

Tracción universal / Universal Drive

Instrucciones de puesta en funcionamiento y de ajuste

Índice

1.	Normativas de seguridad							
	1.1	Norma	ativas y reglamentos	4				
	1.2	Adver	tencias	5				
	1.3	Servic	io del interruptor de protección Fl	5				
2.	Info	rmació	on general	6				
	2.1	Identif	ficación	6				
	2.3	Respo	onsabilidad	6				
3.	Des		n del producto					
Э.	3.1	•	lucción					
	3.1		Destino de utilización					
			Medidas de precaución ante uso incorrecto					
		3.1.3	Normas y directivas	8				
	3.2		técnicos					
			Visión general del aparato TA-U2U400					
			Dimensiones TA-U2U400					
			Reducción de la intensidad nominal en dependencia de la frecuencia secuencial					
			Equipamiento estándar					
			Equipamiento opcional					
	3.3	Platina	as & Módulos de los tableros de circuito impreso	13				
			Platina de potencia TA-U2U6					
			Platina de potencia TA-U8U15					
			Platina de potencia TA-U22U150					
			Electrónica del comando TA-U2U150					
			Platina del encoder "Estándar"					
			Platina del encoder "RS422"					
			Platina de encoder "Resolver"					
			Tarjeta Digital- analógica					
			CanOpen					
			Platina de ethernet					
			Platina de señales					
	3.4	Esque	emas eléctricos de base	23				
			TA-U2U6					
			TA-U8.U15					
		3.4.3	TA-U22 - TA-U110	25				
4.0	Insta	alación		26				
	4.1		ciones de instalación					
			Aparatos conectadores					
			Colocación de cables Condiciones para la conexión a tierra					
			Orden espacial					
			Chopper de frenado					
5.0	Con	evione	s	29				
5.0	5.1		o de conexión Conexiones de potencia					
	5.1		·					
	•							
	5.3		o de conexión Conexiones del encoder					
			Encoder RS422					
			Resolver					
	5.4		o de conexión analógica - Extensión digital					
	5.5		las antes de la primera puesta en funcionamiento					
			Interruptor Dip					

		5.5.2 Ajuste de los parámetros del motor	35
	5.6	Prueba funcional y primer ajuste en la puesta en funcionamiento	35
6.0	Pue	sta en funcionamiento	36
	6.1	Normativas de seguridad	36
	6.2	Secuencias de encendido y apagado	36
7.0	Falla	as	37
	7.2	Descripción de fallas	38
		7.2.1 Control de los sensores	

Apéndice 1: Lista de parámetros

Apéndice 2: PG4000

Acerca de este manual de instrucciones

Si está en búsqueda de un tema específico puede utilizar el índice. Los siguientes símbolos le otorgarán una orientación rápida y le indicarán lo esencial.

Este símbolo significa una indicación de informaciones útiles que le facilitarán el manejo.

Indicaciones cuya desobediencia podría ocasionar un daño o destrucción del aparato.

Indicaciones cuya desobediencia implica un peligro para la salud del operador. El producto cumple con las normas oficiales de ingeniería de la seguridad, sin embargo pueden surgir peligros.

1. Normativas de seguridad

Por favor, antes de la puesta en funcionamiento lea completamente el manual de la puesta en funcionamiento y ajuste.

El aparato sólo deber ser usado o ajustado por usuarios, quienes por su calificación estén capacitados a manejar este aparato debidamente y profesionalmente. Las siguientes medidas de precaución y advertencias deben ser respetadas absolutamente durante el manejo del aparato. Para la puesta en funcionamiento de un aparato regulador se requiere utilizar el manual de instrucciones correspondiente.

Accionar el aparato solo en correcto estado. Después de que los despositivos de seguridad hayan sido accionados, se debe investigar la causa del defecto y repararlo antes de continuar el uso. Defectos del aparato solo deben ser reparados por TAE o por el personal especializado autorizado de TAE.

Los dispositivos de seguridad no deben ser puenteados o desmontados.

Para obtener más información acerca de los dispositivos de seguridad y los dispositivos de protección lea los Capítulos 7 y 7.1.

1.1 Normativas y reglamentos

Las indicaciones y recomendaciones de este manual de instrucciones sobre el uso de los medios de producción electrónicos consideran las siguientes normas:

EN 60204-1 (VDE 0113: 1992-1) Equipamiento electrónico de máquinas

EN 60529:1991 (VDE 0470 Part 1) Grados de protección a través de la carcasa

DIN EN 50178 (VDE 0160-1994-11) Equipamiento de dispositivos de corriente de alto voltaje con medios

deproducción electrónicos

DIN VDE 0100 Disposición para la preparación de instalaciones de corrientes fuertes

DIN VDE 0110 Dimensionamiento de las líneas de aire y de fuga

DIN 40050 Grados de protección IP

EN 61800-3 Norma de producto EMV para sistemas de tracción eléctricos

1.2 Advertencias

El manejo de aparatos y máquinas eléctricos y eléctronicos conlleva riesgos! Por lo tanto, el montaje y el mantenimiento solo debe ser realizado por personal capacitado.

Por favor, asegúrese de que el aparato y el motor estén correctamente conectados a tierra. De lo contrario existe un gran peligro de daños a causa de choques eléctricos. Además podrían ser dañados los encoders de los motores o bien la eléctronica. Las masas electrónicas pueden ser conectadas a tierra a través de puentes de 1MR o bien 100R.

Atención Riesgo de la vida!

Antes de cada intervención se debe desconectar el aparato de la red. Recién cuando los condensadores de circuito intermedio estén descargados (5 minutos después de que el aparato haya sido desconectado de la alimentación eléctrica), el aparato puede ser abierto y se puede trabajar en él.

1.3 Servicio del interruptor de protección FI

No se pueden utilizar interruptores diferenciales (FI). Los desvíos de carga que puedan aparecer llevan a disparos erróneos!!! Para ello también tenga en cuenta las instrucciones de instalación en el Capítulo 4.1.

2. Información general

Después de la producción todos los aparatos se examinan en su funcionamiento y pasan luego por una prueba de duración de 200 horas. Antes de la entrega los aparatos pasan nuevamente por una prueba funcional completa.

Con estas medidas queremos asegurarnos de que sólo distribuimos aparatos en correcto estado. Con un correcto dimensionamiento de la tracción y considerando las indicaciones en el manual de instrucciones no se deben esperar fallas. En caso de que surjan defectos, póngase por favor en contacto con TAE o con alguno de nuestros representantes.

2.1 Identificación

La placa de características se encuentra en la pared lateral derecha del aparato.

Verifique antes del montaje y de la puesta en funcionamiento del aparato que no tenga daños de transporte. Aségurese de que la mercadería entregada (los datos se encuentran en la placa de características) coincida con los datos del remito de entrega.

2.2 El grupo destinario

Estas instrucciones para el manejo están dirigidas a usuarios que debido a su calificación están capacitados para garantizar un manejo reglamentario y profesional de este aparato.

2.3 Responsabilidad

Defectos dentro del aparato no deben ser reparados por el usuario. Intervenciones no autorizadas redundan en la cesación de toda clase de garantía por parte de TAE.

Intervenciones del usuario, por ejemplo reparaciones, ocasionan una exclusión de responsabilidad de parte de TAE.

En caso de duda sobre la causa de la falla y su reparación se debe comunicar con TAE para evitar daños adicionales del aparato o bien del motor.

3. Descripción del producto

3.1 Introducción

3.1.1 Destino de utilización

Con este regulador se pueden accionar - teniendo en cuenta la potencia - motores no sincronizados y motores sincronizados de imán permanente, los cuales hayan sido previstos para este fin por TAE.

3.1.2 Medidas de precaución ante uso incorrecto

Atención! No conecte tensión de red en los bornes de salida U, V, W.

Todos los aparatos han sido examinados con respecto a resistencia del voltaje y resistencia de aislamiento. No se deben realizar mediciones de la resistencia de aislamiento, por ejemplo en una inspección.

3.1.3 Normas y directivas

El producto mencionado concuerda con las normativas de las siguientes Directivas Europeas 2004/ 108 CE

Directiva EMV

Directiva del Consejo relativa a la nivelación de legislaciones de los Estados miembros sobre la compatibilidad electromagnética y a la derogación de la directiva 89/336/CEE)

Según esos criterios nuestros productos son clasificados de la siguiente manera:

- Forma del producto: Elementos provistos (componentes) que no se operan en forma independiente
- Clase de distribución: no adquirible en general, solo para profesionales calificados

Para cumplir con los términos de protección definidos en la directiva EMV ponemos a disposición lo siguiente:

- Documentos relacionados con el producto, los cuales describen la emisión de interferencias de nuestros productos. Por medio de estos documentos los usuarios ulteriores pueden tomar medidas EMV adecuadas para la instalación o bien para la proyección.
- Productos específicos EMV, como por ejemplo filtros, estranguladores, conductos blindados, carcasas metálicas etc. se pueden conseguir en TAE para permanecer por debajo de los valores límites de las normas armonizadas conforme a los parámetros específicos del TAE.

La responsabilidad así como la decisión de seguir nuestras advertencias y adoptar medidas correspondientes la toma el usuario ulterior. El usuario ulterior también asume la responsabilidad de que su máquina o equipo listso para el uso cumplan con las directivas EMV.

Sobre la base de la ley EMV y las normas correspondientes se han realizado en nuestra fábrica numerosas mediciones. Las inspecciones han abarcado toda nuestra gama de productos. A través de la utilización de filtros y el cableado correspondiente puede ser cumplida en todos los productos la norma del producto EMV para sistemas de tracción eléctricos.

Directiva del voltaje bajo 73/23/CEE así como 2006/95/CE

La Directiva del Consejo relativa a la nivelación de legislaciones de los Estados miembros con respecto a los medios de producción eléctricos para el uso dentro de ciertos límites de voltaje (modificada por 93/68/CEE). Sobre la base de un sistema QM TAE controla todos los pasos del desarrollo hasta la producción del aparato. Por lo tanto pueden ser cumplidas las normas y directivas que se refieren al cumplimiento de todos los aspectos de seguridad.

Signo CE

El signo CE señaliza que los aparatos cumplen las normativas y directivas europeas.

El cumplimiento de las directivas solo está garantizado cuando:

- el regulador está integrado con un filtro EMV (inspeccionado por el fabricante) integrado o externo.
- las indicaciones de la instalación (véase Capítulo 4.1) son seguidas exactamente.

La ejecución incorrecta de las obras de instalación puede ocasionar un exceso de los valores límites EMV y un mal funcionamiento de los otros aparatos! Las indicaciones y recomendaciones de este manual de instrucciones sobre el uso de los medios de producción electrónicos consideran las siguientes normas:

EN 60204-1 (VDE 0113: 1992-1) Equipamiento electrónico de máquinas EN 60529:1991 (VDE 0470 Part 1) Grados de protección a través de la carcasa

DIN EN-50178 (VDE 0160:1994-11) Equipamiento de dispositivos de corriente de alto voltaje con medios de

producción electrónicos

DIN VDE 0100 Disposición para la preparación de instalaciones de corrientes
DIN VDE 0110 Dimensionamiento de líneas de aire (aislamiento) y de fuga

DIN 40050 Grados de protección IP

EN 61800-3 Norma de producto EMV para sistemas de tracción eléctricos

3.2 Datos técnicos

3.2.1 Visión general del aparato TA-U2...U400

Los voltajes, corrientes y potencias indicadas en las tablas son datos de una frecuencia secuencial hasta 8 kHz. Los valores exactos los encontrará en la placa de características respectiva del aparato.

		Red		F	Potencia	Corriente (salida)		
	- ./	Corr	iente	Salida	Pérdida	I-Nominal	I- Sobrecarga	I-Pico de consumo
	Tensión	BL-Motor	Motor AC	Regulador	Tracción (para 8kHz)	(para 8kHz)		(Apagado)
TA-U2 19102-xxxx	400V 480V	4,3 A	5,1 A	2,2 kW 2,6 kW	100 W	6 A	9 A	16 A
TA-U4 19104-xxxx	400V 480V	7,0 A	7,8 A	3,7 kW 4,4 kW	160 W	9,5 A	14,3 A	25 A
TA-U6	400V	10,5 A	12 A	5,5 kW	230 W	13 A	15,2 A	27 A
19106-xxxx TA-U6 HT	480V 400V			6,6 kW 6,0 kW				
19102-xxxx TA-U8	480V 400V	11,5 A	13 A	7,2 kW 7,5 kW	250 W	15 A	22,5 A	40 A
19108-xxxx	480V	13,2 A	14,5 A	9,0 kW	280 W	18 A	27 A	47 A
TA-U10 19110-xxxx	400V 480V	19,1 A	21,0 A	11 kW 13 kW	390 W	24 A	30 A	53 A
TA-U15 19115-xxxx	400V 480V	26,0 A	29,0 A	15 kW 18 kW	540 W	34 A	42,5 A	75 A
TA-U22	400V	37,0 A	40,3 A	22 kW	640 W	50 A	60 A	107 A
19122-xxxx TA-U22 HT	480V 400V			26 kW 22 kW				
19123-xxxx TA-U30	480V	38,0 A	41,8 A	26 kW	660 W	50 A	87 A	154 A
19130-xxxx	400V 480V	51,0 A	56,2 A	30 kW 36 kW	850 W	65 A	98 A	174 A
TA-U30 HT 19131-xxxx	400V 480V	52,0 A	57,2 A	30 kW 36 kW	850 W	65 A	117 A	208 A
TA-U37	400V 480V	64,0 A	70,4 A	30 kW	1080 W	80 A	120 A	213 A
19137-xxxx TA-U37 HT	480V 400V	64,0 A	70,4 A	36 kW 37 kW	1100 W	80 A	144 A	255 A
19138-xxxx TA-U45	480V 400V	<u> </u>		44 kW 45 kW				
19145-xxxx TA-U45 HT	480V 400V	77,0 A	84,7 A	54 kW 45 kW	1300 W	93 A	144 A	255 A
19146-xxxx	480V	77,0 A	84,7 A	54 kW	1300 W	93 A	168 A	298 A
TA-U55 19155-xxxx	400V 480V	94,0 A	103,4 A	55 kW 66 kW	1600 W	115 A	168 A	298 A
TA-U55 HT 19156-xxxx	400V 480V	94,0 A	103,4 A	55 kW 66 kW	1650 W	115 A	207 A	366 A
TA-U65	400V	110,0 A	121,0 A	65 kW	1900 W	130 A	170 A	300 A
19165-xxxx TA-U65 HT	480V 400V			78 kW 65 kW				
19166-xxxx TA-U75	480V 400V	110,0 A	121,0 A	78 kW 75 kW	1950 W	130 A	234 A	412 A
19175-xxxx	480V	127,0 A	139,7 A	90 kW	2200 W	150 A	195 A	345 A
TA-U75 HT 19176-xxxx	400V 480V	127,0 A	139,7 A	75 kW 90 kW	2250 W	150 A	270 A	478 A
TA-U90 19190-xxxx	400V 480V	150,0 A	165,0 A	90 kW 108 kW	2700 W	190 A	270 A	478 A
TA-U110	400V	180,0 A	192,0 A	110 kW	3320 W	225 A	270 A	478 A
19211-xxxx TA-U110 HT	480V 400V			132 kW 110 kW				
19212-xxxx TA-U150	480V 400V	180,0 A	192,0 A	132 kW	3450 W	225 A	390 A	690 A
19215-xxxx	480V	250,0 A	270,0 A	150 kW 180 kW	4300 W	300 A	390 A	690 A
TA-U150 HT 19216-xxxx	400V 480V	250,0 A	270,0 A	150 kW 180 kW	4400 W	300 A	520 A	919 A
TA-U200	400V	330,0 A	352,0 A	200 kW	5800 W	440 A	540 A	955 A
19220-xxxx TA-U300	480V 400V	2x 250,0 A	2x 270,0 A	240 kW 300 kW	8800 W	2x 300 A	2x 520 A	2x 919 A
19230-xxxx TA-U400	480V 400V			360kW 400 kW				
19240-xxxx	480V	2x 330,0 A	2x 352,0 A	480 kW	11600 W	2x 440 A	2x 540 A	2x 955 A

