

Human Vision System

Fall 2024

Yi-Ting Chen

https://app.sli.do/event/dmBgE S25j61cW75f9K1X9X Road Trip 2013 RE o Billings Beaverhead-Deerlodge o Bozeman National Forest CROW Big Sky Red Lodge Sheridan Yellowstone o Cody National Park Buffalo - Gillette Shoshone National Forest YELLOWSTONE NATIONAL PARK Caribou-Targhee National Forest Bridger-Teton **National Forest** WYOMING o Casper Pocatello o o Logan Medicine Bow-Routt **National Forest** o Cheyenne o Ogden Salt Lake City UINTAH AND OURAY RESERVATION O Boulder Denver White River National Forest COLORADO UTAH Colorad o Moab

Electromagnetic Radiation

Human Visual Sensitivity

Human Visual Pathway

Higher cortical areas

How do we perceive depth?

Interactive Demo (Binocular Parallax)

Close one eye

Cover the robot with your thumb

Open your other eye and close the first

The hand moved!

Stereo Camera

- As camera is shifted (viewpoint changed):
 - 3D points are projected to different 2D locations
- 2D shifts
 - stereo disparity

Figure 2

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/V/Vision.html

Rod

- o sensitive to low levels of illumination (scotopic vision)
- o not involved in color vision
- o 75~150 million
- o general, overall picture
- o slower response
- about 25 times more sensitive than cones

Cones

```
for high levels of illumination (photopic vision)
color vision (trichromacy)
~ 6.5 million
high density in fovea
faster response
                              relative sensitivity
                                                      green
                                                              red
                                           blue
                                      400
                                                 500
                                                            600
                                                                       700
                                                wavelength
                                                            (nm)
```


FIGURE 2.2 Distribution of rods and cones in the retina.

Dynamic Range between Scenes

```
outdoors: sunlight (10 lux) ----- starlight (10 lux)
(9 orders of magnitude) (1 lux = 0.0929 foot-candle = 1 meter-candle)
```

human: reasonable vision over about 6 orders of magnitude; can detect 1~2 photons.

dark adaptation

How to test your blind spot?

1. Preparation:

- Draw a **small dot** on the left side of a piece of paper and a **small plus sign (+)** on the right side, about 6 to 8 inches (15-20 cm) apart.
- Hold the paper at eye level.

2. Testing the Right Eye:

- Cover your left eye with your hand.
- Focus **only on the plus sign (+)** with your right eye.
- Slowly bring the paper closer or farther away while keeping your right eye focused on the plus sign.
- At some point, the **dot** on the left should disappear from your peripheral vision. This is where the image is falling on your **blind spot**.

3. Testing the Left Eye:

- Cover your right eye with your hand.
- Focus **only on the dot** with your left eye.
- Again, slowly move the paper toward or away from your face.
- The **plus sign** will disappear from your vision at some point, revealing the blind spot in your left eye.

Testing your Blind Spot

https://youtube.com/shorts/ADBXtnsdkHY?si=xP-XVLqczX4aNtlM

Receptive Fields of Retinal Ganglion

Cells Horizontal Amacrine cell cell Bipolar cell Optic Ganglion rod cone nerve cell light

neural tissue

sclera

receptors

Receptive Field

On-center

Image projected on receptor layer f(x,y)

Linear Shift-Invariant System

Image on ganglion layer f(x,y) * h(x,y)

*: convolution operation

Lateral Geniculate Nucleus

Primary Visual Cortex (Striate Cortex)

* A plate of cells 2 millimeter thick.

* ~ 200 million cells.

(Ref: http://dgward.com/physo101/sm06_pages/labs/Peripheral%20Vision%20and%20Visual%20Pathways.htm)

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Experiments

Simple Cells

Orientation Selectivity

Complex Cells

- The commonest cells in the striate cortex
- Orientation Selectivity
- Directional Selectivity

