Diplomarbeit

Höhere Technische Bundes- Lehr- und Versuchsanstalt Salzburg
Abteilung für Elektrotechnik

Entwicklung eines emissionsfreien Sportmotorrades

Entwicklung der Zentralsteuerung / Projektleitung

Martin Kronberger 5AHET Betreuer: Dipl.-Ing. (FH) Johannes Ferner

Entwicklung des Antriebssystems

Jakob Lackner 5AHET Betreuer: Prof. Dipl.-Ing. MBA Adolf Reinhart

Entwicklung des Akkusystems

Simon Kern 5AHET Betreuer: Prof. Dipl.-Ing. Reinhold Benedikter

Entwicklung der mechanischen Komponenten

Tobias Schmeisser 5AHET Betreuer: Prof. Dipl.-Ing. Peter Lindmoser

Höhere Technische Bundeslehrund Versuchsanstalt Salzburg Itzlinger Hauptstraße 30 A-5022 Salzburg www.htl-salzburg.ac.at

Eidesstaatliche Erklärung

Wir erklären an Eides statt, dass wir die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht haben. Wir versichern, dass wir dieses Diplomarbeitsthema bisher weder im In- noch im Ausland (einer Beurteilerin oder einem Beurteiler) in irgendeiner Form als Prüfungsarbeit vorgelegt haben.

Gendererklärung

Aus Gründen der besseren Lesbarkeit wird in dieser Diplomarbeit die Sprachform des generischen Maskulinums angewendet. Es wird an dieser Stelle darauf hingewiesen, dass die ausschließliche Verwendung der männlichen Form geschlechtsunabhängig verstanden werden soll.

Martin Kronberger	Ort, Datum
Jakob Lackner	Ort, Datum
Simon Kern	Ort, Datum
Tobias Schmeisser	Ort, Datum

Vorwort

In immer mehr Großstätten werden Fahrzeuge mit Verbrennungsmotoren verboten. Viele Motorräder und Autos können nicht mehr produziert werden, da sie die immer strenger werdenden Abgasnormen nicht mehr einhalten können und das Thema der Klimaerwärmung wird immer präsenter und immer mehr Menschen versuchen ihren "carbon footprint" zu verkleinern.

Doch leider gibt es für Motorradfahrer zumeist keine wirklichen alternativen, um für ihr Hobby auf eine emissionsfreie Alternative umzusteigen. Denn zumeist ist das Preis-Leistungsverhältnis, oder auch das Produkt selbst, nicht sehr einladend. Daher ist unser Ziel die Entwicklung in diesem Bereich voranzutreiben und dadurch den Markt zu vergrößern, wodurch immer mehr und bessere Produkte angeboten werden können.

Danksagung

TEXT DANKSAGUNG

DIPLOMARBEIT

DOKUMENTATION

DIPLOMA THESIS

DOCUMENTATION

Erklärung

Die unterfertigten Kandidaten haben gemäß §34 (3) SchUG in Verbindung mit §22 (1) Zi. 3 lit. b der Verordnung über die abschließenden Prüfungen in den berufsbildenden mittleren und höheren Schulen, BGBl. II Nr. 70 vom 24.02.2000 (Prüfungsordnung BMHS), die Ausarbeitung einer Diplomarbeit mit der umseitig angeführten Aufgabenstellung gewählt. Die Kandidaten nehmen zur Kenntnis, dass die Diplomarbeit in eigenständiger Weise und außerhalb des Unterrichtes zu bearbeiten und anzufertigen ist, wobei Ergebnisse des Unterrichtes mit einbezogen werden können. Die Abgabe der vollständigen Diplomarbeit hat bis spätestens

03.04.2020

beim zuständigen Betreuer zu erfolgen. Die Kandidaten nehmen weiters zur Kenntnis, dass gemäß §9 (6) der Prüfungsordnung BMHS nur der Schulleiter bis spätestens Ende des vorletzten Semesters den Abbruch einer Diplomarbeit anordnen kann, wenn diese aus nicht beim Prüfungskandidaten / bei den Prüfungskandidaten gelegenen Gründen nicht fertiggestellt werden kann.

Kandidaten / Kandidatinnen	Unterschrift
Martin Kronberger	
Jakob Lackner	
Simon Kern	
Tobias Schmeisser	
Prof. DiplIng. Reinhold Benedikte Prüfer	er DiplIng. (FH) Johannes Ferner Prüfer
Prof. DiplIng. MBA Adolf Reinha Prüfer	Lindmoser, Prof. DiplIng. Peter Prüfer
Prof. DiplIng. (FH) Roland Holze Abteilungsvorstand	er DiplIng. Dr.techn. Franz Landertshamer Direktor

Inhaltsverzeichnis

1	Eint	uhrung
	1	Projektteam
	2	Projektbetreuer
	3	Aufgabeneinteilung
II	Einl	eitung
	1	Motivation
	2	Zielsetzung
	3	Topologie des Gesamtsystems
	4	Leitfaden
TT 1	r Cu	
111		nd der Technik
	1	Akkusysteme
	2	Batteriearten
		2.1 Bleiakkumulator
		2.2 Nickel-Metallhybrid Akkumulatoren
		2.3 Nickel-Cadmium Akkumulatoren
		2.4 Lithium-Ionen Batterie
		2.4.1 Geschichte
		2.4.2 Allgemeines
		2.4.3 Prinzip der Lithium-Ionen Batterie
		2.4.5 Anwendungbereiche von Lithium-Ionen Akkumulatoren
		2.5 Batteriemanagementsystem
		2.5.1 Komponenten eines BMS
		2.5.2 Battery-Balancing
	3	Steuereinheiten
		3.1 Raspberry PI
	4	Bussysteme
	-	4.1 SPI Bus
		4.2 CAN Bus
		4.2 CAN Bus
IV		chanische Umsetzung 1
	1	Section
\mathbf{V}	Akk	zu und Ladekonzept 2
	1	Übersicht
		1.1 Aufgaben der Energieversorgung
		1.2 Aufgaben des Batteriemanagement
	2	Energieversorgung
	-	2.1 Dimensionierung der Akkuzellen
		· · · · · · · · · · · · · · · · · · ·
		2.1.1 Zusammenstellung der Batteriezellen
		2.2 Verschaltung der Batteriezellen
		2.2.1 Serienschaltung
		2.2.2 Parallelschaltung
		2.2.3 Kombination aus Serien- und Parallelschaltung

			2.2.4	Ges	$ch\ddot{a}tz$	t Be	triel	bszei	t d	es	Αk	ku	mu	lat	ors	з.					29
		2.3	Allgem	eine Ü	bersi	cht d	der 1	Elek	troi	nst	tal	lati	on								29
		2.4	Batteri	emana	geme	entsy	ster	n.													29
		2.5	Akkum	ulator	en .																29
		2.6	Akkum	ulator	en .																29
			2.6.1		iumb																29
\mathbf{V}	End	lergebr																			30
	1	Section	n																		30
A	\mathbf{Arb}	eitsna																			31
	1	Zeitpla	an																		31
	2	Koster	1												•						31
В	Pro	gramn	nier-Co	de																	32
\mathbf{C}	CA	D-Zeic	hnunge	n																	33
D	Sch	altplän	ıe																		34
Li	terat	urverz	eichnis																		34
Αl	bild	ungsve	erzeichr	ıis																	34
Ta	belle	enverze	eichnis																		35
C	ndeve	erzeich	nis																		36

Kapitel I

Einführung

1 Projektteam

Martin Kronberger

Simon Kern

Jakob Lackner

Schmeisser Tobias

2 Projektbetreuer

Prof. Dipl.-Ing. Reinhold Benedikter

unterstützte Jakob Lackner bei der Entwicklung des Akku- und Ladesystems

Dipl.-Ing. (FH) Johannes Ferner

unterstützte Martin Kronberger bei der Enwicklung des Human-Computer Interaction Systems

