Неопределенный интеграл

Пусть функция f определена на интервале (a, b).

Опр: 1. Дифференцируемая функция F на интервале (a,b) называется первообразной функции f, если:

$$F'(x) = f(x), \forall x \in (a, b)$$

Утв. 1. $F' \equiv 0$ на $(a, b) \Leftrightarrow F = \text{const.}$

- (\Leftarrow) Очевидно, $F = \text{const} \Rightarrow F' = 0$.
- (⇒) По теореме Лагранжа:

$$F(x_1) - F(x_2) = F'(c)(x_1 - x_2) = 0 \Rightarrow \forall x_1, x_2 \in (a, b), F(x_1) = F(x_2) \Rightarrow F(x) = \text{const}$$

Rm: 1. Важно, что определение идет на неразрывном интервале, в противном случае функция может быть кусочной и утверждение не будет верным.

Следствие 1. Если F_1 и F_2 - первообразные f на (a,b), то $F_1-F_2={
m const.}$

 \Box $(F_1 - F_2)' = f - f = 0 \Rightarrow$ используем предыдущее утверждение.

Произвольную первообразную функции f на (a,b) обозначаем через $\int f(x) \, dx$.

Если F'=f, то $\int f(x) dx = F + C$, где $C={
m const.}$

Опр: 2. Интеграл $\int f(x) dx = F + C$, где C = const называется неопределенным интегралом.

Опр: 3. Процедура поиска первообразных называется интегрированием.

Rm: 2. Почему такое обозначение? От английской буквы S (square).

Пусть дана функция f, хотим найти $F \colon F' = f$. По определению производной:

$$F(a+h) - F(a) = f(a) \cdot h + \bar{o}(h), \quad \bar{o}(h) = \alpha(a,h)h, \lim_{h \to 0} \alpha(a,h) = 0$$

Имея производную, мы знаем приращение функции при маленьких h:

$$F(a+h) - F(a) \approx f(a) \cdot h$$

Поскольку мы ищем функцию F с точностью до константы, возьмем точку x_0 , зафиксируем там значение $F: F(x_0) = 0$, необходимо найти значение функции в точке x. Но x расположен относительно далеко, а связь установлена на маленьких отрезках \Rightarrow дробим отрезок $[x_0, x]$ на более мелкие отрезки.

$$F(x_0) = 0 \underset{x_0}{\overset{h}{\underset{x_{k-1}}{|}}} F(x)$$

Рис. 1: Нахождение значения в точке x функции F.

Таким образом на каждом маленьком отрезке мы можем написать:

$$F(x_k) - F(x_{k-1}) \approx f(x_k)h, \ h = dx(h) \Rightarrow F(x_k) - F(x_{k-1}) \approx f(x_{k-1})h = f(x_{k-1})dx(h)$$

Тогда выразим F(x):

$$F(x) = \sum_{k} \left(F(x_k) - F(x_{k-1}) \right) \approx \sum_{k} f(x_{k-1}) dx(h)$$

Поскольку равенство примерное, то оно становится точнее при $h \to 0 \Rightarrow$ сумма конечная превращается в сумму бесконечную:

$$F(x) \approx \sum_{k} f(x_{k-1}) dx(h) \xrightarrow[h \to 0]{} \int f(x) dx$$

Rm: 3. Первообразная дифференциала \neq дифференциал первообразной:

(1)
$$\int F'(x) dx = \int dF = F + C;$$

(2)
$$d\left(\int f(x) dx\right) = \left(\int f(x) dx\right)' dx = f(x) dx;$$

Свойства неопределнного интеграла

Свойства неопределенных интегралов должны быть унаследованы от производных. Сравним свойства между ними:

(1) Линейность:

Дифференцирование: $(\alpha F + \beta G)' = \alpha F' + \beta G';$

<u>Интегрирование</u>: Пусть F и G - первообразные для f и g на (a,b). Тогда $\alpha F + \beta G$ - первообразная для $\alpha f + \beta g$ на (a,b), что записывается так:

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx + C$$

(2) Правило Лейбница/Интегрирование по частям

Дифференцирование: $(F \cdot G)' = F'G + FG'$;

<u>Интегрирование (І-ый способ)</u>: Пусть f и g дифференцируемы на (a,b) и у f'g есть первообразная, то у fg' тоже есть первообразная и верно равенство:

$$\int (fg)' dx = fg + C = \int f'g dx + \int fg' dx + C$$

Интегрирование (ІІ-ый способ):

$$\int f'g \, dx = fg - \int fg' \, dx + C$$

Поскольку f и g дифференцируемы, то по правилу Лейбница дифференцируемо их произведение $fg \Rightarrow$ первообразная (fg)' равна $fg \Rightarrow$ существует первообразная функции fg', так как эта функция равна: (fg)' - f'g по правилу Лейбница. По свойству линейности у (fg)' - f'g есть первообразная:

$$\int fg' dx = \int (fg)' dx - \int f'g dx + C = fg - \int f'g dx + C$$

(3) Дифференцирование сложной функции/Замена переменной под интегралом

Дифференцирование: $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t);$

<u>Интегрирование</u>: Пусть F - первообразная f на (a,b) и $\varphi\colon (\alpha,\beta)\to (a,b)$ - дифференцируема. Тогда $F(\varphi(t))$ - первообразная функции $f(\varphi(t))\cdot \varphi'(t)$:

$$\int f(\varphi(t)) \cdot \varphi'(t) dt = \int f(x) dx \bigg|_{x=\varphi(t)} + C = F(\varphi(t)) + C$$

Мы знаем, что:

$$\int f(\varphi(t)) \cdot \underbrace{\varphi'(t) \, dt}_{d\varphi} = \int f(\varphi) \, d\varphi$$

Таблица интегралов

Рассматриваем те области определения, где функции определены и дифференцируемы.

