Logic and Foundation with Haskell

Exercise sheet 4

Exercise 1. Prove the following sequents involving conjunction:

- (i) $\{\varphi\} \vdash (\varphi \land \varphi)$,
- (ii) $\{\varphi, \psi, \chi\} \vdash (\varphi \land (\psi \land \chi)).$

Exercise 2. Show that $\{\varphi_1, \varphi_2\} \vdash \psi$ if and only if $\{\varphi_1 \land \varphi_2\} \vdash \psi$. Hence, we can view the set of assumptions as being a big conjunction.

Exercise 3. Show the following sequents involving implication:

- (i) $\vdash (\varphi \rightarrow (\psi \rightarrow \psi))$,
- (ii) $\vdash ((\varphi \rightarrow \varphi) \land (\psi \rightarrow \psi)),$
- (iii) $\{(\varphi \to \psi), (\varphi \to \chi)\} \vdash (\varphi \to (\psi \land \chi)).$

Exercise 4. Show that $\Gamma \cup \{\varphi\} \vdash \psi$ if and only if $\Gamma \vdash (\varphi \rightarrow \psi)$. Hence implication 'internalizes' \vdash .

Exercise 5. Write down sequent rules $(\leftrightarrow I)$ and $(\leftrightarrow E)$ for equivalence.

Exercise 6. Prove the following sequents involving equivalence:

- (i) $\{\varphi, (\varphi \leftrightarrow \psi)\} \vdash \psi$,
- (ii) $\vdash (\varphi \leftrightarrow \varphi)$,
- (iii) $\{\varphi \leftrightarrow (\psi \leftrightarrow \psi)\} \vdash \varphi$.

Exercise 7. Show that the relation $\varphi \sim \psi$ defined by $\vdash (\varphi \leftrightarrow \psi)$ is an equivalence relation.

Exercise 8. Prove the following sequents without (RAA):

- (i) $\vdash (\neg(\varphi \land (\neg\varphi))),$
- (ii) $\vdash ((\neg(\varphi \to \psi)) \to (\neg\psi)),$
- (iii) $\{(\varphi \to \psi)\} \vdash ((\neg \psi) \to (\neg \varphi)),$
- (iv) $\{(\varphi \to \psi)\} \vdash (\neg(\varphi \land (\neg\psi)))$.

Exercise 9. Show using (RAA) that $\{((\neg \psi) \to (\neg \varphi))\} \vdash (\varphi \to \psi)$.

Exercise 10. Prove the following sequents without $(\vee E)$:

- (i) $\vdash (\varphi \rightarrow (\varphi \lor \psi)),$
- (ii) $\{(\neg(\varphi \lor \psi))\} \vdash ((\neg\varphi) \land (\neg\psi)),$
- (iii) $\vdash ((\varphi \rightarrow \psi) \rightarrow ((\neg \varphi) \lor \psi)).$

Exercise 11. Prove the following sequents with $(\vee E)$:

- (i) $\{(\varphi \lor \psi)\} \vdash (\psi \lor \varphi)$,
- (ii) $\{(\varphi \lor \psi), (\varphi \to \chi), (\psi \to \chi)\} \vdash \chi$,
- (iii) $\{(\varphi \lor \psi), (\neg \varphi)\} \vdash \psi$,
- (iv) $\{((\neg \varphi) \land (\neg \psi)\} \vdash (\neg(\varphi \lor \psi)).$