Zero Knowledge Proofs

601.642/442: Modern Cryptography

Fall 2020

Zero Knowledge: History

• Invented by Shafi Goldwasser, Silvio Micali, Charlie Rackoff in 1980s

Zero Knowledge: History

• Invented by Shafi Goldwasser, Silvio Micali, Charlie Rackoff in 1980s

• Paper rejected three times! Accepted the 4th time in 1985.

Zero Knowledge: History

• Invented by Shafi Goldwasser, Silvio Micali, Charlie Rackoff in 1980s

- Paper rejected three times! Accepted the 4th time in 1985.
- Shafi and Silvio won the 2012 Turing Award for work on encryption and proof systems.

Scenario: Where's Waldo?

A "Hey Bob, I found Waldo!"

Scenario: Where's Waldo?

- A "Hey Bob, I found Waldo!"
- B "That was way too fast, I don't believe you."

Scenario: Sudoku

A "Hey Bob, check out this brutal Sudoku puzzle!"

Scenario: Sudoku

- A "Hey Bob, check out this brutal Sudoku puzzle!"
- B "Last week you gave me a puzzle with no solution. I wasted 3 hours."

Scenario: Sudoku

- A "Hey Bob, check out this brutal Sudoku puzzle!"
- B "Last week you gave me a puzzle with no solution. I wasted 3 hours."
- A "This one has a solution, trust me."

Scenario: Authentication

A "Can I have access to the database? It's me, Alice."

Scenario: Authentication

- A "Can I have access to the database? It's me, Alice."
- B "OK, send me your password so I know it's you."

Scenario: Nuclear Disarmament

A "Hey Bob, As per our treaty, I have dismantled my nuclear warheads."

Scenario: Nuclear Disarmament

- A "Hey Bob, As per our treaty, I have dismantled my nuclear warheads."
- B "What if you dismantled fake or obsolete warheads and are still keeping high quality fissile material? I don't believe you."

A Problem of Trust and Information

Alice wants to convince Bob of something

- Waldo is in the picture
- Sudoku puzzle has a solution
- Alice is not an imposter
- Alice (Russia) has dismantled its nuclear warheads

A Problem of Trust and Information

Alice wants to convince Bob of something

- Waldo is in the picture
- Sudoku puzzle has a solution
- Alice is not an imposter
- Alice (Russia) has dismantled its nuclear warheads

Bob should not learn "too much"

- Waldo's location
- Sudoku solution
- Alice's password
- The design of Alice's (Russia's) warheads

A Problem of Trust and Information

Alice wants to convince Bob of something

- Waldo is in the picture
- Sudoku puzzle has a solution
- Alice is not an imposter
- Alice (Russia) has dismantled its nuclear warheads

Bob should not learn "too much"

- Waldo's location
- Sudoku solution
- Alice's password
- The design of Alice's (Russia's) warheads

What might a possible solution look like?

Solution:

Solution:

Solution:

• Alice places opaque cardboard with hole over picture, revealing Waldo

Solution:

• Alice places opaque cardboard with hole over picture, revealing Waldo

Bob gets no information about Waldo's location within picture!

Solution:

• Alice places opaque cardboard with hole over picture, revealing Waldo

Bob gets no information about Waldo's location within picture!

Solution:

• Alice places opaque cardboard with hole over picture, revealing Waldo

Bob gets no information about Waldo's location within picture!

• Classical proofs give away information, aka "knowledge"

• Classical proofs give away information, aka "knowledge"

Definition (Informal)

A zero-knowledge (ZK) proof is a way to convince someone of the truthfulness of a statement without giving away any additional knowledge

• Classical proofs give away information, aka "knowledge"

Definition (Informal)

A zero-knowledge (ZK) proof is a way to convince someone of the truthfulness of a statement without giving away any additional knowledge

• What does it mean to:

• Classical proofs give away information, aka "knowledge"

Definition (Informal)

A zero-knowledge (ZK) proof is a way to convince someone of the truthfulness of a statement without giving away any additional knowledge

- What does it mean to:
 - Prove something?

