4-laboratoriya jumısı

RL hám RC shinjirlardi ózgeriwshen jiyiliklerde izertlew.

Jumistiń maqseti: hár túrli jiyiliklerde RL- hám RC-shinjirları kernewleri mánisleri, hám de garmonik tok hám kernew arasındağı fazalar jılısıwın eksperimental anıqlawdı úyreniw; fazometr islewin hám eki garmonik bahalar arasındağı fazalar ayırmashılığın fazometr járdeminde ólshew usılı menen tanısıw.

1. Qısqasha teoriyalıq mağlıwmat

Qandayda bir passiv element arqalı tómendegi tok oqayotgan bolsın

$$i = I_m Cos(\omega t + \psi).$$
 (4.1)

Sol elementte kernew hám toktiń garmonik shayqalıwı amplitudalari hám baslangısh fazaları arasındagı baylanısıwdı anıqlaymız; bunda olardıń oń bagdarları uyqas, dep qabıl etemiz.

Rezistorda:

$$u_R = R \cdot I = R \cdot I_m \cos(\omega t + \psi) = U_{Rm} \cos(\omega t + \psi)$$
 (4.2)

Bunnan belgili boladıki, rezistiv qarsılıqta tok hám kernew amplitudalari arasındağı baylanısıw $U_{Rm}=R\cdot I_m$ boladı. Bunda terbelisler fazaları sáykes keledi, yağnıy rezistorda tok hám kernewlerdiń terbelisleri fazada boladı. Olardıń vektor diagrammaları 3.1-súwretde keltirilgen.

1-súwret. Rezistorli shınjır sxeması hám vektor diagramması.

Induktivlik katushkası ámeldegi bolgan shınjırdan (4.1) garmonik tokı ağıp ótkende induktivliktegi kernew tómendegi nizamlıqta ózgeredi

$$u_{L} = L\frac{di}{dt} = -\omega LI_{m} \sin(\omega t + \varphi \Psi) = \omega LI_{m} Cos(\omega t + \Psi + \frac{\pi}{2})$$
(4.3)

Sonday eken, tok hám kernew garmonik terbelisleri amplitudalari arasında tómendegi baylanısıw ámeldegi boladı eken:

$$U_{mL} = \omega L I_m \tag{4.4}$$

Anıqlangan (3. 1) hám (3. 3) anılatpalar analizinen usıdan ayqın boladı, induktivlikda toktın garmonik shayqalıwı kernew shayqalıwınan faza boyınsha $\varphi=\pi/2$ müyeshke keshiger (artta qaladı) eken; yamasa, usı manisten alıp qaragandağı basqasha tariyp - kernew garmonik terbelisleri fazası boyınsha tok terbelislerinen $\pi/2$ müyeshke jıldamlap (ilgerilep) keter, yamasa aldında bolar eken.

Izbe-iz jalgangan (2-súwret) rezistiv hám induktiv qarsılıqları bolgan elektr shınjırında (qısqalıq ushın RL-shınjır) garmonik terbelisler hám aktiv, hám induktiv qurawshılardan ibarat boladı. Shınjırda

qarsılıqlardıń qanday quraytuğını úlkenlew yamasa kishilew ekenligine qaray, tok kernewge salıstırğanda $0<\phi<\pi/2$ műyeshke keshigedi. Tok I, rezistordaği kernew U_R , induktivlikdegi kernew U_L hám keltirilgen kernew aralarındağı faz jılısıwı $\phi=\psi_U-\psi_I$ tómendegi ańlatpalar járdeminde esaplanadı:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (\omega L)^2}};$$

$$U_R = R \cdot I = U \frac{R}{Z} = \frac{RU}{\sqrt{R^2 + (\omega L)^2}};$$

$$U_L = \omega L I = U \frac{\omega L}{Z} = \frac{\omega L U}{\sqrt{R^2 + (\omega L)^2}};$$

$$\varphi = \arctan \frac{\omega L}{Z} = \arctan \frac{U_L}{U_R}.$$

$$U \downarrow \qquad \qquad U_L$$

2-súwret. a) izbe-iz RL-shinjiri sxeması; b) vektor diagramması

Sıyımlılıqğa garmonik kernew $u = U_m \cos(\omega t + \psi)$ jalgansa, tok tómendegishe ańlatpalanadı:

$$i_{C} = C \frac{du}{dt} = -\omega C U_{m} \sin(\omega t + \Psi) = \omega C U_{m} Cos(\omega t + \Psi + \frac{\pi}{2})_{,(4.9)}$$

Sonday eken, kernew iymek sızigi tok iymek sıziginan $\pi/2$ műyeshke keshigedi.

