ELTE PROG-MAT. 2000-2001

14.

Programinverzió

14.1. Egyváltozós eset

Legyenek A, B, C és D tetszőleges típusok. Legyen továbbá X = seq(B) és Y = seq(C), valamint $f_1: A \to X, f_2: X \to Y$ és $f_3: Y \to D$ függvények.

Tekintsük az alábbi specifikációval adott feladatot:

$$A = A \times D$$

$$a \qquad d$$

$$B = A$$

$$a'$$

$$Q: (a = a')$$

$$R: (d = f_3 \circ f_2 \circ f_1(a'))$$

Tegyük fel, hogy az f_1 függvény értékét kiszámító program az alábbi alakban írható fel:

$$A = A \times X$$

$$a \quad x$$

$$B = A$$

$$a'$$

$$Q: (a = a')$$

$$R: (x = f_1(a'))$$

	$S_{11}(a)$		
x := <>			
	π		
	$S_{12}(a,e)$		
	x: hiext(e)		
	$S_{13}(a)$		

Ha az S_{11} , S_{12} és S_{13} programok végrehajtása nem változtatja meg az x változó értékét, akkor a fenti programot *elemenként előállító* programnak nevezzük,

Hasonlóan, tegyük fel, hogy az f_3 függvény értékét kiszámító program pedig az alábbi formában írható fel:

$$A = Y \times D$$

$$y \quad d$$

$$B = Y$$

$$y'$$

$$Q: (y = y')$$

$$R: (d = f_3(y'))$$

$S_{31}(d)$			
$y.dom \neq 0$			
	$S_{32}(d,y.lov)$		
	y:lorem		
$S_{33}(d)$			

Ha az S_{31} , S_{32} és S_{33} programok végrehajtása nem változtatja meg az y változó értékét, akkor a fenti programot *elemenként felhasználó* programnak nevezzük,

Tegyük fel továbbá, hogy az f_2 függvény elemenként feldolgozható, és minden egyelemű halmazra a függvényérték egyelemű. Ekkor a függvénykompozíció helyettesítési értékének kiszámítására vonatkozó programozási tétel alapján a feladat megoldható a fenti elemenként előállító, egy elemenként feldolgozó és az imént bemutatott elemenként felhasználó program szekvenciájaként.

A feladatra azonban egy hatékonyabb megoldást is adhatunk a *programinverzió* segítségével: ekkor a közbülső két sorozat típust kihagyhatjuk és a három ciklust egybeírhatjuk az alábbi módon:

$S_{11}(a)$				
	$S_{31}(d)$			
π				
	$S_{12}(a,e)$			
	$\varepsilon := f_2(\{e\})$			
	$S_{32}(d,arepsilon)$			
$S_{13}(a)$				
$S_{33}(d)$				

14.2. Kétváltozós eset

Legyenek A^1 , A^2 , B, C és D tetszőleges típusok. Legyen továbbá X = seq(B) és Y = seq(C), valamint $f_1^1: A^1 \to X$, $f_1^2: A^2 \to X$, $f_2: X \times X \to Y$ és $f_3: Y \to D$ függvények.

Tekintsük az alábbi specifikációval adott feladatot:

$$A = A^{1} \times A^{2} \times D$$

$$a^{1} \quad a^{2} \quad d$$

$$B = A^{1} \times A^{2}$$

$$a^{1'} \quad a^{2'}$$

$$Q : (a^{1} = a^{1'} \wedge a^{2} = a^{2'})$$

$$R : (d = f_{3} \circ f_{2}(f_{1}^{1}(a^{1'}), f_{1}^{2}(a^{2'}))$$

Legyenek az f_1^1 és f_1^2 függvényeket kiszámító elemenként előállító programok az alábbiak:

$S^1_{11}(a^1)$				
$x^1 := <>$				
	π^1			
	$S^1_{12}(a^1,e^1)$			
	$x^1: hiext(e^1)$			
	$S^1_{13}(a^1)$			

$S^2_{11}(a^2)$			
$x^2 := <>$			
π^2			
	$S_{12}^2(a^2,e^2)$		
	$x^2: hiext(e^2)$		
$S^2_{13}(a^2)$			

és tegyük fel, hogy az előállított x^1 és x^2 sorozatok rendezettek.

Legyen f_3 mint korábban, továbbá tegyük fel, hogy f_2 egy olyan kétváltozós egyértékű elemenként feldolgozható függvény, amely minden olyan halmazpárhoz, amelynek tagjai legfeljebb egy elemet tartalmaznak, pontosan egy elemű halmazt rendel hozzá.

Ekkor a függvénykompozíció helyettesítési értékének kiszámítására vonatkozó programozási tétel alapján a feladat megoldható a fenti két elemenként előállító, a kétváltozós egyértékű elemenként feldolgozó és az f_3 -at kiszámító elemenként felhasználó

138 **2000-2001** 14. PROGRAMINVERZIÓ

program szekvenciájaként. Vajon ebben az esetben is összeinvertálhatóak a fenti programok?

A válasz természetesen: igen, de a megoldás itt nem olyan egyszerű, mint az egyváltozós esetben volt. A probléma a szekvenciális file-oknál felmerülttel analóg: az elemet előállító program (S^1_{12} ill. S^1_{12}) az egyes elemeket ugyanúgy szolgáltatja mintha file-ból olvasnánk őket: csak akkor nézhetjük meg a következő elemet ha legeneráltatjuk. Ez sugallja azt a megoldást, hogy az x^1 és x^2 sorozatokat tekintsük az elemenként feldolgozásban absztrakt file-oknak. Az elemenként felhasználó program beinvertálása nem okoz gondot, ugyanúgy történik mint az egyváltozós esetben.

$open(x^1), open(x^2)$						
$sx^{1},dx^{1},x^{1}:read,sx^{2},dx^{2},x^{2}:read$						
$S_{33}(d)$						
$sx^1 = norm \lor sx^2 = norm$						
$sx^2 = abnorm \lor (sx^1 = sx^2)$	$sx^1 = sx^2$	$sx^1 = abnorm \lor (sx^1 = sx^2)$				
$\wedge dx^1 < dx^2)$	$\wedge \ dx^1 = dx^2$	$\wedge dx^1 > dx^2)$				
$e:=f_2(\{dx^1\},\emptyset)$	$e:=f_2(\{dx^1\},\{dx^2\})$	$e:=f_2(\emptyset,\{dx^2\})$				
$sx^1,dx^1,x^1:read$	$sx^1,dx^1,x^1:read$	$sx^2, dx^2, x^2: read$				
	$sx^2, dx^2, x^2: read$					
	$S_{32}(d,e)$					
$S^1_{13}(a^1)$						
$S_{13}^2(a^2)$						
$S_{33}(d)$						

ahol az absztrakt műveletek megvalósításai:

