Scilab Textbook Companion for Power System Operation and Control by B. R. Gupta¹

Created by
Karan Singh
B.Tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
Vinesh Saini
Cross-Checked by
Aviral Yaday

July 14, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Power System Operation and Control

Author: B. R. Gupta

Publisher: S. Chand & Company, New Delhi

Edition: 1

Year: 2012

ISBN: 81-219-3232-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes		
1	Introduction	5	
2	Economic Operation of Power System and Unit Commitment	21	
3	Hydrothermal Coordination	44	
4	Modelling of turbine generators and automatic controllers	48	
5	Frequency Control	55	
6	Reactive power control	72	

List of Scilab Codes

Exa 1.1	Load Demand and energy	5
Exa 1.2	Demand and Diversity Factor	6
Exa 1.3	Increase in peak demand	7
Exa 1.4	Load Factor and Energy Supplied	9
Exa 1.5	Capacity and utilisation factor	9
Exa 1.6	Energy Load curve and Mass Curve	10
Exa 1.7	Load Factor Plant capacity reserve capacity	12
Exa 1.8		12
Exa 1.9		13
Exa 1.10		15
Exa 1.11		15
Exa 1.12		16
Exa 1.13		17
Exa 1.14		17
Exa 1.16	Max Load and Load factor	18
Exa 1.17	Real Power	19
Exa 1.18		19
Exa 1.19		20
Exa 2.2		21
Exa 2.3		22
Exa 2.5		23
Exa 2.7		24
Exa 2.8		25
Exa 2.9		26
Exa 2.10		27
Exa 2.11	Cost Characteristics	28
Exa 2.12		29
Exa 2.13		31

Exa 2.14	Extra Ooperating Cost
Exa 2.15	Find Optimum Scheduling
Exa 2.16	Heat inputs and savings
Exa 2.17	Find Optimum Scheduling
Exa 2.18	Transmission Loss
Exa 2.19	Find Load Distribution
Exa 2.20	Find the load division
Exa 2.21	Minimum cost of generation
Exa 2.22	Find Optimum Scheduling
Exa 2.23	Generation schedule and load demand 41
Exa 2.24	Optimum Schedule and total generation
Exa 3.1	MW rating
Exa 3.2	Capacity of hydro plant and steel plant
Exa 3.3	Water Used and operating cost
Exa 3.4	Load on plant and cost of water
Exa 4.1	Shared load and power factor
Exa 4.2	Current Power factor and emf
Exa 4.3	Synchronising power
Exa 4.4	Synchronising power and torque 51
Exa 4.5	Load current and power factor
Exa 4.6	Inertia Constant
Exa 5.1	Change in power output
Exa 5.2	Frequency Deviation
Exa 5.3	Value of R
Exa 5.4	Static Frequency Drop
Exa 5.5	Primary ALFC looop parameter
Exa 5.6	Increased Generation
Exa 5.7	Frequency Deviation
Exa 5.8	Change in step and frequency
Exa 5.9	Frequency response and value of Ki
Exa 5.10	Change in step and frequency error 61
Exa 5.11	Static Frequency Drop 62
Exa 5.12	Change in frequency and tie line power 63
Exa 5.13	Frequency of collision
Exa 5.14	Frequency at shared load
Exa 5.15	Change in frequency
Exa 5.16	Percentage frequency deviation
Exa 5.17	Rate of frequency increase
	5
	V

Exa 5.18	Primary ALFC looop parameter 67
Exa 5.19	Compute the time error
Exa 5.20	Generated output Power and frequency 68
Exa 5.21	No Load Frequencies 69
Exa 5.22	Generation and transfer of power 69
Exa 5.23	Voltage Boost Needed
Exa 5.24	Phase angle and pu real and active
Exa 6.1	Voltage and power factor
Exa 6.2	Voltage and power factor
Exa 6.3	Find ABCD Parameters
Exa 6.4	Constant of nominal pi circuit
Exa 6.5	VAR injection ay bus
Exa 6.6	Capacity of shunt compensation
Exa 6.7	Find tap settings
Exa 6.8	Find tap settings
Exa 6.9	Settings of tap changes 81

Chapter 1

Introduction

Scilab code Exa 1.1 Load Demand and energy

```
1 // exa 1.1
2 clc; clear; close;
3 format('v',6);
4 B=100; //W(8 Bulb)
5 F=60; //W(2 Fan)
6 L=100; //W(2 Light)
7 LoadConnected=8*B+2*F+2*L;/W
8 disp(LoadConnected,"(a) Connected Load (W)")
9 //12 midnight to 5am
10 demand1=1*F; //W
11 / 5am to 7am
12 demand2=2*F+1*L; //W
13 / 7am to 9am
14 demand3=0; //W
15 //9am to 6pm
16 demand4=2*F; //W
17 //6pm to midnight
18 demand5=2*F+4*B; //W
19 DEMAND=[demand1 demand2 demand3 demand4 demand5]
20 max_demand=max(DEMAND);
21 disp(max_demand,"(b) Maximum demand (W)");
```

Scilab code Exa 1.2 Demand and Diversity Factor

```
1 // exa 1.2
2 clc; clear; close;
3 format('v',6);
4 LoadA=2.5*1000; //W
5 //12 midnight to 5am
6 d1A = 100; /W
7 / 5am to 6am
8 d2A=1.1*1000; /W
9 / 6am to 8am
10 d3A=200; //W
11 //8am to 5pm
12 d4A = 0; /W
13 //5pm to 12 midnight
14 d5A=500; //W
15 LoadB=3*1000; //W
16 //11 \text{ pm to } 7\text{am}
17 d1B=0; /W
18 //7 am to 8 am
19 d2B=300; //W
20 / 8 am to 10 am
21 	ext{ d3B} = 1 * 1000; //W
\frac{22}{10} = \frac{100}{10} am to 6 pm
23 d4B=200; //W
```

```
24 / 6 \text{ pm to } 11 \text{ pm}
25 d5B=600; //W
26 DEMAND_A=[d1A d2A d3A d4A d5A]; //W
27 \text{ DEMAND\_B} = [d1B \ d2B \ d3B \ d4B \ d5B]; //W
28 \max_{demand_A=\max_{demand_A}(DEMAND_A); /W
29 \max_{demand_B=\max_{deman}(DEMAND_B);/W
30 df_A=max_demand_A/LoadA; //demand factor
31 df_B=max_demand_B/LoadB; //demand factor
32 disp(df_B,df_A,"Demand factor of consumer A & B are"
      );
33 gd_factor=(max_demand_A+max_demand_B)/max_demand_A;
34 disp(gd_factor, "Group diversity factor")
35 \quad E_A = d1A*5 + d2A*1 + d3A*2 + d4A*9 + d5A*7; / Wh
36 \quad E_B = d1B*8 + d2B*1 + d3B*2 + d4B*8 + d5B*5; / Wh
37 E_A = E_A / 1000; / kWh
38 E_B=E_B/1000; //kWh
39 disp(E_B,E_A, "Energy consumed by A & B during 24
      hours (kWh)")
40 \operatorname{Emax\_A=max\_demand\_A*24/1000}; //kWh
41 Emax_B = max_demand_B * 24/1000; //kWh
    disp(Emax_B, Emax_A, "Maximum energy consumer A & B
42
       can consume during 24 hours (kWh)")
43 ratio_A=E_A/Emax_A;
44 format('v',7);
45 \text{ ratio}_B=E_B/Emax_B;
46 disp(ratio_B, ratio_A, "Ratio of actual energy to
      maximum energy of consumer A & B")
```

Scilab code Exa 1.3 Increase in peak demand

```
1 //exa 1.3
2 clc;clear;close;
3 format('v',6);
4 n1=600;//No. of apartments
5 L1=5;//kW//Each Apartment Load
```

```
6 n2=20; //No. of general purpose shops
7 L2=2; //kW//Each Shop Load
8 df=0.8; //demand factor
9 //1 Floor mill
10 L3=10; //kW//Load
11 df3=0.7; //demand factor
12 //1 Saw mill
13 L4=5; //kW//Load
14 df4=0.8; //demand factor
15 //1 Laundry
16 L5=20; //kW//Load
17 df5=0.65; //demand factor
18 //1 Cinema
19 L6=80; //kW//Load
20 df6=0.5; //demand factor
21 //Street lights
22 n7=200; //no. of tube lights
23 L7=40; //W//Load of each light
24 // Residential Load
25 df8=0.5; //demand factor
26 gdf_r=3;//group diversity factor
27 pdf_r=1.25; //peak diversity factor
28 //Commertial Load
29 gdf_c=2; //group diversity factor
30 pdf_c=1.6; //peak diversity factor
31 // Solution :
32 //Maximum demand of each apartment
33 dmax_1a=L1*df8; / kW
34 //Maximum demand of 600 apartment
35 \text{ dmax}_a=n1*dmax_1a/gdf_r;/kW
36 //demand of apartments at system peak time
37 d_a_{sp}=d_{max_a/pdf_r;/kW}
38 //Maximum Commercial demand
39 dmax_c=(n2*L2*df+L3*df3+L4*df4+L5*df5+L6*df6)/gdf_c;
40 //Commercial demand at system peak time
41 d_c_sp=d_{max_c/pdf_c};/kW
42 //demand of street light at system peak time
```

```
43 d_sl_sp=n7*L7/1000; //kW
44 //Increase in system peak demand
45 DI=d_a_sp+d_c_sp+d_sl_sp; //kW
46 disp(DI, "Increase in system peak demand(kW)");
```

Scilab code Exa 1.4 Load Factor and Energy Supplied

```
1 // exa 1.4
2 clc; clear; close;
3 format('v',6);
4 //12 to 5 am
5 L1=20; /MW
6 t1=5; //hours
7 / 5 to 9 am
8 L2=40; /MW
9 t2=4; //hours
10 //9 \text{ to } 6 \text{ pm}
11 L3=80; /MW
12 t3=9; //hours
13 / 6 to 10 pm
14 L4=100; /MW
15 t4=4; //hours
16 //10 to 12 am
17 L5=20; /MW
18 t5=2; //hours
19 //Energy Poduced in 24 hours
20 E=L1*t1+L2*t2+L3*t3+L4*t4+L5*t5; //MWh
21 disp(E," Energy Supplied by the plant in 24 hours (MWh
      ) :");
22 LF=E/24; //%//Load Factor
23 disp(LF, "Load Factor(\%)");
```

Scilab code Exa 1.5 Capacity and utilisation factor

```
1 // exa 1.5
2 clc; clear; close;
3 format('v',6);
4 C=125; //MW//Installed Capacity
5 //12 to 5 am
6 L1=20; /MW
7 t1=5; //hours
8 / 5 to 9 am
9 L2=40; /MW
10 t2=4; //hours
11 //9 \text{ to } 6 \text{ pm}
12 L3=80; /MW
13 t3=9; //hours
14 / 6 to 10 pm
15 L4=100; /MW
16 t4=4; //hours
17 //10 to 12 am
18 L5=20; /MW
19 t5=2; //hours
20 //Energy Poduced in 24 hours
21 E=L1*t1+L2*t2+L3*t3+L4*t4+L5*t5; //MWh
22 LF=E/24; //\%//Load Factor
23 CF=LF/C; //%// Capacity Factor
24 disp(CF, "Capacity Factor(\%): ");
25 UF=100/C; //\%// Utilisation Factor
26 disp(UF," Utilisation Factor(\%): ");
```

Scilab code Exa 1.6 Energy Load curve and Mass Curve

```
1  //exa 1.6
2  clc; clear; close;
3  format('v',6);
4  //12  to 5 am & 10 to 12 am
5  L1=20; //MW
6  E1=L1*24; //MWh
```

```
7 / 5 to 9 am
8 L2=40; /MW
9 E2=E1+(L2-L1)*17; / MWh
10 //9 \text{ to } 6 \text{ pm}
11 L3=80; /MW
12 E3=E2+(L3-L2)*13; /MWh
13 / 6 to 10 \text{ pm}
14 L4=100; /MW
15 E4=E3+(L4-L3)*4; / /MWh
16 // Plotting Energy load curve
17 L=[0,L1,L2,L3,L4]; /MW
18 E = [0, E1, E2, E3, E4]; //Mwh
19 subplot(2,1,1)
20 plot(E,L)
21 xlabel('Energy(MWh)');
22 ylabel('Load(MW)');
23 title('Energy Load Curve');
24 //Energy Supplied
25 //Upto 5am
26 t1=5; //hours
27 E1=L1*t1; //MWh
28 // Upto 9am
29 t2=4; //hours
30 E2=E1+L2*t2; / /MWh
31 //Upto 6pm
32 t3=9; //hours
33 E3=E2+L3*t3; / /MWh
34 //Upto 10pm
35 t4=4; //hours
36 \quad E4 = E3 + L4 * t4; / MWh
37 // Upto 12pm
38 t4=2; //hours
39 E4=E3+L4*t4; / /MWh
40 // Plotting Mass curve
41 T = [0, 1, 2, 3, 4]; / MW
42 E = [0, E1, E2, E3, E4]; //Mwh
43 subplot (2,1,2)
44 plot(T,E)
```

```
45 ylabel('Energy(MWh)');
46 xlabel('0-1: 12-5am 1-2: 5-9am 2-3: 9-6pm 3-4: 6-10
pm above4: 10-12pm');
47 title('Mass Curve');
```

Scilab code Exa 1.7 Load Factor Plant capacity reserve capacity

```
//exa 1.7
clc;clear;close;
format('v',9);
dmax=40;//MW//Maximum demand
CF=0.5;//Capacity Factor
UF=0.8;//Utilisation Factor
LF=CF/UF;///Load Factor
disp(LF,"(a) Load Factor: ");
C=dmax/UF;//MW//Plant Capacity
disp(C,"(b) Plant Capacity(MW): ");
RC=C-dmax;//MW//Reserve Capacity
disp(RC,"(c) Reserve Capacity(MW): ");
p=dmax*LF*24*365;//MWh//Annual Energy Production
disp(p,"(d) Annual Energy Production(MWh): ");
```

