Name: Lanxiao Bai

NetID: Ibai5

Section: AYV

- 1. 406, 408
- 2. (a). $\frac{n+1}{2n}$

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \prod_{k=2}^{n} \left(1 - \frac{1}{k}\right) \left(1 + \frac{1}{k}\right) = \prod_{k=1}^{n} \frac{k-1}{k} \cdot \prod_{k=2}^{n} \left(\frac{1+k}{k}\right) = \frac{n+1}{2n}$$

(b). 4

Since that 36 mod 7=1, then we have $3^{1000}=3^{6\times166+4}=3^4=4 \mod 7$

(c). 1

$$\sum_{r=1}^{\infty} \left(\frac{1}{2}\right)^r = 1 - \lim_{r \to \infty} \frac{1}{2^r} = 1$$

(d). 2

$$\frac{\log_7 81}{\log_7 97} = \log_9 81 = 2$$

(e). 4n

$$\log_2 4^{2n} = 2n \log_2 4 = 4n$$

(f). 1

$$\log_{17} 211 - \log_{17} 13 = \log_{17} \left(\frac{211}{13}\right) = 1$$

3. (n+1)!

Proof:

Base case: k = 1, Solution = 2

Induction Step: Suppose k = n, $\sum_{j=0}^{k} j \cdot j! = (k+1)!$ Is true

When
$$k = n+1$$
, $\sum_{j=0}^{k} j \cdot j! = \sum_{j=0}^{k} j \cdot j! + (n+1) \cdot n$
= $(n+1)! + (n+1) \cdot n$
= $(n+1) \cdot n + (n+1) \cdot n$
= $(n+1)!$

Q.E.D

4. (a).

$$f(n) = 4^{\log_4 n} = n, g(n) = 2n + 1$$

Obviously, c1 = 1, c2 = 3, n $\in \mathbb{R}^+$ exist to make $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ so $f(n) = \Theta(g(n))$

(b).

$$g(n) = (\sqrt{2})^{\log_2 n} = n^{\frac{1}{2}} = \sqrt{n}$$
, while $f(x) = n^2$

Then, we have $c_1=1, n\geq 1$, to make $c_1g(n)\leq f(n)$ Therefore, f(n)=0(g(n))

(c).

$$f(n) = O(g(n))$$

(d).

$$f(n) = O(g(n))$$

5.

- (a). We can just expand the recursive tree and get that $T(n) = 5\log_2 n + 1$
- (b). Expand the recursive tree, we have $T(n) = 0 + \sum_{k=1}^{n} \frac{1}{k}$, which is a harmonic series. So this recurrence relation does not have a result.
 - (c).Proof:

Base case:
$$T(1) = 5\log_2 1 + 1 = 1$$

Inductive step:

Suppose
$$\forall k \leq n, T(k) = 5\log_2 k + 1$$

Then,
$$T(k+1) = 5+T(k+1/2) = 5 + 5\log_2 \frac{k+1}{2} + 1$$

= $5 + 5(\log_2(k+1) - 1) + 1$
= $\log_2(k+1)$

Q.E.D

6.(a).

Recurrence	$T(n) = T\left(\frac{n}{2}\right) + c$
Base case	T(1) = c
Recurrence Solution	$T(n) = \operatorname{clog}_2 n$

(b).

Recurrence	$T(n) = 2T\left(\frac{n}{2}\right) + cn$
Base case	T(1) = c
Recurrence Solution	$T(n) = cn\log_2 n + cn$

7.

(a).

х	n	return
2	12	derp(4, 6)
4	6	derp(16,3)
16	3	16*derp(256, 1)
256	1	16*256*derp(256^2,0)
		16*256=4096

(b).Calculate the x^n

(c).
$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$(\mathsf{d}).T(n) = \operatorname{clog}_2 n$$