Introducción a la Física Relativista II: Grupo y Álgebra de Lorentz Poblema Guiado

Mario I. Caicedo

4 de febrero de 2021

MEMENTO

Anteriormente aprendimos que si usamos la base

$$\mathbf{N}_i = rac{1}{2}(\mathbf{J}_i + i\mathbf{K}_i)$$
 $\mathbf{N}_i^{\dagger} = rac{1}{2}(\mathbf{J}_i - i\mathbf{K}_i)$,

$$\mathbf{N}_i^{\dagger} = \frac{1}{2} (\mathbf{J}_i - i \mathbf{K}_i),$$

se descubre que $so(3) = su(2) \oplus su(2)$ y que por lo tanto, los autovalores asociados a los casimires cada su(2) pueden usarse para etiquetar las representaciones.

Información

En este ejercicio y asistidos con el cuaderno

Algebra_de_Lorentz_so(3).ipyn

que se encuentra en el repositorio, demostraremos que la representación fundamental de so(3), es decir, la vectorial ó $\mathbf{4}_{v}$ es la representación (1/2, 1/2)

PROBLEMA

- **1** Construya explícitamente las seis matrices \mathbf{N}_i y \mathbf{N}_i^{\dagger} .
- 2 Encuentre los casimires correspondientes.
- ¿ Cuales son los autovalores?
- Discuta su resultado

