Algorithmique Parallèle

Sylvain Contassot-Vivier

Université de Lorraine, LORIA, France

Introduction

Introduction

Les ordinateurs permettent de résoudre efficacement de nombreux problèmes

Cependant, la demande est toujours plus importante quant à la complexité et la taille des problèmes à traiter!

- ⇒ Apparition très tôt du concept de *parallélisme* :
 - Exécuter plusieurs tâches en même temps
 - Existe à plusieurs niveaux :
 - Processeurs : unités de calcul, pipelines, multi-cœurs
 - Machines : machines parallèles et stations multi-processeurs (SMP)
 - Au-delà : grappes de machines (COW/NOW), grilles
 - Double intérêt :
 - Augmentation de la *puissance de calcul* (temps de calcul)
 - Augmentation de la *capacité de stockage* (taille de problème)

Plan

- Modèles de parallélisme et systèmes parallèles
 - Classifications de Flynn, Systèmes parallèles
- Évaluation du parallélisme
 - Accélération, travail, efficacité,...
- Modèles de programmation parallèle
 - Parallélisme de données, de contrôle, de flux
- Algorithmique parallèle
 - Programmation des systèmes à mémoire partagée
 - Programmation des systèmes à mémoire distribuée
- Équilibrage de charge
- Programmation GPU

Modèles de parallélisme

Plusieurs classifications possibles selon les critères utilisés

Celle de *Flynn* est sans doute la plus communément utilisée (instruction / données) :

- SISD (Single Instruction Single Data) :
 - Systèmes à processeurs scalaires séquentiels
- *SIMD* (Single Instruction Multiple Data) :
 - Systèmes à processeurs vectoriels : opérations sur vecteurs
 - Grand nombre de petites unités de calcul travaillant simultanément
- MISD (Multiple Instruction Single Data) :
 - Pas/peu de réalisations, champs d'application trop réduit
- MIMD (Multiple Instruction Multiple Data) :
 - SPMD (Single Program Multiple Data) : le plus utilisé
 - MPMD (Multiple Program Multiple Data): algorithmes collaboratifs, couplage de code...

Systèmes parallèles

Classification basée sur la dimension physique :

- Machines mono-processeur :
 - Stations de travail, PCs mais aussi machines à processeur vectoriel
- Machines parallèles :
 - Machines multi-processeurs à mémoire partagée ou distribuée
- Grappes locales :
 - Machines indépendantes connectées via un réseau local
- Grappes distribuées ou grilles :
 - Machines de l'un des types précédents reliées entre elles par le réseau global (Internet)

Le *type de mémoire* est important :

- Partagée ou Distribuée
 - ⇒ Influence directe sur la façon de programmer

Systèmes à mémoire partagée

Architecture:

 Unités de calcul reliées à une mémoire commune unique

Avantages :

- Pas de distribution des données
- Échanges d'informations entre les unités via la mémoire
 - ⇒ Implicites et rapides!

Inconvénients:

- Implique un réseau et une mémoire à large bande passante
- Gestion des accès concurrents (exclusion mutuelle)

Systèmes à mémoire distribuée

Architecture:

 Unités de calcul avec chacune une mémoire locale

Avantages :

- Pas d'accès concurrents à la mémoire
- Bande passante du réseau moins critique

Inconvénients:

- Implique une distribution des données
- Utilisation de messages explicites entre les unités

Grappes locales

Deux types:

- COWS/NOWS:
 - Utilisation de matériel issu de la production de masse (coût réduit)
- Systèmes intégrés :
 - Conçus par les grands constructeurs de machines
 - Matériel spécifique : racks, réseau optimisé (coût plus élevé)
 - Environnement logiciel (système, développement,...)

Avantages:

- Flexibilité de configuration
- Maintenance plus facile

Inconvénients:

 Réseau relativement lent (tend à se réduire)

Grilles

Interconnexion de systèmes géographiquement distants via le réseau global

Avantages:

 Puissance de calcul et capacité de stockage bien plus importants

Inconvénients:

- Impact plus important du réseau
- Gestion plus complexe
- Fiabilité
- Sécurité
- ...

Bilan

Systèmes parallèles de plus en plus *hiérarchiques* avec plusieurs niveaux de parallélisme

Typiquement, on a:

- Un ensemble de machines en réseau intégrant :
 - plusieurs processeurs :
 - multi-coeurs
 - avec pipelines internes
 - et éventuellement des accélérateurs de calcul :
 - GPU, FPGA,...
- ⇒ Une exploitation efficace doit donc tenir compte de *tous* ces étages et de leurs *spécificités* :
 - Mémoire partagée ou distribuée, architecture SIMD ou MIMD,...

Super-calculateurs

Liste mise à jour sur https://www.top500.org

 R_{max} and R_{peak} values are in PFlop/s. For more details about other fields, check the TOP500 description.

 $\mathbf{R}_{\mathsf{peak}}$ values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into account the Turbo CPU clock rate where it applies.

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/IsC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75	5,610

Les 4 plus puissants super-calculateurs en 2022 https://www.top500.org/lists/top500/list/2022/11/

Détail d'un nœud de Frontier

Composition d'un noeud du super-calculateur Frontier

parallélisme

Concepts algorithmiques du

Concepts algorithmiques

Au niveau algorithmique, on considère un système :

- avec un *nombre quelconque* d'unités de calcul (numérotées)
- sans hypothèse particulière sur l'architecture (selon contexte)

Élément algorithmique générique :

• Boucle spatiale :

```
pour cpt de déb à fin faire en parallèle
... // Instructions exécutées sur les unités entre déb et fin
fpour
```

- Les itérations de la boucle sont *distribuées* aux unités dont les numéros sont entre les indices déb et fin
- Le compteur cpt a une valeur différente pour chaque unité
- ⚠ En *mémoire distribuée*, les *variables* mises en jeu sont *locales* à l'unité qui effectue l'action!

Exemples

Exemple 1:

```
pour i de 0 à 99 faire en parallèle
tab[i] ← 0
fpour
```

- Mémoire partagée : initialisation parallèle du tableau tab à 0
- Mémoire distribuée : chaque unité modifie uniquement la case de tab d'indice son numéro, dans sa mémoire locale

Exemple 2:

```
pour i de 0 à 99 faire en parallèle
val ← 0
fpour
```

- Mémoire partagée : la valeur val est mise à 0 (la boucle est inutile)
- Mémoire distribuée : chaque unité affecte 0 à sa copie locale de val

Exécution parallèle différenciée

On peut exprimer des *tâches différentes* en parallèle en utilisant une boucle sur les unités de calcul et des tests sur les indices des unités

On peut aussi utiliser des si alors sinon à la place du selon que

Exclusion mutuelle

Parfois, les unités doivent exécuter des instructions de manière exclusive

Exemple de somme des éléments d'un tableau en mémoire partagée :

```
1 somme ← θ
2 pour i de θ à n-1 faire en parallèle
3 somme ← somme + tab[i] // Erreur → écritures simultanées dans somme
4 fpour
```

Éléments algorithmiques nécessaires pour gérer l'exclusion mutuelle :

- Opération atomique : ne peut être interrompue par un autre processus
 - Mécanismes au niveau matériel : Test_And_Set, Compare_And_Swap,...
- Section critique : bloc d'instructions protégé
 - Ne peut être exécuté que par une seule unité à la fois
- ⇒ On construit des sections critiques avec les opérations atomiques

L'algorithme de la boulangerie (Lamport) permet de réaliser des mutex sans opérations atomiques lorsque l'on a un nombre fixé d'unités

Verrous pour l'exclusion mutuelle

On utilise des verrous : éléments partagés à modifications exclusives

Initialisation d'un verrou :

- initVerrou(v) :
 - Initialise le verrou v dans l'état libre (non vérouillé)
 - Doit être exécutée par une seule unité

On définit deux *opérations atomiques* de modification de verrou :

- vérouille(v) :
 - Attend tant que le verrou v est vérouillé (non libre)
 - Vérouille l'accès à v dès qu'il est libre
- dévérouille(v) :
 - Libère l'accès à v
 - Doit être exécutée par l'unité qui a vérouillé v

On peut ajouter une opération classique de *test* :

- estVérouillé(v) :
 - Renvoie Vrai si le verrou n'est pas libre
 - Retourne le résultat immédiatement (non bloquant)

Retour sur la somme des éléments d'un tableau

Somme en mémoire partagée avec exclusion mutuelle :

```
initVerrou(v) // Initialisation du verrou

somme ← 0

pour i de 0 à n-1 faire en parallèle

vérouille(v) // Récupération du verrou : début de section critique

somme ← somme + tab[i] // Écriture exclusive dans somme

dévérouille(v) // Libération du verrou : fin de section critique

fpour
```

Déroulement :

- 1. Toutes les unités vont tenter de vérouiller v
- 2. *Une seule* va l'obtenir → les autres attendent
- 3. Après son calcul, l'unité qui a le verrou le libère
- 4. Une autre unité le prend, et ainsi de suite...
- 5. ...jusqu'à ce que toutes les unités aient exécuté leur calcul
 - ⚠ Blocages possibles si verrous mal utilisés!! ⚠
 - ⚠ Effet de séquentialisation des calculs si trop utilisé!! ⚠

Évaluation du parallélisme

Évaluation du parallélisme

Pour un algorithme parallèle donné, on considère :

- $T_1(n)$ = temps pour résoudre un problème de taille n sur 1 unité
- T_p(n) = temps pour résoudre le même problème sur p unités
 → c'est le temps maximal sur l'ensemble des unités!

Accélération:

$$S_p(n) = \frac{T_1(n)}{T_p(n)}$$

Au maximum elle est égale à p (problème totalement découplé)

Travail:

$$W_p(n) = p.T_p(n)$$

- Représente le potentiel de calcul des ressources monopolisées par l'algorithme
- Pas obligatoirement équivalent à l'utilisation réelle de ces ressources

Évaluation du parallélisme

Efficacité:

$$E_{p}(n) = \frac{T_{1}(n)}{W_{p}(n)} = \frac{S_{p}(n)}{p}$$

- Représente la part des ressources réellement utilisées par l'algorithme
- Ratio de la partie utilisée (bleue) sur la surface totale du rectangle

- Valeur entre 0 et 1 : 1 = 100% d'efficacité
- L'objectif est donc de *minimiser la partie inutilisée* (verte)

Remarques

∆ Une bonne accélération n'est pas synonyme d'efficacité!

Exemple : comparaison de deux exécutions parallèles

- $T_1(n) = 100$
- $T_4(n) = 50 \Rightarrow S_4(n) = 2 \Rightarrow W_4(n) = 200 \Rightarrow E_4(n) = 0.5$
- $T_8(n) = 33 \Rightarrow S_8(n) = 3 \Rightarrow W_8(n) = 264 \Rightarrow E_8(n) = 0,38$

S et E dépendent de n mais aussi de p!

