Divizibilitate.

Teorema (Teorema împărțirii cu rest)

Pentru orice două numere întregi a și b cu $b \neq 0$, există q, $r \in \mathbb{Z}$ astfel încât a = bq + r și $0 \leq r < |b|$. In plus, q și r sunt unicele cu aceste proprietăți.

Numerele q și r din Teorema împărțirii cu rest se numesc $c \hat{a} tul$ și, respectiv, restul împărțirii lui a la b. Ele se mai notează prin a div b și, respectiv, a mod b.

Definitia 1. Relatia binara $/\subseteq \mathbb{Z} \times \mathbb{Z}$ data prin

$$a/b \iff (\exists c \in \mathbf{Z})(b = ac),$$

pentru orice $a, b \in \mathbb{Z}$, se numeste relatia de divizibilitate pe \mathbb{Z} .

Daca $a \ b$ atunci vom spune ca $a \ divide \ b$ sau ca $a \ este \ divizor \ al \ lui \ b$ sau ca $b \ se \ divide$ $prin \ a$ sau ca $b \ este \ multiplu \ al \ lui \ a$. Daca $a \ nu \ divide \ b$ atunci vom mai scrie $a \ b$.

Propoziție Fie $a, b, c \in \mathbb{Z}$. Atunci, au loc următoarele proprietăți:

- 1. 0 divide doar 0;
- 2. a divide 0 si a:
- 3. 1 divide *a*;
- 4. a/b daca si numai daca a/-b;
- 5. daca $a/b \sin b/c$ atunci a/c;
- 6. daca a/b + c si a/b atunci a/c;
- 7. daca a/b atunci ac/bc. Reciproc, daca $c \neq 0$ si ac/bc atunci a/b;
- 8. daca $a/b \sin a/c$ atunci $a/\beta b + \gamma c$ pentru orice $\beta, \gamma \in \mathbb{Z}$;

Definiția 2. Un număr natural $p \ge 2$ este numar *prim* dacă singurii lui divizori pozitivi sunt 1 si p.

Definiția 3. Fie $a_1, \ldots, a_m \in \mathbb{Z}$, unde $m \ge 2$. Spunem ca a_1, \ldots, a_m sunt prime intre ele sau relativ prime sau coprime daca singurii divizori comuni ai acestor numere sunt 1 si -1.

Notam $(a_1, ..., a_m) = 1$ pentru a specifica faptul ca $a_1, ..., a_m$ sunt relativ prime.

Teorema 1 Fie $m \ge 2$ si $a_1, \ldots, a_m \in \mathbb{Z}$. Atunci $(a_1, \ldots, a_m) = 1$ daca si numai dacă există $a_1, \ldots, a_m \in \mathbb{Z}$ astfel încât $a_1a_1 + a_2a_2 + \cdots + a_ma_m = 1$.

Proprietatea 1. Fie $a_1, \ldots, a_m, b \in \mathbb{Z}$ unde $m \ge 2$. Daca $(b, a_i) = 1$ pentru orice $1 \le i \le m$, atunci $(b, a_1 \cdots a_m) = 1$.

Demonstrație Demonstram pentru m = 2, cazul general obținându-se prin simpla inductie.

Conform Teoremei 1 există α_1 , α_2 , β_1 și β_2 astfel încât $\alpha_1 a_1 + \beta_1 b_2 = 1$ și

$$\alpha_2 a_2 + \beta_2 b = 1$$
. Deci
$$1 = 1.1 = (\alpha_1 a_1 + \beta_1 b)(\alpha_2 a_2 + \beta_2 b)$$
$$= \alpha_1 \alpha_2 a_1 a_2 + b(\alpha_1 a_1 \beta_2 + \alpha_2 a_2 \beta_1 + \beta_1 \beta_2 b),$$

ceea ce arata ca $(b, a_1a_2) = 1$.

Pentru m > 2 se aplica inductia matematica.

Proprietatea 2. Fie $a_1, \ldots, a_m, b \in \mathbb{Z}$, unde $m \ge 2$. Daca numerele a_1, \ldots, a_m sunt prime între ele două câte două și fiecare din ele divide b, atunci produsul lor divide b.

Demonstrație Demonstram pentru m = 2.

Deoarece $(a_1, a_2) = 1$, există α_1 şi α_2 astfel încât $\alpha_1 a_1 + \alpha_2 a_2 = 1$, iar de la a_1 / b si a_2 / b rezulta că există β_1 şi β_2 astfel încât $b = a_1\beta_1 = a_2\beta_2$.

Atunci,
$$b = a_1\beta_1 = a_1\beta_1(a_1a_1 + a_2a_2) = a_1\beta_1\alpha_1a_1 + a_1a_2\alpha_2\beta_1$$

= $a_2\beta_2\alpha_1a_1 + a_1a_2\alpha_2\beta_1 = a_1a_2(\alpha_1\beta_2 + \alpha_2\beta_1)$,

ceea ce arata ca a_1a_2/b .

