Εκθετική Λογαριθμική Συνάρτηση Λογάριθμοι

Κωνσταντίνος Λόλας

Σταμάταααααααα

Τελειώνουμε!

Γιατί καινούρια έννοια?

- Οι εκθέτες είναι δύσκολοι στον χειρισμό
- Οι εκθέτες είναι δύσκολοι στην εύρεση
- Οι τεράστιοι αριθμοί είναι δυσβάσταχτο

Γιατί καινούρια έννοια?

- Οι εκθέτες είναι δύσκολοι στον χειρισμό
- Οι εκθέτες είναι δύσκολοι στην εύρεση
- Οι τεράστιοι αριθμοί είναι δυσβάσταχτοι

Γιατί καινούρια έννοια?

- Οι εκθέτες είναι δύσκολοι στον χειρισμό
- Οι εκθέτες είναι δύσκολοι στην εύρεση
- Οι τεράστιοι αριθμοί είναι δυσβάσταχτοι

Ας κατανοήσουμε την ανάγκη!

- ullet Δεν γνωρίζουμε τις ρίζες των πραγματικών, αλλά γράφουμε $\sqrt{2}$
- Δεν γνωρίζουμε τα ημίτονα των τόξων, αλλά γράφουμε $\eta\mu(\frac{\pi}{7}$

Γιατί να μην υπάρχει λοιπόν το $2^x = 5$? Περιγράψτε το!

Ας κατανοήσουμε την ανάγκη!

- ullet Δεν γνωρίζουμε τις ρίζες των πραγματικών, αλλά γράφουμε $\sqrt{2}$
- Δεν γνωρίζουμε τα ημίτονα των τόξων, αλλά γράφουμε $\eta\mu(\frac{\pi}{7})$

Γιατί να μην υπάρχει λοιπόν το $2^x = 5$? Περιγράψτε το!

Ας κατανοήσουμε την ανάγκη!

- ullet Δεν γνωρίζουμε τις ρίζες των πραγματικών, αλλά γράφουμε $\sqrt{2}$
- Δεν γνωρίζουμε τα ημίτονα των τόξων, αλλά γράφουμε $\eta\mu(\frac{\pi}{7})$

Γιατί να μην υπάρχει λοιπόν το $2^x=5$? Περιγράψτε το!

Λογάριθμοι λοιπόν

Ορισμός

$$\log_a x = y \iff a^y = x$$

Για κάθε a>0, $a\neq 1$ και x>0

Παραλλαγές

- $\bullet \ \log_e = \ln$

Από τον ορισμό έχουμε άμεσα...

- $\log_a 1 =$
- $\bullet \ a^{\log_a x} = x \iff (\log_a x = y \iff a^y = x)$

Από τον ορισμό έχουμε άμεσα...

- $\log_a 1 = 0$
- $\bullet \ a^{\log_a x} = x \iff (\log_a x = y \iff a^y = x)$

Από τον ορισμό έχουμε άμεσα...

- $\log_a 1 = 0$
- $\circ a^{\log_a x} = x \iff (\log_a x = y \iff a^y = x)$

Από τον ορισμό έχουμε άμεσα...

- $\log_a 1 = 0$
- $\bullet \ a^{\log_a x} = x \iff (\log_a x = y \iff a^y = x)$

Από τον ορισμό έχουμε άμεσα...

- $\log_a a = 1$
- $\log_a 1 = 0$

Και λίγες ακόμα

Ιδιότητες

$$\bullet \ \log_{\alpha}\left(\theta_{1} \cdot \theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\log_{\alpha} (\theta_1 - \theta_2) = \log_{\alpha} \theta_1 + \log_{\alpha} \theta_2$$

$$\log_{\alpha} \frac{\theta_1}{\theta_2} = \log_{\alpha} \theta_1 - \log_{\alpha} \theta_2$$

Απόδειξη

Και λίγες ακόμα

- $\bullet \ \log_{\alpha}\left(\theta_{1} \cdot \theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$

Και λίγες ακόμα

Ιδιότητες

$$\bullet \ \log_{\alpha}\left(\theta_{1}\cdot\theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\log_{\alpha} (v_1 \cdot v_2) = \log_{\alpha} v_1 + \log_{\alpha} v_2$$

$$\log_{\alpha} \frac{\theta_1}{\theta_2} = \log_{\alpha} \theta_1 - \log_{\alpha} \theta_2$$

Απόδειξη

Σχεδόν Τελειώσαμε!

Εμεινε μόνο ο ορισμός της συνάρτησης $\ln x$ και η γραφική της παράσταση!

- $\log_3 x = -2$
- $\log_4 x = \frac{1}{2}$
- $4 \ln x = 2$
- $\log_x 9 = 2$

- $\log_3 x = -2$
- 3 $\log_4 x = \frac{1}{2}$
- $4 \ln x = 2$
- $\log_x 9 = 2$

- $\log_3 x = -2$

- $\log_x 9 = 2$

- $\log_3 x = -2$

- $\log_x 9 = 2$

- $\log_2 x = 3$
- $\log_3 x = -2$

- $\log_x 9 = 2$

- $\log_3 x = -2$

- **6** $\log_x 9 = 2$

Να υπολογίσετε τις παραστάσεις

- $\mathbf{1} \ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$
- $4 \ln \sqrt[3]{e^2}$
- $\log_{\frac{1}{2}} \sqrt{3}$
- 6 $\log_8 \sqrt{2}$
- $\ln^2 e^3$

