

National Aeronautics and Space Administration

CORE COMPRESSOR EXIT STAGE STUDY

Volume II - Data and Performance Report for the Baseline Configurations

by

D.C. Wisler

GENERAL ELECTRIC COMPANY

NOVEMBER 1980

Prepared For

Metional Aeronautics and Space Administration

Contract No. NAS3-20070

KASA-Lewis Research Center

(NASA-CR-159498) CORE COMPRESSOR EXIT STAGE STUDY. VOLUME 2: DATA AND PERFORMANCE REPORT FOR THE BASELINE CONFIGURATION (General Electric Co.) 178 p HC A09/MF A01 CSCL 21E G3/07

N81-16051

Unclas 41164

and the second to the second s					Carinoph course dans in despite any spirited
1 Report No NASA CR=159498	2. Government Accessio	on No	3	. Recipient's Catalog (NO
4 Title and Subtitle			6	. Report Date	
Core Compressor Exit Stage Stu	ly		ł	November, 1980	
Volume II - Data and Performan	ro Roport			Performing Organiza	tion Code
for the Baseline C	onfiguration			R80AEG 312	
7 Author(s)		***************************************	8	1. Performing Organizat	lion Report No
D.C. Wistor			10), Work Unit No.	प्रमुखं स्थापनाः प्रके प्रोतंत्रकेतः का स्थापनाक्षणकाः स्थापनाः स्थापनाः व्यवस्था
9. Performing Organization Name and Address					
General Electric Company			<u> </u>	. Contract or Grant I	io
Aircraft Engine Group			['	. Contract or Grant 1	
Cincinnati, Ohio 45215			L	NAS3-20070	
			1	3. Type of Report and	Period Covered
2. Sponsoring Agency Name and Address				Data Report	
NASA-Lewis Research Center			 .	4. Sponsoring Agency	Code
21000 Brookpark Road			'	 эропия пунку 	WATER TO THE PARTY OF THE PARTY
Cleveland, Ohio 44135			1_		
6 Supplementary Notes Project Manager, Dr. Wojiech Division, NASA-Lewis Research	Rostatinski, Fluid	Mechanics and	Acous	ties	
Division, NASA-Lewis Research	center, Greverana	. (411)			
B. Abstract					
performance results for trunning with Stator A. I improvement program utili pressor as the principal two ways: (1) using four would be obtained in a tratage of blading so that be made.	he overall technic rea General Electr inveatigative tool identical stages ne multistage envi	at approach in ic's low Speed . Tests were of blading so ronment and (2	this Resea conduc that t) usin	etfictency rch Com- ted in est data g a single	
Compressed by Author(s)) Compressor Fidwall Secondary Flow		18 Distribution So		d - Unlimited	deligner der ein der in der eine der ein der e
19 Security Classif (of this report)	20 Security Classif (i	of this page)		21. No. of Pages	22 Price
Unclassified	Unclassifi	ed			i
	_1			L	L

TABLE OF CONTENTS

Section		
		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	TEST APPARATUS AND PROCEDURE	2
	3.1 Low Speed Research Compressor Test Facility	3
	3.2 Test Stage 3.3 Instrumentation	3
	3.4 Test Procedures	4
	3.5 Data Reduction	5 7
4.0	RESULTS AND DISCUSSION	
	4.1 Shakedown Test	10
	4.2 Casing Treatment Test Results	10
	4.3 Overall Performance	10 11
	4.3.1 Four-Stage Configuration	11
	4.3.2 Single-Stage Configuration 4.3.3 Comparison of Single-Stage and Multistage	12
	4.3.3 Comparison of Single-Stage and Multistage Results	
	4.4 Reynolds Number Test Results	12
	4.5 Blade and Vane Surface Static Pressure Test Results	12 13
	4.5.1 Four-Stage Configuration (Third Stage as	
	Test Stage)	13
	4.5.2 Single-Stage Configuration 4.5.3 Four-Stage Configur ion (First Stage as	14
	Test Stage)	15
	4.5.4 Comparison of Four-Stage and Single-Stage Results 4.5.5 Comparisons with Potential Flow (CASC) Solutions	15
		15
	and wall boundary hayer lest Results	16
	4.6.1 Four-Stage Configuration (Third Stage as Test Stage) 4.6.2 Single-Stage Configuration	16
	4.6.3 Four-Stage Configuration (First Stage as Test Stage)	19 20
5.0	CONCLUSIONS	
6.0	LIST OF SYMBOLS AND ACRONYMNS	21
7.0	FIGURES	22
8.0	TABLES	24
		121
9.0	REFERENCES	162

LIST OF ILLUSTRATIONS

Figure		Page
1.	Four-Stage Compressor Configuration Tested in the NASA-GE Core Compressor Exit Stage Study.	25
2.	Photograph of the Low Speed Research Compressor.	26
3.	Cross Section of 0.85 Radius Ratio Comp essor Stage.	27
4.	Photograph of Rotor A Assembly for the Low Speed Research Compressor.	28
5.	Photograph of Stator A Assembly for the Low Speed Research Compressor.	29
6.	Rotating Total Pressure Rake at Rotor Exit Plane.	30
7.	Rotor Blade with Static Pressure Taps on Suction Surface.	31
8.	Prelimi ary Measurements of Swirl Angles.	32
9.	Preview Data Test Results Showing the Effects of Circumferential Groove Casing Treatment on Compressor Performance.	33
10.	Overall Performance for the Four-Stage Baseline Configuration Using Rotor A/Stator A.	34
11.	Radial Variations of Normalized Total Pressure Including Casing and Hub Normalized Static Pressure at the Casing Discharge for Various Throttle Settings, Four-Stage Configuration.	35
12.	Overall Performance of the Single-Stage Rotor A/Stator A Configuration.	36
13.	Comparison of Individual Stage Characteristics for the Single-Stage and Four-Stage Configurations, Rotor A Running with Stator A.	37
14.	Radial Variation of Normalized Total Pressure Including Casing and Hub Normalized Static Pressures at the Casing Discharge for Various Throttle Settings.	38
15.	Variation of the Performance of Rotor A/Stator A with Reynolds Number, Four-Stage Configuration.	20

Figure		Page
16.	Variation of the Performance of Rotor A/Stator A with Reynolds Number, Four-Stage Configuration.	40
17.	Rotor Blade Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, Third Stage Tested.	41
18.	Stator Vane Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, Third Stage Tested.	42
19.	Rotor Blade Surface Static Pressure Measurements for the Single-Stage Rotor A/Stator A Configuration.	43
20.	Stator Vane Surface Static Pressure Measurements for the Single-Stage Rotor A/Stator A Configuration.	44
21.	Rotor Blade Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, First Stage Tested.	45
22.	Stator Vane Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, First Stage Tested.	46
23.	Comparison of Blade Surface Static Pressure Measurements for the Four-Stage Configuration (1st and 3rd Stages Tested) and the Single-Stage Configuration.	47
24.	Comparison of Vane Surface Static Pressure Measurements for the Four-Stage Configuration (1st and 3rd Stages Tested) and the Single-Stage Configuration.	48
25.	Blade Surface Velocity Distributions for Rotor A Operating Near the Design Point - Measurements Compared with Poten- tial Flow CASC Solutions.	49
26.	Vane Surface Velocity Distributions for Stator A Operating Near the Design Point - Measurements Compared with Poten- tial Flow CASC Solutions.	50
27.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested. Design Point Throttle.	e 5 1

ν,

\$ 15 P

Figure		Page
28.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	52
29.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.	53
30.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.	54
31.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	55
32.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	56
33.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.	57
34.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.	58
35.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	59
36.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	60
37.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	61
38.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	62
39.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.	63

Figure		Page
40.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.	64
41.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	65
42.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	66
43.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.	67
44.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.	68
45.	Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested.	69
46.	Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested.	70
47.	Vector Diagra. Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	71
48.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	72
49.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	73
50.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	74
51.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	75
52.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	76

Figure		Page
53.	Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor A/Stator A Four-Stage Con- figuration, Third Stage Tested.	77
54.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Single-Stage Configuration, Design Point Throttle.	78
55.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Single-Stage Configuration, Peak Efficiency Throttle.	79
56.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.	80
57.	Absolute Flow Angles for Rotor A/Stator A Single-Stage Configuration, Design Point Throttle.	81
58.	Absolute Flow Angles for Rotor A/Stator A Single-Stage Configuration, Peak Efficiency Throttle.	82
59,	Absolute Flow Angles for Rotor A/Stator A Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.	83
60.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Single-Stage Configuration, Design Point Throttle.	84
61.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Single-Stage Configuration, Peak Efficiency Throttle.	85
62.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Single-Stage Configuration, Peak Pressure Rise/Near Stall Throttle.	86
63.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Single-Stage Configuration, Design Point Throttle.	87
64.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Single-Stage Configuration, Peak Efficiency Throttle.	22

Figure		Page
65.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Single-Stage Configuration, Peak Pressure Rise/Near Stall Throttle.	89
66.	Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Single-Stage Configuration.	90
67.	Stator Total Loss Coefficients for Rotor A/Stator A Single-Stage Configuration.	91
68.	Wake Loss Coefficients and Total Minus Wake Loss Coefficient for Rotor A/Stator A Single-Stage Configuration.	92
69.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Single-Stage Configuration.	93
70.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Single-Stage Configuration.	94
71.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Single-Stage Configuration.	95
72.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Single-Stage Configuration.	96
73.	Vector Diagram Quantities Versus Percent Immersion Rotor A/Stator A Single-Stage Configuration.	97
74.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Single-Stage Configuration.	98
75.	Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor A/Stator A Single-Stage Configuration.	99
76.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A & ur-Stage Configuration, First Stage Tested, Design Point Throttle.	1.00
77.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, First Stage Tested. Peak Efficiency Throttle.	101

Figure		Page
78.	Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.	102
79.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Design Point Throttle.	103
80.	Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.	104
81.	Absolute Air Angle for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.	105
82.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, First Stage Tested, Design Point Throttle.	106
83.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.	107
84.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, First Stage Tested, Near Stall Throttle.	108
85.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, First Stage Tested, Design Point Throttle.	109
86.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.	110
87.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, First Stage Tested, Peak Pressure Rise/Near Stall Throttle.	
88.	Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/ Stator A, Four-Stage Configuration, First Stage Tested.	111

Figure		Page
89.	Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested.	113
90.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, First Stage Tested.	114
91.	Vector Diagram Quantities Vorsus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, First Stage Tested.	115
92.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Configuration, First Stage Tested.	116
93.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, First Stage Tested.	117
94.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, First Stage Tested.	118
95.	Vector Diagram Quantities Versus Percent Immersion, Rotor A/Stator A Four-Stage Configuration, First Stage Tested.	119
96.	Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor A/Stator A Four-Stage Con- figuration, First Stage Tested.	120

LIST OF TABLES

Table		Page
1.	Instrumentation for the Test Program.	122
2.	Location of Surface Static Pressure Taps on Instrumented Airfoils.	123
3.	Overall Test Plan Outline.	124
4.	Preview Data for Rotor A/Stator A.	125
5.	Blade Surface Static Pressures Four-Stage Configuration - Third Stage Is Test Stage.	126
6.	Vane Surface Static Pressures Four-Stage Configuration - Third Stage Is Test Stage.	127
7.	Blade Surface Static Pressures - Single-Stage Configuration.	128
8.	Vane Surface Static Pressures - Single-Stage Configuration.	129
9.	Blade Surface Static Pressures Four-Stage Configuration - First Stage Is Test Stage.	130
10.	Vane Surface Static Pressures Four-Stage Configuration - First Stage Is Test Stage.	131
11.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.	132
12.	Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Four-Stage Configuration, Third Stage Tested.	134
13.	Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	135
14.	Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	136
15.	Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.	137
16.	Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage ested, Near Stall Throttle.	138
17.	Blade and Vane Element Performance for Rotor A/Stator A, Four- Stage Configuration, Third Stage Tested, Design Point Throttle.	139

LIST OF TABLES (Continued)

Table		Page
18.	Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	140
19.	Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.	141
20.	Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.	142
21.	Design Intent Performance for Rotor A/Stator A Computed for $U_L = 63.82 \text{ mps}$ (209.38 fps).	% 113
22.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor A/Stator A Single-Stage Configuration.	144
23.	Rotor Loss Coefficients Determined from Relation of the constance Measurements, Single-Stage Configuration.	146
24.	Vector Diagram Parameters for Rotor A/Stator A Single-Stage Configuration, Design Point Throttle.	147
25.	Vector Diagrem Parameters for Rotor A/Stator A Single-Stage Configuration, Peak Efficiency Throttle.	148
26.	Vector Diagram Pa. meters for Rotor A/Stator A Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.	149
27.	Blade and Vane Element Performance for Rotor A/Stator A, Single-Stage Configuration, Design Point Throttle.	150
28.	Blade and Vane Element Performance for Rotor A/Stator A, Single-Stage Configuration, Peak Efficiency Throttle.	151
29.	Blade and Vano Element Performance for Rotor A/Stator A, Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.	152
30.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor A/Stator A Four-Stage Configuration, First Stage Tested.	153
31.	Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Four-Stage Configuration, First Stage Tested.	155

LIST OF TABLES (Concluded)

	Page
Vector Diagram Parameters for Rotor A/Stator A Four-Stage Con- figuration, First Stage Tested, Design Point Throttle.	156
Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.	157
Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.	158
Blade and Vane Element Performance for Rotor A/Stator A, Four- Stage Configuration, First Stage Tested, Design Point Throttle.	159
Blade and Vane Element Performance for Rotor A/Stator A, Four- Stage Configuration, First Stage Tested, Peak Efficiency Throttle.	1.00
Blade and Vane Element Performance for Rotor A/Stator A, Four- Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.	160
	dector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle. Wector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle. Welliam and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested, Design Point Throttle. Welliam and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle. Welliam and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.

1.0 SUMMARY

The Core Compressor Exit Stage Study Program has the primary objective of developing rear stage blade designs that have improved efficiency by virtue of having lower losses in their end-wall boundary layer regions. Blading concepts that offer promise of reducing end-wall losses have been evaluated in a multistage environment. This report describes the test data and the performance results for the baseline compressor stage that was tested in the General Electric Low Speed Research Compressor. The acrodynamic design of this baseline stage, which is typical of those required in the rear stages of advanced, highly loaded core compressors, is described in Velume 1 of this teport (Reference 1). The test results for those blading concepts that offer a promise of reducing end-wall losses are presented in later volumes of this report.

Overall performance data and various types of detailed performance data are presented for the baseline configuration along with the resulting vector diagrams, loss coefficients, and diffusion factors. The data taken for the baseline configuration show that the design intent pressure coefficient of 0.554 has been achieved at the design intent flow coefficient of 0.408. At the design pressure rise, the measured efficiency of 0.900 was equal to the design target.

2.0 INTRODUCTION

Recent preliminary design studies of advanced turbofan core compressors (Reference 2) have indicated that such compressors must have very high efficioncies, as well as the advantages of compactness, light weight, and low cost, in order for advanced overall engine/aircraft systems to have an improved economic payoff. Loss mechanism assessments, such as those of Reference 3, suggest that approximately half of the total loss in a multistage compressor rear stage is associated with the end-wall boundary layers. Since only a relatively small amount of past research has been dedicated to the problem of finding improved airfoil shapes for operation in multistage compressor end-wall boundary layers, it is believed that substantial improvements in that area are likely. Accordingly, a goal of a 15% reduction in rear stage end-wall boundary layer losses, compared to current technology levels, has been set. The Core Compressor Exit Stage Study Program is directed toward achieving this goal. Blading concepts that offer a promise of reducing end-wall losses relative to a baseline design have been evaluated in a multistage environment. The test data and performance results for this baseline blading are described in this report.

3.0 TEST APPARATUS AND PROCEDURE

3.1 LOW SPEED RESEARCH COMPRESSOR TEST FACILITY

The Low Speed Research Compressor (LSRC) facility is designed to provide aerodynamic data on the performance and flow details of multistage axial flow compressors. The facility is generally used to determine the aerodynamic behavior of subsonic axial flow compressors where the flow characteristics are largely viscous or Reynolds number related and are not predominantly compressibility or Mach numbe. related. Although considerations of stage matching or choke margin cannot be "udied in the LSRC, fundamental aspects of turbomachinery aerodynamics, such is airfeil surface boundary layer development and secondary flow or leakage flow effects, have been studied in the LSRC for the past 20 years. In effect, the LSRC duplicates many of the essential features of a small, high-speed compressor flow field in a large, low-speed machine where very detailed investigations can be conducted with conventional instrumentation and where the flow field can be observed directly by the use of tuft or flag probes inserted into the flow stream through a transparent casing.

The LSRC configuration for these tests, shown schematically in Figure 1, is a four-stage compressor having a constant casing diameter of 1.524 m (60 in.) and a radius ratio of 0.85. The axis of rotation of the compressor is vertical, and the flow enters from the top through a calibrated bellmouth/ inlet system which filters and measures the flow. A bullet nose was inserted in the bellmouth to reduce the area of the flow measurement plane to a level slightly larger than the constant annulus area of the compressor stages. vergence was selected to produce the largest dynamic head possible in the bellmouth and still allow a small amount of acceleration forward of the inlet guide vanes (IGV's) in order to reduce the wall boundary layers entering the compressor. After passing through the blading, the air is exhausted into a room on the lower floor of the building. The compressor exhaust system consists of a large, circular throttle plate that can be raised or lowered to increase the compressor back pressure by varying the exit area. The throttle is shown at its two extreme positions in Figure 1. The facility is driven from below by a 400-hp steam turbine. Rotative speed of the compressor can be controlled to within ±0.5 rpm. Power input to the compressor is determined by a strain gage-type torquemeter in the drive shaft between the gearbox and the lower main bearing. A photograph of the LSRC is shown in Figure 2.

A detailed cross section of one stage of the 0.85 radius ratio LSRC test vehicle is shown in Figure 3. Shrouded stators are used. Stator vanes and shrouds are mounted in casing rings that can be rotated about the axis of the compressor using screwjack actuators. This enables the vanes to be moved past fixed instrumentation in order to give the capability for performing a circumferential traverse with every instrument in the test vehicle.

The airfoils are 11.43 cm (4.5 in.) in span and approximately 9 cm (3.5 in.) in chord - large enough that slade edge and surface contours can be closely controlled during manufacture. The blades and vanes are constructed

of inexpensive plastic materials that are molded in high pressure dies so that outstanding uniformity is achieved. The blades are hydraulically smooth at the test Reynolds number, based on tip speed and blade chord of 360,000. Reynolds numbers of this magnitude are high enough to be above the critical value for compressor stages and, therefore, can provide a reasonable simulation of the performance of high-speed compressors.

The average rotor tip-clearance-to-blade-height ratio was 1.36% and the average stator seal-clearance-to-blade-height ratio was 0.78%. Circumferential groove casing treatment was applied over the tip of only the first rotor to assure that Stage 1 would not be the stall-limiting blading.

3.2 TEST STAGE

The baseline Stage A is a low speed model of Stage 7 of the 10-stage, 23:1 pressure ratio AMAC study compressor whose preliminary design study was conducted under Contract NAS3-19444 (Reference 2). The low speed modeling was accomplished by modifying the camber line of the low speed airfoil sections so that the dimensionless suction surface velocity distributions of the low speed sections were similar to those of Stage 7 of the AMAC compressor. The baseline Rotor A consisted of airfoil sections having modified circular arc meanlines and circular arc thickness distributions. The baseline Stator A consisted of airfoil sections having a 65-series thickness distribution on modified circle arc meanlines. An IGV was designed which gave the required preswirl to the fluid entering the first rotor in order to achieve a multistage environment in as few stages as practical. Standard General Electric IGV design practices were employed. The details of the baseline Stage A design and the IGV design are presented in the Design Report (Reference 1).

A photograph of the assembled four-stage Rotor A is shown in Figure 4, and a photograph of an assembled Stator A ring is shown in Figure 5.

3.3 INSTRUMENTATION

The instrumentation used at various locations in the compressor is presented in Table 1. Standard total pressure rakes and wall static pressure taps were used to obtain overall pressure rise in the compressor. Airflow was measured using a calibrated bellmouth, and work input was obtained using a strain gage torquemeter. The torquemeter was calibrated using weights and a torque arm. The compressor was run without blading in order to measure torque and, thus, to obtain corrections for windage and bearing friction as a function of rotative speed.

In addition, the following instrumentation was used to provide more detailed measurements of the flow field within the compressor:

A rotating total pressure rake was used to define accurately the rotor wake of the test stage. This rake, shown in Figure 6, is

mounted on the rotating hub and can be traversed across one blade pitch. The pressures are read by a pressure transducer inside the rotor assembly, and the electrical signal is led out by a slipring. The blading shown in this photograph is from another program.

- Static pressure taps located on the blade and vane surfaces were used to determine the distribution of static pressure on the suction and pressure surfaces. Blades instrumented to yield these data are shown in Figure 7. In Figure 7 the blades are sealed on the pressure side at the hub so that no flow can leak from the pressure surface to the suction surface. The locations of the surface static taps are given in Table 2. For rotors, the pressures are read by a pressure transducer/slipring device.
- Fast-response hot-film anemometers were located in an axial line aft of the four rotors in an attempt to detect the inception of rotating stall.
- Single-element transverse probes were used to obtain total pressure, static pressure, and flow angle measurements. The flow angle measurements were made using flag (tuft) probes which aligned themselves to the flow direction when immersed in the flow field. The value of the flow angle was determined by using a telescope/cross-hair righting device attached to a protractor.

The data recording and analysis procedures are automated. Pressures are measured using Bell & Howell Model No. 09384 low-pressure-range transducers having an accuracy of $\pm 0.025\%$ of the full-scale (12.44 kPa, 50 in. H₂O) reading. The transducer is calibrated using a micromanometer. The data are automatically recorded in a time-sharing computer data file by an automated data controller.

3.4 TEST PROCEDURES

The overall test program was divided into four parts as outlined in Table 3. The first part involved extensive testing of the baseline blading, Stage A (Rotor A/Stator A), in both four-stage and single-stage configurations. These test results are the subject of the present report. The second part involved a series of short screening tests to select the best rotor design and the best stator design based upon tests in four-stage configurations. These test results can be found in Volume III of this series. The third part involved extensive testing of the best rotor and best stator designs in combination using a four-stage compressor configuration. These test results can be found in Volume IV. The final part of the test program will consist of extensive testing of a new Rotor C design in a four-stage configuration with Stator B. Results of the test will be reported in Volume V.

After an initial shakedown test, three separate tests were conducted using Stage A blading. First, a four-stage configuration using the third

stage as the test stage underwent extensive testing. This became the baseline configuration and the data obtained are outlined in Table 3, Item IB. Second, a single-stage configuration, using the third stage of the four-stage configuration discussed above as the test stage, was tested. A major objective of the single-stage testing was to determine, by comparison with the multistage test results, the effect that these differences have on overall and blade element performance and, thus, to assess the rationale for utilizing data from single-stage tests in the design of multistage compressors. The data obtained see shown in Table 3, Item IC. Since the IGV's were set during the shakedom test to give the same level of air angle as measured at the inlet to Rotor 3 in the multistage test of this blading near design-point operation, the single-stage testing was done at inlet air angles comparable to those in the multistage environment. Third, a four-stage configuration, using the first stage as the test stage, was tested; the data outlined in Table 3, Item ID, were obtained. The identical blading was used as the test stage in Items IB, IC, and ID.

Eight types of data were taken during the testing phase: stall-determination data, preview data, standard data, casing treatment data, Reynolds number data, blade surface pressure data, blade element data, and detailed wall boundary layer data. A description of each of these types of data is presented below.

Stall-determination data yield the stalling throttle setting by observing the sudden decrease in the static pressure rise across the compressor at stall and listening for the onset of rotating stall. Preview data provide stage characteristics and efficiency measurements based on casing static pressure rise, measured airflow, and measured torque. Standard data provide compressor performance based on mass-averaged total pressure rise from Rotor l inlet to Stator 4 exit, measured airflow, and measured torque. treatment data provide a means of assuring that the first stage was not the stall-limiting stage. Reynolds number data are used to establish performance trends versus Reynolds number as an aid in extrapolating the test data to the somewhat higher Reynolds number levels of engines. Blade surface pressure data provide a means of determining regions of favorable leading edge loading (incidence), rates of diffusion, and regions of separated flow on the airfoil. Blade element data give blade element performance and stage vector diagram quantities based on total pressure, static pressure, and flow angle measured in a matrix of circumferential and radial locations across a blade pitch. Sufficient data are obtained to define the wake. Measurements are taken at the rotor inlet, rotor exit, and stator exit of the test stage. Detailed wall boundary layer data consist of total pressure, static pressure, and flow angle measurements as close as 1% of blade heigh, to either end wall. Evaluation and comparison of all these data from the various configurations have provided a means of assessing the effectiveness of the particular design approaches employed for reducing losses in the end-wall region.

3.5 DATA REDUCTION

The data analysis procedures followed in reducing test data have been described in detail in a Data Analysis Plan prepared under this contract. A brief summary of these procedures is presented in the following:

- Airflow measurements are based on a calibration of the large bellmouth in which measurements of bellmouth and bullet nose static pressures were correlated with airflow. This calibration was based upon detailed radial and circumferential traverses of total and static pressure measurements in the bellmouth including boundary layer surveys.
- Power input to the compressor is measured by using a calibrated strain gage torquemeter and applying tare-torque corrections for windage and bearing friction.
- The environmental conditions are calculated from measured values
 of wet and dry bulb temperatures and barometric reference pressurizing standard equations.
- All pressures are converted to standard units by appropriate conversion factors and normalized. The pressures after normalization are in the form

$$\frac{P_{\text{Normalized}}}{\frac{1}{2}} = \frac{\frac{P_{\text{Absolute}} - P_{\text{REF}}}{\frac{1}{2}}}{\frac{1}{2}}$$
(1)

The pressure coefficient, ψ^{t} , is computed from

$$\psi' = \frac{\Delta H(i sen)}{\frac{1}{2} v_t^2}$$
 (2)

where isentropic enthalpy rise is determined from measured pressure rise using standard thermodynamic relationships. Expanding these relationships in a power series to obtain pressure rise, ΔP , rather than pressure coefficient, and rearranging the resulting equation, yields the pressure coefficient in the form

$$\psi' = \frac{\Delta P}{\frac{1}{2} \rho_{REF} U_f^2} \left(\frac{1}{P_1/P_{REF}} \right) \left[1 - \frac{1}{2\gamma} \left(\frac{\Delta P}{P_1} \right) + \frac{\gamma+1}{6\gamma^2} \left(\frac{\Delta P}{P_1} \right)^2 + \dots \right] (3)$$

For preview data, the pressure rise is determined from the easing static pressure measurement. For standard data, the pressure rise is determined from mass-averaged total pressure measurements.

Flow coefficient, ,, is computed from

$$\phi = \frac{W}{\bar{\rho} A U_{\perp}} \tag{4}$$

where W is the measured airflow, $\bar{\rho}$ is the average of the inlet and discharge density, and A is the annulus area of the compressor.

The work coefficient, ψ , is computed from

$$\psi = \frac{T}{\frac{1}{2} \rho_{REF} U_t^2 + R_t A}$$
 (5)

where T is the measured torque corrected for windage and bearing friction, and ϕ is obtained from Equation 4.

The torque efficiency is the ratio of the isentropic enthalpy rise consistent with the pressure rise divided by the total enthalpy delivered to the compressor,

$$\eta = \frac{\psi'}{\psi} \tag{6}$$

The relative total pressure data obtained by using the rotating total pressure rake is reduced by using the following equation

$$P_{t}^{\prime} = \left(P_{t}^{\prime}\right)_{\text{measured}} + \left(\frac{R_{m}}{R_{t}}\right)^{2} * \frac{1}{2} \rho_{\text{REF}} U_{t}^{2}$$
 (7)

which is based on the assumption that the fluid in the pressure lines has constant density ρ_{REF} and rotates at the wheel speed.

The loss coefficient, $\bar{\omega}$, is computed from the following equation

$$\bar{\omega} = \frac{P_{t_{in}} - P_{t_{out}}}{P_{t_{in}} - P_{s_{in}}} \tag{8}$$

Loss coefficients for the stators are obtained by subtracting the measured absolute total pressure at the stator exit from the measured absolute total pressure at the stator inlet. These measurements are taken in a matrix of radial and circumferential locations sufficient to define radial variations and to define the wake. Circumferential average values of pressure are computed. The loss coefficients for the loss are then obtained by subtracting the measured exit relative total pressure from an estimate of the inlet relative total pressure. This estimate is obtained by averaging the three highest relative total pressures measured at the exit plane.

Theoretical velocity distributions along the suction and pressure surfaces of the blades and vanes in the Low Speed Research Compressor are computed by using the Cascade Analysis by Streamline Curvature (CASC) computer program discussed in Reference 1 for operation near the design point. In order to compare these CASC distributions with experimentally measured distributions, one must calculate the velocities on the blade and vane surfaces from the static pressures measured on these surfaces. The equation which relates the normalized velocities and the measured pressures is

$$\frac{v}{v_1} = \left(\frac{P_{T_1} - P_S}{P_{T_1} - P_{S_1}}\right)^{-1/2} F_c \tag{9}$$

where the nonsubscripted variables indicate blade surface conditions, the subscript indicates upstream conditions, F_c is a compressibility correction (which was taken as unity since the Mach number was so low), and total pressure is assumed constant. For each radial immersion where comparisons were made, the blade surface static pressures, P_S , were obtained from experimental measurements. The total pressure used in Equation 9 was that value which made the minimum velocity ratio on the pressure surface as computed from the measured data equal to the minimum velocity ratio on the pressure surface as computed by CASC. Although this technique for obtaining total pressure does not provide valid comparisons of velocity magnitude between the CASC results and the experimental results, it does provide comparisons of the shape of surface velocity distributions that are useful in diagnosing differences in incidence angle and regions of flow separation.

4.0 RESULTS AND DISCUSSION

Test results for the baseline stage consisting of Rotor A running with Stator A are presented and discussed in the following paragraphs.

4.1 SHAKEDOWN TEST

A shakedown test was conducted on a four-stage configuration using Rotor A/Stator A blading. The purpose of this test was to verify the mechanical integrity of the new hardware and to determine if the inlet guide vanes (IGV's) and stator exit swirl angles were in reasonable agreement.

The first test run confirmed the mechanical integrity of the test vehicle. The mechanical operation of the rig was quite smooth and no difficulties were encountered.

Testing was then conducted to verify that the level of the swirl delivered by the IGV was reasonably close to that delivered by the stator vanes. Preliminary measurements of swirl angles, made at the exit of the IGV and at the exits of the stators, are presented in Figure 8. These flow angles were obtained at a midpassage circumferential position and, therefore, do not represent circumferential averaged values. Also, the small correction factor to the angles discussed in Section 4.6.1 was not applied to these data. At each radial immersion the ICV exit air angle shown in the figure is the average of the angles obtained for five throttle settings from wide-open to stall, while the stator exit air angles are the values obtained at a flow coefficient of 0.424, which is somewhat larger than the design flow coefficient of 0.407. The data indicate that the average IGV exit swirl angles after correction are about 0.6° to 1.0° smaller than the design distribution near the pitch line and about 1.5° to 2.5° smaller near 15% and 80% immersion. The IGV exit swirl angles begin to increase near the casing, becoming larger than design intent in the outer 5% immersion. The stator exit swirl angles agree reasonably well with the design distribution from 30% to 90% immersion but become larger than design between 10% and 20% immersion, probably from the effects of secondary flow. Based upon these preliminary results, it was decided to conduct all testing without any changes in stagger angle of the blading.

4.2 CASING TREATMENT TEST RESULTS

Tests in which preview data were taken were conducted for three different casing treatment window geometries in order to aid in determining the stall-limiting stage and to select the casing geometry to be used throughout the test series. The results are shown in Figure 9.

Although four identical stages were tested, the repeating stage environment was not established until Stage 2 or Stage 3. It is, thus, very desirable

that Stage 1 not be the stall-limiting blading. In order to make this assessment, circumferential groove casing treatment was applied over the Stage 1 rotor tip exclusively. The 8.2% improvement in stall margin, shown in Figure 9 for this configuration, indicates that the first-stage rotor was indeed stall-limiting without casing treatment. This stall margin improvement was obtained with no measurable change in the rest of the pressure flow characteristic or in the efficiency curve. Circumferential groove casing treatment was then applied over all four rotor tips. The slight additional improvement in stall margin shown in Figure 9 indicates that Stage 1 is probably no longer stall-limiting when casing treatment is used. However, there was a loss in efficiency and a slight loss in pressure rise with treatment over all four rotor tips. Based on these test results, it was decided to conduct all four-stage tests in the program with circumferential groove casing treatment over Rotor 1 tip only and smooth windows over the rest of the rotors.

