

מבוא למערכות לומדות (236756)

סמסטר חורף תשפ"ד – 09 ביוני 2024

מרצה: ד"ר יונתן בלינקוב

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- משך הבחינה: שלוש שעות + 12 דקות שנוספו במהלך הבחינה
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט בלבד.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - הוכחות והפרכות צריכות להיות פורמליות.
 - :קריאוּת
- סימונים לא ברורים בשאלות רב-ברירה ו/או תשובות מילוליות בכתב יד לא קריא יובילו לפסילת התשובה.
 - . לא יתקבלו ערעורים בנושא. ס
 - במבחן 16 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.
 - לזכאים להערכה חלופית מתאפשרת בחירה בין שאלות 3 ו-4.

בהצלחה!

<u>שאלה 1: רגרסיה לינארית ו-Generative models [8] נק']</u>

 $arepsilon_i\sim\mathcal{N}(0,1)$ נורמלי: i.i.d. עם רעש אקראי מפילוג $y_i=\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+arepsilon_i$ שהגיע ממודל ליניארי $S=\{(\mathbf{x}_i,y_i)\}_{i=1}^m$ לא ידוע ואותו אנו רוצים ללמוד. $\mathbf{x}_i\in\mathbb{R}^d$ והתיוגים $y_i\in\mathbb{R}$ נתונים. וָקְטור המשקלים $\mathbf{w}\in\mathbb{R}^d$ לא ידוע ואותו אנו רוצים ללמוד.

תזכורת: הוכחנו שתחת הנחות אלה ה-likelihood שווה 🖈

$$L(\mathbf{w}; S) = \Pr\left(\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i} \middle| \mathbf{w}\right) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i}\right)^{2}\right\}$$

 $oldsymbol{\Sigma} \succ oldsymbol{0}_{d imes d}$ ושונות $oldsymbol{\mu} \in \mathbb{R}^d$ ושונות $oldsymbol{\omega}$ וניח בנוסף שווקטור המשקלים הלא ידוע

$$\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \implies f(\mathbf{w}) = (2\pi |\boldsymbol{\Sigma}|)^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{w} - \boldsymbol{\mu})\right\}$$

,argmax Pr(\mathbf{w} | S, $\mathbf{\mu}$, $\mathbf{\Sigma}$) א. \mathbf{K} נק'] הוכיחו שתחת <u>כלל</u> ההנחות, MAP עם prior גאוסיאני רב-ממדי על המשקלים, משמע (\mathbf{M} ההנחות, \mathbf{W} ההנחות, \mathbf{W}

 $(\mathbf{z} \in \mathbb{R}^d, \mathbf{M} \succ \mathbf{0}_{d \times d}, \lambda > 0$ הבאה (עבור Regularized LS-שקול לבעיית ה

$$\widehat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \left(\frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\mathsf{T} \mathbf{x}_i - y_i)^2 + \lambda (\mathbf{w} - \mathbf{z})^\mathsf{T} \mathbf{M} (\mathbf{w} - \mathbf{z}) \right)$$

 μ, Σ בותונים ולמצוא ערכים מתאימים ל- S, λ, M, z כנתונים ולמצוא ערכים מתאימים ל-ההוכחה צריכה לכלול פיתוח פורמלי מנומק. יש להתייחס ל

הוכחה פורמלית:

(מקום נוסף בעמוד הבא)

