# Aluminium - Calcium - Silicon

Rainer Schmid-Fetzer

# Literature Data

The liquidus surface of the Al-corner has been studied and fundamental agreement was obtained between most of the earlier experimental work [1926Doa, 1927Gro, 1928Shi] and reviewing papers [1934Fus, 1943Mon, 1952Han, 1960Spe, 1969Wat]. Samples were made from Al-Ca and Al-Si master alloys under a CaCl<sub>2</sub> or KCl-NaCl-BaCl<sub>2</sub> protective layer. Their composition was checked by chemical analysis, and thermal and metallographic analyses were performed [1926Doa]. A dominating CaSi<sub>2</sub> liquidus surface extending close to the Al-corner and an eutectic type Al-CaSi2 pseudobinary system was deduced from these data [1926Doa] and essentially confirmed by similar studies [1928Shi, 1962Kol] and [1966Tom]. The coexistence of (Al) and a compound, assumed to be CaSi2, was also seen in micrographs of Al-rich samples that were cast, forged or hot rolled, annealed for 30 min at 460°C and then used for Brinell and tensile tests [1927Gro]. Similar interpretations are given in [1934Fus, 1943Mon] and also by [1952Han] who made additional experiments to quantify the location of ternary eutectics and accepts the binary phase CaAl<sub>4</sub> instead of CaAl<sub>3</sub> as given in previous literature. The interpretation of an (Al)-CaSi<sub>2</sub> equilibrium is, however, inconsistent with reports on some ternary compounds that form after annealing for a long time. [1967Gla] studied 39 samples in the Al-Si-CaSi<sub>2</sub>-CaAl<sub>2</sub> subsystem at 400°C by X-ray methods and metallography and detected the compound CaAl<sub>2</sub>Si<sub>2</sub> (β) in equilibrium with (Al), (Si), CaSi<sub>2</sub>, CaAl<sub>4</sub>, CaAl<sub>2</sub> and another ternary compound,  $CaAl_{1-x}Si_{1+x}(\gamma)$  [1965Bod]. [1967Gla] also prepared single crystals of  $\beta$  and performed a detailed X-ray structure analysis. The β phase was also observed by electron microprobe in Al-20 mass% Si samples containing 0.13 to 2.6 mass% Ca, which were equilibrated at 800°C, cast and found to consist of (Al)+(Si)+ $\beta$  [1976Tag]. The precipitation of  $\beta$  and Ca<sub>2</sub>Si was found in metallurgical grade silicon (< 0.5 mass% Al, <0.3 mass% Ca) by optical metallography and electron microscopy (SEM, TEM, EMPA) [1990Ang].

The  $CaAl_{1-x}Si_{1+x}(\gamma)$  phase was also prepared at x = 0 by [2002Ima] and in the range -0.4 < x < 0.2 by [2002Lor], studied by X-ray diffraction and also for their superconducting behavior with a transition temperature of 7.8 K for CaAlSi [2002Ima].

