Intro to ML

December 8th, 2021

CHAPTER 12: Deep Learning

Deep Neural Networks

- Many hidden layers
 - Problematic in training: chain rule multiplication of derivatives (vanish of gradients or explosion)
- End-to-end training
- Learn increasingly abstract representations with minimal human contribution
 - Layers of abstraction in intuitive
 - Vision, speech, language, and so on

Representation learning is really the KEY behind Deep learning

Regularization: Weight Decay

- If a weight is 0, we have a simpler model.
- Initially all weights are close to 0 and they are moved away as learning proceeds.
- Early stopping: Stop before too many weights are updated.
- Weight decay: Add a term that penalizes non-zero weights:

$$E' = E + \frac{\lambda}{2} \sum_{i} w_i^2 \qquad \Delta w_i = -\eta \frac{\partial E}{\partial w_i} - \lambda' w_i$$

Regularization: Dropout

- What if we drop them certain nodes completely?
- Reduce the number of parameters in a 'random' fashion to ensure less overfitting and more robust results

Input or hidden unit dropped out (output set to 0) with probability *p* in each minibatch

Regularization: Convolutions

• Each unit is connected to a small set of units in the preceding layer. In images, this corresponds to a local patch (LeCun et al 1989).

Regularization: Weight Sharing

The same weights are used in different locations

1d example with 1x4 convolutions and weight sharing

Just multilayer perceptron

Or think of this as autoencoder (encoder-decoder)

$$y\left[i,j
ight] = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} h\left[m,n
ight] \cdot x\left[i-m,j-n
ight]$$

1,	1,0	1,	0	0
0,,0	1,	1,,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	9
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Multiple Convolutional Layers

<u>DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets</u>

LeNet-5 (LeCun et al 1998)

Has approximately 60K weights and trained on 60K examples (MNIST data set)

More ways to handle vanishing gradient Skip Connections

Learning Time (sequence modeling)

- Applications:
 - Sequence recognition: Speech recognition
 - Sequence reproduction: Time-series prediction

- Network architectures
 - Time-delay networks (Waibel et al., 1989)
 - Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks (TDNN)

It is also just like a 1-D convolution neural network

Recurrent Networks(RNN)

Unfolding in Time -> sequence model

Many variants of RNN for different applications

Long short-term memory (LSTM)

Activation function

Conceptually, we lose information

LSTM equations

We use shadow state to calculate gates

Write gate

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$
 Input gate

$$f_t = \overline{\sigma(W_f h_{t-1} + U_f x_t + b_f)}$$
 Forget gate

 $f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f) \text{ Forget gate}$ Read gate $o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o) \text{ Output gate}$

$$\widetilde{c}_t = tanh(Wh_{t-1} + Ux_t + b)$$
 Memory cell candidate

$$c_t = f_t \circ c_{t-1} + i_t \circ \widetilde{c}_t$$
 Memory cell

$$h_t = o_t \circ tanh(c_t)$$
 Shadow state $\int y_t = h_t$ Cell Output

Read occurs after writing

