Page 122

- **5.3** (a) By Lemma 5.4(c) we have $(\omega + 1) + \omega = \omega + (1 + \omega)$, but $1 + \omega = \omega$, thus $(\omega + 1) + \omega = \omega + \omega$.
 - (b) $\omega + \omega^2 = \omega + \omega \cdot \omega = \omega \cdot (1 + \omega) = \omega \cdot \omega = \omega^2$.
- (c) We first show that $(\omega+1)\cdot n=\omega\cdot n+1$ by induction on n. For $n\neq 0$. For n=1, $(\omega+1)\cdot 1=\omega\cdot 1+1=\omega+1$. Assume that it holds for n, now we have $(\omega+1)\cdot (n+1)=(\omega+1)\cdot n+(\omega+1)$ by Exercise 5.2. By induction hypothesis $(\omega+1)\cdot n=\omega\cdot n+1$, therefore $(\omega+1)\cdot n+(\omega+1)=\omega\cdot n+1+(\omega+1)$, by associative law and $1+\omega=\omega$ we get $\omega\cdot n+1+(\omega+1)=\omega\cdot n+(1+\omega)+1=\omega\cdot n+\omega+1=\omega\cdot (n+1)+1$, this completes the proof. Now consider $(\omega+1)\cdot \omega\cdot \omega$, we know $(\omega+1)\cdot \omega=\sup\{(\omega+1)\cdot n:n<\omega\}=\sup\{\omega\cdot n+1:n<\omega\}=\omega\cdot \omega$, thus we have $(\omega+1)\cdot \omega\cdot \omega=\omega\cdot \omega\cdot \omega=\omega^3$.
- **5.4** We proceed by transfintie induction on α , for $\alpha = 0$, by taking $\beta = n = 0$ this hold obviously. Assume that it holds for any $\alpha' < \alpha$ and $\alpha = \alpha' + 1$, so by induction hypothesis we can write $\alpha' = \beta + n$ where β is a limit ordinal, thus $\alpha = (\beta + n) + 1 = \beta + (n + 1)$ and we are done.

Now suppose that α is a limit ordinal. Take $\beta = \sup\{\gamma < \alpha : \gamma \text{ is a limit}\}$, β is a limit, since otherwise $\beta = \beta' + 1$, so $\beta' \in \beta$, which means for some limit $\gamma < \alpha$ we have $\beta' \in \gamma$, but then $\beta' < \gamma < \beta = \beta' + 1$, a contradiction. Now we have $\beta \leq \alpha$, if $\alpha = \beta$ we are done. if $\beta < \alpha$ then $\alpha = \beta + \xi$ by Lemma 5.5., But since $\xi \leq \alpha$ by induction hypothesis $\xi = \xi' + n$, thus $\alpha = \beta + (\xi' + n)$, since ξ' is a limit ordinal, by the argument above it can be shown that sum of two limit ordinal is a limit ordinal, thus $\alpha = (\beta + \xi') + n$ and we are done.

- **5.5** Just take $\alpha = \beta = \omega$ then we have $n + \omega = \omega$ for any $n \in \omega$ (see page 119), so we have infinitely many solutions. Take $\beta = \omega$ and $\alpha = 1$, then $\xi + 1 = \omega$ has no solution, since ω is a limit ordinal. Take $\beta = n \in \omega$, then $\alpha < n$ and by the usual arithmetic on N, the equation $\beta = n = \xi + \alpha$ has a unique solution, namely $n \alpha$.
- **5.6** Notice that α can not be a successor ordinal greater than $1: \alpha = \alpha' + 1$ then $\xi + \alpha' + 1 = \alpha' + 1$, take $\xi = \alpha' < \alpha$, then $\alpha' + \alpha' + 1 = \alpha' + 1$, by Lemma 5.4(b) we get $\alpha' + 1 = 1$ which is a contradiction.

First we show that (Fact 1) $k + \omega \cdot n = \omega \cdot n$ for any $0 \neq n \in \omega$. For n = 1 it holds trivially. Suppose it holds for n, so $k + \omega \cdot (n+1) = k + \omega \cdot n + \omega$,

then by induction hypothesis $k + \omega \cdot n + \omega = \omega \cdot n + \omega = \omega \cdot (n+1)$, thus we are done.

