Math 501 Homework 4

Trevor Klar

September 26, 2017

- 1. Let $f: X \to Y$ be a function.
 - (a) Assume $X = \bigcup_{\alpha \in \Gamma} U_{\alpha}$, with each U_{α} open, and each $f|_{U_{\alpha}} : U_{\alpha} \to Y$ continuous. Prove that f is continuous.

PROOF Let $B \in Y$ be an arbitrary open subset of Y. Since B is open, and each $f|_{U_{\alpha}}: U_{\alpha} \to Y$ is continuous, then each $f|_{U_{\alpha}}^{-1}(B)$ is open in U_{α} and, since U_{α} is open in X, then $f|_{U_{\alpha}}^{-1}(B)$ is open in X. Now,

$$\bigcup_{\alpha \in \Gamma} f|_{U_{\alpha}}^{-1}(B) = \bigcup_{\alpha \in \Gamma} (f^{-1}(B) \cap U_{\alpha})$$

$$= (f^{-1}(B) \cap \bigcup_{\alpha \in \Gamma} U_{\alpha})$$

$$= f^{-1}(B) \cap X$$

$$= f^{-1}(B)$$

So, $f^{-1}(B)$ is a union of open sets, which means it is open. Thus, f is continuous.

(b) Assume $X = \bigcup_{\alpha \in \Gamma} A_{\alpha}$, with each A_{α} closed, and each $f|_{A_{\alpha}} : A_{\alpha} \to Y$ continuous. Is f continuous? Prove or give a counterexample.

Counterexample. Let $f: (\mathbb{R}, usual) \to (\mathbb{R}, usual)$ be

$$f(x) = \begin{cases} 0, & x = 0\\ \sin\left(\frac{1}{x}\right), & x \neq 0 \end{cases}$$

and consider the collection of closed sets $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} A_n$ with $n \in \mathbb{Z}$, and A_n defined as follows:

$$A_{n} = \begin{cases} \left[a, \frac{1}{a} \right], & n < 0 \\ \{0\}, & n = 0 \\ \left[\frac{1}{a}, a \right], & n > 0 \end{cases}$$

Now, it is a common result from calculus that $\sin(\frac{1}{x})$ is continuous at every point except x = 0, so for all $n \neq 0$, $f|_{A_n}$ is continuous (since none of these sets contain 0). Now we will show that $f|_{A_0}$ is also continuous. For any closed set $F \in \mathbb{R}$, $f|_{A_0}^{-1}(F) = \{0\}$ if $0 \in F$, and $f|_{A_0}^{-1}(F) = \emptyset$ if $0 \notin F$. Since $\{0\}$ and \emptyset are both closed, then $f|_{A_0}^{-1}(F)$ is closed, so $f|_{A_0}$ is continuous.

The reader will recall that f can easily be shown not to be continuous by the $\delta - \epsilon$ definition, but we will make the same case using the results we have learned in topology. Consider the following preimage of a closed set:

$$f^{-1}\left(\{-1,1\}\right) = \left\{\frac{2}{\pi}, \frac{2}{3\pi}, \frac{2}{5\pi}, \dots\right\} \cup \left\{-\frac{2}{\pi}, -\frac{2}{3\pi}, -\frac{2}{5\pi}, \dots\right\}$$

Since $f^{-1}(\{-1,1\})$ has a 0 as limit point, but does not contain 0, then $f^{-1}(\{-1,1\})$ is not closed. Therefore, f is not continuous.

1

2. (a) Prove that the set of intervals of the form [a,b) with $a,b \in \mathbb{R}$ are the basis for a topology on \mathbb{R} . We will refer to \mathbb{R} with this topology as $\mathbb{R}^1_{\text{bad}}$. Show that $\mathbb{R}^1_{\text{bad}}$ is not the usual topology on \mathbb{R} .

