1 Messtechnik

1.1 Grundlagen Drehspulmesser

1.1.1 Windungen im Wickelraum

$$A_W = N \cdot d^2$$

 A_W Wickelraum

Ι

N Anzahl der Windungen

 d^2 Drahtdurchmesser m^2

1.1.2 Elektrisches Moment

$$M_{el} = A \cdot N \cdot B \cdot I$$

N Anzahl der Windungen

Stromstärke

A

A Fläche m^2

B Feldstärke T

1.1.3 Mechanisches Moment

$$M_{mech} = \alpha \cdot D$$

D Federkonstante $N m/90^{\circ}$

 α Ausschlagwinkel $^{\circ}$

1.1.4 Zeigerausschlag

$$\alpha = I \cdot \frac{A \cdot N \cdot B}{D}$$

N Anzahl der Windungen

I Stromstärke A

A Fläche m^2

D Federkonstante N m

1.1.5 Strommessung mit Nebenwiderstand

$$(I - I_M)R_N = I_M(R_M + R_V)$$

$$R_N = \frac{I_M(R_M + R_V)}{I - I_M}$$

I_M	Messwerkstrom	A
	$1 \text{mA oder } 100 \mu \text{A}$	
I	Stromstärke	A
R_M	Spulenwiederstand (Kupfer*)	Ω
R_N		Ω
R_{V}		Ω

^{*}Temperaturkoeffizient Kupfer: 4%/10K

1.1.6 Güteklasse mit Temperaturkoeffizient

$$G = \frac{R_M}{R_M + R_V} \cdot 4\%/10K$$

G	Güteklasse	
R_M	Spulenwiederstand (Kupfer*)	Ω
R_N		Ω
R_V		Ω

1.1.7 Rückwirkungsfehler Strommessung

$$F_I = \frac{I_M - I_0}{I_0} = -\frac{R_M}{R_0 + R_L + R_M}$$

F_{I}	systemischer Fehler	
I_0		A
I_M		A
R_0		Ω
R_L	Lastwiderstand	Ω
R_M	Spulenwiederstand (Kupfer*)	Ω

1.1.8 Spannungsmesser

$$R_V = \frac{U}{I_M} - R_M$$

I_M		A
R_M	Spulenwiederstand (Kupfer*)	Ω
R_V	Vorwiderstand	Ω
U	Spannung	V

1.1.9 Rückwirkungsfehler Spannungsmessung

$$F_{U} = \frac{U_{M} - U_{0}}{U_{0}} = -\frac{R_{0}}{R_{0} + R_{i}}$$

$$U_{M} = \frac{U_{0}}{R_{0} + R_{i}}R_{i}$$

$$R_{i} = R_{M} + R_{V}$$

$$F_U$$
 systemischer Fehler V
 U_0 V
 U_M V
 R_0 Ω
 R_i Ω
 R_M Spulenwiederstand (Kupfer*) Ω
 R_V Vorwiderstand Ω

1.2 Grundlagen DVN

1.2.1 DVN Genauigkeit Bit

$$B(n) = \frac{\log(2 \cdot 10^n)}{\log(2)}$$

n Stellen der Anzeige \mathbb{N}

1.2.2 DVN Genauigkeit %

$$e_r = \frac{1}{2 \cdot 10^n - 1}$$

$$e_r = \frac{1}{2^{B(n)} - 1}$$

n Stellen der Anzeige \mathbb{N}

1.2.3 Anzeigen Auflösung

Bestimmung durch den Kehrwert der Anzeige. Beispiel für $3\frac{1}{2}$

$$0.5\cdot 10^{-3}$$

1.2.4 Spanning pro Digit

$$I_{Dig} = I \cdot n$$

n Kehrwert der Anzeige $Mess_{max}$ Max Wert Messbereich

1.2.5 Rückwirkungsfehler

Dieser ist größer als bei Analogen Messverfahren denn $R_P \geq R_M$.

