Introduction to Reinforcement Learning

CS 285

Instructor: Sergey Levine

UC Berkeley

Terminology & notation

Imitation Learning

Images: Bojarski et al. '16, NVIDIA

Reward functions

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$: reward function

tells us which states and actions are better

high reward

low reward

Markov chain

$$\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$$

 \mathcal{S} – state space

 \mathcal{T} – transition operator

why "operator"?

states $s \in \mathcal{S}$ (discrete or continuous)

$$p(s_{t+1}|s_t)$$

let $\mu_{t,i} = p(s_t = i)$

let $\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$

Andrey Markov

 $\vec{\mu}_t$ is a vector of probabilities

then $\vec{\mu}_{t+1} = \mathcal{T}\vec{\mu}_t$

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

let
$$\mu_{t,j} = p(s_t = j)$$

let
$$\xi_{t,k} = p(a_t = k)$$

$$\mu_{t+1,i} = \sum_{j,k} \mathcal{T}_{i,j,k} \mu_{t,j} \xi_{t,k}$$

let
$$\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$$

Raioldaed Brealman

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

r – reward function

$$r: \mathcal{S} imes \mathcal{A} o \mathbb{R}$$

$$r(s_t, a_t)$$
 – reward

Richard Bellman

partially observed Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{O} – observation space

observations $o \in \mathcal{O}$ (discrete or continuous)

 \mathcal{T} – transition operator (like before)

 \mathcal{E} – emission probability $p(o_t|s_t)$

r – reward function

$$r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$$

The goal of reinforcement learning

The goal of reinforcement learning

The goal of reinforcement learning

Finite horizon case: state-action marginal

Infinite horizon case: stationary distribution

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

what if $T = \infty$?

stationary = the same before and after transition

$$(\mathcal{T} - \mathbf{I})\mu = 0$$

 μ is eigenvector of \mathcal{T} with eigenvalue 1!

(always exists under some regularity conditions)

$$\mu = p_{ heta}(\mathbf{s}, \mathbf{a})$$
 stationary distribution

Infinite horizon case: stationary distribution

$$\theta^* = \arg\max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)] \to E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a})]$$
(in the limit as $T \to \infty$)

what if $T = \infty$?

does $p(\mathbf{s}_t, \mathbf{a}_t)$ converge to a stationary distribution?

 $\mu = \mathcal{T}\mu$ stationary = the same before and after transition

$$(\mathcal{T} - \mathbf{I})\mu = 0$$

•

 $\mu = p_{ heta}(\mathbf{s}, \mathbf{a})$ stationary distribution

 μ is eigenvector of \mathcal{T} with eigenvalue 1!

(always exists under some regularity conditions)

 $\begin{array}{c|c}
\hline
 \mathbf{a}_1 \\
\hline
 \mathbf{s}_1
\end{array}
\longrightarrow
\begin{array}{c|c}
\hline
 \mathbf{a}_2 \\
\hline
 \mathbf{s}_2
\end{array}
\longrightarrow
\begin{array}{c|c}
\hline
 \mathbf{a}_3 \\
\hline
 \mathbf{s}_3
\end{array}$

state-action transition operator

$$\begin{array}{c|c} \bullet & \begin{array}{|c|c|c|} \hline (\mathbf{a}_3) & & & \\ \hline (\mathbf{s}_3) & \begin{pmatrix} \mathbf{s}_{t+1} \\ \mathbf{a}_{t+1} \end{pmatrix} = \mathcal{T} \begin{pmatrix} \mathbf{s}_t \\ \mathbf{a}_t \end{pmatrix} & \begin{pmatrix} \mathbf{s}_{t+k} \\ \mathbf{a}_{t+k} \end{pmatrix} = \mathcal{T}^k \begin{pmatrix} \mathbf{s}_t \\ \mathbf{a}_t \end{pmatrix} \end{array}$$

Expectations and stochastic systems

$$\theta^{\star} = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})]$$

$$\theta^{\star} = \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})}[r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$
 infinite horizon case

In RL, we almost always care about expectations

$$r(\mathbf{x})$$
 – not smooth
$$\pi_{\theta}(\mathbf{a} = \text{fall}) = \theta$$

$$E_{\pi_{\theta}}[r(\mathbf{x})] - smooth \text{ in } \theta!$$

Algorithms

The anatomy of a reinforcement learning algorithm

A simple example

Another example: RL by backprop

Which parts are expensive?

