Definizioni

- Un gruppo è una coppia (A,*) tale che A è un insieme non vuoto, e * un'operazione su A dotata della propietà associativa, di elemento neutro e di reciproco per
- L' ordine del gruppoè la cardinalità dell'insieme A. Un gruppo è detto commutativo se * soddisfa la propietà commutativa.
- In un gruppo, l'elemento neutro è unico; il reciproco di ogni elemento è unico; vale la legge di cancellazione; il reciproco di un prodotto è il prodotto dei reciproci in ordine inverso.
- Un sottogruppo è un insieme non vuoto $B\subseteq A$ tale che (B,*) è un gruppo rispetto alla stessa operazione * di A. I sottogruppi banali di A sono A e $\{e\}$.
- Un anello è una terna $(A, +, \cdot)$ tale che A è non vuoto, (A, +) è un gruppo commutativo, l'operazione \cdot è associativa, e vale la legge distributiva tra $+e^{-}$
- Un anello è detto unitario se il prodotto · ha elemento neutro (unico). È' detto commutativo se il prodotto · è commutativo. Un campo è un anello tale che (A,\cdot) è un gruppo commutativo; cioè è un anello commutativo unitario tale che $\forall a \in A \exists a^{-1} \in A$ (cioè l'inverso di a).
- Un sottoanello è un insieme non vuoto $B \subseteq A$ tale che $(B, +, \cdot)$ è un anello rispetto alle stesse operazioni + e \cdot di A. Se A e B sono campi, B è un sottocampo
- Un K-spazio vettoriale è un insieme non vuoto V se dotato di + tale che (V,+) è gruppo commutativo e definita operazione $K \times V \to V$ tale che (varie operazioni).
- Un K-sottospazio vettoriale di V è un insieme non vuoto $W \subseteq V$ se W è un K-spazio vettoriale su cui sono definite le stesse operazioni di V.
- $V \in \{0\}$ sono sottospazi vettoriali banali di V.
- Una $\overline{\mathbf{matrice}}$ a valori in K a m righe e n colonne è un insieme ordinato A di mn elementi di K disposti su m righe e n colonne.
- La matrice **trasposta** di A è la matrice $B \in M_{n,m}(K)$ definita come $b_{ij} = a_{ij}, \forall i = 1 \dots n, \forall j = 1 \dots m.$
- Una matrice è detta diagonale se è triangolare superiore e inferiore. E' simmetrica se $A = {}^tA$, antisimmetrica se $A = {}^tA$
- Il prodotto righe per colonne tra due matrici è definito solo se le colonne di A sono quante le righe di B. Definito come $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$.

 Le matrici quadrate sono dotate di struttura ad anello (non integro) grazie al prodotto righe per colonne. Il prodotto righe per colonne è associativo.
- Gli elementi invertibili di un anello unitario formano un gruppo. Le matrici quadrate invertibili di ordine n formano il gruppo generale lineare di ordine n, cioè $\mathbf{GL}_n(K)$.
- GB_n(H):

 Il $\mathbf{MCD}(a,b)$ è un intero d tale che d|a,d|b, $\forall c$ tale che c|a e c|b, risulta che c|d.

 La relazione \equiv_n è compatibile con le operazioni di somma e prodotto in Z. $(Z_n,\cdot,+)$ è un anello commutativo unitario. Se è un campo, allora n è primo.

 La funzione di Eulero $\varphi:N\to N$ è definita come $\varphi(n)=|\{k\in Z:1\le k\le n\text{ e }k,n\text{ sono coprimi }\}|$.

 Un' omomoforfismo di gruppi è un'applicazione $f:G\to H$ tale che $f(a_1)\cdot f(a_2)=f(a_1*a_2)$, dove (G,*) e (H,\cdot) sono due gruppi.

- W è un K-sottospazio vettoriale di $V\Leftrightarrow a_1\underline{w}_1+a_2\underline{w}_2\in W, \forall \underline{w}_1,\underline{w}_2\in W, \forall a_1,a_2\in K.$
- Il **nucleo** di un omomorfismo $f: G \to G'$ la controimmagine in G dell'elemento neutro G'. Ker(f) è un sottogruppo di G, e Im(f) è un sottogruppo di G'.
- f è iniettivo $\Leftrightarrow Ker(f) = \{1_G\}$. f è suriettivo $\Leftrightarrow Im(f) = G'$.
- I vettori $\underline{v}_1 \dots \underline{v}_n$ sono linearmente indipendenti se non esistono $c_1 \dots c_n$ non tutti nulli tali che $c_1 \underline{v}_1 + \dots + c_n \underline{v}_n = \underline{0}$
- $\underline{v}_1 \dots \underline{v}_n$ sono linearmente dipendenti \Leftrightarrow almeno uno di essi è combinazione lineare degli altri.
- -1 I sottospazio generato dai vettori $\underline{u}_1 \dots \underline{u}_t$ è l'insieme di tutte le loro combinazioni lineari, cioè $\langle \underline{u}_1 \dots \underline{u}_t \rangle = \{\sum_{i=1}^t a_i \underline{u}_i, \forall a_i \in K\}$.

