

GRANTA EDUPACK

General information

Designation

PE-MD (molding and extrusion), Medium density polyethylene / MDPE (medium density, branched homopolymer)

Tradenames

4Tech; ASI; AUX; Aarolene; Aaron; Admer; Advancene; Agility; Ajedium; Alathon; Alcudia; Alkadyne; Alkamax; Alkateq; Alkathene; Anteo; Asrene; Bapolene; Baystar; Bondyram; BorSafe; Borpex; Borstar; Braskem; Bynel; CERTENE; CONTINUUM; Cabelec; Canei; Cheng; Clear-Flex; Colorfast; Colorrx; Comai; Crystaladd; DPE; Daelim; Dowlex; Duratemp; Duratron; Dynamix; Dynapath; ELTEX; ESD; ETILINAS; Egyeuroptene; Egyptene; El-Lene; Eleme; Elite; Enlene; Enviroplas; Equate; Eraclene; Extem; Exxonmobil; FPC; Faralloy; Fingerprint; Flexirene; Flexomer; Formolene; Geo-Tech; Getilan; Greenethene; Hanwha; Hifill; Hival; Icorene; Incolor; Integra; Integrate; Itilen; Jam; KMI; Karina; Kemcor; Kemid; Kpol-Ldpe; Kpol-Lldpe; Lnp Colorcomp; Lnp Thermocomp; Lotte; Lucene; Lucent; Luflexen; Lumicene; Lumitac; Lupolen; Luvocom; Marflex; Marlex; Meldin; Microcene; Micropol; Microthene; NEFTEKHIM; NPC; Natureplast; Neo-Zex; Nipolon; Novapol; Novex; PQ2; PRL; Permastat; Petrothene; Peve; Pexidan; Pharmalene; Plexar; Pluris; Polidar; Polifil; Polyethylene; Polyglue; Polylink; Polyone; Poticon; Pre-Elec; Primaflex; Primalene; Primatop; Procon; Propolymers; Proxess; Pyramid; Qenos; Qr Resin; Quadrant; RTP; Ravago; Ravalene; Recythen; Redi-Link; Resility; Resindirect; Revolve; Rigidex; Rochling; Rotolene; Rotoun; Sabic; Sapylene; Sibur; Siltem; Silver; Sinelec; Sipchem; Smart; Stratasys; Sumikathene; Surpass; Sustapei; Systalen; TOTAL; TUB; Taborex; Tasnee; Tecacomp; Tecapei; Tempalux; Terralene; Texres; Titanex; Titanvene; Trademark; Tribocomp; Trucoat; Tuffin; Tymax; Tynel; Ultem; Ultron; Unilex; Unitem; VENELENE; Vinpol; Visico; WPP; Westlake; Witcom; YUCLAIR; Yparex

Typical uses

Packaging, Piping, Wire & cable jacketing, Film, Tanks, Bags, General Purpose, Industrial applications, Liners, Fittings, Containers, Food packaging, Electrical and Electronical, Blending, Automotive, Outdoor applications, Toys, Shrink wrap, Adhesives, Pipe coatings, Natural gas distribution, Building materials, Laminates, Chemical Process, Household goods, Blow molding applications, Bottles, Caps, battery packs, batteries

Included in Materials Data for Simulation	✓
Materials Data for Simulation name	Plastic, MDPE

Composition overview

Compositional summary

(CH2-CH2)n						
Material family	Plastic (thermoplastic, semi-crystalline)					
Base material	PE-MD (F	Polyet	nylene, me	dium density)		
Polymer code	PE-MD					
Composition detail (polymers and natural materials)						
Polymer	100			%		
Price						
Price	* 1,39	-	1,45	EUR/kg		
Price per unit volume	* 1,29e3	-	1,37e3	EUR/m^3		
Physical properties						
Density	931	-	946	kg/m^3		
Mechanical properties						
Young's modulus	0,75	-	0,8	GPa		

PE-MD (molding and extrusion)

