CHEM-1212 Spring 2016 Second Examination Form A

Multiple Choice - Choose the BEST Answer

1. Which of the following reactions best illustrates the protonation of water and the deprotonation of carbonic acid?

- A) $H_2O(l) + H_2CO_3(aq) \rightleftharpoons HCO_3(aq) + OH(aq)$
- B) $H_2O(1) + H_2CO_3(aq) \rightleftharpoons HCO_3(aq) + OH(aq)$
- C) $H_2O(1) + H_2CO_3(aq) \rightleftharpoons HCO_3(aq) + H_3O(aq)$
- D) $H_2O(1) + H_2CO_3(aq) \rightleftharpoons H_2CO_3+(aq) + OH-(aq)$
- E) $H_2O(1) + H_2CO_3(aq) \rightleftharpoons CO_3^{2-}(aq) + H_3O^{+}(aq)$

2. Which species are present in an aqueous solution of a weak base?

I. the weak base

II. OH-

III. H₃O+

IV. the conjugate acid of the weak base

V. H₂O

- A) I and IV
- B) II and IV
- C) I, II, III and IV
- D) I, II and IV
- E) I, II, III, IV and V

3. Which of the following equations best shows H₂O acting as a base?

- A) HS-(aq) + $H_2O(l) \rightleftharpoons S^2$ -(aq) + H_3O +(aq)
- B) $HS^{-}(aq) + H_{2}O(1) \rightleftharpoons H_{2}S(aq) + OH^{-}(aq)$
- C) $HS-(aq) + OH-(aq) \rightleftharpoons S^2-(aq) + H_2O(1)$
- D) $H_2S(aq) + OH(aq) \rightleftharpoons HS(aq) + H_2O(1)$
- E) In all of the previous equations, H₂O is acting as an acid.

4. The figure below is a reaction between CO₂ and OH-. Which of the following statements is true about the reaction shown below?

- I. Species A acts as an Arrhenius acid
- II. Species A donates an electron pair to species B
- III. Species B accepts an electron pair from species A
- IV. Species B acts as a Brønsted-Lowry base
- V. Species A acts as a Brønsted-Lowry acid
- A) I only
- B) IV and V only
- C) II and III only
- D) I, II, III, IV and V are all correct.
- E) None of the statements I-V are true
- 5. What is the pH of a 0.300 M HCN(aq) solution? The K_a of hydrocyanic acid is 4.9 x 10⁻¹⁰.
 - A) pH = 0.52
 - B) pH = 1.21
 - C) pH = 4.92
 - D) pH = 9.08
 - E) Not enough information is given.
- 6. Which statement is true regarding the relative acid strengths of HOCl and HOBr?
 - A) HOBr is a weaker acid than HOCl due to the greater electronegativity of the chlorine atom as compared to bromine making the O-H bond weaker in HBrO.
 - B) HOBr is a weaker acid than HOCl because the H-Br bond is weaker than the H-Cl bond due to the radius of the chlorine atom being smaller than that of bromine.
 - C) HOCl is a weaker acid than HOBr because the bond between hydrogen and bromine is very week due to the greater electronegativity of bromine than chlorine.
 - D) HOCl is a weaker acid than HOBr because the H-Br bond is weaker than the H-Cl bond due to the radius of the chlorine atom being smaller than that of bromine.
 - E) HOBr is a weaker acid than HOCl due to the greater electronegativity of the chlorine atom as compared to the bromine atom making the O-H bond weaker in HOCl.

7. Using the following table, which answer choice is the strongest acid?

Formula	K_b
(CH ₃) ₂ NH	5.4 x 10 ⁻⁴
N ₂ H ₄	8.9 x 10-7
NH ₃	1.8 x 10 ⁻⁵

- A) NH₃
- B) N_2H_4
- C) (CH₃)₂NH
- D) (CH₃)₂NH₂+
- E) $N_2H_5^+$
- 8. An aqueous solution of which of the following will have a pH = 7.00 when it is produced in a neutralization reaction?
 - A) Fe(NO₃)₃
 - B) NH₄Cl
 - C) AlCl₃
 - D) Na₂CO₃
 - E) KClO₄
- 9. $H_2CO_3(aq)$ has an $K_{a1} = 4.3 \times 10^{-7}$ and an $K_{a2} = 5.6 \times 10^{-11}$. Which of the following are true about $H_2CO_3(aq)$ at equilibrium?
 - A) At equilibrium, the relative concentrations of the following are: $[H_2CO_3] = [HCO_3^2] = [CO_3^2]$ due to $K_{a1} >>> K_{a2}$.
 - B) At equilibrium the relative concentrations of the following are: $[H_2CO_3] << [HCO_3^-] = [CO_3^2^-]$ because the equilibriums are very product favored.
 - C) At equilibrium the relative concentrations of the following are: $[H_2CO_3] = [HCO_3^2] << [CO_3^2]$ because the only the first deprotonation occurs.
 - D) At equilibrium the relative concentrations of the following are: [H₂CO₃] >> [HCO₃-] >> [CO₃²-] because the equilibriums are very reactant favored.
 - E) At equilibrium the relative concentrations of the following are: $[H_2CO_3] >> [HCO_3^-] = [CO_3^2^-]$ because the only the first deprotonation occurs.
- 10. Natural or "unpolluted" rain has a pH of 5.6. By what factor has the concentration of H₃O⁺(aq) changed in acid rain with a pH of 3.6?
 - A) increased by a factor of 2.0
 - B) increased by a factor of 100
 - C) increased by a factor of 0.2
 - D) decreased by a factor of 0.2
 - E) decreased by a factor of 100