 I vettori $\underline{u}_1 \dots \underline{u}_t \in V$ con V un K-spazio vettoriale sono detti sistema di generatori di V se il sottospazio da essi generato coincide con V.

 I vettori $\underline{u}_1 \dots \underline{u}_n \in V$ con V un K-spazio vettoriale sono detti base di V se sono linearmente indipendenti e formano un sistema di generatori per V.

 $\{\underline{u}_1 \dots \underline{u}_n\}$ è una base di V \Leftrightarrow ogni vettore $\underline{v} \in V$ si scrive in modo unico come combinazione lineare dei vettori $\underline{u}_1 \dots \underline{u}_n$.

 La dimensione di un K-spazio vettoriale V è il numero di vettori di una base di V. Lo spazio vettoriale nullo $\{\underline{0}\}$ non ha basi, e ha dimensione 0.

 Dato $dim_K(V) = n$, n vettori linearmente indipendenti formano una base; un sistema di generatori di V formato da n vettori è una base.

 Un elemento $\underline{a} \in A$ si dice divisore dello zero se $\underline{a}, \underline{b} = 0$ per qualche $\underline{b} \neq 0$

- Un elemento $a \in A$ si dice **divisore dello zero** se $a \cdot b = 0$ per qualche $b \neq 0$.
- Un anello commutativo unitario si dice dominio d'integrità se non ha divisori dello zero.
- L'insieme Σ delle soluizoni di un sistema lineare è un sottospazio vettoriale di K^n se il sistema è omogeneo.
- Le soluzioni di un sistema lineare sono in corrispondenza biunivoca con quelle dell'omogeneo associato. $\Sigma=\underline{z}_0+\Sigma_0$.
- Ogni sistema lineare a scala è compatibile e ha ∞^{n-m} soluzioni.
- Se A è diagonale, $det(A) = \prod a_{ii}$. In particolare, $det(I_n) = 1$. Se A ha una riga o una colonna nulla, det(A) = 0. $det(A) = det(^tA)$. Se $A \in GL_n(K)$, allora $det(A^{-1}) = 1/det(A)$. Scambiando fra loro due righe o due colonne, il determinante cambia segno. det(AB) = det(A)det(B) (teorema di Binet). Se due righe o colonne sono uguali o proporzionali, allora det(A) = 0.
- Se $A \in M_n(K)$, con $n \ge 2$, vale che $A \in GL_n(K) \Leftrightarrow det(A) \ne 0$.
- Il rango per colonne di una matrice $A \in M_{m,n}(K)$ è la dimensione del K-sottospazio vettoriale di $M_{1,n}(K)$ generato dalle righe di A, cioè $r_A = dim(\langle A^1, \dots A^m \rangle)$.
- Per ogni matrice $A \in M_{m,n}$, risulta che il rango per colonne è uguale al rango per righe.
- $-rg(A) = rg({}^tA)$. Inoltre, se $A \in GL_n(K) \Leftrightarrow det(A) \neq 0 \Leftrightarrow rg(A) = n$.

 Ogni sistema lineare omogeneo è sempre compatibile (la soluzione banale $\underline{0}$). Ma vale che: il sistema è privo di autosoluzioni $\Leftrightarrow n = rg(A)$ (teorema rouchè-capelli).
- Per ottenere la matrice del cambiamento da una base F a una E, basta esprimere i vettori di F come combinazioni lineari di quelli di E, e poi scrivere i coefficienti per colonna.
- Il nucleo di una matrice A è un autospazio se e solo se ci sta un autovalore 0.
- L'autospazio di un autovalore sono tutti gli X tali che $AX = \lambda X$.
- Gli autovettori sono i vettori non nulli che compongono l'autospazio
- Gli autovettori relativi a autovettori diversi sono perforza indipendenti.
- Una matrice di rotazione non ha autovettori. Gli autovalori sono quei fattori con cui la matrice A può moltiplicare un certo vettore. Se ce ne sono più di uno, si moltiplica il vettore in base alla combinazione degli autovettori.
- Se una matrice che ha determinante 0, vuol dire che un autovalore è uguale a 0, e non è invertibile: infatti vuol dire che una delle sue colonne è dipendente dalle altre; cioè in altre parole rappresenta un'applicazione non suriettiva, $R^n \to R^{n-rg(A)}$. Se una matrice ha determinante diverso da 0, allora il suo rango è n.
- antici, che in attre partici si dicono simili se esiste una matrice $C \in GL_n(K)$ tale che $B = C^{-1}AC$, o che CB = AC.

