SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES GEORGIA INSTITUTE OF TECHNOLOGY

Sven Simon Jacob J. Buffo

EARTH SYSTEM MODELING (EAS 4610/6310)

Fall 2017

Problem Sheet # 7

Return date: Thursday, 12 October (before 09:30 am)

10. Inversion of a tridiagonal matrix: Thomas algorithm

(10 points)

We consider a linear system of equations

$$\underline{A} \cdot \underline{x} = y \qquad , \tag{1}$$

where $\underline{x}, \underline{y} \in \mathbb{R}^N$ and $\underline{\underline{A}} \in \mathbb{R}^{N \times N}$ is a *tridiagonal* matrix. Using the nomenclature introduced in class we define a vector \underline{d} that contains the diagonal elements of the matrix, i.e.,

$$d_i = A_{i,i} \qquad ; \qquad i = 1, \dots, N \qquad .$$

We also introduce a vector \underline{a} that contains the elements of \underline{A} above the diagonal,

$$a_i = A_{i,i+1}$$
 ; $i = 1, ..., N-1$ and $a_N = 0$,

as well as a vector \underline{b} that contains the elements of \underline{A} below the diagonal:

$$b_1 = 0$$
 and $b_i = A_{i,i-1}$; $i = 2, ..., N$

(a) Write a Matlab function that solves the linear system (1) by using the Thomas algorithm. Follow the "recipe" outlined in class. The *input parameters* of your function should be the vectors \underline{d} , \underline{a} , \underline{b} , \underline{y} as well as the rank N of the matrix $\underline{\underline{A}}$. The *output values* of the function should be the components of the solution vector x.

Note: The input parameter N could be eliminated by using the *length* function in Matlab.

(b) Use the tool developed in part (a) to calculate the solution \underline{x} for

$$\underline{\underline{A}} = \begin{pmatrix} 2.04 & -1 & 0 & 0 \\ -1 & 2.04 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{pmatrix} \quad \text{and} \quad \underline{\underline{y}} = \begin{pmatrix} 40.8 \\ 0.8 \\ 0.8 \\ 200.8 \end{pmatrix}$$

Verify your result by solving equation (1) with the *inv* function available in Matlab.

(c) We now consider a tridiagonal matrix $\underline{\underline{A}} \in \mathbb{R}^{N \times N}$ where all non-vanishing components of \underline{d} , \underline{a} and \underline{b} have the *same* values γ , δ , $\overline{\epsilon}$ (see, e.g., the example from part (b)). Thus, the non-vanishing entries of \underline{A} read

$$d_i = \gamma \qquad ; \qquad i=1,\dots,N \qquad ,$$

$$a_i = \delta \qquad ; \qquad i=1,\dots,N-1 \quad \text{ and } \qquad a_N = 0 \qquad ,$$

and

$$b_1 = 0$$
 and $b_i = \epsilon$; $i = 2, \dots, N$.

We also assume that the components of y are given by

$$y_i = \gamma^i$$
 ; $i = 1, \dots, N$.

Give the recurrence relations of the Thomas algorithm for this case. Develop a Matlab function which solves the system (1) and requires γ , δ , ϵ and N as the only input parameters. Select a (non-trivial) example to test your function with the same method as in part (b).