• Classical proofs give away information, aka "knowledge"

Definition (Informal)

A zero-knowledge (ZK) proof is a way to convince someone of the truthfulness of a statement without giving away any additional knowledge

- What does it mean to:
 - Prove something?
 - Give away knowledge?

• An argument (or sufficient evidence) that can convince a reader of the truth of some statement

- An argument (or sufficient evidence) that can convince a reader of the truth of some statement
- Mathematical proof: Deductive argument for a statement, by reducing the validity of the statement to a set of axioms or assumptions

- An argument (or sufficient evidence) that can convince a reader of the truth of some statement
- Mathematical proof: Deductive argument for a statement, by reducing the validity of the statement to a set of axioms or assumptions
- Desirable features in a proof:

- An argument (or sufficient evidence) that can convince a reader of the truth of some statement
- Mathematical proof: Deductive argument for a statement, by reducing the validity of the statement to a set of axioms or assumptions
- Desirable features in a proof:
 - The verifier should accept the proof if the statement is true

- An argument (or sufficient evidence) that can convince a reader of the truth of some statement
- Mathematical proof: Deductive argument for a statement, by reducing the validity of the statement to a set of axioms or assumptions
- Desirable features in a proof:
 - The verifier should accept the proof if the statement is true
 - \bullet The verifier should reject <u>any</u> proof if the statement is false

- An argument (or sufficient evidence) that can convince a reader of the truth of some statement
- Mathematical proof: Deductive argument for a statement, by reducing the validity of the statement to a set of axioms or assumptions
- Desirable features in a proof:
 - The verifier should accept the proof if the statement is true
 - \bullet The verifier should reject $\underline{\rm any}$ proof if the statement is false
 - Proof must be finite (or succinct) and efficiently verifiable

- An argument (or sufficient evidence) that can convince a reader of the truth of some statement
- Mathematical proof: Deductive argument for a statement, by reducing the validity of the statement to a set of axioms or assumptions
- Desirable features in a proof:
 - The verifier should accept the proof if the statement is true
 - The verifier should reject any proof if the statement is false
 - Proof must be finite (or succinct) and efficiently verifiable
- E.g., Proof that there are infinitely many primes should not simply be a list of all the primes. Not only would it take forever to generate that proof, it would also take forever to verify it

What is a Proof? (contd.)

• Question 1: How to model efficient verifiability?

What is a Proof? (contd.)

- Question 1: How to model efficient verifiability?
 - Verifier must be polynomial time in the length of the statement

What is a Proof? (contd.)

- Question 1: How to model efficient verifiability?
 - Verifier must be polynomial time in the length of the statement
- Question 2: Must a proof be <u>non-interactive</u>?

What is a Proof? (contd.)

- Question 1: How to model efficient verifiability?
 - Verifier must be polynomial time in the length of the statement
- Question 2: Must a proof be <u>non-interactive</u>?
 - Or can a proof be a conversation? (i.e., <u>interactive</u>)

• Interactive Turing Machine (ITM): A Turing machine with two additional tapes: a read-only communication tape for receiving messages, a write-only communication tape for sending messages.

- Interactive Turing Machine (ITM): A Turing machine with two additional tapes: a read-only communication tape for receiving messages, a write-only communication tape for sending messages.
- An interactive protocol (M_1, M_2) is a pair of ITMs that share communication tapes s.t. the send-tape of the first ITM is the receive-tape of the second, and vice-versa

- Interactive Turing Machine (ITM): A Turing machine with two additional tapes: a read-only communication tape for receiving messages, a write-only communication tape for sending messages.
- An interactive protocol (M_1, M_2) is a pair of ITMs that share communication tapes s.t. the send-tape of the first ITM is the receive-tape of the second, and vice-versa
- Protocol proceeds in rounds. In each round, only one ITM is active, the other is idle. Protocol ends when both ITMs <u>halt</u>

