

Prof. Eliomar Araújo de Lima, Dr.

1º Semestre de 2017

Parte II – Texto 01:

ÁLGEBRA E CÁLCULO RELACIONAL

Modelo Relacional

- Um modelo relacional representa o banco de dados como um conjunto de relações.
- Uma **relação** pode ser pensada como uma **tabela** de valores.
 - Cada **linha** na tabela representa uma coleção de valores de dados relacionados.

Modelo Relacional

- Terminologia formal do modelo relacional:
 - uma linha é chamada de tupla;
 - o cabeçalho da coluna é chamado de atributo;
 - a tabela é chamada de relação;
 - o **tipo de dados** que descreve os tipos de valores que podem aparecer em cada coluna é chamado de **domínio**.
 - O esquema de uma relação R é denotado por o nome de R(A₁,A₂,...,A_n), sendo A_i o nome de um atributo.

Modelo Relacional

Modelo Relacional – Manipulação

- o Duas categorias de linguagens
 - Formais: álgebra relacional e cálculo relacional
 - Alto Nível (comerciais): baseadas nas linguagens formais – SQL.
- Linguagens formais Características
 - orientadas a conjuntos
 - linguagens de base: linguagens relacionais devem ter no mínimo um poder de expressão equivalente ao de uma linguagem formal.
- Fechamento
 - resultados de consultas são relações.

- Álgebra desenvolvida para descrever operações sobre uma base de dados relacional.
- o O conjunto de objetos são as relações.
- o Operadores para consulta e alteração de relações.
- Linguagem procedural
 - uma expressão na álgebra define uma execução sequencial de operadores
 - a execução de cada operador produz uma relação.

 Os operadores da álgebra relacional recebem uma ou mais relações de entrada e geram uma nova relação de saída.

- Benefícios esperados:
 - Compreendendo a álgebra relacional é mais fácil apreender SQL.
 - Não há SGBD que implementa álgebra diretamente como DML (*Data Manipulation Language*), mas SQL incorpora cada vez mais conceitos de álgebra.
 - Algoritmos de otimização de consulta são definidos sobre álgebra (possível uso internamente no SGBD).

- Operadores sobre conjuntos (uma tabela é um conjunto de linhas):
 - União, Interseção, Diferença, Produto Cartesiano.
- o Operadores específicos da álgebra relacional:
 - Seleção
 - Projeção
 - Junção
 - Divisão
 - Renomeação

ESQUEMA RELACIONAL: EXEMPLO

Empregado

codEmp	Nome	Salario	ldade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Departamento

codDep	Descricao
001	Pesquisa
002	Desenvolvimento

Projeto

codProj	Descricao	codDep
А	Mobile app	001
В	DW espaço-temporal	002

ProjetoEmpregado

codProj	codEmp	dataln	dataFi
А	200	01/01/2015	atual
А	201	01/01/2015	atual
А	202	01/02/2014	18/02/2015
В	203	15/02/2014	15/02/2015

Seleção (σ)

- Retorna tuplas que satisfazem uma condição.
 - Age como um filtro que matém somente as tuplas que satisfazem a condição.
 - Ex.: selecione os empregados com salário maior que 500

• O resultado:

- é uma relação que contém as tuplas que satisfazem a condição especificada.
- Possui os mesmos atributos da relação de entrada.

Seleção (σ)

Sintaxe:

σ <condição de seleção> (<R>)

- Sigma(σ): é o símbolo que representa a seleção.
- <condição de seleção> é uma expressão booleana que envolve literais e valores de atributos da relação.

Seleção (σ)

<nome do atributo> <operador de comparação> <valor constante>

OU

<nome do atributo> <operador de comparação> <nome do atributo>

- o Nome do atributo: é um atributo de R
- Operador de comparação: =, <, <=, >, >=, <>
- Valor constante: é um valor do domínio do atributo
- o Podem ser ligadas pelos operadores AND, OR e NOT.
- <R> é o nome de uma relação ou de uma expressão da álgebra relacional de onde as tuplas serão extraídas.

Seleção (σ) – Exemplo

• Buscar os dados dos *empregados* que estão com salário menor que 2.000,00.

 $\sigma_{\text{salario} < 2000}$ (Empregado)

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nome	Salario	idade	codDep
203	Ana	1.800,00	25	002

Seleção (σ) - Exemplo

• Buscar os dados dos empregados com salário maior que 2.000,00 e com menos de 45 anos.

σ salario>2000 AND idade < 45 (Empregado)

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nome	Salario	idade	codDep
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001

Projeção (π)

o Retorna um ou mais atributos de interesse.

O resultado é uma relação que contém apenas as

colunas selecionadas.

