CITS2211 Assignment 1

Name: Baasil Siddiqui Student Id: 23895849

Question 1

A **Tautology** is a compound proposition which is true under all possible assignments of truth values of it's identifiers

A **contradiction** is a compound proposition which is false under all possible assignments of truth values of its identifiers

A **contingent** proposition is one which is neither a tautology nor a contradiction.

a) P
$$\vee$$
 (Q $\vee \neg$ P)

The statement is a tautology because if P is true then so is $P \lor (Q \lor \neg P)$ if P is false then, $Q \lor \neg P$ is true. Therefore, $P \lor (Q \lor \neg P)$ is true

The proposition is a tautology because it's true under all possible assignments of the truth values of P or Q

b)
$$(P \land \neg P) \lor \neg Q$$

$$(P \land \neg P) \lor \neg Q \equiv F \lor \neg Q$$
 (by contradiction)
 $F \lor \neg Q \equiv \neg Q$ (by absorption)

The proposition is a contingent because it depends on the truth value of Q

c)
$$Q \rightarrow (P \land \neg Q)$$

if Q is true then, $(P \land \neg Q)$ is false, making the implication false, and if Q is false the implication is true

The proposition is a contingent because it depends on the truth value of Q

Question 2

$$P \vee \neg (P \vee \neg Q) \equiv P \vee Q$$

$1. P \lor \neg (P \lor \neg Q)$	Premise
$2. P \vee (\neg P \wedge Q)$	1, Demorgan's laws
$3. (P \lor \neg P) \land (P \lor Q)$	2, distributivity
4. $T \wedge (P \vee Q)$	3, excluded middle
5. P ∨ Q	4, absorption

5.
$$P \vee Q$$

Q.E.D.

Question 3

$$\forall n \ \exists x \ (n \leq x \leq n + 5 \ \land \ (\exists a \ \exists b \ (a \neq x) \ \land \ (b \neq x) \ \land \ (a \times b = x)))$$

Question 4

let N(x, y) be the predicate "x is a neighbour of y"

a) Anna has no neighbours

$$\neg(\exists x.N(x, a))$$

b) Ben has two neighbours

$$\exists\,x\,\exists\,y\,(N(x,\,b)\,\wedge\,N(y,\,b)\,\wedge\,x\neq y\,\wedge\,\forall\,z\,(N(z,\,b)\rightarrow(z=x\,\vee\,z=y)))$$

c) If somebody is a neighbour of Ben, Ben is also a neighbour of that person

$$\forall\,x\,(N(x,\,b)\to N(b,\,x))$$

d) Except for Anna, everyone is the neighbour of someone

$$\forall x (x \neq a \rightarrow \exists y (N(x, y)))$$

Question 5

An inference rule is sound iff assignment of truth values that makes all the antecedents of the rule true must also make the consequent true.

a)
$$\frac{P}{P}$$

 $P \equiv P$ by rule of identity

Therefore, the inference rule is sound

$$\mathrm{b})\; \frac{P}{P \leftrightarrow Q}$$

Counter example: if Q if false and P is true then, the axiom is true but the conclusion is false

Therefore, the inference rule is unsound

$$\mathrm{c)} \; \frac{P \leftrightarrow Q}{P}$$

Counter example: if P and Q are false, the axiom is true but the conclusion is false Therefore, the inference rule is unsound

$$\mathrm{d})\ \frac{P\ Q}{P\vee Q}$$

From the premise P we can infer P \vee Q by disjunction introduction rule Therefore, the inference rule is sound

e)
$$\frac{P \to Q \neg \neg P}{Q}$$

1. ¬¬P	Premise
$2. \ \mathrm{P} \to \mathrm{Q}$	Premise
3. P	1, double negation
4. Q	2, 3, Modus ponens

Therefore, the inference rule is sound

Question 6

$$\forall x. (\neg \ Q(x) \ \lor \ P(x)) \ \lor \ \exists \ x(Q(x) \ \lor \ (P(x) \ \land \ R(x))) \rightarrow \exists x. R(x)$$

1. $\forall x (\neg Q(x) \land P(x))$	premise
2. $\exists x (Q(x) \lor (P(x) \land R(x)))$	premise
3. $Q(a) \vee (P(a) \wedge R(a))$	2, Exist elimination
$4. \neg Q(a) \land P(a)$	1, Forall elimination
5. $\neg Q(a)$	4, conjunction elimination
6. $\neg Q(a) \rightarrow (P(a) \land R(a))$	3, implication law
7. $P(a) \wedge R(a)$	6, 5, Modus ponens
8. R(a)	7, conjunction elimination
9. $\exists x.R(x)$	8, Exists introduction
Q.E.D.	

