

A Level · Edexcel · Maths





# 11.1 Vectors in 2 **Dimensions**

11.1.1 Basic Vectors / 11.1.2 Magnitude & Direction / 11.1.3 Vector Addition / 11.1.4 Position Vectors / 11.1.5 Problem Solving using Vectors

| Total Marks             | /175 |
|-------------------------|------|
| Very Hard (8 questions) | /52  |
| Hard (9 questions)      | /48  |
| Medium (9 questions)    | /41  |
| Easy (10 questions)     | /34  |

Scan here to return to the course

or visit savemyexams.com





## **Easy Questions**

1 The vectors  $\mathbf{a}$  and  $\mathbf{b}$  are given by  $\mathbf{a} = 3\mathbf{i} - 5\mathbf{j}$  and  $\mathbf{b} = -\mathbf{i} + 3\mathbf{j}$ .

Find:

- (i) a + b
- (ii) 5**a**,
- (iii) 3**a -** 2**b**
- (iv) **a** - *t* **b**,

(5 marks)

2 In triangle  $\overrightarrow{ABC}$ ,  $\overrightarrow{AB} = 5\mathbf{i} + \mathbf{j}$  and  $\overrightarrow{AC} = 3\mathbf{i} - 2\mathbf{j}$ .



- Find  $\overrightarrow{BC}$  in terms of **i** and **j**. (i)
- Calculate  $|\overrightarrow{BC}|$ . (ii)

(4 marks)



**3 (a)** The vectors **a, b, c** and **d** are given by

$$a = 2i + 4j$$
,  $b = 3i + pj$ ,  $c = qi - 2j$ ,  $d = 6i - 2j$ 

Given that  $\mathbf{a} - 2\mathbf{b} = 3\mathbf{c}$ , find the values of the constants p and q.

(3 marks)

(b) Find |d|.

(2 marks)

- **4** On the same diagram sketch the following position vectors
  - (i) 3i + 4j,
  - (ii) -5i,
  - (iii) -8i 6j.

(3 marks)

5 The vectors **a**, **b** and **c** are given as

$$\mathbf{a} = \begin{pmatrix} 3 \\ -p \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} p \\ 4 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$$

Given that  $\mathbf{a} + \mathbf{b}$  is parallel to c find the value of p.

- **6** The position vector  $\overrightarrow{AB}$  is given by  $\overrightarrow{AB} = 6\mathbf{i} + 3\mathbf{j}$ .
  - Find the magnitude of  $\overrightarrow{AB}$ , giving your answer in the form  $p\sqrt{q}$  where p and q(i) are integers to be found.
  - Find the angle between  $\overrightarrow{AB}$  and the positive *x*-axis, giving your answer in degrees (ii) to one decimal place.

(4 marks)

7 The vector 
$$\overrightarrow{OA}$$
 is given by  $\overrightarrow{OA} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ .

Find a unit vector in the direction of  $\overrightarrow{OA}$ .

- 8 Starting at the origin, a ship sails on a bearing of 060° for 400 km, until it reaches point *P*. Find the position vector of *P* relative to the origin.
  - Giving your answer in the form  $(x\mathbf{i} + y\mathbf{j})$  km, where x and y are exact values.

(4 marks)

**9** The points A and B have position vectors  $\mathbf{a} = 3\mathbf{i} - 7\mathbf{j}$  and  $\mathbf{b} = -3\mathbf{i} + \mathbf{j}$  respectively. Find the distance *AB*.

(2 marks)

**10** A force **F** acts on a particle, where  $\mathbf{F} = p\mathbf{i} + 2p\mathbf{j} N$ .

Calculate the magnitude of the force F, giving your answer in terms of p.

