Basic FET Amplifiers

The MOSFET Amplifier

The figure shows a basic MOSFET amplifier where the dc source V_{GSQ} is used to provide the bias voltage between gate and source.

The ac voltage source v_i which represents the signal source is connected in series with the bias voltage V_{GSO} .

Basic FET Amplifiers

The MOSFET Amplifier

The Q-point is on dc load line and Q-point are functions of v_{GS} , V_{DD} and R_D and the transistor parameters.

Basic FET Amplifiers

The MOSFET Amplifier

The sinusoidal input voltage (v_i) causes variations in the gate-to-source voltage (v_{GS}) , drain current (i_D) and drain-to-source voltage (v_{DS}) .

Basic FET Amplifiers

The MOSFET Amplifier

The total v_{GS} is the sum of V_{GSQ} and v_i i.e;

$$v_{GS} = V_{GSQ} + v_i$$

As v_i increases, the instantaneous value of v_{GS} increases, and the bias point moves up on the load line.

Basic FET Amplifiers

The MOSFET Amplifier

Larger value of v_{GS} means larger drain current i_D and smaller value of v_{DS} .

Basic FET Amplifiers

The MOSFET Amplifier

A smaller value of v_{GS} means smaller drain current i_D and larger value of v_{DS} .

Thus this configuration causes phase inversion.

Basic FET Amplifiers

The MOSFET Amplifier

Phase inversion between input and output voltages

Basic FET Amplifiers

The MOSFET Amplifier

For the MOSFET to operate as a linear amplifier, it must be biased in the saturation region and the instantaneous drain current and drain-to-source voltage must also be confined to this region.

Basic FET Amplifiers

The MOSFET Amplifier

As long as the amplifier operates in the linear region, symmetrical input signal will produce symmetrical output.

If the limit is exceeded, the output signal will be clipped and distortion will occur.

Basic FET Amplifiers

The MOSFET Amplifier

The total instantaneous value of the gate-tosource voltage is given by;

$$v_{GS} = V_{GSQ} + v_i$$

Considering only ac component;

$$v_{gs} = v_i$$

Hence;

Basic FET Amplifiers

The MOSFET Amplifier

The total instantaneous drain current is;

$$i_D = K_n (v_{GS} - V_{TN})^2$$

Substituting for v_{GS} ;

$$i_{D} = K_{n} (V_{GSQ} + v_{gs} - V_{TN})^{2}$$

$$= K_{n} (V_{GSQ} - V_{TN}) + v_{gs}^{2}$$

or

$$i_D = K_n (V_{GSQ} - V_{TN})^2 + 2K_n (V_{GSQ} - V_{TN}) v_{gs} + K_n v_{gs}^2$$

Basic FET Amplifiers

The MOSFET Amplifier

The term $K_n \left(V_{GSQ} - V_{TN} \right)^2$ is the dc component of the drain current

The term $2K_n(V_{GSQ}-V_{TN})v_{gs}$ is the timevarying component of the drain current which is linearly related to the input signal v_{gs} .

The term $K_n v_{gs}^2$ is the component of the drain current which is proportional to the square of the input signal v_{gs} .

$$i_D = K_n (V_{GSQ} - V_{TN})^2 + 2K_n (V_{GSQ} - V_{TN}) v_{gs} + K_n v_{gs}^2$$

Basic FET Amplifiers

The MOSFET Amplifier

The term $K_n v_{gs}^2$ produces undesirable harmonics or non-linear distortion in the output voltage.

To minimize these harmonics, we must have;

$$v_{gs} << 2(V_{GSQ} - V_{TN})$$

This is the small-signal condition that must be satisfied for linear amplifier.

$$i_D = K_n (V_{GSQ} - V_{TN})^2 + 2K_n (V_{GSQ} - V_{TN}) v_{gs} + K_n v_{gs}^2$$

Basic FET Amplifiers

The MOSFET Amplifier

If the small-signal condition is satisfied, the term containing v_{gs}^2 may be neglected and the equation for i_D becomes;

$$i_D = K_n (V_{GSQ} - V_{TN})^2 + 2K_n (V_{GSQ} - V_{TN}) v_{gs}$$

The equation may be written as:

$$i_D = I_D + i_d$$

where;

$$I_D = K_n (V_{GSQ} - V_{TN})^2$$
 - the dc component

Basic FET Amplifiers

The MOSFET Amplifier

and;

$$i_d = 2K_n \left(V_{GSQ} - V_{TN} \right) v_{gs}$$

- the ac or signal component

From the above equation, we can write;

$$g_m = \frac{i_d}{v_{gs}} = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

- the transconductance relating the output current to the input voltage

Basic FET Amplifiers

The MOSFET Amplifier

The transconductance can also be written as;

$$g_m = \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GSQ} = \text{const.}} = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

$$I_D = K_n \left(V_{GSQ} - V_{TN} \right)^2$$

which gives us;

$$g_m = 2\sqrt{K_n I_{DQ}}$$

Basic FET Amplifiers

The MOSFET Amplifier

AC Equivalent Circuit

In the ac equivalent circuit, all dc sources are set to zero and $V_{\rm DD}$ is considered to be at signal ground.

Basic FET Amplifiers

The MOSFET Amplifier

Small-signal Equivalent Circuit

If we neglect the effect of the output resistance r_o , the MOSFET and its small-signal equivalent circuit are as follows (in terms of instantaneous ac values):

Basic FET Amplifiers

The MOSFET Amplifier

Small-signal Equivalent Circuit

The small-signal equivalent circuit in terms of phasor components (note the notation used):

$$v(t) = 6 * cos(120\pi + 30^{\circ})$$

$$i(t) = 2 * cos(120\pi + 30^{\circ})$$

 $V = 6 \angle 30^{\circ}$

 $I = 2/30^{\circ}$

Basic FET Amplifiers

The MOSFET Amplifier

Small-signal Equivalent Circuit

The small-signal equivalent circuit with r_o taken into account.

Basic FET Amplifiers

The MOSFET Amplifier

Small-signal Equivalent Circuit

Basic FET Amplifiers

The MOSFET Amplifier Example 1

The MOSFET in the figure has the following parameters;

$$V_{TN} = 2 \text{ V}, K_n = 0.5 \text{ mA/V}^2, \text{ and } \lambda = 0$$

The transistor is biased for $I_{DQ} = 0.4 \text{ mA}$.

- (a) Draw the ac equivalent circuit.
- (b) Draw the small-signal equivalent circuit.
- (c) Determine the small-signal voltage gain A_{v} . V_{GSQ}

Basic FET Amplifiers

The MOSFET Amplifier Example 1 - Solution

(a) For the ac equivalent circuit, all dc voltage sources are set to zero;

(b) Since $\lambda = 0$, the output resistance r_o is omitted in the small-signal equivalent circuit;

Basic FET Amplifiers

The MOSFET Amplifier Example 1 - Solution (cont'd)

(c)
$$g_m = 2\sqrt{K_n I_{DQ}}$$

= $2 \times 10^{-3} \sqrt{0.5 \times 0.4}$
= 0.894 mA/V

Basic FET Amplifiers

The MOSFET Amplifier Example 1 - Solution (cont'd)

At the output terminal;

$$V_o = -g_m V_{gs} R_D$$

At the input terminal;

$$V_i = V_{gs}$$

Substituting for V_{gs} ;

$$V_o = -g_m R_D V_i$$

The small-signal voltage gain is;

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m}R_{D}$$

$$A_{v} = -g_{m}R_{D} = -0.894 \times 10 = -8.94 \text{ V/V}$$

Amplifier Circuits

Basic Amplifier Configurations

Common-source

 R_1 and R_2 establish the transistor biasing. C_{C1} couples the signal to the input acts as an open circuit for dc voltage. At signal frequency, this capacitor is considered as a short circuit.

The source is grounded and is common to both input and output - hence the name common-source.

 V_{DD}

Common-source

Since the coupling capacitor is considered as a short circuit at signal frequency and all dc sources are set to zero under ac condition, the ac equivalent circuit for the amplifier may drawn as follows;

Common-source

The parallel combination of R_1 and R_2 may be replaced by R_i where;

$$R_i = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

 R_i is the input resistance of the amplifier.

Common-source

The small-signal equivalent circuit may drawn as shown below;

In the above circuit, the output resistance of the transistor, r_o is finite and taken into account.

Common-source

Since R_D and the output resistance of the transistor, r_o are in parallel, the small-signal equivalent circuit may be redrawn as shown below.

Basic Amplifier Configurations

Common-source

Using this equivalent circuit, at the output terminal;

$$V_o = -g_m V_{gs} R_o$$

At the input terminal;

$$V_{gs} = V_i \left(\frac{R_i}{R_{Si} + R_i} \right) \qquad \qquad V_o = -g_m V_i \left(\frac{R_i}{R_{Si} + R_i} \right) R_o$$

Hence the voltage gain is;

$$A_{v} \equiv \frac{V_{o}}{V_{i}} = -g_{m} \left(\frac{R_{i} R_{o}}{R_{Si} + R_{i}} \right)$$

Basic Amplifier Configurations

Common-source

Basic Amplifier Configurations

Common-source

Example 1

The transistor in the figure has the following parameters;

$$V_{TN} = 0.8 \text{ V}, \quad K_n = 0.2 \text{ mA/V}^2,$$

and $\lambda = 0$

Find the following:

- (a) g_m and r_o ;
- (b) A_v;
- (c) R_i and R_o .

