11 Publication number:

0 206 389 **A1**

(P

EUROPEAN PATENT APPLICATION

21 Application number: 86200938.8

(1) Int. Cl.4: C09K 11/80, C09K 11/79

② Date of filing: 30.05.86

Priority: 04.06.85 NL 8501599

43 Date of publication of application: 30.12.86 Bulletin 86/52

Designated Contracting States: BE DE FR GB NL

7 Applicant: N.V. Philips' Gloeilampenfabrieken Groenewoudseweg 1 NL-5621 BA Eindhoven(NL)

Inventor: Schutten, Evert Dieks c/o INT. OCTROOIBUREAU B.V. Prof. Holstlaan 6 NL-5656 AA Eindhoven(NL)

Inventor: Verlijsdonk, Johannes Godefridus c/o INT. OCTROOIBUREAU B.V. Prof. Hoistlaan 6

NL-5656 AA Eindhoven(NL)

7 Representative: Evers, Johannes Hubertus Marie et al INTERNATIONAAL OCTROOIBUREAU B.V Prof. Hoistlaan 6 NL-5656 AA Eindhoven(NL)

- Luminescent screen and low-pressure mercury vapour discharge lamp provided with such a screen.
- A luminescent screen (1,4) provided with a terbium-activated silicate (4) having a cuspidine crystal structure according to the formula Y4-x-z. pCaxMzIITbpSi2.yAlyO7+x+z+yN2-x-z-yIn this formula MII is at least one of the elements Mg, Sr and Ba. The yttrium can be replaced up to at most 50 mol.% by Gd and/or La. It further holds that:

—0 ≤ x ≤ 1.9

∞ ෆ0 ≤ y ≤ 1.9

○ 0.05 ≤ p ≤ 1.5.

Xerox Copy Centre

Luminescent screen and low-pressure mercury vapour discharge lamp provided with such a screen.

The invention relates to a luminescent screen provided with a luminescent layer which is applied to a carrier and comprises a luminescent terbium-activated silicate having a cuspidine crystal structure. The invention further relates to a low-pressure mercury vapour discharge lamp provided with such a luminescent screen.

From the article in Philips Res. Repts. 1967, 22, 481-504, luminescent terbium-activated silicates are known, whose fundamental lattice corresponds to the formula $Y_2Ca_2Si_2O_3$. This silicate and also the isomorphous compound $Y_4Al_2O_3$, of which the terbium activation is also described, have the monoclinic crystal structure of the mineral cuspidine ($Ca_4Si_2O_7F_2$). Terbium-activated silicates having a fundamental lattice of the type Y_2SiO_5 and $Y_2Si_2O_7$ are further known, for example, from US-Patent Specifications 3,523,091 and 3,758,413.

The element terbium is a frequently used activator for luminescent materials because in many crystal lattices it gives rise to a very efficient luminescence, the characteristic green Tb3+ emission being emitted. Upon excitation by ultraviolet radiation, however, it is a condition for obtaining an efficient luminescence that the luminescent material is excited by radiation having a wavelength lying in the maximum or very close to the maximum of the excitation spectrum of the material. An important application of such materials is found in low-pressure mercury vapour discharge lamps. In such lamps, mainly ultraviolet radiation having a wavelength of about 254 nm is produced. A great disadvantage of many Tb-activated materials is that the maximum of the excitation band of the terbium is found at wavelengths comparatively far from 254 nm. In those cases, an efficient luminescence can be obtained only if the excitation energy is first absorbed in a second activator, whereupon this energy is transferred to the terbium. During this absorption and transfer, of course losses may occur.

The invention has for its object to provide luminescent screens comprising new luminescent materials which are activated by terbium and which in practical applications can be directly excited in the terbium.

According to the invention, a luminescent screen of the kind mentioned in the opening paragraph is characterized in that the silicate corresponds to the formula Y_{4-x-z-p}Ca_xM_z^{ll}Tb_p Si_{2-y}Al_yO_{7+x+z+y}N_{2-x-z-y}, where M^{il}at least one of the elements Mg, Sr and Ba, where the yttrium can be replaced up to at most 50 mol.% by at least one of the elements Gd and La and in which

 $0 \le x \le 1.9$

 $0 \le z \le 1.0$

0 ≤ y ≤ 1.9

x+z+y ≤ 1.9

 $0.05 \le p \le 1.5$.

It has been found that nitrogen-containing silicates on the basis of the lattice Y₄Si₂O₇N₂ form very efficiently luminescing materials upon activation by terbium. The Y₄Si₂O₇N₂ has the cuspidine crystal structure and is a material known per se (see, for example, C.R. Hebd. Seances Acad. Sci. Ser. C. 1976, 273 (15) 675-7).

