设备(智能交通终端)

网络 SDK 编程指南

V5.2

声明

非常感谢您购买我公司的产品,如果您有什么疑问或需要请随时联系我们。

- 我们已尽量保证手册内容的完整性与准确性,但也不免出现技术上不准确、与产品功能及操作不相符 或印刷错误等情况,如有任何疑问或争议,请以我司最终解释为准。
- 产品和手册将实时进行更新, 恕不另行通知。
- 本手册中内容仅为用户提供参考指导作用,请以 SDK 实际内容为准。

目 录

声	î	明		l
E		录		II
1		SDK 简介		1
2		SDK 版本	更新	4
3		函数调用	顺序	8
	3.	1 SDK	接口调用主要流程	8
	3.	2 报警	·模块流程	9
		3.2.1	报警(布防)流程	9
		3.2.2	报警(监听)流程	10
	3.	3 IP 通	9道配置	11
4		函数调用	实例	12
	4.	1 交通	1数据接收示例代码	12
5				
	5.	1 SDK	初始化	
		5.1.1	初始化 SDK NET_DVR_Init	
		5.1.2	释放 SDK 资源 NET_DVR_Cleanup	
	5.		本地功能	
		•	参数配置	
		5.2.1	获取 SDK 本地参数 NET_DVR_GetSDKLocalCfg	
		5.2.2	设置 SDK 本地参数 NET_DVR_SetSDKLocalCfg	
			收超时时间及重连设置	
		5.2.3	设置网络连接超时时间和连接尝试次数 NET_DVR_SetConnectTime	
		5.2.4	设置重连功能 NET_DVR_SetReconnect	
		5.2.5	设置接收超时时间 NET_DVR_SetRecvTimeOut	
			# 取りま	
		5.2.6	获取所有 IP,用于支持多网卡接口 NET_DVR_GetLocalIP	
		5.2.7	设置 IP 绑定 NET_DVR_SetValidIP 、状态和能力	
		-	获取 SDK 的版本号和 build 信息 NET_DVR_GetSDKBuildVersion	
		5.2.8 5.2.9	获取 SDK 的版本 专和 build 信息 NET_DVR_GetSDKBuild Version	
		5.2.9	获取当前 SDK 的功能信息 NET_DVR_GetSDKState	
			写日志写	
		5.2.11	ラロ芯	
			回调	
		5.2.12	注册接收异常、重连等消息的窗口句柄或回调函数 NET_DVR_SetExceptionCallBack_V30	
		_	信息信息	
		5.2.13	返回最后操作的错误码 NET DVR GetLastError	
		5.2.14	返回最后操作的错误码信息 NET_DVR_GetErrorMsg	
	5.		注册	
		5.3.1	激活设备 NET_DVR_ActivateDevice	

5.3.2	通过解析服务器,获取设备的动态 IP 地址和端口号 NET_DVR_GetDVRIPByResolveSvr_EX	24
5.3.3	用户注册设备 NET_DVR_Login_V40	25
5.3.4	用户注销 NET_DVR_Logout	25
5.4 获5	取设备能力集	25
5.4.1	获取设备能力集 NET_DVR_GetDeviceAbility	25
5.5 实际	时预览	
5.5.1	设置播放显示模式 NET_DVR_SetShowMode	26
5.5.2	主码流动态产生一个关键帧 NET_DVR_MakeKeyFrame	27
5.5.3	子码流动态产生一个关键帧 NET_DVR_MakeKeyFrameSub	27
5.5.4	实时预览 NET_DVR_RealPlay_V40	27
5.5.5	停止预览 NET_DVR_StopRealPlay	
5.5.6	获取预览时用来解码和显示的播放库句柄 NET_DVR_GetRealPlayerIndex	28
5.6 预5	览时解码效果的参数控制	29
5.6.1	设置播放库的帧缓冲区个数 NET_DVR_SetPlayerBufNumber	29
5.7 预	览时播放声音控制	29
5.7.1	设置声音播放模式 NET_DVR_SetAudioMode	
5.7.2	独占声卡模式下开启声音 NET_DVR_OpenSound	29
5.7.3	独占声卡模式下开启声音 NET_DVR_CloseSound	30
5.7.4	共享声卡模式下开启声音 NET_DVR_OpenSoundShare	30
5.7.5	共享声卡模式下关闭声音 NET_DVR_CloseSoundShare	
5.7.6	调节播放音量 NET_DVR_Volume	30
5.8 实际	时预览数据捕获	31
5.8.1	注册回调函数,捕获实时码流数据 NET_DVR_SetRealDataCallBack	31
5.8.2	捕获数据并保存到指定的文件中 NET_DVR_SaveRealData	31
5.8.3	停止数据捕获 NET_DVR_StopSaveRealData	32
	饬、撤防	
设置报	警等信息上传的回调函数	
5.9.1	注册回调函数,接收设备报警消息 NET_DVR_SetDVRMessageCallBack_V31	32
布防撤降	方	33
5.9.2	建立报警上传通道,获取报警等信息 NET_DVR_SetupAlarmChan_V41	
5.9.3	撤销报警上传通道 NET_DVR_CloseAlarmChan_V30	
5.10 监师	听报警	
5.10.1	启动监听,接收设备主动上传的报警等信息 NET_DVR_StartListen_V30	33
5.10.2	停止监听(支持多线程)NET_DVR_StopListen_V30	35
5.11 远	埕参数配置	
5.11.1	获取设备的配置信息 NET_DVR_GetDVRConfig	
5.11.2	设置设备的配置信息 NET_DVR_SetDVRConfig	
5.12 批	量配置参数	
5.12.1	批量获取配置信息 NET_DVR_GetDeviceConfig	
5.12.2	批量设置配置信息 NET_DVR_SetDeviceConfig	
	连接参数配置	
5.13.1	启动长连接远程配置 NET_DVR_StartRemoteConfig	
5.13.2	逐个获取查找到的结果信息 NET_DVR_GetNextRemoteConfig	
5.13.3	关闭长连接配置接口所创建的句柄,释放资源 NET DVR StopRemoteConfig	41

5.14 迈	·程控制	42
5.14.1	远程控制 NET_DVR_RemoteControl	42
5.15 录	像回放和下载	42
5.15.1	按时间回放录像文件 NET_DVR_PlayBackByTime_V40	42
5.15.2	按时间下载录像文件 NET_DVR_GetFileByTime_V40	42
5.15.3	控制录像回放的状态 NET_DVR_PlayBackControl_V40	43
回放录	像文件时的数据捕获	44
5.15.4	捕获回放的录像数据,并保存成文件 NET_DVR_PlayBackSaveData	44
5.15.5	停止保存录像数据 NET_DVR_StopPlayBackSave	44
5.15.6	注册回调函数,捕获录像数据 NET_DVR_SetPlayDataCallBack_V40	44
5.16 图]片下载	
5.16.1	获取图片数据并存放在指定的内存空间中 NET_DVR_GetPicture_V30	45
5.17 设	·备维护管理	45
远程升	级	45
5.17.1	设置远程升级时网络环境 NET_DVR_SetNetworkEnvironment	45
5.17.2	远程升级 NET_DVR_Upgrade	
5.17.3	获取远程升级的进度 NET_DVR_GetUpgradeProgress	46
5.17.4	获取远程升级的状态 NET_DVR_GetUpgradeState	46
5.17.5	关闭远程升级句柄,释放资源 NET_DVR_CloseUpgradeHandle	46
日志查	找	47
5.17.6	查找设备的日志信息 NET_DVR_FindDVRLog_V30	47
5.17.7	逐条获取查找到的日志信息 NET_DVR_FindNextLog_V30	47
5.17.8	释放查找日志的资源 NET_DVR_FindLogClose_V30	47
恢复设	备默认参数	48
5.17.9	恢复设备默认参数 NET_DVR_RestoreConfig	48
导入/导	寻出配置文件	48
5.17.10	9 导出配置文件 NET_DVR_GetConfigFile_V30	48
5.17.11	导出配置文件 NET_DVR_GetConfigFile	48
5.17.12	~	
5.17.13	B 导入配置文件 NET_DVR_SetConfigFile	49
关机和	重启	49
5.17.14	耳自设备 NET_DVR_RebootDVR	49
5.17.15	5	49
5.18	E取设备支持的云台协议	
5.18.1	获取设备支持的云台协议 NET_DVR_GetPTZProtocol	
5.19 募	E取 IPC 协议列表	
5.19.1	获取设备支持的 IPC 协议表 NET_DVR_GetIPCProtoList	50
5.20	取设备状态	50
5.20.1	获取设备状态信息 NET_DVR_GetDeviceStatus	50
6 错误代	码及说明	52
6.1]络通讯库错误码	52
6.2 R	ГSP 通讯库错误码	55
6.3 菊	了解码库错误码	55
7 附录:结	告构体	57

1 SDK 简介

设备网络 SDK 是基于设备私有网络通信协议开发的,为嵌入式网络硬盘录像机、NVR、视频服务器、网络摄像机、网络球机、智能交通等网络产品服务的配套模块,用于远程访问和控制设备软件的二次开发。本文档主要介绍智能交通相关的功能,适用于但不仅限于以下产品型号:

终端服务器: TS-50XX 等

视频分析仪: VAR-50XX、DS-TP5004-D、DS-TP6200-HD、DS-TP6200-HV 等

停车场管理系统: DS-TP5016-P 等

出入口终端服务器: DS-TP5008-E 等

该文档仅介绍设备网络 SDK 主要功能:实时码流预览、参数配置以及获取上传的抓拍结果信息以及录像回放等功能。更多功能说明请参见《设备网络 SDK 使用手册.chm》。

设备网络 SDK 包含网络通讯库、播放库等功能组件,我们提供 Windows 和 Linux 两个版本的 SDK,各自所包含的组件如下:

表 1.1 Windows SDK 组件

		衣 1.1 Windows SDK 组作	<u> </u>	
		HCNetSDK.h	头文件	
	外部接口	HCNetSDK.lib	LIB 库文件	
网络通讯库		HCNetSDK.dll	DLL 库文件	
	+7; A 40 14-	HCCore.lib	LIB 库文件	
	核心组件	HCCore.dll	DLL 库文件	
	设备配置核心组件	HCCoreDevCfg.dll	DLL 库文件	HCNetSDKCom 文件夹
	预览组件	HCPreview.lib	LIB 库文件	HCNetSDKCom 文件夹
	7. 见组件	HCPreview.dll	DLL 库文件	HCNetSDKCom 文件夹
	回放组件	HCPlayBack.dll	DLL 库文件	HCNetSDKCom 文件夹
	语音组件	HCVoiceTalk.dll	DLL 库文件	HCNetSDKCom 文件夹
组件库	报警组件	HCAlarm.lib	LIB 库文件	HCNetSDKCom 文件夹
		HCAlarm.dll	DLL 库文件	HCNetSDKCom 文件夹
	显示组件	HCDisplay.dll	DLL 库文件	HCNetSDKCom 文件夹
	行业应用管理配置组件	HCIndustry.dll	DLL 库文件	HCNetSDKCom 文件夹
	/A-+	HCGeneralCfgMgr.lib	LIB 库文件	HCNetSDKCom 文件夹
	维护管理配置组件	HCGeneralCfgMgr.dll	DLL 库文件	HCNetSDKCom 文件夹
RTSP 通讯库		StreamTransClient.dll	DLL 库文件	HCNetSDKCom 文件夹
转封装库		SystemTransform.dll	DLL 库文件	HCNetSDKCom 文件夹
字符转码库		libiconv2.dll	DLL 库文件	HCNetSDKCom 文件夹
模拟能力集		LocalXml.zip	XML 文件包	
帧分析库		AnalyzeData.dll	DLL 库文件	HCNetSDKCom 文件夹

连文社讲庆		AudioIntercom.dll	DLL 库文件	HCNetSDKCom 文件夹
语音对讲库		OpenAL32.dll	DLL 库文件	HCNetSDKCom 文件夹
		PlayM4.h、WindowsPlayM4.h	头文件	
	核心库文件	PlayCtrl.lib	LIB 库文件	
		PlayCtrl.dll	DLL 库文件	
	视频渲染库	SuperRender.dll	DLL 库文件	
	音频渲染库	AudioRender.dll	DLL 库文件	
播放库	小鹰眼库	EagleEyeRender.dll	DLL 库文件	
	GPU 硬解码库	HWDecode.dll	DLL 库文件	
	鱼眼库	MP_Render.dll	DLL 库文件	
	视频后处理库	MP_VIE.dll	DLL 库文件	
	测温信息抓图库	YUVProcess.dll	DLL 库文件	
	DirectX 组件库	D3DCompiler_43.dll	DLL 库文件	

表 1.2 Linux SDK 组件

农 1.2 Liliux 3DK 组厂						
	外部接口	HCNetSDK.h	头文件			
网络通讯库	71:印妆口	libhcnetsdk.so	SO 库文件			
	核心组件	libHCCore.so	SO 库文件			
	设备配置核心组件	libHCCoreDevCfg.so	SO 库文件	HCNetSDKCom 文件夹		
	预览组件	libHCPreview.so	SO 库文件	HCNetSDKCom 文件夹		
	回放组件	libHCPlayBack.so	so 库文件	HCNetSDKCom 文件夹		
细	语音组件	libHCVoiceTalk.so	SO 库文件	HCNetSDKCom 文件夹		
组件库	报警组件	libHCAlarm.so	SO 库文件	HCNetSDKCom 文件夹		
	显示组件	libHCDisplay.so	so 库文件	HCNetSDKCom 文件夹		
	行业应用管理配置组件	libHCIndustry.so	SO 库文件	HCNetSDKCom 文件夹		
	维护管理配置组件	libHCGeneralCfgMgr.so	SO 库文件	HCNetSDKCom 文件夹		
hpr 库		libhpr.so	SO 库文件			
RTSP 通讯库		libStreamTransClient.so	SO 库文件	HCNetSDKCom 文件夹		
转封装库		libSystemTransform.so	SO 库文件	HCNetSDKCom 文件夹		
字符转码库		libiconv2.so	SO 库文件	HCNetSDKCom 文件夹		
帧分析库		libanalyzedata.so	SO 库文件	HCNetSDKCom 文件夹		
	按心床立体	PlayM4.h、LinuxPlayM4.h	头文件			
播放库	核心库文件	libPlayCtrl.so	SO 库文件			
	视频渲染库	libSuperRender.so	so 库文件			

音频渲染	杂库 libAudioRend	ler.so SO 库文	件
------	-----------------	--------------	---

本版本的设备网络 SDK 开发包中包含以上各个组件,HCNetSDK.dll、HCCore.dll 必须加载(对于 Linux SDK,即 libhcnetsdk.so、libHCCore.so),其他组件,用户可以根据需要选择其中的一部分或者全部,以下将对各个组件在 SDK 中的作用和使用条件分别说明。

- 网络通讯库:设备网络 SDK 的主体,主要用于网络客户端与各类产品之间的通讯交互,负责远程功能调控,远程参数配置及码流数据的获取和处理等。设备网络 SDK V5.0 针对产品应用业务进行细化,对之前版本的 SDK 的功能模块进行组件化,其中外部接口(HCNetSDK.dll)仍然保持和设备网络 SDK V4.x 版本保存一致(向下兼容),其他单独的业务功能(预览、回放等)可以加载单独的模块组件,多个业务功能也可以组合使用。更新 SDK 时,HCNetSDK.dll、HCCore.dll 以及 HCNetSDKCom 文件夹下的功能组件库文件都需要更新加载,且 HCNetSDKCom 文件夹名不能修改。
- hpr 库: 网络通讯库的依赖库, Linux SDK 使用时和网络通讯库同时加载。
- RTSP 通讯库: 支持 RTSP 传输协议的网络库。当需要对支持 RTSP 协议的产品进行取流等操作时就必须加载该项组件。
- 转封装库:库的功能可以分为两种:一种是将标准码流转换成采用我们公司封装格式的码流。当用户需要对支持 RTSP 协议的产品捕获采用本公司封装格式的码流数据时(即当设置 NET_DVR_RealPlay_V40接口中的回调函数捕获数据或者调用 NET_DVR_SetRealDataCallBack 接口捕获数据时)必须加载该组件。另一种功能是能将标准码流转换成其他格式的封装,如 3GPP、PS 等。例如,当用户需要对支持 RTSP协议的产品实时捕获指定封装格式的码流数据(对应的 SDK 接口为 NET_DVR_SaveRealData)时必须加载该项组件。
- 语音对讲库:用于语音对讲时通过声卡采集数据并按照指定的编码格式编码码流或者解码播放音频码流数据(不带封装格式的码流数据)。V4.2.2.5 及以前版本 SDK 均采用 windows API 实现相关功能。之后版本默认使用语音对讲库的方式,通过接口 NET_DVR_SetSDKLocalCfg 可以选择之前的 windows API 模式。OpenAL32.dll 为依赖库,语音对讲库模式下必须加载。Windows64 位或者 Linux 系统下无语音对讲功能。
- **字符转换库:** 电脑字符集和设备字符集不一致时,SDK 内部需要进行字符编码转换,SDK 默认使用 libiconv 库进行类型转换。如果用户不想使用 libiconv 编码库,可以调用 NET_DVR_SetSDKLocalCfg (类型: NET_SDK_LOCAL_CFG_TYPE_BYTE_ENCODE)设置字符转码回调函数,将用户自己的字符编码接口告知 SDK,然后 SDK 将使用用户提供的字符编码接口进行字符串处理。
- **模拟能力集:** 如果需要获取设备能力集(NET_DVR_GetDeviceAbility),建议调用 NET_DVR_SetSDKLocalCfg 启用模拟能力集,此时需要加载 LocalXml.zip(要求和网络通讯库放在同一个目录下)。
- **帧分析库**:用于分析视音频帧数据,调用 NET_DVR_SetESRealPlayCallBack、NET_DVR_SetPlayBackESCallBack 设置裸码流回调函数等接口时,必须加载该库文件。
- 播放库: 主要用于对实时码流数据进行解码显示(实现预览功能)和对录像文件进行回放解码等。用户如果需要在 SDK 内部进行对实时流和录像码流播放显示时(即 NET_DVR_RealPlay_V40 接口的第二个结构体参数的播放句柄设置成有效句柄时)必须加载该组件,而如果用户仅需要用网络通讯库捕获到数据后再外部自行处理就不需要加载该组件,这种情况下用户在外部自行解码将更灵活,可参见软解码库函数说明《播放器 SDK 编程指南》。

2 SDK 版本更新

Version 5.1.1.10 (build20150429)

- TS-5004-A V4.0.4
- 新增交通数据查询功能(对应接口: <u>NET_DVR_StartRemoteConfig</u>): 命令: <u>NET_DVR_GET_TRAFFIC_DATA</u>。
- 新增交通流量查询功能(对应接口: <u>NET_DVR_StartRemoteConfig</u>): 命令: <u>NET_DVR_GET_TRAFFIC_FLOW</u>。
- 新增支持图片下载接口: NET DVR GetPicture V30。

Version 5.0.3.15 (build20150129)

- 事件取证分析仪 V4.1.0
- <u>NET_DVR_TFS_ALARM</u>(违章取证报警信息)使用 22 个保留字节新增参数: byVehicleAttribute(车辆属性)、byPilotSafebelt(主驾驶员是否系安全带)、byCopilotSafebelt(副驾驶员是否系安全带)、byPilotSunVisor(主驾驶是否打开遮阳板)、byCopilotSunVisor(副驾驶是否打开遮阳板)、byPilotCall(主驾驶员是否在打电话)。
- <u>NET_DVR_VEHICLE_INFO</u>(车辆信息参数)使用 3 个保留字节新增参数: byVehicleModel(车辆子品牌年款)、wVehicleLogoRecog(车辆主品牌)。
- TRAFFIC_AID_TYPE(交通事件类型)新增枚举类型: VEHICLE_OCCUPANCY_NONVEHICLE(机动车占用非机动车位)、GASSER(加塞)。

Version 5.0.3.10 (build20150112)

- iDS-TP6200-HP V4.0.2
- 新增车辆二次识别任务提交功能(对应接口: <u>NET DVR SetDeviceConfig</u>): 命令: NET DVR SET VEHICLE RECOG TASK。
- 新增车辆二次识别任务获取功能(对应接口: <u>NET_DVR_StartRemoteConfig_</u>和 <u>NET_DVR_GetNextRemoteConfig</u>): 命令: <u>NET_DVR_GET_VEHICLE_RECOG_TASK</u>。
- 新增车辆二次识别数据上传信息类型(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V31</u>和 <u>NET_DVR_StartListen_V30</u>): COMM_VEHICLE_RECOG_RESULT。
- 新增车辆二次识别检测能力集(对应接口: <u>NET DVR GetDeviceAbility</u>,对应能力集类型: DEVICE_ABILITY_INFO): VehicleRecogAbility。
- NET DVR SETUPALARM PARAM(报警布防参数)使用 2 个保留字节新增参数:wTaskNo(任务处理号)。
- 设备软硬件能力集(<u>DEVICE_SOFTHARDWARE_ABILITY</u>)新增节点: <VehicleRecogAbility>(支持车辆二次检测能力)。

Version 4.3.0.4 (build20140610)

- 更新原因: VAR-500X-X(D) V4.0.2
- TRAFFIC AID TYPE(交通事件类型)新增枚举类型: OVERLINE(压线)、LANECHANGE(变道)、TURNAROUND(掉头)。
- <u>NET_DVR_AID_ALARM_V41</u>(交通事件报警信息)使用 97 个保留字节新增参数: byLaneNo(关联车道号)、byMonitoringSiteID[MONITORSITE_ID_LEN](监测点编号)、byDeviceID[DEVICE_ID_LEN](设备编号)。
- NET DVR TFS ALARM(违章取证报警信息)使用 2 个保留字节新增参数: bySpecificVehicleType(车辆类型)、

byLaneNo(关联车道号)。

- NET DVR ONE AID RULE V41(单条交通事件规则)使用 1 个保留字节新增参数: byLaneNo(关联车道号)。
- <u>NET_DVR_LANE_PARAM_V41</u>(车道参数)使用 5 个保留字节新增参数: byLaneNo(关联车道号)、dwOversizeVehicle(大型车数量)。
- <u>NET_DVR_TPS_ALARM_V41</u>(交通统计上传报警信息)使用 104 个保留字节新增参数: byMonitoringSiteID[MONITORSITE_ID_LEN](监测点编号)、byDeviceID[DEVICE_ID_LEN](设备编号)、dwStartTime(开始统计时间)、dwStopTime(结束统计时间)。
- 设备软硬件能力集(DEVICE SOFTHARDWARE ABILITY)新增节点: <VcaChanAbility>。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能通道分析能力(VcaChanAbility)扩展,节点<AidRule>: 新增子节点<laneNo>; <eventType>新增取值: overLine、illegalLaneChange、turnAround。

Version 4.2.8.5 (build20140317)

- 更新原因: TS-5012-X V4.0.5
- 新增云存储配置功能(对应接口: <u>NET_DVR_GetDeviceConfig</u>和 <u>NET_DVR_SetDeviceConfig</u>): 命令: <u>NET_DVR_GET_CLOUDSTORAGE_CFG</u>、<u>NET_DVR_SET_CLOUDSTORAGE_CFG</u>。
- <u>NET_ITS_PICTURE_INFO</u>(抓拍图片信息)使用 1 个保留字节新增参数: byDataType(数据上传方式,支持上传云存储_URL),参数 byType 新增取值: 4-二值图、5-码流。
- <u>NET_DVR_AID_ALARM_V41</u> (交通事件报警信息)使用 3 个保留字节新增参数: byDataType(数据上传方式, 支持上传云存储 URL)、wMilliSecond(时标毫秒)。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,<ITSAbility>新增子节点<supportMilliCheckTime>、<CloudStorage>。

Version 4.2.7.6(build20131231)

- DS-TP5008-E(出入口终端服务器) V1.1.0。
- 新增批量配置功能(对应接口 <u>NET_DVR_GetDeviceConfig</u> 和 <u>NET_DVR_SetDeviceConfig</u>): 命令: NET_DVR_GET_ITS_EXDEVCFG(获取 ITS 外接设备信息)、NET_DVR_SET_ITS_EXDEVCFG(设置 ITS 外接设备信息)。
- 新增长连接配置功能(对应接口 <u>NET_DVR_StartRemoteConfig</u> 和 <u>NET_DVR_GetNextRemoteConfig</u>): 命令: NET_DVR_GET_ITS_EXDEVSTATUS(获取 ITS 所有外接设备信息)。
- 新增远程控制功能(对应接口 <u>NET_DVR_RemoteControl</u>): 命令: NET_DVR_SET_ITS_ENDEVCMD(控制下发卡片信息)、NET_DVR_SET_ENISSUED_DATADEL(清除下发的卡片数据)。
- 新增报警信息上传 (对应接口 <u>NET_DVR_StartListen_V30</u>):

 <u>NET_ITS_PASSVEHICLE_COST_ITEM(</u>出入口过车收费明细信息)、<u>NET_ITS_HANDOVER_INFO(</u>出入口交接班数据信息)。
- NET DVR COMPRESSION INFO V30 参数 byResolution 新增取值: 59-1600*900。
- <u>NET_ITS_GATE_LANE_CFG</u>使用 12 个保留字节新增参数: byCharge(是否收费)、byChargeMode(收费类型)、byLedRelativeIndex[8](LED 索引)、byGateRelativeIndex(出入口控制机相对索引)、byFarRrRelativeIndex(远距离读卡器相对索引)。
- NET ITS GATE VEHICLE 使用 32 个保留字节新增参数: bySwipeTime[32](增加刷卡时间)。
- 新增操作日志次类型: 0x2011~0x2038, 0x210d~0x2110。
- ●新增设备类型: TRAFFIC_ECT、TRAFFIC_PARKING_SERVER。

Version 4.2.5.6(build20130808)

- VAR-500X-X(P)未礼让行人。
- NET DVR VEHICLE INFO 的参数 bylllegalType 新增取值: 14-未礼让行人。
- NET ITS PLATE RESULT 的参数 willegalType 违章类型增加国标定义说明,新增 1357(未礼让行人)。

Version 4.2.5.6(build20130808)

- DS-TP5016-P(停车场管理系统)、DS-TP5008-E(出入口终端服务器)。
- 新增远程配置功能(对应接口 <u>NET DVR GetDVRConfig</u> 和 <u>NET DVR SetDVRConfig</u>):
 内外置灯参数配置(<u>NET DVR LAMP CTRL INFO</u>)、特殊车位参数配置(<u>NET DVR PARKSPACE ATTRIBUTE</u>)、
 出入口参数配置(<u>NET ITS IPC CHAN LANE CFG</u>)。
- 新增远程设置功能(对应接口 <u>NET_DVR_SetDVRConfig</u>):
 设置指示灯外控参数(<u>NET_DVR_LAMP_EXTERNAL_CFG</u>)、设置车位强制抓图
 (<u>NET_DVR_COMPEL_CAPTURE</u>)、设置远程设备控制参数(<u>NET_ITS_REMOTE_CONTROL</u>)
- 新增报警信息上传(对应接口 NET DVR SetDVRMessageCallBack V30 和 NET DVR StartListen V30): 指示 灯外控报警信息(NET DVR EXTERNAL CONTROL ALARM)、出入口车辆抓拍数据 (NET ITS GATE VEHICLE)、出入口人脸抓拍数据(NET ITS GATE FACE)、停车场数据上传 (NET ITS PARK VEHICLE)、车辆名单报警信息(NET ITS ECT BLOCKLIST)。
- 新增出入口终端工作状态的功能(对应接口 NET DVR GetDeviceStatus): NET ITS ECTWORKSTATE
- 新增出入口终端通道状态的功能(对应接口 <u>NET_DVR_StartRemoteConfig</u> 和 <u>NET_DVR_GetNextRemoteConfig</u>): <u>NET_ITS_ECT_CHANNELSTATE</u>
- 新增操作日志次类型: 0x2001~0x210c
- 前端参数配置(NET_DVR_GET_CCDPARAMCFG、NET_DVR_SET_CCDPARAMCFG、
 NET_DVR_GET_CCDPARAMCFG_EX、NET_DVR_GET_CCDPARAMCFG_EX)时,接口 NET_DVR_GetDVRConfig、
 NET_DVR_SetDVRConfig_中参数 IChannel 扩展为有效,表示通道号,IP 通道起始通道号为 33。
- 智能终端能力集 <u>DEVICE_ABILITY_INFO</u>新增能力节点: <LampCtrlInfo>、<parkSpaceAttributeParam>、<lampExternalCfg>、<compelCaptureCfg>、<externalControlAlarm>。
- <u>NET_ITS_SINGLE_DEVICE_INFO</u>的参数 dwDeviceType 新增取值: 10- 道闸,11- 出入口控制机(票箱),12-LED 显示屏,13- 远距离读卡器,14- 近距离读卡器,15- 红外扫描枪,16- 票据打印机,17- 节点管理器(诱导服务器相关)。

Version 4.2.2.1 (build20130716)

- VAR-500X_事件检测取证系统 v4.0.0。
- 新增监听报警上传类型 (对应接口: <u>NET DVR StartListen V30</u>): 交通取证报警信息(<u>NET DVR TFS ALARM</u>)、(交通事件报警信息扩展)<u>NET DVR AID ALARM V41</u>。

Version 4.2.1.3 (2012-12-10)

- SDK 新增支持 ITS 智能终端设备: TRAFFIC_TS_SERVER、TRAFFIC_VAR
- 新增配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>): 数据上传配置 (<u>NET_ITS_UPLOAD_CFG</u>)、获取路口信息(<u>NET_ITS_ROADINFO</u>)
- 新增获取终端状态功能(对应接口: NET DVR GetDeviceStatus): NET ITS WORKSTATE
- 新增监听报警上传类型(对应接口: <u>NET_DVR_StartListen_V30</u>): NET_ITS_PLATE_RESULT、NET_ITS_ROADINFO
- 新增能力集(对应接口: <u>NET DVR GetDeviceAbility</u>): DEVICE ABILITY INFO
- NET DVR RECORDSCHED 和 NET DVR RECORDDAY 参数 byRecordType 增加取值类型: 14-智能交通事件,

仅 VAR 支持

3 函数调用顺序

3.1 SDK 接口调用主要流程

初始化SDK NET_DVR_Init 用户注册设备 NET_DVR_Login_V30 获 录 取 像 能 设 数 口 交 备 配 放 通 能 下 报 置 力 载 集 注销设备 NET_DVR_Logout 释放SDK资源 NET_DVR_Cleanup

表 3.1 SDK 调用主要流程

智能交通功能模块包括参数配置、智能交通报警和获取设备能力集等功能。

- 智能交通报警,包括布防和监听两种方式。
 - ➤ 抓拍结果数据(NET ITS PLATE RESULT)、交通违章取证信息(NET DVR TFS ALARM)、交通事件报警信息(NET DVR AID ALARM V41)、交通统计数据(NET ITS TRAFFIC COLLECT)、出入口车辆抓拍数据(NET ITS GATE VEHICLE)、出入口人脸抓拍数据(NET ITS GATE FACE)、停车场数据(NET ITS PARK VEHICLE)、交通取证报警信息(NET DVR TFS ALARM)、交通参数统计报警信息(NET DVR TPS ALARM V41)、交通事件报警信息(NET DVR AID ALARM V41)等信息,只能通过报警"监听"的方式获取,智能交通设备上需要配置上传中心的 IP 地址和端口。接口调用详见【报警监听模块流程】。
 - ➤ 车辆名单报警(NET ITS ECT BLOCKLIST)、路口设备异常报警(NET ITS ROADINFO)、指示灯外控报警信息(NET DVR_EXTERNAL CONTROL_ALARM),除了可以使用监听方式,也可以使用布防模式获取,布防具体接口调用详见【报警布防模块流程】。
- 参数配置:主要完成对智能交通设备基本参数的配置功能,包括终端基本信息获取、数据上传配置、 出入口参数配置等,调用的接口为 <u>NET DVR GetDVRConfig</u> 和 <u>NET DVR SetDVRConfig</u>。终端服务器和视 频记录分析仪前端接网络摄像机,其信息获取、IP 通道添加删除、修改等,也通过这两个接口实现,

其相关配置参数为 <u>NET_DVR_IPPARACFG_V40</u>。智能交通设备的参数配置一般建议通过 IE 登录设备直接通过控件界面进行相关配置。

- 录像回放下载:智能交通事件联动录像文件查找、回放以及下载,具体请参考回放下载模块流程。
- 获取设备能力集:通过 NET DVR GetDeviceAbility 接口获取智能交通设备能力信息。

3.2 报警模块流程

3.2.1 报警(布防)流程

初始化SDK
NET_DVR_Init

用户注册
NET_DVR_Login_V30

设置报警回调函数
NET_DVR_SetDVRMessCallBack_V30

报警布防
NET_DVR_SetupAlarmChan_V41

报警撤防
NET_DVR_CloseAlarmChan_V30

注销用户
NET_DVR_Logout

释放SDK资源
NET_DVR_Cleanup

表 3.2 报警布防流程

- "布防"报警方式: 是指 SDK 主动连接设备,并发起报警上传命令,设备发生报警立即发送给 SDK。
- 先登录设备(<u>NET_DVR_Login_V30</u>),设置报警回调函数(<u>NET_DVR_SetDVRMessageCallBack_V30</u>),然 后调用 <u>NET_DVR_SetupAlarmChan_V41</u>进行布防,设备上传的相关信息即在设置的回调函数中获取。整 个报警上传过程结束后还需要调用撤防接口等操作。

传等。

3.2.2 报警(监听)流程

表 3.3 报警监听流程

- "监听"报警方式: 是指 SDK 不主动发起连接设备,只是在设定的端口上监听接收设备主动上传的报警信息。
- 客户端调用 <u>NET_DVR_StartListen_V30</u>开启 SDK 的监听端口并且设置报警回调函数,准备接收设备上传的报警信息。设备上传相关信息即在设置的回调函数中获取。
 - ➤ 这个过程设备上需要先配置报警主机地址(即 PC 机地址)和报警主机端口(即 PC 的监听端口),报警主机就在该端口上监听接收设备主动上传的报警信息。如果报警主机地址和报警主机端口已配置完成,那么"报警(监听)的流程图"中虚线框"用户注册"和"配置报警主机地址和端口"部分就可以省略。如果事先没有配置,可以调用参数配置接口 NET DVR GetDVRConfig(命令:NET_ITS_GET_UPLOAD_CFG)和 NET DVR SetDVRConfig(命令:NET_ITS_SET_UPLOAD_CFG)获取和设置设备的数据上传参数(NET_ITS_UPLOAD_CFG),包括 IP 地址和端口、上传的数据类型、是否上
- 该方式适用于多个设备主动向客户端上传报警,而且不需要设备登录即可完成,设备重启后不影响报 警上传。智能终端服务器支持两个报警主机地址和端口号的配置。

调用实例代码

3.3 IP 通道配置

智能交通服务器实现 IPC 接入功能,需要调用 IP 接入配置参数来进行资源的获取和重新分配。

客户端通过注册设备(<u>NET DVR Login V30</u>)返回的设备信息 <u>NET DVR DEVICEINFO V30</u>可以获取到模拟通道数(byChanNum)、模拟通道起始通道号(byStartChan)和设备支持的最大 IP 通道数(byIPChanNum + byHighDChanNum*256)、数字通道起始通道号(byStartDChan)。一般情况下,智能交通设备的模拟通道从1 开始,IP 通道号从 33 开始。

从 byStartChan 到 byStartChan+byChanNum-1 对应为模拟通道的通道号。IP 通道号为 byStartDChan 到 byStartDChan+ (byIPChanNum + byHighDChanNum*256) -1。

如果设备支持 IP 通道(byIPChanNum>0),则通过远程参数配置接口 <u>NET_DVR_GetDVRConfig</u>(配置命令 NET_DVR_GET_IPPARACFG_V40)可以获取得到设备详细的 IP 通道信息(<u>NET_DVR_IPPARACFG_V40</u>),包括模拟通道是否禁用、IP 通道个数(dwDChanNum)、IP 通道起始通道号(dwStartDChan)、IP 通道取流模式、IP 通道有效状态和在线状态等。通过远程参数配置接口 <u>NET_DVR_SetDVRConfig</u>(配置命令 NET_DVR_SET_IPPARACFG_V40)可对设备进行 IP 资源配置,包括添加、修改、删除 IP 通道等。

4 函数调用实例

4.1 交通数据接收示例代码

相关模块流程图

```
#include <stdio.h>
#include <iostream>
#include "Windows.h"
#include "HCNetSDK.h"
using namespace std;
typedef HWND (WINAPI *PROCGETCONSOLEWINDOW)();
PROCGETCONSOLEWINDOW GetConsoleWindow;
int iNum=0;
void CALLBACK MSesGCallback(LONG ICommand, NET_DVR_ALARMER *pAlarmer, char *pAlarmInfo, DWORD dwBufLen, void*
pUser)
{
    int i=0;
    char filename[100];
    FILE *fSnapPic=NULL;
    FILE *fSnapPicPlate=NULL;
    //以下代码仅供参考,实际应用中不建议在该回调函数中直接处理数据保存文件,
    //例如可以使用消息的方式(PostMessage)在消息响应函数里进行处理。
    //仅处理交通数据上传
    switch (ICommand)
         case COMM_ITS_PLATE_RESULT: //交通抓拍的终端图片
              NET_ITS_PLATE_RESULT struITSPlateResult={0};
              memcpy(&strulTSPlateResult, pAlarmInfo, sizeof(strulTSPlateResult));
              for (i=0;i<struITSPlateResult.dwPicNum;i++)
                  printf("车牌号: %s\n", strulTSPlateResult.struPlateInfo.sLicense);//车牌号
                  switch(struITSPlateResult.struPlateInfo.byColor)//车牌颜色
                      case VCA_BLUE_PLATE:
                          printf("车辆颜色: 蓝色\n");
                          break;
                      case VCA_YELLOW_PLATE:
```

```
printf("车辆颜色: 黄色\n");
                             break;
                         case VCA_WHITE_PLATE:
                             printf("车辆颜色: 白色\n");
                             break;
                         case VCA_BLACK_PLATE:
                             printf("车辆颜色: 黑色\n");
                             break;
                         default:
                             break;
                    }
                    //保存场景图
                    //strulTSPlateResult.struPicInfo[i].byTyp: 数据类型, 0-车牌图、1- 场景图、2- 合成图、3- 特写图
                    if ((struITSPlateResult.struPicInfo[i].dwDataLen != 0)&&(struITSPlateResult.struPicInfo[i].byType==
1)||(struITSPlateResult.struPicInfo[i].byType == 2))
                         sprintf(filename,"testITSpic%d_%d.jpg",iNum,i);
                         fSnapPic=fopen(filename,"wb");
                         fwrite(struITSPlateResult.struPicInfo[i].pBuffer, struITSPlateResult.struPicInfo[i].dwDataLen,1,fSnapPic);
                         iNum++;
                         fclose(fSnapPic);
                    }
                    //车牌小图片
                    if ((stru|TSP|ateResult.struPicInfo[i].dwDataLen != 0) \& (stru|TSP|ateResult.struPicInfo[i].byType == 0)) \\
                    {
                         sprintf(filename,"testPicPlate%d_%d.jpg",iNum,i);
                         fSnapPicPlate=fopen(filename,"wb");
                         fwrite(struITSPlateResult.struPicInfo[i].pBuffer, struITSPlateResult.struPicInfo[i].dwDataLen, 1, \
fSnapPicPlate);
                         iNum++;
                         fclose(fSnapPicPlate);
                    }
                    //其他信息处理.....
               }
               break;
          }
          case COMM ITS GATE VEHICLE: //出入口车辆抓拍数据
          {
                NET_ITS_GATE_VEHICLE struITSGateVehicle={0};
                memcpy(&strulTSGateVehicle, pAlarmInfo, sizeof(strulTSGateVehicle));
                //信息处理.....
                break;
         case COMM_ITS_PARK_VEHICLE: //停车场数据
```

```
{
             NET_ITS_PARK_VEHICLE struITSParkVehicle={0};
             memcpy(&strulTSParkVehicle, pAlarmInfo, sizeof(strulTSParkVehicle));
             //信息处理.....
             break;
        }
        case COMM_ALARM_TFS: //交通取证报警信息
             NET_DVR_TFS_ALARM struTFSAlarm={0};
             memcpy(&struTFSAlarm, pAlarmInfo, sizeof(struTFSAlarm));
             //信息处理.....
             break;
        }
        case COMM_ALARM_TPS_V41: //交通参数统计报警信息
        {
             NET_DVR_TPS_ALARM_V41 struTPSAlarmV41={0};
             memcpy(&struTPSAlarmV41, pAlarmInfo, sizeof(struTPSAlarmV41));
             //信息处理.....
             break;
         //.....其他类型报警信息处理
        default:
             break;
    }
    return;
void main()
    //-----
    //初始化
    NET_DVR_Init();
    //获取控制台窗口句柄
    HMODULE hKernel32 = GetModuleHandle("kernel32");
    GetConsoleWindow = (PROCGETCONSOLEWINDOW)GetProcAddress(hKernel32,"GetConsoleWindow");
    //设置连接时间与重连时间
    NET_DVR_SetConnectTime(2000, 1);
    NET_DVR_SetReconnect(10000, true);
    //-----
    //注册设备(监听报警可以不注册)
    LONG IUserID;
    NET_DVR_DEVICEINFO_V30 struDeviceInfo;
```

```
IUserID = NET_DVR_Login_V30("172.6.24.119", 8000, "admin", "12345", &struDeviceInfo);
if (IUserID < 0)
    printf("Login error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Cleanup();
    return;
}
WORD wLocalPort=5650; //监听端口为 5650
//监听 IP 为客户端本机 IP, 并设置报警回调函数
if (IHandle < 0)
{
    printf("NET_DVR_StartListen_V30 error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
//启动预览(如果只是监听报警,预览不需要调用)
HWND hWnd = GetConsoleWindow();
                               //获取窗口句柄
NET_DVR_PREVIEWINFO struPlayInfo = {0};
                               //需要 SDK 解码时句柄设为有效值,仅取流不解码时可设为空
struPlayInfo.hPlayWnd = hWnd;
struPlayInfo.lChannel
                    = 1;
                              //预览通道号
                               //0-主码流, 1-子码流, 2-码流 3, 3-码流 4, 以此类推
struPlayInfo.dwStreamType = 0;
struPlayInfo.dwLinkMode = 0; //0-TCP 方式, 1- UDP 方式, 2- 多播方式, 3- RTP 方式, 4-RTP/RTSP, 5-RSTP/HTTP
LONG IRealPlayHandle = NET_DVR_RealPlay_V40(IUserID, &struPlayInfo, NULL, NULL); //启动预览
if (IRealPlayHandle < 0)
{
     printf("NET DVR RealPlay V40 error\n");
     NET_DVR_Logout(IUserID);
     NET_DVR_Cleanup();
     return;
Sleep(20000); //测试, 等待 20 秒
//关闭预览
NET_DVR_StopRealPlay(IRealPlayHandle);
printf("\n");
printf("\n");
printf("\n");
```

```
//停止监听
if (!NET_DVR_StopListen_V30(lHandle))
{
    printf("NET_DVR_StopListen_V30 error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Logout(lUserID);
    NET_DVR_Cleanup();
    return;
}
//注销用户
NET_DVR_Logout(lUserID);
//释放 SDK 资源
NET_DVR_Cleanup();
return;
}
```

5 函数说明

5.1 SDK 初始化

5.1.1 初始化 SDK NET_DVR_Init

函数: BOOL NET_DVR_Init()

参数: 无

返回值: TRUE 表示成功, FALSE 表示失败。 说 明: 调用设备网络 SDK 其他函数的前提。

返回目录

5.1.2 释放 SDK 资源 NET DVR Cleanup

函数: BOOL NET_DVR_Cleanup()

参数: 无

返回值: TRUE 表示成功, FALSE 表示失败。

说明: 在结束之前最后调用。接口返回失败请调用 <u>NET DVR GetLastError</u> 获取错误码,通过错误码判

断出错原因。

返回目录

5.2 SDK 本地功能

SDK 本地参数配置

5.2.1 获取 SDK 本地参数 NET_DVR_GetSDKLocalCfg

函数: BOOL NET_DVR_GetSDKLocalCfg(NET_SDK_LOCAL_CFG_TYPE enumType, void *lpOutBuff)

参数: [in] enumType 配置类型,不同的取值对应不同的 SDK 参数,详见表 5.1

[out] lpOutBuff 输出参数,不同的配置类型,输出参数对应不同的结构,详见表

5.1

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

表 5.1 本地参数类型

enumType 宏定义	类型值	含义	lpOutBuff 对应结构体
NET_SDK_LOCAL_CFG_TYPE_TCP_PORT_BIND	0	本地 TCP 端口绑定配置	NET DVR LOCAL TCP PORT BIND CFG
NET_SDK_LOCAL_CFG_TYPE_UDP_PORT_BIND	1	本地 UDP 端口绑定配置	NET_DVR_LOCAL_UDP_PORT_BIND_CFG
NET_SDK_LOCAL_CFG_TYPE_MEM_POOL	2	内存池本地配置	NET_DVR_LOCAL_MEM_POOL_CFG
NET_SDK_LOCAL_CFG_TYPE_MODULE_RECV_TIMEOUT	3	按模块配置超时时间	NET_DVR_LOCAL_MODULE_RECV_TIMEOUT_CFG
NET_SDK_LOCAL_CFG_TYPE_ABILITY_PARSE	4	是否使用能力集解析库	NET_DVR_LOCAL_ABILITY_PARSE_CFG
NET_SDK_LOCAL_CFG_TYPE_TALK_MODE	5	对讲模式配置	NET DVR LOCAL TALK MODE CFG
NET_SDK_LOCAL_CFG_TYPE_CHECK_DEV	10	心跳交互间隔时间配置	NET_DVR_LOCAL_CHECK_DEV

返回目录

5.2.2 设置 SDK 本地参数 NET_DVR_SetSDKLocalCfg

函数: BOOL NET_DVR_SetSDKLocalCfg(NET_SDK_LOCAL_CFG_TYPE enumType, void* const lpInBuff)

参数: [in] enumType 配置类型,不同的取值对应不同的 SDK 参数,详见表 5.2

[in] lpInBuff 输入参数,不同的配置类型,输出参数对应不同的结构,详见表

5.2

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

表 5.2 本地参数类型

enumType 宏定义	类型值	含义	IpInBuff 对应结构体
NET_SDK_LOCAL_CFG_TYPE_TCP_PORT_BIND	0	本地 TCP 端口绑定配置	NET DVR LOCAL TCP PORT BIND CFG
NET_SDK_LOCAL_CFG_TYPE_UDP_PORT_BIND	1	本地 UDP 端口绑定配置	NET DVR LOCAL UDP PORT BIND CFG
NET_SDK_LOCAL_CFG_TYPE_MEM_POOL	2	内存池本地配置	NET_DVR_LOCAL_MEM_POOL_CFG
NET_SDK_LOCAL_CFG_TYPE_MODULE_RECV_TIMEOUT	3	按模块配置超时时间	NET DVR LOCAL MODULE RECV TIMEOUT CFG
NET_SDK_LOCAL_CFG_TYPE_ABILITY_PARSE	4	是否使用能力集解析库	NET DVR LOCAL ABILITY PARSE CFG
NET_SDK_LOCAL_CFG_TYPE_TALK_MODE	5	对讲模式配置	NET_DVR_LOCAL_TALK_MODE_CFG
NET_SDK_LOCAL_CFG_TYPE_CHECK_DEV	10	心跳交互间隔时间配置	NET DVR LOCAL CHECK DEV
NET_SDK_LOCAL_CFG_TYPE_CHAR_ENCODE	13	配置字符编码相关处理回	NET_DVR_LOCAL_BYTE_ENCODE_CONVERT
		调	
NET_DVR_LOCAL_CFG_TYPE_LOG	15	日志参数配置	NET_DVR_LOCAL_LOG_CFG

连接和接收超时时间及重连设置

5.2.3 设置网络连接超时时间和连接尝试次数 NET_DVR_SetConnectTime

函数: BOOL NET_DVR_SetConnectTime(DWORD dwWaitTime,DWORD dwTryTime)

参数: [in]dwWaitTime 超时时间,单位毫秒,取值范围[300,75000],实际最大超时时间

因系统的 connect 超时时间而不同。

[in]dwTryTimes 连接尝试次数(保留)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET DVR GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: SDK 默认建立连接的超时时间为 3 秒。SDK4.0 及以后版本中当设置的超时时间超过或低于限制

的值时接口不返回失败,将取最接近的上下限限制值作为实际的超时时间。

返回目录

5.2.4 设置重连功能 NET_DVR_SetReconnect

函数: BOOL NET_DVR_SetReconnect (DWORD dwInterval,BOOL bEnableRecon)

参数: [in]dwInterval 重连间隔,单位:毫秒

[in]bEnableRecon 是否重连, 0-不重连, 1-重连,参数默认为 1

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 该接口可以同时控制预览、透明通道和布防的重连功能。不调用该接口时,SDK 默认启动预览、透明通道和布防的重连功能,重连时间间隔为 5 秒。

返回目录

5.2.5 设置接收超时时间 NET_DVR_SetRecvTimeOut

函数: BOOL NET DVR SetRecvTimeOut(DWORD nRecvTimeOut)

参数: [in] nRecvTimeOut 接收超时时间,单位毫秒,默认为 5000,最小为 3000 毫秒

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 该接口用于设置接收超时时间,例如预览接收实时流数据、回放下载接收录像数据、报警接收 报警信息等接收超时时间。

<u>返回目录</u>

多网卡绑定

5.2.6 获取所有 IP,用于支持多网卡接口 NET_DVR_GetLocalIP

函数: BOOL NET_DVR_GetLocalIP(char strIP[16][16], DWORD *pValidNum, BOOL *pEnableBind)

参数: [out] strIP 存放 IP 的缓冲区,不能为空

[out] pValidNum 所有有效 IP 的数量

[out] pEnableBind 是否绑定

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明: 该接口获取客户端本地多网卡的所有 IP 地址,可以通过接口 NET DVR SetValidIP 选择要使用的

IP 地址。

返回目录

5.2.7 设置 IP 绑定 NET_DVR_SetValidIP

函数: BOOL NET_DVR_SetValidIP(DWORD dwIPIndex, BOOL bEnableBind)

参数: [in] dwlPlndex 选择使用的 IP 下标,由 NET DVR GetLocalIP 获取

[in] bEnableBind 是否绑定

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

SDK 版本、状态和能力

5.2.8 获取 SDK 的版本号和 build 信息 NET_DVR_GetSDKBuildVersion

函数: DWORD NET DVR GetSDKBuildVersion()

参 数:

返回值: 获取 SDK 的版本号和 build 信息。

说 明: SDK 的版本号和 build 信息。2 个高字节表示版本号 : 25~32 位表示主版本号, 17~24 位表示次

版本号; 2个低字节表示 build 信息。如 0x03000101: 表示版本号为 3.0, build 号是 0101。

返回目录

5.2.9 获取当前 SDK 的状态信息 NET_DVR_GetSDKState

函数: BOOL NET_DVR_GetSDKState(LPNET_DVR_SDKSTATE pSDKState);

参数: [out]pSDKState SDK 状态信息,详见结构体: <u>NET DVR SDKSTATE</u>

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.2.10 获取当前 SDK 的功能信息 NET DVR GetSDKAbility

函数: BOOL NET_DVR_GetSDKAbility(LPNET_DVR_SDKABL pSDKAbl)

参数: [out] pSDKAbl SDK 功能信息,详见结构体: NET DVR SDKABL

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

SDK 启用写日志

5.2.11 启用写日志文件 NET_DVR_SetLogToFile

函数: BOOL NET_DVR_SetLogToFile(DWORD bLogEnable,char* strLogDir,BOOL bAutoDel)

参数: [in]bLogEnable 日志的等级(默认为0):

0-表示关闭日志

1-表示只输出 ERROR 错误日志

2-输出 ERROR 错误信息和 DEBUG 调试信息

3-输出 ERROR 错误信息、DEBUG 调试信息和 INFO 普通信息等所

有信息

[in]strLogDir 日志文件的路径, windows 默认值为"C:\\SdkLog\\"; linux 默认值

"/home/sdklog/"

[in]bAutoDel 是否删除超出的文件数,默认值为 TRUE

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: ● 日志文件路径必须是绝对路径,且以"\\"结尾,例如"C:\\SdkLog\\",建议用户先手动创建文件。 若未指定文件路径,则采用默认路径"C:\\SdkLog\\"。

- 可多次调用该接口创建新的日志文件,更改目录时到下一次写文件时才会使用新的目录写文件。
- bAutoDel 为 TRUE 时表示覆盖模式,日志文件个数超过 SDK 限制个数时将会自动删除超出的文件。SDK 限制个数默认为 10 个,可以调用接口 NET_DVR_SetSDKLocalCfg(配置类型:NET_DVR_LOCAL_CFG_TYPE_LOG)进行修改配置。

返回目录

异常消息回调

5.2.12 注册接收异常、重连等消息的窗口句柄或回调函数

NET_DVR_SetExceptionCallBack_V30

函 数: Windows 系统下:

BOOL NET_DVR_SetExceptionCallBack_V30 (UINT nMessage,HWND hWnd,fExceptionCallBack cbExceptionCallBack,void* pUser)

Linux 系统下:

BOOL NET DVR SetExceptionCallBack V30(UINT nMessage,void* hWnd,fExceptionCallBack

cbExceptionCallBack,void* pUser)

参数: [in]nMessage 消息,Linux 下该参数保留

[in]hWnd 接收异常消息的窗口句柄,Linux 下该参数保留

[in]cbExceptionCallBack 接收异常消息的回调函数,回调当前异常的相关信息

[in]pUser 用户数据

typedef void(CALLBACK* fExceptionCallBack)(DWORD dwType, LONG lUserID, LONG lHandle, void

*pUser)

[out]dwType 异常或重连等消息的类型,详见表 5.3

[out]lUserID 登录 ID

[out]lHandle 出现异常的相应类型的句柄

[out]pUser 用户数据

表 5.3 异常消息类型

dwType 宏定义	宏定义值	含义
EXCEPTION_EXCHANGE	0x8000	用户交互时异常(注册心跳超时,心跳间隔为2分钟)
EXCEPTION_AUDIOEXCHANGE	0x8001	语音对讲异常
EXCEPTION_ALARM	0x8002	报警异常
EXCEPTION_PREVIEW	0x8003	网络预览异常
EXCEPTION_SERIAL	0x8004	透明通道异常
EXCEPTION_RECONNECT	0x8005	预览时重连
EXCEPTION_ALARMRECONNECT	0x8006	报警时重连
EXCEPTION_SERIALRECONNECT	0x8007	透明通道重连
SERIAL_RECONNECTSUCCESS	0x8008	透明通道重连成功
EXCEPTION_PLAYBACK	0x8010	回放异常
EXCEPTION_DISKFMT	0x8011	硬盘格式化
EXCEPTION_EMAILTEST	0x8013	邮件测试异常
EXCEPTION_BACKUP	0x8014	备份异常
PREVIEW_RECONNECTSUCCESS	0x8015	预览时重连成功
ALARM_RECONNECTSUCCESS	0x8016	报警时重连成功
RESUME_EXCHANGE	0x8017	用户交互恢复

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: Windows 下该函数的 hWnd 和 cbExceptionCallBack 不能同时为 NULL,Linux 下 cbExceptionCallBack 不能设置为 NULL,否则将接收不到异常消息。

如果此结构是以回调方式反馈异常消息,那么应用程序中的异常回调函数实现如下,该函数中的参数 dwType 表示异常消息类型(见上表);IHandle 表示发生异常的相应类型的句柄。

示例代码:

//注册接收异常消息的回调函数

NET_DVR_SetExceptionCallBack_V30(WM_NULL, NULL, g_ExceptionCallBack, NULL);

