I Nombre de variables

Soit φ une formule logique n'utilisant pas \neg . Soit n le nombre de connecteurs logiques (\lor et \neg) dans φ . Exprimer le nombre d'**occurrences** (c'est à dire compté avec multiplicité) de variables de φ , en fonction de n.

II Énigme gastronomique

Trois personnes (nommée A, B, C) mangent ensemble. On sait que :

- \bullet si A prend un dessert, B aussi
- \bullet soit B, soit C prennent un dessert, mais pas les deux
- A ou C prend un dessert
- \bullet si C prend un dessert, A aussi

Déterminer qui prend un dessert, en utilisant une table de vérité.

III Calcul booléen

Donner des formules équivalentes les plus simples possibles pour les formules suivantes (en utilisant le moins de littéraux possible) .

- 1. $\varphi_1 = c(b+c) + (a+d)\overline{(a\overline{d}+c)}$
- 2. $\varphi_2 = ab + c + \overline{b}\overline{c} + \overline{a}\overline{c}$
- 3. $\varphi_3 = \neg(a \land b) \land (a \lor \neg b) \land (a \lor b)$

IV Système complet logique

On définit les opérateurs NAND, NOR, XOR par leurs tables de vérité :

x	y	x NAND y	x NOR y	x XOR y
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

On dit qu'un ensemble S d'opérateurs logiques est **complet** si toute formule logique est équivalente à une formule qui n'utilise que des opérateurs dans S.

- 1. Exprimer NAND, NOR, XOR, à l'aide de \vee , \wedge , \neg .
- 2. Montrer que $\{\land, \neg\}$ est complet.
- 3. Montrer que $\{NAND\}$ est complet. (c'est pour cette raison que le NAND est très utilisé en électronique)
- 4. Montrer que $\{NOR\}$ est complet.
- 5. Montrer que $\{XOR\}$ n'est pas complet.

V Forme normale conjonctive/disjonctive

On rappelle qu'une forme normale conjonctive (FNC) est une conjonction (\wedge) de disjonctions (\vee) de littéraux (chaque littéral étant une variable ou sa négation).

On rappelle qu'une forme normale disjonctive (FND) est une disjonction (\vee) de conjonctions (\wedge) de littéraux (chaque littéral étant une variable ou sa négation).

Par exemple, $(a \lor b) \land (b \lor c \lor d) \land c$ est une FNC.

1. Montrer par induction/récurrence que toute formule logique (construite avec ∧, ∨, ¬) est équivalente à une FNC ainsi qu'à une FND.

2. On rappelle que $x \implies y$ est une notation pour $\neg x \lor y$. Donner une FNC et une FND équivalente à $\neg(x \implies (\neg y \land z)) \lor (z \implies y)$.

VI Extrait Mines-Pont 2010

On appelle **variable booléenne** une variable qui ne peut prendre que les valeurs 0 (synonyme de faux) ou 1 (synonyme de vrai). Si x est une variable booléenne, on note \overline{x} le complémenté (ou négation) de x: x vaut 1 si x vaut 0 et x vaut 1. On appelle **littéral** une variable booléenne ou son complémenté.

On représente la disjonction (« ou » logique) par le symbole \vee et la conjonction (« et » logique) par le symbole \wedge .

On appelle clause une disjonction de littéraux. De plus, il ne doit pas y avoir deux fois la même variable dans une clause.

On appelle formule logique sous forme normale conjonctive une conjonction de clauses.

On appelle **valuation** des variables d'une formule logique une application de l'ensemble de ces variables dans l'ensemble $\{0,1\}$. Une clause vaut 1 si au moins un de ses littéraux vaut 1 et 0 sinon. Une clause est dite **satisfaite** par une valuation des variables si elle vaut 1 pour cette valuation. Une formule logique sous forme normale conjonctive vaut 1 si toutes ses clauses valent 1 et 0 sinon. Une formule logique est dite **satisfaite** par une valuation des variables si elle vaut 1 pour cette valuation. Une formule logique est dite **satisfaite** par une valuation de ses variables qui la satisfait.

Étant donnée une formule logique f sous forme normale conjonctive, on note dans ce problème $\max(f)$ le nombre maximum de clauses de f pouvant être satisfaites par une même valuation.

En notant m le nombre de clauses de f, on remarque que f est satisfiable si et seulement si $\max(f) = m$.

On considère la formule f_1 (sous forme normale conjonctive) dépendant des variables x, y, z:

$$f_1 = (x \vee y \vee z) \wedge (\overline{x} \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee \overline{y} \vee z)$$

1. Indiquer si f_1 est satisfiable ou non et, si elle est satisfiable, donner l'ensemble des solutions de f_1 .

Une **instance de 3-SAT** est une formule logique sous forme normale conjonctive dont toutes les clauses contiennent 3 littéraux.

2. Déterminer une instance f_2 de 3-SAT non satisfiable et possédant exactement 8 clauses; indiquer $\max(f_2)$ en justifiant la réponse.

On considère une instance f de 3-SAT définie sur n variables booléennes.

On note V l'ensemble des 2^n valuations des variables de f.

Soit val une valuation des n variables. Si C est une clause, on note $\varphi(C, val)$ la valeur de C pour la valuation val et on note $\psi(f, val)$ le nombre de clauses de f qui valent 1 pour la valuation val.

On a :
$$\psi(f, val) = \sum_{C \text{ clause de } f} \varphi(C, val) \text{ et } \max(f) = \max_{val \in V} \psi(f, val).$$

- 3. Soit C une clause de f. Donner une expression simple de $\sum_{val \in V} \varphi(C, val)$, en fonction de n.
- 4. Soit m le nombre de clauses dont f est la conjonction. En considérant la somme $\sum_{C \text{ clause de } f} \sum_{val \in V} \varphi(C, val)$, donner en fonction de m un minorant de $\max(f)$.
- 5. Donner le nombre minimum de clauses d'une instance de 3-SAT non satisfiable.

VII Réduction de 3-SAT à d'autres problèmes

Le problème 3-SAT consiste à déterminer si une formule en forme normale conjonctive dont chaque clause contient 3 littéraux est satisfiable.

Une des questions les plus importantes en informatique est de savoir s'il est possible de résoudre 3-SAT en temps polynomial (en la taille de la formule). On pense qu'il n'en existe pas (c'est la fameuse conjecture $P \neq NP$).

1. On considère le problème CLIQUE : étant donné un graphe G et un entier k, existe t-il un sous-graphe complet (une clique) à k sommets dans G?

Montrer que si on peut résoudre CLIQUE en temps polynomial alors on peut résoudre 3-SAT en temps polynomial.