It has been found that the corresponding compounds $Gd_*Si_2O_7N_2$ and $La_*Si_2O_7N_2$ having a cuspidine structure can also be obtained. However, upon activation by Tb. these compounds have too low a quantum efficiency for practical applications. Therefore, in the luminescent silicates according to the invention, yttrium is used, which can be replaced for at most 50 mol.% by Gd and/or La. Such a replacement does not influence the crystal structure of the silicate and substantially does not influence the luminescent properties.

In the Y₄Si₂O₇N₂ lattice, the yttrium can further be replaced in part by Ca and the elements, Mg, Sr and Ba represented by Mil, while further the Si can be replaced in part by Al. In the substitutions and the street of th with Ca and Al, the cuspidine structure is main- on the compare of the tained. Substitutions with the Mil elements are possible only to a limited extent because with too large quantities of Milundesirable secondary phases are formed. Therefore, in the silicates at most 25 mol.% of the yttrium is replaced by M^{il} (z \leq 1.0). In the substitutions with Ca, Mil and/or with Al, in order to obtain charge compensation, the same molar quantity of N has to be replaced by O. It has been found that a continuous sequence of compounds with a decreasing nitrogen content is possible between the compound YaSi2O7N2 and the compounds only containing oxygen Y2Ca2Si2O2 and Y₂Al₂O₃. It has been found that the nitrogen-containing silicates and the silicates only containing oxygen have a different excitation spectrum upon activation by terbium. A great advantage is that by a suitable choice of the O: N ratio the location of the maximum of the excitation spectrum can be adapted within certain limits to a value desired for a given application.

45

50

It appears from the general formula and conditions stated above for the luminescent silicates of luminescent screens according to the invention that at most 1.9 mol of the Y is replaced by Ca (x ≤ 1.9) and also at most 1.9 mol of the Si is replaced by Al ($y \le 1.9$). If at the same time substitutions take place of both Y by Ca (and, as the case may be, Mil) and of Si by Al, these substitutions altogether also amount to at most 1.9 (x+z+y ≤ 1.9). In fact it is necessary that the luminescent silicate contains a minimum quantity of nitrogen -(0.1 mol of N per mole of silicate). The terbium content p is at least 0.05 because at smaller values of p too low luminous fluxes are obtained due to too low an absorption of exciting radiation. The terbium content is at most 1.5 because at larger values too small luminuous fluxes are obtained due to concentration quenching.

Use is preferably made of a luminescent screen according to the invention, which is characterized in that the silicate corresponds to the formula $Y_{4-x-p}Ca_x$ $Tb_pSi_2O_{7+x}N_{2-x}$, where $0.5 \le x \le$ 1.5. In fact it has been found that the highest luminous fluxes are obtained with the calcium-containing silicates which do not contain Mil and do not contain Al either, especially upon excitation by 254 nm radiation. The substitution of Ca within the given limits results in that higher quantum efficiencies are obtained and in that a satisfactory adaptation of the excitation spectrum to the radiation produced in a low-pressure mercury vapour discharge lamp is obtained. A very advantageous application of the luminescent screens is therefore found in low-pressure mercury vapour discharge S. . lamps. . .

The luminescent silicates can be obtained by a solid state reaction at a high temperature of a mixture of starting materials formed from oxides of the constituent elements or from compounds producing these oxides upon an increase in temperature. The nitrogen is mostly added to the mixture as Si₂N₄, in general an excess of nitrogen, for example of 10 mol.%, being used. A small excess of silicon, for example a few mol.%, may also be used to favour the procedure of the solid state reaction. The mixture is heated once or several times at a temperature of 1200 -1700 °C in a weakly reducing atmosphere, the luminescent silicate then being formed.

Examples of luminescent silicates suitable for a luminescent screen according to the invention will now be described more fully with reference to a drawing, an example of preparation and a number of measurements.

In the drawing:

Fig. 1 shows a low-pressure mercury vapour discharge lamp according to the invention, and

Fig. 2 shows the spectral energy distribution of the emission of a terbium-activated silicate.

Fig. 1 shows diagrammatically and in sectional view a low-pressure mercury vapour discharge lamp provided with a tubular glass wall 1. At the ends of the lamp there are arranged electrodes 2 and 3, between which the discharge is maintained during operation. The lamp is provided with a small quantity of mercury and with a rare gas as a starting gas. The wall 1 constitutes the carrier for a luminescent screen and is provided at the inner surface with a luminescent layer 4, which comprises a luminescent silicate according to the invention. The layer 4 can be applied to the wall 1 in a usual manner, for example by means of a suspension containing the luminescent silicate.

