I prodotti di uno spazio vettoriale

Dispense del corso di Geometria 1

Gabriel Antonio Videtta

A.A. 2022/2023

Indice

1	Intr	oduzior	ne al prodotto scalare	5	
	1.1	Prime	definizioni	5	
		1.1.1	Prodotto scalare e vettori ortogonali rispetto a φ	5	
		1.1.2	Prodotto definito o semidefinito	6	
	1.2	1.2 Il radicale di un prodotto scalare			
		1.2.1	La forma quadratica q associata a φ e vettori (an)isotropi	6	
		1.2.2	Matrice associata a φ e relazione di congruenza	7	
		1.2.3	Studio del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$	8	
		1.2.4	Condizioni per la (semi)definitezza di un prodotto scalare	9	
	1.3 Formula delle dimensioni e di polarizzazione rispetto a φ				
	1.4	1.4 Il teorema di Lagrange e basi ortogonali			
		1.4.1	L'algoritmo di ortogonalizzazione di Gram-Schmidt	12	

1 Introduzione al prodotto scalare

Nota. Nel corso del documento, per V, qualora non specificato, si intenderà uno spazio vettoriale di dimensione finita n.

1.1 Prime definizioni

1.1.1 Prodotto scalare e vettori ortogonali rispetto a φ

Definizione (prodotto scalare). Un **prodotto scalare** su V è una forma bilineare simmetrica φ con argomenti in V.

Esempio. Sia $\varphi: M(n, \mathbb{K}) \times M(n, \mathbb{K}) \to \mathbb{K}$ tale che $\varphi(A, B) = \operatorname{tr}(AB)$.

- $ightharpoonup \varphi(A+A',B) = \operatorname{tr}((A+A')B) = \operatorname{tr}(AB+A'B) = \operatorname{tr}(AB) + \operatorname{tr}(A'B) = \varphi(A,B) + \varphi(A',B)$ (linearità nel primo argomento),
- $ightharpoonup \varphi(\alpha A, B) = \operatorname{tr}(\alpha AB) = \alpha \operatorname{tr}(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento),
- $ightharpoonup \varphi(A,B) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \varphi(B,A)$ (simmetria),
- ightharpoonup poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \mathbb{K})$.

Definizione (vettori ortogonali). Due vettori \underline{v} , $\underline{w} \in V$ si dicono **ortogonali** rispetto al prodotto scalare φ , ossia $v \perp w$, se $\varphi(v, w) = 0$.

Definizione. Si definisce prodotto scalare *canonico* di \mathbb{K}^n la forma bilineare simmetrica φ con argomenti in \mathbb{K}^n tale che:

$$\varphi((x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n x_i y_i.$$

Osservazione. Si può facilmente osservare che il prodotto scalare canonico di \mathbb{K}^n è effettivamente un prodotto scalare.

- $\varphi(\alpha(x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n \alpha x_i y_i = \alpha \sum_{i=1}^n x_i y_i = \alpha \varphi((x_1,...,x_n),(y_1,...,y_n))$ (omogeneità nel primo argomento),
- $\varphi((x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n x_i y_i = \sum_{i=1}^n y_i x_i = \varphi((y_1,...,y_n),(x_1,...,x_n)) \text{ (simmetria)},$

 \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su \mathbb{K}^n .

Esempio. Altri esempi di prodotto scalare sono i seguenti:

- $\blacktriangleright \varphi(A,B) = \operatorname{tr}(A^{\top}B) \text{ per } M(n,\mathbb{K}),$
- $ightharpoonup \varphi(p(x),q(x)) = p(a)q(a) \text{ per } \mathbb{K}[x], \text{ con } a \in \mathbb{K},$
- ▶ $\varphi(p(x), q(x)) = \sum_{i=1}^{n} p(x_i)q(x_i)$ per $\mathbb{K}[x]$, con $x_1, ..., x_n$ distinti, ▶ $\varphi(p(x), q(x)) = \int_a^b p(x)q(x)dx$ per lo spazio delle funzioni integrabili su \mathbb{R} , con a, b in
- $\blacktriangleright \varphi(\underline{x},y) = \underline{x}^{\top} Ay \text{ per } \mathbb{K}^n, \text{ con } A \in M(n,\mathbb{K}) \text{ simmetrica.}$

1.1.2 Prodotto definito o semidefinito

Definizione. Sia $\mathbb{K} = \mathbb{R}$. Allora un prodotto scalare φ si dice **definito positivo** $(\varphi > 0)$ se $\underline{v} \in V$, $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) > 0$. Analogamente φ è definito negativo $(\varphi < 0)$ se $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) < 0$. In generale si dice che φ è **definito** se è definito positivo o definito negativo.

