AMENDMENTS TO THE CLAIMS

Docket No.: 09086-00234-US

1. (Original) An organometallic transition metal compound of the formula (I)

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{12}$$

$$R^{10}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

where

460173

4.3

M¹ is a metal of group 3, 4, 5 or 6 of the Periodic Table of the Elements or the lanthanides,

X are identical or different and are each an organic or inorganic radical, where two radicals X can also be joined to one another,

n is a natural number from 1 to 4,

 T^1 , T^2 are identical or different and are each a divalent group selected from the group consisting of -O-, -S-, -Se-, -Te-, -N(R¹³)-, -P(R¹³)-, -As(R¹³)-, -Sb(R¹³)-, -Si(R¹³)₂-, -C(R¹³R¹⁴)-C(R¹³R¹⁵)- and -C(R¹⁴)=C(R¹⁵)-, where R¹³, R¹⁴ and R¹⁵ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

R¹, R⁷ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

0

Docket No.: 09086-00234-US

R², R⁸ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

 R^3 , R^9 are identical or different and are each halogen or an organic radical having from 1 to 40 carbon atoms, where R^3 is not methyl when T^1 is -C(H)=C(H)-,

R⁴, R⁵, R⁶, R¹⁰, R¹¹ and R¹² are identical or different and are each hydrogen, halogen or an organic radical having from 1 to 40 carbon atoms, or two adjacent radicals R⁴, R⁵, R⁶, R¹⁰, R¹¹ and R¹² together with the atoms connecting them form a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 1 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,

or,

if T¹ or T² is -O-, -S-, -Se- or -Te-, the radical R³ together with R⁴ and/or the radical R⁹ together with R¹⁰ forms a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 1 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,

and

A is a bridge consisting of a divalent atom or a divalent group.

2. (Original) An organometallic transition metal compound of the formula (I) as claimed in claim 1,

wherein

M¹ is an element of group 4 of the Periodic Table of the Elements,

n is 2,

T¹, T² are identical and are each -O-, -S-, -Se- or -Te-,

 R^{1} , R^{7} are identical and are each a C_{1} - C_{10} -alkyl radical,

R², R⁸ are identical and are each hydrogen,

 R^3 , R^9 are identical or different and are each a substituted or unsubstituted C_6 - C_{40} -aryl radical or C_2 - C_{40} -heteroaromatic radical containing at least one heteroatom selected from the group consisting of O, N, S and P,

Docket No.: 09086-00234-US

R⁴, R⁵, R¹⁰ and R¹¹ are identical and are each hydrogen,

R⁶, R¹² are identical and are each hydrogen or an organic radical having from 1 to 20 carbon atoms,

A is a substituted silylene group or a substituted or unsubstituted ethylene group, and

the other variables are as defined in claim 1.

3. (Currently amended) A biscyclopentadienyl ligand system of the formula (II)

or one of its double bond isomers,

where the variables R¹, R², R³, R⁴, R⁵ R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², T¹, T² and A are as defined in formula (I)

Docket No.: 09086-00234-US

are identical or different and are each a divalent group selected from the group consisting of -O-, -S-, -Se-, -Te-, -N(R^{13})-, -P(R^{13})-, -As(R^{13})-, -Sb(R^{13})-, -Si(R^{13})-, -C($R^{13}R^{14}$)
C($R^{13}R^{15}$)- and -C(R^{14})=C(R^{15})-, where R^{13} , R^{14} and R^{15} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

R¹ and R⁷ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

R² and R⁸ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

 R^3 and R^9 are identical or different and are each halogen or an organic radical having from 1 to 40 carbon atoms, where R^3 is not methyl when T^1 is -C(H)=C(H)-,

R⁴, R⁵, R⁶, R¹⁰, R¹¹ and R¹² are identical or different and are each hydrogen, halogen or an organic radical having from 1 to 40 carbon atoms, or two adjacent radicals R⁴, R⁵, R⁶, R¹⁰, R¹¹ and R¹² together with the atoms connecting them form a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 1 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,

or,

if T¹ or T² is -O-, -S-, -Se- or -Te-, the radical R³ together with R⁴ and/or the radical R⁹ together with R¹⁰ forms a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 1 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,

<u>and</u>

A is a bridge consisting of a divalent atom or a divalent group.

4. (Original) A biscyclopentadienyl ligand system of the formula (II) as claimed in claim 3, wherein

Docket No.: 09086-00234-US

T¹, T² are identical and are each -O-, -S-, -Se- or -Te-,

 R^{1} , R^{7} are identical and are each a C_{1} - C_{10} -alkyl radical,

R², R⁸ are identical and are each hydrogen,

 R^3 , R^9 are identical or different and are each a substituted or unsubstituted C_6 - C_{40} -aryl radical or C_2 - C_{40} -heteroaromatic radical containing at least one heteroatom selected from the group consisting of O, N, S and P,

R⁴, R⁵, R¹⁰ and R¹¹ are identical and are each hydrogen,

R⁶, R¹² are identical and are each hydrogen or an organic radical having from 1 to 20 carbon atoms,

and

- A is a substituted silylene group or a substituted or unsubstituted ethylene group.
- 5. (Currently amended) A catalyst system for the polymerization of olefins comprising at least one organometallic transition metal compound as claimed in claim 1 [or 2] and at least one cocatalyst which is able to convert the organometallic transition metal compound into a species which displays polymerization activity toward at least one olefin.
- 6. (Original) A catalyst system as claimed in claim 5 which further comprises a support.

7. (Currently amended) A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 5 [or 6].

Docket No.: 09086-00234-US

8. cancelled

- 9. (Currently amended) A process for preparing an organometallic transition metal compound, which comprises reacting a reacting the biscyclopentadienyl ligand system as claimed in claim 3 [or 4] or a bisanion prepared therefrom with a transition metal compound.
- 10. (Original) A polyolefin obtainable by the process as claimed in claim 7.
- 11. (New) A catalyst system for the polymerization of olefins comprising at least one organometallic transition metal compound as claimed in claim 2 and at least one cocatalyst which is able to convert the organometallic transition metal compound into a species which displays polymerization activity toward at least one olefin.
- 12. (New) A catalyst system as claimed in claim 11 which further comprises a support.
- 13. (New) A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 11.
- 14. (New) A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 12.
- 15. (New) A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 6.
- 16. (New) A process for preparing an organometallic transition metal compound, which comprises reacting the biscyclopentadienyl ligand system as claimed in claim 4 or a bisanion prepared therefrom with a transition metal compound.