SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI – KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING.

Tatjana Pavlenko

24september 2018

Plan för dagens föreläsning

- ► Statistisk inferens översikt (rep.)
- Punktskattningar (rep.)
- Intervallskattning (Kap. 12.2)
- ► Exempel i situationer med normalfördelade data: intervall för väntevärde när standardavvikelsen är känd resp. okänd. (Kap. 12.3)

STATISTISK INFERENS – KONSTEN ATT DRA SLUTSATSER (REP.)

- Sannolikhetsteorin: Hur beskriver man slumpen med hjälp av sannolikhetsmodell?
- Statistikteorin: Vilka slutsatser kan man dra av ett datamaterial?
 - Vi har skaffat oss ett stickprov av observationer x_1, \ldots, x_n av oberoende s.v. X_1, \ldots, X_n genom experiment. Fördelningen för X beror av en *okänd parameter*, θ .
 - Vi vill utnyttja stickprovet (data) för att uppskatta fördelningsparameter θ.
- Exempel:
 - 1. Uppskatta medelhastigheten hos hela populationen bilar som passerar korsningen: $\theta = \mu = E(X)$. X_i är hastighet hos bil i. Data: $x_1 = 65, x_2 = 50, \ldots, x_{78} = 56$.
 - 2. Hur stor är den förväntade andelen fortkörare? $\theta = p = P(X > 50)$. Data: y = 41.

STATISTISK INFERENS – ÖVERSIKT (REP.)

► Punktskattning:

Hur gör man en bra uppskattning av en okänd storhet (parametervärde)? Hur vet man att uppskattningen är bra?

► Intervallskattning:

Bestämma istället ett intervall som innehåller det sanna (verkliga) parametervärdet med givet (stor) sannolikhet, t ex 0.95.

► Hypotesprövning:

Om uppskattningen blev 0.013, kan det sanna parametervärdet ändå vara 0.01?

PUNKTSKATTNING: (REP.)

- ▶ Forts. på exempel. *Modell:* Vi har X_i som hastighet hos bil i där $E(X_i) = \mu$ och $V(X_i) = \sigma$. Alla X_i antas vara oberoende och lika fördelade för $i = 1, \ldots, n$ där n = 78. Om vi dessutom antar att X_i är normalfördelade ska det också anges: $X_i \in N(\mu, \sigma)$, X_i är oberoende för $i = 1, \ldots, n, n = 78$.
- ▶ Vi skattar fördelningsparametern θ med hjälp av någon lämplig funktion $\theta^*(x)$ av stickprovet $x = (x_1, ..., x_n)$. $\theta^*(x)$ (ofta skrivs som $\theta^*_{obs}(x)$) kallas för en *skattning av* θ .
- Funktionen $\theta^*(X)$ av motsvarande stokastiska variabler $X = (X_1, \dots, X_n)$ kallas för *skattare av* θ . $\theta^*(X)$ är också en stokastisk variabel med t. ex. fördelning, väntevärde och varians.
- ▶ Skilj på θ som är en parameter, dvs okänt tal, och θ^* som är dess skattning. Skattningen varierar med stickprovet, det gör inte θ !
- ▶ Tolkning: Fördelning för $\theta^*(X)$ talar om vad skattningen kunde blivit istället, om vi gjort om experiment, t ex mäter hastighet hos 78 nya bilar.

EGENSKAPER HOS PUNKTSKATTNINGAR (REP.)

- Önskvärda egenskaper. En skattare bör vara
 - väntevärdesriktig, (skattar den rätt sak?). $E(\theta^*(X)) = \theta$,
 - effektiv, (hur osäker den är?). $V(\theta^*(X))$ är så liten som möjligt, och
 - ▶ konsistent, dvs $P(|\theta_n^* \theta| > \varepsilon) \to 0$ då $n \to \infty$. Skattningen blir bättre när man har fler observationer.
- ▶ Ett problem kan uppstå när man vill ange *osäkerheten* i en skattare med hjälp av standardavvikelse/varians är att denna kan berå av någon okänd parameter. För att ange osäkerhet *numeriskt* måste även standardavvikelsen skattas. Detta kallas för *medelfelet* och kommer till stor användning vid beräkning av konfidensintervall.
- ▶ Def: Medelfelet för skattningen θ^* är en skattning av standardavvikelsen $D(\theta^*(X))$ och betecknas med $d(\theta^*)$.
- Exempel på tavlan.

