Санкт-Петербургский политехнический университет Петра Великого Высшая школа прикладной математики и вычислительной физики Кафедра прикладной математики

Лабораторная работа

по дисциплине «Компьютерные сети» на тему

Реализация протоколов автоматического запроса повторной передачи Go-Back-N и Selective Repeat

Выполнил

студент группы 5040102/10201 Д.А. Гусаров

Руководитель

доцент, к.ф.-м.н. А.Н. Баженов

Санкт-Петербург

Постановка задачи

Реализовать систему, состоящую из отправителя (Sender) и получателя (Receiver), способных обмениваться сообщениями по каналу связи через протоколы автоматического запроса повторной передачи Go-Back-N (GBN) и Selective Repeat (SRP). Канал связи может допускать потерю пакетов с заданной вероятностью. Добавить возможность выбора размера скользящего окна. Сравнить эффективность работы данных протоколов для разных вероятностей ошибок при передаче данных.

Реализация

Код проекта выложен на GitHub:

https://github.com/dimerf99/computer_networks/tree/main/lab_1

Протоколы передачи данных реализованы на Python. **Sender** и **Receiver** работают в двух отдельных потоках: поток отправителя и поток получателя, создаваемых с использованием модуля **threading**.

Sender - отправитель, формирует сообщения с данными

Reciever - получатель, получает сообщения и сообщает о факте доставки

MsgQueue - канал коммуникации, который хранит сообщения между отправкой и получением, а также имитирует их потерю.

В обоих протоколах передача данных осуществляется пакетами, содержащими уникальный индекс, непосредственно передаваемые данные, а также служебный код, который используется для передачи сообщений об ошибках и остановке работы.

Система принимает следующие параметры:

protocol - протокол связи (GBN/SRP)

window_size - величина скользящего окна в выбранном протоколе

timeout - время в секундах, после которого пакет считается утерянным в случае отсутствия подтверждения его доставки

 $loss_probability$ - вероятность потери сообщения при передаче [0, 1].

Результаты

Оценка эффективности протоколов проводится по 2-м параметрам:

- 1) коэффициент эффективности k = количество всех пакетов / количество переданных пакетов
 - 2) время от начала до конца передачи в секундах t

Для оценки эффективности была проведена серия экспериментов с различными значениями размера окна и вероятности потери пакетов.

Во всех тестах количество передаваемых пакетов равно 100, timeout = 0.2 с.

Зависимость коэффициента эффективности k и времени передачи t от вероятности потери пакета p при фиксированном размере окна window_size = 3 представлена в таблице 1 и графически на рис. 1 (а, б). Зависимость эффективности k и времени передачи t от размера окна window_size при заданной вероятности потери пакета p = 0.2 представлена в табл. 2 и на рис. 2 (а, б).

Видно, что при малых вероятностях потери пакета эффективность протоколов практически не отличается. С увеличением вероятности потери протокол Go-Back-N все больше проигрывает протоколу Selective Repeat.

Зависимость от размера окна менее очевидная. Можно заметить, что для протокола Selective Repeat эффективность повышается с увеличением размера окна. Протокол Go-Back-N ведет себя более хаотично, но в целом характери зависимости аналогичный.

Табл. 1. Зависимость эффективности протоколов от вероятности потери пакета при window_size = 3

p	Go-Back-N		Selective Repeat	
	k	t	k	t
0	1.00	1.67	1.00	1.13
0.1	0.76	4.91	0.82	2.24
0.2	0.63	7.74	0.67	4.68
0.3	0.47	13.19	0.55	5.01
0.5	0.42	15.69	0.45	12.74
0.6	0.28	28.79	0.34	11.69
0.7	0.21	39.71	0.23	23.88
0.8	0.11	90.13	0.14	28.17
0.9	0.05	199.57	0.07	77.33

 $Puc.\ 1\ (a).\ 3$ ависимость коэффициента эффективности от вероятности потери nакета npu window_size =3

Рис. 1 (б). Зависимость времени передачи от вероятности потери пакета при $window_size = 3$

Tабл. 2. 3ависимость эффективности протоколов от размера окна при p=0.2

p	Go-Back-N		Selective Repeat	
	k	t	k	t
2	0.77	9.16	0.80	4.50
3	0.64	7.27	0.68	3.64
4	0.58	5.98	0.70	1.98
5	0.61	4.09	0.70	1.97
6	0.45	5.82	0.58	1.50
7	0.47	4.35	0.60	2.02
8	0.32	6.90	0.46	1.55
9	0.50	3.14	0.62	1.16
10	0.33	5.61	0.47	1.10

 $Puc.\ 2\ (a).\ 3$ ависимость коэффициента эффективности от размера окна при p=0.2

Рис. 2 (б). Зависимость времени передачи от размера окна при p=0.2

Выводы

В результате работы реализованы протоколы автоматического запроса повторной передачи данных Go-Back-N и Selective Repeat. Произведено сравнили этих двух протоколов скользящего. Выяснилось, что протокол Go- Back-N хорошо работает в случаях, когда ошибки при передаче пакетов встречаются редко, в противном случае выгоднее использовать протокол Selective Repeat. Практически аналогичный результат дает сравнение эффективности работы протоколов в зависимости от размера окна.

Использованная литература

1. А.Н. Баженов, Компьютерные сети, курс лекций