Structural Equation Modeling (SEM) using R

Session 1: Exploratory Factor Analysis (EFA)

23-24 August 2021

Factor analysis process

Stage 1: Objectives of factor analysis

Stage 2: Designing an Exploratory factor analysis

Stage 3: Assumptions in Exploratory factor analysis

Stage 4: Deriving factors and assessing overall fit

Stage 5: Interpreting the factors

Stage 1: Objectives of factor analysis

Types of factor analysis

Exploratory factor analysis

- Use when you do not have a well-developed theory
- Estimate all possible variable/ factor relationships
- Looking for patterns in the data

Confirmatory factor analysis

- Testing a theory that you know in advance
- Only specified variables/factor relationships

Types of factor analysis

Exploratory factor analysis

- Difficult to interpret without a theory.
- factor loadings: meanings can sometimes be inferred from patterns.

Types of factor analysis

Confirmatory factor analysis

- Model fit: how well the hypothesized model fits the data.
- Factor loadings: how well items measure their corresponding constructs.

Stage 2: Designing an EFA

Variable selection and measurement issues

What types of variables can be used in factor analysis?

- Primary requirement: a correlation value can be calculated among all variables.
- e.g., metric variables, scale items, dummy variables to represent nonmetric variables.

How many variables should be included?

- Five or more per factor for scale development.
- Three or more per factor for factor measurement (based on how degrees of freedom is computed).

Sample size

Some recommended guidelines:

Absolute size of the dataset

- should not fewer than 50 observation
- preferably 100 and larger
- 200 and larger as the number of variables and expected factors incerases

Ratio of cases to variables

- observation is 5x as the number of variables
- sample size is 10:1 ratio
- some proposes 20 cases per variables

Stage 3: Assumptions in EFA

Sample Dataset

- HBAT Industries, manufacturer of paper products.
- Perceptions on a set of business functions.
- Rating scale:
 - 0 "poor" to 10 "excellent"

<i>X</i> ₆	Product quality	Perceived level of quality of HBAT's paper products
<i>X</i> ₇	E-commerce	Overall image of HBAT's website; user-friendliness
<i>X</i> ₈	Technical support	Extent to which technical support is offered
<i>X</i> ₉	Complaint resolution	Extent to which any complaints are resolved in timely and complete manner
X ₁₀	Advertising	Perceptions of HBAT's product line to meet customer needs
X ₁₁	Product line	Depth and breadth of HBAT's product line to meet customer needs
X ₁₂	Salesforce image	Overall image of HBAT's salesforce
X ₁₃	Competitive pricing	Extent to which HBAT offers competitive prices
X ₁₄	Warranty and claims	Extent to which HBAT stands behind its product/ service warranties and claims
X ₁₅	New products	Extent to which HBAT develops and sells new products
X ₁₆	Ordering and billing	Perceptions that ordering and billing is handled efficiently and correctly
X ₁₇	Price flexibility	Perceived willingness of HBAT sales reps to negotiate price on purchase of paper products
X ₁₈	Delivery speed	Amount of time it takes to deliver the paper product once an order has been confirmed

Sample Dataset

- X_6 product quality
- X_7 e-commerce
- X_8 technical support
- X_9 complaint resolution
- X_{10} advertising
- X_{11} product line
- X_{12} salesforce image
- X_{13} competitive pricing
- X_{14} warranty claims
- X_{15} packaging
- X_{16} order & billing
- X_{17} price flexibility
- X_{18} delivery speed

хб	x7	х8	х9	x10	x11	x12
<dp + p ></dp + p >	<qp + p ></qp + p >					
8.5	3.9	2.5	5.9	4.8	4.9	6.0
8.2	2.7	5.1	7.2	3.4	7.9	3.1
9.2	3.4	5.6	5.6	5.4	7.4	5.8
6.4	3.3	7.0	3.7	4.7	4.7	4.5
9.0	3.4	5.2	4.6	2.2	6.0	4.5
6.5	2.8	3.1	4.1	4.0	4.3	3.7
6.9	3.7	5.0	2.6	2.1	2.3	5.4
6.2	3.3	3.9	4.8	4.6	3.6	5.1
5.8	3.6	5.1	6.7	3.7	5.9	5.8
6.4	4.5	5.1	6.1	4.7	5.7	5.7
1-10 of 100	rows 1-7	of 11 col	. Previous	1 2 3	4 5 6	10 Next

Source: J.F. Hair (2019): Multivariate data analysis.

Conceptual assumptions

- Some uderlying structure does exist in the set of selected variables.
- correlated variables and subsequent definition of factors do not guarantee relevance
 - even if they meet the statistical requirement!
- It is the responsibility of the researcher to ensure that observed patterns are conceptually valid and appropriate.

