2. Internet Protocol

DIE INTERNET-PROTOKOLLWELT

28

Übersicht

Wintersemester 2020/2°

IE INTERNET-PROTOKOLLWELT - 2. I

29

Wiederholung: Die Internet-Protokollhierarchie

Anwendungsschicht
Anwendungsspezifische Funktionen zusammengefasst in Anwendungsprotokollen

Ende-zu-Ende-Datenübertragung zwischen zwei Anwendungsinstanzen

Internet-Schicht
Paketvermittlung im Netz

Sicherungsschicht
Sicherungsschicht
Bitübertragungs-schicht
Network-to-Host, N2H

Wintersemester 2020/21

IF INTERNET-PROTOKOLI WELT - 2. I

20

30

Das Protokoll IP (Internet Protocol) [RFC 791]

Historie:

- Entwickelt vom amerikanischen Verteidigungsministerium (Department of Defense, DOD)
- Bereits 1969 im damaligen ARPANET eingesetzt (ursprünglich 4 Hosts!)

Realisierung und Entwicklung:

- IP = das am meisten genutzte Vermittlungsschichtprotokoll
- Weiterentwicklung im Projekt IP next generation, IPng, der Internet Engineering Task Force, IETF, zu IPv6

Wintersemester 2020/2°

DIE INTERNET-PROTOKOLLWELT - 2. I

31

Eigenschaften von IP

- Paketvermittelt
- Verbindungslos (Datagrammdienst)
- Ungesicherte Übertragung:
 - Datagrammverlust
 - Duplizierung von Datagrammen
 - Nichteinhalten der Reihenfolge
 - (Theoretisch) endloses Kreisen von Paketen
 - Keine Behandlung von nicht behebbaren Fehlern der darunter liegenden Schicht
 - Anzeige von (fatalen) Fehlern mit dem Protokoll Internet Control Message Protocol, ICMP
- Keine Flusskontrolle
- Keine explizite Staukontrolle
- Einsatzbereich von privaten bis hin zu öffentlichen Netzen
- Weltweit eindeutige (hierarchische) Adressierung notwendig

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 32

32

Interworking mit IP

IPv4-Adressen (ursprüngliche Einteilung)

34

IPv4-Subnetzadressen

3. IP-Adresse: 129. 13. 64 255. Subnetzmaske: 255. 255. 1111 1111 1111 1111 1111 1111 0000 0000 Netzwerk: 129. 13. Subnetz: 3. Endsystem: 64

Netz-ID: Adressklasse

Subnetz-ID nicht immer vorhanden (z. B. bei Subnetzmaske 255.255.0.0 in obigem Beispiel)

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 35

36

IPv4-Datagramm: Felder

Version	V			
version	Versionsnummer für IP			
Header Length	Länge des IP Headers in 32-bit-Worten			
Type of Service, TOS/ Differentiated Services	Dienstgüteunterstützung			
Total Length	Länge des gesamten Datagrammes			
Identifier	Identifikation der Dateneinheit			
Flags	Notwendig für Segmentierung			
Fragmentation Offset	zur Reassemblierung			
Time to Live	Lebenszeitbegrenzung des Pakets			
Protocol	Protokoll der darüber liegenden Schicht (z. B. 6=TCP, 17=UDP)			
Header Checksum	Fehlerüberprüfung für Header			
Source/Destination Address	Quell- und Zielrechner			
Options	zusätzliche Dienstleistungen			
Padding	für 32-Bit-Ausrichtung (Options)			
Data	Benutzerdaten			

Wintersemester 2020/2

DIE INTERNET-PROTOKOLLWELT - 2. IP

38

38

Wegewahl bei IP

Routingtabelle auf **jedem** System, die üblicherweise über Routingprotokolle gefüllt wird

Bestimmung des Eintrags, der die Weiterleitung festlegt, anhand der Zieladresse:

- Durchsuche Host-Adressen
- Durchsuche Netzwerkadressen
- Suche nach Default-Eintrag

Ziel ist		MAC-Rahmen wird adressiert an
direkt erreichbar	Direct Route	Zielsystem
nur indirekt erreichbar	Indirect Route	Router

Wintersemester 2020/21

IE INTERNET-PROTOKOLLWELT - 2. I

39

Beispiel der Adressierung

IP-Paket adressiert an...

