模組迴路解析簡介

清情电子科技有限公司

面內構造

面內構造

訊號驅動原理

模組架構

專有名詞

What is **EMI/RFI**

ElectroMagnetic Interference

Radio Frequency Interference

電磁波向外輻射干擾(電磁干擾)/(微波干擾)

What is **EMC**

ElectroMagnetic Compatibility

外界電磁波向內輻射干擾(電磁相容)

傳統訊號格式

• TTL: Transistor-Transistor Logic

最基本的數位訊號, 低電位代表0,高電位代表1

優點: 最直接的訊號, 可直接量測

缺點: 1. 易受外界干擾, 消耗功率大

2. 易向外界干擾,發射EMI.

TTL 電氣規格

TTL 特性

外部訊號

LVDS: Low Voltage Differential Signaling

A low noise, low power, low amplitude method for high-speed (gigabits per second) data transmission over copper wire.

使用非常低的電壓擺幅大約350mV,使用這種方式可以減少功率消耗及減低EMI,

更能達到降低成本之目的。

LVDS工作方式

差動輸入信號經由兩顆對應MOS gate端輸入,因為電流源使用3.5mA因此接收器(Receiver)差動接收端可獲取3.5mA電流但是接收器差動輸入端直流阻抗非常大,為了使電流通過以產生350mV,故在接收器差動輸入端等接上100歐姆的電阻,以滿足LVDS電壓擺幅350mV。

LVDS電性規格

LVDS is currently standardized by two different standards:

TIA/EIA (Telecommunications Industry Association/Electronic Industries Association)

· ANSI/TIA/EIA-644 (LVDS) Standard

IEEE (Institute for Electrical and Electronics Engineering)

IEEE 1596.3

ANSI/TIA/EIA-644 (LVDS) Standard Note: Actual datasheet specifications may be significantly better.

Parameter	Description	Min	Max	Units
V _{OD}	Differential Output Voltage	247	454	mV
Vos	Offset Voltage	1.125	1.375	V
ΔV_{OD}	lChange to V _{OD} I		50	lmVl
ΔV_{OS}	lChange to V _{OS} I		50	lmVl
I _{SA} , I _{SB}	Short Circuit Current		24	lmAl
t _r /t _f	Output Rise/Fall Times (≥200Mbps)	0.26	1.5	ns
	Output Rise/Fall Times (<200Mbps)	0.26	30% of t _{ui} †	ns
I _{IN}	Input Current		20	lμAl
V_{TH}	lThreshold Voltagel		±100	m۷
V _{IN}	Input Voltage Range	0	2.4	V

[†] tuj is unit interval (i.e. bit width).

Single-Ended Waveforms

Single-Ended & Differential Waveforms

LVDS編碼

內部訊號格式

RSDS: Reduced Swing Differentisl Signaling

差動訊號與TTL相比具有低EMI與功率損耗之優點,因爲RSDS的電壓擺幅只有200mV,比LVDS更低。

RSDS工作方式

- $I_{RSDS} = 20 \times I_{PI} (I_{PI} = V_{PI} / R_{PI})$
- $V_{PI} = 1.3 V + /-5 \%$ Fixed.

RSDS 規格

Reduced Swing

VP: Positive single end signal of RSDS output buffer.

VN: Negative single end signal of RSDS output buffer.

Symb ol	Description	Min	Тур	Max	Unit s
VDD	Supply Voltage	3.0	3,3	3.6	V
VOD	Differential output voltage (RL = 100 Ohm; Cr 4E [7]=1)	100	200	400	mV
VOS	Common mode Voltage.	1.1	1.3	1.5	V
Trf	Transition time (CL = 5 pF, load between N and P channels)		1		ns
Skew	Skew between different data channels			500	ps

RSDS之優點

RSDS (Reduced swing differential signaling)是由美國國家半導體(National Semiconductor Corp.)推廣的一種平面顯示器的傳輸介面。相較於現在常用的3.3Volt的數位傳輸介面,有著減低EMI(Electro-Magnetic Interference)與降低耗電的優點。differential pair input降低EMI

