Numerical interpolation

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6BER03), 2024-2025

Today's outline

- Introduction
- Piecewise constar
- Linear
- Polynomial
- Splines
- Tutorials
- Introduction
- Riemann integrals
- Trapezoid rule
- Simpson's rule
- Conclusion

Interpolation problem

Definition

Given a set of points x_k , k = 0, ..., n, $x_i \neq x_j$ with associated function values f_k , k = 0, ..., n, or simply: $\{x_k, f_k\}_{k=0}^n$. The interpolation problem is defined as: find a polynomial p_n such that this interpolates the values of f_k on the points x_k :

$$p_n(x_k) = f_k, \quad k = 0, \ldots, n$$

Theorem

The interpolation problem for $\{x_k, f_k\}_{k=0}^n$ has a unique solution when $x_i \neq x_j$ for $i \neq j$. Note that we cannot allow multiple function values f_k for the same value of x_k .

What is interpolation?

Interpolation means constructing additional data points within the range of, and using, a discrete set of known data points.

It is typically performed on a uniformly spread data set, but this is not strictly necessary for all methods

Is interpolation the same as curve fitting?

NO

- Curve-fitting requires additionally some way of computing the error between function (curve) and data
- Curve-fitting does not strictly enforce the function to match the data exactly
- Curve-fitting may be done on multiple datapoints at one position
- Curve-fitting is much more expensive to do, requires optimisation

Why do chemical engineers need interpolation?

- Comparison of two data sets which are given at different positions
 - An experimental data set may have been recorded at a constant rate, but the numerical solution is computed at irregular intervals
- Reconstruction of field values distant of computing nodes
 - A CFD simulation on a regular grid containing structures that are not grid-conformant requires interpolation to the structures
- Calculation of a physical property at a condition between those of a lookup table
 - The viscosity of a substance may have been measured at 20°C and 30°C, but not at the desired 28.5°C

General

Several important numerical interpolation methods are discussed today:

- Piecewise constant interpolation
- Linear interpolation
 - Bilinear interpolation
- Polynomial interpolation (Newton's method)
- Spline interpolation

Today's outline

- Introduction
- Piecewise constant
- Linear
- Polynomial
- Splines
- Tutorials
- Introduction
- Riemann integrals
- Trapezoid rule
- Simpson's rule
- Conclusion

Today's data set

Generate the following data set:

This yields some sample points on which we base our examples:

x_k	J _k
0	1.00
1	$\frac{11}{3} = 3.67$
2	$\frac{8}{3} = 2.67$
3	1.00
4	$\frac{5}{3} = 1.67$
5	$\frac{23}{3} = 7.67$

Data set $f_n(x_n)$ represented by \circ at discrete intervals $x_n \in \{0, 5\}$

Piecewise constant interpolation

• Nearest-neighbor interpolation in the continuous range $x \in [0,5]$

• How to treat the point halfway (e.g. at x = 2.5)?

$$x \in [0, 0.5]$$
 $\rightarrow f(x) = f(0)$
 $x \in [0.5, 1.5]$ $\rightarrow f(x) = f(1)$
 $x \in [1.5, 2.5]$ $\rightarrow f(x) = f(2)$
 $x \in [2.5, 3.5]$ $\rightarrow f(x) = f(3)$
 $x \in [3.5, 4.5]$ $\rightarrow f(x) = f(4)$

• Not often used for simple problems, but e.g. for 2D (Voronoi)

Data set $f_n(x_n)$ represented by \circ at discrete intervals $x_n \in \{0,5\}$

Today's outline

- Introduction
- Piecewise constant
- Linear
- Polynomial
- Splines
- Tutorials
- Introduction
- Riemann integrals
- Trapezoid rule
- Simpson's rule
- Conclusion

Linear interpolation

Data set $f_n(x_n)$ represented by \circ at discrete intervals $x_n \in \{0, 5\}$

• Linear interpolation to (x,y) between 2 data points (x_2,y_2) and (x_3,y_3) :

$$\frac{y - y_2}{x - x_2} = \frac{y_3 - y_2}{x_3 - x_2}$$

• Reordered, and more formally:

$$y = y_n + (y_{n+1} - y_n) \frac{x - x_n}{x_{n+1} - x_n}$$

Linear interpolation

- While linear interpolation is fast, and relatively easy to program, it is not very accurate
- At the nodes, the derivatives are discontinuous i.e. not differentiable
- Error is proportional to the square of the distance between nodes

