Artificial Intelligence

wu

May 6, 2019

Contents

Infe	erence and Reasoning	2
1.1	Propositional logic	2
1.2		2
1.3	First Order Inductive Learner	2
Sta	tistical learning and modeling	2
2.1	Machine Learning: the concept	2
	2.1.1 Example and concept	2
		3
2.2		3
2.3		3
2.4		6
		6
2.6	decision theory	6
Sta	tistical learning and modeling - Supervised learning	6
3.1	9 -	6
3.2	•	8
0.2		8
		8
		8
3.3		9
3.4	probabilistic discriminative models	9
	1.1 1.2 1.3 Stat 2.1 2.2 2.3 2.4 2.5 2.6 Stat 3.1 3.2	1.2 Predicate logic 1.3 First Order Inductive Learner Statistical learning and modeling 2.1 Machine Learning: the concept 2.1.1 Example and concept 2.1.2 supervised learning: important concepts 2.2 example: polynomial curve fitting 2.3 probability theory review and notation 2.4 information theory 2.5 model selection 2.6 decision theory Statistical learning and modeling - Supervised learning 3.1 Basic concepts 3.2 discriminant functions 3.2.1 Two classes 3.2.2 K-class 3.2.3 Learning the parameters of linear discriminant functions 3.3 probalibilistic generative models

1 Inference and Reasoning

- 1.1 Propositional logic
- 1.2 Predicate logic
- 1.3 First Order Inductive Learner

knowledge graph: node = entity, edge = relation. triplet (head entity, relation, tail entity)

2 Statistical learning and modeling

- 2.1 Machine Learning: the concept
- 2.1.1 Example and concept
- Supervised learning problems applications in which the training data comprises examples of the input vectors along with their corresponding target vectors are known

classification and regression

- Unsupervised learning problems the training data consists of a set of input vectors X without any corresponding target values density estimation, clustering, hidden markov models
- Reinforcement learning problem finding suitable actions to take in a given situation in order to maximize a reward. Here the learning algorithm is not given examples of optimal outputs, in contrast to supervised learning, but must instead discover them by a process of trial and error. A general feature of reinforcement learning is the trade-off between exploration and exploitation

types of machine learning

- supervised learning
 - classification: the output is categorical or nominal variable
 - regression: the output is read-valued variable
- unsupervised learning
- semi-supervised learning

- reinforcement learning
- deep learning

2.1.2 supervised learning: important concepts

- Data: labeled instances $< x_i, y >$
- features: attribute-value pairs which characterize each ${m x}$
- learning a discrete function: classification
- learning a continuous function: regression

Classification - A two-step process

- model construction
- model usage

regression

• Example: price of a used car x: car attributes. $y = g(x \mid \theta)$: price. g: model. θ parameter set.

2.2 example: polynomial curve fitting

2.3 probability theory review and notation

rules of probability

- sum rule $p(X) = \sum_{Y} p(X, Y)$
- product rule p(X,Y) = p(Y|X)p(X)

Bayes' Theorem: $p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$. Using sum rule $p(X) = \sum_{Y} p(X|Y)p(Y)$ probability densities.

$$p(x \in (a,b)) = \int_a^b p(x)dx$$

$$P(z) = \int_{-\infty}^z p(x)dx$$

$$\int_{-\infty}^{\infty} p(x)dx = 1 \quad p(x) \le 0$$

expectation
$$\mathbb{E}[f] = \begin{cases} \sum_{x} p(x)f(x) & \text{discrete variables} \\ \int p(x)f(x)dx & \text{continuous variables} \end{cases}$$
. In either cases, $\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)$. conditional expectation: $\mathbb{E}_x[f|y] = \sum_{x} p(x|y)f(x)$.

cases,
$$\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$
. conditional expectation: $\mathbb{E}_x[f|y] = \sum_{x} p(x|y)f(x)$.

