Algebra - MATH1241

By **Tuan Ho** [github.com/ttuanho | linkedin.com/in/ttuan-hho/]

- Definitions, Propositions, Corrolary & Theorems are collected from the coursepack unless noted.
- All Solutions are written by me.

Table of contents

- Algebra MATH1241
 - Table of contents
 - Vector Spaces
 - * Definitions and examples of vector spaces
 - * Subspaces
 - * Linear Combinations & Spans
 - * Linear independence
 - * Basis and dimension
 - * Coordinate vectors
 - * Further important examples of vector spaces
 - Linear Transformations
 - * Introduction to linear maps
 - * Linear maps from \mathbb{R}^n to \mathbb{R}^m and $m \times n$ matrices
 - * Subspaces associated with linear maps
 - * Further applications and examples of linear maps
 - · Laplace Transform
 - * Representation of linear maps by matrices
 - * Matrix arithmetic and linear maps
 - * One-to-one, onto and invertible linear maps and matrices
 - * Proof of the Rank-Nullity Theorem
 - * One-to-one, onto and inverses for functions
 - Eigenvalues & Eigenvectors
 - * Definitions & Examples
 - * Eigenvectors, bases and diagonalisation
 - · Solution of first-order linear differential equations
 - · Markov chains
 - * Applications of eigenvalues and eigenvectors
 - · Power of a matrix
 - * Eigenvalues & MAPLE
 - · Finding eigenvalues and eigenvectors of a matrix
- Practice
 - Past Papers
 - * 2019T2
 - *~2018S2
 - * 2017S2
 - * 2016S2
 - * 2015S2

- $*\ 2014S2$
- * 2013S2
- * 2012S2
- * 2011S2
- * 2010S2
- Exercises

Vector Spaces

Definitions and examples of vector spaces

Definition. A vector space V over the field \mathbb{F} is a non-empty set V of vectors on which addition of vectors is defined and multiplication by a scalar is defined in such a way that the following ten fundamental properties are satisfied:

- 1. Closure under Addition. If $\vec{u}, \vec{v} \in V$, then $\vec{u} + \vec{v} \in V$.
- 2. Associative Law of Addition. If $\vec{u}, \vec{v}, \vec{w} \in V$, then $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.
- 3. Commutative Law of Addition. If $\vec{u}, \vec{v} \in V$, then $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- 4. **Existence of Zero**. There exists an element $0 \in V$ such that, for all $\vec{v} \in V, \vec{v} + 0 = \vec{v}$.
- 5. Existence of Negative. For each $\vec{v} \in V$ there exists an element $\vec{w} \in V$ (usually written as $-\vec{v}$), such that $\vec{v} + \vec{w} = 0$.
- 6. Closure under Multiplication by a Scalar. If $\vec{v} \in V$ and $\lambda \in F$, then $\lambda \vec{v} \in V$.
- 7. Associative Law of Multiplication by a Scalar. If $\lambda, \mu \in \mathbb{F}$ and $\vec{v} \in V$, then $\lambda(\mu \vec{v}) = (\lambda \mu) \vec{v}$.
- 8. If $\vec{v} \in V$ and $1 \in \mathbb{F}$ is the scalar one, then $1\vec{v} = \vec{v}$.
- 9. Scalar Distributive Law. If $\lambda, \mu \in \mathbb{F}$ and $\vec{v} \in V$, then $(\lambda + \mu)\vec{v} = \lambda \vec{v} + \mu \vec{v}$.
- 10. Vector Distributive Law. If $\lambda \in \mathbb{F}$ and $\vec{u}, \vec{v} \in V$, then $\lambda(\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$.

Proposition. In any vector space V, the following properties hold for addition.

- 1. Uniqueness of Zero. There is one and only one zero vector.
- 2. Cancellation Property. If $\vec{u}, \vec{v}, \vec{w} \in V$ satisfy $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 3. *Uniqueness of Negatives*. For all $\vec{v} \in V$, there exists only one $\vec{w} \in V$ such that $\vec{v} + \vec{w} = 0$.

Subspaces

Definition A subset S of a vector space V is called a **subspace** of \$ \$V if S is itself a vector space over the same field of scalars as V and under the same rules for addition and multiplication by scalars.

In addition if there is at least one vector in V which is not contained in S, the subspace S is called a proper subspace of V.

Theorem (Subspace Theorem). A subset S of a vector space V over a field \mathbb{F} , under the samerules for addition and multiplication by scalars, is a subspace of V if and only if

- i) The vector 0 in V also belongs to S.
- ii) S is closed under vector addition, and
- iii) S is closed under multiplication by scalars from F.

Linear Combinations & Spans

Definition. Let $S = \{\vec{v_1}, \dots, \vec{v_n}\}$ be a finite set of vectors in a vector space V over a field \mathbb{F} . Then a *linear combination* of S is a sum of scalar multiples of the form

$$\lambda_1 \vec{v_1} + \dots + \lambda_n \vec{v_n}$$
 with $\lambda_1, \dots, \lambda_n \in \mathbb{F}$

Definition Let $S = \{\vec{v_1}, \dots, \vec{v_n}\}$ be a finite set of vectors in a vector space V over a field \mathbb{F} . Then the **span** of the set S is the set of *all* linear combinations of S, that is,

$$span(S) = span(\vec{v_1}, \dots, \vec{v_n}) = v \in V : v = \lambda_1 \vec{v_1} + \dots + \lambda_n v_n \text{ for some } \lambda_1, \dots, \lambda_n \in \mathbb{F}.$$

Technique. How can we tell $\vec{u} \in \mathbb{S}$?

- 1. $\vec{u} \in \mathbb{S}$
- 2. \vec{u} is linear combination of elements of \mathbb{S}
- 3. We can find scalar α_1, α_2 such that

$$\vec{u} = \alpha_1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$$

Definition A finite set S of vectors in a vector space V is called a **spanning** set for V if span (S) = V or equivalently, if every vector in V can be expressed as a linear combination of vectors in S.

Definition The subspace of R^m spanned by the columns of an $m \times n$ matrix A is called the **column space** of A and is denoted by col(A).

Linear independence

Definition. Suppose that $S = \{\vec{v_1}, \dots, \vec{v_n}\}$ is a subset of a vector space. The set S is a *linearly independent set* if the only values of the scalars $\lambda_1, \lambda_2, ..., \lambda_n$ for which

$$\lambda_1 v_1 + \cdots + \lambda_n \vec{v_n} = 0$$
 are $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Definition. Suppose that $S = \{\vec{v_1}, \dots, \vec{v_n}\}$ is a subset of a vector space. The set $S = \{\vec{v_1}, \dots, \vec{v_n}\}$ is a **linearly dependent set** if it is not a linearly independent set, that is, if there exist scalars $\lambda_1, \dots, \lambda_n$, not all zero, such that

$$\lambda_1 v_1 + \dots + \lambda_n \vec{v_n} = 0.$$

Basis and dimension

Definition. A set of vectors B in a vector space V is called a **basis** for V if:

- 1. B is a linearly independent set, and
- 2. B is a spanning set for V (that is, span(B) = V).

