Part – A

1.	The log	ical expression Y=AB+AC+BC is known as
	A.	Standard Sum of Product form
	B.	Sum of Product form
	C.	standard Product of Sum form
	D.	Product of Sum form
	ANSW	VER: B
2.	The nur	mber of cells in 6 variable K-map is
	A.	4
	B.	16
	C.	32
	D.	64
	AN	ISWER: D
3.	On a K-	Map, grouping the 0s produces
	A.	SoP expression
	B.	PoS expression
	C.	a don't care condition
	D.	AND-OR expression
	ANSW	YER: B
4.	In K m	ap, for M variable, cells are required.
	A.	M
		2 ^M
	C.	2^{2M}
	D.	M*M
	AN	ISWER: B
5.	In Boo	lean algebra XY+XY' +X'Y is equal to
	A.	X
	B.	Y
	C.	XY
	D.	X+Y
	AN	ISWER: D
6.	Simplif	ied form of A + A'B + A'B'C + A'B'C'D is equal to
	A.	A
	B.	A+B

C. A+B+C
D. A+B+C+D
ANSWER: D
7. The code used for labeling the cells of a K-map is
A. 8-4-2-1 binary
B. Hexadecimal
C. Grey
D. Octal
Answer C
8. The Quine– McClusky method of minimization of a logic expression is a (i) graphical
method (ii) algebraic method (iii) tabular method (iv) a computer-oriented algorithm The
correct answers are
A. (iii) and (iv)
B. (ii) and (iv)
C. (i) and (iii)
D. (i) and (ii)
Answer: A
9. In simplification of a Boolean function of n variables, a group of 2m adjacent 1s leads to a
term with
A. $m-1$ literals less than the total number of variables
B. $m + 1$ literals less than the total number of variables
C. $n + m$ literals
D. $n - m$ literals
Answer: D
10. Which one of the following devices has a greater number of inputs than outputs?
(a) encoder
(b) decoder
(c) multiplexer
(d) demultiplexer
Ans: (c)
11. What is the number of selection lines required in a single input, n-output demultiplexer?
(a) 2
(b) n
(c) 2 ⁿ n

	(d) log(base-2) n
	Ans: (d)
12.	A 1-to-8 demultiplexer has select input lines.
	(a) 2
	(b) 3
	(c) 8
	(d) 4
	Ans: (b)
13.	A 32 to 1 multiplexer has the following terminals
	(a) 32 outputs, one input and 5 control signals
	(b) 32 inputs, one output and 5 control signals
	(c) 5 inputs, one control signal and 32 outputs
	(d) 5 inputs 32 control signals and one output
	Ans:(b)
14.	The following switching function is to be implemented using multiplexer
	$f = \sum m(1, 2, 4, 8, 14, 45)$. What is the size of multiplexer?
	(a) 8-to-1 line
	(b) 16-to-1 line
	(c) 32-to-1 line
	(d) 64-to-1 line
	Ans: (d)
15.	In 16:4 priority encoder, highest priority is given on
	(a) A
	(b) 0
	(c) 9
	(d) F
	Ans: (d)
16.	The following switching function is to be implemented using decoder.
	$f = \sum m(1, 2, 4, 8, 14)$. What is the size of decoder?
	(a) 2-to-4 line
	(b) 3-to-8 line
	(c) 4-to-16 line
	(d) 5-to-32 line
	Ans: (c)

17. Size of decoder needed to design 16-to-1 line multiplexer.
(a) 2-to-4 line decoder
(b) 3-to-8 line decoder
(c) 4-to-16 line decoder
(d) 5-to-32 line decoder
Ans: (c)
18. ABCD decoder has
(a) Four input lines and 16 output lines
(b) Four selection lines, one input line and 16 output lines
(c) Sixteen input lines and four output lines
(d) Four input lines and ten output lines
Ans: (a)
19. Full adder circuit addsnumber of bits at a time
a) 5
b) 2
c) 5
d) 3
ANSWER :D
20. The Half adder circuit is implemented by
A) Using one XOR and one AND gate
B) Using one XNOR and one OR gate
C) Using two XOR and one AND gate
D) Using two XNOR and one OR gate
ANSWER :A
21. How many full adder required to design 4 -bit parallel adder?
A) 2
B) 4
C) 5
D) 3
ANSWER :B
22. The half subtractor logical expression for borrow is
A) A XOR B
B) AB
C) A'B

D) A'B'

