Multi-Carrier Model Data Detailed Version

LAST UPDATED | May 1, 2019

Numerical Data

Table 1: Capacities and costs of various technologies

Technology	κ_0^x	κ^x_{max}	ζ^x	$ heta_f^x$	θ_v^x	Lifetime	Source
	GW(h)	GW(h)	k€/MW(h)	M€/GW*year	€/MWh	years	
Solar PV	4.0	40.0^{1}	510.0	8.8	0.0	30	[12, 2]
Wind onshore	2.8	8.4^{1}	910.0	22.3	2.3	30	[12, 2]
Wind offshore	2.3	8.0^{1}	2000.0	37.8	2.7	30	[11, 2]
OCGT	0.0	N/A	560.0	18.6	4.2	25	[2]
CCGT	0.0	N/A	830.0	27.8	4.2	25	[2]
Fuel Cells	0.0	N/A	2000.0	100.0	0.0	20	[2]
Nuclear	3.0^{2}	N/A	N/A	93.0	2.1	N/A	[1]
CHP	1.8	1.8	N/A	40.0	0.0	N/A	[13]
Biomass	0.3	0.3	N/A	92.3	3.7	N/A	[2]
Waste	0.9	0.9	N/A	175.6	2.5	N/A	[2]
Electrolysis	0.0	N/A	600.0	30.0	0.0	20	[2]
Methanation	0.0	N/A	400.0	30.0	0.0	20	[24]
SMR	0.0	N/A	400.0	20.0	0.0	25	[18]
Pumped-hydro	1.3 GW / 5.3 GWh	1.3 GW / 5.3 GWh	N/A	45.0	8.0	N/A	[7]
Batteries ⁴	0 GW / 0 GWh	N/A	108.0 (p) / 326.5 (e)	5.4 (p) / 16.3 (e)	0.0	25	[19, 20]
Hydrogen Storage	0.0	N/A	8.4	0.0	0.0	30	[4]
Nat. Gas Storage	8000.0	8000.0	N/A	0.0	2.5^{5}	N/A	
Post-Combustion CC ⁶	0.0	N/A	2160.0 (WS, BM) / 3150.0 (NG, SMR)	N/A	N/A	25	[21]
Direct Air CC^6	0.0	N/A	7500.0	N/A	25.0	25	[17]

Variable renewable generation technical potential across all scenarios, unless otherwise stated.
 Capacity assumed available in one of the selected scenarios.
 Pumped-hydro and battery storages have distinct power (p) and energy (e) components.

⁴ Costs retrieved from consultations with the industrial partner.

 $^{^{5}}$ Both capacities and costs of the carbon capture technologies are expressed on a kT/h basis.

Table 2: Other capacities and costs

Parameter	Unit	Value	Source
Electricity imports capacity	GW	6.5	[6]
Electricity imports costs	€/MWh	Time Series	[22]
Hydrogen import capacity	GWh	165.0	Energy volume per tanker.
Hydrogen imports costs	€/MWh	160.0	[16]
Natural Gas import costs	€/MWh	time series	Confidential data provided by the industrial partner.
Biomass fuel cost	€/MWh	35.0	[15]
Waste fuel cost	€/MWh	10.0	Assumed.
CO ₂ transport capacity	kT/h	3.5	Assumed from [21, 25].
CO2 storage capacity	kT	100.0	Assumed.
CO2 transport cost	€/t	2.0	[21]
CO ₂ emission price	€/t	80.0	Assumed.
VoLL (electricity)	€/MWh	3000.0	[8]
VoLL (hydrogen)	€/MWh	500.0	Retrieved from consultations with the industrial partner.
VoLL (natural gas)	€/MWh	500.0	Retrieved from consultations with the industrial partner.

Table 3: Operational parameters of various technologies

Technology	η^1	$\Delta/{\Delta_+}^2$	μ^3	ν	ϕ	Source
	%	% of IC	%	tCO2/MWh	MWh/tCO2	
OCGT	41.0	100.0/100.0	0.0	0.202	N/A	[2, 14]
CCGT	58.0	100.0/100.0	0.0	0.202	N/A	[2, 14]
Fuel Cells	50.0	100.0/100.0	0.0	0.0	N/A	[2, 14]
Nuclear	N/A^4	1.0/1.0	20.0	0.0	N/A	[1]
CHP	49.0^{5}	30.0/25.0	20.0	0.218^{6}	N/A	[13, 14]
Biomass	28.1	30.0/25.0	20.0	0.4	N/A	[2, 14]
Waste	22.7	30.0/25.0	20.0	0.33	N/A	[2, 14]
Electrolysis	62.0	100.0/100.0	5.0	N/A	N/A	[2, 23]
Methanation	78.0	100.0/100.0	5.0	N/A	N/A	[5]
SMR	80.0	N/A	0.0	0.202	N/A	[18, 14]
Pumped-hydro	80.0	N/A	N/A	N/A	N/A	[2]
Batteries	85.0 (99.9)	N/A	N/A	N/A	N/A	
Hydrogen Storage ⁷	96.4	N/A	N/A	N/A	N/A	
Nat. Gas Storage ⁷	99.0	N/A	N/A	N/A	N/A	
Post-Combustion CC	90.0	N/A	N/A	N/A	0.4125^{8}	[3]
Direct Air CC	N/A	N/A	N/A	N/A	$0.35/1.45^9$	[17]

