Varieties, Quasivarieties and Prevarieties: Completing the Picture

Wataru Hino & Ichiro Hasuo
The University of Tokyo

Outline

- Review 1: variety and quasivariety
- Review 2: orthogonality and prevariety
- New notion: sort-of-variety

New

characterization	Variety	Sort-of-variety	Quasivariety	Prevariety
logical	equations	∀∃!-formulas	implications	preequations
	$\forall \vec{x} \ (s=t)$	$\forall \vec{x} \exists ! \vec{y} E$	$\forall \vec{x} \ (E \to s = t)$	$\forall \vec{x} \ (E \to \exists ! \ \vec{y} \ E')$
orthogonality	$FX \rightarrow A$	$FX \longrightarrow A$	$A \twoheadrightarrow B$	$A \longrightarrow B$
closure property	H, S, P	?	S, P, FC	A-pure S, P, FC

Review: variety and quasivariety

characterization	Variety	Sort-of-variety	Quasivariety	Prevariety
logical	equations	∀∃!-formulas	implications	preequations
	$\forall \vec{x} \ (s=t)$	$\forall \vec{x} \exists ! \vec{y} E$	$\forall \vec{x} \ (E \to s = t)$	$\forall \vec{x} \ (E \to \exists! \ \vec{y} \ E')$
orthogonality	$FX \rightarrow A$	$FX \longrightarrow A$	$A \rightarrow\!$	$A \longrightarrow B$
closure property	H, S, P	?	S, P, FC	A-pure S, P, FC

Variety: definition

```
Def. (variety)
V \subset \text{Alg}\Sigma \text{ is a } \textit{variety}
\Leftrightarrow ^{\exists}E \text{: a set of equations}
\text{s.t. } V = \{A \in \text{Alg}\Sigma \mid A \models E\}
```

signature-relevant definition

Example

- The class of groups is a variety for $\{\cdot, 1, -1\}$, but not for $\{\cdot\}$
- Rings, lattices (for appropriate signatures)

Variety: HSP theorem

```
Thm. (Birkhoff)
```

 $V \subset Alg\Sigma$ is a variety

 $\Leftrightarrow V$ is closed under

- (H) homomorphic images
- (S) subalgebras
- (P) products

Variety can be characterized by closure property

<u>Cor.</u> The class of torsion-free abelian groups isn't a variety for $\{+, 0, -\}$

Quasivariety

Def. (quasivariety)

 $V \subseteq Alg\Sigma$ is a quasivariety

 \Leftrightarrow $^{\exists}E$: a set of implications

$$\forall \vec{x} \ (\land s_i = t_i \to s = t)$$

s.t.
$$V = \{A \in Alg\Sigma \mid A \models E\}$$

Example Torsion-free abelian groups for $\{+, 0, -\}$

• group-equations & $\forall x (n \cdot x = 0 \rightarrow x = 0)$ for each n

Thm. $V \subset Alg\Sigma$ is a quasivariety

 \Leftrightarrow V is closed under

(S) subalgebras, (P) products and (FC) filtered colimits

Review: orthogonality

characterization	Variety	Sort-of-variety	Quasivariety	Prevariety
logical	equations	∀∃!-formulas	implications	preequations
	$\forall \vec{x} \ (s=t)$	$\forall \vec{x} \exists ! \vec{y} E$	$\forall \vec{x} \ (E \to s = t)$	$\forall \vec{x} \ (E \to \exists ! \ \vec{y} \ E')$
orthogonality	$FX \rightarrow A$	$FX \longrightarrow A$	A woheadrightarrow B	$A \longrightarrow B$
closure property	H, S, P	?	S, P, FC	A-pure S, P, FC

Orthogonality [Freyd, Kelly 1972]

Def. (orthogonality)
$$f: A \to B \text{ is } orthogonal \text{ to } C \iff f \upharpoonright f$$

$$(f \perp C)$$

$$A \to B \text{ is } orthogonal \text{ to } C \Leftrightarrow f \cap f$$

Example

In the category of groups,

$$(\pi: \mathbb{Z} \twoheadrightarrow \mathbb{Z}/n\mathbb{Z}) \perp G \iff G \vDash \forall x (x^n = e)$$

$$(\iota: 2\mathbb{Z} \hookrightarrow \mathbb{Z}) \perp G \iff G \vDash \forall x \exists ! y (y^2 = x)$$

Orthogonality

Observation FX, A, B: finitely presentable (FP)

- φ : equation $\longleftrightarrow f: FX \to A$ (FX: free)
- φ : implication $\longleftrightarrow f: A \twoheadrightarrow B$

Variety and quasivariety are characterized by orthogonality

→ What if we drop these conditions on morphisms: surjectivenss and free-domain?

