Bölüm 5: Giriş Çıkış

İşletim Sistemleri

Tipik Cihaz, Ağ Ve Veri Yolu Veri Hızları

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Scanner	400 KB/sec
Digital camcorder	3.5 MB/sec
802.11g Wireless	6.75 MB/sec
52x CD-ROM	7.8 MB/sec
Fast Ethernet	12.5 MB/sec
Compact flash card	40 MB/sec
FireWire (IEEE 1394)	50 MB/sec
USB 2.0	60 MB/sec
SONET OC-12 network	78 MB/sec
SCSI Ultra 2 disk	80 MB/sec
Gigabit Ethernet	125 MB/sec
SATA disk drive	300 MB/sec
Ultrium tape	320 MB/sec
PCI bus	528 MB/sec

Bellek Eşlemeli G/Ç

• (a) Ayrı G/Ç ve bellek alanı. (b) Bellek eşlemeli G/Ç. (c) Hibrit.

Bellek Eşlemeli G/Ç

• (a) Tek veri yolu mimarisi. (b) Çift veri yolu bellek mimarisi

Doğrudan Bellek Erişimi (DMA)

DMA transferinin çalışması

Kesmeler

 Kesme nasıl oluşur. Cihazlar ve kesme denetleyicisi arasındaki bağlantılar, atanmış kablolar yerine veri yolundaki kesme hatlarını kullanır.

Kesin olan Kesilmenin Özellikleri

- Program Sayacı bilinen bir yere kaydedilir.
- PC tarafından işaret edilenden önceki tüm komutlar tam olarak yerine getirilmiştir.
- PC tarafından işaret edilenin ötesinde hiçbir komut yürütülmemiştir.
- PC tarafından işaret edilen talimatın yürütme durumu bilinmektedir.

Kesin ve Kesin Olmayan Kesmeler

• (a) Kesin bir kesme. (b) Kesin olmayan bir kesme.

Programlanmış G/Ç

Karakter dizisi yazdırma adımları

Programlanmış G/Ç

• Programlanmış G/Ç kullanarak yazıcıya bir dizi karakter yazma

Kesme Odaklı G/Ç

(a) Yazdırma sistem çağrısı yapıldığında yürütülen kod. (b) Yazıcı için kesinti servis prosedürü (ISR).

```
copy_from_user(buffer, p, count);
enable_interrupts();
while (*printer_status_reg != READY);
*printer_data_register = p[0];
scheduler();

(a)

if (count == 0) {
    unblock_user();
} else {
    *printer_data_register = p[i];
    count = count - 1;
    i = i + 1;
}
acknowledge_interrupt();
return_from_interrupt();
```

DMA Kullanarak G/Ç

(a) Yazdırma sistemi çağrısı yapıldığında yürütülen kod. (b) Kesinti hizmet prosedürü.

```
copy_from_user(buffer, p, count); acknowledge_interrupt(); set_up_DMA_controller(); unblock_user(); scheduler(); return_from_interrupt(); (b)
```

G/Ç Yazılım Sisteminin Katmanları

Kesme İşleyicileri (handler)

- Kesme donanımı tarafından henüz kaydedilmemiş yazmaçları kaydet.
- Kesme hizmet prosedürü için bir içerik (context) ayarla
- Kesme hizmet prosedürü için bir yığın ayarla
- Kesme denetleyicisini kesmeyi alındığına dair bilgilendir. Merkezi kesme denetleyicisi yoksa kesmeleri yeniden etkinleştir (re-enable)
- Yazmaçları süreç tablosundan alınan değerlerle güncelle

Kesme İşleyicileri (handler)

- Kesme hizmeti yordamını çalıştır
- Sırada hangi sürecin çalıştırılacağını seç
- Bir sonraki sürecin çalışması için MMU içeriğini ayarla
- PSW de dahil olmak üzere yeni sürecin değerlerini yazmaca yükle
- Yeni süreci başlat

Aygıt Sürücüleri

 Gerçekte, sürücüler ve aygıt denetleyicileri arasındaki tüm iletişim veri yolu üzerinden gider.

