Stochastic Modelling

isakhammer

2020

Contents

1.1 Practical Information 1.2 Mathematical description 1.3 Recall from Statistics Course 1.3.1 Combining Event	• • • • • • • • • • • • • • • • • • •	 · ·		. 3 . 3 . 3
1.2 Mathematical description	• • • • • • • • • • • • • • • • • • •	 · ·		. 3 . 3 . 3
1.3.1 Combining Event		 		. 3
1.3.1 Combining Event		 		. 3
· ·		 		
1.3.2 Probability			•	. 4
1.3.3 Law of total probability				
1.3.4 Independence				
1.3.5 Random Variables				
1.3.6 Notation for random variables				
1.3.7 Discrete random variables		 		. 5
1.3.8 CFD		 		. 6
1.3.9 Continious random vairbales				
1.3.10 Important properties				
1.3.11 Expectation				
1.3.12 Variance				
1.3.13 Joint CDF				
1.3.14 Joint distribution for discrete random variables				
1.3.15 Joint distribution for continous random variables.		 		. 7
1.3.16 Independence		 		. 8
2 Lecture 2				9
2.1 Joint Distribution		 		
2.2 Simplified Notation				
2.3 Marginalization				
2.4 Conditional Expectation				
3 Lecture 3				15
3.1 Randoms sum				
3.2 Self Study				
3.3 Stochastic process in descrete time				
3.4 Markov chain				
3.5 Doing n transitions.				

4 References 19

1 Lecture 1

1.1 Practical Information

Two projects

- The projects count 20% and exam 80%.
- Must be done with two people.
- If you want to do statistics is it worth learning R.

Course Overview

- Markov chains for discret time and discrete outcome.
 - Set of states and discrete time points.
 - Transition between states
 - Future depends on the present, but not the past.
- Continious time Markoc chains. (continious time and discrete toutcome.
- Brownian motion and Gaussian processes (continionus time and continious outcome.)

1.2 Mathematical description

Definition 1.1. A stochastic process $\{x(t), t \in T\}$ is a family of random variables, where T is a set of indicies, and X(t) is a random variable for each value of t.

1.3 Recall from Statistics Course

A random experiment is performed the outcome of the experiment is random.

- THe set of possible outcomes is the sample space ω
 - An **event** $A \subset \omega$ if the outcome is contained in A
 - The **complement** of an event A is $A^c = \omega \setminus A$
 - The **null event** \emptyset is the empty set $\emptyset = \omega \setminus \omega$

1.3.1 Combining Event

Let A and B be events

- The union $A \cup B$ is the event that at least one of A and B occur.
- the intersection $A \cap B$ is the event that both A and B occur.

The events A_1,A_2,\ldots are called disjoint (or **mutually exclusive**) if $A_i\cap A_j=\emptyset$ for $i\neq j$

1.3.2 Probability

Pr is called a probability on ω if

- Pr $\{\omega\} = 1$
- $0 \le P\{A\} \le 1$ for all events A
- For A_1, A_2, \ldots that are mutually exclusive

$$P\left\{\bigcup_{i=1}^{\infty} A_i\right\} = \sum_{i=1}^{\infty} P\left\{A_i\right\}$$

We call $P\{A\}$ the probability of A.

1.3.3 Law of total probability

Let A_1, A_2, \ldots be a partition of ω ie

- $\omega = \bigcup_{i=1}^{\infty} A_i$
- A_1, A_2, A_3, \ldots are mutually exclusive.

Then for any event B

$$P\{B\} = \sum_{i=1}^{\infty} P\{B \cap A_i\}$$

This concept is very important.

1.3.4 Independence

Event A and B are independent of

$$P\{A \cap B\} = P\{A\}P\{B\}$$

Events A_1, \ldots, A_n are independent if for any subset

$$P\left\{\bigcap_{j=1}^{k} A_{i_j}\right\} = \prod_{j=1}^{k} P\left\{A_{i_j}\right\}$$

In this case $P\left\{\bigcap_{i=1}^{n} A_1\right\} = \prod_{i=1}^{n} P\left\{A_i\right\}$

1.3.5 Random Variables

Definition 1.2. A random variable is a real-vaued function on the sample space. Informally: A random variable is a real valued variable that takes on its value by chance.

Example.

