CHEMISTRY DEPARTMENT 2023 S.6 BRAINSTORMING TEST

TOPIC; PHYSICAL EQUILIBRIA

SUB-TOPIC; IMMISCIBLE LIQUID MIXTURES **PART TWO**; <u>DISTRIBUTION COEFFICIENT</u>

NAME		INDEX number			
Signature expected score(%)					
Instructions;	Attempt all questions in	this paper.			
	SECTION A				
·	the partition law		(01 mark)		
(ii) State two	conditions under which t	he law is valid?	(01 mark)		
(ii) Define t	the term partition coeffi	cient.	(01 mark)		
	application of the partit				

(c) Describe an experiment to determine the partition coefficient of				
ammonia between water and trichloromethane.	(05 marks)			
	• • • • • • • • • • • • • • • • • • • •			
	• • • • • • • • • • • • • • • • • • • •			
	• • • • • • • • • • • • • • • • • • • •			
trichloromethane in a separating funnel. After the layers had settled, 20cm ³ of the trichloromethane lapipetted and titrated with 0.05M hydrochloric acid. 22.90cm ³ was required for complete neutralisation. (i) Write the expression for the partition coefficient, K _D , for a	of the acid			
between water and trichloromethane.	(01 mark)			
ii) Calculate the value of the partition coefficient.	(04 marks)			
	• • • • • • • • • • • • • • • • • • • •			
	• • • • • • • • • • • • • • • • • • • •			

2. (a) The table below shows the concentrations of iodine in the two layers shaken with a mixture of carbon tetrachloride and water at 25° c.

Concentration of iodine in CCl ₄ (moldm ³)	6.12	12.24	15.20	22.38
Concentration of water in CCl4	0.072	0.143	0.178	0.260
(moldm ³)				

(i) Plot a graph of concentration of iodine in carbon tetrachloride again			
concentration of iodine in water.	(03 marks)		
(ii) From the graph determine the partition coefficient for iodin			
distributed between carbon tetrachloride and water.	(02 marks)		
3. (a) (i) What is meant by the term solvent extraction	(01 mark)		
	(== ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(::\ C+-+- + ::+-+:	(01		
(ii) State two limitations of solvent extraction	(01 mark)		
(iii) Explain why small portions of solvent are preferred to large	•		
solvent extraction of solute.	(01 mark)		
(iv)State two applications of solvent extraction.	(01 mark)		

	4. Calculate the mass of an organic compound, Q that can be extracted from 100cm^3 of an aqueous solution containing 5.0g of Q by using; (Kb of Q between ether and water is 3)				
a) 1	00cm³ of ether	(02 marks)			
 	we successive postions of 50cm ³ of other	(Od manks)			
	wo successive portions of 50cm³ of ether.	(04 marks)			
(c)	Comment on your results above.	(01 mark)			
(d)	State two reasons why Ether is usually preferred as	an extracting			
solv	vent in solvent extraction experiments.	(01 mark)			
amn At a	Excess ammonia was shaken with equal volume of to 05M aqueous solution of copper (II) sulphate and all nonia reacted with copper (II) ions to form a comple equilibrium, the concentrations of ammonia in the trieous layers were 0.021M and 0.725M respectively. for ammonia between water and trichloromethane:	owed to stand. Some x , $[(NH3)]^{2+}$. chloromethane and			

(a) Calcula	te the concentration of; (i) free ammonia in the a	rueous la	ver		(02 n	narks)	
	(i) free ammonia in the a	queous iu	, Ci .		(02 1	nai No)	
					••••		
	(ii) ammonia that formed	a comple	x with	coppe	~(II) id	ons. (0	2mks)
					• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		•••••		
		•••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
	(b) Determine the value (of n in the	e comp	olex.		(02 m	narks)
		•••••••	• • • • • • • • • • • • • • • • • • • •		•••••		••••••
6. Cobalt (II) ions form a complex, $[Co(NH3)n]^{2+}$, with ammonia solution.							
The table below shows the results of partition of ammonia between 0.1M cobalt (II) sulphate and trichloromethane.							
	•	T	T	T	Г	Г	Г
Concentra CoSO ₄	tion of NH 3 in 0.1M	0.72	0.94	1.19	1.43	1.70	1.92
	tion of NH3 in CHCl3	0.01	0.03	0.05	0.07	0.09	0.11
(i) Plot a graph of [NH3] in 0.1M CoSO4 against [NH3] in CHCl ₃ (03 marks)							
(ii) Determine the value of n in the complex.				(02 marks)			

8g of an ore of zinc was dissolved in excess ammonia and the resultant solution was diluted to one litre with water, shaken with trichloromethane and left to settle. 50cm³ of the trichloromethane layer required 25cm³ of 0.05M hydrochloric acid for complete neutralisation, while 25cm3 of the aqueous layer required 40cm³ of 0.5M hydrochloric acid. (The partition coefficient for ammonia between water and CHCl3 is 25) Calculate the (i) Concentration of zinc ions in the complex (ii) Percentage of zinc in the ore END.