VERMES MIKLÓS Fizikaverseny

II. forduló: megyei szakasz

2022. március 9.

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

Az ábrákon fizikai fogalmak képrejtvényei láthatók. A megfejtéseket írd az ábrák alatti mezőbe! Az azonos pontszámot elért tanulók esetén számíthat a helyes megfejtés!

1. feladat

Egy 10N/m rugalmassági állandójú rugót felfüggesztünk függőlegesen úgy, hogy a szabad végéhez egy m tömegű testet kapcsolunk. A rugó ekkor 10cm-rel nyúlik meg. Ez után levesszük a rugót és két egyenlő részre vágjuk. A két darabot az ábra szerint felfüggesztjük, majd az m tömegű testet a két rugó szabad végéhez kapcsoljuk. Vegyük $g = 10m/s^2$.

a) Határozd meg a test tömegét!

(1p)

b) Mennyivel fognak megnyúlni a rugók ebben a második esetben?

(**6p**)

2. feladat

Egy lejtőn mozgó testre a lejtővel párhuzamos \vec{F} erő hat. Az \vec{F} erő mely értékeire végez a test:

a) egyenletesen gyorsulo mozgast felfele a lejton	(2 p)
b) egyenletes mozgást felfele a lejtőn	(2p)
c) marad nyugalomban a lejtőn a test	(2p)
d) egyenletes mozgást lefele a lejtőn	(2p)
e) egyenletesen gyorsuló mozgást lefele a lejtőn	(2p)

Ismertnek tekintjük a csúszási súrlódási együtthatót μ (a nyugalmi – tapadási - súrlódási együttható maximális értéke legyen egyenlő a csúszási súrlódási együtthatóval), és a lejtő hajlásszögét α .

3. feladat

Egy ideális fonalat 30°-os lejtő csúcsán lévő szintén ideális állócsigán vetünk keresztül, amelynek a végein két egyforma m tömeg található. Az egyik tömeg a lejtőn van, a másik függőlegesen lóg. Eltekintünk a csiga tömegétől és a súrlódástól a lejtőn.

a) Számítsuk ki a rendszer gyorsulását és	(3p)
b) a fonalban fellépő feszültséget!	(4p)
c) Mennyi idő alatt ér le a lejtő tetejétől az aljába a test, ha a mozgás nyugalomból indul?	(1p)
d) Mekkora sebességgel ér a test a lejtő aljára?	(1p)
e) Mekkora úton áll meg a test egy vízszintes síkra érve, amelyen a test súrlódással mozog,	_
miután elhagyja a lejtőt és leoldódik róla a fonál?	(1p)
Ismert a test tömege, $m = 2kg$, a lejtő hossza $l = 2m$, a súrlódási együttható $\mu = 0.2$.	
Vegyük a $g = 10m/s^2$ -nek.	

Hivatalból 3 pont.