Prof. Dipl.-Ing. MBA Adolf Reinhart

unterstützte Jakob Lackner bei der Entwicklung des Antriebssystems

Lindmoser, Prof. Dipl.-Ing. Peter

unterstützte Tobias Schmeisser bei der Entwicklung der mechanischen Komponenten

3 Aufgabeneinteilung

Martin Kronberger

- Projektleitung
- Projektfingung und Projektplanung
- Projektaufteilung
- Erstellen der Einreichdokumente
- Enwickeln der Hardware des Human-Computer Interaction Systems
- Enwickeln der Software des Human-Computer Interaction Systems
- Planung und Umsetzung der elektrischen Installation
- Verfassen der Dokumentation

Jakob Lackner

- Projektleitung
- Projektfingung und Projektplanung
- Projektaufteilung
- Entwicklung des Antriebssystemes
- Entwicklung der Software des Motorsteuergerätes
- Erstellen der Einreichdokumente
- Verfassen der Dokumentation

Simon Kern

- Projektleitung
- Projektfingung und Projektplanung
- Projektaufteilung
- Entwicklung des Akkusystems
- Erstellen der Einreichdokumente
- Verfassen der Dokumentation

Tobias Schmeisser

- Projektleitung
- Projektfingung und Projektplanung
- Projektaufteilung
- Entwicklung der mechanischen Komponenten
- Entwicklung der Getriebemechanik
- Erstellen der Einreichdokumente
- Verfassen der Dokumentation

Kapitel II

Einleitung

- 1 Motivation
- 2 Zielsetzung
- 3 Topologie des Gesamtsystems
- 4 Leitfaden

Kapitel III

Stand der Technik

1 Akkusysteme

Verschiedene Speicher für elektrische Energie, die auf einer elektrochemischen Basis basieren, nennt man Batterien oder auch Akkumulatoren. Elektrochemische Speicher haben in den vergangenen Jahren immer mehr an Bedeutung gewonnen und werden auch in Zukunft immer öfter Gebrauch finden. Möglich wurde unsere heutige elektronische Mobilität erst mit der Erfindung der galvanischen Zelle. Seit dieser Erfindung, die mit Hilfe eines Stromkreises chemische Energie in elektrische Energie umzuwandelt, hat sich über die jahrzentelange Weiterentwicklung der Batterie einiges getan. Die Einsatzmöglichkeiten von Akkumulatoren sind extrem vielfältig. Kleine Lithium-Ionen Akkus werden zum Beispiel als Knopfzellen in Smartphones verwendet. Jedoch können sie auch bis hin zu großen stationären Energiespeichern für erneuerbare Energien benutzt werden. Wie bereits vorher erwähnt, sind elektrische Energiespeicher ein wichtiger Bestandteil für den Erfolg der Elektromobilität geworden. Es gibt unzählig viele verschiedene Arten von Batterien, die sich im chemischen Aufbau, ihrer Form und natürlich in ihren Einsatzmöglichkeiten unterscheiden. Durch die äußerst besonderen chemischen Eigenschaften und die vielseitigen Anwendungsbereiche, hat sich der Lithium-Ionen Akku durchgesetzt.

2 Batteriearten

2.1 Bleiakkumulator

Die ersten Versuche, einen auf Blei basierenden Akkumulator zu entwickeln, wurden am Anfang des 19. Jahrhunderts durchgeführt. Industriell wurde der Bleiakku interessant, als Forscher und Chemiker zusammen 1880 ein Verfahren entwickelten, bei dem der Bleiakkumulator bereits nach wenigen Ladezyklen, eine hohe Kapazität erreichte. Der erste technisch einsetzbare Bleiakkumulator wurde 1886 von Henri Tudor entwickelt. Dieser besitzt eine Zellspannung von ungefähr 2V (abhängig vom Ladezustand), was eine durchaus große Spannung für sogenannte "wässrige Sytemeïst. Der Ausdruck "wässrige Systeme"leitet sich von dem Elektrolyt ab. Bei Bleiakkumulatoren wird wässrige Schwefelsäure als Elektrolyt verwendet. Im entladenen Zusatnd bestehen beide Pole aus Blei(II)-sulfat (PbSO4). Weiters besteht die Kathode aus Blei und die Anode aus Bleioxid. Bleiakkumulatoren sollten keinesfalls tiefenentladen werden, da dies zu Schäden führt und den Akku unbrauchbar macht. Ein extrem großer Nachteil ist das Gewicht, da nur 30 bis 40Wh/kg erreicht werden können. Diese Art von Akku zeichnet sich durch das kurzzeitige Zulassen hoher Ströme aus die zum Beispiel für Fahrzeug -bzw. Starterbatterien notwendig sind. Unter anderem sind 50 Prozent des Batteriemarkets von Bleiakkumulatoren belegt. Wie vorher bereits erwähnt werden diese oftmals in Autos, LKWs oder auch Motorräder verbaut.

2.2 Nickel-Metallhybrid Akkumulatoren

Die technischen Grundlagen des Nickel-Metallhybrid Akkumulator wurden von Stanford R. Ovshinsky und Masahiko Oshitani ab 1962 bis 1982 zur marktreifen Zelle entwickelt. Seit dem Jahr 2006 sind spezielle NiMH-Akkumulatoren auf dem Markt, die sich gegenüber herkömmlichen NiMH-Akkus durch eine deutlich reduzierte Selbstentladung auszeichnen. Die positive Elektrode eines Nickel-Metallhybrid Akkumulators(NiMH) besteht aus Nickel(II)-hydroxid wogegen sich die negative Elektrode aus einem Metallhybrid zusammensetzt. Als Elektorlyt verwendet dieser Akkumulator eine Wasserstoffspeicherlegierung aus Nickel und seltenen Erden. NiMH-Akkus erreichen bis zu 80Wh/kg. Sie sind vielfach in den üblichen Bauformen von Standardbatterien verbreitet und liefern pro Zelle eine Spannung von 1,2V. Oftmals werden sie als wiederaufladbare Alternative der gängigen Alkalibatterien in haushaltsüblichen Geräten eingesetzt. Ein großer Vorteil gegenüber den Nickel-Cadmium Batterien ist es, das der NiMH Akku nicht aus giftigen Cadmium besteht und er außerdem eine höher Energiedichte aufweist. Der Anwendungsbereich von NiMH Akkumalatoren ist sehr vielfältig. Vorzugsweise kommen sie wie NiCd Akkus überall dort zur Anwendung, wo ein hoher Energiebedarf besteht und hohe Batteriekosten vermeiden werden sollten. Tyische Anwendungsbereich sind zum Beispiel Foto- Videogeräte, Elektroautos, Elektrowerkzeuge und noch viele mehr. NiMH Akkus werden außerdem oft als Energiespeicher für Notbeleutungsanlagen verwendet.

