Study Notes of Matrix and Tensor

Pei Zhong

March 15, 2024

Contents

Preface

The notes mainly refer to:

- From Algebraic Structures to Tensors
- Matrix and Tensor Decompositions in Signal Processing

Matrix Algebra

1.1 Notations and definitions

Scalars, column vectors, matrices, and hypermatrices/tensors of order higher than two will be denoted by lowercase letters (a, b, ...), bold lowercase letters $(\mathbf{A}, \mathbf{B}, ...)$, and calligraphic letters $(\mathcal{A}, \mathcal{B}, ...)$ respectively.

A matrix **A** of dimensions $I \times J$, with I and $J \in \mathbb{N}^*$, denoted by $\mathbf{A}(I,J)$, is an array of IJ elements stored in I rows and J columns; the elements belong to a field \mathbb{K} . Its ith row and jth column, denoted by A_i and $A_{\cdot j}$, respectively, are called ith row vector and jth column vector. The element located at the intersection of A_i and $A_{\cdot j}$ is designated by a_{ij} . We will use the notation $\mathbf{A} = (a_{ij})$, with $a_{ij} \in \mathbb{K}$, $i \in \langle I \rangle = \{1, 2, ..., I\}$ and $j \in \langle J \rangle = \{1, 2, ..., J\}$.

A matrix $A \in \mathbb{K}^{I \times J}$ is written in the form:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1J} \\ a_{12} & a_{22} & \dots & a_{2J} \\ \dots & \dots & \dots & \dots \\ a_{I1} & a_{I2} & \dots & a_{IJ} \end{pmatrix}$$

The special cases I=1 and J=1 correspond respectively to row vectors of dimension J and to column vectors of dimension I:

$$\mathbf{v} = \begin{pmatrix} v_1 & v_2 & \dots & v_J \end{pmatrix} \in \mathbb{K}^{1 \times J}, \mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_I \end{pmatrix} \in \mathbb{K}^{I \times 1}.$$

In the following, for column vectors, \mathbb{K}^I will be used instead of $\mathbb{K}^{I \times 1}$.

 $\mathbf{e}_i^{(I)}$ is the column vector of dimension I, in which element is equal to 1 at position i and 0s elsewhere. $\mathbf{E}_{ij}^{I \times J}$ is the matrix of dimension $I \times J$ in which element is equal to 1 at position (i,j) and 0s elsewhere.

1.2 Transposition and conjugate transposition

Definition 1.1: transpose and the conjugate transpose of a column vector

The transpose and the conjugate transpose (also called transconjugate) of a column vector

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_I \end{pmatrix} \in \mathbb{C}^I$$
, denoted by \mathbf{u}^T and \mathbf{u}^H , respectively, are the row vectors defined as:

$$\mathbf{u}^T = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_I \end{pmatrix} \text{ and } \mathbf{u}^H = \begin{pmatrix} u_1^* & u_2^* & \dots & u_I^* \end{pmatrix},$$

where u_i^* is the conjugate of u_i also denoted by \overline{u}_i .

Definition 1.2: transpose and the conjugate transpose of a matrix

The transpose of $\mathbf{A} \in \mathbb{K}^{I \times J}$ is the matrix denoted by \mathbf{A}^T , of dimensions $J \times I$, such that $A^T = (a_{ji})$, with $i \in \langle I \rangle$ and $j \in \langle J \rangle$. In the case of a complex matrix, the conjugate transpose, also known as Hermitian transpose and denoted by \mathbf{A}^H , is defined as: $\mathbf{A}^H = (\mathbf{A}^*)^T = (\mathbf{A}^T)^* = (a_{ji}^*)$, where $\mathbf{A}^* = (a_{ij}^*)$ is the conjugate of \mathbf{A} .

Remark. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers then the complex conjugate of a + ib is a - ib. The complex conjugate of z is often denoted as \bar{z} or z^* .

