Methodology

FANG - Representation Learning

- Like Deep Walk and node2vec compute a node embedding by sampling its neighborhood, and then optimizing for the proximity loss similarly to word2vec.
 - Now the neighborhood is defined by the graph structure.
 - Recently, GraphSage was proposed to overcome this limitation by allowing auxiliary node features to be used jointly with proximity sampling as part of the representation learning.

Methodology

FANG - Representation Learning

- Let $GraphSage(\cdot)$ be GraphSage's node encoding function
 - Now obtain the structural representation z_u for any user u and source node r as $z_r = GraphSage(r)$
 - For news node, further enrich their structural representation with user engagement temporal representation with user engagement temporality.
 - This can be formulated as learning an aggregation function F(a, U) to get a temporal representation v_a^{temp} that captures a's engagement pattern.
 - Combine the temporal and the structural representations of a news a into a single representation: $z_a = v_a^{temp} + GraphSage(a)$