Question 7

Assume that the difference beetween a squidgy and a non-squidgy number multiplied by 2 produces a squidgy number

let k be a non-squidgy number and l be a squidgy number If l is a squidgy number there exists integers p and q such that l = $\frac{p}{q}$

$$\left(\frac{p}{q} - k\right) * 2 = \frac{p'}{q'}$$

where p' and q' are integers (by our assumption that the result is a squidgy number)

$$k = \frac{2pq' - p'q}{2q'q}$$
 (By arithmetic)

2pq' - p'q and 2q'q are integers

We showed that k can be represented in the form of $\frac{a}{b}$ where a and b are integers, therefore, we have a contradiction as k is a non-squidgy number yet, can be represented as a fraction of integers

Our assumption that the result is a squidgy number must be false.

Therefore, the result of multiplying the difference between a squidgy and a non-squidgy number by 2 is a non-squidgy number Q.E.D.

Question 8

Definition: even numbers are divisible by 2 while odd numbers are not.

this is a bidirection proof so firstly, we prove that if x is odd then 5x-1 is even, and then secondly, prove that if 5x-1 is even then x is odd.

first direction: if x is odd then 5x-1 is even

let x be an arbitary odd integer then x is of the form 2k-1 where k is an integer

$$x = 2k - 1$$

 $5x = 10k - 5$ (multiplying both sides by 5)
 $5x - 1 = 10k - 6$ (substracting 1 from both sides)
 $= 2(5k - 3)$ (factoring out 2)
 $= 2k'$ (where $k' = 5k-3$)

5x-1 is of the form 2k' which is an even number. therefore, for any odd integer x, 5x-1 is an even integer

second direction: if 5x-1 is an even integer then x is an odd integer

The contrapositive of the statement is - if x is not an odd integer then 5x-1 is not an even integer. We need to prove that if x is an even integer then 5x-1 is an odd integer.

let x be an arbitary even integer then x is of the form 2k where k is an integer

$$x = 2k$$

 $5x = 10k$ (multiplying both sides by 5)
 $5x - 1 = 10k - 1$ (substracting 1 from both sides)
 $= 2(5k) - 1$ (factoring out 2)
 $= 2k' - 1$ (where $k' = 5k$)

 $5{\bf x}$ - 1 is of the form 2k'-1 which is an odd number therefore, for any even integer x, $5{\bf x}$ - 1 is an odd integer

Conclusion

therefore, we have proved that if x is odd, then 5x-1 is even

and if 5x-1 is even then x is odd. It follows that x is odd if and only if 5x-1 is even Q.E.D.

Question 9

let P(n) be "there exists an ordering of players $p_1, p_2...p_n$ such that p_i defeats p_{i+1} for all $i \in \{1, 2, ..., n-1\}$ "

Base case:

when n = 1, there is no valid value of i so the condition is satisfied for any arrangement the 1 player can be arranged as " p_1 "

Therefore, P(1) is true.

Inductive case:

We want to show that $P(K) \to P(K+1)$ for some arbitary $k \ge 1$

Inductive hypothesis:

We can Assume that P(K) holds for an arbitary $K \geq 1$

Inductive step:

Now, we need to show that P(K+1) holds given the inductive hypothesis

We can arrange the first K players as p_1, p_2, \ldots, p_k such that p_i defeats p_{i+1} for all $i = 1, 2, \ldots, k-1$.

note that we haven't considered any matches with p_{k+1} yet

Now, we need to add a new player p_{k+1} . Since p_{k+1} plays a match against every other player, it either wins or loses each match.

Case 1: if p_{k+1} beat all other players it can be inserted at the front of the arrangement. " $p_{k+1}, p_1, p_2 \dots p_k$ " will satisfy the condition

Case 2: if p_{k+1} loses to all other players it can be inserted at the end of the arrangement. $p_1, p_2 \dots p_k, p_{k+1}$ will satisfy the condition

Case 3: Now, we will consider the final case, if p_{k+1} defeated some players and lost to others.