MK OCH ML SKATTNINGAR (REP.)

▶ Minsta-kvadrat metoden, MK:

Om $E(X_i) = \mu_i(\theta)$ så fås MK-skattningen av θ genom att *minimera* förlustfunktionen

$$Q(\theta) = \sum_{i=1}^{m} (x_i - \mu_i(\theta))^2$$

med avseende på θ .

Maximum likelihood-metoden, ML:

ML skattningen av θ fås genom att maximera likekihood-funktionen $L(\theta)$ med avseende på θ

$$L(\theta) = \begin{cases} p_{X_1, \dots, X_n}(x_1, \dots, x_n; \theta) & \text{diskreta fallet} \\ f_{X_1, \dots, X_n}(x_1, \dots, x_n; \theta) & \text{kontinuerliga fallet} \end{cases}$$

► Tolkning av ML-metod: välj det parametervärde som ger högst sannolikhet för de givna mätvärdena.

INTERVALLSKATTNING

- En punktskattare ger endast ett varde, själva skattningen av okänd parameter!
- ▶ $D(\theta^*)$ och $d(\theta^*)$ ger en uppfattning om osäkerheten i skattningen men det ar ofta svårt att tolka exakt vad den betyder i en praktisk situation.
- Vi skall nu ytterligare precisera ett mått pa den osäkerhet slumpen bidrar med när det vi försöker skatta parametrar.
- I många situationer är man inte nöjd med att bara ge en punktskattning av en parameter θ , t ex

pH-värdet uppskattas till $\theta^* = 5.7$,

utan man skulle få

pH-värdet ligger med 95% säkerhet mellan 5.3 och 6.1, eller pH-värdet är med 95% säkerhet minst 5.4.

Ett intervall av denna typ kallas ett konfidensintervall.

- ▶ *Syfte:* Att få numeriskt intervall där θ ligger med föreskriven säkerhet.
- ▶ Vi måste också precisera uttrycket *med* 95% *säkerhet*.

INTERVALLSKATTNING (FORTS.)

▶ Def: Låt $x = (x_1, \ldots, x_n)$ vara utfall av ett slumpmässigt stickprov $X = (X_1, \ldots, X_n)$ vars fördelning beror av en okänd parameter θ och låt $0 < \alpha < 1$. Ett intervall,

$$I_{\theta} = (a_1(x), a_2(x))$$

kallas ett *konfidensintervall* för θ med *konfidensgrad* $1-\alpha$ om den innehåller θ med sannolikhet $1-\alpha$, dvs

$$P(a_1(X) < \theta < a_2(X)) = 1 - \alpha.$$

▶ Konfidensgränserna, $a_1(x)$ och $a_2(x)$ är observationer av stickprovsvariabler, $a_1(X)$ och $a_2(X)$. Ett konfidensintervall $I_{\theta} = (a_1(x), \ a_2(x))$ kan alltså betraktas som *en observation* av ett intervall med stokastiska gränser.

INTERVALLSKATTNING (FORTS.)

- ▶ Vanliga värden för konfidensgrad $1-\alpha$ är 0.95, 0.99 och 0.999. Tolkning: om man då påstår att konfidensintervallet innehåller θ , löper man en risk på 0.05, 0.01 respektive 0.001 att göra ett felaktigt uttalande.
- Frekvenstolkning: Antag att man gång på gång skulle kunna upprepa insamlingen av stickprov och varje gång ta fram, säg ett tvåsidigt 95% intervall. I det långa loppet skulle andelen 0.95 av intervallen täcka över det okända parameter värde θ , medan återståenden skulle \emph{missa} det. Exempel av simuleringar ges i Lab 2.
- ▶ Om båda gränserna är ändliga kallas intervallet *tvåsidigt*.
- Ett ensidigt konfidensintervall ges av

$$P(a_1(X), \infty) = 1 - \alpha$$
,

eller

$$P(-\infty, a_2(X)) = 1 - \alpha.$$

ALLMÄN METOD FÖR KONFIDENSINTERVALL

- Börjar med exempel på tavla.
- ightharpoonup Konstruktion av konfidensintervall för en okänd parameter θ kan beskrivas i följande steg:
 - 1. Skriv upp parameter att skatta (θ) och hitta punktskattare $\theta^*(X_1,\ldots,X_n)$.
 - Bestäm punktskattares fördelning.
 - Transformera punktskattare till en ny s.v. vars fördelning inte beror på några okända parametrar, dvs till en pivotvariabel ¹.
 - 4. Stäng in den transformerade s. v. mellan kvantiler.
 - 5. Skriv om till $I_{\theta} = (a_1(x_1, ..., x_n), a_2(x_1, ..., x_n)).$

¹Pivot=svängtapp eller gruntbult, grunden som resten av något vilar på.