Infine, φ è semidefinito positivo $(\varphi \geq 0)$ se $\varphi(\underline{v},\underline{v}) \geq 0 \ \forall \underline{v} \in V$ (o semidefinito **negativo**, e quindi $\varphi \leq 0$, se invece $\varphi(\underline{v},\underline{v}) \leq 0 \ \forall \underline{v} \in V$). Analogamente ai prodotti definiti, si dice che φ è **semidefinito** se è semidefinito positivo o semidefinito negativo.

Esempio. Il prodotto scalare canonico di \mathbb{R}^n è definito positivo: $\varphi((x_1,...,x_n),(x_1,...,x_n)) = \sum_{i=1}^n x_i^2 > 0$, se $(x_1,...,x_n) \neq \underline{0}$.

Al contrario, il prodotto scalare $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tale che $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_1 - x_2y_2$ non è definito positivo: $\varphi((x,y),(x,y)) = 0, \forall (x,y) \mid x^2 = y^2$, ossia se y = x o y = -x.

1.2 Il radicale di un prodotto scalare

1.2.1 La forma quadratica q associata a φ e vettori (an)isotropi

Definizione. Ad un dato prodotto scalare φ di V si associa una mappa $q:V\to\mathbb{K}$, detta forma quadratica, tale che $q(v) = \varphi(v, v)$.

Osservazione. Si osserva che q non è lineare in generale: infatti $q(\underline{v}+\underline{w}) \neq q(\underline{v}) + q(\underline{w})$ in \mathbb{R}^n .

Definizione (vettore (an)isotropo). Un vettore $\underline{v} \in V$ si dice **isotropo** rispetto al prodotto scalare φ se $q(\underline{v}) = \varphi(\underline{v},\underline{v}) = 0$. Al contrario, \underline{v} si dice **anisotropo** se non è isotropo, ossia se $q(\underline{v}) \neq 0$.

¹In realtà, la definizione è facilmente estendibile a qualsiasi campo, purché esso sia ordinato.

Definizione (cono isotropo). Si definisce **cono isotropo** di V rispetto al prodotto scalare φ il seguente insieme:

$$CI(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{v}) = 0 \},$$

ossia l'insieme dei vettori isotropi di V.

Esempio. Rispetto al prodotto scalare $\varphi : \mathbb{R}^3 \to \mathbb{R}$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + x_2y_2 - x_3y_3$, i vettori isotropi sono i vettori della forma (x, y, z) tali che $x^2 + y^2 = z^2$, e quindi $CI(\varphi)$ è l'insieme dei vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.

1.2.2 Matrice associata a φ e relazione di congruenza

Osservazione. Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato dai valori che assume nelle coppie $\underline{v_i}, \underline{v_j}$ estraibili da una base \mathcal{B} . Infatti, se $\mathcal{B} = (\underline{v_1}, ..., \underline{v_k}), \ \underline{v} = \sum_{i=1}^k \alpha_i \underline{v_i}$ e $\underline{w} = \sum_{i=1}^k \beta_i \underline{v_i}$, allora:

$$\varphi(\underline{v},\underline{w}) = \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_i \beta_j \, \varphi(\underline{v_i},\underline{v_j}).$$

Definizione. Sia φ un prodotto scalare di V e sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Allora si definisce la **matrice associata** a φ come la matrice:

$$M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, v_j))_{i, j=1 \dots n} \in M(n, \mathbb{K}).$$

Osservazione.

