§ 7.4 空间直线、平面垂直的判定定理和性质定理

7.4.1 相关概念

学习目标

- 1、掌握直线与平面、平面与平面垂直的判定定理和性质定理
- 2、能熟练运用上述定理解决相关的立体几何问题。

1.直线与平面垂直

(1)直线和平面垂直的定义

如果一条直线l与平面 α 内的任意直线都垂直,就说直线l与平面 α 垂直.

(2)判定定理和性质定理

	文字语言	图形表示	符号表示
判定定理	一条直线与一个平面内的 两条相交直线都垂直,则 该直线与此平面垂直		$\begin{vmatrix} l \perp a \\ l \perp b \\ a \cap b = O \\ a, b \subset \alpha \end{vmatrix} \Rightarrow l \perp \alpha$
性质定理	垂直于同一个平面的两条 直线互相平行		$ \left\{ \begin{array}{c} a \perp \alpha \\ b \perp \alpha \end{array} \right\} \Rightarrow a / / b $

2.平面与平面垂直

(1)平面与平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.

(2)平面与平面垂直的判定定理和性质定理

	文字语言	图形表示	符号表示
判定定理	一个平面经过另一个平面 的一条垂线,则这两个平 面互相垂直	B	$ \begin{vmatrix} l \perp \alpha \\ l \subset \beta \end{vmatrix} \Rightarrow \alpha \perp \beta $
性质定理	两个平面互相垂直,则在 一个平面内垂直于交线的 直线垂直于另一个平面	$\frac{\beta}{a}$	$\begin{vmatrix} \alpha \perp \beta \\ \alpha \cap \beta = a \\ l \subset \beta \\ l \perp a \end{vmatrix} \Rightarrow l \perp \alpha$

7.4.2 典型例题

例1.判断下列命题是否正确,正确的说明理由,错误的举例说明。

- (1) 一条直线平行于一个平面,另一条直线与这个平面垂直,则这两条直线互相垂直;
- (2) 如果平面 α //平面 α ₁,平面 β //平面 β ₁,那么平面 α 与平面 β 所成的二面角和平面 α ₁与平面 β ₁所成的二面角相等或互补;
 - (3) 如果平面 α 上平面 β , 平面 β 上平面 γ , 那么平面 α 上平面 γ 。

【解析】(1) 正确。如图,不妨设直线a 上平面 α ,直线b // 平面 α ,

设 $a \cap \alpha = A$, β 为过A、b的平面。 $\beta \cap \alpha = c$

由于 $b \subset \beta$, $b//\alpha$, $\beta \cap \alpha = c$, 故b//c

又, $a \perp \alpha$, $c \subset \alpha$, 故 $a \perp c$, 即a = c成 90° 角,

因b//c,故a与b也成90°角,即 $a \perp b$ 。

(2) 正确。由于平移并不改变角的大小,因此,可将题中的 α / α ₁ 改成 α , α ₁ 重合,于是问题变为:考察 β 与 α 所成的二面角和 β ₁ 与 α 所成的二面角之间的关系。

如图,不妨设 $\angle A_1AE$ 为 β 与 α 所成二面角的一个平面角, $\angle B_1BE$ 为 β_1 与 α 所成二面角的一个平面角,显然我们有 $\angle A_1AE = \angle B_1BE$, $\angle A_1AE + \angle B_1BA = 180^\circ$

(3) 错。如图, $PAB \perp ABC$, $PAC \perp ABC$, 但 PAB 和 PAC 不互相垂直。

例 2.如图,正方体 ABCD-A'B'C'D'中,平面 ABC'D'与正方体的各个面所在的平面所成

【解析】注意:两个平面所成的二面角有四个(类比于两条直线相交的情况),但从大小来看有两个,它们是互补的关系。

ABC'D'与正方体左右两个平面都垂直,因此它与左右两个面所在平面所成的二面角为90°。

ABC'D'与正方体的下底面**所在的平面**所成的二面角有四个,但从大小来看有两个,一个 45° ,另一个 135° ,如图所示。

同理,*ABC'D'*与正方体的上底面、前后面所在平面所成的二面角的大小,一个45°,一个135°。

例 3.下列命题中错误的是()

