EE223 Analog Integrated Circuits Fall 2018

Lecture 14: CMOS Fabrication

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Midterm Exam

- ☐ Oct. 17, Wednesday 6 PM
- □ One-page Aid sheet on Front side only allowed
- ☐ Bring two copies of your Aid sheet
 - ✓ Keep one copy yourself during the exam
 - ✓ Write your name and submit another copy for extra 5 points
- ☐ Bring a Calculator

Biasing High Swing Cascode Current Mirror

Practical approach for cascode biasing → Will use this biasing scheme extensively

- M_A in Saturation
- M_B in Triode
- $(W/L)_A = (W/L)_3 = (W/L)_4$
- (W/L)_B with large L
- Example:
 - $(W/L)_{A,3,4} = 5/0.18$
 - $(W/L)_B = 5/5$
 - Adjust L of M_B in Simulation to get the Vds you want

If you make the current densities of M_{A_3} M_3 and M_4 are equal, V_{ds} of M_B will be copied over to V_{ds} of M_1 and M_2

MOSFET Mismatch

- Mismatch between two identically drawn transistors.
 - Vth mismatch
 - Beta mismatch

$$I_D = \frac{\mu_n C_{\rm ox}}{2} \frac{W}{L} (V_{\rm GS} - V_{\rm TH})^2 = \frac{\beta}{2} (V_{\rm GS} - V_{\rm TH})^2$$
$$\Delta V_{TH} = \frac{A_{VTH}}{\sqrt{WL}}$$
$$\Delta \left(\mu C_{OX} \frac{W}{L} \right) = \frac{A_K}{\sqrt{WL}},$$

$$\frac{A_{\text{VTH}}}{t_{\text{ox}}} \approx 1 \sim 2 \frac{\text{mV} \cdot \mu\text{m}}{\text{nm}}$$

Current Mirror Mismatch

$$y = f(x_1, x_2,...)$$

$$\Delta y = \frac{\partial f}{\partial x_1} \Delta x_1 + \frac{\partial f}{\partial x_2} \Delta x_2 + \cdots$$

$$I_D = (1/2)\mu_n C_{ox}(W/L)(V_{GS} - V_{TH})^2$$

$$\Delta I_D = \frac{\partial I_D}{\partial (W/L)} \Delta \left(\frac{W}{L}\right) + \frac{\partial I_D}{\partial (V_{GS} - V_{TH})} \Delta (V_{GS} - V_{TH})$$

$$\Delta I_D = \frac{1}{2} \mu_n C_{ox} (V_{GS} - V_{TH})^2 \Delta \left(\frac{W}{L}\right) - \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \Delta V_{TH}$$

$$\frac{\Delta I_D}{I_D} = \frac{\Delta (W/L)}{W/L} - 2\frac{\Delta V_{TH}}{V_{GS} - V_{TH}}$$

Layout of Transistors with Multi Fingers

Layout of Cascode Devices

Layout of Current Mirrors

Reference Distribution in Voltage Domain

Reference Distribution in Current Domain

- CMOS Fabrication
- Variability
- Analog Layout
- Matching

CMOS IC Design Flow

Define circuit inputs Specification and outputs (Circuit specifications) Hand calculations and schematics Schematic Sim **Schematic** Or Pre-layout Sim Circuit simulations **Using Sprectre** No Does the circuit meet specs? Yes Post-layout Sim Layout Layout **Using Sprectre** Re-simulate with parasitics **Including parasitics** Does the circuit meet specs? Yes **Fabrication** Prototype fabrication Test and evaluate No, fab problem No, spec problem **Test** Does the circuit meet specs? Yes Production

TCAD & ECAD

- Technology Computer Aided Design (TCAD)
 - ✓ <u>Electronic Design Automation</u> (EDA) that models <u>semiconductor</u> <u>fabrication</u> and semiconductor device operation
 - ✓ Sentaurus Process and Device Simulation Tool from Synopsys
- Electronic Computer Aided Design (ECAD)
 - Circuit simulation
 - Spectre Cadence Virtuoso
 - HSPICE Synopsys
 - Layout
 - Custom
 - Place & Route (P&R)
 - Verification
 - DRC
 - LVS
 - LPE (Layout Parasitic Extraction)

CMOS Fabrication

Unit Process

- Thermal Oxidation
- Doping
- Photolithography
- Thin Film Removal
- Thin Film Deposition

Process Integration

- FEOL (frontend-of-the-line)
- BEOL (backend-of-the-line)

Wafer Manufacture

Czochralski (CZ) process

Silicon Ingot

200mm Silicon Ingot

Wafer

Diameter 100 ~ 300mm Thickness ~ 1mm

Wafer Size Trends

Wafer Types

Three types of wafer

- Bulk : Resistivity ~ 10-20 Ω·cm
- Epi : Resistivity ~ 5-20 Ω·cm p- epi on top of 0.01 Ω·cm p++
 Epi thickness : 2~20 μm
 Help preventing latchup
- SOI

CMOS Structure

Top and side views of a typical CMOS process

Mask

Different layers comprising CMOS transistors

Aligning Masks

Mask Set Cost

http://anysilicon.com/semiconductor-wafer-mask-costs/ Sept. 15, 2016

Photolithography

Used to transfer circuit layout information to the wafer

Photolithography

Two types of photoresist

- Positive Exposed area is softened
- Negative Exposed area is hardened

Photoresist

OPC

Optical Proximity Correction (OPC)

Modify the mask pattern so that the resulting geometries more closely match those intended by the designer.

