

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Визуализация мыльных пузырей

Студент: ИУ7-53Б Каракотова Наталья Владимировна

Руководитель: Кострицкий А. С.

Цель и задачи

Цель – разработка программного обеспечения для создания реалистичного изображения мыльных пузырей.

Для достижения цели были поставлены следующие задачи:

- 1) описать физическую модель мыльных пузырей;
- 2) проанализировать и выбрать модели представления объектов;
- 3) проанализировать и выбрать алгоритмы решения основных задач компьютерной графики: удаления невидимых линий и поверхностей, учёта теней и освещения;
- 4) спроектировать программное обеспечение;
- 5) выбрать средства реализации и реализовать спроектированное программное обеспечение;
- 6) обеспечить возможность тестирования, создать наборы тестов и продемонстрировать работоспособность программы;
- 7) исследовать характеристики разработанного программного обеспечения.

Физическая модель мыльных пузырей

Разность фаз: $\delta = \frac{2 \cdot \pi \cdot \Delta}{\lambda}$

Итоговая интенсивность: $I = 2 \cdot I_0 \cdot (1 + \cos(\delta))$

Формализованная постановка задачи генерации кадра с мыльными пузырями

Модели описания объектов

Обозначения:

А – аналитическая;

П – полигональная;

В – воксельная;

РС – равномерная сетка;

НС – неравномерная сетка;

N – количество полигонов;

М – количество вокселей;

К – количество соседних троек точек.

	A	П	В	PC	НС
Временная сложность поиска нормали	O(1)	O(N)	O(M)	O(K)	O(K)
Временная сложность поиска пересечения	O(1)	O(N)	O(M)	O(K)	O(K)
Пространственная сложность хранения объектов	O(1)	O(N)	O(M)	O(K)	O(K)
Возможность описания произвольных объектов	-	+	+	-	+
Отсутствие погрешности при задании сферического объекта	+	-	-	-	-

Глобальная модель освещения

Учитывает взаимное расположение объектов.

Составляющие:

- 1) a фоновая (**a**mbient);
- 2) d pacceянная (diffuse);
- 3) s зеркальная (**s**pecular);
- 3) r преломлённая (refract).

$$I = k_a I_a + k_d \sum_{j} I_j (N \cdot L_j) + k_s \sum_{j} I_j (V \cdot R_j)^{\alpha} + k_s I_s + k_r I_r$$

Алгоритмы удаления невидимых линий и поверхностей

Обозначения:

Р – Робертса;

3Б – с использованием Z-буффера;

Х – художника;

В – Варнока;

ВА – Вейлера–Азертона;

ОТ – обратная трассировка;

N – количество граней и аналитических

поверхностей;

W – ширина экрана в пикселях;

Н – высота экрана в пикселях.

	P	ЗБ	X	В	BA	OT
Возможность по-						
строения отраже-	_	_	_	_	_	
ний и преломле-	_	x—x	_	_	_	
ний						
Возможность ис-						
пользования без	+	+	-	+	-	+
сортировки						
Возможность ис-						
пользования для	_,	+	_	_	_	
аналитических	_	1	_	_	_	
объектов						
Временная слож-	$O(N^2)$	O(WHN)	O(N)	O(WHN)	$O(N^2)$	O(WHN)
ность	0(11)		O(1V)	O(W 111V)	0(11)	

Функциональная модель программного обеспечения с учётом выбранных алгоритмов нулевого уровня

Функциональная модель программного обеспечения первого уровня

Трассировка лучей

Средства реализации

- Язык: С++;
- Среда разработки: Qt Creator;
- Модульное тестирование: Google Test.

Диаграмма классов

Пример интерфейса

Модульное тестирование

Созданы наборы тестов для:

- 1) методов объекта класса Scene;
- 2) методов объекта класса Sphere;
- 3) методов объекта класса TriangulatedObject;

В качестве меры оценки полноты тестирования был выбран процент покрытия:

F = N / K * 100%, где N – количество строк, покрытых тестами, K – общее количество строк кода.

Процент покрытия для созданного набора тестов: 15%.

Функциональное тестирование 1/2

Отражение фиолетовой сферы, которую не видно на рисунке саму.

Функциональное тестирование 2/2

Взаимное отражение, прозрачность.

Блики, интерференция, коэффициент преломления у розового шара 1, поэтому за ним виден серый шар без искажения.

Зависимость времени генерации кадра от глубины трассировки

Условия исследования:

- 10 картинок;
- 1, 2 или 3 пузыря.

Полученные данные были аппроксимированы

$$f1(k) = 0.08 k^{**}5 - 1.24 k^{**}4 + 15.25 k^{**}3 - 56.24 k^{**}2 +$$

+ 97.60 k - 8.47

$$f2(k) = 0.06 k^{**}5 - 1.79 k^{**}4 + 9.91 k^{**}3 - 34.13 k^{**}2 +$$

+ 59.79 k - 10.05

$$f3(k) = 0.05 k^{**}5 - 0.85 k^{**}4 + 5.48 k^{**}3 - 2.46 k^{**}2 +$$

+ 18.57 k - 23.19

Время построения кадра пропорционально 4й степени глубины трассировки.

Заключение

В ходе выполнения курсовой работы была достигнута поставленная цель: разработано программное обеспечение для создания реалистичного изображения мыльных пузырей.

Также были решены все поставленные задачи:

- 1) описана физическая модель мыльных пузырей;
- 2) проанализированы и выбраны модели представления объектов;
- 3) проанализированы и выбраны алгоритмы решения основных задач компьютерной графики: удаления невидимых линий и поверхностей, учёта теней и освещения;
- 4) спроектировано программное обеспечение;
- 5) выбраны средства реализации и реализовано спроектированное программное обеспечение;
- 6) обеспечена возможность тестирования, созданы наборы тестов и продемонстрирована работоспособность программы;
- 7) исследована зависимость времени работы программы от глубины рекурсии.