192620010 Mobile & Wireless Networking

Lecture 8: Bluetooth & Zigbee

[Schiller, Section 7.5] [Reader, Part 7] [Optional: Wikipedia, "Bluetooth"]

Geert Heijenk

Outline of Lecture 10

- Bluetooth
 - □ General characteristics
 - □ Piconets & scatternets
 - □ Basic Access scheme
 - □ Baseband (MAC layer)
 - □ Higher layer protocols
 - Profiles and Versions
- □ Zigbee
 - □ Zigbee vs. IEEE 802.15.4
 - □ Architecture & Topologies
 - □ IEEE 802.15.4 MAC layer

Bluetooth

Idea

- □ Universal radio interface for ad-hoc wireless connectivity
- □ Interconnecting computer and peripherals, handheld devices, PDAs, cell phones
- □ Embedded in other devices, goal: 5€/device
- □ Short range (10 m), low power consumption, license-free 2.45 GHz ISM

□ Voice and data transmission, approx. 1 Mbit/s gross data rate (original version)

One of the first modules (Ericsson).

Bluetooth

History

- □ 1994: Ericsson (Mattison/Haartsen), "MC-link" project
- □ Renaming of the project: Bluetooth according to Harald "Blåtand" Gormsen [son of Gorm], King of Denmark in the 10th century
- □ 1998: foundation of Bluetooth SIG, www.bluetooth.org
- □ 2001: first consumer products for mass market, spec. version 1.1 released
- □ 2005: 5 million chips / week
- □ 2014: Cumulative product shipments appr. 3 billion

Special Interest Group

- □ Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
- □ Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
- □ > 10000 members
- Common specification and certification of products

Characteristics

2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing □ Channel 0: 2402 MHz ... channel 78: 2480 MHz ☐ GFSK modulation (1Mbit/s), 1-100 mW transmit power π/4-DQPSK (2Mbit/s) and 8DPSK (3Mbit/s) for Bluetooth 2.0+EDR FHSS and TDD □ Frequency hopping with 1600 hops/s ☐ Hopping sequence in a pseudo random fashion, determined by a master ☐ Time division duplex for send/receive separation Voice link – SCO (Synchronous Connection Oriented) □ FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched Data link – ACL (Asynchronous ConnectionLess) □ Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched Topology □ Overlapping piconets (stars) forming a scatternet

Piconet

- Collection of devices connected in an ad hoc fashion
- One unit acts as master and the others as slaves for the lifetime of the piconet
- Master determines hopping pattern, slaves have to synchronize
- Each piconet has a unique hopping pattern
- ☐ Participation in a piconet = synchronization to hopping sequence
- □ Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)

M=Master S=Slave

P=Parked SB=Standby

Forming a piconet

- □ All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - □ Active Member Address (AMA, 3 bit)
 - □ Parked Member Address (PMA, 8 bit)

Scatternet

- □ Linking of multiple co-located piconets through the sharing of common master or slave devices
 - Devices can be slave in one piconet and master of another
- □ Communication between piconets

Devices jumping back and forth between the piconets **Piconets** (each with a capacity of < 1 Mbit/s) (P)M=Master SB S=Slave P=Parked SB=Standby

Frequency hopping

Bluetooth protocol stack

AT: attention sequence OBEX: object exchange

TCS BIN: telephony control protocol specification – binary

BNEP: Bluetooth network encapsulation protocol

SDP: service discovery protocol RFCOMM: radio frequency comm.

Basic access scheme

- □ 79 hops (in Japan, Spain, and France 23) at a 1 Mhz spacing
- dwel time of 625 μs
- master determines the hopping sequence

Frequency selection during data transmission

Baseband

- Piconet/channel definition
- Low-level packet definition
 - □ Access code
 - Channel, device access, e.g., derived from master
 - □ Packet header
 - 1/3-FEC, active member address (broadcast + 7 slaves), link type, alternating bit ARQ/SEQ, checksum