3.2.2 Dimensiones TA-U2...U400 **TA-U 2/4/6**

TA-U 8...200

		Tamaño del aparato									
	U2/4/6	U8/10	U15	U22	U30	U37/45	U55/65	U75/90	U110	U150	U200
В	127	195	205	250	250	270	355	363	425	555	850
B1	63,5	162,5	172	217	217	237	322	329	380	505	805
Н	341	378	378	390	495	520	564	660	842	981	842
H1	325	358	358	370	475	500	544	640	815	954	815
H2	301	330	330	341	446	471	516	611	780	919	780
Т	268/289*	267	325	301	292	338	379	369	413	418	413
T1	240/261*	239	297	273	264	310	351	341	385	390	385
T2	313/334*	312	370	346	337	383	424	414	458	463	458
S	6	9	9	9	9	9	9	9	12	13	12

^{*} Con resistencia de frenado integrada en la carcasa

Tamaño del aparato	Ancho	Altura	Profundidad
TA-U300 (2x TA-U150, Modelo del armario)	1200	2000	600
TA-U400 (2x TA-U200, Modelo del armario)	2000	2000	600

Estructura del número de artículo completo:

¹⁾ con suministro externo para la eléctronica 2) solo disponible para TA-U2...U15 3) solo disponible para TA-U2/U4/U6

¹⁰

3.2.3 Datos de proyección y dimensiones

	Tensión de la conexión	Diferencia		
Voltajes exactos de la conexión de red	200-250V	1.100/		
(véase la placa de características)	360-480V	± 10%		
	3 fases 50/60Hz			
Grado de protección	IP 20			
Entorno 1)	Temperatura 0-40°C			
Diferencia de los números de revoluciones	Menor 1% para el valor teórico análogo (0-10V)			
Diferencia de los números de revoluciones	0% absoluto (+/- 1 Digitos) para el valor teórico digital			

¹⁾Los datos técnicos son aptos para una humedad atmosférica de 90% y una altitud de 1000 m sobre el nivel del mar. En altitudes de más 1000 m así como en temperaturas ambientes superiores la potencia debe ser reducida

	Dimensiones		externo	Flujo de volumen mín.	Peso
Tamaño del aparato	Ancho x altura x	de la re	d Lento	Para el ventilador del	
	profundidad	1 Ph 230V 3 Ph 400V		Armario de distribución	
TA-U2		10A	6A	39 m³/h	9,5
TA-U4	127 x 341 x 268/289 ²⁾ mm	16A	10A	39 m³/h	9,5
TA-U6		25A	16A	39 m³/h	9,5
TA-U8	195 x 378 x 267 mm		20A	130 m³/h	14,0
TA-U10	195 X 376 X 207 IIIIII		25A	130 m³/h	16,5
TA-U15	205 x 378 x 325 mm		35A	156 m³/h	17,5
TA-U22	250 x 390 x 301 mm		50A	156 m³/h	26,0
TA-U30	250 x 495 x 292 mm		63A	221 m³/h	35,5
TA-U37	070 × 500 × 000 ***		80A	221 m³/h	38,0
TA-U45	270 x 520 x 338 mm		100A	221 m³/h	42,0
TA-U55	055 × 564 × 070 ×		125A	408 m³/h	67,0
TA-U65	355 x 564 x 379 mm		125A	408 m³/h	76,0
TA-U75	000 + 000 + 000		160A	952 m³/h	81,0
TA-U90	363 x 660 x 369 mm		160A/200A	1020 m³/h	85,0
TA-U110	425 x 842 x 413 mm		200A	1020 m³/h	95,0
TA-U150	555 x 981 x 417 mm		315A	1241 m³/h	120,0
TA-U200	850 x 842 x 413 mm		400A		
TA-U300	1200 x 2000 x 600 mm			2482 m³/h	
TA-U400	2000 x 2000 x 600 mm				

²⁾ Con resistencia de frenado integrada en la carcasa, instalada debajo del regulador.

3.2.4 Reducción de la intensidad nominal en dependencia de la frecuencia secuencial

3.2.5 Equipamiento estándar

4 entradas digitales programables libremente
1 entrada analógicaga programable 0V hasta +10V, 0-20mA, 4-20mA.
1 salida programable de relé
1 salida programable de optoacoplador
Comando a través de PG4000 u ordenador, también en funcionamiento paralelo
Función Master- / Esclavo
Marcha sincronizada
Comando de posición

3.2.6 Equipamiento opcional

Filtros EMV
Sistema de bus con tarjeta opcional, por
ejemplo bus profesional, CANopen, DeviceNet
Ethernet
Extensión digital / analógica

- ☐ Funcionamiento electrónico
- Función potenciómetro del motor
- ☐ Indicador de 7 segmentos para avisos del estado
- Indicador díodo LED para el sensor de posición, el transmisor tacométrico, el indicador de 4 cuadrantes, límite de corriente y número de revoluciones alcanzado
- ☐ Indicador de fallas en PG4000 y en Indicador de 7 segmentos
- Parametrización a través de PG4000 o el ordenador
- ☐ Almacenamiento de datos con la SmartCard o el ordenador
- Unidad de manejo multifuncional PG 4000
- ☐ SmartCard para PG 4000
- Diversas interfases del encoder
- Suministro de tensión por separado para la electrónica (a partir de TA-U22)

3.3 Platinas & Módulos de los tableros de circuito impreso

3.3.1 Platina de potencia TA-U2..U6

X1	Conexión con la electrónica de		Tensión de red 200-250V	
	comando	BR2	Aviso Detención segura puenteada	
X6	+/-24V	BR3	Detención segura puenteada	
X7	+/-24V	LD101	Tensión del circuito intermedio "ROJO" en la	
X12	PT100		parte trasera	
X13	Interruptor térmico	LD102	Bloque de alimentación activo "VERDE" en la	
X14	Tensión del circuito intermedio		parte trasera	

3.3.2 Platina de potencia TA-U8..U15

X 1	Conexión con la electrónica de	X13	Detención segura
	comando	X14	Voltaje del circuito intermedio
X6	+/-24V	BR1	Tensión de red 200-250V
X7	+/-24V	BR2	Aviso Detención segura puenteada
X8	Relé de carga	BR3	Detención segura puenteada
X12	Interruptor térmico PT100	LD1	Voltaje del circuito intermedio "ROJO"
		LD2	Bloque de alimentación activo "VERDE"

3.3.3 Platina de potencia TA-U22..U150

X1	Conexión con la electrónica de comando
X6	+/-24V
X7	+/-24V
X8	Relé de carga
X9	Corriente U
X10	Corriente V
X11	Corriente W
X12	Interruptor térmico PT100
X13	Detención segura
X14	Suministro electrónico externo
X15	Tensión del circuito intermedio
X16	IGBT WP
X17	IGBT WN
X18	IGBT VP
X19	IGBT VN
X20	IGBTUP
X21	IGBTUN
LD1	Voltaje del circuito intermedio "ROJO"
LD2	IGBT WP
LD3	IGBT WN
LD4	IGBT VP
LD5	IGBTVN
LD6	IGBTUP
LD7	IGBTUN
LD8	Bloque de alimentación activo "VERDE"

Aviso Detención segura puenteada

Detención segura puenteada

Tensión de red 200V/400V Tensión de red 200-250V

BR1

BR2

BR3

BR4

3.3.4 Módulos de los tableros de circuito impreso TA-U2...U150

3.3.5 Electrónica del comando TA-U2...U150

Χī	Conexion con la platina de potencia
X2	Conexión con la platina digital-

analógica así como con los sistemas Bus y la platina Ethernet

X4 Conexión con la platina de señales

X5 Conexión con la platina del Encoder

S1 Configuración de las conexiones digital y analógica

S2 Configuración de los procesadores

BR1 Reset μC

BR2 Reloj de tiempo real activo

BR3 Reset DSP

BR4 Masa electrónica sobre 1000hm conectarla a tierra (si no 1Mohm)

LD1 amarilla - Entrada digital Borne 2

LD2 amarilla - Entrada digital Borne 3

LD3 amarilla - Entrada digital Borne 4

LD4 amarilla - Entrada digital Borne 5

LD5 amarilla - Salida digital Borne 10/11

LD6 amarilla - Salida digital Borne 12/13

LD7 verde - +3,3V

LD8 verde - +1,9V

LD9 verde - +24V

LD10 verde - +3,3VV

LD11 +2,5V

LD12 verde - +6,5V

LD13 verde - -24V

LD14 verde - +5V

3.3.6 Platina del encoder "Estándar"

- X5 Conexión con la platina de potencia
- S1 Conexión GND de las entradas de bornes 34,36 y 39 (Z,/Z,AB)
- S2 Tensión y frecuencia de las vías AB
- BR1 Salida de frecuencia Borne 41 Valor efectivo o valor de consigna (Vía B)
- BR2 Salida de frecuencia Borne 40 Valor efectivo o valor de consigna (Vía A)

- BR3 Sensor de temperatura del motor Borne 21 KTY
- BR4 Sensor de temperatura del motor Borne 22 KTY
- BR5 Sensor de temperatura del motor Borne 21 KTY
- BR6 Sensor de temperatura del motor Borne 22 KTY
- LD1 verde +5V

3.3.7 Platina del encoder "RS422"

- X5 Conexión con la platina de potencia
- S1 Conexión GND de las entradas de bornes 43,45 y 48 (Z,/Z,AB)
- BR1 Sensor de temperatura del motor Borne 21 KTY
- BR2 Sensor de temperatura del motor Borne 22 KTY
- BR3 Salida de frecuencia Borne 24 Valor efectivo o valor de consigna (Vía A
- BR4 Salida de frecuencia Borne 25 Valor efectivo o valor de consigna (Vía B)

- BR5 Señal de punto neutro Z2 del Encoder o del iniciador de la máquina
- BR6 Señal de punto neutro Z1 del Encoder o del iniciador de la máquina
- BR7 Sensor de temperatura del motor Borne 21
- BR8 Sensor de temperatura del motor Borne 22 KTY
- LD1 verde +5V

3.3.8 Platina de encoder "Resolver"

- X5 Conexión con la platina de potencia
- S1 Conexión GND de las entradas de bornes 34,36 y 39 (Z,/Z,AB)
- BR1 Sensor de temperatura del motor Borne 22 KTY
- BR2 Sensor de temperatura del motor Borne 21 KTY
- BR3 Señal de Punto neutro Z1 del encoder o del iniciador de la máquina
- BR4 Frecuencia del sensor (NC)

- BR5 Frecuencia del sensor (NC)
- BR6 Salida de frecuencia Borne 24 Valor efectivo o valor de consigna (Vía A)
- BR7 Salida de frecuencia Borne 25 Valor efectivo o valor de consigna (Vía B)
- BR8 Sensor de temperatura del motor Borne 21
- BR9 Sensor de temperatura del motor Borne 22 KTY
- LD1 verde +5V

3.3.9 Tarjeta Digital-analógica

Interruptor DIP S1 (Ajuste de fábrica)

Interruptor DIP S3 (Ajuste de fábrica)

Véase Cap. 5.4

Interruptor DIP S2 (Ajuste de fábrica)

Véase Cap. 5.4

- X2 Conexión a los sistemas Bus
- X200 Conexión para la opción campo Bus
- S1 Salidas analógicas V o mA
- S2 Entradas analógicas V o mA
- S3 Conexiones GND de las entradas digital y analógica
- BR1 Modo de lectura D/A-Transformador (izquierda)
- LD1 amarilla Salida digital Borne 60
- LD2 amarilla Salida digital Borne 61

- LD3 amarilla Salida digital Borne 63
- LD4 amarilla Salida digital Borne 64
- LD5 amarilla Salida digital Borne 65
- LD6 amarilla Entrada digital Borne 52
- LD7 amarilla Entrada digital Borne 53
- LD8 amarilla Entrada digital Borne 54
- LD9 amarilla Entrada digital Borne 55
- LD10 amarilla Entrada digital Borne 56
- LD11 amarilla Entrada digital Borne 57

3.3.10 Sistemas Bus - Profibus

- X2 Conexión a la electrónica de comando
- X7 Conexión del enchufe Profibus

3.3.11 CanOpen

- X2 Conexión a la electrónica de comando
- X7 Conexión del enchufe CANopen

- S1 Resistencia de la terminal
 - On=arriba
 - OFF=abajo

3.3.12 Platina de ethernet

- X2Conexión a la electrónica de comandoS1X7EthernetBR1
- X8 Ethernet

3.3.13 Platina de señales

Señal de 7 Segmentos

- 0 Listo para el servicio
- 1 Funcionamiento (Enable)
- C1 Temperatura del aparato Preaviso
- C2 Temperatura del motor Preaviso
- C3 Valor máx. sobrepasado
- C4 Detención segura
- C5 Regulador bloqueado en valor de consigna >0
- C6 Dispositivo de potencia desactivado
- C7 N° de revoluciones efectivo > Normalización
- C8 Falla en la parametrización

Señales de fallas: (F y el N° se encienden alternadamente)

- F0 Sobretemperatura del motor
- F1 Sobrecorriente
- F2 Sobretemperatura del aparato
- F3 Baja tensión
- F4 Sobretensión
- F5 Corriente de rizado
- F6 Sensor de posición U, V y W
- F7 Sensor de N° de revoluciones A y B
- F8 Electrónica
- F9 Cortocircuito IGBT
- E1 Falla externa sobre los bornes
- E2 Ninguna tensión en circuito intermedio
- E3 Falla en retroseñal de frenado

Señales en el tablero de pantalla

- LD 4 clara Sensor de posición U
- LD 5 clara Sensor de posición V
- LD 6 clara Sensor de posición W
- LD 1 clara Sensor de N° de revoluciones Vía B
- LD 2 clara Sensor de N° de revoluciones Vía A
- LD 3 clara Marcha 4Q
- LD 7 roja Límite de corriente
- LD 8 verde N° de revoluciones alcanzado
- LD 9 Bus
- AZ1 Señal de 7 segmentos

Conexiones y puentes

X4	Conexión a	ı la	electrónica	de comando
Λ T	COLICAIOLL	ı ıa	CICCLIOINCA	de comando

X7 Conexión a la platina del campo Bus

X13 Campo Bus

X20 RS422/485

X21 PG4000

BR1 Resistencia de la terminal PG 4000

BR2 RS485 (idóneo para Bus)

BR3 Resistencia de la terminal RS 422/485

BR4 RS485 (idóneo para Bus)

3.4 Esquemas eléctricos de base

3.4.1 TA-U2..U6

3.4.2 TA-U8..U15

4.0 Instalación

4.1 Indicaciones de instalación

Deben observarse las indicaciones de seguridad mencionadas en el Cap. 1. Además valen las siguientes indicaciones para la instalación.

La instalación debe ser realizada sólo por personal especializado capacitado para ello.