Theorem. The number of vectors in any spanning set for a vector space V is always greater than or equal to the number of vectors in any linearly independent set in V.

Theorem. If a vector space V has a finite basis then every set of basis vectors for V contains the same number of vectors, that is, if $B_1 = \{\vec{u_1}, \dots, \vec{u_m}\}$ and $B_2 = \{\vec{v_1}, \dots, \vec{v_n}\}$ are two bases for the same vector space V then m = n.

Definition. If V is a vector space with a finite basis, then the **dimension** of V, denoted by dim(V), is the number of vectors in any basis for V. Such a V is called a **finite dimensional vector space**.

Theorem. Suppose that V is a finite dimensional vector space.

- 1. the number of vectors in any spanning set for V is greater than or equal to the dimension of V;
- 2. the number of vectors in any linearly independent set in V is less than or equal to the dimension of V;
- 3. if the number of vectors in a spanning set is equal to the dimension then the set is also a linearly independent set and hence a basis for V;
- 4. if the number of vectors in a linearly independent set is equal to the dimension then the set is also a spanning set and hence a basis for V.

Coordinate vectors

Definition. Let V be an n-dimensional vector space and let the ordered set of vectors $B = \{\vec{v_1}, \dots, \vec{v_n}\}$ be a basis for V. If then the vector $\vec{v} = x_1 \vec{v_1} + \mathring{\text{u}}\mathring{\text{u}}\mathring{\text{u}} + x_n \vec{v_n}$

then

$$[\vec{v}]_B = \vec{x} = \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix}$$

is called the coordinate vector of \vec{v} with respect to the ordered basis B.

Theorem. If B is an ordered basis for a vector space V over a field \mathbb{F} and $\vec{u}, \vec{v} \in V$ and $\lambda \in \mathbb{F}$, then

• (a) $\vec{u} = v$ if and only if $[\vec{u}]_B = [\vec{v}]_B$, that is, two vectors are equal if and only if the corresponding coordinate vectors are equal.

- (b) $[\vec{u} + \vec{v}]_B = [\vec{u}]_B + [\vec{v}]_B$, that is, the coordinate vector of the sum of two vectors is equal to the sum of the two corresponding coordinate vectors.
- (c) $[\lambda \vec{v}]_B = \lambda [\vec{v}]_B$, that is, the coordinate vector of a scalar multiple of a vector is equal to the same scalar multiple of the corresponding coordinate vector.

Further important examples of vector spaces

Theorem (Alternative Subspace Theorem). A subset S of a vector space V over a field \mathbb{F} is a subspace of V if and only if S contains the zero vector and it satisfies the closure condition:

If $v_1, v_2 \in S$, then $\lambda_1 v_1 + \lambda_2 v_2 \in S$ for all $\lambda_1, \lambda_2 \in \mathbb{F}$.

Linear Transformations

Introduction to linear maps

Definition. Let V and W be two vector spaces over the same field \mathbb{F} . A function $T:V\to W$ is called a linear map or linear transformation if the following two conditions are satisfied.

Addition Condition. $T(\vec{v}+\vec{v}')=T(\vec{v})+T(\vec{v}')$ for all $\vec{v},\vec{v}'\in\vec{V}$, and

Scalar Multiplication Condition. $T(\lambda \vec{v}) = \lambda T(\vec{v})$ for all $\lambda \in \mathbb{F}$ and $\vec{v} \in V$.

Proposition. If $T: V \to W$ is a linear map, then

- 1. $T(\vec{0}) = \vec{0}$ and
- 2. $T(-\vec{v}) = -T(\vec{v})$ for all $\vec{v} \in V$.

Theorem. A function $T:V\to W$ is a linear map if and only if for all $\lambda_1,\lambda_2\in\mathbb{F}$ and $\vec{v_1},\vec{v_2}\in V$

$$T(\lambda_1 \vec{v_1} + \lambda_2 \vec{v_2}) = \lambda_1 T(\vec{v_1}) + \lambda_2 T(\vec{v_2})$$

.

Theorem. If T is a linear map with domain V and S is a set of vectors in V, then the function value of a linear combination of S is equal to the corresponding linear combination of the function values of S, that is, if $S = v1, \dots, vn$ and $\lambda_1, \dots, \lambda_n$ are scalars, then

$$T(\lambda_1 v 1 + \dots + \lambda_n v n) = \lambda_1 T(v 1) + \dots + \lambda_n T(v n).$$

Theorem. For a linear map $T:V\to W$, the function values for every vector in the domain are known if and only if the function values for a basis of the domain are known. Further, if $B=\{\vec{v_1},\cdots,\vec{v_n}\}$ is a basis for the domain V then for all $v\in V$ we have $T(\vec{v})=x_1T(\vec{v_1})+\cdots+x_nT(\vec{v_n})$, where x_1,\cdots,x_n

are the scalars in the unique linear combination $v = x_1 \vec{v_1} + \cdots + x_n \vec{v_n}$ of the basis B.

Linear maps from \mathbb{R}^n to \mathbb{R}^m and $m \times n$ matrices

Theorem. For each $m \times n$ matrix A, the function $T_A : \mathbb{R}^n \to \mathbb{R}^m$, defined by

$$T_A(\vec{x}) = A\vec{x} \text{ for } \vec{x} \in \mathbb{R}^n,$$

is a linear map.

Theorem (Matrix Representation Theorem). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and let the vectors ej for $1 \leq j \leq n$ be the standard basis vectors for \mathbb{R} . Then the $m \times n$ matrix A whose columns are given by

$$\vec{a}_i = T(\vec{e}_i)$$
 for $1 \le j \le n$

has the property that

$$T_A(\vec{x}) = A\vec{x} \text{ for } \vec{x} \in \mathbb{R}^n.$$

Subspaces associated with linear maps

Definition. Let $T:V\to W$ be a linear map. Then the kernel of T (written ker(T)) is the set of all zeroes of T, that is, it is the subset of the domain V defined by

$$ker(T) = \{v \in V : T(v) = 0\}$$

.

Definition. For an $m \times n$ matrix A, the **kernel** of A is the subset of \mathbb{R}^n defined by

$$ker(A) = \{ \vec{x} \in R^n : A\vec{x} = 0 \}$$

, that is, it is the set of all solutions of the homogeneous equation $A\vec{x}=0$.

Definition. The *nullity* of a linear map T is the dimension of ker(T). The nullity of a matrix A is the dimension of ker(A).

Another **Definition**. If A is an $m \times n$ matrix, then a vector $x \in \mathbb{R}^n$ is in the kernel of A precisely when $A\vec{x} = \vec{0} \in \mathbb{R}^n$, then another term for the **kernel** of A is the **null space** of A.

Definition. Let $T: V \to W$ be a linear map. Then the image of T is the set of all function values of T, that is, it is the subset of the codomain W defined by

$$im(T) = {\vec{w} \in W : \vec{w} = T(\vec{v})}$$
 for some $\vec{v} \in V$

Definition. The image of an $m \times n$ matrix A is the subset of \mathbb{R}^m defined by

$$im(A) = {\vec{b} \in \mathbb{R}^m : \vec{b} = A\vec{x} \text{ for some } \vec{x} \in \mathbb{R}^n}$$

Theorem. Let $T: V \to W$ be a linear map between vector spaces V and W. Then im(T) is a subspace of the codomain W of T.