Scilab code Exa 1.8 Load Curve and energy required

```
1 //exa 1.8
2 clc; clear; close;
3 format('v',6);
4 L1=50; //MW// Initial;
5 t1=5; //hours
6 L2=50; //MW//5am;
7 t2=4; //hours
8 L3=100; //MW//9am;
9 t3=9; //hours
```

```
10 L4=100; /MW//6pm
11 t4=2; //hours
12 L5=150; / \frac{MW}{8pm}
13 t5=2; //hours
14 L6=80; /MW//10pm
15 t6=2;//hours
16 L7=50; /MW
17 //Energy Required in 24 hours
18 \quad E=L1*t1+(L2+L3)/2*t2+(L3+L4)/2*t3+(L4+L5)/2*t4+(L5+L5)
      L6)/2*t5+(L6+L1)/2*t6;/MWh
19 disp(E, "Energy required in one day (MWh)");
20 DLF=E/L5/24*100; //%// Daily Load Factor
21 disp(DLF, "Daily Load Factor(%)");
22 // Plotting load curve
23 T = [0, 1, 2, 3, 4, 5, 6]; // Slots
24 L=[L1,L2,L3,L4,L5,L6,L7]; //MW
25 plot(T,L)
26 ylabel('Load(MW)');
27 xlabel('0-1: 12-5am 1-2: 5-9am 2-3: 9-6pm 3-4: 6-8pm
       4-5:8-10pm 5-6:10-12pm');
28 title('Chronological Load Curve');
```

Scilab code Exa 1.9 Load duration curve and Mass curve

```
1 //exa 1.9
2 clc; clear; close;
3 format('v',6);
4 L1=50; //MW//Initial;
5 t1=5; //hours
6 L2=50; //MW//5am;
7 t2=4; //hours
8 L3=100; //MW//9am;
9 t3=9; //hours
10 L4=100; //MW//6pm;
11 t4=2; //hours
```

```
12 L5=150; / \frac{MW}{8pm}
13 t5=2; //hours
14 L6=80; / \frac{MW}{10pm}
15 t6=2; //hours
16 L7=50; /MW
17 //Load Duration Curve
18 11=L5; //Mw
19 12=L4; /MW
20 13=L1; /MW
21 L=[11,12,12,13,13]
22 T=0:6:24; // Duration in hours
23 subplot (2,1,1)
24 plot(T,L)
25 ylabel('Load(MW)');
26 xlabel('Hours');
27 title('Load Duration Curve');
28 //Energy Consumed
29 // Upto 5am
30 t1=5; //hours
31 E1=L1*t1; / /MWh
32 // Upto 9am
33 t2=4; //hours
34 E2=E1+L2*t2; //MWh
35 //Upto 6pm
36 t3=9; //hours
37 E3=E2+L3*t3; / MWh
38 //Upto 10pm
39 t4=4; //hours
40 E4=E3+L4*t4; / /MWh
41 // \text{Upto } 12 \text{pm}
42 t4=2; //hours
43 E4=E3+L4*t4; / /MWh
44 // Plotting Mass curve
45 T = [0, 1, 2, 3, 4]; / MW
46 E = [0, E1, E2, E3, E4]; //Mwh
47 subplot (2,1,2)
48 plot(T,E)
49 ylabel ('Energy (MWh)');
```

```
50 xlabel('0-1: 12-5am\ 1-2: 5-9am\ 2-3: 9-6pm\ 3-4: 6-10 pm above4: 10-12pm');
51 title('Mass Curve');
```

Scilab code Exa 1.10 Station Capacity and Reserve capacity

```
1 //exa 1.10
2 clc; clear; close;
3 format('v',6);
4 E=438*10^4; //kWh
5 LF=20; //% annual
6 CF=15; //%// Capacity Factor
7 Lmax=E/(LF/100)/24/365; //kW
8 Lmax=Lmax/1000; //MW
9 C=Lmax/CF*LF; //MW// Plant Capacity
10 disp(C,"Plant Capacity(MW): ");
11 RC=C-Lmax; //MW// Reserve Capacity
12 disp(RC," Reserve Capacity(MW): ");
```

Scilab code Exa 1.11 Maximum demand and annual energy supplied

```
1 //exa 1.11
2 clc; clear; close;
3 format('v',7);
4 L1=10000; //kW
5 L2=6000; //kW
6 L3=8000; //kW
7 L4=7000; //kW
8 df=1.5; // diversity factor
9 LF=65; //%//Load Factor
10 Dinc=60; //%//Increase in maximum demand
11 L=L1+L2+L3+L4; //kW//Sum
12 L=L/1000; //MW
```

```
Dmax=L/df;//MW
disp(Dmax,"Maximum demand on station(MWh)");
E=Dmax*365*24*LF/100;//MWh//Annual Energy
format('v',9);
disp(E,"Annual Energy Supplied(MWh)");
Din_max=Dinc/100*Dmax;//MW
format('v',7);
C=Dmax+Din_max;//MW
disp(C,"Installed Capacity(MW)")
```

Scilab code Exa 1.12 Weekly Load Factor

```
1 // exa 1.12
2 clc; clear; close;
3 format('v',5);
4 //Arranging data for Load Duration Curve
5 //week days 5-9pm load
6 L1=350; /MW
7 t1=4*5; // hours
8 //week days 8-12am & 1-5pm load
9 L2=250; /MW
10 t2=t1+8*5; // hours
11 //saturday & sunday 5-9pm load
12 L3=200; /MW
13 t3=t2+4*2; //hours
14 // All days 150MW load
15 L4=150; /MW
16 t4=t3+6*5+15*2; //hours
17 // All days 100MW load
18 L5=100; /MW
19 t5=t4+6*5+5*2; //hours
20 A=31600; // Total Load Curve Area
21 LF=A/L1/24/7*100; \frac{1}{\sqrt{2}} Weekly load factor
22 disp(LF, "Weekly Load factor(%)");
23 disp("Load Duration Curve is shown in figure.");
```

Scilab code Exa 1.13 Annual Load factor

```
1 //exa 1.13
2 clc;clear;close;
3 format('v',7);
4 LF=0.825;//Daily Load Factor
5 ratio1=0.87;//daily peak load to monthly peak load
6 ratio2=0.78;//monthly peak load to annually peak load
7 LF_annual=LF*ratio1*ratio2;//Annual Load Factor
8 disp(LF_annual, "Annual Load Factor: ");
```

Scilab code Exa 1.14 Peak Load on transformer and feeder

```
1 //exa 1.14
2 clc; clear; close;
3 format('v',5);
4 //Transformer1
5 Lm=300; //kW
6 df_m=0.6; //demand factor
7 Lc=100; //kW//Commercial Load
8 df_c=0.5; //demand factor
9 //Transformer2
10 Lr2=500; //kW//Residential Load
11 df_Lr2=0.4; //demand factor
12 //Transformer3
```

```
13 Lr3=400; / \text{kW}
14 df_Lr3=0.5; //demand factor
15 // Diversity factors
16 df1=2.3;
17 df2=2.5;
18 df3=2;
19 DF=1.4; // Diversity factor between transformers
20 //Solution :
21 disp("Part(a)");
22 Lp1=(Lm*df_m+Lc*df_c)/df1; /kW//Peak load on
      Transformer1
23 disp(Lp1, "Peak load on Transformer1(kW)");
24 Lp2=Lr2*df_Lr2/df2; //kW//Peak load on Transformer2
25 disp(Lp2, "Peak load on Transformer2(kW)");
26 Lp3=Lr3*df_Lr3/df3; //kW//Peak load on Transformer3
27 disp(Lp3, "Peak load on Transformer3(kW)");
28 disp("Part(b)");
29 LpF=(Lp1+Lp2+Lp3)/DF;//Peak load on feeder
30 disp(LpF, "Peak load on feeder(kW)");
```

Scilab code Exa 1.16 Max Load and Load factor

```
1 //exa 1.16
2 clc; clear; close;
3 format('v',8);
4 L=[20 25 30 25 35 20]; //MW
5 T=[6 4 2 4 4 4]; // Hours
6 Lmax=max(L); //MW
7 disp(Lmax,"(a) Maximum demand(MW)");
8 E=L(1)*sum(T)+(L(2)-L(1))*T(2)+(L(3)-L(1))*T(3)+(L(4)-L(1))*T(4)+(L(5)-L(1))*T(5)+(L(6)-L(1))*T(6); //MWh
9 E=E*1000; //kWh
10 disp(E,"(b) Units generated per day(kWh)");
11 Lavg=E/sum(T); //kWh
```

```
12 Lavg=Lavg/1000; // /MW
13 disp(Lavg,"(c) Average Load(MW)");
14 format('v',6);
15 LF=Lavg/Lmax*100; //%
16 disp(LF,"(d) Load Factor(%)");
```

Scilab code Exa 1.17 Real Power

```
1 //exa 1.17
2 clc;clear;close;
3 format('v',8);
4 pf=0.8;//power factor
5 delf=1;//%//drop in frequency(delf/f)
6 //delP=-2*(sind(theta))^2*delf
7 theta=acosd(pf);//degree
8 delP_BY_delf=-2*sind(theta)^2;//increase in load wrt frequency
9 disp(-delP_BY_delf,"1% drop in frequency, Increased in Load(%)");
```

Scilab code Exa 1.18 Total Energy generated

```
1 //exa 1.18
2 clc; clear; close;
3 format('v',8);
4 Lmax=100; //MW
5 LF=40; //%//Load Factor
6 Lavg=Lmax*LF/100; //MW
7 E=Lavg*24*365; //MWh
8 disp(E,"Energy generated in a year(MWh)");
```

Scilab code Exa 1.19 Motor Load Change

```
1 //exa 1.19 page 25
2 clc; clear; close;
3 format('v',5);
4 V = 400; //V
5 s1=0.03; //initial slip
6 delV=1; //\%/// Voltage Drop
7 R1=0.290; //ohm/phase
8 R2=0.15; //ohm/phase
9 X=0.7; //ohm/phase(X1+X2)
10 /V1^2*s1=V2^2*s2 for speed independent torque
11 //taking for calculating s2
12 V1=1; //V
13 V2=V1-V1*delV/100; //V
14 s2=V1^2/V2^2*s1; //slip
15 I2ByI1=sqrt([R1+R2/s1]^2+X^2)/sqrt([R1+R2/s2]^2+X^2)
      *(V2/V1)
16 delI=(I2ByI1-1)*100; //\%// Current Increase
17 disp(dell, "1% drop in Voltage increases current by (%
      )");
18 / P = (R1 + R2/s) * I^2
19 P2ByP1 = (R1+R2/s2)/(R1+R2/s1)*I2ByI1^2; //ratio
20 delP=(1-P2ByP1)*100; //\%//Power Decrease
21 format('v',4);
22 disp(delP," 1% drop in Voltage decreases power input
      by(\%)");
23 //Answer in the textbook is not accurate.
```

Chapter 2

Economic Operation of Power System and Unit Commitment

Scilab code Exa 2.2 Saving per year

```
1 // exa 2.2
2 clc; clear; close;
3 format('v',8);
4 //For equal incremental cost
5 L1 = 125; /MW
6 L2=100; /MW
7 //For equal sharing
8 L=(L1+L2)/2;/MW
9 //Change in cost Unit 1
10 dC1=integrate('0.2*P1+30', 'P1', L1, L); //Rs./hour
11 //Change in cost Unit 2
12 dC2=integrate('0.15*P2+40', 'P2', L2, L); //Rs./hour
13 dCyearly=(dC1+dC2)*24*365; //Rs./year
14 disp(dCyearly, "Saving per year in economic load
      allocation (Rs./year)");
15 // Answer in the textbook is not accurate.
```

Scilab code Exa 2.3 Increase in generation

```
1 // exa 2.3
2 clc; clear; close;
3 format('v',6);
4 L=400; //MW/// total load
5 delPD=50; //MW//increase in demand
6 / dC1/dP1 = 0.2 * P1 + 30
7 / dC2/dP2 = 0.15 * P2 + 40
8 twoC1=0.2; //from above equation
9 twoC2=0.15; //from above equation
10 delP1_by_delPD = (1/twoC1)/(1/twoC1+1/twoC2);
11 delP2_by_delPD = (1/twoC2)/(1/twoC1+1/twoC2);
12 delP1=delP1_by_delPD*delPD; //MW
13 disp(delP1, "Increase in generation of unit1(MW): ")
14 delP2=delP2_by_delPD*delPD; //MW
15 disp(delP2, "Increase in generation of unit2(MW): ")
16 format('v',7);
17 P1=L/2+delP1; //load on unit 1
18 disp(P1, "Total load on unit1(MW): ");
19 P2=L/2+delP2; //load on unit 2
20 disp(P2, "Total load on unit2(MW): ");
21 format('v',6);
22 disp("Checking incremental cost:");
23 dC1_by_dP1=0.2*P1+30; //Rs./MWh
24 disp(dC1_by_dP1, "Incremental cost of unit 1(Rs./MWh)
25 dC2_by_dP2=0.2*P2+30; //Rs./MWh
26 disp(dC2_by_dP2,"Incremental cost of unit 2(Rs./MWh)
       : ");
27 disp("Conclusion : Cost are same(Approximately).");
28 //Note: Values calculated in the book are slightly
     wrong because of accuracy in calculation as
     compared to scilab accuracy.
```

Scilab code Exa 2.5 Loss Coefficient and Transmission Loss

```
1 // exa 2.5
2 clc; clear; close;
3 format('v',8);
4 I1=0.8; //p.u.
5 I2=1; //p.u.
6 Za=0.04+%i*0.12; //p.u.
7 Zb=0.03+\%i*0.1;//p.u.
8 Zc=0.03+\%i*0.12;//p.u.
9 V=1; //p.u.
10 // Solution :
11 V1=V+(I1+I2)*Za+I1*(Zb);//p.u.
12 V2=V+(I1+I2)*Za+I2*(Zc);//p.u.
13 P1=real(I1*V1); //p.u.
14 P2=real(I2*V2);//p.u.
15 fi1=atan(imag(V1), real(V1));
16 fi2=atan(imag(V2), real(V2));
17 disp("Loss Coefficients are: ")
18 B11=[real(Za)+real(Zb)]/[abs(V1)^2*\cos(fi1)^2; //p.u
19 disp(B11, "B11(p.u.) : ");
20 B22=[real(Za)+real(Zc)]/[abs(V2)^2*cos(fi2)^2]; //p.u
21 disp(B22, "B22(p.u.) : ");
22 B12=[real(Za)]/[abs(V1)*abs(V2)*cos(fi1)*cos(fi2)];
     //p.u.
23 disp(B12, "B12(p.u.) : ");
24 \text{ PL}=P1^2*B11+P2^2*B22+2*P1*P2*B12; //p.u.
25 format('v',10);
26 disp(PL, "Transmission Loss(p.u.) : ");
27 //Note: Values calculated in the book are slightly
      wrong because of accuracy in calculation as
     compared to scilab accuracy.
```