						וכחה:	המשך הה
l ———							
ס ללא בנולר מינלר	: Sauproc. 2 1121				ת בבעלבי	מתבנו בעני	וכ'] ובו א
 Leas ללא רגולר	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת כך שתהיה נכונה	ת כפי שהגדרנו המדויק <u>ביות</u> ו)	יזציה המוכללו ≥,<,,>,=)			
 Leas <u>ללא רגולר</u>	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m}\sum_{i=1}^{m} (1-m)^{-1}\right)$	יזציה המוכללו ≥,<,,>,=)			
ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m}\sum_{i=1}^{m} (1-m)^{-1}\right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	
Leas ללא רגולר	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m}\sum_{i=1}^{m} (1-m)^{-1}\right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	וענה שלפנינ
Leas <u>ללא רגולר</u>	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m}\sum_{i=1}^{m} (1-m)^{-1}\right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	וענה שלפנינ
Leas <u>ללא רגולר</u>	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m} \sum_{i=1}^{m} (1-m)^{m} \right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	וענה שלפנינ
Leas:	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m} \sum_{i=1}^{m} (1-m)^{m} \right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	וענה שלפנינ
Leas ללא רגולר	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m} \sum_{i=1}^{m} (1-m)^{m} \right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	וענה שלפנינ
Leas:	ה <u>בהכרח</u> :	ו לעיל. יהי $\widehat{\mathbf{w}}_{ ext{LS}}$ פת $\underline{\mathbf{c}}$ כך שתהיה נכונה $\widehat{\mathbf{w}}^{ ext{T}}\mathbf{x}-y_i)^2$	ת כפי שהגדרנו γ המדויק ביותו $\left(\frac{1}{m} \sum_{i=1}^{m} (1-m)^{m} \right)$	יזציה המוכללו ≥,<,,>,=)		בם, כתבו א	וענה שלפנינ

<u>שאלה 2: Kernel SVM [2 נק']</u>

$$K: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
, $K(x_i, x_j) = \exp(-\gamma (x_i - x_j)^2)$

:לקלט חד-ממדי Gaussian kernel-נתון $\gamma>0$ נגדיר את ה

$$K(x_i, x_j) = \exp\left(-\gamma(x_i - x_j)^2\right) = \exp\left(-\gamma(x_i^2 + x_j^2)\right) \sum_{n=0}^{\infty} \frac{(2\gamma)^n (x_i x_j)^n}{n!}$$

תכונה אלגברית 1:

תשובה:

א. $\phi: \mathbb{R} \to \mathbb{R}^p$ מהווה קרנל חוקי (בחד ממד). א. $\phi: \mathbb{R} \to \mathbb{R}^p$ והוכיחו בעזרתה שהפונקציה $p \in \mathbb{R} \cup \{\infty\}$ מתאים, סופי או אינסופי. כדאי להשתמש בתכונה הנתונה. $p \in \mathbb{R} \cup \{\infty\}$

 $(2\delta)^{\frac{1}{2}} u^{n} \cdot (2\delta)^{\frac{1}{2}} u^{n}$

 $Q(u) = e^{-\delta u^2} \frac{(2\delta)^2 u^{\gamma}}{\sqrt{n!}} \cdot Q(u) = e^{-\delta u^2} e^{-\delta u^2} \frac{(2\delta)^{\frac{1}{2}} u^{\gamma}}{\sqrt{1!}} \cdot e^{-\delta u} \frac{(2\delta)^{\frac{1}{2}} u^{\gamma}}{\sqrt{2!}} \cdot e^{-\delta u}$

18-11-2

(Q:R-R) (Q(v): K(u.v)

כזכור, בעיות SVM ניתן לפתור בצורת primal problem ובצורת

עם זאת, בגלל קושי מובנה בפתרון ה-primal problem עם ה-feature mapping מהסעיף הקודם (חִשְׁבוּ מה הקושי), היינו רוצים לפתור את ה-dual problem במקום. כפי שנראה עתה, גם זה עלול להיות בעייתי.

עם K עם dual problem-עם בפתרון העיקרי בפתרון ה- $S=\{(x_i,y_i)\}_{i=1}^{10,000}$ עם אימון (נקי') נתון מדגם אימון אימון מדגם אימון ה-

הסבירו <u>בקצרה: "הקש" הא המשיר במתום באוכל הא) שמיצג אל </u>
(c)(v) K(X;X;) (2) (10000) (10000) (17)
שלאר צה והיה פרער אביקר מטומיא

 $K(x_i,x_j) \approx K'(x_i,x_j) \triangleq \frac{1}{500} \sum_{n=1}^{500} 2 \cdot \cos(w_n x_i + b_n) \cdot \cos(w_n x_j + b_n)$ באשר דוגמים 500 זוגות $w_n \sim \mathcal{N}(0,2\gamma), \ b_n \sim \text{Uniform}[0,2\pi]$ לכל הזוגות כאשר דוגמים 500 זוגות