The congruent melting point of  $\beta$  was reported at 975°C by DTA [1994Ang] and the pseudobinary eutectic L⇒β+(Si) at 927°C, and the "pseudobinary" eutectic L⇒β+CaSi<sub>2</sub> at 925°C. [1994Ang] also performed a brief Calphad-type thermodynamic analysis of the ternary system and produced calculated isopleths. This included the modelling of the Ca-activity in ternary liquids on the  $Al_{0.5}Si_{0.5}$  - Ca section at 1350°C. This Ca-activity was experimentally determined by [1975Sch] with 11 alloys at 1350°C and 3 alloys at 1210°C using the boiling point method. The activity coefficients of Al and Ca in molten Si at 1450-1550°C were determined by the Knudsen effusion method and also by a chemical equilibrium technique from the distribution between liquid silicon and lead at 1450°C [1999Mik]. Two other compounds, Ca<sub>3</sub>Al<sub>6</sub>Si<sub>2</sub> (δ) and Ca<sub>2</sub>Al<sub>4</sub>Si<sub>3</sub> (ε) were prepared by pressing CaAl<sub>2</sub>-Si mixtures, heating to 700-1000°C, quenching and studying by X-ray analysis [1955Chr, 1956Chr]. The reaction was complete only above 900°C and the mutual equilibria  $CaAl_2+\delta$ ,  $\delta+\epsilon$  and  $\epsilon+(Si)$  were observed at 1000°C, but not the  $\beta$  phase located between  $\epsilon$  and (Si). The  $\delta$  phase completely decomposes into  $\epsilon$  and some Al and Ca at 1200°C, while the  $\epsilon$  phase only starts to decompose at this temperature, probably due to Ca-loss to the gas phase [1956Chr]. The most Ca-rich compound, Ca<sub>3</sub>Al<sub>2</sub>Si<sub>2</sub> (α) was fused from the elements in corundum crucibles under argon, continuously agitated for 4h at 1150-1200°C and slowly cooled to room temperature within 12h. Single crystals could be extracted from the sample and a detailed X-ray structure analysis was performed [1977Wid]. The composition change during preparation was found to be negligible by chemical analysis of a similarly prepared Ba<sub>3</sub>Al<sub>2</sub>Si<sub>2</sub> compound [1977Wid].

The present evaluation continues and updates the one published in [1990Sch] with respect to both new ternary and binary data.

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

# **Binary Systems**

The Al-Si system is accepted from [Mas2]. The Al-Ca system is taken from [2002Ted]. The Ca-Si system is accepted from [2000Man], however, the shape of the liquidus lines may need some revision as indicated by thermodynamic calculations [2003Gro].

# **Solid Phases**

Data on all solid phases reported in this system are given in Table 1.

Electronic structure calculations of the stability of Al<sub>2</sub>Si<sub>2</sub><sup>6</sup> chains in the compound Ca<sub>3</sub>Al<sub>2</sub>Si<sub>2</sub> suggest that all Si atoms reside in the twofold sites and all Al atoms in the threefold ones [1988Li].

Bonding in the  $CaAl_2Si_2$  ( $\beta$ ) structure type was studied theoretically [1988Zhe]. The same structure type was experimentally found to form also in 13 different, though related, ternary systems [1980Klu]. [1975Eml] mentioned the possible existence of a phase  $Ca_{0.8}Al_{1.2}Si$ , which is not included in Table 1.

# **Pseudobinary Systems**

The Al-CaSi $_2$  section has been quoted as a eutectic pseudobinary system in the earlier literature [1926Doa] to [1952Han]. The primary crystallization of CaSi $_2$  from Al-rich liquids is probably metastable in view of the formation of  $\beta$  on that section. The  $\beta$  phase may have been misinterpreted as CaSi $_2$  in the metallographic examination, since the conclusions in the basic early work on Al-Ca-Si [1926Doa] rely on the assumption that no ternary compounds exist. The calculated isopleths Al-CaSi $_2$  and Si-CaAl $_2$  [1994Ang] contain the  $\beta$  phase, however, they are based on old versions of the Ca-Si and Al-Ca binaries and cannot be accepted. In addition, the phases  $\alpha$ ,  $\gamma$ ,  $\delta$  and  $\epsilon$  had not been considered by [1994Ang]. Thermodynamic calculations performed in the present assessment were based on the recent binaries and they show that both sections are not pseudobinary systems. The Al-poor side of the Al-CaSi $_2$  section exhibits phase fields of liquid with CaSi and Ca $_{14}$ Si $_{19}$ . However the partial section Al-CaAl $_2$ Si $_2$  ( $\beta$ ) is a pseudobinary eutectic as shown in Fig. 1, according to the present calculation. Similarly, the Si-poor side of the Si-CaAl $_2$  section exhibits phase fields of liquid with CaSi. However the partial section Si-CaAl $_2$ Si $_2$  ( $\beta$ ) is also a pseudobinary eutectic as shown in Fig. 2, according to the present calculation. The calculated eutectic temperature 933°C is in close agreement with the experimental value 927°C [1994Ang].