Definition. The rank of a linear map T is the dimension of im(T). The rank of a matrix A is the dimension of im(A).

Proposition. For a matrix A, rank(A) = maximal number of linearly independent columns of A = number of leading columns in a row-echelon form U for A

Theorem (Rank-Nullity Theorem for Matrices).

For any matrix A, rank(A) + nullity(A) = number of columns of A.

Theorem. The equation $A\vec{x} = \vec{b}$ has:

- 1. no solution if $rank(A) \neq rank([A \mid \vec{b}])$, and
- 2. at least one solution if $rank(A) = rank([A \mid \vec{b}])$. Further,
- if nullity(A) = 0 the solution is unique, whereas,
- if $nullity(A) = \nu > 0$, then the general solution is of the form

$$\vec{x} = \vec{x}_p + \lambda_1 \vec{k_1} + \dots + \lambda_{\nu} \vec{k_{\nu}} for \lambda_1, \dots, \lambda_{\nu} \in \mathbb{R}$$

, where \vec{x}_p is any solution of $A\vec{x}=\vec{b},$ and where $\{\vec{k_1},\cdots,\vec{k_{\nu}}\}$ is a basis for ker(A).

Further applications and examples of linear maps

Laplace Transform

Representation of linear maps by matrices

Theorem (General Matrix Representation Theorem). Let $T: V \to W$ be a linear map from an n-dimensional vector space V to an m-dimensional vector space W, and let $B_V = \{\vec{v_1}, \cdots, \vec{v_n}\}$ be an ordered basis for V and $B_W = \{\vec{w_1}, \cdots, \vec{w_m}\}$ be an ordered basis for W. Then, there is a unique $m \times n$ matrix A such that

$$[T(\vec{v})]_{B_W} = A[\vec{v}]_{B_V}.$$

Further, A is the matrix whose columns are

$$\vec{a_j} = [T(\vec{v_j})]_{B_W}$$
 for $1 \le j \le n$.

Algorithm. Constructing a matrix representation for a linear map.

- 1. Find a basis $B_V = \{\vec{v_1}, \dots, \vec{v_n}\}$ for the domain V and a basis $B_W = \{\vec{w_1}, \dots, \vec{w_m}\}$ for the codomain W.
- 2. Find the function values $T(\vec{v_i})$, $1 \le j \le n$, of the domain basis vectors.
- 3. Find the coordinate vectors $[T(\vec{v_j})]_{B_W}$ of the function values $T(\vec{v_j})$ with respect to the codomain basis B_W .

Matrix arithmetic and linear maps

Proposition (Addition). Let A and B be real $m \times n$ matrices and let T_A : $\mathbb{R}^n \to \mathbb{R}^m$ and $T_B : \mathbb{R}^n \to \mathbb{R}^m$ be the linear maps given by $T_A(\vec{x}) = A\vec{x}$ and $T_B(\vec{x}) = B\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. Then the sum $T = T_A + T_B$ is the linear map $T : R \to R$ given by $T(\vec{x}) = (A + B)\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Proposition (Multiplication by a Scalar). Let A be a real $m \times n$ matrix and $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear map defined by $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. Then the scalar multiple $T = \lambda T_A$ is the linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\vec{x}) = (\lambda A)\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Proposition (Multiplication and Composition). Let A and B be real $m \times n$ matrices and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ and $T_B : \mathbb{R}^n \to \mathbb{R}^m$ be the linear maps given by $T_A(\vec{x}) = A\vec{x}$ and $T_B(\vec{x}) = B\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$. Then the composite $T = T_A \circ T_B$ is the linear map $T : R \to R$ given by $T(\vec{x}) = (AB)\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Proposition. Let U, V and W be finite-dimensional vector spaces with bases B_U, B_V and B_W respectively. Let $T: U \to V$ and $S: V \to W$. Then

- $S \circ T$ is a linear transformation from $U \to W$.
- If the matrix for T with respect to B_U and B_V is A_T , the matrix for S with respect to B_V and B_W is A_S and the matrix for $S \circ T$ with respect to B_U and B_W is A_{ST} ,then $A_{ST} = A_S A_T$.

One-to-one, onto and invertible linear maps and matrices

Proof of the Rank-Nullity Theorem

Theorem (Rank-Nullity Theorem). If V is a finite dimensional vector space and $T: V \to W$ is linear then rank(T) + nullity(T) = dim(V).

Proof

One-to-one, onto and inverses for functions

(See MATH1081 for this)

Definition. The *range* or image of a function is the set of all function values, that is, for a function $f:X\to Y$,

$$im(f) = \{ y \in Y : y = f(x) \text{ for some } x \in X \}.$$

Definition. A function is said to be *onto* (or surjective) if the codomain is equal to the image of the function, that is, a function $f: X \to Y$ is onto if for all $y \in Y$ there exists an $x \in X$ such that y = f(x).

Definition. A function is said to be *one-to-one* (or injective) if no point in the codomain is the function value of more than one point in the domain, that is, a function $f: X \to Y$ is one-to-one if $f(x_1) = f(x_2)$ if and only if $x_1 = x_2$.

Eigenvalues & Eigenvectors

Definitions & Examples

Definition. Let $T: V \to V$ be a linear map. Then if a scalar λ and non-zero vector $\vec{v} \in V$ satisfy

$$T(\vec{v}) = \lambda \vec{v},$$

then λ is called an *eigenvalue* of T and \vec{v} is called an *eigenvector* of T for the eigenvalue λ .

Theorem. A scalar λ is an eigenvalue of a square matrix A if and only if $det(A - \lambda I) = 0$, and then v is an eigenvector of A for the eigenvalue λ if and only if v is a non-zero solution of the homogeneous equation $(A - \lambda I)v = 0$, i.e., if and only if $v \in ker(A - \lambda I)$ and $v \neq 0$.

Theorem. If A is an $n \times n$ matrix and $\lambda \in C$, then $det(A - \lambda I)$ is a complex polynomial of degree n in λ .

Definition. For a square matrix A, the polynomial $p(\lambda) = det(A - \lambda I)$ is called the **characteristic polynomial** for the matrix A.

Theorem. An $n \times n$ matrix A has exactly n eigenvalues in \mathbb{C} (counted according to their multiplicities). These eigenvalues are the zeroes of the characteristic polynomial $p(\lambda) = det(A - \lambda I)$.

Eigenvectors, bases and diagonalisation

Theorem. If an $n \times n$ matrix has n distinct eigenvalues then it has n linearly independent eigenvectors.

Theorem. If an $n \times n$ matrix A has n linearly independent eigenvectors, then there exists an invertible matrix M and a diagonal matrix D such that

$$M^{-1}AM = D$$
.