#### **Medium Questions**

**1 (a)** In triangle *ABC*,  $\overrightarrow{AB} = 7\mathbf{i} + \mathbf{j}$  and  $\overrightarrow{AC} = 4\mathbf{i} - 3\mathbf{j}$ 



- Write down  $\overrightarrow{CA}$  in terms of i and j.
- Find  $\overrightarrow{BC}$ . (ii)

(3 marks)

**(b)** Calculate  $|\overrightarrow{BC}|$ .

(1 mark)

2 (a) 
$$\mathbf{a} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$$
,  $\mathbf{b} = \begin{pmatrix} m \\ -3 \end{pmatrix}$ ,  $\mathbf{c} = \begin{pmatrix} 5 \\ n \end{pmatrix}$ 

Given that  $\mathbf{a} + 2\mathbf{b} = \mathbf{c}$ , find the values of m and n.

(3 marks)

(b) 
$$\mathbf{d} = \begin{pmatrix} -5 \\ k \end{pmatrix}$$

Given that  $|\mathbf{d}| = 15$ , find two possible values for k. Give your answer as an exact value.

(2 marks)

**3** The point *A* lies on the line with equation y = 3x + 5. The position vector of *A* is  $\overrightarrow{OA} = 2k\mathbf{i} + 7k\mathbf{j}$ . Find the value of k, and hence determine the coordinates of A.

(3 marks)

4 The vectors a, b and c are given as

$$\mathbf{a} = \begin{pmatrix} -5 \\ 17 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} k \\ 5 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 9 \\ -29 \end{pmatrix}$$

Given that  $\mathbf{a} - \mathbf{b}$  is parallel to  $\mathbf{b} + \mathbf{c}$  find the value of k.

(4 marks)



5 (a)  $\overrightarrow{AB} = 11\mathbf{i} - 2\mathbf{j}$ 

Find

- the magnitude of  $\overrightarrow{AB}$ , giving your answer as an exact value (i)
- the angle between  $\overrightarrow{AB}$  and the positive x-axis, giving your answer in degrees (ii) correct to two decimal places.

(3 marks)

**(b)** Find a unit vector in the direction of  $\overrightarrow{AB}$ .

(2 marks)

**6** A ship leaves its starting position O in port and travels 300 km on a bearing of 120°. It then travels 500 km due south before dropping anchor at point A. Given that the position vector of A relative to O is  $(x\mathbf{i} + y\mathbf{j})$ km, find the exact values of x and y.

(4 marks)

| 7 (a) | Two forces $\boldsymbol{F}_1$ and $\boldsymbol{F}_2$ act on a particle, where | $\mathbf{F}_1 = 7\mathbf{i} - 2\mathbf{j}$ | newtons and |
|-------|-------------------------------------------------------------------------------|--------------------------------------------|-------------|
|       | $\mathbf{F}_2 = -12\mathbf{i} - 10\mathbf{j}$ newtons.                        |                                            |             |

The resultant force  $\mathbf{R}$  acting on the particle is given by  $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$ .

Calculate the magnitude of **R** in newtons.

(3 marks)

**(b)** A third force  $\mathbf{F}_3 = k\mathbf{j}$  newtons is to be applied to the particle. The constant k is to be selected so that the line of action of the new resultant force  $\mathbf{R}_{\mathrm{new}} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$  is at an angle of 45 degrees to the vector  $\mathbf{j}$ , measured anticlockwise.

Find the value of k.

**8 (a)** Points A, B and C have position vectors  $\overrightarrow{OA} = -4\mathbf{i} - 7\mathbf{j}$ ,  $\overrightarrow{OB} = 3\mathbf{j}$  and  $\overrightarrow{OC} = 6\mathbf{i} + 18\mathbf{j}$ , respectively.

Find  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ .

(3 marks)

**(b)** Show that  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$  are parallel, and state what this tells you about the points A,Band *C*.

**9 (a)** In triangle  $\overrightarrow{ABC}$ ,  $\overrightarrow{AB}$  = **a** and  $\overrightarrow{AC}$  = **b**. Point  $\overrightarrow{P}$  divides  $\overrightarrow{BC}$  in the ratio 3:2.



