Manli Shu

College Park, MD 20740 • (240)714-2447 • manlis@umd.edu • linkedin.com/in/manlishu

Education

University of Maryland, College Park

Ph.D. student in Computer Science, Department of Computer Science

University of Science and Technology of China

B.Eng. in Information Security, School of Information Science & Technology

Expected: 05/2024

GPA: 4.0

GPA: 3.8

09/2015 - 07/2019

Technical Skills

- Coding/Programming: Python (PyTorch, TensorFlow, Caffe, SciPy), Go (gRPC), SQL, C/C++.
- Software and Tools: Git, Docker, GCP, OpenCV, Open3D, LATEX, MySQL
- A.I./Machine Learning: Deep Learning, Representation Learning, Self-supervised Learning, Adversarial Optimization, Multi-modal Learning, 3D Object Detection, Semantic Segmentation.

Work Experience

Salesforce, Research Intern

06/2022 - Present

- o 3D Point Cloud Object Detection: enhancing transformers with 3D inductive biases.
- Investigated the limitations in the designs of existing transformers for point clouds.
- Designed a novel attention mechanism to improve the precision of 3D object detection.
- Improved previous state-of-the-art transformer-based 3D detection model on the ScanNetV2 indoor 3D detection benchmark by over 2.0% in mean average precision.

Nvidia, Research Intern

01/2022 - 05/2022

- Vision-Language Models: improving zero-shot generalization with prompt tuning.
 - Established a new way of prompt tuning without downstream data or annotations.
 - Developed a self-supervised optimization objective for prompt tuning on a single test sample.
 - Refined the test-time optimization pipeline by introducing a prediction calibration step.
 - Increased the out-of-distribution accuracy of a pre-trained vision-language model by 5.6%.

Research Experience

UMD Center for Machine Learning, Graduate Research Assistant

08/2019 - Present

- Representation Learning: unifying contrastive learning and meta-learning.
 - Analyzed and modeled the connection between contrastive learning and meta-learning.
 - Prototyped a self-supervised pre-training framework using meta-learners and demonstrated that it can produce models with better transferability on 8 downstream datasets.
 - \bullet Applied meta-learning techniques to state-of-the-art self-supervised representation learning methods and improved model performance by over 2.0% under different settings.
- Out-of-distribution Robustness: an adversarial approach for domain generalization.
 - Proposed adversarial batch normalization for simulation of novel feature distributions.
 - Visualized the novel feature distribution in image space, validating the effect of the method.
 - Evaluated the method on image classification and semantic segmentation and achieved consistent improvement on over ten domains with a maximum of 9.0% performance boost.

Selected Publications

- [1] R. Ni, M. Shu, H. Souri, M. Goldblum, and T. Goldstein. The Close Relationship between Contrastive Learning and Meta Learning. In *International Conferences on Learning Representations (ICLR)*, 2022.
- [2] M. Shu, Z. Wu, M. Goldblum, and T. Goldstein. Encoding Robustness to Image Style via Adversarial Feature Perturbations. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2021.
- [3] Y. Shen, L. Zheng, M. Shu, W. Li, T. Goldstein and M. Lin. Gradient-Free Adversarial Training against Image Corruption for Learning-based Steering. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2021.
- [4] M. Shu, Y. Shen, M. Lin, and T. Goldstein. Adversarial Differentiable Data Augmentation for Autonomous Systems In *International Conferences on Robotics and Automation (ICRA)*, 2021.
- [5] R Levin, M Shu, E Borgnia, F Huang, M Goldblum, T Goldstein. Where do models go wrong? Parameter-space saliency maps for explainability. In *International Conferences on Learning Representations (ICLR) Workshop*, 2021.
- [6] A Abdelkader, M Curry, L Fowl, T Goldstein, A Schwarzschild, M Shu, C Studer, C Zhu. Headless Horseman: Adversarial Attacks on Transfer Learning Models. In *ICASSP*, 2020.