Further, the diagonal elements of D are the eigenvalues of A and the columns of M are the eigenvectors of A, with the jth column of M being the eigenvector corresponding to the jth element of the diagonal of D. Conversely if $M^{-1}AM =$

D with D diagonal then the columns of M are n linearly independent eigenvectors of A.

Definition. A square matrix A is said to be a *diagonalisable* matrix if there exists an invertible matrix M and diagonal matrix D such that $M^{-1}AM = D$.

Definition (of Matrix function). If the $n \times n$ matrix A is diagonalizable and a function $f : \mathbb{R} \to \mathbb{R}$, then $f(A) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ is defined by

$$f(A) = M \begin{pmatrix} f(\lambda_1) & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & f(\lambda_n) \end{pmatrix} M^{-1}$$

where $\lambda_1, \dots, \lambda_n$ are the diagonal entries of the diagonal matrix D and M is the invertible matrix (such that $A = MDM^{-1}$).

 $(From\ Wikipedia:\ https://en.wikipedia.org/wiki/Matrix_function\ and\ https://archive.siam.org/books/ot104/OT104HighamChapter1.pdf)$

Solution of first-order linear differential equations

Proposition. $\mathbf{y}(t) = \mathbf{v}e^{\lambda t}$ is a solution of

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}$$

if and only if λ is an eigenvalue of A and ${\bf v}$ is eigenvectors of A of the eigenvalue of λ .

Proposition. If $\mathbf{u_1}(t)$ and $\mathbf{u_2}(t)$ is a solution of

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}$$

then any linear combination of $\mathbf{u_1}$ and $\mathbf{u_2}$ is also a solution.

Markov chains

Dynamical systems are ones where the state of the system at stage k+1 depends solely on the state at stage k.

Lemma. If λ is an eigenvalue of A, then λ is also a eigenvalue of A^T .

Theorem. Suppose that A is $n \times n$ matrix and that the sum of each of the columns of A is 1. Then A has 1 as an eigenvalue.

Applications of eigenvalues and eigenvectors

Power of a matrix

Proposition. Let D be the diagonal matrix

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Then for $k \geq 1$,

$$D^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & 0 & \cdots & 0 \\ 0 & 0 & \lambda_{3}^{k} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \lambda_{n}^{k} \end{pmatrix}.$$

Proposition. If A is diagonalisable, that is, if there exists an invertible matrix M and diagonal matrix D such that $M^{-1}AM = D$, then

$$A^k = MD^k M^{-1}$$
 for integer $k \ge 1$.

Example. We are told that

$$A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$$

has eigenvalues 5 and 3 with respective eigenvectors

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. So we can diagonalise Aby finding an invertible matrix M and diagonal matrix D such that

$$M^{-1}AM = D$$

Eigenvalues & MAPLE

Finding eigenvalues and eigenvectors of a matrix

with(LinearAlgebra);
M:=<<6|2|2>,<-2|8|4>,<0|1|7>>;
I3:=IdentityMatrix(3);

```
p:=Determinant(M-t*I3);
solve(p,t);

NullSpace(M-6*I3);
NullSpace(M-7*I3);
NullSpace(M-8*I3);
```

Practice

Past Papers

2019T2

- d) Using the Maple output below, or otherwise, answer the questions that follow.
 - > with(LinearAlgebra):

$$N := \left[\begin{array}{cccc} 4 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 4 \end{array} \right]$$

> Eigenvalues(N);

$$\begin{bmatrix} 5 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$

> Eigenvectors(N);

$$\left[\begin{array}{c}5\\2\\3\\0\end{array}\right], \left[\begin{array}{cccc}1&0&-1&0\\0&-1&0&1\\0&1&0&1\\1&0&1&0\end{array}\right]$$

- i) Write down a basis for $\ker N$.
- ii) Write down a basis for the column space of N.
- iii) State the rank and nullity of N.
- iv) What are the eigenvalues of N^2 ?

d) Consider the linear transformation

$$F: M_{22} \to M_{22}$$
 where $F(X) = X + aX^T$.

Here a is a real constant, and X^T denotes the transpose of the matrix X. You do not need to prove that F is a linear transformation.

- i) Show that $\ker(F) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ if and only if $a \neq \pm 1$.
- ii) Prove that if $a \neq \pm 1$ then every matrix $B \in M_{22}$ can be written in the form $B = X + aX^T$ for some $X \in M_{22}$.

2018S2

1. i) Prove that

$$S = \{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 = x_2 x_3 \}$$

is **not** a subspace of \mathbb{R}^3 .

ii) If $M_{22}(\mathbb{R})$ is the set of 2×2 matrices with real entries, prove that the transpose operation $T: M_{22}(\mathbb{R}) \to M_{22}(\mathbb{R})$, which is given by,

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} a & c \\ b & d \end{pmatrix},$$

is a linear map.

- iv) Consider the matrix $M = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$.
 - a) Find a basis for ker(M).
 - b) Find a basis for $im(M^T)$.
 - c) Give a geometric description of $\ker(M)$ and $\operatorname{im}(M)$ as subspaces of \mathbb{R}^2 .

2017S2

iii) Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, and $\mathbf{v}_3 = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$.

- a) Write v_3 as a linear combination of v_1 and v_2 .
- b) Does there exist a linear map $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ such that

$$T(\mathbf{v}_1) = \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}, \quad T(\mathbf{v}_2) = \begin{pmatrix} -2 \\ 16 \\ 2 \end{pmatrix}, \quad \text{and} \quad T(\mathbf{v}_3) = \begin{pmatrix} -6 \\ -3 \\ -8 \end{pmatrix}$$
?

c) What is the relationship between $\mathrm{span}(\mathbf{v}_1,\mathbf{v}_2)$ and $\mathrm{span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)?$

- v) Read the following Maple output and use it to answer the questions below.
 - > with(LinearAlgebra):
 - > A := <<1,2,7,4,3>|<-1,6,2,8,1>|<2,-4,5,-4,2>| <2,3,-1,5,7>|<-1,14,11,20,5>>;

$$A := \begin{bmatrix} 1 & -1 & 2 & 2 & -1 \\ 2 & 6 & -4 & 3 & 14 \\ 7 & 2 & 5 & -1 & 11 \\ 4 & 8 & -4 & 5 & 20 \\ 3 & 1 & 2 & 7 & 5 \end{bmatrix}$$

> GaussianElimination(A);

> b := <-2,35,16,49,15>:

$$b := \begin{bmatrix} -2 \\ 35 \\ 16 \\ 49 \\ 15 \end{bmatrix}$$

> LinearSolve(A,b);

Let A be the matrix A defined in the Maple code above.

- a) Give a basis for the kernel of the matrix A.
- b) Find one vector in $\mathbf{x} \in \mathbb{R}^5$ such that

$$A\mathbf{x} = \begin{pmatrix} -2\\35\\16\\49\\15 \end{pmatrix}$$

iv) Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be the linear map which reflects a vector in the line $y=\sqrt{3}\,x$ as show in the diagram.

a) Show that

$$T(\mathbf{e}_1) = \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}, \quad T(\mathbf{e}_2) = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}, \quad \text{where } \ \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

b) Find the matrix A such that

$$A\mathbf{x} = T(\mathbf{x}), \text{ for all } \mathbf{x} \in \mathbb{R}^2.$$

c) Find
$$T\left(\begin{pmatrix} 4\\5 \end{pmatrix}\right)$$
.

