



دانشگاه اراک

1444

روشهای ناپارامتری

كتاب دكتر جواد بهبوديان



۱- سه پسر و چهار دختر، به تصادف در یک صف می ایستند. جدول تابع احتمال گردشها پیداکنید.
 پاسخ:

$$\frac{7!}{3!4!} = 35$$
 تعداد جایگشتها برابراست با

| جايگشت  | $R_1$ | $R_2$ | R |
|---------|-------|-------|---|
| хххуууу | 1     | 1     | 2 |
| ххухууу | 2     | 2     | 4 |
| ххуухуу | 2     | 2     | 4 |

... ...

#### ادامه تمرین 1:

| $R_1$  |                | 1              |               | 2             |                 |                | 3              |  |
|--------|----------------|----------------|---------------|---------------|-----------------|----------------|----------------|--|
| حتمال  | احتمال<br>7    |                |               | $\frac{4}{7}$ |                 |                | $\frac{2}{7}$  |  |
| $R_2$  | 1              |                | 2             |               | 3               |                | 4              |  |
| احتمال |                | $\frac{4}{35}$ | $\frac{1}{3}$ | <u>8</u><br>5 | $\frac{12}{35}$ |                | $\frac{1}{35}$ |  |
| R      | 2              | 3              | 4             | 5             |                 | 6              | 7              |  |
| احتمال | $\frac{2}{35}$ | $\frac{5}{35}$ | $\frac{1}{3}$ |               | 9<br>35         | $\frac{6}{35}$ | $\frac{1}{35}$ |  |

 $f_{R_1,R_2}$  تابع احتمال  $R_1,R_2,R$ ، را باشمارش و بدون استفاده از پیداکنید.

پاسخ:چگالی  $R_1$  را ازراه شمارش با روش زیر می یابیم:  $n_1$  مهره از نوع  $n_2$  مهره از نوع  $n_2$  مهره از نوع  $n_1$  مهره از نوع  $n_2$  می توانیم  $n_1$  جایگشت بسازیم. حال تعداد جایگشتهایی را می یابیم که برای آنها  $n_1=r_1$  برای این منظور از  $n_1$  مهره از نوع  $n_1$  را در ظرف  $n_1$  میریزیم به طوری که هیچ یک جای خالی نماند. این کار را به  $\binom{n_1-1}{r_1-1}$  طریق می توانیم انجام دهیم.

ادامه تمرین ۲)

حال  $n_2$ مهره از نوع  $\gamma$  را روی یک خط میچینیم و  $\gamma$  ظرف را در فاصله  $\binom{n_2+1}{r_1}$  فاصله داریم، این کار را به  $\binom{n_2+1}{r_1}$  طریق می توان انجام داد. پس

$$P(R_1 = r_1) = \frac{\binom{n_1 - 1}{r_1 - 1} \binom{n_2 + 1}{r_1}}{\binom{n_1 + n_2}{n_1}}$$

به همین ترتیب برای چگالی  $R_2$  داریم:

$$P(R_2 = r_2) = \frac{\binom{n_2 - 1}{r_2 - 1} \binom{n_1 + 1}{r_2}}{\binom{n_1 + n_2}{n_1}}$$

P(R=5) را مستقیماً، از روی تابع احتمال R، و با تقریب نرمال محاسبه کنید.

$$P(R=5)=rac{9}{35}pprox0.257$$
 مستقیماً  $\mu_R=1+rac{2n_1n_2}{n_1+n_2}=1+rac{24}{7}=rac{31}{7}pprox4.43$  بااستفاده از تقریب نرمال:  $\sigma_R^2=rac{(\mu_R-1)(\mu_R-2)}{n_1+n_2-1}=1.39$   $P(R=5)=P(4.5< R<5.5)$   $=P\left(rac{4.5-4.43}{1.18}<rac{R-\mu_R}{\sigma_R}<rac{5.5-4.43}{1.18}
ight)$   $pprox oldsymbol{\phi}(0.91)-oldsymbol{\phi}(0.06)pprox0.2947$ 

