GENERALIZED DYNAMICAL THEORIES IN PHASE SPACE AND THE HYDROGEN ATOM

Martin Plávala
University of Siegen

GPTs with position and momentum

 $ec{q}, ec{p} \in \mathbb{R}^3$ - position and momentum $ho(ec{q}, ec{p})$ - state is pseudo-probability density, $\iint_{\mathbb{R}^6}
ho(ec{q}, ec{p}) \,\mathrm{d}^3q\mathrm{d}^3p = 1$ probability of observing position from interval I:

$$\mathbb{P}_{\rho}(\tilde{q}_i \in I) = \iint_{q_i \in I} \rho(\vec{q}, \vec{p}) d^3q d^3p$$

GPTs with position and momentum

 $ec{q}, ec{p} \in \mathbb{R}^3$ - position and momentum $ho(ec{q}, ec{p})$ - state is pseudo-probability density, $\iint_{\mathbb{R}^6}
ho(ec{q}, ec{p}) \,\mathrm{d}^3q\mathrm{d}^3p = 1$ probability of observing position from interval I:

$$\mathbb{P}_{\rho}(\tilde{q}_i \in I) = \iint_{q_i \in I} \rho(\vec{q}, \vec{p}) d^3q d^3p$$

 $H(\vec{q}, \vec{p})$ - Hamiltonian mean value of energy:

$$\langle \tilde{H} \rangle_{\rho} = \iint_{\mathbb{R}^6} H(\vec{q}, \vec{p}) \rho(\vec{p}, \vec{p}) d^3q d^3p$$

GPTs with position and momentum

 $ec{q}, ec{p} \in \mathbb{R}^3$ - position and momentum $ho(ec{q}, ec{p})$ - state is pseudo-probability density, $\iint_{\mathbb{R}^6}
ho(ec{q}, ec{p}) \,\mathrm{d}^3q\mathrm{d}^3p = 1$ probability of observing position from interval I:

$$\mathbb{P}_{\rho}(\tilde{q}_i \in I) = \iint_{q_i \in I} \rho(\vec{q}, \vec{p}) d^3q d^3p$$

 $H(\vec{q},\vec{p})$ - Hamiltonian mean value of energy:

$$\langle \tilde{H} \rangle_{\rho} = \iint_{\mathbb{R}^6} H(\vec{q}, \vec{p}) \rho(\vec{p}, \vec{p}) \mathrm{d}^3 q \mathrm{d}^3 p$$

The problem

Probability of observing energy from interval $I: \mathbb{P}_{\rho}(\tilde{H} \in I) = ???$

Phase space spectral measure

 $g_A(I; \vec{q}, \vec{p})$ - phase space projector

$$\mathbb{P}_{\rho}(\tilde{A} \in I) = \int_{\mathbb{R}^2} g_A(I; \vec{q}, \vec{p}) \rho(\vec{q}, \vec{p}) \mathrm{d}^3 q \mathrm{d}^3 p$$

such that

$$g_A(\mathbb{R}; \vec{q}, \vec{p}) = 1, \qquad \qquad \int_{\mathbb{R}} a g_A(a; \vec{q}, \vec{p}) \, \mathrm{d}a = A(\vec{q}, \vec{p}).$$

Phase space spectral measure

 $g_A(I; ec{q}, ec{p})$ - phase space projector

$$\mathbb{P}_{\rho}(\tilde{A} \in I) = \int_{\mathbb{R}^2} g_A(I; \vec{q}, \vec{p}) \rho(\vec{q}, \vec{p}) \mathrm{d}^3 q \mathrm{d}^3 p$$

such that

$$g_A(\mathbb{R}; \vec{q}, \vec{p}) = 1, \qquad \qquad \int_{\mathbb{R}} a g_A(a; \vec{q}, \vec{p}) \, \mathrm{d}a = A(\vec{q}, \vec{p}).$$

For discrete spectrum:

$$g_H(I; \vec{q}, \vec{p}) = \sum_{E \in I} g_H(E_n; \vec{q}, \vec{p})$$

such that

$$\sum g_H(E_n; \vec{q}, \vec{p}) = 1, \qquad \sum E_n g_H(E_n; \vec{q}, \vec{p}) = H(\vec{q}, \vec{p}).$$

Example: phase space spectral measures of position

 $\chi(I;q_i)$ - characteristic function of interval

$$\mathbb{P}_{\rho}(\tilde{q}_i \in I) = \iint_{q_i \in I} \rho(\vec{q}, \vec{p}) d^3q d^3p = \iint_{\mathbb{R}^6} \chi(I; q_i) \rho(\vec{q}, \vec{p}) d^3q d^3p$$

