8장. ARP (Address Resolution Protocol)

2025년 1학기 단국대학교 컴퓨터공학과 박태근

Contents

- 8.1 주소 변환 (Address Mapping)
- 8.2 ARP 프로토콜 (ARP Protocol)
- 8.4 ARP 패키지 (ARP Package)

8.1 주소 변환 (Address Mapping)

- ✓ 호스트나 라우터로 패킷을 전달 (delivery)하기 위해서는 논리 및 물리 주소 (logical and physical addresses) 가 모두 필요
- ✓ 논리 주소 (logical address)를 물리 주소 (physical address)로 변환 (mapping)하는 것이 필요하고, 그 반대로 의 변환도 필요
- ✓ 이 변환 (mapping)들은 정적 (static) 또는 동적 (dynamic)으로 가능

8.1 주소 변환 (Address Mapping) - Topics

- 1) 정적 변환 (Static Mapping)
- 2) 동적 변환 (Dynamic Mapping)

8.1 주소 변환 (Address Mapping) – 정적 변환 (Static Mapping)

✓ 정적 변환 (Static Mapping)

- ➢ 정적 변환에서는 논리 주소 (logical address)와 물리 주소 (physical address)를 연관시키는 (associate) 테이블을 사용
- ▶ 이 테이블은 네트워크 상의 각 기계 (each machine) 내에 저장
- ▶ 다른 기계의 IP 주소를 알고 있으나, 물리 주소를 모르는 경우, 이 테이블을 찾아보면 됨
- ▶ 이 정적 변화 테이블 (static mapping table)은 주기적으로 갱신되어야 함
 - e.g.) 기계가 NIC을 바꿀 수 있음
 - e.g.) 이동 컴퓨터가 하나의 물리적 네트워크에서 다른 네트워크로 이동할 수 있음

8.1 주소 변환 (Address Mapping) – 동적 변환 (Dynamic Mapping)

- ✓ 동적 변환 (Dynamic Mapping)
 - 한 기계가 다른 기계의 논리 주소 (또는 물리 주소)를 알고 있을 때, 프로토콜을 사용하여 물리 주소 (또는 논리 주소)를 찾을 수 있음
 - 동적 변환을 위한 두 개의 프로토콜
 - Address Resolution Protocol (ARP): 논리 (Logical) 주소 → 물리 (Physical) 주소
 - Reverse Address Resolution Protocol(RARP): 물리 (Physical) 주소 → 논리 (Logical) 주소

- ✓ 어떤 호스트나 라우터가 다른 호스트나 라우터에게 보낼 IP 데이터그램 (IP datagram)을 가지고 있을 때, 송신 자 (sender)는 수신자 (receiver)의 논리 주소 (logical address)인 IP 주소를 가지고 있음
- ✓ 그러나 IP 데이터그램은 물리적인 네트워크 (physical network)를 통과 (pass through)하기 위해 프레임 (frame) 내에 캡슐화 (encapsulate)되어야 함
- ✓ 즉, 송신자 (sender)는 수신자의 물리 주소 (physical address of the receiver)를 알아야 함
- ✓ 변환 (mapping)이란 논리 주소 (logical address)를 물리 주소 (physical address)로 변환하는 것
- ✓ ARP는
 - ▶ IP 프로토콜 (IP protocol)로부터 논리 주소 (logical address)를 받아서,
 - 이를 해당하는 물리 주소 (physical address)로 변환 (map)한 후,
 - ➤ 데이터링크 계층 (data link layer)에 전달 (pass)

8.2 ARP 프로토콜 - Topics

- 1) 패킷 형식 (Packet Format)
- 2) 캡슐화 (Encapsulation)
- 3) 동작 (Operation)
- 4) 프록시 ARP (Proxy ARP)

그림 8.1 TCP/IP 프로토콜 모음 내에서 ARP의 위치 (Position of ARP in TCP/IP protocol suite)

a. ARP request is multicast

b. ARP reply is unicast

- ✓ ARP 동작 (ARP operation) (그림 8.2)
 - ▶ 왼쪽에 있는 시스템 A는
 IP 주소 141.23.56.23을 가진 다른 시스템 B에게 보낼 패킷을 가지고 있음

