Holograph notes on rate of output of copper.

Author: Isaac Newton

Source: MINT 19/2/332, National Archives, Kew, Richmond, Surrey, UK

<332r>

Ten mills working 20 hours per day sufficed for coyning 90000^{li} per week in shillings, or 15000^{li} per day, or 150000 shillings in 10 hours & one mill for 15000 in 10 hours. And 15000 half pence is $375^{\overline{lw}^t}$ at 20 pence per pound weight. And this is done with 5 horses & a miller at 3^s per day each & 2^s a labourer, that is for 20^s , or 240 pence, that is for $\frac{16}{25}$ d per pound weight, or 2^d per 3^{lw}^t . And if the copper go but twice through the mill, it will be done for $\frac{4}{9}$ per pound weight.

One cutter dispatches 26 pieces in a minute that is 780 pence in an hour that is 40^{lw^t} in an hour or 320^{lw^t} in 8 hours. And this is done with a moneyer & a labourer to bend the scissel &c for 7^s that is for $\frac{1}{4}^d$ per pound weight.

One flatter with two men dispatches $1\frac{1}{2}^{lw^t}$ in a minute, 90^{lw^t} in an hour & 720^{lw^t} in 8 hours for 4^s , or 1^{lw^t} for $\frac{1}{15}^{d}$.

One Marking Engin dispatches $200^{\text{lw}^{\text{t}}}$ per diem for 3^{s} & 14^{d} per diem Smiths works, & works for $\frac{1}{4}$ per pound weight.

One press dispatches 40^{lw^t} in an hour & 320^{lw^t} in 8 hours for 13^s , & so works for $\frac{1}{2}^d$ per pound weight.

Nealing & blanching & Smiths work $\frac{3}{4}$ ^d per pound weight

Total $2^{\frac{1}{4}}$ per pound weight.