RETICOLI ED ALGEBRE DI BOOLE

Abbiamo già introdotto in due modi diversi la nozione di reticolo:

Def.1. Si dice reticolo un insieme (parzialmente) ordinato (L, \leq) tale che per ogni $a,b \in L$ esistano in L inf $\{a,b\}$ e sup $\{a,b\}$.

Def.2. Si dice reticolo una struttura algebrica con due leggi di composizioni (interne) binarie che chiameremo intersezione ed unione ed indicheremo con \land e \lor , che godono delle seguenti proprietà:

- commutativa $\forall a,b \in L$ $a \land b = b \land a$, $a \lor b = b \lor a$

- associativa $\forall a,b,c \in L$ $(a \land b) \land c = a \land (b \land c)$ $(a \lor b) \lor c = a \lor (b \lor c)$

- di assorbimento $\forall a,b \in L$ $a \land (a \lor b) = a$ $a \lor (a \land b) = a$

Si può facilmente passare da una definizione all'altra

 $Def.1 \rightarrow Def. 2$

Se (L, \leq) è un insieme (parzialmente) ordinato tale che per ogni $a,b \in L$ esistano in L inf $\{a,b\}$ e $\sup\{a,b\}$, possiamo porre

 $a \land b = \inf \{a,b\},\$

 $a \lor b = \sup\{a,b\},\$

poiché per ogni $a,b \in L$, esistono per ipotesi inf $\{a,b\}$ e sup $\{a,b\}$ e per come sono definiti sono unici, \land e \lor sono leggi di composizioni interne binarie su L.

Ovviamente entrambe le operazioni godono della proprietà commutativa , verifichiamo che godono anche della proprietà associativa: siano $x = (a \land b) \land c$ e $y = a \land (b \land c)$ quindi, per definizione di \land , $x=\inf\{ \text{ inf } \{a,b\}, c\} \text{ e } y=\inf\{a,\inf\{b,c\}\}.$

Ne segue $x \le \inf \{a,b\}$ e $x \le c$, ma $\inf \{a,b\} \le a$ e $\inf \{a,b\} \le b$, quindi per la transitività della relazione \le , si ha $x \le a$ e $x \le b$. Ora $x \le b$ e $x \le c$ implicano, per definizione di \inf , $x \le \inf$ {b,c} che assieme ad $x \le a$ implica $x \le \inf$ {a, \inf {b,c}}=y. Analogamente si prova che $y \le x$ e dunque, per la antisimmetria di \le , si ottiene a=b. allo stesso modo si prova l'associatività di \lor .

Infine proviamo che le \land e \lor che abbiamo introdotto godono anche della proprietà di assorbimento, Sia $z = a \land (a \lor b) = \inf\{a, \sup\{a,b\}\}\$, per definizione di inf, abbiamo $z \le a$.

Inoltre si ha anche a \leq a (per la riflessività di \leq) ed a \leq sup {a,b}, per definizione di sup, e quindi a è un minorante di {a, sup {a,b}}, da cui a \leq z perché z è il massimo minorante. Dunque per la antisimmetria a=z. Analogamente si prova che a \vee (a \wedge b)=a.

Pertanto $\langle L, \wedge, \vee \rangle$ è un reticolo secondo la definizione 2.

 $Def.2 \rightarrow Def. 1$

Se sull'insieme L sono definite due operazioni interne binari per cui valgono le proprietà commutativa associativa e di assorbimento, si hanno anche queste proprietà

- idempotenza $\forall a \in L$ $a \land a = a$, $a \lor a = a$

infatti , utilizzando due volte la proprietà di assorbimento si ha $a \land a = a \land (a \lor (a \land b)) = a$ e analogamente $a \lor a = a \lor (a \land (a \lor b)) = a$

- a∧b=a se e solo se a∨b=b

infatti se $a \land b = a$ si ha $a \lor b = (a \land b) \lor b$ =b (per le proprietà commutativa e di assorbimento), analogamente se $a \lor b = b$ si ha $a \land b = a \land (a \lor b) = a$.

