Statistical Learning

Masoud Faridi

2024-09-28

What Is Statistical Learning?

Suppose that we observe a quantitative response Y and p different predictors, X_1, X_2, \cdots, X_p . We assume that there is some relationship between Y and $X = (X_1, X_2, \cdots, X_p)$, which can be written in the very general form $Y = f(X) + \epsilon$.

Here f is some fixed but unknown function of $X_1, ..., X_p$, and ϵ is a random error term, which is independent of X and has mean zero. In this formulation, f represents the systematic information that X provides about Y.

Consider a given estimate \hat{f} and a set of predictors X, which yields the prediction $\hat{Y} = \hat{f}(X)$. Assume for a moment that both \hat{f} and X are fixed, so that the only variability comes from ϵ . Then, it is easy to show that

$$E(Y - \hat{Y})^{2} = E\left(f(X) + \epsilon - \hat{f}(X)\right)^{2} = \left(f(X) - \hat{f}(X)\right)^{2} + \text{Var}(\epsilon)$$
$$= \underbrace{\left[f(X) - \hat{f}(X)\right]^{2}}_{} + \underbrace{\text{Var}(\epsilon)}_{}$$

Slide with Bullets

- ▶ Bullet 1
- ▶ Bullet 2
- ▶ Bullet 3

Slide with R Output

summary(cars)

```
##
       speed
                     dist
##
   Min. : 4.0
                Min. : 2.00
##
   1st Qu.:12.0
                1st Qu.: 26.00
##
   Median: 15.0 Median: 36.00
##
   Mean :15.4
                Mean : 42.98
##
   3rd Qu.:19.0
                3rd Qu.: 56.00
##
   Max. :25.0
                Max. :120.00
```

Slide with Plot

