Institute of Public Administration

COMP41530 - Web Services in Cloud Computing

Barry Corish
Associate Lecturer, IPA
Lecture 10

Institute of Public Administration | 57-61 Lansdowne Road | Dublin 4 | Ireland | Ph. +353 1 2403600 | www.ipa.ie

Overview

- Review
- Management of IT Systems
- Management in an SOA Environment
- Management of WebServices

Overview

- Review
- Management of IT Systems
- Management in an SOA Environment
- Management of WebServices

© IPA

SOA Pitfalls

- Taking on too much giant "design" first
- Starting with the wrong business processes
- Cluttered building same "old" mess in SOA Services
- Making many services that turn out not to be reusable!
- Adding a SoA skin over broken existing systems
- Adding a SoA skin over broken business processes
- Lack of governance, road map etc.

SOA Development Livecycle

- How to start? First questions:
 - What are the core business processes?
 - What services form part of these processes?
 - Which of these services will add immediate value?
 - How can these services be assembled into useful business processed?
 - Are the business processes you are going to work on working correctly before you start?

© IPA 5

Software Development Livecycle

- Process of designing, building and implementing software systems:
 - Analysis
 - Design
 - Implementation
 - Maintenance

SDL Models

- Waterfall
- Spiral

© IPA

Process Modelling

- To produce an effective SOA, you must understand your existing business processes.
- The best way to do this is to produce a model of how they exist and work
- These models form the basis for what Services will be built, and how.
- Many development tools can "feed" directly from the models, saving time and reducing error in development.

SoA Control and Visibility

- Each service should have an associated SLA
- It must be possible to see if the SLA is being met
 - Implies MIS / Alerting etc.
 - These should be included in the Service from design stage onwards, not added in at the end

© IPA

SoA Governance is key!

- Operational Governance
 - Is the system/service doing what it should do, i.e. meeting it's SLA?
- Livecycle Governance
 - Is the system/service meeting it's objectives over it's lifetime?
- Organisational Governance
 - Is the system/service providing what the Organisation needs?

SoA Development Principles

- Reuse existing functionality
- Minimise rework of existing systems
- Allow and support incremental integration
- Maximise flexibility
- Scalability
- Operational visibility and control

© IPA 11

Approaches to SoA

- Top Down
 - Start with the Organisational Mission Statement
 - Work "down" towards the detail
- Bottom up
 - Start with a specific system, problem or requirement
 - Work back up to a design
- Hybrid
 - Working both Top Down and Bottom Up at the same time
 - Most common approach

Main Steps in SOA Development

- Plan
- Analyse
- Design
- Build
- Test
- Provision
- Deploy
- Manage
- Govern

© IPA 13

Key points

- SoA is as much a Business methodology as a set of technologies
- SoA must be implemented within a plan and a methodology to avoid chaos
- Governance is critical!
- SoA != WebServices

Overview

- Review
- Management of IT Systems
- Management in an SOA Environment
- Management of WebServices

© IPA 15

What is Management of IT Systems?

- See how it's going now:
 - What's broken, what's working
 - What's fast or slow
- Track this over time:
 - Analyse failures, predict problems
- Resolve/Improve:
 - Automatic or manual intervention to fix problems or improve performance

Management of Legacy Systems

- Architecturally Simpler Systems
- Highly staffed / high skill levels
- Generally limited change in infrastructure
- More centralised
- Fewer components
- Easier to manage?

© IPA 17

Problem investigation in Legacy Systems

- Is it working?
 - Sign on, try it...
- If not, what's wrong?
 - "Unified Console"
- Tracking system resources, failures etc.
- Very highly evolved management infrastructure!

Managing Distributed Systems

- Distributed Computing Systems
- Loose Coupling
- Heterogeneous Computing Systems
 - Implies different Development and Infrastructural teams
- All the stuff we love...
 - ...but much harder to Manage!

© IPA 19

You know you have a distributed system when...

