Statistical Theory and Modeling (ST2601) Lecture 7 - Point estimation and Maximum likelihood

Mattias Villani

Department of Statistics Stockholm University

Overview

- Maximum likelihood
- Sampling distributions
- **■** Bias-variance trade-off
- Consistency
- Sufficiency

Probability vs Inference

- Probability theory: given a distribution with parameter θ what are the properties of random variables (data)?
 - $X \sim \operatorname{Pois}(\lambda)$. Then: $\mathbb{E}(X) = \lambda$ and $\mathbb{V}(X) = \lambda$.
 - ▶ What is Pr(X > 4) for a given λ ?
 - ▶ If $X_1, ..., X_n \sim \text{Pois}(\lambda)$ for a given λ , what is $\mathbb{E}(\bar{X}_n)$?
- Inference/Learning: given observed data x_1, \ldots, x_n , which distribution and parameter value θ generated the data?
 - ▶ Point estimation $\hat{\lambda} = \bar{x}$
 - **Uncertainty quantification:**
 - standard errors $\mathbb{S}(\hat{\lambda})$
 - confidence intervals
 - Bayesian posterior distributions

Probability vs Inference

- Probability theory: Models and Parameters ⇒ Data.
- Inference: Data ⇒ Models and Parameters → Reality
- Often described as (particularly in finite populations):
- **Probability theory**: Population ⇒ Sample
- Inference: Sample ⇒ Population

The big picture of Statistics

The likelihood function

- **Probability distribution** for the dataset: $p(X_1, X_2, ..., X_n | \theta)$.
- **Probability for the observed data** $p(x_1, x_2, \dots, x_n | \theta)$.
- Inference: given observed data x_1, \ldots, x_n , what is a "good" value for θ ?
- Good values for $\theta \iff$ high probability for the observed data.
- Bad values for $\theta \iff$ low probability for the observed data.
- Find parameter value θ that maximizes the likelihood function

$$p(x_1,\ldots,x_n|\theta)$$

Different notations for the likelihood function

- $p(x_1, \ldots, x_n | \theta)$ [My Bayesian preference]
- $L(x_1,...,x_n|\theta)$ [L instead of p is for Likelihood]
- lacksquare $L(\theta)$ [Hiding the data. But convenient.]
- $L(x_1, \ldots, x_n; \theta)$ [Well, now we're just doing random symbols?]

Likelihood function - bit by bit

- eBay auction data with 1000 auctions for collectors' coins.
- We focus here on the number of bidders in the auctions.
- Count data: let's try a Poisson!

	BookVal	MinorBlem	MajorBlem	PowerSeller	IDSeller	Sealed	NegFeedback	ReservePriceFrac	NBidders	FinalPrice
1	18.95	0	0	0	0	0	0	0.368865435356201	2	15.5
2	43.5	0	0	1	0	0	0	0.229885057471264	6	41
3	24.5	0	0	1	0	0	0	1.02	1	24.99
4	34.5	1	0	0	0	0	0	0.721739130434783	1	24.9
5	99.5	0	0	0	0	0	1	0.167236180904523	4	72.65

Likelihood function for the first observation y_1

- First data point: $y_1 = 2$.
- Probability of observing $y_1 = 2$ in the Poisson model?
- Poisson probability function:

$$p(Y_1 = y_1 | \lambda) = \frac{\lambda^{y_1} e^{-\lambda}}{y_1!} = \frac{\lambda^2 e^{-\lambda}}{2!}$$

- Let's try with $\lambda = 3$.
 - Mathematically:

$$p(Y_1 = 2|\lambda = 3) = \frac{3^2 e^{-3}}{2!} = 0.2240418$$

- ▶ In R: dpois(x = 2, lambda = 3)
- For $\lambda = 2$:
 - ► Mathematically:

$$p(Y_1 = 2|\lambda = 2) = \frac{2^2 e^{-2}}{2!} = 0.2706706$$

▶ In R: dpois(x = 2, lambda = 2)

Likelihood function for the first observation y_1

- So, $\lambda = 2$ gave a higher probability to the data $y_1 = 2$ compared to $\lambda = 3$.
- How about other λ values? Let's do them all!

