Week 2

Concepts in Machine Learning

fredhutch.io

Fred Hutchinson Cancer Research Center

Week 2 Learning Objectives

By the end of today's class, you should...

CRISP-DM

Review what each step generally entails

Machine learning paradigms

Understand the essential difference between supervised and unsupervised learning

Loss functions

- Understand their basic purpose in fitting and evaluating models
- Recognize common loss functions

Bias-variance tradeoff

- Have working definitions for bias and variance
- Relate the concepts of "signal" and "noise" to high-bias and high-variance models

Regression

- Understand the distinction between regression and classification
- Recognize some common approaches to regression

Definitions

- Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. (https://expertsystem.com/machine-learning-definition/)
- Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. (https://en.wikipedia.org/wiki/Machine_learning)
- Problem + Data + Algorithm(self-adjusting) + Compute ==> Insight

An Imperfect Analogy: Cabinet Making

(not technically a cabinet)

Capable Cabinet Maker...

- Inspects and understands raw materials
- Uses the tools thoughtfully to shape and join materials
- Chooses approach and tools based on materials and goals
- Applies thoughtfulness born of experience

...but how does this relate to machine learning?

Capable Cabinet Maker ML Practitioner...

- Inspects and understands raw materials data
- Uses the tools thoughtfully to shape and join materials data
- Chooses approach and tools based on materials data and goals
- Applies thoughtfulness born of experience

...and the tools?

SAT Style Analogy

Tools: Cabinet Making

as

Algorithms: Machine Learning

An Imperfect (Extended) Analogy

Storage Need + Raw Materials + Tools + Work ==> Cabinet

Brief Aside: Experimental Design

- Difficult to master or even do well
- Close interplay between
 - Goals
 - Methods
 - Data
 - Execution
- Requires thoughtful approach and broad understanding

Brief Aside: Experimental Design

- Difficult to master or even do well
- Close interplay between
 - Goals
 - Methods
 - Data
 - Execution
- Requires thoughtful approach and broad understanding

Because machine learning shares so many of these characteristics, it's helpful to follow a process

Experts in machine learning often are guided by the steps laid out in...

CRISP-DM Cross-industry standard process for data mining

Cyclical

Iterative

 Connecting all 3 areas of the classic notion of "data science"

Business/Scientific Understanding

- Scientific domain knowledge
- What do we already know or believe?
- What are our research aims?
- How do we think we should proceed initially?
- Nearly every choice within any of the subsequent steps should refer back to this step!

Data Understanding

- Exploratory Data Analysis (EDA)
 - Data structure
 - Data quality
 - First insights
 - Interesting subsets
 - Form hypotheses for hidden information

Data Preparation

- Data acquisition
- Data selection
- Data integration and formatting
- Data cleaning
- Data transformation and enrichment

Modeling

- Selection of appropriate modeling technique
- Splitting of the dataset into training and testing subsets
- Examination of alternative algorithms and parameter settings
- Fine tuning of the model settings

Evaluation

• Evaluation of the model in the context of the scientific success criteria

- Performance relative to TEST data with chosen loss function
- Balancing tradeoff between bias and variance

Deployment

- Will be specific to each problem space
- At FHCRC could relate to grants or publications

Machine Learning Paradigms

noun

a typical example or pattern of something; a model.
 "there is a new paradigm for public art in this country"

Similar: model pattern example standard prototype archetype

3 or 4 Machine Learning Paradigms

We'll focus on these

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Semi-Supervised Learning

3 or 4 Machine Learning Paradigms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Semi-Supervised Learning

Data "Prediction"

3 or 4 Machine Learning Paradigms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Semi-Supervised Learning

Data "Expression"

Drosophila – The Fruit Fly

- Common model organism
- Data on mix of 500 wild-type and mutants
- Data on 10 classic genetic mutations including
 - Wing shape, size, color
 - Eye color
 - Fly size, color
- Data on 50 other metrics, including lifespan

Key Considerations & The Task

- We are not generating these data
 - Observational data rather than Experimental Data
 - Model will not establish causal relationships (although it could suggest some to evaluate)
- We have one job: Try to predict the lifespan for new, unseen flies

Is it a Supervised Problem?

- Do we have data?
- Do we have some feature within the data that represents what we ultimately want to predict?

- If so, we can formulate it as a Supervised Problem
 - 1. "Train" a model by predicting the label and comparing to the correct answer. Update the model when we are wrong.
 - 2. "Test" the trained model by predicting the label of new data and evaluate
 - Our goal is a generalizable model—one that applies to new data well

Question Time

- Why do we want to test on new data? What would happen if we didn't?
 - We would already know the correct answer, since we have trained on it

Machine Learning Paradigms: Supervised Learning

- A way to group or predict new information, based on information we have seen before
- Some example questions:
 - "Given Age, and Height, what is someone's Weight?"
 - "Given Petal Length and Width, what kind of flower is this?"
 - "Given a Patient's clinical history*, what is the likelihood* they will have to enter the Emergency Department soon*?

What Problem Statement could we make?

Given a set of coordinates, will a point be Red or Blue?

Supervised Problems: Categorical Problems?

- Can we state our outcome as a choice of A vs. B?
 - No, we're not choosing a category

What Problem Statement could we make?

Given a set of descriptors regarding a specific fly, how long will that fly live?

