Bass Exercises

18.14 Let A be the set of real-valued continuous functions on [0,1] such that

$$\int_0^{1/2} f(x) dx - \int_{1/2}^1 f(x) dx = 1.$$

Prove that A is a closed convex subset of C([0,1]), but there does not exist $f \in A$ such that

$$||f|| = \inf_{g \in A} ||g||.$$

Solution Let $\{f_n\} \subseteq A$ such that $f_n \to f$ in C([0,1]), i.e., $f_n \to f$ uniformly. Then

$$1 = \int_0^{1/2} f_n(x) dx - \int_{1/2}^1 f_n(x) dx \xrightarrow{n \to \infty} \int_0^{1/2} f(x) dx - \int_{1/2}^1 f(x) dx,$$

so $f \in A$, hence A is closed.

Now let $f, g \in A$ and $t \in [0, 1]$. Then by linearity of integration,

$$\int_0^{1/2} t f(x) + (1 - t)g(x) dx - \int_{1/2}^1 t f(x) + (1 - t)g(x) dx$$

$$= t \left(\int_0^{1/2} f(x) dx - \int_{1/2}^1 f(x) dx \right) + (1 - t) \left(\int_0^{1/2} g(x) dx - \int_{1/2}^1 g(x) dx \right)$$

$$= t + (1 - t)$$

$$= 1,$$

so $tf + (1-t)g \in A$, so A is convex.

For $f \in A$, notice that

$$1 \le \int_0^{1/2} |f(x)| \, \mathrm{d}x + \int_{1/2}^0 |f(x)| \, \mathrm{d}x$$
$$\le \frac{1}{2} ||f|| + \frac{1}{2} ||f||$$
$$= ||f||.$$

We claim that 1 is the infimum. Indeed, we can use a function that looks like the following:

If the horizontal segments sit at 1+1/n and 1-1/n, respectively, then we can adjust the slope of the middle segment until the function is in A.

Now let $f \in A$ with ||f|| = 1. We consider its behavior at 1/2:

Suppose $f(1/2) \le 1/2$. By continuity, there exists $\delta > 0$ so that $f(x) \le 3/4$ on $[1/2 - \delta, 1/2]$. Then

$$\int_{0}^{1/2} f(x) dx - \int_{1/2}^{1} f(x) dx = \int_{0}^{1/2 - \delta} f(x) dx + \int_{1/2 - \delta}^{1/2} f(x) dx - \int_{1/2}^{1} f(x) dx$$

$$\leq \left(\frac{1}{2} - \delta\right) \|f\| + \frac{3}{4}\delta + \frac{1}{2} \|f\|$$

$$= 1 - \frac{\delta}{4}$$

$$< 1.$$

If $f(1/2) \ge -1/2$, then we can consider -f, which satisfies $-f(1/2) \le -1/2 \le 1/2$, and apply the same argument.

At least one of these two scenarios must occur, which shows that if ||f|| = 1, then $f \notin A$. Thus, no function with ||f|| = 1 is in A.

Folland Exercises

3.18 Prove Proposition 3.13c.

Solution We wish to show that $L^1(\nu) = L^1(|\nu|)$ and that if $f \in L^1(\nu)$, then $|\int f d\nu| \leq \int |f| d|\nu|$.

We have

$$f \in L^1(\nu) \iff \infty > \int |f| \, \mathrm{d}\nu = \int |f| \, \frac{\mathrm{d}\nu}{\mathrm{d}|\nu|} \, \mathrm{d}|\nu| = \int |f| \, \mathrm{d}|\nu| \iff f \in L^1(|\nu|),$$

since $d\nu/d|\nu| = 1 |\nu|$ -a.e, so the two sets are the same.

