Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Автоматизированные системы обработки информации и управления»

Отчет Рулежный контроль № 1 По курсу «Технологии машинного обучения»

исполнитель:

Группа ИУ5-65Б Голубев С.Н.

"17" апреля 2020 г.

ПРЕПОДАВАТЕЛЬ:

Гапанюк Ю.Е.

"__"___2021 г.

```
Рубежный контроль №1 Тема: Технологии разведочного анализа и обработки данных. Вариант: 5
         Задача №1.
         Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие
         способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете
         использовать для дальнейшего построения моделей машинного обучения и почему?
         Дополнение для ИУ5-65Б
         Для студентов группы ИУ5-65Б - для набора данных построить "парные диаграммы".
         Наборы данных: https://www.kaggle.com/ronitf/heart-disease-uci
B [1]: import numpy as np
         import pandas as pd
import seaborn as sns
         import matplotlib.pyplot as plt
         *matplotlib inline
         sns.set(style="ticks")
В [2]: # Загрузим выборку данн
        data = pd.read_csv('heart.csv', sep=",")
В [3]: # размер набора данных
        data.shape
Out[3]: (303, 14)
В [4]: # типы колонок
         data.dtypes
Out[4]: age
                        int64
         sex
                        int64
         ср
         trestbps
                        int64
         chol
                        int64
         fbs
                        int64
         restecg
                        int64
         thalach
                        int64
                        int64
         exang
         oldpeak
                     float64
         slope
         са
                        int64
         thal
         target
                        int64
         dtype: object
```

Проверка на наличие пропусков в данных

```
В [5]: # проверим есть ли пропущенные значения
        data.isnull().sum()
Out[5]: age
                     0
        sex
         ср
        trestbps
         chol
        fbs
         restecg
         thalach
        exang
oldpeak
         slope
         ca
         thal
                     0
         target
        dtype: int64
```

Пропусков в данных не обнаружено, следовательно производить удаление столбцов ии строк не требуется \P

```
В [6]: # Первые 5 строк датасета
     data.head()
      age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
     0 63 1 3 145 233 1 0 150 0 2.3 0 0 1 1
     1 37 1 2 130 250 0
                          1 187
                                            0 0 2
                                   0
                                        3.5
                                                     1
     2 41 0 1 130 204 0 0 172 0 1.4 2 0 2
                                                    1
     3 56 1 1 120 236 0
                          1 178 0
                                       0.8
                                            2 0 2
                                                     1
     4 57 0 0 120 354 0 1 163 1 0.6 2 0 2 1
```

"Парные диаграммы" Построим диаграммы для данного датасета B [7]: sns.pairplot(data) Out[7]: <seaborn.axisgrid.PairGrid at 0x7fc9d77dec10> С помощью параметра "hue" построим диаграммы с группировкой по значениям признака Illness B [8]: sns.pairplot(data, hue="fbs") Out[8]: <seaborn.axisgrid.PairGrid at 0x7fc9d2662cd0> . | 1.0 -0.8 -0.06 -0.04 -0.2 -0.0 -

Корреляционный анализ

```
B [9]: sns.heatmap(data.corr(), cmap='Purples', annot=True, fmt='.3f')
Out[9]: <AxesSubplot:>
```

B [10]: data.corr() Out[10]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522	0.096801	0.210013	-0.168814	0.276326	0.068001	-0.225439
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.044020	0.141664	0.096093	-0.030711	0.118261	0.210041	-0.280937
ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.295762	-0.394280	-0.149230	0.119717	-0.181053	-0.161736	0.433798
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.046698	0.067616	0.193216	-0.121475	0.101389	0.062210	-0.144931
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.009940	0.067023	0.053952	-0.004038	0.070511	0.098803	-0.085239
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.008567	0.025665	0.005747	-0.059894	0.137979	-0.032019	-0.028046
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.044123	-0.070733	-0.058770	0.093045	-0.072042	-0.011981	0.137230
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.000000	-0.378812	-0.344187	0.386784	-0.213177	-0.096439	0.421741
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.378812	1.000000	0.288223	-0.257748	0.115739	0.206754	-0.436757
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.344187	0.288223	1.000000	-0.577537	0.222682	0.210244	-0.430696
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.386784	-0.257748	-0.577537	1.000000	-0.080155	-0.104764	0.345877
ca	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.213177	0.115739	0.222682	-0.080155	1.000000	0.151832	-0.391724
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.096439	0.206754	0.210244	-0.104764	0.151832	1.000000	-0.344029
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.421741	-0.436757	-0.430696	0.345877	-0.391724	-0.344029	1.000000