ג. $\psi: \mathbb{R} \to \mathbb{R}^p$ מהווה קרנל חוקי. $\psi: \mathbb{R} \to \mathbb{R}^p$ מהווה קרנל חוקי. $\psi: \mathbb{R} \to \mathbb{R}^p$ מתאים, סופי או אינסופי. $p \in \mathbb{N} \cup \{\infty\}$

$K'(u,v) = \frac{2}{sco} \sum_{h=1}^{sco} (\omega_n u + b_n) \cdot (c_s(\omega_n v + b_n) =$	תשובה:
$=\sqrt{\frac{2}{500}}\cdot\sqrt{\frac{2}{500}}$). () = $\psi(v)$	
$Q(u) = \sqrt{\frac{2}{500}} \left(Cos(\omega_1 u + b_1), (\omega_2 u_1 + b_1), \ldots, (os(\omega_{500} u + b_{80}) \right)$	
$[sw] \cdot (l_n(u) = \sqrt{\frac{2}{s\tau_0}} (cs(w_n u + b_n)) \qquad (p: R \rightarrow R^{500})$	

הקודם עם המיפוי ψ מהסעיף הקודם (הומוגנית) הקודם בעיית אימון בתור $S = \{(x_i, y_i)\}_{i=1}^{10,000}$ נפתור האימון מדגם אימון מהסעיף הפתרון בתור $\widehat{\mathbf{w}}$.

הציעו $x \in \mathbb{R}$ שרירותי תהיה לזו של המסווג הלינארי הציעו בשמה לרשת נוירונים עם שכבה חבויה אחת, כך שפעולתה על $x \in \mathbb{R}$ שרירותי תהיה לזו של המסווג הלינארי (±1).

כָּתְבוּ במפורש על הקשתות המתאימות בתרשים את המשקלים ועל הצמתים את ערכי ה-bias ופונקציות האקטיבציה. הבהרה: בהשמה תוכלו להשתמש בקבועים, פונקציות ו/או בנתונים שהתקבלו עד כה:

$$S = \{(x_i, y_i)\}_{i=1}^{10,000}, \ w_1, \dots, w_{500}, \ b_1, \dots, b_{500}, \ \widehat{\mathbf{w}}, \ K', \ \gamma$$

עאלה 3: PAC learnability [29] פק']

לזכאים להערכה חלופית <u>בלבד</u> (כפי שהוגדרו באתר הקורס): סמנו את התיבה הזו אם ברצונכם **לדלג** על שאלה זו. באתר הקורס): סמנו את התיבה הזו אם ברצונכם **לדלג** על שאלות 3,4.

.i.i.d באופן \mathcal{D} באופן מהתפלגות שדוגמים m דוגמאות הסימון $S{\sim}\mathcal{D}^m$ באופן

א. [4 נק'] להלן הגדרת ה-PAC-למידות במקרה ה-realizable.

השלימו את החסר (בשורה האחרונה):

יכך ש: $m_{\mathcal{H}}$: מחלקת היפותזות סופית \mathcal{H} היא PAC למידה אם קיימים פונקציה $m_{\mathcal{H}}$: $(0,1)^2 o \mathbb{N}$ ואלגוריתם למידה

- \mathcal{H} ע"י realizable עלכל והתפלגות \mathcal{D} והתפלגות $\epsilon,\delta\in(0,1)$
 - $L_{\mathcal{D}}(h)$ ע"י ע היפותזה h ע"י h
- , משמע, (ϵ,δ)-PAC עבור גודל מדגם מחזיר האלגוריתם $m \geq m_{\mathcal{H}}(\epsilon,\delta)$. משמע

$$\Pr_{S \sim \mathcal{D}^m} \square (L_D(A(S) \le \text{lepsilon}) > 1 - \text{lelta}$$

שימו לב: טעות בסעיף א' עלולה לגרור טעויות בחלק משאר הסעיפים ולעלות בניקוד רב! ודאו את תשובתכם!