Scilab code Exa 2.7 Loss Formula Coefficients

```
1 // exa 2.7
2 clc; clear; close;
3 format('v',8);
4 Za=0.03+%i*0.09;/p.u.
5 Ia=1.5-\%i*0.4;//p.u.
6 Zb=0.10+\%i*0.30;/p.u.
7 Ib=0.5-%i*0.2; //p.u.
8 Zc=0.03+\%i*0.09;/p.u.
9 Ic=1-\%i*0.1;//p.u.
10 Zd=0.04+\%i*0.12;/p.u.
11 Id=1-\%i*0.2;//p.u.
12 Ze=0.04+%i*0.12;//p.u.
13 Ie=1.5-\%i*0.3;//p.u.
14 V=1; //p.u.
15 base=100; /MVA
16 // Solution
17 // Currents of load
18 IL1=0.4; //p.u.
19 IL2=0.6; //p.u.
20 // Current distribution factors :
21 Na1=1; Na2=0;
22 \text{ Nb1=0.6}; \text{Nb2=-0.4};
23 \text{ Nc1=0}; \text{Nc2=1};
24 \text{ Nd1=0.4}; \text{Nd2=0.4};
25 \text{ Ne1=0.6}; \text{Ne2=0.6};
26 //Bus Voltages
27 V1=V+Ia*Za;//p.u.
28 V2=V-Ib*Zb+Ic*Zc; //p.u.
29 //Phase Angles
30 theta1=atand(imag(Ia), real(Ia)); // degree
31 theta2=atand(imag(Ic),real(Ic));//degree
32 //Power Factors :
```

```
33 cos_fi1=cosd(atand(imag(V1), real(V1))-theta1);//
                source 1 power factor
34 cos_fi2=cosd(atand(imag(V2), real(V2))-theta2);//
                source 2 power factor
35 disp("Loss formula Coefficients in p.u.:")
36 \quad B11 = [Na1^2*real(Za) + Nb1^2*real(Zb) + Nc1^2*real(Zc) + Nc1^2*rea
                Nd1^2*real(Zd)+Ne1^2*real(Ze)]/[abs(V1)^2*cos_fi1
                ];//p.u.
37 disp(B11, "B11(p.u) : ");
38 format('v',7);
39 B22=[Na2^2*real(Za)+Nb2^2*real(Zb)+Nc2^2*real(Zc)+
                Nd2^2*real(Zd)+Ne2^2*real(Ze)]/[abs(V2)^2*cos_fi2
                ];//p.u.
40 disp(B22, "B22(p.u) : ");
41 B12=[Na1*Na2*real(Za)+Nb1*Nb2*real(Zb)+Nc1*Nc2*real(
                Zc)+Nd1*Nd2*real(Zd)+Ne1*Ne2*real(Zc)]/[abs(V1)*
                abs(V2)*cos_fi1*cos_fi2*[cosd(theta1-theta2)]];//
                p.u.
42 disp(B12, "B12(p.u) : ");
43 // Converting p.u. to actual value
44 format('v',10);
45 disp("Loss formula Coefficients in MW^-1:")
46 B11=B11/base; /MW^-1
47 disp(B11, "B11(MW^{-1}): ");
48 format('v',9);
49 B22=B22/base; /MW^-1
50 \operatorname{disp}(B22,"B22(MW^-1):");
51 B12=B12/base; /MW^-1
52 disp(B12,"B12(MW^-1):");
53 //Note: Values calculated in the book are slightly
                wrong because of accuracy in calculation as
                compared to scilab accuracy.
```

Scilab code Exa 2.8 Required generationa at each plant

```
1 // exa 2.8
    2 clc; clear; close;
    3 format('v',8);
    4 //dC1/dP1 = 0.2*P1 + 22; //Rs./MWh
    \frac{1}{2} \frac{1}{2} - \frac{1}{2} = 0.15 \times P2 + \frac{30}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}
    6 B22=0; B12=0; // Because Loss is independent wrt P2
    7 \text{ P1} = 100; / \text{MW}
    8 PL=15; /MW
    9 B11=PL/P1^2; /MW^-1
10 L1=1/[1-0.003*P1]; // Penalty Factor plant 1
11 L2=1; // Penalty Factor of plant 2
12 lambda=60;
13 / lambda=dC1/dP1*L1=dC2/dP2*L2
14 //dC1/dP1*L1=dC2/dP2*L2
15 P2 = ((0.2*P1+22)*L1-30)/0.15; /MW
16 P=P1+P2-B11*P1^2; //MW//Total Load
17 disp(P1, "Required generation at plant1 (MW)");
18 disp(P2, "Required generation at plant2 (MW)");
19 disp(P, "Total Load(MW)");
```

Scilab code Exa 2.9 Saving in Rs per hour

```
1 //exa 2.9
2 clc; clear; close;
3 format('v',6);
4 //dC1/dP1=0.2*P1+22;//Rs./MWh
5 //dC2/dP2=0.15*P2+30;//Rs./MWh
6 B22=0; B12=0; // Because Loss is independent wrt P2
7 P1=100; //MW
8 PL=15; //MW
9 B11=PL/P1^2; //MW^-1
10 L1=1/[1-0.003*P1]; // Penalty Factor plant 1
11 L2=1; // Penalty Factor of plant 2
12 lambda=60;
13 // lambda=dC1/dP1*L1=dC2/dP2*L2
```

```
14 //dC1/dP1*L1=dC2/dP2*L2
15 P2 = ((0.2*P1+22)*L1-30)/0.15; / MW
16 P=P1+P2-B11*P1^2; //MW//Total Load
17 //dC1/dP1=dC2/dP2; neglecting transmission loss
18 clear('P2');//for recalculation
19 / 0.2 * P1 - 0.15 * P2 - 8 = 0; / / eqn(1)
20 /P1 = 0.75 *P2 + 40; /P1 + P2 - B11 *P1^2 - P = 0; /eqn(2)
21 / 1.75 * P2-B11 * P1^2=P-40
22 \quad \text{Eqn} = [-B11 \quad 1.75 \quad 40 - P];
23 P2 = roots(Eqn);
24 P2=P2(2); //MW//neglecting higher value
25 P1=0.75*P2+40; /MW
26 dC1=integrate(^{\circ}0.2*P+22^{\circ},^{\circ}P^{\circ},100,P1);//Rs.//
      Additional Cost plant1
  dC2=integrate('0.15*P+30', 'P', 200, P2); //Rs.//
      Decreased Cost
                       plant2
28 dC=dC1+dC2; //Rs./hour//Net change in cost
29 disp(dC, "Taking transmission loss in account, Net
      saving per hour in fuel cost (Rs, /hour)");
30 //Note: Values calculated in the book are slightly
      wrong because of accuracy in calculation as
      compared to scilab accuracy.
```

Scilab code Exa 2.10 Transmission Loss and Recieved Power

```
1 //exa 2.10
2 clc; clear; close;
3 format('v',5);
4 B11=0.001; //MW^-1
5 B22=0.0024; //MW^-1
6 B12=-0.0005; //MW^-1
7 //dC1/dP1=0.8*P1+16;//Rs./MWh
8 //dC2/dP2=0.08*P2+12;//Rs./MWh
9 lambda=20;
10 //Iterations for calculating value
```

```
11 P1(1)=0;
12 P2=0;
13 for i=2:1:10
       P1(i) = (0.2+0.001*P2(i-1))/0.006;
15
       P2(i) = (0.4+0.001*P1(i))/0.0088;
16
       if P1(i) == P1(i-1) then
17 break;
18
       end
19 end
20 P1=P1(i); / MW
21 disp(P1, "Generation P1(MW) : ");
22 P2=P2(i); / MW
23 disp(P2, "Generation P2(MW): ");
24 format('v',4);
25 PL=B11*P1^2+2*B12*P1*P2+B22*P2^2; / \( \text{MW} \)
26 disp(PL, "Transmission Loss(MW): ");
27 format('v',5);
28 Pr=P1+P2-PL; / MW
29 disp(Pr, "Received Power (MW) : ");
```

Scilab code Exa 2.11 Cost Characteristics

```
1 //exa 2.11
2 clc; clear; close;
3 format('v',7);
4 //C1=561+7.92*P1+0.001562*P1^2;//Rs./hour
5 //C2=310+7.85*P2+0.00194*P2^2;//Rs./hour
6 a1=561; a2=310;
7 b1=7.92; b2=7.85;
8 c1=0.001562; c2=0.00194;
9 ce=c1*c2/(c1+c2);
10 be=ce*(b1/c1+b2/c2);
11 ae=a1-b1^2/4/c1+a2-b2^2/4/c2+be^2/4/ce;
12 disp("Coefficients are:");
13 disp("ae = "+string(ae)+" & be = "+string(be));
```

```
14 format('v',10);
15 disp(ce,"ce = ")
16 PT=poly(0,'PT');
17 disp("Cost Characteristics : ")
18 disp("CT=870.753+7.8888*PT+0.0008653*PT^2");
```

Scilab code Exa 2.12 Daily Operating Schedule

```
1 // exa 2.12
2 clc; clear; close;
3 format('v',7);
4 //C1=7700+52.8*P1+5.5*10^-3*P1^2;//Rs./hour
5 / C2 = 2500 + 15 \cdot P2 + 0.05 \cdot P2^2; / Rs. / hour
6 \quad a1 = 7700; a2 = 2500;
7 b1=52.8; b2=15;
8 c1=5.5*10^-3; c2=0.05;
9 P1=poly(0,'P1');
10 P2 = poly(0, P2');
11 dC1bydP1=52.8+2*5.5*10^-3*P1;
12 dC2bydP2=15+2*0.05*P2;
13 disp("For 1200 MW Load :");
14 P = 1200; / MW
15 //Let loads of unit are P1 & 1200-P1
16 //Economical Loading dC1/dP1=dC2/dP2
17 eqn=52.8+2*5.5*10^-3*P1-15-2*0.05*(1200-P1);
18 P1 = roots(eqn); /MW
19 P2=1200-P1; / MW
20 disp(P1,"P1(MW) : ");
21 disp(P2,"P2(MW) : ");
22 disp("For 900 MW Load :");
23 P = 900; / MW
24 clear('P1', 'P2');
25 P1=poly(0,'P1');
26 P2=poly(0, 'P2');
27 //Let loads of unit are P1 & 900-P1
```

```
28 //Economical Loading dC1/dP1=dC2/dP2
29 eqn=52.8+2*5.5*10^-3*P1-15-2*0.05*(900-P1);
30 P1=roots(eqn); /MW
31 P2=900-P1; / MW
32 disp(P1,"P1(MW): ");
33 disp(P2,"P2(MW) : ");
34 disp("For 500 MW Load :");
35 P = 500; / MW
36 clear('P1', 'P2');
37 P1=poly(0, 'P1');
38 P2 = poly(0, 'P2');
39 //Let loads of unit are P1 & 500-P1
40 //Economical Loading dC1/dP1=dC2/dP2
41 eqn=52.8+2*5.5*10^{-3}*P1-15-2*0.05*(500-P1);
42 P1 = roots(eqn); / MW
43 P2=500-P1; / MW
44 //Minimum load is 200MW
45 if P1<200 then
46
       P2=P1+P2
47
       P1 = 0;
48 \text{ end}
49 disp(P1,"P1(MW) : ");
50 disp(P2,"P2(MW) : ");
51 format('v',10);
52 C = (2500 + 15 \times P2 + 0.05 \times P2^2) \times 10; //Rs. //Operating cost
      for 10 hour
53 disp(C, "Operating cost for 10 hour(Rs.)");
54 disp("Other option: ");
55 P1 = 200; /MW
56 \text{ P2} = 300; / \text{MW}
57 \text{ disp(P1,"P1(MW) : ");}
58 disp(P2,"P2(MW) : ");
59 \text{ C1} = 7700 + 52.8 * P1 + 5.5 * 10^{-3} * P1^{2}; //Rs./hour
60 C2=2500+15*P2+0.05*P2^2; //Rs./hour
61 C=10*(C1+C2);//Rs.//Operating cost for 10 hour
62 disp(C, "Operating cost for 10 hour(Rs.)");
```

Scilab code Exa 2.13 Cost of generation

```
1 // exa 2.13
2 clc; clear; close;
3 format('v',10);
4 / C1 = 2000 + 20 \times P1 + 0.05 \times P1^2; / Rs. / hour
\frac{1}{\sqrt{C2}} = \frac{2750 + 26 \cdot P2 + 0.03091 \cdot P2^2}{\sqrt{Rs./hour}}
6 P1 = 350; /MW
7 P2=550; /MW
8 C1=2000+20*P1+0.05*P1^2; //Rs./hour
9 C2=2750+26*P2+0.03091*P2^2; //Rs./hour
10 C=C1+C2; //Rs./hour
11 disp(C,"(a) Total Cost(Rs./hour)");
12 P=P1+P2; /MW//Total Load
13 P1=poly(0,'P1');
14 P2=poly(0, 'P2');
15 dC1bydP1 = 20 + 2*0.05*P1;
16 dC2bydP2=26+2*0.03091*P2;
17 disp("(b) For Economic Scheduling")
18 format('v',7);
19 //dC1/dP1=dC2/dP2 for economic sheduling
20 //Let loads of unit are P1 & P-P1
21 \text{ eqn} = 20 + 2 \times 0.05 \times P1 - 26 - 2 \times 0.03091 \times (P-P1);
22 P1 = roots(eqn); / MW
23 P2=P-P1; / MW
24 disp(P2,P1,"Loads P1 & P2 in MW are : ");
25 C1 = 2000 + 20 \times P1 + 0.05 \times P1^2; //Rs./hour
26 \text{ C2} = 2750 + 26 \times P2 + 0.03091 \times P2^2; //Rs./hour
27 Cnew=C1+C2; //Rs./hour
28 disp(Cnew, "Total Cost(Rs./hour)");
29 saving=C-Cnew; //Rs./hour
30 disp(saving, "Total saving(Rs./hour)");
31 format('v',5);
32 Lt=P1-350; //MW//Tie line load
```

```
33 \operatorname{disp}(\operatorname{Lt}, \operatorname{``Tie\ line\ load\ from\ Plant1\ to\ Plant2\ (MW)\ : ``);
```