- Throw two dice. X = sum of the two dice
- Throw a coin. X is 1 for heads and X is 0 for tails.

1.3.6 Notation for random variables

We use

- \bullet upper case letters such at X, Y and Z to represent random variables.
- ullet lower case letters as x, y, z to denote the real-valued realized value of a the random variable.

Expression such as $\{X \leq x\}$ denators the event that X assumes a valye less than or earl to the real number x.

1.3.7 Discrete random variables

The random variable X is **discrete** if it has a finite or countable number of possible outcomes x_1, x_2, \ldots

• The **probability mass function** $p_x(x)$ is given by

$$p_x\left(x\right) = P\left\{X = x\right\}$$

and satisfies

$$\sum_{i=1}^{\infty} p_x(x_i) = 1 \quad \text{and} \quad 0 \le p_x(x_i) \le 1$$

• The cumulative distribution function (CDF) a of X can be written

$$F_{x}\left(x\right) = P\left\{X \leq x\right\} = \sum_{i: x_{i} \leq x} p_{x}\left(x_{i}\right)$$

1.3.8 CFD

The CDF of X may also be called the **distribution function** of X Let $F_x(x)$ be the CDF of X, then

- $F_x(x)$ is monetonaly increasing.
- F_x is a stepfunction, which is a pieace-wise constant with jumps at x_i .
- $\lim_{x\to\infty} F_x(x) = 1$
- $\lim_{x\to-\infty} F_x(x) = 0$

1.3.9 Continious random vairbales

A continious random variables takes value o a continious scale.

- The CDF, $F_x(x) = P(X \le x)$ is continious.
- The **probability density function** (PDF) $f_x(x) = F'_x(x)$ can be used to calculate probabilities

$$Pr \{a < X < b\} = Pr \{a \le X < b\} = Pr \{a < X \le b\}$$
$$= Pr \{a \le X \le b\} = \int_a^b f_x(x) dx$$

1.3.10 Important properties

- CDF:
 - Monotonely increaing
 - continious
 - $-\lim_{x\to\infty} F_x = 1$ and $\lim_{x\to-\infty} F_x(x) = 0$
- PDF

$$- f_x(x) \ge 0 \text{ for } x \in \mathbb{R}$$
$$- \int_{-\infty}^{\infty} f_x(x) dx = 1$$

1.3.11 Expectation

Let $g: \mathbb{R} \to \mathbb{R}$ be a function and X be a random variable.

• If X is discrete, the expected value of g(X) is

$$E\left[g\left(X\right)\right] = \sum_{x:p_{x}\left(x\right)>0} g\left(x\right) p_{x}\left(x\right)$$

• If X is continous, the expected value of g(X) is

$$E\left[g\left(X\right)\right] = \int_{-\infty}^{\infty} g\left(x\right) f_x\left(x\right) dx$$

1.3.12 Variance

The variance of the random variable X is

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

Important properties of expectation and variance.

• Expectations is linear

$$E[aX + bY + c] = aE[X] + bE[Y] + c.$$

• Variance scales quadratically and is invaraient to the addition of constants

$$Var\left[aX + b\right] = a^2 Var\left[X\right]$$

• fir independent stochastic variables.

$$Var[X + Y] = Var[X] + Var[Y]$$

1.3.13 Joint CDF

If (X,Y) is a pair for random variables, their **joint comulative distribution** function is given by

$$F_{X,Y} = F(x,y) = Pr\{X < x \cap Y < y\}$$

.

1.3.14 Joint distrubution for discrete random variables

If X and Y are discrete, the **joint probability mass function** $p_{x,y} = Pr\{X = x, Y = y\}$. can be used to compute probabilities

$$Pr\left\{ a < X < b, c < Y \le d \right\} = \sum_{a < x \le b} \sum_{c < y \le d} p_{X,Y}\left(x,y\right)$$

1.3.15 Joint distrubution for continous random variables

If X and Y are continious the **joint probability density function**

$$.f_{X,Y}(x,y) = f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

can be used to compute probabilities

$$Pr\left\{a < X \leq b, \quad c < Y \leq d\right\} = \int_{a}^{b} \int_{a}^{d} f\left(x, y\right) dx dy$$

1.3.16 Independence

The random variables X and Y are independent if

$$Pr\{X \le a, Y \le b\} = Pr\{X \le a\} \cdot Pr\{Y \le b\}, \quad \forall a, b \in \mathbb{R}$$

In terms of CDFs: $F_{X,Y}(a,b) = F_X(a) \cdot F_Y(b) \quad \forall a,b \in \mathbb{R}$ Thus we have

- $p_{X,Y}\left(x,y\right)=p_{X}\left(x\right)\cdot p_{Y}\left(Y\right)$ for discrete random variables
- $f_{X,Y}\left(x,y\right)=f_{X}\left(x\right)\cdot f_{Y}\left(Y\right)$ for continuous random variables.