The **variance** of f(x) is

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^{2}]$$

$$= \mathbb{E}[f(x)^{2} - 2f(x)\mathbb{E}[f(x)] + \mathbb{E}[f(x)]^{2}]$$

$$= \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

The covarian ce is

$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$
$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

the variance of the sum of two independent random variables is the sum of variance. Given

$$egin{array}{c|c} X & \text{probability} \\ \hline x_1 & p_1 \\ \dots & \dots \\ x_n & p_n \\ \hline Y & \text{probability} \\ \hline y_1 & q_1 \\ \dots & \dots \\ y_m & q_m \\ \hline \end{array}$$

$$var(X + Y) = var(X) + var(Y)$$

In case of two vectors of random variables x and y, the covariance is a matrix

$$cov[\boldsymbol{x}, \boldsymbol{y}] = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}[(\boldsymbol{x} - \mathbb{E}[\boldsymbol{x}])(\boldsymbol{y}^T - \mathbb{E}[\boldsymbol{y}^T])]$$
$$= \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}[\boldsymbol{x}\boldsymbol{y}^T] - \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{y}^T]$$

Bayesian probabilities: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$. For a data set $\mathcal{D} = \{t_1, \ldots, t_n\}$ and assumption w, $p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$. p(w) is **prior probability**, $p(\mathcal{D}|w)$ is **likelihood** (the probability \mathcal{D} happens). Hence

posterior \propto likelihood \times prior

Gaussian distribution.

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

 μ is called **mean**, σ^2 is called **variance**, σ **standard deviation**, $\beta=1/\sigma^2$ **precision**

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x dx = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

For D-dimensional vector x of continuous variables

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu})\right\}$$

To determine values for the unknown parameters given μ and σ^2 by maximizing the likelihood function. Use log.

$$P(\boldsymbol{X}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$
$$\Rightarrow \ln P(\boldsymbol{X}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

Hence
$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
, $\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$ by partial derivative.

Maximum likelihood estimator for mean is unbiased, that is, $\mathbb{E}(\mu_{ML}) = \mu$. Maximum likelihood estimator for variance is biased. $\mathbb{E}(\sigma_{ML}^2) = \mathbb{E}(x^2) - \mathbb{E}(\mu_{ML}^2) = \frac{N-1}{N}\sigma_x^2$

2.4 information theory

entropy: measuring uncertainty of a random variable X. $H(X) = H(p) = -\sum_{x \in \Omega} p(x) \log p(x)$ where Ω is all possible values and define $0 \log 0 = 0$, $\log = \log_2$

$$H(X) = \sum_{x \in \Omega} p(x) \log_2 \frac{1}{p(x)} = E(\log_2 \frac{1}{p(x)}). \text{ And "information of x"="#bits to code x"=$-$\log p(x)$}$$

Kullback-Leibler divergence: comparing two distributions

2.5 model selection

The technique of S-fold cross-validation, illustrated here for the case of S=4, involves taking the available data and partitioning it into S groups (in the simplest case these are of equal size). Then S=1 of the groups are used to train a set of models that are then evaluated on the remaining group. This procedure is then repeated for all S possible choices for the held-out group, indicated here by the red blocks, and the performance scores from the S runs are then averaged.

cross-validation

split training data into **training set** and **validation set**. Train different models on training set and choose model with minimum error on validation set.

2.6 decision theory

Suppose we have an input vector \boldsymbol{x} together with a corresponding vector \boldsymbol{t} of target variables and our goal is to predict \boldsymbol{t} given new value for \boldsymbol{x} . The joint probability distribution $p(\boldsymbol{x}, \boldsymbol{t})$ provides a complete summary of the uncertainty with these variables

3 Statistical learning and modeling - Supervised learning

3.1 Basic concepts

- · Linearly separable
 - decision regions:
 input space is divided into several regions
 - decision boundaries:

- * under linear models, it's a linear function
- * (D-1)-dimensional hyper-plane within the D-dimensional input space

• representation of class labels

- Two classes K=2
- K classes
 - * 1-of-K coding scheme $t = (0, 0, 1, 0, 0)^T$
- Predict discrete class labels
 - * linear model prediction $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ w: weight vector, w₀ bias/threshold
 - * nonlinear function $f(.): R \to (0,1)$
 - * generalized linear models $y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$ f:activation function
 - * dicision surface $y(\mathbf{x}) = \text{constant} \to \mathbf{w}^T \mathbf{x} + w_0 = \text{constant}$

• Three classification approaches

- discriminant function
 - * least squares approach
 - * fisher's linear discriminant
 - * the perceptron algorithm of rosenblatt
- use discriminant functions directly and don't compute probabilities

Given discriminant functions $f_1(\mathbf{x}), \dots, f_K(\mathbf{x})$. Classify \mathbf{x} as class C_k iff $f_k(\mathbf{x}) > f_j(\mathbf{x}), \forall j \neq k$

