Mathematische Grundlagen(1141)

SoSe 2012

Kurseinheit 3:

Einsendeaufgaben – Einsendetermin: 14.5.2012

Aufgabe 3.1

Wahr oder falsch?

wahr falsch

- (1) Ist V ein \mathbb{K} -Vektorraum mit Basis v_1, \ldots, v_n , und ist $z = \sum_{i=1}^n a_i v_i$ mit $a_n \neq 0$, so ist v_1, \ldots, v_{n-1}, z eine Basis von V.
- (2) Es gibt einen \mathbb{R} -Vektorraum der Dimension 4, der keinen Unterraum der Dimension 3 besitzt.
- (3) Sei $f: M_{33}(\mathbb{F}_2) \to M_{23}(\mathbb{F}_2)$ linear, und seien \mathcal{B} eine Basis von $M_{33}(\mathbb{F}_2)$ und \mathcal{C} eine Basis von $M_{23}(\mathbb{F}_2)$. Dann ist $_{\mathcal{C}}M_{\mathcal{B}}(f)$ eine 9×6 -Matrix.
- (4) Der Vektorraum der Polynome vom Grad ≤ 3 über \mathbb{Q} ist isomorph zu $M_{22}(\mathbb{Q})$.
- (5) Sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ linear. Dann liegt $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ im Kern von f.
- (6) Sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ linear. Dann liegt $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ im Bild von f.
- (7) Sei V ein Vektorraum der Dimension 4, und seien U und W Unterräume der Dimension 3 von V. Dann ist $U \cap W \neq \{0\}$.
- (8) Sei $V = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\rangle \subseteq M_{22}(\mathbb{R})$. Sei \mathcal{B} eine Basis von V. Sei $A \in V$. Der Koordinatenvektor von A bezüglich \mathcal{B} liegt in \mathbb{R}^4 .
- (9) Es gibt eine lineare Abbildung $f: M_{22}(\mathbb{R}) \to \mathbb{R}$ mit $Kern(f) = \{0\}.$
- (10) Es gibt eine surjektive, lineare Abbildung $f: \mathbb{R} \to M_{22}(\mathbb{R})$.

 $[\max(0, r - f)]$ Punkte, wobei r die Anzahl der richtigen und f die Anzahl der falschen Antworten ist. Nicht beantwortete Fragen gehen nicht in die Bewertung ein.]

Einsendeaufgaben MG EA 3

Diese Seite bleibt aus technischen Gründen frei!

Aufgabe 3.2

Seien
$$U_1 = \left\{ \begin{pmatrix} 2a \\ a \\ b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$
 und $U_2 = \left\{ \begin{pmatrix} a \\ a \\ b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$ Teilmengen von \mathbb{R}^3 .

- 1. Beweisen Sie, dass U_1 und U_2 Unterräume von \mathbb{R}^3 sind.
- 2. Bestimmen Sie eine Basis von $U_1 \cap U_2$.
- 3. Bestimmen Sie eine Basis von $U_1 + U_2$, die eine Basis von U_1 und eine Basis von U_2 enthält.

$$[2 + 4 + 4 \ Punkte]$$

Aufgabe 3.3

Seien \mathbb{K} ein Körper, $A \in M_{mn}(\mathbb{K})$, und seien $v_1, \ldots, v_r \in \mathbb{K}^n$.

Beweisen Sie:

- 1. Sind v_1, \ldots, v_r linear abhängig, so sind auch Av_1, \ldots, Av_r linear abhängig.
- 2. Sind v_1, \ldots, v_r linear unabhängig und ist Rg(A) = n, so sind Av_1, \ldots, Av_r linear unabhängig.

[4+6 Punkte]

Aufgabe 3.4

Geben Sie jeweils ein Beispiel für einen Vektorraum V und eine lineare Abbildung $f:V\to V$, sodass gilt:

- 1. $f \circ f = id_V$, und $f \neq id_V$.
- 2. $f \circ f = -\mathrm{id}_V$.
- 3. $f \circ f = f$, und $f \neq id_V$.
- 4. $\operatorname{Kern}(f) = \operatorname{Bild}(f)$, und $V \neq \{0\}$.
- 5. $Kern(f) \cap Bild(f) = \{0\}, \text{ und } V \neq \{0\}.$

Hinweis: Bitte vergessen Sie die Begründungen nicht.

$$[2 + 2 + 2 + 2 + 2 + 2 Punkte]$$

Aufgabe 3.5

Sei V der Vektorraum der Polynome über \mathbb{R} vom Grad ≤ 2 . Sei $f: V \to \mathbb{R}^2$ definiert durch $f\left(\sum_{i=0}^2 a_i T^i\right) = \begin{pmatrix} a_2 \\ a_0 \end{pmatrix}$.

Einsendeaufgaben MG EA 3

- 1. Beweisen Sie, dass f linear ist.
- 2. Bestimmen Sie eine Basis von Kern(f) und von Bild(f).
- 3. Wählen Sie Basen \mathcal{B} von V und \mathcal{C} von \mathbb{R}^2 und berechnen Sie $_{\mathcal{C}}M_{\mathcal{B}}(f)$.

 $[2 + 6 + 2 \ Punkte]$

Aufgabe 3.6

Sei V ein endlich erzeugter Vektorraum der Dimension n, und seien f und g lineare Abbildungen von V nach V.

Beweisen Sie: Wenn $f \circ g = 0$, so folgt $Rg(f) + Rg(g) \le n$.

[10 Punkte]