//接收异常消息的回调函数的外部实现

void CALLBACK g_ExceptionCallBack(DWORD dwType, LONG lUserID, LONG lHandle, void *pUser)

```
{
         char tempbuf[256];
         ZeroMemory(tempbuf,256);
         switch(dwType)
         {
         case EXCEPTION_AUDIOEXCHANGE:
                                              //语音对讲时网络异常
           sprintf(tempbuf,"语音对讲时网络异常!!!");
                  TRACE("%s",tempbuf);
                  //TODO: 关闭语音对讲
                  break;
         case EXCEPTION ALARM:
                                              //报警上传时网络异常
                  sprintf(tempbuf,"报警上传时网络异常!!!");
                  TRACE("%s",tempbuf);
                  //TODO: 关闭报警上传
                  break;
         case EXCEPTION PREVIEW:
                                               //网络预览时异常
                  sprintf(tempbuf,"网络预览时网络异常!!!");
                  TRACE("%s",tempbuf);
                  //TODO: 关闭网络预览
                  break;
                                              //透明通道传输时异常
         case EXCEPTION SERIAL:
                  sprintf(tempbuf,"透明通道传输时网络异常!!!");
                  TRACE("%s",tempbuf);
                  //TODO: 关闭透明通道
                  break;
         case EXCEPTION_RECONNECT:
                                              //预览时重连
                  break;
         default:
                  break;
         }
  };
```

返回目录

获取错误信息

5.2.13 返回最后操作的错误码 NET_DVR_GetLastError

函数: DWORD NET_DVR_GetLastError()

参数:

返回值: 返回最后操作的错误码。详见错误码宏定义

说明: 返回值为错误码。错误码主要分为网络通讯库错误码、RTSP通讯库错误码和软硬解库错误码。

5.2.14 返回最后操作的错误码信息 NET_DVR_GetErrorMsg

函数: char* NET_DVR_GetErrorMsg(LONG *pErrorNo) 参数: [out]pErrorNo 错误码数值的指针

返回值: 返回值为错误码信息的指针。错误码主要分为网络通讯库错误码、RTSP 通讯库错误码和软硬解

库错误码。详见错误码宏定义

说明:

返回目录

5.3 用户注册

5.3.1 激活设备 NET_DVR_ActivateDevice

函 数: BOOL NET_DVR_ActivateDevice(char* sDVRIP, WORD wDVRPort, LPNET_DVR_ACTIVATECFG

lpActivateCfg)

参数: [in]sDVRIP 设备 IP 地址

[in]wDVRPort 设备端口

[in]lpActivateCfg 激活参数,包括激活使用的初始密码,详见结构体:

NET DVR ACTIVATECFG

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过

错误码判断出错原因。

说 明: 出厂设备需要先激活,然后再使用激活使用的初始密码登录设备。

返回目录

5.3.2 通过解析服务器, 获取设备的动态 IP 地址和端口号

NET_DVR_GetDVRIPByResolveSvr_EX

函数: BOOL NET_DVR_GetDVRIPByResolveSvr_EX (char* sServerIP, WORD wServerPort, BYTE* sDVRName, WORD wDVRNameLen, BYTE* sDVRSerialNumber, WORD wDVRSerialLen, char* sGetIP, DWORD* dwPort)

参数: [in]sServerIP 解析服务器的 IP 地址

[in]wServerPort 解析服务器的端口号,IP Server 解析服务器端口号为 7071,

HiDDNS 服务器的端口号为 80

[in]sDVRName 设备名称

[in]wDVRNameLen设备名称的长度[in]sDVRSerialNumber设备的序列号[in]wDVRSerialLen设备序列号的长度

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过

错误码判断出错原因。

返回目录

5.3.3 用户注册设备 NET_DVR_Login_V40

函数: LONG NET_DVR_Login_V40(LPNET_DVR_USER_LOGIN_INFO pLoginInfo, LPNET_DVR_DEVICEINFO_V40 lpDeviceInfo)

参数: [in]pLoginInfo 登录参数,包括设备地址、登录用户、密码等,详见结构体:

NET_DVR_USER_LOGIN_INFO

[out]lpDeviceInfo 设备信息(同步登录即 pLoginInfo 中 bUseAsynLogin 为 0 时有效),

详见结构体: <u>NET_DVR_DEVICEINFO_V40</u>

返回值: 异步登录的状态、用户 ID 和设备信息通过 NET_DVR_USER_LOGIN_INFO 结构体中设置的回调函数(fLoginResultCallBack)返回。对于同步登录,接口返回-1 表示登录失败,其他值表示返回的用户 ID 值。用户 ID 具有唯一性,后续对设备的操作都需要通过此 ID 实现。接口返回失败请调用NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

- 设备同时最多允许 128 个用户注册。
- SDK 支持 2048 个注册,返回 UserID 的取值范围为 0~2047。

返回目录

5.3.4 用户注销 NET_DVR_Logout

函数: BOOL NET_DVR_Logout(LONG IUserID)

参数: [in]lUserID 用户ID号,NET_DVR_Login_V40的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.4获取设备能力集

5.4.1 获取设备能力集 NET_DVR_GetDeviceAbility

函数: BOOL NET_DVR_GetDeviceAbility(LONG lUserID, DWORD dwAbilityType, char* pInBuf, DWORD dwInLength, char* pOutBuf, DWORD dwOutLength)

参数: [in] IUserID NET_DVR_Login_V30 的返回值 [in] dwAbilityType 能力类型,具体定义见表 5.4

[in] plnBuf输入缓冲区指针[in] dwlnLength输入缓冲区的长度[out] pOutBuf输出缓冲区指针

[in] dwOutLength 接收数据的缓冲区的长度

表 5.4 设备能力集类型

宏定义	宏定义值	含义
DEVICE_SOFTHARDWARE_ABILITY	0x001	设备软硬件能力
DEVICE_ABILITY_INFO	0x011	设备通用能力类型,具体能力根据发送的能力节点来区分

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 接口中 plnBuf 参数的具体定义格式按照不同的设备规定有所不同,需要输入参数和输出参数的格式定义如表 5.5 所示。

能力类型宏定义 能力类型说明 pInBuf pOutBuf 设备软硬件能力 XML 描述 DEVICE_SOFTHARDWARE_ABILITY 获取设备软硬件能力 DEVICE ABILITY INFO 设备通用能力类型,具成取设备能力的输入描述 智能终端能力集描述(ITDeviceAbility) 体能力根据发送的能 获取智能通道分析能力集 智能通道分析能力 XML 描述 力节点来区分 (VcaChanAbility) 车辆二次识别检测能力输 车辆二次识别检测能力 入描述 (VehicleRecogAbility)

表 5.5 设备能力集描述

<u>返回目录</u>

5.5 实时预览

5.5.1 设置播放显示模式 NET_DVR_SetShowMode

函数: BOOL NET_DVR_ SetShowMode (DWORD dwShowType, COLORREF colorKey)

参数: [in] dwShowType 显示模式

enum{
 NORMALMODE = 0,
 OVERLAYMODE

[in] colorKey 用户设置的透明色,在 OVERLAY 模式下需要设置,colorKey 是一

个 32 位的值 0x00bbggrr,最高字节为 0,后三个字节分别表示 b、

g、r的值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: ▷设置播放器显示模式,需在预览之前设置。

➤ NORMALMODE 模式可以同时显示多窗口,但是对显卡有一定的要求; OVERLAYMODE 模式只能同时显示一个窗口,但是对显卡基本没有要求。透明色相当于一层透视膜,显示的画面只

能穿过这种颜色,而其他的颜色将挡住显示的画面,用户应该在显示窗口中涂上这种颜色才能看到显示画面,一般应该使用一种不常用的颜色作为透明色,colorKey 是一个 32 位的值 0x00bbggrr,最高字节为 0,后三个字节分别表示 b、g、r 的值。

➤ 播放器有两种显示模式:普通模式和 OVERLAY 方式,使用 OVERLAY 模式的优点是:大部分显卡都支持 OVERLAY,在一些不支持 BLT 硬件缩放和颜色转换的显卡上(如 SIS 系列显卡)使用 OVERLAY 模式,可以大大降低 CPU 利用率并提高画面质量(相对于软件实现缩放、颜色转换)。缺点是:同时只能播放一路图象,不能实现大规模集中监控。在一块显卡中同一时刻只能有一个 OVERLAY 表面处于活动状态,如果此时系统中已经有程序使用了 OVERLAY,那么播放器就不能再创建 OVERLAY 表面,它将自动改成普通的模式,并不返回 FALSE,一些常用的播放器,例如我们卡的预览都可能使用了 OVERLAY 表面,同样,如果我们的 SDK 中使用了 OVERALY 表面,那么其他的程序将不能再使用 OVERLAY 表面。

返回目录

5.5.2 主码流动态产生一个关键帧 NET_DVR_MakeKeyFrame

函数: BOOL NET_DVR_MakeKeyFrame(LONG IUserID, DWORD IChannel) 参数: [in] IUserID NET_DVR_Login_V30 的返回值

[in] IChannel 通道号

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 此接口用于重置 I 帧,根据设置的预览参数(<u>NET_DVR_PREVIEWINFO</u>)为主码流或者子码流分别调用 NET_DVR_MakeKeyFrame 或者 NET_DVR_MakeKeyFrameSub 实现重置 I 帧。

返回目录

5.5.3 子码流动态产生一个关键帧 NET_DVR_MakeKeyFrameSub

函数: BOOL NET_DVR_MakeKeyFrameSub(LONG lUserID, DWORD lChannel)

参数: [in] lUserID NET_DVR_Login_V30的返回值

[in] IChannel 通道号

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 此接口用于重置 I 帧,根据设置的预览参数(<u>NET_DVR_PREVIEWINFO</u>)为主码流或者子码流分别调用 NET_DVR_MakeKeyFrame 或者该接口实现重置 I 帧。

返回目录

5.5.4 实时预览 NET_DVR_RealPlay_V40

函数: LONG NET_DVR_RealPlay_V40(LONG lUserID, LPNET_DVR_PREVIEWINFO lpPreviewInfo, REALDATACALLBACK fRealDataCallBack_V30, void *pUser)

参数: [in] IUserID NET DVR Login V30 的返回值

[in] lpPreviewInfo 预览参数,详见结构体: <u>NET_DVR_PREVIEWINFO</u>

[in] fRealDataCallBack V30 码流数据回调函数

[in] pUser 用户数据

typedef void(CALLBACK *REALDATACALLBACK)(LONG | RealHandle, DWORD dwDataType, BYTE

*pBuffer, DWORD dwBufSize, void *pUser)

[out] IRealHandle 当前的预览句柄

[out] dwDataType数据类型,详见表 5.6[out] pBuffer存放数据的缓冲区指针

[out] dwBufSize 缓冲区大小 [out] pUser 用户数据

表 5.6 码流数据类型

dwDataType 宏定义	宏定义值	含义
NET_DVR_SYSHEAD	1	系统头数据
NET_DVR_STREAMDATA	2	流数据(包括复合流或音视频分开的视频流数据)

返回值: -1 表示失败,其他值作为 NET_DVR_StopRealPlay 等函数的句柄参数。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说 呀: 该接口中的回调函数可以置为空,这样该函数将不回调码流数据给用户,不过用户仍可以通过接口 <u>NET_DVR_SetRealDataCallBack</u>或 <u>NET_DVR_SetStandardDataCallBack</u>注册捕获码流数据的回调函数以捕获码流数据。

客户端异常离线时,设备端对取流连接的保持时间为10秒。

返回目录

5.5.5 停止预览 NET DVR StopRealPlay

函数: BOOL NET DVR StopRealPlay (LONG IRealHandle)

参 数: [in] lRealHandle 预览句柄,NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.5.6 获取预览时用来解码和显示的播放库句柄 NET_DVR_GetRealPlayerIndex

函数: int NET DVR GetRealPlayerIndex(LONG RealHandle)

参 数: [in] lRealHandle 预览句柄,NET DVR RealPlay V40 的返回值

返回值: -1 表示失败,其他值表示播放句柄。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 用户可以通过返回的句柄自行实现播放库 SDK 提供的其他功能,详见本公司提供的软解码库函数说明《播放器 SDK 编程指南》。例如使用 PlayM4_GetBMP(LONG nPort,.....)、

PlayM4_GetJPEG(LONG nPort,.....)这两个接口时,即可实现将当前预览图像以 BMP 或 JPEG 格式

抓图保存到内存中: PlayM4_GetBMP(NET_DVR_GetRealPlayerIndex(),.....)

PlayM4_GetJPEG(NET_DVR_GetRealPlayerIndex(),.....)

5.6 预览时解码效果的参数控制

5.6.1 设置播放库的帧缓冲区个数 NET_DVR_SetPlayerBufNumber

函数: BOOL NET_DVR_SetPlayerBufNumber(LONG | RealHandle, DWORD dwBufNum)

参数: [in] | RealHandle NET_DVR_RealPlay_V40 的返回值

[in] dwBufNum 所要设置的单视频播放时缓冲区最大的帧数,取值范围[1,50],

SDK 默认的帧缓冲区大小为 15

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 设置网络延时和播放流畅度可以通过此接口来进行调节。

dwBufNum 值越大,播放的流畅性越好,相对延时就大;

dwBufNum 值越小,播放的延时就小,但是当网络不太顺畅的时候,会有丢帧现象,影响播放

的流畅性。

若当前为混合流时,为保证音视频同步效果建议设置缓冲帧数大于等于6帧。此函数必须紧跟

在 NET DVR RealPlay V40 后使用,在图像播放之后设置则不起作用。

返回目录

5.7 预览时播放声音控制

5.7.1 设置声音播放模式 NET_DVR_SetAudioMode

函数: BOOL NET_DVR_SetAudioMode(DWORD dwMode)

参数: [in] dwMode 声音播放模式: 1-独占声卡,单路音频模式;

2一共享声卡,多路音频模式

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 不调用该接口设置声音播放模式,默认为独占播放。

返回目录

5.7.2 独占声卡模式下开启声音 NET_DVR_OpenSound

函数: BOOL NET_DVR_OpenSound(LONG | RealHandle)

参数: [in] | RealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 如果当前是共享模式播放,调用该接口将返回失败。以独占方式只能打开一路通道播放,即依

次打开多个通道时仅打开最后一路。

5.7.3 独占声卡模式下开启声音 NET_DVR_CloseSound

函数: BOOL NET_DVR_CloseSound()

参数: 无

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.7.4 共享声卡模式下开启声音 NET_DVR_OpenSoundShare

函数: BOOL NET_DVR_OpenSoundShare(LONG | RealHandle)

参数: [in] IRealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.7.5 共享声卡模式下关闭声音 NET_DVR_CloseSoundShare

函数: BOOL NET_DVR_CloseSoundShare (LONG IRealHandle)

参数: [in] | RealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.7.6 调节播放音量 NET_DVR_Volume

函数: BOOL NET_DVR_Volume(LONG | RealHandle, WORD wVolume)

参数: [in] lRealHandle NET_DVR_RealPlay_V40 的返回值

[in] wVolume 音量,取值范围[0,0xffff]

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 该接口调节的是 PC 的音量。

5.8 实时预览数据捕获

5.8.1 注册回调函数,捕获实时码流数据 NET_DVR_SetRealDataCallBack

函数: BOOL NET_DVR_SetRealDataCallBack(LONG IRealHandle, fRealDataCallBack cbRealDataCallBack, DWORD dwUser)

参数: [in] | RealHandle 预览句柄,NET_DVR_RealPlay_V40 的返回值

[in] cbRealDataCallBack 码流数据回调函数

[in] dwUser 用户数据

typedef void(CALLBACK *fRealDataCallBack)(LONG lRealHandle, DWORD dwDataType, BYTE *pBuffer, DWORD dwBufSize, DWORD dwUser)

[out] IRealHandle 当前的预览句柄

[out] dwDataType数据类型,详见表 5.7[out] pBuffer存放数据的缓冲区指针

[out] dwBufSize 缓冲区大小 [out] dwUser 用户数据

表 5.7 码流数据类型

dwDataType 宏定义	宏定义值	含义
NET_DVR_SYSHEAD	1	系统头数据
NET_DVR_STREAMDATA	2	流数据(包括复合流或音视频分开的视频流数据)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 此函数包括开始和停止用户处理 SDK 捕获的数据,当回调函数 cbRealDataCallBack 设为非 NULL 值时,表示回调和处理数据;当设为 NULL 时表示停止回调和处理数据。回调的第一个包是 40 个字节的文件头,供后续解码使用,之后回调的是压缩的码流。回调数据最大为 256K 字节。

返回目录

5.8.2 捕获数据并保存到指定的文件中 NET_DVR_SaveRealData

函数: BOOL NET_DVR_SaveRealData(LONG lRealHandle,char *sFileName)

参数: [in] IRealHandle NET_DVR_RealPlay_V40 的返回值

[in] sFileName 文件路径指针,绝对路径,包括文件名

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: V5.0.3.2 或以后版本,通过该接口保存录像,文件最大限制为 1024MB,大于 1024M 时,SDK 自动新建文件进行保存,文件开始将 40 字节头自动写入,文件名命名规则为"在接口传入的文件名基础上增加数字标识(例如:*_1.mp4、*_2.mp4)"。

5.8.3 停止数据捕获 NET_DVR_StopSaveRealData

函数: BOOL NET_DVR_StopSaveRealData(LONG | RealHandle)

参数: [in] | RealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.9布防、撤防

设置报警等信息上传的回调函数

5.9.1 注册回调函数,接收设备报警消息

NET_DVR_SetDVRMessageCallBack_V31

函数: BOOL NET DVR SetDVRMessageCallBack V31(MSGCallBack fMessageCallBack, void* pUser)

参数: [in]fMessageCallBack 报警信息回调函数

[in]pUser 用户数据

typedef BOOL (CALLBACK *MSGCallBack)(LONG ICommand, NET_DVR_ALARMER *pAlarmer, char

*pAlarmInfo, DWORD dwBufLen, void *pUser)

[out]ICommand 上传的消息类型,详见表 5.8

[out]pAlarmer 报警设备信息,详见 <u>NET_DVR_ALARMER</u>

[out]pAlarmInfo报警信息,详见表 5.9[out]dwBufLen报警信息缓存大小

[out]pUser 用户数据

表 5.8 布防报警信息类型

ICommand 宏定义	宏定义值	含义
COMM_ITS_BLOCKLIST_ALARM	0x3057	车辆名单报警上传
COMM_VEHICLE_RECOG_RESULT	0x3062	车辆二次识别结果上传
COMM_ITS_ROAD_EXCEPTION	0x4500	路口设备异常报警上传
COMM_ITS_EXTERNAL_CONTROL_ALARM	0x4520	指示灯外控报警

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u>获取错误码,通过错误码判断出错原因。

说 呀: 该接口中回调函数的第一个参数(ICommand)和第三个参数(pAlarmInfo)是密切关联的,其 关系如表 5.9 所示。

表 5.9 报警信息结构

消息类型(ICommand)	上传内容	pAlarmInfo 对应的结构体
COMM_ITS_BLOCKLIST_ALARM	车辆名单报警上传	NET ITS ECT BLOCKLIST
COMM_VEHICLE_RECOG_RESULT	车辆二次识别结果上传	NET DVR VEHICLE RECOG RESULT
COMM_ITS_ROAD_EXCEPTION	路口设备异常报警信息	NET ITS ROADINFO
COMM_ITS_EXTERNAL_CONTROL_ALARM	指示灯外控报警信息	NET_DVR_EXTERNAL_CONTROL_ALARM

返回目录

布防撤防

5.9.2 建立报警上传通道,获取报警等信息 NET_DVR_SetupAlarmChan_V41

函数: LONG NET_DVR_SetupAlarmChan_V41(LONG IUserID, LPNET_DVR_SETUPALARM_PARAM lpSetupParam)

参数: [in] lUserID 用户 ID,NET_DVR_Login_V30 的返回值

[in] lpSetupParam 报警布防参数,详见结构体: NET DVR SETUPALARM PARAM

返回值: -1 表示失败,其他值作为 NET_DVR_CloseAlarmChan_V30 函数的句柄参数。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

返回目录

5.9.3 撤销报警上传通道 NET_DVR_CloseAlarmChan_V30

函数: BOOL NET_DVR_CloseAlarmChan_V30(LONG IAlarmHandle)

参数: [in]lAlarmHandle NET_DVR_SetupAlarmChan_V41的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.10 监听报警

5.10.1 启动监听,接收设备主动上传的报警等信息 NET_DVR_StartListen_V30

函数: LONG NET_DVR_StartListen_V30(char *sLocalIP, WORD wLocalPort, MSGCallBack DataCallback, void* pUserData)

参数: [in] sLocalIP PC 机本地 IP 地址,可以置为 NULL

[in] wLocalPort PC 本地监听端口号。由用户设置,必须和设备端设置的一致

[in] DataCallback 回调函数,不能为 NULL

[in] pUserData 用户数据

typedef void(CALLBACK *MSGCallBack)(LONG lCommand,NET_DVR_ALARMER *pAlarmer,char *pAlarmInfo,DWORD dwBufLen,void *pUser)

[out] ICommand 上传的消息类型,详见表 5.10

[out] pAlarmer 报警设备信息,详见结构体: <u>NET_DVR_ALARMER</u>

[out] pAlarmInfo 报警信息,详见表 5.11

[out] dwBufLen 报警信息缓存大小

[out] pUser 用户数据

表 5.10 监听报警信息类型

宏定义	宏定义值	含义
COMM_ALARM_TFS	0x1113	交通取证报警信息上传
COMM_ALARM_TPS_V41	0x1114	交通参数统计报警信息上传
COMM_ALARM_AID_V41	0x1115	交通事件报警信息上传(扩展)
COMM_ITS_PLATE_RESULT	0x3050	智能交通终端图片上传
COMM_ITS_TRAFFIC_COLLECT	0x3051	ITS 智能终端统计数据上传
COMM_ITS_GATE_VEHICLE	0x3052	出入口车辆抓拍数据上传
COMM_ITS_GATE_FACE	0x3053	出入口人脸抓拍数据上传
COMM_ITS_GATE_COSTITEM	0x3054	出入口过车收费明细上传
COMM_ITS_GATE_HANDOVER	0x3055	出入口交接班数据上传
COMM_ITS_PARK_VEHICLE	0x3056	停车场数据上传
COMM_ITS_BLOCKLIST_ALARM	0x3057	车辆名单报警上传
COMM_VEHICLE_RECOG_RESULT	0x3062	车辆二次识别结果上传
COMM_ITS_ROAD_EXCEPTION	0x4500	路口设备异常报警上传
COMM_ITS_EXTERNAL_CONTROL_ALARM	0x4520	指示灯外控报警

返回值: -1 表示失败,其他值作为 NET_DVR_CloseAlarmChan_V30 函数的句柄参数。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说 呀: 该接口中回调函数的第一个参数(ICommand)和第三个参数(pAlarmInfo)是密切关联的,其 关系如表 **5.11** 所示。

消息类型 (ICommand) 上传内容 pAlarmInfo 对应的结构体 COMM_ALARM_TFS 交通取证报警信息 NET DVR TFS ALARM COMM_ALARM_TPS_V41 交通参数统计报警信息 NET DVR TPS ALARM V41 交通事件报警信息扩展 COMM_ALARM_AID_V41 NET DVR AID ALARM V41 COMM_ITS_PLATE_RESULT 智能交通终端图片上传 NET ITS PLATE RESULT 终端统计数据上传 COMM_ITS_TRAFFIC_COLLECT NET ITS TRAFFIC COLLECT NET_ITS_GATE_VEHICLE COMM_ITS_GATE_VEHICLE 出入口车辆抓拍数据上传 COMM_ITS_GATE_FACE 出入口人脸抓拍数据上传 NET ITS GATE FACE 出入口过车收费明细 COMM ITS GATE COSTITEM NET ITS PASSVEHICLE COST ITEM COMM_ITS_GATE_HANDOVER 出入口交接班数据 NET ITS HANDOVER INFO

表 5.11 报警信息结构

COMM_ITS_PARK_VEHICLE	停车场数据上传	NET_ITS_PARK_VEHICLE
COMM_ITS_BLOCKLIST_ALARM	车辆名单报警上传	NET ITS ECT BLOCKLIST
COMM_VEHICLE_RECOG_RESULT	车辆二次识别结果上传	NET DVR VEHICLE RECOG RESULT
COMM_ITS_ROAD_EXCEPTION	路口设备异常报警信息	NET_ITS_ROADINFO
COMM_ITS_EXTERNAL_CONTROL_ALARM	指示灯外控报警信息	NET DVR EXTERNAL CONTROL ALARM

- ➤ 要使 PC 能够收到设备主动发过来的报警等信息,必须将设备的网络配置中的"远程主机地址" 设置成 PC 机的 IP 地址(与接口中的 sLocalIP 参数一致),"远程主机端口号"设置成 PC 机的 监听端口号(与接口中的 wLocalPort 参数一致)。
- ▶ 该接口中的回调函数优先级高于其他回调函数,即设置了该接口中的回调函数,其他报警回 调函数将接收不到报警信息。

返回目录

5.10.2 停止监听(支持多线程)NET_DVR_StopListen_V30

函数: BOOL NET_DVR_StopListen_V30(LONG | ListenHandle)

参数: [in] IListenHandle 监听句柄, NET DVR StartListen V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.11 远程参数配置

5.11.1 获取设备的配置信息 NET_DVR_GetDVRConfig

函数: BOOL NET_DVR_GetDVRConfig(LONG IUserID, DWORD dwCommand,LONG IChannel, LPVOID lpOutBuffer, DWORD dwOutBufferSize, LPDWORD lpBytesReturned)

参数: [in] lUserID 用户ID号,NET DVR Login V30的返回值

[in] dwCommand 设备配置命令,详见表 5.12

[in] IChannel 通道号,如果命令不需要通道号,该参数无效,置为 0xFFFFFFF

即可

[out] lpOutBuffer 接收数据的缓冲指针,详见表 5.12

[in] dwOutBufferSize 接收数据的缓冲长度(以字节为单位),不能为 0

[out] lpBytesReturned 实际收到的数据长度指针,不能为 NULL

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 不同的获取功能对应不同的结构体和命令号,如表 5.12 所示。

- 当连接 ITS 终端进行配置,命令通道如果是模拟通道则到终端,如果是数字通道则到相机。
- 通道号是指设备视频通道号,通过注册设备(<u>NET_DVR_Login_V30</u>)返回的设备信息 (NET_DVR_DEVICEINFO_V30)获取模拟通道个数(byChanNum)、模拟通道起始通道号 (byStartChan)和设备支持的最大 IP 通道数(byIPChanNum+byHighDChanNum*256)、数字

通道起始通道号(byStartDChan)。

表 5.12 设备参数获取

dwCommand 宏定义	dwCommand 含义	通道号	lpOutBuffer 对应结构体	宏定义值
NET_DVR_GET_DEVICECFG_V40	获取设备参数(扩展)	无效	NET DVR DEVICECFG V40	1100
NET_DVR_GET_IPPARACFG_V40	获取 IP 接入配置参数	通道号	NET_DVR_IPPARACFG_V40	1062
NET_DVR_GET_DECODERCFG_V30	获取(RS485)云台解码器参数	通道号	NET_DVR_DECODERCFG_V30	1042
NET_DVR_GET_TIMECFG	获取时间参数	无效	NET DVR TIME	118
NET_DVR_GET_EXCEPTIONCFG_V30	获取异常参数	无效	NET_DVR_EXCEPTION_V30	1034
NET_DVR_GET_NETCFG_V30	获取网络参数	无效	NET_DVR_NETCFG_V30	1000
NET_DVR_GET_NTPCFG	获取网络应用参数(NTP)	无效	NET_DVR_NTPPARA	224
NET_DVR_GET_PICCFG_V30	获取图象参数	通道号	NET_DVR_PICCFG_V30	1002
NET_DVR_GET_COMPRESSCFG_V30	获取压缩参数	通道号	NET DVR COMPRESSIONCFG V30	1040
NET_DVR_GET_RECORDCFG_V30	获取录像计划参数	通道号	NET_DVR_RECORD_V30	1004
NET_DVR_GET_SHOWSTRING_V30	获取叠加字符参数	通道号	NET DVR SHOWSTRING V30	1030
NET_DVR_GET_HDCFG	获取硬盘管理参数	无效	NET_DVR_HDCFG	1054
NET_ITS_GET_UPLOAD_CFG	获取数据上传配置	通道号	NET_ITS_UPLOAD_CFG	5065
NET_ITS_GET_ROAD_INFO	获取路口信息	通道号	NET ITS ROADINFO	5076
NET_ITS_GET_GATEIPC_CHAN_CFG	获取出入口参数	通道号	NET ITS IPC CHAN LANE CFG	5078
NET_ITS_GET_LAMP_CTRLCFG	获取内外置灯参数(ITS 停车场)	通道号	NET_DVR_LAMP_CTRL_INFO	5090
NET_ITS_GET_PARKSPACE_ATTRIBUTE_CFG	获取特殊车位参数(ITS 停车场)	通道号	NET DVR PARKSPACE ATTRIBUTE	5092
NET_DVR_GET_CCDPARAMCFG_EX	获取相机前端参数(扩展)	通道号	NET DVR CAMERAPARAMCFG EX	3368
NET_DVR_GET_AID_RULECFG_V41	获取交通事件规则参数	通道号	NET_DVR_AID_RULECFG_V41	5013
NET_DVR_GET_TPS_RULECFG_V41	获取交通统计规则参数	通道号	NET_DVR_TPS_RULECFG_V41	5015

返回目录

5.11.2 设置设备的配置信息 NET_DVR_SetDVRConfig

函数: BOOL NET_DVR_SetDVRConfig(LONG lUserID, DWORD dwCommand,LONG lChannel, LPVOID lpInBuffer, DWORD dwInBufferSize)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

[in] dwCommand 设备配置命令,详见表 5.13

[in] IChannel 通道号。如果命令不需要通道号,该参数无效,置为 0xFFFFFFFF

即可

[in] lpInBuffer 输入数据的缓冲指针,详见表 5.13 [in] dwInBufferSize 输入数据的缓冲长度(以字节为单位)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 不同的获取功能对应不同的结构体和命令号,如表 5.13 所示。

- 当连接 ITS 终端进行配置,命令通道如果是模拟通道则到终端,如果是数字通道则到相机。
- 通道号是指设备视频通道号,通过注册设备(<u>NET_DVR_Login_V30</u>)返回的设备信息(NET_DVR_DEVICEINFO_V30)获取模拟通道个数(byChanNum)、模拟通道起始通道号(byStartChan)和设备支持的最大 IP 通道数(byIPChanNum+ byHighDChanNum*256)、数字通道起始通道号(byStartDChan)。

表 5.13 设备参数设置

dwCommand 宏定义	dwCommand 含义	通道号	lpInBuffer 对应结构体	宏定义值
NET_DVR_SET_DEVICECFG_V40	设置设备参数(扩展)	无效	NET_DVR_DEVICECFG_V40	1101
NET_DVR_SET_IPPARACFG_V40	设置 IP 接入配置参数	通道号	NET DVR IPPARACFG V40	1063
NET_DVR_SET_DECODERCFG_V30	设置(RS485)云台解码器参数	通道号	NET DVR DECODERCFG V30	1043
NET_DVR_SET_TIMECFG	设置时间参数	无效	NET_DVR_TIME	119
NET_DVR_SET_EXCEPTIONCFG_V30	设置异常参数	无效	NET DVR EXCEPTION V30	1035
NET_DVR_SET_NETCFG_V30	设置网络参数	无效	NET DVR NETCFG V30	1001
NET_DVR_SET_NTPCFG	设置网络应用参数(NTP)	无效	NET_DVR_NTPPARA	225
NET_DVR_SET_PICCFG_V30	设置图像参数	通道号	NET_DVR_PICCFG_V30	1003
NET_DVR_SET_COMPRESSCFG_V30	设置压缩参数	通道号	NET DVR COMPRESSIONCFG V30	1041
NET_DVR_SET_RECORDCFG_V30	设置录像参数	通道号	NET DVR RECORD V30	1005
NET_DVR_SET_SHOWSTRING_V30	设置叠加字符参数	通道号	NET_DVR_SHOWSTRING_V30	1031
NET_DVR_SET_HDCFG	设置硬盘管理参数	无效	NET_DVR_HDCFG	1055
NET_ITS_SET_UPLOAD_CFG	设置数据上传配置	通道号	NET ITS UPLOAD CFG	5066
NET_ITS_REMOTE_DEVICE_CONTROL	设置远程设备控制(ITS 出入口)	无效	NET_ITS_REMOTE_CONTROL	5077
NET_ITS_SET_GATEIPC_CHAN_CFG	设置出入口参数	通道号	NET ITS IPC CHAN LANE CFG	5079
NET_ITS_SET_LAMP_CTRLCFG	设置内外置灯参数(ITS 停车场)	通道号	NET DVR LAMP CTRL INFO	5091
NET_ITS_SET_PARKSPACE_ATTRIBUTE_CFG	设置特殊车位参数(ITS 停车场)	通道号	NET_DVR_PARKSPACE_ATTRIBUTE	5093
NET_ITS_SET_LAMP_EXTERNAL_CFG	设置外控配置参数(ITS 停车场)	通道号	NET DVR LAMP EXTERNAL CFG	5095
NET_ITS_SET_COMPEL_CAPTURE	设置车位强制抓图(ITS 停车场)	通道号	NET_DVR_COMPEL_CAPTURE	5096
NET_DVR_SET_CCDPARAMCFG_EX	设置相机前端参数(扩展)	通道号	NET_DVR_CAMERAPARAMCFG_EX	3369
NET_DVR_SET_AID_RULECFG_V41	设置交通事件规则参数	通道号	NET_DVR_AID_RULECFG_V41	5014
NET_DVR_SET_TPS_RULECFG_V41	设置交通统计规则参数	通道号	NET DVR TPS RULECFG V41	5016

返回目录

5.12 批量配置参数

5.12.1 批量获取配置信息 NET_DVR_GetDeviceConfig

函数: BOOL NET_DVR_GetDeviceConfig(LONG IUserID, DWORD dwCommand, DWORD dwCount, LPVOID lpInBuffer, DWORD dwInBufferSize, LPVOID lpStatusList, LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参数: [in] IUserID 用户ID号,NET DVR Login V30的返回值

[in] dwCommand 设备配置命令,详见表 5.14

[in] dwCount 一次要获取的配置个数, 0 和 1 都表示 1 个监控点信息, 2 表示 2

个监控点信息,以此递增,最大64个

[in] lpInBuffer 配置条件缓冲区,详见表 5.15

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的监控点一一对应,例如 lpStatusList[2]

就对应 lpInBuffer[2],由用户分配内存,每个错误信息为 4 个字节,

参数值: 0 或者 1 表示成功, 其他值为失败对应的错误号

[out] lpOutBuffer 设备备返回的参数内容(详见表 5.15),和要查询的监控点一一

对应。如果某个监控点对应的 lpStatusList 信息为大于 0 值,对应

IpOutBuffer 的内容就是无效的

[in] dwOutBufferSize 输出缓冲区大小

表 5.14 参数批量获取命令

dwCommand 宏定义	dwCommand 含义	宏定义值
NET_DVR_GET_CLOUDSTORAGE_CFG	获取云存储配置参数	5058
NET_DVR_GET_ITS_EXDEVCFG	获取 ITS 外接设备信息(ITS 终端)	5085
NET_DVR_GET_FORENSICS_MODE	获取违章取证方式	5217

返回值: TRUE 表示成功但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

该接口是带有发送数据的批量获取配置信息的通用接口,lpInBuffer 指定需要获取的 dwCount 个配置信息,lpOutBuffer 保存获取得到的 dwCount 个配置信息。不同的获取功能对应不同的结构

体,如表 5.15 所示。

说

明:

表 5.15 批量获取设备参数

dwCommand	lpInBuffer 对应结构体	IpOutBuffer 对应结构体
NET_DVR_GET_CLOUDSTORAGE_CFG	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_COND</u>	dwCount ↑ NET_DVR_CLOUDSTORAGE_CFG
NET_DVR_GET_ITS_EXDEVCFG	dwCount 个 <u>NET_DVR_EXTERNAL_DEVCOND</u>	dwCount ↑ NET_DVR_EXTERNAL_DEVCFG
NET_DVR_GET_FORENSICS_MODE	dwCount 个 4 字节通道号	dwCount 个 <u>NET_DVR_FORENSICS_MODE</u>

返回目录

5.12.2 批量设置配置信息 NET_DVR_SetDeviceConfig

函数: BOOL NET_DVR_SetDeviceConfig(LONG IUserID,DWORD dwCommand,DWORD dwCount,LPVOID lpInBuffer,DWORD dwInBufferSize,LPVOID lpStatusList, LPVOID lpInParamBuffer,DWORD dwInParamBufferSize)

参数: [in] IUserID 用户ID号,NET DVR Login V30的返回值

[in] dwCommand 设备配置命令,详见表 5.16

[in] dwCount 一次要设置的监控点个数, 0 和 1 都表示 1 个监控点信息, 2 表示

2个监控点信息,以此递增,最大64个

[in] lpInBuffer 配置条件缓冲区,详见表 5.17

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的监控点一一对应,例如 lpStatusList[2]

就对应 lpInBuffer[2],由用户分配内存,每个错误信息为 4 个字节,

参数值: 0 或者 1 表示成功,其他值为失败对应的错误号

[in] lpInParamBuffer 需要设置给设备的参数内容(详见表 5.17),和要查询的监控点

一一对应。如果某个监控点对应的 lpStatusList 信息为大于 0 值,

表示对应的 lpInBuffer 设置失败,为 0 则设置成功

[in] dwInParamBufferSize 设置内容缓冲区大小

表 5.16 参数批量设置命令

dwCommand 宏定义	dwCommand 含义	宏定义值
NET_DVR_SET_VEHICLE_RECOG_TASK	车辆二次识别任务提交(ITS 终端)	422
NET_DVR_SET_CLOUDSTORAGE_CFG	设置云存储配置参数	5059
NET_DVR_SET_ITS_EXDEVCFG	设置 ITS 外接设备信息(ITS 终端)	5084
NET_DVR_SET_FORENSICS_MODE	设置违章取证方式	5218

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 该接口是带有发送数据的批量设置监控点配置信息的通用接口。IpInBuffer 指定需要设置的 dwCount 个监控点信息,IpOutBuffer 保存将要设置的 dwCount 个监控点的配置信息。不同的获取功能对应不同的结构体和命令号,如表 5.17 所示。

表 5.17 批量设置设备参数

dwCommand	lpInBuffer 对应结构体	lpInParamBuffer 对应结构体
NET_DVR_SET_VEHICLE_RECOG_TASK	dwCount 个 <u>NET_DVR_VEHICLE_RECOG_COND</u>	dwCount 个 <u>NET_DVR_VEHICLE_RECOG_CFG</u>
NET_DVR_SET_CLOUDSTORAGE_CFG	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_COND</u>	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_CFG</u>
NET_DVR_SET_ITS_EXDEVCFG	dwCount 个 <u>NET_DVR_EXTERNAL_DEVCOND</u>	dwCount 个 <u>NET_DVR_EXTERNAL_DEVCFG</u>
NET_DVR_SET_FORENSICS_MODE	dwCount 个 4 字节通道号	dwCount 个 <u>NET_DVR_FORENSICS_MODE</u>

返回目录

5.13 长连接参数配置

5.13.1 启动长连接远程配置 NET_DVR_StartRemoteConfig

函数: LONG NET_DVR_StartRemoteConfig(LONG lUserID, DWORD dwCommand, LPVOID lpInBuffer,

DWORD dwInBufferLen, fRemoteConfigCallback cbStateCallback, LPVOID pUserData)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V30 返回值

[in] dwCommand 配置命令,详见表 5.18

[in] lpInBuffer 输入参数,具体内容跟配置命令相关,详见表 5.18

[in] dwInBufferLen输入缓冲的大小[in] cbStateCallback状态回调函数[in] pUserData用户数据

typedef void(CALLBACK *fRemoteConfigCallback)(DWORD dwType, void *lpBuffer, DWORD dwBufLen, void *pUserData)

[out] dwType 配置状态

[out] lpBuffer 存放数据的缓冲区指针

[out] dwBufLen 缓冲区大小 [out] pUserData 用户数据

返回值: TRUE 表示成功,FALSE 表示失败。获取错误码调用 <u>NET_DVR_GetLastError</u>。

说明: 不同的配置命令(dwCommand)对应不同的输入参数(IpInBuffer),回调获取信息也不同,

详见表 5.18。调用该接口启动长连接远程配置后,对于有些命令,还需要调用其他接口获取

或者设置相关参数,如表 5.19 所示。

表 5.18 长连接配置

dwCommand 宏定义	宏定义值	控制功能	IpInBuffer	回调函数
NET_DVR_GET_VEHICLE_RECOG_TASK	443	车辆二次识别任务获取	NET_DVR_VEHICLE_RECOG_TASK_COND	NULL
NET_ITS_GET_ECT_CHAN_INFO	5082	获取出入口终端通道状态	NULL	NULL
NET_DVR_GET_ITS_EXDEVSTATUS	5086	获取 ITS 所有外接设备信息	NET_DVR_EXTERNAL_DEVCOND	NULL
NET_DVR_GET_TRAFFIC_DATA	3141	获取交通数据	NET DVR TRAFFIC DATA QUERY COND	返回状态、 信息数据
NET_DVR_GET_TRAFFIC_FLOW	3142	获取交通流量	NET_DVR_TRAFFIC_FLOW_QUERY_COND	返回状态、 信息数据

表 5.19 后续接口调用

V 0:=0 /H-2/12/1 / 1/14			
dwCommand 宏定义	含义	后续接口调用	
NET_DVR_GET_VEHICLE_RECOG_TASK	车辆二次识别任务获取	NET DVR GetNextRemoteConfig	
NET_ITS_GET_ECT_CHAN_INFO	获取出入口终端通道状态	NET_DVR_GetNextRemoteConfig	
NET_DVR_GET_ITS_EXDEVSTATUS	获取 ITS 所有外接设备信息	NET_DVR_GetNextRemoteConfig	
NET_DVR_GET_TRAFFIC_DATA	获取交通数据	NULL	
NET_DVR_GET_TRAFFIC_FLOW	获取交通流量	NULL	

表 5.20 长连接回调参数

dwCommand 宏定义	dwType	lpInBuffer
NET_DVR_GET_TRAFFIC_DATA	typedef enum{	dwType 为 0 时,lplnBuffer 对应状态,详见:
	NET_SDK_CALLBACK_TYPE_STATUS = 0,	NET_SDK_CALLBACK_STATUS_NORMAL
	//回调状态值	dwType 为 2 时,lpInBuffer 为查找到的信息数据,
	NET_SDK_CALLBACK_TYPE_PROGRESS,	对应结构体 <u>NET DVR TRAFFIC DATA QUERY RESULT</u>
NET_DVR_GET_TRAFFIC_FLOW	//回调进度值	dwType 为 0 时,lpInBuffer 对应状态,详见:
	NET_SDK_CALLBACK_TYPE_DATA	NET_SDK_CALLBACK_STATUS_NORMAL
	//回调数据内容	dwType 为 2 时,lpInBuffer 为查找到的信息数据,
NET_SDK_CALLBACK_TYPE;		对应结构体 NET DVR TRAFFIC FLOW QUERY RESULT

5.13.2 逐个获取查找到的结果信息 NET_DVR_GetNextRemoteConfig

函数: LONG NET_DVR_GetNextRemoteConfig(LONG lHandle, void *lpOutBuff, DWORD dwOutBuffSize)

参数: [in] lHandle 查找句柄,NET_DVR_StartRemoteConfig 的返回值

[in] lpOutBuff 输出数据缓冲区,与 NET_DVR_StartRemoteConfig 的命令

(dwCommand) 有关, 详见表 5.22

[in] dwOutBuffSize 缓冲区长度

返回值: -1 表示失败,其他值表示当前的获取状态等信息,如表 5.21 所示。获取错误码调用 NET DVR GetLastError。

表 5.21 长连接状态

宏定义	宏定义值	含义
NET_SDK_GET_NEXT_STATUS_SUCCESS	1000	成功读取到数据,处理完本次数据后需要再次调用 NET_DVR_GetNextRemoteConfig 获取下一条数据
NET_SDK_GET_NETX_STATUS_NEED_WAIT	1001	需等待设备发送数据,继续调用 NET_DVR_GetNextRemoteConfig
NET_SDK_GET_NEXT_STATUS_FINISH	1002	数据全部取完,可调用 NET_DVR_StopRemoteConfig 结束长连接
NET_SDK_GET_NEXT_STATUS_FAILED	1003	出现异常,可调用 NET_DVR_StopRemoteConfig 结束长连接

说 啰: 调用该接口获取查找结果之前,必须先调用 <u>NET DVR StartRemoteConfig</u> 得到当前的查找句柄。 此接口用于获取一条已查找到的信息,若要获取全部已查找到的信息,需要循环调用此接口。 表 5.22 长连接获取参数

dwCommand 宏定义	宏定义值	控制功能	lpOutBuff 对应结构体	
NET_DVR_GET_VEHICLE_RECOG_TASK	443	车辆二次识别任务获取	NET_DVR_VEHICLE_RECOG_TASK_INFO	
NET_ITS_GET_ECT_CHAN_INFO	5082	获取出入口终端通道状态	NET ITS ECT CHANNELSTATE	
NET_DVR_GET_ITS_EXDEVSTATUS	5086	获取 ITS 所有外接设备信息	NET_DVR_EXTERNAL_DEVSTATUS	

返回目录

5.13.3 关闭长连接配置接口所创建的句柄,释放资源

NET_DVR_StopRemoteConfig

函数: BOOL NET_DVR_StopRemoteConfig(LONG lHandle)

参数: [in] IHandle 句柄,NET_DVR_StartRemoteConfig 的返回值返回值: TRUE 表示成功,FALSE 表示失败。获取错误码调用 <u>NET_DVR_GetLastError</u>。

说明:

5.14 远程控制

5.14.1 远程控制 NET_DVR_RemoteControl

函数: BOOL NET_DVR_RemoteControl(LONG lUserID, DWORD dwCommand, LPVOID lpInBuffer, DWORD

dwInBufferSize)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V30 返回值

[in] dwCommand 控制命令,详见表 5.23

[in] lpInBuffer 输入参数,跟控制命令相关,详见列表

[in] dwInBufferSize 输入参数长度

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明: 不同的控制功能对应不同的命令号,同时 IpInBuffer 对应不同的结构体,如表 5.23 所示。

表 5.23 远程控制命令

dwCommand 宏定义	宏定义值	控制功能	lpInBuffer 对应结构体
NET_DVR_SET_ITS_ENDEVCMD	5087	设置 ITS 终端出入口控制命令 (控制下发卡片信息)	NET DVR ENTRANCEDEV COMMAND
NET_DVR_SET_ENISSUED_DATADEL	5088	设置 ITS 终端出入口控制命令 (清除下发的卡片数据)	NET_DVR_ENISSUED_DATADEL
NET_DVR_CONTROL_PTZ_MANUALTRACE	3316	手动定位	NET DVR PTZ MANUALTRACE

返回目录

5.15 录像回放和下载

5.15.1 按时间回放录像文件 NET_DVR_PlayBackByTime_V40

函数: LONG NET DVR PlayBackByTime V40(LONG lUserID, LPNET DVR VOD PARA pVodPara)

参数: [in]lUserID NET_DVR_Login_V30 的返回值

[in]pVodPara 回放参数,请参见结构体: <u>NET_DVR_VOD_PARA</u>

返回值: -1 表示失败,其他值作为 NET_DVR_StopPlayBack 等函数的参数。接口返回失败请调用

NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说 明: 该接口指定了当前要播放的录像,调用成功后,还必须调用 NET_DVR_PlayBackControl_V40 接口

的开始播放控制命令(NET DVR PLAYSTART)才能实现回放。

在调用该接口成功后,可以通过接口 NET DVR SetPlayDataCallBack 注册回调函数,捕获录像的

码流数据并自行处理。

返回目录

5.15.2 按时间下载录像文件 NET_DVR_GetFileByTime_V40

函数: LONG NET_DVR_GetFileByTime_V40(LONG lUserID, char *sSavedFileName, LPNET_DVR_PLAYCOND pDownloadCond)

参数: [in] IUserID NET DVR Login V30 的返回值

[in] sSavedFileName 下载后保存到 PC 机的文件路径,需为绝对路径,包括文件名 [in] pDownloadCond 下载调节,包括通道号、开始时间和停止时间等,详见结构体:

NET DVR PLAYCOND

返回值: -1 表示失败,其他值作为 NET_DVR_StopGetFile 等函数的参数。接口返回失败请调用 NET_DVR_GetLastError_获取错误码,通过错误码判断出错原因。

● V5.0.3.2 或以后版本,通过该接口保存录像,文件最大限制为 1024MB,大于 1024M 时,SDK 自动新建文件进行保存,文件开始将 40 字节头自动写入,文件名命名规则为"在接口传入的文件名基础上增加数字标识(例如:*_1.mp4、*_2.mp4)"。

返回目录

5.15.3 控制录像回放的状态 NET_DVR_PlayBackControl_V40

函数: BOOL NET_DVR_PlayBackControl_V40(LONG lPlayHandle,DWORD dwControlCode, LPVOID lpInBuffer = NULL, DWORD dwInLen = 0, LPVOID lpOutBuffer = NULL, DWORD *lpOutLen = NULL)

参数: [in]lPlayHandle 回放或者下载句柄,NET DVR PlayBackByTime V40 或者

NET DVR GetFileByTime V40 的返回值

[in]dwControlCode 控制录像回放或者下载状态命令,详见表 5.24

[in] lpInBuffer指向输入参数的指针[in]dwInLen输入参数的长度[out]lpOutBuffer指向输出参数的指针[out]lpOutLen输出参数的长度

表 5.24 回放控制命令

dwControlCode 宏定义	宏定义值	含义
NET_DVR_PLAYSTART	1	开始播放或者下载
NET_DVR_PLAYPAUSE	3	暂停播放或者下载
NET_DVR_PLAYRESTART	4	恢复播放或者下载
NET_DVR_PLAYFAST	5	快放
NET_DVR_PLAYSLOW	6	慢放
NET_DVR_PLAYNORMAL	7	正常速度播放(在暂停后调用将恢复暂停前的速度播放)
NET_DVR_PLAYFRAME	8	单帧放(恢复正常回放使用 NET_DVR_PLAYNORMAL 命令)
NET_DVR_PLAYSTARTAUDIO	9	打开声音
NET_DVR_PLAYSTOPAUDIO	10	关闭声音
NET_DVR_PLAYAUDIOVOLUME	11	调节音量,取值范围[0,0xffff]

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 该接口中的第三个参数是否需要输入数值与控制命令有关。当控制命令为 NET_DVR_PLAYSTART 时, lplnBuffer 指向一个 4 字节整型的偏移量,智能交通设备不支持该功能,值设为 0;当控制命令 为 NET DVR PLAYAUDIOVOLUME 指向一个 4 字节整型的音量值;其他命令时,lplnBuffer 设为 NULL。

回放录像文件时的数据捕获

5.15.4 捕获回放的录像数据,并保存成文件 NET DVR PlayBackSaveData

函数: BOOL NET DVR PlayBackSaveData(LONG lPlayHandle,char *sFileName)

参数: [in]lPlayHandle 回放句柄,NET_DVR_PlayBackByTime_V40 的返回值

[in]sFileName 保存数据的文件路径,绝对路径,包括文件名

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 **呀**: V5.0.3.2 或以后版本,通过该接口保存录像,文件最大限制为 1024MB,大于 1024M 时,SDK 自动新建文件进行保存,文件开始将 40 字节头自动写入,文件名命名规则为"在接口传入的文件

名基础上增加数字标识(例如: *_1.mp4、*_2.mp4)"。

返回目录

5.15.5 停止保存录像数据 NET DVR StopPlayBackSave

函数: BOOL NET_DVR_StopPlayBackSave(LONG IPlayHandle)

参数: [in]lPlayHandle 播放句柄,NET_DVR_PlayBackByTime_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.15.6 注册回调函数,捕获录像数据 NET_DVR_SetPlayDataCallBack_V40

函数: BOOL NET_DVR_SetPlayDataCallBack_V40(LONG IPlayHandle, fPlayDataCallBack cbPlayDataCallBack,

void *pUser)

参 数: [in]lPlayHandle 播放句柄,NET_DVR_PlayBackByName 或

NET_DVR_PlayBackByTime_V40 的返回值

[in]fPlayDataCallBack 录像数据回调函数

[in] pUser 用户数据

typedef void(CALLBACK *fPlayDataCallBack_V40)(LONG IPlayHandle, DWORD dwDataType, BYTE

*pBuffer, DWORD dwBufSize, void *pUser)

[out]IPlayHandle当前的录像播放句柄[out]dwDataType数据类型,详见表 5.25[out]pBuffer存放数据的缓冲区指针

[out]dwBufSize 缓冲区大小 [out]pUser 用户数据

表 5.25 回放回调数据类型

dwDataType 宏定义	宏定义值	含义
NET_DVR_SYSHEAD	1	系统头数据
NET_DVR_STREAMDATA	2	流数据(包括复合流或音视频分开的视频流数据)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 **呀**: **•** 此函数包括开始和停止用户处理 SDK 捕获的数据,当回调函数 cbPlayDataCallBack 设为非 NULL 值时,表示回调和处理数据;当设为 NULL 时表示停止回调和处理数据。回调的第一个包是 40 个字节的文件头,供后续解码使用,之后回调的是压缩的码流。

• cbPlayDataCallBack 回调函数中不能执行可能会占用时间较长的接口或操作,不建议调用该 SDK (HCNetSDK.dll)本身的接口。

返回目录

5.16 图片下载

5.16.1 获取图片数据并存放在指定的内存空间中 NET_DVR_GetPicture_V30

函数: BOOL NET_DVR_GetPicture_V30(LONG lUserID, char *sDVRFileName, char *sSavedFileBuf, DWORD dwBufLen, DWORD *lpdwRetLen)

参数: [in]lUserID NET_DVR_Login_V30的返回值

[in]sDVRFileName 图片名称

[in]sSavedFileName 保存图片的缓冲区

[in]dwBufLen 缓冲区大小

[out]lpdwRetLen 实际收到的数据长度指针,不能为 NULL

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 9: 图片为 JPEG 格式,数据保存在缓冲区 sSavedFileName 中,读取缓冲区的图片数据自己显示或者保存成文件。

返回目录

5.17 设备维护管理

远程升级

5.17.1 设置远程升级时网络环境 NET DVR SetNetworkEnvironment

函数: BOOL NET_DVR_SetNetworkEnvironment(DWORD dwEnvironmentLevel)

参数: [in] dwEnvironmentLevel 网络环境级别

enum{
 LOCAL_AREA_NETWORK = 0, //局域网环境
 WIDE_AREA_NETWORK //广域网环境
}

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 **呀**: 接口中的网络环境级别参数分为两类: LOCAL_AREA_NETWORK 表示局域网环境(网络环境好,通讯流畅); WIDE_AREA_NETWORK 表示广域网环境(网络环境差,易阻塞)。 在调用远程升级接口之前,可以通过此接口适应不同的升级环境。

<u>返回目录</u>

5.17.2 远程升级 NET_DVR_Upgrade

函数: LONG NET_DVR_Upgrade(LONG lUserID, char *sFileName)

参数: [in] IUserID NET_DVR_Login_V30 的返回值

[in] sFileName 升级文件路径(包括文件名)。路径长度和操作系统有关,sdk不

做限制, windows 默认路径长度小于等于 256 字节(包括文件名)

返回值: -1 表示失败,其他值作为 NET DVR GetUpgradeState 等函数的参数。接口返回

失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.17.3 获取远程升级的进度 NET_DVR_GetUpgradeProgress

