	$\overline{1a}$	4a	2a	4b	3a	6a	15a	30a	5a	10a	15b	30b	30c	15c	30d	15d	5b	10b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_3	1 -	-E(4)	-1	E(4)	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1
χ_4	1	E(4)	-1	-E(4)	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1
χ_5	2	0	-2	0	-1	1	-1	1	2	-2	-1	1	1	-1	1	-1	2	-2
χ_6	2	0	2	0	-1	-1	-1	-1	2	2	-1	-1	-1	-1	-1	-1	2	2
χ_7	2	0	-2	0	2	-2	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_8	2	0	-2	0	2	-2	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_9	2	0	2	0	2	2	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{10}	2	0	2	0	2	2	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
χ_{11}	2	0	-2	0	-1	1	$E(15)^7 + E(15)^8$	$-E(15)^7 - E(15)^8$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(15) + E(15)^{14}$	$-E(15) - E(15)^{14}$	$-E(15)^4 - E(15)^{11}$	$E(15)^4 + E(15)^{11}$	$-E(15)^2 - E(15)^{13}$	$E(15)^2 + E(15)^{13}$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_{12}	2	0	-2	0	-1	1	$E(15)^4 + E(15)^{11}$	$-E(15)^4 - E(15)^{11}$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(15)^7 + E(15)^8$	$-E(15)^7 - E(15)^8$	$-E(15)^2 - E(15)^{13}$	$E(15)^2 + E(15)^{13}$	$-E(15) - E(15)^{14}$	$E(15) + E(15)^{14}$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_{13}		0	-2	0	-1	1	$E(15)^2 + E(15)^{13}$	$-E(15)^2 - E(15)^{13}$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(15)^4 + E(15)^{11}$	$-E(15)^4 - E(15)^{11}$	$-E(15) - E(15)^{14}$	$E(15) + E(15)^{14}$	$-E(15)^7 - E(15)^8$	$E(15)^7 + E(15)^8$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_{14}	2	0	-2	0	-1	1	$E(15) + E(15)^{14}$	$-E(15) - E(15)^{14}$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(15)^2 + E(15)^{13}$	$-E(15)^2 - E(15)^{13}$	$-E(15)^7 - E(15)^8$	$E(15)^7 + E(15)^8$	$-E(15)^4 - E(15)^{11}$	$E(15)^4 + E(15)^{11}$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_{15}	2	0	2	0	-1	-1	$E(15)^7 + E(15)^8$	$E(15)^7 + E(15)^8$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(15) + E(15)^{14}$	$E(15) + E(15)^{14}$	$E(15)^4 + E(15)^{11}$	$E(15)^4 + E(15)^{11}$	$E(15)^2 + E(15)^{13}$	$E(15)^2 + E(15)^{13}$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
χ_{16}		0	2	0	-1	-1	$E(15)^4 + E(15)^{11}$	$E(15)^4 + E(15)^{11}$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(15)^7 + E(15)^8$	$E(15)^7 + E(15)^8$	$E(15)^2 + E(15)^{13}$	$E(15)^2 + E(15)^{13}$	$E(15) + E(15)^{14}$	$E(15) + E(15)^{14}$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{17}	2	0	2	0	-1	-1	$E(15)^2 + E(15)^{13}$	$E(15)^2 + E(15)^{13}$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(15)^4 + E(15)^{11}$	$E(15)^4 + E(15)^{11}$	$E(15) + E(15)^{14}$	$E(15) + E(15)^{14}$	$E(15)^7 + E(15)^8$	$E(15)^7 + E(15)^8$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
χ_{18}	2	0	2	0	-1	-1	$E(15) + E(15)^{14}$	$E(15) + E(15)^{14}$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(15)^2 + E(15)^{13}$	$E(15)^2 + E(15)^{13}$	$E(15)^7 + E(15)^8$	$E(15)^7 + E(15)^8$	$E(15)^4 + E(15)^{11}$	$E(15)^4 + E(15)^{11}$	$E(5) + E(5)^4$	$E(5) + E(5)^4$

Trivial source character table of $G \cong C15$: C4 at $p = 3$:													
Normalisers N_i					N_1						N_2		
p-subgroups of G up to conjugacy in G					P_1						P_2		
Representatives $n_j \in N_i$	1a	4a 2	a 5 a	4b	10a	5b	10b	1a 4	4a $5a$	2a	4b $5b$	10a	10b
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$ 3	-1 3	3	-1	3	3	3	0	0 0	0	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 3$	1 3	3	1	3	3	3	0	0 0	0	0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$-0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 3$	E(4) -	-3 3	-E(4)	-3	3	-3	0	0 0	0	0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$-0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 3$ -	-E(4) -	-3 3	E(4)	-3	3	-3	0	0 0	0	0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 6$	0 -	$6 3 * E(5) + 3 * E(5)^4$	0	$-3*E(5) - 3*E(5)^4$	$3*E(5)^2 + 3*E(5)^3$	$-3*E(5)^2 - 3*E(5)^3$	0	0 0	0	0 0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 6$	0 -	$6 3 * E(5)^2 + 3 * E(5)^3$	0	$-3*E(5)^2 - 3*E(5)^3$	$3*E(5) + 3*E(5)^4$	$-3*E(5) - 3*E(5)^4$	0	0 0	0	0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$-1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} \mid 6$	0 6	$3*E(5)^2 + 3*E(5)^3$	0	$3*E(5)^2 + 3*E(5)^3$	$3*E(5) + 3*E(5)^4$	$3*E(5) + 3*E(5)^4$	0	0 0	0	0 0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 6$	0 6	$3*E(5) + 3*E(5)^4$	0	$3*E(5) + 3*E(5)^4$	$3*E(5)^2 + 3*E(5)^3$	$3*E(5)^2 + 3*E(5)^3$	0	0 0	0	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$ 1	1 1	1	1	1	1	1	1	1 1	1	1 1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 1$	-1 1	1	-1	1	1	1	1 -	-1 1	1	-1 1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$-0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 1$	E(4) -	$\cdot 1$ 1	-E(4)	-1	1	-1	1 E	f(4) 1	-1 -1	E(4) 1	-1	-1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $	$-0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 1 -$	-E(4) -	$\cdot 1$ 1	E(4)	-1	1	-1	1 - i	E(4) 1	-1 I	(4) 1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \mid 2$	0 –	$E(5)^2 + E(5)^3$	0	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	2	$0 E(5)^2 + E$	$(5)^3 -2$	$E(5) + E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0 -	a = (a) 1	0	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	2	0 $E(5) + E($		$E(5)^2 + E(5)^3$		$-E(5)^2 - E(5)^3$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $		0 2	$E(5) + E(5)^4$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^{2} + E(5)^{3}$	2	$0 \qquad E(5) + E(6)$		$0 \qquad E(5)^2 + E(5)^3$		$E(5)^2 + E(5)^3$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} \end{vmatrix} $		0 2	$E(5)^2 + E(5)^3$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	2	$0 E(5)^2 + E$	$(5)^3$ 2	0 $E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,25,14)(8,28,17)(10,31,20)(13,34,23)(15,37,26)(18,40,29)(21,43,32)(24,46,35)(27,48,38)(30,51,41)(33,53,44)(36,55,47)(39,56,49)(42,58,52)(45,59,54)(50,60,57)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2,3,6)(4,16),9,25)(5,42,10)(3,24)(1,2,3)(4,33)(24,33)($