储油罐的变位识别与罐容表标定

摘要

本文对储油罐的变位识别与罐容表标定问题,建立了基于定积分的无变位 小椭圆油罐模型和基于定积分的变位小椭圆油罐模型,解决了罐体变位后重新 标定的问题;建立了基于定积分的球冠体储油量模型,得到了罐内储油量与油 位高度及变位参数之间的一般关系;利用了罐体变位后在进/出油过程中的实际 检测数据,确定了变位参数并给出了罐体变位后油位高度间隔为10cm的罐容表 标定值;利用实际检测数据分析检验了模型的正确性与方法的可靠性。

针对问题一,建立了基于定积分的无变位小椭圆油罐模型和基于定积分的变位小椭圆油罐模型,解决了罐体变位后重新标定的问题。由于变位小椭圆油罐的情况较为复杂,所以先研究罐无变位时油位高度和储油量之间的关系。首先我们要将题目中所给的已知条件数学化,即可以通过建立平面直角坐标系来方便我们的计算研究;其次,利用截面与体积之间的关系,通过定积分将体积表达为截面的函数,建立基于定积分的数学模型,得出无变位时油罐的标定;最后,画图分析该模型计算所得结果与实际值的误差,判断该模型的准确性。

找到油罐无变位时油位高度和储油量之间的关系之后,将油罐内储油量分为圆柱体内储油量和左右两个球冠体内储油量三个部分来研究罐体变位后对罐容表的影响。首先分析出变位小椭圆油罐内部储油有五种不同情况。其次充分利用油位探针与油面高度之间的关系,将采用数形结合的方法得到油罐内储油体积的表达式。最后,将计算所得结果与理论值比较,判断该模型所产生的误差的大小,进而判断模型的合理性。因此,补充计算倾斜角α=7°时储油量的值,以此说明倾斜角和偏差之间的关系。

针对问题二,建立了基于定积分的球冠体储油量模型,得到了变位后罐内储油量与油位高度及变位参数的一般关系。首先分别求出油罐的纵向倾斜角和横向倾斜角与油罐内油位高度之间的关系;其次分别对储油罐的横向偏转倾斜后正截面和正面进行研究;再次建立了基于定积分的球冠体储油量模型,并将油罐内储油量分为圆柱体内储油量和左右两个球冠体内储油量三个部分来求解。然后利用题目中所给附件的数据和计算所得的参数关系,并计算油罐变位后的罐容表标定值。最后,通过实际值与理论值相比较,检验模型的正确性。

关键词:储油罐的变位识别 罐容表标定 定积分 数形结合

一、问题重述

通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的"油位计量管理系统",采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

- (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.1°的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。
- (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

附件1: 小椭圆储油罐的实验数据 **附件2:** 实际储油罐的检测数据

二、问题分析

2.1 问题一的分析

想要正确掌握罐体变位后对罐容表的影响,首先,我们要对罐体无变位时的情况进行研究。而罐容表实际上是罐内油位高度与储油量之间的对应关系,即高度与体积的关系[1]。而这种情况下定积分[2]是我们最常使用的研究方法。其次,根据无变位时罐体储油量理论值与实际值的对比,我们分析误差产生的原因以及减少误差的方法[3]。最后,分析罐体变位时对罐容表的影响,给出变位后油位高度间隔为1cm时的罐容表标定值。

2.2 问题二的分析

为了得出罐体纵向倾斜角和横向偏转角之间的关系[4],我们要对这两个参数分别进行分析研究。首先,考虑到这是一个中间部分为圆柱体,两端为球冠体[5]的油罐,因此我们将该油罐划分为三个部分。其次,分别对它们各自的储油量计算公式进行分析,得到罐内储油量与油位高度及变位参数之间的一般关系。最后,

通过题目中所给的实测数据,建立基于定积分的数学模型并给出罐体变位后油位 高度间隔为 1cm 的罐容表标定值。

三、基本假设

- 3、储油罐制造过程中产生的缝隙、凸起等对容积造成的误差忽略不计;
- 4、每次的测量环境相同,且环境对油罐容积的影响忽略不计。

1、题目中所给的测量数据真实有 2、每次实验之前,进油管与出油 3、储油罐制造过程中产生的缝隙 4、每次的测量环境相同,且环境	管中均无油量残留;
3、储油罐制造过程中产生的缝隙 4、每次的测量环境相同,且环境	四、符号说明 椭圆油罐的半长轴 椭圆油罐的短半长轴 油罐内的体积 阴影部分面积 油罐内的油量高度 油罐的长度 油罐的长度 油罐的长度 油罐的倾斜角度 左侧壁到油位探针的距离 右侧壁到油位探针的距离 油标高度 油罐半径
β	横向偏转角度

五、模型的建立与求解

5.1 问题一基于定积分的无变位小椭圆油罐模型的建立与求解

想要找到油罐无变位时油位高度和储油量之间的关系,首先我们要将题目中 所给的已知条件数学化,即可以通过建立平面直角坐标系来方便我们的计算研究。 其次,利用截面与体积之间的关系,通过定积分将体积表达为截面的函数60,建 立基于定积分的数学模型,得出无变位时油罐的标定。最后,画图分析该模型计 算所得结果与实际值的误差,判断该模型的准确性。