- Write down vector  $\overrightarrow{BC}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$ . i)
- Find  $\overrightarrow{BP}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$ . ii)

(3 marks)

**(b)** Given that  $\mathbf{a} = 7\mathbf{i} + 8\mathbf{j}$  and  $\mathbf{b} = 12\mathbf{i} + 3\mathbf{j}$ , find  $\overrightarrow{BP}$  in terms of  $\mathbf{i}$  and  $\mathbf{j}$ .

#### **Hard Questions**

**1 (a)** In triangle *ABC*, 
$$\overrightarrow{AB} = 5\mathbf{i} + 8\mathbf{j}$$
 and  $\overrightarrow{BC} = \mathbf{i} - 5\mathbf{j}$ 



Explain why 
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$$
.

(1 mark)

**(b)** Find  $\overrightarrow{CA}$  and calculate its magnitude.

2 (a) 
$$\mathbf{a} = \begin{pmatrix} -1 \\ n \end{pmatrix}$$
,  $\mathbf{b} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$ ,  $\mathbf{c} = \begin{pmatrix} m \\ 6 \end{pmatrix}$ 

Given that the resultant of  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$  is the zero vector, find the values of m and n.

(2 marks)

(b) 
$$\mathbf{d} = \begin{pmatrix} -3k \\ k \end{pmatrix}$$

Given that  $|\mathbf{d}| = 2\sqrt{15}$ , find two possible values for k. Give your answer as an exact value.

(2 marks)

**3** The point *A* lies on the curve with equation  $y = x^2 - 2$ . The position vector of *A* is  $\overrightarrow{OA} = 3k\mathbf{i} - 17k\mathbf{j}$ , where k is a positive constant. Find the value of k, and hence determine the coordinates of A.

(4 marks)

4 The vectors **a**, **b** and **c** are given as

$$\mathbf{a} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -3k \\ k \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$$

Given that  $\mathbf{a} - \mathbf{b}$  is parallel to  $\mathbf{a} + \mathbf{c}$  find the value of k.

(4 marks)

| (2 marks)  6 In the enchanted kingdom of Vectoria, a magical flying unicorn takes off from the wizard's palace at the point known as $O$ and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i} + y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of $x$ and $y$ .                 | 5 (a) | Vector $\overrightarrow{AB}$ has a magnitude of $6\sqrt{3}$ and makes an angle of 150° with the positive $x$ -axis.                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2 marks)  6 In the enchanted kingdom of Vectoria, a magical flying unicorn takes off from the wizard's palace at the point known as $O$ and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i} + y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of $x$ and $y$ .                 |       | Find $\overrightarrow{AB}$ in the form $x\mathbf{i} + y\mathbf{j}$ , where both $x$ and $y$ are given as exact values.                                                                                                                                                                                                                                                                    |
| (2 marks)  6 In the enchanted kingdom of Vectoria, a magical flying unicorn takes off from the wizard's palace at the point known as $O$ and travels $30 \text{ km}$ on a bearing of $300^\circ$ . Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i}+y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of $x$ and $y$ . |       | (3 marks)                                                                                                                                                                                                                                                                                                                                                                                 |
| 6 In the enchanted kingdom of Vectoria, a magical flying unicorn takes off from the wizard's palace at the point known as $O$ and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i}+y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of $x$ and $y$ .                              | (b)   | Find a unit vector in the direction of $\overrightarrow{AB}$ .                                                                                                                                                                                                                                                                                                                            |
| 6 In the enchanted kingdom of Vectoria, a magical flying unicorn takes off from the wizard's palace at the point known as $O$ and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i}+y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of $x$ and $y$ .                              |       | (2l)                                                                                                                                                                                                                                                                                                                                                                                      |
| wizard's palace at the point known as $O$ and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i}+y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of $x$ and $y$ .                                                                                                                  |       | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                 |
| (6 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6     | wizard's palace at the point known as $O$ and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of $k$ km due north before reaching the enchanted grove at point $P$ . Given that the position vector of $P$ relative to $O$ is $(x\mathbf{i} + y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is |
| (6 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | (6 marks)                                                                                                                                                                                                                                                                                                                                                                                 |

