CZ2007 Tutorial 3: FDs + BCNF

Week 5

- A medical clinic database schema contains the following:
- APPOINTMENT (<u>patient-id</u>, patient-name, doctor-id, doctor-name, appointment-date, appointment-time, clinic-room-no)
- Show, with suitable examples, the anomalies that the schema is liable to encounter.
- Key is <u>patient-id</u>.
- So FD is <u>patient-id</u> → <u>patient-name</u>, doctor-id, doctorname, appointment-date, appointment-time, clinic-room-no

APPOINTMENT (patient-id, patient-name, doctor-id, doctor-name, appointment-date, appointment-time, clinic-room-no)

patient-id	patient-name	doctor-id	doctor-name	appt-date	appt-time	room-no
p001	john	d100	james	20.01.01	0930	r01
p002	steve	d100	james	20.01.02	1030	r09
p003	william	d100	james	20.01.03	0930	r08
p004	charles	d100	james	20.01.04	1030	r07

APPOINTMENT (patient-id, patient-name, doctor-id, doctor-name, appointment-date, appointment-time, clinic-room-no)

patient-id	patient-name	doctor-id	doctor-name	appt-date	appt-time	room-no
p001	john	d100	james	20.01.01	0930	r01
p002	steve	d100	james	20.01.02	1030	r09
p003	william	d100	james	20.01.03	0930	r08
p004	charles	d100	james	20.01.04	1030	r07
2 p005	bob	null	null	null	null	null

APPOINTMENT (patient-id, patient-name, doctor-id, doctor-name, appointment-date, appointment-time, clinic-room-no)

patient-id	patient-name	doctor-id	doctor-name	appt-date	appt-time	room-no
p001	john	d100	james	20.01.01	0930	r01
p002	steve	d100	james	20.01.02	1030	r09
p003	william	d100	james	20.01.03	0930	r08
p004	charles	d100	james	20.01.04	1030	r07
2 p005	bob	null	null	null	null	null
null	null	3 d102	lee	null	null	null

APPOINTMENT (<u>patient-id</u>, <u>patient-name</u>, <u>doctor-id</u>, <u>doctor-name</u>, appointment-date, appointment-time, clinic-room-no)

patient-id	patient-name	doctor-id	doctor-name	appt-date	appt-time	room-no
p001	john	d100	james	20.01.01	0930	r01
p002	steve	d100	james	20.01.02	1030	r09
p003	william	d100	james	20.01.03	0930	r08
p004	charles	d100	james	20.01.04	1030	r07
2 p005	bob	null	null	null	null	null
null	null	3 d102	lee	null	null	null
p003	william	d100	james	20.01.10	1030	r10
p003	william	d110	michael	20.01.11	1130	r10

Clearly doctor-id → doctor-name is an FD and LHS is not superkey

- We must ensure that the doctor attributes are consistent with other patients under this doctor; potential update anomalies
- In order to insert a new patient, all the attributes of the doctor who is treating the patient must be also included; if no doctor, then use NULL, which is not good.
- If a new doctor joins and has not seen any patients, we cannot enter the doctor's details. We cannot fill patient information with NULLs since this violates the primary key condition.
- If the same patient has more than one appointment, its ID will be repeated, which violates the unique property of a key.

- APPOINTMENT (<u>patient-id</u>, <u>patient-name</u>, <u>doctor-id</u>, <u>doctor-name</u>, appointment-date, appointment-time, clinic-room-no)
- Can we infer all FDs in this relation?
- patient-id \rightarrow patient-name
- doctor-id → doctor-name
- patient-id, doctor-id → appointment-date, appointment-time, clinic-room-no?
- appointment-date, appointment-time, clinic-room-no → patient-id, doctor-id?

- Consider the relation ADDRESS having attributes Street, City, State and Zip.
- Assume that for any given zipcode, there is just one city and state. Also, for any given street, city, and state, there is just one zipcode.
- (a) Infer all possible functional dependencies (FDs) for this relation.
- (b) Which are possible minimal keys?

- Let us denote attributes STREET, CITY, STATE,
 ZIP as A, B, C and D respectively. Then we have D
 → BC and ABC → D.
- Use closure to find FDs:
 - $A^+=\{A\}; B^+=\{B\}; C^+=\{C\}; D^+=\{DBC\}$
 - $AB^{+}=\{AB\}; AC^{+}=\{AC\}; AD^{+}=\{\underline{ABCD}\}; BC^{+}=\{BC\}; BD^{+}=\{BD^{C}\}; CD^{+}=\{CD^{B}\};$

- FD's:
 - o D \rightarrow BC because D+={DBC}
 - o AD \rightarrow BC because AD+={ABCD}
 - \odot BD \rightarrow C because BD⁺={BDC}
 - \circ CD \rightarrow B because CD+={CDB}
 - \circ ABC \rightarrow D because ABC+={ABCD}
 - o ABD \rightarrow C because ABD+={ABCD}
 - o ACD \rightarrow B because ACD+={ABCD}
- Minimal keys: ABC, AD

• Prove the following properties using Armstrong's axioms or reject it by counterexample relations.

- \bullet (a) A \rightarrow B \Rightarrow AC \rightarrow B
- \bullet (b) A \rightarrow C and AB \rightarrow C \Rightarrow B \rightarrow C

Question 3a

- \circ (a) A \rightarrow B \Rightarrow AC \rightarrow B
- \bullet A \rightarrow B \Rightarrow AC \rightarrow BC (Augmentation Rule)
- BC → B (Reflexivity Rule)
- AC \rightarrow BC and BC \rightarrow B \Rightarrow AC \rightarrow B (Transitivity Rule)

Question 3b

- \bullet (b) A \rightarrow C and AB \rightarrow C \Rightarrow B \rightarrow C
- Consider the records:
- (a1, b1, c1)
- (a2, b1, c2)
- Both $A \to C$ and $AB \to C$ are true but $B \to C$ does not hold

- 4. Consider a relation R(A, B, C, D) with the following FDs: $B \rightarrow C$, $D \rightarrow B$
 - (a) Find the key(s) of R.
 - (b) Is this relation in BCNF? Why or why not? If it is not, decompose R

into a collection of relations that are in BCNF.

- Use closure to find FDs:
 - \bullet A+={A}; B+={BC}; C+={C}; D+={DBC}
 - $AB^{+}=\{ABC\}; AC^{+}=\{AC\}; AD^{+}=\{\underline{ABCD}\}; BC^{+}=\{BC\}; BD^{+}=\{BCD\}; CD^{+}=\{BCD\};$

 - o Key is AD
- Also we note that A and D do not appear on RHS of FDs; so key must contain AD. In fact, key is AD.

- Key is AD.
- Both FDs B \rightarrow C, D \rightarrow B violate BCNF. Can decompose using either one first.
- By first decomposing on $B \to C$, we get R1(B, C) and R2(A, B, D).
- R2 is not in BCNF due to violating FD D \rightarrow B, so we decompose further: R3(A,D) and R4(B, D).
- Both R3 and R4 are in BCNF (see Q5)

- By first decomposing on D → B, we get R1(B,
 C, D) and R2(A, D).
- R1 is not in BCNF due to violating FD B →
 C, so we must decompose further.
- In both cases, we end up with three relations, Ra(A, D), Rb(B, C) and Rc(B, D).

• Prove that every two-attribute relationis in BCNF.

• There are 4 cases in a two-attribute relation.

- Case 1: $A \rightarrow B$ holds, but $B \rightarrow A$ does not. A is the key. The only nontrivial FD is $A \rightarrow B$; no BCNF violation.
- Case 2: $B \rightarrow A$ holds, but $A \rightarrow B$ does not. B is the key. The only nontrivial FD is $B \rightarrow A$; no BCNF violation.
- Case 3: Both $A \rightarrow B$ and $B \rightarrow A$ hold. A and B are both keys; no BCNF violation.
- Case 4: AB is key; so we have AB \rightarrow AB, which trivial.