Basic Amplifier Configurations

Common-source

Example 1 - Solution

(a)
$$V_{GS} = V_G = V_{DD} \left(\frac{R_2}{R_1 + R_2} \right)$$
$$= 5 \left(\frac{320}{520 + 320} \right) = 1.905 \text{ V}$$

$$g_m = 2K_n(V_{GS} - V_{TN})$$

= $2 \times 0.2 \times 10^{-3} (1.905 - 0.8)$
= **0.442mA/V**

$$r_o = \frac{1}{\lambda I_D} = \infty$$

The circuit under dc condition

Basic Amplifier Configurations

Common-source

Example 1 - Solution (cont'd)

Basic Amplifier Configurations

Common-source

Example 1 - Solution (cont'd)

$$R_o = R_D = 10 \,\mathrm{k}\Omega$$

$$R_i = R_1 || R_2$$
$$= 520 || 320$$
$$= 198 k\Omega$$

Common-source with R_s

The source resistor R_S tends to stabilize the Q-point against variations in transistor parameters.

However, the inclusion of this resistor reduces the amplifier gain.

Basic Amplifier Configurations

Common-source with R_s

Example 2

The transistor in the figure has the following parameters;

$$V_{TN} = 0.6 \text{ V}, \quad K_n = 0.5 \text{ mA/V}^2,$$

and $\lambda = 0$

- (a) Determine the Q-point of the amplifier.
- (b) Find the small-signal voltage gain

Basic Amplifier Configurations

Common-source with R_s

Example 2 - Solution

The circuit under dc condition

The gate voltage:

$$V_G = 10 \left(\frac{0.25}{1 + 0.25} \right) - 5 = -3 \text{ V}$$

Voltage drop on R₂

$$V_S = -5 + I_D R_S = -5 + 2 \times 10^3 I_D$$

$$V_{GS} = V_G - V_S = 2 - 2 \times 10^3 I_D$$

$$I_D = (1 - 0.5V_{GS})10^{-3}$$

Basic Amplifier Configurations

Common-source with R_s

Example 2 - Solution (cont'd)

(1)
$$I_D = (1 - 0.5V_{GS})10^{-3}$$

The circuit under dc condition

(2)
$$I_D = K_n (V_{GS} - V_{TN})^2$$

= $(0.5V_{GS}^2 - 0.6V_{GS} + 0.18)10^{-3}$

Substituting for I_D and rearranging, we have;

$$\begin{split} &(1-0.5V_{GS})10^{-3}\\ &= \left(0.5V_{GS}^2 - 0.6V_{GS} + 0.18\right)\!10^{-3}\\ \text{or;}\\ &V_{GS}^2 - 0.2V_{GS} - 1.64 = 0 \end{split}$$

Quadratic Formula Calculator

$$x^2 + 4x + 3 = 0$$

Calculate it!

Use quadratic formula with a=1, b=4, c=3

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(3)}}{2(1)}$$

$$x = \frac{-4 \pm \sqrt{4}}{2}$$

$$x = -1$$
 or $x = -3$

Basic Amplifier Configurations

Common-source with R_{s}

Example 2 - Solution (cont'd)

Solving the quadratic equation, gives us;

$$V_{GS}^2 - 0.2V_{GS} - 1.64 = 0$$

$$V_{GS} = \frac{0.2 \pm \sqrt{0.2^2 + 4 \times 1.64}}{2}$$

= 1.385 V
 $V_{GS} = -1.18$ (second root)

Substituting for V_{GS} in;

$$I_D = K_n (V_{GS} - V_{TN})^2$$

we obtain;

$$I_D = 0.308 \text{ mA}$$

Basic Amplifier Configurations

Common-source with R_5

Example 2 - Solution (cont'd)

$$V_D = 5 - I_D R_D = 5 - 0.308 \times 10$$

= 1.92 V

$$V_S = -5 + I_D R_S = -5 + 0.308 \times 2$$

= -4.384 V

$$V_{DS} = V_D - V_S = 1.92 + 4.384$$

= 6.304 V

$$V_{TN} = 0.6 \text{ V}$$
 $V_{GS} = 1.385 \text{ V}$

$$V_{DS} > V_{GS} - V_{TN}$$

Saturation region

Common-source with R₅ Example 2 - Solution (cont'd)

The Q-point:

$$I_{DQ} = 0.308 \,\mathrm{mA}\;;\;\; V_{DSQ} = 6.304 \,\mathrm{V}$$

The transconductance is:

$$g_m = 2K_n (V_{GSQ} - V_{TN})$$

= $2 \times 0.5 \times 10^{-3} (1.385 - 0.6)$
= 0.785 mA/V

Basic Amplifier Configurations

Common-source with R_5 Example 2 - Solution (cont'd)