- Interactive Turing Machine (ITM): A Turing machine with two additional tapes: a read-only communication tape for receiving messages, a write-only communication tape for sending messages.
- An interactive protocol (M_1, M_2) is a pair of ITMs that share communication tapes s.t. the send-tape of the first ITM is the receive-tape of the second, and vice-versa
- Protocol proceeds in rounds. In each round, only one ITM is active, the other is idle. Protocol ends when both ITMs <u>halt</u>
- $M_1(x_1, z_1) \leftrightarrow M_2(x_2, z_2)$: A (randomized) protocol execution where x_i is input and z_i is auxiliary input of M_i

- Interactive Turing Machine (ITM): A Turing machine with two additional tapes: a read-only communication tape for receiving messages, a write-only communication tape for sending messages.
- An interactive protocol (M_1, M_2) is a pair of ITMs that share communication tapes s.t. the send-tape of the first ITM is the receive-tape of the second, and vice-versa
- Protocol proceeds in rounds. In each round, only one ITM is active, the other is idle. Protocol ends when both ITMs <u>halt</u>
- $M_1(x_1, z_1) \leftrightarrow M_2(x_2, z_2)$: A (randomized) protocol execution where x_i is input and z_i is auxiliary input of M_i
- $Out_{M_i}(e)$: Output of M_i in an execution e

- Interactive Turing Machine (ITM): A Turing machine with two additional tapes: a read-only communication tape for receiving messages, a write-only communication tape for sending messages.
- An interactive protocol (M_1, M_2) is a pair of ITMs that share communication tapes s.t. the send-tape of the first ITM is the receive-tape of the second, and vice-versa
- Protocol proceeds in rounds. In each round, only one ITM is active, the other is idle. Protocol ends when both ITMs <u>halt</u>
- $M_1(x_1, z_1) \leftrightarrow M_2(x_2, z_2)$: A (randomized) protocol execution where x_i is input and z_i is auxiliary input of M_i
- $Out_{M_i}(e)$: Output of M_i in an execution e
- $\mathsf{View}_{M_i}(e)$: View of M_i in an execution e consists of its input, random tape, auxiliary input and all the protocol messages it sees.

Definition (Interactive Proofs)

A pair of ITMs (P, V) is an interactive proof system for a language L if V is a PPT machine and the following properties hold:

Definition (Interactive Proofs)

A pair of ITMs (P, V) is an interactive proof system for a language L if V is a PPT machine and the following properties hold:

• Completeness: For every $x \in L$,

$$\Pr\left[\mathsf{Out}_V[P(x)\leftrightarrow V(x)]=1\right]=1$$

Definition (Interactive Proofs)

A pair of ITMs (P, V) is an interactive proof system for a language L if V is a PPT machine and the following properties hold:

• Completeness: For every $x \in L$,

$$\Pr\left[\mathsf{Out}_V[P(x) \leftrightarrow V(x)] = 1\right] = 1$$

• Soundness: There exists a negligible function $\nu(\cdot)$ s.t. $\forall x \notin L$ and for all adversarial provers P^* ,

$$\Pr\left[\mathsf{Out}_V[P^*(x) \leftrightarrow V(x)] = 1\right] \leqslant \nu(|x|)$$

Definition (Interactive Proofs)

A pair of ITMs (P, V) is an interactive proof system for a language L if V is a PPT machine and the following properties hold:

• Completeness: For every $x \in L$,

$$\Pr\left[\mathsf{Out}_V[P(x) \leftrightarrow V(x)] = 1\right] = 1$$

• Soundness: There exists a negligible function $\nu(\cdot)$ s.t. $\forall x \notin L$ and for all adversarial provers P^* ,

$$\Pr\left[\mathsf{Out}_V[P^*(x) \leftrightarrow V(x)] = 1\right] \leqslant \nu(|x|)$$

<u>Remark</u>: In the above definition, prover is not required to be efficient. Later, we will also consider efficient provers.

