Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 PERMUTATION & COMBINATION PART 4 OF 4

fo/u fopkjr Hk# tu] ughavkjEHsdke] foifr n§k NkWsrjar e/;e eu dj ';keA i#'kflg lalYi dj] Igrsfoifr vusl] 'cuk' u NkWs/;; dk} j?kcj jk[kvslAA

jlpr%ekuo /keIizksk I nx# Jh j.kVkkhkl thegkjkt

PERMUTATION & COMBINATION

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1 (Assertion)** and **Statement – 2 (Reason**). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice:

- (A) **Statement 1** is True, **Statement 2** is True; **Statement 2** is a correct explanation for **Statement 1**.
- (B) Statement − 1 is True, Statement − 2 is True; Statement − 2 is NOT a correct explanation for Statement − 1.
- (C) **Statement 1** is True, **Statement 2** is False.
- (D) **Statement 1** is False, **Statement 2** is True.
- **399.** Statement-1: $51 \times 52 \times 53 \times 54 \times 55 \times 56 \times 57 \times 58$ is divisible by 40320
 - **Statement-2:** The product of r consecutive natural numbers is always divisible by r!
- **400. Statement-1:** Domain is {d₁, d₂, d₃, d₄}, range is {r₁, r₂, r₃}. Number of into functions which can be made is 45.
 - **Statement-2:** Numbers of into function = number of all functions number of onto functions.
 - = $3^4 3(^4C_2 \cdot ^2C_1) = 81 36 = 45$ of d_1 , d_2 , d_3 , d_4 any two correspond to r_1 , remaining two to r_2 , r_3 one with each
 - \therefore ${}^4C_2 \times {}^2C_1 = 12$, total = $12 \times 3 = 36$ = number of onto functions.
- **401. Statement-1:** The smallest number which has 24 divisors is 420.
 - **Statement-2:** $24 = 3 \times 2 \times 2 = (2+1)(1+1)(1+1)(1+1)$, therefore, prime factors of the number are 2, 2, 3, 5, 7 & their product is 420.
- **402.** Consider the word 'SMALL'
 - **Statement–1:** Total number of 3 letter words from the letters of the given word is 13.
 - **Statement–2:** Number of words having all the letters distinct = 4 and number of words having two are alike and third different = 9
- **403.** Statement–1: Number of non integral solution of the equation $x_1 + x_2 + x_3 = 10$ is equal to 34.
 - **S–2:** Number of non integral solution of the equation $x_1 + x_2 + x_3 + \dots + x_n = r$ is equal to r + r 1C_r
- **404.** Statement–1: ${}^{10}C_r = {}^{10}C_4 \Rightarrow r = 4 \text{ or } 6$ Statement–2: ${}^{n}C_r = {}^{n}C_{n-r}$
- **405. Statement–1**: The number of ways of arranging n boys and n girls in a circle such that no two boys are consecutive, is $(|n-1|^2)$.
 - **Statement-2**: The number of ways of arranging n distinct objects in a circle is |n-1|
- **406. Statement–1**: The number of ways of selecting 5 students from 12 students (of which six are boys and six are girls), such that in the selection there are at least three girls is ${}^{6}C_{3} \times {}^{9}C_{2}$.
 - **Statement–2:** If a work has two independent parts, of which first part can be done in m way and for each choice of first part, the second part can be done in n ways, then the work can be completed in $m \times n$ ways.
- **407**. **Statement–1**: The number of ways of writing 1400 as a product of two positive integers is 12.
 - **Statement–2**: 1400 is divisible by exactly three prime numbers.
- **408**. **Statement–1**: The number of selections of four letters taken from the word 'PARALLEL' must be 15.
 - **Statement–2**: Coefficient of x^4 in the expansion of $(1-x)^{-3}$ is 15.