- ▶ $M_{\mathcal{B}}(\varphi)$ è simmetrica, infatti $\varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v_j}, \underline{v_i})$, dal momento che il prodotto scalare è simmetrico,

Teorema. (di cambiamento di base per matrici di prodotti scalari) Siano \mathcal{B} , \mathcal{B}' due basi ordinate di V. Allora, se φ è un prodotto scalare di V e $P = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)$, vale la seguente identità:

$$\underbrace{M_{\mathcal{B}'}(\varphi)}_{A'} = P^{\top} \underbrace{M_{\mathcal{B}}}_{A} P.$$

 $\begin{array}{ll} \textit{Dimostrazione.} \ \text{Siano} \ \mathcal{B} = (\underline{v_1},...,\underline{v_n}) \ \text{e} \ \mathcal{B}' = (\underline{w}_1,...,\underline{w}_n). \ \text{Allora} \ A'_{ij} = \varphi(\underline{w}_i,\underline{w}_j) = [\underline{w}_i]_{\mathcal{B}}^{\top} A[\underline{w}_j]_{\mathcal{B}} = (P^i)^{\top} A P^j = P_i^{\top} (AP)^j = (P^{\top} A P)_{ij}, \ \text{da cui la tesi.} \end{array}$

Definizione. Si definisce **congruenza** la relazione di equivalenza \cong (denotata anche come \equiv) definita nel seguente modo su $A, B \in M(n, \mathbb{K})$:

$$A \cong B \stackrel{\text{def}}{\Longleftrightarrow} \exists P \in GL(n, \mathbb{K}) \mid A = P^{\top}AP.$$

Osservazione. Si può facilmente osservare che la congruenza è in effetti una relazione di equivalenza.

- $ightharpoonup A = I^{\top}AI \implies A \cong A \text{ (riflessione)},$
- ▶ $A \cong B \implies A = P^{\top}BP \implies B = (P^{\top})^{-1}AP^{-1} = (P^{-1})^{\top}AP^{-1} \implies B \cong A$ (simmetria),
- ► $A \cong B$, $B \cong C \implies A = P^{\top}BP$, $B = Q^{\top}CQ$, quindi $A = P^{\top}Q^{\top}CQP = (QP)^{\top}C(QP) \implies A \cong C$ (transitività).

Osservazione. Si osservano alcune proprietà della congruenza.

- ▶ Per il teorema di cambiamento di base del prodotto scalare, due matrici associate a uno stesso prodotto scalare sono sempre congruenti (esattamente come due matrici associate a uno stesso endomorfismo sono sempre simili).
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \operatorname{rg}(A) = \operatorname{rg}(P^{\top}BP) = \operatorname{rg}(BP) = \operatorname{rg}(B)$, dal momento che P e P^{\top} sono invertibili; quindi il rango è un invariante per congruenza. Allora si può ben definire il rango $\operatorname{rg}(\varphi)$ di un prodotto scalare come il rango della matrice associata di φ in una qualsiasi base di V.
- ▶ Se A e B sono congruenti, $A = P^{\top}BP$ \Longrightarrow $\det(A) = \det(P^{\top}BP) = \det(P^{\top})\det(B)\det(P) = \det(P)^2\det(B)$. Quindi, per $\mathbb{K} = \mathbb{R}$, il segno del determinante è un altro invariante per congruenza.

1.2.3 Studio del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$

Definizione. Si definisce il **radicale** di un prodotto scalare φ come lo spazio:

$$V^{\perp} = \operatorname{Rad}(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \, \underline{w} \in V \}$$

Osservazione. Il radicale del prodotto scalare canonico su \mathbb{R}^n ha dimensione nulla, dal momento che $\forall \underline{v} \in \mathbb{R}^n \setminus \{\underline{0}\}, \ q(\underline{v}) = \varphi(\underline{v},\underline{v}) > 0 \implies \underline{v} \notin V^{\perp}$. In generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore non nullo non è isotropo, e dunque non può appartenere a V^{\perp} .

Definizione. Un prodotto scalare si dice **degenere** se il radicale dello spazio su tale prodotto scalare ha dimensione non nulla.

Osservazione. Sia $\alpha_{\varphi}: V \to V^*$ la mappa² tale che $\alpha_{\varphi}(\underline{v}) = p$, dove $p(\underline{w}) = \varphi(\underline{v}, \underline{w})$ $\forall \underline{v}, \underline{w} \in V$.