Likelihood function for y_1 and y_2

- Data: $y_1 = 2$ and $y_2 = 6$.
- Likelihood function is the joint probability

$$p(Y_1 = 2, Y_2 = 6|\lambda) \stackrel{\text{indep}}{=} p(Y_1 = 2|\lambda) \cdot p(Y_2 = 6|\lambda) = \frac{\lambda^{y_1} e^{-\lambda}}{y_1!} \cdot \frac{\lambda^{y_2} e^{-\lambda}}{y_2!}$$

For $\lambda = 2$

$$p(Y_1 = 2, Y_2 = 6 | \lambda = 2) = \frac{2^2 e^{-2}}{2!} \cdot \frac{2^6 e^{-2}}{6!}$$

Let R do the work

$$dpois(x = 2, lambda = 2)*dpois(x = 6, lambda = 2) = 0.003256114$$

Likelihood function for y_1, \ldots, y_{10}

Likelihood function using first ten observations

$$p(Y_1 = y_1, ..., Y_{10} = y_{10}|\lambda) \stackrel{\text{indep}}{=} \prod_{i=1}^{10} p(y_i|\lambda)$$

Likelihood function for all n = 1000 observations

$$p(Y_1 = y_1, \dots, Y_n = y_n | \lambda) = \prod_{i=1}^n p(y_i | \lambda)$$

■ Product of 1000 probabilities is a tiny number. Let's do logs.

Log-likelihood function for two observations

Log-Likelihood function using first two observations

$$\log p(Y_1 = 2, Y_2 = 6|\lambda) = \log p(Y_1 = 2|\lambda) + \log p(Y_2 = 6|\lambda)$$

- Note: since \log is monotonically increasing transformation: the λ that maximizes the likelihood is the same λ that maximizes the log-likelihood.
- Maximum likelihood estimator of λ : the value of λ that maximizes the (log-)likehood function.

Log-likelihood function for all observations

Log-likelihood for all n data points

$$\ell(\lambda) = \log L(\lambda) = \sum_{i=1}^{n} \log p(y_i|\lambda)$$

Poisson distribution

$$p(y_i|\lambda) = \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$$
 and $\log p(y_i|\lambda) = y_i \log \lambda - \lambda - \log(y_i!)$

Log-likelihood for iid Poisson model

$$\ell(\lambda) = \sum_{i=1}^{n} \log p(y_i|\lambda) = \sum_{i=1}^{n} (y_i \log \lambda - \lambda - \log(y_i!))$$
$$= \log \lambda \sum_{i=1}^{n} y_i - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

Since $\sum_{i=1}^{n} y_i = n\bar{y}$ we can write

$$\ell(\lambda) = \log \lambda \cdot n\bar{y} - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

Log-likelihood function for all observations

Log-likelihood for iid Poisson model

$$\ell(\lambda) = \log \lambda \cdot n\bar{y} - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

The MLE in the iid Poisson model

Maximum likelihood (MLE) of λ

$$\hat{\lambda}_{\mathit{ML}} = \operatorname*{argmax}_{\lambda} \ell(\lambda)$$

Finding a maximum of a function? Set first derivate to zero and solve for λ

$$\ell'(\lambda) = 0$$

Check for (local) maximum by checking second derivative

$$\ell''(\hat{\lambda}_{ML}) < 0$$

When $\ell'(\lambda) = 0$ cannot be solved mathematically. Use computer. More later!

The MLE in the iid Poisson model

Log-likelihood

$$\ell(\lambda) = \log \lambda \cdot n\bar{y} - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$
$$\ell'(\lambda) = \frac{n\bar{y}}{\lambda} - n = 0$$

has solution

$$\hat{\lambda}_{ML} = \bar{y}$$

Second derivative shows that this indeed a (local) maximizer

$$\ell''(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\ell'(\lambda) = -\frac{n\bar{y}}{\lambda^2} < 0$$

for all λ and therefore also at $\hat{\lambda}_{ML}$.

The MLE in the iid Exponential model

Model

$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Expon}(\beta)$$

Likelihood (densities because of continuous random variables!)

$$L(\beta) = \prod_{i=1}^{n} f(y_i | \beta) = \prod_{i=1}^{n} \frac{1}{\beta} e^{-y_i / \beta} = \frac{1}{\beta^n} e^{-\frac{1}{\beta} \sum_{i=1}^{n} y_i} = \frac{1}{\beta^n} e^{-\frac{n\overline{y}}{\beta}}$$

