CLEAN VERSION OF THE ENTIRE SET OF CLAIMS

1	1 1. A method comprising:				
2	determining a processor state of a processor upon expiration of a system				
3	management interrupt (SMI) timer, the processor state being one of an op	erational state			
4	and a low power state;				
5	loading the SMI timer with a timer value based on the processor state, the timer				
6	value being one of a first value and a second value; and				
7	transitioning the processor to one of the operational state and the low power stat				
8	according to the processor state.				
1	The method of claim 1 wherein loading the SMI timer con	ıprises:			
2	loading the SMI timer with the first value if the processor state is the operationa				
3	state; and				
4	loading the SMI timer with the second value if the processor state	is the low pow			
5	5 state.				
l	3. The method of claim 2 wherein transitioning comprises:				
2	transitioning the processor to the operational state if the processor	state is the low			
3	B power state; and				
4	transitioning the processor to the reduced power state if the proces	sor state is the			
5	operational state.				
1	4. The method of claim 1 further comprising:				
2	disabling the SMI timer if throttling is disabled; and				
3	enabling the SMI timer if throttling is enabled.				
1	5. The method of claim 1 further comprising:				
2	generating a SMI access to a throttling state in response to an input	output (I/O)			
3	trap;				
4	updating the throttling state if the access is a write; and				

1 6. The method of claim 5 wherein generating the SMI access comprises: 2 reporting the throttling state at a dummy address; and 3 generating the I/O trap by an SMI handler using the dummy address, the I/O trap 4 generating the SMI access. 1 7. The method of claim 6 wherein generating the I/O trap comprises: 2 invoking the SMI handler to trap on the dummy address; 3 booting a power management OS; 4 loading the dummy address by the power management OS; 5 accessing the throttling state at the dummy address by the power management OS; 6 and 7 generating the I/O trap by a chipset in response to accessing the throttling state by 8 the power management OS. The method of claim 4 wherein booting the power management OS 1 8. 2 comprises: 3 booting an Advanced Configuration and Power Interface (ACPI) OS. 1 9. The method of claim 3 wherein transitioning the processor to the low power 2 state comprises: 3 transitioning the processor to one of a first power state, a second power state, a 4 third power state, and a sleep state. 1 10. The method of claim 1 wherein loading the SMI timer comprises: 2 loading the SMI timer in a chipset. 1 11. A computer program product comprises: 2 a machine useable medium having computer program code embedded therein, the

returning the throttling state if the access is a read.

5

computer program product having:

3

4	computer readable program code to determine a processor state of a			
5	processor upon expiration of a system management interrupt (SMI) timer, the			
6	processor state being one of an operational state and a low power state;			
7	computer readable program code to load the SMI timer with a timer value			
8	based on the processor state, the timer value being one of a first value and a second			
9	value; and			
10	computer readable program code to transition the processor to one of the			
11	operational state and the low power state according to the processor state.			
1	12. The computer program product of claim 11 wherein the computer readable			
2	program code to load the SMI timer comprises:			
3	computer readable program code to load the SMI timer with the first value if the			
4	processor state is the operational state; and			
5	computer readable program code to load the SMI timer with the second value if the			
6	processor state is the low power state.			
1	13. The computer program product of claim 12 wherein the computer readable			
2	. •			
3	computer readable program code to transition the processor to the operational state			
4	•			
5	computer readable program code to transition the processor to the reduced power			
6	state if the processor state is the operational state.			
1	14. The computer program product of claim 11 further comprising:			
2	computer readable program code to disable the SMI timer if throttling is disabled;			
3	and			
4	computer readable program code to enable the SMI timer if throttling is enabled.			
1	15. The computer program product of claim 11 further comprising:			
2	computer readable program code to generate a SMI access to a throttling state in			

response to an input/output (I/O) trap;

