Localizing Moments in Video with Natural Language

Anusha Prakash Anuva Agarwal

Bhavya Karki Pravalika Avvaru

Date : May 2nd 2018

Carnegie Mellon University
School of Computer Science

Outline

Carnegie Mellon

- Problem statement
- Recap
- Proposal
- Experiments and Analysis
- Important Takeaways
- References
- Q & A

PROBLEM STATEMENT

When does a particular activity occur in a video?

Problem statement: Retrieve a specific temporal segment, or moment from a video given a natural language text description.

RECAP..... (Dataset - DiDeMo)

- Distinct Describable Moments (DiDeMo)
- Dataset consists over 10,000 videos
- 25-30 seconds long personal videos randomly selected from Flickr
- Over 40,000 localized text descriptions (3-5 pairs per video)
- Represent a diverse set of real-world videos like pets, concerts, sports
- Higher percentage of temporal indicators, spatial indicators and verbs
- Consist of both eventful and uneventful segments in the video

RECAP.....(Videos + Queries)

Carnegie Mellon

A girl stands up

Camera zooms in

White car passes by

Distribution of segments marked in DiDeMo. Moments tend to be short and occur towards the beginning of videos

Carnegie Mellon

[Hendricks et al, 2017]

RECAP.....(Baseline Architecture)

Model (Moment Conext Network):

- Joint Video-Language Model Shared Embedding Space
- Glove Embedding
- LSTM
- CNN Layers (Local and Global)
- Fully Connected Layer
- Ranking Loss
- Distance Measures (Euclidean)

Features:

- Temporal Endpoint Features When a moment occurs in a video
- Low level
 - Optical flow
- High level
 - RGB VGG Net FC7
- Global Video Features Provides Temporal Context
- Late Fusion

RECAP.....(Evaluation Metrics)

- Rank@1
- Rank@5
- Mean Intersection over Union (mIoU)
- Baseline: Moment Frequency Prior Tendency to select short
 moments towards the beginning of videos. It selects moments which
 correspond to gifs most frequently described by annotators.

Moment Frequency Prior	19.40	66.38	26.65
Model	Rank@1	Rank@5	mloU

Proposal

Carnegie Mellon

- ✓ Baseline
- ✓ Language Embedding
- ✓ Language Model
- ✓ Joint-embedding space distance metrics
- ✓ Visual Features
- ✓ Fusion Techniques
- ✓ Bilinear transforms using Bi(symmetrical) DNNs
- ✓ To address up-scaling the vocabulary part, we planned to pre-train on Moments in Time dataset and select relevant actions.

Kinetics

- ✓ Audio Features SoundNet
- ✓ I3D Activity Recognition
- ✓ Image Captioning

Carnegie Mellon

Experiments And Analysis

Baseline Experiments

Lambda - 0.5

No_of_epochs - 30,000

Features - LSTM-Fusion + global + tef (MCN)

Model	Average IOU	AverageRank@1	AverageRank@5
Reproduced Baseline	0.407195	0.277861	0.781841
Baseline	0.4108	0.2810	0.7821

Language Embedding Space

- Approach: 200d GloVE 6B instead of 300d GloVE 6B
- Motivation: Vocab small, compact embedding than sparse embedding
- Results: 200d GloVE 6B performs slightly better than 300d GloVE 6B

Model	Avg IOU	Avg Rank@1	Avg Rank@5
200 D	0.389062	0.2628	0.762746
300 D	0.386642	0.261378	0.772196

Language Model

Carnegie Mellon

Lambda - 0.5

No_of_epochs - 10,000

Features - LSTM-Fusion + global + tef (MCN)

Model	Average IOU	AverageRank@1	AverageRank@5
RNN for Language	0.253292	0.191246	0.262373
BiLSTM for Language	0.238544	0.285571	0.723228
LSTM for Language	0.386642	0.261378	0.772196

Why LSTM is better than the rest ??