Tillämpning på normalfördelningen: I_{μ} då σ är känd.

- ▶ Låt x_1, \ldots, x_n vara ett slumpmässigt stickprov från $N(\mu, \sigma)$, dvs x_i , $i = 1, \ldots, n$ är observationer av de oberoende s.v. X_1, \ldots, X_n , där $X_i \in N(\mu, \sigma)$. Vi är intresserade att ställa upp ett 1α konfidensintervall för väntevärdet μ . Antag att σ är känd.
 - 1. En punktskattare av μ är $\mu^* = \bar{X} = \sum_{i=1}^n X_i$ (ML skattning.)
 - 2. $\mu^* = \bar{X} \in N(\mu, \frac{\sigma}{\sqrt{n}})$, dvs $E(\mu^*) = \mu$ och $D(\mu^*) = \frac{\sigma}{\sqrt{n}}$.
 - 3. Enligt sats 6.1 är

$$\frac{\mu^* - \mu}{D(\mu^*)} = \frac{X - \mu}{\sigma / \sqrt{n}} \in N(0, 1),$$

dvs en pivotvariabel.

4. Vi utnyttjar egenskaper av N(0,1)- fördelning för att bestämma kvantiler

$$P\left(-\lambda_{\alpha/2} < \frac{\bar{X} - \mu}{D(\mu^*)} < \lambda_{\alpha/2}\right) = 1 - \alpha.$$

5. Omforma olikheten till konfidensintervallet för μ

$$\textit{I}_{\mu} = (\bar{x} \pm \lambda_{\alpha/2} D(\mu^*)) = \left(\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

TILLÄMPNING PÅ NORMALFÖRDELNINGEN (FORTS.) : I_{u} DÅ σ ÄR OKÄND.

- När σ är okänd så är $D(\mu^*) = \sigma/\sqrt{n}$ också okänd och intervallet $I_{\mu} = (\bar{x} \pm \lambda_{\alpha/2} D(\mu^*))$ blir ej användbart.
- Lösning:
 - 1-3. Vi ersätter $D(\mu^*)$ med skattare $d = S/\sqrt{n}$ (medelfelet) där

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

och använder istället en pivotvariabel

$$T = \frac{\mu^* - \mu}{d(\mu^*)} = \frac{\bar{X} - \mu}{S/\sqrt{n}} \in t(n-1).$$

4-5. Kvantiler för T fås nu från t-fördelningen, dvs $-t_{\alpha/2}(n-1)$ och $t_{\alpha/2}(n-1)$ (se mer om t-fördelning i Kap. 12.3). Omforma

$$P\left(-t_{\alpha/2}(n-1) < \frac{\bar{X} - \mu}{d(\mu^*)} < t_{\alpha/2}(n-1)\right) = 1 - \alpha$$

till I_{μ} på samma sätt som ovan.

Konfidensintervall för μ : sammanfattning

Låt x_1,\ldots,x_n vara ett slumpmässigt stickprov från $N(\mu,\sigma)$ där μ är okänd. Då

om σ är känd:

$$I_{\mu} = (\bar{x} \pm \lambda_{\alpha/2} D(\mu^*)) = \left(\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),$$

om σ är okänd:

$$I_{\mu} = (\bar{x} \pm t_{\alpha/2}(n-1)d(\mu^*)) = \left(\bar{x} \pm t_{\alpha/2}(n-1)\frac{\sigma}{\sqrt{n}}\right),$$

där kvantilerna ges av

- $\lambda_{\alpha/2}$ är N(0,1)-fördelnings $\alpha/2$ -kvantil (se Tabell 2)
- $t_{\alpha/2}(n-1)$ är t-fördelnings $\alpha/2$ -kvantil (se Tabell 3)

t-fördelning

FIGUR: Täthetsfunktion för t-fördelning med $\nu = n - 1$ frihetsgrader.