5.1.1 模型的建立

为了掌握罐体变位后对罐容表的影响,首先我们利用定积分对油罐无变位时

的情况进行研究,得出无变位时油罐内油品的体积 V 的表达式,建立基于定积分的无变位小椭圆油罐模型。

我们设小椭圆油罐的半长轴为 a, 短半长轴为 b, 油罐内的体积为 V。

以小椭圆油罐截面的中心为坐标原点,平行于小椭圆长轴的轴为 x 轴,平行于小椭圆短轴的轴为 v 轴建立直角坐标系,如图 1 所示:

图 1 油罐截面坐标系

根据所建坐标轴得出 V 的表达式。将题目所给数据代入表达式进行检验,计算该模型的误差。

5.1.2 模型的求解

根据图1,我们得到小椭圆油罐截面的方程为:

$$\frac{x^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$$

$$a > 0 \ b > 0$$

则

$$x = a \sqrt{1 - \frac{(y - b)^2}{b^2}}$$

则阴影部分的面积 S 可以表示为:

$$dS = 2a\sqrt{1 - \frac{(y-b)^2}{b^2}} dy$$

假设油罐内的油量高度为h,油罐的长度为L,则阴影部分的体积V可以表示为:

$$V = L \times \int_0^h dS$$

将 dS 的表达式代入, 我们得到:

$$V = 2aL \times \int_0^h \sqrt{1 - \frac{(y - b)^2}{b^2}} \, dy$$

计算得小椭圆油罐无变位时的油品体积表达式如下:

$$V = \frac{abL}{2} \left[\sin \left(2 \arcsin \left(\frac{y}{b} - 1 \right) \right) + 2 \arcsin \left(\frac{y}{b} - 1 \right) + \pi \right]$$

因此我们得到无变位时的储油罐的标定如表 1 所示:

表 1 无变位时油罐的标定

	表 1 无变位时油罐的标定							
		储油量		储油量		储油量		储油量
	油位/mm	V/L	油位/mm	V/L	油位/mm	V/L	油位/mm	V/L
	0	0	300	803.538	600	2055.073	900	3306.608
	10	5.29475	310	841.5121	610	2098.681	910	3344.162
	20	14.93811	320	879.8876	620	2142.277	920	3381.278
	30	27.37359	330	918.6466	630	2185.848	930	3417.935
	40	42.03712	340	957.7719	640	2229.384	940	3454.114
	50	58.59826	350	997.2467	650	2272.87	950	3489.793
	60	76.8311	360	1037.055	660	2316.296	960	3524.949
	70	96.56758	370	1077.18	670	2359.649	970	3559.561
	80	117.6757	380	1117.607	680	2402.916	980	3593.603
	90	140.048	390	1158.32	690	2446.086	990	3627.05
	100	163.594	400	1199.305	700	2489.145	1000	3659.875
*.	110	188.2367	410	1240.547	710	2532.082	1010	3692.05
me	120	213.9085	420	1282.032	720	2574.883	1020	3723.545
XX	130	240.55	430	1323.745	730	2617.535	1030	3754.326
T 13.7	140	268.1078	440	1365.673	740	2660.027	1040	3784.361
ASSET I	150	296.5339	450	1407.802	750	2702.343	1050	3813.612
Tim	160	325.7844	460	1450.119	760	2744.473	1060	3842.038
0.	170	355.8192	470	1492.61	770	2786.401	1070	3869.596
C	180	386.6011	480	1535.263	780	2828.114	1080	3896.237
	190	418.0957	490	1578.064	790	2869.598	1090	3921.909
	200	450.2706	500	1621	800	2910.84	1100	3946.552
	210	483.0959	510	1664.06	810	2951.825	1110	3970.098
	220	516.5429	520	1707.229	820	2992.539	1120	3992.47
	230	550.5849	530	1750.497	830	3032.966	1130	4013.578
	240	585.1963	540	1793.85	840	3073.091	1140	4033.315
	250	620.353	550	1837.275	850	3112.899	1150	4051.547
	260	656.0317	560	1880.762	860	3152.374	1160	4068.109
	270	692.2104	570	1924.297	870	3191.499	1170	4082.772
	280	728.8679	580	1967.869	880	3230.258	1180	4095.208
	290	765.9836	590	2011.465	890	3268.634	1190	4104.851

将无变位时的油罐内的油品高度代入上述模型,得出相应的实际无变位储油量数值,将表1中的数据进行整理,得到图2:

图 2 无变位储油量对比

通过图 2 我们可以得出,无变位储油量的实际值与理论值存在一定的偏差。油位高度越高,无变位储油量的实际值和理论值相差越大,并且实际值逐渐低于理论值。

其原因在于,由于注油管、出油管及油浮子均占有一定体积[7],随 h 的增高, 注油管、出油管及油浮子浸入液面下的体积也在逐渐增加,导致实际值比理论值 偏大,且差值会随 h 的增加而增加。

5.2 问题一基于定积分的变位小椭圆油罐模型的模型建立与求解

变位小椭圆油罐的情况较为复杂,想要准确的得到油面高度与储油量之间的 关系^[3],首先我们要对变位小椭圆油罐内部储油的几种情况进行分析。其次,同 样利用定积分和所画图形得到这些情况下油罐内储油体积的表达式,充分利用油 位探针与油面高度之间的关系。最后,通过计算将所得结果与理论值比较,判断 该模型所产生的误差的大小,即模型的合理性。

