Aleksandar Cvetković

October 15, 2025

Overview

1. Uvod

2. Adaptivno simulirano kaljenje

3. Rezultat

Uvod

- Kaljenje
- Simulirano kaljenje
- Adaptivno simulirano kaljenje

Problem trgovačkog putnika

- Zašto baš ovaj problem?
- Definicija
- Simetrični i asimetrični problem

Standardni algoritam

Slika 1 Pseudokod standardnog algoritma

```
1: procedure SimuliranoKaljenje
       MaxIters ← Maksimalni broj iteracija algoritma
       Ciklus ← Inicijalni ciklus
       NajboljiCiklus \leftarrow Ciklus
       while k < MaxIters do
           NoviCiklus \leftarrow GenerišiNoviCiklus(Ciklus)
           r \leftarrow \text{Nasumični broj iz intervala } (0, 1)
8.
           if Dužina(NoviCiklus) < Dužina(Ciklus) then
               Ciklus \leftarrow NoviCiklus
g.
               if Dužina (Ciklus) < Dužina (Najbolji Ciklus) then
10.
                   NaiboliiCiklus \leftarrow Ciklus
11:
           else if r < 1/k then
12:
               Ciklus \leftarrow NoviCiklus
13:
           k \leftarrow k + 1
14:
       return Ciklus
15:
```

Standardni algoritam

Da li možemo manje nasumično da biramo lošije rešenje?

Standardni algoritam

Novo rešenje biramo tako da ono nije mnogo gore u odnosu na prethodno rešenje.

$$h(\Delta E) = rac{1}{1 + \exp{rac{\Delta E}{T}}}$$
 $pprox \exp{rac{-\Delta E}{T}}$

Bolcmanovo kaljenje

Slika 2 Pseudokod unapređenog algoritma

```
1: procedure BolcmanovoSimuliranoKaljenje
       T0 \leftarrow Početna\ temperatura
       MaxIters ← Maksimalni broi iteracija algoritma
       Ciklus ← Inicijalni ciklus
       NaiboliiCiklus \leftarrow Ciklus
       while k < MaxIters do
           NoviCiklus \leftarrow GenerišiNoviCiklus(Ciklus)
           r \leftarrow \text{Nasumični broj iz intervala } (0, 1)
           if Dužina(NoviCiklus) < Dužina(Ciklus) then
               Ciklus \leftarrow NoviCiklus
10:
               if Dužina(Ciklus) < Dužina(NajboljiCiklus) then
11:
                  NajboljiCiklus \leftarrow Ciklus
12:
           else if r < \exp(-(\text{Dužina}(NoviCiklus) - \text{Dužina}(Ciklus))/T)
13:
   then
               Ciklus ← NoviCiklus
14:
15:
           k \leftarrow k+1
           T \leftarrow T0/ln(k)
16:
       return Ciklus
17:
```

Šta je problem sa Bolcmanovim kaljenjem?

- 1. Generiše nove cikluse koji su već bili neuspešni.
- 2. Lokalni minimumi
- 3. Parametar temperature

Kako rešiti prvi problem?

- Uvodimo parametar temperature za svaku dimenziju problema
- Definišemo T -funkciju smanjenja temperature za svaku dimenziju problema

$$T_i(k) = T_{0i} \exp\left(-c_i k_i^{\frac{1}{D}}\right)$$

za k-tu iteraciju algoritma gde je

- k_i broj promene rešenja na i-toj dimenziji
- D je dimenzija problema
- T_{0i} početna temperatura za dimenziju i
- c_i slobodni parametar

$$c_i = m_i \exp \frac{-n_i}{D}$$

$$m_i = -\log(TemperatureRatioScale)$$

$$n_i = \log(TemperatureAnnealScale)$$

Kako rešiti drugi problem lokalnih minimuma?

Reannealing:

$$k_i
ightarrow k_i',$$
 ${T'}_{ik}{}' = {T}_{ik} rac{s_{max}}{s_i},$ $k_i' = \left(rac{\lnrac{T_{i0}}{T_{ik'}}}{c}
ight)^D.$

T = vrednost poslednjeg minimuma

Ovim je i treći problem rešen.

Naziv algoritma	rs5.tsp	rs10.tsp	rs15.tsp
Gruba sila	$1.703*10^{-4}$	21.927	$7.567 * 10^{6**}$
Osnovni algoritam	$1.734*10^{-4}$	0.084	-
Bolcmanovo kaljenje	$3.08*10^{-4}$	0.152	23.934
Brzo kaljenje	$2.535*10^{-4}$	0.01	0.016
Adaptivno simulirano kaljenje	$3.366*10^{-4}$	0.003	0.021

Table: Vreme zaustavljanja algoritama izraženo u sekundama.

**-oko 87 dana

Rezultat: berlin52 i qa194

Parametri:

- Brzo kaljenje: T = [GlobalniMinimum, 2 * GlobalniMinimum]
- Adaptivno simulirano kaljenje: $TemperatureRatioScale \times TemperatureAnnealScale \times ReannealRate$ $= [0.00001, 0.0001, 0.001, 0.001] \times [10, 100, 1000] \times [10, 30, 50]$

Rezultat: berlin52 i qa194

Hvala na pažnji!