AuChO Junior 1

写在前面

这套试题难度整体较低,且面向高一同学。主要考察结构、物理化学、平衡。还有开眼界的 附加题。

命题人: 大吉猫咪

T1 雾雨

冬日的雨,在天地间编织起一张细密的网,引发人们无尽的遐想。

写出反应方程式。

- 1-1 用金红石、一种黑色还原性固体和 Cl2 可以制得一种易水解的物质。
- 1-2 用酸性高锰酸钾滴定 Fe^{2+} 时若高锰酸钾过量会生成一种黑色固体而影响滴定结果。其中 ω (Mn)=63.19%。
- 1-3 Fe^{2+} 在海水中被氧化生成 α -FeO(OH)而沉积。
- **1-4** 用大苏打(硫代硫酸钠)滴定 I_{3} 。其中含 S 的阴离子中有 2 个 S 原子为+5 价,另外 2 个为 0 价。
- **1-5** NH₄NO₃ 受热分解生成两种气体,其中一种气体可以与水反应生成一种强酸。另一种气体是一种单质。

T2 历史的印记

现在的许多科学体系都建立在前人不懈的努力之上。

- 2-1 瑞典科学家阿伦尼乌斯(Arrhenius)总结大量事实,于 1887 年提出了酸碱电离理论。
- 2-1-1 比较酸性强弱: H₂SO₄、H₂SeO₄、H₂TeO₄,并简述原因。
- 2-1-2 比较酸性强弱: H₂S、H₂Se、H₂Te,并简述原因。
- 2-1-3 比较酸性强弱: HC10、HC10₃、HC10₄,并简述原因。
- 2-2 富兰克林(Franklin)于 1905 年提出酸碱溶剂理论。
- 2-2-1 写出液态 HF 自耦电离的方程式。
- 2-2-2 写出 NaNH2和 NH4C1 反应方程式。
- 2-3 路易斯 (lewis) 酸碱理论,是 1923 年美国物理化学家吉尔伯特·牛顿·路易斯(Lewis G N)提出的一种酸碱理论。
- 2-3-1 比较碱性: NF₃、NCl₃。

2-3-2 比较碱性:

T3 回忆

列车轮碾过车轨的声音从耳边传来。远处的天边黑暗中透露着紫红的余晖。高楼的漆黑的剪 影在远野上飞奔而过。

- 3-1 写出电子排布式: Cr、Co、Cu、Zn。
- 3-2 比较熔点: NaCl、MgCl₂、AlCl₃。
- **3-3** 指出分子中的大 □键: NO₃-、HN₃、NO₂、N₂O₃。
- 3-4 写出 02 分子轨道电子排布式并计算理论磁矩。

T4 光明

纯净、光洁、高度的几何对称,这是晶体的美丽。

如图是一种 TiO₂ 的晶胞。较大的小球为 Ti 原子,较小的是 O 原子。

晶胞参数:

a = 4.59000 Å $\alpha = 90.0000^{\circ}$

b = 4.59000 Å $\beta = 90.0000^{\circ}$

 $c = 2.96000 \text{ Å} \quad v = 90.0000^{\circ}$

其中一个氧原子坐标为(0.32700,

- 0.32700, 0.00000)
- 4-1 指出这种 TiO₂ 晶体所属晶系。
- 4-2 计算这种 TiO2 密度。
- 4-3 写出其中 Ti 原子和 O 原子的坐标。
- 4-4 写出 Ti 原子和 O 原子各有几种不同的化学环境。

T5 暗夜

喧哗褪去, 夜幕降临。夜晚是留给自己一个人静静思考的。

夜晚的黑暗,或许是另一个地方的光明。

周而复始,是世间的自然规律。

- 5-1 大部分的铵盐不稳定,受热易分解。
- 5-1-1 写出 NH4HS 分解的反应方程式。
- 5-1-2 将一定量的 NH₄HS 在一定温度下放在一个真空容器中分解,平衡时总压为 68.0kPa。 求反应的 K° 。
- 5-2 Fe 是重要的金属元素。现给出下列热力学数据

