Deep Learning: Sigmoid Neuron

Course Instructor:

Dr. Bam Bahadur Sinha
Assistant Professor
Computer Science & Engineering
National Institute of Technology
Sikkim

Why Sigmoid Neuron?

Salary (in thousands)	Can buy a car?
80	1
20	0
65	1
15	0
30	0
49	0
51	1
87	1

Small change in the input to a perceptron can sometimes cause the output to completely flip from **0** to **1**.

To overcome

Sigmoid Neuron (smooth boundary decisions)

Sigmoid Neuron

 $\{0,1\}$

$$\bigcirc loss = \sum_i (y_i - \hat{y_i})^2$$

Classification/Regression

 A more generic learning algorithm

Smooth at boundaries

 $Accuracy = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$

RMSE

Can we have a smoother (not-so-harsh) function?

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

$$wx+b=0, y=0.5$$

 $-4 -2 0 \\ wx + b$

How does this help when data is not linearly separable?

	Salary in LPA	Family Size	Buys Car?
0	11	8	1
1	20	7	1
2	4	8	0
3	8	7	0
4	11	5	1

Behaviour of function on changing 'w' and 'b' value

Behaviour of function on changing 'w' and 'b' value

- If 'w' is –ve and b=0, we get negative slope.
- If 'w' is +ve and b=0, we get positive slope.
- If we keep decreasing the value of 'b', the slope shifts towards right of x-axis.
- If we keep increasing the value of 'b', the slope shifts towards left of x-axis.

Data and Task

Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight (g)	151	180	160	205	162	182	138	185	170
Screen size (inches)	5.8	6.18	5.84	6.2	5.9	6.26	4.7	6.41	5.5
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery(mAh)	3060	3500	3060	5000	3000	4000	1960	3700	3260
Price (INR)	15k	32k	25k	18k	14k	12k	35k	42k	44k

Task: Classification and Regression

Loss Function

Cross-Entropy (will be discussed later)

x_1	x_2	\boldsymbol{y}	$\hat{m{y}}$
1	1	1	0.6
2	1	1	0.7
1	2	0	0.2
2	2	0	0.5

x_1	x_2	y	\hat{y}
1	1	0.5	0.6
2	1	0.8	0.7
1	2	0.2	0.2
2	2	0.9	0.5

$$\hat{y}=rac{1}{1+e^{-(wx+b)}}$$

$$Loss = \sum_{i=1}^4 (y-\hat{y})^2 = 0.18$$

In perceptron model, every wrong point identified incorrectly contributed more to the perceptron model, no matter how far it is from the boundary.

I/P	O/P		
2	0.047		
3	0.268		
4	0.73		
5	0.952		
8	0.999		

Learning Algorithm

Can 'w' and 'b' value be estimated using guess work?

Learning Algorithm

Initialise w, b

Iterate over data:

 $compute \ \hat{y}$

compute $\mathcal{L}(w,b)$

$$w_{t+1} = w_t - \eta \Delta w_t$$

$$b_{t+1} = b_t - \eta \Delta b_t$$

till satisfied

$$\hat{y}=rac{1}{1+e^{-(wx+b)}}$$

$$Loss\mathscr{L}(w,b) = \sum_{i=1}^5 (y_i - \hat{y_i})^2$$