AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

The ICC CTLR EL3 characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration

This register is present only when FEAT_GICv3 is implemented and EL3 is implemented. Otherwise, direct accesses to ICC_CTLR_EL3 are undefined.

Attributes

ICC CTLR EL3 is a 64-bit register.

Field descriptions

636261605958575655545352	51	50	49	48	47	46	454443	424140	39	38	37	36	
				,					R	ES0			
RES0	ExtRange	RSS	nDS	RES0	A3V	SEIS	IDbits	PRIbits	RES0	PMHE	RMEO	Imode	EL1I
313029282726252423222120	10	18	17	16	15	14	131211	10 9 8	7	6	5	4	

Bits [63:20]

Reserved, res0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange	Meaning	

0b0	CPU interface does not
	support INTIDs in the range
	1024 8191

 Behavior is unpredictable if the IRI delivers an interrupt in the range 1024 to 8191 to the CPU interface.

Note

Arm strongly recommends that the IRI is not configured to deliver interrupts in this range to a PE that does not support them.

Ob1 CPU interface supports INTIDs in the range 1024..8191

• All INTIDs in the range 1024..8191 are treated as requiring deactivation.

RSS, bit [18]

Range Selector Support.

RSS	Meaning
0d0	Targeted SGIs with affinity level 0
	values of 0-15 are supported.
0b1	Targeted SGIs with affinity level 0
	values of 0-255 are supported.

This bit is read-only.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored.

	nDS	Meaning
--	-----	---------

0b0	The CPU interface logic supports
	disabling of security.
0b1	The CPU interface logic does not
	support disabling of security, and
	requires that security is not
	disabled.

When a PE implements FEAT_RME and FEAT_SEL2, this field is RAO/WI.

Bit [16]

Reserved, res0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored.

A3V	Meaning	
0b0	The CPU interface logic does not	
	support nonzero values of the Aff3	
	field in SGI generation System	
	registers.	
0b1	The CPU interface logic supports	
	nonzero values of the Aff3 field in	
	SGI generation System registers.	

If EL3 is present, $\underline{\text{ICC_CTLR_EL1}}$.A3V is an alias of ICC CTLR EL3.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:

SEIS	Meaning
0b0	The CPU interface logic does not
	support generation of SEIs.
0b1	The CPU interface logic supports
	generation of SEIs.

If EL3 is present, ICC_CTLR_EL1. SEIS is an alias of ICC_CTLR_EL3. SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. Indicates the number of physical interrupt identifier bits supported.

0b000	16 bits.
0b001	24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR_EL1. IDbits is an alias of ICC CTLR EL3. IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).

Note

This field always returns the number of priority bits implemented, regardless of the value of SCR_EL3.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC BPR0 EL1 and ICC BPR1 EL1.

This field determines the minimum value of ICC BPR0 EL1.

Bit [7]

Reserved, res0.

PMHE, bit [6]

Priority Mask Hint Enable.

PMHE	Meaning	
0b0	Disables use of the priority	
	mask register as a hint for	
	interrupt distribution.	
0b1	Enables use of the priority mask	
	register as a hint for interrupt	
	distribution.	

Software must write $\underline{ICC_PMR_EL1}$ to 0xFF before clearing this field to 0.

- An implementation might choose to make this field RAO/WI if priority-based routing is always used
- An implementation might choose to make this field RAZ/WI if priority-based routing is never used

If EL3 is present, <u>ICC_CTLR_EL1</u>.PMHE is an alias of ICC_CTLR_EL3.PMHE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RM, bit [5]

Routing Modifier. This bit controls whether EL3 can acknowledge, or observe as the Highest Priority Pending Interrupt, Secure Group 0 and Non-secure Group 1 interrupts.

RM	Meaning
0b0	Secure Group 0 and Non-secure
	Group 1 interrupts can be
	acknowledged and observed as the
	highest priority interrupt at EL3.
0b1	Secure Group 0 and Non-secure
	Group 1 interrupts cannot be
	acknowledged and observed as the
	highest priority interrupt at EL3.
	Secure Group 0 interrupts return a
	special INTID value of 1020. This
	affects accesses to ICC_IAR0_EL1
	and <u>ICC_HPPIR0_EL1</u> .
	Non-secure Group 1 interrupts
	return a special INTID value of
	1021. This affects accesses to
	<u>ICC_IAR1_EL1</u> and
	ICC_HPPIR1_EL1.

Note

The Routing Modifier bit is supported in AArch64 only. In systems without EL3 the behavior is as if the value is 0. Software must ensure this bit is 0 when the Secure copy of ICC_SRE_EL1. SRE is 1, otherwise system behavior is unpredictable. In systems without EL3 or where the Secure copy of ICC_SRE_EL1. SRE is RAO/WI, this bit is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EOImode EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the interrupt.

EOImode_EL1NS	Meaning
0b0	ICC_EOIR0_EL1 and
	ICC_EOIR1_EL1
	provide both priority
	drop and interrupt
	deactivation
	functionality.
	Accesses to
	<u>ICC_DIR_EL1</u> are
	unpredictable.
0b1	ICC EOIR0 EL1 and
	ICC EOIR1 EL1
	provide priority
	drop functionality
	only. <u>ICC_DIR_EL1</u>
	provides interrupt
	deactivation
	functionality.

If EL3 is present, ICC_CTLR_EL1(NS). EOI mode is an alias of ICC_CTLR_EL3. EOI mode_EL1NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EOImode EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the interrupt.

EOImode_EL1S	Meaning
--------------	---------

0b0	ICC EOIR0 EL1 and
	ICC EOIR1 EL1
	provide both priority
	drop and interrupt
	deactivation
	functionality. Accesses
	to <u>ICC_DIR EL1</u> are
	unpredictable.
0b1	ICC EOIRO EL1 and
	ICC EOIR1 EL1
	provide priority drop
	functionality only.
	ICC DIR EL1
	provides interrupt
	deactivation
	functionality.
	= =====================================

If EL3 is present, ICC_CTLR_EL1(S). EOI mode is an alias of ICC CTLR EL3. EOI mode EL1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the interrupt.

EOImode_EL3	Meaning
0b0	ICC_EOIR0_EL1 and
	ICC_EOIR1_EL1
	provide both priority
	drop and interrupt
	deactivation
	functionality. Accesses
	to <u>ICC_DIR_EL1</u> are
	unpredictable.
0b1	ICC EOIRO EL1 and
	ICC EOIR1 EL1
	provide priority drop
	functionality only.
	ICC DIR EL1 provides
	interrupt deactivation
	functionality.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

CBPR EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2.

CBPR_EL1NS	Meaning
0b0	ICC_BPR0_EL1
	determines the
	preemption group for
	Group 0 interrupts only.
	ICC_BPR1_EL1
	determines the
	preemption group for
	Non-secure Group 1
	interrupts.
0b1	ICC_BPR0_EL1
	determines the
	preemption group for
	Group 0 interrupts and
	Non-secure Group 1
	interrupts. Non-secure
	accesses to <u>GICC_BPR</u>
	and <u>ICC_BPR1_EL1</u>
	access the state of
	ICC_BPR0_EL1.

If EL3 is present, <u>ICC_CTLR_EL1</u>(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 Secure interrupts at EL1 and EL2.

CBPR_EL1S	Meaning
0b0	ICC_BPR0_EL1 determines the
	preemption group for Group 0 interrupts only. ICC_BPR1_EL1 determines the preemption group for Secure Group 1 interrupts.

```
determines the preemption group for Group 0 interrupts and Secure Group 1 interrupts. Secure EL1 accesses to ICC_BPR1_EL1 access the state of ICC_BPR0_EL1.
```

If EL3 is present, <u>ICC_CTLR_EL1(S)</u>.CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing ICC_CTLR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_CTLR_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b1100	0b1100	0b100

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    X[t, 64] = ICC_CTLR_EL3;
```

MSR ICC_CTLR_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1100	0b1100	0b100

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    ICC_CTLR_EL3 = X[t, 64];
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.