Pentru m > 2 se aplica inductia matematica.

Proprietatea 3. Fie $a_1, \ldots, a_m, b \in \mathbb{Z}$, unde $m \ge 2$. Daca b este prim cu a_1 sib divide produsul $a_1 \cdots a_m$, atunci b divide produsul $a_2 \cdots a_m$.

Demonstrație Deoarece $(b, a_1) = 1$ urmează că există α și β astfel încât $\alpha a_1 + \beta b = 1$, iar de la $b/a_1 \cdots a_m$ urmează că există γ astfel încât $a_1 \cdots a_m = b\gamma$. Atunci,

$$a_2 \cdots a_m = 1 \cdot a_2 \cdots a_m = (\alpha a_1 + \beta b) a_2 \cdots a_m = \alpha a_1 \cdots a_m + \beta b a_2 \cdots a_m$$

= $\alpha b \gamma + \beta b a_2 \cdots a_m = b(\alpha \gamma + \beta a_2 \cdots a_m),$

ceea ce arata ca $b/a_2 \cdots a_m$.

Proprietatea 4. Fie $a_1, \ldots, a_m, p \in \mathbb{Z}$, unde $m \ge 2$. Daca p este prim s i p divide produsul $a_1 \cdots a_m$, atunci există i astfel încât p divide a_i .

Demonstratie Presupunem, prin contradictie ca p nu divide a_i , pentru orice i. Atunci, p este prim cu oricare din numerele a_i si deci, conform Prop.1 conduce la $(p, a_1 \cdots a_m) = 1$, ceea ce contrazice $p/a_1 \cdots a_m$.

Fie $n \ge 2$ un număr natural. Numim *descompunere* a lui n orice secvență finită de numere naturale n_1, \ldots, n_k $(k \ge 1)$ astfel încât $n = n_1 \cdots n_k$. Prin descompunerea numărului natural $n \ge 2$ in produs de puteri de numere prime vom intelege orice secventa de perechi de numere naturale

$$(n_1, e_1), \dots, (n_k, e_k) (k \ge 1)$$

astfel încât: $2 \le n_1 < \cdots < n_k$; n_i numere prime, $e_i > 0$, pentru orice $1 \le i \le k$, si $n = n_1 e^1 n_2 e^2 \dots n_k^{e_k}$

De exemplu, $20=2^25$ Daca in descompunerea de mai sus numerele $n_1, ..., n_k$ sunt prime, atunci descompunerea lui n va fi numita descompunere in factori primi. Are loc:

Teorema 2. (Teorema fundamentala a aritmeticii)

Orice număr natural $n \ge 2$ poate fi descompus, în mod unic, într-un produs de puteri de factori primi.

Cel mai mare divizor comun (c.m.m.d.c.) si Cel mai mic multiplu comun (c.m.m.m.c.)

Definiția 4. Fie $a_1, ..., a_n$ numere intregi diferite de 0, unde $n \ge 2$. Cel mai mare număr natural d cu proprietatea d/a_i , pentru orice $1 \le i \le n$ se numeste *cel mai mare divizor comun* al numerelor $a_1, ..., a_n$. Se noteaza $d = (a_1, ..., a_n)$

Teorema 3

Fie a_1, \ldots, a_n numere intregi nu toate 0, unde $n \ge 2$. Atunci, exista numerele întregi $\alpha_1, \ldots, \alpha_n$ astfel încât $d = (a_1, \ldots, a_n) = \alpha_1 a_1 + \cdots + \alpha_n a_n$.

Definiția 5. Fie a_1, \ldots, a_n numere intregi nenule, unde $n \ge 2$. Cel mai mic multiplu comun al numerelor a_1, \ldots, a_n este cel mai mic număr natural nenul m cu proprietatea a_i/m , pentru orice $1 \le i \le n$. Se noteaza $m = [a_1, \ldots, a_n]$.

Determinarea celui mai mare divizor comun a două numere - Algoritmul lui Euclid .

