5.2 A Integral Definida

Consideremos um interlavo [a,b] e uma função $f:[a,b]\to\mathbb{R}$ limitada com $f(x)\geq 0$ para todo $x\in [a,b]$. Em outras palavras, estamos supondo que para algum número real k>0, temos

 $0 \le f(x) \le k$ para todo $x \in [a, b]$.

Figura 5.1:

A tentantiva de calcular a área da região entre as retas x = a e x = b, situada entre o gráfico de f e o eixo das abscissas, leva-nos ao conceito de integral.

Um caminho natural para avaliar a área dessa região é iniciar com aproximações. Fazemos isso dividindo o intervalo [a,b] em n subintervalos de mesmo comprimento $\Delta_n=\frac{b-a}{n}$, através dos pontos $a=t_0 < t_1 < \ldots < t_n=b$.

Em cada um dos intervalos $[t_{i-1}, t_i]$ assim determinados, escolhemos um ponto c_i e construímos o retângulo com base $[t_{i-1}, t_i]$ e altura igual a $f(c_i)$. Parece natural esperar que a soma das áreas desses retângulos forneça uma aproximação da área desejada, e que quanto menor for o comprimento Δ_n de cada intervalo $[t_{i-1}, t_i]$, tanto melhor será esta aproximação.

Figura 5.2:

Esta soma é

$$S_n(f) = f(c_1)(t_1 - t_0) + f(c_2)(t_2 - t_1) + \dots + f(c_n)(t_n - t_{n-1})$$

=
$$\sum_{i=1}^n f(c_i)(t_i - t_{i-1}) = \sum_{i=1}^n f(c_i)\Delta_n.$$

Quando existe $\lim_{n\to\infty} S_n(f)$, dizemos que a região acima descrita é mensurável e que sua área é $A = \lim_{n\to+\infty} S_n(f).$

De acordo com a definição que daremos a seguir, este limite também será chamado de integral de f sobre [a, b].

Observação 5.3 É possível mostrar que este limite existe para um conjunto de funções.

Integral definida de uma função

Dado um intervalo [a, b] em \mathbb{R} , um subconjunto finito

$$P = \{ a = t_0 < t_1 < t_2 < \dots < t_n = b \}$$

é chamado partição de [a, b]. Os intervalos $[t_{i-1}, t_i]$ são chamados intervalos da partição P ou, simplesmente, intervalos de P.

Consideremos uma função limitada $f:[a,b]\to\mathbb{R}$, isto é, uma função para qual existe um número k>0 tal que $|f(x)|\leq k$ para todos $x\in[a,b]$. (Assim, f poderá também assumir valores negativos o que não permitíamos na seção anterior).

Para cada $n \in \mathbb{N}$, dividimos o intervalo [a, b] em n partes de mesmo comprimento $\Delta_n = \frac{b-a}{n}$ através da partição

$$P = \{ a = t_0 < t_1 < t_2 < \ldots < t_n = b \}.$$

Em cada intervalo $[t_{i-1}, t_i]$ de P escolhemos um ponto c_i . Os pontos c_1, c_2, \ldots, c_n , constituem um pontilhamento de P. A soma

$$S_n(f) = \sum_{i=1}^n f(c_i) \Delta_n = \sum_{i=1}^n f(c_i)(t_i - t_{i-1})$$

é chamada a $soma\ de\ Riemann$ da função f relativamente à partição P.

Definição 5.2 Quando existe $\lim_{n\to+\infty} S_n(f)$ diremos que f é integrável e que sua integral é esse limite.

Observe que existir

$$\lim_{n\to+\infty} S_n(f)$$

significa que esse limite deve ter o mesmo valor, qualquer que seja a escolha dos pontos $c_i \in [t_{i-1}, t_i]$.

Para indicar a integral definida de f de a até b usaremos a notação

$$\int_{a}^{b} f(x)dx$$

Portanto,

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \lim_{\mathbf{n} \to +\infty} \mathbf{S}_{\mathbf{n}}(\mathbf{f}) = \lim_{\mathbf{n} \to +\infty} \sum_{i=1}^{\mathbf{n}} \mathbf{f}(\mathbf{c}_i) \boldsymbol{\Delta}_{\mathbf{n}}.$$

Os números a e b são respectivamente limite inferior e limite superior da integral, a função f(x) é o integrando e o símbolo \int é um sinal de integração.

Quando o domínio de f contém um intervalo [a, b], não sendo porém igual a este intervalo [a, b], diremos integral de f sobre [a, b].

Observação 5.4 Fazer n tender $a \infty$ equivale a fazer Δ_n tender a zero.

Observação 5.5 Os intervalos $[t_{i-1}, t_i]$ de uma partição P não precisam ter o mesmo comprimento. Neste caso, porém, não basta exigir que n tenda ao infinito na definição da integral; precisamos exigir que o comprimento de cada intervalo de P tende a zero. Então teremos

$$\int_{a}^{b} f(x)dx = \lim_{|P| \to 0} S_n(f),$$

onde $|P| = m\acute{a}x\{t_1 - t_0, \ t_2 - t_1, \dots, \ t_n - t_{n-1}\}$. O número |P| é chamado **norma da partição** P.

