Name:_	
Class:	

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 3

JUNE 2010

MATHEMATICS Extension 1

Time Allowed:

70 minutes

Instructions:

- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Standard integrals can be found on the last page.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/9	/8	/9	/8	/8	/8	/50

Question 1

a) Write the exact value of:

$$i) \qquad \cos^{-1}(\cos\frac{3\pi}{2})$$

ii)
$$sin^{-1}0.4 + cos^{-1}0.4$$

b) Simplify
$$\frac{\sin(\pi - x)}{\sin(\frac{\pi}{2} - x)}$$

c) Evaluate
$$\log_9 30$$
 correct to 2 decimal places.

d) Solve, leaving answers in exact form:

i)
$$3^{x-1} = 7$$

ii)
$$\ln(x^2) + \ln x = 1$$

Question 2

a) Evaluate
$$\lim_{x\to\infty} \frac{\frac{x}{3}}{\sin 2x}$$

b) Differentiate:

i)
$$\tan 2x$$
 1
ii) $\ln \left(\frac{x}{x^2+3}\right)$ 2

ii)
$$\ln \left(\frac{1}{x^2 + 3} \right)$$

$$2$$

$$2$$

iv)
$$\sin^{-1}3x$$
 2

Question 3

a) Find: i)
$$\int e^{4x} dx$$
 1

ii)
$$\int \frac{1+2x}{x^2} dx$$
 2

iii)
$$\int \frac{x}{1+2x^2} dx$$

Using the substitution $u = \tan x$, or otherwise, find $\int \sec^2 x \tan^2 x \, dx$. b) 2 Find $\frac{d}{dx}(xe^{2x})$ i) 1 c) Hence or otherwise, find $\int xe^{2x} dx$ 2 ii) Question 4 On the same axes, sketch $y = \sin x$ and $y = \ln (\sin x)$ for $0 \le x \le \pi$. 2 a) Clearly label key features. Express sin^2x in terms of cos 2x1 i) b) ii) The curve $y = \sin 2x$, for $0 \le x \le \pi$, is rotated about the x axis. Find the total volume generated. Evaluate $sin\left[tan^{-1}\left(\frac{5}{4}\right)\right]$ in exact form. 2 c) Question 5 A function f is defined $f(x) = x^2 - 2x$. State the largest positive domain for f to have an inverse function f^{-1} . a) 1 State the domain and range of f^{-1} . 2 b) Sketch f and f^{-1} on the same axes for the domains and ranges above. 2 c) Clearly show key points. Find the inverse function $f^{-1}(x)$. 2 d) Find the value of x for which $f(x) = f^{-1}(x)$. 1 e) Question 6 Express $cos^{-1}\left(\frac{1}{3}\right) + cos^{-1}\left(\frac{1}{4}\right)$ in the form $cos^{-1}M$. 2 a) Write the domain and range for $y = 3sin^{-1}(\frac{x}{2})$ 2 b) i) Sketch the curve in i) 1 ii) Evaluate $\int_0^1 3\sin^{-1}\left(\frac{x}{2}\right) dx$. 3 iii)

Leave your answer in exact form.

$$b$$
) $\frac{\sin x}{\cos x} = \tan x$

d)
$$\log (3^{x-1}) = \log 7$$

 $(x-1) \log 3 = \log 7$
 $x \log 3 - \log 3 = \log 7$
 $x = \frac{\log 7 + \log 3}{\log 3}$

e)
$$\log(x^3) = 1$$

$$\therefore x^3 = e^1$$

$$\therefore x = \sqrt[3]{e}$$

$$\frac{(2)}{2} \text{ a) } \lim_{x \to 0} \frac{2x}{\sin 2x} \times \frac{1}{6} = 1 \times \frac{1}{6}$$

$$= \frac{1}{6}$$

ii)
$$\log x - \log (x^2 + 3)$$

$$\frac{dy}{dx} = \frac{1}{x} - \frac{2x}{x^2 + 3}$$

$$\frac{3-\frac{2}{x(x^{2}+3)}}{\sin^{2}x} = \frac{1}{\sin^{2}x}$$

$$\frac{3-\frac{2}{x(x^{2}+3)}}{\sin^{2}x}$$

$$\frac{dy}{olx} = \frac{0-2\sin x \cos x}{\sin^{4}x}$$

$$= \frac{-2\cos x}{\sin^3 x} \cdot or -2\cot x \cos c x$$

(iv)
$$\frac{dy}{dz} = \frac{1}{\sqrt{1-(3x)^2}} \times 3$$

= $\frac{3}{\sqrt{1-9x^2}}$ 2

(3) a) i)
$$e^{4x} + c$$

ii) $\int (\frac{1}{x^2} + \frac{2x}{x^2}) dx$
 $= \int (x^{-2} + \frac{2}{x}) dx$
 $= -x^{-1} + 2\log x + c$

