

빅데이터분석절차 평가및격용

회귀성능평가지표

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

분류성능평가지표

- ① 정확도 (Accuracy)
- ② 오차행렬 (Confusion Matrix)
- ❸ 정밀도(Precision) & 재현율(Recall)
- 4 F1 스코어
- **6** ROC AUC

① 정확도(ACCURACY)

예측결과가동일한데이터건수

전체예측데이터건수

정확도 = ML model performance?

① 정확도(ACCURACY)

- ✓ No 학습
- ✓ Sex 남성이면 0, 여성이면 1로 예측
- ✓ 정확도는?
- **√** 78.77%

- from sklearn.metrics import confusion_matrix
- confusion_matrix(y_test, mypredictions)

 pd.DataFrame(confusion_matrix(y_test, mypredictions), columns=['0', '1'])

	0	1
0	92	18
1	20	49

- TN (True Negative): 예측 값 0, 실제 값 0
- FP (False Positive): 예측 값 1, 실제 값 0
- FN (False Negative): 예측 값 0, 실제 값 1
- TP (True Positive): 예측 값 1, 실제 값 1

• 정확도 = 예측값과 실제값이 얼마나 동일한가?

예측결과가동일한데이터건수

전체 예측 데이터 건수

(TN+TP)

(TN+FP+FN+TP)

❸ 정밀도(PRECISION) & 재현율(RECALL)

- 정밀도
- · 실제 음성인 데이터 예측을 양성으로 잘못 판단 시 업무상 큰 영향이 발생하는 경우

TP

(FP+TP)
False Positive + True Positive

- 재현율
- · 실제 양성 데이터를 음성으로 잘못 판단 시 업무 상 큰 영향이 발생하는 경우

TP

(FN+TP)
False Negative + True Positive

❸ 정밀도(PRECISION) & 재현율(RECALL)

	정밀도	재현율
설명	양성이라고 예측한 모든 경우에서 실제 양성인 경우	실제 양성인 모든 경우에서 양성이라고 예측한 경우
암 판단 모델		
금융 사기 모델		
재판		
스팸 메일 판단		
목표	FP를 낮추는 것	FN을 낮추는 것

정확성 문제

다음 중 어떤 시나리오에서 높은 정확성 값을 통해 ML 모델이 제대로 실행되고 있음을 알 수 있나요?

비싼 로봇 닭이 혼잡한 도로를 하루에 수천 번 건넙니다. ML 모델은 교통 패턴을 평가하여 이 닭이 안전하게 길을 건널 수 있는 때를 99.99%의 정확성으로 예측합니다.

V

전 세계 인구의 0.01%가 치명적이지만 치유 가능한 질병으로 고통받고 있습니다. ML 모델은 증상을 특징으로 사용하여 99.99%의 정확성으로 이러한 질병을 예측합니다.

V

물렛 게임에서 회전하는 물렛 휠에 공이 떨어지면 결국 슬롯 38개 중 하나로 들어갑니다. ML 모델은 시각적 특징(공의 회전, 공이 떨어졌을 때 룰렛 휠의 위치, 룰렛 휠 위 공의 높이)을 사용하여 공이 들어갈 슬롯을 4%의 정확성으로 예측할 수 있습니다.

정밀도문제

이메일을 '스팸'과 '스팸 아님', 두 카테고리로 구분하는 분류 모델을 가정해 보겠습니다. 분류 임계값을 올리면 정밀도는 어떻게 될까요	2?
아마도 감소할 것입니다.	\
확실히 증가합니다.	~
확실히 감소합니다.	~
아마도 증가할 것입니다.	V DATA

재현율문제

이메일을 '스팸'과 '스팸 아님', 두 카테고리로 구분하는 분류 모델을 가정해 보겠습니다. 분류 임계값을 올리면 재현율은 어떻게 될까요? 항상 증가합니다. 항상 감소하거나 그대로 유지됩니다. 항상 일정하게 유지됩니다.

