Systèmes dynamiques

Feuille d'exercices 4

Exercice 1. Exposants de Lyapunov pour les systèmes linéaires Soit A une matrice réelle carrée d'ordre n. Pour tout $x_0 \in \mathbb{R}^n$ non nul, on note

$$\lambda(x_0, A) = \limsup_{|t| \to +\infty} \frac{1}{t} \log \left\| e^{tA} x_0 \right\|.$$

Le nombre $\lambda(x_0, A)$ est appelé exposant de Lyapunov de la trajectoire $t \mapsto e^{tA}x_0$.

- 1. Montrer que $\lambda(x_0, A)$ est fini pour tout $x_0 \neq 0$ et ne dépend pas de la norme $\|\cdot\|$ choisie.
- 2. Montrer que si $B = P^{-1}AP$ avec P inversible, alors pour tout $y_0 \in \mathbb{R}^n$ non nul,

$$\lambda(y_0, B) = \lambda(Py_0, A).$$

On note $r_1 > \cdots > r_\ell$ les parties réelles ordonnées des valeurs propres de A, et

$$L_j = \bigoplus C_{\lambda,\bar{\lambda}}, \quad j = 1, \dots, m,$$

où la somme directe porte sur les $\lambda \in \operatorname{sp}(A)$ tels que $\Re(\lambda) = r_j$ et $\Im(\lambda) \geq 0$, et où

$$C_{\lambda,\bar{\lambda}} = \left\{ u \in \mathbf{R}^n : \exists N \in \mathbf{N}, (A - \lambda)^N (A - \bar{\lambda})^N u = 0 \right\}$$

est l'espace propre généralisé réel associé à λ et $\bar{\lambda}$ (si $\lambda \in \mathbf{R}$, $C_{\lambda,\bar{\lambda}} = C_{\lambda}$ est l'espace propre généralisé associé à λ). L'espace L_j est appelé espace de Lyapunov associé à r_j .

3. On suppose que $x_0 \in L(r_j)$ pour un certain $j \in \{1, \dots, \ell\}$. Montrer que

$$\lim_{t \to \pm \infty} \frac{1}{t} \log \left\| e^{tA} x_0 \right\| = r_j.$$

On note pour tout $j \in \{1, \dots, \ell\}$

$$V_j = L_\ell \oplus \ldots \oplus L_j, \quad W_j = L_j \oplus \ldots \oplus L_1.$$

4. Montrer que pour tout $x_0 \in \mathbf{R}^n$ non nul, $\lambda(x_0, A) \in \{r_1, \dots, r_\ell\}$ et que

$$\lim_{t \to +\infty} \frac{1}{t} \log \|\mathbf{e}^{tA} x_0\| = r_j \text{ si, et seulement si, } x_0 \in V_j \setminus V_{j+1},$$
$$\lim_{t \to +\infty} \frac{1}{t} \log \|\mathbf{e}^{tA} x_0\| = r_j \text{ si, et seulement si, } x_0 \in W_j \setminus W_{j-1}.$$

Pour toute matrice M on note $\operatorname{Lyap}(M) = \Re(\operatorname{sp}(M))$ l'ensemble de ses exposants de Lyapunov, et L(r,M) l'espace de Lyapunov associé à $r \in \operatorname{Lyap}(M)$. Soient a < b des réels. On note $U_{a,b}$ l'ensemble des matrices telles que $\{a,b\} \cap \operatorname{Lyap}(M) = \emptyset$ et pour tout $M \in U_{a,b}$ on note

$$L(a,b,M) = \bigoplus_{a < r < b} L(r,M).$$

5. Montrer que $U_{a,b}$ est ouvert et que l'application $M \mapsto \dim L(a,b,M)$ est localement constante sur $U_{a,b}$.