Review: prevariety

characterization	Variety	Sort-of-variety	Quasivariety	Prevariety
logical	equations	∀∃!-formulas	implications	preequations
	$\forall \vec{x} \ (s=t)$	$\forall \vec{x} \exists ! \vec{y} E$	$\forall \vec{x} \ (E \to s = t)$	$\forall \vec{x} \ (E \to \exists! \ \vec{y} \ E')$
orthogonality	$FX \rightarrow A$	$FX \longrightarrow A$	$A \rightarrow\!$	$A \longrightarrow B$
closure property	H, S, P	?	S, P, FC	A-pure S, P, FC

Prevariety [Adámek, Sousa 2004]

```
Def. (prevariety a.k.a. ω-orthogonality class)
V \subset \operatorname{Alg}\Sigma \text{ is a } \underset{}{prevariety} \qquad \forall \vec{x} \ (E \to \exists ! \ \vec{y} E')
\Leftrightarrow M: \text{ a set of morphisms (between FP algebra)}
\operatorname{s.t.} V = \{A \in \operatorname{Alg}\Sigma \mid M \perp A\}
```

It also can be characterized by closure property

2 axes for variety-like notions

	Free-domain	Arbitrary
Surjective	Variety: $FX \rightarrow A$	Quasi-variety: $A \rightarrow B$
Arbitrary	Sort-of-variety: $FX \rightarrow A$	Prevariety: $A \rightarrow B$

characteriza	n Variety	Sort-of-variety	Quasivariety	Prevariety
logical	equations $\forall \vec{x} \ (s=t)$	$\forall \exists !$ -formulas $\forall \vec{x} \; \exists ! \; \vec{y} \; E$	implications $\forall \vec{x} (E \rightarrow s = t)$	preequations $\forall \vec{x} (E \rightarrow \exists ! \vec{y} E')$
orthogonality	$FX \rightarrow \!$	$FX \longrightarrow A$	A woheadrightarrow B	$A \longrightarrow B$
closure propert	у Н, S, Р	?	S, P, FC	A-pure S, P, FC

New notion: sort-of-variety

characterization	Variety	Sort-of-variety	Quasivariety	Prevariety
logical	equations	∀∃!-formulas	implications	preequations
	$\forall \vec{x} \ (s=t)$	$\forall \vec{x} \exists ! \vec{y} E$	$\forall \vec{x} \ (E \to s = t)$	$\forall \vec{x} \ (E \to \exists ! \ \vec{y} \ E')$
orthogonality	$FX \rightarrow A$	$FX \longrightarrow A$	$A \rightarrow\!$	$A \longrightarrow B$
closure property	H, S, P	?	S, P, FC	A-pure S, P, FC

Sort-of-variety: definition

Remark

- ∀∃!-formula defines "extra" operations on algebras
 - Σ -morphisms must preserve them

Sort-of-variety: example

Example

The class of groups is a sort-of-variety for $\{\cdot\}$

- neither a variety nor a quasivariety
- associativity, $\forall xy\exists ! z(x\cdot z=y)$, $\forall xy\exists ! z(z\cdot x=y)$ and $\exists ! e(e^2=e)$
- They define 3 extra operations $\{ \setminus, /, e \}$
 - which satisfy $x \cdot (x \setminus y) = y$ etc.
 - e is unit and $x^{-1} = x \setminus e$
- { · }-morphisms preserve unit and multiplication

Relation between other variety-like notions

Thm.

A sort-of-variety for Σ is isomorphic to a quasivariety for an extended signature Σ' (by the forgetful functor).

	Free-domain	Arbitrary
Surjective	Variety	Quasi-variety
Arbitrary	Sort-of-variety Expa	Prevariety anding Σ

Converse?

Observation

- The quasivariety of torsion-free abelian groups and that of positive monoids are a sort-of-variety.
- The class of *left-cancellative monoids* is quasivariety, but doesn't seem to be a sort-of-variety.

	Free-domain	Arbitrary
Surjective	Variety	Quasi-variety
Arbitrary	Sort-of-variety	?? Prevariety

Summary

- Reviewed variety, quasivariety and prevariety
- Introduced a new variety-like notion: sort-of-variety

Future work

- Find the closure property for sort-of-variety
- Exploit its relation between other variety-like notions