$$F_I = \frac{I_M - I_0}{I_0} = -\frac{R_P}{R_0 + R_L + R_P}$$

$$F_I$$
 systemischer Fehler I_0 A A I_M A A R_0 Ω R_L Lastwiderstand Ω Ω

1.2.6 Rückwirkungsfehler Spannungsmessung

$$F_U = \frac{\frac{R_i R_P}{R_i + R_P} - R_P}{R_P} = -\frac{R_P}{R_i + R_P}$$

F_U	systemischer Fehler	
U_0		V
U_M		V
R_0		Ω
R_i		Ω
R_M	Spulenwiederstand (Kupfer*)	Ω
R_V	Vorwiderstand	Ω

2 Regelungstechnik

2.1 Stabilität von Regelkreisen

Es gilt:

$$F_G = \frac{F_o}{1+F_o}$$

$$F_G = \frac{Z_o}{Z_o+N_o}$$

$$F_o = F_R \cdot F_S$$

 F_G geschlossener Kreis Z_o Zähler offener Kreis N_o Nenner offener Kreis F_o offener Kreis

geschlossener Kreis

2.1.1 Hurwitz-Kriterium

charakteristische Gleichung des geschl. Regelkreises:

$$a_m p^m + a_{m-1} p^{m-1} + \dots + a_1 p + a_0 = 0$$

notwendige Bedingung: alle Koeffizienten der charakteristischen Gleichung des geschlossenen Regelkreises müssen vorhanden und positives Vorzeichen haben.

hinreichende Bedingung: Alle Hauptabschnitssdeterminanten D_i der Hurwitzdeterminante H müssen positiven Wert haben.

$$D_2 = a_1 \cdot a_2 - a_3 \cdot a_0$$

 D_2 Determinante rel. für System 3.Ord.

2.1.2 Niquist-Kriterium

Der geschlossene Regelkreis ist stabil, wenn der kritische Punkt (-1,0) links der Ortskurve $F_o(j\omega)$ seines offenen Kreises liegt.

3

$$F_o(j\omega) = \frac{K}{A(j\omega) + jB(j\omega)}$$

$$\omega_k \Rightarrow B(\omega) = 0$$

$$\frac{K}{A(\omega_k)} > -1$$

 $F_o(j\omega)$ Übertragungsf
kt. offenen Kreis Berechnungen zum Prüfen d. Stabilität

2.2 Regelgüte

$$F_z(p) = \frac{x(p)}{Z(p)} = \frac{-F_s}{1+F_o} = 0$$

 $F_W(p) = \frac{x(p)}{w(p)} = \frac{F_o}{1+F_o} = 1$

 $F_z(p)$ ideales Störverhalten $F_W(p)$ ideales Führungsverhalten

2.2.1 Bleibende Regelabweichung Führungsverhalten

$$R_{1W} = \lim_{p \to 0} \frac{1}{1 + F_o(p)}$$

$$R_{1WP} = \frac{1}{1 + V_o}$$

$$R_{1WI} = 0$$

 R_{1W} bleibende Regelabweichung Führungsverhalten allgemein R_{1WP} P-Regelkreis (ohne I-Glied) R_{1WI} I-Regelkreis

2.2.2 Bleibende Regelabweichung Störverhalten

$$R_{1Z} = \lim_{p \to 0} \frac{F_s(p)}{1 + F_o(p)}$$

$$R_{1ZP} = \lim_{p \to 0} \frac{F_s}{1 + F_R F_S} = \frac{V_S}{1 + V_R V_S} \approx \frac{1}{V_R}$$

$$R_{1ZIS} = \lim_{p \to 0} \frac{1}{pT_{IS} + V_R} = \frac{1}{V_R}$$

$$R_{1ZIR} = \lim_{p \to 0} \frac{pT_{IR} * V_S}{pT_{IR} + V_S} = 0$$

 R_{1Z} bleibende Regelabweichung Störverhalten allgemein R_{1ZP} P-Regelkreis (ohne I-Glied) für $V_RV_S>>1$ R_{1ZIS} I-Regelkreis, Strecke mit I-Glied R_{1ZIR} I-Regelkreis, Strecke ohne I-Glied

