

Кафедра программных систем

Заболотнов Юрий Михайлович

Самара 2021

Ряды Фурье

В качестве примера ортогональной системы функций можно привести систему тригонометрических функций

$$1, \sin x, \cos x, ... \sin vx, \cos vx, ...$$

где $\nu=1,2,...$, которая ортогональна с весом W(x)=1 на любом отрезке $[a,a+2\pi]$, в частности, на отрезке $[-\pi,\pi]$.

Тригонометрический полином записывается в виде

$$P_n(x) = \frac{c_o}{2} + \sum_{\nu=1}^{\mu} (c_{\nu} \cos \nu x + d_{\nu} \sin \nu x)$$
, где $n = 2\mu + 1$.

Для определения коэффициентов используются формулы

$$C_k = \frac{(f, \varphi_k)_J}{(\varphi_k, \varphi_k)_J}$$

где
$$(f, \varphi_k)_J = \int_{-\pi}^{\pi} f(x) \varphi_k(x) dx, \quad (\varphi_k, \varphi_k)_J = \int_{-\pi}^{\pi} \varphi_k^2(x) dx$$

Здесь $\varphi_0(x) = 1, \ \varphi_1(x) = \cos x, \ \varphi_2(x) = \sin x, ...$

Определим
$$(\varphi_0, \varphi_0)_J = \int_{-\pi}^{\pi} dx = 2\pi,$$

$$(\cos vx, \cos vx)_J = \int_{-\pi}^{\pi} \cos^2 vx \, dx = \pi, (\sin vx, \sin vx)_J = \int_{-\pi}^{\pi} \sin^2 vx \, dx = \pi$$

Поэтому

$$c_V = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(\nu x) dx$$
, где $\nu = 0, 1, ...\mu$, $d_V = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(\nu x) dx$, где $\nu = 1, ...\mu$.

Теор ема Жордана. Если функция f(x) имеет ограниченную вариацию (приращение) на отрезке [a,b], то ее ряд Фурье сходится для всех $x \in [a,b]$, причем в точках непрерывности сходится к f(x), а точках разрыва – к значению $\frac{f(x+0)+f(x-0)}{2}$.

Комплексная форма ряда Фурье

Компактная комплексная форма ряда Фурье используется в математическом пакете MATHCAD. Чтобы преобразовать ряд Фурье к комплексной форме необходимо применить для тригонометрических функций формулы Эйлера

$$\cos \nu x = \frac{e^{i\nu x} + e^{-i\nu x}}{2}, \sin \nu x = \frac{e^{i\nu x} - e^{-i\nu x}}{2i},$$

где i - мнимая единица.

Тогда

$$P(x) = \sum_{\alpha = -\infty}^{\infty} A_{\alpha} e^{i\alpha x} .$$

Вещественные и комплексные коэффициенты Фурье связаны формулами /1/

$$c_V = A_V + A_{-V}, d_V = i(A_V - A_{-V}),$$

 $A_V = (c_V - id_V)/2, A_{-V} = (c_V + id_V)/2,$

где
$$\nu = 0, 1, 2, ...; d_o = 0.$$

Замечание 1. Вычисление коэффициентов Фурье для функции f(x) называется прямым преобразованием Фурье функции f(x).

Замечание 2. Вычисление ряда Фурье по значениям коэффициентов называется обратным преобразованием Фурье функции f(x).

Типичные функции, которые приближаются рядами Фурье

- 1. Периодические функции. Функция f(x) называется периодической с периодом T, если существует такое число $T \neq 0$, что f(x) = f(x+T) при $f(x) \neq const$.
- 2. Почти периодические функции. Функция f(x) называется почти периодической с почти периодом $\tau(\varepsilon)$, если для любого $\forall \varepsilon > 0$ существует $\exists \tau(\varepsilon)$ такое, что $|f(x) f(x + \tau(\varepsilon))| < \varepsilon$.

Пример. $f(x) = \sin 2x + \sin \pi x$. Здесь слагаемые имеют некратные периоды $(T_1 = \pi \text{ и } T_2 = 2)$, поэтому общего периода не существует.

3. Функции с точками разрыва первого рода.

Замечание. К таким функциям также можно отнести непериодические функции на любом конечном отрезке [a,b]. При этом условие $f(a) \neq f(b)$ аналогично разрыву первого рода. При приближении этих функций наблюдаются краевые эффекты. Замечание 3. При приближении периодических и почти периодических функции при заданной погрешности требуется существенно меньшее число членов ряда, чем для функций с разрывами первого рода.

Примеры приближения функций

1. Периодическая и непериодическая функции

Количество гармоник N=5

Примеры приближения функций

2. Сложная функция

Количество гармоник N=5

Количество гармоник N=150

Примеры приближения функций

2. Сложная функция

Количество гармоник N=5

Количество гармоник N=150

Спасибо за внимание

e-mail: yumz@yandex.ru

ул. Московское шоссе, д. 34, г. Самара, 443086 Тел.: +7 (846) 335-18-26 , факс: +7 (846) 335-18-36 Сайт: www.ssau.ru, e-mail: ssau@ssau.ru