Aprendizagem

Instituto Superior Técnico setembro de 2023

Homework 2 - Report

Joana Pimenta (103730), Rodrigo Laia (102674)

Pen and Paper

1. (a) y_1, y_2, y_3, y_4 and y_5 independent $\implies p(y_1, y_2, y_3, y_4, y_5) = p(y_1, y_2) \times p(y_3, y_4) \times p(y_5)$

Fórmulas utilizadas:

$$P(y_6 = H|\vec{x}) = \frac{P(\vec{x}|y_6 = H)}{P(\vec{x})}$$
(1)

$$P(\vec{x}|\mu,\sigma^2) = \frac{1}{(2\pi)^{m/2}\sqrt{|\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^T \cdot \Sigma^{-1} \cdot (\vec{x}-\vec{\mu})}$$
(2)

$$\vec{\mu} = \begin{bmatrix} E(y_1) \\ E(y_2) \end{bmatrix} \tag{3}$$

$$\Sigma = \begin{bmatrix} cov(y_1, y_2) & cov(y_1, y_1) \\ cov(y_2, y_1) & cov(y_2, y_2) \end{bmatrix}$$

$$\tag{4}$$

$$|\Sigma| = cov(y_1, y_2) \cdot cov(y_2, y_1) - cov(y_1, y_1) \cdot cov(y_2, y_2)$$
 (5)

$$\Sigma^{-1} = \frac{1}{|\Sigma|} \cdot \begin{bmatrix} cov(y_2, y_2) & -cov(y_1, y_2) \\ -cov(y_2, y_1) & cov(y_1, y_1) \end{bmatrix}$$
 (6)

Parâmetros das gaussianas multivariadas:

Classe A:

$$n\vec{\mu}_A = \begin{bmatrix} 0.24\\0.52 \end{bmatrix}$$

$$\Sigma_{A} = \begin{bmatrix} 0.004267 & -0.0064 \\ -0.0064 & 0.02240 \end{bmatrix}$$

$$|\Sigma|_{A} = 5.4613 \cdot 10^{-5}$$

$$\Sigma_{A}^{-1} = \begin{bmatrix} 410.1563 & -117.1875 \\ -117.1875 & 78.125 \end{bmatrix}$$

$$P(\vec{x}|A) = N(\vec{x}|\mu_{A}, \Sigma_{A}) = \frac{1}{(2\pi)^{m/2} \sqrt{|\Sigma_{A}|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_{A})^{T} \cdot \Sigma_{A}^{-1} \cdot (\vec{x} - \vec{\mu}_{A})}$$

Classe B:

$$\vec{\mu}_B = \begin{bmatrix} 0.5925 \\ 0.3275 \end{bmatrix}$$

$$\Sigma_B = \begin{bmatrix} 0.01717 & -0.00732 \\ -0.00732 & 0.02362 \end{bmatrix}$$

$$|\Sigma|_B = 3.519 \cdot 10^{-4}$$

$$\Sigma_B^{-1} = \begin{bmatrix} 67.1101 & 20.7954 \\ 20.7954 & 48.7831 \end{bmatrix}$$

$$P(\vec{x}|B) = N(\vec{x}|\mu_B, \Sigma_B) = \frac{1}{(2\pi)^{m/2} \sqrt{|\Sigma_B|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_B)^T \cdot \Sigma_B^{-1} \cdot (\vec{x} - \vec{\mu}_B)}$$

Probabilidades para $\{y_3, y_4\}$ condicionadas a A e B:

Classe A:

$$y_3 = 0$$
 $y_3 = 1$
 $y_4 = 0$ $P=0$ $P=1/3$
 $y_4 = 1$ $P=1/3$ $P=1/3$

Tabela 1: Probabilidades para y_3, y_4 condicionadas a A

Classe B:

$$y_3 = 0$$
 $y_3 = 1$
 $y_4 = 0$ $P=1/2$ $P=1/4$
 $y_4 = 1$ $P=1/4$ $P=0$

Tabela 2: Probabilidades para y_3, y_4 condicionadas a B

Probabilidades para $\{y_5\}$ condicionadas a A e B :