- * least-squares approach: making the model predictions as close as possible to a set of target values
- * fisher's linear discriminant: maximum class separation in the ouput space
- * the perceptron algorithm of rosenblatt
- generative approach
 - * model the class-conditional densities and the class priors
 - * compute posterior probabilities through Bayes's theorem

$$\underbrace{p(\mathcal{C}_k|\boldsymbol{x})}_{\text{posterior for class}} = \underbrace{\frac{p(\boldsymbol{x}|\mathcal{C}_k)}{p(\boldsymbol{x})}}_{p(\boldsymbol{x})} \underbrace{\frac{p(\mathcal{C}_k)}{p(\mathcal{C}_k)}}_{p(\boldsymbol{x})} = \underbrace{\frac{p(\boldsymbol{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\boldsymbol{x}|\mathcal{C}_j)p(\mathcal{C}_j)}}_{p(\boldsymbol{x})}$$

3.2 discriminant functions

3.2.1 Two classes

- Linear discriminant function $y(x) = w^T x + w_0$
 - Dicision surface $\Omega: y(\boldsymbol{x}) = 0$
 - the normal distant from the origin to the dicision surface $\frac{w^T x}{\|w\|} = -\frac{w_0}{\|w\|}$
 - if x_A, x_B lie on the decision surface $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$, then $\mathbf{w}^T(\mathbf{x}_A \mathbf{x}_B) = 0$. hence w is orthogonal to every vector lying within $\cdot \frac{\mathbf{w}}{\|\mathbf{w}\|}$ is the normal vector of
 - $-\boldsymbol{x} = \boldsymbol{x}_{\perp} + r_{\parallel \boldsymbol{w} \parallel}$ hence $r = \frac{y(\boldsymbol{x})}{\parallel \boldsymbol{w} \parallel}$. $y(\boldsymbol{x}_{\perp}) = 0 \rightarrow \boldsymbol{w}^T \boldsymbol{x} = -w_0 + r_{\parallel \boldsymbol{w} \parallel}^{\boldsymbol{w}^T \boldsymbol{w}}$
 - $\tilde{\boldsymbol{w}} = (w_0, \boldsymbol{w}), \tilde{\boldsymbol{x}} = (x_0, \boldsymbol{x}), y(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^T \tilde{\boldsymbol{x}}$

3.2.2 K-class

- \bullet One-versus-the-rest classifier K 1 classifiers each of which solves a two-class problem
- One-versus-one classifier K(K-1)/2 binary discriminant functions
- single K-class discriminant comprising K linear functions $y_k(\boldsymbol{x}) = \boldsymbol{w}_k^T \boldsymbol{x} + w_{k_0}$
 - assigning a point x to class C_k if $y_k(x > y_i(x))$ for all jk
 - dicision boundary between class C_k, C_j is given $y_k(\mathbf{x}) = y_j(\mathbf{x}) \rightarrow (\mathbf{w}_k \mathbf{w}_j)^T \mathbf{x} + (w_{k_0} w_{j_0}) = 0$
 - $-\mathcal{R}_k$ is singly connected convex
 - $-\hat{\boldsymbol{x}} = \lambda \boldsymbol{x}_A + (1 \lambda)\boldsymbol{x}_B$ where $0 \le \lambda \le 1$, $y_k(\hat{\boldsymbol{x}}) = \lambda y_k(\boldsymbol{x}_A) + (1 \lambda)y_k(\boldsymbol{x}_B)$ and hence \hat{x} also lies inside \mathcal{R}_k

3.2.3 Learning the parameters of linear discriminant functions

- 1. Linear basis function models
- 2. Least-squares approach
 - Problem
 - Learning

- SSE function
$$SSE = \sum_{i=1}^{n} (y_i - f(x_i))^2 E_D(\widetilde{\boldsymbol{W}}) = 1/2 \text{Tr} \{ (\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T})^T (\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T}) \}$$

3. fisher's linear discriminant from the view of dimensionality reduction $y \ge -w_0$ as class C_1

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n, m_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n \xrightarrow{y = \boldsymbol{w}^T \boldsymbol{x}} m_2 - m_1 = \boldsymbol{w}^T (\boldsymbol{m}_2 - \boldsymbol{m}_1)$$

- 4. the perceptron algorithm of rosenblatt
- 3.3 probalibilistic generative models
- 3.4 probabilistic discriminative models