4.3 OVERALL PERFORMANCE

The overall performance of the baseline configuration, which consisted of Rotor A with Stator A, was determined from preview data and standard data. These test data are presented as graphs of pressure coefficient, work coefficient, and torque efficiency plotted as a function of flow coefficient. The tests were conducted at an average rotor tip-clearance-to-blade-height ratio of 1.36% and an average stator seal-clearance-to-blade-height of 0.78%. The test Reynolds number was 3.6×10^5 . As discussed previously, casing treatment was applied over the tip of the first rotor only to assure that Stage 1 would not be the stall-limiting blading.

4.3.1 Four-Stage Configuration

The overall performance of the four-stage Rotor A/Stator A configuration is presented in Figure 10 and tabulated in Table 4. The design intent pressure coefficient of 0.555 has been achieved at the design intent flow coefficient of 0.407. At the design pressure rise, the measured efficiency of 0.900 was equal to the design target. Peak efficiency of 0.9045 occurs at a flow coefficient of 0.388, and peak pressure rise occurs at a flow coefficient of 0.363. At values of flow coefficient less than 0.363, the pressure flow characteristic rolls over and flattens out until a crisp rotating stall occurs.

The radial variation of normalized total pressure at the compressor discharge is presented in Figure 11. Of particular significance is the weakening and eventual collapse of the hub region at peak pressure rise. From 80% immersion to the hub, very little increase in total pressure rise has been achieved as the compressor is throttled from peak efficiency to peak pressure rise. Probing the hub region with tufts indicated that boundary layer separation was occurring on the stator vanes and becoming progressively worse as stall was approached. This results in the rollover and flattening of the pressure flow characteristic from peak pressure rise to stall, as shown in Figure 10.

4.3.2 Single-Stage Configuration

The overall performance of the single-stage Rotor A/Stator A configuration is presented in Figure 12. This configuration was tested without casing treatment over the rotor tip in order to make comparisons with the test stage (third stage) of the four-stage configuration. The data in Figure 12 show that the single-stage configuration is pumping more flow than the four-stage average and that the single-stage configuration achieves a higher peak pressure coefficient. However, the peak efficiency of the single-stage configuration is approximately 2.0 points lower (based on preview data) and 0.8 points lower (based on standard data) than that of the four-stage configuration.

4.3.3 Comparison of Single-Stage and Multistage Results

The individual characteristics of the single-stage and four-stage configurations are compared in Figure 13. For flow coefficients above 0.38, the single-stage characteristic compares favorably with the first-stage characteristic of the four-stage configuration, although the single-stage characteristic is not quite so steep at larger flow coefficients. Compared to the Stage 3 characteristic of the four-stage configuration, the single-stage characteristic has about the same slope but is operating at about 2.5% higher flow and about 4% higher pressure coefficients. The significant differences in the characteristics occur at flow coefficients below 0.38. Both the single stage and the first stage of the multistage configuration achieve significantly higher peak pressures than those of the other stages. This difference probably results from the cleaner, more constant inlet conditions at the first rotor inlet. During throttling, the first rotor inlet is not subjected to the thickened wakes, increased deviation angles, and separated flow that the downstream stages feel. Perhaps even more striking is the higher pressure achieved by the first stage of the four-stage configuration compared to the single-stage configuration. This could result from the casing treatment or from the stabilizing influence of the downstream stages pulling on the first stage of a multistage configuration.

A comparison of the radial variation of normalized total pressure at the compressor discharge is presented in Figure 14 for the single-stage and the four-stage configurations. Pressures for the four-stage configuration have been divided by four in order to make comparisons with the single-stage results. At both throttles presented, the single-stage data exhibits a reduction in total pressure rise at both the tip region (0%-20% immersion) and the hub region (20%-100% immersion) compared to the multistage results. At the peak pressure rise throttle the higher pressure rise achieved by the single-stage configuration is evident in the figure.

4.4 REYNOLDS NUMBER TEST RESULTS

The essentially incompressible flow in the test compressor allows stage performance to be presented as stage characteristics that are independent of speed, although there are small variations in performance due to Reynolds

number. In order to determine these performance variations, a series of preview data points was taken at seven different rotative speeds covering a range of Reynolds numbers from 0.94×10^5 to 4.00×10^5 . The results presented in Figures 15 and 16 serve as an aid in extrapolating the test data to the somewhat higher Reynolds number levels employed in engines.

4.5 BLADE AND VANE SURFACE STATIC PRESSURE TEST RESULTS

The measurements of static pressure on the blade and vane surfaces are presented in Figures 17 through 22 and tabulated in Tables 5 through 10 for (1) the four-stage configuration with the third stage as the test stage, (2) the single-stage configuration, and (3) the four-stage configuration with the first stage as the test stage. The measured pressures have been normalized by the dynamic head based on tip speed, 1/2 PREFUE. Suction surface measurements are presented as solid lines and pressure surface measurements as dashed lines. Data were obtained for an open throttle, the design throttle, the peak efficiency throttle, the peak pressure rise throttle, and the near stall throttle for the third stage. Open throttle data were not obtained for the single-stage test or the first-stage test.

4.5.1 Four-Stage Configuration (Third Stage as Test Stage)

The normalized static pressure measurements on the blade and vane surfaces are presented in Figures 17 and 18 and Tables 5 and 6, respectively, for the four-stage configuration with the third stage as the test stage.

The rotor data in Figure 17 indicate a uniform diffusion from the location of the peak suction surface velocity (minimum static pressure) to the trailing edge for all blade sections and all throttles except the peak pressure rise and near stall throttles close to the hub (Figures 17d and e, respectively). In this hub region, evidence of flow separation is seen as a distinct decrease in slope of the diffusion rate (static pressure gradient) on the suction surface of the blade. For the peak pressure rise throttle, this occurs at 70% chord for 90% immersion (Figure 17e) and at about 80% chord for 80% immersion (Figure 17d). For the near stall throttle this distinct decrease in diffusion rate occurs at 50% chord for 90% immersion (Figure 17c) and at 60% chord for 80% immersion (Figure 17d). Apparently, flow separation on the rotor begins at the hub and moves toward the leading edge and radially outward as the compressor is throttled. The increase in leading edge loading as the compressor is throttled toward stall is evident at all ammersions.

There is evidence of the effects of secondary flow and tip leakage on the suction surface pressure distribution of the rotor over the first 25% of the cbord (Figure 17a). This is seen as an increase in static pressure on the suction surface from zero to about 8% chord, followed by a decrease in static pressure from 8% to about 40% chord. This same type of profile was observed on the suction surface near the tip in Reference 4, although the location of maximum static pressure occurred further aft.

The stator data in Figure 18 suggest that the diffusion pattern on the suction surface is not as healthy as that on the rotor. The rate of diffusion tends to decrease near the trailing edge indicating boundary layer separation may be developing. This flow separation on the suction surface becomes significantly more evident near the hub at the peak pressure rise and near stall throttles as seen in Figure 18c through 18e. For the peak pressure rise throttle, separation is indicated by the flat static pressure on the suction surface beginning at about 50% chard for 95% immersion and at 60% chord for 80% immersion (Figures 18e and d, respectively). For the near stall throttle, separation is indicated at about 20% chord for 95% immersion, at about 35% chord for 80% immersion, and at 60% chord for 50% immersion (Figures 18e, d, and c, respectively). Probing this region with a tuft probe confirmed the presence of large areas of separated flow. Flow separation for the stator apparently begins at the inner diameter and moves toward the leading edge and radially outward as the compressor is throttled.

The blade and vane surface static pressure measurements indicate that the Rotor A/Stator A four-stage baseline configuration is hub-weak.

4.5.2 Single-Stage Configuration

The normalized static pressure measurements on the blade and vane surfaces are shown in Figures 19 and 20 and Tables 7 and 8, respectively, for the single-stage configuration. This configuration was run without casing treatment over the rotor tip so that the stage geometry of the single stage matched that of the third stage of the four-stage configuration as closely as possible.

The rotor data in Figure 19 show a uniform diffusion from about 40% chord to the trailing edge for all throttles at 5%, 20%, and 50% immersions (Figures 19a, b, and c). No evidence of flow separation is apparent. However, for 80% and 90% immersions, Figures 19d and e, there is a substantial decrease in the rate of diffusion for all throttles beginning at about 70% immersion in Figure 19d and from 50% to 70% immersion, depending upon throttle, in Figure 19e. These diffusion rates are clearly different from those shown in Figure 17d and e for an embedded stage operating in a multistage environment. This will be discussed further in Section 4.5.4.

As seen before in Figure 17a, there is again evidence in Figure 19a of the effects of secondary flow and tip leakage on the suction surface pressure distribution of the rotor over the first 30% of the chord.

The stator data in Figure 20 indicate that, for all throttles and all immersions, there is a continuous diffusion from the point of minimum static pressure on the suction surface to the trailing edge, although there is a change in the rate of diffusion near the hub. This change in the rate of diffusion is most evident at 50% chord for 95% immersion, Figure 20e, at the peak pressure rise/near stall throttle.

4.5.3 Four-Stage Configuration (First Stage as Test Stage)

The normalized static pressure measurements on the blade and vane surfaces, presented in Figures 20 and 21 and Tables 9 and 10 for the four-stage configuration with the first stage as the test stage, are qualitatively similar to those shown in Figures 18 and 19 for the single-stage configuration. However, there are two regions where the differences are noteworthy. First, the rotor hub region for the four-stage configuration/first stage tested (Figures 21d, e) appears to be stronger than the hub region of the single-stage configuration (Figures 19d, e) as evidenced by the difference in the diffusion rate. Secondly, the rotor tip region shown in Figure 21a has a different suction-surface diffusion rate near stall from about 30% chord to 60% chord than that shown in Figure 19a. This is probably caused by the casing treatment. These differences are discussed in the next section.

4.5.4 Comparison of Four-Stage and Single-Stage Results

A comparison of blade surface static pressures for the four-stage and single-stage configurations is presented in Figure 23 for the design point throttle and the peak pressure rise throttle. For these comparisons the zero level of static pressure was taken as the maximum static pressure measured on the pressure surface, and the difference, ΔP , between this zero level and pressures at other locations on the airfoil was plotted. The data taken near the hub of the rotor for the single-stage configuration (Figures 23c, d, e, f) show evidence of flow separation in the change in slope and in the flattening of the suction-surface pressure distribution. This begins at about 80% chord in Figure 23c, 70% chord in Figures 23d and e, and 50% chord in Figure 23f. Neither of the other two configurations exhibits such a pronounced effect. Apparently, the other stages in the multistage configurations have a stabilizing effect on the rotor hub.

At the rotor tip (Figures 23a and b) the loading for both the single-stage configuration and the four-stage configuration with the first stage as the test stage is higher than that of the embedded stage.

A comparison of the vane surface static pressures for the multistage and single-stage contigurations is presented in Figure 24. The data indicate that the stator is operating about the same for all configurations at the design point. However, at the peak pressure throttle the stator of both the single-stage and first-stage configurations is running with noticeably less flow separation in the hub (inner diameter region).

4.5.5 Comparisons with Potential Flow (CASC) Solutions

The velocity distributions along the suction and pressure surfaces of the blades and vanes were computed from the measured pressure distributions as discussed in Section 3.5. These velocity distributions were then compared with the potential flow CASC distributions. The results are presented in Figures 25 and 26. The spanwise locations of the CASC calculations did not always coincide with those of the static tens; the CASC immersions are indicated on the curves in these cases. All comparisons are made at the design point throttle setting.

Comparisons for the rotor are shown in Figure 25. The significant differences observed on the suction surface near the tip in Figure 25a are attributed to secondary flow/tip leakage effects (Reference 4). The suction surface velocities tend to be low from 5% to about 30% chord and high from 30% to 60%. These velocity perturbations are induced by the tip clearance vortex that moves away from the suction surface and away from the casing as percent chord increases. The test results are in good agreement with CASC at the pitch line shown in Figure 25b. Airfoil loadings near the leading edge, indicative of incidence angles, appear to be about as intended. Near the hub (Figure 25c) the leading edge loading is a little high, and there does appear to be slightly less peak suction-surface velocity diffusion than intended.

Comparisons for the stator are shown in Figure 26. Airfoil loading near the leading edge is larger than predicted, especially near the end walls, and the velocity diffusion on the aft portion of the airfoil is less than predicted. Evidently the stator is operating at higher incidence angles (leading edge airfoil loadings) at the design point than intended. This would help to explain the large regions of separated flow found on the stator hub as the compressor is throttled toward stall.

4.6 BLADE ELEMENT AND WALL BOUNDARY LAYER TEST RESULTS

Blade element data and wall boundary layer data provide vector diagram quantities from measured values of total pressure, static pressure, and flow angles in a matrix of circumterential and radial locations across a blade pitch. The radial surveys of pressure and flow angle, taken between adjacent stators, are used to fix the shape of the radial distribution; circumferential surveys are used to fix the absolute level of the distribution. The measurements are taken at the rotor inlet and at the rotor and stator discharges of the test stage. The bars in the figures indicate the variation of measured values across the circumferential blade spacing. The detailed wall boundary layer data are included in the radial profiles.

4.6.1 Four-Stage Configuration (Third Stage as Test Stage)

Pressures

Detailed surveys of normalized absolute total and static pressures at the third rotor inlet (Plane 3.0), third rotor exit (Plane 3.5), and third stator exit (Plane 4.0) are presented in Figures 27 through 30 and in Table 11 for the design point throttle, the peak efficiency throttle, the peak pressure rise throttle, and the near stall throttle. The difference between the total pressure at Plane 3.5 and 3.0 represents the total pressure rise across the rotor. The difference between the total pressures at Plane 3.5 and 4.0 represents the

loss across the stator. The region of end-wall loss in the stator from 0% to 20% immersion and from 80% to 100% immersion is evident. The high-loss region from 60% immersion to the stator hub near stall is particularly noticeable in Figure 30. The Rotor A/Stator A configuration is hub-weak, and this large region of separated flow exists at the near stall throttle. These data are in agreement with the flattening of the vane surface static pressure measurements shown in Figures 18d and 18e for the near stall throttle.

The static pressure rise across the rotor is seen as the difference between the measured pressures in Planes 3.0 and 3.5 and that across the stator as the difference between Planes 3.5 and 4.0. This gives a pitch line reaction at the design point throttle of about 64%.

Flow Angles

betailed surveys of absolute air angles at the third rotor inlet, third rotor exit, and third stator exit are presented in Figures 31 through 36 and in Table 11 for the design point throttle, the peak efficiency throttle, the peak pressure rise throttle, and the near stall throttle. A small correction factor to the flow angles, which is needed because of the geometry of the measuring system, was used in the data analysis. This correction would yield true flow angles that were about 0.5° larger than observed at 100% immersion and about 1.1° larger at zero percent immersion. The correction factor to the flow angles has not been incorporated into the data shown in the figures but has been incorporated in the data shown in the tables. The leading and trailing edge metal angles for the stator are shown in the figures so that the incidence and deviation angles are easily seen.

The data in Figure 31 indicate that the design intent swirl distribution has been achieved at the exit plane of the third stator. The increase in incidence and deviation angles as the compressor is throttled to stall is evident in Figures 31 through 34. The deviation angles near the outer diameter are lower for Stator 3 than for Stator 2, particularly near stall, perhaps because the hub is breaking down in Stage 3, although it is suspected that the flow angles in the outer 5% immersion at Stator 3 exit may have been read a few degrees low.

Total Pressure Circumferential Survey and Loss Coefficients

Relative total pressure measurements across a circumterential blade spacing were obtained at 11 radial immersions using the rotating rake shown in Figure 6. The results are presented in Figures 37 through 40 for the various throttles. The rotor wake is clearly evident as is the increased size of this wake near stall, particularly near the hub (Figure 40). An interesting feature of these circumterential surveys is the shope of the distribution near the tip of the blade. Both the loss region due to the wake and the loss region due to tip clearance/secondary flow effects can be seen.

Absolute total pressure measurements across a circumferential stator vane spacing were obtained at 19 radial immersions, including the immersions for the boundary layer surveys. Representative samples of these measurements are shown in Figures 41 through 44 for 11 of the 19 immersions. The distribution of static and total pressures shown in Figures 27 through 30 were obtained by computing the average, minimum, and maximum value of pressure shown in Figures 41 through 44 at each radial immersion. The large stator wakes in the vicinity cf the hub near stall are clearly evident.

These detailed measurements were used to determine rotor and stator loss coefficients. The rotor loss coefficients computed from the relative total pressure measurements are presented in Figure 45 and Table 12. The stator loss coefficients computed from absolute total pressure measurements are presented in Figure 46. Both are in reasonable agreement with design intent. The total loss shown is the sum of the wake loss, the tip clearance vortex loss, free-stream loss, and miscellaneous losses. The wake loss coefficients in Figures 45b and 46b increase substantially between 60% and 100% immersion near stall as the flow separates on the suction surface of the blades and vanes. The tip clearance vortex loss is evident from zero to 15% immersion in Figure 45c.

Vector Diagram Quantities

Complete vector diagram quantities as well as loss coefficients, loss parameters, diffusion factors, incidence and deviation angles were computed from the quantities measured in the absolute frame of reference. The results are tabulated in Tables 13 through 21 for the various throttle settings. Several of these performance parameters have been plotted as a function of percent immersion in Figures 47 through 53. The design point intent is also plotted on each figure for reference. In most cases over the midportion of the span, the vector diagram quantities computed from measurements are in reasonable agreement with design intent for the design point throttle setting. The rotor loss coefficients and D-factors and the stator incidence angles are somewhat larger than those used in designing the stage. In the end-wall region (particularly the outer diameter) the velocities are lower, and air angles, incidence angles, deviation angles, losses, and D-factors are larger than the design values.

The rotor total loss coefficients, computed from measuremens made in the absolute frame of reference, are somewhat larger at the design point than both the design intent and the loss coefficients computed from measurements made in the relative trame using the rotating rake (compare Figures 45 and 49). Since the rotor loss coefficients obtained from the relative frame measurements do not depend upon inaccuracies in flow angle measurements (particularly in the end-wall regions) and in vector diagram calculations, it is believed that they are the more reliable of the two. Also, the good agreement between the measured efficiencies and the design intent efficiency means that the actual loss coefficients were close to the design values. This lends additional credibility to the rotating rake loss coefficients, since these were closest to the design intent levels.

As the compressor is throftled toward stall, there is a general decrease in velocity levels and an increase in air angles, flow turning, incidence angles, deviation angles, and D-factors. The region of end-wall flow is distinctly defined by the data.

4.6.2 Single-Stage Configuration

Pressures

Detailed surveys of normalized total and static pressures at the rotor inlet (Plane 1.0), rotor exit (Plane 1.5), and the stator exit (Plane 2.0) are presented in Figures 54 through 56 and in Table 22 for the design point throttle, the peak efficiency throttle, and the peak pressure rise/near stall throttle. A description of these figures is qualitatively the same as that for the four-stage configuration in Section 4.6.1.

Flow Angles

Detailed surveys of absolute air angles at the rotor inlet, rotor exit, and stator exit are presented in Figures 57 through 59 and in Table 22 for the design point and the peak pressure rise/near stall throttles. Again, the description of these figures is similar to that for the four-stage configuration in Section 4.6.1.

Total Pressure Circumferential Surveys and Loss Coefficients

Relative total pressure measurements across a circumferential blade spacing were obtained for the single-stage configuration at 11 immersions using the rotating rake shown in Figure 6. These results are shown in Figures 60 through 62 for the various throttles. The loss region due to the rotor wake and the loss region due to tip clearance/secondary flow effects can be seen.

Absolute total pressure measurements across a circumferential vane spacing were obtained and the results, including boundary layer surveys, are presented in Figures 63 through 65.

These detailed measurements were used to determine the rotor and stator loss coefficients presented in Figures 66 through 68 and in Table 23. The increase in loss coefficient due to the tip clearance vortex is obvious in Figures 66c and 68b from zero to 15% immersion.

Vector Diagram Quantities

Complete vector diagram quantities, loss coefficients, loss parameters, diffusion factors, incidence angles, and deviation angles were computed from the measured quantities; the results are given in Tables 24 through 29 for the various throttle settings. Several of the performance parameters have been plotted as a function of percent immersion in Figures 69 through 75.

Generally, the discussion follows that of Section 4.6.1, vector diagram quantities for the four-stage configuration, and is not repeated here. It should be noted that a single stage reacts differently to throttling than an embedded stage. This can be seen by comparing the differences in axial velocities shown in Figures 47 and 69.

4.6.3 Four-Stage Configuration (First Stage as Test Stage)

Pressures

The detailed surveys of normalized total and static pressures at the first rotor inlet, first rotor exit, and first stator exit are presented in Figures 76 through 78 and in Table 30 for the various throttle settings. The description of these figures is similar to that of the four-stage configuration in Section 4.6.1.

Flow Angles

The detailed surveys of absolute air angles at the rotor inlet, rotor exit, and stator exit are presented in Figures 79 through 81 and in Table 30. The description of the figures is once again similar to that given in Section 4.6.1.

Total Pressure Circumferential Surveys and Loss Coefficients
The relative total pressure measurements across a circumferential blade spacing, obtained using the rotating rake, are presented in Figures 82 through 84.

The absolute total pressure measurements obtained across a circumferential vane spacing are shown in Figures 85 through 87.

The rotor/stator loss coefficients shown in Figures 88 and 89 and in Table 31 were determined from these detailed pressure measurements. The description of these curves is similar to that presented for the four-stage configuration in Section 4.6.1.

Vector Diagram Quantities

The complete vector diagram quantities, loss coefficients, diffusion factors, incidence angles, and deviation angles were computed from the measured quantities. The results are given in Tables 32 through 37 and in Figures 90 through 96. The discussion follows that of Section 4.6.1.

5.0 CONCLUSIONS

A low speed aerodynamic scale model of Stage 7 of the 10-stage, 23:1 pressure ratio AMAC study compressor was designed. This scale model, which formed the baseline Rotor A/Stator A configuration, was tested in General Electric's Low Speed Research Compressor test facility in multistage and single-stage buildups. The data show that the design intent pressure coefficient of 0.554 was achieved at the design intent flow coefficient of 0.408. At the design pressure rise, the measured efficiency of 0.900 was equal to the design target. Detailed test data were taken to obtain blade element performance.

The data obtained for the Stage A configuration described in this report will form a baseline for evaluating new blade and vane shapes that are intended to reduce end-wall losses. This evaluation will be reported in subsequent volumes.

6.0 LIST OF SYMBOLS AND ACRONYMS

Symbol	Definition
A	Annulus area of the compressor
Alpha	Absolute air angle
AMAC	Advanced multistage axial flow compressor
Beta	Relative air angle
c	Stator shroud seal clearance
С	Absolute velocity
CU	Absolute tangential velocity
CZ	Axial velocity
CASC	Cascade analysis by streamline curvature
$\mathbf{F_c}$	Compressibility correction factor
h	Aunulus height
ID	Inside diameter
IGV	Inlet guide vane
LSRC	Low speed research compressor
OD	Outside diameter
P	Pressure
PS	Blade surface static pressure = Psurface-(PB+PREF)
P_{S_1}	Upstream static pressure
$P_{\mathbf{T_1}}$	Total pressure
QU	Normalizing quantity = $1/2 \rho_{REF} U_t^2$
R	Radius
Re	Reynolds number
T	Measured torque corected for windage/bearing friction
v_{t}	Wheel speed at tip
V	Air velocity
W	Relative velocity
WU	Relative tangential velocity
E	Rotor tip clearance
η	Torque efficiency

Density

Average density across annulus

Flow coefficient

Work coefficient

Pressure coefficient

Loss coefficient

Subscript

В	Barometer
C	Casing
Н	Hub
ref, REF	Reference
S	Static properties
т	Total properties
t	Tip
1	Upstream conditions
2	Downstream conditions
β ₁ *	Inlot metal angle
β ₂ *	Exit metal angle

7.0 FIGURES

Figure 1. Four-Stage Compressor Configuration Te

FOLDOUT FANT

T Configuration Tested in the NASA-GE Core Compressor Exit Stage Study.

Figure 2. Photograph of the Low Speed Research Compressor.

Figure 3. Cross Section of 0.85 Radius Ratio Compressor Stage.

Photograph of Rotor A Assembly for the Low Speed Research Compressor.

ORIGINAL PAGE IS OF POOR QUALITY

Photograph of Stator A Assembly for the Low Speed Research Compressor.

Figure 6. Rotating Total Pressure Rake at Rotor Exit Plane.

Figure 7. Rotor Blade with Static Pressure Taps on Suction Surface.

Figure 8. Preliminary Measurements of Swirl Angles.

Figure 9. Preview Data Test Results Showing the Effects of Circumferential Groove Casing Treatment on Compress Performance.

Figure 10. Overall Performance for the Four-Stage Baseline Configuration Using Rotor A/Stator A.

Figure 11. Radial Variations of Normalized Total Pressure Including Casing and Hub Normalized Static Pressure at the Casing Discharge for Various Throttle Setting, Four-Stage Configuration.

Figure 12. Overall Performance of the Single-Stage Rotor A/Stator A Configuration.

Figure 13. Comparison of Individual Stage Characteristics for the Single-Stage and Four Stage Configurations, Rotor A Running with Stator A.

Figure 14. Radial Variation of Normalized Total Pressure Including Casing and Hub Normalized Static Pressures at the Casing Discharge for Various Throttle Settings.

Figure 18. Variation of the Performme end Rotor A/Stator A with Reynolds Number, Fo a Stage Configuration.

Figure 16. Variation of the Performance of Rotor A/Stator A with Reynolds Number, Four-Stage Configuration.

Figure 1'. Rotor Blado Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, Third Stage Tested.

Figure 18. Stater Vane Surface Static Pressure Measurements for the Four-Stage Roter $\Lambda/{\rm Stater}$ A Configuration, Third Stage Tested.

Figure 19. Rotor Blade Surface Static Pressure Measurements for the Single-Stage Rotor A/Stator A configuration.

Figure 20. Stator Vane Surface Static Pressure Measurements for the Single-Stage Rotor A/Stator A Configuration.

Figure 21. Rotor Blade Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, First Stage Tested.

Figure 22. Stator Vane Surface Static Pressure Measurements for the Four-Stage Rotor A/Stator A Configuration, First Stage Tested.

Figure 23. Comparison of Blade Surface Static Pressure Measurements for the Four-Stage Configuration (1st and 3rd Stages Tested) and the Single-Stage Configuration.

Figure 24. Comparison of Vane Surface static Pressure Measurements for the Fear State Configuration (1st and 3rd Stages Tested) and the Sinfe-Stage Configuration.

Figure 25. Blade Surface Velocity Distributions for Rotor A Operating Near Design Point - Measurements Compared with Potential Flow CASC Solutions.

Figure 26. Vane Surface Velocity Distributions for Stator A Operating Near the Design Point - Measurements Compared with Potential Flow CASC Solutions.

Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Design Point Throttle. Figure 27.

51

Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Thank Stage Tested, Peak Efficiency Throttle. Figure 28.

Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle. Figure 29.

Normalized Absolute Total Pressures and Static Pressures for Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested, Near Stall Throttle. Figure 30.

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Design Point Throttle. Figure 31.

ya Viralo

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle. Figure 32.

TO THE

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle. Figure 33.

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Near Stall Throttle. Figure 34.

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested. Figure 35.

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested. Figure 36.

Figure 37. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

Figure 38. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

Figure 39. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.

Figure 40. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.

Figure 41. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

Figure 42. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure. Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

÷,

Figure 43. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.

Figure 44. Circumferential Variation of Normalized Absolute Total Pressure and Scatic Pressure, Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.

Rotor Total Loss Coefficients, Wake Loss Soefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested. Figure 45.

Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested. Figure 46.

Figure 47. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested.

10

60

8

RELATIVE VELOCITY DUT, MEG.

CHRINAL PAGE IS SEE FOOR QUALITY

RELATIVE VELDETTY IN. MPH,

20 m

Figure 48. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested.

* See Figure 45 and discussion in Section 4.6.1 for loss coefficients computed from relative total pressure measurements.

Figure 49. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested.

Figure 50. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested.

Figure 51. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested.

Figure 52. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, Third Stage Tested.

Open Symbols - Rotors Filled Symbols - Stators Flagged Symbols - Loss Coefficient Decemined from Relative Total Pressure Measurements

Figure 53. Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor A/Stator A Four-Stage Configuration, Third Stage Tested.

Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Single-Stage Configuration, Design Point Throttle. Figure 54.

F. 686

Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Single-Stage Configuration, Peak Efficiency Throttle. Figure 55.

Figure 56. Normalized Absolute Total Pressures and Static Pressures for Rotor A/ Stator A Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.

Absolute Flow Angles for Rotor A/Stator A Single-Stage Configuration, Design Point Throttle. Figure 57.

9

Figure 58. Absolute flow Angles for Rotor A/Stator A Single-Stage Configuration, Peak Efficiency Throttle.

Figure 59. Absolute Flow Angles for Rotor A/Stator A Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.

C-5

Figure 60. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Single-Stage Configuration, Design Point Throttle.

Figure 61. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Single-Stage Configuration, Peak Efficiency Throttle.

Figure 62. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Single-Stage Configuration, Peak Pressure Rise Near Stall Throttle.

Figure 63. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Single-Stage Configuration, Design Point Throttle.

Figure 64. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Single-Stage Configuration, Peak Efficiency Throttle.

Ţ

Figure 65. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Single-Stage Configuration, Peak Pressure Rise/Near Stall Throttle.

Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Single-Stage Configuration. Figure 56.

Figure 67. Stator Total Loss Coefficients for Rotor A Stator A Single-Stage Configuration.

Wake Loss Coefficients and Total Minus Wake Loss Coefficient for Rotor A/Stator A Single-Stage Configuration. Figure 68.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 69. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Single-Stage Configuration.

Figure 70. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Single-Stage Configuration.

* See Figure 66 and discussion in Section 4.6.1 for loss coefficients computed from relative total pressure measurements.

Figure 71. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Single-Stage Configuration.

Figure 72. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Single-Stage Configuration.

Figure 73. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Single-Stage Configuration.

Figure 74. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Single-Stage Configuration.

Figure 75. Diffusion Factor, Loss Coefficient and Deviation Angle Versus Feddence Angle, Roter A Stator A Single-Stage Configuration.

Figure 76. Normalized Absolute Total Pressures and Static Pressures for Rotor A Stator A Four-Stage Configuration, First Stage Tested, Design Point Throttle.

Figure 77. Normalized Absolute Total Pressures and Static Pressures for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.

Figure 78. Normalized Absolute Total Pressures and Static Pressures for Rotor A/ Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Design Point Throttle. Figure 79.

ORIGINAL PAGE IS OF POOR QUALITY

8

Absolute Flow Angles for Rotor A/Stator A Four-Stage Configuration, First Stage Fested, Peak Efficiency Throttle, Figure 80.

Absolute Air Angle for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle. Figure 81.

Figure 82. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, First Stage Tested, Design Point Throttle.

Figure 83. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.

Figure 84. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Four-Stage Configuration, First Stage Tested, Near Stall Throttle.

Ì

Figure 85. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, First Stage Tested, Design Point Throttle.

Figure 86. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.

Figure 87. Circumterential Variation of Normalized Absolute Total Pressure and Statte Pressure, Four Stage Configuration First Stage Tested, Peak Pressure Rise Near Stall Throttle,

Figure 88. Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Feur Stage Configuration, First Stage Tested.

Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested. Figure 89.

Figure 90. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, First Stage Tested.

Figure 91. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, First Stage Tested.

* See Figure 88 and discussion in Section 4.6.1 for loss coefficients computed from relative total pressure measurements.

Figure 92. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, First Stage Tested.

Figure 93. Vector Diagram Quantities Versus Percent Immera on, Rotor A/ Stator A Four-Stage Configuration, First Stage Tested.

Figure 94. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, First Stage Tested.

Figure 95. Vector Diagram Quantities Versus Percent Immersion, Rotor A/ Stator A Four-Stage Configuration, First Stage Tested.

Figure 96. Diffusion Factor Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor A/Stator A Four-Stage Configuration,

8.0 TABLES

Table 1. Instrumentation for the Test Program.