On peut parfois avoir des résultats super-linéaires :

- Cela provient généralement de problèmes de cache mémoire
- Problème trop gros pour être stocké complètement sur peu de machines
- L'utilisation des caches externes ralentie l'exécution de l'algorithme
- Provoque une accélération supplémentaire dès que les caches ne sont plus utilisés lorsque le nombre de machines est suffisant
- Plus rarement, on peut avoir une économie d'instructions dans la version parallèle (notamment en calcul vectoriel)

Exemple de gain d'instructions

Algorithme séquentiel :

```
pour i de 0 à 99 faire // test de l'indice = 100 ops
tab[i] ← 0 // affectation = 100 ops
fpour // incrément de l'indice = 100 ops
```

Algorithme vectoriel (mémoire partagée) sur 100 unités :

```
pour i de 0 à 99 faire en parallèle // calcul de l'indice = 1 op tab[i] \leftarrow 0 // affectation case tableau = 1 op fpour // aucune opération = 0 op
```

On a donc:

- $T_1(A) = 300$ et $T_{100}(A) = 2$
- $\Rightarrow S_{100}(A) = \frac{300}{2} = 150$
- $\Rightarrow E_{100}(A) = \frac{150}{100} = 1, 5 > 1$, donc *super-linéaire*!

Courbes typiques pour des algorithmes linéaires

Exemple plus concret de super-linéarité

Contexte:

- Problème de taille n
- Algorithme A avec temps séquentiel en $\mathcal{O}\left(n^2\right)$
- P unités de calcul (bien inférieur à n)
- Décomposition en P parties de taille $\frac{n}{P}$
 - \Rightarrow Chaque partie est traitée en temps $\mathcal{O}\left(\frac{n^2}{P^2}\right)$
- Recomposition des résultats partiels en temps $\mathcal{O}\left(P.n\right)$

On a donc:

•
$$T_1(A) = n^2$$
 et $T_P(A) = \frac{n^2}{P^2} + P \cdot n$

$$\Rightarrow \frac{S_P(A)}{P^2} = \frac{n}{\frac{n}{P^2} + P} \rightarrow \frac{P^2}{P^2} \text{ quand } n >> P \text{ (\rightarrow 1 quand } P \approx n\text{)}$$

$$\Rightarrow \frac{E_P(A)}{P} \rightarrow \frac{P^2}{P} = \frac{P}{P}, \text{ donc super-linéaire !}$$

On peut alors introduire la notion d'efficacité quadratique $\frac{S_P(A)}{P^2}$

Relation entre n et P pour avoir accélération $\geq P$?

On déduit que
$$n \ge \left\lceil \frac{P^3}{P-1} \right\rceil \Rightarrow P = \left\lceil \frac{1}{\sqrt{n}} \right\rceil \text{ ou } \left\lceil \frac{\sqrt{n}}{N} \right\rceil - 1$$

Courbes pour l'exemple de l'algorithme quadratique

Résultats pour n=1000 :

- Accélération de 52.86 et efficacité de 4.06 pour 13 unités
- Accélération de 42.32 et efficacité de 5.29 pour 8 unités

Discussion sur la super-linéarité

En fait, cela dépend de ce que l'on évalue :

- Séquentiel vs Parallèle : meilleur algo dans chaque contexte
 - Identifier explicitement les différences algorithmiques/comportementales
 - ⇒ Super-linéarité possible
- Algo parallèle face à lui-même : qualité intrinsèque
 - Comparer le temps d'exécution parallèle sur p unités au temps de la simulation séquentielle de ce programme sur une seule unité
 - Si on ne tient pas compte des problèmes de mémoire, la simulation prendra au plus p fois le temps de l'exécution parallèle
 - ⇒ Accélération maximale égale à p
 - Exemple précédent du calcul vectoriel : Simulation séquentielle du programme vectoriel = 200 ops L'accélération est donc $\frac{200}{2}$ = 100 et l'on a bien une efficacité de 1
 - Comparaison des temps du même algo entre 1 et p unités :
 - ⇒ Loi de Amdahl

Loi de Amdahl

Souvent, on peut identifier deux parties distinctes dans un algorithme :

- Une partie *purement séquentielle* (non parallélisable) :
 - On lui associe un ratio (pourcentage) de l'algorithme complet : $0 \le R_s(n) \le 1$
- Une partie parallélisable :
 - Son ratio est égal à 1-R_s(n)
 (complémentaire de la partie séquentielle)

On a donc pour un problème de taille n :

- $T_s(n) = R_s(n) \cdot T_1(n)$ = temps de la partie purement séquentielle
- $T_{//}(n) = (1 R_s(n)).T_1(n) = \text{temps de la partie parallélisable}$
- $T_1(n) = T_s(n) + T_{//}(n) = R_s(n) \cdot T_1(n) + (1 R_s(n)) \cdot T_1(n)$

Et le *temps minimal théorique d'exécution* sur *p* unités est :

$$T_p(n) = T_s(n) + \frac{T_{//}(n)}{p} = \left(R_s(n) + \frac{1 - R_s(n)}{p}\right) \times T_1(n)$$

Loi de Amdahl (suite)

Ce qui donne :

$$\frac{S_{p}(n) = \frac{T_{1}(n)}{\left(R_{s}(n) + \frac{1 - R_{s}(n)}{p}\right) \times T_{1}(n)} = \frac{1}{R_{s}(n) + \frac{1 - R_{s}(n)}{p}}$$

$$\frac{E_{p}(n) = \frac{1}{p \times \left(R_{s}(n) + \frac{1 - R_{s}(n)}{p}\right)} = \frac{1}{1 + (p - 1) \times R_{s}(n)}$$

Et nous obtenons les limites suivantes :

$$\lim_{p \to \infty} S_p(n) = \frac{1}{R_s(n)}$$
 \Rightarrow pour $R_s(n) = 10\%$, on ne dépassera pas une accélération de 10

 $|E_p(n)| = 0$ | 1'efficacité devient nulle s'il y a une partie non parallélisable

Principe de Brent

Extension de la simulation séquentielle (sur 1 unité) :

- Simulation sur p unités d'un algorithme parallèle utilisant un nombre indéterminé d'unités :
 - Algorithme A avec coût séquentiel C_1 et temps parallèle T_{∞}
 - Il est possible de simuler A sur p unités identiques en :

$$\left[T_p = \mathcal{O}\left(\frac{C_1}{p} + T_{\infty}\right)\right]$$

- Comment?
 - À chaque instant i, A exécute $C_1(i)$ opérations : $C_1 = \sum_{i=1}^{T_{\infty}} C_1(i)$
 - Chaque instant est simulé sur p unités en $\left\lceil \frac{C_1(i)}{p} \right\rceil \leq \frac{C_1(i)}{p} + 1$
 - Si l'on somme les instants, on retrouve le résultat
- ⇒ *Prédiction des performances* lorsque l'on réduit l'ordre de grandeur du nombre d'unités

Grain et degré de parallélisme

Grain:

- Taille moyenne des tâches élémentaires du processus parallèle
- Choix lié à l'architecture cible :
 - Échelle : bit, opérateur, expression, instruction, fonction, programme
 - Grain fin : généralement SIMD en mémoire partagée
 - Gros grain : généralement MIMD en mémoire distribuée
- Plusieurs grains possibles dans un même algo (hiérarchie)

Degré :

- Mesure le nombre d'opérations possibles simultanément (≥ 1)
- Peut varier pendant le déroulement du programme (notion de parties distinctes avec degrés différents)
- Les parties de degré 1 représentent la part purement séquentielle
- ⇒ Notions de degré min, max et moyen
 - Donne une information sur le nombre d'unités à utiliser et permet d'évaluer la performance selon le nombre d'unités

Interprétation du degré

Considérons un programme parallèle décomposable en n parties de degrés respectifs d_i et de temps d'exécution t_i tel que : $T_1 = \sum_{i=1}^n d_i t_i$

On a alors:

$$S_p = \frac{\sum_{i=1}^n d_i t_i}{\sum_{i=1}^n \left[\frac{d_i}{p}\right] t_i}$$

Si $p \ge \max_i d_i$ alors on a l'accélération maximale $S_p = \frac{\sum_{i=1}^n d_i t_i}{\sum_{i=1}^n t_i}$

$$S_p = \frac{\sum_{i=1}^n d_i t_i}{\sum_{i=1}^n t_i}$$

Mais cela ne correspond pas obligatoirement à l'efficacité maximale

Exemple: programme en 3 parties

$$\begin{array}{c|cccc} d_i & 2 & 7 & 3 \\ \hline t_i & 5 & 20 & 7 \\ \end{array}$$

Calculer le nombre d'unités donnant la meilleur efficacité

Interprétation du degré

Exemple : programme en 3 parties

di	2	7	3	
ti	<i>t_i</i> 5		7	

Évolution des performances en fonction du nombre d'unités :

nb unités	1	2	3	4	5	6	7	8	9
temps	171	99	72	52	52	52	32	32	32
accélération	1	1,73	2,38	3,29	3,29	3,29	5,34	5,34	5,34
efficacité	1	0,86	0,79	0,82	0,66	0,55	0,76	0,67	0,59

Courbes de performances

Indices globaux

Modèles de programmation

parallèle

Modèles de programmation parallèle

Parallélisme de données : data parallelism

- Distribution des données dans le système
- Exploite généralement la régularité des données
- Application d'un même calcul à des données différentes

Parallélisme de contrôle ou de tâches : control/task parallelism

- Décomposition/Distribution des calculs dans le système
- Chaque unité calcule une partie du résultat attendu
- Les données peuvent être dupliquées

Parallélisme de flux : pipeline

- Découpage d'un traitement en tâches successives : travail à la chaîne
- Les tâches doivent avoir des durées les plus proches possibles

Mixage des schémas précédents :

- Répartition des calculs et des données dans le système
- Gestion généralement plus complexe (traitements supplémentaires)

Exemple comparatif

Calcul de *n* valeurs d'un polynôme donné :

```
pour i de 0 à n-1 faire
v[i] ← a + b.x[i] + c.x[i]^2 + d.x[i]^3 + e.x[i]^4 + f.x[i]^5
fpour
```

Parallélisme de données : plutôt sur machines SIMD

```
pour i de 0 à n-1 faire en parallèle
v[i] \( \tau \) + b.x[i] + c.x[i]^2 + d.x[i]^3
+ e.x[i]^4 + f.x[i]^5

fpour
```


- Nécessite *n* unités au plus : au-delà, ça ne sert à rien!
- Si l'on a moins de n unités, chacun calcule plusieurs v[i]
- ⇒ Attribuer des paquets de données à chaque unité :

Exemple pour n = 20 et p = 3, les calculs pourront être répartis en :

