

STB80N4F6AG

Automotive-grade N-Channel 40 V, 5.5 mΩ typ.,80 A STripFET™ F6 Power MOSFET in a D²PAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STB80N4F6AG	40 V	6 mΩ	80 A

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{\text{DS(on)}}$ in all packages.

Table 1: Device summary

Order code	Marking Package Packag		Packaging
STB80N4F6AG	380N4F6AG 80N4F6 D²PAK		Tape and Reel

Contents STB80N4F6AG

Contents

1	Electrical ratings					
2		al characteristics				
	2.1	Electrical characteristics (curves)	6			
3	Test cir	cuits	8			
4	Packag	e mechanical data	9			
	4.1	D²PAK package information	9			
	4.2	D ² PAK packing information	12			
5	Revisio	n history	14			

STB80N4F6AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V_{GS}	Gate-source voltage	± 20	V
ΙD	Drain current (continuous) at T _C = 25 °C	80	Α
ΙD	Drain current (continuous) at Tc= 100 °C	56	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	320	Α
Ртот	Total dissipation at T _C = 25 °C	70	W
l _{AV}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _J max)	40	Α
E _{AS}	Single pulse avalanche energy(Starting T_{J} = 25 °C, = I_{D} = I_{AV} , V_{DD} = 25 V)	149	mJ
T _{stg}	Storage temperature	- 55 to 175	°C
Tj	Max. operating junction temperature	175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max.	2.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-ambient max.	35	°C/W

Notes:

⁽¹⁾ Pulse width limited by safe operating area.

 $^{^{(1)}}$ When mounted on FR-4 board of inch2, 2 oz Cu

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified).

Table 4: On/Off States

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	40			V
		V _{DS} = 40 V			1	μΑ
IDSS	I _{DSS} Zero gate voltage drain current (V _{GS} = 0V)	V _{DS} = 40 V Tj = 125 °C			100	μΑ
Igss	Gate-body leakage current (V _{DS} = 0 V)	V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_{D} = 40 \text{ A}$		5.5	6	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2150	1	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	-	335	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	160	ı	pF
Qg	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 80 \text{ A},$	-	36	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	11	ı	nC
Q_{gd}	Gate-drain charge	behavior")	-	9	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 40 \text{ A R}_G = 4.7 \Omega,$	-	10.5	-	ns
t _r	Rise time	$V_{GS} = 20 \text{ V, } I_{GS} = 40 \text{ A K}_{GS} = 4.7 \Omega$, $V_{GS} = 10 \text{ V(see } Figure 15: "Test")$	-	7.6	-	ns
t _{d(off)}	Turn-off-delay time	circuit for inductive load switching	-	46.1	-	ns
t _f	Fall time	and diode recovery times")	-	11.9	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source drain current				80	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				320	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0 V			1.3	V
t _{rr}	Reverse recovery time	I _{SD} = 80 A, di/dt = 100 A/μs,		41.1		ns
Qrr	Reverse recovery charge	V _{DD} = 32 V (See Figure 17: "Unclamped		43.6		nC
I _{RRM}	Reverse recovery current	inductive waveform")		2.1		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 3: Thermal impedance 2800PC $\delta = 0.5$ 0.2 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01

Figure 8: Static drain-source on-resistance

RDS(on) (mΩ)

6.5

RDS(on)

RDS(on)

10

RDS(on)

10

RDS(on)

10

RDS(on)

20

40

60

80

RDS(A)

Test circuits STB80N4F6AG

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 NF D.U.T.

12 V 47 KΩ OV₀

14 KΩ OV₀

15 CONST OV₀

16 CONST OV₀

17 KΩ OV₀

18 CONST OV₀

18 CONST OV₀

19 CONST OV₀

19 CONST OV₀

10 CONST OV₀

10 CONST OV₀

11 KΩ OV₀

12 CONST OV₀

13 CONST OV₀

14 KΩ OV₀

15 CONST OV₀

16 CONST OV₀

17 KΩ OV₀

18 CONST OV₀

18 CONST OV₀

19 CONST OV₀

19 CONST OV₀

19 CONST OV₀

10 CONST OV₀

10 CONST OV₀

10 CONST OV₀

10 CONST OV₀

11 KΩ OV₀

12 CONST OV₀

12 CONST OV₀

13 CONST OV₀

14 KΩ OV₀

15 CONST OV₀

16 CONST OV₀

17 KΩ OV₀

18 CONST OV₀

18 CONST OV₀

19 CONST OV₀

19 CONST OV₀

19 CONST OV₀

10 CONST

Figure 15: Test circuit for inductive load switching and diode recovery times

Figure 16: Unclamped inductive load test circuit

Figure 17: Unclamped inductive waveform

Figure 18: Switching time waveform

577

Package mechanical data 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

D²PAK package information 4.1

Figure 19: D²PAK (TO-263) type A package outline

Table 8: D²PAK (TO-263) type A package mechanical data

	ble 6. D-FAR (10-203) tyl	mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

9.75

16.9

2.54

5.08

Figure 20: D²PAK (TO-263) recommended footprint (dimensions are in mm)

4.2 D²PAK packing information

Figure 21: Tape outline

Figure 22: Reel outline

Table 9: D²PAK tape and reel mechanical data

	Таре			Reel	
Dim	Dim mm		Dim	mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STB80N4F6AG

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
16-Jun-2015	1	Initial release
18-Nov-2015	2	Document status promoted from preliminary to production data. Updated title and features in cover page.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved