I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/19

Contents

Aim

to develop skill for manipulating quantified formulas

Contents

- 1 substitutions
- 2 logical equivalence
- 3 prenex normal form
- 4 Skolemization

Schedule			
	propositional logic		predicate logic
4/13	syntax, semantics	5/11	syntax, semantics
4/18	normal forms	5/16	normal forms
4/20	examples	5/18	natural deduction I
4/25	natural deduction I	5/23	natural deduction II
4/27	natural deduction II	5/25	examples, properties
5/2	completeness	5/30	advanced topics
5/9	midterm exam	6/1	summary
		6/6	exam

Evaluation midterm exam (40) + final exam (60)

I211E: Mathematical Logic

2/19

Substitutions

 I211E: Mathematical Logic
 3/19
 I211E: Mathematical Logic
 4/19

Substitutions for Terms

Definition

- \blacksquare substitution θ (for terms) is mapping from variables to terms
- **application** $t\theta$ of θ to term t is defined as follows:

$$m{t}m{ heta} = egin{cases} heta(t) & ext{if } t ext{ is variable} \ f(t_1m{ heta},\dots,t_nm{ heta}) & ext{if } t = f(t_1,\dots,t_n) \end{cases}$$

5/19

■ notation $[t_1/x_1, \dots, t_n/x_n]$ is defined as in propositional logic

Example

for
$$\theta = [s(y)/x, x/y]$$
: $f(s(x), y)\theta = f(s(\theta(x)), \theta(y)) = f(s(s(y)), x)$

I211E: Mathematical Logic

Is Validity Closed under Substitutions?

Fact

 $\vDash \phi \implies \vDash \phi\theta \quad \text{ does } \mathop{\mathsf{not}}\nolimits \mathop{\mathsf{hold}}\nolimits$

Example

 $\boxed{1} (\exists x(x \doteq y))[\mathsf{s}(x)/y] = \exists x(x \doteq \mathsf{s}(x))$

variable x is captured

 $2 \vDash \exists x (x \doteq y) \text{ but } \nvDash \exists x (x \doteq \mathsf{s}(x))$

Definition

application $\phi\theta$ of θ to first-order formula ϕ is defined as follows:

where $\theta'(x) = x$ and $\theta'(y) = \theta(y)$ for all variables $y \neq x$

Exercise

compute $(P(x) \land s(y) = z)\theta$ and $(\forall x \exists z (x + 0 > z))\theta$ for $\theta = [s(y)/x, 0/y]$

I211E: Mathematical Logic

6/19

Definition

t is free for x in ϕ if

- lacksquare ϕ is of form $P(t_1,\ldots,t_n)$ or $s\doteq t$
- $lack \phi = \neg \phi_1$ and t is free for x in ϕ_1
- lacktriangledown ϕ is of form $\forall y \phi_1$ or $\exists y \phi_1, y \notin \mathsf{FV}(t)$, t is free for x in ϕ_1 , and $x \neq y$

Note

 $\phi[t/x]$ causes no variable capture if t is free for x in ϕ

Example

- \blacksquare s(x) is **not** free for y in $\exists x(x \doteq y)$
- \blacksquare s(x) is free for y in $\exists z(z \doteq y)$

renaming resolves variable capture

Theorem

- $\blacksquare \models \phi \implies \models \phi[t/x]$
 - if t is free for x in ϕ
- $\blacksquare \models \phi \implies \models \phi\theta$ if $x\theta$ is free for x in ϕ

Example

- $\boxed{1} \models \exists x (x \doteq y)$ as we may take x = y
- $\boxed{2} \models \exists z(z \doteq y)$ by renaming x to z
- $\exists z(z \doteq \mathsf{s}(x))$ by substituting $\mathsf{s}(x)$ into y

I211E: Mathematical Logic

9/19

I211E: Mathematical Logic

10/19

Logical Equivalence

Definition (logical equivalence)

 $\phi \approx \psi$ if $\phi \leftrightarrow \psi$ is valid

 $(\models \phi \iff \models \psi \text{ in other words})$

Note

 \approx behaves like equality as in propositional logic

Example

 $\blacksquare \ \forall x \phi \approx \ \forall y (\phi[y/x])$

 $\blacksquare \ \forall x \phi \approx \phi \text{ if } x \notin \mathsf{FV}(\phi)$

 $\blacksquare \ \forall x \forall y \phi \approx \forall y \forall x \phi$

- $\neg \forall x \phi \approx \exists x \neg \phi$

Exercise

- give counterexample for $\forall x(\phi \lor \psi) \approx (\forall x\phi) \lor (\forall x\psi)$ and $\forall x\exists y\phi \approx \exists y\forall \phi$
- \blacksquare what happens to these facts if \forall and \exists are swapped?