# Invariant Equilibria

The three invariant equilibria of the Al-corner, given in Table 2, are from the present thermodynamic calculation. Earlier work [1952Han] assumed the participation of  $CaSi_2$  instead of  $\beta$  in the equilibria max, E and D (with reported temperatures of 637, 615.8, and 576.5°C). This cannot be accepted as described in the previous section. Also a eutectic reaction L=(Al)+(Si)+ $\beta$  was given with a liquid composition of 0.7 at.% Ca [1966Tom]. This is virtually impossible based on the thermodynamic calculation, which shows that this invariant (D) is essentially degenerate to the binary Al-Si eutectic. [1966Tom] also reported from microradiograph examinations that the Ca-content in (Si) is much smaller than in (Al).

# Liquidus Surface

The liquidus surface of the Al-corner given in Fig. 3 is from the present thermodynamic calculation. It deviates from that given by [1952Han] as discussed in the previous section.

## **Isothermal Sections**

An isothermal section at about  $400^{\circ}\text{C}$  is given in Fig. 4 [1967Gla, 1955Chr] and [1956Chr]. The equilibria around the  $\epsilon$  and  $\delta$  phases are estimated by dashed lines. Both phases form above 900°C with appreciable reaction rates [1955Chr] and are presumably stable down to  $400^{\circ}\text{C}$ . The reported  $\epsilon$  - (Si) equilibrium at  $1000^{\circ}\text{C}$  [1955Chr] cannot be accepted in view of the congruent melting point of  $\beta$  at 975°C.

The equilibria above 33 at.% Ca have not bee studied experimentally. The dashed tie line Ca<sub>5</sub>Si<sub>3</sub>-CaAl<sub>2</sub> (and the three more Ca-rich ones) given dashed in Fig. 4 are based on the present thermodynamic

Landolt-Börnstein
New Series IV/11A1

MSIT®

calculation, disregarding the  $\alpha$  and  $\gamma$ phases and the mutual solubilities along the CaAl<sub>2</sub>-CaSi<sub>2</sub> section. No tie lines can be given around these phases.

The precipitation of  $\beta$  and Ca<sub>2</sub>Si in metallurgical grade silicon (< 0.5 mass% Al, <0.3 mass% Ca) [1990Ang] supports the existence of the (Si)+  $\beta$ +Ca<sub>2</sub>Si equilibrium with negligible solubility in (Si).

## **Thermodynamics**

The measured Ca-activities [1975Sch] in the ternary liquid phase along the equal molar fractions of Al and Si at 1350°C are well represented by the thermodynamic calculation of [1994Ang] shown in Fig. 5

# **Notes on Materials Properties and Applications**

Si and Ca are important additions to Al-alloys. The  $CaAl_{1-x}Si_{1+x}(\gamma)$  phase shows superconducting behavior [2002Ima, 2002Lor]. The de-oxidation of steel using complex Ca-Al-Si de-oxidizers was discussed by [1983Gho].

#### Miscellaneous

The dissolution of CaSi<sub>2</sub> from Al-Ca-Si alloys in HCl was discussed by [1953Tou].