	02	Fe	Fe ₃ O ₄	Fe ₂ O ₃	H ₂ O(g)	H ₂
$\Delta_{fHm^\Theta}/(kJ \cdot mol^{-1})$	0	0	-1118.4	-824.2	-241.8	0
$S_{m}^{\Theta}/(J \cdot mol^{-1} \cdot K^{-1})$	205.138	27.3	146.4	87.4	188.8	130.7

- 5-2-1 通过计算确定常温下(298K)铁被氧化得到的最稳定的产物。
- 5-2-2 通过计算求发生反应 3Fe + 4H₂O =(高温)= Fe₃O₄ + 4H₂的温度取值范围。
- 5-2-3 铁丝燃烧时温度约为 1800K, 通过计算确定燃烧后得到的产物,并求理论上 0_2 的最小浓度。

T6 破晓时分

凌晨。清晨的校园被轻薄的雾气笼罩着。东方的天空,深蓝色中透露着一丝丝绯红,宁静、 美好。几个身影走向了不远处的教学楼······

- 6-1 计算 **0.10mol** dm⁻¹ 的 HAc 溶液的 pH。HAc Ka[©]=1.8×10⁻⁵。
- 6-2 通过计算说明 ZnS 溶于盐酸而 CuS 不溶。假定 c(HC1)=2mol·L⁻¹。H₂S 溶解度为 **0.1**mol·L⁻¹。
- ZnS K_{sp}° =2.5×10⁻²², CuS K_{sp}° =6.3×10⁻³⁶, H_{2} S K_{a1}° =1.1×10⁻⁷, K_{a2}° =1.3×10⁻¹³。 6-3 在酸性溶液中氧化 Co²⁺比较困难,但其配合物易被氧化,求 E_A $^{\circ}$ ([Co(NH₃)₆]³⁺/[Co(NH₃)₆]²⁺)。已知 E_A $^{\circ}$ (Co³⁺/Co²⁺)=1.92V,[Co(NH₃)₆]²⁺ $K_{\mathfrak{A}}$ =1.3×10⁵,[Co(NH₃)₆]³⁺ $K_{\mathfrak{A}}$ =1.6×10³⁵。能斯特方程为 E=E $^{\circ}$ +(0.059V/z)×1g([氧化型]/[还原型])。
- 6-4 现配制了 0.2mol·L⁻¹的 NaHCO₃溶液,计算其 pH。已知 H_2 CO₃ K_{a1}° =4.45 \times 10⁻⁷ K_{a2}° =4.69 \times 10⁻¹¹。

Ex1 Lunatic Dreamer (附加题)

元素 M 是一种金属元素,可以用于制作合金。M 的单质很活泼,但纯净的 M 单质只与王水反应。含 M 的化合物 A 水解得到一种可燃的气体 B 和 M 的氢氧化物 C。将 C 高温灼烧得到不与酸碱反应的物质 D。工业上常将 D 和另外一种含 M 的化合物共熔电解来制 M 的单质。将 M 的单质在 Cl_2 中点燃是最好的制取纯净且不含结晶水的 M 的 C1 盐的方法。在没有溶剂的条件下,M 的 C1 盐与硼氢化钠(NaBH4)反应得到含 M 的物质 E。再加热 E 得到含 M 的物质 F 和另一种易自燃且有毒的气体 G。

已知 $A \mapsto \omega$ (M)=74.97%,B 充分燃烧只生成二氧化碳和水。E 中的一个 M 原子为 6 配位。F 中含有三种元素,其中的两个 M 的原子均为 6 配位,B 原子 4 配位。

- Ex1-1 写出 A、B、E、G 的化学式。
- Ex1-2 写出生成 E 的化学反应方程式。
- Ex1-3 解释"将M的单质在 C12 中点燃是最好的制取纯净的 M的 C1 盐的方法。"
- Ex1-4 画出 F 的分子结构。

