Transformaciones con WebGL

Katia Leal Algara

Web: http://gsyc.urjc.es/~katia/
Email: katia/

Dept. Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación (GSyC) Escuela Superior De Ingeniería De Telecomunicación (ETSIT) Universidad Rey Juan Carlos (URJC)

Translation

 Las coordenadas del nuevo punto p' se calculan por medio de:

$$x' = x + Tx$$
 $y' = y + Ty$
 $z' = z + Tz$

Translation

- ¿Dónde debemos implementar esta operación?
- ... en el vertex shader. Se deben pasar las distancias de movimiento Tx, Ty y Tz al vertex shader, se debe aplicar la ecuación de movimiento y asignar el resultado a gl_Position.

Introducción a Matrices

WebGL utiliza matrices (Matrix).

- Las matrices definen las transformaciones del objeto (desplazamiento, escalado, etc.).
- Las matrices describen el tipo de cámaras.
- Las matrices describen la configuración actual del espacio 3D.

Introducción a Matrices

Sistema de coordenadas en OpenGL

• De "mano derecha":

3D coordinate systems

OpenGL uses this!

Coordinate System

Left-Hand Coordinate System

Direct3D uses this!

Transformaciones básicas en 2D

Las transformaciones se pueden combinar utilizando álgebra básica.

Translación:

$$x' = x + tx$$

$$y' = y + ty$$

Escalado:

$$\chi' = \chi * s\chi$$

$$y' = y * sy$$

Cizalla (Shear):

$$x' = x + hx*y$$

$$y' = y + hy*x$$

Rotación:

$$x' = x*\cos\Theta - y*\sin\Theta$$

$$y' = x*sin\Theta + y*cos\Theta$$

Representación matricial

 Una transformación se puede representar por una matriz:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 Multiplicando la matriz por una vector columna, estamos aplicando una transformada a un vértice.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

Uso de matrices

• Ejemplo con escalado:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

• En forma matricial:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Representación matricial

Por lo tanto:

```
•X-axis = pulgar = 1, 0, 0 [1 0 0
```

• Y-axis = indice = 0, 1, 0
$$0$$
 1

•Z-axis = medio = 0, 0, 1
$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Representación matricial

 Las transformaciones se concatenan al multiplicar matrices:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 Las matrices son muy útiles para representar transformaciones sucesivas.

Rotación en 2-D

Rotación 2-D

Esto lo podemos expresar en una matriz:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Incluso si $sin(\theta)$ y $cos(\theta)$ no son funciones lineales de θ ,
 - x' es una combinación lineal de x e y y es una combinación lineal de x e y
- Una matriz es un operador lineal.

Matriz de transformación

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

 ¿Qué opináis? ¿Guardamos la matriz de transformación o el resultado final de aplicarla?

Matrices de 2x2

- ¿Qué podemos representar con matrices de 2x2?
- Identidad en 2D:

$$x' = x$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• Escalado en 2D:

$$x' = s_x * x$$

$$y' = s_y * y$$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

Matrices de 2x2

¿Qué podemos representar con matrices de 2x2?

• Rotaciones en 2D:

$$x' = \cos\Theta * x - \sin\Theta * y y' = \sin\Theta * x + \cos\Theta * y$$

$$\begin{bmatrix} x' \\ v' \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• Cizalla en 2D:

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

Matrices de 2x2

- ¿Qué podemos representar con matrices de 2x2?
- Espejo sobre el eje Y:

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• Espejo sobre el origen:

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Transformaciones lineales

- Las transformaciones lineales son una combinación de:
 - Escalado,
 - Rotación,
 - Cizalla, y
 - Espejo.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

¿Y qué hacemos con la translación?

 ¿Se puede representar una translación con una matriz 2x2?

$$x' = x + t_x$$

$$y' = y + t_y$$
NO!

Las matrices 2x2 únicamente se pueden utilizar para representar transformaciones lineales.

Coordenadas homogéneas

- Coordenadas homogéneas:
 - Representan coordenadas en 2D pero utilizan un vector de 3D.
 - Fueron introducidas por el matemático alemán <u>August Ferdinand Möbius</u> en el año 1837.

Aunque no son nada intuitivas son de gran utilidad para los sistemas gráficos!!

Coordenadas homogéneas

¿Y de qué nos sirve para la translación?

$$x' = x + t_x$$

$$y' = y + t_y$$

• De mucho!!

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Translación

• Ejemplo:

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} + t_x \\ \mathbf{y} + t_y \\ 1 \end{bmatrix}$$

Transformaciones básicas en 2D

 Las transformaciones básicas en 2D se realizan utilizando matrices de 3x3

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Translación

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotación

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Escalado

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Transformaciones en 3D

- Utilizamos la misma idea que en 2D
 - Coordenadas homogéneas: (x, y, z, w).
 - La matriz de transformación es de 4x4.

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Transformaciones en 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Identidad

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} x \\ 0 & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Escalado

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Espejo

Transformaciones en 3D

Giro sobre el eje Z:
$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 & 0 \\ \sin\Theta & \cos\Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Giro sobre el eje Y:
$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & 0 & \sin\Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\Theta & 0 & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Giro sobre el eje X:
$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta & 0 \\ 0 & \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Example 4-1 a 4-4

Al comienzo del fichero incorporan la librería:

```
<script src="gl-matrix-min.js"></script>
```

Un ejemplo en Javascript sería:

```
var mvMatrix = mat4.create();
mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [newPos , 0.0, 0.0]);
mat4.scale(mvMatrix, [scale, scale, 0.0]);
mat4.rotate(mvMatrix, angle, [0.0, 1.0, 0.0]);
```

Example 4-1 a 4-4

• En los shaders se utiliza como:

```
uniform mat4 uMVMatrix;
void main(void) {
   gl_Position = uMVMatrix * vec4(aVertexPosition, 1.0);
}
```

Y desde Javascript se asigna un valor:

gl.uniformMatrix4fv

gl.uniformMatrix4fv(location, transpose, array)

Assign the 4×4 matrix specified by array to the uniform variable specified by location.

Parameters location Specifies the storage location of the uniform variable.

Transpose Must be false in WebGL.3

array Specifies an array containing a 4×4 matrix in column

major order (typed array).

Return value None

Errors INVALID_OPERATION There is no current program object.

INVALID_VALUE transpose is not false, or the length of array is less

than 16.