Repaso

Maestría en Econometría-Matemática

1er Trimestre 2023

Transformación lineal

Sean $\mathbb V$ y $\mathbb W$ dos espacios vectoriales. Una aplicación $T:\mathbb V\to\mathbb W$ es una **transformación lineal** si para cualesquiera dos escalares α y β y cualesquiera dos elementos $u,v\in\mathbb V$ se verifica la siguiente igualdad

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v).$$

Transformación lineal

Teorema.

Sea $A \in \mathbb{R}^{m \times n}$. Entonces la aplicación $T(v) = [Av^t]^t$ es una transformación lineal.

Teorema.

Si $T: \mathbb{R}^n \to \mathbb{R}^m$ es una transformación lineal entonces existe una matriz $A \in \mathbb{R}^{m \times n}$ tal que $T(v) = [Av^t]^t$.

Núcleo e imagen

Definición.

Sean \mathbb{V} , \mathbb{W} dos espacios vectoriales y $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Definimos el **kernel** (o **núcleo**) de T de la siguiente manera

$$N(T) = \ker(T) := \{ v \in \mathbb{V} \colon T(v) = 0 \}.$$

Proposición.

Sean \mathbb{V} , \mathbb{W} dos espacios vectoriales y $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Entonces $\ker(T)$ es un subespacio de \mathbb{V} .

Núcleo e imagen

Definición.

Sean \mathbb{V} , \mathbb{W} dos espacios vectoriales y $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Definimos la **imagen** de T de la siguiente manera

$$\mathsf{Img}(T) \coloneqq \{ w \in \mathbb{W} \colon \mathsf{si} \; \mathsf{existe} \; v \in \mathbb{V} \; \mathsf{tal} \; \mathsf{que} \; T(v) = w \}.$$

Teorema.

Sean \mathbb{V} , \mathbb{W} dos espacios vectoriales y $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Entonces Img(T) es un subespacio de \mathbb{W} .

Núcleo e imagen

Teorema.

Sean \mathbb{V} , \mathbb{W} dos espacios vectoriales y $T: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Si $\{v_1,\ldots,v_n\}$ es una base de $\mathbb V$ entonces

- ► $\operatorname{Img}(T) = \langle T(v_1), \dots, \overline{T}(v_n) \rangle;$ ► $\operatorname{dim}(\ker(T)) + \operatorname{dim}(\operatorname{Img}(T)) = \operatorname{dim}(\mathbb{V}).$

Cambio de base

Supongamos que tenemos dos bases, $B = \{u_1, u_2, \dots, u_n\}$ y $B' = \{v_1, v_2, \dots, v_n\}$, de un espacio vectorial \mathbb{V} . Por ser B' base, cada vector de B se puede escribir de forma única como combinación lineal de los elementos de B'.

$$u_{1} = a_{11}v_{1} + a_{12}v_{2} + \dots + a_{1n}v_{n},$$

$$u_{2} = a_{21}v_{1} + a_{22}v_{2} + \dots + a_{2n}v_{n},$$

$$\vdots$$

$$u_{n} \stackrel{:}{=} a_{n1}v_{1} + a_{n2}v_{2} + \dots + a_{nn}v_{n}.$$

$$P = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$

La matriz

se denomina matriz de cambio de base de la base B a la base B'.

Cambio de base

Teorema.

Sea P una matriz de cambio de base de una base B a una base B' en un espacio vectorial \mathbb{V} . Entonces P es inversible y para todo $w \in \mathbb{V}$ tenemos que

$$[w]_{B'}^t = P[w]_B^t \quad \text{y por consiguiente } [w]_B^t = P^{-1}[w]_{B'}^t.$$

Autovalores, Autovectores y Diagonalización

Maestría en Econometría-Matemática

1er Trimestre 2023

Dada $A \in \mathbb{R}^{m \times m}$, tenemos la siguiente transformación lineal $T : \mathbb{R}^m \to \mathbb{R}^m$

$$T(x) = Ax$$
.

Entonces

$$T^n(x) = \underbrace{T \circ \cdots \circ T}_{n-\text{veces}}(x) = A^n x.$$

Si

$$A = egin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \ 0 & d_2 & 0 & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & d_{m-1} & 0 \ 0 & \cdots & 0 & 0 & d_m \end{pmatrix}$$

Si

$$A = egin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \ 0 & d_2 & 0 & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & d_{m-1} & 0 \ 0 & \cdots & 0 & 0 & d_m \end{pmatrix}$$

entonces

$$A^n = egin{pmatrix} d_1^n & 0 & 0 & \cdots & 0 \ 0 & d_2^n & 0 & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & d_{m-1}^n & 0 \ 0 & \cdots & 0 & 0 & d_m^n \end{pmatrix}.$$

Definición.

