1

NCERT Physics 12.7 Q6

EE23BTECH11212 - SWATHI DEEPIKA*

Question: Obtain the resonant frequency of a series LCR circuit with L = 2.0 H, $C = 32 \mu F$, and $R = 10 \Omega$. What is the Q-value of the circuit.

Fig. 1. LCR Circuit

Solution: In Figure Fig. 1 the following information is provided:

Symbol	Value	Description
L	2.0 H	Inductance
С	32 μF	Capacitance
R	10 Ω	Resistance
Q	$\frac{\omega_r}{\Delta\omega}$	Quality Factor

TABLE I Parameters

SERIES LCR CIRCUIT ANALYSIS

Now, the voltage transfer function $(\frac{V(s)}{I(s)} = H(s))$ is given by Ohm's Law in the Laplace domain:

$$\frac{V(s)}{I(s)} = R + sL + \frac{1}{sC} \tag{1}$$

Now, after substitution the equation is

$$\frac{V(s)}{I(s)} = 10 + 2s + \frac{1}{32 \times 10^{-6} s} \tag{2}$$

This is the voltage transfer function for the series LCR circuit in the Laplace domain.

Resonant Frequency (ω_0):

At resonance, the impedance is purely resistive, meaning the imaginary part of Z(s) is zero.

$$Im\{Z(s)\} = \omega L - \frac{1}{\omega C} = 0$$
 (3)

Solving for ω_0 :

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{4}$$

Substituting values:

$$\omega_0 = \frac{1}{\sqrt{2 \,\mathrm{H} \times 32 \,\mu\mathrm{F}}} = 125 \,\mathrm{rad/s} \tag{5}$$

Quality Factor (Q) Calculation:

$$\frac{\omega_r}{\Delta\omega} = \frac{\omega_0 L}{R} \tag{6}$$

$$Q = \frac{\omega_0 L}{R} = \frac{125 \text{ rad/s} \times 2 \text{ H}}{10 \Omega} = 25$$
 (7)

Therefore, the quality factor of the LCR circuit is 25.

The equivalent s domain of the circuit is:

Fig. 2. LCR Circuit in s-domain