Una inversión en los bornes U, V, W para la conexión de un motor sincronizado produce una falla en la función. Además se debe prestar atención a que el cable del encoder se encuentre blindado. TAE ofrece para esto cables de comando preconfeccionados. Sin la correcta conexión de este cable, la tracción no es capaz de funcionar.

Para la instalación eléctrica se deben observar las normativas de instalación generales:

VDE 0100 Disposición para la preparación de instalaciones de corrientes fuertes con tensiones nominales de hasta 1000V.

VDE 0113 Disposiciones para el equipamiento eléctrico de máquinas de mecanización y de procesamiento.

VDE 0160 Equipamiento de instalaciones de corrientes fuertes con instalaciones electrónicas.

Si existen otras áreas especiales de utilización, deberán observarse además otras normativas.

Como medida de seguridad se pueden utilizar los siguientes interruptores según EVU (Empresas de suministro de energía):

Interruptor protector contra falla de tensión (FU), Conexión a tierra protegida o puesta a neutro (si está autorizado)

Interruptor diferencial (FI) - los interruptores de protección no pueden ser operados.

Con el uso de filtros EMV, los desvíos de carga que puedan aparecer llevan a las activaciones indeseadas del interruptor diferencial FI.

Operar el aparato sólo en estado correcto. Después que los dispositivos de seguridad fueron operados se debe buscar la causa de la falla antes de una nueva puesta en funcionamiento y se debe reparar. Los defectos en el aparato deben ser reparados por TAE o por personal especializado autorizado por TAE.

Los dispositivos de seguridad no deben ser puenteados ni desmontados.

Más informaciones sobre los dispositivos de seguridad y de protección existentes se encuentran en los Capítulos 7.0 y 7.1.

4.1.1 Aparatos conectadores

Los aparatos deben ser conectados a la red según las normativas VDE, de tal manera que puedan ser separados de la red con los correspondientes medios de activación (por ej. interruptor principal, de protección, interruptor protector de potencia).

4.1.2 Colocación de cables

Para la instalación de los cables de alimentación se debe observar una gran superficie de contacto del blindaje de cables. Tipo de conexiones de un solo cable en conexiones de bornes sencillas deben evitarse. Para esto se ofrecen tipo de conexiones de cables finos con empalmes a presión. Las canaletas portacables con las correspondientes uniones roscadas son también adecuadas. Para la conducción de cables dentro del armario de distribución se debe tender tramos lo más cortos posibles.

La alimentación de red, cableado del motor y cableado del comando se deben realizar con cables separados. Para evitar interferencias se recomienda tender el cableado de señales electrónicas en forma separada de las conexiones de potencia y/o del cableado de comando de dispositivos protectores. La distancia debe ser de 20cm como mínimo. Los cables digitales y analógicos de valor de consigna y valor efectivo deben tenderse blindados.

La causa principal de interferencias ligadas a radiación o a conducción es la conexión de cables entre el regulador y el motor. La conexión de cables debe realizarse blindada, para lo cual también se debe prestar atención que los tramos de cableado sean lo más cortos posible (véase ilustración).

4.1.3 Condiciones para la conexión a tierra

Todas las carcasas metálicas conductoras se deben conectar a tierra individualmente con el correspondiente cable. Se debe prestar atención a un equilibrio potencial correcto. Para el área de las normativas de seguridad referidas al caso de falla con 50Hz están prescritas las correspondientes secciones mínimas. Estas deben respetarse absolutamente.

En caso de falla, es decir ante la caída de por lo menos una fase o gran desvío de carga en el sistema de corriente trifásica, el filtro EMV puede generar corrientes de descarga hasta 100mA. Filtros y reguladores con filtros montados deben por eso necesariamente conectarse a tierra antes del encendido.

Para la descarga de corrientes de alta frecuencia deben cumplirse todavía otros criterios juntos a las condiciones de conexión a tierra arriba mencionadas:

Todos los cables de conexión a tierra deben ser lo más cortos posible. Malas conexiones y lazos de cables funcionan como antenas, por las que las emisiones de radiación llegan a la red y pueden ocasionar interferencias.

Los blindajes deben colocarse con gran superficie de contacto y en forma radial. Una prolongación del blindaje con un cable debe evitarse. El blindaje debe alzarse por dentro de la caja de bornes así como en la carcasa de las instalaciones conectadas. En el motor es posible utilizar una unión roscada EMV para el tendido del blindaje.

En el regulador, el blindaje se rodeará de una abrazadera metálica con una gran superficie de contacto sobre la placa de montaje o la canaleta de toma a tierra.

Los reguladores deben conectarse a tierra con una gran superficie de contacto en el armario de distribuciones. Para esto existe la posibilidad de montar el aparato sobre una pared de montaje galvanizada o cromada. Esta medida no libera de una correcta protección de toma a tierra del aparato para un impecable equilibrio potencial.

4.1.4 Grado de protección de la carcasa

IP20 para el montaje del armario de distribución.

4.1.5 Indicación para el montaje

Se recomienda utilizar una placa de montaje galvanizada.

Todos los reguladores deben fijarse a una superficie de montaje vertical. El lugar de montaje debe estar libre de polvo, humedad y gases agresivos conductores. Si el aparato o el armario de distribución estuvieran sometidos a balanceos o vibraciones se recomienda para la protección de las piezas electrónicas, apoyar la placa de montaje o

el armario de distribución sobre amortiguadores o topes caucho-metal. El calor debe ser evacuado mediante la ventilación correspondiente. Junto a la potencia de disipación dada, el flujo de volumen del ventilador interno del regulador es determinante para el dimensionamiento de la ventilación del armario de distribución (véase cap. 3.2.3). La suma de los flujos de volumen del regulador montado en el armario de distribución debe ser más pequeño que el flujo de volumen de la ventilación del armario de distribución. Los datos de potencia que se informan en los Datos técnicos valen para unatemperatura interior del armario de distribución de 0 - 40°C. (véase croquis)

El regulador está ubicado óptimamente a la izquierda. A la derecha está colocado muy alto y por eso se acumula el calor en el área superior del armario de distribución.

4.1.6 Orden espacial

Si se desea montar varios aparatos uno al lado del ootro, se debe mantener una distancia mínima de 10mm. Para el montaje de varios aparatos uno sobre el otro se debe mantener una distancia mínima de 300mm. Si se montaran piezas sin una fuente de calor propia - por ej. canaletas para cables -, también aquí se debe mantener una distancia mínima. Ella debe ser de 150mm en la parte superior de los aparatos, en la parte inferior de los aparatos de 150mm y junto a los aparatos de 10mm.

Tubería de conexión y tubería del motor

Una separación espacial de la red de la tubería de conexión y de la tubería del motor es de gran importancia. La tubería de conexión y la tubería del motor deben blindarse y no deben tenderse una al lado de la otra ni en la misma canaleta de cables.

4.1.7 Chopper de frenado

Las conexiones entre el chopper de frenado / resistencia de frenado y regulador son una fuente de interferencia de radiación y conducción.

Los cables deben blindarse y se debe prestar atención a un trayecto lo más corto posible. Observarse una correcta conexión a tierra (véase Cap. 4.1.3).

5.0 Conexiones

5.1 Cuadro de conexión Conexiones de potencia

5.2 Cuadro de conexión Electrónica del comando

^{*} Para la función de freno Activada (Parámetro 860.00) la salida del relé Borne 12/13 está fundamentalmente configurada para el comando del freno

5.3 Cuadro de conexión Conexiones del encoder

5.3.1 Encoder estándar

*) Evaluación temperatura 1

Klixon = Preaviso

PT100 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

KTY84130 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

*) Evaluación temperatura 2

Klixon = Apagado

PT100 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

KTY84130 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

5.3.2 Encoder RS422

Klixon = Preaviso

PT100 = Aviso de temperatura, Preaviso y apagado se ajustan con el

Software

KTY84130 = Aviso de temperatura, Preaviso y apagado se ajustan con el

Software

*) Evaluación temperatura 2

Klixon = Apagado

PT100 = Aviso de temperatura, Preaviso y apagado se ajustan con el

Software

KTY84130 = Aviso de temperatura, Preaviso

y apagado se ajustan con el Software

5.3.3 Resolver

*) Evaluación temperatura 1

Klixon = Preaviso

PT100 = Aviso de temperatura, Preaviso y apagado se ajustan con el

Software

KTY84130 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

*) Evaluación temperatura 2

Klixon = Apagado

PT100 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

KTY84130 = Aviso de temperatura, Preaviso

y apagado se ajustan con el

Software

5.4 Cuadro de conexión analógica - Extensión digital

5.5 Medidas antes de la primera puesta en funcionamiento

5.5.1 Interruptor Dip

Antes de la puesta en funcionamiento del regulador es necesario controlar la configuración de los interruptores Dip. Los interruptores Dip están provistos de fábrica con un ajuste estándar. Contrôle sin embargo si la configuración se corresponde con sus necesidades. En los Cap. 5.2 - 5.4 recibe usted indicaciones completas sobre el particular.

5.5.2 Ajuste de los parámetros del motor

Los parámetros del motor (Cap. 3.3) están provistos de fábrica del mismo modo con datos estándar. Los ajustes se refieren a datos nominales del motor previsto y están documentados en el protocolo de control que se entrega adjunto.

5.6 Prueba funcional y primer ajuste en la puesta en funcionamiento

Si el regulador se pone en funcionamiento por primera vez se debe seguir la siguiente lista de chequeo. Todos los datos brindados en este Capítulo se refieren a electrónica de comando. Los Cap. 5.2 - 5.4 aclaran las conexiones de comando así como señales y posibilidades de ajuste.

- 1) Instale y realice el cableado del aparato conforme los Cap. 4 y 5
- 2) Controle,...
 - Si su tensión de red coincide con la que figura en la placa de características que se encuentra en el aparato.
 - Si el aparato y el motor se encuentran debidamente conectados a tierra.
 - Que todas las conexiones y pernos estén ajustados correctamente.
 - Que los ajustes de los interruptores Dip sobre la electrónica de comando se correspondan con sus necesidades o en caso necesario modifique la configuración.
 - Todas las conexiones según el cuadro de conexiones
 - con un ohmímetro las fases de salida del motor U,V,W en cuanto a fugas a tierra. Resultado de medición contra tierra > 500KOHM-1MOHM
- 3) Encender la tensión de red
 - O Después de máx. 5 segundos se encenderá la señal de 7 Segmentos en el tablero de la pantalla con 0 y por lo menos con 1 LED hasta 4 LED s.
 - O Mediante el aparato programador PG4000 ajustar los parámetros de manera tal que coincidan con sus necesidades.
- 4) Ahora puede ponerse en marcha la tracción!

Los parámetros correspondientes tómelos por favor de la lista de parámetros que se encuentra en el anexo.

6.0 Puesta en funcionamiento

6.1 Normativas de seguridad

El manejo así como el ajuste del aparato deben ser realizados por usuarios que gracias a su calificación son idóneos para garantizar un tratamiento correcto y profesional con este aparato. Las medidas de seguridad enumeradas en los Capítulos 1 y 2 así como los modos de utilización se deben observar obligatoriamente al manejar el aparato.

El trato con máquinas y aparatos eléctricos y electrónicos conlleva riesgos en sí! Por ello el montaje y el mantenimiento deben ser realizados sólo por personal capacitado.

Por faver preste atención debidamente a que tanto el aparato y el motor tengan la debida conexión a tierra. De lo contrario existe gran peligro de lesiones por descarga eléctrica. Además pueden dañarse el encoder del motor y la electrónica. La masa electrónica puede ser conectada a tierra mediante un puente de 1MR o 100R .

Atención peligro de muerte!

Antes de cada intervención se debe desenchufar el aparato. Recién cuando los condensadores BUSS están descargados. 5 minutos después que el aparato está desconectado de la corriente, puede ser éste abierto y se puede trabajar en él.

6.2 Secuencias de encendido y apagado

Básicamente no existe ninguna secuencia de encendido y apagado. Sin embargo recomendamos observar lo siguiente para cuidar los protectores, fusibles, etc.:

- Encender la red. Después de la señal Listo para el servicio puede puesta en marcha la tracción.
- Antes de la desconexión de la red debe detenerse la tracción.
- Un inmediato nuevo encendido es posible mientras aparezca todavía Listo para el servicio.
 Si el aviso desapareció, debe realizarse entonces un nuevo encendido, recién cuando pasaron 10 segundos o cuando se ha interrumpido el suministro de corriente de la electrónica, Señal 7-Segmentos desaparece).
- Ante una breve falla de fase no aparece ninguna señal ! Recién cuando la tensión del circuito intermedio cae por debajo de 420V, aparece la señal Baja tensión.

7.0 Fallas

Dispositivo protector separador:

interno: Prefusible F1 y F2 Bloque de alimentación de encendido (a partir de TA-U8).

externo: Fusible para red (véase Cap. 3.2.3 Datos de proyección y dimensiones)

Dispositivos de protección no separadores:

Para garantizar un funcionamiento seguro del regulador están evaluados y señalados así como archivados mediante el comando electrónico los siguientes fallos y estados.

La tracción será bloqueada ante las siguientes fallas.

Cap. 7.1 aquí se encuentra información detallada.

F0 Sobre temperatura del motor

F1 Sobrecorriente

F2 Sobretemperatura del aparato

F3 Baja tensión

F4 Sobretensión

F5 Corriente de rizado

F6 Sensor de posición U, V y W

F7 Sensor de N° de revoluciones A y B

F8 Electrónica

F9 Cortocircuito IGBT

E1 Falla externa sobre los bornes

E2 Ninguna tensión en circuito intermedio

E3 Falla en retroseñal de frenado

Las fallas pueden ser anuladas externamente sobre la terminal de bornes, sobre las interfases seriales RS 485 y RS 422 o en PG 4000. La anulación de fallas es sólo posible con el bloqueo del regulador, con el motor parado y todas las fallas pendientes han desaparecido.

Avisos de estado:

- 0 Listo para el servicio
- 1 Funcionamiento (Enable)
- C1 Temperatura del aparato Preaviso
- C2 Temperatura del motor Preaviso
- C3 Valor máx. sobrepasado
- C4 Detención segura
- C5 Regulador bloqueado en valor de consigna >0
- C6 Dispositivo de potencia desactivado
- C7 N° de revoluciones efectivo > Normalización
- C8 Falla en la parametrización

TA-U2...U150

7.2 Descripción de fallas

F0 Sobretemperatura del motor: a) Sobrecarga del motor. b) Cable del sensor defectuoso. c) Control de temperatura defectuoso Apagado por sobrecorriente: a) Cortocircuito en la unidad de salida. b) El motor tiene un corto de espira o conexión a tierra. F2 Sobretemperatura Pieza de potencia: La temperatura del disipador del aparato ha sobrepasado la temperatura máx. (>80°C): a) La temperatura ambiente es muy alta (sobre 40°C). b) El ventilador del aparato está defectuoso. c) La corriente permanente del aparato (INenn) está sobrepasada. d) El aparato está montado erróneamente (por favor ver Capítulo 4.1.6 Orden espacial). F3 Baja tensión: La tensión del circuito intermedio es muy baja: a) Tensión de red muy baja. b) Falta una fase. c) Protección de carga K1 no está puesta o defectuosa. F4 Sobretensión: La tensión del circuito intermedio es muy alta (>780V): a) Corriente del aparato en marcha 4Q es muy alta para el chopper de frenado o resistencia de frenado conectado. b) Marcha 4. Quadrant sin chopper **F5** Corriente de rizado: El rizado residual (rizado) en el circuito intermedio es muy grande: a) Falta una fase. b) Circuito intermedio Elko defectuoso. F5 Sensor de posición U, V y W: La retroseñal del motor sobre la posición del rotor falla (véase Capítulo 3.3.12): a) Cable o enchufe defectuosos. b) Sensor de posición defectuoso: Platina sensora o rotor transmisor. (Véase Instrucciones de manejo, instalación y mantenimiento del motor). F7 Sensor de N° de revoluciones: La retroseñal del sensor de N° de revoluciones falla: a) Vía A o B no está conectada. b) Vía A con B invertidas. F8 Electrónica F9 Cortocircuito IGBT / Conexión a tierra del motor: a) Conexión a tierra en la salida U, V, W. b) Cable de potencia del motor defectuoso. c) Semiconductor de potencia (IGBT) defectuoso. E1 Falla externa: Sobre una entrada digital puede ser leída por el sensor una falla externa. La entrada puede registrar por ej. un dispara-

dor de un ventilador externo en el motor.