 \bullet Let L be a language in **NP** and let R be the associated relation

- Let L be a language in **NP** and let R be the associated relation
- For any $x \in L$, there exists a "small" (polynomial-size) witness w

- Let L be a language in **NP** and let R be the associated relation
- For any $x \in L$, there exists a "small" (polynomial-size) witness w
- By checking that R(x, w) = 1, we can verify that $x \in L$

- Let L be a language in **NP** and let R be the associated relation
- For any $x \in L$, there exists a "small" (polynomial-size) witness w
- By checking that R(x, w) = 1, we can verify that $x \in L$
- Therefore, w is a <u>non-interactive</u> proof for x

- Let L be a language in **NP** and let R be the associated relation
- For any $x \in L$, there exists a "small" (polynomial-size) witness w
- By checking that R(x, w) = 1, we can verify that $x \in L$
- Therefore, w is a <u>non-interactive</u> proof for x
- E.g. Graph Isomorphism: Two graphs G_0 and G_1 are isomorphic if there exists a permutation π that maps the vertices of G_0 onto the vertices of G_1 .

- Let L be a language in **NP** and let R be the associated relation
- For any $x \in L$, there exists a "small" (polynomial-size) witness w
- By checking that R(x, w) = 1, we can verify that $x \in L$
- Therefore, w is a <u>non-interactive</u> proof for x
- E.g. Graph Isomorphism: Two graphs G_0 and G_1 are isomorphic if there exists a permutation π that maps the vertices of G_0 onto the vertices of G_1 .

- Let L be a language in **NP** and let R be the associated relation
- For any $x \in L$, there exists a "small" (polynomial-size) witness w
- By checking that R(x, w) = 1, we can verify that $x \in L$
- Therefore, w is a <u>non-interactive</u> proof for x
- E.g. Graph Isomorphism: Two graphs G_0 and G_1 are isomorphic if there exists a permutation π that maps the vertices of G_0 onto the vertices of G_1 .

So why use interactive proofs after all?

Two main reasons for interaction:

lacktriangledown Proving statements in languages not known to be in ${\bf NP}$

- Proving statements in languages not known to be in **NP**
 - Single prover [Shamir]: IP = PSPACE

- Proving statements in languages not known to be in **NP**
 - Single prover [Shamir]: **IP** = **PSPACE**
 - Multiple provers [Babai-Fortnow-Lund]: $\mathbf{MIP} = \mathbf{NEXP}$

- Proving statements in languages not known to be in NP
 - Single prover [Shamir]: **IP** = **PSPACE**
 - Multiple provers [Babai-Fortnow-Lund]: $\mathbf{MIP} = \mathbf{NEXP}$
- Achieving privacy guarantee for prover

- lacktriangle Proving statements in languages not known to be in $\bf NP$
 - Single prover [Shamir]: **IP** = **PSPACE**
 - \bullet Multiple provers [Babai-Fortnow-Lund]: $\mathbf{MIP} = \mathbf{NEXP}$
- Achieving privacy guarantee for prover
 - Zero knowledge: Verifier learns nothing from the proof beyond the validity of the statement!