Aygıtdan Bağımsız G/Ç Yazılımı

Cihazdan bağımsız G/Ç yazılımının işlevleri

- Aygıt sürücüleri için tek tip arayüz
- Ara belleğe alma
- Hata raporlama
- Aygıtları tahsis etme ve serbest bırakma
- Aygıtdan bağımsız bir blok boyutu sağlama

Aygıt Sürücüleri İçin Tek Tip Arayüz

(a) Standart bir arayüz yoksa. (b) varsa.

Ara Belleğe Alma

- (a) Tamponlanmamış girdi. (b) Kullanıcı alanında ara belleğe alma.
- (c) Çekirdekte tamponlama ve ardından kullanıcı alanına kopyalama.
- (d) Çekirdekte çift tamponlama.

Ara Belleğe Alma

• Ağ, bir paketin birçok kopyasını içerebilir

G/Ç Sisteminin Katmanları

Manyetik Diskler

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

Manyetik Diskler

• (a) İki bölgeli bir diskin fiziksel geometrisi. (b) Bu disk için olası bir

sanal geometri.

RAID Seviyeleri (0-2)

RAID Seviyeleri (3-5)

• .

CD-ROM Kayıt Yapısı

CD-ROM Mantıksal Veri Düzeni

Kaydedilebilir Compact Disk

• Bir CD-R diskinin ve lazerin kesiti. CD-ROM'da boya tabakası yok ve altın yerine çukurlu alüminyum tabaka.

Digital Versatile Disc (Dijital Çok Yönlü Disk)

• DVD İyileştirmeleri

- Daha küçük çukurlar (CD'ler için 0,8 mikrona karşılık 0,4 mikron).
- Daha sıkı bir sarmal (parçalar arasında 0,74 mikron, CD'ler için 1,6 mikron).
- Bir kırmızı lazer (CD'ler için 0,78 mikrona karşılık 0,65 mikron).

DVD Formatlari

- Tek taraflı, tek katmanlı (4,7 GB).
- Tek taraflı, çift katmanlı (8,5 GB).
- Çift taraflı, tek katmanlı (9,4 GB).
- Çift taraflı, çift katmanlı (17 GB).

Çift Taraflı Çift Katmanlı DVD Disk

Bir Disk Sektörü

Preamble	Data	ECC	
----------	------	-----	--

Silindir Eğriliği (asimetri)

Disk Biçimlendirme

(a) Serpiştirme (interleaving) yok. (b) Tek serpiştirme. (c) Çift serpiştirme.

Disk Kolu Zamanlama Algoritması

- Arama (seek) süresi (kolun uygun silindire hareket ettirilmesi için geçen süre).
- Dönme gecikmesi (uygun sektörün okuma kafasının altına gelmesi için geçen süre).
- Gerçek veri aktarım süresi.

Disk Kolu Zamanlama Algoritması

• Önce En Kısa Arama (Shortest Seek First) disk zamanlama algoritması

Disk Kolu Zamanlama Algoritması

• Disk isteklerini çizelgelemek için asansör (elevator) algoritması

Hata Ele Alma

• (a) Bozuk sektöre sahip bir disk izi (track). (b) Bozuk sektör yerine bir yedek koyma. (c) Bozuk olanı atlamak için tüm sektörleri kaydırma.

Kararlı (stable) Depolama

• Özdeş diskler kullanarak kararlı depolama için işlemler:

- Kararlı yazma
- Kararlı okuma
- Çökmeden kurtarma (crash recovery)

Kararlı (stable) Depolama

• Çökmenin kararlı yazmalar üzerindeki etkisinin analizi.

Programlanabilir Saat (clock)

•

Bir Saat (clock) Sürücüsünün Görevleri

- Günün saatini sürdürmek (maintain)
- Süreçlerin izin verilen süreden daha uzun çalışmasını önleme.
- CPU kullanımı için muhasebe.
- Kullanıcı süreçleri tarafından yapılan alarm sistemi çağrısını ele alma.
- Sistemin parçaları için bekçi (watchdog) uygulaması zamanlayıcıları (timers) sağlamak.
- Profil oluşturma, izleme, istatistik toplama.

