Caracterización del Daño de Formación por Hinchamiento y Migración de Finos

Richard D. Zabala Romero

MSc, Profesional Daño de Formación
Grupo Daño de Formación/Estimulación
Gerencia de Desarrollo de Yacimientos

Bogota – Diciembre de 2016

CONTENIDO

- 1. Planteamiento del Problema.
- 2. Justificación.
- 3. Modelamiento del Daño de Formación por Finos.
- 4. Metodología Propuesta.
- 5. Resultados: Aplicación de la Metodología.
- Resultados: Impacto del Daño de Formación en Diversos Campos de Colombia.
- 7. Conclusiones.

1. PLANTEAMIENTO DEL PROBLEMA

Algunos tipos de arcilla migrables e hinchables

- Caolinita [Al₂Si₂O₅(OH)₄]
- Illita [KAl₃Si₃O₁₀(OH)₂]
- Feldespatos [(NaK,Ca)Al₂,Sl₂O₈]
- Esmectita [Al₂Si₄O₁₀(OH)₂]
- Glauconita $[K_2(MgFe)_2Al_6(Si_4O_{10})_3(OH)_{12}]$
- Clorita [(Mg,Fe)₃Al₂Si₄O₁₀(OH)₈]

 Materiales densificantes lodo

Materiales control de perdidas

- Materiales de puenteo
- Fluidos de Inyección

Fuentes Externas

2. JUSTIFICACIÓN

4.1 Estado del Arte

4.1 Estado del Arte

4.2 Modelo Matemático Civan Geometría Lineal

• Daño por Expansión de la Matriz Porosa-Hinchamiento.

$$\boxed{\left(\frac{\mathbf{k}}{\mathbf{k}_0}\right)_{sw} = \left(\frac{\mathbf{k}_t}{\mathbf{k}_0}\right) + \left[1 - \left(\frac{\mathbf{k}_t}{\mathbf{k}_0}\right)\right] \exp\left(-2\mathbf{A}\mathbf{B}\mathbf{t}^{1/2}\right)}$$

• Depositación de Partículas Finas.

$$\frac{\partial \sigma_{p}}{\partial t} = k_{1} \left(u \rho_{p,f} \right) \left(\rho_{p} \phi \right) - k_{2} \sigma_{p} \left[-\frac{\partial p}{\partial x} - \left(-\frac{\partial p}{\partial x} \right)_{cr} \right] U$$

• Generación de Partículas Finas.

$$\frac{\partial \sigma_{p}^{*}}{\partial t} = -k_{3}\sigma_{p}^{*} \left[1 - \exp\left(-k_{4}t^{1/2}\right)\right] \exp\left(-k_{5}\sigma_{p}\right) \left[\left(-\frac{\partial P}{\partial x}\right) - \left(-\frac{\partial P}{\partial x}\right)_{cr}^{*}\right] U$$

4.2 Modelo Matemático Civan Geometría Lineal

Parámetros por depositación: $k_1, k_2, \frac{\partial P}{\partial x}$

Parámetros por generación: $k_3, k_4, k_5, \frac{\partial P}{\partial x}\Big|_{C_p}^* \sigma_p^*$

Parámetros por Hinchamiento: k₆ B, 2AB,

k₁ constante fenomenológica por depositación superficial.

k₂ constante fenomenológica por arrastre de partículas.

k₃ constante fenomenológica por generación de partículas hinchables.

k₄ constante fenomenológica por movilización de finos.

k₅ constante fenomenológica por erosión de finos de la superficie.

k₆ constante fenomenológica relación de permeabilidad por hinchamiento.

B constante fenomenológica por absorción líquida.

2AB constante fenomenológica por hinchamiento.

constante fenomenológica contenido potencial de partículas hinchables.

gradiente de presión crítico por encima del cual se presenta arrastre.

gradiente de presión crítico por encima del cual se presenta generación de finos.

 σ_p

4.3 Validación del Modelo de Daño en Geometría Lineal

Análisis de prueba de literatura de Khilar [12]

Consta							Valores
Depositación sur	0.45						6,4
Arrastre de Partí	0.4 600		Error C	`uadrát	tico Re	cidua	0,000000001
Generación de p	0.4 0 0.35 -	20	= 1.14		iico itt	Jidaa	0,095
Movilización de f	0.3 -	Ø	- 1.14	L-O			0,0079
Erosión de finos	<u>o</u> 0.25	Ø					0
Relación de pern	= 0.2 -	Ø			O E	хр	1,7
Absorción líquida	0.15 -	Q	Ø_		<u> </u>	im	0,000012
Hinchamiento	0.1		Q_				0,0001
Contenido poten			000				0,37
Gradiente de pre	0.05 -		9999	000000	00000	00-	0
Gradiente de pre							0
	0 50	00 1000	1500 2000 t (s)	2500	3000	3500	

4.3 Método estadístico de ajuste no lineal Levenberg-Marquard

Se utiliza para estimar los parámetros del modelo.

