Monopoly Problems

Andrew Ye and Diva Shah ${\rm May}\ 2024$

Contents

1	Unit 1: Atomic Structure and Properties	3
2	Unit 2: Molecular and Ionic Compound Structure and Properties	4
3	Unit 3: Intermolecular Forces and Properties	6
4	Unit 4: Chemical Reactions	7
5	Unit 5: Kinetics	7
6	Unit 6: Thermodynamics	9
7	Unit 7 Equilibrium	10

1 Unit 1: Atomic Structure and Properties

Problem 1

Calculate the number of moles in a 7.89kg sample of $C_9H_8O_4$

Problem 2

Given this graph, what is true about the element depicted

- (a) In an average sample of the element, less than 20% of the atoms have an atomic mass of 66u.
- (b) The most abundant isotope of the element has an atomic mass of 64u.
- (c) The element has an average atomic mass of 64u.
- (d) The element has an average atomic mass between 66 and 68u.

Problem 3

What is the percent composition of Carbon in $C_{13}H_{18}O_2$?

Problem 4

A compound contains 32.38% sodium, 22.65% sulfur, and 44.99% oxygen. What is the emperical forumula.

Problem 5

What is the full electron configuration of mercury?

Below, the photoelectron spectra of the 2s electrons of Be and Mg are shown.

Is peak X the peak associated with Be or Mg?

Problem 7

What are the periodic trends of ionization energy, atomic radius, and electronegativity? Why?

Unit 2: Molecular and Ionic Compound Structure and Properties

Problem 8

Which of the following bonds is likely to have the most ionic character?

- $\begin{array}{ccccc} (a) \ H & & F \\ (b) \ C & & O \end{array}$
- (c) Na F
- (d) Mg O

Problem 9

Based on the information in the table, which of the following arranges the bonds in order of decreasing polarity?

Element	Electronegativity	
H	2.2	
N	3.0	
F	4.0	
Cl	3.2	
Se	2.6	
I	2.7	
1		

(a) Se
$$\longrightarrow$$
 N > H \longrightarrow I > Cl \longrightarrow F

$$\begin{array}{lll} \text{(a) Se} & \longrightarrow \text{N} > \text{H} & \longrightarrow \text{I} > \text{Cl} & \longrightarrow \text{F} \\ \text{(b) H} & \longrightarrow \text{I} > \text{Se} & \longrightarrow \text{N} > \text{Cl} & \longrightarrow \text{F} \end{array}$$

(c)
$$Cl - F > H - I > Se - N$$

(d)
$$Cl - F > Se - N > H - I$$

Why is the lattice energy of CsF smaller than the lattice energy of KF?

Problem 11

What type of structure do metallic elements form and through what bonds?

Problem 12

What are the two types of metallic alloys and what are there differences?

Problem 13

Draw a Lewis Diagram for Acetic Acid CH₃COOH.

Problem 14

Draw the Lewis Diagram for CO_2

Problem 15

Draw the Lewis Diagram(s) for ozone, O_3

Problem 16

Write the formal charges for all three molecules above.

What is the electron geometry, molecular geometry, and hybridization of the central atom in this molecule.

3 Unit 3: Intermolecular Forces and Properties

Problem 18

What are the intermolecular forces present among these molecules.

Problem 19

What phase transition is this?

Problem 20

Originally, a sample of gas is in a rigid container at 299K and 0.70atm. The student increases the temperature of the $CO_2(g)$ in the container to 425K.

- (a) What does raising the temperature do to the mostion of the molecules?
- (b) What is the pressure at 425K?
- (c) In terms of Kinetic Molecular Theory, why does the pressure of gas change as it is heated?

Problem 21

A 60.3g of Be(OH)₂ is dissolved in enough water to produce 1.75L of solution. Calculate the concentration of OH $^-$ ions.

Describe the photoelectric effect.

4 Unit 4: Chemical Reactions

Problem 23

Balance this reaction: $C_5H_{10} + O_2 \longrightarrow CO_2 + H_2O$

Problem 24

Balance this redox reaction: $MnO_4^- + I^- \longrightarrow I_2 + Mn^{2+}$

Problem 25

Aqueous $FeCl_3$ reacts with KOH to produce a solid precipitate of $Fe(OH)_3$ and aqueous KCl. What is the balanced net ionic equation?

Problem 26

What is the difference between physical changes and chemical changes?

Problem 27

 ${\rm H_2O}$ and Fe are reacted according to the reaction below. There was initially 36.0g H₂O and 67.0g Fe. What is the limiting reactant, how much of the excess reactant will remain, and how much iron oxide is produced? $3 \, {\rm Fe}(s) + 4 \, {\rm H_2O}(g) \longrightarrow {\rm Fe_3O_4}(s) \, 4 \, {\rm H_2}(g)$

Problem 28

A 56kg sample of CO and 6.0kg sample of H_2 are combined into a closed vessel. $CO(g) + 2H_2(g) \longrightarrow CH_3OH(g)$ How many moles of $CH_3OH(g)$ have been produced?

5 Unit 5: Kinetics

Problem 29

For this reaction: $\begin{array}{l} CH_4(g)+2\,O_2(g) \longrightarrow CO_2(g)+2\,H_2O(g) \\ What \ would \ be \ rate \ be \ in \ terms \ of \ each \ reactant \ and \ product. \\ CH_4 \quad rate = \\ O_2 \quad rate = \\ CO_2 \quad rate = \\ H_2O \quad rate = \\ \end{array}$

If the rate of dissapearance of CH₄ equals $5.0\frac{M}{s}$ for the above reaction, what is the rate of appearance of H₂O?

Problem 31

For the above reaction, what is the reaction rate if O_2 decreases from 0.1M to 0.04M in 125ms?

