```
Input: Set of slot machines S, exploration parameter \epsilon Initialization: R(s) \leftarrow 0 for all s \in S; Initialization: N(s) \leftarrow 0 for all s \in S; for t = 1 to T do

| if random(0,1) > \epsilon then
| Choose action a_t = \arg\max_{s \in S} R(s);
| else
```

Choose a random action $a_t \sim Uniform(S)$:

Perform action a_t on the chosen slot machine:

Observe reward r_t obtained from the chosen action; Update action count: $N(a_t) \leftarrow N(a_t) + 1$; Update estimated reward value: $R(a_t) \leftarrow \frac{R(a_t) \cdot (N(a_t) - 1) + r_t}{N(a_t)}$;

end

end