

CLAIMS

We claim:

1. A compound of formula (1) or a pharmaceutically acceptable salt thereof:

5

wherein:

Y¹ and **Y²** are independently O or S;

z is NR⁸, O or S;

10 **n** is 0 or 1;

W is NR¹, CR¹R² or a bond;

m is 0 or 1;

D is hydrogen, C₁₋₄alkyl, C₃₋₆cycloalkyl or fluoro;

X is -(CR¹²R¹³)_t-Q-(CR¹⁴R¹⁵)_u- where t and u are independently 0 or 1 and Q is O, S, SO or

15 SO₂;

B is a group selected from aryl, heteroaryl and heterocyclyl, where each group is optionally substituted by one or more groups independently selected from nitro, trifluoromethyl, trifluoromethoxy, halo, cyano, C₁₋₄alkyl (optionally substituted by R⁹ or C₁₋₄alkoxy or one or more halo), C₂₋₄alkenyl (optionally substituted by halo or R⁹), C₂₋₄alkynyl (optionally substituted by halo or R⁹), C₃₋₆cycloalkyl (optionally substituted by R⁹ or one or more halo), C₅₋₆cycloalkenyl (optionally substituted by halo or R⁹), aryl (optionally substituted by halo or C₁₋₄alkyl), heteroaryl (optionally substituted by halo or C₁₋₄alkyl), heterocyclyl (optionally substituted by C₁₋₄alkyl), -SR¹¹, -SOR¹¹, -SO₂R¹¹, -SO₂NR⁹R¹⁰, -NR⁹SO₂R¹¹, -NHCONR⁹R¹⁰, -OR⁹, -NR⁹R¹⁰, -CONR⁹R¹⁰ and -NR⁹COR¹⁰; or B is C₂₋₄alkenyl or C₂₋₄alkynyl, each being optionally substituted by a group selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, aryl, heteroaryl and heterocyclyl which group is optionally substituted by one or more halo,

nitro, cyano, trifluoromethyl, trifluoromethoxy, $-\text{CONHR}^9$, $-\text{CONR}^9\text{R}^{10}$, $-\text{SO}_2\text{R}^{11}$, $-\text{SO}_2\text{NR}^9\text{R}^{10}$, $-\text{NR}^9\text{SO}_2\text{R}^{11}$, $\text{C}_{1-4}\text{alkyl}$ or $\text{C}_{1-4}\text{alkoxy}$; with the provisos that:

when n is 1 and W is NR^1 , CR^1R^2 or a bond; or when n is 0 and W is CR^1R^2 ; then B is a group selected from aryl, heteroaryl and heterocyclyl, where each group is optionally

