Prices of Automobiles regressed **ST**atistically (PAST model)

Gian Alix

Celina Landolfi

gian.alix@gmail.com clandolfi17@gmail.com

Department of Mathematics and Statistics

York University

GitHub Repository: https://github.com/techGIAN/PAST_AutoPrice_Regressor/tree/master

Paper: https://github.com/techGIAN/PAST AutoPrice Regressor/blob/master/PAST Project Paper.pdf

Preliminary Scan

Variables to Keep

- \mathbf{x}_{5} (door number)
- **x**₇ (drive wheel)
- $\mathbf{x}_{\mathbf{q}}$ (wheel base)
- \mathbf{x}_{10} (car length)
- \mathbf{x}_{11} (car width)
- \mathbf{x}_{12} (car height)
- x₁₃ (curb weight)
- \mathbf{x}_{16} (engine size)
- \mathbf{x}_{20} (compression ratio)
- \mathbf{x}_{21} (horse power)
- **x**₂₃ (city mpg)
- \mathbf{x}_{24} (highway mpg)

Variables to Drop

- x₁ (symboling)
- \mathbf{x}_2 (make)
- \mathbf{x}_3 (fuel type)
- x₄ (aspiration)
- \mathbf{x}_6 (car body)
- **x**₈ (engine location)
- \mathbf{x}_{14} (engine type)
- x₁₅ (cylinder number)
- **x**₁₇ (fuel system)
- \mathbf{x}_{18} (bore ratio)
- \mathbf{x}_{10} (stroke ratio)
- **x**₂₂ (peak rpm)

Multicollinearity

Pearson Correlation Coefficients, N = 164 Prob > [r] under H0: Rho=0									
x16	x18	x19	x20	x21	x22	x23	x24		
0.00576	0.25415	-0.08752	0.15735	0.02529	-0.22123	0.02587	0.02704		
0.9416	0.0010	0.2651	0.0442	0.7478	0.0044	0.7423			
0.55544	0.44102	0.19782	0.28581	0.30342	-0.40858	-0.42650	-0.51836		
<.0001	<.0001	0.0111	0.0002	<.0001	<.0001	<.0001	<.000		
0.67863	0.62606	0.18129	0.18482	0.52039	-0.33008	-0.65905	-0.69918		
	<.0001	0.0202	0.0178	<.0001	<.0001	<.0001	<.000		
0.71080	0.55512	0.21414	0.22157	0.60532	-0.26411	-0.60826	-0.65287		
	<.0001	0.0059	0.0044	<.0001	0.0006	<.0001	<.000		
0.14941	0.18099	-0.00978	0.25989	-0.06047	-0.31917	-0.08228	-0.1528-		
0.0562	0.0204	0.9011	0.0008	0.4418	<.0001	0.2949	0.050		
0.84307	0.68614	0.18697	0.19049	0.73041	-0.30122	-0.75340	-0.8013		
<.0001	<.0001	0.0165	0.0146	<.0001	<.0001	<.0001	<.000		
1.00000	0.63909 <.0001	0.21479 0.0057	0.04496 0.5675	0.78328 <.0001	-0.29090 0.0002	-0.64499 <.0001	-0.6736		
0.63909 <.0001	1.00000	-0.07268 0.3550	0.03203 0.6839	0.65147 <.0001	-0.27146 0.0004	-0.62299 <.0001	-0.6088		
0.21479	-0.07268	1.00000	0.15437	0.06582	-0.10251	-0.08684	-0.0957		
0.0057	0.3550		0.0484	0.4024	0.1915	0.2689	0.222		
0.04496 0.5675	0.03203 0.6839	0.15437 0.0484	1.00000	-0.17960 0.0214	-0.40269 <.0001	0.26477 0.0006	0.1941		
0.78328	0.65147	0.06582	-0.17960	1.00000	0.11183	-0.79623	-0.75748		
<.0001	<.0001	0.4024	0.0214		0.1540	<.0001	<.000		
-0.29090	-0.27146	-0.10251	-0.40269	0.11183	1.00000	-0.08704	-0.01575		
0.0002	0.0004	0.1915	<.0001	0.1540		0.2677	0.8413		
-0.64499	-0.62299	-0.08684	0.26477	-0.79623	-0.08704	1.00000	0.9687		
<.0001	<.0001	0.2689	0.0006	<.0001	0.2677		<.000		
-0.67367	-0.60884	-0.09579	0.19419	-0.75748	-0.01575	0.96871	1.00000		
<.0001	<.0001	0.2224	0.0127	<.0001	0.8413	<.0001			