7.2 Búsqueda de fallas

7.2.1 Control de los sensores

Los 5 díodos luminosos U, V,W, A y B (claro) sirven para el control de los sensores en el motor.

U / V / W - Sensores de posición

A / B - Sensores de n° de revoluciones

Para controlar los sensores, se debe proceder de la siguiente forma:

- a) Separar de la corriente el regulador.
- b) Conectar al motor el cable del encoder

c) Desembornar el cable de potencia del motor de los bornes de potencia U,V,W en el regulador!

- d) Encender la tensión de red y la tensión de comando y cuando está listo para el servicio realizar el siguiente test.
- e) Girar manualmente y lentamente el árbol del motor en sentido contrario a las agujas del reloj (visto desde el lado receptor). Los díodos luminosos U,V,W,A y B se encienden ahora en una determinada sucesión. (véase diagrama)

Diagrama: Secuencia de las luces (representación idealizada)

Si la secuencia de luces se corresponde con el diagrama, los sensores y la conducción de comando del motor se encuentran en orden.

Motor 4-polos: BL-71... BL-160 con transmisor de impulsos 30 Impulsos/360° Escala 0-360°

Motor 6-polos: BL-N-71... BL-N-100 con transmisor de impulsos 30 Impulsos /360° Escala 0-360°

Motor 8-polos: BL-180...BL-315, und BL-N-112...BL-N-180 con transmisor de impulsos 60 Impulsos /360° Escala 0-

180°

Diagrama Secuencia de luces en motores de 4- y 8-polos

Diagrama Secuencia de luces en motores de 6-polos

1 giro de motor en el motor de 6-polos

Appendix 1 list of Parameters

Access explanation

R and RC = Read RW = Read / Write

RW = Read / Write RW (0) = Read, Write while staionary

	01: EEPROM, SMC and EZU					
ID	Name	Value-Range	Default-Value	Unit	Access	
1	Memory CMD	0000h 333Fh	2000h	[bits]	RW	

Bit	Name	Notes
0	Store Parameters	Save parameters on the U-Drive-EEPROM
1	Load Parameters	Load parameters from the U-Drive-EEPROM
2	Store Default Parameters	Save current parameters as "standardparameter" on EEPROM
3	Load Default Parameters	Load standard parameters from EEPROM
4	Store Factory Defaults	Save current parameters as "factory setting" on EEPROM
5	Load Factory Defaults	Load parameters "factory setting" from EEPROM
6		
7		
8	Store Parameters	Save current parameters onto Smart-Card
9	Load Parameters	Load parameters from Smart-Card
10		
11		
12	Set Clock	Transfer set time to real-time clock
13	Get Clock	Read real-time clock in cycles
14		
15		

01: EEPROM, SMC and EZU					
ID	Name	Value-Range	Default-Value	Unit	Access
2	Memory STAT	0000h 038Fh	h	[bits]	R

All data bits in parameter 2 are actual values and only 20-40ms is visible

Bit	Name	Notes
0	Store Ok	Parameters saved on U-Drive EEPROM
1	Load Ok	Parameters loaded from U-Drive EEPROM
2	Store Error	Error message while saving the parameters on the U-Drive EEPROM
3	Load Error	Error message while loading the parameters from the U-Drive EEPROM
4		
5		
6		
7	Set Clock Ok	Confirmation: Set time adopted
8	Get Clock Ok	Confirmation: Time read
9		
10		
11		
12		
13		
14		
15		

	01: EEPROM, SMC and EZU						
ID	ID Name Value-Range Default-Value Unit Access						
4	RTC Second	0 59		S	R		
5	RTC Minute	0 59		min	R		
6	RTC Hour	0 23		h	R		

	01: EEPROM, SMC and EZU						
ID	Name	Value-Range	Default-Value	Unit	Access		
7	RTC Day	1 31		d	R		
8	RTC Month	1 12		mon	R		
9	RTC Year	2007 2099		y	R		
11	N Read Errors	0 65535			NONE		
12	N Write Errors	0 65535			NONE		
14	main_state_dsp_check	0 65535			NONE		
15	init_counter_dsp_check	0 1			NONE		
16	test1_counter_dsp_check	0 65535			NONE		
17	test2_counter_dsp_check	0 65535			NONE		

	01: EEPROM, SMC and EZU					
ID Name Value-Range Default-Value Unit Acce					Access	
19	Peripherals	0000h 00FEh		[bits]	R	

Display of existing circuit board options

Bit	Name	Notes
0		
1	CanOpenPCBoard	
2	ProfibusPCBoard	
3	EthernetPCBoard	
4	ADIOPCBoard	
5	TaeEncoderPCBoard	
6	422EncoderPCBoard	
7	ResolverPCBoard	

	02: Motor Data						
ID	Name	Value-Range	Default-Value	Unit	Access		
20	Motor Type	[00] ASM_UF [04] SM_SL			RW		

Selecting the motor type:

No.	Name	Notes
0	ASM U/F	Asynchronous motor operated with voltage/frequency characteristics
1	ASM Sensor	Vector controlled asynchronous motor with rotation speed sensor
2	ASM Sensorless	Vector controlled asynchronous motor without rotation speed sensor
3	Syn Sensor	Synchronous motor with rotor position and rotation speed sensor
4	Syn Sensorless	Synchronous motor without "sensorless" rotation speed sensor

	02: Motor Data						
ID Name Value-Range Default-Value Unit							
21	Article Number (TAE)	0 65535			RW		
22	Motor Size	0 65535			RW		

02: Motor Data					
ID	Name	Value-Range	Default-Value	Unit	Access
23	Kind of Winding	[00] Star [01] Delta	[00] Stern		RW

Choosing the method of connection:

Not in use, always choose the star connection

Nr.	Name	
0	Star	
1	Delta	

	02: Motor Data					
ID	Name	Value-Range	Default-Value	Unit	Access	
24	Motor EMF	0,00 1000,00		V/1000rpm	RW(0)	
25	Motor Pole Pairs	1 120			RW(0)	
26	Motor Resistance	0,000 200,000		Ohm	RW(0)	
27	Motor Inductance	0,000 600,000		mH	RW(0)	
28	Motor Rated Current	0,0 50,0		A	RW(0)	
29	Motor Max Current	0,0 50,0		A	RW(0)	
30	Motor Rated Speed	1,0 1000,0		rpm	RW(0)	
31	Motor Max Speed electr.	1,0 1000,0		rpm	RW	
32	Motor Max Speed mech.	1,0 1000,0		rpm	RW	
33	Torque constant	0,000 50,000		Nm/A	RW	
34	DC Buss Voltage	0 600		V	RW	
35	Encoder PPR	0 10000		ppr	RW(0)	
36	Motor Accepted Type	[00] ASM UF [04] SM SL			R	
37	Encoder Type	[00] Sensorlos [03] Resolver			R	
38	Encoder Phase Correction	-180,0 180,0		deg	RW	

02: Motor Data					
ID	Name	Value-Range	Default-Value	Unit	Access
39	Motor adjustment	0000h 0003h	0000h		RW

Bit	Name	Notes
is stationary during this process. Only for asynchronous motors!		If Bit 0 is set, Par. 40-44 will be determined and registered within 30sec. The motor is stationary during this process. Only for asynchronous motors!
1	Encoder adjustment	Sufficient adjusting current (Par.49) required (the motor should be able to move), set Par. 39 Bit 1 and then enable controller. The motor will align itself, with an
2	Freeze Encoder position	undefined direction of rotation. The angle needed for the sensor will be shown in Par. 38! Set Bit 2! Sensor angle will be frozen (Par.38). Then re-enable controller and reset B1 afterwards.

	02: Motor Data					
ID	Name	Value-Range	Default-Value	Unit	Access	
40	ASM Main Inductance	0,000 2500,000		mH	RW(0)	
41	ASM Rotor Resistance	0,000 200,000		Ohm	RW(0)	
42	ASM Stator Resistance	0,000 200,000		Ohm	RW(0)	
43	ASM Leakage Inductance Rotor	0,000 500,000		mH	RW(0)	
44	ASM Leakage Inductance Stator	0,000 500,000		mН	RW(0)	
45	ASM Rated Voltage effective	0,0 600,0	400	V	RW(0)	
46	ASM Rated Frequency	0,000 120,000	50	Hz	RW(0)	
47	Cable compensation for Param 26/27	0 100	100	%	RW(0)	
48	ASM Brake current	0,0 0,0	0	A	RW	
49	Motor adj. Current	0,0 0,0	0	A	RW	
50	Test frequency	-50,0 50,0	0	Hz	RW	

	03: Drive Data					
ID	Name	Value-Range	Default-Value	Unit	Access	
60	Device Type	0 65535			RC	
61	Serial Number	0 65535			RC	
62	Rev_Firmware MCU	0.000.0 5.535.0			RC	
63	Rev_Firmware DSP	0.000.0 5.535.0			RC	
64	Rated Voltage	[200] 200-250 [400] 380-480		V	RC	
65	Rated Power	0,0 300,0		kW	RC	
66	Rated Current Drv	0,0 100,0		A	RC	
67	Max Current Drv	0,0 100,0		A	RC	
68	Max Pulse Frequency	1,000 12,000	6,000	kHz	RW(0)	

		03: Drive Data			
ID	Name	Value-Range	Default-Value	Unit	Access
69	Pulse Frequency Max Threshold	1,000 20,000	3,000	Hz	RC
70	Pulse Frequency Hysteresis	1,000 20,000	5,000	%	RC
71	Start Frequency	1,00 12,00	1,80	kHz	RC
72	Increase Frequency-Ramp	0,000 100,000		Hz	R
73	Increase Speed-Ramp	1,0 1500,0		rpm	R
74	Switch-Off Peak Current	1,000 1000,000		A	RC
75	Controller Speed Limit	1,0 15000,0	3900,000	rpm	RC
76	Controller Current Limit	0,000 1000,000		A	RC
80	Current Calibration	100,00 3000,00		A	R
81	Speed Calibration	1000,00 15000,00		rpm	R
82	Current Calibration negative	-3000,00 100,00		A	R
83	Speed Calibration negative	-15000,00 1000,00	-1500,00	rpm	R

04: Machine Data					
ID	Name	Value-Range	Default-Value	Unit	Access
90	Machine Speed Factor	0 100000			RW
91	Machine Speed Divisor	1 100000			RW
92	Machine Torque Factor	0 100000	1		RW
93	Machine Torque Divisor	1 100000	1		RW
94	Machine Tension Factor	0 100000	1		RW
95	Machine Tension Divisor	1 100000	1		RW
97	Machine Speed	0,000 2147483647,000			R
98	Machine Torque	0,000 2147483647,000		Nm	R
99	Machine Tension	0,000 2147483647,000		N	R

	05: Drehzahl/Strom				
ID	Name	Wertebereich	Standardwert	Einheit	Zugriff
100	Dig. Speed-Set	0,0 1000,0	0,0	rpm	RW
101	Max Speed	0,0 1000,0	100,0	rpm	RW
102	Min Speed	0,0 1000,0	0,0	rpm	RW
103	Torque-Set	0,0 200,0	100,0	%	RW
104	Max Current Accel (1Q)	0,00 Par.67	Par.66	A	RW
105	Max Current Decel (4Q)	0,00 Par.67	0,00	A	RW
106	Motor working load	0,0 500,0		%	RC
107	Drive working load 1Q	0,0 500,0		%	RC
108	Drive working load 4Q	0,0 500,0		%	RC
109	Overload time	1,00 1000,00	1,00	S	RW(0)
110	Speed Preset 1	0,0 1000,0	0,0	rpm	RW
111	Speed Preset 2	0,0 1000,0	0,0	rpm	RW
112	Speed Preset 3	0,0 1000,0	0,0	rpm	RW
113	Speed Preset 4	0,0 1000,0	0,0	rpm	RW
114	Speed Preset 5	0,0 1000,0	0,0	rpm	RW
115	Speed Preset 6	0,0 1000,0	0,0	rpm	RW
116	Speed Preset 7	0,0 1000,0	0,0	rpm	RW

	05: Speed/Current				
ID	Name	Value-Range	Default-Value	Unit	Access
117	Reference Speed Selection	[00] Preset Speed [08] Positioning	[03] Analog Input TR8		RW

The definition of the required rotational speed setpoint source can be selected as follows:

The number in brackets corresponds with the priority of the set function. (1=highest priority)

This means, for example, if "analog input" is selected and the "slave-function" is then turned on, the analog input is deactivated and the incremental slave setpoint is activated.