Fie $a \ge b \ge 0$:

- daca a = b sau b = 0 atunci (a, b) = a;
- dacă a > b > 0

$$a = b q_1 + r_1, \quad 0 < r_1 < b$$

 $b = r_1 q_2 + r_2, \quad 0 < r_2 < r_1$
...

$$r_{n-2} = r_{n-1}q_n + r_n, 0 < r_n < r_{n-1}$$

 $r_{n-1} = r_nq_{n+1} + r_{n+1}, r_{n+1} = 0,$

$$r_n < r_{n-1} < r_{n-2} < \dots < r_2 < r_1 < b$$

Avem
$$(a, b) = (b, r_1) = \cdots = (r_{n-1}, r_n) = (r_n, r_{n+1}) = (r_n, 0) = r_n.$$

Dacă fiecărui element x ce intervine în secvența de împărțiri de mai sus îi asociem un vector $V_x = (\alpha, \beta)$ ce furnizează combinatia liniara (infunctie de a si b) a lui x, adica $d = \alpha a + \beta b$, atunci combinatia liniara a resturilor se poate determina prin:

$$V_{a} = (1, 0)$$
 $V_{b} = (0, 1)$
 $a = bq_{1}+r_{1}$ $V_{r_{1}} = V_{a}-q_{1}V_{b}$
 $b = r_{1}q_{2}+r_{2}$ $V_{r_{2}} = V_{b}-q_{2}V_{r_{1}}$
 $r_{1} = r_{2}q_{3}+r_{3}$ $V_{r_{3}} = V_{r_{1}}-q_{3}V_{r_{2}}$
...

 $r_{n-2} = r_{n-1}q_{n}+r_{n}$ $V_{r_{n}} = V_{r_{n-2}}-q_{n}V_{r_{n-1}}$
 $r_{n-1} = r_{n}q_{n+1}$

Congruente =

Fie m un număr întreg. Definim pe \mathbf{Z} relația binară \equiv_m , numită $relația de congruență <math>modulo\ m$ sau $congruenta\ modulo\ m$, prin: $a \equiv_m b \iff m/(a-b)$,

pentru orice $a, b \in \mathbb{Z}$. Daca $a \equiv_m b$ atunci vom spune ca a si b sunt congruente modulo m, notat prin $a \equiv b \mod m$.

Proprietați Fie a, b, c, d, m și m' numere întregi. Atunci, au loc următoarele proprietăți:

- 1. \equiv_m este relatie de echivalenta pe **Z**;
- 2. $a \equiv_m b$ daca si numai daca $a \mod m = b \mod m$;
- 3. daca $a \equiv_m b$, atunci (a, m) = (b, m);
- 4. daca $a \equiv_m b$ si $c \equiv_m d$ atunci $a + c \equiv_m b + d$, $a c \equiv_m b d$, $ac \equiv_m bd$;
- 5. dacă $ac \equiv_{mc} bc$ și $c \neq 0$, atunci $a \equiv_{m} b$;
- 6. daca $ac \equiv_m bc$ si d = (m, c), atunci $a \equiv_{m/d} b$;
- 7. daca $ac \equiv_m bc$ si (m, c) = 1, atunci $a \equiv_m b$;
- 8. daca $a \equiv_{mm'} b$, atunci $a \equiv_m b$ si $a \equiv_{m'} b$;
- 9. daca $a \equiv_m b$ si $a \equiv_{m'} b$, atunci $a \equiv_{[m, m']} b$;

Demonstratii

3. daca
$$a \equiv_m b$$
, atunci $(a, m) = (b, m)$;

Fie
$$d_a = (a,m)$$
 => d_a/a si d_a/m
Fie $d_b = (b,m)$ => d_b/b si d_b/m
 $a \equiv_m b => m / a - b$

$$d_a/a - b, d_a/a => d_a/b => d_a/d_b deci d_a \le d_b$$

 $d_b/a - b, d_b/b => d_b/a => d_b/d_a deci d_b \le d_a$
 $deci d_a = d_b => (a, m) = (b, m)$

6. daca $ac \equiv_m bc$ si d = (m, c), atunci $a \equiv_{m/d} b$;

 $ac \equiv_m bc => m / ac - bc$ <=> exista k astfel incat ac - bc = mk <=> c(a - b) = mk d = (m, c) => d / m si d / c deci exista x, y astfel incat c = dx si m = dy, (x, y) = 1.Asadar $dx(a - b) = dyk => x(a - b) = yk, (x, y) = 1 => y/a - b => m/d / a - b => a <math>\equiv_y b => a$ $\equiv_{m/d} b$.

9. daca $a \equiv_m b$ si $a \equiv_{m'} b$, atunci $a \equiv_{[m, m']} b$;

Presupunem că $a \equiv_m b$ și $a \equiv_{m'} b$. Prima relație conduce la m/(a-b) a doua la m'/(a-b) => [m, m']/(a-b).

Euatii diofantice liniare

Sunt ecuatii de forma ax + by = c

Ecuatia ax + by = c are solutie $\ll \gcd(a, b)|c$

Solutia se calculeaza astfel:

- 1. Se aplica Algoritmul Extins al lui Euclid pentru a calcula $gcd(a, b) = \alpha a + \beta b$;
- 2. c' = c/gcd(a,b);
- 3. $x = \alpha c'$; $y = \beta c'$.