跟現在常用的介面比較,爲什麼RSDS可以減低EMI呢?最主要的原因是RSDS介面使用的是differential input,所以輸入介面的信號之電壓振幅比起3.3Volt小很多、最小可到達0.2Volt,如圖5所述。我們知道EMI的發生主要是由於電路中所流動電流大小的變化,所形成的電磁輻射的結果。它會隨著電流變化的大小程度與變化頻率而增加,所以當輸入的電壓振幅變小時,電流的變化幅度也會減少,所以EMI的程度也會減低。

除了由於電流變化幅度降低而減低EMI之外,由於RSDS介面是使用differential pair input,這一對輸入信號線,其輸入信號是反向的。所以信號線上所流通的電流也恰好反向。一般傳統的CMOS輸入信號是一條一條線的,每一條線上流通的電流會各自輻射出EMI來,但是differential pair的兩條線由於電流變化(DI)大小相等且反向,其所輻射出來的EMI會因爲彼此互相作用而抵消掉大部份。請見圖5。因此,從剛才提過的,我們可以得知藉由電壓振幅的減小與differential輸入信號的設計,RSDS的傳輸介面可大幅減低EMI的程度。在此同時,由於EMI的降低,也可以節省一般在解EMI時,所需額外多加的零件與電路,如此一來總成本也可以降低。

此外,RSDS除了可以減少EMI外,比起傳統的CMOS輸入介面,RSDS的輸入介面在傳輸過程中所形成的耗電,也能大幅減少。因為依照功率消耗的公式,功率的消耗正比於電壓的平方,既然電壓振幅由3.3volt降到 0.2volt,稍微計算一下,可得知在信號傳輸的過程中,可節省下接近99.6%的功率消耗。當然,這是依照數學公式最理想的狀況,在實際上並不會節省這麼多。

訊號系統

ASIC

Application Specific IC (又稱T-con Timing controller)

功能

- ▶接收TTL或LVDS訊號與時脈
- ▶送出TTL或RSDS訊號與時脈
- ▶控制各組時序訊號輸出

ASIC

ASIC時期的順序

STH出現star pulse,告知Source Driver可以開始接收第一列pixel的資料 (RGBP/N)並latch住,之後TP信號上緣讀取RVS(控制極性的變換方式,決定輸出電壓爲正極性或負極性),下緣將整列之DATA同時寫入面板。同時STV信號也告知Gate Driver可以開始依序啟動每一列所有之TFT。此後則依照CPV信號開啟每一列之TFT。Source Driver則依STH信號、TP信號、RVS信號來給予每列每個像素適當之像素電壓。

Source Driver IC (S-IC)

S側驅動IC

- ➤包裝成Taping,再捲成Reel出貨
- ▶廠內經金型裁切並本壓於Panel與PVB

Source Driver #157Pin Assignments

(EX. 17EA)

- STHL/R: 啓動階調訊號接收
- R/L: 控制IC輸出左右順序
- CLK: 時脈
- TP:啓動IC輸出電壓
- RVS to POL: IC輸出之高/低電 壓控制---Flicker輸出方式選擇
- VDD1: IC電源
- VSS1, VSS2: GND
- VDD2: 階調電壓最大值
- V0~V15: 階調電壓
- Dx0~Dx7:訊號
- Sx: S-IC輸出

S-IC 對照圖

Gate Driver IC (G-IC)

Gate Driver部分Pin Assignments

• DIOL/R: 啓動IC

• R/L: 控制IC輸出左右順序

• SCLK: 時脈

• OE1,2,3: 強迫G-IC輸出VLL

• XON: 強迫G-IC輸出VGON

• VDD: G-IC電源

VLL: VEEG

• VSS: 接地

VGON: VDDG

• OUTx: G-IC輸出

G-IC 對照圖

PWB

Printed Wire Board

• 將輸入電源轉成所需的電壓〈6項基本電壓〉

Vin : 3.3V 、5.0V、12V ...基本輸入電源

VDDD: 3.3V, 各IC所需的電源電壓, S-IC, G-IC, ASIC, 電源IC, ...

