Siven that $g(\theta) = R \cos(2\theta - \alpha)$, where $R > 0$ and $0 < \alpha < 90^\circ$, a) find the exact value of R and the value of α to 2 decimal places. (3) (4) (5) (6) (6) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9
b) Hence solve, for $-90^{\circ} < \theta < 90^{\circ}$, $4\cos 2\theta + 2\sin 2\theta = 1$ giving your answers to one decimal place. (5) Given that k is a constant and the equation $g(\theta) = k$ has no solutions, c) state the range of possible values of k .
$4\cos 2\theta + 2\sin 2\theta = 1$ giving your answers to one decimal place. (5) Given that k is a constant and the equation $g(\theta) = k$ has no solutions, (5) state the range of possible values of k .
giving your answers to one decimal place. (Siven that k is a constant and the equation $g(\theta) = k$ has no solutions, c) state the range of possible values of k .
Given that k is a constant and the equation $g(\theta) = k$ has no solutions, c) state the range of possible values of k .
c) state the range of possible values of k .

2.	(a)	Write $5\cos\theta - 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants,					
		$R > 0$ and $0 \leqslant \alpha < \frac{\pi}{2}$					
		places.	(3)				
	(1.)		(0)				
	Show that the equation						
		$5\cot 2x - 3\csc 2x = 2$					
	can be rewritten in the form						
		where c is a positive constant to be determined.					
			(2)				
	(c)	Hence or otherwise, solve, for $0 \le x < \pi$,					
		$5\cot 2x - 3\csc 2x = 2$					
		giving your answers to 2 decimal places.					
		(Solutions based entirely on graphical or numerical methods are not acceptab	le.)				
			(4)				

3.	(a)	Express $2\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants, $R > 0$ and $0 < \alpha < 90^{\circ}$. Give the exact value of R and give the value of α to 2 decimal places.	
		(3))
	(b)	Hence solve, for $0 \le \theta < 360^{\circ}$,	
		$\frac{2}{2\cos\theta - \sin\theta - 1} = 15$	
		Give your answers to one decimal place. (5)	ı
	(c)	Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which)
		$\frac{2}{2\cos\theta + \sin\theta - 1} = 15$	
		Give your answer to one decimal place. (2)	ı

. (a) Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{R}{2}$	Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.			
Give the value of α to 3 decimal places.				
	(4)			
(b) $p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, 0 \le \theta \le 2\pi$				
Calculate				
(i) the maximum value of $p(\theta)$,				
(ii) the value of θ at which the maximum occurs.	(4)			

and $0 < \alpha < \frac{\pi}{2}$ Give the value of α to 3 decimal places.
(2)
$H(0) = 4 + 5(2\sin 2\theta - 4\cos 2\theta)^2$
$H(\theta) = 4 + 5(2\sin 3\theta - 4\cos 3\theta)^2$
Find
(b) (i) the maximum value of $H(\theta)$,
(ii) the smallest value of θ , for $0 \le \theta < \pi$, at which this maximum value occurs. (3)
Find
(c) (i) the minimum value of $H(\theta)$,
(ii) the largest value of θ , for $0 \le \theta < \pi$, at which this minimum value occurs. (3)

6.	$f(x) = 7\cos 2x - 24\sin 2x$					
	Given that $f(x) = R\cos(2x + \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$,					
	(a) find the value of R and the value of α .					
	(b) Hence solve the equation					
	$7\cos 2x - 24\sin 2x = 12.5$					
	for $0 \le x < 180^{\circ}$, giving your answers to 1 decimal place.	(5)				
	(c) Express $14\cos^2 x - 48\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where a, b, and c are constants to be found.	(2)				
	(d) Hence, using your answers to parts (a) and (c), deduce the maximum value of					
	$14\cos^2 x - 48\sin x \cos x$	(2)				

7. (a) Express $2\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R and α are constants, $R>0$ and $0<\alpha<\frac{\pi}{2}$ Give the exact value of R and give the value of α in radians to 3 decimal places. The first three terms of an arithmetic sequence are						(3)	
	The first timee t	terins or an ar					
		$\cos x$	$\cos x + \sin x$	$\cos x + 2\sin x$	$x \neq n\pi$		
	Given that S_9	represents the	sum of the first 9 t	erms of this sequence	e as x varies,		
	(b) (i) find the	exact maxim	um value of S_9				
	(ii) deduce of S_9 of		positive value of x a	t which this maximus	n value		
	,					(3)	