

Figure 1

	Total protein mg	Enzyme activity nkat	Yield %	Specific activity nkat mg ⁻¹	Purification -fold
Crude extract	1716	51		0.03	
Ammonium sulphate precipitation (30-80%)	890	155	300	0.17	6
DEAE column	10.7	50	98	4.69	158
MonoQ column 60%	1.8	18.6	36	10.23	344
MonoQ column 30%	0.96	6.6	12	6.87	231
Phenylsucrose	0.07	1.2	2.4	18.03	600

nkcat = 1nmol caffeoyl-CoA s⁻¹

Figure 2

Figure 3

1 60
 toHQ **MGSEKMMKIL** **IKESTLVKPS** **KPTPTKELWS** **SWLDLIVGRI** **HLLTVYFUKI** **WGSSEFFESR**
 tomHQ **MGSEKMMKIL** **IKESTLVKPS** **KPTPTKELWS** **SWLDLIVGRI** **HLLTVYFUKI** **WGSSEFFESR**
 cons **-----MK-- IK--L-KPS -PTP---L-- SNLD-I-G-- -----FYK-----S-**

61 120
IMREALSMWL VSFYPM&GRL APDEQGRIEI MCNGECVLFV EAEISI^SEFDI FGDFTPSLEL
WIREALSMWL VSFYPM&GRL GDEDEGRIEW MCNGECVLFV EAEISI^SEFDI FGDFTPSLEL
--K--LS--L V--YP-BGRL -R--G--KI -CN-EG--FV EA-SD---D F-D--P---L

121 180
RFLIBDVDTG CDISTFPLII FOVTREKGCGG WSLLGGCVFHT LSDGLSSIHIF INTUGDIAHC
RFLIBDVDTG CDISTFPLII FOVTREKGCGG WSLLGGCVFHT LSDGLSSIHIF INTUGDIAHC
--L-P-V--S. ---T-PL-- -QVT-EKGCGG ---G--V-H- --DG-S---F IN-W--ARG

181 240
LSEVAIPPFID RTLLPAPDPF T^SFEHWEYH PPP^SLISSSK SIEGSTSPKPS TTTHMLKFSSD
LSEVAIPPFID RTLLPAPDPF T^SFEHWEYH PPP^SLISSSK SIEGSTSPKPS TTTHMLKFSSD
-----P--D R-LL--R-PP -----H-KY- P----- -----K-S--

241 300
QLCLLKSEKSE EDGSTYEILM AHIWRCCTCKA FALSDDQLTK LHVATDGESK LCPLLPPGYL
QLCLLKSEKSE EDGSTYEILM AHIWRCCTCKA FALSDDQLTK LHVATDGESK LCPLLPPGYL
-L--LK-K- -----E-- R--WRC--KA --L----- L--R--RSR L-PPPLP-GY-

301 360
GWVVFCTPM AFSELLEF LTWS^SKRTHS ELSEHDDNKL RGAUDYLEL^S PDL^SLIRGP
GWVVFCTPM AFSELLEF LTWS^SKRTHS ELSEHDDNKL RGAUDYLEL^S PDL^SLIRGP
GN-V----- KL--P L--R----- R-K---YL RS--D--E-- --L-----G-

361 420
TYFASPNLNI NSWTRLPVHD SDFGWGPPIH MGPACILYEG TVYIIPSPMS KDRMLPLAVC
TYFASPNLNI NSWTRLPVHD SDFGWGPPIH MGPACILYEG TVYIIPSPMS KDRMLPLAVC
----- SW-R-P ----- DEFGWG-P ----- GP ----- PS ----- D ----- VC