❸ 정밀도(PRECISION) & 재현율(RECALL)

- from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix
- def get_clf_eval(y_test, pred):
- confusion = confusion_matrix(y_test, pred)
- accuracy = accuracy_score(y_test, pred)
- precision = precision_score(y_test, pred)
- recall = recall_score(y_test, pred)
- print('오차 행렬')
- print(confusion)
- print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f}'.format(accuracy, precision, recall))

```
오차 행렬
[[108 10]
[ 14 47]]
정확도: 0.8659, 정밀도: 0.8246, 재현율: 0.7705
```

- import pandas as pd
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import LogisticRegression
- #원본 데이터를 재로딩, 데이터 가공, 학습데이터/테스트 데이터 분할
- titanic_df = pd.read_csv('./train.csv')
- y_titanic_df = titanic_df['Survived']
- X_titanic_df = titanic_df.drop('Survived', axis=1)
- X_titanic_df = transform_features(X_titanic_df)
- X_train, X_test, y_train, y_test = train_test_split(X_titanic_df, y_titanic_df, test_size=0.20, random_state=11)
- Ir_clf = LogisticRegression()
- lr_clf.fit(X_train, y_train)
- pred = lr_clf.predict(X_test)
- get_clf_eval(y_test, pred)

- pred_proba = lr_clf.predict_proba(X_test)
- pred = lr_clf.predict(X_test)
- print('pred_proba()결과 Shape : {0}'.format(pred_proba.shape))
- print('pred_proba array에서 앞 3개만 샘플로 추출 \n:', pred_proba[:3])
- #예측 확률 array와 예측 결과값 array를 병합(concatenate)해 예측 확률과 결과값을 한눈에 확인
- pred_proba_result = np.concatenate([pred_proba, pred.reshape(-1,1)], axis=1)
- print('두 개의 class 중에서 더 큰 확률을 클래스 값으로 예측 \n', pred_proba_result[:3])

```
pred_proba()결과 Shape : (179, 2)
pred_proba array에서 앞 3개만 샘플로 추출
: [[0.44935228 0.55064772]
  [0.86335513 0.13664487]
  [0.86429645 0.13570355]]
두 개의 class 중에서 더 큰 확률을 클래스 값으로 예측 [[0.44935228 0.55064772 1. ]
  [0.86335513 0.13664487 0. ]
  [0.86429645 0.13570355 0. ]]
```

	0 예측 확률	1 예측 확률	예측
0	0.449352	0.550648	1.0
1	0.863355	0.136645	0.0
2	0.864296	0.135704	0.0

- from sklearn.preprocessing import Binarizer
- X = [[1,-1,2],
- · [2, 0, 0],
- · [0, 1.1, 1.2]]
- # X의 개별 원소들이 threshod값보다 같거나 작으면 0을, 크면 1을 반환
- binarizer = Binarizer(threshold=1.1)
- print(binarizer.fit_transform(X))

- from sklearn.preprocessing import Binarizer
- #Binarizer의 threshold 설정값. 분류 결정 임곗값임
- custom_threshold = 0.5
- # predict_proba() 반환값의 두 번째 칼럼, 즉 Positive 클래스 칼럼 하나만 추출해 Binarizer를 적용
- pred_proba_1 = pred_proba[:, 1].reshape(-1,1)
- binarizer =
 Binarizer(threshold=custom_threshold).fit(pred_proba_1)
- custom_predict = binarizer.transform(pred_proba_1)
- get_clf_eval(y_test, custom_predict)

```
오차 행렬
[[108 10]
[ 14 47]]
정확도: 0.8659, 정밀도: 0.8246, 재현율: 0.7705
```

- # Binarizer의 threshold 설정값 0.5 → 0.4
- custom_threshold = 0.4
- pred_proba_1 = pred_proba[:, 1].reshape(-1,1)
- binarizer =
 Binarizer(threshold=custom_threshold).fit(pred_proba_1)
- custom_predict = binarizer.transform(pred_proba_1)
- get_clf_eval(y_test, custom_predict)

```
오차 행렬
[[97 21]
[11 50]]
정확도: 0.8212, 정밀도: 0.7042, <mark>재현율: 0.8197</mark>
```


