

MECÂNICA QUÂNTICA I – PARTÍCULA NA CAIXA

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

Considere a Hamiltoniana de uma partícula em uma caixa unidimensional:

$$H = \frac{p^2}{2m} + V(x),$$

onde V(x) = 0 para |x| < L/2 e $V(x) = V_0$ para $|x| \ge L/2$.

1. Considere as três regiões do espaço:

I
$$x \leq -L/2$$
,

II
$$-L/2 < x < L/2$$
,

III $x \ge L/2$.

Encontre as soluções da equação de Schrödinger independente do tempo em cada região.

- 2. Nas regiões I e III, quais são as soluções que são normalizáveis? O que acontece quando $V_0 \to \infty$?
- 3. Usando o resultado do item anterior, encontre as soluções da equação de Schrödinger independente do tempo na região II. Mostre que as soluções são combinações lineares de senos e cossenos.
- 4. Quais são os valores permitidos de E? Mostre que a energia é quantizada.
- 5. Qual é o menor valor de E? Qual é a função de onda correspondente? Qual é a interpretação física?