2.3 Nickel-Cadmium Akkumulatoren

1899 wurde der Nickel-Cadmium Akku von dem Schweden W. Jungner entwickelt. NiCd Akkus zeichnen sich dadurch aus, dass sie einen eingebauten Ent- und Überladeschutz integriert haben. Das hat zur Folge, dass man keine aufwendige elektronische Beschaltung durchführen muss. Als Material für die Kathode dieses Akkus verwendet man Nickeloxidhydroxid. Die Anode dagegen besteht aus dem giftigen Material Cadmium, welches jedoch eine äußerst hohe spezifische Ladung (478Ah/kg) besitzt. Bei Nickel-Cadmium Akkumulatoren besteht das Elektorlyt aus Kalilauge. Die typische Nennspannung ist exakt die selbe wie bei NiMH Akkus, 1,2V. Aus dieser Zellenspannung ergibt sich eine spezifische Energie von ungefähr 60Wh/kg. Eine Eigenschaft die man bei anderen Technologien nur selten antrifft ist das hervorragende Tieftemperaturverhalten von NiCd Akkus. Selbst bei einer Temperatur von -40°C ist eine Inbetriebnahme noch möglich. Im Jahr 2004 wurde jedoch die Verwendung von Nickel-Cadmium Akkus wegen dem giftigen Material auf medizinische und sicherheitrelevante Bereiche begrenzt. Diese Akkumulatoren sind in 2 verschiedenen Bauformen verfügbar, die sich durch die unterschiedlichen Anwendungsbereiche unterscheiden. Die offene Bauweise wird meist für Starterbatterien für Verbrennungsmotoren und Traktionsbatterien für Elektrofahrzeuge verwendet. Bei der anderen Bauweise, werden die Zellen gasdicht verschlossen. Oftmals werden sich für zentrale Stromversorgungssysteme für Notbeleuchtung verwendet.

2.4 Lithium-Ionen Batterie

2.4.1 Geschichte

Schon bereits in dem Jahr 1970 wurde von Jürgen Otto Besenhard und anderen das grundlegende Funktionsprinzip der Alkalimetallionen-Interkalation in Kohlenstoff-Elektroden sowie auch in oxidischen Elektroden erforscht und veröffentlicht. Ebenfalls wurde dabei die Anwendung in Lithium Batterien untersucht auch wenn zu der Zeit die praktische Anwendbarkeit als Elektroden für Lithium Batterien noch nicht erkannt wurde. Der erste auf dem Markt erhältliche Lithium-Ionen Akkumulator wurde von Sony im Jahr 1991 angeboten. Dieser Lithium-Cobaltdioxid Akku wurde in einer Videokamera verbaut. Die Batterie, die eine Spannung von 7,2V aufweiste, bestand aus zwei seriell verschalteten Zellen und weiste etwa eine Kapazität von 1200mAh auf. Sogar bis heute wird diese Bauform von Akkumulatoren mit Kapazitäten bis zu 6900mAh angeboten und in äußerst vielen Geräten eingesetzt. Drei Physiker bzw. Chemiker (Whittingham, Goodenough und Yoshino) erhielten 2019 sogar den Nobelpreis für Chemie, für die Entwicklung der Lithium-Ionen Batterie. Forscher einer Universität fanden im Jahr 2020 heraus, dass durch die Zugabe von dem Element Kalium die Lithium Akkumulatoren langlebiger und sicherer werden. Außderdem verhindert das Kalium in dem Akku unerwünschte chemische Nebenreaktionen.

2.4.2 Allgemeines

Es gibt zahlreiche verschiedene Bauformen von Lithium-Ionen Akkumulatoren. Diese Batterien unterscheiden sich nicht nur in ihrer Größe und der Bauform, sondern auch in der chemischen Zusammensetzung ihrer Komponenten und haben unter anderem auch verschiedene Spannungsbereiche. Kenndaten wie Zellenspannung, Lade- und Entladeschlussspannung, Temperaturempfindlichkeit und der maximal zulässige Lade- oder Entladestrom variieren bauartbedingt und sind wesentlich vom eingesetzten Elektrodenmaterial und den Elektorlyten abhängig. Eine Eigenschaft die alle Lithium-Ionen Akkumulatoren gemeinsamen haben ist, dass sie gasdicht versiegelt sein müssen und außerdem lageunabhängig betrieben werden können. Die spezifische Energiedichte liegt ungefähr in der Größenordnung von 150Wh/kg und weist eine Energiedichte von 400Wh/l auf. Durch diese Eigenschaften findet diese Art von Batterie besonderen Einsatz in der mobilen Branche als elektrischer Energiespeicher. Ein weiteres wichtiges Merkmal aller Lithium-Ionen Akkumulatoren ist, dass sie Überladungen nicht verkraften können. Wenn man mehrere Zellen zum Beispiel in Reihe schaltet, um eine höhere elektrische Spannung zu erzielen, müssen zum Ausgleichen der Toleranzen in der Kapazität zwischen den Zellen meistens zusätzlich ein Batteriemanagementsystem (BMS) und ein Balancer vorgesehen werden.

2.4.3 Prinzip der Lithium-Ionen Batterie

Ein Lithium-Ionen Akkumulator erzeugt durch die Verschiebung von Lithium-Ionen eine elektromotorische Kraft. Beim Ladevorgang wandern positiv geladene Lithium-Ionen durch einen Elektrolyten hindurch von der positiven Elektrode zur negativen, während der Ladestrom die Elektronen über den äußeren Stromkreis liefert. Eine negative Elektrode aus Lithium-Metall ist elektrochemisch optimal, für einen Akku aber ungeeignet. Da sich die Elektrode beim Entladevorgang genauso wie bei einer Lithium-Batterie auflöst, besteht beim Ladevorgang keine Möglichkeit mehr, ihre Geometrie zu rekonstruieren.

Aufbau:

Die negative Elektrode eines gänigen Lithium-Ionen Akkus besteht meist aus Graphit. Die positive Elektrode hingegen enthält meist Lithium-Metalloxide in Schichtstruktur wie Lithiumcobaltoxid (LiCoO2). Der Lithium-Ionen Akkumulator muss wasserdicht sein, da es sont zu einer Nebenreaktion zwischen dem Wasser (H2O) mit dem Leitsalz (LiPF6) zu Flusssäure (HF) reagieren kann. Das am häufigsten verwendete Elektrolyt in Lithium-Ionen Akkumulatoren besteht aus einer Mischung zwischen wasserfreien Lösungsmitteln (Ethylencarbonat, Propylencarbonat) mit Alkylcarbonaten/Äthern (Dimethylcarbonat, Diethylcarbonat) und natürlich mit Lithiumsalzen.

Beim Aufladen der Lithium-Ionen Akkus, d.h. anlegen einer äußeren Potenzials, fließen Lithium-Ionen zwischen die Graphitebenen (nC). Zusammen mit dem Kohlenstoff bilden diese Ionen eine Interkalationsverbindung (LixnC). Anders als beim Aufladen, wandern die Lithium-Ionen beim Entladen wieder in das Metalloxid und die Elektronen der Batterie können über einen äußeren Stromkreis wieder zur positiven Elektrode fließen. Ausschlaggebend für diese Interkalationsverbindung ist die Ausbildung einer schützenden Deckschicht auf der neagtiven Elektrode. Für die Lithium-Ionen ist diese Schicht durchlässig, jedoch die Lösungsmittelmoleküle können diese Deckschicht nicht durchdringen. Es kann passieren, dass diese Deckschicht nicht genügend ausgebildet worden ist. Das hat zur Folge, dass die Lithium-Ionen mit den Lösungsmittelmolekühlen interkalieren, wodurch die Graphitelektrode stark beschädigt, oder sogar zerstört wird.

