A Lagrange Multiplier-based Regularization Algorithm for Image Super-resolution

Prasad Gaikwad EE18MTECH11001 Nisha Akole EE18MTECH11002 P. Swetha Rani EE18MTECH11006

IIT Hyderabad

March 7, 2019

Single-image Super-resolution (SR) Problem

- To restore a high-resolution (HR) image from a single low resolution (LR) input image
- The image super-resolution is an ill-posed inverse problem
- Y = HX

X = HR image

Y = LR image

H = down-sampling matrix

Regularization Model

$$\min(X) \|Y - HX\|^2 + \lambda \|CX\|^2$$

 $\lambda =$ Regularization parameter C = High Pass Filtering Matrix

The Lagrange multiplier-based model

The constrained optimization model can be described as $\min(X) \|Y - HX\|^2$ $s.t. \|CX\|^2 = \delta$

 $\delta = \text{Constrained Parameter}$ By means of Lagrange multiplier method $\mathbf{X}^* = \operatorname{argmin}(\mathbf{X}) \ \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|^2 + \mu \|\mathbf{C}\mathbf{X}\|^2 - \mu \delta$

The Lagrange multiplier-based model

$$L(X,\mu) = \|Y - HX\|^2 + \mu \|CX\|^2 - \mu\delta$$

$$\nabla L(x,\mu) = 0$$

$$\nabla \|Y - HX\|^2 + \mu \nabla \|CX\|^2 = 0$$

s.t. $\|CX\|^2 = \delta$

The two-phase iterative method

Problem

How to determine the value of μ according to the value of δ needs to be solved.

The first phase:

Step 1

- Step 1.1: If $||CX||^2 \delta = 0$, then set indicator(k) = 0
- Step 1.2: If $\|\mathit{CX}\|^2 \delta < 0$, then set indicator(k) = -1, $\alpha = 0.1$ and go to step 2
- Step 1.3: If $\|\mathit{CX}\|^2 \delta > 0$, then set indicator(k) = +1, $\alpha = 10$ and go to step 2
- Step 2 = Set $\mu = \alpha \mu$ compute X by the conjugate gradient method based on the value of μ
- **Step 3** = Repeat the step 1 and 2
- $\textbf{Step 4} = \text{Calculate the product of indicator functions from step 3} \quad \text{step 1}$

The two-phase iterative method

The Second Phase:

- **Step 1:** Define the variable ϵ , μ_{+-} and X_{+-} and thensetthevalue ϵ
- **Step 2:** Compare the values of $\mu_ \mu_+$ and ϵ
- **Step 2.1:** If $\mu_ \mu_+ > \epsilon$ set $\mu_{+-} = 0.5 \mu_+ + 0.5 \mu_-$ and compute X_{+-}
- by the conjugate gradient method based on the value of μ_{+-}
- **Step 2.2:** If $\mu_ \mu_+$ < ϵ set $\mu_{+-}=0.5\mu_++0.5\mu_-$ and go to step 4
- **Step 3.1:** Compare the values of $||CX||^2$ and δ
- Step 3.1: If $\|\mathit{CX}\|^2 \delta = 0$, then set $\mu_{+-} = \mu$ and go to step 4
- Step 3.2: If $\|\mathit{CX}\|^2 \delta < 0$, then set $\mu_- = \mu_{+-}$ and go to step 2
- Step 3.3: If $\|\mathit{CX}\|^2 \delta > 0$, then set $\mu_+ = \mu_{+-}$ and go to step 2
- **Step 4:** return μ

Conclusion

- This algorithm can be applied to LR image so that it can be identified by recognition equipment
- We know LR image(Y), DownSampling Filter (H) and constraint on squared norm of HR image
- ullet The unknowns are μ and X
- ullet We can find μ from two-phase iterative method
- By using lagrange multiplier method we can find X