

Hi3516A/Hi3516D Demo 单板 用户指南

文档版本 01

发布日期 2014-12-20

版权所有 © 深圳市海思半导体有限公司 2014。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地 D 区 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

i

概述

本文档主要介绍 Hi3516A/Hi3516D Demo 单板基本功能特点和硬件特性、多功能硬件配置、软件调试操作使用方法。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3516A	V100
Hi3516D	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 01 (2014-12-20)

第一次正式版本发布,添加 Hi3516D 的相关内容。

文档版本 00B02 (2014-11-09)

修改图 2-1,图 2-2,表 2-1 也涉及修改。

文档版本 00B01 (2014-09-18)

第1次临时版本发布。

目录

前	前 言	i
1	[概述	1
	1.1 简介	
	1.2 产品交付件清单	1
	1.3 相关组件	2
2	2 硬件介绍	3
	2.1 Hi3516A Demo 板和 Hi3516D Demo 板差异说明	3
	2.2 结构与接口	3
	2.3 GPIO 的分配	
	2.4 I ² C 地址	
	2.5 单板多功能操作补充说明	10
3	3 操作指南	11
	3.1 注意事项	11
	3.2 单板设置	11
	3.3 Sansor 板和 damo 板对接伸田指南	13

插图目录

图 2-1 Hi3516A 核心板的接口结构示意图	. 4
图 2-2 Hi3516A 外围板的对外接口结构示意图	1
因 2-2 111331014 / 国权自为 / 其中和特外态因	. 7
图 2-3 Hi3516A 核心板和外围板对接图	. 6

表格目录

表 2-1 Hi3516A 外围板外部接口说明	5
表 2-2 Hi3516A Demo 单板中的 GPIO 分配	(
表 2-3 3.3V 和 1.8V RGMII 通讯电平切换配置	
表 3-1 Hi3516A Demo 单板拨码开关设置表	. 12
表 3-2 启动模式的配置	. 12
表 3-3 Hi3516A Boot 时支持的 NAND FLASH 规格列表	13

1 概述

1.1 简介

□ 说明

本文以 Hi3516A 描述为例,未有特殊说明,Hi3516D 与 Hi3516A 一致,差异部分单独列出。

Hi3516A Demo 单板是针对海思 Hi3516A 媒体处理芯片开发的演示评估板,用于给客户展示 Hi3516A 芯片强大的多媒体功能和丰富的外围接口,同时为客户提供基于 Hi3516A 芯片的硬件参考设计,使客户只需要简单修改 demo 板上的模块电路,就可以完成产品的硬件开发。

1.2 产品交付件清单

Hi3516A Demo 单板交付件主要包括以下物品:

- Hi3516A 核心板: HI3516ADMEB。
- Hi3516A 外围板: HI3516APERB。
- 电源适配器,规格:输入 100V AC~240V AC,50Hz;输出 12V DC,2A。
- 1 块 IMX178 sensor 板

Hi3516D Demo 单板交付件主要包括以下物品:

- Hi3516D 核心板: HI3516ADMEB。
- Hi3516D 外围板: HI3516APERB。
- 电源适配器,规格:输入 100V AC~240V AC,50Hz;输出 12V DC,2A。
- 1 块 AR0330 sensor 板

Hi3516A Demo 板由 Hi3516A 核心板和外围板共同组成,它们之间通过连接器相互扣接。

1.3 相关组件

以下所列组件不包含在 Hi3516A Demo 单板的包装之内,但它们是用户程序调试过程中的必备组件,请自备。

- 网线
- 电视机、音响和摄像头等音视频接收设备
- 串口线

2 硬件介绍

2.1 Hi3516A Demo 板和 Hi3516D Demo 板差异说明

Hi3516A Demo 板的核心板有 2 个 16bit DDR, 但 Hi3516D Demo 板的核心板只有 1 个 16bit DDR, 外围板完全相同。