129.13.35.73 (sioux.telematik.informatik.uni-karlsruhe.de)

132.151.1.19 (www.ietf.org)

Aktuelle Routingtabelle:

Destination	Gateway	Flags	Refs	Use	Interface
Default	i70lr0	UGS	1	13320	tu0
127.0.0.1 (localhost)	localhost	UH	7	242774	lo0
129.13.3	i70r35	UGS	0	6	tu0
129.13.35	mohave	U	11	3065084	tu0
129.13.41	i70r35	UGS	2	4433	tu0
129.13.42	i70r35	UGS	0	4	tu0

Wintersemester 2020/21

IE INTERNET-PROTOKOLLWELT - 2. I

40

40

IPv4-Multicasting

IPv4-Datagramm an mehrere Empfänger adressiert

Verwaltung der Multicast-Empfänger über das Internet Group Management Protocol, IGMP

Class D-Adresse für Multicast:

- Beginn mit "1110"
- Danach 28 bit lange ID der Gruppe

intersemester 2020/2

DIE INTERNET-PROTOKOLLWELT - 2. I

41

IPv4-Dienste: Überprüfung des Paketkopfes

Überprüfungen, die nach dem Empfang eines IP-Datagrammes am Header durchgeführt werden:

- Überprüfung der korrekten Länge des Headers
- Test der IP-Versionsnummer
- Überprüfung der korrekten Datagrammlänge
- Prüfsummenbildung über den IP-Header
- Überprüfung der Paketlebenszeit
- Überprüfung der Protokoll-ID
- Überprüfung der Adressklassen beider Adressen (Quell- und Zieladresse)

Bei negativem Resultat eines der oben aufgeführten Tests:

- Paket verwerfen
- Fehlermeldung über ICMP an den Sender des Pakets

Wintersemester 2020/21

E INTERNET-PROTOKOLLWELT - 2. IF

2

42

IPv4-Dienste: Source Routing

Festlegung des Pfads zum Ziel durch die Protokollinstanz oberhalb von IP

- Options-Feld mit einer Liste von Routern, die den Weg zum Zielknoten beschreiben
- Pointer P → Adresse des nächsten Routers
- Empfangender Router ersetzt die Adresse durch die eigene für das nächste Subnetz
- P → P + 4 [byte] (= n\u00e4chste Routeradresse)

Strict Source Routing

Kompletter Pfad mit allen Routern im Options-Feld

Loose Source Routing

- Nur eine Teilmenge der Router im Options-Feld
- Weitere Router zwischen den angegebenen über herkömmliches Routing bestimmt
- Mittels einer zusätzlichen "Route Recording"-Option Aufzeichnung des kompletten Pfads

Wintersemester 2020/2

DIE INTERNET-PROTOKOLLWELT - 2. II

43

44

IPv4-Dienste: Route Recording

Im Datagramm wird der durchlaufene Weg festgehalten

DIE INTERNET-PROTOKOLLWELT - 2. IP

45

IPv4-Dienste: Zeitstempel

Einfügen eines **Zeitstempels** im Optionsfeld, der den Zeitpunkt charakterisiert, zu dem das Paket vom Router bearbeitet wurde

- Aussagen über die Belastung der Netzwerke
- Abschätzen der Effizienz der benutzten Routing-Algorithmen

4 bit langes **Flag** im Optionsfeld:

- Flag-Wert = 0: Nur Zeitstempel aufzeichnen, keine Adressen
- Flag-Wert = 1: Sowohl Zeitstempel als auch Adressen (Route Recording)

aufzeichnen

• Flag-Wert = 3: Die Adressen sind vom Sender vorgegeben (Source Routing),

die adressierten Router tragen nur ihren Zeitstempel ein

Wintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2. II

1.6

46

IPv4-Dienste: Segmentierung und Reassemblierung

Unterschiedliche Netzwerktechniken mit unterschiedlich langen maximale Paketlängen (Maximum Transmission Unit, MTU)

- → Segmentierung und Reassemblierung notwendig
- Beispiel Ethernet: 1.500 byte Nutzdaten

Notwendige Informationen im IP-Header:

- Flags im IP Header
 - Bit 0: reserviert
 - Bit 1: 0 = darf fragmentiert werden
 - 1 = darf nicht fragmentiert werden
 - Bit 2: 0 = letztes Fragment
 - 1 = es folgen weitere Fragmente
- Fragment Offset
 - Definiert die Stelle, an der das Fragment in die Original-PDU eingesetzt werden muss (in der Einheit 8 byte)

Wintersemester 2020/2

DIE INTERNET-PROTOKOLLWELT - 2.