11. What is the net ionic reaction for potassium hydroxide reacting with hydrocyanic acid?

$$KOH(aq) + HCN(aq) \rightleftharpoons KCN(aq) + H_2O(l)$$

- A) $K^{+}(aq) + OH^{-}(aq) + H^{+}(aq) + CN^{-}(aq) \implies K^{+}(aq) + CN^{-}(aq) + H_{2}O(1)$
- B) $K^+(aq) + OH^-(aq) + HCN(aq) \rightleftharpoons K^+(aq) + CN^-(aq) + H_2O(l)$
- C) OH-(aq) + H+(aq) \rightleftharpoons H₂O(l)
- D) $OH^{-}(aq) + HCN(aq) \rightleftharpoons CN^{-}(aq) + H_2O(l)$
- E) $KOH(aq) + HCN(aq) \rightleftharpoons KCN(aq) + H₂O(l)$

12. A buffer contains equal amounts of a weak base and its conjugate acid. It has a pH = 9.26. Which answer option is a reasonable value for the pH after the addition of a small amount of strong base?

- A) pH = 3.16
- B) pH = 7.00
- C) pH = 9.02
- D) pH = 9.45
- E) pH = 13.67

13. If a small amount of a strong base is added to a buffer solution made up of a weak base, B, and the chloride salt of its conjugate acid, the pH of the buffer solution does not change appreciable because

- A) no reaction occurs
- B) the K_b of B changes
- C) the strong base reacts with B to produce BH+ which is a weak acid.
- D) the strong base reacts with H₂O to produce BH+ which is a weak base.
- E) the strong base reacts with BH+ to produce B, which is a weak base.

14. Equal volumes of the aqueous solutions below are mixed. Which mixture results in a buffer?

- A) 0.10 M HBr(aq) with 0.10 M KOH(aq)
- B) 0.10 M CH₃NH₂(aq) with 0.10 M HCl(aq)
- C) 0.080 M NaOH(aq) with 0.10 M CH₃COOH (aq)
- D) 0.10 M CH₃COOH(aq) with 0.10 M HCOOH(aq)
- E) 0.080 *M* HClO(aq) with 0.10 *M* KOH(aq)

15. A buffer contains a weak acid, HA and its conjugate base, A-. The weak acid has a p K_a = 3.52, and the buffer currently has a pH = 4.25. Which of the following statement(s) is(are) true?

- A) $[HA] > [A^{-}]$
- B) [HA] < [A-]
- C) $[HA] = [H_2O]$
- D) [HA] = [OH-]
- E) $[OH-] = [H_3O+]$

16. What is the pH of a solution prepared by dissolving 3.6 g of NaHCO₃ and 5.3 g Na₂CO₃ in enough water to produce 0.20 L of solution. The equilibrium constants for carbonic acid are $K_{a1} = 4.3 \times 10^{-7}$ and $K_{a2} = 5.6 \times 10^{-11}$.

- A) 6.31
- B) 6.37
- C) 6.43
- D) 10.25
- E) 10.32

17. When there is an increase in the concentration of CO₂ in the ocean, which of the following statements are true? Use the following equations as needed to answer the question.

1.
$$CO_2(aq) + H_2O(1) \rightleftharpoons H_2CO_3(aq)$$

$$K = 1.7 \times 10^{-3}$$

2.
$$H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$$

$$K_{a1} = 4.3 \times 10^{-7}$$

3.
$$HCO_3^{-}(aq) + H_2O(1) \rightleftharpoons H_3O^{+}(aq) + CO_3^{2-}(aq)$$

$$K_{a2} = 5.6 \times 10^{-11}$$

4.
$$Ca^{2+}(aq) + 2 HCO_3^{-}(aq) \rightleftharpoons CaCO_3(s) + CO_2(aq) + H_2O(l)$$

- A) As the concentration of CO₂(aq) increases, the amount of CaCO₃(s) decreases
- B) The deprototonation of H₂CO₃ is greater than the deprotonation of HCO₃.
- C) The CO₂ in water is used to form H₂CO₃(aq)
- D) As the concentration of CO₂(aq) in the ocean increases, the pH of the system decreases.
- E) All of the previous statements are true.

18. A 50.0 mL sample of 0.250 M NH₃ ($K_b = 1.8 \times 10^{-5}$) is titrated with 0.500 M HNO₃. What is the pH of the solution after 12.5 mL of acid was added?

- A) pH = 4.78
- B) pH = 7.00
- C) pH = 9.14
- D) pH = 9.22
- E) pH = 9.26

19. A solution contains 0.150 M Pb²⁺. Chloride ions are added to the solution. What concentration is necessary to precipitate PbCl₂ at 25°C? ($K_{sp} = 1.2 \times 10^{-5}$)?

- A) a concentration less than 8.0 x 10-5 mol/L
- B) a concentration equal to 8.0 x 10-5 mol/L
- C) a concentration greater than 8.0 x 10⁻² mol/L
- D) a concentration less than 8.9 x 10-3 mol/L
- E) a concentration greater than 8.9 x 10⁻³ mol/L

20. The following plot shows a titration curve for the titration of 1.00 L of 1.00 M diprotic acid H₂A with NaOH. Which point on the plot (a-d) best represents the HA-/A²- buffer region?

- A) Point a
- B) Point b
- C) Point c
- D) Point d
- E) This buffer region does not exist on the titration curve above.

21. A 25.0 mL sample of 0.500 M HCO₂H ($K_a = 1.8 \times 10^{-4}$) is titrated with 0.350 M NaOH. What is the pH of the solution after 40.0 mL of base was added?

- A) 4.11
- B) 4.66
- C) 9.89
- D) 11.18
- E) 12.36

22. Which form of the exam do you have?

- A) A
- B) B