a)

Sıyımlılıqta garmonik tok hám kernew terbelisleri amplitudalari tómendegi ańlatpa járdeminde anıqlanadı

$$I_{mC} = \omega C U_m \tag{4.10}$$

Parametrleri aralas sxemalarda - rezistiv qarsılıq R hám sıyımlılıq C ámeldegi bolganda (3. 3-súwret), kernew shayqalıwı toktıń shayqalıwınan - $\pi/2 < \phi < 0$ műyeshke keshigedi. RC-shınjırlarda tok hám kernew amplitudalari, hám de olar arasındağı fazalar ayırmashılığı tómendegi ańlatpalar járdeminde anıqlanadı:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (\frac{1}{\omega C})^2}};$$
(4.11)

$$U_{R} = R \cdot I = U \frac{R}{Z} = \frac{RU}{\sqrt{R^{2} + (\frac{1}{\omega C})^{2}}};$$

$$U_{C} = \frac{I}{\omega C} = \frac{U}{\omega CZ} = \frac{U}{\omega C\sqrt{R^{2} + (\frac{1}{\omega C})^{2}}};$$

$$\varphi = -arctg \frac{1}{\omega CR} = -arctg \frac{U_{C}}{U_{R}}.$$

$$(4.13)$$

$$U = \frac{U_{R}}{U_{C}} = \frac{U_{C}}{U_{C}} = \frac{U_{C}}{U_{C}}$$

$$(4.14)$$

3- súwret. a) Izbe-iz RC - shinjiri sxeması; b) vektor diagramması.

Tómende RL- hám RC-shinjirlar sxemaları reaktiv elementleriniń kernewleri tásir etiwshi mánisleriniń jiyilikga baylanıslılığı keltirilgen (4. 4- súwret).

5- suwretde RL-shinjir 2,a- súwret sxeması (1-iymek sızıq) hám RC-shinjir 3,a-súwret sxeması (2-iymek sızıq) támiyinlew kernewleri hám tokları arasındağı fazalar jılısıwınıń jiyilikga baylanıslılığı keltirilgen.

Eki sxema ushın aktiv R, reaktiv Q hám tolıq S quwatlar tómendegi ańlatpalar járdeminde anıqlanadı:

$$P=R \cdot I^2=U \cdot I \cdot \cos \varphi$$
, Vt; (4.15)

Q=
$$X I^2 = U \cdot I \sin \varphi$$
, $V \cdot A$; (4.16)

$$S=Z \cdot I^2=U \cdot I, V \cdot A; \qquad (4.17)$$

Sonı atap ótiw zárúr, (4.16) ańlatpada RL - shinjir

 $X = X_L = \omega L$, $RC - Shinjir ushin <math>X = -X_C = -1/\omega C$.

2. Dáslepki esaplawlar

2. 1. Úyrenilip atırgan RL-shınjır (2, a- súwret) ushın U = 2V., $R = 1k\Omega$. hám L (L ushın bahalardı 1-kesteden alıń) bolganda (4. 6) - (4. 8) ańlatpalar járdeminde jiyiliklar $f = (0,2; 0,5; 1; 1,5; 2) f_{\Gamma}$ bolganda $U_R(f)$, $U_L(f)$, $\varphi(f)$ funktsiyalardı esaplab, grafikların quriń, bunda $f_{\Gamma} = R/(2\pi \cdot L)$. Esaplawlar nátiyjelerin 2-kestege kiritiń.

Úyrenilip atırgan RC-shınjır (3, a- súwret) ushın U=2V, $R=1k\Omega$ hám C (C ushın bahalardı 1-kesteden alın) bolganda (4.11) - (4.13) anılatpalar járdeminde jiyiliklar $f=(0,2;\ 0,5;\ 1;\ 1,5;\ 2)\ f_{\Gamma}$ bolganda $U_{R}(f)$, $U_{C}(f)$, $\varphi(f)$ funktsiyalardı esaplab, grafikların qurin, bunda $f_{\Gamma}=1/(2\pi\cdot R\cdot C)$. Esaplawlar nátiyjelerin

- 3.2-kestege kiritiń.
 - 2.2. Jiyilik f_{Γ} bolgandağı elementlerdin tok hám kernewler vektor diagrammaların qurin.

Elementler parametrleriniń mánisleri

1-keste

Stend nomeri	L, mGn	C, nF	Stend nomeri	L, mGn	C, nF
1	L _A =25		7	$L_{D}=70$	
2		$C_A=5$	8		C = 30
3	$L_B=35$		9	L _E =85	
4		$C_{B}=10$	10		$C_{D} = 50$
5	L _C =50		11	L = 95	
6		$C_{C}=20$	12		$C_{E}=100$

3. Jumisti orinlaw

6-suwretde keltirilgen sxemanı stendda qosiń.

