

Congratulations! You passed!

Next Item

1/1 point

1

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Correct Response

There are 85 true positives and 15 false negatives, so recall is 85 / (85 + 15) = 0.85.

Machine Learning System Design Quiz, 5 questions

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which a	are the two?
	The features $oldsymbol{x}$ contain sufficient
	information to predict \boldsymbol{y} accurately. (For example, one
	way to verify this is if a human expert on the domain
	can confidently predict y when given only x).
solve	mportant that the features contain sufficient information, as otherwise no amount of data can e a learning problem in which the features do not contain enough information to make an rate prediction.
	We train a model that does not use regularization.
Un-se	elected is correct
	We train a learning algorithm with a
	large number of parameters (that is able to
	learn/represent fairly complex functions).
	should use a "low bias" algorithm with many parameters, as it will be able to make use of the dataset provided. If the model has too few parameters, it will underfit the large training set.
	We train a learning algorithm with a
	small number of parameters (that is thus unlikely to
	overfit).

Un-selected is correct

Machine Learning System Design

4/5 points (80%)

Quiz,	5	q	ue	sti	on:
			4		

1/1 point

3.

Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5. Suppose you **decrease** the threshold to 0.3. Which of the following are true? Check all that apply. The classifier is likely to have unchanged precision and recall, but lower accuracy. **Un-selected** is correct The classifier is likely to have unchanged precision and recall, but higher accuracy. **Un-selected** is correct The classifier is likely to now have higher recall. Correct Lowering the threshold means more y = 1 predictions. This will increase the number of true positives and decrease the number of false negatives, so recall will increase. The classifier is likely to now have higher precision. **Un-selected** is correct

0 / 1 point

4.

A good classifier should have both a

 ${ t Quiz}$, ଦ୍ୱେମାଣ୍ଡମର୍ଡ଼ positive examples (y=1) and non-spam emails are

negative examples (y = 0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all that apply. If you always predict non-spam (output y=0), your classifier will have 99% accuracy on the training set, but it will do much worse on the cross validation set because it has overfit the training data. This should not be selected The classifier achieves 99% accuracy because of the skewed classes in the data, not because it is overfitting the training set. Thus, it is likely to perform just as well on the cross validation set. If you always predict non-spam (output y=0), your classifier will have 99% accuracy on the training set, and it will likely perform similarly on the cross validation set. This should be selected If you always predict non-spam (output y=0), your classifier will have an accuracy of 99%. This should be selected

Quiz, 5 questionset.

For data with skewed classes like these spam data, we want to achieve a high F_1 score, which requires high precision and high recall.

~	1 / 1 point
5. Which	of the following statements are true? Check all that apply.
	After training a logistic regression
	classifier, you must use 0.5 as your threshold
	for predicting whether an example is positive or
	negative.
A Un s	elected is correct
011-3	elected is correct
	If your model is underfitting the
	training set, then obtaining more data is likely to
	help.
Un-se	elected is correct
	It is a good idea to spend a lot of time
	collecting a large amount of data before building
	your first version of a learning algorithm.
Un-se	elected is correct
	On skewed datasets (e.g., when there are

$\begin{array}{c} \text{more positive examples than negative examples), accuracy} \\ Machine \ Learning \ System \ Design \end{array}$

4/5 points (80%)

Quiz, 5 questions not a good measure of performance and you should

instead use F_1 score based on the
precision and recall.
Correct
You can always achieve high accuracy on skewed datasets by predicting the most the same output (the most common one) for every input. Thus the F_1 score is a better way to measure performance.
Using a very large training set
makes it unlikely for model to overfit the training
data.
Correct
A sufficiently large training set will not be overfit, as the model cannot overfit some of the examples without doing poorly on the others.
V = I