Baseband data rates

4.01		Payload Header				Symmetric Asymmetric max. Rate max. Rate max. Rate [kbit/s]			
ACL	Type	[byte]	[byte]	FEC	CRC	[kbit/s]	Forward	Reverse	
1 slot	DM1	1	0-17	2/3	yes	108.8	108.8	108.8	
1 0.01	DH1	1	0-27	no	yes	172.8	172.8	172.8	
3 slot	DM3 DH3	2	0-121	2/3	yes	258.1	387.2	54.4	
3 5101	DH3	2	0-183	no	yes	390.4	585.6	86.4	
E alat	DM5 DH5	2	0-224	2/3	yes	286.7	477.8	36.3	
5 SIOT	DH5	2	0-339	no	yes	433.9	723.2	57.6	
	AUX1	1	0-29	no	no	185.6	185.6	185.6	
sco	HV1	na	10	1/3	no	64.0			
SCO	HV2	na	20	2/3	no	64.0			
	HV3	na	30	no	no	64.0			
l	DV	1 D	10+(0-9) D	2/3 D	yes D	64.0+57.6 E)		

Data Medium/High rate, High-quality Voice, Data and Voice

SCO payload types

ACL Payload types

Baseband link types

- □ Polling-based TDD packet transmission
 - □ 625µs slots, master polls slaves
- □ SCO (Synchronous Connection Oriented) Voice
 - □ Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- □ ACL (Asynchronous ConnectionLess) Data
 - □ Variable packet size (1,3,5 slots), asymmetric bandwidth, point-to-multipoint

Robustness

- □ Slow frequency hopping with hopping patterns determined by a master
 - □ Protection from interference on certain frequencies
 - □ Separation from other piconets (FH Spread Spectrum)
- Retransmission
 - □ ACL only, very fast
- ☐ Forward Error Correction
 - SCO and ACL

Error in payload (not header!)

NAK

Link manager protocol

- Authentication, pairing and encryption
- Synchronization
- Capability negotiation
- Quality of service negotiation
- Power control
- □ State and transmission mode change

Baseband states of a Bluetooth device

Standby: do nothing

Inquire: search for other devices

Page: connect to a specific device

Connected: participate in a piconet

Park: release AMA, get PMA

Sniff: listen periodically, not each slot

Hold: stop ACL, SCO still possible, possibly

participate in another piconet

L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband
- □ Connection oriented, connectionless, and signalling channels
- Protocol multiplexing
 - □ RFCOMM, SDP, telephony control
- □ Segmentation & reassembly
 - □ Up to 64kbyte user data, 16 bit CRC used from baseband
- QoS flow specification per channel
 - □ Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
- Group abstraction
 - □ Create/close group, add/remove member

L2CAP logical channels

L2CAP packet formats

Connectionless PDU

2

2

≥2

0-65533

bytes

length

CID=2

PSM

payload

Connection-oriented PDU

2

2

0-65535

bytes

length

CID

payload

Signalling command PDU

2

2

bytes

length

CID=1

One or more commands

1

2

≥0

code

ID

length

data

Security

SDP – Service Discovery Protocol

- Inquiry/response protocol for discovering services
 - □ Searching for and browsing services in radio proximity
 - □ Adapted to the highly dynamic environment
 - Can be complemented by others like SLP, Jini, Salutation, ...
 - □ Defines discovery only, not the usage of services
 - □ Caching of discovered services
 - □ Gradual discovery

Profiles

Example use of Bluetooth Profiles

Device	Hands- Free Profile (HFP 1.6)	Phone Book Access Profile (PBAP)	Advanced Audio Distribution Profile (A2DP)	Audio/Video Remote Control Profile (AVRCP 1.4)	Personal Area Network Profile (PAN)	Human Interface Device Profile (HID)	Message Access Profile (MAP)
iPhone 4 and later	✓	✓	✓	✓	✓	✓	✓
iPhone 3GS	✓	✓	✓	✓	✓	✓	_
iPhone 3G	✓	✓	✓	✓	✓	_	_
Original iPhone	✓	✓	_	-	-	_	_
iPad 2 and later	✓	-	✓	✓	✓	✓	_
iPad (1st generation)	_	-	✓	✓	✓	✓	_
iPod touch (4th generation and later)	√	-	✓	✓	✓	✓	-
iPod touch (2nd and 3rd generation)	-	-	✓	✓	√	1	-