Problem 32

 $A(aq) + 2B(aq) \longrightarrow Products$

Experiment	$[A]_{0}$	$[B]_{0}$	Initial Rate
1	0.10M	0.10M	$1.0 \times 10^{-2} \frac{M}{s}$
2	0.3M	0.10M	$9.0 \times 10^{-2} \frac{M}{s}$
3	0.3M	0.15M	$9.0 \times 10^{-2} \frac{M}{s}$

What is the rate law?

Problem 33

 N_2O_5 decomposes by a 1st order reaction with $k=4.80\times 10^{-4}\frac{1}{s}$. What is the concentration of N_2O_5 after 825 seconds if the intial concentration is 0.0165M? What is the half-life for this reaction?

Problem 34

This problem relates to problem 35 as well

The reaction $2 C_4 H_6(g) \longrightarrow C_8 H_{12}(g)$ is a 2nd order reaction with $k = 4.0 \times 10^{-4} \frac{1}{Ms}$. If the initial concentration of $C_4 H_6$ is 0.100 M what is the concentration after 6 days?

Problem 35

How long does it take for the concentration to drop to 0.085M?

Problem 36

What is the net chemical reaction and predict the experimental rate law for a chemical reaction with this chemical mechanism.

$$H_2O_2 + I^- \longrightarrow H_2O + IO^- \quad k_1 \text{ (slow)}$$

 $IO^- + H_2O_2 \longrightarrow H_2O + O_2 + I^- \quad k_2 \text{ (fast)}$

Also identify catalysts and intermediates.

Predict the experimental rate law for a chemical reaction that proceeds by the following mechanism:

$$\begin{array}{l} 2\,\mathrm{NO} & \Longrightarrow \mathrm{N_2O_2} \quad \mathrm{(Fast\ equilibrium\ step)} \\ \mathrm{N_2O_2} + \mathrm{H_2} & \longrightarrow \mathrm{H_2O} + \mathrm{N_2O} \quad \mathrm{(slow)} \\ \mathrm{N_2O} + \mathrm{H_2} & \longrightarrow \mathrm{N_2} + \mathrm{H_2O} \quad \mathrm{(fast)} \end{array}$$

6 Unit 6: Thermodynamics

Problem 38

It takes 1.8×10^{-19} calories of energy to break an O — H bond in water. How much energy does it take to break all of the O — H bonds in 50.0 grams of water?

Problem 39

120. grams of an unknown metal at $100.^{\circ}C$ is dropped in a styrofoam cup that contains 100.0mL of water that is at $20.0 \deg C$. After some times, the final temperature of the equilibiated system is measured to be $27.3^{\circ}C$. What is the specific heat capacity of the metal?

Problem 40

How much heat energy is required to vaporize 5.0 liters of $H_2O(l)$ where the heat of vaporization of water is $40.72 \frac{kJ}{mol}$.

Problem 41

Given these chemical equations
$$\begin{array}{ll} C_2H_2(g) + 2\,H_2(g) & \longrightarrow C_2H_6(g) \\ C_2H_4(g) + H_2(g) & \longrightarrow C_2H_6(g) \\ \end{array} \quad \begin{array}{ll} \Delta H = -311kJ \\ \Delta H = -136kJ \\ \end{array}$$
 Find the enthalpy change for
$$C_2H_2(g) + H_2(g) & \longrightarrow C_2H_6(g) \\ \end{array}$$

Problem 42

For
$$C_2H_5OH(l) + 2O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l)$$
 $\Delta H = -1371kJ$. If 1.5mol of oxygen is used, how much energy is released?

Problem 43

When temperature increases, does entropy increase or decrease?

If the standard entropies for $H_2O(g)$, $H_2(g)$, and O_2 are 188.83, 130.58, and 205.0 respectively, what is the entropy change for $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$?

Problem 45

What is $\Delta S_{universe}$ for the equation $\mathrm{CH_4(g)} + 2\,\mathrm{O_2(g)} \Longrightarrow \mathrm{CO_2(g)} + 2\,\mathrm{H_2O(g)}$ where $\Delta H = -802.2 \frac{kJ}{mol}$. Use the standard entropy values above and note that $S^\circ = 213.7$ and 186.1 for $\mathrm{CO_2(g)}$ and $\mathrm{CH_4(g)}$ respectively.

Problem 46

For N₂(g) + 2 H₂(g) \Longrightarrow 2 NH₃(g) where $\Delta H = -91.8kJ$ and $\Delta S^{\circ} = -197.3 \frac{J}{K}$. Calculate ΔG° at 1000K

Problem 47

For $2 H_2 O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$ $\Delta H^{\circ} = 483.6 kJ$. Will the reaction form more or less product when temperature is increased.

7 Unit 7: Equilibrium

Problem 48

What is the concentration equilibrium constant for the reaction $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$

Problem 49

If $K_c=3.91$ at 1200K, Will the reactants shift towards products, reactants, or stay the same if the reaction mixture contains [CO] = 0.0200M, [H₂] = 0.0200M, [CH₄] = 0.00100M, and [H₂O] = 0.00100M?

Problem 50

For this chemical reaction $2 \, \text{CH}_4(g) \Longrightarrow C_2 \, \text{H}_2(g) + 3 \, \text{H}_2(g)$, $K_p = 2.0 \times 10^{-6}$. 14atm of methane gas is put into the reaction vessel. What is the expected partial pressure of $C_2 \, \text{H}_2(g)$ at equilibrium.

Problem 51

For this reaction $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$, $K_c = 0.16$. What is the molar concentration of each product if 250g of ammonium hydrogen sulfide is introduced into a 2.0L flask and allowed to reach equilibrium.