MATLAB EXPO 2018

Mechatronic Design for Aircraft Systems

Mirsad Bucak

Aileron Actuator Development with Model-Based Design

Key Points

- Tightly connecting the specification to the simulation model enables engineers to produce better designs
- Testing different actuator designs in one environment saves time and encourages innovation
- Plant model supports the entire development process

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Example: Aileron Actuation System

System

- Simulation goals
 - 1. Determine requirements for actuation system
 - 2. Test actuator designs
 - 3. Optimise system performance
 - 4. Run simulation on real-time hardware for HIL tests

Traditional Design Process

Model-Based Design

MATLAB EXPO 2018

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Modeling the Mechanical System

Problem: Model the mechanical system within Simulink

Solution: Import the mechanical model from CAD into Simscape Multibody

MATLAB EXPO 2018

Determining Actuator Requirements

Model:

Problem: Determine the requirements for an aircraft aileron actuator

Solution: Use Simscape Multibody to model the aileron and use inverse dynamics to determine the required force MATLAB EXPO 2018

Testing Electrical and Hydraulic Designs

Aileron Angle - Command Angle (deg) Hydraulic Electric 10 **Actuator Force** Force (N) -500 10 Time (s)

Problem: Select type of actuator based on system-level requirements

Solution: Use Simscape Fluids and Simscape Electronics to model the actuators, and variant subsystems to test them MATLAB EXPO 2018

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Optimizing System Performance

Model:

Problem: Optimize the speed controller to meet system requirements

Solution: Tune controller parameters with Simulink Design Optimization

MATLAB EXPO 2018

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Configuring a Hydraulic Actuator for HIL Testing

Model:

Problem: Configure solvers to minimize computations and convert to C code for real-time simulation

Solution: Use Simscape local solvers on stiff physical networks and Simulink Coder™ to generate C code

Key Points

- Tightly connecting the specification to the simulation model enables engineers to produce better designs
- Testing different actuator designs in one environment saves time and encourages innovation
- Plant model supports the entire development process