The ac equivalent circuit may be drawn as follows;

Basic Amplifier Configurations

Common-source with R_s Example 2 - Solution (cont'd)

The small-signal equivalent circuit may be drawn as follows;

Basic Amplifier Configurations

Common-source with R_s

Example 2 - Solution (cont'd)

$$V_{i} = V_{gs} + V_{s}$$

$$= V_{gs} + g_{m}V_{gs}R_{s}$$

$$V_{o} = -g_{m}V_{gs}R_{D}$$

The small-signal voltage gain is;

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-g_{m}V_{gs}R_{D}}{V_{gs} + g_{m}V_{gs}R_{S}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}$$

Basic Amplifier Configurations

Common-source with R_s

Example 2 - Solution (cont'd)

Substituting values;

$$A_{v} = -\frac{0.785 \times 10}{1 + 0.785 \times 2}$$

$$= -3.05 \text{ V/V}$$

Basic Amplifier Configurations

Common-source with C_s Example 3

The parameters for the transistor in the figure are;

$$K_p = 2 \text{ mA/V}^2$$
, $V_{TP} = -2 \text{ V}$, and $\lambda = 0.01 \text{ V}^{-1}$

- (a) Determine the Q-point
- (c) Calculate the small-signal voltage gain A_v .

Basic Amplifier Configurations

Common-source with C_{S}

Example 3 - Solution

Since I_G is assumed to be zero, G is at the ground potential and $I_S = I_D$.

$$I_D = K_p (V_{SG} + V_{TP})^2$$

$$= 2 \times 10^{-3} (V_{SG} - 2)^2$$

$$= 2 \times 10^{-3} (V_{SG}^2 - 4V_{SG} + 4)$$

$$V_{SG} = 9 - I_D R_S$$

= $9 - 1.2 \times 10^3 I_D$

$$I_D = (7.5 - 0.833 V_{SG}) 10^{-3}$$

Basic Amplifier Configurations

Common-source with C_S

Example 3 - Solution (cont'd)

Substituting for I_D ;

$$(7.5 - 0.833V_{SG})10^{-3}$$
$$= 2 \times 10^{-3} (V_{SG}^2 - 4V_{SG} + 4)$$

or;

$$V_{SG}^2 - 3.583V_{SG} + 0.25 = 0$$

Solving the equation for V_{SG} , we obtain;

$$V_{SG} = 3.512 \text{ V}$$

Basic Amplifier Configurations

Common-source with C_5 Example 3 - Solution (cont'd)

$V_{SG} = 3.512 \text{ V}$

$$I_D = I_S = \frac{9 - 3.512}{1.2 \times 10^3} = 4.57 \,\text{mA}$$

$$V_D = 4.57 \times 10^{-3} \times 1 \times 10^3 - 9$$
$$= -4.427 \text{ V}$$

$$V_{SD} = V_S - V_D$$

= 3.512 + 4.427
= 7.94 V

Basic Amplifier Configurations

Common-source with C_5 Example 3 - Solution (cont'd)

(a)

The Q-point is;

$$I_{DQ} = 4.57 \text{ mA}, V_{SDQ} = 7.94 \text{ V}$$

$$g_m = 2K_p(V_{SG} + V_{TP})$$

= 2(3.512-2)
= 6.048 mA/V

Basic Amplifier Configurations

Common-source with C_S

Example 3 - Solution (cont'd)

Basic Amplifier Configurations

Common-source with C_S Example 3 - Solution (cont'd)

The small-signal equivalent circuit may drawn as follows;

Note that r_o is included in the equivalent circuit because the value of λ is given.

$$r_o = \frac{1}{\lambda I_{DO}} = \frac{1}{0.01 \times 4.57 \times 10^{-3}} = 218.8 \text{ k}\Omega$$

Basic Amplifier Configurations

Common-source with C_5 Example 3 - Solution (cont'd)

The small-signal voltage gain is;

$$A_v \equiv \frac{V_o}{V_i} \cong -g_m R_D = -6.05 \times 10^{-3} \times 1 \times 10^3$$

$$A_{v} = -6.05 \text{ V/V}$$

$$r_0 = 218.8 \text{ k}\Omega$$

$$R_D = 1 \text{k}\Omega$$

$$r_o//R_D \cong R_D$$

Basic Amplifier Configurations

Common-drain

Also known as source-follower

The output is taken from the source.

The drain is connected to V_{DD} which is the signal ground and becomes the common terminal for the input and output, hence the name common-drain.

 V_{DD}

Common-drain

The small-signal analysis may be performed using the following small-signal equivalent circuit.

