

Contents

1	1 Resolution-based techniques			5
1.1 Resolution		Resolu	tion	5
		1.1.1	Simplification Rules	5
		1.1.2	Unconstrained Resolution	7
		1.1.3	Inference Rule	7
		1.1.4	Lemma about the simplified state	22
		1.1.5	Resolution and Invariants	25
	1.2	Superp	position	45
		1.2.1	We can now define the rules of the calculus	52
theory Prop-Resolution				
im	ports	s Partial	l-Clausal-Logic List-More Wellfounded-More	
ho	oin			

begin

Chapter 1

Resolution-based techniques

This chapter contains the formalisation of resolution and superposition.

1.1 Resolution

1.1.1 Simplification Rules

```
inductive simplify :: 'v clauses \Rightarrow 'v clauses \Rightarrow bool for N :: 'v clause set where
tautology-deletion:
  A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\} \in N \Longrightarrow simplify\ N\ (N - \{A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}\})\}
condensation:
  A + \{\#L\#\} + \{\#L\#\} \in N \Longrightarrow simplify \ N \ (N - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\}) \mid A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\}
subsumption:
  A \in N \Longrightarrow A \subset \# B \Longrightarrow B \in N \Longrightarrow simplify N (N - \{B\})
lemma simplify-preserves-un-sat':
  fixes N N' :: 'v \ clauses
  assumes simplify N N'
 and total-over-m I N
 shows I \models s N' \longrightarrow I \models s N
  using assms
proof (induct rule: simplify.induct)
  case (tautology-deletion A P)
  then have I \models A + \{ \#Pos \ P\# \} + \{ \#Neg \ P\# \}
   by (metis total-over-m-def total-over-set-literal-defined true-cls-singleton true-cls-union
      true-lit-def uminus-Neg union-commute)
  then show ?case by (metis Un-Diff-cancel2 true-clss-singleton true-clss-union)
  case (condensation A P)
  then show ?case by (metis Diff-insert-absorb Set.set-insert insertE true-cls-union true-clss-def
    true-clss-singleton true-clss-union)
next
  case (subsumption \ A \ B)
 have A \neq B using subsumption.hyps(2) by auto
  then have I \models s N - \{B\} \Longrightarrow I \models A \text{ using } (A \in N) \text{ by } (simp add: true-clss-def)
  moreover have I \models A \Longrightarrow I \models B using \langle A < \# B \rangle by auto
  ultimately show ?case by (metis insert-Diff-single true-clss-insert)
\mathbf{lemma}\ simplify\text{-}preserves\text{-}un\text{-}sat:
 fixes N N' :: 'v \ clauses
```

```
assumes simplify N N'
 and total-over-m I N
 shows I \models s N \longrightarrow I \models s N'
 using assms apply (induct rule: simplify.induct)
 using true-clss-def by fastforce+
lemma simplify-preserves-un-sat":
 fixes N N' :: 'v \ clauses
 assumes simplify N N'
 and total-over-m I N'
 shows I \models s N \longrightarrow I \models s N'
 using assms apply (induct rule: simplify.induct)
 using true-clss-def by fastforce+
lemma simplify-preserves-un-sat-eq:
 fixes N N' :: 'v \ clauses
 assumes simplify N N'
 and total-over-m I N
 shows I \models s N \longleftrightarrow I \models s N'
 using simplify-preserves-un-sat simplify-preserves-un-sat' assms by blast
lemma simplify-preserves-finite:
assumes simplify \psi \psi'
shows finite \psi \longleftrightarrow finite \psi'
using assms by (induct rule: simplify.induct, auto simp add: remove-def)
{\bf lemma}\ rtranclp\hbox{-}simplify\hbox{-}preserves\hbox{-}finite:
assumes rtranclp simplify \psi \psi'
shows finite \psi \longleftrightarrow finite \psi'
using assms by (induct rule: rtranclp-induct) (auto simp add: simplify-preserves-finite)
lemma simplify-atms-of-ms:
 assumes simplify \psi \psi'
 shows atms-of-ms \psi' \subseteq atms-of-ms \psi
 using assms unfolding atms-of-ms-def
proof (induct rule: simplify.induct)
 case (tautology-deletion A P)
  then show ?case by auto
next
 case (condensation A P)
 moreover have A + \{\#P\#\} + \{\#P\#\} \in \psi \Longrightarrow \exists x \in \psi. \ atm\text{-}of \ P \in atm\text{-}of \ `set\text{-}mset \ x
   by (metis Un-iff atms-of-def atms-of-plus atms-of-singleton insert-iff)
 ultimately show ?case by (auto simp add: atms-of-def)
next
 case (subsumption A P)
 then show ?case by auto
qed
lemma rtranclp-simplify-atms-of-ms:
 assumes rtranclp simplify \psi \psi'
 shows atms-of-ms \psi' \subseteq atms-of-ms \psi
 using assms apply (induct rule: rtranclp-induct)
  apply (fastforce intro: simplify-atms-of-ms)
 using simplify-atms-of-ms by blast
```

