K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 22. April 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 2

Stichworte: Submersionen und (hier stets eingebettete) Untermannigfaltigkeiten

Aufgabe 1 Nützliche Formalitäten (1+2 Punkte)

- a) Sei X ein topologischer Raum. Zeigen Sie: X ist genau dann haussdorff, wenn die Diagonale $\Delta_X = \{(x, x) \in X\}$ als Teilmenge von $X \times X$ abgeschlossen ist.
- b) Betrachten Sie das kommutative Quadrat

$$\begin{array}{ccc} M_1 \times_N M_2 & \xrightarrow{pr_2} & M_2 \\ \downarrow^{pr_1} & & \downarrow^{f_2} \\ M_1 & \xrightarrow{f_1} & N \end{array}$$

Hier seien f_1, f_2 differenzierbare Abbildungen zwischen differenzierbaren Mannigfaltigkeiten und wir versehen $M_1 \times_N M_2 := \{(x,y) \in M_1 \times M_2 | f_1(x) = f_2(y)\}$ mit der Teilraumtopologie. Zeigen Sie: Ist f_2 eine Submersion, so lässt sich $Z = M_1 \times_N M_2 \subset M_1 \times M_2$ als eingebettete Untermannigfaltigkeit auffassen und $pr_1 : Z \longrightarrow M_1$ ist wieder eine Submersion.

Aufgabe 2 Godement-Kriterium und Slice-Koordinaten (2+1+1+1+1 Punkte)

Sei M^m eine differenzierbare Mannigfaltigkeit und R eine Äquivalenzrelation auf der M zugrundeliegenden Punktmenge. Wir versehen M/R mit der Quotiententopologie und benutzen die Vorschrift $xRy \iff (x,y) \in R$, um R als Teilmenge von $M \times M$ aufzufassen. In dieser Aufgabe wollen wir Teile des 'Godement-Kriteriums' beweisen, wonach die folgenden Aussagen äquivalent sind:

- (i) M/R trägt die Struktur einer differenzierbaren Mannigfaltigkeit, so dass die Projektionsabbildung $\pi: M \longrightarrow M/R$, $x \longmapsto [x]$ eine Submersion ist.
- (ii) $R \subset M \times M$ ist eine abgeschlossene Untermannigfaltigkeit und $pr_1|_R : R \longrightarrow M$ eine Submersion.

Wir teilen den Beweis wie folgt auf:

a) Zeigen Sie die Implikation (i) \Longrightarrow (ii). (Tipp: Sie dürfen die Resultate aus Aufg.1 benutzen)

Nehmen Sie in den restlichen Aufgabenteilen nur (ii), nicht aber (i) an.

- b) Zeigen Sie: Die Abbildung $\pi: M \longrightarrow M/R$ ist offen ('Bilder offener Mengen sind offen')
- c) Zeigen Sie: Auch $pr_2|_R$ ist eine Submersion. (Tipp: R ist eine Äquivalenzrelation)
- d) Beweisen Sie ferner, dass für festes $x \in M$ die Menge $[x] \subset M$ eine eingebettete Untermannigfaltigkeit ist, und bestimmen Sie dim [x].
- e) Zeigen Sie: Zu jedem Punkt $p \in M$ gibt es eine Umgebung $\mathcal{U} \subset M$ und Koordinaten $(y, y') \in \mathbb{R}^{l+k=m}$ auf \mathcal{U} , so dass

$$\pi(y_1, y_1') = \pi(y_2, y_2') \iff y_1 = y_2$$

(Hinweis: Die $y \in \mathbb{R}^l$ lassen sich als Koordinaten auf M/R auffassen. Welchen Wert erhalten Sie für $l = \dim M/R$?)

Aufgabe 3 Kegelsingularität (3 Punkte)

Zeigen Sie, dass der Kegel $C = \{z^2 = x^2 + y^2\} \subset \mathbb{R}^3$, ausgestattet mit der Teilraumtopologie, keine topologische Mannigfaltigkeit ist. (*Tipp: Entfernen Sie einen geeigneten Punkt* $p \in C$)

Aufgabe 4 Stratifizierung der Lagrange-Grassmann-Mannigfaltigkeit (2+2+2 Punkte) Auf \mathbb{R}^{2n} betrachten wir die antisymmetrische Bilinearform

$$\omega(x,y) = \left\langle x, \begin{bmatrix} 0 & -id_n \\ id_n & 0 \end{bmatrix} y \right\rangle = \left\langle x_2, y_1 \right\rangle - \left\langle x_1, y_2 \right\rangle$$

