Parametric inference for hypoelliptic stochastic diffusion

Anna Melnykova

Université de Cergy-Pontoise, Université de Grenoble Alpes

50èmes Journées de Statistique, 27 may 2018 Paris Saclay

Example 1: Stochastic Damping Hamiltonian System

$$\begin{cases} dX_t = Y_t dt \\ dY_t = -(c(X_t, Y_t)Y_t + \nabla V(X_t))dt + \sigma(X_t, Y_t)dW_t \end{cases}$$

- \triangleright $V(X_t)$ potential
- ightharpoonup coefficient
- $ightharpoonup \sigma(X_t, Y_t)$ diffusion coefficient

Examples: noisy Van der Pol oscillator, Kramer's oscillator, linear oscillator.

Example 2: Hypoelliptic FitzHugh-Nagumo model

The behaviour of the neuron is defined through

$$\begin{cases} dX_t = \frac{1}{\varepsilon} (X_t - X_t^3 - Y_t - s) dt \\ dY_t = (\gamma X_t - Y_t + \beta) dt + \sigma dW_t \end{cases}$$

- $ightharpoonup X_t$ membrane potential
- $ightharpoonup Y_t$ recovery variable
- ightharpoonup s magnitude of the stimulus current
- Parameters to be estimated are $\theta = (\gamma, \beta, \varepsilon, \sigma)$.

Model and assumptions

$$\begin{cases} dX_t = a_1(X_t, Y_t; \theta) dt \\ dY_t = a_2(X_t, Y_t; \theta) dt + b(X_t, Y_t; \sigma) dW_t, \end{cases}$$
(1)

- $ightharpoonup Z_t := (X_t, Y_t)^T \in \mathbb{R} \times \mathbb{R},$
- $A(Z_t; \theta) := (a_1(X_t, Y_t; \theta), a_2(X_t, Y_t; \theta))^T \text{drift term},$
- ► $B(Z_t; \sigma) := \begin{pmatrix} 0 & 0 \\ 0 & b(X_t, Y_t; \sigma) \end{pmatrix}$ degenerate diffusion coefficient,
- $ightharpoonup dW_t$ is a standard Brownian motion,
- $(\theta, \sigma) \in \Theta_1 \times \Theta_2$ vector of the unknown parameters.

Goal:

Estimation of (θ, σ) from $(X_i, Y_i)^T$, $i \in 1, ... N$ on time interval $[0, T], T = N\Delta$

Model and assumptions

- **A1** $a_1(x, y; \theta)$ and $a_2(x, y; \theta)$ have bounded partial derivatives of every order, uniformly in θ . Furthermore $\partial_y a_1 \neq 0 \quad \forall (x, y) \in \mathbb{R}^2$ (ensures hypoellipticity).
- **A2** Global Lipschitz and linear growth conditions (ensures existence of a unique strong solution).
- **A3** Process Z_t is **ergodic** and there exists a unique invariant probability measure ν_0 with finite moments of any order.
- **A4** $a_1(Z_t;\theta)$ and $a_2(Z_t;\theta)$ are **identifiable**, that is $a_i(Z_t;\theta) = a_i(Z_t;\theta_0) \Leftrightarrow \theta = \theta_0$.

Model and assumptions

Difficulties:

- ▶ Degenerate diffusion coefficient → non-invertible covariance matrix of the approximated transition density
- lacktriangle Each coordinate has a variance of different order \longrightarrow numerical instabilities

Solution:

- ► Use a high-order scheme to "catch" the propagated noise in all coordinates
- ► Build a quasi-maximum likelihood estimator based on the approximated density

Related works

► Stochastic Damping Hamiltonian Systems:

- Ozaki (1989), consistency is later proven in León et al. (2018): Local linearization scheme
- Samson and Thieullen (2012): 1-dimensional contrast, Euler Scheme,
- Pokern et al. (2007): Bayesian approach,
- Cattiaux et al. (2014), Cattiaux et al. (2016): non-parametric approach
- ▶ Linear homogeneous systems: Le-Breton and Musiela (1985).
- ► General systems: Ditlevsen and Samson (2017): 1.5 strong order scheme

Discretization: Local linearization scheme

For Hamiltonian systems with constant diffusion coefficient: see Ozaki (1989), and León et al. (2018) for consistency.