Download FREE Study Package from www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 PERMUTATION & COMBINATION PART 4 OF 4

- **409. Statement–1:** Total number of permutation of n things of which p are alike of one kind, q are alike of 2nd kind, r are alike of 3rd kind and rest are all difference is $\frac{n!}{p!q!r!}$.
 - **Statement–2**: Total number of selection from n identical object is n.
- **410. Statement–1**: A polygon has 44 diagonals and number of sides are 11. **Statement–2**: From n distinct object r object can be selected in ${}^{n}C_{r}$ ways.
- **411.** Let y = x + 3, y = 2x + 3, y = 3x + 2 and y + x = 3 are four straight lines **Statement-1**: The number of triangles formed is 4C_3
 - **Statement-2:** Number of distinct point of intersection between various lines will determine the number of possible triangle.
- **412. Statement-1**: The total number of positive integral solutions (zero included) of $x + y + z + \omega = 20$ without restriction is $^{23}C_{20}$
 - **Statement-2:** Number of ways of distributing n identical items among m persons when each person gets zero or more items = ${}^{m+n-1}C_n$
- 413. Statement-1: The total ways of selection of 5 objects out of $n(n \ge 5)$ identical objects is one. Statement-2: If objects are identical then total ways of selection of any number of objects from given objects is one.
- **414. Statement-1:** The total number of different 3-digits number of type N = abc, where a < b < c is 84. **Statement-2:** O cannot appear at any position, so total numbers are ${}^{9}C_{3}$.
- **415. Statement-1:** The number of positive integral solutions of the equation $x_1x_2x_3x_4x_5 = 1050$ is 1875. **Statement-2:** The total number of divisor of 1050 is 25.
- **416.** Statement-1: $\left(\sum_{r=0}^{100} {}^{500-r}C_3\right) + {}^{400}C_4 = {}^{501}C_4$ Statement-2: ${}^nC_r + {}^nC_{r-1} = {}^{n+1}C_r$
- **417.** Statement-1: $\frac{(n^2)!}{(n!)^n}$ is a natural number for all $n \in \mathbb{N}$
 - **S-2:** The number of ways of distributing mn things in m groups each containing n things is $\frac{(mn)!}{(n!)^m}$.
- **418. Statement-1:** The number of divisors of 10, 800 is 60. **Statement-2:** The number of odd divisors of 10, 800 is 12.
- **419.** Statement-1: Number of onto functions from $A \to B$ where A contains n elements 2B contains m elements (where $n \ge m$) = $m^n {}^mC_1 (m-1)^n + {}^mC_2 (m-2)^n + ...$
 - **Statement-2:** Number of ways of putting 5 identical balls in 3 different boxes when empty boxes are not allowed are 6.
- **420. Statement-1:** 4 persons can be seated in a row containing 12 chairs, such that no two of them are consecutive in ${}^9C_4 \times 4!$ ways
 - **S-2:** Number of non-negative integral solutions of equation $x_1+x_2+...+x_r=n$ is $= {n+r-1 \choose r-1}$.
- **421. Statement-1:** The number of selections of four letters taken from the word PARALLEL must be 22. **Statement-2:** Coefficient of x^4 in the expansion of $(1-x)^3$ is 10.
- **Statement-1:** Number of permutations of n dissimilar things taken 'n' at a time is ${}^{n}P_{n}$. **Statement-2:** n(A) = n(B) = n then the total number of functions from A to B are n!
- **423. Statement-1:** Number of permutations of n dissimilar things taken n at a time in ${}^{n}P_{n}$. **Statement-2:** n(A) = n(B) = n then the total number of functions from A to B are n!
- **424.** Statement-1: ${}^{n}C_{r} = {}^{n}C_{p} \Rightarrow r = p \text{ or } r + p = n$ Statement-2: ${}^{n}C_{r} = {}^{n}C_{n-r}$
- **S-1:** The total number of words with letters of the word civilization (all taken at a time) is 19958393. **Statement-2:** The number of permutations of n distinct objects (r taken at a time) is ${}^{n}p_{r+1}$.
- **426.** S-1: The number of ways in which 81 different beads can be arranged to form a necklace is $\frac{80}{2!}$

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 PERMUTATION & COMBINATION PART 4 OF 4

Statement-2: Number of circular arrangements of n different objects is (n-1)!.

Statement-1: There are 9^n , n digit numbers in which no two consecutive digits are same. 427.

Statement-2: The n digits number in which no two consecutive digits are equal cannot contain zero.

Statement-1: $\frac{(n+2)!}{(n-1)!}$ is divisible by 6.**S-2:** Product of three consecutive integer is divisible by 6. 428.

