### Презентация по лабораторной работе №4

Модель гармонических колебаний

Хусаинова Д.А.

1 марта 2024

Российский университет дружбы народов, Москва, Россия

#### Цель работы

Изучить понятие гармонического осциллятора, построить фазовый портрет и найти решение уравнения гармонического осциллятора.

#### Теоретическое введение

- Гармонический осциллятор система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x.
- Гармоническое колебание колебание, в процессе которого величины, характеризующие движение (смещение, скорость, ускорение и др.), изменяются по закону синуса или косинуса (гармоническому закону).

### **Уравнение свободных колебаний гармонического осцилля**тора

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 = 0$$

где x - переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.),  $\gamma$  - параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре),  $\omega_0$  - собственная частота колебаний. Это уравнение есть линейное однородное дифференциальное уравнение второго порядка и оно является примером линейной динамической системы.

## Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида

$$\begin{cases} x(t_0) = x_0 \\ x(\dot{t}_0) = y_0 \end{cases}$$

# Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} x = y \\ y = -\omega_0^2 x \end{cases}$$

#### Начальные условия для системы примут вид:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

#### Задачи

- 1. Разобраться в понятии гармонического осциллятора
- 2. Ознакомиться с уравнением свободных колебаний гармонического осциллятора
- Построить фазовый портрет гармонического осциллятора и решение уравнения на языках Julia и Open Modelica гармонического осциллятора для следующих случаев:

#### Вариант № 54

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

Колебания гармонического осциллятора без затуханий и без действий внешней силы  $\ddot{x}+9.9x=0$ ;

#### Вариант № 54

Колебания гармонического осциллятора с затуханием и без действий внешней силы  $\ddot{x}+1\dot{3}x+13x=0$ 

Колебания гармонического осциллятора с затуханием и под действием внешней силы  $\ddot{x}+2\dot{4}x+25x=6sin(4t)$ 

#### Вариант № 54

На интервале  $t \in [0;48]$  (шаг 0.05) с начальными условиями  $x_0 = 0.9, y_0 = 0.9.$ 

#### Julia

Создадим файлы lab4\_1.jl, lab4\_2.jl, lab4\_3.jl

```
PS C:\Windows\system32> cd C:\Users\xusai\MATHMOD\work\study\2023-2024\"Marewaruческое моделирование"\mathmod\labs\lab4
PS C:\Users\xusai\MATHMOD\work\study\2023-2024\Warewaruческое моделирование\mathmod\labs\lab4> echo hello > lab4_1.jl
PS C:\Users\xusai\MATHMOD\work\study\2023-2024\Warewaruческое моделирование\mathmod\labs\lab4> echo hello > lab4_2.jl
PS C:\Users\xusai\MATHMOD\work\study\2023-2024\Warewaruческое моделирование\mathmod\labs\lab4> echo hello > lab4_3.jl
```

Рис. 1: Создание файлов

#### Первый случай

```
using DifferentialEquations
function lorenz! (du, u, p, t)
    a = p
    du[1] = u[2]
    du[2] = -a*u[1]
end
const x = 0.9
const v = 0.9
u0 = [x, v]
p = (9.9)
tspan = (0.0, 48.0)
prob = ODEProblem(lorenz!, u0, tspan, p)
sol = solve(prob, dtmax = 0.05)
```

13/32

#### Второй случай

```
using DifferentialEquations
function lorenz! (du, u, p, t)
    a, b = p
    du[1] = u[2]
    du[2] = -a*du[1] - b*u[1]
end
const. x = 0.9
const v = 0.9
u0 = [x, v]
p = (sqrt(13), 13)
tspan = (0.0, 48.0)
prob = ODEProblem(lorenz!, u0, tspan, p)
sol = solve(prob, dtmax = 0.05)
```

14/32

#### Третий случай

```
using DifferentialEquations
function lorenz! (du, u, p, t)
    a, b = p
    du[1] = u[2]
    du[2] = -a*du[1] - b*u[1] + 6*sin(4*t)
end
const. x = 0.9
const v = 0.9
u0 = [x, v]
p = (sqrt(24), 25)
tspan = (0.0, 48.0)
prob = ODEProblem(lorenz!, u0, tspan, p)
sol = solve(prob, dtmax = 0.05)
```

15/32

# Результат работы "Колебания гармонического осциллятора без затуханий и без действий внешней силы"



# Результат работы "Колебания гармонического осциллятора без затуханий и без действий внешней силы"



# Результат работы "Колебания гармонического осциллятора с затуханием и без действий внешней силы"



# Результат работы "Колебания гармонического осциллятора с затуханием и без действий внешней силы"



## Результат работы "Колебания гармонического осциллятора с затуханием и под действием внешней силы"



# Результат работы "Колебания гармонического осциллятора с затуханием и под действием внешней силы"



### OpenModelica. Первый случай

```
model Lab4 1 mo
parameter Real w = sqrt(9.90);
parameter Real q = 0;
parameter Real x0 = 0.9;
parameter Real y0 = 0.9;
Real x(start=x0);
Real v(start=v0);
function f
input Real t ;
output Real res;
algorithm
res := 0;
end f:
```

#### OpenModelica. Второй случай

```
model Lab4 2 mo
parameter Real w = sgrt(13.00);
parameter Real q = 13;
parameter Real x0 = 0.9;
parameter Real y0 = 0.9;
Real x(start=x0);
Real v(start=v0);
function f
input Real t ;
output Real res;
algorithm
res := 0;
end f:
```

### OpenModelica. Третий случай

```
model Lab4 3 mo
parameter Real w = sqrt(25.0);
parameter Real q = 24;
parameter Real x0 = 0.9;
parameter Real y0 = 0.9;
Real x(start=x0);
Real v(start=v0);
function f
input Real t ;
output Real res;
algorithm
res := 6*\sin(4*t);
end f:
```

# Результат работы "Колебания гармонического осциллятора без затуханий и без действий внешней силы"



**Рис. 8:** OpenModelica. Колебания гармонического осциллятора без затуханий и без действий внешней силы

# Результат работы "Колебания гармонического осциллятора без затуханий и без действий внешней силы"



**Рис. 9:** OpenModelica. фазовый портрет. Колебания гармонического осциллятора без затуханий и без действий внешней силы

### Результат работы "Колебания гармонического осциллятора с затуханием и без действий внешней силы"



**Рис. 10:** OpenModelica. Колебания гармонического осциллятора с затуханием и без действий внешней силы

### Результат работы "Колебания гармонического осциллятора с затуханием и без действий внешней силы"



**Рис. 11:** OpenModelica. фазовый портрет. Колебания гармонического осциллятора с затуханием и без действий внешней силы

## Результат работы "Колебания гармонического осциллятора с затуханием и под действием внешней силы"



**Рис. 12:** OpenModelica. Колебания гармонического осциллятора с затуханием и под действием внешней силы

### Результат работы "Колебания гармонического осциллятора с затуханием и под действием внешней силы"



**Рис. 13:** OpenModelica. фазовый портрет. Колебания гармонического осциллятора с затуханием и под действием внешней силы

#### Выводы

В ходе выполнения лабораторной работы были построены решения уравнения гармонического осциллятора и фазовые портреты гармонических колебаний без затухания, с затуханием и при действии внешней силы на языках Julia и Open Modelica.

#### Список литературы. Библиография

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Решение дифференциальных уравнений: https://www.wolframalpha.com/