Chapitre 7

ANALYSE SPECTRALE

I. Représentation spectrale d'un signal I.1 Intérêt de la représentation spectrale

DOCUMENTS:

Document 1 L'analyse spectrale

La première façon de représentation du signal vibratoire délivré par un capteur, est la représentation en fonction du temps (représentation **temporelle**). Cette représentation est utilisée pour suivre le comportement vibratoire d'une machine en fonction de ces paramètres de fonctionnement (étude de la vibration d'une turbine lors de sa décélération). Ce type de représentation, aisé à exploiter lorsque le signal est simple (vibration sinusoïdale induite par un balourd) [figure 4.1], devient vite inexploitable lorsque le signal a pour origine des sollicitations multiples [figure 4.2].

Figure 4.1 : Signal vibratoire sinusoïdal généré par un balourd

Figure 4.2 : Signal vibratoire complexe

http://www.silanus.fr/sin/formationSTI2D/ET22A-B/ET22A/Ressources/analyse-spectrale.pdf

Document 2 Représentation de spectres

Document 3 Analyse de Fourier

IV. Analyse spectrale d'un signal périodique

1. Analyse de Fourier

Le mathématicien Joseph Fourier (1768-1830) a établi le théorème suivant :

Tout signal périodique de période T, de fréquence f=1/T, de pulsation $\omega=2\pi f$, peut s'exprimer sous la forme d'une somme de signaux sinusoïdaux de fréquences multiples de f appelée série de Fourier :

$$s(t) = A_0 + \sum_{k=1}^{+\infty} A_k \, \cos(2\pi k f t + \varphi_k)$$

Des formules mathématiques permettent de calculer les valeurs des A_k et des φ_k , connaissant l'expression de la fonction s(t).

- A_0 correspond à la valeur moyenne du signal. En effet : $\langle s(t) \rangle = A_0 + \sum_{k=1}^{+\infty} A_k \langle \cos(2\pi k f t + \varphi_k) \rangle = A_0$ car la valeur moyenne d'un cosinus est nulle.
- le terme $A_1 \cos(2\pi f t + \varphi_1)$ correspondant à k = 1 et donc de même fréquence que le signal, est appelé **fondamental**.
- le terme $A_k \cos(2\pi k f t + \varphi_k)$ de fréquence f_k multiple de la fréquence du fondamental $(f_k = k f)$ est appelé **harmonique de rang** k.

http://pcsi1.physique.pagesperso-orange.fr/signal.pdf

Document 4 Quelques spectres de signaux usuels

https://www.robertponge.com/telechargements/ebooks/spectre-2.pdf