Notes on Formal Languages

Foundations of Computer Science

January 28, 2016

1 Set Theory Review and Notation

I expect all of this section is just a refresher.

A set is a collection of elements, which may be sets themselves.

The empty set is denoted \emptyset (or sometimes $\{\}$).

The two core relations on sets are $a \in A$ (a is an element of set A) and $A \subseteq B$ (A is a subset of B, meaning that every element of A is an element of B).

Some properties of \subseteq :

 $\emptyset \subseteq A$ for every A

 $A \subseteq A$ for every A

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

A=B if and only if $A\subseteq B$ and $B\subseteq A$, that is, if A and B have exactly the same elements.

If P is a property, then $\{x \mid P(x)\}$ is the set of all elements satisfying the property.

Common operations on sets:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

 $\overline{A} = \{x \in \mathcal{U} \mid x \notin A\}$ (where \mathcal{U} is a universe of elements such that $A \subseteq \mathcal{U}$ —the definition of - therefore depends on the universe under consideration)

A set A is *finite* if it has a finite number of elements, that is, if there is a natural number $n \in \mathbb{N}$ such that A has n elements. If no such n exists, then A is *infinite*.

A function $f: A \longrightarrow B$ associates (or maps) every element of A to an element of B. Set A is the domain of the function, and B is the codomain. The image of A under f is the subset of B defined by $\{b \in B \mid f(a) = b \text{ for some } a \in A\}$.

If $f:A\longrightarrow B$ and $g:B\longrightarrow C$, then the composition $g\circ f:A\longrightarrow C$ defined by $(g\circ f)(x)=g(f(x)).$

A function $f: A \longrightarrow B$ is *one-to-one* (or injective) if it maps distinct elements of A into distinct elements of B (that is, if f(a) = f(b) implies a = b).

A function $f:A\longrightarrow B$ is *onto* (or surjective) if every element of B is in the image of A under f (that is, if for every element $b\in B$ there is an element $a\in A$ with f(a)=b).

A function $f:A\longrightarrow B$ is a correspondance (or bijective) if it is both one-to-one and onto.

2 Decision Problems

Intuitively, a computation is a way to "implement" a function $f: A \longrightarrow B$. A big part of the course will be figuring out exactly what that intuition means. But looking at arbitrary functions between arbitrary sets A and B is way too general. It doesn't really give us a place to start.

Historically, researchers have looked at two large classes of functions to study computation:

- 1. **Natural number functions** of the form $f:(\mathbb{N}\times\cdots\times\mathbb{N})\longrightarrow(\mathbb{N}\times\cdots\times\mathbb{N})$
- 2. **Decision problems** of the form $f:A\longrightarrow \{Y,N\}$ (or, really, any two-element set).

We will study decision problems. The domain of decision problems is usually constrained a bit further to be sets of *strings*.

Let Σ be a non-empty finite set we will call the *alphabet*. A *string over* Σ is a finite sequence of elements of Σ , usually written $a_1 \cdots a_k$, where $a_i \in \Sigma$.

The empty string is written ϵ .

The set of all strings over Σ is denoted Σ^* . Note that this is an infinite set.

If $\sigma_1 = a_1 \dots a_k$ and $\sigma_2 = b_1 \dots b_m$ are strings over Σ , then the *concatenation* of $\sigma_1 \sigma_2$ is the string $a_1 \dots a_k b_1 \dots b_m$. Note that $\epsilon \sigma = \sigma \epsilon = \sigma$ for every string σ .

We define $\sigma^0 = \epsilon$, $\sigma^1 = \sigma$, $\sigma^2 = \sigma \sigma$, $\sigma^3 = \sigma \sigma \sigma$, etc.

Why do we look at decision problems? A decision problem $f: \Sigma^* \longrightarrow \{Y, N\}$ can be thought of as the *characteristic function* of a set A_f defined by $A_f = \{\sigma \in \Sigma^* \mid f(\sigma) = Y\}$. Conversely, every set $A \subseteq \Sigma^*$ defines a decision problem $f_A: \Sigma^* \longrightarrow \{Y, N\}$ by taking $f_A(\sigma) = Y$ exactly when $\sigma \in A$. Thus, decision problems with domain Σ^* and subsets of Σ^* are essentially interchangeable. And studying sets is a lot easier than studying functions.

