

TECHNICAL REPORT TR RR-81-2

LASER PHOTOCHEMICAL REACTIONS OF BORON COMPOUNDS

J. K. McDonald L. C. Warren J. A. Merritt Research Directorate US Army Missile Command Redstone Arsenal, Alabama 35898

STIC ELECTE JUL 7 1981

March 1981

U.S. ARMY MISSILE COMMAND Redst. 10 Arsenal, Alabama 35878

Approved for public release; Distribution unlimited.

UNIC FILE COPY

81 6 30 028

DISPOSITION INSTRUCTIONS

WHEN THIS REPORT IS NO LONGER NEEDED, DEPARTMENT OF THE ARMY ORGANIZATIONS WILL DESTROY IT IN ACCORDANCE WITH THE PROCEDURES GIVEN IN AR 380-5.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

SECURITY CLASSIFICATION OF THIS PAGE (W.ien Date Entered)

REPORT DOCUMEN		AEFC 'E COMPLETING FORM
1. REPORT NUMBER	1 4 5 .	3. RECIPIENT'S CATALOG NUMBER
RR-81-2	170-A50	2 035
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Laser Photochemical Reaction	ons of Boron Compounds	Technical Report
	·	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(e)		S. CONTRACT OR GRANT NUMBER(s)
J. K. McDonald L. C. Warren		
J. A. Merritt		
PERFORMING ORGANIZATION NAME AN Commander US Army Missile Command	D ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ATTN: DRSMI-RRD	0	·
Redstone Arsenal, AL 35898 1. CONTROLLING OFFICE NAME AND ADD		12. REPORT DATE
Commander US Army Missile Command		March 1981
ATTN: DRSMI-RPT		13. NUMBER OF PAGES
Redstone Arsenal AL 35898 4. MONITORING AGENCY NAME & ADDRES		15
4. MONITORING AGENCY NAME & ADDRES	\$\$(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING
6. DISTRIBUTION STATEMENT (of this Rep	part)	
Approved for Public Release 7. DISTRIBUTION STATEMENT (of the about		•
6. SUPPLEMENTARY NOTES		-
P. KEY WORDS (Continue on reverse side if r	necessary and identify by block number)	
Intermediate Radicals		
Tetrafluorohydrazine		
Nitrogen Trifluoride		
Boron Trifluoride		
been studied. These reacti the infrared radiation from	s of BF_3 , BCl_3 or $B(CH_3)_3$ ons were initiated by th a cw CO_2 laser. In add	with NF ₃ , N ₂ F ₄ or C ₂ H ₄ have the multiphoton absorption of lition to numerous gaseous on identified as belonging to
		emission, which accompanied
some of the reaction, was pl		

DD 1 JAN 79 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Mion Data Entered)

(Con				,	PAGE(When				_	•					
		and	CN	when	carbon	was	present	and	a	continuum	for	a	BC1 ₂	and	N ₂
ıre.	_												•		_
							•								

Unclassified

SE 'URITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

CONTENTS

Ι.	YMBDODIGETON	PAS
1.	INTRODUCTION	-
II.	EXPERIMENTAL	:
III.	RESULTS	
IV.	DISCUSSION AND RECOMMENDATION	۶

Acces	sion For	r
NTIS	GRA&I	
DTIC :	TAB	
Unann	ounced	
Justi	fication	n
	ibution	
Avai		y Codes
ł	Avail 8	-
Dist	Speci	lal
A		

The training of the state of

I. INTRODUCTION

Dissociation of molecules from multiphoton absorption of infrared lasers has been well documented. 1,2 These laser-induced reactions can follow many channels to the final products. To be considered are the collisions between vibrationally excited species, radical reactions, thermal heating, and molecular rearrangement. By limiting some of these parameters, mechanisms of some laser-induced unimolecular reactions have been determined. 3,4 When another molecular species is added to the reaction, these mechanisms may no longer be favored.

The observation of intermediate radicals and final products is very important in the formulation of a reaction mechanism. In order to obtain some of this information, a number of experiments with boron containing compounds have been performed. The results of these experiments are reported herein.

II. EXPERIMENTAL

Commercially available tetrafluorohydrazine, nitrogen trifluoride, ethylene, boron trichloride and boron trifluoride were used in the experiments. The samples were used without further purification.