Scilab code Exa 2.14 Extra Opperating Cost

```
1 // exa 2.14
2 clc; clear; close;
3 format('v',7);
4 /C = 5000 + 450 \cdot P + 0.5 \cdot P^2; //Rs./hour
5 e1=+2; //\%// error
6 e2=-2; //\%// error
7 P=200; //MW// Total Load
8 // Considering error
9 P1=poly(0, 'P1');
10 P2=poly(0, 'P2');
11 C1 = (5000 + 450 * P + 0.5 * P1^2) * 0.98; //Rs./hour
12 C2 = (5000 + 450 * P + 0.5 * P2^2) * 1.02; //Rs./hour
13 //Let loads of unit are P1 & P-P1
14 //dC1/dP1=dC2/dP2 for economic sheduling
15 eqn=450*0.98+2*0.5*P1*0.98-450*1.02-2*0.5*(P-P1)
      *1.02;
16 P1=roots(eqn);/MW
17 P2=P-P1; /MW
18 //if no instrumention error
19 C1 = (5000+450*P1+0.5*P1^2)*0.98; //Rs./hour
20 C2 = (5000 + 450 * P2 + 0.5 * P2^2) * 1.02; //Rs./hour
21 C=C1+C2; //Rs./hour
22 //Due to intrumentation error
23 P1=P/2; /MW
24 P2=P/2; /MW
25 C1 = (5000+450*P1+0.5*P1^2)*0.98; //Rs./hour
26 \text{ C2} = (5000 + 450 * P2 + 0.5 * P2^2) * 1.02; //Rs./hour
27 Cerr=C1+C2; //Rs./hour
28 Cextra=Cerr-C; //Rs,/hour
29 disp(Cextra, "Extra operating cost(Rs./hour)");
```

Scilab code Exa 2.15 Find Optimum Scheduling

```
1 // exa 2.15
2 clc; clear; close;
3 format('v',7);
4 P1=poly(0,'P1');
5 P2=poly(0,'P2');
6 P3 = poly(0, 'P3');
7 Q1=0.002*P1^2+0.86*P1+20; // tons/hour
8 Q2=0.004*P2^2+1.08*P2+20; // tons/hour
9 Q3=0.0028*P3^2+0.64*P3+36; //tons/hour
10 Pmax = 120; / MW
11 Pmin=36; /MW
12 P = 200; / MW
13 C=500; //Rs./ton
14 / C1 = C * Q1 ; C2 = C * Q2 ; C3 = C * Q3 ; / / Rs . / ton
15 dC1bydP1 = 2*P1 + 430; //Rs./hour
16 dC2bydP2=4*P2+540; //Rs./hour
17 dC3bydP3=2.8*P3+320; //Rs./hour
18 / P1+P2+P3=P
19 A1 = [1 1 1]; // Coefficient Matrix
20 B1=[P]; // Coefficient Matrix
21 //For minimal cost above 3 equation should be equal
22 / eqn1 = 2*P1 - 4*P2 + 430 - 540;
23 / eqn2 = 4*P2 - 2.8*P3 - 320 + 540;
24 A2=[0 4 -2.8]; // Coefficient Matrix
25 B2=[-540+320]; // Coefficient Matrix
26 / eqn3 = -2*P1 + 2.8*P3 + 320 - 430;
27 A3=[-2\ 0\ 2.8];//Coefficient Matrix
28 B3 = [430-320]; // Coefficient
29 //solving by matrix method
30 A = [A1; A2; A3]; // Coefficient
                                 Matrix
31 B=[B1;B2;B3];//Coefficient
                                  Matrix
32 X=A^-1*B; // Solution Matrix
```

```
33 P1 = X(1); / MW
34 P2=X(2); /MW
35 P3=X(3); /MW
36 Pmax = 120; / MW
37 Pmin=36; /MW
38 if P2 < Pmin then
      P2=Pmin; / MW
39
40 \text{ end};
41 / P1+P3=P-P2/eqn(4)
42 A1=[1 1];//Coefficient Matrix
43 B1=[P-P2]; // Coefficient Matrix
44 / \text{eqn}3 = -2*P1 + 2.8*P3 + 320 - 430;
45 A2=[-2 2.8]; // Coefficient Matrix
46 B2=[430-320]; // Coefficient Matrix
47 //solving by matrix method
48 A=[A1;A2];//Coefficient Matrix
49 B=[B1;B2]; // Coefficient Matrix
50 X=A^-1*B; // Solution Matrix
51 P1=X(1); /MW
52 P3=X(2); /MW
53 disp("According to optimum scheduling, Load
      distriution is :");
54 disp(P1,"P1(MW) : ");
55 \text{ disp(P2,"} P2(MW) : ");
56 \text{ disp}(P3,"P3(MW) : ");
```

Scilab code Exa 2.16 Heat inputs and savings

```
1 //exa 2.16
2 clc; clear; close;
3 format('v',11);
4 L=30; //MW
5 //I=(32+32*L+1.68*L^2)*10^5;
6 t1=18; ///hours
7 t2=6; ///hours
```

```
8  //Full load 18 hours
9  I1=(32+32*L+1.68*L^2)*10^5*t1; //kJ
10  //Half load 6 hours
11  I2=(32+32*L/2+1.68*(L/2)^2)*10^5*t2
12  I=I1+I2; //kJ
13  disp(I,"(a) Heat input per day(kJ)");
14  E=L*t1+L/2*t2; //MWh///Energy produced in 24 hours
15  Lu=E/(t1+t2); //MW
16  Inew=(32+32*Lu+1.68*Lu^2)*10^5*(t1+t2); //kJ
17  saving=I-Inew; ///kJ
18  saving=saving/(E*1000); //kJ/kWh
19  disp(saving,"(b) Saving in heat per kWh of energy(kJ/kWh): ");
```

Scilab code Exa 2.17 Find Optimum Scheduling

```
1 // exa 2.17
2 clc; clear; close;
3 format('v',7);
4 P=800; //MW(Total Load)
5 //Using Variable for Cost Curve Equation
6 P1=poly(0, 'P1'); P2=poly(0, 'P2'); P3=poly(0, 'P3');
7 //Cost Curve Equation
8 C1=450+6.5*P1+0.0013*P1^2; //Rs./hour
9 C2=300+7.8*P2+0.0019*P2^2; //Rs./hour
10 C3=80+8.1*P3+0.005*P3^2; //Rs./hour
11 //Part(a) is not computational
12 // Part (b)
13 dC1BydP1 = 6.5 + 2*0.0013*P1; //Rs./MWh///eqn(1)
14 dC2BydP2 = 7.8 + 2 * 0.0019 * P2; //Rs./MWh///eqn(2)
15 dC3BydP3=8.1+2*0.005*P3; //Rs./MWh///eqn(3)
16 / P1 + P2 + P3 = P; / MW / / eqn(4)
17 A1 = [1 1 1]; // Coefficient Matrix
18 B1=[800]; // Coefficient Matrix
19 // Equating eqn(1) & (2)
```

```
20 A2=[2*0.0013 -2*0.0019 0]; // Coefficient Matrix
21 B2=[7.8-6.5]; // Coefficient Matrix
22 //Equating eqn(2) & (3)
23 A3=[0 2*0.0019 -2*0.005]; // Coefficient Matrix
24 B3=[8.1-7.8]; // Coefficient Matrix
25 //Solution By Matrix method
26 A=[A1; A2; A3]; // Coefficient Matrix
27 B=[B1;B2;B3];//Coefficient Matrix
28 X=A^-1*B; // Solution Matrix
29 P1=X(1); /MW
30 P2=X(2); /MW
31 P3=X(3); /MW
32 disp("(b) According to optimum scheduling, Load
      distriution is :");
33 disp(P1,"P1(MW) : ");
34 \text{ disp(P2,"} P2(MW) : ");
35 \text{ disp}(P3,"P3(MW) : ");
36 // Part (c)
37 disp("(c) Optimum scheduling: ");
38 P1max = 600; / MW
39 P1min = 100; / MW
40 P2max = 400; / MW
41 P2min=50; //MW
42 P3max = 200; / MW
43 P3min = 50; / MW
44 if P2<P2max&P2>P2min then
45
       disp("P2 is within maximum and minimum limits.")
       P1=P1max; / MW
46
       P3=P3min; / MW
47
       P2=P-P1-P3; / MW
48
49 \text{ end};
50 //Lambda=dC2/dP2 as P2 is niether maximum limit nor
      minimum limit.
51 dC2BydP2 = 7.8 + 2*0.0019*P2; //Rs./MWh
152 lambda=dC2BydP2; //Rs./MWh
53 dC1BydP1=6.5+2*0.0013*P1; //Rs./MWh
54 \text{ dC3BydP3} = 8.1 + 2*0.005*P3; //Rs./MWh
```

```
if dC1BydP1 < lambda then
disp("Condition for P1 satisfied.");
end;
fend;
fend;
for Condition for P3 satisfied.");
end;
end;
disp("Condition for P3 satisfied.");
end;
disp("Load distribution is : ");
disp(P1,"P1(MW) : ");
disp(P2,"P2(MW) : ");
disp(P3,"P3(MW) : ");</pre>
```

Scilab code Exa 2.18 Transmission Loss

```
1 // exa 2.18
2 clc; clear; close;
3 format('v',6);
4 Bmn = [0.0676 \ 0.00953 \ -0.00507]
5 0.00953 0.0521 0.00901
6 -0.00507 0.00901 0.0294];//Loss Coefficient
7 Bno=[-0.0766;0.00342;0.0189];//Loss Coefficient
8 Boo=0.04357; //Loss Coefficient
9 P1=107.9; /MW
10 P2=50; /MW
11 P3=60; /MW
12 //solution :
13 PL=[P1 P2 P3]*Bmn+[P1 P2 P3]*Bno+Boo; /MW
14 PL = sum(-PL); / MW
15 disp(PL, "Transmission Loss(MW)");
16 //Note: Values calculated in the book are slightly
     wrong because of accuracy in calculation as
     compared to scilab accuracy.
```

Scilab code Exa 2.19 Find Load Distribution

```
1 //exa 2.19
2 clc; clear; close;
3 format('v',6);
4 //lambda1=0.1*P1+20; //Rs./MWh
5 //lambda2=0.12*P2+16; //Rs./MWh
6 P=180; //MW
7 //Let loads are P1 & P-P1
8 //Economical loading lambda1=lambda2
9 P1=poly(0, 'P1'); P2=poly(0, 'P2');
10 eqn=0.1*P1+20-0.12*(P-P1)-16;
11 P1=roots(eqn); //MW
12 P2=P-P1; //MW
13 disp(P1, "Load P1(MW): ");
14 disp(P2, "Load P2(MW): ");
```

Scilab code Exa 2.20 Find the load division

```
1 / \exp 2.20
2 clc; clear; close;
3 format('v',6);
4 / F1 = 0.004 * P1^2 + 2 * P1 + 80; / Rs. / hr
5 / F2 = 0.006 * P2^2 + 1.5 * P2 + 100; / Rs. / hr
6 P = 250; / MW
7 P1=poly(0, 'P1'); P2=poly(0, 'P2');
8 dF1bydP1=2*0.004*P1+2;
9 dF2bydP2=2*0.006*P2+1.5;
10 //Let loads are P1 & P-P1
11 //Economical loading lambda1=lambda2
12 eqn=2*0.004*P1+2-2*0.006*(P-P1)-1.5;
13 P1=roots(eqn);/MW
14 P2=P-P1; / MW
15 disp(P1, "Load P1(MW) : ");
16 disp(P2, "Load P2(MW) : ");
```

Scilab code Exa 2.21 Minimum cost of generation

```
1 // exa 2.21
2 clc; clear; close;
3 format('v',8);
4 / F1 = (8*P1+0.024*P1^2+80)*10^6; / Btu./hr
5 / F2 = (6*P2+0.04*P2^2+120)*10^6; / Btu./hr
6 Pmax = 100; / MW
7 Pmin=10; /MW
8 C=2.5; //Rs./million Btu
9 / C1 = 2.5 * F1 / 10^6
10 / C2 = 2.5 * F2 / 10^6
11 //For Maximum Load of 100 MW
12 P1=poly(0, 'P1'); P2=poly(0, 'P2');
13 dC1bydP1=8*2.5+2.5*2*0.024*P1;
14 dC2bydP2=6*2.5+2.5*2*0.04*P2;
15 //Let loads are P1 & Pmax-P1
16 //Economical loading lambda1=lambda2
17 eqn=8*2.5+2.5*2*0.024*P1-6*2.5-2.5*2*0.04*(Pmax-P1);
18 P1 = roots(eqn); /MW
19 P2 = Pmax - P1; / MW
20 C1=2.5*((8*P1+0.024*P1^2+80)*10^6)/10^6;/Rs./hour
21 C2=2.5*((6*P2+0.04*P2^2+120)*10^6)/10^6;/Rs./hour
22 C100 = (C1 + C2) * 12; //Rs. (Total cost of 12 hours on 100)
     MW load)
23 //For Maximum load of 50 MW
24 //Let loads are P1 & Pmax-P1
25 //Economical loading : lambda1=lambda2
26 \text{ Pmax1} = 50; / MW
27 clear('P1', 'P2');
28 P1=poly(0, 'P1'); P2=poly(0, 'P2');
29 eqn=8*2.5+2.5*2*0.024*P1-6*2.5-2.5*2*0.04*(Pmax1-P1)
30 P1 = roots(eqn); / MW
```

```
31 P2=Pmax1-P1; //MW
32 C1=2.5*((8*P1+0.024*P1^2+80)*10^6)/10^6; //Rs./hour
33 C2=2.5*((6*P2+0.04*P2^2+120)*10^6)/10^6; //Rs./hour
34 C50=(C1+C2)*12; //Rs.(Total cost of 12 hours on 50MW load)
35 C=C100+C50; //Rs.(Total cost for 24 hours)
36 disp(C, "Minimum total cost for 24 hours(Rs.): ");
37 E=(Pmax*12+Pmax1*12)*10^3; //kWh
38 //Operating cost per unit energy
39 Co=C/E; //Rs./kWh
40 disp(Co, "Operating cost per unit energy(Rs./kWh): ");
41 //Answer is wrong in the textbook. Calculation mistake in energy generation calculation & Cost calculation.
```