Saat Yazılımı

Günün saatini korumanın üç yolu.

Saat Yazılımı

• Tek saatle birden çok zamanlayıcıyı simüle etme.

Yazılıma Dayalı Zamanlayıcı (soft timer)

 Geçici zamanlayıcılar, aşağıdaki işlemler nedeniyle çekirdek girişlerinin (entry) yapılma hızına göre başarılı olur.

- Sistem çağrıları. (calls)
- TLB kayıpları. (misses)
- Sayfa hataları. (page faults)
- G/Ç kesmeleri. (interrupts)
- CPU boşta kalma (idle).

Klavye Yazılımı

• Standart modda özel olarak işlenen karakterler.

Character	POSIX name	Comment
CTRL-H	ERASE	Backspace one character
CTRL-U	KILL	Erase entire line being typed
CTRL-V	LNEXT	Interpret next character literally
CTRL-S	STOP	Stop output
CTRL-Q	START	Start output
DEL	INTR	Interrupt process (SIGINT)
CTRL-\	QUIT	Force core dump (SIGQUIT)
CTRL-D	EOF	End of file
CTRL-M	CR	Carriage return (unchangeable)
CTRL-J	NL	Linefeed (unchangeable)

X Pencere Sistemi

• ESC, ASCII çıkış karakteri (0x1B) ve n, m, s isteğe bağlı sayısal

parametrelerdir.

Escape sequence	Meaning	
ESC [nA	Move up n lines	
ESC [nB	Move down n lines	
ESC [nC	Move right <i>n</i> spaces	
ESC [nD	Move left n spaces	
ESC[m;nH	Move cursor to (m,n)	
ESC[sJ	Clear screen from cursor (0 to end, 1 1from start, 2 all)	
ESC[sK	Clear line from cursor (0 to end, 1 from start, 2 all)	
ESC [nL	Insert n lines at cursor	
ESC [nM	Delete n lines at cursor	
ESC [nP	Delete n chars at cursor	
ESC [n @	Insert n chars at cursor	
ESC[nm	Enable rendition <i>n</i> (0=normal, 4=bold, 5=blinking, 7=reverse)	
ESC M	Scroll the screen backward if the cursor is on the top line	

X Pencere Sistemi

• M.I.T. X Pencere sisteminde istemciler ve sunucular

X Pencere Sistemi

• İstemci ve sunucu arasındaki mesaj türleri:

- Programdan iş istasyonuna çizim komutları.
- Program sorgulamalarına iş istasyonu tarafından yanıtlar.
- Klavye, fare ve diğer etkinlik bildirimleri.
- Hata mesajları.

Kullanıcı Ara Yüzü (örnek pencere)

•

Biteşlem

• Her kutu bir pikseli temsil eder

Biteşlem

• BitBlt kullanarak bit eşlemleri kopyalama. (a) Daha önce. (b) Sonra.

Biteşlem

• Farklı nokta boyutlarında bazı karakter ana hatları.

20 pt: abcdefgh

53 pt: abcdefgh

81 pt: abcales

ince istemciler (thin clients)

• THINC protokolü

Command	Description	
Raw	Display raw pixel data at a given location	
Сору	Copy frame buffer area to specified coordinates	
Sfill	Fill an area with a given pixel color value	
Pfill	Fill an area with a given pixel pattern	
Bitmap	Fill a region using a bitmap image	

Çeşitli Parçaların Güç Tüketimi

•

Device	Li et al. (1994)	Lorch and Smith (1998)
Display	68%	39%
CPU	12%	18%
Hard disk	20%	12%
Modem		6%
Sound		2%
Memory	0.5%	1%
Other		22%

Güç Yönetimi - Ekran

• Ekranı arkadan aydınlatmak için bölgelerin kullanımı. (a) Pencere 2 seçildiğinde taşınmaz. (b) Pencere 1 seçildiğinde, aydınlatılan bölge sayısını azaltmak için hareket eder.

Güç Yönetimi - İşlemci

 (a) Tam saat hızında çalışıyor. (b) Voltajı iki kat kesmek, saat hızını iki kat, güç tüketimini dört kat azaltır.

SON