lemma factoring-imp-simplify:

```
assumes \{\#L\#\} + \{\#L\#\} + C \in N
 shows \exists N'. simplify NN'
proof -
  have C + \{\#L\#\} + \{\#L\#\} \in N using assms by (simp add: add.commute union-lcomm)
  from condensation[OF this] show ?thesis by blast
qed
1.1.2
          Unconstrained Resolution
type-synonym 'v \ uncon\text{-}state = 'v \ clauses
inductive uncon\text{-}res :: 'v \ uncon\text{-}state \Rightarrow 'v \ uncon\text{-}state \Rightarrow bool \ \mathbf{where}
resolution:
  \{\#Pos\ p\#\} + C \in N \Longrightarrow \{\#Neg\ p\#\} + D \in N \Longrightarrow (\{\#Pos\ p\#\} + C, \{\#Neg\ p\#\} + D) \notin A
already-used
   \implies uncon\text{-res }(N) \ (N \cup \{C+D\}) \ |
factoring: \{\#L\#\} + \{\#L\#\} + C \in N \Longrightarrow uncon\text{-res } N \ (N \cup \{C + \{\#L\#\}\})
lemma uncon-res-increasing:
 assumes uncon\text{-}res\ S\ S' and \psi\in S
 shows \psi \in S'
  using assms by (induct rule: uncon-res.induct) auto
{\bf lemma}\ rtranclp-uncon-inference-increasing:
  assumes rtranclp uncon-res S S' and \psi \in S
 shows \psi \in S'
  using assms by (induct rule: rtranclp-induct) (auto simp add: uncon-res-increasing)
Subsumption
definition subsumes :: 'a literal multiset \Rightarrow 'a literal multiset \Rightarrow bool where
subsumes \ \chi \ \chi' \longleftrightarrow
  (\forall I. total\text{-}over\text{-}m \ I \ \{\chi'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
 \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models \chi')
lemma subsumes-refl[simp]:
  subsumes \chi \chi
  unfolding subsumes-def by auto
lemma subsumes-subsumption:
  assumes subsumes D \chi
 and C \subset \# D and \neg tautology \chi
 shows subsumes C \chi unfolding subsumes-def
  using assms subsumption-total-over-m subsumption-chained unfolding subsumes-def
 by (blast intro!: subset-mset.less-imp-le)
lemma subsumes-tautology:
  assumes subsumes (C + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}) \chi
 shows tautology \chi
  using assms unfolding subsumes-def by (simp add: tautology-def)
1.1.3
          Inference Rule
```

```
type-synonym 'v state = 'v clause × ('v clause × 'v clause) set inductive inference-clause :: 'v state \Rightarrow 'v clause × ('v clause × 'v clause) set \Rightarrow bool (infix \Rightarrow_{\text{Res}} 100) where
```

```
resolution:
  \{\#Pos\ p\#\} + C \in N \Longrightarrow \{\#Neg\ p\#\} + D \in N \Longrightarrow (\{\#Pos\ p\#\} + C, \{\#Neg\ p\#\} + D) \notin A
  \implies inference-clause (N, already-used) (C + D, already-used \cup {({#Pos p#}} + C, {#Neg p#} +
D)\}) \mid
factoring: \{\#L\#\} + \{\#L\#\} + C \in \mathbb{N} \Longrightarrow inference-clause\ (N,\ already-used)\ (C + \{\#L\#\},\ already-used)
inductive inference :: 'v state \Rightarrow 'v state \Rightarrow bool where
inference-step: inference-clause S (clause, already-used)
 \implies inference S (fst S \cup \{clause\}, already-used)
abbreviation already-used-inv
 :: 'a literal multiset set \times ('a literal multiset \times 'a literal multiset) set \Rightarrow bool where
already-used-inv state \equiv
 (\forall (A, B) \in snd \ state. \ \exists \ p. \ Pos \ p \in \# \ A \land Neg \ p \in \# \ B \land
         ((\exists \chi \in fst \ state. \ subsumes \ \chi \ ((A - \{\#Pos \ p\#\}) + (B - \{\#Neg \ p\#\})))
          \vee \ tautology \ ((A - \{\#Pos \ p\#\}) + (B - \{\#Neg \ p\#\}))))
{\bf lemma}\ in ference-clause-preserves-already-used-inv:
 assumes inference-clause S S'
 and already-used-inv S
 shows already-used-inv (fst S \cup \{fst S'\}, snd S'\}
 using assms apply (induct rule: inference-clause.induct)
 by fastforce+
lemma inference-preserves-already-used-inv:
 assumes inference S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms
proof (induct rule: inference.induct)
 case (inference-step S clause already-used)
 then show ?case
   using inference-clause-preserves-already-used-inv[of S (clause, already-used)] by simp
qed
lemma rtranclp-inference-preserves-already-used-inv:
 assumes rtrancly inference S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms apply (induct rule: rtranclp-induct, simp)
 using inference-preserves-already-used-inv unfolding tautology-def by fast
{f lemma}\ subsumes{-condensation}:
 assumes subsumes (C + \{\#L\#\} + \{\#L\#\}) D
 shows subsumes (C + \{\#L\#\}) D
 using assms unfolding subsumes-def by simp
lemma simplify-preserves-already-used-inv:
 assumes simplify\ N\ N'
 and already-used-inv (N, already-used)
 shows already-used-inv (N', already-used)
 using assms
proof (induct rule: simplify.induct)
  case (condensation C L)
```

```
then show ?case
    using subsumes-condensation by simp fast
next
     fix a:: 'a and A:: 'a set and P
     have (\exists x \in Set.remove \ a \ A. \ P \ x) \longleftrightarrow (\exists x \in A. \ x \neq a \land P \ x) by auto
  } note ex-member-remove = this
    fix a \ a\theta :: 'v \ clause \ and \ A :: 'v \ clauses \ and \ y
    assume a \in A and a\theta \subset \# a
    then have (\exists x \in A. \ subsumes \ x \ y) \longleftrightarrow (subsumes \ a \ y \ \lor (\exists x \in A. \ x \neq a \land subsumes \ x \ y))
      by auto
  } note tt2 = this
  case (subsumption A B) note A = this(1) and AB = this(2) and B = this(3) and inv = this(4)
  show ?case
    proof (standard, standard)
      \mathbf{fix} \ x \ a \ b
      assume x: x \in snd (N - \{B\}, already-used) and [simp]: x = (a, b)
      obtain p where p: Pos p \in \# a \land Neg p \in \# b and
        q: (\exists \chi \in \mathbb{N}. \ subsumes \ \chi \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
          \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\}))
        using inv \ x by fastforce
      \mathbf{consider}\ (\mathit{taut})\ \mathit{tautology}\ (\mathit{a} - \{\#\mathit{Pos}\ \mathit{p\#}\} + (\mathit{b} - \{\#\mathit{Neg}\ \mathit{p\#}\}))\ |
        (\chi) \chi \text{ where } \chi \in N \text{ subsumes } \chi \text{ } (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\}))
          \neg tautology (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\}))
        using q by auto
      then show
        \exists p. \ Pos \ p \in \# \ a \land Neg \ p \in \# \ b
              \land ((\exists \chi \in \mathit{fst} \ (N - \{B\}, \ \mathit{already-used}). \ \mathit{subsumes} \ \chi \ (a - \{\#\mathit{Pos} \ p\#\} + (b - \{\#\mathit{Neg} \ p\#\}))) 
                  \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
        proof cases
          case taut
          then show ?thesis using p by auto
        next
          case \chi note H = this
          show ?thesis using p A AB B subsumes-subsumption [OF - AB H(3)] H(1,2) by auto
        qed
    qed
\mathbf{next}
  case (tautology-deletion CP)
  then show ?case apply clarify
  proof -
    \mathbf{fix} \ a \ b
    assume C + \{ \# Pos \ P \# \} + \{ \# Neg \ P \# \} \in N
    assume already-used-inv (N, already-used)
    and (a, b) \in snd (N - \{C + \{\#Pos P\#\} + \{\#Neg P\#\}\}, already-used)
    then obtain p where
      Pos\ p\in \#\ a\ \land\ Neg\ p\in \#\ b\ \land
        ((\exists \chi \in fst \ (N \cup \{C + \{\#Pos \ P\#\} + \{\#Neg \ P\#\}\}, already-used)).
              subsumes \chi (a - {#Pos p#} + (b - {#Neg p#})))
          \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
      by fastforce
    moreover have tautology (C + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}) by auto
    ultimately show
      \exists \ p. \ Pos \ p \in \# \ a \ \land \ Neg \ p \in \# \ b
      \land ((\exists \chi \in fst \ (N - \{C + \{\#Pos \ P\#\} + \{\#Neg \ P\#\}\}), \ already-used).
```

```
subsumes \ \chi \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
         \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
     by (metis (no-types) Diff-iff Un-insert-right empty-iff fst-conv insertE subsumes-tautology
       sup-bot.right-neutral)
 qed
qed
lemma
 factoring-satisfiable: I \models \{\#L\#\} + \{\#L\#\} + C \longleftrightarrow I \models \{\#L\#\} + C and
 resolution-satisfiable:
   consistent-interp I \Longrightarrow I \models \{\#Pos\ p\#\} + C \Longrightarrow I \models \{\#Neg\ p\#\} + D \Longrightarrow I \models C + D and
   factoring\text{-}same\text{-}vars: atms\text{-}of (\{\#L\#\} + \{\#L\#\} + C) = atms\text{-}of (\{\#L\#\} + C)
  unfolding true-cls-def consistent-interp-def by (fastforce split: if-split-asm)+
lemma inference-increasing:
 assumes inference S S' and \psi \in fst S
 shows \psi \in fst S'
 using assms by (induct rule: inference.induct, auto)
{\bf lemma}\ rtranclp-inference-increasing:
 assumes rtrancly inference S S' and \psi \in fst S
 shows \psi \in fst S'
 using assms by (induct rule: rtranclp-induct, auto simp add: inference-increasing)
lemma inference-clause-already-used-increasing:
 assumes inference-clause S S'
 shows snd S \subseteq snd S'
 using assms by (induct rule:inference-clause.induct, auto)
lemma inference-already-used-increasing:
 assumes inference S S'
 shows snd S \subseteq snd S'
 using assms apply (induct rule:inference.induct)
 using inference-clause-already-used-increasing by fastforce
lemma inference-clause-preserves-un-sat:
 fixes N N' :: 'v \ clauses
 assumes inference-clause T T'
 and total-over-m I (fst T)
 and consistent: consistent-interp I
 shows I \models s \text{ fst } T \longleftrightarrow I \models s \text{ fst } T \cup \{\text{fst } T'\}
 using assms apply (induct rule: inference-clause.induct)
  unfolding consistent-interp-def true-clss-def by auto force+
lemma inference-preserves-un-sat:
 fixes N N' :: 'v \ clauses
 assumes inference T T'
 and total-over-m \ I \ (fst \ T)
 and consistent: consistent-interp I
 shows I \models s fst \ T \longleftrightarrow I \models s fst \ T'
 using assms apply (induct rule: inference.induct)
 using inference-clause-preserves-un-sat by fastforce
```

```
lemma inference-clause-preserves-atms-of-ms:
 assumes inference-clause S S'
 shows atms-of-ms (fst (fst S \cup \{fst \ S'\}, snd \ S'\}) \subseteq atms-of-ms (fst \ S)
  using assms apply (induct rule: inference-clause.induct)
  apply auto
    apply (metis Set.set-insert UnCI atms-of-ms-insert atms-of-plus)
   apply (metis Set.set-insert UnCI atms-of-ms-insert atms-of-plus)
  apply (simp add: in-m-in-literals union-assoc)
  unfolding atms-of-ms-def using assms by fastforce
lemma inference-preserves-atms-of-ms:
 fixes N N' :: 'v \ clauses
 assumes inference\ T\ T'
 shows atms-of-ms (fst T') \subseteq atms-of-ms (fst T)
 using assms apply (induct rule: inference.induct)
 using inference-clause-preserves-atms-of-ms by fastforce
lemma inference-preserves-total:
  fixes N N' :: 'v \ clauses
 assumes inference (N, already-used) (N', already-used')
 shows total-over-m I N \Longrightarrow total-over-m I N'
   using assms inference-preserves-atms-of-ms unfolding total-over-m-def total-over-set-def
   by fastforce
lemma rtranclp-inference-preserves-total:
 assumes rtrancly inference T T'
 shows total-over-m I (fst T) \Longrightarrow total-over-m I (fst T')
 using assms by (induct rule: rtranclp-induct, auto simp add: inference-preserves-total)
\mathbf{lemma}\ rtranclp\text{-}inference\text{-}preserves\text{-}un\text{-}sat:
 assumes rtranclp inference N N'
 and total-over-m I (fst N)
 and consistent: consistent-interp I
 shows I \models s fst N \longleftrightarrow I \models s fst N'
 using assms apply (induct rule: rtranclp-induct)
 apply (simp add: inference-preserves-un-sat)
 using inference-preserves-un-sat rtranclp-inference-preserves-total by blast
lemma inference-preserves-finite:
 assumes inference \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 using assms by (induct rule: inference.induct, auto simp add: simplify-preserves-finite)
\mathbf{lemma}\ in ference\text{-}clause\text{-}preserves\text{-}finite\text{-}snd:
 assumes inference-clause \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms by (induct rule: inference-clause.induct, auto)
lemma inference-preserves-finite-snd:
 assumes inference \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms inference-clause-preserves-finite-snd by (induct rule: inference.induct, fastforce)
```

```
lemma rtranclp-inference-preserves-finite:
    assumes rtrancly inference \psi \psi' and finite (fst \psi)
    shows finite (fst \psi')
    using assms by (induct rule: rtranclp-induct)
         (auto simp add: simplify-preserves-finite inference-preserves-finite)
lemma consistent-interp-insert:
    assumes consistent-interp I
    and atm\text{-}of P \notin atm\text{-}of ' I
    shows consistent-interp (insert P I)
proof -
    have P: insert P I = I \cup \{P\} by auto
    show ?thesis unfolding P
    apply (rule consistent-interp-disjoint)
    using assms by (auto simp: image-iff)
qed
lemma simplify-clause-preserves-sat:
    assumes simp: simplify \psi \psi'
    and satisfiable \psi^{\,\prime}
    shows satisfiable \psi
    using assms
proof induction
     case (tautology-deletion A P) note AP = this(1) and sat = this(2)
    let ?A' = A + \{ \#Pos \ P\# \} + \{ \#Neg \ P\# \}
    let ?\psi' = \psi - \{?A'\}
    obtain I where
         I: I \models s ? \psi' and
         cons: consistent-interp I and
         tot: total-over-m I ? \psi'
         using sat unfolding satisfiable-def by auto
     { assume Pos \ P \in I \lor Neg \ P \in I
         then have I \models ?A' by auto
         then have I \models s \psi using I by (metis insert-Diff tautology-deletion.hyps true-clss-insert)
         then have ?case using cons tot by auto
     moreover {
         assume Pos: Pos P \notin I and Neg: Neg P \notin I
         then have consistent-interp (I \cup \{Pos \ P\}) using cons by simp
         moreover have I'A: I \cup \{Pos\ P\} \models ?A' by auto
         have \{Pos \ P\} \cup I \models s \ \psi - \{A + \{\#Pos \ P\#\} + \{\#Neg \ P\#\}\}\
              using \langle I \models s \psi - \{A + \{\#Pos P\#\} + \{\#Neg P\#\}\} \rangle true-clss-union-increase' by blast
         then have I \cup \{Pos \ P\} \models s \ \psi
              by (metis (no-types) Un-empty-right Un-insert-left Un-insert-right I'A insert-Diff
                   sup\mbox{-}bot.left\mbox{-}neutral\ tautology\mbox{-}deletion.hyps\ true\mbox{-}clss\mbox{-}insert)
         ultimately have ?case using satisfiable-carac' by blast
    ultimately show ?case by blast
     case (condensation A L) note AL = this(1) and sat = this(2)
    have f3: simplify \psi (\psi - \{A + \{\#L\#\} + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\})
         using AL simplify.condensation by blast
    obtain LL :: 'a \ literal \ multiset \ set \Rightarrow 'a \ literal \ set \ where
         \textit{f4} : LL \; (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\}) \models s \; \psi - \{A + \{\#L\#\} + \{\#L\#\}\} \cup \{A\}\} \cup \{A\} \cup \{
+ \{ \#L\# \} \}
```

```
\land consistent\text{-interp}\ (LL\ (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\}))
     \wedge \ total\text{-}over\text{-}m \ (LL \ (\psi - \{A + \{\#L\#\} + \{\#L\#\}\})\}
                     \cup \{A + \{\#L\#\}\})) \ (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\})
   using sat by (meson satisfiable-def)
  have f5: insert (A + \{\#L\#\} + \{\#L\#\}) (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) = \psi
   using AL by fastforce
  have atms-of (A + {\#L\#} + {\#L\#}) = atms-of ({\#L\#} + A)
   by simp
  then show ?case
   using f5 f4 f3 by (metis (no-types) add.commute satisfiable-def simplify-preserves-un-sat'
     total-over-m-insert total-over-m-union)
next
  case (subsumption A B) note A = this(1) and AB = this(2) and B = this(3) and sat = this(4)
 let ?\psi' = \psi - \{B\}
 obtain I where I: I \models s ?\psi' and cons: consistent-interp I and tot: total-over-m I ?\psi'
   using sat unfolding satisfiable-def by auto
  have I \models A using A I by (metis AB Diff-iff subset-mset.less-irrefl singletonD true-clss-def)
  then have I \models B using AB subset-mset.less-imp-le true-cls-mono-leD by blast
  then have I \models s \psi using I by (metis insert-Diff-single true-clss-insert)
  then show ?case using cons satisfiable-carac' by blast
qed
lemma simplify-preserves-unsat:
  assumes inference \psi \psi'
  shows satisfiable (fst \psi') \longrightarrow satisfiable (fst \psi)
  using assms apply (induct rule: inference.induct)
  using satisfiable-decreasing by (metis fst-conv)+
lemma inference-preserves-unsat:
  assumes inference** S S'
 shows satisfiable (fst S') \longrightarrow satisfiable (fst S)
  using assms apply (induct rule: rtranclp-induct)
 apply simp-all
  using simplify-preserves-unsat by blast
datatype 'v sem-tree = Node 'v 'v sem-tree 'v sem-tree | Leaf
fun sem-tree-size :: 'v sem-tree \Rightarrow nat where
sem-tree-size Leaf = 0
sem\text{-}tree\text{-}size\ (Node\ -\ ag\ ad)=1+sem\text{-}tree\text{-}size\ ag+sem\text{-}tree\text{-}size\ ad
lemma sem-tree-size[case-names bigger]:
  (\bigwedge xs:: 'v \ sem\text{-tree}. \ (\bigwedge ys:: 'v \ sem\text{-tree}. \ sem\text{-tree-size} \ ys < sem\text{-tree-size} \ xs \Longrightarrow P \ ys) \Longrightarrow P \ xs)
  \implies P xs
 by (fact Nat.measure-induct-rule)
fun partial-interps :: 'v sem-tree \Rightarrow 'v interp \Rightarrow 'v clauses \Rightarrow bool where
partial-interps Leaf I \psi = (\exists \chi. \neg I \models \chi \land \chi \in \psi \land total\text{-}over\text{-}m \ I \{\chi\}) \mid
partial-interps (Node v ag ad) I \psi \longleftrightarrow
  (partial-interps ag (I \cup \{Pos\ v\})\ \psi \land partial-interps\ ad\ (I \cup \{Neg\ v\})\ \psi)
{\bf lemma}\ simplify\mbox{-}preserve\mbox{-}partial\mbox{-}leaf:
  simplify N N' \Longrightarrow partial-interps Leaf I N \Longrightarrow partial-interps Leaf I N'
  apply (induct rule: simplify.induct)
```

```
using union-lcomm apply auto[1]
  apply (simp, metis atms-of-plus total-over-set-union true-cls-union)
 apply simp
 by (metis atms-of-ms-singleton mset-le-exists-conv subset-mset-def true-cls-mono-leD
   total-over-m-def total-over-m-sum)
{\bf lemma}\ simplify\mbox{-}preserve\mbox{-}partial\mbox{-}tree:
 assumes simplify N N'
 and partial-interps t I N
 shows partial-interps t I N'
 using assms apply (induct t arbitrary: I, simp)
 using simplify-preserve-partial-leaf by metis
lemma inference-preserve-partial-tree:
 assumes inference S S'
 and partial-interps t I (fst S)
 shows partial-interps t I (fst S')
 using assms apply (induct t arbitrary: I, simp-all)
 by (meson inference-increasing)
{\bf lemma}\ rtranclp-inference-preserve-partial-tree:
 assumes rtranclp inference N N'
 and partial-interps t I (fst N)
 shows partial-interps t I (fst N')
 using assms apply (induct rule: rtranclp-induct, auto)
 using inference-preserve-partial-tree by force
function build-sem-tree :: 'v :: linorder set \Rightarrow 'v clauses \Rightarrow 'v sem-tree where
build-sem-tree atms \psi =
 (if \ atms = \{\} \lor \neg \ finite \ atms
 then\ Leaf
  else Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) \psi)
    (build\text{-}sem\text{-}tree\ (Set.remove\ (Min\ atms)\ atms)\ \psi))
by auto
termination
 apply (relation measure (\lambda(A, -), card A), simp-all)
 apply (metis Min-in card-Diff1-less remove-def)+
declare build-sem-tree.induct[case-names tree]
lemma unsatisfiable-empty[simp]:
  \neg unsatisfiable \{\}
  unfolding satisfiable-def apply auto
 using consistent-interp-def unfolding total-over-m-def total-over-set-def atms-of-ms-def by blast
lemma partial-interps-build-sem-tree-atms-general:
 fixes \psi :: 'v :: linorder \ clauses \ and \ p :: 'v \ literal \ list
 assumes unsat: unsatisfiable \psi and finite \psi and consistent-interp I
 and finite atms
 and atms-of-ms \ \psi = atms \cup atms-of-s \ I \ and \ atms \cap atms-of-s \ I = \{\}
 shows partial-interps (build-sem-tree atms \psi) I \psi
 using assms
```

```
proof (induct arbitrary: I rule: build-sem-tree.induct)
 case (1 atms \psi Ia) note IH1 = this(1) and IH2 = this(2) and unsat = this(3) and finite = this(4)
   and cons = this(5) and f = this(6) and un = this(7) and disj = this(8)
   assume atms: atms = \{\}
   then have atmsIa: atms-of-ms \ \psi = atms-of-s \ Ia \ using \ un \ by \ auto
   then have total-over-m Ia \psi unfolding total-over-m-def atmsIa by auto
   then have \chi: \exists \chi \in \psi. \neg Ia \models \chi
     using unsat cons unfolding true-clss-def satisfiable-def by auto
   then have build-sem-tree atms \psi = Leaf using atms by auto
   moreover
     have tot: \bigwedge \chi. \chi \in \psi \Longrightarrow total\text{-}over\text{-}m \ Ia \ \{\chi\}
     unfolding total-over-m-def total-over-set-def atms-of-ms-def atms-of-s-def
     using atmsIa atms-of-ms-def by fastforce
   have partial-interps Leaf Ia \psi
     using \chi tot by (auto simp add: total-over-m-def total-over-set-def atms-of-ms-def)
     ultimately have ?case by metis
 }
 moreover {
   assume atms: atms \neq \{\}
   have build-sem-tree atms \psi = Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) \psi)
      (build-sem-tree (Set.remove (Min atms) atms) \psi)
     using build-sem-tree.simps[of atms \psi] f atms by metis
   have consistent-interp (Ia \cup \{Pos \ (Min \ atms)\}) unfolding consistent-interp-def
     by (metis Int-iff Min-in Un-iff atm-of-uninus atms cons consistent-interp-def disj empty-iff
      f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
       uminus-Neg uminus-Pos)
   moreover have atms-of-ms \psi = Set.remove (Min atms) atms \cup atms-of-s (Ia \cup {Pos (Min atms)})
     using Min-in atms f un by fastforce
   moreover have disj': Set.remove (Min\ atms)\ atms \cap atms-of-s (Ia \cup \{Pos\ (Min\ atms)\}) = \{\}
     by simp (metis disj disjoint-iff-not-equal member-remove)
   moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
   ultimately have subtree1: partial-interps (build-sem-tree (Set.remove (Min atms) atms) \psi)
       (Ia \cup \{Pos (Min \ atms)\}) \psi
     using IH1[of\ Ia \cup \{Pos\ (Min\ (atms))\}] atms f unsat finite by metis
   have consistent-interp (Ia \cup \{Neg \ (Min \ atms)\}) unfolding consistent-interp-def
     by (metis Int-iff Min-in Un-iff atm-of-uninus atms cons consistent-interp-def disj empty-iff
      f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
      uminus-Neg)
   moreover have atms-of-ms \psi = Set.remove (Min atms) atms \cup atms-of-s (Ia \cup {Neg (Min atms)})
      using \langle atms-of-ms \ \psi = Set.remove \ (Min \ atms) \ atms \cup \ atms-of-s \ (Ia \cup \{Pos \ (Min \ atms)\}) \rangle by
blast
   moreover have disj': Set.remove (Min\ atms)\ atms \cap atms-of-s (Ia \cup \{Neq\ (Min\ atms)\}) = \{\}
     using disj by auto
   moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
   ultimately have subtree2: partial-interps (build-sem-tree (Set.remove (Min atms) atms) ψ)
       (Ia \cup \{Neg \ (Min \ atms)\}) \ \psi
     using IH2[of\ Ia \cup \{Neg\ (Min\ (atms))\}] atms f\ unsat\ finite\ by metis
   then have ?case
     using IH1 subtree1 subtree2 f local.finite unsat atms by simp
 }
```

```
ultimately show ?case by metis qed
```

```
{\bf lemma}\ partial-interps-build-sem-tree-atms:
  fixes \psi :: 'v :: linorder clauses and p :: 'v literal list
  assumes unsat: unsatisfiable \psi and finite: finite \psi
  shows partial-interps (build-sem-tree (atms-of-ms \psi) \psi) {} \psi
proof -
  have consistent-interp {} unfolding consistent-interp-def by auto
  moreover have atms-of-ms \psi = atms-of-ms \psi \cup atms-of-s \{\} unfolding atms-of-s-def by auto
 moreover have atms-of-ms \psi \cap atms-of-s \{\} = \{\} unfolding atms-of-s-def by auto
 moreover have finite (atms-of-ms \psi) unfolding atms-of-ms-def using finite by simp
  ultimately show partial-interps (build-sem-tree (atms-of-ms \psi) \psi) {} \psi
   using partial-interps-build-sem-tree-atms-general of \psi {} atms-of-ms \psi] assms by metis
qed
lemma can-decrease-count:
  fixes \psi'' :: 'v \ clauses \times ('v \ clause \times 'v \ clause \times 'v) \ set
  assumes count \chi L = n
 and L \in \# \chi and \chi \in fst \psi
 shows \exists \psi' \chi'. inference** \psi \psi' \wedge \chi' \in fst \ \psi' \wedge (\forall L. \ L \in \# \chi \longleftrightarrow L \in \# \chi')
                \wedge \ count \ \chi' \ L = 1
                using assms
proof (induct n arbitrary: \chi \psi)
  case \theta
  then show ?case by (simp add: not-in-iff[symmetric])
  case (Suc n \chi)
  note IH = this(1) and count = this(2) and L = this(3) and \chi = this(4)
    assume n = 0
    then have inference^{**} \psi \psi
    and \chi \in fst \ \psi
    and \forall L. (L \in \# \chi) \longleftrightarrow (L \in \# \chi)
    and count \chi L = (1::nat)
    and \forall \varphi. \ \varphi \in \mathit{fst} \ \psi \longrightarrow \varphi \in \mathit{fst} \ \psi
      by (auto simp add: count L \chi)
    then have ?case by metis
   }
   moreover {
    assume n > 0
    then have \exists C. \chi = C + \{\#L, L\#\}
       by (smt L Suc-eq-plus1-left add.left-commute add-diff-cancel-left' add-diff-cancel-right'
         count-greater-zero-iff count-single local.count multi-member-split plus-multiset.rep-eq)
    then obtain C where C: \chi = C + \{\#L, L\#\} by metis
    let ?\chi' = C + \{\#L\#\}
    let ?\psi' = (fst \ \psi \cup \{?\chi'\}, \ snd \ \psi)
    have \varphi \colon \forall \varphi \in \mathit{fst} \ \psi \colon (\varphi \in \mathit{fst} \ \psi \lor \varphi \neq ?\chi') \longleftrightarrow \varphi \in \mathit{fst} ?\psi' unfolding C by \mathit{auto}
    have inf: inference \psi ?\psi'
      using C factoring \chi prod.collapse union-commute inference-step by metis
    moreover have count': count ?\chi' L = n using C count by auto
    moreover have L\chi': L \in \# ?\chi' by auto
```

```
moreover have \chi'\psi': ?\chi' \in fst ?\psi' by auto
     ultimately obtain \psi'' and \chi''
     where
       inference^{**} ?\psi' \psi'' and
       \alpha: \chi'' \in fst \ \psi'' and
       \forall La. \ (La \in \# \ ?\chi') \longleftrightarrow (La \in \# \ \chi'') \ {\bf and}
       \beta: count \chi'' L = (1::nat) and
       \varphi': \forall \varphi. \varphi \in fst ? \psi' \longrightarrow \varphi \in fst \psi'' and I\chi: I \models ?\chi' \longleftrightarrow I \models \chi'' and
        tot: \forall I'. \ total\text{-}over\text{-}m \ I' \{?\chi'\} \longrightarrow total\text{-}over\text{-}m \ I' \{\chi''\}
       using IH[of ?\chi' ?\psi'] count' L\chi' \chi'\psi' by blast
     then have inference^{**} \psi \psi''
     and \forall La. (La \in \# \chi) \longleftrightarrow (La \in \# \chi'')
     using inf unfolding C by auto
     moreover have \forall \varphi. \varphi \in \mathit{fst} \psi \longrightarrow \varphi \in \mathit{fst} \psi'' \text{ using } \varphi \varphi' \text{ by } \mathit{metis}
     moreover have I \models \chi \longleftrightarrow I \models \chi'' using I\chi unfolding true-cls-def C by auto
     moreover have \forall I'. total-over-m I'\{\chi\} \longrightarrow total-over-m I'\{\chi''\}
       using tot unfolding C total-over-m-def by auto
     ultimately have ?case using \varphi \varphi' \alpha \beta by metis
  ultimately show ?case by auto
qed
{f lemma} can-decrease-tree-size:
  fixes \psi :: 'v \ state \ and \ tree :: 'v \ sem-tree
  assumes finite (fst \psi) and already-used-inv \psi
  and partial-interps tree I (fst \psi)
  shows \exists (tree':: 'v \ sem\text{-}tree) \ \psi'. \ inference^{**} \ \psi \ \psi' \land partial\text{-}interps \ tree' \ I \ (fst \ \psi')
              \land (sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0)
  using assms
proof (induct arbitrary: I rule: sem-tree-size)
  case (bigger xs I) note IH = this(1) and finite = this(2) and a-u-i = this(3) and part = this(4)
    assume sem-tree-size xs = 0
    then have ?case using part by blast
  moreover {
    assume sn\theta: sem-tree-size xs > \theta
    obtain ag ad v where xs: xs = Node \ v \ ag \ ad \ using \ sn\theta \ by \ (cases \ xs, \ auto)
      assume sem-tree-size ag = 0 and sem-tree-size ad = 0
      then have ag: ag = Leaf and ad: ad = Leaf by (cases ag, auto) (cases ad, auto)
      then obtain \chi \chi' where
        \chi: \neg I \cup \{Pos\ v\} \models \chi and
        tot\chi: total-over-m (I \cup \{Pos\ v\}) \{\chi\} and
        \chi \psi : \chi \in fst \ \psi \ and
        \chi': \neg I \cup \{Neg\ v\} \models \chi' and
        tot\chi': total-over-m (I \cup \{Neg\ v\})\ \{\chi'\} and
        \chi'\psi \colon \chi' \in fst \ \psi
        using part unfolding xs by auto
      have Posv: Pos v \notin \# \chi using \chi unfolding true-cls-def true-lit-def by auto
      have Negv: Neg v \notin \# \chi' using \chi' unfolding true-cls-def true-lit-def by auto
```

```
{
  assume Neg\chi: Neg \ v \notin \# \ \chi
  have \neg I \models \chi using \chi Posv unfolding true-cls-def true-lit-def by auto
  moreover have total-over-m I \{\chi\}
    \mathbf{using} \ \textit{Posv} \ \textit{Neg} \chi \ \textit{atm-imp-pos-or-neg-lit} \ \textit{tot} \chi \ \mathbf{unfolding} \ \textit{total-over-m-def} \ \textit{total-over-set-def}
    bv fastforce
  ultimately have partial-interps Leaf I (fst \psi)
  and sem-tree-size Leaf < sem-tree-size xs
 and inference^{**} \psi \psi
    unfolding xs by (auto simp add: \chi\psi)
}
moreover {
  assume Pos\chi: Pos \ v \notin \# \ \chi'
  then have I\chi: \neg I \models \chi' using \chi' Posv unfolding true-cls-def true-lit-def by auto
  moreover have total-over-m I \{\chi'\}
    using Negv Pos\chi atm-imp-pos-or-neg-lit tot\chi'
    unfolding total-over-m-def total-over-set-def by fastforce
  ultimately have partial-interps Leaf I (fst \psi) and
    sem-tree-size Leaf < sem-tree-size xs and
    inference^{**} \psi \psi
    using \chi'\psi I\chi unfolding xs by auto
}
moreover {
  assume neg: Neg v \in \# \chi and pos: Pos v \in \# \chi'
  then obtain \psi' \chi 2 where inf: rtrancly inference \psi \psi' and \chi 2incl: \chi 2 \in fst \psi'
    and \chi\chi 2-incl: \forall L. L \in \# \chi \longleftrightarrow L \in \# \chi 2
    and count \chi 2: count \chi 2 (Neg v) = 1
    and \varphi: \forall \varphi: \forall v \text{ literal multiset. } \varphi \in \text{fst } \psi \longrightarrow \varphi \in \text{fst } \psi'
    and I\chi: I \models \chi \longleftrightarrow I \models \chi 2
    and tot\text{-}imp\chi: \forall I'. total\text{-}over\text{-}m\ I'\{\chi\} \longrightarrow total\text{-}over\text{-}m\ I'\{\chi2\}
    using can-decrease-count[of \chi Neg v count \chi (Neg v) \psi I] \chi \psi \chi' \psi by auto
  have \chi' \in fst \ \psi' by (simp \ add: \chi'\psi \ \varphi)
  with pos
  obtain \psi^{\prime\prime} \chi 2^{\prime} where
  inf': inference** ψ' ψ"
  and \chi 2'-incl: \chi 2' \in fst \psi''
  and \chi'\chi 2-incl: \forall L::'v \ literal. \ (L \in \# \chi') = (L \in \# \chi 2')
  and count \chi 2': count \chi 2' (Pos v) = (1::nat)
  and \varphi': \forall \varphi::'v literal multiset. \varphi \in fst \ \psi' \longrightarrow \varphi \in fst \ \psi''
  and I\chi': I \models \chi' \longleftrightarrow I \models \chi 2'
  and tot\text{-}imp\chi': \forall I'. total\text{-}over\text{-}m\ I'\ \{\chi'\} \longrightarrow total\text{-}over\text{-}m\ I'\ \{\chi2'\}
  using can-decrease-count of \chi' Pos v count \chi' (Pos v) \psi' I by auto
  obtain C where \chi 2: \chi 2 = C + \{ \# Neg \ v \# \} and negC: Neg \ v \notin \# \ C and posC: Pos \ v \notin \# \ C
    proof -
      have \bigwedge m. Suc 0 - count \ m \ (Neg \ v) = count \ (\chi 2 - m) \ (Neg \ v)
        by (simp add: count \chi 2)
      then show ?thesis
        using that by (metis (no-types) One-nat-def Posv Suc-inject Suc-pred \chi\chi 2-incl
           count-diff count-single insert-DiffM2 mem-Collect-eq multi-member-skip neg
           not-gr0 set-mset-def union-commute)
    qed
  obtain C' where
    \chi 2': \chi 2' = C' + \{ \# Pos \ v \# \} and
```

```
posC': Pos \ v \notin \# \ C' and
  negC': Neg v \notin \# C'
  proof -
    assume a1: \bigwedge C'. [\chi 2' = C' + \{ \# Pos \ v \# \}; Pos \ v \notin \# C'; Neg \ v \notin \# C'] \implies thesis
    have f2: \Lambda n. (n::nat) - n = 0
      by simp
    have Neg v \notin \# \chi 2' - \{ \# Pos \ v \# \}
      using Negv \chi'\chi 2-incl by (auto simp: not-in-iff)
    have count \{ \#Pos \ v \# \} \ (Pos \ v) = 1
      by simp
    then show ?thesis
      by (metis \chi'\chi 2-incl (Neg v \notin \# \chi 2' - \{\#Pos \ v\#\}) a1 count\chi 2' count-diff f2
        insert-DiffM2 less-numeral-extra(3) mem-Collect-eq pos set-mset-def)
  qed
have already-used-inv \psi'
  using rtranclp-inference-preserves-already-used-inv[of \psi \psi'] a-u-i inf by blast
then have a-u-i-\psi'': already-used-inv \psi''
  using rtranclp-inference-preserves-already-used-inv a-u-i inf' unfolding tautology-def
  by simp
have totC: total-over-m \ I \ \{C\}
  using tot-imp\chi tot\chi tot-over-m-remove[of I Pos v C] negC posC unfolding \chi 2
  by (metis total-over-m-sum uminus-Neg uminus-of-uminus-id)
have totC': total-over-m \ I \ \{C'\}
  using tot-imp\chi' tot\chi' total-over-m-sum tot-over-m-remove[of I Neg v C'] negC' posC'
  unfolding \chi 2' by (metis total-over-m-sum uminus-Neg)
have \neg I \models C + C'
  using \chi I \chi \chi' I \chi' unfolding \chi 2 \chi 2' true-cls-def by auto
then have part-I-\psi''': partial-interps Leaf I (fst \psi'' \cup \{C + C'\})
  using totC \ totC' by simp
    (metis \leftarrow I \models C + C') atms-of-ms-singleton total-over-m-def total-over-m-sum)
  assume ({#Pos v#} + C', {#Neg v#} + C) \notin snd \psi''
  then have inf": inference \psi'' (fst \psi'' \cup \{C + C'\}, snd \psi'' \cup \{(\chi 2', \chi 2)\})
    using add.commute \varphi' \chi 2incl \langle \chi 2' \in fst \psi'' \rangle unfolding \chi 2 \chi 2'
    by (metis prod.collapse inference-step resolution)
  have inference** \psi (fst \psi'' \cup \{C + C'\}, snd \psi'' \cup \{(\chi 2', \chi 2)\})
    using inf inf' inf" rtranclp-trans by auto
  moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
  ultimately have ?case using part-I-\psi''' by (metis fst-conv)
}
moreover {
  assume a: (\{\#Pos \ v\#\} + C', \{\#Neg \ v\#\} + C) \in snd \ \psi''
  then have (\exists \chi \in fst \ \psi''. \ (\forall I. \ total\text{-}over\text{-}m \ I \ \{C+C'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
             \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C))
         \vee tautology (C' + C)
    proof -
      obtain p where p: Pos p \in \# (\{\#Pos \ v\#\} + C') and
      n: Neg \ p \in \# (\{\#Neg \ v\#\} + C) \ and
      decomp: ((\exists \chi \in fst \psi'').
                 (\forall I. total\text{-}over\text{-}m \ I \ \{(\{\#Pos \ v\#\} + C') - \{\#Pos \ p\#\}\})
                         + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\})\}
                    \longrightarrow total\text{-}over\text{-}m\ I\ \{\chi\})
                 \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi
                  \longrightarrow I \models (\{\#Pos\ v\#\} + C') - \{\#Pos\ p\#\} + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\}))
```

```
\vee tautology ((\{\#Pos\ v\#\} + C') - \{\#Pos\ p\#\} + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\})))
            using a by (blast intro: allE[OF \ a-u-i-\psi''] unfolded subsumes-def Ball-def],
               of (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C)])
          { assume p \neq v
            then have Pos \ p \in \# \ C' \land Neg \ p \in \# \ C \ using \ p \ n \ by force
            then have ?thesis unfolding Bex-def by auto
         }
         moreover {
           assume p = v
          then have ?thesis using decomp by (metis add.commute add-diff-cancel-left')
         ultimately show ?thesis by auto
        qed
      moreover {
        assume \exists \chi \in fst \ \psi''. (\forall I. \ total\text{-}over\text{-}m \ I \ \{C+C'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
         \land (\forall I. \ total\text{-}over\text{-}m\ I\ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C'+C)
       then obtain \vartheta where \vartheta: \vartheta \in fst \psi'' and
         tot-\vartheta-CC': \forall I. total-over-m \ I \ \{C+C'\} \longrightarrow total-over-m \ I \ \{\vartheta\} and
         \vartheta-inv: \forall I. total-over-m I \{\vartheta\} \longrightarrow I \models \vartheta \longrightarrow I \models C' + C by blast
       have partial-interps Leaf I (fst \psi'')
         using tot - \vartheta - CC' \vartheta \vartheta - inv totC totC' \lor \neg I \models C + C' \lor total - over - m - sum by fastforce
        moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
        ultimately have ?case by (metis inf inf' rtranclp-trans)
      moreover {
        assume tautCC': tautology (C' + C)
       have total-over-m I \{C'+C\} using totC totC' total-over-m-sum by auto
       then have \neg tautology (C' + C)
         using \langle \neg I \models C + C' \rangle unfolding add.commute[of C C'] total-over-m-def
         unfolding tautology-def by auto
       then have False using tautCC' unfolding tautology-def by auto
      ultimately have ?case by auto
   ultimately have ?case by auto
  ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
moreover {
  assume size-ag: sem-tree-size ag > 0
  have sem-tree-size ag < sem-tree-size xs unfolding xs by auto
  moreover have partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi)
   and partad: partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
   using part partial-interps.simps(2) unfolding xs by metis+
  moreover have sem-tree-size ag < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
    \longrightarrow (partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi) \longrightarrow
   (\exists tree' \ \psi'. inference^{**} \ \psi \ \psi' \land partial-interps tree' (I \cup \{Pos \ v\}) \ (fst \ \psi')
      \land (sem-tree-size tree' < sem-tree-size aq \lor sem-tree-size aq = 0)))
      using IH by auto
  ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ \ where
    inf: inference^{**} \psi \psi'
   and part: partial-interps tree' (I \cup \{Pos\ v\}) (fst \psi')
   and size: sem-tree-size tree' < sem-tree-size ag \lor sem-tree-size ag = 0
   using finite part rtranclp.rtrancl-reft a-u-i by blast
```

