Analysis of Algorithms Practice Session - II

(2010-2011, Spring Term)

G. Selda UYANIK

(seldauyanik@itu.edu.tr)

Question:

« A *binary tree* is a rooted tree in which each node has at most two children.»

Show by induction that

H: in any binary tree the number of nodes with two children is exactly one less than the number of leaves.

Answer:

Notations:

- The # of *leaf* nodes in a tree $T : n_0(T)$
- The # of nodes in a tree T with 2 children: $n_2(T)$

Proof:

- 1. Basis: tree with single node: H is true : $n_0(T_1) = 1$, $n_2(T_1) = 0$, $n_2(T_1) = n_0(T_1) 1$
- 2. Assume true for an ordinary tree T_2 :

v: is a leaf node, not root since T_2 has more than one node, it has paret u.

$$n_0(T_2) = m, n_2(T_2) = n_0(T_2) - 1 = m-1$$

Answer:

Proof [cont.]:

3. Show H is also true for tree obtained from T_2 :

Delete v: new tree obtained: T_3 , Show H is also true on T_3 :

$$n_0(T_3) = ?, n_2(T_3) = ?$$

if no other child, it becomes, leaf (case 1)

Parent u

if has other child, it is no more one of two children nodes.

(case 2)

Answer:

Proof [cont.]:

3. Show H is also true for tree obtained from T_2 :

• Case 1:

$$n_0(T_3) = n_0(T_2) = m$$

 $n_2(T_3) = n_2(T_2) = m - 1$

H holds!

• Case 2:

$$n_0(T_3) = n_0(T_2) - 1 = m - 1$$

 $n_2(T_3) = n_2(T_2) - 1 = m - 1 - 1$

H holds!

Background:

- You're helping a group of ethnographers analyze some oral history data they've collected by interviewing members of a village to learn about the fives of people who've lived there over the past two hundred years.
- From these interviews, they've learned about a set of n people: P_1 P_n (all have died)
- They also collected facts about when these people lived relative to one another.
- Each fact has one of the following two form:
 - For some i and j, person P_i died before person P_j was born; or
 - For some i and j, the life spans of P_i and P_j overlapped at least partially.

Question:

- Naturally, they're not sure that all these facts are correct; memories
- determine whether the data they've collected is at least internally consistent, in the sense that there could have existed a set of people for which all the facts they've learned simultaneously hold.
- Give an efficient algorithm to do this: either it should produce proposed dates of birth and death for each of the n people so that all the facts hold true, or it should report (correctly) that no such dates can exist
- —that is, the facts collected by the ethnographers are not internally consistent.

- Directed graph G:
 - V: represent each person with 2 nodes: $b_i \& d_i$
 - E: edges directed from earlier evet to the preceding event.
- If G is constructed, problem transforms into deciding whether G is acyclic or not!
- > How to consturct G?
- Why cycle in G represents inconsistency of the facts ethnographers collected?

- How to consturct G:
- For every fact been told :
 - If it is said person P_i died before person P_j was born: add $d_i \rightarrow b_i$ edge to G.
 - If it is said the life spans of P_i and P_j
 overlapped at least partially: add b_i -> d_j and b_j -> d_i edges to G!

facts ethnographers collected?

> Why cycle in G represents inconsistency of the

• Any cycle: Remember: edges should represent preceding of times of events.

Cycle prevents putting a particular event as first!:

Which one (e.g. n^{th}) you choose => you'll get inconsistency. ($(n-1)^{th}$) has edge toward it: should have taken place earlier)

• No cycle: its topological order represents the birth and death times of people consistently with the given facts!

Question:

METU-UPEM Day1:

http://www.ceng.metu.edu.tr/contest/upem

- M lanes in METU, connects 2 of the N crossroads
- There is no pair of crossroads connected by more than one lane
- it is possible to pass from each crossroad to each other crossroad by a path composed of one or more lanes.
- A cycle of lanes is simple when passes through each of its crossroads exactly once.
- ➤ UPEM organization wants to put pictures of the winners of UPEM 2010 contest, on the lanes of the longest simple loop on METU streets.
- Fortunately, each lane is participating in no more than one simple cycle!