• Graph G = (V, E) where V is set of vertices and E is set of edges

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:
 - $V_1 = \{\pi(v) \mid v \in V_0\}$

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:
 - $V_1 = \{\pi(v) \mid v \in V_0\}$
 - $E_1 = \{(\pi(v_1), \pi(v_2)) \mid (v_1, v_2) \in E_0\}$

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:
 - $V_1 = \{\pi(v) \mid v \in V_0\}$
 - $E_1 = \{(\pi(v_1), \pi(v_2)) \mid (v_1, v_2) \in E_0\}$
 - Alternatively, $G_1 = \pi(G_0)$

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:
 - $V_1 = \{\pi(v) \mid v \in V_0\}$
 - $E_1 = \{(\pi(v_1), \pi(v_2)) \mid (v_1, v_2) \in E_0\}$
 - Alternatively, $G_1 = \pi(G_0)$
 - \bullet Graph Isomorphism is in $\bf NP$

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:
 - $V_1 = \{\pi(v) \mid v \in V_0\}$
 - $E_1 = \{(\pi(v_1), \pi(v_2)) \mid (v_1, v_2) \in E_0\}$
 - Alternatively, $G_1 = \pi(G_0)$
 - \bullet Graph Isomorphism is in $\bf NP$

- Graph G = (V, E) where V is set of vertices and E is set of edges
- |V| = n, |E| = m
- Π_n is the set of all permutations π over n vertices
- Graph Isomorphism: $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are isomorphic if there exists a permutation π s.t.:
 - $V_1 = \{\pi(v) \mid v \in V_0\}$
 - $E_1 = \{(\pi(v_1), \pi(v_2)) \mid (v_1, v_2) \in E_0\}$
 - Alternatively, $G_1 = \pi(G_0)$
 - \bullet Graph Isomorphism is in $\bf NP$

Notation for Graphs (contd.)

• Graph Non-Isomorphism: G_0 and G_1 are non-isomorphic if there exists no permutation $\pi \in \Pi_n$ s.t. $G_1 = \pi(G_0)$

Notation for Graphs (contd.)

• Graph Non-Isomorphism: G_0 and G_1 are non-isomorphic if there exists no permutation $\pi \in \Pi_n$ s.t. $G_1 = \pi(G_0)$

 \bullet Graph Non-Isomorphism is in ${\bf co\text{-}NP},$ and not known to be in ${\bf NP}$

How to Prove Graph Non-Isomorphism?

• Suppose P wants to prove to V that G_0 and G_1 are not isomorphic

How to Prove Graph Non-Isomorphism?

- Suppose P wants to prove to V that G_0 and G_1 are not isomorphic
- One way to prove this is to write down all possible permutations π over n vertices and show that for every π , $G_1 \neq \pi(G_0)$. However, this is not efficiently verifiable

How to Prove Graph Non-Isomorphism?

- Suppose P wants to prove to V that G_0 and G_1 are not isomorphic
- One way to prove this is to write down all possible permutations π over n vertices and show that for every π , $G_1 \neq \pi(G_0)$. However, this is not efficiently verifiable
- How to design an efficiently verifiable interactive proof?

Interactive Proof for Graph Non-Isomorphism

Common Input: $x = (G_0, G_1)$

Protocol (P, V): Repeat the following procedure n times using fresh randomness

 $V \to P$: V chooses a random bit $b \in \{0, 1\}$ and a random permutation $\pi \in \Pi_n$. It computes $H = \pi(G_b)$ and sends H to P

Interactive Proof for Graph Non-Isomorphism

Common Input: $x = (G_0, G_1)$

Protocol (P, V): Repeat the following procedure n times using fresh randomness

- $V \to P$: V chooses a random bit $b \in \{0, 1\}$ and a random permutation $\pi \in \Pi_n$. It computes $H = \pi(G_b)$ and sends H to P
- $P \to V$: P computes b' s.t. H and $G_{b'}$ are isomorphic and sends b' to V

Interactive Proof for Graph Non-Isomorphism

Common Input: $x = (G_0, G_1)$

Protocol (P, V): Repeat the following procedure n times using fresh randomness

- $V \to P$: V chooses a random bit $b \in \{0, 1\}$ and a random permutation $\pi \in \Pi_n$. It computes $H = \pi(G_b)$ and sends H to P
- $P \to V$: P computes b' s.t. H and $G_{b'}$ are isomorphic and sends b' to V
- V(x, b, b'): V outputs 1 if b' = b and 0 otherwise