RNN - Vanishing gradients, does not learn sequences well

BiLSTM - Reversing of inputs to LSTM layers hinders sequence of moments - loss of temporal context

LSTM: Handles problems incurred by both above models

Example:

a person holds up two fingers a man is counting on four fingers man counts two again

Common Embedding Space - Distance Metrics

Lambda - 0.5

No_of_epochs - 10,000

Features - LSTM-Fusion + global + tef (MCN)

Model	Avg IOU	AvgRank@1	AvgRank@5
Dot product	0.39201	0.26719	0.78121
Element-wise	0.373324	0.26013	0.73450
Euclidean	0.386642	0.261378	0.772196

Feature Comparisons

Carnegie Mellon

A dog looks at the camera and jumps at it.

RGB

Flow Fusion

Brown dog runs at the camera.

local+global

We first see people.

local+global+tef

local+global

Visual Features

Carnegie Mellon

Audio Features - SoundNet - Conv5 Pool

Man lifts hand up before playing instrument

Predictions

Ground Truth - [0, 0] - 0-5 seconds

RGB + Flow - [1, 1] - 5-10 seconds

SoundNet - [0, 0] - 0-5 seconds

Old man sings in front of family

The shadow of the camera man can be seen

Audio vs Visual Features

WHY DID AUDIO FAIL ???

- Very few queries contain sound words
- Most queries deal with camera, spatial and temporal words
- No audio distinction between moments
- "Camera focuses on sign saying 'zombie disco disaster'"

Multimodal Fusion Technique - BiDNN

13D - Two-Stream Inflated 3D Convnet

- Trained on Kinetics Dataset
- 400 human action classes, 400 clips per class

e) Two-Stream 3D-ConvNet

Inflated Inception-V1

Inception Module (Inc.)

I3D - Activity Recognition

400 human activity classes - tossing coin, yawning, blowing out candles, etc

Activity Class: Climbing Ladder

Sample Queries:

- > Small boy tries to climb ladder
- > Little boy climbs green ladder
- > Boy holds onto ladder
- > A child in the playground holds the blue green ladder

Model	Avg IOU	AvgRank@1	AvgRank@5
I3D (Sent2Vec)	0.39025	0.35978	0.94576
I3D Feature (1024d)	0.390741	0.361905	0.944974
I3D Prediction (400d)	0.3806	0.352381	0.939153
Baseline (6 moments)	0.389771	0.359259	0.945767

Image Captioning - Future Work (Ongoing)

Activity recognition drawback:

- -> class names are short phrases
- -> human activities

Image captioning: Longer descriptions + generate any description

- A little boy climbs a small ladder to climb up the slide.
- The blue green ladder leads up the slide
- A small child in the playground climbs up the ladder to the slide

Match with query and calculate best match score

IMPORTANT TAKEAWAYS

- 1. Understanding the dataset and exploring dataset
- 2. Establishing baseline is extremely important
- 3. Beating baseline is not the sole objective
- 4. Exploring different visual and audio features
- 5. Multimodal fusion techniques beyond concat and late fusion
- Concepts like object identification, activity recognition, image captioning to learn models better.
- 7. Research and Networking
- 8. Time and resource management
- 9. Team dynamics

References

- Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille, and Kevin Murphy. Generation and comprehension of unambiguous object descriptions. CoRR, abs/1511.02283, 2015.
- Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, Andrew Zisserman. The Kinetics Human Action Video Dataset, arXiv:1705.06950, May 2017
- Vedran Vukotić, Christian Raymond, Guillaume Gravier. Multimodal and Crossmodal Representation Learning from Textual and Visual Features with Bidirectional Deep Neural Networks for Video Hyperlinking. ACM Multimedia 2016 Workshop: (iV&L-MM'16), Oct 2016, Amsterdam, Netherlands.
- Vinyals, O., Toshev, A., Bengio, S. & Erhan, D. Show and tell: a neural image caption generator. In *Proc. International Conference on Machine Learning* http://arxiv.org/abs/1502.03044 (2014).

Carnegie Mellon

