2.6.1

a. Prove that $\frac{\sqrt{2}}{2}$ is irrational.

Proof. Assume that $\frac{\sqrt{2}}{2}$ is rational. That is, it takes the form $\frac{p}{q}$, for some $p, q \in \mathbb{Z}$, where $q \nmid p$. This also means that $\sqrt{2}$ must be rational, that is it takes the form $\frac{m}{n}$, for some $m, n \in \mathbb{Z}$, where $n \nmid m$.

$$\sqrt{2} = \frac{m}{n}$$

$$\sqrt{2}^2 = (\frac{m}{n})^2$$

$$2 = \frac{m^2}{n^2}$$

$$2n^2 = m^2$$

Since $2n^2 = m^2$, m^2 is an even number. Since the square of an even integer is also even, this means that m is also even; it takes the form 2k, for some $k \in \mathbb{Z}$. Therefore,

$$m^2 = (2k)^2 = 4k^2$$

$$2n^2 = 4k^2$$

This implies that there is a common factor between n and m, and $m \mid n$. This contradicts the assertion that $m \nmid n$. Therefore $\sqrt{2}$ cannot be rational, and must be irrational.

b. Prove that $2 - \sqrt{2}$ is irrational.

Proof. Assume that $2-\sqrt{2}$ is rational. That is, it takes the form $\frac{p}{q}$, for some $p,q\in\mathbb{Z}$. This assertion also implies that 2 is rational and $\sqrt{2}$ is rational. This was contradicted in problem 2.6.1a. Therefore $2-\sqrt{2}$ cannot be rational, and must be irrational.

2.6.2

a. Prove that if n is an integer such that n^3 is even, then n is even.

Proof. Assume that n^3 is odd. That is, $n^3 = 2k + 1$, for some $k \in \mathbb{Z}$. Consider $k = 4j^3 + 6j^2 + 2j$, for some $j \in \mathbb{Z}$

$$n^{3} = 2k + 1 = 2(4j^{3} + 6j^{2} + 2j) + 1$$

$$= 8j^{3} + 12j^{2} + 4j + 1$$

$$= 8j^{3} + 8j^{2} + 2j + 4j^{2} + 4j + 1$$

$$= (4j^{2} + 4j + 1)(2j + 1)$$

$$= (2j + 1)^{3}$$

Therefore n takes the form 2k+1, an odd integer. This contradicts the conclusion that n is even. Therefore, if n is an integer such that n^3 is even, then n is even.

2.6.6

a. If a group of 9 kids have won a total of 100 trophies, then at least one of the 9 kids has won as least 12 trophies.

Proof. Assume that if a group of 9 kids have won a total of 100 trophies, then all of the 9 kids have won at fewer than 12 trophies. This means that the total number of trophies must be:

trophies
$$\leq 9 \cdot 11$$

 ≤ 99

This contradicts the assertion that 9 kids have won a total of 100 trophies. Therefore, if a group of 9 kids have won a total of 100 trophies, then at least one of the 9 kids has won as least 12 trophies \Box

b. If a person buys at least 400 cups of coffee in a year, then there is at least one day in which the person has bought at least two cups of coffee.

Proof. Assume that if a persons buys at least 400 cups of coffee in a year, then there are no days in which the person has bought at least two cups of coffee. Therefore, the total number of coffees must be:

cups of coffee
$$\leq 1 \cdot 365$$

 ≤ 365

This contradicts with the assertion that a person buys at least 400 cups of coffee in a year. Therefore, if a person buys at least 400 cups of coffee in a year, then there is at least one day in which the person has bought at least two cups of coffee \Box