EJERCICIOS PARA APRENDER A DERIVAR

Con esta primera tabla lo que te ofrecemos son las reglas básicas para derivar. De este modo podemos realizar más fácilmente nuestros ejercicios.

Función	Derivada
Derivada de	una constante
f(x) = k	f'(x)= 0
Ejen	pplos:
$\mathbf{f}(\mathbf{x}) = 5$	f(x) = 0
f(x) = -3	f(x) = 0
Deriva	da de x
f(x) = x	f'(x)= 1
Derivadas funci	ones potenciales
$f(x) = u^{k}$	$f'(x) = k. u^{k-1}.u'$
Ejen	nplos
$\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$	f'(x) = 2.x
$\mathbf{f}(\mathbf{x}) = \mathbf{x}^5$	$f'(x) = 5.x^4$
$\mathbf{f}(\mathbf{x}) = 1/\mathbf{x}^5 = \mathbf{x}^{-5}$	$f'(x) = -5x^{-6} = -5/x^6$
$f(x) = \sqrt{x} = x^{\frac{1}{2}}$	$f'(x) = \frac{1}{2}x^{-2} = \frac{1}{2\sqrt{x}}$
$f(x) = (2.x^2 + 3)^2$	$f(x) = 2.(2.x^2 + 3)4x$

Derivadas de funciones exponenciales

$f(x) = e^{u}$	$f'(x) = u'. e^{u}$
$f(x) = a^u$	$f'(x) = u'. a^u. Ln a$

Ejemplos

$f(x) = e^x$	$f'(x) = e^x$
$f(x) = 2^x$	$f'(x) = .2^{x} . Ln 2$
Derivadas de fu	nciones logarítmicas
$f(\mathbf{x}) = \mathbf{L}\mathbf{n} \ \mathbf{u}$	f '(x) = u' /u
$f(x) = \log_a u$	$f'(x) = \frac{u'}{u} \log_a e$
Ej	emplos
f(x) = Ln x	f'(x) = 1/x
$f(x) = \log_2 x$	$f'(x) = \frac{1}{x} \log \frac{e}{2}$
Derivadas de fund	ciones trigonométricas
f(x)= sen u	f '(x)= u' . cos u
f(x)= cos u	f '(x)= - u' . sen u
$\mathbf{f}(\mathbf{x}) = \mathbf{tg} \; \mathbf{u}$	$f'(x)=u'$. $sec^2 u$
$\mathbf{f}(\mathbf{x}) = \mathbf{cotg}\ \mathbf{u}$	$f'(x) = -u' \cdot \csc^2 u$
$f(\mathbf{x}) = \sec \mathbf{u}$	f '(x)= u' . sec u . tg u
f(x) = cosec u	f'(x)=-u'. $cosec u$. $cotg u$
f(x) = arcsen u	$f'(x) = \frac{u'}{\sqrt{1 - u^2}}$
$f(x) = \arccos u$	$f'(x) = \frac{-u'}{\sqrt{1 - u^2}}$
f(x) = arctg u	$f'(x) = \frac{u'}{1 + u^2}$

Ejemplos

f(x) = sen x	$f'(x) = \cos x$
$\mathbf{f}(\mathbf{x}) = \mathbf{cos} \ \mathbf{x}$	$f'(x) = - \operatorname{sen} x$
f(x)=tg x	$f'(x) = \sec^2 x$
$\mathbf{f}(\mathbf{x}) = \mathbf{cot} \; \mathbf{x}$	$f'(x) = -\csc^2 x$
$\mathbf{f}(\mathbf{x}) = \mathbf{sec} \ \mathbf{x}$	$f'(x) = \sec x \cdot tg x$
f(x) = cosec x	$f'(x) = -\csc x \cdot \cot x$
f(x) = arcsen x	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
$f(x) = \arccos x$	$f'(x) = \frac{-1}{\sqrt{1 - x^2}}$
$f(x) = \operatorname{arctg} x$	$f'(x) = \frac{1}{1 + x^2}$

Derivadas de sumas, restas, productos y cocientes de funciones

f(x) = K.u	f'(x) = K.u'
f(x) = u + v - w	f'(x) = u' + v' - w'
$f(\mathbf{x}) = \mathbf{u} \cdot \mathbf{v}$	f'(x) = u'. v + v'. u
$f(x) = \frac{u}{v}$	$f'(x) = \frac{u'.v - v'.u}{v^2}$
E	jemplos
$f(\mathbf{x}) = 3\mathbf{x}^2$	f'(x) = 3.2.x = 6x
$\mathbf{f}(\mathbf{x}) = \mathbf{x}^4 + \mathbf{x}^3 - 2\mathbf{x}$	$f'(x) = 3x^3 + 3x^2 - 2$
$f(x) = x^3 \cdot \text{sen } x$	$f'(x) = 3x^2.sen x + x^3.cosx$

$$f(x) = \frac{sex}{x^2}$$

$$f'(x) = \frac{\cos x \cdot x^2 - \sin x \cdot 2x}{x^Q}$$

A continuación encontrarás una lista con **100 funciones listas para derivar.** No olvides tener en cuenta las reglas vistas anteriormente. Intenta, en la medida de lo posible, simplificar.

