Diszkrét matematika I.

5. előadás

Nagy Gábor nagygabr@gmail.com nagygabor@inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2021. tavasz

Műveletek Diszkrét matematika I. 2021. tavasz

Műveletek

Definíció

Egy X halmazon értelmezett binér (kétváltozós) művelet egy $*: X \times X \to X$ függvény. Gyakran *(x,y) helyett x*y-t írunk. Egy X halmazon értelmezett unér (egyváltozós) művelet egy $*: X \to X$ függvény.

- \mathbb{R} halmazon az +, · binér, $z \mapsto -z$ (ellentett) unér művelet.
- \mathbb{R} halmazon az \div (osztás) nem művelet, mert $dmn(\div) \neq \mathbb{R} \times \mathbb{R}$.
- $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ halmazon az \div binér, az $x \mapsto 1/x$ (reciprok) unér művelet.
- \bullet \mathbb{R} halmazon a 0 illetve 1 konstans kijelölése nullér művelet.

Műveletek

Egy véges halmazon bármely binér művelet megadható a műveleti táblájával:

Definíció (Műveletek függvényekkel)

Legyen X tetszőleges halmaz, Y halmaz a * művelettel, $f,g:X\to Y$ függvények. Ekkor

$$(f*g)(x) := f(x)*g(x).$$

$$(\sin + \cos)(x) = \sin x + \cos x$$

Műveletek Diszkrét matematika I. 2021. tavasz

Művelettartó leképezések

Definíció

Legyen X halmaz a * művelettel, Y a \diamond művelettel. Az $f:X\to Y$ függvény művelettartó, ha $\forall x,y\in X$ esetén

$$f(x*y)=f(x)\diamond f(y).$$

- Legyen $X = \mathbb{R}$ az + művelettel, $Y = \mathbb{R}^+$ a · művelettel. Ekkor az $x \mapsto a^x$ művelettartó: $a^{x+y} = a^x \cdot a^y$.
- Legyen $X = \mathbb{R}^{n \times n}$ a · művelettel, $Y = \mathbb{R}$ a · művelettel. Ekkor az $x \mapsto \det(x)$ művelettartó: $\det(A \cdot B) = \det(A) \cdot \det(B)$.

Műveletek Diszkrét matematika I. 2021. tavasz

Műveleti tulajdonságok

Definíció

```
A *: X \times X \to X művelet asszociatív, ha \forall a, b, c \in X: (a*b)*c = a*(b*c); kommutatív, ha \forall a, b \in X: a*b = b*a.
```

- ullet R-en az +, illetve a \cdot műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: $(f \circ g) \circ h = f \circ (g \circ h)$.
- Az $\mathbb{R} \to \mathbb{R}$ függvények halmazán a kompozíció művelete nem kommutatív: f(x) = x + 1, $g(x) = x^2$: $x^2 + 1 = (f \circ g)(x) \neq (g \circ f)(x) = (x + 1)^2$.
- Az osztás nem asszociatív \mathbb{R}^* -on: $\frac{a}{bc} = (a \div b) \div c \neq a \div (b \div c) = \frac{ac}{b} \text{ (pl. } a = b = c = 2\text{)}.$

A komplex számok bevezetése

Legyen i az $x^2 = -1$ egyenlet megoldása.

A szokásos számolási szabályok szerint számoljunk az i szimbólummal formálisan, $i^2=-1$ helyettesítéssel:

$$(1+i)^2 = 1 + 2i + i^2 = 1 + 2i + (-1) = 2i.$$

Általában:

$$(a+bi)(c+di) = ac-bd+(ad+bc)i.$$

A komplex számok definíciója

Definíció

Az a+bi alakú kifejezéseket, ahol $a,b\in\mathbb{R}$, komplex számoknak (\mathbb{C}) hívjuk, az ilyen formában való felírásukat algebrai alaknak nevezzük.

Osszeadás: (a + bi) + (c + di) = a + c + (b + d)i. Szorzás: (a + bi)(c + di) = ac - bd + (ad + bc)i.

A $z = a + bi \in \mathbb{C}$ $(a, b \in \mathbb{R})$ komplex szám valós része: $Re(z) = a \in \mathbb{R}$.

A $z = a + bi \in \mathbb{C}$ $(a, b \in \mathbb{R})$ komplex szám képzetes része:

 $\operatorname{Im}(z) = b \in \mathbb{R}.$

Figyelem! $Im(z) \neq bi$

Az $a + 0 \cdot i$ alakú komplex számok a valós számok.

A 0 + bi alakú komplex számok a tisztán képzetes számok.

Az a + bi és a c + di algebrai alakban megadott komplex számok pontosan akkor egyenlőek: a + bi = c + di, ha

$$a = c$$
 és $b = d$.

A komplex számok definíciója

Megjegyzés

A komplex számok alternatív definíciója:

 $(a,b)\in\mathbb{R} imes\mathbb{R}$ párok halmaza, ahol az

összeadás: (a, b) + (c, d) = (a + c, b + d);

a szorzás:
$$(a,b) \cdot (c,d) = (ac-bd,ad+bc)$$
.

