MANUFACTURE OF ZRO2 SOLID ELECTROLYTE FILM WITH SC203 AND AL203 ADDED BY SOL-GEL METHOD

Patent number:

JP10097860

Publication date:

1998-04-14

Inventor:

CHIBA REIICHI; YOSHIMURA BUNICHI; YAMAKI

JUNICHI; HIRAI TOSHIRO; YONEZAWA MASA; ENDO

KEIKO

Applicant:

NIPPON TELEGRAPH & TELEPHONE;; MITSUBISHI

MATERIALS CORP

Classification:

- international:

H01M8/02; H01M8/12

- european:

Application number: JP19960271657 19960920 Priority number(s): JP19960271657 19960920

Report a data error here

Abstract of JP10097860

PROBLEM TO BE SOLVED: To manufacture a solid electrolyte film at low processing cost by adopting a sol-gel liquid containing Sc2 O3 , Al2 O3 and ZrO2 as a thin film forming material. SOLUTION: A manufacturing method of a solid electrolyte film of ZrO2 with Sc2 O3 and Al2 O3 added by a sol-gel method uses a sol-gel liquid containing Sc2 O3 , Al2 O3 and ZrO2 as a thin film forming material. Preferably, the solid electrolyte film contains 1-x-y parts of ZrO2 , x parts of Sc2 O3 and y parts of Al2 O3 (0.070<x+y<0.160, 0.005<y<0.050) because the thin film is so formed as to stabilize the cubic system and has a highly ion conductive composition. In addition, this cubic system is constructed three-dimensionally and the amount of Al2 O3 additives is small, hence a thin film manufacturing method such as an EVD method encounters difficulties in manufacturing the film.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A) (11)特許出願公開番号

特開平10-97860

(43)公開日 平成10年(1998)4月14日

(51) Int. C1. 6

H 0 1 M

8/02

8/12

識別記号

FΙ

H 0 1 M 8/02

K

8/12

審査請求 未請求 請求項の数6

平成8年(1996)9月20日

F D

(全6頁)

(21)出願番号

(22)出願日

特願平8-271657

(71)出願人 000004226

日本電信電話株式会社

東京都新宿区西新宿三丁目19番2号

(71)出顏人 000006264

三菱マテリアル株式会社

東京都千代田区大手町1丁目5番1号

(72)発明者 千葉 玲一

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(72) 発明者 吉村 文一

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(74)代理人 弁理士 雨宮 正季

最終頁に続く

(54) 【発明の名称】ゾルゲル法によるSc2O3、Al2O3添加ZrO2系固体電解質膜の作製法

(57)【要約】

【課題】 低温動作型固体燃料電池用材料として優れた 材料であるSc₂O₃、Al₂O₃添加ZrO₂を薄膜化 し、固体電解質膜を低いプロセスコストで作製すること を目的とする。

【解決手段】 Sc2O3、Al2O3添加ZrO2系固体 電解質膜の作製法は、Sc₂O₃、Al₂O₃およびZrO 2を含むゾルゲル液を薄膜形成材とすることを特徴とす る。

【効果】 イオン伝導性に優れたAl₂O₃、Sc₂O₃添 加ZrO2電解質を低温、かつ簡便に薄膜化できるとい う利点がある。

【特許請求の範囲】

【請求項1】Sc₂O₃、Al₂O₃およびZrO₂を含む ゾルゲル液を薄膜形成材とすることを特徴とする、ゾル ゲル法によるSc₂O₃、Al₂O₃添加ZrO₂系固体電 解質膜の作製法。

【請求項2】前記ゾルゲル液の $Z r O_2$ 、 $S c_2 O_3$ 、 $A l_2 O_3$ をそれぞれ、1-x-y:x:y(ただし、0.070<x+y<0.160、0.005<y<0.050)の比で含むことを特徴とするゾルゲル法による請求項1記載の $S c_2 O_3$ 、 $A l_2 O_3$ 添加 $Z r O_2$ 系固体電解質膜の作製法。

【請求項3】熱処理により再結晶化して電解質薄膜を形成するプロセスを含むことを特徴とする、請求項1または2のゾルゲル法によるSc2O3、Al2O3添加ZrO2系固体電解質膜の作製法。

【請求項4】前記熱処理の温度を $1100\sim1300$ 度とすることを特徴とする、請求項 $1\sim3$ 記載のいずれかのゾルゲル法による Sc_2O_3 、 Al_2O_3 添加 ZrO_2 系固体電解質膜の作製法。