Proof

- Since $[1,0) = \{x \in \mathbb{R} : 1 \le x < 0\} = \emptyset$, then $\emptyset \in \mathbb{R}^1_{\text{bad}}$.
- For any $x \in \mathbb{R}$, $x \in [x-1,x+1)$, so $\mathbb{R}^1_{\text{bad}}$ covers \mathbb{R} .
- For any $a, b, c, d \in \mathbb{R}$,

$$\begin{aligned} [a,b) \cap [c,d) &=& \{x \in \mathbb{R} : a \leq x < b\} \cap \{x \in \mathbb{R} : c \leq x < d\} \\ &=& \{x \in \mathbb{R} : \max(a,c) \leq x < \min(b,d)\} \\ &=& [\max(a,c), \min(b,d)) \\ &\in& \mathbb{R}^1_{\mathrm{bad}} \end{aligned}$$

So, as desired according to Theorem 13, for any $[a,b), [c,d) \in \mathbb{R}^1_{\text{bad}}$ which both contain x, there exists $[a,b) \cap [c,d) \in \mathbb{R}^1_{\text{bad}}$ such that $x \in [a,b) \cap [c,d)$.

Thus, $\mathbb{R}^1_{\text{bad}}$ forms the basis for a topology on \mathbb{R} .

PROOF Now we will show that $\mathbb{R}^1_{\text{bad}}$ is not the usual topology on \mathbb{R} . Consider the set [a, b), for some $a, b \in \mathbb{R}$ and a < b. By definition, [a, b) is open in $\mathbb{R}^1_{\text{bad}}$. We will show that [a, b) is not open in the usual topology, and thus \mathbb{R}_{usual} and $\mathbb{R}^1_{\text{bad}}$ are different. It suffices to show that no open interval (m, n) containing a is a subset of [a, b).

$$a \in (m, n) \implies m < a < n \implies m < \frac{m+a}{2} < a < n.$$

Thus, $\frac{m+a}{2} \in (m,n)$ but $\frac{m+a}{2} \notin [a,b)$, so $(m,n) \not\subset [a,b)$.

(b) Prove that intervals [a, b) are both open and closed in $\mathbb{R}^1_{\text{bad}}$.

PROOF Any interval [a,b) is open in $\mathbb{R}^1_{\mathrm{bad}}$ by definition. If a>b, then $[a,b)=\emptyset$ and is closed. If a=b, then $[a,b)=\{x:a\leq x< a\}=\emptyset$, so [a,b) is closed in this case as well. Now, suppose a< b and consider $[a,b)^{\complement}=(-\infty,a)\cup[b,\infty)$. Since $(-\infty,a)=\bigcup_{n\in\mathbb{N}}[-n,a)$, and $[b,\infty)=\bigcup_{n\in\mathbb{N}}[b,n)$, then $(-\infty,a)\cup[b,\infty)$ is a union of sets which are open in $\mathbb{R}^1_{\mathrm{bad}}$. Therefore, $(-\infty,a)\cup[b,\infty)$ is also open in $\mathbb{R}^1_{\mathrm{bad}}$, so [a,b) is closed.

(c) Prove that every open interval (a, b) is open in $\mathbb{R}^1_{\text{bad}}$.

PROOF
$$(a,b) = \bigcup_{n \in \mathbb{N}} \left[a + \frac{1}{n}, b \right)$$
, so (a,b) is a union of open sets, and thus is open.

(d) Prove that the set of intervals of the form [a,b) with $a,b \in \mathbb{Q}$ are the basis for a topology on R. Show that this topology is different from $\mathbb{R}^1_{\text{bad}}$.

PROOF We will denote this topology as $\mathbb{R}^1_{\text{bad}\mathbb{O}}$.

- Since $[1,0) = \{x \in \mathbb{R} : 1 \le x < 0\} = \emptyset$, then $\emptyset \in \mathbb{R}^1_{\text{had}\mathbb{Q}}$
- For any $x \in \mathbb{R}$, $x \in [\lfloor x \rfloor, \lfloor x \rfloor + 1)$, so $\mathbb{R}^1_{\mathrm{bad}\mathbb{Q}}$ covers \mathbb{R} .
- For any $a, b, c, d \in \mathbb{Q}$,

$$\begin{array}{lcl} [a,b)\cap [c,d) & = & \{x\in\mathbb{R}: a\leq x < b\}\cap \{x\in\mathbb{R}: c\leq x < d\} \\ & = & \{x\in\mathbb{R}: \max(a,c)\leq x < \min(b,d)\} \\ & = & [\max(a,c),\min(b,d)) \\ & \in & \mathbb{R}^1_{\mathrm{bad}\mathbb{Q}} \end{array}$$

So, as desired according to Theorem 13, for any $[a,b), [c,d) \in \mathbb{R}^1_{\text{bad}\mathbb{Q}}$ which both contain x, there exists $[a,b) \cap [c,d) \in \mathbb{R}^1_{\text{bad}\mathbb{Q}}$ such that $x \in [a,b) \cap [c,d)$.