4u ChO Junior 1 答案 这次 5-2-3 数据出锅,原因是温度对 OeHm から高有影响 以及 5-2-3 数据出锅,原因是温度对 OeHm から高有影响 以及 数据 率 標 不同,以各 1600 k 改为 1800 k 就行了。 6-2 中 HoS 溶解度 份为 O.1 mol/L ,以为是常识京状没写。 望要解析 可以找出題人私聊,或留言 C103 教室,标注消卷分。思 17iO2 + 2C+ 2Cl2 == TiCl4 + 2(O = 3Mn 2 + 4 + 4 + 2Mn 0 + + 2 Ho = 5 Mn O2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +
这次 $5-2-3$ 数据出锅,原因是温度对 0_{1} 的 编有影响 从及数据 率源不同, $1/4$ $1/6$ $1/$
次多数据率源不同,以每 1600 k 改为 1800 k 较行了, $6-2$ 中 H_2 S 溶解度 纷为 0.1 mol/L ,以为是常识京状没写。 想要解析 可以找 出題人私聊,或留言 $C103$ 数室,标注 消卷 6.8 100 1
6-2 中 HoS 溶解度 纷为 0.1 mol/L ,以为是常识就没写。 超要解析 3% 找 出題人私聊, 或留言 $Clo3$ 数室, 标注 消卷 6.8 l 0 を 10 を
型要解析 3 以找 出題人私聊,或留言 $C103$ 教室, 标注消卷名.思 10 2 + 2C + 2C12 = $T1$ C14 + 2C0 = 3 Mn ²⁺ + 2MnO4 + 2H2O = 5 MnO2 + 4H ⁺ = 3 4Fe ²⁺ + 9 2 + 8 OH = 4 2 - Fe 0 OH) 1 + 2 H2O = 5 4 + 1 3 = 5 4 O6 ²⁺ + 1 3 = 1 5 4 NH4 NO3 = 1 2 NO2 ↑ 1 3 N2 ↑ 1 4 8 H2O = 1 5 H2SO4 > H2SeO4 > H2TeO4
「1 $T_1O_2 + 2C + 2CI_3$ = $T_1CI_4 + 2CO$
$-102 + 2C + 2C1$ = $11C14 + 2C0$ $-23M_{N}^{2+} + 2M_{N}0_{+} + 2H_{2}0 = 5M_{N}0_{2} + 4H^{+}$ $-34F_{e}^{2+} + 9_{2} + 80H^{-} = 4\alpha - F_{e}06H) \downarrow + 2H_{2}0$ $-42S_{2}0_{3}^{2-} + I_{3}^{-} = S_{4}0_{6}^{2-} + 3I^{-}$ $-54NH_{4}N9_{3} = 2N9_{2}1 + 3N_{2}1 + 8H_{2}0$ $-1-1H_{2}S0_{4} > H_{2}Se0_{4} > H_{2}Te0_{4}$ 从5到Te 电台搜减小, 0上 电符密度变大 $-1-2H_{2}S < H_{2}Se < H_{2}Te$ 从5到Te 电荷相同但半经变大,电符密度降价 $-1-3HC10 < HC10_{2} < HC10_{4}$ 非羟基氨数量增加,吸时能力持定量 0上特额
$-2 3 M_{N}^{2+} + 2 M_{N} O_{+}^{-} + 2 H_{2} O = 5 M_{N} O_{2} J + 4 H^{+}$ $-3 4 Fe^{2+} + 9_{2} + 8 OH^{-} = 4 \alpha - Fe 0 6 W J + 2 H_{2} O$ $-4 2 S_{2} O_{3}^{2-} + I_{3}^{-} = S_{4} O_{6}^{2-} + 3 I^{-}$ $-5 4 N H_{4} N O_{3} \triangleq 2 N O_{2} \uparrow + 3 N_{2} \uparrow + 8 H_{2} O$ $-1-1 H_{2} S O_{4} > H_{2} S e O_{4} > H_{2} Te O_{4}$ 从5 到 $Te e harded $