3

4	computer readable program code to update the throttling state if the access is a				
5	write; and				
6	computer readable program code to return the throttling state if the access is a read.				
1	16. The computer program product of claim 15 wherein the computer readable				
2	program code to generate the SMI access comprises:				
3	computer readable program code to report the throttling state at a dummy address;				
4	and				
5	computer readable program code to generate the I/O trap by an SMI handler using				
6	the dummy address, the I/O trap generating the SMI access.				
1	17. The computer program product of claim 16 wherein the computer readable				
2	program code to generate the I/O trap comprises:				
3	computer readable program code to invoke the SMI handler to trap on the dummy				
4	address;				
5	computer readable program code to boot a power management OS;				
6	computer readable program code to load the dummy address by the power				
7	management OS;				
8	computer readable program code to access the throttling state at the dummy address				
9	by the power management OS; and				
10	computer readable program code to generate the I/O trap by a chipset in response				
11	to accessing the throttling state by the power management OS.				
1	18. The computer program product of claim 14 wherein the computer readable				
2	program code to boot the power management OS comprises:				
3	computer readable program code to boot an Advanced Configuration and Power				
4	Interface (ACPI) OS.				
1	19. The computer program product of claim 13 wherein the computer readable				
2	program code to transition the processor to the low power state comprises:				
3	computer readable program code to transition the processor to one of a first power				
4	state, a second power state, a third power state, and a sleep state.				

1	20. The computer program product of claim 11 wherein the computer readable				
2	program code to load the SMI timer comprises:				
3	computer readable program code to load the SMI timer in a chipset.				
1	21. A system comprising:				
2	a processor;				
3	a memory coupled to the processor to store a throttling emulator, the throttling				
4	emulator, when executed, causing the processor to:				
5	determine a processor state of the processor upon expiration of a				
6	system management interrupt (SMI) timer, the processor state being one of an				
7	operational state and a low power state;				
8	load the SMI timer with a timer value based on the processor state,				
9	the timer value being one of a first value and a second value; and				
10	transition the processor to one of the operational state and the low				
11	power state according to the processor state.				
1	22. The system of claim 21 wherein the throttling emulator causing the				
2	processor to load causes the processor to:				
3	load the SMI timer with the first value if the processor state is the operational state				
4	and				
5	load the SMI timer with the second value if the processor state is the low power				
6	state.				
1	23. The system of claim 22 wherein the throttling emulator causing the				
1	2				
2	processor to transition causes the processor to:				
3	transition the processor to the operational state if the processor state is the low				
4	power state; and				
5	transition the processor to the reduced power state if the processor state is the				
6	operational state.				

A Tighter to the comment of the comment of the means of the second of th

1	24. The system of claim 21 wherein the throttling emulator, when executed,			
2	further causes the processor to:			
3	disable the SMI timer if throttling is disabled; and			
4	enable the SMI timer if throttling is enabled.			
1	25. The system of claim 21 wherein the throttling emulator further causes the			
2	processor to:			
3	generate a SMI access to a throttling state in response to an input/output (I/O) trap;			
4	update the throttling state if the access is a write; and			
5	return the throttling state if the access is a read.			
1	26. The system of claim 25 wherein the throttling emulator causing the			
2	processor to generate the SMI access causes the processor to:			
3	report the throttling state at a dummy address; and			
4	generate the I/O trap by an SMI handler using the dummy address, the I/O trap			
5	generating the SMI access.			
1	27. The system of claim 26 wherein the throttling emulator causing the			
2	processor to generate the I/O trap causes the processor to:			
3	invoke the SMI handler to trap on the dummy address;			
4	boot a power management OS;			
5	load the dummy address by the power management OS;			
6	access the throttling state at the dummy address by the power management OS; and			
7	generate the I/O trap by a chipset in response to accessing the throttling state by th			
8	power management OS.			
1	28. The system of claim 24 wherein the throttling emulator causing the			

2

3

processor to boot the power management OS causes the processor to:

boot an Advanced Configuration and Power Interface (ACPI) OS.

	1	29. The system of claim 23 wherein the throttling emulator causing the
	2	processor to transition the processor to the low power state causes the processor to:
	3	transition the processor to one of a first power state, a second power state, a third
, \	4 power state, and a sleep state.	
h,	1	30. The system of claim 21 wherein the throttling emulator causing the
	2	processor to load the SMI timer causes the processor to:

load the SMI timer in a chipset.

3

Territoria per la comprese de la contratorio del perente de explicatoria produce de la comprese de la compres La comprese de la co