Supervised Problems, cont'd: More things to consider

- What is the best performance we expect from this predictor?
 - "If a human being made these predictions given this information, how good would they do?"
- Is the data relatively sparse?
 - How much data is missing/has been imputed?
 - How many variables of input are there relative to the total number of examples?
- How 'True' is the target?
 - Does it represent an estimate?
- Are the targets we are trying to predict skewed?
 - Eg: 95% of all participants answered 'No', and 5% answered 'Yes'

Supervised Learning: Regression Problems

- Can we state our target as a real number?
 - https://en.wikipedia.org/wiki/Real_number
- Since we don't have distinct categories, we don't have to worry how our data is binned (since there are no distinct bins!)

- What problems do we have to be aware of?
 - Is our data representative of the problem?
 - Are we fitting the wrong regression model to our data?
 - Do our data have outliers that are throwing off our model?

A Nifty Chart

A Nifty Chart

https://scikit-learn.org/stable/tutorial/machine learning map/

The chart is suggesting...

- We have >50 samples
- We are not predicting a category
- We are predicting a quantity
- We have <100K samples
- We're not yet sure how many features should be important...
 - So let's dive into some regression!

Data are Messy

- Most effort will be spent on cleaning, imputing, and transforming the data to make new or better input.
- The second most effort will be spent on analyzing the results and figuring out if they are:
 - Meaningful
 - Good enough

Issues with the data I

- Quite a few of the rows have one or more values missing
 - What should we do?
- Remove rows with missing values?
- Remove features with missing values?
- Impute mean values for numeric features?
- Impute majority category for categorical features?

Issues with the data II

- Some of the features are categorical, with values like colors, numbers representing categories, names of genes
 - Many models will struggle with features like these
 - What should we do?
- Create dummy variables/ one-hot encoding?

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1

You Will Not Have Enough Data

- The more, and more varied the information you have, the more useful your model and predictions will be
- Having too many variables (columns) and not enough observations (rows) leads to problems of sparsity
- Having too little information to train over leads to ungeneralizable models or over-trained models (these are essentially the same thing)

When we say regression...

- Most people think of linear regression
 - We'll start here
- Logistic regression usually comes to mind next
 - We'll leave this for the classification case study next week
- Our approach will be dictated by lots of things, including:

Simpler than simplest first...

- Simpler than linear regression?
 - Predict the mean.
 - This is like a linear regression, but you force the slope to be 0
 - This will be our baseline a bit later...

Ordinary Least Squares (OLS)

- This is the classic
 - Similar to y = mx + b, but with more terms

$$\hat{y}_{i} = \beta_{0} \cdot 1 + \beta_{1} x_{i,1} + \beta_{2} x_{i,2} + \ldots + \beta_{p} x_{i,p}$$

- Which terms should we include?
- Why not just include ALL the possible terms?
 - Hint: training data versus test data

Training Vs. Test Set Error

OLS cont.

- Ordinary Least Squares
 - Tries to tune coefficients by minimizing the SSE
 - sum of the squared errors
 - Lets us understand the mean change in a dependent variable given a one-unit change in each independent variable
 - You can also use polynomials to model curvature and include interaction effects
 - Despite the term "linear model" we can still model curvature

More advanced versions...

- OLS is sensitive to outliers and has a few other issues
- Ridge Regression: similar, but has an additional term that helps prevent overfitting
- Lasso Regression: similar to Ridge, but also tries to increase accuracy by trying to reduce the number of features
- There are many variations on linear regression and handfuls of nonlinear regressors that all have uses

Loss Functions/ Evaluation Metrics

- Our model has to tune itself using some metric
- Common choices
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
 - Mean Absolute Error (MAE)
 - R Squared (R²)
 - Adjusted R Squared (R²)
 - Mean Square Percentage Error (MSPE)
 - Mean Absolute Percentage Error (MAPE)
 - Root Mean Squared Logarithmic Error (RMSLE)
- Classifiers will have different metrics

Many of these are useful in different contexts. Choose carefully and see what makes the most sense...

Mean Squared Error (MSE)

- Very common
- AKA Quadratic Loss, L2 Loss
- Emphasizes bad errors enough to lower the quality of the model overall

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error (RMSE)

- Similar, a bit easier to interpret
- Interchangeable with MSE in many applications

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{MSE}$$

R Squared (R²)

- Like the two above, but normalized to have a best value of 1
- Uses mean as a baseline

$$R^2 = 1 - \frac{\text{MSE(model)}}{\text{MSE(baseline)}}$$

Bias-Variance Tradeoff

- Fitted model should ideally
 - Capture all of the "signal" in the data
 - Ignore all of the "noise" in the data
- It's generally hard to do both well

Bias-Variance Tradeoff

- High variance models
 - Can "overfit" to training data
 - Capture signal...
 - ...but also capture noise
 - Generalize poorly to unseen/test data

Bias-Variance Tradeoff

- High bias models
 - Can "underfit" to training data
 - Avoid capturing noise...
 - ...but also fail to capture all signal
 - Perform poorly on unseen/test data

There are many more regressions to discuss!

- Random Forests!
 - Many completely overfitted decision trees
 - The trees a decorrelated using
 - Bootstrap aggregation
 - Feature selection
 - They're wrong in different ways
 - Together, they can find lots of signal in the data!
- More on Random Forests next week in the Classifier Case Study