Second, notice that (Fact 2) $L = \xi + \omega \cdot \omega = \sup\{\xi + \alpha : \alpha < \omega \cdot \omega\} = \sup\{\xi + \omega \cdot n : n < \omega\} = R$: take $x \in L$, then for some $\alpha < \omega \cdot \omega$, $x \in \xi + \alpha$. But $\alpha < \omega \cdot \omega$ implies $\alpha \in \omega \cdot k$ for some $k \in \omega$, By Lemma 5.4 we get $\xi + \alpha \in \xi + \omega \cdot k$, thus $x \in R$. For converse, take $x \in R$, then for some n, $x \in \xi + \omega \cdot n$, but $\omega \cdot n < \omega \cdot \omega$ (taking $\omega \cdot n$ as α), thus trivially $x \in L$.

The first limit ordinal after ω is $\omega + \omega = \omega \cdot 2$, we show that α can not be $\omega \cdot n$ for any n > 1, assume to the contrary $\xi + \omega \cdot n = \omega \cdot n$ for some $\xi < \omega \cdot n$. but n = k + 1, thus $\xi + \omega \cdot (k + 1) = \xi + \omega \cdot k + \omega = \omega \cdot (k + 1)$, take $\xi = \omega \cdot k$ (clearly $\omega \cdot k < \omega \cdot (k + 1)$), but then we get $\omega \cdot k + \omega \cdot k + \omega = \omega \cdot k + \omega$, by Lemma 5.4(b) we get $\omega \cdot k + \omega = \omega \cdot n = \omega$ which is contradiction for n > 1.

Now take the first limit ordinal after all $\omega \cdot n$, namely $\omega \cdot \omega$. Consider $\xi < \omega \cdot \omega$, but then $\xi = \beta + k$ for some $k \in \omega$ and β is a limit ordinal (By Exercise 5.4), but every limit ordinal less than $\omega \cdot \omega$ has a form $\omega \cdot n$, thus we have $\xi = \omega \cdot n + k$. Now consider $\xi + \omega \cdot \omega = \omega \cdot n + (k + \omega \cdot \omega)$. Buy from Fact 1 and 2 above we get $k + \omega \cdot \omega = \sup\{k + \omega \cdot n : n < \omega\} = \sup\{\omega \cdot n : n < \omega\} = \omega \cdot \omega$, thus $\xi + \omega \cdot \omega = \omega \cdot n + \omega \cdot \omega$. Again $\omega \cdot n + \omega \cdot \omega = \sup\{\omega \cdot n + \omega \cdot m : m < \omega\} = \sup\{\omega \cdot (n + m) : m < \omega\} = \omega \cdot \omega$, therefore $\xi + \omega \cdot \omega = \omega \cdot \omega$.

 $\alpha < n$ and by the usual arithmetic on N, the equation $\beta = n = \xi + \alpha$ has a unique solution, namely $n - \alpha$.

5.7 (a) We proceed by induction on α_2 , for $\alpha_2 = 0$ the statement trivially holds. Assume that α_2 is a successor ordinal, then $\alpha_2 = \alpha + 1$, suppose it holds for any ordinal less than α_2 , from $\alpha_1 < \alpha_2$ we get either $\alpha_1 = \alpha$ or $\alpha_1 < \alpha$, in both cases we get $\beta \cdot \alpha_1 < \beta \cdot \alpha + \beta = \beta \cdot (\alpha + 1)$, thus $\beta \cdot \alpha_1 < \beta \cdot \alpha_2$.

Now assume that α_2 is a limit, suppose $\alpha_1 < \alpha_2$, then since α_2 is a limit, we get some $\alpha \in \alpha_2$ such that $\alpha_1 < \alpha$, but then by induction hypothesis we get $\beta \cdot \alpha_1 < \beta \cdot \alpha$, but $\beta \cdot \alpha_2 = \sup\{\beta \cdot \xi : \xi \in \alpha_2\}$, which means $\beta \cdot \alpha < \beta \cdot \alpha_2$ (since $\alpha \in \alpha_2$), thus $\beta \cdot \alpha_1 < \beta \cdot \alpha_2$ (by transitivity of ordinals).

