Build X Algorithms: Cryptography

Prof. Luca Viganò

Department of Informatics King's College London, UK

15 February 2016

Outline

Introduction

Some number theory and Euclid's algorithm

Euclid's algorithm and Extended Euclid's algorithm

- Modular arithmetics
- Euler Totient Function
- The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Table of contents I

- Introduction
- 2 Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Cryptography in Network Security

How do we turn an insecure communication facility (like the Internet) into a secure one?

Where security means that one of more security properties (e.g., confidentiality, integrity, authentication, non-repudiation, anonymity, unobservability, timeliness, availability, etc.) are guaranteed.

Cryptography is the enabling technology.

General cryptographic schema

where E(Key1, P) = C and D(Key2, C) = P.

- Symmetric algorithms:
 - Key1 = Key2, or are easily derived from each other.
- Asymmetric (or public key) algorithms:
 - Different keys, which cannot be derived from each other.
 - Public key can be published without compromising private key.
- Encryption and decryption should be easy, if keys are known.
- Security depends only on secrecy of the key, not on the algorithm.

Encryption/decryption

- A, the alphabet, is a finite set.
- $\mathcal{M} \subseteq \mathcal{A}^*$ is the message space. $M \in \mathcal{M}$ is a plaintext (message).
- C is the ciphertext space, whose alphabet may differ from M.
- K denotes the key space of keys.
- Each $e \in \mathcal{K}$ determines a bijective function from \mathcal{M} to \mathcal{C} , denoted by E_e . E_e is the encryption function (or transformation).
 - Note: we will write $E_e(P) = C$ or, equivalently, E(e, P) = C.
- For each $d \in \mathcal{K}$, D_d denotes a bijection from \mathcal{C} to \mathcal{M} . D_d is the decryption function.
- Applying E_e (or D_d) is called encryption (or decryption).

Encryption/decryption (cont.)

• An encryption scheme (or cipher) consists of a set $\{E_e \mid e \in \mathcal{K}\}$ and a corresponding set $\{D_d \mid d \in \mathcal{K}\}$ with the property that for each $e \in \mathcal{K}$ there is a unique $d \in \mathcal{K}$ such that $D_d = E_e^{-1}$; i.e.,

$$D_d(E_e(m)) = m$$
 for all $m \in \mathcal{M}$.

- The keys e and d above form a key pair, sometimes denoted by (e, d). They can be identical (i.e., the symmetric key).
- To construct an encryption scheme requires fixing a message space \mathcal{M} , a ciphertext space \mathcal{C} , and a key space \mathcal{K} , as well as encryption transformations $\{E_e \mid e \in \mathcal{K}\}$ and corresponding decryption transformations $\{D_d \mid d \in \mathcal{K}\}$.

An example

Let $\mathcal{M} = \{m_1, m_2, m_3\}$ and $\mathcal{C} = \{c_1, c_2, c_3\}$.

There are 3! = 6 bijections from \mathcal{M} to \mathcal{C} .

The key space $\mathcal{K} = \{1, 2, 3, 4, 5, 6\}$ specifies these transformations.

Suppose Alice and Bob agree on the transformation E_1 .

To encrypt m_1 , Alice computes $E_1(m_1) = c_3$.

Bob decrypts c_3 by reversing the arrows on the diagram for E_1 and observing that c_3 points to m_1 .

Public-key cryptography

- Let $\{E_e \mid e \in \mathcal{K}\}$ and $\{D_d \mid d \in \mathcal{K}\}$ form an encryption scheme.
- Consider transformation pairs (E_e, D_d) where knowing E_e it is infeasible, given $c \in C$, to find an $m \in M$ such that $E_e(m) = c$.
- This implies it is **infeasible to determine** *d* **from** *e*.
- Hence, E_e constitutes a trap-door one-way function with trapdoor d (as explained in more detail later).
- Called **public key** as *e* can be public information:

Public-key cryptosystem: secrecy (confidentiality)

Secrecy (confidentiality)

- X is a secret intended for B.
- Only *B*, who possesses PR_b , can decrypt $Y = E(PU_B, X)$.

Public-key cryptosystem: authentication

Authentication

- Only A, who possesses PR_a , can have generated $Y = E(PR_A, X)$.
- Note that everybody can decrypt Y (and read X) as PU_a is public.

Public-key cryptosystem: secrecy and authentication

$$Z = E(PU_b, E(PR_a, X))$$
 and $X = D(PU_a, D(PR_b, Z))$

Requirements for public-key cryptography

- It is computationally easy for any principal B to generate a pair (public key PU_b , private key PR_b).
- ② It is computationally easy for sender A, knowing PU_b and M, to generate

$$C = E(PU_b, M)$$
.

It is computationally easy for receiver B to decrypt C using PR_b to recover M:

$$M = D(PR_b, C) = D(PR_b, E(PU_b, M))$$
.

- It is computationally infeasible for an adversary
 - knowing PU_b to determine PR_b ,
 - knowing PU_b and C to recover M.
- (Useful, but not always necessary) The two keys can be applied in either order:

$$M = D(PU_b, E(PR_b, M)) = D(PR_b, E(PU_b, M)).$$

Requirements for Public-Key Cryptography (cont.)

- These are difficult requirements.
- As a matter of fact only a few algorithms enjoying the above requirements have received widespread acceptance so far, e.g.,

Algorithm	Encryption/Decryption	Digital signature	Key exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

We will focus on RSA and Diffie-Hellman.

One-way function

One-way function

A function $f: X \to Y$ is a **one-way function**, if f is "easy" to compute for all $x \in X$, but f^{-1} is "hard" (or "infeasible") to compute.

- Easy: generally, defined to mean a problem that can be solved in polynomial time as a function of input length.
 - If input length is n bits, then time to compute function is proportional to n^a , where a is a fixed constant.
- **Infeasible**: effort to solve problem grows faster than polynomial time as a function of input size.
 - Time to compute function proportional to 2^n for input length n bits.
 - Difficult to determine if a particular algorithm exhibits this complexity.
 - Computational complexity traditionally focuses on worst-case or average-case complexity of an algorithm, but cryptography requires that it be infeasible to invert a function for virtually all inputs.

- Square root.
 - If you know x = 512, $f(x) = x^2 = 512^2 =$

- Square root.
 - If you know x = 512, $f(x) = x^2 = 512^2 = 262144$ is easy to compute.

Square root.

- If you know x = 512, $f(x) = x^2 = 512^2 = 262144$ is easy to compute.
- If you know f(x) = 262144, $x = \sqrt{x^2} = \sqrt{262144}$ is difficult to compute.

Square root.

- If you know x = 512, $f(x) = x^2 = 512^2 = 262144$ is easy to compute.
- If you know f(x) = 262144, $x = \sqrt{x^2} = \sqrt{262144}$ is difficult to compute.

Modular cube roots.

- Select primes p = 48611 and q = 53993.
- Let $n = p \times q = 2624653723$ and $X = \{1, 2, ..., n-1\}$.
- Define $f: X \to \mathbb{N}$ by $f(x) = x^3 \mod n$.
- Example: f(2489991) = 1981394214.
- Computing f is easy.
- Inverting *f* is hard: find *x* which is cubed and yields remainder!

Square root.

- If you know x = 512, $f(x) = x^2 = 512^2 = 262144$ is easy to compute.
- If you know f(x) = 262144, $x = \sqrt{x^2} = \sqrt{262144}$ is difficult to compute.

Modular cube roots.

- Select primes p = 48611 and q = 53993.
- Let $n = p \times q = 2624653723$ and $X = \{1, 2, ..., n 1\}$.
- Define $f: X \to \mathbb{N}$ by $f(x) = x^3 \mod n$.
- Example: f(2489991) = 1981394214.
- Computing f is easy.
- Inverting *f* is hard: find *x* which is cubed and yields remainder!

