2023-1학기 세종창의학기제 최종성과보고 창의과제: 자율주행을 위한 딥러닝 기반 3D 객체탐지

- ▶ 과목명(신청 학점): 자기주도창의전공 I, Ⅱ (3학점)
- ▶ 지도교수(소속): 서재규 교수(지능기전공학부 무인이동체공학과)
- ▶ 참여학생 : 총 05명

백근주 (지능기전공학부 무인이동체공학과, 18011810),

김대식 (지능기전공학부 무인이동체공학과, 18011754), 박준서 (지능기전공학부 무인이동체공학과, 18011812), 김동영 (지능기전공학부 무인이동체공학과, 18011816), 박민배 (지능기전공학부 스마트기기공학과, 18011814)

최종 결과물 및 성과

3D-detection-Paper-Review

Sejong creative semester system - 3D detection Paper Review

week	Paper	LectureNote	Date	Colab
1	Multi-View 3D Object Detection Network for Autonomous Driving	Notion	2023.03.02	Х
2	PointNet	Notion	2023.03.09	Colab
3	PointNet++	Notion	2023.03.16	Colab
4	VoxelNet	Notion	2023.03.23	Х
5	SECOND	Notion	2023.03.30	Colab
6	PointPillars	Notion	2023.04.06	Colab
7	MMdetection3D를 이용한 실습 - (1) - 환경세팅	X	2023.04.13	X
8	MMdetection3D를 이용한 실습 - (2) - Baseline 구축	X	2023.04.19	X
9	MMdetection3D를 이용한 실습 - (3) - 모델 성능 개선(1)	X	2023.04.26	X
11	MMdetection3D를 이용한 실습 - (3) - 모델 성능 개선(2)	X	2023.05.16	X
12	MMdetection3D를 이용한 실습 - (3) - 모델 성능 개선(3)	X	2023.05.22	Х
14	MMdetection3D를 이용한 실습 - (3) - 모델 성능 개선(4)	×	2023.06.07	Х

MMdetection3D를 이용한 실습

week. 7

환경설정 구축

- 1. 4명(백근주, 김대식, 박민배, 박준서) 는 Colab pro 환경에서, 1명(김동영) 은 Desktop 환경에서 진행하기로 결정함
- 2. 라이브러리는 MMdetection3d를 사용하기로 결정함
- 3. 기본적인 Config 파일 구성 및 실제 내부 인자에 대해 공부함.

week, 8

- 1. Baseline은 MMdetection3d의 pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py를 Baseline으로 정함
- 2. 해당 github에 저장되어있는 pre-train model이 아닌 Colab pro를 이용하여 직접 학습시킨 모델을 baseline으로 설정함

week. 9 ~ 14

- 1. 각자 Baseline이 잘 동작했는지 여부 확인
- 2. 각자 Baseline보다 성능을 어떻게 더 높일지 근거(논문, 실험표)를 토대로 계획 세움
- ▶ Github를 통한 논문 리뷰 및 실험 내용 공개 (Geunju-hub/3D-detection-Paper-Review:

Sejong creative semester system - 3D detection Paper Review (github.com))

최종 결과물 및 성과

Output of "Input Transform" Detected: [4]

▶ 실제 코드 실행을 통한 모델의 학습 결과 시각화

참여학생별 총 학습시간 및 성과

이름	학과	학번	총 학습 시간	개인 성과
백근주	지능기전공학부 무인이동체공학	18011810	100시간	MV3D, PointNet 리뷰 및 발표, PillarNet 기반 모델 변형 및 실험 진행
김대식	지능기전공학부 무인이동체공학	18011754	100시간	SECOND 리뷰 및 발표 PointPillars Backbone 관련 논문 기반으로 Backbone 변경하여 빠른 추론 속도와 성능 향상 실험 진행
박준서	지능기전공학부 무인이동체공학	18011812	100시간	PointPillars 리뷰 및 발표 Dynamic Voxelization 기반 실험 진행
김동영	지능기전공학부 무인이동체공학	18011816	100시간	PointPillars Backbone 관련 논문 기반으로 Backbone 변경하여 빠른 추론 속도와 성능 향상 실험 진행
박민배	지능기전공학부 스마트기기공학	18011814	100시간	PointNet++ 리뷰 및 발표 기본 Hyperparameters 변경 실험 진행

기대 효과

- 학부 수업에서 배우지 않는 3D 객체 검출 분야에 대해 논문을 읽고 발표하는 경험을 통해 이론적인 지식을 쌓을 수 있었습니다. 이 과정에서 논문의 내용뿐만 아니라 실제로 코드를 실행해보는 경험을 통해 더 깊은 이해를 얻을 수 있었습니다. 특히, 3D 객체 검출에서 널리 사용되는 MMdetection3d 라이브러리를 사용하여 PointPillars에 대한 Baseline을 구축하고, 다양한 변형을 적용하여 학습 및 평가를 수행하였습니다.
- 모델 변형을 시도할 때는 논문과 같은 근거를 바탕으로 실험을 진행하였습니다. 모델의 성능이 개선되었을 경우, 개선된 이유를 분석하고, 개선되지 않았을 경우에는 그 이유를 찾아내는 과정을 통해 더욱 심층적인 분석을 진행할 수 있었습니다. 이를 통해 3D 객체 검출 분야에서 사용되는 다양한 딥러닝 기법에 대한 이해를 높일 수 있었습니다.
- 특히, 'PointPillars'와 같은 기법을 사용함으로써 수업시간에 배운 DNN 이나 CNN과 같은 기본적인 기법을 넘어서 서 최신 동향을 배울 수 있었습니다.