A.如果平面 α \perp 平面 β ,那么平面 α 内一定存在直线平行于平面 β

B.如果平面 α 不垂直于平面 β , 那么平面 α 内一定不存在直线垂直于平面 β

C.如果平面 α 上平面 γ , 平面 β 上平面 γ , $\alpha \cap \beta = l$, 那么l 上平面 γ

D.如果平面 α 上平面 β , 那么平面 α 内所有直线都垂直于平面 β

【解析】参考墙角模型,易知A对;

对于 B, 如这样的直线存在,则 $\alpha \perp \beta$,此与 α , β 不互相垂直矛盾,因此这样的直线不存在, B 正确。

对于 C, 两个平面同时与第三个平面垂直,则这两个平面的交线垂直于第三个平面,正确。至于 D,参考墙角模型,显然错误。

综上,选D。

例 4.已知 P 为 $\triangle ABC$ 所在平面外一点,且 PA, PB, PC 两两垂直,有下列结论: ① $PA \perp BC$; ② $PB \perp AC$; ③ $PC \perp AB$; ④ $AB \perp BC$ 。其中正确的是(

A.(1)(2)(3)

B.(1)(2)(4)

C.(2)(3)(4)

D.(1)(2)(3)(4)

【解析】如图,因为 $PA \perp PB, PA \perp PC, PB \cap PC = P$,且 $PB \subset \text{平面} PBC, PC \subset \text{平面}$ PBC, 所以PA 上平面PBC。又BC 二平面PBC, 所以PA 上BC。

同理可得 $PB \perp AC, PC \perp AB$,故(1)②(3)正确。

从题目所给条件不可能得出结论(4), 因此选 A

例 5.在正方体 $ABCD - A_lB_lC_lD_l$ 中,E 为棱 CD 的中点,则()

A. $A_1E \perp DC_1$

B. $A_1E \perp BD$

C. $A_1E \perp BC_1$ D. $A_1E \perp AC$

【解析】如图,由题设知, $A_1B_1 \perp \text{平面 } BCC_1B_1 \perp BC_1 \subset \text{平面 } BCC_1B_1$,从而 $A_1B_1 \perp BC_1$, 又 $B_1C \perp BC_1$, 且 $A_1B_1 \cap B_1C = B_1$, 所以 $BC_1 \perp$ 平面 A_1B_1CD , 又 A_1E 二平面 A_1B_1CD , 所以 $A_1E \perp BC_1$ 。

选C

三垂线定理 (解答题不能用): 平面内的一条直线如果和这个平面的一条斜线的射影垂直, 那 么它就和这条斜线垂直, 反之亦然。

例 6 (全国 II) α , β 是两个平面, m, n 是两条直线, 有下列四个命题:

- (1) 如果 $m \perp n$, $m \perp \alpha$, $n//\beta$, 那么 $\alpha \perp \beta$
- (2) 如果 $m \perp \alpha$, $n//\alpha$, 那么 $m \perp n$.

- (3) 如果 $\alpha//\beta$, $m \subset \alpha$, 那么 $m//\beta$
- (4) 如果m//n, $\alpha//\beta$, 那么m与 α 所成的角和n与 β 所成的角相等.

其中正确的命题有 (填写所有正确命题的编号)

【解析】 ② ③ ④

【提醒】头脑里面随时都要装一个长方体

例 7.设 m,n 是两条不同的直线, α,β,γ 是三个不同的平面,给出下列四个命题:

- ① $= \alpha, n/\alpha$, 则 m/n ;
- ②若 α // β , β // γ , $m \perp \alpha$, 则 $m \perp \gamma$;
- ③ $\alpha \cap \beta = n$ m//n <math> <math>
- (4)若 $m//\alpha$, $n//\beta$, m//n, 则 $\alpha//\beta$.

