Hip Dynamics 1. Choose VEN, CERC 2. Let $S_6(V,C) = \{ \{ \omega \mid \text{Here is an alternating } \}$ Let $S_6(V,6(V)) = \phi$

path blow, wusing c 6cu) c Let $d = |S_{\epsilon}(v,c)|$

prob Pa flip So (v, c) interchanging c and 6(V)

Why Pa? Each ue So(v,c) gives rise to the same cluster.

=) Each cluster is flipped with prob Px.

G(V)

Irreducible: When
$$C \notin 26(w) | w \in N v)$$

(when $|C| \ge \Delta + 2$) equivalent to Glauber Dynamics.

(which is irreducible).

Aperiodic: Self loops when

 $C = 6Cv$)

Symmetric: Flipping $S_6(v, C)$

results in coloring 6', Flipping

 $S_6(v, 6Cv)$ recovers 6.

both occur with prob Px

(2) 2: 2 - 1 C - (v, 6v) = 1 S_6(v, 6v)

$$P_{X} = Max \left(0, \frac{13}{42}, \frac{1}{7}, \frac{1}{1+2}, \frac{1}{42}, \frac{1}{42}\right)$$

 $= P_{1} - 1, P_{2} = \frac{13}{42}, P_{3} = \frac{1}{6}$
 $P_{4} = \frac{2}{21}, P_{5} = \frac{1}{21}, P_{6} = \frac{1}{84}$

 $\rho_{\alpha} = 0$, $\Delta > 6$.

Why these? : In the analysis we will need i) $2(i-1)P_i + P_{2i+1} \leq \frac{2}{3}$ ii) (j-1)(pj-Pj+1)+i(p;-Pi+1) = = iii) $ip_i \leq P_i = 1$ iv) $(i-1)p_i \leq 2P_3 = \frac{1}{3}$ v) $(i-c)p_i \leq \frac{1}{4}$ $\neq c \geq 2$ Path Coupling Analysis \$\langle (6, T) = Hamming Distance 60 and T Consider two states that differs at vant

space of valid Distance in colorings = 3 Thus we redefive state space to be CV. If the Chain is Started at a proper coloring it stays a proper coloring coloring starts from an eventually reach -> If the chain improper, it'll (Doesn't knis break irreducibility?)

Simplifying

JEach YES6(N,C) gives rise to the Earl cluster. Thus it is enough to reason about clusters instead of vertices.

When can clusters Lifter?
Suppose 6, t differ only at
V.

Let WE NCV)

The clusters that are sittement

The clusters that are sittement

i) S6 (V, C) and ST (V, C)

Has 6Cv) and C Has Tw and C

ii) $S_6(\omega, \tau(\omega))$ and $S_{L}(\omega,60)$ V "blocks" the cluster in 6, whereas it doesn't in T For all other clusters, they can eitheri) De re-indexed to ove of the two above cases blil) Be exactly the save in both 6 and T. for the and case, we use the isentity coupling and so distance does not change.

Analysis set up neighbours of V colores $D_{c} = 9 S_{6}(v,c),$ ST(V,C),

All differing SS(W,T(V)),

clusters

associated ST(W,6CV))

with C. $Dc \cap Dc' = \phi$ except For Docu) OD Docu) (which may or may not)

For ex -

> So(u, tu)) > 3o(v, e(v)) D6 CM = S6(V,6(V) 5 t (v, 6 (v)) 6(J) S6(w;, Th) 5-c (ci, s(v))

b wie 86(1) (V) ~ (V) D TLV) = So(V, TLV)

G T (V, TLV) So(v, tlv))
St(m, etr)) So (wi/tou)) Ez [Wi, ocv)) Wiestu) >> 56(W1, TW)) = St(W2,664)

This case will be dealt with separately.

our couplingt is such that i) IF $S \notin UD_C$ F(S) = S1 Lentity. (ii) IF SEDC, F(S) EDC Thus $E(\Delta \Phi) =$ ZILE[DRD] expected change in

of given both chairs

equ to one chain flips a cluster in Dc by(ii)

Flip a cluster in Dc.