Scilab code Exa 2.22 Find Optimum Scheduling

```
1 // exa 2.22
2 clc; clear; close;
3 format('v',10);
4 / F1 = 0.05 * P1^2 + 21.5 * P1 + 800; / Rs. / hr
5 / F2 = 0.1 * P2^2 + 27 * P2 + 500; / Rs. / hr
6 / F3 = 0.07 * P3^2 + 16 * P3 + 900; / Rs. / hr
7 \text{ PT} = 200; / \text{MW}
8 Pmax = 120; / MW
9 Pmin=39; /MW
10 //coefficients :
11 c1=0.05; c2=0.1; c3=0.07;
12 b1=21.5; b2=27; b3=16;
13 a1=800; a2=500; a3=900;
14 lambda=(1/2*[b1/c1+b2/c2+b3/c3]+PT)/[1/2*[1/c1+1/c2
      +1/c3];
15 //Economical loading dF1/dP1=dF2/dP2=dF3/dP3
16 P1=poly(0, 'P1'); P2=poly(0, 'P2'); P3=poly(0, 'P3');
```

```
17 dF1bydP1 = 2*0.05*P1+21.5;
18 dF2bydP2=2*0.1*P2+27;
19 dF2bydP3=2*0.07*P3+16;
20 //Solving equation :
21 \quad A = [2*0.05 \quad 0 \quad 0; 0 \quad 2*0.1 \quad 0; 0 \quad 0 \quad 2*0.07];
22 B = [lambda - 21.5; lambda - 27; lambda - 16];
23 X = A^{-1} + B;
24 P1=X(1); /MW
25 P2=X(2); /MW
26 \text{ P3=X(3); } / \text{MW}
27 if P2 < Pmin then
28
        P2=Pmin;
29 end
30 P1plusP3=PT-P2; /MW
31 / dF1/dP1 = dF3/dP3
32 //Let loads are P1 & P1plusP3-P1
33 clear('P1', 'P3');
34 P1=poly(0, 'P1'); P3=poly(0, 'P3');
   eqn=2*0.05*P1+21.5-2*0.07*(P1plusP3-P1)-16;
35
   P1 = roots(eqn); / MW
36
37
   P3=P1plusP3-P1; //MW
    disp("Optimum scheduling :");
38
    disp(P3,P2,P1,"Loads P1, P2 & P3 in MW are :");
39
    F1=0.05*P1^2+21.5*P1+800; //Rs./hr
40
41 F2=0.1*P2^2+27*P2+500; //Rs./hr
42 F3=0.07*P3^2+16*P3+900; //Rs./hr
43 C=F1+F2+F3; //Rs/hour
44 disp(C," For this schedule, total cost per hour (Rs./
      hour)");
```

Scilab code Exa 2.23 Generation schedule and load demand

```
1 //exa 2.23
2 clc; clear; close;
3 format('v',7);
```

```
4 //dF1/dP1 = 0.025*P1+15;//
5 / dF2/dP2 = 0.05 * P2 + 20; / /
6 PL=15.625; /MW
7 P1=125; /MW
8 lambda=24; //Rs. per MWh
9 B11=PL/P1^2; // Coefficient Loss
10 //dF2/dP2*L2=lambda
11 P2=poly(0, 'P2');
12 L2=1; //penalty factor
13 eqn = (0.05*P2+20)*L2-lambda;
14 P2=roots(eqn);/MW
15 //PL=B11*P1^2
16 P1=poly(0, 'P1');
17 dPLbydP1=2*B11*P1;
18 L1=1/(1-dPLbydP1); // penalty factor
19 eqn = (0.025*P1+15) - lambda/L1
20 P1=roots(numer(eqn));//MW
21 disp(P2,P1,"Generation P1 & P2 in MW are ");
22 PL=B11*P1^2; / MW
23 LD=P1-PL+P2; /MW
24 disp(LD, "Load Demand(MW):");
```

Scilab code Exa 2.24 Optimum Schedule and total generation

```
1 //exa 2.24
2 clc; clear; close;
3 format('v',7);
4 //dC1/dP1=0.02*P1+16;//
5 //dC2/dP2=0.04*P2+20;//
6 PL=10; //MW
7 P1=100; //MW
8 lambda=25; //Rs. per MWh
9 B11=PL/P1^2; B22=0; B12=0; // Coefficient Loss
10 //dF2/dP2*L2=lambda
11 P2=poly(0, 'P2');
```

```
12 L2=1; // penalty factor
13 eqn=(0.04*P2+20)*L2-lambda;
14 P2=roots(eqn); //MW
15 //PL=B11*P1^2
16 P1=poly(0,'P1');
17 dPLbydP1=2*B11*P1;
18 L1=1/(1-dPLbydP1); // penalty factor
19 eqn=(0.02*P1+16)-lambda/L1
20 P1=roots(numer(eqn)); //MW
21 disp(P2,P1," Generation P1 & P2 in MW are ")
22 PL=B11*P1^2; //MW
23 LD=P1-PL+P2; //MW
24 disp(LD,"Load Demand(MW):");
```

Chapter 3

Hydrothermal Coordination

Scilab code Exa 3.1 MW rating

```
1 / Exa 3.1
2 clc; clear; close;
3 format('v',6);
4 head=205; //m (Mean Head)
5 A=1000; //\text{km}^2 (Catchment area)
6 rf=125; //cm(Annual Rainfall)
7 a=80; //% (Available rainfall for power generation)
8 LF=75; //\% (Load factor)
9 head_loss=5; //m(Head Loss)
10 Eta_turbine=0.9; // Efficiency of turbine
11 Eta_generator=0.95; // Efficiency of generator
12 // Calculation
13 WaterUsed=A*10^6*rf/100*a/100; //m^3/year (Discharge)
14 WaterUsed=WaterUsed/(365*24*60*60); //m^3/sec
15 Eff_Head=head-head_loss; //m(Effective Head)
16 P=735.5/75*WaterUsed*Eff_Head*Eta_turbine*
      Eta_generator/1000; //MW(Load of station)
17 Ppeak=P/(LF/100);//MW(Peak Load)
18 disp(Ppeak, "MW rating of station (MW)");
19 //type ot turbine
20 if head>200 then
```

Scilab code Exa 3.2 Capacity of hydro plant and steel plant

```
1 / Exa 3.2
2 clc; clear; close;
3 format('v',6);
4 WF=50; //\text{m}^3/\text{sec} (Water flow)
5 head=90; //m
6 LF=75; //%(Load factor)
7 Eta=90; //%(Efficiency of hydro plant)
8 L=5; //%(Transmission losses)
9 TC=350; /MW
10 hp=140; /MW//Hydro power
11 // Calculation
12 P=735.5/75*WF*head*Eta/100/1000; //MW(Power available
13 Pnet=P*(100-L)/100; /MW///Net Available hydro power
14 E=Pnet*24; //MW-hours///Hydro Energy
15 disp(E, "Available hydro energy (MW-hours): ");
16 format('v',5);
17 C1=hp/((100-L)/100);//MW//Capacity of hydro plant
18 disp(C1, "Capacity of hydro plant (MW): ");
19 C2=TC-hp; //MW// Capacity of thermal plant
20 disp(C2, "Capacity of thermal plant(MW): ");
```

Scilab code Exa 3.3 Water Used and operating cost

```
1 //Exa 3.3
2 clc; clear; close;
3 format('v',9);
```

```
4 P1=700; //MW(Load for 14 hours)
5 P2=500; //MW(Load for 10 hours)
6 B22=0.0005; //Loss Coefficient
7 t1=14; //hour
8 t2=10; //hour
9 r2=2.5; //Rs/hour/(m^3/sec)
10 // Characteristics of units :
11 / C1 = (24 + 0.02 * P1) * P1; / / Rs. / hour
12 /W2 = (6+0.0025*P2)*P2; //m^3/sec
13 lambda=37.944; //Rs./MWh(For peak load conditions)
14 P1=348.6; //MW(For peak load conditions)
15 P2=454.84; //MW(For peak load conditions)
16 PL=103.44; //MW(For peak load conditions)
17 lambda_dash=31.73; //Rs./MWh(For peak load conditions
18 P1_dash=193.25; //MW(For peak off conditions)
19 P2_dash=378.25; //MW(For peak off conditions)
20 PL_dash=71.50; //MW(For peak off conditions)
W = [(6+0.0025*P2)*P2*t1+(6+0.0025*P2_dash)*P2_dash*t2]
      ]*3600/10<sup>3</sup>; //\text{m}^3//\text{D3ily} water used
22 disp(W," Daily water used by plant(m<sup>3</sup>): ");
C = (24+0.02*P1)*P1*t1+(24+0.02*P1_dash)*P1_dash*t2; //
      Rs.
24 disp(C, "Daily operating cost of plant(Rs.): ");
```

Scilab code Exa 3.4 Load on plant and cost of water

```
1 //Exa 3.4
2 clc; clear; close;
3 format('v',7);
4 t1=14; //hour(working hour of hydro station)
5 t2=24; //hour(Working hour of steam station)
6 //Characteristics of units:
7 //C=(5+8*Ps+0.05*Ps^2); //Rs./hour
8 //dW/dPh=30+0.05*Ph; //m^3/MW-sec
```

```
9 W=500*10^6; //m^3(Water Quantity used)
10 Ps=250; //MW(Load on steam station)
11 lambda=8+0.1*Ps; //Rs./MW-hour
12 //W=Ph*(30+0.05*Ph)*t1*3600;//
13 //0.05*Ph^2*t1*3600+Ph*30*t1*3600-W=0
14 Ph=poly(0, 'Ph');
15 Ph=roots(0.05*Ph^2*t1*3600+Ph*30*t1*3600-W); //MW
16 Ph=Ph(2); //MW//Leaving negative root
17 disp(Ph, "Load on hydro plant(MW)");
18 r=lambda/(30+0.05*Ph); //Rs./hour/(m^3/sec)
19 disp(r, "Cost of water use(Rs./hour/(m^3/sec)): ");
20 //Answer is slightly differ due to accuracy in calculations.
```

Chapter 4

Modelling of turbine generators and automatic controllers

Scilab code Exa 4.1 Shared load and power factor

```
1 //Exa 4.1
2 clc; clear; close;
3 format('v',8);
4 kVA=4000; //kVA//rating
5 f1_nl=50; //Hz(No load frequency of machine1)
6 f1_f1=47.5; //Hz(No load frequency of machine1)
7 f2_nl=50; //Hz(No load frequency of machine2)
8 f2_f1=48; //Hz(No load frequency of machine2)
9 L=6000; //kW(Load)
10 L1=poly(0, 'L1'); //Load of machine1
11 //f1_nl - (f1_nl - f1_fl) *L1/kVA = f1_nl - (f2_nl - f2_fl) *L2/
     kVA where L2=L-L1
12 L1=(f2_nl-f2_f1)*L/[(f1_nl-f1_f1)+(f2_nl-f2_f1)];//
     kW
13 L2=L-L1; //kW
14 disp("Part(a)");
15 disp(L1, "Load supplied by first machine(kW)");
16 disp(L2, "Load supplied by second machine(kW)");
17 disp("Part(b)");
```

```
18 L2=4000; //kW// Machine2 is supplying 4000kW
19 fdrop1=f1_nl-f1_f1; //Hz(frequency drop of machine 1)
20 fdrop2=f2_nl-f2_f1; //Hz(frequency drop of machine 2)
21 L1=L2*fdrop2/fdrop1; //kW// Load supplied by machine 1
22 L=L1+L2; //kW// Total Load
23 disp(L," Total load supplied without getting over loaded(kW)")
```

Scilab code Exa 4.2 Current Power factor and emf

```
1 / Exa 4.2
2 clc; clear; close;
3 format('v',6);
4 Lt=3000; //kW// Total Load
5 pf=0.8;//Power factor Lagging
6 I = 150; //A
7 ZA=0.4+%i*12;//ohm//synchronous impedence
8 ZB=0.5+%i*10; //ohm//synchronous impedence
9 Vt=6.6; //kV//Terminal Voltage
10 L=Lt/2; //kW//Load supplied by each machine
11 LA=L; //kW
12 LB=L; //kW
13 / LB = sqrt(3) *Vt*IB*cosd(theta_B);
14 theta_B=acosd(LB/\sqrt{3}/Vt/I); // degree
15 IB=I*(cosd(theta_B)-\%i*sind(theta_B));//A
16 I_total=Lt/sqrt(3)/Vt/pf;//A//Total Current
17 IA_plus_IB=I_total*(0.8-\%i*0.6); //A
18 IA = IA_plus_IB - IB; //A
19 cos_thetaA=real(IA)/abs(IA);//lagging power factor
20 EA=Vt/sqrt(3)+IA*ZA/1000;/kV per phase
21 del_A=atand(imag(EA)/real(EA));//degree//Load Angle
22 emf_A=abs(EA);//kV per phase//Induced emf of machine
      Α
23 EB=Vt/sqrt(3)+IB*ZB/1000;/kV per phase
24 del_B=atand(imag(EB)/real(EB));//degree//Load Angle
```

```
emf_B=abs(EB); //kV per phase // Induced emf of machine
    A

26 IA=abs(IA); //A

27 disp(IA, "Current on machine A(A) : ");
28 pfA=cos_thetaA; // power factor
29 disp(pfA, "Lagging power factor of machine A");
30 format('v',5);
31 disp(emf_A, "Induced emf of machine A(kV per phase)")
    ;
32 disp(del_A, "Load angle of machine A(degree)");
33 disp(del_B, "Load angle of machine B(degree)");
34 disp(emf_B, "Induced emf of machine B(kV per phase)")
    ;
35 // Answer in the textbook is not accurate.
```