}

```
have partial-interps ad (I \cup \{Neg\ v\}) (fst \psi')
       using rtranclp-inference-preserve-partial-tree inf partad by metis
     then have partial-interps (Node v tree' ad) I (fst \psi') using part by auto
     then have ?case using inf size size-ag part unfolding xs by fastforce
   moreover {
     assume size-ad: sem-tree-size ad > 0
     have sem-tree-size ad < sem-tree-size xs unfolding xs by auto
     moreover have partag: partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi) and
       partial-interps ad (I \cup \{Neg\ v\}) (fst\ \psi)
       using part partial-interps.simps(2) unfolding xs by metis+
     moreover have sem-tree-size ad < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
         \rightarrow ( partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
       \longrightarrow (\exists tree' \psi'. inference^{**} \psi \psi' \land partial-interps tree' (I \cup \{Neg v\}) (fst \psi')
           \land (sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0)))
       using IH by auto
     ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ where
       inf: inference^{**} \psi \psi'
       and part: partial-interps tree' (I \cup \{Neg\ v\}) (fst\ \psi')
       and size: sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0
       using finite part rtranclp.rtrancl-refl a-u-i by blast
     have partial-interps ag (I \cup \{Pos\ v\}) (fst \psi')
       using rtranclp-inference-preserve-partial-tree inf partag by metis
     then have partial-interps (Node v ag tree') I (fst \psi') using part by auto
     then have ?case using inf size size-ad unfolding xs by fastforce
   ultimately have ?case by auto
 ultimately show ?case by auto
qed
lemma inference-completeness-inv:
 fixes \psi :: 'v :: linorder state
 assumes
   unsat: \neg satisfiable (fst \psi) and
   finite: finite (fst \psi) and
   a-u-v: already-used-inv <math>\psi
 shows \exists \psi'. (inference** \psi \psi' \land \{\#\} \in fst \psi')
proof -
  obtain tree where partial-interps tree \{\} (fst \psi)
   using partial-interps-build-sem-tree-atms assms by metis
 then show ?thesis
   using unsat finite a-u-v
   proof (induct tree arbitrary: \psi rule: sem-tree-size)
     case (bigger tree \psi) note H = this
     {
       fix \chi
       assume tree: tree = Leaf
       obtain \chi where \chi: \neg {} \models \chi and tot\chi: total-over-m {} {\chi} and \chi\psi: \chi \in fst \psi
         using H unfolding tree by auto
       moreover have \{\#\} = \chi
         using tot\chi unfolding total-over-m-def total-over-set-def by fastforce
       moreover have inference^{**} \psi \psi by auto
       ultimately have ?case by metis
     }
```

```
moreover {
       fix v tree1 tree2
       assume tree: tree = Node \ v \ tree1 \ tree2
       obtain
         tree' \psi' where inf: inference^{**} \psi \psi' and
         part': partial-interps tree' {} (fst \ \psi') and
         decrease: sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0
         using can-decrease-tree-size[of \psi] H(2,4,5) unfolding tautology-def by meson
       have sem-tree-size tree' < sem-tree-size tree using decrease unfolding tree by auto
       moreover have finite (fst \psi) using rtranclp-inference-preserves-finite inf H(4) by metis
       moreover have unsatisfiable (fst \psi')
         using inference-preserves-unsat inf bigger.prems(2) by blast
       moreover have already-used-inv \psi'
         using H(5) inf rtranclp-inference-preserves-already-used-inv[of \psi \psi'] by auto
       ultimately have ?case using inf rtranclp-trans part' H(1) by fastforce
     ultimately show ?case by (cases tree, auto)
  qed
qed
lemma inference-completeness:
 fixes \psi :: 'v :: linorder state
 assumes unsat: \neg satisfiable (fst \ \psi)
 and finite: finite (fst \psi)
 and snd \psi = \{\}
 shows \exists \psi'. (rtrancly inference \psi \psi' \land \{\#\} \in fst \psi')
proof -
 have already-used-inv \psi unfolding assms by auto
 then show ?thesis using assms inference-completeness-inv by blast
qed
lemma inference-soundness:
 fixes \psi :: 'v :: linorder state
 assumes rtrancly inference \psi \psi' and \{\#\} \in fst \psi'
 shows unsatisfiable (fst \psi)
 using assms by (meson rtranclp-inference-preserves-un-sat satisfiable-def true-cls-empty
   true-clss-def)
\mathbf{lemma}\ in ference\text{-}soundness\text{-}and\text{-}completeness\text{:}
fixes \psi :: 'v :: linorder state
assumes finite: finite (fst \psi)
and snd \psi = \{\}
shows (\exists \psi'. (inference^{**} \psi \psi' \land \{\#\} \in fst \psi')) \longleftrightarrow unsatisfiable (fst \psi)
 using assms inference-completeness inference-soundness by metis
         Lemma about the simplified state
abbreviation simplified \psi \equiv (no\text{-step simplify } \psi)
lemma simplified-count:
 assumes simp: simplified \psi and \chi: \chi \in \psi
 shows count \chi L \leq 1
proof -
   let ?\chi' = \chi - \{\#L, L\#\}
   assume count \chi L \geq 2
```

```
then have f1: count (\chi - \{\#L, L\#\} + \{\#L, L\#\}) L = count \chi L
     by simp
   then have L \in \# \chi - \{\#L\#\}
     by (metis (no-types) add.left-neutral add-diff-cancel-left' count-union diff-diff-add
       diff-single-trivial insert-DiffM mem-Collect-eq multi-member-this not-gr0 set-mset-def)
   then have \chi': ?\chi' + {#L#} + {#L#} = \chi
     using f1 by (metis diff-diff-add diff-single-eq-union in-diffD)
   have \exists \psi'. simplify \psi \psi'
     by (metis (no-types, hide-lams) \chi \chi' add.commute factoring-imp-simplify union-assoc)
   then have False using simp by auto
 then show ?thesis by arith
qed
lemma simplified-no-both:
 assumes simp: simplified \psi and \chi: \chi \in \psi
 shows \neg (L \in \# \chi \land -L \in \# \chi)
proof (rule ccontr)
 assume \neg \neg (L \in \# \chi \land - L \in \# \chi)
 then have L \in \# \chi \land - L \in \# \chi by metis then obtain \chi' where \chi = \chi' + \{\# Pos \ (atm\text{-}of \ L)\#\} + \{\# Neg \ (atm\text{-}of \ L)\#\}
   by (metis Neg-atm-of-iff Pos-atm-of-iff diff-union-swap insert-DiffM2 uminus-Neg uminus-Pos)
 then show False using \chi simp tautology-deletion by fastforce
qed
lemma simplified-not-tautology:
 assumes simplified \{\psi\}
 shows \sim tautology \psi
proof (rule ccontr)
 assume <sup>∼</sup> ?thesis
 then obtain p where Pos p \in \# \psi \land Neg \ p \in \# \psi using tautology-decomp by metis
  then obtain \chi where \psi = \chi + \{ \#Pos \ p\# \} + \{ \#Neg \ p\# \}
   by (metis insert-noteq-member literal.distinct(1) multi-member-split)
 then have \sim simplified \{\psi\} by (auto intro: tautology-deletion)
 then show False using assms by auto
qed
lemma simplified-remove:
 assumes simplified \{\psi\}
 shows simplified \{\psi - \{\#l\#\}\}
proof (rule ccontr)
 assume ns: \neg simplified \{ \psi - \{ \#l \# \} \}
   assume l \notin \# \psi
   then have \psi - \{\#l\#\} = \psi by simp
   then have False using ns assms by auto
 moreover {
   assume l\psi: l\in \# \psi
   have A: \Lambda A. A \in \{\psi - \{\#l\#\}\} \longleftrightarrow A + \{\#l\#\} \in \{\psi\} by (auto simp add: l\psi)
   obtain l' where l': simplify { \psi - {\#l\#} } l' using ns by metis
   then have \exists l'. simplify \{\psi\} l'
     proof (induction rule: simplify.induct)
       case (tautology\text{-}deletion\ A\ P)
       have \{\#Neg\ P\#\} + (\{\#Pos\ P\#\} + (A + \{\#l\#\})) \in \{\psi\}
```

```
by (metis (no-types) A add.commute tautology-deletion.hyps union-lcomm)
      then show ?thesis
         by (metis simplify.tautology-deletion[of A+\{\#l\#\}\ P\ \{\psi\}] add.commute)
     next
      case (condensation A L)
      have A + \{\#L\#\} + \{\#L\#\} + \{\#l\#\} \in \{\psi\}
        using A condensation.hyps by blast
      then have \{\#L, L\#\} + (A + \{\#l\#\}) \in \{\psi\}
        by (metis (no-types) union-assoc union-commute)
      then show ?case
        using factoring-imp-simplify by blast
     next
      case (subsumption \ A \ B)
      then show ?case by blast
     qed
   then have False using assms(1) by blast
 ultimately show False by auto
qed
lemma in-simplified-simplified:
 assumes simp: simplified \psi and incl: \psi' \subseteq \psi
 shows simplified \psi'
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain \psi'' where simplify \psi' \psi'' by metis
   then have \exists l'. simplify \psi l'
     proof (induction rule: simplify.induct)
      case (tautology-deletion A P)
      then show ?thesis using simplify.tautology-deletion[of A P \psi] incl by blast
     next
      case (condensation A L)
      then show ?case using simplify.condensation[of A L \psi] incl by blast
      case (subsumption A B)
      then show ?case using simplify.subsumption[of A \psi B] incl by auto
     ged
 then show False using assms(1) by blast
qed
\mathbf{lemma}\ simplified\text{-}in:
 assumes simplified \psi
 and N \in \psi
 shows simplified \{N\}
 using assms by (metis Set.set-insert empty-subset I in-simplified-simplified insert-mono)
lemma subsumes-imp-formula:
 assumes \psi \leq \# \varphi
 shows \{\psi\} \models p \varphi
 unfolding true-clss-cls-def apply auto
 using assms true-cls-mono-leD by blast
{\bf lemma}\ simplified\mbox{-}imp\mbox{-}distinct\mbox{-}mset\mbox{-}tauto:
 assumes simp: simplified \psi'
 shows distinct-mset-set \psi' and \forall \chi \in \psi'. \neg tautology \chi
```

```
proof -
 show \forall \chi \in \psi'. \neg tautology \chi
   using simp by (auto simp add: simplified-in simplified-not-tautology)
 show distinct-mset-set \psi'
   proof (rule ccontr)
     assume ¬?thesis
     then obtain \chi where \chi \in \psi' and \neg distinct\text{-mset} \chi unfolding distinct-mset-set-def by auto
     then obtain L where count \chi L \geq 2
       unfolding distinct-mset-def
       by (meson count-greater-eq-one-iff le-antisym simp simplified-count)
     then show False by (metis Suc-1 \langle \chi \in \psi' \rangle not-less-eq-eq simp simplified-count)
   qed
qed
lemma simplified-no-more-full1-simplified:
 assumes simplified \psi
 shows \neg full1 simplify \psi \psi'
 using assms unfolding full1-def by (meson tranclpD)
          Resolution and Invariants
1.1.5
inductive resolution :: 'v state \Rightarrow 'v state \Rightarrow bool where
full1-simp: full1 simplify N N' \Longrightarrow resolution (N, already-used) (N', already-used)
inferring: inference (N, already-used) (N', already-used') \Longrightarrow simplified N
 \implies full simplify N'N'' \implies resolution (N, already-used) (N'', already-used')
Invariants
lemma resolution-finite:
 assumes resolution \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 using assms by (induct rule: resolution.induct)
   (auto simp add: full1-def full-def rtranclp-simplify-preserves-finite
     dest: tranclp-into-rtranclp inference-preserves-finite)
lemma rtranclp-resolution-finite:
 assumes resolution** \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite)
lemma resolution-finite-snd:
 assumes resolution \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms apply (induct rule: resolution.induct, auto simp add: inference-preserves-finite-snd)
 using inference-preserves-finite-snd snd-conv by metis
lemma rtranclp-resolution-finite-snd:
 assumes resolution^{**} \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite-snd)
lemma resolution-always-simplified:
assumes resolution \psi \psi'
shows simplified (fst \psi')
using assms by (induct rule: resolution.induct)
```

```
(auto simp add: full1-def full-def)
lemma tranclp-resolution-always-simplified:
  assumes trancly resolution \psi \psi'
  shows simplified (fst \psi')
  using assms by (induct rule: tranclp.induct, auto simp add: resolution-always-simplified)
lemma resolution-atms-of:
  assumes resolution \psi \psi' and finite (fst \psi)
 shows atms-of-ms (fst \psi') \subseteq atms-of-ms (fst \psi)
  using assms apply (induct rule: resolution.induct)
   {\bf apply}(simp~add:~rtranclp\text{-}simplify\text{-}atms\text{-}of\text{-}ms~tranclp\text{-}into\text{-}rtranclp~full1\text{-}}def~)
  by (metis (no-types, lifting) contra-subsetD fst-conv full-def
   inference-preserves-atms-of-ms rtranclp-simplify-atms-of-ms subsetI)
lemma rtranclp-resolution-atms-of:
  assumes resolution** \psi \psi' and finite (fst \psi)
  shows atms-of-ms (fst \psi') \subseteq atms-of-ms (fst \psi)
  using assms apply (induct rule: rtranclp-induct)
  {\bf using} \ resolution-atms-of \ rtranclp-resolution-finite \ {\bf by} \ blast+
lemma resolution-include:
  assumes res: resolution \psi \psi' and finite: finite (fst \psi)
  shows fst \ \psi' \subseteq simple-clss (atms-of-ms (fst \ \psi))
proof -
  have finite': finite (fst \psi') using local finite res resolution-finite by blast
 have simplified (fst \psi') using res finite' resolution-always-simplified by blast
  then have fst \ \psi' \subseteq simple\text{-}clss \ (atms\text{-}of\text{-}ms \ (fst \ \psi'))
   using simplified-in-simple-clss finite' simplified-imp-distinct-mset-tauto of fst \psi' by auto
  moreover have atms-of-ms (fst \psi') \subseteq atms-of-ms (fst \psi)
   using res finite resolution-atms-of of \psi \psi' by auto
  ultimately show ?thesis by (meson atms-of-ms-finite local finite order trans rev-finite-subset
    simple-clss-mono)
qed
lemma rtranclp-resolution-include:
  assumes res: trancly resolution \psi \psi' and finite: finite (fst \psi)
  shows fst \ \psi' \subseteq simple\text{-}clss \ (atms\text{-}of\text{-}ms \ (fst \ \psi))
  using assms apply (induct rule: tranclp.induct)
   apply (simp add: resolution-include)
  by (meson simple-clss-mono order-class.le-trans resolution-include
   rtranclp-resolution-atms-of rtranclp-resolution-finite tranclp-into-rtranclp)
abbreviation already-used-all-simple
  :: ('a \ literal \ multiset \times 'a \ literal \ multiset) \ set \Rightarrow 'a \ set \Rightarrow bool \ where
already-used-all-simple already-used vars \equiv
(\forall (A, B) \in already\text{-}used. simplified \{A\} \land simplified \{B\} \land atms\text{-}of A \subseteq vars \land atms\text{-}of B \subseteq vars)
lemma already-used-all-simple-vars-incl:
  assumes vars \subseteq vars'
 shows already-used-all-simple a vars \implies already-used-all-simple a vars'
  using assms by fast
{\bf lemma}\ in ference-clause-preserves-already-used-all-simple:
  assumes inference-clause S S'
 and already-used-all-simple (snd S) vars
```

```
and simplified (fst S)
 and atms-of-ms (fst S) \subseteq vars
 shows already-used-all-simple (snd (fst S \cup \{fst S'\}, snd S')) vars
 using assms
proof (induct rule: inference-clause.induct)
 case (factoring\ L\ C\ N\ already-used)
  then show ?case by (simp add: simplified-in factoring-imp-simplify)
next
 case (resolution P \ C \ N \ D \ already-used) note H = this
 show ?case apply clarify
   proof -
     \mathbf{fix} \ A \ B \ v
     assume (A, B) \in snd (fst (N, already-used))
       \cup \{fst \ (C + D, \ already\text{-}used \ \cup \ \{(\{\#Pos \ P\#\} + C, \{\#Neg \ P\#\} + D)\})\},\
          snd\ (C + D,\ already-used\ \cup\ \{(\{\#Pos\ P\#\}\ +\ C,\ \{\#Neg\ P\#\}\ +\ D)\}))
     then have (A, B) \in already-used \lor (A, B) = (\{\#Pos\ P\#\} + C, \{\#Neg\ P\#\} + D) by auto
     moreover {
      assume (A, B) \in already-used
      then have simplified \{A\} \land simplified \{B\} \land atms-of A \subseteq vars \land atms-of B \subseteq vars
         using H(4) by auto
     moreover {
      assume eq: (A, B) = (\{\#Pos \ P\#\} + C, \{\#Neg \ P\#\} + D)
      then have simplified \{A\} using simplified-in H(1,5) by auto
      moreover have simplified \{B\} using eq simplified-in H(2,5) by auto
      moreover have atms-of A \subseteq atms-of-ms N
         using eq H(1)
         using atms-of-atms-of-ms-mono[of A N] by auto
       moreover have atms-of B \subseteq atms-of-ms N
         using eq H(2) atms-of-atms-of-ms-mono[of B N] by auto
       ultimately have simplified \{A\} \land simplified \{B\} \land atms-of A \subseteq vars \land atms-of B \subseteq vars
         using H(6) by auto
     ultimately show simplified \{A\} \land simplified \{B\} \land atms-of A \subseteq vars \land atms-of B \subseteq vars
       by fast
   \mathbf{qed}
qed
\mathbf{lemma}\ in ference\text{-}preserves\text{-}already\text{-}used\text{-}all\text{-}simple\text{:}
 assumes inference S S'
 and already-used-all-simple (snd S) vars
 and simplified (fst S)
 and atms-of-ms (fst S) \subseteq vars
 shows already-used-all-simple (snd S') vars
  using assms
proof (induct rule: inference.induct)
 case (inference-step S clause already-used)
 then show ?case
   using inference-clause-preserves-already-used-all-simple of S (clause, already-used) vars
   by auto
qed
lemma already-used-all-simple-inv:
 assumes resolution S S'
 and already-used-all-simple (snd S) vars
 and atms-of-ms (fst S) \subseteq vars
```

```
shows already-used-all-simple (snd S') vars
 using assms
proof (induct rule: resolution.induct)
 case (full1-simp N N')
 then show ?case by simp
next
 case (inferring N already-used N' already-used' N'')
 then show already-used-all-simple (snd (N'', already-used')) vars
   using inference-preserves-already-used-all-simple of (N, already-used) by simp
{f lemma}\ rtranclp-already-used-all-simple-inv:
 assumes resolution** S S'
 and already-used-all-simple (snd S) vars
 and atms-of-ms (fst S) \subseteq vars
 and finite (fst\ S)
 shows already-used-all-simple (snd S') vars
 using assms
proof (induct rule: rtranclp-induct)
 {f case}\ base
 then show ?case by simp
 case (step S'S'') note infstar = this(1) and IH = this(3) and res = this(2) and
   already = this(4) and atms = this(5) and finite = this(6)
 have already-used-all-simple (snd S') vars using IH already atms finite by simp
 moreover have atms-of-ms (fst S') \subseteq atms-of-ms (fst S)
   by (simp add: infstar local.finite rtranclp-resolution-atms-of)
 then have atms-of-ms (fst S') \subseteq vars using atms by auto
 ultimately show ?case
   using already-used-all-simple-inv[OF res] by simp
qed
lemma inference-clause-simplified-already-used-subset:
 assumes inference-clause S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: inference-clause.induct, auto)
 using factoring-imp-simplify by blast
lemma inference-simplified-already-used-subset:
 assumes inference S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: inference.induct)
 by (metis inference-clause-simplified-already-used-subset snd-conv)
\mathbf{lemma}\ resolution\text{-}simplified\text{-}already\text{-}used\text{-}subset:
 assumes resolution S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: resolution.induct, simp-all add: full1-def)
 apply (meson\ tranclpD)
 by (metis inference-simplified-already-used-subset fst-conv snd-conv)
\mathbf{lemma}\ tranclp\text{-}resolution\text{-}simplified\text{-}already\text{-}used\text{-}subset:
 assumes tranclp resolution S S'
```

```
and simplified (fst S)
 shows snd S \subset snd S'
  using assms apply (induct rule: tranclp.induct)
  using resolution-simplified-already-used-subset apply metis
 by (meson tranclp-resolution-always-simplified resolution-simplified-already-used-subset
   less-trans)
abbreviation already-used-top vars \equiv simple-clss vars \times simple-clss vars
lemma already-used-all-simple-in-already-used-top:
 assumes already-used-all-simple s vars and finite vars
 shows s \subseteq already-used-top vars
proof
 \mathbf{fix} \ x
 assume x-s: x \in s
 obtain A B where x: x = (A, B) by (cases x, auto)
 then have simplified \{A\} and atms-of A \subseteq vars using assms(1) x-s by fastforce+
  then have A: A \in simple\text{-}clss \ vars
   using simple-clss-mono[of atms-of A vars] \ x \ assms(2)
   simplified-imp-distinct-mset-tauto[of {A}]
   distinct-mset-not-tautology-implies-in-simple-clss by fast
 moreover have simplified \{B\} and atms-of B \subseteq vars using assms(1) x-s x by fast+
  then have B: B \in simple\text{-}clss \ vars
   using simplified-imp-distinct-mset-tauto[of \{B\}]
   distinct-mset-not-tautology-implies-in-simple-clss
   simple-clss-mono[of atms-of B vars] \ x \ assms(2) \ by \ fast
  ultimately show x \in simple\text{-}clss\ vars \times simple\text{-}clss\ vars
   unfolding x by auto
lemma already-used-top-finite:
 assumes finite vars
 shows finite (already-used-top vars)
 using simple-clss-finite assms by auto
lemma already-used-top-increasing:
 assumes var \subseteq var' and finite var'
 shows already-used-top var \subseteq already-used-top var'
 using assms simple-clss-mono by auto
lemma already-used-all-simple-finite:
 fixes s :: ('a \ literal \ multiset \times 'a \ literal \ multiset) \ set \ and \ vars :: 'a \ set
 assumes already-used-all-simple s vars and finite vars
 shows finite s
 using assms already-used-all-simple-in-already-used-top[OF assms(1)]
 rev-finite-subset[OF already-used-top-finite[of vars]] by auto
abbreviation card-simple vars \psi \equiv card (already-used-top vars -\psi)
lemma resolution-card-simple-decreasing:
 assumes res: resolution \psi \psi'
 and a-u-s: already-used-all-simple (snd \psi) vars
 and finite-v: finite vars
 and finite-fst: finite (fst \psi)
 and finite-snd: finite (snd \psi)
 and simp: simplified (fst \psi)
```

```
and atms-of-ms (fst \psi) \subseteq vars
 shows card-simple vars (snd \psi') < card-simple vars (snd \psi)
proof -
 let ?vars = vars
 let ?top = simple-clss ?vars × simple-clss ?vars
 have 1: card-simple vars (snd \psi) = card ?top - card (snd \psi)
   using card-Diff-subset finite-snd already-used-all-simple-in-already-used-top[OF a-u-s]
   finite-v by metis
 have a-u-s': already-used-all-simple (snd \psi') vars
   using already-used-all-simple-inv res a-u-s assms(7) by blast
 have f: finite (snd \psi') using already-used-all-simple-finite a-u-s' finite-v by auto
 have 2: card-simple vars (snd \psi') = card ?top - card (snd \psi')
   \textbf{using} \ \textit{card-Diff-subset}[\textit{OF} \ f] \ \textit{already-used-all-simple-in-already-used-top}[\textit{OF} \ a-u-s' \ finite-v]
   by auto
 have card (already-used-top vars) \geq card (snd \psi')
   using already-used-all-simple-in-already-used-top[OF a-u-s' finite-v]
   card-mono of already-used-top vars and \psi' already-used-top-finite of finite-v by metis
  then show ?thesis
   using psubset-card-mono[OF\ f\ resolution-simplified-already-used-subset[OF\ res\ simp]]
   unfolding 1 2 by linarith
qed
{\bf lemma}\ tranclp\text{-}resolution\text{-}card\text{-}simple\text{-}decreasing:}
 assumes trancly resolution \psi \psi' and finite-fst: finite (fst \psi)
 and already-used-all-simple (snd \psi) vars
 and atms-of-ms (fst \ \psi) \subseteq vars
 and finite-v: finite vars
 and finite-snd: finite (snd \psi)
 and simplified (fst \psi)
 shows card-simple vars (snd \psi') < card-simple vars (snd \psi)
 using assms
proof (induct rule: tranclp-induct)
 case (base \psi')
 then show ?case by (simp add: resolution-card-simple-decreasing)
next
  case (step \psi' \psi'') note res = this(1) and res' = this(2) and a-u-s = this(5) and
   atms = this(6) and f - v = this(7) and f - fst = this(4) and H = this
 then have card-simple vars (snd \psi') < card-simple vars (snd \psi) by auto
 moreover have a-u-s': already-used-all-simple (snd \psi') vars
   using rtranclp-already-used-all-simple-inv[OF\ tranclp-into-rtranclp[OF\ res]\ a-u-s\ atms\ f-fst].
 have finite (fst \psi')
   by (meson finite-fst res rtranclp-resolution-finite tranclp-into-rtranclp)
  moreover have finite (snd \psi') using already-used-all-simple-finite [OF a-u-s' f-v].
 moreover have simplified (fst \psi') using res translp-resolution-always-simplified by blast
  moreover have atms-of-ms (fst \psi') \subseteq vars
   by (meson atms f-fst order.trans res rtranclp-resolution-atms-of tranclp-into-rtranclp)
  ultimately show ?case
   using resolution-card-simple-decreasing [OF res' a-u-s' f-v] f-v
   less-trans[of card-simple vars (snd \psi'') card-simple vars (snd \psi')
     card-simple vars (snd \ \psi)]
   by blast
qed
```

