

Практикум з математичного аналізу

для студентів спеціальності "Інженерія програмного забезпечення" факультету комп'ютерних наук та кібернетики

Семестр 1

Ляшко С. І., Аджубей Л. Т., Затула Д. В., Гуляницький А. Л.

Зміст

Передмова	3
Розділ 1. Вступ до математичного аналізу	
Тема 1. Логічні символи. Множини. Відображення. Метод математичної індукції	4
Розділ 2. Границя числової послідовності	
Тема 2. Означення та властивості границі послідовності	13
Тема 3. Фундаментальні послідовності. Підпослідовності	17
Розділ 3. Границя та неперервність функції	
Тема 4. Границя функції в точці. Порівняння функцій в околі граничної	
точки	22
Тема 5. Неперервність функції	31
Тема 6. Рівномірно неперервні функції	35
Розділ 4. Диференційне числення	
Тема 7. Похідна та диференціал функції	38
Тема 8. Похідні та диференціали вищих порядків	44
Тема 9. Формула Тейлора	48
Тема 10. Дослідження функцій за допомогою похідної	52
Рекомендовані джерела	59

Передмова

Курс математичного аналізу ε основою фундаментальної математичної підготовки для випускників природничих спеціальностей у класичних університетах.

Даний практикум з математичного аналізу призначений студентам спеціальності 121 "Інженерія програмного забезпечення" факультету комп'ютерних наук та кібернетики Київського національного університету імені Тараса Шевченка. Він відповідає програмі курсу, яка складається з 58 годин лекцій та 56 годин практичних занять. Практикум складається з двох частин, кожна з яких містить 14 практичних занять і відповідає матеріалу одного семестру.

Основною метою, яку переслідували автори, є забезпечення навчальним матеріалом практичних занять в рамках стислого курсу математичного аналізу. В посібнику кожна тема містить всі необхідні означення і твердження, що дозволяє розв'язувати запропоновані задачі без додаткової літератури. В якості основного теоретичного матеріалу і практичних завдань використані підручники і збірник задач з математичного аналізу авторів І.І. Ляшко, С.І. Ляшко, В.Ф. Ємельянов, О.К. Боярчук, І.М. Александрович, О.І. Молодцов, Д. А. Номіровський, Б.В. Рубльов та інші [1–3, 7].

Розділ 1. Вступ до математичного аналізу

Тема 1. Логічні символи. Множини. Відображення. Метод математичної індукції

У курсі математичного аналізу використовуються такі символи:

- ∀ квантор загальності, еквівалентний вислову "для будь-якого";
- ∃ квантор існування, еквівалент слова "існує";
- ∃! еквівалентний вислову "існує єдиний";
- \Rightarrow *імплікація*, визначається у записах типу $A \Rightarrow B$ як вислів "із істинності твердження A випливає твердження B";
- \Leftrightarrow символ еквівалентності, запис типу $A \Leftrightarrow B$ означає, що одночасно виконуються імплікації $A \Rightarrow B$ та $B \Rightarrow A$, або ж "для того, щоб A було істинним, необхідно та достатньо, щоб B було істинним";
- \lor *символ диз'юнкції*, запис $A \lor B$ означає виконання або A, або B;
- $\land cumeon$ кон'юнкції, запис $A \land B$ означає одночасне виконання A та B;
- $\stackrel{def}{=}$ "дорівнює за означенням";
- $\stackrel{def}{\Leftrightarrow}$ "визначається за означенням",

та позначення:

- $i = \overline{n,m}$ запис означає, що величина (індекс) i набуває почергово усіх цілих значень, починаючи з n і закінчуючи m включно;
- $\sum_{i=1}^n a_i \stackrel{def}{=} a_1 + a_2 + \ldots + a_n$ сума n доданків;
- $\prod_{i=1}^n a_i \stackrel{def}{=} a_1 \cdot a_2 \cdot \ldots \cdot a_n$ добуток n множників;
- $n! \stackrel{def}{=} \prod_{k=1}^n k$ ϕ акторіал (визначається для натуральних чисел), $0! \stackrel{def}{=} 1$;
- $(2n)!! \stackrel{def}{=} \prod_{k=1}^{n} (2k)$, $(2n+1)!! \stackrel{def}{=} \prod_{k=1}^{n} (2k+1)$ подвійні факторіали;
- $C_n^k \stackrel{def}{=} \frac{n!}{k!(n-k)!}$ біноміальні коефіцієнти;
- \bullet \emptyset порожня множина;
- $a \in A \ (a \notin A)$ означає, що $a \in (\text{не } \varepsilon)$ елементом множини A;
- $A \subset B A$ є niдмножиною B (в нестрогому розумінні), тобто $\forall a: (a \in A \Rightarrow a \in B);$
- $A \not\subset B$ A не ϵ підмножиною B, тобто $\exists a \in A \land a \notin B$;

- A = B рівність множин, тобто $(A \subset B) \land (B \subset A)$;
- $B = \{a \in A \mid P(a)\}$ це означає, що B складається з елементів множини A, які мають задану властивість P;
- $\exp M (2^M)$ *універсальна множина*, тобто множина усіх підмножин множини M.

Визначимо операції над множинами, вважаючи, що усі множини ε підмножинами деякої універсальної множини M, тобто вони належать $\exp M$ [1, c. 9]:

- $A \cap B \stackrel{def}{=} \{ a \, | \, (a \in A) \land (a \in B) \}$ перетин множин A і B;
- $A \bigcup B \stackrel{def}{=} \{a \mid (a \in A) \lor (a \in B)\} ob'e$ днання множин A i B;
- $A \setminus B \stackrel{def}{=} \{ a \mid (a \in A) \land (a \notin B) \}$ різниця множин A і B;
- $A\Delta B\stackrel{def}{=}(A\backslash B)\bigcup (B\backslash A)$ симетрична різниця множин A і B;
- $CA \stackrel{def}{=} M \backslash A$ доповнення множини A.

Узагальнимо поняття об'єднання та перетину для скінченної сукупності множин $A_i, i = \overline{1,n}$:

- $\bigcap_{i=1}^n A_i \stackrel{def}{=} \{a \,|\, \forall \, i=\overline{1,n} \ a \in A_i\}$ перетин множин;
- $\bigcup_{i=1}^n A_i \stackrel{def}{=} \{a \mid \exists i = \overline{1,n} \ a \in A_i\}$ об'єднання множин,

та для зліченної сукупності множин $A_i, i \in \mathbb{N}$:

- $\bigcap_{i=1}^{\infty} A_i \stackrel{def}{=} \{a \mid \forall i \in \mathbb{N} \ a \in A_i\}$ перетин множин;
- $\bigcup_{i=1}^{\infty} A_i \stackrel{def}{=} \{a \mid \exists i \in \mathbb{N} \ a \in A_i\}$ об'єднання множин.

Деякі основні числові множини:

 \mathbb{N} — множина натуральних чисел;

 \mathbb{Z} — множина цілих чисел;

 \mathbb{Q} — множина раціональних чисел;

 \mathbb{R} — множина дійсних чисел;

 \mathbb{C} — множина комплексних чисел.

Також, якщо до символів $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ додається індекс "+" чи "—", то це означає, що розглядається лише neeid'ємна (nedodamna) частина множини. Наприклад, \mathbb{Z}^+ — цілі невід'ємні числа, \mathbb{R}^- — дійсні недодатні числа; обидві ці множини містять нуль.

Принцип двоїстості. Довільне математичне твердження можна записати за допомогою логічних символів (\forall , \exists та деякої умови C). Заперечення сформульованого твердження (тобто протилежне твердження) отримується шляхом заміни кожного квантора на протилежний (\exists , \forall), а умови C на її заперечення.

Поняття відображення (функції)

Пара (x,y) є **впорядкованою**, якщо вказано порядок: x — перший елемент, y — другий елемент. Аналогічно визначається впорядкована система із n елементів (x_1, x_2, \ldots, x_n) [1, c. 10].

 \mathcal{A} екартовим добутком множин X та Y називається множина

$$X \times Y \stackrel{def}{=} \{(x, y) \mid x \in X \land y \in Y\}.$$

Аналогічно *декартовим добутком п множин* X_1, X_2, \dots, X_n називається множина

$$X_1 \times X_2 \times \ldots \times X_n \stackrel{def}{=} \{(x_1, x_2, \ldots, x_n) \mid x_k \in X_k, \ k = \overline{1, n}\}.$$

Якщо множини X та Y співпадають (або ж $\forall i=\overline{1,n}\ X_i=X$), то їх декартів добуток позначається як $X\times X=X^2\ (X_1\times X_2\times \ldots \times X_n=X^n)$.

Множина Γ називається **бінарним відношенням** між елементами множин X та Y, якщо $\Gamma \subset X \times Y$.

Першою (другою) проекцією бінарного відношення $\Gamma \subset X \times Y$ називається множина $\Gamma_1 = \operatorname{pr}_1 \Gamma = \{x \in X \mid \exists y \in Y : (x,y) \in \Gamma\}$ ($\Gamma_2 = \operatorname{pr}_2 \Gamma = \{y \in Y \mid \exists x \in X : (x,y) \in \Gamma\}$).

Множина $\Gamma_1(x) = \{y \in Y \mid (x,y) \in \Gamma\}$ ($\Gamma_2(y) = \{x \in X \mid (x,y) \in \Gamma\}$) називається **першим** (другим) перерізом Γ за допомогою елемента x(y).

Для кожного бінарного відношення $\Gamma \subset X \times Y$ можна визначити **обернене бінарне** відношення $\Gamma^{-1} \subset Y \times X$ за правилом: $\Gamma^{-1} = \{(y,x) \,|\, (x,y) \in \Gamma\}.$

Бінарне відношення Γ називається *функціональним*, якщо воно не містить різних упорядкованих пар з однаковими першими компонентами.

Впорядкована трійка множин (X,Y,Γ) називається відображенням (функцією) з множини X в множину Y, якщо Γ є функціональним бінарним відношенням між елементами множин X та Y, і позначається довільною літерою, наприклад, f. При цьому замість $f=(X,Y,\Gamma)$ записують $f:X\to Y$, або $y=f(x),\ x\in X,$ або $x\mapsto f(x),\ x\in X,$ де $\Gamma-$ графік відображення.

Перша проекція графіка Γ відображення f називається **областю** (множиною) визначення відображення f та позначається D_f . Друга проекція графіка відображення f — область (множина) значень, позначається E_f .

Якщо $x \in D_f$ і пара $(x,y) \in \Gamma$, то елемент y називається **значенням функції** f на елементі x і позначається f(x).

Якщо відома область визначення D_f і значення $f(x) \ \forall x \in D_f$, то графік $\Gamma(f)$ відображення f будується за правилом: $\Gamma(f) = \{(x, f(x)) \mid x \in D_f\}$.

Нехай $f: X \to Y$. Якщо $(x,y) \in \Gamma_f$, то елемент y називається образом елемента x при відображенні f, а елемент x називається прообразом елемента y і позначається $f^{-1}(y)$. Образом множини $A \subset D_f$ є підмножина E_f , що визначається як $f(A) = \{f(x) \mid x \in A\}$. Аналогічно для будь-якої множини $B \subset E_f$ підмножина D_f , що визначається як $f^{-1}(B) = \{x \in D_f \mid \exists y \in B: y = f(x)\}$ називається прообразом множини B.

Нехай $f: X \to Y$ і $U \subset X$. Визначимо відображення $g: U \to Y$, поклавши $g(x) = f(x), x \in U$. Тоді g називається **звуженням** відображення f на U, а відображення f - npodosженням відображення g на X.

Нехай $f: X \to Y, g: Y \to Z$. Відображення $h: X \to Z$, що визначається формулою $h(x) = g(f(x)), x \in X$, називається **cynepnosuцією** відображень f та g і позначається так: $h = g \circ f$ [1, c. 15].

Якщо задані відображення $T \stackrel{\varphi}{\longleftrightarrow} X$, $T \stackrel{\psi}{\to} Y$, то існує відображення $X \stackrel{f=\psi \circ \varphi^{-1}}{\longrightarrow} Y$. Це відображення називається **параметрично заданим** за допомогою відображень φ та ψ , а змінна t при цьому називається **параметром**.

Розглянемо відображення $X \times Y \xrightarrow{F} G$, а також рівняння

$$F(x,y) = c, (1)$$

де $c \in G$. Якщо $\forall x \in X \; \exists \,! \, y = f(x) \in Y$ такий, що F(x, f(x)) = c, тоді вважаємо, що визначено функцію $X \xrightarrow{f} Y$. При цьому f називається **неявною функцією**, що задається рівнянням (1).

Упорядковані простори

Нехай задано множину M. Бінарне відношення $\sigma \subset M \times M$ називається $\mathbf{\emph{eid}}$ ношенням часткового порядку на множині M, якщо виконуються такі умови (аксіоми) [1, с. 20]:

- **1.** $\forall a \in M \ (a, a) \in \sigma \ (pefinekcuehicmb);$
- **2.** $(a,b) \in \sigma \land (b,a) \in \sigma \implies a = b \ (ahmucumempuuhicmb);$
- **3.** $(a,b) \in \sigma \land (b,c) \in \sigma \implies (a,c) \in \sigma \ (mpaнзитивність).$

Поряд з позначенням $(a,b)\in\sigma$ будемо також вживати позначення $a\leqslant b$ навіть якщо частковий порядок не задається умовою "менше або дорівнює".

Упорядкована пара $\Omega = (M, \sigma)$ (або (M, \leqslant)), яка складається з множини M (основний простір) та відношення часткового порядку σ на ній називається частково упорядкованим простором, елементи множини M- точками цього простору. Точки x_1, x_2 називаються порівнюваними, якщо $x_1 \leqslant x_2$ або $x_2 \leqslant x_1$, в протилежному випадку — непорівнюваними. Якщо простір не містить непорівнюваних елементів, то він називається упорядкованим простором або лінійно упорядкованим простором.

Нехай $\Omega=(M,\sigma)$ — частково упорядкований простір, X — деяка множина простору (тобто $X\subset M$). Елемент $x_{\max}\in X$ ($x_{\min}\in X$) називається **найбільшим (найменшим) елементом** множини X, якщо $\forall x\in X: x\leqslant x_{\max}$ ($x_{\min}\leqslant x$). Зрозуміло, що навіть в упорядкованому просторі не кожна множина має найбільший чи найменший елемент.

Елемент $\overline{x} \in M$ ($\underline{x} \in M$) називається **мажорантою** (мінорантою) множини X, якщо $\forall x \in X$ $x \leqslant \overline{x}$ ($\underline{x} \leqslant x$). Якщо множина X має мажоранту (міноранту), то вона називається **обмеженою зверху** (знизу). Множина, що обмежена зверху і знизу, називається **обмеженою**. Найменша мажоранта (найбільша міноранта) множини X, якщо вона існує, називається **верхньою**

(нижньою) межею множини X, або супремумом (інфімумом) та позначається $\sup X$ ($\inf X$).

Метод математичної індукції

Розглянемо метод доведення тверджень Блеза Паскаля (1623 – 1662). Він відомий як **метод** математичної індукції (**MMI**) [1, с. 8] та базується на перевірці виконання двох лем Паскаля для тверджень $A_1, A_2, A_3, \ldots, A_n, \ldots$ $(n \in \mathbb{N})$.

Лема 1. Твердження A_1 — істинне.

Лема 2. $\forall n \in \mathbb{N}$ із істинності твердження A_n випливає істинність A_{n+1} .

Тоді всі твердження $A_1, A_2, A_3, ..., A_n, ...$ — істинні.

Множина № всіх натуральних чисел не обмежена зверху. У ній визначена операція додавання та мають місце такі властивості:

1. $n \in \mathbb{N} \implies (n+1) \in \mathbb{N}$;

г

2. $(1 \in M \land n \in M \Rightarrow (n+1) \in M) \Rightarrow \mathbb{N} \subset M$ (arcioma indyruji).

Практичне заняття 1

Приклад 1. Доведемо, що $\forall n \in \mathbb{N}: \sum\limits_{k=1}^n k = \frac{n(n+1)}{2}.$

При n=1 маємо правильну рівність $1=\frac{1\cdot 2}{2}$ (база індукції). Припустимо, що рівність правильна при n=m, та доведемо її при n=m+1 (крок індукції). Маємо:

$$\sum_{k=1}^{m+1} k = \sum_{k=1}^{m} k + (m+1) = \frac{m(m+1)}{2} + (m+1) = \frac{(m+1)(m+2)}{2}.$$

Отже, за принципом математичної індукції, рівність вірна при всіх натуральних n.

Приклад 2. Доведемо, що $\forall n \in \mathbb{N}: \prod\limits_{k=1}^{n} (1+x_k) \geqslant 1+\sum\limits_{k=1}^{n} x_k,$ де x_k — числа одного знаку та $x_k \geqslant -1,$ $k=\overline{1,n}$ (нерівність Бернуллі).

При n=1 нерівність очевидна. Припустимо, що нерівність справедлива при n. Доведемо її справедливість при n+1:

$$\prod_{k=1}^{n+1} (1+x_k) \geqslant \left(1+\sum_{k=1}^n x_k\right) (1+x_{n+1}) = 1+\sum_{k=1}^{n+1} x_k + x_{n+1} \cdot \sum_{k=1}^n x_k \geqslant 1+\sum_{k=1}^{n+1} x_k.$$

Остання нерівність вірна, оскільки $x_{n+1}\cdot\sum\limits_{k=1}^n x_k\geqslant 0$ для довільних чисел $x_k,$ $k=\overline{1,n},$ одного знаку.

Застосовуючи MMI, доведіть рівності $\forall n \in \mathbb{N} (n \ge n_0)$:

1.1
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$$
 1.2 $\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2;$

1.3
$$\sum_{k=1}^{n-1} (-1)^{k-1} k^2 = (-1)^n \frac{(n-1)n}{2},$$
 1.4
$$\sum_{k=1}^n k \, k! = (n+1)! - 1;$$
 $n \ge 2$:

1.5
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3};$$
 1.6 $\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{2k^2} = \operatorname{arctg} \frac{n}{n+1};$

1.7
$$\sum_{k=1}^{n} \sin kx = \frac{\sin \frac{nx}{2} \cdot \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}},$$

$$x \neq 2\pi m, m \in \mathbb{Z};$$
1.8
$$\frac{1}{2} + \sum_{k=1}^{n} \cos kx = \frac{\sin \frac{2n+1}{2}x}{2\sin \frac{x}{2}},$$

$$x \neq 2\pi m, m \in \mathbb{Z};$$

1.9
$$\forall \{a,b\} \in \mathbb{R} : (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k} \ (\textit{біном Ньютона}).$$

Застосовуючи ММІ, доведіть виконання нерівностей $\forall n \in \mathbb{N} \ (n \geqslant n_0)$:

1.10
$$\sum_{k=1}^{n} \frac{1}{n+k} > \frac{13}{24}, \ n \ge 2;$$
 1.11 $\sqrt{n} < \sum_{k=1}^{n} \frac{1}{\sqrt{k}} < 2\sqrt{n}, \ n \ge 2;$

1.12
$$\prod_{k=1}^{n} \frac{(4k-1)}{n} < \frac{\sqrt{3}}{\sqrt{4n+3}};$$
1.13
$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k|, \ \forall x_k \in \mathbb{R},$$

$$k = \overline{1,n};$$

1.14
$$\sum_{k=1}^{n} \frac{1}{k^2} \le 2 - \frac{1}{n}$$
; $k = 1, n;$ 1.15 $n^n \ge (2n - 1)!!;$

1.16
$$(1+x)^n \ge 1 + nx, \ x \ge -1;$$
 1.17 $n^{n+1} > (n+1)^n, \ n \ge 3.$

Практичне заняття 2

Полярна система координат. Виберемо на площині промінь (числову напівпряму $[0,\infty)$). Позначимо початок променя точкою O — ця точка називається полюсом, а сам промінь — полярною віссю. З'єднаємо полюс O з деякою точкою площини A відрізком. Величину кута між полярною віссю та відрізком AO називають полярним кутом і вважають першою координатою точки A (позначається φ), а довжина цього відрізка $\rho = |AO|$ називається полярним радіусом і є другою координатою A.

Перехід від полярних координат точки до декартових координат виконується за формулами:

$$x = \rho \cos \varphi, \ \ y = \rho \sin \varphi.$$

Побудову графіка функції $\rho=f(\varphi)$ у полярній системі координат здійснюють так: будують для функції $\rho=f(\varphi)$ відповідну функцію y=f(x), досліджують функцію $\rho=f(\varphi)$, порівнюючи її з відповідною функцією y=f(x) з врахуванням особливостей графіка функції $\rho=f(\varphi)$. У найпростіших випадках графіки функцій будують за точками.

Надалі вважатимемо, що полярний кут набуває значень із множини \mathbb{R}^+ .

Приклад 1. Побудуемо графік у полярній системі координат: $\rho = a\varphi, \, a>0$ (спіраль Архімеда).

Складемо таблицю значень для $\varphi \geqslant 0$ (значення подані наближено):

Тепер побудуємо точки на координатній площині і з'єднаємо їх плавною лінією, таким чином отримавши графік.

Приклад 2. Побудуємо графік у полярній системі координат: $\rho = \frac{\varphi}{\varphi + 1}$.

Складемо таблицю значень для $\varphi \geqslant 0$ (значення подані наближено):

	0				$\frac{\pi}{2}$			π		$\frac{5\pi}{4}$
ρ	0	0,	44	0,	61	0,	7	0,76	;	0,8
φ	$\frac{3}{2}$	π -	$\frac{77}{4}$	π L	23	π		$\frac{5\pi}{2}$		3π
$\overline{\rho}$	0,82 $0,8$		85	0,86		0	,887	(0,904	

Побудуємо точки на координатній площині і з'єднаємо їх плавною лінією. Відзначимо, що значення дробу $\frac{\varphi}{\varphi+1}$ наближається до 1 зі збільшенням φ .

Побудуйте графіки дробово-лінійних функцій $f: \mathbb{R} \to \mathbb{R}$:

2.1
$$f(x) = \frac{6+x}{x}$$
;

Г

2.2
$$f(x) = \frac{7-x}{2x}$$
.

Побудуйте графіки функцій $f:\mathbb{R} \to \mathbb{R}$ методом додавання:

2.3
$$f(x) = |x| + \frac{1}{|x|};$$

2.4
$$f(x) = x^2 + \frac{1}{|x|};$$

2.5
$$f(x) = x + \sin x$$

2.6
$$f(x) = x - \cos x;$$

2.7
$$f(x) = \sinh x = \frac{e^x - e^{-x}}{2}$$
(синус гіперболічний):

2.8
$$f(x) = \operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$
(косинис гіперболічний).

