WHAT IS CLAIMED IS:

- 1. A magnetic resonance contrast agent comprising:
- 2 a tetraazacyclododecane ligand having a general structural
- 3 formula as follows:

4

and comprising a macrocyclic ring and wherein pendant arms 5 R, R', R'' and R''' attached to a ring nitrogen have the general 6 formula: -C'HR1R2 and for three or more of said pendant arms a 7 chirality of said carbon atoms C' are identical for each of said 8 three or more pendant arms, said R1 are groups larger than 9 hydrogen, and said R² is selected from the group consisting of: 10 an alcohol (-CH₂OH); 11 amides (-CONR³R⁴, where R³ and R⁴ are organic groups); 12 a carboxylate (-COOH); 13

- phosphinates (-PO₂HR⁵, where R⁵ is an organic group);
- 15 and
- a phosphonate $(-PO(OH)_2)$; and
- wherein one or more of substituents R⁶ is a group larger
- than a methyl group and is located on one or more ring carbons;
- 19 and
- 20 a paramagnetic metal ion coordinated to said
- 21 tetraazacyclododecane ligand.
 - 2. The magnetic resonance contrast agent as recited
 - 2 in Claim 1, wherein said chirality of said carbon atoms C'
 - 3 provides said three or more of said pendant arms with a Λ or
 - 4 Δ orientation, and wherein a chirality of a ring carbon bonded to
 - 5 said one or more of substituents R⁶ provides said macrocyclic
 - 6 ring with an identical orientation, $\lambda\lambda\lambda\lambda$ or $\delta\delta\delta\delta$, respectively,
 - 7 said tetraazacyclododecane ligand thereby having a monocapped
 - 8 twisted square antiprism coordination geometry.
 - 3. The magnetic resonance contrast agent as recited
 - 2 in Claim 2, wherein said R² group is said alcohol or amide, and
 - 3 further including a water molecule associated with said
 - 4 tetraazacyclododecane ligand and said paramagnetic metal ion,
 - 5 said water molecule having a residence lifetime at about 298°K,

- 6 τ_{M}^{298} , of between about 1 and about 100 microseconds.
- 4. The magnetic resonance contrast agent as recited
- 2 in Claim 2, wherein said R^2 group is said carboxylate, and
- 3 further including a water molecule associated with said
- 4 tetraazacyclododecane ligand and said paramagnetic metal ion,
- 5 said water molecule having a residence lifetime at about 298°K,
- 6 τ_{M}^{298} , of between about 10 and about 100 nanoseconds.
- 5. The magnetic resonance contrast agent as recited
- in Claim 1, wherein said chirality of said carbon atoms C'
- 3 is controlled to provide said three or more of said pendant arms
- 4 with a Δ or Λ orientation, and wherein a chirality of a ring
- 5 carbon bonded to said one or more of substituents R⁶ provides
- 6 said macrocyclic ring with an opposite orientation, $\lambda\lambda\lambda\lambda$ or $\delta\delta\delta\delta$,
- 7 respectively, said tetraazacyclododecane ligand thereby having a
- 8 monocapped square antiprism coordination geometry.
- 6. The magnetic resonance contrast agent as recited
- 2 in Claim 5, wherein said R² group is said alcohol or amide, and
- 3 further including a water molecule associated with said
- 4 tetraazacyclododecane ligand and said paramagnetic metal ion,
- 5 said water molecule having a residence lifetime at about 298°K,

- 6 $\tau_{\rm M}^{298}$, of between about 10 and about 5000 microseconds.
- 7. The magnetic resonance contrast agent as recited
- 2 in Claim 5, wherein said R² group is said carboxylate, and
- 3 further including a water molecule associated with said
- 4 tetraazacyclododecane ligand and said paramagnetic metal ion,
- 5 said water molecule having a residence lifetime at about 298°K,
- 6 $\tau_{\rm M}^{298}$, of between about 100 and about 500 nanoseconds.
- 8. The magnetic resonance contrast agent as recited
- 2 in Claim 5, wherein said R² group is said phosphonate or said
- 3 phosphinate, and further including a water molecule associated
- 4 with said tetraazacyclododecane ligand and said paramagnetic
- 5 metal ion, said water molecule having a residence lifetime at
- 6 about 298°K, τ_M^{298} , of between about 10 and about 100 nanoseconds.
- 9. The magnetic resonance contrast agent as recited
- 2 in Claim 1, wherein said R^1 is a methyl group, said R^2 is said
- 3 carboxylate, and said R^6 is a para-aminobenzyl group and said
- 4 paramagnetic metal ion is Gd³⁺.
 - 10. The magnetic resonance contrast agent as recited
- in Claim 10, further including a water molecule associated

- 3 with said tetraazacyclododecane ligand said water molecule
- 4 having residence lifetime at about 298°K, τ_M^{298} , of about 15
- 5 nanoseconds.
- 11. The magnetic resonance contrast agent as recited
- 2 in Claim 1, wherein at least one of said one or more of
- 3 substituents R⁶ include a functional group selected from the
- 4 group consisting of:
- 5 amino groups;
- 6 carboxylates;
- 7 isothiocyanates; and
- 8 maleiimdes; and
- 9 a carrier component conjugated to said functional group.
- 12. The magnetic resonance contrast agent as recited in Claim 1, wherein said paramagnetic metal is a lanthanide ion.

