Въведение.

- Изграждащи цифрови блокове (Digital building blocks)
 - Логически елементи, мултиплексори, декодери, регистри, аритметични схеми
 - Изграждащите блокове се подчиняват на трите основни принципа -hierarchy, modularity и regularity
 - Ніегатсну на простите компоненти;
 - Добре дефинирани интерфейси и функции;
 - Стандартните структури са лесно разширими (с мултипликация).

1-Bit Суматори (1-Bit Adders).

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

1-Bit Суматори (1-Bit Adders).

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
O	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{out} =$$

1-Bit Суматори (1-Bit Adders).

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

 $C_{out} = AB$

Full Adder

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\begin{array}{l} \textbf{S} & = \textbf{A} \oplus \textbf{B} \oplus \textbf{C}_{\text{in}} \\ \textbf{C}_{\text{out}} & = \textbf{A}\textbf{B} + \textbf{A}\textbf{C}_{\text{in}} + \textbf{B}\textbf{C}_{\text{in}} \end{array}$$

Много-битови Суматори (Multibit Adders (CPAs)).

• Видове много-битови суматори според начина на формиране на преноса (carry) (carry propagate adders (CPAs)):

Ripple-carry (бавен)Carry-lookahead (бърз)

– Prefix (по-бърз)

• Последните два са по-бързи при големи суматори, но изискват повече допълнителен хардуер.

Ripple-Carry Adder

- Верижно свързани 1-bit суматори
- Саггу преминава като вълна през цялата верига
- Недостатък: бавно

• Закъснение: $t_{\text{ripple}} = Nt_{FA}$ където t_{FA} е закъснението на един 1-bit пълен суматор (1-bit full adder).

Carry-Lookahead Adder (CLA).

• Пресмятане на carry out (C_{out}) за k-bit блокове използвайки generate и propagate сигнали.

• Някои дефиниции:

- Колоната i произвежда carry out или като zenepupa (generating) carry out или като npexebpns (propagating) carry propagating carry out (C_{out}).
- Генериращи (G_i) и прехвърлящи (P_i) сигнали за всяка колона:
 - Колона i ще генерира carry out само ако A_i **И** B_i са едновременно 1.

$$G_i = A_i B_i$$

• Колона i ще прехвърля саггу в саггу out ако A_i **ИЛИ** B_i е 1.

$$\boldsymbol{P}_i = \boldsymbol{A}_i + \boldsymbol{B}_i$$

• Carry out на колона $i(C_i)$ e:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Carry-Lookahead Adder (CLA).

Пресмятането се осъществява на стъпки:

- Стъпка 1: Пресмятане на G_i и P_i за всички колони;
- **Стъпка 2:** Пресмятане на G и P за k-bit блокове
- Стъпка 3: C_{in} се прехвърля през всеки k-bit propagate/generate block.
- Пример: за 4-bit блок ($G_{3:0}$ and $P_{3:0}$):

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

 $P_{3:0} = P_3 P_2 P_1 P_0$

• В общия слущай:

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_j))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_i = G_{i:i} + P_{i:i} C_{i-1}$$

32-bit CLA c 4-bit Blocks

Carry-Lookahead Adder (CLA).

Време за пресмятане

• 3a *N*-bit CLA c *k*-bit blocks:

•
$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

където:

- $-t_{pg}$: закъснението за генериране на всички P_i , G_i
- $-\ t_{pg_block}$: закъснението за генериране на всички $P_{i:j},\,G_{i:j}$
- $t_{
 m AND_OR}$: закъснението от $C_{
 m in}$ до $C_{
 m out}$ на последния AND/OR gate в k-bit CLA block
- N-bit carry-lookahead adder е доста по-бърз от ripple-carry adder за N > 16.

Prefix Adder (PA).

• Пресмята се саггу in (C_{i-1}) за всяка колона, след което сумата:

$$S_i = (A_i \oplus B_i) \oplus C_i$$

- Пресмятат се G и P за 1-, 2-, 4-, 8-bit blocks, т.е. докато всички G_i (carry in) не станат известни.
- Това изисква $\log_2 N$ стъпки.
- Carry in се генерира (generated) в колоната или се прехвърля (propagated) от предишната колона.
- Колона -1 съдържа $C_{\rm in}$, така че

$$- G_{-1} = C_{\text{in}}, P_{-1} = 0$$

- Carry in за колона i = carry out 3a колона i-1:
 - $C_{i-1} = G_{i-1:-1}$
- $G_{i-1:-1}$: генерираният сигнал обхваща колони от i-1 до -1
- Пресмята се уравнението:
 - $S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$
 - **Цел:** Бързо пресмятане на $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ... (наречени префикси (*prefixes*)).

