Muon Cooling Project Updates

April 18, 2025

Progress from this week

- Revisited last week's unintuitive results with solenoid tilt set to zero
- Investigated particle with small momentum offset from nominal reference particle
 - Performed FFT of displacement values vs. z
 - Fit results of FFT to find functional form of dispersion
- Started on investigation of particle with small position offset w.r.t. reference
 - Similar procedure as with dp particle
 - Objective is to find beta functions

Testing with constant solenoid polarity

Animation of reference particle trajectory in xy-plane:

- Expect to see a circle, consistent with helical motion along z
- Suggests that the particle is not properly matched
- May explain why setting solenoid tilt to zero in alternating polarity channel produced unexpected results

dp = -0.1 MeV/c

Displacement from reference particle

Displacement from reference particle

Animation of displacement vector in xy-plane:

Larmor radius

Deviation in Larmor radius w.r.t. reference particle

dp = -0.1 MeV/cdx = dy = -0.012/sqrt(2) cm

Displacement from reference particle (extended channel)

FFT of displacement

Fitting FFT result to functional form

 $f(z) = 0.005\sin(0.2z-1.88) + 0.0022\sin(0.4z+1.04) + 0.0014\sin(3.5z+0.75) + 0.00042\sin(9.0z+2.95) + 0.001$

dxp = dyp = -0.001 radians

Trajectory of dxp, dyp particle

Larmor radius

Deviation in Larmor radius w.r.t. reference particle

FFT of displacement

Fitting FFT result to functional form