- ▶ 시스템 A는 실제 전달 (actual delivery)을 위하여, 이 패킷을 데이터링크 계층 (data link layer)에 보내야 (pass) 하지만, 수신자 (recipient)의 물리 주소 (physical address)를 모르는 상태임
- 시스템 A는 ARP의 서비스를 사용하여, IP 주소가 141.23.56.23인 시스템의 물리 주소를 묻는 ARP 요청 패킷 (ARP request packet)을 브로드캐스트 (broadcast)함
- ▶ 이 패킷은 물리적인 네트워크 상에 있는 모든 시스템에 의해 수신 (receive)되지만, 오직 시스템 B만이 응답 (answer)함
- ▶ 시스템 B는 자신의 물리 주소를 포함하는 ARP 응답 패킷 (ARP reply packet)을 보냄 (send)
- ▶ 이제 시스템 A는 B로 가는 모든 패킷을 수신된 물리 주소를 사용하여 전송 (send) 가능

Hardwa	re Type (1 for ethernet)	(0x0800 for IPv4) Protocol Type				
(6 for ethernet) Hardware length	(4 for IPv4) Protocol length	Operation Request 1, Reply 2				
	Sender hardware address (For example, 6 bytes for Ethernet)					
	Sender prote (For example,					
	Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)					
	Target protocol address (For example, 4 bytes for IP)					

그림 8.3 ARP 패킷 (ARP packet)

그림 8.4 ARP 패킷의 캡슐화 (Encapsulation of ARP packet)

Hardware Type Protocol Type Hardware Protocol Operation Request 1, Reply 2 length length Sender hardware address (For example, 6 bytes for Ethernet) Sender protocol address (For example, 4 bytes for IP) Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request) Target protocol address (For example, 4 bytes for IP)

- ✓ 전형적인 internet (소문자 i)에서의 ARP의 동작
 - ➤ 송신자는 타겟 (target)의 IP 주소를 알고 있음
 - ▶ IP는 ARP에게 ARP 요청 메시지 (request message)를 생성하도록 요청함 ARP 요청 메시지에는 다음의 정보가 포함됨
 - 송신자 물리 주소 (sender physical address)
 - 송신자 IP 주소 (sender IP address)
 - 타겟 IP 주소 (target IP address)
 - 타겟 물리 주소 필드 (target physical address field)는 0으로 생생으로 6 bytes 6 bytes 2 bytes 4 bytes

Type: 0x0806

Preamble

Destination

Source

- ▶ 이 메시지는 데이터링크 계층으로 전달됨
 데이타링크 계층에서는, <u>다음과 같은 값</u>을 가지는, <u>프레임</u> (frame)내에 수신한 메시지를 **캡슐화** (encapsulate)
 - 송신자 (sender)의 물리 주소를 발신지 주소 (source address)로 사용
 - 물리 브로드캐스트 주소 (physical broadcast address)를 목적지 주소 (destination address)로 사용

Type: 0x0806

Preamble and SFD Destination address address Type Data CRC

8 bytes 6 bytes 6 bytes 2 bytes 4 bytes

- ✓ 전형적인 internet (소문자 i)에서의 ARP의 동작 (계속)
 - ▶ 모든 호스트나 라우터는 이 프레임 (frame)을 수신 (receive)함.
 - 프레임은 **브로드캐스트 목적지 주소 (broadcast destination address)**를 가지고 있으므로, 모든 스테이션은 이 메시지를 자신의 ARP에게 전달함 (pass)
 - ▶ 타겟 (target)을 제외한 모든 기계는 패킷을 폐기 (drop)하지만, 타겟 기계는 IP 주소를 인식 (recognize)함.
 - ▶ 타겟 기계는 자신의 물리 주소를 포함하는 ARP 응답 메시지 (ARP reply message)를 사용하여 응답 (reply)하는데, 이 메시지는 유니캐스트 (unicast)로 전송됨
 - > 송신자 (sender)는 응답 메시지 (reply message)를 수신 (receive)하고, 타겟 기계의 물리 주소를 알게 됨

▶ 타겟 기계에게 보내질 데이터를 포함하고 있는, IP 데이터그램은 이 물리 주소를 가지는 프레임으로 캡슐화된

다음, 목적지에게 유니캐스트 (unicast)로 전송됨

ARP 요청 (ARP request)은 브로드캐스트 (broadcast)되고,

ARP 응답 (ARP reply)은 유니캐스트 (unicast)됨

Case 1: A host has a packet to send to a host on the same network.

Case 3: A router has a packet to send to a host on another network.

Case 2: A host has a packet to send to a host on another network.

Case 4: A router has a packet to send to a host on the same network.

그림 8.5 ARP를 이용하는 네 가지 경우 (Four cases using ARP)

8.2 ARP 프로토콜 – Example 8.1 (1)

- ✓ IP 주소 130.23.43.20이고 물리 주소 B2:34:55:10:22:10인 호스트가IP 주소 130.23.43.25이고 물리 주소 A4:6E:F4:59:83:AB인 호스트에게 보낼 패킷이 있다.
- ✓ 두 호스트는 같은 이더넷 네트워크 (same Ethernet network)에 있다.
- ✓ 이더넷 프레임에 캡슐화된 (encapsulated) ARP 요청과 응답 패킷 (ARP request and reply packets)을 보여라.