Reaktionsgleichungen:

• Negative Elektrode (Entladung):

$$LiCn -> nC + xLi + xe$$

• Positive Elektrode (Entladung):

$$LiMn2O4 + xLi + xe -> LiMn2O4$$

• Redox Gleichung:

LiMn2O4 + LiCn -> LiMn2O4 + nC

Abbildung III.1: Grundaufbau einer Lithium-Ionen Zelle

2.4.4 Lagerung und Sicherheithinweise

Auch wenn Lithium nur als Li-Verbindungen in Lithium-Ionen Akkumualtoren vorhanden sind, sind die Komponenten eines solchen Akkus extrem leicht entzündbar, da Lithium ein hochreaktives Metall ist. Beim Überladen sind Ausgleichsreaktionen (z.B. die Zersetzung von Wasser), bei Lithium-Ionen Akkus nicht möglich, wie bei anderen Akkumualtoren dies der Fall ist. Schutzschaltungen die intern verbaut sein sollten, müssen eine solche Verpufferung verhindern. Anderfalls wird sonst die Funktionsfähigkeit des Akkus zerstört und er wird unbrauchbar. Jedoch kann es nicht nur zu inneren Beschädigungen kommen. Im Falle von inneren Kurzschlüssen, kann es passieren, dass mechanische Beschädigungen entstehen. Der hohe Kurzschlussstrom lässt zum Beispiel das Gehäuse schmelzen oder sogar in Flammen aufgehen. Es kann auch passieren, dass man den Defekt nicht unmittelbar erkennen kann. Doch kurze Zeit später kann es bereits zum Ausbruch eines Feuers kommen.

Lagerung:

Im Idealfall, sollten Lithium Ionen Akkus bei einem Ladezustand zwischen 40 - 60 Prozent kühl aufbewahrt und gelagert werden.

Sicherheitshinweise:

- Es ist wichtig, dass Lithium-Ionen Akkus nur mit passenden Ladegeräten aufgeladen werden. Schnell-Ladegeräte für Lithium Akkumulatoren können beispielweise eingesetzt werden. Man muss darauf achten, dass sie immer unter Aufsicht und möglichst nicht in der Nähe von brennbaren Materialien benutzt werden.
- Lithium-Ionen Akkus sind zwar hermetisch gekapselt, dennoch sollten sie unter keinen Umständen in Wasser getaucht werden. Besonders defekte und vollgelade Lithium-Zellen reagieren meist heftig mit Wasser.
- Lithium-Ionen Akkumulatoren sind mechanisch sehr empfindlich. Durch einen internen Kurzschluss und einem Kontakt mit Luft können sie sich schnell entzünden.
- Eine Lithium-Ionen Zelle die in Flammen steht, wenn möglich mit Sand und nicht mit Wasser löschen, da dies zu einer heftigen Reaktion führen kann.
- Lithium-Zellen sollten niemals über 4,2V geladen und nicht unter 2,5V pro Zelle entladen werden. Außerdem dürfen Zellen niemals kurzgeschlossen werden. Bei einem Ladvorgang ist auf eine gute Wärmeabfuhr zu achten (nicht in die Sonne legen).
- Mehrere Lithium-Zellen sollten nur dann gleichzeitig geladen werden, wenn eine Schutzschaltung vorhanden ist.
- Die Elektorlytflüssigkeit ist brennbar. Sollte aus einer Zelle Elektrolytflüssigkeit austreten, diese am besten sofort ordnungsgerecht entsorgen.
- Man sollte versuchen die Lithium-Zellen bei einer Restkapazität von 20 Prozent nachzuladen.

2.4.5 Anwendungbereiche von Lithium-Ionen Akkumulatoren

Lithium-Ionen Akkus versorgten anfangs hauptsächlich tragbare Geräte mit hohem Energiebedarf, für die herkömmliche Nickel-Cadmium- oder Nickel-Metallhydrid Akkus zu schwer oder zu groß waren, beispielsweise Mobiltelefone, Tablets, Digitalkameras, Camcorder, Notebooks, Handheld-Konsolen oder Taschenlampen. In der heutigen Zeit sind Lithium-Ionen Akkumulatoren fast in allen denkbaren Bereichen aufzufinden. In der Elektromobiliätsbranche dienen sie oftmals als Energiespeicher für Elektroautos, moderne elektronisch betriebene Rollstühle und auch für Hybridfahrzeuge. Auch im Modellbau haben sie schon früh Verwendung gefunden. Dadurch, dass Lithium Akkus ein deutlich geringeres Gewicht als andere Batteriearten aufweisen, sind sie in Verbindung mit bürstenlosen Gleichstrommotoren und den entsprechenden Reglern, gut als Antriebseinheit im Flugmodellbau geeignet. Scho seit Anfang des 21. Jahrhunderts, gibt es Lithium-Ionen Akkus auch in Elektrowerkzeugen wie zum Beispiel Akkuschraubern. Auch im Flugbetrieb haben diese Batterien Verwendung gefunden. In der Boeing 787 werden ebenfalls Lithium-Kobaltoxid-Akkus (LiCoO2) verwendet. Zum Großen Teil werden Lithium-Ionen-Batterie-Systeme auch in Batterie-Speicherkraftwerken und Solarbatterien eingesetzt.

2.5 Batteriemanagementsystem

Batteriemanagementsysteme (BMS) sind elektronische Regelschaltungen, die Akkumulatoren oder Akkupacks auf Ladung und Entladung überwachen und ebenfalls regeln. Die Batteriekennwerte die man überwachen kann bzw. möchte, hängen oftmals von dem Projekt ab. Zu den häufigsten Batteriekennwerten gehören die Erkennung des Batterietyps, die Batteriespannung, die Spannung sowie die Temperatur einzelner Batteriezellen, die Akkukapazität, der Ladzusatnd, die Restbetriebszeit, die Stromentnahme und einige Kennwerte mehr. Die Hauptaufgabe von BMS-Systemen besteht darin, sicherzustellen, dass die Restenergie in einer Zelle optimal genutzt wird. Um keine Beschädigungen an Zellen zu bekommen, schützt das Batteriemanagementsystem die Batterien vor Tiefenentladung, vor Überspannung, vor zu schneller Ladung (begrenzen des Ladestroms) und ebenfalls vor einem zu hohen Entladestrom. Bei Akkupacks, d.h. Akkumulatoren mit mehreren Zellen, sorgt das Batteriemanagementsystem außerdem für ein sogenanntes Balancing, das sich darin ausdrückt, dass die verschiedenen Batteriezellen gleiche Ladezustände und Entladezustände haben.

Abbildung III.2: Grundschaltung eines Batteriemanagementsystems

Grundsätzlich setzt sich ein vollständiges Batteriemanagementsystem aus folgenden Komponenten zusammen:

• Cell Supervising Circuit(CSC):

Die Aufgabe des CSC besteht darin die Zellen auf Spannung und Temperatur zu überwachen.

• Kontrolleinheit:

Die Kontrolleinheit berechnet die State of Charge (SOC), die State of Health (SOH) und überprüft auch die Funktionalität der Batterien (State of Function). Außerdem wird von der Kontrolleinheit auch der Ladeausgleich gesteuert und kommuniziert über eine Serielle Schnittstelle mit einem Prozessor.

• Circuit Breaker:

Der Circuit Breaker trennt im Fehlerfall die Batterie von der Last. Dies erfolgt mithilfe eines HS-Kontaktors.

• Strommessvorrichtung:

Diese Komponente ist für die Messung des Stromes zuständig.

• Temperaturüberwachung:

Diese Komponente überprüft, ob sich die Batterien oder die Akkupacks in einem zulässigen Temperaturbereich befinden.

2.5.1 Komponenten eines BMS

Cell Supervising Circuit (CSC): Die erste Komponente eines Batteriemanagementsystem ist für die Spannungs- und Temperaturüberwachung der einzelnen Zellen zuständig und wird als Cell Supervising Circuit (CSC) bezeichnet. Ein Akkusystem besteht immer aus mindestens 2 einzelnen Zellen, oftmals jedoch aus mehreren. Deswegen ist die Spannungs- und Temperaturüberwachung jeder einzelnen Zelle nicht möglich. Es kommt durchaus vor, dass mehrere einzelne Zellen zu sogenannten Akkupacks zusammengeschraubt oder zusammengeschweißt werden. Man hat dann wiederrum die Möglichkeit, jedes Akkupack für sich mithilfe eines CSC zu überwachen.

