Local Search, Part 1

Lecture 8 Chapter 4, Sections 4.1-4.2

Jim Rehg
College of Computing
Georgia Tech

February 1, 2016

Dominance

Reminder: Heuristic h(n) is admissible if $h(n) \le h^*(n)$

```
If h1 and h2 admissible heuristics, and
h2(n) >= h1(n) for all n,
Then h2 dominates h1, and
    h2 is better for search
Why?
```

Note: h'(n) = max{ h1(n), h2(n) } is admissible and dominates h1 and h2

Dominant Heuristic is Better

In A* every node n with

f(n) < C* will be expanded

h(n) < C* - g(n) will be expanded

If h2(n) > h1(n) for all n, then

Set of n for which $h1(n) < C^* - g(n)$ Will be *larger* than set of n for which $h2(n) < C^* - g(n)$

Thus h1 will expand more nodes

Local Search

In previous search problems

Solution = Path to goal state

In Local Search
Solution = Goal state itself
The path taken to the goal doesn't matter

Local Search Problems

What are some examples of local search problems?

Local Search Problems

What are some examples of local search problems?

Circuit Design

Class Scheduling

Routing Planes/Ships

Web Search

Optimization Problems in General

Local Search Formulation

Current state s

Evaluation (cost) function H(s)

Neighborhood of possible successors of s

Goal:

Select s* in S such that H(s*) is a minimum of H(s)

```
Mathematically: s^* = \arg \min_{s \in S} H(s)
```

Discrete State

10 s=372 s=1s=68 s=4s=2s=7

What are the minima?

Discrete State

What are the minima?

Local Minimum

$$s=3 H(3)=2$$

Discrete State

What are the minima?

Local Minimum

$$s=3 H(3)=2$$

Global Minimum

$$s=7 H(7)=1$$

Discrete State

We will address minima but the principles apply to maxima also

Initialize current state s
At each iteration:

Expand s to obtain neighbors Select minimum cost neighbor s' If $H(s') \ge H(s)$ then return (s, H(s)) s = s'

Discrete State

We will address minima but the principles apply to maxima also

Initialize current state s
At each iteration:

Expand s to obtain neighbors

Select minimum cost neighbor s'

If H(s') >= H(s) then return (s, H(s))

s = s'

Discrete State

We will address minima but the principles apply to maxima also

Initialize current state s
At each iteration:

Expand s to obtain neighbors Select minimum cost neighbor s' If H(s') >= H(s) then return (s, H(s)) s = s'

Discrete State

We will address minima but the principles apply to maxima also

Initialize current state s
At each iteration:

Expand s to obtain neighbors

Select minimum cost neighbor s'

If H(s') >= H(s) then return (s, H(s))

s = s'

Terminate in *local minimum* s=3, H(s)=2

Intro to AI, Georgia Tech © Jim Rehg 2016

Local Search with Continuous States

Local Search with Continuous States

Local Search with Continuous States

Issues with Local Minima

Summary

The goal of local search is to find a state which minimizes (or maximizes) a given objective function (state cost)

Search begins at a starting point and proceeds iteratively so as to improve the objective

Local extrema (minima or maxima) are states for which local search cannot improve the objective function

Questions?