

Introduction to Machine Learning Week 12

Olivier JAYLET

School of Information Technology and Engineering

Jaylet (KBTU) Intro ML 2025 1/22 Introduction •00

What is a decision tree?

A binary decision tree is an iterative algorithm that splits the training sample into two subsamples at each iteration.

Survival of passengers on the Titanic

Jaylet (KBTU) Intro ML 2025 2/22

Introduction

Applied to data, decision trees, allow us:

- to partition the training observations into several regions.
- estimate a simple model in each region.
- fit a regression or classification model.
- the basis of the random forest algorithm.

Popular method: Classification and Regression Trees (CART), Breiman, Friedman, Olshen and Stone (1984).

Introduction

Interpretation of the model, simple structure:

- The root of the tree (contains all observations),
- The nodes (from the binary divisions),
- The leaves (or terminal nodes).

Intro ML 2025 4/22 Jaylet (KBTU)

Growing the Tree

We assume that we have a training sample of *n* observations described by p variables x_1, x_2, \dots, x_p and a quantitative variable to explain y.

There are two steps in growing a tree:

- Separate the observations into J distinct regions R_1, R_2, \dots, R_d .
- For each region R_i , we compute the average of the values of yof observations belonging to this region:

$$\hat{y}_{R_j} = \frac{1}{\# R_j} \sum_{i \in R_i} y^{(i)} \tag{1}$$

- How to construct the regions?
- Method: recursive binary splitting.
- Idea: find the regions R_1, \ldots, R_J that minimize the sum of squares residuals (SRR), defined by:

$$SSR = \sum_{j=1}^{J} \sum_{i \in R_j} \left(y^{(i)} - \hat{y}_{R_j} \right)^2$$

Note: SSR corresponds to the training error.

- For each variable x_i
- Choose a threshold value $s \in S(x_i)$
- Split observations in two regions R_l and R_r such that:

$$R_l(j,s) = \{x | x_j < s\}$$
 and $R_r(j,s) = \{x | x_j \ge s\}$ (2)

Finally, keep the couple (i, s) that minimizes:

$$\sum_{i:x^{(i)}\in R_l(j,s)} (y^{(i)} - \hat{y}_{R_l})^2 + \sum_{i:x^{(i)}\in R_r(j,s)} (y^{(i)} - \hat{y}_{R_r})^2$$
(3)

Jaylet (KBTU) Intro ML 2025 7/22

- This process is repeated for each new region obtained.
- Until a certain stop criterion is reached (e.g., minimum number of observations in a region).
- The tree thus obtained is called the maximal tree.

Intro ML 2025 8/22 Jaylet (KBTU)

Optimizing (pruning) the maximal tree

- The maximum tree obtained may be too complex (too deep).
- A smaller tree, containing less binary divisions (regions) allows a better interpretation and reduces the variance.
- Pruning consists in building a very deep tree T_0 and reducing its size in order to obtain a subtree.

Jaylet (KBTU) Intro ML 2025 9/22

Also called Cost-complexity pruning.

- Idea: define a measure that takes into account the learning error and the complexity (depth) of the tree.
- Goal: For a given value of α (complexity parameter), find a subtree $T \subset T_0$ that minimizes

$$\sum_{j=1}^{|T|} \sum_{i:x^{(i)} \in R_j} \left(y^{(i)} - \hat{y}_{R_j} \right)^2 + \alpha |T| \tag{4}$$

where T is the number of terminal nodes and α is a tuning parameter that penalizes large trees.

2025 Jaylet (KBTU) Intro ML 10/22

Example:

Data: Hitters dataset (Major League Baseball, season 1986–1987): 322 observations and 20 variables.

Goal: predict players' salary in function of the number of years played in MLB and the number of hits in the previous season.

Jaylet (KBTU) Intro ML 2025 11/22

Name	Years	Hits	Salary
Alan Ashby	14	81	475.0
Alvin Davis	3	130	480.0
Andre Dawson	11	141	500.0
Andres Galarraga	2	87	91.5
Alfredo Griffin	11	169	750.0

With:

• x₁: Years in Major League

• x_2 : *Hits* in 1986

• y: Salary (log-transformed)

Jaylet (KBTU) Intro ML 2025 12/22

 Jaylet (KBTU)
 Intro ML
 2025
 13/22

- We use the function DecisionTreeRegressor.
- Many hyperparameters (with default values!):
 - maxdepth: maximal depth of the tree
 - min_samples_split: minimum number of observations to split a node
 - min_samples_leaf: minimum number of observations to have a leaf
- Tuning the hyper-parameters with cross-validation and grid search.

Difference with Regression Trees

- A classification tree is similar to a regression tree in terms of structure.
- It is used to predict a qualitative variable: $y \in \{1, ..., K\}, K \in \mathbb{N}$.
- We assign to each region R_j the most occurring class among the observations in R_j .

Problem: we do not use the RSS in classification, we use the classification error rate.

Jaylet (KBTU) Intro ML 2025 15/22

Classification error rate in a region R_i is the proportion of training observations in R_i that do not belong to the most occurring class:

$$\epsilon_j = 1 - \max_k(\hat{p}_{jk}) \tag{5}$$

where \hat{p}_{ik} is the proportion of observations in R_i that belong to class k

Note: in practice, two other metrics may be used, the Gini index or the cross entropy.

Gini index

The Gini index in a region R_i is defined by:

$$G_{j} = \sum_{k=1}^{K} \hat{p}_{jk} (1 - \hat{p}_{jk})$$
 (6)

This is a measure of total variance (or impurity) across the K classes.

Interpretation: a small value indicates that the node (or region) contains a predominant class (we say that the node is pure).

An alternative to the Gini index:

$$D = -\sum_{k=1}^{K} \hat{p}_{jk} \log \hat{p}_{jk} \tag{7}$$

It also measures the impurity of a node: low values indicate that the node is pure.

Note: The two indices are very similar, but cross-entropy is more sensitive to small changes in probabilities than Gini & penalizes impurity more harshly.

Variable importance

Let t be the node of a tree, let t_i and t_r be its child nodes. p_l and p_r are the proportions of observations sent to each child node.

We will use the impurity criterion of node t:

- R(t) in the case of regression (e.g. SSR)
- *I*(*t*) in the case of classification (e.g. error rate, Gini index, cross-entropy)

2025 Jaylet (KBTU) Intro ML 19/22

Variable importance

The importance of a variable x_i is defined by:

$$VI(x_j) = \begin{cases} \sum_{t \in T} \left(R(t) - R(t_l) - R(t_r) \right) & \text{in regression} \\ \sum_{t \in T} \left(I(t) - p_l I(t_l) - p_r I(t_r) \right) & \text{in classification} \end{cases}$$

where:

- R(t) & I(t) measure the impurity of the parent node t.
- $R(t_l)$ & $R(t_r)$ measure impurity of the child nodes after splitting at t.
- $p_l I(t_l) \& p_r I(t_r)$ measure weighted impurities of the left and right child nodes.

Note: At each node t, the binary split is based on the same variable x_i , it is the competitive division.

Jaylet (KBTU) Intro ML 2025 20/22

- Easy to implement with Scikit-Learn
- Graphical decision making tool
- Non-parametric interpretable model ("white box")
- Regression and classification tasks.

- Choice of hyperparameters.
- Requires extensive model optimization (pruning, grid seach cross-validation)
- Trees are unstable.