 $\mathbf{lemma}\ tranclp\text{-}resolution\text{-}card\text{-}simple\text{-}decreasing\text{-}2\text{:}$

```
assumes trancly resolution \psi \psi'
 and finite-fst: finite (fst \psi)
 and empty-snd: snd \psi = \{\}
 and simplified (fst \psi)
 shows card-simple (atms-of-ms (fst \psi)) (snd \psi') < card-simple (atms-of-ms (fst \psi)) (snd \psi)
proof -
 let ?vars = atms-of-ms (fst \psi)
 have already-used-all-simple (snd \psi) ?vars unfolding empty-snd by auto
 moreover have atms-of-ms (fst \psi) \subseteq ?vars by auto
 moreover have finite-v: finite ?vars using finite-fst by auto
 moreover have finite-snd: finite (snd \psi) unfolding empty-snd by auto
 ultimately show ?thesis
   using assms(1,2,4) tranclp-resolution-card-simple-decreasing of \psi \psi' by presburger
qed
well-foundness if the relation
lemma wf-simplified-resolution:
 assumes f-vars: finite vars
 shows wf \{(y:: 'v:: linorder state, x). (atms-of-ms (fst x) \subseteq vars \land simplified (fst x)\}
   \land finite (snd\ x) \land finite\ (fst\ x) \land already-used-all-simple\ (snd\ x)\ vars) \land resolution\ x\ y
proof -
  {
   \mathbf{fix} \ a \ b :: 'v:: linorder \ state
   assume (b, a) \in \{(y, x). (atms-of-ms (fst x) \subseteq vars \land simplified (fst x) \land finite (snd x)\}
     \land finite (fst x) \land already-used-all-simple (snd x) vars) \land resolution x y}
   then have
     atms-of-ms (fst a) \subseteq vars and
     simp: simplified (fst a) and
     finite (snd a) and
     finite (fst a) and
     a-u-v: already-used-all-simple (snd a) vars and
     res: resolution a b by auto
   have finite (already-used-top vars) using f-vars already-used-top-finite by blast
   moreover have already-used-top vars \subseteq already-used-top vars by auto
   moreover have snd b \subseteq already-used-top vars
     using already-used-all-simple-in-already-used-top[of snd b vars]
     a-u-v already-used-all-simple-inv[OF res] <math>\langle finite\ (fst\ a) \rangle\ \langle atms-of-ms\ (fst\ a) \subseteq vars \rangle\ f-vars
     by presburger
   moreover have snd\ a \subset snd\ b using resolution-simplified-already-used-subset [OF res\ simp].
   ultimately have finite (already-used-top vars) \land already-used-top vars \subseteq already-used-top vars
     \land snd b \subseteq already-used-top vars <math>\land snd a \subseteq snd b by metis
 then show ?thesis using wf-bounded-set[of \{(y:: 'v:: linorder \ state, \ x).
   (atms-of-ms\ (fst\ x) \subseteq vars
   \land simplified (fst x) \land finite (snd x) \land finite (fst x)\land already-used-all-simple (snd x) vars)
   \land resolution x y \land \land already-used-top vars snd \mid by auto
qed
lemma wf-simplified-resolution':
 assumes f-vars: finite vars
 shows wf \{(y:: 'v:: linorder \ state, \ x). \ (atms-of-ms \ (fst \ x) \subseteq vars \land \neg simplified \ (fst \ x)\}
   \land finite (snd x) \land finite (fst x) \land already-used-all-simple (snd x) vars) \land resolution x y}
  unfolding wf-def
  apply (simp add: resolution-always-simplified)
 by (metis (mono-tags, hide-lams) fst-conv resolution-always-simplified)
```

```
lemma wf-resolution:
 assumes f-vars: finite vars
 shows wf (\{(y:: 'v:: linorder state, x). (atms-of-ms (fst x) \subseteq vars \land simplified (fst x)\}
       \land finite (snd\ x) \land finite\ (fst\ x) \land already-used-all-simple\ (snd\ x)\ vars) \land resolution\ x\ y
   \cup \{(y, x). (atms-of-ms (fst x) \subseteq vars \land \neg simplified (fst x) \land finite (snd x) \land finite (fst x)\}
      \land already-used-all-simple (snd x) vars) \land resolution x y}) (is wf (?R \cup ?S))
proof -
 have Domain ?R Int Range ?S = \{\} using resolution-always-simplified by auto blast
 then show wf (?R \cup ?S)
   using wf-simplified-resolution[OF f-vars] wf-simplified-resolution'[OF f-vars] wf-Un[of ?R ?S]
   by fast
qed
lemma rtrancp-simplify-already-used-inv:
 assumes simplify^{**} S S'
 and already-used-inv (S, N)
 shows already-used-inv (S', N)
 using assms apply induction
 using simplify-preserves-already-used-inv by fast+
lemma full1-simplify-already-used-inv:
 assumes full1 simplify S S'
 and already-used-inv (S, N)
 shows already-used-inv (S', N)
 using assms tranclp-into-rtranclp of simplify SS' rtrancp-simplify-already-used-inv
 unfolding full1-def by fast
lemma full-simplify-already-used-inv:
 assumes full simplify S S'
 and already-used-inv (S, N)
 shows already-used-inv (S', N)
 using assms rtrancp-simplify-already-used-inv unfolding full-def by fast
lemma resolution-already-used-inv:
 assumes resolution S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms
proof induction
  case (full1-simp N N' already-used)
 then show ?case using full1-simplify-already-used-inv by fast
next
  case (inferring N already-used N' already-used' N''') note inf = this(1) and full = this(3) and
   a-u-v = this(4)
 then show ?case
   \mathbf{using}\ inference\text{-}preserves\text{-}already\text{-}used\text{-}inv[\textit{OF}\ inf\ a\text{-}u\text{-}v]\ full\text{-}simplify\text{-}already\text{-}used\text{-}inv\ full}
   by fast
qed
lemma rtranclp-resolution-already-used-inv:
 assumes resolution** S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms apply induction
 using resolution-already-used-inv by fast+
```

```
lemma rtanclp-simplify-preserves-unsat:
 assumes simplify^{**} \psi \psi'
 shows satisfiable \psi' \longrightarrow satisfiable \ \psi
 using assms apply induction
 using simplify-clause-preserves-sat by blast+
lemma full1-simplify-preserves-unsat:
 assumes full1 simplify \psi \psi'
 shows satisfiable \psi' \longrightarrow satisfiable \ \psi
 using assms rtanclp-simplify-preserves-unsat[of \psi \psi'] tranclp-into-rtranclp
 unfolding full1-def by metis
{\bf lemma}\ full\text{-}simplify\text{-}preserves\text{-}unsat:
 assumes full simplify \psi \psi'
 shows satisfiable \psi' \longrightarrow satisfiable \ \psi
 using assms rtanclp-simplify-preserves-unsat[of \psi \psi'] unfolding full-def by metis
lemma resolution-preserves-unsat:
 assumes resolution \psi \psi'
 shows satisfiable (fst \psi') \longrightarrow satisfiable (fst \psi)
 using assms apply (induct rule: resolution.induct)
  using full1-simplify-preserves-unsat apply (metis fst-conv)
 using full-simplify-preserves-unsat simplify-preserves-unsat by fastforce
lemma rtranclp-resolution-preserves-unsat:
 assumes resolution** \psi \psi'
 shows satisfiable (fst \psi') \longrightarrow satisfiable (fst \psi)
 using assms apply induction
 using resolution-preserves-unsat by fast+
{\bf lemma}\ rtranclp\text{-}simplify\text{-}preserve\text{-}partial\text{-}tree\text{:}
 assumes simplify** N N'
 and partial-interps t I N
 shows partial-interps t I N'
 using assms apply (induction, simp)
 using simplify-preserve-partial-tree by metis
lemma full1-simplify-preserve-partial-tree:
 assumes full1 simplify N N'
 and partial-interps t I N
 shows partial-interps t I N'
 \mathbf{using}\ assms\ rtranclp\text{-}simplify\text{-}preserve\text{-}partial\text{-}tree[of\ N\ N'\ t\ I]\ tranclp\text{-}into\text{-}rtranclp}
 unfolding full1-def by fast
lemma full-simplify-preserve-partial-tree:
 assumes full simplify N N
 and partial-interps t I N
 shows partial-interps t\ I\ N'
 using assms rtranclp-simplify-preserve-partial-tree[of N N' t I] tranclp-into-rtranclp
 unfolding full-def by fast
lemma resolution-preserve-partial-tree:
 assumes resolution S S'
 and partial-interps t I (fst S)
 shows partial-interps t I (fst S')
 using assms apply induction
```

```
using full-simplify-preserve-partial-tree inference-preserve-partial-tree by fastforce
\mathbf{lemma}\ rtranclp\text{-}resolution\text{-}preserve\text{-}partial\text{-}tree:}
  assumes resolution** S S'
  and partial-interps t I (fst S)
  shows partial-interps t I (fst S')
  using assms apply induction
  using resolution-preserve-partial-tree by fast+
  thm nat-less-induct nat.induct
lemma nat-ge-induct[case-names 0 Suc]:
  assumes P \theta
  and \bigwedge n. (\bigwedge m. \ m < Suc \ n \Longrightarrow P \ m) \Longrightarrow P \ (Suc \ n)
  shows P n
  using assms apply (induct rule: nat-less-induct)
  by (rename-tac \ n, \ case-tac \ n) auto
lemma wf-always-more-step-False:
  assumes wf R
  shows (\forall x. \exists z. (z, x) \in R) \Longrightarrow False
 using assms unfolding wf-def by (meson Domain.DomainI assms wfE-min)
lemma finite-finite-mset-element-of-mset[simp]:
  assumes finite N
  shows finite \{f \varphi L | \varphi L. \varphi \in N \land L \in \# \varphi \land P \varphi L\}
  using assms
\mathbf{proof}\ (\mathit{induction}\ \mathit{N}\ \mathit{rule} \text{:}\ \mathit{finite-induct})
  case empty
  show ?case by auto
next
  case (insert x N) note finite = this(1) and IH = this(3)
  have \{f \varphi L \mid \varphi L. \ (\varphi = x \lor \varphi \in N) \land L \in \# \varphi \land P \varphi L\} \subseteq \{f x L \mid L. \ L \in \# x \land P x L\}
    \cup \{f \varphi L | \varphi L. \varphi \in N \land L \in \# \varphi \land P \varphi L\}  by auto
  moreover have finite \{f \ x \ L \mid L. \ L \in \# \ x\} by auto
  ultimately show ?case using IH finite-subset by fastforce
qed
definition sum-count-ge-2 :: 'a multiset set \Rightarrow nat (\Xi) where
sum-count-qe-2 \equiv folding.F (\lambda \varphi. op +(msetsum {#count \varphi L \mid L \in \# \varphi. 2 \leq count \varphi L \#})) \theta
interpretation sum-count-ge-2:
  folding (\lambda \varphi. op + (msetsum \{\#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \#\})) 0
rewrites
  folding.F (\lambda \varphi. op +(msetsum {#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \# \})) 0 = sum\text{-}count\text{-}ge\text{-}2
proof -
  show folding (\lambda \varphi. op + (msetsum (image-mset (count \varphi) \{ \# L \in \# \varphi. 2 \leq count \varphi L \# \})))
    by standard auto
  then interpret sum-count-ge-2:
    folding (\lambda \varphi. op + (msetsum \{\#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \#\})) 0.
  show folding. F(\lambda \varphi. op + (msetsum (image-mset (count \varphi) \{ \# L \in \# \varphi. 2 \leq count \varphi L \# \}))) 0
    = sum\text{-}count\text{-}ge\text{-}2 by (auto simp\ add: sum\text{-}count\text{-}ge\text{-}2\text{-}def)
qed
```

