中国科学技术大学

2020-2021学年第二学期期末试卷

考试科目	随机过程	得分
所在系	姓名	学号

考试时间: 2021年3月5日14:30-16:30

- **一、** 填空题(30分, 每道题5分)
 - 1. 设随机变量 X 服从参数为 λ 的指数分布, 则 X 的矩母函数为_____;
 - **2.** 设 $\{W_n, n \ge 1\}$ 是与泊松过程 $\{X(t), t \ge 0\}$ 对应的一个等待时间序列, 则 W_n 服从 ______ 分布;
 - 3. 设 $\{N(t), t \geq 0\}$ 是强度为 λ 的泊松过程, $\{Y_k, k = 1, 2, \cdots\}$ 是一列独立同分布 随机变量, 且与 $\{N(t), t \geq 0\}$ 独立, 令 $X(t) = \sum_{k=1}^{N(t)} Y_k$, $t \geq 0$, 若 $\mathbf{E}Y_1^2 < \infty$, 则 $\mathbf{E}[X(t)] = ______;$
 - **4.** 状态 i 常返的充要条件为 $\sum_{n=0}^{\infty} \mathbf{P}_{ii}^{(n)}$ ________;
 - **5.** 设随机过程 $X(t) = Acos(\omega t + \Phi), -\infty < t < \infty,$ 其中 ω 为正常数, A 和 Φ 是相互独立的随机变量,且 A 和 Φ 服从在区间 [0,1] 上的均匀分布,则 X(t) 的数学期望为______.
 - **6.** 设 $\{N(t), t \geq 0\}$ 是速率为 λ 的Poisson过程, 以 S_n 记第 n 个事件发生的时刻, s, t > 0, 则在条件 N(s+t) = n 的条件下, N(s)的分布律为 ______.
- 二、 (15分) 一个系统由两个不同的元件(记为 A 与 B) 组成, 元件易受到外界的冲击, 元件 A 受到的冲击遵循参数 $\lambda_1=2$ 的Poisson过程 $\{N_1(t),t\geq 0\}$, 元件 B 受到的冲击遵循参数 $\lambda_2=4$ 的Poisson过程 $\{N_2(t),t\geq 0\}$, 且两个过程相互独立. 记 $N(t)=N_1(t)+N_2(t)$, 每次冲击会对系统造成损伤, 该损伤对系统持续不断地造成单位时间为 2 元的损失, 求在给定 N(t)=100 的条件下到时刻 t 冲击给系统造成的期望损失.
- 三、(20分) 设有状态空间为 $S = \{1, 2, \cdots, 6\}$ 的一齐次马尔可夫链, 其转移概率矩阵为

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 2/3 & 1/3 & 0 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- (1) 试将此链状态分类, 并指出各个状态的常返性及周期性;
- (2) 计算首达概率 $f_{11}^{(1)}, f_{11}^{(4)};$
- (3) 该链是否存在平稳分布, 若存在试求出;
- (4) 求各常返状态的平均返回时间 $\mu_i (i = 1, 2, ..., 6)$.
- 四、 (20分) 设 $X(t) = Acos\omega t + Bsin\omega t$, ω 是常数, A 与 B 为相互独立的随机变量, 且 $A \sim N(0,1), B \sim N(0,1)$.
 - (1) 验证 X(t) 是否为宽平稳过程;
 - (2) 验证过程 X(t) 是否具有均值遍历性.
- 五、 (15分) 已知一个连续时间平稳过程的功率谱密度函数为 $S(\omega) = \frac{\omega^2+2}{\omega^4+9\omega^2+8}$, 求该过程的协方差函数 $R(\tau)$.