- 1. Bartlett Test
- 2. Measure of Sampling Adequacy

1. Bartlett Test

- Examines the entire correlation matrix
- Test the hypothesis that correlation matrix is an identity matrix.
- A significant result signifies data are appropriate for factor analysis.

```
library(EFAtools)
BARTLETT(data, N= nrow(data))
```

► Run

2. Kaiser-Meyen-Olkin (KMO Test)

- Measure of sampling adequacy
- Indicate the proportion of variance explained by the underlying factor.
- Guidelines:
 - $\circ \geq 0.90$ marvelous
 - $\circ \geq 0.80$ meritorious
 - $\circ \geq 0.70$ middling
 - $\circ > 0.60$ mediocre
 - $\circ \geq 0.50$ miserable
 - $\circ < 0.50$ unacceptable

2. Kaiser-Meyen-Olkin (KMO Test)

2. Kaiser-Meyen-Olkin (KMO Test)

- When overall MSA is less than 0.50
 - Identify variables with lowest MSA subject for deletion.
 - Recalculate MSA
 - Repeat unitl overall MSA is 0.50 and above
- Deletion of variables with MSA under 0.50 means variable's correlation with other variables are poorly representing the extracted factor.

Let's practice!

Stage 4: Deriving factors and assessing overall fit

Partitioning the variance of a variable

Unique variance

- Variance associated with only a specific variable.
- Not represented in the correlations among variables.
- Specific variance
 - associated uniquely with a single variable.
- *Error variance*
 - May be due to unreliability of data gathering process, measurement error, or a random component in the measured phenomenom.

Common variance

- Shared variance with all other variables.
- High common variance are more amenable for factor analysis.
- Derived factors represents the shared or common variance among the variables.

Partitioning the variance of a variable

Source: JF Hair et al. (2019) Multivariate data analysis.

PCA vs Common factor analysis

Principal component analysis (PCA)

- Considers the total variance
- data reduction is a primary concern

Common factor analysis

- Considers only the common variance or shared variance
- Primary objective si to identify the laten dimensions or constructs

Source: JF Hair et al. (2019) Multivariate data analysis.

Exploring possible factors

1. Kaiser-Guttman Criterion

- Only consider factors whose eigenvalues is greater than 1.
- Rationale is that factor should account for the variance of at least a single variable if it is to be retained for interpretation.

```
library(EFAtools)
KGC(Data, eigen_type = "EFA")
```

N factors suggested by Kaiser-Guttman criterion with EFA: 2

Exploring possible factors

2. Scree test

- Identify the optimum number of factors that can be extracted before the amount of unique variance begins to dominate the common variance.
- Inflection point or the "elbow"

library(psych)
scree(data)

Exploring possible factors

3. Parallel Test

- Generates a large number of simulated dataset.
- Each simulated dataset is factor analyzed.
 - Results is the average eigenvalues across simulation.
 - Values are then compared to the eigenvalues extracted from the original dataset.
 - All factors with eigenvalues above those average eigenvalues are retained.

```
library(psych)
fa.parallel(data, fa = "fa")
```

Parallel Analysis Scree Plots

Let's practice!

Stage 5: Interpreting the factors

Three process of factor intepretation

- 1. Factor extraction
- 2. Factor rotation
- 3. Factor interpretation and re-specification

Factor extraction

Loadings

- Correlation of each variable and the factor.
- Indicate the degree of correspondence between variable and factor.
- Higher loadings making the variable representative of the factor.

fa_unrotated <- fa(r = data, nfactors = 4,rotate
print(fa_unrotated\$loadings)</pre>

```
Loadings:
    MR1
           MR2
                   MR3
                          MR4
x6
     0.201 - 0.408
                           0.463
     0.290 0.656
                   0.267
                           0.210
x7
x8
     0.278 - 0.382
                    0.744 - 0.169
     0.862
                   -0.255 - 0.184
x10
     0.287 0.456
                           0.127
\times 11
     0.689 - 0.454 - 0.141
                           0.316
     0.398
            0.807
                    0.348
                           0.255
x13 - 0.231
            0.553
                          -0.287
     0.378 - 0.322
                   0.730 - 0.151
x16
    0.747
                   -0.176 -0.181
x18
    0.895
                   -0.304 - 0.198
                  MR1
                        MR2
                              MR3
                                     MR4
SS loadings
               3.215 2.226 1.500 0.679
Proportion Var 0.292 0.202 0.136 0.062
Cumulative Var 0.292 0.495 0.631 0.693
```

Factor extraction

Loadings

- $<\pm0.10\approx$ zero
- ± 0.10 to ± 0.40 meet the minimal level
- ullet $\geq \pm 0.50$ practically significant
- $\bullet \geq \pm 0.70 pprox$ well-defined structure

SS loadings

- Eigenvalues column sum of squared factor loadings.
- Relative importance of each factor in accounting for the variance associated with the set of variables.

fa_unrotated <- fa(r = data, nfactors = 4,r
print(fa_unrotated\$loadings)</pre>

```
Loadings:
    MR1
            MR2
                    MR3
                            MR4
     0.201 - 0.408
                             0.463
x6
     0.290
            0.656 0.267
                             0.210
x8
     0.278 - 0.382
                     0.744 - 0.169
     0.862
                    -0.255 - 0.184
x10
     0.287 0.456
                             0.127
\times 11
     0.689 -0.454 -0.141 0.316
     0.398
            0.807
                     0.348 0.255
x13 - 0.231
            0.553
                            -0.287
     0.378 - 0.322 \quad 0.730 - 0.151
x16
     0.747
                   -0.176 -0.181
x18
     0.895
                    -0.304 - 0.198
                         MR2
                                MR3
                                       MR4
SS loadings
                3.215 \  \overline{2.226} \  \, 1.500 \  \, 0.679
Proportion Var 0.292 0.202 0.136 0.062
Cumulative Var 0.292 0.495 0.631 0.693
```

Why do factor rotation?