Scilab code Exa 4.3 Synchronising power

```
1 / Exa 4.3
2 clc; clear; close;
3 format('v',5);
4 P=5; //MVA
5 V = 1000; //V
6 speed=1500; //\text{rpm}//\text{speed}
7 ns=speed/60; //rps
8 f = 50; //Hz
9 pf=0.8;//Power factor Lagging
10 Xs=20; //\%// synchronous reluctance
11 Xs = Xs / 100; //p.u.
12 disp("Part(a)");
13 V=1; //p.u.//on no load
14 E=1; //p.u.//on no load
15 Ps=V*E/Xs;//p.u.
16 Ps=Ps*P; //MW per elect. radian
17 Ps=Ps*1000; //kW per elect. radian
18 //1 mech. radian=%pi/90 elect. radian
```

```
19 Ps=Ps*%pi/90; //kW per mech. degree
20 disp(Ps, "Synchronising power per mech. degree(kW)");
21 d=0.5; // degree /// displacement
22 Ts=Ps*1000*d/2/\%pi/ns;//N-m
23 format('v',6);
24 disp(Ts, "Synchronising torque(N-m)");
25 disp("Part(b)");
26 theta=acosd(pf);//degree
27 E=V+(cosd(theta)-\%i*sind(theta))*\%i*Xs;//p.u.
28 Ps=V*E/Xs;//p.u.
29 Ps=Ps*P; //MW per elect. radian
30 Ps=Ps*1000; //kW per elect. radian
31 //1 mech. radian=%pi/90 elect. radian
32 Ps=Ps*%pi/90;//kW per mech. degree
33 Ps=abs(Ps); //kW per mech. degree
34 disp(Ps, "Synchronising power per mech. degree(kW)");
35 d=0.5; //degree///displacement
36 Ts=abs(Ps)*1000*d/2/%pi/ns;//N-m
37 disp(Ts, "Synchronising torque(N-m)");
38 //Answer in the textbook is not accurate.
```

Scilab code Exa 4.4 Synchronising power and torque

```
1 //Exa 4.4
2 clc; clear; close;
3 format('v',6);
4 P=2; //MVA
5 V=6000; //V
6 speed=750; //rpm//speed
7 ns=speed/60; //rps
8 Zs=6; //ohm/phase
9 f=50; //Hz
10 pf=0.8; //Power factor Lagging
11 //Calculation
12 I=P*10^6/sqrt(3)/V; //A//Current
```

```
theta=acosd(pf);//degree
theta=acosd(pf);//degree
theta=acosd(pf);//degree
theta=acosd(pf);//degree
theta=acosd(pf);//degree
theta=acosd(pf);//kw per theta=acosd(theta)-%i*sind(theta))*%i*Zs;//V
theta=acosd(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(theta)-%i*sind(thet
```

Scilab code Exa 4.5 Load current and power factor

```
1 // Exa 4.5
2 clc; clear; close;
3 format('v',6);
4 I = 100; //A/// Current
5 V = 11; //kV
6 Xs=4; //ohm/phase
7 f=50; //Hz
8 pf=0.8; //Power factor Lagging
9 // Calculation
10 theta=acosd(pf);//degree
11 disp("Part(a)");
12 E=V*1000/sqrt(3)+I*(cosd(theta)-%i*sind(theta))*%i*
      Xs;/V
13 del=atand(imag(E)/real(E));//degree
14 E=abs(E); //V/phase
15 disp(E, "Open circuit phase emf(V/phase)");
16 disp(del, "Angle delta(degree)");
17 disp("Part(b)");
18 del_dash=10+del;//degree
19 P_by_V=E*sind(del_dash)/Xs;//per phase
20 / P = V * I * cos_f i
21 I_cos_fi=P_by_V;
22 /V*1000/sqrt(3)+I*(cos_fi-\%i*sin_fi)*\%i*Xs=E
```

Scilab code Exa 4.6 Inertia Constant

```
1 / Exa 4.6
2 clc; clear; close;
3 format('v',7);
4 G = 200; /MVA
5 H=6; //MJ/MVA///Inertia Constant
6 V = 11; //kV
7 f = 50; //Hz
8 L1=120; /MW
9 L2=160; /MW
10
11 // Calculation
12 disp("Part(a)");
13 Es=G*H;//MJ///Stored Energy
14 disp(Es,"Stored energy(MJ)");
15 disp("Part(b)");
16 Pa=L1-L2; / MW
17 M=G*H/180/f; //MJ-sec/elect.deg.
18 alfa=-Pa/M; //elect.deg./sec^2///Retardation
```

```
19 disp(alfa, "Motor retardation(elect.deg.sec^2)");
20 disp("Part(c)");
21 n=5; //cycles
22 t=n/f; //sec
23 del_change=1/2*-alfa*t^2; //elect.deg.
24 disp(del_change, "Change in power angle(elect.deg.)")
25 alfa=alfa*60/(180*4); //\text{rpm/sec}
26 \text{ ns} = 1500; //\text{rpm}
27 nr=ns+(-alfa)*t;//rpm;///rotor speed
28 disp(nr, "Rotor speed at the end of 5 cycle(rpm)");
29 disp("Part(d)")
30 H2=4; //MJ/MVA
31 G2=150; //MVA
32 Gb=100; / /MVA
33 Heb=H*G/Gb+H2*G2/Gb; //MJ/MVA
34 disp(Heb, "Inertia constant for the equivalent
      generator (MJ/MVA)");
```

Chapter 5

Frequency Control

Scilab code Exa 5.1 Change in power output

```
//Example 5.1
clc;clear;close;
P=100;//MW
drop=4;//%(No load to full load drop)
f=50;//Hz
disp("Part(i)");
p=1;//MW(For calculating per unit MW)
R=(drop/100)*f/p;//Hz/p.u.MW
disp(R,"Speed regulation in Hz/p.u.MW");
R=(drop/100)*f/P;//Hz/MW
disp(R,"Speed regulation in Hz/MW");
disp(R,"Speed regulation in Hz/MW");
disp("Part(ii)");
del_f=-0.1;//Hz(Frequency drop)
delP=-1/R*del_f;//MW(Change in power output)
disp(delP,"Change in power output(MW)");
```

Scilab code Exa 5.2 Frequency Deviation

```
1  //Example 5.2
2  clc; clear; close;
3  format('v',6);
4  P=100; //MVA
5  f=50; //Hz
6  H=5; //kW-sec/kVA(Constant)
7  delP=50; //MW(Increased Load)
8  td=0.5; //s(Time delay)
9  P=P/1000; //kVA
10  KE=P*H; //kW-sec
11  delP=delP/1000; //kW(Increased Load)
12  KE_loss=delP*td; //kW-s
13  f_new=sqrt((KE-KE_loss)/KE)*f; //Hz
14  f_dev=(f-f_new)/f*100; //%(Frequency deviation)
15  disp(f_dev, "Frequency deviation(%)");
```

Scilab code Exa 5.3 Value of R

```
1 //Example 5.3
2 clc; clear; close;
3 format('v',7);
4 P1=500; //MW
5 P2=200; //MW
6 f=50; //Hz
7 delP=140; //MW(System load increase)
8 f_new=49.5; //Hz(Frequency after drop)
9 delP1=delP*P1/(P1+P2); //MW
10 delP2=delP*P2/(P1+P2); //MW
11 f_dev=f_new-f; //Hz
12 //For delPdash=0, R1 &R2 can be calculated as:
13 R1=-1/delP1*f_dev; //Hz/MW
14 R2=-1/delP2*f_dev; //Hz/MW
15 disp(R2,R1,"Value of R for unit 1 & 2(Hz/MW)");
```

Scilab code Exa 5.4 Static Frequency Drop

```
1 / Example 5.4
2 clc; clear; close;
3 format('v',8);
4 f = 50; //Hz
5 R=2; //Hz/pu MW
6 Pr=10000; //MW(Rated Capacity)
7 P=Pr/2; //MW(Operating Power)
8 delP=2; //\% (Load Increase)
9 del_f = f*1/100; //Hz(1\% change in frequency)
10 del_PL=P*1/100; /MW(1\% change in load)
11 //Rate of change of load with frequency:
12 D=del_PL/del_f; / MW/Hz
13 D=D/Pr; //p.u. MW/Hz
14 //Frequency response characteristic :
15 Beta=D+1/R; //p.u. MW/Hz
16 M = delP/100*P; /MW
17 M=M/Pr; //p.u. MW
18 del_fo=-M/Beta; //Hz
19 disp(del_fo, "Static frequency drop(Hz)")
20 R = \% inf;
21 Beta=D+1/R; //p.u. MW/Hz
22 \text{ del_fo=-M/Beta;} //Hz
23 disp(del_fo," If speed governer loop is open,
      frequency drop(Hz)")
```

Scilab code Exa 5.5 Primary ALFC looop parameter

```
1 //Example 5.5
2 clc; clear; close;
3 format('v',7);
```

```
4  C=10000; //MW(Control area capacity)
5  P=5000; //MW
6  H=5; //s
7  R=3; //Hz/pu MW
8  f=50; //Hz
9  del_f=f*1/100; //Hz
10  del_PL=P*1/100; //MW
11  D=del_PL/del_f; //MW/Hz
12  D=D/C; //p.u. MW/Hz
13  //Primary ALFC loop parameters :
14  Kp=1/D; //Hz/p.u. MW
15  Tp=2*H/f/D; //s
16  disp("Primary ALFC loop parameters :")
17  disp(Kp, "Kp(Hz/p.u. MW)");
18  disp(Tp, "Tp(seconds)");
```

Scilab code Exa 5.6 Increased Generation

```
1 / Example 5.6
2 clc; clear; close;
3 format('v',6);
4 f=50; //Hz
5 \text{ R=2; } //\text{Hz/pu MW}
6 Pr=10000; //MW(Rated Capacity)
7 P=Pr/2; //MW(Operating Power)
8 delP=2; //%(Load Increase)
9 del_f=f*1/100; //Hz(1\% \text{ change in frequency})
10 del_PL=P*1/100; /MW(1\% change in load)
11 //Rate of change of load with frequency:
12 D=del_PL/del_f; / MW/Hz
13 D=D/Pr; //p.u. MW/Hz
14 //Frequency response characteristic :
15 Beta=D+1/R; //p.u. MW/Hz
16 M = delP/100*P; //MW
17 M=M/Pr; //p.u. MW
```

```
18 del_fo=-M/Beta; //Hz
19 disp("Frequency drop contribution to increase in
        load(MW): ");
20 delP_fo=-del_fo*(D*Pr); //MW
21 disp(delP_fo);
22 disp("Increase in generation to meet the increase
        load(MW)");
23 delP_gen=-del_fo/R*Pr; //MW
24 disp(delP_gen);
```

Scilab code Exa 5.7 Frequency Deviation

```
1 //Example 5.7
2 clc; clear; close;
3 format('v',5);
4 G=100; //MVA
5 f=50; //Hz
6 n=3000; //rpm
7 L=25; //MW//Load
8 td=0.5; //sec
9 H=4.5; //MW-sec/MVA
10 // Calculation
11 KE=H*G; //MW-sec///at no load
12 KE_Loss=L*td; //MW-sec///due to increase in load
13 f_new=sqrt((KE-KE_Loss)/KE)*f; //Hz
14 delF=(f-f_new)/f*100; //%//// frequency deviation
15 disp(delF, "Frequency deviation(%)");
```

Scilab code Exa 5.8 Change in step and frequency

```
1 //Example 5.8
2 clc; clear; close;
3 format('v',6);
```

```
4 \text{ C} = 4000; / \text{MW}
5 f = 50; //Hz
6 L=2500; /MW//Load
7 R=2; //Hz/p.u.MW////Speed regulation constant
8 H=5; //sec////Inertia constant
9 delPL=2; //\%/// change in load
10 delf=1; //\%///change in frequency
11 disp("Part(a)");
12 D=delPL/delf*L/f;//MW/Hz
13 D=D/C; //p \cdot u \cdot MW/Hz
14 Beta=D+1/R; //p \cdot u \cdot MW/Hz
15 delf0=-0.2; //Hz
16 M=-(delf0)*Beta;//p.u.MW
17 M=M*C; //MW
18 disp(M, "Largest change in step load (MW)");
19 disp("Part(b)");
20 Kp=1/D; //Hz/p.u.MW
21 Tp=2*H/f/D;//sec
22 Tdash=(R+Kp)/R/Tp;//sec
23 disp(Tdash," (R+Kp)/(R*Tp) in seconds = ");
24 printf ('Change in frequency as a funtion of time, \
      n d e l f (t) = -0.2*(1 - e p silon^(-\%f*t))', Tdash);
```

Scilab code Exa 5.9 Frequency response and value of Ki

```
1 //Example 5.9
2 clc; clear; close;
3 format('v',7);
4 C=4000; //MW
5 f=50; //Hz
6 L=C; //MW//Load
7 R=2.5; //%///Speed regulation constant
8 H=5; //sec///Inertia constant
9 delPL=1; //%///change in load
10 delf=1; //%///change in frequency
```

```
11 disp("Part(a)");
12 Ls=80; //MW; //increase in step to load
13 R=R/100*f; //z/p \cdot u \cdot MW
14 D=delPL/delf*L/f;//MW/Hz
15 D=D/C; //p \cdot u \cdot MW/Hz
16 M=Ls/L;//unitless//for given step load
17 Kp=1/D; //Hz/p.u.MW
18 Tp=2*H/f/D; //sec
19 Tdash1 = (R+Kp)/R/Tp; //sec
20 disp(Tdash1," (R+Kp)/(R*Tp) in seconds = ");
21 Tdash2=(R*Kp*M)/(R+Kp); // sec
22 disp(Tdash2," (R*Kp*M)/(R+Kp) in seconds = ");
23 delf0=-Tdash2; //Hz//// Static frequency error
24 disp(delf0, "Static frequency error(Hz)");
25 disp("Part(b)");
26 Ki = (1+Kp/R)^2/4/Tp/Kp; //p.u.MW/Hz
27 disp(Ki, "Critical value of Ki(p.u.MW/Hz)");
```

