

1 1. (previously presented):A method for detecting atmospheric disturbances
2 including the steps of:

3 providing infrasound frequency magnitudes of received noise spectra;

4 comparing said infrasound frequency magnitudes to an infrasound
5 threshold; and

6 determining existence of said atmospheric disturbances with the
7 utilization of infrasound frequency magnitudes that exceed said threshold.

1 2.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 1 wherein said providing step includes the steps of;

3 extracting noise at frequencies below a specified frequency from said
4 received noise spectra to provide an extracted noise spectra;

5 filtering said extracted noise spectra to obtain infrasound at frequencies
6 below a predetermined infrasound frequency; and

7 detecting magnitudes of infrasound frequencies below said
8 predetermined infrasound frequency.

1 3.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 2 wherein said extracting step includes the step of activating said
3 filtering step when magnitudes of said extracted noise spectra exceed a
4 preselected threshold.

1 4.(currently amended):A method for detecting atmospheric disturbances in
2 accordance with claim 3 wherein said comparing step includes the steps of:

3 coupling infrasound obtained in said filtering step to an atmospheric
4 disturbance detector and to a threshold computer;

5 computing a threshold in said threshold computer by averaging
6 magnitudes of infrasound received prior to reception of infrasound generated
7 by an atmospheric disturbance; and

8 coupling said computed threshold to said atmospheric disturbance
9 detector; and

10 ~~establishing an existence of an atmospheric disturbance when~~
11 ~~infrasound coupled to said atmospheric detector exceeds said computed~~
12 ~~threshold.~~

1 5.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 4 wherein said detecting step includes the step of establishing an
3 existence of an atmospheric disturbance when infrasound coupled to said
4 atmospheric disturbance detector exceeds said computed threshold.

1 6.(previously presented):A method for detecting atmospheric disturbances in
2 accordance with claim 5 wherein said providing step further includes the step
3 of positioning sound sensors in a manner to sense sound from a noise
4 generating source and providing infrasound magnitudes respectively
5 associated with said sensors.

1 7.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 6 wherein said sound sensors are positioned in a row perpendicular
3 to a foot print of a glide slope of an approaching aircraft with predetermined
4 spacings therebetween.

5 8.(original):A method for detecting atmospheric disturbances in accordance
6 with claim 7 wherein said row of sound sensors is placed at a runway middle
7 marker.

1 9.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 7 further including the step of comparing extracted noise of a
3 preselected sound sensor in said row of sound sensors to said preselected
4 threshold.

1 10.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 6 wherein said positioning step includes the step of locating parallel
3 rows of sound sensors, each containing a multiplicity of said sound sensors,
4 between runways at an airport.

1 11.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 6 wherein said positioning step includes the step of locating a
3 column of said sound sensors, with predetermined spacings therebetween,
4 along a center line of an airport runway, a first sound sensor of said column
5 being placed at a predetermined location.

1 12.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 11 wherein said extracted noise is obtained from noise spectra
3 received by at least one sound sensor including said first.

1 13.(original):A method for detecting atmospheric disturbances in accordance
2 with claim 12 wherein said filtering step and said detecting step are performed
3 in sound sensors subsequent to said at least one sound sensor, said filtering
4 step being activated by said extracted noise obtained from noise spectra
5 received at said least one sound sensor.

1 14.(original):A method for detecting atmospheric disturbances including the
2 steps of:

3 sensing atmospheric noise to obtain noise signals;

4 filtering said noise signals to eliminate signals at frequencies above a
5 predetermined frequency and providing signals at frequencies within a band
6 of frequencies below said predetermined frequency;

7 comparing amplitudes of signals at frequencies in said band below said
8 predetermined frequency to a first preselected threshold;

9 determining a representative amplitude and representative frequency
10 for signals at frequencies in said band below said predetermined frequency
11 that have amplitudes which exceed said first preselected threshold;

12 comparing said representative frequency to a predetermined frequency
13 threshold;

14 comparing said representative amplitude to a second preselected
15 threshold when said representative frequency exceeds said predetermined
16 frequency threshold ; and

17 indicating when said representative amplitude exceeds said second
18 preselected threshold.