2 Lecture 2

Definition 2.1. Let A and B be events. The conditionally pprobability of A fiven B is defined by

$$Pr\left\{A\mid B\right\} = \begin{cases} \frac{Pr\left\{A\cap B\right\}}{Pr\left\{B\right\}}, & Pr\left\{B\right\} > 0, \\ Not \ defined & Pr\left\{B\right\} = 0 \end{cases}$$

Example. Throw one die and let X denote the number of eyes. Find $Pr\{X \geq 5 \mid X \geq 3\}$.

$$Pr \{X \ge 5 \mid \ge 3\} = \frac{Pr \{X \ge 5\}}{Pr \{X \ge 3\}}$$
$$= \frac{\frac{2}{6}}{\frac{4}{6}} = \frac{1}{2}$$

Check if Lecture two is in google cal

Definition 2.2. Conditional EMF (Conditionally probability mass function PMF). Assume X and Y are jointly distributed random variables. The Conditional PMF. $p_{x|y}$ of X given Y given by

$$p_{X\mid Y}\left(x\mid y\right) = \frac{Pr\left\{X=x,Y=y\right\}}{Pr\left\{Y=y\right\}} = \frac{p_{X,Y}\left(x,y\right)}{p_{Y}}, \quad p_{y}\left(y\right) > 0$$

Remark. $\{X = x, Y = x\}$ is shorthand for $\{(X = x) \cap (Y = y)\}$

Remark. • $p_{X|Y}(x \mid y)$ is a pmf for

$$x \implies \sum_{x} p_{X|Y}(x \mid y) = 1 \quad \forall y$$

• $P_{X|Y}(x|y)$ is not a pmf for

$$y \implies \sum_{X|Y} \neq 1$$
 In General

Example. Throw die and let

$$X =$$
Number of eyes

$$Y = \begin{cases} 0, & \text{if } X \ge 2\\ 1, & \text{if } X \ge 3 \end{cases}$$

Find the conditionally $\mathbf{PMF}~p_{X|Y}$

Solution. For y = 0

$$p_{x|y}(x \mid y) = \begin{cases} \frac{1}{2}, & x = 1, 2\\ 0, & x = 3, 4, 5, 6 \end{cases}$$

For y = 1

$$p_{x|y}(x \mid y) = \begin{cases} 0, & x = 1, 2\\ \frac{1}{4}, & x = 3, 4, 5, 6 \end{cases}$$

Didnt quite understand this example

- $\sum_{x} p_{X|Y}(X \mid 0) = 1$
- Noob mistake

$$p_{X|Y} = (1 \mid 0) + p_{X|Y} (1 \mid 1) = \frac{1}{2} + 0 \neq 1$$

2.1 Joint Distribution

THe conditional \mathbf{PMF} is essential to us because we can siplify the joint \mathbf{PMF} as

$$\begin{split} p_{X|Y}\left(x,y\right) &= Pr\left\{X=x,Y=y\right\} \\ &= Pr\left\{U=y\right\} Pr\left\{X=x\mid Y=y\right\} \\ &= p_{Y}\left(y\right)p_{X|Y}\left(x\mid y\right) \end{split}$$

Remark. if X and Y are independent then is

$$p_{X|Y}(x \mid y) = p_X(x)$$
 if $p_Y(y) > 0$
 $\implies p_{X|Y}(x \mid y) = p_X(x) \cdot p_Y(Y)$

2.2 Simplified Notation

Unless it will cause confusion, we typically write

• p(x) instead of $p_X(x)$

- p(y) instead of $p_Y(y)$
- p(x,y) instead of $p_{X,Y}(x,y)$
- $p(x \mid Y = y)$ instead of $p_{X|Y}(X \mid y)$

2.3 Marginalization

THe law of total probability gives

$$Pr \{X = x\} = \sum_{y} Pr \{X = x, Y = y\}$$

= $\sum_{y} Pr \{Y = y\} Pr \{X = x \mid Y = y\}$

Example. A hunter ecounter N birds. For each burd, he gets one shot and either or misses. Assume the probability of hitting is p for each bird and that the shots are independent. Additionally, assume that the number of birds ancountered in Poission distrubuted with mean λ I.e $N \sim \operatorname{Passion}(\lambda)$. Find the **EMF** of the number of birds hit.