1	$\mathbf{f}(\mathbf{x}) = 0$
2	$\mathbf{f}(\mathbf{x}) = -7$
3	$\mathbf{f}(\mathbf{x}) = -7\mathbf{x}$
4	f(x) = -5x + 2
5	$\mathbf{f}(\mathbf{x}) = \mathbf{x}^5 - \mathbf{x}^3 + 3$
6	$\mathbf{f}(\mathbf{x}) = 2\mathbf{x}^7 - 3\mathbf{x}^6 + 3\ \mathbf{x}^3 - 4\mathbf{x}^2 - 7$
7	$f(x) = \frac{x-3}{2}$
8	$f(x) = -\frac{x^3 Rx - 1}{2}$
9	$f(x) = -\frac{3}{2}x^3 + \frac{2}{5}x^2 - 4$
10	$f(x) = \frac{3}{x^2}$
11	$f(x) = -\frac{2}{x^3} + \frac{3}{x^2} - 4x$
12	$f(x) = \frac{x^2 - 1}{(xR1)^2}$
13	$f(x) = \frac{5x^4 - 3x^3}{x5}$
14	$\mathbf{f}(\mathbf{x}) = \sqrt{x^3}$
15	$f(x) = \frac{1}{\sqrt{x^3}}$
16	$f(x) = \sqrt{x^3} - \sqrt[3]{x^5}$
17	$f(x) = -3 \sqrt{x} - 2^3 \sqrt{2}$
18	$f(x) = -\frac{2}{3}\sqrt{x^3} - \sqrt{15x} - \sqrt{x^5}$
19	$f(x) = -\frac{3}{2}\sqrt{x^3 - 2x^5 - 5x^2}$
20	$\mathbf{f}(\mathbf{x}) = \frac{\sqrt{x}}{2\sqrt{x}}$
	<u> </u>

21	$f(x) = \frac{2 \sqrt{R}}{2 \sqrt{x}}$
22	$f(x) = (x^5 - x^3 + 3)^4$
23	$\mathbf{f}(\mathbf{x}) = (x^2 - 2^{-2})$
24	$f(x) = (x - 1) x + 1^{2}$
25	$\mathbf{f}(\mathbf{x}) = \left(x^5 - x^3 + 3\right)^4$
26	$\mathbf{f}(\mathbf{x}) = \sqrt{\left(\left(x^5 - x^3 + 3\right)\right)}$
27	$f(x) = \sqrt[5]{x^5 - x^3 + 3}$
28	$f(x) = \frac{1}{\sqrt[5]{x5 - x3}}R3$
29	$\mathbf{f}(\mathbf{x}) = \sqrt[3]{\frac{\mathbf{x}5 - \mathbf{x}3\mathbf{R}3}{\mathbf{x}2}}$
30	$\mathbf{f}(\mathbf{x}) = \sqrt[5]{\frac{x^2 \mathbf{R} x}{x \mathbf{R} 1}}$
31	$f(x) = \sqrt{\frac{x^2 R2xR}{x^2-1}}$
32	$f(x) = \sqrt{\frac{\frac{2}{x}-1}{x^2-2x}}$
33	$\mathbf{f}(\mathbf{x}) = e^{\mathbf{x} \mathbf{R} 1}$
4	$\mathbf{f}(\mathbf{x}) = -3. \mathbf{e}^{\mathbf{x} \mathbf{R} 1}$
35	$\mathbf{f}(\mathbf{x}) = 7. e^{x^2 \mathbf{R} 1}$
36	$\mathbf{f}(\mathbf{x}) = -3. e^{x 2 \mathbf{R} x \cdot 1}$
37	$\mathbf{f}(\mathbf{x}) = \sqrt{e^{\mathcal{X}}}$
38	$\mathbf{f}(\mathbf{x}) = \sqrt{3}e^{\mathbf{x}\mathbf{R}1}$

