PDSP-I4-O8 V01.00 – Mesures acoustiques

Niveaux entrée-sortie, THD, THD+N:

Signal sinus 1kHz, gain unitaire sur le DSP

Entrée	Sortie	Niveau	Niveau	Niveau	THD	THD+N	THD+N
		entrée	numérique	sortie		Flat	db(A)
1	1	0dBu	~-18dBu	-1.04dBu	0.008%	-68dB	-72dB
1	1	12dBu	~-6dBFS	10.96dBu	0.007%	-78dB	-80dB
1	1	18dBu	~0dBFS	16.96dBu	0.009%	-78dB	-78dB
1	1	19dBu	~0dBFS	17,86dBu	1.78%	-35dB	-35dB
1	2	12dBu	~-6dBFS	11.07dBu	0.008%	-78dB	-80dB
1	3	12dBu	~-6dBFS	10.97dBu	0.007%	-80dB	-82dB
2	3	12dBu	~-6dBFS	10.97dBu	0.007%	-80dB	-82dB
2	4	12dBu	~-6dBFS	11.09dBu	0.006%	-80dB	-82dB
3	5	12dBu	~-6dBFS	10.97dBu	0.009%	-79dB	-80dB
3	6	12dBu	~-6dBFS	10.89dBu	0.009%	-78dB	-79dB
3	7	12dBu	~-6dBFS	10.91dBu	0.009%	-78dB	-79dB
4	7	12dBu	~-6dBFS	10.86dBu	0.006%	-79dB	-82dB
4	8	12dBu	~-6dBFS	10.82dBu	0.008%	-78dB	-79dB

Figure 1 : FFT avec signal 12dBu en entrée - Rouge = flat - Bleu = pondération A

- ⇒ THD < 0.01% pour un signal d'entrée / sortie de 12dBu (-6dBFS)
- ⇒ THD+N autour de -80dB pour un signal d'entrée / sortie de 12dBu (-83dB annoncés)
- ⇒ Niveau assez constant entre chaque entrée et chaque sortie
- ⇒ Perte de 1dB de l'entrée à la sortie. A tester si avant DSP ou après DSP, sera possible avec ESP32 uniquement car sigma studio ne permet pas de lire la valeur du détecteur RMS précisément (seulement un vumètre)

Niveau max avant saturation des entrées (THD < 1%) :

Signal sinus 1kHz, gain -10dB sur le DSP pour mesurer le THD en sortie

Entrée	Niveau	
1	18.88dBu	
2	18.85dBu	
3	18.85dBu	
4	18.85dBu	

- ⇒ THD monte à partir de 18.85dBu, ce qui est élevé
- ⇒ Niveaux très constants d'une entrée à l'autre

Figure 2: FFT Signal de sortie avec 1% THD

Diaphonie

Signal sinus 1kHz, gain unitaire sur le DSP. Entrée 1 sur sortie 1 / Entrée 2 sur sortie 3 / Entrée 3 sur sortie 5 / Entrée 4 sur sortie 7

Entrée->Sortie	Diaphonie sur étage de sortie	Diaphonie sur étage d'entrée
1->1	Mesuré en sortie 2 : -76dBu(A)	Mesuré en sortie 3 : -75dBu(A)
3->5	Mesuré en sortie 6 : -75dBu(A)	Mesuré en sortie 7 : -74.5dBu(A)

Figure 3 : Diaphonie sur sortie proche (rose) et sortie lointaine (bleu, autre DSP)

□ Très légère diaphonie, qui se retrouve même d'un DSP à l'autre. On reste dans le bruit, à -75dBu(A)

Bande passante

Gain unitaire sur DSP. Différent niveaux d'entrée

Figure 4 : Bande passante à 18dBu (Rouge), 12dBu (Bleu), et 0dBu (Cyan) en entrée

Figure 5 : Bande passante - Zoom sur 0dBu en entrée

- ⇒ Bande passante très constante sur la bande utile
- ⇒ Réponse de 6Hz-17kHz à -1dB. -1.3dB à 20kHz
- ⇒ Légère chute dans les aigus, probablement lié à la fréquence d'échantillonnage à 48kHz

THD sur la bande passante

Gain unitaire sur DSP. Différent niveaux d'entrée

Figure 6 : THD sur la bande passante à 18dBu (Rouge), 12dBu (Bleu), et 0dBu (Cyan) en entrée

- ⇒ Le THD reste proche des 0.01% sur toute la bande passante
- ⇒ Le THD reste sous les 0.02% sur toute la bande passante, à 18dBu en entrée

Bruit

Entrée	Sortie	Bruit en sortie	Bruit en sortie	
		Gain unitaire sur DSP	Atténuation 10dB sur DSP	
1	1	-68dBu / -77dBu(A)	-69dBu / -79dBu(A)	
1	2	-69dBu / -78dBu(A)	-71dBu / -80dBu(A)	
2	3	-69dBu / -77dBu(A)	-70dBu / -78dBu(A)	
2	4	-70dBu / -78dBu(A)	-71dBu / -79dBu(A)	
3	5	-68dBu / -77dBu(A)	-70dBu / -78dBu(A)	
3	6	70dBu / -78dBu(A)	-72dBu / -80dBu(A)	
4	7	-71dBu / -78dBu(A)	-71dBu / -80dBu(A)	
4	8	-71dBu / -78dBu(A)	-72dBu / -79dBu(A)	

Figure 7 : FFT sans signal en entrée - Rouge = flat - Bleu = pondération A

- ⇒ Bruit autour de -70dBu / -78dBu(A) avec gain unitaire => SNR 88dB / 96dB(A) avec signal 18dBu (100dB ADC / 104dB DAC annoncés)
- ⇒ En retirant 10dB sur le DSP, léger gain (1 à 2dB), donc plus de bruit sur l'entrée (léger)