Oblig09 — Fys2160 — 2015

Exercise 0.14. Varied questions

a) Explain why the multiplicity of an Einstein-crystal with N oscillators and a total energy $E = q\Delta\varepsilon$ is

$$\Omega(q,N) = \begin{pmatrix} q+N-1\\q \end{pmatrix} . \tag{0.148}$$

- **b)** What is an adiabatic process and what is an isothermal process? Sketch adiabatic and isothermal processes for an ideal gas in a p-V-diagram.
- c) The heat capacity of a crystal is $C_V = 3Nk$. Find an expression for the entropy, S = S(N, T), as a function of temperature T.

Exercise 0.15. Spin-system in external magnetic field

In this project we will study the behavior of a spin-system in an external magnetic field. We will address the behavior of N spins that are localized to specific positions in space. Each spin, i, can be in two possible states, $S_i = \pm 1$. The energy of spin i is $\varepsilon_i = S_i m B$, where m and B are constants (m B > 0).

- a) Find the partition function for a single spin.
- **b)** Find an expression for the partition function for *N* spins. Explain your reasoning.
- c) Show that Helmholtz free energy for the spin system is

$$F = -NkT \ln \cosh\left(\frac{mB}{kT}\right) - NkT \ln 2, \qquad (0.149)$$

where we remember that $2\cosh x = e^x + e^{-x}$ og $2\sinh x = e^x - e^{-x}$.

- **d)** Find the entropy, S(T, V, N), of the system.
- e) Find the average value, \overline{S}_i , of S_i for spin i.
- **f**) What happens to \overline{S}_i when B is large? What happens with \overline{S}_i when T is large?
- **g**) We describe a state of a system with N spins spinn as $(S_1, S_2, ..., S_N)$. Are all such states equally probable? (You must provide an argument for your answer).
- **h)** We want to simulate the spin system and we would like to use the simulation to estimate $\overline{S}_i(T)$. The simulations should produce a sequence of states (S_1, S_2, \ldots, S_N) and use this sequence to find \overline{S}_i . Provide a sketch of such as program and how you can use the data generated to estimate \overline{S}_i . Comment on strengths and weaknesses with the method you use to generate the sequence.
- i) We now want to study a spin-system with interactions between nearest-neighbor spins. The energy for such a system is

$$E(S_1, S_2, \dots, S_N) = \sum_{i=1}^{N} S_i m B + \sum_{i=1}^{N-1} J S_i \cdot S_{i+1}, \qquad (0.150)$$

where J is a given constant. Sketch a new algorithm to find \overline{S}_i in this system.