Feature Scaling

Feature Scaling is a very important step to pre-process the data set before apply the machine learning algorithm

Context

The motivation before **Feature Scaling** is when we have number multiple Features or Variables p

Feature A	Feature B
5	20000
10	30000
15	25000
20	40000
25	50000

- As you can notice both Features are a huge difference in the range of numbers
- In many machine learning algorithms they will interpret that the **Feature B** in this example have much more impact and will result in a very off results and predictions
- That's why we Feature scale our variable as a way to normalize the values which will results in a much better approximations
 and convergence in the case of Gradient Descent

Feature Scaling Methods

There is mainly two major methods that are used in feature scaling

- 1. Normalization
- 2. Standardization

Normalization

Also Known as *min-max* scaling Same as in **vector normalization** it shifts and scale the values within a range of [0,1] or [-1,1] Following this Formula :

$$X' = rac{X - X_{min}}{X_{max} - X_{min}}$$

- Both X_{max} and X_{min} are the upper and lower bound of the normalization interval, Calculated by taking the maximum and minimum of set **feature column**
- ullet X' is the new calculated value of X o The normalized value of X

Standardization

Also Known as z-score normalization which follows the same formula from the **Standard normal distribution** it transforms linearly the data to have a mean μ of 0 and **Standard Deviation** of 1 Given by the z-score formula :

$$X' = rac{X - \mu}{\sigma}$$

They Key Differences

Normalization	Standardization
Re-scale values to range between 0 and 1	Centers data around the mean and scales to a standard deviation of 1
Useful when the distribution of the data is unknown or not Gaussian	Useful when the distribution of the data is Gaussian (Normal) or unknown
Sensitive to outliers	Less sensitive to outliers
Retains the shape of the original distribution	Changes the shape of the original distribution
May not preserve the relationships between the data points	Preserves the relationships between the data points

Use cases

- Standardization and Normalization are generally preferred for any machine learning algorithm that require Gradient Calculation
- Scaling is not required for **distance-based** and **tree-based** algorithms
- Standardization is preferred when the data follows a Normal Distribution and when there is a lot of outliers in data set
- Normalization is preferred when there is no prior assumption on how the data is distributed