Si osserva che α_{φ} è un'applicazione lineare. Infatti, $\forall \underline{v}, \underline{w}, \underline{u} \in V$, $\alpha_{\varphi}(\underline{v} + \underline{w})(\underline{u}) = \varphi(\underline{v} + \underline{w}, \underline{u}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{w}, \underline{u}) = \alpha_{\varphi}(\underline{v})(\underline{u}) + \alpha_{\varphi}(\underline{w})(\underline{u}) \implies \alpha_{\varphi}(\underline{v} + \underline{w}) = \alpha_{\varphi}(\underline{v}) + \alpha_{\varphi}(\underline{w}).$ Inoltre $\forall \underline{v}, \underline{w} \in V$, $\lambda \in \mathbb{K}$, $\alpha_{\varphi}(\lambda \underline{v})(\underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \lambda \varphi(\underline{v}, \underline{w}) = \lambda \alpha_{\varphi}(\underline{v})(\underline{w}) \implies \alpha_{\varphi}(\lambda \underline{v}) = \lambda \alpha_{\varphi}(\underline{v}).$

²In letteratura questa mappa, se invertibile, è nota come *isomorfismo musicale*, ed è in realtà indicata come b.

Si osserva inoltre che Ker α_{φ} raccoglie tutti i vettori $\underline{v} \in V$ tali che $\varphi(\underline{v},\underline{w}) = 0 \ \forall \underline{w} \in W$, ossia esattamente i vettori di V^{\perp} , per cui si conclude che $V^{\perp} = \operatorname{Ker} \alpha_{\varphi}$ (per cui V^{\perp} è effettivamente uno spazio vettoriale). Se V ha dimensione finita, dim $V = \dim V^*$, e si può allora concludere che dim $V^{\perp} > 0 \iff \operatorname{Ker} \alpha_{\varphi} \neq \{\underline{0}\} \iff \alpha_{\varphi}$ non è invertibile (infatti lo spazio di partenza e di arrivo di α_{φ} hanno la stessa dimensione). In particolare, α_{φ} non è invertibile se e solo se $\det(\alpha_{\varphi}) = 0$.

Sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Si consideri allora la base ordinata del duale costruita su \mathcal{B} , ossia $\mathcal{B}^* = (\underline{v_1^*}, ..., \underline{v_n^*})$. Allora $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi})^i = [\alpha_{\varphi}(\underline{v_i})]_{\mathcal{B}^*} =$

$$\begin{pmatrix} \varphi(\underline{v_i}, \underline{v_1}) \\ \vdots \\ \varphi(v_i, v_n) \end{pmatrix} \underbrace{=}_{\varphi \text{ è simmetrica}} \begin{pmatrix} \varphi(\underline{v_1}, \underline{v_i}) \\ \vdots \\ \varphi(v_n, v_i) \end{pmatrix} = M_{\mathcal{B}}(\varphi)^i. \text{ Quindi } M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi}) = M_{\mathcal{B}}(\varphi).$$

Si conclude allora che φ è degenere se e solo se $\det(M_{\mathcal{B}}(\varphi)) = 0$ e che $V^{\perp} \cong \operatorname{Ker} M_{\mathcal{B}}(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.

1.2.4 Condizioni per la (semi)definitezza di un prodotto scalare

Proposizione. Sia $\mathbb{K} = \mathbb{R}$. Allora φ è definito \iff CI $(\varphi) = \{\underline{0}\}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Se φ è definito, allora $\varphi(\underline{v},\underline{v})$ è sicuramente diverso da zero se $\underline{v} \neq \underline{0}$. Pertanto $\mathrm{CI}(\varphi) = \{\underline{0}\}.$

(\Leftarrow) Sia φ non definito. Se non esistono $\underline{v} \neq \underline{0}$, $\underline{w} \neq \underline{0} \in V$ tali che $q(\underline{v}) > 0$ e che $q(\underline{w}) < 0$, allora φ è necessariamente semidefinito. In tal caso, poiché φ non è definito, deve anche esistere $\underline{u} \in V$, $\underline{u} \neq \underline{0} \mid q(\underline{u}) = 0 \implies \mathrm{CI}(\varphi) \neq \{\underline{0}\}$.