using full1-simplify-preserve-partial-tree fst-conv apply metis

```
lemma finite-incl-le-setsum:
finite (B::'a multiset set) \Longrightarrow A \subseteq B \Longrightarrow \Xi A \leq \Xi B
proof (induction arbitrary: A rule: finite-induct)
 case empty
 then show ?case by simp
next
 case (insert a F) note finite = this(1) and aF = this(2) and IH = this(3) and AF = this(4)
 show ?case
   proof (cases \ a \in A)
     assume a \notin A
     then have A \subseteq F using AF by auto
     then show ?case using IH[of A] by (simp add: aF local.finite)
   next
     assume aA: a \in A
     then have A - \{a\} \subseteq F using AF by auto
     then have \Xi(A - \{a\}) \leq \Xi F using IH by blast
     then show ?case
        proof -
          obtain nn :: nat \Rightarrow nat \Rightarrow nat where
           \forall x0 \ x1. \ (\exists v2. \ x0 = x1 + v2) = (x0 = x1 + nn \ x0 \ x1)
           by moura
          then have \Xi F = \Xi (A - \{a\}) + nn (\Xi F) (\Xi (A - \{a\}))
           \mathbf{by} \ (\mathit{meson} \ \lang{\Xi} \ (A - \{a\}) \le \Xi \ \mathit{F} \char``le-\mathit{iff-add})
          then show ?thesis
           by (metis (no-types) le-iff-add aA aF add.assoc finite.insertI finite-subset
             insert.prems local.finite sum-count-ge-2.insert sum-count-ge-2.remove)
        qed
   \mathbf{qed}
qed
{\bf lemma}\ simplify\mbox{-}finite\mbox{-}measure\mbox{-}decrease:
  simplify N N' \Longrightarrow finite N \Longrightarrow card N' + \Xi N' < card N + \Xi N
proof (induction rule: simplify.induct)
 case (tautology-deletion A P) note an = this(1) and fin = this(2)
 let ?N' = N - \{A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}\}\
 have card ?N' < card N
   by (meson card-Diff1-less tautology-deletion.hyps tautology-deletion.prems)
 moreover have ?N' \subseteq N by auto
  then have sum-count-ge-2 ?N' \le sum-count-ge-2 N using finite-incl-le-setsum[OF fin] by blast
  ultimately show ?case by linarith
next
 case (condensation A L) note AN = this(1) and fin = this(2)
 let ?C' = A + \{\#L\#\}
 let ?C = A + \{\#L\#\} + \{\#L\#\}
 let ?N' = N - \{?C\} \cup \{?C'\}
 have card ?N' \leq card N
   using AN by (metis (no-types, lifting) Diff-subset Un-empty-right Un-insert-right card.remove
     card-insert-if card-mono fin finite-Diff order-refl)
 moreover have \Xi \{?C'\} < \Xi \{?C\}
   proof -
     have mset-decomp:
       \{\# La \in \# A. (L = La \longrightarrow La \in \# A) \land (L \neq La \longrightarrow 2 \leq count A La)\#\}
       = \{ \# La \in \# A. L \neq La \land 2 \leq count A La\# \} +
         \{\# La \in \# A. L = La \land Suc \ 0 \le count \ A \ L\#\}
         by (auto simp: multiset-eq-iff ac-simps)
     have mset-decomp2: \{\# La \in \# A. L \neq La \longrightarrow 2 \leq count A La\#\} =
```

```
\{\# La \in \# A. L \neq La \land 2 \leq count \ A \ La\#\} + replicate-mset (count \ A \ L) \ L
       by (auto simp: multiset-eq-iff)
     show ?thesis
       by (auto simp: mset-decomp mset-decomp2 filter-mset-eq ac-simps)
  ged
 have \Xi ?N' < \Xi N
   proof cases
     assume a1: ?C' \in N
     then show ?thesis
       proof
         have f2: \bigwedge m\ M. insert (m::'a\ literal\ multiset)\ (M - \{m\}) = M \cup \{\} \lor m \notin M
          using Un-empty-right insert-Diff by blast
         have f3: \bigwedge m\ M\ Ma. insert (m:'a\ literal\ multiset)\ M-insert\ m\ Ma=M-insert\ m\ Ma
          by simp
         then have f_4: \bigwedge M \ m. \ M - \{m::'a \ literal \ multiset\} = M \cup \{\} \lor m \in M
          using Diff-insert-absorb Un-empty-right by fastforce
         have f5: insert (A + \{\#L\#\} + \{\#L\#\}) N = N
          using f3 f2 Un-empty-right condensation.hyps insert-iff by fastforce
         have \bigwedge m\ M. insert (m:'a\ literal\ multiset)\ M=M\cup \{\} \lor m\notin M
          using f3 f2 Un-empty-right add.right-neutral insert-iff by fastforce
         then have \Xi (N - \{A + \{\#L\#\} + \{\#L\#\}\}) < \Xi N
          using f5 f4 by (metis Un-empty-right (\Xi \{A + \{\#L\#\}\}) < \Xi \{A + \{\#L\#\}\} + \{\#L\#\}\})
            add.right-neutral add-diff-cancel-left' add-gr-0 diff-less fin finite.emptyI not-le
            sum-count-ge-2.empty sum-count-ge-2.insert-remove trans-le-add2)
         then show ?thesis
          using f3 f2 a1 by (metis (no-types) Un-empty-right Un-insert-right condensation.hyps
            insert-iff multi-self-add-other-not-self)
       qed
   next
     assume ?C' \notin N
     have mset-decomp:
       \{\# La \in \# A. (L = La \longrightarrow Suc \ 0 \leq count \ A \ La) \land (L \neq La \longrightarrow 2 \leq count \ A \ La)\#\}
       = \{ \# La \in \# A. L \neq La \land 2 \leq count A La \# \} +
         \{\# La \in \# A. L = La \land Suc \ 0 \leq count \ A \ L\#\}
         by (auto simp: multiset-eq-iff ac-simps)
     have mset-decomp2: {# La \in \# A. L \neq La \longrightarrow 2 \leq count A La\#} =
       \{\# La \in \# A. L \neq La \land 2 < count A La\#\} + replicate-mset (count A L) L
       by (auto simp: multiset-eq-iff)
     show ?thesis
       using \langle \Xi \{A + \{\#L\#\}\} \rangle \subset \Xi \{A + \{\#L\#\}\} \rangle = \{\#L\#\}\} \rangle condensation.hyps fin
       sum\text{-}count\text{-}ge\text{-}2.remove[of\text{-}A+\{\#L\#\}+\{\#L\#\}] \langle ?C'\notin N \rangle
       by (auto simp: mset-decomp mset-decomp2 filter-mset-eq)
   qed
  ultimately show ?case by linarith
next
 case (subsumption A B) note AN = this(1) and AB = this(2) and BN = this(3) and fin = this(4)
 have card\ (N - \{B\}) < card\ N\ using\ BN\ by\ (meson\ card-Diff1-less\ subsumption.prems)
 moreover have \Xi(N - \{B\}) \leq \Xi N
   by (simp add: Diff-subset finite-incl-le-setsum subsumption.prems)
 ultimately show ?case by linarith
qed
lemma simplify-terminates:
  wf \{(N', N). finite N \wedge simplify N N'\}
  using assms apply (rule wfP-if-measure[of finite simplify \lambda N. card N + \Xi N])
```

```
lemma wf-terminates:
 assumes wf r
 shows \exists N'.(N', N) \in r^* \land (\forall N''. (N'', N') \notin r)
proof -
 let ?P = \lambda N. (\exists N'.(N', N) \in r^* \land (\forall N''. (N'', N') \notin r))
 have (\forall x. (\forall y. (y, x) \in r \longrightarrow ?P y) \longrightarrow ?P x)
   proof clarify
     \mathbf{fix} \ x
     assume H: \forall y. (y, x) \in r \longrightarrow ?P y
     { assume \exists y. (y, x) \in r
       then obtain y where y:(y, x) \in r by blast
       then have ?P y using H by blast
       then have P x using y by (meson rtrancl.rtrancl-into-rtrancl)
     moreover {
       assume \neg(\exists y. (y, x) \in r)
       then have ?P x by auto
     ultimately show P x by blast
   qed
  moreover have (\forall x. (\forall y. (y, x) \in r \longrightarrow ?P y) \longrightarrow ?P x) \longrightarrow All ?P
   using assms unfolding wf-def by (rule allE)
 ultimately have All ?P by blast
 then show ?P N by blast
lemma rtranclp-simplify-terminates:
 assumes fin: finite\ N
 shows \exists N'. simplify^{**} N N' \land simplified N'
proof -
 have H: \{(N', N). \text{ finite } N \land \text{ simplify } N N'\} = \{(N', N). \text{ simplify } N N' \land \text{ finite } N\}  by auto
 then have wf: wf \{(N', N). simplify N N' \land finite N\}
   using simplify-terminates by (simp add: H)
 obtain N' where N': (N', N) \in \{(b, a) \text{. simplify } a \ b \land finite \ a\}^* and
   more: (\forall N''. (N'', N') \notin \{(b, a). \text{ simplify } a \ b \land \text{finite } a\})
   using Prop-Resolution.wf-terminates[OF wf, of N] by blast
 have 1: simplify^{**} N N'
   using N' by (induction rule: rtrancl.induct) auto
 then have finite N' using fin rtranclp-simplify-preserves-finite by blast
 then have 2: \forall N''. \neg simplify N' N'' using more by auto
 show ?thesis using 1 2 by blast
qed
lemma finite-simplified-full1-simp:
 assumes finite N
 shows simplified N \vee (\exists N'. full1 simplify N N')
 using rtranclp-simplify-terminates[OF assms] unfolding full1-def
 by (metis Nitpick.rtranclp-unfold)
lemma finite-simplified-full-simp:
 assumes finite N
```

```
shows \exists N'. full simplify NN'
  using rtranclp-simplify-terminates[OF assms] unfolding full-def by metis
{f lemma} can-decrease-tree-size-resolution:
 fixes \psi :: 'v \text{ state} and tree :: 'v \text{ sem-tree}
 assumes finite (fst \psi) and already-used-inv \psi
 and partial-interps tree I (fst \psi)
 and simplified (fst \psi)
 shows \exists (tree':: 'v \ sem\text{-}tree) \ \psi'. \ resolution^{**} \ \psi \ \psi' \land partial\text{-}interps \ tree' \ I \ (fst \ \psi')
   \land (sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0)
 using assms
proof (induct arbitrary: I rule: sem-tree-size)
  case (bigger xs I) note IH = this(1) and finite = this(2) and a-u-i = this(3) and part = this(4)
   and simp = this(5)
  { assume sem-tree-size xs = 0
   then have ?case using part by blast
  }
 moreover {
   assume sn\theta: sem-tree-size xs > \theta
   obtain aq ad v where xs: xs = Node \ v \ aq \ ad \ using \ sn\theta by (cases xs, auto)
   {
      assume sem-tree-size ag = 0 \land sem-tree-size ad = 0
      then have aq: aq = Leaf and ad: ad = Leaf by (cases aq, auto, cases ad, auto)
      then obtain \chi \chi' where
        \chi: \neg I \cup \{Pos\ v\} \models \chi \text{ and }
        tot\chi: total-over-m (I \cup \{Pos\ v\})\ \{\chi\} and
        \chi\psi: \chi\in\mathit{fst}\ \psi and
        \chi': \neg I \cup \{Neg\ v\} \models \chi' and
        tot\chi': total-over-m (I \cup \{Neg\ v\})\ \{\chi'\} and \chi'\psi: \chi' \in fst\ \psi
        using part unfolding xs by auto
      have Posv: Pos v \notin \# \chi using \chi unfolding true-cls-def true-lit-def by auto
      have Negv: Neg v \notin \# \chi' using \chi' unfolding true-cls-def true-lit-def by auto
      {
        assume Neg\chi: Neg\ v \notin \# \chi
        then have \neg I \models \chi using \chi Posv unfolding true-cls-def true-lit-def by auto
        moreover have total-over-m I \{\chi\}
          using Posv Neg\chi atm-imp-pos-or-neg-lit tot\chi unfolding total-over-m-def total-over-set-def
          by fastforce
        ultimately have partial-interps Leaf I (fst \psi)
          and sem-tree-size Leaf < sem-tree-size xs
          and resolution^{**} \psi \psi
          unfolding xs by (auto\ simp\ add: \chi\psi)
      }
      moreover {
         assume Pos\chi: Pos\ v\notin\#\chi'
         then have I_{\chi}: \neg I \models \chi' using \chi' Posv unfolding true-cls-def true-lit-def by auto
         moreover have total-over-m I \{\chi'\}
           using Negv Pos\chi atm-imp-pos-or-neg-lit tot\chi'
           unfolding total-over-m-def total-over-set-def by fastforce
         ultimately have partial-interps Leaf I (fst \psi)
           and sem-tree-size Leaf < sem-tree-size xs
           and resolution^{**} \psi \psi
           using \chi'\psi I\chi unfolding xs by auto
```

```
moreover {
   assume neg: Neg v \in \# \chi and pos: Pos v \in \# \chi'
   have count \ \chi \ (Neg \ v) = 1
     using simplified-count[OF simp \chi\psi] neg
     by (simp add: dual-order.antisym)
   have count \chi'(Pos\ v) = 1
     using simplified-count [OF simp \chi'\psi] pos
    by (simp add: dual-order.antisym)
   obtain C where \chi C: \chi = C + \{\# Neg \ v\#\} and negC: Neg \ v \notin \# C and posC: Pos \ v \notin \# C
     by (metis (no-types, lifting) One-nat-def Posv Suc-eq-plus1-left (count \chi (Neg v) = 1)
       add-diff-cancel-left' count-diff count-greater-eq-one-iff count-single insert-DiffM
      insert-DiffM2 less-numeral-extra(3) multi-member-skip not-le not-less-eq-eq)
   obtain C' where
     \chi C': \chi' = C' + \{ \# Pos \ v \# \}  and
    posC': Pos \ v \notin \# \ C' and
     negC': Neg v \notin \# C'
    by (metis (no-types, lifting) One-nat-def Negv Suc-eq-plus1-left (count \chi' (Pos v) = 1)
       add\text{-}diff\text{-}cancel\text{-}left'\ count\text{-}diff\ count\text{-}greater\text{-}eq\text{-}one\text{-}iff\ count\text{-}single\ insert\text{-}DiffM
      insert-DiffM2 less-numeral-extra(3) multi-member-skip not-le not-less-eq-eq)
   have totC: total-over-m \ I \ \{C\}
     using tot\chi tot-over-m-remove[of I Pos v C] negC posC unfolding \chi C
    by (metis total-over-m-sum uminus-Neg uminus-of-uminus-id)
   have totC': total-over-m \ I \ \{C'\}
     using tot\chi' total-over-m-sum tot-over-m-remove[of I Neg v C'] negC' posC'
    unfolding \chi C' by (metis total-over-m-sum uminus-Neg)
   have \neg I \models C + C'
     using \chi \chi' \chi C \chi C' by auto
   then have part-I-\psi''': partial-interps Leaf I (fst \psi \cup \{C + C'\})
     using totC \ totC' \ (\neg I \models C + C') by (metis Un-insert-right insertI1)
      partial-interps.simps(1) total-over-m-sum)
     assume ({#Pos v#} + C', {#Neg v#} + C) \notin snd \psi
     then have inf": inference \psi (fst \psi \cup \{C + C'\}, snd \psi \cup \{(\chi', \chi)\})
      by (metis \chi'\psi \chi C \chi C' \chi \psi add.commute inference-step prod.collapse resolution)
    obtain N' where full: full simplify (fst \psi \cup \{C + C'\}) N'
      by (metis finite-simplified-full-simp fst-conv inf" inference-preserves-finite
        local.finite)
    have resolution \psi (N', snd \psi \cup \{(\chi', \chi)\})
      using resolution.intros(2)[OF - simp full, of snd \psi snd \psi \cup \{(\chi', \chi)\}] inf''
      by (metis surjective-pairing)
     moreover have partial-interps Leaf I N'
      using full-simplify-preserve-partial-tree [OF full part-I-\psi'''].
     moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
     ultimately have ?case
      by (metis (no-types) prod.sel(1) rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-reft)
   }
   moreover {
     assume a: (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C) \in snd\ \psi
    then have (\exists \chi \in fst \ \psi. \ (\forall I. \ total\text{-}over\text{-}m \ I \ \{C+C'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
        \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C)) \lor tautology \ (C' + C)
      proof -
        obtain p where p: Pos p \in \# (\{\#Pos \ v\#\} + C') \land Neg \ p \in \# (\{\#Neg \ v\#\} + C)
```