-ב. [5 נק'] יהי מרחב דוגמאות **סופי** $\mathcal X$ כלשהו. תהי מחלקת היפותזות סופית $\mathcal H$ שרירותית שהיא

טענה: קיימים בהכרח פונקציה $M_{\mathcal{H}}:(0,1) \to \mathbb{N}$ ואלגוריתם למידה A כך ש

- \mathcal{H} ע"י realizable שהיא והתפלגות $\epsilon \in (0,1)$
 - $m \geq m_{\mathcal{H}}(\epsilon)$ שמקיים $S \sim \mathcal{D}^m$ עבור מדגם
- $L_{\mathcal{D}}(A(S)) \leq \epsilon$ האלגוריתם מחזיר היפותזה עם שגיאת הכללה חסומה, משמע: \bullet

סמנו את האפשרות הנכונה בהכרח לגבי הטענה שלעיל.

- ... הטענה נכונה כי היא נובעת מהגדרת ה-PAC-למידות.
- . הטענה נכונה כי תמיד ניתן לבחור $m_{\mathcal{H}}(\epsilon)$ גדול מספיק שמבטיח שגיאה קטנה כרצוננו במרחב דוגמאות סופי. $\mathring{\mathfrak{b}}$
 - -למידות. PAC-מידות. הטענה שגויה כי היא אינה נובעת מהגדרת ה c_{χ}
 - . הטענה שגויה כי לא ייתכן $m_{\mathcal{H}}(\epsilon)$ שמבטיח שהמדגם מכסה את .d $_{
 m V}$

 $|\mathcal{X}| \geq 10$ הנחיות לסעיפים הבאים: יהי \mathcal{X} מרחב דוגמאות סופי ונניח

תהי התפלגות \mathcal{D} לפיה ההסתברות להגריל $\mathcal{X}\in\mathcal{X}$ כלשהו נתונה ע"י $\mathcal{D}(x)>0$ (משמע, לכל x יש הסתברות חיובית ממש). $h^0(x)=0$ וכן $h_z(x)=\begin{cases} 1, & x=z\\ 0, & x\neq z \end{cases}$ נגדיר $x,z\in\mathcal{X}$ נגדיר $\mathcal{H}_{\mathrm{single}}=\{h_z:z\in\mathcal{X}\}\cup\{h^0\}$ וכן $h_z(x)=0$ ידוע שיש בדיוק דוגמה אחת במרחב \mathcal{X} שמתויגת חיובית. נסמן אותה ע"י $h_z(x)=0$

- .(i.i.d. עבור $S{\sim}\mathcal{D}^m$ עבור אימון ERM עבור ERM עבור אלגוריתם למידה שיבצע אלגוריתם $\mathcal{H}_{\mathrm{single}}$
 - a. [4 נק'] השלימו את האלגוריתם.

${\mathcal D}$ המתוארת.	קלט: מדגם $\sum\limits_{i=1}^{m} S = \{(x_i, y_i)\}_{i=1}^m$ מההתפל
	$.h_S$ ומסומן בתור ERM פלט: מסווג שנלמד בעזרת
if x+ \in S => $h_s = h_(x+)$ else $h_s = h^0(x)$	אלגוריתם:
	h_S נחזיר את

b. [4 נק'] הסבירו בקצרה מדוע מדובר באלגוריתם ERM.

ERM because the Training error will always be 0	הסבר:

:(יתן להשתמש ב- \mathcal{D}, S, x_+ ; ללא הוכחה); לקא הוכחה ; לקא הוכחה ; ללא הוכחה ; ללא הוכחה); לקא הוכחה ; לקא הוכחה

$$L_{\mathcal{D}}(h_{\mathcal{S}}) = \begin{cases} 0 ; x + \ln S \\ D(x +) & x + \ln S \end{cases}$$

. ד. $m_{\mathcal{H}_{\mathrm{Single}}}(\epsilon,\delta)$ של האלגוריתם שהצעתם בסעיף הקודם. .(ϵ,δ)-PAC שיבטיח את פעולת האלגוריתם במובני sample complexity- משמע, מצאו את . תקבל ניקוד חלקי. (חלקם או כולם) \mathcal{D}, S, x_+ ב ב-שתלויה גם ב- ϵ, δ ב ניקוד תלויה ב- ϵ, δ הראו את צעדי הפיתוח בצורה מנומקת. תשובה ופיתוח (לרשותכם דפי טיוטה בסוף הגיליון): $m_H(\epsilon) <= (VC(H)\log(1/epsilon) + \log(1/delta)) / epsilon$

שאלה 4: צירופים של מסווגים לינאריים [29 נק']

לזכאים להערכה חלופית <u>בלבד</u> (כפי שהוגדרו באתר הקורס): סמנו את התיבה הזו אם ברצונכם **לדלג** על שאלה זו. באתר הקורס) המשקל של שאלות 1,23 יתפזר באופן יחסי על פני 100 נקודות. ניתן לדלג רק על שאלה אחת מתוך שאלות 3,4.