- You know you have a distributed system when the crash of a computer you've never heard of stops you from getting any work done.
 - Leslie Lamport

Distributed Management Systems (1/2)

- The answer?
 - Promises to be just that
 - Designed to address these problems
- Big promises...
 - Big money!
 - Requires management/staff/expertise etc. on and ongoing basis

© IPA 21

Distributed Management Systems (2/2)

- 3 aspects of Management:
- Monitor
 - Capture and record stats. and events over time
- Track
 - Watch single "units of work" flow through the system
- Control
 - Change and manage the system while live

The Traditional Technical Overview (1/2)

- Traditional Systems Management focused on infrastructure:
 - Networks
 - Processor Load
 - Disk Space
 - Events Logs
 - System Performance
- ...and could be very good at it!

© IPA 23

The Traditional Technical Overview (2/2)

- Infrastructure Systems Management products could provide:
 - In depth monitoring
 - Problem analysis
 - Expert Systems / AI features
 - Problem prediction
 - Growth/Load/Resource prediction and planning
 - Monitoring, alerting
 - Tie-in to Helpdesk and other systems
 - Etc.
- But it's not enough any more...

The Business Systems Overview (1/3)

- Now we need to focus on delivery of business functions to end users
- Some systems are mission critical
- We build a composite view of "User experience":
 - Performance
 - Availability
 - Load

© IPA 25

The Business Systems Overview (2/3)

- Including Systems not traditionally part of the Systems Management view:
 - Telephones
 - Email
 - Website / online
 - Lifts / retail POS tills
 - EMV Card Service providers
- The infrastructure/technical view is still there
 - ...but wrapped up into a high level view of "Business Function Availability"

The Business Systems Overview (3/3)

- We may also add "business performance" metrics.
 - Sales
 - Calls answered per hour
 - Network Fault rates
 - Profitability
 - "Balanced Scorecard" metrics.
- A combined "Management Dashboard" view
 - ...rather than an IT Systems View

© IPA 27

Overview

- Review
- Management of IT Systems
- Management in an SOA Environment
- Management of WebServices

Management of SOA Systems (1/2)

- Is there a problem?
 - Even this can be hard to determine
- What is the problem?
 - Hard to tell...
- What is the cause of the problem?
 - Ummm...

© IPA 29

Management of SOA Systems (2/2)

- No single console any more
 - Each system and component has it's own
- No single system overview
- Huge number of points of possible failure
- No single "expert" who can trace problem
 - System is too complex and distributed

Enterprise Management Frameworks (1/2)

- Software Systems
- Designed to manage complex IT Systems
- One or more "Management Servers"
- Trying to centralise and unify:
 - Reporting
 - Logging/recording/analysis
 - Alerting

© IPA 31

Enterprise Management Frameworks (2/2)

- Trying to manage:
 - Faults/Events
 - Configuration
 - Accounting
 - Performance
 - Security
 - ...and many more facets of the systems.

Enterprise Management Systems

- Implementation of an Enterprise Management Framework
- Commercially and Open Source availability
- Commonly available from the cloud (?)
- One or more centralised management nodes
- Managing 1-10,000+ "resources"

© IPA 33

EMS - Getting data (1/2)

- First Approach: monitor resource from the outside:
 - Ping
 - Check if web page available
 - Test invocation of WebService
 - "Piggyback" measurements on a real transaction
- Note slowdowns, failures, changes etc.

EMS - Getting data (2/2)

- Second approach: monitor from inside the resource
 - Install an agent on the monitored system
 - Agent "hooks into" various aspects of the system
 - Reports data back to central monitoring server.

