

Für jede der Subfragen von 1. und 2. ist genau eine Antwortmöglichkeit richtig.

1. Multiple choice

[8 Punkte]

- 1.1. [2 Punkte] Seien A, B, C drei Ereignisse mit $\mathbb{P}[A] = 0.6$, $\mathbb{P}[B] = 0.4$, $\mathbb{P}[C] = 0.3$ und $\mathbb{P}[B \cap C] = 0.1$. Welche der folgenden Aussagen ist wahr?
 - (A) $\mathbb{P}[A \cap (B \cup C)] \ge 0.2$.

(C) $\mathbb{P}[A \cup B] = 1$.

(B) B und C sind unabhängig.

- (D) $\mathbb{P}[A \cap B^c \cap C^c] > 0.2$.
- 1.2. [2 Punkte] Sei X eine Zufallsvariable, die Werte in der Menge $\{0,1,3\}$ annimmt mit $\mathbb{E}[X]=2$. Welche der folgenden Aussagen ist wahr?
- (A) $\mathbb{P}[X=0] \ge \frac{1}{3}$. (B) $\mathbb{P}[X=1] \ge \frac{1}{2}$. (C) $\mathbb{P}[X=0] \le \frac{1}{6}$. (D) $\mathbb{P}[X=3] \ge \frac{1}{2}$.
- 1.3. [2 Punkte] Vier Spielerinnen nehmen an einem Turnier teil, wo jede gegen jede ein Match spielt. Die Gewinnerin erhält pro gewonnenem Spiel einen Punkt (und die Verliererin keinen), und beide Spielerinnen haben die gleiche Wahrscheinlichkeit zu gewinnen. Wer am Ende des Turniers die meisten Punkte hat gewinnt das Turnier, wobei bei gleicher Punktzahl per Zufall entschieden wird. Was ist die erwartete Nummer von Punkten der Gewinnerin des Turniers?
 - (A) 1.5

- (B) 2.25
- (C) 2.5

- (D) 2.675
- 1.4. [2 Punkte] Sei Y_1, Y_2, \ldots, Y_n eine Folge von i.i.d. Messungen einer unbekannten Größe m. Die Verteilung einer Messung ist $\mathcal{N}(m, \sigma^2)$ (weil wir annehmen, dass der Messfehler $\mathcal{N}(0, \sigma^2)$ verteilt ist) mit bekanntem $\sigma = 0.1$. Wir betrachten das 90%-Konfidenzintervall $I = \left[\frac{1}{n}\sum_{i=1}^{n}Y_i\right]$ $a_n, \frac{1}{n}\sum_{i=1}^n Y_i + a_n$] für m mit $\mathbb{P}\left[m \in \left[\frac{1}{n}\sum_{i=1}^n Y_i - a_n, \frac{1}{n}\sum_{i=1}^n Y_i + a_n\right]\right] = 0.9$. Welche der folgenden Aussagen ist korrekt?
 - (A) a_n ist monoton fallend in n.
 - (B) a_n ist monoton steigend in n.
 - (C) a_n muss im allgemeinen nicht monoton sein.

2. Multiple-Choice: Verteilungsfunktion F_X

[6 Punkte]

Gegeben sei eine Zufallsvariable X mit der Verteilungsfunktion

$$F_X(a) = \begin{cases} 0, & \text{falls } a < 0, \\ \frac{1}{3}, & \text{falls } 0 \le a < 2 \\ \frac{a}{4}, & \text{falls } 2 \le a < 3 \\ \frac{5}{6}, & \text{falls } 3 \le a < 6 \\ 1 - \frac{1}{10}e^{-(a-6)}, & \text{falls } a \ge 6. \end{cases}$$

- 2.1. [0.5 Punkte] $E_1 = \{X \leq 1\}$. Was ist die Wahrscheinlichkeit von E_1 ?
 - $(A) \mathbb{P}[E_1] = 0$