其中是真命题的是___(填上正确命题的序号).

【解析】 ①m//n或m,n异面,故①错误;

易知②正确;

- $(3) m / / \beta$ 或 $m \subset \beta$, 故(3)错误;
- $(4)\alpha/\beta$ 或 α 与 β 相交,故④错误.
- **例 8.** 在空间中, 过点 A 作平面 π 的垂线, 垂足为 B, 记 $B = f_{\pi}(A)$ 。设 α , β 是两个不同的 平面,对空间任意一点P, $Q_1 = f_{\beta}[f_{\alpha}(P)], Q_2 = f_{\alpha}[f_{\beta}(P)],$ 恒有 $PQ_1 = PQ_2$,则

 - A. 平面 α 与平面 β 垂直 B. 平面 α 与平面 β 所成的(锐) 二面角为 45°

 - C. 平面 α 与平面 β 平行 D.平面 α 与平面 β 所成的(锐) 二面角为 60°

【解析】本题跟垂直有关,可重点考察选项 A,

如图,假设 $\alpha \perp \beta$,它们的交线为l, P 在 α 上的投影为A, 在 β 上的投影为B,设平面 PAB与l交于点C,易知 $Q_1 = f_{\beta}[f_{\alpha}(P)] = f_{\beta}(A) = C$, $Q_2 = f_{\alpha}[f_{\beta}(P)] = f_{\alpha}(B) = C$,恒有 $PQ_1 = PQ_2 = PC$,满足要求,选A。

例9 (全国 I) 已知三棱锥 P-ABC 的四个顶点在球 O的球面上, PA=PB=PC, $\triangle ABC$ 是边长为 2 的正三角形, E, F 分别是 PA, AB 的中点, $\angle CEF = 90^{\circ}$,则球 O 的体积为

A.
$$8\sqrt{6}\pi$$

B.
$$4\sqrt{6}\pi$$

B.
$$4\sqrt{6}\pi$$
 C. $2\sqrt{6}\pi$

D.
$$\sqrt{6}\pi$$

【解析】易知 EF//PB,而 $EF \perp CE$,故 $CE \perp PB$;由题意知三棱锥 P-ABC 为正三棱 锥,故 $PB \perp AC$,故 $PB \perp$ 平面PAC,进而 $PB \perp PA,PB \perp PC$,

由对等性知: PA, PB, PC 互相垂直。

$$\mathbb{Z}$$
, $PA = PB = PC = \sqrt{2}$,

设球O的半径为R,则 $3\times(\sqrt{2})^2=(2R)^2$,故 $R=\frac{\sqrt{6}}{2}$,

故,球O的体积为 $\frac{4}{3}\pi R^3 = \sqrt{6}\pi$,选D。

例 10.在三棱锥 P-ABC 中, $PA \perp AB$, PA = 4, AB = 3,二面角 P-AB-C 的大小为 30° , 在侧面 $\triangle PAB$ 内(含边界)有一动点M,满足M到PA的距离与M到平面ABC的距离相等, 则M的轨迹的长度为。

【解析】如图,过M作 $MN \perp PA \exists N$, $MO \perp$ 平面 $ABC \exists O$, 过O作 $OQ \perp AB \mp Q$,连接MQ,则 $\angle MQO$ 为二面角P-AB-C的平面角, 由 $\angle MQO = 30^{\circ}$ 得MQ = 2MO, 又MO = MN, 所以MO = 2MN,

在 $\triangle PAB$ 中,以AB所在直线为x轴,AP所在直线为y轴建立平面直角坐标系,则直线AM的方程为y=2x,直线PB的方程为4x+3y-12=0,

所以直线 AM 与 PB 的交点坐标为 $R\left(\frac{6}{5}, \frac{12}{5}\right)$,

所以
$$M$$
 的轨迹为线段 AR ,长度为 $\sqrt{\left(\frac{6}{5}\right)^2 + \left(\frac{12}{5}\right)^2} = \frac{6\sqrt{5}}{5}$ 。