עבור $d \in \mathbb{N}$ עבור $\mathcal{Y} = \{-1, +1\}$ ומרחב התיוגים הוא $\mathcal{X} = \mathbb{R}^d$ עבור אירותי.

יעבור אשונה: נגדיר מחלקת היפותזות ראשונה: $K \geq 1$

$$\mathcal{H}_{1}^{(K)} = \left\{ h_{\theta} \middle| \theta = \left(\underbrace{\mathbf{w}_{1}, \dots, \mathbf{w}_{K}}_{\in \mathbb{R}^{d}}, \underbrace{b_{1}, \dots, b_{K}}_{\in \mathbb{R}^{K}}, \underbrace{\boldsymbol{\alpha}}_{\in \mathbb{R}^{K}} \right) \right\}, \quad \text{where} \quad h_{\theta}(\mathbf{x}) = \text{sign} \left(\sum_{k=1}^{K} \alpha_{k} \left(\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x} + b_{k} \right) \right)$$

א. $\mathcal{H}_1^{(K)}$ הדו-ממדיים הבאים ניתן לסווג באופן מושלם עם היפותזות מהמחלקה מדיים הבאים (עבור $\mathcal{H}_1^{(K)}$ (עבור $\mathcal{H}_1^{(K)}$) אילו מה-ממפיק)? הקיפו בבירור את האותיות המתאימות והסבירו בקצרה.

17418	C'10N 5	הסבר קצר:

 $\mathbf{w}_1, lpha_1$ של האינדקסים את ונשמיט את אלא של "פשוטה" של $\mathcal{H}_1^{(K=1)}$ ללא "פשוטה" ארסה "פשוטה" ארסה הבא, נגדיר גרסה "פשוטה" של האינדקסים של האינדקסים

ב. $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ פשוטה" מתואר לעיל: גדיר בעיית אופטימיזציה ללמידת פונקציה "פשוטה" (גדיר בעיית אופטימיזציה ל $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$. $\min_{\mathbf{w} \in \mathbb{R}^d} \sum_{\alpha \in \mathbb{R}}^m \max \left(0, \ 1 - y_i(\alpha \mathbf{w}^\mathsf{T} \mathbf{x}_i)\right)$

 $\ell(\mathbf{w}, \alpha) = \max(0, \ 1 - y(\alpha \mathbf{w}^{\mathsf{T}} \mathbf{x}))$ ע"י בחינת ע"י בחינת של הבעיה (לפי \mathbf{w}, α יחדיו) ע"י בחינת

(מתקיים: $\mathbf{w}_1,\mathbf{w}_2\in\mathbb{R}^d$, $\alpha_1,\alpha_2\in\mathbb{R}$ מתקיים: מתקיים לכל אמ"מ לכל קמורה אמ"מ לכל

$$t \cdot \ell(\mathbf{w}_1, \alpha_1) + (1 - t) \cdot \ell(\mathbf{w}_2, \alpha_2) \ge \ell(t \underbrace{\mathbf{w}_1 + (1 - t)\mathbf{w}_2}_{\swarrow \omega}, \ t\alpha_1 + (1 - t)\alpha_2)$$

. הונקציה $\ell(\mathbf{w}, \alpha)$ **אינה** קמורה. ההוכחה צריכה להיות פורמלית.

. בהוכחה ניתן לבחור \mathbf{x}, y מסוימים לבחירתכם או להוכיח עבור \mathbf{x}, y כלליים.