**7 (a)** Two forces  $\mathbf{F}_1$  and  $\mathbf{F}_2$  act on a particle, where  $\mathbf{F}_1 = 5\mathbf{i} - 3\mathbf{j}$  newtons and  $\mathbf{F}_2 = x\mathbf{i} + y\mathbf{j}$ newtons.

The resultant force  $\mathbf{R}$  acting on the particle is given by  $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$ , and acts in a direction parallel to the vector  $(-\mathbf{i} - 3\mathbf{j})$ .

Find the angle between **R** and the vector **j**, giving your answer in degrees correct to 2 decimal places.

(2 marks)

**(b)** Show that 3x - y = -18.

(3 marks)

(c) Given that y = -3, find the magnitude of **R**.

(3 marks)

8 Points A, B and C have position vectors  $\overrightarrow{OA} = -9\mathbf{i} + 4\mathbf{j}$ ,  $\overrightarrow{OB} = -6\mathbf{i}$  and  $\overrightarrow{OC} = 3\mathbf{i} - 12\mathbf{j}$ , respectively.

Use a vector method to show that points *A*, *B* and *C* lie on the same straight line.

(5 marks)



**9 (a)** In triangle ABC, point F lies on AB and point G lies on BC.

*F* divides *AB* in the ratio *m:n*.

The line segment FG is parallel to AC.



Explain why  $\overrightarrow{BG} = \lambda \overrightarrow{BC}$  for some constant  $\lambda$ , where  $0 \le \lambda \le 1$ .

(1 mark)

**(b)** Given that  $\overrightarrow{AB} = \mathbf{a}$  and  $\overrightarrow{AC} = \mathbf{b}$ , show that

$$\overrightarrow{FG} = \left(\frac{n}{m+n} - \lambda\right)\mathbf{a} + \lambda\mathbf{b}$$

(4 marks)

(c) Using your result from (b), prove that G divides BC in the ratio n:m.



### **Very Hard Questions**

**1 (a)** A, B and C are the three vertices of a triangle.  $\overrightarrow{AC} = 5\mathbf{i} - 2\mathbf{j}$  and  $\overrightarrow{BC} = -3\mathbf{i} + k\mathbf{j}$ , where k is a constant.

Find  $\overrightarrow{AB}$  in terms of i, j and k.

(2 marks)

**(b)** Given that  $|\overrightarrow{AB}| = \sqrt{89}$ , find the two possible values of k.

2 (a) 
$$\mathbf{a} = \begin{pmatrix} 8 \\ m \end{pmatrix}$$
,  $\mathbf{b} = \begin{pmatrix} n \\ -2 \end{pmatrix}$ ,  $\mathbf{c} = \begin{pmatrix} m \\ n \end{pmatrix}$ 

Given that  $\mathbf{a} + \mathbf{b} = \mathbf{c} - 2\mathbf{b}$ , find the values of m and n.

(3 marks)

$$(b) d = \begin{pmatrix} 2k+1 \\ 2k-1 \end{pmatrix}$$

Given that  $|\mathbf{d}| = 3k\sqrt{2}$ , find two possible values for k. Give your answer as an exact value.

| 3 (a) | The point <i>A</i> lies on the circle with equation $(x-11)^2 + (y-7)^2 = 34$ .       | A has position |
|-------|---------------------------------------------------------------------------------------|----------------|
|       | vector $\overrightarrow{OA} = 3k\mathbf{i} + 5k\mathbf{j}$ , where $k$ is a constant. |                |

Find the value of k, and hence determine the coordinates of A.