- 5 substituted by one or more groups independently selected from nitro, trifluoromethyl, trifluoromethoxy, halo, cyano, $\text{C}_{1-4}\text{alkyl}$ (optionally substituted by R^9 or $\text{C}_{1-4}\text{alkoxy}$ or one or more halo), $\text{C}_{2-4}\text{alkenyl}$ (optionally substituted by halo or R^9), $\text{C}_{2-4}\text{alkynyl}$ (optionally substituted by halo or R^9), $\text{C}_{3-6}\text{cycloalkyl}$ (optionally substituted by R^9 or one or more halo), $\text{C}_{5-6}\text{cycloalkenyl}$ (optionally substituted by halo or R^9), aryl (optionally substituted by halo or $\text{C}_{1-4}\text{alkyl}$), heteroaryl (optionally substituted by halo or $\text{C}_{1-4}\text{alkyl}$), heterocyclyl (optionally substituted by $\text{C}_{1-4}\text{alkyl}$), $-\text{SR}^{11}$, $-\text{SOR}^{11}$, $-\text{SO}_2\text{R}^{11}$, $-\text{SO}_2\text{NR}^9\text{R}^{10}$, $-\text{NR}^9\text{SO}_2\text{R}^{11}$, $-\text{NHCONR}^9\text{R}^{10}$, $-\text{OR}^9$, $-\text{NR}^9\text{R}^{10}$, $-\text{CONR}^9\text{R}^{10}$ and $-\text{NR}^9\text{COR}^{10}$; or B is $\text{C}_{2-4}\text{alkenyl}$ or $\text{C}_{2-4}\text{alkynyl}$, each being optionally substituted by a group selected from $\text{C}_{1-4}\text{alkyl}$, $\text{C}_{3-6}\text{cycloalkyl}$, aryl, heteroaryl and heterocyclyl which group is optionally substituted by one or more halo,
- 10 nitro, cyano, trifluoromethyl, trifluoromethoxy, $-\text{CONHR}^9$, $-\text{CONR}^9\text{R}^{10}$, $-\text{SO}_2\text{R}^{11}$, $-\text{SO}_2\text{NR}^9\text{R}^{10}$, $-\text{NR}^9\text{SO}_2\text{R}^{11}$, $\text{C}_{1-4}\text{alkyl}$ or $\text{C}_{1-4}\text{alkoxy}$; and
- 15 when n is 0 and W is NR^1 or a bond; then B is a group selected from bicyclic aryl, bicyclic heteroaryl and bicyclic heterocyclyl, where each group is optionally substituted by one or more groups independently selected from nitro, trifluoromethyl, trifluoromethoxy, halo,
- 20 cyano, $\text{C}_{1-4}\text{alkyl}$ (optionally substituted by R^9 or $\text{C}_{1-4}\text{alkoxy}$ or one or more halo), $\text{C}_{2-4}\text{alkenyl}$ (optionally substituted by halo or R^9), $\text{C}_{2-4}\text{alkynyl}$ (optionally substituted by halo or R^9), $\text{C}_{3-6}\text{cycloalkyl}$ (optionally substituted by R^9 or one or more halo), $\text{C}_{5-6}\text{cycloalkenyl}$ (optionally substituted by halo or R^9), aryl (optionally substituted by halo or $\text{C}_{1-4}\text{alkyl}$), heteroaryl (optionally substituted by halo or $\text{C}_{1-4}\text{alkyl}$), heterocyclyl (optionally substituted by $\text{C}_{1-4}\text{alkyl}$),
- 25 $-\text{SR}^{11}$, $-\text{SOR}^{11}$, $-\text{SO}_2\text{R}^{11}$, $-\text{SO}_2\text{NR}^9\text{R}^{10}$, $-\text{NR}^9\text{SO}_2\text{R}^{11}$, $-\text{NHCONR}^9\text{R}^{10}$, $-\text{OR}^9$, $-\text{NR}^9\text{R}^{10}$, $-\text{CONR}^9\text{R}^{10}$ and $-\text{NR}^9\text{COR}^{10}$; or B is $\text{C}_{2-4}\text{alkenyl}$ or $\text{C}_{2-4}\text{alkynyl}$, each being optionally substituted by a group selected from $\text{C}_{1-4}\text{alkyl}$, $\text{C}_{3-6}\text{cycloalkyl}$, aryl, heteroaryl and heterocyclyl which group is optionally substituted by one or more halo, nitro, cyano, trifluoromethyl, trifluoromethoxy, $-\text{CONHR}^9$, $-\text{CONR}^9\text{R}^{10}$, $-\text{SO}_2\text{R}^{11}$, $-\text{SO}_2\text{NR}^9\text{R}^{10}$, $-\text{NR}^9\text{SO}_2\text{R}^{11}$, $\text{C}_{1-4}\text{alkyl}$ or
- 30 $\text{C}_{1-4}\text{alkoxy}$;

R¹ and **R²** are independently hydrogen or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl and C₅₋₆cycloalkenyl which group may be optionally substituted by halo, cyano, hydroxy or C₁₋₄alkoxy;

