Universidade do Minho - Dep. to Informática 1º Semestre, 2016/2017

Gestão de Redes

Trabalho Prático Nº3 – Parte II

Servidor de números aleatórios

Objectivos:

- Consolidação da utilização prática do modelo de gestão preconizado pelo *Internet-standard Network Management Framework* (INMF), dando especial relevo ao *Simple Network Management Protocol* (SNMP) e às *Management Information Bases* (MIBs).
- Utilização de APIs SNMP para construção de ferramentas de gestão (agentes e gestores).
- Investigação da aplicação do SNMP em sistemas de gestão nos mais variados ramos da engenharia aplicacional.

Observações:

• O trabalho deverá ser realizado em cerca de 70 horas efetivas de trabalho.

Requisitos:

• Sistema com um agente SNMPv2c instalado (preferencialmente o NET-SNMP) e pacote de desenvolvimento numa linguagem de programação que disponibilize APIs para construção de gestor e agente SNMPv2c (como por exemplo o SNMP4J).

AVISOS:

• Não serão tolerados atropelos aos direitos de autor de qualquer tipo de software...

Bibliografia específica e material de apoio

Material de apoio:

- Manuais do *ucd-snmp* e *scottty*
- MIBs em /usr/share/snmp/mibs e /aplicacoes/MIBs
- Recurso http://net-snmp.sourceforge.net/wiki/index.php/Tutorials/
- Recurso http://www.simpleweb.org/
- Recurso http://www.snmplinks.org/
- Recurso http://www.agentpp.com/

Bibliografia:

- M. Rose, *The Simple Book*, Second Edition, Prentice Hall, 1996.
- W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Addison-Wesley, 2000.
- D. Mauro, K. Schmidt, *Essential SNMP*, O'Reilly, 2001.
- Ver outros recursos na secção da Bibliografia na página da disciplina e no CD fornecido no início do semestre.

Servidor de números aleatórios

Requisitos - FASE D

Nesta fase deve ser implementado o refrescamento da matriz $M_{T,K}$ e, por consequência, da tabela de números aleatórios, o que, neste enunciado em particular, é o mesmo (i.e., a matriz $M_{T,K}$ e a tabela de números aleatórios são coincidentes porque N=T, D=K e p=q=1).

A operação de refrescamento, ou atualização, de $M_{T,K}$ deverá ser efetuada a cada 1/R segundos e consiste nos passos seguintes:

- 1. cc é a chave de configuração para autorização da operação de reset do agente
- 2. X é somatório do valor binário de todos os símbolos de cc (cada símbolo tem oito bits)
- 3. S_1 é somatório do valor decimal de todos os dígitos d_{ij} de M em que i e j são ambos pares
- 4. S_2 é somatório do valor decimal de todos os dígitos $d_{i,j}$ de M em que i e j são ambos ímpares
- 5. C é igual ao resto da divisão inteira de (S_I+X) por N
- 6. L é igual ao resto da divisão inteira de (S_2+X) por D
- 7. Aplicar o refrescamento vertical v(C+1,1,M)
- 8. Aplicar o refrescamento horizontal h(L+1,1,M)
- 9. Aplicar a operação de substituição s(L,C+2,M)

Requisitos - FASE E

Nesta fase deve ser implementado o suporte à operação de *reset* da matriz $M_{T,K}$ e, por consequência, da tabela de números aleatórios. A operação de *reset* consiste em reiniciar a matriz $M_{T,K}$ com as sementes do ficheiro indicado no ficheiro de configuração. Esta operação é despoletada no agente quando é feita uma operação de *snmp-set* à correspondente instância do objeto escalar do tipo *string* do grupo unpredictableParam(1) referido na primeira parte deste enunciado. Ter em atenção que a operação só deve ser autorizada se o valor da *string* no pedido *snmp-set* for igual a *cc*. Além disso, após uma operação de *reset* ter tido sucesso, o agente deve pausar as operações de refrescamento referidas na fase D durante Rx10 segundos. Após esse período o agente deve retomar a operação de refrescamento a cada 1/R segundos.