Proposition 1.1

The operations of transposition and conjugate transposition satisfy:

$$(\mathbf{A}^T)^T = \mathbf{A}, (\mathbf{A}^H)^H = \mathbf{A}$$
$$(\mathbf{A} + \mathbf{B}) = \mathbf{A}^T + \mathbf{B}^T, (\mathbf{A} + \mathbf{B})^H = \mathbf{A}^H + \mathbf{B}^H,$$
$$(\alpha \mathbf{A})^T = \alpha \mathbf{A}^T, (\alpha \mathbf{A})^H = \alpha^* \mathbf{A}^H,$$

for any matrix $\mathbf{A},\mathbf{B}\in\mathbb{C}^{I\times J}$ and any scalar $\alpha\in\mathbb{C}.$

Remark. By decomposing **A** using its real and imaginary parts, we have:

$$\mathbf{A} = \operatorname{Re}(\mathbf{A}) + i\operatorname{Im}(\mathbf{A}) \Rightarrow \begin{cases} \mathbf{A}^T = (\operatorname{Re}(\mathbf{A}))^T + i(\operatorname{Im}(A))^T \\ \mathbf{A}^H = (\operatorname{Re}(\mathbf{A}))^H - i(\operatorname{Im}(A))^H \end{cases}$$

.

Vector outer product and vectorization 1.3

1.3.1 **Vector outer product**

The outer product of two vectors $\mathbf{u} \in \mathbb{K}^I$ and $\mathbf{v} \in \mathbb{K}^J$, denoted $\mathbf{u} \circ \mathbf{v}$, gives a matrix $\mathbf{A} \in \mathbb{K}^{I \times J}$ such that $a_{ij} = (\mathbf{u} \circ \mathbf{v})_{ij} = u_i v_j$, and therefore, $\mathbf{u} \circ \mathbf{v} = \mathbf{u} \mathbf{v}^T = (u_i v_j)$, with $i \in \langle I \rangle, j \in \langle J \rangle$.

Example 1.1

For I=2, J=3, we have:

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \circ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} = \begin{pmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \\ u_2 v_1 & u_2 v_2 & u_2 v_3 \end{pmatrix}.$$

1.3.2 Vectorization

A very widely used operation in matrix computation is vectorization which consists of stacking the columns of a matrix $\mathbf{A} \in \mathbb{K}^{I \times J}$ on top of each other to form a column vector of dimension JI:

$$\mathbf{A} = egin{pmatrix} \mathbf{A}_{\cdot 1} & \mathbf{A}_{\cdot 2} & \dots & \mathbf{A}_{\cdot J} \end{pmatrix} \in \mathbb{K}^{I imes J} \Rightarrow \mathrm{vec}(\mathbf{A}) = egin{pmatrix} \mathbf{A}_{\cdot 1} \\ \mathbf{A}_{\cdot 2} \\ \dots \\ \mathbf{A}_{\cdot J} \end{pmatrix} \in \mathbb{K}^{JI}.$$

This operation defines an isomorphism between the space \mathbb{K}^{II} of vectors of dimension II and the space $\mathbb{K}^{I \times J}$ of matrices $I \times J$. Indeed, the canonical basis of \mathbb{K}^{JI} , denoted by $\{\mathbf{e}_{(j-1)I+i}^{(JI)}\}$, allows us to write vec(A) as:

$$\mathbf{A} = \sum_{i=1}^{I} \sum_{j=1}^{J} a_{ij} \mathbf{e}_i^{(I)} \circ \mathbf{e}_j^{(J)} \Rightarrow \text{vec}(\mathbf{A}) = \sum_{i=1}^{I} \sum_{j=1}^{J} a_{ij} \mathbf{e}_{(j-1)I+i}^{(JI)},$$

with
$$\mathbf{e}_{(j-1)I+i}^{(JI)} = \text{vec}(\mathbf{e}_i^{(I)} \circ \mathbf{e}_j^{(J)}) = \text{vec}(\mathbf{e}_i^{(I)}(\mathbf{e}_j^{(J)})^T).$$

