

b),

TOPIC: HYPERBOLA (DPP)

	1) A parabola 2) A	An ellipse	3) A hyperbola	$\frac{x}{3} - \frac{y}{2} = m \text{ and } \frac{x}{3} + \frac{y}{2} = \frac{1}{m} \text{ is}$ 4) Straight line						
2.	The number of tange	ents to $\frac{x^2}{9} - \frac{y^2}{4} = 1$ thro	ugh (6,2) is							
	1) 0 2) 1 If $H(x,y) = 0$ represen	3) 2 ats the equation of a hyponjugate hyperbola res	4) 3 perbola A (x, y)=0 ,C((x, y)=0 the joint equation of its point (a, b) in the plane H(a, b),						
4.	For the hyperbola –	$\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ which	of the following rema	ins constant when α varies?						
	1) Abscissa of foci	2) eccentricity	3)Diractrix 4)Abs	cissa of vartices						
5.	Product of perpendic 1) 4 2) $\frac{36}{13}$		$\frac{y^2}{9} = 1 \text{ to } y = mx + \sqrt{2}$	$\sqrt{4m^2 - 9}$ where $m > \frac{3}{2}$ is						
6.				se axis at G, than $AG.A'G =$						
7	1) $a^2(e^4sin^2\theta - 1)$ 2) $a^2(e^4sec^2\theta + 1)$ 3) $b^2(e^4sec^2\theta - 1)$ 4) None . If e_1 and e_2 are eccentricities of the hyperbola $xy = c^2$ and $x^2 - y^2 = a^2$ then $e_1^2 + e_2^2 = a^2$									
7.	1) 4 2) 1	3) $e_1^2 - e_2^2$	$4)2 e_1^2 e_2^2$	$y = a$ then $e_1 + e_2 =$						
8.	1) $(x^2 + y^2)^3 + 4a^2$		ds of the rectangular h $(x^2 - y^2)^3 + 4a^2x^2y^2 =$	yperbola $x^2 - y^2 = a^2$ is = 0 = 0						
9.	9. Area of the triangle formed by any tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with its asymptotes is									
	1)abc	2)4ab	3)ab	$4) a^2b^2$						
10.	If the ordinate of any	point P on the hyperbo	$1a 9x^2 - 16y^2 = 144$	4 is produced to cut the						
Asymptotes in the points Q and R. then the product PQ.PR equal to										
	1) 16	2) 9	3) 25	4) 7						
11.	From any point on the	e hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	1 tangents are drawn	to the hyperbola						
$\frac{x^2}{a^2}$	$\frac{y^2}{b^2} = 2 \text{ then area c}$	ut-off by the chord of o	contact on the asympto	tes is equal to						
	1) $\frac{a}{2}$	2)ab	3)2ab	4)4ab						
12. Th	ne line ax+by+c=0, me	ets the hyperbola $4x^2$	$-y^2 = 4p^2 \text{ at P and G}$	Q . the point intersection of						
the	e tangents at P and Q	is								
$1)\left(\frac{p^2}{a}\right)$	$\left(\frac{2a}{c}, \frac{4p^2b}{c}\right)$	$2)\left(\frac{-p^2a}{c},\frac{4p^2b}{c}\right)$	$3)\left(\frac{-p^2a}{c},\frac{-4p}{c}\right)$	$4) \left(\frac{p^2 a}{c}, \frac{-4p^2 b}{c}\right)$						
13. A	tangent to the hyperbo	ola $y = \frac{x+9}{x+5}$ passes three	ough the origin is							

