Simulating Point-and-Click Behavior in Implicit Adversarial Environment

박진형, 심규철, 이현우

팀명: VideoHighlight

지도교수: 이병주 교수님

03 연구 방법

01 연구 소개

04 연구 결과

02 기존 연구와의 차별점

05 결론

Point-and-Click Behavior Modeling

- → User의 Point-and-Click Task 수행과정을 실제 인간과 유사하도록 수학적으로 모델링
- → Point-and-Click Policy of Action를 최적화

• Simulating Point-and-Click Behavior in Implicit Adversarial Environments

(1) Adversarial Agent가 존재하는 실제 환경을 모델링

Single Agent

Multiple Agent

(Ours)

(2) Human Factor 고려

연구 방법

(1) 적대적 강화학습 환경 구축

① Environment

- 두 agent는 서로 같은 target을 생성하는 서로 다른 environment에서 학습
- 각 agent가 target을 취득(클릭)하는데 걸리는 시간, 클릭 성공여부 등을 측정

② Reward

→ opponent가 target을 클릭하는 데 걸린 시간 및 클릭 성공 여부를 함께 고려해서 **다시 계산**한 최종 Reward를 기준으로 각 agent의 policy를 업데이트

② Reward = Click Reward – Motor Effort

Case	Click Reward	Motor Effort	Example
Case 1 (Click 시도 이전)	0	$-\sum_{t=t_0+T_p}^{t_0+T_p\dotplus T_h} \left\ \dot{\widehat{\mathbf{v}}}_h[t] \right\ $	_
Case 2 (빠르게 Click 성공)	14	$-\sum_{t=t_0+T_p}^{t_0+T_p\dotplus T_h} \left\ \dot{\widehat{\mathbf{v}}}_h[t] \right\ $	상대보다 먼저 클릭해서 성공한 경우, 상대가 먼저 실패한 후에 내가 성공한 경우
Case 3 (늦게 Click 성공)	9	$-\sum_{t=t_0+T_p}^{t_0+T_p\dotplus T_h} \left\ \dot{\widehat{\mathbf{v}}}_h[t] \right\ $	상대가 먼저 성공한 이후에 내가 성공한 경우
Case 4 (Click Fail)	-1	$-\sum_{t=t_0+T_p}^{t_0+T_p \dotplus T_h} \left\ \dot{\hat{\mathbf{v}}}_h[t] \right\ $	시점에 관계없이 클릭에 실패한 경우

③ Episode Termination = 두 Agent 가 모두 Click 기회를 소진하는 경우

Episode 종료 시점: 4s

- → 두 Agent가 모두 기본적으로 Click Success를 목표로 하도록 설정
- → Motor Effort 만을 줄이는 방향으로 잘못 수렴되지 않도록 설정

연구 결과

- (1) 동일한 Agent 간의 적대적 강화학습 결과
- (2) 서로 다른 Agent 간의 적대적 강화학습 결과

Human Factor

- Human Factor
 - → 인간의 특성을 state에 반영하기 위한 변수
 - → 5개의 Submodule, 12개의 Factor들로 구성

Variable	Description	Value	Ref	Module
T_{p}	Planning time interval	0.1 s	[11]	Motor control
n_v	Motor noise constant (parallel)	0.2	[44]	Upper limb
n_p	Motor noise constant (perpendicular)	0.02	[44]	Upper limb
l_{se}	Shoulder-to-elbow length	25.7 cm	[40]	Upper limb
l_{ew}	Elbow-to-wrist length	25.7 cm	[54]	Upper limb
l_{wh}	Wrist-to-hand length	6.43 cm	[40]	Upper limb
σ_v	Width of likelihood of visual speed perception	0.15	[60]	Visual perception
$f_{gain}()$	Mouse acceleration function	OS X 10.12	[14]	Mouse
c_{σ}	Precision of internal clock	0.09015	[41, 53]	Click action
c_{μ}	Implicit aim point	0.185	[41, 53]	Click action
ν	Drift rate	19.931	[41, 53]	Click action
δ	Visual encoding precision limit	0.399	[41, 53]	Click action

실험 1. 서로 동일한 Human Factor 값을 가지는 Agent 사이의 경쟁적 강화학습

Variable	Description	고정	Value	Ref	Module
T_{p}	Planning time interval	т.9	0.1 s	[11]	Motor control
n_v	Motor noise constant (parallel)		0.2	[44]	Upper limb
n_p	Motor noise constant (perpendicular))	0.02	[44]	Upper limb
l_{se}	Shoulder-to-elbow length		25.7 cm	[40]	Upper limb
l_{ew}	Elbow-to-wrist length		25.7 cm	[54]	Upper limb
l_{wh}	Wrist-to-hand length		6.43 cm	[40]	Upper limb
σ_v	Width of likelihood of visual speed perception		0.15	[60]	Visual perception
$f_{gain}()$	Mouse acceleration function		OS X 10.12	[14]	Mouse
c_{σ}	Precision of internal clock		0.09015	[41, 53]	Click action
c_{μ}	Implicit aim point		0.185	[41, 53]	Click action
ν	Drift rate		19.931	[41, 53]	Click action
δ	Visual encoding precision limit		0.399	[41, 53]	Click action

