本章教材习题全解

9-1 习题

1. 构造出所有长度为 2 的二进制编码。找出能检查出单错的编码。是否存在能纠正单错的编码,为什么?

解:长度为2的二进制编码有15个,表示如下:

 $C_1 = \{00\}, C_2 = \{01\}, C_3 = \{10\}, C_4 = \{11\}, C_5 = \{00,01\}, C_6 = \{00,10\}, C_7 = \{00,11\}, C_8 = \{01,10\}, C_9 = \{01,11\}, C_{10} = \{10,11\}, C_{11} = \{00,01,10\}, C_{12} = \{00,01,11\}, C_{13} = \{00,10,11\}, C_{14} = \{01,10,11\}, C_{15} = \{00,01,11\}, C_{17} = \{00,01,11\}, C_{18} = \{00,01,11\}, C_{19} = \{00,$

码 C_1 , C_2 , C_3 , C_4 中只有一个码字, 若出错得到是废码, 因此这四个码都能纠错。

码 C₇,C₈ 的海明距为 2,能查出单错,不能纠单错。

码 C₅, C₆, C₉, C₁₀, C₁₁, C₁₂, C₁₃, C₁₄, C₁₅ 的海明距是 1, 不能查出单错。

2. 写出下列单词的五单位电传码和 3:4 码:CHINA, SHANGHAI。

解:五单位电传码为:

3:4码为:

- 3. 已知字母 0,1 正确传送的概率是 0.98,试求
- a) CHINA 的五单位电传码只在前三位出错的概率;
- b) CHINA 的五单位电传码中有一位出错的概率。
- 解: 五单位电传码中每个字母用五位二进制表示,故 CHINA 的五单位电传码长 25 位。 a) 前三位出错概率:

 $(1-0.98)^3(0.98)^{22} \approx 5.13 \times 10^{-6}$

$$\binom{25}{1}$$
 (1 – 0.98) (0.98)²⁴ \approx 0.307 9

4. 一个字长十位的码字在传送过程中要求两位出错的概率不超过 10^{-3} ,试求字母正确传送的概率。

解:设字母正确传送的概率为 p,由字长十位码字两位出错的概率不超过 10⁻³,得

$$\binom{10}{2}(1-p)^8p^2 \leqslant 10^{-3}$$

解得 p≥ 0.9953。

9-2 习题

1. 给定码 $C = \{00000, 10001, 01100, 10101\}$, 试求码 C 中任两个码字的海明距和 $d_{\min}(C)$ 。

解: H(00000,10001) = 2, H(00000,01100) = 2, H(00000,10101) = 3, H(10001,01100) = 4, H(10001,10101) = 1, H(01100,10101) = 3, $d_{\min}(C) = 1$.

2. 设X、Y、Z是线性码C中三个不同的码字,写出H(X,Y)+H(Y,Z)=H(X,Z)的充要条件,并加以证明。

证明: 令 $X = x_1 x_2 \cdots x_n, Y = y_1 y_2 \cdots y_n, Z = z_1 z_2 \cdots z_n,$ 则

$$H(X,Y) = (x_1 + y_1) + (x_2 + y_2) + \cdots + (x_n + y_n),$$

$$H(Y,Z) = (y_1 + z_1) + (y_2 + z_2) + \cdots + (y_n + z_n),$$

$$H(X,Z) = (x_1 + z_1) + (x_2 + z_2) + \cdots + (x_n + z_n),$$

使 H(X,Y) + H(Y,Z) = H(X,Z) 成立的充要条件是对每个 $i(1 \le i \le n)$

有
$$(x_i + y_i) + (y_i + z_i) = x_i + z_i$$
。

易知当 $x_i = z_i$ 时,必须有 $x_i = y_i = z_i$,

当 $x_i \neq z_i$ 时, y_i 可为任意值。

故而等式成立的充要条件是如果码字 X 与码字 Z 的某一位码元相同,那么码字 Y 的该位码元也与 X 的对应位码元相同。

3. 证明字长不超过 2k 的码不能纠k 个错。字长不超过 k 的码不能查k 个错。

证明:字长不超过 2k 的码极小距不超过 2k,由定理 9-2.4 知,不能查 k 个错。

字长不超过 k 的码的极小距不超过 k,由定理 9-2.3 可知,不能检 k 个错。

4. 给定线性码 C,如果 $d_{\min}(C) \ge k + k' + 1(k' \ge k)$,则码 C 能查 k' 个错且能纠 k^{\min} 个错。请构造一个能纠单错且能查出两个错的线性码。