							Plene	3	. 1			5.0	T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			10.5	1:0	1:3	2.0	2.5	3.0	?	? :	j	Compressor	
		0.1	ğ.	2	Silet	Zi zi	S2 Inlet	Inlet	Inlet	tolet	Inlet	Discharge	
	Instrumentation	Bellmouth	a in the										
	Static Pressufe							1	•	•	×	×	
<u>:</u>	Casing Statics Il Equally-Spaced Taps	×	н	×	×	×	×	×	4	4	I	,	
	Hub Statics 11 Equally-Spaced Tape	н	×	×						•	•	•	
<u>.</u>	Bub Seal Cavity	···			H	×	×	×	H	×	4		
	Statut Pressures	-					· · · · · · · · · · · · · · · · · · ·	×	×	×			
•	Traverse Probe						· · · · · ·	:					
×	Blade or Vane Surface Static Pressure Taps		<u>,</u>					2	}				
	Total Pressure											·	
	11 Element			×				H	×	×		-	
:	hadial Rake						,	,	-	×		H	
~	Single Liement Traverse Probe			×				4	t 	l			
4	Rotating Rediel Rate								H				
	Flow Acele											1	
1				×				×	H	×		4	
<u>:</u>	Traverse Probe								-		H		
ě	Not Film Probe*				~			4	•				
1.5	*Provisions for this instrumentation have been made at the planes indicated.	mentation han	geen .	ape ape	the plan	ne indic	1	Hovever.	the inst	rveentet	ion asy	However, the instrumentation may not always	
<u> </u>	be in place for every test.												1

Table 2. Location of Surface Static Pressure Taps on Instrumented Airfoils.

Rotor

Suction	Surface	Distance	Pressure	Surface	Distance
Tap	Percent	From L.E.	Tap	Percent	From L.E.
Number	Chord (2)	cm (in.)	Number	Chord (2)	cm (in.)
1 2 3 4 5 6 7 8 9 10 11 12 13	2.5 8.0 13.0 20.0 25.0 30.0 35.0 40.0 50.0 60.0 70.0 80.0 90.0	0.229 (0.090) 0.726 (0.286) 1.184 (0.466) 1.821 (0.717) 2.276 (0.896) 2.733 (1.076) 3.188 (1.255) 3.642 (1.434) 4.554 (1.793) 5.466 (2.152) 6.375 (2.510) 7.287 (2.869) 8.199 (3.228) 8.654 (3.407)	1 2 3 4 5 6 7 8 9	2.5 8.0 20.0 30.0 45.0 60.0 70.0 80.0 90.0	0.229 (0.090) 0.726 (0.286) 1.821 (0.717) 2.733 (1.076) 4.100 (1.614) 5.466 (2.152) 6.375 (2.510) 7.287 (2.869) 8.199 (3.228) 8.654 (3.407)

Stator

Suction Tap Number	Surface Percent Chord (2)	Distance From L.E. cm (in.)	Pressure Tap Number	Percent Chord (%)	Distance From L.E. cm (in.)
1 2 3 4 5 6 7 8 9 10 11 12 13	2.5 8.6 13.0 20.0 25.0 30.0 35.0 40.0 50.0 60.0 70.0 80.0 90.0	0.198 (0.078) 0.632 (0.249) 1.029 (0.405) 1.580 (0.622) 1.979 (0.779) 2.372 (0.934) 2.766 (1.089) 3.162 (1.245) 3.955 (1.557) 4.745 (1.868) 5.535 (2.179) 6.327 (2.491) 7.117 (2.802) 7.513 (2.958)	1 2 3 4 5 6 7 8 9	2.5 8.0 20.0 30.0 45.0 60.0 70.0 80.0 90.0	0.198 (0.078) 0.632 (0.249) 1.580 (0.622) 2.372 (0.934) 3.556 (1.400) 4.745 (1.868) 5.535 (2.179) 6.327 (2.491) 7.117 (2.802) 7.513 (2.958)

Radial Location of Pressure Taps

Rotor		Stator	Percent
Immersion cm (in.) from Casing	Percent Immersion from Casing (2)	Immersion cm (in.) from Lasing	Immersion from Casing (1)
0.572 (0.225) 2.286 (0.900) 5.715 (2.250) 9.144 (3.600) 10.287 (4.050)	5 20 50 80 90	1.143 (0.450) 2.286 (0.900) 5.715 (2.250) 9.144 (3.600) 10.859 (4.275)	10 20 50 80 95

Table 3. Overall Test Plan Outline.

ı.	Tea	te using Stage A Blading (Reported in Ref. 1)	
	۸.	Shakedown Test	5 data points
	В.	4-Stage Configuration (Third Stage as Test Stage)	1
	۵.	4-orage courtiguration (fulld Stage as fest Stage)	
		1. Preview Data	15 data point
		2. Stall Determination 3. Casing Treatment Data	As appropriat
		3. Casing Treatment Data 4. Reynolds Number Data	15 data point
		5. Standard Data	30 data point 4 data points
		6. Blade Element Data	4 data points
		7. Blade Surface Pressure Data	2 data points
		8. Detailed Wall Boundary Layer Data	2 data points
	c.	1-Stage Configuration	
		1. Preview Data	15 data point
		2. Stall Determination	As appropriat
		3. Standard Data	4 data points
		4. Blade Element Data 5. Blade Surface Pressure Data	4 data points
		6. Detailed Wall Boundary Layer Data	4 data points 2 data points
		·	•
	D.	4-Stage Configuration (First Stage as Test Stage)	
		1. Blade Element Data	4 data points
			4 data points
		5. Securied wast boundary Layer Data	2 data points
II.	Scre	eening Tests	
	A.	4-Stage Configuration with Rotor B and Stator A	
		1. Preview Data	15 data point
		2. Stall Determination	As appropriat
		3. Standard Data 4. Blade Surface Pressure Data	4 data points
			4 data points
	В.	4-Stage Configuration with Stator B and Rotor A	
		(Same Data as II.A.)	
	c.	4-Stage Configuration with Stator C and Rotor A	
		(Same Data as II.A.)	
	D.	4-Stage Configuration with Rotor B and Stator B	
		(Same Data as II.A.)	
III.	Test (4-S	s Using Rotor B and Stator B Designs tage Configuration, Third Stage as Test Stage)	
	1. 2.	Same Data as I.B Rotor Tip Clearance Data	
IV.	Test	s Using Rotor C and Stator B Designs	****
	(4-5	tage Configuration, Third Stage as Test Stage)	

A.
A/Stator
ď
Rotor
for
Data
Preview
7
4

									Four-St	Four-Stage Configuration	uration
	Four-Sta	Four-Stage Configurat	uration	Test 62B	Single-S	tage Con	Single-Stage Configuration	Test 62C	Pirst S	Stage Tested	Z !
Test 64A	Third St	tage Teste	T !			ì	TABOUR	101	PRES	MORK	TOROUE
70	PRES	VORK	TOROUE	FLOV	COEF	COEF	EFF	COEF	20EF	SOEF	
3	5				FCOTA O	0.55776	0.84306	0.32445	0.59689	•	C. 81960
		0.73335	0.81855	0.44515	0.48674	0.57421	0.84767	0.32645	0.59732	0.72543	0 82550
			0.62.44	0.43691	0.50913	0.59334	0.85849	0.32/36	0.39764	0.72334	0 82622
0.32781	0 60172	0.72330	0.83428	0.43089	~	0.60723	0.56804	0.32092	0.61656	0.70408	0.87569
0.32300		7191	0.84415	0,42328	ď.	0.62524	0.87350	0.36173	0.62193	0.72411	0.88329
73927		7137	0.64748	0.41486	ď,	0.04237	0.8775	0.36680	0.61945	0.696:2	0.88978
4071	0.61062	K	0.86075	0.41016	0.577.00	- 10000 - 10000	0.98263	0.36847	0.62038	0.69430	0.69334
4948	0 60975		0.86365		5000.0	0.67462	0.48414	0.37360	0.61497	0.68465	0.09352
4354	0.60987	٠.	0 86375	20012	0.000	0.68726	0.48286	0.37943	0.60688	0.67388	0.9009
5979	0 616.16		0.87633	0. 1941 0. 1887	0.619.0	0.70043	0.48255	0.38540	0.59512	0.0000 0.0000	0.90341
15022	0.61391		0.0/024	28 PA	0.62753	0,71080	0.88285	0.36//0		0.65206	0.20414
6722	0.61484	0.69265	0.6670	0.37516	0.63723	0.72349	ċ	2000 C	0.57993	0.64161	0.90358
5870	8 9	0.69107 0.68007	0.89544	0.36776	0.64496	0.73274	0.99020	0.40129	0.56988	0.63147	0.90247
06.87	600.00 600.00	0.67988	0.89865	0.36234	0.64707	0.74 185	0.47225	0.40623	0.55937	0.62075	0.90112
7501	0.61235	0.67914	0.90168	0,35095	0.64360	0.75711	0.85008	0.40882	0.55613	0.61664	0.90166
17978	0 60057	0.67067	0.89547	0.45273	0.46929	C. 55798	0.144.00	0.41044	0.54938	0.61118	0.69666
18156	0 60290	0.66715	0.90370	0.44600	0.49779	0.57357	0.45213	0.41961	0.52925	0.59118	0.69523
22196	0 60330	0.66840	0.90261	0.43778	0.50914	0.59354	0.000 0.000 0.000 0.000	0.42815	0.51161	0.57337	0.63130
39576	0 59159	0.63948	0.89704	0.43117	0.52763	0.50423	0.0070	0.43621	0.49015	0.0000	0.00E30
36752	0 59492	0.65754	0.90461	0,42363	0.545.39	7,50	0.97957	0.44326	0.47370	0.51605	0.86358
39152	0.56244	0.64790	0.09097	0.4151	7.0000	0.6	0.99091	0.45227	0.40242	0.40152	0.83574
39295	98444	0.04007	0.89689	0.4103		0.66470	0.98220				
39-55	0 57253	63654	0.89669	0.4035	59544	0.67478	0.48390				
50250	0.53596	0.62729	0.85440	0.10466		0.68583	0.48507				
39738	0 57449	0.63672	0.90227	0,3480		0.69733	0.48433				
40137	0.56187	0.62691	0.89625	n. 38266		0.71094	205 205				
40246	0.56492	0.62855	0.69876	0.37576							
40267	0.56399	000	0.900.0	0.36814		74145					
40512	420000	61633	0.89768	0.36257	A4381		0.45282				
4000	0.33468	0.61771	0.89796	41034		0.65402					
40730	0 35565	0.60369	0.92043	0.40532			_				
40761	0.55574	40.1	0.9011	0.4002		ó	o (
41550		0.09640	j c	0.39483		-					
47334		5.07054 5.0788	Ö	0.3880		j e	ċ				
0.42466	0.51757	0.57902	Ö	0.38265	0.02/30	Ġ	Ö				
425.00		0.57767	ö	2000			0				
43122		0.56091	0.88058								
43143		0.56213									
43839	0.47527	0.54441	0.67301								
3958		0.54491	0.87831								
44774			Ö								
0.44923	₹,	0.51890	o c								
0.46001	4654	0.48377									
٠,	ľ	•	•								

AL PAGE & COOK QUALITY

Blade Surface static Pressures Four-Stage Configuration - Third Stage Is Test Stage. 128.14 5.

į		ع ر م	ים מינו מינו	•		2		8				* () / Hg . Segmen	900	-	
	~ I	300				4	TENS ON	KO. 000	ə!			ENS. CA1 B		3 1	
PRESSURE SUFFACE						PPESSURE	SURFACE			_	141	URFACE			
		비	K	2	•		삐	2	뒭		8	۲İ	E	2	
	-	1.0	3907	1 3600		0 9783	678	4036	1.3884			1.1742	1.4101	1 4745	
		- ·	4000	1.445	a 4	269	2880	1.4561	4583		1243	1 2828	. 4416	4676	
	- •	د د د د	4244	4007	-,	24.0	35.56	400			2007	777	7910		
•			4/ C	1000		7.832	3000	1 8227	5167		1 2317	37.	1.4916	4800	
-	-		9328	3		2735	1 3876	1 6241	1.5179		1.2462	1.3617	1967	1 404	
-	-	1 99	5129	1 5371	_	1 2749	1.3661	1.5106	1.5096		1.2527	1.3665	1 5061	1.4859	
٠. د			5278	1 5278		1 2713	3619	1.5163	1.5104		1 2431	1.3604	4508	1 4717	
	25.7 1 38	3996	20.20	1 5032		2323	3687	1.4783	1.4652		23.78	1 3266	1.4598	1.4327	
SUCTION SUPL	jų.				••	SUCTION S	SURFACE			•	ELCTION SU	MFACE			
			PP.	SZ.	-	침	법	Z,	외	•	ı	۲			
0 (0	0	0.177			6103	0 7965		0 8241			0.7912			
9 (9 (ن .	0 0	6 6 6 7			7363	7996					0.7717			
20 00 00 00 00 00 00 00 00 00 00 00 00 0		0	75.2	0.9592	•	0 6378	0 7232	0.8298			0.010	0.7214	0.0138	0 6324	
0 00	ں	0	73.5			6334	0.7228		0 0514			0.6956			
ა ა	O	O	5//2	0 7367		6323	0 7297		0 6764			0.7137			
5		ان	76.05		-	6382	0 7440		0 6942			0.7433			
3 (ه د	0 (0000			6577	0 7589		0.9240			700		200	
3 8		o -	0000			20,0	0 0000						22.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
000			7.5	1000	_		0.000		1 851			1.0178	1 2061	3010	
9		-	2552	27:2		9377	1 0925		1.2691			1.1265	1 3083	1.3530	
g	31 1 2167	_	3,44	1 3624		1 0663	1 1934		1.3644			1.2248	1.3616	1.3636	
8	-	-	4043	1 4:25	_	1256	2499		1.4091		1.1228	. 256	1.4013	7.7	
				·1	MEPS, ONICE,	9	8			퇴	IMMERSION(E)=	• \$0.000			
			•.1	PRECSURE	~				4		HAPACE	1	1		
				040 040 040 040	•	~	A P	NS PERS			7		23		
				, C	٠.	1 2735	1 4464	1 4904			1.2859	1.4507	1.4896		
				20 00	1 1768	1 3150	1.4523	1.4717		0.8812	0.8806	0.8643	0.0545		
				33	-	3256	1 4594	4701		1.1962	1.3246	. 4320			
				000	٠	348	1 4733	4793		1.2124	3334	1.4561	1604		
				20 00	•-	26.5	1 4722	1.4602		1.2216	7.3417	1.4592	1.4637		
				20 00	•	3610	1,4591	1 4537		1.2088	3515	1.4420	1.4560		
Tacalated S	urface Pr	*. * * ***		3 8	186.5	3041	1.4140	1.3965		1.1732	1.3035	1.4185	18		
Normalized by \$ \$0.00 U.	C A AQ P	2	·		30.430.13				•	RINCT I ON A	J				
			400	?	100 E	PE	8	SH.	**	å	2	2	2		
			•	200	0 7634					7364	0.7414	0.6643	0.3967		
					10 C					67/0	0.7500		0.7270		
•	Esta Point			5 /						5720	0.6873		0.8491		
ı	Efficien	* 2		ني ۽	0 8780		0 6123	0.9093		5673	0.6918	0.8261	0.9124		
R - Peak	Pressure	H150		g	0 5941					.5909	0.7201		0.9920		
NG - Mear	Stell			9	0 6285			1.0168		6099	0 7377		0388		
				88	7346	0 6724		1.1922		0.7215	0.8961		1.1922		
				3	0 0 16 1		1.1410	1 2523		8223	0.9917	1.1606	1.2385		
				3	0 95.7		1 2333	1.2817		9382	1.0906	1.2641	1.2709		
				3	60 CC CC	0.00	30,49	1 3009		1.0244	1.1695	1.3021	1.2941		
				5 G 8 G	1 308	0.000 m	37.02	1.3461		1.1336	1.2434	1.3583	. 3436		

Vane Surface Static Pressures Four-Stage Configuration - Third Stage Is Test Stage. Table 6.

		2	7639	2017.	6962	4699	. 7032	1.7118	1.7096	1.6964	79/9	Š	2 8 -	1.2555	1.2042	1.3511	1.3918	1.4292	1.4550				3	1.5740	1.001																												
50.000	ŀ	844	9869	.6722	200	7095	7192	. 7306	7309	7245	. 1080	9		2846	2848	.3076	1,3323	3620	. 3616	4161	1.4590	. 5668	1010	6386	. 6552	! !			3	2 2 2	1.6615	1.6740	1.6739	1.6639	1.6972	7030	1.6695	1.6636		*	1.1915	1.3475	1.4076		707	4960	1.5080	1.5253	1.5366	1.00.1	1.5670	1.5976	
PPERSION(S)-	BEACE	DE NE	3066	1 2113.	02/0	8747	5927	1009	6030	5969	. 6603	SURFACE		18021	1635	1666	1.1638	1 2040	1.2205	2505	3019	3380	1.4141	1.4034	1.6393		900	1			6780	1 6617	1 6671	1 7002	1.7129	1.7181	200	1.6640		900	1317	1.2314	1.2699	1.3409	. 3823	4628	1.4931	1.6457	1.5671	1.5786	1.604	1.6079	
IME		.1	3020	3374	3830	0/04	4474	4575	4610	4546	. 4358	SUCTION SUR		1576	2683	0360	0462	0585	1 0695	0630	1.1399	1 1976	1.2541	3000	2013			PERS LOW B	SURFACE		1.5233	5278	1.5461	1.5610	1.5756	1.5626	. 5846	1.5514	1	MFACE	128	1.1307	1.1393	1.1596	1.1636	1.2101	2709	1.3314	1.3807	1.4275	1.450	1.5062	:
	8	12	•	-	-	- •		-	•	•	-	최	ļ	•	- •			•									•	E	RESSURE S	히	1.3186	3000	3083	1.4173	1.4324	1.4401	1.4424	4000	}	SUCTION S	a 3	0397	1.0346	1.0339	. 0480	1.0638		1606	1.2153	1.2677	1.3057	3430	<u>;</u>
		;	1,147	1.6844	1.6969	1.7048	1.7139	7.00		7196	1.69.1		SX	1.2789	1.3007	3036	3480	3730	1.4052	1.4308	1.4779	1.5354	1.5829	1.6222	1.6441	1.6546			ā.	1																							
000	ì			1.6881	1 6999	1.7087	1, 7234	1.7362	7434	7302	1.7027		8	2002	1.3017	1.3045	1.322/	7000	3968	1.4308	1 4600	1 5466	1.5962	1.6437	1.6642	1.6671				외	1.7776	7.73	6897	1 6902	1.6993	1.7047	1.7009	6697	:			2506	1.3197	1.4037	1.4487	1.4033	1.4861	1.010	1040	1.5506	1.5601	1.5718	
	I MINE KS I ON (W)	JRF ACE	1	5258	1.5507	1.5673	1 5830	1 5982	1.6048	1.6050 1.6050	1.5656	SURFACE	J.	1.1998	1.1918	1.1868	1.1892	20/02	2220	2787	3312	1 4007	4579	1 5013	1.5220	1.6313		8		A A	1 7129	1.6801	1.6829	7044	1, 7121	1.7205	1,7226	1.7130	A		ă.	. 227.0	1.2641	1.3126	1.3514	1.3999	1.4238	. 4550	8718	1.5824	1.5673	1.8983	1. 2 0. 1
			a								4432		ı	1 1320	1.0697	1.0730	1 0574	1 0681	1 0842	200	1204	2408	2001	3504	1 3692	1 3732		2		3	4410	1 5097	1.5351	200.	28.2	5900	1 5502	58-15	1 2640		2	1 1566	1456	1516	1.1719	1.1940	1.2139	1.2466	3037	4137	1.4610	1.4996	1.6187
		4	'	- •		•						•	À															I PPIERS I ON (E) .	a locare	90	2932	1.3380	1.3847	1.4059	1.42/3	727	1.4540	1.4487	1.3228	SURFACE	d	1.1380	1.0613		1 0337	27.	1.0602	1.0905	1.1384	2492	1,3013	1.3495	1.3733
			SN	2630	1 2041	1.717	1 7262	1 7361	1 7457	1.7456	7333		5	316	1.3164	1.3210	1.3312	1 3545	1 3788	4010	4327	000	1 40 A	629	1 6533	1.6609				KCHORD A							38				CHORD	2.50	8	3 8	8 8	8 8	89.88	8 8	8	8 t	8	8	8.8
Jeage	외		RPR	1,7396		17/69	1 7333	1 7436	1 7506	1.7573	1.7444		1	F 2	1 3103	1.3177	1 3334	1 3607	1 3632	1.4053	1 4404	2106 1	1 26/4	6.40	6203	1 6719													ures	<i>-</i> 2-	•					,	2						
1621	10 000		W.	1 5432	0055	1 55/8	1000	1 6032	1.6157	1.6173	1603			L		1939	1940	1 2174	1 2374	1 2595	1 2893	3489	1 4116	1 4673	0000	1 8334													Press	q	REP		14	oint		1Clency	Pressure Ki	11					
	IMMERSION(X) =		40	1 3.47	1 3639	1 4057	1 4270		4635	1 4667	1.4531	427	SURFACE	Γ.	50.00			-	-	_	1 1303	1 1685	1 2510	3106	1 2538	37/6	,												Tabulated Surface	Mormalized by			THROTTLE	Teston P		Peak Elliciency	Peak Pre	Mear Stall					
	되	,	TO TO TO	2		20 00			3 6	8 8	8			SCHORD.	200	8	3 8	3 8	000	93	40 00					8 8 1													Tahula					9			r Ka	2					

Table 7. Blade Surface Static Pressures - Single-Stage Configuration.

### 1970 1912 1970	######################################	SURFACE O 10480	13.00 13.00	0 2882 0		2	SURTACE 131	10000000000000000000000000000000000000	0.2223 0.2223 0.2223 0.2223 0.2223 0.2223 0.2223 0.2223 0.2223 0.2223 0.2233 0.
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	0.0528 0.04528 0.1953 0.1953 0.1953 0.1953 0.1953 0.1953 0.1953 0.4897 0.4897 0.4897 0.4897 0.4897 0.4897 0.4897 0.2439 0.02898	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		· - :	0.0139	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2	2 888 888 888 888 888 888 888 888 888 8	0.0450 0.1551 0.1552 0.	2011 201 201 201 201 201 201 201 201 201	0.000000000000000000000000000000000000		⇔i	0.0534 0.0534 0.1525 0.1525 0.1525 0.1525 0.1525 0.1525 0.2527 0.2527 0.2527 0.2527 0.2527 0.2527	0.0022 0.1599 0.1699 0.1699 0.1699 0.1699 0.1736 0.	
200 200 200 200 200 200 200 200 200 200	2	0.1451 0.1741 0.1741 0.1952 0.1953 0.1953 0.1954 0.4954 0.4954 0.4954 0.0254 0.0255 0.0255	20100 20100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		— i	0.0011 0.1231 0.1231 0.1231 0.1231 0.1231 0.2321 0.2321 0.2321 0.2321 0.2321	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
200 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 888888888888888888888888888888888888	0.1339	22401 22421 22421 22401 22401 2401 2401	0.000000000000000000000000000000000000		= i	0.0139	0.000000000000000000000000000000000000	
25	2	0 1922 0 1923 0 1923 0 1923 0 1925 0 1925 0 1935 0 1935 0 1939 0 1939 0 1939 0 1939 0 1939	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- i	0.0138	0.000000000000000000000000000000000000	
26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	0 1953 0 1950 0 1757 0	22221 22253 22253 20403 24763 24763 24763 24763 2537 2537 2537 2537 2537 2537 2537 253	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-i	0.1556 0.1566 0.1501 0.1501 0.1501 0.4407 0.4408 0.0109 0.0109	20000000000000000000000000000000000000	
27	2	0 1950 0 1790 0	2243 2243 2046 2046 2046 2046 2046 2046 2046 2046	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~ i	0.0139	00.00 00	
	88 88 88 88 88 88 88 88 88 88 88 88 88	0.1757 0.1757	2269 2269 2049 44783 44783 4463 4463 4292 3393 2537 1005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-i	0.1531 0.1531 0.1531 0.1531 0.1531 0.1531 0.1531	00.00 00 00 00 00 00 00 00 00 00 00 00 0	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	0.1757 0.1757 0.1327 0.1816 0.4837 0.4832 0.4832 0.2438 0.2438 0.2235 0.0228	2263 2049 2049 2049 2049 2049 2049 2049 2049	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.		-i	0 1398 0 1388 0 1388 0 1388 0 1388 0 1388 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	UNTACE OF 1987	1974 1974 1974 1974 1974 1974 1974 1974	0.000000000000000000000000000000000000		− i	0.000000000000000000000000000000000000	2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	0. 3270 0. 3816 0. 4837 0. 4887 0. 488	FF 4 763 4 4 763 4 4 4 30 4 4 4 6 20 5 4 6 20 5 5 5 5 5 5 7 6 6 2 5 6 7 7 6 6 7 7 7 4 7 7 4 7 7 4 7			- i		2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2	######################################	0.0270 0.3816 0.4837 0.4837 0.4832 0.3333 0.2438 0.02886 0.02886	78. 4 4 783 4 4 4 296 4 4 2 296 7 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Color Colo	2 288888888888888888888888888888888888	0.0236 0.02387 0.02387 0.02387 0.02387 0.02386 0.02386 0.02386	1					6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
1	\$ 2888888888888888888888888888888888888	0.0292 0.0292 0.0293 0.0293 0.0293 0.0293 0.0293	2537 2537 2537 2537 2537 2537 2537 2537					0. 4164 0. 4769 0. 4769 0. 4769 0. 528 0. 528 0. 6428 0. 6428	
4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 288888888888888888888888888888888888	0.0295 0.0295 0.0295 0.0295 0.0295 0.0295	2553 2553 2553 2553 2553 2553 2553 2553					0.0428	
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	######################################	0.4897 0.4764 0.4764 0.4017 0.2478 0.0296 0.0292	4626 4468 4468 13993 13393 10093 10093 10093					0.0428	
2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	88888888888888888888888888888888888888	0.4832 0.4764 0.4043 0.2439 0.0298 0.0298	4468 4292 3993 3363 2637 1574 1674 1005					0.0429 0.0429 0.0429 0.0429 0.0429	
1	# 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00.4764 00.4488 00.2458 00.02458 00.0286 00.0286	4292 3993 3363 2537 1574 0530 1005					0.0428 0.0428 0.0438 0.0438 0.0423	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 2 3 5 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00.4439 0.2335 0.24539 0.02296 0.02296	3993 3363 2537 1574 0530 1005					000000000000000000000000000000000000000	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.459 0.2335 0.2459 0.0296 0.0296	3363 2537 1574 0530 1005					0.0423 0.0423 0.0423 0.0623	
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 80 80 80 80 80 80 80 80 80 80 80 80 80 80	0.335 0.2459 0.0296 0.0296	2537 1574 0530 0453 1005					-0.2266 -0.1413 -0.0439 0.0423 0.0833	
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0. 2459 0. 0296 0. 0296 0. 0296	1574 0530 0453 1005					-0.1413 -0.0498 0.0428 0.0833	
2000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.1339 0.0296 0.0292	0530 0453 1005					0.0438	
20 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00	0. 0296	045 000 000					0.0425	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8) · 6	000	66					0.0833	
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S .	8							
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					I PARENTE JON (K) .	(8): 80	8		
© 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	įų.			PRESSI	NF SUBFACE				
######################################		Ē		KCHORD	90				
88888888 • 8888888		0.1960		2.50	-0.00				
8888888 8888888	0	0.1966		8.	0 0457	Ö	•	_	
48588 88888	o (0.2093		8	0.4557	o	•		
8888 8888	.	D 00.00		899	0.0883	o (0	_	
588	ò	0.500			0.1036	D 6	0 (
8 8 8 8	Ó	0.2310		20.02		.	•		
Ş	0	0.2195		900	0.1066	ò	>		
3	0	0.1963		8	0.0833	o	•		
00 56	0	0.1706		93.00	0.0592	0	0		
2				A:17.1	2002000				
CHOKD		4		CHORD	DOUGH TOP	t			
2 50 -0	ė			2.50	-0.3678	10-			
0-00-0	Ŷ			9	-0.4216	-0.4083			
o e	o ·			13.80	-0.4824	-0.4431			
200	-0 4729	-0.4222		20.00	-0.5317	-0.4620	-0.4203		
	• ¢			88	-0.5332	-0.4554			
	9 9			8 8	-0.5065	-0.4133			
Ģ	ç			3 6	10.4748	-0.3616			
ė	Ģ			2 2	10. 45.08	26.0			
Ģ	þ			3 2	10.3663	0.00			
o	0			20.00	-0.1230	-0.056.7			
o	0			80.00	-0.0330	-0.00			
o	c			00	-0.0734	0000			
ç	C			90	-0.0575	00.00			

Table 8. Vane Surface Static Pressures - Single-Stage Configuration.

IMERSION(S)	ION(\$) = 10	8		=1	PPIERS I ON (B) =	1) - 20.000	8		1	IMERSION(E))* #0.000	91
STATES SALLS SALA	1		•	901188300	SURFACE			â				
ł				000	2	ă	804	,le	ı		7	PPR
•	•	•	••		si;		1886	4				
0	0	0		8	200							
0	0	o		8	0 2409						0.316/	0.0961
0	0	o		2 0.08	0.2846						0.3512	0.4131
0	•	0		30.08	3000		0.4460				0.3717	0.4291
0	0	0		45.00	0						0.3937	0.4474
0	0	o		80.00	o						0.4136	0.4648
0	•	٥		20	0						0.4224	0.4735
80 00 0 3722		0.5025		00	0.3686	0.4375	0.4095			0.3592	0.4266	0.4764
0	0	o		8	0						0.4210	0.4708
95 00 C 3412		0		8	o				88.00		0.4066	0.4577
AND MOLTON	y		•		SHRFACE			•		RFACE		
TOTAL POPULATION				Cacaca		4	864	7104	. 1	9	¥	PPR
2 50 0 1177		0	•		0.1314	0.1124		4	٥	0.1121		0.0446
		0			0.0386	0 0655				.0182		0.044
Ó		Ó			0.007	0.0459				0.0200		0.0383
		0			-0.0238	0.0349				0454		0.0505
		o			-0.0214	0.0477				.0436		0.0687
		o			-0.0119	0.0622				. 0351		
		o			-0.0016	0.080				0237		0.113
		0			0 0175	0.1088				0000		0.1420
		0			0 0579	0.1532				0396		80 S
		0			0.1170	0.2154				. Ce44		0.636
		o (0.1731	0.2675				7. 1440		3500
		0			0 2282	0.3120				. 200		
	90 0.3458	0.4035		8 8	0.2730	9293				0.200	2603	0.4157
		•										
			IMMERSION(E)	00 .(8)	8			IMMERSION(E)=	8	8		
		PRESSUI	-				PRESSIN					
		CHORD	8				CHOND	do	PE	PPR		
		2.50		0			2 50		0.3552	0.4412		
		8.	0.2134	o	o		8.8		0.3454	9.4		
		8 0.02	0 2713	Ö	Ö		20.02		0 3584	.4.0		
		30.00	0 2944	0 3682	0.4239		30.00		0.3683	0.4		
		52	0.3148	0	o (43 .00		0.3848	0.4408		
		8 6	0.3327	0 0	o 0		9 6		0.3999	0.4550		
		9 9	34.96	9 0	.		9 9		0.4093	0.4631		
		8	0 3372	o	Ö		90.06		0.4025	0.4558		
			0 3219	o	ó		82.8		0.3823	0.4344		
Tabulated Surface Pressu	e rressure						76110110					
Bornellized by 5				à			0000		ă	844		
	Ì	2 50		0825	•		2 50	-0.0082	-0.0379	-0.0895		
		8	o	C 0140	o		8		-0.0149	-0.0104		
		3.8	o	0.0063	o		13.00		-0.0059	0.0122		
	اود	50 00	o.	0.00	0		20.00		0.0158	0.0563		
•	oint	3 8	-0.0437	0.0241	0.0756		8.8		0.04%	0.081		
PR - Pesk Efficiency	iclency	88	ç		s c		8 8		2000	0.1488		
PPR - Peak Pressure Ri	saure Rise	9	0	0.0934	9		40.00		0.1206	0.1958		
		90 96	0	0.1421	0		20.00		0.1731	0.2543		
		00 09	0	0.1976	0		60 00		0.2215	0.2918		
		2 6	0 6	0.2465	0 (20.80		0.2620	0.3238		
		3 3	•		.		8 8		0.6860	9250		
		3 8	o c	36.54	.		3.5		0.3314	3803		
		; }	•	} ;	j		•		· · · · · · · · · · · · · · · · · · ·))		

Blade Surface Static Pressures Four-Stage Configuration - First Stage Is Test Stage. Table 9.

Table 10. Vane Surface Static Pressures Four-Stage Configuration - First Stage Is Test Stage.

