

CHI SIAMO

Lorenzo Lucio Ruocco MAT [0512108688]

Roberto Balestrieri MAT [0512107368]

INTRODUZIONE

Immaginate di accendere la vostra Smart TV. Decine di migliaia di film a disposizione, ma non avete idea di cosa guardare.

Vi suona familiare?

Qui entra in gioco *NozApp*, il nostro sistema di raccomandazione intelligente.

Non solo vi dirà cosa guardare, ma lo farà basandosi sui vostri gusti, evitando che passiate ore a cercare.

OBIETTIVI

Dimentica le lunghe registrazioni e i processi complicati.

Basta selezionare i tuoi film preferiti: in pochi istanti, con NozApp avrai una lista di consigli personalizzati pronti per te.

SPECIFICA P.E.A.S.

Perfomance Environment Actuators Sensors

SPECIFICHE DELL'AMBIENTE

Completamente Osservabile Non Singolo Agente Episodico Dinamico Deterministico

ANALISI DEL PROBLEMA

Stato Iniziale:

Viene definita una lista di film preferiti selezionati dall'utente.

Descrizione delle azioni possibili:

L'agente analizza i dati e genera raccomandazioni eseguendo i seguenti passaggi:

- 1. Identifica il cluster più vicino ai gusti dell'utente usando K-Means.
- 2. Filtra i film appartenenti al cluster.
- 3. Ordina i film in base alla vicinanza al profilo utente (calcolo delle distanze euclidee).

Modello di Transizione:

Ad ogni modifica della lista preferiti, l'agente ricalcola il cluster più vicino e aggiorna le raccomandazioni.

Test Objettivo:

L'obiettivo è massimizzare la pertinenza delle raccomandazioni, suggerendo film che rispecchino i gusti dell'utente.

Costo del Cammino:

Le azioni dell'agente sono eseguite con lo stesso costo computazionale grazie all'efficienza del calcolo vettoriale su dataset preelaborati.

COME ABBIAMO AFFRONTATO IL PROBLEMA

Abbiamo ridotto il rumore e portato ordine nel caos.

Perché l'utente non ha bisogno di vedere tutto, ma solo ciò che amerà davvero.

REALIZZAZIONE DEL MODULO

Pulizia e Preparazione dei dati

Analisi della distribuzione dei dati

Scelta dell'algoritmo

Risultati attesi

PULIZIA E PREPARAZIONE DEI DATI

Abbiamo analizzato il dataset **MovieLens** e selezionato solo le informazioni a noi utili per le raccomandazioni (generi, tag rilevanti).

I dati grezzi sono stati trasformati in un dataset ottimizzato per il clustering.

ANALISI DELLA DISTRIBUZIONE DEI DATI

- Per comprendere la struttura dei dati, abbiamo utilizzato tecniche come la PCA per visualizzare la distribuzione.
- Il risultato ha evidenziato una distribuzione uniforme dei dati.

SCELTA DELL'ALGORITMO

Abbiamo scelto **K-Means** per la sua gestione efficace della dimensionalità dei dati, per l'utilizzo di variabili numeriche e per la forma sferica della distribuzione dei dati.

La decisione sul numero di cluster è stata guidata da metriche come **ElbowPoint Method** e **Silhouette Score**.

RISULTATI ATTESI

- Raccomandazioni accurate, focalizzate sui gusti del singolo utente.
- Efficienza dell'algoritmo con tempi di risposta immediati

UTILIZZO IN UN CONTESTO PRATICO

 Schermata di onboarding dove viene chiesto all'utente di selezionare uno o più film

SCHERMATA HOME

- Contenuti basati sulle preferenze dell'utente
- Lista dei film preferiti

DETTAGLIO DEL FILM

 È possibile visualizzare una lista di contenuti correlati relativi al film mostrato in pagina

CONCLUSIONI

In conclusione, questa esperienza progettuale si è rivelata stimolante e formativa, offrendoci l'opportunità di approfondire concretamente il funzionamento degli algoritmi studiati e di applicarli a un caso pratico, migliorando la nostra comprensione e le nostre competenze.

GRAZIE PER L'ATTENZIONE