Производные	Интегралы
1) $f(x) = \text{const}; (C)' = (\text{const})' = 0;$	1) $F(x) \equiv 0$; $\int 0 \cdot dx = \text{const} = C$;
2) $f(x) = x^{\alpha}$; $(x^{\alpha})' = \alpha x^{\alpha - 1}$;	2) $F(x) = x^{\alpha}, \ \alpha \neq -1; \ \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1;$
3) $f(x) = \ln x $; $(\ln x)' = \frac{1}{x}$;	3) $F(x) = \frac{1}{x}$; $\int \frac{1}{x} dx = \ln x + C$;
4) $f(x) = e^x$; $(e^x)' = e^x$;	4) $F(x) = e^x$; $\int e^x dx = e^x + C$;
5) $f(x) = \sin x$; $(\sin x)' = \cos x$;	5) $F(x) = \cos x$; $\int \cos x dx = \sin x + C$;
6) $f(x) = \cos x$; $(\cos x)' = -\sin x$;	6) $F(x) = \sin x; \int \sin x dx = -\cos x + C;$
7) $f(x) = \operatorname{tg} x$; $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$;	7) $F(x) = \frac{1}{\cos^2 x}$; $\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$;
8) $f(x) = \operatorname{ctg} x$; $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$;	8) $F(x) = \frac{1}{\sin^2 x}$; $\int \frac{1}{\sin^2 x} dx = -\cot x + C$;
9) $f(x) = \arcsin x$; $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$;	9) $F(x) = \frac{1}{\sqrt{1-x^2}}$; $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$;
10) $f(x) = \arccos x$; $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$;	10) $F(x) = \frac{1}{\sqrt{1-x^2}}; \int \frac{1}{\sqrt{1-x^2}} dx = -\arccos x + C;$
11) $f(x) = \arctan x$; $(\arctan x)' = \frac{1}{1+x^2}$;	11) $F(x) = \frac{1}{1+x^2}$; $\int \frac{1}{1+x^2} dx = \arctan x + C$;
12) $f(x) = \operatorname{arcctg} x$; $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$;	12) $F(x) = \frac{1}{1+x^2}$; $\int \frac{1}{1+x^2} dx = -\arctan x + C$;
13) $f(x) = \ln(x + \sqrt{x^2 \pm 1});$	13) $F(x) = \frac{1}{\sqrt{x^2 \pm 1}};$
$\left(\ln\left(x+\sqrt{x^2\pm 1}\right)\right)' = \frac{1}{\sqrt{x^2\pm 1}};$	$\int \frac{1}{\sqrt{x^2 \pm 1}} dx = \ln\left(x + \sqrt{x^2 \pm 1}\right) + C;$
14) $f(x) = \frac{1}{2} \ln \left \frac{x-1}{x+1} \right ;$	14) $F(x) = \frac{1}{x^2 - 1}$;
$\left(\frac{1}{2}\ln\left \frac{x-1}{x+1}\right \right)' = \frac{1}{2}\left(\frac{1}{x-1} - \frac{1}{x+1}\right) = \frac{1}{x^2 - 1};$	$\int \frac{1}{x^2 - 1} dx = \frac{1}{2} \ln \left \frac{x - 1}{x + 1} \right + C;$

Опр: 4. Назовем следующую функцию: $\ln (x + \sqrt{x^2 \pm 1})$ длинным логарифмом.

Опр: 5. Назовем следующую функцию: $\frac{1}{2} \ln \left| \frac{x-1}{x+1} \right|$ высоким логарифмом.

В некоторой степени можно сказать, что таблица интегралов 🖨 таблица производных.

Rm: 4. Если область определения разбивается на несколько частей, то на каждой из них, при интегрировании, константа выбирается своя.

Пример: $f(x) = x^{-2}$, для первообразной константы в положительной полуоси и в отрицательной - будут разными.

Упр. 1. Решить уравнение $t = \operatorname{ch} x = \frac{e^x + e^{-x}}{2}$ (найти x).

$$t = \frac{e^x + e^{-x}}{2} \ge 0 \Rightarrow 2t = e^x + e^{-x} \Rightarrow 2te^x = e^{2x} + 1 \Rightarrow e^{2x} - 2te^x + 1 = 0 \Rightarrow e^x = \frac{2t \pm \sqrt{4t^2 - 4}}{2} \Rightarrow e^x = t \pm \sqrt{t^2 - 1}, \ t \ge 0 \Rightarrow t^2 \ge 1 \Rightarrow t \ge 1 \Rightarrow t \pm \sqrt{t^2 - 1} > 0 \Rightarrow x = \ln\left(t \pm \sqrt{t^2 - 1}\right)$$