- P0 : v[0] à v[6] (7 éléments)
- $\bullet \ \ \mathsf{P1} : \mathsf{v[7]} \ \mathsf{\grave{a}} \ \mathsf{v[13]} \ \mathsf{(7} \ \mathsf{\acute{e}l\acute{e}ments)}$
- P2 : v[14] à v[19] (6 éléments)

si $n\%p \neq 0$, chaque unité traite

$$\left[\frac{n}{p}\right]$$
 ou $\left[\frac{n}{p}\right]$ éléments

Exemple comparatif

Parallélisme de tâches : plutôt sur machines MIMD

• Réécriture du polynôme, par exemple :

```
v[i] = (a + b.x[i]) + c.x[i]^2 + x[i]^3 . ((d + e.x[i]) + (f.x[i]^2))
```

Menant à l'algorithme suivant :

```
pour i de 0 à n-1 faire
     pour p de 1 à 5 faire en parallèle
3
      selon que p est :
       1 : p1 ← a + b.x[i]
        2: p2 \leftarrow c.x[i]^2
       3: p3 \leftarrow x[i]^3
        4: p4 \leftarrow d + e.x[i]
       5 : p5 ← f.x[i]^2
9
       fselon
10
     fpour
     v[i] \leftarrow p1 + p2 + p3.(p4 + p5)
11
12
   fpour
```


- Parallélisme limité à 5 unités dans ce cas là
- Souvent nécessaire de fusionner les résultats partiels ⇒ synchro!
 - Important d'avoir des tâches de durées identiques (même complexité)

Exemple comparatif

Parallélisme de flux : pipeline

• Réécriture sous forme d'une *composition de fonctions* :

$$f_1(x) = (x, f + x.0), f_2(x, y) = (x, e + x.y), f_3(x, y) = (x, d + x.y)),$$

 $f_4(x, y) = (x, c + x.y), f_5(x, y) = (x, b + x.y), f_6(x, y) = a + x.y$

Menant au calcul suivant pour chaque v[i] :

$$v[i] \leftarrow f_6(f_5(f_4(f_3(f_2(f_1(x[i]))))))$$

- Chaque fonction correspond à une étage du pipeline (une étape)
- Il y a plusieurs phases de fonctionnement :
 - Remplissage : remplissage de tous les étages du pipeline
 - Régime plein : tous les étages sont actifs
 - Vidage : fin du flux de données
- Degré de parallélisme donné par le nombre d'étages
- Efficacité maximale lorsque les f_i ont toutes la *même durée*

Exemple de fonctionnement avec 8 données

Parallélisme de données

```
\alpha-notation : \alpha(opérateur, v1, v2)
```

- Opérateur k-aire appliqué à k vecteurs en parallèle
- Idéalement, une unité calcule un élément du vecteur résultat
- Vérifie les *conditions de Bernstein* (indépendance entre les calculs) :
 - $L(C_1) \cap E(C_2) = \emptyset$ avec L(A) = variables lues pendant A
 - $E(C_1) \cap L(C_2) = \emptyset$ et E(A) = variables modifiées pendant A
 - $E(C_1) \cap E(C_2) = \emptyset$

β -réduction logarithmique : β (opérateur, v)

- Issue de la β -réduction :
 - Fonction binaire appliquée successivement aux éléments d'un vecteur
 - Pas directement parallèle mais utile avec les fonctions associatives
- ⇒ Succession de regroupements par couples distincts : *arbres binaires*
 - Réduction par 2 à chaque étape du nombre de données à traiter
 ⇒ O (log₂(n)) étapes pour traiter n données

Exemple de somme

Principe de Brent appliqué à la réduction

- Coût séquentiel : $\mathcal{O}(n)$
- Temps parallèle : $\mathcal{O}(\log(n))$
- Nombre d'unités : $\mathcal{O}(n)$
- Même temps parallèle avec moins de $\mathcal{O}(n)$ unités?
- Avec p unités, on a $T_p = \mathcal{O}\left(\frac{n}{p} + log(n)\right)$
- En choisissant $p = \frac{n}{\log(n)}$, on obtient $T_p = \mathcal{O}(\log(n))$
- On peut donc avoir des temps d'exécution de même complexité avec moins d'unités!!
- ⇒ Améliore l'efficacité du parallélisme (lorsque non maximale)

Exercice

Multiplication de matrices : $A(m, l) \times B(l, n)$

```
pour i de 0 à m-1 faire
pour j de 0 à n-1 faire

C[i][j] ← 0
pour k de 0 à l-1 faire

C[i][j] ← C[i][j] + A[i][k] * B[k][j]

fpour
fpour
fpour
```

Version parallèle avec les fonctions lig(M, num) et col(M, num)

```
pour i de 0 à m-1 faire en parallèle pour j de 0 à n-1 faire en parallèle  C[i][j] \leftarrow \beta(+,\alpha(\times,\, \text{lig}(A,i),\, \text{col}(B,j)))  fpour fpour
```

Évaluation

Complexités:

• Version séquentielle : m.n.l(x) + m.n.l(+)• Version parallèle : $1(x) + \lceil log_2(l) \rceil(+)$ \Rightarrow Accélération supérieure à m.n!

Surface :

- Version séquentielle : 1
- Version parallèle : m.n.l

 $Si \times \approx + \text{ alors efficacit\'e} : \frac{2}{\lceil log_2(I) \rceil + 1}$

→ Efficacité décroît rapidement quand / augmente!

Avec le principe de Brent

Si on applique le principe de Brent, on peut utiliser moins d'unités :

• Surface :
$$m.n.\frac{l}{\lceil log_2(l) \rceil} = \frac{m.n.l}{\lceil log_2(l) \rceil}$$

• Temps :
$$\frac{l}{\frac{l}{\lceil \log_2(l) \rceil}} + \lceil \log_2(l) \rceil \approx \lceil \log_2(l) \rceil + \lceil \log_2(l) \rceil = 2 \cdot \lceil \log_2(l) \rceil$$

• Accélération :
$$\frac{2.m.n.l}{2.\lceil log_2(l) \rceil} = \frac{m.n.l}{\lceil log_2(l) \rceil}$$

• Efficacité :
$$\frac{m.n.l}{\lceil log_2(l) \rceil} \times \frac{\lceil log_2(l) \rceil}{m.n.l} = 1$$

 \Rightarrow On retrouve une efficacité maximale en utilisant $\frac{1}{\lceil \log_2(I) \rceil}$ unités!

Autres variantes

Parallélisme de données seul :

- Complexité : *I* (×) + *I* (+)
- Surface : m.n unités
- Accélération : m.n
- Efficacité: 1

Mixage sans la β-réduction :

- Complexité : 1 (×) + / (+)
- Surface : m.n.l unités
- Accélération : $\frac{2.m.n.l}{1+l}$
- Efficacité : ²/₁₊₁
- ⇒Pas intéressant!

Parallélisme de tâches seul :

- Complexité : $m.n.(1 (\times) + log_2(l) (+))$ $/ m.n.(log_2(l) (\times) + log_2(l) (+))$
- Surface : I unités $\frac{I}{log_2(I)}$ unités
- Accélération : $\frac{2.l}{1+log_2(l)}$ / $\frac{l}{log_2(l)}$
- Efficacité : $\frac{2}{1+log_2(I)}$ / 1

${\it Mixage}$ sans I'lpha-multiplication :

- Complexité : $I(x) + log_2(I)(+)$
- Surface : m.n.l unités $/\frac{m.n.l}{log_2(l)}$ unités
- Accélération : $\frac{2.m.n.l}{l+log_2(l)}$
- Efficacité : $\frac{2}{I + log_2(I)} / \frac{2 \cdot log_2(I)}{I + log_2(I)}$
- ⇒Pas intéressant!
- ⇒ Toujours préférable d'utiliser au maximum les unités disponibles!

Répartition des données

La *répartition de données* correspond à l'affectation des données aux unités de calcul

En mémoire partagée :

- On peut autoriser qu'une même donnée soit lue par n'importe quelle unité
- Il faut s'assurer qu'une donnée n'est modifiée que par une seule unité!
- ⇒ La répartition indique quelle unité a le droit d'écrire dans quelle donnée

En mémoire distribuée :

- Les données ne peuvent pas toujours être stockées entièrement dans chaque nœud
- ⇒ La répartition indique comment on distribue les données (lues et écrites) sur les nœuds

Répartitions classiques

Pour *n* données et *P* unités :

- Blocs:
 - Si n%P = 0 alors les données i du bloc b vérifient $b \cdot \frac{n}{P} \le i \le (b+1) \cdot \frac{n}{P}$
 - Sinon, il faut répartir le *reste* sur les premières ou dernières unités

- Cyclique:
 - Les données du bloc b vérifient i%P = b
 - Équilibre implicite!
- Blocs cycliques:
 - Les données du bloc b de taille k vérifient $\left\lfloor \frac{i}{k} \right\rfloor \% P = b$
 - Déséquilibre possible selon le choix de k!

Répartitions spécifiques

Dictées par les *dépendances* entre les données

Exemple:

⇒ Pour limiter les attentes, il faut *minimiser les dépendances* entre unités (unité qui utilise des données modifiées par d'autres unités)

La répartition s'exprime par une *sélection des données* en fonction du numéro d'unité via des tests ou des boucles

```
pour p de 0 à P-1 faire en parallèle
pour i de p.n/(2.p) à (p+1).n/(2.p) faire

a[i] ← f(i)
a[n-1-i] ← f(n-1-i)
b[i] ← a[i] + a[n-1-i]
b[n-1-i] ← b[i]
fpour

fpour
```

Bilan du parallélisme de données

Lié aux structures de données régulières :

- Degré de parallélisme potentiellement très élevé
- Identification relativement aisée du parallélisme

Mais:

- Les dépendances entre données détériorent le degré de parallélisme
- Le *degré* peut varier fortement entre les parties d'un algorithme :
 - Bonnes accélérations mais efficacité moyenne
- Coût important en ressources matérielles (unités)
- Souvent limité au traitement de données statiques :
 - Moins adapté aux données dynamiques

Parallélisme de tâches

Le principe est de découper les calculs en tâches à faire en parallèle

Critères importants :

- Grain:
 - Dépend de l'architecture cible
 - Prise en compte des transferts de données (mémoire distribuée)
 - Et des durées des tâches obtenues
- Dépendances entre tâches : DAG
 - Analyser les dépendances pour déduire les tâches simultanées
 - Choix du placement des tâches sur les unités (ordonnancement)
 - Démarrer les tâches le plus tôt possible
 - Prendre en compte les communications éventuelles

Exemple

Une façon simple (non optimale) est d'identifier des groupes de tâches exécutables en parallèle :

- 1. Tâches sans dépendances
- 2. Tâches avec dépendances satisfaites
- → Contraintes d'ordre entre les groupes :
 - (T_1, T_2, T_6) avant (T_3, T_4, T_5) avant (T_7)
- \Rightarrow Bien si les tâches d'un même groupe ont des durées proches

On peut être plus précis si on a une estimation de la durée des tâches

Exemple selon le nombre d'unités :

- 1 unité : T_1 , T_2 , T_3 , T_4 , T_5 , T_6 , T_7
- 2 unités : $(T_1, T_2), (T_3, T_4), (T_5, T_6), (T_7)$
- 3 unités : $(T_1, T_2, T_6), (T_3, T_4, T_5), (T_7)$
- 4 unités : $(T_1, T_2), (T_3, T_4, T_5, T_6), (T_7)$
- 5 unités et plus : pas mieux car pas plus de 4 tâches indépendantes

Ordonnancement

Problème *difficile* ⇒ recours à des *heuristiques*

On arrive parfois à trouver des heuristiques proches de l'optimal

Cas simple : tâches *indépendantes* sur unités identiques

Algorithme de liste :

• On place la tâche suivante sur la première ressource libre

Efficacité de l'algorithme de liste

Compétitivité d'une heuristique :

 Rapport entre la valeur de la solution produite par l'heuristique et la solution optimale

Théorème de Graham (1966)

Théorème 1. Pour un ensemble de tâches indépendantes à placer sur P unités, tout algorithme de liste a un rapport de compétitivité inférieur ou égal à $2 - \frac{1}{P}$.

