



# Seminar 3D Computer Vision & Augmented Reality SS 2021 Survey on Data Sets for Semantic Segmentation (S13)

Adelya Kamaleeva

kamaleev@rhrk.uni-kl.de

Supervisor: René Schuster





### **Outline**

- Motivation
- Semantic segmentation
- Methodology
- First classification of data sets
- Second classification of data sets
- Creation of class hierarchy
- Conclusion





#### **Motivation**

- The aim of this work is
  - to make the unification of class labels
  - to make classifications according to the common properties of the data sets.

**SUN RGB-D** 





ADE20K





# Semantic segmentation

Image segmentation can be formulated as a classification problem of pixels with semantic labels. Semantic segmentation performs labeling in the pixel-level (e.g. bus, human, table) for all pixels of the image.





https://cs.nyu.edu/~silberman/datasets/nyu\_depth\_v2.html

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/shkf\_eccv2012.pdf

https://www.cityscapes-dataset.com/

https://arxiv.org/pdf/1604.01685.pdf





# Methodology for finding data sets

1.

#### Image Segmentation Using Deep Learning: A Survey

nervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos

Abstract—Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

Index Terms—Image segmentation, deep learning, convolutional neural networks, encoder-decoder models, recurrent models, generative models, semantic segmentation, instance segmentation, medical image segmentation.

https://arxiv.org/abs/2001.05566

3.



2

#### WildDash 2 Benchmark

RO VISION TESTING FOR ROBUSTNESS



New: WildDash 2 with 4256 public frames, new labels & panoptic GT See also: RailSem19 dataset for rail scene understanding.



Welcome to the WildDash 2 Benchmark. This website provides a dataset and benchmark for panoptic, semantic, and instance segmentation. We aim to improve the expressiveness of performance evaluation for computer vision algorithms in regard to their robustness for driving scenarios under real-world conditions. In addition to the WildDash dataset, wilddash.cc also hosts the railway and tram dataset RailSem19, a large dataset for training semantic scene understanding of railway scenes: RailSem19.

The WildDash dataset does not offer enough material to train algorithms by itself. We suggest you use a mixture of material from the Apollo Scape, Audi A2D2, Berkeley DeepDrive(BDD)/Nexar, Cityscapes, India Driving Dataset, KITTI, and Mapillary datasets for training and the WildDash data for validation and testing.

https://wilddash.cc/





### First classification

 First classification is based on place where photographs were taken.





hataset/vistas?pkey=0\_xjqx3-c-ky1b900G\_8HQ&fat=20&fing=0&Z=1.5\_\_\_ntt

https://cvgl.stanford.edu/resources.html https://arxiv.org/pdf/1702.01105.pdf

PASCAL Visual Object Classes (VOC)













# **Road datasets**

|    | Name of dataset            | Year | № of    | Resolution         | Segmentation type  | № of images |
|----|----------------------------|------|---------|--------------------|--------------------|-------------|
| 1  | CV': 1                     | 2000 | classes | (pixels)           | Q                  | 700         |
| 1  | CamVid                     | 2008 | 30      | 960 × 720          | Semantic           | 700         |
| 2  | DUS                        | 2014 | 5       | $1024 \times 440$  | Semantic           | 5 000       |
| 3  | Cityscapes                 | 2016 | 30      | 2048 × 1024        | Semantic, instance | 15 000      |
| 4  | Mapillary                  | 2017 | 124     | 1920 × 1080        | Semantic           | 5 000       |
|    | (Mapillary Vistas Dataset) |      |         |                    |                    |             |
| 5  | SYNTHIA                    | 2017 | 13      | 1280 × 960         | Semantic           | 2 224       |
| 6  | Playing for Benchmarks     | 2017 | 23      | 1920 × 1080        | Semantic, instance | 254 064     |
| 7  | KITTI                      | 2018 | 8       | 1392 × 512         | Pixel, instance    | 400         |
| 8  | WildDash 2                 | 2018 | 28      | 896 × 896          | Semantic, instance | 4 256       |
| 9  | ApolloScape                | 2018 | 36      | 3384 × 2710        | Semantic, instance | 146 997     |
| 10 | India Driving Dataset      | 2019 | 34      | $720 \times 720$ , | Semantic, instance | 10 000      |
|    |                            |      |         | $1080 \times 1080$ |                    |             |
| 11 | BDD100K                    | 2020 | 19      | 720 × 720          | Semantic, instance | 10 000      |
| 12 | A2D2: Audi Autonomous      | 2020 | 38      | 1920 × 1208        | Semantic           | 41 277      |
|    | <b>Driving Dataset</b>     |      |         |                    |                    |             |