Побудуйте графіки функцій $f: \mathbb{R} \to \mathbb{R}$ методом множення:

2.9
$$f(x) = x \sin x$$
;

2.11
$$f(x) = \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 2.12 $f(x) = \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ (котангенс гіперболічний);

2.13
$$f(x) = \operatorname{arctg} x \cdot \cos x$$
.

2.10
$$f(x) = e^x \cos x$$
;

2.12
$$f(x) = \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
(котангенс гіперболічний);

Побудуйте графіки функцій $f: \mathbb{R} \to \mathbb{R}$:

2.14
$$f(x) = [2^x];$$

$$f(x) = [2^x];$$
 2.15 $f(x) = [\sin x];$

2.16
$$f(x) = 2^x[x];$$

2.17
$$f(x) = \sin[x];$$

2.19 $f(x) = \sqrt{\{x\}};$

2.18
$$f(x) = \{x^2\};$$

2.20 $f(x) = \frac{1}{1 - x^2};$

2.21
$$f(x) = \sin \frac{1}{x}$$
;

2.22
$$f(x) = (\arccos x)^{-1}$$
;

2.23
$$f(x) = \arccos \frac{1}{x}$$
;

2.24
$$f(x) = e^{\frac{2x}{1-x^2}}$$
:

2.25
$$f(x) = e^{\sin x}$$
;

2.26
$$f(x) = \frac{1}{1 - 2^{\frac{x}{1-x}}};$$

2.27
$$f(x) = \operatorname{arctg}\left(\frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3}\right);$$

2.28
$$f(x) = \ln\left(\arctan\left(\frac{2x+3}{x+3} + \frac{6x-1}{2-2x}\right) + \frac{\pi}{2}\right).$$

Побудуйте графіки функцій, що задані у полярній системі координат:

2.29
$$r = \frac{\pi}{6}$$
;

2.30
$$r = \frac{1}{2\cos\varphi};$$

2.31
$$r = 2a\cos\varphi, \ a > 0;$$

2.32
$$r = 1 + 2\cos\varphi;$$

2.33
$$r = \text{tg } \varphi$$
;

2.34
$$r^2 + \varphi^2 = 1$$
;

2.35
$$r = 7 \sin 3\varphi$$
;

2.36
$$r = 2^{\frac{\varphi}{2\pi}}$$
;

2.37
$$r = \frac{1}{\sin(\alpha + \cos(\alpha))}$$

2.38
$$r = -\frac{1}{\varphi - \frac{\pi}{4}}$$

2.39
$$r = 2 |\sin 4\varphi|;$$

2.40
$$r = a + b \cos \varphi$$
, $\exists a > b > 0$; **2)** $a = b > 0$; **3)** $b > a > 0$.

Практичне заняття 3

Приклад 1. Перевіримо, чи буде функціональним бінарне відношення Γ , якщо $\Gamma \in \mathbb{Z} \times \mathbb{Z} \ ma \ (x,y) \in \Gamma \iff |x| + |y| = 3.$

Це бінарне відношення не ϵ функціональним: наприклад, (1,2) \in Γ і $(1,-2) \in \Gamma$, тобто існують дві різні упорядковані пари $(x,y) \in \Gamma$ з однаковими першими компонентами. \Box Приклад 2. Знайдемо першу та другу проекції, а також перерізи бінарного $\epsilon i \partial$ ношення $\Gamma = \{(x,y) \mid x+1 \leqslant y \leqslant x+4\}, X = Y = [0,7].$

Зобразимо це бінарне відношення. Тепер можемо знайти усі проекції та перерізи: $\operatorname{pr}_{1}\Gamma = [0, 6]; \operatorname{pr}_{2}\Gamma = [1, 7];$

$$\Gamma_1(x) = \begin{cases} [x+1, x+4], & x \in [0,3], \\ [x+1,7], & x \in (3,6], \\ \emptyset, & x \in (6,7]; \end{cases}$$

$$\Gamma_2(y) = \begin{cases} \emptyset, & y \in [0,1), \\ [0, y-1], & y \in [1,4], \\ [y-4, y-1], & y \in (4,7]. \end{cases}$$

З'ясуйте, чи будуть функціональними бінарні відношення Г, якщо:

- **3.1** $\Gamma \in \mathbb{Z} \times \mathbb{Z}$ та $(x,y) \in \Gamma \iff x = y^2$;
- **3.2** $\Gamma \in \mathbb{N} \times \mathbb{N}$ та $(x,y) \in \Gamma \Leftrightarrow x^2 + y^2 = 25$.

Для відображень $f:X \to Y$ вкажіть області визначення та значень, якщо:

3.3
$$f(x) = \cos x$$
, **1)** $X = Y = \mathbb{R}$; **3.4** $f(x) = [x]$, **1)** $X = Y = \mathbb{R}$; **2)** $X = \{0, \pi\}$, $Y = \mathbb{R}$; **2)** $X = \mathbb{N}$, $Y = \{1, 2, ..., n\}$; **3.5** $f(x) = \frac{1}{\sin \pi x}$, **1)** $X = Y = \mathbb{R}$, **2)** $X = [-1, 1]$, $Y = \mathbb{R}$, **3)** $X = \mathbb{R}$, $Y = \mathbb{Z}$.

Знайдіть образи множин A та прообрази множин B для функції $f:\mathbb{R}\to\mathbb{R}$:

3.6
$$f(x) = 4 - x^2$$
, **1)** $A = \mathbb{R}$, **2)** $A = [-1, 1]$, **3)** $B = \mathbb{R}^-$, **4)** $B = [0, 2]$.

Побудуйте першу та другу проекції вказаних бінарних відношень $\Gamma \subset X \times Y$:

- **3.7** $\Gamma = \{(x,y) | x \cdot y \text{непарне число}\}, X = Y = \mathbb{Z};$
- **3.8** $\Gamma = \{(x,y) \mid x^2 2x + y^2 4y + 1 \le 0\}, X = Y = [0,10].$

Побудуйте звуження функції Діріхле ($\mathbb{R} \to \mathbb{R}$) на вказану множину A:

$$\mathbf{3.9} \ \ D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases} \quad \mathbf{1)} \ A = \mathbb{Q}, \ \mathbf{2)} \ A = [0, 1], \ \mathbf{3)} \ A = \mathbb{R} \setminus \mathbb{Q}, \ \mathbf{4)} \ A = \mathbb{N}.$$

У частково впорядкованому просторі $(M,\leqslant),\ \forall\,a,b\in M:a\leqslant b\Leftrightarrow a\leqslant b$ знайдіть максимальний та мінімальний елементи, мажоранту, міноранту, $\sup X$ та $\inf X$ (якщо вони існують) для множини X, якщо:

3.10
$$M = [-1, 1],$$
 1) $X = \left[-\frac{1}{2}, \frac{1}{2} \right],$ **2)** $X = (0, 1),$ **3)** $X = \left(-\frac{1}{2}, \frac{1}{3} \right) \bigcup \left\{ \frac{1}{2} \right\};$

3.11
$$M = \mathbb{R}$$
, **1)** $X = \left\{ \frac{3n}{n^3 + 3} \middle| n \in \mathbb{N} \right\}$, **2)** $X = \left\{ \frac{n^5}{n^6 + 1} \middle| n \in \mathbb{Z} \right\}$.

Розділ 2. Границя числової послідовності

Тема 2. Означення та властивості границі послідовності

Надалі розглядатимемо лише упорядкований простір $(\overline{\mathbb{R}}, \leq)$, де $\overline{\mathbb{R}}$ — розширена числова вісь: $\overline{\mathbb{R}} = \mathbb{R} \bigcup \{-\infty, +\infty\}$ [1, с. 50].

Числовою послідовністю (x_n) називається відображення $\mathbb{N} \stackrel{f}{\longrightarrow} \mathbb{R}$, де $x_n = f(n), n \in \mathbb{N}$, називається **п-им членом** послідовності. Іноді послідовності також позначають таким чином: $(x_n)_{n \in A}$ $(A \subset \mathbb{Z})$, або просто x_1, x_2, \ldots

Нехай x_0 — довільна точка на \mathbb{R} . ε -околом точки x_0 називається інтервал з центром у точці x_0 і радіусом ε :

$$S_{\varepsilon}(x_0) = \{x \mid |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon) \subset \mathbb{R},$$

множини $S_{\varepsilon}(-\infty)=(-\infty,-\varepsilon),\ S_{\varepsilon}(+\infty)=(\varepsilon,+\infty),\ S_{\varepsilon}(\infty)=(-\infty,-\varepsilon)\bigcup(\varepsilon,+\infty)$ називаються відповідно ε -околами $-\infty,+\infty$ та просто ∞ .

Точка $a \in R$ називається **границею** послідовності (x_n) , якщо

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon$$

(метричне означення границі), при цьому будемо записувати $\lim_{n\to\infty} x_n = a$, або $x_n \to a$ при $n\to\infty$ (або просто $x_n\to a$).

За означенням, всі члени послідовності з номерами $n\geqslant N$ потрапляють у ε -окіл точки a, яким би малим цей окіл не був, а поза цим околом може залишатись лише скінченна кількість членів послідовності (x_n) , не більша за N-1, тобто x_1,x_2,\ldots,x_{N-1} .

Тому, якщо використати поняття околу в упорядкованому просторі, можна дати еквівалентне *топологічне означення границі:* точка a називається **границею** послідовності (x_n) , якщо $\forall S_{\varepsilon}(a) \; \exists \; N(\varepsilon) : \forall n \geqslant N(\varepsilon) \; \Rightarrow \; x_n \in S_{\varepsilon}(a)$.

Розглянемо випадок, коли послідовність має нескінченну границю. В такому разі послідовність називається *нескінченно великою*. Нехай $\mathbb{N} \stackrel{f}{\longrightarrow} \mathbb{R}$:

$$\lim_{n \to \infty} x_n = +\infty \stackrel{def}{\Leftrightarrow} \forall E > 0 \ \exists \ N(E) : \ \forall n \geqslant N(E) \ \Rightarrow \ x_n > E;$$

$$\lim_{n \to \infty} x_n = -\infty \stackrel{def}{\Leftrightarrow} \forall E > 0 \ \exists \ N(E) : \ \forall n \geqslant N(E) \ \Rightarrow \ x_n < -E;$$

$$\lim_{n \to \infty} x_n = \infty \stackrel{def}{\Leftrightarrow} \forall E > 0 \ \exists \ N(E) : \ \forall n \geqslant N(E) \ \Rightarrow \ |x_n| > E.$$

Якщо $\lim_{n\to\infty}x_n=0$, то послідовність (x_n) називається **нескінченно малою**,

при цьому будемо записувати $x_n = o(1)$ (o-мале). Послідовність (x_n) називається обмеженою, якщо існує таке число $M \geqslant 0$, що $|x_n| \leqslant M \ \forall n \in \mathbb{N}$, при цьому будемо записувати $x_n = O(1)$ (O-велике). Символи o(1) та O(1) називаються символами Ландау [1, с. 49]. Для них справедливі такі дії:

$$O(1) + O(1) = O(1);$$
 $O(1) \cdot O(1) = O(1);$
 $o(1) + o(1) = o(1);$ $o(1) \cdot o(1) = o(1);$
 $O(1) + o(1) = O(1);$ $o(1) \cdot O(1) = o(1).$

Якщо послідовність має скінченну границю, вона називається *збіженою*, в протилежному випадку — *розбіженою*.

Для довільної послідовності (x_n) позначимо $\sup_{n\in\mathbb{N}} x_n$ (або $\sup x_n$) та $\inf_{n\in\mathbb{N}} x_n$ ($\inf x_n$) відповідно верхню та нижню межу множини значень послідовності $\{x_n\mid n\in\mathbb{N}\}.$

Послідовність (x_n) називається **неспадною** (**зростаючою**), якщо $\forall n \in \mathbb{N}$: $x_n \leqslant x_{n+1}$ ($x_n < x_{n+1}$); послідовність (x_n) називається **незростаючою** (**спадною**), якщо $\forall n \in \mathbb{N}$: $x_n \geqslant x_{n+1}$ ($x_n > x_{n+1}$). Незростаючі та неспадні послідовності називаються **монотонними**, а зростаючі та спадні послідовності — **строго монотонними** [1, с. 31].

Теорема (про арифметичні дії над збіжними послідовностями). Якщо $\lim_{n\to\infty}x_n=x\in\mathbb{R}$ та $\lim_{n\to\infty}y_n=y\in\mathbb{R}$, то:

- 1) $\lim_{n\to\infty} (x_n \pm y_n) = x \pm y;$
- $2) \lim_{n \to \infty} (x_n y_n) = xy;$
- 3) $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}, \ y\neq 0 \land (y_n\neq 0 \ \forall n\in\mathbb{N});$

Теорема ("про двох поліцаїв"). Якщо для послідовностей $(x_n), (y_n), (z_n)$ $\exists N^*: \forall n\geqslant N^*\ y_n\leqslant x_n\leqslant z_n\ i\lim_{n\to\infty}y_n=\lim_{n\to\infty}z_n=a,\ mo\ \exists\lim_{n\to\infty}x_n=a.$

Теорема (Вейєрштрасса). Кожна монотонна і обмежена послідовність має скінченну границю [1, с. 31].

Практичне заняття 4

Приклад 1. Доведемо, що $\lim_{n\to\infty} \frac{2n-3}{4n+5} = \frac{1}{2}.$

Для довільного $\varepsilon > 0$ маємо:

$$\left|\frac{2n-3}{4n+5}-\frac{1}{2}\right|<\varepsilon \ \ \Leftarrow \ \ \frac{11}{8n+10}<\frac{11}{8n}<\varepsilon \ \ \Leftrightarrow \ \ n>\frac{11}{8\varepsilon}.$$

Отже, обираючи в якості $N(\varepsilon)=\left[\frac{11}{8\varepsilon}\right]+1$, отримаємо вірне твердження за означенням.

Приклад 2. Знайдемо границю послідовності $x_n = \sum_{k=1}^n \frac{k}{(2k-1)^2(2k+1)^2}$.

Спростимо суму:

$$x_n = \sum_{k=1}^n \frac{k}{(2k-1)^2 (2k+1)^2} = \frac{1}{8} \sum_{k=1}^n \left(\frac{1}{(2k-1)^2} - \frac{1}{(2k+1)^2} \right) =$$

$$= \frac{1}{8} \left(1 - \frac{1}{9} + \frac{1}{9} - \frac{1}{25} + \frac{1}{25} - \frac{1}{49} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right) =$$

$$= \frac{1}{8} \left(1 - \frac{1}{(2n+1)^2} \right) \to \frac{1}{8}, \ n \to \infty.$$

Приклад 3. Знайдемо $\lim_{n\to\infty} \frac{n \arctan n}{n^2+3}$.

Оскільки $\arctan n = O(1)$ та $\frac{n}{n^2 + 3} = o(1)$, то згідно із операціями над символами Ландау:

$$\frac{n \arctan n}{n^2 + 3} = o(1) \cdot O(1) = o(1) \to 0, \ n \to \infty.$$

┙

Приклад 4. Знайдемо $\lim_{n\to\infty} \frac{n+3\cdot 2^n+\ln n}{n^2-2^n-\ln n}.$

Головним членом чисельника дробу ϵ 2^n , знаменника — також 2^n . Тому достатньо розглянути лише границю відношення між ними:

$$\lim_{n \to \infty} \frac{n + 3 \cdot 2^n + \ln n}{n^2 - 2^n - \ln n} = -\lim_{n \to \infty} \frac{3 \cdot 2^n}{2^n} = -3.$$

Використовуючи означення границі послідовності, знайдіть границі:

4.1
$$\lim_{n \to \infty} \frac{3n}{n^3 + 2}$$
; **4.2** $\lim_{n \to \infty} \frac{2n^2 - 1}{5n^2 + 1}$;

4.3
$$\lim_{n \to \infty} \frac{3n^3 + 2n^2 + 1}{n^4 + 2n - 2}$$
; **4.4** $\lim_{n \to \infty} \frac{1}{\sqrt[3]{4n - 11}}$;

4.5
$$\lim_{n \to \infty} \frac{\sin n}{\sqrt{n}}$$
; **4.6** $\lim_{n \to \infty} 3^{\sqrt[3]{n}}$;

4.7
$$\lim_{n \to \infty} \frac{\ln(1+n^2)}{2^n}$$
; **4.8** $\lim_{n \to \infty} \frac{n!}{n^n}$.

Доведіть за означенням, що число a не ϵ границею послідовності (x_n) , якщо:

4.9
$$x_n = \frac{n}{n+2}$$
, $a = 0$; **4.10** $x_n = \frac{n^2}{2n+3}$, $a = 1$.

З'ясуйте, чи є послідовності обмеженими, чи нескінченно великими. Вкажіть на множині $\mathbb R$ найбільший та найменший члени послідовності, якщо такі існують:

4.11
$$x_n = (2n+1)\sin n\pi;$$
 4.12 $x_n = n\sin\frac{n\pi}{2}.$

Знайдіть границі послідовностей (x_n) :

4.13
$$x_n = \sum_{k=1}^n \frac{1}{k(k+1)};$$
 4.14 $x_n = \sum_{k=1}^n \frac{1}{(k+1)(k+2)(k+3)};$

4.15
$$x_n = \sum_{k=1}^n \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!};$$
 4.16 $x_n = \sum_{k=1}^n \frac{k}{(k+1)!};$

4.17
$$x_n = \sum_{k=1}^n \frac{2k+1}{(2k+2)!!};$$
 4.18 $x_n = \sum_{k=1}^n \cos \frac{2k+1}{k^2+k} \sin \frac{1}{k^2+k}.$

Знайдіть границі, користуючись теоремами про збіжні послідовності:

4.19
$$\lim_{n\to\infty} \frac{\sum\limits_{k=0}^{m} a_k n^k}{\sum\limits_{k=0}^{l} b_k n^k} \ \left(a_k \in \mathbb{R} \ (k=\overline{0,m}), \ b_k \in \mathbb{R} \ (k=\overline{0,l}), \ a_m \cdot b_l \neq 0\right);$$

4.20
$$\lim_{n\to\infty} (\sqrt[3]{n^3+n^2+1} - \sqrt[3]{n^3-n^2+1});$$

4.21
$$\lim_{n\to\infty} \left(\sqrt{n+\sqrt{n+\sqrt{n}}}-\sqrt{n}\right);$$
 4.22 $\lim_{n\to\infty} \left(\sqrt[3]{n^2-n^3}+n\right);$

4.23
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1} + \sqrt{n}}{\sqrt[4]{n^3 + n} - \sqrt{n}};$$
 4.24 $\lim_{n \to \infty} \left(\frac{1}{2n} \sin n^3 - \frac{3n}{6n + 1}\right);$

4.25
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n}} \arctan \frac{n^3}{2n+1} + \frac{\sin n - n}{1 - 4n} \right);$$

4.26
$$\lim_{n \to \infty} \left(\frac{\arctan n}{\sqrt{n} - \sqrt[3]{n}} + \frac{\left\{ n^3 - \frac{2}{3}n \right\}}{\ln n} + 1 \right);$$

4.27
$$\lim_{n \to \infty} \left(\frac{n}{2n^2 - 1} \cdot \cos \frac{n+1}{2n-1} - \frac{n}{1-2n} \cdot \frac{n \cdot (-1)^n}{n^2 + 1} \right);$$

4.28
$$\lim_{n\to\infty} \frac{\sqrt[3]{n} - \ln(n^9 - n) + \ln(n \cdot 3^n)}{\log_3(n^{17} + 2) + 3\sqrt[3]{n} + \cos n};$$
 4.29 $\lim_{n\to\infty} \frac{n^{11} - e^n + n! - \ln(n+1)}{6^n - 36^n + n^7 - 1}.$

Доведіть рівності:

4.30
$$\lim_{n \to \infty} \frac{n^{\alpha}}{a^n} = 0 \ (\alpha \in \mathbb{R}, \ a > 1);$$
 4.31 $\lim_{n \to \infty} \frac{a^n}{n!} = 0 \ (a > 0);$

4.32
$$\lim_{n \to \infty} na^n = 0 \ (|a| < 1);$$
 4.33 $\lim_{n \to \infty} \frac{\ln n}{n} = 0;$

4.34
$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
 $(a > 0);$ **4.35** $\lim_{n \to \infty} \sqrt[n]{n} = 1.$

Тема 3. Фундаментальні послідовності. Підпослідовності

Послідовність (x_n) називається **фундаментальною**, якщо $\forall \varepsilon > 0 \ \exists N(\varepsilon)$: $\forall (n \geqslant N(\varepsilon), \ p \in \mathbb{N}) \ \Rightarrow \ |x_{n+p} - x_n| < \varepsilon$.

Нехай (x_n) — деяка послідовність, (n_k) — зростаюча послідовність натуральних чисел. Тоді послідовність $(y_k) = (x_{n_k})$ називається $ni\partial nocni\partial oвністью послідовності <math>(x_n)$.

Точка a називається **частковою границею послідовності** (x_n) , якщо існує підпослідовність (x_{n_k}) , границя якої дорівнює a.

Нехай послідовність (x_n) з $\mathbb R$ є обмеженою, тоді $\forall n \in \mathbb N$ множина $A_n = \{x_n, x_{n+1}, ...\}$ — обмежена, та внаслідок повноти $\mathbb R$ існує число $\overline{x_n} = \sup A_n = \sup_{k\geqslant n} x_k$. Згідно із властивістю верхньої межі $(A_{n+1}\subset A_n)$, послі-

довність $(\overline{x_n})$ — монотонно незростаюча, і крім того є обмеженою. Тому за теоремою Вейєрштрасса має границю, яка називається верхньою границею послідовності (x_n) і позначається $\overline{\lim_{n\to\infty}} x_n$, тобто $\overline{\lim_{n\to\infty}} x_n \stackrel{def}{=} \lim_{n\to\infty} \sup_{k\geqslant n} x_k$. Анало-

гічно визначається *нижня границя послідовності*: $\varliminf_{n \to \infty} x_n \stackrel{def}{=} \varliminf_{n \to \infty} \inf_{k \geqslant n} x_k$.

Теорема (Больцано—Вейєрштрасса). З кожної обмеженої послідовності (x_n) можна виділити збіжну підпослідовність [1, c. 35].

Критерій Коші. Послідовність (x_n) дійсних чисел збігається тоді і тільки тоді, коли вона є фундаментальною [1, с. 52].

Наведемо теореми, які використовуються при знаходженні границь послідовностей [1, с. 53–55].

