June 2306 4PM1 Paper 1 Mark Scheme

Question	Scheme	Marks
1(a)	d=3 and $a=5$	B1
	$\sum_{r=1}^{n} (3r+2) = \frac{n}{2} (2 \times 5 + (n-1)3) = \frac{n}{2} (3n+7) *$	M1A1 cso [3]
	ALT	[2]
	$\sum_{r=1}^{n} (3r+2) = 3\sum_{r=1}^{n} r + 2\sum_{r=1}^{n} 1$	[B1
	$\sum_{r=1}^{n} (3r+2) = \frac{3}{2}n(n+1) + 2n = \frac{3n^2 + 3n}{2} + \frac{4n}{2} = \frac{3n^2 + 7n}{2} = \frac{n}{2}(3n+7)$	M1A1]
(b)	$\sum_{r=10}^{40} (3r+2) = \frac{40}{2} (3 \times 40 + 7) - \frac{9}{2} (3 \times 9 + 7) = [2540 - 153] = 2387$	M1A1 [2]
Total 5 mark		

Note: Part (b) can be answered simply by entering the expression in the question into a permissible calculator. A solution seen with no working is M0.

Part	Mark	Notes		
(a)	B1	For the correct value of a and d		
	M1	For using the correct summation formula with their values of a and d		
	A1	For achieving $\sum_{r=1}^{n} (3r+2) = \frac{n}{2} (3n+7)$ with no errors		
	ALT 1 -	– Uses first plus last formula		
	B1 For the correct value of $a = 5$ and the final value $l = 3n + 2$			
	M1	For the correct use of the first plus last summation formula $\sum_{r=1}^{n} (3r+2) = \frac{n}{2} (5 + [3n+2]) = \frac{n}{2} (3n+7)$		
	A1	For achieving $\sum_{r=1}^{n} (3r+2) = \frac{n}{2} (3n+7)$ with no errors		
	ALT 2 -	LT 2 – Uses standard results		
	B1	For stating $\sum_{r=1}^{n} (3r+2) = 3\sum_{r=1}^{n} r + 2\sum_{r=1}^{n} 1$		
	M1	For using the standard expressions $\sum_{r=1}^{n} (3r+2) = \frac{3}{2}n(n+1) + 2n$		
	A1	For simplifying to the required form. $\sum_{r=1}^{n} (3r+2) = \frac{3n^2 + 3n}{2} + \frac{4n}{2} = \frac{3n^2 + 7n}{2} = \frac{n}{2} (3n+7) *$		
(b)	M1	Uses the given formula with $n = 40$ and with $n = 9$ (allow $n = 10$ for this mark) [Note: use of $n = 10$ will give a value of 2355] Allow alternative correct methods		
	A1	For the correct sum of 2387		
	ALT 1 -	LT 1 – Uses first + last summation formula		
	M1	$U_{10} = 32$, $U_{40} = 122$, $n = 31$ (allow 30 for this mark) $\sum_{r=10}^{40} (3r+2) = \frac{31}{2} (32+122) = \dots$ [Note: Use of $n = 30$ will give a value of 2310]		
	A1	For the correct sum of 2387		
	ALT 2 -	- Finds new first term and uses the summation formula		
	M1	$U_{10} = 32$ $n = 31$ (allow 30 for this mark) $\sum_{r=10}^{40} (3r+2) = \frac{31}{2} (2 \times 32 + (31-1)3) = \dots$		
	A 1	[Note: Use of $n = 30$ will give a value of 2265]		
	A1	For the correct sum of 2387		