5.2.1 模型的建立

由于地基变形等原因,油罐的位置会发生纵向倾斜和横向偏转等变化,即变位^[8],从而导致罐容表发生改变。因此,为了进一步研究变位油罐的我们重新对油罐建立直角坐标系。

以小椭圆油罐正面截面的油罐底部为 x 轴,油罐最左侧为 y 轴建立平面直角坐标系,如图 3 所示:

其中,我们设定油罐的倾斜角度为 α ,油罐的左侧壁到油位探针的距离为 l_1 , 油罐的右侧壁到油位探针的距离为 l_2 ,在油位探针垂直方向上油位的高度为h, 其他位置的油位高度为y,其他位置的油位高度到油位探针处的油面高度的距离 为Δy。

由于油罐内油位高度h的不同,所求得油罐内储油量 V_i 的表达式不同。根据 油罐内油位高度的不同,我们分为以下五种情况进行求解。

$h \le 0$

即油罐内油量没到探针处时,

图 4 情况一
我们可以看出此时储油量较少,油罐内的储油没有触及到油位探针,储油量
无法测量,处于测量盲区。 $2 < 0 < h \le l_2 tan\alpha$
情况如图 5 所示。

情况如图 5 所示:

图 5 情况二

此时,油罐内的体积为:

$$V_2 = \int_0^{l_1 + \frac{h}{\tan \alpha}} S(y) \, dx$$

 $l_2 tan\alpha < h \le 2b - l_1 tan\alpha$ 情况如图 6 所示:

$$V_3 = \int_0^{l_1 + l_2} S(y) \, dx$$

图 7 情况四

对于该种直接计算较复杂的情况,我们决定采用相减的做法计算油罐内的油 品体积[^{9]},表达式如下:

$$\begin{split} V_4 &= V - \int_0^{l_1 + \frac{h'}{tan\alpha}} S(y') \, dx \\ h' &= 1.2 - h + 1.65tan\alpha \\ S(y') &= \frac{ab}{2} \left[sin \left(2 \arcsin \left(\frac{h + tan\alpha \times (l_1 - x)}{b} - 1 \right) \right) \right. \\ &+ 2 \arcsin \left(\frac{h + tan\alpha \times (l_1 - x)}{b} - 1 \right) + \pi \right] \end{split}$$

h = 2b = 1.2情况如图 8 所示:

油量增加时罐容表显示 此时,油罐内的油面高度已经没过油位探针的高度

$$\begin{cases} y + \Delta y = h \\ \tan \alpha = \frac{\Delta y}{x - l_1} \end{cases}$$

接着我们根据h的不同对以下五种情况分别求解

$1, h \leq 0$

由图 4 我们可以看出,储油量较少导致油罐内的储油没有触及到油位探针, 使得油罐内的储油量无法测量。

$2 \cdot 0 < h \le l_2 tan\alpha$

因为此时油罐内的体积为:

$$V_{2} = \int_{0}^{l_{1} + \frac{h}{t a n \alpha}} S(y) dx$$

$$S(y) = \frac{ab}{2} \left[\sin \left(2 \arcsin \left(\frac{h + \tan \alpha \times (l_{1} - x)}{b} - 1 \right) \right) + 2 \arcsin \left(\frac{h + \tan \alpha \times (l_{1} - x)}{b} - 1 \right) + \pi \right]$$

所以:

$$V_{2} = \int_{0}^{l_{1} + \frac{h}{\tan \alpha}} \frac{ab}{2} \left[\sin \left(2 \arcsin \left(\frac{h + \tan \alpha \times (l_{1} - x)}{b} - 1 \right) \right) + 2 \arcsin \left(\frac{h + \tan \alpha \times (l_{1} - x)}{b} - 1 \right) + \pi \right] dx$$

 $3 \cdot l_2 tan\alpha < h \le 2b - l_1 tan\alpha$

因为此时油罐内的体积为:

$$V_3 = \int_0^{l_1 + l_2} S(y) \, dx$$

同理,我们可以得到:
$$V_3 = \int_0^{l_1+l_2} \frac{ab}{2} \left[\sin\left(2\arcsin\left(\frac{h+\tan\alpha\times(l_1-x)}{b}-1\right)\right) \\ + 2\arcsin\left(\frac{h+\tan\alpha\times(l_1-x)}{b}-1\right) + \pi \right] dx$$

$$4 \cdot 2b - l_1 \tan\alpha < h < 2b$$
油罐内体积的表达式如下:
$$V_4 = V - \int_0^{l_1+\frac{h'}{\tan\alpha}} S(y') dx$$

$$+2arcsin\left(\frac{\mathsf{h}+\tan\alpha\times(l_1-\mathsf{x})}{b}-1\right)+\pi]$$

$$4、2\mathsf{b}-l_1tan\alpha<\mathsf{h}<2\mathsf{b}$$
油罐内体积的表达式如下:
$$V_4=V-\int_0^{l_1+\frac{h'}{tan\alpha}}S(y')dx$$

$$\mathsf{h}'=1.2-\mathsf{h}+1.65\tan\alpha$$

$$S(y')=\frac{ab}{2}\big[\sin\left(2\arcsin\left(\frac{\mathsf{h}+\tan\alpha\times(l_1-\mathsf{x})}{b}-1\right)\big)$$