### References

- [1926Doa] Doan, G., "On the Al-Ca-Si System" (in German), *Z. Metallkd.*, **18**, 350-355 (1926) (Equi. Diagram, Experimental, #, 15)
- [1927Gro] Grogan, J.D., "The Influence of Calcium on Aluminium Containing Silicon", *J. Inst. Met.*, **37**, 77-91 (1927) (Experimental, 6)
- [1928Shi] Shinoda, G., "Improvement of Aluminium Alloy with X-Ray Study" (in Japanese), *Nippon Kogyo Kwai Shi*, **44**, 544-557 (1928) (Equi. Diagram, Experimental, 12)
- [1934Fus] Fuss, V., *Metallography of Al and its Alloys* (in German), translated from Anderson, R.J., Sherwood Press Inc., Cleveland, Berlin, 163-166 and 207-219 (1936) (Equi. Diagram, Review, #, 300)
- [1943Mon] Mondolfo, L.F., *Metallography of Aluminum Alloys*, Wiley & Sons, Inc., New York, 61-63 (1943) (Equi. Diagram, Review, #, 3)
- [1952Han] Haneman, H., Schrader, A., "Ternary Aluminum-Alloys" in "*Atlas Metallographicus* (III/2)" (in German), Verlag Stahleisen, Düsseldorf, 62-65 (1952) (Equi. Diagram, Crys. Structure, Review, Experimental, #, \*, 5)
- [1953Tou] Tournaire, M., Renouard, M., "Contribution to a Study of Al-Mg-Si Alloys" (in French), Revue de Metallurgie/Memoires, **50**, 328-332 (1953) (Experimental, 0)
- [1955Chr] Chrétien, A., Freundlich, W., Deschanvres, A., "On Two New Ternary Ca-Al-Si Compounds" (in French), *Compt. Rend.*, **241**, 1781-1783 (1955) (Equi. Diagram, Experimental, #, 2)
- [1956Chr] Chrétien, A., Freundlich, W., Deschanvres, A., "Properties of the New Ternary Compounds, Ca<sub>3</sub>Al<sub>6</sub>Si<sub>2</sub> and Ca<sub>2</sub>Al<sub>4</sub>Si<sub>3</sub>" (in French), *Compt. Rend.*, **242**, 784-785 (1956) (Crys. Structure, Experimental, 2)
- [1960Spe] Spengler, H., "The Importance of Research on Eutectics and its Application to Ternary Eutectic Aluminium Alloys" (in German), *Metallwiss. Tech.*, **14**(3), 201-206 (1960) (Experimental, 11)
- [1962Kol] Kolachev, B.A., "Quasi-Binary Sections of Ternary Systems, Studied by Withdrawing a Solid Phase from a Melt" (in Russian), *Tr. Mosk. Aviats. Tekhnol. Inst.*, **5**, 124-132 (1962) (Equi. Diagram, Experimental, #, 4)
- [1965Bod] Bodak, O.I., Gladyshevsky, E.I., Zarechnyuk, O.S., Cherkashin, E.E., "Compounds with Structures of the AlB<sub>2</sub> Type in the Ternary Systems" (in Russian), *Visn. Lviv. Univ., Ser. Khim.*, **8**, 75-79 (1965) (Crys. Structure, Experimental, 8)