Exercice 2. Stabilité de 0 pour les systèmes linéaires

Soit A une matrice réelle carrée d'ordre n. Alors 0 est un point fixe de l'équation différentielle $\dot{x}=Ax$. On dira qu'il est

- stable si pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour tout $x \in \mathbf{R}^n$ tel que $||x|| \le \delta$, on a

$$\|\mathbf{e}^{tA}x\| \le \varepsilon, \quad t \ge 0 \; ;$$

- asymptotiquement stable s'il existe $\delta > 0$ tel que pour tout $x \in \mathbf{R}^n$ tel que $||x|| \leq \delta$, on a $e^{tA}x \xrightarrow[t \to +\infty]{} 0$;
- exponentiellement stable s'il existe $C \ge 1$ et $\beta, \eta > 0$ tels que pour tout $x \in \mathbf{R}^n$ tel que $||x|| \le \eta$, on a

$$\|e^{tA}x\| \le C\|x\|e^{-t\beta}, \quad t \ge 0.$$

- 1. Montrer que les conditions suivantes sont équivalentes :
 - (i) 0 est un point fixe asymptotiquement stable;
 - (ii) 0 est un point fixe exponentiellement stable;
 - (iii) Toutes les valeurs propres de A ont une partie réelle strictement négative.
 - (iv) Il existe une norme adaptée pour A, c'est à dire une norme $\|\cdot\|_A$ sur \mathbf{R}^n telle que pour un certain $\beta > 0$,

$$\|\mathbf{e}^{tA}x\|_A \le \mathbf{e}^{-\beta t} \|x\|_A, \quad x \in \mathbf{R}^n, \quad t \ge 0.$$

Une matrice vérifiant les conditions précédentes sera appelée contraction linéaire.

2. On suppose que toutes les valeurs propres de A ont une partie réelle négative ou nulle. Montrer que 0 est un point fixe stable si et seulement si toutes les valeurs propres de A de parties réelles nulles sont semi-simples (i.e. les blocs de Jordan complexes sont de taille 1).

Exercice 3. Systèmes linaires topologiquement conjugués

On se donne A et B deux contractions linéaires et $\|\cdot\|_A$ et $\|\cdot\|_B$ des normes adaptées à A et B (cf. exercice précédent). On note

$$S_A = \{x \in \mathbf{R}^n, \|x\|_A = 1\}, \quad S_B = \{x \in \mathbf{R}^n, \|x\|_B = 1\}.$$

1. Montrer qu'il existe une application continue $\tau: \mathbf{R}^n \setminus \{0\} \to \mathbf{R}$ telle que

$$e^{\tau(x)A}x \in S_A, \quad x \in \mathbf{R}^n \setminus \{0\}.$$

2. Soit φ un homéomorphisme $S_A \to S_B$ et $\Phi: \mathbf{R}^n \to \mathbf{R}^n$ l'application définie par $\Phi(0) = 0$ et

$$\Phi(x) = e^{-\tau(x)B} \varphi\left(e^{\tau(x)A}x\right), \quad x \in \mathbf{R}^n \setminus \{0\}.$$

Montrer que Φ est un homéomorphisme de ${\bf R}^n$ dans lui-même et qu'on a

$$\Phi \circ e^{tA} = e^{tB} \circ \Phi, \quad t \in \mathbf{R}.$$

Dans la suite on ne suppose plus que A et B sont des contractions mais qu'elles induisent des flots hyperboliques, i.e. toutes les valeurs propres de A et de B ont une partie réelle non nulle. On suppose qu'il existe une famille continue de matrices A_t , $t \in [0,1]$ telle que $A_0 = A$, $A_1 = B$ et

$$0 \notin \Re(\operatorname{sp}(A_t)), \quad t \in [0, 1].$$

3. En utilisant la question 1.5., montrer que les flots induits par A et B sont conjugués.

Exercice 4. Systèmes linéaires avec second membre

Soit A une matrice carrée d'ordre n, et $z: \mathbf{R} \to \mathbf{R}^n$ une application continue.

1. Résoudre l'équation différentielle

$$\dot{x}(t) = Ax(t) + z(t). \tag{1}$$

2. On suppose que A est une contraction linéaire et que $z(t) \to z_{\infty} \in \mathbf{R}^n$ quand $t \to +\infty$. Montrer que toute solution de $(\ref{eq:contraction})$ converge en grand temps vers une limite à déterminer.