2.2 结构与接口

Hi3516A 核心板的接口示意图如图 2-1 所示。其中黄线圈内的器件为 Hi3516A 核心板与外围板对接的连接器。

图2-1 Hi3516A 核心板的接口结构示意图

Hi3516A 外围板的对外接口结构示意如图 2-2 所示。

图2-2 Hi3516A 外围板的对外接口结构示意图

图 2-2 中的各接口说明如表 2-1 所示。

表2-1 Hi3516A 外围板外部接口说明

序号	说明
1	灯板控制信号连接红外灯亮度控制及环境亮度检测信号连接器
2	灯板 12V0 电源连接器,用于提供灯板 12V 电源
3	复位按钮
4	UART0 连接器,连接 UART0 RS232 调试串口板
5	JTAG 连接器,连接 JTAG 接口板
6	3V 电池
7	12V0 电源插座
8	CVBS 接口
9	USB 接口
10	HDMI 接口
11	网口
12	拨码开关 SW2
13	拨码开关 SW1
14	镜头连接器,连接 DC_IRIS 及 P_IRIS 信号
15	5V 电源连接器
16	核心板连接器,对接核心板
17	小扣板连接器,用于 PERB 底板对接 PERB 小接口板
18	底板连接器,用于 PERB 小扣板对接 PERB 底板
19	I2S 对接 AK7756 的音频输出
20	I2S 对接 AK7756 的音频 MIC 输入
21	外设连接器,可对接告警、RS485、FLASH_TRIG 信号
22	Hi3516A 模拟音频输出接口
23	Hi3516A 模拟音频 MIC 输入接口
24	MICRO SD(SD0)卡连接器。
25	MICRO SD(SD1)卡连接器。

注: 单板上的拨码开关操作请参考表 3-1。

注意

按照图 2-3 所示连接 Hi3516A 核心板和外围板。

图2-3 Hi3516A 核心板和外围板对接图

2.3 GPIO 的分配

Hi3516A Demo 单板中的 GPIO 分配如表 2-2 所示。

表2-2 Hi3516A Demo 单板中的 GPIO 分配

GPIO	用途	单板处理
GPIO0_1/TEMPER_DQ	ETH PHY 复位信号 0: 复位 1: 正常工作	-
GPIO14_4/EPHY_CLK	ETH PHY 工作时钟, 25MHz	-

GPIO	用途	单板处理
SENSOR_RSTN/GPIO0_0/TEMPER_DQ	SENSOR 复位信号 0: 复位 1: 正常工作	-
SENSOR_CLK/GPIO0_5	SENSOR 工作时钟	-
SPI0_SCLK/GPIO8_0/I2C0_SCL	SENSOR 配置管脚	1k 电阻上拉
SPI0_SDO/GPIO8_1/I2C0_SDA		1k 电阻上拉
SPI0_SDI/GPIO8_2		-
SPI0_CSN/GPIO8_3		4.7k 电阻上 拉
I2C2_SCL/GPIO9_1	外设配置管脚,对接	1k 电阻上拉
I2C2_SDA/GPIO9_0	Sil9022、RTC 芯片 DS3231、I2S 音频芯片 AK7756EN、DAC 芯片 MCP4725。	1k 电阻上拉
GPIO10_4/JTAG_TDI/I2S_SD_TX	仿真器 JTAG 接口	4.7k 电阻上 拉
GPIO10_3/JTAG_TDO/I2S_SD_RX		4.7k 电阻上 拉
GPIO10_2/JTAG_TMS/I2S_WS_TX		4.7k 电阻上 拉
GPIO10_1/JTAG_TCK/I2S_BCLK_TX		1k 电阻下拉
GPIO10_0/JTAG_TRSTN/I2S_MCLK		10k 电阻下 拉
GPIO14_0/PWM0/PMC_I2C_SCL	调节 VDD CORE 电源电压 的 PWM 信号	-
GPIO14_1/PWM1/PMC_I2C_SDA	调节 DDR CORE 电源电压 的 PWM 信号	-
GPIO14_2/PWM2	调节 MEDIA CORE 电源电 压的 PWM 信号	-
GPIO14_3/PWM3	调节 CPU CORE 电源电压 的 PWM 信号	-
USB_OVRCUR/GPIO10_6	USB 过流检测,低电平有效	10k 电阻上 拉