MuJoCo simulator: up to 10000x real time

 $J(\theta) = E_{\pi} \left| \sum_{t} r_{t} \right| \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t} r_{t}^{i}$ trivial, fast fit a model/

> learn $\mathbf{s}_{t+1} \approx f_{\phi}(\mathbf{s}_t, \mathbf{a}_t)$ expensive

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

improve the policy

backprop through f_{ϕ} and r to train $\pi_{\theta}(\mathbf{s}_t) = \mathbf{a}_t$

Value Functions

How do we deal with all these expectations?

$$E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

$$E_{\mathbf{s}_{1} \sim p(\mathbf{s}_{1})} \left[E_{\mathbf{a}_{1} \sim \pi(\mathbf{a}_{1} | \mathbf{s}_{1})} \left[r(\mathbf{s}_{1}, \mathbf{a}_{1}) + E_{\mathbf{s}_{2} \sim p(\mathbf{s}_{2} | \mathbf{s}_{1}, \mathbf{a}_{1})} \left[E_{\mathbf{a}_{2} \sim \pi(\mathbf{a}_{2} | \mathbf{s}_{2})} \left[r(\mathbf{s}_{2}, \mathbf{a}_{2}) + \ldots | \mathbf{s}_{2} \right] | \mathbf{s}_{1}, \mathbf{a}_{1} \right] \right]$$

$$\text{what if we knew this part?}$$

$$Q(\mathbf{s}_{1}, \mathbf{a}_{1}) = r(\mathbf{s}_{1}, \mathbf{a}_{1}) + \underbrace{E_{\mathbf{s}_{2} \sim p(\mathbf{s}_{2} | \mathbf{s}_{1}, \mathbf{a}_{1})} \left[E_{\mathbf{a}_{2} \sim \pi(\mathbf{a}_{2} | \mathbf{s}_{2})} \left[r(\mathbf{s}_{2}, \mathbf{a}_{2}) + \ldots | \mathbf{s}_{2} \right] | \mathbf{s}_{1}, \mathbf{a}_{1} \right]}}_{E_{\tau \sim p_{\theta}(\tau)}} \left[\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = \underbrace{E_{\mathbf{s}_{1} \sim p(\mathbf{s}_{1})} \left[E_{\mathbf{a}_{1} \sim \pi(\mathbf{a}_{1} | \mathbf{s}_{1})} \left[Q(\mathbf{s}_{1}, \mathbf{a}_{1}) | \mathbf{s}_{1} \right] \right]}_{easy to modify} \underbrace{\pi_{\theta}(\mathbf{a}_{1} | \mathbf{s}_{1}) \text{ if } Q(\mathbf{s}_{1}, \mathbf{a}_{1}) \text{ is known!}}_{example:} \underbrace{\pi(\mathbf{a}_{1} | \mathbf{s}_{1}) = 1 \text{ if } \mathbf{a}_{1} = \arg\max_{\mathbf{a}_{1}} Q(\mathbf{s}_{1}, \mathbf{a}_{1})}_{\mathbf{a}_{1}}$$

Definition: Q-function

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]: \text{ total reward from taking } \mathbf{a}_t \text{ in } \mathbf{s}_t$$

Definition: value function

$$V^{\pi}(\mathbf{s}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}]: \text{ total reward from } \mathbf{s}_{t}$$

$$\underline{V^{\pi}(\mathbf{s}_{t}) = E_{\mathbf{a}_{t} \sim \pi(\mathbf{a}_{t} | \mathbf{s}_{t})} [Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t})]}$$

$$\underline{E_{\mathbf{s}_{1} \sim p(\mathbf{s}_{1})} [V^{\pi}(\mathbf{s}_{1})] \text{ is the RL objective!}}$$

Using Q-functions and value functions

Idea 1: if we have policy π , and we know $Q^{\pi}(\mathbf{s}, \mathbf{a})$, then we can improve π :

set
$$\pi'(\mathbf{a}|\mathbf{s}) = 1$$
 if $\mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

this policy is at least as good as π (and probably better)!

and it doesn't matter what π i

if
$$Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$$
, then **a** is better than average (recall that $\underline{V^{\pi}(\mathbf{s})} = E[Q^{\pi}(\mathbf{s}, \mathbf{a})]$ under $\pi(\mathbf{a}|\mathbf{s})$)

modify $\pi(\mathbf{a}|\mathbf{s})$ to increase probability of \mathbf{a} if $Q^{\pi}(\mathbf{s},\mathbf{a}) > V^{\pi}(\mathbf{s})$

These ideas are *very* important in RL; we'll revisit them again and again!

