Converge in Probability

$$X_n \xrightarrow{p} X \text{ as } n \to \infty$$

 $\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1$

WLLN

a) Xs iid b)
$$E(X_i) = \mu$$
 c) $Var(X_i) = \sigma^2 < \infty$
Let $\bar{X_n} = \sum_{i=1}^n X_i$ Then for any $\epsilon > 0$:
 $\lim_{n \to \infty} P(|\bar{X_n} - \mu| < \epsilon) = 1$
 $\bar{X_n} \stackrel{p}{\to} \mu$ (consistency of $\bar{X_n}$)

The condition $E(X_i)$ exists and is finite is sufficient in WLLN

Converge in Distribution

Let F_{X_n} be cdf of X_n Then $X_n \stackrel{d}{\to} X$ as $n \to \infty$ If $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ at all points where $F_X(x)$ is continuous For large n, the cdf of X_n becomes close to the cdf of X Convergence in distribution does not imply X_n and X approximate each other

CLT

a) Xs iid b)
$$E(X_i) = \mu$$
 c) $Var(X_i) = \sigma^2 < \infty$
Let $\bar{X_n} = \sum_{i=1}^n X_i$ (so far same setup as WLLN)
Let $Z_n = \sqrt{n}(\bar{X_n} - \mu)/\sigma$ and let G_n denote cdf of Z_n
Then for any $-\infty < z < \infty$: $\lim_{n \to \infty} G_n(z) = \Phi(z)$
 Z_n has a limiting standard normal distribution: $Z_n \stackrel{d}{\to} N(0,1)$ as $n \to \infty$

Relationships between Modes of Convergence

$$X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$$

Slutsky's Theorem

If **a**)
$$X_n \stackrel{d}{\to} X$$
 and **b**) $Y_n \stackrel{p}{\to} a$ (a is finite constant)
Then: **1**) $Y_n X_n \stackrel{d}{\to} a X$ **2**) $Y_n + X_n \stackrel{d}{\to} a + X$ **3**) $X_n / Y_n \stackrel{d}{\to} X/a$ (if $a \neq 0$) X_n and Y_n don't have to be independent Slutsky's allows substituting consistent estimators when proving convergence in distribution

Convergence of Transformed Sequences

If $X_n \stackrel{p}{\to} X$ then $h(X_n) \stackrel{p}{\to} h(X)$ If $X_n \stackrel{d}{\to} X$ then $h(X_n) \stackrel{d}{\to} h(X)$ h only has to be continuous on range of X $S_n^2 \stackrel{a.s}{\to} \sigma^2$ as $n \to \infty$ $\bar{X_n}^2 \stackrel{a.s}{\to} \mu^2$ as $n \to \infty$

Delta Method - Univariate

Suppose $\{T_n\}$ is a random sequence with $\sqrt{n}(T_n - \theta) \stackrel{d}{\to} N(0, \sigma^2)$ and g is a function with $g'(\theta)$ exists and $\neq 0$ Then: $\sqrt{n}\{g(T_n) - g(\theta)\} \stackrel{d}{\to} N(0, \{g'(\theta)\}^2 \sigma^2)$ θ is the asymptotic mean of T_n θ may or may not be mean of T_n or mean may not even exist