Sea $A, B \in \mathbb{R}^{m \times m}$. Decimos que A y B son **semejantes** (o **similares**) si existe una matriz no singular P tal que

$$A = PBP^{-1}.$$

Definición.

Sea $A, B \in \mathbb{R}^{m \times m}$. Decimos que A y B son **semejantes** (o **similares**) si existe una matriz no singular P tal que

$$A = PBP^{-1}.$$

Buscamos una matriz inversible $P \in \mathbb{R}^{m \times m}$ tal que

$$A = PDP^{-1}$$
,

donde D es una matriz diagonal.

Sea $A \in \mathbb{R}^{m \times m}$. Un número real λ se llama **autovalor** de A si existe un vector $v \in \mathbb{R}^m$ no nulo tal que

 $Av^t = \lambda v^t$.

Sea $A \in \mathbb{R}^{m \times m}$. Un número real λ se llama **autovalor** de A si existe un vector $v \in \mathbb{R}^m$ no nulo tal que

$$Av^t = \lambda v^t$$
.

El vector v se denomina **autovector** de A correspondiente al autovalor λ .

Ejemplo 1. Sea
$$A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$$
. Mostrar que $(2,1)$ y $(3,2)$ son autovectores de A asociados a 1 y -2 respectivamente.

Dada
$$A \in \mathbb{R}^{m \times m}$$
. El polinomio

$$p_A(\lambda) := \det(A - \lambda I_m)$$
 o $p_A(\lambda) := \det(\lambda I_m - A)$.

se denomina el **polinomio característico** de *A*.

Dada $A \in \mathbb{R}^{m \times m}$. El polinomio

$$p_A(\lambda) := \det(A - \lambda I_m)$$
 o $p_A(\lambda) := \det(\lambda I_m - A)$.

se denomina el **polinomio característico** de *A*. La ecuación

$$p_A(\lambda)=0$$

se denomina ecuación característica de A.

Ejemplo 2. Hallar el polinomio característico de $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.

Teorema.

Sea $A \in \mathbb{R}^{m \times m}$ y $\lambda \in \mathbb{R}$ un autovalor de A. Entonces

$$E_{\lambda} := \{ v \in \mathbb{R}^m \colon Av^t = \lambda v^t \}$$

es un subespacio de \mathbb{R}^m .

Definición.

Sea $A \in \mathbb{R}^{m \times m}$ y λ un autovalor de A. El espacio E_{λ} se denomina **autoespacio** (o **espacio propio**) de A correspondiente a λ .

Teorema.

Los autovectores correspondientes a autovalores distintos son linealmente independientes.

Ejemplo 3. Halle los autovectores y autovalores de las siguientes matrices

$$A = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Procedimiento para calcular autovalores y autovectores de una matriz $A \in \mathbb{R}^{m \times m}$.

Primero encontrar el característico de A, $p_A(\lambda) = \det(A - \lambda I_m)$;

Procedimiento para calcular autovalores y autovectores de una matriz $A \in \mathbb{R}^{m \times m}$.

- Primero encontrar el característico de A, $p_A(\lambda) = \det(A \lambda I_m)$;
- ▶ Buscar las raíces $\lambda_1, \ldots, \lambda_n$ de $p_A(\lambda)$;

Procedimiento para calcular autovalores y autovectores de una matriz $A \in \mathbb{R}^{m \times m}$.

- Primero encontrar el característico de A, $p_A(\lambda) = \det(A \lambda I_m)$;
- ▶ Buscar las raíces $\lambda_1, \ldots, \lambda_n$ de $p_A(\lambda)$;
- Se resuelve el sistema homogéneo $(A \lambda_i I_m)v^t = 0$ para cada autovalor λ_i .

Proposición.

Los valores propios de una matriz triangular son los elementos de la diagonal.

Propiedad.

La suma de los autovalores de una matriz es igual a la traza de la matriz.

- La suma de los autovalores de una matriz es igual a la traza de la matriz.
- El producto de todos lo autovalores de una matriz es igual al determinante de la matriz.