Common-drain - Voltage gain A_v

The small-signal equivalent circuit may be redrawn as follows;

Basic Amplifier Configurations

Common-drain - Voltage gain A_v

$$V_{in} = V_{gs} + V_o = V_{gs} + g_m V_{gs} (R_S || r_o) \qquad V_{gs} = \frac{V_{in}}{1 + g_m (R_S || r_o)}$$

$$V_o = g_m V_{gs} (R_S || r_o)$$

Common-drain - Voltage gain A_v

At the input side;

$$V_{in} = V_i \left(\frac{R_i}{R_{Si} + R_i} \right)$$
 where $R_i = R_1 || R_2$

MOSFET Basic Amplifier Configurations

Common-drain - Voltage gain A,

$$V_{gs} = \frac{V_{in}}{1 + g_m(R_S || r_o)} \quad \text{and} \quad V_{in} = V_i \left(\frac{R_i}{R_{Si} + R_i}\right)$$

Combining the two equations, gives us;

$$V_{gs} = \frac{R_{i}}{[1 + g_{m}(R_{S} || r_{o})](R_{Si} + R_{i})} V_{i}$$

Hence;

$$\frac{V_{gs}}{V_{i}} = \frac{R_{i}}{\left[1 + g_{m}(R_{S} || r_{o})\right](R_{Si} + R_{i})}$$

Common-drain - Voltage gain A_v

$$\frac{V_o}{V_{gs}} = g_m(R_S || r_o) \qquad \frac{V_{gs}}{V_i} = \frac{R_i}{[1 + g_m(R_S || r_o)](R_{Si} + R_i)}$$

The small-signal voltage gain is;

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{V_{o}}{V_{gs}} \times \frac{V_{gs}}{V_{i}}$$

$$= \frac{g_m(R_S || r_o)}{1 + g_m(R_S || r_o)} \left(\frac{R_i}{R_{Si} + R_i}\right)$$

Common-drain - Voltage gain A,

The small-signal voltage gain also can be written as;

$$A_{v} = \frac{\left(R_{S} \| r_{o}\right)}{1/\left(g_{m} + \left(R_{S} \| r_{o}\right)\right)} \left(\frac{R_{i}}{R_{Si} + R_{i}}\right)$$
 Note that there is no phase shift

Common-drain - Input resistance R_i

The input resistance of the common-drain amplifier is;

$$R_i = \left(R_1 \middle\| R_2\right)$$

Basic Amplifier Configurations

Common-drain - Output resistance R_o

To calculate the output resistance, set all the independent voltage source to zero and apply a test voltage V_x at the output terminal as shown below;

$$R_o = \frac{V_x}{I_x}$$

Basic Amplifier Configurations

Common-drain - Output resistance R_o

$$I_x + g_m V_{gs} = \frac{V_x}{R_S} + \frac{V_x}{r_o}$$

Since there is no current in the input side, we have:

$$V_{gs} = -V_{x}$$

Substituting for
$$V_{qs}$$
, we have;

Substituting for
$$V_{gs}$$
, we have; $I_x - g_m V_x = \frac{V_x}{R_S} + \frac{V_x}{r_o}$

Basic Amplifier Configurations

Common-drain - Output resistance R_o

$$\frac{I_{x}}{V_{x}} = \frac{1}{R_{o}} = \left(g_{m} + \frac{1}{R_{S}} + \frac{1}{r_{o}}\right)$$

The output resistance is: $R_o = \left(1/g_m \|R_S\|r_o\right)$

Basic Amplifier Configurations

Common-drain

Example 4

The transistor parameters in the figure are as follows;

$$V_{TN} = +0.8 \text{ V}, \ K_n = 1 \text{ mA/V}^2,$$

and $\lambda = 0.015 \text{ V}^{-1}$

Design the circuit such that;

$$R_1 + R_2 = 400 \text{ k}\Omega,$$

 $I_{DQ} = 1.5 \text{ mA}$
and $V_{DSO} = 5 \text{ V}$

Basic Amplifier Configurations

Common-drain

Example 4 - Solution

$$R_1 + R_2 = 400 \text{ k}\Omega$$
, $I_{DQ} = 1.5 \text{ mA}$
and $V_{DSQ} = 5 \text{ V}$

$$V_S = V_{DD} - V_{DS} = 10 - 5 = 5 \text{ V}$$

$$R_S = \frac{V_S}{I_D} = \frac{5}{1.5 \times 10^{-3}} = 3.33 \text{ k}\Omega$$

$$V_G = V_{GS} + V_S = V_{GS} + 5$$

$$V_{GS} + 5 = 10 \left(\frac{R_2}{R_1 + R_2} \right) = \frac{R_2}{40 \times 10^3}$$

$$V_{GS} = \frac{R_2}{40 \times 10^3} - 5$$

The dc equivalent circuit;

Basic Amplifier Configurations

Common-drain

Example 4 - Solution (cont'd)