Retrouver ce résultat schématiquement :

Schéma de preuve

On construit une *configuration* dont on connaît une solution *optimale*:

- *n* − 1 tâches :
 - ullet placées de manière optimale sur P-1 unités avec un temps total t_o
 - placées de manière optimale sur P unités avec un temps total $\frac{(P-1).t_0}{P}$
- 1 tâche de durée t_o

On déduit la *pire configuration* produite par l'algorithme de liste :

• Placer la tâche longue en dernier

$$\Rightarrow$$
 Temps total : $\frac{(P-1).t_o}{P} + t_o = \frac{(2P-1).t_o}{P}$

Le rapport entre le pire cas et l'optimal est : $\frac{(2P-1).t_o}{P.t_o} = \left(2 - \frac{1}{P}\right)$

Bilan du parallélisme de tâches

Lié aux tâches indépendantes dans les calculs :

- Le degré de parallélisme dépend de ce nombre de tâches
- Approche plus souple que pour les données :
 - Les tâches peuvent être différentes
 - Les données peuvent être dynamiques

Mais:

- Le *degré* reste souvent limité
- L'identification du parallélisme est moins aisée

Souvent utilisé en combinaison avec le parallélisme de données → mixage

- Exemple de la multiplication de matrices :
 - Parallélisme de données sur l'ensemble des C[i][j]
 - Parallélisme de tâches pour le calcul de chaque C[i][j]

Parallélisme de flux

Décomposition des calculs en tâches successives :

• Le résultat d'une tâche est la donnée de la tâche suivante

Accélération idéale pour n données, k étages et temps t par étage :

- Temps séquentiel : n.k.t
- Temps parallèle :
 - Traversée de la 1ère donnée = k.t
 - Traversée des autres données = (n-1).t
- Accélération :

$$S_k(n) = \frac{n.k.t}{k.t + (n-1).t} = \frac{n.k}{k+n-1} \Rightarrow \underbrace{\lim_{n \to \infty} S_k(n) = k}$$

Utilisation principale au niveau matériel :

• Séquenceur d'instruction, pipeline graphique,...

Déroulement

Déroulement avec E_2 2 fois plus long que E_1 et E_3

Étages de durées différentes

Difficile de découper en blocs de même durée :

- k étages de durées respectives t_i , $1 \le i \le k$
- Synchronisation entre chaque étage
- Délai de sortie en régime plein : $\max_{1 \leq i \leq k} t_i$

L'accélération devient :

$$S_k(n) = \frac{n \sum_{i=1}^k t_i}{\sum_{i=1}^k t_i + (n-1) \cdot \max_{1 \le i \le k} t_i} \quad \Rightarrow \quad \boxed{\lim_{n \to \infty} S_k(n) \le k}$$

Duplication des étages :

- Exemple avec $t_2 = 2.t_1 = 2.t_3$
- ⇒ Dupliquer les étages plus longs et alterner l'utilisation

Université de Lorraine - Algorithmique Parallèle - S. Contassot-Vivier

Déroulement

Utilisation dans les réseaux

Le *traitement* est le transfert d'un message de Source à Destination en passant par P liens successifs (P-1 nœuds intermédiaires)

Le découpage des messages en paquets et la retransmission à la volée permettent de décomposer le traitement en P parties successives \Rightarrow pipeline à P étages

Exemple avec message de longueur L et P liens successifs de débit D:

- Sans découper le message, on doit le recevoir en entier sur chaque routeur avant de le transmettre \Rightarrow délai total $=\frac{P.L}{D}$
- Si on découpe le message en k parties, on a :
 - Délai d'acheminement du 1er paquet : $\frac{P.L}{k.D}$
 - Délai d'acheminement des paquets suivants : $\frac{(k-1).L}{k.D}$
 - \Rightarrow Délai total : $\frac{(P+k-1).L}{k.D}$
- Lorsque k est suffisamment grand, le délai tend vers $\frac{L}{D}$
- ⇒ Division par P du temps de transfert!

Bilan du parallélisme de flux

Lié à l'enchaînement de tâches :

- Permet de traiter efficacement un flot de données
- Adapté au calcul vectoriel et aux circuits électroniques

Mais:

- Lorsque les données sont entièrement disponibles
 - ⇒ Parallélisme de données peut être préférable
- Le découpage en tâches de durées identiques n'est pas aisé :
 - Duplication éventuelle des étages plus longs

Surtout utile lorsque:

- Le flot de données est séquentiel
- Les tâches sont similaires ou de même durée

Programmation des systèmes à

mémoire partagée

Programmation des systèmes à mémoire partagée

Principaux contextes de mémoire partagée :

- Machines multi-processeurs
- Processeurs multi-cœurs
- GPUs, Xeon-Phi

Utilisation de threads :

- Processus légers :
 - Partagent la mémoire du processus père
 - Peuvent être exécutés sur n'importe quel cœur
- Programmation directe :
 - Lourd et pas toujours efficace (optimisation)
- ⇒ Utilisation de bibliothèques spécifiques : OpenMP
 - Directives de compilation : #pragma omp ...
 - Enrichit un code séquentiel : deux versions en une!

Principes de base d'OpenMP

Utiliser des *threads* selon le *degré* de chaque partie d'un algorithme

On peut partir d'un algorithme séquentiel :

- Parallélisation progressive (partie par partie)
- Validation possible après chaque partie parallélisée

Mais il est parfois nécessaire de *ré-organiser l'algorithme* initial pour obtenir une version parallèle efficace

Syntaxe et sémantique

```
int main()
           // Partie séquentielle
 #pragma omp parallel num threads(3)
             // Création de 3 threads
             // Duplication du code sur 3 threads
   #pragma omp sections
             // Distribution de travail
     #pragma omp section
        ... // Travail effectué par 1 seul thread
      #pragma omp section
        ... // Travail effectué par 1 autre thread
             // Retour au séquentiel
```


API de OpenMP

Ensemble de fonctions accessibles via :

```
#include<omp.h>
```

Pour:

• Obtenir des informations :

```
int omp_get_num_threads() // nombre de threads actifs
int omp_get_thread_num() // numéro du thread courant
double omp_get_wtime() // horloge (secondes)
```

Effectuer des réglages :

```
void omp_set_num_threads(...) // règle le nombre de threads à créer
```

• Gérer des verrous :

```
void omp_init_lock(...) // initialise un lock
void omp_set_lock(...) // demande le lock (bloquant)
void omp_unset_lock(...) // libère le lock
int omp_test_lock(...) // demande non bloquante de lock
void omp_destroy_lock(...) // destruction du lock
```

Directive de boucle

Répartition des itérations d'une boucle sur les threads

```
#pragma omp parallel
{
    ...
    #pragma omp for [clause,...]
    for(i=0; i<100; i++){
        a[i] = 0;
    }
    ...
}</pre>
```


La clause optionnelle permet de gérer les variables partagées :

- private(var):
 - Une copie *privée* de var pour chaque thread
 - Spécification de l'initialisation et de la valeur finale (après la boucle)
- shared(var):
 - var est la *même* variable pour *tous* les threads
 - ⚠ Attention à la cohérence des manipulations!!
 - Mode par défaut modifiable : default(none) / default(private)

Ordonnancement statique

```
#pragma omp for schedule(static, taille)
for(i=0; i<50; i++){
  mon_calcul(i);
}</pre>
```

La clause schedule(static,...) réalise une distribution par blocs de la taille spécifiée :

- C'est le mode par défaut
- Si pas de taille, nombre d'itérations divisé par nombre de threads
- L'affectation des blocs suit
 l'ordre cyclique des threads
- → Bien si itérations avec coût similaires

Déséquilibre possible sinon :

 Itérations avec coûts croissants, exécutées sur 4 cœurs

Ordonnancement dynamique

```
#pragma omp for schedule(dynamic, taille)
for(i=0; i<50; i++){
  mon_calcul(i);
}</pre>
```

La clause schedule (dynamic,...) réalise une distribution à la volée de blocs d'itérations de la taille spécifiée (1 par défaut) :

- Chaque bloc d'itérations est attribué au premier thread disponible
- Surcoût dû à la gestion dynamique
- Risque de ralentissement si itérations similaires
- → Bien si itérations avec coût différents

Équilibrage implicite :

 Itérations avec coûts croissants, exécutées sur 4 cœurs

Gestion des blocs d'instructions

Plusieurs directives pour gérer l'exécution des blocs d'instructions :

- single:
 - Le bloc est exécuté par un seul thread
 - Les autres threads attendent la fin de l'exécution (synchronisation)
 - Utile pour éviter les interruptions de sections parallèles (coûteux)
- master :
 - Le bloc est exécuté uniquement par le maître (thread 0)
 - Pas de synchronisation avec les autres threads
- critical (ou atomic pour une seule instruction):
 - Le bloc est exécuté par tous les threads, mais un seul à la fois
 - Utile pour gérer l'exclusion mutuelle
- barrier:
 - Synchronisation explicite entre les threads
 - Il y en a aussi à la fin des directives parallel, sections, single
 - Utile pour assurer la cohérence entre des calculs consécutifs

Illustrations

```
#pragma omp parallel
{
   int num = omp_get_thread_num();
   int nbT = omp_get_num_threads();
   printf("Thread_%d_parmi_%d\n", num, nbT);

// Partie séquentielle
#pragma omp single
{
   printf("Thread_%d_seul\n", num);
}

printf("Thread_%d_parmi_%d\n", num, nbT);
}
```

```
#pragma omp parallel
{
   int num = omp_get_thread_num();
   int nbT = omp_get_num_threads();

   printf("Thread_%d_parmi_%d\n", num, nbT);

// Partie séquentielle
#pragma omp master
{
    printf("Thread_%d_seul\n", num);
}

   printf("Thread_%d_parmi_%d\n", num, nbT);
}
```