- R³, R⁴, R⁵ and R⁶** are independently hydrogen or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl, C₅₋₆cycloalkenyl, aryl, heteroaryl and heterocyclyl which group is optionally substituted by one or more substituents independently selected from halo, nitro, cyano, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₃₋₆cycloalkyl (optionally substituted by one or more R¹⁷), aryl (optionally substituted by one or more R¹⁷), heteroaryl (optionally substituted by one or more R¹⁷), heterocyclyl, -OR¹⁸, -SR¹⁹, -SOR¹⁹, -SO₂R¹⁹, -COR¹⁹, -CO₂R¹⁸, -CONR¹⁸R²⁰, -NR¹⁶COR¹⁸, -SO₂NR¹⁸R²⁰ and -NR¹⁶SO₂R¹⁹; or **R¹** and **R³** together with the nitrogen or carbon atoms and carbon atom to which they are respectively attached form a saturated 3- to 7-membered ring optionally containing 1 or 2 heteroatom groups selected from NH, O, S, SO and SO₂ where the ring is optionally substituted on carbon by C₁₋₄alkyl, fluoro or C₁₋₄alkoxy and/or on nitrogen by -COC₁₋₃alkyl, -SO₂C₁₋₃alkyl or C₁₋₄alkyl; or **R³** and **R⁴** together form a saturated 3- to 7-membered ring optionally containing 1 or 2 heteroatom groups selected from NH, O, S, SO and SO₂ where the ring is optionally substituted on carbon by C₁₋₄alkyl, fluoro or C₁₋₄alkoxy and/or on nitrogen by -COC₁₋₃alkyl, -SO₂C₁₋₃alkyl or C₁₋₄alkyl; or **R⁵** and **R⁶** together form a saturated 3- to 7-membered ring optionally containing 1 or 2 heteroatom groups selected from NH, O, S, SO and SO₂ where the ring is optionally substituted on carbon by C₁₋₄alkyl, fluoro or C₁₋₄alkoxy and/or on nitrogen by -COC₁₋₃alkyl, -SO₂C₁₋₃alkyl or C₁₋₄alkyl;
- R⁷** is hydrogen or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, heteroalkyl, C₃₋₇cycloalkyl, aryl, heteroaryl or heterocyclyl where the group is optionally substituted by halo, C₁₋₄alkyl, C₁₋₄alkoxy, C₃₋₇cycloalkyl, heterocyclyl, aryl, heteroaryl or heteroalkyl; and wherein the group from which **R⁷** may be selected is optionally substituted on the group and/or on its optional substituent by one or more substituents independently selected from halo, cyano, C₁₋₄alkyl, nitro, haloC₁₋₄alkyl, heteroalkyl, aryl, heteroaryl, hydroxyC₁₋₄alkyl, C₃₋₇cycloalkyl, heterocyclyl, C₁₋₄alkoxyC₁₋₄alkyl, haloC₁₋₄alkoxyC₁₋₄alkyl, -COC₁₋₄alkyl, -OR²¹, -CO₂R²¹, -SOR²⁵, -SO₂R²⁵, -NR²¹COR²², -CONR²¹R²² and -NHCONR²¹R²²;

or \mathbf{R}^3 and \mathbf{R}^7 together with the carbon atoms to which they are each attached and $(\mathbf{CR}^5\mathbf{R}^6)_n$ form a saturated 5- to 7-membered ring optionally containing a heteroatom group selected from NH, O, S, SO and SO₂ where the ring is optionally substituted on carbon by C₁₋₄alkyl, fluoro or C₁₋₄alkoxy and/or on nitrogen by -COC₁₋₃alkyl, -SO₂C₁₋₃alkyl or C₁₋₄alkyl;

5 \mathbf{R}^8 is selected from hydrogen, C₁₋₆alkyl and haloC₁₋₆alkyl;

\mathbf{R}^9 and \mathbf{R}^{10} are independently hydrogen, C₁₋₆alkyl or C₃₋₆cycloalkyl;

or \mathbf{R}^9 and \mathbf{R}^{10} together with the nitrogen to which they are attached form a heterocyclic 4 to 7-membered ring.

