36.
$$H = \{(x, y, z, w) \in \mathbb{R}^4 : x = 3t, y = -2t, z = t, w = -t, t \in \mathbb{R}\}, \mathbf{v} = \begin{pmatrix} 0 \\ -1 \\ -2 \\ 1 \end{pmatrix}$$

37.
$$H = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 : 2x - y + 3z - w = 0 \right\}; \mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 3 \end{pmatrix}$$

- 38. Sean \mathbf{u}_1 y \mathbf{u}_2 dos vectores ortonormales en \mathbb{R}^n . Demuestre que $|\mathbf{u}_1 \mathbf{u}_2| = \sqrt{2}$.
- **39.** Si $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ son ortonormales, demuestre que

$$|\mathbf{u}_1 + \mathbf{u}_2 + \dots + \mathbf{u}_n|^2 = |\mathbf{u}_1|^2 + |\mathbf{u}_2|^2 + \dots + |\mathbf{u}_n|^2 = n$$

- **40.** Encuentre una condición sobre los números a y b tales que $\left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ -a \end{pmatrix} \right\}$ y $\left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} -b \\ a \end{pmatrix} \right\}$ forman una base ortonormal en \mathbb{R}^2 .
- **41.** Demuestre que *cualquier* base ortonormal en \mathbb{R}^2 es de una de las formas dadas en el problema 40.
- **42.** Usando la desigualdad de Cauchy-Schwarz, pruebe que si $|\mathbf{u} + \mathbf{v}| = |\mathbf{u}| + |\mathbf{v}|$, entonces \mathbf{u} y \mathbf{v} son linealmente dependientes.
- 43. Usando la desigualdad de Cauchy-Schwarz, pruebe la desigualdad del triángulo:

Desigualdad del triángulo

$$|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$$

[Sugerencia: Obtenga la expansión de $|\mathbf{u} + \mathbf{v}|^2$.]

44. Suponga que $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ son vectores en \mathbb{R}^n (no todos cero) y que

$$|\mathbf{x}_1 + \mathbf{x}_2 + \cdots + \mathbf{x}_k| = |\mathbf{x}_1| + |\mathbf{x}_2| + \cdots + |\mathbf{x}_k|$$

Demuestre que dim gen $\{x_1 + x_2 + \cdots + x_n\} = 1$. [Sugerencia: Utilice los resultados de los problemas 42 y 43.]

45. Sea $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n\}$ una base ortonormal en \mathbb{R}^n y sea \mathbf{v} un vector en \mathbb{R}^n . Pruebe que $|\mathbf{v}|^2 = |\mathbf{v} \cdot \mathbf{u}_1|^2 + |\mathbf{v} \cdot \mathbf{u}_2|^2 + \cdots + |\mathbf{v} \cdot \mathbf{u}_n|^2$. Esta igualdad se conoce como **identidad de Parseval** en \mathbb{R}^n .

Identidad de Parseval

- **46.** Demuestre que para cualquier subespacio H de \mathbb{R}^n , $(H^{\perp})^{\perp} = H$.
- 47. Sean H_1 y H_2 dos subespacios de \mathbb{R}^n y suponga que $H_1^{\perp} = H_2^{\perp}$. Demuestre que $H_1 = H_2$.
- **48.** Sean H_1 y H_2 dos subespacios de \mathbb{R}^n ; demuestre que si $H_1 \subset H_2$, entonces $H_2^{\perp} \subset H_1^{\perp}$.
- **49.** Demuestre el **teorema generalizado de Pitágoras**: sean \mathbf{u} y \mathbf{v} dos vectores en \mathbb{R}^n con $\mathbf{u} \perp \mathbf{v}$. Entonces

Teorema generalizado de Pitágoras

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2$$

EJERCICIOS CON MATLAB 6.1

Recordatorio de MATLAB

 $\mathbf{u} \cdot \mathbf{v}$ se calcula con $\mathbf{u}' * \mathbf{v}$ o $\mathbf{v}' * \mathbf{u}$. $|\mathbf{v}|$ se calcula con $\mathrm{sqrt}(\mathbf{v}' * \mathbf{v})$ o $\mathrm{norm}(\mathbf{v})$. $\mathrm{proy}_{\mathbf{v}}\mathbf{u}$ se calcula con $((\mathbf{u}' * \mathbf{v}) / (\mathbf{v}' * \mathbf{v})) * \mathbf{v}$ (el vector proyección de \mathbf{u} sobre \mathbf{v}).