证明: $d_{min}(C) \geqslant k + k' + 1 \geqslant k' + 1$,故 c 能查 k' 个错,又因为 $k' \geqslant k$, $d_{min}(C) \geqslant k + k' + 1 \geqslant 2k + 1$,故 c 能纠 k 个错。

给定码 $C = \{0000, 1111\}$,其中前三位 c_1, c_2, c_3 是信息位,第四位 c_4 是校验位,由 $c_1 + c_2 + c_3 + c_4 = 0$ 知 C 是线性码, $d_{\min}(C) = 4 = 1 + 2 + 1$,k = 1, k' = 2 能查两个错,纠单错。

9-3 习题

				表 9-2	2				
	信息位 校验位								
C_1	C_2	C_3	C_4	C ₅	C6	C_{7}	C_8	C_1	
0	0	0	0	0	0	0	0	0	
0	0	0	0	1	1	0	1	0	
0	0	0	1	0	- 0	1	1	0	
0	0	0	1	1	1	1	0	0	
-0	0	1	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	0	1	1	0	1	1	1	1	
0	0	1	1	1	0	1	0	1	
0	1	0	0	0	0	1	0	1	
0	1	0	0	1	1	1	1	1	
0	1	0	1	0	0	0	1	1	
. 0	1	0	1	1	1	0	0	1	
0	1	1	0	0	1	1	0	0	
0	. 1	1	0	1	0	1	1	0	
0	1	1	1	0	1	0	1	0	
0	1	1	1	1	0	0	0	0	
1	0	0	0	0	0	0	1	1	
1	0	0	0	1	1	0	0	1	
1	0	0	1	0	0	1	0	1	
1	0	0	1	1	1	1	1	1	
1	0	1	0	0	1	0	1	0	
1	0	1	0	1	0	0	0	0	
- 1	0	1	1	0	1	1	0	0	
1	0	1	1	1	0	1	1	0	
1	1	0	0	0	0	1	1	0	
1	1	0	0	1	1	1	0	0	
1	1	0	1	0	0	0	0	0	
1	1	0	1	1	1	0	1	0	
1	1	1	0	0	1	1	1	1	
1	1	1	0	1	0	1	0	1	
1	1	1	1	0	1 1	0	0	1	
1	1	1	1	1	0	0	1	1	

2. 设C是一个线性分组码,它同时具有偶数重量和奇数重量的码字。证明:偶数重量码字的数目等于奇数重量码字的数目。

证明: 给定线性分给码 C,字长为 n,任取码字 A, $B \in C$,令 $A = a_1 a_2 \cdots a_n$, $B = b_1 b_2 \cdots b_n$,因为C为线性码,所以有 $a_1 + a_2 + \cdots + a_n = 0$, $b_1 + b_2 + \cdots + b_n = 0$,从而有 $(a_1 + b_1) + (a_2 + b_2) + \cdots + (a_n + b_n) = 0$,即 $A + B \in C$,所以线性码中任意两码字之和也是线性码。

设码字 A 与 B 中有 $a_{i_1} = b_{i_1} = 1, \cdots, a_{i_k} = b_{i_k} = 1$,虽然有 W(A+B) = W(A) + W(B) - 2k,记 G 中重量为偶数的码字组成的集合为 $M = \{M_1, \cdots, M_i\}$,重量为奇数的码字组成的集合为 $N = \{N_1, \cdots, N_j\}$,那么 $N_1 + M_1 \cdots N_1 + M_j \in N$, $i \leq j$ 同理, $M_1 + N_1, \cdots, M_1 + N_j \in M$, $j \leq i$ 从而,i = j,码 C 中重量为偶数的码字表数目等于重量为奇数的码字数目。

3. 考察一个(8, 4) 码 C, 它的校验位 a5, a6, a7, a8 满足下列方程:

$$a_5 = a_1 + a_2 + a_4$$
,

$$a_6 = a_1 + a_3 + a_4$$
,

$$a_7 = a_1 + a_2 + a_3$$
,

$$a_8 = a_2 + a_3 + a_4$$
,

其中, a_1 , a_2 , a_3 , a_4 为信息位。求出这个码的一致校验矩阵。证明: $\min_{X \in \mathcal{C}} W(X) = 4$ 。

证明: 把方程用矩阵形式改写为:

$$(a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8) \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{0}$$

一致校验矩阵为:

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

H 中无零列向量,任意两个列向量之和不为零向量,任意三个列向量之和不等于零,而第 1,2,6,8 列向量之和为零向量,故 $\min_{X \in C} W(X) = 4$ 。

4. 写出教材例 3 中一致校验矩阵 H_1 的(7, 3) 码中所有的码字,并求出此码中非零码字的最小重量。

解:对应的(7,3)码的校验位与信息位的关系式为:

 $\begin{cases} a_4 = a_1 \\ a_5 = a_1 + a_2 \end{cases}$

 $a_6 = a_2 + a_3$

 $a_7 = a_3$

(7,3)码如表9-3所示。

表 9-3

码字		信息位			校验位			
的于	a_1	a_2	a_3	a4	a_5	a_6	a ₇	
C_1	0	0	0	0	0	0	0	
C ₂	0	0	1	0	0	1	1	
C ₃	0	1	0	0	1	1	0	
C4	0	1	1	0	1	0	1	
C ₅	1	0	0	1	1	0	0	
C_6	1	0	1	1	1	1	1	
C7	-1	1	0	1	0	1	0	
C ₈	1	1	1	1	0	0	1	

非零码字的最小重量为

 $W(C_2) = W(C_3) = W(C_5) = 3$

- 5. 求出海明码中校验位数不超过信息位数的最小信息位数。
- 解:信息位长 x,校验位长 y,应满足关系式:

$$x \leqslant 2^{y} - y - 1,$$

 $y \leqslant x$

则 $x_{min}=3$ 。

即最小信息位数为3。

9-4 习题

1. 给定字长 n 位的海明码 C ,证明 $: e_{i} \notin C \cup (e_{1} \oplus C) \cup (e_{2} \oplus C) \cup \cdots \cup (e_{j-1} \oplus C)$,其中 $, e_{i} = \underbrace{0\cdots010\cdots0}_{}$,1 恰在第 i 位 $, 1 \leq i \leq n$ 。

n

- 证明:由海明码能纠单错知,C 中非零码字的重量 $\geqslant 2 \times 1 + 1 = 3$,又 $W(e_j) = 1$, 所以 $e_j \notin C$,若 $e_j \notin e_k \oplus C$ ($1 \leqslant k \leqslant j 1$),则有 $X \in C$,使得 $e_j = e_k \oplus X$, $X = e_j \oplus e_k$,W(x) = 2,与 C 中非零码字重量 $\geqslant 3$ 矛盾,所以, $e_j \notin e_k \oplus C$ 从而 $e_j \notin C \cup (e_1 \oplus C) \cup (e_2 \oplus C) \cup \cdots \cup (e_{j-1} \oplus C)$ 。
- 2. 给定(7,4)码,它的一致校验矩阵是

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

构造译码表,并求接收字 1000111,0110010 和 1111111 的发送字。 解:(7,4) 码为表 9-4 所示。

mbo	-		A
कर	7	******	4

			AC 7 4					
	信息位				校验位			
C_1	C ₂	C ₃	C ₄	C ₅	C_6	C ₇		
0	0	0	0	0	0	0		
0	0	0	1	0	1	-1		
0	0	1	0	1	0	1		
0	0	1	1	1	1	0		
0	1011	0	0	1	1	0		
0	1	0	1	1	0	1		
0	1	1	0	0	1	1		
0	1	1	1	0	0	0		
1	0	0	0	1	1	1		
1	0	0	1	1	0	0		
1	0	1	0	0	1	0		
1	0	1	1 1	0	0	1		
1	1	0	0	0	0	1		
1	1	. 0	1	0	1	0		
1	id 1	1912	0	1	0	0		
1	1	1	1	1	1	1		

译码表为9-5所示。

表 9-5

0000000	0001011	0010101	0011110	0100110	0101101	0110011	0111000
0000001	0001010	0010100	0011111	0100111	0101100	0110010	0111001
0000010	0001001	0010111	0011100	0100100	0101111	0110001	0111010
0000100	0001111	0010001	0011010	0100010	0101001	0110111	0111100
0001000	0000011	0011101	0010110	0101110	0100101	0111011	0110000
0010000	0011011	0000101	0001110	0110110	0111101	0100011	0101000
0100000	0101011	0110101	0111110	0000110	0001101	0010011	0011000
1000000	1001011	1010101	1011110	1100110	1101101	1110011	1111000

1000111	1001100	1010010	1011001	1100001	1101010	1110100	1111111
1000110	1001101	1010011	1011000	1100000	1101011	1110101	1111110
1000101	1001110	1010000	1011011	1100011	1101000	1110110	1111101
1000011	1001000	1010110	1011101	1100101	1101110	1110000	1111011
1001111	1000100	1011010	1010001	1101001	1100010	1111100	1110111
1010111	1011100	1000010	1001001	1110001	1111010	1100100	1101111
1100111	1101100	1110010	1111001	1000001	1001010	1010100	1011111
0000111	0001100	0010010	0011001	0100001	0101010	0110100	0111111
	-			1	1	The second secon	

