CSE 620: Selective Topics Introduction to Formal Verification

Master Studies in CSE Fall 2017

Lecture #5

Dr. Hazem Ibrahim Shehata

Assistant Professor

Dept. of Computer & Systems Engineering

Course Outline

- Computational Boolean Algebra
 - —Basics
 - Shannon Expansion
 - Boolean Difference
 - Quantification Operators
 - + Application to Logic Network Repair
 - Validity Checking (Tautology Checking)
 - —Binary Decision Diagrams (BDD's)
 - —Satisfiability Checking (SAT solving)
- Model Checking
 - —Temporal Logics → LTL CTL
 - —SMV: Symbolic Model Verifier
 - —Model Checking Algorithms → Explicit CTL

Rob A. Rutenbar University of Illinois

Lecture 4.1

Computational Boolean Algebra Representations: Satisfiability (SAT), Part 1

ris Knapton/Digital Visio

Some Terminology

- Satisfiability (called SAT for short)
 - Give me an appropriate representation of function F(x1, x2, ... xn)
 - Find an assignment of the variables ("vars" for short) (x1, x2, ... xn) so F() = 1
 - Note this assignment need not be unique. Could be many satisfying solutions
 - But if there are no satisfying assignments at all prove it, and return this info
- Some things you can do with BDDs, can do easier with SAT
 - SAT is aimed at scenarios where you just need one satisfying assignment...
 - ...or prove that there is no such satisfying assignment

Example: Network Repair

- Assuming you can build the quantification function (∀a,b Z)
 - Go find a SAT assignment to get you the d values to repair the network
 - Or, if unSAT, know that there is no network repair possible

Standard SAT Form: CNF

Conjunctive Normal Form (CNF) = Standard POS form

$$\Phi = (a + c) (b + c) (\neg a + \neg b + \neg c)$$

positive

- Why CNF is useful
 - Need only determine that **one** clause evaluates to **"0"** to know whole formula = **"0"**
 - Of course, to satisfy the whole formula, you must make **all** clauses identically "1".

Assignment to a CNF Formula

- An assignment...
 - ...gives values to some, not necessarily all, of variables (vars) xi in (x1, x2, ..., xn).
 - Complete assignment: assigns value to all vars. Partial: some, not all, have values
- Assignment means we can evaluate status of the clauses
- Suppose a=0, b=1 but c, d are unassigned a=0, a=0, b=1 but c, d are unassigned a=0, a=0,

clause = 0 conflicting

change =1 Sutherfield

runsolve g

SAT

How Do We "Solve" This?

- Recursively (...surprised?)
 - Strategy has two big ideas
 - DECISION:
 - Select a variable and assign its value; simplify CNF formula as far as you can
 - Hope you can decide if it's SAT, yes/no, without further work
 - DEDUCTION:
 - Look at the newly simplified clauses
 - Iteratively simplify, based on structure of clauses, and value of partial assignment
 - Do this until nothing simplifies. If you can decide SAT yes/no, great.
 - If not, then you have to **recurse** some more, back up to DECIDE

How Do We "Solve" This?

VLSI CAD: Logic to Layout

Rob A. Rutenbar University of Illinois

Lecture 4.2

Computational Boolean
Algebra Representations:
Boolean Constraint
Propagation (BCP) for SAT

ris Knapton/Digital V

BCP: Boolean Constraint Propagation

- To do "deduction", use BCP
 - Given a set of fixed variable assignments, what else can you "deduce" about necessary assignments by "propagating constraints"
- Most famous BCP strategy is "Unit Clause Rule"
 - A clause is said to be "unit" if it has exactly one unassigned literal
 - Unit clause has exactly one way to be satisfied, ie, pick polarity that makes clause="1"

This choice is called an "implication"

b = (a + c)(b + c)(7a + 7b + c)

Assume: a=1, b=1

UNIT: I unasgrad lideral = = C Cmust be 0 > SAT!

 $\Phi = (\omega_1)(\omega_2)(\omega_3)(\omega_4)(\omega_5)(\omega_6)(\omega_7)(\omega_8)(\omega_9)$

$$\omega_{1} = (\neg x1 + x2)$$

$$\omega_{2} = (\neg x1 + x3 + x4)$$

$$\omega_{3} = (\neg x2 + \neg x3 + x4)$$

$$\omega_{4} = (\neg x4 + x5 + x14)$$

$$\omega_{5} = (\neg x4 + x6 + x14)$$

$$\omega_{6} = (\neg x5 + \neg x6)$$

$$\omega_{7} = (x1 + x7 + \neg x42)$$

$$\omega_{8} = (x1 + x8)$$

$$\omega_{9} = (\neg x7 + \neg x8 + \neg x43)$$
Slide 10

No SAT No BCP Now what?