We identify

$$g_{Q_i}(I; \vec{q}, \vec{p}) = \chi(I; q_i).$$

Time evolution

Generalized Moyal bracket

$$\dot{\rho} = \{ \{H, \rho\} \}$$

$$\{ \{f, g\} \} = \{f, g\} + \sum_{n=1}^{\infty} a_n \hbar^{2n} \left(f\{ \overleftarrow{\cdot}, \overrightarrow{\cdot} \}^{2n+1} g \right),$$

Time evolution

Generalized Moyal bracket

$$\dot{\rho} = \{\{H, \rho\}\}\$$
$$\{\{f, g\}\} = \{f, g\} + \sum_{n=1}^{\infty} a_n \hbar^{2n} \left(f\{\overleftarrow{\cdot}, \overrightarrow{\cdot}\}^{2n+1}g\right),$$

Ehrenfest theorem

Time-evolution of mean values of q_i , p_j is classical.

Coefficient a_n are experimentally measurable

Implement $H(t)=rac{p^2}{2m}+rac{1}{2}m\omega^2q^2+\lambda(t)rac{m^2\omega^3}{2\hbar}q^4$, measure p^2 at later time.

How to build a theory

- 1. For every observable define a function $A(\vec{q}, \vec{p})$ such that $\langle \tilde{A} \rangle = \iint_{\mathbb{R}^6} A(\vec{q}, \vec{p}) \rho(\vec{q}, \vec{p}) \mathrm{d}^3 q \mathrm{d}^3 p$.
- 2. For every observable define the phase space spectral measure $g_A(I; \vec{q}, \vec{p})$
- 3. Define the coefficients a_n of the generalized Moyal bracket $\{\{\cdot,\cdot\}\}$.
- 4. Define the set of states as the (convex subset of the) largest set of pseudo-probability distributions satisfying the positivity conditions for states:

$$\mathbb{P}_{\rho(t)}(\tilde{A} \in I) = \iint_{\mathbb{R}^6} g_A(I; \vec{q}, \vec{p}) \rho(\vec{q}, \vec{p}; t) d^3q d^3p \ge 0$$

How to build a theory

- 1. For every observable define a function $A(\vec{q}, \vec{p})$ such that $\langle \tilde{A} \rangle = \iint_{\mathbb{R}^6} A(\vec{q}, \vec{p}) \rho(\vec{q}, \vec{p}) \mathrm{d}^3 q \mathrm{d}^3 p$.
- 2. For every observable define the phase space spectral measure $g_A(I; \vec{q}, \vec{p})$
- 3. Define the coefficients a_n of the generalized Moyal bracket $\{\{\cdot,\cdot\}\}$.
- 4. Define the set of states as the (convex subset of the) largest set of pseudo-probability distributions satisfying the positivity conditions for states:

$$\mathbb{P}_{\rho(t)}(\tilde{A} \in I) = \iint_{\mathbb{R}^6} g_A(I; \vec{q}, \vec{p}) \rho(\vec{q}, \vec{p}; t) d^3q d^3p \ge 0$$

We always assume that position and momentum observables are:

$$Q_{i}(\vec{q}, \vec{p}) = q_{i}$$
 $g_{Q_{i}}(I; \vec{q}, \vec{p}) = \chi(I; q_{i})$ $P_{i}(\vec{q}, \vec{p}) = p_{i}$ $g_{P_{i}}(I; \vec{q}, \vec{p}) = \chi(I; p_{i})$

TOY MODEL

Motivation from classical theory

Classical theory:

$$\mathbb{P}_{\rho}(\tilde{H} \in I) = \int_{E \in I} \int_{H(\vec{q}, \vec{p}) = E} \rho(\vec{q}, \vec{p}) d^3 q d^3 p dE$$

Motivation from classical theory

Classical theory:

$$\mathbb{P}_{\rho}(\tilde{H} \in I) = \int_{E \in I} \int_{H(\vec{q}, \vec{p}) = E} \rho(\vec{q}, \vec{p}) d^3q d^3p dE = \int \chi(I; H(\vec{q}, \vec{p})) \rho(\vec{q}, \vec{p}) d^3q d^3p$$

 $\chi(I;H(\vec{q},\vec{p}))$ - piecewise constant function of $H(\vec{q},\vec{p}).$