函数: int NET_DVR_GetUpgradeProgress(LONG lUpgradeHandle)

参数: [in] lUpgradeHandle NET_DVR_Upgrade 的返回值

返回值: -1 表示失败,0~100 表示升级进度。接口返回失败请调用 NET DVR GetLastError 获取错误码,

通过错误码判断出错原因。

说明:

返回目录

5.17.4 获取远程升级的状态 NET DVR GetUpgradeState

函数: int NET_DVR_GetUpgradeState(LONG lUpgradeHandle)

参数: [in] lUpgradeHandle NET DVR Upgrade 的返回值

返回值: -1表示失败,其他值定义: 1-升级成功; 2-正在升级; 3-升级失败; 4-网络断开,状态未知;

5- 升级文件语言版本不匹配。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错

误码判断出错原因。

说明:

返回目录

5.17.5 关闭远程升级句柄,释放资源 NET_DVR_CloseUpgradeHandle

函数: BOOL NET_DVR_CloseUpgradeHandle(LONG lUpgradeHandle) 参数: [in] lUpgradeHandle NET_DVR_Upgrade 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

日志查找

5.17.6 查找设备的日志信息 NET_DVR_FindDVRLog_V30

函数: LONG NET_DVR_FindDVRLog_V30(LONG IUserID, LONG ISelectMode, DWORD dwMajorType,DWORD dwMinorType, LPNET_DVR_TIME lpStartTime, LPNET_DVR_TIME lpStopTime, BOOL bOnlySmart)

参数: [in]lUserID NET_DVR_Login_V30的返回值

定义请参见设备日志主类型

[in]dwMinorType 日志次类型(S.M.A.R.T 搜索时无效), 0表示全部类型,根据不同

的主类型的次类型定义请参见设备日志次类型

[in]lpStartTime文件的开始时间,详见结构体:NET DVR TIME[in]lpStopTime文件结束时间,详见结构体:NET DVR TIME

[in]bOnlySmart 是否只搜索带 S.M.A.R.T 信息的日志

返回值: -1 表示失败,其他值作为 NET_DVR_FindNextLog_V30 等函数的参数。接口返回失败请调用 NET_DVR_GetLastError_获取错误码,通过错误码判断出错原因。

说 明: 该接口如果用于搜索普通日志信息,一般设备支持 2000 条,而搜索带 S.M.A.R.T 信息(硬盘运行日志记录)的日志最大只支持 500 条。通常不需要搜索详细的 S.M.A.R.T 信息时,置 bOnlySmart 为 FALSE 即可完成所有日志信息的搜索。

返回目录

5.17.7 逐条获取查找到的日志信息 NET_DVR_FindNextLog_V30

函数: LONG NET_DVR_FindNextLog_V30(LONG lLogHandle, LPNET_DVR_LOG_V30 lpLogData) 参数: [in]lLogHandle 日志查找句柄,NET_DVR_FindDVRLog_V30 的返回值

[out]lpLogData 保存日志信息的指针,详见结构体: NET DVR LOG V30

返回值: -1 表示失败,其他值表示当前的获取状态等信息。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 在调用该接口获取查找日志之前,必须先调用 NET_DVR_FindDVRLog_V30 得到当前的查找句柄。

返回目录

5.17.8 释放查找日志的资源 NET_DVR_FindLogClose_V30

函数: BOOL NET DVR FindLogClose V30(LONG lLogHandle)

参数: [in]lLogHandle 日志查找句柄,NET DVR FindDVRLog V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

恢复设备默认参数

5.17.9 恢复设备默认参数 NET_DVR_RestoreConfig

函数: BOOL NET_DVR_RestoreConfig(LONG lUserID)

参数: [in] IUserID 用户ID号,NET DVR Login V30的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

导入/导出配置文件

5.17.10 导出配置文件 NET_DVR_GetConfigFile_V30

函数: BOOL NET_DVR_GetConfigFile_V30(LONG lUserID, char *sOutBuffer, DWORD dwOutSize, DWORD

*pReturnSize)

参数: [in]lUserID 用户ID号,NET_DVR_Login_V30的返回值

[out] sOutBuffer 存放配置参数的缓冲区

[in] dwOutSize 缓冲区大小

[out] pReturnSize 实际获得的缓冲区大小

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明: 当 sOutBuffer = NULL、dwOutSize = 0 且 pReturnSize!= NULL 时,获取参数配置文件的所需的缓冲

区长度; 当 sOutBuffer!= NULL 且 dwOutSize!= 0 时,获取参数配置文件的所需的缓冲区内容。

返回目录

5.17.11 导出配置文件 NET_DVR_GetConfigFile

函数: BOOL NET_DVR_GetConfigFile(LONG lUserID, char *sFileName)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

[in] sFileName 存放保存配置文件的文件路径(二进制文件)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.17.12 导入配置文件 NET_DVR_SetConfigFile_EX

函数: BOOL NET_DVR_SetConfigFile_EX(LONG lUserID, char *sInBuffer, DWORD dwInSize)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

[in] sInBuffer 存放配置参数的缓冲区

[in] dwInSize 缓冲区大小

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.17.13 导入配置文件 NET_DVR_SetConfigFile

函数: BOOL NET_DVR_SetConfigFile(LONG lUserID, char *sFileName)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

关机和重启

5.17.14 重启设备 NET_DVR_RebootDVR

函数: BOOL NET_DVR_RebootDVR(LONG lUserID)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.17.15 关闭设备 NET_DVR_ShutDownDVR

函数: BOOL NET_DVR_ShutDownDVR(LONG lUserID)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

5.18 获取设备支持的云台协议

5.18.1 获取设备支持的云台协议 NET_DVR_GetPTZProtocol

函数: BOOL NET_DVR_GetPTZProtocol(LONG lUserID, NET_DVR_PTZCFG *pPtzcfg) 参数: [in]lUserID 用户 ID 号,NET_DVR_Login_V30 的返回值

[out]pPtzcfg 设备的云台协议,详见结构体: NET DVR PTZCFG

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 在配置前端云台协议时必须调用该接口获取当前设备支持的云台协议。

返回目录

5.19 获取 IPC 协议列表

5.19.1 获取设备支持的 IPC 协议表 NET_DVR_GetIPCProtoList

函数: BOOL NET_DVR_GetIPCProtoList(LONG lUserID, LPNET_DVR_IPC_PROTO_LIST lpProtoList)

参数: [in]lUserID NET_DVR_Login_V30的返回值

[out]lpProtoList IPC 协议列表结构,详见结构体: <u>NET_DVR_IPC_PROTO_LIST</u>

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 该接口用于获取当前设备所支持的外接 IPC 的协议。

返回目录

5.20 获取设备状态

5.20.1 获取设备状态信息 NET_DVR_GetDeviceStatus

数: BOOL NET_DVR_GetDeviceStatus(LONG IUserID,DWORD dwCommand,DWORD dwCount, LPVOID lpInBuffer, DWORD dwInBufferSize,LPVOID lpStatusList, LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参 数: [in] lUserID 用户 ID 号,NET DVR Login V30 返回值

[in] dwCommand 获取设备状态的命令值 要获取的状态个数,设为 1

[in] lpInBuffer配置条件缓冲区[in] dwInBufferSize缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的监控点一一对应,例如 lpStatusList[2]

就对应 lplnBuffer[2],由用户分配内存,每个错误信息为 4 个字节(1 个 32 位无符号整数值),参数值: 0-成功,大于 0-失败

[out] lpOutBuffer 设备返回的参数内容,和要查询的监控点一一对应。如果某个监

控点对应的 lpStatusList 信息为大于 0 值,对应 lpOutBuffer 的内

容就是无效的

[in] dwOutBufferSize

输出缓冲区大小

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 9: 该接口是带有发送数据的批量获取设备状态信息的通用接口。不同的获取功能对应不同的结构体和命令号,如下表所示。

表 5.26 获取设备状态

dwCommand 宏定义	dwCommand 含义	IpInBuffer	lpOutBuffer 对应结构体	宏定义值
NET_ITS_GET_WORKSTATE	获取智能交通终端工	NULL	dwCount 个	5069
	作状态		NET ITS WORKSTATE	
NET_ITS_GET_ECTWORKSTATE	获取出入口终端工作	dwCount 个	dwCount 个	5081
	状态	NET ITS ECT WORKSTATE COMMAND	NET ITS ECTWORKSTATE	

6 错误代码及说明

6.1 网络通讯库错误码

错误名称	错误值	说明
NET_DVR_NOERROR	0	没有错误。
NET_DVR_PASSWORD_ERROR	1	用户名密码错误。注册时输入的用户名或者密码错误。
NET_DVR_NOENOUGHPRI	2	权限不足。该注册用户没有权限执行当前对设备的操作,可
		以与远程用户参数配置做对比。
NET_DVR_NOINIT	3	SDK 未初始化。
NET_DVR_CHANNEL_ERROR	4	通道号错误。设备没有对应的通道号。
NET_DVR_OVER_MAXLINK	5	连接到设备的用户个数超过最大。
NET_DVR_VERSIONNOMATCH	6	版本不匹配。SDK 和设备的版本不匹配。
NET_DVR_NETWORK_FAIL_CONNECT	7	连接设备失败。设备不在线或网络原因引起的连接超时等。
NET_DVR_NETWORK_SEND_ERROR	8	向设备发送失败。
NET_DVR_NETWORK_RECV_ERROR	9	从设备接收数据失败。
NET_DVR_NETWORK_RECV_TIMEOUT	10	从设备接收数据超时。
NET_DVR_NETWORK_ERRORDATA	11	传送的数据有误。发送给设备或者从设备接收到的数据错
		误,如远程参数配置时输入设备不支持的值。
NET_DVR_ORDER_ERROR	12	调用次序错误。
NET_DVR_OPERNOPERMIT	13	无此权限。
NET_DVR_COMMANDTIMEOUT	14	设备命令执行超时。
NET_DVR_ERRORSERIALPORT	15	串口号错误。指定的设备串口号不存在。
NET_DVR_ERRORALARMPORT	16	报警端口错误。指定的设备报警输出端口不存在。
NET_DVR_PARAMETER_ERROR	17	参数错误。SDK 接口中给入的输入或输出参数为空。
NET_DVR_CHAN_EXCEPTION	18	设备通道处于错误状态
NET_DVR_NODISK	19	设备无硬盘。当设备无硬盘时,对设备的录像文件、硬盘配
		置等操作失败。
NET_DVR_ERRORDISKNUM	20	硬盘号错误。当对设备进行硬盘管理操作时,指定的硬盘号
		不存在时返回该错误。
NET_DVR_DISK_FULL	21	设备硬盘满。
NET_DVR_DISK_ERROR	22	设备硬盘出错
NET_DVR_NOSUPPORT	23	设备不支持。
NET_DVR_BUSY	24	设备忙。
NET_DVR_MODIFY_FAIL	25	设备修改不成功。
NET_DVR_PASSWORD_FORMAT_ERROR	26	密码输入格式不正确
NET_DVR_DISK_FORMATING	27	硬盘正在格式化,不能启动操作。
NET_DVR_DVRNORESOURCE	28	设备资源不足。
NET_DVR_DVROPRATEFAILED	29	设备操作失败。
NET_DVR_OPENHOSTSOUND_FAIL	30	语音对讲、语音广播操作中采集本地音频或打开音频输出失
		败。
NET_DVR_DVRVOICEOPENED	31	设备语音对讲被占用。
NET_DVR_TIMEINPUTERROR	32	时间输入不正确。

NET_DVR_NOSPECFILE	33	回放时设备没有指定的文件。
NET_DVR_CREATEFILE_ERROR	34	创建文件出错。本地录像、保存图片、获取配置文件和远程
NET_DVN_CREATETIEE_ERROR	34	下载录像时创建文件失败。
NET_DVR_FILEOPENFAIL	35	打开文件出错。设置配置文件、设备升级、上传审讯文件时
NET_SVIC_NEEST ENTAIL	33	打开文件失败。
NET_DVR_OPERNOTFINISH	36	上次的操作还没有完成
NET_DVR_GETPLAYTIMEFAIL	37	获取当前播放的时间出错。
NET_DVR_PLAYFAIL	38	播放出错。
NET_DVR_FILEFORMAT_ERROR	39	文件格式不正确。
NET_DVR_DIR_ERROR	40	路径错误
NET_DVR_ALLOC_RESOURCE_ERROR	41	SDK 资源分配错误。
NET_DVR_AUDIO_MODE_ERROR	42	声卡模式错误。当前打开声音播放模式与实际设置的模式不
		符出错。
NET_DVR_NOENOUGH_BUF	43	缓冲区太小。接收设备数据的缓冲区或存放图片缓冲区不
		足。
NET_DVR_CREATESOCKET_ERROR	44	创建 SOCKET 出错。
NET_DVR_SETSOCKET_ERROR	45	设置 SOCKET 出错。
NET_DVR_MAX_NUM	46	个数达到最大。分配的注册连接数、预览连接数超过 SDK 支
		持的最大数。
NET_DVR_USERNOTEXIST	47	用户不存在。注册的用户 ID 已注销或不可用。
NET_DVR_WRITEFLASHERROR	48	写 FLASH 出错。设备升级时写 FLASH 失败。
NET_DVR_UPGRADEFAIL	49	设备升级失败。网络或升级文件语言不匹配等原因升级失
		败。
NET_DVR_CARDHAVEINIT	50	解码卡已经初始化过。
NET_DVR_PLAYERFAILED	51	调用播放库中某个函数失败。
NET_DVR_MAX_USERNUM	52	登录设备的用户数达到最大。
NET_DVR_GETLOCALIPANDMACFAIL	53	获得本地 PC 的 IP 地址或物理地址失败。
NET_DVR_NOENCODEING	54	设备该通道没有启动编码。
NET_DVR_IPMISMATCH	55	IP 地址不匹配。
NET_DVR_MACMISMATCH	56	MAC 地址不匹配。
NET_DVR_UPGRADELANGMISMATCH	57	升级文件语言不匹配。
NET_DVR_MAX_PLAYERPORT	58	播放器路数达到最大。
NET_DVR_NOSPACEBACKUP	59	备份设备中没有足够空间进行备份。
NET_DVR_NODEVICEBACKUP	60	没有找到指定的备份设备。
NET_DVR_PICTURE_BITS_ERROR	61	图像素位数不符,限 24 色。
NET_DVR_PICTURE_DIMENSION_ERROR	62	图片高*宽超限,限 128*256。
NET_DVR_PICTURE_SIZ_ERROR	63	图片大小超限,限 100K。
NET_DVR_LOADPLAYERSDKFAILED	64	载入当前目录下 Player Sdk 出错。
NET_DVR_LOADPLAYERSDKPROC_ERROR	65	找不到 Player Sdk 中某个函数入口。
NET DVR LOADDSSDKFAILED	66	载入当前目录下 DSsdk 出错。
NET_DVR_LOADDSSDKPROC_ERROR	67	找不到 DsSdk 中某个函数入口。
NET_DVR_DSSDK_ERROR	68	调用硬解码库 DsSdk 中某个函数失败。
NET_DVR_VOICEMONOPOLIZE	69	声卡被独占。
		, Marin .

NET DVD IOINMALIITICASTEALIED	70	加入多播组失败。
NET_DVR_JOINMULTICASTFAILED	_	
NET_DVR_CREATEDIR_ERROR	71	建立日志文件目录失败。
NET_DVR_BINDSOCKET_ERROR	72	绑定套接字失败。
NET_DVR_SOCKETCLOSE_ERROR	73	socket 连接中断,此错误通常是由于连接中断或目的地不可达。
NET_DVR_USERID_ISUSING	74	注销时用户 ID 正在进行某操作。
NET_DVR_SOCKETLISTEN_ERROR	75	监听失败。
NET_DVR_PROGRAM_EXCEPTION	76	程序异常。
NET_DVR_WRITEFILE_FAILED	77	写文件失败。本地录像、远程下载录像、下载图片等操作时 写文件失败。
NET_DVR_FORMAT_READONLY	78	禁止格式化只读硬盘。
NET_DVR_WITHSAMEUSERNAME	79	远程用户配置结构中存在相同的用户名。
NET_DVR_DEVICETYPE_ERROR	80	导入参数时设备型号不匹配。
NET_DVR_LANGUAGE_ERROR	81	导入参数时语言不匹配。
NET_DVR_PARAVERSION_ERROR	82	导入参数时软件版本不匹配。
NET_DVR_IPCHAN_NOTALIVE	83	预览时外接 IP 通道不在线。
NET_DVR_RTSP_SDK_ERROR	84	加载标准协议通讯库 StreamTransClient 失败。
NET_DVR_CONVERT_SDK_ERROR	85	加载转封装库失败。
NET_DVR_IPC_COUNT_OVERFLOW	86	超出最大的 IP 接入通道数。
NET_DVR_MAX_ADD_NUM	87	添加录像标签或者其他操作超出最多支持的个数。
NET_DVR_PARAMMODE_ERROR	88	图像增强仪,参数模式错误(用于硬件设置时,客户端进行
		软件设置时错误值)。
NET_DVR_CODESPITTER_OFFLINE	89	码分器不在线。
NET_DVR_BACKUP_COPYING	90	设备正在备份。
NET_DVR_CHAN_NOTSUPPORT	91	通道不支持该操作。
NET_DVR_CALLINEINVALID	92	高度线位置太集中或长度线不够倾斜。
NET_DVR_CALCANCELCONFLICT	93	取消标定冲突,如果设置了规则及全局的实际大小尺寸过滤。
NET_DVR_CALPOINTOUTRANGE	94	标定点超出范围。
NET_DVR_FILTERRECTINVALID	95	尺寸过滤器不符合要求。
NET_DVR_DDNS_DEVOFFLINE	96	设备没有注册到 ddns 上。
NET_DVR_DDNS_INTER_ERROR	97	DDNS 服务器内部错误。
NET_DVR_ALIAS_DUPLICATE	150	别名重复(EasyDDNS 的配置)
NET_DVR_DEV_NET_OVERFLOW	800	网络流量超过设备能力上限
NET_DVR_STATUS_RECORDFILE_WRITING_NOT_LOCK	801	录像文件在录像,无法被锁定
NET_DVR_STATUS_CANT_FORMAT_LITTLE_DISK	802	由于硬盘太小无法格式化
智能交通错误码		
NET_DVR_ERR_LANENUM_EXCEED	1400	车道数超出能力。
NET_DVR_ERR_PRAREA_EXCEED	1401	牌识区域过大。
NET_DVR_ERR_LIGHT_PARAM	1402	信号灯接入参数错误。
NET_DVR_ERR_LANE_LINE_INVALID	1403	车道线配置错误。
NET_DVR_ERR_STOP_LINE_INVALID	1404	停止线配置错误。
NET_DVR_ERR_LEFTORRIGHT_LINE_INVALID	1405	左/右转分界线配置错误。
NET_DVR_ERR_LANE_NO_REPEAT	1406	叠加车道号重复。
NET_DVR_ERR_LANE_NO_REPEAT	1406	叠加车道号重复。

NET_DVR_ERR_PRAREA_INVALID	1407	牌识多边形不符合要求。
NET_DVR_ERR_LIGHT_NUM_EXCEED	1408	视频检测交通灯信号灯数目超出最大值。
NET_DVR_ERR_SUBLIGHT_NUM_INVALID	1409	视频检测交通灯信号灯子灯数目不合法
NET_DVR_ERR_LIGHT_AREASIZE_INVALID	1410	视频检测交通灯输入信号灯框大小不合法。
NET_DVR_ERR_LIGHT_COLOR_INVALID	1411	视频检测交通灯输入信号灯颜色不合法。
NET_DVR_ERR_LIGHT_DIRECTION_INVALID	1412	视频检测交通灯输入灯方向属性不合法。

6.2 RTSP 通讯库错误码

错误名称	错误值	说明
NET_DVR_RTSP_GETPORTFAILED	407	获取 RTSP 端口错误
NET_DVR_RTSP_DESCRIBESENDTIMEOUT	411	RTSP DECRIBE 发送超时
NET_DVR_RTSP_DESCRIBESENDERROR	412	RTSP DECRIBE 发送失败
NET_DVR_RTSP_DESCRIBERECVTIMEOUT	413	RTSP DECRIBE 接收超时
NET_DVR_RTSP_DESCRIBERECVDATALOST	414	RTSP DECRIBE 接收数据错误
NET_DVR_RTSP_DESCRIBERECVERROR	415	RTSP DECRIBE 接收失败
NET_DVR_RTSP_DESCRIBESERVERERR	416	RTSP DECRIBE 服务器返回 401,501 等错误
NET_DVR_RTSP_SETUPSENDTIMEOUT	421	RTSP SETUP 发送超时
NET_DVR_RTSP_SETUPSENDERROR	422	RTSP SETUP 发送错误
NET_DVR_RTSP_SETUPRECVTIMEOUT	423	RTSP SETUP 接收超时
NET_DVR_RTSP_SETUPRECVDATALOST	424	RTSP SETUP 接收数据错误
NET_DVR_RTSP_SETUPRECVERROR	425	RTSP SETUP 接收失败
NET_DVR_RTSP_OVER_MAX_CHAN	426	设备超过最大连接数
NET_DVR_RTSP_PLAYSENDTIMEOUT	431	RTSP PLAY 发送超时
NET_DVR_RTSP_PLAYSENDERROR	432	RTSP PLAY 发送错误
NET_DVR_RTSP_PLAYRECVTIMEOUT	433	RTSP PLAT 接收超时
NET_DVR_RTSP_PLAYRECVDATALOST	434	RTSP PLAY 接收数据错误
NET_DVR_RTSP_PLAYRECVERROR	435	RTSP PLAY 接收失败
NET_DVR_RTSP_PLAYSERVERERR	436	RTSP PLAY 设备返回错误状态
NET_DVR_RTSP_TEARDOWNSENDTIMEOUT	441	RTSP TEARDOWN 发送超时
NET_DVR_RTSP_TEARDOWNSENDERROR	442	RTSP TEARDOWN 发送错误
NET_DVR_RTSP_TEARDOWNRECVTIMEOUT	443	RTSP TEARDOWN 接收超时
NET_DVR_RTSP_TEARDOWNRECVDATALOST	444	RTSP TEARDOWN 接收数据错误
NET_DVR_RTSP_TEARDOWNRECVERROR	445	RTSP TEARDOWN 接收失败
NET_DVR_RTSP_TEARDOWNSERVERERR	446	RTSP TEARDOWN 设备返回错误状态

6.3 软解码库错误码

错误名称	错误值	说明
NET_PLAYM4_NOERROR	500	没有错误

NET_PLAYM4_PARA_OVER	501	输入参数非法
NET_PLAYM4_ORDER_ERROR	502	调用顺序不对
NET_PLAYM4_TIMER_ERROR	503	多媒体时钟设置失败
NET_PLAYM4_DEC_VIDEO_ERROR	504	视频解码失败
NET_PLAYM4_DEC_AUDIO_ERROR	505	音频解码失败
NET_PLAYM4_ALLOC_MEMORY_ERROR	506	分配内存失败
NET_PLAYM4_OPEN_FILE_ERROR	507	文件操作失败
NET_PLAYM4_CREATE_OBJ_ERROR	508	创建线程事件等失败
NET_PLAYM4_CREATE_DDRAW_ERROR	509	创建 directDraw 失败
NET_PLAYM4_CREATE_OFFSCREEN_ERROR	510	创建后端缓存失败
NET_PLAYM4_BUF_OVER	511	缓冲区满,输入流失败
NET_PLAYM4_CREATE_SOUND_ERROR	512	创建音频设备失败
NET_PLAYM4_SET_VOLUME_ERROR	513	设置音量失败
NET_PLAYM4_SUPPORT_FILE_ONLY	514	只能在播放文件时才能使用此接口
NET_PLAYM4_SUPPORT_STREAM_ONLY	515	只能在播放流时才能使用此接口
NET_PLAYM4_SYS_NOT_SUPPORT	516	系统不支持,解码器只能工作在 Pentium 3 以上
NET_PLAYM4_FILEHEADER_UNKNOWN	517	没有文件头
NET_PLAYM4_VERSION_INCORRECT	518	解码器和编码器版本不对应
NET_PALYM4_INIT_DECODER_ERROR	519	初始化解码器失败
NET_PLAYM4_CHECK_FILE_ERROR	520	文件太短或码流无法识别
NET_PLAYM4_INIT_TIMER_ERROR	521	初始化多媒体时钟失败
NET_PLAYM4_BLT_ERROR	522	位拷贝失败
NET_PLAYM4_UPDATE_ERROR	523	显示 overlay 失败
NET_PLAYM4_OPEN_FILE_ERROR_MULTI	524	打开混合流文件失败
NET_PLAYM4_OPEN_FILE_ERROR_VIDEO	525	打开视频流文件失败
NET_PLAYM4_JPEG_COMPRESS_ERROR	526	JPEG 压缩错误
NET_PLAYM4_EXTRACT_NOT_SUPPORT	527	不支持该文件版本.
NET_PLAYM4_EXTRACT_DATA_ERROR	528	提取文件数据失败

7 附录:结构体

7.1 宏定义

宏定义	宏定义值	含义
MAX_NAMELEN	16	设备本地登录名长度
MAX_RIGHT	32	设备支持的权限(1-12 表示本地权限,13-32 表示远程权限)
NAME_LEN	32	用户名长度
PASSWD_LEN	16	密码长度
SERIALNO_LEN	48	序列号长度
MACADDR_LEN	6	MAC 地址长度
MAX_LINK	6	最大视频流连接数
MAX_ANALOG_CHANNUM	32	最大 32 个模拟通道
MAX_ANALOG_ALARMOUT	32	最大 32 路模拟报警输出
MAX_ANALOG_ALARMIN	32	最大 32 路模拟报警输入
MAX_IP_CHANNEL	32	允许加入的最多 IP 通道数
MAX_IP_ALARMIN	128	允许加入的最多报警输入数
MAX_IP_ALARMOUT	64	允许加入的最多报警输出数
MAX_CHANNUM_V30	64	(MAX_ANALOG_CHANNUM + MAX_IP_CHANNEL)
MAX_ALARMOUT_V30	96	(MAX_ANALOG_ALARMOUT + MAX_IP_ALARMOUT)
MAX_ALARMIN_V30	160	(MAX_ANALOG_ALARMIN + MAX_IP_ALARMIN)
MAX_PRESET_V30	256	支持的云台预置点数
MAX_TRACK_V30	256	支持的云台花样扫描路径数
MAX_CRUISE_V30	256	支持的云台巡航数
MAX_ETHERNET	2	设备可配以太网络
MAX_DOMAIN_NAME	64	最大域名长度
MAX_EXCEPTIONNUM_V30	32	设备的最大异常处理数
MAX_SHELTERNUM	4	设备的最大遮挡区域数
MAX_STRINGNUM_V30	8	最大 OSD 字符行数
MAX_TIMESEGMENT_V30	8	最大时间段数
MAX_DAYS	7	每周的天数
MAX_DISKNUM_V30	33	最大硬盘数
MAX_LICENSE_LEN	16	车牌号最大长度
MAX_USERNUM_V30	32	设备的最大用户数
VERSION_LEN	32	版本长度
IPC_PROTOCOL_NUM	50	IPC 协议最大个数

MAX_IP_DEVICE_V40	64	允许接入的最大 IP 设备数
STREAM_ID_LEN	32	流ID长度
DESC_LEN	16	云台描述字符串长度
PTZ_PROTOCOL_NUM	200	最大支持的云台协议数
MONITORSITE_ID_LEN	48	监测点编号长度
DEVICE_ID_LEN	48	设备编号长度
ITS_MAX_DEVICE_NUM	32	最大设备个数
MAX_PARKING_NUM	4	一个通道最大车位个数
MAX_PARKING_STATUS	8	车位状态个数
MAX_ID_LEN	48	编号最大长度
MAX_ALARMREASON_LEN	32	报警类型描述最大长度
MAX_DEVNAME_LEN	32	设备名称最大长度
MAX_LED_INFO	256	屏幕字体显示信息最大长度
MAX_TIME_LEN	32	时间最大长度
MAX_CARD_LEN	24	卡号最大长度
MAX_OPERATORNAME_LEN	32	操作人员名称最大长度
MAX_INDEX_LED	8	LED 索引最大值
MAX_AID_RULE	8	最大事件规则数目
MAX_TPS_RULE	8	最大参数规则数目

7.2 NET_DVR_ACTIVATECFG:设备激活参数

struct{

DWORD dwSize;

BYTE sPassword[PASSWD_LEN];

BYTE byRes[108];

}NET_DVR_ACTIVATECFG,*LPNET_DVR_ACTIVATECFG;

Members

dwSize

结构体大小

sPassword

初始密码,密码等级弱或者以上

byRes

保留,置为0

Remarks

- 出厂设备需要先激活,然后再使用激活使用的初始密码登录设备。
- 将密码输入分为数字(0~9)、小写字母(a~z)、大写字母(A~Z)、特殊符号(:\"除外)4类,等级分为4个等级,如下所示:
 - 1)等级 0 (风险密码):密码长度小于 8 位,或者只包含 4 类字符中的任意一类,或者密码与用户名一样,或者密码是用户名的倒写。例如:12345、abcdef。

- 2) 等级 1 (弱密码): 包含两类字符,且组合为(数字+小写字母)或(数字+大写字母),且长度大于等于 8 位。例如: abc12345、123ABCDEF
- 3) 等级 2 (中密码): 包含两类字符,且组合不能为(数字+小写字母)和(数字+大写字母),且长度大于等于 8 位。例如: 12345***++、ABCDabcd。
- 4) 等级 3 (强密码): 包含三类字符及以上, 且长度大于等于 8 位。例如: Abc12345、abc12345++。

7.3 NET DVR AID ALARM V41:交通事件报警信息

struct{

DWORD dwSize;

DWORD dwRelativeTime; **DWORD** dwAbsTime: NET VCA DEV INFO struDevInfo; NET DVR AID INFO struAIDInfo; NET_DVR_SCENE_INFO struSceneInfo; **DWORD** dwPicDataLen; **BYTE** *plmage; **BYTE** byDataType; **BYTE** byLaneNo; WORD wMilliSecond;

BYTE byMonitoringSiteID[MONITORSITE_ID_LEN];

BYTE byDeviceID[DEVICE_ID_LEN];

BYTE byRes[28];

}NET_DVR_AID_ALARM_V41, *LPNET_DVR_AID_ALARM_V41;

Members

dwSize

结构体大小

dwRelativeTime

相对时标

dwAbsTime

绝对时标

struDevInfo

前端设备信息

struAIDInfo

交通事件信息

struSceneInfo

场景信息

dwPicDataLen

图片长度

plmage

图片长度指向图片的指针

byDataType

数据上传方式: 0-数据直接上传; 1-云存储服务器 URL (原先的图片数据变成 URL 数据,图片长度变成 URL 长度)

```
byLaneNo
```

关联车道号

wMilliSecond

时标毫秒

byMonitoringSiteID

监测点编号(路口编号、内部编号)

byDeviceID

设备编号

byRes

保留

Remarks

• 从 DWORD 时间值得到年月日时分秒的算法如下所示:

- 通过 <u>NET_DVR_CLOUDSTORAGE_CFG</u> 配置可以启用云存储功能,则上传的图片信息将变成获取图片信息的 URL 地址,平台通过该 URL 地址去云存储服务器上获取数据
- 图片云存储 URL 格式:

http://CVMIP:Port/pic?did=DevID&bid=BlkID&pid=PictureID&ptime=PicTime

CVMIP: CVM(云存储服务器)的 IP 地址

Port: CVM(云存储服务器)对外提供 http 服务的端口(固定 8009)

DevID: CVS(云存储服务器)中设备 ID 号 BlkID: CVS(云存储服务器)中设备的块号

PictureID: CVS(云存储服务器)为图片生成的编号

PicTime: 图片的时间戳

示例:

http://10.192.65.140:8009/pic?did=35b9cbd0-8ffa-1031-87e6-0025903c6a50&bid=387&pid=2952790009&ptime=1378106185

7.4 NET_DVR_AID_INFO:交通事件信息

struct{

BYTE byRuleID; BYTE byRes1[3];

BYTE byRuleName[NAME_LEN];

DWORD dwAIDType;

NET_DVR_DIRECTION struDirect;

BYTE byRes2[40];

}NET_DVR_AID_INFO, *LPNET_DVR_AID_INFO;

Members

byRuleID

```
规则序号,取值范围:1~8
```

byRes1

保留

byRuleName

规则名称

dwAIDType

交通事件类型,具体定义如下:

```
enum _TRAFFIC_AID_TYPE_{
```

= 0x1,CONGESTION = 0x2,**PARKING INVERSE** = 0x4,= 0x8,**PEDESTRIAN DEBRIS** = 0x10,**SMOG** = 0x20,OVERLINE = 0x40,VEHICLE_CONTROL_LIST = 0x80,SPEED = 0x100,LANECHANGE = 0x200,TURNAROUND = 0x400,VEHICLE_OCCUPANCY_NONVEHICLE = 0x800, **GASSER** = 0x1000

}TRAFFIC_AID_TYPE

CONGESTION

拥堵

PARKING

停车

INVERSE

逆行

PEDESTRIAN

行人

DEBRIS

遗留物, 抛洒物碎片

SMOG

烟雾

OVERLINE

压线

VEHICLE_CONTROL_LIST

名单数据

SPEED

超速

LANECHANGE

变道

TURNAROUND

掉头

VEHICLE_OCCUPANCY_NONVEHICLE

机动车占用非机动车位

GASSER

加塞

struDirect

报警指向区域

byRes2

保留

7.5 NET_DVR_AID_PARAM:交通事件参数

```
struct{
  WORD
           wParkingDuration;
  WORD
           wPedestrianDuration;
  WORD
           wDebrisDuration;
  WORD
           wCongestionLength;
  WORD
           wCongestionDuration;
  WORD
           wInverseDuration;
  WORD
           wInverseDistance;
  WORD
           wInverseAngleTolerance;
  WORD
           wIllegalParkingTime;
  WORD
           wIllegalParkingPicNum;
  BYTE
           byMergePic;
  BYTE
           byRes1[23];
}NET_DVR_AID_PARAM, *LPNET_DVR_AID_PARAM;
Members
wParkingDuration
      停车持续时间,范围: 5~120s
wPedestrianDuration
      行人持续时间,范围: 1~120s
```

wDebrisDuration 抛洒物持续时间,范围: 5~120s

wCongestionLength

拥堵长度阈值,范围:5~200米

wCongestionDuration

拥堵持续时间,范围: 5~120s

wInverseDuration

逆行持续时间,范围: 1~120s

wInverseDistance

逆行距离阈值,范围: 2~100米,默认为10米

wInverseAngleTolerance

允许角度偏差,范围:90~180度。车流与逆行允许的夹角

wIllegalParkingTime

违停时间,取值范围: [4,60],单位:分钟,TFS(交通违章取证)城市模式下有效

wIllegalParkingPicNum

违停图片数量,取值范围: [1,6], TFS(交通违章取证)城市模式下有效

byMergePic

图片拼接: 0- 不拼接, 1- 拼接, TFS(交通违章取证)城市模式下有效

byRes1

保留

Remarks

wParkingDuration 是算法库灵敏度,指停车多少秒后算法库给出停车报警,接着分析仪根据这个停车报警 作为起始报警点对该目标进行持续性的处理,超过违停时间后就整个取证报警事件结束。

wlllegalParkingTime 是指违停时间限制,比如城市违章停车需要持续停车 20 分钟或几分钟后才能上报违停报警,在规定时间以内是允许停车的。

● 对于不同设备,以上参数的取值范围可能不同。可以调用 <u>NET DVR GetDeviceAbility</u> 获取智能通道分析能力集(VcaChanAbility,能力集类型: DEVICE_ABILITY_INFO)而得到实际取值范围。

7.6 NET DVR AID RULECFG V41:交通事件规则

struct{

DWORD dwSize;

BYTE byPicProType;
BYTE byRes1[3];

NET DVR JPEGPARA struPictureParam;

NET_DVR_ONE_AID_RULE_V41 struAIDRule[MAX_AID_RULE];

BYTE byRes2[128];

}NET_DVR_AID_RULECFG_V41,*LPNET_DVR_AID_RULECFG_V41;

Members

dwSize

结构体大小

byPicProType

报警时图片处理方式: 0-不处理, 非 0-上传

byRes1

保留,置为0

struPictureParam

图片规格结构

struAIDRule

单条交通事件规则参数

byRes2

保留

7.7 NET DVR ALARMER:报警设备信息

 $struct \{$

BYTE byUserIDValid; BYTE bySerialValid;

BYTE byVersionValid; **BYTE** byDeviceNameValid; BYTE byMacAddrValid; **BYTE** byLinkPortValid; **BYTE** byDeviceIPValid; **BYTE** bySocketIPValid; LONG lUserID; BYTE sSerialNumber[SERIALNO_LEN]; DWORD dwDeviceVersion; char sDeviceName[NAME_LEN]; **BYTE** byMacAddr[MACADDR LEN]; WORD wLinkPort; sDeviceIP[128]; char char sSocketIP[128]; BYTE byIpProtocol; **BYTE** byRes2[11]; }NET_DVR_ALARMER,*LPNET_DVR_ALARMER;

Members

byUserIDValid

userid 是否有效: 0一无效; 1一有效

bySerialValid

序列号是否有效: 0-无效; 1-有效

byVersionValid

版本号是否有效: 0一无效; 1一有效

byDeviceNameValid

设备名字是否有效: 0-无效; 1-有效

byMacAddrValid

MAC 地址是否有效: 0一无效; 1一有效

byLinkPortValid

Login 端口是否有效: 0一无效; 1一有效

byDeviceIPValid

设备 IP 是否有效: 0一无效; 1一有效

bySocketIPValid

Socket IP 是否有效: 0-无效; 1-有效

lUserID

NET_DVR_Login 或 NET_DVR_Login_V30 返回值, 布防时有效

sSerialNumber

序列号

dwDeviceVersion

版本信息: V3.0 以上版本支持的设备最高 8 位为主版本号,次高 8 位为次版本号,低 16 位为修复 版本号; V3.0 以下版本支持的设备高 16 位表示主版本, 低 16 位表示次版本

sDeviceName

设备名称

byMacAddr

MAC 地址

wLinkPort

设备通讯端口

sDeviceIP

设备 IP 地址

sSocketIP

报警主动上传时的 Socket IP 地址

bylpProtocol

IP协议: 0-IPV4; 1-IPV6

byRes2

保留,置为0

7.8 NET_DVR_BACKLIGHT: 背光补偿参数

```
struct{
```

BYTE byBacklightMode;

BYTE byBacklightLevel;

BYTE byRes1[2];

DWORD dwPositionX1;

DWORD dwPositionY1;

DWORD dwPositionX2;

DWORD dwPositionY2;

BYTE byRes2[4];

}NET_DVR_BACKLIGHT, *LPNET_DVR_BACKLIGHT;

Members

byBacklightMode

背光补偿模式: 0-off、1-UP、2-DOWN、3-LEFT、4-RIGHT、5-MIDDLE、6-自定义

byBacklightLevel

背光补偿等级: 0x0-0xF

byRes1

保留

dwPositionX1

X 坐标 1

dwPositionY1

Y 坐标 1

dwPositionX2

X 坐标 2

dwPositionY2

Y 坐标 2

byRes2

保留

7.9 NET_DVR_CAMERAPARAMCFG_EX:前端参数配置(扩展)

struct{

DWORD dwSize;

NET DVR VIDEOEFFECT struVideoEffect;

NET DVR GAIN struGain;

NET DVR WHITEBALANCE struWhiteBalance;
NET DVR EXPOSURE struExposure;

NET_DVR_GAMMACORRECT struGammaCorrect;

NET_DVR_WDRstruWdr;NET_DVR_DAYNIGHTstruDayNight;NET_DVR_BACKLIGHTstruBackLight;NET_DVR_NOISEREMOVEstruNoiseRemove;

BYTE byPowerLineFrequencyMode;

BYTE byIrisMode;
BYTE byMirror;
BYTE byDigitalZoom;
BYTE byDeadPixelDetect;

BYTE byBlackPwl;
BYTE byEptzGate;

BYTE byLocalOutputGate;
BYTE byCoderOutputMode;

BYTE byLineCoding; **BYTE** byDimmerMode; **BYTE** byPaletteMode; **BYTE** byEnhancedMode; **BYTE** byDynamicContrastEN; **BYTE** byDynamicContrast; **BYTE** byJPEGQuality; NET_DVR_CMOSMODECFG struCmosModeCfg;

BYTE byFilterSwitch;
BYTE byFocusSpeed;

BYTE byAutoCompensationInterval;

BYTE bySceneMode;
NET DVR DEFOGCFG struDefogCfg;

NET DVR ELECTRONICSTABILIZATION struElectronicStabilization;

NET DVR CORRIDOR MODE CCD struCorridorMode;

BYTE byExposureSegmentEnable;
BYTE byBrightCompensate;

BYTE byRes[310];

}NET_DVR_CAMERAPARAMCFG_EX, *LPNET_DVR_CAMERAPARAMCFG_EX;

Members

dwSize

结构体大小

struVideoEffect

视频效果参数

struGain

增益参数

struWhiteBalance

白平衡参数

struExposure

曝光参数

struGammaCorrect

Gamma 校正参数

struWdr

宽动态参数

struDayNight

日夜转换功能参数

struBackLight

背光补偿参数

struNoiseRemove

数字降噪参数

byPowerLineFrequencyMode

0-50HZ; 1-60HZ

byIrisMode

0- 自动光圈; 1- 手动光圈

byMirror

镜像: 0- 关闭, 1- 左右, 2- 上下, 3- 中间

byDigitalZoom

数字缩放: 0- 不启用, 1- 启用。对于热成像仪,表示数字倍率: 0- 关闭, 1-×2, 2-×4

byDeadPixelDetect

坏点检测是否启用,0-不启用,1-启用

byBlackPwl

黑电平补偿, 0-255

byEptzGate

EPTZ 开关变量: 0-关闭电子云台, 1-开启电子云台

byLocalOutputGate

本地输出开关变量:

- 0-本地输出关闭
- 1-本地 BNC 输出打开
- 2-HDMI 输出关闭
- 11-缩放输出
- 12-裁剪输出
- 13-裁剪缩放输出
- 20-HDMI_720P50 输出开
- 21-HDMI_720P60 输出开
- 22-HDMI_1080I60 输出开

23-HDMI 1080I50 输出开

24-HDMI 1080P24 输出开

25-HDMI 1080P25 输出开

26-HDMI_1080P30 输出开

27-HDMI 1080P50 输出开

28-HDMI_1080P60 输出开

byCoderOutputMode

编码器 fpga 输出模式: 0-直通; 3-像素搬家

byLineCoding

是否开启行编码: 0- 否, 1- 是

byDimmerMode

调光模式: 0- 半自动, 1- 自动, 适用于热成像仪

byPaletteMode

调色板: 0- 白热, 1- 黑热, 2- 调色板 2, ..., 8- 调色板 8, 适用于热成像仪

byEnhancedMode

增强方式 (探测物体周边): 0- 不增强, 1-1, 2-2, 3-3, 4-4, 适用于热成像仪

byDynamicContrastEN

动态对比度增强: 0-不增强; 1-增强

byDynamicContrast

动态对比度: 0~100

byJPEGQuality

JPEG 图像质量: 0~100

struCmosModeCfg

CMOS 模式下前端参数配置,镜头模式从能力集获取

byFilterSwitch

滤波开关: 0- 不启用, 1- 启用, 适用于热成像仪

byFocusSpeed

镜头调焦速度,取值范围 0~10,适用于热成像仪

byAutoCompensationInterval

定时自动快门补偿,取值范围 1~120,单位:分钟,适用于热成像仪

bySceneMode

场景模式: 0- 室外, 1- 室内

struDefogCfg

透雾参数

struElectronicStabilization

电子防抖

struCorridorMode

旋转功能

byExposureSegmentEnable

曝光时间和增益呈阶梯状调整: 0- 不启用, 1- 启用,比如曝光往上调整时,先提高曝光时间到中间值,然后提高增益到中间值,再提高曝光到最大值,最后提高增益到最大值

byBrightCompensate

夜晚亮度增强,取值范围: [0,100]

byRes

保留,置为0

7.10 NET_DVR_CHANNELSTATE_V30:通道状态信息

struct{

BYTE byRecordStatic;
BYTE bySignalStatic;
BYTE byHardwareStatic;

BYTE byRes1;
DWORD dwBitRate;
DWORD dwLinkNum;

NET_DVR_IPADDR struClientIP[MAX_LINK];

DWORD dwIPLinkNum;
BYTE byExceedMaxLink;

BYTE byRes[11];

}NET_DVR_CHANNELSTATE_V30,*LPNET_DVR_CHANNELSTATE_V30;

Members

byRecordStatic

通道是否在录像: 0一不录像; 1一录像

bySignalStatic

连接的信号状态: 0一正常, 1一信号丢失

byHardwareStatic

通道硬件状态: 0一正常, 1一异常(例如 DSP 异常)

byRes1

保留,置为0

dwBitRate

实际码率

dwLinkNum

连接的客户端个数

struClientIP

连接的客户端 IP 地址

dwIPLinkNum

如果该通道为 IP 接入,表示 IP 接入当前的连接数

byExceedMaxLink

是否超出了单路 6 路连接数 0- 未超出, 1-超出

byRes

保留,置为0

7.11 NET_DVR_CLOUDSTORAGE_CFG: 云存储配置

 $struct \{$

DWORD dwSize; BYTE byEnable;

```
BYTE
                     byRes[3];
 NET_DVR_IPADDR
                    struIP;
 WORD
                    wPort;
 BYTE
                     byRes1[2];
 char
                     szUser[CLOUD_NAME_LEN];
 char
                     szPassword[CLOUD_PASSWD_LEN];
 NET DVR POOLPARAM struPoolInfo[16];
 BYTE
                     byRes2[128];
}NET_DVR_CLOUDSTORAGE_CFG,*LPNET_DVR_CLOUDSTORAGE_CFG;
Members
dwSize
      结构体大小
byEnable
      是否启用: 0- 不启用, 1- 启用
byRes
      保留,置为0
struIP
      云存储服务器 IP 地址
wPort
      云存储服务器端口号
byRes1
      保留,置为0
szUser
      服务器用户名
szPassword
      服务器密码
struPoolInfo
      云存储数据池参数
byRes2
      保留,置为0
```

7.12 NET_DVR_CLOUDSTORAGE_COND:云存储配置条件

```
struct{
    DWORD dwSize;
    DWORD dwChannel;
    BYTE byRes1[64];
}NET_DVR_CLOUDSTORAGE_COND,*LPNET_DVR_CLOUDSTORAGE_COND;
Members
dwSize
    结构体大小
dwChannel
    通道号
byRes1
```

保留,置为0

7.13 NET_DVR_CMOSMODECFG:CMOS 模式下前端镜头配置

```
struct{
          byCaptureMod;
 BYTE
 BYTE
          byBrightnessGate;
 BYTE
          byCaptureGain1;
 BYTE
          byCaptureGain2;
 DWORD
           dwCaptureShutterSpeed1;
 DWORD
           dwCaptureShutterSpeed2;
 BYTE
           byRes[4];
}NET_DVR_CMOSMODECFG, *LPNET_DVR_CMOSMODECFG;
Members
byCaptureMod
      抓拍模式: 0-抓拍模式 1; 1-抓拍模式 2
byBrightnessGate
      亮度阈值
byCaptureGain1
      抓拍增益 1, 0-100
byCaptureGain2
      抓拍增益 2, 0-100
dwCaptureShutterSpeed1
      抓拍快门速度1
dwCaptureShutterSpeed2
      抓拍快门速度 2
byRes
      保留
```

7.14 NET_DVR_COMPEL_CAPTURE:车位强制抓图参数

```
struct{
    DWORD dwSize;
    BYTE byParkIndex;
    BYTE byRes[63];
}NET_DVR_COMPEL_CAPTURE, *LPNET_DVR_COMPEL_CAPTURE;
Members
dwSize
    结构体大小
byParkIndex
    车位序号,从左到右: 1、2、3、4
byRes
    保留,置为 0
```

7.15 NET_DVR_COMPRESSIONCFG_V30:通道压缩参数

```
struct{
 DWORD
                               dwSize;
 NET DVR COMPRESSION INFO V30
                               struNormHighRecordPara;
 NET DVR COMPRESSION INFO V30
                               struRes:
 NET DVR COMPRESSION INFO V30
                               struEventRecordPara;
 NET DVR COMPRESSION INFO V30
                               struNetPara;
}NET_DVR_COMPRESSIONCFG_V30, *LPNET_DVR_COMPRESSIONCFG_V30;
Members
dwSize
      结构体大小
struNormHighRecordPara
      录像的码流压缩参数(即主码流的压缩参数)
struRes
      保留,置为0
struEventRecordPara
      事件触发压缩参数,智能交通摄像机不支持,保留
struNetPara
      网传的码流压缩参数 (即子码流的压缩参数)
```

7.16 NET_DVR_COMPRESSION_INFO_V30:码流压缩参数

```
struct{
  BYTE
            byStreamType;
  BYTE
            byResolution;
  BYTE
            byBitrateType;
  BYTE
            byPicQuality;
  DWORD
            dwVideoBitrate;
  DWORD
            dwVideoFrameRate;
  WORD
            wintervalFramel;
  BYTF
            byIntervalBPFrame;
  BYTE
            byres1;
  BYTE
            byVideoEncType;
  BYTE
            byAudioEncType;
  BYTE
            byVideoEncComplexity;
  BYTE
            byres[9];
}NET_DVR_COMPRESSION_INFO_V30, *LPNET_DVR_COMPRESSION_INFO_V30;
Members
byStreamType
       码流类型: 0-视频流, 1-复合流
byResolution
       分辨率: 0-DCIF(528*384/528*320),1-CIF(352*288/352*240),2-QCIF(176*144/176*120),
```

3-4CIF(704*576/704*480)或 D1(720*576/720*486), 4-2CIF(704*288/704*240),6-QVGA(320*240),

7-QQVGA(160*120), 12-384*288, 13-576*576, 16-VGA(640*480), 17-UXGA(1600*1200),

18-SVGA(800*600), 19-HD720P(1280*720), 20-XVGA(1280*960), 21-HD900P(1600*900), 23-1536*1536,

24-1920*1920, 27-1920*1080p, 28-2560*1920, 29-1600*304, 30-2048*1536, 31-2448*2048,

 $32-2448*1200,\ 33-2448*800,\ 34-XGA(1024*768),\ 35-SXGA(1280*1024),\ \ 36-WD1(960*576/960*480),$

37-1080i(1920*1080), 38-WXGA(1440*900), 39-HD_F(1920*1080/1280*720),

40-HD H(1920*540/1280*360), 41-HD Q(960*540/630*360), 42-2336*1744, 43-1920*1456,

44-2592*2048, 45-3296*2472, 46-1376*768, 47-1366*768, 48-1360*768, 49-WSXGA+,

50-720*720,51-1280*1280,52-2048*768,53-2048*2048,54-2560*2048,55-3072*2048,56-2304*1296,

57-WXGA(1280*800), 58-1600*600, 59-1600*900, 0xff-Auto(使用当前码流分辨率)

byBitrateType

码率类型: 0-变码率, 1-定码率

byPicQuality

图象质量: 0-最好, 1-次好, 2-较好, 3-一般, 4-较差, 5-差

dwVideoBitrate

码率: 0-保留,1-16K(保留),2-32K,3-48k,4-64K,5-80K,6-96K,7-128K,8-160k,9-192K,10-224K,11-256K,12-320K,13-384K,14-448K,15-512K,16-640K,17-768K,18-896K,19-1024K,20-1280K,21-1536K,22-1792K,23-2048K,24-3072K,25-4096K,26-8192K,27-16384K。

最高位(31位)置成 1表示是自定义码流,0~30位表示码流值,最小值 16k

dwVideoFrameRate

帧率: 0-全部,1-1/16,2-1/8,3-1/4,4-1/2,5-1,6-2,7-4,8-6,9-8,10-10,11-12,12-16,13-20,14-15,15-18,16-22

wIntervalFrameI

I 帧间隔, 0xffff-无效

byIntervalBPFrame

帧格式: 0-BBP 帧, 1-BP 帧, 2-单 P 帧, 0xff-无效

byres1

保留,置为0

byVideoEncType

视频编码类型: 0-私有 264, 1-标准 h264, 2-标准 mpeg4, 7-M-JPEG, 0xff-无效

byAudioEncType

音频编码类型:0-OggVorbis,1-G711_U,2-G711_A,6-G726,0xff-无效

byVideoEncComplexity

视频编码复杂度: 0- 低, 1- 中, 2- 高

byres

保留,置为0

Remarks

当修改设备视频编码类型时, 需要重启设备生效。

7.17 NET_DVR_CORRIDOR_MODE_CCD:旋转功能参数

struct{

BYTE byEnableCorridorMode;

BYTE byRes[11];

}NET_DVR_CORRIDOR_MODE_CCD, *LPNET_DVR_CORRIDOR_MODE_CCD;

Members

byEnableCorridorMode

是否启用旋转功能: 0- 不启用, 1- 启用

byRes

保留

Remarks

开启旋转功能后,视频编码将逆时针旋转 90°,例如 1280*720 旋转为 720*1280。摄像机旋转安装时, 启用该功能,可以提高垂直方向的监控有效范围,适用于走廊、道路等场所。

7.18 NET_DVR_DAYNIGHT:日夜转换功能参数

```
struct{
  BYTE
              byDayNightFilterType;
  BYTE
              bySwitchScheduleEnabled;
  BYTE
              byBeginTime;
  BYTE
              byEndTime;
  BYTE
              byDayToNightFilterLevel;
  BYTE
              byNightToDayFilterLevel;
  BYTE
              byDayNightFilterTime;
  BYTE
              byBeginTimeMin;
  BYTE
              byBeginTimeSec;
  BYTE
              byEndTimeMin;
  BYTE
              byEndTimeSec;
  BYTE
              byAlarmTrigState;
```

}NET_DVR_DAYNIGHT, *LPNET_DVR_DAYNIGHT;

Members

by Day Night Filter Type

日夜切换: 0-白天, 1-夜晚, 2-自动, 3-定时, 4-报警输入触发

bySwitchScheduleEnabled

0- 启动, 1- 禁用。(保留)

byBeginTime

定时模式开始时间(小时),取值范围:0~23

byEndTime

定时模式结束时间(小时),取值范围:0~23

byDayToNightFilterLevel

0~7

byNightToDayFilterLevel

0~7

byDayNightFilterTime

60秒

byBeginTimeMin

定时模式开始时间(分),取值范围:0~59

byBeginTimeSec

定时模式开始时间(秒),取值范围:0~59

byEndTimeMin

定时模式结束时间(分),取值范围:0~59

byEndTimeSec

定时模式结束时间(秒),取值范围:0~59

byAlarmTrigState

报警输入触发状态: 0-白天, 1-夜晚

7.19 NET_DVR_DECODERCFG_V30:云台解码器(RS485)参数

struct{

DWORD dwSize;

DWORD dwBaudRate;

BYTE byDataBit;

BYTE byStopBit;

BYTE byParity;

BYTE byFlowcontrol;

WORD wDecoderType;

WORD wDecoderAddress;

BYTE bySetPreset[MAX_PRESET_V30];

BYTE bySetCruise[MAX_CRUISE_V30];

BYTE bySetTrack[MAX_TRACK_V30];

}NET_DVR_DECODERCFG_V30, *LPNET_DVR_DECODERCFG_V30;