ANSWER: C

- 23. The carry propagation delay reduced by
 - A)Carry look ahead adder
 - B) Full addrer
 - C) Full subtractor
 - D) 4 -bit parallel adder

Answer: A

- 24. The output sum expression for carry look ahead adder is
 - A) $S_i = P_i + C_i$
 - $B) S_i = G_i + P_i C_i$
 - C) $S_i = P_i XOR C_i$
 - D) $S_i = G_i XOR P_i C_i$

ANSWER: C

- 25. Decimal adder is also called as
 - A) Binary adder
 - B) 4 bit parallel adder
 - C) Carry look ahead adder
 - D) BCD adder

ANSWER: D

- 26. The carry output of the lower order stage is connected to the carry input of the next higher order stage will be
 - A) Ripple carry adder
 - B) full adder
 - C) Half adder
 - D) Decimal adder

ANSWER: A

- 27. The carry of the 4-bit parallel adder is connected to 1 then the carry -output is
 - A) That carry-out will be LOW
 - B) That carry-out will be HIGH
 - C) A one will be added to the final result
 - D) The carry-out is ignored

ANSWER: C

28. The four-bit parallel adder will perform subtraction by

B) Inverting the carry-in
C) Inverting the second inputs
D) Inverting the carry-out
ANSWER: C
29. In 4-bit full adder the carry propagation delay is
A) cumulative for each stage and limits the speed at which arithmetic operations are
performed
B) normally not a consideration because the delays are usually in the nanosecond
range
C) Decreases in direct ratio to the total number of full-adder stages
D) Increases in direct ratio to the total number of full-adder stages, but is not a factor
in limiting the speed of arithmetic operations
ANSWER: A
30. In decimal adder, the decimal number 10 is represented as
A) 10100000
B) 01010111
C) 00010000
D) 00101011
ANSWER: C
31. A three-digit decimal number of needs for illustration in the BCD format.
a) 3 bits
b) 6 bits
c) 12 bits
d) 24 bits
ANSWER: C
32. In BCD adder $A = 0101$ and $B = 1001$. find the output Y.
A. 1110
B. 0001 0100
C. 1111
D. 0000 1110
ANSWER :B
33. The expression for C3 in Carry Propagation–Look-Ahead Carry generator is
a. $G2 + P2G1 + P2P1G0 + P2P1P0C0$

A) Inverting the outputs

b. $G1 + P1G0 + P1P0C0$
c. $G_0 + P_0C_0$
d. $G_1 + P_1 (G_0 + P_0C_0)$
Answer: A
34. In 2-bit magnitude comparator $A_1A_0 = 11$ and $B_1B_0 = 01$ then A< B will be
A) 0
B) 1
C) A
D) B
ANSWER: A
35. Which one is a basic comparator?
a) XOR
b) XNOR
c) AND
d) NAND
Answer: a
36. A circuit that compares two numbers and determine their magnitude is called
a) Height comparator
b) Size comparator
c) Comparator
d) Magnitude comparator
Answer: d
37. If $A = 1010 \& B = 0101$ then the comparator output is
a) a > b
b) a – b
c) a < b
d) a = b
Answer: a
38. Data stored in ROM is
a. Non-volatile
b. Volatile
c. Secondary
d. Primary

Answer: a	ì
39. EPROM can b	be erased by
a. Ele	ectric pulses
b. UV	V Light
c. So	und waves
d. Ca	nnot be erased
Answer: b	b
40. The fundar	mental building block of a CPU is
a. Me	emory block
b. Ar	ithmetic and Logic unit block
c. Po	wer Supply module
d. No	one of the above
Answer: a	a
41. Total mem	nory capacity of ROM is
	a. 2 ⁿ
	b. 2 ⁿ -1
	c. 2 ⁿ *m
	d. 2 ⁿ +m
Answer: c	
42. The description	on of circuit in VHDL refers to register transfers level
a) Structur	ral description
b) Dataflo	w description
c) Hierarcl	hical Description
d) Behavio	oral Description
Answer: c	d d
43. Behavioral de	scriptions use the keyword followed by a list of procedural
assignment statem	nents
a) always	
b) reg	
c) input	
d) endmod	lule
Answer : a	a
44. The most bas	sic form of behavioral modeling in VHDL is
a) IF state	ments

