

Boosting

CS229: Machine Learning Carlos Guestrin Stanford University

Slides include content developed by and co-developed with Emily Fox

©2021 Carlos Guestrin

Simple (weak) classifiers are good!

Logistic regression w. simple features

Shallow decision trees

Decision stumps

Low variance. Learning is fast!

But high bias...

Finding a classifier that's just right

Boosting question

A single classifier

6

Ensemble methods: Each classifier "votes" on prediction

Ensemble classifier in general

- Goal:
 - Predict output y
 - Either +1 or -1
 - From input x
- Learn ensemble model:
 - Classifiers: $f_1(x), f_2(x), ..., f_T(x)$
 - Coefficients: $\hat{\mathbf{w}}_1, \hat{\mathbf{w}}_2, ..., \hat{\mathbf{w}}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

10

CS229: Machine Learning

2021 Carlos Guestrin

CS229: Machine Learning

Training a classifier

Learning decision stump

Credit	Income	у
А	\$130K	Safe
В	\$80K	Risky
С	\$110K	Risky
А	\$110K	Safe
А	\$90K	Safe
В	\$120K	Safe
С	\$30K	Risky
С	\$60K	Risky
В	\$95K	Safe
А	\$60K	Safe
А	\$98K	Safe

Boosting = Focus learning on "hard" points

Learning on weighted data: More weight on "hard" or more important points

- Weighted dataset:
 - Each x_i, y_i weighted by α_i
 - More important point = higher weight α_i
- Learning:
 - Data point i counts as α_i data points
 - E.g., $\alpha_i = 2 \rightarrow$ count point twice

Learning a decision stump on weighted data

Increase weight α of harder/misclassified points

Credit	Income	Income y	
А	\$130K	Safe	0.5
В	\$80K	Risky	1.5
С	\$110K	Risky	1.2
А	A \$110K Safe		0.8
А	\$90K	Safe	0.6
В	\$120K	Safe	0.7
С	\$30K	Risky	3
С	\$60K	Risky	2
В	\$95K	Safe	0.8
А	\$60K	Safe	0.7
А	\$98K	Safe	0.9

Boosting = Greedy learning ensembles from data

17 CS229: Machine Learning

AdaBoost: learning ensemble

[Freund & Schapire 1999]

- Start with same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient $\hat{\mathbf{w}}_t$
 - Recompute weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

©2021 Carlos Guestrin CS229: Machine Learning

AdaBoost: Computing coefficient $\hat{\mathbf{w}}_t$ of classifier $f_t(\mathbf{x})$

- $f_t(x)$ is good $\rightarrow f_t$ has low training error
- Measuring error in weighted data?
 - Just weighted # of misclassified points

AdaBoost:

Formula for computing coefficient $\hat{\mathbf{w}}_t$ of classifier $\mathbf{f}_t(\mathbf{x})$

$$\hat{\mathbf{w}}_{t} = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_{t})}{weighted_error(f_{t})} \right)$$

AdaBoost: learning ensemble

- Start with same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient $\hat{\mathbf{w}}_t$
 - Recompute weights α_i

 $\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$

Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

AdaBoost: Updating weights α_i based on where classifier $f_t(x)$ makes mistakes

AdaBoost: Formula for updating weights α_i

$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{w}_t}, & \text{if } f_t(x_i) = y_i \\ \alpha_i e^{\hat{w}_t}, & \text{if } f_t(x_i) \neq y_i \end{cases}$$

		$f_t(x_i)=y_i$?	$\hat{\mathbf{w}}_{t}$	Multiply $\alpha_{\rm i}$ by	Implication
Did f _t get x _i right?	Yes _				
	No 🌂				

27 ©2021 Carlos Guestrin CS229: Machine Learning

AdaBoost: learning ensemble

- Start with same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient $\hat{\mathbf{w}}_t$
 - Recompute weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-\hat{\mathbf{w}}_{t}}, & \text{if } f_{t}(x_{i}) = y_{i} \\ \alpha_{i} e^{\hat{\mathbf{w}}_{t}}, & \text{if } f_{t}(x_{i}) \neq y_{i} \end{cases}$$

AdaBoost: Normalizing weights α_i

If x_i often mistake, weight α_i gets very large

If x_i often correct, weight α_i gets very small

Can cause numerical instability after many iterations

Normalize weights to add up to 1 after every iteration

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

AdaBoost: learning ensemble

- Start with same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient ŵ_t
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-\hat{W}_{t}}, & \text{if } f_{t}(x_{i}) = y_{i} \\ \alpha_{i} e^{\hat{W}_{t}}, & \text{if } f_{t}(x_{i}) \neq y_{i} \end{cases}$$

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

AdaBoost example: A visualization

©2021 Carlos Guestrin

CS229: Machine Learning

t=1: Just learn a classifier on original data

Updating weights α_i

t=2: Learn classifier on weighted data

2021 Carlos Gues

Ensemble becomes weighted sum of learned classifiers

Decision boundary of ensemble classifier after 30 iterations

training_error = 0

Boosting question revisited

"Can a set of weak learners be combined to create a stronger learner?" Kearns and Valiant (1988)

Yes! Schapire (1990)

Boosting

After some iterations, training error of boosting goes to zero!!!

AdaBoost Theorem

Under some technical conditions...

Training error of boosted classifier → 0 as T→∞

Condition of AdaBoost Theorem

Under some technical conditions...

Training error of boosted classifier \rightarrow 0 as $T\rightarrow\infty$

Decision trees on loan data

Boosted decision stumps on loan data

Boosting tends to be robust to overfitting

But boosting will eventually overfit, so must choose max number of components T

Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

Gradient boosting

- Like AdaBoost, but useful beyond basic classification
- Great implementations available (e.g., XGBoost)

Many other approaches to learn ensembles, most important:

Random forests

- Bagging: Pick random subsets of the data
 - Learn a tree in each subset
 - Average predictions
- Simpler than boosting & easier to parallelize
- Typically higher error than boosting for same # of trees (# iterations T)

Impact of boosting (spoiler alert... HUGE IMPACT)

Amongst most useful ML methods ever created

Extremely useful in computer vision

• Standard approach for face detection, for example

Used by most winners of ML competitions (Kaggle, KDD Cup,...)

 Malware classification, credit fraud detection, ads click through rate estimation, sales forecasting, ranking webpages for search, Higgs boson detection,...

Most deployed ML systems use model ensembles

 Coefficients chosen manually, with boosting, with bagging, or others

What you can do now...

- Identify notion ensemble classifiers
- Formalize ensembles as weighted combination of simpler classifiers
- Outline the boosting framework sequentially learn classifiers on weighted data
- Describe the AdaBoost algorithm
 - Learn each classifier on weighted data
 - Compute coefficient of classifier
 - Recompute data weights
 - Normalize weights
- Implement AdaBoost to create an ensemble of decision stumps