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

- [1966Tom] Tomochiro, I., Yamamoto, R., Fujisawa, K., "Mechanism of Structural Changes of Lo-Ex" (in Japanese), *Keikinzoku*, **16**, 30-35 (1966) (Equi. Diagram, Experimental, #, 2)
- [1967Gla] Gladyshevsky, E.I., Kripyakevich, P.I., Bodak, O.I., "Crystal Structure of CaAl<sub>2</sub>Si<sub>2</sub> and Analogous Compounds" (in Russian), *Ukrain. Fiz. Zhur.*, **12**, 447-453 (1967) (Equi. Diagram, Experimental, #, \*, 16)
- [1969Wat] Watanabe, H., Sato, E., "Phase Diagrams of Aluminum-Base Systems" (in Japanese), Keikinzoku, 19(11), 499-535 (1969) (Equi. Diagram, 232)
- [1975Eml] Emlin, B.I., Gasik, M.I., Kilesso, S.N., Elt'sova, Z.V., Vukelich, S.B., "Phase Composition of Al-Si Alloys" (in Russian), *Izvest. v. u. z. Tsvetn. Metall.*, **4**, 156-158 (1975) (Equi. Diagram, Experimental, 7)
- [1975Sch] Schuermann, E., Fueders, P., Litterscheidt, H., "Vapor Pressure of Ca Above Ca-Si, Ca-Al And Ca-Al-Si Alloys" (in German), *Arch. Eisenhuettenwes.*, **46**(8), 473-476 (1975) (Experimental, Thermodyn., 5)
- [1976Tag] Tagami, M., Serita, Y., Komatsu, K., "The Influence of Ca Additions on the Grain Size of Primary Si Crystals in a Hypereutectic Al-20% Si Alloy", *J. Jpn. Inst. Light Met.*, **26**, 385-390 (1976) (Equi. Diagram, Experimental, \*, 20)
- [1977Wid] Widera, A., Schaefer, H., "Preparation and Crystal Structure of A<sub>3</sub>Al<sub>2</sub>Si<sub>2</sub> (A = Ca, Sr, Ba)" (in German), Z. Naturforsch. B, **32**B, 1349-1351 (1977) (Crys. Structure, Experimental, 3)
- [1980Klu] Kluefers, P., Neumann, H., Mewis, A., Schuster, H.-U., "AB<sub>2</sub>X<sub>2</sub> Compounds with the CaAl<sub>2</sub>Si<sub>2</sub> Structure, VIII (1)" (in German), *Z. Naturforsch. B*, **35**(10), 1317-1318 (1980) (Crys. Structure, Experimental, 4)
- [1983Gho] Ghosh, A., Naik, V., "Deoxidation of Steel with Ca-Si-Al and Mg-Si-Al Complex Deoxidizers: a Thermodynamic Analysis", *Tool Alloy Steels*, **17**(7), 239-244 (1983) (Experimental, 16)
- [1988Li] Li, J., Hoffmann, R., "Ca<sub>3</sub>Al<sub>2</sub>Si<sub>2</sub>: An Inorganic Structure Analogous to but not Isoelectronic with Polyacene", *J. Phys. Chem.*, 1988, **92**(4), 887-893 (1988) (Crys. Structure, Theory, 18)
- [1988Zhe] Zheng, C., Hoffmann, R., "Complementary Local and Extended Views of Bonding in the ThCr<sub>2</sub>Si<sub>2</sub> and CaAl<sub>2</sub>Si<sub>2</sub> Structures", *J. Solid State Chem.*, **72**(1), 58-71 (1988) (Crys. Structure, Theory, 13)
- [1990Ang] Anglezio, J.C., Servant, C., Dubrous, F., "Characterization of Metallurgical Grade Silicon" J. Mater. Res., 5, 1894-1899 (1990) (Equi. Diagram, Crys. Structure, Experimental, 11)
- [1990Sch] Schmid-Fetzer, R., "Al-Ca-Si (Aluminium Calcium Silicon)," MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.15085.1.20, (1990) (Crys. Structure, Equi. Diagram, Assessment, 15)
- [1993Mil] Miller, G.J., Li, F., Franzen, H.F., "The Structural Phase Transition in Calcium-Aluminum Compound (CaAl<sub>4</sub>): A Concerted Application of Landau Theory and Energy Band Theory", J. Am. Chem. Soc., 115(9), 3739-3745 (1993) (Crys. Structure, 26)
- [1994Ang] Anglezio, J.C., Servant, C., Ansara, I., "Contribution to the Experimental and Thermodynamic Assessment of the Al-Ca-Fe-Si System I. Al-Ca-Fe, Al-Ca-Si, Al-Fe-Si and Ca-Fe-Si Systems", *Calphad*, **18**(3), 273-309 (1994) (Equi. Diagram, Calculation, 71)
- [1998Hua] Huang, B., Corbett, D., "Two New Binary Calcium-Aluminium Compounds: Ca<sub>13</sub>Al<sub>14</sub> with a Novel Two-Dimensional Aluminium Network, and Ca<sub>8</sub>Al<sub>3</sub>, an Fe<sub>3</sub>Al-Type Analogue", *Inorg. Chem.*, **37**(22), 5827-5833 (1998) (Crys. Structure, Experimental, 30)
- [1999Mik] Miki, T., Morita, K., Sano, N., "Thermodynamic Properties of Si-Al, -Ca, -Mg Binary and Si-Ca-Al, -Ti, -Fe Ternary Alloys", *Mater. Trans.*, JIM, **40**(10), 1108-1116 (1999) (Thermodyn., Experimental, 22)
- [2000Man] Manfrinetti, P., Fornasini, M.L., Palenzona, A., "The Phase Diagram of the Ca-Si System", Intermetallics, 8, 223-228 (2000) (Equi. Diagram, Crys. Structure, Experimental, #, 31)
- [2002Ima] Imai, M., Nishida, K., Kimura, T. Abe, H., "Superconductivity of Ca(Al<sub>0.5</sub>Si<sub>0.5</sub>)<sub>2</sub>, a Ternary Silicide with the AlB<sub>2</sub>-Type Structure", *Appl. Phys. Lett.*, **80**(6), 1019-1021 (2002) (Crys. Structure, Experimental, Superconduct., 26)