$$+2arcsin\left(\frac{\mathsf{h}+\tan\alpha\times(l_1-\mathsf{x})}{b}-1\right)+\pi\big]$$
所以, V_4 的表达式为:
$$V_4=V-\int_0^{l_1+\frac{1.2-\mathsf{h}+1.65\tan\alpha}{tan\alpha}}\frac{ab}{2}\big[\sin\left(2\arcsin\left(\frac{\mathsf{h}+\tan\alpha\times(l_1-\mathsf{x})}{b}-1\right)+\pi\big]$$

$$\begin{split} V_4 &= V - \int_0^{l_1 + \frac{1.2 - h + 1.65 \tan \alpha}{\tan \alpha}} \frac{ab}{2} \left[\sin \left(2 \arcsin \left(\frac{h + \tan \alpha \times (l_1 - \mathbf{x})}{b} - 1 \right) \right) \right. \\ &\left. + 2 \arcsin \left(\frac{h + \tan \alpha \times (l_1 - \mathbf{x})}{b} - 1 \right) + \pi \right] \end{split}$$

 $5 \cdot h = 2b = 1.2$

此时,油罐内的油面高度已经没过油位探针的高度,根据油面的高度计算油 罐内的油品体积显然是不正确的[10]。

根据以上五种情况,我们计算当倾斜角度 $\alpha=4.1^{\circ}, l_1=0.4, l_2=2.05, a=1.1^{\circ}$ 1.78, b = 1.2时,油罐内的储油量 V_i ,得到结果如表 2 所示: 表 2 $\alpha = 4.1$ °时的罐容表标定

衣 20=4.1 的的罐谷衣你走								
油位	储油量	油位	储油量	油位	储油量	油位	储油量	
/mm	V/L	/mm	V/L	/mm	V/L	/mm	V/L	
0	1.674351	300	595.2452	600	1798.524	900	3072.427	
10	3.531044	310	630.1462	610	1841.797	910	3112	
20	6.26351	320	665.5808	620	1885.131	920	3151.234	
30	9.974764	330	701.5256	630	1928.513	930	3190.11	
40	14.75629	340	737.9584	640	1971.931	940	3228.612	
50	20.69084	350	774.8577	650	2015.372	950	3266.722	
60	27.85416	360	812.203	660	2058.824	960	3304.421	
70	36.3163	370	849.9747	670	2102.275	970	3341.691	
80	46.14242	380	888.1537	680	2145.713	980	3378.511	
90	57.39353	390	926.7217	690	2189.125	990	3414.861	
100	70.12695	400	965.6608	700	2232.5	1000	3450.72	

	110	84.39676	410	1004.954	710	2275.824	1010	3486.064
	120	100.2541	420	1044.584	720	2319.086	1020	3520.87
	130	117.7475	430	1084.535	730	2362.273	1030	3555.114
	140	136.923	440	1124.791	740	2405.372	1040	3588.769
	150	157.8184	450	1165.336	750	2448.372	1050	3621.808
	160	180.2591	460	1206.155	760	2491.259	1060	3654.2
	170	203.9994	470	1247.234	770	2534.02	1070	3685.915
	180	228.9066	480	1288.557	780	2576.643	1080	3716.917
	190	254.8849	490	1330.111	790	2619.115	1090	3747.171
	200	281.8577	500	1371.881	800	2661.423	1100	3776.636
	210	309.7608	510	1413.854	810	2703.552	1110	3805.266
	220	338.5387	520	1456.015	820	2745.491	1120	3833.013
	230	368.1426	530	1498.352	830	2787.225	1130	3859.819
	240	398.5285	540	1540.851	840	2828.74	1140	3885.618
* 45	250	429.6567	550	1583.499	850	2870.022	1150	3910.332
STORY.	260	461.4906	560	1626.283	860	2911.057	1160	3933.858
X 35 .	270	493.9967	570	1669.19	870	2951.83	1170	3956.056
1 13,7	280	527.1438	580	1712.208	880	2992.326	1180	3976.51
A COLOR	290	560.9024	590	1755.323	890	3032.531	1190	3995.392
1. " " []	事1	为嫌休恋代	7 / 1° ⊨	油冶宣度值	1隔为 10	n的罐灾害	层完估	通过業 1 我

表 1 为罐体变位 4.1°后油位高度间隔为 1cm 的罐容表标定值。通过表 1 我们发现,当油位高度低于 0mm 或高于 1200mm,此时油罐内的储油量无法测量,即无法得出确切的油位高度与油罐内储油量之间的函数关系。当油位高度在 0-1200mm 之间时,我们将变位时所计算的储油量实际值与理论值相比较,所得结果如图 9 所示:

图 9 变位储油量对比图

通过图 9 我们发现,变位储油量计算所得的实际值与理论值之间的误差很小。在油位高度低于 400mm 时变位储油量的实际值和理论值的曲线几乎重合,而在油位高度高于 400mm 时,两条曲线才出现微小的偏差。

将无变位时油罐内储油量的变化与倾斜角 $\alpha = 4.1$ °变位时相比较,得到结果如图 10 所示:

图 10 变位与无变位相比较

由图 10 可以看出,当油罐发生倾斜时,其内部储油量的变化会受到一定程度的影响,相同油位高度变位与无变位的储油量差值近似相等[11]。即油罐的倾斜角度与储油量之间存在着某种关系,这种关系能说明倾斜角与偏差之间的关系。

5.2.3 模型的检验

由于在无变位和变位情况下计算所得的储油量的实际值和理论值之间都存在一定的偏差,无变位时的偏差较大而倾斜角 $\alpha=4.1$ °的变位时的偏差较小。因此,我们补充计算倾斜角 $\alpha=7$ °时储油量的值,以此说明倾斜角和偏差之间的关系。

整理倾斜角 $\alpha = 7$ °时储油量的值如表 3 所示:

表 3 倾斜角 $\alpha = 7$ °时

			4く フーツかし		P.1		1
油位	储油量	油位	储油量	油位	储油量	油位	储油量
/mm	V/L	/mm	V/L	/mm	V/L	/mm	V/L
0	3.739779	300	471.5895	600	1620.165	900	2895.767
10	5.932886	310	503.1399	610	1662.729	910	2936.227
20	8.753044	320	535.3951	620	1705.409	920	2976.406
30	12.24836	330	568.3169	630	1748.191	930	3016.287
40	16.4629	340	601.8709	640	1791.064	940	3055.855
50	21.43741	350	636.0252	650	1834.013	950	3095.092
60	27.20984	360	670.7507	660	1877.027	960	3133.981
70	33.81568	370	706.0199	670	1920.093	970	3172.505
80	41.28832	380	741.8072	680	1963.198	980	3210.645
90	49.65924	390	778.0884	690	2006.329	990	3248.382
100	58.95824	400	814.8404	700	2049.475	1000	3285.696
110	69.21358	410	852.0414	710	2092.623	1010	3322.566
120	80.45209	420	889.6705	720	2135.759	1020	3358.972
130	92.69934	430	927.7077	730	2178.872	1030	3394.889
140	105.9797	440	966.1337	740	2221.95	1040	3430.295
150	120.3164	450	1004.93	750	2264.978	1050	3465.165
160	135.7316	460	1044.078	760	2307.946	1060	3499.47

-	170	152.2466	470	1083.562	770	2350.839	1070	3533.182
	180	169.8816	480	1123.363	780	2393.646	1080	3566.272
	190	188.6561	490	1163.466	790	2436.354	1090	3598.703
	200	208.5887	500	1203.855	800	2478.949	1100	3630.44
	210	229.6972	510	1244.513	810	2521.418	1110	3661.442
	220	251.9986	520	1285.426	820	2563.749	1120	3691.66
	230	275.5093	530	1326.579	830	2605.928	1130	3721.039
	240	300.2449	540	1367.958	840	2647.942	1140	3749.511
	250	326.2203	550	1409.547	850	2689.776	1150	3776.982
	260	353.4058	560	1451.332	860	2731.417	1160	3803.135
	270	381.6291	570	1493.301	870	2772.852	1170	3828.191
	280	410.7805	580	1535.438	880	2814.064	1180	3852.018
	290	440.7867	590	1577.731	890	2855.041	1190	3874.632
·	将表	き3中倾斜角	角为 7° f	的相关数据-	与倾斜角	为 4.1°的标	目关数据:	进行比较,
*5	得到图1	Le la constant	(Olyn	,50M				
AL TOLIN	. H	Jan	4500 r	Q.C.				
V3 .	Merca	LITE	4000 - • 7	4.1变位储油量 7变位储油量		<i></i>		
7 13,7	·"	110	3500 -	2)				
Page 1	10	HILL	3000 -		at the state of th	or .		
1475	g	7 %	2500 -		- Andrews			
将衣 3 中侧斜角为 7 的相关数据与倾斜角为 4.1 的相关数据进行比较,得到图 11: 4500 4000 7								
(5)		4	1500 -	Jaketer				
			1000 -	September 1				
			500 L	1				

将表 3 中倾斜角为 7°的相关数据与倾斜角为 4.1°的相关数据进行比较,

图 11 变位储油量比较

由图 11 我们发现,不同的倾斜角度对应储油量的曲线不同。当油位高度低 于 200mm, 两条曲线的储油量相差不大; 当油位高度高于 200mm 时, 相同油位 高度所对应的两个变位储油量之间的差值几乎相同。 当罐体发生变位后, 原始罐 容表的标定值与实际油量相比会偏大,即实际罐容表数据变小,且变位参数越大, 偏差量越大。此时,若不对罐容表进行修正,则所得数据比实际值大[12],使得我 们对罐内的储油量的判断产生错误。

5.3 问题二的模型建立与求解

要想研究变位后油罐的变位参数之间的关系,首先我们要分别求出油罐的纵 向倾斜角和横向倾斜角与油罐内油位高度之间的关系。这种情况我们通常选用模 型一中的定积分相关原理建立新的数学模型进行求解。其次,利用题目中所给附 件的数据和计算所得的参数关系,计算油罐变位后的罐容表标定值。最后,通过 实际值与理论值相比较, 检验模型的正确性。

5.3.1 模型的建立

首先,我们根据横向偏转倾斜后正截面研究油罐的横向偏转角度β。横向偏

转倾斜后正截面如图 12 所示:

图 12 横向偏转倾斜后正截面图

我们设油标的高度为 H,油罐半径为 r,偏转角度 β 后的高度记为 h_2 。根据图

$$h = r - (r - H)\cos\beta$$

 $h=r-(r-H)cos\beta$ 接着我们对油罐的正面进行研究。以油罐底部为x轴,建立如图所示平面直

图 13 油罐正面图

下面,我们将油罐内储油量分为圆柱体内储油量和左右两个球冠体内储油量 三个部分来求解。

在图 13 中,我们设左侧球冠体内油面高度为 h_1 ,圆柱体内油位探针方向上 的油面高度为 h_2 , 左侧球冠体内油面高度为 h_3 , 纵向倾斜角为 α , $l_1 = 2m$, $l_2 = 6m$, 我们得到如下公式:

$$h_1 = h_2 + l_1 tan\alpha$$
$$h_3 = h_2 - l_2 tan\alpha$$

 $h_3=h_2-l_2tan\alpha$ 为了便于研究油罐内的储油量,首先我们设左侧球冠体内储油量的体积为 V_1 , 圆柱体内储油量的体积为 V_2 ,右侧球冠体内储油量的体积为 V_3 。建立平面直角坐 标系如图 14 所示:

图 14 油罐正截面图

由图 14 我们可以得出,将油桶分为 3 个部分 V_1 、 V_2 、 V_3 ,则:

$$V = V_1 + V_2 + V_3$$

其次,我们对图 15 中阴影部分的体积进行求解,利用模型一中的结论可以 得到:

$$V = \int_{x_1}^{x_2} S(y) \, dx$$

$$\begin{split} \mathrm{S}(\mathrm{y}) &= \frac{r^2}{2} [\sin \left(2 \arcsin \left(\frac{\mathrm{h} + \tan \alpha \times (l_1 - \mathrm{x})}{r} - 1 \right) \right) \\ &+ 2 \arcsin \left(\frac{\mathrm{h} + \tan \alpha \times (l_1 - \mathrm{x})}{r} - 1 \right) + \pi] \end{split}$$

根据油罐内储油量的不同,该公式的积分上下限的五种情况如模型一。

最后,我们对 V_1 、 V_3 进行求解。本题中油罐的形状为筒体部分是圆柱形,两 端封头是对称的球冠体[13],我们仍然采用定积分的方法求解油罐内储油量与油 面高度之间的函数关系式[14],即:

$$V_{i} = \frac{\pi b_{i} h_{i}^{2}}{2 a_{i}} (a_{i} - \frac{h_{i}}{3})$$

油罐内储油量的变化如以下三种情况所示:

1.
$$0 < h_1 < 3m, h_3 < 0m$$

情况如图 16 所示:

图 16 情况 1

此时,右侧球冠体内没有储油量,储油量的总体积为左侧球冠体内和中间圆 柱体内储油量之和,即:

$$V = V_1 + V_2$$

接着,我们计算 V_1 的体积。 V_1 的体积图如图 17 所示:

图 17 球冠体体积

, r,R 是球冠体的半径。 球冠体水平截面图如图 18, V1'是球冠体内储油量。

图 18 球冠体水平截面图

其中, r_h 为水平截面圆的半径。由图 18 可知, $r_h = \sqrt{R^2 - h^2}$ 。于是,水平 截面面积

$$S(h) = \int_{R-1}^{r_h} 2\sqrt{r_h^2 - s^2} \, ds = \int_{R-1}^{\sqrt{R^2 - h^2}} 2\sqrt{R^2 - h^2 - s^2} \, ds$$

由此,我们算出 V1'的体积为:

$$V_1' = \int_0^h S(h) dh$$

 $2, 0 < h_1 < 3m, 0 < h_3 < 3m$ 情况如图 17 所示:

图 19 情况 2

该情况下油罐内的油品总体积为油罐三部分体积之和,即:

$$V = V_1 + V_2 + V_3$$

3、 $h_1 > 3m$, $0 < h_3 < 3m$ 情况如图 18 所示:

图 20 情况 3

此时,左侧球冠体内的储油量达到最大,而油罐内总储油体积的直接计算相对较复杂。因此,我们选用模型一中的情况4的方法,即总体积减去空气体积得到总储油体积的方法,即:

$$V = V_{\overset{\sim}{\bowtie}} - \int_{x_1}^{x_2} S(y) \, dx$$

5.3.2 模型的求解

1、当 $0 < h_1 < 3m, h_3 < 0m$ 时 通过计算,球冠体水平截面的面积积分如下:

$$S(h) = (1-h)\sqrt{2R-h^2-1} + \frac{1}{2}\pi(R^2-h^2) + (h^2-R^2)\arctan(\frac{R-1}{\sqrt{2R-h^2-1}})$$