2.2.3 Geschwindigkeitsfehler

Führungsgröße als Rampenfunktion $w(t) = a \cdot t \Rightarrow w(p) = \frac{a}{p^2}$

$$R_{2} = \lim_{p \to 0} p \cdot w(p) \frac{1}{1 + F_{o}(p)} = \lim_{p \to 0} \frac{a}{p} \cdot \frac{1}{1 + F_{o}(p)}$$

$$R_{2P} = \lim_{p \to 0} \frac{a}{p} \cdot \frac{1}{1 + V_{o}} = \infty$$

$$R_{2I} = \frac{aT_{o}}{V_{o}}$$

 R_2 Geschwindigkeitsfehler allgemein R_{2P} P-Regelkreis (ohne I-Glied) R_{2I} I-Regelkreis

2.2.4 Integralkriterien

Um die Regelgüte zu bestimmen wird aus der Sprungantwort berechnet

$$R_2 = \lim_{p \to 0} p \cdot w(p) \frac{1}{1 + F_o(p)} = \lim_{p \to 0} \frac{a}{p} \cdot \frac{1}{1 + F_o(p)}$$

$$IE = \int_0^\infty (x_\infty) - x(t) dt = \int_0^\infty \Delta x dt$$

$$IAE = \int_0^\infty |x_\infty - x(t)| dt$$

$$ISE = \int_0^\infty (x_\infty - x(t))^2 dt = \int_0^\infty (e(t))^2 dt$$

$$IAE = \int_0^\infty |x_\infty - x(t)| dt$$

$$ISE = \int_0^\infty (x_\infty - x(t))^2 dt = \int_0^\infty (e(t))^2 dt$$

$$ISE_1 = \frac{c_0^2}{2d_0d_1}$$

$$ISE_2 = \frac{c_1^2 d_0 + c_0^2 d_0}{2d_0 d_1 d_0}$$

$$ISE_1 = \frac{c_0^2}{2d_0d_1}$$

$$ISE_2 = \frac{c_1^2d_0 + c_0^2d_2}{2d_0d_1d_2}$$

$$ISE_3 = \frac{c_2^2d_0d_1 + c_0^2d_2d_3 + (c_1^2 - 2c_0c_2)d_0d_3}{2d_0d_3(d_1d_2 - d_0d_3)}$$

$$ITAE = \int_0^\infty t |\Delta x| dt$$
$$ITSE = \int_0^\infty t (\Delta x)^2 dt$$

$IE \qquad \ \ \text{lineare Regelfläche}$	
---	--

betragslineare Regelfläche IAE

ISEquadratische Regelfläche ITAEzeitbewertete

ITSEzeitbewertete

2.3 Optimierung einschl Regelkreise

- Strukturoptimierung
- Parameteroptimierung
- Verifikation

Abb. 1.2: Signalflussplan des Standardregelkreises

2.3.1 Enstellregel nach Ziegler/Nichols

Wendetangentenkonstruktion für Verzögerungsglieder höherer Ordnung

Zur Messung an der Stabilitätsgrenze sind folgende Schritte nötig:

1. Man schaltet in den Regelkreis einen P-Regler ein:

$$F_{R}(p) = V_{R} \tag{2.1}$$

- 2. Die Verstärkung des Reglers wird so lange erhöht, bis man an die Stabilitätsgrenze gelangt und der Regelkreis eine stabile Dauerschwingung ausführt. Die dabei eingestellte Verstärkung ist die kritische Verstärkung $V_{\rm Rk}$.
- 3. Die Schwingungsdauer τ_k der Dauerschwingung wird gemessen.
- 4. Soll der Regelkreis mit einem P-Regler betrieben werden, wird eingestellt:

$$V = 0.5 V_{Rk}$$
 (2.2)

5. Für einen PI-Regler gelten folgende Einstellwerte:

$$F_{\mathbb{R}} = V \left(1 + \frac{1}{pT_{\mathbb{N}}} \right) \qquad V = 0,45V_{\mathbb{R}^k}$$

$$T_{\mathbb{N}} = 0,85\tau_{\mathbb{k}}$$

$$(2.3)$$

6. Für einen PID-Regler gelten folgende Einstellwerte:

$$F_{\rm R} = V \left(1 + \frac{1}{pT_{\rm N}} + pT_{\rm V} \right)$$
 $V = 0.6V_{\rm Rk}$ $T_{\rm N} = 0.5\tau_{\rm k}$ $T_{\rm V} = 0.12\tau_{\rm b}$ (2.4)

Wenn die Messung an der Stabilitätsgrenze nich möglich ist, wird die Sprungantwort gemessen.