The reactions were carried out in a stainless steel cell (5xl0 cm) equipped with 0-ring seals for securing windows (5 cm diameter) onto the cells. ZnSe or KCl windows were used to pass the infrared beams and a Pyrex or sapphire window was used for monitoring the visible emission. Side reactions were observed when KCl and Pyrex windows were used.

A Coherent Radiation Laboratories Model 41 continuous-wave CO_2 laser in the range 10.4 to 9.4 µm provided the infrared laser excitation. The laser frequency being used was verified with an Optical Engineering CO_2 Spectrum Analyzer. Depending upon the laser line, output powers up to 150W could be obtained. The beam size measured from burn patterns was found to be approximately circular with a 4mm diameter.

The visible emission which was observed in some reactions was monitored photographically using a one-meter Czerny-Turner monochromator.

III. RESULTS

A series of Laser-Induced Chemistry (LIC) experiments have been performed in an attempt to produce refractory or propellant materials containing boron and to determine the reaction mechanism.

In an effort to produce NF_4BF_4 , a mixture of BF_3 and N_2F_4 was irradiated. When a cell with KCl windows was used, a solid was produced which had a broad infrared band with peaks at 1030 and 1050 cm⁻¹. (See Figure 1.) This band agreed with the reported frequencies of the BF_4^- ion. ⁵⁻⁷ The corresponding NF_4^+ band was not observed. When the windows were changed to ZnSe, a much weaker band was observed in the same frequency range. It was concluded

Figure 1. Infrared spectra of BF_4 on KC1 windows.

4

La training to the same

that the KCl was providing a surface for the BF_4 to form and interact with a K^+ ion. This was further evidenced when it was observed, after the initial build-up of solid on the windows, that subsequent reactions produced only a small increase in solid.

A more energetic reaction was then attempted by using a mixture of BF $_3$, NF $_3$ or N $_2$ F $_4$ and C $_2$ H $_4$. When irradiated by the laser this mixture produced a visible flash. Except for different gaseous products and a deposit of carbon, the results were the same.

In the previous mixtures only the NF $_3$, N $_2$ F $_4$, and/or C $_2$ H $_4$ were being excited by the laser since the absorption frequencies of the BF $_3$ were outside the CO $_2$ laser frequencies. A reaction of BCl $_3$ and N $_2$ F $_4$ was then performed since they could be simultaneously excited. A visible flash was also observed in this reaction but efforts to photograph the spectra were unsuccessful. The mole ratio was important in the products that were formed in these reactions. In a 1:1 ratio of BCl $_3$ and N $_2$ F $_4$, only BF $_3$ was produced. When the ratio was changed to 1:2 BF $_3$, NF $_3$ and a solid were formed.

The infrared spectra of the solid showed two bands maximum at 960 and $1060~\rm cm^{-1}$ (See Figure 2). The windows were ZnSe and only small amounts of $\rm BF_4^-$ had previously been observed on these windows. The frequency region of the bands was the same but the appearance of the bands was different from earlier observations. When the cell was opened to the air and a new spectra obtained, the band appearance had shifted and was the same as that previously observed for $\rm BF_4^-$. This suggested that the $\rm BF_4^-$ was originally in a different crystalline configuration with a much larger crystal field effect than is normally observed. The ZnSe windows were also observed to be pitted after these experiments.

Other product compounds of interest were BN and B₄C. Since the experiments to produce NF₄BF₄ contained boron, nitrogen, and carbon with no observation of these compounds, other reactant mixtures were needed.

One way to produce the ultraviolet spectra of BN is in a discharge through ${\rm BCl}_3$ and ${\rm N_2}^{13}$ A mixture of these reactants gave an interesting visual display when the cell was irradiated. A greenish fluorescence was observed approximately 1 cm in diameter down the length of the cell. The recorded visible spectra showed only a continuum with no discernible band spectra.

After an intermittent exposure of the mixture for 1 minute, the infrared spectra indicated bands of a solid at 1265 and 720cm^{-1} (See Figure 3). These bands were in the correct frequency ranges for the stretching and bending modes of B-N. $^{9-11}$

Figure 2. (a) Infrared spectra of product from BCl₃ and $N_2F_4 \text{ reaction on ZnSe windows (8 cm}^{-1} \text{ resolution)};$ (b) Spectra of product in (a) after air was added to cell.

Figure 3. Infrared spectra of solid produced in BCl_3 and N_2 reaction.