GPIO	用途	单板处理
USB_PWREN/GPIO10_7	USB 上电使能 0: power off 1: power on	4.7k 电阻下 拉
UART0_RXD	系统调试串口	-
UART0_TXD		-
UART1_TXD/GPIO9_5	RS485 发送数据	-
UART1_RXD/GPIO9_3	RS485 数据接收	-
UART1_RTSN/GPIO9_2/UART3_RXD	RS485 方向控制	-
SDIO0_CARD_DETECT/GPIO2_2/I2S_ WS_TX	SD 卡 0 检测 0: 卡到位 1: 默认	4.7k 电阻上 拉
SDIO0_CWPR/GPIO2_3/I2S_SD_TX	SD 卡 0 写保护 0:解除保护 1:写保护	4.7k 电阻下 拉
SDIO0_CARD_POWER_EN/GPIO2_1/I2 S_BCLK_TX	SD 卡 0 上电使能 0: power off 1: power on	1k 电阻下拉
SDIO1_CARD_DETECT/GPIO11_2	SD 卡 1 检测 0: 卡到位 1: 默认	4.7k 电阻上 拉
SDIO1_CWPR/GPIO11_3	SD 卡 1 写保护 0:解除保护 1:写保护	4.7k 电阻下 拉
SDIO1_CARD_POWER_EN/GPIO11_1	SD 卡 1 上电使能 0: power off 1: power on	1k 电阻下拉
GPIO0_4/PWM7/TEMPER_DQ	对接 DS18S20	-
UART2_TXD/GPIO9_7/I2S_WS_RX	模拟音频输出 MUTE 功能 (默认不生效,正常工作) 0: MUTE 1: 正常工作	NC,输出端 上拉

GPIO	用途	单板处理
VI_DAT0/GPIO13_7/PWM4	预留 AK7756 复位控制脚 0: 复位(需将 NC 电阻接上方生效) 1: 正常工作	NC, AK7756 端上 拉
SPI1_SCLK/GPIO8_4/I2C1_SCL	SPI1 时钟信号。	1k 电阻上拉
SPI1_SDO/GPIO8_5/I2C1_SDA	SPI1 输出数据。	1k 电阻上拉
SPI1_SDI/GPIO8_6	SPI1 数据输入。	-
SPI1_CSN0/GPIO8_7	SPI1 片选信号。	4.7k 电阻上 拉
VI_VS/GPIO15_2	AF 信号	-
VI_DAT1/GPIO13_6	AF 信号	-
VI_DAT3/GPIO13_4	DC_IRIS 与 P_IRIS 的切换 控制电路 0: DC_IRIS 1: P_IRIS	1k 电阻下拉
VI_DAT7/GPIO13_0	P_IRIS 驱动信号	-
VI_DAT4/GPIO13_3		-
VI_DAT5/GPIO13_2		-
VI_DAT6/GPIO13_1		-
IR_IN/GPIO10_5/PWM4	调节 DC_IRIS 的 PWM 信 号	-
VI_HS/GPIO15_1	IR_CUT 切换控制信号	-
VI_CLK/GPIO15_0	[VI_HS/GPIO15_1: VI_CLK/GPIO15_0]: 00: 切换完成后保持 01: 普通模式 10: 红外模式	-
GPIO0_3/PWM6/TEMPER_DQ	调节红外灯亮度的 PWM 信号	-
SAR_ADC_CH0/GPIO1_6	光线感应 sensor 输入信号	-
UART1_CTSN/GPIO9_4/UART3_TXD	告警输入。 0: 有告警 1: 无告警	1k 电阻上拉

GPIO	用途	单板处理
UART2_RXD/GPIO9_6/I2S_BCLK_RX	告警输出脚。	-
	0: 告警输出	
	1: 无告警输出	

2.4 I2C 地址

Hi3516A Demo 单板的外围器件 I²C 地址配置如下, 主芯片端使用 I2C2:

• SiI9022: 0x72

• MCP4725: 0xC6 (U28), 0xC4 (U27)

DS3231MZ: 0xD0AK7756EN: 0x30

2.5 单板多功能操作补充说明

单板默认使用 3.3V RGMII 通讯电平,3.3V 和 1.8V RGMII 通讯电平切换如表 2-3 所示。

表2-3 3.3V 和 1.8V RGMII 通讯电平切换配置

MODE	PHY CLOCK	ETH PHY	需要焊接的电阻	需要断开的电阻
3.3V	来自 Hi3516A	U3 换为 RTL8211E_VB	R152、R202	R153、R201
3.3V	来自 25M 晶体	U3 换为 RTL8211E_VB	R152、R201	R153、R202
1.8V	来自 Hi3516A	U3 换为 RTL8211E_VL	R153、R202	R152、R201
1.8V	来自 25M 晶体	U3 换为 RTL8211E_VL	R153、R201	R152、R202