Solution.

i Notation.

Let
$$I_i = \begin{cases} 0, & \text{Miss bird } i \\ 1, & \text{Hit bird } i \end{cases}$$
 for $i = 1, 2, 3, 4, \dots$

Let $X = \text{Number of birds hit Target is } p(x), x = 0, 1, 2, \dots$

i Condition on N

$$(X|N = n) = \begin{cases} 0, & n = 0\\ \sum_{i=1}^{n} I_i, & n > 0 \end{cases}$$

. We know

$$(X \mid N = n) \sim Binomial(n, p)$$

$$\Longrightarrow Pr \{X = x \mid N = n\}$$

$$= {n \choose x} p^{x} (1 - p)^{n - x} \quad x = 0, 1, \dots, n$$

iii)

$$Pr \{X = x\} = \sum_{n=0}^{\infty} Pr \{X = x, N = n\}$$

$$= \sum_{n=x}^{\infty} Pr \{N = n\} Pr \{X = x \mid N = n\}$$

$$= \sum_{n=x}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!} \frac{p^x (1 - p)^{n-x} n!}{x! (n - x)!}$$

$$= \lambda^x \frac{e^{-\lambda} p^x}{x!} \sum_{n=x}^{\infty} \frac{(1 - p)^{n-x}}{(n - x)!} \lambda^{n-x},$$
hint
$$\sum_{k=0}^{\infty} \frac{a^k}{k!} = e^a$$

$$= (\lambda p)^x e^{-\lambda} \frac{1}{x!} \sum_{n=x}^{\infty} \frac{[\lambda (1 - p)]^{n-x}}{(n - x)!}$$

$$= (\lambda p)^x e^{-\lambda p} \frac{1}{x!}, \quad x = 0, 1, 2, 3 \dots$$

$$\implies \sim Pqssion (\lambda p)$$

2.4 Conditional Expectation

Let X and Y be random variables and g a real function. The **Conditional** expected value of g(X) given Y = y is

$$E\left[g\left(X\right)\mid Y=y\right]=\sum_{x}g\left(x\right)\Pr\left\{X=x\mid Y=y\right\},\quad\text{ if }\ \Pr\left\{Y=y\right\}>0$$

Remark. • Note that E[g(X) | Y] is a stochastic variable variable!

• $E[g(X) \mid Y = y]$ has probability $Pr\{Y = y\}$

Theorem 2.1 (Law of iterated expectations). Let X and Y be random variables such that $E[|g(X)|] < \infty$, and let g be a real function. then

$$E[g(X)] = E[E[g(x) \mid Y]].$$

Proof.

$$\begin{split} E\left[E\left[g\left(X\right)\mid Y\right]\right] &= \sum_{y} E\left[g\left(X\right)\mid Y=y\right] \\ &= \sum_{y} \left\{\sum_{x} g\left(x\right) \cdot Pr\left\{X=x\mid Y=y\right\}\right\} x Pr\left\{Y=y\right\} \\ &= \sum_{y} \sum_{x} g\left(x\right) \cdot Pr\left\{X=x,Y=y\right\} \\ &= \sum_{x} g\left(x\right) \sum_{y} Pr\left\{X=x,Y=y\right\} \\ &= \sum_{x} g\left(x\right) Pr\left\{X=x\right\} \\ &= E\left[g\left(X\right)\right] \end{split}$$

Theorem 2.2 (Law of total variance). Let X and Y be random variables such that $E[X^2] < \infty$, then

$$Var\left[X\right] = E\left[Var\left[X \mid Y\right]\right] + Var\left[E\left[X \mid Y\right]\right]$$

Revisited Example. A hunter ecounter N birds. For each burd, he gets one shot and either or misses. Assume the probability of hitting is p for each bird and that the shots are independent. Additionally, assume that the number of birds ancountered in Poission distributed with mean λ I.e $N \sim \operatorname{Passion}(\lambda)$. Find the expected value and the variance of the number of birds hit.

