

Real World HPC Systems for Big Data/Al Research

Learning Neural Representations for Predicting GPU Performance¹

Modeling performance of applications across systems with different **GPU** microarchitectures

Proposal

- A collaborative filtering based matrix factorization (MF) model to automatically learn latent features describing performance of applications on systems
- A multi-layer perceptron (MLP) to model complex non-linear interactions between applications and systems

Multi-layer perceptron model using latent features

Results

MLP with 2 layers (MLP-2) achieves 90.6% accuracy when predicting instructions per second (IPS)

Can Local Binary Convolutions Make Neural Networks Models Smaller?3

Background

- · Local Binary Convolution Neural Networks(LBCNN)
 - models use Local Binary Convolution(LBC) layers
 - (+)less learned parameters
 - ()less accuracy

LBCNN

Problem

- Not applicable to Large Model
 - Too slow
 - Too much Acc. loss

Proposed Method

Only replace half of the normal convolution layer by LBC

Results

Results of models for different number of difference maps generated by LBC filters

Accuracy and Speed of different models

Efficient 2D Convolution on CUDA-enabled GPUs²

2D convolution computation on CUDA-enabled GPUs

Proposal

(1) Using registers as a cache

- · Lower latency, high throughput
- High data reuse

(2)Computing partial sums in parallel

(3)Transferring partial sums in parallel

- No stalling within thread

Efficient communication between threads by shuffle

Results

Framework for Transpliation Between Python and

Problem

Fortran⁴

Fortran

- + top performance + HPC legacy
- hard to maintain

Python

- ease of programming
- general-purpose tools big runtime overhead

Performance or ease-of-programming?

on for development, Fortran at runtim

- JIT, at runtime
- fully automatic
 original performance is retained
- user doesn't interact with

Results

Figure 1: DGEMM performance the same as Fortran, 5× better

Figure 2: Migrated Miranda IO benchmark retains original performance

- [1] Shweta Salaria, Aleksandr Drozd, Artur Podobas, Satoshi Matsuoka, Learning Neural Representations for Predicting GPU Performance, ISC'19
- [2] Peng Chen, Mohamed Wahib, Shin'ichiro Takizawa, Ryousei Takano, Satoshi Matsuoka, Efficient Algorithms for the Summed Area Tables Primitive on GPUs. IEEE CLUSTER'18
- [3] Haoyu Zhang, Mohamed Wahib, Satoshi Matsuoka, Can Local Binary Convolutions Make Neural Networks Models Smaller?, Submitted to ICPP'19 (Poster)
- [4] Mateusz Bysiek, Aleksandr Drozd, and Satoshi Matsuoka. Migrating Legacy Fortran to Python While Retaining Fortran-level Performance Through Transpilation and Type Hints, 6th Workshop on Python for High-Performance and Scientific Computing, co-held with SC16