I MANERS : ON I		00		-1	IMMERSION(E).	50	000		,	IMMERSIONER).	K) • 50.000	8
3				BAKISSBED	SURFACE				PRESSURE		i	
	삐			KCHORD		Ą	PPR		CHORD	9	*	808
0 2034				8				•	2 50	0 1360	0 25.72	
0 2346	0 3352			00 ••					8			•
3:20				20 02					20.00			
30.00				30 00					30.00			
				00 T					45 00			
	40.00			00 09					90			
00 00				88					20 00			
3574									80.00			
900 0 00		0 4731		8 8 8 8	3996	0.3367	0 4 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		8 8	0.3316	0.3626	0.4655
SUCTION SURFACE				70170				•				
SCHO2D DE	W.	864		ECHORD FCHORD	DOME ALE	ă	9	,,,,	SUCTION	SURFACE	1	1
0 1153	0 1078	0000		2 50	0 1146	0 1295			2 50	900	0 12	
0 6337				00 9	0 0519					0.0113	0000	
2620 O	0 0424	0 0527		13 00						-0.0350		
				200						-0.0563	-0.0046	
00 0- 00				200						-0 0571	0.0040	
00 -0 0124										-0 0487	0.0193	
20 2 9960										-0 0361	0.0365	
6050 0 00										-0 0213	0 0288	
00 0 0442											0.1065	
00 0 1684										0.0741	0 1617	
00 0 2154										246	0.2170	
	3268									B	2692	
00 0 2753				00	0 3479	0 2812	0 4183		8 8	0 2791	3456	0.3939
											}	
		•	I MATERS: ONC	6	8		•	IMMERSION(S)	80	000		
		PRESSUR	SUPFACE				PRESSIBE	E SUBFACE				
		CHOPU	do				KCHORD	1	à			
		2 50	0 1298	0	0		2 50			0		
		900	0		0		8			o		
		3 6	o (0 (8			o ·		
		8	o c		.		90.00		•	o (
					Ċ					.		
					٥		28			ó		
					o		90.00			o		
		000	0 3265	0 3889	0.4472		00 00	0.3247	0.3862	0.4502		
Sabulated Surface Pres	Sures				•		30.08		•	Ď		
Normalized by & Pare Ut		CUCTION	SUS	į			SUCTION	SURFACE				
		2 %		2 2 2 2			SCHORO SCHORO	s Sla		ç		
THEOTHE		00 6	o	0 0035			8	6600.0-	þ	ċ		
DP - Pesten Point		13 00	Ģ,				13.00	-0.0607	ė	Ö		
		20 00	ę ·				20.00	-0.0576	ò	o		
•	.	8 8	6 6	0 0051			82	-0 0419	0.0192	o ·		
MA - Peak Pressure Kise	K1 80		ç				8 8	-0 0275	o c	6 (
		40 00	•				8 8	0.0140	ċ	o c		
		2 0 00	0				00	0.0566	0	0		
							00 09	0.1057	Ö	o		
							20 00	0 1536	0	Ó		
							00 08	0 1904	0	o (
		15 25 25 25	200	0 3201	0.3873		3 S	00 00 00 00	0.3038	0.3742		
									i	,		

Normalized Absolute Total Pressure, Static Pressure and Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested. Table 11.

	1	Total Pressure	ure	St.	Static Pressure	ife	i	Tc	Total Pressure	ure	St	Static Pressure	ure
Percent Impers. 10	Rutor 3 Inlet	Rotor 3 Exit	Stator 3 Exit	Rotor 3 Inlet	Rotor 3 Exit	Stator 3 Exit	Percent Immersion	Rotor 3 Inlet	Rotor 3 Exit	Stator 3 Exit	Rotor 3 Inlet	Rotor 3 Exit	Stator 3 Exit
	6.200.0	1 4967	1,5551	0.875	1.255	1.450		1.115	1.715	1.715	0.990	1.390	1.600
٠.	50.00	7675	1.5698	0.875	1.250	1.445		1.125	1.760	1.730	0.00	1.380	1.592
, ~	5000	1.5763	1.5780	0.875	1.245	1.435	· m	1.135	1.780	1.737	0.988	1.375	1.585
٠.,	1,0461	1.5993	1.5893	0.875	1.243	1.434	4	1.140	1.795	1.741	0.988	1.370	1.583
	1.5.5	1.6199	. 5988	0.875	1.240	1.430	•	1.150	1.805	1.750	0.985	1.367	1.580
	1.06.80	1.6737	1,6141	0.875	1.235	1.428		1.160	1.815	1.755	0.985	1.361	1.575
٠	0.080.0	1.685	1.6250	0.875	1.233	1.425	10	1.173	1.820	1.770	0.985	1.357	1.575
	3.160	1.6937	1.6370	9.875	1.235	1.430	15	1.190	1.825	1.785	0.987	1.359	1.575
	1,973	1.6902	1.6507	0.875	1.240	1.433	50	1.195	1.820	1.785	0.989	1.360	1.575
, 2	1162	1.6750	1.5550	0.875	1.240	1.435	33	1.195	1.805	1.790	0.989	1.360	1.576
	1.1202	1.6967	1.6810	0.875	1.230	1.430	2	1.205	1.810	1.795	0.981	1.355	1.576
	34	1.6985	1.5772	0.865	1.210	1.425	20	1.188	1.805	1.785	0.975	1.340	1.563
	1.1016	1.6830	1.5650	0.855	1.195	1.415	æ	1.173	1.795	1.777	0.965	1.330	1.555
ď	3363	1.6785	1.6568	0.845	1.193	1.407	885	1.167	1.800	1.775	0.955	1.323	1.547
3	G 147	1.6798	1.6497	0.840	1.190	1.395	6	1.160	1.805	1.765	0.945	1.315	1.540
ő	1777	1.6759	1.6317	0.830	1.190	1.385	93	1.150	1.807	1.741	0.937	1.310	1.525
	1,0585	1.5762	1.5952	0.825	1.190	1.385	95	1.130	1.811	1.710	0.931	1.310	1.532
*	\$1,40	1.6773	1.5695	0.825	1.190	1.390	*	1.110	1.812	1.595	0.929	1.308	1.525
6	1.0166	1.5768	1.5449	0.825	1.190	1.395	97	1.090	1.810	1.672	0.925	1.307	1. 524
	1785.0	1.6787	7/67-1	0.830	1.187	1.40	86	1.067	1.807	1.605	0.920	1.365	1.520

otal Pressure	1	St	Static Pressure	ir e		I	Total Pressure	ıre	St.	Static Pressure	iTe
Batter	6 00000	Botor 3	Botor 3	Stator 3	Percent	Rotor 3	Rotor 3	Stator 3	Rot or 3	Rotor 3	Stator 3
Exit	Exit	Inlet	Exit	Exit	Immersion	Inlet	Exit	Exit	Inlet	Exit	Exit
		38	203	1 760	-	1 2550	1.8850	1.8600	1.107	1.510	1.720
1.91	1.07.30		25.1	733		1.2692	1.8995	1.8764	1.110	1.505	1.715
1.9360	1.8854	200	205	1.73	. ~	1.2750	1.9200	1.8800	1.110	1.500	1.710
1 9663	1.8878		1.495	1.722	4	1.2850	1.9300	1.8870	1.110	1.495	1.705
1 9607	1.8912	1.093	1.490	1.720	۰,	1.2908	1.9434	1.8930	1.111	1.495	1.705
1.9629	1.8965	1.093	1.485	1.715	_	1.2891	1.9547	1.8985	1.111	1.490	1.700
1.9585	1.8954	1.090	1.480	1.715	01	1.2920	1.9591	1.9013	1.110	1.485	1.697
1 9498	1.9039	1.091	1.483	1.720	15	1.2985	1.9539	1.9087	1.110	1.485	1.695
1.9686	1.9147	1.092	1.485	1.720	20	1.3006	1.9641	1.9067	1.105	1.485	1.690
1.9472	1.9274	1.092	1.485	1.720	30	1.2946	1.9250	1.8946	1.095	1.480	1.689
4920	1 9133	1.085	1.480	1.705	\$0	1.2628	1.9177	1.8534	1.070	1.455	1.650
1 9257	8008	1.075	1.465	1.700	70	1.2097	1.9346	1.7991	1.050	1.432	1.625
1 9271	1 8058	2	1.455	1.690	000	1.1857	1.9513	1.7652	1.035	1.427	1.615
9360	1 8800	1	877	1.985	58	1.1700	1.9526	1.7541	1.028	1.425	1.610
1.96.1	1 8808	30	1.660	1.675	8	1.1619	1.9589	1.7554	1.020	1.425	1.607
: 5	1 8657	8	1.435	1.665	66	1.1569	1.9558	1.7533	1.015	1.425	1.600
26.60	1 8280	0.70	52.7	1.660	56	1.1474	1.9522	1.7545	1.007	1.426	1.597
0770	1 8200	1 035	1.430	1.657	8	1.1448	1.9367	1.7462	1.006	1.427	1.595
1.944	1 9047	1 035	1 437	559	26	1.1409	1.9174	1.7351	1.005	1.428	1.590
1.9429	1000		1 4.25	059-1	. ec	1.1285	1.8942	1.6571	1.003	1.429	1.585
1.9330	t.c	000.	(70.1	0.00.		<u> </u>					

Mear Stall Throttle

Peak Pressure Rise Throttle

Percent Imersion

Normalized Absolute Total Pressure, Static Pressure and Flow Angles for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested (Concluded). Table 11.

		7													-					-				1_	-	_	_				_	-					-			-		_	-
	Stator 3 Exit	25.5	25.1	24.6	24.3	24.1	25.2	26.2	25.9	25.0	22.8	21.2	23.4	24.8	25.4	25.7	25.7	25.3	24.5	23.4	21.2			Stator 3	Krit	24.9	25.9	. 25.9	25.9	24.9	? X	7 7	24.0	24.6	2.92	26.5	25.2	24.7	24.9	23.2	25.5		2.7
Corrected	Rotor 3 Exit	69.7	68.4	9.99	65.8	65.4	63.8	61.6	58.1	55.3	24.0	51.7	52.6	53.5	24.2	54.9	55.0	55.0	54.6	54.4	8.48		Corrected	Rotor 3	Exit	68.4	67.3	65.6	6.49	63.9	25	5.4.	54.4	54.9	58.2	62.3	0.49	2.5	3	63.6	1.53	6.70	67.2
	Rotor 3 Inlet	33.1	31.9	30.4	2.62	27.7	76.1	24.2	23.2	22.4	20.6	20.6	20.9	21.3	21.9	22.5	24.8	26.7	26.5	26.0	24.3	<u>•</u>		Rotor 3	Inlet	32.1	31.2	29.8	28.8	28.1	7.07	25.2	24.9	25.1	26.9	27.9	26.4	26.2	\$ 92	26.7	20.9	27.1	5:/7
	Stator 3 Exit	24.4	24.0	23.6	23.3	23.1	24.2	25.2	24.9	24.1	22.0	20.6	22.8	24.2	24.8	25.2	25.2	24.8	24.0	22.9	20.8	Mear Stall Throttle		Stator 3	Exit	23.8	24.8	24.8	24.8	23.9	2.5	26.0	23.1	23.8	25.5	25.9	24.6	24.2	2.5	7.72	2.5	25.50	77:07
Measured	Rotor 3 Exit	68.8	67.4	65.6	64.8	4.49	62.7	60.5	57.0	24.2	53.0	8.03	51.8	52.8	53.5	54.2	54.4	5:.4	54.0	53.8	24.2	Wear St	Measured	Rotor 3	Exit	67.4	66.3	64.5	63.8	62.8	7.70	55.2	53.3	53.9	57.4	61.6	63.4	63.9	63.6	63.1	07.0	• 5 5 5	0.70
Σ	Rotor 3 Inlet	31.8	30.6	29.2	28.0	26.6	25.0	23.2	22.3	21.6	19.9	20.0	20.4	20.8	21.4	22.0	24.3	26.2	26.0	25.5	23.8			6	Inlet	30.8	30.0	28.6	27.6	27.0	6.5.6	24.2	24.0	24.3	26.2	27.2	25.8	25.6	8.5%	7.7	4. 4	9, 9,	9:07
	Percent Immersion		2	~	4	S	_	2	51	50	2	S	0,	28	88	6	83	\$6	96	97	86			Percent	Innersion	1	7	n	4	^ *	` =	2 2	70	8	S	2	8	£ 8	2 3	2 8	2 %	2 6	
	Stator 3 Exit	27.9	26.7	25.9	25.0	24.4	25.0	26.8	26.6	25.6	22.6	21.2	21.5	23.5	23.5	23.5	24.0	24.6	24.9	25.5	26.7			Stator 3	Exit	25.3	25.1	25.0	24.7	24.6	23.0	25.4	24.3	23.1	22.7	25.2	26.6	25.8	72.7	20.8	19.9		13.61
Corrected	Rotor 3 Exit	6.49	63.7	62.5	62.1	61.7	61.0	29.7	55.0	\$2.8	50.0	6.87	50.0	50.9	51.5	52.0	52.4	52.6	52.7	52.8	53.0		Corrected	-	Exit	70.5	7.69	68.5	67.5	0.79	63.0	5.65	56.6	53.5	53.5	26.7	58.9	59.8	200.5		29.6	9 9	0.00
ŀ	Rotor 3 Inlet	32.5	31.7	30.6	29.2	28.6	25.2	23.8	22.9	22.2	21.6	20.1	20.3	20.6	21.0	21.4	25.0	26.0	25.9	25.4	24.8	Throttle		=	Inlet	33.1	31.8	30.2	29.5	28.1		24.9	24.2	22.1	22.5	26.1	26.6	26.6	7.07	25.6	1.67	0.4.7	C.*3
	Stator 3	25.7	25.6	24.8	24.0	23.4	24.0	25.8	25.6	24.7	21.8	20.6	21.0	23.0	23.0	23.0	23.5	24.1	24.4	25.0	26.2			Stator 3	Exit	24.2	24.0	23.9	23.7	23.6	24.0	24.4	23.4	22.3	22.0	24.6	26.0	25.2	27.7	50.3	. 61	7.61	2.51
Measured	Rotor 3 Exit	63.8	62.6	7.19	6.09	60.6	59.6	58.6	54.8	51.6	6.87	0.84	49.2	50.2	50.8	51.3	51.7	52.0	52.1	52.2	52.4	Peak Pressure Rise	Measured	Rotor 3	Exit	9.69	68.5	67.5	66.5	0.99	9.0	58.4	55.5	52.5	52.6	26.0	58.2	29.5	9.6	2.6	0.00	7.00	20.00
	Potor 3 Inlet	31.2	30.4	29.4	28.0	27.5	24.2	22.8	72.0	21.4	24.3	19.5	19.8	20.1	20.5	20.9	24.5	25.5	25.4	24.9	24.3			Rotor 3	Inlet	31.8	30.5	29.0	28.0	27.0	2.02	24.0	23.3	21.3	21.8	25.5	26.0	26.0	25.6	1.52	24.0	7,5	0.47
	Percent Immersion	†																						Percent	Immersion																-		

Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Four-Stage Configuration, Third Stage Tested. Table 12.

		Desig	Design Point Throttle	ottle		
70	TOTAL PRESSURE	RE		NUTOR LOS	RUTOR LOSS COEFFICIENT	IENT
PERCENT SMEETS TOR	ROTOR 3	ROTOR 3 Exit	PERCENT INNERSION	TOTAL LOSS	MAKE LOSS	TOTAL MINUS WAKE LOSS
5.6	1.6795	1.6765		8.129b	#.#976 #.#184	6.1219 6.6763
7.77	1.6785	1.6367	28.8	8.8116	#.#226 #.#199	6.8195 6.8117
7.7. 7.7.	1.6595	1.6167		8.8489 8.8435	8.8211 8.8192	8.8198 8.8243
53	1.5584	1.5746 1.6169		9.8396	6.8269 6.8459	9.0127
25.5	1.5443	1.4926			8.8487 8.9566	8.8258 8.8297
95.4	1.4898	1.4416		9.8/28	#. # 523	8.8197
	,.					

		PER PIT	PUR ALLICIONES INFOLLIS			
π	TOTAL PRESSURE			TOTOR LOS	ROTOR LOSS COEFFICIENT	IENT.
PERCENT INNERSION	ROTOR 3	ROTOR 3 EXIT	PERCENT	10TAL LOSS	UAKE LOSS	TOTAL MINUS MAKE LCSS
5.6	1.7813	1.6682	5.6	8.1428	6.6111	9.1316
28.8	1.7642	1.7367	18.6 28.6	8.8354 8.6451	6.6178	6.6178
34.6	1.7949	1.7567	2.5.2	6.8546 6.8628	6.8284	1.5342
9.5.9	1.6997	1.6543	5.5	8.8626 8.8778	6.6335	6.6292 8.6274
23:	1.6316	1.5777	22:	8.8791 8.8828	6.0463 6.0523	6.5238
9		1.5351	20.		6.6493	5.65T

티	TOTAL PRESSURE	9		NOTOR LOS	PUTOR LUSS COEFFICIENT	TENT
PERCENT .	ROTOR 3	ROTOR 2 Exit	PERCENT IDMERSION	TOTA: LOSS	VAKE 10SS	TOTAL MINUS WAKE LOSS
5.0	1.0744	1.767.1	6.8	B.1378	1886.8	8.1297
9.6	1.8767	1.1016	20.00	#. w867	9.6151	8.8717
9.0	1.9783	53:	16.4	6.33/3	8.8199	F. \$186
1 .6	1.8817	1.0553	28.8	9.8395	8.8194	9.9281
3.6	1.09:1	1.6533	38.6	8.8.79	9.8232	9.0246
•••	1.0372	1.0033	50.8	B.0452	8.8294	8.015/
3.0	1.7872	1.7360	68.8	8.8713	8.8445	#. Ø286
9.9	1.7247	1.6667	3.28	47.5	#.B624	#.#355
6.0	1.7822		1.50	H. : 175	8.8174	8.0251
98.8	1.6956	1.6222	#: #	a.1146	8.8/74	8.8375
5.6	1.6864	1.6246	3.96	1398 8	3.8654	8.8231

	EFICIENT	LOSS WAKE LOSS	6.4216 6.11877 6.4216 6.4844 6.4216 6.4826 6.4216 6.4826 6.4216 6.4826 6.4316 6.4836 6.1185 6.4836 6.1185 6.4836
	AOTOR LOSS COEFFICIENT	TOTAL W	11 55 11 55
rottle	ROTO	PERCENT TO	**********
Wear Stall Throttle		2 PE	
Men	SUNE	2 ROTOR EXIT	1.8533 1.8533 1.8525 1.0542 1.7273 1.6549 1.6923 1.6923
	TOTAL PRESSURE	ROTOR 3 INLET	1.8938 1.8938 1.801 1.80
	ı	PERCENT INDERSION	**************************************

Table 13. Vector Diagram Parameters for Rotor Λ /Stator Λ Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

BLADE ELEMENT DAT	A ROTOR IN	LET TIP SPEED	• G3.82 MPS	(209,30 FPS)	
IMMER W	WU MPS FPS	BEYA CZ DEG MPS FPS		C ALPHA MPS FPS DEG	
1.0 55.1 160 8				21.9 71.9 32.5	
2.0 55.0 180 4 3.0 55.1 180.9				23.7 77.6 31.7 24.8 81.7 30.6	
4.0 55.6 182 3				26.1 85.6 29.2	
6.0 85.7 182 0	50.4 165.8	64.6 23.5 77.	2 12.9 42.3	26.8 88.0 28.0	
7.0 57.1 187 3				27.9 91.6 25.2	
10.0 57.6 189 0				28.6 94.0 23.8 29.3 96.2 22.9	
15.0 57.7 189 2	N 6 166 0			29.0 87.8 22.2	
30.0 57.5 188 6			•	30.3 99.5 21.0	
50.0 56.5 185.4			4 10.8 35.4	31.3 102.7 20.1	
70.0 54.9 180 1				31.9 104.8 20.3	
80 0 53.8 176.5		• • • • • • • • • • • • • • • • • • • •		31.3 102.7 20.6 31.3 102.7 21.0	
85.0 53.2 174 5 90 0 52.5 17£.3				31.0 101.7 21.4	
93.0 50.4 165 3	41.6 126.6	55.6 28.4 93		31.3 102.7 25.0	
95.0 49.6 132 7	41.2 135.3	56.1 27.5 90		30.7 100.6 26.0	
96.0 49.4 162.1	41.8 127.1	57.6 26.4 86		29.3 96.2 25.9	
97.0 49.4 162.1				27.6 90.8 25.4	
98.0 49.5 162 3	43.6 143.2	61,7 23,3 76	5 10.8 35.4	25.7 84.3 24.8	
BLADE ELEMENT DA	TA ROTOR OL	JTLET / STATOR I	NLET		
IMMER W	WU	BETA CZ	CU	C ALPHA	
R MPS FPS	MPS FPS	DEG MPS FF 70.1 12.9 42		MPS FPS DEG 0 30.6 100.3 64.9	
1.0 38.2 125.4 2.0 36.0 118 (9 31.0 101.6		
3.0 35.4 116			5 32.2 105.7		
4.0 34.8 114			7 33 4 109 5	37.7 123.7 62.1	
5.0 34.3 112			1 34.3 112.6		
7.0 33.3 109			.2 36.7 120.4		
10.0 33.7 110.0 15.0 35.9 117 0			.8 36.7 120.5 .3 35 6 116.6		
20.0 38.0 124			8 33.6 110.6		
30.0 39.4 129			6 32.0 104.6		
50.0 38.7 127.0			. e 3 2.6 106.9		
70.0 36.6 120			0 33.9 111.3		
80.0 35.3 115				3 44.2 145.0 50.9 1 44.1 144.6 51.5	
85.0 34.6 113 6 90.0 33.9 111 3			.7 34.6 113.4 .1 34. 9 114.5		
93.0 33.4 109			B 34.9 114.5		
95.0 33.1 108			3 35.0 114.9		
96.0 33.0 108			.5 35.2 115.6		
97.0 32.8 107			.3 35.3 115.6		
98 0 32.6 107	1 18.9 62.2	2 35.4 26.6 87	<u>.2 35.5 116.4</u>	1 44.3 145.5 53.0	
BLADE FLEMENT DA			CU	C ALPHA	
IMMER W M MPS FPS	WU MPS FPS	LETA CZ DPG MPS FP		MPS FPS DEG	
1.0 57.1 187			1 9.6 31.4	20.4 66.9 27.9	
2.0 57.2 187.	7 53.8 176.5			3 21.8 71.6 26.7	
3.0 57.3 187				3 23.6 77.3 25.9	
4.0 57.5 188 3.0 57.6 189				3 24 9 81 6 25 C	
7.0 57.2 187				27.2 89.3 25.0	
10.0 56.1 183				28.2 92.4 26.8	
15.0 55 6 182	9 49 6 162 7	7 60 6 25.5 83	6 12 8 42 0	28.5 93 6 26 6	
20.0 55 6 Tea				20.3 86.3 25.6	
30.0 56.6 185				29 5 96.9 22.6	
50 0 55 8 183 1 20 0 84 1 127				3 31 5 103.3 21.2 3 31.5 103 3 21 5	
20 0 54 1 177 6 00 0 52 2 171				T31 5 103 3 21 5	
85.0 51 8 170				2 31 4 102 9 23 6	
90 0 51 5 169		1 55 4 29 2 95	7 12 7 41 4	7 31 8 104 4 23 5	
93 0 50 9 167				2 2 2 102 3 24 0	_
95 0 80 1 164				3 76 9 34 7 24 6	
96.0 49.7 162 1 97.0 49.2 161 4				26 7 87 7 24 9 3 24 4 80 0 25 5	

Table 14. Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

BLADE ELEMENT	DATA ROTOR IN	LET TIP SP	EED - 64.67 P	P8 (212.17 FF	'5)
IMMER W	. WU	BETA C	Z CU	C	ALPHA
	FPS MPS FP		FPS MPS FI		DEG
1.0 55.5	162 1 52.2 171	2 69.9 18.9		74.1	
2.0 55.7	182.8 52.0 170	.7 68.8 20.0	65.5 12.4 40	0.6 23.5 77.1	31.9
3.0 56.1	184.0 51.9 170	.4. 67.6 21.1	69.4 12.4 40	.8 24.5 80.1	5 90.4
	185 2 52.1 170			0.0 25.0 81.1	29.2
8.0 50.9	Teg. 7 52.1 170	. 6 GE. 0 23. 0	75.5 12.1 3	. 8 26.0 65.	27.7
7.0 57.5	188 6 52.2 171	.3 65.1 24.0	78.9 11.8 3	3.7 26.8 87.0	2 6.1
10.0 58.1	190.6 52.3 171	.8 64.0 25.3	63.0 11.4 3	.4 27.8 91.1	1 24.2
	191 0 51.8 170		86.9 11.4 3	7.4 28.6 94.0	8 23.2
	190 9 51.6 169			. 5 29.1 95.	22.4
	191.1 81.5 169			. 6 29.1 95.	3 20.6
	188.1 49.1 161			3.1 30.3 99.4	4 20.6
	179 6 47.3 155			. 7 29.5 98.1	9 20.9
	176 1 48.3 151			. 9 29.2 95.	
	173.9 45.4 149			. 2 29.5 96.	
	171.6 44.8 146			7.3 29.7 97.4	
	166 8 43.2 141			.8 29.5 96.	
	162 8 42.6 139			2.3 28.6 93.	
•	162.6 43.2 141			0.0 27.2 69.	
	102.0 40.2 141				

BLADE ELEMENT DATA ROTOR GUTLET / STATOR INLET

IMMER		1	v	U	BETA	C	Z	(U	C	:	ALPHA
2	MPS	FP\$	MPS	FPS	DEG	MPS	FP3	MPS	FPS	MPS	FPS	DEG
1.0		107 8	30.4	99.7	67.4	12.5	41.0	34.2	112.2	36.4	119.4	69.7
2.0	31.3	102.8	27.8	91.3	62.5	14.4	47.2	36.6	120.2	39.4	129.2	60.4
3.0	31.4	103.0	27.0	88.6	59.2	16.0	52.5	37.4	122.6	40.7	133.4	66 . 6
4.0	31.2	102 4	26.£	86.1	57.0	16 9	55.5	38.0	124.8	41.6	136.6	65.8
5.0	0.10	101.9	23.7	84.2	55.6	17.5	57.3	38.5	126.3	42.3	138.7	65.4
7.0	31.6	103.7	25.3	63.1	53.1	18.9	62.0	38.7	126.9	43.0	141.2	
10.0	32.7	107.2	25.4	83.3	50.9	20.6	67.5	38.3	125.7	43.5	142.6	
15.0	34.8	114 0	26.1	85.7	48.6	22.9	75.2	37.1	121.7	43.6	143.1	58.1
20.0	36.5	119 8	27.0	88.7	47.6	24.6	80.6	35.7	117.1	43.3	142.2	55.3
30.0	36.9	121.1	27.2	89.2	47.3	24.9	81.8	34.6	113.4	42.6	139.8	
50.0	37.2	121.9	25.9	85.1	44.1	26.6	87.3	33.9	111.2	43.1	141.4	51.7
70.0	35.2	15 3	23.2	76.2	41.2	20.4	86.6	34.7	113.7	43.G	142.9	
80.0	33.8	10 9	21.8	71.6	40.1	25.8	84.7	35.1	115.1	43.6	142.9	
85.0	32.9	108 1	20.6	67.5	38.5	25.7	84.4	35.8	117.6	44.1	144.8	
90.0	32.1	105 3	19.3	63.3	36.8	25.7	84.2	36.6	120.2	44.7	146.7	54.9
93.0	31.8	104 3	18.7	61.2	35.9	25.7	84.4	37.0	121.3	45.0	147.8	
95.0	31.7	103 9	18.3	60.1	35.3	25.8	84.7	37.1	121.8	45.2	148.4	55.0
96.0	31.9	104.8	18.3	60.0	34.9	26.2	85.8	37.1	121.6	45.4	148.8	
97.0	32.0	105.1	18.3	60.1	34.8	26.3	86.2	36.9	121.2	45.3	148.7	54.4
98.0	31.7	103 9	18.1	59.5	34.8	26.0	85.2	37.0	121.5	45.2	148.4	84.8

BLADE FLEMENT DATA STATOR GUTLET

IMMER W	WU	BETA	CZ	CU	C	ALPHA
# MPS FPS	MPS FPS	DEG MPS		MPS FPS	MPS FPS	DEG
1.0 58.6 192 2	55.3 181.3	70.4 19.5	63.9	9.3 30.6	21.6 70.8	
2.0 58.5 191 9	54.4 178.6	68.3 21.4	70.3	10.1 33.0	23.7 77.6	25.1
3.0 58.5 192 0	54.0 177.2	67.1 22.6	74.0	10.4 34.1	24.8 81.5	24.6
4.0 58.6 192 1	53.6 176.6	66.6 23.1	75.7	10.5 34.3		
5 0 58.6 192 1	83.4 175.3	65.7 24.0	78.6	10.8 35.3	26.3 86.2	
7.0 57,9 189 8	52.4 172.1	64.8 24.4	80.2	11.5 37.9	27.0 88.7	
10.0 57.1 187 4	51.2 168.1	63 6 25.2	82.8	12.5 40.9	28.1 92.3	
15 0 56 9 186 6	50.4 165.5	62.3 26.3	86.1	12.8 41.9	29.2 95.6	
20.0 50.9 186 6	50.4 165.2	62.1 26 4	86.8	12.4 40.6	29.2 95.	
30.0 57.2 187 6	50.3 165.1	61.5 27.2	89.1	11.4 37.5	29.5 90.7	22.8
80 0 86.3 184 8	49.0 160.8	60.3 27.6	91.2	10.A 35.5	29.8 97.8	
70.0 53 6 175 7	45.9 150 7	58.9 27.5	90 4	11. 9 39 2	30.0 98.5	
80.0 52.0 170 6	44.3 145.3	58.2 27.2	69.4	12 6 41.4	30.0 98.5	24.0
85.0 51.3 168 4	43.4 142.3	57.5 27.5	90.2	13.1 42.9	30.4 99.4	25.4
90.0 50.7 166 3	42.8 140 3	57.4 27.2	89.3	13.2 43.2	30.2 99.8	25.7
93 0 50 3 165 1	43.1 141.3	58 7 26 0	85.4	12.6 41.3	28.9 94.5	
95.0 50.2 164.7	43 9 144.1	60.9 24.3	79.7	11 5 37.8	26.9 88.	25.3
96.0 50.4 165 5	44.4 145.8	61.6 23.6	78.4	10.9 35.8	26.3 86.8	24.5
97.0 50.8 166 5	45.5 149.3	63.5 22.5	73.8	9.8 32.0	24.5 60.4	1 25.4
88 0 81.4 168.7	40,4 150.9	70.1 17.5	56.0	.0.7 22.1	18.6 60.1	21.2

Table 15. Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.