\mathbf{R}^{11} is C₁₋₆alkyl or C₃₋₆cycloalkyl;

10 \mathbf{R}^{12} , \mathbf{R}^{13} , \mathbf{R}^{14} and \mathbf{R}^{15} are independently selected from hydrogen, C₁₋₆alkyl and C₃₋₆cycloalkyl;

\mathbf{R}^{16} is hydrogen or C₁₋₆alkyl;

\mathbf{R}^{17} is selected from halo, C₁₋₆alkyl, C₃₋₆cycloalkyl and C₁₋₆alkoxy;

\mathbf{R}^{18} is hydrogen or a group selected from C₁₋₆alkyl, C₃₋₆cycloalkyl, C₅₋₇cycloalkenyl, saturated heterocyclyl, aryl, heteroaryl, arylC₁₋₄alkyl and heteroarylC₁₋₄alkyl which group is optionally

15 substituted by one or more halo;

\mathbf{R}^{19} and \mathbf{R}^{25} are independently a group selected from C₁₋₆alkyl, C₃₋₆cycloalkyl, C₅₋₇cycloalkenyl, saturated heterocyclyl, aryl, heteroaryl, arylC₁₋₄alkyl and heteroarylC₁₋₄alkyl

which group is optionally substituted by one or more halo;

\mathbf{R}^{20} is hydrogen, C₁₋₆alkyl or C₃₋₆cycloalkyl;

20 or \mathbf{R}^{18} and \mathbf{R}^{20} together with the nitrogen to which they are attached form a heterocyclic 4- to 7-membered ring;

\mathbf{R}^{21} and \mathbf{R}^{22} are independently hydrogen, C₁₋₄alkyl, haloC₁₋₄alkyl, aryl and arylC₁₋₄alkyl;

or \mathbf{R}^{21} and \mathbf{R}^{22} together with the nitrogen to which they are attached form a heterocyclic 5- to 6-membered ring.

25

2. A compound of formula (1) or a pharmaceutically acceptable salt thereof:

wherein:

Y¹ and **Y²** are independently O or S;

z is NR⁸, O or S;

n is 0;

5 **W** is NR¹;

m is 0 or 1;

D is hydrogen, C₁₋₄alkyl, C₃₋₆cycloalkyl or fluoro;

X is -(CR¹²R¹³)_t-Q-(CR¹⁴R¹⁵)_u- where t and u are independently 0 or 1 and Q is O, S, SO or SO₂;

10 **B** is a group selected from aryl, heteroaryl and heterocyclyl, where each group is optionally substituted by one or more groups independently selected from nitro, trifluoromethyl, trifluoromethoxy, halo, cyano, C₁₋₄alkyl (optionally substituted by R⁹ or C₁₋₄alkoxy or one or more halo), C₂₋₄alkenyl (optionally substituted by halo or R⁹), C₂₋₄alkynyl (optionally substituted by halo or R⁹), C₃₋₆cycloalkyl (optionally substituted by R⁹ or one or more halo),

15 C₅₋₆cycloalkenyl (optionally substituted by halo or R⁹), aryl (optionally substituted by halo or C₁₋₄alkyl), heteroaryl (optionally substituted by halo or C₁₋₄alkyl), heterocyclyl (optionally substituted by C₁₋₄alkyl), -SR¹¹, -SOR¹¹, -SO₂R¹¹, -SO₂NR⁹R¹⁰, -NR⁹SO₂R¹¹, -NHCONR⁹R¹⁰, -OR⁹, -CONR⁹R¹⁰ and -NR⁹COR¹⁰;

R¹ is hydrogen or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl and

20 C₅₋₆cycloalkenyl which group may be optionally substituted by halo, cyano, hydroxy or C₁₋₄alkoxy;

R³ and **R⁴** are independently hydrogen or a group selected from C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₃₋₅cycloalkyl, pentenyl, aryl, heteroaryl and heterocyclyl which group is optionally substituted by one or more substituents independently selected from halo, nitro, cyano,

25 trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₃₋₆cycloalkyl (optionally substituted by one or more R¹⁷), aryl (optionally substituted by one or more R¹⁷), heteroaryl (optionally substituted by one or more R¹⁷), heterocyclyl, -OR¹⁸, -SR¹⁹, -SOR¹⁹, -SO₂R¹⁹, -CONR¹⁸R²⁰ and -NR¹⁶COR¹⁸,

or **R¹** and **R³** together with the nitrogen and carbon atoms to which they are respectively