- La suma de los autovalores de una matriz es igual a la traza de la matriz.
- El producto de todos lo autovalores de una matriz es igual al determinante de la matriz.
- ▶ Si λ es un autovalor de $A \in \mathbb{R}^{m \times m}$ entonces λ es un autovalor de A^t .

- La suma de los autovalores de una matriz es igual a la traza de la matriz.
- ► El producto de todos lo autovalores de una matriz es igual al determinante de la matriz.
- ▶ Si λ es un autovalor de $A \in \mathbb{R}^{m \times m}$ entonces λ es un autovalor de A^t .
- Si λ es un autovalor de una matriz no singular $A \in \mathbb{R}^{m \times m}$ entonces $1/\lambda$ es un valor propio de A^{-1} .

- La suma de los autovalores de una matriz es igual a la traza de la matriz.
- El producto de todos lo autovalores de una matriz es igual al determinante de la matriz.
- ▶ Si λ es un autovalor de $A \in \mathbb{R}^{m \times m}$ entonces λ es un autovalor de A^t .
- Si λ es un autovalor de una matriz no singular $A \in \mathbb{R}^{m \times m}$ entonces $1/\lambda$ es un valor propio de A^{-1} .
- Una matriz es singular si y sólo si cero es autovalor.

Diagonalización

Sea $A \in \mathbb{R}^{n \times n}$. Decimos que A es diagonalizable, si A es semejante a una matriz diagonal, es decir si existen $D, P \in \mathbb{R}^{n \times n}$ tal que D es diagonal, P es inversible y

$$A = PDP^{-1}$$
.

Diagonalización

Teorema.

Sea $A \in \mathbb{R}^{n \times n}$. A es diagonalizable si y solo si A tiene n-autovectores linealmente independientes.

Teorema.

Sea $A \in \mathbb{R}^{n \times n}$. A es diagonalizable si y solo si A tiene n-autovectores linealmente independientes.

Corolario.

Sea $A \in \mathbb{R}^{n \times n}$. Si A tiene n autovalores distintos entonces A es diagonalizable.

Propiedad.

Sean $A \in \mathbb{R}^{n \times n}$ y λ un autovalor de A. Entonces la dimensión de E_{λ} es menor o igual que la multiplicidad de λ como raíz de p_A .

Propiedad.

Sean $A \in \mathbb{R}^{n \times n}$ y λ un autovalor de A. Entonces la dimensión de E_{λ} es menor o igual que la multiplicidad de λ como raíz de p_A .

Teorema.

Sea $A \in \mathbb{R}^{n \times n}$. A es diagonalizable si y solo si el polinomio característico p_A de A tiene todas sus raíces reales y para todo autovalor λ de A se tiene que

 $\dim(E_{\lambda}) = \text{ multiplicidad de } \lambda \text{ como raíz de } p_{A}.$

Sea $A \in \mathbb{R}^{n \times n}$. Para decidir si A es digonalizable procedemos de la siguiente manera:

1. Hallamos p_A , el polinomio caracteristico de A;

Sea $A \in \mathbb{R}^{n \times n}$. Para decidir si A es digonalizable procedemos de la siguiente manera:

- 1. Hallamos p_A , el polinomio caracteristico de A;
- 2. Hallamos las raíces de p_A , si tiene raíces complejas paramos;

Sea $A \in \mathbb{R}^{n \times n}$. Para decidir si A es digonalizable procedemos de la siguiente manera:

- 1. Hallamos p_A , el polinomio caracteristico de A;
- 2. Hallamos las raíces de p_A , si tiene raíces complejas paramos;
- 3. Hallamos los autovectores de A, si no tenemos n autovectores l.i. paramos;

Sea $A \in \mathbb{R}^{n \times n}$. Para decidir si A es digonalizable procedemos de la siguiente manera:

- 1. Hallamos p_A , el polinomio caracteristico de A;
- 2. Hallamos las raíces de p_A , si tiene raíces complejas paramos;
- 3. Hallamos los autovectores de A, si no tenemos n autovectores l.i. paramos;
- 4. Construimos la matriz P ubicando a los autovectores hallados en el punto anterior como columnas.

Ejemplo 4. Decidir si las siguientes matrices son diagonalizables

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 3 \\ 3 & 0 & 3 & 2 \\ 0 & 3 & 2 & 1 \end{pmatrix}.$$

http://www.matrixcalc.org

Ejemplo 5. Sea $A \in \mathbb{R}^{4 \times 4}$ una matriz tal que

- ▶ $rg(A + 3I_4) \le 2$;
- $p_A(-2) = 6.$

Decidir si A es diagonalizable y calcular $A^3 + 2A^2 - 3A$.