$$A_{k,k}^{(0)} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{12} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k1} & \dots & a_{kk} \end{bmatrix} \rightarrow a_{ij} = \sum_{i=1}^{n} \left(\frac{\partial f_{i}}{\partial \beta_{t}} \right)_{0} \left(\frac{\partial f_{i}}{\partial \beta_{j}} \right)_{0} \rightarrow B_{k,1}^{(0)} = \begin{bmatrix} \Delta b_{1}^{(0)} \\ \Delta b_{2}^{(0)} \\ \dots \\ \Delta b_{k}^{(0)} \end{bmatrix} \rightarrow Z_{k,1}^{(0)} = \begin{bmatrix} z_{1} \\ z_{2} \\ \dots \\ z_{k} \end{bmatrix}$$

$$Z_{j} = \sum_{i=1}^{n} \left(y_{i} - f(x_{i}, b_{j}^{(0)}) \right) \left(\frac{\partial f_{i}}{\partial \beta_{j}} \right)_{0} \rightarrow B_{k,1}^{(0)} = \begin{bmatrix} \Delta b_{1}^{(0)} \\ \Delta b_{2}^{(0)} \\ \dots \\ \Delta b_{k}^{(0)} \end{bmatrix} \rightarrow Z_{k,1}^{(0)} = \begin{bmatrix} z_{1} \\ z_{2} \\ \dots \\ z_{k} \end{bmatrix}$$

$$A_{k,k}^{(0)} B_{k,1}^{(0)} = Z_{k,1}^{(0)} \rightarrow AI \rightarrow AI \rightarrow B_{k,1}^{(0)} = Z_{k,1}^{(0)}$$

4.4 Validación del Modelo de Daño en Geometría Lineal

AJUSTE DAÑO POR DEPOSITACIÓN				
Constantes	Valores iniciales	Valores Ajustados		
k1	0,7000000	0,2740883		
k2	0,2000000	0,0833373		
δp/δx) _{cr}	0,1000000	0,0775191		

Constantes fenomenológicas de depositación estimadas para el Empaque R1 y Simulación del fenómeno de depositación.

4.4 Modelo Matemático Geometría Radial

$$\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{rk}{\mu}\frac{\partial P}{\partial r}\right) = \frac{\dot{S}}{\rho_l} + \frac{\dot{\sigma}_p + \dot{\sigma}_p^*}{\rho_p} + \frac{\partial \emptyset}{\partial t}$$

Tasa de Absorción Líquida de la Matriz Porosa.

$$\dot{\mathbf{S}} = \mathbf{Bt}^{-1/2}$$

Daño por Expansión de la Matriz Porosa-Hinchamiento.

Depositación de Partículas Finas.

$$\left[\left(\frac{\mathbf{k}}{\mathbf{k}_0} \right)_{\text{sw}} = \left(\frac{\mathbf{k}_t}{\mathbf{k}_0} \right) + \left[1 - \left(\frac{\mathbf{k}_t}{\mathbf{k}_0} \right) \right] \exp \left(-2ABt^{1/2} \right)$$

$$\label{eq:delta_p} \boxed{\frac{\partial \sigma_p}{\partial t} = k_1 \Big(u \rho_{p,f} \Big) \! \Big(\rho_p \phi \Big) \! - k_2 \sigma_p \! \left[-\frac{\partial p}{\partial x} \! - \! \left(-\frac{\partial p}{\partial x} \right)_{cr} \right] \! U}$$

Generación de Partículas Finas.

$$\frac{\partial \sigma_{p}^{*}}{\partial t} = -k_{3} \sigma_{p}^{*} \left[1 - \exp\left(-k_{4} t^{1/2}\right) \right] \exp\left(-k_{5} \sigma_{p}\right) \left[\left(-\frac{\partial P}{\partial x}\right) - \left(-\frac{\partial P}{\partial x}\right)_{cr}^{*} \right] U$$

4.5 Validación del Modelo de Daño Radial

El modelo matemático y computacional en coordenadas radiales de daño por migración y depositación de finos se valida con los datos de literatura presentados en Ohen.

5. METODOLOGÍA PROPUESTA

6.1 Datos Experimentales

6.2 Metodología de Ajuste del Modelo Lineal para una Prueba de Tasa Crítica con Inyección a Múltiples Caudales

6.3 Escalamiento del Daño de Formación por Migración de Finos e Hinchamiento de Arcillas a Nivel de Yacimiento con el Modelo Radial

6.3 Escalamiento del Daño de Formación por Migración de Finos e Hinchamiento de Arcillas a Nivel de Yacimiento con el Modelo Radial

6.3 Escalamiento del Daño de Formación por Migración de Finos e

Hinchamiento de Arcillas a Nivel de Yacimiento con el Modelo

Radial

eoulo

Distribución campos productores para análisis de daño

Campo	Departamento	Formación	Pozo
AC	Putumayo	Caballos	AC11
AC	Futumayo	Caballos	AC8
AP	Meta	K1	AP14
Al	IVICta	KI	AP22
			CA1125
CA	Santander	Mugrosa	CA1129
			CA444
CAS	Meta K1		CAS37
			CUPE14
CUP	Yopal	Barco	CUPNW40
			CUPNW43
LAC	Santander	Mugrosa	LAC2253
LAC	Santanuei	iviugiosa	LAC797
			OR111
			OR169
OR	Putumayo	Caballos	OR2
			OR20
			OR36
			TEN1
			TEN2
TEN	Huila Huila	Caballos	TEN3
ecc	PETROL	UNIVERSIDAD NACIONAL DE COLOMBIA	TEN7
	FCIROL	Barrier a	TEN8

HOCOL

Data en inabañan per inabañan de par a de le producción.