接收字 1000111,0110010 和 1111111 的发送字分别为 1000111,0110011, 1111111。该码只能单纠错。

3. 给定码 $C = \{00000,11111\}$,证明:它是一个群码,并能纠两个传送错误。构造译码表,确定接收字为 00101,01110,11011,01011 和 11111 的发送字。

证明: $00000 \oplus 00000 = 00000 \in C$, $00000 \oplus 11111 = 111111 \in C$,

 $11111 \oplus 11111 = 00000 \in C, 111111 \oplus 00000 = 11111 \in C,$

从而 $\langle C, \bigoplus \rangle$ 是群码, $d_{min}(C) = 5 = 2 \times 2 + 1$,可纠两个错,译码表为表 9 - 6 所示。

表9-6

00000	11111
00001	11110
00010	11101
00100	11011
01000	10111
10000	01111
00011	11100
00101	11010
01001	10110
10001	01110
00110	11001
01010	10101
10010	01101
01100	10011
10100	01011
11000	00111

00101,01110,11011,01011 和 11111 的发送字分别为 00000,11111,11111, 11111 和 11111.

4. 考察一个(8,4) 码,它的校验位 a5,a6,a7,a8 满足下列方程:

$$a_5 = a_1 + a_2 + a_3 + a_4$$

 $a_6 = a_1 + a_2$

 $a_7 = a_2 + a_3$

 $a_8 = a_3 + a_4$

构造译码表,并求接收了 00011010,11110000,10000111 的发送字。

解:接收字 00011010,11110000,10000111 的发送字分别为 00011001, 11110000,10100111。

译码表如表 9-7 所示。

	46.0	- 1
	Ē	
	Co46	
	gyi	
M۶	att	η _b
В.	8.	.00
В.	8	¥.
		-06
	Øł.	
	grad grad	-
	5,5	28

	表 9-7								
00000000	00011001	00101011	00110010	01001110	01010111	01100101	01111100		
00000001	00011000	00101010	00110011	01001111	01010110	01100100	01111101		
00000010	00011011	00101001	00110000	01001100	01010101	01100111	01111110		
00000100	00011101	00101111	00110110	01001010	01010011	01100001	01111000		
00001000	00010001	00100011	00111010	01000110	01011111	01101101	01110100		
00010000	00001001	00111011	00100010	01011110	01000111	01110101	01101100		
00100000	00111001	00001011	00010010	01101110	01110111	01000101	01011100		
01000000	01011001	01101011	01110010	00001110	00010111	00100101	00111100		
10000000	10011001	10101011	10110010	11001110	11010111	11100101	11111100		
00000011	00011010	00101000	00110001	01001101	01010100	01100110	01111111		
00000110	00011111	00101101	00110100	01001000	01010001	01100011	01111010		
01100000	01111001	01001011	01010010	00101110	00100111	00000101	00011100		
00001010	00010011	00100001	00111000	01000100	01011101	01100111	01110110		
10100000	10111001	10001011	10010010	11101110	11110111	11000101	11011100		
10000001	10011000	10101010	10110011	11001111	11010110	11100100	11111101		
00100100	00111101	00001111	00010110	01101010	01110011	01000001	01011000		
10001100	10010101	10100111	10111110	11000010	11011011	11101001	11110000		
10001101	10010100	10100110	10111111	11000011	11011010	11101000	11110001		
10001110	10010111	10100101	10111100	11000000	11011001	11101011	11110010		
10001000	10010001	10100011	10111010	11000110	11011111	11101101	11110100		
10000100	10011101	10101111	10110110	11001010	11010011	11100001	11111000		
10011100	10000101	10110111	10101110	11010010	11001011	11111001	11100000		
10101100	10110101	10000111	10011110	11100010	11111011	11001001	11010000		
11001100	11010101	11100111	11111110	10000010	10011011	10101001	10110000		
00001100	00010101	00100111	00111110	01000010	01011011	01101001	01110000		
10001111	10010110	10100100	10111101	11000001	11011000	11101010	11110011		
10001010	10010011	10100001	10111000	11000100	11011101	11101111	11110110		
11101100	11110101	11000111	11011110	10100010	10111011	10001001	10010000		
10000110	10011111	10101101	10110100	11001000	11010001	11100011	11111010		
00101100	00110101	00000111	00011110	01100010	01111011	01001001	01010000		
00001101	00010100	00100110	00111111	01000011	01011010	01101000	01110001		
10101000	10110001	10000011	10011010	11100110	11111111	11001101	11010100		

如需其他课本详解,请扫描下列二维码进入《心悦书屋》

淘宝二维码 微店二维码

谢谢您对心悦书屋的支持,如有店铺欠缺书籍,请联系客服 QQ: 2556693184,为您赶作,及时更新!

微店