COMPLEMENTARITY-GUIDED EPSILON LEXICASE SELECTION FOR GENETIC PROGRAMMING IN SYMBOLIC REGRESSION

HENGZHE ZHANG, QI CHEN, BING XUE, WOLFGANG BANZHAF, MENGJIE ZHANG

MAY 30, 2025

- 1 Introduction
- 2 Background
- 3 Proposed Method
- 4 Experimental Setup
- 5 Experimental Results
- 6 Conclusions

INTRODUCTION

THE PROBLEM WITH INDEPENDENT SELECTION

Current Approach:

- Selection operators (tournament, lexicase) select parents independently
- Crossover applied with high probability (80-90%)
- No consideration of parent interaction during crossover

Consequences:

- Parents may be semantically similar or identical
- Crossover fails to combine diverse strengths
- Computational resources wasted
- Evolution can stagnate

Complementarity is important!

Key Insight: Selection should be aware of crossover behavior!

Behavior 1

Ideal Scenario:

- Parent 1 excels on cases A, struggles on casesB
- Parent 2 excels on cases B, struggles on casesA
- Crossover combines strengths from both
- Offspring potentially excels on A and B

Challenge:

- Tournament selection favors generalists
- Hard to find truly complementary pairs
- Need specialists that excel in different areas

BACKGROUND

Tournament Selection:

- Random subsets, select fittest
- Favors generalists

Lexicase Selection 1:

- Random test case ordering
- Filter by case-specific thresholds
- Favors specialists

Complementary Phenotype Selection ²:

- First parent: roulette wheel/tournament selection
- Second parent: maximize complementarity
- Limited by generalist first parent

Our Contribution:

- First parent: lexicase selection
- Second parent: complementarity-guided
- Specialists paired with complementary specialists

La Cava, William et al., 2019", 'A probabilistic and multi-objective analysis of lexicase selection and ε-lexicase selection", Evolutionary Computation

² Dolin, Brad, Maribel García Arenas, and Juan J Merelo, 2002", 'Opposites attract: Complementary phenotype selection for crossover in genetic programming", Parallel Problem Solving from Nature—PPSN VII

PROPOSED METHOD

Key Features:

- Standard GP framework with novel selection strategy
- Linear scaling with regularization for fitness evaluation
- Focus on parent complementarity during selection

Step 1 - First Parent Selection:

- Use automatic epsilon-lexicase selection
- Adaptive threshold: $\tau_t = \min(e_t) + \text{median}(|e_t - \text{median}(e_t)|)$
- Selects specialists, not generalists

Step 2 - Second Parent Selection:

- Evaluate complementarity with first parent
- Minimize: $\mathcal{L}(\Phi_a, \Phi_b) = \frac{1}{m} \sum_{j=1}^{m} \min(E_a[j], E_b[j])$
- Choose parent that best complements Φ_a

Parent selection based on case-wise error patterns

Complementarity Metric:

$$\mathcal{L}(\Phi_a, \Phi_b) = \frac{1}{m} \sum_{j=1}^m \min(E_a[j], E_b[j])$$

Interpretation:

- $E_a[j]$, $E_b[j]$: errors on case j
- $min(E_a[j], E_b[j])$: best performance on case j
- L: average of best case-wise performances
- Lower \mathcal{L} = better complementarity

Tie-breaking: Prefer lower total error

Ideal combination leverages strengths of both parents

EXPERIMENTAL SETUP

Datasets:

- 98 regression datasets from PMLB (Fewer than 2000 instances)
- 80:20 train/test split
- Features standardized

GP Parameters:

- Population: 200
- Generations: 100
- Max depth: 10
- Crossover/Mutation: 0.9/0.1
- Functions: +, -, ×, AQ, $\sqrt{\cdot}$, etc.