- Skin relación
 Permeabilidad y radio de daño. E.H.
- 2. Ranking de pozos analizados para estimulación.
- Procesos de inhibición para evitar ascenso de nivel.

Pozo	% Reducción Permeabilidad	Maximo Daño (S)	Radio Daño (ft)	Severidad	
OR20	89.11%	27.124	8.90		
OR2	85.51%	18.150	9.00	Alta	
OR36	82.98%	18.100	8.90	Aitu	
AC11	74.74%	15.370	8.50		
AP14	54.67%	4.100	3.00		
OR111	35.33%	2.760	5.00		
CUPNW43	41.62%	2.300	3.20		
CUPE14	39.51%	2.120	3.00	Media	
CA444	22.81%	1.600	6.80		
TEN7	19.85%	1.550	6.33		
TEN1	20.03%	1.330	6.21		
OR169	20.82%	1.300	4.45		
TEN2	14.12%	0.810	7.68		
AC8	9.39%	0.580	4.00		
TEN3	9.66%	0.510	5.91		
CUPNW40	10.39%	0.420	2.15		
CA1125	7.43%	0.310	1.60	Baja	
AP22	5.33%	0.223	1.22		
CA1129	4.05%	0.213	1.60		
CAS37	2.35%	0.204	4.30		
TEN8	1.92%	0.072	0.35		
LAC797	0.91%	0.064	0.35		
LAC2253	0.48%	0.034	0.35		

REMEDIACIÓN DEL DAÑO DE FORMACIÓN POR FINOS

Objetivo: Desarrollar una metodología de elección y un modelo comportamiento esperado de tratamientos remediales del daño de forma por flujo de finos mediante la elaboración de una herramienta computacion

3 de cada 10 operaciones de estimulación son exitosas.

Elección de tratamiento.

Metodología propuesta por Kalfayan

Comportamiento ácido en formaci

Modelo de cuatr parámetros

- 1. Lavado de tubería
- 2. Desplazamiento de solventes
- 3. Desplazamiento de salmuera
- 4. Preflujo
- 5. Ácido Principal
- 7. Sobredesplazamiento
- 8. Dispersante

Tomada de: Kalfayan L. Production Enhancement with Acid Stimulation.

$$\varphi\left(\frac{\partial c_j}{\partial t}\right) + u_i\left(\frac{\partial c_j}{\partial x_i}\right) = \frac{\partial D_{i,j}\partial c_j}{\partial x_i}$$

- 1. HF con aluminosilica
- 2. HF con cuarzo
- H2SiF6 con aluminos
- HF con sílice (Si(OH)

• Gestor técnico: RICHARD ZABALA; Tutor: MARCO ANTONIO RUIZ SERNA; Estudiante: DIANA ELIZABETH CORAL RODR

GRUPO DE INVESTIGACIÓN YACIMIENTOS DE HIDROCARBUROS

REMEDIACIÓN DEL DAÑO DE FORMACIÓN POR FINOS

Avance: 60%

Falta: validación estadística del modelo elección y modelamiento de interacción ácido.

Retos: Evaluación estadística y validación modelos se debe realizar con banco de de estimulaciones realizadas en camp estudios o pruebas experimentales Conocimientos adquiridos a partir de práctica en campo de procesos de estimulación.

• Gestor técnico: RICHARD ZABALA; Tutor: MARCO ANTONIO RUIZ SERNA; Estudiante: DIANA ELIZABETH CORAL RODE

8. CONCLUSIONES

- Se genera una metodología que permite escalar a nivel de yacimiento el impacto sobre la producción de hidrocarburos del daño de formación por migración de finos e hinchamiento de arcillas. La metodología tiene en cuenta las bases fenomenológicas de los procesos de partículas.
- Con base en la metodología, se desarrolla un modelo y simulador que permite escalar y predecir el daño de formación por migración de finos e hinchamiento de arcillas.
- El modelo de daño de formación por migración de finos e hinchamiento de arcillas en geometría lineal es validado de manera satisfactoria con datos de literatura.
- Se introduce la interpretación lineal de una prueba de desplazamiento multitasa, en la literatura estudiada las metodologías propuesta hablan de ajustes a una sola tasa. Esto permite estudiar la variación de los parámetros fenomenológicos con el caudal.
- Se hace una priorización de los pozos con el fin de definir el tipo de intervención a las que son candidatos, se definen candidatos a estimulación química para remediar daño de formación por migración de finos, candidatos para inhibir el daño o para realizar ambas operaciones.

"QUE OPINAS!!