}

```
\land ((\exists \chi \in fst \ \psi. \ (\forall I. \ total\text{-}over\text{-}m \ I \ \{(\{\#Pos \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') - (\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + C') + ((\{\#Neg \ v\#\}) + ((\{\#Neg \ v\#\}) + (
+C) -\{\#Neg\ p\#\}\} \longrightarrow total\text{-}over\text{-}m\ I\ \{\chi\}\} \land (\forall\ I.\ total\text{-}over\text{-}m\ I\ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models (\{\#Pos\ p\})\}
v\#\} + C' - \{\#Pos\ p\#\} + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\}))) \lor tautology\ ((\{\#Pos\ v\#\} + C') - \{\#Pos\ p\#\}))
\{\#Pos\ p\#\} + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\})))
                                using a by (blast intro: allE[OF a-u-i[unfolded subsumes-def Ball-def],
                                        of (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C)])
                             { assume p \neq v
                                then have Pos \ p \in \# \ C' \land Neg \ p \in \# \ C \ using \ p \ by force
                                then have ?thesis by auto
                             }
                            moreover {
                                assume p = v
                              then have ?thesis using p by (metis add.commute add-diff-cancel-left')
                            ultimately show ?thesis by auto
                         \mathbf{qed}
                      moreover {
                         assume \exists \chi \in fst \ \psi. \ (\forall I. \ total-over-m \ I \ \{C+C'\} \longrightarrow total-over-m \ I \ \{\chi\})
                             \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C)
                         then obtain \vartheta where
                            \vartheta: \vartheta \in \mathit{fst} \ \psi and
                             tot - \vartheta - CC' : \forall I. \ total - over - m \ I \ \{C + C'\} \longrightarrow total - over - m \ I \ \{\vartheta\} and
                             \vartheta-inv: \forall I. total-over-m I \{\vartheta\} \longrightarrow I \models \vartheta \longrightarrow I \models C' + C by blast
                         have partial-interps Leaf I (fst \psi)
                             using tot - \vartheta - CC' \vartheta \vartheta - inv \ tot C \ tot C' \lor \neg I \models C + C' \lor total - over - m - sum \ by \ fastforce
                         moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
                         ultimately have ?case by blast
                      }
                     moreover {
                         assume tautCC': tautology (C' + C)
                         have total-over-m I \{C'+C\} using totC totC' total-over-m-sum by auto
                         then have \neg tautology (C' + C)
                            using \langle \neg I \models C + C' \rangle unfolding add.commute[of C C'] total-over-m-def
                            unfolding tautology-def by auto
                         then have False using tautCC' unfolding tautology-def by auto
                     ultimately have ?case by auto
                  ultimately have ?case by auto
            ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
       }
       moreover {
           assume size-ag: sem-tree-size ag > 0
           have sem-tree-size ag < sem-tree-size xs unfolding xs by auto
           moreover have partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi)
           and partad: partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
              using part partial-interps.simps(2) unfolding xs by metis+
           moreover
              have sem-tree-size ag < sem-tree-size xs \Longrightarrow finite (fst \psi) \Longrightarrow already-used-inv \psi
                  \implies partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi) \implies simplified (fst\ \psi)
                  \implies \exists tree' \ \psi'. \ resolution^{**} \ \psi \ \psi' \land partial-interps \ tree' \ (I \cup \{Pos \ v\}) \ (fst \ \psi')
                         \land (sem-tree-size tree' < sem-tree-size ag \lor sem-tree-size ag = 0)
                  using IH[of \ ag \ I \cup \{Pos \ v\}] by auto
           ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ \ where
              inf: resolution** \psi \psi'
```

```
and part: partial-interps tree' (I \cup \{Pos\ v\}) (fst\ \psi')
       and size: sem-tree-size tree' < sem-tree-size ag \lor sem-tree-size ag = 0
       using finite part rtranclp.rtrancl-refl a-u-i simp by blast
     have partial-interps ad (I \cup \{Neg\ v\}) (fst \psi')
       using rtranclp-resolution-preserve-partial-tree inf partad by fast
     then have partial-interps (Node v tree' ad) I (fst \psi') using part by auto
     then have ?case using inf size size-ag part unfolding xs by fastforce
   }
   moreover {
     assume size-ad: sem-tree-size ad > 0
     have sem-tree-size ad < sem-tree-size xs unfolding xs by auto
     moreover
       have
         partag: partial-interps ag (I \cup \{Pos\ v\}) (fst \psi) and
         partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
         using part partial-interps.simps(2) unfolding xs by metis+
     moreover have sem-tree-size ad \langle sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
       \longrightarrow (partial-interps ad (I \cup \{Neg\ v\}) (fst \psi) \longrightarrow simplified (fst \psi)
       \longrightarrow (\exists tree' \psi'. resolution^{**} \psi \psi' \land partial-interps tree' (I \cup \{Neg v\}) (fst \psi')
             \land (sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0)))
       using IH by blast
     ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ \ where
       inf: resolution^{**} \psi \psi'
       and part: partial-interps tree' (I \cup \{Neg\ v\}) (fst\ \psi')
       and size: sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0
       using finite part rtranclp.rtrancl-reft a-u-i simp by blast
     have partial-interps ag (I \cup \{Pos\ v\}) (fst \psi')
       using rtranclp-resolution-preserve-partial-tree inf partag by fast
     then have partial-interps (Node v ag tree') I (fst \psi') using part by auto
     then have ?case using inf size size-ad unfolding xs by fastforce
    ultimately have ?case by auto
 ultimately show ?case by auto
{\bf lemma}\ resolution\hbox{-} completeness\hbox{-} inv:
 fixes \psi :: 'v :: linorder state
 assumes
   unsat: \neg satisfiable (fst \psi) and
   finite: finite (fst \psi) and
   a-u-v: already-used-inv <math>\psi
 shows \exists \psi'. (resolution^{**} \psi \psi' \land \{\#\} \in fst \psi')
proof -
  obtain tree where partial-interps tree \{\} (fst \psi)
   using partial-interps-build-sem-tree-atms assms by metis
  then show ?thesis
   using unsat finite a-u-v
   proof (induct tree arbitrary: \psi rule: sem-tree-size)
     case (bigger tree \psi) note H = this
     {
       fix \chi
       assume tree: tree = Leaf
       obtain \chi where \chi: \neg {} \models \chi and tot\chi: total-over-m {} {\chi} and \chi\psi: \chi \in fst \psi
```

```
using H unfolding tree by auto
 moreover have \{\#\} = \chi
   using H atms-empty-iff-empty tot \chi
   unfolding true-cls-def total-over-m-def total-over-set-def by fastforce
 moreover have resolution^{**} \psi \psi by auto
 ultimately have ?case by metis
moreover {
 fix v tree1 tree2
 assume tree: tree = Node \ v \ tree1 \ tree2
 obtain \psi_0 where \psi_0: resolution** \psi \psi_0 and simp: simplified (fst \psi_0)
   proof -
     { assume simplified (fst \psi)
      moreover have resolution^{**} \psi \psi by auto
       ultimately have thesis using that by blast
     moreover {
      assume \neg simplified (fst \psi)
       then have \exists \psi'. full 1 simplify (fst \psi) \psi'
        by (metis Nitpick.rtranclp-unfold bigger.prems(3) full1-def
          rtranclp-simplify-terminates)
       then obtain N where full 1 simplify (fst \psi) N by metis
      then have resolution \psi (N, snd \psi)
        using resolution.intros(1)[of fst \psi N snd \psi] by auto
      moreover have simplified N
        using \langle full1 \ simplify \ (fst \ \psi) \ N \rangle unfolding full1-def by blast
       ultimately have ?thesis using that by force
     ultimately show ?thesis by auto
   qed
 have p: partial-interps tree \{\} (fst \psi_0)
 and uns: unsatisfiable (fst \psi_0)
 and f: finite (fst \psi_0)
 and a-u-v: already-used-inv \psi_0
      using \psi_0 bigger.prems(1) rtranclp-resolution-preserve-partial-tree apply blast
     using \psi_0 bigger.prems(2) rtranclp-resolution-preserves-unsat apply blast
    using \psi_0 bigger.prems(3) rtranclp-resolution-finite apply blast
   using rtranclp-resolution-already-used-inv[OF \psi_0 bigger.prems(4)] by blast
 obtain tree' \psi' where
   inf: resolution** \psi_0 \psi' and
   part': partial-interps tree' {} (fst \ \psi') and
   decrease: sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0
   using can-decrease-tree-size-resolution [OF f a-u-v p simp] unfolding tautology-def
   by meson
 have s: sem-tree-size tree' < sem-tree-size tree using decrease unfolding tree by auto
 have fin: finite (fst \psi')
   using f inf rtranclp-resolution-finite by blast
 have unsat: unsatisfiable (fst \psi')
   using rtranclp-resolution-preserves-unsat inf uns by metis
 have a-u-i': already-used-inv \psi'
   using a-u-v inf rtranclp-resolution-already-used-inv[of \psi_0 \psi'] by auto
 have ?case
   using inf rtranclp-trans[of resolution] H(1)[OF \ s \ part' \ unsat \ fin \ a-u-i'] \ \psi_0 by blast
}
```

```
ultimately show ?case by (cases tree, auto)
  qed
qed
lemma resolution-preserves-already-used-inv:
 assumes resolution S S'
 and already-used-inv S
 \mathbf{shows}\ \mathit{already-used-inv}\ S'
 using assms
 apply (induct rule: resolution.induct)
  apply (rule full1-simplify-already-used-inv; simp)
 apply (rule full-simplify-already-used-inv, simp)
 apply (rule inference-preserves-already-used-inv, simp)
 apply blast
 done
{\bf lemma}\ rtranclp\text{-}resolution\text{-}preserves\text{-}already\text{-}used\text{-}inv\text{:}
 assumes resolution** S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms
 apply (induct rule: rtranclp-induct)
  apply simp
 using resolution-preserves-already-used-inv by fast
lemma resolution-completeness:
 fixes \psi :: 'v :: linorder state
 assumes unsat: \neg satisfiable (fst \ \psi)
 and finite: finite (fst \psi)
 and snd \psi = \{\}
 shows \exists \psi'. (resolution^{**} \psi \psi' \land \{\#\} \in fst \psi')
proof -
 have already-used-inv \psi unfolding assms by auto
 then show ?thesis using assms resolution-completeness-inv by blast
qed
lemma rtranclp-preserves-sat:
 assumes simplify^{**} S S'
 and satisfiable S
 shows satisfiable S'
 using assms apply induction
  apply simp
 by (meson satisfiable-carac satisfiable-def simplify-preserves-un-sat-eq)
lemma resolution-preserves-sat:
 assumes resolution S S'
 and satisfiable (fst S)
 shows satisfiable (fst S')
 using assms apply (induction rule: resolution.induct)
  using rtranclp-preserves-sat tranclp-into-rtranclp unfolding full1-def apply fastforce
 by (metis fst-conv full-def inference-preserves-un-sat rtranclp-preserves-sat
   satisfiable-carac' satisfiable-def)
\mathbf{lemma}\ rtranclp\text{-}resolution\text{-}preserves\text{-}sat:
 assumes resolution** S S'
 and satisfiable (fst S)
```

```
shows satisfiable (fst S')
  using assms apply (induction rule: rtranclp-induct)
  apply simp
  using resolution-preserves-sat by blast
lemma resolution-soundness:
  fixes \psi :: 'v :: linorder state
  assumes resolution^{**} \psi \psi' and \{\#\} \in fst \psi'
 shows unsatisfiable (fst \psi)
  using assms by (meson rtranclp-resolution-preserves-sat satisfiable-def true-cls-empty
   true-clss-def)
{\bf lemma}\ resolution\hbox{-}soundness\hbox{-}and\hbox{-}completeness\hbox{:}
fixes \psi :: 'v :: linorder state
assumes finite: finite (fst \psi)
and snd: snd \psi = \{\}
shows (\exists \psi'. (resolution^{**} \psi \psi' \land \{\#\} \in fst \psi')) \longleftrightarrow unsatisfiable (fst \psi)
 using assms resolution-completeness resolution-soundness by metis
lemma simplified-falsity:
  assumes simp: simplified \psi
 and \{\#\} \in \psi
 shows \psi = \{\{\#\}\}\
proof (rule ccontr)
  assume H: \neg ?thesis
  then obtain \chi where \chi \in \psi and \chi \neq \{\#\} using assms(2) by blast
  then have \{\#\} \subset \# \chi by (simp add: mset-less-empty-nonempty)
  then have simplify \psi (\psi - \{\chi\})
   using simplify.subsumption[OF\ assms(2)\ \langle \{\#\} \subset \#\ \chi\rangle\ \langle \chi \in \psi\rangle] by blast
  then show False using simp by blast
qed
lemma simplify-falsity-in-preserved:
  assumes simplify \chi s \chi s'
 and \{\#\} \in \chi s
 shows \{\#\} \in \chi s'
  using assms
 by induction auto
lemma rtranclp-simplify-falsity-in-preserved:
  assumes simplify^{**} \chi s \chi s'
 and \{\#\} \in \chi s
 shows \{\#\} \in \chi s'
  using assms
  by induction (auto intro: simplify-falsity-in-preserved)
lemma resolution-falsity-get-falsity-alone:
 assumes finite (fst \psi)
 shows (\exists \psi'. (resolution^{**} \psi \psi' \land \{\#\} \in fst \psi')) \longleftrightarrow (\exists a\text{-}u\text{-}v. resolution^{**} \psi (\{\{\#\}\}, a\text{-}u\text{-}v))
   (is ?A \longleftrightarrow ?B)
proof
 assume ?B
  then show ?A by auto
next
 assume ?A
```

```
then obtain \chi s a-u-v where \chi s: resolution** \psi (\chi s, a-u-v) and F: {#} \in \chi s by auto
  { assume simplified \chi s
   then have ?B using simplified-falsity[OF - F] \chi s by blast
  moreover {
   assume \neg simplified \chi s
   then obtain \chi s' where full 1 simplify \chi s \chi s'
       by (metis \chi s assms finite-simplified-full1-simp fst-conv rtranclp-resolution-finite)
   then have \{\#\} \in \chi s'
     unfolding full1-def by (meson F rtranclp-simplify-falsity-in-preserved
       tranclp-into-rtranclp)
   then have ?B
     by (metis \chi s \langle full1 \ simplify \ \chi s \ \chi s' \rangle fst-conv full1-simp resolution-always-simplified
        rtranclp.rtrancl-into-rtrancl simplified-falsity)
 ultimately show ?B by blast
qed
lemma resolution-soundness-and-completeness':
  fixes \psi :: 'v :: linorder state
 assumes
   finite: finite (fst \psi)and
   snd: snd \ \psi = \{\}
  \mathbf{shows}\ (\exists\ a\textit{-}u\textit{-}v.\ (\mathit{resolution}^{**}\ \psi\ (\{\{\#\}\},\ a\textit{-}u\textit{-}v))) \longleftrightarrow \mathit{unsatisfiable}\ (\mathit{fst}\ \psi)
   using assms resolution-completeness resolution-soundness resolution-falsity-qet-falsity-alone
   by metis
end
theory Prop-Superposition
imports Partial-Clausal-Logic ../lib/Herbrand-Interpretation
begin
1.2
          Superposition
no-notation Herbrand-Interpretation.true-cls (infix \models 50)
notation Herbrand-Interpretation.true-cls (infix \models h 50)
no-notation Herbrand-Interpretation.true-clss (infix \models s \ 50)
notation Herbrand-Interpretation.true-clss (infix \models hs 50)
lemma herbrand-interp-iff-partial-interp-cls:
  S \models h \ C \longleftrightarrow \{Pos \ P | P. \ P \in S\} \cup \{Neg \ P | P. \ P \notin S\} \models C
 {\bf unfolding} \ \textit{Herbrand-Interpretation.true-cls-def Partial-Clausal-Logic.true-cls-def}
 by auto
lemma herbrand-consistent-interp:
  consistent-interp (\{Pos\ P|P.\ P\in S\} \cup \{Neg\ P|P.\ P\notin S\})
  unfolding consistent-interp-def by auto
lemma herbrand-total-over-set:
  total\text{-}over\text{-}set\ (\{Pos\ P|P.\ P\in S\} \cup \{Neg\ P|P.\ P\notin S\})\ T
  unfolding total-over-set-def by auto
\mathbf{lemma}\ herbrand\text{-}total\text{-}over\text{-}m:
  total-over-m (\{Pos\ P|P.\ P\in S\} \cup \{Neg\ P|P.\ P\notin S\}) T
```

```
unfolding total-over-m-def by (auto simp add: herbrand-total-over-set)
\mathbf{lemma}\ \mathit{herbrand-interp-iff-partial-interp-clss}\colon
     S \models hs \ C \longleftrightarrow \{Pos \ P|P. \ P \in S\} \cup \{Neg \ P|P. \ P \notin S\} \models s \ C
    unfolding true-clss-def Ball-def herbrand-interp-iff-partial-interp-cls
     Partial-Clausal-Logic.true-clss-def by auto
definition clss-lt :: 'a::wellorder clauses \Rightarrow 'a clause \Rightarrow 'a clauses where
clss-lt N C = \{D \in N. D \# \subset \# C\}
notation (latex output)
  clss-lt (-<^bsup>-<^esup>)
locale selection =
    fixes S :: 'a \ clause \Rightarrow 'a \ clause
    assumes
         S-selects-subseteq: \bigwedge C. S C \leq \# C and
         S-selects-neg-lits: \bigwedge C L. L \in \# S C \Longrightarrow is-neg L
{\bf locale}\ ground{\rm -}resolution{\rm -}with{\rm -}selection=
     selection S for S :: ('a :: wellorder) clause \Rightarrow 'a clause
begin
context
    fixes N :: 'a \ clause \ set
We do not create an equivalent of \delta, but we directly defined N_C by inlining the definition.
function
    production :: 'a \ clause \Rightarrow 'a \ interp
where
    production C =
      \{A.\ C\in N\ \land\ C\neq \{\#\}\ \land\ Max\ (set\text{-mset}\ C)=Pos\ A\ \land\ count\ C\ (Pos\ A)\leq 1
           \land \neg (\bigcup D \in \{D. \ D \# \subset \# \ C\}. \ production \ D) \models h \ C \land S \ C = \{\#\}\}
termination by (relation \{(D, C), D \# \subset \# C\}) (auto simp: wf-less-multiset)
declare production.simps[simp del]
definition interp :: 'a \ clause \Rightarrow 'a \ interp \ \mathbf{where}
     interp C = (\bigcup D \in \{D. \ D \# \subset \# \ C\}. \ production \ D)
lemma production-unfold:
     production C = \{A. \ C \in N \land C \neq \{\#\} \land Max \ (set\text{-mset} \ C) = Pos \ A \land \ count \ C \ (Pos \ A) \leq 1 \land \neg
interp C \models h \ C \land S \ C = \{\#\}\}
    unfolding interp-def by (rule production.simps)
abbreviation productive A \equiv (production \ A \neq \{\})
abbreviation produces :: 'a clause \Rightarrow 'a \Rightarrow bool where
    produces\ C\ A \equiv production\ C = \{A\}
lemma producesD:
     produces\ C\ A \Longrightarrow C \in N \land C \neq \{\#\} \land Pos\ A = Max\ (set\text{-}mset\ C) \land count\ C\ (Pos\ A) \leq 1 \land (
         \neg interp C \models h C \land S C = \{\#\}
```