例 11.已知矩形 ABCD, AB=1, $BC=\sqrt{2}$ 。将 $\triangle ABD$ 沿矩形的对角线 BD 所在的直线进行翻折,在翻折过程中,()

A.存在某个位置,使得直线AC与直线BD垂直

B.存在某个位置,使得直线 AB 与直线 CD 垂直

C.存在某个位置,使得直线 AD 与直线 BC 垂直

D.对任意位置, 三对直线 "AC与BD", "AB与CD", "AD与BC"均不垂直

我们先看两个极限情况:未翻折时, $AC=\sqrt{3}$;按题中要求翻折 180° ,参考图二,易算得此 $dC=A'C=\frac{\sqrt{3}}{2}$

针对本题,翻折过程中,AC的取值范围为 $\left[\frac{\sqrt{3}}{3},\sqrt{3}\right]$

下面我们利用斯坦纳定理判断相关角的大致范围。参看图三

$$\cos(AC, BD) = \frac{|(AB^2 + CD^2) - (AD^2 + BC^2)|}{2AC \times BD} = \frac{|2 - 4|}{2AC \times BD} = \frac{2}{2AC \times BD} \neq 0,$$

故,翻折过程中, AC,BD 不可能垂直,A 错。

同理,
$$\cos(AB,CD) = \frac{|(AC^2 + BD^2) - (AD^2 + BC^2)|}{2AB \times CD} = \frac{|AC^2 + 3 - 4|}{2AC \times BD} = \frac{|AC^2 - 1|}{2AC \times BD}$$

由于 $AC \in \left[\frac{\sqrt{3}}{3}, \sqrt{3}\right]$,存在AC = 1的位置,此时 $AB \perp CD$,B对D错。

$$\cos(AD,BC) = \frac{|(AC^2 + BD^2) - (AB^2 + CD^2)|}{2AD \times BC} = \frac{|AC^2 + 3 - 2|}{2AD \times BC} = \frac{|AC^2 + 1|}{2AC \times BD} \neq 0,$$

故,翻折过程中, AD, BC 不可能垂直, C 错。

例 12.如图,在直三棱柱 $ABC - A_iB_iC_i$ 中, CA = CB, P 为 A_iB 的中点, Q 为棱 C_iC 的中点, 求证:

- (1) $PQ \perp AB$; (2) $PQ \perp C_1C$;
- (3) $PQ \perp A_1B$

【证明】(1) 令 E 为 AB 的中点,连接 CE, PE 。

因CA = CB,故 $CE \perp AB$;

$$\mathbb{Z}$$
, $PE//\frac{1}{2}A_1A$, $A_1A//C_1C$, $QC = \frac{1}{2}C_1C$,

故PE//QC,故CEPQ为平行四边形,故PQ//CE,

因 $CE \perp AB$,故 $PQ \perp AB$,证毕。

- (2)因 $AA_1 \perp$ 平面ABC,而 $CE \subset$ 平面ABC,故 $AA_1 \perp CE$,因 AA_1 / CC_1 ,故 $CE \perp CC_1$; 由 (1) 知PQ//CE, 故 $PQ \perp CC_1$, 证毕。
- (3): 由 (2) 知 $PQ \perp CC_1$, 而 CC_1/AA_1 , 故, $PQ \perp AA_1$,

由 (1) 知 $PQ \perp AB$, 而 $AB \cap AA_1 = A$,

故PQ 上平面 AA_1B ,又 A_1B \subset 平面 AA_1B ,故PQ $\perp A_1B$,证毕。

例 13.如图,在三棱锥 P-ABC中, $CD \perp AB$,垂足为D, $PO \perp$ 底面 ABC,垂足为O, 且O在CD上,求证: $AB \perp PC$ 。