4/

IPv4-Dienste: Segmentierung und Reassemblierung – Beispiel

Wintersemester 2020/21

INTERNET-PROTOKOLLWELT - 2. I

/.0

48

Zusammenfassung zu IPv4

Die Vermittlungsschicht im Internet ist nicht nur IP!

Die Adressierung mittels IPv4 ist schon an die physikalische Grenze gestoßen

- Neues Adressierungsschema notwendig
 - → längere Adressen
- Konsequenz: Tiefer gehende Änderung von IP
 - → Inkompatibilität

Neuentwicklung: IPv6

Wintersemester 2020/2

IE INTERNET-PROTOKOLLWELT - 2.

49

INTERNATIONAL CONNECTIVITY Bitnet but not Internet EMail Only (UUCP, Fido Net) No Connectivity

DIE INTERNET-PROTOKOLLWELT - 2. IP

50

Entwicklung der globalen Vernetzung Stand 1997

DIE INTERNET-PROTOKOLLWELT - 2. IP

Internet-Backbone www.submarinecablemap.com abgerufen im August 2019

Umgang mit Adressknappheit bei IPv4?

52

DIE INTERNET-PROTOKOLLWELT - 2. IP

Gründe für Adressknappheit in IPv4

32 bit Länge → 2³² = 4.294.967.296 Adressen

Aber:

- Routing im Backbone anhand der Netz-ID
- Anzahl der Adressen je Netz
 - o bei Klasse A: 2²⁴ = 16.777.216 Adressen
 - o bei Klasse B: 216 = 65.536 Adressen
 - o bei Klasse C: 28 = 256 Adressen
- Adressen eines Netzes nur in diesem Netz verwendbar!
- → Viele Adressen bleiben ungenutzt!

Wintersemester 2020/21

E INTERNET-PROTOKOLLWELT - 2. IF

54

54

CIDR: Classless Inter-Domain Routing

[RFC 4632]

Beispiel für "Verschnitt" von IPv4-Adressen:

- Kleinbetrieb mit 100 Endgeräten → Klasse C Adresse
- 254 Adressen zugewiesen → 154 ungenutzte Adressen

Idee von Classless Inter-Domain Routing, CIDR:

- Ersetzen der festen Klassen durch Netzwerk-Präfixe variabler Länge von 13 bis 27 bit
- Beispiel: 129.24.12.0/14: Die ersten 14 Bits der IP-Adresse → Netzwerk-Identifikation
- Einsatz in Verbindung mit hierarchischem Routing:
 - Backbone-Router, z. B. an Transatlantik-Link, betrachtet nur z. B. die ersten 13 Bits:
 - ❖ kleine Routing-Tabellen
 - wenig Rechenaufwand
 - Router eines angeschlossenen Providers z. B. die ersten 15 Bits
 - Router in einem Firmennetz mit 128 Hosts betrachtet 25 Bits

Wintersemester 2020 / 2

DIE INTERNET-PROTOKOLLWELT - 2.

55

NAT: Network Address Translation

[RFC 3022]

Problem:

Adressen müssen auch beim Einsatz von CIDR global eindeutig sein

Idee:

- In einem Firmennetz brauchen nur die Rechner eine global eindeutige Adresse, die aktuell Verbindungen aus dem Firmennetz heraus aufbauen
- Temporäre Vergabe der global eindeutigen Adresse:
 Network Address Translation, NAT
- Verwaltung eines Adressenpools z. B. durch Gateway

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 56

56

NAT: Ablauf

Erweiterung Network Address Port Translation (NAPT) [RFC 3235]

Mehr lokale Endgeräte als globale Adressen (z. B. DSL-Anschluss)

- Bei gleichzeitigem Internetzugang aller Endgeräte zurückkommende Pakete nicht eindeutig einer lokalen IP-Adresse zuordenbar
- Weiteres Unterscheidungsmerkmal notwendig → Portnummer
- Abbildung (lokale IP-Adresse, ausgehende Portnummer) → (global IP-Adresse, freie Portnummer)