This is useful because:

- Encryption is (very) easy whereas decryption is (very) difficult.
- The idea is: "f(x) acts as a public key and x as a private key".

Trapdoor one-way function

- A trapdoor one-way function is easy to calculate in one direction and infeasible to calculate in the other direction unless certain additional information is known.
 - With additional info, inverse can be calculated in polynomial time.

Trapdoor one-way function

A **trapdoor one-way function** is a one-way function $f_k: X \to Y$ where, given extra information k (the **trapdoor information**) it is feasible to find, for $y \in Image(f)$, an $x \in X$ where $f_k(x) = y$.

• Hence, a trapdoor one-way function is a family of invertible functions f_k such that computing

 $Y = f_k(X)$ is easy if k and X are known $X = f_k^{-1}(Y)$ is easy if k and Y are known

 $X = f_{k-1}^{(1)}(Y)$ is infeasible if Y is known but k is not known

• **Example:** Computing modular cube roots is easy when *p* and *q* are known (basic number theory).

Table of contents I

- Introduction
- Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Prime factorization

- Numbers: naturals $\mathbb{N}=\{0,1,2,\ldots\}$, integers $\mathbb{Z}=\{0,1,-1,\ldots\}$, primes $\mathcal{P}=\{2,3,5,7,\ldots\}$.
- To factor a number a is to write it as a product of other numbers, e.g., a = b × c × d.
- Multiplying numbers is easy, factoring numbers appears hard.
 We cannot factor most numbers with more than 1024 bits.
- The prime factorization of a number a amounts to writing it as a product of powers of primes:

$$a=\prod_{p\in\mathcal{P}} p^{a_p}=2^{a_2}\times 3^{a_3}\times 5^{a_5}\times 7^{a_7}\times 11^{a_{11}}\times\ldots$$
 where $a_p\in\mathbb{N}$

For any particular value of a, most of the exponents a_p will be 0, e.g.,

$$91 = 7 \times 13
3600 = 2^4 \times 3^2 \times 5^2
11011 = 7 \times 11^2 \times 13$$

Divisors

 $a \neq 0$ divides b (written $a \mid b$) if there is an m such that $m \times a = b$.

• Examples: 3 | 6 and 7 | 21.

a does not divide b (written $a \not\mid b$) if there is no m such that $m \times a = b$.

Examples: 3 / 7, 3 / 10 and 7 / 22.

Two natural numbers a, b are **relatively prime** if they have no common divisors/factors apart from 1, i.e., if their greatest common divisor gcd is equal to 1

$$gcd(a,b)=1$$
.

15 February 2016

Two natural numbers *a*, *b* are **relatively prime** if they have no common divisors/factors apart from 1, i.e., if their **greatest common divisor** gcd is equal to 1

$$gcd(a,b)=1$$
.

For example, 8 and 15 are relatively prime since

$$gcd(a,b)=1$$
.

- For example, 8 and 15 are relatively prime since
 - factors of 8 are 1, 2, 4, 8,

$$gcd(a,b)=1$$
.

- For example, 8 and 15 are relatively prime since
 - factors of 8 are 1, 2, 4, 8,
 - factors of 15 are 1, 3, 5, 15,

$$gcd(a,b)=1$$
.

- For example, 8 and 15 are relatively prime since
 - factors of 8 are 1, 2, 4, 8,
 - factors of 15 are 1, 3, 5, 15,
 - and 1 is the only common factor.

$$gcd(a,b)=1$$
.

- For example, 8 and 15 are relatively prime since
 - factors of 8 are 1, 2, 4, 8,
 - factors of 15 are 1, 3, 5, 15,
 - and 1 is the only common factor.
- Conversely, we can determine the greatest common divisor by comparing their prime factorizations and using least powers, e.g.
 - $150 = 2^1 \times 3^1 \times 5^2$ and $18 = 2^1 \times 3^2$, thus $gcd(18, 150) = 2^1 \times 3^1 \times 5^0 = 6$.

$$gcd(a,b)=1$$
.

- For example, 8 and 15 are relatively prime since
 - factors of 8 are 1, 2, 4, 8,
 - factors of 15 are 1, 3, 5, 15,
 - and 1 is the only common factor.
- Conversely, we can determine the greatest common divisor by comparing their prime factorizations and using least powers, e.g.
 - $150 = 2^1 \times 3^1 \times 5^2$ and $18 = 2^1 \times 3^2$, thus $gcd(18, 150) = 2^1 \times 3^1 \times 5^0 = 6$.
 - $60 = 2^2 \times 3 \times 5$ and $14 = 2 \times 7$, thus gcd(60, 14) = 2.

Table of contents I

- Introduction
- Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
 - Modular arithmetics
 - Euler Totient Function
- 4 The RSA Algorithm
- 5 Diffie-Hellman key exchange
- Zero-knowledge protocols

Greatest common divisor and Euclid's algorithm

gcd can be computed quickly using Euclid's algorithm.

$$gcd(60, 14)$$
 : $60 = (4 \times 14) + 4$
 $gcd(14, 4)$: $14 = (3 \times 4) + 2$
 $gcd(4, 2)$: $4 = 2 \times 2$

• Extended Euclid's algorithm computes $x, y \in \mathbb{Z}$ such that

$$\gcd(a,b)=(x\times a)+(y\times b)$$

Here
$$2 = 14 - 3 \times (60 - (4 \times 14)) = (-3 \times 60) + (13 \times 14)$$

Euclid's Algorithm

Euclid's algorithm is based on the theorem

 $gcd(a, b) = gcd(b, a \mod b)$ for any nonnegative integer a and any positive integer b.

For example:

 $\gcd(55,22) = \gcd(22,55 \mod 22) = \gcd(22,11) = 11.$

Euclid's algorithm

Euclid(a, b)

1 if b = 0

2 then return a

else return Euclid(b, a mod b)

For example:

• Euclid(30,21) = Euclid(21,9) = Euclid(9,3) = Euclid(3,0) = 3.

Extended Euclid's Algorithm

Extend Euclid's algorithm to compute integer coefficients x, y such that

$$d=\gcd(a,b)=(a\times x)+(b\times y)$$

Extended Euclid's algorithm

1 **if** b = 0

2 then return (a, 1, 0)

Extended-Euclid(a, b)

 $3(d', x', y') \leftarrow \text{Extended-Euclid}(b, a \mod b)$

 $4(d,x,y) \leftarrow (d',y',x'-(|a/b|\times y'))$

5 return (d, x, y)

where q = |a/b| is the **quotient of the division** (for $a = (q \times b) + r$).

Note: the d here is the greatest common **d**ivisor, not to be confused with the d that is (part of) an RSA private key (discussed later on).