1 15.(original):The method of claim 14 wherein said filtering step includes the
2 step of placing signals having frequencies within said band of frequencies in
3 frequency bins and determining amplitudes and phases of signals in each bin.

1 16.(original):The method of claim 15 wherein said amplitude comparing step
2 includes the step of comparing said amplitudes of signals in each of said
3 frequency bins to said first preselected threshold.

1 17.(original):The method of claim 14 wherein:
2 said sensing step includes the step of
3 providing first and second sensors to obtain first and second noise
4 signals, respectively;
5 said filtering step includes the steps of
6 establishing a first band of signals having frequencies below said
7 predetermined frequency in said first noise signal and a second band of
8 signals having frequencies below said predetermined frequency in said
9 second noise signal; and
10 utilizing said first and second bands of signals to estimate an angle off
11 a reference of said atmospheric disturbance and to estimate a range to said
12 atmospheric disturbance.

1 18.(original):The method of claim 17 wherein said utilizing step includes the
2 steps of:
3 computing electrical phase differences between signals in said first
4 band and signals in said second band; and
5 converting said electrical phase differences to said angle off said
6 reference.

1 19.(original):The method of claim 18 wherein said computing step computes
2 phase differences between signals in said first band and signals in said
3 second having equal frequencies.

4 20.(original):The method of claim 17 wherein said establishing step includes
5 the steps of:

6 placing signals having frequencies within said first band into first
7 frequency bins and determining phases and amplitudes of signals in each of
8 said first frequency bins;

9 placing signals having frequencies within said second band into second
10 frequency bins and determining phases and amplitudes of signals in each of
11 said second frequency bins.

1 21.(original):The method of claim 20 further including the steps of:

2 determining phases differences between signals in bins of said first
3 band and signals in corresponding bins of said second band, a bin in said first
4 band and a corresponding bin in said second band comprising a bin set,
5 thereby obtaining a bin set phase difference for each of said bin sets; and

6 utilizing said bin set phase differences to estimate an angle of said
7 atmospheric disturbance from a reference direction.

1 22.(original):The method of claim 21 wherein said utilizing step includes the
2 steps of:

3 averaging signal amplitudes in bins of said first band with signal
4 amplitudes in corresponding bins of said second band, to obtain a bin set
5 average amplitude for each set of corresponding bins;

6 multiplying bin set average amplitudes by said bin set phase
7 differences, respectively, to obtain set products of bin phase multiplied by bin
8 average amplitude;

9 summing said set products over all bin sets, to obtain a sum of set
10 products;

11 summing said set average amplitudes over all bin sets to obtain a sum
12 of set average amplitudes; and

13 dividing said sum of set products by said sum of average amplitudes to
14 obtain said estimate of said angle.

1 23.(original):The method of claim 20 wherein said comparing amplitudes step
2 includes the step of

3 comparing amplitudes of signals in said first band and amplitudes of
4 signals in said second band to said first preselected threshold and removing
5 signals from bins, in said first and second bands, with amplitudes that do not
6 exceed said first preselected threshold; and further including the steps of:

7 combining amplitudes of signals in said first and second bands that
8 exceed said first preselected threshold at a first location, to obtain a first
9 combined amplitude signal and combining amplitudes of signals in said first
10 and second bands that exceed said first preselected threshold at a second
11 location, to obtain a second combined amplitude signal; using said first and
12 second combined amplitude signals to estimate range to said atmospheric
13 disturbance.

1 24.(original):The method of claim 23 wherein said combining includes the
2 steps of:

3 computing rms sum of signal amplitudes at said first location in said first
4 and second frequency bins to obtain rms sum signals A₁ and B₁, respectively;
5 and

6 computing rms sum of signal amplitudes at said second location in said
7 first and second frequency bins to obtain rms sum signals A₂ and B₂,
8 respectively.