Se invece tali \underline{v} , \underline{w} esistono, questi sono anche linearmente indipendenti. Se infatti non lo fossero, uno sarebbe il multiplo dell'altro, e quindi le loro due forme quadratiche sarebbero concordi di segno, f. Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$ al variare di $\lambda \in \mathbb{R}$, imponendo che essa sia isotropa:

$$q(\underline{v} + \lambda \underline{w}) = 0 \iff \lambda^2 q(\underline{w}) + 2\lambda q(\underline{v}, \underline{w}) + q(\underline{v}) = 0.$$

Dal momento che $\frac{\Delta}{4} = \overbrace{q(\underline{v},\underline{w})^2 - q(\underline{w})q(\underline{v})}^{>0}$ è sicuramente maggiore di zero, tale equazione ammette due soluzioni reali $\lambda_1, \ \lambda_2$. In particolare λ_1 è tale che $\underline{v} + \lambda_1\underline{w} \neq \underline{0}$, dal momento che \underline{v} e \underline{w} sono linearmente indipendenti. Allora $\underline{v} + \lambda_1\underline{w}$ è un vettore isotropo non nullo di $V \implies \mathrm{CI}(\varphi) \neq \{\underline{0}\}$.

Si conclude allora, tramite la contronominale, che se $CI(\varphi) = \{\underline{0}\}, \varphi$ è necessariamente definito.

Proposizione. Sia $\mathbb{K} = \mathbb{R}$. Allora φ è semidefinito \iff $CI(\varphi) = V^{\perp}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia φ semidefinito. Chiaramente $V^{\perp}\subseteq \mathrm{CI}(\varphi)$. Si assuma che $V^{\perp}\subseteq \mathrm{CI}(\varphi)$. Sia allora \underline{v} tale che $\underline{v}\in \mathrm{CI}(\varphi)$ e che $\underline{v}\notin V^{\perp}$. Poiché $\underline{v}\notin V^{\perp}$, esiste un vettore $\underline{w}\in V$ tale che $\varphi(\underline{v},\underline{w})\neq 0$. Si osserva che \underline{v} e \underline{w} sono linearmente indipendenti tra loro. Se infatti non lo fossero, esisterebbe $\mu\in\mathbb{R}$ tale che $\underline{w}=\mu\underline{v}\Longrightarrow \varphi(\underline{v},\underline{w})=\mu\,\varphi(\underline{v},\underline{v})=0$, f.

Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$. Si consideri φ semidefinito positivo. In tal caso si può imporre che la valutazione di q in $\underline{v} + \lambda \underline{w}$ sia strettamente negativa:

$$q(\underline{v} + \lambda \underline{w}) < 0 \iff q(\underline{v}) + \lambda^2 q(\underline{w}) + 2\lambda \varphi(\underline{v}, \underline{w}) < 0.$$

In particolare, dal momento che $\frac{\Delta}{4} = \varphi(\underline{v}, \underline{w})^2 > 0$, tale disequazione ammette una soluzione $\lambda_1 \neq 0$. Inoltre $\underline{v} + \lambda_1 \underline{w} \neq \underline{0}$, dal momento che \underline{v} e \underline{w} sono linearmente indipendenti. Allora si è trovato un vettore non nullo per cui la valutazione in esso di q è negativa, contraddicendo l'ipotesi di semidefinitezza positiva di φ , f. Analogamente si dimostra la tesi per φ semidefinito negativo.

 (\Leftarrow) Sia φ non semidefinito. Allora devono esistere $\underline{v}, \underline{w} \in V$ tali che $q(\underline{v}) > 0$ e che $q(\underline{w}) < 0$. In particolare, \underline{v} e \underline{w} sono linearmente indipendenti tra loro, dal momento che se non lo fossero, uno sarebbe multiplo dell'altro, e le valutazioni in essi di q sarebbero concordi di segno, f. Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$, imponendo che q si annulli in essa:

$$q(\underline{v} + \lambda \underline{w}) = 0 \iff \lambda^2 q(\underline{w}) + 2\lambda q(\underline{v}, \underline{w}) + q(\underline{v}) = 0.$$

In particolare, dal momento che $\frac{\Delta}{4} = \varphi(\underline{v}, \underline{w})^2 > 0$, tale disequazione ammette una soluzione $\lambda_1 \neq 0$. Allora, per tale $\lambda_1, \underline{v} + \lambda_1 \underline{w} \in \mathrm{CI}(\varphi)$. Tuttavia $\varphi(\underline{v} + \lambda_1 \underline{w}, \underline{v} - \lambda_1 \underline{w}) = q(\underline{v}) - \underbrace{\lambda_1^2 q(\underline{w})}_{<0} > 0 \implies \underline{v} + \lambda_1 \underline{w} \notin V^{\perp} \implies \mathrm{CI}(\varphi) \supsetneq V^{\perp}$.