Now let $f \in L^1(\nu)$. Then

$$\left| \int f \, \mathrm{d} \nu \right| = \left| \int f \frac{\mathrm{d} \nu}{\mathrm{d} |\nu|} \, \mathrm{d} |\nu| \right| = \left| \int f \, \mathrm{d} |\nu| \right| \le \int |f| \, \mathrm{d} |\nu|.$$

3.20 If ν is a complex measure on (X, \mathcal{M}) and $\nu(X) = |\nu|(X)$, then $\nu = |\nu|$.

Solution Let $E \in \mathcal{M}$ and write $d\nu = f d\mu$, for some $f \in L^1(\mu)$ and positive measure μ , so that $d|\nu| = |f| d\mu$. If we write $f = f_+ - f_-$, our assumption tells us

$$\nu(X) = |\nu|(X) \implies \int f_+ \,\mathrm{d}\mu - \int f_- \,\mathrm{d}\mu = \int f \,\mathrm{d}\mu = \int |f| \,\mathrm{d}\mu = \int f_+ \,\mathrm{d}\mu + \int f_- \,\mathrm{d}\mu.$$

Thus,

$$\int f_{-} \, \mathrm{d}\mu = 0,$$

so $f_- = 0$ μ -a.e, which tells us that f is non-negative μ -a.e, i.e., $f = |f| \mu$ -a.e. Hence, $d\nu = f d\mu = |f| d\mu = d|\nu|$, so $\nu = |\nu|$.

3.21 Let ν be a complex measure on (X, \mathcal{M}) . If $E \in \mathcal{M}$, define

$$\mu_1(E) = \sup \left\{ \sum_{1}^{n} |\nu(E_j)| \mid n \in \mathbb{N}, E_1, \dots, E_n \text{ disjoint, } E = \bigcup_{1}^{n} E_j \right\},$$

$$\mu_3(E) = \sup \left\{ \left| \int_E f \, \mathrm{d}\nu \right| \mid |f| \le 1 \right\}.$$

Then $\mu_1 = \mu_3 = |\nu|$.

Solution Let $E \in \mathcal{M}$.

If we take f = 1, then $|f| \le 1$, so

$$|\nu(E)| = \left| \int_E \mathrm{d}\nu \right|,$$

which shows that $\mu_1 \leq \mu_3$.

Let $\varphi = \sum a_j \chi_{E_j}$ be simple, so that the $E_j \subseteq E$ are disjoint. We also allow one of the a_j to be zero so that we can assume $E = \bigcup E_j$. Then

$$\left| \int_{E} \varphi \, \mathrm{d}\nu \right| = \left| \sum_{j=1}^{n} a_{j}\nu(E_{j}) \right| \leq \sum_{j=1}^{n} |a_{j}| |\nu|(E_{j}) \leq \mu_{1}(E).$$

By approximating any $f \in L^1(\nu)$ with $|f| \leq 1$ from below with simple functions φ_n , monotone convergence gives us

$$\left| \int_{E} f \, d\nu \right| = \lim_{n \to \infty} \left| \int_{E} \varphi_n \, d\nu \right| \le \mu_1(E).$$

Since this holds for any f, we have $\mu_3(E) \leq \mu_1(E)$, so $\mu_1 = \mu_e$.

Now let $f = d\nu/d|\nu|$, which is $1 |\nu|$ -a.e., so by adjusting it on a set of $|\nu|$ -measure zero, we may assume that $|f| \le 1$ everywhere. Then

$$\mu_3(E) = \left| \int_E \frac{\mathrm{d}\nu}{\mathrm{d}|\nu|} \, \mathrm{d}|\nu| \right| = \left| \int_E \mathrm{d}\nu \right| = |\nu(E)| = |\nu|(E),$$

so $\mu_1 = \mu_3 = |\nu|$, as required.

5.48 Suppose that \mathcal{X} is a Banach space.

- a. The norm-closed unit ball $B = \{x \in \mathcal{X} \mid ||x|| \le 1\}$ is also weakly closed.
- b. If $E \subseteq \mathcal{X}$ is bounded (with respect to the norm), so is its weak closure.
- c. If $F \subseteq \mathcal{X}^*$ is bounded (with respect to the norm), so is its weak* closure.
- d. Every weak*-Cauchy sequence in \mathcal{X}^* converges.