BLAD	re	I FM	EHT	DA	TA I	ROTOR	INLET	TIP	SPEED	• 63.	ae mra	(207.7	a FPS)
11441	R		,			WU	BETA		:z	CU		C	ALPHA
_ %		103	FP	S.	MPS	FPB	DEG	MPS_		MPS I		<u>MPS FPS</u>	
~1.0	5	1.3	178	Õ	ីខ្លួក, ធ្វ	166	P 160,	4 18,9	68.0	12.4	40.6 2	2.6 74	1 33.1
2.0	54	1. G	179	0	50.9	167	O GE,	6 19.7	64.6	12.2	40.1 2	3.2 76.	.1 31.8
3.0	5:	5.1	180	O	51.4	168.	7 68,	7 19,9	65,2		38.1 2		5 30.2
4.0	5	5.4	181	8	51.5	100.	9 68.	1 20.4	67.1		37,62		
5,	5	5.7	162	C	51.5	ិ ស្រែម ប	9 67.	5 21.2	69.4		37.2 2		
7.0	5 50	5.2	104	3	51.7	169.	8 66.	0 21.8	71.7		35.8 2		
10.	5 50	3.4	185	0	51.6	169	4 CG.	1 27.6	74.3	10.7	35.2 2	5.1 82	
15.0	0 50	G. 1_	184	ຼດ	51.0	167	3 65	2 23 3			3 <u>5,72</u>		
20.	6	ن ر ر	183	8	80. ¢	165.	9 64.	3 24 1			35 6 8		
30.	0 5	3.2	184	1	50.2	164.	8 63.	2 20.2			33.6 2		
50.	5	4.4	178	3	48.0	157.	4 61.	8 25.6	83.9	10.6	34.8 2		
70.	5	3.8	167	0	44.7	146	7 61.	3 24 3			39.2 2		
80.	0 4	9.8	163	5	43.7	143.	3 61.	1 23.9			39.5 2		
85.1	0 49	9.4	162	1	43.2	141.	8 GO.	8 24.0			39.4 2		
						140.		4 24.2			39.1 2		
						140		3 24.3			<u>38,3 2</u>		
						142.		5 23.4			36.1 2		
96.	0 4	9.2	161	5	43.7	143.		3 22.7			34.6 2		
						144.		2 22.1			33.1 2		
98.	0 4	9.3	161	. 7	45.1	146.	1 66.	1 19,8	65.0	8.9	29.1 2	11.7 71	. 2 24 . 1

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMME	R	W		W	U	BETA	C	Z		:U	C	;	ALPHA	
E	MPS		PS	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG	
1.0	29.4	•	10 4	26.4	86.5	63,7	12.9	42.4	36.8	120.9	39.0	128.1	70.5	
2.0	28.5	. 1	93 6	24.7	81.0	59.8	14.3	46.9	38.4	120.1	41.0	134.5	69.4	
3.0	18.3	• •	2 7	23.7	77.8	56.9	15.4	50.5	39.3	129.0	42.2	130.5	68.5	
4.0	28.4		3 2	23.3	76.4	54.9	16.3	53.5	39.7	130,1	42.8	140.7	67.5	
5.0	28.7	, – ,	4 6	23.3	76.5	54.3	16.6	54.6	39.5	129.6		140.7	67.0	
7.0	29.2		95 8	23.2	76.2	52.5	17.7	58.2	39.4	129.4		141.9	65.6	
10.0	30.6	- 10	20 5	23.6	77.5	50.5	19.4	63.6	38.8	127.1	43.3	142.2	63.3	
15.0	33.0	10	18 4	25.0	82.1	49.1	21.6	70.8	36.9	121.0	42.7	140.2	59.5	
20.0	34 . E	1	14 1	25.8	84 5	47.6	23.4	76.7	35.7	1:7.0		139.9	56.6	
30.0	36.3	1 1	19 2	26.2	85.9	46.0	25.2	82.7	34.3	112.5	42.G	139.6	53.5	
50.0	35.1	. 1	15 1	24.6	80.7	44.4	25.0	82.1	34.0	111.4	42.2	138.4	53.5	
70.0	31.4	1.10	02 9	21.1	69.4	42.3	23.2	76.0	35.5	116,6	42.4	139.2	56.7	
80 (29.1		95 3	18.8	61.6	40.1	22.2	72.8	37.0	121.2	43.1	141.4	58.9	
85.0	28.0) (91 7	17.5	57.3	38.5	21.8	71.6	37.8	124.0	43.6	143.2	59.8	
90.0	27.3	3	89 6	16.3	53 6	36.6	21.9	71.8	38.4	126.1	44.2	145.1	60.2	
93.0	27.5	3	89 6	15.8	51 8	35.2	22 3	73.2	38.7	127.0	41.7	146.5	<u>59.9</u>	
95.0	27.	, –	0 TO	15.7	\$1.4	34.3	22.9	75.1	38.6	126.7	44.9	147.3	59.2	
96 .0	28.0)	91 9	15.7	51.7	34.1	23.2	76.0	38.5	126.2	44.9	147.3	58.8	
97.0	28.1	!	92 2	15.7	51.5	33.9	23.3	76.5	38.4	126.0	44.9	147.4	58.6	
98.0	28.4	1	93 1	16.0	52.5	34.2	23.4	76.9	38.0	124.7	44.7	146.5	58.2	

BLADE FLEMENT DATA STATOR OUTLET

	IMML F		-	WDS		BETA DEG	MPS	Z FPS	MPS	U FPS	C MPS	FPS	ALPHA DEG
	<u></u>		FPS	MPS	175.2		20.7	67 9			22.9	75.2	
			187 9		173.2		21.7	71.2	10.2		24.0	78.7	25.1
		57.2									24.9	81.8	25.0
				52.5			55 6	74.1	10 5			e 3.1	24.7
		57.1		52.3			23.0		10.6		25.3		
				52.1			23 4		10.7		25.7	84.3	
		56.4	184 5		167.6		53 8	78 1	11 6		26.5	86.8	25.8
					165 0		23 5		12.1		26 B	86.8	27.0
				50 4			24.2		11.5		26.8	88 0	25.4
	50.0	56 0		50 1			-	82 3			27.5	80.3	
	30.0	55.8	183 C	49 4	162 0	62.1	26.0		11.1		28.2	92.6	23.1
	50.0	54.4	178 3	47.5	155 9	GQ A	26 4		11.0		28.6	93.8	22.7
	70 0	51 4	164 5	44.8	146 8	EO 4	25.2	82.7	11 9	39.1	27 9	91 5	25.2
	~60.0	49 9	163 7	43 0	141.2	59.4	25.2	8.78	12.7	41.6	28 2	92.6	26.6
	85.0	49,9	163 7	42.9	140 9	59.2	25.4	83 4	12.3	40.4	28 2	92.6	25.8
	90.0	51.0	107 3	43.8	147 9	59.1	26 0	05.4	10.9	35.8	28 2	92.6	22.7
	93 0	51 4	168 7	45 1	147 9	61.1	24 7	81.1	9.4	30.6	26.5	86.8	20.8
_	95.0	51.5	169 0	45 5	149 3	61.9	24.2	79.3	8.8	28 8	25.7	84.3	19.9
	96.0	51.5	169 0	45.7	150.0	62 4	23.7	77.8	8.5	27 B	25 2	82 6	19.6
	97.0	51.6	168 8	46 1	151 4	63.5	55 8	74.8	8.0	26 1	24.1	79.2	10.2
		51.1		48 3	158 4	70.7	16.7	54.7	5.7	18.6	17.6	57.8	18.9

Table 16. Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, Third Stage Tested, Near Stall Throttle.

BLATIT ELEME	NT DATA R	OTOR INL	<u>et</u>	TIP BPEEC) + 64.4;	2 MPS (211	.94 FPS)
IMMER	W	WU	BETA	cz		_	
MP	FPS MF	S FPS	DEG	MPS FPS	CU 3 mps (FPS MPS	ALPHA FPS DEG
2.0 55.4	181.5 61. 181.8 51.	0 167 9	67.8 66.7			2.8 24.5	80.4 32.1
3.0 55,9	185 5 51.	2 168 1	66.1			13.5 25.5 12.3 25.9	63.6 31,2
5.0 R6.2	184 5 51	2 167.9	65.3	23.4 76.	6 12 9	12.2 26.7	84.9 29.8 87.5 28.8
7.0 56.9	186 A 51.	6 160 2	64.8 64.8		0 12.7	11.8 27.0	88.5 28.1
10.0 57.1	187 3 51	5 160 1	64.4			9.8 27.0 9.0 27.3	88.5 26.7 89.4 25.8
20.0 56.7	186 9 51	2 168.0	63.8	25.0 82.	0 11.8	8 6 27.6	89.4 25.8 90.7 25.2
30.0 55.7	' 182 B 49	4 169 6	63.1 2 62.2 2			9.0 28.1	92.3 24.9
50.0 53.1	174.2 46.	9 183 0	61.9 2	14.9 81.		19.8 28.5 11.6 27.9	93.5 25.1 91.6 28.9
90, ti 50, 8	167 2 45. 166 5 45.	7 1.10 3	_63 G 2		9_11.9 3	9.2 25.5	83.6 27.9
5 5.0 50.4	165 4 45	6 1.19 A	64.5 2		5 11.0 3 7 10.6 3	G.1 24.7 4.8 24.0	81.0 26.4
93.0 49.5	163 7 45. 162 3 44.	1 148.0	64.5 2	1.4 70.	0 10.6 3	4.8 23.8	78.8 26.2 78.2 26.4
95. 0 49.2	161.5 44.	8 148 0	-64.1 2 64.5 2			5.5 24.0	78.8 26.7
SE.0 49.1	161 0 44 :	3 145 2	64.3 2	1.1 69.	_ :::::	5.3 23.7 5.6 23.8	77.7 26.9 77.9 27.1
96.0 48.8	160 4 44. 160 0 44.	3 145.2	64.7 2	0.8 68.	2 10.6 3	5.4 23.4	76.8 27.3
		143.7	65.4 2	0.1 66.	0 10.5 3	4.5 22.7	74.5 27.5
BLADE ELEMEN	T DATA ROT	OR OUTL	ET / ST	ATOR INL	ET		
IMMER I			BETA	cz	cu	_	** *****
MPS	FPS MPS	FPS	DER I	MPS FPS	MPS FI	C PS MPS I	ALPHA FPS DEG
R 0 31.3	102.7 27.3	80 6	62.9 1. 60.6 1		36.2 11	9 38 9 1	7 A CE 4
3.0 31.5	103 3 26.6	A7 1	57.3 16		35.9 121	1.1 40.0 1 3.3 41.2 1	31 1 67 4
	103 8 26.0		55 G 17	7.7 58 1	38.0 124	1.8 42 0 19	37 6 64 6
7.0 31.6	103 6 24 9		53.7 18	3.7 61.2	38 4 12	9 42 7 17	0 0 63 6
10.0 32.1	105 4 24 7	2 2 3 -	50.1 20		38.8 127 38 7 127	7.3 43.4 14 7.1 43.8 14	
20.0 37.0	117 7 26 6	87.3	47.7 25	1,1 79.0	36.4 119	1.3 43 6 12	13 1 86 4
310 . C 36, 1	118 5 26 7		47.4 25),U #2.0	35.2 118	. 4 43 1 12	1 1 1 1
50.0 32.1 70.0 27.4	105 4 22.8	74.7	45.0 22	.7 74.4	36.8 120	.1 42.4 13 .8 43.2 14	99.2 54.9 11.9 58.2
60.0 25 2	89 7 17.7		40.1.20	1. M 68. D	40.0 131	. 2 45 1 14	8 0 62 2
85.0 24 5	80 4 14.5		37.2 20 36.1 19	., 65.8	41.4 135	9 46.0 15	1.0 64.0
90.0 24.4 93.0 24.7	80 2 13.8	45.2	34.2 20	.2 60.2	41.9 137	. 6 48.5 15	27 64 1
95.0 21.0	02 1 14.0		34 0 20	1.4 67.1	41.6 138	.4 46 3 15	20 626
96.0 25.2	82.8 14.7		33 8 20 35.5 20		41.2 135	.3 46.1 15 .7 45.3 14	1.4 63.1
97.0 25.6 98.0 26.1	84 1 15.5	50.9	3 7.1 20	.4 66.9	39.5 129	. 7 44.5 14	£ 0 69 k
	05 5 16.8	54.1	39.1 20	2 66.2	38.5 126	2 43.4 14	2 5 62.1
LADE FLEMENT	DATA STAT	TOR OUTL	FT				
IMMER W			ETA	cz	CU	c	ÅI DUA
1.0 58.4 1	FPS MPS 191 7 54 3	FPS [DEG M	PS FPS	MPS FPS	MPS F	ALPHA PS DEG
			66 E 21 66 6 22	5 70.6 8 74.0	10.0 32	8 23.7 7	7.9 24.9
3 , 0, 57, 7, 1	89 3 52 7	172.8	55.7 23	5 77.2	11.4 37		3.3 25.9 5.8 25.9
9.0 97.9 1	88 9 52 2 90 1 52 2	171.2	14.8 24	3 79 9	11.8 35	9 27.1 8	5.8 25.9 3.8 25.9
7.0 57.2 1	87 8 51 3	168 4 c	3 6 25	1 82 2 3 83.0	11.7 38	4 27.7 9	7 24.9
10,0 56.7 1	36 1 50 B	166.2 0	33.0 25	6 83.9	12.8 42	0 28 6 9:	2.4 26.1 3.8 26.5
15.0 57.1 1 20.0 57.2 1	87 7 NO 6	16 12	1.8 26	5 AG 0	12 4 40	5 29 2 9	9 24 9
30.0 56 B 1	83 8 49 2	16.1	1.3 26	9 68.2			5 24.0
50 0 53.5 1 70.0 51 6 1	75 4 46 9	153.7 6	1.0 25.	8 84.5	12.7 41		3.5 24.6 1.3 26.2
8005131	48 3 40 3		2 4 23.	7 77.8	11 0 30	0 26 5 87	'.1 26 5
80.051.01	67 4 An 1 :	181 1 0	4 4 21	2 72.9 9 71.9		4 24.6 80	6 25.2
90.0 30.5 1	65 7 45 4 1	149 0 6	3 8 22	1 72 6	10 3 33		1.3 24.7 1 24.9
9 5.0 49 8 1	63 5 41 7	41.	a_n_pp p_7_22	8 74.1	10 7 35	0 25 0 62	0 25 2
96.0 49 7 10	63 2 44 B 1	46.1 6	3422	2 72 7			7 25 5
97.0 49.6 10	02 6 44 8 1		3 8 21	8 71.4	10 5 24	5 24 5 BD	6 25,5

Table 17. Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

(%) SPEED TURE MPS FPS AND	FL. LOSS* NING COEF. DIE	• • • • • • • • • • • • • • • • • • • •	NÒ. IN	DIFF. FACT.	REL MACH NO. OUT	ANGLE DEG	ANGLE DEG
1.0 63 7 209.07 0 2.0 63 6 208.75 3 3.0 63.5 208.44 5 4.0 63.4 208.12 6 5.0 63 3 207.81 7 7.0 63.1 207.18 11 10.0 62 9 206.24 12 15.0 62.4 204.67 13 20.0 61.9 203.10 13 30.0 60.9 199.96 13 50.0 59.0 193.68 15 70.0 57.1 187.40 13 80.0 56.2 184.25 16 85.0 55.7 182.68 11 93.0 51.9 180.17 19 95.0 51.7 179.54 19 96.0 51 6 179.23 2 97.0 54.6 179.23 2	EG .1 0.012 .5 0.070 .1 0.094 .1 0.124 .2 0.143 .1 0.213 .1 0.213 .1 0.213 .1 0.081 .3 0.079 .3 0.091 .5 0.079 .6 0.091 .8 9 0.080	0,061 0,083 0,110 0,128 0,195 0,202 0,160 0,111 0,076 0,075 0,087 0,090 0,077 -,013 -,014 -,048	0, 158 0, 158 0, 159 0, 159 0, 169 0, 165 0, 165 0, 165 0, 165 0, 167 0, 153 0, 153 0, 144 0, 144 0, 144 0, 144	0,503 0,521 0,545 0,561 0,567 0,567 0,516 0,477 0,481 0,506 0,520 0,520 0,520 0,520 0,535 0,535 0,535 0,535	0,110 0,103 0,102 0,100 0,095 0,095 0,103 0,103 0,113 0,111 0,105 0,095 0,095	-7.9 -8.6 -9.6 -10.0 -10.3 -10.0 -9.9 -10.4 -10.5 3-11.0 -11.3 -12.4 -10.7 4-8.8	7.2 6.9 6.9

TORQUE - 8798 52 IN. LB.

STATOR VANE FLEMENT PURITORMANCE

1 .0 2.0 3.0	WHEEL SPEED MPS FPS 63.7 209.07 63.6 208.75 63.5 208.44	36.7	MACH NO. 1 NO. 1 NO. 1N O 088 (0.099 (MACH NO. OUT 0.058 0.062 0.062	1NC1D. ANOLF DEC 4.0 3.2 2.5 2.4	DEV. ANGLE DEO 16.7 15.4 14.4 13.4	0500 0 0 0280	0493 0 0277	0.5453 0.5882 0.5867 0.5567
3.0 4.0 5.0 7.0 10.0 15.0 20.0 30.0 50.0 80.0 85.0 93.0	63 1 208 12 63 3 207 81 63 1 207 18 62 6 206 24 62 4 201 67 61 9 193 10 60 9 193 96 57.1 187.40 56 2 184 28 55 7 182.68 68 2 181.11 54 9 180.1	37.0 37.3 36.0 30.9 39.4 27.1 27.4 27.7 1.28.4 3.28.0 1.28.5 7.28.4	0.108 0.111 0.100 0.100 0.100 0.101 0.119 0.107 0.107 0.106 0.106	0.071 0.074 0.078 0.085 0.085 0.085 0.090 0.090 0.090 0.090 0.090	9.0 -4.5 -4.8 -5.0 -5.1 -5.4 -5.6 -5.7	12.6 12.9 147.3 13.6 10.0 8.6 6.8 7.0 9.3 9.4 9.4 9.4	0 05/26 0 1364 0 137/ 0 0889 0 0466 0 0366 0 0516 0 0513 0 0617 0 0617	0,0520 0,1347 0,1367 0,0878 0,0450 0,0450 0,040 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500	0.5492 0.5644 0.5382 0.4946 0.4961 0.4421 0.4607 1.0.4540 8.0.4958 6.0.4958 9.0.4958 9.0.4583
96.0 97.0 98.0	54.6 179.25 54.5 178.9	a 27 8 5 27 8	0.127 0.127 0.127	0.070	3 5.8	11.5	0.775 0.365	5 0 272	5 0 6330 8 0 7479

^{*} See Figure 45 and Table 12 for loss coefficients computed from relative total pressure measurements.

Table 18. Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

IMMER	WHEEL.	REL.	Loss*	1.088	REL.	DIFF.	RFL.	INCID.	DEV.
(%)	SPEED	TURNING	COEF.	PARA.	MACH	FACT.	MACH	ANGLE	ANGLE
	MPS FPS	ANGLE "			NO.	• •	NÖ,	DEG	DEG
		DEC			1 N		OUT		
1.0	64.6 211.85	2.4	0.112	0.096	0.158	0.591	0.094	-4.0	24.1
2.0	C4.5 211.53	6.4	0.164	0.143	0,159	0,639	0,089	-4.9	19.1
3.0	64.4 211.22	8.5	0,176	0,156	0,160	0.646	0.089	-6.0	15.8
4.0	64 3 210.90	10.1	0 198	0.177	0.161	0.659	0.089	-6.4	13.7
5.0	64 2 210.58	10.3	0.214	0.193	0.162	0.668	0.088	-7.4	12.3
7.0	64 0 209, 94	12.0	0,226	0,206	0.164	0.665	0.090	-8.1	9.8
10.0	63.7 208.99	13.1	0.227	0.208	0.166	0,649	0.093	-8.8	7.7
15.0	63.2 207.40	14.2	0.188	0.174	0.166			-9.4	5.8
20.0	62.7 205 80	14.7	0.151	0,140	0.166	0.563	0.104	-9.2	5.5
30.0	61.8 202.82	14.6	0.144	0.134		0.552		··8.3	6.9
50.0	59.8 196.26	15.7	0,088	0.083		0.521		-8.6	7.5
70.0	57,9 189,89	18.4	0.083	0.079		0.541	0.100	-7.6	8.0
80.0	56.9 186.71	19.3	0.078	0.075	0.153	0.557	0,096	-7.9	8.5
85.0	56,4 185,12	20.2	0.071	0,068	0.151	0.568	0.094	-8.7	7.7
90.0	55.3 183.83	21.4	0.064	0.062		0.581	0.091	-9.6	6.8
93.0	55.6 182.57	22. 2	0.013	0,013				-10.0	6.3
95.0	55.5 181.94	23.7	- , 0-14	042	-0 142		0.090		6.1
96.0	55.4 181.62	25.5	-, 053		0.141		0.091	-7.9	5.8
97.0	55.3 181.30	27.0	057	055	0.142	J. 559	0.091	-6.6	5.9
98.0	55.2 180.98	28.6	028	027	0.143	0,583	0.090	-5.0	6.1

TORQUE = 8998.55 IN. LB.

STATOR VANE FLEMENT PERFORMANCE

IMMER	WHEFT SPEED	ABS. TURNING	ARS MACH	ABS.	INCID.	DEV. ANGLE	LOSS COEF.	LOSS PARA.	DIFF. FACT.
	MPS FPS	ANDLE	NO.	NO.	DE G	DEG			
		DEG	IN	OUT			_	_	
1.0	64,6 211,85	41.2	0.104	0.061	8.8	14.3	Ο.	Ο.	0.6507
0.0	64.5 211 53	43.3	0.112	0.067	7.9	13.7		0.0780	
3.0	64 4 211, 22	42.0	0.116	0.071	6.5	13.1	าง เจ้อธิก	0.1049	0.6262
1.0	64 3 210 90	41.5	0.119	0.072	6.2	12 7	0 1271	0.1256	0 6288
5 0	PS 615 5 40	41.3	0.120	0.025	6 1	12 3	0.1256	0.1241	a. 6133
, 0	64 0 209 94	38.5	0 123	0.027	5. 3	13.1	0.1322	0.1305	0.5973
10.0	का अवर् 🔆 है।	34 .1	0.124	ັດ, ຄຣັດ	4.0	13.7	0.1080	່ວ . 1065	0.3651
15.0	63 2 201 40	3 3 3	0 124	0.083	2.0	12 8	0.0858	0.0847	0.5297
20 0	62 2 205, 90	30 3	0.123	0.083	0.3	11 6	0.0761	0.0752	0.5182
30 0	61 8 202 62	31 3	0.121	0 084	0.3	8.8	0.0337	0.0334	0.5010
50.0	59 8 196 26	30.5		้อ กลร	-1.7	6.8	0.0330	0.0327	0.4958
70.0	5 ' 9 189 89		0.121	0.085		9 1	0.0430	0.0426	0.4897
80 0	50 9 186 71	28 7	0 123	0.085	2.1	10.5	0.0387	0.0383	0.4854
85 0	36 4 185 12	8 89	0 126	0.097	-17 .5	11 2	0.0524	0.0518	0.4839
91.0	्राप्त व प्रिक्त ५३	219 1	0.127	0.086	, 5	11 6	อ. ซือโล	0.08 07	0.4992
9 0	35 3 187 57	23 3	0.178	0.082	. 22 . 63	11.7	0.1328	0.1313	0 5378
91, 0	39 5 181 94	20 7	0.139	0.076	۲, ه	11.3	0 2016	0.1994	0.5930
96 0	55 1 181 12	30 1	0.129	0.025	3 1	10.5	0,2321	0 2298	0.6112
9 0	55 3 181 30	31.0	0.129	o o to	4.2	9 1	0. 2744	0 2714	0.6570
9.1 0	55 2 180 98	23 6		0.053	-4 0	7.2	0.4032	0.4000	0.8099

^{*} See Figure 45 and Table 12 for loss coefficients computed from relative total pressure measurements.

Table 19. Blade and Vano Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise Throttle.

IMMER (X)	WHEEL SECED MES TES	REL. TURNING ANOLE	LOSS* COFF.	LOSS PARA.	REL MACH NO.	DIFF. FACT.	REL. MACH NO. OUT	INCID. ANGLE DEC	DEV. ANGLE DEG
1.0 2.0 3.0 4.0 5.0 7.0 10.0 20.0 30.0 50.0 70.0 85.0 93.0	MPS - FPS 63.2 207.42 63.1 207.11 63.0 20. 80 62.8 206.17 62.7 205.55 62.4 204.61 61.4 201.50 60.5 192.15 56.7 185.92 55.7 182.80 55.2 181.24 54.3 178.75	DFG 5.7 8.9 11.8 13.3 13.1 14.4 15.7 16.2 16.7 17.2 17.4 19.0 21.0 22.3 23.8 25.1	0.128 0.175 0.208 0.220 0.227 0.237 0.219 0.158 0.117 0.087 0.055 0.055 0.053	6, 183 0, 193 0, 203 0, 203 0, 146 0, 168 0, 082 0, 053 0, 053 0, 053 0, 053 0, 053 0, 053	IN 0. 155 0. 156 0. 158 0. 159 0. 161 0. 161 0. 143 0. 141 0. 141 1 0. 141	0,660	0.084 0.082 0.081 0.081 0.082 0.082 0.083 0.095 0.100 0.104 0.100 0.090 0.083 0.080 0.078	-5.4 -5.9 -6.2 -6.7 -6.9 -7.1 -6.6 -6.2 -7.4 -7.8 -7.8	20.3 16.4 13.5 11.5 11.0 9.2 7.3 6.3 5.5 5.6 7.8 9.1 8.5 7.7 6.6 5.7
96.0 97.0 98.0	54.2 177.83 54.1 177.51 54.0 177.19	29.3	0,031 0,034 0,025		0.141 3 0.141 1 0.141	0.658	0,080	-5.1	5.0 5.5

TORQUE # 8451 44 IN -18.

STALOR VANE FLEMENT PERFORMANCE

I MME R	WHEEL SPFED MPS FPS	ABS. TURNING ANGLE DEG	ABS. MACH NO IN	ABS. MACH NO OUT	INCID. ANGLE DEG	DEV. ANOLE DEG	LOSS		DIFF. FACT.
1.0	63.2 207.42			0.065	9.6	14.1	0.1026	0.1013	0.6606
2.0	63,1 207,11		0.112	0.069	8.9	13.7	0.1395	0.1378	0.65.25
3.0	63.0 206 00		0.121	0.071	8.4	13.4	0.1579	0.1560	0.6512
4.0	62,0 206 48	42.7	0.123	0.072	7.8	13.1		0 1472	0.6402
5.0	62 8 206 17			0.073	7.7	12 8	0 1489 0 1423		0.6185
7.0	62.7 205 55	39.8	0.124	0,076	7.0	13.7	0.1428		0.6094
10.0	62.4 204 61	36 2	0 171	0.076	5.7	14 5	0.0964		0.5843
15.0	61 9 203 00	34.1		0.077	3.4	10.8	0.0753		0.5575
20.0	61,4 201 50			0.019	1.7	9.1	0 0497	0.0492	0.5300
30.0	60,5 198 38	4	0,133	0 081	0.0	8 3	0.0430	0 0.135	70.3131
50.0	58,6 192 15			0.085		10 9	0.0543		0.5334
70.0	56 1 185 92			080 o 180 o i	3.0	12.4	0.0737	0.0728	0.5353
80 O	95 7 187 80	_		0 081	3	11.6	0.0924	0.0913	0.5491
85.0	55. 181 2			0 081	€ 6	8 6	0.1200	0.1190	0.5689
90.0	- 54 & 179 69 - 54 ! 178 3			0.000		6 7	0 1961		0.6254
93.0				0 073	_	5 9	0 2233	0 2218	। ०.७४७
95.0	- 54 (178 1) - 53 (171 8)	-		0.02		5.6	0.2427	0.2412	0.6597
96 0				1 0 069		5 3			1 0 GA 19
98 0	54 1 177 6 54 0 177 1	•		9 0 050		4.9	0.4020	0 3996	3 0 8433

^{*} See Figure 45 and Table 12 for loss coefficients computed from relative total pressure measurements.

Table 20. Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, Third Stage Tosted, Near Stall Throttle.

IMMER	WHEEL	REL.	LOSS*	LOSS	REL.	DIFF.	REL.	INCID.	
(第)	SPEED	TURNING	COLF	PARA.		FACT	MACH	ANGLE	ANGLE
	MPS FPS	ANGLE			NO.		NO.	DEG	DEG
		DEG			1 N		OUT		
1.0	64.3 211.0	2 4.8	0.135	0.118				-6.1	19.5
2.0	64.2 210.7	1 6.1	0.153	0.135				<u>-7.1</u>	17.2
3,0	64.1 210.3	9 8.9	~~0.171~	0.153	0.160	0.641		-7.5	13.9
4.0	64.0 210.0	7 9.7	0.188	0.169	0.161	0.648	0.090	-8. <i>2</i>	12.3
5.0	63.3 209.7	5 11.2	0.190	0.173	0.161	0.649	0.090	-8.5	10.4
7.0	63.7 209 1	2 12.8	0.212		0,163		0.090	-8.4	8.7
10.0	63.5 208.1	7 14.2	0.210	0.193	0.163	0.652	0.092	6.4	€.9
15.0	63.0 206.5	8 16.1	0.128	0.119	0.163	0.567	0.102	-8.4	5.0
20.0	62.5 205.0	10 15.7	0.08£	0.010	0.162	0 532	0.106	-8.4	5.3
30.0	61.5 201.8	13 14.6	0.069	0.005	0.159	0.532	0.103	-8.1	7.2
50.0	59.6 195.	9 16.9	0.073	0.019	0.152	0.591	0.092	-G.5	8.4
70.0	57.7 189.	5 23.5	0.109	0.165	0.146	0.693	0.078	-3.6	6.9
80.0	56.7 185 4	18 26.8	0.130	0.120	0.145	0.748	0.072	-3.3	5.6
85.0	56.2 184.3	19 28.5	0.125	0.121	0.144	C. 764	0 070	-3.0	5.3
90.0	55.7 132 8		0.095	0.093	0.143	0.763	0.070	-3.3	4.2
93.0	55.1 181.8		0 066		0.141		0.070		4.5
95.0	55.2 181.7		0.035	0.001	0.141	0.739	0.071	-3.7	4.7
96.0	55 1 180.5		0,020			0.726	0.072	-4.0	6.5
97.0	55 0 180		0.002	0.002	0.1.10	0.710	0.073	-3.7	8.3
98.0	54.9 180.3		018			0.693			10.4

TORQUE = 8566.55 IN. -LB.

STATOR VANE FLETIENT PERFORMANCE

IMMER	WHEEL	ABS.	ABS.	ABS.	NCID	DEV.	LOSS	LOSS	DIFF.
X	SPEED	TURNING	MACH	MACH	ANGLE	ANGLE	CCEF.	PARA.	FACT.
	MES FES	ANG! E	NO.	NO.	DEG	DEG			
		DEG	IN	OUT					
1.0	64.3 211.02	43.5	0 111	0.068	7.5	13.7	0.0667	0 0659	0.6311
2.0	64.2 210. 11	ना न	0.114	0.072	6.8	14.5	0.0633	0.0635	0.5958
3.0	64.1 210 39	34 7	0 118	0.075	5.5	1-1-1	0,0952	0.0943	0.5918
4.0	64 0 210 07	39.0	0.120	0 077	5.2	14.2	0.0989	0 0976	0.5778
5.0	63 9 209 75	39 0	0.122	0.079	46	13 1	0.1111	0 1098	0.5753
7.0	63.7 209 12	37.2	0.124	0.080	4.7	13.9	0.1247	0 1,31	0.5682
10.0	"63.5°°08 17	35 4	0.125	0 081	4.3	14.0	0 1763	0 1246	0.5591
15.0	63.0 206 58	31 4	0.124	0.083	0.2	11.9	0.1021	0.1009	0.5266
יס סי	62 5 205 00	30 5	0 123	0.084	-0.5	10.5	0 0870	-0 0860	0.5095
30.0	61,5 '01 83	30 3	0.121	0.084	1.3	10.6	0.0674	0.0666	0.4048
50.0	89 6 195 6	32.0	0 123	5,80 0	4 8	11 8	0.1342	0.1325	0 5308
70.0	57 7 189 15	35 7	0 129	0.076	7.5	12 3	0.2684	0 2650	0.62 54
80.0	56 1 185 08	8 85	0.131	0.070	8 1	11 0	0.3537	0 3498	0 6933
85 0	166 " B. 1 3	31 7	0 1 17	$(O\cap O)(r)$	*, 9	10 6	୍ଡ, ଓ ଅଞ୍ଚ	0.3699	o. 70 66
90 0	55 . 82 61	39 2	0 133	0.0.0	6,	10 8	ា និសា	0 3791	0.2021
93 0	163 4 81 36	उन्न ज	0 13,2	0.03	٠,	11 '	0 3274	0.37.43	0,6820
05 C	15 2 181 22	€ * ti	0 32	0.022	a B	11.5	0 3745	0.3701	0 6 '09
96 0	15 1 180 91	2 * 4	0.1.0	្នា ០ វិម	4.5	11 5	0 8240	0 3700	0,6253
97 0	15 0 180 59	\$6 8	0.727	0 069	3 9	11.7	0 37.22	0 3681	0.6720
98 0	1.1 9 180 27	. 6 2	0.184	0.048	3.3	11 9	0.5150	0.5093	0.8493

^{*} See Figure 45 and Table 12 for loss coefficients computed from relative total pressure measurements.

Table 21. Design Intent Performance for Rotor A/Stator A (Computed for U_t = 63.82 mps (209.38 fps).

