## Convolutional Neural Networks

June 7, 2019

Block 2, Lecture 1
Applied Data Science
MMCi Term 4, 2019

Matthew Engelhard

Many slides created by Tim Dunn



#### **Deep Learning for Image Analysis**

Diabetic Retinopathy Classification



**Healthy Retina** 



**Unhealthy Retina** 

#### **Deep Learning for Diabetic Retinopathy Classification**



$$sensitivity = \frac{number\ of\ true\ positives}{total\ number\ of\ positives\ in\ the\ dataset}$$

$$specificity = \frac{number\ of\ true\ negatives}{total\ number\ of\ negatives\ in\ the\ dataset}$$

Gulshan et al. JAMA (2016)

#### **Deep Learning for Image Analysis**





TSA

Screening

#### **Deep Learning for Image Analysis**

Markerless Motion Capture: Automatic 3D Surface Meshes from Video



DensePose (Facebook)



### Mask R-CNN





#### **Deep Learning for Image Analysis**

Style Transfer and Harmonization









Gatys et al. A Neural Algorithm of Artistic Style. arXiv (2015)

#### **Deep Learning for Image Analysis**

Style Transfer and Harmonization



Luan et al. Deep Painterly Harmonization. arXiv (2018)

### Motivating the CNN: Back to MNIST



















### What if we'd like to find a 1 anywhere in a larger image?



### Searching for a 1...





### Searching for a 1...



### Searching for a 1...



#### Our previous approach looks for a 1 at a specific location.



#### Our previous approach looks for a 1 at a specific location.



#### If we move the position of the 1, it no longer works.



Instead of using logistic regression or an MLP, let's look for a new kind of model, one with more flexible filters



# Instead of a filter that's the size of the whole image, we'd like a <u>smaller filter that we can move around</u>



As we move this filter, we calculate the inner product between the filter itself and the portion of the image that's underneath it.



When the filter is placed over a region that looks like the filter, the inner product (i.e. filter output) will be large.



## When it's placed over a region that does not look like the filter, the inner product (i.e. filter output) will be small























- 0.1

0.0



# What if we want to know if a 1 is present anywhere in the image?







## What if we want to know if a 1 is present anywhere in the image?





# This idea is called "max pooling", and is widely used in CNNs to determine whether features are present in a given region





### We perform "2D Spatial Convolution" as we move the filter across the image.



Image

### We perform "2D Spatial Convolution" as we move the filter across the image.



Image

### We perform "2D Spatial Convolution" as we move the filter across the image.

Filter X **Image** Σ Convolved (Feature Map)

Image

### We perform "2D Spatial Convolution" as we move the filter across the image.

Filter



Image





filter image

| -1 | 1  | -1 |
|----|----|----|
| 1  | -1 | 1  |
| -1 | 1  | -1 |

| -1 | -1 | -1 | -1 | -1 |
|----|----|----|----|----|
| -1 | -1 | -1 | 1  | -1 |
| -1 | -1 | 1  | -1 | 1  |
| -1 | -1 | -1 | 1  | -1 |
| -1 | -1 | -1 | -1 | -1 |

filter image







filter

image





| -1 | 5 |  |
|----|---|--|
|    |   |  |
|    |   |  |

filter

image





| -1 | 5 | -5 |
|----|---|----|
|    |   |    |
| -  |   |    |

filter

image





| -1 | 5 | -5 |
|----|---|----|
| 3  |   |    |
|    |   |    |

filter

image





| -1 | 5  | -5 |
|----|----|----|
| 3  | -5 |    |
|    |    |    |

filter

image





| -1 | 5  | -5 |
|----|----|----|
| З  | -5 | 9  |
|    |    |    |

filter

image





| -1 | 5  | -5 |
|----|----|----|
| 3  | -5 | 9  |
| -1 |    |    |

filter

image





| -1 | 5  | -5 |
|----|----|----|
| 3  | -5 | 9  |
| -1 | 5  |    |

filter

image





| -1 | 5  | -5 |
|----|----|----|
| 3  | -5 | 9  |
| -1 | 5  | -5 |

filter

image





| -1 | 5  | -5 |
|----|----|----|
| З  | -5 | 9  |
| -1 | 5  | -5 |

filter

image

Each location where the filter was centered has been evaluated: "how similar is this location to the filter"?





| 5  | -5 |
|----|----|
| -5 | 9  |
| 5  | -5 |
|    | -5 |

filter

image

#### **Convolutional Filters Are Feature Detectors**



 Now we know how to identify a "1" or a "0" anywhere in an image.

What if we want to identify a "10"?

- Option 1: Design a new filter for "10"
- Option 2: Utilize our "1" and "0" filters...







Our "10" filter looks for a match from the "1" filter to the left of a match from the "0" filter





In this way, we learn to identify a hierarchy of features rather than a huge number of complex features













Low-level structure: lines,

curves





Low-level structure: lines,

curves



Mid-level structure: shapes



Mid-level structure: shapes



**High-level structure:** groups of shapes



**High-level structure:** groups of shapes  $\rightarrow$  objects

### Consider a Set of "Toy" Images, for illustration of how this structure can be extracted by an algorithm









### **High-Level Motifs/Structure**



















































































### **Hierarchical Representation of Images**



DukeUNIVERSITY

### **Recall the Data/Images**









### **Convolutional Filter**



### **Convolutional Filter**



### **Convolutional Filter**



### Multiple Filters, One for Each Building Block



















#### **Deep CNN Architecture**



#### **Advantage of Hierarchical Features?**



- By learning and sharing statistical similarities within high-level motifs, we better leverage all training data
- If we do not use such a hierarchy, top-level motifs would be learned in isolation of each other

### 2D Spatial

Convolution

Filter

Image



Filter

Image



Filter

×

Image

Σ



Filter

Image



Filter

Image

(Feature Map)

Convolved

Image







## Filters Operate Over Input Volumes



## Filters Operate Over Input Volumes



#### Filters Operate Over Input

#### **Volumes**





### Given Labeled Training Images, How do we Learn the Parameters of the CNN?



**Training Set** 



$$p_i = \sigma(b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Untrained Logistic Regression Model (or "Network")



$$b = (b_0, ... b_M)$$

Trained Model (with learned parameters)

### Given Labeled Training Images, How do we Learn the Parameters of the CNN?



### Architecture (specified) vs Parameters (learned)

#### Architecture:

- Number of layers
- Layer types (e.g. convolutional, pooling, fully connected)
- Number of filters in each layer
- Shape and size of filters

Use 3x3 filters In layer 1



#### Parameters:

- Individual Elements of each filter
- Parameters of other layers

Learn values of Each layer 1 filter

| -1 | 1  | -1 |
|----|----|----|
| 1  | -1 | 1  |
| -1 | 1  | -1 |













- Assume we have labeled images  $\{I_n, y_n\}_{n=1,N}$
- $I_n$  is image  $n, y_n \in \{+1, -1\}$  is associated label
- Average loss, which depends on model parameters:

$$1/N \sum_{n=1}^{N} loss(y_n, \ell_n)$$

 Find specific parameters that minimize the average loss

#### **Summary**

- Convolutional neural networks learn to recognize **high-level structure** in images by building **hierarchical representations of features**
- Features are extracted via spatial convolutions with **filters**
- Filters are learned via iterative minimization of a loss function
- Convolutional neural networks have shown capabilities beyond human performance for image analysis