This means we are going to work with sets of strings.

3 Languages

Fix an alphabet Σ . A set A of strings over Σ is usually called a *language* over Σ .

Since languages are sets, we inherit the usual set operations $A \cup B$, $A \cap B$, \overline{A} (where the universe of A is taken to be Σ^*).

Because a language A is a set of strings, we can also define more specific operations.

 $A \cdot B = \{ \sigma_A \sigma_B \mid \sigma_A \in A \text{ and } \sigma_B \in B \}$, that is, the set of all strings obtained by concatenating a string of A and a string of B.

$$A^0 = \{\epsilon\}$$

$$A^1 = A$$

$$A^2 = A \cdot A$$

$$A^3 = A \cdot A \cdot A, \text{ etc}$$

$$A^* = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots = \bigcup_{k>0} A^k$$

The \cdot^* operation is called the *Kleene star*.

Some properties that are easy to verify:

$$\varnothing \cdot A = A \cdot \varnothing = \varnothing$$

$$\{\epsilon\} \cdot A = A \cdot \{\epsilon\} = A$$

The operations \cup , \cdot , and \cdot * are called the *regular operations*.

4 Regular Expressions and Regular Languages

A regular expression is a convenient notation for a certain class of languages. A regular expression (over alphabet Σ) is defined by the following syntax:

$$\begin{array}{ll} r::=&\mathbf{1}\\ &\mathbf{0}\\ &\mathbf{a}\quad \text{ for every } a\in \Sigma\\ &r_1+r_2\\ &r_1r_2\\ &r_1^*\\ &(r_1) \end{array}$$

Intuitively, concatenation r_1r_2 binds tighter than r_1+r_2 , and \cdot^* binds tighter than concatenation. For example, ab+ac is a regular expression, as is a(b+c) and a*(b+c)*.

A regular expression R denotes a language L(R) over Σ in the following way:

$$L(1) = \{\epsilon\}$$

$$L(0) = \emptyset$$

$$L(a) = \{a\}$$

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 r_2) = L(r_1) \cdot L(r_2)$$

$$L(r_1^*) = L(r_1)^*$$

$$L((r_1)) = L(r_1)$$

For example:

$$\begin{split} L(\mathtt{ab+ac}) &= L(\mathtt{ab}) \cup L(\mathtt{ac}) \\ &= (L(\mathtt{a}) \cdot L(\mathtt{b})) \cup (L(\mathtt{a}) \cdot L(\mathtt{c})) \\ &= (\{a\} \cdot \{b\}) \cup (\{a\} \cdot \{c\}) \\ &= \{ab\} \cup \{ac\} \\ &= \{ab, ac\} \end{split}$$

$$\begin{split} L(\mathtt{a}(\mathtt{b+c})) &= L(\mathtt{a}) \cdot L(\mathtt{b+c}) \\ &= L(\mathtt{a}) \cdot (L(\mathtt{b}) \cup L(\mathtt{c})) \\ &= \{a\} \cdot (\{b\} \cup \{c\}) \\ &= \{a\} \cdot (\{b,c\}) \\ &= \{ab,ac\} \end{split}$$

$$\begin{split} L(\mathbf{a}^*(\mathbf{b}+\mathbf{c})^*) &= L(\mathbf{a}^*) \cdot L((\mathbf{b}+\mathbf{c})^*) \\ &= L(\mathbf{a})^* \cdot L(\mathbf{b}+\mathbf{c})^* \\ &= \{a\}^* \cdot (L(\mathbf{b}) \cup L(\mathbf{c}))^* \\ &= \{a\}^* \cdot (\{b\} \cup \{c\})^* \\ &= \{a\}^* \cdot \{b,c\}^* \end{split}$$

And thinking about this last set (which is difficult to write down), it is basically the set of all strings obtained by concatenating a sequence of as (including none) to a sequence of bs and cs (in any order, including none). So aaaaaa is in this set, as is aaaab, aaaabbbb, aaaabbbbb, aaaabbbbc, etc.

A language A is called regular if there is a regular expression r such that L(r) = A.