圈論

omosan0627

June 11, 2023

とくに断らない限り、圏は locally small とする. (小圏とは違うよ)

1 圏論入門

1.1 圏論とは何か

http://alg-d.com/math/kan_extension/intro.pdf

Definition 1.1. 圏 C とは二つの集まり Ob(C), Mor(C) の組であって、以下の条件を満たすものをいう。なお元 $a \in Ob(C)$ を対象、 $f \in Mor(C)$ を射と呼ぶ。

- (1) 各 $f \in \operatorname{Mor}(C)$ に対して、ドメインと呼ばれる対象 $\operatorname{dom}(f) \in \operatorname{Ob}(C)$ とコドメインと呼ばれる対象 $\operatorname{cod}(f) \in \operatorname{Ob}(C)$ が定められている。 $\operatorname{dom}(f) = a$, $\operatorname{cod}(f) = b$ であることを $f: a \to b$ や $a \xrightarrow{f} b$ と書いて表す。 また対象 $a,b \in \operatorname{Ob}(C)$ に対して $\operatorname{Hom}_C(a,b) := \{f \in \operatorname{Mor}(C): a \xrightarrow{f} b\}$ と書く.
- (2) 2つの射 $f,g \in \operatorname{Mor}(C)$ について $\operatorname{cod}(f) = \operatorname{dom}(g)$ であるとき、f と g の合成射 とよばれる射 $g \circ f$ が定められていて、 $\operatorname{dom}(g \circ f) = \operatorname{dom}(f), \operatorname{cod}(g \circ f) = \operatorname{cod}(g)$ を満たす。
- (3) 射の合成は結合則を満たす. $(h \circ (g \circ f) = (h \circ g) \circ f)$
- (4) 各 $a\in \mathrm{Ob}(C)$ に対して、恒等射と呼ばれる射 $\mathrm{id}_a:a\to a$ が存在し、射の合成に関する単位元となる。 すなわち $f:a\to b$ に対して、 $f\circ\mathrm{id}_a=f,\mathrm{id}_b\circ f=f$ である.

Example 1.2. Set, Grp, Top

Definition 1.3. C,D を圏とする. C から D への関手 $F:C \to D$ とは $a \in \mathrm{Ob}(C)$ に $F(a) \in \mathrm{Ob}(D)$ を, $f \in \mathrm{Mor}(C)$ に $F(f) \in \mathrm{Mor}(D)$ を対応させる関数であって, 以下を満たすものである.

- (1) $f: a \rightarrow b$ のとき $F(f): F(a) \rightarrow F(b)$ である.
- (2) cod(f) = dom(g) のとき, $F(g \circ f) = F(g) \circ F(f)$ である.
- (3) $a \in C$ に対して $F(id_a) = id_{F(a)}$ である.

Definition 1.4. C を圏, $a, b \in C$ を対象とする.

(1) C の射 $f: a \to b$ が同型射 \iff ある射 $g: b \to a$ が存在して, $g \circ f = \mathrm{id}_a$, $f \circ g = \mathrm{id}_b$ となる

(2) a と b が同型 $(a \cong b$ で表す) \iff ある同型射 $f: a \to b$ が存在する.

Theorem 1.5. f が同型射ならば F(f) も同型射

Definition 1.6. 圏 C と圏 D が同型 $(C \cong D$ と書く) とは、ある関手 $F: C \to D, G: D \to C$ が存在して $GF = \mathrm{id}_C, FG = \mathrm{id}_D$.

1.2 自然変換・圏同値

http://alg-d.com/math/kan_extension/equivalence.pdf

Definition 1.7. C,D を圏, $F,G:C\to D$ を関手とする. F から G への自然変換とは, D の射の族 $\theta=\{\theta_a:Fa\to Fb\}_{a\in \mathrm{Ob}(C)}$ であって, C の射 $f:a\to b$ に対して $Gf\circ\theta_a=\theta_bFf$ を満たすものをいう. (またこのとき θ_a は a について自然という言い方をする.) 絵で書けば以下のようになる.

 θ が F から G への自然変換であることを記号で $\theta:F\Rightarrow G$ と表す. また θ_a を θ の a 成分と呼ぶ.

Definition 1.8. 各 θ_a が同型射となる自然変換 θ を自然同型という。また自然同型 $F\Rightarrow G$ が存在するとき,F と G は自然同型であるといい,記号で $F\cong G$ と表す.

Example 1.9. 有限次元線形空間 V と V^{**} についての自然変換 $\theta: \mathrm{id}_c \Rightarrow F \circ F^{\mathrm{op}}, \theta_V(x)(\rho) \mapsto \rho(x)$. 線形代数の世界 $\mathrm{p}135$ も参照. V^* の場合と違って、基底を出さなくても自然変換が作れるところがポイント.

Definition 1.10. 圏 C,D が圏同値 $(C \simeq D$ と書く)

 \iff 関手 $F:C \to D, G:D \to C$ と自然変換 $GF \cong \mathrm{id}_C, FG \cong \mathrm{id}_D$ が存在する.