Members

dwSize

结构体大小

dwBaudRate

波特率(bps), 0-50, 1-75, 2-110, 3-150, 4-300, 5-600, 6-1200, 7-2400, 8-4800, 9-9600, 10-19200, 11-38400, 12-57600, 13-76800, 14-115.2k

byDataBit

数据有几位: 0-5 位,1-6 位,2-7 位,3-8 位

byStopBit

停止位: 0-1 位, 1-2 位

byParity

是否校验: 0-无校验, 1-奇校验, 2-偶校验

byFlowcontrol

是否流控: 0-无, 1-软流控,2-硬流控

wDecoderType

解码器类型,通过 <u>NET_DVR_GetPTZProtocol</u> 获取,该值对应于结构 <u>NET_DVR_PTZ_PROTOCOL</u> 中的 dwType。

wDecoderAddress

解码器地址: [0,255]

bySetPreset

预置点是否设置: 0-没有设置, 1-设置

bySetCruise

巡航是否设置: 0-没有设置, 1-设置

bySetTrack

花样扫描是否设置: 0-没有设置, 1-设置

Remarks

在早前的设备中规定了一系列云台协议,但在后期的设备仅保留一部分常用的协议,所以在配置解码器类型时必须调用 NET DVR GetPTZProtocol 获取当前设备支持的云台协议。

7.20 NET_DVR_DEFOGCFG:透雾参数

```
struct{
    BYTE byMode;
    BYTE byLevel;
    BYTE byRes[6];
}NET_DVR_DEFOGCFG, *LPNET_DVR_DEFOGCFG;
Members
byMode
    透雾模式: 0-不启用, 1-自动模式, 2-常开模式
byLevel
    透雾等级,取值范围: 0~100
byRes
```

7.21 NET DVR DEVICECFG V40:设备参数

struct{

DWORD dwSize;

保留

BYTE sDVRName[NAME_LEN];

DWORD dwDVRID;

DWORD dwRecycleRecord;

BYTE sSerialNumber[SERIALNO LEN];

DWORD dwSoftwareVersion;DWORD dwSoftwareBuildDate;DWORD dwDSPSoftwareVersion;DWORD dwDSPSoftwareBuildDate;

DWORD dwPanelVersion;DWORD dwHardwareVersion;BYTE byAlarmInPortNum;BYTE byAlarmOutPortNum;

BYTE byRS232Num; BYTE byRS485Num;

BYTE byNetworkPortNum;

BYTE byDiskCtrlNum;

```
BYTE
             byDiskNum;
  BYTE
             byDVRType;
  BYTE
             byChanNum;
  BYTE
             byStartChan;
  BYTE
             byDecordChans;
  BYTE
             byVGANum;
  BYTE
             byUSBNum;
  BYTE
             byAuxoutNum;
  BYTE
             byAudioNum;
  BYTE
             byIPChanNum;
  BYTE
             byZeroChanNum;
  BYTE
             bySupport;
  BYTE
             byEsataUseage;
  BYTE
             byIPCPlug;
  BYTE
             byStorageMode;
  BYTE
             bySupport1;
  WORD
             wDevType;
  BYTE
             byDevTypeName[24];
  BYTE
             byRes2[16];
}NET_DVR_DEVICECFG_V40,*LPNET_DVR_DEVICECFG_V40;
```

Members

dwSize

结构体大小

sDVRName

设备名称

dwDVRID

设备 ID 号, 用于遥控器, v1.4 的设备号范围为(0-99), v1.5 及以上版本的设备号为(0-255)

dwRecycleRecord

是否循环录像: 0一不是; 1一是

以下参数不可更改

sSerialNumber

设备序列号

dwSoftwareVersion

软件版本号, V3.0 以上版本支持的设备最高 8 位为主版本号, 次高 8 位为次版本号, 低 16 位为修 复版本号; V3.0 以下版本支持的设备高 16 位表示主版本,低 16 位表示次版本

dwSoftwareBuildDate

软件生成日期, 0xYYYYMMDD

dwDSPSoftwareVersion

DSP 软件版本, 高 16 位是主版本, 低 16 位是次版本

dwDSPSoftwareBuildDate

DSP 软件生成日期,0xYYYYMMDD

dwPanelVersion

前面板版本,高16位是主版本,低16位是次版本

dwHardwareVersion

硬件版本,高16位是主版本,低16位是次版本

byAlarmInPortNum

设备报警输入个数

byAlarmOutPortNum

设备报警输出个数

byRS232Num

设备 232 串口个数

byRS485Num

设备 485 串口个数

byNetworkPortNum

网络口个数

byDiskCtrlNum

硬盘控制器个数

byDiskNum

硬盘个数

byDVRType

设备类型

宏定义	宏定义值	设备类型	
TRAFFIC_TS_SERVER	210	终端服务器	
TRAFFIC_VAR	211	视频分析记录仪	
TRAFFIC_ECT	1400	出入口终端服务器	
TRAFFIC_PARKING_SERVER	1401	停车场服务器	

byChanNum

设备模拟通道个数

byStartChan

起始通道号

byDecordChans

设备解码路数

byVGANum

VGA 口的个数

byUSBNum

USB 口的个数

byAuxoutNum

辅口的个数

byAudioNum

语音口的个数

byIPChanNum

最大数字通道

byZeroChanNum

零通道编码个数

bySupport

能力,位与结果为0表示不支持,1表示支持 bySupport & 0x1,表示是否支持智能搜索 bySupport & 0x2,表示是否支持备份

bySupport & 0x4,表示是否支持压缩参数能力获取

bySupport & 0x8,表示是否支持双网卡

bySupport & 0x10,表示支持远程 SADP

bySupport & 0x20, 表示支持 Raid 卡功能

bySupport & 0x40,表示支持 IPSAN 搜索

bySupport & 0x80,表示支持 rtp over rtsp

byEsataUseage

Esata 的默认用途, 0-默认备份, 1-默认录像

byIPCPlug

0-不支持即插即用,1-支持即插即用

byStorageMode

0-盘组模式,1-磁盘配额

bySupport1

能力集扩充,位与结果为0表示不支持,1表示支持

bySupport1 & 0x1, 表示是否支持 snmp v30

bySupport1 & 0x2, 支持区分回放和下载

wDevType

设备型号

byDevTypeName

设备型号名称

byRes2

保留,置为0

Remarks

如果 byDVRType 是 0,则接口中解析 wDevType 作为设备型号,设备端同时将设备型号的名称传过来。 如果 byDVRType 不是 0,则接口中将不解析 wDevType 及 byDevTypeName,使用已有的设备型号及名称 对 byDVRType、wDevType、byDevTypeName 进行填充,其中 byDVRType=wDevType。

建议开发时使用 wDevType、byDevTypeName,而不要使用 byDVRType,sdk 内部兼容。

7.22 NET_DVR_DEVICEINFO_V30:设备参数

struct{

BYTE sSerialNumber[SERIALNO_LEN];

BYTE byAlarmInPortNum;

BYTE byAlarmOutPortNum;

BYTE byDiskNum;

BYTE byDVRType;

BYTE byChanNum;

BYTE byStartChan;

BYTE byAudioChanNum;

BYTE byIPChanNum;

BYTE byZeroChanNum;

BYTE byMainProto;

BYTE bySubProto;

```
BYTE
         bySupport;
 BYTE
         bySupport1;
 BYTE
         bySupport2;
 WORD
         wDevType;
 BYTE
         bySupport3;
 BYTE
         byMultiStreamProto;
 BYTE
         byStartDChan;
 BYTE
         byStartDTalkChan;
         byHighDChanNum;
 BYTE
 BYTE
         byRes2[11];
}NET_DVR_DEVICEINFO_V30,*LPNET_DVR_DEVICEINFO_V30;
Members
sSerialNumber
     序列号
byAlarmInPortNum
     报警输入个数
byAlarmOutPortNum
     报警输出个数
byDiskNum
     硬盘个数
byDVRType
     设备类型,详见"Remarks"说明
byChanNum
     设备模拟通道个数,数字(IP)通道最大个数为 byIPChanNum + byHighDChanNum*256
byStartChan
     模拟通道的起始通道号,从 1 开始。IP 通道的起始通道号见下面参数 byStartDChan
byAudioChanNum
     设备语音通道数
byIPChanNum
     设备最大数字通道个数
byZeroChanNum
     零通道编码个数
byMainProto
     主码流传输协议类型: 0-private, 1-rtsp
bySubProto
     子码流传输协议类型: 0-private, 1-rtsp
bySupport
     能力,位与结果为0表示不支持,1表示支持
     bySupport & 0x1,表示是否支持智能搜索
     bySupport & 0x2,表示是否支持备份
     bySupport & 0x4,表示是否支持压缩参数能力获取
     bySupport & 0x8, 表示是否支持双网卡
     bySupport & 0x10, 表示支持远程 SADP
```

bySupport & 0x20, 表示支持 Raid 卡功能

bySupport & 0x40, 表示支持 IPSAN 目录查找

bySupport & 0x80, 表示支持 rtp over rtsp

bySupport1

能力集扩充,位与结果为0表示不支持,1表示支持

bySupport1 & 0x1, 表示是否支持 snmp v30

bySupport1 & 0x2, 表示是否支持区分回放和下载

bySupport1 & 0x4, 表示是否支持布防优先级

bySupport1 & 0x8, 表示智能设备是否支持布防时间段扩展

bySupport1 & 0x10,表示是否支持多磁盘数(超过 33 个)

bySupport1 & 0x20,表示是否支持 rtsp over http

bySupport1 & 0x40,表示是否支持延时预览

bySupport1 & 0x80,表示是否支持车牌新报警信息

bySupport2

能力集扩充,位与结果为0表示不支持,1表示支持

bySupport2 & 0x1,表示解码器是否支持通过 URL 取流解码

wDevType

设备型号,详见"Remarks"说明

bySupport3

能力集扩展,位与结果: 0- 不支持, 1- 支持

bySupport3 & 0x1, 表示是否支持多码流

bySupport3 & 0x4,表示是否支持按组配置,具体包含通道图像参数、报警输入参数、IP 报警输入/输出接入参数、用户参数、设备工作状态、JPEG 抓图、定时和时间抓图、硬盘盘组管理等

bySupport3 & 0x20, 表示是否支持通过 DDNS 域名解析取流

$by {\it MultiStream Proto}$

是否支持多码流,按位表示,位与结果: 0-不支持,1-支持

byMultiStreamProto & 0x1, 表示是否支持码流 3

byMultiStreamProto & 0x2, 表示是否支持码流 4

byMultiStreamProto & 0x40,表示是否支持主码流

byMultiStreamProto & 0x80,表示是否支持子码流

byStartDChan

起始数字通道号, 0表示无数字通道, 比如 DVR 或 IPC

byStartDTalkChan

起始数字对讲通道号,区别于模拟对讲通道号,0表示无数字对讲通道

byHighDChanNum

数字通道个数,高8位

byRes2

保留,置为0

Remarks

如果 byDVRType 是 0,则接口中解析 wDevType 作为设备型号;如果 byDVRType 非 0,则接口中 byDVRType 和 wDevType 值相等,都是 byDVRType。推荐使用 wDevType 作为设备类型。设备类型定义如下所示:

宏定义	宏定义值	设备类型
TRAFFIC_TS_SERVER	210	终端服务器
TRAFFIC_VAR	211	视频分析记录仪

TRAFFIC_ECT	1400	出入口终端服务器
TRAFFIC_PARKING_SERVER	1401	停车场服务器

7.23 NET_DVR_DEVICEINFO_V40:设备参数

struct{

NET_DVR_DEVICEINFO_V30struDeviceV30;BYTEbySupportLock;BYTEbyRetryLoginTime;BYTEbyPasswordLevel;

BYTE byRes1;

DWORD dwSurplusLockTime;
BYTE byCharEncodeType;
BYTE byRes2[255];

}NET_DVR_DEVICEINFO_V40,*LPNET_DVR_DEVICEINFO_V40;

Members

struDeviceV30

设备参数

bySupportLock

设备是否支持锁定功能,bySupportLock 为 1 时,dwSurplusLockTime 和 byRetryLoginTime 有效 byRetryLoginTime

剩余可尝试登陆的次数,用户名、密码错误时,此参数有效

byPasswordLevel

密码安全等级: 0- 无效, 1- 默认密码, 2- 有效密码, 3- 风险较高的密码, 当管理员用户的密码为出厂默认密码(12345)或者风险较高的密码时, 建议上层客户端提示用户更改密码

byRes1

保留,置为0

dwSurplusLockTime

剩余时间,单位: 秒,用户锁定时此参数有效。在锁定期间,用户尝试登陆,不管用户名密码输入对错,设备锁定剩余时间重新恢复到 30 分钟

byCharEncodeType

字符编码类型 (SDK 所有接口返回的字符串编码类型, 透传接口除外): 0- 无字符编码信息(老设备), 1-GB2312(简体中文), 2-GBK, 3-BIG5(繁体中文), 4-Shift_JIS(日文), 5-EUC-KR(韩文), 6-UTF-8, 7-ISO8859-1, 8-ISO8859-2, 9-ISO8859-3, ..., 依次类推, 21-ISO8859-15(西欧)

byRes2

保留,置为0

Remarks

将密码输入分为数字(0~9)、小写字母(a~z)、大写字母(A~Z)、特殊符号(:\"除外)4类,等级分为4个等级,如下所示:

- 等级 0 (风险密码):密码长度小于 8 位,或者只包含 4 类字符中的任意一类,或者密码与用户名一样,或者密码是用户名的倒写。例如:12345、abcdef。
- 等级 1 (弱密码): 包含两类字符,且组合为(数字+小写字母)或(数字+大写字母),且长度大于

等于 8 位。例如: abc12345、123ABCDEF。

- 等级 2 (中密码): 包含两类字符,且组合不能为(数字+小写字母)和(数字+大写字母),且长度大于等于 8 位。例如: 12345***++、ABCDabcd。
- 等级 3 (强密码): 包含三类字符及以上, 且长度大于等于 8 位。例如: Abc12345、abc12345++。

7.24 NET_DVR_DIRECTION:方向信息

```
struct{
```

NET VCA POINT struStartPoint;
NET VCA POINT struEndPoint;

}NET DVR DIRECTION,*LPNET DVR DIRECTION;

Members

struStartPoint

方向起始点

struEndPoint

方向结束点

7.25 NET_DVR_DISKSTATE:硬盘信息

struct{

DWORD dwVolume;

DWORD dwFreeSpace;

DWORD dwHardDiskStatic;

}NET_DVR_DISKSTATE, *LPNET_DVR_DISKSTATE;

Members

dwVolume

硬盘容量,单位: MB

dwFreeSpace

硬盘剩余空间,单位: MB

dwHardDiskStatic

硬盘的状态: 0-活动, 1-休眠, 2-异常, 3-休眠硬盘出错, 4-未格式化, 5-未连接状态(网络硬盘), 6-硬盘正在格式化

7.26 NET_DVR_ELECTRONICSTABILIZATION:电子防抖参数

struct{

BYTE byEnable;

BYTE byLevel;

BYTE byRes[6];

}NET_DVR_ELECTRONICSTABILIZATION, *LPNET_DVR_ELECTRONICSTABILIZATION;

Members

byMode

电子防抖使能: 0- 不启用, 1- 启用

byLevel

电子防抖等级,取值范围:0~100

byRes

保留

7.27 NET_DVR_ENISSUED_DATADEL:终端出入口控制(清空下发卡片信息)结构体

struct{

DWORD dwSize;

BYTE byDevCtrlCode;

BYTE byRes[27];

}NET_DVR_ENISSUED_DATADEL, *LPNET_DVR_ENISSUED_DATADEL;

Members

dwSize

结构体大小

byDevCtrlCode

出入口控制机拨码地址,用于区分设备,取值范围: 1~255

byRes

保留,置为0

7.28 NET_DVR_ENTRANCEDEV_COMMAND: 终端出入口控制(数据下发)结构体

struct{

DWORD dwSize;

BYTE byDevCtrlCode;

BYTE byManualIssuedData;

BYTE byRes[62];

}NET_DVR_ENTRANCEDEV_COMMAND, *LPNET_DVR_ENTRANCEDEV_COMMAND;

Members

dwSize

结构体大小

byDevCtrlCode

出入口控制机拨码地址,用于区分设备,取值范围: 1~255

byManualIssuedData

是否启动手动数据下发: 0-关闭, 1-开启

byRes

保留,置为0

7.29 NET_DVR_ETHERNET_V30:以太网配置

struct{

NET DVR IPADDR struDVRIP;

NET DVR IPADDR struDVRIPMask;
DWORD dwNetInterface;

WORD wDVRPort; WORD wMTU;

BYTE byMACAddr[MACADDR_LEN];

BYTE byRes[2];

}NET_DVR_ETHERNET_V30, *LPNET_DVR_ETHERNET_V30;

Members

struDVRIP

设备 IP 地址

struDVRIPMask

设备 IP 地址掩码

dwNetInterface

网络接口: 1-10MBase-T; 2-10MBase-T 全双工; 3-100MBase-TX; 4-100M 全双工; 5-10M/100M/1000M

自适应: 6-1000M 全双工

wDVRPort

设备端口号

wMTU

MTU 设置,默认 1500

byMACAddr

设备物理地址

byRes

保留

Domorko

MTU 的设置范围为 500-9676,若 MTU 设置过小客户端将无法注册到设备,并且客户端预览、回放、配置参数也会失败。

7.30 NET_DVR_EXCEPTION_V30:异常参数

struct{

DWORD dwSize;

<u>NET_DVR_HANDLEEXCEPTION_V30</u> struExceptionHandleType[MAX_EXCEPTIONNUM_V30];

}NET_DVR_EXCEPTION_V30,*LPNET_DVR_EXCEPTION_V30;

Members

dwSize

结构体大小

struExceptionHandleType

异常信息处理方式:

数组0一硬盘满

数组1一硬盘出错

数组 2一网线断

数组3-IP 地址冲突

数组 4一非法访问

数组5-输入/输出视频制式不匹配

数组6一视频信号异常

数组7一录像异常

7.31 NET_DVR_EXPOSURE:CCD 曝光控制参数

struct{

BYTE byExposureMode;
BYTE byAutoApertureLevel;

BYTE byRes[2];

DWORD dwVideoExposureSet;
DWORD dwExposureUserSet;

DWORD dwRes;

}NET_DVR_EXPOSURE, *LPNET_DVR_EXPOSURE;

Members

byExposureMode

0-手动曝光,1-自动曝光

byAutoApertureLevel

自动光圈灵敏度,取值范围:0~10

byRes

保留

dwVideoExposureSet

自定义视频曝光时间(单位 us),自动曝光时该值为曝光最慢值

dwExposureUserSet

自定义曝光时间。在智能高清网络摄像机上应用及 CCD 模式时,是指抓拍快门速度,(单位 us) dwRes

保留

7.32 NET_DVR_EXTERNAL_CONTROL_ALARM:指示灯外控报警信息

struct{

DWORD dwSize;

DWORD dwChannelNo;

NET_DVR_LAMP_STATE struLampStateCtrl;

NET_DVR_TIME struExternalBeginTime;

BYTE byRes1[64];

}NET_DVR_EXTERNAL_CONTROL_ALARM, *LPNET_DVR_EXTERNAL_CONTROL_ALARM;

Members

dwSize

结构体大小

dwChannelNo

通道号

struLampStateCtrl

指示灯外控状态

struExternalBeginTime

外控开始时间

byRes

保留,置为0

7.33 NET_DVR_EXTERNAL_DEVCFG:ITS 外接设备信息

struct{

DWORD dwSize;

BYTE byExternalDevTpye;

BYTE byRes2[3];

char sDevName[MAX_DEVNAME_LEN];

union{

BYTE byUnionLen[656];

struct{

NET_DVR_IPADDR struDevIP;
WORD wDevPort;
BYTE byRes[510];

}struRrReader;

 $struct\{\\$

BYTE byRs485No;
BYTE byDevCtrlCode;
BYTE byAutoIssuedData;
BYTE byOfflineDetEnable;

BYTE byDetCycle; BYTE byRes[651];

}struGateway;

 $struct\{$

BYTE byExternalMode;

BYTE byRes[3]; NET_DVR_IPADDR struDevIP; WORD wDevPort; BYTE byRs485No; BYTE byDevCtrlCode; BYTE byCtrlCardType; BYTE byLedScreenType; BYTE byLedScreenUse; BYTE byLedDisplayMode;

char sLedCustomInfo[MAX_LED_INFO];

DWORD dwLedScreenH;
DWORD dwLedScreenW;
BYTE byRes1[236];

}struLed;

}uExternalDevInfo;

BYTE byRes[128];

}NET_DVR_EXTERNAL_DEVCFG, *LPNET_DVR_EXTERNAL_DEVCFG;

Members

dwSize

结构体大小

byExternalDevTpye

外接设备类型: 0- 其他(联合体 unionAddr 可不赋值), 1- 远距离读头设备(对应联合体里的 struRrReader), 2- 出入口控制机(对应联合体里的 struGateway), 3- LED 屏(对应联合体里的 struLed)

byRes2

保留

sDevName

设备名称

unionAddr 为外接设备信息联合体

byUnionLen

联合体大小为656字节

struRrReader 为远距离读头设备信息结构体

struDevIP

设备 IP 地址

wDevPort

设备端口

byRes

保留

struGateway 为出入口控制机信息结构体

byRs485No

RS485 编号(外接设备类型一样,该编号可以重复;类型不一样,该编号互斥)

byDevCtrlCode

拨码地址,用于区分设备,取值范围: 1~255

byAutoIssuedData

是否自动下发卡片数据: 0-不自动下发, 1-自动下发

byOfflineDetEnable

离线检测: 0-关闭, 1-开启。离线检测开启时,如果检测到设备在线,则由终端匹配卡片信息,并发送道闸控制指令给出入口控制机,否则由出入口控制机自身匹配控制道闸

byDetCycle

检测周期,取值范围: 0~60,单位: s

byRes

保留

struLed 为 LED 屏信息结构体

byExternalMode |

LED 屏接口类型: 0-RS485, 1-网络

byRes

保留

struDevIP

DEV IP 地址 144 (在 byExternalMode == 1 时生效)

wDevPort

设备端口(在 byExternalMode == 1 时生效)

byRs485No

RS485 编号(外接设备类型一样,该编号可以重复;类型不一样,该编号互斥)

byDevCtrlCode

拨码地址,用于区分设备,取值范围: 1~255

byCtrlCardType

控制卡类型: 0-保留(无效值), 1- EQ2013, LED 屏通过控制卡控制显示的,不同的控制卡类型支持的显示方式不同

byLedScreenType

屏类型: 0-单色屏, 1-双色屏

byLedScreenUse

屏用途: 0-其它, 1-区位屏, 2-提示屏, 3-收费屏

byLedDisplayMode

屏幕字体显示方式: 1- 立即显示, 2- 左移, 3- 右移, 4- 上移, 5- 下移

sLedContomInfo

屏幕字体显示信息

dwLedScreenH

显示屏组成高度上需要的 LED 点数

dwLedScreenW

显示屏组成宽度上需要的 LED 点数

byRes1

保留

byRes

保留

Remarks

LED 屏是由控制卡控制的,LED 屏可以根据项目实际使用更换大小,此时需要终端通知控制卡目前使用的屏宽(dwLedScreenH)和屏高(dwLedScreenW)。

7.34 NET_DVR_EXTERNAL_DEVCOND:ITS 外接设备获取信息条件

struct{

DWORD dwSize;

BYTE byExternalDevTpye;
BYTE byRelativeIndex;

BYTE byRes[30];

}NET_DVR_EXTERNAL_DEVCOND, *LPNET_DVR_EXTERNAL_DEVCOND;

Members

dwSize

结构体大小

byExternalDevTpye

外接设备类型: 0- 保留, 1- 远距离读头设备, 2- 出入口控制机, 3- LED 屏, 0xff- 全部信息(长连接获取时使用)

byRelativeIndex

相对索引: 0-保留; 针对 LED 屏的类型,相对索引值为 1~255,针对其他类型(远距离读头设备、出入口控制机)相对索引值为 1~8; 0xff-全部信息(长连接获取时使用)

bvRes

保留,置为

7.35 NET_DVR_EXTERNAL_DEVSTATUS:外接设备状态信息

struct{

DWORD dwSize;

char sDevName[MAX_DEVNAME_LEN];

BYTE byExternalDevTpye;
BYTE byRelativeIndex;

BYTE byOnline; BYTE byRes[125];

}NET_DVR_EXTERNAL_DEVSTATUS, *LPNET_DVR_EXTERNAL_DEVSTATUS;

Members

dwSize

结构体大小

sDevName

设备名称

byExternalDevTpye

外接设备类型: 0- 保留, 1- 远距离读头设备, 2- 出入口控制机, 3- LED 屏

byRelativeIndex

相对索引: 0-保留; 针对 LED 屏的类型,相对索引值为 $1\sim255$,针对其他类型(远距离读头设备、出入口控制机)相对索引值为 $1\sim8$

byRes

保留,置为0

7.36 NET_DVR_EXTERNAL_LAMP_CTRL_MODE:外接灯控制模式

struct{

NET_DVR_PARKINFO struParkInfo[MAX_PARKING_NUM];

BYTE byRes[32];

}NET_DVR_EXTERNAL_LAMP_CTRL_MODE, *LPNET_DVR_EXTERNAL_LAMP_CTRL_MODE;

Members

struParkInfo

外接灯的情况下车位信息,一个通道最大4个车位 (从左到右车位对应数组0~3)

byRes

保留

7.37 NET_DVR_FORENSICS_MODE:交通违章取证方式配置

struct{

DWORD dwSize;
BYTE byMode;
BYTE byRes[23];

}NET_DVR_FORENSICS_MODE, *LPNET_DVR_FORENSICS_MODE;

Members

dwSize

结构体大小

byMode

取证方式: 0- 手动取证, 1- 自动取证

byRes

保留

Remarks

设备必须接入球机才支持违停取证分析。交通违章取证模式分为两种:

- 自动模式:分析仪对视频进行分析,如果检测到目标则驱动球机转动,如果符合条件则上传报警。 也可以使用手动定位控制命令指定目标。
- 手动模式:分析仪对视频进行分析,即使检测到目标也不会驱动球机转动,除非使用手动定位控制命令 NET_DVR_CONTROL_PTZ_MANUALTRACE (对应接口: <u>NET_DVR_RemoteControl</u>)指定目标,让分析仪对目标进行分析。使用手动模式,主要是为了降低误报。

7.38 NET DVR GAIN:增益参数

struct{

BYTE byGainLevel;
BYTE byGainUserSet;

BYTE byRes[2];

DWORD dwMaxGainValue;
}NET_DVR_GAIN, *LPNET_DVR_GAIN;

Members

byGainLevel

增益,单位 dB,取值范围[0,100]

byGainUserSet

用户自定义增益,单位 dB,取值范围[0,100],对于智能高清网络摄像机,是 CCD 模式下的抓拍增益 byRes

保留,置为0

dwMaxGainValue

最大增益值,单位 dB

7.39 NET_DVR_GAMMACORRECT:Gamma 校正配置参数

struct{

BYTE byGammaCorrectionEnabled;

BYTE byGammaCorrectionLevel;

BYTE byRes[6];

}NET_DVR_GAMMACORRECT, *LPNET_DVR_GAMMACORRECT;

Members

byGammaCorrectionEnabled

Gamma 校正是否启用, 0-不启用, 1-启用

byGammaCorrectionLevel

0-100

bvRes

保留,置为0

7.40 NET_DVR_GET_STREAM_UNION:取流方式联合体

union{

NET_DVR_IPCHANINFO struChanInfo;

NET_DVR_PU_STREAM_CFG struPUStream;

NET_DVR_IPSERVER_STREAM struIPServerStream;

 ${\sf NET_DVR_DDNS_STREAM_CFG} \qquad {\sf struDDNSStream};$

 ${\tt NET_DVR_PU_STREAM_URL} \qquad \qquad {\sf struStreamUrl};$

NET_DVR_HKDDNS_STREAM struHkDDNSStream;

}NET_DVR_GET_STREAM_UNION,*LPNET_DVR_GET_STREAM_UNION;

Members

struChanInfo

直接从设备取流的 IP 通道信息

struPUStream

通过流媒体从设备取流

struIPServerStream

通过 IPServer 获得 IP 地址后取流

struDDNSStream

通过 IPServer 找到设备,再通过流媒体取设备的码流

struStreamUrl

通过 URL 从流媒体取流

struHkDDNSStream

通过 hiDDNS 连接设备然后从设备取流

Remarks

智能交通设备仅支持直接从设备取流(struChanInfo)的模式。其他模式不支持,其相关结构体在本文档里不做介绍,请参见头文件。

7.41 NET_DVR_HANDLEEXCEPTION_V30:报警和异常处理

struct{

DWORD dwHandleType;

BYTE byRelAlarmOut[MAX_ALARMOUT_V30];

}NET_DVR_HANDLEEXCEPTION_V30, *LPNET_DVR_HANDLEEXCEPTION_V30;

Members

dwHandleType

处理方式:

0x00: 无响应

0x01: 监视器上警告 0x02: 声音警告

0x04: 上传中心

0x08: 触发报警输出

 0x10: Jpeg 抓图并上传 Email

 0x20: 无线声光报警器联动

 0x200: 抓图并上传 ftp

byRelAlarmOut

报警触发的输出通道,0-不触发,1-触发输出,按位表示输出通道,例如 byRelAlarmOut[0]==1 表示触发输出通道 1,byRelAlarmOut[1]==1 表示触发输出通道 2,依此类推

7.42 NET_DVR_HDCFG:设备硬盘配置结构体

struct{

DWORD dwSize; DWORD dwHDCount;

NET_DVR_SINGLE_HD struHDInfo[MAX_DISKNUM_V30];

}NET_DVR_HDCFG, *LPNET_DVR_HDCFG;

Members

dwSize

结构体大小

dwHDCount

硬盘数, 该参数只能获取, 不支持设置

struHDInfo

硬盘信息参数

Remarks

本结构体中的 dwHDCount 参数是指设备本地的硬盘数,因此只能获取该信息,不能设置。对硬盘的信息进行设置后需要重启设备才生效。

7.43 NET_DVR_INLAY_LAMP_CTRL_MODE:内置灯控制模式

struct{

<u>NET_DVR_PARK_INLAY_SUBINFO</u>
struLampStateCtrl[MAX_PARKING_STATUS];

BYTE byRes[96];

}NET_DVR_INLAY_LAMP_CTRL_MODE, *LPNET_DVR_INLAY_LAMP_CTRL_MODE;

Members

struLampStateCtrl

内置灯的情况下车位状态,数组 0- 无车,数组 1- 有车,数组 2- 压线(优先级最高),数组 3- 特殊

byRes

保留

7.44 NET_DVR_IPADDR:IP 地址

struct{

char slpV4[16];

BYTE slpV6[128];

}NET_DVR_IPADDR, *LPNET_DVR_IPADDR;

Members

slpV4

设备 IPv4 地址

slpV6

设备 IPv6 地址

7.45 NET_DVR_IPC_PROTO_LIST:IPC 协议列表

 $struct \{$

DWORD dwSize;

DWORD dwProtoNum;

NET_DVR_PROTO_TYPE struProto[IPC_PROTOCOL_NUM];

BYTE byRes[8];

}NET_DVR_IPC_PROTO_LIST,*LPNET_DVR_IPC_PROTO_LIST;

Members

dwSize

结构体大小

dwProtoNum

有效的 IPC 协议个数

struProto

有效的 IPC 协议的参数结构

byRes

保留,置为0

7.46 NET_DVR_IPCHANINFO:IP 通道信息

```
struct{
  BYTE
            byEnable;
  BYTE
            byIPID;
  BYTE
            byChannel;
  BYTE
            byIPIDHigh;
  BYTE
            byRes[32];
}NET_DVR_IPCHANINFO, *LPNET_DVR_IPCHANINFO;
```

Members

byEnable

IP 通道在线状态,是一个只读的属性; 0 表示 HDVR 或者 NVR 设备的数字通道连接对应的 IP 设备失 败,该通道不在线: 1表示连接成功,该通道在线

byIPID

IP 设备 ID 的低 8 位, byIPID = iDevID % 256

byChannel

IP 设备的通道号,例如设备 A (HDVR 或者 NVR 设备)的 IP 通道 01,对应的是设备 B 里的通道 04, 则 byChannel=4。

byIPIDHigh

IP 设备 ID 的高 8 位,byIPIDHigh = iDevID /256

byRes

保留,置为0

Remarks

iDevID 为设备 ID 号, iDevID = byIPIDHigh*256 + byIPID。通过 iDevID 值查找具体的设备信息 struIPDevInfo (结构体 NET DVR IPPARACFG V40 的数组参数),与设备信息数组下标(iDevInfoIndex)换算关系为: iDevID = iDevInfoIndex + iGroupNO*64 +1.

7.47 NET_DVR_IPDEVINFO_V31:IP 设备信息

```
struct{
  BYTE
                      byEnable;
  BYTF
                      byProType;
  BYTE
                      byEnableQuickAdd;
  BYTE
                      byRes1;
  BYTE
                      sUserName[NAME_LEN];
  BYTE
                      sPassword[PASSWD_LEN];
  BYTE
                      byDomain[MAX_DOMAIN_NAME];
  NET DVR IPADDR
                      struIP;
  WORD
                      wDVRPort;
                      byRes2[34];
}NET_DVR_IPDEVINFO_V31, *LPNET_DVR_IPDEVINFO_V31;
```

Members

byEnable

该 IP 设备是否启用

byProType

协议类型(默认为私有协议), 0- 私有协议, 1- 松下协议, 2- 索尼, 更多协议通过 NET_DVR_GetIPCProtoList 获取。

byEnableQuickAdd

0-不支持快速添加; 1-使用快速添加

bvRes1

保留,置为0

sUserName

用户名

sPassword

密码

byDomain

设备域名

struIP

IP 地址

wDVRPort

端口号

byRes2

保留,置为0

Remarks

当某个 IP 设备参数对应的所有 IP 通道被删除,即 IP 通道资源的中所有 IP 通道参数的 IPID 减 1 没有与该 IP 设备参数的下标值相对应的时候,设备本地的该 IP 设备参数将被删除。

在该结构体中,设备域名为空,ipv4 地址有效时,使用 ipv4 地址去连接设备; ipv4 和设备域名都为空,ipv6 地址有效时,使用 ipv6 去连接设备。

7.48 NET_DVR_IPPARACFG_V40:IP 设备资源及 IP 通道资源配置参数

struct{

DWORD dwSize;

DWORD dwGroupNum;
DWORD dwAChanNum;
DWORD dwDChanNum;
DWORD dwStartDChan;

BYTE byAnalogChanEnable[MAX_CHANNUM_V30];

<u>NET_DVR_IPDEVINFO_V31</u> struIPDevInfo[MAX_IP_DEVICE_V40];
<u>NET_DVR_STREAM_MODE</u> struStreamMode[MAX_CHANNUM_V30];

BYTE byRes2[20];

}NET_DVR_IPPARACFG_V40, *LPNET_DVR_IPPARACFG_V40;

Members

dwSize

结构体大小

dwGroupNum

设备支持的总组数 (只读)。若设备支持的组数大于 1, NET DVR GetDVRConfig (或者

NET_DVR_SetDVRConfig)获取(或设置)相关通道参数需要按照组数调用多次命令分别获取(或设置)各组通道参数,此时接口中 IChannel 对应组号。

dwAChanNum

最大模拟通道个数(只读)

dwDChanNum

数字通道个数(只读)

dwStartDChan

起始数字通道(只读)

byAnalogChanEnable

模拟通道资源是否启用,从低到高表示 1-64 通道: 0-禁用, 1-启用。

struIPDevInfo

IP设备信息,下标 0 对应设备 IP ID 为 1

struStreamMode

取流模式

byRes2

保留,置为0

7.49 NET_DVR_JPEGPARA:JPEG 图像信息

struct{

WORD wPicSize; WORD wPicQuality;

}NET_DVR_JPEGPARA,*LPNET_DVR_JPEGPARA;

Members

wPicSize

图片分辨率: 0-CIF(352*288/352*240),1-QCIF(176*144/176*120),2-4CIF(704*576/704*480)或D1(720*576/720*486),3-UXGA(1600*1200),4-SVGA(800*600),5-HD720P(1280*720),6-VGA(640*480),7-XVGA(1280*960),8-HD900P(1600*900),9-HD1080P(1920*1080),10-2560*1920,11-1600*304,12-2048*1536,13-2448*2048,14-2448*1200,15-2448*800,16-XGA(1024*768),17-SXGA(1280*1024),18-WD1(960*576/960*480),19-1080I(1920*1080),20-576*576,21-1536*1536,22-1920*1920,0xff-Auto(使用当前码流分辨率)

wPicQuality

图片质量系数: 0-最好, 1-较好, 2-一般

Remarks

图片分辨率需要设备支持,建议设置为设备当前主码流编码分辨率。

7.50 NET_DVR_LAMP_CTRL_INFO:内外置灯参数配置

struct{

DWORD dwSize;

BYTE byLampCtrlMode;
BYTE byCtrlChannelIndex;

BYTE byRes[2];

NET DVR LAMP CTRL MODE UNION uLampCtrlMode;

BYTE byRes2[32];

}NET_DVR_LAMP_CTRL_INFO, *LPNET_DVR_LAMP_CTRL_INFO;

Members

dwSize

结构体大小

byLampCtrlMode

控灯模式: 1- 内置灯, 2- 外接灯

byCtrlChannelIndex

交替控制通道号(IP通道接入,取值范围: 33~48)

bvRes

保留,置为0

uLampCtrlMode

灯控制模式联合体

byRes2

保留,置为0

7.51 NET_DVR_LAMP_CTRL_MODE_UNION:灯控制模式联合体

union{

BYTE uLen[288];

NET DVR INLAY LAMP CTRL MODE struInlayLampCtrlMode;

NET DVR EXTERNAL LAMP CTRL MODE struExternalLampCtrlMode;

}NET_DVR_LAMP_CTRL_MODE_UNION, *LPNET_DVR_LAMP_CTRL_MODE_UNION;

Members

uLen

联合体大小,288 字节

struInlayLampCtrlMode

内置灯控制模式参数

struExternalLampCtrlMode

外接灯控制模式参数

7.52 NET_DVR_LAMP_EXTERNAL_CFG:指示灯外控配置

struct{

DWORD dwSize;
BYTE byEnable;
BYTE byRes1[3];

NET DVR LAMP STATE struLampStateCtrl;

BYTE byRes2[32];

}NET_DVR_LAMP_EXTERNAL_CFG, *LPNET_DVR_LAMP_EXTERNAL_CFG;

Members

dwSize

结构体大小

byEnable

外控使能: 0- 不启用, 1- 启用

byRes1

保留,置为0

struLampStateCtrl

指示灯外控状态信息

byRes2

保留,置为0

7.53 NET_DVR_LAMP_STATE:指示灯外控状态信息

struct{

BYTE byFlicker;

BYTE byRes1[3];

DWORD dwIONo;

BYTE byRes2[8];

}NET_DVR_LAMP_STATE, *LPNET_DVR_LAMP_STATE;

Members

byFlicker

0- 不闪烁, 1- 闪烁

byRes1

保留,置为0

dwIONo

按位表示,支持复选,bit1-IO1,bit2-IO2,bit4-IO3,取值:1-启用,0-不启用

byRes

保留,置为0

7.54 NET_DVR_LANE_PARAM_V41:车道参数

struct{

BYTE byRuleName[NAME_LEN];

BYTE byRuleID;
BYTE byLaneType;
BYTE byTrafficState;
BYTE byLaneNo;
DWORD dwVaryType;
DWORD dwTpsType;
DWORD dwLaneVolume;

DWORD dwLaneVelocity;
DWORD dwTimeHeadway;
DWORD dwSpaceHeadway;

float fSpaceOccupyRation;

```
float
                     fTimeOccupyRation;
 DWORD
                     dwLightVehicle;
 DWORD
                     dwMidVehicle;
 DWORD
                     dwHeavyVehicle;
 NET DVR LANE QUEUE
                     struLaneQueue;
 NET VCA POINT
                     struRuleLocation;
 DWORD
                     dwOversizeVehicle;
 BYTE
                     byRes2[60];
}NET_DVR_LANE_PARAM_V41, *LPNET_DVR_LANE_PARAM_V41;
Members
bvRuleName
      车道规则名称
byRuleID
      规则序号,取值范围: 1~8
byLaneType
      车道上行或下行
byTrafficState
      车道的交通状态,0-无效,1-畅通,2-拥挤,3-堵塞
byLaneNo
      车道号
dwVaryType
      车道交通参数变化类型参照,按位区分
      enum _TRAFFIC_DATA_VARY_TYPE_EX_ENUM_{
        ENUM_TRAFFIC_VARY_NO
                                       = 0x00,
        ENUM_TRAFFIC_VARY_VEHICLE_ENTER
                                       = 0x01,
        ENUM_TRAFFIC_VARY_VEHICLE_LEAVE
                                       = 0x02,
        ENUM_TRAFFIC_VARY_QUEUE
                                       = 0x04,
        ENUM TRAFFIC VARY STATISTIC
                                       = 0x08,
      }TRAFFIC_DATA_VARY_TYPE_EX_ENUM
      ENUM_TRAFFIC_VARY_NO
      无变化
      ENUM TRAFFIC VARY VEHICLE ENTER
      车辆进入虚拟线圈
      ENUM_TRAFFIC_VARY_VEHICLE_LEAVE
      车辆离开虚拟线圈
      ENUM_TRAFFIC_VARY_QUEUE
      队列变化
      ENUM_TRAFFIC_VARY_STATISTIC
      统计数据变化(每分钟变化一次包括平均速度,车道空间/时间占有率,交通状态)
dwTpsType
      数据变化类型标志,表示当前上传的统计参数中,哪些数据有效,按位区分
      enum _ITS_TPS_TYPE_{
        LANE_VOLUME
                               = 0x1,
        LANE VELOCITY
                               = 0x2,
```

TIME_HEADWAY = 0x4,

SPACE_HEADWAY = 0x8,

TIME_OCCUPANCY_RATIO = 0x10,

SPACE_OCCUPANCY_RATIO = 0x20,

QUEUE = 0x40,

VEHICLE_TYPE = 0x80,

TRAFFIC_STATE = 0x100

}ITS_TPS_TYPE

LANE_VOLUME

车道流量

LANE VELOCITY

车道速度

TIME_HEADWAY

车头时距

SPACE_HEADWAY

车头间距

TIME_OCCUPANCY_RATIO

车道占有率(时间上)

SPACE_OCCUPANCY_RATIO

车道占有率,百分比计算(空间上)

QUEUE

排队长度

VEHICLE TYPE

车辆类型

TRAFFIC_STATE

交通状态

dwLaneVolume

车道流量,统计有多少车子通过

dwLaneVelocity

车道内车辆的平均速度,以千米/小时表示

dwTimeHeadway

车头时距, 以秒计算

dwSpaceHeadway

车头间距,以米来计算

fSpaceOccupyRation

车道占有率,百分比计算(空间上,车辆长度与监控路段总长度的比值)

fTimeOccupyRation

时间占有率,百分比计算

dwLightVehicle

小型车数量

dwMidVehicle

中型车数量

dwHeavyVehicle

重型车数量

struLaneQueue

车道队列长度

struRuleLocation

规则位置虚拟线圈的中心

dwOversizeVehicle

大型车数量

byRes2

保留

7.55 NET_DVR_LANE_QUEUE:车道队列

struct{

NET VCA POINT struHead;
NET VCA POINT struTail;

DWORD dwLength;

}NET_DVR_LANE_QUEUE,*LPNET_DVR_LANE_QUEUE;

Members

struHead

队列头

struTail

队列尾

dwLength

实际队列长度,单位:米,范围[0-500]

7.56 NET_DVR_LOCAL_ABILITY_PARSE_CFG:能力集解析库配置

struct{

BYTE byEnableAbilityParse;

BYTE byRes[127];

 $\verb| NET_DVR_LOCAL_ABILITY_PARSE_CFG, *LPNET_DVR_LOCAL_ABILITY_PARSE_CFG; \\$

Members

byEnableAbilityParse

使用能力集解析库: 0-不使用, 1-使用, 默认不使用

byRes

保留,置为0

Remarks

模拟能力集默认禁用,调用该接口可以启用模拟能力集,支持获取设备各种能力。如果需要获取能力集(NET_DVR_GetDeviceAbility),可以调用此接口来启用模拟能力集,并且需要加载 LocalXml.zip(要求和SDK 库文件放在同一个目录下)。

7.57 NET_DVR_LOCAL_BYTE_ENCODE_CONVERT:字符编码转换参数

```
struct{
```

CHAR ENCODE CONVERT fnCharConvertCallBack;

BYTE byRes[256];

NET DVR LOCAL BYTE ENCODE CONVERT, *LPNET DVR LOCAL BYTE ENCODE CONVERT;

Members

fnCharConvertCallBack

字符编码转换回调函数

byRes

保留,置为0

Callback Function

typedef int(CALLBACK *CHAR_ENCODE_CONVERT)(

char *pInput,
DWORD dwInputLen,
DWORD dwInEncodeType,
char *pOutput,
DWORD dwOutputLen,
DWORD dwOutEncodeType

);

Callback Function Parameters

pInput

[in] 输入字符串,内存由 SDK 申请,字符串数据也由 SDK 提供

dwInputLen

[in] 输入字符串缓冲区大小

dwInEncodeType

[in] 输入的字符编码格式: 0- 无字符编码信息(老设备), 1- GB2312(简体中文), 2- GBK, 3- BIG5(繁体中文), 4- Shift_JIS(日文), 5- EUC-KR(韩文), 6- UTF-8, 7- ISO8859-1, 8- ISO8859-2, 9- ISO8859-3, ..., 依次类推, 21- ISO8859-15(西欧)

pOutput

[out] 输出字符串,内存由 SDK 申请,存放使用用户字符编码接口转换之后的字符串

dwOutputLen

[out] 输出字符串缓冲区大小

dwOutEncodeType

[out] 输出字符编码格式: 0- 无字符编码信息(老设备), 1-GB2312(简体中文), 2-GBK, 3-BIG5(繁体中文), 4-Shift_JIS(日文), 5-EUC-KR(韩文), 6-UTF-8, 7-ISO8859-1, 8-ISO8859-2, 9-ISO8859-3, ..., 依次类推, 21-ISO8859-15(西欧)

Remarks

- 回调函数的返回值: -1 表示失败, 0 表示成功(内存足够存放转换以后的字符串)。
- 设备的字符编码类型在登录接口返回,对应 <u>NET_DVR_DEVICEINFO_V40</u>结构体中的参数 byCharEncodeType。SDK 内部需要字符编码转换时,SDK 默认使用 libiconv 库进行类型转换。如果不想使用 libiconv 编码库,可以调用 <u>NET_DVR_SetSDKLocalCfg(类型: NET_SDK_LOCAL_CFG_TYPE_BYTE_ENCODE)</u> 设置字符转码回调函数,告知 SDK 用户自己的字符编码接口,然后 SDK 将使用用户提供的字符编码接

口进行字符串处理。

7.58 NET_DVR_LOCAL_CHECK_DEV:设备在线巡检参数

struct{

DWORD dwCheckOnlineTimeout; DWORD dwCheckOnlineNetFailMax;

BYTE byRes[256];

}NET_DVR_LOCAL_CHECK_DEV, *LPNET_DVR_LOCAL_CHECK_DEV;

Members

dwCheckOnlineTimeout

巡检时间间隔,单位: ms,取值范围: 30s~120s,0表示用默认值(120s),推荐设置 30s

dwCheckOnlineNetFailMax

由于网络原因失败的最大累加次数,达到该次数,SDK 才回调用户异常消息,0 表示使用默认值 1,推荐设置 3 次

byRes

保留,置为0

Remarks

• SDK 按照该结构体中的时间间隔对设备进行自动巡检,巡检过程中如果连失败或者重连成功在 NET DVR SetExceptionCallBack V30 设置的异常消息回调函数中返回,对应异常消息类型为: EXCEPTION EXCHANGE、RESUME EXCHANGE。

• 推荐设置 30s 时间间隔、3次,即心跳间隔为 1.5 分钟。

7.59 NET DVR LOCAL MEM POOL CFG:内存池本地配置

struct{

DWORD dwAlarmMaxBlockNum; DWORD dwAlarmReleaseInterval;

BYTE byRes[60];

NET DVR LOCAL MEM POOL CFG,*LPNET DVR LOCAL MEM POOL CFG;

Members

dwAlarmMaxBlockNum

报警模块内存池最多向系统申请的内存块(block)个数,每个 block 为 64MB,超过这个上限则不向系统申请,0表示无上限

dwAlarmReleaseInterval

报警模块空闲内存释放的间隔,单位:秒,为0表示不释放空闲的内存

bvRes

保留,置为0

7.60 NET_DVR_LOCAL_MODULE_RECV_TIMEOUT_CFG:按模块配置超时时间

```
struct{
 DWORD
          dwPreviewTime:
 DWORD
         dwAlarmTime;
 DWORD
          dwVodTime;
 DWORD
          dwElse;
 BYTE
        byRes[512];
}NET_DVR_LOCAL_MODULE_RECV_TIMEOUT_CFG,*LPNET_DVR_LOCAL_MODULE_RECV_TIMEOUT_CFG;
Members
dwPreviewTime
     预览模块超时时间,单位:毫秒,取值范围:0~3000,000
dwAlarmTime
     报警模块超时时间,单位:毫秒,取值范围:0~3000,000
dwVodTime
     回放模块超时时间,单位:毫秒,取值范围:0~3000,000
dwElse
     其他模块超时时间,单位:毫秒,取值范围:0~3000,000
byRes
     保留,置为0
```

7.61 NET_DVR_LOCAL_PROTECT_KEY_CFG:密钥配置

7.62 NET DVR LOCAL TALK MODE CFG:对讲模式配置

```
struct{

BYTE byEnableAbilityParse;

BYTE byRes[127];

}NET_DVR_LOCAL_TALK_MODE_CFG,*LPNET_DVR_LOCAL_TALK_MODE_CFG;

Members
```

byTalkMode

对讲模式: 0- 使用对讲库 (默认), 1- 使用 windows api 模式

byRes

保留,置为0

Remarks

V4.2.2.5 及以前版本 SDK 均采用 windows API 实现相关功能。之后版本默认使用语音对讲库的方式,语音对讲库模式下必须加载 AudioIntercom.dll 和 OpenAL32.dll。

7.63 NET_DVR_LOCAL_TCP_PORT_BIND_CFG:本地 TCP 端口绑定配置

struct{

WORD wLocalBindTcpMinPort;

WORD wLocalBindTcpMaxPort;

BYTE byRes[60];

}NET_DVR_LOCAL_TCP_PORT_BIND_CFG,*LPNET_DVR_LOCAL_TCP_PORT_BIND_CFG;

Members

wLocalBindTcpMinPort

本地绑定 TCP 最小端口

wLocalBindTcpMaxPort

本地绑定 TCP 最大端口

byRes

保留,置为0

Remarks

端口绑定的策略是:给一个端口段,可以保证使用的端口都是在这个段里(多播除外),但不能保证每一个段内的端口都用到,因为是循环利用的;端口池中取出的端口会去尝试绑定,如果被占用了,将取下一个,如果段内每一个都绑定不了,则连接操作返回失败。建议最好不要设置系统预留的端口(1-1024),比如 80 等。

设置的最大端口应该大于等于最小端口,[0,0]表示清除绑定,[0,非0]将设置失败,因为0不能进行绑定。

7.64 NET_DVR_LOCAL_UDP_PORT_BIND_CFG:本地 UDP 端口绑定配置

struct{

WORD wLocalBindUdpMinPort;

WORD wLocalBindUdpMaxPort;

BYTE byRes[60];

}NET_DVR_LOCAL_UDP_PORT_BIND_CFG,*LPNET_DVR_LOCAL_UDP_PORT_BIND_CFG;

Members

wLocalBindUdpMinPort

本地绑定 UDP 最小端口

wLocalBindUdpMaxPort

本地绑定 UDP 最大端口

byRes

保留,置为0

Remarks

端口绑定的策略是:给一个端口段,可以保证使用的端口都是在这个段里(多播除外),但不能保证每一个段内的端口都用到,因为是循环利用的;端口池中取出的端口会去尝试绑定,如果被占用了,将取下一个,如果段内每一个都绑定不了,则连接操作返回失败。建议最好不要设置系统预留的端口(1-1024),比如 80 等。

设置的最大端口应该大于等于最小端口,[0,0]表示清除绑定,[0,非0]将设置失败,因为0不能进行绑定。

7.65 NET_DVR_LOG_V30:日志信息

struct{

NET_DVR_TIMEstrLogTime;DWORDdwMajorType;DWORDdwMinorType;

BYTE sPanelUser[MAX_NAMELEN];
BYTE sNetUser[MAX_NAMELEN];

NET DVR IPADDR struRemoteHostAddr;

DWORD dwParaType;
DWORD dwChannel;
DWORD dwDiskNumber;
DWORD dwAlarmInPort;
DWORD dwAlarmOutPort;

DWORD dwinfoLen;

char sInfo[LOG_INFO_LEN]; }NET_DVR_LOG_V30,*LPNET_DVR_LOG_V30;

Members

strLogTime

日志时间

dwMajorType

报警主类型,定义请参见设备日志主类型

dwMinorType

报警次类型,根据不同的主类型的次类型定义请参见设备日志次类型

sPanelUser

操作面板的用户名

sNetUser

网络操作的用户名

struRemoteHostAddr

远程主机地址

dwParaType

对于 DS-90xx 设备,当日志次类型为 MINOR_START_VT 或者 MINOR_STOP_VT 时,表示语音对讲端口号。

当日志的主类型为 MAJOR_OPERATION=03 (操作),且次类型为 MINOR_LOCAL_CFG_PARM=0x52 (本地配置参数) 或 MINOR REMOTE GET PARM=0x76 (远程获得参数) 或

MINOR_REMOTE_CFG_PARM=0x77(远程配置参数)时, 该参数类型有效,其含义如下:

宏定义	宏定义值	含义
PARA_VIDEOOUT	0x1	视频输出结构配置
PARA_IMAGE	0x2	图像参数结构配置
PARA_ENCODE	0x4	压缩参数结构配置
PARA_NETWORK	0x8	网络参数结构配置
PARA_ALARM	0x10	报警参数结构配置
PARA_EXCEPTION	0x20	异常参数结构配置
PARA_DECODER	0x40	解码器参数结构配置
PARA_RS232	0x80	RS232 参数结构配置
PARA_PREVIEW	0x100	本地预览参数结构配置
PARA_SECURITY	0x200	用户权限参数结构配置
PARA_DATETIME	0x400	本地系统配置
PARA_FRAMETYPE	0x800	帧信息参数结构配置

dwChannel

通道号

dwDiskNumber

硬盘号

dwAlarmInPort

报警输入端口

dwAlarmOutPort

报警输出端口

dwInfoLen

日志附加信息长度

sInfo

日志附加信息

7.66 NET_DVR_NETCFG_V30:网络配置

struct{

DWORD dwSize;

NET_DVR_ETHERNET_V30 struEtherNet[MAX_ETHERNET];

NET_DVR_IPADDR struRes1[2];

NET DVR IPADDR struAlarmHostIpAddr;

WORD wRes2[2];

WORD wAlarmHostIpPort;

BYTE byUseDhcp;
BYTE byRes3;

NET_DVR_IPADDR
struDnsServer1lpAddr;
NET_DVR_IPADDR
struDnsServer2lpAddr;

BYTE byIpResolver[MAX_DOMAIN_NAME];

WORD wlpResolverPort; WORD wHttpPortNo;

NET_DVR_IPADDR struMulticastIpAddr;
NET_DVR_IPADDR struGatewayIpAddr;

NET_DVR_PPPOECFG struPPPoE; BYTE byRes[64];

}NET_DVR_NETCFG_V30,*LPNET_DVR_NETCFG_V30;

