Линейная комбинация

ЛК называется **тривиальной**, если все коэффициенты бі равны нулю одновременно. (Тривиальная ЛК равна нулевой строке.)

ЛК называется **нетривиальной**, если хотя бы один из коэффициентов отличен от нуля.

Линейно зависимые и независимые строки

Система строк называется линейно зависимой (ЛЗ), если существует их нетривиальная ЛК, равная нулевой строке.

Система строк называется линейно независимой (ЛНЗ), если только тривиальная ЛК равна нулевой строке.

Ранг системы строк и столбцов матрицы

Рангом системы строк называется максимальное количество линейно независимых строк этой системы.

В каждой матрице можно связать два ранга: строчный ранг (ранг системы строк) и столбцовый ранг (ранг системы столбцов).

Теорема: Строчный ранг матрицы равен её столбцовому рангу.

Ранг матрицы

Рангом матрицы называется ранг её системы строк или столбцов. Обозначается: $\mathbf{r}(\mathbf{A})$, $\mathbf{rang}(\mathbf{A})$

Метод элементарных преобразований

для нахождения ранга матрицы используют следующее утверждение: ранг матрицы равен количеству ненулевых строк после приведения матрицы к ступенчатому виду.

Элементарными преобразованиями строк называют:

перестановку местами любых двух строк матрицы;

умножение любой строки матрицы на константу k, k≠0, при этом определитель матрицы увеличивается в k раз;

прибавление к любой строке матрицы другой строки, умноженной на некоторую константу.

Пример:

Произведем последовательные элементарные преобразования строк:

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{pmatrix}
\xrightarrow{\stackrel{4:I-II}{7:I-III}{10:I-IV}}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 3 & 6 \\
0 & 6 & 12 \\
0 & 9 & 18
\end{pmatrix}
\xrightarrow{\stackrel{2:II-III}{3:II-IV}}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 3 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$

Следовательно,
$$rgA = 2$$
.

Метод окаймления миноров

Суть метода окаймляющих миноров выражается парой пунктов простого алгоритма:

- 1) Пусть некий минор M k-го порядка не равен нулю.
- 2) Если окаймляющие миноры для минора М (это уже будут миноры (k+1)-го порядка), составить невозможно (т.е. матрица содержит k строк или k столбцов), то ранг равен k. Если окаймляющие миноры существуют и все равны нулю, то ранг равен k. Если среди окаймляющих миноров есть хотя бы один, отличный от нуля, то повторяем для него пункт №1, приняв k+1 вместо k.

Пример:

Найдем определитель данного минора.

$$M_2 = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = 1 \cdot 4 - 3 \cdot 2 = -2$$

Определить данного минора равен -2. Значит ранг матрицы ≥ 2.

Продолжим поиска ранга матрицы. Составим минор 3-го порядка.

Найдем определитель этого минора.

$$M_3 = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 3 & 4 & 5 \end{vmatrix} = -4$$

Минор получился не нулевой. значит ранг матрицы ≥ 3.

Продолжим поиска ранга матрицы. Составим минор 4-го порядка.

Найдем определитель этого минора.

$$M_4 = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{vmatrix} = 0$$

Определитель минора получился равный 0. Построим другой минор.

Найдем определитель этого минора.

$$M_4 = \begin{vmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 4 & 6 \\ 3 & 4 & 5 & 7 \\ 4 & 5 & 6 & 8 \end{vmatrix} = 0$$

Минор получился равным 0.

Так как все миноры 4-ого порядка, окаймляющие минор 3-ого, равны 0, то ранг матрицы <4. Т.к. ранг матрицы \ge 3 и <4 то ранг = 3.