Lecture 11

Sympathetic magic

Dont' confuse r.v with its distribution

P(X=x) + P(Y=y)

Word is not the thing, the map is not the territory.

r.v -> random house distribution -> blueprint

Poisson Distribution - 泊松分布

$$X \sim Pois(\lambda)$$

PMF:

$$P(X=k)=e^{-\lambda}rac{\lambda^k}{k!}$$
 λ is the rate parameter >0

Valid:
$$\sum_{k=0}^{\infty}e^{-\lambda}rac{\lambda^k}{k!}=1$$

E(X)

$$E(X) = \lambda e^{-\lambda} \sum_{k=1}^{\infty} rac{\lambda^{k-1}}{(k-1)!} = \lambda$$

often used for applications where counting # of "successes" where there are a large # trials each with small prob of success

Examples:

- 1. #emails in an hour
- 2. #chips in choc chip cookies
- 3. #earthquakes in a year in some area

Pois Paradigm (Pois Approximation)

Events $A_1,A_2,\ldots A_n$, $P(A_j)=p_j$, n large, p_j 's small

events independent or "weakly dependent"

of Aj's that occure is approx $Pois(\lambda)$, $\lambda = \sum p_j$

Binomial converges to Poisson

Example.

Have n people, find approx prob that there are 3 people with same birthday.

 $\binom{n}{3}$ triplets of people , indicator r,v for each, l_{ijk} , i<j<k

 $E(triple\ matches) = \binom{n}{3}1/365^2$

X = #triple matches Approx $Pois(\lambda)$, $\lambda = \binom{n}{3}1/365^2$

 I_{123}, I_{124} are not independent

$$P(X \geq 1) = 1 - P(X = 0) \approx 1 - e^{-\lambda}$$