Coverage Testing in Non-Stationary Time Series Forecasts

This repository accompanies the following **submitted manuscript**:

Title:

Testing Marginal and Conditional Coverage in Non-Stationary Time Series Forecasts through Value-at-Risk Backtesting

Author: Konrad Retzlaff

This manuscript was submitted to CoPA 2025 (Symposium on Conformal and Probabilistic Prediction with Applications) on May 17, 2025. As CoPA imposes no exclusivity requirement, this submission does not pose any copyright or concurrent submission conflict.

Project Summary

This project introduces a **statistical testing framework** for evaluating **Conformal Prediction (CP)** under **non-stationary time series**. Inspired by Value-at-Risk (VaR) backtesting, we assess CP methods using **formal hypothesis tests** for marginal validity, temporal independence, and conditional coverage.

We evaluate CP methods on:

- Synthetic data with changepoints and drift (Barber et al., 2023)
- **Electricity price forecasts** (ELEC2 dataset from Kaggle)
- **S&P 100 stock forecasts** (retrieved from Yahoo Finance API)

Folder Structure

Repository Files

File	Description	
ConformalPredictor.py	Implements Split CP, CQR, and ACI	
TestingFramework.py	Contains all 8 formal backtests	
Synthetic_data.ipynb	Runs CP+LS, NexCP+LS, NexCP+WLS on synthetic data (Barber et al.)	
Elec_data.ipynb	Applies all 3 Barber methods to the ELEC2 dataset	
Modeltrainer.ipynb	Trains LightGBM model on S&P 100 stock return data	
Calib_Analysis.ipynb	Applies Split CP, CQR, ACI and all tests to financial data	
requirements.txt	Python packages needed to reproduce results	

CP Methods Used

Synthetic & ELEC2 (Barber et al., 2023)

- CP+LS: Full Conformal Prediction with Least Squares
- NexCP+LS: Non-exchangeable CP with exponential weights
- NexCP+WLS: Non-exchangeable CP with Weighted Least Squares

Financial Time Series (S&P 100)

- Split CP
- Conformalized Quantile Regression (CQR)
- Adaptive Conformal Inference (ACI)

Statistical Tests (8 total, grouped in 4 categories)

Category	Purpose	Included Tests
1. Marginal Coverage	Is average coverage close to target rate α ?	 Binomial Test (Lower) Binomial Test (Upper) Binomial Test (Two-sided) First Geometric Test (for parameter (a))
2. Violation Independence	Are violations temporally independent?	• Second Geometric Test (for parameter (b))
3. Conditional Coverage	Are violations predictable from inputs?	 Joint Geometric Test (for (a) and (b)) Dynamic Binary Test
4. Interval Score Comparison	Are intervals both valid and efficient?	Comparative Interval-Score Test (Diebold-Mariano)

Installation

```
git clone https://github.com/KonradRtz/Coverage-Testing-in-Non-stationary-Time-
Series.git
cd Coverage-Testing-in-Non-stationary-Time-Series
pip install -r requirements.txt
```

Dependencies include:

numpy, pandas, scipy, matplotlib, scikit-learn, lightgbm

How to Run

Synthetic Data

Run Synthetic_data.ipynb to evaluate CP+LS, NexCP+LS, and NexCP+WLS.

Default predictions are included in data/Synthetic Data/.

Alternative: You may regenerate synthetic predictions using the official implementation by Barber et al.:

https://rinafb.github.io/code/nonexchangeable_conformal.zip

Convert the output to:

```
method, time, true_y, lower_bound, upper_bound, violation
```

Electricity Forecasts (ELEC2)

Run Elec_data.ipynb using files in data/ELEC2/.

You may optionally regenerate predictions using the same external code and formatting as above.

Financial Forecasts

- 1. Train forecasting model in Modeltrainer.ipynb
- 2. Evaluate with Split CP, CQR, and ACI in Calib_Analysis.ipynb using Yahoo Finance-based data

Output

Results include full statistical test reports, p-values, and interval score comparisons per method.

References

• Barber, Candès, Ramdas, Tibshirani (2023)

Conformal Prediction Beyond Exchangeability

arXiv:2202.13415

• Romano, Patterson, Candès (2019)

Conformalized Quantile Regression arXiv:1905.03222

• Gibbs & Candès (2021)

Adaptive Conformal Inference arXiv:2106.00170

• ELEC2 Dataset

https://www.kaggle.com/datasets/yashsharan/the-elec2-dataset

Contact

kretz laff. student@maastrichtuniversity.nl