Find a player p_i among the existing k players such that p_i defeats p_{k+1} and p_{k+1} defeats p_{i+1}

We know that such a value of j exists because the arrangement includes players who beat p_{k+1} and players who lost to p_{k+1} so there must be a point where two such players are adjacent.

Insert p_{k+1} between p_j and p_{j+1} , resulting in the new sequence: $p_1, p_2, \ldots, p_j, p_{k+1}, p_{j+1}, \ldots, p_k$. In this new order: p_i defeats p_{i+1} for all $i=1,2,\ldots,j-2$. p_j defeats p_{k+1} . p_{k+1} defeats p_{j+1} . p_i defeats p_{i+1} for all $i = j + 1, j + 2, \dots, k$.

Thus, we have arranged k+1 players such that p_i defeats p_{i+1} for all $i \in 1, 2, ... k$ Q.E.D.

Question 10

Base cases:

in the formula a, $A(\phi) = 1$ and $B(\phi) = 0$ in the formula baa, $A(\phi) = 2$ and $B(\phi) = 1$

Thus, $A(\phi) \ge 2B(\phi)$ holds for the base cases

Inductive case $\psi a \phi$:

by the inductive Hypothesis, we can assume that $A(\psi) \geq 2B(\psi)$ and $A(\phi) \geq 2B(\phi)$

$$A(\psi a\phi) = 1 + A(\psi) + A(\phi)$$

$$\geq 1 + 2B(\psi) + 2B(\phi)$$

$$= 1 + 2B(\psi a\phi)$$

$$= 1 + 2B(\psi a\phi)$$

$$\geq 2B(\psi a\phi)$$

Inductive case $aba\psi$:

by the inductive Hypothesis, we can assume that $A(\psi) \geq 2B(\psi)$

$$A(aba\psi) = 2 + A(\psi)$$

$$\geq 2 + 2B(\psi)$$

$$= 2B(aba) + 2B(\psi) \text{ (since 2B(aba) = 2)}$$

$$= 2B(aba\psi)$$

Therefore, $\forall \phi. A(\phi) \ge 2B(\phi)$ Q.E.D

Question 11

Union: The union of sets A and B is a set containing all elements appearing in either A or B or both

Intersection: The intersection of sets A and B is a set containing all elements appearing in

both A and B

(i)
$$(A \cap \neg B \cap \neg C) \cup (B \cap C)$$

(ii)
$$(A \cap \neg B \cap \neg C) \cup (B \cap \neg A \cap \neg C) \cup (C \cap \neg A \cap \neg B)$$

Question 12

(a) Definition: A relation R is reflexive iff $\forall x \in X, R(x,x)$

I will disprove the given proposition with a counter-example:

let
$$X = \{1, 2, 3, 4\}$$

Suppose
$$R = \{(1, 2)(2, 3)(3, 4)(4, 4)\}$$
 and $S = \{(2, 1)(3, 2)(4, 3)(4, 4)\}$
then $T = \{(1, 1)(2, 2)(3, 3)(4, 4)(3, 4)(4, 3)\}$

Here, R and S are not reflexive since
$$1 \in X$$
 but $(1, 1) \notin R$ and $(1, 1) \notin S$ but T is reflexive since $\forall x \in X, T(x, x)$

(b) Definition: A relation R is reflexive iff $\forall x \in X, R(x, x)$

For any arbitary element x in set X,

 $(x, x) \in R$ and $(x, x) \in S$ (by defination of reflexive relations)

(x, x) belongs to T as well (by definition of T)

we have proved that for any arbitary element x in X, $(x, x) \in T$

Therefore, if R and S are reflexive then so is T.

Q.E.D.

(c) Definition: A relation R is symmetric iff $\forall a, b \in X.((a, b) \in R \to (b, a) \in R)$

I will disprove the given proposition with a counter-example:

Suppose
$$R = \{(1, 2)(2, 1)(3, 4)(4, 3)(1, 3)(3, 1)\}$$
 and $S = \{(5, 6)(6, 5)(4, 3)(3, 4)\}$
Then $T = \{(3, 3)(4, 4)(1, 4)\}$

here, R and S are symmetric

but T is not symmetric because $(1, 4) \in T$ but $(4, 1) \notin T$