Réduction et tâches

La clause reduction :

- Applicable aux directives parallel, sections, for
- 1er paramètre : opération de réduction (+, ×, min, max, &, |,...)
- 2nd paramètre : liste des variables (partagées) à réduire

Création dynamique de tâches : #pragma omp task

- Le bloc associé peut être exécuté par le thread propriétaire ou un autre thread disponible dans la section parallèle courante
- Utile pour distribuer des tâches créées dynamiquement
- Souvent, un seul thread crée les tâches :
 - Utilisation de task dans une section single
 - Initialisation → création des tâches → attente éventuelle (taskwait)

Toujours préférable d'utiliser la directive for quand cela est possible

Illustrations

```
int cumul = 0;

#pragma omp parallel
{
    #pragma omp for reduction(+:cumul)
    for(int i=0; i<N; ++i){
        cumul++;
    }
}

printf("Cumul<sub>u</sub>=u%d\n", cumul);
```

```
#pragma omp parallel
{
    #pragma omp single
    {
        printf("Fibonacci(%d)u=u%d\n", n, fibo(n));
     }
}
```

```
int fibo(int n)
{
   if ( n == 0 || n == 1 ) { return n; }
   int fnml, fnm2;

   #pragma omp task shared(fnm1)
   fnm1 = fibo(n-1);

   #pragma omp task shared(fnm2)
   fnm2 = fibo(n-2);

   #pragma omp taskwait
   return fnm1 + fnm2;
}
```

Condition et désynchronisation

Parallélisme conditionnel: #pragma omp parallel if(condition)

- Crée les threads seulement si la condition est vérifiée
 Sinon, le bloc est exécuté par le processus principal →séquentiel
- La création des threads a un coût!
 - ⇒ Pas intéressant si pas assez de calculs à effectuer
 - On risque d'avoir gain(parallélisme) < surcoût(parallélisme)
- La condition porte souvent sur le nombre de données à traiter
- Le réglage nécessite de connaître les performances du système cible
 - Performance théorique, tests de référence, mesures dynamiques

Désynchronisation : nowait

- Clause optionnelle de certaines directives
- Supprime les synchronisations implicites en fin de bloc
- Utile pour ne pas bloquer les threads lorsque ça n'est pas nécessaire

Illustrations

```
#pragma omp parallel if(N > 10000)
{
    #pragma omp for
    for(int i=0; i<N; ++i){
        tab[i] = f(i);
    }
}</pre>
```

```
#pragma omp parallel
{
    #pragma omp for nowait
    for(int i=0; i<N; ++i){
        a[i] = f(i);
    }

    #pragma omp for
    for(int i=0; i<N; ++i){
        b[i] = g(i); // a[] n'intervient pas
    }
}</pre>
```

Exemple du calcul de π

Calcul de π par la *méthode des trapèzes* :

- nbTr est le nombre de trapèzes utilisés
- dx = 1/nbTr est la largeur de chaque trapèze


```
pi = 0.5; // (f(0.0) + f(1.0)) / 2.0
#pragma omp parallel for private(x) reduction(+:pi)
for(i=1; i<nbTr-1; i++){
    x = dx * i;
    pi += sqrt(1.0 - x * x);
}
pi = 4.0 * dx * pi;
printf("L'approximation_de_PI_est_:_%f\n", pi);</pre>
```

Bilan sur la programmation en mémoire partagée

Points forts:

- Déduction rapide d'une version parallèle à partir d'une version séquentielle
 - ⇒ Efficace si les calculs sont *réguliers* et indépendants
 - Parfois nécessaire de ré-agencer les calculs pour mieux paralléliser
- Possible de concevoir des algorithmes parallèles directement
- Développement progressif permettant la validation par étapes
- Peut être utilisé sur la plupart des matériels informatiques :
 - Machines multi-cœurs : ordinateurs, téléphones, tablettes,...

Points faibles:

- La gestion des accès concurrents est délicate et peut limiter l'efficacité
- Le *nombre d'unités* de calcul est limité à quelques dizaines
- La vitesse d'accès à la mémoire et sa quantité peuvent être limitant
- ⇒ Le recours à un parallélisme de *plus grande échelle* est souvent nécessaire
 - Systèmes à mémoire distribuée, parallélisme multi-niveaux

Programmation des systèmes à

mémoire distribuée

Programmation des systèmes à mémoire distribuée

Principaux contextes de mémoire distribuée :

- Machines indépendantes en réseau, super-calculateurs
- ⇒ Pas de synchronisation implicite globale!

Utilisation de *messages explicites* via des communications :

- Point à point :
 - Entre deux machines identifiées (source, destination)
 - *Synchrones*: avec rendez-vous (attente) entre les machines
 - Asynchrones: sans rendez-vous (bloquantes ou non bloquantes)
- Communications globales :
 - *one-to-all* : diffusion ou distribution
 - all-to-one : réduction ou rassemblement
 - all-to-all: multi-diffusion, multi-distribution,...
 - synchronisation : pas d'échange de données

Communications point-à-point

Deux fonctions:

- *Envoi*: send(données, taille, dest, type)
 - données : tableau contenant les données à envoyer
 - taille : taille des données à envoyer (en unités d'info)
 - dest : numéro de la machine destinataire
 - type : entier permettant d'appliquer un filtrage en réception
- *Réception* : recv(données, taille, src, type)
 - données : tableau où l'on stocke les données à recevoir (déjà alloué)
 - taille : taille des données à recevoir (en unités d'info)
 - src : numéro de la machine qui envoie les données
 - type : sélection du message selon l'entier spécifié

Communications FIFO:

- Entre une source et un destinataire, l'ordre des réceptions sur le destinataire, respecte l'ordre des envois de la source
- ⇒ Pas de croisement!

Indéterminisme induit par les délais de communication

Les délais de communication peuvent modifier l'ordre des réceptions

Exemple:

- 3 machines avec P_0 qui envoie des données à P_1 et P_2
- Quand P2 reçoit les données, il doit envoyer des résultats à P1
- Quand P_1 reçoit les données de P_0 , il attend les données de P_2

 \Rightarrow P_1 peut recevoir les résultats de P_2 avant les données de P_0 !

Gérer l'ordre des messages

Mémoriser les messages reçus :

- Selon leur source et leur numéro d'envoi
- Lors d'une réception, on récupère le message correspondant au numéro d'envoi suivant
- ⇒ Peut être coûteux en mémoire si fréq_{arr} > fréq_{rec}!
 - Parfois nécessaire de *jeter* des messages

Imposer des synchronisations explicites :

- Communications synchrones
- Barrières de synchronisation
- ⇒ Généralement coûteuses en temps!

Modes de communication

Synchrone: ssend et srecv

- Opérations simultanées d'envoi et de réception
 - Similaire au téléphone
 - Les deux intervenants doivent être prêts à communiquer (rendez-vous)
 - Après l'envoi, l'émetteur est sûr que le destinataire a reçu

P_1 P_2

Asynchrone:

- Réception *dissociée* de l'envoi :
 - Similaire au courrier (postal/électronique)
 - Attente éventuelle du côté récepteur
 - L'émetteur ne sait pas quand le destinataire reçoit les données
 - Acquittement possible pour avoir confirmation

Modes asynchrones bloquant et non bloquant

Mode bloquant: bsend et brecv

- Attente de la fin de l'opération de communication
- La fin de l'envoi sur la source n'implique pas que les données sont reçues sur le destinataire

P_1 P_2

Mode non bloquant : nsend et nrecv

- Pas d'attente de la fin de la communication
 - Déléguée à l'interface réseau
 - Capacités matérielles nécessaires : calculs et communications
- Permet de faire du recouvrement calculs/communications
- Contrôle plus délicat :
 - Assurer la *cohérence* des opérations
 - Fonctions comDone et comWait

Fonctions du mode non bloquant

Les fonctions nsend et nrecv retournent un identifiant de requête

Test de la terminaison d'une communication : comDone (id)

• Retourne Vrai si la communication id est finie et Faux sinon

Attente de la terminaison d'une communication : comWait(id)

• Bloque le processus tant que la communication id n'est pas finie

Lien entre les modes :

L'intérêt est d'intercaler des calculs entre le nsend et comWait

 \Rightarrow Gain de temps!

Exemple avec la multiplication de matrices

Calcul de $C = A \times B$ avec A(m, l) et B(l, n) sur P machines :

- Les machines sont organisées en anneau de M_0 à M_{P-1}
- Décomposition de A en P bandes horizontales
- Décomposition de B en P bandes verticales
- Décomposition de C en $P \times P$ blocs
- Chaque machine $k (0 \le k \le P 1)$:
 - Conserve la bande k de B en mémoire
 - Conserve les blocs de la colonne k de C en mémoire
 - Démarre avec la bande k de A en mémoire
- À chaque itération i $(0 \le i \le P 1)$, la machine k:
 - Calcule le bloc de C associé aux bandes k + i de A et k de B
 - Envoie la bande k + i de A à la machine suivante (cyclique)
 - Reçoit la bande k + i 1 de A de la machine précédente (cyclique)
- \Rightarrow II faut P itérations pour réaliser la calcul complet

Université de Lorraine - Algorithmique Parallèle - S. Contassot-Vivier

Algorithme distribué sans recouvrement


```
pour M de 0 à P-1 faire en parallèle
  pour i de 0 à P-2 faire
                                              // Boucle de circulation des bandes de A
    blocC ← CM[(M+P-i)%Pl
                                              // Bloc de la colonne M de C à calculer
    multiplication(bandeAcrt, bandeB, blocC) // Calcul du bloc de C associé aux bandes de A et B
    si M \approx 2 = 0 alors
                                              // Concordance des envois/réceptions entre voisins
      ssend(bandeAcrt. (m/P)*l. (M+1)%P. 1) // Envoi synchrone de la bande de A locale
      srecv(bandeAsvt, (m/P)*l, (M+P-1)%P, 1) // Réception synchrone de la bande de A suivante
    sinon
      srecv(bandeAsyt. (m/P)*l. (M+P-1)%P. 1) // Réception synchrone de la bande de A suivante
      ssend(bandeAcrt, (m/P)*l, (M+1)%P, 1) // Envoi synchrone de la bande de A locale
    fsi
    échange(bandeAcrt, bandeAsvt)
                                             // Échange des bandes locales de A ...
  fpour
                                             // ... pour l'itération suivante
  multiplication(bandeAcrt, bandeB, blocC)
                                             // Calcul du dernier bloc de C pour la colonne M de B
fpour
```

