The Precipitable-water Model Analysis Tool

An open-source suite for estimating precipitable water with low-cost instrumentation

Spencer Riley¹, Vicki Kelsey², Kenneth Minschwaner¹

¹New Mexico Institute of Mining and Technology

²South Dakota School of Mines

5th Texas Weather Conference 2 Apr 2022

Introduction

A computational utility with the purpose of analyzing data to further understand the relationship between local atmospheric brightness temperature and regional precipitable water.

Open source

Open source

Wide compatibility across local and cloud-based systems

Open source

Wide compatibility across local and cloud-based systems

The user interface is a file that stores:

Open source

Wide compatibility across local and cloud-based systems

The user interface is a file that stores:

Sensor information

Open source

Wide compatibility across local and cloud-based systems

The user interface is a file that stores:

- Sensor information
- Data source information

Open source

Wide compatibility across local and cloud-based systems

The user interface is a file that stores:

- Sensor information
- Data source information
- Analysis parameters

Deployment

Packaged in Docker container

Deployment

Packaged in Docker container

Requires raw data and the configuration file.

Deployment

Packaged in Docker container

Requires raw data and the configuration file.

Deployment template is available at template.pmat.app

Collects regional atmospheric data from NWS radiosondes and ground stations

Collects regional atmospheric data from NWS radiosondes and ground stations

Organizes, filters, and computes averages for analysis

Collects regional atmospheric data from NWS radiosondes and ground stations

Organizes, filters, and computes averages for analysis

Standard Deviation Filter

Collects regional atmospheric data from NWS radiosondes and ground stations

Organizes, filters, and computes averages for analysis

Standard Deviation Filter

$$\sigma_i > n \ \overline{\sigma_i}$$

Primary Analysis

Primary Analysis

► Iterative Regression Algorithm

Primary Analysis

► Iterative Regression Algorithm PWAT = Ae^{BT_b}

Primary Analysis

► Iterative Regression Algorithm PWAT = Ae^{BT_b}

Secondary Analysis

Primary Analysis

Iterative Regression Algorithm PWAT = Ae^{BT_b}

Secondary Analysis

Support Vector Machine

Primary Analysis

Iterative Regression Algorithm PWAT = Ae^{BT_b}

Secondary Analysis

- Support Vector Machine
- Climatology

Primary Analysis

Iterative Regression Algorithm PWAT = Ae^{BT_b}

Secondary Analysis

- Support Vector Machine
- Climatology
- ▶ Time Series

Roadmap

- Docker rollout
- Climatology analysis
- Support Vector Machine
- Module organization
- Full documentation

V4.0

- Monsoon prediction
- Automated system support
- Fourier Transform analysis
- Replace MesoWest database pull

The End

Questions?

Spencer Riley

sriley@pmat.app

Vicki Kelsey

vkelsey@pmat.app

Kenneth Minschwaner

kminschwaner@pmat.app

Project Page

pmat.app

Official Manual

docs.pmat.app