- 1. Es wird eine Sprungantwort der Regelstrecke gemessen.
- 2. Aus der gemessenen Sprungantwort werden nach dem Wendetangentenverfahren entsprechend Abb. 2.1 die Zeitkonstanten T_a und T_u ermittelt.
- 3. Aus der gemessenen Sprungantwort wird die Streckenverstärkung V_S ermittelt.
- 4. Soll der Regelkreis mit einem P-Regler betrieben werden, wird eingestellt:

$$V = \frac{1}{V_a} \frac{T_a}{T_a} \tag{2.7}$$

5. Für einen PI-Regler gelten folgende Einstellwerte:

$$F_{\rm R} = V \left(1 + \frac{1}{pT_{\rm N}} \right)$$
 $V = \frac{0.9T_{\rm a}}{V_{\rm S} T_{\rm u}}$ (2.8) $T_{\rm N} = 3.33T_{\rm u}$

Für einen PID-Regler gelten folgende Einstellwerte:

$$F_{R} = V \left(1 + \frac{1}{pT_{N}} + pT_{V} \right) \qquad V = \frac{1.2}{V_{S}} \frac{T_{a}}{T_{u}}$$

$$T_{N} = 2T_{u}$$

$$T_{V} = 0.5T_{u}$$
(2.9)

2.3.2 Einstellregel nach Chien/Hrones/Reswick

unterscheidet zwischen Einstellung nach optimalem Führungsverhalten oder Störverhalten, jeweils ohne und mit 20% Überschwingung.

Tabelle 2.1: Reglereinstellung nach Chien/Hrones/Reswick für optimales Führungsverhalten

Regler	Parameter	<i>ii</i> = 0 %	<i>ü</i> = 20 %
P	$K_{ m R}$	$\frac{0.3T_{\rm a}}{V_{\rm S} T_{\rm u}}$	$\frac{0.7T_{\rm a}}{V_{\rm S} T_{\rm u}}$
PI	$K_{ m R}$	$\frac{0.3T_{\rm a}}{V_{\rm S} T_{\rm u}}$	$\frac{0.6T_{\rm a}}{V_{\rm S} T_{\rm u}}$
	$T_{ m N}$	1,2 T _a	$T_{ m a}$
PID	$K_{ m R}$	$\frac{0.6T_{\rm a}}{V_{\rm S} T_{\rm u}}$	$\frac{0.95T_{\rm a}}{V_{\rm S} T_{\rm u}}$
	$T_{ m N}$ $T_{ m V}$	$T_{\rm a}$	$1,35 T_{\rm a}$ $0,47 T_{\rm u}$
	$T_{ m V}$	0,5 T _u	$0,47T_{\mathrm{u}}$

Tabelle 2.2: Reglereinstellung nach Chien/Hrones/Reswick für optimales Störungsverhalten

Regler	Parameter	<i>ii</i> = 0 %	<i>ü</i> = 20 %
P	$K_{ m R}$	$\frac{0.3T_{\rm a}}{V_{\rm S} T_{\rm u}}$	$\frac{0.7T_{\rm a}}{V_{\rm S}T_{\rm u}}$
PI	$K_{ m R}$	$\frac{0.6T_{\rm a}}{V_{\rm S} T_{\rm u}}$	$\frac{0.7T_{\rm a}}{V_{\rm S} T_{\rm u}}$
	$T_{ m N}$	4 T _u	$2.3 T_{\rm u}$
PID	$K_{ m R}$	$\frac{0.95T_{\rm a}}{V_{\rm S} T_{\rm u}}$	$\frac{1,2T_{\rm a}}{V_{\rm S} T_{\rm u}}$
	$T_{ m N}$ $T_{ m V}$	$2,4T_{\rm u}$	$2T_{\mathrm{u}}$
	$T_{ m V}$	$0,42T_{\mathrm{u}}$	$0,42T_{\mathrm{u}}$