In an attempt to produce B_4C a mixture of BCl_3 and C_2H_4 was subjected to 75% of P(14) $\left[00^{0}1\text{-}10^{0}0\right]$ radiation. The irradiated cell produced only a glow during exposure. The gaseous products were identified as $C_2H_2^{-12}$, CH_4^{-12} , HCl_4^{-14} , and $HBCl_2^{-15}$ (See Table 1). A weak absorption band of a solid was also observed with peaks at 1350 and 1265 cm $^{-1}$. This band was too high in frequency to belong to B_4C^{10} . It has not been identified.

Another boron compound which has a resonant band with the CO, laser is trimethylboron. This molecule was reacted with NF $_3$ or N $_2$ F $_4$. As shown in Table 1, the molecules produced in the reaction were dependent on the mole ratio. For the 1:1 and 2:1 mixtures of $B(CH_3)_3$ and NF_3 , the results were the same. The gaseous products were C_2H_2 , HCN^{12} , CH_4 , HF, and a small amount of BF3. No difference was noticed if the reaction was initiated by a resonant absorption of B(CH₃)₃ with the R(12) $\left[00^{0}1-10^{0}0\right]$ transition, or NF₃ with the P(48) $\left[00^{0}1^{-10^{0}0}\right]$ transition. In a 1:2 mixture the products were $c_2F_4^{16}$, CF_4^{17} , $\text{C}_2\text{F}_6^{18}$, $\text{CF}_3\text{CN}^{19}$, CF_3H^{20} , HF^{21} and BF_3 . In a 1:2 mixture of $\text{B(CH}_3)_3$ and N_2F_4 the major products were CF_4 and HF, with small amounts of CF_3H and HCN. These products and ratios are consistent with results observed in reactions of NF₃ or N₂F₄ with ethylenes. 22 A black solid was observed on the walls of the cell which produced no infrared spectra. Reactions of carboncontaining compounds and NF_3 or N_2F_4 were always observed to produce varying amounts of carbon; however, the amount of BF_3 produced in these reactions could not account for all of the boron originally present.

A mixture of B(CH₃)₃ and N₂ was irradiated with powers up to 125W of the R(12) $\left[00^{0}1-10^{0}0\right]$ transition but no products were detected.

Part of the present task was to construct a HF/DF laser source from existing equipment. A vacuum system for a chemical laser cavity was erected and a dual 18-kilovolt power supply was connected to discharge tubes. In attempting to obtain lasing, it was established that the capacity of the vacuum pump was not large enough. After a delay a 100 1/min pump was connected to the system, which improved the flow of reactants, but the reactant mixture was still too nonhomogeneous for lasing to occur. It was decided to purchase a new laser cavity and delay the studies on the DF laser for the present.

IV. DISCUSSION AND RECOMMENDATION

Although the mechanism of these experiments may not be fully understood, these experiments have shown enough trends in product formation that product predictions of certain mixtures can be made.

TABLE 1. SUMMARY OF PRODUCTS FORMED IN THE LASER-INDUCED CHEMICAL REACTIONS

		Lase	Laser Transition		
Reactants (mole ratio)	Major Products	Frequency Transition (cm ⁻¹)	Frequency (cm^{-1})	Power (watts)	Window
				(Canal)	iacci ta is
$^{BF}_{3}; ^{N}_{2}^{F}_{4} (1:1)$	$^{\mathrm{NF}_3}$, $^{\mathrm{BF}_4}$, HC1	P(14)	84.646	75	KC1
$^{\mathrm{FF}_{3}};\;\mathrm{N_{2}F_{4}}\;(1:1)$	$^{\mathrm{NF}_3}$, $^{(\mathrm{BF}_4}$)	P(14)	84.676	100	ZnSe
BF_3 ; N_2F_4 (1:2)	NF ₃ , BF ₄ ⁻ , HCl	P(32)	932.96	100	KC1
$^{\mathrm{BF}_3}$; $^{\mathrm{NF}_3}$; $^{\mathrm{C}_2\mathrm{H}_4}$ (1:1:1)	(CF_4) , C_2H_2 , HCN	P(32)	932.96	100	KC1
	BF_4^- , HC1				
$^{\mathrm{BF}_3}$; $^{\mathrm{NF}_3}$; $^{\mathrm{C}_2\mathrm{H}_4}$ (1:1:1)	c_2 H ₂ , HCN, HF	P(40)	924.97	50	ZnSe
$^{BF}_{3}$; $^{N}_{2}^{F}_{4}$; $^{C}_{2}^{H}_{4}$ (1:1:1)	c_2H_2 , HCN, HF	P(40)	924.97	09	ZnSe
	(BF_4^-)				
$BC1_3$; N_2F_4 (1:1)	$^{ m BF}_3$	P(32)	932.96	65	SnSe
BCl_3 ; N_2F_4 (1:2)	$^{\mathrm{BF}_3}$, $^{\mathrm{NF}_3}$, $^{\mathrm{BF}_4}$	P(32)	932.96	50	SuSe
$BC1_3$; N_2 (2:1)	HBC1 ₂ , HC1	P(14)	84.646	50	KC1
BCl_3 ; N_2 (2:1)	HBCl ₂ , HCl, BN	P(14)	84.676	100	KC1
BCl_3 ; N_2 (1:1)	BN	P(36)	929.01	100	KC1

