Semantic Web und Linked Open Data

Bachelor Informationsmanagement Modul Digitale Bibliothek (SS 2014)

Dr. Jakob Voß

2014-04-14

Frage vorab

Wo kam Semantic Web bereits im Studium vor?

Semantic Web in digitalen Bibliotheken

- Bibliographische Daten
- ▶ Normdaten (Personen, Orte, Themen...)
- Daten über Einrichtungen und Personen (VIVO, Standorverzeichnis...)
- ▶ Daten über Dienstleistungen (schema.org...)
- Zur Integration von Daten

Wie kommen Daten ins Semantic Web?

- Datenkonvertierung (Mapping)
- Veröffentlichung (Open)
- Als Linked Data von einzelnen URLs
- Als Datendumps in größeren Dateien
- Über Schnittstellen (SPARQL u.A.)

Beispiel: GND in RDF

Datenmodellierung mit Semantic-Web-Techniken

RDF-Graphen

- Menge von Resourcen
 - URIs (meist URLs)
 - Literale (ggf. mit Sprachcode oder Datentyp)
- Menge von RDF-Triples oder -Aussagen
- Am Besten graphisch zu veranschaulichen
- Einige Resourcen gehören zu Ontologien

URIs als Identifikatoren

- Notwendig zur Identifizierung
- Vorhandene Identifier werden i.d.R. auf URIs gemappt
- Bei Linked Open Data HTTP-URIs

RDF-Tripel

Subjekt URI
Prädikat URI oder blank node
Objekt URI, blank node oder Literal

Serialisierung beispielsweise als NTripel

RDF zur Datenstrukturierung

- Vorteil
 - Alles ist ein Graph
 - Zerschneiden und Zusammenführen möglich
- Nachteil
 - Alles ist ein Graph
 - ► Tabellen, Listen und Baumstrukturen schwierig

RDF-Serialisierungen

- Verschiedene Kodierungen für die gleichen RDF-Daten
 - RDF/XML
 - NTriples
 - Turtle
 - aREF
 - · . . .
- Manchmal verwirrend und fehleranfällig
- ► Für Computer gedacht
- Notwendig

RDF-Serialisierung in Turtle

- Leichter zu lesen und zu schreiben
- Erweiterung von NTriples
 - Abkürzung von URIs durch Namensräume
 - Subjekt Prädikat Objekt1 , Objekt2 .
 - Subjekt Prädikat Objekt;Prädikat2 Objekt2.
 - ▶ Blank nodes mit Klammern [. . .]

Ontologien

- Menge von Klassen und Eigenschaften
- Davon zu unterscheiden: Instanzen
- Inferenz- und Konsistenzregeln

Beispiele: DC, Schema.org, Bibo, DAIA

Inferenz- und Konsistenzregeln

- Automatische Schlussfolgerungen
- ► Können Computer meist gut berechnen
- Können Menschen meist nicht so gut überschauen
- Meiner Meinung nach in RDF überbewertet

Einfache Beispiele: rdf:type, rdfs:subClass, owl:sameAs

Beispiel: SKOS

- Ontologie für Klassifikationen, Thesauri und andere Normdateien
- "Semantic Web light" weil mit Begriffen/Normdatensätze/Deskriptoren nur eingeschränkt Logische Aussagen möglich sind

Bestandteile der SKOS-Ontologie

Benennungen und Synonyme skos:prefLabel, skos:altLabel

Notationen skos:notation

Verweise skos:broader, skos:narrower, skos:related

Kommentare und Beschreibungen skos:scopeNote

Übung

- 1. Gruppen bilden
- 2. Normdatei suchen (außer GND)
- 3. Einen Normdatensatz suchen
- 4. URI für den Normdatensatz suchen oder bilden
- Bestandteile identifizieren
 - Beschreibungen, Benennungen, Notationen
 - Verweise
 - Kommentare und Beschreibungen
- 6. RDF-Aussagen erstellen
- 7. RDF/Turtle Beispiel erstellen und erklären