threshold = 0.5

threshold = 0.4

TN	FP
108	10
FN	TP
14	47

TN	FP
97	21
FN	TP
11	50

- # 테스트 수행을 위한 모든 임계값을 리스트로 저장
- thresholds = [0.4, 0.45, 0.5, 0.55, 0.6]
- def get_eval_by_threshold(y_test, pred_proba_c1, thresholds):
- # thresholds list 객체 내의 값을 차례로 iteration하면서 Evaluation 수행.
- for custom_threshold in thresholds:
- binarizer =
 Binarizer(threshold=custom_threshold).fit(pred_proba_c1)
- custom_predict = binarizer.transform(pred_proba_c1)
- print('임계값:', custom_threshold)
- get_clf_eval(y_test, custom_predict)
- get_eval_by_threshold(y_test, pred_proba[:,1].reshape(-1,1), thresholds)

임곗값	정확도	정밀도	재현율					
0	0.3408	0.3408	1					
0.1	0.3911	0.3588	1					
0.2	0.6983	0.5340	0.9016					
0.3	0.8156	0.6750	0.8852					
0.4	0.8212	0.7042	0.8197					
0.5	0.8659	0.8246	0.7705					
0.6	0.8771	0.8980	0.7213					
0.7	0.8212	0.9677	0.4918					
0.8	0.7598	0.9500	0.3115					
0.9	0.7263	1	0.1967					
1.0	0.6592	0	0					

- from sklearn.metrics import precision_recall_curve
- #레이블 값이 1일 때의 예측 확률을 추출
- pred_proba_class1 = lr_clf.predict_proba(X_test)[:, 1]
- #실제값 데이터 세트와 레이블 값이 1일 때 예측 확률을 precision_recall_curve 인자로 입력
- precisions, recalls, thresholds = precision_recall_curve(y_test, pred_proba_class1)
- print('반환된 분류 결정 임곗값 배열의 shape:', thresholds.shape)
- # 반환된 임곗값 배열 로우가 147건이므로 샘플로 10건만 추출하되, 임곗값을 15 step으로 추출
- thr_index = np.arange(0, thresholds.shape[0], 15) # thresholds.shape = (147,)
- print('샘플 추출을 위한 임계값 배열의 index 10개:', thr_index)
- print('샘플용 10개의 임계값:', np.round(thresholds[thr_index], 2))
- #15 step 단위로 추출된 임계값에 따른 정밀도와 재현율 값
- print('샘플 임계값별 정밀도:', np.round(precisions[thr_index], 3))
- print('샘플 임계값별 재현율:', np.round(recalls[thr_index], 3))

```
반환된 분류 결정 임곗값 배열의 shape: (147,)
샘플 추출을 위한 임계값 배열의 index 10개: [ 0 15 30 45 60 75 90 105 120 135]
샘플용 10개의 임계값: [0.12 0.13 0.15 0.17 0.26 0.38 0.49 0.63 0.76 0.9 ]
샘플 임계값별 정밀도: [0.379 0.424 0.455 0.519 0.618 0.676 0.797 0.93 0.964 1. ]
샘플 임계값별 재현율: [1. 0.967 0.902 0.902 0.902 0.82 0.77 0.656 0.443 0.213]
```


- import matplotlib.pyplot as plt
- import matplotlib.ticker as ticker
- %matplotlib inline
- def precision_recall_curve_plot(y_test, pred_proba_c1):
- #threshold ndarray와 이 threshold에 따른 정밀도, 재현율 ndarray 추출.
- precision, recalls, thresholds = precision_recall_curve(y_test, pred_proba_c1)
- #X축을 threshold 값으로, Y축은 정밀도, 재현율 값으로 각각 Plot 수행. 정밀도는 점선으로 표시
- plt.figure(figsize=(8,6))
- threshold_boundary = thresholds.shape[0]
- plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--', label='precision')
- plt.plot(thresholds, recalls[0:threshold_boundary], label='recall')
- #threshold 값 X 축의 Scale을 0,1 단위로 변경
- start, end = plt.xlim()
- plt.xticks(np.round(np.arange(start, end, 0.1), 2))
- #x축, y축 label과 legend, 그리고 grid 설정
- plt.xlabel('Threshold value'); plt.ylabel('Precision and Recall value')
- plt.legend(); plt.grid()
- plt.show()

precision_recall_curve_plot(y_test, Ir_clf.predict_proba(X_test)[:,1])

