Diszkrét matematika 2

6. előadás Polinomok

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Polinomok maradékos osztása

Tétel

Legyen $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p\}$ és $f, g \in \mathbb{K}[x]$, $g \neq 0$. Ekkor léteznek olyan $q, r \in \mathbb{K}[x]$ polinomok, hogy

$$f = q \cdot g + r \quad \deg r < \deg g.$$

Példa

Legyen
$$f = x^3 + x + 1$$
 és $g = 2x^2 + x + 1$. Ekkor

$$f = \left(\frac{1}{2}x - \frac{1}{4}\right)g + \left(-\frac{3}{4}x - \frac{3}{4}\right)$$

Polinomok foka és gyökök száma

Tétel

Legyen $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p\}$. Egy $f \in \mathbb{K}[x]$ polinomnak legfeljebb $\deg f$ gyöke lehet.

Bizonyítás. A bizonyítás $\deg f$ szerinti teljes indukcióval.

- Ha $\deg f = 0$, azaz $f = c_0$, $c_0 \neq 0$, akkor f-nek nincs gyöke.
- Legyen $\deg f \geq 1$. Ha f-nek nincs gyöke, akkor igaz az állítás. Ellenkező esetben legyen $x_1 \in \mathbb{K}$ egy gyöke. Maradékos osztás tétele szerint

$$f = q \cdot (x - x_1) + r$$
, $\deg r < 1$, azaz $r \in \mathbb{K}$.

Mivel $f(x_1) = 0 = q(x_1) \cdot (x_1 - x_1) + r$, így r = 0: $f = q \cdot (x - x_1)$, $\deg q = n - 1$. Ha $x_2 \neq x_1$ egy másik gyöke f-nek, akkor

$$0 = f(x_2) = q(x_2) \cdot (x_2 - x_1) \Longrightarrow q(x_2) = 0.$$

Mivel q-nek legfeljebb $\deg q = n-1$ gyöke van, így f-nek legfeljebb n-1+1=n gyöke lehet.

Polinomok foka és gyökök száma

Egy $f \in \mathbb{K}[x]$ polinomnak legfeljebb $\deg f$ gyöke lehet. $(\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p\})$

Figyelem, a tétel $\mathbb{Z}_8[x]$ -ben nem igaz:

$$f = x^2 + 2x \in \mathbb{Z}_8[x]$$
 esetén $f(0) = f(2) = f(4) = f(6) = 0$.

U.i.: Az $x_1 = 0$ gyöke a polinomnak. $(x - x_1) = (x - 0) = x$ tagot kiemelve kapjuk, hogy $f = x \cdot (x + 2)$. Azonban pl. $x_1 = 4$ szintén gyöke f-nek, mert $4 \cdot 6 \equiv 0 \mod 8$.

Következmény (A gyöktényező kiemelhetősége)

Legyen $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p\}$. Legyen $f \in \mathbb{K}[x]$ és $x_1 \in \mathbb{K}$ egy gyöke. Ekkor f felírható az $f = (x - x_1) \cdot g$ formában valamely $g \in \mathbb{K}[x]$ polinommal.

Hasonlóan, az állítás $\mathbb{Z}_8[x]$ -ben nem igaz.

Horner elrendezés

Legyen $f = c_n x^n + \cdots + c_0$. A polinomfüggvény f(a) kiértékelése naiv módon: $f(a) = c_n a^n + \cdots + c_0$: n szorzás és n-2 hatványozás.

Horner elrendezés

Példa

Legyen $f = 2x^4 + 3x^2 + 2x + 4 \in \mathbb{Z}_5[x]$ és számoljuk ki f(2)-t:

Tehát f(2) = 2.

- A Horner elrendezés az $f = (((c_n x + c_{n-1})x + c_{n-2})x + \dots)x + c_0$ felírás.
- A Horner elrendezés n szorzást és 0 hatványozást használ.

Horner elrendezés és maradékos osztás

Legyen $f = c_n x^n + \cdots + c_0$ és tekintsük az *a*-hoz tartozó Horner elrendezést:

Ez valójában az x - a lineáris polinommal való maradékos osztás:

$$f = (x - a) \cdot (b_n x^{n-1} + \dots + b_1) + f(a).$$

Bizonyítás. (HF) Visszaszorzással, felhasználva, hogy $c_i = b_i - ab_{i+1}$.

