Reporte Analisis de Datos

Jorge Pino

29 November 2021

Utilizando librerías para el análisis exploratorio de datos EL CRECIMIENTO EN LENGUADO (Paralichthys adspersus)

El crecimiento, es el cambio de la masa corporal a través del tiempo y es el resultado neto de dos procesos metabolicos con tendencias opuestas. Uno de estos procesos comprende el incremento de masa corporal y se conoce como anabolismo, y el otro proceso se refiere al decremento de la masa corporal como resultado de la degradación, conocido como catabolismo.

Tablas de frecuencia peso por año

```
##
## M14 M21 M7
## 50 50 50
```

Table 1: tabla de frecuencia peso por año

Var1	Free
2008	50
2009	100

Histograma de Peso

Histograma de Talla

Visualización de la variación de la Talla y Peso con un boxplot

Table 2: Número de peces por mes

Var1	Freq
M14	50
M21	50
M7	50

##	Pez	Fecha	Año	Mes	Talla
##	Min. : 1.0	Min. :2008-07-25	Min. :2008	M14:50	Min. : 9.40
##	ist Qu.:13.0	1st Qu.:2008-07-25	IST QU.:2008	M21:50	1st Qu.:13.50
##	Median:25.5	Median :2009-04-21	Median :2009	M7 :50	Median :22.20
##	Mean :25.5	Mean :2009-04-03	Mean :2009		Mean :19.61
##	3rd Qu.:38.0	3rd Qu.:2009-11-23	3rd Qu.:2009		3rd Qu.:24.00
##	Max. :50.0	Max. :2009-11-23	Max. :2009		Max. :28.20
##	Peso				
##	Min. : 9.90				
##	1st Qu.: 29.23				
##	Median :138.50				
##	Mean :119.34				
##	3rd Qu.:182.50				
##	Max. :287.00				

Identificar si existen errores, datos faltantes o valores atípicos

La talla en el mes 21 presenta un dato atipico

Resume los datos usando tablas y estadística descriptiva

```
Pez
##
                        Fecha
                                   Año
                                            Mes
                                                        Talla
   Min.
          : 1.0
                  2008-07-25:50
                                 2008: 50
                                           M14:50
                                                    Min.
                                                           : 9.40
                  2009-04-21:50
                                 2009:100
   1st Qu.:13.0
                                           M21:50
                                                    1st Qu.:13.50
   Median:25.5
                  2009-11-23:50
                                                    Median :22.20
##
                                           M7 :50
##
   Mean
          :25.5
                                                    Mean
                                                           :19.61
   3rd Qu.:38.0
                                                    3rd Qu.:24.00
##
##
   Max.
          :50.0
                                                    Max.
                                                           :28.20
##
        Peso
          : 9.90
##
   Min.
   1st Qu.: 29.23
##
##
   Median: 138.50
##
   Mean
          :119.34
##
   3rd Qu.:182.50
          :287.00
##
   Max.
## tibble [150 x 6] (S3: tbl_df/tbl/data.frame)
   $ Pez : num [1:150] 1 2 3 4 5 6 7 8 9 10 ...
   $ Fecha: Factor w/ 3 levels "2008-07-25","2009-04-21",..: 1 1 1 1 1 1 1 1 1 1 1 ...
   \ Mes \ : Factor w/ 3 levels "M14", "M21", "M7": 3 3 3 3 3 3 3 3 3 3 ...
   $ Talla: num [1:150] 16.5 13 13.5 12.8 12.5 13.5 12.8 13.7 13.1 11.9 ...
   $ Peso : num [1:150] 57 27.6 29.2 24 23.8 30.8 25.5 31.5 27.5 19.6 ...
```

```
## # A tibble: 6 x 6
##
       Pez Fecha
                      Año
                            Mes
                                  Talla Peso
     <dbl> <fct>
                      <fct> <fct> <dbl> <dbl>
## 1
         1 2008-07-25 2008
                            M7
                                    16.5
                                         57
## 2
         2 2008-07-25 2008
                                    13
                                          27.6
## 3
                                    13.5 29.2
         3 2008-07-25 2008
         4 2008-07-25 2008
                                    12.8
                                          24
         5 2008-07-25 2008
                                    12.5
                                         23.8
## 5
                            M7
## 6
         6 2008-07-25 2008
                                    13.5 30.8
```

Table 3: Estadistico descriptivo de la talla del lenguado

Mes	mean	sd	var	max	min	n
M14	21.828	2.704798	7.315935	27.2	14.4	50
M21	24.152	1.912605	3.658057	28.2	15.9	50
M7	12.864	1.295480	1.678269	16.5	9.4	50

Comparacion de regresion lineal y no lineal

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-159.60850	6.9543248	-22.95097	0
Talla	14.22125	0.3423848	41.53588	0

	Estimate	Std. Error	t value	$\Pr(> \mid \! t \mid)$
(Intercept)	119.3367	1.546952	77.143122	0
poly(Talla, 2)1	918.6587	18.946209	48.487730	0
poly(Talla, 2)2	140.1089	18.946209	7.395088	0

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
148	72397.45	NA	NA	NA	NA
147	52766.95	1	19630.5	54.68733	0

	df	AIC
model1	3	1358.575
model2	4	1313.132

Evaluando los supuestos de los modelos 1 y 2 $\,$

```
## Call:
## aov(formula = lm.aov)
##
## Terms:
## Talla Residuals
## Sum of Squares 843933.7 72397.4
## Deg. of Freedom 1 148
##
## Residual standard error: 22.11723
## Estimated effects may be unbalanced
```


##
Durbin-Watson test
##
data: Peso ~ Talla
DW = 1.8867, p-value = 0.4417
alternative hypothesis: true autocorrelation is not 0


```
##
## Shapiro-Wilk normality test
##
## data: aov_residuals
## W = 0.79647, p-value = 3.628e-13
```