* Elimina duplicatas

Projeção (π)

• Sintaxe:

π < lista de atributos >

(<R>)

onde:

- lista de atributos> é uma lista que contém nomes de colunas de uma ou mais relações.
- <**R**> é o nome da relação ou de uma expressão da álgebra relacional de onde a lista de atributos será extraída.

Projeção (π) — Exemplo

• Buscar o nome e a idade de todos os empregados

π nome, idade (Empregado) ~

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

Nome	idade
Pedro	45
Paulo	43
Maria	38
Ana	25

Projeção e Seleção

- Operadores diferentes podem ser aninhados.
 - Ex.: Buscar o nome e o salário dos empregados com mais de 40 anos.

$$\pi_{\text{nome, salario}} (\sigma_{\text{idade} > 40} (\text{Empregado}))$$

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

Nome	Salario
Pedro	3.000,00
Paulo	2.200,00

Exercícios de Seleção e Projeção

- 1) Busque todos os empregados com menos de 30 anos.
- 2) Busque o código dos empregados que trabalham no projeto A.
- 3) Selecione o nome e o salário dos empregados que trabalham no departamento 001.
- 4) Busque o código do projeto e o código do empregado dos projetos em andamento em 2015.
- 5) E se quisermos buscar o nome do projeto e o nome dos empregados dos projetos em andamento em 2015?

Operações — Teoria dos Conjuntos

- A álgebra relacional utiliza 4 operadores da teoria dos conjuntos:
 - o União,
 - Intersecção,
 - Diferença e
 - o Produto Cartesiano.
- Todos os operadores utilizam ao menos **DUAS** relações.

Operações — Teoria dos Conjuntos

- As relações devem ser compatíveis:
 - possuir o mesmo número de atributos;
 - o *domínio* da i-ésima coluna de uma relação deve ser idêntico ao domínio da i-ésima coluna da outra relação.
- Quando os nomes dos atributos forem diferentes, adota-se a convenção de usar os nomes dos atributos da primeira relação.

Intersecção (∩)

• Retorna uma relação com as tuplas comuns à relação R e à relação S.

o Notação: R ∩ S

R S

х	y	Z	х	y	z
1	I	1	1	1	1
1	2	2	1	2	1
2	2	3	3	1	1
43	7	7	-		

 $R \cap S$

X	y	Z
1	1	1
3	1	1

Intersecção (\cap) — Exemplo

• Buscar o nome e CPF dos empregados de Goiânia que estão internados como pacientes.

 π nome, CPF (**Empregado**) \cap π nome, CPF

(σ cidade = 'Goiânia') Paciente))

União (\cup)

- Requer que as duas relações fornecidas como argumento tenham o mesmo esquema.
- Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é a união dos conjuntos de linhas das relações dadas como argumento.
 - Retorna a união das tuplas de duas relações R e S.
- Eliminação automática de duplicatas.

União (\cup)

	R				S			R	. U	S	
\boldsymbol{x}	y	Z		\boldsymbol{x}	y	Z		х	y	Z	
1	1	1		1	I	1		1	1	1	
1	2	2		1	2	1		1	2	1	
2	2	3		1	2	3		1	2	2	
3	1	1	•					I	2	3	
								2	2	3	
								3	I	I	

União (\cup) — Exemplo

• Buscar o nome e o CPF dos médicos e dos pacientes cadastrados no hospital.

 π nome, CPF (Medico) $\cup \pi$ nome, CPF (Paciente)

Exercícios de Intersecção e União

- 1) Selecione o nome dos empregados que trabalham no departamento de Pesquisa.
- 2) Selecione o nome e o salário dos empregados que trabalham no projeto 'Mobile app'.
- 3) Selecione o nome dos empregados e o nome dos projetos em andamento em 2015.

DIFERENÇA (-)

- Requer que as duas relações fornecidas como argumento tenham o mesmo esquema.
- Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é o conjunto de linhas da primeira relação menos as linhas existentes na segunda.

DIFERENÇA (-)

- Retorna as tuplas presentes na relação R e ausentes em S.
- o Notação:

R	S	R-S
x y z 1 1 1 1 2 2 2 2 3 3 1 1	x y z 1 1 1 1 2 1 3 1 1	x y z

DIFERENÇA (-) - EXEMPLO

• Buscar o número dos ambulatórios onde nenhum médico dá atendimento.

