Human-level Control Through Deep Reinforcement Learning

Google DeepMind Nature 2015

Markov Decision Process

- State
- Action
- Reward

- Action value function
 - Discounted future reward (environment is stochastic)

$$R_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots + \gamma^{n-t} r_{n}$$

$$= r_{t} + \gamma (r_{t+1} + \gamma (r_{t+2} + \dots))$$

$$= r_{t} + \gamma R_{t+1}$$

$$Q^{\pi}(s,a) = E_{\pi}\{R_t|s_t = s, a_t = a\} = E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s, a_t = a\}$$

Q-learning

Bellman Equation

$$Q(s,a) = r + \gamma max_{a'}Q(s',a')$$

```
initialize Q[num\_states, num\_actions] arbitrarily observe initial state s

repeat

select and carry out an action a
observe reward r and new state s'
Q[s,a] = Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])
s = s'
until terminated
```

- -Limitation: valu
 - Value Iteration
- 1. Very limited states/actions
- 2.Can not generalize to unobserved states

Deep Q-network (DQN)

- Q learning plus
- Function approximator:

Deep neural networks to approximate optimal action-value function

$$Q^*(s,a) = \max_{\pi} \mathbb{E} \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \ a_t = a, \ \pi \right]$$

Problem

Stability issues with Deep RL

- Naïve Q-learning oscillates or diverges with neural nets
 - Data is sequential
 - Successive samples are correlated, non-i.i.d.
 - 2. Policy changes rapidly with slight changes to Q-values
 - ➤ Policy may oscillate
 - > Distribution of data can swing from one extreme to another

Experience Replay

To remove correlations, build data-set from agent's own experience

- Take action a_t according to ε -greedy policy

 (Choose "best" action with probability 1- ε , and selects a random action with probability ε)
- Store transition (s_t, a_t, r_t, s_{t+1}) in replay memory \mathcal{D} (Huge data base to store historical samples)
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Optimize MSE between Q-network and Q-learning targets, e.g.

$$\mathcal{L}_{i}(\theta_{i}) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i}) - Q(s,a;\theta_{i}) \right)^{2} \right]$$
target

Fixed target Q-network

To avoid oscillations, fix parameters used in Q-learning target

Compute Q-learning targets w.r.t. old, fixed parameters θ_i⁻

$$r + \gamma \max_{a'} Q(s', a'; \theta_i^-)$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}_{i}(\theta_{i}) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}}\left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) - Q(s,a;\theta_{i})\right)^{2}\right]$$

Periodically update fixed parameters θ_i[−] ← θ_i

Core components of DQN

Deep Q-Network provides a stable solution to deep value-based RL

- 1. Use experience replay
 - > Break correlations in data, bring us back to i.i.d. setting
 - ➤ Learn from all past policies
 - Using off-policy Q-learning
- 2. Freeze target Q-network
 - Avoid oscillations
 - Break correlations between Q-network and target

Model:Train this agent on Atari 2600 games

Model

• State: Sequences of action and observation

$$s_t = x_1, a_1, x_2, ..., a_{t-1}, x_t,$$

Action: Legal game action set

$$\mathcal{A} = \{1, \ldots, K\}.$$

• Reward: Change in game score

How to train DQN

Loss function:

$$\mathcal{L}_{i}(\theta_{i}) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) - Q(s,a;\theta_{i}) \right)^{2} \right]$$

Differentiating the loss function w.r.t. the weights we arrive at following gradient:

$$\nabla_{\theta_i} \mathcal{L}_i(\theta_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right) \nabla_{\theta_i} Q(s,a;\theta_i) \right]$$

Do gradient descent:

$$\theta_{i+1} = \theta_i + \alpha \cdot \nabla_{\theta_i} L_i(\theta_i)$$

Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^-=\theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Evaluation

Evaluation

DQN

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Conclusion

- A single architecture can successfully learn policy with only minimal prior knowledge
- And the successful integration of RL with deep neural network was mainly dependent on a replay algorithm

- However, games demanding more temporally extended planning strategy still are challenge for all existing agent including DQN
- Experience replay can be better