Example from

J.P. Marques-Silva and K. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", *IEEE Trans. Computers*, Vol 8, No 5, May'99

Partial assignment is:

- To start...
 - What are obvious simplifications when we assign these variables?

Unit

SAT

$$\Phi = (\omega_1)(\omega_2)(\omega_3)(\omega_4)(\omega_5)(\omega_6)(\omega_7)(\omega_8)(\omega_9)$$

$$\omega_1 = (7x1 + x2)$$
 $\omega_2 = (7x1 + x3 + x3)$
 $\omega_3 = (7x1 + x3 + x3)$

$$\omega_3 = (\neg x2 + \neg x3 + x4)$$

$$\omega_4 = (\neg x4 + x5 + x15)$$

$$\omega_5 = (\neg x4 + x6 + x11)$$

$$\omega_6 = (\neg x5 + \neg x6)$$
 $\omega_7 = (x1 + x7 + \neg x12)$
 $\omega_8 = (x1 + x8)$

$$\omega_9 = (\neg x7 + \neg x8 + \neg x13)$$

Slide 11

- Partial assignment is:
 - x9=0 x10=0 x11=0 x12=1 x13=1
- Next: Assign a variable to value

$$\Phi = (\omega_1)(\omega_2)(\omega_3)(\omega_4)(\omega_5)(\omega_6)(\omega_7)(\omega_8)(\omega_9)$$

$$\omega_{1} = (7x1 + x2)_{1}$$

$$\omega_{2} = (7x1 + x3 + x3)$$

$$\omega_{3} = (7x2 + 7x3 + x4)$$

UNIT

SAT

SAT

$$\omega_4 = (\neg x4 + x5 + x10)$$

 $\omega_5 = (\neg x4 + x6 + x11)$

$$\omega_6 = (\neg x5 + \neg x6)$$
 $\omega_7 = (x1 + x7 + \neg x12)$
 $\omega_8 = (x1 + x8)$

$$\omega_9 = (\neg x7 + \neg x8 + \neg x13)$$

Slide 12

- Partial assignment is:
 - x9=0 x10=0 x11=0 x12=1 x13=1
- Next: Assign a var to value
 - Assign **x1=1**
 - Assign (implied): x2=1, x3=1

$\Phi = (\omega_1)(\omega_2)(\omega_3)(\omega_4)(\omega_5)(\omega_6)(\omega_7)(\omega_8)(\omega_9)$

$$\omega_{1} = (7x1 + x2)_{1}$$

$$\omega_{2} = (7x1 + x3 + x4)_{1}$$

$$\omega_{3} = (7x2 + 7x3 + x4)_{1}$$

$$\omega_{3} = (7x4 + x5 + x4)_{1}$$

$$\omega_4 = (7x4 + x5 + x10)$$

 $\omega_5 = (7x4 + x6 + x11)$

$$\omega_{6} = (\neg x5 + \neg x6)$$

$$\omega_{7} = (x + x7 + \neg x12)$$

$$\omega_{8} = (x + x8)$$

$$\omega_9 = (\neg x7 + \neg x8 + \neg x13)$$

UNIT

SAT

SAT

- Partial assignment is:
 - x9=0 x10=0 x11=0 x12=1 x13=1
- Next: Assign a var to value
 - Assign x1=1
 - Assign (implied): x2=1, x3=1
 - Assign (implied): x4=1

Implications!

 $x4=1 \rightarrow x5=1 \&\& x6=1$

$$\Phi = (\omega_1)(\omega_2)(\omega_3)(\omega_4)(\omega_5)(\omega_6)(\omega_7)(\omega_8)(\omega_9)$$

$$\omega_{1} = (7x1 + x2)_{1}$$

$$\omega_{2} = (7x1 + x3 + x3)_{1}$$

$$\omega_{3} = (7x2 + 7x3 + x4)_{1}$$

$$\omega_{4} = (7x4 + x3 + x10)_{1}$$

$$\omega_{5} = (7x4 + x3 + x11)_{1}$$

$$\omega_{6} = (7x5 + 7x6)_{1}$$

$$\omega_{7} = (x1 + x7 + 7x12)_{1}$$

$$\omega_{8} = (x1 + x8)_{1}$$

$$\omega_{9} = (7x7 + 7x8 + 7x13)_{1}$$

Slide 14

SAT

UNIT

CONFLICT!

