Ηλεκτρονική III Σχεδίαση Τελεστικού Ενισχυτή

ΜΟΥΡΟΥΖΗ ΧΡΙΣΤΟΣ ΑΕΜ:7571

Τιμές χαρακτηριστικών μεγεθών των τρανζίστορ που θα χρησιμοποιηθούν:

N-mos	P-mos
tox=2.12e-8 m	tox=2.12e-8 m
μ=u0=591.7 cm^2/V*s	μ=180.2 cm^2/V*s
Cox=Eox/tox=1.63*e-3 F/m^2	Cox=Eox/tox=1.63*e-3 F/m^2
Kn=μn*Cox=96.33 μA/V^2	Kp=μp*Cox=29.34 μA/V^2
Vt0=0.7860 V	Vt0=-0.9056

Προδιαγραφές:

CL	SR	Vdd	Vss	GB	Α	Pdiss
2.71pF	>=18.71V/μs	2.013V	2.013V	>=7.71MHZ	>20.71dB	<50.71mW

Εφαρμογή Αλγορίθμου:

- 1. Επιλέγω ως μήκος καναλιού το ελάχιστο L που μου δίνει το μοντέλο άρα L=0.35μm.
- 2. Cc>0.22CL=0.22*2.71pF=0.5962pF. Επιλέγω Cc=1Pf
- 3. I₅=SR*Cc=19 μA (SR=19 V/μs)
- 4. Ορίζω ως Vin(max)=0.1V, Vin(min)=-0.1V

$$S_3 = \frac{I_5}{Kp \cdot [Vdd - Vin(max) - Vt3(max) - Vt1(min)]^2} = 13.21$$

Όμως όπως αναφέρεται στις προδιαγραφές των μοντέλων των τρανζίστορ το **w>=1μm** άρα Si>=1/0.35>=2.86

Ορίζω ως
$$S_3 = S_4 = 13$$
 $→ W_3 = W_4 = 4.55 \mu m$

5.
$$|p3| = \frac{gm3}{Cgs3} = 6.82* 10^9 \text{ rad/s} = 1.09 \text{ GHz}$$

P3=1.09 GHz>> 10GB(=77.1Mhz)

6. gm1=GB *Cc=9*(10^6)*1*(10^(-12))*2 π =56.55 μ S (GB=9 MHz)

$$S_1 = S_2 = gm1^2/(Kn^*I_5) = 1.75$$

 S_1 , $S_2 > = 2.86$
 $Oρίζω S_1 = S_2 = 3 \rightarrow W_1 = W_2 = 1.05 \mu m$

7.
$$Vds_5(sat)=Vin(min)-Vss - \sqrt{\frac{I_5}{\beta 1}} -Vt1(max)>=100mV$$

$$\beta 1=Kn *W_1/L_1 \mu A/V^2 Vds_5(sat)=0.87V>100mV$$

$$S_5 = \frac{I_5}{Kn*Vds5(sat)^2} = 0.26$$
 $S_5 > = 2.86$
 $O\rho(\zeta w S_5 = 3 \rightarrow W_5 = 1.05 \mu m)$

8.
$$gm_6>=10*gm1=565.5 \mu S$$
 $gm_4=\sqrt{2*Kp*S4*I4}=85.12 \mu S$ $S_6=(gm6/gm4)*S_4=86.37$ $W_6=30.23\mu m$ $I_6=gm6^2/(2*Kp*S_6)=63 \mu s$

9.
$$S_7=(I_6/I_5)*S_5=9.95$$

 $W_7=3.48 \mu m$

10.
$$A_v$$
=(2*gm2*gm6)/(I_5 *(λ_2 + λ_3)* I_6 *(λ_6 + λ_7)) $\dot{\omega}\pi$ ou λ =0.1/L=2/7=0.29 A_v =27.37 DB Pdiss=(I_5 + I_6) *(Vdd+|Vss|)=0.33mW<<50.71mW

Προσομοίωση στο Spice: (Μετά από αρκετές αλλαγές)

1. Transient Ανάλυση:

Με κόκκινο ο παλμός στην είσοδο Vin_{p-p} =2V και με πράσινο ο παλμός στην έξοδο Vo_{p-p} =4.026V.

Προκύπτει από trace MAX(D(V(CL:2))) ότι SR=522.93 V/μs

AC Sweep

Από το διάγραμμα Bode βρίσκουμε το GB και την ενίσχυση Au οι οποίες είναι:

Au=38.275 DB GB=10.328 MHz

<u>Τελευταίο βήμα είναι να βρούμε την κατανάλωση ισχύος Pdiss:</u>

Η κατανάλωση ισχύος μπορεί να υπολογιστεί σαν το άθροισμα των ισχύων που παρέχουν οι πηγές στο κύκλωμα και είναι ίση με:

Pdiss=2*2.5802mW=5.1604 mW