- To simplify the complexity of factor loadings.
- Distribute the loadings more clearly into the factors.
- Facilitate interpretation.


```
par(mfrow = c(1, 2))
plot(fa_unrotated$loadings[,1]
     xlab = "Factor 1", ylab
     ylim = c(-1, 1), xlim = c
     main = "No rotation",
     pch = 19, col = "#6c757d"
     abline(h=0, v=0)
     text(fa_unrotated$loading
          labels = rownames(fa
          pos = 4, cex = 0.5)
plot(fa_rotated$loadings[,1],
     xlab = "Factor 1", ylab
     ylim = c(-1, 1), xlim = c
     main = "With rotation",
     pch = 19, col = "#6c757d"
     abline(h=0, v=0)
     text(fa_rotated$loadings|
          labels = rownames(fa
          pos = 4, cex = 0.5)
```


Orthogonal rotation

- axes are maintained at 90 degrees
- orthogonal rotation methods
 - Varimax most commonly used
 - Quartimax
 - Equimax
- Check-out some of these references
 - o IBM
 - Factor analysis

Orthogonal rotation

Oblique rotation rotation

- allow correlated factors
- suited to the goal of theoretically meaningful constructs
- oblique rotation methods
 - Promax
 - Oblimin

Oblique rotation

Let's practice!

Factor interpretation and respecification

- each variable has a high loadings on one factor only
- each factor has a high loadings for only a subset of the items.

```
fa_varimax <- fa(r = data, nfactors = 4, rotate = "varimax
print(fa_varimax$loadings, sort = TRUE)</pre>
```

```
Loadings:
    MR1
           MR2
                  MR3
                          MR4
                           0.132
     0.897
            0.130
     0.768
x16
            0.127
x18
    0.949
            0.185
x7
            0.781
                          -0.115
x10
     0.166
            0.529
x12
     0.114
            0.980
                          -0.133
x8
                   0.890
                           0.115
×14
     0.103
                   0.879
                           0.129
x6
                           0.647
x11
     0.525
                   0.127
                           0.712
x13
            0.213 - 0.209 - 0.590
                 MR1
                        MR2
                              MR3
                                     MR4
SS loadings
               2.635 1.973 1.641 1.371
Proportion Var 0.240 0.179 0.149 0.125
Cumulative Var 0.240 0.419 0.568 0.693
```

Factor interpretation and respecification

- each variable has a high loadings on one factor only
- each factor has a high loadings for only a subset of the items.

```
fa_varimax <- fa(r = data, nfactors = 4, rotate = "varimax
print(fa_varimax$loadings, sort = TRUE, cutoff = 0.4)</pre>
```

```
Loadings:
    MR1
           MR2
                   MR3
                          MR4
     0.897
     0.768
x16
x18
    0.949
x7
            0.781
x10
            0.529
x12
            0.980
x8
                    0.890
x14
                    0.879
x6
                           0.647
x11
     0.525
                           0.712
x13
                          -0.590
                  MR1
                        MR2
                               MR3
                                     MR4
SS loadings
               2.635 1.973 1.641 1.371
Proportion Var 0.240 0.179 0.149 0.125
Cumulative Var 0.240 0.419 0.568 0.693
```

Factor interpretation and respecification

What to do with cross-loadings?

Ratio of variance (JF Hair et al. 2019)

- 1 to 1.5 problematic
- 1.5 to 2.0 potential cross-loading
- 2.0 and higher ignorable

Example:

• X₁₁

• MR1: 0.525

• MR2: 0.712

• $0.712^2 \div 0.525^2 = 1.8$

```
fa_varimax <- fa(r = data, nfactors = 4, rotate = "varimax
print(fa_varimax$loadings, sort = TRUE, cutoff = 0.4)</pre>
```

```
Loadings:
    MR1
            MR2
                    MR3
                             MR4
     0.897
    0.768
    0.949
x7
             0.781
x10
             0.529
x12
             0.980
x8
                      0.890
x14
                      0.879
x6
                              0.647
x11
     0.525
                              0.712
x13
                             -0.590
                   MR1
                          MR2
                                         MR4
SS loadings
                 2.635 \overline{1.973} \ 1.641 \overline{1.371}
Proportion Var 0.240 0.179 0.149 0.125
Cumulative Var 0.240 0.419 0.568 0.693
```

Let's practice!

Thank you!

Slides created via the R packages:

xaringan by Yihui

xaringanthemer and xaringanExtra by Garrick