Automates finis - déterminisation et minimisation

Feuille de travaux dirigés nº4

16-20 février 2009

1. En fin du TD n° 2 nous avons obtenu l'automate déterministe suivant pour le langage $(a+b)^*ab(a+b)^* = (b^*a^*)^*ab(a+b)^*$. Minimiser l'automate obtenu.

δ	a	b
$\rightarrow 1$	2	3
2	2	4
3	2	3
← 4	5	6
$\leftarrow 5$	5	7
← 6	5	6
← 7	5	6

- **2.** Soit l'alphabet $\Sigma = \{0, 1\}$.
- a) Donner un automate fini non-déterministe pour reconnaître :
 - i) les mots ayant un 1 comme dernière lettre.
 - ii) les mots ayant un 1 comme avant-dernière lettre.
 - iii) les mots ayant un 1 comme 3ième lettre de la fin.
 - n) les mots ayant un 1 comme n-ième lettre de la fin.
- **b)** Déterminiser i), ii), iii), ...
- c) Montrer que n) aura 2^n états.
- **d)** Minimiser i), ii), iii), ...
- e) Chercher un argument simple, pour justifier le nombre d'états de l'automate minimal.
- **3.** Le but de cet exercice est d'obtenir un automate fini déterministe minimal et complet à partir de la donnée de l'automate fini non-déterministe ci-dessous qui a pour état initial l'état q_0 et pour état final l'état q_2 .

$$\begin{array}{c|cccc} \delta & a & b \\ \hline \to q_0 & q_1 & q_3 \\ q_1 & - & \{q_0, q_2\} \\ \leftarrow q_2 & q_0 & - \\ q_3 & q_0 & - \\ \end{array}$$

- a) en le complétant tout d'abord
- b) en le complétant après la déterminisation

Comparer les automates obtenus.

4. Prenez les quatre premières lettres de votre nom, triés en ordre alphabétique. Construisez un automate fini (détérministe) qui reconnaît les mots sur un alphabet à quatre lettres ayant le mot obtenu de votre nom comme suffixe.

- i) Ecrivez un système d'équations de droite pour l'automate en question.
- ii) Ecrivez un système d'équations de gauche pour l'automate en question.
- iii) Résolvez l'un des deux systèmes.
- 5. Lors du troisième cours nous avons obtenu trois expressions régulières pour le même langage :
 - *i*) $(b^*a)^+$
 - *ii*) $(bb)^*(a+ba)(b(bb)^*(a+ba)+a)^*$
- iii) $(bb + (ba + a)a^*b)^*(ba + a)a^*$

Prouvez qu'on ne s'est pas trompés et que les trois expressions correspondent bien au même langage.