(P, V) is an Interactive Proof

• Completeness: If G_0 and G_1 are not isomorphic, then an unbounded prover can always find b' s.t. b' = b

(P, V) is an Interactive Proof

- Completeness: If G_0 and G_1 are not isomorphic, then an unbounded prover can always find b' s.t. b' = b
- Soundness: If G_0 and G_1 are isomorphic, then H is isomorphic to both G_0 and G_1 ! Therefore, in one iteration, any (unbounded) prover can correctly guess b with probability at most $\frac{1}{2}$. Since each iteration is independent, prover can succeed in all iterations with probability at most 2^{-n} .

• Prover in graph non-isomorphism protocol is inefficient.

- Prover in graph non-isomorphism protocol is inefficient.
- For languages in **NP**, we can design interactive proofs with efficient provers

- Prover in graph non-isomorphism protocol is inefficient.
- For languages in **NP**, we can design interactive proofs with efficient provers
- ullet Prover strategy must be efficient when it is given a witness w for a statement x that it attempts to prove

- Prover in graph non-isomorphism protocol is inefficient.
- For languages in **NP**, we can design interactive proofs with efficient provers
- ullet Prover strategy must be efficient when it is given a witness w for a statement x that it attempts to prove

- Prover in graph non-isomorphism protocol is inefficient.
- For languages in **NP**, we can design interactive proofs with efficient provers
- ullet Prover strategy must be efficient when it is given a witness w for a statement x that it attempts to prove

Definition

An interactive proof system (P, V) for a language L with witness relation R is said to have an <u>efficient prover</u> if P is PPT and the completeness condition holds for every $w \in R(x)$

- Prover in graph non-isomorphism protocol is inefficient.
- For languages in **NP**, we can design interactive proofs with efficient provers
- ullet Prover strategy must be efficient when it is given a witness w for a statement x that it attempts to prove

Definition

An interactive proof system (P, V) for a language L with witness relation R is said to have an <u>efficient prover</u> if P is PPT and the completeness condition holds for every $w \in R(x)$

• Main Goal: Zero Knowledge, i.e., ensuring that verifier does not gain any knowledge from its interaction with prover beyond learning the validity of the statement x (e.g., P's witness w remains private from V)

Towards Zero Knowledge

• Q. 1: How to formalize "does not gain any knowledge?"

Towards Zero Knowledge

- Q. 1: How to formalize "does not gain any knowledge?"
- Q. 2: What is knowledge?

Rules for formalizing "(zero) knowledge":

Rule 1: Randomness is for free

Rules for formalizing "(zero) knowledge":

Rule 1: Randomness is for free

Rule 2: Polynomial-time computation is for free

Rules for formalizing "(zero) knowledge":

Rule 1: Randomness is for free

Rule 2: Polynomial-time computation is for free

Rules for formalizing "(zero) knowledge":

Rule 1: Randomness is for free

Rule 2: Polynomial-time computation is for free

That is, by learning the result of a random process or result of a polynomial time computation, we gain no knowledge

Scenario 1: Someone tells you he will sell you a 100-bit random string for \$1000.

- Scenario 1: Someone tells you he will sell you a 100-bit random string for \$1000.
- Scenario 2: Someone tells you he will sell you the product of two prime numbers of your choice for \$1000.

- Scenario 1: Someone tells you he will sell you a 100-bit random string for \$1000.
- Scenario 2: Someone tells you he will sell you the product of two prime numbers of your choice for \$1000.
- Scenario 3: Someone tells you he will sell you the output of an exponential time computation (e.g., isomorphism between two graphs) for \$1000.

- Scenario 1: Someone tells you he will sell you a 100-bit random string for \$1000.
- Scenario 2: Someone tells you he will sell you the product of two prime numbers of your choice for \$1000.
- Scenario 3: Someone tells you he will sell you the output of an exponential time computation (e.g., isomorphism between two graphs) for \$1000.