Generalization (Melnykova, 2018)

On each small time interval of size Δ we approximate (1) by

$$d\mathcal{Z}_s = J_{\tau} \mathcal{Z}_s ds + B(Z_{\tau}; \sigma) d\tilde{W}_s, \quad \mathcal{Z}_0 = Z_{\tau}, \quad s \in (\tau, \tau + \Delta].$$
 (2)

- ▶ \mathcal{Z}_0 observation of the true process $\{Z_t\}$ at time τ
- ▶ J_{τ} is the Jacobian. **Assumption:** When Δ is small enough, $J_{t} = const$ and $J_{t}Z_{t} = A(Z_{t}; \theta)$.

Solution of (2) has an explicit form:

$$\mathcal{Z}_s = Z_{\tau} e^{J_{\tau} s} + \int_{\tau}^{s} e^{J_{\tau} (s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_{v}, \quad \forall s \in (\tau, \tau + \Delta].$$

Discretization: Local linearization scheme

First and second moment of \mathcal{Z}_s on each Δ -interval:

$$\mathbb{E}[\mathcal{Z}_s] = Z_\tau e^{J_\tau s} \tag{3}$$

$$\Sigma(\mathcal{Z}_s; \theta, \sigma^2) = \mathbb{E}\left[\left(\int_{\tau}^{s} e^{J_{\tau}(s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_v\right) \left(\int_{\tau}^{s} e^{J_{\tau}(s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_v\right)^T\right]. \quad (4)$$

The approximation of the solution of (1) at time $i\Delta$:

$$Z_{i+1} = \bar{A}(Z_i; \theta) + \bar{B}(Z_i; \theta, \sigma)\Xi_i, \tag{5}$$

- $ightharpoonup \Xi_i$ standard Gaussian 2-dimensional random vector
- ▶ \bar{B} any matrix s. t. $\bar{B}\bar{B}^T = \Sigma(\mathcal{Z}_s; \theta, \sigma^2)$, \bar{A} is a discrete approximation of (3).

Discretization: Local linearization scheme

Proposition (Discretization of the covariance matrix)

The second-order Taylor approximation of matrix $\Sigma(\mathcal{Z}_{\Delta}; \theta, \sigma^2)$ defined in (4) has the following form:

$$b^2(Z_\tau;\sigma)\begin{pmatrix} \left(\partial_y a_1\right)^2 \frac{\Delta^3}{3} & (\partial_y a_1) \frac{\Delta^2}{2} + (\partial_y a_1)(\partial_y a_2) \frac{\Delta^3}{3} \\ (\partial_y a_1) \frac{\Delta^2}{2} + (\partial_y a_1)(\partial_y a_2) \frac{\Delta^3}{3} & \Delta + (\partial_y a_2) \frac{\Delta^2}{2} + (\partial_y a_2)^2 \frac{\Delta^3}{3} \end{pmatrix} + \mathcal{O}(\Delta^4),$$

where the derivatives are computed at time τ .

Contrast estimator

The contrast function is defined as follows:

$$\mathcal{L}(\theta, \sigma^2; Z_{0:N}) = \frac{1}{2} \sum_{i=0}^{N-1} (Z_{i+1} - \bar{A}(Z_i; \theta))^T \Sigma_{\Delta}^{-1} (Z_{i+1} - \bar{A}(Z_i; \theta)) + \sum_{i=0}^{N-1} \log \det(\Sigma_{\Delta}).$$

The estimator is then:

$$(\hat{\theta}, \hat{\sigma}^2) = \operatorname*{arg\,min}_{\theta, \sigma^2} \mathcal{L}(\theta, \sigma^2; Z_{0:N})$$

Theorem

Under assumptions (A1)-(A4) and $\Delta_N \to 0$ and $N\Delta_N \to \infty$ the following holds:

$$(\hat{\theta}, \hat{\sigma}^2) \xrightarrow{\mathbb{P}_{\theta}} (\theta_0, \sigma_0^2)$$