SAT

- Partial assignment is:
 - x9=0 x10=0 x11=0 x12=1 x13=1
- Next: Assign a var to value
 - Assign x1=1
 - Assign (implied): x2=1, x3=1
 - Assign (implied): x4=1
 - Assign (implied): x5=1 && x6=1

Conflict \rightarrow unSAT x5=1 && x6=1 \rightarrow clause ω 6==0!

$$\Phi = (\omega_1)(\omega_2)(\omega_3)(\omega_4)(\omega_5)(\omega_6)(\omega_7)(\omega_8)(\omega_9)$$

$$\omega_{1} = (7x1 + x2)_{1}$$

$$\omega_{2} = (7x1 + x3 + x3)$$

$$\omega_{3} = (7x2 + 7x3 + x4)$$

$$\omega_4 = (\neg x4 + y5 + x75)$$
 $\omega_5 = (\neg x4 + y5 + x71)$

$$\omega_6 = (7/5 + 7/6)$$
 $\omega_7 = (7/4 + 7/4 + 7/4)$

$$\omega_8 = (x_1 + x_8)$$

$$\omega_{\rm p} = (-x7 + -x8 + -y.13)$$

SAT

SAT

CONFLICT

SAT

UNRESOLVED

3 cases when BCP finishes

- SAT: Find a SAT assignment, all clauses resolve to "1". Return it.
- UNRESOLVED: One or more clauses unresolved. Pick another unassigned var, and recurse more.
- UNSAT: Like this. Found conflict, one or more clauses eval to "0"
- Now what?
 - You need to undo one of our variable assignments, try again...

This Has a Famous Name: DPLL

Davis-Putnam-Logemann-Loveland Algorithm

- Davis, Putnam published the basic recursive framework in 1960 (!)
- Davis, Logemann, Loveland: found smarter BCP, eg, unit-clause rule in 1962
- Often called "Davis-Putnam" or "DP" in honor of the first paper in 1960, or (inaccurately) DPLL (all four of them never did publish this stuff together)

Big ideas

- A complete, systematic search of variable assignments
- Useful CNF form for efficiency
- BCP makes search stop earlier, "resolving" more assignments w/o recursing more

DPLL: Famous Stuff...

SAT: Huge Progress Last ~20 Years

- But: DPLL is only the start...
- SAT has been subject of intense work and great progress
 - Efficient data structures for clauses (so can search them fast)
 - Efficient variable selection heuristics (so search smart, find lots of implications)
 - Efficient BCP mechanisms (because SAT spends MOST of its time here)
 - Learning mechanisms (find patterns of vars that NEVER lead to SAT, avoid them)
- Results: Good SAT codes that can do huge problems, fast
 - Huge means? 50,000 vars; 25,000,000 literals; 50,000,000 clauses (!!)

SAT Solvers

Many good solvers available online, open source

Examples

- MiniSAT, from Niklas Eén, Niklas Sörensson in Sweden.
 - We are using this one for our MOOC
- CHAFF, from Sharad Malik and students, Princeton University
- GRASP, from Joao Marques-Silva and Karem Sakallah, University of Michigan
- ...and many others too. Go google around for them...

r

Lots of Information on SAT...

Rob A. Rutenbar University of Illinois

Lecture 4.3

Computational Boolean
Algebra Representations:
Using SAT for Logic

ris Knapton/Digital Visi

BDDs vs SAT Functionality

BDDs

- Often work well for many problems
- But no guarantee it will always work
- Can build BDD to represent function
- But—sometimes cannot build BDD with reasonable computer resources (run out of memory SPACE)
- Yes -- builds a **full** representation of φ
 - Can do a big set of Boolean manipulations on data structure
- Can build (∃xyz F) and (∀xyz F)

SAT

- Often works well for many problems
- But no guarantee it will always work
- Can solve for SAT (y/n) on function
- But—sometimes cannot find SAT with reasonable computer resources (run out of TIME doing search)
- No does not represent all of φ
 - Can solve for SAT, but does not support big set of operators
- There are versions of Quantified SAT that solve SAT on (∃xyz F), (∀xyz F)

Slide 22

© 2013, R.A. Rutenbar

Typical Practical SAT Problem

• Are these two logic networks the same Boolean function(s)? f = 6

→ If unSAT: yes, same!