 Per ogni applicazione lineare, sia il nucleo che l'immagine sono sottospazi vettoriali. Vale quindi che l'immaine e controimmagine di sottospazi vettoriali di un'applicazione lineare, sono sottospazi vettoriali.
- Due matrici diagonalizzabili che hanno gli stessi autovalori sono simili fra loro, in quanto sono simili alla stessa matrice diagonale.
- Se due matrici hanno determinante diverso, non sono simili. Se due matrici hanno traccia diversa, non sono simili.
- Un vettore \underline{v} si dice **autovettore** se data un'applicazione lineare T esiste un autovalore λ tale che $T(\underline{v}) = \lambda \underline{v}$. Un sottospazio vettoriale definito come $E_{\lambda} = Ker(T \lambda I)$ dove λ è un autovalore si chiama **autospazio** relativo a λ . La molteplicità geometrica di λ è la dimensione di E_{λ} .
- Un operatore lineare T è detto **diagonalizzabile** se ammette una base di autovettori di T.
- Un autovalore ha molteplicità algebrica h se nel polinomio caratteristico appare un fattore $(\lambda \lambda_0)^h$.
- Il determinante di una matrice $A \in M_2(K)$ rappresenta l'area del parallelogramma formato dai due vettori formati dalle colonne della matrice.
- Il nucleo di una matrice A ha come dimensione n rg(A).
- L'immagine di una matrie A è lo spazio vettoriale generato dai vettori le cui coordinate sono le colonne di A. La dimensione dell'immagine di A è quindi il rango $\operatorname{di} A$.
- Un sottogruppo ciclico è un sottogruppo del gruppo (G,\cdot) e definito come l'insieme $\{x^h, \forall h \in Z\}$, dove x è un elemento di G. L'ordine del sottogruppo è il
- Il **periodo** di un elemento x di un gruppo (G,\cdot) è il minimo intero positivo t tale che $x^t=1$.
- Se in un sistema lineare la matrice dei coefficienti ha determinante 0, vuol dire che ammette una sola soluzione. Se è 0, potrebbe avere infinite soluzioni o nessuna soluzione.
- Per trovare l'autospazio relativo a λ : $AX = \lambda X \to AX \lambda X = 0 \to (A \lambda I)X = 0 \to Ker(A \lambda I)$.
- Un sistema lineare non omogeneo non ha mai uno spazio vettoriale come soluzioni, poichè $0 \not\in \Sigma$.

$\mathbf{2}$ Teoremi

```
Teorema 1
```

Siano $a,b \in Z$ con $b \neq 0$. Esiste un' unica $(q,r) \in Z \times Z$ tale che $a = bq + r, \ 0 \leq r < |b|$.

Siano $a, b \in \mathbb{Z}$ non nulli. Se d = MCD(a, b), esistono $x, y \in \mathbb{Z}$ tali che d = ax + by.

 $Siano\ a,b\in Z\ con\ b\neq 0.\ Sia\ a=bq+r\ con\ 0\leq r<|b|.\ Risulta\ che\ MCD(a,b)=MCD(b,r).$ Teorema fondamentale dell'aritmetica Ogni naturale n > 2 è prodotto di un numero finito di primi. Tale scrittura è unica a meno dell'ordine dei fattori.

TEOREMA DI EULERO-FERMAT Sia $n \geq 2$ e sia a coprimo con n. Risulta che $a^{\varphi(n)} \equiv 1 \pmod{n}$.

PICCOLO TEOREMA DI FERMAT

Siano a, p interi coprimi. Se p è primo, risulta che $a^{p-1} \equiv 1 \pmod{n}$.

TEOREMA DELLA DIMENSIONE

Se un K-spazio vettoriale V ha una base formata da n vettori, ogni altra base di V è formata da n vettori.