### **Indoor datasets**

|    | Name of dataset | Year | № of    | Resolution (pixels)   | Segmentation | № of images |
|----|-----------------|------|---------|-----------------------|--------------|-------------|
|    |                 |      | classes |                       | type         |             |
| 13 | NYU-D V2        | 2012 | 13      | 640 × 480             | Semantic     | 408 473     |
| 14 | SUN-3D          | 2013 | 29      | 640 × 480             | Semantic     |             |
| 15 | SUN RGB-D       | 2015 | 29      | 1920 × 108, 640 × 480 | Semantic     | 10 335      |
| 16 | Stanford 2D-3D  | 2017 | 12      | 1080 × 1080           | Semantic     | 70 000      |



https://rgbd.cs.princeton.edu/

https://rgbd.cs.princeton.edu/paper.pdf





# **Objects (indoor + outdoor) datasets**

|    | Name of dataset                    | Year | № of    | Resolution (pixels) | Segmentation type  | № of    |
|----|------------------------------------|------|---------|---------------------|--------------------|---------|
|    |                                    |      | classes |                     |                    | images  |
| 17 | PASCAL Visual Object Classes       | 2012 | 21      | 650 × 590           | Semantic, instance | 9 993   |
|    | (VOC)                              |      |         |                     |                    |         |
| 18 | <b>Microsoft Common Objects in</b> | 2017 | 80      | 640 × 480           | Instance           | 123 287 |
|    | Context (MS COCO)                  |      |         |                     |                    |         |
| 19 | ADE20K /MIT Scene Parsing          | 2017 | 150     | 640 × 480           | Instance, part     | 25 574  |
|    | (SceneParse150)                    |      |         |                     | _                  |         |



https://groups.csail.mit.edu/vision/datasets/ADE20K/ https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf





## **Second classification**

|               | day | night | dawn | dusk | spring | summer | fall | sunny | rainy | snowy | cloudy | foggy | various<br>weather |
|---------------|-----|-------|------|------|--------|--------|------|-------|-------|-------|--------|-------|--------------------|
| KITTI         | +   |       |      |      |        |        |      |       |       |       |        |       |                    |
| CamVid        | +   |       |      |      |        |        |      |       |       |       |        |       |                    |
| DUS           | +   |       |      |      |        |        |      |       |       |       |        |       |                    |
| India Driving |     |       |      |      |        |        |      |       |       |       |        |       |                    |
| Dataset       | +   |       |      |      |        |        |      |       |       |       |        |       |                    |
| ApolloScape   | +   |       |      |      |        |        |      |       |       |       |        |       | +                  |
| BDD100K       | +   |       |      |      |        |        |      |       |       |       |        |       | +                  |
| A2D2          | +   |       |      |      |        |        |      |       |       |       |        |       | +                  |
| SYNTHIA       | +   |       |      |      |        |        |      |       |       |       |        |       | +                  |
| Cityscapes    | +   |       |      |      | +      | +      | +    |       |       |       |        |       |                    |
| Mapillary     | +   | +     | +    | +    |        |        |      | +     | +     |       | +      | +     |                    |
| WildDash 2    | +   |       |      | +    |        |        |      |       | +     | +     |        |       |                    |
| Playing for   | +   | +     |      | +    |        |        |      |       |       | +     |        |       |                    |
| Benchmarks    |     |       |      |      |        |        |      |       | +     |       |        |       |                    |