Algorithme distribué avec recouvrement des communications

Algorithme distribué avec recouvrement des communications

Algorithme avec recouvrement calculs/communications


```
pour M de 0 à P-1 faire en parallèle
 pour i de 0 à P-2 faire
                                                  // Boucle de circulation des bandes de A
   blocC ← CM[(M+P-i)%Pl
                                                 // Bloc de la colonne M de C à calculer
   idS ← nsend(bandeAcrt, (m/P)*l, (M+1)%P, 1) // Requête d'envoi de la bande de A locale
   idR ← nrecv(bandeAsvt, (m/P)*l, (M+P-1)%P, 1) // Requête de réception de la bande de A suivante
   multiplication(bandeAcrt, bandeB, blocC)
                                                  // Calcul du bloc local de C
   comWait(idS)
                                                  // Attente de la fin de l'envoi
   comWait(idR)
                                                  // Attente de la fin de la réception
   échange(bandeAcrt, bandeAsvt)
                                                  // Échange des bandes locales de A ...
                                                  // ... pour l'itération suivante
 multiplication(bandeAcrt, bandeB, blocC) // Calcul du dernier bloc de C pour la colonne M de B
fpour
```

Évaluation des performances

On pose : $t_c = \text{temps}$ de calcul d'un bloc de C $t_b = \text{temps}$ de transfert d'une bande de A

Version sans recouvrement:

•
$$T_S = P.t_c + 2(P-1).t_b$$

Version avec recouvrement des communications :

•
$$T_D = P.t_c + (P-1).t_b$$

Version avec recouvrement calculs/communications:

•
$$T_C = (P-1).max(t_c, t_b) + t_c$$

Gains →	D	С
S	$T_S - T_D = (P-1).t_b$	si $t_b \le t_c$: $T_S - T_C = 2(P-1).t_b$ si $t_b > t_c$: $T_S - T_C = (P-1).(t_c + t_b)$
		si $t_b > t_c : T_S - T_C = (P-1).(t_c + t_b)$
D		$T_D - T_C = (P-1).min(t_c, t_b)$

⇒ Le recouvrement permet d'effacer l'action la moins longue entre les calculs et les communications!

Exemples d'exécutions avec une version MPI

Communications globales

Diffusion : Un processus racine envoie les mêmes données à tous les autres

Distribution : Un processus racine envoie des données différentes à chacun

Regroupement : Un processus racine agrège des données reçues de tous les autres

Réduction : Un processus racine combine des données reçues de tous les autres via une opération op

Exemple de la diffusion

```
fonction diffusion(données, taille, racine)
DÉRIIT
 numP ← numéroProcessus() // Récupère le numéro du processus
 nbP ← nombreProcessus() // Récupère le nombre de processus
 si numP = racine alors // Processus racine
   // Boucle qui envoie les données aux autres processus
   pour dest de 0 à nbP-1 do
      si numP = racine alors // Exclusion de la racine
        send(données, taille, dest, dtag) // valeur dtag réservée
                                          // à la diffusion
     finsi
   finpour
 sinon
                         // Autres processus
   // Réception sur chaque processus différent de la racine
    recv(données, taille, racine, dtag)
 finsi
FIN
```

La synchronisation

Intérêt :

- Permet de contrôler le passage entre les étapes d'un algorithme
- Après une synchronisation, les unités savent que les autres ont également passé ce point
- Nécessaire au moins pour le démarrage et l'arrêt global

Inconvénients:

- Ralentit le déroulement global (attentes)
- Certaines communications globales ont un effet synchronisant

Principe:

- Une unité *maître* :
 - Attend un message de tous les autres
 - Une fois tous les messages reçus, envoie un acquittement aux autres
- Les autres unités :
 - Envoient un message au maître
 - Attendent l'acquittement

Schéma temporel

Schéma algorithmiques en mémoire distribuée

Décomposition du problème :

- Extraire un maximum de parallélisme à grain moyen/gros
- Plusieurs approches possibles :
 - Décomposition de domaine dirigée par les données
 - Décomposition en tâches (pipeline ou graphe orienté)

Répartition des données :

- Duplication :
 - © Gestion plus simple

 - © Limitant sur la taille des problèmes traités
 - Distribution :

 - © Génère souvent plus de communications
 - © Gestion plus difficile

Mise en œuvre

Recours à des bibliothèques de communication :

- Explicites : MPI, PVM
 - Fonctions d'envois et de réceptions de messages
- Implicites:
 - Environnements basés sur les RPC (Remote Procedure Call)
 - Appel d'une fonction potentiellement localisée sur une autre machine
 - Les paramètres de la fonction sont envoyées via un message
 - Les résultats de la fonction sont reçus via un message
 - Environnements à mémoire partagée virtuelle :
 - Les machines voient une seule *mémoire globale partagée* (virtuelle)
 - Génération auto de messages pour accéder aux données non locales
 - Permet de réutiliser facilement des codes MP mais pas toujours de bonnes performances

Principes de base de MPI

Plusieurs processus indépendants échangent des données via des messages

Schéma *SPMD* :

- Un même programme exécuté par tous les processus
- Différents branchements pour différencier le travail à effectuer :
 - Calculs, communications (envois/réceptions)
- Correspondance des envois/réceptions pour les modes synchrones et bloquants
- Souvent, un processus joue un rôle central :
 - Maître Travailleurs
 - Interface avec extérieur (E/S)

Fonctions principales de MPI en C

Inclusion de l'API:

• #include <mpi.h>

Initialisation et fermeture :

- MPI_Init(&argc, &argv); démarre l'environnement de communication
- MPI_Finalize(); arrête l'environnement de communication
- Toutes les communications doivent être entre ces deux appels!

Informations:

- MPI_Comm_size(MPI_COMM_WORLD, &nbP); nombre de processus
- MPI_Comm_rank(MPI_COMM_WORLD, &numP); numéro du processus
- MPI_Wtime(); horloge (réel)

Communications point à point :

• On retrouve les modes synchrone et asynchrone bloquant ou non

Synchrone: MPI_Ssend() MPI_Recv()

Bloquant: MPI_Send() MPI_Recv()

Non bloquant: MPI_Isend() MPI_Irecv()

Fonctions élémentaires d'envoi/réception

```
Envoi: MPI_Send(données, nombre, type, dest, tag, comm)
```

- données : tableau des données à envoyer
- nombre : nombre de données à envoyer
- type : type des données à envoyer parmi une liste pré-définie
 - MPI_CHAR, MPI_BYTE, MPI_INT, MPI_DOUBLE,...
- dest : numéro du processus destinataire dans le groupe comm
- tag : étiquette du message permettant un filtrage
- comm : groupe de processus (MPI_COMM_WORLD pour tous)

Réception : MPI_Recv(données, nombre, type, src, tag, comm, état)

- données : tableau où sont stockées les données à recevoir
 - ⇒ Espace *alloué avant* la réception et de *taille suffisante*
- src: numéro du processus source dans le groupe comm
- tag : filtrage des messages selon cette étiquette
- état : informations sur l'état de la réception (NULL si non utilisé)

Communications globales un-vers-tous (one-to-all)

Diffusion : MPI_Bcast(données, nombre, type, racine, comm)

- données : *envoyées* par racine et *reçues* par les autres
- racine : numéro du processus qui diffuse aux autres
- Actions différentes selon les processus → masquage

Distribution:

MPI_Scatter(donE, nbE, typeE, donR, nbR, typeR, racine, comm)

- donE : tableau des données à distribuer (racine comprise)
- nbE : nombre de données à distribuer par processus
- donR : espace mémoire des données à recevoir
- racine : numéro du processus qui distribue les données


```
void MPI Bcast(void *donnees, int nombre, MPI Datatype type,
                              int racine, MPI Comm comm)
  int i, num, nbP; // Compteur, num processus et nombre de processus
  MPI Status etat; // État de la réception
  MPI Comm rank(comm. &num): // Numéro du processus
  MPI Comm size(comm. &nbP): // Nombre de processus
  if(num == racine){ // Processus racine
   // Boucle d'envoi aux autres processus
    for(i=0: i<nbP: ++i){</pre>
      if(i != racine){ // Exclusion de la racine (a déià les données)
        MPI Send(donnees, nombre, type, i, 1, comm);
 }else{ // Autres processus
    // Réception sur chaque processus autre que la racine
    MPI Recv(donnees, nombre, type, racine, 1, comm, &etat);
```

Communications globales tous-vers-un (all-to-one)

Regroupement:

MPI_Gather(donE, nbE, typeE, donR, nbR, typeR, racine, comm)

- donR : doit pouvoir contenir toutes les données à recevoir
- nbR : nombre de données à recevoir de *chaque* processus

Réduction : MPI_Reduce(donE, donR, nb, type, op, racine, comm)

- donE : peut être un tableau → résultat est un tableau (op élt à élt)
- op : parmi un ensemble prédéfini : MPI_MAX, MPI_SUM, MPI_PROD ,...

Exemple du calcul de π par la méthode des trapèzes

Version avec deux niveaux de parallélisme :

- → Ensemble de machines (mémoire *distributée*) : MPI
 - → Ensemble de cœurs (mémoire *partagée*) : OpenMP

```
MPI Comm rank(MPI COMM WORLD, &num); // Numéro du processus MPI
MPI Comm size(MPI COMM WORLD. &nbP): // Nombre de processus MPI
piLoc = 0.0;
                                    // Valeur partielle de pi calculée par num
// Diffusion du nombre total de trapèzes
MPI Bcast(&nbTr, 1, MPI INT, 0, MPI COMM WORLD);
dx = 1.0 / nbTr: // Déduction de la largeur des trapèzes
nbTrLoc = nbTr / nbP: // Cas simple où la division tombe juste
// Intégrale partielle de pi associée au processus num avec nbT threads OpenMP
#pragma omp parallel for private(x) reduction(+:piLoc) num threads(nbT)
for(i=num*nbTrLoc; i<(num+1)*nbTrLoc; i++){</pre>
 x = dx * i;
 piLoc += sart(1.0 - x * x):
// Somme des intégrales partielles de pi de tous les processus MPI vers le processus 0
MPI Reduce(&piLoc, &pi, 1, MPI DOUBLE, MPI SUM, 0, MPI COMM WORLD);
if(num == 0){ // Calcul et affichage du résultat global par le processus 0
  pi = 4.0 * dx * (pi + 0.5):
                                                // Résultat final (uniquement sur le processus 0)
  printf("L'approximation..de..PI..est..:.%f\n", pi); // Affichage
```

Fonctions non bloquantes d'envoi/réception

Envoi: MPI_Isend(données, nombre, type, dest, tag, comm, requête)

- Retour immédiat de la fonction → délégation de l'envoi des données
- Paramètres similaires à MPI_Send sauf le dernier
- requête : pointeur sur une variable de type MPI_Request (identifiant de la communication)

