§ 5.2 群的概念及其性质

5. 2. 2 群的性质

- (1) 任何群都没有零元。
- (2) 设 <G,*> 是群,则 G 中消去律成立。

证明: ∀a,b,c∈**G,a*b=a*c**

- : 群中任何元素的逆元都存在,设a的逆元是a-1
- :. $a^{-1}*(a*b)=a^{-1}*(a*c)即(a^{-1}*a)*b=(a^{-1}*a)*c$
- $\cdot \cdot e^*b=e^*c$ b=c

同理 若 b*a=c*a 则 b=c

: 群中消去律成立

§ 5.2 群的概念及其性质

5.2.2 群的性质

(3) 设 <G,*> 是群,单位元e是 G 中的唯一 幂等元。

证明: : e*e=e : e是群中幂等元,

又设a∈G,且 a*a=a ,a是群中另一幂等元

- :: a⁻¹*a*a=a⁻¹*a
- ∴ a=e
- : e是群中唯一幂等元

5.2.2 群的性质

(4) 设<G,*>,<H,。>是群,f是 G 到 H 的同态,若
e 为<G,*>的单位元,则 f(e) 是<H,。> 的单位元,并且对任意 a∈G,有 f(a⁻¹)= f(a)⁻¹。

证明: : f是 G 到 H 的同态

 $\therefore f(e) \cdot f(e) = f(e*e) = f(e)$

从而f(e)是群<H,。>中幂等元,

∴ f(e)是群<H,。>的单位元

又f(a)。 $f(a^{-1})=f(a*a^{-1})=f(e)$

 $f(a^{-1})$ of $f(a)=f(a^{-1}*a)=f(e)$

:. f(a) 与f(a⁻¹) 互为逆元

5.2.2 群的性质

(5) 设<G,*>是群,<H,。>是任意代数系统,若存在 G 到 H 的满同态映射,则<H,。>必是群。

证明: :满同态映射具有"6保持"

: H必是群,

定理: 设 <G,*> 是一个 n 阶有限群,它的运算表中的每一行(每一列)都是 G 中元素的一个全排列。

证明:设G中的n个不同元素为a₁,a₂,...,a_n 即 $G=\{a_1,a_2,...,a_n\}$ 其中任意 $a_i\neq a_i$ ($i\neq j$) 其运算表中的第i行为 $a_ia_1, a_ia_2, ..., a_ia_n$ 要说明是一个全排列,只要说明每个元素都不相同, 若 a_ia_i=a_ia_k(j≠k) 由群众消去律成立则 $a_i=a_k$,矛盾 ∴ a_ia₁, a_ia₂,..., a_ia_n 是n个元素的全排列

依据群的运算表中的每一行(每一列)都是 G 中元素的一个 全排列。分析1,2,3阶群的运算表。

. 1																١.
٠.																. 1
. 1																١.
			_ 1	•												
٠.			K	<						4						. 1
			٠,	•						Æ	_	•				
										- 7	2	/				
٠.											_					
. 1							_									١.
٠.							7								_	
. 1																١.
. 1																١.
			_	•												
٠.			ϵ							^	•					. 1
				1						г	_					
			•				1			ϵ	_					
٠.																. '
							1									
. 1							1									١.
٠.							1									

一阶群

*	e	a	
e	e	a	
a	a	e	

二阶群

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

三阶群 是唯一的吗?

*	e	a	b
e	e	a	b
a	a	e	?
b	b	?	e

若a*b=b 则a*b*b⁻¹=b*b⁻¹=e, a=e

表1 填e X

*	e	a	b
e	e	a	b
a	a	a	?
b	b	?	?

若a*b=a则a-1*a*b=a-1*a =e, b=e

表2 填a X

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

只有 a*b=e ,b*a=b*a*e=b*a*(b*b-1) $=b*(a*b)*b^{-1})=b*e*b^{-1}=b*b^{-1}=e$ a*b=b*a

表3 填b 三阶群的运算表是唯一

四阶群的运算表?