= NO. OF C Colored heighbours. Let Sc = | Mc

Main Lemma

a) If $S_c = 0$, $\mathbb{E}[\Delta_{p_c} \Phi] \leq 1$ b) If $S_c \geq 0$, $\mathbb{E}[\Delta_{p_c} \Phi]$ $\leq \frac{11}{6} S_c - 1$

Main Them Flip Dyhamics
mixes in o(nklogn) given

L > 116

Prook (hiven the Lemma): # colors C, Sc = 0 (i.e.
doesn't appear in heighborhood orv) - R - | gcl | Scl > 0 } colors in at least one neighbour. = R - 2 1 c' Sc>0

Now $E \left(\triangle_{0c} \Phi \right)$ $= 2 \left(-1 \right) + 2 \left(\frac{11}{6} S_{c} - 1 \right)$ $= 3 \left(-1 \right) + 3 \left(\frac{11}{6} S_{c} - 1 \right)$ $= 3 \left(\frac{1}{5} S_{c} - 1 \right)$ $= 3 \left(\frac{1}{5} S_{c} - 1 \right)$

$$= (R - 2 1) (-1) + 2 1 6 c - 1$$

$$S_{c} > 0$$

$$S_{c} > 0$$

$$\frac{c'}{s_{c'}} > 0$$
 $\frac{c'}{s_{c'}} > 0$
 $\frac{c'}{s_{c'}} > 0$
 $\frac{c'}{s_{c'}} > 0$

in If k > 11 d, this will be negative.

- -K + 11 S

Proof of Main Lemma

 $\Rightarrow D_C = \frac{1}{2} S_6(v,c)$ a) It Sc=0. St (V, C)} Sz(v,c) Also So (v,c) = -{V3.

Thus the only possible coupling is isombily. That resuces distance

う E [D D D] =-(

Similarly - $S_{\tau}(v,c) = U S_{6}(\omega_{j}, \tau(v))$ V Z UZ . ai = |St (wi,6(v))| A = 1 So (V, C) bj = | S₆(wj, t(v))| B = | S=(V,C)| Technicality: It may be that $S_{\tau}(\omega_{i}, 6cv)) = S_{\tau}(\omega_{i}, 6cv)$ () 6(V)

For such cases just set a: = 0. i.e. each such cluster is indexed by exactly 1 reighbor. Coupling— Let amax = max a:

Let amax = max ai imax = argmax ai bmax = max b; jmax = argmax b; Couple: Socyo

1. With prob PA Flip Socy, c)

and St (wimax, 600)

2. With prob PB flip St(v, c)

2. With prob PB flip $S_{t}(v,c)$ and $S_{G}(w)$ 3. Let $q_{t} = \{P_{A} - P_{A}, if J = i_{max}\}$

 $9L = \begin{cases} Pa_{1} - P_{A}, & \text{if } L = i_{\text{max}} \\ Pa_{2}, & \text{o/}\omega \end{cases}$ $9L = \begin{cases} P_{\text{bl}} - P_{\text{B}}, & \text{if } L = j_{\text{max}} \\ P_{\text{bl}}, & \text{o/}\omega \end{cases}$

For each we, 3a. With prob min (9e, 91) Hlip St(We, ocv)) and $S_{6}(W_{l}, T(V))$ With prob 91 - min

(91,91)

Klip St (W1,6(U)) With prob 91-min (21,9/1) Flip So(We, TLV)

Marginal: a) So(v,c) is
Flipped with prob PA St(v,c) is flipped with prob 12 in Step 1/2 b) So(Wimax) T(V)) Whoh assure ge 29/2 Flipped with Prob PA step 1. Then with prob Par-PA in step 2 a :. totally with prob Pac.

c) St (Wimax, 6CV) Whole assume que 2 Ve =) Flipped with prob Pa in Step 2. with prob ge in step 3a. with prob Pb-PB-91 -: fotally with prob PB+ ge+ Cbe- 1/8-9e = Pbl. Similarly for the others. Thus each Cluster is Flipped

with prob Pd. Coupling Analysis Step 1: The notes shared b/w Socr, and Solwinax, are identical. E) Distance incheases by af most A - amax -1 Ywas already minuffed

Step. 2: Similarly, B-bmax -1.

Step 3a: St (Wu, 6(1)) and So (Wu, T(V)) are disjoint apart from We. :. List increases by antbull
we counted
twice. step 36: Dist in creases by ad 3c: Dist increases by be Ht f(we) = min(91,91) (a1+61-1)+ (ge-min) al + (9'2-min) bl

Cases S = 1

Sc =
$$\frac{1}{2}$$

Here $A = \alpha_1 + 1$, $B = b_1 + 1$
 $WLOQ: q_1 \ge q_1'$
 $\Rightarrow f(\omega_1) = q_1 a_1 + q_1' b_1 - q_1'$

» E(Δoc Φ) € PA(a,+1-a,-1)+PB(b,+1-b,-1)