Теорема (Коші). Якщо існує
$$\lim_{n\to\infty}a_n=l\in\overline{\mathbb{R}},\ mo\ \exists\lim_{n\to\infty}rac{\sum_{k=1}^na_k}{n}=l.$$

Теорема (Штольца). Якщо послідовність (y_n) монотонно прямує до $+\infty$ та $\exists \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l \in \overline{\mathbb{R}}, \ mo \ \exists \lim_{n \to \infty} \frac{x_n}{y_n} = l.$

Теорема. Якщо для послідовності додатних чисел (x_n) $\exists \lim_{n \to \infty} \frac{x_n}{x_{n-1}} = l \in \overline{\mathbb{R}},$ то $\exists \lim_{n \to \infty} \sqrt[n]{x_n} = l.$

Число *e.* Розглянемо послідовність $x_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}$. За теоремою Вейєрштрасса існує границя послідовності (x_n) , яку позначають літерою e: $\lim_{n \to \infty} x_n = e \approx 2,718281... [1, c. 56].$

Практичне заняття 5

Приклад 1. Дослідимо на збіжність послідовність $x_n = \sum_{k=1}^n \frac{1}{k^2}$.

Г

Покажемо, що послідовність ϵ фундаментальною, а тому збігається за критерієм Коші. Оберемо довільне $\epsilon > 0$. Тоді:

$$|x_{n+p} - x_n| = \sum_{k=n+1}^{n+p} \frac{1}{k^2} < \sum_{k=n+1}^{n+p} \frac{1}{k^2 - k} = \sum_{k=n+1}^{n+p} \frac{1}{k(k-1)} =$$

$$= \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p} =$$

$$= \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n} < \varepsilon \quad \forall p \in \mathbb{N}.$$

Таким чином, обираючи в якості $N(\varepsilon) = \left[\frac{1}{\varepsilon}\right] + 1$, фундаментальність послідовності доведена.

Методом математичної індукції можна довести нерівність 1.14 з практичного заняття 1. При $n \to \infty$ отримаємо, що $\lim_{n \to \infty} x_n = 2$.

Приклад 2. Дослідимо на збіжність послідовність $x_n = \sum_{k=1}^n \frac{1}{k} - \ln n$.

Покажемо спочатку, що послідовність (x_n) є монотонно спадною:

$$x_{n+1} - x_n = \sum_{k=1}^{n+1} \frac{1}{k} - \ln(n+1) - \sum_{k=1}^{n} \frac{1}{k} + \ln n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0,$$

оскільки $\forall n \in \mathbb{N}$ виконується нерівність:

$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}.\tag{2}$$

Крім того, згідно із нерівністю (2) послідовність (x_n) є обмеженою знизу:

$$x_n = \sum_{k=1}^n \frac{1}{k} - \ln n > \sum_{k=1}^n \ln \left(1 + \frac{1}{k} \right) - \ln n = \ln \prod_{k=1}^n \frac{k+1}{k} - \ln n =$$
$$= \ln \frac{2}{1} \cdot \frac{3}{2} \cdot \dots \cdot \frac{n+1}{n} \cdot \frac{1}{n} = \ln \frac{n+1}{n} > 0.$$

Отже, за теоремою Вейерштрасса послідовність (x_n) є збіжною, її границя називається *сталою Ейлера*. Будемо позначати $\lim_{n\to\infty} x_n = \gamma$. Також відповідно до отриманого результату справедливою є така рівність: $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$.

Приклад 3. Знайдемо границю послідовності $x_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

Скористаємося теоремою Штольца, обираючи $a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}, \ b_n = \sqrt{n}$. Одержимо:

$$\frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \frac{\frac{1}{\sqrt{n}}}{\sqrt{n} - \sqrt{n-1}} = \frac{\frac{1}{\sqrt{n}}(\sqrt{n} + \sqrt{n-1})}{(\sqrt{n})^2 - (\sqrt{n-1})^2} = \frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n}} \to 2, \ n \to \infty.$$

Отже,
$$\lim_{n\to\infty} x_n = 2$$
.

Користуючись критерієм Коші дослідіть на збіжність послідовності:

5.1
$$x_n = \sum_{k=1}^n \frac{\cos k}{2^k};$$

5.2
$$x_n = \sum_{k=1}^n \frac{\sin(k!)}{k(k+1)};$$

┙

5.3
$$x_n = \sum_{k=1}^n \frac{1}{k};$$

5.4
$$x_n = \sum_{k=2}^n \frac{1}{\ln k};$$

5.5 (x_n) — послідовність обмеженої варіації, тобто $\exists c \in \mathbb{R} : \forall n \in \mathbb{N}$

$$\sum_{k=1}^{n} |x_{k+1} - x_k| < c.$$

Доведіть твердження:

5.6 послідовність $x_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}$, — монотонно зростаюча і обмежена;

5.7 послідовність $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$, $n \in \mathbb{N}$, — монотонно спадна, обмежена і $\lim_{n \to \infty} y_n = e$;

$$\mathbf{5.8} \ \forall n \in \mathbb{N}: \ \frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}.$$

Доведіть збіжність на \mathbb{R} таких послідовностей:

5.9
$$x_n = \prod_{k=1}^n \left(1 + \frac{1}{2^k}\right);$$

5.10
$$x_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n};$$

5.11
$$x_n = \frac{(2n)!!}{(2n+1)!!};$$

5.12
$$x_n = \left(1 + \frac{m}{n}\right)^n, m \in \mathbb{R}.$$

Знайдіть границю послідовності (x_n) , якщо:

5.13
$$x_n = \sum_{k=1}^n \frac{1}{2n+2k-1};$$

5.14
$$x_n = \frac{1}{\ln n} \sum_{k=2}^n \frac{1}{k};$$

5.15
$$x_n = \frac{1}{n} \sum_{k=1}^{2^n} \frac{1}{k};$$

5.16
$$x_n = \frac{1}{n^3} \sum_{k=1}^n k^2;$$

5.17
$$x_n = \frac{1}{n\sqrt{n}} \sum_{k=1}^n \sqrt{k};$$

5.18
$$x_n = \frac{n}{a^n} \sum_{k=1}^n \frac{a^{k-1}}{k}, \ a > 1;$$

5.19
$$x_n = \frac{\sum_{k=1}^n \frac{1}{\sqrt{k}}}{\sqrt{n} + (-1)^n};$$

5.20
$$x_n = \frac{\sum_{k=1}^{n} \sqrt{k}}{n\sqrt{n} + (-1)^n n}.$$

Практичне заняття 6

Приклад 1. Знайдемо $\inf_{n\in\mathbb{N}}x_n, \sup_{n\in\mathbb{N}}x_n, \lim_{n\to\infty}x_n$ та $\overline{\lim}_{n\to\infty}x_n$ на $\overline{\mathbb{R}}$ для послідовності $x_n=(-1)^n\frac{n+1}{n+2}+\sin\frac{n\pi}{2}.$

Виділимо 4 підпослідовності із x_n , враховуючи, що період функції $\sin\frac{n\pi}{2}$ дорівнює 4: $x_{4k-3}=-\frac{4k-2}{4k-1}+1,\; x_{4k-2}=\frac{4k-1}{4k},\; x_{4k-1}=-\frac{4k}{4k+1}-1$ та

 $x_{4k} = \frac{4k+1}{4k+2} \ (k \in \mathbb{N})$. Знайдемо границі кожної з підпослідовностей, а також інфімум та супремум їх значень:

	$\lim_{m \to \infty} x_m$	$\inf_{m\in\mathbb{N}}x_m$	$\sup_{m\in\mathbb{N}}x_m$
m = 4k	1	4/5	1
m = 4k - 1	-2	-2	-9/5
m = 4k - 2	1	3/4	1
m = 4k - 3	0	0	1/3

Таким чином,
$$\inf_{n\in\mathbb{N}}x_n=\varliminf_{n\to\infty}x_n=-2, \, \sup_{n\in\mathbb{N}}x_n=\varlimsup_{n\to\infty}x_n=1.$$

Г

Г

Приклад 2. $Hexaŭ\ x_1=\sqrt{3},\ x_{n+1}=\sqrt{3+2x_n},\ n\in\mathbb{N}.$ Дослідимо послідовність (x_n) на збіжність та знайдемо її границю.

Припустимо, що $\exists\lim_{n\to\infty}x_n=\alpha$. Тоді можна перейти до границі при $n\to\infty$ в рекурентному співвідношенні $x_{n+1}=\sqrt{3+2x_n}$:

$$\alpha = \sqrt{3+2\alpha} \iff \alpha^2 - 2\alpha - 3 = 0.$$

Корені цього рівняння — числа $\alpha_1=3,\ \alpha_2=-1.$ Таким чином, якщо послідовність (x_n) — збіжна, то вона збігається або до α_1 , або до α_2 .

Доведемо обмеженість зверху послідовності (x_n) методом математичної індукції. При n=1: $x_1=\sqrt{3}\leqslant 3$. Припустимо, що для деякого $n\in\mathbb{N}:x_n\leqslant 3$. Тоді $x_{n+1}=\sqrt{3+2x_n}\leqslant \sqrt{3+2\cdot 3}=3$, тобто обмеженість зверху доведена. Тому послідовність (x_n) є обмеженою (обмеженість знизу очевидна).

Дослідимо на монотонність: $x_{n+1}^2 - x_n^2 = 3 + 2x_n - x_n^2 = -(x_n - 3)(x_n + 1) \ge 0$ при $x_n \in [-1,3]$. Тому (x_n) — неспадна послідовність, а за теоремою Вейєрштрасса є збіжною. Отже, $\lim_{n\to\infty} x_n = 3$.

Приклад 3. Побудуемо графік функції $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^n}, \ x \geqslant 0.$$

Знайдемо границю послідовності в залежності від x:

$$\begin{split} f(x) &= \lim_{n \to \infty} \sqrt[n]{1 + x^n} = \\ &= \lim_{n \to \infty} \sqrt[n]{x^n \left(\frac{1}{x^n} + 1\right)} = \begin{cases} x, & x > 1; \\ 1, & 0 \leqslant x \leqslant 1. \end{cases} \end{split}$$

Для послідовності (x_n) знайдіть $\inf_{n\in\mathbb{N}}x_n, \sup_{n\in\mathbb{N}}x_n, \underbrace{\lim_{n\to\infty}x_n}_{n\to\infty}x_n$ та $\overline{\lim}_{n\to\infty}x_n$ на $\overline{\mathbb{R}},$ якщо:

6.1
$$x_n = 1 + \frac{n}{n+1} \sin \frac{n\pi}{2};$$
 6.2 $x_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2};$

6.3
$$x_n = 1 - n\cos\frac{n\pi}{2};$$
 6.4 $x_n = \frac{n-1}{n+1}\cos\frac{2n\pi}{3}.$

Дослідіть на збіжність послідовності, що задані рекурентно:

6.5
$$x_1 = 5, x_{n+1} = \sqrt{5 + x_n}, n \ge 1;$$
 6.6 $x_1 = 0, x_{n+1} = \frac{1}{5} + 2x_n^2, n \ge 1;$

6.7
$$x_{n+1} = x_n^2 - 2x_n + 2, n \ge 1, x_1 \in (1, 2);$$

6.8
$$x_1 = \frac{3}{2}, x_{n+1}^2 = 3x_n - 2, n \ge 2, x_n \ge 0.$$

Побудуйте графіки функцій $f: \mathbb{R} \to \mathbb{R}$, де:

6.9
$$f(x) = \lim_{n \to \infty} \frac{x^n}{2 + x^n}, \ x \ge 0;$$
 6.10 $f(x) = \lim_{n \to \infty} \frac{n^x - n^{-x}}{n^x + n^{-x}};$

6.11
$$f(x) = \lim_{n \to \infty} \frac{x^n + x^{-n}}{x^n - x^{-n}}, \ x \neq 0;$$
 6.12 $f(x) = \lim_{n \to \infty} \frac{\ln(x^n + 3^n)}{n}, \ x \geqslant 0;$

6.13
$$f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^n + \left(\frac{x^2}{2}\right)^n}, \ x \geqslant 0.$$

Розділ 3. Границя та неперервність функції

Тема 4. Границя функції в точці. Порівняння функцій в околі граничної точки

Нехай $X \subset \mathbb{R}$, точка $x_0 \in \overline{\mathbb{R}}$ називається **граничною точкою** множини X, якщо $\forall \varepsilon > 0 : S_{\varepsilon}(x_0) \cap (X \setminus \{x_0\}) \neq \emptyset$. Точка множини X, яка не є граничною, називається **ізольованою** $(\exists \varepsilon > 0 : S_{\varepsilon}(x_0) \cap (X \setminus \{x_0\}) = \emptyset)$ [1, с. 386].

Нехай $f: \mathbb{R} \to \mathbb{R}$ і x_0 — гранична точка множини D_f . Число $\alpha \in \overline{\mathbb{R}}$ називається **частковою границею функції** f **в точці** x_0 , якщо $\exists (x_n) \subset D_f$: $(x_n \to x_0) \land (\forall n \in \mathbb{N} \ x_n \neq x_0) \land (f(x_n) \to \alpha)$ при $n \to \infty$. Множину всіх часткових границь функції f у точці x_0 позначимо $E_f(x_0)$.

Аналогічно послідовностям, визначимо верхню та нижню границі функції $f: \mathbb{R} \to \mathbb{R}$ в точці x_0 , граничній для D_f , за формулами:

$$\overline{\lim}_{x \to x_0} f(x) \stackrel{def}{=} \sup E_f(x_0); \qquad \underline{\lim}_{x \to x_0} f(x) \stackrel{def}{=} \inf E_f(x_0).$$

Нехай $f:\mathbb{R}\to\mathbb{R}$ і x_0 — гранична точка множини D_f . Якщо множина $E_f(x_0)$ складається з одного числа $\alpha\in\overline{\mathbb{R}}$, то воно називається границею функції f в точці x_0 і позначається $\lim_{x\to x_0}f(x)$ (границя за Гейне).

Нехай $f: \mathbb{R} \to \mathbb{R}$, x_0 — гранична точка D_f . Число α називається **границею** функції f в точці x_0 (при $x \to x_0$), якщо $\forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) > 0$: $\forall x \in D_f$: $0 < |x - x_0| < \delta \Rightarrow |f(x) - \alpha| < \varepsilon \; ($ **границя за Komi**).

Нехай $f: \mathbb{R} \to \overline{\mathbb{R}}$ і x_0 — гранична точка множини $D_f \cap \{x \in \mathbb{R} \, | \, x < x_0\}$ $(D_f \cap \{x \in \mathbb{R} \, | \, x > x_0\})$. Покладемо

$$f(x_0 - 0) \stackrel{def}{=} \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) \qquad \left(f(x_0 + 0) \stackrel{def}{=} \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) \right),$$

якщо ця границя існує. Числа $f(x_0-0)$, $f(x_0+0)$ називаються відповідно **лівою** та **правою границями функції** f **в точці** x_0 . Якщо $f(x_0-0)=\pm\infty$ або $f(x_0+0)=\pm\infty$, то відповідні границі називається **пескінченними**.

Критерій існування границі функції в точці. Функція $f: \mathbb{R} \to \mathbb{R}$ має границю в точці x_0 , граничній для множин $D_f \cap \{x \in \mathbb{R} \mid x < x_0\}$ та $D_f \cap \{x \in \mathbb{R} \mid x > x_0\}$ тоді і тільки тоді, коли одночасно існують і рівні між собою односторонні границі $f(x_0 - 0)$ і $f(x_0 + 0)$.

Зауважимо, що у випадках $x_0 = \pm \infty$ мова йде лише про односторонні границі, які ми будемо позначати відповідно $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$.

Для вивчення поведінки функції в околі деякої точки та порівняння різних функцій в околі точки корисно запровадити символи Ландау О (О-велике) і *о* (*о-мале*) аналогічно тому, як вони були визначені для послідовностей.

Вираз f = O(1) при $x \to x_0$ означає, що функція $f - \pmb{oбмежена}$ в \pmb{movui} x_0 . Якщо $\lim_{x \to x_0} f(x) = 0$, то функція f -**нескінченно мала в точці** x_0 , позначення: f = o(1).

Нехай функції $f:\mathbb{R} \to \mathbb{R}, \ g:\mathbb{R} \to \mathbb{R}, \ x_0$ — гранична точка множини $X = D_f = D_q$. Тоді:

- 1) якщо існує M>0 і окіл $S_{\delta}(x_0)$ точки x_0 , такі що $\forall x\in S_{\delta}(x_0)\setminus\{x_0\}$ виконується нерівність: $|g(x)| \leq M|f(x)|$, то записуємо g = O(f) (O-велике);
- 2) якщо одночасно $g = O(f) \wedge f = O(g)$, то кажуть, що f і $g \phi y \mu \kappa u i \ddot{i}$ одного порядку;
- 3) якщо $\forall \varepsilon > 0$ існує окіл $S_\delta(x_0)$ такий, що $\forall x \in S_\delta(x_0) \backslash \{x_0\}$ виконується нерівність: $|g(x)| \le \varepsilon |f(x)|$, то записуємо g = o(f) (о-мале);
- 4) якщо f g = o(g), то функції f і g називаються **еквівалентними**, при цьому записують $f \sim q$.

Умова функцій одного порядку та критерій еквівалентності функцій. Функції $f:\mathbb{R}\to\mathbb{R},\,g:\mathbb{R}\to\mathbb{R}$ в точці x_0 — граничній для множини $D_f = D_g$, тоді:

- 1) якщо $\exists \varepsilon > 0 : \forall x \in S_{\varepsilon}(x_0) \setminus \{x_0\}$ $g(x) \neq 0$ і $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = c \in \mathbb{R} \setminus \{0\}$ то функції f і g одного порядку в околі точки x_0
- 2) якщо $\exists \varepsilon > 0 : \forall x \in S_{\varepsilon}(x_0) \setminus \{x_0\} \ g(x) > 0$, то $f \sim g$ тоді і тільки тоді, коли $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$

Властивості символів Ландау:

1. O(f) = O(O(f));

- **2.** $O(f) \cdot O(g) = O(fq)$:
- **3.** $\forall \lambda \in \mathbb{R} \setminus \{0\} : O(\lambda f) = O(f);$
- **4.** O(f) + O(f) = O(f);

5. o(o(f)) = o(f);

6. $o(f) \cdot o(q) = o(fq)$;

7. o(f) + o(f) = o(f);

8. O(f) + o(f) = O(f);

9. o(O(f)) = o(f).

Властивості о-малих функцій в околі точки 0:

- **1.** $x^m = o(x^n), m > n, m, n \in \mathbb{R}^+;$ **2.** $o(cx^n) = c \cdot o(x^n) = o(x^n), c \neq 0;$
- **3.** $o(x^n) + o(x^m) = o(x^n), m > n;$ **4.** $x^n \cdot o(x^m) = o(x^{n+m});$
- **5.** $o(x^n) \cdot o(x^m) = o(x^{n+m});$
- **6.** $O(x^n) \cdot o(x^m) = o(x^{n+m}).$

Функція $f: \mathbb{R} \to \mathbb{R}$ називається *обмеженою* на множині $X \subset D_f$, якщо множина f(X) — обмежена.

Якщо f(x) = ag(x) + o(g(x)) $(a \neq 0)$ в деякому околі $S_{\varepsilon}(x_0) \setminus \{x_0\}$, то $f \sim ag$, при цьому функція $x \mapsto ag(x), x \in S_{\varepsilon}(x_0) \setminus \{x_0\}$ називається головною частиною функції f npu $x \to x_0$.

При знаходженні границь можливі такі типи невизначеностей:

1.
$$\frac{0_1}{0_2}$$
; 2. $\frac{\infty_1}{\infty_2} = \frac{\frac{1}{\infty_2}}{\frac{1}{\infty_1}} \to \frac{0_2}{0_1}$; 3. $0_1 \cdot \infty = \frac{0_1}{\frac{1}{\infty}} = \frac{0_1}{0_2}$;

$$\mathbf{4.} \ \infty_1 - \infty_2 = \infty_1 \left(1 - \frac{\infty_2}{\infty_1}\right) = \begin{cases} \infty_1 \cdot 0, & \text{якщо } \left(1 - \frac{\infty_2}{\infty_1}\right) \to 0, \\ \text{немає невизначеності}, & \text{якщо } \left(1 - \frac{\infty_2}{\infty_1}\right) \to 0; \end{cases}$$

5.
$$1^{\infty} = e^{\infty \ln 1} \to e^{\infty \cdot 0}$$
; **6.** $\infty^0 = e^{0 \ln \infty} \to e^{0 \cdot \infty}$; **7.** $0_1^{0_2} = e^{0_1 \ln 0_2} \to e^{0_1 \cdot \infty}$.

Використаємо відомі границі $\lim_{x\to 0}\frac{\sin x}{x}=1, \lim_{x\to 0}(1+x)^{\frac{1}{x}}=e$ для одержання так званих асимптотичних формул:

1.
$$\frac{\sin x}{x} = 1 + o(1), x \to 0 \implies \sin x = x + o(x) = o(1);$$

2.
$$\cos x = 1 - 2\sin^2\frac{x}{2} = 1 - 2\left(\frac{x}{2} + o\left(\frac{x}{2}\right)\right)^2 = 1 - 2\cdot\frac{x^2}{4} + o\left(x^2\right) = 1 - \frac{x^2}{2} + o\left(x^2\right) \Rightarrow \cos x = 1 + o(1) = 1 + o(x) = 1 - \frac{x^2}{2} + o\left(x^2\right);$$

3.
$$\frac{\ln(1+x)}{x} = \ln(1+x)^{\frac{1}{x}} \to \ln e = 1, x \to 0 \Rightarrow \ln(1+x) = x + o(x) = o(1);$$

4.
$$\frac{e^x - 1}{x} = \begin{vmatrix} e^x - 1 = t \\ x = \ln(1 + t) \end{vmatrix} = \frac{t}{\ln(1 + t)} \to 1, \ x \to 0 \implies e^x = 1 + x + o(x) = 1 + o(1);$$

5.
$$a^x = e^{x \ln a} = 1 + o(1) = 1 + x \ln a + o(x), x \to 0;$$

6.
$$\frac{(1+x)^{\alpha}-1}{x} = \frac{e^{\alpha \ln(1+x)}-1}{x} = \frac{e^{\alpha \ln(1+x)}}{\alpha \ln(1+x)} \alpha \cdot \frac{\ln(1+x)}{x} \to \alpha, \ x \to 0 \implies (1+x)^{\alpha} = 1 + o(1) = 1 + \alpha x + o(x), \ x \to 0.$$

Практичне заняття 7

Приклад 1. Користуючись означенням Коші, для функції $f(x): \mathbb{R} \to \mathbb{R}$ запишемо таке твердження: $\lim_{x \to a-0} f(x) = b, \ \{a,b\} \subset \mathbb{R}.$

$$\forall \, \varepsilon > 0 \, \exists \, \delta = \delta(\varepsilon, a) > 0 : \, \forall x \in (a - \delta, a) \, \Rightarrow \, |f(x) - b| < \varepsilon.$$

Приклад 2. Користуючись означенням Коші, для функції $x\mapsto y(x)$ запишемо таке твердження: $y\to b-0$ при $x\to a, \{a,b\}\subset \mathbb{R}.$

$$\forall \, \varepsilon > 0 \, \, \exists \, \delta = \delta(\varepsilon, a) > 0: \, \, \forall x : 0 < |x - a| < \delta \, \, \Rightarrow \, \, b - \varepsilon < f(x) < b.$$

Приклад 3. Користуючись означенням Коші границі функції в точці, доведемо рівність: $\lim_{x\to 2} x^3 = 8$.

