EE 235, Winter 2018

Homework 1: Math Review

Due Saturday January 6, 2018 by 11:59pm via CANVAS SUBMISSION

HW1 Topics: Complex Numbers, Functions, and Integration

HW1 References: OWN Sections 1.2, 1.2.1, HW1 Supplementary Notes

HW1 Problems (Total = 64 pts):

- 1. Complex Numbers Magnitude and Phase Components, Real and Imaginary Parts.
 - (a) (5 pts) Identify the magnitude component |z| and the phase component $\angle z$ for the following complex numbers:

i.
$$z = 4e^{-j}$$
.

ii.
$$z = e^{j\frac{\pi}{6}}$$
.

(b) (5 pts) Identify the real part $Re\{z\}$ and the imaginary part $Im\{z\}$ for the following complex numbers:

i.
$$z = 2 - j3$$
.

ii.
$$z = j2$$
.

iii.
$$z=3$$
.

- 2. Complex Numbers Polar Form and Rectangular Form.
 - (a) (5 pts) Using the unit circle or formulas for r and θ , convert the following complex numbers in to polar form, $z = re^{j\theta}$. Make sure r > 0 and $-\pi < \theta \le \pi$:

i.
$$z = \frac{\sqrt{3}}{2} + j\frac{1}{2}$$
.

ii.
$$z = -2$$

(b) (5 pts) Using the complex plane or Euler's formula, convert the following complex numbers in to rectangular form, z = x + jy:

i.
$$z = 3e^{-j\pi}$$

ii.
$$z = 2e^{j\frac{\pi}{2}}$$

- 3. Complex Conjugation
 - (a) Using the method of complex conjugation for dividing complex numbers, simplify the expression for each of the following complex numbers so that your answer is in rectangular form, z = x + y:

i. (2 pts)
$$z = \frac{1}{1-j2}$$
. Show that $z = \frac{1}{5} + j\frac{2}{5}$.

ii. (5 pts)
$$z = -\frac{1+j2}{1-j2}$$
.

(b) Using the method of complex conjugation for finding magnitude, find the magnitude squared component $|z|^2$ for:

i. (2 pts)
$$z = 1 + j3$$
.

Show that
$$|z|^2 = 10$$
.

ii. (2 pts)
$$z = 2e^{j3}$$
.

Show that
$$|z|^2 = 4$$
.

$4.\ Function\ Evaluation.$

- (a) (5 pts) Let y(t) = tx(t+3)
 - i. What is the expression for y(t-3)?
 - ii. What is the expression for y(2t)?

(b) (5 pts) Let
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

i. What is the expression for y(3)?

ii. What is the expression for y(-t)?

$5. \ Integration.$

- (a) (2 pts) Evaluate the following integral: $\int_3^\infty e^{-6t} dt + \int_{-\infty}^0 e^{6t} dt$. Show that the answer is $\frac{1}{6}(e^{-18}+1)$.
- (b) (2 pts) Evaluate the integral $\int_{t-2}^{5} d\tau$. Note: τ is the variable of integration and t can be treated as a constant. Show that the answer is -t+7.
- (c) (2 pts) Suppose $\int_{-\infty}^{\infty} x(t)dt = 3$. Using this known integral and u-substitution, evaluate $\int_{-\infty}^{\infty} x(2t)dt$. Show that the answer is $\frac{3}{2}$.
- (d) (5 pts) Suppose $\int_{-\infty}^{x} x(t)dt = 2$, where x(t) is a function of t, t is the variable of integration, and x can be treated as a constant. Using u-substitution, evaluate $\int_{-\infty}^{x-1} 2x(t+1)dt$.
- (e) (2 pts) Consider $\int_{-\infty}^{t+2} x(\tau t_o) d\tau$, where τ is the variable of integration and t and t_o can be treated as constants. Using u-substitution, we can rewrite this integral as $\int_{-\infty}^{a} x(u) du$. What is a in terms of t and t_o ? Show that $a = t + 2 t_o$.

6. Homework Self-Reflection

(10 pts) After completing your homework, go to the following link to rate your skill or concept understanding level for each item listed. Your self-reflection must be completed by the due date. All submissions are time-stamped, so please give yourself plenty of time to complete and submit your self-reflection.

http://bit.ly/2qfmaEQ