Members

dwSize

结构体大小

struEtherNet

以太网口

struRes1

保留,置为0

struAlarmHostIpAddr

报警主机 IP 地址

wRes2

保留,置为0

wAlarmHostIpPort

报警主机端口号

byUseDhcp

是否启用 DHCP: 0xff-无效; 0-不启用; 1-启用

byRes3

保留,置为0

struDnsServer1IpAddr

域名服务器 1 的 IP 地址

struDnsServer2IpAddr

域名服务器 2 的 IP 地址

byIpResolver

IP 解析服务器域名或 IP 地址(8000 设备不支持域名)

wlpResolverPort

IP 解析服务器端口号

wHttpPortNo

HTTP 端口号

struMulticastIpAddr

多播组地址

struGatewayIpAddr

网关地址

struPPPoE

PPPoE 参数

byRes

保留,置为0

7.67 NET_DVR_NOISEREMOVE:数字降噪功能参数

struct{

BYTE byDigitalNoiseRemoveEnable;

BYTE byDigitalNoiseRemoveLevel;

BYTE bySpectralLevel;

BYTE byTemporalLevel;

BYTE byRes[4];

}NET_DVR_NOISEREMOVE, *LPNET_DVR_NOISEREMOVE;

Members

byDigitalNoiseRemoveEnable

数字去噪是否启用,0-不启用,1-普通模式数字降噪,2-专家模式数字降噪

byDigitalNoiseRemoveLevel

普通模式数字降噪级别: 0x0-0xF

bySpectralLevel

专家模式下空域强度: 0-100

byTemporalLevel

专家模式下时域强度: 0-100

byRes

保留,置为0

7.68 NET_DVR_NTPPARA:网络应用参数(NTP)

 $struct \{$

BYTE sNTPServer[64];

WORD winterval;
BYTE byEnableNTP;

signed char cTimeDifferenceH; signed char cTimeDifferenceM;

BYTE res1;
WORD wNtpPort;
BYTE res2[8];

}NET_DVR_NTPPARA,*LPNET_DVR_NTPPARA;

Members

sNTPServer

NTP 服务器域名或者 IP 地址

wInterval

校时间隔时间(以小时为单位)

byEnableNTP

NTP 校时是否启用: 0一否, 1一是

cTimeDifferenceH

与国际标准时间的时差(小时),-12...+13

cTimeDifferenceM

与国际标准时间的时差(分钟), 0,30,45

res1

保留,置为0

wNtpPort

NTP 服务器端口,设备默认为 123

res2

保留,置为0

7.69 NET_DVR_ONE_AID_RULE_V41:单条交通事件规则

struct{

BYTE byEnable; **BYTE** byLaneNo; **BYTE** byRes1[2];

BYTE byRuleName[NAME_LEN];

DWORD dwEventType; NET VCA SIZE FILTER struSizeFilter; **NET VCA POLYGON** struPolygon; **NET DVR AID PARAM** struAIDParam;

NET DVR SCHEDTIME struAlarmTime[MAX_DAYS][MAX_TIMESEGMENT_V30];

= 0x1,

= 0x2,

= 0x4,

NET DVR HANDLEEXCEPTION V30 struHandleType;

BYTE byRelRecordChan[MAX_CHANNUM_V30];

BYTE byRes2[60];

}NET_DVR_ONE_AID_RULE_V41,*LPNET_DVR_ONE_AID_RULE_V41;

Members

byEnable

是否启用事件规则: 0-否; 非 0-是

byLaneNo

关联车道号

byRes1

保留,置为0

byRuleName

规则名称

dwEventType

交通事件类型,具体定义如下:

enum _TRAFFIC_AID_TYPE_{

CONGESTION PARKING INVERSE PEDESTRIAN = 0x8,**DEBRIS** = 0x10,

SMOG = 0x20,**OVERLINE** = 0x40,

VEHICLE_CONTROL_LIST = 0x80,

SPEED = 0x100,= 0x200,LANECHANGE **TURNAROUND** = 0x400,VEHICLE_OCCUPANCY_NONVEHICLE = 0x800, **GASSER** = 0x1000}TRAFFIC_AID_TYPE

CONGESTION

拥堵

PARKING

停车

INVERSE

逆行

PEDESTRIAN

行人

DEBRIS

遗留物, 抛洒物碎片

SMOG

烟雾

OVERLINE

压线

VEHICLE_CONTROL_LIST

名单数据

SPEED

超速

LANECHANGE

变道

TURNAROUND

掉头

VEHICLE_OCCUPANCY_NONVEHICLE

机动车占用非机动车位

GASSER

加塞

struSizeFilter

尺寸过滤器

struPolygon

规则区域

struAIDParam

交通事件参数

struAlarmTime

布防时间

struHandleType

处理方式

by RelRecord Chan

报警触发的录象通道: 1表示触发该通道; 0表示不触发

byRes2

保留,置为0

7.70 NET_DVR_ONE_TPS_RULE_V41:单条交通事件规则

```
struct{
  BYTE
                                  byEnable;
  BYTE
                                  byLaneID;
  BYTE
                                  byRes1[2];
 DWORD
                                  dwCalcType;
 NET VCA SIZE FILTER
                                  struSizeFilter;
  NET_VCA_POLYGON
                                  struVitrualLoop;
  NET DVR SCHEDTIME
                                  struAlarmTime[MAX_DAYS][MAX_TIMESEGMENT_V30];
  NET DVR HANDLEEXCEPTION V30
                                  struHandleType;
                                  byRes2[60];
}NET_DVR_ONE_TPS_RULE_V41,*LPNET_DVR_ONE_TPS_RULE_V41;
Members
byEnable
      是否启用车道交通规则
byLaneID
       车道 ID
byRes1
      保留,置为0
dwCalcType
```

统计参数类型

```
enum_ITS_TPS_TYPE_{
  LANE_VOLUME
                             = 0x1,
  LANE_VELOCITY
                             = 0x2,
  TIME_HEADWAY
                             = 0x4,
  SPACE_HEADWAY
                            = 0x8,
 TIME_OCCUPANCY_RATIO
                            = 0x10,
  SPACE_OCCUPANCY_RATIO
                            = 0x20,
  QUEUE
                            = 0x40,
  VEHICLE_TYPE
                            = 0x80,
  TRAFFIC_STATE
                           = 0x100
}ITS_TPS_TYPE
```

LANE_VOLUME

车道流量

LANE_VELOCITY

车道速度

TIME_HEADWAY

车头时距

SPACE_HEADWAY

车头间距

byRes2

struct{

保留,置为0

```
TIME_OCCUPANCY_RATIO
        车道占有率(时间上)
     SPACE_OCCUPANCY_RATIO
        车道占有率,百分比计算(空间上)
     QUEUE
        排队长度
     VEHICLE TYPE
        车辆类型
     TRAFFIC_STATE
        交通状态
struSizeFilter
     尺寸过滤器
struVitrualLoop
     虚拟线圈,类似于地感线圈,在实际场景中大于车子一半小于车子大小最适合
struAlarmTime
     布防时间
struHandleType
```

处理方式。一般为处理是否上传中心,其他功能不需要

7.71 NET_DVR_PARK_EXTERNAL_SUBINFO:外接灯模式车位信息子结构

```
BYTE
         byEnable;
 BYTE
         byFlicker;
 BYTE
         byIOState;
 BYTE
         byRes[5];
}NET_DVR_PARK_EXTERNAL_SUBINFO, *LPNET_DVR_PARK_EXTERNAL_SUBINFO;
Members
byEnable
      使能: 0- 不开启, 1- 开启
byFlicker
      0- 不闪烁, 1- 闪烁
byIOState
      外置灯起效的 IO 状态: 0- 低电平, 1- 高电平
byRes
      保留
```

7.72 NET_DVR_PARK_INLAY_SUBINFO: 内置灯模式车位信息

```
struct{

BYTE byEnable;
```

```
BYTE byFlicker;
BYTE byLampColor;
BYTE byRes[21];
}NET_DVR_PARK_INLAY_SUBINFO, *LPNET_DVR_PARK_INLAY_SUBINFO;
Members
byEnable
使能: 0- 不开启,1- 开启
byFlicker
0- 不闪烁,1- 闪烁
byLampColor
外置灯起效的颜色状态: 0- 灭,1- 红,2- 绿,3- 黄,4- 蓝,5- 品红,6- 青,7- 白色 byRes
```

7.73 NET_DVR_PARKINFO:外接灯模式车位信息

```
struct{
```

保留

 NET DVR PARK EXTERNAL SUBINFO
 struNormalParkIOState;

 NET DVR PARK EXTERNAL SUBINFO
 struNormalNoParkIOState;

 NET DVR PARK EXTERNAL SUBINFO
 struSpecialParkIOState;

 NET DVR PARK EXTERNAL SUBINFO
 struSpecialNoParkIOState;

BYTE byRes[32];

}NET_DVR_PARKINFO, *LPNET_DVR_PARKINFO;

Members

struNormalParkIOState

有车 IO 电平状态

struNormalNoParkIOState

无车 IO 电平状态

struSpecialParkIOState

特殊车位有车 IO 电平状态

struSpecialNoParkIOState

特殊车位无车 IO 电平状态

byRes

保留

7.74 NET_DVR_PARKSPACE_ATTRIBUTE:车位属性配置

```
struct{
```

DWORD dwSize;

BYTE byRes[64];

NET DVR PARKSPACE ATTRIBUTE, *LPNET DVR PARKSPACE ATTRIBUTE;

Members

dwSize

结构体大小

struParkSpaceInfo

车位属性,一个通道最大 4 个车位 (从左到右车位对应数组 0~3)

byRes

保留,置为0

7.75 NET_DVR_PARKSPACE_INFO:车位属性信息

struct{

BYTE byParkSpaceAttribute;

BYTE byRes[23];

}NET_DVR_PARKSPACE_INFO, *LPNET_DVR_PARKSPACE_INFO;

Members

byParkSpaceAttribute

0- 普通车位(默认), 1- 特殊车位

byRes

保留,置为0

7.76 NET_DVR_PICCFG_V30:通道图像

struct{

DWORD dwSize;

BYTE sChanName[NAME_LEN];

DWORD dwVideoFormat;
char reservedData[64];
DWORD dwShowChanName;
WORD wShowNameTopLeftX;
WORD wShowNameTopLeftY;

NET_DVR_VILOST_V30 struVILost;
NET_DVR_VILOST_V30 struRes;
NET_DVR_MOTION_V30 struMotion;
NET_DVR_HIDEALARM_V30 struHideAlarm;
DWORD dwEnableHide;

NET_DVR_SHELTER struShelter[MAX_SHELTERNUM];

DWORD dwShowOsd; WORD wOSDTopLeftX; WORD wOSDTopLeftY; **BYTE** byOSDType; **BYTE** byDispWeek; **BYTE** byOSDAttrib; **BYTE** byHourOsdType; **BYTE** byFontSize;

BYTE

byRes[63];

}NET_DVR_PICCFG_V30,*LPNET_DVR_PICCFG_V30;

Members

dwSize

结构体大小

sChanName

通道名称

dwVideoFormat

视频制式: 1-NTSC, 2-PAL

reservedData

保留,置为0

dwShowChanName

预览的图象上是否显示通道名称: 0-不显示,1-显示(区域大小 704*576)

wShowNameTopLeftX

通道名称显示位置的 x 坐标

wShowNameTopLeftY

通道名称显示位置的 y 坐标

struVILost

视频信号丢失报警参数、智能交通设备不支持、保留

struRes

保留,置为0

struMotion

移动侦测报警参数,智能交通设备不支持,保留

struHideAlarm

遮挡报警参数,智能交通设备不支持,保留

dwEnableHide

是否启动遮挡: 0-否, 1-是, 智能交通设备不支持, 保留

struShelter

遮挡区域参数,智能交通设备不支持,保留

dwShowOsd

预览的图象上是否显示 OSD: 0-不显示, 1-显示(区域大小 704*576)

wOSDTopLeftX

OSD 的 x 坐标

wOSDTopLeftY

OSD 的 y 坐标

byOSDType

OSD 类型(年月日格式):

0-xxxx-xx 年月日

1-XX-XX-XXXX 月日年

2-XXXX 年 XX 月 XX 日

3-xx 月 xx 日 xxxx 年

4-XX-XX-XXXX 日月年

5-xx 日 xx 月 xxxx 年

byDispWeek

是否显示星期: 0-不显示, 1-显示

byOSDAttrib

OSD 属性 (透明/闪烁):

1一透明,闪烁

2一透明,不闪烁

3一闪烁,不透明

4-不透明,不闪烁

byHourOsdType

小时制: 0表示 24 小时制, 1表示 12 小时制或 am/pm

byFontSize

字体大小: 0- 小, 1- 中, 2- 大, 智能交通设备不支持, 保留

byRes

保留,置为0

7.77 NET_DVR_PLATE_INFO:车牌识别结果

struct{

BYTE byPlateType;
BYTE byColor;
BYTE byBright;
BYTE byLicenseLen;
BYTE byEntireBelieve;
BYTE byRes[35];
NET VCA RECT struPlateRect;

char sLicense[MAX_LICENSE_LEN];
BYTE byBelieve[MAX_LICENSE_LEN];

}NET_DVR_PLATE_INFO, *LPNET_DVR_PLATE_INFO;

Members

byPlateType

车牌类型,具体定义如下:

enum _VCA_PLATE_TYPE_{

VCA_STANDARD92_PLATE = 0,

VCA_STANDARD02_PLATE,

VCA_WJPOLICE_PLATE,

VCA_JINGCHE_PLATE,

STANDARD92_BACK_PLATE,

VCA_SHIGUAN_PLATE,

VCA_NONGYONG_PLATE,

VCA_MOTO_PLATE

}VCA_PLATE_TYPE

VCA_STANDARD92_PLATE

标准民用车与军车车牌

VCA_STANDARD02_PLATE

02 式民用车牌

VCA_WJPOLICE_PLATE

武警车车牌

VCA_JINGCHE_PLATE

警车车牌

STANDARD92_BACK_PLATE

民用车双行尾牌

VCA_SHIGUAN_PLATE

使馆车牌

VCA_NONGYONG_PLATE

农用车车牌

VCA_MOTO_PLATE

摩托车车牌

byColor

车牌颜色,具体定义如下:

enum_VCA_PLATE_COLOR_{

VCA_BLUE_PLATE = 0,

VCA_YELLOW_PLATE,

VCA_WHITE_PLATE,

VCA_BLACK_PLATE

}VCA_PLATE_COLOR

VCA_BLUE_PLATE

蓝色车牌

VCA_YELLOW_PLATE

黄色车牌

VCA_WHITE_PLATE

白色车牌

VCA_BLACK_PLATE

黑色车牌

byBright

车牌亮度

byLicenseLen

车牌字符个数

byEntireBelieve

整个车牌的置信度,0-100

byRes

保留

struPlateRect

车牌位置

sLicense

车牌号码

byBelieve

各个识别字符的置信度,如检测到车牌"浙 A12345",置信度为 20,30,40,50,60,70,则表示"浙"字正确的可能性是 20%, "A"字的正确的可能性是 30%

7.78 NET_DVR_PLAYCOND:回放或者下载信息

```
struct{
 DWORD
                   dwChannel;
 NET DVR TIME
                   struStartTime;
 NET DVR TIME
                   struStopTime;
 BYTE
                   byDrawFrame;
 BYTE
                   byRes[63];
}NET_DVR_PLAYCOND, *LPNET_DVR_PLAYCOND;
Members
dwChannel
      通道号
struStartTime
      开始时间
struStopTime
      结束时间
byDrawFrame
      是否抽帧: 0- 不抽帧, 1- 抽帧
byRes
      保留
```

7.79 NET_DVR_POOLPARAM:云存储数据池参数

```
struct{
    DWORD dwPoolID;
    BYTE byRes[4];
}NET_DVR_POOLPARAM,*LPNET_DVR_POOLPARAM;
Members
dwPoolID
    云存储分配节点号
byRes
    保留,置为 0
```

7.80 NET_DVR_PPPOECFG:PPPoE 配置

dwPPPOE

是否启用 PPPoE: 0-不启用, 1-启用

sPPPoEUser

PPPoE 用户名

sPPPoEPassword

PPPoE 密码

struPPPoEIP

PPPoE IP 地址

7.81 NET_DVR_PREVIEWINFO:预览参数

struct{

LONG | IChannel;

DWORD dwStreamType;

DWORD dwLinkMode;

HWND hPlayWnd;

BOOL bBlocked;

BOOL bPassbackRecord;

BYTE byPreviewMode;

BYTE byStreamID[STREAM_ID_LEN];

BYTE byProtoType;

BYTE byRes[222];

}NET_DVR_PREVIEWINFO, *LPNET_DVR_PREVIEWINFO;

Members

IChannel

通道号,数字通道号一般从 33 开始,实际取值可通过 <u>NET_DVR_GetDVRConfig</u>(配置命令 NET_DVR_GET_IPPARACFG_V40)获取(dwStartDChan)。

dwStreamType

码流类型: 0-主码流, 1-子码流, 2-码流 3, 3-码流 4, 以此类推

dwLinkMode

连接方式: 0-TCP 方式,1-UDP 方式,2-多播方式,3-RTP 方式,4-RTP/RTSP,5-RSTP/HTTP hPlayWnd

播放窗口的句柄,为 NULL 表示不解码显示

bBlocked

0- 非阻塞取流, 1- 阻塞取流。如果阻塞取流, SDK 内部 connect 失败将会有 5s 的超时才能够返回, 不适合于轮询取流操作。

bPassbackRecord

0-不启用录像回传,1-启用录像回传。录像回传即断网录像功能,暂不支持,置为0

byPreviewMode

预览模式: 0- 正常预览, 1- 延迟预览

byStreamID

流 ID, IChannel 为 0xffffffff 时启用此参数

byProtoType

应用层取流协议: 0- 私有协议, 1-RTSP 协议

byRes

保留

Remarks

- ●该结构体中可以设置当前预览操作是否阻塞(通过 bBlocked 参数设置)。若设为不阻塞,表示发起与设备的连接就认为连接成功,如果发生码流接收失败、播放失败等情况以预览异常的方式通知上层。在循环播放的时候可以减短停顿的时间,与 NET_DVR_RealPlay 处理一致。若设为阻塞,表示直到播放操作完成才返回成功与否。
- dwStreamType、bPassbackRecord、byPreviewMode、byStreamID 这些参数的取值需要设备支持。
- NET_DVR_RealPlay_V40 支持多播方式预览(dwLinkMode 设为 2),不需要传多播组地址,底层自动从设备获取已配置的多播组地址(NET_DVR_NETCFG_V30->struMulticastlpAddr)并以该多播组地址实现多播。

7.82 NET_DVR_PROTO_TYPE:协议参数

```
struct{
    DWORD dwType;
    BYTE byDescribe[DESC_LEN];
}NET_DVR_PROTO_TYPE,*LPNET_DVR_PROTO_TYPE;
Members
dwType
    协议值
byDescribe
    协议描述
```

Remarks

dwType 取值对应的协议类型可以见 byDescribe 协议描述,也可以参考下列枚举类型:

```
enum_NET_DVR_IPC_ENUM_{
      ENUM_BUSINESS_INVALID = -1,
      ENUM_BUSINESS_PRIVATE = 0,
      ENUM BUSINESS PANASONIC,
      ENUM BUSINESS SONY,
      ENUM_BUSINESS_AXIS,
      ENUM_BUSINESS_SANYO,
      ENUM_BUSINESS_BOSCH,
      ENUM BUSINESS ZAVIO,
      ENUM_BUSINESS_GRANDEYE,
      ENUM_BUSINESS_PROVIDEO,
      ENUM_BUSINESS_ARECONT,
                                     //9
      ENUM_BUSINESS_ACTI,
      ENUM BUSINESS PELCO,
      ENUM_BUSINESS_VIVOTEK,
      ENUM_BUSINESS_INFINOVA,
      ENUM_BUSINESS_DAHUA,
                                      //14
      ENUM_BUSINESS_PRIVT_STD_H264 = 0x20,
      ENUM_BUSINESS_PRIVT_STD_MPEG4,
      ENUM BUSINESS SUNELL,
                                     //景阳
```

```
ENUM_BUSINESS_ATEME,
      ENUM BUSINESS LAUNCH,
                                  //朗驰
                                 //雅安
      ENUM_BUSINESS_YAAN,
      ENUM_BUSINESS_BLUESKY,
                                 //蓝色星际
      ENUM_BUSINESS_BLUESKYLIMIT, //蓝色星际
      ENUM_BUSINESS_TDWY,
                                 //天地伟业
      ENUM BUSINESS HBGK,
                                  //汉邦高科
                                 //金三立
      ENUM_BUSINESS_SANTACHI,
      ENUM BUSINESS HIGHEASY,
                                 //恒忆
      ENUM_BUSINESS_SAMSUNG,
      ENUM_BUSINESS_URL_RTSP = 0x40,//url 类型取流
      ENUM_BUSINESS_ONVIF,
      ENUM_MAX_BUSINESS_TYPE,
                                 //最大厂商类型
}NET_DVR_IPC_ENUM
```

7.83 NET_DVR_PTZCFG:云台协议

```
struct{
 DWORD
                         dwSize;
                         struPtz[PTZ_PROTOCOL_NUM];
 NET DVR PTZ PROTOCOL
 DWORD
                         dwPtzNum;
 BYTE
                         byRes[8];
}NET_DVR_PTZCFG, *LPNET_DVR_PTZCFG;
Members
dwSize
      结构体大小
struPtz
      协议信息,最多 200 种
dwPtzNum
      有效的 PTZ 协议数目,从 0 开始(即总数为该值加 1)
byRes
```

7.84 NET_DVR_PTZPOS:球机位置信息

```
struct{
    WORD wAction;
    WORD wPanPos;
    WORD wTiltPos;
    WORD wZoomPos;
}NET_DVR_PTZPOS, *LPNET_DVR_PTZPOS;
Members
```

保留,置为0

wAction

操作类型,仅在设置时有效。1-定位 PTZ 参数,2-定位 P 参数,3-定位 T 参数,4-定位 Z 参数,5-定位 PT 参数

wPanPos

P 参数 (水平参数)

wTiltPos

T参数 (垂直参数)

wZoomPos

Z参数(变倍参数)

Remarks

本结构体中的 wAction 参数是设置时的操作类型,因此获取时该参数无效。实际显示的 PTZ 值是获取到的十六进制值的十分之一,如获取的水平参数 P 的值是 0x1750,实际显示的 P 值为 175 度;获取到的垂直参数 T 的值是 0x0789,实际显示的 T 值为 78.9 度;获取到的变倍参数 Z 的值是 0x1100,实际显示的 Z 值为 110 度。

7.85 NET_DVR_PTZ_MANUALTRACE:手动定位参数

struct{

DWORD dwSize;
DWORD dwChannel;

NET VCA POINT struPoint;

BYTE byTrackType;

byRes[63];

}NET_DVR_PTZ_MANUALTRACE,*LPNET_DVR_PTZ_MANUALTRACE;

Members

dwSize

结构体大小

dwChannel

通道号

struPoint

定位坐标

byTrackType

类型: 0- 普通, 1- 高速道路, 2- 城市道路

byRes

保留

7.86 NET_DVR_PTZ_PROTOCOL:云台协议信息

struct{

DWORD dwType;

BYTE byDescribe[DESC_LEN];

}NET_DVR_PTZ_PROTOCOL, *LPNET_DVR_PTZ_PROTOCOL;

Members

dwType

协议类型值

byDescribe

协议描述符

7.87 NET_DVR_RECORDDAY:全天录像参数

struct{

WORD wAllDayRecord; BYTE byRecordType; char reservedData;

}NET_DVR_RECORDDAY, *LPNET_DVR_RECORDDAY;

Members

wAllDayRecord

是否全天录像: 0-否, 1-是

byRecordType

录象类型: 0-定时录像

reservedData

保留,置为0

7.88 NET_DVR_RECORDSCHED:时间段录像参数

struct{

NET_DVR_SCHEDTIME struRecordTime;
BYTE byRecordType;
char reservedData[3];

}NET_DVR_RECORDSCHED, *LPNET_DVR_RECORDSCHED;

Members

struRecordTime

录像时间

byRecordType

录象类型: 0-定时录像

reservedData

保留,置为0

7.89 NET_DVR_RECORD_V30:通道录像参数

struct{

DWORD dwSize;
DWORD dwRecord;

NET_DVR_RECORDDAY
struRecAllDay[MAX_DAYS];

NET_DVR_RECORDSCHED struRecordSched[MAX_DAYS][MAX_TIMESEGMENT_V30];

DWORD dwRecordTime;
DWORD dwPreRecordTime;
DWORD dwRecorderDuration;
BYTE byRedundancyRec;

BYTE byAudioRec;
BYTE byReserve[10];

}NET_DVR_RECORD_V30, *LPNET_DVR_RECORD_V30;

Members

dwSize

结构体大小

dwRecord

是否录像: 0-否, 1-是

struRecAllDay

全天录像布防参数

struRecordSched

时间段录像布防参数

dwRecordTime

录象延时时间,0-5 秒, 1-10 秒, 2-30 秒, 3-1 分钟, 4-2 分钟, 5-5 分钟, 6-10 分钟

dwPreRecordTime

预录时间: 0-不预录, 1-5 秒, 2-10 秒, 3-15 秒, 4-20 秒, 5-25 秒, 6-30 秒, 7-0xfffffff(尽可能预录)

dwRecorderDuration

录像保存的最长时间,单位:天,Oxffffffff 表示该值无效

byRedundancyRec

是否冗余录像(重要数据双备份): 0-不录像, 1-录像

byAudioRec

录像时复合流编码时是否记录音频数据: 0-不记录, 1-记录

byReserve

保留,置为0

7.90 NET DVR SCENE INFO:场景信息

struct{

DWORD dwSceneID;

BYTE bySceneName[NAME_LEN];

BYTE byDirection;
BYTE byRes1[3];

NET_DVR_PTZPOS struPtzPos;
BYTE byRes2[64];

}NET_DVR_SCENE_INFO, *LPNET_DVR_SCENE_INFO;

Members

dwSceneID

场景 ID, 0- 表示该场景无效

bySceneName

场景名称

byDirection

监测方向: 1-上行, 2-下行, 3-双向, 4-由东向西, 5-由南向北, 6-由西向东, 7-由北向南, 8-其它

byRes1

保留

struPtzPos

PTZ 坐标

byRes2

保留

7.91 NET_DVR_SCHEDTIME:起止时间段参数

struct{

BYTE byStartHour;

BYTE byStartMin;

BYTE byStopHour;

BYTE byStopMin;

}NET_DVR_SCHEDTIME, *LPNET_DVR_SCHEDTIME;

Members

byStartHour

开始时间:时

byStartMin

开始时间:分

byStopHour

结束时间:时

byStopMin

结束时间:分

7.92 NET_DVR_SDKSTATE:SDK 状态信息

struct{

DWORD dwTotalLoginNum;
DWORD dwTotalRealPlayNui

DWORD dwTotalRealPlayNum; DWORD dwTotalPlayBackNum;

DWORD dwTotalAlarmChanNum;

DWORD dwTotalFormatNum;

DWORD dwTotalFileSearchNum;

DWORD dwTotalLogSearchNum;

DWORD dwTotalSerialNum;

DWORD dwTotalUpgradeNum;

DWORD dwTotalVoiceComNum;

DWORD dwTotalBroadCastNum;

DWORD dwRes[10];

}NET_DVR_SDKSTATE,*LPNET_DVR_SDKSTATE;

Members

dwTotalLoginNum

当前注册的用户数

dwTotalRealPlayNum

当前实时预览的路数

dwTotalPlayBackNum

当前回放或下载的路数

dwTotalAlarmChanNum

当前建立报警通道的路数

dwTotalFormatNum

当前硬盘格式化的路数

dwTotalFileSearchNum

当前文件搜索的路数

dwTotalLogSearchNum

当前日志搜索的路数

dwTotalSerialNum

当前建立透明通道的路数

dwTotalUpgradeNum

当前升级的路数

dwTotalVoiceComNum

当前语音转发的路数

dwTotalBroadCastNum

当前语音广播的路数

dwRes

保留,置为0

7.93 NET_DVR_SDKABL:SDK 功能信息

dwMaxLoginNum;

struct{

DWORD

DWORD dwMaxRealPlayNum; **DWORD** dwMaxPlayBackNum; **DWORD** dwMaxAlarmChanNum; **DWORD** dwMaxFormatNum; **DWORD** dwMaxFileSearchNum; **DWORD** dwMaxLogSearchNum; **DWORD** dwMaxSerialNum; **DWORD** dwMaxUpgradeNum; **DWORD** dwMaxVoiceComNum;

DWORD dwRes[10];

}NET_DVR_SDKABL,*LPNET_DVR_SDKABL;

dwMaxBroadCastNum;

Members

DWORD

dwMaxLoginNum

最大注册用户数

dwMaxRealPlayNum

最大实时预览的路数

dwMaxPlayBackNum

最大回放或下载的路数

dwMaxAlarmChanNum

最大建立报警通道的路数

dwMaxFormatNum

最大硬盘格式化的路数

dwMaxFileSearchNum

最大文件搜索的路数

dwMaxLogSearchNum

最大日志搜索的路数

dwMaxSerialNum

最大建立透明通道的路数

dwMaxUpgradeNum

最大升级的路数

dwMaxVoiceComNum

最大语音转发的路数

dwMaxBroadCastNum

最大语音广播的路数

dwRes

保留,置为0

7.94 NET DVR SETUPALARM PARAM:报警布防参数

struct{

DWORD dwSize;

BYTE byLevel;

BYTE byAlarmInfoType;
BYTE byRetAlarmTypeV40;

BYTE byRetDevInfoVersion;

BYTE byRetVQDAlarmType;

BYTE byFaceAlarmDetection;

BYTE bySupport;

BYTE byRes;

WORD wTaskNo;

BYTE byRes1[5];
BYTE byCustomCtrl;

}NET_DVR_SETUPALARM_PARAM, *LPNET_DVR_SETUPALARM_PARAM;

Members

dwSize

结构体大小

byLevel

布防优先级: 0- 一等级(高), 1- 二等级(中), 2- 三等级(低, 保留)

byAlarmInfoType

智能交通报警信息上传类型: 0- 老报警信息(NET_DVR_PLATE_RESULT), 1- 新报警信息(NET_ITS_PLATE_RESULT)

byRetAlarmTypeV40

ITS 终端服务器不支持,保留,置为 0

byRetDevInfoVersion

ITS 终端服务器不支持,保留,置为 0

byRetVQDAlarmType

ITS 终端服务器不支持,保留,置为 0

byFaceAlarmDetection

ITS 终端服务器不支持,保留,置为0

bySupport

ITS 终端服务器不支持,保留,置为 0

bvRes

保留,置为0

wTaskNo

任务处理号

byRes1

保留,置为0

byCustomCtrl

ITS 终端服务器不支持,保留,置为 0

Remarks

- byLevel 和 byAlarmInfoType 针对智能交通设备(抓拍机): 一级布防最大连接数为 1 个,二级最大连接数为 3 个,设备支持一级和二级布防同时进行,一级布防优先上传信息; byAlarmInfoType 是否支持新报警信息可从注册返回的能力获知,详见 <u>NET DVR DEVICEINFO V30</u>结构中 bySupport1(表示是否支持车牌新报警信息),如果注册返回能力不支持,设备仅支持老报警信息上传。
- wTaskNo 针对车辆二次检测设备,用于区分不同布防链接,现在上传机制为:
 - 1) 如果 wTaskNo 为 0, 所有的处理结果都需要从这个链接上传。
 - 2) 如果两个布防连接中 wTaskNo 的值相同(0除外), 返回布防链接错误。
 - 3)布防链接后,Client 端下发任务单号 wTaskNo,和车辆二次识别任务和上传的结果中的 wTaskNo 都对应的。例如:布防链接中 wTaskNo==1,任务 A 中 wTaskNo==1,结果信息回调 wTaskNo==1(该信息回调只在布防中 wTaskNo == 1 的链接中回调)。

7.95 NET_DVR_SHOWSTRINGINFO:字符叠加参数子结构

struct{

WORD wShowString; WORD wStringSize;

WORD wShowStringTopLeftX; WORD wShowStringTopLeftY;

char sString[44];

}NET_DVR_SHOWSTRINGINFO,*LPNET_DVR_SHOWSTRINGINFO;

Members

wShowString

预览的图象上是否显示字符: 0一不显示, 1一显示(显示区域范围为 704*576, 单个字符的大小为 32*32)

wStringSize

该行字符的长度,不能大于44个字符

wShowStringTopLeftX

字符显示位置的 x 坐标

wShowStringTopLeftY

字符显示位置的y坐标

sString

要显示的字符内容

7.96 NET_DVR_SHOWSTRING_V30:字符叠加参数结构体

struct{

DWORD dwSize;

<u>NET_DVR_SHOWSTRINGINFO</u> struStringInfo[MAX_STRINGNUM_V30];

}NET_DVR_SHOWSTRING_V30,*LPNET_DVR_SHOWSTRING_V30;

Members

dwSize

结构体大小

struStringInfo

要显示的字符内容,支持 4 行,取数组 struStringInfo [0]~ struStringInfo [3]

7.97 NET_DVR_SINGLE_HD:设备硬盘信息配置结构体

struct{

DWORD dwHDNo; **DWORD** dwCapacity; **DWORD** dwFreeSpace; **DWORD** dwHdStatus; **BYTE** byHDAttr; **BYTE** byHDType; **BYTE** byDiskDriver; **BYTE** byRes1[1]; **DWORD** dwHdGroup; **BYTE** byRecycling; **BYTE** byRes2[3]; **DWORD** dwStorageType; **DWORD** dwPictureCapacity; **DWORD** dwFreePictureSpace; BYTE byRes3[104];

}NET_DVR_SINGLE_HD, *LPNET_DVR_SINGLE_HD;

Members

dwHDNo

硬盘号,取值范围[0,MAX DISKNUM V30-1], 其中#define MAX DISKNUM V30 33

dwCapacity

硬盘容量, 该参数只能获取, 不支持设置

dwFreeSpace

硬盘剩余空间, 该参数只能获取, 不支持设置

dwHdStatus

硬盘状态,该参数只能获取,不支持设置:0一正常,1一未格式化,2一错误,3一S.M.A.R.T 状态,4一不匹配,5一休眠,6-未连接状态(网络硬盘),7-虚拟磁盘正常且支持扩容,8-虚拟磁盘次正常(未使用),9-虚拟磁盘降级(未使用),10-硬盘正在修复(9000v2.0),11-硬盘正在格式化(9000v2.0)

byHDAttr

硬盘属性: 0一默认, 1一冗余(备份重要数据), 2一只读

byHDType

硬盘类型: 0-本地硬盘, 1-ESATA 硬盘, 2-NFS 硬盘, 3-iSCSI 硬盘, 4-RAID 虚拟磁盘

byDiskDriver

硬盘盘值,代表其 ASCII 字符

byRes1

保留,置为0

dwHdGroup

该硬盘属于哪个盘组,取值范围[1,MAX_HD_GROUP],其中#define MAX_HD_GROUP 16

byRecycling

是否循环利用: 0- 不循环利用, 1- 循环利用

byRes2

保留,置为0

dw Storage Type

按位表示: 0-不支持, 非 0-支持,

dwStorageType & 0x1 表示是否是普通录像专用存储盘

dwStorageType & 0x2 表示是否是抽帧录像专用存储盘

dwStorageType & 0x4 表示是否是图片录像专用存储盘

dwPictureCapacity

硬盘图片容量(不可设置),单位: MB

dwFreePictureSpace

剩余图片空间(不可设置),单位: MB

byRes3

保留,置为0

Remarks

- 本结构体中的 dwCapacity、dwFreeSpace 和 dwHdStatus 参数是关于设备本地硬盘的属性,因此只能获取该信息,不能设置。
- dwCapacity 和 dwFreeSpace 表示录像和图片的总容量; dwPictureCapacity 是指预留给图片的总容量,其值非 0 有效,为 0 表示无效。IPC 等设备该值有效,DVR、NVR 等设备不区分录像和图片容量,统一分配。

7.98 NET_DVR_STREAM_INFO:流 ID 信息

struct{

DWORD dwSize;

BYTE byID[STREAM_ID_LEN];

DWORD dwChannel; BYTE byRes[32];

}NET_DVR_STREAM_INFO,*LPNET_DVR_STREAM_INFO;

Members

dwSize

结构体大小

byID

流 ID, 全部为 0 时, 无效

dwChannel

关联的设备通道。等于 Oxffffffff 时,如果是设置流的来源信息(NET_DVR_SET_STREAM_SRC_INFO),表示不关联,如果是作为其他如 NET_DVR_SET_STREAM_RECORD_INFO、

NET_DVR_SET_STREAM_RECORD_STATUS、NET_DVR_SET_MONITOR_VQDCFG 等配置时的输入条件参数时,表示无效。

byRes

保留,置为0

Remarks

如果设备不支持流 ID 标识功能,例如 DVR 设备,byID 值设为 0。

当作为 SDK 接口的输入条件参数时,如果 byID 和 dwChannel 都无效时,网络 SDK 将返回参数错误(错误代码: 17);如果两个都有效,而输入的 byID 和 dwChannel 不匹配,则设备可能会返回失败,因此,建议只输入 byID(dwChannel=0xfffffff)或者 dwChannel(byID=0)。

7.99 NET_DVR_STREAM_MODE:取流方式配置参数

struct{

BYTE byGetStreamType;

BYTE byRes[3];

NET DVR GET STREAM UNION uGetStream;

}NET DVR STREAM MODE,*LPNET DVR STREAM MODE;

Members

byGetStreamType

取流方式: 0- 直接从设备取流; 1- 从流媒体取流; 2- 通过 IPServer 获得 IP 地址后取流; 3- 通过 IPServer 找到设备,再通过流媒体取设备的流; 4- 通过流媒体由 URL 去取流; 5- 通过 hiDDNS 域名 连接设备然后从设备取流

byRes

保留,置为0

uGetStream

不同取流方式联合体

7.100 NET_DVR_SYSTEM_TIME:时间信息

```
struct{
  WORD
           wYear;
  WORD
           wMonth;
  WORD
           wDay;
  WORD
           wHour;
  WORD
           wMinute;
  WORD
           wSecond;
  WORD
           wMilliSec;
  BYTE
           byRes[2];
}NET_DVR_SYSTEM_TIME,*LPNET_DVR_SYSTEM_TIME;
wYear
      年
wMonth
       月
wDay
       日
wHour
      肘
wMinute
       分
wSecond
      秒
wMilliSec
       毫秒
byRes
      保留
```

7.101 NET_DVR_TFS_ALARM:违章取证报警信息

```
struct{
  DWORD
                            dwSize;
  DWORD
                            dwRelativeTime;
  DWORD
                            dwAbsTime;
  DWORD
                            dwlllegalType;
  DWORD
                             dwlllegalDuration;
  BYTE
                             byMonitoringSiteID[MONITORSITE_ID_LEN];
  BYTE
                             byDeviceID[DEVICE_ID_LEN];
  NET VCA DEV INFO
                             struDevInfo;
  NET DVR SCENE INFO
                             struSceneInfo;
  NET_DVR_TIME_EX
                             struBeginRecTime;
```

NET_DVR_TIME_EXstruEndRecTime;NET_DVR_AID_INFOstruAlDInfo;NET_DVR_PLATE_INFOstruPlateInfo;NET_DVR_VEHICLE_INFOstruVehicleInfo;DWORDdwPicNum;

NET ITS PICTURE INFO struPicInfo[8];

BYTE bySpecificVehicleType;

BYTE byLaneNo;
BYTE byRes1[2];

NET_DVR_TIME_V30 struTime;
DWORD dwSerialNo;

BYTE byVehicleAttribute;
BYTE byPilotSafebelt;
BYTE byCopilotSafebelt;
BYTE byPilotSunVisor;
BYTE byCopilotSunVisor;

BYTE byPilotCall;
BYTE byRes[102];

}NET_DVR_TFS_ALARM, *LPNET_DVR_TFS_ALARM;

Members

dwSize

结构体大小

dwRelativeTime

相对时标

dwAbsTime

绝对时标

dwlllegalType

违章类型,采用国标定义,详细定义说明见7.161 违章类型国标定义

dwlllegalDuration

违法持续时间(单位: 秒) = 抓拍最后一张图片的时间 - 抓拍第一张图片的时间

byMonitoringSiteID

监测点编号(路口编号、内部编号)

byDeviceID

设备编号

struDevInfo

前端设备信息

struSceneInfo

场景信息

struBeginRecTime

录像开始时间

struEndRecTime

录像结束时间

struAIDInfo

交通事件信息

struPlateInfo

车牌信息

struVehicleInfo

车辆信息

dwPicNum

图片数量

struPicInfo

图片信息,最多8张

bySpecificVehicleType

具体车辆类型: 0- 未知, 1- 客车, 2- 货车, 3- 轿车, 4- 面包车, 5- 小货车, 6- 行人, 7- 二轮车, 8- 三轮车

byLaneNo

关联车道号

byRes1

保留

struTime

手动定位的当前时间,目前仅取证球机支持,和 dwSerialNo 一起用于平台录像和手动取证图片匹配 使用

dwSerialNo

抓拍序号,目前仅取证球机支持,和 struTime 一起用于平台录像和手动取证图片匹配使用

byVehicleAttribute

车辆属性,按位表示, 0- 无附加属性(普通车辆), bit1- 黄标车(类似年检的标志), bit2- 危险品车辆, 值: 0- 否, 1- 是

byPilotSafebelt

主驾驶员是否系安全带: 0- 未知, 1- 系安全带, 2- 未系安全带

byCopilotSafebelt

副驾驶员是否系安全带: 0- 未知, 1- 系安全带, 2- 未系安全带

byPilotSunVisor

主驾驶是否打开遮阳板: 0- 未知, 1- 未打开遮阳板, 2- 打开遮阳板

byCopilotSunVisor

副驾驶是否打开遮阳板: 0- 未知, 1- 未打开遮阳板, 2- 打开遮阳板

byPilotCall

主驾驶员是否在打电话: 0- 未知, 1- 未打电话, 2- 打电话

byRes

保留

Remarks

从 DWORD 时间值得到年月日时分秒的算法如下所示:

7.102 NET_DVR_TIME:时间参数

```
struct{
 DWORD
            dwYear;
 DWORD
            dwMonth;
 DWORD
            dwDay;
 DWORD
            dwHour;
 DWORD
            dwMinute;
 DWORD
            dwSecond;
}NET_DVR_TIME, *LPNET_DVR_TIME;
Members
dwYear
      年
dwMonth
      月
dwDay
      日
dwHour
dwMinute
      分
dwSecond
      秒
```

7.103 NET_DVR_TIME_EX:时间参数

```
struct{
  WORD
           wYear;
  BYTE
          byMonth;
  BYTE
          byDay;
  BYTE
          byHour;
  BYTE
          byMinute;
  BYTE
          bySecond;
  BYTE
          byRes;
}NET_DVR_TIME_EX, *LPNET_DVR_TIME_EX;
Members
wYear
       年
byMonth
       月
byDay
       日
byHour
```

```
时
byMinute
分
bySecond
秒
byRes
```

7.104 NET_DVR_TIME_V30:时间参数

```
struct{
 WORD
           wYear;
 BYTE
           byMonth;
  BYTE
           byDay;
  BYTE
           byHour;
  BYTE
           byMinute;
  BYTE
           bySecond;
 BYTE
           byRes;
           wMilliSec;
 WORD
 BYTE
           byRes1[2];
}NET_DVR_TIME_V30, *LPNET_DVR_TIME_V30;
Members
wYear
       年
byMonth
       月
byDay
       日
byHour
       时
byMinute
       分
bySecond
       秒
byRes
       保留
wMilliSec
       毫秒
byRes1
```

保留

7.105 NET_DVR_TPS_ALARM_V41:交通统计上传报警信息

```
struct{
 DWORD
                            dwSize;
 DWORD
                            dwRelativeTime;
 DWORD
                            dwAbsTime:
 NET VCA DEV INFO
                            struDevInfo;
 NET DVR TPS INFO V41
                            struTPSInfo;
 BYTE
                            byMonitoringSiteID[MONITORSITE_ID_LEN];
 BYTE
                             byDeviceID[DEVICE_ID_LEN];
 DWORD
                             dwStartTime;
 DWORD
                             dwStopTime;
 BYTE
                             byRes[24];
NET_DVR_TPS_ALARM_V41, *LPNET_DVR_TPS_ALARM_V41;
Members
dwSize
      结构体大小
dwRelativeTime
      相对时标
dwAbsTime
      绝对时标
struDevInfo
      前端设备信息
struTPSInfo
      交通参数统计信息
byMonitoringSiteID
      监测点编号(路口编号、内部编号)
byDeviceID
      设备编号
dwStartTime
      开始统计时间
dwStopTime
      结束统计时间
bvRes1
      保留
Remarks
      从绝对时标 dwAbsTime 解析得到"年月日时分秒"的算法如下所示:
      #define GET_YEAR(_time_)
                                 (((_time_)>>26) + 2000)
      #define GET_MONTH(_time_)
                                  (((_time_)>>22) & 15)
      #define GET_DAY(_time_)
                                  (((_time_)>>17) & 31)
      #define GET_HOUR(_time_)
                                  (((_time_)>>12) & 31)
```

(((_time_)>>6) & 63)

(((_time_)>>0) & 63)

#define GET_MINUTE(_time_)

#define GET_SECOND(_time_)

7.106 NET_DVR_TPS_INFO_V41:车道统计参数信息

struct{
 DWORD

dwLanNum;

NET DVR LANE PARAM V41

struLaneParam[MAX_TPS_RULE];

BYTE

byRes[32];

}NET_DVR_TPS_INFO_V41, *LPNET_DVR_TPS_INFO_V41;

Members

dwLanNum

交通参数的车道数目

struLaneParam

车道参数

bvRes

保留

7.107 NET_DVR_TPS_RULECFG_V41:车道统计参数信息

dwSize;

struct{

DWORD

NET_DVR_ONE_TPS_RULE_V41 struOneTpsRule[MAX_TPS_RULE];

BYTE byRes[128];

NET_DVR_TPS_RULECFG_V41, *LPNET_DVR_TPS_RULECFG_V41;

Members

dwSize

结构体大小

struOneTpsRule

单条交通参数统计规则参数,下标对应交通参数 ID

byRes

保留

7.108 NET_DVR_TRAFFIC_DATA_QUERY_COND:交通数据查询条件

 $struct \{$

DWORD dwSize;

DWORD dwQueryCond;
DWORD dwChannel;

NET_DVR_TIME_V30 struStartTime;

NET_DVR_TIME_V30 struEndTime;

char sLicense[MAX LICENSE LEN];

DWORD dwPlateType;
DWORD dwPlateColor;
DWORD dwVehicleColor;

DWORD dwVehicleType;
DWORD dwIllegalType;
DWORD dwEventType;
DWORD dwForensiceType;
WORD wVehicleLogoRecog;
BYTE byLaneNo;

BYTE byLaneNo;
BYTE byDirection;
WORD wMinSpeed;
WORD wMaxSpeed;
BYTE byDataType;
BYTE byExecuteCtrl;
BYTE byRes[254];

}NET_DVR_TRAFFIC_DATA_QUERY_COND,*LPNET_DVR_TRAFFIC_DATA_QUERY_COND;

Members

dwSize

结构体大小

dwQueryCond

查询条件,按位表示,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 通道,bit1- 时间,bit2- 车牌号,bit3- 车牌类型,bit4- 车牌颜色,bit5- 车身颜色,bit6- 车辆类型,bit7- 车辆品牌,bit8- 车道号,bit9- 监测方向,bit10- 最低速度,bit11- 最高速度,bit12-数据类型,bit13- 布控方式类型,bit14- 违法取证,bit15- 事件类型,bit16- 取证类型

dwChannel

查询通道,按位表示,bit0表示数字通道 01 (通道号 33),bit1表示数字通道 02 (通道号 34),依次类推,取值: 0- 无效,1- 有效。例如:

dwChannel & 0x1==1 表示查询数字通道 01

dwChannel & 0x8==1 表示查询数字通道 04

struStartTime

开始时间

struEndTime

结束时间

sLicense

车牌号码,支持模糊查询(通配符是"*"),GB2312编码

dwPlateType

车牌类型,按位表示,支持复选,取值: 0- 无效, 1- 有效,定义如下所示:

bit0- 未知(其他), bit1- 标准民用车与军车, bit2-02 式民用车牌, bit3- 武警车, bit4- 警车, bit5- 民用车双行尾牌, bit6- 使馆车牌, bit7- 农用车, bit8- 摩托车

dwPlateColor

车牌颜色,按位表示,支持复选,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 未知 (其他), bit1- 黄色, bit2- 白色, bit3- 黑色, bit4- 绿色, bit5- 蓝色

dwVehicleColor

车身颜色, 按位表示, 支持复选, 取值: 0- 无效, 1- 有效, 定义如下所示:

bit0- 未知 (其他), bit1- 白色, bit2- 银色, bit3- 灰色, bit4- 黑色, bit5- 红色, bit6- 深蓝色, bit7- 蓝色, bit8- 黄色, bit9- 绿色, bit10- 棕色, bit11- 粉色, bit12- 紫色, bit13- 深灰色

dwVehicleType

车辆类型,按位表示,支持复选,取值: 0- 无效, 1- 有效,定义如下所示:

Bit0- 未知 (其他), Bit1- 客车, Bit2- 大货车, Bit3- 轿车, Bit4- 面包车, Bit5- 小货车, Bit6- 行人, Bit7- 二轮车, Bit8- 三轮车, Bit9- SUV/MPV, Bit10- 中型客车

dwIllegalType

违法类型,按位表示,支持复选,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 其他 (保留), bit1- 低速, bit2- 超速, bit3- 逆行, bit4- 闯红灯, bit5- 压车道线, bit6- 不按导向, bit7- 路口滞留, bit8- 机占非, bit9- 违法变道, bit10- 不按车道, bit11- 违反禁令, bit12- 路口停车, bit13- 绿灯停车, bit14- 未礼让行人, bit15- 违章停车, bit16- 违章掉头, bit17- 占用应急车道, bit18- 未系安全带

dwEventType

事件类型,按位表示,支持复选,取值: 0-无效,1-有效,定义如下所示:

bit0- 其他 (保留), bit1- 拥堵, bit2- 停车, bit3- 逆行, bit4- 行人, bit5- 抛洒物, bit6- 烟雾, bit7- 压线, bit8- 禁止名单, bit9- 超速, bit10- 变道, bit11- 掉头, bit12- 机占非, bit13- 加塞

dwForensiceType

取证类型,按位表示,支持复选,取值: 0-无效,1-有效,定义如下所示:

bit0- 其他(保留),bit1- 城市公路违法停车,bit2- 高速公路违法停车,bit3- 压线,bit4- 逆行,bit5- 违法变道,bit6- 机占非

wVehicleLogoRecog

车辆主品牌(单选)

byLaneNo

车道号(0~255,0表示车道号未知)

byDirection

监测方向: 1- 上行, 2- 下行, 3- 双向, 4- 由东向西, 5- 由南向北,6- 由西向东, 7- 由北向南 wMinSpeed

最低速度,取值范围: 0~999,单位: km/h

wMaxSpeed

最高速度,取值范围: 0~999,单位: km/h

byDataType

数据类型(单选): 0- 卡口数据, 1- 违法数据, 2- 交通事件, 3- 取证数据

bvExecuteCtrl

布控: 0- 允许名单, 1- 禁止名单, 0xff- 其他

byRes

保留,置为0

7.109 NET_DVR_TRAFFIC_DATA_QUERY_RESULT:交通数据查询结果

$struct \{$

DWORD dwSize;
DWORD dwChannel;

char sLicense[MAX_LICENSE_LEN];

DWORD dwPlateType;
DWORD dwPlateColor;
DWORD dwVehicleColor;
DWORD dwVehicleType;

DWORD dwlllegalType;
DWORD dwEventType;
DWORD dwForensiceType;
WORD wVehicleLogoRecog;

BYTE byLaneNo;
BYTE byDirection;
WORD wSpeed;
BYTE byDataType;
BYTE byRes[253];

NET DVR TRAFFIC PICTURE PARAM struTrafficPic[MAX TRAFFIC PICTURE NUM];

}NET_DVR_TRAFFIC_DATA_QUERY_RESULT,*LPNET_DVR_TRAFFIC_DATA_QUERY_RESULT;

Members

dwSize

结构体大小

dwChannel

查询通道,按位表示,bit0表示数字通道 01 (通道号 33),bit1表示数字通道 02 (通道号 34),依次类推,取值:0-无效,1-有效。例如:

dwChannel & 0x1==1 表示数字通道 01 的查询结果

dwChannel & 0x8==1 表示数字通道 04 的查询结果

sLicense

车牌号码,GB2312编码

dwPlateType

车牌类型,按位表示,支持复选,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 未知(其他), bit1- 标准民用车与军车, bit2-02 式民用车牌, bit3- 武警车, bit4- 警车, bit5- 民用车双行尾牌, bit6- 使馆车牌, bit7- 农用车, bit8- 摩托车

dwPlateColor

车牌颜色,按位表示,支持复选,取值: 0-无效,1-有效,定义如下所示:

bit0- 未知(其他), bit1- 黄色, bit2- 白色, bit3- 黑色, bit4- 绿色, bit5- 蓝色

dwVehicleColor

车身颜色, 按位表示, 支持复选, 取值: 0- 无效, 1- 有效, 定义如下所示:

bit0- 未知 (其他), bit1- 白色, bit2- 银色, bit3- 灰色, bit4- 黑色, bit5- 红色, bit6- 深蓝色, bit7- 蓝色, bit8- 黄色, bit9- 绿色, bit10- 棕色, bit11- 粉色, bit12- 紫色, bit13- 深灰色

dwVehicleType

车辆类型, 按位表示, 支持复选, 取值: 0- 无效, 1- 有效, 定义如下所示:

Bit0- 未知 (其他), Bit1- 客车, Bit2- 大货车, Bit3- 轿车, Bit4- 面包车, Bit5- 小货车, Bit6- 行人, Bit7- 二轮车, Bit8- 三轮车, Bit9- SUV/MPV, Bit10- 中型客车

dwlllegalType

违法类型,按位表示,支持复选,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 其他(保留),bit1- 低速,bit2- 超速,bit3- 逆行,bit4- 闯红灯,bit5- 压车道线,bit6- 不按导向,bit7- 路口滞留,bit8- 机占非,bit9- 违法变道,bit10- 不按车道,bit11- 违反禁令,bit12- 路口停车,bit13- 绿灯停车,bit14- 未礼让行人,bit15- 违章停车,bit16- 违章掉头,bit17- 占用应急车道,bit18- 未系安全带

dwEventType

事件类型,按位表示,支持复选,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 其他 (保留), bit1- 拥堵, bit2- 停车, bit3- 逆行, bit4- 行人, bit5- 抛洒物, bit6- 烟雾, bit7- 压线, bit8- 禁止名单, bit9- 超速, bit10- 变道, bit11- 掉头, bit12- 机占非, bit13- 加塞 dwForensiceType

事件类型,按位表示,支持复选,取值: 0- 无效,1- 有效,定义如下所示:

bit0- 其他(保留),bit1- 城市公路违法停车,bit2- 高速公路违法停车,bit3- 压线,bit4- 逆行,bit5- 违法变道,bit6- 机占非

wVehicleLogoRecog

车辆主品牌

byLaneNo

车道号(0~255,0表示车道号未知)

byDirection

监测方向: 1- 上行, 2- 下行, 3- 双向, 4- 由东向西, 5- 由南向北,6- 由西向东, 7- 由北向南 wSpeed

速度,取值范围: 0~999,单位: km/h

byDataType

数据类型: 0- 卡口数据, 1- 违法数据, 2- 交通事件, 3- 取证数据

byRes

保留,置为0

struTrafficPic

交通图片参数

7.110 NET_DVR_TRAFFIC_FLOW_QUERY_COND:交通流量查询条件

struct{

DWORD dwSize;