 Γ

Нехай $\varepsilon > 0$ — довільне. Для зручності розглянемо 1 < x < 3, тобто |x-2| < 1. Тоді

$$|x^3 - 8| = |x - 2| \cdot |x^2 + 2x + 4| < 19 \cdot |x - 2| < \varepsilon$$
, якщо $|x - 2| < \frac{\varepsilon}{19}$.

Отже, досить покласти $\delta=\min\left\{\frac{\varepsilon}{19},1\right\}>0$ і за означенням рівність є справедливою.

Приклад 4. Нехай функція f визначена в деякому околі $S_{\varepsilon}(x_0)$ точки $x_0 \in \overline{\mathbb{R}}$. Доведемо, що O(f)+O(f)=O(f) при $x\to x_0$.

Позначимо u = O(f). Це означає, що $\exists M_1 > 0$ та окіл $S_{\varepsilon_1}(x_0)$:

$$\forall x \in S_{\varepsilon_1}(x_0) \backslash \{x_0\} \Rightarrow |u| \leqslant M_1|f|.$$

Також для v = O(f) існує $M_2 > 0$ та окіл $S_{\varepsilon_2}(x_0)$:

$$\forall x \in S_{\varepsilon_2}(x_0) \backslash \{x_0\} \Rightarrow |v| \leqslant M_2|f|.$$

Тоді для $\forall x \in S_{\varepsilon}(x_0) \backslash \{x_0\}, \ \varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \ \Rightarrow$

$$|u+v| \le |u| + |v| \le M_1 |f| + M_2 |f| = (M_1 + M_2) |f|,$$

тобто u + v = O(f).

Приклад 5. Доведемо, що $x^m=o(x^n),\ m>n$ при $x\to 0$ (в околі точки θ).

За означенням, $\forall \varepsilon > 0 \ \exists S_{\delta}(0)$:

$$\forall x \in S_{\delta}(0) \setminus \{0\} \Rightarrow |x^{m}| < \varepsilon |x^{n}| \Leftrightarrow |x^{m-n}| < \varepsilon \Leftrightarrow |x| < \varepsilon^{\frac{1}{m-n}}.$$

Отже, обираючи $\delta=\varepsilon^{\frac{1}{m-n}}$, маємо, що $x^m=o(x^n),\ m>n.$ З іншого боку, справедливою є рівність $x^{m-n}=o(1),\ x\to 0,\$ тобто $\lim_{x\to 0}x^{m-n}=0,\ m>n.$

Аналогічно для довільних функцій f та g, визначених в околі точки x_0 , умова $f=o(g),\,x\to x_0 \Leftrightarrow \lim_{x\to x_0} \frac{f(x)}{g(x)}=0.$

Приклад 6. Зробимо спрощення виразу
$$(x-x^2+x^3+o(x^4))(1-2x+2x^3+o(x^4))$$
 при $x\to 0$ (в околі точки θ).

$$(x - x^2 + x^3 + o(x^4)) (1 - 2x + 2x^3 + o(x^4)) = x - 3x^2 - x^3 - 2x^5 + 2x^6 + o(x^4) - x \cdot o(x^4) - x^2 \cdot o(x^4) + 3x^3 \cdot o(x^4) + o(x^4) \cdot o(x^4) =$$

$$= x - 3x^2 - x^3 + o(x^4) = x - 3x^2 + o(x^2) = x + o(x).$$

Приклад 7. Знайдемо границю виразу $\frac{x^3 - 2x^2 + o(x^3)}{x^4 + 4x^2 + o(x^3)}$ $npu \ x \to 0.$

$$\lim_{x \to 0} \frac{x^3 - 2x^2 + o(x^3)}{x^4 + 4x^2 + o(x^3)} = \lim_{x \to 0} \frac{-2x^2 + o(x^2)}{4x^2 + o(x^2)} = -\frac{1}{2}.$$

Користуючись означенням Коші, для функції $f(x): \mathbb{R} \to \mathbb{R}, \ \{a,b\} \subset \mathbb{R},$ запишіть такі твердження:

7.1
$$\lim_{x \to a+0} f(x) = b;$$
 7.2 $\lim_{x \to a} f(x) = -\infty;$

7.3
$$\lim_{x \to a-0} f(x) = +\infty;$$

7.5
$$\lim_{x \to -\infty} f(x) = +\infty;$$

7.4
$$\lim_{x \to +\infty} f(x) = b;$$

7.6
$$\lim_{x \to \infty} f(x) = \infty$$
.

Користуючись означенням Коші, для функції $x\mapsto y(x),\,\{a,b\}\subset\mathbb{R},\,$ запишіть такі твердження:

7.7
$$y \to b - 0$$
 при $x \to a + 0$;

7.8
$$y \to b - 0$$
 при $x \to -\infty$;

7.9
$$y \to b + 0$$
 при $x \to a - 0$;

7.10
$$y \to b + 0$$
 при $x \to \infty$.

Користуючись означенням Коші границі функції в точці, доведіть рівності:

7.11
$$\lim_{x \to 2} \frac{x^2 + 1}{x^2 - 1} = \frac{5}{3};$$

7.12
$$\lim_{x \to 3} \frac{2(x-1)}{x+1} = 1;$$

7.13
$$\lim_{x \to \pi} \sin x = 0;$$

7.14
$$\lim_{x \to \frac{\pi}{4}} \operatorname{tg} x = 1;$$

7.15
$$\lim_{x \to \infty} \frac{2x^2 - 5}{x^2 + 5} = 2;$$

7.16
$$\lim_{x \to 0,001} \operatorname{sgn} x = 1.$$

Нехай функції f та g визначені в деякому околі $S_{\varepsilon}(x_0)$ точки $x_0 \in \overline{\mathbb{R}}$. Доведіть, що при $x \to x_0$ справедливі такі твердження:

7.17
$$o(f) + o(f) = o(f);$$

7.18
$$o(f) + O(f) = O(f);$$

7.19
$$o(f) \cdot o(f) = o(f);$$

7.20
$$O(f) \cdot O(f) = O(f);$$

7.21
$$o(f) \cdot O(f) = o(f);$$

7.22
$$O(o(f)) = o(f);$$

7.23
$$o(O(f)) = o(f)$$
;

7.24
$$o(f + o(f)) = o(f)$$
;

7.25
$$o(f^n) = (o(f))^n, n > 0;$$

7.26
$$O(f) \cdot O(q) = O(fq);$$

7.27
$$o(f) \cdot o(g) = o(fg);$$

7.28
$$O(f) \cdot o(g) = o(f) \cdot O(g) = o(fg)$$
.

Доведіть справедливість таких рівностей при $x \to 0$ (в околі точки 0):

7.29
$$o(x^m) = o(x^n), m > n;$$

7.30
$$o(o(x^n)) = o(x^n);$$

7.31
$$o(x^m) + o(x^n) = o(x^n), m > n;$$

7.32
$$c \cdot o(x^n) = o(x^n), c \neq 0;$$

7.33
$$o(cx^n) = o(x^n), c \neq 0;$$

7.34
$$O(x^m) = O(x^n), m > n;$$

7.35
$$O(x^m) + O(x^n) = O(x^n), m > n;$$

7.36
$$x^m \cdot o(x^n) = o(x^{m+n});$$

7.37
$$O(x^m) \cdot o(x^n) = o(x^{m+n})$$
:

7.38
$$o(x^m) \cdot o(x^n) = o(x^{m+n}).$$

Зробіть спрощення виразів при $x \to 0$ до поліному степеня $\leqslant k$ із додаванням o-малого відповідного степеня x:

7.39
$$(x+x^2+o(x^3))(2+3x^2+4x^4+o(x^5)), k=3;$$

7.40
$$(1-x^2+o(x^4))(2+x^2+o(x^4))-(1-x^3)(3+x^2+o(x^5)), k=4;$$

7.41
$$(5x+4x^2-3x^3+o(x^3))(1+x^2+2x^3+o(x^5)), k=3;$$

7.42
$$(x+x^2+x^3+o(x^3))(1-x+x^2-x^3+o(x^4))+3x^2-5x, k=2;$$

7.43
$$(x+2x^2+3x^3+o(x^5))(1-x-2x^2+o(x^4))-2x+4x^3+o(x^4), k=4.$$

Знайдіть, де це можливо, границі таких виразів при $x \to 0$:

7.44
$$\frac{x^2 - x^3 + o(x^3)}{4x^4 + 2x^2 + o(x^2)};$$

7.45
$$\frac{5x - x^2 + o(x^3)}{3x^3 - 2x + o(x^2)};$$

7.46
$$\frac{-x^3 + o(x^3)}{x^2 + o(x^2)}$$
; 7.47 $\frac{x^3 + o(x)}{x^4 + o(x^2)}$; 7.48 $\frac{o(x^2)}{o(x)}$; 7.49 $\frac{2x^3 + o(x)}{x^2 + o(x)}$; 7.50 $\frac{3x^4 - 5x^3 + o(x^4)}{x^3 + 4x^4 + o(x^3)}$; 7.51 $\frac{x^2 - x^3 + x^4 + o(x^4)}{x^3 - x^2 + 2x + o(x^3)}$

Практичне заняття 8

Приклад 1. Знайдемо границю $\lim_{x\to 0} \frac{(1+x)^4 - (1+4x)}{2x^2 + x^4}$.

$$\lim_{x \to 0} \frac{(1+x)^4 - (1+4x)}{2x^2 + x^4} = \lim_{x \to 0} \frac{1 + 4x + 6x^2 + o(x^2) - 1 - 4x}{2x^2 + o(x^2)} = 3.$$

Приклад 2. Знайдемо границю $\lim_{x\to x_0} (u(x))^{v(x)}$, де $x_0=2$, $u(x)=\frac{-2+x+2x^2}{2-x+x^2}$,

$$v(x) = \frac{1-x}{1+x^2}.$$

Оскільки
$$\lim_{x\to 2} u(x) = \lim_{x\to 2} \frac{-2+x+2x^2}{2-x+x^2} = 2$$
 та $\lim_{x\to 2} v(x) = \lim_{x\to 2} \frac{1-x}{1+x^2} = -\frac{1}{5}$, то

$$\lim_{x \to 2} (u(x))^{v(x)} = \left(\lim_{x \to 2} u(x)\right)^{\lim_{x \to 2} v(x)} = 2^{-\frac{1}{5}}.$$

Приклад 3. Знайдемо границю $\lim_{x\to\infty}(u(x))^{v(x)},\ de\ u(x)=\frac{11+x}{6+x},\ v(x)=\frac{1+x}{1+\sqrt{x}}.$

Оскільки $\lim_{x\to\infty}u(x)=\lim_{x\to\infty}\frac{11+x}{6+x}=1$ та $\lim_{x\to\infty}v(x)=\lim_{x\to\infty}\frac{1+x}{1+\sqrt{x}}=\infty$, то позбудемося невизначеності $[1^\infty]$ таким чином:

$$\lim_{x \to \infty} (u(x))^{v(x)} = e^{\lim_{x \to \infty} v(x)(u(x) - 1)} = \exp\left(\lim_{x \to \infty} \left(\frac{1 + x}{1 + \sqrt{x}} \cdot \frac{5}{6 + x}\right)\right) = e^0 = 1.$$

Приклад 4. Для функції $f(x) = \left(x + 3^{\frac{1}{3-x}}\right)^{-1}$ знайдемо односторонні границі при $x \to x_0 + 0$ та $x \to x_0 - 0$ для випадків: 1) $x_0 = 0$, 2) $x_0 = 3$.

У випадку $x_0=0$: $\lim_{x\to 0+0}f(x)=\lim_{x\to 0-0}f(x)=\frac{1}{\sqrt{3}}$. Якщо ж $x_0=3$, то

$$\lim_{x \to 3+0} f(x) = \lim_{\substack{x \to 3 \\ x > 3}} \frac{1}{x + 3^{\frac{1}{3-x}}} = \frac{1}{3 + 3^{\frac{1}{0-}}} = \frac{1}{3 + 3^{-\infty}} = \frac{1}{3};$$

$$\lim_{x \to 3+0} f(x) = \lim_{x \to 3} \frac{1}{x + 3^{\frac{1}{3-x}}} = \frac{1}{3 + 3^{\frac{1}{0-}}} = \frac{1}{3 + 3^{-\infty}} = \frac{1}{3};$$

$$\lim_{x \to 3-0} f(x) = \lim_{\substack{x \to 3 \\ x \neq 3}} \frac{1}{x + 3^{\frac{1}{3-x}}} = \frac{1}{3 + 3^{\frac{1}{0+}}} = \frac{1}{3 + 3^{+\infty}} = \frac{1}{+\infty} = 0.$$

Приклад 5. Порівняємо функції $f(x) = \cos x \ ma \ g(x) = \frac{\operatorname{ch} x - 1}{x^2} \ npu \ x \to 0.$

Оскільки
$$\lim_{x\to 0}\cos x = 1$$
, $\lim_{x\to 0}\frac{\operatorname{ch} x - 1}{x^2} = \lim_{x\to 0}\frac{1 + \frac{x^2}{2} + o(x^2) - 1}{x^2} = \frac{1}{2}$, то $\lim_{x\to 0}\frac{f(x)}{g(x)} = 2$ та $\lim_{x\to 0}\frac{g(x)}{f(x)} = \frac{1}{2}$, тобто $f = O(g) \wedge g = O(f)$ при $x\to 0$.

Приклад 6. Визначимо порядок відносно шкали x^n функції $f(x) = x \sin \sqrt{x}$ при $x \to 0$.

Оскільки при
$$x \to 0$$
: $f(x) = x \cdot (\sqrt{x} + o(\sqrt{x})) = x^{3/2} + o(x^{3/2})$, то

$$\lim_{x \to 0} \frac{f(x)}{x^m} = \lim_{x \to 0} \frac{x^{3/2} + o(x^{3/2})}{x^m} = 1 \iff m = \frac{3}{2}.$$

Знайдіть границі:

8.1
$$\lim_{x\to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$$
;

8.3
$$\lim_{x \to 1} \frac{x^m - 1}{x^k - 1}, \ m, k \in \mathbb{N};$$

8.5
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}};$$

8.7
$$\lim_{x \to a} \frac{\sqrt{x - \sqrt{a} + \sqrt{x - a}}}{\sqrt{x^2 - a^2}};$$

8.9
$$\lim_{x\to 0} \left(\frac{2+x}{3-x}\right)^{\frac{1+\sqrt{x}}{1-x}};$$

8.11
$$\lim_{x \to \infty} \left(\frac{x^2 + 2}{x^2 - 2} \right)^{x^2};$$

8.13
$$\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x};$$

8.15
$$\lim_{x\to\infty} \left(\frac{3x^2+x-1}{2x^2-x+1}\right)^{\frac{x^3}{1-x}};$$

8.17
$$\lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x};$$

8.19
$$\lim_{x \to 1} \frac{\sin(\pi x^a)}{\sin(\pi x^b)};$$

8.21
$$\lim_{x \to a} \frac{\operatorname{ch} x - \operatorname{ch} a}{x - a};$$

8.23
$$\lim_{x \to a} \frac{\operatorname{th} x - \operatorname{th} a}{x - a};$$

8.25
$$\lim_{x \to a} \frac{\ln x - \ln a}{x - a}$$
;

8.27
$$\lim_{x \to 0} \frac{\sqrt{1 + \lg x} - \sqrt{1 + \sin x}}{x^3};$$

8.2
$$\lim_{x\to 0} \frac{(1+x)(1+2x)(1+3x)-1}{x-x^3}$$
;

8.4
$$\lim_{x\to 0} \frac{(1+mx)^k - (1+kx)^m}{x^2}$$
;

8.6
$$\lim_{x \to 1} \frac{\sqrt[3]{7 + x^3} - \sqrt{3 + x^2}}{1 - x};$$

8.8
$$\lim_{x \to 3} \frac{\sqrt{x+13}-2\sqrt{x+1}}{x^2-9}$$
;

8.10
$$\lim_{x \to 1} \left(\frac{2+x}{3-x} \right)^{\frac{1-\sqrt{x}}{1-x}};$$

8.12
$$\lim_{x \to \pi} \left(\frac{1 + \lg x}{1 + \sin x} \right)^{\frac{1}{\sin^3 x}};$$

8.14
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}};$$

8.16
$$\lim_{x\to\infty} \left(\frac{x^2+3x-2}{2x^2-x-2}\right)^{\frac{1}{x}};$$

8.18
$$\lim_{x \to +\infty} \frac{x + \operatorname{sh} x}{x - \operatorname{sh} x};$$

8.20
$$\lim_{x\to 0} \frac{\operatorname{sh} x - x}{x^3};$$

$$8.22 \quad \lim_{x \to a} \frac{\operatorname{sh} x - \operatorname{sh} a}{x - a};$$

8.24
$$\lim_{x \to a} \frac{e^x - e^a}{x - a};$$

8.26
$$\lim_{x\to 0} \frac{\operatorname{th} x}{x}$$
;

8.28
$$\lim_{x\to 0} \frac{1-\sqrt{\cos x}}{1-\cos\sqrt{x}};$$

8.29
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{\cos x} - 2x \operatorname{tg} x \right);$$
8.30 $\lim_{x \to \frac{1}{2}} \frac{\sin(1 - 2x)}{4x^2 - 1};$
8.31 $\lim_{x \to 2} \frac{2^x - x^2}{2 - x};$
8.32 $\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[4]{16 - x} - e^x}{\ln(1 + e^x - \cos x)};$

8.33
$$\lim_{x\to 0} \frac{e^{\cos x} - e^{1+\ln{(1+x)}}}{\sqrt{9+2x}-3};$$
 8.34 $\lim_{x\to \infty} x^2 \ln{\cos{\frac{\pi}{x}}};$

8.35
$$\lim_{x \to 0} \frac{\ln \cos ax}{\ln \cos bx};$$
 8.36 $\lim_{x \to 0} \frac{\cos (xe^x) - \cos (xe^{-x})}{x^3};$

8.37
$$\lim_{x\to 0} \frac{\sqrt{1+x\sin x\cos 2x}-(x^2-1)^2}{e^{\lg x^2}-\cos x}$$
.

Для функції $f(x): \mathbb{R} \to \mathbb{R}$ знайдіть односторонні границі при $x \to x_0 + 0$ та $x \to x_0 - 0$. Чи існує у кожному випадку $\lim_{x \to x_0} f(x)$?

8.38
$$f(x) = [x], \mathbf{1}) x_0 = 1, \mathbf{2}) x_0 = \sqrt{3}, \mathbf{3}) x_0 = 0,999;$$

8.39
$$f(x) = \{x\}, \ \mathbf{1}) \ x_0 = 0, \ \mathbf{2}) \ x_0 = \sqrt{2}, \ \mathbf{3}) \ x_0 = \frac{1}{3};$$

8.40
$$f(x) = \operatorname{sgn} x$$
, **1)** $x_0 = 0$, **2)** $x_0 = e$;

8.41
$$f(x) = \frac{1}{e^{\{x\}} - 1}$$
, **1)** $x_0 = 0$, **2)** $x_0 = \frac{1}{3}$, **3)** $x_0 = -\frac{17}{8}$;

8.42
$$f(x) = \frac{\sin x}{|x|}$$
, **1)** $x_0 = 0$, **2)** $x_0 = 2$, **3)** $x_0 = \pi$;

8.43
$$f(x) = \frac{1}{1 - 2^{\frac{x}{1-x}}}$$
, **1)** $x_0 = -1$, **2)** $x_0 = 0$, **3)** $x_0 = 1$;

8.44
$$f(x) = \operatorname{sgn}(\cos \pi x)$$
, **1)** $x_0 = 0$, **2)** $x_0 = \frac{1}{2}$, **3)** $x_0 = 1$.

Порівняйте функції f та g при $x \to 0$ $(x \to 0+)$, тобто вкажіть, які з умов $f = O(g), \ g = O(f), \ f = o(g), \ g = o(f), \ f \sim g$ виконуються:

8.45
$$f(x) = \frac{\cos x - 1}{x}$$
, $g(x) = \operatorname{tg} x$; **8.46** $f(x) = [x]$, $g(x) = \{x\}$;

8.47
$$f(x) = \{x\}, g(x) = e^x - 1;$$
 8.48 $f(x) = \cos x - 1, g(x) = \cot x - 1;$

8.49
$$f(x) = \frac{1}{x}$$
, $g(x) = \frac{1}{x^2}$; **8.50** $f(x) = 1 - \cos x$, $g(x) = x^{\frac{3}{2}}$;

8.51
$$f(x) = x^x$$
, $g(x) = 1$; **8.52** $f(x) = \sin x \cdot \sin \frac{1}{x}$, $g(x) = \operatorname{tg} x$;

8.53
$$f(x) = x \cos \frac{1}{x}$$
, $g(x) = x$; **8.54** $f(x) = x^{x^x}$, $g(x) = \sin x$.

Визначте порядок відносно шкали x^n функції $f(x):\mathbb{R}\to\mathbb{R}$ при $x\to 0$ $(x\to 0+)$:

8.55
$$f(x) = e^{\sin x} - 1;$$
 8.56 $f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}};$

8.57
$$f(x) = \arctan \frac{1}{x};$$
 8.58 $f(x) = \sqrt{1+x} - 1;$

8.59
$$f(x) = \ln \cos \sqrt{x}$$
; **8.60** $f(x) = 1 - \cos(\sin x) - e^{x^2}$.