【請求項5】イオン導電体または混合導電体または多孔 20 質の電子伝導体を基板として用いることを特徴とする請求項1~4記載のいずれかのゾルゲル法によるSc2Oa、Al2Oa添加ZrO2系固体電解質膜の作製法。

【請求項6】塗布方法としてスピンコート法、スクリーンプリント法、スプレー法またはディッピング法を用いることを特徴とする請求項 $1\sim5$ 記載のいずれかのゾルゲル法による Sc_2O_3 、 Al_2O_3 添加 ZrO_2 系固体電解質膜の作製法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は固体燃料電池用固体電解質の作製法に関するものである。

[0002]

【従来の技術および問題点】近年、酸素イオン伝導体を 用いた固体電解質燃料電池に関心が高まりつつある。特 にエネルギーの有効利用という観点から、固体燃料電池 はカルノー効率の制約を受けないため本質的に高いエネ ルギー変換効率を有し、さらに良好な環境保全が期待さ れるなどの優れた特長を持っている。

【0003】固体電解質燃料電池の電解質は、内部をイ 40 オンが流れるときに生じる直流抵抗損を低く抑える必要から、高いイオン伝導度が求められる。

【0004】酸素イオン導電体であるY₂O₃安定化2rO₂ (YSZ) は酸化・還元雰囲気でイオン輸率がほぼ1.0であるため、固体電解質燃料電池の電解質として従来最も有望視されてきた。しかし、十分なイオン伝導度を得るには1000℃の高温動作が必要であり、このような高温では電極界面との反応による部品寿命の劣化が激しく固体燃料電池の実用化が遅れているのが現状である。そこで動作温度低減が望まれている。

【0005】低温動作化(600℃から800℃程度) には、高イオン伝導度材の使用、及び電解質の薄膜化が 必要である。

【0006】ところで Sc_2O_3 、 Al_2O_3 添加 ZrO_2 は、従来材の Y_2O_3 安定化 ZrO_2 に比べ約3倍(800) のイオン伝導度を有し、且つイオン輸率がほぼ 1.0である。このため、この材料は低温動作様の固体電解質材として有望である。さらにこの材料を薄膜化すれば低温動作時の発電効率の向上が期待できる。

【0007】薄膜化の方法としては、気相成長法の一種であるEVD法が最もよく検討されているが、装置が複雑であり、製造コストの高い点及び精密な組成制御が難しいなどの難点がある。特に Sc_2O_3 、 Al_2O_3 添加 ZrO_2 系は三元系で且つドーパント濃度が低いため、均一な膜を安定的に作製することは困難である。

[0008]

【本発明の目的】本発明は、低温動作型固体燃料電池用材料として優れた材料である Sc_2O_3 、 Al_2O_3 添加 ZrO_2 を薄膜化し、固体電解質膜を低いプロセスコストで作製することを目的とする。

[0009]

【問題点を解決するための手段】上記問題点を解決するため、本発明によるゾルゲル法による ScO_2 、 Al_2O_3 添加 ZrO_2 系固体電解質膜の作製法は、 Sc_2O_3 、 Al_2O_3 および ZrO_2 を含むゾルゲル液を薄膜形成材とすることを特徴とする。

【0010】本発明はZrO₂、Sc₂O₃、Al₂O₃を 1-x-y:x:y(0.070<x+y<0.16 0、かつ、0.005<y<0.050)の比で含むゾ 30 ルゲル液を基板の上に塗布し、これを電気炉等の中で熱 処理することで得られる。

【0011】上述のように、ゾルゲル液の組成比は、ZrO₂: Sc₂O₃: Al₂O₃=1-x-y: x: y(0. 070 < x+y < 0. 160、かつ、0. 005 < y < 0. 050)であるのが好ましいが、この範囲であると、形成される薄膜が立方晶に安定し、かつイオン伝導度が高い組成であるからである。またこの系が三元系であることおよびAl₂O₃の添加量が少ないことから、EVD法などによる従来使用されている薄膜作製法では、製膜が困難であるからである。

【0012】上述の熱処理は、ゾルゲル液内の有機物を分解蒸発し、原子レベルで混じり合った状態で残されている金属塩が反応し、電解質膜が得るために行なわれる。一般に用いられている固相反応法では、 $A1_2O_3$ や Sc_2O_3 が固溶しにくいので、この系の場合、1600 \mathbb{C} 以上の高温が必要となる。これに対しゾルゲル法は各元素の混合が原子レベルで行われているため比較的低温の熱処理によっても均一で緻密な薄膜が得られる。すなわち、 $1100\sim1300$ \mathbb{C} の温度で行うことができ

