Outline

- 1. Monomial Nonlinear Specifications (Dougherty, Introduction to Econometrics, ch. 4)
- 2. Polynomial Nonlinear Specifications
- 3. Example: Wages and experience
- 4. Combining Logarithms and Quadratics

Lecture 21 = focus on the 'numerator' (coefficients, marginal effects)

Lecture 22 = focus on the 'denominator' (standard error) and 'ratio' (t statistic)

POLS 6481. Research Design and Quantitative Methods II Lecture 21. Polynomial Functional Forms I: Coefficients and Marginal Effects Readings: Christopher Dougherty, *Introduction to Econometrics*, chap. 4

1. Monomial Nonlinear Specifications

Three functional forms discussed in "Nonlinear Models and Transformation of Variables"

1. Reciprocal (hyperbola)
$$y = \beta_0 + \beta_1 \frac{1}{x} + u = \beta_0 + \beta_1 x^{-1} + u$$
2. Radical
$$y = \beta_0 + \beta_1 \sqrt{x} + u = \beta_0 + \beta_1 x^{.5} + u$$

2. Radical
$$y = \beta_0 + \beta_1 \sqrt{x} + u = \beta_0 + \beta_1 x^{.5} + u$$

3. Exponential**
$$y = \beta_0 + \beta_1 \log(x) + u$$

These three functional forms: manipulate the **right hand side** of the regression equation; are linear in the parameters (β_0 and β_1); have additive disturbance (u),** and therefore are best suited to situations where *y* is normally distributed.

(If time is available, take some first derivatives on this slide and the next slide...)

** Model 3 looks like a level-log model, but it can be rewritten: $e^y = f(x, u) = e^{\beta_0} \cdot x^{\beta_1} \cdot v$, where $v = e^u$

2. Polynomial Nonlinear Specifications

Three kinds of polynomial models for y = f(x):

	Linear	Quadratic	Cubic*
equation	$y_i = \beta_0 + \beta_1 x_i + u_i$	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + u_i$	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + u_i$
graph	line	parabola (convex/concave)	S-curve (convex & concave)
effect of Δx	$\frac{\Delta y}{\Delta x} = \beta_1$ (constant)	$\frac{\Delta y}{\Delta x} = \beta_1 + 2\beta_2 x_i$ (conditional on x)	$\frac{\Delta y}{\Delta x} = \beta_1 + 2\beta_2 x_i + 3\beta_3 x_i^2$ (conditional on <i>x</i>)
vertices?	none	one at $x^* = -\frac{\beta_1}{2\beta_2}$	three
slope	positive if $\beta_1 > 0$	both positive and negative (equals 0 at vertex)	both positive and negative (equals 0 once, twice, thrice)

^{*} the "cubic spline" models are cubic but not polynomial

3. Example: Wages and experience

Linear regression model:
$$\widehat{wage} = 5.37 + .03 \cdot exper$$
 (.26) (.01)

Marginal effect:
$$\frac{\partial wage}{\partial exper} = .03$$

Note that when Wooldridge uses WAGE1 dataset in chapters 2-4, he usually uses log(wage) as the dependent variable and/or uses educ as the key explanatory variable.

library(foreign); data <- read.dta("C:/WAGE1.dta") linear <- lm(wage ~ exper, data); summary(linear)\$coefficients plot(data\$exper, data\$wage, pch=19, cex=.67); abline(linear, col="deepskyblue", lwd=3) summary(linear)\$r.squared

quad <- lm(wage ~ exper + expersq, data); summary(quad)\$coefficients summary(quad)\$r.squared

--> remember the F test for adding the squared-experience term

3. Example: Wages and experience

Quadratic regression model:
$$\widehat{wage} = 3.73 + .298 \ exper - .0061 \ exper^2$$
(.35) (.041) (.0009)

Marginal effect: $\frac{\partial wage}{\partial exper} = .298 - 2(.0061)exper$

Turning point: $x^* = \left|\frac{\widehat{\beta}_1}{2\widehat{\beta}_2}\right| = \left|\frac{.298}{2(.0061)}\right| \approx 24.4$

24.4

exper

4. Combining Logarithms and Quadratics

Rules for interpreting coefficients with logged dependent variables:

Log-level
$$\log(y)$$
 x % $\Delta y = (100 \cdot \beta_1) \Delta x$

A one-unit change in x leads to approximately a $100 \cdot \beta_1$ percent change in y

Log-log
$$\log(y)$$
 $\log(x)$ % $\Delta y = \beta_1 \cdot \% \Delta x$

A one-percent change in x leads to a β_1 percent change in y

Rule for calculating marginal effects in quadratic models:

Model:
$$\log(y_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + u_i$$

Marginal Effects:
$$\frac{\Delta \log(y)}{\Delta x} = \beta_1 + 2\beta_2 x_i$$
 \Rightarrow $\frac{\% \Delta y}{\Delta x} = 100 \cdot (\beta_1 + 2\beta_2 x_i)$
Vertex: marginal effect = 0 when $x = -\frac{\beta_1}{2\beta_2}$

Vertex: marginal effect = 0 when
$$x = -\frac{\beta_1}{2\beta_2}$$

4. Combining Logarithms and Quadratics

Examples 4.5, 6.1, and 6.2 use HPRICE2 dataset; sample is 506 communities in Boston area. *price* is community's median housing price; *rooms* is community's mean # rooms in houses. *nox* is a measure of air pollution (nitrogen oxide); $1\% \uparrow$ in air pollution \rightarrow .71% \downarrow in price

$$log(price) = 9.23 - .713 log(nox) + .306 rooms$$
 [6.7]
(.19) (.066) (.019)

$$\Rightarrow \frac{\partial \log(price)}{\partial rooms} = \frac{\%\partial price}{\partial rooms} = +.306$$
 Increase rooms by 1: +30.6% price

On p. 197 (in 5th ed) Wooldridge states that coefficient for *rooms* is + .255 when two control variables added: log(*dist*) is weighted distance of community from five employment centers; *stratio* is average student-teacher ratio of schools in community. See p. 132–3 (in 5th ed):

$$log(price) = 11.08 - .954 log(nox) + .255 rooms - .134 log(dist) - .052 stratio$$
(.32) (.117) (.019) (.043) (.006)

$$\Rightarrow \frac{\partial \log(price)}{\partial rooms} = \frac{\%\partial price}{\partial rooms} = +.255$$
 Increase rooms by 1: +25.5% price

4. Combining Logarithms and Quadratics

$$\widehat{\log}(price) = 13.39 - .902 \log(nox) - .087 \log(dist)$$

$$(.57) (.115) (.043)$$

$$- .545 rooms + .062 rooms^{2} - .048 stratio$$

$$(.165) (.013) (.006)$$

$$\frac{\partial \log(price)}{\partial rooms} = \frac{\% \partial price}{\partial rooms} = -.545 + .124 rooms$$

Increase # rooms from 5 to 6:

$$-.545 + .124(5) = +7.5\%$$
 price

Increase # rooms from 6 to 7:

$$-.545 + .124(6) = +19.9\%$$
 price

Increase # rooms from 7 to 8?

p. 198 (in 5th ed) gets silly: including a squared-logged term, for example