unfolding production-unfold by auto

```
lemma produces C A \Longrightarrow Pos A \in \# C
 by (simp add: Max-in-lits producesD)
lemma interp'-def-in-set:
  interp C = (\bigcup D \in \{D \in N. D \# \subset \# C\}), production D
  unfolding interp-def apply auto
 unfolding production-unfold apply auto
 done
lemma production-iff-produces:
 produces\ D\ A\longleftrightarrow A\in production\ D
 unfolding production-unfold by auto
definition Interp :: 'a clause \Rightarrow 'a interp where
  Interp C = interp \ C \cup production \ C
lemma
 assumes produces CP
 shows Interp C \models h C
 unfolding Interp-def assms using producesD[OF assms]
 by (metis Max-in-lits Un-insert-right insertI1 pos-literal-in-imp-true-cls)
definition INTERP :: 'a interp where
INTERP = (\bigcup D \in \mathbb{N}. \ production \ D)
lemma interp-subseteq-Interp[simp]: interp C \subseteq Interp \ C
  unfolding Interp-def by simp
lemma Interp-as-UNION: Interp C = (\bigcup D \in \{D. D \# \subseteq \# C\}. production D)
 unfolding Interp-def interp-def le-multiset-def by fast
lemma productive-not-empty: productive C \Longrightarrow C \neq \{\#\}
 unfolding production-unfold by auto
lemma productive-imp-produces-Max-literal: productive C \Longrightarrow produces C (atm-of (Max (set-mset C)))
  unfolding production-unfold by (auto simp del: atm-of-Max-lit)
\textbf{lemma} \ \textit{productive-imp-produces-Max-atom: productive} \ C \Longrightarrow \textit{produces} \ C \ (\textit{Max} \ (\textit{atms-of} \ C))
 unfolding atms-of-def Max-atm-of-set-mset-commute[OF productive-not-empty]
 by (rule productive-imp-produces-Max-literal)
lemma produces-imp-Max-literal: produces C A \Longrightarrow A = atm-of (Max (set-mset C))
 by (metis Max-singleton insert-not-empty productive-imp-produces-Max-literal)
\textbf{lemma} \ \textit{produces-imp-Max-atom: produces} \ \textit{C} \ \textit{A} \Longrightarrow \textit{A} = \textit{Max} \ (\textit{atms-of} \ \textit{C})
 by (metis Max-singleton insert-not-empty productive-imp-produces-Max-atom)
lemma produces-imp-Pos-in-lits: produces C A \Longrightarrow Pos A \in \# C
 by (auto intro: Max-in-lits dest!: producesD)
lemma productive-in-N: productive C \Longrightarrow C \in N
 unfolding production-unfold by auto
lemma produces-imp-atms-leq: produces C A \Longrightarrow B \in atms-of C \Longrightarrow B \leq A
```

```
by (rule pos-Max-imp-neg-notin) (auto dest: producesD)
lemma less-eq-imp-interp-subseteq-interp: C \# \subseteq \# D \Longrightarrow interp \ C \subseteq interp \ D
  unfolding interp-def by auto (metis multiset-order.order.strict-trans2)
lemma less-eq-imp-interp-subseteq-Interp: C \# \subseteq \# D \implies interp C \subseteq Interp D
 unfolding Interp-def using less-eq-imp-interp-subseteq-interp by blast
lemma less-imp-production-subseteq-interp: C \# \subset \# D \Longrightarrow production C \subseteq interp D
 unfolding interp-def by fast
lemma less-eq-imp-production-subseteq-Interp: C \# \subseteq \# D \Longrightarrow production C \subseteq Interp D
  unfolding Interp-def using less-imp-production-subseteq-interp
 by (metis multiset-order.le-imp-less-or-eq le-supI1 sup-qe2)
lemma less-imp-Interp-subseteq-interp: C \# \subset \# D \Longrightarrow Interp C \subseteq interp D
  unfolding Interp-def
 by (auto simp: less-eq-imp-interp-subseteq-interp less-imp-production-subseteq-interp)
lemma less-eq-imp-Interp-subseteq-Interp: C \# \subseteq \# D \Longrightarrow Interp C \subseteq Interp D
  using less-imp-Interp-subseteq-interp
  unfolding Interp-def by (metis multiset-order.le-imp-less-or-eq le-supI2 subset-reft sup-commute)
lemma false-Interp-to-true-interp-imp-less-multiset: A \notin Interp\ C \Longrightarrow A \in interp\ D \Longrightarrow C \# \subset \#
  using less-eq-imp-interp-subseteq-Interp multiset-linorder.not-less by blast
lemma false-interp-to-true-interp-imp-less-multiset: A \notin interp \ C \Longrightarrow A \in interp \ D \Longrightarrow C \# \subset \# D
 using less-eq-imp-interp-subseteq-interp multiset-linorder.not-less by blast
lemma false-Interp-to-true-Interp-imp-less-multiset: A \notin Interp\ C \Longrightarrow A \in Interp\ D \Longrightarrow C \# \subset \#
  using less-eq-imp-Interp-subseteq-Interp multiset-linorder.not-less by blast
lemma false-interp-to-true-Interp-imp-le-multiset: A \notin interp \ C \Longrightarrow A \in Interp \ D \Longrightarrow C \# \subset \# \ D
  using less-imp-Interp-subseteq-interp multiset-linorder.not-less by blast
lemma interp-subseteq-INTERP: interp C \subseteq INTERP
  unfolding interp-def INTERP-def by (auto simp: production-unfold)
lemma production-subseteq-INTERP: production C \subseteq INTERP
  unfolding INTERP-def using production-unfold by blast
lemma Interp-subseteq-INTERP: Interp\ C\subseteq INTERP
 unfolding Interp-def by (auto intro!: interp-subseteq-INTERP production-subseteq-INTERP)
This lemma corresponds to theorem 2.7.6 page 67 of Weidenbach's book.
lemma produces-imp-in-interp:
 assumes a-in-c: Neg A \in \# C and d: produces D A
 shows A \in interp \ C
proof -
  from d have Max (set-mset D) = Pos A
   using production-unfold by blast
  then have D \# \subset \# \{ \#Neg \ A\# \}
```

by (metis Max-ge finite-atms-of insert-not-empty productive-imp-produces-Max-atom

lemma produces-imp-neg-notin-lits: produces $C A \Longrightarrow Neg A \notin \# C$

singleton-inject)

```
by (auto intro: Max-pos-neg-less-multiset)
  moreover have \{\#Neg\ A\#\}\ \#\subseteq\#\ C
   by (rule less-eq-imp-le-multiset) (rule mset-le-single[OF a-in-c])
  ultimately show ?thesis
   using d by (blast dest: less-eq-imp-interp-subseteq-interp less-imp-production-subseteq-interp)
qed
\mathbf{lemma}\ \textit{neg-notin-Interp-not-produce}\colon \textit{Neg}\ \textit{A}\in \#\ \textit{C} \Longrightarrow \textit{A}\notin \textit{Interp}\ \textit{D}\Longrightarrow \textit{C}\ \#\subseteq \#\ \textit{D}\Longrightarrow \neg\ \textit{produces}
 by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-Interp)
lemma in-production-imp-produces: A \in production \ C \Longrightarrow produces \ C \ A
  by (metis insert-absorb productive-imp-produces-Max-atom singleton-insert-inj-eq')
lemma not-produces-imp-notin-production: \neg produces C A \Longrightarrow A \notin production C
  by (metis in-production-imp-produces)
lemma not-produces-imp-notin-interp: (\bigwedge D. \neg produces D A) \Longrightarrow A \notin interp C
  unfolding interp-def by (fast intro!: in-production-imp-produces)
The results below corresponds to Lemma 3.4.
Nitpicking: If D = D' and D is productive, I^D \subseteq I_{D'} does not hold.
lemma true-Interp-imp-general:
  assumes
    c\text{-}le\text{-}d: C \# \subseteq \# D and
   d-lt-d': D \# \subset \# D' and
   c-at-d: Interp D \models h \ C and
   subs: interp D' \subseteq (\bigcup C \in \mathit{CC}.\ \mathit{production}\ C)
  shows (\bigcup C \in CC. production C) \models h \ C
proof (cases \exists A. Pos A \in \# C \land A \in Interp D)
  case True
  then obtain A where a-in-c: Pos A \in \# C and a-at-d: A \in Interp D
   by blast
  from a-at-d have A \in interp\ D'
   using d-lt-d' less-imp-Interp-subseteq-interp by blast
  then show ?thesis
   using subs a-in-c by (blast dest: contra-subsetD)
next
  case False
  then obtain A where a-in-c: Neg A \in \# C and A \notin Interp D
   using c-at-d unfolding true-cls-def by blast
  then have \bigwedge D''. \neg produces D'' A
   using c-le-d neg-notin-Interp-not-produce by simp
  then show ?thesis
   using a-in-c subs not-produces-imp-notin-production by auto
qed
lemma true-Interp-imp-interp: C \# \subseteq \# D \implies D \# \subset \# D' \implies Interp D \models h C \implies interp D' \models h C
  using interp-def true-Interp-imp-general by simp
lemma true-Interp-imp-Interp: C \# \subseteq \# D \implies D \# \subset \# D' \implies Interp D \models h C \implies Interp D' \models h C
  using Interp-as-UNION interp-subseteq-Interp true-Interp-imp-general by simp
lemma true-Interp-imp-INTERP: C \# \subseteq \# D \Longrightarrow Interp D \models h C \Longrightarrow INTERP \models h C
```

using INTERP-def interp-subseteq-INTERP

```
true-Interp-imp-general[OF - less-multiset-right-total]
 by simp
lemma true-interp-imp-general:
 assumes
   c\text{-}le\text{-}d: C \# \subseteq \# D and
   d-lt-d': D \# \subset \# D' and
   c-at-d: interp D \models h C and
   subs: interp D' \subseteq (\bigcup C \in CC. production C)
 shows (\bigcup C \in CC. production C) \models h C
proof (cases \exists A. Pos A \in \# C \land A \in interp D)
 case True
 then obtain A where a-in-c: Pos A \in \# C and a-at-d: A \in interp D
   by blast
 from a-at-d have A \in interp D'
   using d-lt-d' less-eq-imp-interp-subseteq-interp[OF multiset-order.less-imp-le] by blast
  then show ?thesis
   using subs a-in-c by (blast dest: contra-subsetD)
next
  case False
 then obtain A where a-in-c: Neg A \in \# C and A \notin interp D
   using c-at-d unfolding true-cls-def by blast
  then have \bigwedge D''. \neg produces D'' A
   using c-le-d by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-interp)
  then show ?thesis
   using a-in-c subs not-produces-imp-notin-production by auto
qed
This lemma corresponds to theorem 2.7.6 page 67 of Weidenbach's book. Here the strict maxi-
mality is important
lemma true-interp-imp-interp: C \# \subseteq \# D \implies D \# \subset \# D' \implies interp D \models h C \implies interp D' \models h C
 using interp-def true-interp-imp-general by simp
lemma true-interp-imp-Interp: C \not = \not = D \implies D \not = D' \implies interp D \not = D \cap C \implies Interp D' \not = D \cap C
  using Interp-as-UNION interp-subseteq-Interp[of D'] true-interp-imp-general by simp
lemma true-interp-imp-INTERP: C \# \subseteq \# D \Longrightarrow interp D \models h C \Longrightarrow INTERP \models h C
 using INTERP-def interp-subseteq-INTERP
   true-interp-imp-general[OF - less-multiset-right-total]
 by simp
lemma productive-imp-false-interp: productive C \Longrightarrow \neg interp C \models h C
 unfolding production-unfold by auto
This lemma corresponds to theorem 2.7.6 page 67 of Weidenbach's book. Here the strict maxi-
mality is important
\mathbf{lemma}\ cls-gt-double-pos-no-production:
 assumes D: \{\#Pos\ P,\ Pos\ P\#\}\ \#\subset\#\ C
 shows \neg produces \ C \ P
proof -
 let ?D = \{ \#Pos \ P, \ Pos \ P\# \}
 note D' = D[unfolded\ less-multiset_{HO}]
 consider
   (P) \ count \ C \ (Pos \ P) \ge 2
 \mid (Q) \ Q \text{ where } Q > Pos \ P \text{ and } Q \in \# \ C
```

```
using HOL.spec[OF HOL.conjunct2[OF D'], of Pos P] by (auto split: if-split-asm)
 then show ?thesis
   proof cases
     case Q
     have Q \in set\text{-}mset\ C
      using Q(2) by (auto split: if-split-asm)
     then have Max (set\text{-}mset C) > Pos P
      using Q(1) Max-gr-iff by blast
     then show ?thesis
      unfolding production-unfold by auto
   next
     case P
     then show ?thesis
      unfolding production-unfold by auto
   qed
\mathbf{qed}
This lemma corresponds to theorem 2.7.6 page 67 of Weidenbach's book.
lemma
 assumes D: C+\{\#Neg\ P\#\}\ \#\subset\#\ D
 shows production D \neq \{P\}
proof -
 note D' = D[unfolded\ less-multiset_{HO}]
 consider
   (P) Neg P \in \# D
 | (Q) Q  where Q > Neg P  and count D Q > count (C + {\#Neg P\#}) Q
   using HOL.spec[OF\ HOL.conjunct2[OF\ D']], of Neg P] count-greater-zero-iff by fastforce
 then show ?thesis
   proof cases
     case Q
     have Q \in set\text{-}mset\ D
      using Q(2) gr-implies-not0 by fastforce
     then have Max (set\text{-}mset D) > Neg P
      using Q(1) Max-gr-iff by blast
     then have Max (set\text{-}mset D) > Pos P
      using less-trans[of Pos P Neg P Max (set-mset D)] by auto
     then show ?thesis
      unfolding production-unfold by auto
   next
     case P
     then have Max (set\text{-}mset D) > Pos P
      by (meson Max-ge finite-set-mset le-less-trans linorder-not-le pos-less-neg)
     then show ?thesis
      unfolding production-unfold by auto
   qed
qed
\mathbf{lemma}\ in\text{-}interp\text{-}is\text{-}produced:
 assumes P \in INTERP
 shows \exists D. D + \{\#Pos P\#\} \in N \land produces (D + \{\#Pos P\#\}) P
 using assms unfolding INTERP-def UN-iff production-iff-produces Ball-def
  \mathbf{by} \ (\textit{metis ground-resolution-with-selection.produces-imp-Pos-in-lits insert-DiffM2} \\
   ground-resolution-with-selection-axioms not-produces-imp-notin-production)
```

