Problem Set 1

Georgios Kontoudis • gpkont@vt.edu MATH4225 Elementary Real Analysis Instructor: Dr. Jacob Fillman

Fall 2017

Exercise 1. Negate the statement: "For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$."

Solution. "There exists $\epsilon > 0$, such that for every $\delta > 0$, $|f(x) - f(y)| < \epsilon$ is not true whenever $|x - y| < \delta$."

Exercise 2 (a). Show that there is no rational number r such that

$$r^2 = 32. (1)$$

Solution. Suppose on the contrary that, $r \in \mathbb{Q}$ and $r^2 = 32$. Then, from the definition of rational numbers we get $r = \frac{a}{b}$, with $a, b \in \mathbb{Z}$, $b \neq 0$, and a, b share no common factors. Equation 1 implies

$$a^2 = 32b^2 \Rightarrow a^2 = 2^4b^2. (2)$$

This means that a^2 is even. Thus, a is even because if it was odd a^2 would be odd. Therefore, we have $a=2d, d \in \mathbb{Z}$ and Equation 2 yields

$$2^2d^2 = 2^4b^2 \Rightarrow b^2 = 2^{-2}d^2. (3)$$

For the same reason as above, b is even and since a, b cannot share common factors they cannot be both even. Thus, r is not rational $r \notin \mathbb{Q}$.

Exercise 2 (b). Show that the set $E = \{r \in \mathbb{Q} : r^2 < 32\}$ has no least upper bound.

Solution. The set E is nonempty and is bounded above by any $x > \sqrt{32} \notin \mathbb{Q}$. We consider the set $F = \{x \in \mathbb{Q} : x > 0, x^2 > 32\}$ as the set of the upper bounds of E in \mathbb{Q} . We claim that F has no least element, which means that for every $p \in F$ there exists a $q \in F$ such that q < p. We associate every rational p > 0, by using the secant method, with

$$q = p - \frac{f(p)(32 - p)}{f(32) - f(p)} = p - \frac{p^2 - 2^5}{p + 2^5} = \frac{2^5 p + 2^5}{2^5 + p}.$$
 (4)

Next, we employ the secant method's properties, as q has the structure

$$q = \frac{\alpha p + \alpha}{\alpha + p}. ag{5}$$

If $p^2 - 2^5 < 0$, then from Equation 4 we get that q > p, and Equation 5 yields $q^2 < 2^5$, while for $p^2 - 2^5 > 0$ Equation 4 returns q < p and Equation 5 yields $q^2 > 2^5$. Thus, E has no supremum (least upper bound) in \mathbb{Q} .

Exercise 3. For $n \in \mathbb{N}$ with $n \geq 2$, \sqrt{n} is irrational if and only if its prime factorization contains an odd power of a prime.

Solution. For the sake of argument let \sqrt{n} be in \mathbb{Q} , then $\sqrt{n} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$. If we square both sides then we get $n = \frac{a^2}{b^2} \Rightarrow b^2 n = a^2$. We employ the fundamental theorem of arithmetic and we obtain $a^2 = p_1^{2\alpha_1} p_2^{2\alpha_2} \dots p_k^{2\alpha_k}$, where every unique element has even power. Similarly, b^2 has even powers. Thus, $n = q_1^{2\beta_1} q_2^{2\beta_2} \dots q_k^{2\beta_k}$, which means that $n = l^2$ where $l = q_1^{\beta_1} q_2^{\beta_2} \dots q_k^{\beta_k}$. Therefore, if the prime factorization of \sqrt{n} has only even power of primes, then it is rational.

Exercise 4. If $r \neq 0$ is a rational number and x is irrational, prove that r + x and rx are irrational.

Solution. Assume, to contrary that r+x and rx are rational, then we get $r+x=r+x\Rightarrow x=r+x-r$ which means that x is rational. Similarly, $rx=rx\Rightarrow x=\frac{rx}{r}$ which means that x is rational. Thus, x is irrational so the addition r+x and the product rx are irrational too.

Exercise 5. Let

$$E = \{11 + (-1)^n \left(3 - \frac{5}{n^3}\right) : n \in \mathbb{N}\}.$$
 (6)

Identify inf E and sup E.