 $\begin{aligned} &\text{with } \mathbf{e}_{(j-1)I+i}^{(JI)} = \text{vec}(\mathbf{e}_i^{(I)} \circ \mathbf{e}_j^{(J)}) = \text{vec}(\mathbf{e}_i^{(I)}(\mathbf{e}_j^{(J)})^T). \\ &\underline{\mathbf{Remark.}} \text{Since the operator vec satisfies } \text{vec}(\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \text{vec}(\mathbf{A}) + \beta \text{vec}(\mathbf{B}) \text{ for all } \alpha, \beta \in \mathbb{K}, \end{aligned}$ it is linear.

Vector inner product, norm and orthogonality

1.4.1 Inner product

In this section, we recall the definition of the inner product(also called dot product) of two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{K}^I$.

Definition 1.3

If $\mathbb{K} = \mathbb{R}$, the inner product is defined as:

$$\langle \cdot, \cdot \rangle : \mathbb{R}^I \times \mathbb{R}^I \to \mathbb{R}$$

$$(a, b) \mapsto \langle a, b \rangle = a^T b = \sum_{i=1}^I a_i b_i.$$

In \mathbb{C}^I , the definition of the inner product is given by:

$$\langle \cdot, \cdot \rangle : \mathbb{C}^I \times \mathbb{C}^I \to \mathbb{C}$$

$$(a, b) \mapsto \langle a, b \rangle = a^H b = \sum_{i=1}^I a_i^* b_i.$$

1.4.2 Euclidean/Hermitian norm

Definition 1.4

The Euclidean (Hermitian) norm of a vector \mathbf{a} , denoted $||\mathbf{a}||$, associates to $a \in \mathbb{R}^I$ ($a \in \mathbb{C}^I$) a non-negative real number according to the following definition:

$$||\cdot||_2: \mathbb{K}^I \to \mathbb{R}^+$$

 $\mathbf{a} \mapsto ||\mathbf{a}||_2 = \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle}$

.

1.4.3 Orthogonality

Definition 1.5

Two vectors **a** and **b** of \mathbb{K}^I are said to be orthogonal if and only if $\langle a, b \rangle = 0$.

1.5 Matrix multiplication

1.5.1 Definition and properties

given matrices $\mathbf{A} \in \mathbb{K}^{I \times J}$ and $\mathbf{B} \in \mathbb{K}^{J \times K}$, the product of \mathbf{A} by \mathbf{B} gives a matrix $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{K}^{I \times K}$ such that $c_{ik} = \sum_{i=1}^{I} a_{ij}b_{jk}$, for $j \in \langle J \rangle$; $k \in \langle K \rangle$.

This product can be written in terms of the outer products of column vectors of

1.6 Matrix trace, inner product and Frobenius norm

1.6.1 Definition and properties of the trace

Definition 1.6

The trace of a square matrix A of order I is defined as the sum of its diagonal elements:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{I} a_{ii}.$$

Proposition 1.2

The trace satisfies the following properties:

$$\begin{split} \operatorname{tr}(\alpha\mathbf{A} + \beta\mathbf{B}) &= \alpha \operatorname{tr}(\mathbf{A}) + \beta \operatorname{tr}(\mathbf{B}), \\ \operatorname{tr}(\mathbf{A}^T) &= \operatorname{tr}(\mathbf{A}), \\ \operatorname{tr}(\mathbf{A}^*) &= \operatorname{tr}(\mathbf{A}^H) = (\operatorname{tr}(\mathbf{A}))^*, \end{split}$$

- 1.7 Subspaces associated with a matrix
- 1.8 Matrix rank
- 1.9 Determinant, inverses and generalized inverses
- 1.10 Eigenvalues and eigenvectors
- 1.11 Reference
 - From Algebraic Structures to Tensors ch4 matrix algebra