© 2013, R.A. Rutenbar

- How do I start with a gate-level description and get CNF?
 - Isn't this hard? Don't I need Boolean algebra or BDDs? No it's really easy

Trick: build up CNF one gate at a time

Gate consistency function (or gate satisfiability function)

$$\Phi_{d} = [d == (ab)] = d \oplus (ab) = d \oplus (ab)$$

ASIDE: EXOR vs EXNOR

EXOR: Exclusive OR

- Write is as: Y = A ⊕ B
- Output is 1 just if A ≠ B,
 ie, if A is different than B

EXNOR: Exclusive NOR

- Write is as: Y = A ⊕ B)(I like this)
- Or like this: Y = A ⊙ B
- Output is 1 just if A == B, ie, if A is same as, equal to B

 Gate consistency function == "1" just for combinations of inputs and the output that are "consistent" with what gate actually does

a=0 b=0 d=1
$$\Rightarrow$$
 $3-De^{-1}$ consider $6J=1$

a=1 b=1 d=1 \Rightarrow $1-De^{-1}$ means select $6J=0$

For a network: label each wire, build all gate consistency funcs

- SATCNF for network is simple:
 - Any pattern of abch that satisfies this, also makes the gate network output h=1

- Only need Boolean algebra/simplification for each individual gate-level function
- At network level, just AND them all together to get CNF

Rules for ALL Kinds of Basic Gates

Gate consistency rules from:

Fadi Aloul, Igor L. Markov, Karem Sakallah, "MINCE: A Static Global Variable-Ordering Heuristic for SAT Search and BDD Manipulation," J. of Universal Computer Sci., vol. 10, no. 12 (2004), 1562-1596.

$$z=(x)$$

(yes this is just a wire)

$$[\overline{x} + z][x + \overline{z}]$$

z=NOT(x)

$$[x+z][\overline{x}+\overline{z}]$$

$$\left[\prod_{i=1}^{n} \left(\overline{xi} + \overline{z}\right)\right] \left[\sum_{i=1}^{n} xi\right] + z \right] \qquad \left[\prod_{i=1}^{n} \left(\overline{xi} + z\right)\right] \left[\left(\sum_{i=1}^{n} xi\right) + \overline{z}\right]$$

$$z=NAND(x1, x2, ... xn)$$
 $Z=AND(x1, x2, ... xn)$

$$\left[\prod_{i=1}^{n} (xi+z)\right] \left[\left(\sum_{i=1}^{n} \overline{xi}\right) + \overline{z}\right]$$

$$\left[\prod_{i=1}^{n} \left(\overline{xi} + z\right)\right] \left[\left(\sum_{i=1}^{n} xi\right) + \overline{z}\right]$$

$$\left[\prod_{i=1}^{n} (xi+z)\right] \left[\left(\sum_{i=1}^{n} \overline{xi}\right) + \overline{z}\right] \qquad \left[\prod_{i=1}^{n} (xi+\overline{z})\right] \left[\left(\sum_{i=1}^{n} \overline{xi}\right) + z\right]$$

Rules for ALL Kinds of Basic Gates

- EXOR/EXNOR gates are rather unpleasant for SAT
 - And the basic "either-or" structure makes for some tough SAT search, often
 - And, they have rather large gate consistency functions too
 - Even small 2-input gates create a lot of terms, like this:

$$z=EXOR(a, b)$$

$$\varphi_z = z \oplus (a \oplus b)$$

$$= (\neg z + \neg a + \neg b) \cdot (\neg z + a + b)$$

$$\cdot (z + \neg a + b) \cdot (z + a + \neg b)$$

Using the Rules...

Summary

- Reason is scalability: can do very large problems faster, more reliably
- Still, SAT, like BDDs, not guaranteed to find a solution in reasonable time or space
- 40 years old, but still "the" big idea: DPLL
 - Many recent engineering advances make it stupendously fast
- Acknowledgements for help with earlier versions of this SAT lec
 - Karem Sakallah
 U of Michigan

Joao Marques-Silva
University College, Dublin

