

Università degli Studi di Brescia

DIPARTIMENTO DI INGENGERIA DELL'INFORMAZIONE Corso di Laurea magistrale in Ingegneria Elettronica

PROGETTO DI SISTEMI ELETTRONICI ANALOGICI

Circuito per la generazione del tono (sinusoidale a frequenza variabile) per Theremin

Progetto n°17

Autori: Luca Brescia Matricola 706005

Simone Pezzottini Matricola 89521

Indice

O	biett	ivo	2
1	Scel 1.1 1.2 1.3	Ita dei componenti Amplificatori operazionali LF353, LF356 e uA741	4
2	Scelte progettuali		
		VCO	7
	2.2	Oscillatore sinusoidale di Wien	
	2.3	Moltiplicatore analogico	10
	2.4	Filtro LP del quarto ordine	
3	Rist	ultati sperimentali	12
	3.1	XR2206	12
	3.2	AD633	12
	3.3	LP4	13
	3.4	uA741	13
	3.5	Theremin	14
	3.6	Problematiche	
4	Cor	aclusioni	1.5

Obiettivo

Realizzazione di un tono a frequenza variabile nello spettro delle frequenze udibili [20Hz-20kHz] utilizzando un VCO e una capacità variabile con il movimento di una mano seguendo lo schema a blocchi mostrato in *Figura 1*. Il segnale modulato avrà un range di frequenze elevato, di conseguenza andrà mixato ad una sinusoide a frequenza determinata, per riportare lo spettro del segnale nel range delle frequenze udibili, e opportunamente filtrato per eliminare le componenti indesiderate.

Figura 1: Schema generale di funzionamento di un circuito per la realizzazione di un tono.

In generale lo schema richiesto per la realizzazione del progetto potrebbe essere il seguente:

Figura 2: Shema a blocchi generale del progetto

Scelta dei componenti

I blocchi minimi necessari alla realizzazione di questo progetto sono:

- 1. Oscillatore controllato in tensione (VCO);
- 2. Moltiplicatore analogico;
- 3. Oscillatore a frequenza fissata;
- 4. Filtro passa basso.
- 5. Prova di una modifica.

La scelta dei componenti è stata fatta considerando le caratteristiche del segnale da generare. In particolare, volendo realizzare uno shift in frequenza, vi è la necessità di lavorare con integrati con una banda passante adeguata. Avendo a disposizione una serie limitata di componenti si è deciso di utilizzare i seguenti:

- 1. l'oscillatore monolitico XR2206 come VCO;
- 2. Il moltiplicatore analogico AD633 per lo shift frequenziale;
- 3. L'amplificatore operazionale LF356N per la realizzazione dell'oscillatore a ponte di Wien per la generazione di una sinusoide di riferimento;
- 4. L'amplificatore LF356P per la realizzazione di filtro passa basso.
- 5. L'amplificatore UA741 per la realizzazione dei filtri passa alto.

1.1 Amplificatori operazionali LF353, LF356 e uA741

La scelta di questi componenti tra quelli disponibili è stata fatta principalmente per le bande bassanti dei dispositivi.

Sono necessari componenti a banda elevata poiché, come risulta dal capitolo 3.2, si deve lavorare con frequenze dell'ordine delle centinaia di kHz.

Infatti le bande in gioco sono di circa 3MHz per LF353P mentre 5MHz per LF356N. Ad esempio, l'UA741 ha una GBP di 1 MHz tipico. I primi due operazionali sono stati scelti per:

- 1. LF356N per l'oscillatore armonica fondamentale
- 2. LF353P per il filtro passa basso del 40 ordine.

Importante osservare che l'LF353P ha al suo interno due amplificatori operazionali per cui è stato scelto per la realizzazione del filtro del 40 ordine in modo da ridurre il numero di integrati per la realizzazione del dispositivo. Inoltre, l'LF356N, avente una GBP maggiore (5MHz), permette di generare sinusoidi con un range di freuenze maggiore, altro motivo per cui si sono scelti i componenti come spiegato sopra. L'UA741 viene impiegato come filtro attivo passa alto del primo ordine (ecomeamplificatore finale) per togliere le componenti inferiori a 10Hz come richiesto dal progetto e sfruttare contemporaneamente la banda passante ridotta del dispositvo al fine di attenuare le alte frequenze indesiderate, che verranno tagliate definitvamente dal filtro passa basso.

I motivi per cui le frequenze in gioco risultino essere elevate sono indicate nel capitolo 3.2.