 1 Compounds in parentheses were produced in very small amounts.

if

TABLE 1. (Concluded)

		Lase	Laser Transition		•
Reactants (mole ratio)	Major Products	Frequency Transition (cm ⁻¹)	Frequency (cm-1)	Power (watts)	Window
$BC1_3; C_2H_4$ (1:1)	$c_2^{\rm H_2}$, $c_{\rm H_4}$, HC1,	P(50)	914.43	70	KC1
	HBC1 ₂				
$BC1_3$; C_2H_4 (1:1)	$\mathrm{C_2H_2}$, $\mathrm{CH_4}$, HCl, BCl ₂ unknown solid	P(14)	949.48	75	KC1
$BC1_3; C_2H_4$ (2:1)	$c_2 H_2$, $c H_4$, $H c I$, $H B c I_2$	P(14)	949.48	50	KC1
	unknown solid				
$B(CR_3)_3$; NF_3 (1:2)	$c_2^F q$, $c_4^F c_5^F e$,	P(48)	916.58	20	ZnSe
	CF3CN, CF3H, BF3, HF				
$B(CH_3)_3$; NF_3 (2:1)	cH_4 , c_2H_2 , HCN ,	R(12)	970.55	96	ZnSe
	(BF_{γ}) , HF				
$B(CH_3)_3$; N_2F_4 (1:2)	CF_4 , (CF_3 H), (HCN),	P(32)	932.96	50	ZnSe
	HF				
$B(CH_3)_3$; NF_3 (1:1)	$c_2^{H_2}$, HCN, $c_4^{H_4}$, (BF $_3^{}$),	P(48)	916.58	07	ZnSe
	ЯН				
$B(CH_3)_3$; N_2 (1:1)	No reaction	R(12)	970.55	125	ZnSe

 $\mathbf{1}$ Compounds in parentheses were produced in very small amounts.

In attempts to produce $\operatorname{NF}_4\operatorname{BF}_4$, it was found that BF_4 could be generated by LIC. The BF_4 formation was dependent upon having a surface which could supply a positive ion. NF_4^+ was apparently not stable under present experimental conditions although NF_3 was present after the reaction. More experiments are needed using other reaction mixtures and surfaces to determine if NF_4^+ can be generated by LIC.

The infrared bands (1265 and 720 cm $^{-1}$) observed for the solid formed in the BCl $_3$ and N $_2$ reaction are interesting. They do not agree with either hexagonal 9,10 (1390 and 810 cm $^{-1}$) or cubic (1100 and 700 cm $^{-1}$) BN. 11 This solid is apparently some form of BN but its exact nature is unclear.

Although some BN was produced it was not very cost effective in terms of the high laser power inputs for the small amount of BN formed. A reaction mixture that would have been ideal is BF_3 and NH_3 ; however, these components react on mixing to form $\mathrm{BF}_3\mathrm{NH}_3$. One way around this could be to irradiate the gases as they mix in a flow system. Another technique could be to irradiate the solid $\mathrm{BF}_3\mathrm{NH}_3$. Experiments in these directions are needed.

The reaction of $B(CH_3)_3$ and NF_3 produced no new products. The only interesting feature of this reaction was the disappearance of the boron from the infrared spectra. The most probable explanation is that pure boron was formed and settled out with the carbon that was also formed. There was no indication of any B_4 C having been formed, but a closer look at this precipitate is needed.