Scilab code Exa 5.10 Change in step and frequency error

```
//Example 5.10
clc;clear;close;
format('v',7);
s=poly(0,'s');//for transfer function
Tg=0.2;//sec///time constant of governing system
Tt=2;//sec///time constant of turbine
Gr=1/(1+Tg*s);//Transfer function of governer
Gt=1/(1+Tt*s);//Transfer function of turbine
C=1500;//MW
R=4;//%////Speed regulation constant
H=5;//sec///Inertia constant
H=5;//sec///Inertia constant
delPL=1;//%///change in load
delf=1;//%///change in frequency
disp("Part(a)");
```

```
16 R=R/100*f; //z/p.u.MW
17 D=delPL/delf*C/f;//MW/Hz
18 D=D/C; //p \cdot u \cdot MW/Hz
19 Kp=1/D; //Hz/p.u.MW
20 Tp=2*H/f/D; //sec
21 Gp=Kp/(1+Tp*s);//Transfer function of power system
22 delFs=-Gp/(1+Gr*Gt*Gp/R);
23 disp(delFs, "delFs = M/s*");
24 disp("Part(b)");
25 delf0_by_M=-Kp/(1+Kp/R); //Hz
26 \text{ delf0=delf/100*f;//Hz}
27 M=delf0/delf0_by_M; //p.u.MW
28 M = M * C ; / MW
29 disp(M, "Largest step change (MW)");
30 //Transfer functions multiplication Gr*Gt*Gp is
      calculated & it is not possible to show together
      without calculated as in the book.
```

Scilab code Exa 5.11 Static Frequency Drop

```
1 //Example 5.11
2 clc; clear; close;
3 format('v',8);
4 GA=5000; //MW
5 GB=10000; //MW
6 R=2; //Hz/p.u.MW////Speed regulation constant
7 D=0.01; //p.u.MW/Hz
8 Ls=100; //MW//Load increase
9 RA=R*GB/GA; //Hz/p.u.MW
10 DA=D*GA/GB; //p.u.MW/Hz
11 RB=R; //Hz/p.u.MW
12 DB=D; //p.u.MW/Hz
13 Beta_A=DA+1/RA; //p.u.MW/Hz
14 Beta_B=DB+1/RB; //p.u.MW/Hz
15 MA=0; //Load increase
```

```
16 MB=Ls/GB; //p.u.MW
17 delf0=-MB/(Beta_A+Beta_B); //Hz
18 disp(delf0, "Static frequency drop(Hz)");
19 format('v',6);
20 delPAB=Beta_A*MB/(Beta_A+Beta_B); //p.u.MW
21 delPAB=delPAB*GB; //MW
22 disp(delPAB, "Change in tie line power(MW)");
```

Scilab code Exa 5.12 Change in frequency and tie line power

```
1 //Example 5.12
2 clc; clear; close;
3 format('v',8);
4 GA = 500; /MW
5 \text{ GB} = 2000; / \text{MW}
6 RA=2.5; //Hz/p.u.MW////Speed regulation constant
7 RB=2; //Hz/p.u.MW////Speed regulation constant
8 Ls=20; //MW//Load increase
9 f = 50; //Hz
10 delL=1; //\%/// change in load
11 delf=1; //\%/// change in frequency
12 DA=delL/delf*GA/f; /MW/Hz
13 DA=DA/GB; //p. u.MW/Hz
14 DB=delL/delf*GB/f; /MW/Hz
15 DB=DB/GB; //p \cdot u \cdot MW/Hz
16 RA=RA*GB/GA; //Hz/p. u.MW
17 Beta_A=DA+1/RA; //p \cdot u \cdot MW/Hz
18 Beta_B=DB+1/RB; //p.u.MW/Hz
19 disp("Part(a)");
20 MA=Ls/GB; // unitless
21 MB=0; // unitless
22 delf0=-MA/(Beta_A+Beta_B); //Hz
23 disp(delf0, "Change in frequency(Hz)");
delPAB=-Beta_B*MA/(Beta_B+Beta_A); //p.u.MW
25 delPAB=delPAB*GB; / /MW
```

```
disp(delPAB, "Change in tie line power(MW)");
disp("Part(b)");
MB=Ls/GB; // unitless
MA=0; // unitless
delf0=-MB/(Beta_A+Beta_B); //Hz
disp(delf0, "Change in frequency(Hz)");
delPAB=Beta_A*MB/(Beta_B+Beta_A); //p.u.MW
delPAB=delPAB*GB; //MW
disp(delPAB, "Change in tie line power(MW)");
```

Scilab code Exa 5.13 Frequency of collision

```
1 //Example 5.13
2 clc; clear; close;
3 format('v',5);
4 G = 4000; /MW
5 R=2; //Hz/p.u.MW////Speed regulation constant
6 H=5; // sec
7 C=600; /MW//Capacity
8 theta=40; //degree///Power angle
9 f = 50; //Hz
10 disp("Part(a)");
11 T=C/G*cosd(theta); //sec
12 omega0=\sqrt{([2*\%pi*f*T/H-(f/4/R/H)^2]);//radian/sec}
13 disp(omega0, "Frequency of oscillation(radian/sec)");
14 disp("Part(b)");
15 delLB=100; //MW//change in load in area B
16 delPAB=delLB/2; /MW//because Beta_A=Beta_B
17 disp(delPAB, "Change in tie line power (MW)");
18 disp("Part(c)");
19 format('v',6);
20 omega0=sqrt([2*%pi*f*T/H]);//radian/sec
21 disp(omega0, "Frequency of oscillation(radian/sec)");
```

Scilab code Exa 5.14 Frequency at shared load

```
1 //Example 5.14
2 clc; clear; close;
3 format('v',6);
4 C1 = 300; / MW
5 \text{ C2=400; } / \text{MW}
6 G1=4; //%//droop characteristics of governer
7 G2=5; //%//droop characteristics of governer
8 L=600; /MW
9 f=50; //Hz
10 //Load on first generator =L1
11 //Load on second generator =L-L1
12 //f - G1*f / 100*(L1/C1) = f - G2*f / 100*(L2/C2)
13 L1=G2*L/C2/(G1/C1+G2/C2);/MW
14 L2=L-L1; /MW
15 disp(L1, "Load on first generator(MW)");
16 disp(L2, "Load on second generator (MW)");
17 fLoad=f*(1-L1/C1*G1/100); //Hz
18 disp(fLoad, "Frequency at load(Hz)");
```

Scilab code Exa 5.15 Change in frequency

```
1 //Example 5.15
2 clc; clear; close;
3 format('v',6);
4 G=100; //MVA
5 f=50; //Hz
6 delL=50; //MW
7 Tc=0.4; //sec
8 H=5; ///kWs/kVA
9 KE=G*1000*H; //kWs
```

```
delKE=delL*1000*Tc;///kWs///due to decrease in load
fnew=sqrt((KE+delKE)/KE) *f;//Hz
fdev=(fnew-f)/f*100;//%
disp(fnew,"New frequency(Hz)");
disp(fdev,"Frequency deviation(%)");
```

Scilab code Exa 5.16 Percentage frequency deviation

```
1 //Example 5.16
2 clc; clear; close;
3 format('v',7);
4 G = 100; //MVA
5 f = 50; //Hz
6 delL=60; / /MW
7 Tc=0.35; // sec
8 H=5; //kWs/kVA
9 KE=G*1000*H; //kWs
10 delKE=(G-delL)*1000*Tc; ///kWs///due to decrease in
      load
11 fnew=sqrt((KE+delKE)/KE) *f;//Hz
12 fdev=(fnew-f)/f*100;/\%
13 disp(fnew, "New frequency(Hz)");
14 format('v',6);
15 disp(fdev, "Frequency deviation(%)");
```

Scilab code Exa 5.17 Rate of frequency increase

```
1 //Example 5.17
2 clc; clear; close;
3 format('v',6);
4 KE=1500; //MJ
5 Pin=5; //MW
6 f=50; //Hz
```

```
7 t=1;//sec
8 delKE=Pin*t;///MJ///due to power inputs
9 fnew=sqrt((KE+delKE)/KE) *f;//Hz
10 delf=fnew-f;///Hz/second
11 disp(delf, "Frequency increase rate(Hz/sec)");
```

Scilab code Exa 5.18 Primary ALFC looop parameter

```
1 //Example 5.18
2 clc; clear; close;
3 format('v',6);
4 C=2000; /MW/// Capacity
5 L=1000; /MW//Load
6 \text{ H=5}; //\text{kWs/KVA}
7 R=2.4; //Hz/puMW//Regulation
8 f = 50; //Hz
9 delL=1; //\%///change in load
10 delf=1; //\%/// change in frequency
11 D=delL/delf*L/f; /MW/Hz
12 D=D/C; //p \cdot u \cdot MW/Hz
13 Kp=1/D; //Hz/p. u.MW
14 Tp=2*H/f/D; //sec
15 disp("Primary ALFC loop parameters are: ");
16 disp(D, "D(p.u.MW/Hz)");
17 disp(Kp,"Kp(Hz/p.u.MW)");
18 \operatorname{disp}(\operatorname{Tp}, \operatorname{Tp}(\operatorname{sec}));
```

Scilab code Exa 5.19 Compute the time error

```
1 //Example 5.19
2 clc; clear; close;
3 format('v',6);
4 Tp=10; //sec
```

```
5 Tg=0; // sec
6 Tt=0; // sec
7 Kp=100; // Hz/p.u.MW
8 R=3; // Hz/CuMW
9 delPD=0.1; //p.u.
10 Ki=0.1; // constant
11 f=50; // Hz
12 s=poly(0, 's');
13 delFs=-Kp/Tp*[delPD/(s^2+s*{(1+Kp/R)/Tp})+Ki*Kp/Tp];
14 n=1; // cycle
15 time_error=n/f; // sec
16 disp(time_error, "Total time error(sec)");
```

Scilab code Exa 5.20 Generated output Power and frequency

```
1 //Example 5.20
2 clc; clear; close;
3 format('v',6);
4 L=14; /MW//Total Load
5 \text{ C1=15}; / \text{MW}
6 R1=3; //\%// speed regulation
7 C2=4; / MW
8 R2=4; //\%// speed regulation
9 LB=4; /MW//Load on bus bar
10 LA=10; /MW///Load on bus bar
11 f = 50; //Hz
12 //Load on station A= L1 MW
13 //Load on station B= L-L1 MW
14 / f - C1 * f / 100 * (L1/C1) = f - C2 * f / 100 * (L2/C2)
15 L1=R2*L/C2/(R1/C1+R2/C2); /MW
16 L2=L-L1; / /MW
17 disp(L1, "Load generation at station A(MW)");
18 disp(L2, "Load generation at station B(MW)");
19 Pt=L1-LA; //MW//Power transmitted A to B
20 f_{per=f-R1/100/C1*(L1)*f;//Hz}
```

Scilab code Exa 5.21 No Load Frequencies

```
1 //Example 5.21
2 clc; clear; close;
3 format('v',6);
4 C1 = 300; / MW
5 \text{ C2} = 400; / \text{MW}
6 G1=4; //%//droop characteristics of governer
7 G2=6; //%//droop characteristics of governer
8 L=400; /MW
9 f = 50; //Hz
10 L1=C1*L/(C1+C2);//MW//Load on 300 MW generator
11 L2=L*C2/(C1+C2);//MW//Load on 400 MW generator
12 f01=f*(C1)/(C1-G1/100*L1); //Hz///No load frequency
13 disp(f01,"No load frequency of 300 MW generator(Hz)"
14 f02=f*(C2)/(C2-G2/100*L2); //Hz///No load frequency
15 disp(f02,"No load frequency of 400 MW generator(Hz)"
     );
```

Scilab code Exa 5.22 Generation and transfer of power

```
1 //Example 5.22
2 clc; clear; close;
3 format('v',6);
4 C1=200; //MW
5 C2=100; //MW
6 R1=1.5; //%//speed regulation
7 R2=3; //%//speed regulation
8 L=100; //MW///Load on each bus
9 f=50; //Hz
```

```
10 RA=R1/100*f/C1; //Hz/MW

11 RB=R2/100*f/C2; //Hz/MW

12 //Let PA= generation at plant A

13 //PB=2*L-PA will be generation at plant B

14 //RA*PA=RB*PB

15 PA=RB*2*L/(RA+RB); //MW

16 PB=2*L-PA; //MW

17 disp(PA, "Load generation at plant A(MW)");

18 disp(PB, "Load generation at plant B(MW)");

19 Pt=PA-L; //MW///Power transfer

20 disp(Pt, "Power transfer from A to B(MW)");
```

Scilab code Exa 5.23 Voltage Boost Needed

```
1 //Example 5.23
2 clc; clear; close;
3 format('v',7);
4 Z=1.5+%i*2.5; //ohm
5 V=11; //kV
6 P=20; //MW
7 pf=0.8; //power factor
8 theta=acosd(pf);
9 I=P*1000/sqrt(3)/V/pf; //
10 I=I*expm(%i*-theta*%pi/180); //A
11 Vdrop=I*Z; //V
12 Vboost=Vdrop; //V
13 disp(Vboost, "Voltage boost needed at station A(V)");
```

Scilab code Exa 5.24 Phase angle and pu real and active

```
1 //Example 5.24
2 clc; clear; close;
3 format('v',6);
```

```
4 Z=3+\%i*9; //\%///impedence
5 Z=Z/100; //p.u.///Impedence
6 I=1; //p.u.
7 IZ=Z; //p.u.
8 disp("Part(a)");
9 //2*I^2-2*cos(del)=[abs(IZ)]^2
10 \cos_{\text{del}} = a\cos d((2*I^2 - [abs(IZ)]^2)/2); // degree
11 disp(cos_del, "Phase angle between two station(degree
      )");
12 angle_abc=87.277; //degree
13 theta=180-angle_abc-atand(imag(IZ)/real(IZ));//
      degree
14 Preal=I^2*\cos d(theta); //p.u.
15 disp(Preal, "Real power transfer(p.u.)");
16 Preactive=I^2*sind(theta);//p.u.
17 disp(Preactive, "Reactive power transfer(p.u.)");
18 disp("Part(b)");
19 //1.05^2+1^2-2*1.05*\cos(\text{del})=[\text{abs}(\text{IZ})]^2
20 \cos_{\text{del}} = a\cos_{\text{d}}((1.05^2+1^2-[abs(IZ)]^2)/2/1.05); //
      degree
21 disp(cos_del,"Phase angle between two station(degree
22 angle_dbc=60.53; /// degree
23 theta=atand(imag(IZ)/real(IZ))-angle_dbc//degree
24 Preal=I^2*\cos d(theta); //p.u.
25 disp(Preal, "Real power transfer(p.u.)");
26 Preactive=I^2*sind(theta);//p.u.
27 disp(Preactive, "Reactive power transfer(p.u.)");
28 //Answer in the textbook is not accurate.
```