- 3. i) Let \mathbb{P}_2 be the vector space of all real polynomials of degree at most 2.
 - a) Find three polynomials f_1, f_2, f_3 in \mathbb{P}_2 such that $f_i(0) = 1$ for i = 1, 2, 3 and $\{f_1, f_2, f_3\}$ is linearly independent.
 - b) Suppose that $P = \{p_1, p_2, p_3\}$ is a subset of \mathbb{P}_2 such that $p_i(1) = 0$ for i = 1, 2, 3. Show that P is a linearly dependent set.
 - ii) Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
 - a) Given that the eigenvalues of A are 1, 2, 3, explain why A is diagonalisable
 - b) Find an eigenvector of A for the eigenvalue $\lambda = 3$.

c) Let
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 and

$$f(x) = (x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x - 6.$$

Show that $f(D) = D^3 - 6D^2 + 11D - 6I$ is the zero matrix 0.

- d) Hence, prove that f(A) = 0.
- e) Compute A^{-1} as a linear combination of A^2 , A, I.

2016S2

1. i) Suppose that

$$S = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 + 2x_3 \ge 0 \right\}.$$

- a) Prove that S is closed under addition.
- b) Either prove that S is a subspace of \mathbb{R}^3 or explain why it is not a subspace of \mathbb{R}^3 .

ii) Let
$$A = \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 2 & 5 & 1 & 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$.

- a) Is **b** in ker(A)? Give reasons.
- b) Find a basis for im(A).
- iv) A function $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by

$$T(\mathbf{x}) = \begin{pmatrix} x+y \\ 2x \\ -y \end{pmatrix}, \quad \text{for } \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

- a) Prove that T is linear.
- b) Determine the nullity of T. Give reasons.

vi) Consider the following polynomials in the vector space of polynomials of degree 3 or less, \mathbb{P}_3 .

$$p_1(x) = 1 + 2x + 3x^2 + x^3$$

$$p_2(x) = 1 + x + 3x^2 + x^3$$

$$p_3(x) = 1 + 2x + 4x^2 + x^3$$

$$p_4(x) = 1 - x + 3x^2 + 2x^3$$

$$p_5(x) = 2 + x + x^2 - 4x^3$$

Which of the following statements are true and which are false? Explain your answer.

- a) The set $\{p_1, p_2, p_3\}$ is a basis for \mathbb{P}_3 .
- b) The set $\{p_1, p_2, p_3, p_4, p_5\}$ is a linearly independent set in \mathbb{P}_3 .
- **3.** i) Let

$$A = \begin{pmatrix} 9 & -1 \\ 4 & 5 \end{pmatrix} .$$

- a) Find all eigenvalues and eigenvectors of A.
- b) Explain carefully why A is not diagonalisable.
- c) Find the matrix of the linear mapping

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 where $T(\mathbf{x}) = A\mathbf{x}$

with respect to the ordered basis $B = \{ \mathbf{v}_1, \mathbf{v}_2 \}$ in both domain and codomain, where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

- ii) Let V and W be vector spaces, let $T:V\to W$ be a linear transformation, and let $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m$ be vectors in V.
 - a) Prove, giving detailed reasons, that if $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_m)$ are linearly independent, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly independent.
 - b) State, giving reasons, whether the following statement is true or false: if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly independent, then $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_m)$ are linearly independent.

iii) The field $\mathbb{F} = \mathrm{GF}(4)$ has elements $\{0,1,\alpha,\beta\}$, with addition and multiplication defined by the following tables.

+	0	1	α	β
0	0	1	α	β
1	1	0	β	α
α	α	β	0	1
β	β	α	1	0

For the vectors

$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} \beta \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{b}_3 = \begin{pmatrix} 1 \\ 0 \\ \alpha \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} \alpha \\ 0 \\ 0 \end{pmatrix}$,

- a) show that $\{b_1, b_2, b_3\}$ is a basis for \mathbb{F}^3 ;
- b) explain without calculation why $\{b_1,b_1+b_2,b_2+b_3,b_3\}$ is a spanning set but not a basis for \mathbb{F}^3 ;
- c) find the coordinate vector of v with respect to the ordered basis $\{\,b_1,b_2,b_3\,\}$ of $\mathbb{F}^3.$

2015S2

v) Prove that

$$S = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 - 2x_2 + 4x_3 = 0 \right\}$$

is a subspace of \mathbb{R}^3 .

vi) Consider the vectors in \mathbb{R}^3 ,

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -1 \\ 6 \\ 3 \end{pmatrix}.$$

Prove that **b** is in span($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$).

- vii) Using the following Maple output, answer the questions below. Give reasons.
 - > with(LinearAlgebra):

$$A := \begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 1 & 2 & -3 & 4 & -8 \\ 3 & 3 & 3 & 3 & 12 \\ 1 & 1 & 1 & -3 & 12 \\ 2 & 3 & -2 & 5 & -4 \end{bmatrix}$$

> LinearSolve(A,<0,0,0,0,0);</pre>

$$\begin{bmatrix} -5 \, _t_3 - 12 \, _t_5 \\ 4 \, _t_3 + 6 \, _t_5 \\ -t_3 \\ 2 \, _t_5 \\ -t_5 \end{bmatrix}$$

> B := GaussianElimination(<A|IdentityMatrix(5)>);

$$B := \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -4 & 2 & -10 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 6 & -3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 & -\frac{5}{3} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -\frac{1}{3} & 0 & 1 \end{bmatrix}$$

- a) Find a basis for ker(A).
- b) Write down the value of rank(A).
- c) Find a basis for \mathbb{R}^5 containing as many columns of A as possible.
- v) Let V be a vector space and $T: V \to V$ be a linear map. Suppose that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a subset of V and $R = \{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$.
 - a) State what it means to say that "R is a linearly independent set".
 - b) Prove that if R is a linearly independent set then S is a linearly independent set.

ii) Consider the mapping $T: \mathbb{P}_2 \to \mathbb{P}_3$ defined by

$$(Tp)(x) = (x^2 + 1)p'(x) - 2xp(x).$$

- a) Prove that T is a linear transformation.
- b) Find the nullity of T.
- c) Find the matrix of T with respect of the standard bases of \mathbb{P}_2 and \mathbb{P}_3 .
- iii) The matrix

$$A = \begin{pmatrix} 5 & 0 & -4 \\ 4 & 9 & 4 \\ -8 & -12 & -5 \end{pmatrix}$$

has characteristic polynomial $p(\lambda) = -\lambda^3 + 9\lambda^2 + 9\lambda - 81$.