TEOREMA DEL COMPLETAMENTO

 $Sia \ dim_K(V) = n \ e \ siano \ \underline{u}_1 \dots \underline{u}_t \in V \ vettori \ linearmente \ indipendenti, \ con \ t < n. \ Esistono \ n-t \ vettori \ \underline{u}_{t+1} \dots \underline{u}_n \in V \ tali \ che \ \{\underline{u}_1 \dots \underline{u}_t, \underline{u}_{t+1} \dots \underline{u}_n\} \ \grave{e}_t = n \ e \ siano \ \underline{u}_t \dots \underline{u}_t \in V \ vettori \ linearmente \ indipendenti, \ con \ t < n. \ Esistono \ n-t \ vettori \ \underline{u}_{t+1} \dots \underline{u}_n \in V \ tali \ che \ \{\underline{u}_1 \dots \underline{u}_t, \underline{u}_{t+1} \dots \underline{u}_n\} \ \grave{e}_t = n \ e \ siano \ \underline{u}_t \dots \underline{u}_t \in V \ vettori \ linearmente \ linearm$ $una\ base\ di\ V.$

Teorema dell'estrazione di una base

 $Sia \ dim_K(V) = n \ e \ sia \ \{\underline{u}_1 \ldots \underline{u}_m\} \ un \ sistema \ di \ generatori \ di \ V. \ Esistono \ n \ vettori \ distinti \ \underline{u}_{i_1} \ldots \underline{u}_{i_n} \in \{\underline{u}_1 \ldots \underline{u}_m\} \ formanti \ una \ base \ di \ V.$

FORMULA DI GRASSMANN

ORMOLA DI GRASSMANN

Siano W_1, W_2 due sottospazi vettoriali di V, con $dim_K(V)$ finita. Risulta che $dim_K(W_1) + dim_K(W_2) = dim_K(W_1 + W_2) + dim_K(W_1 \cap W_2)$.

Dim. Sia $n_1 = dim_K(W_1)$, $n_2 = dim_K(W_2)$ e $i = dim(W_1 \cap W_2)$. Sia $\{\underline{z}_1 \dots \underline{z}_i\}$ una base di $W_1 \cap W_2$. Dato che $W_1 \cap W_2$ è un sottospazio di W_1 , possiamo completare fino a ottenere $\{\underline{z}_1 \dots \underline{z}_i, \underline{u}_1 \dots \underline{u}_{n_1-i}\}$, una base di W_1 , e $\{\underline{z}_1 \dots \underline{z}_i, \underline{v}_1 \dots \underline{v}_{n_1-i}\}$, una base di W_2 . Tutti i vettori insieme sono gli $\underline{z}, \underline{u}, \underline{v}$, e sono $i + (n_1 - i) + (n_2 - i) = n_1 + n_2 - i$. Se dimostriamo che formano una base di $W_1 + W_2$, abbiamo dimostrato la formula. Banalmente, formano un sistema di generatori di V (per ogni vettore $w_1 + w_2, w_1$ è combinazione lineare degli $\underline{z}, \underline{u}, \underline{v}$). mentre w_2 è combinazione lineare degli $\underline{z},\underline{v}).$

Teorema 5

Sia $\{e_1 \dots e_n\}$ una base di V. L'applicazione $f: V \to K^n$, tale che $\forall \underline{v} \in V: f(\underline{v}) = (c_1 \dots c_n)$, se $\underline{v} = \sum_{i=1}^n c_i \underline{e}_i$, è un isomorfismo di spazi vettoriali. Quindi $due\ spazi\ vettoriali\ n\text{-}dimensionali\ sono\ isomorfi.$

Teorema di Laplace

EGREMA DI LAPLACE $Sia\ A \in M_n(K),\ con\ n \geq 2.\ Risulta,\ \forall i,j \in \{1\dots n\},\ che\ det(A) = \sum_{t=1}^n a_{it}\alpha_{it}\ e\ det(A) = \sum_{t=1}^n a_{tj}\alpha_{tj},\ dove\ \alpha\ \grave{e}\ il\ complemento\ algebrico.$

Teorema di Cramer

Dato un sistema lineare AX = b con $A \in GL_n(K)$, il sistema ammette una sola soluzione: $(1/\det(A))(\det(B_1), \ldots, \det(B_n))$, dove B_i è ottenuta sostituendo i termini noti b all'i-esima colonna di A.

TEOREMA DI ROUCHÈ-CAPELLI

Dato un sistema lineare AX = b, risulta: E' compatibile $\Leftrightarrow rg(A) = rg((A b))$, dove ((A b)) è la matrice completa. Se è compatibile, ammette $\infty^{n-rg(A)}$

Teorema 6

 $Data\ un'applicazione\ lineare\ T:V\to W.\ Risulta\ che\ dim(Ker(T))+dim(Im(T))=dim(V).$

Teorema 7

Data un'applicazione lineare $T: V \to W$. Se dim(V) = dim(W), allora risulta che T è iniettiva $\Leftrightarrow T$ è suriettiva.