DWORD dwQueryCond;
DWORD dwChannel;
DWORD dwResChan[10];
NET_DVR_TIME_V30 struStartTime;
NET_DVR_TIME_V30 struEndTime;
BYTE byLaneNo;
BYTE byRes[255];

}NET_DVR_TRAFFIC_FLOW_QUERY_COND,*LPNET_DVR_TRAFFIC_FLOW_QUERY_COND;

Members

dwSize

结构体大小

dwQueryCond

查询条件,按位表示,支持复选,取值: 0-无效,1-有效,定义如下所示:

bit0- 通道, bit1- 时间, bit2- 车道号

dwChannel

查询通道,按位表示,bit0表示数字通道 01 (通道号 33),bit1表示数字通道 02 (通道号 34),依次类推,取值: 0- 无效,1- 有效。例如:

dwChannel & 0x1==1 表示查询数字通道 01

dwChannel & 0x8==1 表示查询数字通道 04

dwResChan

预留可扩展的通道号

struStartTime

开始时间

struEndTime

结束时间

byLaneNo

车道号(0~255,0表示车道号未知)

byRes

保留,置为0

7.111 NET_DVR_TRAFFIC_FLOW_QUERY_RESULT:交通流量查询结果

struct{

DWORD dwSize;

NET DVR TIME V30struStartTime;NET DVR TIME V30struEndTime;DWORDdwChannel;DWORDdwFlow;BYTEbyLaneNo;BYTEbyRes[511];

}NET_DVR_TRAFFIC_FLOW_QUERY_RESULT,*LPNET_DVR_TRAFFIC_FLOW_QUERY_RESULT;

Members

dwSize

结构体大小

struStartTime

开始时间

struEndTime

结束时间

dwChannel

查询通道,按位表示,bit0表示数字通道 01 (通道号 33),bit1表示数字通道 02 (通道号 34),依次类推,取值: 0-无效,1-有效。例如:

dwChannel & 0x1==1 表示数字通道 01 的查询结果 dwChannel & 0x8==1 表示数字通道 04 的查询结果

dwFlow

车流量

byLaneNo

车道号(0~255,0表示车道号未知)

byRes

7.112 NET_DVR_TRAFFIC_PICTURE_PARAM:交通图片参数

```
struct{
```

NET_DVR_TIME_V30 struRelativeTime;
NET_DVR_TIME_V30 struAbsTime;

char szPicName[PICTURE NAME LEN];

BYTE byPicType; BYTE byRes[63];

}NET_DVR_TRAFFIC_PICTURE_PARAM,*LPNET_DVR_TRAFFIC_PICTURE_PARAM;

Members

struRelativeTime

抓拍相对时标

struAbsTime

抓拍绝对时标

szPicName

图片名称

byPicType

图片类型: 0- 车牌图, 1- 抓拍原图, 2- 合成图, 3- 特写图

byRes

保留,置为0

Remarks

查找到图片名称之后通过接口 NET DVR GetPicture V30 进行下载。

7.113 NET_DVR_USER_INFO_V30:单用户参数

struct{ **BYTE** sUserName[NAME LEN]; sPassword[PASSWD_LEN]; **BYTE BYTE** byLocalRight[MAX_RIGHT]; **BYTE** byRemoteRight[MAX_RIGHT]; **BYTE** byNetPreviewRight[MAX_CHANNUM_V30]; **BYTF** byLocalPlaybackRight[MAX_CHANNUM_V30]; **BYTE** byNetPlaybackRight[MAX CHANNUM V30]; **BYTE** byLocalRecordRight[MAX CHANNUM V30]; **BYTE** byNetRecordRight[MAX_CHANNUM_V30]; **BYTE** byLocalPTZRight[MAX_CHANNUM_V30]; **BYTE** byNetPTZRight[MAX_CHANNUM_V30]; **BYTE** byLocalBackupRight[MAX_CHANNUM_V30]; NET DVR IPADDR struUserIP; **BYTE** byMACAddr[MACADDR_LEN]; **BYTE** byPriority; **BYTE** byAlarmOnRight; **BYTE** byAlarmOffRight;

BYTE byBypassRight;

BYTE byRes[14];

}NET_DVR_USER_INFO_V30,*LPNET_DVR_USER_INFO_V30;

Members

sUserName

用户名

sPassword

密码

byLocalRight

本地操作权限,参数取值为1表示使能:

数组 0-本地控制云台

数组1一本地手动录象

数组 2一本地回放

数组 3一本地设置参数

数组 4一本地查看状态、日志

数组 5一本地高级操作(升级,硬盘管理(格式化、设置硬盘属性、设置盘组、阵列扩容、RAID 固件升级))

数组 6-本地查看参数

数组 7—本地管理模拟和 IP camera

数组 8-本地备份

数组 9-本地关机/重启

byRemoteRight

远程操作权限,参数取值为1表示使能:

数组 0一远程控制云台

数组 1-远程手动录象

数组 2一远程回放

数组3一远程设置参数(恢复默认参数,写日志)

数组 4一远程查看状态、日志

数组 5一远程高级操作(升级,硬盘管理(格式化、设置硬盘属性、设置盘组、阵列扩容、RAID 固件升级), JPEG 抓图, 前面板锁定与解锁)

数组 6一远程发起语音对讲

数组7一远程预览

数组8一远程请求报警上传、报警输出

数组9一远程控制,本地输出

数组 10 一远程控制串口

数组 11-远程查看参数

数组 12—远程管理模拟和 IP camera

数组 13-远程关机/重启

byNetPreviewRight

远程可以预览的通道: 1-有权限, 0-无权限

byLocalPlaybackRight

本地可以回放的通道: 1-有权限, 0-无权限

byNetPlaybackRight

远程可以回放的通道: 1-有权限, 0-无权限

byLocalRecordRight

本地可以录像的通道: 1-有权限, 0-无权限

byNetRecordRight

远程可以录像的通道: 1-有权限, 0-无权限

byLocalPTZRight

本地可以控制 PTZ 的通道: 1-有权限, 0-无权限

byNetPTZRight

远程可以控制 PTZ 的通道: 1-有权限, 0-无权限

byLocalBackupRight

本地备份权限通道: 1-有权限, 0-无权限

struUserIP

用户 IP 地址(为 0 时表示允许任何地址)

byMACAddr

物理地址

byPriority

优先级: 0xff-无, 0-低, 1-中, 2-高

无 (表示不支持优先级的设置)

低(默认权限:包括本地和远程回放,本地和远程查看日志和状态,本地和远程关机/重启)

中(包括本地和远程控制云台,本地和远程手动录像,本地和远程回放,语音对讲和远程预览,本

地备份,本地/远程关机/重启)

高(管理员)

byAlarmOnRight

报警输入口布防权限

by Alarm Off Right

报警输入口撤防权限

byBypassRight

报警输入口旁路权限

byRes

保留,置为0

7.114 NET DVR USER LOGIN INFO:用户登录参数

struct{

char sDeviceAddress[NET_DVR_DEV_ADDRESS_MAX_LEN];

BYTE byRes1; WORD wPort;

char sUserName[NET_DVR_LOGIN_USERNAME_MAX_LEN];
char sPassword[NET_DVR_LOGIN_PASSWD_MAX_LEN];

fLoginResultCallBack cbLoginResult;

void *pUser;

BOOL bUseAsynLogin;
BYTE byRes2[128];

}NET_DVR_USER_LOGIN_INFO,*LPNET_DVR_USER_LOGIN_INFO;

Members

```
sDeviceAddress
```

设备地址, IP 或者普通域名

byRes1

保留,设为0

wPort

设备端口号,例如:8000

sUserName

登录用户名,例如: admin

sPassword

登录密码,例如: 12345

cbLoginResult

登录状态回调函数, bUseAsynLogin 为 1 时有效

pUser

用户数据

bUseAsynLogin

是否异步登录: 0- 否, 1- 是

byRes2

保留,置为0

Callback Function

typedef void(CALLBACK *fLoginResultCallBack)(LONG lUserID, DWORD dwResult,

<u>LPNET DVR DEVICEINFO V30 lpDeviceInfo, void *pUser);</u>

Callback Function Parameters

lUserID

[out] 用户 ID, NET_DVR_Login_V40 的返回值

dwResult

[out] 登录状态: 0- 异步登录失败, 1- 异步登录成功

IpDeviceInfo

[out] 设备信息,设备序列号、通道、能力等参数

pUser

[out] 用户数据

7.115 NET_DVR_USER_V30:用户参数

struct{

DWORD dwSize;

NET_DVR_USER_INFO_V30 struUser[MAX_USERNUM_V30];

}NET_DVR_USER_V30,*LPNET_DVR_USER_V30;

Members

dwSize

结构体大小

struUser

用户信息参数

7.116 NET_DVR_VEHICLE_INFO:车辆信息参数

struct{

DWORD dwIndex;

BYTE byVehicleType;

BYTE byColorDepth;

BYTE byColor;

BYTE byRes1;

WORD wSpeed;

WORD wLength;

BYTE bylllegalType;

BYTE byVehicleLogoRecog;

BYTE byVehicleSubLogoRecog;

BYTE byVehicleModel;
BYTE byCustomInfo[16];

WORD wVehicleLogoRecog;

BYTE byRes3[14];

}NET_DVR_VEHICLE_INFO, *LPNET_DVR_VEHICLE_INFO;

Members

dwIndex

车辆序号

byVehicleType

车辆类型,0-其他车辆,1-小型车,2-大型车,3-行人触发,4-二轮车触发,5-三轮车触发,6-机动车触发

byColorDepth

车身颜色深浅, 0-深色, 1-浅色

byColor

车身颜色,0-其他色,1-白色,2-银色,3-灰色,4-黑色,5-红色,6-深蓝,7-蓝色,8-黄色,9-绿色,10-棕色,11-粉色,12-紫色

byRes1

保留

wSpeed

车辆速度,单位 km/h

wLength

车身长度

byIllegalType

0-正常: 1-低速, 2-超速, 3-逆行, 4-违反交通灯指示, 5-压车道线, 6-不按导向, 7-路口滞留, 8-机占非, 9-违法变道, 10-机动车违反规定使用专用车道, 11-黄牌车禁限, 12-路口停车, 13-绿灯停车, 14-未礼让行人。对于 ITS 终端服务器, 该参数无效, 违法类型通过 <u>NET ITS PLATE RESULT</u>中的 willegalType 进行判断。

byVehicleLogoRecog

车辆主品牌

byVehicleSubLogoRecog

车辆子品牌

byVehicleModel

车辆子品牌年款

byCustomInfo

自定义信息

wVehicleLogoRecog

车辆主品牌(该字段兼容 byVehicleLogoRecog)

byRes3

保留

7.117 NET_DVR_VEHICLE_RECOG_CFG:车辆二次识别任务配置

struct{

DWORD dwSize;

char sDataIndex[64];

WORD wTaskNo;

BYTE byRes1[2];

NET VCA RECT struPlateRect;

char sLicense[MAX_LICENSE_LEN];

DWORD dwRecogOperate;
DWORD dwDataUploadType;

BYTE byRes[131];
BYTE byPicDataType;
char sPicDataPath[256];

}NET_DVR_VEHICLE_RECOG_CFG, *LPNET_DVR_VEHICLE_RECOG_CFG;

Members

dwSize

结构体大小

sDataIndex

数据流水号

wTaskNo

任务处理号

byRes1

保留,置为0

struPlateRect

车牌位置, 归一化值, 相对于场景图

sLicense

车牌号码

dwRecogOperate

车辆图片二次识别操作, 按位表示:

bit0- 车牌识别: 0-不启用识别, 1-启用识别

bit1- 车辆类型识别: 0-不启用识别, 1-启用识别

bit2- 车身颜色识别: 0-不启用识别, 1-启用识别

bit3- 车辆品牌识别: 0-不启用识别, 1-启用识别

bit4- 遮挡板识别(主驾驶): 0-不启用识别, 1-启用识别

bit5- 安全带识别(主驾驶): 0-不启用识别, 1-启用识别

bit6- 遮挡板识别(副驾驶): 0-不启用识别, 1-启用识别

bit7- 安全带识别(副驾驶): 0-不启用识别, 1-启用识别

bit8- 车辆图片叠加使能: 0-不启用识别, 1-启用识别

bit9- 上传车辆图片使能(通过 SDK): 0-不启用识别, 1-启用识别

bit10-上传车辆图片使能(通过 URL): 0-不启用识别, 1-启用识别

dwDataUploadType

车辆图片数据上传, 按位表示:

bit0- 车牌图片: 0-不上传, 1-上传

bit1- 车辆图片: 0-不上传, 1-上传

bit2- 人脸子图(主驾驶): 0-不上传, 1-上传

bit3- 人脸子图(副驾驶): 0-不上传, 1-上传

bit4- 安全带子图(主驾驶): 0-不上传, 1-上传

bit5- 安全带子图(副驾驶): 0-不上传, 1-上传

byRes

保留,置为0

byPicDataType

图片数据类型: 0- 数据直接上传, 1- 云存储服务器 URL

sPicDataPath

图片数据:

byPicDataType 为 0 时,表示本地 PC 上的图片路径,包括文件名的绝对路径,例如: "C:/test.jpg" byPicDataType 为 1 时,表示云存储服务器 URL

Remarks

- 车辆二次识别功能,即可以将图片从本地或者云存储服务器上传到设备,进行二次检测,识别图片里面的车辆、车牌等信息,上传的图片格式需要设备支持,目前设备只支持 jpg 格式。
- 该结构体中的 wTaskNo,与布防连接(<u>NET_DVR_SETUPALARM_PARAM</u>)和上传检测结果信息 (<u>NET_DVR_VEHICLE_RECOG_RESULT</u>)里面的任务号都是对应的,例如:布防链接中 wTaskNo==1,任务 A中 wTaskNo==1,结果信息回调 wTaskNo==1(该信息回调只在布防中 wTaskNo 为 1 或者 0 的链接中回调)。

7.118 NET DVR VEHICLE RECOG COND:车辆二次识别任务提交条件

struct{

DWORD dwSize;

DWORD dwChannel;

BYTE byRes[64];

NET DVR VEHICLE RECOG COND, *LPNET DVR VEHICLE RECOG COND;

Members

dwSize

结构体大小

dwChannel

通道号

byRes

NET_DVR_VEHICLE_RECOG_RESULT:车辆二次识别结果信息 7.119

```
struct{
  DWORD
  char
  WORD
  BYTE
  NET VCA RECT
  char
  BYTE
  BYTE
  BYTE
```

dwSize;

sDataIndex[64]; wTaskNo;

byRes[2]; struPlateRect;

sLicense[MAX_LICENSE_LEN];

byVehicleType; byColorDepth; byColor;

BYTE byVehicleLogoRecog; **BYTE** byVehicleSubLogoRecog;

BYTE byPilotSafebelt; **BYTE** byCopilotSafebelt; **BYTE** byPilotSunVisor; **BYTE** byCopilotSunVisor;

BYTE byRes1[254]; **BYTE** byDataType; **DWORD** dwPicType; **BYTE** *pVehicleBuffer;

DWORD dwVehicleBufferLen; **BYTE** *pPlateBuffer; **DWORD** dwPlateBufferLen; **BYTE** *pPilotFaceBuffer; **DWORD** dwPilotFaceBufferLen; **BYTE** *pCopilotFaceBuffer;

DWORD dwCopilotFaceBufferLen; **BYTF** *pPilotSafebeltBuffer; **DWORD** dwPilotSafebeltBufferLen; **BYTE** *pCopilotSafebeltBuffer; **DWORD** dwCopilotSafebeltBufferLen;

BYTE byRes2[128];

}NET_DVR_VEHICLE_RECOG_RESULT, *LPNET_DVR_VEHICLE_RECOG_RESULT;

Members

dwSize

结构体大小

sDataIndex

数据流水号

wTaskNo

任务处理号,与布防连接(NET DVR SETUPALARM PARAM)和车辆二次识别任务提交 (NET DVR VEHICLE RECOG CFG)里面的 wTaskNo 都是对应的

byRes

保留,置为0

struPlateRect

车牌位置, 归一化值, 相对于场景图

sLicense

车牌号码

byVehicleType

车型识别: 0- 未知, 1- 客车(大型), 2- 货车(大型), 3- 轿车(小型), 4- 面包车, 5- 小货车, 6- 行人, 7- 二轮车, 8- 三轮车, 9- SUV/MPV, 10- 中型客车

byColorDepth

车身颜色深浅: 0- 深色, 1- 浅色

byColor

车身颜色: 0-其他色, 1-白色, 2-银色, 3-灰色, 4-黑色, 5-红色, 6-深蓝, 7-蓝色, 8-黄色, 9-绿色, 10-棕色, 11-粉色, 12-紫色, 13-深灰, 14-青色, 0xff-未进行车身颜色识别

byVehicleLogoRecog

汽车品牌主类型,定义详见 VLR_VEHICLE_CLASS

byVehicleSubLogoRecog

汽车品牌次类型,根据不同的主类型,次类型取值定义不同,详见"Remarks"说明

byPilotSafebelt

主驾驶员是否系安全带: 0- 未知, 1- 系安全带, 2- 未系安全带

byCopilotSafebelt

副驾驶员是否系安全带(保留, 暂不支持): 0- 未知, 1- 系安全带, 2- 未系安全带

byPilotSunVisor

主驾驶是否打开遮阳板: 0- 未知, 1- 未打开遮阳板, 2- 打开遮阳板

byCopilotSunVisor

副驾驶是否打开遮阳板: 0- 未知, 1- 未打开遮阳板, 2- 打开遮阳板

byRes1

保留,置为0

byDataType

数据上传方式: 0-数据直接上传; 1-云存储服务器 URL (原先的图片数据变成 URL 数据,图片长度变成 URL 长度)

dwPicType

上传图片类型信息,0表示无图片信息,其他取值按位表示:

bit0- 车辆图: 0- 不上传, 1- 上传

bit1- 车牌图: 0- 不上传, 1- 上传

bit2- 人脸子图(主驾驶): 0- 不上传, 1- 上传

bit3- 人脸子图(副驾驶): 0- 不上传, 1- 上传

bit4- 安全带识别(主驾驶): 0- 不上传, 1- 上传

bit5- 安全带识别(副驾驶): 0- 不上传, 1- 上传

pVehicleBuffer

车辆图片数据指针

dwVehicleBufferLen

车辆图片数据长度

pPlateBuffer

车牌图片数据指针

dwPlateBufferLen

车牌图片数据长度

pPilotFaceBuffer

人脸子图(主驾驶)图片数据指针

dwPilotFaceBufferLen

人脸子图(主驾驶)图片数据长度

pCopilotFaceBuffer

人脸子图(副驾驶)图片数据指针

dwCopilotFaceBufferLen

人脸子图(副驾驶)图片数据长度

pPilotSafebeltBuffer

安全带识别(主驾驶)图片数据指针

dwPilotSafebeltBufferLen

安全带识别(主驾驶)图片数据长度

pCopilotSafebeltBuffer

安全带识别(副驾驶)图片数据指针

dwCopilotSafebeltBufferLen

安全带识别(副驾驶)图片数据长度

byRes2

保留,置为0

Remarks

根据不同的主类型,汽车品牌的次类型取值定义如下表所示,列表未列出的主类型暂无次类型。

byVehicleLogoRecog	品牌	byVehicleSubLogoRecog
1	大众	VSB_VOLKSWAGEN_CLASS
2	别克	VBR_BUICK_CLASS
3	宝马	VSB_BMW_CLASS
4	本田	VSB_HONDA_CLASS
5	标致	VSB_PEUGEOT_CLASS
6	丰田	VSB_TOYOTA_CLASS
7	福特	VSB_FORD_CLASS
8	日产	VSB_NISSAN_CLASS
9	奥迪	VSB_AUDI_CLASS
10	马自达	VSB_MAZDA_CLASS
11	雪佛兰	VSB_CHEVROLET_CLASS
12	雪铁龙	VSB_CITROEN_CLASS
13	现代	VSB_HYUNDAI_CLASS
14	奇瑞	VSB_CHERY_CLASS
15	起亚	VSB_KIA_CLASS

16	荣威	VSB_ROEWE_CLASS
17	三菱	VSB_MITSUBISHI_CLASS
18	斯柯达	VSB_SKODA_CLASS
19	吉利	VSB_GEELY_CLASS
20	中华	VSB_ZHONGHUA_CLASS
21	沃尔沃	VSB_VOLVO_CLASS
22	雷克萨斯	VSB_LEXUS_CLASS
23	菲亚特	VSB_FIAT_CLASS
24	吉利帝豪	VSB_EMGRAND_CLASS
25	东风	VSB_DONGFENG_CLASS
26	比亚迪	VSB_BYD_CLASS
27	铃木	VSB_SUZUKI_CLASS
28	金杯	VSB_JINBEI_CLASS
29	海马	VSB_HAIMA_CLASS
30	五菱	VSB_SGMW_CLASS
31	江淮	VSB_JAC_CLASS
32	斯巴鲁	VSB_SUBARU_CLASS
33	吉利英伦	VSB_ENGLON_CLASS
34	长城	VSB_GREATWALL_CLASS
35	哈飞	VSB_HAFEI_CLASS
36	庆铃(五十铃)	VSB_ISUZU_CLASS
37	东南	VSB_SOUEAST_CLASS
38	长安	VSB_CHANA_CLASS
39	福田	VSB_FOTON_CLASS
40	夏利	VSB_XIALI_CLASS
41	奔驰	VSB_BENZ_CLASS
42	一汽	VSB_FAW_CLASS
43	依维柯	VSB_NAVECO_CLASS
44	力帆	VSB_LIFAN_CLASS
45	奔腾	VSB_BESTURN_CLASS
47	雷诺	VSB_RENAULT_CLASS
48	江铃	VSB_JMC_CLASS
49	名爵	VSB_MG_CLASS
50	凯马 KAMA	VSB_KAMA_CLASS

51	众泰	VSB_ZOTYE_CLASS
52	昌河	VSB_CHANGHE_CLASS
55	苏州金龙	VSB_SZKINGLONG_CLASS
56	海格	VSB_HIGER_CLASS
57	宇通	VSB_YUTONG_CLASS
58	中国重汽	VSB_CNHTC_CLASS
59	北奔重汽	VSB_BEIBEN_CLASS
60	华菱星马	VSB_XINGMA_CLASS
61	跃进	VSB_YUEJIN_CLASS
62	黄海	VSB_HUANGHAI_CLASS
65	保时捷	VSB_PORSCHE_CLASS
66	凯迪拉克	VSB_CADILLAC_CLASS
67	英菲尼迪	VSB_INFINITI_CLASS
68	吉利全球鹰	VSB_GLEAGLE_CLASS
69	吉普	VSB_JEEP_CLASS
70	路虎	VSB_LANDROVER_CLASS
71	长丰猎豹	VSB_CHANGFENG_CLASS
73	时代汽车	VSB_ERA_CLASS
75	长安轿车	VSB_EADO_CLASS
76	陕汽重卡	VSB_SHANQI_CLASS
81	安凯	VSB_ANKAI_CLASS
82	申龙	VSB_SHENLONG_CLASS
83	大宇	VSB_DAEWOO_CLASS
86	中通	VSB_ZHONGTONG_CLASS
87	宝骏	VSB_BAOJUN_CLASS
88	北汽威旺	VSB_BQWEIWANG_CLASS
89	广汽传祺	VSB_TRUMPCHE_CLASS
90	陆风	VSB_LUFENG_CLASS
92	北京	VSB_BEIJING_CLASS
94	威麟	VSB_WEILIN_CLASS
95	欧宝	VSB_OPEL_CLASS
96	开瑞	VSB_KARRY_CLASS
97	华普	VSB_SMA_CLASS
103	讴歌	VSB_OGA_CLASS

104	启辰	VSB_VENUCIA_CLASS
107	北汽制造	VSB_BAW_CLASS
108	纳智捷	VSB_LUXGEN_CLASS
109	野马	VSB_YEMA_CLAS
110	中兴	VSB_ZTE_CLASS
112	克莱斯勒	VSB_CHRYSLER_CLASS
113	广汽吉奥	VSB_GONOW_CLASS
115	瑞麟	VSB_RUILIN_CLASS
117	捷豹	VSB_GAGUAR_CLASS
119	唐骏欧铃	VSB_TKING_CLASS
121	福迪	VSB_FODAY_CLASS
122	莲花	VSB_LOTUS_CLASS
124	双环	VSB_SHUANGHUAN_CLASS
128	永源	VSB_JONWAY_CLASS
136	江南	VSB_JIANGNAN_CLASS
144	道奇	VSB_DS_CLASS
155	大运汽车	VSB_DAYUN_CLASS
167	北方客车	VSB_BEIFANG_CLASS
176	九龙	VSB_JIULONG_CLASS
191	宾利	VSB_BINLI_CLASS
201	舒驰客车	VSB_SHUCHI_CLASS
230	红旗	VSB_HONGQI_CLASS

7.120 NET_DVR_VEHICLE_RECOG_TASK_COND: 车辆二次识别任务信息 查询条件

```
struct{
```

DWORD dwSize;
DWORD dwChannel;
char sDataIndex[64];
WORD wTaskNo;
BYTE byTask;
BYTE byRes[125];

}NET_DVR_VEHICLE_RECOG_TASK_COND, *LPNET_DVR_VEHICLE_RECOG_TASK_COND;

Members

dwSize

结构体大小

dwChannel

通道号

sDataIndex

数据流水号,0表示查询全部任务

wTaskNo

任务处理号,0表示查询全部任务

byTask

需要查询的任务状态, 按位表示:

bit0- 完成状态的任务: 0-不查询, 1-查询

bit1- 执行中的任务: 0-不查询, 1-查询

bit2- 等待中的任务: 0-不查询, 1-查询

byRes

保留,置为0

7.121 NET_DVR_VEHICLE_RECOG_TASK_INFO:车辆二次识别任务信息

struct{

DWORD dwSize;

DWORD dwChannel;

BYTE sDataIndex[64];

WORD wTaskNo;

WORD wTaskProgress;
BYTE byTaskState;
BYTE byRes1[3];

DWORD dwRecogOperate;

BYTE byRes[128];

}NET_DVR_VEHICLE_RECOG_TASK_INFO, *LPNET_DVR_VEHICLE_RECOG_TASK_INFO;

Members

dwSize

结构体大小

dwChannel

通道号

sDataIndex

数据流水号

wTaskNo

任务处理号

wTaskProgress

任务执行进度(实际进度*1000),例如: wTaskProgress 为 1000 时,实际进度为 1,也就是进度为 100%

byTaskState

任务状态: 0- 等待中, 1- 执行中, 2- 完成

byRes1

dwRecogOperate

车辆图片二次识别操作,按位表示:

bit0- 车牌识别: 0-不启用识别, 1-启用识别

bit1- 车辆类型识别: 0-不启用识别, 1-启用识别

bit2- 车身颜色识别: 0-不启用识别, 1-启用识别

bit3- 车辆品牌识别: 0-不启用识别, 1-启用识别

bit4- 遮挡板识别(主驾驶): 0-不启用识别, 1-启用识别

bit5- 安全带识别(主驾驶): 0-不启用识别, 1-启用识别

bit6- 遮挡板识别(副驾驶): 0-不启用识别, 1-启用识别

bit7- 安全带识别(副驾驶): 0-不启用识别, 1-启用识别

bit8- 车辆图片叠加使能: 0-不启用识别, 1-启用识别

bit9- 上传车辆图片使能(通过 SDK): 0-不启用识别, 1-启用识别

bit10-上传车辆图片使能(通过 URL): 0-不启用识别, 1-启用识别

byRes

保留,置为0

7.122 NET_DVR_VIDEOEFFECT:视频参数

struct{

BYTE byBrightnessLevel;

BYTE byContrastLevel;

BYTE bySharpnessLevel;

BYTE bySaturationLevel;

BYTE byHueLevel;

BYTE byEnableFunc;

BYTE byLightInhibitLevel;

BYTE byGrayLevel;

}NET_DVR_VIDEOEFFECT, *LPNET_DVR_VIDEOEFFECT;

Members

byBrightnessLevel

亮度,取值范围[0,100]

byContrastLevel

对比度,取值范围[0,100]

bySharpnessLevel

锐度,取值范围[0,100]

bySaturationLevel

饱和度,取值范围[0,100]

byHueLevel

色度,取值范围[0,100],保留

byEnableFunc

使能,按位表示,bit0-SMART IR(防过曝),bit1-低照度,bit2-强光抑制使能,值: 0-否,1-是。例如: byEnableFunc&0x2==1 表示使能低照度功能。

byLightInhibitLevel

强光抑制等级,取值范围: [1,3]

byGrayLevel

灰度值域:0-[0,255], 1-[16,235]

7.123 NET_DVR_VOD_PARA:录像回放参数

struct{

DWORD dwSize;

NET_DVR_STREAM_INFO strulDInfo;

NET_DVR_TIME struBeginTime;

NET_DVR_TIME struEndTime;

HWND hWnd;

BYTE byDrawFrame;
BYTE byVolumeType;
BYTE byVolumeNum;

BYTE byRes1;
DWORD dwFileIndex;
BYTE byRes2[24];

}NET_DVR_VOD_PARA,*LPNET_DVR_VOD_PARA;

Members

dwSize

结构体大小

struIDInfo

流 ID 信息

struBeginTime

开始时间

struEndTime

结束时间

hWnd

回放的窗口句柄,若置为空,SDK 仍能收到码流数据,但不解码显示

byDrawFrame

是否抽帧: 0- 不抽帧, 1- 抽帧

byVolumeType

0-普通录像卷,1-存档卷,适用于 CVR 设备,普通卷用于通道录像,存档卷用于备份录像 byVolumeNum

存档卷号

byRes1

保留,置为0

dwFileIndex

存档卷上的录像文件索引,搜索存档卷录像时返回的值

byRes2

7.124 NET_DVR_WDR:宽动态参数

struct{
BYTE

byWDREnabled;

BYTE byWDRLevel1;

BYTE byWDRLevel2;

BYTE byWDRContrastLevel;

BYTE byRes[16];

}NET_DVR_WDR, *LPNET_DVR_WDR;

Members

byWDREnabled

宽动态是否启用,0-不启用,1-启用,2-自动

byWDRLevel1

宽动态等级 1: 0~F

byWDRLevel2

宽动态等级 2: 0~F

byWDRContrastLevel

宽动态对比度: 0~100

byRes

保留

7.125 NET_DVR_WHITEBALANCE:白平衡参数

struct{

BYTE byWhiteBalanceMode;

BYTE byWhiteBalanceModeRGain;
BYTE byWhiteBalanceModeBGain;

BYTE byRes[5];

}NET_DVR_WHITEBALANCE, *LPNET_DVR_WHITEBALANCE;

Members

byWhiteBalanceMode

0-手动白平衡, 1-自动白平衡 1 (范围小), 2-自动白平衡 2 (范围宽, 2200K-15000K), 3-锁定白平衡, 4-白炽灯, 5-暖光灯, 6-自然光, 7-日光灯

byWhiteBalanceModeRGain

手动白平衡时有效, 手动白平衡 R 增益

by White Balance Mode BGain

手动白平衡时有效, 手动白平衡 B 增益

byRes

保留

7.126 NET_ITS_ECT_BLOCKLIST:车辆名单报警信息

struct{

DWORD dwSize;
DWORD dwChannel;
BYTE bylogicalLaneNo;

BYTE byRes1[3];

BYTE byLaneName[NAME_LEN];

NET_DVR_PLATE_INFO struPlateInfo; BYTE byRes2[256];

}NET_ITS_ECT_BLOCKLIST, *LPNET_ITS_ECT_BLOCKLIST;

Members

dwSize

结构体大小

dwChannel

通道号

bylogicalLaneNo

逻辑车道号

byRes1

保留,置为0

byLaneName

车道名称

struPlateInfo

车牌信息结构

byRes2

保留,置为0

7.127 NET_ITS_ECT_CHANNELSTATE:终端通道状态信息

struct{

DWORD dwSize;

BYTE byRecordStatic;
BYTE bySignalStatic;
BYTE byHardwareStatic;
BYTE byChannelArmState;

DWORD dwChannel;
DWORD dwBitRate;
DWORD dwLinkNum;

NET_DVR_IPADDR struClientIP[MAX_LINK];

DWORD dwlPLinkNum;
BYTE byExceedMaxLink;
BYTE byRes[139];

}NET_ITS_ECT_CHANNELSTATE,*LPNET_ITS_ECT_CHANNELSTATE;

Members

dwSize

结构体大小

byRecordStatic

通道是否在录像: 0一不录像; 1一录像

bySignalStatic

连接的信号状态: 0一正常, 1一信号丢失

byHardwareStatic

通道硬件状态: 0一正常, 1一异常(例如 DSP 异常)

byChannelArmState

接入 IPC 的布防状态

dwChannel

通道号

dwBitRate

实际码率

dwLinkNum

连接的客户端个数

struClientIP

连接的客户端 IP 地址

dwIPLinkNum

如果该通道为 IP 接入,表示 IP 接入当前的连接数

by Exceed Max Link

是否超出了单路 128 路连接数 0 - 未超出, 1-超出

byRes

保留,置为0

7.128 NET_ITS_ECT_WORKSTATE_COMMAND:出入口终端工作状态获取的条件结构

struct{

DWORD dwSize;

DWORD dwChannel;

BYTE byRes[256];

}NET_ITS_ECT_WORKSTATE_COMMAND, *LPNET_ITS_ECT_WORKSTATE_COMMAND;

Members

dwSize

结构体大小

dwChannel

获取出入口终端服务器自身的工作状态时,该通道号设为 Oxffffffff; 如果出入口终端服务器级联, 获取下级服务器状态时,为 IP 通道,通道号从 33 开始。

byRes

7.129 NET_ITS_ECTWORKSTATE:出入口终端工作状态信息

struct{

DWORD dwSize;

BYTE byDevName[NAME_LEN];

DWORD dwRunTime;

NET ITS TRAFFIC DATA INFOstruTrafficDataInfo[2];DWORDdwMemoryUsage;DWORDdwCpuUsage;

DWORD dwDevTemperature;
DWORD dwDeviceStatic;

NET_DVR_DISKSTATEstruHardDiskStatic[MAX_DISKNUM_V30];BYTEbyAlarmInStatic[MAX_ALARMIN_V30];BYTEbyAlarmOutStatic[MAX_ALARMOUT_V30];

DWORD dwLocalDisplay;
BYTE byRes[256];

}NET_ITS_ECTWORKSTATE,*LPNET_ITS_ECTWORKSTATE;

Members

dwSize

结构体大小

byDevName

设备名称

dwRunTime

系统运行时间,单位: s

struTrafficDataInfo

支持两台主机(数据上传配置的主机)

dwMemoryUsage

内存占用率(如果内存占用率为30%,此处填30)

dwCpuUsage

CPU 占用率(如果 CPU 占用率为 30%,此处填 30)

dwDevTemperature

本机温度

dwDeviceStatic

设备的状态: 0-正常; 1-CPU 占用率太高,超过85%; 2-硬件错误,例如串口死掉

struHardDiskStatic

硬盘状态

byAlarmInStatic

报警输入口的状态: 0-没有报警, 1-有报警

by Alarm Out Static

报警输出端口的状态: 0-没有输出, 1-有报警输出

dwLocalDisplay

本地显示状态: 0-正常, 1-不正常

byRes

保留,置为0

7.130 NET_ITS_GATE_FACE:出入口人脸抓拍结果

struct{

DWORD dwSize;

BYTE byGroupNum;
BYTE byPicNo;

BYTE byFeaturePicNo;

BYTE byRes; WORD wLaneid;

BYTE byCamLaneId;

BYTE byDir;

DWORD dwChanIndex;

BYTE byMonitoringSiteID[MAX_ID_LEN];

BYTE byDeviceID[MAX_ID_LEN];

NET VCA FACESNAP RESULT struFaceInfo; BYTE byRes2[256];

}NET_ITS_GATE_FACE, *LPNET_ITS_GATE_FACE;

Members

dwSize

结构体大小

byGroupNum

图片组数量(一辆过车多台相机抓拍的图片组的总数,用于多相机数据匹配,目前该参数值为1)

byPicNo

连拍的图片序号(接收到图片组数量后,表示接收完成;接收超时不足图片组数量时,根据需要保留或删除)

byFeaturePicNo

连拍时取第几张图作为特写图, 0xff-表示不取

byRes

保留,置为0

wLaneid

车道号,1~32(索引车道号,可以跳跃)

byCamLaneId

对应相机车道号 1~16(相机配置的车道号,可以跳跃,可以相同)

byDir

监测方向: 0- 其他, 1- 入场, 2- 出场

dwChanIndex

通道号

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

struFaceInfo

人脸抓拍数据

byRes2

保留,置为0

7.131 NET_ITS_GATE_LANE_CFG:车道配置

```
struct{
 BYTE
         byGateSiteID[MAX_ID_LEN];
 BYTE
         byGateInfo[MAX_ID_LEN];
 BYTE
         byLaneName[NAME_LEN];
 BYTE
         byValid;
 BYTE
         byCamLaneId;
 WORD
         wLaneid;
 BYTE
         byRelativeIoNum;
 BYTE
         byDirection;
 BYTE
         byLprMode;
 BYTE
         byCardMode;
 BYTE
         byGateLaneMode;
 BYTE
         byCharge;
 BYTE
         byChargeMode;
 BYTE
         byRes1;
 BYTE
         byLedRelativeIndex[MAX_INDEX_LED];
 BYTE
         byGateRelativeIndex;
 BYTE
         byFarRrRelativeIndex
 BYTE
         byRes[82];
}NET_ITS_GATE_LANE_CFG, *LPNET_ITS_GATE_LANE_CFG;
Members
byGateSiteID
      出入口编号
byGateInfo
      出入口信息描述
byLaneName
      车道名称
byValid
      是否启用: 0- 未启用, 1- 启用
byCamLaneId
      对应相机车道号,1~16(相机配置的车道号,可以跳跃,可以相同)
wLaneid
      车道号,1~32(索引车道号,可以跳跃,逻辑车道)
byRelativeIoNum
      逻辑车道号关联的输出口编号
byDirection
      方向编号: 0- 其他, 1- 入场, 2- 出场, 3- 双向
byLprMode
```

牌识放行配置: 0-全部进, 1-除禁止名单进, 2-允许名单进

byCardMode

卡片放行配置: 0- 全部进, 1- 除禁止名单进, 2- 允许名单进

byGateLaneMode

出入口放行配置模式: 0- 全部进, 1- 只有牌识匹配放行, 2- 只有刷卡匹配放行, 3- 牌识或卡片有一个匹配则放行, 4- 牌识且卡片同时匹配则放行, 5- 全不进

byCharge

是否收费: 0-不收费, 1-收费

byChargeMode

收费类型: 0-车牌收费, 1-卡号收费

byRes1

保留,置为0

byLedRelativeIndex

LED 索引(每位数组表示一个 LED 设备,最大支持 8 个 LED 设备),取值范围: 1~255,紧凑排列,0表示无效(不解析后面的数据)

byGateRelativeIndex

出入口控制机相对索引

byFarRrRelativeIndex

远距离读卡器相对索引

byRes

保留,置为0

7.132 NET ITS GATE VEHICLE:停车场数据信息

struct{

DWORD dwSize;
DWORD dwMatchNo;
BYTE byGroupNum;
BYTE byPicNo;
BYTE bySecondCam;

BYTE byRes;
WORD wLaneid;
BYTE byCamLaneId;
BYTE byRes1;

BYTE byAlarmReason[MAX_ALARMREASON_LEN];

WORD wBackList;
WORD wSpeedLimit;
DWORD dwChanIndex;
NET_DVR_PLATE_INFO struPlateInfo;
NET_DVR_VEHICLE_INFO struVehicleInfo;

BYTE byMonitoringSiteID[MAX_ID_LEN];

BYTE byDeviceID[MAX_ID_LEN];

BYTE byDir;

BYTE byDetectType;

BYTE byRes2[2];

BYTE byCardNo[MAX_ID_LEN];

DWORD dwPicNum;

NET ITS PICTURE INFO struPicInfo[4];

BYTE bySwipeTime[MAX_TIME_LEN];

BYTE byRes3[224];

}NET_ITS_GATE_VEHICLE, *LPNET_ITS_GATE_VEHICLE;

Members

dwSize

结构体大小

dwMatchNo

匹配序号,由(车辆序号、数据类型、车道号)组成匹配码,默认:0

byGroupNum

图片组数量(一辆过车多台相机抓拍的图片组的总数,用于多相机数据匹配,目前该参数值为1)

bySecondCam

是否第二相机抓拍(如远近景抓拍的远景相机,或前后抓拍的后相机,特殊项目中会用到,标示前后相机抓拍图片): 0- 否, 1- 是

byRes

保留,置为0

wLaneid

车道号,1~32(索引车道号,可以跳跃)

byCamLaneId

对应相机车道号,1~16(相机配置的车道号,可以跳跃,可以相同)

byRes1

保留,置为0

byAlarmReason

自定义报警类型,默认为中文

wBackList

标记为是否报警数据: 0- 正常过车数据, 1- 禁止名单

wSpeedLimit

限速上限(超速时有效),单位: km/h

dwChanIndex

通道号

struPlateInfo

车牌信息结构

struVehicleInfo

车辆信息

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

byDir

监测方向: 0- 其它, 1- 入场, 2- 出场

byDetectType

检测方式: 0- 其他, 1- 地感触发, 2- 视频触发, 3- 多帧识别, 4- 雷达触发

byRes2

保留,置为0

byCardNo

卡号

dwPicNum

图片数量(与 byGroupNum 不同,代表本条信息附带的图片数量)

struPicInfo

图片信息,单张回调,最多4张图,由序号区分

bySwipeTime

增加刷卡时间,时间格式为 yyyymmddhh24missfff

byRes3

保留,置为0

7.133 NET_ITS_HANDOVER_INFO:出入口交接班数据信息

struct{

DWORD dwSize;

BYTE byOperatorName[MAX_OPERATORNAME_LEN];

BYTE byOperatorCard[MAX_CARD_LEN];

BYTE byStartTime[MAX_TIME_LEN];

BYTE byEndTime[MAX_TIME_LEN];

float fTotal_Pay;

DWORD dwTotal_Records;

BYTE byRes[64];

}NET_ITS_HANDOVER_INFO, *LPNET_ITS_HANDOVER_INFO;

Members

dwSize

结构体大小

byOperatorName

操作人员名称

byOperatorCard

操作人员卡号

byStartTime

上班时间,格式为 yyyymmddhh24miss

byEndTime

下班时间,格式为 yyyymmddhh24miss

fTotal Pay

本次上班期间总的收费金额,单位:元

dwTotal_Records

本次上班期间总的过车收费的记录条数

byRes

7.134 NET_ITS_IPC_CHAN_LANE_CFG:出入口参数配置

 $struct \{$

DWORD dwSize;
BYTE bylpcType;
BYTE byRes[135];

NET ITS GATE LANE CFG struGateLane[4];

}NET_ITS_IPC_CHAN_LANE_CFG, *LPNET_ITS_IPC_CHAN_LANE_CFG;

Members

dwSize

结构体大小

bylpcType

摄像机类型: 0- 无, 1- 车牌抓拍, 2- 人脸抓拍, 3- 监控相机

byRes

保留,置为0

struGateLane

车道配置结构体

7.135 NET_ITS_PARK_VEHICLE:停车场数据信息

struct{

DWORD dwSize;

BYTE byGroupNum;
BYTE byPicNo;

BYTE byLocationNum;
BYTE byParkError;

BYTE byParkingNo[MAX_PARKNO_LEN];

BYTE byLocationStatus;
BYTE bylogicalLaneNum;
WORD wUpLoadType;
BYTE byRes1[4];
DWORD dwChanIndex;
NET_DVR_PLATE_INFO struPlateInfo;
NET_DVR_VEHICLE_INFO struVehicleInfo;

BYTE byMonitoringSiteID[MAX_ID_LEN];

BYTE byDeviceID[*MAX_ID_LEN*];

DWORD dwPicNum;

NET_ITS_PICTURE_INFO struPicInfo[2];

BYTE byRes2[256];

}NET_ITS_PARK_VEHICLE, *LPNET_ITS_PARK_VEHICLE;

Members

dwSize

结构体大小

byGroupNum

图片组数量(一辆过车多台相机抓拍的图片组的总数,用于多相机数据匹配,目前该参数值为 1) byPicNo

连拍的图片序号(接收到图片组数量后,表示接收完成;接收超时不足图片组数量时,根据需要保留或删除)

byLocationNum

单张图片所管理的车位数

byParkError

停车异常: 0- 正常, 1- 异常

byParkingNum

车位编号

byLocationStatus

车位车辆状态: 0- 无车, 1- 有车

bylogicalLaneNum

逻辑车位号,取值范围:0~3(一个相机最大能管4个车位,0代表最左边,3代表最右边)

wUpLoadType

第零位表示: 0- 轮训上传, 1- 变化上传

byRes1

保留,置为0

dwChanIndex

通道号(IP通道,起始通道号为33)

struPlateInfo

车牌信息结构

struVehicleInfo

车辆信息

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

dwPicNum

图片数量(与 byGroupNum 不同,代表本条信息附带的图片数量)

struPicInfo

图片信息,单张回调,最多2张图,由序号区分

byRes2

保留,置为0

7.136 NET_ITS_PASSVEHICLE_COST_ITEM:出入口过车收费明细信息

struct{

DWORD dwSize;

DWORD dwPassVehicleID;

BYTE byIntime[MAX_TIME_LEN];
BYTE byOuttime[MAX_TIME_LEN];
BYTE byCardNo[MAX_CARD_LEN];

BYTE byPlateInfo[MAX_LICENSE_LEN]; float fPayCost; **BYTE** byOperatorName[MAX_OPERATORNAME_LEN]; **BYTE** byVehicleType; **BYTE** byRes1[3]; DWORD dwPayRuleID; DWORD dwFreeRuleID; **BYTE** byRes2[256]; }NET_ITS_PASSVEHICLE_COST_ITEM, *LPNET_ITS_PASSVEHICLE_COST_ITEM; **Members** dwSize 结构体大小 dwPassVehicleID 过车序号与出入口数据的过车序号相关联 byIntime 入场时间,格式为 yyyymmddhh24miss byOuttime 出场时间,格式为 yyyymmddhh24miss byCardNo 卡号 byPlateInfo 车牌号码 **fPayCost** 收费金额(单位:元) byOperatorName 操作人员名称 byVehicleType车辆类型: 0-小型车, 2 大型车 byRes1 保留,置为0 dwPayRuleID 收费规则流水号 dwFreeRuleID 减免规则流水号 byRes2

7.137 NET_ITS_PICTURE_INFO:图片信息结构体

struct{
 DWORD dwDataLen;
 BYTE byType;
 BYTE byDataType;
 BYTE byRes1[2];

DWORD dwRedLightTime;
BYTE byAbsTime[32];
NET VCA RECT struPlateRect;
NET VCA RECT struPlateRecgRect;

BYTE *pBuffer; BYTE byRes2[12];

}NET_ITS_PICTURE_INFO, *LPNET_ITS_PICTURE_INFO;

Members

dwDataLen

媒体数据长度

byType

数据类型: 0-车牌图, 1- 场景图, 2- 合成图, 3- 特写图, 4- 二值图, 5- 码流

byDataType

数据上传方式: 0-数据直接上传; 1-云存储服务器 URL (原先的图片数据变成 URL 数据,图片长度变成 URL 长度)

byRes1

保留

dwRedLightTime

经过的红灯时间,单位: s

byAbsTime

绝对时间点: yyyymmddhhmmssxxx, e.g.20090810235959999, 最后三位为毫秒数

struPlateRect

车牌位置

struPlateRecgRect

牌识区域坐标。参数中的边界宽 fWidth 和高 fHeight 若为 0,fX 和 fY 不为 0,则(fX,fY)表示牌识的中心点坐标

pBuffer

保存数据的缓冲区

byRes2

保留

Remarks

- 如果设备只上传了场景图,用户可以根据牌识区域坐标(struPlateRecgRect)自己从场景图中截取特写图, 宽和高可以根据实际情况自己调节。
- 通过 <u>NET_DVR_CLOUDSTORAGE_CFG</u> 配置可以启用云存储功能,则上传的图片信息将变成获取图片信息的 URL 地址,平台通过该 URL 地址去云存储服务器上获取数据
- 图片云存储 URL 格式:

http://CVMIP:Port/pic?did=DevID&bid=BlkID&pid=PictureID&ptime=PicTime

CVMIP: CVM(云存储服务器)的 IP 地址

Port: CVM(云存储服务器)对外提供 http 服务的端口(固定 8009)

DevID: CVS(云存储服务器)中设备 ID 号 BlkID: CVS(云存储服务器)中设备的块号

PictureID: CVS(云存储服务器)为图片生成的编号

PicTime: 图片的时间戳

示例:

http://10.192.65.140:8009/pic?did=35b9cbd0-8ffa-1031-87e6-0025903c6a50&bid=387&pid=2952790009&ptime=1378106185

7.138 NET_ITS_PLATE_RESULT:识别结果结构体

struct{

DWORD dwSize;
DWORD dwMatchNo;
BYTE byGroupNum;
BYTE byPicNo;

BYTE bySecondCam;
BYTE byFeaturePicNo;
BYTE byDriveChan;
BYTE byVehicleType;
BYTE byRes1[2];
WORD wIllegalType;

BYTE bylllegalSubType[8];

BYTE byPostPicNo;
BYTE byChanIndex;
WORD wSpeedLimit;
BYTE byRes2[2];
NET_DVR_PLATE_INFO struPlateInfo;
NET_DVR_VEHICLE_INFO struVehicleInfo;

BYTE byMonitoringSiteID[48];

BYTE byDeviceID[48];

BYTE byDir;

BYTE byDetectType;
BYTE byRes3[22];

<u>NET_DVR_TIME_V30</u> struSnapFirstPicTime;

DWORD dwlllegalTime;
DWORD dwPicNum;
NET ITS PICTURE INFO struPicInfo[6];

}NET_ITS_PLATE_RESULT, *LPNET_ITS_PLATE_RESULT;

Members

dwSize

结构体大小

dwMatchNo

匹配序号,由(车辆序号、数据类型、车道号)组成匹配码

byGroupNum

图片组数量(一辆过车相机多次抓拍的数量,代表一组图片的总数,用于延时匹配数据)

byPicNo

连拍的图片序号(接收到图片组数量后,表示接收完成;接收超时不足图片组数量时,根据需要保留或删除)

bySecondCam

是否第二相机抓拍(如远近景抓拍的远景相机,或前后抓拍的后相机,特殊项目中会用到)

byFeaturePicNo

闯红灯电警,取第几张图作为特写图,0xff-表示不取

byDriveChan

触发车道号

byVehicleType

车辆类型: 0- 未知, 1- 客车, 2- 货车, 3- 轿车, 4- 面包车, 5- 小货车, 6- 行人, 7- 二轮车, 8- 三轮车

byRes1

保留

wIllegalType

违章类型,采用国标定义,详细定义说明见7.161 违章类型国标定义

byIllegalSubType

违章子类型

byPostPicNo

违章时取第几张图片作为卡口图, 0xff-表示不取

byChanIndex

通道号(保留)

wSpeedLimit

限速上限 (超速时有效)

byRes2

保留

struPlateInfo

车牌信息结构

struVehicleInfo

车辆信息

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

byDir

监测方向: 1-上行, 2-下行, 3-双向, 4-由东向西, 5-由南向北, 6-由西向东, 7-由北向南, 8-其它

byDetectType

检测方式: 1-地感触发, 2-视频触发, 3-多帧识别, 4-雷达触发

byRes3

保留

dwPicNum

图片数量(与 picGroupNum 不同,代表本条信息附带的图片数量)

struPicInfo

图片信息,单张回调,最多6张图,由序号区分

7.139 NET_ITS_REMOTE_COMMAND:远程控制命令

struct{

```
WORD wLaneid;
BYTE byCamLaneId;
```

BYTE byRes;
DWORD dwCode;
BYTE byRes1[128];

}NET_ITS_REMOTE_COMMAND, *LPNET_ITS_REMOTE_COMMAND;

Members

wLaneid

车道号,1~32(索引车道号,可以跳跃)

byCamLaneId

对应相机车道号,1~16(相机配置的车道号,可以跳跃,可以相同)

byRes

保留,置为0

dwCode

命令码: 0x0- 开闸, 0x1- 关闸

byRes1

保留,置为0

7.140 NET_ITS_REMOTE_CONTROL:远程控制结构体

struct{

DWORD dwSize;

NET_ITS_REMOTE_COMMAND struRemoteCommand;

}NET_ITS_REMOTE_CONTROL, *LPNET_ITS_REMOTE_CONTROL;

Members

dwSize

结构体大小

struRemoteCommand

远程命令结构

7.141 NET_ITS_ROADINFO:路口设备异常报警信息

struct{

DWORD dwSize;
DWORD dwChannel;
BYTE bytriggerMode;
BYTE byRes1[3];
DWORD dwDeviceNum;

BYTE byMonitoringSiteID[48];

BYTE byRoadInfo[48];

NET ITS SINGLE DEVICE INFO struSingleDevice[ITS_MAX_DEVICE_NUM];

BYTE byRes[16];

}NET_ITS_ROADINFO,*LPNET_ITS_ROADINFO;

Members

dwSize

结构体大小

dwChannel

通道号, Oxffffffff 表示终端, 其它表示对应的相机

bytriggerMode

触发模式: 0-线圈触发, 1-视频触发

byRes1

保留,置为0

dwDeviceNum

实际设备个数

byMonitoringSiteID

监测点编号

byRoadInfo

监测点信息

struSingleDevice

路口设备信息

byRes

保留,置为0

7.142 NET ITS SINGLE DEVICE INFO:路口设备信息

struct{

DWORD dwDeviceType;

DWORD dwDirID;

DWORD dwLaneID;

DWORD dwDeviceState;

BYTE byDeviceName[32];

BYTE byDeviceID[48];

BYTE byRes[16];

}NET_ITS_SINGLE_DEVICE_INFO,*LPNET_ITS_SINGLE_DEVICE_INFO;

Members

dwDeviceType

设备类型: 0-终端, 1-相机, 2-补光灯, 3-车检器, 4-线圈 1, 5-线圈 2, 6-线圈 3, 7-红绿灯检测器, 8-机柜, 9-雷达, 10-道闸, 11-出入口控制机(票箱), 12-LED 显示屏, 13-远距离读卡器, 14-近距离读卡器, 15-红外扫描枪, 16-票据打印机, 17-节点管理器(诱导服务器相关)

dwDirID

方向编号: 1-上行,2-下行,3-双向,4-由东向西,5-由南向北,6-由西向东,7-由北向南,8-其他 *dwLaneID*

车道编号

dwDeviceState

设备状态: 0-正常, 非 0-异常(参考设备异常代码表)

byDeviceName

设备名称

byDeviceID

设备编号,一般用序列号,车检器用地址

byRes

保留

Remarks

设备异常代码表如下所示:

设备名称	异常代码	异常说明
机柜	0101	机柜温度异常
	0102	机柜湿度异常
	0103	机柜门状态异常
	0104	机柜异常震动
	0105	其他异常
抓拍单元	0201	抓拍单元温度异常
	0202	抓拍单元湿度异常
	0203	摄像机 DSP 负载率异常
	0204	摄像机内存使用率异常
	0205	摄像机参数配置异常
	0206	摄像机布防异常
	0207	抓拍单元故障
	0208	其他异常
补光灯	0301	补光灯故障
雷达	0401	雷达故障
车辆检测处理器	0501	车检卡异常
	0502	地感线圈异常
	0503	车辆检测处理器异常
	0504	其他异常
交通信号灯检测器	0601	信号灯电信号异常
	0602	交通信号灯检测器异常
终端服务器	0701	终端服务器温度异常
	0702	终端服务器 CPU 使用率异常
	0703	终端服务器内存使用率异常
	0704	终端服务器存储空间异常
	0705	终端服务器软件异常
	0706	其他异常
	0707	终端服务器异常