Log-likelihood

$$\ell(\beta) = \log L(\beta) = -n \log \beta - \frac{n\overline{y}}{\beta}$$
$$\ell'(\beta) = -\frac{n}{\beta} + \frac{n\overline{y}}{\beta^2} = 0$$
$$-n + \frac{n\overline{y}}{\beta} = 0$$

so

$$\hat{\beta}_{ML} = \bar{y}$$

The MLE in the iid Exponential model

First derivative

$$\ell'(\beta) = -\frac{n}{\beta} + \frac{n\bar{y}}{\beta^2}$$

Second derivative

$$\ell''(\beta) = \frac{n}{\beta^2} - \frac{2n\bar{y}}{\beta^3}$$

lacksquare Evaluate at $\hat{eta}_{\mathit{ML}} = \bar{y}$

$$\ell''(\hat{\beta}_{ML}) = \frac{n}{\bar{y}^2} - \frac{2n\bar{y}}{\bar{y}^3} = \frac{n}{\bar{y}^2} - \frac{2n}{\bar{y}^2} = -\frac{n}{\bar{y}^2} < 0$$

since n > 0 and $\bar{y} > 0$ (exponential is used for positive data).

Sampling distribution of an estimator

An estimator $\hat{\theta}$ depends on the sample

$$\hat{\theta}_n(X_1,\ldots,X_n)$$

- **Sampling distribution** of $\hat{\theta}$ tells us how $\hat{\theta}$ varies from sample to sample.
- Confidence intervals are based on this.
- **Asymptotic sampling distribution** for $\hat{\theta}_n$: what is the sampling distribution when n is large $(n \to \infty)$.
- **Central limit theorem**: the asymptotic sampling distribution of the sample mean \bar{X}_n is normal.

Bias-variance trade-off

Unbiased estimator

$$\mathbb{E}(\hat{\theta}) = \theta$$

Bias

$$\mathbb{E}(\hat{\theta}) - \theta$$

■ Mean square error (MSE)

$$\mathbb{E}(\hat{\theta} - \theta)^2 = \mathbb{V}(\hat{\theta}) + \left(\text{Bias}(\hat{\theta})\right)^2$$

Consistent estimator

Law of large numbers

$$\bar{X}_n \stackrel{p}{\to} \mu$$

lacktriangle An estimator $\hat{\theta}$ is **consistent** for a population parameter θ if

$$\hat{\theta}_n \stackrel{p}{\to} \theta$$

which, by convergence in probability, means that for any $\epsilon>0$

$$\Pr(|\hat{\theta}_n - \theta| > \epsilon) \to 0$$
 as $n \to \infty$

Result: An unbiased estimator $\hat{\theta}$ is consistent if

$$\mathbb{V}(\hat{\theta}_n) \to 0$$
 as $n \to \infty$

Sufficiency

- A statistic $T = t(X_1, ..., X_n)$ is a compression of the data into some lower-dimensional quantity.
- **Examples:** sample mean \bar{X}_n or the sample variance s^2 .
- A statistic $T = t(X_1, ..., X_n)$ is sufficient for a parameter θ if

$$\Pr(X_1,\dots,X_n|\,T=t,\theta)=\Pr(X_1,\dots,X_n|\,T=t)$$

- A sufficient statistic captures all the information in the data about the parameter θ .
- **Factorization criterion**. A statistic T is sufficient for θ if and only if the likelihood can be written

$$L(x_1,\ldots,x_n|\theta)=g(t,\theta)h(x_1,\ldots,x_n),$$

where $h(x_1, \ldots, x_n)$ is a function that does not involve θ .

Sufficiency and the MLE

- Assume that a data compression $T = t(X_1, ..., X_n)$ is sufficient for θ . We observe T = t.
- Since T is sufficient for θ , the log-likelihood can be written

$$\log L(\theta) = \log g(t,\theta) + \log h(x_1,\ldots,x_n)$$

lacksquare The maximum likelihood estimator $\hat{ heta}_{ML}$ is obtained by solving

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log L(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta}\log g(t,\theta)$$

It is therefore enough to only keep the compressed data when finding $\hat{\theta}_{ML}$.

Sufficiency in the iid Poisson model

Likelihood when $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \operatorname{Pois}(\lambda)$:

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} = \frac{\lambda^{n\bar{y}} e^{-n\lambda}}{\prod_{i=1}^{n} y_i!} = g(\bar{y}, \theta) \cdot h(y_1, \dots, y_n)$$

where

$$g(\bar{y}, \theta) = \lambda^{n\bar{y}} e^{-n\lambda}$$
 and $h(y_1, \dots, y_n) = \frac{1}{\prod_{i=1}^n y_i!}$

so \bar{y} is a sufficient statistic for the parameter λ .

The sample size n is a known constant, not a random variable.