Pearson Coefficient Correlation
Matrix

		x7fwd =	Intercept - x74v	vd - x7rwd	1	
		Par	rameter Estima	tes		
Variable	DF	Parameter Estimate	more eminante		Pr > [t]	Variance Inflation
Intercept	В	-40761	17642	-2.31	0.0223	0
x9	1	-11.88128	121.37798	-0.10	0.9222	8.51081
x10	1	17.97974	67.92063	0.26	0.7916	10.83747
x11	1	620.22894	273.62426	2.27	0.0249	5.66657
×12	1	139.11947	159.72615	0.87	0.3852	2.61839
x13	- 1	-1.00051	2.07218	-0.48	0.6299	18.49816
x16	1	137.46546	15.43544	8.91	<.0001	6,47347
x18	1	-4140.24348	1649.05116	-2.51	0.0131	2.98968
x19	1	-4209.52131	1065.15964	-3.95	0.0001	1.50962
x20	1	358.22988	92.88234	3.86	0.0002	2.05963
x21	1	30.83365	17.48133	1.76	0.0798	7.71545
x22	1	2.29921	0.75954	3.03	0.0029	2.21585
x23	1	-238.95990	207.09985	-1.15	0.2504	28.76805
x24	1	105.43637	187.36754	0.56	0.5745	26.00287
x5	1	-64.05359	331.24655	-0.19	0.8469	1.84462
x74wd	В	1757.54683	1628.79147	1.08	0.2823	1.59574
x7rwd	В	2160.83681	899.82541	2.40	0.0176	3.15845
x7fwd	0	0				

VIF table before dropping independent variables

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation			
Intercept	1	-44357	15608	-2.84	0.0051	0			
x5	1	181.88488	353.86046	0.51	0.6080	1.74502			
x74wd	1	1169.93248	1506.33419	0.78	0.4386	1.13138			
x7rwd	1	2561.30389	804.75111	3.18	0.0018	2.09418			
x9	1	-71.30813	124.41696	-0.57	0.5674	7.41283			
x10	1	-61.09567	68.11441	-0.90	0.3712	9.03517			
x11	1	667.70451	285.55369	2.34	0.0207	5.11588			
x12	1	233.10343	170.89063	1.36	0.1746	2.48458			
x16	1	99.75264	13.26619	7.52	<.0001	3.96392			
x20	1	215.16945	91.73459	2.35	0.0203	1.66542			
x21	1	48.96166	16.47623	2.97	0.0034	5.68149			
x23	1	-105.26576	96.00303	-1.10	0.2746	5.12453			

VIF table after dropping independent variables

The results of the first pass of Stepwise Regression

The results of the second pass of Stepwise Regression

Model Comparison

Model
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{20} + \beta_5 x_{21}$
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{20} + \beta_5 x_{21} + \beta_6 x_{11} x_{21}$
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{20} + \beta_5 x_{21} + \beta_6 x_{21} x_{7,rwd}$
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{20} + \beta_5 x_{21} + \beta_6 x_{21} x_{7,rwd} + \beta_7 x_{11} x_{21}$
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{21} + \beta_5 x_{21} x_{7,rwd}$
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{20} + \beta_5 x_{21} + \beta_6 x_{21} x_{7,rwd} + \beta_7 x_{11} x_{21} + \beta_8 x_{16}$
$\hat{y} = \beta_0 + \beta_1 x_{7,4wd} + \beta_2 x_{7,rwd} + \beta_3 x_{11} + \beta_4 x_{20} + \beta_5 x_{21} + \beta_6 x_{21} x_{7,rwd} + \beta_7 x_{11} x_{21} + \beta_8 x_{16} + \beta_9 x_{16} x_{21}$

The seven "best" models used for comparison.