$I_D = K_n (V_{GS} - V_{TN})^2$

$$1.5 = 1 \left[\left(\frac{R_2}{40 \times 10^3} - 5 \right) - V_{TN} \right]^2$$

$$= \left[\left(\frac{R_2}{40 \times 10^3} - 5 \right) - 0.8 \right]^2$$

$$= \left[\frac{R_2}{40 \times 10^3} - 5.8 \right]^2$$

The dc equivalent circuit;

Basic Amplifier Configurations

Common-drain

Example 4 - Solution (cont'd)

$\frac{R_2}{40\times10^3} - 5.8 = \pm\sqrt{1.5} = \pm1.225$

$$R_2 = (\pm 1.225 + 5.8)40 \times 10^3$$

$$R_2 = 281 \text{ k}\Omega$$

$$R_2 = 183 \text{ k}\Omega$$

The dc equivalent circuit;

Basic Amplifier Configurations

Common-drain

Example 4 - Solution (cont'd)

If $R_2 = 281 \text{ k}\Omega$

$$R_1 = 400 - 281 = 119 \text{ k}\Omega$$

$$V_G = 10 \left(\frac{281}{119 + 281} \right) = 7.025 \text{ V}$$

$$V_{GS} = V_G - V_S = 7.025 - 5 = 2.025 \text{ V}$$

The dc equivalent circuit;

Basic Amplifier Configurations

Common-drain

Example 4 - Solution (cont'd)

If $R_2 = 183 \text{ k}\Omega$

$$R_1 = 400 - 183 = 217 \text{ k}\Omega$$

$$V_G = 10 \left(\frac{183}{217 + 183} \right) = 4.575 \text{ V}$$

$$V_{GS} = V_G - V_S = 4.575 - 5 = -0.425 \text{ V}$$

Unrealistic - negative V_{GS} .

The dc equivalent circuit;

Basic Amplifier Configurations

Common-drain

Example 4 - Solution (cont'd)

The circuit with all the designed values;

Common-drain

Example 4 - Solution (cont'd)

The transconductance is:

$$g_m = 2K_n(V_{GS} - V_{TN})$$

= $2 \times 10^{-3} (2.025 - 0.8)$
= 2.45 mA/V

The output resistance of the transistor;

$$r_o = \frac{1}{\lambda I_D} = \frac{1}{0.015 \times 1.5 \times 10^{-3}} = 44.44 \text{ k}\Omega$$

Common-drain

Example 4 - Solution (cont'd)

The small-signal voltage of the amplifier is;

$$A_{v} = \frac{\left(R_{S} \| r_{o}\right)}{1/g_{m} + \left(R_{S} \| r_{o}\right)} \left(\frac{R_{i}}{R_{Si} + R_{i}}\right)$$

$$= \frac{\left(3.33 \| 44.44\right)}{1/2.45 \times 10^{-3} + \left(3.33 \| 44.44\right)} \left(\frac{119 \| 281}{0.2 + 119 \| 281}\right)$$

$$A_{v} = 0.882 \text{ V/V}$$

Basic Amplifier Configurations

Common-drain

Example 5

The transistor in the figure has the following parameters;

$$V_{TP} = -2 \text{ V}, \quad K_p = 2 \text{ mA/V}^2,$$

and $\lambda = 0.02 \text{ V}^{-1}$

Design the circuit such that $I_{DQ} = 3 \text{ mA}$.

Determine the open-circuit small-signal voltage gain and output resistance

What value of R_L will result in a 10% reduction in gain?

Basic Amplifier Configurations

Common-drain

Example 5 - Solution

Since $I_D = 3 \text{ mA}$;

$$V_S = 5 - 3 \times 10^{-3} R_S$$

Because G is at ground potential, we have;

$$V_{SG} = V_S = 5 - 3 \times 10^{-3} R_S$$

The equation for the drain current is;

$$I_D = K_p (V_{SG} + V_{TP})^2$$

The circuit under dc condition

Basic Amplifier Configurations

Common-drain

Example 5 - Solution (cont'd)

Substituting values;

$$3 = 2(5 - 3 \times 10^{-3} R_S - 2)^2$$

Or;

$$R_S = \frac{3 \pm \sqrt{1.5}}{3} \times 10^3$$

The above equation gives us two values;

$$R_{\rm S}=1.41~{\rm k}\Omega$$
 or $R_{\rm S}=592~\Omega$

Basic Amplifier Configurations

Common-drain

Example 5 - Solution (cont'd)

For
$$R_S = 1.41 \text{ k}\Omega$$

$$V_{SG} = 5 - 3 \times 10^{-3} \times 1.41 \times 10^{3}$$
$$= 0.77 \text{ V}$$

(unrealistic because $V_{SG} < |V_{TP}|$

For
$$R_S = 592 \Omega$$

$$V_{SG} = 5 - 3 \times 10^{-3} \times 0.592 \times 10^{3}$$

= 3.24 V

(acceptable)