The current reference source is shown in Par. 567 (current source of reference rotational speed)

Nr.	(Priorität) Name	Notes
0	(1) Preset Speed	Is also valid for manual inputting of the setpoint via the U-drive Manager
1	1 (5)Analog Inputs Digital/analog PCB (Option)	
2		
3	(5) Analog Input TR 8	
4	(3) Master/Slave	Incremental setpoint.
5	(2) Motorpoti	
6	(4) Profibus	
7		
8	(2) Positioning	

		06: Ramps			
ID	Name	Value-Range	Default-Value	Unit	Access
119	Ramp Reference Speed	0,0 Par.75	100,0	rpm	RW
120	Ramp 0: Accel	0,00 600,00	10,00	S	RW
121	Ramp 0: Decel	0,00 600,00	10,00	S	RW
122	Ramp 0: S-Accel-Rise	0,00 600,00	0,00	S	RW
123	Ramp 0: S-Accel-Reach	0,00 600,00	0,00	S	RW
124	Ramp 0: S-Decel-Start	0,00 600,00	0,00	S	RW
125	Ramp 0: S-Decel-End	0,00 600,00	0,00	S	RW
126	Ramp 1: Accel	0,00 600,00	10,00	S	RW
127	Ramp 1: Decel	0,00 600,00	10,00	S	RW
128	Ramp 1: S-Accel-Rise	0,00 600,00	0,00	S	RW
129	Ramp 1: S-Accel-Reach	0,00 600,00	0,00	S	RW
130	Ramp 1: S-Decel-Start	0,00 600,00	0,00	S	RW
131	Ramp 1: S-Decel-End	0,00 600,00	0,00	S	RW
132	Ramp 2: Accel	0,00 600,00	10,00	S	RW
133	Ramp 2: Decel	0,00 600,00	10,00	S	RW
134	Ramp 2: S-Accel-Rise	0,00 600,00	0,00	S	RW
135	Ramp 2: S-Accel-Reach	0,00 600,00	0,00	S	RW
136	Ramp 2: S-Decel-Start	0,00 600,00	0,00	S	RW
137	Ramp 2: S-Decel-End	0,00 600,00	0,00	S	RW
138	Ramp 3: Accel	0,00 600,00	10,00	S	RW
139	Ramp 3: Decel	0,00 600,00	10,00	S	RW
140	Ramp 3: S-Accel-Rise	0,00 600,00	0,00	S	RW
141	Ramp 3: S-Accel-Reach	0,00 600,00	0,00	S	RW
142	Ramp 3: S-Decel-Start	0,00 600,00	0,00	S	RW
143	Ramp 3: S-Decel-End	0,00 600,00	0,00	S	RW
144	Ramp 4: Accel	0,00 600,00	10,00	S	RW
145	Ramp 4: Decel	0,00 600,00	10,00	S	RW
146	Ramp 4: S-Accel-Rise	0,00 600,00	0,00	S	RW
147	Ramp 4: S-Accel-Reach	0,00 600,00	0,00	S	RW
	Ramp 4: S-Decel-Start	0,00 600,00	0,00	S	RW
	Ramp 4: S-Decel-End	0,00 600,00	0,00	S	RW
	Ramp 5: Accel	0,00 600,00	10,00	S	RW
	Ramp 5: Decel	0,00 600,00	10,00	S	RW
152	Ramp 5: S-Accel-Rise	0,00 600,00	0,00	S	RW

		06: Ramps			
ID	Name	Value-Range	Default-Value	Unit	Access
153	Ramp 5: S-Accel-Reach	0,00 600,00	0,00	S	RW
154	Ramp 5: S-Decel-Start	0,00 600,00	0,00	S	RW
155	Ramp 5: S-Decel-End	0,00 600,00	0,00	S	RW
156	Ramp 6: Accel	0,00 600,00	10,00	S	RW
157	Ramp 6: Decel	0,00 600,00	10,00	S	RW
158	Ramp 6: S-Accel-Rise	0,00 600,00	0,00	S	RW
159	Ramp 6: S-Accel-Reach	0,00 600,00	0,00	S	RW
160	Ramp 6: S-Decel-Start	0,00 600,00	0,00	S	RW
161	Ramp 6: S-Decel-End	0,00 600,00	0,00	S	RW
162	Ramp 7: Accel	0,00 600,00	10,00	S	RW
163	Ramp 7: Decel	0,00 600,00	10,00	S	RW
164	Ramp 7: S-Accel-Rise	0,00 600,00	0,00	S	RW
165	Ramp 7: S-Accel-Reach	0,00 600,00	0,00	S	RW
166	Ramp 7: S-Decel-Start	0,00 600,00	0,00	S	RW
167	Ramp 7: S-Decel-End	0,00 600,00	0,00	S	RW

	06: Ramps				
ID	Name	Value-Range	Default-Value	Unit	Access
170	PN	0 32767			RC
171	I N	0 32767			RC
172	DN	0 32767			RC
173	Dt N	0 32767			RC
174	Speed P_Min	0,0 100,0	2,0		RW
175	Speed P_Max	0,0 100,0	10,0		RW
176	Speed I_Min	0,0 1000,0	200,0	ms	RW
177	Speed I_Max	0,0 1000,0	50,0	ms	RW
178	Speed D_Min	0,0 100,0	2,0		RW
179	Speed D_Max	0,0 100,0	3,0		RW
180	Speed Dt_Min	0,0 1000,0	100,0	ms	RW
181	Speed Dt_Max	0,0 1000,0	50,0	ms	RW
182	Speed Min_Threshold	0,0 1000,0	30,0	rpm	RW
183	Speed Max_Threshold	0,0 1000,0	100,0	rpm	RW
184	Speed P_Factor	1 10	4		RC
185	Speed D Factor	1 10	4		RC
195	Flux Weakening : P	0,0 100,0	5,0		RW
196	Flux Weakening: I	0,0 1000,0	100,0	ms	RW

	08: Digital I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
200	DI-Physical	0000h 0F3Fh		[bits]	R

Physical state of the digital inputs. 0=low, 1=high

Bit	Name	Notes
0	Terminal 52	
1	Terminal 53	
2	Terminal 54	
3	Terminal 55	
4	Terminal 56	
5	Terminal 57	
6		
7		
8	Terminal 2	
9	Terminal 3	
10	Terminal 4	
11	Terminal 5	
12		
13		
14		
15		

08: Digital I/O					
ID	Name	Value-Range	Default-Value	Unit	Access
201	Master/Slave DI	0000h 000Fh		[bits]	R

Physical state of the inputs.

0=low, 1=high

Bit	Name	Notes
0	Z0 Master	Zero impulse from the Master drive
1	Z0 Slave	Zero impulse from the Slave drive
2	AI Master	A-track from the Master drive
3	BI Master	B-track from the Master drive

	08: Digital I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
202	DI-Logical	0000h 0F3Fh		[bits]	R

Logical state of the inputs. 0=low, 1=high

Bit	Name	Notes
0	Terminal 52	
1	Terminal 53	
2	Terminal 54	
3	Terminal 55	
	Terminal 56	
5	Terminal 57	
6		
7		
	Terminal 2	
	Terminal 3	
	Terminal 4	
11	Terminal 5	
12		
13		
14		
15		

08: Digital I/O					
ID	Name	Value-Range	Default-Value	Unit	Access
210	DO Set	0000h 031Fh	0000h	[bits]	RW

The digital outputs can be set manually. (e.g. for the purpose of checking the signal) 0=low, 1=high

Bit	Name	Notes
0	Terminal 60	
1	Terminal 61	
2	Terminal 63	
	Terminal 64	
4	Terminal 65	
5		
6		
7		
	Terminal 11	
9	Terminal 13	
10		
11		
12		
13		
14		
15		

	08: Digital I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
211	DO Set Actual	0000h 031Fh		[bits]	R

Current state of the digital outputs.

0=low, 1=high

Bit	Name	Notes
0	Terminal 60	
1	Terminal 61	
2	Terminal 63	
3	Terminal 64	
4	Terminal 65	
5		
6		
7		
8	Terminal 11	
9	Terminal 13	
10		
11		
12		
13		
14		
15		

	09: Analog I/O					
ID	Name	Value-Range	Default-Value	Unit	Access	
220	A-IN 8 Mode	[00] 0~10V [02] 4~20mA	[00] 0~10V		RW	

Analog input terminal 8:

Selecting the physical input parameter. (unipolar)

Analog inputs are configured to a voltage in the factory; when used as a current input (e.g. 4-20mA), the dip switch position of the input has to be altered! (See wiring diagram)

Nr.	Name	Notes
0	0-10V	
1	0-20mA	
2	4-20mA	

		09: Analog I/O			
ID	Name	Value-Range	Default-Value	Unit	Access
221	A-IN 8 Offset	0 32767			RW
222	A-IN 8 Gain	0,00 105,00			RW
223	A-IN 8 Dest-Parameter	0 65535	521		RW
224	A-IN 8 Act Value	0 32767			R

	09: Analog I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
230	A-IN 68 Mode	[00] 0~10V [05] 0~-10V	[00] 0~10V		RW
231	A-IN 68 Offset	0 32767			RW
232	A-IN 68 Gain	0,00 105,00	100,00		RW
233	A-IN 68 Dest-Parameter	0 65535			RW
234	A-IN 68 Act Value	-32767 32767			R

Analog input terminal 68-72: (Bipolar)

Same as Par.220-224 except that negative values are possible.

Nr.	Name	Notes
0	0-10V	
1	0-20mA	
2	4-20mA	
3	+10-(-10V)	
4	-10-(+10V)	
5	0-(-10V)	

	09: Analog I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
240	A-IN 70 Mode	[00] 0~10V [05] 0~-10V	[00] 0~10V		RW
241	A-IN 70 Offset	0 32767			RW
242	A-IN 70 Gain	0,00 105,00	100,00		RW
243	A-IN 70 Dest-Parameter	0 65535			RW
244	A-IN 70 Act Value	-32767 32767			R
250	A-IN 72 Mode	[00] 0~10V [05] 0~-10V	[00] 0~10V		RW
251	A-IN 72 Offset	0 32767			RW
252	A-IN 72 Gain	0,00 105,00	100,00		RW
253	A-IN 72 Dest-Parameter	0 65535			RW
254	A-IN 72 Act Value	-32767 32767			R

	09: Analog I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
260	A-OUT 74 Mode	[00] 0~10V [05] 0~-10V	[00] 0~10V		RW

Analog output terminal 74:

Selecting the physical output variable. (Bipolar)

Analog outputs are configured to a voltage in the factory; when used as a current outputput (e.g. 4-20mA), the dip switch position of the output has to be altered! (See wiring diagram)

Nr.	Name	Notes
0	0-10V	
1	0-20mA	
2	4-20mA	
3	+10-(-10V)	
4	-10-(+10V)	
5	0-(-10V)	

	09: Analog I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
261	A-OUT 74 Offset	-32767 32767			RW
262	A-OUT 74 Gain	0,00 105,00	100,00		RW
263	A-OUT 74 Src-Parameter	0 1200	520		RW
264	A-OUT 74 Norm Value	0 32767			RW
265	A-OUT 74 Act Value	-32767 32767			R

		09: Analog I/O			
ID	Name	Value-Range	Default-Value	Unit	Access
270	A-OUT 76 Mode	[00] 0~10V [05] 0~-10V	[00] 0~10V		RW
271	A-OUT 76 Offset	-32767 32767			RW
272	A-OUT 76 Gain	0,00 105,00	100,00		RW
273	A-OUT 76 Src-Parameter	0 1200	522		RW
274	A-OUT 76 Norm Value	0 32767			RW
275	A-OUT 76 Act Value	-32767 32767			R

	09: Analog I/O				
ID	Name	Default-Value	Unit	Access	
280	Temp22 Motor Sensor Type	[00] Klixon [04] PTC-Thermistor	[00] Klixon		RW

Selected motor temperature sensor for terminal 22

Nr.	Name	Notes
0	Klixon	Thermal switch (break contact)
1	PT-100	Thermal resistance 100Ohm at 0°C
2	KTY-83	Note the input amplification. (jumper on the encoder board, see wiring diagram)
3	KTY-84	Note the input gain. (jumper on the encoder board, see wiring diagram)
		In case the resistance is higher than 1500hm at 25°C:
4	PTC-Thermistor	Take the input amplification into account. (jumper on the encoder board, see wiring
		diagram)

	09: Analog I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
281	Temp22 Motor Offset	-320,0 320,0	0,0	°Cel	RW
282	Temp22 Motor Gain	0,0 200,0	100,0		RW
283	Temp22 Motor Act Value	-320,0 320,0	0,0	°Cel	R
285	Temp21 Motor pre warn Sensor Type	[00] Klixon [04] PTC-Thermistor	[00] Klixon		RW
286	Temp21 Motor pre warn Offset	-320,0 320,0	0,0	°Cel	RW
287	Temp21 Motor pre warn Gain	0,0 200,0	100,0		RW
288	Temp21 Motor pre warn Act Value	-320,0 320,0	0,0	°Cel	R
290	Temp Drive Sensor Type	[00] Klixon [04] PTC-Thermistor	[00] Klixon		RW
291	Temp Drive Offset	-320,0 320,0	0,0	°Cel	RW
292	Temp Drive Gain	0,0 200,0	100,0		RW
293	Temp Drive Act Value	-320,0 320,0	0,0	°Cel	R

10: PLC I/O					
ID	Name	Value-Range	Default-Value	Unit	Access
300	PLC-IO CMD	0000h 00F3h	0000h	[bits]	RW

Bit	Name	Notes
0	Reload CFG	Re-load the parameters / configuration
1	Clear CFG	Reset the parameters / configuration
2		
3		
4	Susp: All	Stop all functions
5	Susp: GetIN	Stop reading the inputs
6	Susp: Calc	Stop calculating the outputs
7	Susp: SetOut	Stop setting the outputs
815		

10: PLC I/O					
ID	Name	Value-Range	Default-Value	Unit	Access
301	PLC-IO STAT	0000h 001Fh	0000h	[bits]	R

Bit	Name	Notes
0	Busy GetIN	Status: Read inputs
1	Busy Calc	Status: Calculate the outputs
2	Busy SetOut	Status: Set the outputs
3	Busy Reset	Status: Reset
4	Error:Link	Error in parameterised I/O connection (invalid parameter)
515		

		10: PLC I/O			
ID	Name	Value-Range	Default-Value	Unit	Access
302	Input Param ID/Bit 01	0 200000	20008		RW
303	Input Param ID/Bit 02	0 200000	20009		RW
304	Input Param ID/Bit 03	0 200000	20010		RW
305	Input Param ID/Bit 04	0 200000	20011		RW
306	Input Param ID/Bit 05	0 200000	56000		RW
307	Input Param ID/Bit 06	0 200000	56008		RW
308	Input Param ID/Bit 07	0 200000	20000		RW
309	Input Param ID/Bit 08	0 200000	20001		RW
310	Input Param ID/Bit 09	0 200000	20002		RW
311	Input Param ID/Bit 10	0 200000	20003		RW
312	Input Param ID/Bit 11	0 200000	20004		RW
313	Input Param ID/Bit 12	0 200000	20005		RW
314	Input Param ID/Bit 13	0 200000	56002		RW
315	Input Param ID/Bit 14	0 200000	56005		RW
316	Input Param ID/Bit 15	0 200000	56010		RW
317	Input Param ID/Bit 16	0 200000	0		RW
318	Input Param ID/Bit 17	0 200000	0		RW
319	Input Param ID/Bit 18	0 200000	0		RW
320	Input Param ID/Bit 19	0 200000	0		RW
321	Input Param ID/Bit 20	0 200000	0		RW
322	Input Param ID/Bit 21	0 200000	0		RW
323	Input Param ID/Bit 22	0 200000	0		RW
324	Input Param ID/Bit 23	0 200000	0		RW
325	Input Param ID/Bit 24	0 200000	0		RW
326	Input Param ID/Bit 25	0 200000	0		RW
327	Input Param ID/Bit 26	0 200000	0		RW
328	Input Param ID/Bit 27	0 200000	0		RW
329	Input Param ID/Bit 28	0 200000	0		RW
330	Input Param ID/Bit 29	0 200000	0		RW
331	Input Param ID/Bit 30	0 200000	0		RW
332	Input Param ID/Bit 31	0 200000	0		RW
333	Input Param ID/Bit 32	0 200000	0		RW
334	Output Param ID/Bit 01	0 200000	55200		RW
	Output Param ID/Bit 02	0 200000	55201		RW
	Output Param ID/Bit 03	0 200000	55202		RW
337	Output Param ID/Bit 04	0 200000	55210		RW
338	Output Param ID/Bit 05	0 200000	21008		RW
339	Output Param ID/Bit 06	0 200000	21009		RW
340	Output Param ID/Bit 07	0 200000	56500		RW
341	Output Param ID/Bit 08	0 200000	56501		RW
342	Output Param ID/Bit 09	0 200000	55214		RW
343	Output Param ID/Bit 10	0 200000	55213		RW
344	Output Param ID/Bit 11	0 200000	21000		RW