$$E[X] = E[E[X \mid Y]]$$

$$Var[X] = E[var[X \mid Y]] + Var[E[E \mid Y]]$$

Solution .

$$E[X \mid N = n] = np$$

$$Var[X \mid N = n] = np(1 - p)$$

$$\implies Var[X \mid N] = Np(1 - p)$$

We get

•

$$\begin{split} E\left[X\right] &= E\left[E\left[X\mid N\right]\right] \\ &= E\left[Np\right] = pE\left[N\right] \\ &= p\lambda \end{split}$$

•

$$Var [X] = E [Var [X \mid N]] + Var [E [X \mid N]]$$

$$= E [Np (1 - p)] + Var [Np]$$

$$= p (1 - p) \lambda + p^{2}Var [N]$$

$$= p (1 - p) \lambda + p^{2}\lambda$$

$$= \lambda p$$

3 Lecture 3

3.1 Randoms sum

Building on the hunter example from last week. we can more generally consider random sums

$$X = \begin{cases} 0, & N = 0 \\ \zeta_1 + \zeta_2 + \dots + \zeta_N, & N > 0 \end{cases}$$

where

• N is a discrete random variable with values $0, 1, \ldots$

• ζ_1, ζ_2, \ldots are independent random variables

• N is independent of $\zeta_1, \zeta_2 + \ldots + \zeta_N$

• Notation $X = \sum_{i=1}^{N} \zeta_i = \zeta_1 + \zeta_2 + \ldots + \zeta_N$

Example.

1. Insurance company

N: Number of claims.

 ζ_1, ζ_2, \dots : Sizes of the claims

Total liability:

$$X = \zeta_1 + \zeta_2 + \ldots + \zeta_N$$

2. Be careful!

$$\underbrace{E\left[\sum_{i=1}^{N} E[\zeta_{i}]\right]}_{E\left[\sum_{i=1}^{N} \zeta_{i}\right]} = E\left[E\left[\sum_{i=1}^{N} \zeta_{i} \mid N\right]\right]$$

$$= E\left[\sum_{i=1}^{N} E\left[\zeta_{i} \mid N\right]\right]$$

3.2 Self Study

Section 2.2, 2.3, 2.4

3.3 Stochastic process in descrete time

Definition 3.1. A discrete-time stochastic process is a family of random variables $[X_t : t \in T]$ where T is discrete.

- We use $T = \{0, 1, 2, ...\}$ and write X_n instead of X_t
- we call X_n the **state** at time n = 0, 1, 2, 3, ...
- We call the set of all possible states the **state space**

Table 1: Table for example

Day	n=0	n = 1	n=2	
Random Variable	X_0	X_1	X_2	
Realization 1	$x_0 = 0$	$x_1 = 1$	$x_2 = 1$	
Realization 2	$x_0 = 1$	$x_1 = 1$	$x_2 = 1$	

Example.

$$X_n = \begin{cases} 1, & \text{if it rains on day } n \\ 0, & \text{no rain on day } n \end{cases}$$

State space = $\{0, 1\}$

We have a problem. Need

$$Pr\{X_n = x_n \mid X_{n-1} = x_n, X_{n-2} = x_{n-2}, \dots, X_0 = x_0\}.$$

for all n = 0, 1, 2, ...

3.4 Markov chain

Definition 3.2 (Discrete time Markov Chain). A **Discrete time markov** chain is a discrete time stochastic process $\{X_n : n = 0, 1, \ldots\}$ that statisfied the **markov** property such that

$$Pr \{X_{n-1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0\}$$

= $Pr \{X_{n+1} = j \mid X_n = i\}$

for $n = 0, 1, 2, 3, \ldots$ and for all states i and j

Definition 3.3 (One-step transition probabilities). We can define it as

• For a discrete Markov chain $\{X_n : n = 0, 1, 2, ...\}$ we call $P_{ij}^{n,n+1} = Pr\{X_{n+1} = j, X_n = i\}$ the one step trainsition probabilities.

ullet We will assume stationary transition probabilities, i.e that

$$P_{ij}^{n,n+1} = P_{ij}$$

for $n = 0, 1, 2, \dots$ and all states i and j.