In all reaction mixtures, (except for BF $_3$) that contained -N $_2$ F $_4$ or NF $_3$, irradiation above threshold power produced a bright flash. In order to understand some of the intermediate products this visible emission was spectrally analyzed. The spectra of mixtures containing carbon and nitrogen compounds always showed a continuum overlapped by band structure of CN and C $_2$ 13. This spectra could always be photographed from a single reaction. In the mixture of ECl $_3$ and N $_2$ F $_4$ the flash was not intense enough to obtain the spectra.

In mixtures that contain ${\rm BCl}_3$, glows were observed. These were weak in intensity except for the ${\rm BCl}_3$ and ${\rm N}_2$ reaction. The spectra from reaction, as indicated earlier, indicated only a continuum. The exact nature of this continuous emission has not been determined.

A study that might prove very helpful in determining intermediate radicals, would be the analysis of the infrared emission produced in these reactions.

The laser-induced reaction containing fluorine, in general, goes to completion. This gives off a considerable amount of energy which is the driving force that produces the observed chain reactions. In this environment are produced only the most thermodynamically stable products for a given stoichiometric mixture. In general these products are relatively small molecules.

These experiments have shown that products formed in reactions can be controlled, to a certain extent, by the initial mixture parameter at ambient temperatures, but much more work is needed to obtain the most efficient parameters. Until a better understanding of the mechanisms that drive reaction of mixtures is obtained, many more fundamental experiments are needed in laserinduced chemistry.

REFERENCES

- D. F. Dever and E. Grunwald, J. Am. Chem. Soc., 98, 5055 (1976);
 A. Yogev and R. M. J. Benmair, Chem. Phys. Lett., 46, 290 (1977);
 F. M. Lussier and J. I. Steinfeld, Chem. Phys. Lett., 50, 175 (1977);
 S. E. Białkowski and W. A. Guillory, J. Chem. Phys., 67, 2061 (1977);
 C. R. Quick and C. Wittig, J. Chem. Phys., 69, 4201 (1978);
 C. Reiser and J. I. Steinfeld, J. Phys. Chem., 84, 680 (1980);
 W. S. Nip,
 M. Drouin, P. A. Hackett, and C. Willis, J. Phys. Chem., 84, 932 (1980).
- N. V. Karlov, N. A. Karpov, Y. N. Petrov, A. M. Prokhorov, and O. M. Stel'makh, JEPT Lett., 14, 140 (1970); N. G. Bosov, E. P. Markin, A. N. Orayevski, A. V. Prankratov, and A. N. Akachkov, JETP Lett., 14, 165 (1971); N. R. Isenor and M. C. Richardson, Appl. Phys. Lett., 18, 224 (1971); J. A. Merritt and L. C. Robertson, J. Chem. Phys., 67, 3545 (1977); J. A. Merritt, H. C. Meyer, R. I. Greenberg, and G. A. Tanton, Propellants and Explosives, 4, 78 (1979); C. Riley and R. Shatas, J. Phys. Chem., 83, 1679 (1979); E. Catalano, R. E. Barletta and R. K. Pearson, J. Chem. Phys., 70, 3291 (1979).
- 3. N. Bloembergen and E. Yablonovitch, Physics Today, 31, No. 5, 23 (1978) and references therein.
- J. B. Hopkins, D. E. Powers, and R. E. Smalley, J. Chem. Phys., 73, 683 (1980); 72, 5049 (1980); 72, 5039 (1980); 72, 2905 (1980); 71, 3886 (1979); D. E. Powers, J. B. Hopkins, and R. E. Smalley, J. Chem. Phys., 72, 5721 (1980).
- 5. J. B. Bates, A. J. Quist, and G. E. Boyd, J. Chem. Phys., 54, 124 (1971).
- 6. N. N. Greenwood, J. Chem. Soc., Part IV, 3811, (1959).
- 7. H. A. Bonadeogl, E. Silberman, Spectrochim Acta, 26A, 365 (1970).
- 8. C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, C. D. Wagner, and J. N. Wilson, Inorg. Chem., II, 1696 (1972).
- 9. F. A. Miller and C. H. Wilkins, Anal. Chem., 24, 1255 (1952).
- E. G. Brame, J. L. Margrave, V. W. Meloche, J. Inorg. Nucl. Chem., <u>5</u>, 48 (1957).
- 11. E. R. Lippincott, F. E. Welsh, and C. E. Weir, Anal. Chem., 33, 137 (1961).
- 12. G. Herzberg, "Molecular Spectra and Molecular Structure" II, "Infrared and Roman Spectra of Polyatomic Molecules," 2nd edition, Van Nostrond, Princeton, N. J. (1945).
- 13. R. W. B. Pearse and A. G. Gaydon, "The Identification of Molecular Spectra," 3rd edition, Wiley, New York, 1963.