Interpolation in Python

Interpolation can be done using the SciPy interpolation submodule, e.g.:

```
from scipy.interpolate import interpld
f = interpld(xdata, ydata, kind='linear')
```

This creates a function object f based on the given data.

```
from scipy.interpolate import interp1d
import numpy as np

fun = lambda x: x**3/2 - (10*x**2)/3 + 11*x/2 + 1

xdata = np.arange(0,6)

ydata = fun(xdata)

f = interp1d(xdata,ydata)

xint = np.linspace(0,5,31)

yint = f(xint)
```


Example: Linear interpolation in Python

Consider the data sets in exp_data.txt and sim_data.txt, containing a normalized concentration and time vector for an experiment and a simulation. The simulation was performed with adaptive node distance to save computation time, thus the concentration is not known at the same times. We are not able to compare yet.

Example: Linear interpolation in Python

Consider the data sets in exp_data.txt and sim_data.txt, containing a normalized concentration and time vector for an experiment and a simulation. The simulation was performed with adaptive node distance to save computation time, thus the concentration is not known at the same times. We are not able to compare yet.

```
import numpy as no
from scipy.interpolate import interpld
import matplotlib.pvplot as plt
t sim, c sim = np.loadtxt("scripts/interpolation/sim data.txt").T
t exp. c exp = np.loadtxt("scripts/interpolation/exp data.txt").T
# Linear interpolation
f = interp1d(t_sim, c_sim)
diff = np.abs(c_exp - f(t_exp))
# Plot the solution
plt.subplot(2, 1, 1)
plt.plot(t_exp, c_exp, '-x', label='c_exp')
plt.plot(t_exp, f(t_exp), '-|', label='c_sim_new')
plt.xlabel('Time [s]'): plt.vlabel('Conc [mol m$^{-3}$]')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(t_exp. diff)
plt.xlabel('Time [s]'): plt.vlabel('Difference [mol m$^{-3}$]')
plt.tight_layout()
# plt.show()
plt.savefig('figures/sim exp data interp.pdf')
```


Bi-linear interpolation

When a 2D field of some quantity is known, we can interpolate the solution to an arbitrary position in the 2D domain p(x,y) using 4 field values f_{00} , f_{10} , f_{01} and f_{11} .

$$g_1 = f_{01} \frac{x_1 - x}{x_1 - x_0} + f_{11} \frac{x - x_0}{x_1 - x_0}$$
$$= f_{01} \frac{x_1 - x}{\Delta x} + f_{11} \frac{x - x_0}{\Delta x}$$

$$g_2 = f_{00} \frac{x_1 - x}{\Delta x} + f_{10} \frac{x - x_0}{\Delta x}$$

$$p = g_2 \frac{y_1 - y}{\Delta y} + g_1 \frac{y - y_0}{\Delta y}$$

The order of interpolation (x or y direction first) does not matter; the results are equal

on Piecewise constant **Linear** Polynomial Splines Tutorials **Introduction** Riemann integrals Trapezoid rule Simpson's rule Conclusion Tutorials
O OOO OOO OOO OOO OOO OOO OOO

Higher-dimensional field interpolation in Python

2D or higher-dimensional fields of data can be interpolated in Python using the scipy.interpolate.interp2d, scipy.interpolate.interp3d, or even scipy.interpolate.RegularGridInterpolator functions. The method can be adjusted:

 Also consider tri-linear interpolation (for 3D fields) with scipy.interpolate.LinearNDInterpolator, or bicubic interpolation (2D, but third order) with scipy.interpolate.interp2d.

A practical example

Field interpolation is used in e.g. CFD simulations, e.g. a fluidized bed simulation using a *discrete particle model*, where particles are found in between the grid nodes used for velocity computation.