PLADE EL	EMENT DA	TA RO	TOR INLE	<u>T</u>							
IMMER	W			ETA	CZ MPS F	PS MPS	CU FPS	MPS F	'PS	L PHA DEG	
8 (MP\$ FP8 7 4 188	9 MPS	173 B	DEG 65 1 2		9 2 11.4	38 6	26 8 6	18.1	26 0	
- 10 4 A	ቻ ሹ ነልባ	0.51.7	169 8	65 1 63 7	28 8	3.6 11.8			17.3 24.3	23.6	
20 3 5	7 5 184 7.1 187	8 51.0	1674	62 4 8		0 0 10.0	35.5	29.5	6 7	21.5	
30.15	6 6 105	6 49 1	1612	60 3	28 0 6	1.9 10.1	9 35 6		8 5 9 8	21.2	
49.5 5	8 9 T83	5 48 2	158 1	59 5		3.1 10.1		30.4		21.3	
59.2 5	5 1 180 4 2 177	7 47.1	1 154 4	58 0	28.7	4.2 11.3	2 36 9	30.8 10	2 . 10	21.4	
70 0 8	2 2 174	5 44.5	147.2	57.6		2.0 11		30.7 11	99.7	21.8	
A6 3 R	11 8 169 10 2 164	9 43	3 142 8	57.2		9.2 12.			97.6	24.0	
100 0 8	0 2 164										
BLADE EL	EMENT D	ATA RO	TOR OUT	ET /	STATOR	INLET					
IMMER	W			BETA	CZ		CU S FP\$	C MPS	FPS	ALPHA DEG	
	MPS FP			DEG B4 2		22 2 32	8 107.6	39.7 1	30.2	55.7	_
- 10 1 2	88 3 125 10 0 131	2 31	2 102.4	51.3	28 0	12 0 31	6 103.6	40.3 1	32.1	51.6 49.1	
20 8 4	10 9 134	2 31	0 101.7	49 3	26 7	87.5 31. 90.6 31.	A 100 4	41.21	35.3	48.0	
30 5 4	41 0 134 40.5 133	5 30	3 99.4 2 95 7	47.8 46.0	20 0	DO 4 30	A 101.0	41.7 1	36.9	47.6	
49.7	39 9 130	8 27	8 81 2	44.4	28 5	93 4 3 93 7 3	2 102 3	42.2 1	35.5	47.6 48 1	
59 3	38 9 12"	5 26	3 86 4 7 81.0	42.7 40.8	20 6	01 0 3"	# 106.9	43 3 1	42.1	48 6	
70 1 5	37 8 124 36 6 119	9 22.	9 75 0	38.7	28.5	03 A 3.1	4 109 5	43.9 1	44.0	49.5 50.9	-
44 3	34 9 114	4 20.	7 67.9	36 4	28 1 27.4	92.0 34. 89.8 36.	0 118.4	45 2 1	48.4	52.7	
	32 9 107				€7.■						
BLADE E	LEMENT D	ATA S	TATOR OU	TLET							
IMMER		_	WU	BE TA	cz		CU	C MPS	FPS	ALPHA DEG	
	MPS FF	S MP	S FPS	DEG 65 3	MP\$	FPS MF 78.6 11	7 38.3	26 7	87 5	26.0	
0.	87 4 188 87 6 189	2 52.	7 169.8	63 9	25 3	83.0 11	1 36.4	27 6	90 7	23.7	
20 3	87 S 188	1751.	.1 167 7	62 7	26.4	86.7 10		28.5 29.3	93 6 96 0	22.2	
30 1	57 1 187	7 4 50	2 164.8		27.2	89.3 10	8 35.4	4 29 8	97.8	21.2	-
30 ···	36 5 185 35 9 18	3 48	3 158 4	89 7	28 2	92.4 10	8 35		99 0	21.0 21.2	
80.2	55 O 180	0 6 47	1 154.7		28 4 28.5	93 2 11		1 30.5 6 30.6		21.4	
69.0	54 2 17	7 7 46. 4 3 45	0 147 8	57.8	28 3	92.9 11	3 37.	1 30.5	100.0	21.8	_
40.3	R 1 7 16	6 7 43	6 143 1	57.5	27 8	91.2 11		2 30.1 4 29.5	98.9	24.0	
100 0	50 1 16	4 4 42	2 138 6	D/ 4	27.0	00.0 12	, 0 00		-		
ROTOR E	LANE EL	EMENT	PERFORMA	NCE							
	WHEE		REL	LOSS	LOSS	REL	DIFF.	REL. IN		DEV.	
IMMER (S)	SPEE	n T	URNING	COEF	PARA	MACH	FACT.	MACH AN	IGI E	ANGLE	-
	mrs T	'r'\$	ANGLE			NO.		OUT		000	
0.	57 6 18	9 00	DEG 10 9	0 096		7 0 182	0.805		8.9	10.6	
10 3	86 7 16	tii 98	12 4	0 069		8 0 183	0.470 C		9 0	7.3	
20 3	85 9 18 85 0 18		73 T	0 049	B 0 03	5 0 151	0.435	108	9 0	7.3	
30.1 39.6	54 2 17	77 72	14 3	0.03	4 0 00	2 0 150	0.435 ().107 -	· 8 9	7. 5 7.7	
49.5	93 3 17	74 97	15 1	0 03	h 6 - 5:	14 0 148 18 0 146	0 455 (7 103	9. Ý	7.7	
89 0	52 5 T		17 2	0.04	4 0 04	12 0.144	0.467	3 100 -	92	7.4 7.0	
79 0	50 6 10	66 80	18 8	0.05		8 0.141 3 0 137	0 505	n 092 -	10.5	6.3	
100 A	49 9 10		20 8	9 96	1 0.0	6 6 133	0 530	0 087 -	11 3	5.3	
STATOR	VANE FL	EMENT	PERFORMA							DIFF.	
IMMER			ABS	ABS MAC			DEV ANGLE	COFF			
	SPE MPS		TURNING	- NO	NO	DEG	DEG				
			DEO	11			18 0	0 0840	0 08	29 0 5200)
.0	8° 6 1		29 7 28 0		0 0 0 0	73 -8 7	11 1	0.0625	0 08	18 0.4950)
10 A	85 H	65 24	27 0	6	08 0 U	75 -5	8-7	0 0456	0 04	84 0 4770 42 0 4680	,
30 5	85 0 1	80 47	26 5		109 0 0 110 0 0			e 0300	0.00	97 0 4880)
40 ' 49	54 2 1		26 4 26 6	0 1	112 0 0	80 -5 6	6.6	0.0290	0 02	94 0 4580	•
55	_85 ¥ J	47.55	26 9	8-7	113 0 0	81 -5 6		0.0318	0 03	13 0 4600	.')
69 1	51 £ 1		27 3		115 0 0			0 0535	0 05	31 0 4800)
79 1 89.3	49 6 1	63 65	28 2	0	118 0 0	80 -6.	0 6	0 0740	0 07	930 0 4970	•
160 0			28 7	0	120 0	76 -6	100	0 1010	, 0 10	U. BEUL	-

Normalized Absolute Total Pressure, Static Pressure and Flow Angles for Rotor A/Stator A Single-Stage Configuration. Table 22.

	1	f. 1	r				_	_			_	_				_	_					
	-ire	Stator Ext	0.398	0.395	0.392	0.390	0.389	0.386	0.385	0.389	0.390	0.396	0.38\$	9.378	0.372	0.367	2.360	0.353	0.351	0.359	0.353	0.355
	Static Pressure	Antor Exit	6.257	6,202	6.195	5.194	0.191	5.:86	6.183	0.188	5.194	5.193	0.178	6.155	5.142	9.136	5.13:	3.127	52.	9,123	0.12:	641.2
Ingattle	5: a	Set or Inter	-5.232	-6.227	-1,1273	-5.220	-5.217	-9.211	-6.208	-1,21,7	-0.206	-6.257	-5.216	-0.215	-6.217	-7.2:9	-0.230	-9.222	-5.223	-5.223	-6.224	-6.224
Pwak Efficiency Insuttle	! 3	Stator	0.517	6.529	5.545	9.556	5.567	1.587	0.600	5.696	5.668	0.607	0.618	9.598	0.576	6.577	5.566	0.543	9.526	6.536	167.0	9.461
Pusi	otal Pressur	Potor Exit	0.592	9.631	0.648	0.656	0.660	0.660	0.656	179.0	0.547	0.651	0.65!	0.635	0.613	0.619	0.606	0.618	0.639	9.655	9.670	0.679
		Paror Inlet	-0.093	10.050	-0.063	-9.057	650.0-	-6.635	-9.623	-6.612	-0.009	-0.008	-0.010	-0.018	-0.048	-0.033	-0.069	-0.084	-0.090	-0.093	-6.095	960-0-
		Percent Impersion		٠,	~		. `	۲.	10		52	2	0 5	. 02	8	S	3	93	8	8	9.	86
,	. 1	ı 1																				
	44	Stator	6.325	6.323	0.322	0.319	0.317	6.355	6.313	0.315	0.315	6.316	6.313	0.305	6.300	0.296	0.291	0.286	0.283	0.284	0.285	5.286
	Stal Bruss	Potor Exit	6.149	0.143	0.149	6.135	6.133	5.127	9.123	5.:25	6.126	6.129	5.124	9.195	0.094	0.087	0.080	\$25.5	6.576	6.567	5.363	6.062
Terott 10		Potor Inlet	-6.236	-6.236	-6.235	-0.235	-6.235	-1,235	-6.235	-5.233	-6.232	-9.233	-6.238	-0.242	-0.246	-0.248	-6.250	-0.249	-4.249	-7.249	-0.248	-6.247
Sestan Poort		Stator Exit	6.446	0.461	0.480	37.5	602.0	0.533	1.547	9.556	0.549	9.553	9.562	0.560	9.538	0.527	0.516	265-0	5.46.7	1,447	0.433	6.333
å	ictal Preceur	Potor Exit	9.510	0.540	0.555	5.575	6,53	5.583	0.596	5.593	0.595	0.599	6.533	0.594	5.574	9.562	0.552	2,536	0.000	180.5	5.539	5.612
		Potor	31	-5.189	-1.177	690 7-	-5.062	575-5-	-5.039	410.0	1:0:0-	-6.557	-0.611	-0.015	-5.033	-5.048	-0.074	-0.083	663.5-	-6.963	-6.671	-5.576
		Percent	. →	2	67	.,	.,	7	<u>ي</u> 1	17	20	30	20	7.0	C de	Ser	80	63	33	36	2.6	3

Thrott le
01010
100
4.00
Serse are
1000

. 1		1		•									-										
ıre	Stator	Exit		1.4.5	6.453	0.452	0.455	9.449	9.447	0.444	0.439	0.436	0.431	0.423	0.412	907.0	6.399	0.393	0.387	0.385	0.385	0.385	0.385
itte Press	Recor	£x1(6 243	6.237	0.233	0.230	6.227	6.225	6.230	0.239	0.241	0.240	6.225	0.293	9.189	0.187	5.:75	5.174	6.171	5.170	5.169	0.:68
Sta	Potor	Inlet		10.1.0	-0.181	-6.185	08:-0-	-0.180	-6.180	-0.186	-0.180	-0.180	-0.180	-0.184	-0.183	-0.191	-5.192	-0.193	761.17-	-0.194	-0.194	-0.194	-6.195
3	Stator	Exit		2.22	5.536	0.508	0.621	0.630	5.642	6.652	0.655	0.658	0.658	0.647	5.580	5,553	9.546	5.539	9.529	5.521	2.514	5.503	5.477
Stal Press	Potor	Exit		0.658	5.704	5.717	5.725	9.726	1.725	5.767	5.692	0.587	0.689	5.588	5.669	0.662	0.563	0.560	0.683	652.5	7.725	5.728	0.724
ř.	F. C. C.			-0.070	-0.057	-0.048	-6.537	-0.030	-6.521	-0.316	-0.019	-0.009	-0.006	-0.916	1:0:0-	-0.527	040-0-	450.01	-0.672	162.0-	-0.079	160.0-	16.083
	Ser. er.	Turners 100] 	•	7	۲,	4		7	۶.	u^ · •	2,	30	55	71,	Ç.	i,	*	3	3.6	%	9.	ă.

Normalized Absolute Total Pressure, Static Pressure and Flow Angles for Rotor A/Stator A Single-Stage Configuration (Concluded). Table 22.

			Stator 1	Exit	7. 7.	26.7	7 50		25.5	22.6	25.9	26.0	24.9	23.2	77.3		27.0	73.3	23.4	24.2	25.4	26.1	76.4	26.6	26.8	27.1				
		Corrected	Rotor 1	Exit		7.00		03.0	62.4	61.6	8.09	29.6	52.0	50.0		49.0	6.64	50.9	51.9	53.0	54.3	7:7	54.7	54.8			7.00			
•	rottie		Rotor 1	Inlet	;	31.8	29.0	28.0	26.7	25.0	23.0	21.4	20.6	90		19.9	13.6	19.5	19.7	19.8	20.3	20.8	21.1	21.0	;	1117	21.2			
!	Peak Efficiency Throttle		Ct at 0r 1	Exit		25.6	25.1	24.5	24.4	24.5	24.9	25.0	2 %		5.77	21.5	22.1	22.7	22.9	23.7	9.40	35.6	25.0		1.0.		5.97			
	Peak Eff	Moseured	Treasure 1	MOTOR 1	ERTE	64.1	63.8	69.7		4.09	20.6		0.00	20.0	8.8	48.7	0.67	20			: :	:	7.5.	7.4.1	74.7	24.7	55.6			
			7	Rotor 1	Inlec	30.5	28.4	9,0	4 36	2,45	2.5	2.77	20.5	19.8	5.6.	19.2	19.0		0.61	7.61	19:3	13.0	20.3	20.6	20.6	20.7	20.8			
			•	Percent	Immersion	_				4 (o 1	•	2	15	20	2	3 5	2 1	2	& :	ŝ	8	93	95	96	44	86			:
			_										_					_		_							_	7		
				Stator 1	Exit	3	70.5	7.92	26.6	26.5	76.4	26.2	25.8	7.90	; ;	73.9	22.7	22.4	22.4	23.2	24.7	25.6	26.0	26.3	76.3		26.3	7		
			Corrected	Rotor 1	Exit		62.6	61.6	9.09	59.5	58.6	57.6	7 7 7		71.4	48.5	48.1	47.7	48.2	49.3	20.7		22.5	22.1	7.7.	27.7	52.8	53.6		
C		Throttle		10000	Inlet		31.2	20.8	28.3	3,40	26.3		???	21.3	20.4	20.4	20.3	10				7.61	20.0	20.9	21.5	21.3	21.0	20.9		
220		Design Point Thr		-	Stator 1 Exit		25.8		25.0	77.7	4.07	25.5	25.1	24.8	23.8	23.0	22.0	2.5	22.0	21.5	71.9	77.7	24.2	25.1	25.5	25.8	25.8	26.6		
Olugic Ocase		Desig	`\.	Measured	Rotor 1		4 5		4.09	59.4	58.3	57.4	26.4	55.2	50.7			0./4	8.94	47.4	48.6	50.0	51.1	51.4	. 51.5	¥	52.2	53.0		
10					Rotor 1	lalet		29.9	28.6	27.1	25.8	24.9	22.3	70.4		0.61	9.61	19.6	0.61	18.2	18.4	8.81	19.6	20.4	20.0		707	20.5		
					Percent	Immersion			2	•	4	٠		- :	or :	15	20	20	20	02	Ş	£) 	2 6	2 4	<u></u>	9	6	} -	
				_		_																								

		Monthsod			Corrected	
	1	potor 1	Stator 1	Rotor 1	Rotor 1	Stator 1
Percent	Inlet	Exit	Exit	Inlet	Exit	Exit
				31.6	70.1	26.4
_	30.3	69.2	52.3	21.0		26.3
	28.4	9.89	25.2	29.6		
•		67.5	25.2	28.3	68.5	70.5
•	71.77	:	, ,	27.0	67.5	26.3
4	25.9	0000		1 76	67.0	26.4
~	25.0	0.99	5.52	•	7 77	26.6
	23.0	65.6	25.5	7.47	200	,
- :		3	25.3	22.0	65.5	70.5
01	7.1.7		1.47	20.6	59.1	25.0
15	2.61	20.00		20.4	52.5	23.2
20	19.6	21.3	C . 77		4	22.5
5	19.4	49.3	21.7	707		23.0
	19.0	50.5	22.3	19.6	21.4	
2 :	,	23.3	23.3	19.1	53.1	75.3
2	0.01		0 %	19.3	54.1	24.0
80	18.8	***	7	10.7	55.1	25.1
85	19.2	24.4	7.6.3		2,43	25.4
ç	19.7	55.7	6:47	;	7 73	3,5
	,	55.8	25.1	20.6	20.	
56	7.00		25.1	21.3	56.1	22.0
95	20.8			21.3	56.4	25.7
96	20.8	22.8	7:07	:	62.3	26.0
47	20.8	56.6	25.5	7.17		200
	0	57.1	28.6	21.3	::	1.67

Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Simple-Stage Configuration. Table 23.

		Design	Design Point Throttle	ttle		
, G.	TOTA, PRESCUPE			#776# 19\$	_%3 []338 []388 []4v_v*	_\13
PERCENT	ROTOR 1	ROTOR 4 EAST	4015e3ne1 1495e3d	5563 7 4. 73	2501 3. VM	TOTAL MINUS WATE LOSS
8 8:	# 5814 #.6226	8.4748	27 4 2 68 17	15 # 8 1:1: 0	21:0°8	8.1281
, a	#.6284 # 6284	8.5948		2.8294	6 6167	# #2:8
	# 5638	#.5782 # 5328	35. 88 5.86. 88	9.8.78	9.6	6.0034
* * * * * * * * * * * * * * * * * * *	# 57.6 #.4854	8 4351	97 E 80	6 B341	# 8247 d #563	9.8694
4 5 FE	# 4627	# 4#69 # 3845	8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 8 3. 6.1861.	3568 8	8.8813 8 8846
6 34	B 4378	9 3546	95 8		8.0:1.0	#.#1#C

		Peak Eff!	Peak Efficiency Throttle	ttle		
101	TOTAL PRESSURE). 		010# LOS	ROTOR LOSS COEFFICIENT	TeaT
PERCENT	ROTOR 1 INLET	ROTOR 1 Exit	PERCENT IMMERSION	TOTAL	WARE LOSS	TOTAL MINUS WAKE LOSS
5.8	8.5949	8.4879	5.2	8.1332	8.8871	1921.0
	#.6392 #.6456	8.5673 8.6287	16.8	8.8854 8.8393	8.9131 8.0156	6,173
20.00	8.6411 8.6129	6.6221	28 8	8 8233	B. 8.15.	3 20F4
20.00	6.5051	6.5594	35	£358.8	0.82.5	0.010
	#. 5#23	8.1199		6.67:1	. 9661	0.007
9: - 86	#.4787 #.4759	6.4192	95.8	# #856 #.164#	6.6974	6.0106
35.8	₽.4532	8.3727	3 2 4	9611.4	8.1899	F. BF3E

	Pe	Peak Pressure Rise/Near Stall Throttle	Rise/Near S	tell Thr	ottle	
01	TOTAL PRESSURE	3,		301 2.4	المكاف بالأفقائية الأم	.618.
PERCENT INVERSICA	ROTOR 1 IN_ET	ROTOR 1 ENIT	PERCENT IMMERSION	TOTAL LOSS	LOSS	TOTAL MINUS
5.8	\$865.8	2067.4	8.8	\$8:178	2818'8	8.1183
9 9	#.6542 # 669#	8.5747 8.6386	9.5	6 6953	35,00.00	6.69:5
28.0	4.6636	9.6422	11.0	A. 6. 54	9.0166	8.3887
1 to 100	0.6828	8.5779	9. 79. 19. 79.	9.8387	3.8787	6.0101
25.8	8.5702	8.5343	65.4	8.8475	8.8345	Sector Se
98.9	8.5286 8.4978	#. 4662 #. 4382	85.CB	2.8859	9.8944	# . # # 55 # P 5
38.8	1767.8	8.4238	9.86	9.1640	9652.0	6.885.
9.0	8.4717		92.9	9.1173	8.1881	6.6173

Table 24. Vector Diagram Parameters for Rotor A/Stator A Single-Stage Configuration, Design Point Throttle.

BLADE FLEMENT DA	TA ROTOR	BETA		# 60.69 M		
# MPS FPS	MPS Frs		CZ Ps FPS	CU MPS FPS	C MPS FPS	ALPHA DEG
1.0 52.7 172 8	49.2 161.6				21.9 71.6	
2.0 52 9 173 6		67.4 20			23.3 76.4	
9.0 53.4 175 1 4.0 53.8 176 6		66 3 21 65 6 22			24.2 79.2 24.8 81.2	
5.0 54.1 177 G					25.3 82.9	
7.0 55.2 181 1		63.7 24	3 79.8	10.5 34.4	26.5 86.9	23. 3
10.0 \$5.0 183.7		62.4 25			27.7 90.7	
15.0 55.1 184 1 20.0 55.8 182 9					28.4 93.3 28.6 93.3	
30.0 55.0 160 6					28.9 94.6	
50.0 53.8 176 €					29.0 95.0	
70.0 52.7 172 9 80.0 51.7 169 5		58 9 26			20 0 95.0 28 1 92.0	
85 .0 50.9 167 0					27.2 89.2	
90.0 49.9 163 6	43.7 143.5	61.1 23		8.8 28.7	25.5 83.6	20.0
93.0 49.1 161 1					24.3 79.	
95.0 48 7 159 8 96.0 48.9 160 5					23.5 77.2 26.1 85.5	
97.0 48.9 160.3					25.6 83.9	
98.0 48.8 100 0					25.1 82.4	
BLADE ELEMENT DA	TA ROTOR C	UTLET / S	TATOR IN	LET		
					•	AL DUC
IMMER W % MPS FPS	WU MPS FPS	BETA DEG ME	CZ PS FPS	CU MPS FPS	C MPS FPS	ALPHA DEG
1.0 32.8 107 G				32.4 106.2		
2.0 32.4.106 2		55.9 18	1 59.3	33,6 110.4	38.2 125.3	61.6
3.0 32.5 106 7				34.1 111.8		
4.0 32.0 107 5				34.5 113.2 34.6 113.6		
5.0 53.1 106 6 7.0 33.4 109 7				34.9 114 4		
10.0 33.9 111 4				34.6 114.2		
15.0 37.2 122 1	26.8 88.1	46.0.25		32 5 106 6		
20.0 39.0 128 0				31.2 103.2		
30.0 38 7 126 8 50.0 37,7 123 6				31.0 101.7		
70.0 36.2 118 6				31,7 103.9		
80.0 34.7 114 0			3 89.6	31.9 104 8	42.0 137.0	49.3
85.0 33.4 100 7				32 4 106.3		
90.0 32 4 106 2 93.0 32.0 105 1				32 8 10°.6 33.3 109.1		
95.0 31 9 104 6				34.1 111.8		
96.0 31.8 104 4				34.6 113.7		
97.0 31.4 102 9				35 4 116.1		
98.0 30.8 100 9	15.5 20 8	30,1 26	6 87 2	36,3 119.0	45.0 147	3 53.6
		F =				
BLADE FLEMENT DA	TA STATOR	DUTLET				
IMMER W	WU	BETA	cz	ÇĽ	С	ALPHA
# MPS FPS	MPS FPS	DEG MI	'S FPS	MPS FPS	MPS FPS	DEG
1.0 54.4 170 4	51.1 167 5	69 7 18	7 61 4		21 0 69 0	
2.0 54.2 177 9 3.0 54.1 177 4		68.1 20. 66.4 21			22.5 73.7 24.0 78 8	
4 0 54 0 177 1		65 0 21			25.3 83 0	
5.0 53.9 176 9	48.4 150 9	63 7 23	7 77 8	118 33 7	20 5 83 9	26.4
7.0 53.9 176 8		61.8 23			28 2 92 0	
10.0 53.9 176 8 15.0 54 0 177 3		60 0 26 60 0 26			29 2 96 C	
20.0 54.1 177 4					79.7 96	
30.0 53.8 176 4		59 6 27	1 88 9	11.5 37 8	214 96 6	
50.0 52.5 172 2	44.5 146 0		8 91.3	11.7 38 2		22 7
70 0 51.2 167 9		56 4 29	2 92 6	116 37 2	3) 5 100 2	22 4
MAC 6 60 0 1. 4 6						
80.0 50.2 104 6 85.0 49.3 161.8	42.1 138.2	56 9 27	3 89 4	TI 3 37 0	2 + 5 96 6	224
80.0 50.2 164 6 85.0 49 3 161 8 90.0 48.1 157 9	42.1 138.2	56 9 27 57.1 26	3 89 4 7 8 6	11 5 37 0		22.4
85.0 49 3 161 8 90.0 48.1 157 9 83 0 47 3 155 3	42.1 108.2 41.5 106.0 40.5 102.6 40.2 102.0	56 9 27 57.1 26 57.1 26 58 1 74	3 89 4 7 8 6 0 85 4 9 81 7	11 3 37 0 11 5 37 7 12 0 39 5 12 0 39 3	2+5 96 8 29 1 95 3 26 7 94 1 27 6 90 7	22 4 23 2 24 7 25 6
85.0 49 3 161 8 90.0 48.1 157 9	42.1 108.2 41.5 136.0 40.5 137.6 40.2 137.0 40.6 133.3	56 9 27 57.1 26 57.1 26 58 1 24 60.0 23	3 89 4 7 87 6 0 85 4 9 81 7 3 76 4	11 5 37 0 11 5 37 7 12 0 39 5 12 0 39 3	2+ 5 96 6 29 1 95 3 28 7 94 1	22 4 23 2 24 7 25 6 26 0

Ö

Table 25. Vector Diagram Parameters for Rotor Λ/Stator Λ Single-Stage Configuration, Peak Efficiency Throttle.

BLADE	ELEPIF	NT	DAT	<u> </u>	ROTOR	INLET	TIP	SPEED	•	60.88	MP	8 (19	9.71	FPS)
IMMER	•••				WU	BFTA	(CZ		CU		c	;	ALPHA
, \$, _	MPS				FPS		MPS					MPS	FPS	DEG
1.0	52.5	172.	2 4	8.8	160.1	60.2	19.3	63.3	12	0 39	3	22.7°	74.5	31.8
2.0	53.2	174	4 4	9.1	161.2	2 67.4	20.3	6G. B	11.	6 38.	0 2	23.4	76.7	29.6
3.0	53.7	176	0 4	9.3	161.6	9 .66.7	21.1	69.2	11.	3 37.	0	23.9	78.5	28.0
					162.2		22.0				4	24.6	80.7	26.7
B. 0	51 7	170	5 4	9.8	163.			74.2					82.0	
7.0	55.5	182	0 5	0.2	164.6	8 64.7	23.5	77.2	10.			25 6	83.8	
10.0	56.0	183	7 5	0.4	165.	64.0	24.4	80.1				26.2	86.0	
15 0	56.0	183	7 6	0.0	164.	63.1	25.2	82.6				26.9	88.3	
					162 1		25.4	83.2				7.1	80.8	
30.0	55.1	180	9 4	8.9	160	62 2	25.6	83.9				27.2	89.2	
50 0	83.7	176	1 4	7.2	154.7	7 61.3	25.7	84.2				27.3	89.4	19.6
70.0	52.1	170	9 4	5.4	149.		25.5	83.6	_			27.1	80.6	19.5
8U 0	50.9	ìĞZ	0 4	5 1	148.0		23.6	77.4	8			25.1	82.2	
					145.0		24.7	81.1				26.3	86.2	
					146.		22.2	73.0				23.7	77.7	
93.0					145.1		21.2	67.4				22.6	74.3	
					145.0		20.7	68.0				22.2	72.9	
96.0							20 5	67.2				22.0	72.1	21.0
97.0							20.4	66.9				21.9	71.8	
					144.4		20.3	66.6				21.8	71.5	

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMMER	١	i	WU	j	BETA	C	Z	C	:U	~ C		ALPHA
S	MPS	FPS_	MPS	FPS_	DFG	MPS	FPS	Mrs	FPS	MPS	FPS	DEG
1.0	30.B	101 1	26.5	87.0	59.2	15.7	51.6	34.3	112.4	37.7	123.7	65.2
2.0	2 9.8	97 7	24 . 6	80.7	55.5	16.8	55.1	36.1	118.4	39.8	130.6	64.9
3.0	29.9	98 1	24 0	78.6	53.1	17.9	58.7	36.6	120.2	40.8	133.8	63.8
4.0	30.5	100 0	23 8	78.2	51.3	19.0	62.4	36.7	120.3	41.3	135.5	62 4
5.0	30.9	101 3	23 8	78 0	50 2	19.7	64.7	36.7	120.3	41.6	730.B	61.6
7.0	31.2	102 4	23.7	77.7	49 2	20.3	66 7	36.6	120.0	41.8	137.3	60.8
10.0	31.8	104 3	23 8	78.2	48.4	21.0	69.0	36.1	118.5	41.8	137.2	59.6
15.0	37.0	121 3	27 0	89.6	46 8	25 3	82.9	32 5	106.7	41.2	135.1	52.0
20.0	38.1	1251	27.7	ั้9ก. 8	46.4	26.2	86.1	31.4	103.0	40.9	134.2	50.0
30.0	37.6	123 3	26 7	81.5	45.1	26.5	86.9	31.5	103 3	41.1	135.0	49.8
50.0	36.2	118 7	24.3	79.6	42.0	20.8	88.1	32.0	105.1	41.8	137.2	49.9
70.0	34.3	112 5	21.8	71.4	39.3	26 5	86.9	32.7	107.4	42.1	138.2	50.9
80.0	32.9	106 1	20.7	6 8	38.8	25.8	84.1	\$2.0	107.9	41.7	136.9	51.9
85.0	31.9	104 5	19 3	63.4	37.2	25.3	83.2	33.8	110.9	42.2	138.6	53.0
90.0	30.7	100 6	18.6	61.0	37.2	24.4	80.0	34.1	111.8	41.9	137.4	54.3
93 0	30_1	98 9	17.5	57.6	35.5	24 5	80.4	34.8	114 3	42.6	129.7	54.7
95.0	30.0	88 6	16.5	54.2	33.3	25.1	82.3	35.7	117.1	43.6	143.1	54.7
96.0	30.0	98 3	15.8	51.8	31.7	25.5	83.5	36.3	119.1	44 3	145.5	54.8
97.0	2 9,9 2	97 0	14.9	48.9	30.2	25.5	83.8	37.1	121.8	45.1	147.8	55.3
98.0	20.9	94 7	14.1	46.2	29.1	25.2	82.6	37.8	124.2	45.5	149.1	56.2

BLADE ELEMENT DATA STATOR OUTLET

IMMER	W		W	IU	BETA	C	Z	C	U	C		ALPHA
. <u>.</u>	Mrs .	FPS	MPS	FPS	DEG	MPS	FP8	MPS	FPS	MPS	FPS	DEG
1.0 5		179 3	51.4	168 5	69.8	18 7	61.2	9.4	30 9	: ଜୁଲୁନ୍	68 6	26.7
<u> </u>		79 2	50 9	166.9	68. ti	19.9	65.2	9.6	35 5	22.2	72.B	26.2
			50 4	165.2	6U.8	21.4	70.1	10 3	33 6	23.7	77.7	25.6
	M. G. 1				65 7	55.3	73.1	10 6	34 0	24.7	81.0	25.5
	34.5 1		. •	162 0	64.8		75 6	11.1	36.3	25 6	83.9	25.6
			48 3	158.5	63.0	24.4	80.1	11 9		27 2	89.1	25 9
		76 8	47 6	156 2	61.9	25 2	8.2 6	12 4		28 1	92.2	26.O
15.0.5				150 1	61.6		83 8	11 9		SE 3	92.6	24.9
20.0 0				157.2	61 3	20 O	85.3	11 2	36 6		$\mathbf{D}^{r_{i}} \cdot \mathbf{B}$	23.2
			47.4	155 6	61.0	26.1	85 7	10 7		58 5	92.6	22.3
	-			147 5	53.9	27.0	88 5	11.3	37.2		96 0	P2.8
			43.7	141 8	_ <u>56_7</u> _		85.6	<u> 1 1 3 </u>	36 8		93 3	23.3
·		67 2		140 5				10.6	35 3		50.5	23.4
		60 0	41.7	136 8	58 G	25 3	83 0	11 4		27 B	91.1	24.2
		CG G	41 0	134 5	59 0	24 5	80.2	11 7		27.1	88 9	25.4
93.0.4			40 7	131.6		<u> </u>	<u> 77.7</u>	_!		26.4	_86_7_	20.1
95.0.4	-		41 1	134 8		85 3	73.1	11.1		24.9	01.7	26.4
		52 7	41.4	135 7	62.8	21.4	70.1	10 8		23 9	78.5	26.6
97.04			41.8	137.3		20.1	65.8	10 2		22.5	73.8	26.8
98.5.4	10 4	24	42,9	140.8	67.6	17.5	57.5	9.0	<u> 29.6</u>	19 7	64.7	27.1

Table 26. Vector Diagram Parameters for Rotor A/Stator A Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.

