

Mahindra University Hyderabad École Centrale School of Engineering Minor I

Program: B. Tech. Branch: CM Year: 2nd Semester: Fall Subject: Real Analysis (MA2104)

Date: 16/09/2023

Time Duration: 1.5 Hours

Start Time: 10.00 AM

Max. Marks: 20

Instructions:

1. Each question carries 5 marks.

2. All questions are compulsory.

3. Please start each answer on a separate page.

Q 1: 5 marks

Answer by True or False the following questions:

- (a) Suppose S is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ such that $x \geq \beta$ for every $x \in E$, we say that E is bounded above.
- (b) If $a \in \mathbb{R}$ is such that $0 \le a < \epsilon$ for every $\epsilon > 0$, then a = 0.
- (c) For every $n \in \mathbb{N}$, let E_n be a countable set. If $S = \bigcup_{n=1}^{\infty} E_n$, then S is also uncountable.
- (d) Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R} .
- (e) For any two sets A and B, if $A \sim B$, then either A and B are finite with the same number of elements, or A and B are both countable or A and B are both uncountable.

- (a) Let S be a set. Define an order on S.
- (b) Suppose S is an ordered set, $E \subset S$. Define the least upper bound (or supremum) of E.
- (c) Explain the Archimedean property of real numbers.
- (d) Define "at most countable" and "uncountable" sets.

Q 3:

5 marks

- (a) Find infimum and supremum of the following sets in \mathbb{R} . [3 Marks] (i) $\{-2, -\frac{3}{2}, -\frac{4}{3}, -\frac{5}{4}, \cdots, -\frac{n+1}{n}, \cdots\}$, (ii) $\{1 \frac{(-1)^n}{n} \mid n \in \mathbb{N}\}$, (iii) $\{x \in \mathbb{R} \mid x+2 \geq x^2\}$.
- (b) Let A be the set of all positive rationals p such that $p^2 < 2$ i.e.,

$$A = \{ p \in \mathbb{Q} \mid p > 0, \ p^2 < 2 \}$$

then show that A contains no largest number.

[2 Marks]

(OR)

(b') If x and y are real numbers with x < y, then there exists an irrational number $z \notin \mathbb{Q}$ such that x < z < y.

Q 4:

5 marks

- (a) Define a relation \sim as follows: For any two sets A and B, $A \sim B$ if and only if there exists a bijection $f: A \to B$. Show that \sim is an equivalence relation. [3 Marks]
- (b) Show that the set of all irrational numbers is uncountable.

[2 Marks]

(OR)

(b') Show that the set of all integers is countable.

[2 Marks]