第十二周习题课

二. 利用 Riemann 积分计算某些数列极限。

1. 求极限
$$\lim_{n\to\infty} \ln \sqrt[n]{\left(1+\frac{1}{n}\right)^2 \left(1+\frac{2}{n}\right)^2 \cdots \left(1+\frac{n}{n}\right)^2}$$
.

2. 求极限
$$\lim_{n\to\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$
, 这里 $p > 0$.

三. 积分估值

- **4.** 估计积分 $\int_0^2 e^{x^2-2x} dx$ 的范围。
- 5. 记 $I_1\coloneqq \int_{-1}^1 x \ln^2(x+\sqrt{1+x^2}) dx$, $I_2\coloneqq \int_{-1}^1 \frac{x^3+|x|}{\sqrt{1+x^2}} dx$, $I_3\coloneqq \int_{-1}^1 \frac{\sqrt[3]{x}-1}{(1+x^2)^2} dx$, 试比较这三个积分的大小。

四.积分不等式与零点问题

6. 设函数 f(x) 在[a,b]上连续,且恒正即 f(x) > 0, $\forall x \in [a,b]$ 。 证明函数

$$F(x) = \int_{a}^{x} f(t)dt + \int_{b}^{x} [f(t)]^{-1} dt$$

在[a,b]上有且仅有一个零点。.

- 7. (课本第五章总复习题第 17 题,p.188)已知函数 f(x) 在 [a,b] 上连续且单调上升。证明: $\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx$ 。
- 8. (课本第五章总复习题第 18 题,p.188)设 f(x) 在 $[0,\pi]$ 上连续且 $\int_0^\pi f(x)\sin x dx = 0$ 和 $\int_0^\pi f(x)\cos x dx = 0$ 。证明函数 f(x) 在 $[0,\pi]$ 上至少有两个零点。
- 9. (Hadamard 不等式) 设函数 f(x) 于 [a,b] 可导且下凸。证明

$$f(\frac{a+b}{2})(b-a) \le \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2}(b-a)$$
 (*)

注:本题可看作是习题 5.2 第 10 题 (p.141) 的一般化。

五.积分与极限。

说明:我们常常需要考虑闭区间[a,b]上函数列 $f_n(x)$ 积分后的极限问题,即求

$$\lim_{n\to+\infty}\int_a^b f_n(x)dx \ .$$

当极限 $\lim_{n\to+\infty} f_n(x) = f(x)$ 对每个 $x \in [a,b]$ 都存在,且函数 f(x) 在 [a,b] 上可积,我们自然期待 $\lim_{n\to+\infty} \int_a^b f_n(x) dx = \int_a^b \left[\lim_{n\to+\infty} f_n(x)\right] dx$ 。

实事上这个等式在许多情形下是正确的。 等式成立的一个充分条件涉及函数的一致收敛性。但的确存在等式不成立的情形。也就是说,存在闭区间[a,b]上连续函数列 $f_n(x)$,

使得 $\lim_{n\to+\infty}\int_a^b f_n(x)dx \neq \int_a^b \left[\lim_{n\to+\infty}f_n(x)\right]dx$ 。这表明对于函数列 $f_n(x)$ 作积分运算和极限运算的先后次序不同,所得的结果可能不同。

下个学期我们将仔细研究这个问题。以下我们考虑极限 $\lim_{n \to +\infty} \int_a^b f_n(x) dx$ 的两个例子。

- 10. 设函数 f(x) 在区间[0,1]上连续。证明 $\lim_{n\to+\infty} (n+1) \int_0^1 x^n f(x) dx = f(1)$ 。
- 11. (课本习题 5.2 第 7 题, p.141) 证明

(i).
$$\lim_{n \to +\infty} \int_0^1 \frac{x^n dx}{1+x} = 0$$
.

(ii).
$$\lim_{n \to +\infty} \int_0^1 \frac{dx}{1 + x^n} = 1$$
.