end

abbreviation $MMax\ M \equiv Max\ (set\text{-}mset\ M)$

1.2.1 We can now define the rules of the calculus

```
inductive superposition-rules :: 'a clause \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool where
factoring: superposition-rules (C + \{\#Pos\ P\#\} + \{\#Pos\ P\#\}) \mid B\ (C + \{\#Pos\ P\#\}) \mid
superposition-l: superposition-rules (C_1 + \{\#Pos\ P\#\}) (C_2 + \{\#Neg\ P\#\}) (C_1 + C_2)
inductive superposition :: 'a clauses \Rightarrow 'a clauses \Rightarrow bool where
superposition: A \in N \Longrightarrow B \in N \Longrightarrow superposition-rules A \ B \ C
  \implies superposition N (N \cup \{C\})
definition abstract-red :: 'a::wellorder clause \Rightarrow 'a clauses \Rightarrow bool where
abstract-red C N = (clss-lt \ N \ C \models p \ C)
lemma less-multiset[iff]: M < N \longleftrightarrow M \# \subset \# N
  unfolding less-multiset-def by auto
lemma less-eq-multiset[iff]: M \leq N \longleftrightarrow M \# \subseteq \# N
  unfolding less-eq-multiset-def by auto
\mathbf{lemma}\ \mathit{herbrand-true-clss-true-clss-cls-herbrand-true-clss}:
  assumes
    AB: A \models hs B  and
    BC: B \models p C
 shows A \models h C
proof -
 let ?I = \{Pos \ P \mid P. \ P \in A\} \cup \{Neg \ P \mid P. \ P \notin A\}
 have B: ?I \models s B \text{ using } AB
   by (auto simp add: herbrand-interp-iff-partial-interp-clss)
 have IH: \Lambda I. total-over-set I (atms-of C) \Longrightarrow total-over-m I B \Longrightarrow consistent-interp I
   \implies I \models s B \implies I \models C \text{ using } BC
   by (auto simp add: true-clss-cls-def)
  show ?thesis
   unfolding herbrand-interp-iff-partial-interp-cls
   by (auto intro: IH[of ?I] simp add: herbrand-total-over-set herbrand-total-over-m
     herbrand-consistent-interp B)
qed
lemma abstract-red-subset-mset-abstract-red:
 assumes
   abstr: abstract-red C N and
   c-lt-d: C \subseteq \# D
 {f shows} abstract-red D N
  have \{D \in N. \ D \# \subset \# \ C\} \subseteq \{D' \in N. \ D' \# \subset \# \ D\}
   using c-lt-d less-eq-imp-le-multiset by fastforce
  then show ?thesis
   using abstr unfolding abstract-red-def clss-lt-def
   by (metis (no-types, lifting) c-lt-d subset-mset.diff-add true-clss-cls-mono-r'
     true-clss-cls-subset)
qed
```

```
lemma true-clss-cls-extended:
    assumes
         A \models p B  and
        tot: total-over-m I A and
        cons: consistent-interp I and
        I-A: I \models s A
    shows I \models B
proof -
    let ?I = I \cup \{Pos\ P | P.\ P \in atms-of\ B \land P \notin atms-of-s\ I\}
    have consistent-interp ?I
        using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
            apply (auto 1 5 simp add: image-iff)
        by (metis\ atm\text{-}of\text{-}uminus\ literal.sel(1))
    moreover have total-over-m ?I (A \cup \{B\})
        proof -
             obtain aa :: 'a \ set \Rightarrow 'a \ literal \ set \Rightarrow 'a \ \mathbf{where}
                 f2: \forall x0 \ x1. \ (\exists v2. \ v2 \in x0 \ \land \ Pos \ v2 \notin x1 \ \land \ Neq \ v2 \notin x1)
                        \longleftrightarrow (\mathit{aa}\ \mathit{x0}\ \mathit{x1}\ \in \mathit{x0}\ \land\ \mathit{Pos}\ (\mathit{aa}\ \mathit{x0}\ \mathit{x1}) \notin \mathit{x1}\ \land\ \mathit{Neg}\ (\mathit{aa}\ \mathit{x0}\ \mathit{x1}) \notin \mathit{x1})
                 by moura
             have \forall a. a \notin atms\text{-}of\text{-}ms \ A \lor Pos \ a \in I \lor Neg \ a \in I
                 using tot by (simp add: total-over-m-def total-over-set-def)
             then have as (atms-of-ms\ A\cup atms-of-ms\ \{B\}) (I\cup \{Pos\ a\ | a.\ a\in atms-of\ B\land\ a\notin atms-of-s
I
                 \notin atms-of-ms A \cup atms-of-ms \{B\} \vee Pos \ (aa \ (atms-of-ms A \cup atms-of-ms \{B\})
                      (I \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\})) \in I
                         \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\}
                      \vee Neg (aa (atms-of-ms A \cup atms-of-ms \{B\})
                          (I \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\})) \in I
                         \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\}
                 by auto
             then have total-over-set (I \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\})
                 (atms-of-ms\ A\cup atms-of-ms\ \{B\})
                 using f2 by (meson total-over-set-def)
             then show ?thesis
                 by (simp add: total-over-m-def)
    moreover have ?I \models s A
        using I-A by auto
     ultimately have ?I \models B
        using \langle A \models pB \rangle unfolding true-clss-cls-def by auto
    then show ?thesis
oops
lemma
    assumes
         CP: \neg clss-lt \ N \ (\{\#C\#\} + \{\#E\#\}) \models p \ \{\#C\#\} + \{\#Neg \ P\#\} \ and
           clss-lt\ N\ (\{\#C\#\}\ +\ \{\#E\#\})\ \models p\ \{\#E\#\}\ +\ \{\#Pos\ P\#\}\ \lor\ clss-lt\ N\ (\{\#C\#\}\ +\ \{\#E\#\})\ \models p\ \{\#E\#\}\ +\ \{\#E\#\})\ \models p\ \{\#E\#\}\ +\ \{\#E\#
\{\#C\#\} + \{\#Neg\ P\#\}
    shows clss-lt N (\{\#C\#\} + \{\#E\#\}) \models p \{\#E\#\} + \{\#Pos P\#\}
oops
locale ground-ordered-resolution-with-redundancy =
     ground-resolution-with-selection +
    fixes redundant :: 'a::wellorder clause \Rightarrow 'a clauses \Rightarrow bool
    assumes
```

```
redundant-iff-abstract: redundant \ A \ N \longleftrightarrow abstract-red A \ N
begin
definition saturated :: 'a clauses \Rightarrow bool where
saturated N \longleftrightarrow (\forall A \ B \ C. \ A \in N \longrightarrow B \in N \longrightarrow \neg redundant \ A \ N \longrightarrow \neg redundant \ B \ N
  \longrightarrow superposition-rules A \ B \ C \longrightarrow redundant \ C \ N \lor C \in N
lemma
 assumes
   saturated: saturated N and
   finite: finite N and
   empty: \{\#\} \notin N
 shows INTERP\ N \models hs\ N
proof (rule ccontr)
  let ?N_{\mathcal{I}} = INTERP N
  assume ¬ ?thesis
  then have not-empty: \{E \in \mathbb{N}. \neg ?\mathbb{N}_{\mathcal{I}} \models h E\} \neq \{\}
   unfolding true-clss-def Ball-def by auto
  \mathbf{def}\ D \equiv Min\ \{E \in \mathbb{N}.\ \neg?N_{\mathcal{I}} \models h\ E\}
  have [simp]: D \in N
   unfolding D-def
   by (metis (mono-tags, lifting) Min-in not-empty finite mem-Collect-eq rev-finite-subset subset I)
  have not-d-interp: \neg ?N_{\mathcal{I}} \models h D
   unfolding D-def
   by (metis (mono-tags, lifting) Min-in finite mem-Collect-eq not-empty rev-finite-subset subset I)
  have cls-not-D: \bigwedge E. E \in N \Longrightarrow E \neq D \Longrightarrow \neg ?N_{\mathcal{I}} \models h E \Longrightarrow D \leq E
   using finite D-def by (auto simp del: less-eq-multiset)
  obtain CL where D: D = C + \{\#L\#\} and LSD: L \in \#SD \lor (SD = \{\#\} \land Max (set\text{-mset } D)
= L
   proof (cases\ S\ D = \{\#\})
      case False
      then obtain L where L \in \#SD
       using Max-in-lits by blast
      moreover
       then have L \in \# D
         using S-selects-subseteq[of D] by auto
       then have D = (D - \{\#L\#\}) + \{\#L\#\}
      ultimately show ?thesis using that by blast
   next
      let ?L = MMax D
      case True
      moreover
       have ?L \in \# D
         by (metis (no-types, lifting) Max-in-lits \langle D \in N \rangle empty)
       then have D = (D - \{\#?L\#\}) + \{\#?L\#\}
      ultimately show ?thesis using that by blast
   qed
  have red: \neg redundant D N
   proof (rule ccontr)
      assume red[simplified]: \sim redundant D N
      have \forall E < D. E \in N \longrightarrow ?N_{\mathcal{I}} \models h E
       using cls-not-D not-le by fastforce
      then have ?N_{\mathcal{I}} \models hs \ clss\text{-}lt \ N \ D
       unfolding clss-lt-def true-clss-def Ball-def by blast
      then show False
```

```
using red not-d-interp unfolding abstract-red-def redundant-iff-abstract
    using herbrand-true-clss-true-clss-cls-herbrand-true-clss by fast
 qed
consider
 (L) P where L = Pos \ P and S \ D = \{\#\} and Max \ (set\text{-}mset \ D) = Pos \ P
| (Lneg) P  where L = Neg P
 using LSD S-selects-neg-lits[of L D] by (cases L) auto
then show False
 proof cases
   case L note P = this(1) and S = this(2) and max = this(3)
   have count D L > 1
    proof (rule ccontr)
      assume <sup>∼</sup> ?thesis
      then have count: count D L = 1
        unfolding D by (auto simp: not-in-iff)
      have \neg ?N_{\mathcal{I}} \models h D
        using not-d-interp true-interp-imp-INTERP ground-resolution-with-selection-axioms
         by blast
      then have produces N D P
        using not-empty empty finite \langle D \in N \rangle count L
          true-interp-imp-INTERP unfolding production-iff-produces unfolding production-unfold
        by (auto simp add: max not-empty)
      then have INTERP N \models h D
        unfolding D
        by (metis pos-literal-in-imp-true-cls produces-imp-Pos-in-lits
         production-subseteq-INTERP singletonI subsetCE)
      then show False
        using not-d-interp by blast
    qed
   then have Pos P \in \# C
    by (simp \ add: P \ D)
   then obtain C' where C':D = C' + \{\#Pos\ P\#\} + \{\#Pos\ P\#\}
    unfolding D by (metis (full-types) P insert-DiffM2)
   have sup: superposition-rules D D (D - \{\#L\#\})
    unfolding C' L by (auto simp add: superposition-rules.simps)
   have C' + \{ \#Pos \ P\# \} \ \# \subset \# \ C' + \{ \#Pos \ P\# \} + \{ \#Pos \ P\# \} 
    by auto
   moreover have \neg ?N_{\mathcal{I}} \models h (D - \{\#L\#\})
    using not-d-interp unfolding C'L by auto
   ultimately have C' + \{\#Pos\ P\#\} \notin N
    by (metis (no-types, lifting) C' P add-diff-cancel-right' cls-not-D less-multiset
      multi-self-add-other-not-self not-le)
   have D - \{\#L\#\} \# \subset \# D
    unfolding C'L by auto
   have c'-p-p: C' + {\#Pos\ P\#} + {\#Pos\ P\#} - {\#Pos\ P\#} = C' + {\#Pos\ P\#}
    by auto
   have redundant (C' + \{\#Pos\ P\#\})\ N
    using saturated red sup \langle D \in N \rangle \langle C' + \{ \#Pos \ P\# \} \notin N \rangle unfolding saturated-def C' L c'-p-p
   moreover have C' + \{ \#Pos \ P\# \} \subseteq \# C' + \{ \#Pos \ P\# \} + \{ \#Pos \ P\# \}
    by auto
   ultimately show False
    using red unfolding C' redundant-iff-abstract by (blast dest:
      abstract-red-subset-mset-abstract-red)
 next
```

```
case Lneg note L = this(1)
have P \in ?N_{\mathcal{I}}
 using not-d-interp unfolding D true-cls-def L by (auto split: if-split-asm)
then obtain E where
 DPN: E + \{\#Pos\ P\#\} \in N and
 prod: production N(E + \{\#Pos\ P\#\}) = \{P\}
 using in-interp-is-produced by blast
have sup-EC: superposition-rules (E + \{\#Pos\ P\#\}) (C + \{\#Neg\ P\#\}) (E + C)
 using superposition-l by fast
then have superposition N (N \cup \{E+C\})
 using DPN \langle D \in N \rangle unfolding DL by (auto simp add: superposition.simps)
have
 PMax: Pos P = MMax (E + \{\#Pos P\#\}) and
 count (E + {\#Pos P\#}) (Pos P) \le 1 and
 S(E + \{\#Pos P\#\}) = \{\#\}  and
  \neg interp\ N\ (E + \{\#Pos\ P\#\}) \models h\ E + \{\#Pos\ P\#\}
 using prod unfolding production-unfold by auto
have Neq P \notin \# E
 using prod produces-imp-neg-notin-lits by force
then have \bigwedge y. y \in \# (E + \{ \#Pos P \# \})
 \implies count (E + \{\#Pos P\#\}) (Neg P) < count (C + \{\#Neg P\#\}) (Neg P)
 using count-greater-zero-iff by fastforce
moreover have \bigwedge y. y \in \# (E + \{\#Pos P\#\}) \Longrightarrow y < Neg P
 using PMax by (metis DPN Max-less-iff empty finite-set-mset pos-less-neg
   set-mset-eq-empty-iff)
moreover have E + \{\#Pos\ P\#\} \neq C + \{\#Neg\ P\#\}
 using prod produces-imp-neg-notin-lits by force
ultimately have E + \{\#Pos\ P\#\}\ \#\subset\#\ C + \{\#Neg\ P\#\}
 unfolding less-multiset<sub>HO</sub> by (metis count-greater-zero-iff less-iff-Suc-add zero-less-Suc)
have ce-lt-d: C + E \# \subset \# D
unfolding D L by (simp \ add: \langle \bigwedge y. \ y \in \#E + \{\#Pos \ P\#\} \Longrightarrow y < Neg \ P \rangle \ ex-gt-imp-less-multiset)
have ?N_{\mathcal{I}} \models h E + \{\#Pos P\#\}
 using \langle P \in ?N_{\mathcal{I}} \rangle by blast
have ?N_{\mathcal{I}} \models h \ C+E \lor C+E \notin N
 using ce-lt-d cls-not-D unfolding D-def by fastforce
have Pos P \notin \# C+E
 using D \land P \in qround-resolution-with-selection.INTERP S \mid N \rangle
   (count (E + \{\#Pos P\#\}) (Pos P) \leq 1) multi-member-skip not-d-interp
   by (auto simp: not-in-iff)
then have \bigwedge y. y \in \# C + E
  \implies count (C+E) (Pos P) < count (E + \{\#Pos P\#\}) (Pos P)
 using set-mset-def by fastforce
have \neg redundant (C + E) N
 proof (rule ccontr)
   assume red'[simplified]: ¬ ?thesis
   have abs: clss-lt N(C + E) \models p C + E
     using redundant-iff-abstract red' unfolding abstract-red-def by auto
   have clss-lt N(C + E) \models p E + \{\#Pos P\#\} \lor clss-lt N(C + E) \models p C + \{\#Neg P\#\}
     proof clarify
       assume CP: \neg clss-lt\ N\ (C+E) \models p\ C + \{\#Neg\ P\#\}
       \{ \text{ fix } I \}
        assume
           total-over-m I (clss-lt N (C + E) \cup {E + {#Pos P#}}) and
           consistent-interp I and
          I \models s \ clss\text{-}lt \ N \ (C + E)
```

```
then have I \models C + E
                 using abs sorry
               moreover have \neg I \models C + \{\#Neg\ P\#\}
                 using CP unfolding true-clss-cls-def
               ultimately have I \models E + \{\#Pos\ P\#\} by auto
            then show clss-lt N(C + E) \models p E + \{\#Pos P\#\}
             unfolding true-clss-cls-def by auto
        moreover have clss-lt N (C + E) \subseteq clss-lt N (C + \{\#Neg\ P\#\})
          using ce-lt-d mult-less-trans unfolding clss-lt-def D L by force
        ultimately have redundant (C + \{\#Neg P\#\}) N \vee clss\text{-}lt N (C + E) \models p E + \{\#Pos P\#\}
          unfolding redundant-iff-abstract abstract-red-def using true-clss-cls-subset by blast
        show False sorry
      qed
     moreover have \neg redundant (E + \{\#Pos P\#\}) N
      sorry
     ultimately have CEN: C + E \in N
      using \langle D \in N \rangle \langle E + \{ \#Pos \ P \# \} \in N \rangle saturated sup-EC red unfolding saturated-def D L
      by (metis union-commute)
     have CED: C + E \neq D
      using D ce-lt-d by auto
     have interp: \neg INTERP \ N \models h \ C + E
     sorry
        using cls-not-D[OF CEN CED interp] ce-lt-d unfolding INTERP-def less-eq-multiset-def by
auto
 qed
qed
end
lemma tautology-is-redundant:
 assumes tautology C
 shows abstract-red C N
 using assms unfolding abstract-red-def true-clss-cls-def tautology-def by auto
\mathbf{lemma}\ \mathit{subsumed-is-redundant}\colon
 assumes AB: A \subset \# B
 and AN: A \in N
 shows abstract-red B N
proof -
 have A \in clss-lt \ N \ B \ using \ AN \ AB \ unfolding \ clss-lt-def
   by (auto dest: less-eq-imp-le-multiset simp add: multiset-order.dual-order.order-iff-strict)
 then show ?thesis
   using AB unfolding abstract-red-def true-clss-cls-def Partial-Clausal-Loqic.true-clss-def
   by blast
qed
inductive redundant :: 'a clause \Rightarrow 'a clauses \Rightarrow bool where
subsumption: A \in N \Longrightarrow A \subset \# B \Longrightarrow redundant B N
lemma redundant-is-redundancy-criterion:
 fixes A :: 'a :: wellorder clause and N :: 'a :: wellorder clauses
 assumes redundant A N
```

```
\mathbf{shows} \quad abstract\text{-}red\ A\ N
  using assms
proof (induction rule: redundant.induct)
  case (subsumption A B N)
  then show ?case
     \mathbf{using} \ \mathit{subsumed-is-redundant} [\mathit{of} \ \mathit{A} \ \mathit{N} \ \mathit{B}] \ \mathbf{unfolding} \ \mathit{abstract-red-def} \ \mathit{clss-lt-def} \ \mathbf{by} \ \mathit{auto}
\mathbf{qed}
\mathbf{lemma}\ \mathit{redundant}\text{-}\mathit{mono}\text{:}
  redundant\ A\ N \Longrightarrow A \subseteq \#\ B \Longrightarrow \ redundant\ B\ N
  apply (induction rule: redundant.induct)
  \mathbf{by}\ (meson\ subset-mset.less-le-trans\ subsumption)
locale truc =
     selection \ S \ \mathbf{for} \ S :: nat \ clause \Rightarrow nat \ clause
begin
\quad \text{end} \quad
\quad \text{end} \quad
```