Damit flexible Anzahl von Endgeräten im lokalen Netz bei gleichbleibender Anzahl von globalen IP-Adressen

Theoretische maximale Anzahl von gleichzeitigen Kommunikationsvorgängen: 65.536 (2¹⁶) je Transportschichtprotokoll

Wintersemester 2020/21

IE INTERNET-PROTOKOLLWELT - 2. I

E0

58

Motivation für eine "neue" Internet-Protokollsuite

Adressierungsprobleme

- IP-Adressraum nicht mehr ausreichend
- Class-B-Adressen sind erschöpft
- Übergangslösung helfen nur kurzfristig
- Keine hierarchische Adressierung
- Routing-Tabellen wachsen sehr schnell, daher ineffizientes Routing

Sicherheitsprobleme

Verstärkte Dienstgüteanforderungen durch Multimediaanwendungen

Wintersemester 2020/2

DIE INTERNET-PROTOKOLLWELT - 2. I

59

Geschichte von IPv6

1993	Call for Proposals für <i>IP next generation,</i> IPng	[RFC 1550]
1994	Vorschlag: Simple Internet Protocol Plus, SIPP als Kombination aus drei eingereichten Vorschlägen	
1995	Proposed Standard "Internet Protocol Version 6" erste prototypische Implementierungen → sanfte Migration erwünscht	[RFC 1883]
1996	Erstes IPv6-Backbone, 6Bone, erste Produkte am Markt erhältlich	
1998	IPv6 zum Draft Standard erhoben	[RFC 2460]
2017	Überarbeitung des IPv6-Standards, Status: Internet-Standard	[RFC 8200]

Wintersemester 2020/21

IE INTERNET-PROTOKOLLWELT - 2. I

DIE INTERNET-PROTOKOLLWELT - 2. IP

60

60

Anwendung von IPv6 http://www.google.de/ipv6/statistics.html Oktober 2020: Weniger als 35% der Zugriffe auf Google erfolgen mit IPv6

61

Eigenschaften von IPv6 im Überblick

Erweiterte Adressierungsmöglichkeiten

Neues IP-Paketkopfformat

- Einfachere Struktur
- Verbesserte Behandlung von Optionen

Multicast-Integration

Segmentierung nur Ende-zu-Ende

Autokonfiguration von IP-Systemen

Mobilitätsunterstützung

Sicherheitsvorkehrungen

Dienstgüteunterstützung für Multimedia

Wintersemester 2020/21

E INTERNET-PROTOKOLLWELT - 2. IF

52

62

IPv6-Adresse

[RFC 1924]

128 bit lange Adressen

Theoretische Anzahl von Adressen: 3,4 × 10³⁸ Adressen
 Optimistische Abschätzung: 700 × 10²¹ pro m²
 Pessimistische Abschätzung (RFC1715): 1.700 pro m²

Neue Notation

- 8 durch Doppelpunkte getrennte 4-stellige Hexadezimalzahlen: 5800:0000:0000:0000:0000:0000:0056:0078
- Reihen von Nullen können weggelassen werden: 5800::56:78

IPv6-Adressen können Strukturinformation zur hierarchischen Lokalisierung beinhalten

Vintersemester 2020 / 2

IE INTERNET-PROTOKOLLWELT - 2. I

63

IPv6-Adressen: aggregierbare Unicast-Adresse

Top-Level Aggregation, TLA

 große Internet Service Provider, ISP mit Transitnetzen, an denen andere ISPs angeschlossen sind

Next-Level Aggregation, NLA

- Organisationen auf einer niedrigeren Stufe
- Mehrere NLA-Ebenen möglich

Site-Level Aggregation, SLA

 Individuelle Adressierungshierarchie einer einzelnen Organisation

Wintersemester 2020/21

NTERNET-PROTOKOLLWELT - 2. IF

64

64

IPv6-Adressen: Spezielle Unicast-Adressen

Lokale Unicast-Adressen

- Link-lokal für Konfigurationszwecke oder IP-Netze ohne Router
- Standort-lokale für noch nicht an das Internet angeschlossene IP-Netze, einfach rekonfigurierbar

Kompatible Unicast-Adressen

- IPv4-kompatibel: Präfix (96 "0"-Bits) + IPv4-Adresse
- IPv4-mapped: Präfix (80 "0"-Bits + 16 "1"-Bits) + IPv4-Adresse
- IPX-kompatibel oder OSI-kompatibel

Unspezifizierte Adresse

• 0::0 (oder ::) beim Booten

Loopback-Adresse

• 0::1 (oder ::1) entspricht der IPv4-Adresse 127.0.0.1

Wintersemester 2020/21

IE INTERNET-PROTOKOLLWELT - 2.

