

# CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods



# What Is Pattern Discovery?

- □ What are patterns? เป็นการค้นหา Patterns ที่ช่อนอยู่
  - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
  - □ Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:

สินค้าใดที่ลูกค้ามักจะซื้อคู่กันเสมอ ทำให้ร้าน สามารถเตรียมของที่ค่กันไว้อย่างพอดี

- What products were often purchased together?
- What are the subsequent purchases after buying an iPad?
- What code segments likely contain copy-and-paste bugs?
- □ What word sequences likely form phrases in this corpus?

# Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Mining sequential, structural (e.g., sub-graph) patterns
  - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
  - Classification: Discriminative pattern-based analysis
  - Cluster analysis: Pattern-based subspace clustering
- Broad applications
  - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

# **Basic Concepts: k-Itemsets and Their Supports**

- ☐ Itemset: A set of one or more items
- $\blacksquare$  k-itemset:  $X = \{x_1, ..., x_k\}$
- □ Ex. {Beer, Nuts, Diaper} is a 3-itemset
- □ (absolute) support (count) of X, sup{X}: Frequency or the number of occurrences of an itemset X
  - $\square$  Ex. sup{Beer} = 3
  - Ex. sup{Diaper} = 4
  - Ex. sup{Beer, Diaper} = 3
  - Ex. sup{Beer, Eggs} = 1

K-itemset ตัว k สามารถเปลี่ยนเป็นตัวเลขได้

Absolute support เป็นการนับจำนวน transaction ที่มาสนับสนุน แต่วิธีนี้ไม่รู้จำนวนทั้งหมดของข้อมูล

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
  - $\Box$  Ex. s{Beer} = 3/5 = 60%
  - $\Box$  Ex. s{Diaper} = 4/5 = 80%
  - $\Box$  Ex. s{Beer, Eggs} = 1/5 = 20%

Relative support วิธีนี้เราจะสามารถสู้ถึงสัดส่วน และ จำนวนทั้งหมดของข้อมูลทั้งหมดด้วย

# Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
- Let  $\sigma = 50\%$  ( $\sigma$ : minsup threshold) For the given 5-transaction dataset
- All the frequent 1-itemsets:
  - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
  - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
- All the frequent 2-itemsets:
- □ {Beer, Diaper}: 3/5 (60%)
- All the frequent 3-itemsets?
  - None

Minsup threshold = ค่าขีดแบ่ง

| 7040 |                                  |        |
|------|----------------------------------|--------|
| Tid  | Items bought                     |        |
| 10   | Beer, Nuts, Diaper               |        |
| 20   | Beer, Coffee, Diaper             |        |
| 30   | Beer, Diaper, Eggs               |        |
| 40   | Nuts, Eggs, Milk                 |        |
| 50   | Nuts, Coffee, Diaper, Eggs, Milk | $\Box$ |

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

# From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
  - Ex. Diaper → Beer คนซื้อ Diaper จะนำไปสู่การ
    - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
  - $\square$  Measuring association rules:  $X \rightarrow Y$  (s, c)
    - Both X and Y are itemsets
  - Support, s: The probability that a transaction contains X ∪ Y
    - $\Box$  Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
  - □ Confidence, c: The conditional probability that a transaction containing X also contains Y
    - □ Calculation:  $c = \sup(X \cup Y) / \sup(X)$
  - $\Box$  Ex.  $c = \sup{\text{Diaper, Beer}}/\sup{\text{Diaper}} = \frac{3}{4} = 0.75$

(D,B)/(D)

(3/5) /(4/5)

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



Note:  $X \cup Y$ : the union of two itemsets

The set contains both X and Y

# Mining Frequent Itemsets and Association Rules

<u>ต้องมีการกำหนด</u>

Association rule mining

minsup, minconf

- Given two thresholds: minsup, minconf
- □ Find all of the rules,  $X \rightarrow Y$  (s, c)
  - □ such that,  $s \ge minsup$  and  $c \ge minconf$

 $\Box$  Let minsup = 50%

☐ Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3

☐ Freq. 2-itemsets: {Beer, Diaper}: 3

- □ Let minconf = 50%
  - Beer → Diaper (60%, 100%)
  - $\Box$  Diaper  $\rightarrow$  Beer (60%, 75%)

(Q: Are these all rules?)

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |

#### Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

# **Efficient Pattern Mining Methods**

- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

15

10

### **Apriori Pruning and Scalable Mining Methods**

- Apriori pruning principle If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- □ Scalable mining Methods: Three major approaches
  - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
  - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
  - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

17

## **Apriori: A Candidate Generation & Test Approach**

- Outline of Apriori (level-wise, candidate generation and test)
  - Initially, scan DB once to get frequent 1-itemset
  - Repeat
    - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
    - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
    - Set k := k +1
  - Until no frequent or candidate set can be generated
  - Return all the frequent itemsets derived

## The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k F_k: \text{Frequent itemset of size k} ซู โด โค้ด เป็นโค้ดโปรแกรม แต่ไม่ได้ภาษาโดภาษาหนึ่ง K:=1; เขียนขึ้นเพื่อให้เรานำไปแปลงไปเป็นภาษาที่เราใช้ได้ F_k:=\{\text{frequent items}\}; \text{ // frequent 1-itemset} While (F_k:=\emptyset) do \{\text{ // when } F_k \text{ is non-empty } C_{k+1}:=\text{ candidates generated from } F_k; \text{ // candidate generation } Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup; k:=k+1 } return \bigcup_k F_k // return F_k generated at each level
```

The Apriori Algorithm—An Example



20

19