Extended Euclid's Algorithm: example

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a , b)
1 if $b = 0$
2 then return (a , 1, 0)
3 (a' , x' , y') \leftarrow Extended-Euclid(b , $a \mod b$)
4 (a , x , y) \leftarrow (a' , y' , x' - (a' , b' , b')
5 return (a' , a' , b')

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a, b)

1 if b = 02 then return (a, 1, 0)

3 (d', x', y') \leftarrow Extended-Euclid(b, $a \mod b$)

4 (d, x, y) \leftarrow (d', y', x' - ($\lfloor a/b \rfloor \times y'$))

5 return (d, x, y)

26

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6				

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a, b)

1 if b = 02 then return (a, 1, 0)

3 (d', x', y') \leftarrow Extended-Euclid(b, $a \mod b$)

4 (d, x, y) \leftarrow (d', y', x' - ($\lfloor a/b \rfloor \times y'$))

5 return (d, x, y)

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3				

15 February 2016

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0				

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_			

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

а	b	$\lfloor a/b \rfloor$	d	Χ	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_	3	1	0

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a, b)

1 **if** b = 02 **then return** (a, 1, 0)

3 (a', x', y') \leftarrow Extended-Euclid(b, $a \mod b$)

4 (a, x, y) \leftarrow (a', a', a') \leftarrow (a', a')

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3		
78	21	3	3		
21	15	1	3		
15	6	2	3		
6	3	2	3		
3	0	_	3	1	0

26

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a, b)

1 **if** b = 02 **then return** (a, 1, 0)

3 (a', x', y') \leftarrow Extended-Euclid(b, $a \mod b$)

4 (a, x, y) \leftarrow (a', a', a') \leftarrow (a', a', a')

5 **return** (a', a', a')

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3		
78	21	3	3		
21	15	1	3		
15	6	2	3		
6	3	2	3	0	1
3	0	_	3	1	0

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a, b)

1 if b = 02 then return (a, 1, 0)

3 (a', x', y') \leftarrow Extended-Euclid(b, $a \mod b$)

4 (a, x, y) \leftarrow (a', a', a') \leftarrow (a', a')

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3		
78	21	3	3		
21	15	1	3		
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3		
78	21	3	3		
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a, b)

1 **if** b = 02 **then return** (a, 1, 0)

3 (a', x', y') \leftarrow Extended-Euclid(b, $a \mod b$)

4 (a, x, y) \leftarrow (a', a', a') \leftarrow (a', a', a')

5 **return** (a', a', a')

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3		
78	21	3	3	3	– 11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

Extended-Euclid(99, 78) =
$$3 = (99 \times (-11)) + (78 \times 14)$$

Extended-Euclid(a,b)1 **if** b=0**then return** (a,1,0) $(d',x',y') \leftarrow$ Extended-Euclid $(b,a \mod b)$ $(d,x,y) \leftarrow (d',y',x'-(\lfloor a/b \rfloor \times y'))$ **return** (d,x,y)

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3	– 11	14
78	21	3	3	3	– 11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

Each line shows one level of the recursion.

Table of contents I

- Introduction
- Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
 - Modular arithmetics
 - Euler Totient Function
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Modular arithmetics

Remainder

• $\forall a \, n. \, \exists q \, r. \, (a = (q \times n) + r)$ where $0 \le r < n.$ Here r is the **remainder**, which we write as

$$r = a \mod n$$
.

Congruent modulo

• $a, b \in \mathbb{Z}$ are **congruent modulo** n, if $a \mod n = b \mod n$. We write this as

$$a =_n b$$
.

Modulo operator has following properties (of congruences)

- Reflexivity: $a =_n a$.
- Symmetry: If $a =_n b$ then $b =_n a$.
- Transitivity: If $(a =_n b \text{ and } b =_n c)$ then $a =_n c$.

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

$$2 = (5 \times 6) \mod 4$$

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

Example:

$$2 = (5 \times 6) \mod 4$$

= [(5 \text{ mod 4}) \times (6 \text{ mod 4})] \text{ mod 4}

29

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

$$2 = (5 \times 6) \mod 4$$

= $[(5 \mod 4) \times (6 \mod 4)] \mod 4$
= $(1 \times 2) \mod 4 = 2 \mod 4 = 2$

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

Example:

$$2 = (5 \times 6) \mod 4$$

= $[(5 \mod 4) \times (6 \mod 4)] \mod 4$
= $(1 \times 2) \mod 4 = 2 \mod 4 = 2$

If $a \times b =_n a \times c$ and a relatively prime to n, then $b =_n c$.

15 February 2016

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

Example:

$$2 = (5 \times 6) \mod 4$$

= $[(5 \mod 4) \times (6 \mod 4)] \mod 4$
= $(1 \times 2) \mod 4 = 2 \mod 4 = 2$

If $a \times b =_n a \times c$ and a relatively prime to n, then $b =_n c$.

•
$$8 \times 4 =_3 8 \times 1$$
.

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

Example:

$$2 = (5 \times 6) \mod 4$$

= $[(5 \mod 4) \times (6 \mod 4)] \mod 4$
= $(1 \times 2) \mod 4 = 2 \mod 4 = 2$

If $a \times b =_n a \times c$ and a relatively prime to n, then $b =_n c$.

- $8 \times 4 =_3 8 \times 1$.
- 8 is relatively prime to 3.

$$(a \bullet b) =_n (a \mod n) \bullet (b \mod n)$$
 for $\bullet \in \{+, -, \times\}$
i.e., $(a \bullet b) \mod n = [(a \mod n) \bullet (b \mod n)] \mod n$

Example:

$$2 = (5 \times 6) \mod 4$$

= $[(5 \mod 4) \times (6 \mod 4)] \mod 4$
= $(1 \times 2) \mod 4 = 2 \mod 4 = 2$

If $a \times b =_n a \times c$ and a relatively prime to n, then $b =_n c$.

- $8 \times 4 =_3 8 \times 1$.
- 8 is relatively prime to 3.
- So: $4 =_3 1$.

$$(a_1 + a_2) =_n (b_1 + b_2)$$
 and $(a_1 \times a_2) =_n (b_1 \times b_2)$

This can also be expressed as

$$[(a_1 \mod n) + (a_2 \mod n)] \mod n = (a_1 + a_2) \mod n$$

$$[(a_1 \bmod n) \times (a_2 \bmod n)] \bmod n = (a_1 \times a_2) \bmod n$$

• Example: Let $r_a = a \mod n$ and $r_b = b \mod n$. Then, there are integers j and k such that

$$a = r_a + jn$$
 and $b = r_b + kn$

and we can proceed as follows:

$$(a+b) \bmod n = (r_a+jn+r_b+kn) \bmod n$$

and

$$(a_1 + a_2) =_n (b_1 + b_2)$$
 and $(a_1 \times a_2) =_n (b_1 \times b_2)$

This can also be expressed as

$$[(a_1 \mod n) + (a_2 \mod n)] \mod n = (a_1 + a_2) \mod n$$

$$[(a_1 \bmod n) \times (a_2 \bmod n)] \bmod n = (a_1 \times a_2) \bmod n$$

• Example: Let $r_a = a \mod n$ and $r_b = b \mod n$. Then, there are integers j and k such that

$$a = r_a + jn$$
 and $b = r_b + kn$

and we can proceed as follows:

$$(a+b) \bmod n = (r_a+jn+r_b+kn) \bmod n$$
$$= (r_a+r_b+(j+k)n) \bmod n$$

and

30

$$(a_1 + a_2) =_n (b_1 + b_2)$$
 and $(a_1 \times a_2) =_n (b_1 \times b_2)$

This can also be expressed as

$$[(a_1 \mod n) + (a_2 \mod n)] \mod n = (a_1 + a_2) \mod n$$

$$[(a_1 \bmod n) \times (a_2 \bmod n)] \bmod n = (a_1 \times a_2) \bmod n$$

• Example: Let $r_a = a \mod n$ and $r_b = b \mod n$. Then, there are integers j and k such that

$$a = r_a + jn$$
 and $b = r_b + kn$

and we can proceed as follows:

$$(a+b) \bmod n = (r_a+jn+r_b+kn) \bmod n$$

= $(r_a+r_b+(j+k)n) \bmod n$
= $(r_a+r_b) \bmod n$

and

$$(a_1 + a_2) =_n (b_1 + b_2)$$
 and $(a_1 \times a_2) =_n (b_1 \times b_2)$

This can also be expressed as

$$[(a_1 \mod n) + (a_2 \mod n)] \mod n = (a_1 + a_2) \mod n$$

$$[(a_1 \bmod n) \times (a_2 \bmod n)] \bmod n = (a_1 \times a_2) \bmod n$$

• Example: Let $r_a = a \mod n$ and $r_b = b \mod n$. Then, there are integers j and k such that

$$a = r_a + jn$$
 and $b = r_b + kn$

and we can proceed as follows:

$$(a + b) \mod n = (r_a + jn + r_b + kn) \mod n$$

= $(r_a + r_b + (j + k)n) \mod n$
= $(r_a + r_b) \mod n$
= $[(a \mod n) + (b \mod n)] \mod n$

and

- $a = q \times n + r$ with $q = \lfloor a/n \rfloor$ and $0 \le r < n$ and $r = a \mod b$
- For any integer a, we can rewrite this as follows:

$$a = \lfloor a/n \rfloor \times n + (a \mod n)$$

Then, for example:

- 11 mod 7 = 4
- \bullet -11 mod 7 = -4 (= 3 when reasoning modulo 7)
- \bullet 73 =₂₃ 4
- 21 = 10 9
- 147 = 220 73

- If $a =_n 0$ then $n \mid a$
- $a =_n b$ if n | (a b)
- To demonstrate the last point, if $n \mid (a b)$, then $(a b) = k \times n$ for some k.