При яких значеннях параметрів α та β справджується рівність f(x)=o(1) при $x\to x_0\ (x\to x_0+0),$ якщо:

8.61
$$f(x) = \frac{\ln(1+x^{\alpha})}{x^{\beta}}, \ x_0 = 0;$$
 8.62 $f(x) = x^{\alpha} \sin \frac{1}{x^{\beta}}, \ x_0 = 0;$

8.63
$$f(x) = \frac{x^2 \arctan x}{1+x} - \alpha x^3 - \beta, \ x_0 = 0;$$

8.64
$$f(x) = \ln(1 + e^{3x}) - \alpha x - \beta$$
, **1)** $x_0 = 0$, **2)** $x_0 = +\infty$;

8.65
$$f(x) = \frac{xe^x}{1+x} - \alpha x - \beta$$
, **1)** $x_0 = -\infty$, **2)** $x_0 = +\infty$;

8.66
$$f(x) = \sqrt{x^2 + 1} - \sqrt{x^2 - 1} + \frac{\alpha}{x} + \beta, \ x_0 = +\infty.$$

Тема 5. Неперервність функції

З поняттям границі функції тісно пов'язане поняття неперервності функції. Нехай x_0 — гранична точка множини D_f і при цьому $x_0 \in D_f$. Функція $f \in$ неперервною в точці x_0 , якщо виконується одна із еквівалентних умов:

- 1) $\lim_{x \to x_0} f(x) = f(x_0);$
- 2) $\forall \varepsilon > 0 \; \exists \, \delta(\varepsilon, x_0) : \forall \, x \in D_f \; |x x_0| < \delta \; \Rightarrow \; |f(x) f(x_0)| < \varepsilon \; ($ означення неперервної функції в точці за Коші);
- 3) $\forall (x_n)_{n\in\mathbb{N}}: (x_n) \in D_f \land (x_n) \to x_0$ при $n \to \infty \Rightarrow f(x_n) \to f(x_0), n \to \infty$ (означення неперервної функції в точці за Гейне);
- 4) $\Delta f(x_0) = f(x) f(x_0) \to 0$ при $\Delta x = x x_0 \to 0$.

Функція $f: \mathbb{R} \to \mathbb{R}$, яка не є неперервною в точці $x_0 \in D_f$, називається **розривною** в цій точці.

Теорема (про арифметичні дії з неперервними функціями). Нехай функції $f,g:\mathbb{R}\to\mathbb{R}$ неперервні в точці $x_0\in D_f=D_g$. Тоді неперервні в цій точці також і функції $f+g,\,f-g,\,f\cdot g$ та $\frac{f}{g}$ (якщо $g(x_0)\neq 0$) [1, с. 136].

Теорема (про неперервність суперпозиції функцій). Нехай f неперервна в точці $x_0 \in D_f$, а g неперервна в точці $\xi_0 \in D_g$. Якщо $g(\xi_0) = x_0$, то суперпозиція $f \circ g$ неперервна в точці ξ_0 [1, с. 137].

Теорема (про границю неперервної суперпозиції). Нехай ξ_0 — гранична точка множини $D_{f\circ g}$. Якщо $\lim_{\xi\to\xi_0}g(\xi)=x_0$ і $f:\mathbb{R}\to\mathbb{R}$ — неперервна в точці x_0 , то $\lim_{\xi\to\xi_0}f\left(g(\xi)\right)=f(x_0)$ [1, с. 138].

Функція $f: \mathbb{R} \to \mathbb{R}$ називається **неперервною зліва** (справа) в точці $x_0 \in D_f$, граничній для множини D_f , якщо $f(x_0-0) = f(x_0)$ ($f(x_0+0) = f(x_0)$).

Нехай $f: \mathbb{R} \to \mathbb{R}$, x_0 — гранична точка множини D_f . Якщо $x_0 \notin D_f$, то точка x_0 називається *особливою* для функції f. Зокрема, якщо $\exists \lim_{x \to x_0} f(x) \in \mathbb{R}$, то точка x_0 називається *усувною особливою*, а якщо $\nexists \lim_{x \to x_0} f(x)$, то точка x_0 називається *істотно особливою* [1, c. 142].

Класифікація точок розриву функції

Точки розриву та особливі точки функції $f: \mathbb{R} \to \mathbb{R}$, які є граничними одночасно для обох множин $D_f \cap (x_0, +\infty)$ та $D_f \cap (-\infty, x_0)$, поділяються на такі типи:

- 1) $\exists \lim_{x \to x_0} f(x) \in \mathbb{R}$ і $f(x_0)$ або не існує, або $f(x_0) \neq \lim_{x \to x_0} f(x)$; тоді точка x_0 називається **точкою усувного розриву**;
- 2) $\exists f(x_0-0) \in \mathbb{R}$, $\exists f(x_0+0) \in \mathbb{R}$ і $f(x_0+0) \neq f(x_0-0)$ називається **точкою розриву першого роду**; число $\eta = f(x_0+0) f(x_0-0)$ називається **стрибком** функції f у точці x_0 ;

- 3) якщо односторонні границі в точці x_0 або не існують, або хоча б одна з них нескінченна, то точка x_0 називається **точкою розриву другого роду**;
- **4)** якщо $\exists f(x_0+0) \in \overline{\mathbb{R}}, \ \exists f(x_0-0) \in \overline{\mathbb{R}}$ і хоча б одна з них нескінченна, то точка розриву ІІ роду x_0 називається **полюсом** [1, с. 141].

Функція $f: \mathbb{R} \to \mathbb{R}$ називається неперервною на множині $X \subset D_f$, якщо вона неперервна в кожній точці цієї множини. Клас усіх функцій, неперервних на X, позначають символом C(X) [1, с. 141].

Властивість. Всі елементарні функції є неперервними на своїх областях визначення.

Функція $f: X \to \mathbb{R}$ називається **кусково-неперервною**, якщо вона неперервна в усіх внутрішніх точках множини X, за виключенням скінченної множини точок, які є точками розриву І роду або точками усувного розриву функції f [1, c. 142].

Зокрема, якщо X = [a, b], то функція f називається кусково-неперервною, якщо вона неперервна в усіх внутрішніх точках сегмента [a, b], за винятком скінченної множини точок, в кожній з яких має скінченні лівосторонню та правосторонню границі, і крім того має скінченні значення f(a + 0) та f(b - 0).

Теорема (Вейєрштрасса). Нехай $f \in C[a,b]$. Тоді функція f — обмежена та $\exists \{x_*,x^*\} \subset [a,b]: \ f(x_*) = \inf_{x \in [a,b]} f(x), \ f(x^*) = \sup_{x \in [a,b]} f(x) \ [8, \text{c. } 70].$

Теорема (Коші про проміжне значення). Нехай $f \in C[a,b]$. Тоді для будь-якого числа L з відрізка із кінцями у точках f(a) і f(b) існує $c \in [a,b]$: f(c) = L [8, c. 70].

Практичне заняття 9

Приклад 1. Доведемо неперервність функції $f(x) = \cos x$ на множині $\mathbb R$.

Оскільки для довільної точки $x_0 \in \mathbb{R}$ та $\forall x \in \mathbb{R}$:

Г

$$|\cos x - \cos x_0| = \left| -2\sin\frac{x + x_0}{2}\sin\frac{x - x_0}{2} \right| \leqslant 2\left| \frac{x - x_0}{2} \right| < \varepsilon,$$

то за означенням Коші f є неперервною на $\mathbb R$ за умови, що $|x-x_0|<\delta=\varepsilon.$

Приклад 2. Дослідимо на неперервність функцію $f:\mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} \frac{x^3 - 1}{x - 1}, & x \neq 1, \\ 4, & x = 1. \end{cases}$$

При $x \neq 1$ функцію можна переписати у вигляді $f(x) = x^2 + x + 1$, а тому $f \in C(\mathbb{R} \setminus \{1\})$. Оскільки $\lim_{x \to 1-0} f(x) = \lim_{x \to 1+0} f(x) = 3 \neq f(1)$, то x = 1 є точкою усувного розриву.

Приклад 3. Дослідимо на неперервність функцію $f(x) = \operatorname{arctg} \frac{1}{x}$ на \mathbb{R} .

Г

На $\mathbb{R}\setminus\{0\}$ функція є неперервною за теоремою про неперервність суперпозиції неперервних функцій. Оскільки $\lim_{x\to 0-0}f(x)=-\frac{\pi}{2}$ та $\lim_{x\to 0+0}f(x)=\frac{\pi}{2}$, то x=0 є точкою розриву І роду. $_{\perp}$

Приклад 4. Дослідимо на неперервність функцію $f(x) = e^{x+\frac{1}{x}}, x \in \mathbb{R}$.

На $\mathbb{R}\setminus\{0\}$ функція є неперервною за теоремою про неперервність суперпозиції неперервних функцій. Оскільки $\lim_{x\to 0-0}f(x)=0$ та $\lim_{x\to 0+0}f(x)=\infty$, то x=0 є точкою розриву II роду типу полюс.

Приклад 5. Дослідимо на неперервність функцію $f(x) = x[x], x \in \mathbb{R}$.

Функція $f \in$ неперервною на множині $\mathbb{R} \setminus \mathbb{Z}$. Перевіримо точки $n \in \mathbb{Z}$:

$$\lim_{x \to n-0} f(x) = n \cdot (n-1) = n^2 - n, \qquad \lim_{x \to n+0} f(x) = n \cdot n = n^2.$$

Отже, у точках $n \in \mathbb{Z} \setminus \{0\}$ функція f має розриви І роду, а у точці 0 функція f — неперервна. ┙

Доведіть неперервність функції $f: \mathbb{R} \to \mathbb{R}$ на D_f за означенням Коші, якщо:

9.1
$$f(x) = \sin x$$
;

9.2
$$f(x) = \operatorname{tg} x;$$

9.3
$$f(x) = \operatorname{ctg} x;$$

$$9.4 \quad f(x) = \arcsin x;$$

9.5
$$f(x) = \sin x;$$

9.6
$$f(x) = \operatorname{ch} x;$$

9.7
$$f(x) = \sqrt{x}$$
;

9.8
$$f(x) = x^3$$
;

9.9
$$f(x) = e^x$$
;

9.10
$$f(x) = \ln x$$
.

Дослідіть на неперервність і встановіть характер точок розриву функції $f: \mathbb{R} \to \mathbb{R}$, а також побудуйте її графік, якщо:

9.11
$$f(x) = \begin{cases} 2-x, & x \leq 2, \\ \frac{1}{x-2}, & x > 2; \end{cases}$$

9.12
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0; \end{cases}$$

$$\mathbf{9.13} \quad f(x) = \begin{cases} \frac{1}{\sin x}, & x < 0, \\ \ln x + \frac{\pi}{4}, & 0 \leqslant x < 1, \end{cases} \quad \mathbf{9.14} \quad f(x) = \begin{cases} \cos x, & x \leqslant -\frac{\pi}{4}, \\ \tan x, & -\frac{\pi}{4} < x < 0, \\ e^x - 1, & x \geqslant 0; \end{cases}$$

$$\mathbf{9.14} \quad f(x) = \begin{cases} \cos x, & x \leqslant -\frac{\kappa}{4}, \\ \lg x, & -\frac{\pi}{4} < x < 0, \\ e^x - 1, & x \geqslant 0; \end{cases}$$

9.15
$$f(x) = \begin{cases} \frac{\sin x}{|x|}, & x \neq 0, \\ 1, & x = 0; \end{cases}$$

9.16
$$f(x) = \begin{cases} \left| \frac{\sin x}{x} \right|, & x \neq 0, \\ 1, & x = 0; \end{cases}$$

9.17
$$f(x) = [x] \sin \pi x;$$

9.18
$$f(x) = 2^{-2^{\frac{1}{1-x}}};$$

9.19
$$f(x) = \arctan\left(\frac{1}{x-1} + \frac{1}{x}\right);$$

9.20
$$f(x) = \frac{1}{\ln|x|};$$

$$\mathbf{9.21} \quad f(x) = \frac{[x]}{\pi} \left([x] - (-1)^{[x]} \cos \pi x \right); \quad \mathbf{9.22} \quad f(x) = \begin{cases} x, & |x| \leqslant 1, \\ \frac{x^3}{3} - \frac{2}{3} \operatorname{sgn} x, & |x| > 1; \end{cases}$$

$$\mathbf{9.23} \quad f(x) = \begin{cases} \frac{1}{\sqrt{3}} \arctan \frac{x^2 - 1}{x\sqrt{3}} + \frac{\pi}{2\sqrt{3}} \operatorname{sgn} x, & x \neq 0, \\ 0, & x = 0; \end{cases}$$

$$\mathbf{9.24} \quad f(x) = \begin{cases} \frac{1}{\sqrt{5}} \arctan \frac{3 \operatorname{tg} \frac{x}{2} + 1}{\sqrt{5}} + \frac{\pi}{\sqrt{5}} \left[\frac{x + \pi}{2\pi} \right], & x \neq (2n + 1)\pi, \ n \in \mathbb{Z}, \\ \frac{\pi}{\sqrt{5}} \left(n + \frac{1}{2} \right), & x = (2n + 1)\pi, \ n \in \mathbb{Z}. \end{cases}$$

Підберіть значення параметрів α та β , щоб функція $f:\mathbb{R}\to\mathbb{R}$ була неперервною на \mathbb{R} :

$$\mathbf{9.25} \quad f(x) = \begin{cases} \frac{x^2 - 4}{x^3 - 8} + \frac{\sin x}{2x}, & x \notin \{0, 2\}, \\ \alpha, & x = 0, \\ \beta, & x = 2; \end{cases}$$

$$\mathbf{9.26} \quad f(x) = \begin{cases} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x} + x^2}{x + 2\sqrt[3]{x^4}}, & x \neq 0, \\ \alpha, & x = 0. \end{cases}$$

Дослідіть на неперервність зліва та справа функції $f:\mathbb{R} \to \mathbb{R}$ в усіх точках множини $D_f,$ якщо:

9.27
$$f(x) = [x^2];$$
 9.28 $f(x) = [2x] - [3x];$

9.29
$$f(x) = \frac{2x+1}{6-2^{\frac{x+1}{x}}}, x \neq 0$$
 ra: **1)** $f(0) = 0, 2$ $f(0) = \frac{1}{6}$;

9.30
$$f(x) = e^{-\frac{1}{x}}, x \neq 0$$
 Ta: **1)** $f(0) = 1, 2$) $f(0) = 0, 3$) $f(0) = e$.

Тема 6. Рівномірно неперервні функції

Функція $f: \mathbb{R} \to \mathbb{R}$ називається *рівномірно неперервною на множині* $X \subset D_f$, якщо $\forall \varepsilon > 0 \; \exists \; \delta > 0 \; \forall \; (\{x_1, x_2\} \subset X): |x_1 - x_2| < \delta \; \Rightarrow \; |f(x_1) - f(x_2)| < \varepsilon.$

Множина $X \subset \mathbb{R}$ називається **компактною в собі** або **компактом**, якщо з будь-якої послідовності точок $(x_n) \subset X$ можна виділити підпослідовність (x_{n_k}) , збіжну до деякої точки $x_0 \in X$ [1, с. 145].

Теорема (критерій компактності). Множина $X \subset \mathbb{R}$ є компактом тоді і тільки тоді, коли вона одночасно замкнена і обмежена [1, с. 146].

Теорема (Кантора). Нехай функція $f: \mathbb{R} \to \mathbb{R}$ неперервна на множині $X \subset D_f$. Якщо X — компакт, то f ϵ рівномірно неперервною на X [1, c. 157].

При дослідженні функцій на рівномірну неперервність можна використовувати властивості 1–3 і твердження 4–6.

- **1.** Якщо $f: \mathbb{R} \to \mathbb{R}$ рівномірно неперервна на $X \subset D_f$, то $\forall Y \subset X$ звуження f також є рівномірно неперервним на Y (рівномірна неперервність звуження).
- **2.** Якщо функція f є рівномірно неперервною на множинах [a,b] та [b,c], то вона є рівномірно неперервною на [a,c] ($\{a,c\}\subset \overline{\mathbb{R}}$) (рівномірна неперервність на об'єднанні).
- **3.** Якщо f,g рівномірно неперервні на X функції, то $\forall \{\alpha,\beta\} \subset \mathbb{R}$ функція $(\alpha f + \beta g)$ є рівномірно неперервною на X (лінійність рівномірної неперервності).
- **4.** Функція $f: \mathbb{R} \to \mathbb{R}$ є рівномірно неперервною на X тоді і тільки тоді, коли $\forall (x_n), (y_n) \subset X$ з умови $x_n y_n \to 0, \ n \to \infty$ випливає: $f(x_n) f(y_n) \to 0, \ n \to \infty$ (рівномірна неперервність в термінах послідовностей).
- **5.** Якщо $f \in C[a, +\infty)$ $(f \in C(-\infty, a])$ і має скінченну границю $\lim_{x \to +\infty} f(x) = b$ $\left(\lim_{x \to -\infty} f(x) = b\right), b \in \mathbb{R}$, то f є рівномірно неперервною на $[a, +\infty)$ $((-\infty, a])$ (рівномірна неперервність на нескінченності).
- **6.** Нехай $f \in C(a,b)$. Якщо $\exists \lim_{x \to a+0} f(x) = A \in \mathbb{R}, \exists \lim_{x \to b-0} f(x) = B \in \mathbb{R}$, то f рівномірно неперервна на (a,b), інакше f не є рівномірно неперервною на (a,b) (рівномірна неперервність на інтервалі).

Практичне заняття 10

Приклад 1. Дослідимо на рівномірну неперервність функцію $f(x) = \sin x$ на множині $\mathbb R$.

Оскільки $\forall x', x'' \in \mathbb{R}$:

$$|\sin x' - \sin x''| = \left| 2\sin \frac{x' - x''}{2}\cos \frac{x' + x''}{2} \right| \le |x' - x''| < \varepsilon,$$

то за означенням функція f є рівномірно неперервною на $\mathbb R$ за умови, що

$$|x' - x''| < \delta = \varepsilon.$$

Приклад 2. Дослідимо на рівномірну неперервність функцію $f(x) = \frac{1}{x-1}$ на множинах $X_1 = (2,3), \ X_2 = (2,+\infty)$ та $X_3 = (1,2]$.

- 1. Функція f є неперервною на компактній множині [2,3]. Тому f рівномірно неперервна на [2,3] за теоремою Кантора. Оскільки $X_1 \subset [2,3]$, то за властивістю 1 функція f є рівномірно неперервною на множині X_1 .
- 2. Оскільки $f \in C([2,+\infty))$ та $\lim_{x \to +\infty} f(x) = 0$, то за твердженням 5 функція f є рівномірно неперервною на множині X_2 .
- 3. Покажемо, що $\nexists\lim_{x\to 1+0}f(x)$. Нехай $x_n=1+\frac{1}{n},\ n\in\mathbb{N}$ та $y_n=1+\frac{1}{n+1},\ n\in\mathbb{N}$. Тоді

$$|x_n - y_n| = \frac{1}{n(n+1)} \to 0, \ n \to \infty.$$

З іншого боку, $|f(x_n)-f(y_n)|=|n-(n+1)|=1 \not\to 0, \ n\to\infty.$ Отже, згідно із твердженням 6 функція f не ϵ рівномірно неперервною на множині X_3 .

Приклад 3. Дослідимо на рівномірну неперервність функцію $f(x) = \sin \frac{1}{x}$ на множині (0,1).

Покажемо, що $\nexists\lim_{x\to 0+0}f(x)$. Нехай $x_n=\frac{1}{2\pi n},\,n\in\mathbb{N}$ та $y_n=\frac{1}{\frac{\pi}{2}+2\pi n},\,n\in\mathbb{N}.$ Толі

$$|x_n - y_n| = \frac{\pi}{4\pi n \left(\frac{\pi}{2} + 2\pi n\right)} \to 0, \ n \to \infty.$$

З іншого боку, $|f(x_n)-f(y_n)|=|0-1|=1\not\to 0,\ n\to\infty.$ Отже, функція f не є рівномірно неперервною на інтервалі (0,1) згідно із твердженням 4.

Дослідіть функцію $f:\mathbb{R} \to \mathbb{R}$ на рівномірну неперервність на множині X, якщо:

10.1
$$f(x) = \operatorname{tg} x$$
, **1)** $X = \left(0, \frac{\pi}{4}\right)$, **2)** $X = \left(\frac{\pi}{2}, \pi\right)$;

10.2
$$f(x) = \frac{1}{x}$$
, **1)** $X = \left(\frac{1}{100}, 100\right)$, **2)** $X = (0, 1)$, **3)** $X = (2, +\infty)$;

10.3
$$f(x) = \ln x$$
, **1**) $X = (0,1)$, **2**) $X = (1,e)$, **3**) $X = (e, +\infty)$;

10.4
$$f(x) = \sin \frac{\pi}{x}$$
, **1)** $X = (0, \pi)$, **2)** $X = (1, +\infty)$;

10.5
$$f(x) = \begin{cases} \frac{|\sin x|}{x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$$
 1) $X = [0, 1), \ \mathbf{2}$ $X = [-1, 1];$

10.6
$$f(x) = e^{-\arcsin x}$$
, **1)** $X = (-1, 1)$, **2)** $X = [-1, 1]$;

10.7
$$f(x) = \frac{1}{\sinh x}$$
, **1)** $X = (-1,0)$, **2)** $X = (0,+\infty)$;

10.8
$$f(x) = \sqrt{x}$$
, **1)** $X = (0,2)$, **2)** $X = (2, +\infty)$;

10.9
$$f(x) = \cos x^2$$
, $X = \mathbb{R}$;
10.11 $f(x) = \arctan x$, $X = \mathbb{R}$;

10.10
$$f(x) = x + \sin x, \ X = \mathbb{R};$$

10.12 $f(x) = \operatorname{arcctg} x, \ X = \mathbb{R}.$

Розділ 4. Диференційне числення

Тема 7. Похідна та диференціал функції

Нехай функція $f: \mathbb{R} \to \mathbb{R}$, $x_0 \in D_f$. Функція f називається **диференційовною в точці** x_0 , якщо існує така неперервна в точці x_0 функція $D_f \stackrel{\varphi}{\to} \mathbb{R}$, що $\forall x \in D_f$ виконується рівність: $f(x) - f(x_0) = (x - x_0) \varphi(x)$.

Якщо x_0 — гранична точка множини D_f , то число $\varphi(x_0)$ називається **noxi- дною функції** f **в moчці** x_0 і позначається символом $f'(x_0) = \varphi(x_0)$.

Нехай $f: \mathbb{R} \to \mathbb{R}, x_0 \in D_f$ та є граничною точкою D_f . Якщо f диференційовна в точці x_0 , то

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Правила диференціювання [1, с. 177–179].