b) Assignment statements
c) Loop statements
d) WAIT statements
Answer: b
45. Which model in system modelling depicts the dynamic behaviour of the system ?
a) Context Model
b) Behavioral Model
c) Data Model
d) Object Model
Answer: b
46. Which of the following doesn't corresponds to NAND gate?
a) $y \le NOT(a AND b)$
b) y <= NOT a OR NOT b
c) y <= NOT a AND NOT b
d) WITH ab SELECT
y <= 0 WHEN "11"
1 WHEN OTHERS
Answer: c
47. The inputs in the PLD is given through
a) NAND gates
b) OR gates
c) NOR gates
d) AND gates
Answer: d
48. PAL refers to
a) Programmable Array Loaded
b) Programmable Logic Array
c) Programmable Array Logic
d) Programmable AND Logic
Answer: c
49. PLA contains
a) AND and OR arrays
b) NAND and OR arrays
c) NOT and AND arrays

d) NOR and OR arrays

Answer: a

- 50. PLA is used to implement _____
 - a) A complex sequential circuit
 - b) A simple sequential circuit
 - c) A complex combinational circuit
 - d) A simple combinational circuit

Answer: c

- 51. If a PAL has been programmed once _____
 - a) Its logic capacity is lost
 - b) Its outputs are only active HIGH
 - c) Its outputs are only active LOW
 - d) It cannot be reprogrammed

Answer: d

- 52. Simplify the Boolean expression: XY + X(Y+Z) + Y(Y+Z)
 - A. XY+Z
 - B. XZ
 - C. Y+XZ
 - D. Y

ANSWER: C

53. A switching function f(A,B,C) = (A+B'+C)(A+B'+C')(A'+B'+C) can also be written

as

- A. $\prod (1,4,5)$
- B. $\prod (2,4,6)$
- C. $\prod (0,2,4)$
- D. $\prod (3,4,5)$

ANSWER: A

54. The minimized expression for the given K-map is

CD AB	00	01	11	10
00	1			1
01	1	1	ī	1
11				
10	1			1

- A. B'CD' + B'C'D' + C'D
- B. B'D' + C'D
- C. A'BCD + AB'CD + ABC' + A'B'C'
- D. C'D' + AB'C + A'BCD + AB'C

ANSWER: B

- 55. The logical expression $Y = \sum m(0,4,6,7,10,11,14)$ is equivalent to
 - A. $\Pi(0,3,6,7,10,12,15)$
 - B. $\prod (1,2,3,5,8,9,12,13,15)$
 - C. $\sum (1,2,4,5,8,9,11,13,14)$
 - D. $\sum (0,2,4,6,8,10,12,14)$

ANSWER: B

56. What is the simplified form of the following Boolean function F=

 $\sum (4,6,8,10,11,12,15)$ using K-map is ___

- A. ACD+AB'D'+A'BD'
- B. AC'D+A'CD'+AB'D'+A'BD'
- C. AC'D'+ACD+AB'D'+A'BD'
- D. AC'D+ACD+A'BD'+AB'CD'

ANSWER: C

- 57. In Boolean algebra XY+XY' +X'Y is equal to
 - A. X
 - B. Y
 - C. XY
 - D. X+Y

ANSWER: D

- 58. Simplified form of A + A'B + A'B'C + A'B'C'D is equal to
 - A. A
 - B. A+B
 - C. A+B+C
 - D. A+B+C+D

ANSWER: D

59. Which one of the following Boolean function is correct for the given multiplexer circuit?

- (a) $f = \sum m(0,1,3,4,8,9,15)$
- (b) $f = \sum m(2,3,4,7,10,11,12,13,14)$
- (c) f = IIM(2,3,4,7,10,11,12,13,14)
- (d) f = IIM(2,5,6,7,10,11,12,13,14)

Ans: (c)

60. At which condition, the below demultiplexer circuit output Y_3 and Y_6 become 1? Verify with output function of Y_3 and Y_6 .

