Proofs

Severen Redwood

August 8th, 2019

1 About This Document

This document contains various assorted proofs that I have written down in order to assist my understanding. Nothing in here is novel or new, these are all simply retellings of that which has already been proven.

2 The Quadratic Formula

Theorem 1. The solutions of a quadratic equation of the form $ax^2 + bx + c = 0$ can be found with the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

where $a \neq 0$.

Proof. Completing the square on the general quadratic equation $ax^2 + bx + c = 0$ gives

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

$$(x + \frac{b}{2a})^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

This allows for isolating x, giving

$$(x + \frac{b}{2a})^{2} = \frac{b^{2}}{2a^{2}} - \frac{c}{a}$$

$$(x + \frac{b}{2a})^{2} = \frac{b^{2}}{4a^{2}} - \frac{4ac}{4a^{2}}$$

$$(x + \frac{b}{2a})^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a},$$

which is the quadratic formula.

3 Irrationality of $\sqrt{2}$

Theorem 2. The square root of two, $\sqrt{2}$, can not be represented as a ratio of two integers, and therefore is irrational.

Proof. Suppose that $\sqrt{2}$ is rational and thus can be written as the ratio of two integers $\frac{a}{b}$, where a is prime to b $(a \perp b)$. Therefore, we can state that

$$\sqrt{2} = \frac{a}{b}$$
$$2 = \frac{a^2}{b^2}.$$

Rearranging for a^2 gives the equation

$$a^2 = 2b^2,$$

which shows that a^2 is even, since $2b^2$ is necessarily even because it is a multiple of 2.

It follows that a must also be even, as squares of odd integers are never even. Therefore, there exists some integer k that satisfies the equation a = 2k.

Substituting 2k for a leads to

$$(2k)^2 = 2b^2$$
$$4k^2 = 2b^2$$
$$2k^2 = b^2.$$

which demonstrates that b^2 and therefore b itself must be even, using the same reasoning as with a^2 .

Since a and b are both even, the assumption that $\sqrt{2}$ is rational and a is prime to b no longer holds, as they share a common factor of 2. Therefore, $\sqrt{2}$ must be **irrational**. \Box

4 Logarithms

4.1 The Product Law

Theorem 3. A logarithm of the form $\log_b(xy)$ can be expressed as $\log_b(x) + \log_b(y)$.

Proof. Let $x=b^m$ and $y=b^n$. From the definition of a logarithm, it follows that $\log_b(x)=m$ and $\log_b(y)=n$.

Substituting b^m and b^n for x and y in the expression $\log_b(xy)$ gives the equation

$$\begin{split} \log_b(xy) &= \log_b(b^m \cdot b^n) \\ &= \log_b(b^{m+n}) \\ &= m+n. \end{split}$$

Since $m = \log_b(x)$ and $n = \log_b(y)$, the above can be written as

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

with the use of substitution.

4.2 The Quotient Law

Theorem 4. A logarithm of the form $\log_b(\frac{x}{y})$ can be expressed as $\log_b(x) - \log_b(y)$.

Proof. Let $x=b^m$ and $y=b^n$. From the definition of a logarithm, it follows that $\log_b(x)=m$ and $\log_b(y)=n$.

Substituting b^m and b^n for x and y in the expression $\log_b(\frac{x}{y})$ gives the equation

$$\begin{split} \log_b\left(\frac{x}{y}\right) &= \log_b\left(\frac{b^m}{b^n}\right) \\ &= \log_b(b^{m-n}) \\ &= m-n. \end{split}$$

Since $m = \log_b(x)$ and $n = \log_b(y)$, the above can be written as

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

with the use of substitution.

4.3 The Power Law

Theorem 5. A logarithm of the form $\log_h(x^y)$ can be expressed as $y \cdot \log_h(x)$.

Proof. Let $x=b^n$. From the definition of a logarithm, it follows that $\log_b(x)=n$.

Substituting b^n for x in the expression $\log_b(x^y)$ gives the equation

$$\begin{aligned} \log_b(x^y) &= \log_b((b^n)^y) \\ &= \log_b(b^{ny}) \\ &= ny \end{aligned}$$

Since $n = \log_b(x)$, the above can be written as

$$\begin{aligned} \log_b(x^y) &= \log_b(x) \cdot y \\ &= y \cdot \log_b(x) \end{aligned}$$

with the use of substitution.

4.4 The Change of Base Formula

Theorem 6. Any logarithm $\log_b(a)$ can be re-expressed in terms of another base with the formula

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}.$$

Proof. Let $c = \log_b(a)$. From the definition of a logarithm, it follows that $b^c = a$.

Taking the base-x logarithm on both sides gives the equation

$$\log_x(b^c) = \log_x(a).$$

Applying the logarithmic power law and solving for c leads to the equation

$$\begin{split} c\log_x(b) &= \log_x(a) \\ c &= \frac{\log_x(a)}{\log_x(b)}. \end{split}$$

Since $c = \log_b(a)$, the above can be written as

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}$$

with the use of substitution.