FMINNM (vector)

Base

Instructions

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, writes the smaller of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

Regardless of the value of *FPCR*.AH, the behavior is as follows:

- Negative zero compares less than positive zero.
- If one element is numeric and the other is a quiet NaN, the result is the numeric value.
- When *FPCR*.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet NaN.
- When *FPCR*.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default NaN.

This instruction can generate a floating-point exception. Depending on the settings in *FPCR*, the exception results in either a flag being set in *FPSR* or a synchronous exception being generated. For more information, see *Floating-point exception traps*.

Depending on the settings in the *CPACR_EL1*, *CPTR_EL2*, and *CPTR_EL3* registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: <u>Half-precision</u> and <u>Single-precision</u> and <u>double-precision</u>

Half-precision (FEAT FP16)

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 1 0 0 Rm 0 0 0 0 0 0 1 Rn Rd U
```

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

```
if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
constant integer esize = 16;
constant integer datasize = 64 << UInt(Q);
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');</pre>
```

Single-precision and double-precision

31 30	29	28	27	26	25	24	23	22	21	20 19 18 17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 Q	0	0	1	1	1	0	1	SZ	1	Rm	1	1	0	0	0	1			Rn					Rd		

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
constant integer esize = 32 << UInt(sz);
constant integer datasize = 64 << UInt(Q);
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');</pre>
```

Assembler Symbols

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>

For the half-precision variant: is an arrangement specifier, encoded in "Q":

Q	<t></t>							
0	4 H							
1	8H							

For the single-precision and double-precision variant: is an arrangement specifier, encoded in "sz:Q":

SZ	Q	<t></t>
0	0	2S
0	1	4S
1	0	RESERVED
1	1	2D

<Vn>

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n, datasize];
bits(datasize) operand2 = V[m, datasize];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
```

```
for e = 0 to elements-1
   if pair then
        element1 = Elem[concat, 2*e, esize];
        element2 = Elem[concat, (2*e)+1, esize];
else
        element1 = Elem[operand1, e, esize];
        element2 = Elem[operand2, e, esize];

if minimum then
        Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);
else
        Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);
V[d, datasize] = result;
```

BaseSIMD&FPSVESMEIndex byInstructionsInstructionsInstructionsEncoding

Sh

Pseu

 $Internal\ version\ only: is a\ v33.64,\ AdvSIMD\ v29.12,\ pseudocode\ no_diffs_2023_09_RC2,\ sve\ v2023-06_rel\ ;\ Build\ timestamp:\ 2023-09-18T17:56$

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.