1 Harmonic oscillator

Definition 1.1. Let \mathcal{H} be a Hilbert space in a harmonic potential

$$V(\hat{x}) = \frac{\omega^2}{2}\hat{x}^2, \qquad \omega^2 = \frac{k}{m}.$$
 (1)

We define the creation and annihilation operators as

$$\hat{a}^{\dagger} \coloneqq \frac{\alpha}{\sqrt{2}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right),$$
 (2)

$$\hat{a} := \frac{\alpha}{\sqrt{2}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), \tag{3}$$

$$\alpha := \sqrt{\frac{m\omega}{\hbar}}.\tag{4}$$

Proposition 1.1. Let \mathcal{H} be a Hilbert space in a harmonic potential. Then,

$$\langle x | \hat{a}^{\dagger} = \frac{\alpha}{\sqrt{2}} \left(x - \frac{1}{\alpha^2} \frac{\mathrm{d}}{\mathrm{d}x} \right),$$
 (5)

$$\langle x | \hat{a} = \frac{\alpha}{\sqrt{2}} \left(x + \frac{1}{\alpha^2} \frac{\mathrm{d}}{\mathrm{d}x} \right),$$
 (6)

$$\alpha = \frac{m\omega}{\hbar}.\tag{7}$$

Proposition 1.2. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\hat{x} = \frac{1}{\sqrt{2}\alpha}(\hat{a}^{\dagger} + \hat{a}), \qquad \hat{p} = i\hbar \frac{\alpha}{\sqrt{2}}(\hat{a}^{\dagger} - \hat{a}).$$
 (8)

Proposition 1.3. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

1. $\hat{a}, \hat{a}^{\dagger}$ are not hermitian.

2.
$$\left[\hat{a}, \hat{a}^{\dagger}\right] = \hat{I}$$
.

$$3. \ \hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$

Definition 1.2. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *number operator* as

$$\hat{N} \coloneqq \hat{a}^{\dagger} \hat{a}. \tag{9}$$

Proposition 1.4. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

Ĥ is hermitian.

2.
$$\left[\hat{N}, \hat{a}\right] = -\hat{a}, \left[\hat{N}, \hat{a}^{\dagger}\right] = \hat{a}^{\dagger},$$

3.
$$\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\hat{I}\right)$$
.

Proposition 1.5. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, \hat{H} and \hat{N} have a common basis of eigenvectors, which is countable, and

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle, \qquad \hat{a} | n \rangle = \sqrt{n} | n-1 \rangle,$$
(10)

$$\hat{N}|n\rangle = n|n\rangle, \qquad \hat{H}|n\rangle = \hbar\omega \left(n + \frac{1}{2}\right)|n\rangle, \quad (11)$$

$$n \in \mathbb{N}.$$
 (12)

Corollary 1.6. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle. \tag{13}$$

Proposition 1.7. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, the eigenstates form a non-degenerate basis.

Definition 1.3 (Fock states). Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *Fock states* as the states that determine the basis $(|n\rangle)$ and have a well-defined number of excitations.

Definition 1.4. Let \mathcal{H} be a Hilbert space with a harmonic potential. We call the fundamental Fock state *the vaccum*.

Proposition 1.8. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, $\hat{a}, \hat{a}^{\dagger}$ and \hat{N} have the following matrix representation in the basis $(|n\rangle)$.

$$[\hat{N}]_B = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \tag{14}$$

$$[\hat{a}]_B = \begin{pmatrix} 0 & \sqrt{1} & 0 & \cdots \\ 0 & 0 & \sqrt{2} & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \tag{15}$$

$$[\hat{a}^{\dagger}]_B = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$
 (16)

or in coefficient representation,

$$[\hat{N}]_{ii} = (i-1)\delta_{ii},\tag{17}$$

$$[\hat{a}]_{ij} = \sqrt{j-1}\delta_{i,j-1},$$
 (18)

$$[\hat{a}^{\dagger}]_{ij} = \sqrt{i-1}\delta_{i-1,j}.$$
 (19)