Today's outline

- Introduction
- Piecewise constant
- Linear
- Polynomial
- Splines
- Tutorials
- Introduction
- Riemann integrals
- Trapezoid rule
- Simpson's rule
- Conclusion

Polynomial interpolation

The examples that we have seen, are simplified forms of *Newton polynomials*. We can interpolate our data with a polynomial of degree *n*:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

Polynomial interpolation via Vandermonde matrix

Consider the data points $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, the Vandermonde matrix V, coefficient vector a and function value vector y:

$$V_{m,n} = \begin{pmatrix} x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\ x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_m^0 & x_m^1 & x_m^2 & \cdots & x_m^{n-1} \end{pmatrix} \quad a = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

The coefficients of a polynomial through the data are obtained by solving the linear system Va = y.

```
import numpy as np
x = np.array([0, 1, 2])
y = np.array([1.0000, 3.6667, 2.6667])
V = np.vander(x, increasing=True)
print(V)
```

So we found the equation:

$$p_2(x) = -1.8333x^2 + 4.5x - 1$$

These Vandermonde-systems are often *ill-conditioned*, so we need another, more stable, method!

Construction of Newton polynomials

Formally, the polynomials $p_n(x)$ are described using prefactors $f[x_0, \dots, x_k]$ and polynomial terms $w_m(x)$:

$$p_n(x) = \sum_{k=0}^{n} f[x_0, \dots, x_k] w_k(x)$$

The polynomial terms are computed via:

$$w_0(x) = 1, w_1(x) = (x - x_0), w_2(x) = (x - x_0) \cdot (x - x_1),$$

$$w_m(x) = (x - x_0) \cdot (x - x_1) \cdots (x - x_{m-1}) = w_{m-1} \cdot (x - x_{m-1})$$

$$w_m(x) = \prod_{j=0}^{m-1} (x - x_j), m = 0, \dots, n$$

The prefactors are forward divided differences, which can be computed as:

$$f[x_{x-k},...,x_r] \equiv \frac{f[x_{r-k+1},...,x_r] - f[x_{r-k},...,x_{r-1}]}{x_r - x_{r-k}}$$

Construction of Newton polynomials: example

Sample data

x_k	f_k
0	1.00
1	$\frac{11}{3} = 3.67$
2	$\frac{8}{3} = 2.67$

x_k	f_k		
<i>x</i> ₀	$f[x_0] = f_0$		
<i>x</i> ₁	$f[x_1] = f_1$	$f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0}$	
		$f[x_1,x_2] = \frac{f_2-f_1}{x_2-x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$

x _k	f_k		
0	1		
1	3.67	$\frac{\frac{11}{3}-1}{1-0}=\frac{8}{3}$	
2	2.67	$\frac{8 - \frac{11}{3}}{\frac{3}{3} \cdot \frac{1}{3}} = \frac{-1}{1} = -1$	$\frac{(-1)-\frac{8}{3}}{3}=-\frac{11}{6}$

Construction of Newton polynomials: example

Sample data

x_k	f_k
	1.00
1	$\frac{11}{3} = 3.67$
2	$\frac{8}{3} = 2.67$

$$p_2(x) = 1 \cdot w_m(0) + \frac{8}{3} \cdot w_m(1) + \left(-\frac{11}{6}\right) \cdot w_m(2)$$

$$= 1 \cdot 1 + \frac{8}{3} \cdot (x - 0) + \left(-\frac{11}{6}\right) \cdot (x - 0)(x - 1) = -\frac{11}{6}x^2 + 4\frac{1}{2}x + 1$$

Construction of Newton polynomials: example

For each three points, a new polynomial interpolant can be derived:

$$p_2(x) = -\frac{11}{6}x^2 + 4\frac{1}{2}x + 1$$

$$p_2(x) = 4 - \frac{x^2}{3}$$

$$p_2(x) = \frac{7x^2}{6} - 7\frac{1}{2}x + 13$$

$$p_2(x) = \frac{8}{3}x^2 - 18x + 31$$

$$f(x) = \frac{x^3}{2} - \frac{10x^2}{3} + \frac{11x}{2} + 1$$

oduction Piecewise constant Linear **Polynomial** Splines Tutorials Introduction **Riemann integrals** Trapezoid rule Simpson's rule Conclusion Tutorials

Polynomial fitting in Python: example

Develop the polynomials $p_1(x)$ through $p_5(x)$ using the following data set:

```
import numpy as np
import matplotlib.pyplot as plt

xdata = np.arange(-1,1.5,0.5)

ydata = [x * np.sin(x)/np.sqrt(x+2) if x != 0 else 0.5 for x in xdata]

plt.plot(xdata,ydata,'o')
```



```
xc = np.linspace(-1.1,1.1,1001,endpoint=True)
for deg in range(1,6):
    # Fit coefficients
    p_coeffs = np.polyfit(xdata,ydata,deg)
    # Compute function values
    y = np.polyval(p_coeffs,xc)
    # Plot
    plt.plot(xc,y,label=f'Degree {deg}')
```