30 attached form a saturated 3- to 7-membered ring optionally containing 1 or 2 heteroatom groups selected from NH, O, S, SO and SO₂ where the ring is optionally substituted on carbon

- by C₁₋₄alkyl, fluoro or C₁₋₄alkoxy and/or on nitrogen by -COC₁₋₃alkyl, -SO₂C₁₋₃alkyl or C₁₋₄alkyl;
- or R³ and R⁴ together form a carbocyclic or saturated heterocyclic 3- to 7-membered ring optionally containing 1 or 2 heteroatom groups selected from NH, O, S, SO and SO₂ where
- 5 the ring is optionally substituted on carbon by C₁₋₄alkyl, fluoro or C₁₋₄alkoxy and/or on nitrogen by -COC₁₋₃alkyl, -SO₂C₁₋₃alkyl or C₁₋₄alkyl;
- R⁷ is hydrogen or a group selected from C₁₋₄alkyl, heteroalkyl, C₃₋₅cycloalkyl, aryl, heteroaryl or heterocyclyl which group is optionally substituted by halo, C₁₋₄alkyl, C₁₋₄alkoxy, C₃₋₅cycloalkyl, heterocyclyl, aryl, heteroaryl or heteroalkyl; and wherein the group from which R⁷
- 10 may be selected is optionally substituted on the group and/or on its optional substituent by one or more substituents independently selected from halo, cyano, C₁₋₄alkyl, nitro, haloC₁₋₄alkyl, heteroalkyl, aryl, heteroaryl, hydroxyC₁₋₄alkyl, C₃₋₅cycloalkyl, heterocyclyl, C₁₋₄alkoxyC₁₋₄alkyl, haloC₁₋₄alkoxyC₁₋₄alkyl, -COC₁₋₄alkyl, -OR²¹, -CO₂R²¹, -SR²⁵, -SOR²⁵, -SO₂R²⁵, -CONR²¹R²² and -NHCONR²¹R²²;
- 15 or R³ and R⁷ together with the carbon atoms to which they are each attached and (CR⁵R⁶)_n form a saturated carbocyclic or heterocyclic 5- or 6-membered ring;
- R⁸ is selected from hydrogen, C₁₋₄alkyl and haloC₁₋₄alkyl;
- R⁹ and R¹⁰ are independently hydrogen, C₁₋₆alkyl or C₃₋₆cycloalkyl;
- or R⁹ and R¹⁰ together with the nitrogen to which they are attached form a heterocyclic 4 to 6-
- 20 membered ring.
- R¹¹ is C₁₋₄alkyl or C₃₋₅cycloalkyl;
- R¹², R¹³, R¹⁴ and R¹⁵ are independently selected from hydrogen, C₁₋₄alkyl and C₃₋₄cycloalkyl;
- R¹⁶ is hydrogen or C₁₋₄alkyl;
- R¹⁷ is selected from halo, C₁₋₄alkyl, C₃₋₅cycloalkyl and C₁₋₄alkoxy;
- 25 R¹⁸ is hydrogen or a group selected from C₁₋₄alkyl, C₃₋₅cycloalkyl, C₅₋₆cycloalkenyl, saturated heterocyclyl, aryl, heteroaryl, arylC₁₋₄alkyl and heteroarylC₁₋₄alkyl which group is optionally substituted by one or more halo;
- R¹⁹ and R²⁵ are independently a group selected from C₁₋₄alkyl, C₃₋₅cycloalkyl, C₅₋₆cycloalkenyl, saturated heterocyclyl, aryl, heteroaryl, arylC₁₋₄alkyl and heteroarylC₁₋₄alkyl
- 30 which group is optionally substituted by one or more halo;
- R²⁰ is hydrogen, C₁₋₄alkyl or C₃₋₅cycloalkyl;

or \mathbf{R}^{18} and \mathbf{R}^{20} together with the nitrogen to which they are attached form a heterocyclic 4- to 6-membered ring;

\mathbf{R}^{21} and \mathbf{R}^{22} are independently hydrogen, C_{1-4} alkyl, halo C_{1-4} alkyl, aryl and aryl C_{1-4} alkyl;

or \mathbf{R}^{21} and \mathbf{R}^{22} together with the nitrogen to which they are attached form a heterocyclic 5- to 6-membered ring.