Нехай функції $f:\mathbb{R} \to \mathbb{R}$ та $g:\mathbb{R} \to \mathbb{R}$ диференційовні в точці x_0 , граничній для множини $D_f = D_q$.

1. Лінійність диференціювання: $\forall \{\lambda, \mu\} \subset \mathbb{R}$ функція $\lambda f + \mu g$ диференційовна в точці x_0 і виконується рівність:

$$(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0).$$

2. Диференціювання добутку функцій: функція $(f \cdot g)$ диференційовна в точці x_0 та виконується рівність:

$$(fg)'(x_0) = f'(x_0) g(x_0) + g'(x_0) f(x_0).$$

3. $\Pi oxi \partial na\ vacm \kappa u$: якщо $g(x_0) \neq 0$, то функція $\frac{f}{g}$ — диференційовна в точці x_0 і виконується рівність:

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{g^2(x_0)}.$$

Теорема (похідна суперпозиції функцій). Нехай функція $f: \mathbb{R} \to \mathbb{R}$ диференційовна в точці x_0 , граничній для D_f , а функція $g: \mathbb{R} \to \mathbb{R}$ диференційовна в точці ξ_0 . Якщо $x_0 = g(\xi_0)$ та ξ_0 — гранична точка множини $D_{f \circ g}$, тоді суперпозиція $f \circ g$ диференційовна в точці ξ_0 і справджується рівність:

$$(f \circ g)'(\xi_0) = f'(x_0)g'(\xi_0).$$

Теорема (похідна оберненої функції). Нехай функція $f: \mathbb{R} \to \mathbb{R}$ — оборотна, $x_0 \in D_f$, x_0 є граничною точкою множини D_f та $y_0 = f(x_0)$. Якщо існує $f'(x_0) \neq 0$ і обернена функція $f^{(-1)}$ неперервна в точці y_0 , то вона диференційовна в цій точці. Якщо, крім того, y_0 — гранична точка множини $E_f = D_{f^{(-1)}}$,

To
$$(f^{(-1)})'(y_0) = \frac{1}{f'(x_0)}$$
 [1, c. 179].

Нехай $f:\mathbb{R}\to\mathbb{R}$. Якщо x_0 — гранична точка множини $D_f\bigcap(-\infty,x_0)$

$$(D_f \cap (x_0, +\infty)), \text{ To } f'_{\Lambda}(x_0) \stackrel{def}{=} \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} \left(f'_{\Pi}(x_0) \stackrel{def}{=} \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \right).$$

Числа $f'_{\Lambda}(x_0)$ та $f'_{\Pi}(x_0)$, якщо вони існують, називаються відповідно **лівою** та **правою похідними функції** f **у точці** x_0 .

Теорема (критерій диференційовності функції). Для того, щоб неперервна функція $f: \mathbb{R} \to \mathbb{R}$ була диференційовною в точці $x_0 \in D_f$, граничній для множин $D_f \cap (-\infty, x_0)$ та $D_f \cap (x_0, +\infty)$, необхідно й достатньо, щоб вона мала в цій точці скінченні ліву та праву похідні, і при цьому $f'_{\Lambda}(x_0) = f'_{\Pi}(x_0)$.

Функція (відображення) $L: \mathbb{R} \to \mathbb{R}$ називається *лінійною*, якщо для довільних $\{x_1, x_2, \lambda\} \subset \mathbb{R}$ виконуються умови:

- 1. $L(x_1 + x_2) = L(x_1) + L(x_2)$ (adumushicmb);
- 2. $L(\lambda x_1) = \lambda L(x_1)$ (однорідність).

За означенням, L(0) = 0 та $\forall x \in \mathbb{R} : L(x) = ax, \ a = L(1) = \text{const.}$

Нехай функція $f: \mathbb{R} \to \mathbb{R}$ — диференційовна в точці $x_0 \in D_f$, граничній для множини D_f , тобто має в цій точці похідну:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta f(x_0, \Delta x)}{\Delta x}.$$

Тоді за означенням границі функції маємо, що

$$\frac{\Delta f\left(x_0,\Delta x\right)}{\Delta x}=f'(x_0)+lpha(\Delta x),\quad \text{де }lpha(\Delta x) o 0$$
 при $\Delta x o 0,$

звідки

$$\Delta f(x_0, \Delta x) = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x.$$

Перший доданок $f'(x_0) \cdot \Delta x$ є лінійною функцією відносно Δx і є функцією одного порядку із Δx при $\Delta x \to 0$ за умови, що $f'(x_0) \neq 0$. Другий доданок $\alpha(\Delta x) \cdot \Delta x$ є нескінченно малою вищого порядку, ніж Δx при $\Delta x \to 0$, тому не є лінійною функцією відносно Δx .

Якщо функція $f: \mathbb{R} \to \mathbb{R}$ диференційовна в точці $x_0 \in D_f$, граничній для множини D_f , то $\partial u \phi$ еренціалом ϕy нкції f y точці x_0 називається головна частина приросту функції f(x) у цій точці, лінійна відносно Δx , і позначається символом $df(x_0) = f'(x_0) \cdot \Delta x$. Оскільки диференціал незалежної змінної x збігається з її приростом, то $df(x_0) = f'(x_0) dx$.

Нехай визначені функції $f: \mathbb{R} \to \mathbb{R}$ та $g: \mathbb{R} \to \mathbb{R}$ такі, що $g(t_0) = x_0$, точка $t_0 \in D_{f \circ g}$ є граничною для цієї множини і суперпозиція $f \circ g$ диференційовна в точці t_0 . Тоді її похідна записується у вигляді: $(f \circ g)'(t_0) = f'(x_0) \cdot g'(t_0)$, а диференціал набуває вигляду: $d(f \circ g)(t_0) = f'(x_0) g'(t_0) dt = f'(x_0) dx$, де $dt \in \mathbb{R}$, $dx = g'(t_0)dt$. З останнього співвідношення, а саме $d(f \circ g)(t_0) = df(x_0)$, маємо, що форма диференціала така ж сама, як і для випадку незалежної змінної x. Ця властивість називається *інваріантністю першого диференціалу*.

Нехай функція $f: \mathbb{R} \to \mathbb{R}$ задана параметрично рівняннями $x = \varphi(t),$ $y = \psi(t), t \in (a,b).$ Припустимо, що $\forall t \in (a,b)$ існують похідні $\varphi'(t) \neq 0$ та

 $\psi'(t)$. Тоді функція $\varphi(t)$ строго монотонна на інтервалі (a,b) та існує обернена функція $\varphi^{(-1)}: E_{\varphi} \to (a,b)$, яка має похідну $t'(x) = \left(\varphi^{(-1)}\right)'(x) = \frac{1}{\varphi'(t)}$. Суперпозиція $f = \psi \circ \varphi^{(-1)}$ має похідну $\forall t \in (a,b)$, яка обчислюється за формулою:

$$f'(x) = \psi'\left(\varphi^{(-1)}(x)\right) \cdot \left(\varphi^{(-1)}\right)'(x) = \frac{\psi'(t)}{\varphi'(t)}, \quad x = \varphi(t).$$

Практичне заняття 11

Приклад 1. Дослідимо на диференційовність функцію $f(x) = |\lg x|$ на множині D_f .

Оскільки $D_f=\mathbb{R}\setminus\left\{\frac{\pi}{2}+\pi k,\,k\in\mathbb{Z}\right\}$ та f(x) є диференційовною на множині $D_f\setminus\{\pi k,\,k\in\mathbb{Z}\}$ як елементарна, то залишається перевірити точки $\{\pi k,\,k\in\mathbb{Z}\}$:

$$\lim_{x \to k\pi - 0} \frac{-\lg x - \lg(k\pi)}{x - k\pi} = \lim_{x \to k\pi - 0} -\frac{\lg(x - k\pi)}{x - k\pi} = -1,$$

$$\lim_{x \to k\pi + 0} \frac{\lg x - \lg(k\pi)}{x - k\pi} = \lim_{x \to k\pi + 0} \frac{\lg(x - k\pi)}{x - k\pi} = 1.$$

Отже, границя $\lim_{x\to k\pi} \frac{f(x)-f(k\pi)}{x-k\pi}$ не існує $\forall\,k\in\mathbb{Z}$, тому функція f є диференційовною лише на множині $D_f\backslash\{\pi k,\,k\in\mathbb{Z}\}.$

Приклад 2. Знайдемо похідну функції $f(x) = \arctan \frac{1}{x}, x \in \mathbb{R} \setminus \{0\}.$

. Позначимо $f(t)=\arctan t,\, t(x)=rac{1}{x}.$ За правилом диференціювання складної функції $f_x'=f_t'\cdot t_x',\,$ тобто

$$f'(x) = (\operatorname{arctg} t)'_t \cdot t'_x = \frac{1}{1 + (\frac{1}{x})^2} \cdot \frac{-1}{x^2} = -\frac{1}{x^2 + 1}.$$

┙

Приклад 3. Знайдемо похідну функції $f(x)=\arccos x^2$ за правилом диференціювання оберненої функції на множині (-1,0) та у точці $x_0=-\frac{1}{2}$.

Спочатку знайдемо обернену функцію до функції f:

$$y = \arccos x^2, x \in (-1,0) \quad \Leftrightarrow \quad x = \sqrt{\cos y}, y \in \left(0, \frac{\pi}{2}\right).$$

Тому $f^{(-1)}(y) = \sqrt{\cos y}$. За теоремою про диференціювання оберненої функції знайдемо похідну від оберненої функції до функції $f^{(-1)}(y)$:

$$f'(x) = \frac{1}{(f^{(-1)})'(y)} = -\frac{2\sqrt{\cos y}}{\sin y} = \frac{-2x}{\sin(\arccos x^2)} = \frac{-2x}{\sqrt{1 - \cos^2(\arccos x^2)}} = \frac{-2x}{\sqrt{1 - x^4}}, \ x \in (-1, 0).$$

Відповідне значення похідної у точці $x_0 = -\frac{1}{2}$: $f'(x_0) = \frac{4}{\sqrt{15}}$.

Приклад 4. Вважаючи функції φ та ψ диференційовними на \mathbb{R} , знайдемо похідну показниково-степеневої функції $f(x) = (\varphi(x))^{\psi(x)}$ на множині D_f .

Оскільки функцію f можна представити у вигляді $f(x) = e^{\psi(x) \ln \varphi(x)}$, то множина визначення функції f співпадає з множиною $A = \{x : \varphi(x) > 0\}$. Знайдемо похідну функції f на множині A:

$$f'(x) = \left(e^{\psi(x)\ln\varphi(x)}\right)' = (\varphi(x))^{\psi(x)} \cdot \left(\psi'(x)\ln\varphi(x) + \psi(x)\frac{\varphi'(x)}{\varphi(x)}\right).$$

 \Box

Приклад 5. Знайдемо похідну неявно заданої функції $y^3-x^2=y^2+x$ на множині її визначення та у точці P(-1,1).

Похідну функції y(x) можемо отримати, диференціюючи рівняння, що задає функцію: $3y^2(x) \cdot y'(x) - 2x = 2y(x) \cdot y'(x) + 1$. Звідси:

$$y'(x) = \frac{2x+1}{y(x) \cdot (3y(x) - 2)}.$$

Відповідно похідна визначена на множині $D_y \setminus \left\{ x: y(x) = 0 \lor y(x) = \frac{2}{3} \right\}$, а у заданій точці P(-1,1) дорівнює y'(-1,1) = -1.

Приклад 6. Вважаючи відомими диференціали функцій и та v, знайдемо диференціали функцій $f_1=\sin(u+v)$ та $f_2=\frac{1}{\sqrt{u^2+v^2}}$.

1. Нехай t=u+v. Тоді dt=du+dv та за властивістю інваріантності форми першого диференціалу маємо:

$$df_1 = d(\sin t) = \cos t \, dt = \cos(u+v) \cdot (du+dv).$$

2. Нехай
$$t=\sqrt{u^2+v^2}$$
. Тоді $dt=d\left(\sqrt{u^2+v^2}\right)=\frac{d(u^2+v^2)}{2\sqrt{u^2+v^2}}$ та

$$df_2 = d\left(\frac{1}{t}\right) = -\frac{1}{t^2}dt = -\frac{1}{u^2 + v^2} \cdot \frac{d(u^2 + v^2)}{2\sqrt{u^2 + v^2}} = -\frac{udu + vdv}{(u^2 + v^2)^{3/2}}.$$

Знайдіть похідні функцій $f: \mathbb{R} \to \mathbb{R}$, заданих явно, на області їх визначення:

11.1
$$f(x) = 3^{\lg \frac{1}{x}};$$
 11.2 $f(x) = \sin(\lg(\cos^2 x);$

11.3
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}};$$
 11.4 $f(x) = \frac{1}{\cos^n x};$

11.5
$$f(x) = (\cos x)^{\sin x}$$
; **11.6** $f(x) = x^{\frac{1}{x}}$;

11.7
$$f(x) = a^{a^x} + a^{x^a} + x^{a^a} + a^{x^x} + x^{x^x};$$
 11.8 $f(x) = 10^{\frac{x}{\log_x 3}};$

11.9
$$f(x) = x^{\frac{25}{\ln x}};$$
 11.10 $f(x) = \left(\sin x^{\frac{3}{2}}\right)^{\sqrt{\cos x}};$

11.11
$$f(x) = \ln \left| \frac{x^2 - 5x}{x^2 - 5x + 1} \right|;$$

Обчисліть похідну функції $f: \mathbb{R} \to \mathbb{R}$ у точці x_0 , якщо:

11.12
$$f(x) = (x-1)(x-2)^2(x-3)^3$$
, **1)** $x_0 = 0$, **2)** $x_0 = 1$, **3)** $x_0 = 2$;

11.13
$$f(x) = 2^{\operatorname{tg} \frac{1}{x}}, \quad x_0 = \frac{1}{\pi}.$$

Знайдіть ліву та праву похідні функції $f: \mathbb{R} \to \mathbb{R}$ у точці x_0 та зробіть висновок щодо її диференційовності у заданій точці:

11.14
$$f(x) = \operatorname{sgn} x, x_0 = 0;$$

11.15
$$f(x) = \min\{x, \sin x\}, \ \mathbf{1}) \ x_0 = -\pi, \ \mathbf{2}) \ x_0 = 0;$$

11.16
$$f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}}}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 1) $x_0 = 0$, **2)** $x_0 = \frac{1}{2}$, **3)** $x_0 = 2$;

Дослідіть функцію $f: \mathbb{R} \to \mathbb{R}$ на диференційовність, якщо:

11.17
$$f(x) = |x|;$$
 11.18 $f(x) = x \cdot |x|;$

11.19
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0; \end{cases}$$
 11.20 $f(x) = \begin{cases} x^3, & x < 0, \\ x^2, & x \geqslant 0; \end{cases}$

11.21
$$f(x) = [x] \sin \pi x;$$
 11.22 $f(x) = [x] \sin^2 \pi x;$

11.23
$$f(x) = |x|^3$$
; **11.24** $f(x) = \min\{x, \sin x\}$;

11.25
$$f(x) = \begin{cases} x - 1, & x < 1, \\ x^2 - 1, & x \ge 1; \end{cases}$$

Підберіть значення параметрів α і β так, щоб функція $f:\mathbb{R}\to\mathbb{R}$ була диференційовною на \mathbb{R} :

11.26
$$f(x) = \begin{cases} xe^{-\alpha x}, & x < 0, \\ \alpha x^2 - \beta x + 2, & x \ge 0; \end{cases}$$
 11.27 $f(x) = \begin{cases} \arctan \alpha x, & x \le 1, \\ \beta \operatorname{sgn}(x - 3), & x > 1; \end{cases}$

11.28
$$f(x) = \begin{cases} \alpha \cos x + \beta \sin x, & x \leq 0, \\ \alpha x + \beta, & x > 0; \end{cases}$$

11.29
$$f(x) = \begin{cases} |x|^{\alpha} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Підберіть значення параметрів α і β так, щоб функція $f:\mathbb{R}\to\mathbb{R}$ була диференційовною у точці x_0 , якщо:

11.30
$$f(x) = \begin{cases} \sin \alpha x, & x < 0, \\ \sin \beta x, & x \ge 0, \end{cases}$$
 1) $x_0 = 0$, 2) $x_0 = \frac{\pi}{2}$;
11.31 $f(x) = \begin{cases} \alpha x^2 + x + \beta, & x \le 0, \\ 1, & x > 0, \end{cases}$ 1) $x_0 = 0$, 2) $x_0 = 1$.

За правилом диференціювання оберненої функції знайдіть похідну функції $f: \mathbb{R} \to \mathbb{R}$ на D_f та у точці x_0 , якщо:

11.32
$$f(x) = \arcsin x, \ x_0 = 0;$$
 11.33 $f(x) = \arctan x, \ x_0 = 1;$ **11.34** $f(x) = e^{\arcsin x}, \ x_0 = 0;$ **11.35** $f(x) = \arcsin \sqrt{x}, \ x_0 = \frac{1}{2};$ **11.36** $f(x) = \sqrt[n]{x}, \ n \in \mathbb{N}, \ x_0 = 1;$ **11.37** $f(x) = \log_2 x, \ x_0 = 2.$

Знайдіть диференціал функції $y: x \mapsto f(x)$ (параметрично чи неявно заданої) на області визначення та у заданій точці $P(x_0, y_0)$:

11.38
$$x = t^4 + 1$$
, $y = t^3 + t$, $P(2,1)$; **11.39** $x = \cos t$, $y = \sin t$, $P(1,0)$; **11.40** $x^4 + x = y^5 + y^2$, $P(1,1)$; **11.41** $e^y + y = \ln x + x$, $P(1,0)$; **11.42** $y^5 + y^3 + y + x = 0$, $P(-3,1)$; **11.43** $2y \ln y = x$, $P(2e,e)$; **11.44** $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $P(a,0)$; **11.45** $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$, $P(1,0)$.

Знайдіть похідну функції, заданої параметрично, на області визначення, у заданій точці $P(x_0, y_0)$ та при заданому значенні параметра, якщо:

11.46
$$x = t^4 + 1$$
, $y = t^3 + t$, $P(2,1)$; 11.47 $x = \cos t$, $y = \sin t$, $P(1,0)$;
11.48 $x(t) = t \sinh t$, $y(t) = t \cosh t$, $t_0 = \ln 2$, $P(0,0)$;
11.49 $x(t) = 2^{\sin^2 t}$, $y(t) = 2^{\cos^2 t}$, $t_0 = \frac{\pi}{2}$, $P(1,2)$;
11.50 $x(t) = \frac{t^3 + 1}{t^2 - 1}$, $y(t) = \frac{t}{t^2 - 1}$, $t_0 = 0$, $P\left(3, \frac{2}{3}\right)$.

Вважаючи відомими диференціали функцій u та v, знайдіть диференціал функції f, якщо:

$$\begin{array}{lll} {\bf 11.51} & f = \ln(uv); & {\bf 11.52} & f = e^{uv}; \\ {\bf 11.53} & f = u^v; & {\bf 11.54} & f = e^{u+v}; \\ {\bf 11.55} & f = \operatorname{arctg} \frac{u}{v}; & {\bf 11.56} & f = \ln \operatorname{tg} \frac{u}{v} \end{array}$$

Тема 8. Похідні та диференціали вищих порядків

Нехай область визначення функції $f:\mathbb{R}\to\mathbb{R}$ не має ізольованих точок та для всіх $x\in D_f$ існує f'(x)-noxidha першого порядку функції f, яка ще позначається як $f^{(1)}$, саму ж функцію тоді можна позначити як $f=f^{(0)}$. Також можна визначити функцію $g:D_f\to\mathbb{R}$ за формулою: $g(x)=f'(x), x\in D_f$. Якщо в точці $x_0\in D_f$ існує похідна $g'(x_0)$ функції g, то ця похідна називається похідною другого порядку функції f у точці x_0 і позначається як $f''(x_0)$ або $\frac{d^2f(x_0)}{dx^2}$. Якщо функція $g^{(n-1)}(x)=f^{(n)}(x), n\in\mathbb{N}, -$ диференційовна в точці $x_0\in D_{f^{(n-1)}}$, то її похідна $\left(g^{(n-1)}\right)'(x_0)=\left(f^{(n)}\right)'(x_0)$ називається (n+1)-ою похідною функції f у точці x_0 і позначається $f^{(n+1)}(x_0)$, а сама функція f-(n+1)-диференційовною.

Якщо функція має n-ту похідну в кожній точці $X\subset D_f$, то кажуть, що вона n-диференційовна на множині X. Якщо при цьому $f^{(n)}\in C(X)$, то пишуть, що $f\in C^{(n)}(X)$ (n разів неперервно–диференційовна на множині X) і кажуть, що функція f з класу $C^{(n)}$ (на множині X). Якщо $\forall n\in \mathbb{N}$ функція має похідну $f^{(n)}$ в точці x_0 , то вона називається нескінченно диференційовною, якщо $\forall x\in X\subset D_f\ \forall n\in \mathbb{N}\ \exists f^{(n)}(x)$, то функція називається нескінченно диференційовною на множині X і позначається $f\in C^\infty(X)$, і про неї кажуть, що вона належить класу C^∞ .

Теорема (лінійність n-ої похідної). Якщо функції f та g мають n-ту похідну в точці $x_0 \in D_f = D_g$, то і функція $(\alpha f + \beta g)$ також n-диференційовна в точці x_0 і має місце рівність: $(\alpha f + \beta g)^{(n)}(x_0) = \alpha f^{(n)}(x_0) + \beta g^{(n)}(x_0)$.

Теорема (Лейбніца). Якщо функції f та g мають n-ту похідну в точці $x_0 \in D_f = D_g$, то і функція $(f \cdot g)$ теж n-диференційовна в цій точці та має місце формула Лейбніца:

$$(f \cdot g)^{(n)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) g^{(n-k)}(x_0).$$

Припустимо, що функція $f:(a,b)\to\mathbb{R}$ має похідну $f'(x), x\in(a,b)\subset D_f$. Якщо існує диференціал цієї функції $d(df(x_0))=d(f'(x_0)dx)=f''(x_0)\,(dx)^2$ для всіх $x_0\in(a,b)$, то він називається **другим диференціалом** функції f у точці x_0 і позначається як

$$d^2 f(x_0) = f''(x_0) dx^2.$$

Нехай функція $f: \mathbb{R} \to \mathbb{R}$ n-диференційовна $\forall x \in (a,b) \subset D_f$. Тоді існують та неперервні похідні функції f до (n-1)-го порядку включно для всіх $x \in (a,b)$. Якщо існує диференціал $d\left(d^{n-1}f(x_0)\right) = d\left(f^{(n-1)}(x_0)dx^{n-1}\right) = f^{(n)}(x_0)(dx)^n$ для всіх $x_0 \in (a,b)$, то він називається **диференціалом** n-го порядку функції f у точці x_0 і позначається як

$$d^n f(x_0) = f^{(n)}(x_0) \, dx^n.$$

Властивості диференціалів вищих порядків:

- 1. $d^m(d^n f) = d^{m+n} f;$
- **2.** $d^n(f+g) = d^n f + d^n g$;
- **3.** $d^n(\alpha f) = \alpha d^n f$, де $\alpha \in \mathbb{R}$.