Oxidation

$$Si + O_2 \rightarrow SiO_2$$
 (dry oxidation)
 $Si + 2H_2O \rightarrow SiO_2 + 2H_2$ (wet oxidation)

Furnace

900 ~ 1200 °C

Silicon/Oxide growth interface

Doping by Diffusion

A gas containing the dopant is introduced into the tube. For N-Well, Phosphorus or Arsenic are used Temperature, typically 900 to 1 100 °C

Doping by Ion Implantation

Process Integration

Isolation

Active Region : OD (Oxide Definition)

Non-Active Region : Field Region formed by

- LOCOS (Local Oxidation of Silicon)
- STI (Shallow-Trench Isolation)

LOCOS

STI

Vt Implant & Gate Definition

P+ S/D and N+ S/D

Self-Aligned Process

 Why source and drain junctions are formed after the gate oxide and polysilicon layers are deposited?

Self-Aligned Process

Oxide spacers and silicide

Self-Aligned Silicide -> Salicide

FEOL

- The front-end-of-line (FEOL) is the first portion of IC fabrication where the individual devices (transistors, capacitors, resistors, etc.) are patterned in the semiconductor. FEOL generally covers everything up to (but not including) the deposition of metal interconnect layers.
- FEOL contains all processes of <u>CMOS</u> fabrication needed to form fully isolated CMOS elements:
 - 1. Selecting the type of <u>wafer</u> to be used; <u>Chemical-mechanical planarization</u> and cleaning of the wafer.
 - 2. <u>Shallow trench isolation</u> (STI) (or <u>LOCOS</u> in early processes, with <u>feature</u> <u>size</u> > 0.25 μm)
 - 3. Well formation
 - 4. Gate module formation
 - 5. Source and drain module formation

BEOL

- The back end of line (BEOL) is the second portion of IC fabrication where the individual devices (transistors, capacitors, resistors, etc.) get interconnected with wiring on the wafer, the metallization layer. Common metals are Copper interconnect and aluminum interconnect. [1]
- BEOL generally begins when the first layer of metal is deposited on the wafer. BEOL includes contacts, insulating layers (<u>dielectrics</u>), metal levels, and bonding sites for chip-to-package connections.

Steps of the BEOL:

- 1. Silicidation of source and drain regions and the <u>polysilicon</u> region.
- 2. Adding a dielectric (first, lower layer is <u>Pre-Metal dielectric</u>, PMD to isolate metal from silicon and polysilicon), <u>CMP</u> processing it
- 3. Make holes in PMD, make a contacts in them.
- 4. Add metal layer 1
- 5. Add a second dielectric (this time it is Intra-Metal dielectric)
- 6. Make vias through dielectric to connect lower metal with higher metal. Vias filled by Metal CVD process.
- 7. Repeat steps 4–6 to get all metal layers.
- 8. Add final passivation layer to protect the microchip

Contact and Metal

Contact and metal layers fabrication

Spiking due to large Contact

 Large contact areas should be avoided to minimize the possibility of spiking

Passivation

Fig. 2.13 from [Carusone]

CMP (Chemical-Mechanical Polishing/Planarization)

- Without CMP, the wafer will have a lot of topography (mountains and valleys).
- Excessive topography will:
 - Limit how small photo can print
 - Cause thinning of films on side walls
 - Compromise etch uniformity
 - Compromise film deposition uniformity

Process with CMP

Process Technology Nodes

Semiconductor manufacturing processes

10 µm - 1971

6 µm - 1974

3 µm - 1977 1.5 µm - 1982

1 µm - 1985

800 nm - 1989

600 nm - 1994

350 nm - 1995

250 nm - 1997

180 nm - 1999

130 nm - 2001

90 nm - 2004

65 nm - 2006

45 nm - 2008

32 nm - 2010

22 nm - 2012

14 nm - 2014

10 nm - 2017

7 nm - ~2018

5 nm - ~2020

Half-shrink

Main ITRS node	Stopgap half-node
250 nm	220 nm
180 nm	150 nm
130 nm	110 nm
90 nm	80 nm
65 nm	55 nm
45 nm	40 nm
32 nm	28 nm
22 nm	20 nm
16 nm	14 nm and 12 nm [1]
10 nm	8 nm
7 nm	6 nm
5 nm	4 nm

		[
Technology	0.13/0.11	90/80	65/55		45			32/28		22/20	
Node	um	nm	nm	Ц	n	m		nm		nm	
Wafer size	8"		12"								
Gate stack	SiON/Poly										
									HiK/MG		
Lithography & Patterning	248nm	193nm Dry				193	Bnn	n Immersion			
	NA								Double Patterning		
Strain Eng	NA	Gen-1	Gen-2		Ge	en-3		Gen-4		Gen-5	
	NA							eSiGe			
IMD	Low-K							ELK			
Local Interconnect		NA								Local Interconnect	
Metallization	Aluminum	Copper									
		_									

EE223 process node