Math Notes

K

March 6, 2020

Contents

T	Irigonometric Concepts				
	1.1 Unit Circle				
	1.2 Basic Trigonometry				
	1.3 Pythagorean Theorem Identities				
	1.4 Half Angle Identities				
	1.5 Double Angle Identities				
	1.6 Power Reduction Identities				
2	Trigonometric Substitution				
3	Table of Basic Derivatives				
4	Table of Basic Integrals				
5	Substitution Techniques				
	5.1 U Substitution				
	5.2 Integration by Parts				
6	Engineering Formulas				
	6.1 Spring Formulas				
	6.2 Fluid Formulas				
7	Method of Partial Fractions				
	7.1 Decomposition Types				
0	A 1197 - 1 To				
*	Additional Resources				

1 Trigonometric Concepts

1.1 Unit Circle

Source: https://etc.usf.edu/clipart/43200/43215/unit-circle7_43215.htm

1.2 Basic Trigonometry

$$sin(\theta) = \frac{Opposite}{Hypotenuse} \qquad cos(\theta) = \frac{Adjacent}{Hypotenuse} \qquad tan(\theta) = \frac{Opposite}{Adjacent}$$

$$= \frac{y}{1} = y \qquad = \frac{x}{1} = x \qquad = \frac{y}{x}$$

$$= \frac{sin(\theta)}{cos(\theta)}$$

$$csc(\theta) = \frac{1}{sin(\theta)} \qquad sec(\theta) = \frac{1}{cos(\theta)} \qquad cot(\theta) = \frac{cos(\theta)}{sin(\theta)}$$

1.3 Pythagorean Theorem Identities

$$sin^{2}\theta + cos^{2}\theta = 1$$
$$tan^{2}\theta + 1 = sec^{2}\theta$$
$$1 + cot^{2}\theta = csc^{2}\theta$$

2

1.4 Half Angle Identities

$$cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + cos(\theta)}{2}}$$

$$sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - cos(\theta)}{2}}$$

$$= \frac{sin(\theta)}{1 + cos(\theta)}$$

$$= \frac{1 - cos(\theta)}{sin(\theta)}$$

1.5 Double Angle Identities

$$sin(2\theta) = 2sin\theta cos\theta$$

$$cos(2\theta) = cos^2\theta - sin^2\theta$$

$$= 2cos^2\theta - 1$$

$$= 1 - 2sin^2\theta$$

$$tan(2\theta) = \frac{2tan\theta}{1 - tan^2\theta}$$

1.6 Power Reduction Identities

$$sin^{2}\theta = \frac{1 - cos2\theta}{2}$$

$$cos^{2}\theta = \frac{1 + cos2\theta}{2}$$

$$tan^{2}\theta = \frac{1 - cos2\theta}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{2}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{2}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{1 + cos2\theta}{1 - cos2\theta}$$

2 Trigonometric Substitution

Expression	Substitution	Identity
$\sqrt{a^2 - b^2 x^2}$	$x = \frac{a}{b}sin\theta$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{a^2 + b^2 x^2}$	$x = \frac{a}{b}tan\theta$	$1 - tan^2\theta = sec^2\theta$
$\sqrt{b^2x^2 - a^2}$	$x = \frac{a}{\hbar} sec\theta$	$sec^2\theta - 1 = tan^2\theta$

3 Table of Basic Deriva- 4 Table of Basic Integrals tives f(x) = f(x) + f(x) dx - F(x) + C

$\frac{y}{C}$	$\frac{dy}{dx}$
C	0
x	1
$ax^2 + bx + c$	2ax + b
x^n	nx^{n-1}
$x^{-1}, \frac{1}{x}$	$-\frac{1}{x^2}$ -1
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$
ln(x)	$\frac{1}{x}$
$log_a(x)$	$\frac{1}{xln(a)}$
a^x	$a^x ln(a)$
e^x	e^x
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	$\frac{1}{\cos^2 x}$, $\sec^2 x$
cot(x)	$-\frac{1}{\sin^2 x}, -\csc^2 x$
sec(x)	$\frac{-\frac{\cos^2 x}{\sin^2 x}, -\csc^2 x}{\tan(x)\sec(x)}$
csc(x)	-cot(x)csc(x)

f(x)	$\int f(x)dx = F(x) + C$
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\alpha \neq 0$	
sin(kx)	$-\frac{\cos(kx)}{k} + C$
cos(kx)	$\frac{\sin(kx)}{k} + C$
$sec^2(kx)$	$\frac{k}{tan(kx)} + C$
$csc^2(kx)$	$-\frac{\cot(kx)}{k+C}$
e^{kx}	$\frac{-\frac{1}{k+C}}{\frac{e^{kx}}{k}+C}$
$x^{-1}, \frac{1}{x}$	ln x + C
$\frac{1}{\sqrt{1-x^2}}$	$sin^{-1} + C$
1	$tan^{-1}x + C$
$\frac{1+x^2}{a^{kx}}$	$\frac{1}{k \ln a} a^{kx} + C$
$\frac{1}{\sqrt{a^2 - x^2}}$	$sin^{-1}\frac{x}{a}+C$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a}tan^{-1}(x/a) + C$

5 Substitution Techniques

5.1 U Substitution

5.2 Integration by Parts

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$$

$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C$$

$$\int udv = uv - \int vdu$$
where: $u = g(x), du = g'(x)$

$$\int_a^b f(x)g'(x) = f(x)g(x)\Big|_a^b - \int_a^b g(x)f'(x)dx$$

6 Engineering Formulas

6.1 Spring Formulas

$$F = kx$$

$$W = \int_{a}^{b} kx dx$$

$$F = \text{Force (Newtons [N])}$$

$$k = \text{spring constant (Newton meters }^{N}/_{m})$$

$$x = \text{change in distance (meters [m])}$$

$$W = \text{Work (Joules [J])}$$

$$a = \text{initial length (meters [m])}$$

$$b = \text{final length (meters [m])}$$

6.2 Fluid Formulas

$$W = F \cdot d = \int F dx$$

$$V = \pi r^2 h \text{(apply to cylinders)}$$

$$F = m \cdot a = V \cdot \rho$$

$$W = \text{Weight ()}$$

$$F = \text{Force (Newtons [N])}$$

$$d = \text{distance (meters [d])}$$

$$m = \text{mass (meters}^3[m^3])$$

$$a = \text{acceleration (meters per second}^2[m^*/s^2])$$

$$\rho = \text{Something}$$

7 Method of Partial Fractions

$$\int \frac{P_n(x)}{Q_m(x)} dx \text{ when } m > n$$

n and m are defined as the degree of the numerator and the denominator.

7.1 Decomposition Types

Type	Factor Example	Decomposition
Linear Factor	(x-4)	$\frac{A}{x-4}$
Repeated Linear Factor	$(x-4)^2$	$\frac{A}{(x+4)} + \frac{B}{(x+4)^2}$
Quadratic Irreducible Factor	$(x^2 + 4)$	$\frac{Ax+B}{x^2+4}$
Repeated Quadratic Irreducible Factor	$(x^2+4)^2$	$\frac{Ax+B}{(x^2+4)} + \frac{Cx+D}{(x^2+4)^2}$

8 Additional Resources

Print

Calculus Study Guide: https://mt-jfk.com/ap-calculus-study-guide.pdf

Video

The Organic Chemistry Tutor: https://www.youtube.com/channel/UCEWpbFLzoYGPfuWUMFPSaoA Black Pen Red Pen: https://www.youtube.com/user/blackpenredpen