Model	k	C_k	R^2	$\bar{R^2}$	s	PRESS
1	6	6	0.7637	0.7563	3960.65	2,787,102,686
2	7	7	0.7646	0.7556	3966.35	3,841,614,615
3	7	1		the second secon		2,782,421,119
4	7	7	0.7820	0.7722	3829.10	3,547,983,422
5	6	6	0.7728	0.7657	3883.58	2,817,907,210
6	9					2,271,013,952
7	10	10	0.8622	0.8542	3063.75	1,828,314,522

Thus, it is evident that model 7 is the "best" model

Outliers & Influential Points

Test Statistic	Description	Threshold	Applicable Observations (i)
Leverage Point (h_{ii})	Outlier with respect to x test	$h_{ii} > 0.06097$	i=8, 60, 62, 85, 87, 92, 109
Studentized Residual $(\frac{d_i}{s_{di}})$	Outlier with respect to y test	$\left \frac{d_i}{s_{di}}\right > 1.97559$	i= 14, 16, 60, 62, 85, 87, 89, 92, 109
Cook's Distance (D_i)	Influential point test	$D_i > 0.938263$	i=109
Difference of	a test for whether or not removing		
Betas	observation i will substantially change	$ \frac{f_i}{s_{d_i}} >2$	$i=109$ for x_{21} and $x_{11}x_{21}$
$(g_j^{(i)}/s_{g_j}^{(i)})$	the parameter estimates	•	
Difference in	difference between the point predictions	b.	
Fits Statistic	of y_i made with and without	$ \frac{f_i}{s_{d,i}} >2$	i=109
(f_i/s_{d_i})	using the ith observation		
(a) Covariance Ratio (CVR _i)	removing obs i enhances model precision	$CVR_i < 0.817$	i=8, 14, 16, 89
(b) Covariance Ratio (CVR_i)	removing obs i damages model precision	$CVR_i > 1.1829$	i=109

Outlying and influential observations

Thus, observation 109 was **kept** in the training data & Observations 14, 16 and 89 were **dropped**

C_k	k	R^2	$ar{R^2}$	s
10	10	0.8603	0.8520	3057.83921

- H₀: β₁ = β₂ = ... = β₉ = 0
 (no relation between y and the independent variables, i.e. no significant independent variables in the model)
- H_a: At least one in {β₁, β₂, ..., β₉} is non-zero
 (at least one independent variable has significant relation with y)

We **reject** H_o since p-value < alpha

Hypothesis Testing for b_j

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 161 Number of Observations Used 161

Analysis of variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	9	8697637432	966404159	103.35	<.0001	
Error	151	1411907476	9350381			
O	400	40400544007				

Root MSE	3057.83921	R-Square	0.8603
Dependent Mean	13252	Adj R-Sq	0.8520
Coeff Var	23.07542		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	-169318	30000	-5.64	<.0001		
x11	1	2876.88967	506.16133	5.68	<.0001		
x20	1	181.76961	75.69650	2.40	0.0176		
x21	1	913.89498	217.09589	4.21	<.0001		
x74wd	1	2655.83332	1307.74064	2.03	0.0440		
x7rwd	1	3231.48238	2587.91389	1.25	0.2137		
x21x7rwd	1	-5.37010	22.50410	-0.24	0.8117		
x11x21	1	-15.92851	3.59548	-4.43	<.0001		
x16	1	-131.38162	41.71614	-3.15	0.0020		
v16v21	1	1 50720	0.27730	5 44	< 0001		

Do not reject H_0 in β_i =0, for when i=4. **Reject** H_0 when i=1,2,3,5,6,7,8,9

- H_0 : $\beta_i = 0$, for i = 1, 2, ..., 9
- H_a : $\beta_i \neq 0$, for i = 1, 2, ..., 9

p-value of $x_{7,rwd}$ and $x_{21}x_{7,rwd}$ are > alpha; p-value of $x_{7,4wd}$ < alpha

 $x_{7,rwd}$ is insignificant. $x_{7,4wd}$ is significant. Hence x_7 is important so **keep** both $x_{7,rwd}$

and $x_{7,4wd}$

 $x_{21}x_{7,rwd}$ is insignificant. So drop $x_{21}x_{7,rwd}$

Is wheel drive (x_7) significant?