٤- ثابت كنيد كه ماكزيمم R برابراست با

$$2min(n_1,n_2) + 1 - \delta_{n_1,n_2}$$

بطوری که

$$\delta_{n_1,n_2} = \begin{cases} 1 & n_1 = n_2 \\ 0 & n_1 \neq n_2 \end{cases}$$

 ${\sf y}$  پاسخ:ماکزیمم  ${\sf R}$  زمانی رخ می دهد که  $n_1$ چیز از نوع  ${\sf R}$ چیز از نوع  ${\sf v}$ یک درمیان قرار گرفته باشند که سه حالت زیررا درنظر می گیریم:

الف– با گردشهای نوع  $oldsymbol{x}$ شروع و پایان یابد(ماکزیمم زمانی است که  $oldsymbol{n}_1=n_2+1$  پس $oldsymbol{n}_1=n_2+1$  از طرفی $oldsymbol{m}_1$ 

$$max(R) = 2min(n_1,n_2) + 1$$
 بنابراین

$$n_2=n_1$$
 گردشهای نوع  $\gamma$  شروع و پایان یابد(ماکزیمم زمانی است که  $r=2n_1+1$  پس  $r=2n_1+1$  از آنجا که  $r=2n_1+1$  پس  $r=2min(n_1,n_2)+1$  . $maxR=2min(n_1,n_2)+1$  ج- بادوهای مختلف شروع و پایان یابد(ماکزیمم زمانی است که:  $r=2min(n_1,n_2)=n_1$  و  $r=n_2$  برابر این  $r=2min(n_1,n_2)=n_1$  برابر است با بادرنظر گرفتن حالات فوق به راحتی دیده می شود که ماکزیمم  $r=2min(n_1,n_2)+1-\delta_{n_1,n_2}$  بادرنظر گرفتن حالات  $r=n_2$   $r=n_1$   $r=n_2$   $r=n_1$   $r=n_2$   $r=n_1$   $r=n_2$   $r=n_1$ 

 $R_1,R_2$  را پیداکنید.  $R_1,R_2$ 

پاسخ:

$$\begin{split} Var(R) &= Var(R_1 + R_2) = Var(R_1) + Var(R_2) + 2Cov(R_1, R_2) \\ &Cov(R_1, R_2) = \frac{1}{2} \Big[ Var(R) - \Big( Var(R_1) - Var(R_2) \Big) \Big] \\ &= \frac{1}{2} \Big[ \frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)} - \frac{n_{12}[(n_1 - 1)(n_2 + 1) + (n_2 - 1)(n_1 + 1)]}{(n_1 + n_2)^2(n_1 + n_2 - 1)} \Big] \\ &= \frac{n_1n_2(n_2 - 1)(n_1 - 1)}{(n_1 + n_2 - 1)(n_1 + n_2)} \end{split}$$

۲- در تمرین ۱ میانگین و واریانس و ضریب همبستگی دوهای  $R_1,R_2$  رامحاسبه کنید.  $E[R_1] = rac{n_1(n_2+1)}{n_1+n_2}$  پاسخ:میدانیم که  $Var(R_1) = \frac{n_1 n_2 (n_1 - 1)(n_2 + 1)}{(n_1 + n_2)^2 (n_1 + n_2 - 1)}$ و با تعویض  $n_1,n_2$  و با تعویض  $n_1,n_2$  می توانیم  $E[R_1] = rac{15}{7}$  ,  $E[R_2] = rac{16}{7}$   $Var(R_1) = rac{20}{49}$  ,  $Var(R_2) = rac{24}{49}$  $Cov(R_1, R_2) = \frac{216}{49}$  $\rho(R_1, R_2) = \frac{Cov(R_1, R_2)}{\sqrt{Var(R_1) * Var(R_1)}} = \frac{54}{\sqrt{30}} \approx 9.859$ 

- است درست به ترتیب زیر پاسخ داده شده است - TFFTFTFTFTFTFTF

lpha = 0.1 آیا این تست به تصادف پاسخ داده شده است؟ (با میزان).

$$\sigma_R^2=rac{(\mu_R-1)(\mu_R-2)}{n_1+n_2-1}$$
 پاسخ:میدانیم که $\mu_R=1+rac{2n_1n_2}{n_1+n_2}$  و  $\mu_R=1$ 

$$\mu_R = 11$$
,  $\sigma_R = 2.18$ ,  $r = 16(n_1 + n_2)$   
 $p - value = P(R \ge 16) \approx P(R \ge 15.5)$   
 $\approx 1 - \phi \left(\frac{15.5 - 11}{2.18}\right) = 0.0197 < 0.1$ 

پس، درنتیجه فرض تصادفی بودن را بهازایlpha=0.1، رد میکنیم.