3. A compound according to claim 1 wherein B is phenyl, naphthyl, pyridyl, quinolinyl, isoquinolinyl, thienopyridyl, naphthyridinyl, 2,3-methylenedioxyphenyl, 3,4-methylenedioxyphenyl, thienopyrimidinyl, pyridoimidazolyl, benzimidazolyl, benzofuranyl, 10 benzothienyl, indolyl, benzothiazolyl, benzotriazolyl, benzisoxazolyl, benzisothiazolyl, indazolyl, indolizinyl, isobenzofuranyl, quinazolinyl, imidazopyridinyl, pyrazolopyridinyl, indolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl or isoindolinyl, where each is optionally substituted by one or more groups independently selected from nitro, trifluoromethyl, trifluoromethoxy, halo, C_{1-4} alkyl (optionally substituted by one or more halo), 15 C_{2-4} alkynyl, heteroaryl, $-OR^9$, cyano, $-NR^9R^{10}$, $-CONR^9R^{10}$ and $-NR^9COR^{10}$; or B is vinyl or ethynyl optionally substituted by C_{1-4} alkyl.

4. A compound according to claim 1 or 2 wherein B is a group selected from bicyclic aryl, bicyclic heteroaryl and bicyclic heterocyclyl, where each group is optionally substituted 20 by one or more groups independently selected from nitro, trifluoromethyl, trifluoromethoxy, halo, C_{1-4} alkyl (optionally substituted by one or more halo), C_{2-4} alkynyl, heteroaryl, $-OR^9$, cyano, $-NR^9R^{10}$, $-CONR^9R^{10}$ and $-NR^9COR^{10}$; or B is C_{2-4} alkenyl or C_{2-4} alkynyl optionally substituted by C_{1-4} alkyl, C_{3-6} cycloalkyl or heterocyclyl.

25 5. A compound according to claim 1 or 2 wherein B is 2-methylquinolin-4-yl.

6. A compound according to any one of the preceding claims wherein R^7 is hydrogen or a group selected from C_{1-4} alkyl, aryl C_{1-4} alkyl, heteroaryl C_{1-4} alkyl, heterocyclyl C_{1-4} alkyl, aryl, heteroaryl, heterocyclyl and C_{3-5} cycloalkyl which group is optionally substituted by cyano, C_{1-4} alkyl, halo, $-OR^{21}$, $-NR^{21}R^{22}$, $-CO_2R^{21}$ and $-NR^{21}CO_2R^{22}$.

7. A compound according to claim 6 wherein R⁷ is hydrogen or C₁₋₄alkyl optionally substituted with halo, hydroxy or C₁₋₃alkoxy.

8. A pharmaceutical composition comprising a compound according to claim 1 or claim 5 2; and a pharmaceutically-acceptable diluent or carrier.

9. A compound according to claim 1 or 2 for use as a medicament.

10. The use of a compound according to claim 1 or 2 in the manufacture of a medicament 10 in the treatment of a disease condition mediated TNF- α .

11. The use of a compound according to claim 1 or 2 in the manufacture of a medicament in the treatment of autoimmune disease, allergic/atopic diseases, transplant rejection, graft versus host disease, cardiovascular disease, reperfusion injury and malignancy in a warm-blooded animal such as man.

12. A method of treating autoimmune disease, allergic/atopic diseases, transplant rejection, graft versus host disease, cardiovascular disease, reperfusion injury and malignancy in a warm-blooded animal, such as man, in need of such treatment which comprises 20 administering to said animal an effective amount of a compound according to claim 1 or 2.

13. A process for preparing a compound according to claim 1 or 2, comprising the steps of converting a ketone or aldehyde of formula (2) into a compound of formula (1);

25

and thereafter if necessary:

- i) converting a compound of formula (1) into another compound of formula (1);
- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt or *in vivo* hydrolysable ester