# **Creation of class hierarchy**

|               |        |       |      |      |      |        |        |      |      | _      |         | -            |          |               |               |               | _             | _     |      | _       |    |          |   |          |   |   |   |   |   |                                                  |   |    |
|---------------|--------|-------|------|------|------|--------|--------|------|------|--------|---------|--------------|----------|---------------|---------------|---------------|---------------|-------|------|---------|----|----------|---|----------|---|---|---|---|---|--------------------------------------------------|---|----|
|               | City   | KITTI | Cam  | MVD  | DITE | Wild   | Apollo | IDD  | BDD  | A 2TD2 | Synthia | DFD          | Stanford | NYUI          | SUN           | SU            | NPasc         | al MS | ADE  |         |    |          |   |          |   |   |   |   |   |                                                  |   |    |
|               | scapes |       | Vid  |      | [23] | Dash 2 | Scape  | for1 | 100K |        |         | [21]         | 2D-3D    | V2            | RGB           | D 3I          | o vo          | cocc  | 20K  | Res     |    |          |   |          |   |   |   |   |   |                                                  |   |    |
|               | [12]   | [14]  | [10] | [20] | [23] | [9]    | [16]   | [25] | [27] | [15]   | [22]    | [21]         | [11]     | [19]          | [24]          | [26           | 6] [13]       | [17]  | [28] |         |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| car           | +      | +     | +    | +    | +    | +      | +      | +    | +    | +      | +       | +            |          |               |               |               | +             | +     | +    | 15      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| truck         | +      | +     | +    | +    | +    | +      | +      | +    | +    | +      | +       | +            |          |               |               |               |               | +     | +    | 14      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| person        | +      | +     | +    | +    | +    | +      | +      |      | +    |        | +       | +            |          |               | +             |               | +             | +     | +    | 14      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| traffic light | +      |       | +    | +    |      | +      | +      | +    | +    | +      | +       | +            |          |               |               |               |               | +     | +    | 12      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| bus           | +      |       | +    | +    |      | +      | +      | +    | +    |        | +       | +            |          |               |               |               | +             | +     | +    | 12      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| motorcycle    | +      |       | +    | +    |      | +      | +      | +    | +    |        | +       | +            |          |               |               |               | +             | +     | +    | 12      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| sky           | +      |       | +    | +    | +    | +      | +      |      | +    | +      | +       | +            |          |               |               |               |               |       | +    | 11      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| bicycle       | +      |       |      | +    |      | +      | +      | +    | +    | +      | +       |              |          |               |               |               | +             | +     | +    | 11      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| rider         | +      | +     | +    | +    | +    | +      | +      | +    | +    |        | +       |              |          |               |               |               |               |       |      | 10      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| building      | +      |       | +    | +    | +    | +      | +      |      | +    |        | +       | +            |          |               |               |               |               |       | +    | 10      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| road          | +      |       | +    | +    |      | +      | +      |      | +    | +      | +       | +            |          |               |               | Т             |               |       | +    | 10      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| sidewalk      | +      |       | +    | +    |      | +      | +      |      | +    | +      | +       | +            |          |               |               |               |               |       | +    | 10      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| traffic sign  | +      |       |      | +    |      | +      | +      | +    | +    | +      | +       | +            |          |               |               |               |               | +     |      | 10      |    |          |   |          |   |   |   |   |   |                                                  |   |    |
| on rails      | +      | +     | +    | +    |      | +      |        | +    | +    |        | +       | cha          | ir       |               |               |               |               |       |      |         |    |          |   |          | + | + | + | + | + | +                                                | + |    |
| fence         | +      |       | +    | +    |      | +      | +      |      | +    |        | +       | sofa         | a.       |               |               |               |               |       |      | $\perp$ |    |          |   |          | + | + | + | + | + | +                                                | + | 7  |
| pole          | +      |       | +    | +    |      | +      | +      |      | +    | +      | +       | tab          |          | $\rightarrow$ |               | $\rightarrow$ |               |       |      | $\bot$  | _  | _        |   | $\vdash$ | + | + | + |   | + | +                                                | + | 6  |
| vegetation    | +      |       | +    | +    |      | +      | +      |      | +    |        | +       | TV           | -        | _             | _             | $\rightarrow$ | -             | +-    | _    | +       | _  | -        |   | _        |   | + | + | + | + | +                                                | + | 6  |
| wall          | +      |       | +    | +    |      | +      | +      |      | +    |        | +       | ceil         |          | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | -             | +-    | _    | +       | +  | -        |   | -        | + | + | + | + | _ | $\vdash$                                         | + | 5  |
| animal        |        |       | +    | +    |      |        |        | +    |      | +      |         | floo         |          | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | -             | +-    | -    | +       | +- | -        |   | $\vdash$ | + | + | + | + | _ | $\vdash$                                         | + | 5  |
| terrain       | +      |       |      | +    |      | +      |        |      | +    |        | +       | bed          | -        | $\rightarrow$ | $\rightarrow$ | $\dashv$      | -             | +-    | _    | +       | +- | $\vdash$ | _ | $\vdash$ | + | + | + | + | _ | +                                                | + | 5  |
| bridge        | +      |       | +    | +    |      | +      | +      |      |      |        |         | -            | dow      | $\rightarrow$ | $\rightarrow$ | $\dashv$      | _             | +     |      | +       | +- | -        |   | $\vdash$ | + | + | + | _ |   | +                                                | + | 4  |
| vehicle       |        |       |      | +    | +    |        |        | +    |      | +      |         | doc          |          | $\rightarrow$ | $\rightarrow$ | $\dashv$      | -             | +-    |      | +       | +  |          |   | $\vdash$ | + |   | + | + |   | $\vdash$                                         | + | 4  |
|               | •      | •     |      | -    |      | •      | -      |      |      |        | -       | boo          | _        | $\neg$        |               | $\neg$        | -             | +-    |      | +       | +  |          |   |          |   | + | + | Ė |   | +                                                | + | 4  |
|               |        |       |      |      |      |        |        |      |      |        |         | cou          | nter     |               |               | $\neg$        |               |       |      | $\top$  |    |          |   |          |   | + | + | + |   |                                                  | + | 4  |
|               |        |       |      |      |      |        |        |      |      |        |         | bag          | 5        |               |               |               |               |       |      |         |    |          |   |          |   |   | + | + |   | +                                                | + | 4  |
|               |        |       |      |      |      |        |        |      |      |        |         | col          | umn      |               |               |               |               |       |      |         |    |          |   |          | + | + |   |   |   |                                                  | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | pic          | ture     |               |               |               |               |       |      |         |    |          |   |          |   |   | + | + |   |                                                  | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | _            | tain     |               |               | $\rightarrow$ |               |       |      | $\bot$  | _  |          |   | _        |   |   | + | + |   | $\vdash$                                         | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | pill         | _        | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | +     | _    | +       | +  | -        |   | -        |   |   | + | + | _ | $\vdash$                                         | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | mir          |          | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | +-    | _    | +       | +  | -        |   | -        |   |   | + | + |   | <del>                                     </del> | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | frid         |          | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | +             | +     | -    | +       | +  | -        |   | -        |   |   | + |   |   | +                                                | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | sinl<br>toil |          | -             | -             | +             | -             | +     |      | +       | +- | -        |   | $\vdash$ |   |   |   | + |   | + +                                              | + | 3  |
|               |        |       |      |      |      |        |        |      |      |        |         | ton          | e.       |               |               | $\rightarrow$ |               |       |      | $\perp$ | _  |          |   | -        |   |   |   |   |   |                                                  | + | -3 |