Prenex Normal Form

I211E: Mathematical Logic 11/19 I211E: Mathematical Logic 12/19

Prenex Normal Form

Definition

prenex form is formula of form:

$$Q_1x_1\cdots Q_nx_n$$
 $\underline{\phi}_{\text{matrix}}$

where $Q_i \in \{ \forall, \exists \}$ and ϕ is quantifier-free

Example

- $\blacksquare \forall x \exists y ((\neg P(y) \lor Q(a)) \land (\neg Q(a) \lor P(x)))$ is prenex normal form
- $\blacksquare \ \forall x \forall y \exists z (x < y \rightarrow (x < z \land z < y))$ is prenex normal form

I211E: Mathematical Logic

13/19

Example

$$\forall x \mathsf{P}(x) \leftrightarrow \mathsf{Q}(\mathsf{a}) \approx (\forall x \mathsf{P}(x) \to \mathsf{Q}(\mathsf{a})) \land (\mathsf{Q}(\mathsf{a}) \to \forall x \mathsf{P}(x))$$

$$\approx (\neg \forall x \mathsf{P}(x) \lor \mathsf{Q}(\mathsf{a})) \land (\neg \mathsf{Q}(\mathsf{a}) \lor \forall x \mathsf{P}(x))$$

$$\approx (\exists x \neg \mathsf{P}(x) \lor \mathsf{Q}(\mathsf{a})) \land (\neg \mathsf{Q}(\mathsf{a}) \lor \forall x \mathsf{P}(x))$$

$$\approx \exists x (\neg \mathsf{P}(x) \lor \mathsf{Q}(\mathsf{a})) \land (\neg \mathsf{Q}(\mathsf{a}) \lor \forall x \mathsf{P}(x))$$

$$\approx \exists x (\neg \mathsf{P}(x) \lor \mathsf{Q}(\mathsf{a})) \land \forall x (\neg \mathsf{Q}(\mathsf{a}) \lor \mathsf{P}(x))$$

$$\approx (\exists y (\neg \mathsf{P}(y) \lor \mathsf{Q}(\mathsf{a})) \land \forall x (\neg \mathsf{Q}(\mathsf{a}) \lor \mathsf{P}(x)))$$

$$\approx \forall x (\exists y (\neg \mathsf{P}(y) \lor \mathsf{Q}(\mathsf{a})) \land (\neg \mathsf{Q}(\mathsf{a}) \lor \mathsf{P}(x)))$$

$$\approx \forall x \exists y ((\neg \mathsf{P}(y) \lor \mathsf{Q}(\mathsf{a})) \land (\neg \mathsf{Q}(\mathsf{a}) \lor \mathsf{P}(x)))$$

15/19

Exercise

$$(\forall x \mathsf{P}(x)) \to \neg \exists y (\forall x \mathsf{Q}(x, y) \to \mathsf{P}(y))$$

every formula has equivalent prenex normal form

Proof.

Theorem

■ use De Morgan laws and following rules

$$\neg \forall x \phi \approx \exists x \neg \phi \qquad \phi \leftrightarrow \psi \approx (\phi \to \psi) \land (\psi \to \phi)$$

$$\neg \exists x \phi \approx \forall x \neg \phi \qquad \phi \to \psi \approx \neg \phi \lor \psi$$

$$(\forall y \phi) * \psi \approx \forall y (\phi * \psi)$$

$$(\exists y \phi) * \psi \approx \exists y (\phi * \psi)$$

where $* \in \{\land, \lor\}$ and $y \notin \mathsf{FV}(\psi)$

■ rename bound variables if necessary

I211E: Mathematical Logic

14/19

Observation

for every x there exists y such that P(x,y)

 \iff there exists function f such that for every x we have P(x, f(x))

Definition

Skolemaization of $\forall x_1 \cdots \forall x_n \exists y \ \phi \text{ is } \forall x_1 \cdots \forall x_n \ \phi[f(x_1, \dots, x_n)/y],$

where f is fresh n-ary function symbol

Theorem

 ϕ is satisfiable $\iff \psi$ is satisfiable for every Skolemization ψ of ϕ

Exercise

Skolemize $\exists x P(x)$, $\forall x \exists y Q(x,y)$, $\forall x \forall y \exists z R(x,y,z)$, and $\forall x \exists y \forall z R(x,y,z)$

I211E: Mathematical Logic 16/19

Skolem Normal Form

Definition

 $\forall x_1 \dots \forall x_n \phi$ is Skolem normal form if ϕ is quantifier-free

Example

 $\forall x \forall y \forall w \ \mathsf{P}(x, y, \mathsf{f}(x, y), w, \mathsf{g}(x, y, w))$

Theorem

every formula ϕ admits Skolem normal form whose satisfiability is equivalent to ϕ

Proof.

compute prenex normal form and then Skolemize it repeatedly

I211E: Mathematical Logic

17/19

Supplementary Comments

- \blacksquare [t/x, u/y] is written as [t, u/x, y] in textbook
- Skolemization preserves (un)satisifiability but not validity
- lacktriangledown ϕ is unsatisfiable; Skolemization can be used for validity!
- **a** as in propositional logic, $\vDash \forall x (\mathsf{P}(x) \lor \neg \mathsf{P}(x))$ implies $\vDash \forall x (\phi \lor \neg \phi)$ for all ϕ
- but unfortunately first-order logic has no truth table method

Exercises for Skolemization

convert each formula to Skolem normal form

$$\exists \forall \epsilon (\epsilon > 0 \rightarrow \exists n (n \in \mathbb{N} \land |\mathbf{a}_n| < \epsilon))$$

 $\lim_{n\to\infty} \mathsf{a}_n = 0$

I211E: Mathematical Logic

18/19