Equation 3-3. F1 score

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

To compute the F_1 score, simply call the fl_score() function:

	precision	recall	F1
A	0.9	0.1	0.18
В	0.5	0.5	0.5

4 F1 스코어

- from sklearn.metrics import f1_score
- f1 = f1_score(y_test, pred)
- print('F1 스코어: {0:.4f}'.format(f1))
- F1 스코어: 0.7966
- def get_clf_eval(y_test, pred):
- confusion = confusion_matrix(y_test, pred)
- accuracy = accuracy_score(y_test, pred)
- precision = precision_score(y_test, pred)
- recall = recall_score(y_test, pred)
- #F1 스코어 추가
- f1 = f1_score(y_test, pred)
- print('오차 행렬')
- print(confusion)
- #f1 score print 추가
- print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f}, F1:{3:.4f}'.format(accuracy, precision, recall, f1))
- thresholds = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
- pred_prob = Ir_clf.predict_proba(X_test)
- get_eval_by_threshold(y_test, pred_proba[:, 1].reshape(-1,1), thresholds)

임곗값	정확도	정밀도	재현율	F1
0	0.3408	0.3408	1	0.5083
0.1	0.3911	0.3588	1	0.5281
0.2	0.6983	0.5340	0.9016	0.6707
0.3	0.8156	0.6750	0.8852	0.7660
0.4	0.8212	0.7042	0.8197	0.7576
0.5	0.8659	0.8246	0.7705	0.7966
0.6	0.8771	0.8980	0.7213	0.8000
0.7	0.8212	0.9677	0.4918	0.6522
0.8	0.7598	0.9500	0.3115	0.4691
0.9	0.7263	1	0.1967	0.3288
1.0	0.6592	0	0	0

F1 SCORE

- ROC: Receiver Operation Characteristic Curve, 수신자 판단 곡선
- 2차 대전 때 통신 장비 성능 평가를 위해 고안된 수치
- 의학분야에서 많이 사용
- 머신러닝이진분류모델의 예측성능판단에 중요한평가지표

A - 완벽한 모델

B - 좋은 모델

C - 평균/기본 모델

- 커브 아래 영역

TPR = TP / (FN + TP), 재현율

TNR = TN / (FP + TN)

FPR = FP / (FP + TN)

FPR = 1 - TNR

$\cdot \text{ FPR} \rightarrow 0$

- 분류 결정 임곗값 → 1
- FP / (FP + TN)
- · Positive 예측 기준이 Max
- Positive가 틀릴 확률 0
- Positive 선택 0
- FP는 항상 0

• FPR → 1

- FP / (FP + TN) \rightarrow TN = 0 \rightarrow FP/FP = 1
- 분류 결정 임곗값 → 0
- · 모두 Positive로 예측
- Negative 예측 확률 0이므로 TN도 0

- from sklearn.metrics import roc_curve
- #레이블 값이 1일 때의 예측 확률을 추출
- pred_prob_class1 = lr_clf.predict_proba(X_test)[:,1]
- fprs, tprs, thresholds = roc_curve(y_test, pred_prob_class1)
- # 반환된 임곗값 배열 로우가 47건이므로 샘플로 10건만 추출하되, 임곗값을 5 Step으로 추출
- thr_index = np.arange(0, thresholds.shape[0], 5)
- print('샘플 추출을 위한 임곗값 배열의 index 10개:', thr_index)
- print('샘플용 10개의 임곗값:', np.round(thresholds[thr_index], 2))
- #5 step 단위로 추출된 임곗값에 따른 FPR, TPR 값
- print('샘플 임곗값별 FPR:', np.round(fprs[thr_index], 3))
- print('샘플 임곗값별 TPR:', np.round(tprs[thr_index], 3))

샘플 추출을 위한 임곗값 배열의 index 10개: [0 5 10 15 20 25 30 35 40 45] 샘플용 10개의 임곗값: [1.94 0.87 0.63 0.55 0.44 0.32 0.15 0.14 0.13 0.12] 샘플 임곗값별 FPR: [0. 0.008 0.025 0.059 0.127 0.203 0.559 0.602 0.695 0.847] 샘플 임곗값별 TPR: [0. 0.246 0.672 0.738 0.787 0.885 0.902 0.951 0.967 0.984]

