## Introduction to Bayesian Data Analysis Tutorial 7 - Solutions

## (1) (a) The R code is: blue\_crab<-read.table("bluecrab.dat",header=F)</pre> orange\_crab<-read.table("orangecrab.dat",header=F)</pre> y1\_blue<-blue\_crab[,1] y2\_blue<-blue\_crab[,2] y1\_orange<-orange\_crab[,1] y2\_orange<-orange\_crab[,2]</pre> mu0\_blue<-apply(blue\_crab,2,mean)</pre> mu0\_orange<-apply(orange\_crab,2,mean)</pre> LO\_blue<-cov(blue\_crab) LO\_orange<-cov(orange\_crab) S0\_blue<-L0\_blue S0\_orange<-L0\_orange nu0\_blue<-nu0\_orange<-4 n\_blue<-dim(blue\_crab)[1]</pre> n\_orange<-dim(orange\_crab)[1]</pre> ybar\_blue<-mu0\_blue ybar\_orange<-mu0\_orange Sigma\_blue<-S0\_blue Sigma\_orange<-S0\_orange

```
THETA_blue<-THETA_orange<-SIGMA_blue<-SIGMA_orange<-NULL
YS_blue<-YS_orange<-NULL
set.seed(1)
for (s in 1:10000)
 ###update theta
 Ln_blue<-solve( solve(L0_blue) + n_blue*solve(Sigma_blue) )</pre>
 mun_blue<-Ln_blue%*%( solve(L0_blue)%*%mu0_blue +</pre>
        n_blue*solve(Sigma_blue)%*%ybar_blue )
  theta_blue<-rmvnorm(1,mun_blue,Ln_blue)
 Ln_orange<-solve( solve(L0_orange) + n_orange*solve(Sigma_orange) )</pre>
 mun_orange<-Ln_orange%*%( solve(L0_orange)%*%mu0_orange +</pre>
         n_orange*solve(Sigma_orange)%*%ybar_orange )
  theta_orange<-rmvnorm(1,mun_orange,Ln_orange)
  ###
 ###update Sigma
  Sn_blue<- S0_blue +
      ( t(blue_crab)-c(theta_blue) )%*%t( t(blue_crab)-c(theta_blue) )
 Sigma_blue<-solve( rwish( nu0_blue+n_blue, solve(Sn_blue)) )</pre>
 Sn_orange<- S0_orange + ( t(orange_crab)-c(theta_orange) )%*%
             t( t(orange_crab)-c(theta_orange) )
  Sigma_orange<-solve( rwish( nu0_orange+n_orange, solve(Sn_orange)) )
 ###
  ###
 YS_blue<-rbind(YS_blue,rmvnorm(1,theta_blue,Sigma_blue))
  YS_orange<-rbind(YS_orange,rmvnorm(1,theta_orange,Sigma_orange))
 ### save results
THETA_blue<-rbind(THETA_blue,theta_blue) ;</pre>
SIGMA_blue<-rbind(SIGMA_blue,c(Sigma_blue))
THETA_orange<-rbind(THETA_orange,theta_orange) ;</pre>
SIGMA_orange<-rbind(SIGMA_orange,c(Sigma_orange))</pre>
}
```

{

(b) Comparing the two groups, for the same mean body depth, the mean rear width of orange crabs is greater than the mean width of blue crabs



(c)  $Pr(\rho_{\text{blue}} < \rho_{\text{orange}} | \mathbf{y}_{\text{blue}}, \mathbf{y}_{\text{orange}}) \approx 0.98$ . The rear width and body depth of orange crabs are more highly correlated than for blue crabs. The posterior distribution of  $\rho$  suggests we are more certain about the value of  $\rho_{\text{orange}}$ , than about the value of  $\rho_{\text{blue}}$ 

> mean(rho\_blue<rho\_orange)
[1] 0.9893</pre>



```
(2) (a) mu_h<-50
    mu_w<-48
    mu0<-c(mu_h,mu_w)
    nu0<-4
    S0<-matrix(c(100,90,90,100),nrow=2,ncol=2)
    L0<-matrix(c(9,8.1,8.1,9),nrow=2,ncol=2)
    n<-100</pre>
```

A priori, assume the average age of married adult men is 50, and that on average, the husband is 2 years older than the wife. Expect high correlation between the age of married man and his wife, set prior correlation equal to 0.9. Assume a prior standard deviation for age of 10, which is set to cover 95% of ages of the population of married men and women. Assume a slightly lower prior standard deviation for the population mean.

(b) The scatter plots of the prior predictive data sets show strong positive linear correlation and a range of 20 years - 80 years for both husband and wife ages. The prior predictive data sets roughly conform to prior beliefs.



(c) Our prior estimates for  $\theta_h$  and  $\theta_w$  are not contained in the 95% posterior confidence intervals, specifically, our prior guess overestimated the average age of the husband and wife. Our prior guess on the correlation between husband and wife ages is contained in the 95% posterior confidence interval. That is, the data support the belief of a strong linear correlation between husband and wife ages as evidenced by the support on the interval (0.85,0.95) for the posterior density of  $\rho$ , and the strong linear correlation between posterior draws of  $\theta_h$  and  $\theta_w$  as shown in the scatter plot. Our prior guess also slightly underestimated the difference in average age of married man and the average age of a married woman.

95% posterior confidence interval

```
\theta_h
                  (42.9, 47.8)
                  (39.7, 44.3)
         \theta_h - \theta_w \quad (2.29, 4.40)
                  (0.86, 0.93)
> quantile(THETA[,1],c(0.025,0.975))
    2.5%
             97.5%
42.86589 47.79614
> quantile(THETA[,2],c(0.025,0.975))
    2.5%
             97.5%
39.65734 44.28761
> quantile(THETA[,1]-THETA[,2],c(0.025,0.975))
    2.5%
             97.5%
2.292652 4.398711
> quantile(rho,c(0.025,0.975))
                97.5%
     2.5%
0.8618795 0.9345871
```