Solution a. Notice that

$$B = \bigcap_{f \in \mathcal{X}^*} \{ x \mid |f(x)| \le ||f|| \}.$$

If $x \in B$, then $||x|| \le 1 \implies |f(x)| \le ||f|| ||x|| \le ||f||$, for any $f \in \mathcal{X}^*$. On the other hand, suppose that x is in the right-hand side, but ||x|| > 1. By Hahn-Banach, there exists a linear functional f so that f(x/||x||) = 1 and ||f|| = 1. But

$$|f(x)| = ||x|| \left| f\left(\frac{x}{||x||}\right) \right| = ||x|| ||f|| > ||f||,$$

which is impossible, since x was in the right-hand side. Hence, the two sets are equal, and each set in the intersection is the preimage of a closed set under weakly continuous function, so it is weakly closed. Intersections of weakly closed sets are weakly closed, so B is weakly closed.

- b. By scaling, $B_n := \{x \in \mathcal{X} \mid ||x|| \le n\}$ is also weakly closed. Since E is bounded, there exists $n \ge 1$ so that $E \subseteq B$. Then because B is weakly closed, the weak closure of E is also contained in B, so the weak closure of E is bounded.
- c. By Alaoglu's theorem and the fact that scaling is a homemomorphism, closed balls are weak* compact in \mathcal{X}^* , hence closed, since \mathcal{X} is Hausdorff. Thus, if F is bounded, it is contained in some ball B which is weak* closed, so the weak* closure of F is also contained in B. Hence, F's weak* closure is bounded.
- d. Let $\{f_n\} \subseteq \mathcal{X}^*$ be Cauchy in the weak* topology. From the definition, for all $x \in \mathcal{X}$, we have $|f_n(x) - f_m(x)| \xrightarrow{n \to \infty} 0$. I.e., $\{f_n(x)\}$ is Cauchy in K, which is complete, so f_n converges pointwise to some function f. Since \mathcal{X}^* is a Banach space, it follows that $f \in \mathcal{X}^*$. It's then clear by definition of f that $|f_n(x) - f(x)| \xrightarrow{n \to \infty} 0$ for all x, so $f_n \to f$ in the weak* topology.
- **7.21** Let $\{f_{\alpha}\}_{{\alpha}\in A}$ be a subset of C(X), where X is a compact metric space, and let $\{c_{\alpha}\}_{{\alpha}\in A}$ a family of complex numbers. If for each finite set $B\subseteq A$ there exists $\mu_B\in M(X)$ such that $\|\mu_B\|\leq 1$ and $\int f_{\alpha}\mathrm{d}\mu_B=c_{\alpha}$ for $\alpha\in B$, then there exists $\mu\in M(X)$ such that $\|\mu\|\leq 1$ and $\int f_{\alpha}\mathrm{d}\mu=c_{\alpha}$ for all $\alpha\in A$.

Solution If A is finite, then there is nothing to say, so assume from now on that A is infinite.

By a corollary, because X is compact Hausdorff, we know that $C(X)^* = (X)$.

Since $\|\mu_B\| \leq 1$ for each finite B, it follows that $\|\mu_B\| \leq 1$ in $C(X)^*$ also, so each μ_B is an element of the unit ball in $C(X)^*$. By Banach-Alaoglu, the unit ball is compact.

Consider $\{\mu_B\}_B$. By compactness, these measures admit a subsequence that converges vaguely to a measure μ . Since they converge vaguely, by definition, we have

$$c_{\alpha} = \int f_{\alpha} \, \mathrm{d}\mu_{B} \to \int f_{\alpha} \, \mathrm{d}\mu.$$

Also by compactness, $\|\mu\| \leq 1$.