- Scenario 1: Someone tells you he will sell you a 100-bit random string for \$1000.
- Scenario 2: Someone tells you he will sell you the product of two prime numbers of your choice for \$1000.
- Scenario 3: Someone tells you he will sell you the output of an exponential time computation (e.g., isomorphism between two graphs) for \$1000.

<u>Think:</u> Should you accept any of these offers?

- Scenario 1: Someone tells you he will sell you a 100-bit random string for \$1000.
- Scenario 2: Someone tells you he will sell you the product of two prime numbers of your choice for \$1000.
- Scenario 3: Someone tells you he will sell you the output of an exponential time computation (e.g., isomorphism between two graphs) for \$1000.

Think: Should you accept any of these offers?

We can generate 100-bit random string for free by flipping a coin, and we can also multiply on our own for free. But an exponential-time computation is hard to perform on our own, since we are PPT. So we should reject first and second offers, but seriously consider the third one!

Zero Knowledge: Intuition

• We do not gain any knowledge from an interaction if we could have carried it out on our own

Zero Knowledge: Intuition

- We do not gain any knowledge from an interaction if we could have carried it out on our own
- Intuition for ZK: V can generate a protocol transcript on its own, without talking to P. If this transcript is indistinguishable from a real execution, then clearly V does not learn anything by talking to P

Zero Knowledge: Intuition

- We do not gain any knowledge from an interaction if we could have carried it out on our own
- <u>Intuition for ZK</u>: V can generate a protocol transcript on its own, without talking to P. If this transcript is indistinguishable from a real execution, then clearly V does not learn anything by talking to P
- Formalized via notion of <u>Simulator</u>, as in definition of semantic security for encryption

Zero Knowledge: Definition I

Definition (Honest Verifier Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is said to be <u>honest verifier zero knowledge</u> if there exists a PPT simulator S s.t. for every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $x \in L$, $w \in R(x)$, $z \in \{0,1\}^*$, D distinguishes between the following distributions with probability at most $\nu(n)$:

- $\bullet \ \left\{ \mathsf{View}_V[P(x,w) \leftrightarrow V(x,z)] \right\}$
- $\bullet \left\{ S(1^n, x, z) \right\}$

• Captures that whatever V "saw" in the interactive proof, it could have generated it on its own by running the simulator S

- ullet Captures that whatever V "saw" in the interactive proof, it could have generated it on its own by running the simulator S
- The auxiliary input to V captures any a priori information V may have about x. Definition promises that V does not learn anything "new"

- ullet Captures that whatever V "saw" in the interactive proof, it could have generated it on its own by running the simulator S
- The auxiliary input to V captures any a priori information V may have about x. Definition promises that V does not learn anything "new"
- ullet Problem: However, the above is promised only if verifier V follows the protocol

- ullet Captures that whatever V "saw" in the interactive proof, it could have generated it on its own by running the simulator S
- The auxiliary input to V captures any a priori information V may have about x. Definition promises that V does not learn anything "new"
- Problem: However, the above is promised only if verifier V follows the protocol
- What if V is malicious and deviates from the honest strategy?

- ullet Captures that whatever V "saw" in the interactive proof, it could have generated it on its own by running the simulator S
- The auxiliary input to V captures any a priori information V may have about x. Definition promises that V does not learn anything "new"
- Problem: However, the above is promised only if verifier V follows the protocol
- What if V is malicious and deviates from the honest strategy?
- Want: Existence of a simulator S for every, possibly malicious (efficient) verifier strategy V^*

Zero Knowledge: Definition II

Definition (Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is said to be <u>zero knowledge</u> if for every non-uniform PPT adversary V^* , there exists an (expected) PPT simulator S s.t. for every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $x \in L$, $w \in R(x)$, $z \in \{0,1\}^*$, D distinguishes between the following distributions with probability at most $\nu(n)$:

- $\bullet \ \left\{ \mathsf{View}_V^*[P(x,w) \leftrightarrow V^*(x,z)] \right\}$
- $\bullet \left\{ S(1^n, x, z) \right\}$

Zero Knowledge: Definition II

Definition (Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is said to be <u>zero knowledge</u> if for every non-uniform PPT adversary V^* , there exists an (expected) PPT simulator S s.t. for every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $x \in L$, $w \in R(x)$, $z \in \{0,1\}^*$, D distinguishes between the following distributions with probability at most $\nu(n)$:

- $\qquad \qquad \Big\{ \mathsf{View}_V^* \big[P(x,w) \leftrightarrow V^*(x,z) \big] \Big\}$
- $\bullet \left\{ S(1^n, x, z) \right\}$
- If the distributions are statistically close, then we call it <u>statistical</u> zero knowledge

Zero Knowledge: Definition II

Definition (Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is said to be <u>zero knowledge</u> if for every non-uniform PPT adversary V^* , there exists an (expected) PPT simulator S s.t. for every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $x \in L$, $w \in R(x)$, $z \in \{0,1\}^*$, D distinguishes between the following distributions with probability at most $\nu(n)$:

- $\qquad \qquad \Big\{ \mathsf{View}_V^*[P(x,w) \leftrightarrow V^*(x,z)] \Big\}$
- $\bullet \left\{ S(1^n, x, z) \right\}$
- \bullet If the distributions are statistically close, then we call it $\underline{\text{statistical}}$ zero knowledge
- If the distributions are identical, then we call it <u>perfect zero</u> knowledge

Paradox?

Paradox?

ullet Protocol execution convinces V of the validity of x

Paradox?

- ullet Protocol execution convinces V of the validity of x
- ullet Yet, V could have generated the protocol transcript on its own

Paradox?

- ullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

Paradox?

- \bullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

To understand why there is no paradox, consider the following story:

• Alice and Bob run (P, V) on input x where Alice acts as P and Bob as V

Paradox?

- \bullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

- Alice and Bob run (P, V) on input x where Alice acts as P and Bob as V
- Now, Bob goes to Eve: "x is true"

Paradox?

- \bullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

- Alice and Bob run (P, V) on input x where Alice acts as P and Bob as V
- Now, Bob goes to Eve: "x is true"
- Eve: "Oh really?"

Paradox?

- \bullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

- Alice and Bob run (P, V) on input x where Alice acts as P and Bob as V
- Now, Bob goes to Eve: "x is true"
- Eve: "Oh really?"
- Bob: "Yes, you can see this accepting transcript"

Paradox?

- ullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

- Alice and Bob run (P, V) on input x where Alice acts as P and Bob as V
- Now, Bob goes to Eve: "x is true"
- Eve: "Oh really?"
- Bob: "Yes, you can see this accepting transcript"
- Eve: "That doesn't mean anything. Anyone can come up with such a transcript without knowing a witness for x!"

Paradox?

- \bullet Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

- Alice and Bob run (P, V) on input x where Alice acts as P and Bob as V
- Now, Bob goes to Eve: "x is true"
- Eve: "Oh really?"
- Bob: "Yes, you can see this accepting transcript"
- Eve: "That doesn't mean anything. Anyone can come up with such a transcript without knowing a witness for x!"
- Bob: "But I computed this transcript by talking to Alice who answered my challenge correctly every time!"

Reflections on Zero Knowledge (contd.)

Moral of the story:

• Bob participated in a "live" conversation with Alice, and was convinced by how the transcript was generated

Reflections on Zero Knowledge (contd.)

Moral of the story:

- Bob participated in a "live" conversation with Alice, and was convinced by how the transcript was generated
- But to Eve, who did not see the live conversation, there is no way to tell whether the transcript is from real execution or produced by simulator