Layered Security in CentOS 7

Operative Systems Class, Universidad Tecnologica de Pereira

2018 - 1

Created by Hector F. Jimenez S. and Cristian Ramirez

Content

- 1. Security Context
- 2. Layered Security
- 3. CentOS Background
- 4. CentOS Security Review
- 5. Security Models

What is security?

Defense in depth and Layered Security

Now Defense in depth and Layered Security is

CentOS (Community ENTerprise Operating System)

Release Date

First release on May 14th 2004

Latest release on May 10th 2018

Distributions Related

Based on Red Hat Linux Enterprise CentOS sponsored by Red Hat from 2014

Projects based on CentOS

System Hardening

The purpose of system hardening is to eliminate as many security risks as possible.

System Hardening

Installing extra software or running extra services creates unnecessary vulnerabilities

CentOS Security Model

CentOS Security Model

There're so many posibilities to ensure your System

Data Encryption

Data Security

FileSystem Security

Memory Protection

Service Protection

CentOS Security Model

CentOS Phisycal Layer

CentOS Phisycal Layer

- BIOS protection
- Disable USB's or created a WhiteList

FileSystem

Partitioning

Partitioning is a key part of implementing security at the file system level.

- 1. It limits the impact of disk failure
- 2. It simplifies the process of creating backups
- 3. It allows administrators to add restrictions such as quotas and read-only permissions more effectively

/dev/VG_OS/lv_root	/	ext3	defaults 1 1
/dev/VG_OS/lv_tmp	/tmp	ext3	defaults, nosuid, no
/dev/VG_OS/lv_vartmp	/var/tmp	ext3	defaults, nosuid, no
/dev/data_vol/lv_home	/home	ext3	defaults, nosuid, no
/dev/VG_OS/lv_var	/var	ext3	defaults,nosuid
/dev/data_vol/lv_web	/var/www	ext3	defaults, nosuid, no
/dev/sda1	/boot	ext3	defaults, nosuid, no
tmpfs	/dev/shm	tmpfs	defaults 0 0
devpts	/dev/pts	devpts	gid=5, mode=620 0 0
sysfs	/sys	sysfs	defaults 00
proc	/proc	proc	defaults 00
/dev/_VG_OS/lv_swap	swap	swap	defaults 00

Protect your Bootloader

GNU GRUB version 1.99~20110104-2ubuntu1

Ubuntu, with Linux 2.6.37–12–generic Ubuntu, with Linux 2.6.37–12–generic (recovery mode) Previous Linux versions Memory test (memtest86+) Memory test (memtest86+, serial console 115200)

Use the ↑ and ↓ keys to select which entry is highlighted. Press enter to boot the selected OS, 'e' to edit the commands before booting or 'c' for a command–line.

Protect your Bootloader

GNU GRUB version	0.97 (638K lower / 1046464K upper memory)			
CentOS (2.6.32-279	3.e16.i686)			
Use the ↑ and ↓ keys to select which entry is highlighted. Press enter to boot the selected OS or 'p' to enter a password to unlock the next set of features.				
Password:	http://www.tecmint.co	m		

Protect your Bootloader

-	rwx	r-x	r-x
	1 2 3	4 5 6	7 8 9
File	User	Group	Other
Type	(Owner)		(Everyone)

User and Group Permissions

Permissions

-	rwx	r-x	r-x
	1 2 3	4 5 6	7 8 9
File	User	Group	Other
Type	(Owner)		(Everyone)

Security Models

Security Models

- in Linux everything as a file e.g. memory, devicedrivers, named pipes, and other system resources hence why filesystem security is so important
- I/O to devices is via a "special" file, e.g. /dev/cdrom
- have other special files like named pipes, a conduit between processes/programs

Security Models

- 1. Mandatory Access Control
- 2. Discretionary Access Control
- 3. Rule-Based Access Control
- 4. Role-Based Access Control

An Overview of Access Control

The term Access Control actually refers to thecontrol over access to system resources after a user's account credentials and identity have been authenticated and access to the system granted.

control over access to system resources

For example, a particular user, or group of users, might only be permitted access to certain files after logging into a system, while simultaneously being denied access to all other resources

Mandatory Access Control (MAC)

takes a hierarchical approach to controlling access to resources. Under a MAC enforced environment access to all resource objects (such as data files) is controlled by settings defined by the system administrator.

Mandatory Access Control (MAC)

As such, all access to resource objects is strictly controlled by the operating system based on system administrator configured settings.

Mandatory Access Control (MAC)

Discretionary Access Control (DAC)

Discretionary Access Control (DAC) allows each user to control access to their own data. DAC is typically the default access control mechanism for most desktop operating systems

Discretionary Access Control (DAC)

Discretionary Access Control (DAC)

Wile call acces

Rule-Based Access Control

1

Under Rules Based Access Control, access is allowed or denied to resource objects based on a set of rules defined by a system administrator.

Rule-Based Access Control

Role Based Access Control

Access under RBAC is based on a user's job function within the organization to which the computer system belongs. Essentially, RBAC assigns permissions to particular roles in an organization. Users are then assigned to that particular role

Role-Based Access Control

