Code Documentation & Reproducibility

Nick Calistri

04/11/24

Sears Focus meeting

File management – keep it consistent!

Filenames

- Date_descriptor format automatically organizes within directory
 - 240411_sears_focus_code_organization.pptx
- Project directory structure
 - "/project_name/" hosts code and report output
 - "/project_name/analysis_files/" stores output of analysis
 - "/project_name/original_data/" stores raw or original data
 - "/project_name/public_data/" stores relevant public data
 - "/project_name/outdated/" dumping ground for old versions of code that are no longer needed

Metadata organization

 Where feasible, keep metadata stored in .csv format to enable reproducible queries and programmatic access

Example 1: MycPten scRNA-seq metadata file

▲ A	В	С	D	E	F	G	Н	1	J	K	L	М
exa_dir	mpssr_seq_ru	mpssr_library_name	library_suffix	chemistry	reference_gen-t	r cellranger_ver	feature_ba	condition_hto	condition_s	phenotype	misc_notes	histology
/home/gro	SCL210602RS	GEX1_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0305_HTO_5	V3_T1	V		SP
/home/gro	SCL210602RS	GEX1_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0306_HTO_6	V3_T2	V		SP
/home/gro	SCL210602RS	GEX1_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0308_HTO_7	V4	V		SP
/home/gro	SCL210602RS	GEX1_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0307_HTO_8	S3	S		SR
/home/gro	SCL210602RS	GEX2_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0305_HTO_5	V3_T1	V		SP
/home/gro	SCL210602RS	GEX2_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0306_HTO_6	V3_T2	V		SP
/home/gro	SCL210602RS	GEX2_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0308_HTO_7	V4	V		SP
/home/gro	SCL210602RS	GEX2_Lib_XL	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-A0307_HTO_8	S3	S		SR
0 /home/gro	SCL210602RS	GEX1_Lib_CD	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-B0304_HTO_4	V5	V		SR
1 /home/gro	SCL210602RS	GEX1_Lib_CD	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-B0305_HTO_5	R2	R		SP
2 /home/gro	SCL210602RS	GEX1_Lib_CD	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-B0306_HTO_6	S4	S		SR
3 /home/gro	SCL210602RS	GEX2_Lib_CD	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-B0304_HTO_4	V5	V		SR
4 /home/gro	SCL210602RS	GEX2_Lib_CD	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-B0305_HTO_5	R2	R		SP
5 /home/gro	SCL210602RS	GEX2_Lib_CD	_reseq-hto	Single Cell 3' v3	mm10-2020-A	6.0.2	TRUE	TotalSeq-B0306_HTO_6	S4	S		SR

Metadata organization

 Where feasible, keep metadata stored in .csv format to enable reproducible queries and programmatic access

Example 2: MycPten cycIF metadata files

Sample metadata

Position I	Position	Core-ID	Tumor	slidescene	condition_string	treatment	scrna_string
A1	94	RS15-B	730L_COMBO_1	mTMA2-4_sceneA01	730L_COMBO_1	COMBO	PD_1
A4	83	RS10-A	573L_PARPi_R5_T2	mTMA2-4_sceneA04	573L_PARPi_R5_T2	PARPi_R	R5_T2
A8	86	RS11-B	772L_DT_1_R	mTMA2-4_sceneA08	772L_DT_1_R	PP2A	DT_1
A10	85	RS11-A	772L_DT_1_R	mTMA2-5_sceneA10	772L_DT_1_R	PP2A	DT_1
A12	93	RS15-A	730L_COMBO_1	mTMA2-5_sceneA12	730L_COMBO_1	COMBO	PD_1
B2	75	RS06-A	558L_PARPi_S5_T1	mTMA2-4_sceneB02	558L_PARPi_S5_T1	PARPi_S	S5_T1
B5	73	RS05-A	509L_PARPi_S2	mTMA2-4_sceneB05	509L_PARPi_S2	PARPi_S	S2
B9	95	RS16-A	729L_COMBO_2	mTMA2-4_sceneB09	729L_COMBO_2	СОМВО	PD_2
C1	65	RS01-A	547L V4	mTMA2-4_sceneC01	547L V4	CONTROL	V4
C3	98	RS17-B	731L_COMBO_3	mTMA2-4_sceneC03	731L_COMBO_3	СОМВО	PD 3