【证明】连接PD,因PO \bot 底面ABC,AB \subset 底面ABC,故PO \bot AB又,CD \bot AB,CD \bigcirc PO=O,CD \bigcirc PO \subset 平面PDC故AB \bot 平面PDC,又PC \subset 平面PDC,故AB \bot PC。

例 14.如图,在直三棱锥V-ABC中,已知 $\angle VAB=\angle VAC=\angle ABC=90^\circ$,判断平面VAB与平面VBC的位置关系,并说明理由。

【证明】由题意知: VA 上平面 ABC

又BC \subset 平面ABC,故 $VA \perp BC$

又 $BC \perp AB$,而 $AB \lor VA \subset$ 平面 $VAB,VA \cap AB = A$

故,BC 上平面VAB。

又,BC \subset 平面VBC,故平面VBC 上平面VAB。

例 15.已知平面 α , β , γ , 且 $\alpha \perp \gamma$, β // α , 求证: $\beta \perp \gamma$

【证明】设 $\alpha\cap\gamma=a,\beta\cap\gamma=b$,在b上任取一点P,过P作PA $\bot a$,垂足为A。在 α 内过A 任作一条异于a 的直线c ,设PA 与c 确定的平面与 β 的交线为c'。

因 α/β , 故由上面的作法知: a/b,c/c'

又: $\gamma \perp \alpha$, $PA \subset \gamma$, $\alpha \cap \gamma = a$, 所以, $PA \perp \alpha$

Вc ⊂ α , 故 PA \bot c ,

又因c//c',故 $PA \perp c'$

由于 $PA \perp a$, a//b, 故 $PA \perp b$, 由于b、 $c' \subset \beta$, $b \cap c' = P$ 相交 ,故 $PA \perp \beta$, 由于 $PA \subset \gamma$,所以 $\gamma \perp \beta$ 。

例 16.已知平面 α, β, γ , 且 $\alpha \perp \gamma, \beta \perp \gamma, \alpha \cap \beta = l$, 求证: $l \perp \gamma$

【证明】不妨设设 $\alpha \cap \gamma = a, \beta \cap \gamma = b$,在l上任取一点P ($P \notin \gamma$),过P 作 $PA \perp a, PB \perp b$,垂足分别为A, B。

因 $\alpha \perp \gamma$, $PA \subset \alpha$, $\alpha \cap \gamma = a$, $PA \perp a$, 所以, $PA \perp \gamma$

同理, $PB \perp \gamma$

由于过平面外一点,有且只有一条直线与 γ 垂直,因此A,B重合,不妨设其为M,显然 $M \in \alpha \cap \beta$,从而 $M \in l$,

由 $PM \perp \gamma$ 知, $l \perp \gamma$, 证毕。

例 17.如图,在正方形 $SG_1G_2G_3$ 中,E,F分别是 G_1G_2,G_2G_3 的中点,D是EF的中点,若 沿 SE,SF及EF 把正方形折成一个四面体,使 G_1,G_2,G_3 三点重合,重合后的点记为G,则在四面体S-EFG中,哪些棱与面互相垂直?

【解析】所得四面体如图所示,不妨设原正方形的边长为 2 ,易得 $GS=2,GE=GF=1,EF=\sqrt{2},SE=SF=\sqrt{5}$,

由勾股定理知: GS,GE,GF 互相垂直,从而有:

GS 上面 GEF , GE 上面 GSF , GF 上面 GSE , 以及面 GEF , 面 GSF , 面 GSE 互相垂 直。

例 18.如图,四棱锥 P-ABCD中, AB=AD=2BC=2,BC//AD, $AB\perp AD$, $\triangle PBD$ 为 正三角形.且 $PA=2\sqrt{3}$.

(1)证明: 平面 *PAB* 上平面 *PBC*;

(2)若点 P 到底面 ABCD 的距离为 2, E 是线段 PD 上一点,且 PB // 平面 ACE ,求四面体 A-CDE 的体积.

