# **Loan Approval Prediction**

This is a Binary Classification problem. We must correctly classify whether a loan will be approved or denied based on the given features.

#### **Processed Data**

Modified Data had a shape of (514,17) along with:

| • | Number of Integer-Categorical Columns | = 7 |
|---|---------------------------------------|-----|
| • | Number of String-Categorical Columns  | = 6 |
| • | Number of String-Boolean Columns      | = 1 |
| • | Number of Numeric-Boolean Columns     | = 1 |
| • | Number of ID Columns                  | = 1 |

The Features are grouped in Numerical and Categorical variable:

| Numerical Features   | LoanPayoffPeriodInMonths                            |  |  |
|----------------------|-----------------------------------------------------|--|--|
|                      | RequestedAmount                                     |  |  |
|                      | InterestRate                                        |  |  |
|                      | YearsAtCurrentEmployer                              |  |  |
|                      | <ul> <li>YearsInCurrentResidence</li> </ul>         |  |  |
|                      | • Age                                               |  |  |
|                      | <ul> <li>NumberOfDependantsIncludingSelf</li> </ul> |  |  |
|                      | <ul> <li>CurrentOpenLoanApplications</li> </ul>     |  |  |
| Categorical Features | LoanReason                                          |  |  |
|                      | Co-Applicant                                        |  |  |
|                      | <ul> <li>RentOrOwnHome</li> </ul>                   |  |  |
|                      | <ul> <li>TypeOfCurrentEmployment</li> </ul>         |  |  |
|                      | <ul> <li>CheckingAccountBalance</li> </ul>          |  |  |
|                      | <ul> <li>DebtsPaid</li> </ul>                       |  |  |
|                      | <ul> <li>SavingsAccountBalance</li> </ul>           |  |  |
| Target               | WasTheLoanApproved                                  |  |  |

The given data set was imbalanced with 'Loan Approved' being the majority class

# **Univariate and Bivariate Analysis**

| Variable           | Туре                 | Comments                                                    |
|--------------------|----------------------|-------------------------------------------------------------|
| WasTheLoanApproved | Dependent variable   | 67% of people had their loans approved                      |
| RequestedAmount    | Independent variable | Mean value of 4000, values lie in the range of (1024-18400) |
| InterestRate       | Independent variable | Mode value of 2, values lie in the range of range (0-4)     |
| Age                | Independent variable | Mean value of 36 and values lie in the range of (19 to 75)  |

#### Analysis of 'CheckingAccountBalance' with Target Variable: 'WasTheLoanApproved'



#### Analysis of 'SavingsAccountBalance' with Target Variable: 'WasTheLoanApproved'



<u>Analysis of 'LoanReason' with Target Variable: 'WasTheLoanApproved'</u>



#### Analysis of 'LoanPayoffPeriodInMonths' with Target Variable: 'WasTheLoanApproved'



#### **Correaltion Matrix between different features**



#### From the Correaltion Matrix we can infer that:

- Loan pay off periods in months is correlated with Requested Amount
- Loan pay off periods in months is correlated with Interstate
- Years at Employer is correlated with Years in Current residence
- Years at Employer is correlated with Age
- · Years in Current residence is correlated with Age

### **Model Building and Feature Engineering**

From Feature selection algorithm the *important features* were:

- CheckingAccountBalance
- LoanPayoffPeriodInMonths
- RequestedAmount
- SavingsAccountBalance
- CurrentOpenLoanApplication
- Age
- YearsAtCurrentEmployer
- LoanReason

For model validation, I used accuracy, precision, and recall.

The best base line accuracy was for XgBoost which had the highest accuracy of close to 69%

After up-sampling and scaling, the ensemble voting model of "XGB", "RF", "DT", "ADB", "GB" showed an accuracy of 80%

#### **Submission Files:**

- 1) Data.csv
- 2) Model\_experimentation.ipynb
- 3) Data\_explore.ipynb
- 4) Preprocessing.ipynb

## **Assumptions:**

I used inner join of the .tsv files to avoid data imputation problem. The data had 515 rows for training/testing.