Linear Algebra I Summary of Lectures: Vector Spaces

Dr Nicholas Sedlmayr

- 1. Definition 2.1: A vector space V over a field F (see definition 2.3) is a set containing:
 - a special zero vector **0**;
 - an operation of addition of two vectors $\mathbf{u} + \mathbf{v} \in V$, for $\mathbf{u}, \mathbf{v} \in V$; and
 - multiplication of a vector V with a number $\lambda \in F$ with $\lambda \mathbf{v} \in V$.

The vector space must be closed under both of these operations and must satisfy the following laws $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F$:

- (1) associativity $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$
- (2) commutativity $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- (3) u + 0 = u;
- (4) $\mathbf{v} + (-1)\mathbf{v} = \mathbf{0}$;
- (5) $\lambda(\mu \mathbf{u}) = (\lambda \mu) \mathbf{v};$
- (6) distributivity $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \mu \mathbf{v}$; and
- (7) distributivity $(\lambda + \mu)\mathbf{u} = \lambda \mathbf{u} + \mu \mathbf{u}$.
- 2. Proposition 2.2: $\forall \mathbf{v} \in V$ and $\forall \lambda \in F$:
 - (a) v = 1v;
 - (b) 0v = 0; and
 - (c) $\lambda 0 = 0$.
- 3. Definition 2.3: A field is a set F containing distinct elements 0 and 1 with two binary operations + and \cdot satisfying the axioms $\forall a, b, c \in F$:
 - (1) a + b = b + a;
 - (2) (a+b)+c=a+(b+c);
 - (3) a + 0 = a;
 - (4) $\forall a \exists -a \text{ such that } a + (-a) = 0;$
 - (5) $a \cdot b = b \cdot a$;
 - (6) $(a \cdot b) \cdot c = a \cdot (b \cdot c);$
 - (7) $a \cdot 1 = a$;
 - (8) $\forall a \neq 0 \ \exists a^{-1} \text{ such that } a \cdot a^{-1} = 1; \text{ and }$
 - (9) $a \cdot (b+c) = a \cdot b + a \cdot c$;

If a field F is finite its order is the number of elements in F.

- 4. Note that as a field also satisfies all axioms of a vector space a field F is also itself a vector space V = F over the field F and all properties of a vector space apply.
- 5. Theorem 2.4: For each prime p and each positive integer n, there is a unique field of order p^n . Additionally, every finite field is of this form.
- 6. Definition 2.5: Given a vector space V over F, a subspace of V is a subset $W \subset V$ which contains the zero vector of V and is closed under the operations of addition and scalar multiplication.
- 7. Lemma 2.5.1: Let $W \subset V$ be nonempty, where V is a vector space over F. Then W is a subspace of V iff $\mathbf{v} + \lambda \mathbf{u} \in W$ for each $\mathbf{v}, \mathbf{u} \in W$ and each scalar λ .
- 8. Definition 2.6: Given a vector space V over F, and given a subset of V $A = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots \mathbf{u}_n\},$

$$W = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \lambda_3 \mathbf{u}_3 + \dots \lambda_n \mathbf{u}_n : \lambda_1, \lambda_2, \dots \lambda_n \in F\}$$

is the subspace of V spanned by A. The elements of W are called linear combinations of vectors from A and the subspace W is denoted as span A.

- Definition 2.7: If A is an infinite subset of V, where V is a vector space over F, we define span A to be the set of all linear combinations of finite subsets of A.
- 10. Definition 2.8: A set $A \subset V$ of vectors in a vector space V over F is linearly dependent if there are $n \in \mathbb{N}$ vectors $a_1, a_2, \ldots a_n$ and scalars $\lambda_1, \lambda_2, \ldots \lambda_n$ not all zero such that

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots \lambda_n a_n = 0.$$

Otherwise A is linearly independent.

• For a finite set $A = \{a_1, a_2, \dots a_n\}$ it is linearly independent iff \forall scalars $\lambda_1, \lambda_2, \dots \lambda_n \in F$

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_n a_n = 0 \Rightarrow \lambda_1 = \lambda_2 = \dots + \lambda_n = 0.$$

- If A is infinite it is linearly independent iff every subset of A is linearly independent.
- By convention the empty set is linearly independent.
- 11. Proposition 2.9: Suppose $\mathbf{A} = \{a_1, a_2, \dots a_n\} \subset V$ is linearly independent, where V is a vector space over F. Suppose also that $v \in V$ and there are scalars $\lambda_1, \dots \lambda_n$ and $\mu_1, \dots \mu_n$ such that

$$v = \lambda_1 a_1 + \lambda_2 a_2 + \dots \lambda_n a_n$$

and

$$v = \mu_1 a_1 + \mu_2 a_2 + \dots + \mu_n a_n$$

then
$$\lambda_1 = \mu_1, \, \lambda_2 = \mu_2, \dots \lambda_n = \mu_n$$
.

- 12. Definition 2.10: A basis of a vector space V is a linearly independent set $B \subset V$ which spans V.
- 13. Theorem 2.11: Let V be a vector space over F, and let $B \subset V$ be linearly independent. Then there is a basis B' of V with $B \subset B'$.
- 14. Theorem 2.12: Suppose span A = V and $B \subset V$ is linearly independent. Then there is a basis B' of V with $B \subset B' \subset A \cup B$.
- 15. Lemma 2.13: The "exchange lemma". Suppose $a_1, a_2, \ldots a_n, b$ are vectors in a vector space V, and suppose that

$$b \in \operatorname{span}(a_1, a_2, \dots a_{n-1}, a_n)$$

but

$$b \notin \operatorname{span}(a_1, a_2, \dots a_{n-1})$$
,

then

$$a_n \in \operatorname{span}(a_1, \dots, a_{n-1}, b)$$
.

If in addition $\{a_1, a_2, \dots a_n\}$ is linearly independent then so is $\{a_1, a_2, \dots a_{n-1}, b\}$.

- 16. Theorem 2.14: Suppose S and B are both bases of a vector space V over F and. Then A and B have the same number of elements.
- 17. Definition 2.15: The number of elements of a basis of a vector space V over F is called the dimension of V and is written as dim V.
- 18. Corollary 2.16: If V is a vector space over F and $U \subset V$ is a subspace of V then $\dim U \leq \dim V$. If, additionally, $\dim V$ is finite and $U \neq V$ then $\dim U < \dim V$.
- 19. Corollary 2.17: Suppose that V is a vector space over F, dim V is finite, and $U \subset V$ is a subspace of V with dim $U = \dim V$, then U = V.
- 20. The coordinates of a vector $v \in V$, with V a vector space over F, with respect to an *ordered* basis $B = \{v_1, v_2, \dots v_n\}$ are $(\lambda_1, \lambda_2, \dots, v_n)^T$ where

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots \lambda_n v_n.$$

21. Definition 2.18: Two vector spaces V and W, both over the same field F, are isomorphic if there is a bijection $f: V \to W$ such that

$$f(u+v) = f(u) + f(v)$$

and

$$f(\lambda v) = \lambda f(v)$$
,

 $\forall u, v \in V \text{ and } \forall \lambda \in F.$ The bijection is said to be an isomorphism from V to W and we write $V \cong W$ or $f: V \xrightarrow{\sim} W$.

22. Theorem 2.19: Suppose V is a vector space over \mathbb{R} with finite dimension $n \geq 0$. Then $V \cong \mathbb{R}^n$ as real vector spaces. Similarly if V is a vector space over \mathbb{C} with finite dimension $n \geq 0$. Then $V \cong \mathbb{C}^n$ as complex vector spaces.