해답 (Solution)

(다음 페이지)

8.2 ARP 프로토콜 – Example 8.1 (2)

해답 (Solution)

- ✓ 그림 8.6은 ARP 요청과 응답 패킷을 보여준다.
- ✓ 이 경우, ARP 데이터 필드는 28바이트이고 각 주소는 4 바이트 경계에 맞지 않는다.
- ✓ 이것이 주소들을 위한 정상적인 4 바이트 경계를 보이지 않는 이유이다.
- ✓ IP 주소는 16진수로 나타나 있다.

8.2 ARP 프로토콜 - 프록시 ARP (Proxy ARP)

✓ 프록시 ARP (Proxy ARP)

- ▶ 프록시 ARP라는 기술은 서브넷팅 효과 (subnetting effect)를 만들기 위하여 사용됨
- ▶ 프록시 ARP는 호스트 집합을 대신하여 수행하는 ARP임
- 프록시 ARP를 수행하는 라우터가 이 집합 중 한 호스트의 물리 주소를 찾는 ARP 요청을 받으면,
 그 라우터는 자신의 물리 주소를 ARP 응답 메시지를 통하여 알린다.
- ▶ 후에 라우터가 실제 IP 패킷을 받으면, 라우터는 이 패킷을 적절한 호스트나 라우터에게 전송함

- ✓ 이 절에서는, 단순화된 ARP 소프트웨어 패키지 (simplified ARP software package)의 예제 검토
- ✓ 목적 (purpose)은 가상적 ARP 패키지 (hypothetical ARP package)의 구성요소 (components)와 이 구성요소들 사이의 관계 (relationships)를 살펴보는 것
- ✓ 그림 8.13은 이들 구성요소들과 이들 사이의 상호작용 (interaction)을 보여줌
- ✓ 이 ARP 패키지는 다섯 개의 구성요소 (five components)로 구성됨
 - ▶ 캐시 테이블 (cache table)
 - ➤ 큐 (queues)
 - 출력 모듈 (output module)
 - 입력 모듈 (input module)
 - 캐시 제어 모듈 (cache-control module)

8.4 ARP 패키지 - Topics

- 1) 캐시 테이블 (Cache Table)
- 2) 큐 (Queues)
- 3) 출력 모듈 (Output Module)
- 4) 입력 모듈 (Input Module)
- 5) 캐시 제어 모듈 (Cache-Control Module)

그림 8.13 ARP 구성요소

✓ 캐시 테이블 (Cache Table)

- ▶ 송신자 (sender)는 일반적으로 하나의 목적지 (destination)에 한 개 이상의 IP 데이터그램 (datagram)을 보냄
- ▶ 같은 호스트나 라우터를 향한 각 데이터그램을 위해 매번 ARP 프로토콜을 사용하는 것은 매우 비효율적 (inefficient)임
- → 이를 해결하는 방법은 캐시 테이블 (cache table)을 이용하는 것
- ▶ 캐시 테이블에 저장된 주소는 다음 몇 분 동안 **같은 수신자 (receiver)로 보내지는 데이터그램**을 위해 사용 가능

- ✓ <u>캐시 테이블의 필드 (Fields in Cache Table)</u>
 - > 상태 (state) 다음의 세 가지 값 중 하나: FREE, PENDING, or RESOLVED.
 - ▶ 하드웨어 유형 (hardware type): 이 필드는 ARP packet의 해당 필드와 동일
 - ➤ 프로토콜 유형 (protocol type): 이 필드는 ARP packet의 해당 필드와 동일
 - ▶ 하드웨어 길이 (hardware length): 이 필드는 ARP packet의 해당 필드와 동일
 - ▶ 프로토콜 길이 (protocol length): 이 필드는 ARP packet의 해당 필드와 동일
 - ▶ 인터페이스 번호 (interface number): NIC (Network Interface Card)의 이름
 - ➤ 큐 번호 (queue number)
 - ARP는 주소 변환을 기다리는 패킷들을 **번호로 표시된 큐 (queue number)**에 삽입
 - 같은 목적지로 가는 패킷들은 보통 같은 큐에 삽입됨
 - ▶ 시도 (attempts): 이 엔트리를 위하여 ARP 요청 (ARP request)을 보낸 횟수를 표시
 - ▶ **타임아웃 (time-out)**: 엔트리의 수명 (lifetime)을 초 단위로 보여줌.
 - ▶ 하드웨어 주소 (hardware address): 목적지 (destination) 하드웨어 주소
 - > 프로토콜 주소 (protocol address): 목적지 (destination) IP 주소

