Minimum-Time and -Fuel Optimization

Robert Stengel
Optimal Control and Estimation MAE 546
Princeton University, 2015

- Climbing flight of an airplane
- Energy and power
- Choice of control variable
- Numerical optimization
- Minimum time-to-climb problem
- Minimum fuel-to-climb problem
- Stability and control (supplement)

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/MAE546.html http://www.princeton.edu/~stengel/OptConEst.html

Flight Envelope Determined by Available Thrust

- Flight Envelope: Encompasses all altitudes and airspeeds at which an aircraft can fly
 - in steady, level flight

1

Energy Height and Specific Excess Power

3

Energy Height

- Specific Energy
 - = (Potential + Kinetic Energy) per Unit Weight
 - = Energy Height

$$\frac{Total\ Energy}{Unit\ Weight} \equiv Specific\ Energy = \frac{mgh + mV^2/2}{mg} = h + \frac{V^2}{2g}$$
$$\equiv Energy\ Height, E_h, \quad ft\ or\ m$$

 Could trade altitude for airspeed with no change in energy height if thrust and drag were zero

Specific Excess Power

Specific Power

$$\frac{dE_h}{dt} = \frac{d}{dt} \left(h + \frac{V^2}{2g} \right) = \frac{dh}{dt} + \left(\frac{V}{g} \right) \frac{dV}{dt} \qquad \dot{h} = V \sin \gamma$$

$$\frac{dE_h}{dt} = V \sin \gamma + \left(\frac{V}{g}\right) \left[\frac{(T-D)}{m} - g \sin \gamma\right]$$

$$\frac{dE_h}{dt} = V \frac{(T-D)}{W} = V \frac{(C_T - C_D) \frac{1}{2} \rho(h) V^2 S}{W}$$

$$\frac{dE_{h}}{dt} = Specific Excess Power (SEP) = \frac{Excess Power}{Unit Weight} \equiv \frac{\left(P_{thrust} - P_{drag}\right)}{W}$$

5

Contours of Constant Specific Excess Power

- Specific Excess Power is a function of altitude and airspeed
- SEP is maximized at each altitude, h, when

 $\frac{d[SEP(h)]}{dV} = 0$

Subsonic Energy Climb

Objective: Minimize time or fuel to climb to desired altitude and airspeed

Approximate Optimal Trajectory produced by a Switching Curve

Angle of Attack Control

$$\dot{V} = \left[\frac{T_{\text{max}}}{T_{\text{max}}} - \left(C_{D_o} + \varepsilon \left[C_{L_\alpha} \alpha \right]^2 \right) \frac{1}{2} \rho V^2 S \right] / m - g \sin \gamma$$

$$\dot{\gamma} = \frac{1}{V} \left[\left(C_{L_\alpha} \alpha \frac{1}{2} \rho V^2 S \right) / m - g \cos \gamma \right]$$

$$\begin{aligned} \dot{h} &= V \sin \gamma \\ \dot{r} &= V \cos \gamma \\ \dot{m}_{fuel} &= -(SFC) \left(\frac{T_{\text{max}}}{T_{\text{max}}} \right) \end{aligned}$$

Minimum Time-to-Climb Problem

Initial and final conditions

$$V_o = 100 \text{ m/s}; \quad \gamma_o = 0 \text{ rad}; \quad h_o = 0 \text{ m (sea level)}; \quad r_o = open$$

$$V_f = 200 \text{ m/s}; \quad \gamma_f = open; \quad h_f = 10,000 \text{ m}; \quad r_f = open$$

- End time, t_p is open, thrust takes maximum value, and control variable is angle of attack, $\alpha(t)$
- Fuel expended, but vehicle mass held constant

9

1,000-sec Trajectory, Simple Angle of Attack Control

- No attempt to optimize
- Interchange of kinetic and potential energy
- Lightly damped "phugoid" mode

Altitude vs. Velocity, Simple Angle of Attack Control, $t_f = 1,000 \text{ sec}$

- Lightly damped, long-period oscillation
- Kinetic/potential energy interchange

11

Alternative: Pitch Angle Control

$$\alpha = \theta - \gamma$$

 α = Angle of Attack, rad

 θ = Pitch Angle, rad

 γ = Flight Path Angle, rad

$$\dot{\gamma} = \frac{1}{V} \left[\left(C_{L_{\alpha}} \left(\mathbf{\theta} - \gamma \right) \frac{1}{2} \rho V^{2} S \right) / m - g \cos \gamma \right]$$

Controlling pitch angle introduces flight path angle damping

(see Supplemental Material for details)

$$\dot{\gamma} = \frac{1}{V} \left[\left(C_{L_{\alpha}} \frac{1}{2} \rho V^2 S \theta - C_{L_{\alpha}} \frac{1}{2} \rho V^2 S \gamma \right) / m - g \cos \gamma \right]_{1}$$

Angle of Attack or Pitch Angle Control?