Landolt-Börnstein
New Series IV/11A1

MSIT®

| [2002Lor] | Lorenz, B., Lenzi, J., Cmaidalka, J., Meng, R.L., Sun, Y.Y., Xue, Y.Y., Chu, C.W., "Superconductivity in the C32 Intermetallic Compounds $AAl_{(2-x)}Si_x$ , with $A = Ca$ and Sr; and $0.6 < x < 1.2$ ", <i>Physica C</i> , <b>383</b> (3), 191-196 (2002) (Crys. Structure, Electr. Prop., |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Experimental, Phys. Prop., 10)                                                                                                                                                                                                                                                               |
| [2002Ted] | Tedenac, JC., Kevorkov, D., Velikanova, T., "Al-Ca (Aluminum - Calcium)", MSIT                                                                                                                                                                                                               |
|           | Binary Evaluation Program, in MSIT Workplace, Effenberg, G. (Ed.), MSI, Materials                                                                                                                                                                                                            |
|           | Science International Services GmbH, Stuttgart, Document ID: 20.12711.1.20 (2002)                                                                                                                                                                                                            |
|           | (Equi. Diagram, Assessment, Crys. Structure, 13)                                                                                                                                                                                                                                             |
| [2003Gro] | Gröbner, J., Chumak, I., Schmid-Fetzer, R., "Experimental Study of Ternary Ca-Mg-Si                                                                                                                                                                                                          |
|           | Phase Equilibria and Thermodynamic Assessment of Ca-Si and Ca-Mg-Si Systems",                                                                                                                                                                                                                |
|           | Intermetallics, in print (2003)                                                                                                                                                                                                                                                              |

 Table 1: Crystallographic Data of Solid Phases

| Phase/<br>Temperature Range<br>[°C]     | Pearson Symbol/<br>Space Group/<br>Prototype      | Lattice Parameters [pm]                                                                                 | Comments/References                        |  |  |
|-----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| (βΑΙ)                                   | hP2<br>P6 <sub>3</sub> /mmc<br>Mg                 | a = 269.3<br>c = 439.8                                                                                  | at 25°C, 20.5 GPa [Mas2]                   |  |  |
| (αAl)<br>< 660.452                      | <i>cF4 Fm3m</i> Cu                                | a = 404.96                                                                                              | at 25°C [Mas2]                             |  |  |
| (γCa)                                   | ?                                                 | ?                                                                                                       | at 25°C, 1.5 GPa [Mas2]                    |  |  |
| (βCa)<br>842-443                        | cI2<br>Im3m<br>W                                  | a = 448.0                                                                                               | [Mas2]                                     |  |  |
| (αCa)<br>< 443                          | <i>cF4 Fm3m</i> Cu                                | a = 558.84                                                                                              | at 25°C [Mas2]                             |  |  |
| (Si) < 1414                             | $cF8$ $Fd\overline{3}m$ C-diamond                 | a = 543.06                                                                                              | at 25 °C [Mas2]                            |  |  |
| CaAl <sub>4</sub> (h)<br>700 - 170      | tI10<br>I4/mmm<br>Al <sub>4</sub> Ba              | a = 435.3<br>b = 1107                                                                                   | [V-C2]                                     |  |  |
| CaAl <sub>4</sub> (l)<br>< 170          | m*10<br>?<br>?                                    | $a = 615.26 \pm 0.15$<br>$b = 617.30 \pm 0.13$<br>$c = 632.90 \pm 0.14$<br>$\beta = 118.026 \pm 0.016$  | [1993Mil]                                  |  |  |
| CaAl <sub>2</sub> < 1086                | $cF24$ $Fd\overline{3}m$ $Cu_2Mg$                 | a = 804.0                                                                                               | [V-C2] Powder X-ray diffraction            |  |  |
| Ca <sub>13</sub> Al <sub>14</sub> < 633 | mC54<br>C2/m<br>Ca <sub>13</sub> Al <sub>14</sub> | $a = 1555.1 \pm 0.4$<br>$b = 987.3 \pm 0.2$<br>$c = 972.6 \pm 0.2$<br>$\beta = 108.09 \pm 0.02^{\circ}$ | [1998Hua] Single-crystal X-ray diffraction |  |  |