LADE ELEMENT	DATA	ROTOR INL	ET	TIP SP	EED .	61.35	4P8 (20	01.27 FF	PS)
IMMER I	•	WU	BETA	C	z	CU		C	ALPHA
		MPSFPS_				MPS FF	S MF	S FFS	DEG
1.0 53.4		50.5 165.6		17.4	57.1	10.7 35	. 2 20.	5 67.1	31.6
2.0 53.A	176 6	50.5 105.5	69.4	18 8	61.6	10.7 35	. 1 21.	6 70.9	29.6
	177 7			19.6	64.4	10.6 34	.7 22.	3 73.2	
		50 4 105 4		20.7	67.8	10.6 34	. 7 23.	2 76.2	
5.0 54.7	179 6	80.4 165.4	66,8	21.3	70.0		4 23		
7.0 55.3	101 G	50.6 166 2	66.0	22.3	73.2		.0 24.		
10.0 56.0				23.0	75.6		.6 24.		
15.0 56 3	184 G	51.0 167.4	619	23.7	77 7		3 25.		80.6
20.0 56 0	163 6	50.6 166.1	G4 6	23.8	78 3		2 25		
30.0 55 5	101.3	49.8 163.3	64.0	24.0	78.9		.0 25.		
50.0 F3 B	176 7	48.1 157.9	63.2	24.1	79.2		. 2 25.		
70.0 50 4	171 9	46.6 152.7	62 5	24 1	78.9		.4 25		
80.0 51.4	168 7	45.8 150.1	6: 7	23 5	77.0		0 24		
85 .0 50.7	166 4	45.5 149.1	63.4	22.5	73.9		. 5 23.		
9 0.0 50.0	164 0	45 3 146.5	64.8	21.2	69.5		. 6 22		
93 0 49.5	102 3	45.2 148.3	65 9	20.1	65.8		.9 21.		• • • •
87. C 49. 0	100 9	45.0 147.8	66.3	19.6	64.2		0 21.		
96.0 49.C	160 G	44.9 147.5			63.6		. 6 20.		
97.0 48.9	160 3	44.9 147.4	66 6		63.1		6 20.		
		44.8 117,1			62.8		6 20.		

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMMER W	WU	BETA	CZ	CU	C	ALPHA
MPS FFS	MPS FFS	DEG	MPS FPS	MPS FPS	MPS FPS	DEG
	1 24.1 79.1		13.3 43.6	27.1 121.8	39.4 129.4	70.1
	? 21 .9 71.9		14.5 47 G	39 2 126.8	41.8 137 3	69.5
	⁷ 21.4 70.2	53.9	15.5 50.9	39.7 130.2	42.6 139.8	68.5
	<u>, 51'1' 60'3</u>			39 9 130.8	43 1 141.4	67.5
	2 21.0 68.9		16.6 55.1	39.9 130 8	43.3 141.9	67.0
	9 21.1 69.3		17.0 55 8	39.6 129 9	43.1 141.4	66.6
	21.9 71.8		17.4 57.2	38.5 126 4	42.3 138.8	65.5
<u>15.0 32,3 100 </u>				35.4 116.2	41.2 135.2	59.1
20.0 30.7 120			24.8 61.5	32.5 106.6	40.9 134.2	52.5
30.0 37.5 123				31.7 103.9	41.0 134.6	59.4
50.0 35.4 116				32.6 107.0	41.7 136.7	51.4
70.0 33.0 108				33.5 109 8	41.8 137.1	53.1
80.0 31.6 103				34.2 112 1	42 1 138.2	54.1
	18.8 61.8			34.7 113 9	42.0 138.6	55.1
	17.5 57.4			35.6 116.7	42.6 139.9	56.3
	16.3 53 5		24 1 79 0	36.5 119 3	43 7 143 4	85.4
95.0 29 n nn			24.9 81.8	37 4 122.6	44.9 147.4	56.1
96.0 29 0 95				37.9 124.4	45.4 149.0	56.4
97.0 23 3 92		50 5	24.7 81.1	38.6 126.5	45.8 150.3	57.2
98.0 27.9 91	13.7 44.8	50 5	24.3 79.7	38.7 126.9	45.7 149.9	57.7

BLADE FLEMENT DATA STATOR OUTLET

IMMER W	₩U	BETA	cz	CU	c	ALPHA
MPS FPS	MPS FPS	DEG	MPS FPS	MPS FPS	MPS FPS	DEB
1.0 55.1 180 7	51.5 168 9	68 9	19 6 64.4	9 8 32 1	21.9 71.9	20.4
2.0 54.9 180 3	50.9 167.0	67.7	20.7 67.8	10.3 33 6	23.1 75.7	20.3
3.0 54.8 179 8	50 4 165 2	66 6	21.5 70 9	10.7 35 1	24 1 79.1	26.3
4 0 54 7 179 1		65 4	22 6 74.2	11 2 36 6	25 2 82.8	26 3
	49 3 161 6	64 6	23 [2] 76.3	11.6 37 9	PC 0 85 2	26.4
7.0 54.3 178 0		63.5	24.1 79 0	12 1 39 6	27.0 88.4	26.C
	40.0 157.6	62 4	24 9 81.8	12.4 40 6	27.8 91.3	26.3
15.0 54 4 178 4		61.6	25 7 84 3	12.0 39 5	28 4 93.1	25 0
20.0 54 9 1.0 3				11 3 37	28 8 94.4	23 2
30.0 54 5 178 9			26.9 88.1		29.1 95.4	22.5
50 0 52 7 172 7		59 5	26 6 87 2	11.3 37 1	28 9 94 8	23 0
	dd	C-28	27 9_ 75 0	10 2 33 3	25 0 82 1	23 9
	44.2 144 9	63 9	21.4 70 3	9 8 32 2	23 6 77 3	24.6
65.0 48 5 159 O		63 9	21 2 69 5			25 1
90 0 47 9 151 1	43 0 141 2	63.7		10 0 32 9	23 3 76 5	25.4
	42.8 140 5		20 7 68 0	10 0 3, 7	23 0 75 4	25 6
	42 8 140 6	64 5	20 3 66 5	9 6 3. 0	22 5 73 8	25.6
96.0 47.3 155 2		65 1	19 7 64 7	9 5 31 3	21 9 71.9	25.7
	43 2 141 7	66.3	18.8 61.0	9 2 30 2	21 0 68 8	26.0
98.0 46 2 151 G	43.3 142 0	69 3	16 1 53.0	9.0 29.7	18.5 60 7	29.2

Table 27. Blade and Vane Element Performance for Rotor A/Stator A. Single-Stage Configuration, Design Point Throttle.

IMMER	WHEEL	RFL.	LOSS *	1.088	REI.	DIFF.	DC:	111010	
(%)	SITEFD	TURILLNO	COLF.	PARA.			REL.	INCID.	DEV.
	MPS FPS	ANGLE	Oth.i.	GMA	MACH	FACT.	MACH	ANOLE	ANGLE
		DEG			NO.		NO.	DEG	DEG
1.0	60.6 198.82		• • • •		IN		OUT		
2.0		9.7	0.094	0.083	0.153	0,563	0.095	-4.9	15.9
3.0		11.5	0.119	0,107	0.153	0.581	0.094	-6.4	12.5
	60.4 198.22	12.4	0.136			0.587	0.004	7.3	10.6
4.0	60.3 197.93	13 8	0.152	0.138	0.156	0.591	0.095	-7.9	8.5
5.0	60,2 197,63	14.5	0.157	0.144	0.157	0.589	0.096	-8.4	7.2
7.0	60.1 197.03	14.9	O. 189	0.174	0.160	0.597	0.097	-9.5	5.5
10.0	59.8 196.13	15.2	0.205	0.190	0.162	0.596	0 098	-10.4	4.1
15 C	59.3 194 64	15 5	0.133	0.125	0.163	0.519	0.000	-10.7	3.3
20.0	58.9 193.15	16.0	0.078	0.073	0 162	0.472	0.100	-10.4	
30.0	58.0 190.16	16.2	0.058	0.055	0 159	0.466	0.113	-10.4	3.0
ີ5ດ.ດ	56.1 184.19	17.6	0.042	n nin	0.186	0.470	0.136	** ** ** ***	3.7
70 .0	54.3 178.21	19.8	0.061	0.050	0.150	0.490	0.109	-9.0	5,2
80.0	53.4 175.23	20.8	0.071	0.000	0.153	0.490	0.105	-8.7	5.5
85.0	53.0 173.73	21.8	0.085	0.000	0.150	0.508	0.101	-8.4	6,5
90.0	52.5 172 24	23.7	0.082	0.002	0, 1/18	0.530	0.097	-7.9	7.0
93.0	52.2 171 34	26.1		0.079	0.144	0.544	0.094	-6.7	7.4
95.0	52.0 170 75	28.9	0.074	0.072	0.142	0.548	0 093	-5.7	6.7
96.0			0.069	0.067	0.141	0.554	0.092	-5.1	5.0
97.0		27.2	0,084	0.083	0,142	0.535	0.092	-8.2	3.8
	51.9 170 15	29.0	0,098	0,096	0.142	0.571	0.091	-7.7	2.7
98.0	51.8 169.85	30.9	0.117				0.089	-7.3	1.4
TAROUS	. 9C48 48	111 15							

^{*} See Figure 66 and Table 23 for loss coefficients computed from relative total pressure measurements.

STATOR VANE ELEMENT PERFORMANCE

IMMER	WHEEL	ABS.	ABS.	ABS.	INCID.	DEV.	LOSS	LØSS	DIFF.
*	SPEFD	TURNING	MACH	MACH	ANGLE	ANGLE	COEF.	PARA.	FACT.
	MPS FP S	ANGLE	NO.	NO.	DEG	DEG		210012.1	
		DEG	IN	OUT					
1.0	60.6 198.82	35.6	0.105	0.061	1.6	15.8	0.1773	0.1748	0.6466
2.0	60.5 198.52	34.9	0.111	0.065	1.1	15.4			0.6322
3.0	60.4 198,22	3 4.0	0 113	0.070	0.5	15.1			0.5979
4.0	60.3 197 93	33.0	0.116	0.073	-0.2	11.8			0.5750
5 0	30.2 197 63	32 2	0,117	0.077	0.7	14.6			0.5473
7.0	60,1 197,03	31.5	0.119	0.082	1.0	14.0			0.5092
10.0	59.8 196,13	30.6	0 121	c an o	1.2	13.3			0.4873
15.0	59 3 194,64	20.7	0 120		4.7	11.7			0.4672
00	58 9 193 15	24.6	0.1.50	ന് എഴ്ച	6.5	10.4	0.0981		0.4613
0.0	58.0 190.16	25.1	0.120	0.08!	5.5	9.0			0.4583
50 O	56,1 184,19	25.1	0 121	0.08	5 7	8.3		0.0771	
'O O	54 3 178,21	25.8	0.123	380 0	6.6	8.1			0.4419
80 0	53.4 175 23	26.9	0 122	0.085	6.6	8 2	0.0750	0.0243	0.4640
85.0	53 0 173,73	27.5	0.121	0.084	5.9	9 1	0.0732	0 0730	C 4727
10.0	52.5 172 24	27 0	0.101	้อ. ตลส์	-5.6	10.6	กกรร	ัก ดัวริธั	0.4777
13 0	52 2 171 34	26,4	0.100		5 9	11.6		0.0753	
15.0	52 0 170 75	26.1	0 125	0 075	6.1	12.0	0.2130	0 2114	0.0112
96 0	52.0 170.15	25, 9	0.13		6.2	12.3	0.2692	0.2661	0.0,24
17.0	51.9 170.15	26.5	0.128		5.8	12.3	0.2100	0.2007	0.0216
า8. ด	51.8 169 85	26.5	0.130		-5.2	13 1	0.0105	0 2023	0.0016
					٠. ٢	1.5	0.3673	0.3826	0.7459

Table 28. Blade and Vane Element Performance for Rotor A/Stator A, Single-Stage Configuration, Peak Efficiency Throttle.

ROTOR PLADE LIGHTER PERFORMANCE

IMHLR	WHEET	REL.	េខ១១ 🏚	Loss	181-1	OFF	RET	FMC1F	DEV.
(xi)	59(1)D	10811110	PORT	PARA.	ስግለ ርርዩ ፤	VC.1	LPACH	MACLE	AHG, F
	MPS PPS	ANOLE			NO		NO.	(31-13	ត្រ(()
		DEO			1 N		OUT		
1.0	60.8 199 44	9.1	0.056	0.050	0.152	0.010	0 089	- 5.7	15.8
2.0	60, 7, 199, 14	11.8	0,116	0.104	0.191	0.654	σ one	G , A	12.2
3.0	60,6 199,84	13.6	0.110		0.110			~ / . O	9,8
4 0	60 5 198 54	14.6	0.151		43 156			7.7	8.0
5.0	60 0 198,24	15.2	0.160	0 .65	0.458	3 650	0,089	0.8 -	6,9
7.0	62.2 197 64	19.5	0 198	0.133	0.160	0.653	0.090	0.4	5,9
10.0	60.0 196.74	15.5	0.208		α_{i} , α_{i}			8 H	5, 2
15.0	59.5 135.25	16.3	0.089		0.162			9.0	4.0
20.0	59 1 193 75	16 4	0.017		0.161			-8.7	4.3
30.0	55 1 190 75	17 1	0.0.5		0. (50			-8.1	4.7
50 1	66, 3, 184, 76	19 3	0.013		0				5.4
	51,5 176 776	11 3	0.051		0.151			6.7	6.1
70.0		3 5	0.060		0 1				7.2
80 0	56.6 175.27		0.083		11 16				6.4
85,0	53.1 174 27	26.4	กเรอ		0, 4.1				7.2
90 0	52.7 177 3	26.1	0.031		6 11.				6.0
93.0	52, 1, 171, 08	28 B	0.025		0.111		0.087		4.1
95.0	58.0 171.08	31.4			0.141		-,		2.7
- 86 O	<u> 52.1 170 98</u>	<u></u>	0.075		0.111				1.3
97.0	52,0 170,08	34.8	0.091						
98.0	51,9 FZ0.08	36.9	0 006	0, 0, 1	0.110	(1, 11, 11	0,083	-3.4	0.4
TORGET	r - warit	1N1B				-		. 	

* See Figure 66 and Table 23 for loss coefficients computed from relative total pressure measurements.

STATOR MANE FLEMENT OF JUST TANCE

EMMER X	Mos 163 Potan Militi	ABS. TUPTNO PROLE	703. 11/01 110	APS. MACH AG.	r NOTE 1 NOTE 1 NOTE	DEM. BROLE DEG	LOSS COLF.	LOSS PARA.	DIFF. FACT.
1.0	60 t 1 in 11	01 O 0 , 5	17) O 1659	001 0-000	.1,3	10 6		0.1921	0 6812 0,6788
2_0 3_0 4_0	60 / 109 13 60 6 13 03 00 5 100 03	5	0.113	0 104 0 0 0 0,021	1.4 2.7 2.8	11.1	$\frac{1}{2} = \frac{\sqrt{2}}{2} \frac{1}{10} \frac{1}{3}$	0 21 17 0 21 17	0,6500 0,6278
5 0 7.0 10.0	60 p 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1 i	0.0 3.0 6.003	0 3 1,2 2 0		1. 3540		0,6057 0,5613 0,550
15.0 20.0	59,5 16 c % 59 159 5	1.1	0.119		1 .	11 0 11 7 13 3	i are:	0.0039	0 4509 0 0 0 0 1 0
30.0 50 1 20.1	58 1 190 25 56 2 181 76 51 5 175 27	7.00	0.13	1 (1°)	β, 6 - 3 · (8 1 9 0	च उट्चेह उ.स.	ັລ ఆ⊲ຖິ ປ 1.63	0.750
80 n 85 n 90 o			10 121	() () ()			, 't	0 (3)	5 (65) 6 (13)
93 (1 95 (1 96 (1		111 3	11 1 11		:	1 * 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'. , A	1 05 6 1 U 3 6 30 7
97.0 98.0	And the state			13 (3 (3) 13 (3)		1			0.3749

Table 29. Blade and Vane Element Performance for Rotor Λ/Stator Λ, Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.

		eseri.		1.000	DEL	OLEE	REL.	INCID.	DEV.
IMMER	WHEFL	REL.	LOSS	1.083	REL.	DIFF.	MACH	ANGLE	ANGLE
(克)	SPEED	TURNI NG	COEF.	PARA	MACH	FACT	NO.	DEG	DEG
	MPS FPS	ANOLE			NO.			DEG	LEO
		DEG			IN		OUT		17.6
1.0	61,3 200.97	9.8	0,169	0,148		0 714	0,080	-3.1	
2.0	61, 2, 200, 67	13,1	0.212	0, 191		0.758		-4.4	13.0
3.0	61,1 200.39	14.7	0.226		0.157		0.077	-5.1	10.5
4.0	61.0 200 06	15.4	0,233			0.758		-6.0	8.7
5.0	60.9 199.76	15.6	0.241	0.221	0.159		0,078	-6,5	7.9
7.0	60.7 199.16	15.0	0.256	0.233	0.160	0.756	0.079	-7.1	7.8
10.0	60.4 198 25	14.2	0.253	0.232		0.739		-7.3	8.1
15.0	60.0 196.74	15.7	0.164	ი. 151	0.163	0.639	0.094	-7.2	6.5
20.0	59,5 195 23	17.3	0.055		0.162			-6,9	5.2
30.0	58,6 192,21	18.3	0.013	0.013	0.160	0.505	0.109	-6.3	5.4
50.0	56.7 136 17	20.4	0.028	0.027	0.156	0.534	0,103	-5.2	6.2
70.0	54,9 180 14	22 O	0.059	0.057	0.152	0.571	0.096	-4.7	7.2
80.0	54 0 177.12	23.9	0 074	0.072	0.149	0.592	0,092	-4.6	7.1
85.0	53.5 175.61	25,6	0.075			0.610		-4.1	7.1
90.0	53.1 174.10	28.2	0.004	0.091	0.145	0 636	0,085	-3.0	6.5
93.0	52.8 173.19	31.3	0.081	0.079	0.143	0.646	0.084	-2.1	4.5
95.0	52.6 172.30	35.0	0.066	0 065	0.142	0.646	0.085	-1.9	2.1
96.0	52.5 172.29		0.071	0.063	0.142	0.655	0.084	-1.8	1.1
97.11	52.4 171.99		0.085	0.083				-1.7	0.3
98.0	52.3 171 68	37.5	0.091	0.089			0.081	-1.7	0.5
30. O	07.0 171 00		3.001						
TOROU	E = 8789,41	IN -LB.							

^{*} See Figure 66 and Table 23 for loss coefficients computed irom relative total pressure measurements.

STATOR VANE ELEMENT FERFORMANCE

IMMER	WHEEL	ABS.	ABS.	ABS.	INCID.	DEV.	Loss	LOSS	DIFF.
* * * * * * * * * * * * * * * * * * *	SPEED	TURNING	MACH	MACH	ANGLE	ANGLE	COEF	PARA.	FACT.
^								T WING	TACT
	MP3 FIS	AMOLIE	NO.	NO.	DEG	DEG			
		DEG	IN	our					
1.0	61.3 200.97	43.7	0.114	0.064	9,2	15.2	0.1783	0.1759	0.6920
2.0	61.2 200 67	43.2	0.121	0.067	9,0	15.0	0.2313	0.2281	0.5961
3.0	61.1 200 36	42.2	0 123	0.070	8.4	14.8	0.2252	0.5888	0.6772
4.0	61,0-200.06	41.2	0.125	0.073	7.8	14.6	0.2101	0.2073	0,6519
5.0	50.9 199.76	40.6	0.125	0.075	7.7	14.6	0.1924	0.1898	0.6336
7.0	6 , 7 139 16		0.125	0.073	8.0	14.5	0.1576	0.1554	0.6025
10.0	60 4 1 18.65			0.001	7.9	13.8			0.5626
15.0	60.0 196.21	34.1		0.082	3.0	12.0		0.0807	
20.0	59 5 195 23			0.030	2.5	9.7		0.0643	
-		27.9				3.7		0.0684	
30.0		· · · · · · · · · · · · · · · · · · ·		0.081	-3,.2				
50.0	56,7 186 17			0.084	2.0	8.6			0.4860
70 O	54, 5, 180, 11	29/2	0.121	0.0%	1,7	9.0		O 1890	
80, O	01 0 17 1.10	20.5	0 12.1	0.063	ំ.ខ	10.3	0 9304	0 5500	O. 6362
85 0	55 5 175 6	30,0	0 122	0.063	-1.5	10.0	0.2458	0.2431	0.0430
90 O	53, 1, 174, 16	30.9	0.101	0.008	- 1`, 1	11 😿	0.2405	0.2467	0.6527
93.0	4 8 178, 10	30.8	0.127	0.067	- 1 , 1,	11.6	0.30%	0.5932	0.0749
95.0	5. C 172.01	30.5	0 130	0.065	∴.2	11.6	0.3494	0.3456	0.7023
96,0	57.5 172, 29			0.064	-2.1	11,7		0.3704	
97.0	52 1 171, 10	31.2	0.133	0.061	-1.5	12.0			0.7535
98 0	52.3 171 68	28 5		0.054	-1.1	15.1			0.8083
				,		. •	₩ -1-4-4 €.	J. 4.76767	0.000

					(0.0	(a) (a)	ar ar	(B)	17	, (°	n .	(†)	(\$) (\$) (*)	40.000	***		. ;					.;	(*) (*)		17.	
		2.00		K .	,:	, :	.!	•	,		•	.:						•	•				٠.		.:	
				3 i			1.1			•						;	` .	:							:	
				\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		5		, ,						:		•	:			•	 					,
	4	1 1			,				: .	•	; ;;					, ,			::		:	*) i.	
	41	B. Ser. 1.			:			. :	, i		, t								4		 •		.,			
				``\ 				1					: .		• ; ;											
A CONTRACTOR AND A STANSANTANTANTANTANTANTANTANTANTANTANTANTANTA			:	:	i	,	•		•			•	· •	•		::		·i	•	:	 •	;;	::	•.`	::	
			,		•	:. :	::				• • • • • • • • • • • • • • • • • • • •			٠.:	•				•	:		•	•		,•.	
						٠.	::		•	• :		;.;	::						.•	.•	•		:			
					•	:	•		• ;			}; `;	::	1	: :		,		•			:				
			,			•				•		:		: :	::		•		: .	. ,	 •		Ť	•		
		i	:			,	•	•	•	``	;			•	• •			;			. *	•				
								:		:			• •							•	•				:	

1		1773				•	* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	•	•			***	# 1 1		•	1		**			41			;	• • •	•	181		* 2 7	1 11			, , ,••	
346						:									. 777	677	,						***				:				•		:		:
		;				: .					:,															1		,		*			.,		
							:	::					, , ,	, , , , ,			:	4	,	: '	,					:			:	14.					, , , , ,
	1			,	;	•				:		. :		•								: :	•							7					
!							:::	•	,			,	: :			•						: .		• • • •							:				
			!									•	•				• :	: ;		: .			;			;	: ;		;	•	.,.	;		:,	

Normalized Absolute Total Pressure, Static Pressure and Flow Angles for Rotor A/Stator A Four-Stage Configuration, First Stage Tested (Concluded). Table St.

		Stator 1	Exit	27.3	25.3	26.7	5.65	25.4	26.3	25.3	17	23.3	22.2	23.5	23.4	23.3	23.5	24.4	25.3	26.7	15.5	3,6	25.2	_
	Corrected	Petor :	Exit	4.58	43.6	62.6	52.5	61.2	39.62	35.6	4,1	73.1	6.00	49.67	.;	52.3	13.7	55.3	55.8	41	6	5.5	57.8	
***		Peter 1	:: ::	(S)	29.6	28.0	25.7	25.0	23.5	4. 12	25.5	25.3	.9.9	.9.6	5 61	:5.7	9	25.5	20.0	27	25	7: 1	2:.2	
Peak Efficiency Throtte		Stator 1	Exit	25.6	25.8	25.6	25.4	25.3	25.2	24.9	34.5	22.4	2:.4	22.8	22.8	22.8	23.1	23.9	25.8	26.2	25.:	26.0	25.7	
Peak Eff	Measured	Potor 1	Exit	54.3	62.5	61.5	65.8	60.0	58.2	55.4	49.2	47.9	67.8	48.7	59.5	51.6	53.0	24.7	55.2	25.55	55.7	(F)	17	
		Potor 1	Inlet	36.5	28.4	26.3	25.6	24.5	22.6	27.5	8.61	19.5	19.2	19.0	19.0	19.2	19.3	19.6	26.3	25.6	20.6	25.7	20.8	-
		Percent	Immersion		7	m	-1	u۱	_	::	::	52	×	S	2	æ	35	£	8	%	53	24	86	-
		Stator 1	EXIL	25.:	24.3	23.9	23.8	23.9	25.3	26.3	25.5	24.5	23.4	23.1	23.3	23.4	24.5		26.5	26.6	26.9	27.1	27.2	
	2		I																					_
	Corrected	Potor	Exit	53.7	67.3	£5	67.5	::	27.7	55.2	2.63	4.17	4. 1.	4. 4.	43.9	¥.00		S.		5.50	33.5	33.9	e : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
4.1	Sorrec	•••	liner Exit			28.3 61.6									18.7 49.9						2:.3 53.5			•
State Through	Sorrec	1 2010E E		3:.2	29.8		76.9	26.5	23.3	23	274	275	27.3	w. 6.		on ai	. 3.	25.5	20.9	2: . 3	2:.3	21.5	25.3	-
をはるない。 なるのでは、最後なりから	Measured Correct		10.01	3:.2	23.3 29.8	22.9 28.3	22.8 26.9	22.9 26.0	24.3 23.3	25.3 23	2+.: 25.4	23.1 25.4	22.6 25.3	22.6 19.6	. 4.	22.3	73.5	24.5 25.5	25.5 20.9	26.1	2:.3	26.6 21.0	26.7 25.9	
•••		I Stator I Potor I	EALT DALT LIVET	62.6 24.0 31.2	6 61.8 23.3 29.8	55.4 22.9 28.3	59.3 22.8 26.9	22.9 22.9 26.0	24.3 23.3	25.3 23	2 2 2	23.1 25.4	46.7 22.6 20.3	47.7 22.6 :9.6	22.7 :8.7	22.9	7.6.	52.3 24.6 25.5	52.8 25.5 20.9	22.9 26.1 21.3	26.4 2:.3	53.3 26.6 21.0	54.2 26.7 25.9	1

		Measured			Corrected	
Partent	Forer 1	Potor 1	Stator 1	Potor 1	Potor 1	Stator
20.81	:3:91	Exit	Exit	Inter	Exit	Exit
••	33.3	67.2	24.4	3:.6	58.2	25.5
7	28.4	66.3	23.7	29.6	67.3	24.8
61	27.:	53.53	23.4	28.3	66.5	24.4
J	25.3	64.6	23.3	27.5	65.6	24.3
L)	25.0	63.8	23.4	26.1	8.3	24.4
7	23.2	62.5	24.1	24.2	63.1	25.1
S:	21.1	19.3	25.8	22.5	40.4	26.8
::	5.8	53.7	25.2	25.6	54.9	25.2
25	9.6	55.:	22.5	20.4	51.3	23.4
Ç	7.6:	49.6	20.9	29.1	59.7	21.6
S	2.61	55.7	22.7	19.6	51.6	23.4
75	9.67	53.2	23.3	19.1	24.0	23.9
Sa	a) a)	54.7	23.6	19.3	55.4	74.7
S	19.2	56.0	24.2	19.7	56.7	24.7
S	:9.7	57.5	25.1	25.1	57.6	25.6
33	25.2	55. B	25.8	20.6	57.4	26.3
22	25.8	26.4	26.2	21.3	57.0	26.7
98	25.8	56.5	26.2	21.3	57.1	26.7
. 16	20.8	57.3	26.1	21.2	57.9	25.5
ď	4 00	0				•

Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Four-Stage Configuration, First Stage Tested. Table 31.

PS B C B T F F F F F F F F F F F F F F F F F F	36755386 74		,			
PERCENT BOOK RSICA		ı,	•	\$01 65.	THE LOSS CORPETCIENT	16#7
	P () P (#010# 1 E4:	PERCENT	7.7.A.	LOSS	TOTAL MEMUS
	90.5 #	8.4822	5.6		9.00	8.1864
		8.56PS	10.0		6.8:17	9658
- 2 .	6821 8	8.6875	15.8	*	B #145	9.8123
9	B 6355	25 .	20.6		B. B. 154	9.8.4
R: 1.1	:.85 8	38.3	35.6	:	8 8174	29:8:8
•	\$2.5	9.5434	3	000	€ 0233	8.8125
•	26 4 8	8.5853	£. 63		£ 837;	B:12
•	1967	377 B	9.0	10:00	2.0538	8.8:34
~	# 450B	8.4.PF	8. S.		B 853.	8.8873
• • • • • • • • • • • • • • • • • • • •	1550 B	. 3853		30.4	1688	96 88 B
`.	111.	8555 8	98.8	• • •	- # . # 9847	6.8:55

POTT SECURITIES

ROTOR 1

Person Person

Peak Efficiency Throttle

	rear riesonic arachines cless suspine					
10.	TOTAL PRESSURE	3	,	POTOP LOSS COEFFICIENT	COEFFIC	16117
PERCENT HMERSION	T3.FI	POTOR 1 Exit	ur 15 d 34441 _n 30 d 3 d	107AL	WAYE LOSS	"OTAL MINUS WAYE LOSS
e	8.5164 8.55:9	8.5839	8 81	P. 1392	0.0147	#.1246 #.8722
4	88	8.6378	S		9.6.46	9.8435
28.8	B. 674B	8.6472	# #2	4. 4389	0.8147	#.6162
31	9.6432	9. 6216	15.0	P. #259	8.8169	8.86.8
5.8	8.614:	#.5858	26	2.8351	8.8221	6.8129
#n	8.5725	₩.5396	•	F. 8438	9.6348	6.88.9
200	8.5269	8.4782	9.6	68.8	8.8748	B. 8849
100	B. 5127	8.4423	# · 36	8668 7	6.0961	8.8897
9.86	8.5815	8.4243	36		6.1893	8.8828
9 110	8.4777	8.3973	25.	2.81	B. 111.	1000.0

Table 32. Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Design Point Throttle.