Prefix Adder (PA).

- Generate и propagate сигнали за блок обхващащ bits i:j:
 - $G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$ (горна част)
 - $P_{i:j} = P_{i:k}P_{k-1:j}$ (долна част)
- С други думи:
 - **Генериране:** блокът i:j ще генерира **carry** ако:
 - горната част (i:k) генерира carry или
 - горната част прехвърля саггу генерирано в долната част (k-1:j)
 - **Прехвърляне:** блокът i:j ще прехвърля саггу ако и *двете части* npexвърлят саггу .

Prefix Adder (PA).

Схема на 16-bit PA.

$$t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$$
 където

 t_{pg} : закъснение за пресмятане на P_i G_i (AND or OR gate)

 t_{pg_prefix} : закъснение от черните префикс клетки (prefix cell) (AND-OR gate)

Сравнение на трите вида суматори.

- Закъснение на 32-bit:
 - ripple-carry суматор
 - carry-lookahead (CLA) суматор
 - prefix суматор
- CLA има 4-bit блокове
- 2-input gate delay = 100 ps; full adder delay = 300 ps

Сравнение на трите вида суматори.

- Закъснение на 32-bit:
 - ripple-carry суматор
 - carry-lookahead (CLA) суматор
 - prefix суматор
- CLA има 4-bit блокове
- 2-input gate delay = 100 ps; full adder delay = 300 ps

$$t_{\text{ripple}} = Nt_{FA} = 32(300 \text{ ps})$$

 $= 9.6 \text{ ns}$
 $t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$
 $= [100 + 600 + (7)200 + 4(300)] \text{ ps}$
 $= 3.3 \text{ ns}$
 $t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$
 $= [100 + \log_2 32(200) + 100] \text{ ps}$
 $= 1.2 \text{ ns}$

Изваждаща схема — Субтрактор (Subtracter).

Symbol

Implementation

Компаратор за равенство (Comparator: Equality).

Symbol

Implementation

Компаратор големина (Magnitude Comparator).

Сравнява A и B чрез изваждане, т.е. пресмята A - B. Отделя най-старшия (знаковия) бит.

- Ако той е 1 резултатът е отрицателен и A < B;
- Ако той е 0 резултатът е неотрицателен и $A \ge B$.

Comparator: Less Than

Аритметично и логическо устройство (Arithmetic Logic Unit (ALU)).

$\mathbf{F}_{2:0}$	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ∼B
101	A ~B
110	A - B
111	SLT

Аритметично и логическо устройство (Arithmetic Logic Unit (ALU)). Схема на ALU.

$\mathbf{F}_{2:0}$	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

(A AND B)

(AORB)

(A AND B)

(A OR B)

(Set Less Than)

Преместващи устройства (Shifters, Rotators).

- Логическо преместване: премества битовете наляво или надясно като попълва празните места с 0
 - Пример: 11001 >> 2 =
 - Пример: 11001 << 2 =
- **Аритметическо преместване:** като логическото, но при местене на дясно попълва празните места със стойността на най-старшия бит (msb) на числото преди местенето.
 - Пример: 11001 >>> 2 =
 - Пример: 11001 <<< 2 =
- **Ротатори:** преместват битовете кръгово, така че изпадащите битове влизат от другата страна на числото.
 - Пример: 11001 ROR 2 =
 - Пример: 11001 ROL 2 =

Преместващи устройства (Shifters, Rotators).