Példa

Legyen $f = 2x^4 + 3x^2 + 2x + 4 \in \mathbb{Z}_5[x]$ és számoljuk ki f(2)-t:

Tehát
$$f(2) = 2$$
 és $f = (x - 2) \cdot (2x^3 + 4x^2 + x + 4) + 2$

Polinomok legnagyobb közös osztója

Definíció

Legyenek f, g polinomok. f osztja g-t, $f \mid g$, ha létezik h polinom, hogy $f \cdot h = g$.

Példa

- $x + 1 \mid x^2 + 2x + 1$, mert $x^2 + 2x + 1 = (x + 1)(x + 1)$.
- $50x + 50 \mid x^2 + 2x + 1$, mert $x^2 + 2x + 1 = (50x + 50) \left(\frac{1}{50}x + \frac{1}{50}\right)$

Definíció

Két polinom f és g legnagyobb közös osztója, $h=(f,g)=\mathrm{lnko}(f,g)$, ha

- közös osztó: $h \mid f$ és $h \mid g$;
- legnagyobb: ha $q \mid f$ és $q \mid g \Rightarrow q \mid h$;
- h főegyütthatója 1.

Példa

$$(x-1,x+1) = 1$$
 és $(x^2 + 2x + 1,50x^2 - 50) = x + 1$.

Polinomok legnagyobb közös osztójának kiszámítása, euklideszi algoritmus

Tétel

Bármely két f, g polinomnak létezik legnagyobb közös osztója, és az meghatározható az euklideszi algoritmussal.

Bizonyítás. Feltehető, hogy $\deg f, \deg g \geq 1$. Végezzük el a következő maradékos osztásokat:

$$f = q_1 g + r_1$$
 $\deg r_1 < \deg g$
 $g = q_2 r_1 + r_2$ $\deg r_2 < \deg r_1$
 $r_1 = q_3 r_2 + r_3$ $\deg r_3 < \deg r_2$
 \vdots
 $r_{\ell-2} = q_{\ell} r_{\ell-1} + r_{\ell}$ $\deg r_{\ell} < \deg r_{\ell-1}$
 $r_{\ell-1} = q_{\ell+1} r_{\ell}$

Ekkor $(f,g) = r_{\ell}$. (Biz.: HF)

Polinomok legnagyobb közös osztójának kiszámítása, euklideszi algoritmus

Példa

Legyen
$$f = x^4 + x^3 + x^2 + 2x + 1 \in \mathbb{Z}_5[x]$$
 és $g = x^4 + x^3 + 4x^2 + 1 \in \mathbb{Z}_5[x]$. $(f, g) = ?$

$$f = g + (2x^{2} + 2x)$$

$$g = (3x^{2} + 2)(2x^{2} + 2x) + (x + 1)$$

$$2x^{2} + 2x = 2x(x + 1),$$

i	q_i	r_i
-1	_	f
0	_	g
1	1	$2x^2 + 2x$
2	$3x^2 + 2$	x+1
3	2 <i>x</i>	0

tehát (f,g) = x + 1.

Közös gyökök

Emlékeztető Az x_1 érték gyöke f-nek, ha az $x-x_1$ gyöktényező osztja f-et, $x-x_1 \mid f$

Példa

Az $f = (x-1) \cdot (x-2) \cdot (x-3)$ polinomnak az 1, 2, 3 értékek a gyökei.

Állítás: Legyen $f, g \in \mathbb{K}[x]$ ($\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p\}$). Ekkor az f és g közös gyökei a h = lnko(f, g) polinom gyökei.

Példa

Leaven $f = x^4 + x^3 + x^2 + 2x + 1 \in \mathbb{Z}_5[x]$ és $g = x^4 + x^3 + 4x^2 + 1 \in \mathbb{Z}_5[x]$. Ekkor (f,g) = x + 1. Azaz csak az $x_1 = -1 \equiv 4 \mod 5$ lesz a közös gyök:

Példa

Legyen
$$f = (x-1) \cdot (x-\sqrt{2}) \cdot (x-3i) \in \mathbb{C}[x]$$
 és $g = x \cdot (x-\sqrt{2}) \cdot (x-3i)$.
Ekkor $h = \operatorname{lnko}(f,g) = (x-\sqrt{2}) \cdot (x-3i) \in \mathbb{C}[x]$