Solution. The set E for even numbers yields

$$E_{even} = \{14 - \frac{5}{n^3} : n = 2k, k \in \mathbb{N}\},\tag{7}$$

while for odd numbers we get

$$E_{odd} = \{8 + \frac{5}{n^3} : n = 2k + 1, k = 0, k \in \mathbb{N}\}.$$
 (8)

Let the candidate for supremum be 14. We first need to check if 14 is an upper bound, which means that for all $e \in E$, $e \le 14$. If $e \in E$, we get for the odd numbers

$$8 + \frac{5}{n^3} \le 14 \Rightarrow \frac{5}{6} \le n^3,\tag{9}$$

which is true for all odd numbers $n=2k+1, k=0, k\in\mathbb{N}$. Similarly, if $e\in E$, we get for the even numbers

$$14 - \frac{5}{n^3} \le 14 \Rightarrow \frac{5}{n^3} \ge 0,\tag{10}$$

which is also true for all even numbers $n=2k, k \in \mathbb{N}$. Thus, 14 is an upper bound for all $e \in E$.

Next, let the candidate for infimum be 8. We need to check if 8 is a lower bound, which means that for all $e \in E$, $e \ge 8$. If $e \in E$, we get for the odd numbers

$$8 + \frac{5}{n^3} \ge 8 \Rightarrow \frac{5}{n^3} \ge 0,\tag{11}$$

which is true for all odd numbers $n=2k+1, k=0, k\in\mathbb{N}$. Similarly, if $e\in E$, we get for the even numbers

$$14 - \frac{5}{n^3} \ge 8 \Rightarrow \frac{5}{6} \le n^3,\tag{12}$$

which is also true for all even numbers $n=2k, k\in\mathbb{N}$. Thus, 8 is a lower bound for all $e\in E$. Before we continue with the supremum and infimum, we observe that $3-\frac{5}{n^3}>0$ for all $n\in\mathbb{N}$ except n=1 which yields e=13, that is neither a lower bound nor an upper bound. Assume, to the contrary that e=13 is an upper bound, which means that for all $e\in E$, $e\le 13$. Then, if $e\in E$, we get for the even numbers, $(14-\frac{5}{n^3})\le 13\Rightarrow \frac{5}{n^3}\ge 1$ which is false for all even numbers $n=2k, k\in\mathbb{N}$, and thus 13 is not an upper bound. Assume, to the contrary that e=13 is a lower bound, which means that for all $e\in E$, $e\ge 13$. Then, if $e\in E$, we get for the odd numbers, $(8+\frac{5}{n^3})\ge 13\Rightarrow n^3\le 1$ which is false for all odd

numbers $n=2k+1, k\in\mathbb{N}$, and thus 13 is not a lower bound. Then, we will show that sup E=14 and inf E=8. We observe that $\frac{5}{n^3}<1$ for all $n=\mathbb{N}, n\neq 1$, which means that the set E converges to 14 for all even values $n=2k, k\in\mathbb{N}$ and to 8 for all odd values $n=2k+1, k\neq 0, k\in\mathbb{N}$. So we wil study even numbers for the supremum and odd numbers for the infimum.

Since e = 14 is an upper bound of E, $(14 - \frac{5}{n^3}) \le 14$ for all $n = 2k, k \in \mathbb{N}$. Assume, to the contrary that e < 14. Thus, 14 - e > 0 and by the Archimedean Property, there exists an n^3 for all $n = 2k, k \in \mathbb{N}$ such that $n^3(14 - e) > 5$ that yields

$$e < 14 - \frac{5}{n^3} \in E,\tag{13}$$

which contradicts that e is an upper bound. Therefore, sup E=14.

For the infimum, since e=8 is a lower bound of E, $(8+\frac{5}{n^3})\geq 8$ for all $n=2k, k\in\mathbb{N}$. Assume, to the contrary that e>8. Thus, e-8>0 and by the Archimedean Property, there exists an n^3 for all $n=2k+1, k\in\mathbb{N}$ such that $n^3(e-8)>5$ that yields

$$e > 8 + \frac{5}{n^3} \in E,$$
 (14)

which contradicts that e is a lower bound. Therefore, inf E=8.

Exercise 6 (a). Many math texts adopt the conventions sup $\emptyset = -\infty$ and inf $\emptyset = +\infty$. Discuss why this is reasonable convention.

Solution. Any real number is an upper bound of the empty set, so $-\infty$ can be the least, and thus the supremum. Similarly, the infimum of an empty set is $+\infty$, since any real number is a lower bound of the empty set, and thus $+\infty$ would be the greatest.

Exercise 6 (b). Adopting this convention, show that, for $E \subset \mathbb{R}$, one has inf $E \leq \sup E$ if and only if $E \neq \emptyset$.

Solution. For non-empty sets we inherit the definition of upper bound and lower bound. We call $u \in \mathbb{R}$ an upper bound for E if $x \leq u$ for all $x \in E$. We call $u \in \mathbb{R}$ a lower bound for E if $x \geq u$ for all $x \in E$. For a nonempty set $E \neq \emptyset$, that has two or more elements we get inf $E \leq x \leq y \leq \sup E$. Note that for a single element in a set we have inf $E = \sup E$. \square