Министерство образования Республики Беларусь Белорусский государственный университет информатики и радиоэлектроники Кафедра электроники

Отчет по лабораторной работе №3	
'Исследование одиночных усилительных каскадов биполярных и полевы	ΙX
транзисторов"	

Проверил: Выполнил: ст. группы 120602 Осипенко H.C.

1 Цели работы

- а) Изучить характеристики и параметры усилительных каскадов, режимы работы и способы задания рабочей точки активных элементов в усилителях.
- б) Экспериментально исследовать основные характеристики и параметры одиночных усилительных каскадов.

2 Исходные данные

Рисунок 1 – Схема усилительного каскада

3 Результаты экспериментальных исследований

а) Расчет $U_{\text{БЭ}}, U_{\text{КЭ}}, I_{\text{К}}$

$$U_{\mathbf{K}} =$$

B,
$$U_{\rm B} =$$

$$U_{\rm K}=$$
 B, $U_{\rm B}=$ B, $U_{\rm S}=$

$$U_{\text{K}\Im} = U_{\text{K}} - U_{\Im} =$$

$$U_{\mathsf{B}\mathsf{B}} = U_{\mathsf{B}} - U_{\mathsf{B}} = \mathsf{B}.$$

$$I_{\rm K} = \frac{E_{\rm K} - U_{\rm K}}{R_{\rm K}} = \qquad \text{(mA)}. \label{eq:independent}$$

б) Измерение пределов входного и выходного напряжений

мВ

- Режим холостого хода

$$U_{{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m IX}}_{min}}={\scriptscriptstyle {
m M}}{
m B}$$

 $U_{\mathbf{BX}_{min}} =$

$$egin{array}{ll} U_{ exttt{BbIX}_{max}} = & exttt{MI} \ U_{ exttt{BX}_{max}} = & exttt{MB} \end{array}$$

$$K_{U_1} = rac{U_{ exttt{BbIX}_{min}}}{U_{ exttt{BX}_{min}}} =$$

$$-R_{\scriptscriptstyle \mathrm{H}}=$$

мВ

$$\begin{array}{ll} U_{{\scriptscriptstyle {\rm B}}{\scriptscriptstyle {\rm M}}{\scriptscriptstyle {\rm M}}{\scriptscriptstyle {\rm m}}} = & {\rm M}{\rm B} \\ \\ U_{{\scriptscriptstyle {\rm B}}{\scriptscriptstyle {\rm X}}{\scriptscriptstyle {m}}{\scriptscriptstyle {\rm in}}} = & {\rm M}{\rm B} \end{array}$$

$$\begin{array}{ll} U_{{\scriptscriptstyle {\rm BMX}}_{max}} = & {\rm MB} \\ \\ U_{{\scriptscriptstyle {\rm BX}}_{max}} = & {\rm MB} \end{array}$$

$$K_{U_2} = rac{U_{ exttt{BMX}_{min}}}{U_{ exttt{BX}_{min}}} =$$

в) Снятие аплитудно-частотной характеристики

Таблица 1 – АЧХ усилителя при различных емкостях на эмиттере

	-		1	1				1
f, Гц								
$U_{ exttt{BbIX}} _{C_{\mathfrak{I}} eq 0} \; , \ exttt{MB}$								
$U_{ exttt{BbIX}} _{C_{\mathfrak{I}}=0}\;,$ мВ								

Рисунок 2 – График зависимости $U_{\text{вых}}(f)$

$$K_{
m o_1}=$$
 , мВ $f_{
m H_1}=$, Гц $f_{
m o_1}=\sqrt{f_{
m H_1}\cdot f_{
m B_1}}=$, $K_{
m o_1}=\sqrt{f_{
m H_1}\cdot f_{
m B_1}}=$, Гц (Гц)

$$K_{
m o_2}=$$
 , мВ $f_{
m H_2}=$, Гц $f_{
m o_2}=\sqrt{f_{
m H_2}\cdot f_{
m B_2}}=$, $K_{
m o_2}=\sqrt{f_{
m H_2}\cdot f_{
m B_2}}=$, Гц (Гц)

4 Вывод

В ходе лабораторной работы:

- Изучены характеристики и параметры усилительных каскадов.
- Экспериментально исследованы основные характеристики и параметры одиночных усилительных каскадов.