Exercitiul 1 (Algoritmul Extins al lui Euclid).

Calculati $d = \gcd(a, b)$ si α , β astfel incat $d = \alpha a + \beta b$, unde:

a)
$$a = 27$$
, $b = 21$;

$$V_a = (1, 0)$$
 $V_b = (0, 1)$

$$27 = 1 \cdot 21 + 6$$
 $V_{r_1} = V_a - q_1 V_b = (1,0) - 1(0,1) = (1,-1)$

$$21 = 3 \cdot 6 + 3$$
 $V_{r_2} = V_b - q_2 V_{r_1} = (0,1) - 3(1,-1) = (-3, 4)$ $6 = 3 \cdot 2$

$$\alpha = -3 \text{ si } \beta = 4$$

Deci
$$(27, 21) = 3 = -3 \cdot 27 + 4 \cdot 21$$

b)
$$a = 24$$
, $b = 39$;

$$(24, 39) = (39, 24)$$

$$V_a = (1, 0) V_b = (0, 1)$$

$$39 = 1 \cdot 24 + 15$$
 $V_{r_1} = V_a - q_1 V_b = (1,0) - 1(0,1) = (1,-1)$
 $24 = 1 \cdot 15 + 9$ $V_{r_2} = V_b - q_2 V_{r_1} = (0,1) - 1(1,-1) = (-1,2)$
 $15 = 1 \cdot 9 + 6$ $V_{r_3} = V_{r_1} - q_3 V_{r_2} = (1,-1) - 1(-1,2) = (2,-3)$
 $9 = 1 \cdot 6 + 3$ $V_{r_4} = V_{r_2} - q_4 V_{r_3} = (-1,2) - 1(2,-3) = (-3,5)$
 $6 = 2 \cdot 3$

(39, 24) = 3 deci si
$$\alpha = 5$$
, $\beta = -3$

$$c)$$
 a = 47, b = 35

$$d$$
) $a = 25$, $b = 45$

Exercitiul 2 (Ecuatii diofantice liniare). Rezolvati ecuatiile:

a)
$$24x + 7y = 8$$
;

$$24 = 3 \cdot 7 + 3$$
 $V_{r_1} = V_a - q_1 V_b = (1,0) - 3(0,1) = (1,-3)$
 $7 = 3 \cdot 2 + 1$ $V_{r_2} = V_b - q_2 V_{r_1} = (0,1) - 2(1,-3) = (-2,7)$
 $3 = 3 \cdot 1$

$$(24, 7) = 1$$
 $\alpha = -2, \beta = 7$

deci c' =
$$8/1 = 8$$
 si $x = \alpha c' = -16$ si $y = \beta c' = 56$

$$b)$$
 12x + 39y = 18;

$$(12, 39) = (39, 12)$$

$$39 = 3.12 + 3$$
 $V_{r_1} = V_a - q_1 V_b = (1,0) - 3(0,1) = (1,-3)$
 $12 = 3.4$

$$(12, 39) = (39, 12) = 3$$
 $\alpha = -3, \beta = 1$

deci c' = 18/3 = 6 si $x = \alpha c' = -18$ si $y = \beta c' = 6$

$$c)$$
 28x + 18y = 16.

$$d) 12x + 9y = 6$$

$$e) 7x + 21y = 11$$

Notam
$$Z_m = Z/_{\equiv m}$$
 $\mathbf{Z}_m^* = \{a \in \mathbf{Z}_m / (a, m) = 1\}$

Calculul inversului modular

 $a \in \mathbb{Z}_m$ are invers modulo m <=> (a,m) = 1.

- 1. Se calculeaza $(a,m) = \alpha a + \beta m$;
- 2. Daca (a,m) = 1 atunci $a^{-1} = \alpha \mod m$.

Exercitiul 3 (Invers modular)

Calculati a⁻¹ mod m, unde:

a)
$$a = 35$$
, $m = 46$

$$(35, 46) = (46, 35)$$

$$46 = 1 \cdot 35 + 11 \qquad V_{r_1} = V_a - q_1 V_b = (1,0) - 1(0,1) = (1,-1)$$

$$35 = 3 \cdot 11 + 2 \qquad V_{r_2} = V_b - q_2 V_{r_1} = (0,1) - 3(1,-1) = (-3,4)$$

$$V_{r_3} = V_1 - q_3 V_{r_2} = (1,-1) - 5(-3,4) = (-3,4) = (16,-21)$$

$$2 = 1 \cdot 2$$

$$35^{-1} = -21 \mod 46 = (46-21) \mod 46 = 25 \mod 46$$

b)
$$a = 18$$
, $m = 23$;

c)
$$a = 21$$
, $m = 34$.

$$d)$$
 a = 17, m = 42