RankWarning: Polyfit may be poorly conditioned

Exercise

Develop the $p_4(x)$ and $p_{10}(x)$ interpolants from the following data sets:

$$f(x) = \frac{1}{x^2 + \frac{1}{25}}$$
 $x \in [-1, 1]$

```
import matplotlib.pyplot as plt
f = lambda x: 1/(x**2 + 1/25)

x4,x10,xinf = [np.linspace(-1, 1, n) for n in [5,11,1001]]

y4,y10,yinf = f(x4), f(x10), f(xinf)

# Get coefficients for 4th and 10th order polynomial
p4 = np.polyfit(x4, y4, 4)
p10 = np.polyfit(x10, y10, 10)
# Compute function values using fitted coeffs
yinf4 = np.polyval(p4, xinf)
yinf10 = np.polyval(p10, xinf)
```


import numpy as np

Final thoughts on polynomial interpolation

- An polynomial interpolant of order n requires n + 1 data points
 - More data points: interpolant does not always cross the points
 - Fewer data points: interpolant is not unique
- Higher-degree polynomials at equidistant points may cause strong oscillatory behaviour (Runge's phenomenon)
 - Mitigation of the problem on Chebyshev (i.e. non uniform grid)...
 - ... or by performing piecewise interpolation (next topic)
- Python functions np.polyfit(x,y,n) and np.polyval(p,x_new) were demonstrated.

Today's outline

- Introduction
- Piecewise constan
- Linear
- Polynomial
- Splines
- Tutorials
- Introduction
- Riemann integrals
- Trapezoid rule
- Simpson's rule
- Conclusion

Spline interpolation

A spline is a numerical function that represents a smooth, higher order, piecewise polynomial interpolants of a data set.

- Smooth: the interpolant is continuous in the first and second derivatives
- Higher order: The most common type of splines uses third-order polynomials (cubic splines)
- Piecewise polynomial: The interpolant is constructed between each two consecutive tabulated points

Splines: comparison to other interpolation techniques

Interpolation of
$$f(x) = \frac{\sin x}{1 + x^2}$$

Spline interpolation in Python

We can generate a random data set, and interpolate using scipy.interpolate.interp1d:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline
# Generate random data set
xdata = np.arange(0, 26)
ydata = np.random.rand(len(xdata))
# Interpolant on a fine mesh
xc = np.linspace(0, 25, 1001)
ifun = make_interp_spline(xdata, ydata)
vc = ifun(xc)
# Plot the data
plt.plot(xdata, ydata, 'o')
plt.plot(xc, yc, '-r')
plt.show()
```


Note: The SciPy Optimize module contains various interpolation methods with a similar interface.

Summary

- Interpolation is used to obtain data between existing data points
 - (Bi-)Linear, polynomial and spline interpolation methods
 - Construction of Newton polynomials
 - Oscillations of high-order polynomials
- Legendre polynomials: alternative way of performing the polynomial interpolation (not discussed here)

luction Plecewise constant Linear Polynomial Splines **Tutorials** Introduction Riemann integrals Trapezoid rule **Simpson's rule** Conclusion Tutorials

Interpolation tutorials

In Python, generate the data:

```
x = np.arange(-4, 6, 1)
y = [0, 0, 0, 1, 1, 1, 0, 0, 0]
```

Interpolate the data using polynomial interpolation (which order do you use?) and a spline. Plot the results together with the original data in a graph.

2 Do the same exercise for the following data. Can you explain your observations?

```
 \begin{array}{l} t = [0, \, 0.1, \, 0.499, \, 0.5, \, 0.6, \, 1.0, \, 1.4, \, 1.5, \, 1.899, \, 1.9, \, 2.0] \\ y = [0, \, 0.06, \, 0.17, \, 0.19, \, 0.21, \, 0.26, \, 0.29, \, 0.29, \, 0.30, \, 0.31, \, 0.31] \\ \end{array}
```

Hint: Use scipy.interpolate.interp1d(...,kind="...") to use different splines.