由此,我们算出 V1'的体积为:

$$V_{1}' = \int_{0}^{h} S(h)dh$$

$$= \frac{\pi R^{2}(hcos\beta - Rcos\beta + 2tan\alpha + R)}{2} - \frac{\pi(hcos\beta - Rcos\beta + 2tan\alpha + R)^{3}}{6}$$

$$+ \frac{2(hcos\beta - Rcos\beta + 2tan\alpha + R)\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}{3}$$

$$- \frac{2R(hcos\beta - Rcos\beta + 2tan\alpha + R)\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}{3}$$

$$- \frac{2R^{3} - 3R + 1}{3} \arctan\left(\frac{hcos\beta - Rcos\beta + 2tan\alpha + R}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{(hcos\beta - Rcos\beta + 2tan\alpha + R)^{3} - 3R^{2}(hcos\beta - Rcos\beta + 2tan\alpha + R)}{3}$$

$$\times \arctan\left(\frac{R - 1}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{2R^{2}}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}\right)$$

$$+ \frac{1}{3} \arctan\left(\frac{(R - 1)(hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}{\sqrt{2R - (hcos\beta - Rcos\beta + 2tan\alpha + R)^{2} - 1}\right)$$

$$+ \frac{1}{$$

$$= -\frac{1}{\tan\alpha} \left\{ r^2 (r - h_1 + 8\tan\alpha) \arcsin \frac{r - h_1 + 8\tan\alpha}{r} - r^2 (r - h_1) \arcsin \frac{r - h_1}{r} + r^2 \sqrt{r^2 - (r - h_1 + 8\tan\alpha)^2} - r^2 \sqrt{2rh_1 - h_1^2} - \frac{1}{3} [2r(h_1 - 8\tan\alpha) - (h_1 - 8\tan\alpha)^2]^{\frac{3}{2}} + \frac{1}{3} (2rh_1 - h_1^2)^{\frac{3}{2}} - 4\pi r^2 \tan\alpha \right\}$$
 综合上述计算过程,我们得到:

综合上述计算过程,我们得到:

$$\begin{aligned} \mathbf{h} &= \mathbf{r} - (\mathbf{r} - \mathbf{H}) \mathbf{cos} \beta \\ h_1 &= h_2 + l_1 t a n \alpha \\ h_3 &= h_2 - l_2 t a n \alpha \\ \mathbf{V}(\alpha, \beta, \mathbf{h}) &= \mathbf{V}'(h_1) + \mathbf{V}'(h_2) + V_2(h_1) \end{aligned}$$

$$\alpha=2.1^{\circ}$$
, $\beta=4.7^{\circ}$

对于题目所给数据,我们得出罐体变位后油位高度间隔为 10cm 的罐容表标

人—————————————————————————————————————							
油位/mm	储油量 V/L	油位/mm	储油量 V/L				
0	<367.54	1600	33125.43				
100	367.54	1700	35994.36				
200	1104.62	1800	38731.97				
300	2274.97	1900	41457.83				
400	3787.75	2000	44195.07				
500	5489.65	2100	46910.42				
600	7455.32	2200	49305.61				
700	9526.67	2300	51878.90				
800	11803.93	2400	54138.71				
900	14253.84	2500	56369.76				
1000	16723.43	2600	58400.53				
1100	19325.44	2700	60235.14				
1200	21765.21	2800	61803.56				
1300	24743.53	2900	63123.47				
1400	27521.34	3000	64026.53				
1500	30336.86						

表 4罐容表标定值

5.3.3 模型的检验

对上述模型进行检验,对储油量实际值与理论值的对比分析如表5所示:

	表 5 储油量实际值与埋论值对比									
	标号	实际值/L	理论值/L	差值/L	相对误差					
	1	45.62	45.3	0.32	0.007064					
	2	168.5	170.01	-1.51	-0.00888					
	3	229.93	228.3	1.63	0.00714					
	4	42.92	43.03	-0.11	-0.00256					
	5	108.42	107.83	0.59	0.005472					
	6	171.53	170.29	1.24	0.007282					
	7	243	244.56	-1.56	-0.00638					
	8	80.65	81.2	-0.55	-0.00677					
	9	70.05	70.2	-0.15	-0.00214					
	10	120.29	121.3	-1.01	-0.00833					
	11	235.68	234.09	1.59	0.006792					
	12	206.54	207.36	-0.82	-0.00395					
*.45	13	131.79	131.5	0.29	0.002205					
A TOLK	. 14	232.64	232.07	0.57	0.002456					
XF.	15	149.09	148.3	0.79	0.005327					
T 13.7	16	199.37	196.3	3.07	0.015639					
ASE I	17	181.7	179.5	2.2	0.012256					
i. i.i.l.	18	243.55	242.1	1.45	0.005989					
0.	19	92.38	91.98	0.4	0.004349					
(5)	20	49.24	48.66	0.58	0.011919					

表 5 储油量实际值与理论值对比

通过表 5 我们发现,该模型的最大相对误差为 0.015639,即相对误差都维持在 1.6%以内,少数相对误差大于 1%。由此我们可以看出,该模型在设计时相对合理,其精度较高,适用于日常生活。

六、模型的评价与推广

6.1 模型的优点与缺点

在建立模型的过程中,根据储油量的不同情况做出了不同的判断,使得结果更加准确。在参数的求解中,得到了较为贴近生活的实验结果,拥有较高的精度。而对不同形状建立的不同油罐模型,使得分析更加全面,有很强的普遍性和实用性。