(4 marks)

**(b)** Explain why a line passing through *O* and *A* must be a tangent to the circle.

(2 marks)

4 Points 
$$A$$
,  $B$  and  $C$  have position vectors  $\overrightarrow{OA} = -6\mathbf{i} - 2\mathbf{j}$ ,  $\overrightarrow{OB} = \mathbf{i} + m\mathbf{j}$  and  $\overrightarrow{OC} = 3\mathbf{i} - 8\mathbf{j}$ , respectively.

Given that A, B and C lie on the same straight line, use a vector method to find the value of *m*.

(5 marks)

| 5 (a) | Vector $\overrightarrow{AB}$ has a magnitude of $2\sqrt{6}$ and makes an angle of 165° with the positive $y$ -axis). | sitive <i>y</i> -axis |
|-------|----------------------------------------------------------------------------------------------------------------------|-----------------------|
|       | Find $\overrightarrow{AB}$ in the form $a\mathbf{i}+b\mathbf{j}$ , where both $a$ and $b$ are given as exact values. |                       |
|       |                                                                                                                      |                       |
|       |                                                                                                                      |                       |
|       |                                                                                                                      | (3 marks)             |
| (b)   | Find a unit vector in the direction of $\overrightarrow{AB}$ .                                                       |                       |

**6 (a)** A ship is searching for a radio buoy whose transmitter has ceased functioning. The ship sets out from point O and heads in the approximate direction of the buoy, travelling at a constant speed of 40 km/h in a direction parallel to the vector  $\mathbf{i} + 3\mathbf{j}$ . After travelling for ninety minutes the ship has reached point P. At that time, the ship receives a brief transmission from the buoy indicating that the buoy is at a bearing of 210° from the ship. The ship heads on that bearing at the same constant speed, and reaches the buoy at point *Q* in another 45 minutes. Given that vector  $\overrightarrow{OQ} = x\mathbf{i} + y\mathbf{j}$  km, find the exact values of x and y.

Given that vector  $\overrightarrow{OQ} = x\mathbf{i} + y\mathbf{j}$  km, find the exact values of x and y.

(7 marks)

(b) How far was the buoy from the ship, and at what bearing, at the time the ship initially left point *O*? Give the distance in kilometers, and give your answers correct to 1 decimal place.

| 7 (a) | In an experiment, three forces are acting on a particle. $\mathbf{F}_1 = 7\mathbf{i} - \mathbf{j}$ newtons and         |
|-------|------------------------------------------------------------------------------------------------------------------------|
|       | $\mathbf{F}_2 = x\mathbf{i} + y\mathbf{j}$ newtons are both constant forces, although the values of $x$ and $y$ are    |
|       | initially unknown. The third force is $\mathbf{F}_3 = k\mathbf{i} + k\sqrt{3}\mathbf{j}$ newtons, where $k \ge 0$ is a |
|       | parameter that can be varied by the experimenters. The resultant force ${\bf R}$ acting on the                         |
|       | particle is given by $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ .                                       |

Given that  $\mathbf{R} = \mathbf{0}$  when the magnitude of  $\mathbf{F}_3$  is 10 newtons, find the exact values of x and у.

(4 marks)

(b) Find the magnitude of  ${f F}_2$  and the angle it makes with the vector  ${f i}$ . Give your answers correct to 1 decimal place.

**8 (a)** In triangle *ABC*, *D* is the midpoint of *AB* and *E* is the midpoint of *AC*. *BE* and *CD* intersect at point F.



Given that  $\overrightarrow{AB} = 2\mathbf{a}$  and  $\overrightarrow{AC} = 2\mathbf{b}$ , write the vectors  $\overrightarrow{BC}$ ,  $\overrightarrow{BE}$  and  $\overrightarrow{CD}$  in terms of a and b.

(3 marks)

**(b)** By setting up and solving suitable vector equations, prove that each of *BE* and *CD* divides the other in the ratio 1:2.

(6 marks)