- (b) Assume that $\beta \cdot \alpha_1 = \beta \cdot \alpha_2$ and $\alpha_1 \neq \alpha_2$, thereofere either $\alpha_1 < \alpha_2$ or $\alpha_2 < \alpha_1$, then by previous item we get $\beta \cdot \alpha_1 < \beta \cdot \alpha_2$, which is a contradiction. $\alpha_2 < \alpha_1$ can be handled similarly.
- **5.8** (a) We prove by induction on γ : It trivially holds for $\gamma = 0$. Suppose hat γ is a successor, thus $\gamma = \xi + 1$, by induction hypothesis $\alpha + \xi \leq \beta + \xi$,

then $(\alpha + \xi) + 1 \le (\beta + \xi) + 1$, associative law implies $\alpha + \xi + 1 \le \beta + (\xi + 1)$, which means $\alpha + \gamma \leq \beta + \gamma$.

Now, assume γ is a limit ordinal: let $x \in \alpha + \gamma$, then for $x \in \alpha + \xi$ for some $\xi \in \gamma$, by induction hypothesis $\alpha + \xi \leq \beta + \xi$, by transitivity, $x \in \beta + \xi$, which means that $x \in \sup\{\beta + \xi : \xi < \gamma\} = \beta + \gamma$ thus $\alpha + \gamma \subseteq \beta + \gamma$, by Lemma 2.9 it $\alpha + \gamma \leq \beta + \gamma$.

(b) Again, we proceed by induction on γ : For $\gamma = 0$ it holds trivially. Assume $\gamma = \xi + 1$, then by induction hypothesis $\alpha \cdot \xi \leq \beta \cdot \xi$, by previous item we get $\alpha \cdot \xi + \alpha \leq \beta \cdot \xi + \alpha$, but since $\alpha < \beta$, by Lemma 5.4(a) $\beta \cdot \xi + \alpha < \beta \cdot \xi + \beta$. By transitivity $\alpha \cdot \xi + \alpha < \beta \cdot \xi + \beta$, thus $\alpha \cdot (\xi + 1) \leq \beta \cdot (\xi + 1)$.

Assume that γ is a limit ordinal, let $x \in \alpha \cdot \gamma$, so for some $\xi \in \gamma$ we have $x \in \alpha \cdot \xi$, by induction hypothesis $\alpha \cdot \xi \leq \beta \cdot \xi$, thus $x \in \sup\{\beta \cdot \xi : \xi < \gamma\} = \beta \cdot \gamma$, Lemma 2.9 implies $\alpha \cdot \gamma \leq \beta \cdot \gamma$.

 \leq can not be replaced by <, just consider 1 < 2, then $1 + \omega = 2 + \omega$ and $1 \cdot \omega = 2 \cdot \omega$.

- **5.9** (a) $1 + \omega = 2 + \omega$, but $1 \neq 2$.
 - (b) $1 \cdot \omega = 2 \cdot \omega$, but $1 \neq 2$.
 - (c) $(1+1) \cdot \omega = 2 \cdot \omega = \omega$, but $1 \cdot \omega + 1 \cdot \omega = \omega + \omega$
- **5.10** We proceed by induction on α . if $\alpha = 0$, then $\alpha = \omega \cdot 0$. Now assume α is a limit, by Exercise 5.4, $\alpha = \beta + n$, since α is a limit ordinal n must be zero. By the construction of β in the proof and induction hypothesis we know that $\alpha = \beta = \sup\{\gamma < \alpha : \gamma \text{ is limit}\} = \sup\{\gamma < \alpha : \gamma = \omega \cdot \beta \text{ for some } \beta\}.$

Let $C = \{\beta : \xi < \alpha, \xi \text{ is limit and } \xi = \omega \cdot \beta\}$ and $\kappa = \sup C$. We show that $\alpha = \omega \cdot \kappa$: let $x \in \alpha$, then $x \in \omega \cdot \beta$, but $\beta \leq \kappa$, which means $\omega \cdot \beta \leq \omega \cdot \kappa$ (by Exercise 5.7), thus $x \in \omega \cdot \kappa$. Conversely, let $x \in \omega \cdot \kappa$: either $\kappa = \beta$ such that β is maximum of C, which means there is $\xi = \omega \cdot \beta$ and $\xi < \alpha$, thus $x \in \alpha$. Or for any $\zeta < \kappa$, there is a $\beta \in C$ such that $\zeta < \beta$, which means κ is a limit, thus $x \in \omega \cdot \zeta$ for some $\zeta < \kappa$, but then there is a $\beta \in C$ such that $\zeta < \beta$ and $\omega \cdot \beta < \alpha$, therefore $\omega \cdot \zeta < \omega \cdot \beta < \alpha$, thus $x \in \alpha$.