6-súwret. Tekserilip atırgan RL-shınjır sxeması

Tájiriybe sxeması jıynap atırganda derek E2 retinde jiyiliklar generatorının «G2» shıgıw klemmasi kernewi isletiledi. Kernew regulyatorı járdeminde generator blokının «U_{shiq}» shıgıwında U=2V kernewdi

ornatıń. Kirisiw ushlanıwınıń qadağalawı V1 voltmetri járdeminde orınlansın jáne onıń ma`nisin barlıq jiyiliklerde ózgermeytuğın saqlansın. Qarsılıqtağı U_R kernewdi V2 voltmetr menen, kirisiw kernewi hám tokı arasındağı faza jılısıwı ϕ ni fazometr menen 2.1-halatındağı jiyiliklar ushın ólshensin. Induktivlikdaği kernew tómendegi ańlatpa járdeminde anıqlanadı.

$$U_L = \sqrt{U^2 - U_R^2}$$

Ólshewler nátiyjelerin 2- kestege kiritilsin.

Quramında RC bolgan shınjırdı tekseriw ushın, 6-suwretde keltirilgen induktivlik ornına sıyımlılıq ornatıladı hám RL-shınjır úyrenilganidek u_R hám ϕ olshenedi. Sıyımlılıqtagı kernew tómendegi ańlatpa járdeminde anıqlanadı

$$U_{C}=\sqrt{U^{2}-U_{R}^{2}}.$$

Ólshewler nátiyjeleri 2- kestege kiritiledi.

Esaplawlar hám ólshewler nátiyjeleri

2-keste

	f	$0,2\cdot f_{\Gamma}$	$0,5\cdot f_{\Gamma}$	f_{Γ}	$1,5 \cdot f_{\Gamma}$	$2 \cdot f_{\Gamma}$
	f, kHz					
Esaplangan	U_R , V .					
	φ, grad					
	U _L yaki U _C , V.					
Ólshengen	U_R , V .					
	φ, grad					
	U _L yaki U _C , V.					

4. Esabat guramı

Esabatda tómendegiler ámeldegi bolıwı shárt:

- 1. Jumistiń ati, magseti.
- 2. Ólshewler sxemaları.
- 3. Esaplawlar ańlatpaları.
- 4. Dáslepki esaplawlar hám ólshewler nátiyjeleri keltirilgen keste.
- 5. Jiyilikliq xarakteristikalar $u_R(f)$, $u_L(f)$ yáki $u_C(f)$, $\varphi(f)$.
- 6. Jiyilik $f = f_{\Gamma}$ bolgandağı kirisiw kernewi hám tokı máwrit mánislerinin grafigi.
- 7. Jiyilik $f = f_{\Gamma}$ bolgandağı shınjır elementlerinin kernew hám tokları vektor diagrammaları.

Qadagalaw sorawları

- 5.1. Qanday tok hám kernewler garmonik bahalar dep ataladı?
- 5.2. Qanday parametrler menen olar xarakterlanadi

- 5.3. Hár dayıó tákirarlanatuğın terbelistiń tásir etiwshi ma`nisi dep nege aytıladı hám ol qanday anıqlanadı?
- 5.4. Rezistiv qarsılıq, induktivlik hám sıyımlılıqtağı tok hám kernewler amplitudalari (máwrit mánisleri) qanday ańlatpalar menen baylanısqan?
 - 5.5. Fazalar jıljıw múyeshi dep nege aytıladı?
- 5.6. Rezistiv qarsılıq, induktivlik hám sıyımlılıqtağı tok hám kernewler fazası boyınsha qanday jıljığan?
 - 5.7. RL- hám RC-shinjirlar ushin aktiv, reaktiv hám toliq quwatlar qanday anıqlanadı?
 - 5.8. Aktiv, reaktiv hám toliq quwatlar qanday anıqlanadı?
 - 5.9. Vektor diagramması dep nege aytıladı?
- 5.10. Izbe-iz jalgangan RLC shınjır ushın tomendegi qolatlar ushın vektor diagrammasın qurin: a) X_L < X_C b) X_L > X_C .
- 5.11. Kirisiw kernewi jiyiliksı ózgergende 2, a- hám 3, a-su'wretler elementlerindegi kernewler qanday ózgeredi?
- 5.12. Kernew U ózgermeytuğın hám jiyilik f ózgergende 2,a- hám 3,a-su'wretlerdegi ajıralıp atırgan aktiv quwat qanday ózgeredi?