Un modelo de Leontief, tenemos la siguiente relación

$$x^t = Ax^t + d^t$$

donde $x, d \in \mathbb{R}^n$ y $A \in \mathbb{R}^{n \times n}$. Recordemos que x es el vector producción, d vector demanda, y A es la matriz del sistema. Si $I_n - A$, es inversible

$$x^t = (I_n - A)^{-1} d^t.$$

Un modelo de Leontief, tenemos la siguiente relación

$$x^t = Ax^t + d^t$$

donde $x, d \in \mathbb{R}^n$ y $A \in \mathbb{R}^{n \times n}$. Recordemos que x es el vector producción, d vector demanda, y A es la matriz del sistema. Si $I_n - A$, es inversible

$$x^t = (I_n - A)^{-1} d^t.$$

Por otro lado uno puede hacer el siguiente juego

$$x^{t} = Ax^{t} + d^{t} = A(Ax^{t} + d^{t}) + d^{t} = A^{2}x^{t} + Ad^{t} + d^{t}$$

$$= A^{2}x^{t} + (I + A)d^{t} = A^{2}(Ax^{t} + d^{t}) + (I + A)d^{t}$$

$$= A^{3}x^{t} + (I + A + A^{2})d^{t}$$

$$\vdots$$

$$= A^{n}x^{t} + (I + A + A^{2} + \dots + A^{n-1})d^{t}$$

Tengo dos opciones

$$x^t = (I_n - A)^{-1} d^t.$$

0

$$x^{t} = A^{n}x^{t} + (I + A + A^{2} + \cdots + A^{n-1})d^{t}.$$

Tengo dos opciones

$$x^t = (I_n - A)^{-1} d^t.$$

0

$$x^{t} = A^{n}x^{t} + (I + A + A^{2} + \cdots + A^{n-1})d^{t}.$$

Si A es diagonalizable y todos sus autovalores tienen modulo menor que 1, tendremos que

 $A^n \rightarrow 0$ cuando *n* tiende a infinito.

Tengo dos opciones

$$x^t = (I_n - A)^{-1} d^t.$$

0

$$x^{t} = A^{n}x^{t} + (I + A + A^{2} + \cdots + A^{n-1})d^{t}.$$

Si A es diagonalizable y todos sus autovalores tienen modulo menor que 1, tendremos que

 $A^n \rightarrow 0$ cuando *n* tiende a infinito.

Entonces

$$x^t = (I + A + A^2 + \cdots)d^t.$$

Tengo dos opciones

$$x^t = (I_n - A)^{-1} d^t.$$

0

$$x^{t} = A^{n}x^{t} + (I + A + A^{2} + \cdots + A^{n-1})d^{t}.$$

Si A es diagonalizable y todos sus autovalores tienen modulo menor que 1, tendremos que

 $A^n \rightarrow 0$ cuando *n* tiende a infinito.

Entonces

$$x^t = (I + A + A^2 + \cdots)d^t.$$

Observemos que, en estas condiciones

$$(I-A)^{-1} = I + A + A^2 + \cdots$$

Recordemos que

$$e^t = \sum_{i=0}^{\infty} \frac{t^i}{i!}.$$

Recordemos que

$$e^t = \sum_{i=0}^{\infty} \frac{t^i}{i!}.$$

Si tenemos una matriz diagonal

$$D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$$

resulta que para todo $i \in \mathbb{N}$

$$D^{i} = \begin{pmatrix} d_{11}^{i} & 0 & \cdots & 0 \\ 0 & d_{22}^{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{i} \end{pmatrix} \Longrightarrow \frac{D^{i}}{i!} = \begin{pmatrix} \frac{d_{11}^{i}}{i!} & 0 & \cdots & 0 \\ 0 & \frac{d_{22}^{i}}{i!} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{d_{nn}^{i}}{n!} \end{pmatrix}.$$

Por lo tanto

$$\sum_{i=0}^{\infty} \frac{D^{i}}{i!} = \begin{pmatrix} \sum_{i=0}^{\infty} \frac{d_{11}^{i}}{i!} & 0 & \cdots & 0 \\ 0 & \sum_{i=0}^{\infty} \frac{d_{22}^{i}}{i!} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{i=0}^{\infty} \frac{d_{nn}^{i}}{i!} \end{pmatrix} = \begin{pmatrix} e^{d_{11}} & 0 & \cdots & 0 \\ 0 & e^{d_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{d_{nn}} \end{pmatrix}.$$