		10: PLC I/O			
ID	Name	Value-Range	Default-Value	Unit	Access
345	Output Param ID/Bit 12	0 200000	21001		RW
346	Output Param ID/Bit 13	0 200000	21004		RW
347	Output Param ID/Bit 14	0 200000	21003		RW
348	Output Param ID/Bit 15	0 200000	21002		RW
349	Output Param ID/Bit 16	0 200000	55213		RW
350	Output Param ID/Bit 17	0 200000	0		RW
351	Output Param ID/Bit 18	0 200000	0		RW
352	Output Param ID/Bit 19	0 200000	0		RW
353	Output Param ID/Bit 20	0 200000	0		RW
354	Output Param ID/Bit 21	0 200000	0		RW
355	Output Param ID/Bit 22	0 200000	0		RW
356	Output Param ID/Bit 23	0 200000	0		RW
357	Output Param ID/Bit 24	0 200000	0		RW
358	Output Param ID/Bit 25	0 200000	0		RW
359	Output Param ID/Bit 26	0 200000	0		RW
360	Output Param ID/Bit 27	0 200000	0		RW
361	Output Param ID/Bit 28	0 200000	0		RW
362	Output Param ID/Bit 29	0 200000	0		RW
363	Output Param ID/Bit 30	0 200000	0		RW
364	Output Param ID/Bit 31	0 200000	0		RW
365	Output Param ID/Bit 32	0 200000	0		RW
366	Conn Out 01	00000000h FFFFFFFh	00000001h		RW
367	Conn Out 02	00000000h FFFFFFFh	00000006h		RW
368	Conn Out 03	00000000h FFFFFFFh	00000004h		RW
369	Conn Out 04	00000000h FFFFFFFh	00000008h		RW
370	Conn Out 05	00000000h FFFFFFFh	00000010h		RW
371	Conn Out 06	00000000h FFFFFFFh	00000020h		RW
372	Conn Out 07	00000000h FFFFFFFh	00000040h		RW
373	Conn Out 08	00000000h FFFFFFFh	00000080h		RW
374	Conn Out 09	00000000h FFFFFFFh	00000100h		RW
375	Conn Out 10	00000000h FFFFFFFh	00000200h		RW
376	Conn Out 11	00000000h FFFFFFFh	00000010h		RW
377	Conn Out 12	00000000h FFFFFFFh	00000020h		RW
378	Conn Out 13	00000000h FFFFFFFh	00001000h		RW
379	Conn Out 14	00000000h FFFFFFFh	00002000h		RW
380	Conn Out 15	00000000h FFFFFFFh	00004000h		RW
381	Conn Out 16	00000000h FFFFFFFh	00000400h		RW
382	Conn Out 17	00000000h FFFFFFFh	00000000h		RW
383	Conn Out 18	00000000h FFFFFFFh	00000000h		RW
384	Conn Out 19	00000000h FFFFFFFh	00000000h		RW
385	Conn Out 20	00000000h FFFFFFFh	00000000h		RW
386	Conn Out 21	00000000h FFFFFFFh	00000000h		RW
387	Conn Out 22	00000000h FFFFFFFh	00000000h		RW
388	Conn Out 23	00000000h FFFFFFFh	00000000h		RW
389	Conn Out 24	00000000h FFFFFFFh	00000000h		RW
390	Conn Out 25	00000000h FFFFFFFh	00000000h		RW
391	Conn Out 26	00000000h FFFFFFFh	00000000h		RW
392	Conn Out 27	00000000h FFFFFFFh	00000000h		RW
393	Conn Out 28	00000000h FFFFFFFh	00000000h		RW
394	Conn Out 29	00000000h FFFFFFFh	00000000h		RW
395	Conn Out 30	00000000h FFFFFFFh	00000000h		RW
396	Conn Out 31	00000000h FFFFFFFh	00000000h		RW
397	Conn Out 32	00000000h FFFFFFFh	00000000h		RW
	IN Polarity	00000000h FFFFFFFh	FFFFFFFh		RW
	IN Set/Reset	00000000h FFFFFFFh	FFFFFFFh		RW
402	IN Edge	00000000h FFFFFFFh	00000000h		RW

	10: PLC I/O				
ID	Name	Value-Range	Default-Value	Unit	Access
403	OUT Polarity	00000000h FFFFFFFFh	FFFFFFFh		RW
410	IO N_Inputs	0 32			R
411	IO N_Outputs	0 32			R
412	Valid Input	00000000h FFFFFFFFh			R
413	Valid Output	00000000h FFFFFFFh			R
414	IO_ActIN	00000000h FFFFFFFFh			R
415	IO_ActOUT	00000000h FFFFFFFh			R

		11: Monitoring-Limits			
ID	Name	Value-Range	Default-Value	Unit	Access
500	Drive Over-Temp Limit	0,0 85,0	80,0	°Cel	RW
501	Drive Over-Voltage Limit	0 800	780/390	V	R
502	Drive Under-Voltage Limit	0 800	360/205	V	R
503	Drive Over-Current Limit	0,000 Par.74		A	R
504	Drive Brake-Chopper Off Voltage	1 800	740/365	V	R
505	Drive Brake-Chopper On Voltage	1 800	750/375	V	R
506	Motor Max Speed electr.	0,0 Par.75		rpm	R
507	Motor Max Speed mech.	0,0 Par.75		rpm	R
508	Motor Over-Temp Limit	0,0 250,0		°Cel	RW
509	Motor Warn Temp Limit	0,0 250,0		°Cel	RW
510	Speed detect Limit	0,0 Par.75	300,0	rpm	RW
511	Current detect Limit	0,00 Par.104	Par.28	A	RW
512	Delayed Message Current limit reached	0,0 1000,0	5,0	S	RW
513	Drive Warn Temp Limit	0,0 80,0	75,0	°Cel	RW
514	Under-Voltage delay time	0 60000		ms	RW

		12: Actual Values			
ID	Name	Value-Range	Default-Value	Unit	Access
520	Act Speed	-1000,0 1000,0		rpm	R
521	Ref Speed	-1000,0 1000,0		rpm	R
522	Actual Current	0,00 0,00		A	R
523	Motor Torque	0,00 2147483647,00		Nm	R
524	Buss Voltage	0 800		V	R
525	Motor Temp. Terminal 22	-320,0 320,0		°Cel	R
526	Motor PreTemp. Terminal 21	-320,0 320,0		°Cel	R
527	Drive Temp.	-267,0 267,0		°Cel	R
528	Actual Lead Speed	-1000,0 1000,0		rpm	R
529	Machine Speed	0,000 2147483647,000			R
530	Act Pulse Frequency	1,00 20,00		kHz	R
531	Motor Current U	-100,00 100,00		A	R
532	Motor Current V	-100,00 100,00		A	R
533	Motor Current W	-100,00 100,00		A	R
534	Brake Chopper Volt	0,0 800,0		V	R
535	n-Controller Ref Speed	-1000,0 1000,0		rpm	R
536	n-Controller Act Speed	-1000,0 1000,0		rpm	R
537	n-Controller Deviation	-1000,0 1000,0		rpm	R
538	n-Controller Output	-100,00 100,00		A	R
539	Actual Current unfiltered	0,00 0,00		A	R
540	ASM minimum flux	-32767 32767			R
541	ASM rated flux	-32767 32767			R
542	Flux Weakening	0,00 0,00		A	R
546	Drive Working minutes	0 59		min	R
547	Drive Working hours	0 2147483647		h	R
548	Drive Operating minutes	0 59		min	R
549	Drive Operating hours	0 2147483647		h	R

13: Command/Status Words					
ID	Name	Value-Range	Default-Value	Unit	Access
550	DrvCtrl Act	0000h FFFFh	0000h	[bits]	R

Actual status of control word 1

Control word 1 can be controlled by four different sources (field bus, digital inputs, PG4000 or U-drive Manager)!

The bits for the four control words (Par.551 to 554) are incorporated in Control Word 1 or linked (1=dominant).

Bit	Name	Notes
0	Reset	Only possible when the drive is not started!
1	Running	Start the drive.
2	Direction CCW	Motor turning counter-clockwise
3	Hold	Drive braking with current limit after rotational speed of Nil
4	Preset Speed 1	Fixed speeds 3, 5, 6 and 7 are controlled using binary code from the bit
5	Preset Speed 2	combinations in Bits 4-6. Example: fixed speed 5 = Bit 4 (fixed speed 1) + Bit
6	Preset Speed 4	6 (fixed speed 4) See also Par.110-116 and 565
7	Ramp 1	Ramps 3, 5, 6 and 7 are controlled using binary codes from the bit
8	Ramp 2	combinations in Bits 7-9. Example: ramp 3 = Bit 7 (ramp 1) + Bit 8 (ramp 2) If no bit is triggered then ramp 0 is active!
9	Ramp 4	See also Par.566 und parameter group 6
10	Slave Function	Incremental setpoint
11	Change Slave direction	Invert direction of rotation for Slave operation
12	SetDisableController	e.g.: for repair switch function
13	Digital Motorpoti	Switch on motor potentiometer
14	Motorpoti Up	
15	Motorpoti Down	

	1,	3: Command/Status Words			
ID	Name	Value-Range	Default-Value	Unit	Access
551	DrvCtrl FBus	0000h FFFFh	0000h	[bits]	R
552	DrvCtrl D-In	0000h FFFFh	0000h	[bits]	R
553	DrvCtrl Kpd/PC	0000h FFFFh	0000h	[bits]	RW
554	DrvCtrl Command	0000h FFFFh	0000h	[bits]	RW

13: Command/Status Words						
ID	Name	Value-Range	Default-Value	Unit	Access	
555	DrvCtrl Flags Act	0000h FFFFh	0000h	[bits]	R	

Actual status of control word 2.

Control word 2 can be controlled by two different sources (field bus, digital inputs, PG4000 or U-drive Manager)!

The bits for both control words (Par.556 to 557) are incorporated in control word 2 or linked (1=dominant).

Bit	Name	Notes
0	LeadedDeceleration	At stop, the drive delays with the active ramp
1	WaitWithHoldUsingBrake	After a controlled run down (the fall time will be bridged by the holding brake)
2	CurLimitAfterOverloadTimeMotCur	Only allowed for the amount of time set in Par.109.
3	CurLimitAfterOverloadTimeDrvCur	Only allowed for the amount of time set in Par.109.
4	SuppressF6	Suppress error message rotor position sensor for fault diagnosis.
5	SuppressF7	Suppress error message rotation sensor for fault diagnosis
6	InhibiteCW	
7	InhibiteCCW	
8	DisDrvByRefAndActSpEquZero	Controller interlock occurs when setpoint and actual values = 0
9	EnDrvByRefSpeedEquZero	Controller cannot be started when rotation speed setpoint > 0
10	Torquelimit	Torque setpoint can be specified via Par.103
11	External fault shutdown	controller portion takes place when this bit is set
12	NotCatchActSpeed	After switching the drive off and back on again, drive will not be intercepted at current rotational speed. The drive will coast to a stop and then starts again.
13	Reserved	
14	FieldWeakeningActive	Will be enabled
15	FeedbackPhaseCorrection	Enables the phase correction (Par.38) of the electronic commutation. Should only be adjusted if controller is interlocked, otherwise current overloads may occur.

	1	3: Command/Status Words			
ID	Name	Value-Range	Default-Value	Unit	Access
556	DrvCtrl Flags Cfg	0000h FFFFh	0000h	[bits]	RW
557	DrvCtrl Flags Dyn	0000h FFFFh	0000h	[bits]	RW

13: Command/Status Words					
ID	Name	Value-Range	Default-Value	Unit	Access
560	General Stat	0000h FFFFh		[bits]	R

Displays the most important operation conditions for the drive.

Bit	Name	Notes
0	Ready	
1	Running	
2	Speed > 0	
	Speed > X	Also see Par.510
4	Powerstage active	
5	I-Limit reached	Also see Par.512
6	I > X	Also see Par.511
7	Generator Mode	
8	Collective Error	
9	Value out of range	
10	Set-Value reached	
11	n-set/n-act in tolerance range	Tolerance = 1% of the max. rotational speed (Par.101)
12	Fieldbus controlling	
13	Current > Motor Rated Current	
	Field Weakening active	
15	Asynch Control active	Asynchronous motor active

	13: Command/Status Words						
ID	Name	Value-Range	Default-Value	Unit	Access		
561	Motor Stat	0000h 000Fh		[bits]	R		

Display of auto-tuning status (ASM)

Bit	Name	Notes
0	Auto tuning started	
1	Auto tuning and run	
2	Auto tuning finshed	

	13: Command/Status Words					
ID	Name	Value-Range	Default-Value	Unit	Access	
562	Drive Stat	0000h FFFEh		[bits]	R	
565	Spd Prst Sel	[00] [07] Spd Preset 7	[00]	[bits]	RW	
566	Ramp Sel	[00] Ramp 0 [07] Ramp 7	[00] Rampe 0	[bits]	RW	

13: Command/Status Words						
ID	Name	Value-Range	Default-Value	Unit	Access	
567	Selected Reference Speed Source	[00] Preset Speed[08] Positioning			R	

Display of active setpoint reference sources

Nr.	Name	Notes
0	Preset Speed	
1		
2		
3	Analog input Terminal 8	
4	Master/Slave	Incremental
5	Motorpoti	
6	Fieldbus	
7		
8	Positioning	

14: Error-Status					
ID	Name	Value-Range	Default-Value	Unit	Access
570	Control Messages	0000h 00DAh		[bits]	R

Display of prewarning and conditions which cause the drive to malfunction.

Bit	Name	Notes
0	Drive Temp Prew C1	Controller temperature is close to shut-off! (See Par.513)
1	Motor Temp Prew C2	Motor temperature is close to shut-off! (See Par.509)
2	Value Out Of Range C3	Value outside the permissible value range
3	Emergency Stop C4	No voltage at terminals L+/L- (24VDC)
4	Enable Drive by Ref. Speed Equal Zero C5	Drive can only start when the setpoint = 0! (See Par.555 Bit 9)
5	Drive disabled C6	e.g.: repair switch is open
6	Actual Speed GT Speed Calibration C7	e.g.: motor is overshooting
7	Parametring error C8	Physical motor parameters for this type of controller are outside of
,		possible range!
8	Direction inhibited C9	Selected direction of rotation is blocked. (See Par.555 Bit 6 or 7)

	14: Error-Status				
ID Name Value-Range Default-Value Unit A		Access			
571	Failures	0000h FFFFh		[bits]	R

Error messages which cause the drive to malfunction.

Rit	Name	Notes
Dit	Ivame	Short circuit – Incorrect end stage, motor or motor cable or physical data of
0	Overcurrent F1	the motor! (See Par.74)
1	IGBT F9	Defective end stage or short circuit or earth fault at motor connection!
		Defective intermediate circuit electrolytic capacitor, missing network phase
2	Ripple Current F5	oder brief mains voltage failure!
		Intermediate circuit voltage too high: brake resistance highly resistive or
3	Overvoltage F4	generating operation without braking unit! (See Par.501)
		Intermediate circuit voltage too low, failure in mains voltage, missing
4	Undervoltage F3	network phase or defective or non-functioning internal charging relay! (See
		Par.502)
		Controller permanently overloaded: ambient temperature too high, non-
5		functioning switching cabinet or equipment ventilation or equipment
		improperly installed in switching cabinet (heat accumulation). (See Par.500)
6	Drive Temperature Pre-Warning C1	Controller temperature is close to shut-off! (See Par.513)
7	Position Sensor F6	Defective rotor position sensor in motor or defective sensor cable, incorrect
,	I osition sensor I o	connection, or motor or sensor cable incorrectly shielded!
		Defective rotation speed sensor in motor or defective sensor cable, incorrect
8	Speed Sensor F7	connection, or motor or sensor cable incorrectly shielded or mix-up in Tracks
		A and B!
	Electronic Failure F8	Internal processor is not working!
	Drive disabled C6	e.g.: repair switch is open
	Emergency Stop C4	No voltage at terminals L+/L- (24VDC)
	Motor Over Temperature F0	Motor permanently overloaded, defective temperature probe or probe wire!
	Motor Temperature Pre-Warning C2	Motor temperature is close to shut-off! (See Par.509)
14	Brake FeedBack Signal Error E3	Feedback: Incorrect electromechanical brake! (See parameter group 20)
15	External Error E1	Error caused externally! (e.g.: overload relay from external motor fan)

	14: Error-Status				
ID	Name	Value-Range	Default-Value	Unit	Access
572	DSP_Errors	0000h FFFFh	0000h		R
573	StatusParaError	0000h FFFFh	0000h	[bits]	R
574	StatusParaError2	0000h FFFFh	0000h	[bits]	R
575	StatusParaError3	0000h 1FFFh	0000h	[bits]	R
576	StatusParaError4	0000h 001Fh	0000h	[bits]	R

	15: Kommunikation					
ID	ID Name Wertebereich Standard-Wert Einheit Zugi			Zugriff		
600	Device ID	0 126			RW	
601	SSC-Baudrate	0 65535	38400		RW	

15: Communication					
ID	ID Name Value-Range Default-Value Unit Acce				Access
610	610 FBus Type [00] None [08] EtherNetPCBoard				R

Display of the installed Field Bus option.