Some of the properties

1. "You will always go somewhere"

$$\sum_{i} P_{ij} = 1 \quad \forall i$$

2. The markov chain can be described as follows.

$$\begin{split} & Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right\} \\ & = Pr\left\{X_{0}=i_{0}\right\} Pr\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \ldots \\ & Pr\left\{X_{n}=x_{n} \mid X_{n-1}=i_{n-1} \ldots X_{0}=i_{0}\right\} \\ & \vdots \quad \text{Markov step} \\ & = Pr\left\{X_{0}=i_{0}\right\} \cdot Pr\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \ldots \\ & Pr\left\{X_{n}=x_{n} \mid X_{n-1}=i_{n-1}\right\} \\ & = Pr\left\{X_{0}=i_{0}\right\} P_{i_{0},i_{1}} \cdot P_{i_{1},i_{2}} \ldots P_{i_{n-1},i_{n}} \end{split}$$

Which is a major simplification.

Definition 3.4 (Transition Probability Matrix). For a discrete time markov-chain with state space $\{0, 1, ..., N\}$ we call

$$\mathbf{P} = \begin{bmatrix} P_{00} & \dots & P_{0N} \\ P_{10} & \dots & & \\ \vdots & & \ddots \\ P_{N0} & \dots & P_{NN} \end{bmatrix}$$

Is the transition matrix. For statespace $\{0,1,2,\ldots\}$ we envision an infinitely sized matrix.

Example.

- Markoc chain : $\{X_n : n = 0, 1, 2, \ldots\}$
- State space = $\{0, 1\}$
- Transition Matrix

$$\mathbf{P} = \begin{bmatrix} 0.9 & 0.1 \\ 0.6 & 0.4 \end{bmatrix}$$

We can compute

$$Pr \{X_3 = 1 \mid X_2 = 0\} = p_{01}$$

= 0.1
 $Pr \{X_{10} = 0 \mid X_9 = 1\} = P_{10}$
= 0.6

Definition 3.5 (Transition Diagram). Let $\{X_n : n = 0, 1, ...\}$ be a discrete time Markov chain. A **state transition diagram** visualizes the transition probabilities as a weighted directed graph where the nodes are the states and the edges are the possible transitions marked with the transistion probabilities.

Example. State space $= \{0, 1, 2\}$ and

$$P = \begin{bmatrix} 0.95 & 0.05 & 9\\ 0 & 0.9 & 0.1\\ 0.01 & 0 & 0.99 \end{bmatrix}$$

Transisition diagram

Nice figure of the diagram

3.5 Doing n transitions.

Theorem 3.1. For a Markoc chain $\{X_n : n = 0, 1, ...\}$ and any $m \ge 0$ we have

$$Pr\{X_{m-n} = j \mid X_m = i\} = P_{ij}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)}, \quad n > 0$$

where we define

$$P_{ij}^{(0)} = \begin{cases} 1, & i = j \\ 0, i \neq j \end{cases}$$

Proof. Set m = 0 then is

$$\begin{split} P_{ij}^{(n+1)} &= \Pr\left\{X_{n+1} = j \mid X_0 = i\right\} \\ &= \sum_k \Pr\left\{X_{n+1} = j, X_1 = k \mid X_0 = i\right\} \\ &= \sum_k \Pr\left\{X_{n+1} = j \mid X_1 = k, X_0 = i\right\} \cdot \Pr\left\{X_1 = k \mid X_0 = i\right\} \\ &= \sum_k P_{kj}^{(h)} \cdot P_{ik} = \sum_k P_{ik} P_{kj}^{(h)} \end{split}$$

Example. $\{X_n : n = 0, 1, 2, ...\}$ is a markoc chain and

$$P = \begin{bmatrix} 0.1 & 0.9 \\ 0.6 & 0.4 \end{bmatrix}$$

Find $P_{01}^{(4)}$. Solution.

$$P^2 = \begin{bmatrix} 0.55 & 0.45 \\ 0.30 & 0.70 \end{bmatrix}$$

So by doing matrix multiplication and we end up with

$$P^4 = P^2 \cdot P^2 = \begin{bmatrix} 0.4375 & 0.5625 \\ 0.3750 & 0.6250 \end{bmatrix}$$

Which therefore ends up with the answer

$$P_{01}^{(4)} = 0.5625$$

4 References