Властивість інваріантності диференціалів вищих порядків функції f має місце тільки у випадку, якщо f=g(h(x)), де h — лінійна функція незалежної змінної x.

Знайдемо другу похідну для параметрично заданої функції. Нехай відображення $x\mapsto y(x)$ задане рівняннями $x=\varphi(t)$ та $y=\psi(t),~\{\varphi,\psi\}\subset C^1(X).$ Оскільки $\frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)}$ як похідна від складної функції $y(t(x))=y\left(\varphi^{(-1)}(x)\right),$ то

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{\psi'(t)}{\varphi'(t)}\right)}{\varphi'(t)} = \frac{\psi''(t)\varphi'(t) - \varphi''(t)\psi'(t)}{(\varphi'(t))^3}.$$

Також знайдемо похідну другого порядку від оберненої функції. Нехай y=f(x) — двічі диференційовна функція $\forall x\in X$, неперервна і строго монотонна на множині X та $f'(x)\neq 0,$ $x\in X$. Тоді функція f — оборотна $\forall x\in X$ і, враховуючи формулу похідної від оберненої функції: $\frac{df^{(-1)}(y)}{dy}=\frac{1}{f'(x)}$, маємо:

$$\frac{d^2 f^{(-1)}(y)}{dy^2} = \frac{d}{dy} \left(\frac{df^{(-1)}(y)}{dy} \right) = \frac{d}{dy} \left(\frac{1}{f'(x)} \right) = \frac{\frac{d}{dx} \left(\frac{1}{f'(x)} \right)}{\frac{dy}{dx}} = \frac{-\frac{f''(x)}{(f'(x))^2}}{f'(x)} = \frac{-f''(x)}{(f'(x))^3}.$$

Аналогічно знаходяться похідні порядків $n \geqslant 3$.

Практичне заняття 12

Приклад 1. Знайдемо похідну n-го порядку для функції $f(x) = \sin{(ax+b)},$ $\{x,a,b\} \subset \mathbb{R}.$

Знайдемо першу похідну функції та представимо її у такому вигляді: $f'(x)=a\cos{(ax+b)}=a\sin{\left(ax+b+\frac{\pi}{2}\right)}.$ Другу похідну функції також можна представити у схожому вигляді: $f''(x)=-a^2\sin{(ax+b)}=a^2\sin{(ax+b+\pi)}.$ Відповідно третя похідна $f'''(x)=-a^3\cos{(ax+b)}=a^3\sin{\left(ax+b+\frac{3\pi}{2}\right)}.$ Узагальнюючи отримане, маємо:

$$(\sin(ax+b))^{(n)} = a^n \sin\left(ax+b+\frac{n\pi}{2}\right).$$

Приклад 2. Знайдемо похідну n-го порядку для $f(x)=\cos(ax+b),$ $\{x,a,b\}\subset\mathbb{R}.$

Знайдемо першу похідну функції та представимо її у такому вигляді: $f'(x)=-a\sin{(ax+b)}=a\cos{\left(ax+b+\frac{\pi}{2}\right)}$. Другу похідну функції також можна

представити у схожому вигляді: $f''(x) = -a^2\cos{(ax+b)} = a^2\cos{(ax+b+\pi)}$. Відповідно третя похідна $f'''(x) = a^3\sin{(ax+b)} = a^3\cos{\left(ax+b+\frac{3\pi}{2}\right)}$. Узагальнюючи отримане, маємо:

$$(\cos(ax+b))^{(n)} = a^n \cos\left(ax+b+\frac{n\pi}{2}\right).$$

Приклад 3. Знайдемо похідну n-го порядку для $f(x)=e^{ax+b},$ $\{x,a,b\}\subset\mathbb{R}.$

Знайдемо першу похідну функції: $f'(x) = a e^{ax+b}$. Похідні другого та третього порядку: $f''(x) = a^2 e^{ax+b}$, $f'''(x) = a^3 e^{ax+b}$. За індукцією маємо:

$$\left(e^{ax+b}\right)^{(n)} = a^n e^{ax+b}.$$

 \Box

┙

┙

Приклад 4. Знайдемо похідну n-го порядку для $f(x)=\frac{1}{ax+b},\ \{x,a,b\}\subset\mathbb{R}.$

Знайдемо першу похідну функції: $f'(x) = \frac{-a}{(ax+b)^2}$. Похідні другого та тре-

тього порядку: $f''(x) = \frac{2! \cdot a^2}{(ax+b)^3}$, $f'''(x) = \frac{3! \cdot (-a)^3}{(ax+b)^4}$. За індукцією маємо:

$$\left(\frac{1}{ax+b}\right)^{(n)} = (-1)^n \frac{n! \cdot a^n}{(ax+b)^{n+1}}.$$

Приклад 5. Знайдемо похідну n-го порядку для $f(x) = \ln{(ax+b)}, \{x,a,b\} \subset \mathbb{R}$.

Оскільки перша похідна функції $f'(x) = \frac{a}{ax+b}$, то згідно із попереднім прикладом,

$$(\ln(ax+b))^{(n)} = \frac{(n-1)! \cdot (-1)^{n-1}a^n}{(ax+b)^n}.$$

Приклад 6. Знайдемо похідну n-го порядку для функції $f(x)=(ax+b)^{\alpha},$ $\{x,a,b,\alpha\}\subset\mathbb{R}.$

Знайдемо першу похідну функції: $f'(x) = \alpha a \cdot (ax + b)^{\alpha - 1}$. Похідні другого та третього порядку:

$$f''(x) = \alpha(\alpha - 1)a^2 \cdot (ax + b)^{\alpha - 2}, \quad f'''(x) = \alpha(\alpha - 1)(\alpha - 2)a^3 \cdot (ax + b)^{\alpha - 3}.$$

За індукцією маємо:

$$((ax+b)^{\alpha})^{(n)} = \alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)a^n \cdot (ax+b)^{\alpha-n}, \ \alpha \neq n, \ n \in \mathbb{N},$$

та
$$((ax+b)^{\alpha})^{(n)}=n!$$
, якщо $\alpha=n\in\mathbb{N}.$

Приклад 7. Знайдемо $f^{(n)}(0)$ для функції $f(x) = \arcsin x$.

Знайдемо першу та другу похідні функції: $f'(x) = \frac{1}{\sqrt{1-x^2}}, \ f''(x) = \frac{x}{(1-x^2)^{\frac{3}{2}}},$ $x \in (-1,1)$. Помножимо другу похідну на $1-x^2$ та отримаємо рівняння:

$$(1 - x^2) \cdot f''(x) = \frac{x}{\sqrt{1 - x^2}} = x \cdot f'(x).$$

Застосуємо до нього правило Лейбніца, беручи похідну (n-2)-го порядку від його лівої та правої частин:

$$(1-x^2) \cdot f^{(n)}(x) + C_{n-2}^1 \cdot (-2x) \cdot f^{(n-1)}(x) - 2C_{n-2}^2 \cdot f^{(n-2)}(x) =$$

$$= x \cdot f^{(n-1)}(x) + C_{n-2}^1 \cdot f^{(n-2)}(x).$$

Покладемо
$$x=0$$
: $f^{(n)}(0)=(n-2)^2\cdot f^{(n-2)}(0)$. Оскільки $f(0)=0$ та $f'(0)=1$, то $f^{(2k)}(0)=0$, $k\in\mathbb{N}$ та $f^{(2k+1)}(0)=((2k-1)!!)^2,\ k\in\mathbb{N}$.

Приклад 8. Знайдемо $d^2 f$ для функції $f = \sin u$, де u = u(x) — довільна функція від незалежної змінної х, диференційовна достатню кількість разів.

Оскільки $df = d(\sin u) = \cos u \, du$, то

$$d^2f = d(\cos u \, du) = -\sin u \, du^2 + \cos u \, d^2u.$$

Для функції $f: \mathbb{R} \to \mathbb{R}$ знайдіть похідну n-го порядку на множині D_f :

12.1
$$f(x) = x^2 e^{3x}, n = 20;$$
 1

12.2
$$f(x) = x \ln x, \ n = 6;$$

12.3
$$f(x) = \frac{e^x}{r}, n = 10;$$

12.4
$$f(x) = e^x \sin x, \ n = 5;$$

12.5
$$f(x) = \ln(x^2 + x - 2);$$

12.6
$$f(x) = \ln \frac{x^2 - 1}{x^2 - 4x + 4};$$

12.7
$$f(x) = \frac{ax+b}{cx+d}$$
, $\{a,b,c,d\} \subset \mathbb{R}$; **12.8** $f(x) = \frac{x^2}{1-x}$;

12.8
$$f(x) = \frac{x^2}{1-x}$$
;

12.9
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
;

12.10
$$f(x) = \frac{1}{\sqrt{1-2x}};$$

12.11
$$f(x) = \sin^2 x;$$

12.12
$$f(x) = \cos^2 x$$
.

Для функції $f: \mathbb{R} \to \mathbb{R}$ знайдіть $f^{(n)}(0)$, якщо:

12.13
$$f(x) = \arctan x;$$

12.14
$$f(x) = (\arcsin x)^2$$
.

Знайдіть перші два диференціала функції f через диференціали функцій u, v та w, вважаючи відомими перші два диференціали цих функцій, якщо:

12.15
$$f = u^3$$
;

12.16
$$f = e^{uv}$$
;

12.17
$$f = u^v$$
;

12.18
$$f = \frac{u}{v}$$
;

12.19
$$f = uvw;$$

12.20
$$f = u \ln v$$
.

Тема 9. Формула Тейлора

Теорема (локальна формула Тейлора). Нехай $f: S_{\delta}(x_0) \to \mathbb{R}, (n-1)$ разів неперервно-диференційовна в цьому околі і має скінченну похідну *п*-го порядку в точці x_0 . Тоді має місце формула:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$
 (3)

Доданок $R_{n+1}(x) = o((x-x_0)^n)$ називається залишковим членом в формі Пеано, а формула (3) називається формулою Тейлора із залишковим членом в формі Пеано.

З локальності цієї формули її називають асимптотичним представленням функції f в околі точки x_0 . Вона дуже ефективна при знаходженні границь. Якщо $x_0 = 0$, то формулу (3) називають формулою Маклорена.

Теорема (формула Тейлора). Нехай $f \in C^n(a,b)$ і має (n+1) похідну в кожній точці (a,b), можливо за виключенням точки $x_0 \in (a,b)$. Тоді $\forall x \in (a,b)$ $\exists \xi$ між точками x_0 і x така, що

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n+1}(x), \tag{4}$$

де

$$R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad \xi = x_0 + \theta(x - x_0), \ \theta \in (0, 1).$$
 (5)

Доданок $R_{n+1}(x)$, що визначається формулою (5), називається **залишко**вим членом у формі Лагранжа, а сама формула (4) називається формулою Тейлора із залишковим членом у формі Лагранжа. За допомогою цих формул можна оцінити похибку наближення відповідних функцій многочленами.

Випишемо п'ять основних розкладів Маклорена, для кожного з яких візьмемо залишковий член у формі Пеано:

1.
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n);$$

2.
$$\ln(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n);$$

3.
$$\sin x = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + o(x^{2n-1});$$

4. $\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n});$

4.
$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n});$$

5.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} x^k + o(x^n).$$

Ці формули використовуються при знаходженні границь функцій.

Практичне заняття 13

Приклад 1. Запишемо формулу Маклорена для функції $f(x) = \operatorname{tg} x$ із залишковим членом у формі Пеано з точністю до x^5 .

Враховуючи непарність функції $\operatorname{tg} x$, в її розкладі в околі нуля можуть бути лише непарні степені аргумента: $\operatorname{tg} x = Ax + Bx^3 + Cx^5 + o(x^5), \ x \to 0$. Знайдемо коефіцієнти A,B та C, використовуючи формули Маклорена для функцій $\sin x$ та $\cos x$:

$$\operatorname{tg} x = \frac{\sin x}{\cos x} = Ax + Bx^{3} + Cx^{5} + o(x^{5});$$

$$x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + o(x^{5}) = \left(Ax + Bx^{3} + Cx^{5} + o(x^{5})\right) \cdot \left(1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + o(x^{5})\right);$$

$$x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + o(x^{5}) = Ax + \left(B - \frac{A}{2!}\right)x^{3} + \left(C + \frac{A}{4!} - \frac{B}{2!}\right)x^{5} + o(x^{5});$$

Прирівнюючи коефіцієнти при однакових степенях x, отримуємо: A=1, $B=\frac{1}{3},\,C=\frac{2}{15}.$ Таким чином,

$$\operatorname{tg} x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5), \ x \to 0.$$

┙

Приклад 2. Запишемо формулу Маклорена для функції $f(x)=e^{\sin x}$ із залишковим членом у формі Пеано з точністю до x^3 .

Спочатку запишемо формулу Маклорена для функції $g(x) = \sin x$ з точністю до x^3 : $\sin x = x - \frac{x^3}{6} + o(x^3)$. Оскільки $g(x) \to 0$ при $x \to 0$, то можемо записати формулу Маклорена для функції $f(x) = e^{g(x)}$:

$$e^{\sin x} = 1 + \sin x + \frac{\sin^2 x}{2!} + \frac{\sin^3 x}{3!} + o(x^3) =$$

$$= 1 + \left(x - \frac{x^3}{6} + o(x^3)\right) + \left(\frac{x^2}{2} + o(x^3)\right) + \left(\frac{x^3}{6} + o(x^3)\right) + o(x^3) =$$

$$= 1 + x + \frac{x^2}{2} + o(x^2).$$

Приклад 3. Запишемо формулу Маклорена для функції $f(x) = \ln \cos x$ із залишковим членом у формі Пеано з точністю до x^6 .

Представимо функцію f у такому вигляді: $f(x) = \ln(1 + (\cos x - 1))$. Можемо записати формулу Маклорена для функції $g(x) = \cos x - 1$ із точністю до x^6 :

$$\cos x - 1 = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6).$$

Оскільки $g(x) \to 0$ при $x \to 0$, то можемо записати формулу Маклорена для функції f(x):

$$\ln \cos x = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} - \frac{1}{2} \left(\frac{x^4}{4} - \frac{x^6}{24} + o(x^6) \right) + \frac{1}{3} \left(-\frac{x^6}{8} + o(x^6) \right) + o(x^6) =$$

$$= -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} + o(x^6).$$

Приклад 4. Запишемо формулу Маклорена для функції $f(x) = (\cos x)^{\sin x}$ із залишковим членом у формі Пеано з точністю до x^5 .

Можемо використати формули Маклорена функцій $\sin x$ та $\cos x$, представляючи функцію f у такому вигляді:

$$\begin{split} (\cos x)^{\sin x} &= e^{(\sin x) \cdot \ln \cos x} = \\ &= \exp \left\{ \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \right) \cdot \ln \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5) \right) \right\} = \\ &= \exp \left\{ \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \right) \cdot \left(-\frac{x^2}{2} + \frac{x^4}{24} - \frac{1}{2} \cdot \frac{x^4}{4} + o(x^4) \right) \right\} = \\ &= e^{-\frac{x^3}{2} + 0x^5 + o(x^5)} = 1 - \frac{x^3}{2} + o(x^5) = 1 - \frac{x^3}{2} + o(x^3), \ x \to 0. \end{split}$$

Приклад 5. Запишемо формулу Маклорена для неявно заданої функції $x^4 + y^4 + \sin xy - 1 = 0$ з точністю до x^2 .

Згідно із формулою Маклорена із залишковим членом у формі Пеано, $f(x)=f(0)+f'(0)\cdot x+\frac{1}{2}f''(0)\cdot x^2+o(x^2)$ при $x\to 0$.

Продиференціюємо задану функцію y = y(x) враховуючи, що y(0) = 1:

$$4x^{3} + 4y^{3} \cdot y' + \cos xy \cdot (y + xy') = 0.$$

Звідси маємо, що $y'(0) = -\frac{1}{4}$. Другу похідну знайдемо, диференціюючи отримане рівняння із першою похідною y':

$$12x^{2} + 12y^{2} \cdot (y')^{2} + 4y^{3} \cdot y'' + \cos xy \cdot (y' + y' + xy'') - \sin xy \cdot (y + xy')^{2} = 0.$$

Маємо, що
$$y''(0) = -\frac{1}{16}$$
. Отже, $f(x) = 1 - \frac{1}{4}x - \frac{1}{32}x^2 + o(x^2)$.

Для функції $f: \mathbb{R} \to \mathbb{R}$ запишіть формулу Маклорена із залишковим членом у формі Пеано з точністю до x^n , якщо:

┙

13.1
$$f(x) = \sqrt[3]{1+x}$$
, $n = 5$; **13.2** $f(x) = \ln(1-x)$, $n = 5$;

13.3
$$f(x) = \frac{1}{1+x}, \ n = 5;$$
 13.4 $f(x) = \frac{1}{\sqrt{1-x}}, \ n = 5;$

13.5
$$f(x) = \operatorname{ch} x, \ n = 5;$$
 13.6 $f(x) = \operatorname{sh} x, \ n = 5;$

13.7
$$f(x) = \arcsin x, \ n = 5;$$
 13.8 $f(x) = \arctan x, \ n = 5;$

13.9
$$f(x) = e^{2x-x^2}$$
, $n = 5$; **13.10** $f(x) = \sin \sin x$, $n = 5$;

13.11
$$f(x) = \sqrt{1 - 2x + x^3} - \sqrt[3]{1 - 3x + x^2}, \ n = 4;$$

13.12
$$f(x) = \sin \cos x, \ n = 5;$$
 13.13 $f(x) = \ln (1 + \cos x), \ n = 5;$

13.14
$$f(x) = \sin e^x$$
, $n = 5$; **13.15** $f(x) = e^{\cos(1+x)}$, $n = 5$;

13.16
$$f(x) = \ln(\ln(4-x)), n = 3;$$
 13.17 $f(x) = \ln(1+e^x), n = 5.$

Знайдіть границі, застосовуючи відповідні формули Маклорена:

13.18
$$\lim_{x \to +\infty} \left(\sqrt[7]{x^7 + x^6} - \sqrt[7]{x^7 - x^6} \right);$$
 13.18 $\lim_{x \to 0} \frac{e^x \sin x - x(1+x)}{3x^3};$

13.20
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right);$$
 13.21 $\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x} - \operatorname{ctg} x\right);$

13.22
$$\lim_{x \to 0} \frac{\frac{1}{\operatorname{th} x} - \frac{1}{\operatorname{tg} x}}{x};$$
 13.23 $\lim_{x \to 0} \frac{\cos \sin x - \cos x}{2x^4}.$

Тема 10. Дослідження функцій за допомогою похідної

Наведемо теореми про функції, що мають похідну.

Теорема (Ролля). Нехай $f \in C([a,b])$, диференційовна в кожній точці (a,b). Якщо f(a) = f(b), то $\exists \xi \in (a,b)$: $f'(\xi) = 0$.

Теорема (Лагранжа). Нехай функція $f:\mathbb{R}\to\mathbb{R}$ неперервна на [a,b] та диференційовна в кожній точці (a,b). Тоді $\exists\,\xi\in(a,b)\colon \frac{f(b)-f(a)}{b-a}=f'(\xi).$

Наслідок (двобічна оцінка приросту функції). Нехай $f \in C([a,b])$ і має скінчену похідну f'_{Π} в кожній точці [a,b), за винятком, можливо, деякої зліченної її підмножини X. Тоді виконуються нерівності: $m \leqslant \frac{f(b)-f(a)}{b-a} \leqslant M$, де $m = \inf_{x \in [a,b) \setminus X} f'_{\Pi}(x), \ M = \sup_{x \in [a,b) \setminus X} f'_{\Pi}(x).$

Теорема (Коші). Нехай функції f і g неперервні на [a,b] та диференційовні на (a,b). Тоді $\exists \xi \in (a,b)$: (f(b)-f(a)) $g'(\xi)=(g(b)-g(a))$ $f'(\xi)$.

Наступні твердження використовуються для дослідження монотонності функцій та доведення деяких нерівностей.

Функція $f:(a,b) \to \mathbb{R}$ зростає $(cna\partial ae)$ в точці $x_0 \in (a,b)$, якщо $\exists S_{\delta}(x_0) \subset (a,b): \forall x \in (x_0-\delta,x_0) \ f(x) < f(x_0) \ (f(x) > f(x_0)) \ \land \ \forall x \in (x_0,x_0+\delta) \ f(x) > f(x_0) \ (f(x) < f(x_0)).$

Теорема (достатня умова зростання функції в точці). Для того, щоб функція $f:(a,b)\to\mathbb{R}$, яка диференційовна в точці $x_0\in(a,b)$, зростала (спадала) в цій точці, достатньо, щоб $f'(x_0)>0$ ($f'(x_0)<0$).

Ця умова використовується для доведення наступного твердження.

Доведення нерівностей. Нехай функції $\varphi, \psi: (a,b) \to \mathbb{R}$ задовольняють таким умовам:

- 1. $\exists \varphi^{(n)}(x)$ та $\exists \psi^{(n)}(x)$ для всіх $x > x_0$, де $x_0 \in (a,b)$;
- **2.** $\exists \varphi^{(k)}(x_0) = \psi^{(k)}(x_0), \ k = \overline{0, n-1};$
- **3.** $\varphi^{(n)}(x) > \psi^{(n)}(x)$ для всіх $x > x_0$.

Тоді $\forall x > x_0 : \varphi(x) > \psi(x)$.

Якщо ж функції $\varphi, \psi: (a,b) \to \mathbb{R}$ задовольняють умовам:

- 1. $\exists \varphi^{(n)}(x)$ та $\exists \psi^{(n)}(x)$ для всіх $x < x_0$, де $x_0 \in (a,b)$;
- **2.** $\exists \varphi^{(k)}(x_0) = \psi^{(k)}(x_0), \ k = \overline{0, n-1};$
- **3.** $\varphi^{(n)}(x) > \psi^{(n)}(x)$ для всіх $x < x_0$,

то $\forall x < x_0: \ \varphi(x) > \psi(x) \ (\varphi(x) < \psi(x))$ при парному (непарному) n.

Розглянемо необхідні та достатні умови екстремумів функцій.

