Using Spatiotemporal Features for Butterfly Classification

MARTA SKRETA, SASHA LUCCIONI, DAVID ROLNICK

Climate Change and Butterflies

BUTTERFLIES

Temperature/weather impact

Indirect via habitat loss

Predators of butterflies/caterpillars

Plants that butterflies pollinate

eButterfly project

> 400,000 observations in North
 America by citizen scientists

> 600 species

Difficult to label images by hand

Machine learning can be useful

S. cybele

S. zerene

Can we use **WHERE** and **WHEN** the image was taken to improve classification?

Related work

- Networks trained on images and geocoordinates together¹
 - Assumption that test sample has location
 - Can't learn from spatiotemporal information that doesn't have image
- Bayesian approach:

Train image and spatiotemporal models separately, combine them at test time²

- Successfully used to classify birds & other animals
- Image-only classifiers have been built for butterfly identification³
 - [1] Chu et al. Geo-aware networks for fine-grained recognition. ICCV 2019
 - [2] Aodha et al. Presence-only geographical priors for fine-grained image classification. ICCV 2019
 - [3] Kantor et al. Guided attention for fine-grained and hierarchical classification. 2020

TRAIN TIME

(lat, lon, date)

Spatiotemporal features, x

Spatiotemporal encoder

TEST TIME

Accuracy	Image only	Image + (Lat, Lon, Date)	
Top 1, Micro	84.56	86.53	
Top 1, Macro	59.87	65.65	
Top 3, Micro	93.84	95.38	
Top 3, Macro	77.53	83.74	

Micro accuracy: total correct/total number samples

Macro accuracy: average of species accuracies

Data augmentation

- Dataset is imbalanced:
 - > 400 species have < 100 observations
 - < 200 species have up to 2700 observations</p>

- We use iNaturalist to increase rare species representation
 - Sample from iNaturalist until each species has 100 observations

Accuracy	eButterfly	eButterfly + iNat	eButterfly + iNat + (Lat, Lon, Date)
Top 1, Micro	84.56	84.94	87.90
Top 1, Macro	59.87	69.51	75.73
Top 3, Micro	93.84	93.94	95.86
Top 3, Macro	77.53	83.59	89.38

Micro accuracy: total correct/total number samples

Macro accuracy: average of species accuracies

Conclusion & Future Work

- Using spatiotemporal features improves classification
- Augmenting rare species increases macro accuracy
- Working on improving geo model & testing on other species
- Model is being deployed on eButterfly website