Feature metadata

column_name	data_type	marker_type	pass_qc	channel	round
subtractedregisteredimages	meta		TRUE	NA	NA
DAPI6	meta		TRUE	c1	6
FoxP3	quant	type	FALSE	c5	5
Ki67	quant	state	TRUE	c4	3
LamAC	quant	state	TRUE	c2	1
RAD51	quant	state	TRUE	c5	6
gH2AX	quant	state	TRUE	c4	6
pMYC	quant	state	FALSE	c4	2
pRPA	quant	state	TRUE	c3	2

Package/library management

- Virtual 'environments'
 - Self-contained virtual workspaces
 - Enable reproducible computational results by securing the various packages or tools used for a given project
 - Safeguards issues arising from updating one package and it breaking your pipeline for another project
 - Typically helps with distribution of code can share markup related to the environment so others can recreate it

Recommendations:

- Python: "Miniconda"
- R:"renv"

- Preamble
 - Relevant contact info and author identity
 - Brief description of code purpose

MycPten atlas: s1_vehicle_stroma_preprocessing.html

Experiment & contact info

Pls: Rosalie Sears (searsr@ohsu.edu), Laura Heiser (heiserl@ohsu.edu)

Sample preparation: Zinab Doha (dohaz@ohsu.edu)

Library prep from single cells: Xi Li & Colin Daniel (danielc@ohsu.edu)

Analysis: Nick Calistri (calistri @ohsu.edu)

Sequencing performed by OHSU MPSSR

Analysis design

- Load each experiment individually
- Perform hashtag demultiplexing on each library individually
- Identify doublets with DoubletFinder
- Save so_list as .rds file

- Preamble
 - Relevant contact info and author identity
 - Brief description of code purpose
- Set up
 - Load the libraries/packages needed to do the entire work
 - Load the data needed to do the entire work

MycPten atlas: s1_vehicle_stroma_preprocessing.html

```
# Set up
## Load libraries
   `{r}
 library(Matrix)
 library(tidyverse)
 library(Seurat)
 library(rliger)
 library(SeuratWrappers)
 library(ggalluvial)
 library(DoubletFinder)
 library(SoupX)
## Set a seed
 ```{r}
set.seed(1)
Mouse/tumor stats from library_metadata file
 ```{r}
lib_meta <- read_csv('library_metadata.csv')</pre>
lib_meta <- lib_meta %>%
  mutate(run_library = paste0(mpssr_seq_run_name,
                               mpssr_library_name,
                               str_replace_na(library_suffix, replacement = '')))
lib_meta$mouse_id <- str_split(lib_meta$condition_string, pattern = '_', simplify = TRUE)[,1]
lib_meta$phenotype <- str_replace(lib_meta$mouse_id, pattern = "[:digit:]+", "")</pre>
```

- Preamble
 - Relevant contact info and author identity
 - Brief description of code purpose
- Set up
 - Load the libraries/packages needed to do the entire work
 - Load the data needed to do the entire work
- Core
 - Organize code chunks with descriptive headings
 - Nest sections where appropriate

MycPten atlas: s4_celltype_definition.html

Experiment & contact info

Set up

Epithelial subset analysis (epi)

UMAP and DE within subset

Cytokeratin profile of epithelial

EGO on DEGs

CellMarkerDB markers

epi Celltype_l2

Fibroblast subset analysis (fibro)

Lymphoid subset analysis (lym)

myeloid subset analysis (imm)

save output

sessionInfo()

- Preamble
 - Relevant contact info and author identity
 - Brief description of code purpose
- Set up
 - Load the libraries/packages needed to do the entire work
 - Load the data needed to do the entire work
- Core
 - Organize code chunks with descriptive headings
 - Nest sections where appropriate
- End
 - Save output
 - R: run 'sessionInfo' to describe environment