Baseline Methods:

- **Tournament-3/7**: Tournament selection
- **Lexicase**: Automatic epsilon-lexicase
- **CPS**: Complementary phenotype selection

Evaluation:

- \blacksquare R^2 coefficient of determination
- 30 independent runs per dataset
- Wilcoxon signed-rank test
- Significance level: 0.05

EXPERIMENTAL RESULTS

Table: Statistical comparison of **training** R^2 **scores**

	Lexicase	Tournament-3	Tournament-7	CPS
CLS	64(+)/34(~)/o(-)	78(+)/18(~)/2(-)	66(+)/25(~)/7(-)	36(+)/61(~)/1(-)
Lexicase	_	67(+)/18(~)/13(-)	44(+)/36(~)/18(-)	8(+)/69(~)/21(-)
Tournament-3	_	_	o(+)/78(~)/2o(-)	1(+)/36(~)/61(-)
Tournament-7	_	_	_	10(+)/63(~)/25(-)

■ **Significant improvements**: CLS outperforms baselines on majority of datasets

■ vs Tournament: 78/98 and 66/98 datasets improved

■ vs Lexicase: 64/98 datasets improved, o datasets worse

■ vs CPS: 36/98 datasets improved, consistent performance

Table: Statistical comparison of **test** R^2 **scores**

	Lexicase	Tournament-3	Tournament-7	CPS
CLS	23(+)/74(~)/1(-)	56(+)/39(~)/3(-)	57(+)/40(~)/1(-)	25(+)/72(~)/1(-)
Lexicase	_	55(+)/41(~)/2(-)	49(+)/48(~)/1(-)	8(+)/89(~)/1(-)
Tournament-3	_	_	o(+)/94(~)/4(-)	o(+)/65(~)/33(-)
Tournament-7	_	_	_	1(+)/68(~)/29(-)

- **Generalization improvement**: Strong test performance across methods
- Robust performance: Very few cases where CLS performs worse
- Consistent gains: Improvements maintained on unseen data

- Consistent advantage: CLS performs better from early generations
- Sustained improvement: Advantage maintained throughout evolution

Euclidean Distance Diversity

Cosine Distance Diversity

- **High diversity maintained**: CLS preserves population diversity
- **Functional diversity**: Higher cosine diversity indicates distinct functional behaviors

Time Complexity:

- \blacksquare CLS: $\mathcal{O}(|P|^2N)$
- Lexicase: $\mathcal{O}(|P|N)$
- Tournament: $\mathcal{O}(|P|)$

Practical Impact:

- Evaluation dominates runtime
- Selection overhead is relatively small

Key Finding: Despite higher theoretical complexity, the practical overhead is relatively small.

15

CONCLUSIONS

KEY CONTRIBUTIONS AND FINDINGS

- **Problem Identified**: Independent parent selection ignores crossover dynamics
- **Solution Proposed**: Complementarity-Guided Lexicase Selection (CLS)
 - First parent: lexicase selection (specialist)
 - Second parent: complementarity-guided selection
 - ► Leverages case-wise performance differences

■ Experimental Results:

- Significant improvements across 98 PMLB datasets
- Superior training and generalization performance
- ► Higher functional diversity in evolved populations
- ► Relatively small computational overhead in practice

- **■** Lexicase Selection → Batch Lexicase Selection ¹
- Lexicase Selection \rightarrow DALex ²
- Lexicase Selection \rightarrow PLex ³

¹Aenugu, Sneha and Lee Spector, 2019", 'Lexicase selection in learning classifier systems'", *Proceedings of the Genetic and Evolutionary Computation Conference*

² Ni, Andrew, Li Ding, and Lee Spector, 2024", 'Dalex: Lexicase-like selection via diverse aggregation'", European Conference on Genetic Programming (Part of EvoStar)

³ Ding, Li, Edward Pantridge, and Lee Spector, 2023", 'Probabilistic lexicase selection'", *Proceedings of the Genetic and Evolutionary Computation Conference*

THANK YOU!

QUESTIONS & DISCUSSION

HENGZHE ZHANG, QI CHEN, BING XUE, WOLFGANG BANZHAF, MENGJIE ZHANG

hengzhe.zhang@ecs.vuw.ac.nz