Lesson 2.2 Square Roots

The **square** of a number is that number times itself. A square is expressed as 6^2 , which means 6×6 , or 6 squared. The **square root** of a number is the number that, multiplied by itself, equals that number. The square root of 36 is 6: $\sqrt{36} = 6$.

Not all square roots of numbers are whole numbers like 6. Numbers that have a whole number as their square root are called **perfect squares**.

The expression of a square root is called a **radical**. The symbol $\sqrt{}$ is called a **radical sign**. When a number is not a perfect square, you can estimate its square root by determining which perfect squares it comes between.

 $\sqrt{50}$ is a little more than 7, because $\sqrt{49}$ is exactly 7. $\sqrt{60}$ is between 7 and 8 but closer to 8, because 60 is closer to 64 than to 49.

Identify the square root of these perfect squares.

a

b

C

$$\sqrt{64} =$$

$$\sqrt{25} =$$

$$\sqrt{9} =$$

3.
$$\sqrt{36} =$$

Estimate the following square roots.

4. $\sqrt{85}$ is between ____ and ____ but closer to _____.

5. $\sqrt{20}$ is between ____ and ____ but closer to ____ .

6. $\sqrt{35}$ is between and but closer to .

7. √70 is between ____ and ____ but closer to ____.

8. $\sqrt{45}$ is between and but closer to .