A két definíció ekvivalens: az $f: \mathbb{C} \to \mathbb{R} \times \mathbb{R}, \ f(a+bi) = (a,b)$ művelettartó bijekció $(\mathbb{C};+)$ és $(\mathbb{R} \times \mathbb{R};+)$, illetve $(\mathbb{C};\cdot)$ és $(\mathbb{R} \times \mathbb{R};\cdot)$ között (speciálisan $i \leftrightarrow (0,1)$).

Az a + bi formátum kényelmesebb számoláshoz.

Az (a, b) formátum kényelmesebb ábrázoláshoz (grafikusan, számítógépen).

A műveletek tulajdonságai

Állítás

A komplex számok halmazán az előbbi módon definiált összeadás asszociatív, kommutatív és létezik semleges elem, a 0:

- $\bullet \ \forall z_1, z_2, z_3 \in \mathbb{C} : \ (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- $\bullet \ \forall z_1, z_2 \in \mathbb{C}: \ z_1 + z_2 = z_2 + z_1$
- $\forall z_1 \in \mathbb{C} : z_1 + 0 = 0 + z_1 = z_1$

Állítás

A komplex számok halmazán az előbbi módon definiált szorzás asszociatív, kommutatív és létezik semleges elem, az 1:

- $\forall z_1, z_2, z_3 \in \mathbb{C} : (z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$
- $\bullet \ \forall z_1, z_2 \in \mathbb{C}: \ z_1 \cdot z_2 = z_2 \cdot z_1$
- $\bullet \ \forall z_1 \in \mathbb{C}: \ z_1 \cdot 1 = 1 \cdot z_1 = z_1$

10.

A műveletek tulajdonságai

Állítás

Teljesül a szorzás összeadásra vonatkozó mindkét oldali disztributivitása:

- $\forall z_1, z_2, z_3 \in \mathbb{C} : z_1 \cdot (z_2 + z_3) = (z_1 \cdot z_2) + (z_1 \cdot z_3)$
- $\bullet \ \forall z_1, z_2, z_3 \in \mathbb{C} : \ (z_1 + z_2) \cdot z_3 = (z_1 \cdot z_3) + (z_2 \cdot z_3)$

Definíció

Egy x szám ellentettje az az \hat{x} szám, melyre $x + \hat{x} = 0$.

Egy $r \in \mathbb{R}$ szám ellentettje: -r.

Állítás (HF)

Egy $z=a+bi\in\mathbb{C}$ algebrai alakban megadott komplex szám ellentettje a -z=-a-bi algebrai alakban megadott komplex szám.

11.

A műveletek tulajdonságai

Definíció

Egy x szám reciproka az az \hat{x} szám, melyre $x \cdot \hat{x} = 1$.

Egy $r \in \mathbb{R} \setminus \{0\}$ szám reciproka: $\frac{1}{r}$.

Mi lesz $\frac{1}{1+i}$?

Ötlet: gyöktelenítés, konjugálttal való bővítés:

$$\frac{1}{1+\sqrt{2}} = \frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1^2-(\sqrt{2})^2}$$
$$= \frac{1-\sqrt{2}}{1-2} = -1+\sqrt{2}.$$

Hasonlóan:

$$\frac{1}{1+i} = \frac{1}{1+i} \frac{1-i}{1-i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{1^2-i^2} = \frac{1-i}{1-(-1)} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i.$$

12.

Számolás komplex számokkal

Definíció

Egy $z=a+bi\in\mathbb{C}$ algebrai alakban megadott komplex szám abszolút értéke: $|z|=|a+bi|=\sqrt{a^2+b^2}$.

Valós számok esetében ez a hagyományos abszolút érték: $|a| = \sqrt{a^2}$.

Állítás(HF)

$$|z| = |a + bi| \ge 0$$
, $|z| = |a + bi| = 0 \Leftrightarrow z = a + bi = 0$.

13.

Számolás komplex számokkal

Definíció

Egy z = a + bi algebrai alakban megadott komplex szám konjugáltja a $\overline{z} = \overline{a + bi} = a - bi$ szám.

Állítás(HF)

Egy $z \neq 0$ komplex szám reciproka $\frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}}$.

A definíció értelmes, hiszen a nevező:

$$z \cdot \overline{z} = (a + bi)(a - bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2.$$

Nullosztómentesség: $z \cdot w = 0 \Rightarrow z = 0$ vagy w = 0.

Két komplex szám hányadosa:

$$\frac{z}{w} = z \cdot \frac{1}{w}$$
.

A műveletek tulajdonságai

Állítás

A komplex számok halmaza a fent definiált összeadással és szorzással testet alkot.

További példák testre: $(\mathbb{Q}; +, \cdot)$ és $(\mathbb{R}; +, \cdot)$.