The anatomy of a reinforcement learning algorithm

Types of Algorithms

Types of RL algorithms

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

- Policy gradients: directly differentiate the above objective
- Value-based: estimate <u>value function or Q</u>-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then...
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
 - Something else

Model-based RL algorithms

Model-based RL algorithms

improve the policy

a few options

- 1. Just use the model to plan (no policy)
 - Trajectory optimization/optimal control (primarily in continuous spaces) essentially backpropagation to optimize over actions
 - Discrete planning in discrete action spaces e.g., Monte Carlo tree search
- 2. Backpropagate gradients into the policy
 - Requires some tricks to make it work
- 3. Use the model to learn a value function
 - Dynamic programming
 - Generate simulated experience for model-free learner

Value function based algorithms

Direct policy gradients

Actor-critic: value functions + policy gradients

Tradeoffs Between Algorithms

Why so many RL algorithms?

- Different tradeoffs
 - Sample efficiency
 - Stability & ease of use
- Different assumptions
 - Stochastic or deterministic?
 - Continuous or discrete?
 - Episodic or infinite horizon?
- Different things are easy or hard in different settings
 - Easier to represent the policy? \(\sqrt{} \)
 - Easier to represent the model?

Comparison: sample efficiency

- <u>Sample efficiency = how many samples</u> do we need to get a good policy?
- Most important question: is the algorithm off policy?
 - Off policy: able to improve the policy without generating new samples from that policy
 - On policy: each time the policy is changed, even a little bit, we need to generate new samples

just one gradient step

Comparison: sample efficiency

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

- Does it converge?
- And if it converges, to what?
- And does it converge every time?

Why is any of this even a question???

- Supervised learning: almost always gradient descent
- Reinforcement learning: often *not* gradient descent
 - Q-learning: fixed point iteration \
 - Model-based RL: model is not optimized for expected reward
 - Policy gradient: *is* gradient descent, but also often the least efficient!

Comparison: stability and ease of use

- Value function fitting
 - At best, minimizes error of fit ("Bellman error")
 - Not the same as expected reward
 - At worst, doesn't optimize anything
 - Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in the nonlinear case
- Model-based RL
 - Model minimizes error of fit
 - This will converge
 - No guarantee that better model = better policy
- Policy gradient
 - The only one that actually performs gradient descent (ascent) on the true objective

Comparison: assumptions

- Common assumption #1: full observability
 - Generally assumed by value function fitting methods
 - Can be mitigated by adding recurrence
- Common assumption #2: episodic learning
 - Often assumed by pure policy gradient methods
 - Assumed by some model-based RL methods
- Common assumption #3: continuity or smoothness
 - Assumed by some continuous value function learning methods
 - Often assumed by some model-based RL methods

Examples of Algorithms

Examples of specific algorithms

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization
- Actor-critic algorithms
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)
- Model-based RL algorithms
 - Dyna
 - Guided policy search

Example 1: Atari games with Q-functions

- Playing Atari with deep reinforcement learning, Mnih et al. '13
- Q-learning with convolutional neural networks

Example 2: robots and model-based RL

End-to-end training of deep visuomotor policies, L.*, Finn*'16

 Guided policy search (model-based RL) for image-based robotic manipulation

Various Experiments

Including the policy input

Example 3: walking with policy gradients

- High-dimensional continuous control with generalized advantage estimation, Schulman et al. '16
- Trust region policy optimization with value function approximation

Iteration 0

Example 4: robotic grasping with Q-functions

- QT-Opt, Kalashnikov et al. '18
- Q-learning from images for real-world robotic grasping

