





# Algorithmen und Datenstrukturen

Wintersemester 2018/19 22. Vorlesung

Dynamisches Programmieren

# Themen für den 3. Kurztest (Do, 24.01.19)

- Rot-Schwarz-Bäume (R-S-Eigenschaften, Höhe)
- Augmentieren von Datenstrukturen
- Amortisierte Analyse
- Nächstes Paar (Teile und Herrsche)
- Graphen und Breitensuche

## Anmeldung

Bis **HEUTE**, Di, 22.1., 13:00 Uhr.

## Entwurfstechniken

- Inkrementell
- Rekursiv
- Teile und Herrsche
- Randomisiert



meint hier das Arbeiten mit einer Tabelle, nicht das Schreiben eines Computerprogramms.

Dynamisches Programmieren

## Vergleich





#### **Teile und Herrsche**

 zerlegt Instanz rekursiv in disjunkte Teilinstanzen

- top-down
- eher für Entscheidungsoder Berechnungsprobleme

### **Dynamisches Programmieren**

- zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.T. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet.
- meist bottom-up
- meist fürOptimierungsprobleme

## Fahrplan

- 1. Struktur einer optimalen Lösung charakterisieren
- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)
- 4. Optimale Lösung aus berechneter Information konstruieren

## Ein Beispiel

### Zerlegungsproblem

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

Durch welche Zerlegung unseres Stabs können wir unseren Ertrag maximieren?



| 9€  | 7€ |
|-----|----|
| 9€  | 7€ |
| 10€ | 7€ |
| 9€  | 4€ |

| Länge <i>i</i>                    | 1 | 2 | 3 | 4 |
|-----------------------------------|---|---|---|---|
| Preis <i>p<sub>i</sub></i> [in €] | 1 | 5 | 8 | 9 |

## Ein erster Versuch

Wir haben einen Stab der Länge n und kennen die Preise  $p_1, p_2, \ldots, p_n$  für Stäbe der Längen  $1, 2, \ldots, n$ .

Beispiel: n = 4

| Länge <i>i</i> [in <i>m</i> ]     | 1 | 2              | 3              | 4              |
|-----------------------------------|---|----------------|----------------|----------------|
| Preis <i>p<sub>i</sub></i> [in €] | 1 | 5              | 8              | 9              |
| Quotient [€/m]                    | 1 | $2\frac{1}{2}$ | $2\frac{2}{3}$ | $2\frac{1}{4}$ |

Welche Stabzerlegung maximiert den Ertrag?

### Ein ADSler schlägt vor:

- Berechne für  $i=1,\ldots,n$  den Preis pro Meter  $q_i=p_i/i$ .
- Zerlege Stab in möglichst viele Stücke der Länge i mit  $q_i$  max.
- Streiche alle Stablängen  $\geq i$  aus der Tabelle und wiederhole den Prozess mit dem Stabrest (falls > 0).

Funktioniert dieser Greedy-Algorithmus? Ja? Beweisen!
Nein? Gegenbeispiel!

## Rohe Gewalt

**Frage:** Wie viele Möglichkeiten gibt es einen Stab der Länge *n* zu zerlegen?



Antw.: Können n-1 mal entscheiden: schneiden oder nicht.  $\Rightarrow 2^{n-1}$  verschiedene\* Zerlegungen

Also können wir es uns nicht leisten alle Zerlegungen durchzugehen und für jede ihren Ertrag zu berechnen.

<sup>\*)</sup> Genauer: die gesuchte Anzahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natürlichen Zahlen schreiben kann. Es gilt  $p(n) \approx e^{\pi \sqrt{2n/3}} / (4n\sqrt{3}) \in \Theta^* \left( (13,00195...)^{\sqrt{n}} \right)$ .

### 1. Struktur einer optimalen Lösung charakterisieren

**Def.** Für i = 1, ..., n sei  $e_i$  der maximale Ertrag für einen Stab der Länge i.



Phänomen der *optimalen Teilstruktur*!

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

### 2. Wert einer optimalen Lösung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt. Also probieren wir einfach alle möglichen Schnitte aus:

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

### 2. Wert einer optimalen Lösung rekursiv definieren

$$e_n = \max\{ p_n, e_1 + e_{n-1}, e_2 + e_{n-2}, \dots, e_{n-1} + e_1 \}$$

### Kleine Verbesserung:

Verbiete weitere Schnitte im linken Teilstück!



### Also gilt:

$$e_n = \max\{ p_n, p_1 + e_{n-1}, p_2 + e_{n-2}, \dots, p_{n-1} + e_1 \}$$
  
=  $\max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

Vorteil: Wert einer opt. Lösung ist Summe aus einer Zahl der Eingabe und *einem* Wert einer opt. Teillösung.

### 3. Wert einer optimalen Lösung berechnen: top-down

Wir wissen:  $e_n = \max_{1 \le i \le n} \{ p_i + e_{n-i} \}$ , wobei  $e_0 := 0$ .