Kontrolleinheit: Die nächste Komponente wird auch als Kontrolleinheit bezeichnet. Die Aufgabe dieser Komponente liegt darin, die SOC (State of Charge) und auch die SOH (State of Health) zu berechnen. Außerdem steuert die Kontrolleinheit auch den Ladeausgleich der einzelnen Zellen oder der Akkupacks. Diese Komponente übernimmt auch die Kommunikation des Batteriemanagementsystems mit anderen angeschlossenen Einheiten. Diese Kommunikation erfolgt über eine serielle Schnittstelle wie den I2C-Bus oder dem CAN-Bus. Die Werte (SOC und SOH) und auch die SOF (State of Function) werden dann an einen Prozessor übermittel auf dem die BMS-Software läuft und außerdem der SOC-Algorithmus implementiert ist. Die Kontrolleinheit ist fähig sich selbst in einen Ruhezustand zu versetzen um den eigenen Stromverbauch um ein Minimum zu reduzieren.

• State of Health (SOH):

Beschreibt den aktuellen Alterungszustand der Batterie. Ein Kriterium dafür ist, welche Ladungsmengen die Zellen noch aufnehmen. Je älter die Akkumulatoren werden, desto weniger Aufnahmevermögen haben sie.

• State of Charge (SOC):

Beschreibt den momentanen Ladezustand der Batterie. Außerdem gibt er Auskunft darüber, wie viel beziehungsweise wie lange die Batterie noch Energie bereitstellt. Beim Aufladen der Akkus gibt es an, wie viel Energie er noch aufnehmen kann.

• State of Function (SOF):

Gibt die Funktionalität der Batterie an. State of Function beschreibt die Leistungsfähigkeit der Batterie. Also wie viel kW der Energiespeicher dem Motor zum Beispiel bereitstellen kann. Die Leistungsfähigkeit lässt mit zunehmendem Batteriealter nach.

Circuit-Breaker: Tritt ein Fehler bei einer einzelnen Zelle oder auch einem ganzen Akkupack auf, wird diese Batterie mithilfe eines HS-Kontaktors (Circuit-Breaker) von der Last getrennt. Dies schützt den Akkumulator. Dieser Kontaktor übernimmt außerdem noch die Trennung eines Akkumulatoren im Ruhezustand. Fehler die durch Trennen der Last beseitig werden können sind zum Beispiel Kurzschlüsse oder auch Übertemperatur. Für den Kurzschlussfall sind meisten auch noch Schmelzsicherungen (eine Art Sollbruchstelle im Stromkreis; die Wärmewirkung des Stromes wird ausgenutzt) verbaut die verhindern, dass Leitungen oder auch das Gehäuse in Flammen aufgehen.

Strommessvorrichtung: Diese Komponete ist wie der Name schon beschreibt, für die Messung des Stromes zuständig. Oftmals werden dazu zwei voneinander unabhängige Systeme verwendet. Um den Strom messen zu können, wird ein Messsensor verwendet. Dies ist meist ein einfacher Widerstand. Bei der zweiten Methode wird der Strom über das elektromagnetische Feld gemessen.

Temperaturüberwachung: Die letzte Komponente, die benötigt wird, um das Batteriemanagementsystem zu vervollständigen, ist für den Temperaturausgleich zuständig. Das heißt, es wird überwacht ob sich der Akkumulator in einem zulässigen Temperaturbereich findet. Sollte das nicht der Fall sein, können innere sowie auch äußere Schäden an der Batterie entstehen. Außerdem wirkt sich die Temperatur auf die Lebensdauer der Akkus auf.

2.5.2 Battery-Balancing

Der Ausdruck Balancing bezogen auf Akkumulatoren bedeutet so viel wie Ladeausgleich. Ohne Battery-Balancing bestimmt in einem Mehrzellen-Akku immer die schwächste Zelle darüber, welche Kapazität oder Spannung das Gesamtsystem aufweist. Das ergibt sich daraus, da sich jede Zelle minimal von einer anderen Zelle, durch ihre chemischen Struktur, unterscheidet. Einzelne Batteriezellen können auch unterschiedlich altern und deswegen kann man nie sicherstellen, dass jede Zelle exakt die identische Kapazität aufweist. Manche Zellen laden etwas schneller oder langsamer als andere. Wiederrum andere Batterien entladen sich etwas zügiger oder eben auch langsamer.

Akkupacks:

Muss noch zitiert werden: Cluster oder Akkupacks bestehen zur Erhöhung der Nennspannung in der Regel aus mehreren in Reihe geschalteten Einzelzellen oder Zellblöcken. Fertigungs- und alterungsbedingt gibt es hierbei Schwankungen in der Kapazität, im Innenwiderstand und weiteren Parametern dieser Zellen. Die schwächste Zelle ist dabei bestimmend, wie viel geladen oder entladen werden darf. Im praktischen Einsatz von mehrzelligen in Reihe verschalteten Akkus führt dieser Umstand dazu, dass die Zellen in Reihe unterschiedlich geladen und entladen werden.

Es kommt dann im Verbund zu kritischer Tiefentladung oder bei der Ladung zu einer Überladung und Überschreiten der Ladeschlussspannung einzelner Zellen. Je nach Akkutyp kann es dabei zu einer irreversiblen Schädigung einzelner Zellen kommen. Die Folge: das gesamte Akkupack verliert an Kapazität. (Ende des Zitates) Um das zu verhindern, spielen im Batteriemanagementsystem die Balancer eine wichtige Rolle. Beim Battery-Balancing gibt es zwei verschiedene Arten.

- Passives Battery-Balancing
- Aktives Battery-Balancing

Abbildung III.3: Vergleich zwischen Aktiven- und Passiven-Battery Balancing

Passives Battery-Balancing:

Eine technische weit verbreitete Methode für das Balancing, ist das Passive Battery-Balancing. Dabei arbeitet es nur im Bereich des Ladeschlusses. Der Ausdruck Ladeschluss bedeutet soviel, dass wenn die Akkumulatoren fast vollständig aufgeladen sind das Balancing zu arbeiten beginnt. Sobald die Zellen die Ladeschlussspannung erreicht haben, wird durch den Balancer ein Widerstand parallel dazugeschalten, um so die Spannung auf die Ladeschlussspannung zu begrenzen. Zellen, welche diese Spannung bereits erreicht haben, werden dann nur noch geringfügig weitergeladen oder teilweise sogar etwas entladen. Die Zellen, die jedoch noch in der Reihenschaltung verschalten sind und die Ladeschlussspannung noch nicht erreicht haben, werden weiterhin mit dem Ladestrom versorgt und somit weitergeladen. Wichtig ist darauf zu achten, dass die Leistung des Parallelwiderstandes auf den Ladstrom angepasst werden muss, da sonst zuviel Energie in Form von Wärme am Widerstand auftreten wird.