Specific stiffness	0,798	-	0,853	MN.m/kg
Yield strength (elastic limit)	16	-	20	MPa
Tensile strength	27,5	-	33	MPa
Specific strength	17	-	21,3	kN.m/kg
Elongation	500	-	800	% strain
Elongation at yield	9	-	15	% strain
Compressive strength	* 15	-	22	MPa
Flexural modulus	0,65	-	0,73	GPa
Flexural strength (modulus of rupture)	15	-	19,3	MPa
Bulk modulus	* 1,56	-	2,22	GPa
Poisson's ratio	* 0,42	-	0,44	
Shape factor	5			
Hardness - Shore D	53	-	63	
Elastic stored energy (springs)	167	-	256	kJ/m^3
Fatigue strength at 10^7 cycles	* 11,5	-	12,7	MPa
Impact & fracture properties				
Impact strength, notched 23 °C	40	_	65	kJ/m^2
Impact strength, notched -30 °C	5	_	8	kJ/m^2
Impact strength, unnotched 23 °C	590	_	600	kJ/m^2
Impact strength, unnotched -30 °C	590	_	600	kJ/m^2
Thermal properties				
Melting point	123	-	127	°C
Glass temperature	-273	-	-75	°C
Heat deflection temperature 0.45MPa	51,6	-	64,1	°C
Heat deflection temperature 1.8MPa	35	-	43	°C
Vicat softening point	106	-	121	°C
Maximum service temperature	* 85	-	105	°C
Thermal conductivity	0,48			W/m.°C
Specific heat capacity	2,3e3			J/kg.°C
Thermal expansion coefficient	50	-	150	µstrain/°C
Thermal shock resistance	153	-	465	°C
Thermal distortion resistance	* 0,0032	-	0,0096	MW/m
Electrical properties				
Electrical resistivity	1e21	-	1e22	µohm.cm
Electrical conductivity	1,72e-20	-	1,72e-19	%IACS
Dielectric constant (relative permittivity)	2,3	-	2,5	
Dissipation factor (dielectric loss tangent)	4e-4	-	0,001	
	20		22	MV/m

Polymer molding water

GRANTA EDUPACK

GRANTA EDUPACK					
Optical, aesthetic and acoustic properties					
Transparency	Transluce	ent			
Acoustic velocity	893	-	924	m/s	
Mechanical loss coefficient (tan delta)	* 0,0296	-	0,0306		
Critical materials risk					
Contains >5wt% critical elements?	No				
Absorption & permeability					
Water absorption @ 24 hrs	0,02			%	
Video aboorpaon & 241110	0,02			70	
Processing properties					
Polymer injection molding	Excellent				
Polymer extrusion	Excellent				
Polymer thermoforming	Acceptab	le			
Linear mold shrinkage	3,3			%	
Melt temperature	210	-	250	°C	
Durability					
Water (fresh)	Excellent				
Water (salt)	Excellent				
Weak acids	Excellent				
Strong acids	Acceptable				
Weak alkalis	Acceptable				
Strong alkalis	Acceptable				
Organic solvents	Limited us	se			
Oxidation at 500C	Unaccept	table			
UV radiation (sunlight)	Poor				
Flammability	Highly flammable				
Oxygen index	16	-	18	%	
Primary production energy, CO2 and water					
Embodied energy, primary production (virgin grade)	* 75,6	-	83,3	MJ/kg	
Embodied energy, primary production (typical grade)	* 71,1		78,9	MJ/kg	
CO2 footprint, primary production (virgin grade)	* 2,76		3,04	kg/kg	
CO2 footprint, primary production (typical grade)	* 2,6		2,88	kg/kg	
Water usage	64		70	I/kg	
				U	
Processing energy, CO2 footprint & water					
Polymer extrusion energy	* 5,76	-	6,35	MJ/kg	
Polymer extrusion CO2	* 0,432	-	0,476	kg/kg	
Polymer extrusion water	* 4,99	-	7,19	l/kg	
Polymer molding energy	* 16,5		18,2	MJ/kg	
Polymer molding CO2	* 1,24	-	1,36	kg/kg	

* 12,1

17,5

l/kg

PE-MD (molding and extrusion)

Coarse machining energy (per unit wt removed)	* 0,66	-	0,73	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0,05	-	0,055	kg/kg
Fine machining energy (per unit wt removed)	* 2,32	-	2,6	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0,175	-	0,193	kg/kg
Grinding energy (per unit wt removed)	* 4,2	-	4,6	MJ/kg
Grinding CO2 (per unit wt removed)	* 0,31	-	0,35	kg/kg

Recycling and end of life

Recycle	√			
Embodied energy, recycling	* 25,6	-	28,3	MJ/kg
CO2 footprint, recycling	* 0,636	-	0,704	kg/kg
Recycle fraction in current supply	8	-	9	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	44	-	46,2	MJ/kg
Combustion CO2	3,06	-	3,22	kg/kg
Landfill	✓			
Biodegrade	×			

Links

ProcessUniverse		
Producers		
Reference		
Shape		