Ciò posto, si consideri la relazione binaria su L definita da $a \le b$ se e solo se $a \land b=a$ (quindi se e solo se $a \lor b=b$) detto ordinamento indotto su L. Verifichiamo che si tratta di una relazione d'ordine: proprietà riflessiva: $a \le a$ per l'idempotenza che abbiamo appena provato,

proprietà antisimmetrica: se $a \le b$ e $b \le a$ abbiamo $a \land b = a$ e $b \land a = b$, quindi per la proprietà commutativa a=b,

proprietà transitiva: se $a \le b$ e $b \le c$ abbiamo $a \land b = a$ e $b \land c = c$, quindi $a \land c = a \land (b \land c) = (a \land b) \land c$ = $b \land c = c$ (dove si è fatto uso della proprietà associativa) e quindi $a \le b$.

Verifichiamo poi che rispetto alla relazione d'ordine così introdotta per ogni $a,b \in L$ esistono in L inf $\{a,b\}$ e sup $\{a,b\}$ e si ha proprio inf $\{a,b\}$ = $a \land b$ e sup $\{a,b\}$ = $a \lor b$.

Per provare che inf $\{a,b\}=a \land b$ dobbiamo mostrare che $a \land b \le a$ e $a \land b \le b$, infatti $(a \land b) \land a = a \land (a \land b) = (a \land a) \land b = a \land b$ e analogamente si prova $(a \land b) \land b = b$; inoltre dobbiamo provare che se $x \le a$ e $x \le b$, allora $x \le a \land b$, infatti abbiamo $x \land a = x$, $x \land b = x$ da cui $x \land (a \land b) = (x \land a) \land b = x \land b = x$. Analogamente si prova (utilizzando il fatto che $a \le b$ se e solo se $a \lor b = b$) che $\sup\{a,b\} = a \lor b$.

Possiamo quindi passare da una all'altra definizione a seconda di quello che ci è utile.

Osserviamo che la relazione d'ordine che abbiamo introdotto è *compatibile con le operazioni*, ovvero se a≤b c≤d allora a∧c≤b∧d e a∨c≤b∨d. Provarlo per esercizio.

Esempi:

- Si consideri il reticolo (definito come insieme ordinato) costituito dall'insieme dei naturali N con la relazione d'ordine definita da n ≤ m se e solo se n divide m, poiché inf{n,m}= M.C.D.(n,m) e sup{n,m}= m.c.m.(n,m), N con le operazioni interne M.C.D. e m.c.m è un reticolo secondo la definizione 2.
- 2) Si consideri l'insieme Z degli interi con l'usuale relazione di \leq , Z è un reticolo rispetto alle operazioni min $\{n,m\}$ e max $\{n,m\}$.
- 3) Si consideri l'insieme $\mathcal{D}(A)$ delle parti di un insieme A con le usuali operazioni di unione e intersezione insiemistica, allora su $\mathcal{D}(A)$ viene indotta come relazione d'ordine la relazione di inclusione insiemistica.
- **Def. 3.** Si dice *zero* di un reticolo $\langle L, \wedge, \vee \rangle$ l'elemento neutro, se esiste, rispetto all'operazione \vee (che è lo zero rispetto all'operazione \wedge ed è il minimo rispetto alla relazione d'ordine indotta). Si dice *uno* di un reticolo $\langle L, \wedge, \vee \rangle$ l'elemento neutro, se esiste, rispetto all'operazione \wedge (che è lo zero rispetto all'operazione \vee ed è il massimo rispetto alla relazione d'ordine indotta).

Ovviamente un reticolo finito ha sempre zero e uno.

Def.4. Un reticolo si dice *distributivo* se e solo se valgono le proprietà distributive di un'operazione rispetto all'altra:

```
\forall a,b,c \in L a \land (b \lor c) = (a \land b) \lor (a \land c) a \lor (b \land c) = (a \lor b) \land (a \lor c).
```

Va osservato che se vale una delle due proprietà precedenti vale anche l'altra e viceversa.

Def.5. Si dice *sottoreticolo* di un reticolo $\langle L, \wedge, \vee \rangle$ un sottoinsieme H di L chiuso rispetto alle operazioni \wedge e \vee .

