EMP 2012

1. (3 boda) Odredite apsolutnu vrijednost magnetske indukcije u $[\mu T]$ u točki T(x=0;y=-1;z=0) prema slici. Zadana je struja I=12,7A. (strujnica se sastoji od tri ravna dijela te četvrtine kruga)

2. (3 boda) U slobodnom prostoru je zadana vremenski promjenjiva magnetska indukcija jednadžbom $\mathbf{B} = k \cdot B_0 \cdot t \cdot \mathbf{a}_z$, pri čemu je B_0 =2 T, a k je konstanta k=1,5 s⁻¹. Uz pretpostavku simetrije magnetskog polja oko osi z odredite vektorski magnetski potencijal u [Tm] u točki (r=1; α =30°;z=2) u trenutku t=2s. Vektorski magnetski potencijal ne sadrži komponentu konstantnu u vremenu.

Α	1	В	2	C	3	D	4	E	5	F	6

3. (3 boda) Dva su vodiča, kojima teče struja I=5A, razmaknuta na udaljenost 2a prema slici (a=1,5m). Vodljivi prsten kružnog oblika leži u ravnini sustava dvaju vodiča, polumjera je a i izoliran je od vodiča. Odredite međuinduktivitet u [μ H] između prstena i dvaju vodiča.

4. (3 boda) Vektor magnetskog polja u prostoru je zadan jednadžbom:

$$H = \frac{1}{2y+4} a_x.$$

Odredite iznos struje u [mA] kroz kvadratnu petlju stranice 1m, koja leži u xy ravnini prema slici.

A 190 B 541 C 300 **D 83** E 412 F 266

5. (3 boda) Kroz dvije beskonačno duge paralelne žice zanemarivog poprečnog presjeka, razmaknute na udaljenost a=1m, teče struja I = $10\cos(314t)$ A, prema slici. U ravnini žica na udaljenosti a od gornjeg vodiča nalazi se kvadratna petlja stranice a, otpora jedne stranice iznosa R=1 Ω . Odredite iznos vršne vrijednosti inducirane struje u [μ A] koja teče kvadratnom petljom.

A 32 B 45 C 90 D 115 E 55 F 68

6. (2 boda) Vodič zanemarivog poprečnog presjeka leži u osi z za $-2 \le z \le 2$ [m], a njime teče struja iznosa 2A u smjeru negativne z osi. Ako je zadana indukcija u prostoru prema jednadžbi $\pmb{B} = 2 \cdot 10^{-3} e^{-0.1y} \pmb{a}_x$ [T] odredite iznos energije u [m]] koji je potreban za pomicanje vodiča konstantnom brzinom za 1m u smjeru \pmb{a}_y .

Α	8.6	В	15.2	С	12.4	D	20.0	Е	26.5	F	17.1	

7. (2 boda) U vakuumu je električno polje zadano jednadžbom $\textbf{\textit{E}}(z,t){=}20cos(\omega~t~-\beta~z)\textbf{\textit{a}}_x~[V/m].$

Odredite srednju snagu u [W] koja prolazi krugom polumjera 2m u ravnini z=1m.

Α	8,4	В	1,5	С	3,8	D	6,7	Е	5,0	F	9,6

8. (2 boda) Odredite iznos jakosti električnog polja |E(t=0; x=0,8 λ)| ravnog vala u [V/m] zadanog jednadžbom:

 $E(x,t)=12\sin(\omega t - \beta x)a_y - 16\sin(\omega t - \beta x)a_z [V/m].$

Γ	A 17	B 21	C 19	D 16	E 20	F 18

9. (2 boda) U sredstvu relativne permeabilnosti $\mu_r=1$ jakost magnetskog polja zadana je jednadžbom:

 $H = \frac{e^{-y}}{5}\cos(2\pi \cdot 10^8 t - 2y)a_x [A/m].$

Odredite jakost električnog polja u [V/m] u trenutku $t=0.02 \mu \mathrm{s}$ i $y=0.2 \mathrm{m}$.

Α	16,3	В	35,7	С	28,9	D	51,6	E	42,8	F	21,5

10.(2 boda) Magnetski krug je zadan slikom i krivuljom magnetiziranja materijala. Zadana je magnetska indukcija u željezu iznosa 1,3 T i broj zavoja N=85. Odredite iznos struje u [A] kroz zavojnicu.

A 1,6 B 1,5 C 1,4 D 1,3 E 1,2 F 1,1