So we can write $a = b + (k \times n)$.

Therefore, $(a \mod n) = (remainder when <math>b + (k \times n)$ is divided by $n) = (remainder when b is divided by <math>n) = (b \mod n)$.

- Then, for example:
 - $23 =_5 8$ because $23 8 = 15 = 5 \times 3$
 - -11 = 85 because $-11 5 = -16 = 8 \times (-2)$
 - 81 = 27 0 because $81 0 = 81 = 27 \times 3$

Modular arithmetics: two theorems

Theorem

Suppose that $a, b \in \mathbb{Z}$ are relatively prime. There is a $c \in \mathbb{Z}$ satisfying $(b \times c) \mod a = 1$, i.e., we can compute $b^{-1} \mod a$.

Proof: From Extended Euclidean Algorithm, there exist $x, y \in \mathbb{Z}$ where

$$1 = (a \times x) + (b \times y)$$

Since $a \mid (a \times x)$, we have $(b \times y) \mod a = 1$. Assertion follows with c = y.

33

Modular arithmetics: two theorems

Theorem

Suppose that $a, b \in \mathbb{Z}$ are relatively prime. There is a $c \in \mathbb{Z}$ satisfying $(b \times c) \mod a = 1$, i.e., we can compute $b^{-1} \mod a$.

Proof: From Extended Euclidean Algorithm, there exist $x, y \in \mathbb{Z}$ where

$$1 = (a \times x) + (b \times y)$$

Since $a \mid (a \times x)$, we have $(b \times y) \mod a = 1$. Assertion follows with c = y.

Fermat's little theorem

For a and n relatively prime and n prime

$$a^{n-1} =_n 1$$

Example: $4^6 \mod 7 = (16 \times 16 \times 16) \mod 7 = (2 \times 2 \times 2) \mod 7 = 1_{3 \times 3}$

Table of contents I

- Introduction
- Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
 - Modular arithmetics
 - Euler Totient Function
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Euler Totient Function

- When doing arithmetic modulo n.
- Complete set of **residues** is $0, \ldots, n-1$.
- Reduced set of residues consists of those numbers (residues) that are relatively prime to n.

For instance, for n = 10:

- complete set of residues is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
- reduced set of residues is {1,3,7,9}.
- Number of elements in reduced set of residues is called the **Euler** Totient Function $\phi(n)$.
 - In other words, $\phi(n)$ is the number of positive integers less than n which are relatively prime to n, i.e.,

 $\phi(n)$ is the number of $a \in \{1, 2, \dots, n-1\}$ with gcd(a, n) = 1.

Build X Algorithms: Cryptography

Euler's Totient Function and Euler's Theorem

Properties:

- $\phi(1) = 1$.
- $\phi(p) = p 1$ if p is prime.
- $\phi(p \times q) = \phi(p) \times \phi(q) = (p-1) \times (q-1)$ if p and q are prime and $p \neq q$.

So that Fermat's little theorem (for a and n relatively prime and n prime) can be rewritten to

Euler's Theorem

 $a^{\phi(n)} =_n 1$ for all a, n such that gcd(a, n) = 1.

Examples:

- If a = 3 and n = 10, then $\phi(10) = 4$ and $3^4 = 81 =_{10} 1$
- If a = 2 and n = 11, then $\phi(11) = 10$ and $2^{10} = 1024 =_{11} 1$

36

Table of contents I

- Introduction
- Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Rivest, Shamir, Adleman: RSA Algorithm

- Named after inventors: Rivest, Shamir, Adleman, 1978.
- Published after 1976 challenge by Diffie and Hellman.
- RSA algorithm is a block cipher in which the plaintext and ciphertext are integers between 0 and n-1 for some n.
 - A typical size for n is 1024 bits, or 309 decimal digits.
 - That is, n is less than 2^{1024} .
- Security comes from difficulty of factoring large numbers. Keys are functions of a pairs of large, > 100 digits, prime numbers.
- Most popular public-key algorithm. Used in many applications, e.g., PGP, PEM, SSL, ...

RSA algorithm

Ingredients:

```
p, q, two prime numbers n = p \times q (or pq for short) e, with \gcd(\phi(n), e) = 1; 1 < e < \phi(n) d = e^{-1} \mod \phi(n)
```

private, chosen public, calculated public, chosen private, calculated

Generation of a public/private key pair:

- Generate two (large) distinct primes p and q.
- ② Compute $n = p \times q$ and $\phi(n) = (p-1) \times (q-1)$.
- **3** Select an e, with $1 < e < \phi(n)$, relatively prime to $\phi(n)$.
- ① Compute $d = e^{-1} \mod \phi(n)$.
- **1** Publish (e, n), keep (d, n) private, discard p and q.
- Encryption with key (e, n)
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Ompute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - Generate two (large) distinct primes p and q.
 - ② Compute $n = p \times q$ and $\phi(n) = (p-1) \times (q-1)$.
 - 3 Select an e, $1 < e < \phi(n)$, relatively prime to $\phi(n)$.
 - **4** Compute $d = e^{-1} \mod \phi(n)$.
 - **1** Publish (e, n), keep (d, n) private, discard p and q.
- Encryption with key (e, n):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - 2 Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Ompute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q$ and $\phi(n) = (p-1) \times (q-1)$.
 - 3 Select an e, $1 < e < \phi(n)$, relatively prime to $\phi(n)$.
 - **4** Compute $d = e^{-1} \mod \phi(n)$.
 - **1** Publish (e, n), keep (d, n) private, discard p and q.
- Encryption with key (e, n):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - **3** Select an e, $1 < e < \phi(n)$, relatively prime to $\phi(n)$.
 - **4** Compute $d = e^{-1} \mod \phi(n)$.
 - O Publish (e, n), keep (d, n) private, discard p and q.
- Encryption with key (e, n):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - 3 Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = e^{-1} \mod \phi(n)$.
 - **1** Publish (e, n), keep (d, n) private, discard p and q.
- Encryption with key (e, n):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - 3 Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = 79^{-1} \mod 3220 = 1019$.
 - O Publish (e, n), keep (d, n) private, discard p and q.
- Encryption with key (e, n):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - **3** Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = 79^{-1} \mod 3220 = 1019$.
 - **1** Public key (e, n) = (79, 3337), private key (d, n) = (1019, 3337)
- Encryption with key (e, n):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Compute $M_i = C_i^d \mod n$.