65

IPv6-Adressen: Anycast

- Neuer Adresstyp in IPv6
- Teil des Unicast-Adressraums
- Adressierung einer ganzen Gruppe
 - → der am wenigsten belastete / nächste / am besten erreichbare... IP-Knoten antwortet
- Eigener Eintrag in der Routing-Tabelle für jede Anycast-Adresse
- Anycast-Adressierung somit nur für Router relevant
- Anwendungsbeispiel: Verteilung eines Web-Servers auf mehrere physische Knoten

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 66

66

IPv6-Adressen: Multicast

- Alle Router und Endsysteme unterstützen Multicast
- Vordefinierte Multicast-Gruppen für Kontrollfunktionen
- IGMP in ICMPv6 integriert
- Die Multicastadresse enthält zusätzlich
 - Flags (Unterscheidung temporär/permanent)
 - Scope (Wirkungsgrad/Reichweite des Pakets)

Wintersemester 2020/2

IE INTERNET-PROTOKOLI WELT - 2

67

Vergleich der Adressierungsarten in IPv4 und IPv6

Adressierungs- art	IPv4	IPv6	Verwendete Schnittstellen	Notwendige Auslieferungen
Unicast	Obligatorisch	Obligatorisch	1	1
Multicast	Optional	Obligatorisch	Gruppe	Alle in der Gruppe
Broadcast	Obligatorisch	_	Alle	Alle
Anycast	-	Obligatorisch	Gruppe	1

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP

68

68

IPv6 - Erweiterungspaketköpfe

Verkettung von Erweiterungspaketköpfen (Extension Headers)

- Kleiner minimaler Paketkopf
- Je nach Anforderungen seitens der Anwendungen und/oder Eigenschaften der Netze Einfügen von Erweiterungspaketköpfen in bestimmter Reihenfolge
- Verkettung einer beliebigen Zahl von Erweiterungspaketköpfen
- Einfache Einführung neuer zukünftiger Erweiterungen und Optionen

Router muss nicht alle Erweiterungspaketköpfe bearbeiten

Aufgaben der Erweiterungspaketköpfe beispielsweise

- Sicherheitsüberprüfung
- Segmentierung
- Source Routing
- Netzmanagement

Wintersemester 2020/21

INTERNET-PROTOKOLLWELT - 2. II

70

70

Beispiele für Erweiterungspaketköpfe

IPv6: Segmentierung

Nur der Sender kann segmentieren

Paket zu groß → Router senden eine ICMPv6-Nachricht "packet too big"

Feststellen der maximalen Paketgröße (Maximum Transfer Unit MTU) mittels Angabe im ICMPv6-

Paket:

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 72

72

IPv6: automatische Adresskonfiguration

"Plug & Play"

- Beschaffung der eigenen IP-Adresse
- Erkennung doppelter IP-Adressen
- Adressauflösung
- Bestimmung von ortsabhängigen Parametern (Subnetz-ID, MTU, DNS-Server, ...)
- Erkennung von Routern
- Unterstützung mobiler Endgeräte

Prinzip der "Nachbarschaftserkennung" (Neighbor Discovery)

- Spezielle ICMP-Nachrichten:
 - o Router Solicitation/Advertisement
 - o Neighbour Solicitation/Advertisement

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 73

IPv6: Unterstützung mobiler Knoten

Mobile Rechner ohne Umkonfiguration ihrer IP-Adresse nicht in Fremdnetz betreibbar Neue gültige IP-Adresse durch Autokonfiguration

Aber: alte IP-Adresse weiterhin gültig, damit sie erreichbar bleiben Spezielle Architektur für das Weiterleiten von IP-Nachrichten notwendig

