- 1. Uvažme systém hashovacích funkcí $\{h_{a,b}(x) = ((ax+b) \mod p) \mod m; a,b \in [p], m \le p, p$ je prvočíslo $\}$. Na přednášce jste viděli, že je 2-universální. Co se stane, pokud zakážeme možnost a=0? Ukažte, že je tento nový systém dokonce 1-universální.
- 2. Ukažte, že dokonce i systém $\{h_a(x) = ((ax) \mod p) \mod m; a \in [1, p], m \le p, p \text{ je prvočíslo}\}$, tedy bez aditivního členu, je 1-universální. Bude to platit, když povolíme a = 0?
- 3. Lagrangeova interpolace. Mějme body $\{(x_i, y_i)\}_{i=1}^{n+1} \subseteq \mathbb{R}^2$ takové, že x_i jsou různá.
 - a) Ukažte, že existuje právě jeden polynom p stupně n takový, že $p(x_i) = y_i$ pro všechna $i \in [n+1]$.
 - b) Najděte jej.

Nápověda. Najděte sadu polynomů q_i , které se na x_i vyhodnotí na 1 a na $x_j \neq x_i$ na 0.

Na přednášce jste viděli, že pomocí zcela náhodné hashovací funkce lze sestrojit (statickou) tabulku pro podmnožinu S univerza U, která nemá žádné kolize. Nevýhodou je, že spotřebovává paměť $\Omega(n^2)$. Teď si ukážeme, jak snížit paměť na $\mathcal{O}(n)$, přičemž pamět měříme v počtu paměťových buněk, které jsou $\mathcal{O}(\log n)$ -bitová čísla. Předpokládáme, že takovou funkci dokážeme samplovat v konstantním čase a že si ji dokážeme pamatovat v konstantním prostoru.

High-level pohled. Uděláme si dvouúrovňovou tabulku. V první úrovni si zcela náhodnou hashovací funkcí f rozhodíme prvky do kyblíků B_1, \ldots, B_n (některé mohou být prázdné). Označíme $b_i = |B_i|$.

Ve druhé úrovni si v každém kyblíku uděláme bezkolizní tabulku pomocí konstrukce z přednášky.

První úroveň. V konstantním čase si vybereme zcela náhodnou hashovací funkci $f: U \to [n]$. Tou rozházíme S do kyblíků. To opakujeme, dokud neplatí, že $\sum_{i=1}^n b_i^2 \le \beta n$ pro $\beta = 4$.

4. Chceme ukázat, že tento krok budeme opakovat nejvýše dvakrát (ve střední hodnotě). Bude se hodit znát *Markovovu nerovnost*: Nechť X náhodná veličina nabývající kladných hodnot. Pak $\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$ pro a > 0. (Uměli byste důkaz?)

Nechť C značí počet kolizí.

- a) Určete $\mathbb{E}[C]$.
- b) Určete C v závislosti na b_i .
- c) Určete $\mathbb{E}[\sum_{i=1}^{n} b_i]$ na základě předchozích dvou hodnot.
- d) Aplikujte Markovovu nerovnost na náhodnou veličinu $X = \sum_{i=1}^{n} b_i^2$ s vhodnou konstantou, abyste dostali požadovaný výsledek (bude se opět hodit střední hodnota geometrického rozdělení).

Druhá úroveň. Pro každé $i \in [n]$ volíme v *i*-tém kyblíku univerzální hashovací funkci $g_i: U \to [\alpha b_i^2]$ pro $\alpha = 2$. Opakujeme, dokud není prostá pro prvky, které dopadly do B_i .

5. Nechť τ_i měří počet opakování volby g_i , dokud nedostaneme prostou funkci pro prvky, které dopadly do B_i . Chceme ukázat, že $\mathbb{E}[\tau_i] \leq 2$.

Nechť C_x měří počet kolizí klíče $x \in B_i$.

- a) Shora odhadněte $\mathbb{E}[C_x]$.
- b) Použitím Markovovy nerovnosti a union boundu (umíte už důkaz?) určete shora odhadněte pravděpodobnost, že existuje prvek, který má aspoň jednu kolizi.
- c) Dokončete úlohu.
- 6. Určete časovou složitost pro konstrukci obou úrovní. (Každá by měla být lineární)

Poznámka. Tuto konstrukci můžete najít pod názvem *FKS perfect hashing* podle autorů Fredman, Komlós a Szemerédi.