MycPten atlas: s3_clustering_optimization.html

```
save rds output
  saveRDS(so merge, file = 'analysis files/s3 celltypes.rds')
sessionInfo()
  sessionInfo()
  ## R version 4.1.1 (2021-08-10)
  ## Platform: x86 64-w64-mingw32/x64 (64-bit)
  ## Running under: Windows 10 x64 (build 19044)
  ## Matrix products: default
  ## locale:
  ## [1] LC_COLLATE=English_United States.1252
  ## [2] LC CTYPE=English United States.1252
  ## [3] LC_MONETARY=English_United States.1252
  ## [4] LC NUMERIC=C
  ## [5] LC_TIME=English_United States.1252
  ## attached base packages:
  ## [1] stats4 stats
                            graphics grDevices utils
                                                          datasets methods
  ## [8] base
  ## other attached packages:
  ## [1] org.Mm.eg.db_3.13.0 AnnotationDbi_1.56.2 IRanges_2.28.0
                               Biobase 2.54.0
                                                     BiocGenerics 0.40.0
  ## [4] S4Vectors 0.32.3
  ## [7] clusterProfiler_4.0.5 harmony_0.1.0
                                                     Rcpp_1.0.7
  ## [10] bluster 1.2.1
                               cluster 2.1.2
                                                     SeuratObject 4.0.4
  ## [13] Seurat_4.1.0
                               forcats_0.5.1
                                                     stringr_1.4.0
  ## [16] dplyr 1.0.8
                               purrr 0.3.4
                                                     readr 2.1.2
  ## [19] tidyr_1.2.0
                               tibble 3.1.6
                                                     ggplot2_3.3.5
  ## [22] tidyverse_1.3.1
                               Matrix_1.3-4
```

Save computation time by automatically checking for code output!

```
if(file.exists('analysis_files/s2_vehicle_integrated.rds')){
   print('Loading existing s2_vehicle_integrated.rds file')
   so_merge <- readRDS('analysis_files/s2_vehicle_integrated.rds')
}else{
   print('so_merge_rliger.rds file not found.')
   print('Processing iNMF integration, 200k cells ~= 1 hour')</pre>
```

Simulated or subset test data

 Allows for verification that pipeline is working without large data transfer or computation time

Example: GSVA simulation

Example: MycPten atlas Full data: 3.60GB

Subset: 0.03GB

Cleaning things out for publication

Remove any unnecessary components*

Add comments where appropriate

Centralize figure generation to a final script

- Construct a .readme file that describes each included file
 - https://github.com/HeiserLab/NatureComms_MycPtenAtlas/tree/main

Miscellaneous coding best practices

- Keep thing simple, keep things interpretable
 - One line of code = do one single thing
- Avoid loops whenever possible
 - The "apply" class of functions can be orders of magnitude faster than a for loop

For loop example:

```
r(i in 1:length(a)){
curr_a <- a[i]
curr_b <- b[i]
curr_product <- curr_a*curr_b
curr_quotient <- curr_a/curr_b
curr_exponent <- curr_a^curr_b
curr_alogb <- log(curr_a, base = curr_b)</pre>
curr_out <- tibble(a = curr_a,</pre>
                    b = curr_b.
                    product = curr_product,
                    quotient = curr quotient.
                   alogb = curr_alogb)
if(i == 1){
 math_out <- curr_out
  math_out <- rbind(math_out,
                    curr_out)
```

Function alternative:

```
math <- function(ab_tib){</pre>
  curr_a <- ab_tib[1]</pre>
  curr_b <- ab_tib[2]</pre>
  curr_product <- curr_a*curr_b
  curr_quotient <- curr_a/curr_b
  curr_exponent <- curr_a/curr_b
  curr_alogb <- log(curr_a, base = curr_b)</pre>
  curr_out <- tibble(a = curr_a,
                       b = curr_b.
                       product = curr_product,
                       quotient = curr_quotient
                       alogb = curr_alogb)
math\_out2 <- apply(x = ab\_tib,
                     MARGIN = 1.
                     FUN = math)
curr_perf<- tibble(n_sample = n_sample,</pre>
                     for_time = end-start.
                     fun time = end2-start2)
```


Publication quality figures without tearing out your hair (using ggplot)

Create a consistent theme

```
fig_dir <- 'figures_lowresolution/'</pre>
figure_device <- 'png'
figure_suffix <- '.png'
 if(!dir.exists(fig_dir)){
  dir.create(fig_dir)
mytheme <- function(){</pre>
    theme_bw() %+replace%
      panel.grid.major = element_blank(),
      plot.title = element_text(size = 10,
                                 hjust = 0,
                                 viust = 2).
      plot.subtitle = element_text(size = 8),
      axis.title = element_text(size = 8),
      axis.text = element_text(size = 8),
      legend.margin = margin(0, 0, 0, 0),
      legend.spacing.x = unit(2, "mm"),
       legend.spacing.y = unit(2, "mm"))
title_size <- 10
dpi_figures <- 300</pre>
```

Use ggsave to output at desired size/dpi