1.2 Oscillatore monolitico XR2206

Si è scelto di utilizzare XR2206 perchè permette la generazione di diverse forme d'onda sinusoidali, onde quadre, rampe, onde triangolari ed impunsi garantendo un'alta precisione, stabilità e distorsione. L'ampiezza e la frequenza dei segnali in uscita è direttamente modulabile dall'integrato, gestendo opportunamente gli ingressi. La gamma di frequenze generabili va dai 0.01 HZ a 1 MHz, quindi perfetto per le specifiche richieste dal progetto. In Figura~1.1 è mostrato lo schema a blocchi del componente.

Figura 1.1: Schema a blocchi dell'oscillatore monolitico XR2206

La frequenza di oscillazione può essere determinata agendo sulla capacità o sulla resistenza equivlente collegate ai pin opportuni del componente, come riportato nel capitolo 2.

1.3 Moltiplicatore analogico AD633

La scelta del moltiplicatore analogico o mixer è stata obbigata in quanto non erano presenti altri componenti del genere a disposizione. Tuttavia garantisce delle buone prestazioni permettendo di restare nelle specifiche di progetto. Infatti, possiede elevate impedenze d'ingresso sia sugli ingressi differenziali X e Y, che sull'ingersso sommatore Z. Una bassa impedenza d'uscita che permette quindi di disaccoppiare la parte a monte del circuito con quella che si trova a valle. Lavora con una larghezza di banda pari ad 1 MHz e uno slew rate pari a 20 $V/\mu S$. Si può notare, come mostrano in figura 1.2, che il componete inizia a tagliare ad una frequenza inferiore ripetto alla banda passante teorica indicata, tagliando intorno ai 500 kHz. Tuttavia, dal punto di vista teorico, questo non impone una limitazione ai fini del progetto.

Figura 1.2: Banda passante del moltiplicatore analogico AD633

La figura 1.3 mostra sia il pinout che lo schema blocchi interno dell'AD6333. Il segnale in uscita dal mixer si calcola con la seguente formula:

$$W = \frac{(X1 - X2)(Y1 - Y2)}{10[V]} + Z \tag{1.1}$$

Come si può notare dalla formula in segnale viene attenuato di un fattore 10 V, quindi sarà necessaria una compensazione negli stadi successivi.

Analizzando il caso che gli ingressi X2, Y2 e Z collegti a massa, ovvero che diano contributo nullo. L'equazione 1.1 diventa:

$$W = \frac{X1 * Y1}{10[V]} \tag{1.2}$$

Ora si consideri che i due ingressi siano sinusoidali:

$$X1 = A\sin(\omega_1 t + \varphi_1) \tag{1.3}$$

$$Y1 = B\sin(\omega_2 t + \varphi_2) \tag{1.4}$$

$$W = \frac{AB}{2} \left[\cos((\omega_1 - \omega_2)t + (\varphi_1 - \varphi_2)) - \cos((\omega_1 + \omega_2)t + (\varphi_1 + \varphi_2))\right] \frac{1}{10[V]}$$
(1.5)

Aggiungendo l'ipotesi che le due sinusoidi abbiano fase nulla la formula 1.5 diventa:

$$W = \frac{AB}{2} [\cos((\omega_1 - \omega_2)t) - \cos((\omega_1 + \omega_2)t)] \frac{1}{10[V]}$$
 (1.6)

Si nota quindi che all'uscita del mixer si avrà un segnale dato dalla combinazione delle due sinusoidi in ingresso, le cui componenti spettrali saranno date una dalla somma delle componenti spettrali delle delle singole e l'altra dalla loro differenza. Quindi inserendo un opportuno filtro passa basso si va a selezionare solo la componente spettrale d'interesse, ovvero quella compresa tra $20\ Hz$ e $20\ kHz$.

Figura 1.3: PinOut e schema a blocchi dell'AD633

Scelte progettuali

Nella realizzazione di questo progetto si deve prestare particolare attenzione allo spettro del segnale di uscita. Nello specifico, si deve valutare il THD della sinusoide di uscita per osservare quanto armoniche indesiderate dovute a disturbi intrinsechi del sistema influiscano sulle performance del dispositivo. Per ridurre l'effetto di armoniche a frequenza esterna alla banda udibile si è scelto di introdurre cascate di filtri passa alto e passa basso in modo da cercare un filtro passa-banda accettabile per l'esperienza. Di seguito è riportato lo schema a blocchi del sistema:

Figura 2.1: Schema a blocchi del sistema realizzato;

Nelle sezioni successive vengono analizzate singolarmente le scelte effettuate per ogni singolo blocco del sistema.