(iii).
$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \sin^n x dx = 0$$
.

六. 变限积分

12.
$$\forall f(x) = \int_0^{1-\cos x} \sin t^2 dt$$
, $g(x) = \frac{x^5}{5} + \frac{x^6}{6}$, $\text{M} \leq x \to 0$ H , $f(x) \neq g(x)$ H

(A).低阶无穷小量;

(B).高阶无穷小量;

(C).等价无穷小量;

(D).同阶但非等价无穷小量.

答案: (B).

13. 设
$$f(x), g(x) \in C[0, +\infty)$$
 , $f(x) > 0$, $g(x)$ 单调增加,则 $\varphi(x) = \frac{\int_0^x f(t)g(t)dt}{\int_0^x f(t)dt}$

- (A).在 $[0,+\infty)$ 上单调增加; (B). 在 $[0,+\infty)$ 上单调减少;
- (C). 在[0,+1)上单调增加,在 $[1,+\infty)$ 上单调减少;
- (D). 在[0,+1) 上单调减少,在 $[1,+\infty)$ 上单调增加。
- **14.** 当常数 *a*,*b*,*c* = []时,极限

$$\lim_{x \to 0} \frac{ax - \sin x}{\int_b^x \frac{\ln(1 + t^3)}{t} dt} = c \neq 0$$

- A. $a = 0, b = 0, c = \frac{1}{2}$; B. $a = 1, b = 0, c = \frac{1}{2}$;
- C. $a = 0, b = 1, c = \frac{1}{2}$; Do $a = \frac{1}{2}, b = 0, c = \frac{1}{2}$
- 15. $\lim_{x\to 0} \left(1 + \int_0^x \cos t^2 dt\right)^{\frac{1}{x}} = \underline{\qquad}$

- (A) e; (B) 1; (C) $e^{\frac{1}{2}}$; (D) $e^{-\frac{1}{2}}$.
- - (A) $\frac{-17!}{2}$; (B) $\frac{17!}{2}$; (C) $\frac{-16!}{2}$; (D) $\frac{16!}{2}$;

- **17.** 设 $F(x) = \int_0^{x^4} (t-1)e^{t^2} dt$,则 F(x) 的单调上升区间为:
 - (A) $(-\infty, -1)$ π $(1, \infty)$;
- (B) $\left(-1, 0\right)$ 和 $\left(1, \infty\right)$;
- (C) $(-\infty, 0)$ π $(0, \infty)$;
- (D) $(-\infty, 0)$ 和 $(1, \infty)$;
- 18. $\lim_{x \to 1} \frac{\int_{1}^{x} (\ln t)^{2} dt}{(\sin x^{2} \sin 1)^{3}} = \underline{\hspace{1cm}}$

(A)
$$\frac{1}{24\cos^3 1}$$
; (B) $\frac{1}{24}$; (C) $\frac{1}{8\cos^3 1}$; (D) $\frac{1}{8}$.

(B)
$$\frac{1}{24}$$

(C)
$$\frac{1}{8\cos^3 1}$$

(D)
$$\frac{1}{8}$$

19. 设 f(x) 有 连 续 导 数 , 且 $f(0) = 0, f'(0) \neq 0$, 则 当 $x \rightarrow 0$ 时 ,

$$F(x) = \int_0^x (x^2 - t^2) f(t) dt \, \text{是}[] 阶无穷小量.$$

- (A).1;
- (B).2;
- (D).4.

20. 函数 $f(x) = \int_0^{x^2} (t-1)e^{-t}dt$ 的极大值点为______.

- (A) x = -1;
- (B) x = 1; (C) x = 0;
- (D) x = e.

21. 设曲线 y = f(x) 由

$$x(t) = \int_{\frac{\pi}{2}}^{t} e^{t-u} \sin \frac{u}{3} du$$
 $\Re y(t) = \int_{\frac{\pi}{2}}^{t} e^{t-u} \cos 2u du$