Homework 7 Due **Saturday**, October 30

Written Part

5. In problem 1 we computed square roots using Sage's built in functionality. But if $p \equiv 3 \mod 4$, there is actually an easy algorithm! So fix $p \equiv 3 \mod 4$ and let $a \in \mathbb{F}_p^*$ have a square root mod p. Give a $\mathcal{O}(\log p)$ algorithm to compute a square root of a modulo p, and prove its correctness. (Hint: You can do this in a single exponentiation!)

Proof. We will show that if $p \equiv 3 \mod 4$ and $a \in \mathbb{F}_p^*$. Then $a^{\frac{p+1}{4}}$ is a square root of a. To see this, compute:

$$\left(a^{\frac{p+1}{4}}\right)^2 = a^{\frac{p+1}{2}}$$

$$= a^{\frac{p-1}{2}+1}$$

$$= a^{\frac{p-1}{2}} \cdot a$$

$$\equiv a \mod n$$

where in the last step we observe that since a has a square root, we know $a^{\frac{p-1}{2}} \equiv 1 \mod p$ by Euler's Criterion (HW5 Problem 8a). Therefore, the algorithm for computing the square root of a is merely using fast powering to compute $a^{\frac{p+1}{4}}$.

- 6. Let $L(X) = e^{\sqrt{\ln x \ln \ln x}}$. Prove that L(X) is subexponential (in the number of bits of X) by proving:
 - (a) $L(X) = \mathcal{O}(X^{\beta})$ for every $\beta > 0$.

Proof. Let $\beta > 0$. We compute:

$$\lim_{x \to \infty} \frac{e^{\sqrt{\ln x \ln \ln x}}}{x^{\beta}} = \lim_{x \to \infty} \frac{e^{\sqrt{\ln x \ln \ln x}}}{e^{\beta \ln x}}$$
$$= \lim_{x \to \infty} e^{\sqrt{\ln x \ln \ln x} - \beta \ln x}.$$

We will show that the exponent converges to $-\infty$ so that the limit converges to 0. For simplicity, we make the substitution $k = \ln x$, and note that $x \to \infty$ if and only if $k \to \infty$. Then we are computing:

$$\lim_{k \to \infty} \sqrt{k \ln k} - \beta k = -\infty,$$

It suffices to show that the second term grows faster, that is:

$$\lim_{k \to \infty} \frac{\beta k}{\sqrt{k \ln k}} = \lim_{k \to \infty} \frac{\beta \sqrt{k}}{\sqrt{\ln k}} = \infty,$$

which is true as polynomial growth is faster than logarithmic growth.

(b) $L(X) = \Omega((\ln X)^{\alpha})$ for every $\alpha > 0$.

Proof. In class we showed that if $f(x) = e^{\sqrt{\ln x}}$ then $f(x) = \Omega((\ln x)^{\alpha})$ for every $\beta > 0$. It therefore suffice to show that $L(x) = \Omega(f(x))$. Notice that if $x > e^e$, then $\ln \ln(x) > \ln \ln(e^e) = \ln(e) = 1$, so that $\ln x \ln \ln x > \ln x$. In particular, we may conclude that for all such x:

$$L(x) = e^{\sqrt{\ln x \ln \ln x}} > e^{\sqrt{\ln x}} = f(x),$$

so that $L(x) = \Omega(f(x))$, completing the proof.

For completeness we include the proof that $f(x) = \Omega((\ln x)^{\alpha})$ for every $\beta > 0$. Using the Taylor series for e^t , we see that:

$$f(x) = \sum_{n=0}^{\infty} \frac{(\ln x)^n}{n!}.$$

For any N > 0, let T_N be the N'th taylor polynomial:

$$T_N(x) = \sum_{n=0}^N \frac{(\ln x)^n}{n!}.$$

Since $\frac{(\ln x)^n}{n!} > 0$ for x > 1, we see that $f(x) > T_N(x)$ for x > 1. In particular, $f(x) = \Omega(T_N(x))$ for any N. Fix any $\alpha > 0$ and fix $N > \alpha$. We are done if we can show:

$$\lim_{x \to \infty} \frac{(\ln x)^{\alpha}}{T_N(x)} < \infty.$$

For simplicity, we make the substitution $k = \ln x$. Then $k \to \infty$ if and only if $x \to \infty$, so it suffices to show that:

$$\lim_{k \to \infty} \frac{k^{\alpha}}{1 + k + k^2/2 + \dots + k^N/N!} = 0.$$

But this is clear as the denominator is a polynomial of degree greater than the numerator.

- 7. Optimizing the various parts of our sieve factorization algorithm one can show that we can factor N in about $\mathcal{O}(L(N))$, which is subexponential! Let's see how good this is. For simplicity, suppose it takes about L(N) computations to factor N, and we have a computer than can run a billion computations in a second. How long would it take to factor N of the following orders. (Put your answer in seconds, days, years...whatever is appropriate. Also if you do your computations on cocalc turn that part in too so the grader can see).
 - (a) $N \approx 2^{100}$. 0.027802429905024805 seconds.
 - (b) $N \approx 2^{250}$. 159.2147074064945 minutes.
 - (c) $N \approx 2^{500}$. 1130.0731911459704 years.
 - (d) $N \approx 2^{1000}$. 5.553235322322046 trillion years.