Proposition 1.9. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\varphi_0(x) = \langle x|0\rangle = \left(\frac{\beta^2}{\pi}\right)^{1/4} \exp\left(-\frac{\alpha^2 x^2}{2}\right),$$
 (20)

$$\varphi_n(x) = \frac{1}{\sqrt{n!}} \left(\frac{\beta}{\sqrt{2}} x - \frac{1}{\sqrt{2}\beta} \frac{\mathrm{d}}{\mathrm{d}x} \right) \varphi_0(x) =$$
 (21)

$$\frac{1}{\sqrt{2^n n!}} H_n(\beta x) \varphi_0(x). \tag{22}$$

Proposition 1.10. Let \mathcal{H} be a Hilbert space with a harmonic potential and $\hat{\sigma}$ a sequence formed by k \hat{a} and l \hat{a}^{\dagger} . Then,

$$\langle n | \hat{\sigma} | n \rangle \leftrightarrow k = l.$$
 (23)

Proposition 1.11. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\langle \hat{x} \rangle_n = 0, \qquad \langle \hat{x}^2 \rangle = \frac{\hbar}{2m\omega} (2n+1), \qquad (24)$$

$$\langle \hat{p} \rangle_n = 0, \qquad \langle \hat{p}^2 \rangle = \frac{\hbar m \omega}{2} (2n+1), \qquad (25)$$

$$\Delta x \Delta p = \frac{\hbar}{2} (2n+1). \tag{26}$$

Proposition 1.12. Let \mathcal{H} a Hilbert space with a harmonic potential. Then,

$$\langle T \rangle = \langle V \rangle \,. \tag{27}$$

Definition 1.5. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define a *coherent state* as a state $|\alpha\rangle \in \mathcal{H}$ such that

$$\hat{a} |\alpha\rangle = \alpha |\alpha\rangle. \tag{28}$$

Definition 1.6. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *displaced state* as the state $|\psi_{\alpha}\rangle \in \mathcal{H}$ determined by

$$\psi_{\alpha}(x) = \psi_0(x - x_0). \tag{29}$$

Proposition 1.13. Let \mathcal{H} be a Hilbert space with a harmonic potential and a force F = f. Then, the fundamental state is a displaced state with $x_0 = f/m\omega^2$.

Proposition 1.14. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\psi_{\alpha}\rangle \in \mathcal{H}$ a displaced state with displacement x_0 . Then, $|\psi_{\alpha}\rangle$ is a coherent state with eigenvalue

$$\alpha = \sqrt{\frac{m\omega}{2\hbar}} x_0. \tag{30}$$

Proposition 1.15. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}^{\dagger}} |0\rangle.$$
 (31)

Proposition 1.16. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle$ a coherent state. Then,

$$\left\langle \hat{N} \right\rangle_{\alpha} = |\alpha|^2, \qquad p_{|\alpha\rangle}(n) = e^{-\left\langle \hat{N} \right\rangle} \frac{\left\langle \hat{N} \right\rangle^n}{n!}.$$
 (32)

Theorem 1.17 (Baker-Campbell-Hausdorff formula). Let \mathcal{H} be a Hilbert space and $\hat{A}, \hat{B}: \mathcal{H} \longrightarrow \mathcal{H}$ two operators such that $\left[\left[\hat{A}, \hat{B}\right], \hat{A}\right], \left[\left[\hat{A}, \hat{B}\right], \hat{B}\right] = 0$. Then,

$$\exp(\hat{A} + \hat{B}) = \exp\left(-\frac{1}{2}[\hat{A}, \hat{B}]\right) \exp(\hat{A}) \exp(\hat{B}). \tag{33}$$

Proposition 1.18. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$\left[\bar{\alpha}\hat{a},\alpha\hat{a}^{\dagger}\right] = |\alpha|^2 \hat{I},\tag{34}$$

$$|\alpha\rangle = \exp(\alpha \hat{a}^{\dagger} - \bar{\alpha}\hat{a})|0\rangle := \hat{\mathcal{D}}(\alpha)|0\rangle.$$
 (35)

Definition 1.7. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *displacement operator* as

$$\hat{\mathcal{D}}(\alpha) = \exp(\alpha \hat{a}^{\dagger} - \bar{\alpha}\hat{a}). \tag{36}$$

Proposition 1.19. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

- 1. $\hat{\lceil}(\alpha)$ is unitary.
- 2. $\hat{\mathcal{D}}^{\dagger}(\alpha) = \hat{\mathcal{D}}(-\alpha)$.
- 3. $\hat{\mathcal{D}}(\alpha)\hat{\mathcal{D}}^{\dagger}(\alpha) = \hat{I}$.