→ Spezielles Kapitel zu Internet und Mobilität

Wintersemester 2020/21

INTERNET-PROTOKOLLWELT - 2. I

"CIA"

(Confidentiality)

(Integrity)

(Authenticity)

7/

74

Allgemeine Sicherheitsziele

Merkformel für Sicherheitsziele:

Vertraulichkeit

• Geheimhaltung der Daten

Integrität

Unversehrtheit der Daten

Authentizität

Gesicherte Datenherkunft

Zusätzliches wichtiges Ziel:

Verbindlichkeit (Non-Repudiability)

- Nichtabstreitbarkeit der Datenherkunft
- wichtig z. B. bei Verträgen

Vintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2. II

75

Einfaches Modell der Datenübertragung

Passiver Angreifer: kann nur abhören, nicht manipulieren

Bedrohung für Vertraulichkeit

Aktiver Angreifer: kann abhören, ändern, löschen, duplizieren

Bedrohung für Vertraulichkeit, Integrität, Authentizität

Wintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2. IF

6

76

Bedrohungen

Abhören übertragener Daten

Modifizieren übertragener Daten

Ändern, Löschen, Einfügen, Umsortieren von Datenblöcken

Maskerade

- Vorspiegeln einer fremden Identität
- Versenden von Nachrichten mit falscher Quelladresse

Unerlaubter Zugriff auf Systeme

Stichwort "Hacking"

Sabotage (Denial of Service)

- gezieltes Herbeiführen einer Überlastsituation
- "Abschießen" von Protokollinstanzen durch illegale Pakete

Vintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2.

77

Angriffstechniken

- Anzapfen von Leitungen oder Funkstrecken
- Zwischenschalten (man-in-the-middle attack)
- Wiedereinspielen abgefangener Nachrichten (replay attack)
 (z. B. von Login-Nachrichten zwecks unerlaubtem Zugriff)
- gezieltes Verändern/Vertauschen von Bits oder Bitfolgen (ohne die Nachricht selbst entschlüsseln zu können)
- Brechen kryptographischer Algorithmen

Gegenmaßnahmen:

- keine selbstgestrickten kryptographischen Algorithmen verwenden, sondern nur bewährte und als sicher geltende Algorithmen!
- auf ausreichende Schlüssellänge achten
- Möglichkeiten zum Auswechseln von Algorithmen vorsehen

Wintersemester 2020/21

E INTERNET-PROTOKOLLWELT - 2. IP

78

78

Sicherheitsdienste

Überwiegend mit kryptographischen Mechanismen:

- Authentisierung
 - o von Datenpaketen (data origin authentication)
 - o von Systemen/Benutzern (entity authentication)
- Integritätssicherung (integrity protection)
 - o häufig kombiniert mit Datenpaket-Authentisierung
- Verschlüsselung (encryption)
- Schlüsselaustausch (key exchange)

Ohne kryptographische Mechanismen:

- Zugriffskontrolle (access control)
- Einbruchserkennung (intrusion detection)

Wintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2.

79

Symmetrische Kryptographie

Instanzen besitzen gemeinsamen geheimen Schlüssel.

Vorteile:

- geringer Rechenaufwand
- kurze Schlüssel

Nachteile:

- Schlüsselaustausch schwierig
- keine Verbindlichkeit

Wintersemester 2020/21

E INTERNET-PROTOKOLLWELT - 2. IP

90

80

Asymmetrische Kryptographie

Engl. Public-Key-Kryptographie

Schlüsselpaar aus privatem und öffentlichem Schlüssel

Vorteile:

- öffentliche Schlüssel sind relativ leicht verteilbar
- Verbindlichkeit möglich

Nachteile:

- hoher Rechenaufwand
- längere Schlüssel

intersemester 2020/2⁻

DIE INTERNET-PROTOKOLLWELT - 2.

