Ravitashaw Bathla (86369)

$$y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$$

$$\chi[n] = v[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

(b) F	4	-3	- 2	-1	0	1	2	3	4	5	6	7	8
a[n] = V[n] = (0	0	0	0	1	1	1	1	1	1	1	1	1
L=4, y(n)=	0	0	0	0	1/4	2 4	3/4	1	1	1	1	1	1

(d)
$$y[n] = \begin{cases} 0 & m < 0 \\ \frac{1}{L}(n+1) & 0 \le m < L-1 \\ 1 & n \ge L-1 \end{cases}$$

$$Q = \sum_{n=-2}^{6} (7 \delta[n-3] - 7 \delta[n-4]) e^{-j 0.5 \pi n}$$

$$Q_n \text{ will have Value of the than 0 for }$$

$$N = 3 \text{ and } n = 4, \text{ rest all }$$

$$Components \text{ will be zero.}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (3)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi (2)}$$

$$Q = 7 e^{-j 0.5 \pi (2)} - 7 e^{-j 0.5 \pi$$

$$\chi[n] = J[n]$$

h[n]

k	0	1	2	3	4.	}
bk	6	-2	3	0	-2	

(b)

Difference equation,

=
$$65[n] - 25[n-1] + 35[n-2] - 25[n-4]$$

(c)

Leigth of filter, L=5

(0)

Order of filter = M = L-1 = 4

(e)

(next-page-continued)

$$\chi(n) = u(n)$$

$$U(n) = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$$

$$y(n) = \begin{cases} \frac{4}{K=0} \\ \begin{cases} \frac{1}{K} \\ \frac{1}{K=0} \end{cases}$$

$$y(n) = 6u(n) - 2U(n-1) + 3u(n-2) - 2u(n-4)$$

$$y(n) = u(n)$$

 $y(n) = 6u(n) - 2u(n-1) + 3u(n-2) - 2u(n-4)$

4)
$$y[n] = 2x[n] - 3x[n-1] + 2x[n-2]$$
(a)
$$x[n] = \begin{cases} 0 & n < 0 \\ n+1 & n = 0, 1, 2 \\ 5-n & n = 3, 4 \\ 1 & n \ge 5 \end{cases}$$

$$y[0] = 2x[0] - 3x[-1] + 2x[-2]$$

$$= 2(0+1) - 0 + 0 = 2$$

$$y[1] = 2x[1] - 3x[0] + 2x[-1]$$

$$= 2(1+1) - 3(0+1) + 0 = 2(4-3) = 1$$

$$y[2] = 2x[2] - 3x[2] + 2x[0]$$

$$= 2(2+2) - 3(1+1) + 2(0+1) = 6 - 6 + 2 = 2$$

$$y[3] = 2x[3] - 3x[2] + 2x[1]$$

$$= 2(5-3) - 3(2+1) + 2(1+1) = 4 - 9 + 4 = -1$$

$$y[4] = 2x[4] - 3x[3] + 2x[2]$$

$$= 2(5-4) - 3(5-3) + 2(2+1) = 2 - 6 + 6 = 2$$

$$y[5] = 2x[5] - 3x[4] + 2x[3]$$

$$= 2.1 - 3(5-4) + 2(5-3) = 2 - 3 + 4 = 3$$

$$y[6] = 2\pi[6] - 3\pi[5] + 2\pi[4]$$

$$= 2 \cdot 1 - 3 \cdot 1 + 2(5 - 4) = 2 - 3 + 2 = 1$$

$$y[7] = 2\pi[7] - 3\pi[6] + 2\pi[5]$$

$$= 2 \cdot 1 \cdot - 3 \cdot 1 + 2 \cdot 1 = 1$$

Length of $\pi(n) = N_2 - N_1 + 1$ (because of equality)

Support of y(n): $N_1 \leq n \leq N_2 + M$ $N_3 = N_1$ $N_4 = N_2 + M$ $N_4 = N_2 + M$ $N_2 + M - N_1 + 1$ $N_3 = N_1$