Activité IV.1

Introduction aux nombres complexes

Introduction et notations

Scipion del Ferro et Girolamo Cardano (en français : Jérôme Cardan) sont tous les deux des mathématiciens italiens du XVIe siècle.

À cette époque, on connaissait une méthode permettant de résoudre les équations du second degré, de la forme : $ax^2 + bx + c = 0$ avec $a \neq 0$. Mais la méthode générale pour résoudre une équation du troisième degré restait un mystère. Une équation du troisième degré s'écrit sous la forme :

$$ax^3 + bx^2 + cx + d = 0 \quad (a \neq 0).$$

Cependant, en 1545, Cardan établit une méthode pour trouver une solution aux équations de la forme $x^3 = px + q$ où p et q sont deux nombres réels. Pour cela :

- On note D = $\left(\frac{q}{2}\right)^2 \left(\frac{p}{3}\right)^3$.
- Si D \geqslant 0 alors l'équation $x^3 = px + q$ admet pour solution le nombre s tel que :

$$s = \sqrt[3]{\frac{q}{2} + \sqrt{D}} + \sqrt[3]{\frac{q}{2} - \sqrt{D}}.$$

Le nombre $b = \sqrt[3]{a}$ est la racine cubique de a. C'est le nombre tel que $b^3 = a$. Par exemple, $\sqrt[3]{8} = 2$ car $2^3 = 8$. Autre exemple, puisque $4^3 = 64$ alors $\sqrt[3]{64} = 4$.

Géométriquement, cela revient à déterminer le côté d'un cube dont on connaît le volume.

À l'aide de la calculatrice, on peut utiliser la touche des puissances car $\sqrt[3]{a} = a^{\frac{1}{3}}$.

Des exemples

Exemple nº 1: Considérons l'équation $(E_1): x^3 = 9x + 28$.

- 1°) Dans ce cas, quelle est la valeur de p et quelle est la valeur de q?
- 2°) Calculer alors la valeur exacte de D.
- **3°)** Démontrer par le calcul que s = 4.
- **4°)** Vérifier en remplaçant x par 4 dans (E_1) que 4 est bien une solution de (E_1) .

Exemple nº 2 : Considérons l'équation (E_2) : $x^3 - 24x - 72$.

- 1°) Dans ce cas, quelle est la valeur de p et quelle est la valeur de q?
- 2°) Calculer alors la valeur exacte de D.
- 3°) Démontrer par le calcul que s = 6.
- **4°)** Vérifier que 6 est bien une solution de (E_2) .

Exemple nº 3: Considérons l'équation (E_3) : $x^3 = 15x + 4$.

- 1°) Calculer la valeur exacte de D.
- 2°) Peut-on poursuivre la méthode décrite par CARDAN? Pourquoi?
- 3°) Cependant, vérifier que 4 est bien une solution de (E₃).

Méthode de BOMBELLI

- 1°) Expliquer pourquoi on peut écrire $\sqrt{121} = 11\sqrt{1}$.
- 2°) Supposons que le nombre $\sqrt{-1}$ ait un sens. Comment peut-on écrire $\sqrt{-121}$?
- **3°)** Pour l'équation (E₃), vérifier alors que la méthode de CARDAN donne comme solution :

$$s = \sqrt[3]{2 + 11\sqrt{-1}} + \sqrt[3]{2 - 11\sqrt{-1}}.$$

- **4°)** On suppose que l'on peut écrire $\left(\sqrt{-1}\right)^2 = -1$ et donc $\left(\sqrt{-1}\right)^3 = -\sqrt{-1}$.
 - (a) À l'aide de plusieurs développements, démontrer que :

$$(2+\sqrt{-1})^3 = 2+11\sqrt{-1}$$
 et $(2-\sqrt{-1})^3 = 2-11\sqrt{-1}$.

(b) Sachant que $(\sqrt[3]{a})^3 = a$, démontrer à l'aide des questions précédentes que s = 4.