# **Creation of class hierarchy**







## **Conclusion**

| Dataset                                               | Year | № of    |                                       | Segmentation          | № of    | Category |
|-------------------------------------------------------|------|---------|---------------------------------------|-----------------------|---------|----------|
|                                                       |      | classes | (F)                                   | type                  | images  | Carogory |
| CamVid [10]                                           | 2008 | 30      | $960 \times 720$                      | Semantic              | 700     | road     |
| DUS [23]                                              | 2014 | 5       | $1024 \times 440$                     | Semantic              | 5 000   | road     |
| Cityscapes [12]                                       | 2016 | 30      | 2048 × 1024                           | Semantic,<br>instance | 15 000  | road     |
| Mapillary (Mapillary Vistas Dataset, MVD) [20]        | 2017 | 124     | 1920 × 1080                           | Semantic              | 5 000   | road     |
| SYNTHIA [22]                                          | 2017 | 13      | $1280 \times 960$                     | Semantic              | 2 224   | road     |
| Playing for Benchmarks (PfB) [21]                     | 2017 | 23      | 1920 × 1080                           | Semantic,<br>instance | 254 064 | road     |
| KITTI [14]                                            | 2018 | 8       | $1392\times512$                       | Pixel,<br>instance    | 400     | road     |
| WildDash 2 [9]                                        | 2018 | 28      | 896 × 896                             | Semantic,<br>instance | 4 256   | road     |
| ApolloScape [16]                                      | 2018 | 36      | $3384 \times 2710$                    | Semantic,<br>instance | 146 997 | road     |
| India Driving Dataset [25]                            | 2018 | 34      | $720 \times 720, \\ 1080 \times 1080$ | Semantic,<br>instance | 10 000  | road     |
| BDD100K [27]                                          | 2020 | 19      | 720 × 720                             | Semantic,<br>instance | 10 000  | road     |
| A2D2:<br>Audi Autonomous Driving Dataset [15]         | 2020 | 38      | 1920 × 1208                           | Semantic              | 41 277  | road     |
| NYU-D V2 [19]                                         | 2012 | 13      | $640 \times 480$                      | Semantic              | 408 473 | indoor   |
| SUN-3D [26]                                           | 2013 | 29      | $640 \times 480$                      | Semantic              |         | indoor   |
| SUN RGB-D [24]                                        | 2015 | 29      | $1920 \times 108, \\ 640 \times 480$  | Semantic              | 10 335  | indoor   |
| Stanford 2D-3D [11]                                   | 2017 | 12      | $1080 \times 1080$                    | Semantic              | 70 000  | indoor   |
| PASCAL Visual Object Classes (VOC) [13]               | 2012 | 21      | 650 × 590                             | Semantic,<br>instance | 9 993   | object   |
| Microsoft Common Objects in Context<br>(MS COCO) [17] | 2017 | 80      | 640 × 480                             | Instance              | 123 287 | object   |
| ADE20K /MIT Scene Parsing<br>(SceneParse150) [28]     | 2017 | 150     | 640 × 480                             | Instance,<br>part     | 25 574  | object   |
|                                                       |      |         |                                       |                       |         |          |





