

Naming Organic Molecules

Three Categories:

- 1. Naming Hydrocarbons
- 2. Cyclic Hydrocarbons
 - 3. Functional Groups

Hydrocarbons are the simplest of all organic compounds and contain ONLY carbon and hydrogen

Types of Hydrocarbons

1. Alkanes: hydrocarbons with only single bonds between

atoms

ex) Butane C₄ H₁₀

space filling model

ball and stick model

structural formula

$$\mathsf{CH}_3\mathsf{--}\mathsf{CH}_2\mathsf{--}\mathsf{CH}_2\mathsf{--}\mathsf{CH}_3$$

CH₃CH₂CH₂CH₃ chemical formula

Given the number of C atoms in an alkane, you can determine the molecular formula by utilizing the following relationship

 $C_n H_{2n+2}$

Thus, a 13-carbon alkane has a molecular formula of:

Isomers are molecules that have the same molecular formula but different structural formulas

Branched Alkanes

ex) Butane C₄ H₁₀

ex) Iso-Butane (aka Methyl-propane)

Isomers differ in physical properties that can be determined experimentally.

Naming Alkanes

- 1. Straight Chained Alkanes
- prefix to denote the number of carbon atoms + ending "ane"
- ex) $C_3 H_8 = propane$

Number of 'C' atoms	Word root	IUPAC name	Structure	Molecular formula
1	Meth	Methane	CH4	CH4
2	Eth	Ethane	СН3—СН3	С2Н6
3	Prop	Propane	СН3—СН2—СН3	СзН8
4	But	Butane	CH3—(CH2)2—CH3	C4H10
5	Pent	Pentane	СН3—(СН2)3—СН3	C5H12
6	Hex	Hexane	CH3—(CH2)4—CH3	C6H14
7	Hept	Heptane	СН3—(СН2)5—СН3	C7H16
8	0ct	Octane	СН3—(СН2)6—СН3	C8H18
9	Non	Nonane	СН3—(СН2)7—СН3	C9H20
10	Dec	Decane	СН3—(СН2)8—СН3	C ₁₀ H ₂₂

Naming Alkanes

Branched-Chain Alkanes

Parent Chain: Longest continuous chain of atoms

Substituent Groups: All side branches

Steps:

- 1. Count and label the number of atoms in the parent chain
- use this to determine parent chain name
- 2. Name each Alkyl substiuent group
- name using the same prefixes as the parent chain, but the ending becomes -yl instead of -ane

-methyl	-ethyl	-prophyl	-butyl	-pentyl
н	н н	ннн	нннн	ннннн
-¢-н	-¢-¢-н	-ç-ç-ç-н	-¢-¢-¢-ф-н	-¢-¢-¢-¢-+
н	н н	ннн	нннн	ннннн

- 3. If the Alkyl group occurs more than once as a branch on the parent structure, use a prefix (di, tri, tetra, etc) before its name to indicate how many times it appears
- 4. Whenever different Alkyl groups are attached to the same parent structure, place their names in *alphabetical order* (do not consider prefixes)
- 5. Write the entire name using hyphens to separate numbers from words and commas to separate numbers

Example 2

Hydrocarbons are said to be SATURATED it contains only single bonded. An UNSATURATED hydrocarbon has at least 1 double and/or triple bonds

2. Alkenes: hydrocarbons that contain 1 or more double bonds

Given the number of C atoms in an alkene, you can determine the molecular formula by utilizing the following relationship

$$C_n H_{2n}$$

Thus, a 9-carbon alkene has a molecular formula of:

Naming to specify the location of the double bond in an ALKENE

1. Use the same prefixes as when naming alkanes. However, ending now becomes "ene" not "ane"

ex: Propene

When there are more than 3 carbon atoms, we must specify where the double bond is in the molecule.

ex) 1-Butene

**1-Butene and 2-Butene are 2 different substances with their own properties.

***Numbering of the parent chain is determined by the location of the double bond(s)

Branched Alkenes:

- 1. the parent chain is always the longest chain the <u>contains a</u> double bond
- 2. the positions of the double bond determines how the chain is numbered (not the branches) give the carbons with the double bond(s) the lowest numbers possible
- 3. The number of double bonds is denoted by prefixes (di, tri,tetra, etc) before the suffix "ene"
- 4. Otherwise follow the same naming rules as alkanes

Example 1

$$\begin{array}{c} \operatorname{CH_3CH_2CH= CHCH= CCH_3} \\ \operatorname{I} \\ \operatorname{CH_3} \end{array}$$

Example 2

$$\begin{array}{c} \operatorname{CH_3CH} = \operatorname{CHCHCH_2CHCH_3} \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array}$$

3. Alkynes: unsaturated hydrocarbons that contain 1 or more triple bonds

ex: ethyne (aka Acetylene)

$$H-C\equiv C-H$$

Given the number of C atoms in an alkyne, you can determine the molecular formula by utilizing the following relationship

$$C_n H_{2n-2}$$

Thus, a 5-carbon alkene has a molecular formula of:

Naming an Alkyne is similar to naming an alkene

1. Use the same strategies as when naming alkenes. Only the suffix now becomes "yne" not "ene"

ex: Propyne
$$H-C\equiv C-C-H$$

Properties of Hydrocarbons:

T

Hydrocarbons have predictable properties determined by number of atoms and type of bonds.

1. Alkanes:

- Boiling point and melting point increase with number of C atoms
- dissolve in nonpolar substances (as we know a C-H bond is nonpolar)
- have lower melting and boiling points than polar molecules
- low reactivity (due to nonpolar and strong C-C and C-H bonds)
- combust with oxygen (common fuel source)

Properties of Hydrocarbons:

Hydrocarbons have predictable properties determined by number of atoms and type of bonds.

- 1. Alkenes:
- Boiling point and melting point increase with number of C atoms
- dissolve in nonpolar substances (as we know a C-H bond is nonpolar)
- Higher reactivity than alkanes due to double bonds, but still relatively unreactive
- are smelly (gives lemons/limes their scents)

Properties of Hydrocarbons:

- T
- Hydrocarbons have predictable properties determined by number of atoms and type of bonds.
- 1. Alkynes:
- Boiling point and melting point increase with number of C atoms
- dissolve in nonpolar substances (as we know a C-H bond is nonpolar)
- Higher reactivity than alkenes due to triple bonds, but still relatively unreactive

3.2 Assignment

- 1. Match each name in a-d below with the correct structure in e-h.
 - a. 3-ethyl-2-methylhexane
 - b. 3-ethyl-4-methylhexane

2. Write the names of the following alkanes

3. Distinguish between 1-butene and 2-butene by drawing their structural formulas.

- 4. Challenge! Which of the following would have the highest boiling point?
- a. butane
- b. ethene
- c. butanol

3.2 Assignment Cont...

5. Complete the following table

IUPAC Name	Complete Structural Formula	Condensed Chemical Formula
butane	H H H H 	C ₄ H ₁₀
2-methylhexane		
3-ethyl-2-methylnonane		
propene		
4-methyl-2-heptene		
ethyne		
5,6-dimethyl-2-octyne		

3.2 Assignment Cont...

6. Name the following hydrocarbons.

$$CH_{2}-CH_{3}\\ |\\ a) CH_{3}-CH-CH_{2}-CH-CH-CH_{3}\\ |\\ CH_{2} CH_{3}\\ |\\ CH_{3}$$

- d) CH = C-CH₃
- e) CH3-CH2-CH2-CH=CH-CH3
- f) CH₂=CH-CH₂-CH=CH-CH₃
- g) CH₃ CH₂ C ≡ C- CH₂- CH₃