Common-drain

Example 5 - Solution (cont'd)

The transconductance is;

$$g_m = 2K_p (V_{SG} + V_{TP})$$

= $2 \times 2 \times 10^{-3} (3.24 - 2)$
= 4.96 mA/V

$$r_o = \frac{1}{\lambda I_D} = \frac{1}{0.02 \times 3 \times 10^{-3}}$$

= 16.6 k\O

Basic Amplifier Configurations

Common-drain

Example 5 - Solution (cont'd)

$$V_o = -g_m V_{sg} \left(r_o \| R_L' \right) \quad \Longrightarrow \quad V_{sg} = -\frac{V_o}{g_m \left(r_o \| R_L' \right)}$$

Basic Amplifier Configurations

Common-drain

Example 5 - Solution (cont'd)

$$V_{i} = -V_{sg} + V_{o} = \frac{V_{o}}{g_{m}(r_{o} \| R_{L}')} + V_{o} = \left[\frac{1 + g_{m}(r_{o} \| R_{L}')}{g_{m}(r_{o} \| R_{L}')}\right]V_{o}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \left[\frac{g_{m}(r_{o} || R_{L}')}{1 + g_{m}(r_{o} || R_{L}')} \right]$$

Common-drain

Example 5 - Solution (cont'd)

$$A_{v} = \frac{V_{o}}{V_{i}} = \left[\frac{g_{m}(r_{o} || R_{L}')}{1 + g_{m}(r_{o} || R_{L}')} \right]$$

$$g_m = 4.96 \,\mathrm{mA/V}$$
 (As calculated previously) $r_o = 16.7 \,\mathrm{k}\Omega$

$$R_L' = R_S ||R_L = R_S|$$

= 0.592 k Ω (Since $R_L = \infty$ – open circuit)

Common-drain

Example 5 - Solution (cont'd)

The open-circuit small-signal voltage gain is;

$$A_{\nu}$$
 (open - circuit) = $\left[\frac{4.96 \times 10^{-3} \times 592}{1 + 4.96 \times 10^{-3} \times 592} \right]$

 A_{ν} (open - circuit) = 0.746 V/V

The voltage gain after a reduction of 10% is;

$$A_{v}' = 0.9 A_{v} \text{ (open - circuit)}$$

= 0.9×0.746
= 0.671 V/V

Common-drain

Example 5 - Solution (cont'd)

Substituting for A_v in the equation;

$$A_{v} = \frac{V_{o}}{V_{i}} = \left[\frac{g_{m}(r_{o} || R_{L}')}{1 + g_{m}(r_{o} || R_{L}')} \right]$$

we have;

$$0.671 = \left[\frac{g_m(r_o || R_L')}{1 + g_m(r_o || R_L')} \right]$$

Common-drain

Example 5 - Solution (cont'd)

Substituting the value for g_m gives us;

$$0.671 = \left[\frac{4.96 \times 10^{-3} (r_o || R_L')}{1 + 4.96 \times 10^{-3} (r_o || R_L')} \right]$$

Solving the above equation, we obtain;

$$r_o || R_L' = \frac{1}{2.432 \times 10^{-3}} = 411\Omega$$

This equation may be written as;

$$\frac{r_o R_L'}{r_o + R_L'} = 411 \ \Omega$$

Common-drain

Example 5 - Solution (cont'd)

Or;

$$R_L' = \frac{411 \, r_o}{r_o - 411}$$

Substituting values;

$$R_L' = \frac{411 \times 16.7 \times 10^3}{16.7 \times 10^3 - 411} = 421 \Omega$$

$$R_L' = \frac{R_S R_L}{R_S + R_L} = 421 \ \Omega$$

Common-drain

Example 5 - Solution (cont'd)

$$R_L' = \frac{R_S R_L}{R_S + R_L} = 421 \ \Omega$$

Solving the equation for RL gives us;

$$R_L = 1.46 \text{ k}\Omega$$

Common-drain

Example 5 - Solution (cont'd)

Using the equivalent circuit above, the output resistance R_o is given by the expression;

$$\frac{1}{R_o} = \left(g_m + \frac{1}{R_S} + \frac{1}{r_o}\right)$$

Basic Amplifier Configurations

Common-drain

Example 5 - Solution (cont'd)

Substituting values;

$$\frac{1}{R_o} = \left(4.96 \times 10^{-3} + \frac{1}{0.592 \times 10^3} + \frac{1}{16.7 \times 10^3}\right)$$
$$= 6.709 \times 10^{-3}$$

Common-drain

Example 5 - Solution (cont'd)

The output resistance is;

$$R_o = \frac{1}{6.709 \times 10^3}$$

$$R_o = 149 \Omega$$

Basic Amplifier Configurations

Common-gate

The input signal is applied to the source and gate terminal is grounded. The output is taken between the drain and gate terminals. The gate is therefore common to both the input and output and hence the name "common-gate"

Basic Amplifier Configurations

Common-gate

 \mathcal{C}_{C1} and \mathcal{C}_{C2} are the coupling capacitors for input and output respectively. In the following figure, the DC bias current is obtained from the current source I_Q .

