Av2 de Física do 1º bimestre 3º série - Potencial elétrico e trabalho.

Questão 01

Na figura, A e B representam duas placas metálicas; a diferença de potencial entre elas é $V_B - V_A = 2.0 \times 10^4 \text{ V}$. As linhas tracejadas 1 e 2 representam duas possíveis trajetórias de um elétron, no plano da figura

Considere a carga do elétron igual a -1,6 x 10⁻¹⁹ C e as seguintes afirmações com relação à energia cinética de um elétron que sai do ponto X na placa A e atinge a placa B

- I. Se o elétron tiver velocidade inicial nula, sua energia cinética, ao atingir a placa B, será $3.2 \times 10^{-15} \, J$.
- II. A variação da energia cinética do elétron é a mesma, independentemente de ele ter percorrido as trajetórias 1 ou 2.
- III. O trabalho realizado pela força elétrica sobre o elétron na trajetória 2 é maior do que o realizado sobre o elétron na trajetória 1.

Apenas é Correto o que se afirma e

a) III.	
○ b) II.	
C) le III.	
(a) I e II.	
e) I.	

Questão 02

Um campo elétrico é gerado por uma partícula de carga puntiforme $Q = 5.0 \cdot 10^{-6} \, \text{C}$ no vácuo.

O trabalho realizado pela força elétrica para deslocar a carga de prova q = $2 \cdot 10^{-8}$ C do ponto X para o ponto Y, que estão a 0,20 m e 1,50 m da carga Q, respectivamente, conforme o desenho abaixo é: Dado: Constante eletrostática do vácuo $k_0 = 9 \cdot 10^9$ N m²/C²

a) 6,3 · 10 ⁻⁶ J	
(a) b) 3,9 ⋅ 10 ⁻³ J	
○ c) 4,3 · 10 ⁻³ J	
(d) 6,0 ⋅ 10 ⁻³ J	
e) 5,4 · 10 ⁻³ J	

No interior das válvulas que comandavam os tubos dos antigos televisores, os elétrons eram acelerados por um campo elétrico. Suponha que um desses campos, uniforme e de intensidade 4.0×10^2 N/C, acelerasse um elétron durante um percurso de 5.0×10^{-4} m. Sabendo que o módulo da carga elétrica do elétron é 1.6×10^{-19} C, a energia adquirida pelo elétron nesse deslocamento era de

Questão 04

Uma esfera metálica de 1,0 m de raio possui uma carga total de 1,0 nC. Determine o potencial eletrostático na esfera. Considere que o potencial no infinito é nulo e que a constante eletrostática é k_0 =9,0×10⁹ $N \cdot m^2 C^2$ %. Dê sua resposta em volts.

a) 9,0×10 ¹ V	
b) 9,0×10 ⁻¹ V	
c) 9,0×10 ² V	
d) 9,0×10 ⁻² V	
e) 9,0×10 ⁰ V	

Na figura abaixo, está representado, em corte, um sistema de três cargas elétricas com seu respectivo conjunto de superfícies equipotenciais.

Assinale a alternativa que preenche corretamente as lacunas do enunciado abaixo, na ordem em que aparecem.

A partir do traçado das equipotenciais, pode-se afirmar que as cargas têm sinais e que os módulos das cargas são tais que

- a) 1 e 2 opostos q₁ < q₂ < q₃
- b) 2 e 3 opostos q₁ > q₂ > q₃
- \bigcirc c) 1 e 2 iguais $q_1 < q_2 < q_3$
- d) $2 e 3 iguais q_1 > q_2 > q_3$

Na figura, A e B representam duas placas metálicas; a diferença de potencial entre elas é $V_B - V_A = 2.0 \times 10^4 \text{ V}$. As linhas tracejadas 1 e 2 representam duas possíveis trajetórias de um elétron, no plano da figura

Considere a carga do elétron igual a -1,6 x 10⁻¹⁹ C e as seguintes afirmações com relação à energia cinética de um elétron que sai do ponto X na placa A e atinge a placa B:

I.Se o elétron tiver velocidade inicial nula, sua energia cinética, ao atingir a placa B, será 3,2 x 10⁻¹⁵ J
II. A variação da energia cinética do elétron é a mesma, independentemente de ele ter percorrido as trajetórias 1 ou 2.
III. O trabalho realizado pela força elétrica sobre o elétron na trajetória 2 é maior do que o realizado sobre o elétron na trajetória 1

Apenas é correto o que se afirma em

a) III.	
b) II.	
_ c) I	
d) le III.	
e) le II.	

m hr/cic quaetnac/noctc/200582 nra ina?15222022/188/amnra

Analise a figura abaixo.

Na figura acima, a linha pontilhada mostra a trajetória plana de uma partícula de carga -q = -3,0 C que percorre 6,0 metros, ao se deslocar do ponto A, onde estava em repouso, até o ponto B, onde foi conduzida novamente ao repouso. Nessa região do espaço, há um campo elétrico conservativo, cujas superfícies equipotenciais estão representadas na figura. Sabe-se que, ao longo desse deslocamento da partícula, atuam somente duas forças sobre ela, onde uma delas é a força externa, F_{ext}.

Sendo assim, qual o trabalho, em quilojoules, realizado pela força F_{ext} no deslocamento da partícula do ponto A até o ponto B?

a) - 0,56			
b) + 0,56			
c) - 0,85			
(a) - 0,28			
e) + 0,28			

Questão 08

Um sistema de cargas pontuais é formado por duas cargas positivas +q e uma negativa -q, todas de mesma intensidade, cada qual fixa em um dos vértices de um triângulo equilátero de lado r.

Se substituirmos a carga negativa por uma positiva de mesma intensidade, qual será a variação da energia potencial elétrica do sistema? A constante de Coulomb é denotada por *k*.

a) -4kq2/r	
c) 2kq2/r	
d) kq2/r	
e) -2kq2/r	