+ 91a1+ 91 b1 - 91

Substituting
$$q_{1} = P_{0} - P_{A}$$

$$q'_{1} = P_{0} - P_{B}$$

$$\Rightarrow E(\Delta_{PC}\Phi) \in (P_{a_{1}} - P_{A}) \alpha_{1} + (P_{b_{1}} - P_{B}) b_{1} - (P_{b_{1}} - P_{B})$$

$$= \alpha_{1} (P_{a_{1}} - P_{A}) + (b_{1} - 1) (P_{0} - P_{0})$$

$$= \alpha_{1} (P_{a_{1}} - P_{a_{1}+1}) + (b_{1} - 1) (P_{b_{1}} - P_{b_{1}+1})$$

$$= \alpha_{1} (P_{a_{1}} - P_{a_{1}+1}) + (j-1)(P_{j} - P_{j}+1) \stackrel{?}{=} \frac{5}{6}$$

$$= \alpha_{1} (P_{i} - P_{i+1}) + (j-1)(P_{j} - P_{j}+1) \stackrel{?}{=} \frac{5}{6}$$

=)
$$E(\Delta_{D_c}\Phi) \leq \frac{5}{6}$$

 $S=2$
Claim: When $S_c=2$, $E(\Delta_{D_c}\Phi)$
is maximized (worst case) for $a_1=a_2=a\leq 3$ and $b_1=b_2=b=1$
Given the claim - $f(vi)=a$ $Pa+bPb-Pa$

$$F(\omega_1) = \alpha(P_A - P_A) + b(P_b - P_B)$$
$$-(P_a - P_A)$$

$$\begin{aligned}
& \left[\left(A - A - A - 1 \right) + P_{B} \left(B - b + 1 \right) \right. \\
& + \left(a - 1 \right) P_{A} + b P_{b} \\
& + \left(a - 1 \right) \left(P_{A} - P_{A} \right) + b \left(P_{b} + P_{b} \right) \\
& \left(B - A - A - 1 \right) P_{A} + b P_{b} P_{b}$$

$$\leq 2(a-1)^{pa} + p_{2a+1} + 2b^{pb}$$

 $\leq 2(a-1)^{pa} + p_{2a+1} + 2[::p_{1}=1]$

First They property
$$2(i-1)P_i + P_{2i+1} \leq \frac{2}{3}$$

$$= E[X_{DC}P] + \frac{2}{3} + 2$$

$$= \frac{2}{3} + 3 - 1$$

$$= \frac{4+18}{6} - 1$$

$$= 2\left(2+9\right) - 1$$

$$= 8c\left(\frac{11}{6}\right) - 1$$

 $6_c > 2$

het g(wu) = Out Part be Phr - min (Par, Phr)

Note: g(we) = F(we) For Itimax + I max.

IF L = !max = Jmax F(We) = amax (Pamax -PA)

+ bmax (Pbmax - PB) - min (Pamax - PA) Pomax -PB)

amax Pamax + bi Poi - min (Pamax, Pbi) + PA + bmax Pbmax + aj Paj - min (Pbmax, Paj) + PB - Amax PA - bmax PB < 9 (wimax) + 9 (wimax) + PA (1-amax) + PB ((- bmax)

Eg (we) t \Rightarrow $\leq f(\omega_{\ell}) \leq$ PA (1-amor) + PB(1-bmax) \Rightarrow $E(\Delta_{P_c}\phi) = P_A(A-Q_{max}I)$ + PB (B-bmax 1) + 2 g (W) + PA (1-amax) + Po (1-bmax) $\leq P_A(A-2a_{max})+P_B(B-2b_{max})$ $+\leq g(\omega e)$ They property Re call

(i-m)
$$P_i \angle \frac{1}{4}$$
 for $m \ge 2$
here $2a_{max} \ge 2$
hence $P_A(A-2a_{max}) \angle \frac{1}{4}$
 $P_B(B-2b_{max}) \angle \frac{1}{4}$
 $g(we) = al_{Be} + b_e P_{be}$
 $- min(P_{al}, P_{od})$
whoa: $al \le b_e$ and hence
 $P_{al} \ge P_{be}$

=) g (we) = ae Pae + (bu-1) Pbe

alple
$$\leq 1 \cdot P_1$$
 \\
\text{Ley} \\
\text{(b1-1)Pbe} \leq \frac{2P_3}{2P_3} \\
\text{Properties} \\
\text{-} \\
\text{3} \\
\text{-} \\
\t

 $\frac{2}{2} + \frac{1}{3} + \frac{1}{3}$ $= \frac{11}{6} \cdot \frac{1}{3} \cdot \frac$