- **5.11** (a) $\{1 \frac{1}{n} : n \in N \{0\}\} \cup \{1\}$ (b) $\{1 \frac{1}{n} : n \in N \{0\}\} \cup \{2 \frac{1}{n} : n \in N \{0\}\}\}$ (c) $\{k \frac{1}{n} : n \in N \{0\}, k \in \{1, 2, 3\}\}$ (d) let $F(a, b) = \{b \frac{b-a}{2^n} : n \in N\}$, clearly F(a, b) is isomorphic to N for any $a < b \in Q$. Let F(a,b)(n) denote the n-th element of F(a,b).

Now consider the set $\bigcup_{k,n\in\mathbb{N}} F(F(n,n+1)(k),F(n,n+1)(k+1))$ which is isomorphic to ω^{ω} .

- (e) Denote F(F(n,n+1)(k),F(n,n+1)(k+1)) by $F_{k,n}$ and it's m-th element by $F_{k,n}(m)$, then the set $\bigcup_{k,n,m\in N} F(F_{k,n}(m),F_{k,n}(m+1))$ is isomorphic to ϵ .
- **5.12** $\omega^2 \cdot 2^2 = \omega^2 \cdot 4$, but $(\omega \cdot 2)^2 = (\omega \cdot 2) \cdot (\omega \cdot 2) = \omega \cdot (2 \cdot \omega) \cdot 2 = \omega^2 \cdot 2$ where $< \omega^2 \cdot 4$.
- **5.15** (a) Define $\xi_0 = 0$ and $\xi_{n+1} = \omega + \xi_n$, $\xi = \sup\{\xi_n : n \in \omega\}$. We show that $\omega + \xi = \xi$: let $x \in \omega + \xi$ then for some ξ_n , $x \in \omega + \xi_n$, which means $x \in \xi_{n+1}$ (notice that $\omega + \xi = \sup\{\omega + \alpha : \alpha < \xi\}$), thus $x \in \xi$ by definition of ξ . Conversely, let $x \in \xi$, again by definition of ξ , $x \in \omega + \xi_k = \xi_n$ such that k + 1 = n, since $\xi_0 = \emptyset$, therefore $x \in \omega + \xi$. To prove that it is the least ordinal with this property, first we show $\xi_n < \xi_{n+1}$. Clearly for n = 0 it holds, since $0 < \omega + 0$. Assume that it holds for n: thus $\xi_n < \xi_{n+1}$, then by Lemma 5.4(b) we get $\omega + \xi_n < \omega + \xi_n$, which means $\xi_{n+1} < \xi_{n+2}$, we are done.

Now just consider $\alpha < \xi$ and assume $\omega + \alpha = \alpha$. it means $\omega + \alpha = \alpha < \omega + \xi_n$ for some n, but by Lemma 5.4 (b) we get $\alpha = \xi_n$, then $\omega + a = \omega + \xi_n$ which means $\xi_n = \xi_{n+1}$, a contradiction.

- (b) Let $\xi_0 = 0$, $\xi_{n+1} = \omega \cdot \xi_n$ and $\xi = \sup\{\xi_n : n \in \omega\}$, we show that $\omega \cdot \xi = \xi$: let $x \in \omega \cdot \xi$, then for some $n, x \in \omega \cdot \xi_n = \xi_{n+1}$, thus $x \in \xi$. Conversely, let $x \in \xi$, then $x \in \xi_{n+1}$ (since $\xi_0 = \emptyset$), thus $x \in \omega \cdot \xi_k$ and $x \in \omega \cdot \xi$.
- (c) Define $\xi_0 = 0$ and $\xi_{n+1} = \omega^{\xi_n}$ and $\xi = \sup\{\xi_n : n \in \omega\}$, the proposition $\omega^{\xi} = \xi$ can be proved similar to the previous items.