

Chapitre VII – Probabilités

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES							
I- P	robabilités conditionnelles						
1.	Définition						
2.	Arbre de probabilité						
3.	Formule des probabilités totales						
II - V 1. 2. 3.	Ariables aléatoires 4 Définition 4 Loi de probabilité 4 Espérance, variance et écart-type 5						

I - Probabilités conditionnelles

1. Définition

À RETENIR : DÉFINITION 📍

Soient A et B deux événements avec A de probabilité non nulle. Alors **la probabilité** conditionnelle de B sachant que A est réalisé (notée $p_A(B)$) est $p_A(B) = \frac{p(A \cap B)}{p(A)}$.

À LIRE : RAPPEL 99

On rappelle que $p(A \cap B) = p(A) + p(B) - p(A \cup B)$.

À LIRE : DIFFÉRENCE ENTRE CONDITIONNELLE ET INTERSECTION 99

Il faut faire attention, à bien faire la distinction entre une probabilité conditionnelle ("Sachant qu'on a A, quelle est la probabilité d'avoir B?") et une intersection ("Quelle est la probabilité d'avoir A et B à la fois?").

À RETENIR : INDÉPENDANCE 📍

Deux événements A et B sont dits **indépendants** si la réalisation de l'un n'a aucune incidence sur la réalisation de l'autre et réciproquement. C'est-à-dire si $p(A \cap B) = p(A) \times p(B)$.

À RETENIR : PROPRIÉTÉS 📍

Pour deux événements indépendants A et B, on a les relations suivantes :

$$--p_A(B)=p(B)$$

$$--p_B(A)=p(A)$$

2. Arbre de probabilité

Au lycée, pour représenter visuellement des probabilités on utilise très souvent un **arbre de probabilité**. Nous nous limiterons ici au cas de deux événements, mais il est possible d'en rajouter encore d'autres.

Ainsi:

Soient A et B deux événements. L'arbre de probabilité décrivant la situation est le suivant :

La somme (dans le sens vertical) des probabilités de chacune des branches ayant une "racine" commune doit toujours faire 1.

À LIRE : EXEMPLE 👀

Soit A et B deux événements non-indépendants tels que $p(A)=\frac{4}{7}$, $p_A(B)=\frac{1}{4}$ et $p_{\bar{A}}(B)=\frac{5}{9}$.

Alors l'arbre permettant de modéliser la situation est le suivant :

3. Formule des probabilités totales

Voici maintenant l'énoncé de la **formule des probabilités totales**, qui peut être très utile pour calculer des probabilités que l'on ne connaît pas (ou qui ne sont pas données dans un énoncé d'exercice) :

À RETENIR : FORMULE DES PROBABILITÉS TOTALES 📍

Soient $A_1, A_2, ..., A_n$ des événements qui partitionnent (qui recouvrent) l'univers Ω , alors pour tout événement B:

$$p(B) = p(B \cap A_1) + p(B \cap A_2) + \cdots + p(B \cap A_n)$$

À LIRE : EXEMPLE 00

En reprenant l'arbre précédent, comme A et \bar{A} recouvrent notre univers (en effet, soit on tombe sur A, soit on tombe sur \bar{A} : pas d'autre issue possible), calculons p(B):

D'après la formule des probabilités totales, $p(B) = p(B \cap A) + p(B \cap \bar{A}) = \frac{107}{252}$.

II - Variables aléatoires

1. Définition

À RETENIR : DÉFINITION 📍

Une **variable aléatoire** X est une fonction qui, à chaque événement élémentaire de l'univers Ω y associe un nombre réel. C'est-à-dire : $X:\Omega\to\mathbb{R}$.

L'ensemble des valeurs prises par X est noté $X(\Omega)$.

À LIRE 99

Les variables aléatoires sont très utiles notamment pour modéliser des situations de gains ou de pertes (à un jeu d'argent par exemple).

2. Loi de probabilité

À RETENIR : DÉFINITION 🔋

Soit X une variable aléatoire. La **loi de probabilité** de X attribue à chaque valeur x_i la probabilité $p_i = p(X = x_i)$ de l'événement $X = x_i$ constitué de tous les événements élémentaires dont l'image par X est x_i .

On représente généralement les lois de probabilité par un tableau.

À RETENIR : REPRÉSENTATION D'UNE LOI DE PROBABILITÉ PAR UN TABLEAU 📍

Soit X une variable aléatoire. On peut représenter sa loi de probabilité par le tableau ci-contre :

Xi	<i>x</i> ₁	<i>x</i> ₂		X _n
p_i	p_1	p_2		p_n
$= p(X = x_i)$	$= p(X = x_1)$	$= p(X = x_2)$	•••	$= p(X = x_n)$

On a $p_1 + p_2 + \cdots + p_n = 1$.

À LIRE 99

Cette définition peut sembler un peu compliquée mais elle signifie juste qu'une loi de probabilité assigne une probabilité à chaque valeur prise par notre variable aléatoire.

3. Espérance, variance et écart-type

À RETENIR : ESPÉRANCE 🖁

L'espérance E(X) d'une variable aléatoire X est le réel : $E(X) = x_1 \times p_1 + x_2 \times p_2 + \cdots + x_n \times p_n$.

À RETENIR : VARIANCE ET ÉCART-TYPE 📍

La **variance** V(X) et l'**écart-type** $\sigma(X)$ d'une variable aléatoire X sont les réels positifs suivants :

$$-V(X) = E(X^2) - E(X)^2$$

$$--\sigma(X)=\sqrt{V(X)}$$

À LIRE : EXEMPLE 99

Calcul de l'espérance, de la variance et de l'écart-type. Soit X une variable aléatoire suivant la loi de probabilité donnée par le tableau ci-dessous :

Xi	-1	0	2	6
p _i	$\frac{1}{4}$	$\frac{1}{2}$	1/8	$\frac{1}{8}$

On a:

$$-E(X) = -1 \times \frac{1}{4} + 0 \times \frac{1}{2} + 2 \times \frac{1}{8} + 6 \times \frac{1}{8} = \frac{3}{4}$$

$$-V(X) = ((-1)^2 \times \frac{1}{4} + 0^2 \times \frac{1}{2} + 2^2 \times \frac{1}{8} + 6^2 \times \frac{1}{8}) - (\frac{3}{4})^2 = \frac{75}{16}$$

$$-\sigma(X) = \sqrt{\frac{75}{16}} \approx 2.165$$

Chacun de ces paramètres a une utilité bien précise. En effet :

À RETENIR : SIGNIFICATION DES PARAMÈTRES 📍

- L'espérance est la **valeur moyenne** prise par X.
- La variance et l'écart-type mesurent la **dispersion** des valeurs prises par *X*. Plus ces valeurs sont grandes, plus les valeurs sont dispersées autour de l'espérance.