Matrix Decompositions

Hadamard, Kronecker and Khatri–Rao Products

3.1 Partitioned matrices

Let $\{\alpha_{m_1},...,\alpha_{m_R}\}$ and $\{\beta_{n_1},...,\beta_{n_S}\}$ be partitions of the sets $\{1,...,m\}$ and $\{1,...,n\}$, respectively, with $m_r \in \langle m \rangle$ and $n_s \in \langle n \rangle$, such that $\sum\limits_{r=1}^R m_r = m$ and $\sum\limits_{s=1}^S n_s = n$. It is said that matrices \mathbf{A}_{rs} of dimensions (m_r,n_s) form a partition of the matrix $\mathbf{A} \in \mathbb{K}^{m \times n}$ into (R,S) blocks, or that \mathbf{A} is partitioned into (R,S) blocks, if \mathbf{A} can be written as:

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \dots & \mathbf{A}_{1S} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \dots & \mathbf{A}_{2S} \\ \dots & \dots & \dots \\ \mathbf{A}_{R1} & \mathbf{A}_{R2} & \dots & \mathbf{A}_{RS} \end{pmatrix} = (\mathbf{A}_{rs}), r \in \langle R \rangle, s \in \langle S \rangle.$$

All submatrices of the same row-block (r) contain the same number (m_r) of rows. Similarly, all submatrices of the same column-block (s) contain the same number (n_s) of columns, that is:

$$\begin{pmatrix} \mathbf{A}_{r1} & \mathbf{A}_{r2} & ... & \mathbf{A}_{rS} \end{pmatrix} \in \mathbb{K}^{m_r \times n}, \begin{pmatrix} \mathbf{A}_{1s} & \mathbf{A}_{2s} & ... & \mathbf{A}_{Rs} \end{pmatrix} \in \mathbb{K}^{m \times n_s}.$$

It is then said that the submatrices A_{rs} are of compatible dimensions.

In the particular case where n = 1, the partitioned matrix becomes a block-column vector:

$$\mathbf{a} = (\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_R) \in \mathbb{K}^{m \times 1}, \mathbf{a}_r \in \mathbb{K}^{m_r \times 1}, r \in \langle R \rangle.$$

Similarly, when m = 1, the partitioned matrix becomes a block-row vector:

$$\mathbf{a}^T = (\mathbf{a}_1^T \ \mathbf{a}_2^T \ \dots \ \mathbf{a}_S^T) \in \mathbb{K}^{1 \times n}, \mathbf{a}_s \in \mathbb{K}^{n_s \times 1}, s \in \langle S \rangle.$$

3.2 Notation

We will write \mathbf{A}^* , \mathbf{A}^T , \mathbf{A}^H , \mathbf{A}^\dagger , \mathbf{A}_i , $\mathbf{A}_{.j}$, $r(\mathbf{A})$ and $\det(\mathbf{A})$, for the conjugate, the transpose, the transconjugate (also known as conjugate transpose or Hermitian transpose), the Moore-Penrose pseudo-inverse, the ith row, the jth column, the rank and the determinant of $\mathbf{A} \in \mathbb{K}^{I \times J}$, respectively. In the following literature, the Hadamard product is denoted by *. The symbols \otimes and \odot are used for the Kronecker and Khatri-Rao product, respectively.

The symbol $\mathbf{1}_I$ denotes a column vector of size I whose elements are all equal to 1. The elements of the matrices $\mathbf{0}_{I\times J}$ and $\mathbf{1}_{I\times J}$ of size $(I\times J)$ are all equal to 0 and 1, respectively. The symbols \mathbf{I}_N and $\mathbf{e}_n^{(N)}$ denote the identity matrix of order N and the nth vector of the canonical basis of the vector space \mathbb{R}^N , respectively.