MSIT®

Landolt-Börnstein
New Series IV/11A1

| Phase/                                                       | Pearson Symbol/                                                   | Lattice Parameters                                                                                                                                                                | Comments/References                                                                                              |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature Range [°C]                                       | Space Group/<br>Prototype                                         | [pm]                                                                                                                                                                              |                                                                                                                  |  |  |
| Ca <sub>8</sub> Al <sub>3</sub> < 578                        | aP22<br>PI<br>Ca <sub>8</sub> In <sub>3</sub>                     | $a = 948.4 \pm 0.3$<br>$b = 959.2 \pm 0.3$<br>$c = 967.1 \pm 0.3$<br>$\alpha = 99.02 \pm 0.03^{\circ}$<br>$\beta = 101.13 \pm 0.03^{\circ}$<br>$\gamma = 119.55 \pm 0.03^{\circ}$ | [1998Hua] Single-crystal X-ray diffraction                                                                       |  |  |
| CaSi <sub>2</sub> < 1030                                     | $hR18$ $R\overline{3}m$ $CaSi_2$                                  | a = 386.3<br>c = 3071.0                                                                                                                                                           | [2000Man]                                                                                                        |  |  |
| Ca <sub>14</sub> Si <sub>19</sub><br>1085- ≈900              | <i>hR</i> 198<br><i>R3̄c</i><br>Ca <sub>14</sub> Si <sub>19</sub> | a = 867.2<br>c = 6844.5                                                                                                                                                           | [2000Man]                                                                                                        |  |  |
| Ca <sub>3</sub> Si <sub>4</sub><br><≈ 910                    | hP42<br>P6 <sub>3</sub> /m<br>Ca <sub>3</sub> Si <sub>4</sub>     | a = 854.1<br>c = 1490.6                                                                                                                                                           | [2000Man]                                                                                                        |  |  |
| CaSi < 1320                                                  | oC8<br>Cmcm<br>CrB                                                | a = 459<br>b = 1079.5<br>c = 391                                                                                                                                                  | [2000Man]                                                                                                        |  |  |
| Ca <sub>5</sub> Si <sub>3</sub> < 1240                       | tI32<br>I4/mcm<br>Cr <sub>5</sub> B <sub>3</sub>                  | a = 764.1<br>c = 1487.6                                                                                                                                                           | [2000Man]                                                                                                        |  |  |
| Ca <sub>2</sub> Si<br>< 1270                                 | oP12<br>Pnma<br>anti-PbCl <sub>2</sub>                            | a = 766.7<br>b = 479.9<br>c = 900.2                                                                                                                                               | [2000Man]                                                                                                        |  |  |
| * α, Ca <sub>3</sub> Al <sub>2</sub> Si <sub>2</sub>         | oI14<br>Immm<br>Ca <sub>3</sub> Al <sub>2</sub> Ge <sub>2</sub>   | $a = 400 \pm 1$<br>$b = 1824 \pm 2$<br>$c = 457.6 \pm 1.0$                                                                                                                        | ordered variant of Ta <sub>3</sub> B <sub>4</sub> [1977Wid]                                                      |  |  |
| * β, CaAl <sub>2</sub> Si <sub>2</sub> < 975                 | $hP5$ $P\overline{3}m1$ $La_2O_2S$                                | $a = 413 \pm 1$<br>$c = 714.5 \pm 1.5$                                                                                                                                            | La <sub>2</sub> O <sub>3</sub> -type superstructure [1967Gla].<br>Congruent melting [1994Ang]                    |  |  |
| * γ,<br>CaAl <sub>1-x</sub> Si <sub>1+x</sub>                | hP3<br>AlB <sub>2</sub>                                           | a = 419.05<br>c = 439.92                                                                                                                                                          | at $x = 0$ [2002Ima]<br>composition range $x = -0.35$ to $+0.55$<br>[1967Gla] or<br>x = -0.4 to $+0.2$ [2002Lor] |  |  |
| * δ, Ca <sub>3</sub> Al <sub>6</sub> Si <sub>2</sub> <≈ 1150 | hP                                                                | c/a = 1.64                                                                                                                                                                        | [1956Chr]                                                                                                        |  |  |
| * ε, Ca <sub>2</sub> Al <sub>4</sub> Si <sub>3</sub>         | cP18                                                              | a = 715                                                                                                                                                                           | [1956Chr]                                                                                                        |  |  |