Contrast estimator

Lemma

Under assumptions (A1)-(A4), $\Delta_N \to 0$ *and N* $\Delta_N \to \infty$ *the following holds:*

$$\lim_{N \to \infty, \Delta_N \to 0} \frac{\Delta_N}{N} \left[\mathcal{L}_{N,\Delta_N}(\theta, \sigma_0^2; Z_{0:N}) - \mathcal{L}_{N,\Delta_N}(\theta_0, \sigma_0^2; Z_{0:N}) \right] \xrightarrow{\mathbb{P}_{\theta}} 6 \int \frac{(a_1(z; \theta_0) - a_1(z; \theta))^2}{b^2(z; \sigma_0^2)(\partial_y a_1)_{\theta}^2} \nu_0(dz)$$

$$\begin{split} \lim_{N \to \infty, \Delta_N \to 0} \frac{1}{N \Delta_N} \left[\mathcal{L}_{N, \Delta_N}(\varphi_0, \psi, \sigma_0^2; Z_{0:N}) - \mathcal{L}_{N, \Delta_N}(\varphi_0, \psi_0, \sigma_0^2; Z_{0:N}) \right] & \stackrel{\mathbb{P}_{\theta}}{\longrightarrow} \\ 2 \int \frac{(a_2(z; \psi) - a_2(z; \psi_0))^2}{b^2(z; \sigma_0^2)} \nu_0(dz) \end{split}$$

Numerical performance: FitzHugh-Nagumo model

- ▶ Data (1000 trajectories) generated with N = 500000, $\Delta = 0.0001$
- Contrast is minimized with respect to subsampled data $(N = 50000, \Delta = 0.001)$
- ► Minimization: optim in R, method: Conjugate Gradient

	γ	β	arepsilon	σ
Set 1:	1.5	0.3	0.1	0.6
Lin. contrast	1.477 (1.056)	0.289 (0.428)	0.100 (0.561)	0.672 (0.291)
1.5 scheme	1.497 (1.055)	0.299 (0.393)	0.099 (0.563)	0.597 (0.288)
Set 2:	1.2	1.3	0.1	0.4
Lin. contrast	1.199 (0.531)	1.315 (0.621)	0.102 (0.683)	0.472 (0.340)
1.5 scheme	1.221 (0.645)	1.324 (0.777)	0.088 (0.575)	0.398 (0.338)

Table: Comparison with Ditlevsen and Samson (2017) (separate estimation of parameters presented in each equation)

Conclusions

Strong points:

- Straightforward implementation
- All parameters are estimated simultaneously

Weak points:

- Numerical instability due to the different order of variance
- Sensitivity to the initial value of the parameters

Future work:

- ► Partial observation case
- Multidimensional system

Acknowledgements

Financial support: LabEx PERSYVAL-Lab, LABEX MME-DII, Laboratoire Jean Kuntzmann (University of Grenoble Alpes), AGM (University of Cergy-Pontoise).

Literature

- Cattiaux, P., León, J. R., and Prieur, C. (2014). Estimation for stochastic damping hamiltonian systems under partial observation. ii drift term. *ALEA*, 11(1):p-359.
- Cattiaux, P., León, J. R., Prieur, C., et al. (2016). Estimation for stochastic damping hamiltonian systems under partial observation. iii. diffusion term. *The Annals of Applied Probability*, 26(3):1581–1619.
- Ditlevsen, S. and Samson, A. (2017). Hypoelliptic diffusions: discretization, filtering and inference from complete and partial observations. *submitted*.
- Le-Breton, A. and Musiela, M. (1985). Some parameter estimation problems for hypoelliptic homogeneous gaussian diffusions. *Banach Center Publications*, 16(1):337–356.
- León, J., Rodriguez, L., and Ruggiero, R. (2018). Consistency of a likelihood estimator for stochastic damping hamiltonian systems. totally observed data.
- Melnykova, A. (2018). Parametric inference for multidimensional hypoelliptic diffusion with full observations. ArXiv e-prints.
- Ozaki, T. (1989). Statistical identification of nonlinear random vibration systems. *Journal of Applied Mechanics*, 56:186–191.
- Pokern, Y., Stuart, A. M., and Wiberg, P. (2007). Parameter estimation for partially observed hypoelliptic diffusions. *J. Roy. Stat. Soc.*, 71(1):49–73.
- Samson, A. and Thieullen, M. (2012). Contrast estimator for completely or partially observed hypoelliptic diffusion. *Stochastic Processes and their Applications*, 122:2521–2552.