Motivation from classical theory

Classical theory:

$$\mathbb{P}_{\rho}(\tilde{H} \in I) = \int_{E \in I} \int_{H(\vec{q}, \vec{p}) = E} \rho(\vec{q}, \vec{p}) d^3q d^3p dE = \int \chi(I; H(\vec{q}, \vec{p})) \rho(\vec{q}, \vec{p}) d^3q d^3p$$

 $\chi(I;H(\vec{q},\vec{p}))$ - piecewise constant function of $H(\vec{q},\vec{p}).$

Main idea

Take $g_H(I; \vec{q}, \vec{p})$ - piecewise linear function of $H(\vec{q}, \vec{p})$

Probabilities and the energy spectrum of the hydrogen atom

$$H(\vec{q}, \vec{p}) = \frac{|\vec{p}|^2}{2m} - \frac{\kappa}{|\vec{q}|}.$$

There is **only one** set of piecewise linear functions $g_H(I; \vec{q}, \vec{p})$ corresponding to the spectrum $E_n = E_1/n^2$ satisfying necessary and natural conditions.

Negativity of $g_H(E_2; \vec{q}, \vec{p})$ implies position-momentum uncertainty and prevents collapse of the atom!

States of the hydrogen atom

$$\rho_G(\vec{q}, \vec{p}) = \frac{1}{(2\pi)^3 \sigma_q^3 \sigma_p^3} e^{-\frac{|\vec{q}|^2}{2\sigma_q^2} - \frac{|\vec{p}|^2}{2\sigma_p^2}}$$

We have to enforce

$$\mathbb{P}_{\rho_G}(\tilde{H}=E_2)\geq 0.$$

Ground state

$$\rho_{\rm gnd}(\vec{q}, \vec{p}) = \frac{1}{(2\pi)^{\frac{3}{2}} \sigma_{\rm gnd}^3} e^{-\frac{|\vec{q}|^2}{2\sigma_{\rm gnd}^2}} \, \delta^{(3)}(\vec{p})$$

External magnetic field

$$H_B(\vec{q}, \vec{p}) = H(\vec{q}, \vec{p}) + \frac{\mu_B}{\hbar} B L_3(\vec{q}, \vec{p})$$

Take $g_{L_i}(I; \vec{q}, \vec{p})$ - piecewise linear phase space spectral measure for angular momentum L_i . Construct

$$g_{H_B}(I) = \sum_{n,m: E_n + \mu_B B m \in I} g_H(n; \vec{q}, \vec{p}) g_{L_3}(m; \vec{q}, \vec{p})$$

 $g_{H_B}(I)$ - phase space spectral measure for the Hamiltonian $H_B(\vec{q},\vec{p}).$

Result

Splitting of energy levels due to external magnetic field with

$$|m| < 2(n+1).$$

Perturbations by resonant light

 $H_E(\vec{q},\vec{p},t) = H(\vec{q},\vec{p}) - 2eE\sin(\omega t)q_3$, using interaction picture we get:

Scattering

Incoming particle density: $ho_{\rm in} = \nu \delta^{(3)}(\vec{p} - \vec{p}_0)$

Using Green's function approach we get:

$$\rho(t;\vec{q},\vec{p}) = \rho_{\mathsf{in}}(t;\vec{q},\vec{p}) + \int\limits_{\mathbb{R}^3} \int\limits_{-\infty}^t K(\vec{q} - \frac{\vec{p}}{\mu}(t-\tau),\vec{p},\vec{p'}) \rho(\tau;\vec{q} - \frac{\vec{p}}{\mu}(t-\tau),\vec{p'}) \,\mathrm{d}\tau \mathrm{d}^3p'$$

where

$$K(\vec{q}, \vec{p}, \vec{p'}) = \left\{ \left\{ V(\vec{q}), \delta_p^{(3)}(\vec{p} - \vec{p'}) \right\} \right\}.$$

Solved via $V(\vec{q}) \mapsto \lambda V(\vec{q})$ and comparing equal powers of λ .

Result

For $t\to\infty$ and $|\vec{q}|\to\infty$ we always get Rutherford formula $\frac{d\sigma}{d\Omega}=\frac{\kappa^2\mu^2}{4p_0^4}\frac{1}{\sin^4(\vartheta/2)}$

	Ehrenfest theorem	stable atom	quantized energy levels	Rutherford scattering	experimental predictions	Hilbert space formulation
CLASSICAL THEORY	\	×	X	~	~	~
QUANTUM THEORY	~	~	~	~	~	~
GENERALIZED WIGNER THEORY	~	~	~	~	~	×

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

http://www.humboldt-foundation.de