Einstellwerte sind für ideale PID-Regler. Um sie realisierbar zu machen braucht es noch ein Verzögerungsglied. Zeitkonstante $T_d=3\dots 50T_v$. Experimentell bestimmt, beginnend bei $T_d=4T_v$

2.3.3 Quadratisches Optimum

$$\frac{dISE_3}{dV} = \frac{1}{2} \frac{a(bV - cV^2) - (aV + b)(b - 2cV)}{(bV - cV^2)^2} = 0$$

 $\begin{array}{l} \frac{dISE_3}{dV} = \frac{1}{2}\frac{a(bV-cV^2)-(aV+b)(b-2cV)}{(bV-cV^2)^2} = 0 \\ V^2 + 2 \cdot \frac{b}{a} \cdot V - \frac{b^2}{ac} = 0 \text{ aufgeläst ergibt sich:} \\ T_0 = V_s \cdot \frac{(T_1+T_2)\sqrt{T_1T_2}+T_1T_2}{T_1+T_2} \\ \text{Mit zusätzlichem Verzögerungsglied wird} \end{array}$

Führungsverhalten verbessert Überschwingen)

$$F_V(p) = \frac{1}{1+pT_V}$$

mit $T_{VQO} = 1, 2T_\Sigma$

Ziel: Quadratische Regelfläche ISE wird minimal, allerdings großer Rechenaufwand

Ableitung nach V

2.3.4 Betragsoptimum

vereinfachte Regelstrecke

$$F_s = \frac{V_s}{\prod_{i=1}^k (1+pT_i)(1+pT_{\Sigma})}$$

$$F_R = \frac{\prod_{s=1}^{r} (1 + pT_{RS})}{pT_0}$$

vereinfactite Regeistrecke
$$F_s = \frac{V_s}{\prod_{i=1}^k (1+pT_i)(1+pT_\Sigma)}$$
 PID-Regler:
$$F_R = \frac{\prod_{s=1}^r (1+pT_{RS})}{pT_0}$$
 offener Kreis ist damit:
$$F_0 = \frac{V_s \cdot \prod_{s=1}^r (1+pT_{RS})}{\prod_{i=1}^k (1+pT_i)(1+pT_\Sigma) \cdot pT_0}$$

einfache, übersichtliche Einstellregeln für Standardregelkreis geeignet zur Ausregelung von Störgrößen, die am Ausgang der Regelstrecke angreifen.

Schritte zum Betragsoptimum:

- 1. Anzahl der Zählerzeitkonstanten des Reglers ist gleid der Anzahl k der großen Zeitkonstanten der Regelstrecke.
- 2. Je eine Zählerzeitkonstante des REglers sei einer der großen Zeitkonstaten der Strecke gleich. $T_{Rs} = T_i$

8

3. Einstellregel für die Integrierzeitkonstante: $T_0 = 2T_{\Sigma} \cdot V_S$

Damit folgt: typische Übertragungsfunktion für den offenen Kreis $F_o = \frac{1}{p2T_{\Sigma}(1+pT_{\Sigma})}$ Führungsverhalten geschlossener Kreis: $F_w = \frac{1}{1+p2T_{\Sigma}(1+pT_{\Sigma})}$

typische Werte:

$$\omega_d \approx \frac{1}{2T_{\Sigma}}$$

 $\omega_d \approx \frac{1}{2T_{\Sigma}}$ $\gamma = 65,5^{\circ} \text{ (Aplitudengang)}$

 $\gamma = 63^{\circ}$ (Asyptotenzug)