3 操作指南

3.1 注意事项

Hi3516A Demo 单板适用于实验室或者工程开发环境。在开始操作之前,请先阅读以下注意事项:

注意

任何情况下均不能对单板进行热插拔操作。

- 在拆封单板包装与安装之前,为避免静电释放(ESD)对单板硬件造成损伤,请 采取必要的防静电措施。
- 手持单板时请拿单板的边沿,不要触碰到单板上的外露金属部分,以免静电对单板元器件造成损坏。
- 请将 Hi3516A Demo 单板放置于干燥的平面上,并保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如: 医疗设备)等。
- 请对照图 2-1 和图 2-2, 熟悉 Hi3516A Demo 单板的结构布局,确保能够在单板上 辨认出可操作部件,如开关、连接器以及指示灯的位置。

3.2 单板设置

Hi3516A Demo 单板通过配置拨码开关,选择 Hi3516A 芯片的工作模式,如表 3-1 和表 3-2 所示。

🔲 说明

默认状态 SW1 拨至 0010, SW2 拨至 0100, 在使用时请注意核对拨码开关是否正确。

表3-1 Hi3516A Demo 单板拨码开关设置表

位号	引脚	含义	
		POR 选择	
	Pin 1	0: Enable POR;	
		1: Disable POR (default) 。	
		BOOT 方式选择。	
	Pin 2	0: Enable BOOTFLASH;	
SW1(拨码开关)		1: Enable BOOTROM (default) 。	
3W1(吸用)// 人)		BOOT_SEL.	
	Pin 3	0: SPI FLASH (default);	
		1: NAND FLASH。	
	Pin 4	SFC_DEVICE_MODE。	
		0: Spi Nor flash (default);	
		1: Spi Nand flash.	
	Pin 1	SFC_NAND_BOOT_PIN2。	
		0: 2kB page size (default);	
		1: 4kB page size。	
		SFC_NAND_BOOT_PIN[1:0]。	
	Pin [2:3]	00: 保留;	
SW2		01: 8bits ECC (default);	
		10: 保留;	
		11: 24bits ECC。	
		FLASH_TRIG_VALID。	
	Pin 4	0: valid (default);	
		1: invalid	

表3-2 启动模式的配置

启动模式	值	操作方法	备注
SFC_ADDR_MODE	1	焊接 R58, 去 掉 R57。	当 SFC_DEVICE_MODE=0 时,SPI NOR flash 寻址模式默认为 4 Byte mode; 当 SFC_DEVICE_MODE=1 时,SPI NAND flash 寻址模式默认为 4 wire boot mode。

启动模式	值	操作方法	备注
	0	去掉 R58。	当 SFC_DEVICE_MODE=0 时,SPI NOR flash 寻址模式默认为 3 Byte mode; 当 SFC_DEVICE_MODE=1 时,SPI NAND flash 寻址模式默认为 1 wire boot mode。

NAND FLASH 不需要配置,控制器自动适配。

表3-3 Hi3516A Boot 时支持的 NAND FLASH 规格列表

Page Size	ECC
2k Bytes	8 bit/1024byte
2k Bytes	24 bit/1024byte
4k Bytes	8 bit/1024byte
4k Bytes	24 bit/1024byte
8k Bytes	24 bit/1024byte
8k Bytes	40 bit/1024byte
8k Bytes	64 bit/1024byte
16k Bytes	40 bit/1024byte
16k Bytes	64 bit/1024byte

说明: 2bit/1024byte ECC 器件可以选择使用 8bit/1024byte ECC 纠错模式。

3.3 Sensor 板和 demo 板对接使用指南

目前 Hi3516A 对接的 sensor 种类较多,其中有的 sensor IO 电源是 1.8V,有的 sensor IO 电源是 2.8V。

Hi3516A demo 板的 sensor 接口可以同时兼容这两种电平,单板上会根据对接 sensor 板的 VI_POWER 信号自动切换电平。

Sensor 连接器选择 J1(60pin FPC 排线连接器)。