3.3 Hadamard product

3.3.1 Definition and identities

Definition 3.1

Let **A** and **B** $\in \mathbb{K}^{I \times J}$ be two matrices of the same size. The Hadamard product of **A** and **B** is the matrix $\mathbf{C} \in \mathbb{K}^{I \times J}$ defined as follows:

$$\mathbf{C} = \mathbf{A} * \mathbf{B} = \begin{pmatrix} a_{11}b_{11} & a_{12}b_{12} & \dots & a_{1J}b_{1J} \\ a_{21}b_{21} & a_{22}b_{22} & \dots & a_{2J}b_{2J} \\ \dots & \dots & \dots & \dots \\ a_{I1}b_{I1} & a_{I2}b_{I2} & \dots & a_{IJ}b_{IJ} \end{pmatrix},$$

i.e. $c_{ij} = a_{ij}b_{ij}$, and therefore $\mathbf{C} = (a_{ij}b_{ij})$, with $i \in \langle I \rangle$, $j \in \langle J \rangle$.

3.4 Kronecker product

3.4.1 Kronecker product of vectors

Definition

Definition 3.2

(a) For $\mathbf{u} \in \mathbb{K}^I$ and $\mathbf{v} \in \mathbb{K}^J$, we have:

$$\mathbf{x} = \mathbf{u} \otimes \mathbf{v} \in \mathbb{K}^{IJ} \Leftrightarrow x_{j+(i-1)J} = u_i v_j$$

or equivalently:

$$\mathbf{u} \otimes \mathbf{v} = \begin{pmatrix} u_1 v_1 & \dots & u_1 v_J & u_2 v_1 & \dots & u_2 v_J & \dots & u_I v_1 & \dots & u_I v_J \end{pmatrix}^T = \begin{pmatrix} u_1 \mathbf{v} & \dots & u_I \mathbf{v} \end{pmatrix}.$$

(b) Similarly, for $\mathbf{u} \in \mathbb{K}^I, \mathbf{v} \in \mathbb{K}^J$, and $\mathbf{w} \in \mathbb{K}^K$, we have:

$$\mathbf{x} = \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \in \mathbb{K}^{IJK} \Leftrightarrow x_{k+(j-1)K+(i-1)JK} = u_i v_j w_k.$$

<u>Remark.</u> By convention, the order of the dimensions in a product IJK follows the order of variation of the corresponding indices (i, j, k). For example, \mathbb{K}^{IJK} means that the index i varies more slowly than j, which itself varies more slowly than k.

3.4.2 Kronecker product of matrices

Definitions and identities

Definition 3.3

Given two matrices $\mathbf{A} \in \mathbb{K}^{I \times J}$ and $\mathbf{B} \in \mathbb{K}^{M \times N}$ of arbitrary size, the right Kronecker product of \mathbf{A} by \mathbf{B} is the matrix $\mathbf{C} \in \mathbb{K}^{IM \times JN}$ defined as follows:

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1J}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2J}\mathbf{B} \\ \dots & \dots & \dots & \dots \\ a_{I1}\mathbf{B} & a_{I2}\mathbf{B} & \dots & a_{IJ}\mathbf{B} \end{pmatrix} = (a_{ij}\mathbf{B}).$$

Remark. The Kronecker product is a matrix partitioned into (I, J) blocks, where the block (i, j) is given by the matrix $a_{ij}\mathbf{B} \in \mathbb{K}^{M \times N}$. The element $a_{ij}b_{mn}$ is located at the position ((i-1)M+m, (j-1)N+n) in $\mathbf{A} \otimes \mathbf{B}$.

3.5 Reference

- From Algebraic Structures to Tensors ch5
- Matrix and Tensor Decompositions in Signal Processing ch2

3.5 Reference

Tensor Operations

4.1 Notation

Let χ

- 4.2 Notion of slice
- 4.3 Mode combination
- 4.4 Matricization
- 4.5 Multiplication operations