- a) Given that two of the eigenvalues of A are $\lambda_1 = -3$ and $\lambda_2 = 3$, find the remaining eigenvalue λ_3 .
- b) Find an eigenvector for λ_3 .
- c) Given that $\mathbf{v}_1 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ are eigenvectors of A, write down a 3×3 matrix M and a diagonal matrix D such that $D = M^{-1}AM$.
- iv) A linear transformation $P: V \to V$ is said to be **idempotent** if $P(P(\mathbf{v})) = P(\mathbf{v})$ for all $\mathbf{v} \in V$.
 - a) Show that the only possible eigenvalues for an idempotent linear transformation are 0 and 1.
 - b) Show that if P is idempotent and P is neither the zero nor the identity transformation on V, then both 0 and 1 are eigenvalues.

2014S2

iv) Let
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : z^2 = x^2 + y^2 \right\}$$
.

- a) Prove that S is closed under scalar multiplication.
- b) Prove that S is **not** a subspace of \mathbb{R}^3 .

v) Let
$$A = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$
.

- a) Find the eigenvalues and eigenvectors for the matrix A.
- b) Write down an invertible matrix M and a diagonal matrix D such that

$$D = M^{-1}AM.$$

vi) Let

$$A = \left(\begin{array}{cccc} 1 & 2 & 2 & -1 \\ 2 & 4 & 10 & -44 \\ 3 & -3 & -3 & 24 \\ 1 & 2 & 1 & 6 \end{array}\right)$$

Using the MAPLE output below, find a basis for ker(A).

> with(LinearAlgebra):

$$\begin{bmatrix}
1 & 2 & 2 & -1 \\
2 & 4 & 10 & -44 \\
3 & -3 & -3 & 24 \\
1 & 2 & 1 & 6
\end{bmatrix}$$

> ReducedRowEchelonForm(A);

$$\left[\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 0
\end{array}\right]$$

iv) Consider the set
$$S$$
 consisting of the vectors $\mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{v_2} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ from \mathbb{R}^3 and

let
$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 12 \end{pmatrix}$$
.

- a) Find scalars λ and μ such $\mathbf{u} = \lambda \mathbf{v_1} + \mu \mathbf{v_2}$.
- b) A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ has $\mathbf{v_1}, \mathbf{v_2}$ as eigenvectors with eigenvalues 2 and -1, respectively.
 - α) Find $T(\mathbf{u})$ as a linear combination of $\mathbf{v_1}, \mathbf{v_2}$.
 - β) Denote $T(T(\mathbf{u}))$ by $T^2(\mathbf{u})$, $T(T(T(\mathbf{u})))$ by $T^3(\mathbf{u})$, and so on. Express $T^n(\mathbf{u})$ as a linear combination of $\mathbf{v_1}$, $\mathbf{v_2}$, where n is a positive integer.

3. i) Prove that the function $T: \mathbb{P}(\mathbb{R}) \to \mathbb{R}^2$ defined by

$$T(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}, \quad \text{for all polynomials } p \in \mathbb{P}(\mathbb{R}) \,,$$

is a linear transformation.

ii) Given a square matrix A, the matrix exponential e^A is defined by

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k = I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \cdots$$

(You may assume without proof that this series always converges.)

Let
$$N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

- a) Find N^2 .
- b) Hence or otherwise, calculate the matrix exponential $e^N.$
- c) Prove that if a matrix P is idempotent (that is, $P^2 = P$), then $e^P = I + (e 1)P$.
- iii) Let $\mathcal{R}[\mathbb{R}]$ denote the vector space of real-valued functions defined on \mathbb{R} . Let S be the subspace of $\mathcal{R}[\mathbb{R}]$ that is spanned by the **ordered** basis $\mathcal{B} = \{\cos(x), \sin(x)\}$. Define the linear map $T: S \to S$ by

$$T(f) = f - 2f'$$
 where $f' = \frac{df}{dx}$.

- a) Calculate the matrix C that represents T with respect to the basis \mathcal{B} .
- b) State the rank of the matrix C found in part (a).
- c) From part b), what can be deduced about the solutions $y \in S$ of

$$y - 2y' = g$$

where g is a given function in S?

Exercise (November, 2014, question 1 iv)

Let

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : z^2 = x^2 + y^2 \right\}$$

• a) Prove that S is closed under scalar multiplication. Suppose $x \in S$ and λ is a scalar, then x+y=z. Consider the components of λx . We have

$$(\lambda x)^2 + (\lambda y)^2 = \lambda^2 (x^2 + y^2) = (\lambda z)^2$$

so $\lambda x \in S$.

• b) Prove that S is not a subspace of \mathbb{R}^3 (use counter example).

Exercise (November, 2014, question 2, iv, a)

2013S2

1. i) Let

$$S = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) \in \mathbb{R}^3 : x_1^3 + x_2^3 + x_3^3 = 0 \right\}.$$

- a) Prove that S is closed under scalar multiplication.
- b) Show that S is **not** a subspace of \mathbb{R}^3 .
- ii) Suppose that

$$A = \begin{pmatrix} -23 & 3 & -5 & 37 \\ -49 & 8 & -10 & 73 \\ -87 & 9 & -15 & 129 \\ -26 & 3 & -5 & 40 \end{pmatrix}.$$

Using the following Maple output, answer the questions below.

- > with(LinearAlgebra):
- > A := <<-23,-49,-87,-26>|<3,8,9,3>|<-5,-10,-15,-5> |<37,73,129,40>>;

$$A := \begin{bmatrix} -23 & 3 & -5 & 37 \\ -49 & 8 & -10 & 73 \\ -87 & 9 & -15 & 129 \\ -26 & 3 & -5 & 40 \end{bmatrix}$$

> Eigenvectors(A);

$$\left[\begin{array}{c}2\\3\\5\\0\end{array}\right], \left[\begin{array}{cccc}1&2&1&1\\1&5&2&2\\3&0&3&4\\1&1&1&1\end{array}\right]$$

- a) Without performing any further computations, explain why the matrix A has four linearly independent eigenvectors.
- b) Write down the general solution of

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}.$$

$$y = oy + oy = e$$
 .

iv) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map which rotates a vector \mathbf{x} about the origin through $\frac{\pi}{6}$ anticlockwise and doubles its length, as shown in the diagram.

- a) Show that $T(\mathbf{e}_1) = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$, where $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- b) Find the matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$.
- i) The polynomials p_1, p_2, p_3, p_4 and p_5 are defined, for all $x \in \mathbb{R}$, by

$$p_1(x) = x^3 + 3x^2 + 2x - 1$$

$$p_2(x) = 2x^3 - 3x^2 + 4x + 2$$

$$p_3(x) = 11x^3 - 3x^2 + 22x + 5$$

$$p_4(x) = 2x^3 - 21x^2 + 4x + 3$$

$$p_5(x) = 9x^3 + 18x^2 + 18x + 2$$

Let $S = \{p_1, p_2, p_3, p_4, p_5\}.$

a) Explain why S cannot be a basis for $\mathbb{P}_3(\mathbb{R})$. Using the following Maple output,

answer the questions below.