在模型的建立求解中,我们实际上对油罐进行了理想化的处理,忽略了罐壁厚度、罐内油渣等,与实际情况并不是完全符合,要想正确的运用于实际生活,还需要做进一步的修正。

6.2 模型的推广

储油罐问题是实际生活中常见的问题,上述建立的模型也可以推广到运输、 化工、储藏的等行业。

参考文献

- [1]赵小伟. 徐刚. 刘冀. 用定积分方法求解倾斜偏转卧式储油罐容积[D]. 湖北: 三峡大学, 2012
- [2]李彩英. 梁泰安. 周伟. 陆君良. 容器内存留液体体积与液位高度函数关系[D]. 天津: 天津大学, 2013
- [3]马旭峰. 胡志鹏. 谢铠泽. 王平. 高墩刚构桥基础不均匀沉降对无缝线路的影响研究[D]. 成都: 西南交通大学, 2014
- [4]段素芳. 卧式储油罐容积与油位高度的关系及 MATLAB 实现[J]. 青岛大学学报 (自然科学版). 2016(9):16-34
- [5]张兴平. 万晖. 朱晓冬. 周明全. 基于体积误差的三角形收缩网格简化算法[D]. 陕西: 西北大学, 2015
- [6] 曹伟. 龙华. 杜庆治. 邵玉斌. 李博. 基于网络微积分的 QoS 接入策略[J]. 云南大学学报(自然科学版). 2016: 38(1):29-36
- [7] 夏慧芳. 汤景峰. 张维智. 卧式罐的标定及数据处理方法[D]. 青岛理工大学 2016, 24-31
- [8] 王建国. 材料力学性能测试与评价技术进展[J]. 工程与试验, 2013(4):310-313
- [9]赵同顺. 周波. 大型油罐地基变形特性的研究[J]. 设计计算. 2014(3):33-39
- [10]孙宏达. 关进波. 逼近法计算横截面为椭圆形储油罐的储油体积[D]. 北京: 2016
- [11] M Dauge. Elliptic boundary value problems on corner domains, Lecture notes in mathematics, vol. 1341, Springer-Verlag, Berlin and New York, 2015
- [12]潘孝光. 倾斜卧式油罐容积测量与计算[J]. 重庆理工大学学报(自然科学版), 2015(3):29-31
- [13] S. Chou and D. Kwak. A covolume method based on rotated bilinears for the generalized stocks problems, SIAM J. Number. Anal, 35 (2001):494-507
- [14] 司红书. 华枫. 田晓东. 竖立球冠体内任意高度与体积关系研究[J]. 测绘科学. 2016(6):44-57
- [15] 高恩强. 丰培云. 倾斜圆柱体油罐不同液面高度时储油量的计算[D]. 北京: 北京理工大学. 2015

附录

```
附录一
a=0.89;b=0.6;afa=7*pi/180;
h=[0:0.01:1.2];
v = zeros(121,1);
for i=1:121
V = @(x)(a*b*1/2*(sin(2*asin((h(i)+(0.4-x)*tan(afa))/b-1)) + 2*asin((h(i)+(0.4-x)*tan(afa))/b-1)) + 2*asin((h(i)+(0.4-x)*tan(afa))/b-1) + 2*asin((h(i)+(0.4-x)*tan(afa))/b-1) + 2*asin((h(i)+(0.4-x)*tan(afa))/b-1)) + 2*asin((h(i)+(0.4-x)*tan(afa))/b-1)
1)+pi));
if h(i) \ge 0 \& h(i) \le 2.05 * tan(afa)
            v(i)=integral(V,0,h(i)/tan(afa)+0.4)*1000;
else
            if h(i) > 2.05*tan(afa)&&h(i) <= 1.2-0.4*tan(afa)
                          v(i) = integral(V, 0, 2.45)*1000;
                         if h(i) > 1.2 - 0.4 * tan(afa) & h(i) <= 1.2
                                     t=1.2-h(i)+1.65*tan(afa);
                                     V1=@(x)(a*b*1/2*(sin(2*asin((t+(0.4-x)*tan(afa))/b-1))+2*asin((t+(0.4-x)*tan(afa))/b-1))
 x)*tan(afa))/b-1)+pi));
                                     v(i)=(4.11-integral(V1,0,t/tan(afa)+0.4))*1000;
                         end
            end
end
end
h=h';
%{
x=xlsread('F:\数学建模\暑假培训\10A\问题 A 附件 1:实验采集数据表.xls','sheet2','A2:A79');
y= xlsread('F:\数学建模\暑假培训\10A\问题 A 附件 1:实验采集数据表.xls','sheet2','B2:B79');
xlabel('油位高度 H/mm'),ylabel('储油量 V/L')
hold on;
axis([0,1400,0,4500]);
plot(x,y,'k','linewidth',2);
hold on;
plot(h.*1000,v,'k.','MarkerSize',5);
legend('变位储油量(实际值)','变位储油量(理论值)',2)
%}
附录二
clc, clear, clf
x=xlsread('F:\数学建模\暑假培训\10A\问题 A 附件 1:实验采集数据表.xls','sheet1','C2:C79');
y= xlsread('F:\数学建模\暑假培训\10A\问题 A 附件 1:实验采集数据表.xls','sheet1','D2:D79');
xlabel('油位高度 H/m'),ylabel('储油量 V/m3')
hold on:
axis([0,1.4,0,4.5]);
```

```
。,=2.45;
。 o*1/2*|*(sin(2*asin(y/b-1))+2*asin(y/b-1)+pi);
plot(y,V,k.','MarkerSize',5);
legend('无变位储油量(实际值)','无变位储油量(理论值)',2)
```