(1)证明: $AB \perp AD$, AB = AD = 2, $BD = 2\sqrt{2}$,

又 $\triangle PBD$ 为正三角形,所以 $PB = PD = BD = 2\sqrt{2}$

又 $: AB = 2, PA = 2\sqrt{3}$, 所以 $AB \perp PB$,

 \mathbb{Z} : $AB \perp AD$, BC//AD, $AB \perp BC$, $\overline{m}PB \cap BC = B$,

所以AB 上平面PBC, 又因为AB 二平面PAB,

所以平面 PAB 上平面 PBC.

(2) 【解析】如图,连接AC 交BD 于点O,因为BC//AD,且AD=2BC,所以OD=2OB,连接OE,

因为PB//平面ACE,所以PB//OE,则DE = 2PE,

因点P到平面ABCD的距离为2,

所以点 E 到平面 ABCD 的距离为 $h = \frac{2}{3} \times 2 = \frac{4}{3}$,

所以
$$V_{A-CDE} = V_{E-ACD} = \frac{1}{3}S_{\triangle ACD} \cdot h = \frac{1}{3} \times \left(\frac{1}{2} \times 2 \times 2\right) \times \frac{4}{3} = \frac{8}{9}$$

即四面体A-CDE的体积为 $\frac{8}{9}$.

例 19.如图,在三棱柱 $ABC-A_1B_1C_1$ 中,每个侧面均为正方形,D 为底边 AB 的中点,E 为侧棱 CC_1 的中点。

- (1) 求证: CD//平面 A,EB;
- (2) 求证: AB₁ 上平面 A₁EB;
- (3) 求直线 B_1E 与平面 AA_1C_1C 所成角的正弦值。

【证明】: (1) 设 AB_1 和 A_1B 的交点为O,连接EO,OD,

因为O为 AB_1 的中点,D为底边AB的中点,所以 $OD//BB_1$ 且 $OD = \frac{1}{2}BB_1$,

又 E 为 CC_1 的中点,所以 $EC//BB_1$ 且 $EC = \frac{1}{2}BB_1$,所以 EC//OD 且 EC = OD

所以,四边形ECOD为平行四边形。所以EO//CD。

又CD \triangleleft 平面A,BE, EO \subseteq 平面A,BE, 所以CD//平面A,BE

(2)因为三棱柱各侧面都是正方形,所以 $BB_1 \perp AB, BB_1 \perp BC$,所以 $BB_1 \perp$ 平面ABC。

因为CD \subset 平面ABC,所以 $BB_1 \perp CD$ 。

由已知得AB = BC = AC, 所以 $CD \perp AB$,

所以 $CD \perp AB$ 平面 A_1ABB_1 。

由 (1) 可知 EO//CD, 所以 EO 上平面 A_1ABB_1 。

所以 $EO \perp AB_1$ 。

因为侧面是正方形,所以 $AB_1 \perp A_1B$

又 $EO \cap A_1B = O$, $EO \subset$ 平面 A_1EB , $A_1B \subset$ 平面 A_1EB , 所以 $AB_1 \perp$ 平面 A_1BE 。

(3)解:取 A_1C_1 中点F,连接 B_1F,EF 。在三棱柱 $ABC-A_1B_1C_1$ 中,因为 BB_1 上平面ABC,

故, 三棱柱 $ABC - A_l B_l C_l$ 为直三棱柱,

所以侧面 ACC_1A_1 上底面 $A_1B_1C_1$ 。

因为底面 $A_1B_1C_1$ 是正三角形,且 F 是 A_1C_1 的中点,

所以 $B_1F \perp A_1C_1$, 所以 $B_1F \perp$ 侧面 ACC_1A_1 。

所以EF 是 B_1E 在平面 ACC_1A_1 上的射影。

所以 $\angle FEB_1$ 即为 B_1E 与平面 AA_1C_1C 所成角,

易得,
$$\sin \angle FEB_1 = \frac{B_1F}{B_1E} = \frac{\sqrt{15}}{5}$$
。