© IPA 35

EMS Reporting

- External and Agent based monitoring are commonly used together
- Data from two sources are merged to give a single view of the resource
- Data from multiple resources combined together to give:
 - "Infrastructural" view, e.g. all LAN components
 - "Business System" view, e.g. every resource required by the Call Centre

Standard Frameworks: SNMP

- <u>Simple Network Management Protocol</u>
- Agents are internal or external to monitored component.
- Agents perform tests, collects and stores data
- SNMP is a protocol for sending data and results from Agents to Management Systems
- Commonly used:
 - Fine for managing "IT Infrastructure"
 - Limitations in protocol for managing "business systems"

© IPA 37

Standard Frameworks: CIM

- Common Information Model
- Set of schema for Management Information
- Messaged con be "reporting" or "control"
- Implemented as CIM-XML
- Windows Management Information (WMI) is CIM compliant
- Not taking off (yet?)
 - Too open?
 - Not prescriptive enough?

Overview

- Review
- Management of IT Systems
- Management in an SOA Environment
- Management of WebServices

© IPA 39

Managing WebServices

- We care about:
 - "End to end" service
 - ...not just individual components.
 - But we also care about individual components!
 - ...especially when tracking problems or bottlenecks
- We also want to predict future problems

Typical Metrics for a WebService (1/2)

- Number of requests received
 - ...number of successes
 - ... number of failures
- Performance
 - Avg processing time
 - Max processing time
 - Min processing time

© IPA 41

Typical Metrics for a WebService (2/2)

- We also care about the relationships between these metrics
- What happens to the system under load?
 - Nothing?
 - Gradual slow down?
 - Sudden tipping point?
 - Crash?

Management of WebServices (1/3)

- So, we need to monitor both:
 - User Experience
 - Availability and performance
 - Infrastructure Monitoring:
 - Servers, networks, databases, software

© IPA 43

Management of WebServices (2/3)

- Resource Provisioning:
 - Particularly in Virtualised environments
 - Feed in more CPU, or cluster members where infrastructure is under load.
- Transaction Monitoring:
 - Throughput, volume, trends
 - Track single transactions

Management of WebServices (3/3)

- All wrapped up into:
 - SLA Monitoring:
 - Are we meeting our SLA?
- From these we need to:
 - Record (and allow analysis)
 - Alert (on exception)
 - Fix (manual or automatic?)

© IPA 45

Active Management of WebServices

- We need to be able to:
 - Bring them up or down
 - Balance the load between multiple providers
 - Launch new versions of a service
 - Deprecate old versions of a service
 - Upgrade or enhance versions of a service
- ...all non-disruptively.

Management of WebServices with Middleware

- Middleware can be key to this
 - Allows us to use virtual rather than physical addressing of service providers
 - Providing Routing
 - Providing Load Balancing
 - Providing Failover
- Middleware is a good place to do your measuring
 - "All" transactions route through the middleware
 - Some middleware can spot problems, and act on them automatically

© IPA 47

Future: WSDMI (1/3)

- WebServices Distributed Management Initiative
- Two OASIS standards
 - MUWS:
 - Making resources manageable via WebServices
 - MOWS:
 - Standards for managing WebServices
- Focus on "composite" services
 - ..back to our "Business Systems" view

Future: WSDMI (2/3)

- All based on WebServices
 - All based on SOAP
- Uses existing SOAP based schemas:
 - WS-Notification
 - WS-Topics
 - etc.
- Specifies more schemas on top / beside these existing ones

© IPA 49

Future: WSDMI (3/3)

- Limited success
 - ...again.
 - Few implementations
 - Too complicated?
 - Not prescriptive enough?
 - Discuss!

Key points (1/2)

- Management is about:
 - Monitoring
 - Tracking
 - Controlling
- You can do SOA without Management
 - ...but you'll miss a lot of the value.
- You can do WebServices without Management
 - ...but it gets very complicated very fast!

© IPA 51

Key points (2/2)

- Don't build your own Management framework/infrastructure
 - Buy in one of the many systems already available
 - ... or at least stick to one of the standards.
- Consider the overall Management strategy at the "Plan" phase of SOA
 - Easy to build in from the start
 - Hard to retro-fit later

Overview

- Review
- Management of IT Systems
- Management in an SOA Environment
- Management of WebServices