2.1 VCO

Il VCO, Voltage Controlled Oscillator, è un generatore di segnali che modifica la frequenza di oscillazione del segnale generato in funzione della tensione applicata al suo ingresso.

La frequenza di oscillazione f_0 viene controllata da una capacità esterna C, detta capacità di timing collegata tra i pin5 e pin6 e dalla resistenza R posta in ingresso ai pin7 e pin8. La frequenza di oscillazione si calcola come:

$$f_0 = \frac{1}{RC} \tag{2.1}$$

Regolando il valore di R, dato dalla somma di $R_1 + 1k\Omega$, e di C, si imposta a piacere la frequenza di oscillazione. La Figura 2.2 mostra il circuito utilizzato. Nel progetto si è scelto di utilizzare una resistenza R fissa in quanto si ha una capacità variabile per la regolazione della frequenza.

Figura 2.2: Schema xr2206

Dal datasheet, per garantire una buona stabilità in temperatura, viene consigliato di utilizzare valori di R compresi tra $4k\Omega < R < 200k\Omega$ e valori di C compresi tra $1\mu F < C < 100\mu F$. Dato che la capacità risulta variabile, in quanto dipende dalla mano dell'utente e dall'antenna realizzata, si è scelta una R di $100k\Omega$ (da verificare) per cercare di rispettare, almeno in parte, il range fornito dal datasheet per garantire una buona stabilità in temperatura.

2.2 Oscillatore sinusoidale di Wien

Per la realizzazione di un segnale sinusoidale a frequenza fissata si è scelto di utilizzare un oscillatore a ponte di Wien auto-avviante, il cui schema è riportato in Figura 2.3

Figura 2.3: Schema generale di un oscillatore a ponte di Wien auto-avviante.

Analizzando la f.d.t del circuito si osserva che il prodotto $A \cdot B$ deve essere 1, quindi un numero reale. Il blocco di forward A è rappresentato dal guadagno del circuito ovvero:

$$A = 1 + \frac{R_2}{R_1} \tag{2.2}$$

Mentre, in presenza di R e C di valore unico, il blocco di feedback B è rappresentato dall'equazione:

$$B = \frac{1}{3 + j\omega CR - j\frac{1}{\omega CR}} \tag{2.3}$$

Per l'innesco delle oscillazioni è necessario che il guadagno ad anello aperto sia inizialmente $A \cdot B > 1$ ed A > 3 per poi assestarsi a $A \cdot B = 1$ ed A = 3. La tecnica più semplice consiste nel disporre due diodi in antiparallelo lungo l'anello di retroazione dell'OpAmp.

Quando V_O è bassa i diodi presentano un'alta resistenza differenziale mentre all'aumentare di V_O essa diminuisce.

Per rispettare le condizioni di lavoro imposte, il guadagno A può essere posto, circa, all'85% del suo valore nominale (A=2,5 — 2,55) così si fa in modo modo che A>3 all'avvio che poi si riduce ad A=3 a regime.

Figura 2.4: FFT della sinusoide a 295kHz in uscita dall'oscillatore acquisita tramite oscilloscopio

Per la valutazione della distorsione della sinusoide ottenuta si utilizza il calcolo del THD riportato nell'equazione:

$$THD(\%) = 100 \cdot \frac{\sqrt{\sum_{1}^{\infty} V_{n}^{2}}}{V_{1}}$$
 (2.4)

Tutti i valori di tensione devono essere in RMS:

$$V_{RMS} = \frac{V}{\sqrt{2}} \tag{2.5}$$

2.3 Moltiplicatore analogico

Alla moltiplicazione di due segnali nei tempi corrisponde la convoluzione degli stessi in frequenza. Questo porta ad ottenere due sinusoidi centrate a frequenza $\omega_1 + \omega_2$ e $\omega_1 - \omega_2$.

In Figura 2.5 viene mostrato il risultato ottenuto moltiplicando la sinusoide ottenuta precedentemente Sezione 2.2 con l'oscillatore di Wien, avente una ω_0 di 45kHz, e una sinusoide generata dal generatore di funzione ad una frequenza di 20 kHz.

Figura 2.5: FFT del segnale in uscita dall'AD633, con test tra Oscillatore di Wien avente $\omega_0 = 45 \text{kHz}$ 12V picco e generatore di funzione con segnale 20 Khz e 2.5V picco.