 $^{^{1}}$ For power generation technologies, the electrical efficiency is provided. For conversion technologies, we refer to the overall process efficiency, considering the LHV of the output fuel. For storage technologies, round-trip efficiency is provided, while batteries include also a non-negligible self-discharge factor, mentioned in parantheses. For carbon capture technologies, the value represents the share of CO2 captured.

² Assumed values.

³ Assumed values.

⁴ Nuclear power plant capacity represents the electrical output.

⁵ Only the electrical side is considered.

 $^{^6}$ Value taking into account 90% of units running on natural gas and the rest on biomass [9].

⁷ Values obtained following discussions with the industrial partner.

⁸ Electricity demand per unit of captured CO2.

⁹ Electricity and natural gas, respectively, demands per unit of captured CO2.

References

- [1] US Energy Information Administration. Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2019. 2019. URL: https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf.
- [2] Danish Energy Agency. *Technology Data*. 2019. URL: https://ens.dk/en/our-services/projections-and-models/technology-data.
- [3] A. Belderbos. Storage via power-to-gas in future energy systems. 2019. URL: https://lirias.kuleuven.be/retrieve/531420.
- [4] T. Brown et al. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. 2018. URL: https://arxiv.org/pdf/1801.05290.pdf.
- [5] Enea Consulting. The Potential of Power-to-Gas. p. 34-45. 2016.
- [6] Elia. Electricity Scenarios for Belgium Towards 2050 Assumptions on Interconnections. p. 55–57. 2017.
- [7] Elia. Electricity Scenarios for Belgium Towards 2050 Economic Assumptions. p. 58–62. 2017.
- [8] Elia. Electricity Scenarios for Belgium Towards 2050 Economic Assumptions. p. 71. 2017.
- [9] Elia. Generating Facilities. 2019. URL: https://www.elia.be/en/grid-data/power-generation/generating-facilities.
- [10] Elia. Load and Load Forecasts. http://www.elia.be/en/grid-data/Load-and-Load-Forecasts/total-load.
- [11] Elia. Solar PV Generation Data. http://www.elia.be/en/grid-data/power-generation/Solar-power-generation-data/Graph.
- [12] Elia. Wind Power Generation Data. http://www.elia.be/en/grid-data/power-generation/wind-power.
- [13] IEA. Energy Supply Technologies Data. 2014. URL: https://iea-etsap.org/index.php/energy-technology-data/energy-supply-technologies-data.
- [14] IPCC. IPCC Emissions Factor Database. 2006. URL: https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database.
- [15] IRENA. Biomass for Power Generation Current Costs of Biomass Power: Feedstock Prices. p. 27-31. 2012. URL: http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-Biomass.pdf.
- [16] S. Kan and Y. Shibata. Evaluation of the Economics of Renewable Hydrogen Supply in the APEC Region. 2018. URL: https://eneken.ieej.or.jp/data/7944.pdf.
- [17] David W. Keith et al. A Process for Capturing CO2 from the Atmosphere. 2018. DOI: 10.1016/j.joule. 2018.05.006.
- [18] Air Liquide. Technology Handbook. 2015.
- [19] NREL. 2018 US Utility-Scale Photovoltaics-Plus-Energy Storage Sustem Costs Benchmark. 2018. URL: https://www.nrel.gov/docs/fy19osti/71714.pdf.
- [20] NREL. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017. 2017. URL: https://www.nrel.gov/docs/fy17osti/68925.pdf.
- [21] E.S. Rubin, J.E. Davidson, and H. J. Herzog. The cost of CO2capture and storage. 2015. DOI: 10.1016/j.ijggc.2015.05.018.
- [22] EPEX Spot. European Electricity Index. https://www.epexspot.com/en/market-data/elix.
- [23] M. Zapf. SILYZER 300 PEM Module Array. 2018. URL: http://siemens.com/silyzer.
- [24] M. Zapf. Stromspeicher und Power-to-Gas im deutschen Energiesystem. 2017. DOI: 10.1007/978-3-658-15073-0.
- [25] European Technology Platform for Zero Emission Fossil Fuel Power Plants. *The Costs of CO2 Capture, Transport and Storage*. 2011. URL: https://hub.globalccsinstitute.com/sites/default/files/publications/17011/costs-co2-capture-transport-and-storage.pdf.