Ad esempio l'insieme dei numeri pari è un sottoreticolo del reticolo < N, M.C.D., m.c.m>. L'insieme H= {1,2,3,12} non è un sottoreticolo di < N, M.C.D., m.c.m> (pur essendo un reticolo quando si consideri su H la relazione di divisibilità come relazione d'ordine, notate che in questo caso sup{2,3} è 12, non m.c.m (2,3))

Osservazione: Un reticolo è distributivo se e solo se non contiene sottoreticoli il cui diagramma di Hasse ha una delle seguenti forme:

Def. 6. Un reticolo L con 0 ed 1 si dice *complementato* se per ogni $a \in L$ esiste un $a' \in L$ tale che $a \land a' = 0$ e $a \lor a' = 1$. L'elemento a' (che non è necessariamente unico) si dice *complemento* di a.

Un reticolo distributivo e complementato è *unicamente complementato* (ovvero ogni elemento ammette un unico complemento). Provarlo per esercizio.

Def. 7. Si dice *algebra di Boole* un reticolo con 0 ed 1, distributivo e complementato. Un'algebra di Boole viene spesso indicata con $\langle L, \wedge, \vee, ' \rangle$ o con $\langle L, \wedge, \vee, 0, 1, ' \rangle$ (per indicare rispettivamente che ha una operazione interna unaria, il complemento , o che ha due operazioni interne zeroarie, la scelta di 0 ed 1, ed una operazione interna unaria, il complemento)

Osserviamo che per ogni $a,b \in L$ si ha (a')'=a, 0'=1, $(a \land b)'=a' \lor b'$, $(a \lor b)'=a' \land b'$. Dimostrarlo per esercizio.

Es. L'insieme $\wp(A)$ con unione ed intersezione insiemistica è un'algebra di Boole. (Lo 0 è l'insieme vuoto, l'1 è l'insieme A, il complemento di un insieme B è il complemento insiemistico).

Prop.1. In un'algebra di Boole la relazione d'ordine indotta può essere anche definita ponendo $a \le b$ se e solo se $a \land b' = 0$.

Infatti, se $a \le b$, si ha $a \land b = a$, ma è per definizione di 0, $0 = a \land 0 = a \land (b \land b')$, da cui per la proprietà associativa $0 = (a \land b) \land b' = a \land b'$.

Se invece $a \land b' = 0$, da $a = a \land 1 = a \land (b \lor b')$ si ha per la proprietà distributiva $a = (a \land b) \lor (a \land b') = (a \land b) \lor 0 = a \land b$, cioè $a \le b$.

- **Def. 8.** Si dice *atomo* di un reticolo $\langle L, \wedge, \vee \rangle$ con 0 un elemento $a \in L$ e diverso da 0 tale che per ogni $b \in L$ si abbia $a \wedge b = 0$ o $a \wedge b = a$, in altre parole a è un elemento tale che 0 < a e non esiste b con 0 < b < a (dove con il simbolo < intendiamo la relazione binaria su L definita da a < b se e solo se $a \le b$ e $a \ne b$); questo viene spesso indicato dicendo che l'elemento a *copre* lo 0.
- **Prop. 2.** In un reticolo finito per ogni $b \in L$ e diverso da 0 esiste almeno un atomo a tale che $a \le b$. Infatti o b è un atomo e allora $b \le b$, o esiste un elemento $b_1 \in L$ tale che $b_1 \le b$ e o b_1 è un atomo o esiste un elemento $b_2 \in L$ tale che $b_2 \le b_1 \le b$ e o b_2 è un atomo o esiste un elemento $b_3 \in L$ tale che $b_3 \le b_2 \le b_1 \le b$, etc...; poiché gli elementi di L sono finiti questa sequenza deve finire in un numero finito di passi, ma termina solo quando si trova un $b_i \in L$ tale che $b_i \le ... \le b_1 \le b$ e b_i è un atomo.

Di conseguenza ogni reticolo finito $\langle L, \wedge, \vee \rangle$, non ridotto a un solo elemento, contiene un insieme non vuoto di atomi.

Prop. 3. In un'algebra di Boole finita $\langle L, \wedge, \vee, ' \rangle$, ogni $b \in L$ e diverso da 0 si scrive come unione di tutti e soli gli atomi di L minori o eguali a b.