Abbildung III.4: Funktionsweise des Passiven Battery-Balancing

Vorteile des Passiven Battery-Balancing:

- sehr kostengünsigt
- technisch relativ leicht realisierbar

Nachteile des Passiven Battery-Balancing:

- Ladevorgang kann extrem lange dauern, da man warten muss bis die schwächste Zelle den geforderten State of Charge (SOC) erreicht hat
- viel Energie verpufft in Form von Wärme
- Diese Verlustwärme wirkt sich negativ auf die Lebensdauer der Akkumulatoren aus
- nicht unerhebliche Brandgefahr

Aktives Battery-Balancing:

Diese Methode des Balancing ist etwas komplexer als beim Passiven Battery-Balancing, jedoch ist sie deutlich effizienter. Bei den aktiven Balancern wird ein Ladungstransfer von Zellen untereinander realisiert. Das bedeutet, dass die Energie der Zellen die bereits ein höher Ladung aufweisen, auf die Akkumulatoren mit niedrigerer Ladung übertragen werden. Beim Aktiven Battery-Balancing werden sogenannte Ladreglungen benötigt. Ladreglungen sind im Prinzip speziell auf eine Anwendung optimierte Schaltregler, die pro Zelle arbeiten und aktiv die Energie übertragen. Dieser Vorgang kann bereits während des Ladeprozesses erfolgen. Standartmäßig wird dieser Vorgang jedoch erst im Bereich des Ladeschlusses aktiv (gleich wie beim Passiven Battery-Balancing). Eine weiterentwickelte Form dieses Systems wird bidirektionalens Balancer-System genannt. Hierbei ist es möglich, dass des Ladungsaustausch sowohl beim Entladen als auch beim Aufladen der Zellen stattfinden kann. Desswegen sind diese bidrektionalen Balancer noch deutlich effizienter. Das Akitve Battery-Balancing wird heutzutage meistens bei größeren Leistungen angewandt, wie zum Beispiel im Bereich der Elektromobilität.

Abbildung III.5: Funktionsweise des Aktiven Battery-Balancing

In der obigen Abbildung kann man die Prinzipschaltung eines aktiven Balancers mit zwei Stufen sehen. Innerhalb von zwei Schaltvorgängen kann dabei die Energie aus der Akkuzelle Cell n über den FET n in die Spule L n übertragen werden (Schleife in rot, 1). Im zweiten Schaltvorgang (Schleife in blau, 2) wird die Energie in der Spule L n über Diode D n-1 in die Cell n-1 geladen und Cell n-1 aufgeladen.

Vorteile des Aktiven Battery-Balancing:

- deutlich höherer Wirkungsgrad als beim passiven Battery-Balancing
- übergeordnete Ladereglung mit intelligenter und lernfähiger Software
- Lebensdauer der Akkumulatoren kann durch die Methode der Ladungsumverteilung deutlich erhöht werden
- überschüssige Energie wird nur zu einem geringen Grad in Wärme umgewandelt
- geringeres Risiko für eine Entflammung

Nachteile des Aktiven Battery-Balancing:

• höherer Verschaltungsaufwand, dadurch erhöhte Initialkosten

- 3 Steuereinheiten
- 3.1 Raspberry PI
- 4 Bussysteme
- 4.1 SPI Bus
- 4.2 CAN Bus

Kapitel IV

Mechanische Umsetzung

1 Section

Seite 19 Schmeisser 5AHET

Kapitel V

Akku und Ladekonzept

1 Übersicht

1.1 Aufgaben der Energieversorgung

In den Bereichen der Wirtschaft und der Technik bedeudet der Ausdruck Energieversorgung so viel wie, die Belieferung von Verbrauchern mit Energie. Es gibt unterschiedliche Arten von Energieträgern. Einerseits gibt es leitungsgebundene Energietrieger wie den elektrischen Strom andererseits gibt es auch feste Energieträger wie Kohle oder Holz. In naher Zukunft werden regenerative Energie vermehrt an Bedeutung gewinnen.

Eine stabil Energieversorgung, die mit allen Verbrauchern verbunden ist, wird benötigt, um dem emissionsfreien Sportmotorrad Mobilität zu verleihen. Die Aufgabe der Energieversorgung besteht daher darin, alle Komponenten mit ausreichend Spannung zu versorgen und noch wichtiger, diese Komponenten bei elektrischem Versagen vor Schäden zu schützen. Daher ist die Energieversorgung ein äußerst wichtiger Bestandteil eines solchen Projekts. Im weiteren Verlauf dieses Kapitel wird erklärt, wie die Energieversorgung geplant und in weiterer Folge umgesetzt wurde.

1.2 Aufgaben des Batteriemanagement

Wie bereits im Kapitel 2.5 erklärt wurde, bestehen die Aufgaben des Batteriemanagement darin, Kennwerte der Akkumulatoren aufzunehmen und an eine Steuereinheit weiterzuleiten. Weiters ist es auch für den Schutz der Akkumulatoren zuständig und ebenfalls für einen geregelten Ladevorgang.

Ein Bestandteil des Batteriemanagements ist das sogenannte Batteriemanagementsystem (BMS). Das BMS hat die Aufgabe die Akkumulatoren auf ihre Ladung und Entladung zu überwachen und ebenfalls zu regeln. Die Hauptaufgabe des Batteriemanagementsystem besteht jedoch darin, die Restenergie in den Zellen optimal zu nutzen. Um keine Beschädigungen an Zellen zu bekommen, schützt das Batteriemanagementsystem die Batterien vor Tiefenentladung, vor Überspannung, vor zu schneller Ladung (begrenzen des Ladestroms) und ebenfalls vor einem zu hohen Entladestrom. Bei Akkupacks, d.h. Akkumulatoren mit mehreren Zellen, sorgt das Batteriemanagementsystem außerdem für ein sogenanntes Balancing, das sich darin ausdrückt, dass die verschiedenen Batteriezellen gleiche Ladezustände und Entladezustände haben. Das Batteriemanagementsystem liest und verarbeitet alle Daten, die anschließend über ein Bussystem an die Zentralsteuerung weitergegeben werden.

Um die Akkumualtoren beziehungsweise die Akkupacks wieder aufladen zu können, wird ein externes Ladegerät benötigt. Bei Badarf wird dieses Ladegerät mit den Akkumulatoren verbunden um den Ladevorgang in Gang zu setzten.

5AHET Kern Seite 20

2 Energieversorgung

2.1 Dimensionierung der Akkuzellen

Es ist besonders wichtig die Daten der Zellen vorher zu beachten um die Dimensionierung gut zu planen und schließlich auch umszusetzten. Um die Energie effizient speicher zu können wurden Lithium-Ionen Akkumulatoren verwendet. Da der Elektromotor mit einer Spannung von 50,4V gespeist werden muss, haben wir uns desswegen auch auf ein solches Versorgungssystem geeinigt. Weiters ist bei Dimensionierung besonders wichtig auf die Lade- und Entladeströme zu achten. Einerseits muss beim Ladestrom nur auf den Strom des Ladegeräts berücksichtigt werden. Andererseits ist es beim Entladestrom etwas komplizierter. Um den Richtwert des Entladestrom einzuhalten, muss der Nennstrom aller Verbraucher in einem System addiert werden.

Der Verbrauch der Steuerelemente setzt sich aus dem verwendeten Raspberry, dem Batteriemanagementsystem und dem Motorcontroller zusammen. Der Raspberry benötigt eine Spannung von 5V und darf eine maximale Leistung von ca. 8W aufweisen. Der Motorcontroller weist eine Nennspannung von 50,4V auf und benötigt eine Leistung von ungefähr 19,5kW. In den folgenden Formel wird der Strom dieser Komponenten berechnet.

$$I_{Raspberry} = \frac{P_{Raspberry}}{U} = \frac{8W}{5V} = 1,6A$$

$$I_{Motor controller} = \frac{P_{Motor controller}}{U} = \frac{19,5kW}{50,4V} = 387A$$

Natürlich müsst auf der Stromverbrauch des Batteriemanagementsystem mit einberechnet werden. Dieser ist jedoch vernachlässigbar, weil dieser bei wenigen mA liegt.

In der Nachfolgenden Abbildung kann man die Kenndaten einer einzelnen Lithium-Ionen Zelle betrachten. Durch diese Kenndaten setzt sich weitere Dimensionierung des Akkukonzeptes zusammen.