✓ 큐 (Queues)

- ➤ ARP가 하드웨어 (물리) 주소를 얻으려고 하는 동안, IP 패킷을 저장하기 위하여 큐를 사용
- ➤ 출력 모듈 (output module)은 해결되지 않은 패킷 (unresolved packets)을 해당 큐 (corresponding queue)로 전송 (send)
- ➤ 입력 모듈 (input module)은 큐에서 패킷을 가져와서, 해결된 물리 주소 (resolved physical address)와 함께 데이터링크 계층에 전송 (send)
 - ▶ 데이터링크 계층은 이 패킷을 전달 (transmission)함

✓ ARP Output Module()

- 1. Sleep until an IP packet is received from IP software.
- 2. Check cache table for an entry corresponding to the destination of IP packet
- 3. If (entry is found)
 - 3.1 If (the state is RESOLVED)
 - 3.1.1 Extract the value of the hardware address from the entry
 - 3.1.2 Send the packet and the hardware address to data link layer
 - 3.1.3 Return
 - 3.2 If (the state is PENDING)
 - 3.2.1 Enqueue the packet to the corresponding queue
 - 3.2.2 Return
- 4. If (entry is not found)
 - 4.1 Create a cache with state set to PENDING and "Attempts" set to 1
 - 4.2 Create a queue
 - 4.3 Enqueue the packet
 - 4.4 Send an ARP request
- 5. Return

✓ ARP Input Module()

- 1. Sleep until an ARP packet (request or reply) arrives
- 2. Check the cache table to find the corresponding entry
- 3. If (found)
 - 3.1 Update the entry
 - 3.2 If (the state is PENDING)
 - 3.2.1 While the queue is not empty
 - 3.2.1.1 Dequeue one packet
 - 3.2.1.2 Send the packet and the hardware address to data link
- 4. If (not found)
 - 4.1 Create an entry
 - 4.2 Add the entry to the table
- 5. If (the packet is a request)
 - 5.1 Send an ARP reply
- 6. Return

✓ ARP Cache Control Module()

- 1. Sleep until the periodic timer matures
- 2. Repeat for every entry in the cache table
 - 2.1 If (the state is FREE) Continue
 - 2.2 If (the state is PENDING)
 - 2.2.1 Increment the value of "Attempts" by 1
 - 2.2.2 If ("Attempts" greater than "Maximum")
 - 2.2.2.1 Change the state to FREE
 - 2.2.2.2 Destroy the corresponding queue
 - 2.2.3 Else
 - 2.2.3.1 Send an ARP request
 - 2.2.4 Continue
 - 2.3 If (the state is RESOLVED)
 - 2.3.1 Decrement the value of time-out
 - 2.3.2 If (time-out less than or equal to zero)
 - 2.3.2.1 Change the state to FREE
 - 2.3.2.2 Destroy the corresponding queue

 Table 8.5
 Original cache table used for examples

State	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
F					
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

8.4 ARP 패키지 – Examples

19.1.7.82	4573E3242ACA
188.11.8.71	

457342ACAE32

201.11.56.7

114.5.7.89

220.55.5.7

450

60

14

12

F R

Now

8.4 ARP 패키지 - Example 8.2

- ✓ ARP 출력 모듈은 IP 계층으로부터 목적지 주소가 114.5.7.89인 IP 데이터그램을 수신한다.
- ✓ 캐시 테이블을 검사한 결과, 이 목적지 주소를 위한 엔트리가 RESOLVED 상태 (테이블의 R)로 존재함을 알 수 있다.
- ✓ 하드웨어 주소 457342ACAE32를 꺼내서 패킷과 이 주소를 (전송을 위해) 데이터링크 계층에 전달한다.
- ✓ 캐시 테이블에는 변화가 없다.

Table 8.5 *Original cache table used for examples*

	State	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
Ī	R	5		900	180.3.6.1	ACAE32457342
Ī	P	2	2		129.34.4.8	
	Р	14	5		201.11.56.7	
	R	8	أرائياً	450	114.5.7.89	457342ACAE32
'	P	12	1		220.55.5.7	
Ī	F					
Ī	R	9		60	19.1.7.82	4573E3242ACA
Ī	Р	18	3		188.11.8.71	

 Table 8.5
 Original cache table used for examples

State	Qиеие	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
F					
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

