云原生时代分布式链路 追踪实践

曲赛 (saiqu)

2021-08

微服务架构的困境

故障定位难

日志分散 定位过程"击鼓传花"

性能分析难

跨端性能瓶颈分析繁杂

链路梳理难

极高的沟通和交接成本错综难懂的模块依赖关系

架构治理能力匮乏

缺乏对系统整体认知的把控 不合理的调用关系 不合理的直连存储

OBSERVABILITY

What happened to my request?

Without Distributed Tracing

With Distributed Tracing

标准	概述	Traces	Metrics	Logs	状态
OpenTracing	2015年底发起,2016年被批准为CNCF第三 个项目	✓			停止更新
OpenCensus	2017年,起源于Google,项目负责人来自 Google,Microsoft	✓	✓		停止更新
OpenMetrics	2017年,起源于Prometheus社区,项目负 责人来自Grafana,Gitlab		✓		持续更新
OpenTelemetry	2019年,由OpenTracing和OpenCensus合并 而来。	✓	1	✓	蓬勃发展

Trace 数据模型: Trace Context, Baggage

Propagation Format

W3C Trace-Context

W3C Baggage

Zipkin B3 format

Jaeger

AWS X-Ray

请求

 $trace parent: \ 00-4bf92f3577b34da6a3ce929d0e0e4736-d75597dee50b0cac-d755900cac-d755900cac-d75000cac-d75000cac-d7559000cac-d750000cac-d7500000cac-d7500000000$

01

tracestate: rojo=00f067aa0ba902b7, congo=t61rcWkgMzE

baggage: userId=alice, serverNode=DF:28, isProduction=false

响应

traceresponse: 00-1baad25c36c11c1e7fbd6d122bd85db6-

Trace 数据模型: Trace Detail

```
message Span {
  bytes trace_id = 1;
  bytes span_id = 2;
  string trace_state = 3;
  bytes parent_span_id = 4;
  string name = 5;
  SpanKind kind = 6;
  fixed64 start_time_unix_nano = 7;
  fixed64 end_time_unix_nano = 8;
  // 属性键值对
  repeated KeyValue attributes = 9;
  // 内嵌日志(事件)
  repeated Event events = 11;
  // 链接到其它Trace
  repeated Link links = 13;
  Status status = 15;
```

```
Causal relationships between Spans in a single Trace

[Span A] 

(the root span)

|

+----+

|

[Span B] [Span C] 

(Span C is a `child` of Span A)

|

[Span D] +---+

|

[Span E] [Span F]
```

Trace 数据模型: Trace Detail 示例

Trace 采样策略

- 1. Head-based coherent sampling
- 2. Tail-based coherent sampling
- 3. Unitary sampling
- 4. 多维度染色采样: 指定某用户或指定某文章采样

Trace 传递与采集

Instrumentatition 非侵入式的业务接入

利用拦截器机制的实现

接入便利,只需引入对应的拦截器 组件

trace基础属性自动采集

一次网络调用的经过的拦截器数据流

```
name, attr := spanInfo(method, cc.Target())
var span trace.Span
ctx, span = tracer.Start(
        ctx,
        trace.WithSpanKind(trace.SpanKindClient),
        trace.WithAttributes(attr...).
defer span.End()
Inject(ctx, &metadataCopy, opts...)
ctx = metadata.NewOutgoingContext(ctx, metadataCopy)
messageSent.Event(ctx, 1, req)
err := invoker(ctx, method, req, reply, cc, callOpts...)
messageReceived.Event(ctx, 1, reply)
if err != nil {
        s, := status.FromError(err)
       span.SetStatus(codes.Error, s.Message())
        span.SetAttributes(statusCodeAttr(s.Code()))
} else {
        span.SetAttributes(statusCodeAttr(grpc codes.OK))
```

otelgrpc instrumentation核心实现

天机阁2.0 简介

天机阁2.0是遵循OpenTelemetry标准的,为各业务或平台提供分布式追踪,监控,日志,

多维染色,容量评估,架构治理等能力的云原生可观测性系统。

- 分布式追踪
- 日志
- 服务监控
- 火焰图
- 存储监控
- SDK监控
- CI/CD监控
- 发布变更
- 告警历史
- 服务拓扑图

天机阁2.0 架构

标准规范: OpenTelemetry/OpenTracing

云原生: 可观测性

天机阁2.0 实践

分布式追踪

天机阁2.0 实践

Log详情

分布式追踪

点击Log详情中traceID字段的按 钮拉起Trace详情。

天机阁2.0 实践

监控面板

分布式追踪

监控到错误码111,点击面板跳转 到相关时间段的分布式追踪

感谢倾听