Sia $b \in L$ e diverso da 0, sappiamo che esiste un insieme non vuoto $A_b = \{a \in L | a \text{ è un atomo e } a \leq b\}$.

Sia $c = \bigcup_{a \in A_b} a$, si ha $c \le b$ (perché $\le \grave{e}$ compatibile con l'unione). Supponiamo c < b allora $c' \land b \ne 0$ ($c' \land b = 0$ implicherebbe

b≤c e quindi c=b), esiste quindi un atomo a≤ c' \land b, da cui a≤ c c' e a≤b cioè a∈ A_b , ma da quest'ultima si ha a≤c e quindi a≤c \land c'=0, assurdo. Dunque c=b.

Prop. 4. Sia <L, \land , \lor , '> un'algebra di Boole finita , se $b=a_1\lor a_2\lor ...\lor a_n$ ed a è un atomo L minore o eguale a b, allora esiste un i, con $1 \le i \le n$, tale che $a=a_i$.

Essendo $a \le b$ si ha $a=a \land b$ e quindi $a=a \land (a_1 \lor a_2 \lor ... \lor a_n) = (a \land a_1) \lor (a \land a_2) \lor ... \lor (a \land a_n)$, per la distributività. Ora per ogni j, essendo a un atomo, si ha $a \land a_j = 0$ oppure $a \land a_j = a$; se fosse sempre $a \land a_j = 0$ si avrebbe l'assurdo a=0, dunque esiste un i tale che $a \land a_i = a$, ma essendo anche a_i un atomo si deduce $a=a_i$.

Si può a questo punto osservare che ogni elemento b di un'algebra di Boole finita è completamente individuato dall'insieme A_b .

Siamo quindi in grado di provare il

Teor.1. Ogni algebra di Boole finita $\langle L, \wedge, \vee, ' \rangle$ è isomorfa all'algebra di Boole $\langle \wp(A), \cap, \cup, ' \rangle$, dove A è l'insieme degli atomi di L, \cap, \cup , ' sono unione, intersezione e complemento insiemistici. Consideriamo la corrispondenza $f: L \rightarrow \wp(A)$ definita da $f(b) = A_b$. Le proposizioni 3 e 4 garantiscono che f è biunivoca.

E' facile provare che f conserva l'operazione di unione. Infatti per ogni b,c in L, $A_{b\lor c} \supseteq A_b \cup A_c$; inoltre se $a \in A_{b\lor c}$, abbiamo $a=a\land(b\lor c)=(a\land b)\lor(a\land c)$, da cui tenuto conto della definizione di atomo, si ricava $a=a\land b$ o $a=a\land c$, cioè $a\in A_b$ o $a\in A_c$, da cui $A_{b\lor c} \subseteq A_b \cup A_c$.

Proviamo ora che f conserva l'operazione di intersezione. Per ogni b,c in L, $A_{b \wedge c} \subseteq A_b \cap A_c$; inoltre se $a \in A_b \cap A_c$, abbiamo $a=a \wedge b$ e $a=a \wedge c$ da cui $a \wedge (b \vee c)=(a \wedge b) \vee (a \wedge c)=a$, da cui $A_{b \wedge c} \supseteq A_b \cap A_c$.

Banalmente si ha che $f(0)=\emptyset$ e f(1)=A.

Consideriamo ora f(a'). Poiché f conserva l'intersezione, si ha $f(a \land a') = A_a \cap A_{a'}$, ma $f(a \land a') = f(0) = \emptyset$, dunque $A_a \cap A_{a'} = \emptyset$; analogamente si prova che $A_a \cup A_a = S$; dunque $A_a \cap A_a \cap$

Ne segue che f è un isomorfismo di $\langle L, \wedge, \vee, ' \rangle$ su $\langle \wp(A), \cap, \cup, ' \rangle$.

Corollario. 1. Un'algebra di Boole finita <L, \wedge , \vee , '> ha ordine 2^n per qualche intero naturale n.

Corollario. 2. Per ogni intero naturale n esiste un'algebra di Boole $\langle L, \wedge, \vee, ' \rangle$ di ordine 2^n .