Man bezeichnet mit $Gr(m,M)=\{V\subset\mathbb{R}^M|\dim V=m\}$ die Menge der m-dimensionalen Unterräume von \mathbb{R}^M und mit

$$LGr(n) = \{ V \in Gr(n, 2n) | \omega_{V \times V} = 0 \}$$

die Menge der 'Lagrange-Unterräume' von \mathbb{R}^{2n} . Für gegebenes $\Delta \in LGr(n)$ lässt sich LGr(n) in 'Strata'

$$\Sigma_k(\Delta) = \{ V \in LGr(n) | \dim V \cap \Delta = k \}, \quad k = 0, ..., n$$

zerlegen.

a) Mithilfe von $L_0 \in \Sigma_0(L')$ lässt sich jedes weitere $L \in Gr(n, 2n)$ mit $L \cap L' = 0$ als Graph einer Abbildung $P_L : L_0 \longrightarrow L'$ darstellen und wir erhalten eine Bilinearform $Q_L = \omega(\cdot, P_L \cdot)$ auf L_0 , welche sich nach Wahl einer Basis $\langle e_i \rangle_{i=1,\dots,n} = L_0$ als Matrix $Q_L = Q_L(e_i, e_j)_{i,j=1,\dots,n} \in \mathbb{R}^{n \times n}$ auffassen lässt. Zeigen Sie:

$$L \in LGr(n) \iff \text{Die Matrix } Q_L \text{ ist symmetrisch}$$

Schlussfolgern Sie, dass $LGr(n) \subset Gr(n,2n)$ eine eingebettete Untermannigfaltigkeit ist, und bestimmen Sie die Kodimension. (*Tipp: Sie dürfen ohne Beweis verwenden, dass* $Q_L \in \mathbb{R}^{n \times n}$ eine Standardkarte auf Gr(n,2n) definiert.)

b) Verwenden Sie ohne Beweis, dass die durch $\Sigma_0(L') \ni L_0 = \langle e_i \rangle$ definierten Karten $L \in \Sigma_0(L') \longmapsto Q_L(e_i, e_j)_{i,j=1,\dots,n}$ einen differenzierbaren Atlas auf LGr(n) liefern. Zeigen Sie, dass jedes $\Sigma_k(\Delta) \subset LGr(n)$ eine eingebettete Untermannigfaltigkeit ist und bestimmen Sie dim $\Sigma_k(\Delta)$.

(Tipp: Kombinieren Sie

$$\begin{bmatrix} \alpha & \beta \\ \beta^T & \gamma \end{bmatrix} = \begin{bmatrix} id & \beta\gamma^{-1} \\ & id \end{bmatrix} \begin{bmatrix} \alpha - \beta\gamma^{-1}\beta^T & \\ & \gamma \end{bmatrix} \begin{bmatrix} id \\ \gamma^{-1}\beta^T & id \end{bmatrix}$$

mit dem Trägheitssatz von Sylvester)

c) Ist $\Sigma_1(\Delta) \subset LGr(2)$ eine abgeschlossene Teilmenge? Ist $\Sigma_1(\Delta) \cup \Sigma_2(\Delta) \subset LGr(2)$, ausgestattet mit der Teilraumtopologie, eine topologische Mannigfaltigkeit? (*Tipp: Sie dürfen Aufgabe 3 benutzen*)

Zusatzaufgabe 5 Orbifold-Singularität (2+1 Bonuspunkte)

- (a) Für $n \geq 2$ betrachten wir die multiplikative Gruppenwirkung von $\mathbb{Z}_n = \{e^{i\frac{2\pi k}{n}}\}_{k=0,..,n-1}$ auf $\mathbb{C} = \mathbb{R}^2$ und statten $M = \mathbb{C}/\mathbb{Z}_n$ mit der Quotiententopologie aus. Zeigen Sie: Es gibt keine differenzierbare Struktur auf M, die $\pi : \mathbb{C} \longrightarrow \mathbb{C}/\mathbb{Z}_n$, $z \longmapsto [z]$ zu einer Submersion macht.
 - (Tipp: Argumentieren Sie durch Widerspruch und betrachten Sie das Differential df(0) einer hypothetischen Funktion $f \in C^1(M)$)
- (b) Welcher Teil der Aussage (ii) aus Aufgabe 2 schlägt hier fehl?

Abgabe bis Dienstag, 29. April 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.