40

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - **3** Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = 79^{-1} \mod 3220 = 1019$.
 - **1** Public key (e, n) = (79, 3337), private key (d, n) = (1019, 3337)
- Encryption with key (e, n) = (79, 3337):
 - **1** Break message M into blocks $M_1 M_2 \cdots$ with $M_i < n$.
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - 3 Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = 79^{-1} \mod 3220 = 1019$.
 - **1** Public key (e, n) = (79, 3337), private key (d, n) = (1019, 3337)
- Encryption with key (e, n) = (79, 3337):
 - Break message M into blocks, e.g., 688 232 687 966 668...
 - ② Compute $C_i = M_i^e \mod n$.
- Decryption with key (d, n):
 - **1** Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - **3** Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = 79^{-1} \mod 3220 = 1019$.
 - **1** Public key (e, n) = (79, 3337), private key (d, n) = (1019, 3337)
- Encryption with key (e, n) = (79, 3337):
 - Break message M into blocks, e.g., 688 232 687 966 668...
 - 2 Compute $C_1 = 688^{79} \mod 3337 = 1570$, $C_2 = ...$
- Decryption with key (d, n):
 - **1** Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - **3** Choose e = 79 (randomly in the interval [1..3220])
 - **4** Compute $d = 79^{-1} \mod 3220 = 1019$.
 - **5** Public key (e, n) = (79, 3337), private key (d, n) = (1019, 3337)
- Encryption with key (e, n) = (79, 3337):
 - Break message M into blocks, e.g., 688 232 687 966 668...
 - 2 Compute $C_1 = 688^{79} \mod 3337 = 1570$, $C_2 = ...$
- Decryption with key (d, n) = (1019, 3337):
 - Compute $M_i = C_i^d \mod n$.

- Generation of a public/private key pair:
 - **1** Generate p = 47, q = 71.
 - ② Compute $n = p \times q = 3337$ and $\phi(n) = (p-1) \times (q-1) = 46 \times 70 = 3220$
 - 3 Choose e = 79 (randomly in the interval [1..3220])
 - 4 Compute $d = 79^{-1} \mod 3220 = 1019$.
 - **5** Public key (e, n) = (79, 3337), private key (d, n) = (1019, 3337)
- Encryption with key (e, n) = (79, 3337):
 - Break message M into blocks, e.g., 688 232 687 966 668 . . .
 - 2 Compute $C_1 = 688^{79} \mod 3337 = 1570$, $C_2 = ...$
- Decryption with key (d, n) = (1019, 3337):
 - ① Compute $M_1 = 1570^{1019} \mod 3337 = 688$, $M_2 = ...$

RSA: another example

Alice generates a public/private key pair. Bob encrypts using Alice's public key. Alice decrypts using her private key.

- Keys can be generated as follows:
 - Select two prime numbers, p = 17 and q = 11.
 - Calculate $n = p \times q = 17 \times 11 = 187$.
 - Calculate $\phi(n) = (p-1) \times (q-1) = 16 \times 10 = 160$.
 - Select *e* such that *e* is relatively prime to $\phi(n) = 160$ and less than $\phi(n)$; we choose e = 7.
 - Determine d (e.g., using Extended Euclid's algorithm) such that $d \times e = 1 \mod 160$ and d < 160.

The correct value is d = 23, because $23 \times 7 = 161 = (1 \times 160) + 1$.

Note: the *d* here is the private key, not to be confused with the *d* that is the greatest common **d**ivisor in the Extended Euclid's algorithm.

Resulting keys are public key $PU_a = (e, n) = (7, 187)$ and private key $PR_a = (d, n) = (23, 187)$.

• We have n = 187, $\phi(n) = 160$, e = 7.

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

• It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

- It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.
- In this case:

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

- It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.
- In this case:

$$1 = \gcd(160,7) = 160 \times x + 7 \times y$$

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

- It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.
- In this case:

42

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

- It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.
- In this case:

That is, $1 = \gcd(160, 7) = 160 \times (-1) + 7 \times 23$.

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

- It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.
- In this case:

That is, $1 = \gcd(160, 7) = 160 \times (-1) + 7 \times 23$. Check: $7 \times 23 =_{160} 1$.

- We have n = 187, $\phi(n) = 160$, e = 7.
- d can be computed using the Extended Euclid algorithm

$$D = \gcd(A, B) = A \times x + B \times y$$

as follows:

• Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

- It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.
- In this case:

That is, $1 = \gcd(160, 7) = 160 \times (-1) + 7 \times 23$. Check: $7 \times 23 =_{160} 1$.

So, we can pick d = y = 23.

- We have n = 187, $\phi(n) = 160$.
- Note that if we had picked e = 23, then d = 7.
 - Since *d* is such that $e \times d =_{\phi(n)} 1$, we can compute

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d$$

In this case:

$$1 = \gcd(160, 23) = 160 \times x + 23 \times y$$

$$1 = \gcd(160, 23) = 160 \times x + 23 \times y$$

$$23 \quad 22 \quad 1 \quad 1 \quad 1 \quad -1$$

$$22 \quad 1 \quad 22 \quad 1 \quad 0 \quad 1$$

$$1 \quad 0 \quad - \quad 1 \quad 1 \quad 0$$

That is, $1 = \gcd(160, 23) = 160 \times (-1) + 23 \times 7$. Check: $23 \times 7 =_{160} 1$. So, we can pick d = y = 7.

RSA algorithm: a remark on the computed d

It must be $1 < d < \phi(n)$, so when y < 0 we simply reason modulo $\phi(n)$.

Consider, for example, $\phi(n) = 220$ and e = 3:

$$1 = \gcd(\phi(n), e) = \phi(n) \times x + e \times d = \gcd(220, 3) = 220 \times x + 3 \times y$$

That is,
$$1 = \gcd(220, 3) = 220 \times 1 + 3 \times (-73) = 220 - 219$$
.
So, we can pick $d = 147$, i.e., $-73 \mod 220$.

- Let's continue the previous example.
- To encrypt a plaintext input M = 88, we need to calculate $C = M^e \mod n = 88^7 \mod 187 = 11$.
- We can do this by exploiting properties of modular arithmetic:
 - $88^7 \mod 187 = ((88^4 \mod 187) \times (88^2 \mod 187) \times (88^1 \mod 187)) \mod 187$
 - \bullet 88¹ mod 187 = 88
 - \bullet 88² mod 187 = 7744 mod 187 = 77
 - \bullet 88⁴ mod 187 = 59, 969, 536 mod 187 = 132
 - $88^7 \mod 187 = (88 \times 77 \times 132) \mod 187 = 894,432 \mod 187 = 11$

- For decryption, we calculate $M = C^d \mod n = 11^{23} \mod 187$:
 - $11^{23} \mod 187 = ((11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)) \mod 187$
 - \bullet 11¹ mod 187 = 11
 - \bullet 11² mod 187 = 121
 - \bullet 11⁴ mod 187 = 14,641 mod 187 = 55
 - \bullet 118 mod 187 = 214, 358, 881 mod 187 = 33
 - $11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187 = 79,720,245 \mod 187 = 88$

Use of RSA to process multiple blocks of data: example

- In this simple example, plaintext is an alphanumeric string.
- Each plaintext symbol is assigned a unique code of 2 decimal digits (e.g., a = 00, A = 26).
- A plaintext block consists of 4 decimal digits, or 2 alphanumeric characters.
- Circled numbers indicate order in which operations are performed.

RSA Security

- Computation of secret d given (e, n).
 - As difficult as factorization. If we can factor $n = p \times q$ then we can compute $\phi(n) = (p-1) \times (q-1)$ and hence $d = e^{-1} \mod \phi(n)$.
 - No known polynomial time algorithm.
 But given progress in factoring, n should have at least 1024 bits.
- Computation of M_i , given C_i , and (e, n).
 - Unclear (= no proof) whether it is necessary to compute d, i.e., to factorize n.

Hence: Progress in number theory could make RSA insecure.

Table of contents I

- Introduction
- 2 Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

Diffie-Hellman key exchange: in a nutshell

- A simple public-key algorithm that enables two users to establish a secret key using a public-key scheme based on discrete logarithms.
- The protocol is secure only if the authenticity of the two participants can be established.

Background on discrete logarithms

• A **primitive root** s of a prime number p is a number whose powers generate $1, \ldots, p-1$.