הוכחה (לרשותכם דפי טיוטה בסוף הגיליון):
t. max(0, 1-y(d,w, x)) + (1-t) max(0,1-y(d,w, x)) < max {0,1-y.{d, w, x}. {tw, + (1-t)w, x}.}
$t=\frac{1}{2}$ $\lambda_i=1$ $\lambda_i=-1$ $\lambda_i=-1$ $\lambda_i=-1$

(מקום נוסף בעמוד הבא; **ניתן לפתור את הסעיפים בהמשך גם בלי לפתור את הסעיף הנוכחי!**)

המשך ההוכחה:

עבור $K \geq 1$ שרירותי, נגדיר מחלקת היפותזות שנייה:

$$\mathcal{H}_{2}^{(K)} = \left\{ h_{\theta} \middle| \theta = \left(\underbrace{\mathbf{w}_{1}, \dots, \mathbf{w}_{K}}_{\in \mathbb{R}^{d}}, \underbrace{b_{1}, \dots, b_{K}}_{\in \mathbb{R}}, \underbrace{\alpha}_{\in \mathbb{R}^{K}} \right) \right\}, \quad \text{where} \quad h_{\theta}(\mathbf{x}) = \text{sign}\left(\sum_{k=1}^{K} \alpha_{k} \text{sign}\left(\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x} + b_{k} \right) \right)$$

ג. (עבור $\mathcal{H}_2^{(K)}$ הדו-ממדיים הבאים ניתן לסווג באופן מושלם עם היפותזות מהמחלקה לעבור (עבור $\mathcal{H}_2^{(K)}$ (עבור $\mathcal{H}_2^{(K)}$) מספיק)? הקיפו בבירור את האותיות המתאימות והסבירו בקצרה.

ensemble	הסבר קצר:

: $\mathcal{H}_2^{(K)}$ -ה מונקציה מונקציה ללמידת אופטימיזציה לגדיר גדיר (גדיר גדיר אופ $S=\{(\mathbf{x}_i,y_i)\}_{i=1}^m$ ד. (13) בהינתן מדגם

$$\min_{\substack{\mathbf{w}_1, \dots, \mathbf{w}_K \in \mathbb{R}^d, \\ \alpha_1, \dots, \alpha_K \in \mathbb{R}}} \sum_{i=1}^m \max \left(0, \ 1 - y_i \left(\sum_{k=1}^K \alpha_k \mathrm{sign} \left(\mathbf{w}_k^\mathsf{T} \mathbf{x}_i + b_k \right) \right) \right)$$

במטרה ללמוד עם gradient descent, נגזור את הרכיב של פונקציית המטרה שתלוי בדוגמה ה-*i* לפי פרמטרים שונים. **הקלה:** בכל מקום בו יש לגזור פונק' שאינה גזירה בנקודה יחידה, תוכלו להתעלם מנק' זו ולהניח שלעולם לא נגיע אליה.

. עבור $j \in [K]$ נתון, כתבו את הנגזרת לפי $lpha_j$. נדרשת תשובה <u>סופית</u> בלבד (לרשותכם דפי טיוטה בסוף הגיליון).

$$\frac{\partial}{\partial \alpha_{j}} \max \left(0, 1 - y_{i} \left(\sum_{k=1}^{K} \alpha_{k} \operatorname{sign}(\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{i} + b_{k})\right)\right) =$$

$$\frac{2}{\sum_{k=1}^{K} \alpha_{k} \operatorname{sign}(\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{i} + b_{k})} =$$

$$\frac{2}{\sum_{k=1}^{K} \alpha_{k} \operatorname{sign}(\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{i} + b_{k})} =$$

. עבור $j \in [K]$ נתון, כתבו את הגרדיינט לפי \mathbf{w}_i . נדרשת תשובה <u>סופית</u> בלבד (לרשותכם דפי טיוטה בסוף הגיליון).

$$\nabla_{\mathbf{w}_{j}} \max \left(0, 1 - y_{i} \left(\sum_{k=1}^{K} \alpha_{k} \operatorname{sign}(\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{i} + b_{k}) \right) \right) = 0$$

(באופן דומה ניתן לחשב גם את הנגזרת לפי b_i , אך נדלג על זה כעת)

?gradient descent בהינתן התשובות לעיל (וללא קשר לקמירות), מה הבעייתיות במינימיזציה של הבעיה עם c.

9312/2 (11/15)	acill also	ω	2128	nst (Esol J	תשובה: 💍 א

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

ושך לתשובה אחרת):	ת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):		

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):