1,000-sec Trajectory, Simple Pitch Angle Control

Note difference in pitch-angle and angle-of-attack profiles

Altitude vs. Velocity Simple Pitch Angle Control, $t_f = 1,000 \text{ sec}$

- Increased damping eliminates oscillation
- Kinetic energy increase followed by potential energy increase

Minimum Time-to-Climb
Optimization Problem

Minimum-Time Cost Function

$$J(t_f) = \frac{1}{2} \left\{ \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right]^T \mathbf{P}_f \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right] \right\}$$
$$+ \frac{1}{2} \int_{t_o}^{t_f} \left\{ \mathbf{1} + \left[\mathbf{x}^T(t) \mathbf{Q} \mathbf{x}(t) + \mathbf{u}^T(t) \mathbf{R} \mathbf{u}(t) \right] \right\} dt$$

- Terminal cost provides trajectory objective
- Integrand
 - "1" is the integrand for minimizing time
 - Small quadratic term
 - provides non-singular trajectory control with ad hoc damping and regulation [good], but
 - penalizes non-zero values of state and control [not so good]

17

Minimum-Time Cost Function with Augmented Trajectory Damping

$$J(t_f) = \frac{1}{2} \left\{ \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right]^T \mathbf{P}_f \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right] \right\}$$

$$+ \frac{1}{2} \int_{t_o}^{t_f} \left\{ 1 + \left[\mathbf{x}^T(t) \mathbf{Q} \mathbf{x}(t) + \dot{\mathbf{x}}^T(t) \mathbf{Q}_{\dot{\mathbf{x}}} \dot{\mathbf{x}}(t) + \mathbf{u}^T(t) \mathbf{R} \mathbf{u}(t) \right] \right\} dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t) \right]$$

- State rate weighting
 - is unbiased by non-zero state or control
 - · provides damping

$$J(t_f) = \frac{1}{2} \left\{ \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right]^T \mathbf{P}_f \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right] \right\}$$
$$+ \frac{1}{2} \int_{t_o}^{t_f} \left\{ 1 + \left[\mathbf{x}^T(t) \mathbf{Q} \mathbf{x}(t) + \mathbf{f}^T \left[\mathbf{x}(t), \mathbf{u}(t) \right] \mathbf{Q}_{\dot{\mathbf{x}}} \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t) \right] + \mathbf{u}^T(t) \mathbf{R} \mathbf{u}(t) \right] \right\}_{18}^{dt}$$

Typical Weights Used in Minimum-Time Optimization

Terminal Penalty

P =	100	0	0	0
	0	20	0	0
	0	0	0.4	0
	0	0	0	0

State Penalty

State-Rate Penalty

Control Penalty

$$\mathbf{R} = 1$$

 $x_1 = V$: Velocity, m/s

 $x_2 = \gamma$: Flight path angle, rad

 $x_3 = h$: Height, m

 $x_4 = r$: Range, m

 $u = \theta$: Pitch angle, rad

19

Minimum-Time Cost History, $t_f = 575 \text{ sec}$, 36 Iterations

- Adaptive steepest-descent optimization algorithm
- Optimization algorithm is still minimizing at iteration cutoff

~Minimum-Time Altitude vs. Velocity, $t_f = 575 \text{ sec}$, 36 Iterations

- Kinetic energy increase
- Trade for potential energy increase
- Velocity Increase and shallow dive to satisfy terminal condition

21

~Minimum-Time Trajectory, $t_f = 575 \text{ sec}$, 36 Iterations

Minimum Fuel-to-Climb Optimization Problem

23

Minimum-Fuel Cost Function with Augmented Trajectory Damping

$$J(t_f) = \frac{1}{2} \left\{ \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right]^T \mathbf{P}_f \left[\mathbf{x}(t_f) - \mathbf{x}_{des}(t_f) \right] \right\}$$
$$+ \frac{1}{2} \int_{t_o}^{t_f} \left\{ \dot{\mathbf{m}} + \left[\mathbf{x}^T(t) \mathbf{Q} \mathbf{x}(t) + \dot{\mathbf{x}}^T(t) \mathbf{Q}_{\dot{\mathbf{x}}} \dot{\mathbf{x}}(t) + \mathbf{u}^T(t) \mathbf{R} \mathbf{u}(t) \right] \right\} dt$$

