Precalculus (MATH 3-01)

Question of the Day

Why do we call them functions? What are functions?

On the Docket

Concept Review: Function Composition Concept Review: Inectivity and Inverses

Concept Review: Exponents and Logarithms

Quiz

Function Composition

Given two functions, f and g, we may take the composite functions

$$(f \circ g)(x) = f(g(x))$$

What does $f \circ g$ mean?

How do we read it?

Given $f(x) = x^2 - 3$ and $h(x) = \sqrt{x+1}$, evaluate

- (a) $(f \circ h)(x)$
- (b) $(h \circ f)(x)$
- (c) $(f \circ f)(x)$
- (d) $(h \circ h)(8)$
- (e) $(f \circ h)(3)$

Injectivity and Inverses

Given
$$f(x) = 3x - 2$$
, find $f^{-1}(x)$.

Given
$$g(x) = \sqrt{x-3}$$
, find $g^{-1}(x)$.

Given
$$h(x) = \frac{x+4}{2x-5}$$
, find $h^{-1}(x)$.

For
$$f$$
, g and h , verify that $f(f^{-1}(x)) = x$, $g^{-1}(g(x)) = x$ and $(h \circ h^{-1})(x) = x$.

Exponents and Logarithms

Exponent rules

$$a^{0} = 1$$

$$a^{1} = 1$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{-m} = \frac{1}{a^{m}}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^{m} = a^{m}b^{m}$$

$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

Exponents and Logarithms

Logarithm Rules

$$\log_b(M \cdot N) = \log_b(M) + \log_b(N)$$

$$\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$$

$$\log_b(M^k) = k \cdot \log_b(M)$$

$$\log_b(1) = 0$$

$$\log_b(b) = 1$$

$$\log_b(b^k) = k$$

$$b^{\log_b(k)} = k$$

Exponents and Logarithms

Solve the following exponential equation

$$4^{2x^2} = 2^{8x}$$

Solve the following exponential equation

$$\frac{9^{x^2}}{27^4} = 3^{8x}$$