Surface	Standard Equation	Typical Cross-Sections	Features
Ellipsoid	$x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$	z=k: ellipse x=k, y=k: ellipse	Closed; intercepts ±a, ±b, ±c
Hyperboloid (1 sheet)	$x^2/a^2 + y^2/b^2 - z^2/c^2 = 1$	z=k: ellipse x=k, y=k: hyperbola	Connected hourglass; doubly ruled
Hyperboloid (2 sheets)	$-x^2/a^2 - y^2/b^2 + z^2/c^2 = 1$	z=k (k >c): ellipse x=k, y=k: hyperbola	Two disjoint caps
Elliptic Cone	$x^2/a^2 + y^2/b^2 - z^2/c^2 = 0$	z=k≠0: ellipse x=k, y=k: intersecting lines	Vertex at origin; ruled
Elliptic Paraboloid	$z = x^2/a^2 + y^2/b^2$	z=k: ellipse x=k, y=k: parabola	Bowl-shaped; opens ±z
Hyperbolic Paraboloid	$z = x^2/a^2 - y^2/b^2$	z=k: hyperbola x=k, y=k: parabola	Saddle; doubly ruled
Parabolic Cylinder	$y = x^2/a^2$	plane x-y: same parabola	Extends along z
Elliptic Cylinder	$x^2/a^2 + y^2/b^2 = 1$	plane x-y: same ellipse	Cylindrical; zero curvature
Hyperbolic	$x^2/a^2 - y^2/b^2 = 1$	plane x-y: same	Two sheets extending in z