Thus, $\mathbb{R}^1_{\text{bad}\mathbb{O}}$ forms the basis for a topology on \mathbb{R} .

Now we will show that $\mathbb{R}^1_{\text{bad}\mathbb{Q}} \neq \mathbb{R}^1_{\text{bad}}$. Consider the set $[\pi, 5)$. By definition, $[\pi, 5)$ is open in $\mathbb{R}^1_{\text{bad}}$. Now, $[\pi, 5)$ is not itself a basic open set in $\mathbb{R}^1_{\text{bad}\mathbb{Q}}$, nor is it a union of basic sets in $\mathbb{R}^1_{\text{bad}\mathbb{Q}}$, since any union of rational intervals [a, b) must either disclude π , or include reals which are less than π .

3. (a) Show that the set of half-open rectangles of the form $\{(x,y) \in \mathbb{R}^2 : a \le x < b, c \le y < d\}$ form the basis for a topology on \mathbb{R}^2 . We will refer to \mathbb{R}^2 endowed with this topology as $\mathbb{R}^2_{\text{bad}}$.

Notation. Let $[a,b) \times [c,d)$ denote a set $\{(x,y) \in \mathbb{R}^2 : a \le x < b, c \le y < d\} \in \mathbb{R}^2_{\text{bad}}$.

Proof

- $[0,0) \times [0,0) = \emptyset$, so $\emptyset \in \mathbb{R}^2_{\text{bad}}$.
- Let $(x,y) \in \mathbb{R}^2$. Then, $(x,y) \in [x,x+1) \times [y,y+1)$, so $\mathbb{R}^2_{\text{bad}}$ covers \mathbb{R}^2 .
- For any $x_1, \ldots x_4, y_1, \ldots y_4 \in \mathbb{R}$,

$$[x_1, x_2) \times [y_1, y_2) \cap [x_3, x_4) \times [y_3, y_4) = [\max(x_1, x_3), \min(x_2, x_4)) \times [\max(y_1, y_3), \min(y_2, y_4)) \in \mathbb{R}^2_{\text{bad}}$$

So, as desired according to Theorem 13, this set of half-open rectangles is the basis for a topology on \mathbb{R}^2 .

(b) Let L_1 denote the line y = -x in \mathbb{R}^2 . Show that the subspace topology on L_1 , as a subspace of $\mathbb{R}^2_{\text{bad}}$, is the discrete topology.

PROOF Let (x, -x) be any point on the line y = -x. Now, since the singleton $\{(x, -x)\} = [x, x+1) \times [-x, -x+1) \cap L_1$, then $\{(x, -x)\}$ is open in L_1 . Thus, for any set $S \subset L_1$, the union $\bigcup_{(x, -x) \in S} \{(x, -x)\} = S$ is open.

(c) Let L_2 denote the line y = x in \mathbb{R}^2 . Show that the subspace topology on L_2 , as a subspace of $\mathbb{R}^2_{\text{bad}}$, is not the discrete topology.

PROOF To show that the subspace topology on L_2 is not the discrete topology, it suffices to produce a set which is not open. Consider the singleton $\{(0,0)\}$. If $\{(0,0)\}$ is open in L_2 , then for any $(x,y) \in \{(0,0)\}$, there exists a basic open set U containing (x,y) such that $U \cap L_2 = \{(0,0)\}$. Let $[a,b) \times [c,d)$ be an any set containing the origin which is a basic open set in $\mathbb{R}^2_{\text{bad}}$. Since $(0,0) \in [a,b) \times [c,d)$, then b>0 and d>0. Let $p=\min(b,d)$ Thus, $(\frac{p}{2},\frac{p}{2}) \in [a,b) \times [c,d) \cap L_2$, but $(\frac{b}{2},\frac{d}{2}) \notin \{(0,0)\}$. Thus, there is no basic open set whose intersection with L_2 is $\{(0,0)\}$, so $\{(0,0)\}$ is not open.