> with(LinearAlgebra):

$$\begin{bmatrix} 1 & 2 & 11 & 2 & 9 & 0 & 0 & 0 & 1 \\ \\ -1 & 2 & 5 & 3 & 2 & 1 & 0 & 0 & 0 \\ \\ 0 & 8 & 32 & 10 & 22 & 2 & 1 & 0 & 0 \\ \\ 0 & 0 & 0 & -\frac{63}{4} & \frac{63}{4} & \frac{9}{4} & -\frac{3}{8} & 1 & 0 \\ \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 1 \end{bmatrix}$$

- b) Find a basis for span(S).
- c) Find a basis for $\mathbb{P}_3(\mathbb{R})$ which contains as many of the polynomials of S as possible.
- ii) Let

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 3 \\ 1 & 3 & 4 & 9 \end{array}\right).$$

- a) Find a basis for ker(A).
- b) Hence state the value of nullity(A). Give a reason.
- iii) Let

$$C = \left(\begin{array}{cc} 1 & 2 \\ -2 & 5 \end{array} \right).$$

- a) Find the eigenvalue(s) of C and for each eigenvalue find the corresponding eigenvectors.
- b) Is C diagonalisable? Give a reason for your answer.

- iv) A real $n \times n$ matrix A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and can be expressed as $M^{-1}DM$, where M is an invertible matrix and D is the diagonal matrix with $\lambda_1, \ldots, \lambda_n$ as its diagonal entries.
 - a) Show that $A^k = M^{-1}D^kM$.
 - b) Explain why D^k is a diagonal matrix with diagonal entries $\lambda_1^k, \ldots, \lambda_n^k$
 - c) Write the characteristic polynomial p(x) of A as

$$p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}.$$

By replacing the variable x by the matrix D, and a_0 with a_0I , where I is the $n \times n$ identity matrix, prove that $p(D) = \mathbf{0}$ where $\mathbf{0}$ is the $n \times n$ zero matrix.

- d) Hence or otherwise, prove that p(A) = 0.
- e) Use the result in (d) to show that the matrix $A=\begin{pmatrix}2&1\\4&-1\end{pmatrix}$ satisfies $A^2=A+6I$.

2012S2

- 1. i) Let $S = {\mathbf{x} \in \mathbb{R}^2 : x_1 x_2 \ge 0}$.
 - a) Show that S is closed under multiplication by a scalar.
 - b) Show that S is a not a subspace.
 - ii) Consider the set $S = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$ of vectors in \mathbb{R}^4 given by

$$S = \left\{ \left(\begin{array}{c} 1 \\ -2 \\ 1 \\ 2 \end{array} \right), \left(\begin{array}{c} 2 \\ -4 \\ 2 \\ 4 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 5 \\ 0 \end{array} \right), \left(\begin{array}{c} 3 \\ -4 \\ 8 \\ 7 \end{array} \right) \right\},$$

and let
$$\mathbf{b} = \begin{pmatrix} -2\\1\\-10\\-7 \end{pmatrix}$$
.

- a) Does **b** belong to span(S)? Give reasons.
- b) Does S span \mathbb{R}^4 ? Give reasons.
- c) Write down a basis for span(S).
- iii) A mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by

$$T(\mathbf{x}) = \left(\begin{array}{c} x_1 - x_3 \\ 2x_1 + x_2 \end{array}\right).$$

- a) Show that T is linear.
- b) Write down a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

iv) The linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ has matrix

$$A = \left(\begin{array}{cccccc} 1 & 3 & -3 & 1 & 4 \\ -1 & 3 & -9 & 2 & -1 \\ 2 & -4 & 14 & 3 & -3 \\ -1 & -3 & 3 & -1 & -4 \\ 0 & 6 & -12 & 3 & 3 \end{array}\right).$$

Using the Maple below, or otherwise, answer the following questions, giving brief reasons.

- a) Find rank(T).
- b) Find $\operatorname{nullity}(T)$.
- c) Find a basis for ker(T).
- d) Write down conditions on $\mathbf{b} \in \mathbb{R}^5$ for \mathbf{b} to be in im(T).
- e) Find a basis for \mathbb{R}^5 containing as many columns of A as possible.
 - > with(LinearAlgebra):
 - > A:=<<1,-1,2,-1,0>|<3,3,-4,-3,6>|<-3,-9,14,3,-12>|
 - > <1,2,3,-1,3>|<4,-1,-3,-4,3>>:
 - > Id5:=IdentityMatrix(5):
 - > AI:=<A|Id5>;

> ReducedRowEchelonForm(AI);

iv) Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\1\\3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2\\3\\4\\1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0\\1\\-2\\5 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 5\\7\\11\\0 \end{pmatrix}, \quad \mathbf{a} = \begin{pmatrix} a\\b\\c\\d \end{pmatrix}.$$

Let S be the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

- a) Find a subset of S that is linearly independent, containing as many vectors from S as possible.
- b) Give conditions on **a** such that $\mathbf{a} \in \text{span}(S)$.
- c) Find all ways of representing \mathbf{a} as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_4 .
- d) Describe span(S) geometrically.

- iv) Let M be a 3×3 matrix and M^T be its transpose. Assume that M is orthogonal, that is, $M^TM=I$. Let \mathbf{m}_1 , \mathbf{m}_2 and \mathbf{m}_3 be the three columns of M.
 - a) Explain why det $M = \pm 1$.
 - b) Explain why \mathbf{m}_1 , \mathbf{m}_2 and \mathbf{m}_3 are mutually perpendicular vectors of length 1.
 - c) Show that for any square matrix A,

$$(A\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (A^T \mathbf{w})$$

for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$, where \cdot denotes the dot product.

- d) Deduce that $|M\mathbf{v}| = |\mathbf{v}|$ for all $\mathbf{v} \in \mathbb{R}^3$.
- e) Explain why M must have at least one real eigenvalue and at least one real eigenvector $\mathbf{v} \in \mathbb{R}^3$.
- f) Show that if $\mathbf{u} \in \mathbb{R}^3$ is an eigenvector of M, then the corresponding eigenvalue is 1 or -1.

Exercise. (November, 2012, question 2 iv)

Consider the following vectors in \mathbb{R}^4 :

$$\vec{v_1} = \begin{pmatrix} 1\\2\\1\\3 \end{pmatrix},$$

Let S be the set of vectors $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}.$

- a) Find a subset of S that is linearly independent, containing as many vectors from S as possible.
- b) Give conditions on a such that $a \in span(S)$.
- c) Find all ways of representing a as a linear combination of $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_4}$.
- d) Describe span(S) geometrically.

2011S2

1. i) Consider a set of vectors

$$S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4} \subset \mathbb{R}^3$$

- a) Can S be a spanning set for \mathbb{R}^3 ? Give a reason for your answer.
- b) Will all such sets S be spanning sets? Give a reason for your answer.
- c) Suppose S consists of the vectors

$$\mathbf{v}_1 = \left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right), \ \mathbf{v}_2 = \left(\begin{array}{c} 3 \\ 3 \\ 8 \end{array}\right), \mathbf{v}_3 = \left(\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right), \ \mathbf{v}_4 = \left(\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right).$$

Determine a subset of S that forms a basis for \mathbb{R}^3 .

ii) Suppose A is a fixed matrix in $\mathbb{M}_{m,n}$. Apply the subspace theorem to show that

$$S = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

is a subspace of \mathbb{R}^n .

iii) A linear map $T: \mathbb{R}^m \to \mathbb{R}^n$ has rank k. State the value of the nullity of T.