3 4Fe ²⁺ + 9 ₂ + 80H ⁻ = 4 d - Fe 06N l + 2 H ₂ 0 -4 25 ₂ 0 ₃ ²⁻ + I ₃ ⁻ = S ₄ 0 ₆ ²⁻ + 3I ⁻ -5 4NH ₄ N9 ₃ = 2N9 ₂ ↑ + 3N ₂ ↑ + 8H ₂ 0 -1-1 H ₂ SO ₄ > H ₂ SeO ₄ > H ₂ TeO ₄ 从5 到Te 电管性感力,0上 电符密度变大 -1-2 H ₂ S < H ₂ Se < H ₂ Te 从5到Te 电荷相同但半经变大,电符密度降低 -1-3 H CIO < H CIO ₂ < H CIO ₄ 非羟基氨数量增加,吸时能力持定量 砂速符號
-4 25,03 ² + I3 = S406 ² + 3I ² -5 4NH ₄ NO ₃ = 2NO ₂ ↑ + 3N ₂ ↑ + 8H ₂ O -1-1 H ₂ SO ₄ > H ₂ SeO ₄ > H ₂ TeO ₄ 从5到Te 电台性概小, O上 电符密度变大 -1-2 H ₂ S < H ₂ Se < H ₂ Te 从5到Te 电荷相同但半经变大, 电存密度降低 -1-3 H ClO < H ClO ₂ < H ClO ₄ 非羟基氨数量增加,吸即能力增强。企业符额
-5 4NH ₄ NO ₃ = 2NO ₂ ↑+3N ₂ ↑+8H ₂ O -1-1 H ₂ SO ₄ > H ₂ SeO ₄ > H ₂ TeO ₄ 从5到Te 电台性概小, O上 电符密度变大 -1-2 H ₂ S < H ₂ Se < H ₂ Te 从5到Te 电荷相同但半经变大, 电存密度降低 -1-3 H ClO < H ClO ₂ < H ClO ₄ 非羟基氨 数量増加,吸即能力增强 企业符额
-1-1 H2504 > H25e04 > H2Te04 从5到Te 电色性膨小, 0上 电符密度变大 -1-2 H25 < H25e < H2Te 从5到Te 电荷相同但半经变大, 电符密度降低 -1-3 HC10 < HC102 < HC104 非羟基氨 数量增加, 吸即能力增强 企业符额
-1-2 H25 < H25e < H2Te 从5到Te 电荷相同但半经变大,电荷密度降低-1-3 HC10 <hc102<hc104 td="" 非羟基氨数量增加,吸即能力增强企业符额<=""></hc102<hc104>
-1-3 HC10 <hc103<hc104 td="" 非羟基氨数量增加,吸时能力增强的运行额<=""></hc103<hc104>
-2-1 2HF=H++HF- 或 3HF=HF++HF- 降低
-2-2 NaNH2 + NH4 CI = Nacl + 2NH31,
-3-1 NFg < N Cl3 2-3-2 ()
-1 Cr: [Ar] 3d54s' Co: [Ar] 3d74s2 Cu: [Ar] 3d164s' Zn: [Ar] 3d164s
-2 Nac1 > Mgcl2 > A1Cl3
-3 NO3: π46 HN3: π34 40 - 午普通 T 键
NO2: T3 或T3 N2O3 T3 和一个普通不健或 T5 (张祖领
4 四方晶系 4-2 4.25 g/cm³
4-3 Ti (0,0,0) 0 (0,327,0.327,0) (9,1735, 0.8265,0,5)
(25,25,05) (9.673, 0.673, 2) (0.8265, 0.1735, 0.5)
4-4. Ti 244 044
5-1-1 NH4HS = 1VH3 +425
5-1-2 9.1156.
Oeli得力

5-2-1 Fe20, 维定
5-2-2 不超过 900k
5-2-3. 用 (800k 算: Fe3 04, 6.8 X 10 8 mol/2
月(600 k 第: Fe, O3 # 101 /L 1-1 10 H 2 2 C7 2, 83 X10 13
6-1 10H = 2.87 2.83 Xp"
6-2 Zns海角6 [H25] = 0,207 > 0.1
Cus: [ths] = 4,2xp-8<10.1
6-3. 0.145 V
6-4 8.34
Ex-1 A: A14C3 B: CH4
E. Al (BH4), G: B2H6
Ex 1-2 A C 3 + 3Na BH4 = A1(BH4)3 + 3 Nacl
Ex 1-3 AICI3 污液蒸发終晶得到的AICI3 带结晶水, 再加热 AICI3 水解,
展 6 得 到 A 1 2 3
Ex1-4 H
H_/
B
H I H I H
Al
HIIHIH
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B
H-B
L'AMBRES MAIN PAR
1211.0