

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA ELÉTRICA

AEROPÊNDULO, PROTOTIPAGEM E SIMULADOR GRÁFICO COMO FERRAMENTA PARA ESTUDO DE TÉCNICAS DE CONTROLE E IDENTIFICAÇÃO DE SISTEMAS

OSÉIAS DIAS DE FARIAS

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA ELÉTRICA

OSÉIAS DIAS DE FARIAS

AEROPÊNDULO, PROTOTIPAGEM E SIMULADOR GRÁFICO COMO FERRAMENTA PARA ESTUDO DE TÉCNICAS DE CONTROLE E IDENTIFICAÇÃO DE SISTEMAS

Trabalho de conclusão de curso apresentado ao colegiado da Faculdade de Engenharia Elétrica, do Campus Universitário de Tucuruí, da Universidade Federal do Pará, como requisito necessário para obtenção do título de Bacharel em Engenharia Elétrica.

Orientador: Prof. Dr. Raphael Barros

Teixeira

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA ELÉTRICA

AEROPÊNDULO, PROTOTIPAGEM E SIMULADOR GRÁFICO COMO FERRAMENTA PARA ESTUDO DE TÉCNICAS DE CONTROLE E IDENTIFICAÇÃO DE SISTEMAS

AUTOR: OSÉIAS DIAS DE FARIAS

_	E CONCLUSÃO DE CURSO SUBMETIDO À BANCA EXAMINADORA APRO
VADA PELO	COLEGIADO DA FACULDADE DE ENGENHARIA ELÉTRICA, SENDO JUL
GADO	
BANCA EXAM	MINADORA:
_	
	Prof. Dr. Raphael Barros Teixeira
	Orientador / UFPA-CAMTUC-FEE
-	Prof. Dr. NOME PRIMEIRO AVALIADOR
	Membro 1 / UFPA-CAMTUC-FEE
-	Prof. Dr. NOME PRIMEIRO AVALIADOR
	Membro 2 / LIFPA-CAMTLIC-FFF

Resumo

Resumo aqui

Palavras Chave: .

Abstract

Texto do abstract (inglês)

Keywords: Palavras chave em inglês.

SUMÁRIO

Re	sumo			iv
Αb	strac	t		V
Su	máric			vi
1	Intro	odução		1
	1.1	Justific	ativa	1
	1.2	Objetiv	70S	1
	1.3	Escopo	o do Trabalho	1
2	Revi	são Bib	liográfica	2
	2.1	Modela	agem e Controle de Sistemas	2
		2.1.1	Transformada Laplace	2
		2.1.2	Transformada Z	2
		2.1.3	Espaço de Estados	2
	2.2	Identi	ficação de Sistemas	2
		2.2.1	Conceitos	2
	2.3	Eletrô	nica Analógica e Digital	2
		2.3.1	Eletrônica Analógica	2
		2.3.2	Eletrônica Digital	2
3	Simi	ulador e	Protótipo do Aeropêndulo	3
	3.1	Prototi	pagem	3
		3.1.1	Parte estrutural do sistema	3
		3.1.2	Parte Elétrica do sistema	3
		3.1.3	Montagem do Protótipo	3
	3.2	Simul	ador usando Python	3
		3.2.1	Linguagem Python	3
		3.2.2	Biblioteca VPython	3
		3.2.3	Simulador Gráfico	3
4	Dese	envolvin	nento	4
	4.1	Funda	ımentação Teórica	4
	4.2	Modela	agem Matemática	4
		4.2.1	Modelo Matemático do Motor CC Série	4
		4.2.2	Modelo Matemático do Aeropêndulo	4
		4.2.3	Junção dos dois Modelos	4
	4.3	Model	o do Aeropêndulo por Identificação de Sistemas	4
5	Proj		Controladores	5
	5.1	Proieto	de Controle por LGR	6

		5.1.1	Obtendo o Controlador	6
		5.1.2	Discretização do controlador Transformada Z	6
		5.1.3	Implementação do Controlador usando o Arduino Nano	6
	5.2	Projeto	de Controle por Espaço de Estados	6
		5.2.1	Obtendo o Controlador	6
		5.2.2	Discretização do controlador Transformada Z	6
		5.2.3	Implementação do Controlador usando o Arduino Nano	6
	5.3	Interfa	ce Gráfica Plotagem dos Estados do Sistema	6
		5.3.1	Obtendo o Controlador	6
		5.3.2	Discretização do controlador Transformada Z	6
6	Resu	ıltados (e Discussões	7
7	Cond	clusão .		8
		7.0.1	Considerações Finais	8
		7.0.2	Trabalhos Futuros	8
Re	eferên	cias		9

1

INTRODUÇÃO

- 1.1 Justificativa
- 1.2 Objetivos
- 1.3 Escopo do Trabalho

2

REVISÃO BIBLIOGRÁFICA

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1 Modelagem e Controle de Sistemas

- 2.1.1 Transformada Laplace
- 2.1.2 Transformada Z
- 2.1.3 Espaço de Estados
- 2.2 Identificação de Sistemas
- 2.2.1 Conceitos
- 2.3 Eletrônica Analógica e Digital
- 2.3.1 Eletrônica Analógica
- 2.3.2 Eletrônica Digital

3

SIMULADOR E PROTÓTIPO DO AEROPÊNDULO

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.1 Prototipagem

- 3.1.1 Parte estrutural do sistema
- 3.1.2 Parte Elétrica do sistema
- 3.1.3 Montagem do Protótipo
- 3.2 Simulador usando Python
- 3.2.1 Linguagem Python
- 3.2.2 Biblioteca VPython
- 3.2.3 Simulador Gráfico

4

DESENVOLVIMENTO

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

- 4.1 Fundamentação Teórica
- 4.2 Modelagem Matemática
- 4.2.1 Modelo Matemático do Motor CC Série
- 4.2.2 Modelo Matemático do Aeropêndulo
- 4.2.3 Junção dos dois Modelos
- 4.3 Modelo do Aeropêndulo por Identificação de Sistemas

5

PROJETO DE CONTROLADORES

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.1 Projeto de Controle por LGR

- 5.1.1 Obtendo o Controlador
- 5.1.2 Discretização do controlador Transformada Z
- 5.1.3 Implementação do Controlador usando o Arduino Nano
- 5.2 Projeto de Controle por Espaço de Estados
- 5.2.1 Obtendo o Controlador
- 5.2.2 Discretização do controlador Transformada Z
- 5.2.3 Implementação do Controlador usando o Arduino Nano
- 5.3 Interface Gráfica Plotagem dos Estados do Sistema
- 5.3.1 Obtendo o Controlador
- 5.3.2 Discretização do controlador Transformada Z

6

RESULTADOS E DISCUSSÕES

CONCLUSÃO

- 7.0.1 Considerações Finais
- 7.0.2 Trabalhos Futuros

REFERÊNCIAS