Show the steady-state consumption c^* and the capital k^* .
- (5) [10 points] Suppose that $\rho = 0.06$, $\delta = 0$ and $\alpha = 0.3$. Show the phase diagram of the dynamic system.