So $s^0 \mod p$, $s^1 \mod p$, $s^2 \mod p$, ..., $s^{p-1} \mod p$ are distinct, i.e., a permutation of 1 through p-1. Hence:

$$\forall b \in \mathbb{Z}. \exists i \in \{0, \dots, p-1\}. \ b = s^i \mod p$$

In words: for any integer b and a primitive root s of prime number p, we can find a unique exponent i such that

$$b = s^i \mod p$$

where $0 \le i \le (p - 1)$.

i is called the **discrete logarithm** of *b* for base s, mod p.

Computing discrete logarithms appears infeasible today.

• Principals share a prime number q and an integer α that is a primitive root of q.

• Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- ③ A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- ③ A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").
- \bullet A and B exchange Y_A and Y_B .

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- ③ A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").
- \bullet A and B exchange Y_A and Y_B .
- **1** A computes $K_A = Y_B^{X_A} \mod q$, B computes $K_B = Y_A^{X_B} \mod q$.

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- ③ A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").
- 4 and B exchange Y_A and Y_B .
- **5** A computes $K_A = Y_B^{X_A} \mod q$, B computes $K_B = Y_A^{X_B} \mod q$. Keys are equal, i.e., $K_A = K_B$:

$$K_A = Y_B^{X_A} \mod q$$

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- 3 A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").
- \bullet A and B exchange Y_A and Y_B .
- **5** A computes $K_A = Y_B^{X_A} \mod q$, B computes $K_B = Y_A^{X_B} \mod q$. Keys are equal, i.e., $K_A = K_B$:

$$K_A = Y_B^{X_A} \mod q$$

= $(\alpha^{X_B} \mod q)^{X_A} \mod q = (\alpha^{X_B})^{X_A} \mod q$

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- 3 A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").
- \bullet A and B exchange Y_A and Y_B .
- **5** A computes $K_A = Y_B^{X_A} \mod q$, B computes $K_B = Y_A^{X_B} \mod q$. Keys are equal, i.e., $K_A = K_B$:

$$K_A = Y_B^{X_A} \mod q$$

= $(\alpha^{X_B} \mod q)^{X_A} \mod q = (\alpha^{X_B})^{X_A} \mod q$
= $\alpha^{X_A X_B} \mod q = (\alpha^{X_A})^{X_B} \mod q$

- Principals share a prime number q and an integer α that is a primitive root of q. Both q and α may be public, or A could send them in the first message.
- ② A and B generate random numbers X_A and X_B (respectively) both less than q.
 - X_A and X_B are the **private keys**.
- 3 A computes $Y_A = \alpha^{X_A} \mod q$, B computes $Y_B = \alpha^{X_B} \mod q$. Y_A and Y_B are the **public keys** (a.k.a. "Diffie-Hellman half keys").
- A and B exchange Y_A and Y_B .
- **5** A computes $K_A = Y_B^{X_A} \mod q$, B computes $K_B = Y_A^{X_B} \mod q$. Keys are equal, i.e., $K_A = K_B$:

$$K_A = Y_B^{X_A} \mod q$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q = (\alpha^{X_B})^{X_A} \mod q$$

$$= \alpha^{X_A X_B} \mod q = (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A} \mod q)^{X_B} \mod q = Y_A^{X_B} \mod q = K_B$$

Diffie-Hellman key exchange: ingredients

Global Public Elements $q \hspace{1cm} \text{prime number}$ $\alpha \hspace{1cm} \alpha < q \text{ and } \alpha \text{ a primitive root of } q$

$\mbox{User A Key Generation}$ Select private X_A $X_A < q$ $\mbox{Calculate public } Y_A$ $Y_A = \alpha^{X_A} \mbox{mod } q$


```
\label{eq:Calculation} \textbf{Calculation of Secret Key by User B} K = (Y_A)^{\overline{X}_B} \bmod q
```

Diffie-Hellman key exchange: figure

Diffie-Hellman key exchange: strengths

- The shared secret key is never transmitted (not even in encrypted form)... it is created "out of nothing"!
 - $Y_A = \alpha^{X_A} \mod q$ and $Y_B = \alpha^{X_B} \mod q$ are the public keys.
 - X_A and X_B are the private keys.
 - Because X_A and X_B are private, an adversary C only has the following ingredients to work with: q, α , Y_A and Y_B .
 - Thus, C must take a discrete logarithm to determine the key.
 For example, to determine the private key of user B, C must compute

$$X_B = \operatorname{dlog}_{\alpha,q}(Y_B)$$

- Security of Diffie-Hellman key exchange lies in the fact that
 - it is relatively easy to calculate exponentials modulo a prime, but
 - it is very difficult to calculate discrete logarithms (e.g., it is considered infeasible for large primes).

Security depends on the difficulty of computing discrete logarithms.

• A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:
 - A computes $Y_A = \alpha^{X_A} \mod q = 3^{97} \mod 353 = 40$.

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:
 - A computes $Y_A = \alpha^{X_A} \mod q = 3^{97} \mod 353 = 40$.
 - *B* computes $Y_B = \alpha^{X_B} \mod q = 3^{233} \mod 353 = 248$.

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:
 - A computes $Y_A = \alpha^{X_A} \mod q = 3^{97} \mod 353 = 40$.
 - *B* computes $Y_B = \alpha^{X_B} \mod q = 3^{233} \mod 353 = 248$.
- After they exchange public keys, each can compute the common secret key K:

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:
 - A computes $Y_A = \alpha^{X_A} \mod q = 3^{97} \mod 353 = 40$.
 - *B* computes $Y_B = \alpha^{X_B} \mod q = 3^{233} \mod 353 = 248$.
- After they exchange public keys, each can compute the common secret key K:
 - A computes $K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$.

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:
 - A computes $Y_A = \alpha^{X_A} \mod q = 3^{97} \mod 353 = 40$.
 - *B* computes $Y_B = \alpha^{X_B} \mod q = 3^{233} \mod 353 = 248$.
- After they exchange public keys, each can compute the common secret key K:
 - A computes $K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$.
 - B computes $K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160$.

- A and B choose prime number q = 353 and $\alpha = 3$ (which is one of the primitive roots of 353).
- A and B select private keys $X_A = 97$ and $X_B = 233$.
- Each computes its public key:
 - A computes $Y_A = \alpha^{X_A} \mod q = 3^{97} \mod 353 = 40$.
 - *B* computes $Y_B = \alpha^{X_B} \mod q = 3^{233} \mod 353 = 248$.
- After they exchange public keys, each can compute the common secret key K:
 - A computes $K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$.
 - B computes $K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160$.
- Now they case use the symmetric key K to encrypt the messages they want to exchange.

Diffie-Hellman: example (attacking the key)

- Attacker C knows: q = 353, $\alpha = 3$, $Y_A = 40$ and $Y_B = 248$.
 - In this simple example, it would be possible by brute force to determine the secret key K = 160.
 - In particular, C can determine K by discovering a solution to
 - the equation $3^a \mod 353 = 40$ or
 - the equation $3^b \mod 353 = 248$.
 - Brute-force approach: calculate powers of 3 mod 353, stopping when the result equals either 40 or 248.
 - Desired answer is reached with the exponent value of 97, which provides 3⁹⁷ mod 353 = 40.
- With larger numbers, the problem becomes impractical.

Keys are **unauthenticated** and thus Diffie-Hellman key exchange is vulnerable to the following **man-in-the-middle attack**:

• Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).

- ① Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A}$ mod q to B.

- ① Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.

- ① Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.
- **3** B receives Y_{C_1} , generates X_B and calculates $K_B = (Y_{C_1})^{X_B} \mod q = \alpha^{X_{C_1} X_B} \mod q$.

- Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.
- **3** B receives Y_{C_1} , generates X_B and calculates $K_B = (Y_{C_1})^{X_B} \mod q = \alpha^{X_{C_1}X_B} \mod q$.
- 4 B transmits $Y_B = \alpha^{X_B} \mod q$ to A.

- ① Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.
- 3 B receives Y_{C_1} , generates X_B and calculates $K_B = (Y_{C_1})^{X_B} \mod q = \alpha^{X_{C_1}X_B} \mod q$.
- 4 B transmits $Y_B = \alpha^{X_B} \mod q$ to A.
- **5** *C* intercepts Y_B and transmits $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ to *A*. *C* also calculates $K_1 = (Y_B)^{X_{C_1}} \mod q = (\alpha^{X_B} \mod q)^{X_{C_1}} \mod q = \alpha^{X_B X_{C_1}} \mod q = K_B$.

- ① Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.
- ③ *B* receives Y_{C_1} , generates X_B and calculates $K_B = (Y_{C_1})^{X_B} \mod q = \alpha^{X_{C_1}X_B} \mod q$.
- 4 B transmits $Y_B = \alpha^{X_B} \mod q$ to A.
- **5** *C* intercepts Y_B and transmits $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ to *A*. *C* also calculates $K_1 = (Y_B)^{X_{C_1}} \mod q = (\alpha^{X_B} \mod q)^{X_{C_1}} \mod q = \alpha^{X_B X_{C_1}} \mod q = K_B$.

Keys are **unauthenticated** and thus Diffie-Hellman key exchange is vulnerable to the following **man-in-the-middle attack**:

- Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.
- ③ *B* receives Y_{C_1} , generates X_B and calculates $K_B = (Y_{C_1})^{X_B} \mod q = \alpha^{X_{C_1}X_B} \mod q$.
- 4 B transmits $Y_B = \alpha^{X_B} \mod q$ to A.
- **5** *C* intercepts Y_B and transmits $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ to *A*. *C* also calculates $K_1 = (Y_B)^{X_{C_1}} \mod q = (\alpha^{X_B} \mod q)^{X_{C_1}} \mod q = \alpha^{X_B X_{C_1}} \mod q = K_B$.

Now A and B think that they share a secret key,

Keys are **unauthenticated** and thus Diffie-Hellman key exchange is vulnerable to the following **man-in-the-middle attack**:

- ① Attacker C prepares for the attack by generating two random private keys X_{C_1} and X_{C_2} and then computing the corresponding public keys $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ and $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ (since α and q are public).
- **1** A generates X_A and transmits $Y_A = \alpha^{X_A} \mod q$ to B.
- ② C intercepts Y_A and transmits $Y_{C_1} = \alpha^{X_{C_1}} \mod q$ to B. C also calculates $K_2 = (Y_A)^{X_{C_2}} \mod q = (\alpha^{X_A} \mod q)^{X_{C_2}} \mod q = \alpha^{X_A X_{C_2}} \mod q$.
- ③ *B* receives Y_{C_1} , generates X_B and calculates $K_B = (Y_{C_1})^{X_B} \mod q = \alpha^{X_{C_1}X_B} \mod q$.
- 4 B transmits $Y_B = \alpha^{X_B} \mod q$ to A.
- **5** *C* intercepts Y_B and transmits $Y_{C_2} = \alpha^{X_{C_2}} \mod q$ to *A*. *C* also calculates $K_1 = (Y_B)^{X_{C_1}} \mod q = (\alpha^{X_B} \mod q)^{X_{C_1}} \mod q = \alpha^{X_B X_{C_1}} \mod q = K_B$.
- **6** A receives Y_{C_2} and calculates $K_A = (Y_{C_2})^{X_A} \mod q = \alpha^{X_{C_2}X_A} \mod q = K_2$.

Now A and B think that they share a secret key, but instead A shares secret key $K_A = K_2$ with C and B shares secret key $K_B = K_1$ with C.

DH key exchange: man-in-the-middle attack

Now A and B think that they share a secret key, but instead A shares secret key $K_A = K_2$ with C and B shares secret key $K_B = K_1$ with C.

DH key exchange: man-in-the-middle attack

- All future communication between Bob and Alice is compromised in the following way.
 - **1** A sends an encrypted message M, i.e., $E(K_2, M)$.
 - C intercepts the encrypted message and decrypts it to recover M.
 - C sends to Bob either
 - E(K₁, M), if C simply wants to eavesdrop on the communication without altering it, or
 - E(K₁, M'), where M' is any message, if C wants to modify the message going to B.
- The Diffie-Hellman key exchange is vulnerable to such an attack because it does not authenticate the participants.
 - This vulnerability can be overcome with the use of digital signatures and public-key certificates to achieve mutual authentication between A and B.
 - Typically: add an exchange of digitally signed identification (ID) tokens.

Group Diffie-Hellman (for three or more parties)

Given a Diffie-Hellman group (α, q) , three honest parties Alice, Bob and Carol can generate together a secret key $K = \alpha^{X_A X_B X_C} \mod q$ by:

- lacktriangle Alice chooses a random large integer X_A and sends to Bob: $Y_A=lpha^{X_A}$ mod q
- 2 Bob chooses a random large integer X_B and sends to Carol $Y_B = \alpha^{X_B} \mod q$
- **3** Carol chooses a random large integer X_C and sends to Alice: $Y_C = \alpha^{X_C} \mod q$
- **5** Bob sends to Carol $Y'_A = Y^{X_B}_A \mod q$
- **1** Carol sends to Alice $Y'_B = Y^{X_C}_B \mod q$
- **1** Alice computes: $K = Y_B^{\prime X_A}$ mod q
- Bob computes: $K = Y_C^{\prime X_B} \mod q$
- **9** Carol computes: $K = Y_A^{\prime X_C} \mod q$

Can be extended to more parties by adding more rounds of computations.

Table of contents I

- Introduction
- Some number theory and Euclid's algorithm
- Euclid's algorithm and Extended Euclid's algorithm
- 4 The RSA Algorithm
- Diffie-Hellman key exchange
- Zero-knowledge protocols

What do weapons of mass destruction

What do weapons of mass destruction, a drink

What do weapons of mass destruction, a drink and Ali Baba's cave all have in common?

What do weapons of mass destruction, a drink and Ali Baba's cave all have in common?

Zero-knowledge proofs

In zero-knowledge proofs we can usually specify a statement that is being proved.

- Definitely, that statement is revealed to the verifier
- The verifier (or others) should not learn anything else
- Everybody can draw conclusions from everything they learned

Zero-knowledge proofs: Ali Baba's cave

Peggy randomly takes either path A or B, while Victor waits outside

Victor chooses an exit path

Peggy reliably appears at the exit Victor names

- A cave has a door that opens only when a secret word is spoken.
- Peggy (the Prover) wants to convince Victor (the Verifier) that she knows the secret word, but without reveling it!
- If they walk to the door together, Peggy will be able to open it but then Victor will learn the secret word.
- So, they carry out a zero-knowledge protocol.

Peggy randomly takes either path A or B, while Victor waits outside

Victor chooses an exit path

Peggy reliably appears at the exit Victor names

- Victor stands at the cave's entrance, while Peggy walks to the door.
- Victor walks to the bifurcation of the cave's paths and shouts to Peggy either to
 - · come out of the left path A or
 - come out of the right path B.
- Peggy complies, using the secret word to open the door, if needed.
- Peggy and Victor repeat the experiment (steps 1-3) n times.

Peggy randomly takes either path A or B, while Victor waits outside

Victor chooses an exit path

Peggy reliably appears at the exit Victor names

- Now assume that Peggy doesn't actually know the secret word.
- Then she can only come out the way she went in.
 - After 1 round, she has only 1 chance out of 2 of fooling Victor.
 - After *n* rounds, she has only 1 chance out of 2ⁿ of fooling Victor.
- So, after a while, Victor will be convinced that Peggy knows the secret.
- In other words: Peggy wins if she passes the test all of the time.
 - The probability that Peggy wins is very low if she does not know the secret word: after n rounds, it is $(1/2)^n = \frac{1}{2^n}$.