Seite 21 Kern 5AHET

EAN / GTIN:	8438493108880
Marke:	Samsung
Batteriegröße:	21700
Batteriechemie:	Li-lon
Batterie:	Wiederaufladbar
Stromspannung	3,6V
Mindest. Kapazität in mAh:	4.900,00
Batterieversion:	Flache Oberseite
Entladestrom:	9,80
Lithium - Schutzschaltung:	Ungeschützt
Höhe:	70,80
Durchmesser in mm:	21.25

Abbildung V.1: Eigenschaften und Kennwerte einer Lithium Ionen Zelle

Wie man in der Tabelle erkennen kann, liegt die Spannung einer Lithium Ionen Zelle bei 3,6V. Da jedoch ein Versorgungssystem mit 50,4V notwendig ist müssen die Zellen beziehungsweise die Akkupacks seriell sowie auch parallel verschalten werden.

Die Nennkapazität einer Zelle beträgt 4900mAh. Um die Kapazität zu erhöhen wurden innerhalb eines Akkupacks 40 einzelne Akkumulatoren parallel verschalten.

$$Q_{Gesamt} = Q_{Akkupack} = Q_{Zellen} \cdot 40 = 4900 \text{ mAh} \cdot 40 = 196.000 \text{ mAh}$$

Die Nennkapazität einer Lithium Ionen Zelle beträgt 3,6V. Innerhalb der Akkupacks werden diese 40 Zellen parallel verschalten, was nicht zu einer Erhöhung der Spannung führt. Da wir aber ein Versorgungssystem mit 50,4V benötigen, musst wir die 14 Akkupacks seriell verschalten um die Versorgungsspannung zu erreichen.

$$U_{Gesamt} = U_{Akkupack} \cdot 14 = U_{Zelle} \cdot 14 = 3.6 \text{ V} \cdot 14 = 50.4 \text{ V}$$

2.1.1 Zusammenstellung der Batteriezellen

Die Aufgabe besteht darin, die einzelnen Zellen zu sogenannten Akkupacks zusammenzuschalten. Dafür wurde Abstandshalter verwendet um die Zellen anzuordnen und anschließend mit einem Hiluminband zusammen zu schweißen.

5AHET Kern Seite 22

Abbildung V.2: Explosionsdarstellung einer Doppelzelle

Im nächsten Schritt wurden diese Doppelzellen zusammgeschalten, die vereint ein Akkupack ergeben. Die Schwierigkeit dabei war, die Doppelzellen so anzuordnen, dass der Platz in der Schutzbox für die Akkumulatoren möglichst effizient genutzt wird. Jedoch waren wir beim designen der Akkubox realtiv eingeschränkt, da wir darauf achten mussten, diese Boxen auch an unser Motorrad anzubringen. Die Boxen zusammen mit dem Inhalt sind auch extrem schwer. Desswegen war es wichtig, diese Boxen möglicht unten und in der Mitte anzubringen um den Schwerpunkt des emissionsfreien Sportmotorrads nicht drastisch zu verändern.

Wie bereits vorher erwähnt müssen diese Akkupacks geschützt werden. Dies ist notwendig um die Lebenszeit der Akkumulatoren hinauszuzögern und um sie vor äußeren Einflüssen zu schützen. Diese Akkuboxen haben unterschiedliche Formen, da sie an unterschiedlichen Positionen an dem Sportmotorrad angebracht werden. Grundsätzlich haben wir 3 verschiedene Akkuboxen designt und angefertigt.

1. Akkubox:

Die erste Akkubox besteht aus 2 Akkupacks. Das heißt insgesamt beinhaltet sie 80 Zellen.

Abbildung V.3: 1. Akkubox

2. Akkubox:

Die zweite Akkubox besteht aus insgesamt 6 Akkupacks. Diese Akkubox ist in drei Ebenen aufgeteilt wobei in einer Ebene 2 Akkuboxen Platz finden. Die nächsten beiden Akkuboxen liegen

auf der ersten Ebene auf. Schlussendlich befinden sich die letzten 2 der 6 Akkuboxen auf der letzten, der dritten Ebene.

Abbildung V.4: 2. Akkubox

3. Akkubox:

Die dritte und somit letzte Akkubox beinhaltet insgesamt 6 Akkupacks. Diese Box wird an der Vorderseite, genauer parallel zu den Stoßdämpfern, angebracht. Es ist wichtig die Box so nahe es geht am Mittelpunkt und möglichst weit in Bodennähe anzubringen, um den Schwerpunkt des Motorrads nicht drastisch zu verändern.

Abbildung V.5: 3. Akkubox

2.2 Verschaltung der Batteriezellen

Bei der Verschaltung der Batteriezellen war es wichtig auf die Kennwerte der Komponenten zu achten. Da unser elektrischer Motor mit einer Spannung von 50,4V versorgt werden muss, haben wir uns daher auch auf ein 50,4V Versorgungssystem geeinigt. Im weiteren Verlauf wurde geplant und schließlich auch umgesetzt wie die Zellen am besten verschaltet werden sollten.

Grundsätzlich gibt es 3 verschiedene Möglichkeiten einzelne Zellen zu verschalten:

- Serienschaltung
- · Parallelschaltung
- Kombination aus Serien-und Parallelschaltung

2.2.1 Serienschaltung

Das Prinzip der Serienschaltung ist relativ einfach. Der Minuspol der einen Batterie wird einfach mit dem Pluspol der anderen Batterie verbunden. Das hat zur Folge, dass alle Zellen mit dem selben Strom durchflossen werden. Jedoch addieren sich alle Teilspannungen der Zellen zu einer Gesamtspannung. Die Serienschaltung von Batterien wird häufig auch als Hintereinanderschaltung oder Reihenschaltung bezeichnet.

Abbildung V.6: Serienschaltung beliebig vieler Zellen

Beispiel: Werden zwei Batterien mit jeweils 300Ah (Amperestunden) und 9V (Volt) in Reihe geschaltet, ergibt sich eine Ausgangsspannung von 18V mit einer Kapazität von 300 Ah.

Vorteile und Nachteile:

Durch die Reihenschaltung wird ermöglicht, höhere Gesmatspannungen zu erzeugen. Ein bedeutender Nachteil ist jedoch, dass die schwächste Zelle die Leistung der gesamten Reihenschaltung beeinflusst. Außerdem kann es vorkommen, dass wenn eine einzelne Batteriezelle defekt ist, die gesamte Batteriereihe ausfällt. Daher ist es notwendig zusätzliche Sicherungen hinzu zu schalten. Im Normalfall können nur Batteriezellen vom gleichen Hersteller, Typ und von der selben Batterietechnik kombiniert und in Serie geschalten werden.

Seite 25 Kern 5AHET

2.2.2 Parallelschaltung

Das Prinzip der Parallelschatung ist relativ ähnlich zu der Serienschaltung. Der große Unterschied jedoch besteht darin, dass der Minuspol der einen Batterie mit dem Minuspol der anderen Batterie verschaltet wird. Dadurch summieren sich die Ladekapazitäten (Ah) der einzelnen Zellen zu einer gesmaten Ladekapazität. Die Gesamtspannung entspricht jedoch der Spannung einer einzelnen Batterie.

Abbildung V.7: Parallelschaltung beliebig vieler Zellen

Beispiel: Werden zwei Batterien mit jeweils 300 Ah und 9V parallel geschaltet, so ergibt sich eine Ausgangsspannung von 9V und eine Gesamtkapazität von 600Ah.

