

Paid with Models:

Optimal Contract Design for Collaborative Machine Learning

Bingchen Wang*, Zhaoxuan Wu, Fusheng Liu, Bryan Kian Hsiang Low

*Corresponding author (bingchen@nus.edu.sg)

The Herculean Task of Model Training

Motivation

Models as Rewards
Optimal Contract
Results

Geoffrey Hinton in conversation with Fei-Fei Li — Responsible Al development, Oct 4, 2023.

"Not a single university in the US today can train a ChatGPT in terms of the compute power.

And I think combining all universities of the US, A100 or H100—probably nobody has it, but A100 cannot train a ChatGPT."

Can we design mechanisms to democratize AI?

Models as Rewards
Optimal Contract
Results

Collaborative Machine Learning (CML)

A promising crowdsourcing paradigm to democratize AI?

Models as Rewards
Optimal Contract
Results

The incentive problem of CML

Resource contribution increases model performance but costs money.

Collective goal:

Maximize the model performance

Private goal:

Maximize the net profit

Models as Rewards
Optimal Contract
Results

The incentive problem of CML

Catastrophic freeriding

Models as Rewards
Optimal Contract
Results

The incentive problem of CML

Proposition 2 (Contract Design with Complete Information)

The optimal strategy is to offer participants the same best model but require them to contribute different amounts of resources.

Models as Rewards **Optimal Contract** Results

The incentive problem of CML

Contribution costs are often privately observable and difficult to verify.

Principal-agent problem > Monopolistic screening

Models as Rewards

Optimal Contract

Results

Contract Design with Model Rewards

Model rewards are different from money:

(1) Non-rivalrous.

Assigning deterministic model rewards risks insolvency or underutilization of the budget.

CML with Optimal Contract Design

Motivation

Models as Rewards

Optimal Contract Results

Models as Rewards

Optimal Contract

Results

Solving for the Optimal Contract

Coordinator's Utility Function

distribution.

Party's Utility Function

Party knows they will be contributing when joining the scheme.

Coordinator only knows the probability

Models as Rewards

Optimal Contract

Results

Constrained Optimization

$$\max_{(\mathbf{r}_i, m_i)_{i=1}^I} \mathbb{E}_{n \sim \text{Multi}(N, p)} \left| a \left(\sum_{i=1}^I n_i m_i \right) \right|$$

$$\mathbb{E}_{n_i \ge 1}[v(r_i)] - c_i m_i \ge f_i, \forall i$$

s.t.

Joining the scheme gives each party a weakly higher net profit than opting out.

Models as Rewards

Optimal Contract

Results

Constrained Optimization

$$\max_{(\mathbf{r}_i, m_i)_{i=1}^I} \mathbb{E}_{n \sim \text{Multi}(N, p)} \left[a \left(\sum_{i=1}^I n_i m_i \right) \right]$$

$$\begin{cases} \mathbb{E}_{n_i \geq 1}[v(r_i)] - c_i m_i \geq f_i, \forall i \\ \\ \mathbb{E}_{n_i \geq 1}[v(r_i)] - c_i m_i \geq \mathbb{E}_{n_j \geq 1}[v(r_j)] - c_i m_j, \forall i, j \end{cases} \text{ Incentive Compatibility}$$

Each party has incentive to tell the truth by choosing the option designed for them.

Models as Rewards

Optimal Contract

Results

Constrained Optimization

$$\max_{\substack{(\mathbf{r}_i, m_i)_{i=1}^I \\ \mathbf{r}_i = 1}} \mathbb{E}_{n \sim \text{Multi}(N, p)} \left[a \left(\sum_{i=1}^I n_i m_i \right) \right]$$

The administered model rewards must never surpass the collectively trained model in performance.

Hard to solve directly.

Models as Rewards

Optimal Contract

Results

First-moment Problem

$$\max_{(t_i, m_i)_{i=1}^I} \mathbb{E}_{n \sim \text{Multi}(N, p)} \left[a \left(\sum_{i=1}^I n_i m_i \right) \right]$$
s. t.
$$\begin{cases} t_i - c_i m_i \geq f_i, \forall i \\ t_i - c_i m_i \geq t_j - c_i m_j, \forall i, j \\ t_i \leq \mathbb{E}_{n_i \geq 1} \left[v \left(a \left(\sum_{i=1}^I n_i m_i \right) \right) \right], \forall i \end{cases}$$

Models as Rewards

Optimal Contract

Results

Experiment Results

Experiment Results (Big-firm cooperation)

Motivation

Models as Rewards

Optimal Contract

Experiment Results (Big-firm cooperation)

Motivation Models as Rewards **Optimal Contract**

Results

Reward distributions

Experiment Results (Small-party teamwork)

Motivation

Models as Rewards

Optimal Contract

Experiment Results (Small-party teamwork)

Motivation

Models as Rewards

Optimal Contract

Experiment Results (Big-and-small collaboration)

Motivation

Models as Rewards

Optimal Contract

Experiment Results (Big-and-small collaboration)

Motivation

Models as Rewards

Optimal Contract

Motivation

Models as Rewards

Optimal Contract

Results

Full paper

Code

Conclusion

"You do not rise to the level of your goals. You fall to the level of your systems."

— James Clear, Atomic Habits.

A promising crowdsourcing paradigm to democratize AI?

Models as Rewards

Optimal Contract

Results

Limitations & Future Work

Full paper

Code

Limitations & Future Work

Empirical justification for behavioral assumptions

Incorporating quality in the contribution measure

Prior-training accuracy function & valuation function

Distributional assumption & combinatorial challenge