Να υπολογίσετε τις παραστάσεις

- $\mathbf{1} \ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$
- $4 \ln \sqrt[3]{e^2}$
- $\log_{\frac{1}{2}} \sqrt{3}$
- 6 $\log_8 \sqrt{2}$
- $\ln^2 e^3$

Να υπολογίσετε τις παραστάσεις

- $\mathbf{1} \ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$
- $4 \ln \sqrt[3]{e^2}$
- $\log_{\frac{1}{2}} \sqrt{3}$
- 6 $\log_8 \sqrt{2}$
- $\ln^2 e^3$

Να υπολογίσετε τις παραστάσεις

- $\ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$
- $\log_{\frac{1}{2}} \sqrt{3}$
- 6 $\log_{\diamond} \sqrt{2}$
- $\ln^2 e^3$

Να υπολογίσετε τις παραστάσεις

- $\mathbf{1} \ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$

- $\log_8 \sqrt{2}$
- $\ln^2 e^3$

Να υπολογίσετε τις παραστάσεις

- $\mathbf{1} \ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$

Να υπολογίσετε τις παραστάσεις

- $\mathbf{1} \ln e^3$
- $\log \frac{1}{100}$
- $e^{\ln 3}$
- **5** $\log_{\frac{1}{3}} \sqrt{3}$
- **6** $\log_8 \sqrt{2}$
- $\ln^2 e^3$

Να αποδείξετε ότι:

Να αποδείξετε ότι:

Να αποδείξετε ότι:

Να υπολογίσετε τις τιμές των παραστάσεων:

- $2 100^{\frac{1}{2} \frac{3}{2} \log 2}$
- $\left(\frac{1}{e}\right)^{3-\ln\sqrt{2}}$

Να υπολογίσετε τις τιμές των παραστάσεων:

- $15^{1+3\log_5 2}$
- 2 $100^{\frac{1}{2} \frac{3}{2} \log 2}$ 3 $\left(\frac{1}{e}\right)^{3 \ln \sqrt{2}}$

Να υπολογίσετε τις τιμές των παραστάσεων:

- $15^{1+3\log_5 2}$
- 2 $100^{\frac{1}{2} \frac{3}{2} \log 2}$ 3 $\left(\frac{1}{e}\right)^{3 \ln \sqrt{2}}$

$$\bullet \ \log_{\alpha}\left(\theta_{1} \cdot \theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\bullet \log_{\alpha} \theta^{\kappa} = \kappa \log_{\alpha} \theta$$

Θέτουμε $\log_{\alpha}\theta_1=x_1\implies \alpha^{x_1}=\theta_1$ και $\log_{\alpha}\theta_2=x_2\implies \alpha^{x_2}=\theta_2$ και έχουμε

$$\bullet \ \log_{\alpha}\left(\theta_{1} \cdot \theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\bullet \ \log_{\alpha} \theta^{\kappa} = \kappa \log_{\alpha} \theta$$

Θέτουμε $\log_{\alpha}\theta_1=x_1\implies \alpha^{x_1}=\theta_1$ και $\log_{\alpha}\theta_2=x_2\implies \alpha^{x_2}=\theta_2$ και έχουμε

$$\log_{\alpha}\left(\theta_{1}\cdot\theta_{2}\right)=\log_{\alpha}\left(\alpha^{x_{1}}\alpha^{x_{2}}\right)=\log_{\alpha}\alpha^{x_{1}+x_{2}}=x_{1}+x_{2}=\log_{\alpha}\theta_{1}+\log_{\alpha}\theta_{2}$$

$$\bullet \ \log_{\alpha}\left(\theta_{1} \cdot \theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\bullet \ \log_{\alpha} \frac{\theta_1}{\theta_2} = \log_{\alpha} \theta_1 - \log_{\alpha} \theta_2$$

$$\bullet \ \log_\alpha \theta^\kappa = \kappa \log_\alpha \theta$$

Θέτουμε $\log_{\alpha}\theta_1=x_1\implies \alpha^{x_1}=\theta_1$ και $\log_{\alpha}\theta_2=x_2\implies \alpha^{x_2}=\theta_2$ και έχουμε

$$\log_{\alpha} \frac{\theta_1}{\theta_2} = \log_{\alpha} \frac{\alpha^{x_1}}{\alpha^{x_2}} = \log_{\alpha} \alpha^{x_1 - x_2} = x_1 - x_2 = \log_{\alpha} \theta_1 - \log_{\alpha} \theta_2$$

$$\bullet \ \log_{\alpha}\left(\theta_{1} \cdot \theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\bullet \ \log_{\alpha} \frac{\theta_1}{\theta_2} = \log_{\alpha} \theta_1 - \log_{\alpha} \theta_2$$

$$\bullet \ \log_{\alpha} \theta^{\kappa} = \kappa \log_{\alpha} \theta$$

Θέτουμε $\log_{\alpha} \theta = x \implies \alpha^x = \theta$ και έχουμε

$$\bullet \ \log_{\alpha}\left(\theta_{1}\cdot\theta_{2}\right) = \log_{\alpha}\theta_{1} + \log_{\alpha}\theta_{2}$$

$$\bullet \ \log_{\alpha} \frac{\theta_1}{\theta_2} = \log_{\alpha} \theta_1 - \log_{\alpha} \theta_2$$

Θέτουμε $\log_{\alpha} \theta = x \implies \alpha^x = \theta$ και έχουμε

$$\log_{\alpha} \theta^{\kappa} = \log_{\alpha} \left(\alpha^{x}\right)^{\kappa} = \log_{\alpha} \alpha^{\kappa x} = \kappa x = \kappa \log_{\alpha} \theta$$