Bluetooth versions

```
Bluetooth 1.1
     □ also IEEE Standard 802.15.1-2002
    □ initial stable commercial standard
Bluetooth 1.2
    □ also IEEE Standard 802.15.1-2005
     □ eSCO (extended SCO): variable bitrates, retransmission for SCO
    □ Faster connection & discovery
     □ AFH (adaptive frequency hopping) to avoid interference
Bluetooth 2.0 + EDR (2004, no more IEEE)
    □ EDR (enhanced date rate) of 3.0 Mbit/s (2.1 Mbit/s net) for ACL and eSCO using higher order modulation (GPSK → DQPSK / 8DPSK)
     □ lower power consumption due to shorter duty cycle
Bluetooth 2.1 + EDR (2007)
     better pairing support, e.g. using NFC
     improved security
Bluetooth 3.0 + HS (2009)
     □ Bluetooth 2.1 + EDR + IEEE 802.11a/g = 54 Mbit/s
Bluetooth 4.0 (2010)
     □ Classic Bluetooth + Bluetooth HS + Bluetooth Low Energy
Bluetooth 4.1 (2013)
```

Outline of Lecture 10

- Bluetooth
 - □ General characteristics
 - □ Piconets & scatternets
 - Basic Access scheme
 - Baseband (MAC layer)
 - □ Higher layer protocols
 - □ Profiles and Versions
- □ Zigbee
 - □ Zigbee vs. IEEE 802.15.4
 - □ Architecture & Topologies
 - □ IEEE 802.15.4 MAC layer

Zigbee / IEEE 802.15-4 Background

- Low-Rate, Very Low-Power
- IEEE 802.15.4 for PHY and MAC
- Zigbee specifies higher layers
 - □ Low data rate solution with multi-month to multi-year battery life
 - very low complexity
 - □ range 10 75 meter
 - □ Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation

ZigBee

Relation to 802.15.4 similar to Bluetooth / 802.15.1

Pushed by Chipcon (now TI), Ember, Freescale (Motorola), Honeywell, Mitsubishi, Motorola, Philips, Samsung...

More than 260 members

- □ about 15 promoters, 133 participants, 111 adopters
- □ must be member to commercially use ZigBee spec

ZigBee platforms comprise

- □ IEEE 802.15.4 for layers 1 and 2
- ZigBee protocol stack up to the applications

802.15.4 Characteristics

- □ 16 channels in the 2.4 GHz ISM band (worldwide), 30 (was 10) channels in the 915 MHz US ISM band and 1 channel in the European 868 MHz band
- Various Physical Layers
- □ Data rates of 20-250 kbit/s, latency down to 15 ms
- □ Data packets up to 127 bytes
- Master-Slave or Peer-to-Peer operation
- □ Up to 254 devices or 64516 simpler nodes
- □ CSMA/CA channel access, slotted (beacon) or unslotted
- □ Automatic network establishment
 by a PAN (Personal Area Network) coordinator

IEEE 802.15.4 Architecture

IEEE 802.15.4 Topologies

Topologies:

Modes of operation:

- Beacon-enabled
- Non-beacon-enabled

MAC frames

- □ Beacon-enabled : 4 frame types
 - Beacon frame
 - Data frame
 - Acknowledgment frame
 - MAC command frame
- □ Non-beacon-enabled : 2 frame types
 - Data frame
 - Acknowledgment frame

- Reduced Function Device
- Full Function Device (FFD)
- **Router** (role of FFD)
- PAN Coordinator (role of FFD)

IEEE 802.15.4 Basic MAC characteristics

Be	eacon-enabled networks (star / tree):
	use of a superframe structure based on beacons
	slotted CSMA-CA
	Guaranteed time slots (GTS) in a (contention-free period) for time critical applications
	allows for low duty cycle operation
	beacon interval can range from 15 ms to 786 s
No	on-beacon enabled networks (only peer-to-peer):
	no coordinator
	(Un-slotted) CSMA-CA

IEEE 802.15.4 Beacon-enabled MAC

CAP: Contention Access Period

CFP: Contention Free Period