- Логическо преместване: премества битовете наляво или надясно като попълва празните места с 0
 - Пример: 11001 >> 2 = 00110
 - Пример: 11001 << 2 = 00100
- **Аритметическо преместване:** като логическото, но при местене на дясно попълва празните места със стойността на най-старшия бит (msb) на числото преди местенето.
 - Пример: 11001 >>> 2 = 11110
 - Пример: 11001 <<< 2 = 00100
- Ротатори: преместват битовете кръгово, така че изпадащите битове влизат от другата страна на числото.
 - Пример: 11001 ROR 2 = 01110
 - Пример: 11001 ROL 2 = 00111

Примерен дизайн на Shifter.(4-бит)

Приложения на Shifter – умножители и делители (Multipliers, Dividers)

- A << N = A 2^N (<< логическо преместване)
 - **Пример:** $00001 << 2 = 00100 (1 2^2 = 4)$
 - **Пример:** $11101 << 2 = 10100 (-3 2^2 = -12)$
- A >>> N = A 2^N (>>> аритметическо преместване!)
 - Пример: 01000 >>> 2 = 00010 (8 $2^2 = 2$)
 - **Пример:** $10000 >>> 2 = 11100 (-16 2^2 = -4)$

Умножители (Multipliers),

- **Частични произведения** формират се при умножаване на една цифра от множителя (multiplier) с множимото (multiplicand).
- Отместените частични произведения се сумират за да оформят резултата.
- Пример:

Decimal		Binary
230	multiplicand	0101
x 42 460 + 920	multiplier partial products	x 0111 0101 0101
9660	•	0101 + 0000
	result	0100011
230 x 42 = 966	$5 \times 7 = 35$	

Умножители (Multipliers),

• 4 х 4 Умножител – схемна реализация.

Числови системи.

- Двоично представяне на числата:
 - Положителни числа
 - Двоични числа без знак
 - Отрицателни числа
 - В двоично-допълнителен код
 - Представяне знак/големина
- А дробните числа?
- Две представяния:
 - **Fixed-point:** с фиксирана двоична точка
 - Floating-point: с "плаваща" двоична точка двоичната точка се премества отдясно на най-старшия бит в състояние "1".

Числа с фиксирана двоична точка.

- Пример:
- Числото 6.75 представено с 4 bit цяла част и 4 bit дробна част:

01101100
0110.1100
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Двоичната точка е скрита.
- Броят битове на цялата и на дробната част трябва да е уговорен предварително.

Представете 7.5₁₀ като използвате същия формат:

Числа с фиксирана двоична точка.

- Пример:
- Числото 6.75 представено с 4 bit цяла част и 4 bit дробна част:

01101100
0110.1100
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Двоичната точка е скрита.
- Броят битове на цялата и на дробната част трябва да е уговорен предварително.

Представете 7.5₁₀ като използвате същия формат:

Числа с фиксирана двоична точка и знак.

- Представяния:
 - Знак/Големина (Sign/magnitude)
 - Двоично-допълнителен код (Two's complement)
- **Пример:** Представете -7.5_{10} като използвате същия формат (4 bit цяла част и 4 bit дробна част)
 - Sign/magnitude:
 - Two's complement:

Числа с фиксирана двоична точка и знак.

- Представяния:
 - Знак/Големина (Sign/magnitude)
 - Двоично-допълнителен код (Two's complement)
- **Пример:** Представете -7.5 $_{10}$ като използвате същия формат (4 bit цяла част и 4 bit дробна част)
 - Sign/magnitude:

11111000

- Two's complement:

3. Add 1 to lsb:
$$+$$
 1 1 10001000

Числа с плаваща двоична точка.

- Двоичната точка е отдясно на най-старшия бит в състояние "1".
- Подобно на десетичното научно представяне (scientific notation).
- Например 273₁₀ в scientific notation e:

$$273 = 2.73 10^2$$

• Изобщо число в scientific notation се прадставя като:

 \mathbf{M} $\mathbf{B}^{\mathbf{E}}$, където

- **M** = мантиса (mantissa)
- **B** = основа (base)
- **E** = експонента (exponent)
- В примера, M = 2.73, B = 10, and E = 2

32-битови числа с плаваща двоична точка. (32-bit floating point representation)

Три варианта на представяне — последният от тях е **IEEE 754** и е приет за стандарт (**floating-point standard**).

• **Пример:** представете 228₁₀ чрез 32-bit floating point representation

Sign	Exponent	Mantissa
1 bit	8 bits	23 bits

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Представяне 1.