	기존 연구 (Do et al.)	Ours	
Human Factor	동일한 값 사용		
학습방식	강화학습	적대적 강화학습	

통제변인

→ 적대적 강화학습을 사용하지 않았던 기존 연구와 동일한 Human Factor 값을 사용

조작변인

적대적 강화학습 이 Policy

종속변인

변화에 주는 영향을 검증하는 실험

Click Failure Rate

• 두 Agent 모두 0.4로 수렴

Agent 1
Agent 2

Model Comparison & Evaluation

Non-Adversarial Model (Do et al, 2021)

- → 적대적 강화학습이 Policy 변화에 주는 영향 평가
 - ① **정성적 비교**: Policy 시각화
 - ② **정량적 비교:** Trial Completion Time, Click Failure Rate 비교

(Agent가 클릭을 "시도"하는데 까지 걸리는 시간)

(클릭 실패율)

① **정성적 비교**: Policy 시각화

Adversarial Model (Ours)

Non-Adversarial Model (Do et al.)

① **정성적 비교**: Policy 시각화

Target Trajectory

- → Target과 멀리 있을 때 두 모델의 Policy는 비슷한 양상
- → 적대적 모델은 Target 근처로 접근 시 짧은 Prediction-Horizon을 기준으로 빨리 클릭을 시도하는 Policy를 보임.
- → 반면, 기존 모델은 Target의 이동 경로를 더 먼 미래까지 고려해서 클릭을 시도하는 Policy를 보임

② 정량적 분석

→ Adversarial Model이 Non-Adversarial Model에 비해 Trial Completion Time이 짧은 경향을 보임

③ 결론

- → 두 모델의 초기 Policy는 비슷
- → Target과 가까워졌을 때 Adversarial Model은 짧은 Prediction Horizon을 가지고 빨리 클릭해버리는 Policy
- → Adversarial Model의 Non-Adversarial Model에 비해 Trial Completion Time이 짧음
- → 반면, Non-Adversarial Model은 Target의 이동 경로를 더 먼 미래까지 고려해서 클릭을 시도하는 Policy를 보임

연구 결과

- (1) 동일한 Agent 간의 적대적 강화학습 결과
- (2) 서로 다른 Agent 간의 적대적 강화학습 결과

(2) 적대적 강화학습 환경 구축 (개별)

실험 2. 서로 다른 Human Factor 값을 가지는 Agent 사이의 경쟁적 강화학습

Agent 1

(Improved **Decision–Making Skill** Agent)

변수		Value	Module	
c_{μ}	Precision of internal clock	0.185 \(\rightarrow 0.3	Click action	
c_{σ}	Implicit aim point	0.09015 → 0.06	Click action	
ν	Drift rate	19.931 → 40	Click action	
δ	Visual encoding precision limit	0.399 → 0.25	Click action	

Agent 2

(Improved **Motor Execution** Agent)

변수		Value	Module
n_v	Motor noise constant (parallel)	0.2 → 0.24	Upper limb
n_p	Motor noise constant (perpendicular)	0.02 → 0.024	Upper limb
σ_v	Width of likelihood of visual speed perception	0.15 → 0.18	Visual Perception

- 1주간 약 1.8M개 Episode 학습
- Loss는 단조 감소, Q-Value와 Reward는 단조 중가하는 바람직한 양상을 보임
- Improved Decision-Making Skill Agent가 Reward를 더 빠르게 누적하는 양상을 보임

Click Failure Rate

• Improved Decision-Making Skill Agent 가 더 낮은 값(0.35)으로 수렴

Model Comparison & Evaluation

Improved **Decision-Making Skill** Agent

Improved **Motor Execution** Agent

- → Point-and-Click Task를 수행하는 데 영향력이 더 큰 Human Factor를 확인
 - ① **정성적 비교**: Policy 시각화
 - ② 정량적 비교: Trial Completion Time, Click Failure Rate 비교

① **정성적 비교**: Policy 시각화

Improved Decision-Making Skill Agent

Improved Motor Execution Agent

① **정성적 비교**: Policy 시각화

→ Improved **Decision-Making Skill** Agent: Target의 **현재 위치로 직진**

→ Improved **Motor Execution** Agent : 먼 미래까지 (boundary에서 튕기는 것까지) 고려해서 Target에 대한

상대속도를 0으로 맞추려고 곡선으로 접근하는 경향

Target Trajectory

② 정량적 분석 및 결론

- → Improved Decision-Making Skill Agent가 Trial Completion Time과 Click Failure Rate가 모두 작음
 - = 더 빠르고 정확하게 클릭
 - = Point-and-Click Task 수행 시 Decision-Making Skill이 큰 영향을 줌

(1) 적대적 모델의 Optimal Policy는 기존 모델의 Optimal Policy와 정성적, 정량적인 차이 존재

- Trial Completion Time을 낮추는 방향으로 최적화
- 실제 적대적 환경에서의 Optimal Policy / 전략을 시사

- (2) Point-and-Click Task 수행 시 Decision-Making Skill의 중요성을 강화학습으로 증명
 - E. Park, B. Lee. 2020. An Intermittent Click Planning Model
 - Gamer Group VS Non-Gamer Group: Decision-Making Skill Related Free Parameter 차이 존재
- (3) 프로게이머 등을 위한 가이드라인, 인간과 겨루는 Point-and-Click Agent 개발 등에 폭넓게 활용