Graph Search:

Depth-First Search and Topological Sort

Fatemeh Panahi
Department of Computer Science
University of Toronto
CSC263-Fall 2017
Lecture 9

Today

- Depth First Search (DFS)
- Edge classifications
- Topological sort

Anouncements

- A3 due to Friday
- Quiz next week
- Tutorial on Friday: 22.3-5, 22.3-8, 22.4-2, 22-3

Breadth-First Search

GOAL: Explores edges of *G* to

- discover every vertex reachable from the source vertex *s*
- compute the shortest path distance of every vertex from the source vertex s
- produce a breadth-first tree (BFT) G_{Π} with root s

BFS (s)

BFS (s)

- Graph G=(V,E) directed or undirected
- Adjacency list representation
- Goal: Systematically explore every vertex and every edge
- Idea: search deeper whenever possible
 - Using a LIFO stack (FIFO queue used in BFS)

- Like BFS, colors the vertices to indicate their states.
 - Each vertex is
 - Initially white,
 - grayed when discovered,
 - blackened when finished
- Like BFS, records **discovery** of a white v during scanning Adj[u] by $v.\pi \leftarrow u$

- Unlike BFS, predecessor graph G_{π} produced by DFS forms spanning forest
- $G_{\pi} = (V, E_{\pi})$ where

$$E_{\pi} = \{(v, \pi, v): v \in V \text{ and } v, \pi \neq NIL\}$$

• G_{π} = depth-first forest (DFF) is composed of disjoint depth-first trees (DFTs)

- DFS also timestamps for each vertex with two timestamps
- *v. d*: records when *v* is first discovered and grayed
- *v*. *f* : records when *v* is finished and blackened
- Since there is only one discovery event and finishing event for each vertex we have $1 \le v \cdot d < v \cdot f \le 2|V|$

Algorithm

```
DFS-VISIT(G, u)
 u.color \leftarrow gray
 time \leftarrow time + 1
 u.d \leftarrow time
 for each v \in Adj[u] do
     if v. color= white
        v.\pi \leftarrow u
        DFS-VISIT(G, v)
u.color \leftarrow black
time \leftarrow time + 1
u.f \leftarrow time
```


Running time: $\sum_{v \in V} Adj[v] = \Theta(E)$

Algorithm

```
DFS(G)
for each u \in V do
u.color \leftarrow white
u.\pi \leftarrow NIL
time \leftarrow 0
for each u \in V do
if u.color = white then
DFS-VISIT(<math>G, u)
```


Running time: $\Theta(V + E)$

DFS Example

DFS Property: Parenthesis Structure

In any DFS of G=(V, E), let $int_v=[v.d, v.f]$ then

- int_u and int_v are entirely disjoint
- int_v is entirely contained in int_u and v is a descendant of u in a DFT
- int_v is entirely contained in int_v and u is a descendant of v in a DFT

DFS Property: Parenthesis Structure

(()) This overlapping never happens!

DFS Property: Parenthesis Structure

Question: Given a graph and two vertices x, v how would you decide if x is a descendant of v?

If int_x is contained int_v

Parenthesis Theorem - Example

(()) This overlapping never happens!

Tree Edge: discover a new (WHITE) vertex

⊳GRAY to WHITE⊲

Back Edge: from a descendent to an ancestor in DFF

⊳GRAY to GRAY⊲

Forward Edge: from ancestor to descendent in DFF

▶GRAY to BLACK⊲

Cross Edge: remaining edges (between trees and subtrees) ▶GRAY to BLACK<

Tree Edge: discover a new (WHITE) vertex

▶ GRAY to WHITE ▷

Back Edge: from a descendent to an ancestor in DFF

▶ GRAY to GRAY <

Forward Edge: from ancestor to descendent in DFF

▶ GRAY to BLACK <

Cross Edge: remaining edges (between trees and subtrees) ▶ GRAY to BLACK <

	Directed Graph	Undirected Graph
DFS	all	
BFS		

any DFS on an undirected graph produces only Tree and Back edges

- any BFS on a **directed** graph produces only Tree, back and cross edges
- any BFS on an **undirected** graph produces only Tree and cross edges.

	Directed Graph	Undirected Graph
DFS	all	tree , back
BFS	tree, back, cross	tree, cross

Edge Classification - Example

Edge Classification - Example

Edge Classification - Example

Directed Acyclic Graphs (DAG)

No directed cycles

Example:

Directed Acyclic Graphs (DAG)

Theorem: a directed graph *G* is acyclic iff DFS on *G* yields no Back edges

Proof (acyclic \Rightarrow no Back edges; by contradiction):

Let (v, u) be a Back edge visited during scanning Adj[v]

 \Rightarrow v. color = u. color = Gray and <math>u. d < v. d

v is descendent of $u \Rightarrow \exists$ a path from u to v in a DFT and hence in G

 \therefore edge (v, u) will create a cycle (Back edge \Rightarrow cycle)

path from u to v in a DFT and hence in G

Proof (no Back edges \Rightarrow acyclic):

Suppose *G* contains a cycle *C*

(Show that a DFS on *G* yields a Back edge; proof by contradiction)

Let v be the first vertex discovered in C and let (u, v) be proceeding edge in C

• Linear ordering of *V* such that

```
(u, v) \in E \implies u < v \text{ in ordering}
```

- Ordering may not be unique
- i.e., mapping the partial ordering to total ordering may yield more than one orderings

Algorithm

run DFS(G) when a vertex finished, output it vertices output in reverse topologically sorted order

Runs in O(V + E) time

Correctness of the Algorithm:

```
Claim: (u, v) \in E \Rightarrow u.f > v.f
```

Proof: consider any edge (u, v) explored by DFS

when (u, v) is explored, u is GRAY

- if v is GRAY, (u, v) is a Back edge (contradicting acyclic theorem)
- if v is WHITE, v becomes a descendent of u (b WPT) $\Rightarrow v \cdot f < u \cdot f$
- if v is BLACK, $v \cdot f < u \cdot f \Rightarrow v \cdot f < u \cdot f$

Questions