Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа № 5.3

Определение энергии γ -квантов с помощью сцинтилляционного спектрометра

Студент Ришат ИСХАКОВ 512 группа Преподаватель Лев Владиславович Инжечик

Цель работы: Определить энергию γ -квантов неизвестного радиоактивного препарата после предварительной калибровки спектрометра по γ -излучению ^{60}Co .

1. Теория

Принцип действия спектрометра состоит в следующем:

- 1. γ -кванты от исследуемого источника коллимируются свинцовым коллиматором и попадают в сцинтиллятор кристалл йодистого натрия, активизированного таллием (NaI(TI)).
- 2. Попавшие в сцинтиллятор γ -кванты взаимодействуют с атомами, выбивая из них электроны. При больших энергиях возможно образование электрон-позитронных пар. Возбужденные атомы высвечиваются, испуская электро-магнитное излучение.
- 3. Часть образовавшихся фотонов, пройдя через сцинтяллятор, попадает на катод фотоэлектронного умножителя и в результате фотоэффекта выбивает из него медленные электроны. Эти электроны ускоряются полем умножителя и вырывают с поверхности первого динода, вторичные электроны, которые ускоряются полем по направлению ко второму диноду и т.д. Многократное повторение этого процесса позволяет получить большой коэффициент умножения.

Hello, my name is Rishat

Энергия конверсионного электрона:

$$T_e = E_{\gamma} - W_K$$

где W_K — энергия нужная для ионизации K-оболочки атома.

Наибольшая энергия, которая может быть передана электрону (наименьшая равна нулю):

$$(T_e)_{max} = \hbar \omega \frac{2\alpha}{1 + 2\alpha},$$

где $\alpha = \hbar\omega/(mc^2)$.

Если энергия γ -кванта $> 2mc^2$, то возможно образование электрон-позитронной пары в поле ядра. В таком случае сумма кинетических энергий электрона и позитрона равна:

$$T_{e^-} + T_{e^+} = \hbar\omega - 2mc^2.$$

Идентификацию γ -линий будем проводить по пикам полного поглощения (в нашем случае ширина аппаратурная, а не истинная). Ширину пика будем характеризовать энергетическим разрешением прибора:

$$R = \frac{\delta}{E} \cdot 100\%,$$

где δ — ширина пика полного поглощения на половине высоты, E — энергия регистрируемого γ -излучения.

2. Ход работы

Сначала проградуируем спектрометр по γ -излучению ^{60}Co , испускающего γ -линии с энергиями $E_1=1.17$ МэВ и $E_2=1.33$ МэВ. Затем определим энергии γ -квантов неизвестного препарата.

Таблица 1: Результаты измерения для ^{60}Co

$V_{\text{порог}}$	10	9.9	9.8	9.7	9.6	9.5	9.4	9.3	9.2	9.1	9	8.9	8.8	8.7
N	3	10	14	21	10	15	24	26	44	47	33	39	41	34
$V_{\text{порог}}$	8.6	8.5	8.4	8.3	8.2	8.1	8	7.9	7.8	7.7	7.6	7.5	7.4	7.3
N	75	85	78	24	273	478	791	1307	1699	1901	1832	1542	1275	1038
$V_{\text{порог}}$	7.2	7.1	7	6.9	6.8	6.7	6.6	6.5	6.4	6.3	6.2	6.1	6	5.9
N	908	1313	1910	2300	2678	2854	2889	2345	2010	1751	1591	1569	1385	1505
$V_{\text{порог}}$	5.8	5.7	5.6	5.5	5.4	5.3	5.2	5.1	5	4.9	4.8	4.7	4.6	4.5
N	1581	1694	1733	1919	2184	2197	2286	2244	2434	2392	2327	2434	2207	2273
$V_{\text{порог}}$	4.4	4.3	4.2	4.1	4	3.9	3.8	3.7	3.6	3.5	3.4	3.3	3.2	3.1
N	2223	2104	2268	2250	2219	2190	2281	2192	2261	2243	2275	2174	2194	2214

Таблица 2: Результаты измерения для неизвестного вещества

$V_{\text{порог}}$	10	9.9	9.8	9.7	9.6	9.5	9.4	9.3	9.2	9.1	9	8.9	8.8	8.7
N	1	7	11	6	12	2	13	9	4	2	5	10	10	10
$V_{\text{порог}}$	8.6	8.5	8.4	8.3	8.2	8.1	8	7.9	7.8	7.7	7.6	7.5	7.4	7.3
N	17	12	19	17	26	32	41	36	54	129	302	594	982	1243
$V_{\text{порог}}$	7.2	7.1	7	6.9	6.8	6.7	6.6	6.5	6.4	6.3	6.2	6.1	6	5.9
N	1382	1191	984	663	521	360	331	246	256	287	397	504	642	680
$V_{\text{порог}}$	5.8	5.7	5.6	5.5	5.4	5.3	5.2	5.1	5	4.9	4.8	4.7	4.6	4.5
N	780	851	885	841	963	824	862	897	843	842	802	774	722	836
$V_{\text{порог}}$	4.4	4.3	4.2	4.1	4	3.9	3.8	3.7	3.6	3.5	3.4	3.3	3.2	3.1
N	800	791	882	817	823	872	882	906	867	971	1007	1166	1053	5626

Построим графики спектра импульсов ^{60}Co и неизвестного вещества (предварительно переводим шкалу в МэВ).

Рис. 1: Графики спектра импульсов ^{60}Co

Рис. 2: Графики спектра импульсов неизвестного вещества

По положению фотопиков определим энергию γ -квантов этого препарата. Зная энергию, посчитаем положение верхней границы комптоновского распределения и сравним с реальной экспериментальной величиной.

Энергия препарата $E_{\gamma}=1.27\pm0.1$

Энергетическое разрешение прибора $R = \frac{\delta}{E_{\gamma}} \cdot 100\% = 20\%$

Верхняя граница комтоновского распределения: $(T_e)_{max} = 1.01 \text{ M}$ эВ.

3. Вывод

Определили энергию γ -кванта неизвестного радиоактивного препарата после предварительно калибровки по γ -излучению ^{60}Co . Посчитали энергетическое разрешение прибора, нашли положение верхней границы комптоновского распределения.