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0  $q = -\infty$ for i = 1 to n do  $p = \max\{q, p[i] + \text{StangenZerlegung}(p, \frac{n-i}{n-i})\}$ return q

Laufzeit: Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung $(p, \cdot)$ beim Ausführen von StangenZerlegung(p, n)

$$\Rightarrow A(0) = 1$$
  
und  $A(n) = 1 + \sum_{i=1}^{n} A(n-i) = 1 + \sum_{j=0}^{n-1} A(j) \stackrel{\text{Beweis?!}}{=} 2^{n}$ 

### 3. Wert einer optimalen Lösung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

```
[MemoStangenZerlegung(int[] p, int n = p.length)]
  e = \mathbf{new} \text{ int}[0..n]
  e[0] = 0
  for i = 1 to n do
  e[i] = -\infty
  return HauptStangenZerlegung(p, n, e)
[HauptStangenZerlegung(int[] p, int n, int[] e]
  if e[n] \ge 0 or n == 0 then return e[n]
  q=-\infty
  for i = 1 to n do
   q = \max\{q, p[i] + \text{HauptStangenZerlegung}(p, n-i, e)\}
  e[n] = q; return q
```

**Laufzeit?** – Wie letzte Folie? – Asymptotisch schneller?

### 3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)  $e = \mathbf{new} \text{ int}[0..n]$ e[0] = 0Neu: kein for j = 1 to n do rekursiver  $q=-\infty$ Aufruf! for i = 1 to j do  $q = \max\{q, p[i] + e[j-i]\}$ e[j] = qreturn q Kante (j, i) bedeutet: Teilinstanz j benützt Wert einer Graph der Teilinstanzen opt. Lösung von Teilinstanz i.

- Beob. Größe des Graphen (d.h. in erster Linie Anz. Kanten) ist proportional zur Laufzeit des DP (Anz. Additionen).
- Satz. BottUpSZerl() und MemoSZerl() laufen in  $O(n^2)$  Zeit.

### 4. Optimale Lösung aus berechneter Info. konstruieren

```
GibZerlegungAus(int[] p, int n)
  \ell = \text{new int}[0..n]; e = \text{new int}[0..n]
  ErweiterteBottomUpZerlegung(p, e, \ell, n)
  while n > 0 do // gib wiederholt Länge des 1. Teilstücks aus
      print \ell[n]; n = n - \ell[n]
ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] \ell, int n)
  e[0] = 0
  for j = 1 to n do
      q=-\infty
      for i = 1 to j do
          if q < p[i] + e[j - i] then
              q = p[i] + e[j-i]
            \lfloor \ell j \rfloor = i
                                          // merke Länge des 1. Teilstücks
```

# Längste Wege

Gegeben: ungewichteter gerichteter Graph G = (V, E) mit

 $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster einfacher s-t-Weg,

d.h. eine Folge  $\langle s = v_0, v_1, \dots, v_k = t \rangle$  mit  $v_0 v_1, \dots, v_{k-1} v_k \in E, v_i \neq v_j$  (für  $i \neq j$ ) und k maximal.



 $\langle s, u, t \rangle$  ist ein längster einfacher s-t-Weg.

Aber:

 $\langle s, u \rangle$  ist *kein* längster einfacher *s-u-*Weg;

 $\langle s, v, t, u \rangle$  ist ein längster einfacher s-u-Weg!

### **Fahrplan**

1. Struktur einer optimalen Lösung charakterisieren



- 2. Wert einer optimalen Lösung rekursiv definieren
- 3. Wert einer optimalen Lösung berechnen (meist bottom-up)

\*) Es ist NP-schwer für (G, s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Länge k enthält. (Vgl. Hamilton-Weg!)

# Längste Wege in azyklischen Graphen

Gegeben: gewichteter gerichteter kreisfreier Graph G = (V, E; w)

mit  $s, t \in V$ ,  $s \neq t$  und t von s erreichbar.

Gesucht: ein längster s-t-Weg.

Beob<sub>1</sub> In kreisfreien Graphen sind alle Wege einfach.

Beob<sub>2</sub> Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg  $\pi$  gehe durch u, d.h.

$$\pi = s \xrightarrow{\pi_{su}} u \xrightarrow{\pi_{ut}} t$$
.

Dann gilt:

 $\pi_{su}$  ist längster s-u-Weg;  $\pi_{ut}$  ist längster u-t-Weg – sonst wäre  $\pi$  kein längster s-t-Weg.

Außerdem gilt  $V(\pi_{su}) \cap V(\pi_{ut}) = \{u\}$ ; sonst gäbe es einen Kreis!

## Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren



2. Wert einer optimalen Lösung rekursiv definieren

$$d_v = \max_{uv \in E} d_u + w(u, v)$$
 // Länge eines längsten s-v-Wegs

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

- G topologisch sortieren
- d-Werte initialisieren:  $d_s=0$  und  $d_v=-\infty$  für alle  $v\neq s$
- for-Schleife durch Knoten v.l.n.r. d-Werte berechnen -

**Ubrigens:** kürzeste Wege in kreisfreien Graphen gehen analog (mit min statt max und  $+\infty$  statt  $-\infty$ )

## Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit dynamischem Programmieren gelöst:

- Ketten von Matrixmultiplikationen
- Längste gemeinsame Teilfolge (in Zeichenketten)
- Optimale binäre Suchbäume

Lesen Sie Kapitel 15.2–5!!!