Table 2: Invariant Equilibria in the Al-rich Corner

| Reaction                                       | <i>T</i> [°C] | Type             | Phase             | Composition (at.%) |      |      |
|------------------------------------------------|---------------|------------------|-------------------|--------------------|------|------|
|                                                |               |                  |                   | Al                 | Ca   | Si   |
| $L + CaAl_2 \rightleftharpoons \beta + CaAl_4$ | 688           | U                | L                 | 85.4               | 11.7 | 2.9  |
| 2 .                                            |               |                  | CaAl <sub>2</sub> | 66.7               | 33.3 | 0    |
|                                                |               |                  | β                 | 40                 | 20   | 40   |
|                                                |               |                  | CaAl <sub>4</sub> | 80                 | 20   | 0    |
| $L \rightleftharpoons (Al) + \beta$            | 649           | e <sub>max</sub> | L                 | 97.96              | 0.65 | 1.39 |
| $L \rightleftharpoons (Al) + \beta + CaAl_4$   | 610           | Е                | L                 | 94                 | 5.4  | 0.6  |
|                                                |               |                  | (A1)              | 99.99              | 0    | 0.01 |
|                                                |               |                  | β                 | 40                 | 20   | 40   |
|                                                |               |                  | CaAl <sub>4</sub> | 80                 | 20   | 0    |
| $L \rightleftharpoons (Al) + (Si), \beta$      | 577           | D                | L                 | 87.9               | 0    | 12.1 |
|                                                |               |                  | (A1)              | 98.5               | 0    | 1.5  |
|                                                |               |                  | (Si)              | 0                  | 0    | 100  |
|                                                |               |                  | β                 | 40                 | 20   | 40   |

**Fig. 1:** Al-Ca-Si. The pseudobinaty section CaAl<sub>2</sub>Si<sub>2</sub> - Al



 $MSIT^{\circledR}$ 

**Fig. 2:** Al-Ca-Si. The pseudobinary section CaAl<sub>2</sub>Si<sub>2</sub> - Si



Fig. 3: Al-Ca-Si. Liquidus surface of the Al-rich corner (>80 at.% Al)



Landolt-Börnstein New Series IV/11A1  $\mathsf{MSIT}^{\circledR}$ 

Fig. 4: Al-Ca-Si. Isothermal section at 400°C; some tie lines above 33 at.% Ca are estimated. Equilibria with the phases  $\alpha$ , CaSi, and Ca<sub>3</sub>Si<sub>4</sub> are not given



**Fig. 5:** Al-Ca-Si. Calculated activities of Ca in the liquid phase at 1350°C and  $x_{Al} = x_{Si}$ 



 $\begin{array}{c} \text{Landolt-B\"{o}rnstein} \\ \text{New Series IV/11A1} \end{array}$