81

Hybride Systeme

In der Praxis: Hybride Systeme

- Zunächst:
 - Benutzer-Authentisierung und Austausch eines Sitzungsschlüssels (symmetrisch oder assymmetrisch)
- Danach:
 - Authentisierung/Verschlüsselung der Nutzdaten mit Sitzungsschlüssel (symmetrisch)
- Bei langen Sitzungen:
 - Gelegentliches Auswechseln des Sitzungsschlüssels (z. B. stündlich)

Wintersemester 2020/2

IE INTERNET-PROTOKOLLWELT - 2. I

22

82

IPv6: Sicherheitsvorkehrungen

IPsec

- Sicherheit auch auf IP-Ebene
- Verschlüsselung
- Authentifizierung

Realisierung durch spezielle Erweiterungspaketköpfe

- Authentication Header
 - Überprüfung der Datenintegrität
 - Überprüfung der Senderidentität
- Security Encapsulation Header
 - Vertraulichkeit
 - Integrität und Authentizität

Wintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2. I

83

IPv6 und Multimedia

IPv6 ist für Multimediaströme vorbereitet

- Flow Label
 - Pakete mit gleichem Ziel bekommen identisches Label und können so gleichbehandelt werden
- Priorität
 - Einstufung der Pakete nach Dringlichkeit
 - Grobe Unterscheidung:
 - Non real time
 - Real time

Spezielle Mechanismen in den Routern notwendig

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 84

84

Migration hin zu IPv6

Zurzeit überwiegende Kommunikation mit IPv4

Wie migriert man Millionen von Rechnern hin zu IPv6?

[RFC 4213]

- Alle Rechner mit einem Schlag umstellen nicht möglich
- Langsame, schrittweise Migration auf IPv6 mit zeitweise Co-Existenz beider Standards

je nach Verbreitungsgrad optimal

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 85

Migrationsverfahren: Tunneling

IPv6-Pakete werden in speziellen Routern in IPv4-Pakete eingekapselt und wieder ausgepackt:

- Kommunikation nur zwischen solchen Tunnelendpunkten möglich
- Andere Router bemerken nichts von IPv6
- Automatisch (Zuweisung von IPv4-kompatiblen Adressen) oder konfigurierbar (fest konfigurierte Adressen für Tunnelendpunkte)

86

Migrationsverfahren: Dual Stack

Sowohl Endknoten als auch Router verfügen über zwei Protokollstacks: IPv4 und IPv6

Der DNS-Rückgabewert entscheidet, welcher Stack verwendet wird

DNS muss also auch beide Protokolle unterstützen

IPv4-Adressen können so eingespart werden

Wintersemester 2020/2

IE INTERNET-PROTOKOLLWELT - 2.

87

Migrationsverfahren: Protokolltranslation

Übersetzung von IPv4-Pakete in IPv6-Pakete

Anwendungsschicht muss davon unabhängig bleiben

Beispiele:

- Stateless IP/ICMP Translator, SIIT
- Network Address Translation Protocol Translation, NAT-PT
- Socket-based IPv4/IPv6 Gateway
- Bump In The Stack, BIS

Wintersemester 2020/21

INTERNET-PROTOKOLLWELT - 2. IF

88

88

IPv6 in der Praxis

Alle aktuellen Betriebssysteme IPv6-tauglich

Sehr viele Produkte unterstützen den neuen IP-Standard

Aber

- In der Regel wird IPv4 verwendet (Investitionsschutz)
- Ergänzungen zur IPv4-Welt ermöglichen weiterhin den Einsatz der alten Technik
- Anwendungen benötigen (noch) nicht die speziellen Eigenschaften von IPv6

IPv6 kommt immer noch vorrangig in speziellen Forschungsnetzen zum Einsatz

- 6bone als IPv6-Backbone mittlerweile abgeschaltet!
- Internet2 als Entwicklungsplattform

Vintersemester 2020 / 2°

DIE INTERNET-PROTOKOLLWELT - 2.

89

Das 6Bone

Weltweites IPv6-Testnetzwerk

→ Migrationsforschung Verbindung der IPv6-Hauptknoten über konfigurierte IPv4-Tunnel

Gemäß RFC 3701 ging der vom 6Bone genutzte Adresspräfix am 6. Juni 2006 (06/06/06) zurück an die IANA, womit der Betrieb des 6bone offiziell beendet ist

http://www.6bone.org/, Oktober 2016

90

Internet 2

Internet 2 (http://www.internet2.org/) Konsortium

- 180 Universitäten
- Industrie
- Regierung

für neue Netzanwendungen und -technologien

Working Groups:

- Engineering (IPv6, Multicast, QoS, Routing, Sicherheit...)
- Middleware (PKI, VidMid, MACE (Middleware Architecture Committee for Education)...)
- Anwendungen (Arts & Humanities, Digital Video, Health Sciences, Veterinary Medical, Voice over IP...)