Chapter 6

Reactive power control

Scilab code Exa 6.1 Voltage and power factor

```
1 // exa 6.1
2 clc; clear; close;
3 format('v',6);
4 kV = 220; //kV
5 Z=0.8+\%i*0.2;/pu
6 V=1; //V(Voltage at load terminal)
7 X=0.2+0.05; //pu(line and transformer reactance)
8 \text{ P=real}(Z); //pu
9 Q=imag(Z);/pu
10 BaseMVA=100; / /MVA
11 BasekV=220; //kV
12 I = \operatorname{sqrt}((P^2+Q^2)/V^2) * \operatorname{expm}(\%i * \operatorname{atan}(-\operatorname{imag}(Z), \operatorname{real}(Z)))
      );//pu
13 Vb=V+I*(X*expm(%i*%pi/2));//pu(Voltage at 200 kV bus
14 fi_p=atand(imag(Vb),real(Vb));//degree(power angle)
15 Vb=abs(Vb)*kV;//kV(Voltage at 200 kV bus)
16 pf=cosd(fi_p+atand(imag(Z),real(Z)));//power factor
      at 220 kV bus
17 disp(Vb, "Voltage at 220 kV bus (kV)");
18 disp(pf, "Power factor at 220 kV bus (lagging)");
```

Scilab code Exa 6.2 Voltage and power factor

```
1 // exa 6.2
2 clc; clear; close;
3 format('v',6);
4 kV = 220; //kV
5 \text{ Z=0.8+\%i*0.2; //pu}
6 V=1; //V(Voltage at load terminal)
7 X=0.2+0.05; //pu(line and transformer reactance)
8 \text{ P=real}(Z); //pu
9 Q=imag(Z);//pu
10 BaseMVA=100; /MVA
11 BasekV=220; //kV
12 I = sqrt((P^2+Q^2)/V^2); //pu
13 Vb=V+I*(X*expm(%i*%pi/2));//pu(Voltage at 200 kV bus
14 fi_p=atand(imag(Vb),real(Vb));//degree(power angle)
15 Vb=abs(Vb)*kV; //kV(Voltage at 200 kV bus)
16 pf=cosd(fi_p);//power factor at 220 kV bus
17 disp(Vb, "Voltage at 220 kV bus (kV)");
18 format('v',5);
19 disp(pf, "Power factor at 220 kV bus (lagging)");
```

Scilab code Exa 6.3 Find ABCD Parameters

```
1 //exa 6.3
2 clc; clear; close;
3 format('v',7);
4 l=350; //km(length of line)
5 Z=180*expm(%i*75*%pi/180); //ohm/phase(Total)
6 Y=1*10^-3*expm(%i*90*%pi/180); // Siemens/phase(Total)
```

```
7 z=Z/1; //ohm/km
8 \text{ y=Y/1;}//\text{Siemens/km}
9 re=l*sqrt(z*y);//
10 Zc = sqrt(z/y); //ohm
11 disp("Part(a) A,B,C,D parameters are : ");
12 A=cosh(re); // unitless
13 D=A; //unitless
14 B=Zc*sinh(re);//ohm
15 C=sinh(re)/Zc;//unitless
16 A_mag=abs(A);//unitless
17 A_angle=atand(imag(A)/real(A));//degree
18 B_mag=abs(B); //ohm
19 B_angle=atand(imag(B)/real(B));//degree
20 C_mag=abs(C);//unitless
21 C_angle=atand(imag(C)/real(C));//degree
22 C_{angle}=C_{angle}+180; //degree(Converting -ve to +ve)
      angle)
23 D_mag=abs(D); //unitless
24 D_angle=atand(imag(D)/real(D));//degree
25 disp(A_mag, "Magnitude of A: ");
26 format('v',5);
27 disp(A_angle, "Angle of A(degree): ");
28 format('v',7);
29 disp(B_mag, "Magnitude of B(ohm) : ");
30 format('v',6);
31 disp(B_angle, "Angle of B(degree): ");
32 format('v',8);
33 disp(C_mag, "Magnitude of C: ");
34 format('v',6);
35 disp(C_angle, "Angle of C(degree): ");
36 format('v',7);
37 disp(D_mag, "Magnitude of D : ");
38 format('v',5);
39 disp(D_angle, "Angle of D(degree): ");
40 //60\% series compensation
41 B=B-\%i*60/100*abs(Z)*sind(atand(imag(Z), real(Z))); //
     ohm (considering series compensation=60%)
42 //For Equivalent pi-circuit
```

```
43 disp("Part(b) A,B,C,D parameters of compensated line
       are : ");
44 Ydash=2/Zc*[(cosh(re)-1)/sinh(re)];//S
45 A=1+B*Ydash/2; //unitless
46 D=A; // unitless
47 C=2*Ydash/2+B*(Ydash/2)^2;//unitless
48 A_mag=abs(A); //unitless
49 A_angle=atand(imag(A)/real(A)); //degree
50 \text{ B_mag=abs(B); //ohm}
51 B_angle=atand(imag(B)/real(B));//degree
52 C_{mag=abs}(C); //unitless
53 C_angle=atand(imag(C)/real(C));//degree
54 C_angle=C_angle+180; //degree (Converting -ve to +ve
      angle)
55 D_mag=abs(D);//unitless
56 D_angle=atand(imag(D)/real(D));//degree
57 format('v',4);
58 disp(B_mag, "Magnitude of B(ohm): ");
59 format('v',6);
60 disp(B_angle, "Angle of B(degree): ");
61 format('v',7);
62 disp(A_mag, "Magnitude of A: ");
63 format('v',5);
64 disp(A_angle, "Angle of A(degree): ");
65 format('v',6);
66 disp(C_mag, "Magnitude of C:");
67 format('v',5);
68 disp(C_angle, "Angle of C(degree): ");
69 format('v',7);
70 disp(D_mag, "Magnitude of D: ");
71 format('v',5);
72 disp(D_angle, "Angle of D(degree): ");
73 //Answer for some parts are not accurate in the
     textbook.
```

Scilab code Exa 6.4 Constant of nominal pi circuit

```
1 // exa 6.4
2 clc; clear; close;
3 format('v',6);
4 1=350; /km(length of line)
5 Z=180*expm(%i*75*%pi/180);//ohm/phase(Total)
6 Y=1*10^-3*expm(%i*90*%pi/180); //Siemens/phase(Total)
7 z=Z/1; //ohm/km
8 \text{ y=Y/1;}//\text{Siemens/km}
9 re=l*sqrt(z*y);//
10 Zc = sqrt(z/y); //ohm
11 disp("For Uncompensated Line, Constants are:");
12 B=Z; //ohm//B Parameter
13 A=1+Z*Y/2; // unitless //A Parameter
14 D=A; // unitless //D Parameter
15 C=Y*(1+Z*Y/4); //S//C Parameter
16 A_mag = abs(A);
17 A_angle=atand(imag(A)/real(A));//degree
18 \quad B_{mag} = abs(B);
19 B_angle=atand(imag(B)/real(B));//degree
20 \quad C_{mag} = abs(C);
21 C_angle=atand(imag(C)/real(C))+180;//degree
22 \quad D_{mag=abs}(D);
23 D_angle=atand(imag(D)/real(D));//degree
24 disp(B_angle,B_mag," Magnitude and Angle(degree) of B
      (ohm) is ");
25 disp(A_angle,A_mag," Magnitude and Angle(degree) of A
26 disp(D_angle,D_mag," Magnitude and Angle(degree) of D
       is ");
27 format('v',9);
28 disp(C_mag, "Magnitude of C(S) is ");
29 format('v',6);
30 disp(C_angle, "Angle(degree) of C is ");
31 disp("For Compensated Line, Constants are:");
32 B=Z-0.6*%i*406; //ohm//B Parameter
33 A=1+conj(B)*Y/2; // unitless //A Parameter
```

```
34 D=A; // unitless //D Parameter
35 C=Y*(1+Z*Y/4); //S//C Parameter
36 \quad A_mag = abs(A);
37 A_angle=atand(imag(A)/real(A));//degree
38 \quad B_{mag} = abs(B);
39 B_angle=-atand(imag(B)/real(B));//degree
40 \quad C_{mag} = abs(C);
41 C_{angle=atand(imag(C)/real(C))+180;//degree}
42 \quad D_{mag} = abs(D);
43 D_angle=atand(imag(D)/real(D));//degree
44 disp(B_angle,B_mag," Magnitude and Angle(degree) of B
      (ohm) is ");
45 disp(A_angle,A_mag," Magnitude and Angle(degree) of A
       is ");
46 disp(D_angle,D_mag," Magnitude and Angle(degree) of D
       is ");
47 format('v',9);
48 disp(C_mag, "Magnitude of C(S) is ");
49 format('v',6);
50 disp(C_angle, "Angle(degree) of C is ");
```

Scilab code Exa 6.5 VAR injection ay bus

```
1 //exa 6.5
2 clc; clear; close;
3 format('v',6);
4 kv1=220; //kv
5 kv2=132; //kv
6 baseMVA=200; //MVA
7 //Base impedence in 132 kv circuit
8 baseZ2=kv2^2/baseMVA; //ohm
9 z1=%i*75; //ohm
10 z2=%i*70; //ohm
11 z3=%i*90; //ohm
12 z1=z1/baseZ2; //pu
```

Scilab code Exa 6.6 Capacity of shunt compensation

```
1 // exa 6.6
2 clc; clear; close;
3 format('v',6);
4 A=0.98*expm(%i*3*%pi/180);//Constant
5 B=110*expm(%i*75*%pi/180);/ohm/phase
6 P = 50; / MVA
7 pf = 0.8; // lagging
8 V = 132; //kV
9 //Formula : Pr = |Vs| * |Vr| / |B| * cosd (Beta-delta) - |A| * |
      Vr |^2 / |B| * cosd (Beta-alfa):
10 betaSUBdelta=acosd((P*pf+abs(A)*V^2/abs(B)*cosd(
      atand(imag(B), real(B))-atand(imag(A), real(A))))/V
      ^2*abs(B));
11 Qr=V^2/abs(B)*sind(betaSUBdelta)-abs(A)*V^2/abs(B)*
      sind(atand(imag(B), real(B)) - atand(imag(A), real(A)
      ));//MVar
12 Qr=P*0.6-Qr; //MVar//Since load require lagging
      component
13 disp(Qr,"(a) Capacity of shunt compensation
      equipment (MVar) : ");
14 //part(b)
```

Scilab code Exa 6.7 Find tap settings

```
1 // exa 6.7
2 clc; clear; close;
3 format('v',6);
4 V = 220; //kV
5 Z=20+\%i*60; //ohm
6 Pr = 100; / MVA
7 pf=0.8; //lagging pf
8 P=Pr*10^6*pf/3;/W
9 theta=acosd(pf);//degree
10 Q=Pr*10^6*sind(theta)/3;//Vars
11 V1=V/sqrt(3)*1000;//V
12 V2 = V1; //V
13 // \operatorname{ts} 2*[1 - (R*P+X*Q)/V1/V2]=V2/V1
14 ts = sqrt(V2/V1/[1-(real(Z)*P+imag(Z)*Q)/V1/V2]);
15 \text{ tr=1/ts};
16 disp(ts, "Tap settings : ts is ");
17 format('v',5);
18 disp(tr, "tr is ");
```

Scilab code Exa 6.8 Find tap settings

```
1 // exa 6.8
2 clc; clear; close;
3 format('v',6);
4 kV1=132; //kV
5 \text{ kV2} = 33; //\text{kV}
6 kV3=11; //kV
7 \text{ MVA1} = 75; //\text{MVA}
8 \text{ MVA} = 50; /MVA
9 MVA3=25; / /MVA
10 X = 0.12; //p.u.
11 //part(a)
12 P = 60; / MW
13 V1=125; //kV
14 V1 = V1 / kV1; //p.u.
15 Q=MVA2/MVA1; //p.u.
16 //V1=Vn+X*Q/Vn
17 Vn = poly(0, 'Vn');
18 eqn=Vn^2-V1*Vn+X*Q
19 Vn = roots(eqn); //p.u.
20 Vn = Vn (1); //p.u.
21 Vn = Vn * kV1; //kV
22 k=Vn/kV2; // Transformer ratio
23 disp(k,"Under Load condition, transformer ratio is "
       );
24 //part(b)
25 V1=140; //kV
26 V1 = V1/kV1; //p.u.
27 Q=MVA3/MVA1;//p.u.
28 //V1=Vn+X*Q/Vn
29 \text{ Vn=poly}(0, 'Vn');
30 \text{ eqn} = Vn^2 - V1 * Vn + X * Q
31 Vn = roots(eqn); //p.u.
```

```
32 Vn=Vn(1);//p.u.
33 Vn=Vn*kV1;//kV
34 k=Vn/kV2;//Transformer ratio
35 disp(k,"Under No Load condition, transformer ratio
    is ");
```

Scilab code Exa 6.9 Settings of tap changes

```
1 // exa 6.9
2 clc; clear; close;
3 format('v',7);
4 V = 132; //kV
5 Z=25+\%i*66; //ohm
6 Pr = 100; / MW
7 pf=0.9; //lagging pf
8 \text{ P=Pr*10^6/3; //W}
9 theta=acosd(pf);//degree
10 Q=Pr*10^6*tand(theta)/3;//vars
11 V1=V/sqrt(3)*1000; //V
12 V2 = V1; //V
13 // \operatorname{ts}^2 * [1 - (R*P+X*Q)/V1/V2] = V2/V1
14 ts = sqrt(V2/V1/[1-(real(Z)*P+imag(Z)*Q)/V1/V2]);
15 tr=1/ts;
16 disp(ts, "Tap settings : ts is ");
17 format('v',5);
18 disp(tr,"tr is ");
```