Chapter 4: Threads & Concurrency

Chapter 4: Threads

- Overview
- Multicore Programming
- Concurrency vs. Parallelism
- Amdahl's Law
- Multithreading Models

Objectives

- Identify the basic components of a thread, and contrast threads and processes
- Describe the benefits and challenges of designing multithreaded applications

Motivation

- Most modern applications are multithreaded
- Threads run within application
- Multiple tasks with the application can be implemented by separate threads
 - Update display
 - Fetch data
 - Spell checking
 - Answer a network request
- Process creation is heavy-weight while thread creation is light-weight
- Can simplify code, increase efficiency
- Kernels are generally multithreaded

Single and Multithreaded Processes

single-threaded process

multithreaded process

Multithreaded Server Architecture

for additional

client requests

Benefits

- Responsiveness may allow continued execution if part of process is blocked, especially important for user interfaces
- Resource Sharing threads share resources of process, easier than shared memory or message passing
- Economy cheaper than process creation, thread switching lower overhead than context switching
- Scalability process can take advantage of multicore architectures

Multicore Programming

- Multicore or multiprocessor systems putting pressure on programmers, challenges include:
 - Dividing activities
 - Balance
 - Data splitting
 - Data dependency
 - Testing and debugging
- Parallelism implies a system can perform more than one task simultaneously
- Concurrency supports more than one task making progress
 - Single processor / core, scheduler providing concurrency

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

Multicore Programming

- Types of parallelism
 - Data parallelism distributes subsets of the same data across multiple cores, same operation on each
 - Task parallelism distributing threads across cores, each thread performing unique operation

Data and Task Parallelism

Amdahl's Law

- Identifies performance gains from adding additional cores to an application that has both serial and parallel components
- ☐ S is serial portion
- N processing cores

$$speedup \leq \frac{1}{S + \frac{(1-S)}{N}}$$

- □ That is, if application is 75% parallel / 25% serial, moving from 1 to 2 cores results in speedup of 1.6 times
- As Napproaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on performance gained by adding additional cores

Amdahl's Law

Multithreading Models

- Many-to-One
- One-to-One
- Many-to-Many

Many-to-One

- Many user-level threads mapped to single kernel thread
- One thread blocking causes all to block
- Multiple threads may not run in parallel on muticore system because only one may be in kernel at a time
- Few systems currently use this model
- Examples:
 - **Solaris Green Threads**
 - **GNU Portable Threads**

space

kernel space

One-to-One

- Each user-level thread maps to kernel thread
- Creating a user-level thread creates a kernel thread
- More concurrency than many-to-one
- Number of threads per process sometimes restricted due to overhead
- Examples
 - Windows
 - Linux

Many-to-Many Model

- Allows many user level threads to be mapped to many kernel threads
- Allows the operating system to create a sufficient number of kernel threads
- Not very common

End of Chapter 4