50 る。

3

【0013】この本発明の方法によれば、ゾルゲル液の 塗布厚を調整することにより最終的なゾルゲル膜の厚み を0.1ミクロンから100ミクロンまで制御すること ができる。ここでゾルゲル液の塗布にはスピンコート 法、スクリーンプリント法、スプレー法又はディッピン グ法を用いればよい。

【0014】ここで、基板としては平坦な比較的イオン 伝導度の高いものであれが基本的にいかなるものでもよい。たとえば、後述の実施例で述べる Al_2O_3 基板、 $La-Sr-MnO_3$ 系基板、 Gd_2O_3 添加 CeO_2 系基板 10 等のほかに、 Bi_2O_3 、 $Ba_2In_2O_5$ 、+3価になる 希土類元素を添加した CeO_2 などのイオン電導体、混合導電体、多孔質の電子伝導体を使用することができる。多孔質基板の上にこのような本発明による薄膜を形成するには、表面の平坦化(緻密化)は必要であるが、これには多孔質基板上に微細な電極材を塗布し焼き固めた後に表面を研磨する方法によって行うことができる。前述の基板は実施例 2に示すように固体電解質自体の基板であってもよく、また実施例 1に示すように電極を兼ねる基板であってもよい。

[0015]

【作用】もし、上記のイオン導電性の高い Sc_2O_3 添加 ZrO_2 材電解質を薄膜化することができれば、電解質 内での電圧降下を軽減することができる。これにより発電効率が向上し低温動作化が可能となる。

【0016】またゾルゲル法は、湿式法の一種であるため複雑な装置を必要とせず、原料の利用率も高いため製造コストの面でも優れている。

[0017]

[0018]

【実施例1】図1 a、図2 b は本発明の材料を用いゾルゲル法により電解質膜をA 1_2 O_3 基板の上に製膜するプロセスを示したものである。これを以下に説明する。

【0019】図1 a に示すように、2-メトキシエタノール29. 4g中にアルミニウムイソプロポキシド(A $1-(OPr')_3$)1.14g及び2,4-ペンタンジオン 20.8gを加え、超音波にかけた後、120℃で温めて溶解させ、約0.3%のアルミニウム溶液を調整した。

【0020】これに硝酸スカンジウム・4 水和物 3. 55g、ジルコニウムノルマルブトキシド($Zr-(Obu)_4$)(Zr:19.99%)22.56gを加え、再び超音波にかけ溶融させ、最後に溶液中の酸化物換算濃度が7.2%になるように2- メトキシエタノールを22.55g添加し、0. $85(ZrO_2)-0$. $10(Sc_2O_3)-0$. $05(Al_2O_3)$ 薄膜形成剤を調整した。

【0021】前述のように調整した薄膜形成剤を、図1bに示すようにスピンコート法により、 Al_2O_3 基板上へ塗布し、400Cの電気炉で10分間乾燥させ、この行程を所望の膜厚が得られるまで繰り返し、最後に電気炉内で1200C、1時間の熱処理を行い0.85(ZrO_2) -0.10(Sc_2O_3) -0.05(Al_2O_3) 薄膜を形成した。なお、スピンコートでの製膜条

【0022】これらの薄膜電解質材のイオン伝導度を直流4端子法で500℃から1000℃まで測定した。これを図2に示す。図2はイオン伝導度の温度依存性を示すものであり、●はゾルゲル膜、○は比較のための同じ組成の焼結膜を示す。

件は、500rpm, 20secである。

【0023】熱処理温度を1200℃とすることでほぼ バルク材に匹敵するイオン伝導度が得られた。図3は熱 処理後のゾルゲル膜のX線解析パターンを示すものであ る。X線回折法により熱処理後のゾルゲル薄膜の結晶構 造を評価したところ、図3に示すように立方晶に安定化 されており、1200℃の比較的低い温度でもA1₂O₃ 20 が充分固溶していることがわかった。なお、図中、指数 付けしていないピークはA1₂O₃基板のものである。

【0025】この上にスピンコート法及びディッピング 法でゾルゲル液を数回にわたり塗布し、1200℃で2 時間熱処理し、厚み約5ミクロンの固体電解質層2が得 られた。このプロセスにより再結晶化が進み電解質薄膜 2が多孔質基板(電極基板を兼ねる)1上に形成され た。