Réception : MPI_Irecv(données, nombre, type, src, tag, comm, requête)

• Similaire à l'envoi mais côté réception

Test : MPI_Test(requête, réponse, état)

- requête : pointeur sur la requête de communication à tester
- réponse : pointeur sur le résultat du test (entier 1 si finie, 0 sinon)
- état : pointeur sur les informations d'état de la communication

Attente : MPI_Wait(requête, état)

- Blocage en attente tant que la communication n'est pas terminée
- requête : pointeur sur la requête de communication à attendre

Exemple du double tri à bulles

```
MPI Request reqP, reqD; // Requêtes d'envoi du premier/dernier élt
char tri0K = 0;
                      // Booléen indiquant si les données sont globalement triées
nbLoc = TAILLE/nbP:
                      // Taille du tableau local tLoc
// Distribution des données initiales de tab aux processus MPI
MPI Scatter(tab, nbLoc, MPI INT, tLoc, nbLoc, MPI INT, 0, MPI COMM WORLD);
while(!triOK){ // Succession de parcours avec remontée des bulles
              // iusqu'à ce que les données soient globalement triées
 for(j=0; j<nbLoc-1; ++j){ // Parcours gauche -> droite
    if(tLoc[i] > tLoc[i+1]){
      ... // Échange des valeurs
  } // À la fin de cette boucle, tLoc[nbLoc-1] contient le max local
  for(i=nbLoc-3: i>0: --i){ // Parcours droite -> gauche
    if(tLoc[j] > tLoc[j+1]){
      ... // Échange des valeurs
  } // À la fin de cette boucle, tLoc[0] contient le min local
  if(num > 0){ // Envoi du ler élt (min) à gauche et réception du dernier élt (max) de gauche
    MPI Isend (&tLoc[0]. 1. MPI INT. num-1. 1. MPI COMM WORLD. &reaP):
    MPI Recv(&prec. 1. MPI INT. num-1. 1. MPI COMM WORLD. &etat):
    MPI Wait(&reqP, &etat); // Attente de la fin d'envoi du 1er élt
    if(prec > tLoc[0]) tLoc[0] = prec: // Remplacement éventuel du 1er élt
  if(num < nbP - 1){ // Envoi du dernier élt (max) à droite et réception du ler élt (min) de droite
    MPI Isend(&tLoc[nbLoc-1], 1, MPI INT, num+1, 1, MPI COMM WORLD, &reqD);
    MPI Recv(&svt. 1. MPI INT. num+1. 1. MPI COMM WORLD. &etat):
    MPI Wait(&regD, &etat); // Attente de la fin d'envoi du dernier élt
    if(svt < tLoc[nbLoc-1]) tLoc[nbLoc-1] = svt; // Remplacement éventuel du dernier élt
 triOK = estGlobalementTrie(): // Vérifie si les données sont globalement triées
```

Schéma d'exécution

Fonctions principales de MPI en Python

```
Inclusion de l'API : from mpi4py import MPI
```

Initialisation et fermeture :

• Prises en charge via le chargement du module MPI de mpi4py

Groupe de communication :

Global : comm = MPI.COMM_WORLD

Informations:

- Nombre de processus : comm.Get_size()
- Numéro du processus : comm.Get_rank()
- Horloge (s) : MPI.Wtime()

Communications point à point :

On retrouve les modes asynchrones bloquant et non bloquant

Distinction entre communication d'objets python et de tableaux
 Version objets (comm.send) et version tableaux (comm.send)

Fonctions standard d'envoi/réception

```
Send: comm.send(objet, dest=..., tag=...)comm: groupe de communication
```

- objet : *objet* Python à envoyer
- dest: processus destinataire dans le groupe comm
- tag : étiquette du message (entier)

```
Receive: objet = comm.recv(source=..., tag=...)
```

- comm : groupe de communication
- source : processus source dans le groupe comm
- tag : étiquette de filtrage de réception
- objet : *objet* Python reçu

Exemple de circulation d'entier du 1er au dernier processus

Organisation *logique* en *ligne* : exemple avec 8 processus


```
comm = MPI.COMM WORLD # Définition du groupe de communication
idP = comm.Get rank() # ID du processus
nbP = comm.Get size() # Nombre total de processus
if (idP > 0):
   # Les processus qui ont un prédecesseur
   # ATTENDENT un message de celui-ci (com BLOQUANTE)
  val = comm.recv(source=idP-1, tag=10)
   # Affichage de la valeur recue
   print(idP. ":". val)
else.
  print()
# Chaque processus affiche son ID et la taille du groupe
print("Salut..depuis..%d..parmi..%d" % (idP, nbP))
if (idP < nbP-1):
   # Les processus qui ont un successeur lui envoient leur ID
   # --> Le processus 0 débloque le processus 1. et ainsi de suite...
   comm.send(idP. dest=idP+1. tag=10)
   # L'étiquette doit correspondre à celle de la réception
```

Bilan sur la programmation en mémoire distribuée

Points forts:

- Possibilité d'agréger une puissance de calcul très importante :
 - ⇒ Passage à l'échelle pour traiter des problèmes de grande taille
- Mécanismes relativement simples pour transférer des données
- Possibilité de recouvrement calculs/communications
 - ⇒ Recours éventuel à plusieurs threads

Points faibles:

- Coût des communications!
- Correspondance nécessaire entre envois et réceptions pour les échanges synchrones ou bloquants
 - ⇒ Risque d'inter-blocages!
- Distribution des données souvent fastidieuse
 - Identification d'une distribution efficace pas toujours aisée
- ⇒ Parallélisme à grande échelle mais qui nécessite généralement un parallélisme interne aux machines pour une efficacité maximale

Équilibrage des charges de travail

Équilibrage des charges de travail

Dans un système parallèle, la *répartition homogène* des tâches ou données n'est *pas toujours efficace*

Des déséquilibres peuvent provenir de :

- L'hétérogénéité des machines :
 - Vitesses ou charges différentes des unités de calcul
- L'hétérogénéité des traitements :
 - Tâches ayant des quantités de calcul différentes
 - Tâches générées dynamiquement pendant l'exécution de l'algorithme
- L'hétérogénéité des données :
 - Évolution dynamique du nombre de données à traiter
 - Le traitement d'une donnée peut générer d'autres données à traiter
- ⇒ L'objectif de l'équilibrage de charges consiste à répartir le travail afin que toutes les unités *terminent en même temps*

Exemple simple

On considère :

- Trois unités P_0 , P_1 et P_2 avec les vitesses suivantes :
 - $V_0 = V_1 = V$ et $V_2 = 2V$ op/s
- ullet Un calcul parallèle C dont le nombre d'opérations par donnée est lpha

Distribution homogène de N données sur les trois unités :

•
$$T(C(\frac{N}{3}, P_0)) = T(C(\frac{N}{3}, P_1)) = \frac{\alpha.N}{3V}$$
 et $T(C(\frac{N}{3}, P_2)) = \frac{\alpha.N}{6V}$

$$\Rightarrow \left(T_3(N) = \frac{\alpha.N}{3V}\right)$$

Peut-on faire mieux?

- *Oui*, en attribuant plus de données à P_2
- II faut que : $T(C(N_0), P_0) = T(C(N_1), P_1) = T(C(N_2), P_2)$

$$\Rightarrow \frac{N_0}{V} = \frac{N_1}{V} = \frac{N_2}{2V} \Rightarrow N_0 = N_1 \text{ et } N_2 = 2N_0 = 2N_1 \Rightarrow \boxed{T_3(N) = \frac{\alpha.N}{4V}}$$

Allocation statique de tâches identiques

On a N tâches indépendantes de coûts identiques à répartir sur M unités Le principe consiste à :

- Évaluer les *vitesses respectives* des unités : V_i op/s
- Déduire la *puissance totale* du système : $P = \sum_{j=0}^{M-1} V_j$
- Les *puissances relatives* des unités : $P_i = \frac{V_i}{P}$
- Et la *charge C_i* (nb de tâches) à allouer à chaque unité selon son *P_i* :
- \Rightarrow $C_i = P_i.N$

 \Rightarrow Algorithme actualisant la distribution optimale lorsque N augmente

Équilibrage dynamique par file d'attente

Utilisation d'une *file d'attente* de type *FIFO* :

- Pour stocker les tâches à effectuer
- Pour stocker les données à traiter

Principe:

- Les unités se servent dans la file pour récupérer un/e travail/donnée
- À la fin d'un traitement, de nouvelles tâches ou données sont éventuellement ajoutées à la file

Terminaison:

- La file doit être vide et toutes les unités inactives
- ⇒ Le système de file réalise un *équilibrage implicite* entre les unités

File en mémoire partagée

Principe relativement simple et efficace

Mais:

- Toutes les unités accèdent à la même file!!
- ⇒ Il faut assurer la cohérence des accès :
 - Exclusion mutuelle nécessaire pour chaque accès à la file
 - → lectures, retraits, insertions doivent être dans une *section critique*Les *lectures* sont nécessaires pour :
 - Tester si la file contient quelque chose
 - Récupérer une tâche/donnée à traiter

Les *modifications* sont utilisées pour :

- Le retrait d'une tâche/donnée
- L'ajout éventuel d'une nouvelle tâche/donnée

Algorithme de gestion de la file

```
pour p de 0 à n-1 faire en parallèle
 si p = 0 alors // Un seul processus initialise les données
   file ← ConstructionFile(listeTaches)
   initVerrou(v)
   nhActifs ← 0
 fsi
 barrière() // Empêche les autres processus d'accéder aux données avant leur initialisation
 finin 	← Faux // Indique si le processus p doit arrêter la boucle de travail
                   // Tâche (ou donnée) à traiter
 tache<sub>n</sub> ← Nil
 si ¬ estVide(file) alors // S'il reste au moins une tâche...
     tache<sub>n</sub> ← défiler(file) // ...on la récupère
     nbActifs ← nbActifs + 1 // ...et on comptabilise le processus dans les processus actifs
   sinon
                          // Sinon...
     si nbActifs = 0 alors // ...on vérifie qu'il ne reste plus de travail en cours
     fini<sub>p</sub> ← Vrai // ...et dans ce cas, on arrête le processus p
    fsi
   fsi
   dévérouiller(v) // Sortie de la section critique
   si tache<sub>p</sub> ≠ Nil alors // Si on a récupéré une tâche
     exécuter(tachen)
                         // ...on l'exécute
     vérouiller(v)
     nbActifs ← nbActifs - 1 // ...et on enlève le processus p des processus actifs
     dévérouiller(v)
   fsi
 ftant
fpour
```

File en mémoire distribuée

Principe du *maître/travailleurs* :

- Une machine maître gère la file d'attente
- Les autres machines :
 - Lui demandent des travaux
 - Lui renvoient les résultats
- ⇒ Schéma centralisé

Avantages:

