- 1. (a) If the determinate of a matrix is not zero, then a matrix is invertable.
 - (b) If |r| < 1, then a geometric series with common ratio r converges.
 - (c) If a function is continuous, then it is intergrable.
 - (d) If a function is differentiable, then the function is continuous.
 - (e) If I'm wearing a hat, then it is sunny.
- 2. Let P = The Curiosity Rover is on Mars.

Q = The Curiosity Rover is a good robot.

R = The Mars Polar Lander is a good robot.

And we know that $P, Q \vee R$, and $R \implies \neg P$ are all true. From $R \implies \neg P$,

As $\neg P$ is false, the bottom row (*) intersects with $R \implies P$. So, R must be false.

- (a) True. Since $Q \vee R$ is true and R is false, Q must be true.
- (b) False. Shown above, R is false.
- 3. If P is false, then $P \wedge Q$ is false. If the original statement is true, then both sides of \iff must be equal, i.e. $(R \implies S)$ must be false too. For an implication to be false, then

$$R = true$$

$$S = false$$

It's impossible to know what Q is as P is false and $P \wedge Q$ will always be false regardless of Q's value.

4. For the implication $((P \land Q) \lor R) \implies (R \lor S)$ to be false, then

$$((P \land Q) \lor R) = \text{true}$$

 $(R \lor S) = \text{false}$

From the latter, both R and S must be false, so

$$(P \wedge Q) = \text{true}$$

This is only the case when both are true, thus

$$P = Q = \text{true}$$

$$R = S = \text{false}$$

5. Building out a truth table, we can see both statements are equivalent,

P	Q	$ (P \lor Q) \land \neg (P \land Q) $	$(P \wedge \neg Q) \vee (Q \wedge \neg P)$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	F	F

6. Applying de Morgan's law to the second statement,

$$\neg ((P \land Q) \land \neg R) = \neg (P \land Q) \lor R$$

For the two original statements to be equivalent, then it would mean

$$\neg (P \land Q) \stackrel{?}{=} (P \implies Q)$$

...which is certainly false. These statements are not equivalent.