 $T_a n \approx 5T_{\Sigma}$; ü $\approx 5\%$

Tabelle 2.3: Regeln zur vollständig bzw. näherungsweise betragsoptimalen Reglereinstellung

	$F_{ m R}$ =		
$F_{\rm S}$ =	$\frac{1}{pT_0}$	$\frac{1 + pT_{R1}}{pT_0}$	$\frac{\left(1+pT_{R1}\right)\left(1+pT_{R2}\right)}{pT_{0}}$
$\frac{V_{\rm s}}{1+\rho T_{\rm i}}$	$T_0 = 2V_S T_1$ $T_{an} \approx 5T_1$	_	_
$\frac{V_{\rm S}}{\left(1+pT_{\rm I}\right)\left(1+pT_{\rm E}\right)}$	$T_0 = 2V_S T_1$ $T_{an} \approx 5T_1$	$T_0 = 2V_S T_{\Sigma}$ $T_{R1} = T_1$ $T_{an} \approx 5T_{\Sigma}$	_
$\frac{V_{\rm s}}{\left(1+\rho T_{\rm 1}\right)\left(1+\rho T_{\rm 2}\right)\left(1+\rho T_{\rm x}\right)}$	$T_0 = 2V_S(T_1 + T_2)$ $T_{an} \approx 5(T_1 + T_2)$	$T_0 = \frac{2V_S T_1 T_2 (T_1 + T_2)}{T_1^2 + T_1 T_2 + T_2^2}$ $T_{R1} = \frac{\left(T_1^2 + T_2^2\right) \left(T_1 + T_2\right)}{T_1^2 + T_1 T_2 + T_2^2}$	$T_0 = 2V_S T_{\Sigma}$ $T_{R1} = T_1$ $T_{R2} = T_2$ $T_{an} \approx 5 T_{\Sigma}$

Symmetrisches Optimum, Einstellregel nach Kessler 2.3.5

Einstellregeln PI-Regler:

$$T_R = 4T_{\Sigma} \; ; T_0 = 2V_S \frac{T_{\Sigma}T_R}{T_S} = 8V_S \frac{T_{\Sigma}^2}{T_S}$$

Einstellregel PID-Regler:

$$F_R = \frac{(1+pT_R)^2}{pT_0} ; T_R = 8T_\Sigma ; T_0 = \frac{128T_\Sigma^3 V_S}{T_2 T_3}$$

Anwendung in elektrischer Antriebstechnik

2.3.6 Stochastisches Optimum

$$T_R = T_S; T_0 = \frac{1}{2}V_S T_{\Sigma}$$

$$\omega_d = \frac{\sqrt{2}}{T_{\Sigma}}; \ \gamma = 35^{\circ}$$

 $\omega_d = \frac{\sqrt{2}}{T_{\Sigma}}; \ \gamma = 35^{\circ}$ Mit zusätzlichem Verzögerungsglied wird Führungsverhalten verbessert (weniger

Überschwingen)
$$F_V(p) = \frac{1}{1+pT_V}$$
mit $T_{VStO} = 1, 2T_{\Sigma}$

Verbesserung des Störverhaltens Erhöhung der Reglergeschwindigkeit

2.3.7 Einstellregel nach Naslin

Sei
$$F_w(p) = \frac{b_0}{a_0 + a_1 p + a_2 p^2} = \frac{\frac{b_0}{a_0}}{1 + \frac{a_1}{a_0} p + \frac{a_2}{a_0} p^2}$$

Übertragungsfunktion des Schwingungsglieds:

$$F_s(p) = \frac{1}{1 + p2DT_0 + p^2T_0^2}$$

Koeffizientenvergleich:
$$4D^2 = \frac{a_1^2}{a_0 a_2}$$

und allg:
$$\alpha = \frac{a_i^2}{a_{i-1}a_{i+1}}$$

anwendbar, wenn Übertragungsfunktion der Strecke bekannt günstiges Führungsverhalten aber ohne kurze Ausregelzeiten nur für Zählerpolynom nullter Ordnung und geradzahliges Nennenpolynom

günstige Verhältnisse: $1, 5 \le \alpha \le 2, 5$