 π numAmb (Ambulatorio) — π numAmb (Medico)

PRODUTO CARTESIANO (X)

- Retorna todas as combinações de tuplas de duas relações R e S.
- O resultado é uma relação cujas tuplas são a combinação das tuplas das relações R e S, tomando-se uma tupla de R e concatenando-a com uma tupla de S
- o Notação:

 $R \times S$

PRODUTO CARTESIANO (X)

Total de atributos do produto cartesiano = num. atributos de R + num. atributos de S

Número de tuplas do produto cartesiano = num. tuplas de R x num tuplas de S

PRODUTO CARTESIANO (X)

• Exemplo:

	R	S			
\boldsymbol{x}	\boldsymbol{y}	Z		11/2	\boldsymbol{y}
1	1	1		1	1
2	2	2	·	2	2
3	3	3			

х	$R_{1}y$	z	w	$R_{2}y$
1	1	1	I	1
1	1	1	2	2
2	2	2	1	1
2	2	2	2	2
3	3	3	I	1
3	3	3	2	2

Produto Cartesiano – Exemplo1

• Buscar o nome dos médicos que têm consulta marcada e as datas das suas consultas.

π medico.nome, consulta.data (σ medico.CRM = consulta.CRM (Medico X Consulta))

Produto Cartesiano – Exemplo2

• Buscar, para as consultas marcadas para o período da manhã (7hs-12hs), o nome do médico, o nome do paciente e a data da consulta.

π medico.nome, paciente.nome, consulta.data

(σ consulta.hora >= 7 AND consulta.hora <= 12)

AND

medico.CRM = consulta.CRM **AND** consulta.RG = paciente.RG

(Medico X Consulta X Paciente))

Considere o Seguinte Esquema Relacional

- Ambulatorio (numAmb, andar, capacidade)
- Medico (CRM, nome, idade, cidade, especialidade, #numAmb)
- Paciente (RG, nome, idade, cidade, doenca)
- o Consulta (#CRM, #RG, data, hora)
- Empregado (RG, nome, idade, cidade, salario)

- 1. Buscar os dados dos pacientes que estão com dengue.
- 2. Buscar os dados dos médicos pediatras com mais de 40 anos.
- 3. Buscar os dados das consultas, exceto aquelas marcadas para os médicos com CRM 24 e 56.
- 4. Buscar os dados dos ambulatórios do sexto andar que ou tenham capacidade igual a 60 ou tenham número superior a 20.
- 5. Buscar o nome e a especialidade de todos os médicos.
- 6. Buscar o número dos ambulatórios do terceiro andar.

- 7. Buscar o CRM dos médicos e as datas das consultas para os pacientes com RG 122 e 725.
- 8. Buscar os números dos ambulatórios, exceto aqueles do segundo e quarto andares, que suportam mais de 50 pacientes.
- 9. Buscar o nome dos médicos que têm consulta marcada e as datas das suas consultas.
- 10. Buscar o número e a capacidade dos ambulatórios do quinto andar e o nome dos médicos que atendem neles.
- 11. Buscar o nome dos médicos e o nome dos seus pacientes com consulta marcada, assim como a data destas consultas.

- 12. Buscar os nomes dos médicos ortopedistas com consultas marcadas para o período da manhã (7hs-12hs) do dia 15/04/03.
- 13. Buscar os nomes dos pacientes, com consultas marcadas para os médicos João Carlos Santos ou Maria Souza, que estão com pneumonia.
- 14. Buscar os nomes dos médicos e pacientes cadastrados em Brasília.
- 15. Buscar os nomes e idade dos médicos, pacientes e empregados que residem em Florianópolis.

- 16. Buscar os nomes e RGs dos empregados que recebem salários abaixo de R\$ 300,00 e que não estão internados como pacientes.
- 17. Buscar os números dos ambulatórios onde nenhum médico dá atendimento.
- 18. Buscar os nomes e RGs dos funcionários que estão internados como pacientes.
- 19. Buscar os dados dos ambulatórios do quarto andar. Estes ambulatórios devem ter capacidade igual a 50 ou o número do ambulatório deve ser superior a 10.

- 20. Buscar os números dos ambulatórios que os médicos psiquiatras atendem
- 21. Buscar o nome e o salário dos empregados de Florianopolis e Sao José que estão internados como pacientes e têm consulta marcada com ortopedistas.
- 22. Buscar o nome dos empregados que não são pacientes.
- 23. Buscar o nome dos empregados que são pacientes.

BIBLIOGRAFIA

- o NAVATHE, Shamkant B.; ELMASRI, Ramez. Sistemas de banco de dados. 6. ed. São Paulo: Pearson Brasil, 2012.
- MACHADO, Felipe Nery Rodrigues. Banco de dados:
 projeto e implementação. 2. ed. São Paulo: Érica, 2010.
- CORONEL, Carlos; ROB, Peter. Sistemas de banco de dados: projeto, implementação e administração. 8. ed. São Paulo: Cengage Learning 2010.