Muhammed Yasir Fidon 161044056

- Represent the graphs above using adjacency lists. Draw the corresponding data structure

for graph 1

Note Note Note

- Represent the graphs using an adjaconcy matrix. Dow the corresponding data structure for graph 1

	D	1	2	3	4	5	6
01		1.0		1.0	1.0	1.0	
1	1.0		1.0	1,0	1.0		1.0
2		1.0		1.0		1.0	1.0
3	1.0	1.0	1.0		1.0	1.0	1.0
4	1.0	1.0		1,0		1.0	
5	1.0	***	1.0	1.0	1,0		1.0
6		1.0	1.0	1.0		1.0	

	0	1	2	3	4	5	6
0		1.0			1.0		
1	1.0		1.0	1.0			
2		1,0					1.0
3	t tand or and make	1.0				1.0	
4	1.0	-					
5		1		1.0		A STATE OF THE PARTY OF THE PAR	
	-		1 0	nce ndown10	A THE PERSON NAMED IN	-	
6			1.0	-			

- For each graph, what are the IVI=n, the IEI=m, and the density? Which representation is better for each graph? Explain your answer.

for graph 1

|V|=N=7 |E|=M=32

This graph is a dense graph because IEI close to IVI2 For dense graphs, the adjacency matrix gives better performing, because of that use matrix representation for graph 1.

for graph 2

|V|=n=7 |E|=m=6

This graph is a sposse graph because IEI is much less than IVI? For a sparse graph, the abacency list representation gives better performance, because of that use adjacency list representation for graph 2.

- Draw the DFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order.

for graph 1

- Start from 2
- VBH 2's bigger adjacent (6)
- Visit 6's bigger adjacent (5)
- Visit 5's bigger outjacent (4)
- Visit 4's bigger odjecent (3)
- Visit 3's bigger adjacent (1)
- Visit 1's bigger adjacent (0)
- Return back but all nodes visited in graph
- So just draw backedges and finish

graph 2

- Start from 2
- Visit 2's bioger adjacat(6)
- There is no unvisited adjacent of 6 50 return 2.
- Vait 2's unvaited bigger adjecent (1)
- Visit 1's bigger unvisited adjacent (3)
- Visit 3's bigger unisited abjacent (5)
- There is no unwisted abjacent of 6 so ceturn back to 1.
- Vist 1's bigg unvoited adjacent (0)
- Visit O's layer unvisited adjacent (4)
- All roles visited. Let draw back edges and finish.

- Draw BFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order.

- Visit the state node first (2)
- thin all nodes that are adjacent to it (1, 3, 5, 6)
- then all notes that can be reached by a path from the start node containing two edges (0,4)
- All nodes visited, search completed.

For graph 2

- Voit the state node first (2)
- then all nodes that are adjacent to it (1,6)
- then all notes that can be reached by a path from the start node containing two edges (0,3)
- then all notes that can be reached by a path from the start note containing three edses (4,5)
- All rodes visited, search completed.