(B) $\mathbb{P}[E_1] = \frac{1}{6}$

- (C) $\mathbb{P}[E_1] = \frac{1}{3}$
- 2.2. [0.5 Punkte] $E_2 = \{X > 2\}$. Was ist die Wahrscheinlichkeit von E_2 ?
 - $(A) \mathbb{P}[E_2] = \frac{a}{4}$

(B) $\mathbb{P}[E_2] = \frac{1}{2}$

- (C) $\mathbb{P}[E_2] = \frac{2}{3}$
- 2.3. [0.5 Punkte] $E_3 = \{2 \le X < \frac{8}{3}\}$. Was ist die Wahrscheinlichkeit von E_3 ?
 - $(A) \mathbb{P}[E_3] = \frac{a}{4}$

(B) $\mathbb{P}[E_3] = \frac{1}{3}$

- (C) $\mathbb{P}[E_3] = \frac{2}{3}$
- 2.4. [0.5 Punkte] $E_4 = \{4 < X \le 5\}$. Was ist die Wahrscheinlichkeit von E_4 ?
 - $(A) \mathbb{P}[E_4] = 0$

(B) $\mathbb{P}[E_4] = \frac{5}{18}$

- (C) $\mathbb{P}[E_4] = \frac{5}{6}$
- 2.5. [0.5 Punkte] $E_5 = \{X = 6\}$. Was ist die Wahrscheinlichkeit von E_5 ?
 - (A) $\mathbb{P}[E_5] = 0$

(B) $\mathbb{P}[E_5] = \frac{1}{15}$

(C) $\mathbb{P}[E_5] = \frac{9}{10}$

- 2.6. [1 Punkt] Sind E_1 und E_2 unabhängig?
 - (A) Ja

- (B) Nein
- 2.7. [1 Punkt] Sind E_2 und E_3 unabhängig?
 - (A) Ja

- (B) Nein
- 2.8. [1 Punkt] Sind E_3 und E_4 unabhängig?
 - (A) Ja

- (B) Nein
- 2.9. [0.5 Punkte] Hat die Verteilung von X eine Wahrscheinlichkeitsdichte?
 - (A) Ja

(B) Nein

3. Zufällige Potenz

[5 Punkte]

Seien U und B zwei unabhängige Zufallsvariablen wobei U uniform verteilt ist auf [0,1] und B hat eine Bernoulli Verteilung mit Parameter $p \in (0,1)$. Wir definieren die Zufallsvariable $Z = U^{1+2B}$.

- 3.1. [2 Punkte] Finde die Verteilungsfunktion und Wahrscheinlichkeitsdichte von Z.
- 3.2. [2 Punkte] Finde $\mathbb{E}[Z]$, $\mathbb{E}[Z^2]$ und $\mathbb{E}[ZU]$.
- 3.3. [1 Punkt] Für welchen Wert von $\lambda \in \mathbb{R}$ ist $\mathbb{E}[(Z \lambda U)^2]$ minimal?

4. Uniform Verteilt [6 Punkte]

Wir betrachten i.i.d. Zufallsvariablen X_1, X_2, \ldots , wobei alle X_i die uniforme Verteilung auf [a, b] mit a < b besitzen. Sei (x_1, \ldots, x_n) eine Realisierung von (X_1, \ldots, X_n) . Bestimme den Maximum-Likelihood-Schätzer für a und b für diese Realisierung (x_1, \ldots, x_n) .

Hinweis: Die Likelihood-Funktion ist nicht differenzierbar. Es kann probiert werden erst die intuitiv richtige Lösung hinzuschreiben und anschliessend zu beweisen, dass diese korrekt ist.

5. Drei Würfel [5 Punkte]

Wir werfen drei normale 6-seitige Würfel. Seien X, Y, Z die geworfenen Augenzahlen mit Werten in $\{1, \ldots, 6\}$.

- 5.1. [2 Punkte] Was ist $\mathbb{P}[X = 1 | X + Y + Z \le 4]$?
- 5.2. [2 Punkte] Was ist $\mathbb{P}[X + Y + Z \ge 15 \mid X \ge 4]$?
- 5.3. [1 Punkt] Was ist $\mathbb{P}[X + Y < Z]$?