Concluimos que

$$e^D = egin{pmatrix} e^{d_{11}} & 0 & \cdots & 0 \ 0 & e^{d_{22}} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & e^{d_{nn}} \end{pmatrix}$$

Si A es una matriz es diagonalizable entonces existe una matriz P inversible tal que

$$A = PDP^{-1}$$

donde D es diagonal. Entonces definimos

$$e^A = Pe^D P^{-1}.$$

Ejemplo 6. Hallar e^A donde

$$A = \begin{pmatrix} -6 & -3 & -25 \\ 2 & 1 & 8 \\ 2 & 2 & 7 \end{pmatrix}$$

Recordemos que dos vectores $u, v \in \mathbb{R}^n$ son vectores ortogonales si

$$u \cdot v = 0$$
.

Recordemos que dos vectores $u, v \in \mathbb{R}^n$ son vectores ortogonales si

$$u \cdot v = 0$$
.

Diremos que un conjunto de vectores $B = \{v_1, \dots, v_k\}$ es un conjunto ortogonal si $v_i \cdot v_j = 0$ para todo $i \neq j$. Si además $v_i \cdot v_i = 1$, diremos que B es un conjunto ortonormal.

Recordemos que dos vectores $u, v \in \mathbb{R}^n$ son vectores ortogonales si

$$u \cdot v = 0$$
.

Diremos que un conjunto de vectores $B = \{v_1, \dots, v_k\}$ es un conjunto ortogonal si $v_i \cdot v_j = 0$ para todo $i \neq j$. Si además $v_i \cdot v_i = 1$, diremos que B es un conjunto ortonormal.

Ejemplo 7. Por ejemplo, no es complicado mostrar que el conjunto

$$B = \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right), (0, 0, 1) \right\}$$

es ortogonal.

Observación.

Cualquier conjunto ortogonal de vectores no nulos se puede transformar en un conjunto ortonormal dividiendo cada vector por su norma.

Observación.

Cualquier conjunto ortogonal de vectores no nulos se puede transformar en un conjunto ortonormal dividiendo cada vector por su norma.

Proposición.

Todo conjunto de vectores no nulos ortogonales es linealmente independiente.

Entonces, si tenemos un conjunto $B = \{v_1, \dots, v_n\}$ de vectores ortonormales, podemos definir una matriz $P \in \mathbb{R}^{n \times n}$ tal que las filas de P son los vectores de B y usando que B es ortogonal podemos concluir que $P^{-1} = P^t$.

Entonces, si tenemos un conjunto $B = \{v_1, \dots, v_n\}$ de vectores ortonormales, podemos definir una matriz $P \in \mathbb{R}^{n \times n}$ tal que las filas de P son los vectores de B y usando que B es ortogonal podemos concluir que $P^{-1} = P^t$.

Definición.

Decimos que $P \in \mathbb{R}^{n \times n}$ es una matriz ortogonal si su inversa es su transpuesta, es decir

$$P^{-1}=P^t.$$

Entonces, si tenemos un conjunto $B = \{v_1, \dots, v_n\}$ de vectores ortonormales, podemos definir una matriz $P \in \mathbb{R}^{n \times n}$ tal que las filas de P son los vectores de B y usando que B es ortogonal podemos concluir que $P^{-1} = P^t$.

Definición.

Decimos que $P \in \mathbb{R}^{n \times n}$ es una matriz ortogonal si su inversa es su transpuesta, es decir

$$P^{-1} = P^t.$$

Ejemplo 8.
$$P=\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 es una matriz ortogonal.

Proposición.

Si $A \in \mathbb{R}^{n \times n}$ es una matriz simétrica entonces

- ► Todas las raíces del polinomio característico de A son reales;
- ► A es diagonalizable;
- Los autovectores de A correspondientes a autovalores distintos son ortogonales.

Por lo tanto si A es simétrica entonces es diagonalizable, pero resultado anterior nos dice un poco mas.

Teorema.

Sea $A \in \mathbb{R}^{n \times n}$ simétrica. Entonces existe una matriz ortogonal P tal que

$$D = P^{-1}AP$$

es diagonal.

Ejemplo 9. Diagonalizar la siguientes matrices

$$A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$