Question:

- Input: 1stline: positive integers N & M, Each of latter M lines: consist 2 integers representing which crossroads each lane combines.
- Output: An integer that is the length of the longest simple loop on ODTU streets.

How to represent crossroads and streets?

- How to represent crossroads and streets?
- Nodes: Crossroads
- Edges: Lanes
- Why? (each lane combines exactly 2 crossroads but crossroads has no such restirction...)
- Problem?

- How to represent crossroads and streets?
- Nodes: Crossroads
- Edges: Lanes
- Why? (each lane combines exactly 2 crossroads but crossroads has no such restirction...)
- Problem?

Decomposes into finding longest cycle!

Solution: Simply traverse the graph, note the cycles and their lengths, choose longest! DFS or BFS.

• Sample run:

Sample input

• With BFS:

BFS algorithm.

- $L_0 = \{ s \}.$
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Addition: If node at layer i, has a dotted edge (edge in G not in T) to node at layer j or in same layer (i=j) but have an edge in G => cycle!

```
update length variable: how? Find common anchestor of i & j e.g. At level k Cycle length: i-k+j-k+1 (... edge) Keep maximum length value.
```

Max. Length:

BFS tree

$$L_0: \{3\}$$

$$L_1$$
: {4,1}

(Common anchestor of 4&1:3 at level 0,

• Exercise 3.12

Solution:

Max. Length:

BFS tree

 L_0 : {3}

 L_1 : {4,1}

(Common anchestor of 4&1:3 at level 0,

 L_2 : {7}

Max. Length:

BFS tree

 L_0 : {3}

 L_1 : {4,1}

(Common anchestor of 4&1:3 at level 0,

 L_2 : {7}

 L_3 : {2,5}

Max. Length:

BFS tree

 L_0 : {3}

 L_1 : {4,1}

(Common anchestor of 4&1:3 at level 0,

$$1-0 + 1-0 + 1 = 3$$

 L_2 : {7}

 L_3 : {2,5}

 L_4 : {6}

(Common anchestor of 6&5:7 at level 2,

• With DFS:

• $L_0: \{4\}$

Addition: If node at layer i, has a dotted edge (edge in G not in T) to node at layer $j \Rightarrow cycle!$ update length variable: how?

Cycle length: i - j + 1,

Keep maximum length value.

• With DFS:

• $L_0: \{4\}$

• $L_1: \{3\}$

• $L_2:\{1\}$

Addition: If node at layer i, has a dotted edge (edge in G not in T) to node at layer j => cycle! update length variable : how?

Cycle length: i - j + 1,

Keep maximum length value.

• With DFS:

• $L_0: \{4\}$

- $L_2:\{1\}$
- $L_3: \{7\}$

Addition: If node at layer i, has a dotted edge (edge in G not in T) to node at layer j => cycle! update length variable: how?

Cycle length: i - j + 1,

Keep maximum length value.

• With DFS:

• $L_0: \{4\}$

- $L_2:\{1\}$
- $L_3: \{7\}$
- $L_4:\{2\}$

• With DFS:

- $L_1: \{3\}$
- $L_2:\{1\}$
- $L_3: \{7\}$
- $L_4:\{2\}$
- $L_5: \{6\}$

Keep maximum length value.

• With DFS:

• $L_0: \{4\}$

- $L_2:\{1\}$
- $L_3: \{7\}$
- $L_4:\{2\}$
- $L_5:\{6\}$
- $L_6: \{5\}$

Addition: If node at layer i, has a dotted edge (edge in G not in T) to node at layer j => cycle! update length variable: how?

Cycle length: i - j + 1,

Keep maximum length value.

cycle length:
$$2 - 0 + 1 = 3$$