Vorteile und Nachteile:

Die Parallelschaltung führt dazu, die Leistungsfähigkeit und außerdem die Lebensdauer zu steigern. Jedoch ist die Laderegelung bei einer Parallelschaltung nicht unkompliziert, da jede Zelle unterschiedlich schnell altert und damit einer Fehlerquelle darstellen kann. Deshalb kann es vorteilhaft sein, eine größere Batterie anstatt mehrerer einzelner Zellen zu verwenden. Sollte trotzdem einer Parallelschaltung mehrerer Zellen vorgenommen werden, sollt unbedingt darauf geachtet werden Batterien mit gleicher, Kpapzität, Bauart und Ladezustand einzusetzten. Außerdem ist es von Vorteil möglichst kurze Leitungen einzusetzten, um Spannungsverlust zu verhindern.

2.2.3 Kombination aus Serien- und Parallelschaltung

Durch eine Kombination aus einer Serien- und Parallelschaltung ermöglicht man eine größeres Flexibilität zur Erreichung einer bestimmten Spannung und auch Leistung. Wie bereits vorher erwähnt erreicht man durch eine Parallelschaltung die benötigte Gesamtkapazität und durch die Serienschaltung die gewünscht Betriebsspannung.

Diese Methode wird in der Praxis am häufigsten eingesetzt und ist auch bei unserem Akkusystem zum Einsatz gekommen.

Verschaltung der einzelnen Zellen in den Akkupacks:

Da wir uns auf ein 50,4V Versorgungssystem geeinigt haben, und jede einzelne Zelle eine Spannung von 3,6V aufweist haben wir jeweils 40 einzelne Lithium Ionen Akkus zusammgeschaltet. Die einzelnen Batterie werden in den Akkupacks parallel verschaltet, da wir so einen deutlich höhere Leistungsfähigkeit erreichen und die Lebensdauer dadurch verlängert wird.

Abbildung V.8: Verschaltung der einzelnen Zellen innerhalb der Akkupacks

Seite 27 Kern 5AHET

Verschaltung der Akkupacks:

Durch die Parallelschaltung innerhalb der Akkupacks wird jedoch nicht die Spannung erhöht. Wir haben eine Anzahl von 560 einzelnen Lithium Ionen Zellen. Ein Akkupack beinhaltet 40 Zellen was dazu führt, dass wir insgesamt 14 Akkupacks haben. Diese 14 Akkupacks werden seriell verschalten um die Spannung von 3,6V auf die gewünschten 50,4V zu vergrößern.

Die seperaten Zellen werden mithilfe eines Hiluminband Punktgeschweißt um so eine Verbindung zwischen den Zellen herzustellen. Wichtig ist darauf zu achten, dass das Hiluminband nur bis zu einer Stromstärke von 30A zulässig ist. Da wir jedoch weitaus höhere Ströme zu erwarten haben, muss wir dieses Hiluminband verstärkern. Dies erfolt über eine Metallplatte die jeweils an der Oberseite sowie auch an der Unterseite angebracht wird. Dadurch wird die Schweißverbindung gestärkt und in weiterer Folge werden keine Fehler auftreten.

$$U_{Gesamt} = U_{Akkupack} \cdot 14 = U_{Zelle} \cdot 14 = 3.6 \text{ V} \cdot 14 = 50.4 \text{ V}$$

Aus Darstellungsgründen wurden die Akkupacks 4 - 13 durch das Akkupack ... ersetzt.

Abbildung V.9: Verschaltung der Akkupacks

5AHET Kern Seite 28

2.2.4 Geschätzt Betriebszeit des Akkumulators

In diesem Abschnitt wurden alle relevanten Daten gesammelt, um schließlich eine Näherung für die Laufzeit des Akkumulators durchzuführen. Diese Daten wurden bereits im Kapitel Dimensionierung teilwiese berechnet.

Im ersten Schritt wird die Energie, die der Akkumulator aufnehmen kann berechnet.

$$W_{Akkumulator} = U_{Gesamt} \cdot Q_{Gesamt} = 50.4 \text{ V} \cdot 196.000 \text{ mAh} = 9880 \text{ Wh}$$

Als nächstes wird die Leistung berechnet. Da sich das Motorrad jedoch nicht immer mit voller Geschwindigkeit fortbewegen wird, haben wir eine Auslastung von 75 Prozent angenommen und eine realistische Akkulaufzeit zu berechnen.

$$P_{Gesamt} = P_{Motor controller} \cdot P_{Raspberry} = 19.5 \text{ kW} \cdot 8 \text{ W} = 19.508 \text{ kW}$$

Wie bereits vorher erwähnt müssen von dieser berechneten Gesmatleistung 25 Prozent abgezogen werden.

$$P_{Gesamt.real} = P_{Gesamt} \cdot 75$$

Schlussendlich kann die ungefähre Laufzeit des emissionsfreien Sportmotorads berechnet werden.

$$t_{Laufzeit} = \frac{W_{Akkumualtor}}{P_{Gesamt,real}} = \frac{9880 \text{ Wh}}{14.63 \text{ kW}} = 0,68 \text{ h} = 41 \text{ min}$$

Die geschätzte durch eine Näherung berechnet Laufzeit des Akkumulator, beträgt in etwa 41min.

2.3 Allgemeine Übersicht der Elektroinstallation

2.4 Batteriemanagementsystem

Der zweite Teil, der für ein funktionierendes Akkusystem notwendig ist, ist das Batteriemanagementsystem. Die Aufgabe des BMS ist es die Akkumulatoren zu überwachen und an die aufgenommenen Daten über eine serielle Schnittstelle an die Zentralsteuerung weiterzugeben.

In unserm Projekt wurde ein 14S 48V 100A Li-ion Daly BMS Battery Management System verwendet. Wie bereits vorher erwähnt beinhaltet unser Akkusystem 560 Zellen. Die Bezeichnung 14s bedeudet, dass das Batteriemanagement insgesamt maximal 14 Zellen überwachen kann. Daher ist es nicht möglich jede Zelle einzeln zu überwachen da so viele Anschlüsse nicht vorhanden sind. Jedes Akkupack beinhaltet 40 Zellen.

$$Akkupacks = \frac{Zellen_{gesamt}}{Zellen_{Akkupack}} = \frac{560 \text{ Zellen}}{40 \text{ Zellen}} = 14 \text{ Akkupacks}$$

Abbildung V.10: Caly Batteriemanagementsystem

- 2.5 Akkumulatoren
- 2.6 Akkumulatoren
- 2.6.1 Lithiumbatterien

5AHET Kern Seite 30

Kapitel VI

Endergebnis

1 Section

Anhang A

Arbeitsnachweis

- 1 Zeitplan
- 2 Kosten

Anhang B

Programmier-Code

Anhang C

CAD-Zeichnungen

Anhang D

Schaltpläne

Abbildungsverzeichnis

III.1	Grundaufbau einer Lithium-Ionen Zelle	.(
III.2	Grundschaltung eines Batteriemanagementsystems	3
III.3	Vergleich zwischen Aktiven- und Passiven-Battery Balancing	5
III.4	Funktionsweise des Passiven Battery-Balancing	6
III.5	Funktionsweise des Aktiven Battery-Balancing $\dots \dots \dots$	7
V.1	Eigenschaften und Kennwerte einer Lithium Ionen Zelle	22
	Explosionsdarstellung einer Doppelzelle	
V.3	1. Akkubox	13
V.4	2. Akkubox	:4
V.5	3. Akkubox	:4
V.6	Serienschaltung beliebig vieler Zellen	į
V.7	Parallelschaltung beliebig vieler Zellen	26
V.8	Verschaltung der einzelnen Zellen innerhalb der Akkupacks	27
V.9	Verschaltung der Akkupacks	3

Tabellenverzeichnis

2020/21 Listings

Listings