Nr.	Name	Note
0	None	
2	CANopen	
4	Profibus	
8	Ethernet	

15: Communication					
ID	Name	Value-Range	Default-Value	Unit	Access
611	Profibus Command word	0000h 07FFh		[bits]	R

Display of Profibus control word.

Bit	Name	Note		
0	BusCmON	0=Stop		
1	BusCmN_AUS2	Not supported, must be	set to 1	
2	BusCmN_AUS3	Not supported, must be set to 1		
3	BusCmEnableOperation	0=In descending order, as programmed		
	BusCmNoQuickStop_HLG	0=Set ramp generator exit to 0		
5	BusCmEnable_N_HLG2	Not supported, must be set to 1		
6	BusCmEnableSetPoint	0= Set ramp generator input to 0		
7	BusCmResetError	Reset fault		
8	Inching 1	Fixed rotational speed	IChadhara 1 - Firadardiand and 12	
9	Inching 2	Fixed rotational speed 2	If both are 1 = Fixed rotational speed 3	
10	Controled by Profibus			
11				
12				
13				
14				
15				

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
612	Profibus Status word	0000h 07FFh		[bits]	R

Display of Profibus status word.

Bit	Name	Note
0	BusStReadyToSwitchON	Electronic voltage available
1	BusStReadyToSwitchOperate	Intermediate circuit loaded
2	BusStDriveEnabled	End stage enabled
3	BusStError	0 = No fault
4	BusStNo_AUS2	Not supported
5	BusStNo_AUS3	Not supported
6	BusStStartUpLockOut	End stage blocked C4 or C6
7	BusStWarning	0 = No warning
8	BusStSpeedToleranceRange	Within tolerance range
9	BusStControlledThroughProfibus	Profibus active
10	BusStnReached	0 = Actual rotational speed different from setpoint speed
11		
12		
13		
14		
15		

15: Communication					
ID	Name	Value-Range	Default-Value	Unit	Access
613	Profibus configuration	0000h FFFFh		[bits]	R

Display of current baudrate and PPO type.

Rit	Name	Note
_	12 MBaud	1000
_	6 MBaud	
_	3 MBaud	
	1,5 MBaud	
	500 KBaud	
	187,5 KBaud	
	93,75 KBaud	
	45,45 KBaud	
	19,2 KBaud	
	9,6 KBaud	
	PPO-Overrun	PPO content larger than selected PPO type
11	PPO-Typ1	
12	PPO-Typ2	
	PPO-Typ3	
14	PPO-Typ4	
15	PPO-Typ5	

Baudrate and PPO types will be transmitted by Profibus master on initialisation!

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
618	FBus Speed Decimals	-1 3	0		RW
619	FBus Current Decimals	-1 3	1		RW
620	Tx PDO 1	-1 3000	0		RW
621	Tx PDO 2	-1 3000	0		RW
622	Tx PDO 3	-1 3000	0		RW

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
623	Tx PDO 4	-1 3000	0		RW
624	Tx PDO 5	-1 3000	0		RW
625	Tx PDO 6	-1 3000	0		RW
626	Tx PDO 7	-1 3000	0		RW
627	Tx PDO 8	-1 3000	0		RW
630	Rx PDO 1	-1 3000	0		RW
631	Rx PDO 2	-1 3000	0		RW
632	Rx PDO 3	-1 3000	0		RW
633	Rx PDO 4	-1 3000	0		RW
634	Rx PDO 5	-1 3000	0		RW
635	Rx PDO 6	-1 3000	0		RW
636	Rx PDO 7	-1 3000	0		RW
637	Rx PDO 8	-1 3000	0		RW

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
640	CO-Baudrate	[00] BAUD_1000 [08] BAUD_10	[02] BAUD_500		RW

Selecting the baudrate when using CANopen.

Nr.	Name	Bemerkung
0	1000 KBaud	
1	800 KBaud	
2	500 KBaud	
3	250 KBaud	
4	125 KBaud	
5	100 KBaud	
6	50 KBaud	
7	20 KBaud	
8	10 KBaud	

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
641	CO-Control	0000h F3FFh	0000h	[bits]	RW

Various functions in the CanOpen module can be activated within the control word.

Bit	Designation	Function/Meaning
0	Reset	Set baudrat, reload PDO mapping, delete Bus-Off Flag
1	SetBaudrate	Baudrate in [640] is adopted
2	StopCan	
3	StartCan	
4	SetHeartbeat	Heartbeat-Time in [643] is adopted
5	Reload PDO Mapping	Mapping entries in [620 627, 630 637] are adopted
6	SetNodeState	Manually set NodeState (only for test purposes!)
7	CustomCobWrite	Write value from [649] into object directory (see below)
8	Reset PDO-Parameters	
9	Reload PDO-Parameters	
10		
11		
12	TxPDO 1	Send PDO 1
13	TxPDO 2	Send PDO 2
14	TxPDO 3	Send PDO 3
15	TxPDO 4	Send PDO 4

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
642	CO-Driver State	0000h 007Fh	0000h	[bits]	R

Current status of the CANopen module

Bit	Designation	Function/Meaning
0	CANFLAG_INIT	CanModul in the Initialisation phase
1	CANFLAG_ACTIVE	CanModul is active
2	CANFLAG_BUSOFF	CanModul in Bus-Off error status
3	CANFLAG_PASSIVE	CanModul in error passive status
4	CANFLAG_OVERFLOW	CanModul error – telegram overflow
5	CANFLAG_TXBUFFER_OVERFLOW	CanModul: Send buffer overflow
6	CANFLAG RXBUFFER OVERFLOW	CanModul: Receive buffer overflow

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
643	CO Heartbeat Set	0 30000	1000	ms	RW
644	CO Heartbeat Act	0 30000	1000	ms	R

	15: Communication				
ID Name Value-Range Default-Value Unit Acc		Access			
645	CO NodeState Set	[00] UNKNOWN [129] RESET_COMM	[00] UNKNOWN		RW

Node-State: manual selection. (Only for test purposes)

Value	Designation	Function/Meaning
0	UNKNOWN	Deactivate Can
1	CO_INITIALISING	Initialise Can
4	CO_STOPPED	Stop Can
5	CO_OPERATIONAL	Activate Operational Mode (SDO + PDO)
127	CO_PRE_OP	Activate Pre-Operational Mode (SDO only)
128	CO_RESET_APP	Activate Reset Application
129	CO_RESET_COM	Activate Reset Communication

	15: Communication				
ID	Name Value-Range Default-Value Unit Ac		Access		
646	CO NodeState Act	[00] UNKNOWN [129] RESET_COMM	[00] UNKNOWN		R

Node-State: Current value

Value	Designation	Function/Meaning
0	UNKNOWN	Can is not activated
1	CO_INITIALISING	Can is being initialised
4	CO_STOPPED	Can stopped
5	CO_OPERATIONAL	Operational Mode (SDO + PDO)
127	CO_PRE_OP	Pre-Operational Mode (SDO only)
128	CO_RESET_APP	Reset Application is active
129	CO_RESET_COM	Reset Communication is active
0x19	PL_INITIALISING	
0x29	PL_RST_APP	
0x39	PL_RST_COM	
0x79	PL_RST_CFG	
0x1c	PL_NOT_ACTIVE	
0x1d	PL_PRE_OP_1	
0x5d	PL_PRE_OP_2	
0x6d	PL_RDY_OP	
0xfd	PL_OPERATIONAL	
0x4d	PL_STOPPED	
0x01e	PL_BASIC_ETH	
0xff	PL_UNKNOWN	

	15: Communication				
ID	Name	Value-Range	Default-Value	Unit	Access
647	CO ObjIndex	0 32767	0		RW
648	CO SubIdx	0 127	0		RW
649	CO Value Set	0 4294967295	0		RW
650	CO Value Read	0 4294967295	0		R
651	CO ValueSize	0 4294967295	0		R
652	CO ValAddress	0 4294967295	0		R
653	CO Val#Test	0 4294967295	0		R
654	TAE_CoBuffer_Id	0 1200	0		RW
655	TAE CoBufferValue	0 4294967295	0		R

	16: Master/Slave				
ID	ID Name Value-Range Default-Value Unit Acce		Access		
670	MaSlv Ctrl	0000h FFFFh	0000h	[bits]	RW

Controlling the Master/Slave operating modes

Bit	Name	Note
0	Slave Function	Activate
1	Master with single treels On Tr. D	Only functions with connection with input Track B, Connection
1	Master with single track On Tr. B	Track A is used to define direction of rotation.
2	Exchange Master Signals A-B	Slave's direction of rotation is inverted and Par.680 Master Impulse
	Exchange Waster Signals A-D	Meter changes direction
3	Synchron Angle Not Speed	Angle deviations are readjusted taking the preset ratios into
	, ,	consideration
4		Enables angle correction (Par.674)
5	Change Slave Direction	Slave drive switches direction of rotation
6	Limit Master Pulse By ILimit	Impulse differences during current threshold are not readjusted!
7	Limit Master Pulse By Maxspeed	Impulse differences during maximum rotational speed are not
,	Ellilit Master I disc By Maxspeed	readjusted!
8	Exchange Slave Signals A-B	To adapt the AB tracks of the motor.
9	Reset Counter	Par.680/681 (Current Master or Slave impulses) are reset.
10	Enable Sync On Motor Shaft (Z0)	2 machines are angularly synchronised with the motor shafts using 2
10	Endoic Sync On Wotor Shart (20)	zero impulses
11	Enable Sync with Initiators (2Ini)	2 machines are randomly angularly sunchronised using 2 additional
	, ,	standard initiators.
12	Enable Electromagnetic Coupling (2 Ini)	Load will be switched on via electromagnetic coupling
13	Measure Master/Slave ratio (2 Ini)	Ascertains impulse ratio between Master and Slave according to
13	ivicasure iviaster/Stave ratio (2 mil)	gears.
14	Measure Master/Slave Impuls relation (2 Ini)	The Master and Slave ratio will be defined according to the impulse
	• ` ` `	ratio
15	Get absolute Position of Slave (Z0)	Registers the offset of the slave motor to the master motor

	16: Master/Slave				
ID	D Name Value-Range Default-Value Unit Acces				Access
671	MaSlv Stat	0000h FFFFh	0000h	[bits]	R

Status of the Master/Slave – operating modes

Bit	Name	Note
0	Slave Function	Active
1	Master with single track On Tr. B	Only functions with connection with input Track B, Connection Track A is used to define direction of rotation.
2	Exchange Master Signals A-B	Slave's direction of rotation is inverted and Par.680 Master Impulse Meter changes direction
3	Synchron Angle Not Speed	Angle deviations are readjusted taking the preset ratios into consideration
4	Slave Angle Correction Enables angle correction (Par.674)	
5	Change Slave Direction	Slave drive switches direction of rotation
6	Limit Master Pulse By ILimit	Impulse differences during current threshold are not readjusted!
7	Limit Master Pulse By Maxspeed	Impulse differences during maximum rotational speed are not readjusted!
8	Exchange Slave Signals A-B	To adapt the AB tracks of the motor.
9	Reset Counter	Par.680/681 (Current Master or Slave impulses) are reset.
10	Enable Sync On Motor Shaft (Z0)	2 machines are angularly synchronised with the motor shafts using 2 zero impulses
11	Enable Sync with Initiators (2Ini)	2 machines are randomly angularly sunchronised using 2 additional standard initiators.
12	Enable Electromagnetic Coupling (2 Ini)	Load will be switched on via electromagnetic coupling
13	Elec Magn Coupling ON (2 Ini)	Coupling active
14	Position OK (Z0)	Angle shifting located inside position window
15		

		16: Master/Slave			
ID	Name	Value-Range	Default-Value	Unit	Access
672	Ratio multiplier n(master) * Value	0 64000	1000		RW
673	Ratio divisor n(master) / Value	0 64000	1000		RW
674	Angle correction	-32767 32767	0	°deg	RW
675	Encoder PPR Master	0 32367	0	ppr	RW
676	P-amplification slave (static)	0 100	50		RW
677	P-amplification acceleration	0 100	5		RW
678	Angle displacement	-2147483647 2147483647	0	Imp	RC
679	Angle displacement reaction time	0 60000	1	ms	RW
680	Actual Impulse Master	-2147483647 2147483647		Imp	R
681	Actual Impulse Slave	-2147483647 2147483647		Imp	R
682	Slave Speed Calibration	0 32767		rpm	R
683	Leading Speed	-1000,0 1000,0		rpm	R
684	Position window (Ini)	1 1000	10	Imp	RW
685	Position maximum speed (Ini)	0,0 1000,0	100,0	rpm	RW
686	P-amplification positioning (Ini)	0 100	0		RW
687	EM-Coupling delay (Ini)	0 60000	0	Imp	RW
688	Master-Slave relation factor (Ini/Z0)	1,00 600,00	1,00		RW

	17: Motorpotentiometer				
ID	ID Name Value-Range Default-Value Unit Acc				Access
690	Digital Motorpoti Selection	0000h 0007h	0000h	[bits]	RW

Selection of the basic motor potentiometer functions.

Bit	Name	Note
0	Motorpoti	Activate motor potentiometer
1	Save Motorpoti value by Power down	When mains voltage OFF
2	Start Motorpoti by Zero	When motor potentiometer ON, value is always zero

	17: Motorpotentiometer				
ID	ID Name Value-Range Default-Value Unit Access				Access
691	Digital Motorpoti Command	0000h 0003h	0000h	[bits]	RW

To control the motor potentiometer.

Bit	Name	Note
0	Motorpoti UP	With active ramp
1	Motorpoti DOWN	With active ramp

17: Motorpotentiometer						
ID	Name	Value-Range	Default-Value	Unit	Access	
692	Digital Motorpoti Status	0000h 0003h		[bits]	R	

To display the motor potentiometer status.

Bit	Name	Note
0	Motorpoti	Motor potentiometer ON
1	Motorpoti UP	With active ramp
2	Motorpoti DOWN	With active ramp
3	Save Motorpoti value by Power down	When mains voltage OFF
4	Start Motorpoti by Zero	When motor potentiometer ON, value is always zero

		17: Motorpotentiometer			
ID	Name	Value-Range	Default-Value	Unit	Access
693	Motorpoti Wert	0,0 Par.101	0,0	rpm	R
694	Motorpoti Grenze oben	0,0 100,0	100,0	%	RW
695	Motorpoti Grenze unten	0,0 100,0	0,0	%	RW

18: Positioning					
ID	Name	Value-Range	Default-Value	Unit	Access
840	Positioning Control	0000h FFFFh	0000h	[bits]	RW

Controlling various positioning tasks.