Функція $f: \mathbb{R} \to \mathbb{R}$ має в точці $x_0 \in D_f$ локальний максимум (мінімум), якщо $\exists S_{\varepsilon}(x_0): \forall x \in D_f \cap S_{\varepsilon}(x_0) \ f(x) \leqslant f(x_0) \ (f(x) \geqslant f(x_0))$. Якщо при цьому

 $\forall x \neq x_0$ виконується нерівність $f(x) < f(x_0) \ (f(x) > f(x_0))$, то максимум (мінімум) називається **строгим**, інакше — **нестрогим**. Локальні максимуми та мінімуми називаються **екстремумами** функції.

Теорема (Ферма). Нехай $f: \mathbb{R} \to \mathbb{R}$ і x_0 — внутрішня точка множини D_f . Якщо функція f набуває в точці x_0 найбільшого або найменшого значення і диференційовна в ній, то $f'(x_0) = 0$.

Теорема (перша достатня умова екстремуму). Нехай $f:(a,b)\to\mathbb{R}$ диференційовна на $S_\delta(x_0)\subset(a,b)$, можливо за виключенням самої точки x_0 . Якщо f' при переході через x_0 *змінює знак*, тобто на проміжках $(x_0-\delta,x_0)$ та $(x_0,x_0+\delta)$ функція має значення різних знаків, то в цій точці f має локальний екстремум. Якщо знак змінюється з "+" на "-", то x_0 — точка максимуму, інакше — точка мінімуму.

Теорема (друга достатня умова екстремуму). Нехай $f: \mathbb{R} \to \mathbb{R}$, x_0 — внутрішня точка множини D_f . Якщо функція f має n похідних у точці x_0 і $f^{(k)}(x_0) = 0$, $k = \overline{1, n-1}$, $f^{(n)}(x_0) \neq 0$, то при парному n функція f має локальний екстремум (максимум, якщо $f^{(n)}(x_0) \leq 0$; мінімум, якщо $f^{(n)}(x_0) \geq 0$), інакше екстремум відсутній (при непарному n).

Абсолютним, або **глобальним максимумом** (**мінімумом**) функції $f: \mathbb{R} \to \mathbb{R}$ називається найбільше (найменше) значення f(x) при $x \in D_f$, якщо воно існує.

За теоремою Вейєрштрасса для $f \in C([a,b])$ існують абсолютний максимум та мінімум, що досягаються або в точках локальних екстремумів, або на краях відрізку [a,b]. Для цього потрібно знайти множину всіх cmauionaphux точок (f'(x)=0) та множину kpumuuhux точок (f'(x)- не існує), додати до цих множин кінці відрізку [a,b] і серед цих значень шукати глобальні екстремуми.

Для дослідження опуклості функцій наведемо кілька допоміжних означень та тверджень.

Нехай $P_1(x_1,y_1),\,P_2(x_2,y_2)$ — дві точки на декартовій площині. ${\it Bidpiskom}\,P_1P_2$ називається множина точок

$$\{P(x,y) \mid x = tx_1 + (1-t)x_2 \land y = ty_1 + (1-t)y_2, \ t \in [0,1]\}.$$

Множина $M \subset \mathbb{R}^2$ називається *опуклою*, якщо $\forall P_1, P_2 \in M \Rightarrow P_1P_2 \subset M$.

Нехай $\Gamma = \{(x, f(x)) \mid x \in D_f\}$ — графік функції $f: \mathbb{R} \to \mathbb{R}$. Надграфіком (підграфіком) цієї функції називається множина $\{(x,y) \mid x \in D_f \land y \geqslant f(x)\}$ ($\{(x,y) \mid x \in D_f \land y \leqslant f(x)\}$). Будемо казати, що точка (x,y) лежить вище (нижче) графіка, якщо вона належить надграфіку (підграфіку) цієї функції.

Функція $f: \mathbb{R} \to \mathbb{R}$ називається *опуклою* (*угнутою*), якщо її надграфік (підграфік) є опуклою множиною.

Теорема (критерій опуклості функції). Для того, щоб функція $f:(a,b)\to\mathbb{R}$ була опуклою, необхідно і достатньо, щоб $\forall x\in(a,b)$ існувала похідна f'(x) і щоб ця похідна була неспадною на (a,b) функцією.

Наслідок (критерій опуклості двічі диференційовної функції). Якщо

функція $f:(a,b)\to\mathbb{R}$ має другу похідну $\forall x\in(a,b)$, то для опуклості f необхідно і достатньо, щоб $\forall x\in(a,b): f''(x)\geqslant0$.

Теорема (еквівалентний критерій опуклості функції). Функція $f:(a,b)\to\mathbb{R}$ опукла тоді і тільки тоді, коли $\forall \lambda\in[0,1]\ \forall x_1,x_2\in(a,b)$ виконується нерівність:

$$f(\lambda x_1 + (1 - \lambda)x_2) \leqslant \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Відповідно функція $f:(a,b)\to\mathbb{R}$ є угнутою, якщо функція (-f) — опукла, тобто $\forall \lambda \in [0,1] \ \forall x_1,x_2 \in (a,b)$ виконується нерівність:

$$f(\lambda x_1 + (1 - \lambda)x_2) \geqslant \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Теорема (нерівність Ієнсена). Нехай функція $f:(a,b)\to \mathbb{R}$ — опукла. Тоді $\forall \ (n\geq 1,\ x_k\in (a,b),\ \lambda_k\geq 0,\ k=\overline{1,n},\ \sum_{k=1}^n\lambda_k=1)$ виконується **нерівність Ієнсена**:

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f(x_k).$$

Якщо функція $f:(a,b)\to\mathbb{R}$ диференційовна в точці $x_0\in(a,b)$ і при переході через точку $M_0(x_0,f(x_0))$ змінює характер опуклості, то M_0 називається **точкою перегину графіка** функції f.

Теорема (необхідна умова перегину). Нехай функція $f:(a,b)\to\mathbb{R}$ диференційовна на (a,b), і в точці $x_0\in(a,b)$ існує $f''(x_0)$. Якщо $M_0(x_0,f(x_0))$ — точка перегину графіка $\Gamma(f)$, то $f''(x_0)=0$.

Теорема (достатня умова перегину). Нехай функція $f:(a,b)\to\mathbb{R}$ має n похідних у точці $x_0\in(a,b)$ і $f^{(k)}(x_0)=0,\,k=\overline{2,n-1},\,f^{(n)}(x_0)\neq0.$ Якщо n — непарне число, то $M_0(x_0,f(x_0))$ — точка перегину $\Gamma(f)$, якщо n — парне, то M_0 не ϵ точкою перегину.

Побудова графіків функцій

Нехай функція $f: \mathbb{R} \to \mathbb{R}$ задана параметрично за допомогою рівнянь $x = \varphi(t), \ y = \psi(t), \ t \in D_{\varphi} = D_{\psi} = T,$ де T — скінченний чи нескінченний проміжок числової прямої. У цьому випадку графіком функції f є множина точок $\Gamma(f) = \{(x,y) \in \mathbb{R}^2 \mid x = \varphi(t), \ y = \psi(t), \ t \in T\}.$

На площині \mathbb{R}^2 довільна пряма l задається рівнянням Ax+By+C=0. Тоді, як відомо з аналітичної геометрії, відстань від точки $(\varphi(t),\psi(t))\in\Gamma(f)$ $(t\in T)$ до прямої l обчислюється за формулою:

$$d(t) = \frac{|A\varphi(t) + B\psi(t) + C|}{\sqrt{A^2 + B^2}}.$$

Пряма l, задана рівнянням Ax + By + C = 0, називається **асимптотою графіка** $\Gamma(f)$ при $t \to t_0$ (або $t \to t_0 + 0$, $t \to t_0 - 0$, $t_0 \in \overline{\mathbb{R}}$), якщо виконуються дві умови: **1**) $d(t) \to 0$ при $t \to t_0$; **2**) $\varphi^2(t) + \psi^2(t) \to +\infty$ при $t \to t_0$.

Розглянемо можливі випалки.

1) $\lim_{t\to t_0} \varphi(t) = a \in \mathbb{R} \ \land \ \lim_{t\to t_0} \psi(t) = \infty \ \Rightarrow \ d(t) \to 0 \ \Leftrightarrow \ A\varphi(t) + B\psi(t) + C \to 0$ $\Leftrightarrow B = 0, \ a = -\frac{C}{A}$. У такому разі пряма x = a називається вертикальною асимптотою графіка $\Gamma(f)$.

2) $\lim_{t\to t_0}\psi(t)=b\in\mathbb{R}\ \land\ \lim_{t\to t_0}\varphi(t)=\infty\ \Rightarrow\ d(t)\to 0\ \Leftrightarrow\ A\varphi(t)+B\psi(t)+C\to 0$ $\Leftrightarrow\ A=0,\ b=-\frac{C}{B}.$ У такому разі пряма y=a називається горизонтальною асимптотою графіка $\Gamma(f).$

3) $\lim_{t\to t_0} \varphi(t) = \lim_{t\to t_0} \psi(t) = \infty \Rightarrow d(t) \to 0 \Leftrightarrow A\varphi(t) + B\psi(t) + C \to 0 \Leftrightarrow \varphi(t) \left(\frac{A}{B} + \frac{\psi(t)}{\varphi(t)}\right) \to -\frac{C}{B} \Leftrightarrow \lim_{t\to t_0} \frac{\psi(t)}{\varphi(t)} = -\frac{A}{B} = k \wedge \lim_{t\to t_0} (\psi(t) - k\varphi(t)) = -\frac{C}{B} = b.$ Рівняння асимптоти набуває вигляду y = kx + b — така пряма називається похилою асимптотою графіка $\Gamma(f)$.

Явно задана функція $f: \mathbb{R} \to \mathbb{R}$ є частинним випадком параметрично заданої функції при $\varphi(t) = t$, її графіком є множина $\Gamma(f) = \{(x,y) \,|\, y = f(x),\, x \in D_f\}$. Три типи acumnmom визначаються умовами:

- 1) пряма $x=x_0$ є вертикальною асимптотою графіка $\Gamma(f)$ при $x\to x_0-0$ $(x\to x_0+0),$ якщо $f(x_0-0)=\infty$ $(f(x_0+0)=\infty);$
- 2) пряма y=b є горизонтальною асимптотою графіка $\Gamma(f)$ при $x \to +\infty$ $(x \to -\infty),$ якщо $\lim_{x \to +\infty} f(x) = b \left(\lim_{x \to -\infty} f(x) = b\right);$
- 3) пряма y=kx+b $(k\neq 0)$ є похилою асимптотою графіка $\Gamma(f)$ при $x\to +\infty$ $(x\to -\infty)$, якщо $\lim_{x\to +\infty (-\infty)}\frac{f(x)}{x}=k$ \wedge $\lim_{x\to +\infty (-\infty)}(f(x)-kx)=b\in \mathbb{R}.$

План дослідження функції із побудовою її графіка:

- **1.** визначити D_f , E_f та можливі точки розриву;
- 2. перевірити на парність/непарність, періодичність;
- **3.** визначити точки перетину графіка із координатними осями (якщо такі ϵ);
- 4. визначити асимптоти графіка, якщо такі існують;
- 5. знайти проміжки монотонності функції та дослідити її на екстремуми;
- **6.** визначити проміжки опуклості (угнутості) графіка $\Gamma(f)$ та знайти точки перегину, якщо такі існують;
- **7.** побудувати графік $\Gamma(f)$.

Практичне заняття 14

Приклад 1. Доведемо нерівність: $|\cot x - \cot y| > \frac{4}{3}(y-x)$, де $\frac{\pi}{6} < x < y < \frac{\pi}{3}$.

Розглянемо функцію $f(t) = \operatorname{ctg} t$, $t \in [y, x]$, яка задовольняє умови теореми Лагранжа. Згідно із цією теоремою, існує таке число $\xi \in (y, x)$, що:

$$\operatorname{ctg} x - \operatorname{ctg} y = -\frac{1}{\sin^2 \xi} \cdot (x - y) = \frac{1}{\sin^2 \xi} (y - x).$$

Оскільки $\operatorname{ctg} x > \operatorname{ctg} y$ при $\frac{\pi}{6} < x < y < \frac{\pi}{3}$, то ліва частина останньої рівності є невід'ємною. Також за даних обмежень на числа x та y маємо, що

$$\frac{1}{4} < \sin^2 \xi < \frac{3}{4} \implies \frac{1}{\sin^2 \xi} > \frac{4}{3},$$

┙

┙

звідки і отримуємо шукану нерівність.

Приклад 2. Доведемо нерівність: $\operatorname{ch} x > 1 + \frac{x^2}{2} + \frac{x^4}{24}, \ x > 0.$

Розглянемо функції $\varphi(t)=\ch t,\ t>0,\ \mathrm{Ta}\ \psi(t)=1+\frac{t^2}{2}+\frac{t^4}{24},\ t>0.$ Очевидно, що $\varphi(0)=\psi(0)=1.$ Знайдемо похідні цих функцій до того порядку, поки не отримаємо нерівність вигляду $\varphi^{(n)}(t)>\psi^{(n)}(t),\ t>0.$ Оскільки

$$\varphi'(t) = \operatorname{sh} t, \quad \psi'(t) = t + \frac{t^3}{6}, \quad \varphi'(0) = \psi'(0) = 0;$$

$$\varphi''(t) = \operatorname{ch} t, \quad \psi''(t) = 1 + \frac{t^2}{2}, \quad \varphi''(0) = \psi''(0) = 1;$$

$$\varphi'''(t) = \operatorname{sh} t, \quad \psi'''(t) = t, \quad \varphi'''(0) = \psi'''(0) = 0;$$

$$\varphi^{(4)}(t) = \operatorname{ch} t, \quad \psi^{(4)}(t) = 1, \quad \operatorname{ch} t > 1 \text{ при } t > 0,$$

то маємо, що $\varphi(t) > \psi(t) \ \forall t > 0$.

Приклад 3. Проведемо дослідження функції $f(x)=\frac{x^3}{2(x+1)^2}$ та побудуємо її графік.

1. Область визначення функції $D_f = \mathbb{R} \setminus \{-1\}$, а у точці x = -1 функція f має розрив II роду:

$$\lim_{x \to -1 \to 0} \frac{x^3}{2(x+1)^2} = \lim_{x \to -1 \to 0} \frac{x^3}{2(x+1)^2} = \frac{-1}{2 \cdot 0} = -\infty.$$

- 2. Функція загального вигляду, бо $f(-x) \neq \pm f(x)$, та неперіодична.
- 3. Функція має один нуль у точці M(0;0) єдиній точці перетину графіка $\Gamma(f)$ із координатними осями.
- 4. Оскільки у точці x=-1 функція f має розрив II роду типу полюс, то пряма x=-1 є вертикальною асимптотою графіка $\Gamma(f)$. Горизонтальних асимптот немає тому, що

$$\lim_{x \to -\infty} \frac{x^3}{2(x+1)^2} = -\infty; \quad \lim_{x \to +\infty} \frac{x^3}{2(x+1)^2} = +\infty.$$

З'ясуємо, чи є похила асимптота:

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3}{2x(x+1)^2} = \frac{1}{2} = k \in \mathbb{R};$$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{x^3}{2(x+1)^2} - \frac{x}{2}\right) = \lim_{x \to \infty} \frac{-2x^2 - x}{2(x+1)^2} = -1.$$

Отже, на графіку $\Gamma(f)$ є похила асимптота, що задається рівнянням $y = \frac{x}{2} - 1$.

5. Знайдемо похідну функції f: $f'(x) = \frac{x^2(x+3)}{2(x+1)^3}$, $x \in D_f$. Маємо дві стаціонарні точки x=0 та x=-3, тобто $f'(x)=0 \iff x \in \{-3,0\}$. Знайдемо проміжки монотонності функції f.

У точці x=-3 виконується перша достатня умова екстремуму та изначений локальний максимум функції: $f(-3)=f_{\max}=-\frac{27}{8},$ а у точці x=0 екстремума немає.

6. Знайдемо другу похідну:
$$f''(x) = \frac{3x}{(x+1)^4}$$
, $x = -1 = 0$ $x \in D_f$, і отримаємо таблицю проміжків опуклюсті/угнутості графіка $\Gamma(f)$.

Оскільки f''(x)=0 тоді і тільки тоді, коли x=0, та друга похідна змінює знак при переході через точку x=0, то графік $\Gamma(f)$ має перегин у цій точці.

7. Тепер можемо побудувати графік $\Gamma(f)$, враховуючи результати проведеного дослідження функції f.

Доведіть нерівності:

14.1
$$|\sin x - \sin y| \le |x - y|$$
;

14.2
$$| \operatorname{arctg} x - \operatorname{arctg} y | \leq |x - y|;$$

14.3
$$\sin x \le \sin y + (x - y)\cos y, \{x, y\} \subset [0, \pi];$$

14.4
$$\frac{x-y}{\cos^2 y} \leqslant \operatorname{tg} x - \operatorname{tg} y \leqslant \frac{x-y}{\cos^2 x}$$
, якщо $0 < y \leqslant x < \frac{\pi}{2}$;

14.5
$$(x-y)e^y < e^x - e^y < (x-y)e^x$$
, якщо $y < x$;

14.6
$$(x-y) \cdot 2^{y-1} < 2^x - 2^y < (x-y) \cdot 2^x$$
, якщо $y < x$;

14.7
$$py^{p-1}(x-y) \leqslant x^p - y^p \leqslant px^{p-1}(x-y)$$
, якщо $0 < y < x, \ p > 1$;

14.8
$$e^x > ex$$
, якщо $x > 1$;

14.9
$$e^x > 1 + x + \frac{x^2}{2}, \ x \neq 0;$$

14.10
$$x - \frac{x^2}{2} < \ln(1+x) < x, \ x > 0;$$
 14.11 $\operatorname{tg} x > x + \frac{x^3}{3}, \ x \in \left(0, \frac{\pi}{2}\right);$

14.12 sh
$$x > x + \frac{x^3}{6} + \frac{x^5}{120}$$
, $x > 0$; **14.13** $e^x < 1 + x + \frac{x^2 e^x}{2}$, $x > 0$;

14.14
$$x - \frac{x^3}{6} < \sin x < x - \frac{x^3}{6} + \frac{x^5}{120}, \ x > 0;$$

14.15
$$x^3 + 3x + 6x \ln x + 2 > 6x^2, x > 1;$$

14.16
$$x^4 + 8x + 12x^2 \ln x > 8x^3 + 1, x > 1;$$

14.17
$$\frac{e^x + e^y}{2} \geqslant e^{\frac{x+y}{2}};$$

14.18
$$x \ln x + y \ln y \geqslant (x+y) \ln \frac{x+y}{2}, \ x > 0, \ y > 0;$$

14.19
$$(x+y) \arctan \frac{2}{x+y} \le x \arctan \frac{1}{x} + y \arctan \frac{1}{y}, \ x > 0, \ y > 0;$$

14.20
$$\sqrt{\sin \frac{x+y}{2}} \geqslant \frac{1}{2} \left(\sqrt{\sin x} + \sqrt{\sin y} \right), \ \{x,y\} \subset [0,\pi];$$

14.21
$$\cos\left(\frac{x+y}{2}\right)^2 \geqslant \frac{1}{2}\left(\cos x^2 + \cos y^2\right), \ \{x,y\} \subset \left[0,\sqrt{\frac{\pi}{2}}\right];$$

14.22
$$\frac{x^n + y^n + z^n}{3} > \left(\frac{x + y + z}{3}\right)^n, \ x > 0, \ y > 0, \ z > 0, \ n > 1,$$
$$x \neq y, \ y \neq z, \ z \neq x;$$

14.23
$$\left(\frac{x+2y+3z}{6}\right)^4 \leqslant \frac{x^4+2y^4+3z^4}{6}$$
.

Дослідіть функцію $f: \mathbb{R} \to \mathbb{R}$ та побудуйте її графік, якщо:

14.24
$$f(x) = x^2 + \frac{1}{x}$$
; **14.25** $f(x) = x^3 - 5x^2 + 6x$;

14.26
$$f(x) = \frac{x^2(x-1)}{(x+1)^2};$$
 14.27 $f(x) = \frac{x}{\sqrt{x^2+x}};$

14.28
$$f(x) = \ln(x^2 - 1);$$
 14.29 $f(x) = \ln\frac{x+1}{x+2};$

14.30
$$f(x) = e^x + e^{-x};$$
 14.31 $f(x) = x \ln |x|;$

14.32
$$f(x) = x + \arctan x;$$
 14.33 $f(x) = x^x.$

Дослідіть функцію $x\mapsto y(x)$, задану параметрично чи неявно, та побудуйте її графік, якщо:

14.34
$$x = 2t - t^2$$
, $y = 3t - t^3$; **14.35** $x^3 + y^3 = 3axy$;

14.36
$$x = t + e^{-t}, y = 2t + e^{-2t};$$
 14.37 $x = te^{t}, y = te^{-t};$

14.38
$$x = \frac{t^2}{t-1}, y = \frac{t}{t^2-1};$$
 14.39 $x = \frac{t^2}{t+1}, y = \frac{1}{t(t+1)};$

14.40
$$x^2y^2 = x^3 - y^3$$
; **14.41** $(x^2 + y^2)^3 = 4a^2x^2y^2$.

Рекомендовані джерела

- [1] Ляшко І.І., Ємельянов В. Ф., Боярчук О.К. Математичний аналіз. Частина 1.— К: Вища школа, 1992.— 495 с.
- [2] Ляшко И.И., Боярчук А.К., Гай Я.Г. и др. Справочное пособие по математическому анализу. Часть 1. Введение в анализ, производная, интеграл. — К.: Вища школа, 1978. — 696 с.
- [3] Ляшко С. И., Боярчук А. К. и др. Сборник задач и упражнений по математическому анализу. Москва-Санкт-Петербург-Киев: Диалектика, 2001. 432 с.
- [4] Дороговцев А. Я. Математический анализ. Краткий курс в современном изложении. К.: Факт, 2004. 560 с.
- [5] Фихтенгольц Г. М. Основы математического анализа. Том 1. М.: Наука, 1968. 440 с.
- [6] Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1977. 528 с.
- [7] Рубльов Б. В. Математичний аналіз. Теорія послідовностей. К.: КНУ, $2010.-95~\mathrm{c}.$
- [8] Денисьєвський М. О., Курченко О. О., Нагорний В. Н., Нестеренко О. Н., Петрова Т. О., Чайковський А. В. Збірник задач з математичного аналізу. Частина І. Функції однієї змінної. — К.: ВПЦ "Київський університет", 2005. — 257 с.