3.2 Kraft and McMillan Inequalities

length is simply the number of characters in a string given an alphabet (A). given a set S with the encoding: $f: S \to A^*$. The set of word lengths then denoted as:

$$\{length(f(S)): s \in S\}$$

Theorem 1 (Kraft's Inequality). Let the set S of source words have m elements. Then, let the encoding alphabet A have n characters. A condition that there exists an **instantaneous uniquely decipherable** code $f: S \to A^*$ with lengths $\ell_1, \ell_2, \ldots, \ell_3$ is:

$$\sum_{i=1}^{m} \frac{1}{n^{\ell_i}} \le 1 \tag{1}$$

Theorem 2 (Mcmillan's Inequality). Let the set S of source words have m elements. Then, let the encoding alphabet A have n characters. A condition that there exists a uniquely decipherable code $f: S \to A^*$ with lengths $\ell_1, \ell_2, \ldots, \ell_3$ is:

$$\sum_{i=1}^{m} \frac{1}{n^{\ell_i}} \le 1 \tag{2}$$

Corollary. If there is a uniquely decipherable code with given word lengths, then there is an instantaneous (uniquely decipherable) code with those word lengths.

Remark. The Inequalities give absolute limits on the size of the encoding words necessary to encode a 'vocabulary' S of source words with a certain size. These are independent of any probablistic considerations.

There is a proof involved in this, but I have omitted it because I don't want to deal with it. That being said, since *any* uniquely decipherable code must satisfy the Inequality, an *instantaneous* one should as well.

3.3 Noiseless Coding Theorem