Classe A:

$$P(y_5 = 0|A) = 1/3$$

$$P(y_5 = 1|A) = 1/3$$

$$P(y_5 = 2|A) = 1/3$$

Classe B:

$$P(y_5 = 0|A) = 1/4$$

$$P(y_5 = 1|A) = 1/2$$

$$P(y_5 = 2|A) = 1/4$$

Priors:

$$P(A) = \frac{3}{7}$$

$$P(B) = \frac{4}{7}$$

(b) Uma vez que o denominador é o mesmo para todas para saber qual a classe mais provável, basta comparar os numeradores das probabilidades.

$$P(A|\vec{x}_8) = \frac{P(\vec{x}_8|A) \cdot P(A)}{P(\vec{x}_8)}$$

$$= \frac{P(y_1 = 0.38, y_2 = 0.52|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) \cdot P(A)}{P(\vec{x}_8)}$$

$$= \frac{\frac{3}{7} \cdot 0.3868 \cdot \frac{1}{3} \cdot \frac{1}{3}}{P(\vec{x}_8)}$$

$$= \frac{0.018}{P(\vec{x}_8)}$$

$$P(B|\vec{x}_8) = \frac{P(\vec{x}_8|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{P(y_1 = 0.38, y_2 = 0.52|B) \cdot P(y_3 = 0, y_4 = 1|B) \cdot P(y_5 = 0|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{\frac{4}{7} \cdot 1.7678 \cdot \frac{1}{4} \cdot \frac{1}{4}}{P(\vec{x}_8)}$$

$$= \frac{0.063}{P(\vec{x}_8)}$$

Como $P(A|\vec{x}_8) < P(B|\vec{x}_8)$, então \vec{x}_8 é classificado como B.

$$P(A|\vec{x}_9) = \frac{P(\vec{x}_9|A) \cdot P(A)}{P(\vec{x}_9)}$$

$$= \frac{P(y_1 = 0.42, y_2 = 0.59|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) \cdot P(A)}{P(\vec{x}_9)}$$

$$= \frac{\frac{3}{7} \cdot 0.1013 \cdot \frac{1}{3} \cdot \frac{1}{3}}{P(\vec{x}_9)}$$

$$= \frac{0.0048}{P(\vec{x}_9)}$$

$$P(B|\vec{x}_8) = \frac{P(\vec{x}_8|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{P(y_1 = 0.42, y_2 = 0.59|B) \cdot P(y_3 = 0, y_4 = 1|B) \cdot P(y_5 = 1|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{\frac{4}{7} \cdot 1.4927 \cdot \frac{1}{4} \cdot \frac{1}{2}}{P(\vec{x}_8)}$$

$$= \frac{0.1066}{P(\vec{x}_8)}$$

Como $P(A|\vec{x}_9) < P(B|\vec{x}_9)$, então \vec{x}_9 é classificado como B.

(c) Assumindo o critério de Maximum Likelihood, para classificar uma observação apenas interessam as probabilidades $P(\vec{x}|A)$ e $P(\vec{x}|B)$:

$$h = argmax(P())$$

Considerando diferentes thresholds para as probabilidades é possível maximizar a accuracy do nosso classificador.

$$P(\vec{x}_8|A) = P(y_1 = 0.38, y_2 = 0.52|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) = 0.043$$

2. Para discretizar a variável y_2 , considerando equal-width, é necessário dividir o intervalo [0,1] em 2 partes iguais. Assim, os intervalos são: [0,0.5], [0.5,1].

Para cada observação, y_2 pode assumir os valores 0 ou 1, consoante o intervalo em que se encontra o seu valor.

(a) Porque não há shuffling:

Programming - Código Python e Resultados Obtidos

1.