In [296]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [297]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
a
```

Out[297]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	í
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

4

In [298]:

```
a=a.head(10)
a
```

Out[298]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	1
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	1
4 6											•

In [299]:

to find
a.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10 entries, 0 to 9 Data columns (total 12 columns):

Ducu	COTAMMIS (COCAT IZ COT	u	
#	Column	Non-Null Count	Dtype
0	fixed acidity	10 non-null	float64
1	volatile acidity	10 non-null	float64
2	citric acid	10 non-null	float64
3	residual sugar	10 non-null	float64
4	chlorides	10 non-null	float64
5	free sulfur dioxide	10 non-null	float64
6	total sulfur dioxide	10 non-null	float64
7	density	10 non-null	float64
8	рН	10 non-null	float64
9	sulphates	10 non-null	float64
10	alcohol	10 non-null	float64
11	quality	10 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 1.1 KB

In [300]:

```
# to display summary of statastic
a.describe()
```

Out[300]:

	fixe acidit		citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
cou	ınt 10.00000	0 10.000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
me	an 7.95000	0.631	0.104000	2.330000	0.077000	14.800000	48.900000	0.997080
•	std 1.16261	2 0.161	0.194548	1.376025	0.010198	4.467164	25.066356	0.001038
n	nin 7.30000	0.280	0.000000	1.200000	0.065000	9.000000	18.000000	0.994600
2	7 .40000	0.585	0.000000	1.825000	0.071500	11.500000	34.000000	0.996800
50	7 .65000	0.655	0.010000	1.900000	0.075000	15.000000	47.000000	0.997400
7	7 .80000	0.700	0.055000	2.225000	0.076000	16.500000	59.750000	0.997800
m	ax 11.20000	0.880	0.560000	6.100000	0.098000	25.000000	102.000000	0.998000
4						_		

In [301]:

```
# to display colum heading
a.columns
```

Out[301]:

In [302]:

sns.pairplot(a)

Out[302]:

<seaborn.axisgrid.PairGrid at 0x198d5b2ff40>

In [304]:

```
sns.displot(a["volatile acidity"])
```

Out[304]:

<seaborn.axisgrid.FacetGrid at 0x198db9abd60>

In [305]:

Out[305]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide
0	7.4	0.70	0.00	1.9	0.076	11.0
1	7.8	0.88	0.00	2.6	0.098	25.0
2	7.8	0.76	0.04	2.3	0.092	15.0
3	11.2	0.28	0.56	1.9	0.075	17.0
4	7.4	0.70	0.00	1.9	0.076	11.0
5	7.4	0.66	0.00	1.8	0.075	13.0
6	7.9	0.60	0.06	1.6	0.069	15.0
7	7.3	0.65	0.00	1.2	0.065	15.0
8	7.8	0.58	0.02	2.0	0.073	9.0
9	7.5	0.50	0.36	6.1	0.071	17.0

In [306]:

```
sns.heatmap(b.corr())
```

Out[306]:

<AxesSubplot:>

In [308]:

In [309]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [310]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[310]:

LinearRegression()

In [311]:

```
lr.intercept_
```

Out[311]:

-9.791006556270077e-05

In [312]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[312]:

	Co-efficient
fixed acidity	0.000013
volatile acidity	-0.000006
citric acid	-0.000078
residual sugar	-0.000038
chlorides	0.001192
free sulfur dioxide	0.999999

In [313]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[313]:

<matplotlib.collections.PathCollection at 0x198dcddb910>

In [314]:

```
lr.score(x_test,y_test)
```

Out[314]:

0.9999999992775543

In [315]:

```
lr.score(x_train,y_train)
```

Out[315]:

1.0

```
In [316]:
from sklearn.linear_model import Ridge,Lasso
In [317]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[317]:
Ridge(alpha=10)
In [318]:
rr.score(x_test,y_test)
Out[318]:
0.9771563092244006
In [319]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[319]:
Lasso(alpha=10)
In [320]:
la.score(x_test,y_test)
Out[320]:
0.7130102040816326
In [321]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[321]:
ElasticNet()
In [322]:
en.coef_
Out[322]:
array([ 0.
                                  0.
                                             , -0.
                                                           , 0.
                  , -0.
        0.86407767])
```

```
In [323]:
en.intercept_
Out[323]:
1.766990291262136
In [324]:
prediction=en.predict(x_test)
prediction
Out[324]:
array([14.72815534, 23.36893204, 16.45631068])
In [325]:
en.score(x_test,y_test)
Out[325]:
0.9458949948157223
EVALUATION METRICS
In [326]:
from sklearn import metrics
In [327]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.8155339805825262
In [328]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 1.0099600967731843
In [329]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 1.0049677093186549
In [ ]:
```