- H_0 : $\beta_1 = \beta_2 = 0$ (the independent variables to be dropped, $x_{7,4wd}$ and $x_{7,rwd}$ are not significant to y)
- H_a: At least one of β₁, β₂ is non-zero
 (at least one of the independent variables to be dropped,
 x_{7,4wd} and x_{7,rwd} are significant to y)

Partial F-Testing - drop x74wd and x7rwd?

The REG Procedure Model: MODEL1

Test pft Results for Dependent Variable y								
Source	DF	Mean Square	F Value	Pr > F				
Numerator	2	85562895	9.21	0.0002				
Denominator	152	9292368		\triangle				

We **reject** H_0 since p-value < alpha. Wheel drive is significant to the model.

A0 and A1 hold

 H_0 : Error terms are not autocorrelated.

 H_a : Error terms are positively or negatively autocorrelated.

Durbin-Watson D	0.900
Pr < DW	<.0001
Pr > DW	1.0000
Number of Observations	164
1st Order Autocorrelation	0.548

We **reject** H₀ since p-value < alpha and there seems to be autocorrelation.

This conclusion can be explained.

Final Model & Interpretation

$$\hat{y} = -170238 + 2680.67x_{7,4wd} + 2634.04x_{7,rwd} + 2886.72x_{11} + 177.98x_{20} + 918.89x_{21} - 15.98x_{11}x_{21} - 126.73x_{16} + 1.47x_{16}x_{21}$$

C_k	k	R^2	$\overline{R^2}$	s		
9	9	0.8603	0.8529	3048.34		

The REG Procedure
Model: MODEL1
Dependent Variable:

Output Statistics									
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict 95% CL Mean 95%			95% CL P	95% CL Predict		
1		18538	711.3975	17133	19944	12335 24741			
2		29025	858.5085	27328	30721	22749	35300	- 1	
3		47.7111	1219	-2361	2457	-6457	6552		
4	1.0	7361	461.7648	6448	8273	1250	13471	1.	
5		6906	380.4661	6155	7658	818.1008	12995		
6		8978	330.7515	8325	9632	2901	15055	4 1	
7	1.0	34942	1020	32927	36958	28573	41311	_	
8		68415	4557	59412	77419	57573	79258	_	
9		6993	430.0375	6143	7842	891.4605	13094		
10		15136	536.5173	14076	16196	9002	21270		
11	100	14618	1135	12376	16860	8174	21062		
12	100	7395	427.0560	6551	8239	1295	13495		
13		7361	461.7648	6448	8273	1250	13471		
14		7586	1005	5599	9572	1226	13945	12	
15		6218	418.4994	5391	7045	120.3015	12316		
16	100	6218	418.4994	5391	7045	120.3015	12316		
17		6218	418.4994	5391	7045	120.3015	12316		
18		19110	854.9251	17421	20800	12837	25384		
19	1.0	19110	854.9251	17421	20800	12837	25384		
20		16442	851.2178	14761	18124	10171	22714		
21		17278	725.1280	15845	18710	11068	23487		
22	-	11861	424.2840	11023	12699	5761	17960		
23		11861	424.2840	11023	12699	5761	17960		
24		5434	474.0620	4498	6371	-679.3889	11548		
25		5689	536.3952	4629	6749	-445.1897	11823		
26		11799	1298	9234	14364	5235	18363		
27		9143	353.6704	8444	9842	3061	15225		
28		11799	1298	9234	14364	5235	18363	1.	
29		5650	484.0919	4694	6607	-466.4950	11767		
30		5650	484.0919	4694	6607	-466.4950	11767		
31		8306	1356	5627	10985	1697	14915		
32		9372	1123	7152	11591	2935	15808		
33		10990	679.8378	9647	12333	4801	17179		
34		14852	585.5228	13695	16008	8700	21003		
35		20089	628.4541	18847	21331	13921	26257	1.	
36		11427	1013	9425	13430	5063	17792		
37		11696	1008	9704	13688	5334	18057		
38	-	16216	501.5951	15225	17207	10094	22338	1.	
39		17043	878.7472	15307	18779	10757	23329		
40		20623	627.5936	19383	21863	14455	26790	- 1	
41		18020	628.1006	16779	19261	11852	24188		

The prediction intervals obtained for each observation y_i.

 $39/41 \sim 95.12\%$ of the observations have an actual value y that falls within their respective P.I.

An indication of the model's good predictive power!