LADE E	LEMENT	DATA	ROTER IN	LET '	TIP SPEEC	• G3 :	62 MPS	(209.38 FP	S)
IMM E		i Frs	WU MPS FP:	BETA B DEG	CZ MPS FI		CU	C C	ALPHA
1.	0 55 4	181 /	51.7 163	-		'S MPS 1.8 12.0		MPS FPS 23.1 75 8	DF0 31.2
		182 5	51 4 168 51 4 168			9 12.2	40.1	24.6 80.6	29.8
			51 6 159			3.5 12.1 3.3 11.8		25.5 83.5 26 1 85.6	
			51.6 169	4 64 9	?3.9 7€	.6 11.7	38.4	26.6 87.4	
	D 58.1 D 58.9		52.1 170 52.3 171).1 11.1).1 10.6	36.3 34.8		
15.0	0_5 <u>9.</u> 0_	101 6	51.9 170	3 31 4	20 1 8	2 10.5	34.4	30 0 98.4	
20.0 30.0	D 58.6	192 4 189 9	51.4 160			.0 10.5			20.4
50.0	0.08 0	105 8	48.8 160	0 59.3		1.7 10.6 1.3 10.3			
			47 3 155			9 9.8	32.2	30.5 100 2	18.7
			46.2 151.			.8 9.6 .7 9.5			
90.0	52.4	172 0	46.0 150	8 61.1	25.2 82	.8 9.2	30.3		
			45.8 150.			.5 9.1	30.0		20.8
96.0	51.5	168 8	44 6 146.	5 60.0		8 9.0 0 10.0	29.6 32.8		
			44.6 147.			.5 9.7	31.8	27.0 88.4	21.0
2011	9 91.3	100 3	44.9 147.	5 61.0	24 7 81	<u>.1 9.5</u>	31.1	26.5 86.9	20.9
ADE EI	LEMENT	DATA	ROTOR OU	TLFT / S	TATOR INL	ET			
IMME	R W	FFS	WU MPS Frs	BETA DI G	CZ MPS FP		U FPS	C MDs rps	ALPHA
1.0	36.4	119 3	33.1 108	7 65 5	15.0 49	2 30.6	100.4	MPS FPS 34.1 111.7	DFG 63.7
3.0	34.3	112 6 112 9	29 7 97. 29 0 95.		17.2 56	4 33 9	111.3	38.0 124.8	62.9
4.0	34.4	112 8	28 0 91		19.9 65			39 3 128.8 40 6 133 3	61.6 60.5
5.0	34.9 1 35 4	114 6	27.8 91	3 52 7	21 1 69	2 35 5	116.5	41 . 5 T55 . 5	59 1
10.0	36.9	121 0	27 9 91.			5 35.7	117.1	42.1 108.2 42.5 139.3	57.7
15.0	41.1 1	34 8	30 4 93	6_47.5	27, 7, 90,	8 35 0	105.1	42 3 138 9	55.2 49.0
30.0	41.6	34 3	29.2 96		28.4 83	1 31.4	103 17	42 3 130 9	47.8
50 C	38 9 1	27 7	26 4 86	5 42.5	28 6 93	9 32.7	107.1	42.7 140 1 43.4 142.5	47.8 48.6
	36_7_1	120. 4. 116. 5.	23_3_76_ 22.1_72		28 4 93	1 33.9	111 1	14.2 144 9	49.9
85. O	34.4 1	12 8	21.4 70	3 38.4	26 9 88.	3 34 3	111.8	44.0 144.3 43.6 142 8	ີ 50 ຍີ - 51.7
90. C	33 1 1 32 6 1	08 7	20.4 66.	9 37.9	20.1 8 5	7 34.8	114.2	13.5 142 8	53 0
95 , O	32 4 1	06 4	18 3 60					14.0_144_ 5 15 2_148_3	53.5
90. C	3.7 4 1	06 3	17.9 58.	6 3 3 3	27.0 88.	7 36.8	120.7	15 6 149 7	53.5 53.5
98.D	32.1 1 31.3 1	02 2	17.2 56 (16.6 54 (6 32 5	27 A AA	E 37 3	127 2	16 0 161 1	53.9
					<u> </u>	7 4 <u>1.8</u>	184,34	16 3 151.8	54.8
ADE EL	EMENT I	DATA	STATOR OU						
1	MPS	FPS	MPS FPS	BETA DEG	CZ MPS FPS	C MPS		C Mrs FPs	ALPHA Deg
1.0	58 0 1	90 2 5	54 7 179	1 70 4	19 8 63	1 90	29.6	1 2 (9 7	25.1
3.0	58.1 1	90 5	54.2 177.9 53 8 176 •				30 8 2		24.3
4.0	58 0 1	20 3 5	53 2 174 6	603	23 1 75	0 10 2	32 1 7 33 6 7	5 3 62 9	23,9 23,8
7.0	57.9 1 57.1 1	89 9 1 8/ 2 9	62.0 173 1 50 9 166 (1 10 6	34 7 .	6 1 83 5	23 9
10.0	56.3 1	81 8 4	19 6 162 2	111 5		0 12 3	40 3 2		26.3 26.3
50 H	56_6_1 56_6_1	65 B 4	19 4 162 1		6 _9n	7 13 0	4.0 5 3	0 5 100 2	25 0
30 D	56 4 1	84 9 4	10 5 159 1	59.2		5 12 6 3 12 5	41 3 3	0 9 101 3	24 0
5 0 0	54 A 1	80 C 4	16 3 151 6	573	29 5 86	9 12.7	41 8 3		23.4 23.3
80 0	52 d 1	्ब <u>छ</u> त री 5 ब	14 4 145 6 13 6 143 2			9 12 7	41 8 3	7 2 105 5	23 3
65 0	51.6 1	69 2 4	2 8 140 5	95 0		4 12 5	4223	1 4 103 0	23 4 24.0
93 0	3 0 € 10	66 1 4 F	11 6 136 6		56 8 54	5 13 6	44 5 3	1 8 104 5	25 1
	49 2 1		11 2 135 1	55 1 2 56 7 1		. 13 0		1 0 103 6	26.0
3 3 0				STO 1 4	.4. 30 5154	3 13 %	4141	0 1 00 0	111 -
96 C	48 8 10	60 P 4	1 5 130 2	58 0 2	25 7 84.	3 13 5 4 13 1	44 4 3		26 6
96 C 97.0	48 8 19	60 P 4	1 5 136 2 2 1 138 2 2 6 140 4	58 0 2 60 0 2	25 7 64 . 34 1 79			8 9 94 8 7 1 89 0	26 6 26 9 27.1

Table 33. Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.

BLADE FIEMENT DATA ROTOR INLET TIP SPEED . 64.67 MPS (212.17 FPS)

IMMIR W	WU	BETA	CZ	CU	c	ALPHA
MPS FPS	MPS FPS	DEG	MPS FPS	MPS FPS	MPS FPS	DEG
1.0 59.7 1er e	. 61 (8 170 D	~ 68. ?	20 6 67 4	12 8 41.9		
2.0 56.5 186 p	50.0 171.1	67.3		12.3 40.4		
3.0 57.0 187 o	52.4 171 8			12.0 39.4		
4.0 57 5 188 5	52.5 172 2		23.4 76.8			
	52 9 173 5	65 3				
7.0 58.9 193 4					20 6 8 3	
10.0 59.5 195 1				10.6 34.9		23.0
15 0 50 5 195 2					27.9 91.6	21.4
				_10.1 _ 33.2		20.6
2010 5972 194 4				10.0 32.6	28.8 94.5	20.3
	51.9 170 2	62 1	27.2 89.3	9 9 32.4	29 0 95.0	19.9
50.0 57.0 187 1		G1.2	27.3 89 7	9 8 32.0		
	48.2 158.3	60 5	27 1 89 1	9.6 31.6		1 - 1 -
80 0 54.1 177 5	47.9 157.2	62.2			26 7 67 5	
85.0 53.8 176 6	46 9 154 0		26.3 86.4	9.5 31.1		
90 0 52.9 173 5	47.3 155 1	63.2		8.7 28.4		19.8
93 0 52.2 171 3		64 2				
95 0 11.9 170 2		64.6			24.1 79.1	80.8
96.0 11.8 169 8				8.5 28 0		
97.0 51.6 169 4		64.9	· . · · · · ·	8.4 27.6		21.0
		64.9	21.7 71.3	8.4 27.7	23 3 76,5	21.1
98 0 51 5 168 9	46 7 153 3	65.0	21 6 71.0	8.4 27.7	20.2 78.2	21.2

BLADE FLEMENT DATA ROTOR OUTLET / STATOR INLET

FINITE WE FOR MORE TA CZ CU C A	LPHA
MPS FPS MPS FPS DEG MPS FPS MPS FPS MPS FPS	
THE SECRET OF STATE OF SECURITION AND ASSESSED TO THE SECOND TO THE SECOND TH	6.8
	63.6
	62.6
4.5 33.1 105 7 25.4 56.5 52.6 20.0 66.6 22.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	62.0
	67.3
	59.4
10.0 30.3 119 1 27.5 90.1 49 0 23 7 77 0 36 2 110 0 42 0 146 7	56.6
12 11 90 to 133 1 30 7 99 1 47 9 27 1 80 0 22 0 100 0 40 5 140 0	50.4
20 0 41 2 135 3 50 3 9 5 47 2 27 9 91 7 39 3 103 3 4 6 113 8	20
	48.9
50.0 38.7 127 0 26.5 86 8 43.0 pp 2 92 6 22 4 109 4 42 2 146 4	49.6
19 9 9 9 1 180 5 23 3 76 5 40 1 21 5 00 f 24 5 440 4 44 6 440 4	51.3
90 0 81.7 113 8 20.0 72 0 39.1 20 9 88 1 20 9 11.7 5 A 1 1 1 2 2 3	52.3
50 0 00 0 100 0 21.0 68 7 38 8 25 0 85 1 25 K 116 4 22 0 144 A	52.3 53.7
90 0 31.6 104 / 19 8 65 0 38 5 21 A A 5 5 1 1 1 1 K 43 A 1 4 A	55.3
	55.8
- #0.0 00 0 101 0 17.3 56 9 34 0 25 A 83 K 98 1 15. A 46 6 15.2 A	56 1
96 0 30 6 100 3 16 8 55 1 33 2 25 6 83 6 33 6 125 6 42 5	56.3
F(V 30 4 34 / 10 4 53 / 37 6 K C 40 0 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	56.5
	57 8

BLADE ELEMENT DATA STATOR OUTLET

INMER W	WU			cu	С	ALPHA
FILE FI	S Mrs FPS	DEGM		Mrs Frs	MPS FPS	
1.0 57.7 189	5 50 5 178 9	9 70 6 19	ิต คาลั		71 E 70 E	
\$ 0 5 '. 6 189	8 50.2 177 9	09 5 20			22 6 74 6	
3 0 57 8 109	5 53 9 176 8	68 7 25				
<u>4 0 5, 6 18</u> 9	1 53 2 124 7	67 3 32				
ชื่อ ธภัย วิเล	8 5. 7 121 1	66 3 23			24,7 B1 C	• : .: •
7 0 57 4 100					15 7 Bd 2	20.4
10 0 5' 3 187	0 10 0 100		• .		27 8 91 2	26 3
15 à 61.a ien	3 30 9 167 C	65 6 50		12 8 42 0	19 2 95 7	25 9
	n to 6 162 c			12 7 41 5	"1 0 97 B	
20 0 51 6 169	8 50 6 166 3	61.3 27	6 00 7	11 9 39 1		
30 0 51 6 180	0 50 2 164 8	60 5 2A			30 5 100 1	
50 0 bb 3 1c1	5 47 4 155 6	58 8 30				
70 0 51 1 16	1 35 6 144 5	57 9 28			. , ,	
60 0 5 8 Fra	2 21 9 14 3	58 0 2		,	30 9 101 5	
85 0 52 2 171	1 44 2 145 2				30 8 95 4	23 3
90 0 51 4 169	1 43 3 144 M				30 2 99 2	23 6
93 0 50 1 163	. 43 3 141 9			12 7 41 6	30 6 100 3	24.4
04. 43. 44.	2 40 1 138 3				30 3 99 4	
95 0 49 6 162	ह बट ६ १३० व	58 7 75	7 84 2	13 0 42 5		
96 0 49 5 (6)	5 42 9 140 8	50 B 23				• • •
8°0 40 4 105	2 41 5 142 6	61 4 . 3				
98 0 49 5 162	3 44 3 145 0	63 3 22			26 3 86 4	
	and the first of the second	-377 6 66	1 72 4	10,9,35.7	24 6 80 3	26 2

Table 34. Vector Diagram Parameters for Rotor A/Stator A Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.

BL /	ADE.	EI	EME	TH	DV.	ΓΛ	R	110	RII	1LE	I	T	16	SP	EED	•	6:	3. 3	r Mr	S	(207	'. 7	3 FF	PS	•
	IM	MCI	₹	١				١	#U		BET	A		•	z			c	:U			C			AL PHA
_		E.			FP	S	M	PS.	FP	S	DE	ß	M	PS	FP	5	M	PS	FP	5	MP	8	FPS	į.	DEG
	7	٠0	55	. 1	180	R	้อถ	. 1	171	, O	70	. 7	10	. O	~ 59	, Î	11	٠, ١	3¢	. 4	21.	2	`69`	Ъ	31 6
	5	. O	55	6	107	3	52	O	170	. 8	69	3	19	. 4	63	. 8	11	. 1	36	. 4	22.	4	73.	4	29.G
	3	. 0	55	9	183	4	50	. 1	170	8	68	8	20	. 3	66	7	11	. 0	35	. 9	23.	١	75	7	28.3
_									170			. 4	21	. 4	70	2	10	. 8	35	8	24	0	78	8	27 0
	8	. O	\$16	5	185	4	42.50	O.	170	6	66	a	20	. 1"	72	5	10	.	37	ti	24	6	80	8	76 T
	7	, u	67	. 1	107	4	2,2	. ?	171	. 4	Gü	0	.23	. 1	75	. 8	10	4	34	5	22	3	63.	1	24.2
	10	. 0	57.	8	189	e	52	7	172	9	65	5	23	. 🤥	78	. 3	9	. 7	31	. 7	25.	7	84.	4	55.0
									172			A	24	. 5	_80	. 4	9	5	30	3	26.	2	8 6.	0	20.6
	50	ĩ, O	57	ŧ,	100	5	ິຍຕ	. 2	171	. 3	64	. 5	~'4	7	81	Ō	8	. 2	~ 3 0		26.	4	86	5	2074
	30	C	2,7	O	187	2	51	. З	168	. 4	63	9	24	, Я	81	. 7	9), 1	30	. 0	26.	5	87.	0	20.1
									163			. 1	26	O	81	. 9	8	. 8	58	. 2	26.	5	87.	0	19.6
_	_70	0	11.1	1	177	_5	48	୍ଦ	157	. 6	6.2	4	24	9	81	. 7	_8	G	28	4	26.	4	86	5	_ 19.1
	B0	0	33	. 1	174	-5	47	, F	15.1	. 9	62	. G	24	3	79	. 7	8	. 5	27	ંગ	์ 25	7	84.	4	19.3
						-			153	_		. 4	53	. З	76	. 5	8	. 4	27	4	24	8	81	3	19.7
		_	-			_			153	-			21		71	. 9	8	1.1			23.		76.	G	20.1
	<u> </u>	. 0	51.	0	167	. 5	40	G	163	0	65	Ą	್ಷಾ೧	. 8	68	١.	_7	. 8	_85	. 7	_ ?	2	70	A	50 6
					_				15.		66	5	20	. 2	GE	. 4	7	. 9	28	9	ei.	7	71,	3	21.3
	80	. 0	50	5	165	8	46	. 4	162	1	66	. 4	50	. 1	65	. 9	7	. 8	25	. 7	21.	5	70.	7	21.3
	97	. 0	50.	. 41	165	5	46	. 3	150	0	66	G	19	. 9	65	. 3	7	. 8	89	. 5	21.	4	70.	1	21.2
	98	. 0	50	3	165	1	46	•	151	7	66	G	19	U	65	n	7	. A	25	- 5	21	3	r.a	A	21 3

BLADE ELEMENT	DATA	ROTOR	OUTLET	1	STATOR	INLET

IMMLR	w w	U BETA	cz	cυ	С	ALPHA
R Mrs	FPS MPS	FPS DEG	MPS FPS	MPS FPS	MPS FPS	DEG
1.0 30 Q		65.7 60 4	14 7 48 3	37.1 121 7	39.9 130.9	68.2
2.0 30.2		85.4 59.2	15.4 50 5	37.1 121.7	40.2 131.8	67.3
3,0,09,2			16 8 55 3	39.1 128.4	42 6 139.8	66.5
4.0.00.0			17 9 58 6	39, 9, 100, 6	43 6 143.2	65.6
	50 6 55 8	75 7 50.8	18 6 61.0	39.9 131.0	वव (० । वन , हैं	64.9
	100 9 23,6			39 0 128.0	43.7 143.3	63 1
	107 1 24.9	61 6 49.5	21.1 69 3	37.5 123 0	43 0 141.2	60.4
	119 9 27 6	90 2 48 7	. 21,178 9	34,4 112 9	RC 0 137.7	54.8
	127 3 70.7		26 1 85 6	32.7 107 3	बे। हैं किंदर है	51.3
	126 3 27.9		20.0 87.2	32.6 101 0	42.1 138.0	50.7
	119 5 25 3			33.3 109 3	42 4 139.1	51.6
** ** * *	100 4 55 0	713 41.2	25.1 62.2	34,6 113 6	40 7 140 P	54 0
	103 9 40 4	Uo € 40.0	24 2 79 5	35 3 115 9	42 8 140.8	85.4
85.0 30 4				35.9 117.7	42.9 140.7	56.7
90.0 29.4			22.8 74.8	36 2 116 6	42.7 140.2	57.6
93 , 0, 29, 3				37,1 121 6	43 9 144, 1	57.4
95.0 pg a			24 4 80 1		45.0 147 8	87.0
96.0 26.3				38 2 125 4		57.1
\$7.0 26 G			24.8 79 3			57.9
98 0 27 4	69 9 14 6	46 5 35.6	23,1 75.7	39.2 128 G	45,5 149,3	59 4

BLADE FLEMENT DATA STATOR OUTLET

	THME	₹	W			WU		BETA	c	:2	С	U	С		AL PHA
_	2	Mi :	9 1 8	S	*1	S F	115	Di G	MCS	FPS	MPS	FPS	MPS	FPS	613
	1.0	57	5 169	a	54.	2.12	1.5	71.8	17.6	58 3	8.5	27.9	19 7	64 6	25 5
			6-189						18.7	61 3	8 G	28 4	20 6	6.1 5	24 8
			5 ገሮሮ						19 7	G4 t	9 0	29 4	21 6	71 0	24 4
			3 12 1						9 0%	6A d	r 5	31 0	22 9	75. 1	24 3
	8 C	5	1. 16.	44	5.3	1.7	1 1	61.8	21 5	70 4	9 0	3.5 1	23 6	7 4	24 4
			1.166						23 0	75 6	10 8	35 5	. 5 5	83 5	25.1
			6 18.						23 5	77 2	11 9	39 2	26 4	86 6	26 8
_			1. 14.						इन व		120	30 5	27 2	87 3	26 2
								(1,1)	25 6	63.8	11 1	36 3	:7 9	91 4	23 4
	30 0								2C 4	86 5	10.5	34 4	28 4	93 1	21.6
	20.0								26 4	86 6	11 4	37 6	20 8	94 4	23.4
_								50 6		86 L	11 7	38 3	18 7	91.2	20.9
	90 C								75 6	01.0	11 6	38 1	28 3	9. 8	
								59 6	25 4	83 2	11 7	36 5	2 ' 9	91 6	24 7
	90 0								25 0	8.1	12 1	30 6	27 8	91 2	25 6
								60 1		19 5		39 8	2.1	88 8	26 3
								61.3	23 1	75 😠	117	38 4	25 9	"At- 1"	26 7
	9 0 0								33.4	73 6	11 ,1	3' 2	25 1	8.2 5	26 7
	97 0								21 7	71 3	10 9	35 9	24 3	70 8	26 6
	98 0	4" (3 156	U	4.3	3 14:	0	64 6	20 P	66 4	10.7	35 0	22 9	75 1	22.6

Table 35. Blade and Vane Element Porformance for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested, Design Point Throttle.

IMMER (%)	WHEFL SPLED	RFL. TURNING	LOSS*	LOSS PARA.	REL.	DIFF. FACT.	REI. MACII	INCID.	DEV. ANGLE
1.0 63, 2.0 63, 3.0 67, 4.0 67, 5.0 67, 10.0 67, 10.0 67, 20, 9 61, 30, 1 60, 50, 0 5, 80, 0 56, 90, 0 55,	SPLED S	TURNI MG ANGLE DEG 3,4 7,5 9,1 11,1 12,3 13,0 13,4 13,9 14,1 14,8 19,2 20,5 21,1 23,2	0.060 0.119 0.135 0.133 0.151 0.174 0.066 0.074 0.046 0.046 0.060 0.060 0.100 0.100	0, 100 0, 100 0, 100 0, 120 0, 130 0, 150 0, 150 0, 060 0, 040 0, 060 0, 060 0, 060 0, 060 0, 060 0, 060 0, 060 0, 060 0, 100	MACH NO. IN 0.160 0.160 0.160 0.169 0.168 0.166 0.166 0.166 0.156	0.500 0.561 0.572 0.572 0.505 0.584 0.583 0.470 0.455 0.455 0.515 0.515 0.515	MACII NO. 104 0.104 0.098 0.098 0.109 0.106 0.118 0.119 0.117 0.112 0.106 0.106 0.108	ANGLE DEG -5.0 -6.5 -7.4 -0.0 -8.5 -10.4 -10.7 -10.5 -10.0 -9.1 -8.8 -8.5 -3.0 -6.7 -5.8	ANGLE DEG 22.1 16.4 13.8 11.1 9.4 7.4 5.8 4.8 4.8 5.1 5.9 6.0 6.7 7.6 7.9 7.1
90,0 55 93.0 54 95.0 51 96.0 54 97.0 54		25.6 28.7 20.6 20.6	0.113 0.105 0.000 0.112 0.121 0.145	-0.10°	0 146 0 147 0,349 0 147	0,501 0,573 0,583 0,528 0,550 0,669	0,098 0,098 0,008 0,008	-5.8 -5.2 -3.3 -7.8	

TOTA ME % 8916.71 IN. 418.

* See Figure 88 and Table 31 for loss coefficients computed from relative total pressure measurements.

STATOR VANE ELEMENT PERFORMANCE

I MMER X	OHEFT. CRITED MDS FPS	ABS. TUPMING ANGLE DEG	ABS. MACH NO. IN	ABS HACH NO.	TMOTE. ANOTE DEO	DEG	LOSS COLE;	,	DIFF. FACT.
1.0 2.0 3.0 4.0 5.0 10.0 10.0 20.0 30.0 50.0 80.0 93.0	63.7 209 07 63.6 208.75 63.5 208.14 63.1 208.12 63.3 207.81 63.1 207.18 62.9 706.24 67.4 201.67 61.9 203.10 60.9 199.93 59.0 193.68 57.1 187.40 56.0 181.25 67.2 181.11 51.9 130.17	38.7 38.6 37.7 36.7 35.2 32.4 28.0 04.0 03.8 24.1 25.4 26.6 27.2 27.8	0,100 0,112 0,116 0,118 0,121 0,122 0,123 0,125 0,125 0,125	0,051 9,063 0,079 0,075 0,075 0,087 0,087 0,087 0,097 0,097 0,097 0,097 0,097 0,097	-4,8 4 9 -6 3 1 0	13.0 13.0 12.1 12.1 12.1 12.1 12.1 13.7 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	0.1215 0.1562 0.1510 0.1311 0.1014 0.0713 0.0713 0.0713	0,1201 0,1986 0,1493 0,1494 6,100 0,070 0,070 0,070 0,070 0,070 0,070 0,070 0,070 0,070 0,070	
95.0 95.0 96.0 97.0 98.0	51 7 1 9 51 51 6 179 23 51 5 179 2 54 1 178 51	76 <u>25</u> 6 26 8	0 131	0 00 0.00 0.00 0.073	4.	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*.	0.000 0.000 0.000 0.000 0.000

Table 36. Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested, Peak Efficiency Throttle.

IMMEP	WHEEL	REL.	1.088 *	1.088	REL.	DIFF.	REU. MACH	INCID.	DEV. ANGLE
(%)	SPFFD	TURNING	COLE	PARA.	MACH NO.	FACT	NO.	DEO	DEG
	MPS FPS	ANGLE DEG			IN.		OUT	••	
	64 6 211.85	3.4	0.019	0.016		0.535		~5.7	21.4
1.0	64,5 211,53	9.0	0.088		0.161		0.096	~6.5	14.9
3.0	61,1 211,23	11.9	0.125	0.113	0.163	0.622	0,095	-7.0	11.4
4.0	64.3 210 90	13.2	0 147	0.131	0.164	0.633	0,094	-7.7	9.3
5.0	64.2 210 58	14.1	0 168			0.639		-8.1	7.9
7.0	64.0 209 91	14.8	0.179			0,627		8.5	6.6
10.0	63.7 208 99	14.9	0.159			0,590		-8.9	5.8
15.0	63.2 207.40	15.1	0 .060			0,492		-9.1	5.2
20.0	62,7 205,80	15.5	0.036			0,474		-8.8	5.1
30.0	61.8 202.62	16.3	_ 0 . 028_	0.006	0.167		0.116		55
30.0	9,8 196,26		0.034	0,033	0,163	<u> </u>	0,110	-7.2 -6.7	6.4 6.9
70.0	57,9 189,89		0.065	0,062	0.158	0.535	0.000	-6.7 -5.1	7.5
80.0	56,9 186.71	23.0	0.076	0.073	0.154	0.555	0.005	-7.0	8.0
85.0	56,4 185,12	and the same of th	0.107			_0_576 _0_608			8.5
90.0	55.9 183 53		0.120	0,115	0.101	0.631	0.090		7.1
91.0	55.6 (82.57		0.109	0.100	0.149	0.634	0.088	-3.6	5.0
95,0	55,5 81 91		0,106	0,100	0.140	0.641	0.087	-3.4	4.1
90,0	55, 1 81 1		0,109	0.100	0.147	0.646	0.087		3.6
97.0	155,3 81 80 155 2 80 98		0.131	0.128		0.671			3.5
98.0	55 P 80 98	30 (1	0.101	C. (EV					

TORQUE = 9002 43 IN. LB.

STATOR VANE ELEMENT PURFORMANCE

LMMER	WHEFT.	ABS.	ABS.	ARS	NCIO	DEV.		LOSS	DIFF. FACT.
×	SPL 'D	TURNING	MACH	MACH	NOLE	AMOLE	COPP.	PARA.	r 401.
	MPS PS	ANGLE	NO.	NO	DEO	MG			
		DL G	1 N	our					
1.0	61 5 211,85	37.6	0.101	0 061	4 5	16 6			0.6265
2.0	6 : 5 211 53	36.7	0.114	0.004	3 1	15 6			0.6630
3.0	60.4 211 22	35 9	0 119	0.066	, G	15 2			0.6715
4 0	64, 3, 210, 90	35 5	0.172	0.076	2.3	118			0.6492
5.0	61 2 210 58	34,8	0.121	0.073	1.9	14 6	0 1867	0.1841	0.6287
7.0	64 0 200 02	33 1	0 1.24	0 (79)	8 9	1-1 1	•		0.5705
10.0	63 108 99	7 (1),	0.123	0.083	-10	13 4	0.0761	0 0751	0.5195
15.0	63 2 20 1.40	25. 3	0.123	0.085	5 '	1 . 0	0.0411	0.100	0.3720
20.0	62 200 80	25 8	0.1,22	0.086	5 9	भ ह	0 0313	- വ - ഗ്രഹദ	0 1670
30.0	61 9 102 62		0.123	0.00	.1 *	83 3	(i) 1.198	0.003	0 1645
50.0	59 8 196 26	· · · · · -	0 124	0.088	5 3	9 1	a as 2	0.083	0.4574
70.0	5: 9 119 89		0.126	ด ดยล	2.3	9 1	0 0000	in and	0.04 133
80.0	56 9 116 1	29 0	0 126	0.080	3 6	9 1	0.000	ar of the	6861 (1)
85 0	56 3 115 12	30 1		0.036	2.0	• • • • • • • • • • • • • • • • • • • •	10 354.13	3 1:9%	$\alpha \rho e^{\epsilon}$.
90 0	155 0 183 63		-	0.081	, ,	1 1 1	1 2404	0.00	0.2308
93 0	35 6 187 51			0.000	. 1		(i) 190	1000	0.1961
95 0	55 5 131 21		•	0 000			C + 100	7 10 12	0.5530
96 0	55 4 181 61	• •		0 00	, ,				0.5375
90 0	95 3 181 30			0 03	, , , , , , , , , , , , , , , , , , ,		ه ښو ه	0 8.5	0 6265
	- 55 2 180 98	31.6		0.0.0	10	1 1			0 0741
og o	(100 C 180) 118	31.0	() 1,1	(1 (1 1)	, ,	,			G - 17 - 1

^{*} See Figure 88 and Table 31 for loss coefficients computed from relative total pressure measurements.

Table 37. Blade and Vane Element Performance for Rotor A/Stator A, Four-Stage Configuration, First Stage Tested, Peak Pressure Rise and Near Stall Throttle.

RETOR DEADE FELMENT PERFORMANCE

EMMLE:	WHETU SOLEO	REL THRUTUG	LOSS [¥] COFF	LOSS PARA	REL. MACH	nter. Exer	REL. MACH	INCID.	DEV. ANOLE
	MPS FPS	AMOLE DEG			NO. IN		NO OUT	nêg	ni.g
1.0	43 7 202 12	10.3	0.184	0.106	0.158	0.023	0.006	-3.2	17.0
2.0	63 1 20 1 11	10 1	0.162	0.133	0.159	0.670	0.000	्य व	15,9
3 0	63 0 200 30	13 8	0.19	0.171	0 160	1 110	0.034	·5 2	11.3
4.0	60, 9, 200, 18	15.3	0,20;	0.164	0 161	0.217	0.084	~6.1	88
5.0	60 8 206 17	16.0	0.203	0.187	0.162	0.715	0,084	-6.6	7.5
7.0	62 7 205 55	15, 8	0.198	0.182	0.164	0.692	0.083	-7.2	6.9
10.0	iso in an con-	715 9	0.092	0.008	0.136	o GSC	ზი დეთ	-7.3	6.3
1.5	152 1 25 15	1.	0.109	0.10	3,106	A Sugar	0.10%	.7.3	5.9
40 6	61 1 201,50	1000	$\alpha, \alpha \cdot 2$	0.00	0.165	91 STZ	0 (11	~ 2.0	5.5
30 0	00 5 102 33	1	to to 3	0.002	0.16%	0.008	0.110	-6.4	5.8
56 0	53 4 19 15	1.4	$^{\circ}$ \mathbf{O}_{1} \mathbf{O}_{2} \mathbf{O}_{3}	0.023	L 159	n har	0 104	.5.3	7.2
70.0	Ass. 181 60	11.2	0.076	α, α^{α}	13 1155	0.1533	0.095	1.8	8.0
90.08	15 1 18 1 20	1000	\mathfrak{o}_{+} 000	n no	0.450	0 310	0.001		8.4
85., 0	44 0 181 0	, et al.	0.111	a tog	1,150	0.623	0.087	4.1.1	8.6
വവ	30 1 1 1 1 W	. 5.6	0.141	0.40	0.113	11 1, 16,	0.001	3.1	9,1
C3 (i	Garage Garage	20 1	0.00	(2-11-13	1 1 1		A 037	• •	6.0
15 0	Section to the	2,1 1	0 1, 1	0.022	-1.145	• •	ന്നുള്ള	·2 0	1.7
100	5.1 . 17		0.001	O at the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) A	0.081	1.9	3.9
67.0	301 4 1 2 51		To conti	n ac	1, 1,11	0.66	ัก กระ	1.3	3.5
98.0	F 1 (0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	frit o	0 4.4	3 11	0 1 1.1	0.000	0.673	-1.8	3.9

* See Figure 88 and Table 31 for loss conflictents computed from relative total pressure measurements.

SOURCE OF THE PROPERTY PROPERTY.

1:1,11:1:	200	Atte	A11 ,	ALIV,	Mr. 111	FA v	Fee 9	1000	0111
1.	$a^{*}(z; 0)$	111 .11 66	1156 11	91.00	15h J (April .	COLL	11.50	1.004.
	(1, 11) () ()	15 14	(.11)	Nic -	(1°) .	1 ()			
		1.6	1.61	. 1					
1 0	A CONTRACTOR	1	11 1 1 1	±1 +1 → +	. 1	. , .	and the t	0.1 1 11	4) 76, 6
	Contract to the first	٠,	O take	1 (12)	6 8	1 , ×	())	a 17.5	0 7 106
3 0		1 : 1	α^{-1}	15 , 16,	. 1	4 - 1	0.201	0.000	11 / 1952
.1 0	7.00	11 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 100	. (1)		11 11 17	F) * 1 * 1	0.00
5 0	. 8° 'C .	1,5	43	13 14 1			4.5	f -	10 7 6.1
2.0		52 11			2 1.				!
100	100 m 100 m 100 m 100 m 100 m	÷ + + + + + + + + + + + + + + + + + + +	0 1 1	. 1			•		
15 0	6	2016 1	a .	**					•
ה מנ	and the part of the	4)	43.0						
.00	3 3 3 1 1 B	21 (1	(1 1 ·						
:00	the state of the	, •	13 2 2	Observation	٠.		• •		٠,
α α			1.1			•		1 11 1	*.*
()	1 ve	•	48 17.00	1 .3 .1	5.14	•	1 to 1		· · · · a
<i>i</i> •		, 1 41	t) ·	300	(3 t)	1.	¥	1.00	9 19 19
	A	. (1		- 1	. 1	6.1	186 11	r.) .	
		1) : ·		, Y - C,		5 3 25	0.01	· · · · · · · · · · · · · · · · · · ·
* * 11	1 2 2 C	111 4	. 1	13 31 13	, .		4 200	April 600	COSTA
C) . (1	. 1	, ,	or a sec	$\alpha \rightarrow$	i	•	1.1	1.1	3 (1.74
V 1 13	1 1 1 1 1 1 1 1	* :	0.131	6-6-6	O C	•	t	0.00	01/2/03/11
55.0		31 .	0.036	1.30	(1-1)	1 :		1 1	3 7030

9.0 REFERENCES

- Wisler, D.C., "Core Compressor Exit Stage Study, Volume I Blading Design," NASA CR-135391, December 1977.
- 2. Wisler, D.C., Koch, C.C., and Smith, L.H., Jr., "Preliminary Design Study of Advanced Multistage Axial Flow Gore Compressors," NASA CR-135133, February 1977.
- 3. Koch, C.C., and Smith, L.H., Jr., "Loss Sources and Magnitudes in Axial-Flow Compressors," Transactions of ASME, Journal of Engineering for Power, Vol. 98, Series A, No. 3, July 1976, page 411.
- 4. Lakshminarayana, B., and Horlock, J.H., "Leakage and Secondary Flows in Compressor Cascades," R&M No. 3483, Dept. of Mechanical Engineering, University of Liverpool, London, England, March 1965.