Git/Github

- For those not use to it...
- First, install git on your computer
- Next, make account on github
- Click on "repositories" and follow the instructions!
- NB you'll need to upload an ssh key. ssh-keygen will make one for you if you don't have one already.
 - Google "github ssh-keys" for useful hits

Generating Correlated Noise

- If d=A(m)+n, then $\chi^2=n^TN^{-1}n$, where $N_{ij}=\langle n_i n_j \rangle$.
- Obviously true for diagonal N. Can express non-diagonal with change of basis. Note N is symmetric and positive definite (no such thing as a negative variance)
- Cholesky useful factorization: N=LL^T (or R^TR always check what computer did) where L is triangular.
- N-1= $(LL^T)^{-1}$ = $L^{T-1}L^{-1}$. χ 2 then = $(L^{-1}n)^TI(L^{-1}n)$. So, $L^{-1}n$ must be Gaussian with standard deviation of 1.
- In that case, n=Lg, where g is unit variance Gaussians.
- Note this will be (very!) important when we get to MCMC.

HW Example

- Suggested using N_{ij}=1+δ_{ij}.
- Is this matrix stationary?
- yes that means we can use Fourier to generate data
- What is correlation function?
- corr($n_i n_{i+j}$)=1+ $\delta(j)$.
- What is <F(k)*F(k)>?
- =FT(corr)=FT(1)+FT($\delta(j)$). FT(1)=N $\delta(k)$. FT($\delta(j)$)=1.

Random Walk

- As a second example, let's use noise matrix to generate random walks in a stationary way.
- Random walk done by adding a random (gaussian) value to get to next point from current point. r_{n+1}=r_n+g
- What is the variance of r_n? Is it stationary?
- What is the variance of r_i-r_j?
- We can use this to find covariance of <r_ir_j>.

Random Walk

- Random walk done by adding a random (gaussian) value to get to next point from current point. r_{n+1}=r_n+g
- What is the variance of r_n? Is it stationary?
 - variance of r_n is n if we start with $r_0=0$ and use unit gaussians.
- What is the variance of r_i-r_j?
 - $var(r_i-r_j)=|i-j|$
- We can use this to find covariance of <r_ir_i>.
 - $var(r_i-r_j)=<(r_i-r_j)^2>-< r_i-r_j>^2=< r_i^2>-2< r_ir_j>+< r_j^2>-0=|i-j|$
 - so, $\langle r_i r_j \rangle = (var(r_i) + var(r_j) |i-j|)/2$

Pseudo-stationary

- Formally, random walks are not stationary. However, they "feel" stationary since any section is qualitatively indistinguishable from any other.
- One (only slightly illegal) trick: say we peg two ends of a long segment to zero, then look at small piece of middle.
- Then variance is more-or-less constant.
- Pick variance to be much larger than length, then diagonals are all shifted down.
- N_{ij}=V-|i-j|/2, and we have a stationary noise matrix.
- Of course, we could start with non-stationary as well...

Circulant

- Fourier transforms want things to be not just stationary but circulant, i.e. <f(x)f(x+i)>=f(x)f(x+i±N) since they wrap around.
- That means if we want to use FFTs, we need to make sure we have thought about this.
- How could we make a circulant pseudo-stationary random walk N?

Circulant V1

- Well, one way is to make a covariance matrix for (i-j), and (i-j+N) and (i-j-N) and take the largest value.
- This works fine. See: make_data_rw_pseudostat_circ.py
- NB our covariance matrix has gotten very close to singular. Cholesky is failing, but eigenvalues will work.
 Always want to check FFT values as well...

Pseuo-circulant

- If we're creating data with FFTs, another way is to just paste a reversed copy of the covariance onto itself.
- Create double-sized fake data, then use half. See: make_data_rw_pseudostat_circ_v2.py
- We can also look at *power spectrum* in there, <F(k)²>.

Finally...

- Now that we've got some familiarity with matched filters, correlated noise, and Fourier transforms applied to data, let's look at LIGO data!
- Download stuff from LOSC (LIGO open science tutorial), but I've posted one on github.
- You can read data with "simple_read_ligo.py"

Look at data

- Strain is actual output of interferometer a bit more on physics in coming lectures.
- Template is the signal we should see in the strain.
- How are we going to matched-filter this data?

First, what should we see for noise?

Let's try to reproduce this

Well...

- They look nothing alike.
- Why? First off, what is FT of a line?
- Usual solution is to window data. Many types of windows possible (wikipedia lists ~30), but main thing is they go to zero (or very close) smoothly at the edges.
- Let's try an FFT of the windowed version of data.
- Much better!

Spectral Resolution

- I would like to assign real frequencies to my k-axis.
- What is the spectral resolution of my dataset?
- How do I get the true frequencies then?

Output

Getting closer!