2) 5x + y = 0 3) 5x - y = 0 4) x - 25y = 0

1)x + 25y = 0

14. Tangents drawn from a p	point on the circle x^2	$+y^2 = 9$ to the hype	erbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$, then				
Tangents are at angle							
$1)\frac{\pi}{4}$	$2)\frac{\pi}{2}$	$3)\frac{\pi}{3}$	4) $\frac{2\pi}{3}$				
15. Equations of the commo	on tangent of $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	$1 \frac{x^2}{b^2} - \frac{y^2}{a^2} = -1 \text{ are}$	e				
$1) y = \pm x \pm \sqrt{a^2 - b^2}$		$2) y = \pm x \pm 2\sqrt{a^2}$	$+b^2$				
3) $y = \pm x \pm \sqrt{a^2 + b^2}$		$3) y = \pm x \pm 2\sqrt{a^2}$	$\overline{-b^2}$				
16.The angle between lines	joining the origin to th	ne points of the line $\sqrt{3}$	3x + y - 2 = 0 and				
hyperbola $y^2 - x^2 = 4$	is						
1) $tan^{-1}(\frac{2}{\sqrt{3}})$	$2)\frac{\pi}{6}$ 3) tar	$ \iota^{-1}(\frac{\sqrt{3}}{2}) \qquad \qquad 4)\frac{\pi}{2} $					
17. The equation of the tang	gent parallel to $y = x$ do	$rawn to \frac{x^2}{3} - \frac{y^2}{2} = 1$					
1) x - y + 1 = 0	2) x - y - 2 = 0	3) x + y + 5 = 0	4) x + y + 6 = 0				
18. Equation of the chord of	the hyperbola $25x^2$ –	$16y^2 = 400$. which	is bisected at the point (6, 2) Is				
1) 16x - 75y = 418	2) $75x - 16y$	$y = 418 \ 3) \ 25x - 4y$	y = 400 4) None of these				
19. Number of common tang	gents with finite slope t	to the curve $xy = c^2$	and $y^2 = 4ax$ is				
1) 0 2) 1	3) 2	4) 4					
20. The set of integral value	s of m for which the lin	ne x + y = m cuts hy	perbola $xy = 1$ at integral Points				
1){1, -1} 2) {-	2,2} 3)Ø	4) None of t	hese				
21. The number of normals	to hyperbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	= 1 form an external p	ooint is =				
22. If PQ is a double ordinate	te of the hyperbola $\frac{x^2}{a^2}$	$-\frac{y^2}{b^2} = 1 \text{ such that OF}$	PQ is an equilateral triangle				
, O being the centre of the hyperbola , then the least value of eccentricity is =							
23. Two tangents to the hypoconcylic points then the value			n_2 intersects the axes at four				
24. The eccentricity of the conic represented by $x^2 - y^2 - 4x + 4y + 16 = 0$ is k then $k^2 =$							
25. If the tangents and norm	al to a rectangular hypo	$erbole x^2 - y^2 = 4 cc$	ut off intercepts				
$a_1a_2 + b_1b_2 =$	_						
26. If e is eccentricity of a h	yperbola whose asymp	ototes are $3x + 4y = 3$	$2 \ and \ 4x - 3y + 5 = 0$				
Than $e^2 =$							
27. The area of Δ formed by	the tangent at any poi	nt on t the hyperbola	$\frac{x^2}{4} - \frac{y^2}{1} = 1$ and the				
Asymptotes is =			-				

28. If the product of the length of perpendicular drawn from any point on the hyperbola $x^2 - 2y^2 - 2 = 0$ its asymptotes is $\frac{k}{3}$ then k = _____

29. The latus rectum of the hyperbole $9x^2 - 16y^2 - 18x - 32y - 151 = 0$ is P then $\frac{2}{9}$ p = _____

30. The eccentricity of the conjugate hyperbola of the hyperbola $x^2 - 3y^2 = 1$ is =

KEY

S .NO	1	2	3	4	5	6	7	8	9	10
1 - 10	3	1	1	1	4	1	1	2	3	2
11 - 20	4	2	1	2	1	3	1	2	2	2
21 - 30	4	1	1	2	0	2	2	2	1	2

SOLUTION & EXPLANTION

- 1. Eliminate parameter m, $\left(\frac{x}{3} \frac{y}{2}\right) \left(\frac{x}{3} + \frac{y}{2}\right) = 1$
- 2. $s_{11} > 0 =$ point lie inside (i.e in the region not containing the centre)
- 3. H+C = 2A
- 4. $A\epsilon = \cos^2\alpha + \sin^2\alpha = 1 = \forall \alpha$
- 5. Product of perpendicular from the foci to any tangent is b^2

6. Normal at
$$\theta = \frac{ax}{sec\theta} - \frac{by}{tan\theta} = a^2e^2$$
 G = $(a\epsilon^2sec\theta, 0) = AG = a\epsilon^2sec\theta - a$, AG= $ae^2sec\theta + a$

7.
$$\epsilon_1 = \epsilon_2 = \sqrt{2}$$

 \Rightarrow Chord Equation whose midpoint (x1, y1) is $xx_1 - yy_1 = x_1^2 - y_1^2 - \cdots = (2)$ And elinilating θ using 1& 2

9. Area of
$$\Delta^{le} = \frac{n^2 \sqrt{h^2 - a}}{am^2 - 2hlm + bl^2}$$

10.P(asec θ , $b \tan \theta$)