Example 1.

A mixture was made of

7.598 g of Y₂O₃

0.662 g of Tb₄O₇

0.426 g of SiO₂

1.368 g of Si₃N₄.

This mixture was heated in a molybdenum crucible: 197 - 1975. for 1 hour at 1350°C in a closed furnace, through: which a flow (6 l/min) of nitrogen containing 5 % byje 情報 / mitter volume of hydrogen was passed. After cooling and an extraction of hydrogen was passed. pulverization, the produced obtained was heated at the second of once more for 2 hours at 1500°C in the same atmosphere. After cooling and homogenization, and a second account of the cooling and homogenization, and the cooling and the cool terbium-activated silicate was obtained according to the formula Y_{3.8}Tb_{0.2} Si₂O₇N₂. It was demonstrated by means of X-ray diffraction analysis that this silicate (like all the following examples of luminescent silicates according to the invention) had the cuspidine crystal structure. Upon excitation by short-wave ultraviolet radiation (mainly 254 nm), the silicate exhibited the characteristic green line emission of Tb3+. The silicate had a quantum efficiency of 55 %, while the absorption of the exciting 254 nm radiation amounted to 88 %.

ren drafts become

Examples 2 to 7.

In the same manner as described in Example 1, a number of terbium-activated silicates of different compositions were prepared. The formulae of these silicates and the results of the measurement of the quantum efficiency (QE in %) upon excitation by 254 nm radiation and the absorption - (A in %) of the exciting radiation are indicated in the following table.

Example	Formula		A	ΘΈ
1	Y _{3.8} Tb _{0.2} Si ₂ O ₇ N ₂	1)	88	55
2	Y _{3.6} Tb _{0.4} Si ₂ O ₇ N ₂	2)	91	64
3	Y _{3.6} Tb _{0.4} SiAl0 ₈ N		92	48
4	Y _{3.3} Ca _{0.5} Tb _{c.2} Si ₂ O _{7.5} N _{1.5}	1)	85	62
5	Y2.8CaTb _{0.2} Si ₂ O ₈ N	1)	80	72
6	Y _{2.55} Ca _{1.25} Tb _{0.2} Si ₂ O _{8.25} N _{0.75}		79	77
7	Y _{2.3} ^{Ca} 1.5 ^{Tb} 0.2 ^{Si} 2 ^O 8.5 ^N 0.5		80	74

 The maximum of the excitation spectrum of the silicates according to the Examples 1, 4 and 5 and of the silicate only containing oxygen (not in accordance with the invention):

 $Y_{1.8}Ca_2Tb_{0.2}Si_2O_9$, is found at 263, 259, 255 and 235 nm, respectively.

2) The spectral energy distribution of the emission of this silicate (at 254 nm excitation) is shown in Fig. 2. In this Figure, the wavelength λ in nm is plotted on the abscissa and the relative radiation intensity E in arbitrary units is plotted on the ordinate.

Claims

A luminescent screen provided with a luminescent layer which is applied to a carrier and which comprises a luminescent terbium-activated silicate having a cuspidine crystal structure, characterized in that the silicate corresponds to the

formula Y_{4-x-2-p} Ca_xM_z^{II}Tb_pSi_{2-y}Al_yO_{7+x+z+y}N_{2-x-2-y}, where M^{II}at least one of the elements Mg, Sr and Ba, where the yttrium can be replaced up to at most 50 mol.% by at least one of the elements Gd and La and

⁵ O≤x≤1.9

 $0 \le z \le 1.0$

0 ≤ y ≤ 1.9

 $x+z+y \le 1.9$

0.05 ≤ ρ ≤ 1.5."

2. A luminescent screen as claimed in Claim 1, characterized in that the silicate corresponds to the formula $Y_{4:x-p}Ca_x$ $Tb_pSi_2O_{7+x}N_{2:x}$, where $0.5 \le x \le 1.5$

 A low-pressure mercury vapour discharge lamp provided with a luminescent screen as claimed in Claim 1 or 2.

45

50

55

EUROPEAN SEARCH REPORT

Application number

EP 86 20 0938

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category		th indication, where appropriate, vant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)	
A	EP-A-0 052 398 * Claims 1-8 *	(PHILIPS)	. 1	C 09 K 11/80 C 09 K 11/79	
					
				TECHNICAL FIELDS SEARCHED (Int. CI.4) C 09 K 11/00	
	·				
	The present search report has t	peen drawn up for all claims			
Place of search THE HAGUE Date of completion of the search 19-09-1986		DROU	DROUOT M.C.		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date O: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding document					