Группа	P3207	К работе допущен	
Студент	Садовой Г.В.	Работа выполнена	
Преподаватель	Терещенко Г.В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.05

"Температурная зависимость электрического сопротивления металла и полупроводника"

1 Цель работы

- Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75°C.
- Вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

2 Задачи, решаемые при выполнении работы

- 1. Провести измерения зависимости анодного тока I_a вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
- 2. Построить графики зависимостей I_a от B и определить по ним величины критических полей для каждого значения анодного напряжения.
- 3. По значениям критического поля найти величину удельного заряда электрона и оценить ее погрешность.

3 Объект исследования

Металлический и полупроводниковый образцы, зависимости их сопротивления от температуры

4 Метод экспериментального исследования

Многократные прямые измерения напряжения на образце и тока, проходящего через него, при различных температурах

5 Рабочие формулы и исходные данные

• Закон Ома для участка цепи:

$$R = \frac{U}{I} \tag{1}$$

где R - сопротивление, U - напряжение, I - сила ток

• Сопротивление полупроводника:

$$R_{\pi} = R_m \exp\left(\frac{E_g}{2kT}\right)$$

где kT - средняя энергия теплового движения, R_m - предел к которому стремится значение сопротивления полупроводника при повышении температуры

Прологарифмируем это соотношение и получим формулу для расчета ширины запрещенной зоны (k - постоянная Больцмана, $k=1,38*10^{-23}~\mbox{Джс/K}=8,62*10^{-5}~\mbox{эВ/K}$):

$$E_g = 2k \cdot \frac{\Delta \ln(R_{\pi})}{\Delta(1/T)} \tag{2}$$

• Зависимость сопротивления от температуры для металла при небольших диапазонах температур:

$$R_{\rm M} = R_0(1 + \alpha T),\tag{3}$$

, где R_0 - сопротивление данного образца при температуре $0^{\circ}C$, α - температурный коэффициент сопротивления

6 Измерительные приборы

Nº	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Вольтметр	электронный	$0 \div 2 B$	0,001 B
2	Амперметр	электронный	$0 \div 2000 \ \text{MKA}$	$1 \ M\kappa A$
3	Датчик температуры	электронный	$300 \div 370 \ K$	0,5 K

7 Схема установки

Рис. 1: Общий вид установки и её принципиальная схема

8 Результаты прямых измерений и их обработки

№	T, K	I, мк A	U, B	R, Om	$\ln R$	$\frac{10^3}{T}$, 1/K
1	302	880	0,143	162,500	5,091	3,311
2	307	890	0,129	144,944	4,976	3,257
3	312	924	0,102	110,390	4,704	3,205
4	317	947	0,097	102,429	4,629	3,155
5	322	973	0,080	82,220	4,409	3,106
6	327	995	0,066	66,332	4,195	3,058
7	332	1012	0,055	54,348	3,995	3,012
8	337	1021	0,051	49,951	3,911	2,967
9	342	1030	0,042	40,777	3,708	2,924
10	347	1077	0,017	15,785	2,759	2,882

Таблица 1: Полупроводниковый образец

Примеры расчётов (строка 1):

$$R = \frac{U}{I} = \frac{0.143}{880 \times 10^{-6}} = 1,625 \times 10^{2} \text{ Om} = 162,500 \text{ Om},$$

$$\ln R = \ln(162,500) = 5,091,$$

$$\frac{10^{3}}{T} = \frac{10^{3}}{302} = 3,311 \text{ K}^{-1}.$$

№	<i>T</i> , K	I, MKA	U, B	R, Om	t, °C
1	347	1016	1,666	1640,157	73,85
2	342	1084	1,607	1482,210	68,85
3	337	1090	1,604	1471,560	63,85
4	332	1099	1,600	1455,868	58,85
5	327	1102	1,587	1440,109	$53,\!85$
6	322	1116	1,584	1419,355	48,85
7	317	1124	1,572	1398,936	43,85
8	312	1148	1,558	1356,188	38,85
9	307	1166	1,544	1324,011	33,85
10	302	1182	1,532	1296,107	28,85

Таблица 2: Металлический образец

Примеры расчётов (строка 1):

$$R = \frac{U}{I} = \frac{1,666}{1016 \times 10^{-6}} = 1640,157 \text{ Ом},$$
 $t = T - T_0 = 347 - 273,15 = 73,85^{\circ}\text{C}.$

9 Расчёт результатов косвенных измерений

Таблица 3: Температурный коэффициент сопротивления

1	<i>u</i> .	1 1
i	j	$a_{ij} (10^{-3} / ^{\circ} \text{C})$
1	6	5,385
2	7	2,247
3	8	3,136
4	9	3,623
5	10	4,000
$\langle a \rangle$		3,678
Δa		0,456

Таблица 4: Ширина запрещённой зоны

j	$E_{gij} (10^{-19} Дж)$	E_{gij} (9B)
6	0,978	0,610
7	1,105	0,690
8	0,921	0,575
9	1,103	0,689
10	2,037	1,271
$\Xi_g\rangle$	1,229	0,767
$\mathbf{L}E$	$0,\!425$	0,265
	$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ E_g \rangle \end{array} $	$egin{array}{c c} E_{gij} & E_{gij} & E_{K} \\ \hline 6 & 0,978 \\ 7 & 1,105 \\ 8 & 0,921 \\ 9 & 1,103 \\ 10 & 2,037 \\ \hline E_g > & 1,229 \\ \hline \end{array}$

10 Расчёт погрешностей

$$\Delta \alpha = t_{\alpha,n} \sqrt{\frac{\sum_{i=1}^{n} (a_{ij} - \langle \alpha \rangle)^{2}}{n(n-1)}} = 0,456$$

$$\Delta E_{g} = t_{\alpha,n} \sqrt{\frac{\sum_{i=1}^{n} (E_{gij} - \langle E_{g} \rangle)^{2}}{n(n-1)}} = 0,425 \cdot 10^{-19} \text{ Дж}$$

$$\Delta E_{g} = t_{\alpha,n} \sqrt{\frac{\sum_{i=1}^{n} (E_{gij} - \langle E_{g} \rangle)^{2}}{n(n-1)}} = 0,265 \text{ pB}$$

11 Графики

Рис. 2: * Рис. 2. Зависимость $\ln(R)$ от 1/T для полупроводника

Рис. 3: * Рис. 3. Зависимость R(t) для металла

12 Окончательные результаты

$$E_g = (1,229 \pm 0,425) \cdot 10^{-19} \, \text{Дж} = (0,767 \pm 0,265) \, \text{эВ}$$

$$\alpha = (3,678 \pm 0,456) \cdot 10^{-3} \, {}^{\circ}\text{C}^{-1}$$

13 Выводы и анализ результатов работы

В ходе данной лабораторной работы была исследована зависимость изменения сопротивления образцов в зависимости от температуры. Была подтверждена линейная зависимость сопротивления от температуры. По ширине запрещённой зоны можно предположить, что полупроводник содержит арсенид галлия. Значение температурного коэффициента сопротивления соответствует меди, алюминию или свинцу, но точную природу металла установить нельзя. В целом, эксперимент подтвердил теоретическую модель поведения сопротивления в зависимости от температуры и позволил количественно оценить ключевые параметры.