SVM

Support vector machines

Классификация

Линейный классификатор

Шаги для линейной классификации:

- 1. Рандомный выбор первоначального расположения линии.
- 2. Оценка качества разделения объектов.
- 3. Переобучение (смена расположения линии).
- 4. Повторение 2-го и 3-го пункта, пока не найдем качественное разделение.

Вопрос для SVM: какая линия разделяет данные лучше всего?

Важно найти не просто разделяющую линию, а ту, что делает это качественнее всего

Какая линия будет разделять объекты лучше?

Margin

Как надо переобучить алгоритм, чтобы найти лучшее разделение?

Как разделять линии?

Как разделять линии?

$$4x + 6y + (-12) = 1$$

$$2x + 3y + (-6) = 0.5$$

Расширяющий шаг (expanding raid)

Шаги SVM

- 1. Рандомный выбор первоначального расположения линии.
- 2. Выбор расширяющего шага.
- 3. Оценка качества разделения объектов.
- 4. Переобучение (смена расположения линии).
- 5. Применение расширяющего шага.
- 6. Повторение 3-го 5-го пункта, пока не найдем качественное разделение.

Какой SVM разделил лучше?

Ошибка линейного классификатора

Насколько плохо прошло разделение?

Ошибка SVM

Margin Error

Margin Error

Margin error

SVM Error

Gradient Descent

Same as the SVM trick!

Градиентный спуск в SVM

Производная margin error к а и b

Какой SVM разделил лучше?

Гиперпараметр С

Kernel trick