Bit	Name	Note
0	Enable positioning	
1	Definie Pos Direction	The preset Forwards direction of rotation from Par. 553 Bit 2 is read using the Pulse command.
2	Goto First Position	Drive travels on into position set in Par.847
	Goto Start Position	Drives moves back into the Start position.
4	Select Break Curve Linear	Drive brakes linearly in the target position
5	Select Break Curve Elliptic	Drive brakes in the target position in an S-curve shape.
6	Reset Position	Position meter is reset to zero.
7	Positions Correction near PosWindow	Deviation due to drag error – position screen is correction.
8	Correct Positioning Error	Drive is only positioned in one direction; with every Reset, drive travels the same route if Bit 2 is statically pending.
9	Enable Resolution Encoder Pulses x 4	Encoder impulses are evaluated four times
10	Cyclic positioning	Drive loops between 2 positions.
11		
12		
13	Change Counter Direction	Position meter runs in opposite direction.
14		
15		

	18: Positioning						
ID	Name	Value-Range	Default-Value	Unit	Access		
841	Positioning Status	0000h FFFFh		[bits]	R		

Displays the current positioning function.

	Name	Note
0	Positioning enabled	
1	Definie Pos Direction	The Pulse command is used to read the set Forward direction of rotation from Par.553 Bit 2.
2	Goto First Position	Drive travels into the preset position (Par.847)
3	Goto Start Position	Drive returns to Start position.
4		
5		
6	Reset Position	Position meter is reset to zero.
7		
8	Position not OK	Drive is located outside the position window.
9		
10	Cyclic positioning	Drive loops between 2 positions.
11	Position OK	Drive located within the position window.
12		
13		
14	New Ref Position	A change in the reference position has occurred during operation
15	New Ref PosSTActPos	The reference position was reduced during operation

	18: Positioning					
ID	Name	Value-Range	Default-Value	Unit	Access	
842	Maximum reference position	0 2147483647	0	Imp	RW	
843	Position window	1 1000	10	Imp	RW	
844	Position maximum speed	0,0 Par.75	100,0	rpm	RW	
845	P-amplification for positioning	0 100	80		RW	
846	Speed Min_Threshold	0,0 Par.75	100,0	rpm	RW	

	18: Positioning						
ID	Name	Value-Range	Default-Value	Unit	Access		
847	Reference position	0 2147483647	0	Imp	RW		
848	Adjust brake curve time	0,0 600,0	0,2	S	RW		
849	Actual reference position	-2147483647 2147483647		Imp	R		
850	Actual position	-2147483647 2147483647		Imp	R		
851	Actual position difference	-2147483647 2147483647		Imp	R		
852	P-amplification near pos. window	0 100	0		RW		
853	Zero reference position	-2147483647 2147483647	0	Imp	RW		

20: Brake Systems						
ID	Name	Value-Range	Default-Value	Unit	Access	
860	Brake System Control	0000h 0003h	0000h		RW	

Bit	Name	Note
0	Enable Brake System	Activated control of brake by drive. Caution! Digital output Terminal 13 is reserved for addressing the brake. Other interlinks to Terminal 13 (Par.210 Bit 9) have no function.
	Brake System with Feedback	Acknowledge contact integrated in controls

20: Brake Systems						
ID	Name	Value-Range	Default-Value	Unit	Access	
861	Brake System Status	0000h 001Fh			R	

Bit	Name	Note
0	Brake System Enabled	Braking system is active
	Brake System with Feedback	Brake equipped with Feedback contact
2	Brake Feedback Signal	Pending (Brake bled). Feedback must be linked with this Bit via the digital input and SPC function.
3	Brake loosened	Brake is basically addressed with this Bit via relay output terminal 13. Other interlinks to Terminal 13 (Par.210 Bit 9) have no function.
4	Brake Feedback Signal Erro	Addressing of brake and feedback do not match! Drive is set to Holding function until regulator is blocked and Reset has been performed!
5	Brake leaded Decleration	Controlled run-down is activated automatically

	20: Brake Systems					
ID	Name	Value-Range	Default-Value	Unit	Access	
862	Brake Delay start time	0 60000	0	ms	RW	
863	Brake Delay stop time	0 60000	0	ms	RW	

21: Keypad PG4000					
ID	Name	Value-Range	Default-Value	Unit	Access
700	menu_control	0000h 0011h	0000h		RW

Bit	Name	Function
0	Inhibit Err-/Warn Messages	Disable error and warning messages on the Keypad
13		
4	Reset GetText	Reset text buffer

	21: Keypad PG4000					
ID	Name	Value-Range	Default-Value	Unit	Access	
701	pg4000_timeout	1 5000	100	ms	RW	
702	keypad_delay_init	1 1000	10		RW	
703	keypad_delay_repeat	1 1000	2		RW	

	21: Keypad PG4000						
ID	Name	Value-Range	Default-Value	Unit	Access		
704	sercom_protocol	0 2	0		RW		
705	Menu.refresh_cycle_time	0 2000	200	ms	RW		
706	Menu-Language	[00] English [01] Deutsch	[00] english		RW		
720	KEYS_Bitmap	0000h 003Fh	0000h	[bits]	R		
721	keypad_run	0000h 003Fh	0000h	[bits]	R		
722	KEYS_Counter[0]	0 256	0		R		
723	KEYS_Counter[1]	0 256	0		R		
724	KEYS_Counter[2]	0 256	0		R		
725	KEYS_Counter[3]	0 256	0		R		
726	KEYS_Counter[4]	0 256	0		R		
727	KEYS_Counter[5]	0 256	0		R		

22: Error Log					
ID	Name	Value-Range	Default-Value	Unit	Access
800	errlog_ctrl	0000h F331h	0000h		RW

Bit	Name	Function
0	Suspend Log	Stop recording
1	-	
2	-	
3	-	
4	No WrapAround	Disable ring buffer (no overwriting of old entries)
5	Reverse Order	Reverse order sequence of Entry Selector
6	-	
7	-	
8	Clear History	Delete Logbook
9	Reset History	Reset Logbook
1015	-	

22: Error Log					
ID	Name	Value-Range	Default-Value	Unit	Access
801	errlog status	0000h 0011h	h		R

Bit	Name	Function
0	Error active	Error status is active
13		
4	Hist_limit_reached	Error Logbook is full

	22: Error Log					
ID	Name	Value-Range	Default-Value	Unit	Access	
802	errlog_eep_config.n_errors	0 100			R	
803	errlog_selector_idx	0 99			R	
804	errlog_selector	-100 100	0		RW	
805	errlog_selector_accepted	-100 100			R	
806	errlog_selected_logitem.time	2000-00-00T00:00:00 2063-15-31T31:63:63			R	
807	errlog_selected_logitem.error	0000h FFFFh	h	[bits]	R	
808	errlog_selected_logitem.xerror	0000h FFFFh	h	[bits]	R	
813	errlog_eep_config.last_idx	-1 100			R	
814	errlog_act_errors	0000h FFFFh	h	[bits]	R	
815	errlog_act_errors_mask	0000h FFFFh	FFFFh	[bits]	RW	
816	errlog_act_errors_DBG	0000h FFFFh	0000h	[bits]	R	
817	errlog_eep_errors_read	0 100			R	
818	errlog_eep_errors_write	0 100		•	R	

	22: Error Log					
ID Name Value-Range Default-Value Unit Acc				Access		
819	errlog_time_now	2000-00-00T00:00:00 2063-15-31T31:63:63			R	

Current system time of regulator in T32 format

T32 Time Format

Timestamps are saved in the Error Logbook in a compact double word format. The structure of the bit field is as follows:

	T32 Time Format – Bit Field Description				
Offset	N Bits	Name	Value Range		
0	6	Seconds	(0 59)		
6	6	Minutes	(0 59)		
12	4	Month	(0 11)		
16	5	Hour	(0 23)		
21	5	Day	(1 31)		
27	6	Years since 2000	(0 63)		

A time range from 2000-00-00T00:00:00 yo 2063-15-31T23:59:59 can therefore be displayed with this.

	23: Trace				
ID	Name	Value-Range	Default-Value	Unit	Access
1000 trace command		0000h 0037h	0000h	[bits]	RW

Bit	Name	Function
0	Start Now	Start Trace
1	Start On Trigger	Start Trace including Trigger condition
2	Run Idle	Activate Non-Real-time Trace
3	_	-
4	Cancel	Cancel current Trace
5	Reset	Cancel current Trace and reset error/status flags
615		

	23: Trace				
ID	Name	Value-Range	Default-Value	Unit	Access
1001	trace status	0000h F133h	h	[bits]	R

Bit	Name	Function
0	Trace Running	Trace is currently active
1	Idle Running	Idle-Trace (Polling Mode) is active
2		
3		
4	Trace done	Trace is completed
5	Trigger active	Trigger condition is currently fulfilled
6		
7		
8	Trace N/A	Trace function is not available
9		
10		
11		
12	Err#TrigParam	Error: Invalid Trigger Parameter [1011]
13	Err#BufferOvrun	Error: Trace buffer overflow
14	Err#BankSel	Error: Invalid Trace Bank Selector [1040]
15	Err#ChSize	Error: Maximum size of all Trace channels exceeded

	23: Trace				
ID	Name	Value-Range	Default-Value	Unit	Access
1010	trigger type	[00] > v (immediate) [07] Bit=0 (on edge)	[04] Bit=1 (sofort)	[bits]	

Bit	Name	Comments
0	> v (immediate)	Trigger remains active until the comparison value is exceeded
1	< v (immediate)	remains active until the comparison value cannot be met
2	> v (on edge)	is currently active, as soon as the comparison value is exceeded
3	< v (on edge)	is currently active, as soon as the comparison value cannot be met
4	Bit=1 (immediate)	active as long as all the Bits set in the reference value are present in the Trigger
		parameters
5	Bit=0 (immediate)	active as long as all the Bits set in the reference value are 0 within the Trigger parameters
6	Bit=1 (on edge)	will become active once all the Bits set in the reference value are 1 in the Trigger
U		parameters
7	Bit=0 (on edge)	will become active once all the Bits set in the reference value are 0 in the Trigger
'		parameters

Reference value: (Par.1013)Comparison value: (Par.1014)

	23: Trace					
ID	Name	Value-Range	Default-Value	Unit	Access	
1011	trigger parameter id	0 4294967295	560		RW	
1012	trigger parameter decimals	-1 10	0		RW	
1013	trigger compare value	-1000000 1000000	0		RW	
1014	trigger actual value	-1000000 1000000			R	
1015	trigger time-stamp	0 4294967295			R	
1020	sample dilation factor	1 10000	1		RW	
1021	sample time tick	0,000 100000000,000		us	R	
1022	sample time period	0,000 100000000,000		us	R	
1023	trace time total	0,000 100000000,000		ms	R	
1024	sample size	0 16		В	R	
1025	n sample buffer size	0 65535	2048	W	R	
1026	n samples available	0 65535			R	
1027	trace sample running	0 65535			R	
1030	param ch #1	0 4294967295	0		RW	
1031	param ch #2	0 4294967295	0		RW	
1032	param ch #3	0 4294967295	0		RW	
1033	param ch #4	0 4294967295	0		RW	
1034	param ch #5	0 4294967295	0		RW	
1035	param ch #6	0 4294967295	0		RW	
1036	param ch #7	0 4294967295	0		RW	
1037	param ch #8	0 4294967295	0		RW	
1040	sample bank select	-1 65535	0		RW	
	sample act time-stamp	0 4294967295		us	R	
1042	sample value #1	0 4294967295			R	
1043	sample value #2	0 4294967295			R	
1044	sample value #3	0 4294967295			R	
1045	sample value #4	0 4294967295			R	
1046	sample value #5	0 4294967295			R	
	sample value #6	0 4294967295			R	
1048	sample value #7	0 4294967295			R	
1049	sample value #8	0 4294967295			R	

Anexo 2: PG4000

Valores efectivos

Tecla	Acción
	Selección del valor efectivo anterior
	Selección del valor efectivo siguiente
—	Cambio: Visualización de Barras/Valor
→	Cambio: Visualización de Barras/Valor
4	
M	>> cambiar al Menú principal

Menú principal

Haupt-Menu
>Akt Werte
Steuerung
Parameter
[...]
Speicher
Fehler Menu

Tecla	Acción
	Selección de Menú hacia arriba
•	Selección de Menú hacia abajo
←	
-	
4	>> Cambia al sub-menú elegido
M	>> cambia al Menú de valores efectivos

Submenús:

Comando

Tecla	Acción
1	N-Valor teórico aumentarlo
•	N- Valor teórico disminuirlo
←	Cursor hacia la izquierda (aumentar los decimales)

→	(a) Cursor hacia la derecha (disminuir los decimales)(b) Cuando los decimales están ya en 1: Regreso en la dirección de giro al valor teórico!
4	(a) Confirmar valor teórico(b) Arrancar
M	(a) Interrumpir Entrada de valor teórico(b) Parar(c) Abandonar comando (>> Menú principal)

Parámetros

Selección de grupos

Los parámetros en la tracción universal están divididos en varios grupos.

Sobre el teclado numérico elija en primer lugar el grupo y ábralo para poder ver los parámetros allí contenidos y en caso necesario cambiarlos.

Tecla	Acción
	Un grupo más arriba (mín. Grupo 01)
	Un grupo más abajo (hasta el número máximo de grupos)
←	
4	Abrir grupo
M	Abandonar Menú >> Menú principal)

Selección de parámetros

Dentro de un grupo, las teclas de flechas arriba/abajo sirven para la selección de parámetros. Con las teclasde flechas derecha/ izquierda es posible en algunos parámetros obtener una representación alternativa del valor del parámetro (por ej. palabras comando pueden ser representadas como campo Bit o hexadecimal). El cambio de los valores de los parámetros se activa con la tecla ENTER.

Cambiar los valores de parámetros

Tecla	Acción		
1			
	N- Valor teórico disminuirlo		

n-SET 0=	←	Cursor hacia la izquierda (aumentar los decimales)
n-ACT 1000> I-ACT 0.00 = Start	→	(c) Cursor hacia la derecha (disminuir los decimales)(d) Cuando los decimales están ya en 1: Regreso en la dirección de giro al valor teórico!
n-SET 100>	4	(a) Confirmar valor teórico(b) Arrancar
n-ACT 1000> I-ACT 0.00 Stop >	M	(a) Interrumpir Entrada de valor teórico(b) Parar(c) Abandonar comando (>> Menú principal)

Secuencia (Ejemplo):

Trabajar sobre el parámetro "Máx N° de revoluciones" con el parámetro ID 101 en el Grupo 05:

- a) El cursor está en la posición 100°
- b) La flecha hacia arriba aumenta la posición 100°
- c) La flecha hacia la derecha desliza el cursor hacia la derecha sobre la posición 10° del valor
- d) La flecha hacia abajo disminuye el valor de a 10

El valor será aceptado con la tecla ENTER.

Archivo

El Menú archivo ofrece las siguientes funciones:

- Archivar
 El estado actual de los parámetros será almacenado en el regulador.
- Cargar
 Los parámetros almacenados por último serán cargados.

- Drv >> SMC
 El estado actual de los parámetros se almacenarán externamente en una Smartcard
- SMC >> Drv Los parámetros almacenados por último serán cargados de la Smartcard.

Menú Error

El menú Error ofrece las siguientes funciones:

- Error Rst
 Borra el estado actual de error
- Error act.
 Error actual activo
- Error Log
 Almacena error