- 5. Let X be a set, and let $\{0,1\}^X$ denote the set of all functions $X \to \{0,1\}$.
 - (a) Prove that the collection of sets of the form $U(x, \epsilon) = \{f \in \{0, 1\}^X : f(x) = \epsilon\}$, for all $x \in X$ and $\epsilon \in \{0, 1\}$ forms a subbasis for a topology on $\{0, 1\}^X$.

PROOF Let \mathscr{S} be the collection of all sets of the form $U(x,\epsilon) = \{f \in \{0,1\}^X : f(x) = \epsilon\}$, with $x \in X$ and $\epsilon \in \{0,1\}$. Let \mathscr{B} be the collection of all finite intersections of sets in \mathscr{S} .

- For some $x_0 \in X$, consider the sets $U(x_0, 1)$ and $U(x_0, 0)$. $U(x_0, 1) \cap U(x_0, 0) = \emptyset$, so $\emptyset \in \mathscr{B}$.
- Let x_0 be an arbitrary element of X, and let f be an arbitrary function $f: X \to \{0, 1\}$ where $f(x_0) = \epsilon_0$. Since $f \in U(x_0, \epsilon_0)$ by definition, then \mathscr{B} covers $\{0, 1\}^X$.

Thus, by Theorem 14, \mathcal{S} forms a subbasis for a topology on $\{0,1\}^X$.

(b) Under what conditions are two basic open sets in this topology disjoint?

Answer: Since every basic open set is a finite intersection of sets of the form $U(x, \epsilon)$, every basic open set $U \in \mathcal{B}$ has the following property: U has a nonempty "characteristic set" $C \subset X$ such that for any fixed $x \in C$, f(x) = g(x) for all $f, g \in U$. That is, all functions in U are equal at

every point in C.

Thus, two basic open sets U, V in \mathscr{B} are disjoint if and only if their characteristic sets, C(U), C(V) are equal; and for any $f \in U$ and $g \in V$, $f(x) \neq g(x)$ for all $x \in C(U) = C(V)$.

(c) Is this topology Hausdorff?

Answer: Yes.

PROOF Let f and g be any two distinct functions in $\{0,1\}^X$. Since they are distinct, there exists at least one $x \in X$ such that $f(x) \neq g(x)$. Without loss of generality, suppose f(x) = 1 and g(x) = 0. Therefore, the basic open sets U(x,1) and U(x,0) contain f and g, respectively. Since their characteristic sets are equal but they contain functions which are not equal at $x \in C$, we can conclude that U(x,1) and U(x,0) are disjoint. Therefore, this topology is Hausdorff.

6. (a) Show that the collection consisting of \emptyset and the set of all intervals [a, b] with a < b does not form the basis for a topology on \mathbb{R} .

PROOF In order for this collection of sets to be a basis for some topology on \mathbb{R} , it must be true that for any two basic sets U, V with $x \in U \cap V$, there exists another basic set W such that $x \in W \subset U \cap V$. However, consider the basic sets

$$[j,k]$$
 and $[k,m]$.

The element k is in the intersection $[j,k] \cap [k,m] = \{k\}$, but the set $\{k\}$ cannot contain any interval [a,b]; since a < b implies that [a,b] contains more than just one element.

(b) Show that the collection consisting of \emptyset and the set of all intervals [a, b] with a < b does form a subbasis for a topology on \mathbb{R} . That topology is one we have seen before. Identify it.

Claim: Let \mathscr{S} be the collection consisting of \emptyset and the set of all intervals [a,b] with a < b, and let \mathscr{B} be the collection of all finite intersections of sets in \mathscr{S} . Then, \mathscr{B} is a basis for the discrete topology on \mathbb{R} .

PROOF First, since $[1,2] \cap [3,4] = \emptyset$, then $\emptyset \in \mathscr{B}$. Now, Let S be an arbitrary subset of \mathbb{R} , and let x be any real number such that $x \in S$. We can see that $\{x\} \in \mathscr{B}$ by observing that $[x-,x] \cap [x,x+1] = \{x\}$, so we can take the union $\bigcup_{x \in S} \{x\} = S$. Thus, S is a union of open sets,

so S is open. Therefore, since any arbitrary $S \subset \mathbb{R}$ is open in this topology, then \mathscr{B} is a basis for the discrete topology on \mathbb{R} .