- from sklearn.metrics import roc_curve
- #레이블 값이 1일 때의 예측 확률을 추출
- pred_prob_class1 = lr_clf.predict_proba(X_test)[:,1]
- fprs, tprs, thresholds = roc_curve(y_test, pred_prob_class1)
- # 반환된 임곗값 배열 로우가 47건 추출
- thr_index = np.arange(0, thresholds.shape[0])
- print('임곗값 배열의 index:', thr_index)
- print('전체 임곗값:', np.round(thresholds[thr_index], 2))
- #추출된 임곗값에 따른 FPR, TPR 값
- print('전체 임곗값별 FPR:', np.round(fprs[thr_index], 3))
- print('전체 임곗값별 TPR:', np.round(tprs[thr_index], 3))

#	0 -	<u> </u>	<u>ى</u> د	4 0	5	6	7	<u></u>	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	ယ	34	35	36	37	38	39	40	41	42	43	44	45	46	<u>17</u> 0
임곗값	1.94	_ -	0.93	-		-	_	l - _	I	I = _	I = _	I		•		 	0.52	■_	- _	- _	- _	0.41		• .	0.32	•	• .		•	-	0.15	•	0.14	0.14	0.14	0.14	•		-	-	-	-	0.12		0.12	0.02	0 0 0
FPR	0				0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.06	0.06	0.08	0.08	0.1	0.1	0.13	0.13	0.17	0.17	0.2									0.59											0.82	0.85	0 85	
TPR	0.01	0.00	0.07	0.25	0.25	0.49	0.49	0.64	0.64	0.67	0.71	0.71	0.72	0.72	0.74	0.74	0.77	0.77	0.79	0.79	0.8	0.8	0.82	0.82	0.89	0.89	0.9	0.9	0.9	0.9	0.9	0.9	0.92	0.92	0.95	0.95	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.98	0.98		

- def roc_curve_plot(y_test, pred_prob_c1):
- #임곗값에 따른 FPR, TPR 값을 반환받음
- fprs, tprs, thresholds = roc_curve(y_test, pred_proba_class1)
- #ROC 곡선을 그래프 곡선으로 그림
- plt.plot(fprs, tprs, label='ROC')
- #가운데 대각선 직선을 그림
- plt.plot([0,1], [0,1], 'k---', label='Random')
- #FPR X 축의 Scale을 0.1 단위로 변경, X, Y측 명설정 등
- start, end = plt.xlim()
- plt.xticks(np.round(np.arange(start, end, 0.1), 2))
- plt.xlim(0,1); plt.ylim(0,1)
- plt.xlabel('FPR(1-Sensitivity)'); plt.ylabel('TPR(Recall)')
- plt.legend()
- roc_curve_plot(y_test, pred_proba[:,1])

AUC

- Area Under Curve
- · ROC 곡선 밑의 면적
- 1에 가까울 수록 좋은 수치
- FPR이 작은 상태에서 TPR이 커지는 것
- · 가운데 대각선은 동전 던지기 수준의 AUC 값
- · 보통 분류는 0.5 이상의 AUC 값

- from sklearn.metrics import roc_auc_score
- pred = lr_clf.predict(X_test)
- roc_score = roc_auc_score(y_test, pred)
- print('ROC AUC 값: {0:.4f}'.format(roc_score))
- ROC AUC 값: 0.8429
- 타이타닉 생존자 예측 Logistic Regression model의 ROC AUC 값: 0.842

https://www.kaggle.com/uciml/pima-Indians-diabetes-database

- · Pregnancies: 임신 횟수
- · Glucose: 포도당 부하 검사 수치
- BloodPressure: 혈압
- · SkinThickness: 팔 삼두근 뒤쪽의 피하지방 측정값
- · Insulin: 혈청 인슐린
- · BMI: 체질량지수 (체중/키)
- DiabetesPedigreeFunction: 당뇨 내력 가중치 값
- · Age: 나이
- · Outcome: 클래스 결정 값 (레이블 칼럼)

