

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH

Faculty of Science & Technology Department of Mathematics

MAT1102: Differential Calculus and Coordinate Geometry (Sections: All)

SAMPLE QUESTIONS

1. Answer the following questions:

(a) $\vec{A} = 2\hat{x} + 3\hat{y} + 5\hat{z}, \vec{B} = 4\hat{x} + 6\hat{y} + 10\hat{z},$

(i) Find $\vec{B} \cdot \vec{A}$ and $\vec{A} \times \vec{B} \cdot \vec{B}$.

(ii) Find the length of $2\vec{A} + 4\vec{B}$.

(iii) Determine if the vectors are parallel, perpendicular or neither.

(b) $\vec{A} = \hat{x} - \hat{y} + \widehat{3z}$ and $\vec{B} = 3\hat{x} + 2\hat{y} + \hat{z}$, $\vec{C} = \hat{x} + \hat{y} + 3\hat{z}$,

(i) Find the area of the parallelogram if \vec{A} and \vec{B} are edges of parallelogram.

(ii) Find the volume of parallelepiped whose adjacent sides are \vec{A} , \vec{B} and \vec{C} .

(iii) Evaluate $\vec{A} \times \vec{B} \times \vec{C}$.

(iv) Determine the direction of \vec{B} .

(c) $\vec{P} = \hat{x} - 3\hat{y} - 6\hat{z}$ and $\vec{Q} = 6\hat{x} + 2\hat{y} + 4\hat{z}$.

(i) Find a unit vector which is perpendicular to both \vec{P} and \vec{Q} .

(ii) Determine whether \vec{P} and \vec{Q} are parallel or not?

(iii) Find the cosine and the sine angles between vectors \vec{A} and \vec{B} .

(iv) Find the projection of \vec{Q} on \vec{P} .

2. Answer the following questions:

(a) Given

$$\frac{x-4}{2} = \frac{y+5}{5} = \frac{z+1}{8},$$

$$\frac{x-2}{7} = \frac{y+1}{3} = \frac{z-1}{6}$$
.

Determine whether the lines are parallel, intersecting or skew. If intersects, then find the point of intersection.

[Document title]

- (b) Find the parametric, and symmetric forms of the lines passes through the points (1, -2, 3) and (2, 4, -1).
- (c) Find the equation of straight line which passes through the point (5,2,1) and parallel to the vector $\vec{b} = 2\hat{x} + \hat{y} + \hat{z}$ in vector, symmetric and parametric forms.
- (d) Find the angle between two straight lines

$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z-1}{5}$$
 and $\frac{x}{3} = \frac{y+1}{2} = \frac{z-5}{4}$.

- **3.** Answer the following questions:
 - (a) Find the angle between the planes x + 2y + 3z = 5 and 2x y + 3z = 10.
 - (b) Find the equation of the plane which passes through the point (2, 5, -4) and parallel to the plane 3x 3y 2z = 12.
 - (c) Find the point(s) of intersection between the planes 4x + y + 10z = -2 and -8x + 2y + 3z = -8.
 - (d) Find the point(s) of intersection of three planes -2x + 7y 5z = 8, x y = 1 and 5x + 5y + 9z = -32.
- **4.** Answer of the following questions:
 - (a) Sketch the following functions. Also find the domain and range:

(i)
$$f(x) = \sqrt{x-5}$$
, (ii) $f(x) = [x]$, (iii) $u(t) = t-3$, (iv) $f(x) = x^2 + 2x$.

(v)
$$y = |x - 3| + 5$$
, (vi) $y = (x + 2)^2$, (vii) $y = 5 - |x - 2|$, (viii) $y = x^2 + 5$

- (b) (i) Derive the general equation of parabola.
 - (ii) Find the polar transform of the $(-1,\sqrt{3})$. Also locate them in (r,θ) plane.
 - (iii) Identify and determine the vertices and foci of the curve

$$9x^2 - 4y^2 - 8y - 40 = 0$$
, or $\frac{(x-2)^2}{3^2} - \frac{(y-4)^2}{4^2} = 1$

Also sketch the curve.

- (c) (i) Derive the general equation of Ellipse and Hyperbola.
 - (ii) Identify and determine the vertices and foci of the curve

(a)
$$y^2 - 2y - 4x + 3 = 0$$
,

(b)
$$9x^2 - 16y^2 - 18x - 64y - 199 = 0$$
.

Also sketch the curve.

(iii) Find the vertices, and foci of the following conic

$$\frac{(x-3)^2}{2^2} + \frac{(y+4)^2}{5^2} = 1$$
. Also sketch its graph.

[Document title]

(d) (i) Find the angle of rotation to remove the xy term from the curve

$$4x^2 + 8xy - 4y^2 - 3x = 5,$$

(ii) Reduce the equation $7x^2 + 5xy + 7y^2 - 9 = 0$ to standard form when the axes are rotated by an angle $\theta = \frac{\pi}{4}$. And hence sketch the curve.