- Same cost-function weights
- Integrand
 - Fuel-flow rate in the integrand for minimizing total fuel used

Minimum-Fuel Cost History, $t_f = 575 \text{ sec}$, 36 Iterations

Minimum-Fuel Altitude vs. Velocity, $t_f = 575 \text{ sec}$, 36 Iterations

Minimum-Fuel Adjoint Vector History, $\lambda(t)$, $t_f = 575 \text{ sec}$, 36 Iterations

~Minimum-Fuel Trajectory, $t_f = 575 \text{ sec}$, 36 Iterations

Energy State Profile, $t_f = 570 \text{ sec}$

Energy State:
$$E = \frac{1}{mg} \left(\frac{mV^2}{2} + mgh \right) = \frac{V^2}{2g} + h$$
, meters

- Optimized Energy
 State is monotonic and always increasing
- Rate of change decreases with altitude

Specific Excess Power:
$$SEP = \frac{V}{mg}(Thrust - Drag)$$

Next Time: Neighboring-Optimal Control via Linear-Quadratic Feedback

Reading OCE: Section 3.7

Supplemental Material

31

Definitions and Numerical Values for Variables and Constants


```
V = Velocity, m/s

\gamma = \text{Flight path angle, rad}

h = \text{Altitude (or height), m}

r = \text{Range, m}

m = \text{Mass, kg}

\alpha = \text{Angle of attack, rad; } \alpha_{\text{max}} = 10^{\circ}

\rho = \text{Air density } = \rho_{SL} e^{-\beta h} = 1.225 e^{-h/9,042} \text{kg/m}^3

g = \text{Gravitational acceleration } = 9.801 \text{ m/s}^2
```

```
T = \operatorname{T}_{SL}\left(\frac{\rho}{\rho_{SL}}\right) \delta T = \operatorname{T}_{SL}\left(e^{-\beta h}\right) \delta T = \operatorname{Thrust}, \operatorname{N};
\delta T = \operatorname{Throttle setting}, \%, = 100\% \text{ for minimum-time/fuel problem}
SFC = \operatorname{Specific Fuel Consumption} = 10 \text{ g/kN-s}
C_D = \frac{\left(C_{D_o} + \varepsilon C_L^2\right)}{\sqrt{1 - \left(V/V_{sound}\right)^2}} = \operatorname{Drag coefficient}
= \left(0.025 + 0.072C_L^2\right) / \sqrt{1 - \left(V/V_{sound}\right)^2}
C_L = C_{L_u} \alpha = \operatorname{Lift coefficient} = 5.7 \alpha
S = \operatorname{Reference area} = 21.5 \text{ m}^2
m_E = \operatorname{Vehicle mass} = 4,550 \text{ kg} \sim \operatorname{constant}
```

Angle of attack has linear effect on lift and quadratic effect on drag

Angle of Attack, Thrust, and Throttle for Steady Flight vs. Altitude and Velocity

Modal Properties of the System

Linearized Equations for Velocity and Flight Path Angle Perturbations, Using **Angle of Attack as the Control**

$$\begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \end{bmatrix} = \begin{bmatrix} (T_{V} - D_{V}) & -g \\ L_{V} / V_{o} & 0 \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} \sim 0 \\ L_{\alpha} / V_{o} \end{bmatrix} \Delta \alpha$$

$$State: \Delta \mathbf{x} = \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix}$$

$$Control: \Delta \mathbf{u} = \Delta \alpha$$

State:
$$\Delta \mathbf{x} = \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix}$$

Control: $\Delta \mathbf{u} = \Delta \alpha$

$$T_V = \frac{\partial (Thrust/m)}{\partial V} = \text{Sensitivity of acceleration-due-to-thrust to velocity variation}$$

$$= 0 \text{ for this problem because } [\text{thrust} = \text{maximum thrust}]$$

$$D_V = \frac{\partial (Drag/m)}{\partial V} = \text{Sensitivity of acceleration-due-to-drag to velocity variation} > 0$$

$$\frac{L_{v}}{\partial V} = \frac{\partial \left(Lift/m\right)}{\partial V} = \text{Sensitivity of acceleration-due-to-lift to velocity variation } > 0$$

$$\frac{L_{\alpha}}{\partial \alpha} = \frac{\partial \left(Lift/m\right)}{\partial \alpha} = \text{Sensitivity of acceleration-due-to-lift to angle-of-attack variation } > 0$$

Characteristic Equation and Stability, Using Angle of Attack as the Control Variable

$$|s\mathbf{I} - \mathbf{F}| = |s\mathbf{I} - \begin{bmatrix} -D_{V} & -g \\ L_{V}/V_{o} & 0 \end{bmatrix}| = \begin{vmatrix} (s + D_{V}) & g \\ -L_{V}/V_{o} & s \end{vmatrix}$$

$$= s(s + D_{V}) + g \frac{L_{V}}{V_{o}}$$

$$= s^{2} + D_{V}s + g \frac{L_{V}}{V_{o}}$$

$$= s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2} = 0$$

$$\omega_{n} = \sqrt{g \frac{L_{V}}{V_{o}}} \approx \sqrt{2} \frac{g}{V_{o}} \approx \frac{13.9}{V_{o}(m/s)}; \quad Period \approx 0.453 V_{o}, sec$$

$$\zeta = \frac{D_{V}}{2\sqrt{g \frac{L_{V}}{V_{o}}}} \approx \frac{\sqrt{2}}{2} \left(\frac{C_{D}}{C_{L}}\right)$$
"Total Damping" = $2\zeta\omega_{n} = D_{V}$ —(Trace of the matrix)

Linearized Equations for Velocity and Flight Path Angle Perturbations, **Using Pitch Angle as the Control**

$$\begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \end{bmatrix} = \begin{bmatrix} -D_{V} & -g \\ L_{V}/V_{o} & 0 \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} \sim 0 \\ L_{\alpha}/V_{o} \end{bmatrix} \Delta \alpha$$
 State: $\Delta \mathbf{x} = \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix}$

State:
$$\Delta \mathbf{x} = \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix}$$
Control: $\Delta \mathbf{u} = \Delta \theta = \Delta \alpha + \Delta \gamma$

Replace angle of attack by pitch angle for control

$$\begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \end{bmatrix} = \begin{bmatrix} -D_{V} & -g \\ L_{V/V_{o}} & 0 \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} \sim 0 \\ L_{\alpha/V_{o}} \end{bmatrix} (\Delta \theta - \Delta \gamma)$$

$$= \begin{bmatrix} -D_{V} & -g \\ L_{V/V_{o}} & -L_{\alpha/V_{o}} \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} \sim 0 \\ L_{\alpha/V_{o}} \end{bmatrix} \Delta \theta$$

37

Characteristic Equation and Stability, Using Pitch Angle as the **Control Variable**

$$|s\mathbf{I} - \mathbf{F}| = |s\mathbf{I} - \begin{bmatrix} -D_{V} & -g \\ L_{V}/V_{o} & -L_{\alpha}/V_{o} \end{bmatrix}| = \begin{vmatrix} (s+D_{V}) & g \\ -L_{V}/V_{o} & (s+L_{\alpha}/V_{o}) \end{vmatrix}$$

$$= \left(s + \frac{L_{\alpha}}{V_{o}}\right)(s+D_{V}) + g\frac{L_{V}}{V_{o}}$$

$$= s^{2} + \left(\frac{L_{\alpha}}{V_{o}} + D_{V}\right)s + \left(g\frac{L_{V}}{V_{o}} + D_{V}\frac{L_{\alpha}}{V_{o}}\right)$$

$$= s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2} = 0$$

$$\omega_{n} = \sqrt{\left(g\frac{L_{V}}{V_{o}} + D_{V}\frac{L_{\alpha}}{V_{o}}\right)}$$

- Natural frequency is increased
- Damping is increased

- (Trace of the matrix)

$$\zeta = \frac{\sqrt{\left(g \frac{L_V}{V_o} + D_V \frac{L_\alpha}{V_o}\right)}}{2\sqrt{\left(g \frac{L_V}{V_o} + D_V \frac{L_\alpha}{V_o}\right)}}$$

$$\zeta = \frac{\left(\frac{L_\alpha}{V_o} + D_V\right)}{2\sqrt{\left(g \frac{L_V}{V_o} + D_V \frac{L_\alpha}{V_o}\right)}}$$
"Total Damping" = $2\zeta\omega_n = \left(\frac{L_\alpha}{V_o} + \frac{D_V}{38}\right)$

Why is $t_f = 575$ sec About the Minimum-Time Solution?

Local-Optimal State History for

 $t_f = 1000 \text{ sec}$

Optimal Altitude vs. Velocity Progression for Various Final Times, $t_f = 1000$ to 575 sec

Local Optimal* Fuel-Use with Various Fixed End Times

 $t_f = 1000, 900, and 800 sec$

^{*} Not global optima; compare to earlier result for $t_f = 575 \text{ s}$