视频分析记录仪	0801	视频分析记录仪温度异常
	0802	视频分析记录仪 CPU 使用率异常
	0803	视频分析记录仪内存使用率异常
	0804	视频分析记录仪存储空间异常
	0805	视频分析记录仪软件异常
	0806	其他异常
	0807	视频分析记录仪异常
牌识处理单元	0901	视频输入异常
	0902	牌识处理单元异常
出入口控制终端	1001	出入口控制终端温度异常
	1002	出入口控制终端 CPU 使用率异常
	1003	出入口控制终端内存使用率异常
	1004	出入口控制终端存储空间异常
	1005	出入口控制终端软件异常
	1006	其他异常
	1007	出入口控制终端异常
LED 诱导屏	1101	LED 诱导屏异常
串口控制器	1201	串口控制器异常

7.143 NET_ITS_TRAFFIC_COLLECT:交通统计数据

struct{

DWORD dwSize;

BYTE byMonitoringSiteID[48];

BYTE byDeviceID[48];
BYTE byLaneNum;

BYTE byDir;

BYTE byDetectType;

BYTE byRes1;
DWORD dwChannel;

NET DVR SYSTEM TIME struStartTime;
DWORD dwSamplePeriod;

NET ITS TRAFFIC DRIVE CHAN struDriveChan[6];
BYTE byRes2[24];

}NET_ITS_TRAFFIC_COLLECT,*LPNET_ITS_TRAFFIC_COLLECT;

Members

dwSize

结构体大小

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

byLaneNum

车道总数

byDir

监测方向: 1-上行, 2-下行, 3-双向, 4-由东向西, 5-由南向北, 6-由西向东, 7-由北向南, 8-其它

byDetectType

检测方式: 1-地感线圈, 2-视频触发, 3-多帧识别, 4-雷达触发

byRes1

保留

dwChannel

通道号

struStartTime

统计开始时间

dwSamplePeriod

统计时间,单位:秒

struDriveChan

交通流量数据,每个相机支持6个车道

byRes

保留

7.144 NET_ITS_TRAFFIC_DATA_HOST:接收交通数据主机信息

struct{

NET DVR IPADDR struHostAddr; WORD wHostPort; **BYTE** byRes1[2]; **DWORD** dwDataType; **BYTE** bySuspendUpload; BYTE byUploadStrategy; WORD wUploadInterval; **DWORD** dwUploadTimeOut; **BYTE** byRes[24];

}NET_ITS_TRAFFIC_DATA_HOST,*LPNET_ITS_TRAFFIC_DATA_HOST;

Members

struHostAddr

远程主机 IP 地址

wHostPort

远程主机端口号

byRes1

保留,置为0

dwDataType

上传远程主机的数据类型,按位表示,0代表全部不上传,0xffffffff 代表全部上传,不同的类型需上传则对应的数值取或,定义如下:

违章代码	违章描述	数值
0	普通卡口数据	0x01
1018	机动车不在机动车道内行驶的(车道禁行)	0x01 << 1
1019	机动车违反规定使用专用车道的(预留)	0x01 << 2
1208	不按导向标志行驶(违章左转、违章直行、违章右转等)	0x01 << 3
1211	通过路口遇停止信号时,停在停止线以内或路口内的(压停止线)	0x01 << 4
1229	违反禁令标志(预留,目前没有提供此类违章代码)	0x01 << 5
1230	机动车禁止标线指示 (压车道线等)	0x01 << 6
1301	逆行	0x01 << 7
1302	违反信号灯(闯红灯)	0x01 << 8
1042	机动车不按规定车道行驶	0x01 << 9
1303	机动车行驶超过规定时速 50%以下	0x01 << 10
1603	机动车行驶超过规定时速 50%	0x01 << 11

bySuspendUpload

是否暂停数据上传: 0-正常上传, 1-暂停上传

byUploadStrategy

上传策略: 0-最新数据优先上传, 1-按照通行时间上传

wUploadInterval

上传间隔时间,单位: ms,取值范围: 1~2000,该参数只对历史数据有效

dwUploadTimeOut

上传超时时间

byRes

保留,置为0

7.145 NET_ITS_TRAFFIC_DATA_INFO:交通数据信息

struct{

DWORD dwDataQuantity;

DWORD dwDataRsendQuantity;

NET DVR SYSTEM TIMEstruStartTime;NET DVR SYSTEM TIMEstruEndTime;NET DVR IPADDRstruDataHost;

}NET_ITS_TRAFFIC_DATA_INFO,*LPNET_ITS_TRAFFIC_DATA_INFO;

Members

dwDataQuantity

数据总量

dwDataRsendQuantity

未发送数量(需要上传交通数据主机的)

struStartTime

未发送数据的最早时间

struEndTime

未发送数据的最晚时间

struDataHost

接收交通数据主机地址

7.146 NET_ITS_TRAFFIC_DRIVE_CHAN:单个车道路况信息

```
struct{
  BYTE
          byDriveChan;
  BYTE
          byRes1[3];
  WORD
          wCarFlux;
  WORD
          wPasserbyFlux;
  WORD
          wShayFlux;
  float
          fAverOccpancy;
  WORD
          wAverSpeed;
  WORD
          wAverCarDis;
  BYTE
          byRes2[16];
}NET_ITS_TRAFFIC_DRIVE_CHAN,*LPNET_ITS_TRAFFIC_DRIVE_CHAN;
Members
byDriveChan
      车道号
byRes1
      保留
wCarFlux
      汽车流量数
wPasserbyFlux
      行人流量数
wShayFlux
      二轮车流量数
fAverOccpancy
      平均车道占有率百分比,单位:%,例如 12.6 表示占有率为 12.6%
```

7.147 NET_ITS_UPLOAD_CFG:数据上传配置参数

struct{

wAverSpeed

wAverCarDis

保留

byRes2

平均车速(km/h)

平均车头时距,单位:毫秒

DWORD dwSize;

NET_ITS_TRAFFIC_DATA_HOST struRemoteDataHost1;
NET_ITS_TRAFFIC_DATA_HOST struRemoteDataHost2;

}NET_ITS_UPLOAD_CFG,*LPNET_ITS_UPLOAD_CFG;

Members

dwSize

结构体大小

struRemoteDataHost1

接收交通数据主机1

struRemoteDataHost2

接收交通数据主机 2

7.148 NET_ITS_WORKSTATE:终端工作状态信息

struct{

DWORD dwSize;

BYTE byDevName[32];
DWORD dwRunTime;

NET_ITS_TRAFFIC_DATA_INFOstruTrafficDataInfo[2];DWORDdwMemoryUsage;DWORDdwCpuUsage;

DWORD dwDevTemperature;
DWORD dwDeviceStatic;

NET_DVR_DISKSTATEstruHardDiskStatic[MAX_DISKNUM_V30];NET_DVR_CHANNELSTATE_V30struChanStatic[MAX_CHANNUM_V30];BYTEbyAlarmInStatic[MAX_ALARMIN_V30];BYTEbyAlarmOutStatic[MAX_ALARMOUT_V30];

DWORD dwLocalDisplay;

BYTE byAudioInChanStatus[8];

BYTE byRes[4]; }NET_ITS_WORKSTATE,*LPNET_ITS_WORKSTATE;

Members

dwSize

结构体大小

byDevName

设备名称

dwRunTime

系统运行时间,单位: s

struTrafficDataInfo

支持两台主机(数据上传配置的主机)

dw Memory Usage

内存占用率(如果内存占用率为30%,此处填30)

dwCpuUsage

CPU 占用率 (如果 CPU 占用率为 30%, 此处填 30)

dwDevTemperature

本机温度

dwDeviceStatic

设备的状态: 0-正常; 1-CPU 占用率太高,超过 85%; 2-硬件错误,例如串口死掉

struHardDiskStatic

硬盘状态

struChanStatic

通道的状态

byAlarmInStatic

报警输入口的状态: 0-没有报警, 1-有报警

byAlarmOutStatic

报警输出端口的状态: 0-没有输出, 1-有报警输出

dwLocalDisplay

本地显示状态: 0-正常, 1-不正常

byAudioInChanStatus

表示语音通道的状态: 0-未使用; 1-使用中,数组0表示第1个语音通道

byRes

保留,置为0

7.149 NET_VCA_DEV_INFO:前端设备信息

struct{

NET_DVR_IPADDR struDevIP;
WORD wPort;
BYTE byChannel;
BYTE byIvmsChannel;

}NET_VCA_DEV_INFO,*LPNET_VCA_DEV_INFO;

Members

struDevIP

前端设备地址

wPort

前端设备端口号

byChannel

前端设备通道号,参数值表示通道号。比如,byChannel=1,表示通道 1。

byIvmsChannel

IVMS 通道号

7.150 NET_VCA_FACESNAP_RESULT:人脸抓拍结果

struct{

DWORD dwSize;

DWORD dwRelativeTime;
DWORD dwAbsTime;

DWORD dwFacePicID;
DWORD dwFaceScore;
NET_VCA_TARGET_INFO struTargetInfo;

NET VCA RECTstruRect;NET VCA DEV INFOstruDevInfo;DWORDdwFacePicLen;

DWORD dwBackgroundPicLen;

BYTE byRes[60];
BYTE *pBuffer1;
BYTE *pBuffer2;

}NET_VCA_FACESNAP_RESULT, *LPNET_VCA_FACESNAP_RESULT;

Members

dwSize

结构体大小

dwRelativeTime

相对时标

dwAbsTime

绝对时标

dwFacePicID

人脸图 ID

dwFaceScore

人脸评分,范围: 0~100

struTargetInfo

报警目标信息

struRect

人脸子图区域

struDevInfo

前端设备信息

dwFacePicLen

人脸子图的长度,为0表示没有图片,大于0表示有图片

dwBackgroundPicLen

背景图的长度,为0表示没有图片,大于0表示有图片(保留)

byRes

保留

*pBuffer1

人脸子图的图片数据

*pBuffer2

背景图的图片数据(保留,通过查找背景图接口可以获取背景图)

7.151 NET_VCA_POINT:点坐标参数

struct{

float fX;

float fY;

```
}NET_VCA_POINT,*LPNET_VCA_POINT;
Members
fΧ
      X轴坐标,取值范围[0.001,1]
fΥ
      Y轴坐标,取值范围[0.001,1]
```

NET_VCA_RECT:区域框参数 7.152

```
struct{
  float
        fX;
  float
        fY;
  float
        fWidth;
  float
        fHeight;
}NET_VCA_RECT,*LPNET_VCA_RECT;
Members
fΧ
      边界框左上角点的 X 轴坐标,取值范围[0.001,1]
fΥ
      边界框左上角点的 Y 轴坐标,取值范围[0.001,1]
fWidth
      边界框的宽度,取值范围[0.001,1]
fHeight
      边界框的高度,取值范围[0.001,1]
```

NET VCA SIZE FILTER:尺寸过滤器参数 7.153

```
struct{
 BYTE
                 byActive;
 BYTE
                 byMode;
 BYTE
                 byRes[2];
                 struMiniRect;
 NET_VCA_RECT
 NET VCA RECT
                 struMaxRect;
}NET_VCA_SIZE_FILTER,*LPNET_VCA_SIZE_FILTER;
Members
byActive
      是否激活尺寸过滤器,0-否,非0-是
byMode
      过滤器模式,具体定义如下:
       enum _VCA_SIZE_FILTER_MODE_{
         IMAGE_PIX_MODE,
         REAL_WORLD_MODE,
         DEFAULT_MODE
```

}SIZE_FILTER_MODE

IMAGE_PIX_MODE

根据像素大小设置

REAL_WORLD_MODE

根据实际大小设置

DEFAULT_MODE

默认模式(目前 ATM 支持)

byRes

保留,置为0

struMiniRect

最小目标框,全0表示不设置。实际模式时取值范围为0-50,单位为m。

struMaxRect

最大目标框,全0表示不设置

7.154 NET_VCA_TARGET_INFO:报警目标信息

struct{

DWORD dwID;

NET VCA RECT struRect;
BYTE byRes[4];

}NET_VCA_TARGET_INFO,*LPNET_VCA_TARGET_INFO;

Members

dwID

目标 ID, 人员密度过高报警时为 0

struRect

目标边界框

byRes

保留,置为0

7.155 NET_VCA_POLYGON:多边形

struct{

DWORD dwPointNum;

NET_VCA_POINT struPos[VCA_MAX_POLYGON_POINT_NUM];

}NET VCA POLYGON,*LPNET VCA POLYGON;

Members

dwPointNum

有效点(大于等于 3),若是 3 点在一条线上认为是无效区域,线交叉认为是无效区域 struPos

多边形边界点,最大值为10

7.156 BasicCapability:设备软硬件能力集

```
<?xml version="1.0" encoding="utf-8" ?>
<!-- req, 设备软硬件能力集描述 -->
<BasicCapability version="2.0">
    <!-- req, 硬件支持能力 -->
    <HardwareCapability>
         <!-- req, 前面板版本,高 16 位是主版本,低 16 位是次版本 -->
       <HardwareVersion>0x0</HardwareVersion>
       <!-- req, 报警输入个数 -->
       <AlarmInPortNum>4</AlarmInPortNum>
       <!-- req, 报警输出个数 -->
       <AlarmOutPortNum>4</AlarmOutPortNum>
       <!-- req, 232 串口个数 -->
       <RS232Num>1</RS232Num>
       <!-- req, 485 串口个数 -->
       <RS485Num>1</RS485Num>
       <!-- req, 网络口个数 -->
       <NetworkPortNum>1</NetworkPortNum>
       <!-- req, USB 口的个数 -->
       <USBNum>1</USBNum>
       <!-- req, Flash 大小(单位 M) -->
       <FlashSize />
       <!-- req, Ram 大小(单位 M) -->
       <RamSize />
       <!-- req, USB 版本 -->
       <USBVersion />
       <!-- req, SD 卡个数 -->
       <SDNum>0</SDNum>
       <!-- req, 硬盘个数(包括 SATA、eSATA 和 NAS),实际已接可用的硬盘个数 -->
       <HardDiskNum>1</HardDiskNum>
       <!-- reg, 2012-5-14SATA 盘个数 -->
       <SATANum>1</SATANum>
       <!-- req, 2012-5-14eSATA 盘个数 -->
       <eSATANum>1</eSATANum>
       <!-- req, 2012-5-14miniSAS 盘个数 -->
       <miniSASNum>1</miniSASNum>
       <!-- req, VIN 个数 -->
       <VideoInNum>4</VideoInNum>
       <!-- req, AIN 个数 -->
       <AudioInNum>4</AudioInNum>
       <!-- req, VOUT 个数 -->
       <VideoOutNum>1</VideoOutNum>
```

```
<!-- req, AOUT 个数 -->
  <AudioOutNum>1</AudioOutNum>
  <!-- req, 语音对讲通道个数 -->
  <AudioTalkNum>2</AudioTalkNum>
  <!-- req, 支持 SD 卡, 1-支持, 不支持时不显示 -->
  <SDSupport>1</SDSupport>
  <!-- req, 支持 WiFi, 1-支持, 不支持时不显示 -->
  <WiFiSupport>1</WiFiSupport>
  <!-- req, 支持 POE(IPC 的网线供电), 1-支持, 不支持时不显示 -->
  <POESupport>1</POESupport>
  <!-- req, 支持红外, 1-支持, 不支持时不显示 -->
  <IRSupport>1</IRSupport>
  <!-- req, 支持本地输出, 1-支持, 不支持时不显示 -->
  <VideoOutSupport>1</VideoOutSupport>
  <!-- req, 支持恢复出厂设置, 1-支持, 不支持时不显示 -->
  <ResetSupport>1</ResetSupport>
  <!-- req, 模拟通道个数,和注册返回的 byChanNum 的值一致 -->
  <AnalogChannelNum>255</AnalogChannelNum>
  <!-- req, 数字通道个数 -->
  <IPChannelNum>255</IPChannelNum>
  <!-- req, 支持多网卡, 1-支持, 不支持时不显示 -->
  <MultiNetworkCard>1</MultiNetworkCard>
  <!-- req, 支持 bonding 功能, 1-支持, 不支持时无此项 -->
  <BondingSupport>1</BondingSupport>
  <!-- reg, VGA 个数 -->
  <VGANumber>255</VGANumber>
  <!-- req, HDMI 个数 -->
  <HDMINumber>255</HDMINumber>
  <!-- req, SDI 个数 -->
  <SDINumber>255</SDINumber>
  <!-- req, CVBS 个数 -->
  <CVBSNumber>255</CVBSNumber>
  <!-- req, 辅助输出个数 -->
  <AuxoutNumber>255</AuxoutNumber>
  <!-- req, RAID 类型, 0-硬 RAID, 1-软 RAID -->
  <RAIDType>1</RAIDType>
  <RS485>
        <localRs485No min="" max="" /> <!-- req, 本地 485 口序号-->
        <expandRS485No min="" max="" /> <!-- req, 可扩展 485 口序号-->
        <fullDuplexRS485No min="" max="" /> <!-- req, 全双工 485 口序号,相对于本地 485 口数-->
        <semiDuplexRS485No min="" max="" /> <!-- req, 半双工 485 口序号,相对于本地 485 口数-->
        <RS485SlotNo min="" max="" /> <!-- req, 485 槽位序号-->
  </RS485>
</HardwareCapability>
```

<!-- req, 软件支持能力 --> <SoftwareCapability>

- <!-- req, 硬盘是否支持新的硬盘号映射方式:1-支持, 不支持时不显示 -->
- <!-- req, 在新的映射方式下, IPC 给 SDK 传的硬盘号: SD 卡是 0, NAS 盘从 8 开始; 之前的硬盘号表示为 0、1、2....->
- <NewHdNo>1</NewHdNo>
- <!-- req, 2012-5-14 支持网盘的最大个数(不支持时不显示),网盘包括 Nas 和 IPSAN -->
- <MaxNetworkHDNum>8</MaxNetworkHDNum>
- <!-- req, 支持 nas 存储功能, 1-支持, 不支持时不显示。兼容 IPC 不能删除 -->
- <NasSupport>1</NasSupport>
- <!-- req, nas 个数 -->
- <NasNumber>8</NasNumber>
- <!-- req, 支持的结构体 NET_DVR_NET_DISKCFG -->
- <NetDiskIdentification>
- <!-- req, 表示支持网盘接入支持认证 -->
- <NASIdentification>
- <!-- req, 表示支持 NAS 接入支持认证 -->
- <NFSMountType>true</NFSMountType>
- <!-- req, 表示支持 NAS 支持 NFS 方式接入 -->
- <CIFSMountType>
- <!-- req, 表示支持 NAS 支持 CIFS 方式接入 -->
- <usernameLen min="" max="" />
- <!-- req, NAS 认证上的 name 长度的最大值和最小值-->
- <passwordLen min="" max="" />
- <!-- reg, NAS 认证上的 passwd 长度的最大值和最小值-->
- </CIFSMountType>
- </NASIdentification>
- </NetDiskIdentification>
- <!-- req, 最大字符串叠加个数(针对模拟通道) -->
- <ShowStringNumber>8</ShowStringNumber>
- <!-- req, 支持移动侦测, 1-支持, 不支持时不显示 -->
- <MotionDetectAlarmSupport>1</MotionDetectAlarmSupport>
- <!-- req, 支持视频丢失报警, 1-支持, 不支持时不显示(针对模拟通道) -->
- <VILostAlarmSupport>1</VILostAlarmSupport>
- <!-- req, 支持遮挡报警, 1-支持, 不支持时不显示(针对模拟通道) -->
- <HideAlarmSupport>1</HideAlarmSupport>
- <!-- req, 支持遮盖, 1-支持, 不支持时不显示(针对模拟通道) -->
- <ShelterSupport>1</ShelterSupport>
- <!-- req, 支持 rtsp 网络传输功能, 1-支持, 不支持时不显示 -->
- <RtspSupport>1</RtspSupport>
- <!-- req, 支持 rtp over rtsp 网络传输功能, 1-支持, 不支持时不显示 -->
- <RtpoverRtspSupport>1</RtpoverRtspSupport>
- <!-- req, 支持 rtsp over http 网络传输功能, 1-支持, 不支持时不显示 -->
- <RtspoverHttpSupport>1</RtspoverHttpSupport>

```
<!-- req, 支持 NTP 校时 , 1-支持, 不支持时不显示 -->
<NtpSupport>1</NtpSupport>
<!-- req, 支持电子云台, 1-支持, 不支持时不显示 -->
<EptzSupport>1</EptzSupport>
<!-- req, 支持云台控制, 1-支持, 不支持时不显示 -->
<PtzSupport>1</PtzSupport>
<!-- req, 支持 DDNS, 1-支持, 不支持时不显示。兼容 IPC 不能删除 -->
<DDNSSupport>1</DDNSSupport>
<!-- reg, DDNS 服务器类型: 0- IP Server, 1-Dyndns, 2-PeanutHull(花生壳), 3-NO-IP, 4- hkDDNS -->
<DDNSHostType>0,1,2,3,4</DDNSHostType>
<SNMPSupport>1</SNMPSupport>
<!-- req, SNMP 版本, 1-v1, 2-v2, 3-v3 -->
<SNMPVersion>1,2,3</SNMPVersion>
<!-- req, 支持 UPNP, 1-支持, 不支持时不显示 -->
<UPNPSupport>1</UPNPSupport>
<!-- req, 支持 iSCSI, 1-支持, 不支持时不显示 -->
<iSCSISupport>1</iSCSISupport>
<!-- reg, 2012-5-14 支持 IP SAN 个数 -->
<iSCSINum>1</iSCSINum>
<!-- req, 支持 ipv6, 1-支持, 不支持时不显示 -->
<lpv6Support>0/lpv6Support>
<!-- req, 支持智能, 1-支持, 不支持时不显示 -->
<VCASupport>1</VCASupport>
<!-- req, 支持复合流, 1-支持, 不支持时不显示(针对模拟通道) -->
<MultipleStreamSupport>1</MultipleStreamSupport>
<!-- req, 支持子码流,1-支持,不支持时不显示(针对模拟通道) -->
<SubStreamSupport>1</SubStreamSupport>
<!-- req, 支持 EMAIL, 1-支持, 不支持时不显示 -->
<EmailSupport>1</EmailSupport>
<!-- reg, SADP 版本, 0-V1.0, 1-V3.0 -->
<SADPVersion>0,1</SADPVersion>
<ZeroChanNumber>1</ZeroChanNumber>
<!-- req, 支持备份, 1-支持, 不支持时不显示 -->
<BackupSupport>1</BackupSupport>
<!-- req, 支持按事件查找录像, 1-支持, 不支持时无此项 -->
<FindFileByEventSupport>1</FindFileByEventSupport>
<!-- req, 支持智能搜索录像, 1-支持, 不支持时不显示 -->
<SmartSearchSupport>1</SmartSearchSupport>
<!-- req, 支持 ATM 配置, 1-支持, 不支持时不显示 -->
<ATMSupport>1</ATMSupport>
<!-- req, 支持文件锁定/解锁, 1-支持, 不支持时不显示 -->
<FileLockSupport>1</FileLockSupport>
<!-- req, 支持主子码流码率动态限制, 1-支持, 不支持时不显示(此能力无对应配置) -->
<BitrateLimitSupport>1</BitrateLimitSupport>
```

- <!-- req, 支持注册最大路数 -->
- <MaxLoginNum>0</MaxLoginNum>
- <!-- req, 支持预览最大路数 -->
- <MaxPreviewNum>0</MaxPreviewNum>
- <!-- req, 支持回放最大路数 -->
- <MaxPlayBackNum>0</MaxPlayBackNum>
- <!-- req, 通道支持最大连接路数 -->
- <MaxChanLinkNum>6</MaxChanLinkNum>
- <ShutDownSupport>1</ShutDownSupport>
- <!-- req, 支持预置点冻结, 1-支持, 不支持时不显示 -->
- <FrameFreezeSupport>1</FrameFreezeSupport>
- <!-- req, 2012-03-22 是否支持硬盘盘组配置, 1-支持, 不支持时不显示 -->
- <HDgroupConfig>1</HDgroupConfig>
- <!-- req, 2012-03-22 是否支持 232 配置, 1-支持, 不支持时不显示 -->
- <RS232Config>1</RS232Config>
- <!-- req, 2012-03-22 是否支持 PPPoE 配置, 1-支持, 不支持时不显示 -->
- <PPPoEConfig>1</PPPoEConfig>
- <!-- req, 2012-03-22 是否支持冗余录像, 1-支持, 不支持时不显示 -->
- <RedundancyRecord>1</RedundancyRecord>
- <!-- req, 2012-03-22 是否支持主辅口缩放配置, 1-支持, 不支持时不显示 -->
- <VideoOutScaleConfig>1</VideoOutScaleConfig>
- <!-- req, 2012-03-22 是否支持 guest 用户, 1-支持, 不支持时不显示 -->
- <GuestUser>1</GuestUser>
- <!-- req, 2012-03-22 是否支持 FTP 上传图片, 1-支持, 不支持时不显示 -->
- <UploadFTP>1</UploadFTP>
- <!-- req, 2012-05-15 是否不支持磁盘配额,录像和图片配额都支持时不显示,1-录像和图片配额都不支持,2-支持录像配额但不支持图片配额 -->
- <NotSupportDiskQuota>1</NotSupportDiskQuota>
- <!-- req, 2012-12-8 支持磁盘配额按比例分配, 1-支持, 不支持时不显示-->
- <QuotaRatio>1</QuotaRatio>
- <LocalVout>
 - <mainVoutType opt="mainCVBS,HDMI,VGA,auto" />
 - <!-- req,本地主口输入类型, mainCVBS-主 CVB. 非同源设备: 0-Auto 1-主 CVBS 2-HDMI 3-VGA 同源设备: 0-Auto 1-主 CVBS 2-HDMI/VGASnetra2.2 以后支持选择,之前版本为 auto(能力集解析返回 auto)-->
- </LocalVout>
- <SingleStorageMaxCap>16</SingleStorageMaxCap><!-- req,系统支持单个存储设备最大容量,单位:T-->
- <IPCPlug>1</IPCPlug><!-- req 是否支持 IPC 即插即用, 1-支持, 不支持不显示-->
- <DrawFrameRecord>1/DrawFrameRecord><!-- req 是否支持抽帧录像,1-支持,不支持不显示-->
- <DelInvalidDisk>1</DelInvalidDisk><!-- req 是否支持删除无效磁盘,1-支持,不支持不显示-->
- <MountOrUnmountDisk>1</MountOrUnmountDisk><!-- req,是否支持加载或卸载磁盘,1-支持,不支持不显示-->
- <MaxDvcsSubDevNumNum><!-- req,分布式设备支持的最大设备数,不支持不显示--> </MaxDvcsSubDevNumNum>
- <NotSupportInputOutputConfigFile>1</NotSupportInputOutputConfigFile>
- <!-- req,不支持导入导出参数配置,1-不支持-->
- <NotSupportLogSearch>1</NotSupportLogSearch><!-- req,不支持日志查询,支持时不显示,1-不支持-->

```
<DateUpLoadAndDownLoad>
    <!-- 数据上传下载功能-->
    <audioType opt="wave" /> <!-- 支持的语音类型-->
    <uploadAndDownLoad opt="upload,download" /> <!-- 支持上传下载-->
    <maxNum opt="8" /> <!-- type:支持的最大语音个数-->
</DateUpLoadAndDownLoad>
<!-- req,支持 IP 可视对讲主机能力集,对应 IpViewDevAbility 能力集-->
<IpViewDev>1</lpViewDev>
<DevModuleServerCfg>
    <!-- req,设备服务配置能力-->
    <!-- req,只允许 admin 用户设置 telent 配置-->
    <telnetServer opt="disable,enable" />
    <!-- req, 0-disable(禁用), 1-enable(启用)-->
    <irLampServer opt="disable,enable" />
    <!-- req, 0-disable(禁用), 1-enable(启用)-->
    <abfServer opt="enable,disable," />
    <!-- req, 0-enable(启用), 1-disable(禁用) -->
</DevModuleServerCfg>
<GBT28181AccessAbilitySupport>1</GBT28181AccessAbilitySupport>
<!-- req,是否支持 GB/T28181 协议, 1-支持,不支持不显示-->
<SearchLogAbilitySupport>1</SearchLogAbilitySupport>
<!-- req,是否支持 GB/T28181 协议, 1-支持, 不支持不显示-->
<AlarmTriggerRecordAbilitySupport>1</AlarmTriggerRecordAbilitySupport>
<!-- req,是否支持日志搜索能力, 1-支持, 不支持不显示-->
<CameraParaDynamicAbilitySupport>1</CameraParaDynamicAbilitySupport>
<!-- req,是否支持前端参数动态能力, 1-支持, 不支持不显示-->
<IOAbilitySupport>1</IOAbilitySupport>
<!-- req, IO 输入输出能力, 1-支持, 不支持不显示-->
<AccessProtocolAbility>1</AccessProtocolAbility>
<!-- req, 协议接入能力, 1-支持, 不支持不显示-->
<CameraMountAbility>1</CameraMountAbility>
<!-- req, 摄像机架设能力, 1-支持, 不支持不显示-->
<VehicleRecogAbility>1</VehicleRecogAbility>
<!-- req, 车辆二次检测能力, 1-支持, 不支持不显示-->
<VcaChanAbility>1</VcaChanAbility>
<!-- req, VCA 智能通道能力, 1-支持, 不支持不显示 -->
<Language>
    <!-- req, 支持的语言种类-->
    <supportType opt="0-noSupport,1-chinese,2-english" />
    <!-- reg, 0 表示不支持这个功能区分, 1 表示中文, 2 表示英文-->
</Language>
<TransDevice>
    <transChannelNum min="" max="" /> <!-- req,转码通道最大最小值-->
</TransDevice>
```

<MultiNetworkCardMode>0,1</MultiNetworkCardMode>

- <!-- req,支持的多网卡工作模式,0-普通多网卡模式,1-内外网隔离模式,不支持模式设置不显示-->
- <DeviceWorkMode>1,2,3</DeviceWorkMode>
- <!-- req,设备支持的工作模式,1-通道模式,2-流 ID模式,3-GB28281模式,不支持模式设置不显示-->
- <AllBackupLog>
 - <enabled>true</enabled><!-- req, 是否支持全部日志导出-->
- </AllBackupLog>
- <VoiceTalkAsAudioIn>
 - <enabled>true</enabled><!-- reg, 是否支持语音对讲作为音频输入-->
 - <supportVoiceChan opt="1,2" /> <!-- opt, 支持的语音对讲通道号-->
- </VoiceTalkAsAudioIn>
- <NeedReboot>
 - <!-- req, 导入配置文件是否自动重启, 1-重启, 2-需要提示重启, 不需要提示重启和设备不会自动重启时不显示 -->
 - <ImportConfigurationFileReboot>1/ImportConfigurationFileReboot>
 - <!-- req, ESATA 用途修改是否自动重启, 1-重启, 不重启时不显示 -->
 - <EsataUseageChange>1</EsataUseageChange>
 - <!-- req, 修改报警输入类型是否自动重启, 1-重启, 2-需要提示重启, 不需要提示重启和设备不会自动重启时不显示 -->
 - <AlarmInTypeChange>1</AlarmInTypeChange>
 - <!-- req, 模拟通道是否启用修改是否自动重启, 1-重启, 不重启时不显示 -->
 - <AnalogChanEnableChange>1</AnalogChanEnableChange>
 - <!-- req, 恢复默认参数是否自动重启, 1-重启, 2-需要提示重启, 不需要提示重启和设备不会自动重启时不显示 -->
 - <RestoreConfig>1</RestoreConfig>
 - <!-- req, 串口 232 传输模式更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <RS232workModeChange>1</RS232workModeChange>
 - <!-- req, 网络传输端口更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <NetPortChange>1</NetPortChange>
 - <!-- req, RTSP 端口更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <RtspPortChange>1</RtspPortChange>
 - <!-- req, DHCP 启用状态更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <DhcpEnableChange>1</DhcpEnableChange>
 - <!-- req, HTTP 端口更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <HttpPortChange>1</HttpPortChange>
 - <!-- req, PPPoE 参数更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <PPPoEChange>1</PPPoEChange>
 - <!-- req, 网络参数中的多播地址更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <NetMultiCastIPChange>1</NetMultiCastIPChange>
 - <!-- req, 硬盘参数更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <HardDiskParamChange>1</HardDiskParamChange>
 - <!-- req, 录像计划的时间更改是否需要重启, 1-重启, 不重启时不显示 -->
 - <RecordTimeChange>1</RecordTimeChange>
 - <!-- req, 压缩参数的视频编码类型更改是否需要重启, 1-重启, 不重启时不显示 -->

```
<VideoEncodeTypeChange>1</VideoEncodeTypeChange>
           <!-- req, 压缩参数的音频编码类型更改是否需要重启, 1-重启, 不重启时不显示 -->
           <AudioEncodeTypeChange>1</AudioEncodeTypeChange>
           <!-- req, 制式更改是否需要重启, 1-重启, 不重启时不显示 -->
           <StandardTypeChange>1</StandardTypeChange>
           <!-- req, 去雾使能状态修改是否需要重启, 1-重启, 不需要重启不显示 -->
           <DehazeEnableChange>1</DehazeEnableChange>
           <!-- req, 行编码使能状态修改是否需要重启, 1-重启, 不需要重启不显示 -->
           <LineCodingEnableChange>1</LineCodingEnableChange>
           <!-- req, IPC 前端参数本地输出开关状态修改是否需要重启, 1-重启, 不需要重启不显示 -->
           <LocalOutputEnableChange>1</LocalOutputEnableChange>
           <!-- req, 切换指定主口是否需要重启, 1-重启, 不需要重启不显示 -->
           <LocalMainVoutTypeChange>1</LocalMainVoutTypeChange>
           <!-- reg, NAS 认证参数修改是否需要重启, 1-重启, 不需要重启不显示 -->
           <NASIdentificationChange>1</NASIdentificationChange>
           <!-- req,工作模式切换是否自动重启, 1-重启, 不重启不显示 -->
           <DevWorkModeChange>1
           <!-- reg,SIP 本地端口更改是否需要重启,1-重启,不重启时不显示 -->
           <LocalPortChange>1</LocalPortChange>
           <!-- req,SIP 服务器注册周期更改是否需要重启,1-重启,不重启时不显示 -->
           <LoginCycleChange>1</LoginCycleChange>
           <!-- req,RTP 端口更改是否需要重启,1-重启,不重启时不显示 -->
           <RtpPortChange>1</RtpPortChange>
           <!-- req,音频编码优先级更改是否需要重启,1-重启,不重启时不显示 -->
           <AudioEncodePriorityChange>1</AudioEncodePriorityChange>
           <!-- req,延迟预览时间修改是否需要重启,1-重启,不重启时不显示 -->
           <PreviewDelayTimeChange>1</previewDelayTimeChange>
       </NeedReboot>
   </SoftwareCapability>
</BasicCapability>
```

7.157 ITDeviceAbility:智能终端能力集

输入描述:

</ITDeviceAbility>

能力集描述:

```
<?xml version="1.0" encoding="UTF-8"?>
<!--req, 智能交通摄像机和智能终端能力集描述 -->
<ITDeviceAbility version="2.0">
   <channelNO>1</channelNO>
   <!--req, xs:inter,通道号-->
   <ITSAbility>
   <cameraAmount>
       <!--req, xs:inter, 最大支持的相机个数-->
   </cameraAmount>
   <storeAmount>
       <!--req, xs:inter, 最大支持的数据存储总量(单位: 个) -->
   </storeAmount>
   <ImageCombine>
       <enabled>true</enabled>
       <!--req,是否支持图片合成,不支持不显示-->
   </lmageCombine>
   <TrafficDataUpload>
       <UploadType1>
          <enabled> true</enabled>
          <!--req, 支持上传模式 1(即抓拍机支持的类型,布防方式的 COMM_UPLOAD_PLATE_RESULT),不支持不显示-->
       </UploadType1>
       <UploadType2>
          <enabled> true</enabled>
          <!--req, 支持上传模式 2(即终端支持的类型,监听方式的 COMM_ITS_PLATE_RESULT),不支持不显示-->
       </UploadType2>
       <UploadType3>
          <enabled> true</enabled>
          <!--req, 支持上传模式 2(即抓拍机支持布防上传(COMM_ITS_PLATE_RESULT/ NET_ITS_PLATE_RESULT),不支持不显
示-->
       </UploadType3>
   </TrafficDataUpload>
   <VideoLocalRecord>
       <enabled>true<!--req, 是否支持本地录像,不支持不显示--></enabled>
   </VideoLocalRecord>
       <PicLocalStore>
          <enabled> true<!--req, 是否支持图片本地存储,不支持不显示--></enabled>
       </PicLocalStore>
       <PlateRecognise>
          <enabled>true<!--req, 是否支持车牌识别,不支持不显示--></enabled>
          <regionType opt="rect,polygon"/>
          <!-- 牌识区域支持的类型-->
```

```
moto"/>
                          <plateColor opt="blue,yellow,white,black,green"/>
                           <vehicleType opt="small,big"/>
                          <bodyworkColor opt="white,silver,gray,black,red,darkblue,blue,yellow,green,brown,pink,violet"/>
                 </PlateRecognise>
                 <imageOverlayString>
                          <mode1><!--opt, 原抓拍机的图片字符叠加,不支持不显示-->
                                   <\!overlayStringType\ opt = "monitor, time, speed, speedRatio, speedLimit, plate, carColor, carLength, and the context of the
carType,laneNum,milliSecond,illegalInfo,redOnTime"/>
                                   <!--opt, 监测点,时间,速度,超速比,限速标志,车牌,车身颜色,车身长度,车辆类型,车道号,毫秒,违规信息,红灯
己亮时间-->
                          </mode1>
                          <mode2>
                                   <!--opt, 终端和终端相机的图片字符叠加,不支持不显示-->
                                   <overlapType opt="monitor,site,roadNum,instrumentNum,directionNum,directionDes, laneNum,</p>
laneDes,capTime,capTimeMilli,plate,carColor,carLength,carType,carBrand,speed,speedRatio,
speedLimit,illegalDes,redStart,redStop,redOnTime,securityCode,capCode"/>
                                   <!--opt, 监测点,地点,路口编号,设备编号,方向编号,方向描述,车道号,车道描述,抓拍时间,抓拍时间(毫秒),车
牌号,车身颜色,车身长度,车辆类型,车辆品牌,速度,超速比,限速标志,违规信息,红灯开始时间,红灯结束时间,红灯已亮时间,防伪
码,抓拍编号-->
                                   <itemLength max="" min="0"/>
                                   <!--opt, 字符叠加长度-->
                                   <changeLineNum max="10" min="0"/>
                                   <!--opt, 换行数-->
                                   <spaceNum max="255" min="0"/>
                                   <!--opt, 空格数-->
                                   linePercent max="100" min="0"/>
                                   <!--opt, 叠加行百分比-->
                                   <itemsStlye opt="horizontal,vertical"/>
                                   <!--opt, 叠加方式, 横排, 竖排-->
                                   <startPosTop max="2448" min="0"/>
                                   <!--opt, 起始上坐标-->
                                   <startPosLeft max="2448" min="0"/>
                                   <!--opt, 起始左坐标-->
                                   <charStyle opt="SongTi,WeiTi"/>
                                   <!--opt, 字体, 宋体, 魏体-->
                                   <charSize opt="16*16,32*32,48*48,64*64"/>
                                   <!--req,字符大小 0-32*32(中)/16*32(英), 1-64*64(中)/32*64(英), 2-48*48 -->
                                   <charInterval max="16" min="0"/>
                                   <!--opt, 字符间距-->
                                   <ForeClorRGB>
                                            <enabled> true</enabled>
                                            <!--opt, 是否支持调节前景色 RGB,不支持不显示-->
                                   </ForeClorRGB>
```

```
<BackClorRGB>
                   <enabled> true</enabled>
                   <!--opt, 是否支持调节背景色 RGB,不支持不显示-->
               </BackClorRGB>
               <ColorSelfAdapt>
                   <enabled> true</enabled>
                   <!--opt, 颜色是否自适应,不支持不显示-->
               </ColorSelfAdapt>
           </mode2>
       </imageOverlayString>
       <TPSAlarm>
           <!--req, 支持交通统计报警上传,不支持不显示-->
           <UploadType1>
               <enabled> true</enabled>
               <!--req,支持上传模式 2(即终端支持的类型,监听方式的 COMM_ITS_TRAFFIC_COLLECT),不支持不显示-->
           </UploadType1>
           <UploadType2>
               <enabled> true</enabled>
               <!--req, 支持上传模式 2 (即抓拍机支持布防上传(COMM_ITS_TRAFFIC_COLLECT/NET_ITS_TRAFFIC_COLLECT),
不支持不显示-->
           </UploadType2>
       </TPSAlarm>
       <CameraSetup>
           <!--req, 支持相机架设配置,不支持不显示-->
           <enabled> true</enabled>
       </CameraSetup>
       <supportMilliCheckTime>
           <!-- req, 支持毫秒校时-->
           <enabled>true</enabled>
       </supportMilliCheckTime>
       <CloudStorage>
           <poolID min="" max="" />
           <userNameLen min="" max="" />
           <passwdLen min="" max="" />
           <poolInfo opt="postVideoPool,illegalVideoPool" />
           <!-- req 数组 0 表示卡口录像池,数组 1 表示违章录像池-->
           <supportURLUpload opt="true,false" />
           <!-- req 支持 URL 上传方式-->
       </CloudStorage>
       <!--req,停车场项目-->
       <LampCtrlInfo>
           <lampCtrlMode opt="inlayLamp,externalLamp"/>
           <!--req, 控灯模式: 1代表内置灯, 2代表外接灯-->
```

```
<ctrlChannelIndex min="" max=""/>
    <!--req 交替控制通道号-->
    <inlayLampCtrlMode>
        <!--req 内置灯控制模式结构 -->
        <lampStateCtrlNum min="" max=""/>
        <!--req 停车位支持数范围-->
        <parkInlayInfo>
          <enable opt="false,true"/>
          <!--req,是否启用, true-启用, false-不启用-->
          <flicker opt="false,true"/>
          <!--req,是否闪烁, true-闪烁, false-不闪烁-->
          <lampColor opt="close,red,green,yellow,blue,magenta,cyan,white"/>
          <!--req 0- 灭 1-红 2-绿 3-黄 4-蓝 5-品红 6-青 7-白色-->
        </parkInlayInfo>
    </inlayLampCtrlMode>
    <externalLampCtrlMode>
        <!--req 接灯控制模式结构 -->
        <maxParkNum min="" max=""/>
        <!--req 停车位数量-->
        <parkInfoType opt="normalParkIOstate,normalNoParkIOstate,specialParkIOstate, noSpecialParkIOstate"/>
        <parkExternalSubinfo>
            <enable opt="false,true"/>
            <!--req,是否启用, true-启用, false-不启用-->
            <flicker opt="false,true"/>
            <!--req,是否闪烁, true-闪烁, false-不闪烁-->
            <IOstate opt="lowLevel,hightLevel"/>
            <!--req,高低电平, 0-低电平, 1-高电平(外置灯起效)-->
        </parkExternalSubinfo>
    </externalLampCtrlMode>
</LampCtrlInfo>
<parkSpaceAttributeParam>
    <maxParkNum min="" max=""/>
    <!--req 停车位数量-->
    <parkSpaceInfo>
        <parkSpaceAttribute opt="normalPack,specialPack"/>
        <!-- 0~普通车位 1~特殊车位-->
    </parkSpaceInfo>
</parkSpaceAttributeParam>
<lampExternalCfg>
```

```
<enable opt="false,true"/>
            <!--req,是否启用, true-启用, false-不启用-->
             <lampState>
                 <flicker opt="false,true"/>
                 <!--req,是否闪烁, true-闪烁, false-不闪烁-->
                 <IONo opt="IO1,IO2,IO3"/>
                 <!--req 1~IO1,2~IO2,4~IO3 -->
             </lampState>
        </lampExternalCfg>
        <compelCaptureCfg>
             <parkIndex opt="parkPlace1,parkPlace2,parkPlace3,parkPlace4"/>
            <!-- 车位序号从左到右 1,2,3,4-->
        </compelCaptureCfg>
        <externalControlAlarm>
            <lampState>
                 <flicker opt="false,true"/>
                 <!--req,是否闪烁, true-闪烁, false-不闪烁-->
                 <IONo opt="IO1,IO2,IO3"/>
                 <!--req 1~IO1,2~IO2,4~IO3 -->
            </lampState>
            <externalBeginTime>true</externalBeginTime>
            <!--req 是否支持 外控开始时间的上传-->
        </externalControlAlarm>
    </ITSAbility>
</ITDeviceAbility>
```

7.158 VcaChanAbility:智能通道分析能力集

输入描述:

能力集描述:

```
<syncChannelName>true</syncChannelName> <!- 同步分析仪的通道名为前端设备通道名 -->
<!-- 智能信息叠加 -->
<VcaDrawMode>
    <dspEncAddTarget opt="true,false" /> <!-- 编码叠加目标 -->
    <dspEncAddRule opt="true,false" /> <!-- 编码叠加规则 -->
    <dspPicAddTarget opt="true,false" /> <!-- 抓图叠加目标 -->
    <dspPicAddRule opt="true,false" /> <!-- 抓图叠加规则 -->
</VcaDrawMode>
<!-- 报警图片分辨率, index 为 SDK 定义的图片大小索引值,参见 NET_DVR_JPEGPARA -->
<AlarmPicResolutionList>
    <picResolutionEntry index="3" name="UXGA" resolution="1600*1200" />
    <picResolutionEntry index="4" name="SVGA" resolution="800*600" />
    <picResolutionEntry index="5" name="HD720P" resolution="1280*720" />
    <picResolutionEntry index="6" name="VGA" resolution="640*480" />
</AlarmPicResolutionList>
<!-- 全局尺寸过滤 -->
<GlobalSizeFilter>
    <mode opt="imagePixel,realWorld,default" default="imagePixel" />
    <!-- 过滤模式,imagePixel-像素大小,realWorld-实际大小,default-默认 -->
    <minRect>true</minRect><!-- 最小目标框 -->
    <maxRect>true</maxRect><!-- 最大目标框 -->
</GlobalSizeFilter>
<!-- 行为分析 -->
<Behavior>
    <EventType>
         <!-- 穿越警戒面 -->
         <TraversePlane>
              <planeBottom>true</planeBottom> <!-- 警戒面底边 -->
              <crossDirection opt="bothDirection,leftToRight,rightToLeft" default="bothDirection" />
              <!-- 穿越方向, bothDirection-双向, leftToRight-从左到右, rightToLeft-从右到左 -->
              <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
              <planeHeight min="0" max="255" default="5" /> <!-- 警戒面高度 -->
         </TraversePlane>
         <!-- 进入区域 -->
         <EnterArea>
              <Region>
                   <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
              </Region>
         </EnterArea>
         <!-- 离开区域 -->
         <ExitArea>
              <Region>
                   <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
              </Region>
```

```
</ExitArea>
<!-- 入侵参数 -->
<Intrusion>
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="0" max="100" default="5" /> <!-- 行为事件触发时间阈值 -->
     <sensitivity min="1" max="100" default="50" /> <!-- 灵敏度 -->
    <rate min="1" max="100" default="5" /> <!-- 占比 -->
<!-- 徘徊 -->
<Loiter>
    <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
     <duration min="1" max="120" default="10" /> <!-- 触发时间阈值 -->
</Loiter>
<!-- 物品放置拿取 -->
<LeftTake>
    <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
     </Region>
    <duration min="1" max="120" default="10" /> <!-- 触发时间阈值 -->
</LeftTake>
<!-- 停车 -->
<Parking>
    <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="1" max="100" default="10" /> <!-- 触发时间阈值 -->
</Parking>
<!-- 奔跑 -->
<Run>
    <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <distance min="0.1" max="1.0" default="0.5" /> <!-- 人奔跑最大距离 -->
    <mode opt="imagePixel,realWorld" default="imagePixel" />
    <!-- imagePixel-像素模式, realWorld-实际模式 -->
</Run>
<!-- 人员聚集 -->
<HighDensity>
    <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
```

```
</Region>
    <density min="0.1" max="1.0" default="0.5" /> <!-- 密度比率 -->
    <duration min="20" max="360" default="20" /> <!-- 触发人员聚集参数报警阈值 -->
</HighDensity>
<!-- 剧烈运动 -->
<ViolentMotion>
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="1" max="120" default="50" /> <!-- 触发事件阈值 -->
    <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
    <mode opt="video,audio,videoAndAudio" default="video" />
    <!-- video-纯视频模式, audio-纯音频模式, videoAndAudio-音视频联合模式 -->
<!-- 攀高 -->
<ReachHeight>
    <planeBottom>true</planeBottom> <!-- 攀高警戒面 -->
    <duration min="1" max="120" default="10" /> <!-- 触发攀高报警阈值 -->
</ReachHeight>
<!-- 起身 -->
<GetUp>
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="1" max="100" default="10" /> <!-- 触发起床报警阈值 -->
    <sensitivity min="1" max="10" default="10" /> <!-- 灵敏度 -->
    <mode opt="overBed,areaMove,sitting" default="overBed" />
    <!-- overBed-大床通铺模式, areaMove-高低铺模式, sitting-大床通铺坐立起身模式 -->
</GetUp>
<!-- 物品放置 -->
<Left>
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="10" max="100" default="10" /> <!-- 触发物品遗留报警阈值 -->
    <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
</Left>
<!-- 物品拿取 -->
<Take>
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="10" max="100" default="10" /> <!-- 触发物品拿取报警阈值 -->
    <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
```

```
</Take>
<!-- 离岗 -->
<LeavePosition>
    <Region>
     <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
     </Region>
     <leaveDelay min="1" max="1800" default="120" /> <!-- 无人报警时间 -->
     <staticDealy min="1" max="1800" default="120" /> <!-- 睡觉报警时间 -->
     <mode opt="leave,sleep,leaveAndSleep" default="leave"/>
    <!-- leave-离岗事件, sleep-睡岗事件, leaveAndSleep-离睡岗事件 -->
    <personType opt="single,couple" default="single" />
     <!-- 值岗人数类型, single-单人值岗, couple-双人值岗 -->
</LeavePosition>
<!-- 尾随 -->
<Trail>
     <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
</Trail>
<!-- 重点人员起身 -->
<KeyPersonGetUp>
    <Region>
     <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
     </Region>
     <duration min="1" max="100" default="20" /> <!-- 触发起床报警阈值 -->
    <sensitivity min="1" max="10" default="5" /> <!-- 灵敏度 -->
    <mode opt="overBed,areaMove,sitting" default="overBed" />
     <!-- overBed-大床通铺模式,areaMove-高低铺模式,sitting-大床通铺坐立起身模式 -->
</KeyPersonGetUp>
<!-- 倒地 -->
<FallDown>
    <Region>
          <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <duration min="1" max="60" default="30" /> <!-- 触发事件阈值 -->
     <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
</FallDown>
<!-- 声强突变 -->
<AudioAbnormal>
     <decibel min="1" max="255" default="50" /> <!-- 声音强度 -->
     <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
     <audioMode opt="sensitivity,decibel,sensitivityAndDecibel" default="sensitivity" />
     <!-- sensitivity-灵敏度检测, decibel-分贝阈值检测, sensitivityAndDecibel-灵敏度与分贝阈值检测 -->
```

```
<enabled>true</enabled>
    <!-- 使能标志 -->
     <threshold min="0" max="100" default="80" />
    <!-- 声音阈值 -->
</AudioAbnormal>
<!-- 折线攀高 -->
<ADVReachHeight>
    <Region>
    <vertexNum min="2" max="10" />
    <!-- 区域顶点数量 -->
    </Region>
     <crossDirection opt="bothDirection,leftToRight,rightToLeft" default="bothDirection" />
    <!-- 穿越方向,bothDirection-双向,leftToRight-从左到右,rightToLeft-从右到左 -->
</ADVReachHeight>
<!-- 如厕超时 -->
<ToiletTarry>
    <Region>
    <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
     </Region>
    <duration min="1" max="3600" default="600" /><!-- 如厕超时时间 -->
</ToiletTarry>
<!-- 放风场滞留 -->
<YardTarry>
    <Region>
    <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
     </Region>
    <duration min="1" max="120" default="60" /> <!-- 放风场滞留时间 -->
</YardTarry>
<!-- 折线警戒面 -->
<ADVTraversePlane>
    <Region>
     <vertexNum min="2" max="10" /> <!-- 区域顶点数量 -->
    </Region>
    <crossDirection opt="bothDirection,leftToRight,rightToLeft" default="bothDirection" />
     <!-- 穿越方向, bothDirection-双向, leftToRight-从左到右,rightToLeft-从右到左 -->
    <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
</ADVTraversePlane>
<!-- 操作超时 -->
<OverTime>
<Region>
<vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
</Region>
     <duration min="4" max="60000" default="30000" /> <!-- 操作报警时间阈值 -->
</OverTime>
```

```
<!-- 贴纸条 -->
         <StickUp>
                   <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
                   </Region>
                   <duration min="4" max="60" default="30" /> <!-- 触发时间阈值 -->
                   <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
         </StickUp>
         <!-- 安装读卡器 -->
         <InstallScanner>
                   <Region>
                   <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
                   </Region>
                   <duration min="4" max="60" default="30" /> <!-- 读卡持续时间 -->
                   <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
         InstallScanner>
</EventType>
<!-- 行为规则 -->
<BehaviorRule>
         <picProcType opt="notProcess,upload" /> <!-- 图片处理方式,notProcess-不处理, upload-上传 -->
         <uploadLastAlarm opt="false,true" /> <!-- 上传最近一次的报警 -->
         <picRecordEnable opt="false,true" /> <!-- 图片存储 -->
         //pegParam>
                   <picSize>true</picSize> <!-- 图片大小 -->
                   <picQuality opt="best,better,normal" /> <!-- 图片质量,best-最好,better-较好,normal-一般 -->
         </JpegParam>
         <maxRelSnapChanNum>3</maxRelSnapChanNum><!-- 最大关联抓图通道数 -->
         <RuleEntryList>
                   <maxRuleNum>8</maxRuleNum><!-- 最大规则数目 -->
                   <RuleEntry>
                             <eventType opt="traversePlane,enterArea,exitArea,intrusion,loiter,leftAndTake,parking,run,
                             highDensity,violentMotion,reachHeight,getup,left,take,leavePosition,trail,
                             key Person Getup, fall Down, audio Abnormal, adv Reach Height, to ilet Tarry, yard Tarry, and the support of the support of the property of the support of
                             advTraversePlane,humanEnter,overTime,stickup,installScanner" />
                             <!-- 事件类型,traversePlane-穿越警戒面,enterArea-进入区域,exitArea-离开区域,intrusion-周界入侵,
                             loiter- 徘徊, leftAndTake- 物品放置拿取, parking- 停车, run- 奔跑, highDensity- 区域内人员密
                             度,violentMotion-剧烈运动,reachHeight-攀高,getup-起身,left-物品放置,take-物品拿取,leavePosition-
                             离岗,trail-尾随,keyPersonGetup-重点人员起身,fallDown-倒地,audioAbnormal-声强突
                             变,advReachHeight-折线攀高,toiletTarry-如厕超时,yardTarry-放风场滞留,advTraversePlane-折线警戒
                             面,humanEnter-人靠近 ATM,overTime-操作超时,stickup-贴纸条,installScanner-安装读卡器 -->
                             <ruleNameLength min="0" max="32" /> <!-- 规则名称长度 -->
                             <SizeFilter>
                                       <mode opt="imagePixel,realWorld,default" default="imagePixel" />
                                       <!-- 过滤模式, imagePixel-像素大小, realWorld-实际大小, default-默认 -->
```

```
<minRect>true</minRect><!-- 最小目标框 -->
                   <maxRect>true</maxRect><!-- 最大目标框 -->
              </SizeFilter>
              <AlarmTime>
                   <timeSegNum min="2" max="8" /> <!-- 每天布防时间段数量 -->
              </AlarmTime>
              <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" />
              <!-- monitor-监视器上警告,audio-声音警告,center-上传中心,alarmout-触发报警输出,picture-jpeg 抓
              图并上传 email,wirelesslight-无线声光报警,uploadftp-抓图并上传 ftp -->
              <relRecordChan>true</relRecordChan><!-- 报警触发通道录像 -->
              <alarmDelay opt="5,10,30,60,120,300,600" /> <!-- 报警延时 -->
              <FilterStrategy>
                   <strategy opt="disabled,widthAndHeight,targetArea" default="disabled" />
                   <!-- 过滤策略,disabled-不启用,widthAndHeight-高度和宽度过滤,targetArea-目标面积过滤
                   -->
              </FilterStrategy>
              <TriggerParam>
                   <tiggerMode opt="disabled,trackPoint,targetArea" default="disabled" />
                   <!-- 触发方式, disabled-不启用, trackPoint-目标点, targetArea-目标面积 -->
                   <triggerPoint opt="center,up,down" default="center" />
                   <!-- 触发点,center-中, up-上, down-下 -->
                   <triggerArea min="0" max="100" default="50" /> <!-- 触发目标面积百分比 -->
              </TriggerParam>
         </RuleEntry>
    </RuleEntryList>
</BehaviorRule>
<!-- 屏蔽区域 -->
<MaskRegion>
    <maxRegionNum>4</maxRegionNum><!-- 区域个数 -->
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
</MaskRegion>
<!-- 进入区域 -->
<EnterRegion>
    <maxRegionNum>1</maxRegionNum><!-- 区域个数 -->
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
</EnterRegion>
<!-- 标定 -->
<Calibration>
    <BehaviorIn>
         <!-- 行为室内场景标定 -->
```

```
<enabled opt="true,false" /> <!-- 启用性 -->
             <calSampleNum min="2" max="5" /> <!-- 标定样本个数 -->
             <CalSample>
                 <!-- 标定样本 -->
                 <targetRect>true</targetRect><!-- 目标框 -->
                 <LineSegment>
                     lineMode opt="heightLine,lengthLine" />
                     <!-- heightLine-高度样本线,lengthLine-长度样本线 -->
                     <value min="1" max="1000" /> <!-- 高度或长度 -->
                 </LineSegment>
             </CalSample>
             <CameraParam>
                 <cameraHeight min="2" max="50" /> <!-- 摄像机高度 -->
                 <cameraPitchAngle min="1" max="89" /> <!-- 摄像机俯仰角度 -->
                 <horizonLine min="0.0" max="1.0" /> <!-- 场景中的地平线 -->
             </CameraParam>
        </BehaviorIn>
        <BehaviorOut>
             <!-- 行为室外场景标定 -->
             <enabled opt="true,false" /> <!-- 启用性 -->
             <!-- 样本线个数 -->
             <LineSegment>
                 <value min="1" max="1000" /> <!-- 高度或长度 -->
             </LineSegment>
             <CameraParam>
                 <cameraHeight min="2" max="50" /> <!-- 摄像机高度 -->
                 <cameraPitchAngle min="1" max="89" /> <!-- 摄像机俯仰角度 -->
                 <horizonLine min="0.0" max="1.0" /> <!-- 场景中的地平线 -->
             </CameraParam>
        </BehaviorOut>
        <calibVerify>true</calibVerify><!-- 支持标定校验 -->
    </Calibration>
    <Scene>
        <maxSceneNum>1</maxSceneNum><!-- 最大场景数量 -->
    </Scene>
    </Behavior>
<!-- 交通 -->
<Traffic>
    <!-- 场景参数 -->
    <Scene>
        <maxSceneNum>16</maxSceneNum><!-- 最大场景数量 -->
        <maxSceneTimeSegNum>16</maxSceneTimeSegNum><!-- 最大场景时间段数量 -->
        <SceneParam>
```

```
<direction>true</direction><!-- 检测方向 -->
         <sceneID>true</sceneID> <!-- 场景 ID -->
         <sceneNameLength min="0" max="32" /> <!-- 场景名称长度 -->
         <ptzPos>true</ptzPos> <!-- ptz 坐标 -->
         <trackTime min="5" max="300" /> <!-- 球机跟随时间 -->
    </SceneParam>
</Scene>
<!-- 屏蔽区域 -->
<MaskRegion>
    <maxRegionNum>4</maxRegionNum><!-- 区域个数 -->
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
</MaskRegion>
<!-- 参考区域 -->
<ReferenceRegion>
    <maxRegionNum>4</maxRegionNum><!-- 区域个数 -->
    <Region>
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
</ReferenceRegion>
<!-- 标定 -->
<Calibration>
    <enabled opt="true,false" /> <!-- 启用性 -->
    <calibPointNum min="4" max="4" /> <!-- 标定点个数 -->
    <width>true</width><!-- 宽度 -->
    <height>true</height><!-- 高度 -->
    <calibVerify>true</calibVerify><!-- 支持标定校验 -->
</Calibration>
<!-- 车道配置 -->
<LaneCfg>
    <maxLaneNum><!-- 最大车道数量 -->
    <LaneParam>
         <laneNameLength min="0" max="32" /> <!-- 车道名称长度 -->
         <flowDirection>true</flowDirection> <!-- 车道内车流方向 -->
         <Region>
              <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
         </Region>
    </LaneParam>
</LaneCfg>
<!-- 交通事件规则 -->
<AidRule>
    <picProcType opt="notProcess,upload" /> <!-- 图片处理方式,notProcess-不处理, upload-上传 -->
    //pegParam>
```

```
<picSize>true</picSize><!-- 图片大小 -->
         <picQuality opt="best,better,normal" /> <!-- 图片质量,best-最好,better-较好,normal-一般 -->
    </JpegParam>
    <RuleEntryList>
         <maxRuleNum>8</maxRuleNum><!-- 最大规则数量 -->
         <RuleEntry>
              <ruleNameLength min="0" max="32" /> <!-- 规则名称长度 -->
              <eventType opt="congestion,parking,inverse,pedestrian,debris,smoke,overLine,vehicleControlList,
              speed, illegalLaneChange, turnAround"/> <!-- 事件类型,congestion-拥堵,parking-停车,inverse-逆
              行, pedestrian-行人, debris-遗留物, smoke-烟雾, overLine-压线, vehicleControlList-禁止名单, speed-
              超速,illegalLaneChange-变道,turnAround-掉头 -->
              <SizeFilter>
                   <mode opt="imagePixel,realWorld,default" default="imagePixel" />
                   <!-- 过滤模式, imagePixel-像素大小, realWorld-实际大小, default-默认 -->
                   <minRect>true</minRect><!-- 最小目标框 -->
                   <maxRect>true</maxRect> <!-- 最大目标框 -->
              </SizeFilter>
              <Region>
                   <vertexNum min="3" max="10" /> <!-- 区域顶点数量-->
              </Region>
              <AidParam>
                   <parkingDuration min="10" max="120" default="100" /> <!-- 违停检测灵敏度 -->
                   <pedestrianDuration min="1" max="120" default="100" /> <!-- 行人持续时间 -->
                   <debrisDuration min="10" max="120" default="100" /> <!-- 抛洒物持续时间 -->
                   <congestionLength min="5" max="200" default="100" /> <!-- 拥堵长度阈值 -->
                   <congestionDuration min="10" max="120" default="60" /> <!-- 拥堵持续时间 -->
                   <inverseDuration min="1" max="10" default="5" /> <!-- 逆行持续时间 -->
                   <inverseDistance min="2" max="100" default="50" /> <!-- 逆行距离阈值 -->
                   <inverseAngleTolerence min="90" max="180" default="100" /> <!-- 允许角度偏差 -->
                   <illegalParkingTime min="4" max="60" default="10" /> <!-- 违停时间 -->
                   <illegalParkingPicNum min="1" max="6" default="4" /> <!-- 违停图片数量 -->
                   <mergePic>true</mergePic> <!-- 支持图片拼接 -->
              </AidParam>
              <AlarmTime>
                   <timeSegNum min="2" max="8" /> <!-- 每天布防时间段数量 -->
              </AlarmTime>
              <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" />
              <!-- monitor-监视器上警告,audio-声音警告,center-上传中心,alarmout-触发报警输出,picture-jpeg 抓
              图并上传 email,wirelesslight-无线声光报警,uploadftp-抓图并上传 ftp -->
              <relRecordChan>true</relRecordChan> <!-- 报警触发通道录像 -->
              <laneNo min="1" max="99" /> <!-- 车道号 -->
         </RuleEntry>
    </RuleEntryList>
</AidRule>
```

```
<!-- 交通数据统计规则 -->
<TpsRule>
    <RuleEntryList>
         <maxRuleNum>8</maxRuleNum><!-- 最大规则数目 -->
         <RuleEntry>
              <laneID>true</laneID> <!-- 车道 ID -->
              <calcType opt="laneVolume,laneVelocity,timeHeadway,spaceHeadway,timeOccupancyRatio,
             spaceOccupancyRatio,queue,vehicleType,trafficState" />
             <!-- 统计参数类型, laneVolume-车道流量, laneVelocity-车道速度, timeHeadway-车头时距,
             spaceHeadway-车头间距,timeOccupancyRatio-车道占有率(时间上),spaceOccupancyRatio-车道占
              有率 (空间上), queue-排队长度, vehicleType-车辆类型, trafficState-交通状态 -->
              <SizeFilter>
                  <mode opt="imagePixel,realWorld,default" default="imagePixel" />
                  <!-- 过滤模式, imagePixel-像素大小, realWorld-实际大小, default-默认 -->
                  <minRect>true</minRect><!-- 最小目标框 -->
                  <maxRect>true</maxRect> <!-- 最大目标框 -->
              </SizeFilter>
             <Region>
                  <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
             </Region>
              <AlarmTime>
                  <timeSegNum min="2" max="8" /> <!-- 每天布防时间段数量 -->
              </AlarmTime>
             <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" />
             <!-- monitor-监视器上警告,audio-声音警告,center-上传中心,alarmout-触发报警输出,picture-jpeg 抓
              图并上传 email, wirelesslight-无线声光报警,uploadftp-抓图并上传 ftp -->
         </RuleEntry>
    </RuleEntryList>
</TpsRule>
<forensicsMode opt="manual,auto" /> <!-- 取证方式, manual-手动取证, auto-自动取证 -->
<trafficSceneMode opt="freeway,tunnel,bridge" />
<!-- 交通场景模式, freeway-高速户外场景, tunnel-高速隧道场景, bridge-高速桥梁场景 -->
<!-- 视频触发参数 -->
<ITCTriggerCfg>
    <triggerMode opt="VIAVirtualCoil" />
    <!-- 触发模式,VIAVirtualCoil-VIA(Vehicle characteristics Intelligent Analysis)虚拟线圈触发 -->
    <!-- VIA 虚拟线圈触发参数 -->
    <VIAVirtualCoilParam>
         <laneNum>true</laneNum><!-- 车道数量 -->
         <laneBoundaryLine>true</laneBoundaryLine><!-- 车道边界线,即最左边车道的左边界线 -->
         <VIALane>
              <maxLaneNum>6</maxLaneNum><!-- 最大车道数量 -->
```

```
<associatedLaneNO>true</associatedLaneNO> <!-- 关联车道号 -->
                  <LaneLogicParam>
                       <laneUseage opt="unknown,carriageWay,bus,fast,slow,motor,nonMotor,reverse,banTrucks,mix" />
                       <!-- 车道用途, unknown-未知,carriageWay-普通车道,bus-公交专用车道,fast-快车道,slow-慢车
                       道,motor-摩托车道,nonMotor-非机动车道,reverse-反向车道,banTruck-禁止货车车道,mix-混合
                       车道 -->
                       <laneDirection opt="unknown,left,straight,leftStraight,right,leftRight,rightStraight,"</pre>
                       leftRightStraight, leftWait, straightWait,forward,backward,bothway" />
                       <!-- 车道方向,unknown-未知, left-左转, straight-直行,leftStraight-左转+直行,right-右
                       转,leftRight-左转+右转,rightStraight-右转+直行,leftRightStraight-左转+右转+直行,leftWait-左转
                       待行,straightWait-直行待行,forward-正向行驶,backward-背向行驶,bothway-双向行驶-->
                       <carDriveDirection opt="unknown,uptodown,downtoup"/>
                       <!-- 车辆行驶方向,unknown-未知,uptodown-下行,downtoup-上行 -->
                  </LaneLogicParam>
                  <laneLine>true</laneLine> <!-- 车道线 -->
                  <Region>
                       <vertexNum min="3" max="20" /> <!-- 牌识区域,区域顶点数量 -->
                  </Region>
              </VIALane>
              <PlateRecogParam>
                  <provinceAbbreviation>true</provinceAbbreviation><!-- 设备运行省份的汉字简写 -->
                  <!-- 识别的类型 -->
                  <RecogMode>
                       <!-- 车牌识别位置, fromFront-正向识别,fromBack-背向识别 -->
                       <plateRecogType opt="big,little" /> <!-- 车牌识别类型, big-大车牌,little-小车牌 -->
                       <locationType opt="sceneLocation,frameLocation" />
                       <!-- 定位类型, sceneLocation-场定位,frameLocation-帧定位 -->
                       <recogType opt="sceneRecognition,frameRecognition" />
                       <!-- 识别类型, sceneRecognition-场识别,frameRecognition-帧识别 -->
                       <recogTime opt="daytime,night" /> <!-- 识别时间,daytime-白天,night-晚上 -->
                       <sceneType opt="EPolice,gate" /> <!-- 场景类型, EPolice-电警,gate-卡口 -->
                       <microPlateRecog opt="true,false" /> <!-- 微小车牌识别 -->
                       <farmVehicleRecog opt="true,false" /> <!-- 农用车识别 -->
                       <vechileColorRecog opt="true,false" /> <!-- 车身颜色识别 -->
                       <motorCarRecog opt="true,false" /> <!-- 摩托车识别识别 -->
                       <blurRecog opt="true,false" /> <!-- 模糊识别 -->
                  </RecogMode>
                  <vehicleLogoRecog opt="true,false" /> <!-- 车标识别 -->
              </PlateRecogParam>
         </VIAVirtualCoilParam>
    </l></l></l></l></l><
</Traffic>
<!-- 客流量统计 -->
```

```
<PDC>
    <PDCType opt="smart, professionalIntelligence" /> <!-- 客流智能类型,区分 Smart 设备和专业智能 iDS 设备 -->
    <PDCRule>
         <Region>
             <vertexNum min="4" max="10" /> <!-- 区域顶点数量 -->
         </Region>
         <enterDirection>true</enterDirection> <!-- 客流量进入方向 -->
         <dayStartTime>true</dayStartTime> <!-- 白天开始时间 -->
         <nightStartTime>true</nightStartTime> <!-- 夜晚开始时间 -->
         <AlarmTime>
             <timeSegNum min="2" max="8" /> <!-- 每天布防时间段数量 -->
         </AlarmTime>
         <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" /> <!-- req,处理类型 -->
         <detecteSensitive min="" max="" /> <!-- 目标检测灵敏度: 范围 1-100,默认 50 -->
         <generatieSpeedSpace min="" max="" /> <!-- 目标生成速度(空域): 范围 1-100,默认 50 -->
         <generatieSpeedTime min="" max="" /> <!-- 目标生成速度(时域): 范围 1-100, 默认 50 -->
         <countSpeed min="" max="" /> <!-- 计数速度: 范围 1-100,默认 50 -->
         <detecteType opt="auto,head,shoulder" /> <!-- 目标检测类型: 0-自动, 1-人头, 2-头肩, 默认 0-自动 -->
         <targetSizeCorrect min="" max="" /> <!-- 目标尺寸修正: 范围 1-100,默认 50 -->
    </PDCRule>
    <Calibration>
         <calibRectNum min="1" max="6" /> <!-- 标定框个数 -->
         <calibVerify>true</calibVerify><!-- 支持标定校验 -->
    </Calibration>
    <resetCounter>true</resetCounter> <!-- 重置统计参数 -->
</PDC>
<HeatMapDetection>
<!-- req,热度图侦测 -->
    <enable opt="true,false" /> <!-- req,false:不使能, true:使能 -->
    <heatMapRegionNum>8</heatMapRegionNum> <!-- reg, 热度图侦测区域个数 -->
    <HeatMapParam>
    <!-- req,本节点会有相应的个数 -->
         <regionNum min="3" max="10" /> <!-- req,每个热度图侦测区域支持的有效点个数 -->
         <targetTrackEnable opt="true,false" /> <!-- req,目标跟随: 0-关闭,1-开启,默认0-关闭 -->
         <sensitivityLevel min="0" max="100" /> <!-- req,灵敏度 -->
         <backgroundUpdateRate min="1" max="100" /> <!-- req, 背景更新速度: 范围 1-100, 默认 50 -->
         <sceneChangeLevel min="1" max="100" /> <!-- req,场景变化等级: 范围 1-100, 默认 50 -->
         <minTargetSize min="1" max="100" /> <!-- req,最小目标尺寸: 范围 1-100,默认 50 -->
    </HeatMapParam>
    <alarmTime>8</alarmTime> <!-- req,布防时间段个数 -->
    <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" />
    <!-- req,处理类型,picture:抓图并邮件(此处由于早期能力缺少 uploadftp,后才加上,此处若解析不到该字符串,判
    断是否支持抓图传 FTP 再解析设备软硬件能力中的 UploadFTP 节点) -->
</HeatMapDetection>
```

```
<!-- 人脸 -->
<Face>
    <!-- 人脸检测 -->
    <FaceDetect>
         <eventType opt="abnormalFace,normalFace,multiFace" />
         <!-- abnormalFace-异常人脸,normalFace-正常人脸,multiFace-多张人脸 -->
         <uploadLastAlarm opt="false,true" /> <!-- 上传最近一次的报警 -->
         <uploadFacePic opt="false,true" /> <!-- 上传人脸子图 -->
         <picRecordEnable opt="false,true" /> <!-- 图片存储 -->
         <ruleNameLength min="0" max="32" /> <!-- 规则名称长度 -->
         <Region>
              <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
         </Region>
         <picProcType opt="notProcess,upload" /> <!-- 图片处理方式,no-process-不处理, upload-上传 -->
         <sensitivity min="1" max="100" default="10" /> <!-- 灵敏度 -->
         <duration min="4" max="60" default="30" /> <!-- 触发人脸报警时间阈值 -->
         <JpegParam>
              <picSize>true</picSize> <!-- 图片大小 -->
              <picQuality opt="best,better,normal" /> <!-- 图片质量,best-最好,better-较好,normal-一般 -->
         </JpegParam>
         <SizeFilter>
              <mode opt="imagePixel,realWorld,default" default="imagePixel" />
              <!-- 过滤模式, imagePixel-像素大小, realWorld-实际大小, default-默认 -->
              <minRect>true</minRect><!-- 最小目标框 -->
              <maxRect>true</maxRect><!-- 最大目标框 -->
         </SizeFilter>
         <AlarmTime>
              <timeSegNum min="2" max="8" /> <!-- 每天布防时间段数量 -->
         </AlarmTime>
         <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" />
         <!-- monitor-监视器上警告,audio-声音警告,center-上传中心,alarmout-触发报警输出,picture-jpeg 抓图并上传
         email,wirelesslight-无线声光报警,uploadftp-抓图并上传 ftp -->
         <relRecordChan>true</relRecordChan><!-- 报警触发通道录像 -->
         <alarmDelay opt="5,10,30,60,120,300,600" /> <!-- 报警延时 -->
         <!-- 人脸画中画 -->
         <FaceInPicture>
              <enabled opt="true,false" /> <!-- 启用性 -->
              <backChannel>true</backChannel> <!-- 背景通道 -->
              <position opt="topLeft,topRight,bottomLeft,bottomRight" default="bottomRight" />
              <!-- 叠加位置, topLeft-左上,topRight-右上,bottomLeft-左下,bottomRight-右下 -->
              <division opt="1/4,1/9,1/16" /> <!-- 分屏系数 -->
         </FaceInPicture>
         <maxRelSnapChanNum>3</maxRelSnapChanNum><!-- 最大关联抓图通道数 -->
```

```
</FaceDetect>
<!-- 人脸抓拍 -->
<FaceSnap>
    <snapTime min="0" max="10" default="5" /> <!-- 抓拍次数 -->
    <snapInterval min="0" max="255" default="24" /> <!-- 抓拍间隔,单位: 帧 -->
    <snapThreshold min="0" max="100" default="80" /> <!-- 抓拍阈值 -->
    <generateRate min="1" max="5" default="3" /> <!-- 目标生成速度 -->
    <sensitivity min="1" max="5" default="5" /> <!-- 灵敏度 -->
    <referenceBright min="0" max="100" default="80" /> <!-- 参考亮度 -->
    <matchType opt="alarmRealtime,alarmAfterDisappear" default="alarmRealtime" />
    <!-- 比对报警模式, alarmRealtime-实时报警, alarmAfterDisappear-目标消失后报警 -->
    <matchThreshold min="0" max="100" default="80" /> <!-- 实时比对阈值 -->
    //pegParam>
         <picSize>true</picSize> <!-- 图片大小 -->
         <picQuality opt="best,better,normal" /> <!-- 图片质量,best-最好,better-较好,normal-一般 -->
    </JpegParam>
    <RuleEntryList>
         <maxRuleNum>8</maxRuleNum><!-- 最大规则数量 -->
         <RuleEntry>
              <SizeFilter>
                   <mode opt="imagePixel,realWorld,default" default="imagePixel" />
                   <!-- 过滤模式,imagePixel-像素大小,realWorld-实际大小,default-默认 -->
                   <minRect>true</minRect><!-- 最小目标框 -->
                   <maxRect>true</maxRect><!-- 最大目标框 -->
              </SizeFilter>
              <Region>
                   <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
              </Region>
         </RuleEntry>
         <autoROI opt="false,true" /> <!-- 人脸自动 ROI 开关使能, false- 关闭, true- 开启 -->
    </RuleEntryList>
    <faceExposure opt="false,true" /> <!-- 人脸曝光使能 false- 关闭, true- 开启 -->
    <faceExposureMinDuration min="" max="" /> <!-- 人脸曝光最短时间 -->
</FaceSnap>
<!-- 抓拍接入参数 -->
<SnapDevAccess>
    <devIP opt="ipv4,ipv6" /> <!-- ip 地址 -->
    <devPort min="8000" max="65535" /> <!-- 端口 -->
    <usernameLength min="0" max="32" /> <!-- 用户名长度 -->
    <passwordLength min="0" max="16" /> <!-- 密码长度 -->
</SnapDevAccess>
<!-- 存储路径参数 -->
<SavePathCfg>
    <partitionNum>33</partitionNum><!-- 分区个数 -->
```

```
<SinglePath>
                             <type opt="snapFace,blocklistAlarm,snapFaceAndBlocklistAlarm" default="snapFaceAndBlocklistAlarm" />
                             <!-- 存储类型,snapFace-抓拍人脸,blocklistAlarm-禁止名单报警,snapFaceAndBlocklistAlarm-抓拍人脸和、
                             禁止名单报警 -->
                             <saveAlarmPic>true</saveAlarmPic><!-- 支持保存断网的报警图片 -->
                             <diskDriver min="0" max="32" /> <!-- 盘符号 -->
                             <reservedSpace min="10" max="20" default="10" /> <!-- 预留容量,单位:G -->
                   </SinglePath>
         </SavePathCfg>
</Face>
<!-- 视频质量诊断 -->
<VQD>
         <\!\!\mathsf{VQDEventType}\ opt="blur,luma,chroma,snow,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,streak,freeze,signalLoss,ptzControl,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,videoAbnormal,sceneChange,vid
         <!-- blur-图像模糊,luma-亮度异常,chroma-图像偏色,snow-雪花干扰,streak-条纹干扰,freeze-画面冻结,signalLoss-信号
          丢失,ptzControl-云台失控,sceneChange-场景突变,videoAbnormal-视频异常,videoBlock-视频遮挡 -->
         <VQDRule>
                   <EventParam>
                             <threshold min="0" max="100" /> <!-- 报警阈值 -->
                             <triggerMode opt="continuous,single" /> <!-- 报警触发方式,continuous-持续触发,single-单次触发 -->
                             <uploadPic opt="false,true" /> <!-- 报警图片上传 -->
                             </EventParam>
                   <AlarmTime>
                             <timeSegNum min="2" max="8" /> <!-- 每天布防时间段数量 -->
                   </AlarmTime>
                   <alarmHandleType opt="monitor,audio,center,alarmout,picture,wirelesslight,uploadftp" />
                   <!-- monitor-监视器上警告,audio-声音警告,center-上传中心,alarmout-触发报警输出,picture-jpeg 抓图并上传
                   email,wirelesslight-无线声光报警,uploadftp-抓图并上传 ftp -->
                   <relRecordChan>true</relRecordChan><!-- 报警触发通道录像 -->
         </VQDRule>
         <downloadAlarmPic>true</downloadAlarmPic> <!-- 下载 VQD 报警图片 -->
</VQD>
<!-- 物体颜色 -->
<ObjectColor>
         <objectType opt="coat" /> <!-- 物体类型, coat-上衣 -->
         <colorMode opt="value,picture" default="value" /> <!-- 取色方式,value-颜色值,picture-图片 -->
         <colorValue>
                   <brightness min="0" max="255" /> <!-- 亮度 -->
                   <saturation min="0" max="255" /> <!-- 饱和度 -->
                   <hue min="0" max="255" /> <!-- 色调 -->
         </colorValue>
         <colorPicture>
                   <picType opt="jpg" /> <!-- 图片类型 -->
```

```
<picWidth min="100" max="400" /> <!-- 图片宽度 -->
         <picHeight min="100" max="300" /> <!-- 图片高度 -->
    </colorPicture>
</ObjectColor>
<!-- 辅助区域 -->
<AuxArea>
    <maxAreaNum>16</maxAreaNum> <!-- 区域个数 -->
    <areaType opt="overlapRegion,bedLocation" />
    <!-- 区域类型,overlapRegion-共同区域,bedLocation-床铺位置 -->
         <vertexNum min="3" max="10" /> <!-- 区域顶点数量 -->
    </Region>
</AuxArea>
<!-- 基准场景 -->
<BaselineScene>
    <operation opt="update" /> <!-- 操作, update-更新 -->
    <downloadBaselineScenePic>true</downloadBaselineScenePic><!-- 基准场景图片下载 -->
</BaselineScene>
<channelWorkMode opt="independent,master,slave" />
<!-- 通道工作模式,independent-独立模式,master-主模式,slave-从模式 -->
<!-- 从通道 -->
<SlaveChannel>
    <maxChanNum>16</maxChanNum><!-- 最大从通道个数 -->
    <chanType opt="local,remote" /> <!-- 从通道类型,local-本机通道,remote-远程设备通道 -->
    <RemoteChannel>
         <!-- 远程通道 -->
         <devAddress opt="ipv4,ipv6,domainName" /> <!-- 地址类型,domainName-设备域名 -->
         <devPort min="8000" max="65535" /> <!-- 端口 -->
         <userNameLength min="0" max="32" /> <!-- 用户名长度 -->
         <passwordLength min="0" max="16" /> <!-- 密码长度 -->
         <channelNumber>true</channelNumber> <!-- 通道号 -->
    </RemoteChannel>
</SlaveChannel>
<!-- 算法库关键字参数, 当前默认都是整型, 其他类型如浮点、字符串等需额外增加接口 -->
<!-- 翻译后缀含义: cn-中文,en-英文 -->
<VcaKeyParam>
    <VcaKeyParamEntry>
         <index>101</index><!-- 关键字索引值 -->
         <PlainText>
              <translationCn>关键参数 1</translationCn><!-- 中文名称 -->
              <translationEn>Key Parameter 1</translationEn><!-- 英文名称 -->
         </PlainText>
         <value min="1" max="100" default="50" /> <!-- 取值范围 -->
    </VcaKeyParamEntry>
```

```
<VcaKeyParamEntry>
               <index>102</index> <!-- 关键字索引值 -->
               <PlainText>
                    <translationCn>关键参数 2</translationCn> <!-- 中文名称 -->
                    <translationEn>Key Parameter 2</translationEn> <!-- 英文名称 -->
               </PlainText>
               <value min="1" max="100" default="50" />
          </VcaKeyParamEntry>
          <VcaKeyParamEntry>
               <index>103</index><!-- 关键字索引值 -->
               <PlainText>
                    <translationCn>关键参数 3</translationCn> <!-- 中文名称 -->
                    <translationEn>Key Parameter 3</translationEn> <!-- 英文名称 -->
               <value min="1" max="100" default="50" />
          </VcaKeyParamEntry>
     </VcaKeyParam>
</VcaChanAbility>
```

7.159 VehicleRecogAbility:智能通道分析能力集

输入描述:

能力集描述:

<!-- req,车辆图片二次识别操作:车牌、车辆类型、车身颜色、车辆品牌、安全带识别(副驾驶)、安全带识别(主驾驶)、遮挡板识别(主驾驶)、遮挡板识别(副驾驶)-->

<picUploadMethods opt="sdk,URL" />

<!-- req,图片数据上传类型-->

</VehicleRecogAbility>

7.160 设备日志信息

dwMajorType 主类型

宏定义	宏定义值	含义
MAJOR_ALARM	0x1	报警
MAJOR_EXCEPTION	0x2	异常
MAJOR_OPERATION	0x3	操作
MAJOR_INFORMATION	0x4	日志附加信息

dwMinorType 次类型

主类型的宏定义	宏定义值	含义
MAJOR_ALARM	0x1	报警
次类型的宏定义	宏定义值	含义
MINOR_ALARM_IN	0x1	报警输入
MINOR_ALARM_OUT	0x2	报警输出
MINOR_MOTDET_START	0x3	移动侦测报警开始
MINOR_MOTDET_STOP	0x4	移动侦测报警结束
MINOR_HIDE_ALARM_START	0x5	遮挡报警开始
MINOR_HIDE_ALARM_STOP	0x6	遮挡报警结束
MINOR_VCA_ALARM_START	0x7	智能报警开始
MINOR_VCA_ALARM_STOP	0x8	智能报警结束
MINOR_ITS_ALARM_START	0x09	交通事件报警开始
MINOR_ITS_ALARM_STOP	0x0a	交通事件报警结束
MINOR_NETALARM_START	0x0b	网络报警开始
MINOR_NETALARM_STOP	0x0c	网络报警结束
MINOR_NETALARM_RESUME	0x0d	网络报警恢复

主类型的宏定义	宏定义值	含义
MAJOR_EXCEPTION	0x2	异常
次类型的宏定义	宏定义值	含义
MINOR RAID ERROR	0x20	阵列异常

MINOR_VI_LOST	0x21	视频信号丢失
MINOR_ILLEGAL_ACCESS	0x22	非法访问
MINOR_HD_FULL	0x23	硬盘满
MINOR_HD_ERROR	0x24	硬盘错误
MINOR_DCD_LOST	0x25	MODEM 掉线(保留)
MINOR_IP_CONFLICT	0x26	IP 地址冲突
MINOR_NET_BROKEN	0x27	网络断开
MINOR_REC_ERROR	0x28	录像出错
MINOR_IPC_NO_LINK	0x29	IPC 连接异常
MINOR_VI_EXCEPTION	0x2a	视频输入异常(只针对模拟通道)
MINOR_IPC_IP_CONFLICT	0x2b	IPC 的 IP 地址冲突
MINOR_SENCE_EXCEPTION	0x2c	场景异常
MINOR_PIC_REC_ERROR	0x2d	抓图出错,获取图片文件失败
MINOR_VI_MISMATCH	0x2e	视频制式不匹配

主类型的宏定义	宏定义值	含义
MAJOR_OPERATION	0x3	操作
次类型的宏定义	宏定义值	含义
MINOR_START_DVR	0x41	开机
MINOR_STOP_DVR	0x42	关机
MINOR_STOP_ABNORMAL	0x43	异常关机
MINOR_REBOOT_DVR	0x44	本地重启设备
MINOR_LOCAL_LOGIN	0x50	本地登陆
MINOR_LOCAL_LOGOUT	0x51	本地注销登陆
MINOR_LOCAL_CFG_PARM	0x52	本地配置参数
MINOR_LOCAL_PLAYBYFILE	0x53	本地按文件回放或下载
MINOR_LOCAL_PLAYBYTIME	0x54	本地按时间回放或下载
MINOR_LOCAL_START_REC	0x55	本地开始录像
MINOR_LOCAL_STOP_REC	0x56	本地停止录像
MINOR_LOCAL_PTZCTRL	0x57	本地云台控制
MINOR_LOCAL_PREVIEW	0x58	本地预览(保留不使用)
MINOR_LOCAL_MODIFY_TIME	0x59	本地修改时间(保留不使用)
MINOR_LOCAL_UPGRADE	0x5a	本地升级
MINOR_LOCAL_RECFILE_OUTPUT	0x5b	本地备份录象文件
MINOR_LOCAL_FORMAT_HDD	0x5c	本地初始化硬盘
MINOR_LOCAL_CFGFILE_OUTPUT	0x5d	导出本地配置文件
MINOR_LOCAL_CFGFILE_INPUT	0x5e	导入本地配置文件

MINOR LOCAL COPYFILE	0x5f	本地备份文件
MINOR_LOCAL_LOCKFILE	0x60	本地锁定录像文件
MINOR_LOCAL_UNLOCKFILE	0x61	本地解锁录像文件
MINOR_LOCAL_DVR_ALARM	0x62	本地手动清除和触发报警
MINOR_IPC_ADD	0x63	本地添加 IPC
MINOR_IPC_DEL	0x64	本地删除 IPC
MINOR_IPC_SET	0x65	本地设置 IPC
MINOR_LOCAL_START_BACKUP	0x66	本地开始备份
MINOR_LOCAL_STOP_BACKUP	0x67	本地停止备份
MINOR_LOCAL_COPYFILE_START_TIME	0x68	本地备份开始时间
MINOR_LOCAL_COPYFILE_END_TIME	0x69	本地备份结束时间
MINOR_LOCAL_ADD_NAS	0x6a	本地添加网络硬盘
MINOR_LOCAL_DEL_NAS	0x6b	本地删除 NAS 盘
MINOR_LOCAL_SET_NAS	0x6c	本地设置 NAS 盘
MINOR_REMOTE_LOGIN	0x70	远程登录
MINOR_REMOTE_LOGOUT	0x71	远程注销登陆
MINOR_REMOTE_START_REC	0x72	远程开始录像
MINOR_REMOTE_STOP_REC	0x73	远程停止录像
MINOR_START_TRANS_CHAN	0x74	开始透明传输
MINOR_STOP_TRANS_CHAN	0x75	停止透明传输
MINOR_REMOTE_GET_PARM	0x76	远程获取参数
MINOR_REMOTE_CFG_PARM	0x77	远程配置参数
MINOR_REMOTE_GET_STATUS	0x78	远程获取状态
MINOR_REMOTE_ARM	0x79	远程布防
MINOR_REMOTE_DISARM	0x7a	远程撤防
MINOR_REMOTE_REBOOT	0x7b	远程重启
MINOR_START_VT	0x7c	开始语音对讲
MINOR_STOP_VT	0x7d	停止语音对讲
MINOR_REMOTE_UPGRADE	0x7e	远程升级
MINOR_REMOTE_PLAYBYFILE	0x7f	远程按文件回放
MINOR_REMOTE_PLAYBYTIME	0x80	远程按时间回放
MINOR_REMOTE_PTZCTRL	0x81	远程云台控制
MINOR_REMOTE_FORMAT_HDD	0x82	远程格式化硬盘
MINOR_REMOTE_STOP	0x83	远程关机
MINOR_REMOTE_LOCKFILE	0x84	远程锁定文件
MINOR_REMOTE_UNLOCKFILE	0x85	远程解锁文件
MINOR_REMOTE_CFGFILE_OUTPUT	0x86	远程导出配置文件

MINOR_REMOTE_CFGFILE_INTPUT	0x87	远程导入配置文件
MINOR_REMOTE_RECFILE_OUTPUT	0x88	远程导出录象文件
MINOR_REMOTE_DVR_ALARM	0x89	远程手动清除和触发报警
MINOR_REMOTE_IPC_ADD	0x8a	远程添加 IPC
MINOR_REMOTE_IPC_DEL	0x8b	远程删除 IPC
MINOR_REMOTE_IPC_SET	0x8c	远程设置 IPC
MINOR_REBOOT_VCA_LIB	0x8d	重启智能库
MINOR_REMOTE_ADD_NAS	0x8e	远程添加 NAS 盘
MINOR_REMOTE_DEL_NAS	0x8f	远程删除 NAS 盘
MINOR_REMOTE_SET_NAS	0x90	远程设置 NAS 盘
MINOR_LOCAL_START_REC_CDRW	0x91	本地开始刻录
MINOR_LOCAL_STOP_REC_CDRW	0x92	本地停止刻录
MINOR_REMOTE_START_REC_CDRW	0x93	远程开始刻录
MINOR_REMOTE_STOP_REC_CDRW	0x94	远程停止刻录
MINOR_LOCAL_PIC_OUTPUT	0x95	本地备份图片文件
MINOR_REMOTE_SET_NAS	0x96	远程备份图片文件
MINOR_LOCAL_INQUEST_RESUME	0x97	本地恢复审讯事件
MINOR_REMOTE_INQUEST_RESUME	0x98	远程恢复审讯事件
MINOR_REMOTE_BYPASS	0xd0	远程旁路
MINOR_REMOTE_UNBYPASS	0xd1	远程旁路恢复
MINOR_REMOTE_SET_ALARMIN_CFG	0xd2	远程设置报警输入参数
MINOR_REMOTE_GET_ALARMIN_CFG	0xd3	远程获取报警输入参数
MINOR_REMOTE_SET_ALARMOUT_CFG	0xd4	远程设置报警输出参数
MINOR_REMOTE_GET_ALARMOUT_CFG	0xd5	远程获取报警输出参数
MINOR_REMOTE_ALARMOUT_OPEN_MAN	0xd6	远程手动开启报警输出
MINOR_REMOTE_ALARMOUT_CLOSE_MAN	0xd7	远程手动关闭报警输出
MINOR_REMOTE_ALARM_ENABLE_CFG	0xd8	远程设置报警主机的 RS485 串口使能状态
MINOR_DBDATA_OUTPUT	0xd9	导出数据库记录
MINOR_DBDATA_INPUT	0xda	导入数据库记录
MINOR_MU_SWITCH	0xdb	级联切换
MINOR_MU_PTZ	0xdc	级联 PTZ 控制
MINOR_LOCAL_CONF_REB_RAID	0x101	本地配置自动重建
MINOR_LOCAL_CONF_SPARE	0x102	本地配置热备
MINOR_LOCAL_ADD_RAID	0x103	本地创建阵列
MINOR_LOCAL_DEL_RAID	0x104	本地删除阵列
MINOR_LOCAL_MIG_RAID	0x105	本地迁移阵列
MINOR_LOCAL_REB_RAID	0x106	本地手动重建阵列

MINOR_LOCAL_QUICK_CONF_RAID	0x107	本地一键配置
MINOR_LOCAL_ADD_VD	0x108	本地创建虚拟磁盘
MINOR_LOCAL_DEL_VD	0x109	本地删除虚拟磁盘
MINOR_LOCAL_RP_VD	0x10a	本地修复虚拟磁盘
MINOR_LOCAL_FORMAT_EXPANDVD	0x10b	本地扩展虚拟磁盘扩容
MINOR_LOCAL_RAID_UPGRADE	0x10c	本地 raid 卡升级
MINOR_LOCAL_STOP_RAID	0x10d	本地暂停 RAID 操作(即安全拔盘)
MINOR_REMOTE_CONF_REB_RAID	0x111	远程配置自动重建
MINOR_REMOTE_CONF_SPARE	0x112	远程配置热备
MINOR_REMOTE_ADD_RAID	0x113	远程创建阵列
MINOR_REMOTE_DEL_RAID	0x114	远程删除阵列
MINOR_REMOTE_MIG_RAID	0x115	远程迁移阵列
MINOR_REMOTE_REB_RAID	0x116	远程手动重建阵列
MINOR_REMOTE_QUICK_CONF_RAID	0x117	远程一键配置
MINOR_REMOTE_ADD_VD	0x118	远程创建虚拟磁盘
MINOR_REMOTE_DEL_VD	0x119	远程删除虚拟磁盘
MINOR_REMOTE_RP_VD	0x11a	远程修复虚拟磁盘
MINOR_REMOTE_FORMAT_EXPANDVD	0x11b	远程虚拟磁盘扩容
MINOR_REMOTE_RAID_UPGRADE	0x11c	远程 raid 卡升级
MINOR_REMOTE_STOP_RAID	0x11d	远程暂停 RAID 操作(即安全拔盘)
MINOR_LOCAL_START_PIC_REC	0x121	本地开始抓图
MINOR_LOCAL_STOP_PIC_REC	0x122	本地停止抓图
MINOR_LOCAL_SET_SNMP	0x125	本地配置 SNMP
MINOR_LOCAL_TAG_OPT	0x126	本地标签操作
MINOR_REMOTE_START_PIC_REC	0x131	远程开始抓图
MINOR_REMOTE_STOP_PIC_REC	0x132	远程停止抓图
MINOR_REMOTE_SET_SNMP	0x135	远程配置 SNMP
MINOR_REMOTE_TAG_OPT	0x136	远程标签操作
MINOR_REMOTE_TAG_OPT	0x136	远程标签操作
MINOR_LOCAL_VOUT_SWITCH	0x140	本地输出口切换操作
MINOR_SET_TRIGGERMODE_CFG	0x1001	设置触发模式参数
MINOR_GET_TRIGGERMODE_CFG	0x1002	获取触发模式参数
MINOR_SET_IOOUT_CFG	0x1003	设置 IO 输出参数
MINOR_GET_IOOUT_CFG	0x1004	获取 IO 输出参数
MINOR_GET_TRIGGERMODE_DEFAULT	0x1005	获取触发模式推荐参数
MINOR_GET_ITCSTATUS	0x1006	获取状态检测参数
MINOR_SET_STATUS_DETECT_CFG	0x1007	设置状态检测参数

MINOR_GET_STATUS_DETECT_CFG	0x1008	获取状态检测参数
MINOR_GET_VIDEO_TRIGGERMODE_CFG	0x1009	获取视频电警模式参数
MINOR_SET_VIDEO_TRIGGERMODE_CFG	0x100a	设置视频电警模式参数
MINOR_LOCAL_ADD_CAR_INFO	0x2001	本地添加车辆信息
MINOR_LOCAL_MOD_CAR_INFO	0x2002	本地修改车辆信息
MINOR_LOCAL_DEL_CAR_INFO	0x2003	本地删除车辆信息
MINOR_LOCAL_FIND_CAR_INFO	0x2004	本地查找车辆信息
MINOR_LOCAL_ADD_MONITOR_INFO	0x2005	本地添加布控信息
MINOR_LOCAL_MOD_MONITOR_INFO	0x2006	本地修改布控信息
MINOR_LOCAL_DEL_MONITOR_INFO	0x2007	本地删除布控信息
MINOR_LOCAL_FIND_MONITOR_INFO	0x2008	本地查询布控信息
MINOR_LOCAL_FIND_NORMAL_PASS_INFO	0x2009	本地查询正常通行信息
MINOR_LOCAL_FIND_ABNORMAL_PASS_INFO	0x200a	本地查询异常通行信息
MINOR_LOCAL_FIND_PEDESTRIAN_PASS_INFO	0x200b	本地查询正常通行信息
MINOR_LOCAL_PIC_PREVIEW	0x200c	本地图片预览
MINOR_LOCAL_SET_GATE_PARM_CFG	0x200d	设置本地配置出入口参数
MINOR_LOCAL_GET_GATE_PARM_CFG	0x200e	获取本地配置出入口参数
MINOR_LOCAL_SET_DATAUPLOAD_PARM_CFG	0x200f	设置本地配置数据上传参数
MINOR_LOCAL_GET_DATAUPLOAD_PARM_CFG	0x2010	获取本地配置数据上传参数
MINOR_LOCAL_DEVICE_CONTROL	0x2011	本地设备控制(本地开关闸)
MINOR_LOCAL_ADD_EXTERNAL_DEVICE_INFO	0x2012	本地添加外接设备信息
MINOR_LOCAL_MOD_EXTERNAL_DEVICE_INFO	0x2013	本地修改外接设备信息
MINOR_LOCAL_DEL_EXTERNAL_DEVICE_INFO	0x2014	本地删除外接设备信息
MINOR_LOCAL_FIND_EXTERNAL_DEVICE_INFO	0x2015	本地查询外接设备信息
MINOR_LOCAL_ADD_CHARGE_RULE	0x2016	本地添加收费规则
MINOR_LOCAL_MOD_CHARGE_RULE	0x2017	本地修改收费规则
MINOR_LOCAL_DEL_CHARGE_RULE	0x2018	本地删除收费规则
MINOR_LOCAL_FIND_CHARGE_RULE	0x2019	本地查询收费规则
MINOR_LOCAL_COUNT_NORMAL_CURRENTINFO	0x2020	本地统计正常通行信息
MINOR_LOCAL_EXPORT_NORMAL_CURRENTINFO_REPORT	0x2021	本地导出正常通行信息统计报表
MINOR_LOCAL_COUNT_ABNORMAL_CURRENTINFO	0x2022	本地统计异常通行信息
MINOR_LOCAL_EXPORT_ABNORMAL_CURRENTINFO_REPORT	0x2023	本地导出异常通行信息统计报表
MINOR_LOCAL_COUNT_PEDESTRIAN_CURRENTINFO	0x2024	本地统计行人通行信息
MINOR_LOCAL_EXPORT_PEDESTRIAN_CURRENTINFO_REPORT	0x2025	本地导出行人通行信息统计报表
MINOR_LOCAL_FIND_CAR_CHARGEINFO	0x2026	本地查询过车收费信息
MINOR_LOCAL_COUNT_CAR_CHARGEINFO	0x2027	本地统计过车收费信息
MINOR_LOCAL_EXPORT_CAR_CHARGEINFO_REPORT	0x2028	本地导出过车收费信息统计报表

MINOR_LOCAL_FIND_SHIFTINFO	0x2029	本地查询交接班信息
MINOR_LOCAL_FIND_CARDINFO	0x2030	本地查询卡片信息
MINOR_LOCAL_ADD_RELIEF_RULE	0x2031	本地添加减免规则
MINOR_LOCAL_MOD_RELIEF_RULE	0x2032	本地修改减免规则
MINOR_LOCAL_DEL_RELIEF_RULE	0x2033	本地删除减免规则
MINOR_LOCAL_FIND_RELIEF_RULE	0x2034	本地查询减免规则
MINOR_LOCAL_GET_ENDETCFG	0x2035	本地获取出入口控制机离线检测配置
MINOR_LOCAL_SET_ENDETCFG	0x2036	本地设置出入口控制机离线检测配置
MINOR_LOCAL_SET_ENDEV_ISSUEDDATA	0x2037	本地设置出入口控制机下发卡片信息
MINOR_LOCAL_DEL_ENDEV_ISSUEDDATA	0x2038	本地清空出入口控制机下发卡片信息
MINOR_REMOTE_DEVICE_CONTROL	0x2101	远程设备控制
MINOR_REMOTE_SET_GATE_PARM_CFG	0x2102	设置远程配置出入口参数
MINOR_REMOTE_GET_GATE_PARM_CFG	0x2103	获取远程配置出入口参数
MINOR_REMOTE_SET_DATAUPLOAD_PARM_CFG	0x2104	设置远程配置数据上传参数
MINOR_REMOTE_GET_DATAUPLOAD_PARM_CFG	0x2105	获取远程配置数据上传参数
MINOR_REMOTE_GET_BASE_INFO	0x2106	远程获取终端基本信息
MINOR_REMOTE_GET_OVERLAP_CFG	0x2107	远程获取字符叠加参数配置
MINOR_REMOTE_SET_OVERLAP_CFG	0x2108	远程设置字符叠加参数配置
MINOR_REMOTE_GET_ROAD_INFO	0x2109	远程获取路口信息
MINOR_REMOTE_START_TRANSCHAN	0x210a	远程建立同步数据服务器
MINOR_REMOTE_GET_ECTWORKSTATE	0x210b	远程获取出入口终端工作状态
MINOR_REMOTE_GET_ECTCHANINFO	0x210c	远程获取出入口终端通道状态
MINOR_REMOTE_ADD_EXTERNAL_DEVICE_INFO	0x210d	远程添加外接设备信息
MINOR_REMOTE_MOD_EXTERNAL_DEVICE_INFO	0x210e	远程修改外接设备信息
MINOR_REMOTE_GET_ENDETCFG	0x210f	远程获取出入口控制机离线检测配置
MINOR_REMOTE_SET_ENDETCFG	0x2110	远程设置出入口控制机离线检测配置
MINOR_REMOTE_ENDEV_ISSUEDDATA	0x2111	远程设置出入口控制机下发卡片信息
MINOR_REMOTE_DEL_ENDEV_ISSUEDDATA	0x2112	远程清空出入口控制机下发卡片信息
MINOR_REMOTE_ON_CTRL_LAMP	0x2115	开启远程控制车位指示灯
MINOR_REMOTE_OFF_CTRL_LAMP	0x2116	关闭远程控制车位指示灯

主类型的宏定义	宏定义值	含义
MAJOR_INFORMATION	0x4	附加信息
次类型的宏定义	宏定义值	含义
MINOR_HDD_INFO	0xa1	硬盘信息
MINOR_SMART_INFO	0xa2	S.M.A.R.T 信息
MINOR_REC_START	0xa3	开始录像

MINOR_REC_STOP	0xa4	停止录像
MINOR_REC_OVERDUE	0xa5	过期录像删除
MINOR_LINK_START	0xa6	连接前端设备
MINOR_LINK_STOP	0xa7	断开前端设备
MINOR_NET_DISK_INFO	0xa8	网络硬盘信息
MINOR_RAID_INFO	0xa9	raid 相关信息
MINOR_PIC_REC_START	0xb3	开始抓图
MINOR_PIC_REC_STOP	0xb4	停止抓图
MINOR_PIC_REC_OVERDUE	0xb5	过期图片文件删除

7.161 违章类型国标定义

违法代码	违法行为描述	简称	补充说明
1349	驾驶中型以上载客汽车在高速公路、城市快速路以外的道路上	超速行驶	
	行驶超过规定时速未达 20%的	<u></u> 超壓打获	
1350	驾驶中型以上载货汽车在高速公路、城市快速路以外的道路上	超速行驶	
	行驶超过规定时速未达 20%的		
1352	驾驶中型以上载客载货汽车、危险物品运输车辆以外的其他机	超速行驶 1. 对道路设置属性	
1002	动车行驶超过规定时速未达 20%的		1. 对道路设置属性: 高速公路/城市快速路/其他道路; 2. 基于车型识别区分车辆类型: 黄牌货车=中型以上载货车; 黄牌客车=中型以上载客车;
1632	驾驶中型以上载客汽车在高速公路、城市快速路以外的道路上	超速行驶	
1002	行驶超过规定时速 20%以上未达到 50%的		
1633	驾驶中型以上载货汽车在高速公路、城市快速路以外的道路上	超速行驶	
	行驶超过规定时速 20%以上未达到 50%的		
1634	驾驶校车在高速公路、城市快速路以外的道路上行驶超过规定		
1001	时速 20%以上未达到 50%的		
1636	驾驶中型以上载客载货汽车、校车、危险物品运输车辆以外的	超速行驶	
	其他机动车行驶超过规定时速 20%以上未达到 50%的		
1628	驾驶中型以上载客汽车在城市快速路上行驶超过规定时速未	超速行驶	
1020	达 20%的	是是目录	**
1629	驾驶中型以上载货汽车在城市快速路上行驶超过规定时速未	超速行驶 危险品车辆暂力	2 1/ 1 / 1
1000	达 20%的		别,归类为货车;
1630	驾驶校车在城市快速路上行驶超过规定时速未达 20%的		其他车辆="中型以上
1030	与狄仅十任城市区还断工门 狄起足然是的还不达 2070时		载客载货汽车、校车、
1.001	驾驶危险物品运输车辆在城市快速路上行驶超过规定时速未		危险物品运输车辆以
1631	达 20%的		外的"
1700	驾驶中型以上载客汽车在城市快速路上行驶超过规定时速	+11+4-11	
1722	20%以上未达 50%的	超速行驶	
1723	驾驶中型以上载货汽车在城市快速路上行驶超过规定时速	超速行驶	
	20%以上未达 50%的		
1724	驾驶校车在城市快速路上行驶超过规定时速20%以上未达50%	超速行驶	

	的		
1721	驾驶中型以上载客载货汽车、校车、危险物品运输车辆以外的	加索公司	
	机动车行驶超过规定时速 50%以上的	超速行驶	
1726	驾驶中型以上载客汽车在高速公路以外的道路上行驶超过规	超速行驶	
	定时速 50%的	超述行状	
1727	驾驶中型以上载货汽车在高速公路以外的道路上行驶超过规	超速行驶	
	定时速 50%的	超述有效	
1728	驾驶校车在高速公路以外的道路上行驶超过规定时速 50%的	超速行驶	
4710	驾驶中型以上载客汽车在高速公路上行驶超过规定时速 50%	超速行驶	
	的	起述自认	
4711	驾驶中型以上载货汽车在高速公路上行驶超过规定时速 50%	超速行驶	
	的	ZZ11	
4712	驾驶校车在高速公路上行驶超过规定时速 50%的		
4713	驾驶危险物品运输车辆在高速公路上行驶超过规定时速 50%		
1,10	的		
4609	驾驶中型以上载客汽车在高速公路上行驶超过规定时速未达	超速行驶	
	20%的	,	
4610	驾驶中型以上载货汽车在高速公路上行驶超过规定时速未达	超速行驶	
	20%的		
4706	驾驶中型以上载客汽车在高速公路上行驶超过规定时速 20%	超速行驶	
	以上未达 50%的		
4707	驾驶中型以上载货汽车在高速公路上行驶超过规定时速 20% 以上未达 50%的	超速行驶	
1625	驾驶机动车违反道路交通信号灯通行的	违反信号灯	
1625	(新见度气象条件下,驾驶机动车在高速公路上不按规定行驶)。 「我们的一种,我们的一种,我们的一种,我们的一种。」	地 及信 5月	
4615	版	不按规定行驶	
1344	机动车违反禁令标志指示的	违反禁令标志	
13451	机动车违反禁止标线指示的	压线	
13453	机动车违反禁止标线指示的	违法变道	
1018	机动车不在机动车道内行驶的	机占非	
1019	机动车违反规定使用专用车道的	占用专用车道	
1208	机动车通过有灯控路口时,不按所需行进方向驶入导向车道的	不按导向车道 行驶	
1211	│ │ 通过路口遇停止信号时,停在停止线以内或路口内的	路口停车	
1301	机动车逆向行驶的	逆行	
4306	在高速公路上正常情况下以低于规定最低时速行驶的	低速行驶	
16251	信号灯为绿灯信号时,车辆未通过路口停车	绿灯停车	
1228	路口遇有交通阻塞时未依次等候的	路口滞留	
1039	机动车未在规定地点停放	城市违停	
1357	遇行人正在通过人行横道时未停车让行的	未礼让行人	
1240	驾驶人未按规定使用安全带的	未系安全带	
4613	高速公路违法停车	违法停车	
4701	违法倒车	违法倒车	