Asymptotes are
$$\frac{x}{a} + \frac{y}{b} = 0$$
, $\frac{x}{a} - \frac{y}{b} = 0$

Than $Q=(asec\theta, -bsec\theta)$

$$R = (asec\theta, -bsec\theta)$$

$$PQ.PR=b^{2}(sec\theta + \tan \theta)(sec\theta - \tan \theta) = b^{2}$$

11. Equation of chord of contact of P to given hyperbole is $\frac{x}{a}sec\theta - \frac{y}{b}tan\theta = 2$ -----(1)

$$\frac{x}{a}sec\theta - \frac{y}{b}tan\theta = 2 - - - - (1)$$

EQ of asymptotes are
$$y = \pm \frac{b}{a}x$$
 ----(2)

Solve (1) and (2)

12. Hyperbole
$$\frac{x^2}{v^2} - \frac{y^2}{4v^2} = 1$$
;

Point of intersection of tangents $(\frac{-a^2l}{n}, \frac{b^2m}{n}) = (\frac{-p^2a}{c}, \frac{4p^2b}{a})$

13.
$$\left[\frac{dy}{dx}\right](x_1y_1) = \frac{-4}{(x+5)^2}$$
 Equation of the tangent is $(y-y) = \frac{-4}{(x_1)+5)^2}(x-x)$

The tangent is passing through origin then we get the point of contact and hence we get the tangent function

14.
$$x^2 + y^2 = 9$$
 is director circle of given hyperbola => $\theta = \frac{\pi}{2}$

15. Slope form of tangent
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is $y = mx + \sqrt{a^2m^2 - b^2}$

Which is also tangent to $\frac{x^2}{b^2} - \frac{y^2}{a^2} = -1$ then $m = \pm 1$.

16.Use homogenisation and
$$tan\theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

17. Let the EQ of tangents is y = x + k condition $c^2 = a^2m^2 - b^2$, $k = \pm 1$

Tangents are $x - y \pm 1 = 0$.

18.Use
$$s_1 = s_{11}$$

19.Use tangents condition to both cases

20. Solving
$$x(m-x) = 1$$
; $x^2 - mx + 1 = 0$

$$=>x=\frac{m\pm\sqrt{m^2-4}}{2}\in Z.$$

21. Number of normal drawn to hyperbola is 4.

22.
$$tan30^{\circ} = \frac{btan\theta}{asec\theta} = > cosec^{2}\theta = \frac{3b^{2}}{a^{2}} = > cosec^{2}\theta = 3(e^{2} - 1)$$

Now
$$\csc^2 \theta \ge 1$$
 $3(e^2 - 1) \ge 1 = e > \frac{2}{\sqrt{3}}$

23. Equation of tangent are
$$y = m_1 x + \sqrt{a^2 m_1^2 - b^2}$$

$$y = m_2 x + \sqrt{a^2 m_2^2 - b^2} \ OA \times OB = OC \times OD => m_1 m_2 = -1.$$

$$24.x^2 - y^2 - 4x + 4y + 16 = 0$$
 is rectangular hyperbola => $e^2 = k^2 = 2$.

25. EQ of tangent is
$$\frac{x}{a_1} + \frac{y}{b_1} = 1$$

EQ of normal is
$$\frac{x}{a_2} + \frac{y}{b_2} = 1$$

Now
$$m_1 m_2 = -1 = a_1 a_2 + b_1 b_2 = 0$$
.

$$26.m_1m_2 = -1 => e = \sqrt{2} => e^2 = 2.$$

27. Area of
$$\Delta^{\mid \in} = ab = 2$$
.

$$28. \frac{x^2}{2} - \frac{y^2}{1} = 1, use \frac{a^2b^2}{a^2 + b^2}$$

$$\frac{k}{3} = \frac{2}{3} = > k = 2.$$

29. EQ of hyperbola is
$$\frac{(x-1)^2}{16} - \frac{(y+1)^2}{9} = 1$$

$$LL' = \frac{2b^2}{a} = \frac{9}{2} = p = > \frac{2p}{9} = 1.$$

30.EQ of hyperbola is
$$\frac{x^2}{1} - \frac{y^2}{1/3} = 1$$

$$e_1 = \frac{\sqrt{1 + \frac{1}{3}}}{1} = \frac{2}{\sqrt{3}}$$

Now
$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1 = > e_2 = 2$$