- Très simple à mettre en œuvre
- Accès unique à la file

Inconvénients:

- Goulot d'étranglement au niveau du maître :
 - Limite le nombre de travailleurs
 - Limite le grain des tâches à distribuer

Évaluation des performances dans un cas simple

Modèle:

- n tâches similaires à traiter avec P unités identiques
- t_t = temps de traitement d'une donnée
- t_c = temps d'une communication (1 aller ou 1 retour)

Accélération et efficacité selon P si le maître distribue seulement :

$$\bullet \quad \boxed{T_P(n) \approx \frac{n \cdot (t_t + 2t_c)}{P - 1}} \Rightarrow \quad \boxed{S_P(n) \approx \frac{(P - 1) \cdot t_t}{t_t + 2t_c}} \text{ et } \boxed{E_P(n) \approx \frac{(P - 1) \cdot t_t}{P \cdot (t_t + 2t_c)}}$$

Accélération et efficacité selon P si le maître traite aussi des tâches :

- Pas de communications pour le maître : \Rightarrow temps t_t pour chaque tâche traitée \Rightarrow vitesse $V_0 = \frac{1}{t_t}$
- Les P-1 autres unités ont des communications :
 - \Rightarrow temps $t_t + 2t_c$ par tâche \Rightarrow vitesse $V_{i>0} = \frac{1}{t_t + 2t_c}$
- ⇒ Contexte similaire à l'équilibrage statique de charges :

$$\Rightarrow C_0 = \frac{n.(t_t + 2t_c)}{P.t_t + 2t_c} \text{ et } C_{i>0} = \frac{n.t_t}{P.t_t + 2t_c}$$

$$\bullet \quad \boxed{T_P(n) \approx \frac{n.t_t.(t_t+2t_c)}{P.t_t+2t_c}} \Rightarrow \quad \boxed{S_P(n) \approx \frac{P.t_t+2t_c}{t_t+2t_c}} \text{ et } \boxed{E_P(n) \approx \frac{P.t_t+2t_c}{P.(t_t+2t_c)}}$$

Évaluation des performances dans un cas simple

On voit donc qu'il faut que $t_c \ll t_t$ pour avoir de bonnes performances!

En pratique, il faut également éviter les phénomènes de famine :

- Le maître doit servir toutes les unités avant une nouvelle demande
- Le temps de travail d'un tâche doit donc être suffisamment grand

On peut également ajouter de la tolérance aux pannes :

 Redistribuer une tâche si le résultat ne revient pas assez vite (coupure réseau, panne machine,...)

Et de la concurrence si les machines ont des vitesses différentes :

- Distribuer une *même tâche à plusieurs unités*
- ⇒ On récupère le résultat de l'unité la plus rapide
- ⇒ On annule le travail des autres unités (envois d'autres tâches)

Équilibrage dynamique par redistributions

Les tâches sont régulièrement redistribuées entre les unités :

- Évite la file centralisée
- Prend en compte l'évolution du système pendant l'exécution

Principe:

- Distribution initiale de la charge (statique)
- Entre les grandes étapes ou à intervalles de temps réguliers :
 - Évaluer les charges/performances de chaque unité
 - Calculer une nouvelle distribution équilibrée
 - Redistribuer les données/tâches globalement

⚠!! Redistributions globales coûteuses en mémoire distribuée!! ⚠

Nécessité d'un réglage approprié de la fréquence des redistributions :

- Si trop fréquentes : le surcoût des redistributions annule le gain d'équilibrage (voir même pire...)
- Si pas assez fréquentes : risque de déséquilibre prolongé

Partage local de charge

Les machines sont organisées selon un graphe logique d'inter-connexion :

- Une unité qui n'a plus (assez) de travail, en demande à ses voisins
- ⇒ La *charge locale* d'une unité doit être *divisible*
 - → Choix du grain de parallélisme, plusieurs tâches par unité

Avantages:

- Transferts de charge uniquement entre voisins
- ⇒ On privilégie les communications locales (plus rapides)

Règles à suivre pour que ce mécanisme soit efficace :

- Éviter les *va-et-vient* (ou *ping-pong*)
- Éviter les famines en déchargeant trop les unités qui donnent
- Éviter les transferts trop nombreux
 - → Surcharge réseau, ralentissement des calculs

Programmation des GPU

Architecture des GPU

Un GPU est un *co-processeur de calcul* comprenant :

- Un ensemble de *multi-processeurs (SM)* de type SIMD avec chacun :
 - Un ensemble d'unités arithmétiques (ALU)
 - Un décodeur d'instructions
 - Un ensemble de registres partagés
 - Trois mémoires internes : partagée, constantes et textures
- Partageant une mémoire globale :
 - Point de passage pour les transferts de données entre CPU et GPU

Comparaison:

- Ryzen 9 5950X : $\approx 4,15$ Gt, 16 Coeurs, 105W
- GPU Oberon Plus (PS5) : $\approx 10,6$ Gt, ≈ 2500 unités, 225W

Plusieurs langages de programmation permettent d'utiliser les GPU :

- CUDA (Nvidia), OpenCL, OpenACC, Compute Shaders,...
- Imposent une vision logique du GPU

Organisation logique de CUDA (Nvidia)

CUDA voit les GPU comme :

- Une grille 3D de blocs contenant chacun :
 - Une grille 3D de threads avec chacun :
 - Des registres
 - Une mémoire locale
 - Une mémoire partagée entre les threads avec des temps d'accès rapides
 - Les threads peuvent aussi accéder aux mémoires supérieures (globale (Go), constantes (Ko), texture (Go)) mais avec des temps d'accès plus lents
- Des transferts possibles de la RAM vers les trois mémoires GPU mais avec des temps d'accès très lents
- ⇒ Une des difficultés principales vient de la bonne gestion des mémoires

Principe de fonctionnement

Les GPU exécutent des kernels :

- Fonctions écrites en CUDA (fichiers .cu)
- Lancés par le CPU selon deux modes possibles :
 - Synchrone ou asynchrone (par défaut)

Schéma simplifié :

Schéma réel:

- Chaque bloc est exécuté sur un seul SM
- L'ordonnanceur de blocs répartit les blocs sur les SM
- ⇒ Plus le GPU a de SM, plus il traite l'ensemble des blocs rapidement
 - → Problème classique d'ordonnancement de *n* tâches sur *P* unités!

Définition de kernels et utilisation

Exemple d'addition de deux matrices carrées de tailles $N \times N$ dans une troisième

```
// Définition du Kernel à exécuter sur le GPU
_global__ void MatAdd(int N, float *A, float *B, float *C)
// Le préfixe _global__ indique un kernel GPU
{
   int i = threadIdx.x; // Récupération de l'indice x du thread courant dans le bloc
   int j = threadIdx.y; // Récupération de l'indice y du thread courant dans le bloc
   C[i*N+j] = A[i*N+j] + B[i*N+j]; // Calcul d'un élément de la matrice C (mémoire globale)
}
```

```
// Définition du programme exécuté sur le CPU
int main()
 int N:
                         // Taille des matrices à traiter (divisible par 16)
 float *Acpu, *Aqpu, ...; // Pointeurs sur les matrices pour le CPU et le GPU
  dim3 Db(16, 16, 1); // Description des dimensions des blocs (2D avec 256 threads)
  dim3 Dq(N/16, N/16, 1): // Description des dimensions de la grille (2D avec N/16 lignes et colonnes)
 // Allocation de A sur le GPU et transferts des données de Acpu dans Agpu vers le GPU
  cudaMalloc((void**) &Aqpu, N * N * sizeof(float));
  cudaMemcpy((void*) Agpu, Acpu, N * N * sizeof(float), cudaMemcpyHostToDevice);
  MatAdd<<<Dq, Db>>>(N, Aqpu, Bqpu, Cqpu); // Lancement du kernel depuis le CPU selon la gille
                                          // et les blocs spécifiés par <<<Dg. Db>>>
  ... // Calculs éventuels sur le CPU en attendant l'exécution du GPU
 // Récupération des données de Capu dans Capu depuis le GPU
  cudaMemcpv((void*) Ccpu. Cqpu. N * N * sizeof(float). cudaMemcpvDeviceToHost):
  ... // Suite du programme
```

Organisation logique de OpenACC

OpenACC suit une logique proche de celle de OpenMP :

- Identification de régions à exécuter en parallèle (sur CPU ou GPU)
- Utilisation de directives

Mais OpenACC a son propre modèle d'exécution :

- Un thread hôte qui gère le parallélisme
- Envoi des calculs sur un device particulier (coeurs CPU ou GPU)
- Une décomposition en trois niveaux de parallélisme :
 - Groupes (gang) : grandes tâches (gros grain)
 - Travailleurs (workers) : tâches moyennes (grain moyen)
 - Vecteurs (vector): petites tâches (grain fin = SIMD)
- Ces trois niveaux peuvent être activés ensemble ou non
- Pas de barrières ou sections critiques entre gangs, workers ou vectors

Et son modèle mémoire :

• Transferts explicites de données entre hôte et GPU via des directives

Exemple d'utilisation d'OpenACC

Exemple d'addition de deux matrices carrées de tailles $N \times N$ dans une troisième

```
#define N 1000
float A[N][N], B[N][N], C[N][N];
int main()
 int i, j;
 // Initialisation des matrices A et B
 #pragma acc data copyin(A.B) copy(C) // Transfert des matrices A et B vers le GPU
                                      // et récupération du résultat C depuis le GPU
 #pragma acc kernels
                                   // Transforme le code suivant en kernel GPU
 #pragma acc loop tile(16,16) // Parallélisation de la boucle par blocs de taille 16x16
 for(i=0; i<N; ++i){</pre>
   for(j=0; j<N; ++j){
     C[i][j] = A[i][j] + B[i][j];
```

Bilan sur la programmation GPU

Petit aperçu avec deux langages très utilisés :

- CUDA : langage proche du matériel, spécifique aux cartes NVIDIA
- OpenACC : langage plus général (pas que GPU), basé sur directives

Points forts:

- Accès à une puissance de calcul très importante
- Décharge le CPU pour faire d'autres calculs entre temps

Points faibles:

- Contraintes matérielles importantes
- Difficulté de programmation pour obtenir un code efficace
- Temps de transferts entre hôte et GPU

Conclusion

Conclusion

Le parallélisme permet :

- Un gain de temps d'exécution
- Le traitement de problèmes de grandes tailles

Il y a plusieurs types de parallélismes :

- Données, tâches, flux
- Souvent une composition hiérarchique de ces différents types

Les principaux obstacles sont :

- Les *dépendances* entre calculs
- La concurrence des accès en mémoire partagée
- Les surcoûts dûs aux communications en mémoire distribuée
- La gestion des différents niveaux de parallélisme imbriqués

L'exploitation efficace des systèmes de calcul reste un vrai challenge!