Essendo i due segnali in gioco di 20kHz e 45kHz, dalla Figura~2.5 si può notare come vengano generate due sinusoidi aventi armoniche fondamentali a (45-20)kHz e (45+20)kHz. Inoltre, le ampiezze rilevate risultano in linea con i risultati teorici in quanto l'ampiezza di picco dei due segnali in gioco è di 12V e 2.5V rispettivamente, che vengono moltiplicate tra loro e divise di un fattore 10 come specificato nel datasheet del componente. Si nota anche come le due ampiezze non siano uguali: questo è un errore dovuto alla non-linearità del componente. Tuttavia, per la nostra applicazione questo errore è irrilevante in quanto interessa maggiormente la componente armonica del segnale.

2.4 Filtro LP del quarto ordine

Il prodotto di due sinusoidi del mixer porterà in uscita due sinusoidi a frequenze diverse ovvero una sarà $\omega_{wien} + \omega_{VCO}$ e l'altra a $\omega_{wien} - \omega_{VCO}$. Per rientrare nelle specifiche di progetto, è stato necessario introdurre un filtro passa-basso (LP) tale che permettesse di avere in uscita solo la componente armonica $\omega_{wien} - \omega_{VCO}$.

Volendo un filtro molto selettivo e visto che il compondente LF353P ha al suo interno due amplificatori, si è scelto di utilizzare un filtro attivo di ordine 4. Realizzandolo tramite un filtro di Chebychev con due celle Sallen-Key in casacata.

Figura 2.6: Filtro attivo di ordine 4.

Dove la sua risposta teorica in frequenza del modulo del filtro risulta essere quella riportato nel diagramma di Bode mostrato in Figura~2.7.

Figura 2.7: Diagramma di Bode del modulo del filtro.

La funzione di trasferimento del filtro del quarto ordine può essere visto come il prodotto in cascata delle funzioni di trasferimeto delle due celle Sellen-Key del secondo ordine. La funzione della prima cella risulta:

$$H_1(s) = \frac{V_{in}}{V_u} = \frac{1}{1 + sC_1(R_1 + R_2) + s^2C_1C_2R_1R_2}$$
(2.6)

Mentre la funzione di trasferimento della seconda cella risulta essere:

$$H_2(s) = \frac{V_u}{V_{out}} = \frac{1}{1 + sC_3(R_3 + R_4) + s^2C_3C_4R_3R_4}$$
 (2.7)

La funzione di trasferimento totale del filtro sarà data dal prodotto delle due funzioni di trasferimento

$$H(s) = H_1(s)H_2(s) = \frac{V_{in}}{V_u} \frac{V_u}{V_{out}} = \frac{V_{in}}{V_{out}}$$
 (2.8)

Risultati sperimentali

3.1 XR2206

Per la realizzazione dell'armonica a frequenza variabile ci siamo appoggiati al datasheet del componente scegliendo come valori di partenza quelli mostrati in esempio.

La capacità variabile è stata realizzata con un supporto rigido e della carta di alluminio posta a bandiera. Il tutto è stato collegato come mostrato in figura.

Le prestazioni ottenute con questo tipo di antenna sono le seguenti:

3.2 AD633

Verifichiamo il THD delle sinusoidi in uscita dall'Oscillatore e AD633 Osserviamo che in entrambi i casi non otteniamo distorsioni. Notiamo una continua di circa 2V che non riconosciamo. Aggiungendo un condensatore di filtraggio in uscita al moltiplicatore non otteniamo risultati. Ipotizziamo sia dovuto a qualcosa di intrinseco all'oscilloscopio. Anche perché nella visualizzazione della sinusoide non rileviamo alcun offset. Inoltre ad un certo punto delle misurazioni è sparito. Abbiamo osservato che l'ampiezza delle righe della fft è coerente con i segnali in ingresso al sistema. $V_{osc}=15 \text{V} V_{fengen}=2.5 \text{V}$ quindi considerando il fattore intrinseco di scala dell'AD633 otteniamo delle righe di fft di ampiezza coerente perché sommando le varie componenti si ottiene quei 3.5V circa di ampiezza del segnale.

Figura 3.1: FFT in uscita dall'AD633 con fondamentale a 300k

3.3 LP4

Figura 3.2: Diagrammi di bode del componente LF353P in anello aperto

3.4 uA741

Qua dentro ci mettiamo:

datasheet

Circuito

Risposta in frequenza bode

Giustificare che taglia a 10k perchè la banda passante dell'ampli fa schifo

In mancanza di componenti abbiamo dovuto adattarci (in teoria ampli sposta bode)

Figura 3.3: Diagramma di Bode del filtro Sallen-Key del $4^{\it o}$ ordine

3.5 Theremin

3.6 Problematiche

Conclusioni

Bene questo progetto si conclude qui, $\mathit{grazie}\ a\ \mathit{tutti!}$