Пример: представете 228₁₀ чрез 32-bit floating point representation

1. Преобразуване десетично → двоично число (**не разменяйте местата на стъпки 1 & 2!**):

$$- 228_{10} = 11100100_2$$

2. Запис на числото в "binary scientific notation":

$$- 11100100_2 = 1.11001_2 \quad 2^7$$

- 3. Попълване на всяко поле (секция) в 32-bit floating point представяне:
 - Знаковият бит (sign bit) е положителен (0)
 - В 8-те exponent bits записваме числото 7
 - Останалите 23 bits са за мантисата (mantissa)

Ciarra		
0	00000111	11 1001 0000 0000 0000 0000
1 bit	8 bits	23 bits

Sign Exponent

Mantissa

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Представяне 2.

Пример: представете 228₁₀ чрез 32-bit floating point representation

• Първият бит на мантисата е винаги 1:

$$-228_{10} = 11100100_2 = 1.11001$$
 2⁷

- Следователно, няма нужда да се записва: по подразбиране водеща 1.
- Записват се само дробната част битове в 23-bit поле.

Ciarra	C 2440 0 10 0 10 1	
0	00000111	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

Sign Exponent Fraction

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Представяне 3.

Пример: представете 228₁₀ чрез 32-bit floating point representation

- *Отместена експонента (Biased exponent)*: $otmectbane (bias) = 127 (011111111_2)$
 - Отместена експонента = bias + exponent
 - Експонентата 7 се записва като:
 - $127 + 7 = 134 = 10000110_2$
- Toba e IEEE 754 32-bit floating-point representation на 228₁₀

	Exponent	
Sign	Biased	Fraction
0	10000110	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

В шестнадесетичен код (hexadecimal) това представяне се записва като: 0x43640000

32-битови числа с плаваща двоична точка. (32-bit floating point representation)

Пример: представете -58.25₁₀ чрез 32-bit floating point representation (IEEE 754)

1. Преобразуване десетично → двоично число

$$- -58.25_{10} = 111010.01_2$$

2. Запис на числото в "binary scientific notation":

$$- 111010.01_2 = 1.1101001 2^5$$

- 3. Попълване на всяко поле (секция) в 32-bit floating point представяне:
 - Знаковият бит (sign bit) е отрицателен (1)
 - В 8-те exponent bits записваме числото $(127 + 5) = 132 = 10000100_2$
 - Останалите 23 bits е мантисата (mantissa) **110 1001 0000 0000 0000 0000**

1 bit	8 bits	23 bits
1	100 0010 0	110 1001 0000 0000 0000 0000

Sign Exponent

Fraction

В шестнадесетичен код: 0хС2690000

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Специални случаи.

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

NaN - несъществуващи числа, напр. *имагинерни* числа

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Формат на данните според точността.

- Данни с единична (стандартна) точност (Single-Precision):
 - 32-bit
 - 1 знаков (sign) bit, 8 exponent bits, 23 bits мантиса
 - отместване (bias) = 127
- Данни с двойна точност (Double-Precision):
 - 64-bit
 - 1 знаков (sign) bit, 11 exponent bits, 52 bits мантиса
 - отместване (bias) = 1023

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Закръгляване.

- Overflow: Числото е твърде голямо за представяне (над допустимото)
- **Underflow:** Числото е твърде малко за представяне (под допустимото)
- Начини на закръгляване (Rounding modes):
 - Надолу (Down)
 - Harope (Up)
 - По посока на нулата (Toward zero)
 - Към най-близкото (To nearest)
- **Пример:** закръгляне на 1.100101 (1.578125) до само 3 bits мантиса
 - Надолу: 1.100
 - Нагоре: 1.101
 - По посока на нулата : 1.100
 - Към най-близкото : 1.101 (1.625 е по-близко до 1.578125 отколкото 1.5)

32-битови числа с плаваща двоична точка. (32-bit floating point representation) Събиране на числа във floating point формат.

- 1. Отделят се експонентите и мантисите на числата.
- 2. Към мантисите се добавя водещата единица.
- 3. Сравняват се експонентите на числата.
- 4. Премества се по-малката мантиса ако е необходимо.
- 5. Мантисите се събират.
- 6. Нормализира се получената мантиса и се променя експонентата ако е необходимо.
- 7. Закръглява се резултата.
- 8. Възстановява се представянето във floating point формат.