det $A\vec{u} = \vec{0}$ be a sys of linear Geometrically, we are looking eqns in 3 unknowns.

for that Vector \vec{u} Orthogonal to a_{11} a_{22} a_{23} a_{23} a_{24} a_{24} a_{25} a_{25} a

Case - 1:

 $\vec{a_1}$, $\vec{a_2}$ x $\vec{a_3}$ are all linearly indep vectors in 3D-

det $(A) \neq 0$ because $\vec{a}_1, \vec{a}_2, \vec{a}_3$ are l.i

⇒ $A\vec{u} = \vec{0}$ ⇒ $\vec{u} = \vec{0}$ is the Only Solution to $A\vec{u} = \vec{0}$

Trivial Solution is the Only Soln Case \vec{a} : $\vec{a}_1 \times \vec{a}_2$ are \vec{b} : \vec{a} de \vec{a} : $\vec{a}_3 = \vec{a}_1 + \vec{c}_2 \vec{a}_2$ \vec{c}_1 , \vec{c}_2 Scalars Solution \vec{a}_3 \vec{a}_3

$$det(A) = 0$$

Solution to Ail = 0

is
$$\vec{u} = \vec{a}_1 \times \vec{a}_2$$

$$\vec{a_3} = C_1 \vec{a_1} + C_2 \vec{a_2}$$

$$\underline{\vec{a}_3 \cdot \vec{u}} \stackrel{?}{=} 0 \Rightarrow (C_1 \vec{a}_1 + C_2 \vec{a}_2) \cdot (\vec{a}_1 \times \vec{a}_2)$$

$$= C_1 \vec{a}_1 \cdot (\vec{a}_1 \times \vec{a}_2) + C_2 \vec{a}_2 \cdot (\vec{a}_1 \times \vec{a}_2)$$

$$\Rightarrow \vec{a}_3 \cdot \vec{u} = 0$$

Case 3: $\vec{a}_2 = \vec{c_1}\vec{a_1} \times \vec{a_3} = \vec{c_2}\vec{a_1}$ Ex: $\vec{a_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ A $\vec{u} = \vec{0}$ A $\vec{u} = \vec{0}$ Pow echelon form of A: $\vec{c_1}\vec{a_1}$ $\vec{c_2}\vec{a_1}$ $\vec{c_3}$ $\vec{c_4}$ $\vec{a_1}$ $\vec{c_2}\vec{a_1}$ $\vec{a_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a_4} = \vec{0}$ $\vec{a_5} = \vec{0}$ $\vec{a_4} = \vec{0}$ $\vec{a_5} = \vec$

$$u_{2} = t$$
; $u_{3} = 8$
 $u_{1} + u_{2} + u_{3} = 0$
 $u_{1} + t + 8 = 0$
 $u_{1} = -t - 8$
 \vdots $u_{n} = -t - 8$

$$\Rightarrow \vec{u} = \begin{bmatrix} -t \\ t \end{bmatrix} + \begin{bmatrix} -8 \\ 0 \\ 8 \end{bmatrix}$$

$$= t \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + 8 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

 $A^{3x3}u^{3x1} = 0^{3x1}$

Case 1. Rows of A are li

⇒ u = o is the only soln

Case 2: Two rows of A are li (Row vectors)

One of the 3 vectors is lic Combinⁿ of the Other 2 li vectors

บรง นี = a1 x a2 is a soln to Aนี-ฮี Infinitely many.

Case 3: \vec{a}_1 ; $\vec{a}_2 = c_1 \vec{a}_1$ & $\vec{a}_3 = c_2 \vec{a}_1$

 $\Rightarrow A\vec{u} = \vec{0}$ is the set of vectors in a plane for which of is an Orthogonal vector.