A دندان پزشکی می خواهد خمیر دندان A, B را مقایسه کند. به پنج نفر B و به سه نفر B را توصیه می کند. بعد از یک سال کرم خور دگیها را می شمار د و نتایج را بدست می آورد:

A:1,6,0,3,5 B:4,2,7

آیا این دو خمیردندان هم اثر میباشند؟ (با میزان lpha = 0.05).

پاسخ:ابتدا دونمونه را درکنار یکدیگر به ترتیب صعودی مرتب می کنیم:

**0**, **1**, **2**, **3**, **4**, **5**, **6**, **7** 

واضح هست که،  $n_1=3, n_2=3$ ، ولذا داريم:

 $\mu_R=4.75$  ,  $\sigma_R=1.214$  , r=6

 $p-value = P(R \ge 6) \approx P(R \ge 5.5) \approx 1 - \phi(0.62)$ 

= 0.2676 > 0.05

با توجه به مقدار پی، لزومی بر رد کردن فرضیه مربوط به اینکه دونمونه ازیک توزیع، آمدهاند، نداریم.

۹- ده نفر پسر و دختر هفت ساله را که درشرایطی تقریباً مساوی بزرگ شده اند وزن می کنیم و نتایج زیر را بدست می آویم (برحسب کیلوگرم).
 وزن پسرها: ۳۱و ۳۲و ۶۰ و ۲۸ و ۳۱

وزن دخترها: ۲۹و ۳۰و ۳۳و ۲۷

آیاوزنپسرهاودخترهای هفتساله همتوزیع میباشند؟(lpha=0.1). پاسخ: lpha=0.1

واضح هست که  $n_2=3$ , واضح هست که  $n_1=3$ 

 $\mu_R=5.44$  , $\sigma_R=1.38$  ,r=6(براساس مرتب شده صعودی) $p-value=P(R\geq 6)pprox P(R\geq 5.5) pprox 1-oldsymbol{\phi}(0.04)pprox 0.484>0.1$ 

به ازایlpha=0.1فرض هم توزیع بودن وزن پسرهاو دخترها را ردمی کنیم.

(lpha=0.01 ) آیا این دادهها یک نمونه تصادفی هستندmedian=24

پاسخ :010011100111001100

r=11 ,  $n_1=5$  ,  $n_2=6$   $\mu_R=10.9$  ,  $\sigma_R=2.153$ 

باتوجهبه نکات مربوطبه بخش ۱۱-۲-۲-(تصادفی بودن داده های عددی)

داریم که: ناحیه بحرانی برای این آزمون می شود  $(10,17) \not\equiv R$ به ازای  $\alpha = 0.01$ ، فرض متساوی بودن داده ها رد نمی شود.

۱۱ – عده ای مرد و زن دریک صف، برای خرید شیر، به ترتیب زیر منتظر می باشند

#### **WMWWMMMWWWMMMMWMWM**

آیا به تصادف ایستادهاند؟( lpha = 0.1).

پاسخ:بعد از مرتب کردن و صعودی کردن داده ها داریم:

r=10 ,  $n_1=5$  ,  $n_2=5$ 

 $\mu_R=10.9$  ,  $\sigma_R=2.153$ 

باتوجهبهنکات مربوطبه بخش ۱۱-۲-۲-(تصادفی بودن دادههای عددی)

داریم که: ناحیه بحرانی برای این آزمون می شود  $(10,17) \not\equiv R$ به ازای lpha = 0.01، فرض تصادفی بودن ایستادن زنانومردان ردمی شود.