- 14. A. R. H. Cole, "Tables of Wavenumbers for the Calibration of Infrared Spectrometers," 2nd edition, Pergamon Press, 1977.
- 15. C. D. Bass, L. Lynds, T. Wolfrom, and R. E. DeWames, J. Chem. Phys., 40, 3611 (1964).
- D. E. Mann, J. H. Meal, and E. K. Plyer, J. Chem. Phys., <u>24</u>, 1018 (1956);
 J. R. Nielson, H.H. Claassen, and D. C. Smith, J. Chem. Phys., <u>18</u>, 812 (1950).
- 17. P. J. H. Woltz and A. Nielson, J. Chem. Phys., 20, 307 (1952); J. Goubeau, W. Bues, and F. W. Kampmann, Zeitschrift fur Anorganische und Allgemeine Chemie, 283, 123 (1956).
- J. R. Nielson, C. M. Richards, and H. L. McMurry, J. Chem. Phys., 16, 67 (1948); D. G. Williams, W. B. Person, and B. Crawford, Jr., J. Chem. Phys., 23, 179 (1955).
- 19. H. J. Shurvell, Spectrochim, Acta, <u>26A</u>, 1459 (1970); W. F. Edgell and R. M. Potter, J. Chem. Phys., <u>24</u>, 80 (1956).
- D. H. Rank, E. R. Shull, and E. L. Pace, J. Chem. Phys., 18, 886 (1950);
 E. L. Pace, J. Chem. Phys., 18, 881 (1950).
- 21. R. M. Talley, H. M. Kaylor and A. H. Nielson, Phys. Rev., 77, 529 (1950).
- 22. J. A. Merritt, L. C. Warren, V. F. Kalasinsky and J. K. McDonald unpublished results.

DISTRIBUTION

	No. of Copies
Commander	
US Army Research Office	
PO Box 12211 Research Triangle Rock North Careling 27709	1
Research Triangle Park, North Carolina 27709	1
ATTN: DRXRO-PH, Dr. Lontz	1
DRXRO-C, Dr. Squire/Dr. Houk	1
US Army Research and Standardization Group (Europe)	
ATTN: DRXSN-E-RX, Dr. George Wyman	1
Box 65, FPO New York 09510	
US Army Materiel Development and Readiness Command	
ATTN: Dr. James Bender	1
5001 Eisenhower Avenue	
Alexandria, Virginia 22333	•
OUSDR&E	
ATTN: Mr. Leonard R. Weisberg	l
Room 3D1079, The Pentagon	
Washington, DC 20310	
Director	
Defense Advanced Research Projects Agency	
1400 Wilson Boulevard	1
Arlington, Virginia 22209	1
Dr. Frank Verderame	
Headquarters, DA-ODCSRDA	
DAMA-ARZ-D Room 3E363, The Pentagon Washington, DC 20310	1
washington, be 20110	1
OUSDR&E	•
ATTN: Dr. G. Gamota Deputy Assistant for Research	1
(Research in Advanced Technology)	
Room 3D1067, The Pentagon	
Washington, DC 20310	
Mr. Sam DeVita	1
Fiber Optics Branch	
CENCOMS	
US Army Communications R&D Command	1
AFTN: DRDCO-COM-RM-1 Fort Monmouth, New Jersey 07703	1
rote monmoden, new Jersey 07703	
IIT Research Institute	
ATTN: GACIAC	1
10 West 35th Street	

DISTRIBUTION (Concluded)

	No. of Copies
JS Army Materiel Systems	
Analysis Activity	2
ATTN: DRXSY-MP	2
Aberdeen Proving Ground, Maryland 21005	
Ballistic Missile Defense Advanced Technology Center	
ATTN: Mr. Sayles	1
PO Box 1500	
Huntsville, Alabama 35807	
DRSMI-R	1
-R, Dr. Rhoades	1
-RR, Dr. Hartman	1
-RRD	30
-LP, Mr. Voigt	1
-RPR	15
-RPT (Reference)	1
-RPT (Record Set)	1
-EM	ı

END

DTIC