Si conclude allora, tramite la contronominale, che se $CI(\varphi) = V^{\perp}$, φ è necessariamente semidefinito.

1.3 Formula delle dimensioni e di polarizzazione rispetto a arphi

Definizione (sottospazio ortogonale a W). Sia $W \subseteq V$ un sottospazio di V. Si identifica allora come **sottospazio ortogonale a** W il sottospazio $W^{\perp} = \{\underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) \ \forall \, \underline{w} \in W\}.$

Proposizione (formula delle dimensioni del prodotto scalare). Sia $W\subseteq V$ un sottospazio di V. Allora vale la seguente identità:

$$\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}).$$

Dimostrazione. Si consideri l'applicazione lineare a_{φ} introdotta precedentemente. Si osserva che $W^{\perp} = \operatorname{Ker}(i^{\top} \circ a_{\varphi})$, dove $i : W \to V$ è tale che $i(\underline{w}) = \underline{w}$. Allora, per la formula delle dimensioni, vale la seguente identità:

$$\dim V = \dim W^{\perp} + \operatorname{rg}(i^{\top} \circ a_{\varphi}). \tag{1.1}$$

Sia allora $f = i^{\top} \circ a_{\varphi}$. Si consideri ora l'applicazione $g = a_{\varphi} \circ i : W \to V^*$. Sia ora \mathcal{B}_W una base di W e \mathcal{B}_V una base di V. Allora le matrici associate di f e di g sono le seguenti:

(i)
$$M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(f) = M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(i^{\top} \circ a_{\varphi}) = \underbrace{M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}^{*}}(i^{\top})}_{A} \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} = AB,$$

(ii)
$$M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(g) = M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(a_{\varphi} \circ i) = \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} \underbrace{M_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(i)}_{A^{\top}} = BA^{\top} \stackrel{B^{\top} = B}{=} (AB)^{\top}.$$

Poiché $\operatorname{rg}(A) = \operatorname{rg}(A^{\top})$, si deduce che $\operatorname{rg}(f) = \operatorname{rg}(g) \implies \operatorname{rg}(i^{\top} \circ a_{\varphi}) = \operatorname{rg}(a_{\varphi} \circ i) = \operatorname{rg}(a_{\varphi}|_{W}) = \dim W - \dim \operatorname{Ker} a_{\varphi}|_{W}$, ossia che:

$$\operatorname{rg}(i^{\top} \circ a_{\varphi}) = \dim W - \dim(W \cap \underbrace{\operatorname{Ker} a_{\varphi}}_{V^{\perp}}) = \dim W - \dim(W \cap V^{\perp}). \tag{1.2}$$

Si conclude allora, sostituendo l'equazione (1.2) nell'equazione (1.1), che dim $V = \dim W^{\top} + \dim W - \dim(W \cap V^{\perp})$, ossia la tesi.

Osservazione. Si identifica \underline{w}^{\perp} come il sottospazio di tutti i vettori di V ortogonali a \underline{w} . In particolare, se $W = \operatorname{Span}(\underline{w})$ è il sottospazio generato da $\underline{w} \neq \underline{0}$, $\underline{w} \in V$, allora $W^{\perp} = \underline{w}^{\perp}$. Inoltre valgono le seguenti equivalenze: $\underline{w} \notin W^{\perp} \iff \operatorname{Rad}(\varphi|_W) = W \cap W^{\perp} = \{\underline{0}\}$ $\iff w$ non è isotropo $\iff V = W \oplus W^{\perp}$.

Proposizione (formula di polarizzazione). Se char $\mathbb{K} \neq 2$, un prodotto scalare è univocamente determinato dalla sua forma quadratica q. In particolare vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = \frac{q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w})}{2}.$$

1.4 Il teorema di Lagrange e basi ortogonali

Definizione. Si definisce **base ortogonale** di V una base $\underline{v_1}$, ..., $\underline{v_n}$ tale per cui $\varphi(\underline{v_i},\underline{v_j})=0 \iff i\neq j$, ossia una base per cui la matrice associata del prodotto scalare è diagonale.

Teorema (di Lagrange). Ogni spazio vettoriale V su \mathbb{K} tale per cui char $\mathbb{K} \neq 2$ ammette una base ortogonale.