Common-gate

The dc analysis is the same as that of previous configurations.

Basic Amplifier Configurations

Common-gate - small-signal voltage gain

The gains can be determined using the following equivalent circuit;

Basic Amplifier Configurations

Common-gate - small-signal voltage gain

Applying KVL at the input, we obtain;

$$V_i = I_i R_{Si} + V_{Sg} = I_i R_{Si} - V_{gs}$$

Substituting for I_i , we obtain;

$$V_i = -g_m V_{gs} R_{Si} - V_{gs}$$

Common-gate - small-signal voltage gain

$$V_i = -g_m V_{gs} R_{Si} - V_{gs}$$

Re-arranging, gives us;

$$V_{gs} = \frac{-V_i}{1 + g_m R_{Si}}$$

Common-gate - small-signal voltage gain

Substituting for V_{gs} in the expression for V_o , we obtain;

$$V_o = -g_m \left(\frac{-V_i}{\left(1 + g_m R_{Si} \right)} \right) \left(R_D \| R_L \right)$$

$$V_{gs} = \frac{-V_i}{\left(1 + g_m R_{Si}\right)}$$

$$V_o = -g_m V_{gs} \left(R_D \| R_L \right)$$

The small-signal voltage gain is;

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(R_{D} || R_{L})}{1 + g_{m}R_{Si}}$$

Common-gate - input resistance

From the equivalent circuit;

the input resistance becomes;

$$R_i = \frac{1}{g_m}$$

Basic Amplifier Configurations

Common-gate - output resistance

The output resistance may be found by setting $V_i = 0$

Basic Amplifier Configurations

Common-gate - output resistance

When V_i is set to zero;

$$V_{gs} = -g_m V_{gs} R_{Si}$$

which only holds if $V_{gs} = 0$

Common-gate - output resistance

Basic Amplifier Configurations

Common-gate - output resistance

The equivalent circuit becomes as shown below;

Hence the output resistance is;

$$R_o = R_D$$

Common-gate

Example 6

The transistor parameters in the following figure are;

$$K_p = 1 \text{ mA/V}^2$$
, $V_{TP} = -0.8 \text{ V}$, $\lambda = 0$

- (a) Draw the smallsignal equivalent
- (b) Determine the small-signal voltage gain A_v .
- (c) Find the input resistance R_i .

Basic Amplifier Configurations

Common-gate

Example 6 - Solution

DC analysis

May be performed using the dc equivalent circuit shown.

$$I_D = K_p (V_{SG} + V_{TP})^2$$
$$= 10^{-3} (V_{SG} - 0.8)^2$$

$$I_D = 10^{-3} (V_{SG}^2 - 1.6V_{SG} + 0.64)$$

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

From the dc equivalent circuit;

$$V_{SG} = V_S = 5 - I_D R_S$$
$$= 5 - 4 \times 10^3 I_D$$

Rearranging, we have;

$$I_D = (1.25 - 0.25V_{SG})10^{-3}$$

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

Substituting for I_D ;

$$1.25 - 0.25V_{SG} = V_{SG}^2 - 1.6V_{SG} + 0.64$$

or;

$$V_{SG}^2 - 1.35V_{SG} - 0.61 = 0$$

Solving the equation, we have;

$$V_{SG} = 1.71 \text{ V}$$

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

The transconductance is;

$$g_m = 2K_p(V_{SG} + V_{TP})$$

= $2 \times 10^{-3} (1.71 - 0.8)$
= $1.81 \,\text{mA/V}$

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

The ac equivalent circuit is as follows;

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

Replacing the transistor with its small-signal model, we have the following circuit;

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

$$V_o = g_m V_{sg} R_L' = g_m V_i R_L'$$

The small-signal voltage gain is $A_{v} = \frac{V_{o}}{V_{i}} = g_{m}R_{L}'$

$$A_v = \frac{V_o}{V_i} = g_m R_L$$

Common-gate

Example 6 - Solution (cont'd)

Substituting values;

$$A_v = 1.81 \times 1.33 = 2.41$$

Basic Amplifier Configurations

Common-gate

Example 6 - Solution (cont'd)

The input resistance is;

$$R_i = R_S \left\| \frac{1}{g_m} = 4 \right\| \frac{1}{1.81 \times 10^{-3}} = 0.485 \,\mathrm{k}\Omega$$