【0026】最後にNiO-YSZ微粉末(Ni40vol.%-YSZ60vol.%)をPVA水溶液で溶き電解質薄膜上に塗布し、1100℃で1時間焼成して燃料極3とした。さらに上記燃料極3および空起電極基板1に白金の集電用メッシュ4を設けた。

【0027】この単セルの模式図を図4a、図4bに示す。このセルを用い図4cに示すような燃料電池を構成し、800℃において試験を行った。ここで空気極側には酸素を燃料極側には水素を供給した。なお、図中、5は白金端子、6はガスシールを示す。このときの起電力を表1に示す。

【0028】ここで、電解質にYSZを用いた場合も比較のために示した。いずれの電解質薄膜の場合において 50 もほぼバルク材を用いた結果とほぼ同様の起電力値が得 られた。これらの値は、ネルンストの式(V=RT/nF, In (Po2 cathode/Po2 anode)、T:絶対温度、R:ガス定数、n:ファラデー定数、Po2 cathode:空気極の酸素分圧、Po2 anode:燃料極の酸素分圧)から決定される理論起

電力値((1. 15V at 800 C)とほぼ同じ値 であり、ゾルゲル法により、多孔質カソード基板上に形成された電解質膜は、イオン輸率が 1.0 で且つガスシール性に優れていることがわかる。

6

[0029]

表1 実施例1及び2の燃料電池の起電力

ゾルゲル膜塗布法	基板	起電力 (V)
スピンコート	多孔質L a _{0.8} S r _{0.2} M n O ₈	1. 11
ディッピング	多孔質La _{0.8} Sr _{0.2} MnO ₈	1. 10
スプレー	0. 9 C e O ₂ - 0. 1 G d ₂ O ₃	1.00
無し	0. 9 C e O ₂ - 0. 1 G d ₂ O ₃	0.85
無し	0. 92ZrO ₂ -0. 08Y ₂ O ₃ (YSZ)	1. 15

[0030]

【実施例2】実施例1と同様の組成のゾルゲル液を、厚 み約0.2mmのセリア基板(組成が0.90CeO2 -0.10Gd₂O₃)上にスプレー法により塗布し、同 様に1200℃で2時間熱処理を行い、再結晶化させ、 厚み約1ミクロンの電解質薄膜を得た。次に、薄膜を塗 布した面に実施例1と同様の燃料極を同様の方法で設 け、次にその裏面に実施例1と同じ組成で平均粒径が 1. 0ミクロンの空気極を1100℃で焼き付け単セル とした。このセルを実施例1と同様の構成で燃料電池と し、800℃においてその起電力を測定した。この結果 を表1に示す。ここで薄膜電解質を設けないセリア基板 のみのセルについても測定を行った。セリア基板は高い イオン伝導性を有しているがイオン輸率が1.0でない ため理論起電力が得られない。これに対し、ゾルゲル法 により設けたZrO2系の電解質薄膜を持つセルはほぼ 理論起電力に達している。これは、イオン輸率が1.0 である本発明の電解質薄膜が固体電解質として機能して 40 いることを示している。

[0031]

【発明の効果】以上説明したように、本発明の薄膜製造

法はイオン伝導性に優れた Al_2O_3 、 Sc_2O_3 添加ZrO $_2$ 電解質を低温、かつ簡便に薄膜化できるという利点がある。

【図面の簡単な説明】

【図1a】本発明によるゾルゲル法の薄膜形成剤調整の プロセス図。

【図1b】本発明による前記薄膜形成剤を使用した薄膜30 形成のプロセス図。

【図2】ゾルゲル膜のイオン伝導度の温度依存性を示す 図

【図3】ゾルゲル膜のX線回折パターンを示す図。

【図4a】 実施例1で使用した単セルの模式図。

【図4b】実施例1で使用した単セルの模式図。

【図4c】実施例1で使用した燃料電池の構造図。

【符号の説明】

- 1 空気極基板
- 2 固体電解質
- 3 燃料極
- 4 集電体メッシュ
- 5 白金端子
- 6 ガスシール

【図4c】

フロントページの続き

(72) 発明者 山木 準一

東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内

(72) 発明者 平井 敏郎

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(72) 発明者 米沢 政

東京都千代田区大手町一丁目6番1号 三 菱マテリアル株式会社内

(72)発明者 遠藤 恵子

東京都千代田区大手町一丁目6番1号 三

菱マテリアル株式会社内

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

DI ACK DODDEDG

u	BLACK BURDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
P	COLORED OR BLACK AND WHITE PHOTOGRAPHS
Ο.	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox