GARUDA Dataset Specifications: Complete Data Structure Report

Dataset Overview

The GARUDA synthetic dataset generates **5 interconnected datasets** that provide comprehensive data for training graph neural networks to detect gambling money laundering networks. All datasets are generated in CSV format with proper headers and data types optimized for machine learning workflows.

Dataset 1: Transaction Records (garuda_transactions.csv)

Purpose: Core transaction log containing all financial transfers in the synthetic banking network

Expected Size: ~50,000 rows

Primary Use: Training sequence models, temporal analysis, transaction classification

Variable Specifications

Variable	Data Type	Description	Example Values
(transaction_id)	string	Unique identifier for each transaction	"TXN_000001", "TXN_000002"
timestamp	datetime	Transaction date and time (ISO format)	"2024-03-15 14:23:45"
from_account	string	Source account number	"0141234567890", "GAMBLER_12345"
to_account	string	Destination account number	"0089876543210", "MERCHANT_5678"
amount	float	Transaction amount in Indonesian Rupiah	250000.0, 5000000.0
transaction_type	string	Categorized transaction type	"GAMBLING_DEPOSIT", "NORMAL_PAYMENT"
description	string	Transaction description/memo	"TRANSFER - DEPOSIT GAME", "TRANSFER - UTILITIES"
(from_bank)	string	Source bank code	"BCA", "MANDIRI", "BRI"
(to_bank)	string	Destination bank code	"BNI", "CIMB", "DANAMON"
is_cross_bank	boolean	Whether transaction crosses bank boundaries	true, false
hour	integer	Hour of day (0-23)	14, 19, 23
day_of_week	integer	Day of week (0=Monday, 6=Sunday)	0, 3, 6
(is_suspicious)	boolean	Ground truth label for suspicious activity	true, false
risk_score	float	Calculated risk score (0-1) 0.05, 0.89, 0.95	

Transaction Type Categories

- **NORMAL**: Regular legitimate transactions
- **GAMBLING_DEPOSIT**: Money sent to gambling operations
- **GAMBLING_WITHDRAWAL**: Winnings withdrawn from gambling
- MONEY_LAUNDERING: Proceeds being laundered through complex schemes
- **SUSPICIOUS_DEPOSIT**: Large unusual incoming transfers
- **SUSPICIOUS_WITHDRAWAL**: Rapid withdrawal of large amounts
- FAKE_BUSINESS_INCOME: Shell company fake revenue
- LAUNDERING_RECEIPT: Receiving gambling proceeds for laundering

Dataset 2: Account Profiles (garuda_accounts.csv)

Purpose: Account-level information with behavioral features and network role labels

Expected Size: ~10,000 rows

Primary Use: Node classification, account profiling, risk assessment

Variable Specifications

Variable	Data Type	Description	Example Values
account_id	integer	Unique account identifier	1, 2, 3
account_number	string	Bank account number	"0141234567890"
bank	string	Bank name	"BCA", "MANDIRI", "BRI"
region	string	Geographic region	"JAKARTA", "SURABAYA", "BANDUNG"
role	string	Network role (ground truth label)	"GAMBLING_OPERATOR", "NORMAL"
creation_date	date	Account opening date	"2022-05-15"
(initial_balance)	float	Starting balance in IDR	5000000.0
(is_suspicious)	boolean	Binary suspicious flag	true, false
risk_level	integer	Risk level (0-5, 5=highest)	0, 2, 5
total_transactions	integer	Total number of transactions	45, 156, 23
total_volume_in	float	Total incoming transaction volume	50000000.0
total_volume_out	float	Total outgoing transaction volume	48000000.0
avg_transaction_amount	float	Average transaction size	125000.0
max_transaction_amount	float	Largest single transaction	10000000.0
unique_counterparties	integer	Number of different accounts transacted with	23
cross_bank_ratio	float	Ratio of cross-bank transactions	0.35
velocity_score	float	Transaction frequency indicator	2.5
temporal_pattern_score	float	Unusual timing pattern indicator	0.7

Role Categories (Ground Truth Labels)

- **NORMAL** (85%): Regular legitimate account holders
- **GAMBLING_OPERATOR** (0.1%): Primary targets gambling website operators
- **SHELL_COMPANY** (0.5%): Fake companies used for money laundering
- COLLECTION_ACCOUNT (1%): "Rekening pengepul" fund aggregation accounts
- MULE_ACCOUNT (8%): Recruited accounts (students, low-income individuals)
- MONEY_CONVERTER (0.2%): Cryptocurrency/foreign exchange facilitators

• **RECRUITER** (0.3%): Individuals who recruit mule accounts

Dataset 3: Network Graph Structure (garuda_network.gexf)

Purpose: Graph structure showing relationships between accounts

Format: GEXF (Graph Exchange XML Format) - standard for network analysis

Primary Use: Graph neural network training, network analysis

Node Attributes

Attribute	Data Type	Description
id	string	Account identifier
role	string	Network role label
bank	string	Bank affiliation
region	string	Geographic location
risk_level	integer	Risk assessment (0-5)
4	•	•

Edge Attributes

Attribute	Data Type	Description	Example Values
relationship	string	Type of connection	"gambling_proceeds", "money_laundering"
weight	float	Connection strength (0-1)	0.7, 0.9, 0.3
transaction_count	integer	Number of transactions between accounts	5, 23, 156
(total_amount)	float	Total money transferred	25000000.0
first_transaction	date	Date of first connection	"2024-01-15"
last_transaction date Date of most recent connection "2024-03-20"		"2024-03-20"	

Relationship Types

- gambling_proceeds: Money flow from gambling to operators
- money_laundering: Laundering transactions between accounts
- recruitment: Mule account recruitment connections
- **shell_company_flow**: Transactions through fake companies
- collection_aggregation: Fund collection patterns

Dataset 4: Temporal Features (garuda_temporal_features.csv))

Purpose: Time-series behavioral features for each account

Expected Size: ~10,000 rows (one per account)

Primary Use: Temporal pattern analysis, behavioral modeling

Variable Specifications

Variable	Data Type	Description	Example Values
account_id	integer	Account identifier	1, 2, 3
account_number	string	Bank account number	"0141234567890"
peak_hour_activity_ratio	float	Activity during gambling peak hours (19-23)	0.65
weekend_activity_ratio	float	Weekend vs weekday activity	0.45
velocity_change_30d	float	Transaction frequency change (last 30 days)	3.2
amount_variance	float	Variance in transaction amounts	15000000.0
dormancy_periods	integer	Number of inactive periods > 7 days	2
burst_activity_events	integer	High-activity periods (>10 transactions/day)	5
evening_gambling_pattern	boolean	Matches typical gambling time patterns	true
monthly_cycle_score	float	Correlation with salary cycle patterns	0.8
cultural_event_correlation	float	Activity during Indonesian cultural events	0.3
seasonal_pattern_strength	float	Strength of seasonal patterns	0.6
monthly_cycle_score cultural_event_correlation	float	Correlation with salary cycle patterns Activity during Indonesian cultural events	0.8

Dataset 5: Network Analytics (garuda_network_metrics.csv)

Purpose: Graph-theoretic metrics for each account

Expected Size: ~10,000 rows

Primary Use: Network-based feature engineering, centrality analysis

Variable Specifications

Variable	Data Type	Description	Example Values
account_id	integer	Account identifier	1, 2, 3
degree_centrality	float	Number of connections (normalized)	0.05, 0.89
(betweenness_centrality)	float	Bridging position in network	0.002, 0.156
closeness_centrality	float	Average distance to all other nodes	0.23, 0.78
eigenvector_centrality	float	Influence based on connections' importance	0.01, 0.45
pagerank_score	float	PageRank centrality score	0.0001, 0.0234
clustering_coefficient	float	How connected are neighbors	0.6, 0.9
community_id	integer	Detected community membership	1, 5, 12
community_size	integer	Size of community	15, 234, 567
triangle_count	integer	Number of triangles involving this node	0, 5, 23
k_core_number	integer	K-core decomposition level	2, 5, 8
local_clustering	float	Local network density	0.4, 0.8
•			

Data Relationships and Integration

Primary Keys and Foreign Keys

```
garuda_accounts.account_id → garuda_transactions.from_account (via account_number)
garuda_accounts.account_id → garuda_transactions.to_account (via account_number)
garuda_accounts.account_id → garuda_temporal_features.account_id
garuda_accounts.account_id → garuda_network_metrics.account_id
```

Network Graph Integration

The GEXF network file contains the same account IDs as the CSV files, enabling seamless integration between tabular features and graph structure for hybrid machine learning models.

Data Quality and Validation

Missing Values

- Designed with no missing values all fields populated during generation
- **Null handling**: External accounts (GAMBLER_, *MERCHANT_*) may appear in transactions but not in account profiles

Data Consistency

- Account numbers: Follow Indonesian bank account format (bank code + 10 digits)
- **Timestamps**: All in Indonesian timezone (UTC+7)
- Amounts: All in Indonesian Rupiah, positive values only

Risk scores: Normalized between 0-1 for consistency

Validation Flags

Each dataset includes validation fields to ensure data integrity:

- is_suspicious: Ground truth labels for supervised learning
- risk_level: Ordinal risk classification (0=normal, 5=highest risk)
- role: Categorical network role for node classification tasks

Usage Recommendations

For Graph Neural Networks

- 1. Use (garuda_network.gexf) for graph structure
- 2. Use (garuda_accounts.csv) for node features
- 3. Use (garuda_transactions.csv) for edge attributes and temporal sequences

For Traditional ML Models

- 1. Use (garuda_accounts.csv) as primary feature table
- 2. Join with (garuda_temporal_features.csv) and (garuda_network_metrics.csv) for enriched features
- 3. Use (garuda_transactions.csv) for sequence modeling

For Federated Learning

Each bank's subset can be extracted by filtering on the (bank) field, maintaining realistic data distribution while enabling multi-institutional training scenarios.

File Formats and Compatibility

- **CSV files**: UTF-8 encoding, comma-separated, headers included
- GEXF file: XML format compatible with Gephi, NetworkX, PyTorch Geometric
- Date formats: ISO 8601 standard (YYYY-MM-DD HH:MM:SS)
- **Boolean values**: true/false (Python compatible)
- Numeric precision: Float64 for monetary amounts, Float32 for ratios/scores

This comprehensive dataset structure provides all necessary components for training sophisticated gambling money laundering detection systems while maintaining realistic data relationships and comprehensive ground truth labeling.