Számolás komplex számokkal

Tétel (HF)

$$2-2=2 \min(2) \cdot r,$$

1
$$|0| = 0$$
 és $z \neq 0$ esetén $|z| > 0$;

$$|z + w| \le |z| + |w|$$
 (háromszög egyenlőtlenség).

Számolás komplex számokkal

Tétel(HF)

 $|z \cdot w| = |z| \cdot |w|;$

Bizonyítás

$$|z \cdot w|^2 = z \cdot w \cdot \overline{z \cdot w} = z \cdot w \cdot \overline{z} \cdot \overline{w} = z \cdot \overline{z} \cdot w \cdot \overline{w} = |z|^2 \cdot |w|^2 = (|z| \cdot |w|)^2.$$

Komplex számok ábrázolása

A komplex számok a komplex számsíkon:

Ha
$$z=a+bi\in\mathbb{C}$$
, akkor $\mathrm{Re}(z)=a$, $\mathrm{Im}(z)=b$.
A $(\mathrm{Re}(z),\mathrm{Im}(z))$ vektor hossza: $r=\sqrt{a^2+b^2}=\sqrt{|z|^2}$.
A z nemnulla szám argumentuma $\varphi=arg(z)\in[0,2\pi)$
A koordináták trigonometrikus függvényekkel kifejezve:

$$\operatorname{Re}(z) = a = r \cdot \cos \varphi, \operatorname{Im}(z) = b = r \cdot \sin \varphi$$

18.

Komplex számok trigonometrikus alakja

Definíció

 $z \in \mathbb{C}$ nemnulla szám trigonometrikus alakja a $z = r(\cos \varphi + i \sin \varphi)$, ahol r > 0 a szám abszolút értéke.

Figyelem! A 0-nak nem használjuk a trigonometrikus alakját.

A trigonometrikus alak nem egyértelmű:

$$r(\cos\varphi + i\sin\varphi) = r(\cos(\varphi + 2\pi) + i\sin(\varphi + 2\pi)).$$

Definíció

Egy nemnulla $z \in \mathbb{C}$ argumentuma az a $\varphi = arg(z) \in [0, 2\pi)$, melyre $z = |z|(\cos \varphi + i \sin \varphi)$.

- z = a + bi algebrai alak;
- $z = r(\cos \varphi + i \sin \varphi)$ trigonometrikus alak.

Itt $a = r \cos \varphi, b = r \sin \varphi$.

Diszkrét matematika I.

 $a + bi = r(\cos \varphi + i \sin \varphi)$

Áttérés algebrai alakról trigonometrikus alakra

$$\begin{aligned} &a=r\cos\varphi\\ &b=r\sin\varphi \end{aligned} \right\}$$
 Ha $a\neq 0$, akkor $\mathrm{tg}\varphi=\frac{b}{a}$, és így
$$\varphi=\left\{ \begin{array}{l} \mathrm{arctg}\frac{b}{a},\ \mathrm{ha}\ a>0;\\ \mathrm{arctg}\frac{b}{a}+\pi,\ \mathrm{ha}\ a<0. \end{array} \right.$$

20.

Számolás trigonometrikus alakkal

```
Legyenek z,w\in\mathbb{C} nemnulla komplex számok: z=|z|(\cos\varphi+i\sin\varphi), \quad w=|w|(\cos\psi+i\sin\psi) A szorzatuk: zw=|z|(\cos\varphi+i\sin\varphi)\cdot|w|(\cos\psi+i\sin\psi)= =|z||w|(\cos\varphi\cos\psi-\sin\varphi\sin\psi+i(\cos\varphi\sin\psi+\sin\varphi\cos\psi))= addíciós képletek: \cos(\varphi+\psi)=\cos\varphi\cos\psi-\sin\varphi\sin\psi \sin(\varphi+\psi)=\cos\varphi\sin\psi+\sin\varphi\cos\psi =|z||w|(\cos(\varphi+\psi)+i\sin(\varphi+\psi)) A szorzat abszolút értéke: |zw|=|z||w|. A szorzat argumentuma: \bullet ha 0\leq arg(z)+arg(w)<2\pi, akkor arg(zw)=arg(z)+arg(w);
```

• ha $2\pi \le arg(z) + arg(w) < 4\pi$, akkor

$$arg(zw) = arg(z) + arg(w) - 2\pi.$$

A sin, cos függvények 2π szerint periodikusak, az argumentum meghatározásánál redukálni kell az argumentumok összegét.

Moivre-azonosságok

Tétel HF

```
Legyen z, w \in \mathbb{C} nemnulla komplex számok: z = |z|(\cos \varphi + i \sin \varphi), \ w = |w|(\cos \psi + i \sin \psi), és legyen n \in \mathbb{N}. Ekkor zw = |z||w|(\cos(\varphi + \psi) + i \sin(\varphi + \psi)); \frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi - \psi) + i \sin(\varphi - \psi)), ha w \neq 0; z^n = |z|^n(\cos n\varphi + i \sin n\varphi).
```

A szögek összeadódnak, kivonódnak, szorzódnak. Az argumentumot ezek után redukcióval kapjuk!