8.4 ARP 패키지 - Example 8.3

- ✓ 20초 후, ARP 출력 모듈이 IP 계층으로부터 목적지 주소가 116.1.7.22인 IP 데이터그 램을 수신한다.
- ✓ 캐시 테이블을 검사한 결과, 이 목적지에 해당하는 엔트리가 없음을 알 수 있다.
- ✓ 모듈은 새 엔트리를 테이블에 추가하고, 이 엔트리의 상태를 PENDING으로 설정한 후, 시도 (attempt) 값을 1로 설정한다.
- ✓ 또한 모듈은 이 목적지에 해당하는 큐를 새로 만들고 패킷을 이 큐에 삽입한다.
- ✓ 모듈은 ARP 요청 (ARP request)을 데이터링크 계층을 통하여 목적지로 전송한다.
- ✓ 표 8.6은 새 캐시 테이블의 상태를 보여준다.

Table 8.6 *Updated cache table for Example 8.3*

State	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
Р	12	1		220.55.5.7	
Р	23	1		116.1.7.22	
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

State	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
F					
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

8.4 ARP 패키지 - Example 8.4

- ✓ 15초 후, ARP 입력 모듈은 타겟 프로토콜 (IP) 주소 188.11.8.71을 가진 ARP 패킷을 수신한다.
- ✓ 이 모듈은 테이블을 검사하고 이 주소가 있음을 확인한다.
- ✓ 모듈은 엔트리의 상태를 RESOLVED로 변경하고, 타임아웃 (time-out) 값을 900으로 설정한다.
- ✓ 모듈은 타겟 하드웨어 주소 E34573242ACA를 삽입한다.
- ✓ 큐 18에 접근하여 이 큐 속에서 기다리고 있던 모든 패킷을 데이터링크 계층에 하나 씩 전송한다.
- ✓ 표 8.7은 새 캐시 테이블의 상태를 보여준다.

Table 8.7 *Updated cache table for Example 8.4*

State	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
P	23	1		116.1.7.22	
R	9		60	19.1.7.82	4573E3242ACA
R	18		900	188.11.8.71	E34573242ACA

 Table 8.6
 Updated cache table for Example 8.3

State	Qиеие	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
P	23	1		116.1.7.22	
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

8.4 ARP 패키지 - Example 8.5 (1)

- ✓ 25초 후, 캐시 제어 모듈 (cache-control module)이 모든 엔트리를 갱신한다.
- ✓ 네 개의 해결된 엔트리 중, 세 개의 타임아웃 (time-out) 값은 60초 만큼 감소된다.
 - ▶ 단, 마지막 해결된 엔트리 (last resolved entry)를 위한 타임아웃 값은 25초 만큼 감소된다.
- ✓ **밑에서 두 번째 엔트리 (next-to-the last entry)**의 타임아웃 값이 0이 되었으므로, 이 엔트리의 **상태는 FREE로 변경**된다.
- ✓ 네 개의 펜딩 엔트리 (pending entries) 각각에 대하여, 시도 필드 (attempts field) 값은 1씩 증가된다.
- ✓ 시도 값 증가 후, 한 엔트리 (IP 주소 201.11.56.7)의 시도 값이 최대치보다 커졌으므로,
 - ▶ 상태를 FREE로 변경하고, 큐는 제거되며,
 - ▶ ICMP 메시지 (ICMP message)가 원래 발신지 (original source)에게 전송된다.
- ✓ 표 8.8은 새 캐시 테이블의 상태를 보여준다.

 Table 8.7
 Updated cache table for Example 8.4

State	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
Р	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
P	23	1		116.1.7.22	
R	9		60	19.1.7.82	4573E3242ACA
R	18		900	188.11.8.71	E34573242ACA

8.4 ARP 패키지 - Example 8.5 (2)

 Table 8.8
 Updated cache table for Example 8.5

	State	Queue	Attempt	Time-Qut	Protocol Addr.	Hardware Addr.
	R	5		840	180.3.6.1	ACAE32457342
	Р	2	3		129.34.4.8	
Π	F					
	R	8	, - \	390	114.5.7.89	457342ACAE32
	P	12	2		220.55.5.7	
	P	23	2		116.1.7.22	
	F					
	R	18		875	188.11.8.71	E34573242ACA

 Table 8.7
 Updated cache table for Example 8.4

Stat	te	Queue	Attempt	Time-Out	Protocol Addr.	Hardware Addr.
R		5		900	180.3.6.1	ACAE32457342
P		2	2		129.34.4.8	
P		14	5		201.11.56.7	
R		8		450	114.5.7.89	457342ACAE32
P		12	1		220.55.5.7	
P		23	1		116.1.7.22	
R		9		60	19.1.7.82	4573E3242ACA
R		18		900	188.11.8.71	E34573242ACA