CLAIMS

5

15

20

25

- 1. A method of producing a graded refractive index optical element comprising applying a paste containing a copper compound, an organic resin and an organic solvent to a glass substrate containing an alkali metal component as a glass component and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
- The method according to claim 1 wherein the graded
 refractive index optical element is a lens, lens array or diffraction grating.
 - 3. The method according to claim 1 wherein the glass substrate is made of a glass containing at least 2% by weight of alkali metal, calculated on an oxide basis, the glass being a silicate glass, borosilicate glass, phosphate glass, or fluorophosphate glass.
 - 4. The method according to claim 3 wherein the glass substrate is a borosilicate glass substrate containing 40 to 82% by weight of SiO_2 , 12 to 50% by weight of B_2O_3 , 2 to 25% by weight of at least one member selected from Na_2O , K_2O , Li_2O , Rb_2O and Cs_2O ; not more than 25% by weight of at least one member selected from MgO, CaO, BaO, ZnO, SrO and PbO; not more than 20% by weight of at least one member selected from Al_2O_3 , La_2O_3 , Y_2O_3 , Ta_2O_3 and Cd_2O_3 ; not more than 10% by weight of at least one member selected from Rl_2O_3 and Rl_2O_3 and
 - 5. A graded refractive index optical element produced by the method of any one of claims 1 to 4.
- 6. The graded refractive index optical element according to claim 5 which is a lens, lens array or diffraction grating.