Proposition 1.20. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\hat{\mathcal{D}}(\alpha) = \exp\left(-i\frac{x_0\hat{p} - p_0\hat{x}}{\hbar}\right) = \tag{37}$$

$$\exp\left(-\frac{i}{2}\frac{x_0p_0}{\hbar}\right)\exp\left(i\frac{p_0\hat{x}}{\hbar}\right)\exp\left(-i\frac{x_0\hat{p}}{\hbar}\right),\qquad(38)$$

$$x_0 = \sqrt{2}l \operatorname{Re}\{\alpha\}, \qquad p_0 = \sqrt{2}\frac{l}{\hbar} \operatorname{Im}\{\alpha\}, \qquad (39)$$

$$l = \sqrt{\frac{\hbar}{m\omega}}. (40)$$

Proposition 1.21. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$\langle x | \alpha \rangle = \psi_{\alpha}(x) = \tag{41}$$

$$\left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(\frac{ip_0}{2\hbar}(2x-x_0)\right) \exp\left(-\frac{(x-x_0)^2}{4\sigma_x^2}\right),\tag{42}$$

$$\frac{1}{4\sigma_x^2} = \frac{1}{2} \frac{m\omega}{\hbar} \tag{43}$$

$$x_0 = \sqrt{\frac{2\hbar}{m\omega}} \operatorname{Re}\{\alpha\}, \qquad p_0 = \sqrt{2\hbar m\omega} \operatorname{Im}\{\alpha\}$$
 (44)

Proposition 1.22. Let \mathcal{H} be a Hilbert space with a harmonic potential and $\{|\alpha\rangle\}$ the set of coherent states. Then, they form a overcomplete basis, that is, not for all pair of states $|\alpha\rangle, |\alpha'\rangle$ it is satisfied $\langle\alpha'|\alpha\rangle = 0$. Hence,

$$\hat{I} = \frac{1}{\pi} \int |\alpha\rangle\langle\alpha| d^2\alpha, \qquad |\langle\alpha|\beta\rangle|^2 = e^{-|\alpha-\beta|^2}.$$
 (45)

Besides, $\langle \alpha | \beta \rangle \to 0$ if and only if $|\alpha - \beta| \gg 1$.

Proposition 1.23. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$|\alpha\rangle(t) = e^{i\omega t/2} |\alpha(t)\rangle = e^{i\omega t/2} |\alpha_0 e^{i\omega t}\rangle.$$
 (46)

Proposition 1.24. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$\langle \hat{x} \rangle = x_0 \cos(\omega t) + \frac{p_0}{m_U} \sin(\omega t),$$
 (47)

$$\langle \hat{p} \rangle = p_0 \cos(\omega t) - m\omega x_0 \sin(\omega t).$$
 (48)

Definition 1.8. Let \mathcal{H} be a Hilbert space and $|\psi\rangle \in \mathcal{H}$ a state. We say $|\psi\rangle$ is a minimum uncertainty state if and only if

$$\Delta x \Delta p = \frac{\hbar}{2}.\tag{49}$$

Proposition 1.25. Let \mathcal{H} be a Hilbert state, $|\in\rangle \mathcal{H}$ a state and $|\psi_x\rangle = \hat{\delta x} |\psi\rangle$, $|\psi_p\rangle = \hat{\delta p} |\psi\rangle$. Then,

$$\langle \psi_x | \psi_x \rangle \langle \psi_p | \psi_p \rangle \ge |\langle \psi_x | \psi_p \rangle|^2.$$
 (50)

and the equality only occurs when there exists a $\lambda \in \mathbb{C}$ such that $|\psi_p\rangle = \lambda |\psi_x\rangle$.

Proposition 1.26. Let \mathcal{H} be a Hilbert space and $|\psi\rangle \in for some \lambda \in \mathbb{C}$ and with variance $\Delta x^2 = \hbar/2|\lambda|$.

 \mathcal{H} be a state. Then,

$$\left| \langle \psi | \hat{\delta x} \hat{\delta p} | \psi \rangle \right|^2 \ge \frac{1}{4} \left| \langle \psi | \left[\hat{\delta x}, \hat{\delta p} \right] | \psi \rangle \right|^2, \tag{51}$$

and the equality only occurs when $\{\hat{\delta x}, \hat{\delta p}\} = 0$.

Proposition 1.27. *Let* \mathcal{H} *be a Hilbert space and* $|\in\rangle$ \mathcal{H} a minimum uncertainty state. Then,

$$\langle x|\psi\rangle = \psi(x) = \tag{52}$$

$$C \exp \left[-\frac{|\lambda|}{2} (x - \langle x \rangle)^2 \right] \exp \left[\frac{ix \langle p \rangle}{\hbar} \right],$$
 (53)