(ii)
$$\frac{1}{4} \int \frac{4x}{1+2x^2} dx$$

$$= \frac{1}{4} \log(1+2x^2) + c$$

= -1 +2 log x +c

b)
$$\int \sec^2 x \tan^2 x \, dx = \int \frac{\sec^2 x \, u^2 \, du}{\sec^2 x}$$

$$\frac{u = \tan x}{du} = \frac{u^3}{3} + c$$

$$\frac{du}{dx} = \frac{\sec^2 x}{\sec^2 x}$$

$$= \frac{1}{3} + c$$

$$\frac{du}{dx} = \frac{1}{3} + c$$

$$\frac{du}{dx} = \frac{1}{3} + c$$

(i)
$$2xe^{2x} = e^{2x} + 2xe^{2x}$$

(i) $2xe^{2x} = \frac{d}{dx}(xe^{2x}) - e^{2x}$

$$(b)$$
 i) $\sin^2 x = \frac{1}{2}(1-\cos 2x)$

$$Vol = 2\pi \int_{0}^{\pi_{2}} \sin^{2} 2x \, dx$$

$$= 2\pi \int_{0}^{\pi_{2}} \frac{1}{2} (1 - \cos 4x) \, dx$$

$$= \pi \left[x - \frac{\sin 4x}{4} \right]^{\frac{\pi}{2}}$$

$$= \pi \left[\left(\frac{\pi}{2} - 0 \right) - (0 - 0) \right]$$

c) (et
$$\lambda = \tan^{-1}(\frac{5}{4})$$

:. $\tan \lambda = \frac{5}{4}$

· · domain: x > (

$$\begin{array}{c} \text{(L) For } f^{-1}, D: x \geq -1 \\ R: y \geq 1 \end{array}$$

c)
$$\frac{1}{1}$$
 $\frac{1}{1}$ \frac

$$d) f^{-1}(x) \Rightarrow x = y^{2} - 2y$$

$$y^{2} - 2y + 1 = x + 1$$

$$(y - 1)^{2} = x + 1$$

$$y - 1 = \sqrt{3c + 1} \text{ only}$$

$$y = \sqrt{3c + 1} + 1$$

e) graphs intersect on y=x

$$2. \text{ solve } x^2 - 2x = x$$

$$x^2 - 3x = 0$$

$$x(x-3)=0$$

6 a) Let
$$d = \cos^{-1}(\frac{1}{4}) \Rightarrow \cos d = \frac{1}{3}$$

$$\beta = \cos^{-1}(\frac{1}{4}) \Rightarrow \cos \beta = \frac{1}{4}$$

$$cos(A+B) = cosdcos\beta - sindsinB$$
= $\frac{1}{3} \times \frac{1}{4} - \frac{\sqrt{8}}{3} \times \frac{\sqrt{15}}{4}$
= $\frac{1}{12} - \frac{\sqrt{120}}{12}$
= $1 - \sqrt{120}$
 $\frac{1}{12} = \frac{1 - \sqrt{120}}{12}$
 $\frac{1}{12} = \frac{1 - \sqrt{120}}{12}$ as regd.

iii) shaded area = rectangle -
$$\int_{0}^{\pi} 2 \sin(\frac{4}{3}) dy$$

$$\therefore \int_{0}^{\pi} 3 \sin^{2}(\frac{2}{2}) dx = \frac{\pi}{2} - \left[-2 \cos(\frac{4}{3}) \times 3\right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{2} + 6 \left[\cos \frac{4}{3}\right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{2} + 6 \left(\sqrt{3}\right)_{0}^{\frac{\pi}{2}} - 1$$

$$= \frac{\pi}{2} + 3\sqrt{3} - 6$$