1 25.(original):The method of claim 24 wherein said using step includes the
2 steps of:

3 averaging A₁ and B₁ to obtain an average signal S₁, and averaging A₂
4 and B₂ to obtain an average signal S₂;

5 forming a ratio r = S₁/S₂;

6 noting a difference in position of said first location and said second
7 location, said difference in position being Xcosθ, where X is a distance from
8 said first location to said second location and θ is said angle off said
9 reference; and

10 estimating range R to said atmospheric disturbance from R = Xcosθ/(r - 1).

1 26.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 1 wherein said providing step includes the steps of;

3 extracting noise at frequencies below a specified frequency from said
4 received noise spectra to provide an extracted noise spectra;

5 filtering said extracted noise spectra through a low pass filter to obtain
6 infrasound at frequencies below a predetermined infrasound frequency; and

7 comparing magnitudes of said infrasound at frequencies below said
8 predetermined infrasound frequency to a preselected magnitude.

1 27.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 26 wherein said preselected magnitude is that of a
3 preselected wind velocity.

1 28.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 26 further including the steps of:

3 selecting a signal in said extracted noise spectra, thereby providing a
4 selected signal;

5 comparing said selected signal to a second predetermined threshold;
6 and

7 deactivating said low pass filter when said signal exceeds said second
8 predetermined threshold.

1 29.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 26 wherein said providing step further includes the
3 step of positioning sound sensors in a plurality of parallel rows positioned
4 perpendicular to and centered on a foot print of an aircraft arrival glide slope.

1 30.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 29 wherein each row contains at least 3 sensors.

1 31.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 1
3 wherein said providing step includes the steps:

4 obtaining infrasound below a predetermined infrasound frequency,
5 thereby providing extracted infrasound; and

6 detecting magnitudes of said extracted infrasound.

1 32.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 31 wherein said obtaining step includes the steps of:
3 extracting noise at frequencies below a specified frequency from said
4 received noise spectra to provide an extracted noise spectra; and
5 filtering said extracted noise spectra to obtain said extracted infrasound.

1 33.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 31 wherein said providing step includes the step of
3 positioning a noise sensor and said determining step includes the steps of:
4 delaying extracted infrasound for a predetermined time interval, thereby
5 providing delayed extracted infrasound;
6 predicting a time of arrival at said noise sensor of an atmospheric
7 disturbance causing a presently extracted infrasound with the utilization of
8 said delayed extracted infrasound and said presently extracted infrasound.

1 34.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 33
3 wherein said predicting step includes the steps of:
4 determining magnitudes of said delayed extracted infrasound and said
5 presently extracted infrasound;
6 establishing a ratio of said magnitudes;
7 providing a square root of said ratio; and
8 utilizing said square root, said time delay, and velocity of said infrasound
9 to predict said time of arrival.

1 35.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 33 further including the steps of:

3 producing a signal when magnitudes of said extracted infrasound
4 exceed said infrasound threshold for a predetermined time interval;

5 coupling said signal to a gate to which said time of arrival is also
6 coupled; and

7 supplying said time of arrival through said gate when said signal is
8 received.

1 36.(previously presented) A method for detecting atmospheric disturbances
2 in accordance with claim 32 wherein said filtering step provides infrasound
3 signals at frequencies below a preselected infrasound frequency and said
4 determining step includes the steps of:

5 finding a bandwidth of said infrasound signals having amplitudes greater
6 than a preselected amplitude;

7 calculating a mean frequency and rms amplitude for signals within said
8 bandwidth;

9 comparing said bandwidth, said mean frequency, and said rms
10 amplitude to respective predetermined thresholds; and

11 providing an alarm when said respective thresholds are simultaneously
12 exceeded over a specified time interval.