*	e	a	b	c
e	e	a	b	С
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

⇒ 第一类:每个元素自身 为逆元

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	a	e
c	c	b	e	a

*	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

*	e	a	b	c
e	e	a	b	c
a	a	c	e	h
b	b	e	c	a
c	c	b	a	e

第二类:两个元素 →(包括e)自身为 逆元另两个元素互 为逆元

例: ⟨G,*⟩是可交换(ABEL)群的充要条件是 ∀a,b ∈G 有 (a*b)*(a*b)=(a*a)*(b*b)

解: 充分性 ∀a,b ∈G 有 (a*b)*(a*b)=(a*a)*(b*b) 则⟨G,*⟩ 是可交换(ABEL)群。

必要性〈G,*〉是可交换(ABEL)群则有∀a,b ∈G 有(a*b)*(a*b)=(a*a)*(b*b)

例:任何阶数是1,2,3,4阶的群都是可交换 (ABEL)群。

1阶群是可交换(ABEL)群,G={e}

2阶群是可交换(ABEL)群, G={e,a}

3阶群是可交换(ABEL)群, G={e,a,b}

若a*b=a 则a⁻¹*a*b=a⁻¹*a =e, b=e 若a*b=b 则a*b*b⁻¹=b*b⁻¹=e, a=e

只有 a*b=e,b*a=b*a*e=b*a*(b*b⁻¹) =b*(a*b) *b⁻¹) =b*e*b⁻¹= b*b⁻¹=e a*b=b*a

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

4阶的群都是可交换(ABEL)群。

4阶群是可交换(ABEL)群,G={e,a,b,c} (1)a,b,c自为逆元, 则a*b=b*a=c; b*c=c*b=a; c*a=a*c=b 交換律满足 (2) a,b,c两个元素互为逆元,如a,b互为逆元 若a*b=b*a=e 则c*c =e, a*c≠e, a*c=b 同理c*a=b 所以a*c=c*a, 同理 b*c=c*b

例:假设<G,*>是一个二阶群,则<G×G,*>是一个Klein群。且是可交换(abel)群。

*	<e,e></e,e>	<e,a></e,a>	<a,e></a,e>	<a,a></a,a>
<e,e></e,e>	<e,e></e,e>	<e,a></e,a>	<a,e></a,e>	<a,a></a,a>
<e,a></e,a>	<e,a></e,a>	<e,e></e,e>	<a,a></a,a>	<a.e></a.e>
<a,e></a,e>	<a,e></a,e>	<a.a></a.a>	<e,e></e,e>	<e,a></e,a>
<a,a></a,a>	<a,a></a,a>	<a,e></a,e>	<e,a></e,a>	<e,e></e,e>

同构≅

*	e	a	b	С
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

$$G \rightarrow G \times G$$
;定义如下双射
e \rightarrow , a \rightarrow ,
b \rightarrow , c \rightarrow

§5.2 群的概念及其性质

5.2.3 半群与群

- (1) 假设<G,*>是半群,并且
 - ① <G,*>中有一左单位元 e,使得对任意的 a∈G,有 e * a = a;
 - ② <G,*>中任意元素 a 都有"左逆元" a⁻¹,使得 a⁻¹* a = e。则 <G,*> 是群。
- $a^{-1}*a=e$,有 $a^{-1}\in G$, a^{-1} 的左逆元(a^{-1}) $^{-1}\in G$ 即(a^{-1}) $^{-1}a^{-1}=e$ 推证右逆元存在 $aa^{-1}=eaa^{-1}=((a^{-1})^{-1}a^{-1})aa^{-1}=e$ 推证右单位存在 $ae=a(a^{-1}a)=ea=e$

5.2.3 半群与群

(2) 有限半群,如果消去律成立,则必为群。

分析:

- (1)封闭性 (2)结合律
- (3)单位元 (4)逆元 (消去律成立)

群小结(2)

- 1、任何群都没有零元。
- 2、群中消去律成立。
- 3、单位元e是 群中的唯一幂等元。
- 4、设<G,*>,<H,。>是群,f是 G 到 H 的同态,单位元的同态像是单位元,逆元的同态像也是逆元。

定理:设 <G,*> 是一个 n 阶有限群,它的运算表中的每一行(每一列)都是 G 中元素的一个全排列。