39	$\mathbf{f}(\mathbf{x}) = -\frac{2}{\sqrt{e^{\chi}}}$
40	$\mathbf{f}(\mathbf{x}) = e^{x\mathbf{R}1} - 3e^x + 2e^{x3}$
41	$\mathbf{f}(\mathbf{x}) = 3^{2x\mathbf{R}1}$
42	$\mathbf{f}(\mathbf{x}) = 7^{x-1}$
43	$\mathbf{f}(\mathbf{x}) = 7^{x2-1}$
44	$\mathbf{f}(\mathbf{x}) = -\frac{1}{\sqrt{2}x}$
45	$\mathbf{f}(\mathbf{x}) = 2^{x + 1} - 3.5^x$
46	$f(x) = (2^{xR1} - 3.5^{x-3})$
47	$\mathbf{f}(\mathbf{x}) = \sqrt{3^{x} \mathbf{R} 1}$
48	$\mathbf{f}(\mathbf{x}) = 7^{\sqrt{\mathbf{R}}}$
49	$f(x) = \frac{e^{3x}Re^{x^2}}{3}$
50	$\mathbf{f}(\mathbf{x}) = \frac{7x^2}{x^3}$
51	$f(x) = \frac{e^{x^2}}{x^3}$
52	$f(x) = \sqrt{\frac{x^2}{x^3}}$
53	$f(x) = \ln (x + 3)$
54	$f(x) = 7x + \ln (x - 3)$
55	$f(x) = \ln (x^2 - 3x + 2)$
56	$\mathbf{f}(\mathbf{x}) = \frac{1}{\ln(x-1)}$
57	$f(x) = \ln \sqrt{\frac{x^2 - 1}{x^2 - 2x}}$

58	$f(x)=\ln \left(\sqrt{\left((x^5-x^3+3)\right)}\right)$	
59	$\mathbf{f}(\mathbf{x}) = \ln \left(\frac{e^{\mathbf{x} - 1}}{e^{\mathbf{x}} \mathbf{R} 1} \right)$	
60	$f(x) = \log_3(x+2)$	
61	$f(x) = \log (x - 3^2)$	
62	f(x) = sen(x+1)	
63	$f(x) = sen (2x^3 + 2x^2)$	
64	f(x) = sen (x + 1) + 5x	
65	$f(x) = \sqrt{(sen(x+1))}$	
66	$f(x) = \cos (\beta x + 3)$	
67	$f(x) = \cos \beta x^2 + 3x $	
68	$f(x) = \frac{1}{\operatorname{sen}(xR1)}$	
69	$f(x) = \frac{1}{\cos x} + \frac{1}{\sin(xR1)}$	
70	$f(x) = \frac{1}{\sin x} - \frac{1}{\cos x} \rightarrow 1$	
71	$f(x) = \sqrt[3]{\cos (3x + 3)}$	
72	$f(x) = \frac{1}{\text{sen}(xR1)} + (x^5 - x^3 + 3)^{\frac{4}{3}}$	
73	$\mathbf{f}(\mathbf{x}) = \ln (x - 1) + e^{xR1}$	
74	$f(x) = e^{x-3} + \cos x(+1) x^2$	
75	$f(x) = \tan (x - 5)$	
76	$f(x) = \tan (x^3 + 3)$	

77	$f(x) = -\tan \left(-5x^2 - 7\right)$
78	$f(x) = \frac{1}{\tan x \to 5}$
79	$f(x) = -\frac{3}{\tan x R2}$
80	$f(x) = \sqrt{(\tan{(x-5)})}$
81	$f(x)=arcsen (x^2-3)$
82	$f(x)=3x+arcsen (3x^3+3x-7)$
83	$f(x)=arcsen \sqrt{(x^2-3)}$
84	$f(x) = \arcsin \left(\frac{x_1}{x-1}\right)$
85	$f(x)=3\sqrt{\operatorname{sen}(x^2+3)}$
86	$f(x)=3\sqrt{\tan e^{x}}$
87	$f(x)=x^2$. tan \sqrt{x}
88	$\mathbf{f}(\mathbf{x}) = \frac{1 \operatorname{R} sen^2 x}{x}$
89	$f(x)=\ln(\sin x)$
90	$f(x)=\arctan\left(x^2-3\right)$
91	$f(x)=e^{x^2}-3 \ln (\sin x)$
92	$\mathbf{f}(\mathbf{x}) = e^{\mathbf{x} \mathbf{R} 3} + \ln \mathbf{x}(-5)$
	cot (x)
93	f(x)=arctg (n x)
94	$f(x)=\ln(\ln x)$
95	$f(x) = \ln(\ln x) + arctg x^{\beta} - 1)$
96	$f(x) = \cot (x^3 - 1)$

	$\mathbf{f}(\mathbf{x}) = \mathbf{sec} \ \mathbf{x} - \mathbf{e}^{\mathbf{x}}$	
97		
98	$f(x) = \csc x + x \frac{3}{3}$	
99	$f(x) = \cot(x+1)$	
100	$f(x) = e^{x^2} - \cot x^3 - 1$	