VDDG: 18V, 24V ...TFT元件打開的Gate電壓, 給G-IC使用

VEEG: -6V, TFT元件關閉的Gate電壓, 給G-IC使用

VDDA: 9.2V, 階調電壓最大值, 再轉成各階調所需的電壓, 給S-IC使用

Vcom: 3.6V, 基準共通電壓, 和階調電壓的差值來驅動液晶, 給面板使用

為了不讓電源瞬間的開與關,而引起內部元件突然承受過大的電流,而破壞IC,因此在Turn_On或Turn_Off時各電壓的啟動順序必須符合先後順序。

S-PWB 外觀

電源不意圖

DC-DC 電源電路

Power On Sequence 開機時序

倍壓整流迴路

電晶體偏壓電路

Vddd

Vddd

VDDA

L201 vs Q202 Gate

L201

VDDA轉成階調電壓

階調電壓分壓表

Table 2. Relationship between Input Data and Output Voltage Value

Input Data	DX5 DX4 DX3 DX2 DX1 DX0						G/S	Output Voltage
00H 01H 02H 03H 04H 05H 06H 07H	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0	VH0 VH1 VH2 VH3 VH4 VH5 VH6 VH7	VGMA1 VGMA1+(VGMA2-VGMA1) × 1000/7000 VGMA1+(VGMA2-VGMA1) × 1830/7000 VGMA1+(VGMA2-VGMA1) × 2500/7000 VGMA1+(VGMA2-VGMA1) × 3170/7000 VGMA1+(VGMA2-VGMA1) × 3670/7000 VGMA1+(VGMA2-VGMA1) × 4170/7000 VGMA1+(VGMA2-VGMA1) × 4670/7000
08H 09H 0AH 0BH 0CH 0DH 0EH 0FH	0 0 0 0 0 0	0 0 0 0 0 0 0	1 1 1 1 1 1 1	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	VH8 VH9 VH10 VH11 VH12 VH13 VH14 VH15	VGMA1+(VGMA2-VGMA1) × 5000/7000 VGMA1+(VGMA2-VGMA1) × 5330/7000 VGMA1+(VGMA2-VGMA1) × 5620/7000 VGMA1+(VGMA2-VGMA1) × 5910/7000 VGMA1+(VGMA2-VGMA1) × 6160/7000 VGMA1+(VGMA2-VGMA1) × 6400/7000 VGMA1+(VGMA2-VGMA1) × 6600/7000 VGMA1+(VGMA2-VGMA1) × 6800/7000
10H 11H 12H 13H 14H 15H 16H	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	VH16 VH17 VH18 VH19 VH20 VH21 VH22 VH23	VGMA2 VGMA2+(VGMA3-VGMA2) × 170/2315 VGMA2+(VGMA3-VGMA2) × 340/2315 VGMA2+(VGMA3-VGMA2) × 510/2315 VGMA2+(VGMA3-VGMA2) × 680/2315 VGMA2+(VGMA3-VGMA2) × 820/2315 VGMA2+(VGMA3-VGMA2) × 960/2315 VGMA2+(VGMA3-VGMA2) × 1100/2315
18H 19H 1AH 1BH 1CH 1DH 1EH	0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	VH24 VH25 VH26 VH27 VH28 VH29 VH30 VH31	VGMA2+(VGMA3-VGMA2) × 1240/2315 VGMA2+(VGMA3-VGMA2) × 1380/2315 VGMA2+(VGMA3-VGMA2) × 1520/2315 VGMA2+(VGMA3-VGMA2) × 1660/2315 VGMA2+(VGMA3-VGMA2) × 1800/2315 VGMA2+(VGMA3-VGMA2) × 1940/2315 VGMA2+(VGMA3-VGMA2) × 2065/2315 VGMA2+(VGMA3-VGMA2) × 2190/2315

NOTE: VDD2>VGMA1>VGMA2>VGMA3>VGMA4>VGMA5

指調電壓(Gamma 電壓)

Figure 3. Gamma Correction Curve

VDDG

VDDG-D201

27.6 18.4∨ D202 Switching DIODE *2 D201 Switching DIODE *2 R213 100 ZENER DIODE(24V) C222 C220 C223 C221 C224 0.1u 1 u 0.1u 0.22u 0.47u

VDDG-D202

Vcom

Vcom

Vcom

VEEG

~The End~