Dimostrazione. Si dimostra il teorema per induzione su $n := \dim V$. Per $n \le 1$, la tesi è triviale (se esiste una base, tale base è già ortogonale). Sia allora il teorema vero per $i \le n$. Se V ammette un vettore non isotropo \underline{w} , sia $W = \operatorname{Span}(\underline{w})$ e si consideri la decomposizione $V = W \oplus W^{\perp}$. Poiché W^{\perp} ha dimensione n-1, per ipotesi induttiva ammette una base ortogonale. Inoltre, tale base è anche ortogonale a W, e quindi l'aggiunta di \underline{w} a questa base ne fa una base ortogonale di V. Se invece V non ammette vettori non isotropi, ogni forma quadratica è nulla, e quindi il prodotto scalare è nullo per la proposizione precedente. Allora in questo caso ogni base è una base ortogonale, completando il passo induttivo, e dunque la dimostrazione.

1.4.1 L'algoritmo di ortogonalizzazione di Gram-Schmidt

Definizione (coefficiente di Fourier). Siano $\underline{v} \in V$ e $\underline{w} \in V \setminus CI(\varphi)$. Allora si definisce il **coefficiente di Fourier** di \underline{v} rispetto a \underline{w} come il rapporto $C(\underline{w},\underline{v}) = \frac{\varphi(v,\underline{w})}{\varphi(\underline{w},\underline{w})}$.

Se $CI(\varphi) = \{\underline{0}\}$ (e quindi nel caso di $\mathbb{K} = \mathbb{R}$, dalla *Proposizione 1.2.4*, se φ è definito) ed è data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ per V, è possibile applicare l'**algoritmo di ortogonalizzazione di Gram-Schmidt** per ottenere da \mathcal{B} una nuova base $\mathcal{B}' = \{\underline{v_1}', \dots, \underline{v_n}'\}$ con le seguenti proprietà:

- (i) \mathcal{B}' è una base ortogonale,
- (ii) \mathcal{B}' mantiene la stessa bandiera di \mathcal{B} (ossia $\operatorname{Span}(\underline{v_1}, \dots, \underline{v_i}) = \operatorname{Span}(\underline{v_1}', \dots, \underline{v_i}')$ per ogni $1 \leq i \leq n$).

L'algoritmo si applica nel seguente modo: si prenda in considerazione $\underline{v_1}$ e si sottragga ad ogni altro vettore della base il vettore $C(\underline{v_1},\underline{v_i})\underline{v_1} = \frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1}$, rendendo ortogonale ogni altro vettore della base con $\underline{v_1}$. Si sta quindi applicando la mappa $\underline{v_i} \mapsto \underline{v_i} - \frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_i} = \underline{v_i}^{(1)}$. Si verifica infatti che $\underline{v_1}$ e $\underline{v_i}^{(1)}$ sono ortogonali per $2 \leq i \leq n$:

$$\varphi(\underline{v_1},\underline{v_i}^{(1)}) = \varphi(\underline{v_1},\underline{v_i}) - \varphi\left(\underline{v_1},\frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(v_1,v_1)}\underline{v_i}\right) = \varphi(\underline{v_1},\underline{v_i}) - \varphi(\underline{v_1},\underline{v_i}) = 0.$$

Poiché $\underline{v_1}$ non è isotropo, si deduce che vale la decomposizione $V = \operatorname{Span}(\underline{v_1}) \oplus \operatorname{Span}(\underline{v_1})^{\perp}$. In particolare dim $\operatorname{Span}(\underline{v_1})^{\perp} = n-1$: essendo allora i vettori $\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}$ linearmente indipendenti e appartenenti a $\operatorname{Span}(\underline{v_1})^{\perp}$, ne sono una base. Si conclude quindi che vale la seguente decomposizione:

1 Introduzione al prodotto scalare

$$V = \operatorname{Span}(\underline{v_1}) \oplus^{\perp} \operatorname{Span}(\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}).$$

Si riapplica dunque l'algoritmo di Gram-Schmidt prendendo come spazio vettoriale lo spazio generato dai vettori a cui si è applicato precedentemente l'algoritmo, ossia $V' = \operatorname{Span}(\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)})$, fino a che non si ottiene $V' = \{\underline{0}\}$.