Answer

399. A	400. A	401. C	402. A	403. D	404. A	405. D
406. D	407. B	408. D	409. C	410. A	411. A	412. A
413. A	414. A	415. C	416. A	417. A	418. B	419. B
420. A	421. C	422. C	423. C	424. A	425. C	426. A
427. C	428. A					

Details Solution

Number of words having all the letters distinct = ${}^{4}P_{1} = 4$

Number of words having two are alike and third different = ${}^{1}C_{1}$. ${}^{3}C_{1}$. $\frac{3!}{2!}$ = 9

 \therefore (A) is the correct option.

(D) Number of solution = ${}^{12}C_{10} = 66$. 403.

404. (A) or r = 10 - 4 = 6.

Statement – II is true as on fixing one object anywhere in the circle, the remaining n-1 objects can be 405. arranged in |n-1| ways

Statement – II is false, as after arranging boys on the circle in |n-1| ways, girls can be arranged in between the boys in |n| ways (for any arrangement of boys).

Hence number of arrangements is |n|n-1.

Hence (D) is the correct answer.

406. Statement – II is true, known as the rule of product.

Statement – I is not true, as the two parts of the work are not independent. Three girls can be chosen out of six girls in ${}^{6}C_{3}$ ways, but after this choosing 3 students out of remaining nine students depends on the first part.

Hence (D) is the correct answer.

407. Since, $1400 = 2^3.5^2.7^1$

 \Rightarrow Total no. of factors = (3 + 1)(2 + 1)(1 + 1) = 24

 \Rightarrow No. of ways of expressing 1400 as a product of two numbers = $\frac{1}{2} \times 24 = 12$.

But this does not follow from statement – II which is obviously true.

Hence (b) is the correct answer.

Statement – I is false since the number of selection of four letters from 'PARALLEL' is 22. **408**.

1. 3 alike, 1 diff. = ${}^{1}c_{1} \times {}^{4}c_{1} = 4$

2. 2 alike, 2 alike = ${}^{2}c_{2} = 1$

3. 2 alike, 2 diff. = ${}^{2}c_{1} \times {}^{4}c_{2} = 12$

4. All diff. = ${}^{5}c_{4} = 5$

Total selection = 22

Statement – II is true, since

 $(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + 15x^4 + \dots$ Hence (D) is the correct answer.

(A) Let no of sides are n. 410.

> ${}^{n}C_{2}-n=44$ \Rightarrow n = -8 or 11 \Rightarrow n = 11.

415. $x_1x_2x_3x_4 = 1050 = 2 \times 3 \times 5^2 \times 7$

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 **PERMUTATION & COMBINATION PART 4 OF 4**

Ans. (A)

Thus 5^2 can as sign in ${}^5C_1 + {}^5C_2 = 15$ ways

We can assign 2, 3, or 7 to any. of 5 variables.

Hence req. number of solutions.

$$= 5 \times 5 \times 5 \times 15 = 1875$$
 Ans. (C)

The number of ways of distributing mn things in m groups each containing n things is $\frac{(mn)!}{(n!)^m}$

here if m = n, then $\frac{(n^2)!}{(n!)^n}$ which must be a natural number.

'A' is correct.

418. If
$$n = 10,800$$
 $= 2^4 \times 3^3 \times 5^2$

Number of divisors depends upon all possible selection of prime factors. So clearly (4+1)(3+1)(2+1) $= 5 \times 4 \times 3 = 60$ for odd divisors, only selection of odd prime factors, (3 + 1)(2 + 1) = 12b is correct.

- 421. (C) A is true since number of selection of four letters from PARALLEL is 22. (3 alike 1 different 4 cases; 2 alike and 2 alike one case; 2 alike 2 different $2 \times {}^{4}C_{2} = 12$ and all different ${}^{5}C_{4} = 5$ total selections = 4 + 1 + 12 + 5 = 22). R is false since $(1 - x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + 15x^4 + ...$
- ${}^{n}P_{n} = n!$ but number of function from A to B is n^{n} . (C) 422.
- $^{n}P_{n} = n!$, but the number of functions from A to B is n^{n} . 423.
- 424. (A) Statement-1 is true, Statement-2 is true, Also Statement-2 is the correct explanation of Statement-1.
- 425.

In the given word 4 are there so required number of permutations is $\frac{12!}{4!} = 19958392$

(A) Since clockwise and anticlockwise arrangements are not different so required number of 426. arrangements is $\frac{80}{2!}$.

For 38 Years Que. of IIT-JEE (Advanced)

& 14 Years Que. of AIEEE (JEE Main)

we have already distributed a book