Laws of Logic

1. $\neg \neg p \leftrightarrow p$	Law of Double Negation
\mathbf{I} , \mathbf{I} \mathbf{I} \mathbf{P} \mathbf{V} \mathbf{P}	Eaw of Bodole Regulion

2.
$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$
 DeMorgan's Law

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

3.
$$p \lor q \leftrightarrow q \lor p$$
 Commutative Laws

$$p \land q \leftrightarrow q \land p$$

4.
$$p \lor (q \lor r) \longleftrightarrow (p \lor q) \lor r$$
 Associative Laws

$$p \land (q \land r) \leftrightarrow (p \land q) \land r$$

5.
$$p \lor (q \land r) \longleftrightarrow (p \lor q) \land (p \lor r)$$
 Distributive Laws

$$p \land (q \lor r) \longleftrightarrow (p \land q) \lor (p \land r)$$

6.
$$p \lor p \leftrightarrow p$$
 Idempotent Laws

$$p \wedge p \longleftrightarrow p$$

7.
$$p \lor F \leftrightarrow p$$
 Identity Laws

$$p \wedge T \leftrightarrow p$$

8.
$$p \lor \neg p \leftrightarrow T$$
 Inverse Laws

$$p \land \neg p \longleftrightarrow F$$

9.
$$p \lor T \longleftrightarrow T$$
 Domination Laws

$$p \wedge F \leftrightarrow F$$

10.
$$p \lor (p \land q) \leftrightarrow p$$
 Absorption Laws

$$p \land (p \lor q) \leftrightarrow p$$

11.
$$(p \rightarrow q) \leftrightarrow (\bar{p} \lor q)$$
 Implication Identity

12.
$$(p \to q) \leftrightarrow (\bar{q} \to \bar{p})$$
 Contrapositive

Laws of Set Theory

=	
1. A = A	Law of Double Negation

2.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 DeMorgan's Laws $\overline{A \cap B} = \overline{A} \cup \overline{B}$

3.
$$A \cup B = B \cup A$$
 Commutative Laws

$$A \cap B = B \cap A$$

 $A \cap (A \cup B) = A$

4.
$$A \cup (B \cup C) = (A \cup B) \cup C$$
 Associative Laws

$$A \cap (B \cap C) = (A \cap B) \cap C$$

5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

6.
$$A \cup A = A$$
 Idempotent Laws $A \cap A = A$

7.
$$A \cup \emptyset = A$$
 Identity Laws

$$A \cap \mathcal{U} = A$$

8.
$$A \cup \bar{A} = \mathcal{U}$$
 Inverse Laws $A \cap \bar{A} = \emptyset$

9.
$$A \cup \mathcal{U} = \mathcal{U}$$
 Domination Laws

9.
$$A \cup \mathcal{U} = \mathcal{U}$$
 Domination Laws $A \cap \emptyset = \emptyset$

10.
$$A \cup (A \cap B) = A$$
 Absorption Laws

Rules of Inference

1.
$$[p \land (p \rightarrow q)] \rightarrow q$$

Rule of Detachment (Modus Ponens)

2.
$$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

Law of Syllogism

3.
$$[(p \rightarrow q) \land \neg q] \rightarrow \neg p$$

Modus Tollens

4.
$$[(p) \land (q)] \rightarrow p \land q$$

Rule of Conjunction

5.
$$[(p \lor q) \land \neg p] \rightarrow q$$

Rule of Disjunctive Syllogism

6.
$$(\neg p \rightarrow F) \rightarrow p$$

Rule of Contradiction

7.
$$(p \land q) \rightarrow p$$

Rule of Conjunctive Simplification

8.
$$p \rightarrow (p \lor q)$$

Rule of Disjunctive Amplification

9.
$$[(p \land q) \land [p \rightarrow (q \rightarrow r)]] \rightarrow r$$

Rule of Conditional Proof

10.
$$[(p \rightarrow r) \land (q \rightarrow r)] \rightarrow [(p \lor q) \rightarrow r]$$

Rule for Proof by Cases

11.
$$[(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r)] \rightarrow (q \lor s)$$

Rule of the Constructive Dilemma

12.
$$[(p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s)] \rightarrow (\neg p \lor \neg r)$$
 Rule of the Destructive Dilemma

13.
$$[(p \lor q) \land (\neg p \lor r)] \rightarrow (q \lor r)$$

Rule of Resolution

14.
$$[p \rightarrow (q \land r)] \rightarrow [(p \rightarrow q) \land (p \rightarrow r)]$$

Distributive Rule of Implication

Sequence and Series Terms and Sums

Arithmetic Sequences:
$$a_n = a_1 + (n-1)d$$
, $a_j = a_i + (j-i)d$, $S_n = \frac{(a_1 + a_n)n}{2}$

Geometric Sequences:
$$a_n = a_1 r^{n-1}$$
, $a_j = a_i r^{j-i}$, $S_n = \frac{a_1(1-r^n)}{1-r}$, $r \neq 1$, $S_\infty = \frac{a_1}{1-r}$, $|r| < 1$

Sum Formulas:
$$\sum_{i=1}^n c = cn \sum_{i=1}^n i = \frac{n(n+1)}{2}$$
, $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$