- 13. A method of using a magnetic resonance contrast agent, comprising:
- 3 subjecting a contrast agent contained within a sample to a
- 4 radio frequency pulse wherein said contrast agent is a
- 5 tetraazacyclododecane ligand having a general formula of:

7 and comprising a macrocyclic ring and wherein pendant arms R,

R', R'' and R''' attached to a ring nitrogen have the general

9 formula: $-C'HR^1R^2$ and for three or more of said pendant arms a

10 chirality of said carbon atoms C' are identical for each of said

11 three or more pendant arms, said R¹ are groups larger than

hydrogen, and said R² is selected from the group consisting of:

an alcohol (-CH₂OH);

2

6

8

12

amides $(-CONR^3R^4$, where R^3 and R^4 are organic groups);

a carboxylate (-COOH);

phosphinates (-PO₂HR⁵, where R⁵ is an organic group);

17 and

18 a phosphonate $(-PO(OH)_2)$; and

- 19 wherein one or more of substituents R⁶ is a group larger than a
- 20 methyl group and is located on one or more ring carbons; and
- 21 wherein said tetraazacyclododecane ligand further includes a
- 22 paramagnetic metal ion (M3+) coordinated to said
- 23 tetraazacyclododecane ligand and a water molecule (H_2O)
- 24 associated with said tetraazacyclododecane ligand; and
- obtaining a magnetic resonance signal by applying a radio
- 26 frequency pulse at about a resonance frequency of water.
 - 14. The method as recited in Claim 13, further includes
 - 2 producing a magnetic resonance image from said magnetic
 - 3 resonance signal.
 - 15. The method as recited in Claim 13, wherein said
 - 2 contrast agent further includes a carrier component conjugated
 - 3 to said one or more of substituents R^6 .
- 16. The method as recited in Claim 15, wherein
- said water molecule has a relaxivity at 298°C, r_1^{298} , of at least
- 3 about 50 $\text{mM}^{-1} \text{ s}^{-1}$.

17. A magnetic resonance system, comprising:

a magnetic resonance contrast agent, wherein said magnetic

3 resonance contrast agent includes a tetraazacyclododecane

4 ligand, having a general formula of:

5

and comprising a macrocyclic ring and wherein pendant arms R, 6 R', R'' and R''' attached to a ring nitrogen have the general 7 formula: -C'HR1R2 and for three or more of said pendant arms a 8 chirality of said carbon atoms C' are identical for each of said 9 three or more pendant arms, said R1 are groups larger than 10 hydrogen, and said R² is selected from the group consisting of: 11 12 an alcohol (-CH₂OH); amides (-CONR³R⁴, where R³ and R⁴ are organic groups); 13 a carboxylate (-COOH); 14

phosphinates (-PO₂HR⁵, where R⁵ is an organic group);

16 and

25

2

a phosphonate $(-PO(OH)_2)$; and

wherein one or more of substituents R⁶ is a group larger 18 than a methyl group and is located on one or more ring carbons; 19 and wherein said tetraazacyclododecane ligand further includes a 20 (M^{3+}) metal ion coordinated said 21 paramagnetic to molecule water tetraazacyclododecane ligand and (H_2O) 22 a associated with said tetraazacyclododecane ligand, wherein said 23 magnetic resonance contrast agent produces a magnetic resonance 24

a magnetic resonance apparatus configured to produce said radio-frequency pulse.

signal when subjected to a radio-frequency pulse; and

- 18. The magnetic resonance system recited in Claim 17,
- 2 further comprising a sample that is a is a living subject and
- 3 said sample contains said magnetic resonance contrast agent.
 - 19. The magnetic resonance system recited in Claim 17,
- 2 wherein said magnetic resonance apparatus produces a image of
- 3 said sample from said magnetic resonance signal.
- 20. The magnetic resonance system recited in Claim 17, wherein said magnetic resonance contrast agent further includes

- a carrier component conjugated to said one or more of
- 4 substituents R^6 and said water molecule has a relaxivity at
- 5 298°C, r_1^{298} , of at least about 50 mM⁻¹ s⁻¹.