

tpu.ru

Системный анализ процессов химической технологии

Лекция 1

Иванчина Эмилия Дмитриевна д.т.н., профессор ОХИ ИШПР

VATERISCE HE CENTER

План лекции

- Основные понятия кибернетики и системного анализа;
- Элементы химико-технологической системы (ХТС);
- Иерархическая структура ХТС;
- Системный анализ процесса компаундирования бензинов.

NHWEHEP OLDAHNAE!

Основные понятия кибернетики и системного анализа

Предмет системного анализа — это система любой природы (в данном случае — XTC).

Метод исследования – это метод математического моделирования.

Основные понятия кибернетики и системного анализа

XTC – это совокупность физико-химических процессов в производственной системе и средства для их реализации.

- Химический процесс;
- Аппараты, в которых этот процесс протекает;
- Средства контроля и управления;
- Связи между аппаратами (трубопроводы).

Структура ХТС

- \vec{x} вектор входных параметров (сырьё);
- \vec{y} вектор выходных параметров (количество и качество готового продукта);
- \vec{z} вектор режимных параметров (температура, давление, расход и др.);

Элементы химико-технологической системы (ХТС)

Элемент XTC — это аппарат, в котором протекает химико-технологический процесс.

7

Иерархическая структура XTC – многоуровневая структура производства

Уровень иерархии	Пример	Назначение	
1. Типовой процесс	Реактор, колонна, теплообменник, смеситель и др.	Преобразование вещества и энергии	
2. Цех	Совокупность отделений, работающих на выпуск определенной продукции (цех производства бензина)	Объединение типовых процессов	
3. Химический завод	Совокупность цехов, объединенных общим сырьем (завод производства метанола)	Объединение цехов по выпуску продукции	
4.Технологическая линия	Совокупность заводов, связанных между собой общей производственной линией (первичная подготовка нефти)	Объединение заводов по сырью и продукции	
5. Отрасль химической промышленности	Совокупность заводов химической, нефтехимической и нефтеперерабатывающей промышленности данного округа	Получение и распределение продукции по назначению	

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Расчет октанового числа смешения

Октановое число потока смешения и в целом смеси рассчитывается по правилу аддитивности:

$$O\mathcal{H}_{CM} = \sum_{i=1}^{n} a_i \cdot O\mathcal{H}_i^{/} \tag{1}$$

где O4/- октановое число i-го потока;

 a_i — доля потока в смеси;

n — количество потоков;

$$OY' = \sum_{i=1}^{k} C_i \cdot OY_i \tag{2}$$

где *ОЧ* / – октановое число углеводорода;

 C_i – концентрация углеводородов, масс. доли;

k – количество углеводородов в потоке;

Фрагмент таблицы по углеводородному составу потоков, % мас.

Название	ОЧ (ИМ) компонентов	ЛГ-35-8/300Б Рафинат	Доксилольная фракция	АИ-92	АИ-98
Пропан	100			0,09	0,01
н-Бутан	93,60	0,19		1,32	0,51
н-Пентан	61,70	2,34	5,64	5,19	1,39
н-Гексан	24,80	20,78	3,37	3,34	1,78
н-Гептан	0,00	4,52	1,92	2,73	2,90
н-Октан	- 19,00	0,11	4,82	0,63	0,44
н-Нонан	- 39,00			0,21	0,29
Изобутан	101,00	0,04		0,52	0,14
2,2-диметилбутан	92,0	3,55	0,59	0,54	0,21
2,3-диметилбутан	101,70	3,68	0,80	0,52	0,30
2,2,3-триметилбутан	105,80	0,08	0,03	0,08	0,05
Изопентан	92,30	2,88	3,73	6,62	4,00

Таким образом, системный анализ процесса компаундирования товарных бензинов осуществляется в два этапа:

- 1. Определяется октановое число потока (формула 1);
- 2. Рассчитывается доля потока в смеси для заданного октанового числа (формула 2);