Teorema 5.16 Se uma função for contínua no intervalo fechado [a, b], então ela será integrável em [a, b].

5.3 Propriedades da Integral Definida

1. $\int_a^b c dx = c(b-a)$, onde c é qualquer constante.

2.
$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
.

3.
$$\int_a^b cf(x)dx = c \int_a^b f(x)dx$$
, onde c é qualquer constante.

4.
$$\int_{a}^{b} [f(x) - g(x)]dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$
.

5. Se
$$f(x) \ge 0$$
 para $a \le x \le b$, então $\int_a^b f(x) dx \ge 0$.

6. Se
$$f(x) \ge g(x)$$
 para $a \le x \le b$, então $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

7. Se $m \leq f(x) \leq M$ para $a \leq x \leq b$, então

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

8. Se f(a) existe, então
$$\int_a^a f(x)dx = 0$$

9. Se
$$c > d$$
, então $\int_{c}^{d} f(x)dx = -\int_{d}^{c} f(x)dx$

Exemplo 5.7 Usando o fato que
$$\int_{0}^{1} x^{2} dx = 1/3$$
. Calcule $\int_{0}^{1} [4 + x^{2}] dx$.

Teorema 5.17 Se a < c < b e se f é integrável tanto em [a,c] como em [c,b], então f é integrável em [a,b] e

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

O resultado seguinte é uma generalização do Teorema 5.17 ao caso em que c não está necessariamente entre a e b.

Teorema 5.18 Se f é integrável em um intervalo fechado e se a, b, c são números arbitrários no intervalo, então

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Exemplo 5.8 Expresse como uma única integral $\int_2^7 f(x)dx - \int_5^7 f(x)dx$.

5.4 O Teorema Fundamental do Cálculo(T.F.C)

O Teorema Fundamental do Cálculo estabelece uma conexão entre os dois ramos do cálculo: o cálculo diferencial e o cálculo integral.

O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu do problema da área.

Foi *Issac Barrow* (1630-1677), professor de Newtom em Cambridge que, descobriu a estreita relação entre esses dois problemas, relação esta expressa pelo Teorema Fundamental do Cálculo.

Newton e **Leibniz** exploraram essa relação e usaram-na para desenvolver o cálculo como um método matemático sistemático. Em particular, eles viram que o T.F.C os capacitou a computar as áreas muito mais facilmente, sem que fosse necessário calculá-las como limites de somas.

Teorema 5.19 (Teorema Fundamental do Cálculo/T.F.C)

Seja f uma função contínua em [a, b].

1. Se
$$g(x) = \int_a^x f(t)dt$$
 para todo $x \in [a, b]$, então $g'(x) = f(x)$.

2.
$$\int_a^b f(x)dx = F(b) - F(a)$$
, quando F for uma antiderivada de f.

Corolário 5.20 Se f é contínua em [a,b] e F é uma antiderivada de f, então

$$\int_{a}^{b} f(x)dx = F(x)]_{a}^{b} = F(b) - F(a)$$

Integrais definidas e áreas planas

Como podemos ver o T.F.C pode ser usado para calcular áreas através da integral definida.

Aplique o T.F.C nas integrais definidas abaixo e interprete cada uma das funções geometricamente.

1.
$$\int_{0}^{2} x^{2} dx$$

$$2. \int_0^{\pi} \sin x dx$$

$$3. \int_0^1 (\sqrt{x} - x^2) dx$$

$$4. \int_{-2}^{3} |x| dx$$

5.
$$\int_{-1}^{3} e^x dx$$

$$6. \int_4^2 3^x dx$$

$$7. \int_{1}^{2} \frac{1}{x} dx$$

156

Teorema 5.21 Se
$$u=g(x)$$
, então $\int_a^b f(g(x))g'(x)dx=\int_{g(a)}^{g(b)} f(u)du$

O Teorema 5.21 afirma que, após fazer a substituição u = g(x) e du = g'(x)dx, podemos utilizar os valores de g que corresponde a x = a e x = b, respectivamente, como os limites da integral que envolve u. É, pois, desnecessário voltar á variável original x após integrar.

Exemplo 5.9 Calcular
$$\int_{2}^{10} \frac{3}{\sqrt{5x-1}} dx$$
.

Exemplo 5.10 Calcular
$$\int_0^{\pi/4} (1 + \sin 2x)^3 \cos 2x dx$$
.

Teorema 5.22 $Seja\ f\ contínua\ em\ [-a,a]$

(i) Se f é uma função par,

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

(ii) Se f é uma função ímpar,

$$\int_{-a}^{a} f(x)dx = 0$$

Exemplo 5.11 Calcular

a)
$$\int_{1}^{1} (x^4 + 3x^2 + 1) dx$$

$$b)\int_{-2}^{2} (x^5 + 3x^3 + x)dx$$

Teorema 5.23 Se f e g são funções contínuas e $f(x) \ge g(x)$ para todo x em [a,b], então a área A da região delimitada pelos gráficos de f, g, x=a e x=b é

$$A = \int_{a}^{b} [f(x) - g(x)]dx$$

Exemplo 5.12 Achar a área da região delimitada pelos gráficos das equações $y = x^2$ e $y = \sqrt{x}$.