

I. Biophotonics

Jumping Optical Tweezers

Liao et al., Optics Express, vol.16, 1996-2004, 2008 Liao et al., J. Biophotonics, vol.7, No.10, 2014

Optical Stretch-Induced Calcium Influx -Stretch Activated Ion Channel

FULL ARTICLE

Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: Experimental measurement and theoretical analysis

Yin-Quan Chen¹, Chih-Wei Chen¹, Yu-Li Ni², Yu-Shan Huang¹, Orson Lin³, <u>Shu Chien⁴</u>, Lanping Amy Sung^{*,4}, and Arthur Chiou^{*,1,5}

FULL ARTICLE

Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: Experimental measurement and theoretical analysis

Yin-Quan Chen¹, Chih-Wei Chen¹, Yu-Li Ni², Yu-Shan Huang¹, Orson Lin³, <u>Shu Chien⁴</u>, Lanping Amy Sung^{*,4}, and Arthur Chiou^{*,1,5}

Point Spread Function (PSF) and Convolution Image

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/introduction.html

Point Spread Function Table

Photon-switch and Localization of Single Molecular

Principle of Single-Molecule Localization Microscopy

Figure 1

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/introduction.html

Single-photon Sensitive EMCCD

Andor ixon 888

Andor Basic

Atomic, Molecular, and Optical Physics (AMO)

Cesium $6S_{1/2} \rightarrow 8S_{1/2}$ two-photon-transitionstabilized 822.5 nm diode laser

Chun-Yen Cheng, Chien-Ming Wu, Guan-Bo Liao, and Wang-Yau Cheng

Spin State Control

Spin population control by radio frequency (RF)

Quantum logic gates?

quantized motion levels

Chris Monroe

Simple example of quantum logic:

control bit (motion state)	target bit (atomic internal state)
n = 1	$ \downarrow\rangle \rightarrow \uparrow\rangle$
n = 0	$ \downarrow\rangle \rightarrow \downarrow\rangle$

"Controlled-NOT" gate between motion and atom's internal state C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

Nobel prize.org

David J. Wineland Facts

© The Nobel Foundation. Photo: U. Montan

David J. Wineland The Nobel Prize in Physics 2012

Born: 24 February 1944, Milwaukee, WI, USA

Affiliation at the time of the award: National Institute of Standards and Technology, Boulder, CO, USA, University of Colorado, Boulder, CO, USA

Prize motivation: "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems."

Ion Trap + Laser Cooling

Prize share: 1/2

Quantum Computing Startup

Headquartered

College Park, MD 2016 32

Founded

Employees

Computers

Laser Heating V.S Laser Cooling

Peter Pringsheim, Lev D. Landau (1929)

A. Schawlow, T. W. Hansch (1975)

Magneto-Optical Trap

Magneto-Optical trap (MOT, the bright spot)

Our experimental approach

Sub-Doppler Cooling

CMOT, $n > 10^{10} \, \text{cm}^{-3}$

TDMOT, $T \sim 50 \,\mu\text{K}$

GMS, $T \sim 10 \mu K$

Magneto-Optical trap (MOT, the bright spot)

Liao et al., JOSA B (2017)

Optical dipole trap (ODT, overlapped with MOT)

Vacuum System

~ 6*10⁻¹² torr

- (1-1) Rb Ampule
- (1-2) K Ampule
- (1-3) Valve

- (2) Zeeman Slower
- (3) Science Cell
- (4) Titanium Sublimation Pump
- (5) Ion Pump

Potassium gas

- Trapping all spin states:
 - ³⁹K,⁴¹K(Spin-1 boson)
 - ⁴⁰K(Spin-9/2 fermion)

How Sharp of Your Lasers

	Resolution	
Laser Spectroscopy	cm ⁻¹ (~30 GHz)	Chemical Analysis
High Resolution Laser Spectroscopy	GHz	Lamb Shift Four-Wave Mixing
Ultra-high Resolution Laser Spectroscopy	< MHz	Laser Cooling Hyperfine Structure Length Standard

Simple Lock-in Amplifier

REVIEW OF SCIENTIFIC INSTRUMENTS 78, 026101 (2007)

Enhanced laser shutter using a hard disk drive rotary voice-coil actuator

R. E. Scholten^{a)}
School of Physics, University of Melbourne, Victoria 3010, Australia