421 436
LDEASHJELF E KYLYEE
LDOGHJSMEB E KYLYEE
L----M--EE K-----

Figure 4

Figure 5

Figure 6

Figure 7a

ATG GGAAGTGAAA AAATGATGAA AATTAATATC AAAGAACCAA
CACTAGTGAA ACCATCAAAA CCAACACCAA CAAAGAGAAT TTGGAGTTCT
AATTTGGATT TAATTGTTGG AAGAATTCCAT CTTTGACTG TTTATTTTA
TAAACCAAAT GGATCTTCAA ATTTTTTGA TAATAAAGTT ATTAAAGAAG
CATTAAGTAA TGTTTAGTT TCATTTTATC CAATGGCTGG AAGATTAGGT
AGGGATGAAC AAGGTAGAAT TGAAGTTAAT TGTAATGGTG AAGGTGTTT
GTTTGTGAG GCTGAAAGTG ATTCATGTGT TGATGATTTT GGTGATTTA
CACCATCTT GGAACCTAGA AAACTCATTCA CAAAGTGTGA AACCTCTGGA
GATATCTCAA CTTTCCCAC TGTATATT CAGATTACTC GTTTCAAGTG
TGGCGGAGTC GCTCTTGGTG GTGGAGTATT CCACACGTTA TCCGATGGTC
TCTCATCCAT CCACTTCATC AACACGTGGT CGGACATCGC CCGTGGCCTC
TCCGTCGCAG TCCCGCCGTT CATCGATCGG ACGCTCCTCC GTGCAAGGGA
CCCACCGACA TATTCTTCG AGCACGTTGA GTACCATCCT CCACCTACCC
TAAACTCATC GAAAAATcGC GAGTCCAGTA CCACGACCAC GTTGAAATTc
TCGAGTGAAC AACTCGGGCT TcTTAAGTCC AAGTCCAAAA ATGAGGGTAG
CACCTATGAA ATCCTCGCAG CCCATATTG GCGATGCACG TGCAAGGCAC
GTGGATTGCC AGAGGATCAA TTGACCAAAT TACACGTGGC CACCGACGGA
AGGTCAAGGC TTTGCCCTCC CTTGCCACCG GGTTACCTAG GAAACGTCGT
GTTCACGGCA ACCCAATAG CTAAATCATG CGAACTTCAA TCAGAGCCGT
TGACAAATTc CGTCAAGAGA ATTACACAACG AGTTGATCAA AATGGACGAC
AATTACCTAA GATCAGCACT GGATTACCTC GAATTACAAC CTGATTATC
AACCCCTAATT CGGGGCCCGG CTTACTTTGC TAGCCCTAAC CTCAATATTA
ATAGTTGGAC TAGGTTGCCT GTCCATGAGT GTGATTTGG ATGGGGTAGG
CCACATTCA TGGGACCAGC TTGCATTTA TATGAAGGGA CaATTATAT
TATACCAAGT CCAAATTCTA AAGATAGGAA CTTGCGTTG GCTGTTGTc
TAGATGCTGG TCACATGTCA CTATTTGAAA AATATTTATA TGAATTATGA

Figure 7b

ATGGGAAG TGAAAAAATG ATGAAAATTA ATATCAAGGA ATCAACATTA
GTAaaaACCAT CAAAACCAAC ACCAACAAAA AGACTTTGGA GTTCTAACTT
AGATTAAATA GTGGGAAGAA TTCATCTTT AACAGTATAT TTCTATAAAAC
CAAATGGATC TTCAAATTTC TTTGATTCAA AAATAATGAA AGAAGCATT
AGTAATGTTTC TTGTTTCATT TTACCCAATG GCTGGAAGAT TAGCTAGAGA
TGAACAAGGA AGAATTGAGA TAAATTGTAA TGGAGAAGGA GTTTTATTG
TTGAAGCTGA AAGTGATGCT TTTGTTGATG ATTTTGGTGA TTTTACTCCA
AGTTTGGAAC TTAGGAAACT TATTCCACT GTTGACACTT CTGGTGATAT
TTCTACTTTTC CCCCTCATCA TCTTCAGGT TACTCGTTTC AAATGTGGTG
GAGTTTCACT TGGTGGAGGA GTATTCCACA CTTTATCAGA TGGTCTCTCA
TCAATTCACT TCATCAACAC ATGGTCCGAT ATAGCCGAG GCCTCTCCGT
CGCCATCCCC CGTTCATCG ACCGGACCCCT CCTCCGTGCA CGGGACCCAC
CAACATCGTC TTTGAGCAC GTCGAGTATC ATCCTCCTCC ATCTCTAATT
TCATCATCAA AAAGCTTAGA ATCCACTAGC CCAAAGCCTA GTACCACAAC
CATGTTAAA TTCTCTAGTG ACCAACTTGG GCTTCTAAAG TCCAAGTCCA
AACATGATGG TAGCACTTAC GAAATCCTCG CGGCCCATAT TTGGCGTTGC
ACGTGCAAGG CACGTGCACT GTCCGACGAT CAATTGACCA AATTACATGT
GGCCACTGAT GGTAGGTCTA GGCTTGCCC TCCTTGCCA CCAGGTTACT
TAGGAAATGT TGTGTTACA GGCACACCTA TGGCAAAATC AAGTGAACCTT
TTACAAGAAC CATTGACAAA TTCAGCCAAG AGAATTCTATA GTGCATTATC
AAAAATGGAT GaCAATTaCC TAAGATCAGC TCTCGATTAC CTCGAATTAC
TGCCCGATTT ATCGGCTTTA ATCCGTGGAC CGACGTACTT TGCTAGCCCT
AATCTTAATA TTAATAGTTG GACTAGATTG CCTGTTCATG ATTCAAGATTT
TGGATGGGGA AGGCCAATTG ATATGGGACC AGCTTGCATT TTATATGAAG
GGACAGTTA TATATTGCCA AGTCCaATA GTAAAGATAG GAACTTGCCT
TTGGCTGTTT GTTTAGATGC TGATCACATG CCaCTATTG AGAAGtATTT

GTATGAATT TGAGAGGTTG AAAAAAAAT CAAGAATGTT CCAACaCTTG
AGAATTATcT TAGGTGTGGG TGGTTTGGA TTAAGGCATT TTGTAACTTG
TTTCTATTG TTTTTTGGG GGGTCAGTTT GTTTCAAAA AAAAAAAA
AAAAAAA