1. Hacer:

- (a) De una prueba perfecta del siguiente hecho: "Si (P, \leq) es un poset, entonces la relacion < es transitiva con respecto a P".
- (b) Pruebe que si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un isomorfismo de reticulados acotados y S es un subuniverso de (L,s,i,0,1), entonces $F(S) = \{F(x) : x \in S\}$ es un subuniverso de (L',s',i',0',1')
- (c) Sean (P, \leq) y (P', \leq') posets. Supongamos G es un isomorfismo de (P, \leq) en (P', \leq') . Si (P, \leq) tiene exactamente tres elementos maximales, entonces tambien (P', \leq') tiene exactamente tres elementos maximales
- 2. Sea $L = \{1, 2, 3, 6, 9, 18\}$. Denotemos con **L** al reticulado (L, mcm, mcd). Definamos para $x \in \mathbf{N}$,

$$(x)_2 = \max_t \left(3^t \text{ divide a } x\right).$$

(el "sub 2" es porque 3 es el segundo primo). Sea $\theta = \{(x,y) \in L^2 : (x)_2 = (y)_2\}$. Note que θ es una congruencia sobre **L** (no hace falta que lo pruebe).

- (a) Haga un diagrama de Hasse de ${\bf L}$
- (b) Dar explicitamente L/θ .
- (c) Dar explicitamente (i.e. dar el conjunto de pares) el orden parcial $\stackrel{\circ}{\leq}$ asociado al reticulado \mathbf{L}/θ
- (d) De un isomorfismo de \mathbf{L}/θ en $(\{0,1,2\}, \max, \min)$
- (e) Dar una congruencia δ tal que \mathbf{L}/δ sea isomorfo a $(\mathcal{P}(\{a,b\}),\cup,\cap)$ (dar el isomorfismo)