Recall the function $\Psi(X, B) = \#\{n \leq X : n \text{ is } B\text{-smooth}\}$. In class we stated the following claim about the growth of Ψ in certain cases

Theorem 1 ([HPS] Theorem 3.43). Suppose there exists some $0 < \varepsilon < 1/2$ such that:

$$(\ln X)^{\varepsilon} < \ln B < (\ln X)^{1-\varepsilon}.$$

Let u be the ratio $\ln X/\ln B$. Then the number of B-smooth numbers less than X satisfies:

$$\Psi(X,B) \approx Xu^{-u}$$
.

(Note, here \approx can be taken to mean that their difference is a function whose limit as X goes to infinity is 0, although in the book they have something slightly more precise). This had the following Corollary, which is more useful for our analysis.

Corollary 1 ([HPS] Corollary 3.45). Let 0 < c < 1. Then:

$$\Psi(X, L(X)^c)) \approx X \cdot L(X)^{(-1/2c)}.$$

- 8. Prove Corollary 1 using Theorem 1. In particular, prove the following two steps.
 - (a) Show that there exists some $0 < \varepsilon < 1/2$ with

$$(\ln X)^{\varepsilon} < \ln(L(X)^c) < (\ln X)^{1-\varepsilon}.$$

Proof. Making the substitution $k = \ln X$ we'd like to show that:

$$k^{\varepsilon} < c\sqrt{k \ln k} < k^{1-\varepsilon}$$

for k large enough. Let $\delta = 1/2 - \varepsilon$. Then this means showing:

$$k^{1/2}k^{-\delta} < k^{1/2}c\sqrt{\ln k} < k^{1/2}k^{\delta}$$

and since k is positive we can cancel the $k^{1/2}$ and therefore show that:

$$k^{-\delta} < c\sqrt{\ln k} < k^{\delta}.$$

for any $\delta > 0$, 0 < c < 1, and k large enough. Since the left side approaches 0 as $k \to \infty$, the left inequality is clear. The right inequality follows from the observation that polynomial growth is faster than logarithmic.

(b) Let $u = \ln X / \ln(L(X)^c)$. Show that:

$$u^{-u} \approx L(X)^{-1/2c}.$$

Then leverage that \approx is transitive to deduce the corollary.

(*Hint*: Write $u^{-u} = L(X)^{\frac{-1}{2c}(1+f(X))}$ for some function f(X) such that $\lim_{X\to\infty} f(X) = 0$. In fact, this is the definition of \approx given in the book!).

Proof. Note that $\ln(L(X)^c) = c \ln L(X)$. To try to keep our heads on straight we make the simplifying substitution $k = \ln X$. With this and the first sentence in mind we compute:

$$u = \frac{k}{c\sqrt{k \ln k}} = \frac{1}{c} \sqrt{\frac{k^2}{k \ln k}} = \frac{1}{c} \sqrt{\frac{k}{\ln k}}.$$

Therefore:

$$u^{-u} = \left(\frac{1}{c}\sqrt{\frac{k}{\ln k}}\right)^{-\frac{1}{c}\sqrt{\frac{k}{\ln k}}} = e^{\ln\left(\frac{1}{c}\sqrt{\frac{k}{\ln k}}\right)\cdot\left(-\frac{1}{c}\sqrt{\frac{k}{\ln k}}\right)},$$

where in the last step we use that $t = e^{\ln t}$ for any t. Let's focus for a moment on the exponent.

$$\ln\left(\frac{1}{c}\sqrt{\frac{k}{\ln k}}\right) \cdot \left(-\frac{1}{c}\sqrt{\frac{k}{\ln k}}\right) = (1/2\ln k - \ln c - 1/2\ln \ln k) \cdot \left(-\frac{1}{c}\sqrt{\frac{k}{\ln k}}\right)$$

$$= \frac{-1}{2c}(\ln k)\left(1 - 2\frac{\ln c}{\ln k} - \frac{\ln \ln k}{\ln k}\right)\sqrt{\frac{k}{\ln k}}$$

$$= \frac{-1}{2c}\sqrt{k\ln k}(1 + f(k)),$$

where $f(k) = -(2\frac{\ln c - \ln \ln k}{\ln k})$ goes to 0 as $k \to \infty$. Therefore, substituting back in for $X = e^k$ we see that:

$$u^{-u} = e^{-\frac{1}{2c}\sqrt{\ln X \ln \ln X}(1 + f(2^x))} = L(X)^{-\frac{1}{2c}(1 + f(\ln x))},$$

where $f(\ln x) \to 0$ as $x \to \infty$, giving the result!