Zero-knowledge proofs: the idea

- In a challenge-response protocol, the Prover proves that she knows a secret.
 - If a symmetric cryptosystem is used, then the Verifier also knows the secret.
 - If a public-key signature system is used, then Verifier does not know the secret.
- An example of a zero-knowledge protocol is the Fiat-Shamir Identification Protocol.

Example: Fiat-Shamir Identification Protocol

- Three principals:
 - Prover Peggy,
 - Verifier Victor and
 - Trusted Third Party Trent.
- Setup:
 - Trent chooses two large prime numbers p and q to calculate $n = p \times q$.
 - *n* is announced to the public, whereas *p* and *q* are kept secret.
 - Peggy chooses a **secret number** s between 1 and n-1, and calculates $v = s^2 \mod n$.
 - Peggy keeps s as her **private key** and registers v as her **public key** with the third party.
- Victor knows $v = s^2 \mod n$, but does not know s.
- Squaring modulo n is easy to compute but square root modulo n is probably not (we believe...).
- Goal: Peggy wants to convince Victor that she knows the secret s but Victor should not learn s!

Build X Algorithms: Cryptography

Verification of Peggy by Victor then proceeds in 4 steps:

- Verification of Peggy by Victor then proceeds in 4 steps:
 - **1** Peggy chooses a random number r between 0 and n-1. r is called the **commitment**.

15 February 2016

- Verification of Peggy by Victor then proceeds in 4 steps:
 - Peggy chooses a random number r between 0 and n 1.
 r is called the **commitment**.
 Paggy the resolution of the resolution

Peggy then calculates the **witness** $x = r^2 \mod n$ and sends it to Victor.

- Verification of Peggy by Victor then proceeds in 4 steps:
 - Peggy chooses a random number r between 0 and n 1.
 r is called the **commitment**.
 Peggy then calculates the **witness** x = r² mod n and sends it to Victor.
 - Victor sends the challenge c to Peggy, where c is either 0 or 1.

- Verification of Peggy by Victor then proceeds in 4 steps:
 - Peggy chooses a random number r between 0 and n 1.
 r is called the **commitment**.
 Peggy then calculates the **witness** x = r² mod n and sends it to
 - 2 Victor sends the **challenge** c to Peggy, where c is either 0 or 1.
 - Peggy calculates the **response** $y = (r \times s^c) \mod n$ and sends it to Victor to show that she knows her private key s modulo n. She claims to be Peggy.

Victor.

- Verification of Peggy by Victor then proceeds in 4 steps:
 - Peggy chooses a random number r between 0 and n-1. r is called the **commitment**. Peggy then calculates the **witness** $x = r^2 \mod n$ and sends it to
 - 2 Victor sends the **challenge** *c* to Peggy, where *c* is either 0 or 1.
 - Peggy calculates the **response** $y = (r \times s^c) \mod n$ and sends it to Victor to show that she knows her private key s modulo n. She claims to be Peggy.
 - Wictor calculates $y^2 \mod n$ and $(x \times v^c) \mod n$.

Victor.

- Verification of Peggy by Victor then proceeds in 4 steps:
 - Peggy chooses a random number r between 0 and n-1. r is called the **commitment**. Peggy then calculates the **witness** $x = r^2 \mod n$ and sends it to
 - Peggy then calculates the witness $x = r^2 \mod n$ and sends it to Victor.
 - 2 Victor sends the **challenge** *c* to Peggy, where *c* is either 0 or 1.
 - **3** Peggy calculates the **response** $y = (r \times s^c) \mod n$ and sends it to Victor to show that she knows her private key s modulo n. She claims to be Peggy.
 - 4 Victor calculates $y^2 \mod n$ and $(x \times v^c) \mod n$. If these values are congruent, then Peggy either knows the value of s (she is honest) or she has calculated the value of y in some either ways (dishonest) because in modulo n arithmetic we actually have that

$$y^2 =_n (r \times s^c)^2 =_n r^2 \times s^{2c} =_n r^2 \times (s^2)^c =_n x \times v^c$$

- The 4 steps constitute a round.
- The verification is repeated several times with the value of *c* equal to 0 or 1, chosen randomly.
- Peggy must pass the test in each round to be verified: if she fails
 one single round, the process is aborted.

If the check

$$y^2 =_n (r \times s^c)^2 =_n r^2 \times s^{2c} =_n r^2 \times (s^2)^c =_n x \times v^c$$

returns a yes, then verification is probable; otherwise, the process is aborted

Pamela does not know the secret s, but tries to prove its knowledge. Pamela guesses that Victor is going to choose c=0 (if she guesses wrong, then she loses).

Pamela guesses that Victor is going to choose c = 1 (if she guesses wrong, then she loses).

So, Pamela must find numbers x and y such that $x \times v =_n (x \times s^2)$. Choose y randomly and then set $\frac{r^2}{v} \mod n$ (division modulo n is also easy!).

• Pamela has a strategy to cheat if c = 0:

Choose r randomly, set $x = r^2 \mod n$.

• Pamela has a strategy to cheat if c = 0:

Choose r randomly, set $x = r^2 \mod n$.

• Pamela has a strategy to cheat if c = 1:

Choose *r* randomly, set $x = \frac{r^2}{V} \mod n$.

• Pamela has a strategy to cheat if c = 0:

Choose r randomly, set $x = r^2 \mod n$.

• Pamela has a strategy to cheat if c = 1:

Choose *r* randomly, set $x = \frac{r^2}{v} \mod n$.

• If $c \in \{0, 1\}$ is randomly chosen, Pamela has thus a chance of $\frac{1}{2}$ to cheat.

• Pamela has a strategy to cheat if c = 0:

Choose r randomly, set $x = r^2 \mod n$.

• Pamela has a strategy to cheat if c = 1:

Choose *r* randomly, set $x = \frac{r^2}{v} \mod n$.

- If $c \in \{0, 1\}$ is randomly chosen, Pamela has thus a chance of $\frac{1}{2}$ to cheat.
- If Victor accepts only after *n* successful rounds, the chance to cheat is only $\frac{1}{2^n}$.

73

Pamela has a strategy to cheat if c = 0:

Choose r randomly, set $x = r^2 \mod n$.

• Pamela has a strategy to cheat if c = 1:

Choose *r* randomly, set $x = \frac{r^2}{v} \mod n$.

- If $c \in \{0, 1\}$ is randomly chosen, Pamela has thus a chance of $\frac{1}{2}$ to cheat.
- If Victor accepts only after *n* successful rounds, the chance to cheat is only $\frac{1}{2^n}$.
- We can conclude that

Pamela has no strategy to cheat for unpredictable c.

Fiat-Shamir: Curious Victor

Victor would like to learn the secret x... but we can conclude that

Fiat-Shamir: Curious Victor

Victor would like to learn the secret x... but we can conclude that

Zero-Knowledge Property

Victor learns nothing except the proved statement.

Bibliography

Most of the figures in this lecture are taken from:

 William Stallings. Cryptography and Network Security. Fifth Edition, Prentice Hall, 2010.

Other interesting sources:

- The International PGP Home Page: http://www.pgpi.org/
- SDSI/SPKI (and PKI and PGP): http://world.std.com/~cme/html/spki.html
- Dieter Gollmann. Computer Security. Wiley, 2000.
- Bruce Schneier. Applied Cryptography. Wiley, 1996.
- Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996. Available online.
- Arthur E. Hutt, Seymour Bosworth, Douglas B. Hoyt. Computer Security Handbook. Wiley, 1995.