Wintersemester 2020/21

E INTERNET-PROTOKOLLWELT - 2. IF

92

92

DIE INTERNET-PROTOKOLLWELT - 2. IP

93

94

Download of "The Matrix" DVD (Comparison of the Internet2 Land Speed Record)

www.internet2.edu

Wintersemester 2020/21 DIE INTERNET-PROTOKOLLWELT - 2. IP 95

Literatur

COMER, Douglas E. (2011): TCP/IP - Studienausgabe. Konzepte, Protokolle, Architekturen. Heidelberg: mitp. Debes, Maik; Heubach, Michael; Seitz, Jochen; Tosse, Ralf (2007): Digitale Sprach- und Datenkommunikation.

Netze - Protokolle - Vermittlung, München: Fachbuchverlag Leipzig im Carl Hanser Verlag.

HAGEN, Silvia (2016): *IPv6. Grundlagen - Funktionalität - Integration*. 3., erweiterte und revidierte Ausgabe. Maur: Sunny Connection.

JARZYNA, Dirk (2013): TCP-IP. Grundlagen, Adressierung, Subnetting. 1. Auflage. Heidelberg, München, Landsberg, Frechen, Hamburg: mitp.

Kurose, James F.; Ross, Keith W. (2014): Computernetzwerke. Der Top-Down-Ansatz. 6., aktualisierte Auflage. Hallbergmoos: Pearson Studium (Pearson Studium - Informatik).

PERLMAN, Radia (2001): *Bridges, Router, Switches und Internetworking-Protokolle*. 2. Auflage. München, Boston [u.a.]: Addison-Wesley (Net.com).

STALLINGS, William (2014): Data and Computer Communications. 10th edition. Harlow, Essex, England: Pearson Education.

STEVENS, W. Richard (2004): TCP-IP. Der Klassiker: Protokollanalysen, Aufgaben und Lösungen. 1. Auflage. Bonn: Hüthig.

Wintersemester 2020/21

DIE INTERNET-PROTOKOLLWELT - 2. II

96

96

Requests for Comments (RFC)

- POSTEL, Jon (Hg.) (1981): Internet Protocol. Internet Engineering Task Force (IETF) (Request for Comments, 791).
- Bradner, Scott; Mankin, Alison (1993): IP: Next Generation (IPng) White Paper Solicitation. Internet Engineering Task Force (IETF) (Request for Comments, 1550).
- HUITEMA, Christian (1994): The H Ratio for Address Assignment Efficiency. Internet Engineering Task Force (IETF) (Request for Comments, 1715).
- ELZ, Robert (1996): A Compact Representation of IPv6 Addresses.
 Internet Engineering Task Force (IETF) (Request for Comments, 1974)
- Srisuresh, Pyda; Egevang, Kjeld Borch (2001): *Traditional IP*Network Address Translator (Traditional NAT). Internet
 Engineering Task Force (IETF) (Request for Comments, 3022).
- DURNAND, Alain; HUITEMA, Christian (2001): The Host-Density Ratio for Address Assignment Efficiency: An Update on the H Ratio. Internet Engineering Task Force (IETF) (Request for Comments, 3194).

- SENIE, Daniel (2002): Network Address Translator (NAT)-Friendly Application Design Guidelines. Internet Engineering Task Force (IETF) (Request for Comments, 3235).
- Fink, Robert L.; Hinden, Robert M. (2004): 6bone (IPv6 Testing Address Allocation) Phaseout. Internet Engineering Task Force (IETF) (Request for Comments, 3701).
- NORDMARK, Erik; GILLIGAN, Robert E. (2005): Basic Transition Mechanisms for IPv6 Hosts and Routers. Internet Engineering Task Force (IETF) (Request for Comments, 4213).
- FULLER, Vince; LI, Tony (2006): Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan. Internet Engineering Task Force (IETF) (Request for Comments, 4632).
- DEERING, Stephen E.; HINDEN, Robert M. (2017): Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force (IETF) (Request for Comments, 8200).

lintersemester 2020 / 2°

DIE INTERNET-PROTOKOLLWELT - 2. II

97