Furniture

Bookcase

Board

Dresser

Cabinet

Shelf

Nightstand









#### References for road data sets

- 1. <a href="http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/">http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/</a>
- 2. <a href="https://paperswithcode.com/dataset/dus">https://paperswithcode.com/dataset/dus</a>
- 3. https://arxiv.org/pdf/1604.01685.pdf; https://www.cityscapes-dataset.com/
- 4. <a href="https://www.mapillary.com/dataset/vistas?pKey=0">https://www.mapillary.com/dataset/vistas?pKey=0</a> xJqX3-c-KyTb90oG 8HQ&lat=20&lng=0&z=1.5
- 5. <a href="https://www.cv-foundation.org/openaccess/content-cvpr">https://www.cv-foundation.org/openaccess/content-cvpr</a> 2016/papers/Ros The SYNTHIA Dataset CVPR 2016 paper.pdf; https://synthia-dataset.net/
- 6. https://playing-for-benchmarks.org/overview/
- 7.<a href="http://www.cvlibs.net/publications/Geiger2013IJRR.pdf">http://www.cvlibs.net/publications/Geiger2013IJRR.pdf</a>; <a href="http://www.cvlibs.net/datasets/kitti/index.php">http://www.cvlibs.net/datasets/kitti/index.php</a>
- 8. <a href="https://wilddash.cc/">https://wilddash.cc/</a>
- 9. http://apolloscape.auto/scene.html
- 10. https://idd.insaan.iiit.ac.in/
- 11. <a href="https://arxiv.org/pdf/1805.04687.pdf">https://arxiv.org/pdf/1805.04687.pdf</a>; <a href="https://www.bdd100k.com/">https://www.bdd100k.com/</a>
- 12. https://arxiv.org/pdf/2004.06320.pdf; https://www.a2d2.audi/a2d2/en/dataset.html





#### References for indoor data sets

- 13.<u>https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/shkf\_eccv2012.pdf;</u> https://cs.nyu.edu/~silberman/datasets/nyu\_depth\_v2.html
- 14.https://vision.cs.princeton.edu/projects/2013/SUN3D/paper.pdf; http://sun3d.cs.princeton.edu/
- 15. <a href="https://rgbd.cs.princeton.edu/paper.pdf">https://rgbd.cs.princeton.edu/paper.pdf</a>; <a href="https://rgbd.cs.princeton.edu/paper.pdf">https://rgbd.cs.princeton.edu/paper.pdf</a>; <a href="https://rgbd.cs.princeton.edu/paper.pdf">https://rgbd.cs.princeton.edu/paper.pdf</a>;
- 16.https://arxiv.org/pdf/1702.01105.pdf; https://cvgl.stanford.edu/resources.html

# References for object data sets

- 17. <a href="https://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv\_voc09.pdf">http://host.robots.ox.ac.uk/pascal/VOC/</a>
- 18. <a href="https://arxiv.org/pdf/1405.0312.pdf">https://arxiv.org/pdf/1405.0312.pdf</a>; <a href="https://cocodataset.org/#home">https://cocodataset.org/#home</a>
- 19. <a href="https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf">https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf</a>; <a href="https://groups.csail.mit.edu/vision/datasets/ADE20K/">https://groups.csail.mit.edu/vision/datasets/ADE20K/</a>





# Thank you for attention!

Do you have any questions?