Preámbulo

Prof. Jhon Fredy Tavera Bucurú

2025

Definiciones Elementales

Operaciones Suma

Definición (Vector Geométrico)

Llamaremos **vector geométrico** a todo segmento de recta orientado. Denotaremos los vectores geométricos mediante letras minúsculas con una flecha encima como \vec{u} , \vec{v} , \vec{w} . Si los puntos inicial y final de un vector son, respectivamente, los puntos A y B también denotaremos dicho vector en la forma \overrightarrow{AB} . En este capítulo sólo trataremos con vectores geométricos en el plano.

Definición (Norma y dirección de un vector)

En todo vector geométrico \overrightarrow{AB} se distinguen dos elementos:

- ▶ Magnitud o norma: Denotada por $\|\overrightarrow{AB}\|$, es la longitud del segmento \overrightarrow{AB} .
- ▶ **Dirección**: Se expresa mediante un ángulo θ . Para definirla, se traza desde el punto inicial A una semirrecta horizontal hacia la derecha. La dirección de \overrightarrow{AB} es el ángulo θ formado al girar de dicha semirrecta al segmento \overrightarrow{AB} en sentido antihorario. La dirección de un vector \overrightarrow{AB} se denota $\overrightarrow{\dim}(\overrightarrow{AB})$.

Nótese que $0^{\circ} \le \theta < 360^{\circ}$ si θ se mide en grados, y que $0 \le \theta < 2\pi$ si θ se mide en radianes.

Definición (Igualdad de vectores)

Dos vectores geométricos \vec{u} y \vec{v} se dicen **iguales** y se escribe $\vec{u} = \vec{v}$ si ellos tienen la misma magnitud y la misma dirección.

Definición (Ángulo entre dos vectores)

El ángulo entre \vec{u} y \vec{v} se define como aquel ángulo α , $0^{\circ} \leq \alpha \leq 180^{\circ}$, que forman \vec{u} y \vec{v} una vez que se hacen coincidir sus puntos iniciales.

Definición (Vectores paralelos)

 \vec{u} y \vec{v} se dicen **paralelos** si el ángulo entre ellos es $\alpha=0^\circ$ o $\alpha=180^\circ$. Si $\alpha=0^\circ$ se dice que \vec{u} y \vec{v} tienen la **misma dirección** y si $\alpha=180^\circ$ que \vec{u} y \vec{v} tienen **direcciones opuestas**.

Definición (Vectores perpendiculares)

 \vec{u} y \vec{v} se dicen **perpendiculares** si el ángulo entre ellos es $\alpha = 90^{\circ}$.

Suma

Definición (Regla del triángulo)

Se dibuja \vec{v} a partir del extremo final de \vec{u} . El vector suma $\vec{u}+\vec{v}$ se define como el vector que va desde el punto inicial de \vec{u} al punto final de \vec{v} .

Definición (Vector opuesto y vector nulo)

Dado un vector \vec{v} , se llama **opuesto** de \vec{v} y se denota $-\vec{v}$, al vector que tiene la misma magnitud de \vec{v} y dirección opuesta a la de \vec{v} . Nótese que si hacemos la suma $\vec{v}+(-\vec{v})$ se obtiene como resultado un punto. Para que la suma de dos vectores sea siempre otro vector, se admite la existencia de un vector cuyos puntos inicial y final coinciden. Tal vector, cuya magnitud es 0 y al cual no se le asigna dirección, se llama **vector nulo** o **vector cero** y se denotará $\vec{0}$.

Así, dicho vector $\vec{0}$ es tal que $\vec{v} + (-\vec{v}) = \vec{0}$, cualquiera sea el vector \vec{v} , y además él es su propio opuesto, es decir, $-\vec{0} = \vec{0}$.

Proposición (Propiedades de la suma de vectores)

- 1. $\vec{u} + \vec{v}$ es un vector geométrico.
- 2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3. $(\vec{u} + \vec{v}) + \vec{z} = \vec{u} + (\vec{v} + \vec{z})$
- 4. $\vec{u} + \vec{0} = \vec{u}$
- 5. $\vec{u} + (-\vec{u}) = \vec{0}$

Ejercicio (Ecuación)

Sean \vec{u} y \vec{v} vectores dados. Expresar en términos de \vec{u} y \vec{v} el vector \vec{x} tal que

$$\vec{x} + \vec{v} = \vec{u}$$

Usando las propiedades de la suma, se prueba que $\vec{x} = \vec{u} + (-\vec{v})$

Definición (Diferencia entre vectores)

Dados dos vectores \vec{u} y \vec{v} , la diferencia $\vec{u}-\vec{v}$ se define como el vector que sumado a \vec{v} nos da \vec{u} . Ahora, según se acaba de ver en el ejemplo anterior, tal vector es $\vec{u}+(-\vec{v})$; así que

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$