4. i) Let
$$A = \begin{pmatrix} 22 & -100 \\ 5 & -23 \end{pmatrix}$$
.

- a) Determine the eigenvalues and corresponding eigenvectors for the matrix A.
- b) Write down matrices P and D such that $A = PDP^{-1}$.
- c) Hence evaluate A^nP , for any positive integer n.
- ii) A discrete random variable X has the probability distribution given by $p_k = \frac{c}{2^k}$ for k = 0, 1, 2, 3, 4, where c is a constant.
 - a) Find the value of the constant c.
 - b) Calculate P(X=2).
 - c) Calculate $P((X-2)^2 < 4)$.
- iii) Let V be the vector space $M_{22}(\mathbb{R})$ of all 2×2 real matrices. Define the linear map $T: M_{22} \to M_{22}$ by $T(A) = A^T$, where A^T denotes the transpose of the matrix A.
 - a) Show that for any non-zero $n \times n$ matrix C, if $C^T = \lambda C$ then $\lambda = \pm 1$.
 - b) Find the matrix representation B for T with respect to the ordered basis $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$ given by

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

- c) State the rank of T.
- d) Explain why the eigenvalues of T are ± 1 .
- e) Find bases for each of the eigenspaces of T.

Exercise. (November, 2011, question 2 iii)

Consider the vectors

$$\vec{v_1} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 7 \\ 2 \\ 3 \end{pmatrix}, \vec{w} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \vec{u} = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$$

• a) Does $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ span \mathbb{R}^3 ? If so, give reasons; if not, then find condition(s) on a, b, c such that \vec{w} belongs to $span(\vec{v_1}, \vec{v_2}, \vec{v_3})$.

• b) Determine whether or not \vec{u} is in $span(\vec{v_1}, \vec{v_2}, \vec{v_3})$.

2010S2

1. i) Show that the set

$$S = \left\{ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x_1 x_2 \ge 0 \right\}$$

is not a vector subspace of the vector space \mathbb{R}^2 .

ii) The vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{u} and \mathbf{w} in \mathbb{R}^3 are defined by

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 4 \\ -21 \\ 25 \end{pmatrix}, \ \mathbf{u} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \ \text{and} \ \mathbf{w} = \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

with the set D given by $D=\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ and the matrix A defined in the Maple session below.

You may use the following Maple session to assist in answering the questions below.

- > with(LinearAlgebra):
- > A:= <<1,3,-2>|<2,-5,7>|<4,-21,25>>;

$$A := \left[\begin{array}{rrr} 1 & 2 & 4 \\ 3 & -5 & -21 \\ -2 & 7 & 25 \end{array} \right]$$

> M:=<A|<a,b,c>>;

$$M := \left[\begin{array}{cccc} 1 & 2 & 4 & a \\ 3 & -5 & -21 & b \\ -2 & 7 & 25 & c \end{array} \right]$$

> GaussianElimination(M);

$$\left[\begin{array}{cccc} 1 & 2 & 4 & a \\ 0 & -11 & -33 & b - 3a \\ 0 & 0 & 0 & b + c - a \end{array}\right]$$

- a) Is D a linearly independent set? Give reasons.
- b) State the condition(s) for the vector \mathbf{w} to belong to span(D).
- c) Determine all possible real scalars α_1, α_2 and α_3 such that

$$\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3.$$

- d) Find a basis for the kernel of A.
- e) State the rank of the matrix A.
- f) Find a basis for the image of A.

iv) Let
$$A = \begin{pmatrix} 5 & -8 \\ 1 & -1 \end{pmatrix}$$
.

- a) Determine the eigenvalues and corresponding eigenvectors for the matrix A.
- b) Write down matrices P and D such that $A = PDP^{-1}$.
- c) Hence evaluate A^8P .
- v) Suppose that the fixed vector **b** in \mathbb{R}^3 is given by

$$\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}.$$

You are given that the function $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$T(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{b})\mathbf{b}$$
 for $\mathbf{x} \in \mathbb{R}^3$

is a linear map.

Find a matrix B which transforms the vector \mathbf{x} into $T(\mathbf{x})$.

iv) A matrix A has eigenvectors

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

with corresponding eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -3$, respectively.

Determine $A\mathbf{b}$ for the vector $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- vi) Suppose that the vectors $\mathbf{v}_j \in \mathbb{R}^n$, for $j=1,2,\ldots,n$, are mutually orthogonal, *i.e.* $\mathbf{v}_j \cdot \mathbf{v}_k = 0$ for $j \neq k$ and $j, k = 1, 2, \ldots, n$. Let \mathbf{x} be an arbitrary vector in \mathbb{R}^n .
 - a) Given that the set $G = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n , find an expression for \mathbf{x} in terms of the vectors in the basis G.
 - b) Suppose that the linear map $T: \mathbb{R}^n \to \mathbb{R}$ has the property that

$$T(\mathbf{v}_j) = \gamma_j(\mathbf{v}_j \cdot \mathbf{v}_j)$$
 for $j = 1, 2, \dots, n$,

where the $\gamma_j \in \mathbb{R}$ are given constants.

Find an expression for $T(\mathbf{x})$ in terms of \mathbf{x} , the constants γ_i and the vectors \mathbf{v}_i .

- 3. i) Let $A = \begin{pmatrix} 5 & -8 \\ 1 & -1 \end{pmatrix}$.
 - a) Determine the eigenvalues and corresponding eigenvectors for the matrix $\boldsymbol{A}.$
 - b) Write down matrices P and D such that $A = PDP^{-1}$.
 - c) Hence evaluate A^8P .

iii) Let $\mathcal{R}[\mathbb{R}]$ denote the vector space of real-valued functions defined on \mathbb{R} . Let S be the subspace of $\mathcal{R}[\mathbb{R}]$ that is spanned by the ordered basis $B=(e^{-x},\sin(x),\cos(x))$. Define the map $T:S\to S$ by

$$T(f) = f' - 2f$$
 where $f'(x) = \frac{df}{dx}$.

- a) Show that the map T is linear.
- b) Calculate the matrix C which represents T with respect to the basis B.
- c) What is the rank of the matrix C found in part (b)?
- d) From part (c), what can be deduced about the solutions $y \in S$ of

$$y'-2y=g$$

where g is a given function in S?

e) Use your results from parts (b) and (d) to find all non-zero solutions $y \in S$ satisfying

$$y' - 2y = e^{-x}.$$

Exercise. (November 2010, q2, iv))

Let $\mathbb{P}_3(\mathbb{R})$ denote the vector space of polynomials of degree 3 or less with real coefficients and let S be given by

$$S = \{ p \in \mathbb{P}_3(R) : (x - 3)p'(x) - 2p(x) = 0 \text{ for all } x \in \mathbb{R} \}.$$

Show that S is a subspace of $\mathbb{P}_3(\mathbb{R})$.

Exercises

(Problem 6.6.47)