- (a) Din = 1, B = 0, C = 1, D = 1 and Din = 1, B = 1, C = 1, D = 1
- (b) Din = 1, B = 1, C = 1, D = 1 and Din = 1, B = 0, C = 1, D = 1
- (c) Din = 1, B = 0, C = 1, D = 0 and Din = 1, B = 1, C = 1, D = 1
- (d) Din = 1, B = 0, C = 1, D = 1 and Din = 1, B = 1, C = 1, D = 0

Ans: (d)

61. Which one of the following circuits is correct for the given truth table?

A	В	C	Y
0	0	0	0
0	0	1	1

0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

` ′

62. Which one of the following expressions is correct for hexa to binary encoder?

(a)
$$B3 = I4 + I5 + I6 + I7 + I8 + I9 + I10 + I11$$

(b)
$$B2 = I2 + I3 + I4 + I5 + I10 + I11 + I12 + I13$$

(c)
$$B1 = I2 + I3 + I6 + I7 + I10 + I11 + I14 + I15$$

(d)
$$B0 = I1 + I3 + I5 + I6 + I8 + I10 + I12 + I14$$

Ans: (c)

63 Designed expression for carry of full adder is

A)
$$AB + AC + BC$$

- B) AB + AC
- C) A' XOR B' XOR c'
- D) A XOR B XOR c

ANSWER:A

64. In 4 – bit parallel adder A = 1011 and B = 0011. Find the 4-bit input carry.

- A) 0110
- B) 0011
- C)1010
- D)1011

ANSWER: A

65 In two-bit magnitude comparator the logical expression for A > B is

A)
$$A_1 B_1' + A_0 B_1' B_0' + A_1 A_0 B_0'$$

B)
$$A_1' B_1 + A_0' B_1 B_0' + A_1 A_0' B_0'$$

C)
$$A_1 B_1 + A_0 B_1 B_0 + A_1 A_0 B_0$$

D)
$$A_1$$
' $B_1 + A_0$ ' $B_1B_0 + A_1$ ' A_0 ' B_0

ANSWER: A

66 In two-bit magnitude comparator the logical expression for A < B is

A)
$$A_1 B_1' + A_0 B_1' B_0' + A_1 A_0 B_0'$$

B)
$$A_1' B_1 + A_0' B_1 B_0' + A_1 A_0' B_0'$$

C)
$$A_1 B_1 + A_0 B_1 B_0 + A_1 A_0 B_0$$

D)
$$A_1$$
' $B_1 + A_0$ ' $B_1B_0 + A_1$ ' A_0 ' B_0

ANSWER: d

67. What logic circuit is described by the following code?

ARCHITECTURE gate OF my_gate IS

BEGIN

WITH ab SELECT

1 WHEN OTHERS;

END gate;

- a) NAND
- b) NOR
- c) EXOR
- d) EXNOR

Answer: d

Part - B (2 marks)

- 1. What is a half order? Write its truth table
- 2. What is a full order
- 3. Design a half subtractor using only basic gates
- 4. Design a half adder using only basic gates
- 5. What is the function of a multiplexer select input?
- 6. How does encoder difference from decoder
- 7. Describe the application of multiplexer
- 8. What is the function of a decoder's enable input(s)?
- 9. How does a priority encoder differ from an ordinary encoder
- 10. What is mean by magnitude comparator
- 11. What is demultiplexer? Explain the difference between a DEMUX and MUX
- 12. Define combinational logic circuit
- 13. What do you mean by propagation delay?
- 14. Write a short notes on one bit comparator
- 15. What will be the maximum number of outputs for a decoder with a 6 bit data word?
- 16. What is a data selector
- 17. Difference between decoder and encoder
- 18. What are the various modelling technique in HDL?
- 19. What is behavioural modelling?
- 20. What is data flow modelling?

Part – C (3 marks)

- 1. Implement the following Boolean function with the help of 4:1 Mux. $f(A,B,C,D) = \mathbb{I} M(1,2,4,7,11,13,15).$
- 2. Implement the full subtractor with the help of 2:4 decoder.

- 3. Implementation the full-subtractor using two half-subtractors.
- 4. Show how a full order can be converted to a full subtractor with the addition of an inverter circuit.
- 5. Describe the truth table of a half subtractror and write the Boolean expression corresponding tot eh difference and borrow.
- 6. Design a 4-bit Carry Propagation–Look-Ahead Carry generator
- 7. Design a 1- bit magnitude comparator.
- 8. Design a 8x4 PROM with 3 input and 4 output lines.
- 9. Explain the data flow level programing of 4-to-1 Multiplexer using VHDL?

```
//4-to-1 Mux: Dataflow description module mux_4_to_1(S,D,Y); input [1:0]S; input [3:0]D; output Y; assign Y = (\sim S[1] \& \sim S[0] \& D[0]) |(\sim S[1] \& S[0] \& D[1]) |(S[1] \& \sim S[0] \& D[2]) |(S[1] \& S[0] \& D[3]); endmodule
```

8. Write difference between a PAL & PLA.