tunktionen folsen & - reihen

Sei
$$\emptyset \neq 0 \subseteq \mathbb{R}$$
; (f_n) eine Folge von Funktionen $f_n: D \rightarrow \mathbb{R}$ uncl $s_n:=f_n:f_2+...+f_n$ $(n \in \mathbb{N})$

Die Funktionentolge (fn) Leipt and O punkt weise konvegent

Ochn ist
$$f(x) := \lim_{n\to\infty} f_n(x)$$
 $(x \in D)$
die Grenzfunktion von (f_n) .

Dan ist
$$f(x) := \sum_{n=1}^{\infty} f_n(x)$$
 (xe0)
die Summenfunktion von (f_n) .

Beispiel:

D = [0,1];
$$f_n(x) = x^n$$
 $(n \in \mathbb{N})$. Es gilt:
$$f(x) := \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

$$f_n$$
 konvergiert auf [0,1] punktweise gegen f .

Bemerkung: Punktweise Konvergenz von (f_n) auf D gegen f bedeutet:

$$\forall x \in D \quad \forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon, x) \in \mathbb{N} \quad \forall n \ge n_0 : |f_n(x) - f(x)| < \varepsilon.$$

$$(\Rightarrow \forall \varepsilon > 0 \ \exists n_o = n_o(\varepsilon) \in \mathbb{N} \quad \forall n \ge n_o \quad \forall x \in \mathbb{D}: \quad |s_n(x) - f(x)| < \varepsilon$$

Kriterieu Folge (f_n) konvegier aut 0 pullebreise gegen $f: D \rightarrow \mathbb{R}$, Folge (α_n) mit $\alpha_n \rightarrow 0$, m $\in \mathbb{N}$ and es solve $\forall n \geq m \ \forall x \in D: \ | f_n(x) - f(x) | \leq \alpha_n$ Och Lonvesiat (dn) aut D gleichmißig segen f. Kriteium von Weierstraß Sei m & N (Cn) eine Fobe in [0, 00), Z Cn leonusent und $\forall n \geq m \quad \forall x \in 0: \quad |f_n(x)| \leq c_n$ Dan konveriet of for out O gleichmißig Se: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreik mit Konvegerzrekius r>0, $D:=(x_0-r,x_0+r)$. Falls [a,b] = 0, so lonvegint die Potenrick auf [a,b] skichmifis.